Chronic Inflammatory Demyelinating Polyradiculoneuropathy

Chronic inflammatory demyelinating polyradiculoneuropathy (CIDP) is an uncommon but treatable cause of acquired peripheral neuropathy affecting at least 1 to 2 per 100,000 people.1,2 The concept of the disease has grown since Austin reported cases of recurrent steroid responsive neuropathy,3 aided by the description of increasingly large series by Dyck,4 McLeod,5 and later authors.6-8 In the absence of a diagnostic laboratory test, arbitrary clinical, neurophysiological, and pathological criteria have been published,9 found excessively restrictive, and made more liberal.10

The resemblance of CIDP to Guillain-Barré syndrome and its response to immunosuppressive treatment led inevitably to the proposal that it has an autoimmune cause, but supportive evidence has remained elusive.11 Circumstantial evidence came from the demonstration that the model experimental autoimmune neuritis sometimes develops into a chronic relapsing form in rats and especially in rabbits.12,13 These models faithfully reproduced the chronic inflammatory changes in the endoneurium and onion bulb formation seen in CIDP. They were induced with whole myelin. Acute experimental autoimmune neuritis can be induced by P2 protein, which does not have an extracellular domain, and by P0 glycoprotein and peripheral myelin protein 22, both of which do. The presumption is that one of these or possibly another myelin antigen can induce chronic experimental autoimmune neuritis and is therefore a candidate autoantigen for CIDP. Previous attempts to identify immune responses to any of these candidate autoantigens in CIDP have been relatively unsuccessful with responses being identified in 16% or fewer patients.11,14

In this issue, Yan and colleagues provide persuasive evidence that antibodies to P0 glycoprotein are present in the serum of a respectable minority of patients with CIDP (6 of 21 cases or 28%) and, when present, have the potential to cause demyelination (four of six sera).15 The positive CIDP sera produced intense labeling on a Western blot of a 30 kDa band that had the N terminal sequence of P0 and four also bound the myelin sheath. The positive staining pattern could be absorbed with the 30 kDa band cut from the immunoblot. The four sera that stained the presumed P0 band and the myelin sheath also produced partial conduction block and demyelination following injection into the rat sciatic nerve. These observations strongly support the authors’ conclusion that P0 is the autoantigen responsible for CIDP in these patients. Three factors may have contributed to their success: (1) They selected sera from untreated patients with active disease; (2) they produced commendably clean immunoblots on myelin proteins; and (3) they have unique experience of performing injections of 20 µL volumes via a 30-gauge needle into the rat sciatic nerve without producing unacceptable amounts of artefactual damage. Their results confirm that antibodies against P0 glycoprotein are present in a minority of patients with CIDP and demonstrate for the first time that these human antibodies have demyelinating ability and so are likely to play a part in the pathogenesis of CIDP.

Like all good experiments, that of Yan and colleagues raises as many questions as it answers. Are the antibodies a response to, or the primary cause of the demyelination? Are they present in sera from patients with other inflammatory neuropathies such as vasculitic neuropathy or noninflammatory demyelinating neuropathies? What happens to the antibody tier during the course of the disease and in response to treatment? What are the epitopes against which the responsible antibodies are directed? The heavily glycosylated extracellular domain is the likely target and must be shared by rat myelin. Antibodies alone are not a sufficient explanation for the production of demyelination because they would not penetrate the blood-nerve barrier unless it were first rendered leaky. It is likely that a T-cell response is also involved. Biopsies demonstrated T cells in active lesions in CIDP,8,16,17 and circulating T cells responded to a P0 peptide in 3 of 13 cases.18 The antibodies to P0 glycoprotein in Yan and colleagues’ study were mainly IgG1, a subclass that implies T-cell activation. Presumably, as in most immunological reactions, both B- and T-cell mechanisms are involved. The search must continue for autoantibodies to additional myelin antigens that might account for the pathogenesis of other cases of CIDP. Among possible candidates, peripheral myelin protein 22 is a favorite since it also has a glycosylated extracellular domain and induces experimental autoimmune neuritis.19 Immunoblot and ELISA identified antibodies to PMP22 or its extracellular domain peptides in 7 of 17 patients with CIDP.20 However, in another study antibodies were found not only in three of six sera from CIDP patients but also in the sera of patients with Charcot-Marie Tooth disease types 1 and 2,21 so this requires further investigation.

During the past decade research into the pathogenesis of inflammatory neuropathy has largely focussed on antibodies to glycolipids. Fisher syndrome is almost always associated with IgG antibodies to ganglioside GQ1b which is preferentially located on ocular motor nerves.22 Acute motor axonal neuropathy is associated with IgG antibodies to ganglioside GD1a which is
preferentially recognized by monoclonal antibodies on motor rather than sensory axons.23 While in these special situations the evidence for the importance of antibodies to gangliosides is indeed strong, such antibodies are not found in most patients with the common acute inflammatory demyelinating polyradiculoneuropathy form of Guillain-Barré syndrome or in CIDP. In multifocal motor neuropathy some but by no means all patients have IgM antibodies to ganglioside GM1, but their role in pathogenesis is far from clear. In other variants of CIDP the search for antibodies to gangliosides has been largely negative.11

The study by Yan and colleagues should refocus attention on the potential role of cell-mediated immunity to myelin proteins in peripheral nerve demyelinating disease. The goal should be to identify immune responses that will identify homogeneous groups. This might provide a logical classification of types and variants of CIDP, which now include (in addition to multifocal motor neuropathy) predominantly sensory forms,24 distal acquired demyelinating symmetric neuropathy,25 multifocal acquired demyelinating motor and sensory motor neuropathy,26 and multifocal inflammatory demyelinating neuropathy.27,28

Defining epitopes that make sense of these CIDP variants will be a necessary preliminary to discovering what breaks tolerance and causes autoimmune neuropathy. If this problem cannot be solved for peripheral nerve demyelinating disease, what hope is there for discovering the cause of multiple sclerosis?

Richard A. C. Hughes, MD, FRCP, FMedSci
Department of Neuroimmunology
Guy’s, King’s and St Thomas’ School of Medicine
Guy’s Hospital
London, United Kingdom

References
1. Lunn MPT, Manji H, Choudhary PP, et al. Chronic inflammatory demyelinating polyradiculoneuropathy: a prevalence study in south east England. J Neurol Neurosurg Psychiatry 1999;66:269–271.
2. McLeod JG, Pollard JD, Macaskill P, et al. Prevalence of chronic inflammatory demyelinating polyneuropathy in New South Wales, Australia. Ann Neurol 1999;46:910–913.
3. Austin JH. Recurrent polyneuropathies and their corticosteroid treatment. Brain 1958;81:157–192.
4. Dyck PJ, Lais AC, Ohta M, et al. Chronic inflammatory polyradiculoneuropathy. Mayo Clin Proc 1975;50:621–651.
5. Princeas JW, McLeod JG. Chronic relapsing polyneuritis. J Neurol Sci 1976;27:427–458.
6. McCombe PA, Pollard JD, McLeod JG. Chronic inflammatory demyelinating polyradiculoneuropathy. Brain 1987;110:1617–1630.
7. Barohn RJ, Kissel JT, Warmolts JR, Mendell JR. Chronic inflammatory demyelinating polyradiculoneuropathy. Clinical characteristics, course, and recommendations for diagnostic criteria. Arch Neurol 1989;46:878–884.
8. Bouchard C, Lacroix C, Planté V, et al. Clinicopathologic findings and prognosis of chronic inflammatory demyelinating polyneuropathy. Neurology 1999;52:498–503.
9. Ad Hoc Subcommittee of the American Academy of Neurology AIDS Task Force. Research criteria for the diagnosis of chronic inflammatory demyelinating polyradiculoneuropathy (CIDP). Neurology 1991;41:617–618.
10. Hughes RAC, Bensa S, Willison HJ, et al. Randomized controlled trial of intravenous immunoglobulin versus oral prednisolone in chronic inflammatory demyelinating polyradiculoneuropathy. Ann Neurol 2001;50:195–201.
11. Meléndez-Vásquez C, Redford J, Choudhary PP, et al. Immunological investigation of chronic inflammatory demyelinating polyradiculoneuropathy. J Neuroimmunol 1997;73:124–134.
12. Adam AM, Atkinson PF, Hall SM, et al. Chronic experimental allergic neuritis in Lewis rat. Neuropsychopharmacology 1989;15:249–264.
13. Harvey GK, Pollard JD, Schindhelm K, Antony J. Chronic experimental allergic neuritis. An electrophysiological and histological study in the rabbit. J Neurol Sci 1987;81:215–226.
14. Khalili-Shirazi A, Atkinson P, Gregson N, Hughes RAC. Antibody responses to P0 and P2 myelin proteins in Guillain-Barré syndrome and chronic idiopathic demyelinating polyradiculoneuropathy. J Neuroimmunol 1993;46:245–252.
15. Yan WX, Archelos JJ, Hartung H-P, et al. P0 protein is a target antigen in chronic inflammatory demyelinating polyradiculopathy. Ann Neurol 2001;50:286–292.
16. Kiefer R, Kissel BT, Brück W, et al. Macrophage differentiation antigens in acute and chronic autoimmune neuropathies. Brain 1998;121:469–479.
17. Khalili-Shirazi A, Gregson N, Londei M, et al. The distribution of CD1 molecules in inflammatory neuropathy. J Neurol Sci 1998;158:154–163.
18. Khalili-Shirazi A, Hughes RAC, Brostoff S, et al. T cell response to myelin proteins in Guillain-Barré syndrome. J Neurol Sci 1992;111:200–203.
19. Gabriel CM, Hughes RAC, Moore SE, et al. Induction of experimental neuritis with peripheral myelin protein 22. Brain 1998;121:1895–1902.
20. Gabriel CM, Gregson NA, Hughes RAC. Anti-PMP22 antibodies in patients with inflammatory neuropathy. J Neuroimmunol 2000;104:139–146.
21. Ritz MF, Lechner-Scott J, Scott RJ, et al. Characterisation of autoantibodies to peripheral myelin protein 22 in patients with hereditary and acquired neuropathies. J Neuroimmunol 2000;104:155–163.
22. Chiba A, Kusunoki S, Obata H, et al. Ganglioside composition of the human cranial nerves, with special reference to pathophysiology of Miller Fisher syndrome. Brain Research 1997;745:32–36.
23. Ho TW, Willison HJ, Nachamkin I, et al. Anti-GD1a antibody is associated with axonal but not demyelinating forms of Guillain-Barré syndrome. Ann Neurol 1999;45:168–173.
24. Oh SJ, Joy JL, Kuruoglu R. Chronic sensory demyelinating neuropathy: chronic inflammatory demyelinating polyneuropathy presenting as a pure sensory neuropathy. J Neurol Neurosurg Psychiatry 1992;55:677–680.
25. Katz JS, Saperstein DS, Gronseth G, et al. Distal acquired demyelinating symmetric neuropathy. Neurology 2000;54:615–620.
26. Saperstein DS, Amato AA, Wolfe GL, et al. Multifocal acquired demyelinating motor and sensory motor neuropathy: the Lewis-Sumner syndrome. Muscle Nerve 2000;22:560–566.
27. Berg-Vos RM, Van den Berg LH, Fransen H, et al. Multifocal inflammatory demyelinating neuropathy: a distinct clinical entity? Neurology 2000;54:26–32.
28. Dyck PJ, Dyck PJB. Atypical varieties of chronic inflammatory demyelinating neuropathies. Lancet 2000;355:1293–1294.
parkin and parkinson’s: more than homonymy?

the existence of monogenic forms of parkinson’s disease (pd) is now well established.1 at least 6 loci/genes have already been identified, including parkin, initially described as responsible for autosomal recessive juvenile parkinsonism in japanese families.2 research so far has shown that parkin mutations are the major cause of a clinically variable form of parkinsonism, similar to idiopathic pd but characterized by the absence of lewy bodies.3 its function, recently elucidated, is related to the ubiquitin-proteasome pathway.4,5 the study by farrer’s group6 in this issue complicates the matter. it not only suggests the possibility of dominant inheritance of parkin-related pd but also shows the neuropathological features of idiopathic pd in a parkin case.

the autosomal recessive juvenile parkinsonism patients originally described had early-onset (before age 40 years) parkinsonism and mild dystonia, slow disease progression, marked response to levodopa (l-dopa), early and severe l-dopa-induced dyskinesias, hyperreflexia, and sleep benefit.3 neurodegeneration was restricted to the dopaminergic neurons in the substantia nigra pars compacta; and lewy bodies, the histopathological hallmarks of idiopathic pd, were absent.7 a wide variety of parkin mutations has since been found in nearly 50% of familial cases with early-onset autosomal recessive parkinsonism and in isolated early-onset cases in populations of different ethnic origins.8–12 onset as late as age 58 years has, however, been observed. the clinical spectrum, broader than that initially described in japanese families, includes phenotypes similar to dopa-responsive dystonia or resembling idiopathic, although slow-progressing, pd.11–15 the possibility that the parkin gene may play a role in the cause of the more frequent typical late-onset pd was raised by klein and collaborators14 in a study of a large parkin pedigree from south-tyrol, in which onset occurred in adults as old as 64 years. the few autopsy reports published so far have confirmed the absence of lewy bodies in parkin-related disease cases and support the hypothesis that parkinsonism due to parkin gene mutations and idiopathic pd result from distinct etiological causes.15–17

farrer and colleagues6 describe a novel 40 bp deletion in exon 3 of the parkin gene in 2 families (ph and pw) with both atypical and classic parkinsonism and apparently autosomal dominant inheritance. furthermore and more importantly, the authors report the presence of lewy bodies in a parkin-related proband with compound heterozygous mutations, diagnosed as having typical pd. this is the first evidence indicating that compound heterozygous parkin mutations may lead to early-onset pd with lewy body pathology.

the novel deletion in exon 3 is thought to be dominant because disease transmission is autosomal dominant in both families. furthermore, to postulate the existence of recessive mutations implies that each family carries at least four different parkin-related disease haplotypes. this is very unlikely. however, pseudodominance has already been observed in at least 3 families, 1 from japan and 2 from italy, in which three different mutant parkin alleles were detected in patients from two successive generations.18–20 thus, although a second mutation was not found in any of the affected individuals described by farrer and colleagues6 (with the exception of the neuropathological case pw3), the possibility that such mutations exist in the yet unexplored promoter and/or intronic regions of the parkin gene cannot be formally excluded. previous family studies have also shown that heterozygous carriers of parkin mutations in families in which patients are compound heterozygotes are not affected.12 this argues against dominance at least for known mutations. in both families described by farrer and colleagues,6 several unaffected subjects carried the exon 3 deletion, raising doubts about its dominance. however, except for proband ph1, who died at age 93 without any clinical or neuropathological signs of parkinsonism, this may reflect the variability in age at onset (24–64 years) associated with the mutation. follow-up studies of healthy carriers in families ph and pw will help to resolve this ambiguity. it has been speculated that some parkin mutations might be more deleterious than others and might even be dominant.14,19,20 this has been observed in other disorders with both autosomal dominant and autosomal recessive inheritance. farrer and colleagues6 suggest that the hemizygous 40 bp exon 3 deletion, unlike other parkin gene mutations, may confer increased susceptibility to both atypical and typical parkinsonism in combination with other genetic or environmental factors. two noncarrier members of family ph indeed have essential tremor, which might be a sign of an additional genetic risk factor in this family.

positron emission tomography has provided some evidence that parkin mutations may have dominant effects on metabolism. [18f]-6-fluoro-dopa uptake in caudate and putamen, a measure of the integrity of dopaminergic neurons, was reduced in asymptomatic carriers of heterozygous deletions in the parkin gene, showing for the first time the presence of pre- or subclinical disease that may confer increased susceptibility to parkinsonism.21,22 interestingly, striatal [18f]-6-fluoro-dopa uptake decreases to a similar extent in patients with mutations in the parkin gene and in those with idiopathic pd.21,22 in the study by hilker and colleagues,21 the decrease was greater in the posterior
part of the putamen, a pattern considered to be fairly specific for the idiopathic form of PD. Thus, the degeneration of dopaminergic neurons seems to be the same in parkin-related patients and classic PD cases, although effects of parkin mutations on postsynaptic dopaminergic neurons are also observed.21 Given the striking overlap of the clinical and metabolic features of parkin-related parkinsonism and idiopathic PD, the report by Farrer and colleagues6 of a compound heterogeneous parkin-related case presenting Lewy body pathology should not necessarily be surprising. It needs to be confirmed, however, by complementary neuropathological studies, particularly in late-onset parkin cases, but adds a further element to an increasing body of evidence suggesting that parkin-induced parkinsonism and idiopathic PD are more closely related than previously imagined.

Elucidation of the physiological role of Parkin, the protein encoded by the parkin gene, may provide essential information. The structural motifs of this protein, its N-terminal ubiquitin-like motif, and its C-terminal RING-IBR-RING domain, identified in several proteins involved in the ubiquitin-proteasome pathway, provided the first hints to its function.2 Parkin is today known to have E3 ubiquitin-ligase activity, which mediates the ubiquitylation and subsequent degradation of specific, but for the most part unknown, proteins.4,5 The ubiquitin-proteasome pathway has long been suspected of playing a role in the cause of PD. Lewy bodies are heavily ubiquitylated cytoplasmic inclusions reactive to antibodies against ubiquitin carboxyl-terminal hydrolase L1.24 A missense mutation in the ubiquitin carboxyl-terminal hydrolase L1 gene appeared to be associated with PD in a single family.25 α-Synuclein, another major component of Lewy bodies, is responsible for some cases of autosomal dominant parkinsonism.26 These findings together with the recent exciting discovery of the direct involvement of Parkin in the ubiquitylation of a glycosylated form of α-synuclein,27 converge toward the idea that Parkin may be a component of a complex pathogenetic pathway leading to PD. However, it remains to be elucidated how different mutations in the parkin gene, which apparently result in a similar loss of function, can lead to different genetic and neuropathological features.

References

1. Vaughan JR, Davis MB, Wood NW. Genetics of parkinsonism: a review. Ann Hum Genet 2001;65:111–126.
2. Kitada T, Asakawa S, Hattori N, et al. Mutations in the parkin gene cause autosomal recessive juvenile parkinsonism. Nature 1998;392:605–608.
3. Yamamura Y, Hattori N, Matsumine H, et al. Autosomal recessive early-onset parkinsonism with diurnal fluctuation: clinicopathologic characteristics and molecular genetic identification. Brain Dev 2000;Suppl 1:87–91.
4. Shimura H, Hattori N, Kubo S, et al. Familial Parkinson disease gene product, parkin, is a ubiquitin-protein ligase. Nat Genet 2000;25:302–305.
5. Imai Y, Soda M, Takahashi R. Parkin suppresses unfolded protein stress-induced cell death through its E3 ubiquitin-protein ligase activity. J Biol Chem 2000;275:35661–35664.
6. Farrer M, Chan P, Chen R, et al. Lewy bodies and parkinsonism in families with parkin mutations. Ann Neurol 2001;50:293–300.
7. Takahashi H, Ohama E, Suzuki S, et al. Familial juvenile parkinsonism: clinical and pathologic study in a family. Neuror 1994;44:437–441.
8. Hattori N, Kitada T, Matsumine H, et al. Molecular genetic analysis of a novel Parkin gene in Japanese families with autosomal recessive juvenile parkinsonism: evidence for variable homozygous deletions in the Parkin gene in affected individuals. Ann Neurol 1998;44:935–941.
9. Leroy E, Anastasopoulos D, Konisiotis S, et al. Deletions in the parkin gene and genetic heterogeneity in a Greek family with early onset Parkinson’s disease. Hum Genet 1998;103:424–427.
10. Lücking CB, Abbas N, Dürr A, et al. The European Consortium on Genetic Susceptibility in Parkinson’s Disease and The French Parkinson’s Disease Genetics Study Group. Homozygous deletions in parkin gene in European and North African families with autosomal recessive juvenile parkinsonism. Lancet 1998;352:1355–1356.
11. Abbas N, Lücking CB, Ricard S, et al. The French Parkinson’s Disease Genetics Study Group and The European Consortium on Genetic Susceptibility in Parkinson’s Disease. A wide variety of mutations in the parkin gene are responsible for autosomal recessive parkinsonism in Europe. Hum Mol Genet 1999;8:567–574.
12. Lücking CB, Dürr A, Bonifati V, et al. Association between early-onset Parkinson’s disease and mutations in the parkin gene. N Engl J Med 2000;342:1560–1567.
13. Tassin J, Dürr A, Bonnet AM, et al. Levodopa-responsive dystonia: GTP cyclohydrolase I or parkin mutations? Brain 2000;123:1112–1121.
14. Klein C, Pramstaller PP, Kis B, et al. Parkin deletions in a family with adult-onset, tremor-dominant parkinsonism: clinical and pathological abnormalities in a Dutch family. Neurology 1998;392:605–608.
15. Mori H, Kondo T, Yokochi M, et al. Pathologic and biochemical studies of juvenile parkinsonism linked to chromosome 6q. Neurology 1998;52:890–892.
16. Hayashi S, Wakabayashi K, Ishikawa A, et al. An autopsy case of autosomal-recessive juvenile parkinsonism with a homozygous exon 4 deletion in the parkin gene. Mov Disord 2000;15:884–888.
17. van de Warrenburg BPC, Lammens M, Lücking CB, et al. Parkinsonism associated with Parkin gene mutations: clinical and pathological abnormalities in a Dutch family. Neurology 2001;56:555–557.
18. Maruyama M, Ikeuchi T, Saito M, et al. Novel mutations, pseudo-dominant inheritance, and possible familial affects in

Olga Corti, PhD and Alexis Brice, MD
INSERM U289
Institut Fédératif de Recherche des Neurosciences Consulation de Génétique, Cytogénétique et Embryologie Fédération de Neurologie, Groupe Hospitalier Pitié Salpêtrière
Paris, France
patients with autosomal recessive juvenile parkinsonism. Ann Neurol 2000;48:245–250.

19. Lücking CB, Bonifati V, Periquet M, et al. Pseudo-dominant inheritance and exon triplication in an Italian family with parkin gene mutations. Neurology (in press).

20. Bonifati V, Lücking CB, Fabrizio E, et al. Three parkin gene mutations in a sibship with autosomal recessive early-onset parkinsonism. J Neurol Neurosurg Psychiatry (in press).

21. Hilker R, Klein C, Ghaemi M, et al. Positron emission tomographic analysis of the nigrostriatal dopaminergic system in familial parkinsonism associated with mutations in the parkin gene. Ann Neurol 2001;49:367–376.

22. Khan NL, Pavese N, Wood NW, et al. An 18F-Dopa PET study of disease progression and subclinical nigrostriatal dysfunction in a parkin kindred. Neurology 2001;56(Suppl 3): A249.

23. Broussolle E, Lücking CB, Ginovart N, et al. The French Parkinson’s Disease Study Group. [18F]Dopa PET study in patients with juvenile-onset Parkinson’s disease and parkin gene mutations. Neurology 2000;55:877–879.

24. Lowe J, McDermott H, Landon M, et al. Ubiquitin carboxy-terminal hydrolase (PGP 9.5) is selectively present in ubiquitinated inclusion bodies characteristic of human neurodegenerative diseases. J Pathol 1990;161:153–160.

25. Leroy E, Boyer R, Auburger G, et al. The ubiquitin pathway in Parkinson’s disease. Nature 1998;1395:451–452.

26. Krüger R, Kuhn W, Müller T, et al. Ala30Pro mutation in the gene encoding alpha-synuclein in Parkinson’s disease. Nat Genet 1998;18:106–108.

27. Shimura H, Schlossmacher MG, Hattori N, et al. Ubiquitination of a new form of alpha-synuclein by parkin from human brain: implication for Parkinson’s disease. Science (in press).