Mitochondrial dysfunction and its role in tissue-specific cellular stress

David Pacheu-Grau¹*, Robert Rucktäschel¹ and Markus Deckers¹*
¹ Department of Cellular Biochemistry, University Medical Center Göttingen, Germany.
* Corresponding Authors:
David Pacheu-Grau, University Medical Center Göttingen, Department of Cellular Biochemistry, Humboldtallee 23, 37073 Göttingen, Germany. Phone: +49-(0)551-394571; E-mail: David.Pacheu-Grau@med.uni-goettingen.de;
Markus Deckers, University Medical Center Göttingen, Department of Cellular Biochemistry, Humboldtallee 23, 37073 Göttingen, Germany. Phone: +49-(0)551-395983; E-mail: Markus.Deckers@medizin.uni-goettingen.de

ABSTRACT Mitochondrial bioenergetics require the coordination of two different and independent genomes. Mutations in either genome will affect mitochondrial functionality and produce different sources of cellular stress. Depending on the kind of defect and stress, different tissues and organs will be affected, leading to diverse pathological conditions. There is no curative therapy for mitochondrial diseases, nevertheless, there are strategies described that fight the various stress forms caused by the malfunctioning organelles. Here, we will revise the main kinds of stress generated by mutations in mitochondrial genes and outline several ways of fighting this stress.

MITOCHONDRIA AND CELL METABOLISM
Mitochondria play a pivotal role in eukaryotic metabolism. They catabolise redox equivalents, derived from nutrient uptake, and use them to provide the bulk of cellular energy in the form of ATP. The oxidative phosphorylation system (OXPHOS) is responsible for this energy production and it is composed of five multi-oligomeric complexes present in the inner mitochondrial membrane. Transfer of electrons through complexes I to IV reduce molecular oxygen to water. This process is coupled to proton pumping from the matrix to the intermembrane space (IMS), while the return of protons to the matrix through the F1Fo ATPase generates ATP [1]. However, an inefficient flow of electrons through the respiratory chain complexes would partially reduce oxygen and produce reactive oxygen species (ROS) like superoxide and hydrogen peroxide. At low concentrations, these molecules act as second messengers and can activate gene transcription and trigger cellular responses, like cellular growth, production of cellular antioxidants or stimulation of mitochondrial biogenesis [2, 3]. However, once a certain threshold is exceeded, these molecules may incite oxidative damage in the form of mitochondrial DNA (mtDNA) alterations or lipid peroxidation, generating cellular stress that leads to aging or cell death.

In addition, mitochondria are involved in many other key cellular functions. Dissipation of the proton gradient by uncoupling proteins (UCPs) generates heat instead of energy and this plays an important role in exposure to cold or hibernation [4]. Calcium (Ca²⁺) uptake inside mitochondria is mediated by the mitochondrial calcium uniporter (MCU).
Although the complex has a low affinity for Ca\(^{2+}\), the transport takes place due to the high concentration of Ca\(^{2+}\) (>10 \(\mu\)M) present in micro domains located in the contact sites between endoplasmic reticulum (ER) and mitochondria [5]. The mitochondrial Ca\(^{2+}\) uptake not only shapes the cytosolic Ca\(^{2+}\) dynamics, which is crucial for muscle contraction, exocytosis and gene transcription, but also modulates at least three dehydrogenases of the Krebs cycle, thus regulating energy metabolism. Finally, Ca\(^{2+}\) overload in mitochondria regulates apoptosis due to formation of the permeable transition pore (PTP) and release of cytochrome c from the IMS [6]. Mitochondria are involved in the biogenesis and maturation of different cofactors, like heme, biotin or iron-sulfur (Fe/S) clusters. Despite the chemical simplicity of Fe/S clusters, their biosynthesis requires more than two dozen proteins in eukaryotes and takes place both in mitochondria and the cytosol [7]. Alterations in these mechanisms are linked to severe neurodegenerative, metabolic or haematological diseases [8].

Since mitochondria take part in many different metabolic processes, mitochondrial malfunction can affect numerous aspects of the cell. As a consequence, various forms of cellular stress are generated, leading to a large variety of pathological conditions. Here, we review different forms of cellular stress caused by mitochondrial malfunction and the strategies used to fight this stress.

MITOCHONDRIAL DEFECTS
Mitochondria have retained their own genome, the mtDNA. This small, circular, double-stranded DNA is located in the mitochondrial matrix in all cell types, and can be found with copy numbers that range from several to thousands of copies. In human, the mtDNA encodes 13 polypeptides of the respiratory chain, as well as for part of the translation machinery, required for the synthesis of these polypeptides within mitochondria: two ribosomal RNAs (mt-rRNAs) and 22 transfer RNAs (mt-tRNAs) [9]. The remaining mitochondrial proteins (approx. 99%) are encoded in the nucleus, synthesized on the cytosolic ribosomes and imported into mitochondria. Therefore, we will distinguish between mitochondrial malfunction caused by mutations in the mtDNA and those caused by mutations of nuclear genes encoding mitochondrial proteins.

Alterations in the mtDNA
Some features of mtDNA make it especially sensitive to oxidative damage and mutation. Firstly, mtDNA has no introns, so every single nucleotide carries information essential for protein coding; mtDNA is naked, there are no histone proteins protecting it from damage; and although DNA repair systems do exist in mitochondria, their mechanisms and extent are poorly understood [10], therefore mutations usually remain and are transmitted to the next generation until they are removed by selection [11]. Moreover, the proximity to the respiratory chain, a ROS producing source, increases the risk of potential damage. For all these reasons, the mutational rate of the mitochondrial genome is much higher than that of the nuclear genome [12].

Pathological changes in the mtDNA can appear as point mutations in protein coding sequences, mt-tRNAs or even mt-rRNAs. In addition, major rearrangements of mtDNA, like deletions or insertions/duplications, are a cause of disease. Due to the fact that every cell contains a variable number of mtDNA molecules, mutations can be present in homoplasy (all copies share the same mtDNA genotype) or heteroplasy (only a population of DNA is mutated). The level of heteroplasy of a mutation is a critical determinant of the cellular stress of a certain tissue or organ and has a major role in the disease phenotype. Finally, a reduction of mtDNA copies (depletion syndrome) can also hamper energy production and generate cellular stress (see Table 1, Figure 1) [12].

Alterations in the mitochondrial proteins encoded in the nucleus
Due to the diverse cellular roles that mitochondria fulfill, there are many mitochondrial processes that cause a pathology when disturbed. In the last years, massive sequencing approaches have significantly increased the number of known mutations implicated in mitochondrial diseases. Examples of this are defects in: factors involved in the biogenesis or integrity of respiratory chain complexes, those that regulate mtDNA maintenance, proteins required for transcription of mt-mRNA elements involved in translation of mtDNA encoded proteins, regulators of lipid metabolism, factors involved in cellular signalling and even enzymes of the Krebs cycle (see Table 2).

CELLULAR EFFECTS ON DIFFERENT TISSUES
Typically, mitochondrial disorders have been divided between those presenting with multiple symptoms, usually known as syndromes, and those characterized by tissue specific phenotypes. It remains to be addressed, which factors determine the tissue-specificity of mitochondrial diseases. However, to better address the different kinds of stress caused by mitochondrial distress, we will describe them classified by tissues/organs and give some examples of alterations that cause these problems.

Sensory organs
Hearing loss is one of the most prevalent sensory disorders [61]. Genetic factors are thought to account for more than half of congenital and childhood-onset hearing loss, including mutations in mtDNA [62] and mitochondrial nuclear genes like the heme A biogenesis factor COX10 [63, 64] or the AAA protease responsible for complex III assembly BSC1L [65, 66].

Mutations in the 12S mt-rRNA (m.1555A>G and m.1494 C>T) have been associated with aminoglycoside-induced ototoxicity and mitochondrial non-syndromic hearing loss. Studies using mitochondrial cybrids derived from Hela cells and lymphoblasts have shown that these mutations affect the integrity and fidelity of the mitochondrial ribosome, therefore causing decreased mitochondrial translation,
Mitochondrial dysfunction and cellular stress

either in the presence or the absence of aminoglycosides, and resulting in a cell growth defect [67, 68]. However, a study using osteosarcoma 143B derived cybrids showed no effect on mitochondrial translation after aminoglycoside treatment [69]. This discrepancy, the phenotypic differences between asymptomatic relatives and patients all harbouring the same mutational load and the fact that only in some cases the defect arose upon antibiotic treatment, raised the search for modifying factors of aminoglycoside induced ototoxicity within the nuclear genetic background [70]. Indeed, no negative effect was observed after aminoglycoside treatment in primate cells from the Cercopithecidae family where the m.1494 C>T was fixed as the wild-type allele and cells carried a compensating mutation in mitochondrial ribosomal protein S12 (MRPS12) [71], whereas primate cells from orangutan carrying the m.1555A>G mutation and no MRP mutation showed a drastic effect after antibiotic treatment [72]. In addition, this biochemical effect has been linked to stress signalling. Cybrids carrying the m.1555A>G mutation showed hypermethylation of the mitochondrial ribosome, disturbed mitochondrial translation and assembly of the respiratory chain, resulting in increased production of ROS. Enhanced superoxide levels are sensed by AMPK, which signals further to E2F1, activating pro-apoptotic signalling in the cell. This induction seems to be tissue-specific, happens mainly in the inner ear and may explain the specific hearing defect observed in the presence of this particular mutation [73] (see Table 1).

Eye complications are also frequently found to be associated with mitochondrial dysfunction [74] and can be divided into primary and secondary. Primary afflictions are caused by genetic defects, whereas secondary afflictions are produce by hypertensive angiopathy of the retinal arteries, or diabetic retinopathy in mitochondrial diseases with diabetes [75]. Mitochondrial optic neuropathies have been associated with mutations in mtDNA and in nuclear genes. The most frequent eye disorder due to mtDNA mutation is Leber’s hereditary optic neuropathy (LHON) [76]. LHON usually affects young male adults and is characterised by mostly bilateral subacute or acute, painless, loss of central vision, with decreased colour vision [77]. There are

FIGURE 1: Mitochondrial dysfunctions are related to mutations in mtDNA and defects in nuclear encoded mitochondrial proteins. (I) Overview of mutations within the mtDNA. (II) The majority of mitochondrial defects based on a malfunction of OXPHOS complexes and mitochondrial translation. (III) Defects in other processes, like mitochondrial fusion and fission or lipid homeostasis, leads to different mitochondrial diseases. (IV) Different strategies to fight the diverse forms of mitochondrial stress. (a: Leigh Syndrome LS; b: Leber Hereditary Optic Neuropathy LHON; c: Neurogenic Muscle Weakness, Ataxia and Retinitis Pigmentosa NARP; d: Mitochondrial Encephalomyopathy, Lactid Acidosis and Stroke-like Episodes MELAS; e: Myoclonic Epilepsy and Ragged Red Fiber Disease MERRF; f: Sensorineural Hearing Loss SNHL; g: mitochondrial non-syndromic Hearing Loss; A: Kearns Sayre Syndrome KSS).
three main mtDNA mutations that underly the majority of LHON cases and all of them are found in complex I genes: m.11778G > A in the ND4 gene, m.3460G > A in the ND1 gene, and m.14484T > C in the ND6 gene (see Table 1). In addition, these mutations are usually present in homoplasmy, indicating that probably other factors are involved in the development of the disorder. The molecular mechanisms underlying LHON are not yet fully understood. There have been some risks factors proposed, like specific mitochondrial haplogroups, smoking, alcohol consumption, and the use of some antibiotics. Differences in mitochondrial mass have been also postulated to play a role in the incomplete manifestation of the disease. LHON mutation carriers with no pathological phenotype have significantly higher mtDNA copy number in leukocytes than affected carriers. By comparing fibroblasts from unaffected and affected mutation carriers, along with controls, it was shown that unaffected carriers have increased mitochondrial transcripts, respiratory chain proteins and enzyme activities compared to controls and affected carriers. Therefore, increased mitochondrial mass may play a protective role in LHON and compensate for complex I dys-

Disease	Coding	Mutation	Reference
Kearns Sayre Syndrome (KSS)	ND3, ND4, ND4L, NDS, COX3, ATP6, ATP8, tRNA^{Leu}, tRNA^{Ser}, tRNA^{His}, tRNA^{Ala}, tRNA^{Gly}, tRNA^{Lys}	Δ4977 (5 kb deletion)	[13, 14]
Leigh Syndrome (LS)	ATP6	m.8993T>C	[15]
		m.9176G	[16]
		m.10158T>C	[17-19]
		m.11777C>A	[20, 21]
		m.12706T>C	[22]
		m.14459G>A	[23, 24]
		m.14487T>C	[25, 26]
Leber Hereditary Optic Neuropathy (LHON)	ND4	m.11778G>A	[27]
	ND1	m.3460G>A	[28, 29]
	ND6	m.14484T>C	[30-32]
Neurogenic Muscle Weakness, Ataxia and Retinitis Pigmentosa (NARP)	ATP6	m.8993T>G	[33, 34]
Mitochondrial Encephalomyopathy, Lactic Acidosis and Stroke-like Episodes (MELAS)	ND1	m.3697C>A	[35]
	ND5	m.13513G>A	[36]
		m.13514G>A	[37]
		tRNA^{Phe}	[38, 39]
		tRNA^{Leu} (UUR)	[40]
		m.3243A>G	[41, 42]
		m.3256C>T	[43-45]
		m.3271T>C	[46]
		m.3291T>C	
		tRNA^{Gln}	[47]
Myoclonic Epilepsy and Ragged Red Fiber Disease (MERRF)	tRNA^{Lys}	m.8344A>G	[48, 49]
		m.8356T>C	[50-52]
		m.8363G>A	[53]
Sensorineural Hearing Loss (SNHL)	tRNA^{Aur}	m.7445A>G	[54]
		m.7511T>C	[55]
Deafness (DEAF)	12s rRNA	m.1494C>T	[56]
		m.1555A>G	[57-59]
function [78]. In addition, males seem to be more affected because of the lack of protective effects from estrogen. Indeed, a study using cybrids carrying LHON mtDNA mutations showed that the addition of estradiol increased mitochondrial biogenesis and decreased ROS production by enhancing the activity of detoxifying enzymes like SOD2, leading to a decrease in apoptosis [79] (see Table 1).

The most common eye afflictions associated with nDNA mutations are autosomal dominant optic atrophy (ADOA), most frequently due to mutations in the Dumin-like GTPase OPA1, and autosomal recessive optic atrophy (AROA), which has been mainly associated with mutations in the aconitate hydratase ACO2, or the uncharacterised transmembrane protein TMEM126A (OPA7) [76]. ADOA is clinically characterised by bilaterally symmetric progressive deterioration of the central visual acuity. Approximately 60-70% of ADOA cases are caused by genetic alterations in OPA1, other genes implicated in this pathology are OPA2 [80], OPA3 [81], OPA4 [82], OP5 [83], OP8 [84] and WFS1 [85] (see Table 1). OPA1 is a protein with eight different isoforms, processed by the mitochondrial metallochaperones YME1L and OMA1 [86-88]. The best-known function of OPA1 is for inner mitochondrial fusion during mitochondrial dynamics. In addition, OPA1 is involved in the remodelling of cristae by tethering inter-cristae membranes and proper function of the protein is required for maintaining cristae structure [89]. OPA1 mutations cause defective mitochondrial fusion and altered cristae structure, leading to direct effects on mitochondrial bioenergetics, including a decreased mitochondrial membrane potential and ATP synthesis and increased ROS production [90]. Interestingly, deletion of YME1L in murine heart, which alters OPA1 processing and function in a tissue-specific way, causes dilated cardiomyopathy (Figure 1) [91].

AROA presents with progressive impairment of visual capacity. The defect could either be spontaneously recovered or may lead to bilateral and progressive blindness [77]. Mutations in ACO2, affect the mitochondrial tricarboxylic acid cycle and therefore mitochondrial energy supply is depleted in patients [92]. Although there have been several AROA patients with mutations in TMEM126A, the exact function of the protein and therefore the molecular mechanism underlying optic atrophy has yet to be determined [93-95].

Heart

Cardiac muscle has a high energetic demand, therefore cardiac complications are frequent among mitochondrial diseases. One of the most common cardiac afflictions present in these pathologies is cardiomyopathy, which is estimated to occur in 20-40% of children with mitochondrial disease [4, 96, 97]. However, other symptoms like arrhythmia, conduction defects, pulmonary hypertension, dilated aortic root, pericardial effusion or coronary heart disease can also be developed as consequence of mitochondrial malfunction [5, 98].

Mitochondrial cardiomyopathies are characterised by abnormal myocardial structure or function that results from genetic defects that impair the mitochondrial respiratory chain [6, 98]. Hypertrophic cardiomyopathy is the most common form, present in more than 50% of cases [7, 96], but other forms, like dilated, restrictive, histiocytoid and left ventricular non-compactation cardiomyopathies can also be found among these patients [8, 99].

As described before (see above), genetic defects affecting the integrity of respiratory chain complexes, mitochondrial translation, maintenance of mtDNA, lipid metabolism and other metabolic pathways inside mitochondria might lead to cardiac disease. Several important perturbations have been described in subunits or factors required for the proper assembly of respiratory chain complexes. In general, mutations in these proteins cause an impairment of respiration and ATP production, increased ROS production and finally, cellular stress derived from a bioenergetics impairment. To date, pathological mutations have been found in 26 structural subunits of complex I [9, 100], that together with mutations in assembly factors represent around 30% of childhood mitochondrial diseases [11, 101]. Complex I defects can be present with isolated cardiomyopathy or together with multi-organic failure. Mutations in subunits of complex II or III have also been associated with different types of cardiomyopathy [12, 102-104]. Of special interest are defects of the cytochrome c oxidase, caused by mutations in assembly factors and in nuclear-encoded structural subunits. Mutations in the complex IV assembly factors COX10 and COX15 have been associated with hypertrophic cardiomyopathy [16, 105]. Both assembly factors are involved in the biosynthesis of heme A, the prosthetic group of the cytochrome c oxidase. Mutations in COX6B1, have been associated with cardiomyopathy and encephalopathy and showed decreased levels of the mature cytochrome c oxidase complex in patient-derived tissues and cells [12, 106, 107]. Although COX6B1 was thought to be a loosely interacting structural subunit of complex IV, studies have postulated Cox12 (yeast homolog of COX6B1) to be involved in the delivery of copper to Cox2, together with other metallochaperones like Sco1, Sco2 and Coa6 [61, 108]. Indeed, mutations in human SC02 have been mainly associated with cardioencephalopathy [62, 109-111], whereas mutations in SCO1 have been associated with hepatic failure and encephalopathy [67, 68, 112, 113], as well as cardiomyopathy [64, 114]. Both proteins contain a CXXC that is able to coordinate copper. They bind to apo-COX2 and deliver two copper atoms to the CuA center. Both enzymes have different but cooperative functions and disruptions in their function impair the maturation of cytochrome c oxidase [70, 115]. In addition, the SCO1 and SCO2 proteins are involved in regulating cellular copper homeostasis [71, 116]. Recently, it has been shown that SCO1 keeps the copper transporter CTR1 in the plasma membrane, this function being essential for the development of adult myocardium in mice [72, 117]. Mutations in COA6 have been described in infants with hypertrophic cardiomyopathy and combined complex I and IV, or isolated complex IV deficiency in the heart [73, 118, 119]. COA6 is required for cytochrome c oxidase assembly [74, 120, 121]. It is involved in the insertion of copper into COX2 and it has been described to interact with SCO2 [75, 122] and SCO1...
[76, 123] after the translocation of the COX2 C-terminal domain into the IMS by COX18 [124]. However, why disturbance of copper metabolism, or ultimately of the cytochrome c oxidase, specifically affects the heart remains unclear (see Table 2, Figure 1).

Mutations in the mitochondrial translation machinery have also been associated with cardiomyopathy. Primary defects produce a decreased synthesis of mitochondrial polypeptides, but ultimately also impair mitochondrial bioenergetics and cause cellular stress. Mutations in the 16S mt-rRNA, and the m.1555A>G mutation in the 12S mt-rRNA, have been associated with hypertrophic and restrictive cardiomyopathy [78, 125, 126]. Mutations in ribosomal proteins (MRPL3 and MRPL44) and the translation elongation factor (TSFM) can cause cardiomyopathy, together with multi-organic disease [79, 127-130]. Finally, defects in mitochondrial tRNAs can be linked to isolated cardiomyopathy or multi-organic dysfunction [131-133] (see Table 1 and Table 2).

Alterations of lipid metabolism inside mitochondria can also be a determinant for cardiac disease. Barth syndrome is an x-linked autosomal recessive disease, characterized by cardiomyopathy, skeletal myopathy, neutropenia, growth retardation, and 3-methylglutaconic aciduria [80, 134-136]. This disorder is caused by mutations in the Tafazzin protein, TAZ1, a mitochondrial acyl-transferase involved in the biogenesis of cardiolipin (CL), a phospholipid almost exclusively found in the inner mitochondrial membrane [81, 137]. The adequate presence of CL is required for structural stability of many critical protein complexes in the mitochondrial membrane and it is therefore essential for many mitochondrial processes ranging from protein import, cristae morphology, function of the respiratory chain or cell stress signaling [82, 136]. Interestingly, oxidation of CL causes loss of interaction with cytochrome c, a pre-requisite for triggering apoptosis. Oxidized CL has been found to be involved in the opening of the mitochondrial permeability transition pore (MPTP). In addition, CL is exposed to the outer mitochondrial membrane during apoptosis, where it is used as a binding platform for pro-apoptotic factors. Therefore, CL homeostasis plays an important role in cardiomyocyte programmed death upon ischaemia or reperfusion (Figure 1) [83, 136].

Mutations in another lipid related enzyme, the acylcarnitine transferase AGK, have been associated with hypertrophic cardiomyopathy, myopathy, cataracts, exercise intolerance and lactic acidosis (Sengers syndrome). AGK was recently described as a component of the carrier protein translocase of the inner membrane (TIM22) [84, 138, 139], meaning that a defective import of carrier proteins alters mitochondrial metabolism and may disturb the function of the heart.

Neurological disorders

Similar to previously described organs and tissues and due to the high energy demands, neurological complications are commonly linked to mitochondrial dysfunction. Indeed, some of the most known mitochondrial syndromes caused by abnormalities in the mtDNA present with drastic neurological symptoms: Kearns–Sayre syndrome (KSS), a multi-system disorder with progressive external ophthalmoplegia, pigmentary retinopathy, heart block and frequently other signs like ataxia, dementia or endocrine problems is associated with single deletions of mtDNA [140]. MELAS (Mitochondrial Myopathy, Encephalopathy, Lactic Acidosis and Stroke-like Episodes) is caused in 80% of the cases by the m.3243A>G mutation in the tRNA[^Leu(UUR)] gene, although there have been other mutations described in protein coding genes [35, 36, 40, 80, 136, 141]. MERRF (Myoclonic Epilepsy and Ragged-Red Fiber), which usually also presents with cerebellar ataxia is mainly caused by mutations in the tRNA[^Ser(UCN)] gene (m8344A>G, m8356T>C, m.8363G>A), being the m.8344A>G the most frequent of them [49, 51, 53, 142]. The previously described defects affect the gene expression machinery of the mitochondrial genome and will generally affect mitochondrial protein synthesis, moreover an increased ROS production has been described in cybrids carrying the MELAS m.3243A>G mutation or the KSS associated common deletion A4977 [89, 143]. In addition, there are mutations described in protein coding genes or in mitochondrial nuclear genes that would only affect individual complexes of the respiratory chain: NARP (Neuropathy, Ataxia and Retinitis Pigmentosa) has been mainly associated to the m.8933T>G/C mutation in the complex V subunit mt-ATP6 [33]. NARP patient derived cells were also found to have increased ROS production and decreased levels of ATP production [143]. Leigh syndrome is a progressive neurometabolic disorder that usually presents with seizures, hypotonia, fatigue, nystagmus, poor reflexes, eating and swallowing difficulties, breathing problems, poor motor function, and ataxia. This unique mitochondrial disorder is found to be caused by both mutations in the mtDNA and the nDNA. Mutations in many different genes have been identified to be the origin of Leigh syndrome, including mtDNA subunits of the complex I, IV and V, mt-tRNAs, nuclear encoded subunits of complex I, IV and II, the pyruvate dehydrogenase complex, or some assembly factors of the cytochrome c oxidase (SURF1, SCO1, SCO2, COX10, COX15) or complex III (bCS1L) [144]. Cells derived from patients with 3 different complex I mutations and Leigh syndrome exhibited increased ROS production [143, 145] (see Table 1 and Table 2, Figure 1).

As already mentioned, many more genes are being identified as the reason behind mitochondrial dysfunction. Defects in mtDNA maintenance may result into defective mtDNA replication and lead to quantitative loss of mtDNA (mtDNA depletion) or qualitative one (mtDNA deletion). Downstream perturbation of mitochondrial protein synthesis will final lead to a bioenergetics defect. MPV17 is a mitochondrial inner membrane protein involved in maintenance of mtDNA. It is believed to be involved in the import of deoxyribonucleotides into mitochondria. Pathogenic variants in MPV17 have been reported to cause hepato-cerebral mtDNA depletion syndrome with liver failure, development delay and other neurological manifestations [146, 147]. In addition, infantile neuronal encephalopathy (NNH), a neurohepatopatolral disorder prevalently present among
Navajo children in the southwestern of USA has been found to be caused by mutations in MPV17 [148]. A recent report analysing new pathological variants in MPV17 showed that most patients exhibited a single or combined respiratory chain complex activity decrease [149] (see Table 2).

TABLE 2. Mitochondrial defects caused by nuclear encoded genes.

Mitochondrial defects - nuclear encoded (nDNA) [60]
OXPHOS (structural proteins and assembly factors)
Complex I
NDUFS1
NDUFS3
NDUFS6
NDUFS8
NDUFB9
NDUFB11
NDUFA2
NDUFAA10
NDUFA12
NDUFAF1
NDUFAF3
NDUFAF5
NUBPL
mtDNA maintenance
POLG
FBXL4
MGME1
Mitochondrial Import
DDP
Mitochondrial Protein Synthesis
AARS2
IARS2
SARS2
GTPBP3
GFM2
MRP522
Iron Homeostasis
FRDA
IBA57
Coenzyme Q10 biogenesis
COQ2
PDSS1
Mitochondrial quality control
SPG7
Mitochondrial Integrity
DLP1
Mitochondrial Metabolism
PDHA1
Aminoacyl-tRNA synthetases (ARS), are a family of proteins encoded in the nucleus and present in either the cytosol or mitochondria that ensure the proper conjugation of an amino acid with its cognate tRNA molecules. All mt-ARS are synthesized in the cytosol, imported to mitochondria due to an N-terminal targeting sequence (presequence) which is cleaved upon translocation to the matrix. Pathogenic variants of mt-ARS will affect mitochondrial translation and have been implicated in human neurological disorders of the brain, spinal cord and motor neurons in addition to other symptoms. Some of the most typical presentations are leukoencephalopathy with involvement of the brainstem and spinal cord and high lactate due to mt-aspartyl-tRNA synthetase (DARS2) mutations [150], leukoencephalopathy with thalamus and brainstem involvement and high lactate, caused by mt-glutamyl-tRNA synthetase (EARS2 [151]). However, there are other mt-ARS mutations which may also produce white matter lesions. The similar symptoms shown by ARS mutations may imply a shared mechanism of disease, however such a mechanism has not been yet demonstrated. Among the possible molecular reasons are: a reduced aminoacylation activity, altered dimerization, mislocalization, gain of function though pathogenic interactions and loss of noncanonical function [152] (see Table 2).

NEW STRATEGIES TO FIGHT MITOCHONDRIAL DERIVED STRESS

Nowadays there is no actual treatment for mitochondrial diseases. Nevertheless, in the last years a number of therapeutic strategies have been proposed, mainly in animal models. They can be classified into those acting on common pathways, and therefore applicable to different diseases, and those which aim to ameliorate a particular disorder (Figure 1) [153].

Those tissues or organs affected by decreased ATP production, and therefore impaired bioenergetics, can benefit from increased mitochondrial mass and activity. The transcriptional co-activator peroxisome proliferator activated receptor-1alpha (PGC1alpha) is the master regulator of mitochondrial biogenesis. It increases the activity of several transcription factors, like the nuclear respiratory factors (NR1 and NR2), thereby controlling the expression of OXPHOS related genes. In addition, PGC1alpha interacts with the peroxisomal proliferator activator receptors (PPARs), which regulate the expression of fatty acid oxidation genes [154]. PGC1alpha is activated either by deacetylation by Sirt1, or phosphorylation by AMPK, both of which can be modulated pharmacologically [155]. Under physiological conditions, PGC1alpha shows its highest expression levels in the heart, and mouse models lacking this protein have shown a normal cardiac function in unstimulated conditions. However, an impaired cardiac function was observed during certain stress conditions, like intense exercise or aortic constriction. Thus, the physiological role of PGC1alpha seems to be in fighting cellular stress [156].

Another possible strategy is to bypass the block in the respiratory chain from specific complex defects. In such a way, electrons will flow again and reduce ROS production. Concomitantly, unaffected complexes would pump protons across the inner membrane and increase ATP production. The yeast Saccharomyces cerevisiae NADH reductase (Ndi1), which transfers electrons from NADH to coenzyme Q (CoQ), has been used to bypass CI defects [157]. In a similar approach, the alternative oxidase (AOX), which transfers electrons from CoQ to molecular oxygen in different organisms, has been used to bypass CIII and IV defects in cell culture [158] and to ameliorate to different extent respiratory defects in fly models [159, 160]. The enzyme has been successfully expressed in murine models [161], however correction of respiratory chain defects has not been shown yet in vivo in mammals.

As previously described (see above), the dynamin-like GTPase OPA1 is required for proper mitochondrial shaping. Regulating fission and fusion helps fight mitochondrial malfunction. Increasing the expression of long isoforms of OPA1 improves respiration efficiency by enhancing supercomplex assembly and protects in vivo from many insults, such as ischemia/reperfusion, denervation/induced muscle atrophy, and OXPHOS deficiency [89, 162, 163].

In order to cope with increased oxidative damage generated in damaged mitochondria, different small molecules with antioxidant properties have been tested. Some examples, like Idebenone, lipoic acid, or Coenzyme Q10, directly transfer electrons to the respiratory chain and bypass defective complexes. Others, like EPI-743 and RP103, enhance the biogenesis of glutathione, an important cellular antioxidant. KH176, can reduce altered cellular ROS levels and protect OXPHOS deficient cells against redox stress by targeting the Thioredoxin/Peroxiredoxin system [164]. MTP-131 is a member of the Szteto-Schiller (SS) peptide family and binds to CL. It increases OXPHOS capacity and improves the way mitochondria respond to metabolic changes. L-Arginine, a donor of nitric oxide, which thus regulates vascular tone, was shown to induce an improvement in aerobic capacity and muscle metabolism in models for mitochondrial disease [165].

Finally, genetic approaches can be used to correct mutations at a genomic level. Mitochondrially targeted restriction endonucleases have been used to shift heteroplasmy levels in cell lines with mutations in mtDNA and in heteroplasmic mice. Introduction of TALE and zinc finger nucleases (TALEN and ZFN) enabled the addition of specificity to the nucleases so that mutant DNA molecules could be selected for by directing unspecific restriction enzyme (FokI) to appropriate specific sequence assembling ZFN or TALE modules [166, 167]. However, this approach requires very large constructs that do not so easily fit into adeno-associated viruses (AVV) vectors. The Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) system is a bacterial immune system that has been modified for genome engineering. Due to the simplicity and adaptability of this technique, CRISPR has quickly replaced the previously established TALENs or ZFNs for genome engineering. CRISPR consists of two elements: a guide RNA (gRNA) and a non-specific CRISPR-associated endonuclease (Cas9). The gRNA is a short synthetic RNA
Mitochondrial dysfunction and cellular stress

REFERENCES

1. Mick DU, Dennerlein S, Wiese H, Reinhold R, Pacheu-Grau D, Lorenzo I, Sasaran F, Weraarpachai W, Shoubridge EA, Warscheid B, and Rehling P (2012). MITRAC links mitochondrial protein translocation to respiratory-chain assembly and translational regulation. Cell 151(7): 1528–1541. doi: 10.1016/j.cell.2012.11.053

2. Yoboue ED, and Devin A (2012). Reactive oxygen species-mediated control of mitochondrial biogenesis. Int J Cell Biol 2012:403870. doi: 10.1155/2012/403870

3. Di Meo S, Reed TT, Venditti P, and Victor VM (2016). Role of ROS and RNS Sources in Physiological and Pathological Conditions. Oxid Med Cell Longev 2016: 1245049. doi: 10.1155/2016/1245049

4. Busiello RA, Savarese S, and Lombardi A (2015). Mitochondrial uncoupling proteins and energy metabolism. Front Physiol 6: 36. doi: 10.3389/fphys.2015.00036

5. Penna E, Espino J, De Stefani D, and Rizzuto R (2018). The MCU complex in cell death. Cell calcium 69: 73–80. doi: 10.1016/j.ceca.2017.08.008

6. Raffaello A, Mammucari C, Gherardi G, and Rizzuto R (2016). Calcium at the Center of Cell Signaling: Interplay between Endoplasmic Reticulum, Mitochondria, and Lysosomes. Trends Biochem Sci 41(12): 1035–1049. doi: 10.1016/j.tibs.2016.09.001

7. Lill R (2009). Function and biogenesis of iron-sulphur proteins. Nature 460(7257): 831–838. doi: 10.1038/nature08301

8. Cardenas-Rodriguez M, Chatzi A, and Tokatlidis K (2018). Iron-sulfur clusters: from metals through mitochondria biogenesis to disease. J Biol Inorg Chem 23(4):509-520. doi: 10.1007/s00775-018-1548-6

9. Montoya J, López-Pérez MJ, and Ruiz-Pesini E (2006). Mitochondrial DNA transcription and diseases: past, present and future. Biochim
Mitochondrial dysfunction and cellular stress

20. Jun AS, Brown MD, and Wallace DC (1994). A mitochondrial DNA mutation at nucleotide pair 14459 of the NADH dehydrogenase subunit 6 gene associated with maternally inherited Leber hereditary optic neuropathy and dystonia. Proc Natl Acad Sci U S A 91(13): 6206–6210. doi: 10.1073/pnas.91.13.6206

21. Solano A, Roig M, Vives-Bauza C, Hernandez-Peña J, Garcia-Arumí E, Playán A, López-Pérez MJ, Andreu AL, and Montoya J (2003). Bilateral striatal necrosis associated with a novel mutation in the mitochondrial ND6 gene. Ann Neurol 54(4): 527–530. doi: 10.1002/ana.10682

22. Ugalde C, Tripelis RH, Coenjen MJ, Van Den Heuvel LP, Smeets R, Uusimaa J, Briones P, Campistol J, Majamaa K, Smetnick JAM, and Nijtmans L (2003). Impaired complex I assembly in a Leigh syndrome patient with a novel missense mutation in the ND6 gene. Ann Neurol 54(5): 665–669. doi: 10.1002/ana.10734

23. Wallace D, Singh G, Lott M, Hodge J, Schurr T, Lezza A, Elsas L, and Nikoskelainen E (1988). Mitochondrial DNA mutation associated with Leber’s hereditary optic neuropathy. Science 242(4884): 1427–1430. doi: 10.1126/science.3201231

24. Howard N, Bindoff LA, McCullough DA, Kubacka I, Poulton J, Mackey D, Taylor L, and Turnbull DM (1993). Leber hereditary optic neuropathy: identification of the same mitochondrial DNA mutation in six pedigrees. Am J Hum Genet 49(5): 939–950. PMID: 1928099

25. Huoponen K, Vilkki J, Aula P, Nikoskelainen EK, and Savontaus ML (1991). A new mtDNA mutation associated with Leber hereditary optic neuropathy. Am J Hum Genet 48(6): 1147–1153. PMID: 1674640

26. Brown MD, Vojvacek AS, Lott MT, MacDonald I, and Wallace DC (1992). Leber’s hereditary optic neuropathy: a model for mitochondrial neurodegenerative diseases. FASEB J 6(10): 2791–2799. PMID: 1634041

27. Howard N, Kubacka I, Xu M, and McCullough DA (1991). Leber hereditary optic neuropathy: involvement of the mitochondrial ND1 gene and evidence for an intragenic suppressor mutation. Am J Hum Genet 48(5): 935–942. PMID: 2018041

28. Johns DR, Neufeld MJ, and Park RD (1992). An ND6 mitochondrial DNA mutation associated with Leber hereditary optic neuropathy. Biochem Biophys Res Commun 187(3): 1551–1557. PMID: 1006006-291(92)90479-5

29. Holt U, Harding AE, Petty RK, and Morgan-Hughes JA (1990). A new mitochondrial DNA disease associated with mitochondrial DNA heteroplasmacy. Am J Hum Genet 46(3): 428–433. PMID: 2137962

30. Harding AE, Holt U, Sweeney MG, Brockington M, and Davis MB (1992). Prenatal diagnosis of mitochondrial DNA8993 T—G disease. Am J Hum Genet 50(3): 620–633. PMID: 1539598

31. Kirby DM, McFarland R, Ohtake A, Dunning C, Ryan MT, Wilson C, Ketteridge D, Turnbull DM, Thorburn DR, and Taylor RW (2004). Mutations of the mitochondrial ND1 gene as a cause of MELAS. J Med Genet 41(10): 784–789. doi: 10.1136/jmg.41.10.784

32. Kirkby DM, McFarland R, Ohtake A, Dunning C, Ryan MT, Wilson C, Ketteridge D, Turnbull DM, Thorburn DR, and Taylor RW (2004). Mutations of the mitochondrial ND1 gene as a cause of MELAS. J Med Genet 41(10): 784–789. doi: 10.1136/jmg.41.10.784

33. Santorelli FM, Tans K, Kulkowski R, Shananske S, Villarino L, Hays AP, and DiMauro S (1997). Identification of a novel mutation in the mtDNA NDS gene associated with MELAS. Adv Exp Med Biol 414: 226–328. doi: 10.1007/bf0019.97167

34. Corona P, Antonzo C, Carrara F, D’Incerti L, Lamantea E, Tiranti V, and Zeviani M (2001). A novel mtDNA mutation in the NDS subunit of complex I in two MELAS patients. Ann Neurol 49(1): 106–110. doi: 10.1002/1532-8429(200101)49:1<106::aid-ana16>3.0.co;2-t

35. Darin N, Köllberg G, Moslemi A-R, Tulinius M, Holme E, Grönblad MA, Anderson S, and Olsson A (2006). Mitochondrial myopathy with exercise intolerance and retinal dystrophy in a sporadic patient with a G583A mutation in the mt tRNA(phe) gene. Neuromuscul Disord
16(8): 504–506. doi: 10.1016/j.nmd.2006.05.010

39. Hanna MG, Nelson IP, Morgan-Hughes JA, and Wood NW (1998). MELAS: a new disease associated mitochondrial DNA mutation and evidence for further genetic heterogeneity. J Neural Neurosurg Psychiatry 65(4): 512–517. doi: 10.1136/jnnp.65.4.512

40. Goto Y, Nonaka I, and Horai S (1990). A mutation in the tRNA[Leu(UUR)] gene associated with the MELAS subgroup of mitochondrial encephalomyopathies. Nature 348(6302): 651–653. doi: 10.1038/348651a0

41. Sato W, Hayasaki K, Shoji Y, Takahashi T, Takada G, Saito M, Fukawa O, and Wachi E (1994). A mitochondrial tRNA[Leu(UUR)] mutation at 3,256 associated with mitochondrial myopathy, encephalopathy, lactic acidosis, and stroke-like episodes (MELAS). Biochem Mol Biol Int 33(6): 1055–1061. PMID: 7804130

42. Moraes CT, Ciacci F, Bonilla E, Jansen C, Hirano M, Rao N, Lovelace RE, Rowland LP, Schon EA, and DiMauro S (1993). Mitochondrial myopathy (MERRF) is associated with a mitochondrial DNA tRNA(Lys) mutation. Eur J Hum Genet 1(1): 80–87. doi: 10.1159/000472390

43. Irie M, Ohneda M, Ueda H, Kasai H, Fujita K, Hayashi Y, Liang H, Higuchi Y, Tanaka T, and Osawa H (1994). A new mtDNA mutation in the tRNA[Leu(UUR)] gene associated with myoclonic epilepsy and ragged-red fibers (MERRF). Am J Hum Genet 51(6): 1213–1217. PMID: 1361099

44. Reid FM, Venham GA, and Jacobs HT (1994). A novel mitochondrial point mutation in a maternal pedigree with sensorineural deafness. Human Mut 3(3): 243–247. doi: 10.1002/humu.1380030311

45. Sato W, Hayasaki K, Shoji Y, Takahashi T, Takada G, Saito M, Fukawa O, and Wachi E (1994). A mitochondrial tRNA[Leu(UUR)] mutation at 3,256 associated with mitochondrial myopathy, encephalopathy, lactic acidosis, and stroke-like episodes (MELAS). Biochem Mol Biol Int 33(6): 1055–1061. PMID: 7804130

46. Masucci JP, Davidson M, Koga Y, Schon EA, and King MP (1995). In vitro analysis of mutations causing myoclonus epilepsy with ragged-red fibers in the mitochondrial tRNA[Leu(UUR)] gene: two genotypes produce similar phenotypes. Mol Cell Biol 15(5): 2872–2881. doi: 10.1128/MCB.15.5.2872

47. Zeviani M, Muntoni F, Savarese N, Serra G, Tiranti V, Carrara F, Mariotti C, and DiDonato S (1993). A MERRF/MELAS overlap syndrome associated with a new point mutation in the mitochondrial DNA tRNA(Lys) gene. Eur J Hum Genet 1(1): 80–87. doi: 10.1159/000472390

48. Zeviani M, Nishino I, Horai S, Nonaka I, and Goto Y-I (1997). Myoclonus epilepsy associated with ragged-red fibers: A G-to-A mutation at nucleotide pair 8363 in mitochondrial tRNALys in two families. Muscle Nerve 20(3): 271–278. doi: 10.1002/(SICI)1097-4598(199703)20:3<271::AID-MUS2>3.0.CO;2-8

49. Sato W, Hayasaki K, Shoji Y, Takahashi T, Takada G, Saito M, Fukawa O, and Wachi E (1994). A mitochondrial tRNA[Leu(UUR)] mutation at 3,256 associated with mitochondrial myopathy, encephalopathy, lactic acidosis, and stroke-like episodes (MELAS). Biochem Mol Biol Int 33(6): 1055–1061. PMID: 7804130

50. Sato W, Hayasaki K, Shoji Y, Takahashi T, Takada G, Saito M, Fukawa O, and Wachi E (1994). A mitochondrial tRNA[Leu(UUR)] mutation at 3,256 associated with mitochondrial myopathy, encephalopathy, lactic acidosis, and stroke-like episodes (MELAS). Biochem Mol Biol Int 33(6): 1055–1061. PMID: 7804130

51. Zeviani M, Muntoni F, Savarese N, Serra G, Tiranti V, Carrara F, Mariotti C, and DiDonato S (1993). A MERRF/MELAS overlap syndrome associated with a new point mutation in the mitochondrial DNA tRNA(Lys) gene. Eur J Hum Genet 1(1): 80–87. doi: 10.1159/000472390

52. Silvestri G, Moresa CT, Shansek S, Oh SJ, and DiMauro S (1992). A new mtDNA mutation in the tRNA[Leu(UUR)] gene associated with myoclonic epilepsy and ragged-red fibers (MERRF). Am J Hum Genet 51(6): 1213–1217. PMID: 1361099

53. Ozawa M, Nishino I, Horai S, Nonaka I, and Goto Y-I (1997). Myoclonus epilepsy associated with ragged-red fibers: A G-to-A mutation at nucleotide pair 8363 in mitochondrial tRNALys in two families. Muscle Nerve 20(3): 271–278. doi: 10.1002/(SICI)1097-4598(199703)20:3<271::AID-MUS2>3.0.CO;2-8

54. Reid FM, Venham GA, and Jacobs HT (1994). A novel mitochondrial point mutation in a maternal pedigree with sensorineural deafness. Human Mut 3(3): 243–247. doi: 10.1002/humu.1380030311

55. Sue CM, Tanj K, Hadjiigeorgiou G, Andreu AL, Nishino I, Krishna S, Bravo C, Hirano M, Shansek S, Bonilla E, Fischel-Ghodsi N, DiMauro S, and Friedman R (1999). Maternally inherited hearing loss in a kindred with a novel 7751C mtDNA tRNA(Ser(UCN)) gene. Neurology 52(9): 1905–1908. doi: 10.1212/WNL.52.9.1905

56. Hema Bindu L, and Reddy PP (2009). Genetics of aminoglycoside-induced and prelingual non-syndromic mitochondrial hearing impairment: A review. Int J Audiol 47(11): 702–707. doi: 10.1080/14992020802215862

57. Fischel-Ghodsi N, Prezant TR, Bu X, and Oztas S (1993). Mitochondrial ribosomal RNA gene mutation in a patient with sporadic aminoglycoside ototoxicity. Am J Otolaryngol 14(6): 399–403. doi: 10.1016/0196-0709(93)90113-1

58. Hutchin T, Haworth I, Higashi K, Fischel-Ghodsi N, Stoneking M, Saha N, Arnos C, and Cortopassi G (1993). A molecular basis for human hypersensitivity to aminoglycoside antibiotics. Nucleic Acids Research 21(18): 4174–4179. PMID: 814970

59. Prezant TR, Agapian JV, Bohlin MC, Bu X, Oztas S, Qiu WQ, Arnos KS, Cortopassi GA, Jaber L, and Rotter JJ (1993). Mitochondrial ribosomal RNA mutation associated with both antibiotic-induced and non-syndromic deafness. Nat Genet 4(3): 289–294. doi: 10.1038/ng0793-289

60. Lott MT, Leipzig JN, Derbeneva O, Xie HM, Chalkia D, Sarmedy M, Procarvio V, and Wallace DC (2013). mtDNA Variation and Analysis Using Mitomap and Mitomaster. Curr Protoc Bioinformatics 44(1): 1.23–1.26. doi: 10.1002/0471205953.bi021344

61. Kral A, and O'Donoghue GM (2010). Profound deafness in childhood. N Engl J Med 363(15): 1438–1450. doi: 10.1056/NEJMra0911225

62. Mutai H, Watabe T, Kosaki K, Ogawa K, and Matsunaga T (2017). Mitochondrial mutations in maternally inherited hearing loss. BMC Med Genet 18(1): 32. doi: 10.1186/s12881-017-0389-4

63. Pitceathly RDS, Taanman J-W, Rahman S, Meunier B, Sadowski M, Cirak S, Hargreaves I, Land JM, Nanji T, Polke JM, Woodward CE, Sweeney MG, Solanki S, Foley AR, Hurles ME, Stalker J, Blake J, Holton JL, Phadke R, Muntoni F, Reilly MM, Hamma MG, UK10K Consortium (2013). COX10 mutations resulting in complex multisystem mitochondrial disease that remains stable into adulthood. JAMA Neurol 70(12): 1556–1561. doi: 10.1001/jamaneurol.2013.3242

64. Antonica H, Leary SC, Guercin G-H, Agar JN, Horvath R, Kennaway NG, Harding CO, Jaksh M, and Shoubridge EA (2003). Mutations in COX10 result in a defect in mitochondrial heme A biosynthesis and account for multiple, early-onset clinical phenotypes associated with isolated COX deficiency. Hum Mol Genet 12(20): 2693–2702. doi: 10.1093/hmg/ddg284
65. Hinson JT, Fantin VR, Schönberger J, Breivik N, Siem G, McDonough B, Sharma P, Keoghi I, Godinho R, Santos F, Esparza A, Nicolau Y, Selvaag E, Cohen BH, Hoppel CL, Tranebjærg L, Eavey RD, Seidman JG, and Seidman CE (2007). Missense mutations in the BC51L gene as a cause of the Björnstad syndrome. N Engl J Med 356(8): 809–819. doi: 10.1056/NEJMoa055262

66. Fernandez-Vizarra E, Bugiani M, Goffrini P, Carrara F, Farina L, Procopio E, Donati A, Uziel G, Ferrero I, and Zeviani M (2007). Impaired complex III assembly associated with BC51L gene mutations in isolated mitochondrial encephalopathy. Hum Mol Genet 16(10): 1241–1252. doi: 10.1093/hmg/ddm072

67. Guan MX, Fischel-Ghodsian N, and Attardi G (2000). A biochemical basis for the inherited susceptibility to aminoglycoside ototoxicity. Hum Mol Genet 9(12): 1787–1793. PMID: 10915767

68. Iglesias E, Llobet L, Pacheu-Grau D, Gómez-Durán A, and Ruiz-Pesini E (2012). Cybrids for Mitochondrial DNA Pharmacogenomics. Drug Development Research 73(8): 453–460. doi: 10.1016/j.drudis.2013.07.001

69. Giorlando C, Pallotti F, Walker WF, Checcarelli N, Musumeci O, Santorelli F, d’Amati G, Schon EA, DiMauro S, Hirano M, and Davidson AL, López Pérez MJ, Montoya J, and Ruiz-Pesini E (2010). Mitochondrial pharmacogenomics: barcode for antibiotic therapy. Drug Discov Today 15(1-2): 33–39. doi: 10.1016/j.drudis.2009.10.008

70. Emperador S, Pacheu-Grau D, Bayona-Balafu MP, Garrido-Pérez N, Martín-Navarro A, López-Pérez MJ, Montoya J, and Ruiz-Pesini E (2014). An MRPS12 mutation modifies aminoglycoside sensitivity caused by 12S rRNA mutations. J Med Genet 51(12): 834–838. doi: 10.1136/jmg.2014.102532

80. Katz BJ, Zhao Y, Warner JEA, Tong Z, Yang Z, and Zhang K (2006). A family with X-linked optic atrophy linked to the OPA2 locus Xp11.4-Xp11.2. Am J Med Genet A 140(20): 2207–2211. doi: 10.1002/ajmg.a.31455

81. Sergouniotis PI, Perreven R, Thiselton DL, Giannopoulos K, Sarros M, Davies JR, Biswas S, Ansong AM, Ashworth JL, Lloyd IC, Black GC, and Botrua M (2015). Clinical and molecular genetic findings in autosomal dominant OPA3-related optic neuropathy. Neurogenetics 16(1): 69–75. doi: 10.1007/s10048-014-0416-y

82. Kerrisson JB, Arnould VJ, Ferraz Sallum JM, Vagefi MR, Barnarda MM, Li Y, Zhu D, and Maumenee IH (1999). Genetic heterogeneity of dominant optic atrophy, Kjer type: Identification of a second locus on chromosome 18q12.2-12.3. Arch Ophthalmol 117(6): 805–810. PMID: 10369954

83. Barbet F, Hakiki S, Orsaud C, Gerber S, Perratul I, Hanein S, Ducroq D, Dufler J-L, Munnich A, Kaplan J, and Rozet J-M (2005). A third locus for dominant optic atrophy on chromosome 22q. J Med Genet 42(1): e1. doi: 10.1136/jmg.2004.025502

84. Carelli V, Schimpf S, Fuhrmann N, Valentino ML, Zanna C, Iommata L, Pippe M, Schauß S, Tippmann S, Baumann B, Barboni P, Longanesi L, Rugolo M, Ghelli A, Alavi MV, Youle RJ, Buchi L, Carrocchia R, Giannoccaro MP, Tonon C, Rinder R, Cenacchi G, Montagna P, Lugovi R, and Wissinger B (2011). A clinically complex form of dominant optic atrophy (OPA8) maps on chromosome 16. Hum Mol Genet 20(10): 1893–1905. doi: 10.1093/hmg/ddt071

85. Elberg H, Hansen L, Kjer B, Hansen T, Pedersen O, Bille M, Rosenberg T, and Tranebjærg L (2006). Autosomal dominant optic atrophy associated with hearing impairment and impaired glucose regulation caused by a missense mutation in the WFS1 gene. J Med Genet 43(5): 435–440. doi: 10.1136/jmg.2005.034892

86. Anand R, Wai T, Baker MJ, Kladi N, Schauss AC, Rugari E, and Langer T (2014). The i-AAA protease YME1L and OMA1 cleave OPA1 to balance mitochondrial fusion and fission. J Cell Biol 204(6): 919–929. doi: 10.1083/jcb.201308006

87. Baker MJ, Lampe PA, Stojanovski D, Korwitz A, Anand R, Tatsuta T, and Langer T (2014). Stress-induced OMA1 activation and autocatalytic turnover regulate OPA1-dependent mitochondrial dynamics. EMBO J 33(6): 578–593. doi: 10.1002/emboj.201386474

88. Ehses S, Raschke I, Mancuso G, Bernacchia A, Geimer S, Tondera D, Martinou JC, Westermann B, Rugari E, and Langer T (2009). Regulation of OPA1 processing and mitochondrial fusion by m-AAA protease isoenzymes and OMA1. J Cell Biol 187(7): 1023–1036. doi: 10.1083/jcb.200906084

89. Pernas L, and Scorrano L (2016). Mitochondrial Fusion, Fission, and Crista Remodeling as Key Mediators of Cellular Function. Annu Rev Physiol 78: 505–531. doi: 10.1146/annurev-physiol-021115-105011

90. Kao S-H, Yen M-Y, Wang A-G, Yeh Y-L, and Lin A-L (2015). Changes in Mitochondrial Morphology and Bioenergetics in Human Lymphoblastoid Cells With Four Novel OPA1 Mutations. Invest Ophthalmol Vis Sci 56(4): 2269–2278. doi: 10.1167/iovs.14-16288

91. Wai T, García-Prieto J, Baker MJ, Merkwirth C, Benit P, Rustin P, Rupez FJ, Barbos C, Ibáñez B, and Langer T (2015). Imbalanced OPA1 processing and mitochondrial fragmentation cause heart failure in mice. Science 350(6265): aad0116. doi: 10.1126/science.aad0116

92. Metodiev MD, Gerber S, Hubert L, Delahodde A, Chretien D, Gérard X, Amati-Bonneau P, Giacomotto M-C, Boddart N, Kaminska A, Desguere I, Amiel J, Rio M, Kaplan J, Munnich A, Rüegs A, Rozet J-M, and Besmond C (2014). Mutations in the tricarboxylic acid cycle enzyme, aconitase 2, cause either isolated or syndromic optic neuropathy with encephalopathy and cerebellar atrophy. J Med Genet 51(12): 834–838. doi: 10.1136/jmedgenet-2014-102532
93. Hanein S, Peraut I, Roche O, Gerber S, Khadom N, Rio M, Boddart N, Jean-Pierre M, Brahimi N, Serre V, Chretien D, Delphin N, Fares-Taie L, Lachheb S, Rötg A, Meire F, Munnich A, Dufer J-L, Kaplan J, and Rozet J-M (2009). TMEM126A mutation is associated with autosomal-recessive non-syndromic optic atrophy. Am J Hum Genet 84(4): 493–498. doi: 10.1016/j.ajhg.2009.03.003

94. Désir J, Coppeters F, Van Regemorter N, De Baere E, Abramowicz M, and Cordonnier M (2012). TMEM126A mutation in a Moroccan family with autosomal recessive optic atrophy. Mol Vis 18: 1849–1857. PMID: 22815638

95. Meyer E, Michaelides M, Tee Li, Robson AG, Rahaman F, Pasha S, Luxon LM, Moore AT, and Maher ER (2010). Nonsense mutation in TMEM126A causing autosomal recessive optic atrophy and auditory neuropathy. Mol Vis 16: 650–664. PMID: 20405026

96. Scaglia F, Towbin JA, Craigan JW, Smith EO, Neish SR, Ware SM, Hunter T, Taie L, Lachheb S, Rötig A, Meire F, Goffrini P, Papadopoulou LC, Sue CM, Davidson MM, Tanji K, Nishino I, Sadlock JE, Krishna S, Walker J, Gjerde CM, Coster RV, Lim SC, Lieber DS, Tucker CM, Alston CL, Ceccatelli Berti C, Blakely EL, Oláhová M, He L, Andreu AL, Checcarelli N, Iwata S, Shanske S, and DiMauro S (2014). Mitochondrial complex I encoded subunit of cytochrome c oxidase. Cell Stress 8(4): 954–958. doi: 10.1007/s00439-014-0187-1

97. Holmgren D, Wißlender H, Eriksson BO, Oldfors A, Holm E, and Tutilius M (2003). Cardiomyopathy in children with mitochondrial disease; clinical course and neurological findings. Eur Heart J 24(3): 280–288. doi: 10.1093/eurheartj/ehg244

98. El-Hattab AW, and Scaglia (2016). Mitochondrial Cardiomyopathies. Front Cardiovasc Med 3: 25. doi: 10.3389/fcvm.2016.00025

99. Finsterer J, and Kothari S (2014). Cardiac manifestations of primary mitochondrial disorders. Int J Cardiol 177(3): 754–763. doi: 10.1016/j.ijcard.2014.11.014

100. Rodenburg RJ (2016). Mitochondrial complex I-linked disease. Biochim Biophys Acta 1857(7): 938–945. doi: 10.1016/j.bbadbio.2016.02.012

101. Brunel-Guittion C, Levota A, and Sasarman F (2015). Mitochondrial Diseases and Cardiomyopathies. Can J Cardiol 31(11): 1360–1376. doi: 10.1111/cjca.2015.08.017

102. Alston CL, Ceccatelli Berti C, Blakely EL, Oláhová M, He L, Mc Mahon CJ, Olpin SE, Vizarra E, Alshahwan S, Bakhsh E, Goffrini P, Papadopoulou LC, Sue CM, Davidson MM, Tanji K, Nishino I, Sadlock JE, Krishna S, Walker J, Gjerde CM, Coster RV, Lim SC, Lieber DS, Tucker CM, Alston CL, Ceccatelli Berti C, Blakely EL, Oláhová M, He L, Andreu AL, Checcarelli N, Iwata S, Shanske S, and DiMauro S (2014). Mitochondrial complex I encoded subunit of cytochrome c oxidase. Cell Stress 8(4): 954–958. doi: 10.1007/s00439-014-0187-1

103. Andreu AL, Checcarelli N, Iwata S, Lanske S, and DiMauro S (2000). A missense mutation in the mitochondrial cytochrome b gene in a revisited case with histiocytoid cardiomyopathy. Pediatr Res 48(3): 311–314. doi: 10.1038/sj.pr.4000940-0000008

104. Carossa V, Ghelli A, Tropeano CV, Valentino ML, Lomnicz J, Maresca A, Caporalli L, La Morgia C, Liguori R, Barboni P, Carbonelli M, Guitton C, Levtova A, Jovine S, Perrault I, Roche O, Gerber S, Khadom N, Rio M, hansikova H, Hulkova H, and Zeman J (2009). Loss of function of SCo1 and its interaction with cytochrome c oxidase. DNA Cell Biol 28(12): 1281–1289. doi: 10.1089/dna.2009.1214

105. Moloney BC, Enns GM, Wong L-J, and Vogel H (2009). A novel homozygous SCo2 mutation, p.G193S, causing fatal infantile cardiomyopathy. Clin Neuropathol 28(2): 143–149. doi: 10.5414/npp21843

106. Leary SC, Antonicchia H, Sasarman F, Werraapchawai W, Cobine PA, Pan M, Brown GK, Brown R, Majewski J, Ha KCH, Rahman S, and Shoubridge EA (2013). Novel mutations in SCO1 as a cause of fatal infantile encephalopathy and lactic acidosis. Hum Mutat 34(10): 1166–1170. doi: 10.1002/humu.22385

107. Leary SC, Kaufman BA, Pellecchia G, Guerin G-H, Mattman A, Jaksch M, and Shoubridge EA (2004). Human SCO1 and SCO2 have regulatory roles in the maintenance of cellular copper homeostasis. Nat Genet 36(1): 1104–1109. doi: 10.1038/ng1280

108. Leary SC, Cobine PA, Kaufman BA, Guerin G-H, Mattman A, Palaty J, Lockitch G, Winge DR,ustin P, Horvath R, and Shoubridge EA (2007). The human cytochrome c oxidase assembly factors SCO1 and SCO2 have regulatory roles in the maintenance of cellular copper homeostasis. Cell Metab 5(1): 9–20. doi: 10.1016/j.cmet.2006.12.001

109. Baker ZN, Jett K, Boulet A, Hossain A, Cobine PA, Kim B-E, Zawily EI, Lee L, Tibbits GF, Petris MJ, and Leary SC (2017). The mitochondrial metallochaperone SCO1 maintains CTRL1 at the plasma membrane to preserve copper homeostasis in the murine heart. Hum Mol Genet 26(23): 4617–4628. doi: 10.1093/hmg/ddx344

110. Calvo SE, Compton AG, Hershman SG, Lim SC, Lieber DS, Tucker EJ, Laskowski A, Garone C, Liu S, Jaffe DB, Christodoulou J, Fletcher JM, Bruno DL, Goldblatt J, DiMauro S, Thorburn DR, and Mootha VK (2012). Molecular Diagnosis of Infantile Mitochondrial Disease with Targeted Next-Generation Sequencing. Sci Transl Med 4(118): 118ra10–118ra10. doi: 10.1126/scitranslmed.3003310

111. Baertling F, A M van den Brand M, Hertecant JL, Al-Shamsi A, P

OPEN ACCESS | www.cell-stress.com

D. Pacheu-Grau et al. (2018) Mitochondrial dysfunction and cellular stress

Cell Stress | AUGUST 2018 | Vol. 2 No. 8
van den Heuvel L, Distelmaier F, Mayatepek E, Smeitink JA, Nijtmans LGJ, and Rodenburg RJT (2015). Mutations in COA6 cause cytochrome c oxidase deficiency and neonatal hypotrophic cardiomypathy. Hum Mutat 36(1): 34–38. doi: 10.1002/humu.22715

120. Ghosh A, Trivedi PP, Timbalia SA, Griffin AT, Rahn JJ, Chan SSL, and Gohil VM (2014). Copper supplementation restores cytochrome c oxidase assembly defect in a mitochondrial disease model of COA6 deficiency. Hum Mol Genet 23(13): 3596–3606. doi: 10.1093/hmg/ddu069

121. Vogtë F-N, Burkhart JM, Rao S, Gerbeth C, Hinrichs J, Martinoiu J-C, Chacinska A, Sickmann A, Zahedi RP, and Meisinger C (2012). Intermembrane space proteome of yeast mitochondria. Mol Cell Proteomics 11(12): 1840–1852. doi: 10.1074/mcp.M112.021105

122. Pacheu-Grau D, Bareth B, Dudek J, Juris L, Vogtë F-N, Wissel M, Leary SC, Dennerlein S, Rehling P, and Deckers M (2015). Cooperation between COA6 and SCO2 in COX2 maturation during cytochrome c oxidase assembly links two mitochondrial cardiomyopathies. Cell Metab 21(6): 823–833. doi: 10.1016/j.cmet.2015.04.012

123. Stroud DA, Maher MJ, Lindau C, Vogtë F-N, Frazier AE, Surgenor E, Mountford H, Singh AP, Bonas M, Oeljeklaus S, Warschei N, Meisinger C, Thorburn DR, and Ryan MT (2015). COA6 is a mitochondrial complex IV assembly factor critical for biogenesis of mtDNA-encoded COX2. Hum Mol Genet 24(19): 5404–5415. doi: 10.1093/hmg/ddv265

124. Bourens M, and Barrientos A (2017). Human mitochondrial cytochrome c oxidase assembly factor COX18 acts transiently as a membrane insertion within the subunit 2 maturation module. J Biol Chem 292(19): 7774–7783. doi: 10.1074/jbc.M117.778514

125. Liu Z, Song Y, Li D, He X, Li S, Wu B, Wang W, Gu S, Zhu X, Wang X, Zhou Q, Dai Y, and Yan Q (2014). The novel mitochondrial 16S rRNA 2336T>C mutation is associated with hypertrophic cardiomyopathy. J Med Genet 51(3): 176–184. doi: 10.1136/jmedgenet-2013-101818

126. Santorelli FM, Tanji K, Manta P, Casali C, Krishna S, Hays AP, Mancini DM, DiMauro S, and Hirano M (1999). Maternally inherited cardiomyopathy: an atypical presentation of the mtDNA 12S rRNA coding gene. Am J Hum Genet 64(1): 295–300. doi: 10.1086/302188

127. Ahola S, Isohanni P, Euro L, Brilliante V, Palotie A, Pihko H, Lönnqvist T, Lehtonen T, Laine J, Tynismaa H, and Suomalainen A (2014). Mitochondrial EFTS defects in juvenile-onset Leigh disease, ataxia, neuropathy, and optic atrophy. Neurology 83(8): 743–751. doi: 10.1227/WNL.0000000000000716

128. Distelmaier F, Haack TB, Catarino CB, Gallenmüller C, Rodenburg RJ, Strom TM, Baertling F, Meitinger T, Mayatepek E, Mountford H, Singh AP, Oeljeklaus S, Warschei N, Meisinger C, Thorburn DR, and Ryan MT (2015). MRPL44 mutations cause a slowly progressive multisystem disease with childhood-onset hypertrophic cardiomyopathy. Neurogenetics 16(4): 319–323. doi: 10.1007/s10048-015-0444-2

129. Galmiche I, Serre V, Beinat M, Assouline Z, Lebre A-S, Chretien D, Nietschke P, Benes V, Bodaert N, Sidi D, Brunelle F, Rio M, Munnich A, and Rößig A (2012). Exome sequencing identifies MRPL3 mutations in mitochondrial cardiomyopathy. Human Mut 32(11): 1225–1231. doi: 10.1002/humu.21562

130. Emperador S, Bayona-Bafaluy MP, Fernández-Marmiesse A, Pineda M, Felgueroso B, López-Gallardo E, Artuch R, Roa I, Ruiz-Pesini E, Couce M, and Montoya J (2016). Molecular-genetic characterization and rescue of a TSFM mutation causing childhood-onset ataxia and nonobstructive cardiomyopathy. Eur J Hum Genet 25(1): 153–156. doi: 10.1038/ejhg.2016.124

131. Giordano C, Perlì E, Orlandi M, Pisano A, Tuppen HA, He L, Jerinò R, Petruzziello L, Terzi A, Autore C, Petrozza V, Gallo P, Taylor RW, and d’Amati G (2013). Cardiomyopathies due to homoplasmic mitochondrial tRNA mutations: morphologic and molecular features. Hum Pathol 44(7): 1262–1270. doi: 10.1016/j.humpath.2012.10.011

132. Goldstein JD, Shanske S, Bruno C, and Perszyk AA (1999). Maternally inherited mitochondrial cardiomyopathy associated with a C-to-T transition at nucleotide 3303 of mitochondrial DNA in the tRNA(Leu(UUR)) gene. Pediatr Dev Pathol 2(1): 78–85. doi: 10.1016/s1063-3959(99)80009-4

133. Allia-Fersi Q, Tabei B, Maelae J, Belguith N, Kesles I, Mikaouar-Rebai E, and Fahkhfah F (2018). First description of a novel mitochondrial mutation in the MT-TI gene associated with multiple mitochondrial DNA deletion and depletion in family with severe dilated mitochondrial cardiomyopathy. Biochem Biophys Res Commun 497(4): 1049–1054. doi: 10.1016/j.bbrc.2018.02.173

134. Barth PG, Vanlanpoour F, Bowen VM, Lam J, Duran M, Vaz FM, and Wanders RJ (2004). X-linked cardio skeletal myopathy and neutropenia (Barth syndrome): an update. Am J Med Genet A 126A(4): 349–354. doi: 10.1002/ajmg.a.20660

135. Barth PG, Van den Bogert C, Bolhuis PA, Scholte HR, Van Gennip AH, Schutgens RB, and Ketel AG (1996). X-linked cardio skeletal myopathy and neutropenia (Barth syndrome): respiratory-chain abnormalities in cultured fibroblasts. J Inherit Metab Dis 19(2): 157–160. doi: 10.1016/01799418

136. Dudek J, and Maack C (2017). Barth syndrome cardiomyopathy. Cardiovasc Res. doi: 10.1093/cvr/cvx014

137. Xu Y, Malhotra A, Ren M, and Schlame M (2006). The enzymatic function of tafazzin. J Biol Chem 281(51): 39217–39224. doi: 10.1074/jbc.M606100200

138. Vukotic M, Wolte H, König T, Salia S, Ananjeewa J, Krüger M, Tatsuta T, and Langer T (2017). Acylcarnitine Kinase Mutated in Sengers Syndrome Is a Subunit of the TIM22 Protein Translocase in Mitochondria. Mol Cell 67(3): 471–483. doi: 10.1016/j.molcel.2017.06.013

139. Kang Y, Stroud DA, Baker MJ, De Souza DP, Frazier AE, Lien M, Tall D, Mathivanan S, McConville MJ, Thorburn DR, Ryan MT, and Stojanovski D (2017). Sengers Syndrome-Associated Mitochondrial Acylcarnitine Kinase Is a Subunit of the Human TIM22 Protein Import Complex. Mol Cell 67(3): 457–470. doi: 10.1016/j.molcel.2017.06.014

140. Moraes CT, DiMauro S, Zeviani M, Lombe A, Shanske S, Miranda AF, Nakase H, Bonilla E, Wernerec LC, and Servidei S (1999). Mitochondrial DNA deletions in progressive external ophthalmoplegia and Kearns-Sayre syndrome. N Engl J Med 320(20): 1293–1299. doi: 10.1056/NEJM199905133202001

141. Manfredi G, Schon EA, Moraes CT, Bonilla E, Berry GT, Sladky JT, and DiMauro S (1995). A new mutation associated with MELAS is located in a mitochondrial DNA polypeptide-coding gene. Neuromuscul Disord 5(5): 391–398. doi: 10.1016/0964-8906(94)00079-o

142. Shoffner JM, Lott MT, Lezza AM, Seibel P, Ballinger SW, and Wands JR (2001). Modulation of mitochondrial dysfunction and reactive oxygen species in neurodegenerative disease. FEBS Lett 592(5): 728–742. doi: 10.1016/s0014-5793(01)02696-0

143. Nissanka N, and Moraes CT (2018). Mitochondrial DNA damage and reactive oxygen species in neurodegenerative disease. FEBS Lett 592(5): 728–742. doi: 10.1016/s0014-5793(01)02696-0
Mitochondrial dysfunction and cellular stress

146. Spinazzola A, Viscomi C, Fernandez-Vizarra E, Carrara F, D’Adamo P, Calvo S, Marsano RM, Donnini C, Weiher H, Strisciuglio P, Parini R, Sarzi E, Chan A, DiMauro S, Röösli A, Gasparini P, Ferroiro I, Mootha VK, Tiranti V, and Zeviani M (2006). MPV17 encodes an inner mitochondrial membrane protein and is mutated in infantile hepatic mitochondrial DNA depletion. *Nat Genet* 38(5): 570–575. doi: 10.1038/ng1765

147. Spinazzola A, Santer R, Akman OH, Tsiakas K, Schaefer H, Ding X, Karadimas CL, Shanske S, Ganesh J, Di Mauro S, and Zeviani M (2008). Haplocomolateral type of mitochondrial DNA depletion syndrome: novel MPV17 mutations. *Arch Neurol* 65(8): 1108–1113. doi: 10.1001/archneur.65.8.1108

148. Spinazzola A, Massa V, Hirano M, and Zeviani M (2008). Lack of founder effect for an identical mtDNA depletion syndrome (MDS)-associated MPV17 mutation shared by Navajos and Italians. *Neurosci Lett* 438(1): 13–15. doi: 10.1016/j.neulet.2008.04.051

149. El-Hattab AW, Wang J, Dai H, Almannai M, Stauffer C, Alfadhel M, Gambello MJ, Prasun P, Raza S, Lyons HT, Afqi M, Saleh MAM, Faeqiel EA, Alzaidan HI, Alshenqiti A, Flore LA, Hertecant J, Sacharow S, Sarzi E, Chan A, DiMauro S, Rötig A, Gasparini P, Ferrero I, Mootha VK, Tiranti V, and Horvath R (2018). Opa1 overexpression ameliorates the phenotype of two mitochondrial disease mouse models. *Cell Metab* 21(6): 845–854. doi: 10.1016/j.cmet.2015.04.016

150. Miyake N, Yamashita S, Kuroswaka K, Miyatake S, Tsurusaki Y, Doi S, Hatsu S, and Matsumoto N (2018). eIF2α activation in hepatic mitochondrial DNA depletion. *Mol Med* 24(6): 664. doi: 10.1016/j.molmed.2018.01.019

151. Scarpulla RC (2008). Transcriptional paradigms in mammalian mitochondrial biogenesis and function. *Physiol Rev* 88(2): 611–638. doi: 10.1152/physrev.00025.2007

152. Villena JA (2015). New insights into PGC-1 coactivators: redefining their role in the regulation of mitochondrial function and beyond. *FEBS J* 282(4): 647–672. doi: 10.1111/febs.13175

153. Peralles-Clemente E, Bayona-Balafúa MP, Pérez-Martos A, Barrientos A, Fernández-Silva P, and Enríquez JA (2008). Restoration of electron transport without proton pumping in mammalian mitochondrial DNA depletion. *Proc Natl Acad Sci U S A* 105(48): 18735–18739. doi: 10.1073/pnas.0810518105

154. Dassa EP, Dufour E, Gonçalves S, Paupe V, Hakkaart GAJ, Jacobs HT, and Rustin P (2009). Expression of the alternative oxidase complements cytochrome c oxidase deficiency in human cells. *EMBO Mol Med* 1(1): 30–36. doi: 10.1002/emmm.200900001

155. Kemppainen KK, Rinne J, Sirnäs A, Lakanmaa M, Zeb A, Tuomela T, Popplestone A, Singh S, Sanz A, Rustin P, and Jacobs HT (2014). Expression of alternative oxidase in Drosophila ameliorates diverse phenotypes due to cytochrome oxidase deficiency. *Hum Mol Genet* 23(8): 2078–2093. doi: 10.1093/hmg/ddt601

156. Camargo AF, Chioda MM, Rodrigues APC, Garcia GS, McKinney EA, Jacobs HT, and Oliveira MT (2018). Xenotropic expression of alternative electron transport enzymes in animal mitochondria and their impact in health and disease. *Cell Biol Int* 42(6):664-669. doi: 10.1002/cbin.10943

157. Nitkina J, Forström S, Euro L, Paetel T, Kohrn RA, Wang L, Chilov D, Vinarnjak J, Roivainen A, Marjamäki P, Liilenbäck H, Ahola S, Buzkova J, Terzioglu M, Khan NA, Pirnes-Karhu S, Paetel T, Lönqvist T, Sajantila A, Izhann P, Tynynismaa H, Nomura DK, Batterby BJ, Velagapudi V, Carroll CJ, and Minczuk M (2016). Mitochondrial DNA depletion syndrome: a tractable mouse model does not disturb normal physiology. *Dis Model Mech* 10(2): 163–171. doi: 10.1242/dmm.027839

158. Civilettio G, Varanita T, Cerutti R, Gorletta T, Barbaro S, Marchet S, Lamperti C, Viscomi C, Scarron L, and Zeviani M (2015). Opa1 overexpression ameliorates the phenotype of two mitochondrial disease mouse models. *Cell Metab* 21(6): 845–854. doi: 10.1016/j.cmet.2015.04.016

159. Varanita T, Soriano ME, Romanello V, Zaglia T, Quintana-Cabrera R, Semenzo M, Menabò R, Costa V, Civilettio G, Pesce P, Viscomi C, Zeviani M, Di Lisa F, Mongillo M, Sandri M, and Scarron L (2015). The OPA1-dependent mitochondrial cristae remodeling pathway controls atrophic, apoptotic, and ischemic tissue damage. *Cell Metab* 21(6): 834–844. doi: 10.1016/j.cmet.2015.05.007

160. Beyrath J, Pellegrini M, Renkema H, Houben L, Pecheritsyna S, van Zandvoort P, van den Broek P, Becsal E, Eftkharh P, and Smeitink JAM (2018). KH176 Safeguards Mitochondrial Disease Cells from Redox Stress-Induced Cell Death by Interacting with the Thioredoxin System/Peroxiredoxin Enzyme Machinery. *Sci Rep* 8(1): 6577. doi: 10.1038/s41598-018-24900-3

161. Koopman WJ, Beyrath J, Fung C-W, Koene S, Rooben RJ, Wilmes PH, and Smeitink JA (2016). Mitochondrial disorders in children: toward development of small-molecule treatment strategies. *EMBO Mol Med* 8(4): 311–327. doi: 10.15252/emmm.201506131

162. Bacman SR, Williams SL, Pinto M, Peralta S, and Moraes CT (2013). Specific elimination of mutant mitochondrial genomes in patient-derived cells by mitoTALENs. *Nat Med* 19(9): 1111–1113. doi: 10.1038/nm.3261

163. Gammage PA, Rorbach J, Vincent AI, Rebar EJ, and Minczuk M (2014). Mitochondrially targeted ZFNs for selective degradation of pathogenic mitochondrial genomes bearing large-scale deletions or point mutations. *EMBO Mol Med* 6(4): 458–466. doi: 10.1002/emmm.201303672

164. Wang G, Shimada E, Zhang J, Hong JS, Smith GM, Teitell MA, and Koehler CM (2012). Correcting human mitochondrial mutations with targeted RNA import. *Proc Natl Acad Sci U S A* 109(13): 4840–4845. doi: 10.1073/pnas.1116792109

165. Gammage PA, Moraes CT, and Minczuk M (2017). Mitochondrial Genome Engineering: The Revolution May Not Be CRISPR-ized. *Trends Genet* 35(17): 30191-9. doi: 10.1016/j.tig.2017.11.001

166. Frazier AE, Thorburn DR, and Compton AG (2017). Mitochondrial energy generation disorders: genes, mechanisms and clues to pathology. *J Biol Chem*. doi: 10.1074/jbc.R117.809194

167. Nikkanen J, Forsström S, Euro L, Paetel T, Kohrn RA, Wang L, Chilov D, Vinarnjak J, Roivainen A, Marjamäki P, Liilenbäck H, Ahola S, Buzkova J, Terzioglu M, Khan NA, Pirnes-Karhu S, Paetel T, Lönqvist T, Sajantila A, Izhann P, Tynynismaa H, Nomura DK, Batterby BJ, Velagapudi V, Carroll CJ, and Suomalainen A (2016). Mitochondrial DNA Replication Defects Disturb Cellular dNTP Pools and Remodel One-Carbon Metabolism. *Cell Metab* 23(4): 635–648. doi: 10.1016/j.cmet.2016.01.019

168. Khan NA, Nikkanen J, Yatsuga S, Jackson C, Wang L, Pradhan S, Kivelä R, Pessia A, Velagapudi V, and Suomalainen A (2017). mTORC1 Regulates Mitochondrial Integrated Stress Response and Mitochon-
Mitochondrial dysfunction and cellular stress

D. Pacheu-Grau et al. (2018)

Mitochondrial Myopathy Progression. Cell Metab 26(2): 419–428. doi: 10.1016/j.cmet.2017.07.007

173. Pacheu-Grau D, Gómez-Durán A, Iglesias E, López-Gallardo E, Montoya J, and Ruiz-Pesini E (2013). Mitochondrial antibiograms in personalized medicine. Hum Mol Genet 22(6): 1132–1139. doi: 10.1093/hmg/ddt517