Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
Severe Acute Respiratory Syndrome Coronavirus 2 Infection and Thrombosis: Phlegmasia Cerulea Dolens Presenting with Venous Gangrene in a Child

Gautam K. Visveswaran, MD1, Kavita Morparia, MD2, Shalu Narang, MD, MPH2, Cindy Sturt, MD2, Michael Divita, MD1, Brett Voigt, DO3, Amer Hawatmeh, MD1, Derrick McQueen, MD2, and Marc Cohen, MD1

A 12-year-old girl with severe acute respiratory syndrome coronavirus 2 infection presented as phlegmasia cerulea dolens with venous gangrene. Emergent mechanical thrombectomy was complicated by a massive pulmonary embolism and cardiac arrest, for which extracorporeal cardiopulmonary resuscitation and therapeutic hypothermia were used. Staged ultrasound-assisted catheter-directed thrombolysis was used for treatment of bilateral pulmonary emboli and the extensive lower extremity deep vein thrombosis while the patient received extracorporeal membrane oxygenation support. We highlight the need for heightened suspicion for occult severe acute respiratory syndrome coronavirus 2 infection among children presenting with unusual thrombotic complications. (J Pediatr 2020;226:281-4).

Phlegmasia cerulea dolens (PCD) is characterized by extensive venous thrombosis and severe venous outflow obstruction presents with painful limb swelling, cyanosis, and gangrene in extreme cases. Occurrence of PCD in healthy pediatric patients is rare.1-3 Potential protective mechanisms cited include a decreased capacity for thrombin generation, increased alpha-2 macroglobulin inhibition of thrombin, and the antithrombotic potential of the vessel wall.2 Among adult and pediatric patients, malignancy, sepsis, surgery, hypercoagulable state, and vascular injury (indwelling central lines) predispose to PCD.2-4

Coronavirus disease associated with the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is associated with a hypercoagulable state among adults, as is the multisystem inflammatory syndrome in children.5-8 We report the case of a girl with PCD and venous gangrene in association with SARS-CoV-2 infection.

Case Description

A 12-year-old previously healthy girl (body mass index of 20.1 kg/m²) had acute onset of painful swelling of her left leg without dyspnea or fever. She was evaluated 5 days prior for painful erythema of the left thigh of 5 days’ duration, which was diagnosed as cellulitis and treated with oral trimethoprim-sulfamethoxazole. No intercurrent illness, sick contacts, long distance travel, familial thrombophilia, or trauma were reported. Vital signs on admission were blood pressure of 135/76 mm Hg, heart rate of 140 b/minute (sinus tachycardia), respiratory rate of 20 breaths/minute, and temperature of 98.2°F. Examination revealed marked swelling of the entire left leg that was cool to the touch. Her left foot was ecchymotic with decreased sensation and inability to flex toes, but dorsalis pedis and posterior tibial pulses were palpable (Figure 1). Laboratory tests before unfractionated heparin administration showed thrombocytopenia (126 000/microL), prolonged prothrombin time of 18 seconds (normal high, 13.4 seconds), partial thromboplastin time of 88.3 seconds (normal high, 36.6 seconds), elevated D-dimer 1953 ng/mL (high normal, £243 ng/mL), and factor VIII activity 259.4% (normal range, 62%-194%). Her erythrocyte sedimentation rate was >130 mm/hour (normal high, 13 mm/hour) and C-reactive protein was 14.8 mg/dL (normal high, 0.5 mg/dL).

Because catheter-directed lysis requires hours for revascularization, we proceeded to percutaneous mechanical venous thrombectomy. Venography confirmed extensive popliteal-to-common iliac vein thrombosis and excluded inferior vena cava (IVC) clot (Video 1 and Video 2; available at www.jpeds.com). ClotTriever mechanical thrombectomy (Inari Medical, Irvine, California) retrieved a white and red fibrin-rich clot. Thrombectomy was complicated by hypotension, bradycardia, and pulseless electrical activity, for which cardiopulmonary resuscitation was initiated.

From the 1Division of Cardiology; 2Children’s Hospital of New Jersey; and 3Division of Vascular Surgery, Newark Beth Israel Medical Center, Newark, NJ

The authors declare no conflicts of interest.

APLA Antiphospholipid antibodies
APS Antiphospholipid syndrome
COVID-19 Coronavirus disease 19
DIC Disseminated intravascular coagulation
ECMO Extracorporeal membrane oxygenation
IVC Inferior vena cava
PCD Phlegmasia cerulea dolens
PE Pulmonary embolism
RV Right ventricular
SARS-CoV-2 Severe acute respiratory syndrome coronavirus 2
TPA Tissue plasminogen activator
UCDT Ultrasound-assisted catheter-directed thrombolysis

0922-3476/$ - see front matter. © 2020 Elsevier Inc. All rights reserved.
https://doi.org/10.1016/j.jpeds.2020.07.032
Echocardiogram revealed severe right ventricular (RV) dilation with severe hypokinesis consistent with acute massive pulmonary embolism (PE). A multidisciplinary decision was made to initiate peripheral venoarterial extracorporeal membrane oxygenation (ECMO). Unfractionated heparin adjusted to an activated clotting time of 190-200 seconds was continued throughout the ECMO run. Given prolonged resuscitation of about 30-45 minutes, we initiated therapeutic hypothermia via the ECMO circuit. Admission SARS-CoV-2 nasopharyngeal reverse transcriptase-polymerase chain reaction testing was negative. Fibrinogen level drawn post ECMO initiation was 191 mg/dL (normal range, 210-400 mg/dL). Her initial thrombophilia workup was negative for most risk factors but was positive for antiphospholipid antibodies (APLA) (Table).

Day 1 echocardiogram revealed persistent severe RV systolic dysfunction. Continued need for high-dose epinephrine (0.08 μg/kg/min), milrinone (0.5 μg/kg/min) with narrow arterial pulse pressure (20 mm Hg) while on ECMO support (flow, 2.5-2.7 L/hour; 60 mL/kg/min) prompted us to undertake EkoSonic ultrasound-assisted catheter-directed thrombolysis (UCDT) of the PE. Pulmonary angiography confirmed extensive emboli in the superior, middle, and inferior segments of the right lung; the lingular segment of the left lung; and interlobular pulmonary arteries. Bilateral UCDT catheters infusing tissue plasminogen activator (TPA) at 1 mg/lung/hour for 6 hours (12 mg total dose) facilitated thrombolysis. Epinephrine was discontinued within 24 hours of thrombolysis and a 40 mm Hg arterial pulse pressure was noted with echocardiogram confirming improvement in RV size and function. Given hemodynamic improvement, we undertook venous thrombolysis to improve limb prognosis. An infrahepatic venous filter was deployed after excluding an IVC clot. Venography confirmed extensive thrombosis from the posterior tibial vein to the common iliac vein (Figure 2, A-C; available at www.jpeds.com). Rheolytic thrombectomy (Angiojet [Boston Scientific, Marlborough, Massachusetts] with powerpulse) was undertaken using TPA in solution (20 mg total).

EkoSonic UCDT catheters were positioned via the common femoral vein traversing beyond the common iliac vein, and a second catheter via the posterior tibial vein extending into the common femoral vein (0.5 mg/hour/catheter for an hourly dose of 1 mg). Mild acute disseminated intravascular coagulation (DIC) mandated TPA discontinuation at 7 hours of UCDT and transfusion support corrected the DIC. Venoarterial ECMO was decannulated after 64 hours of support with primary repair of the arteries. Venography demonstrated improved venous outflow into the IVC with markedly decreased thrombus burden. Paralytics and sedation were weaned on day 4 and she awoke, followed commands, and was successfully extubated to oxygen via nasal cannula. Complete normalization of her RV function was noted on day 7 echocardiogram (Video 3; available at www.jpeds.com).

The patient was given solumedrol 1 g (23 mg/kg) daily for 3 doses, followed by a taper. Plasmapheresis was undertaken daily for 5 days, and 3 times afterward for a total of 8 treatments. Empiric antibiotics with vancomycin and cefepime were administered for 5 days. Cyanosis subsequently was isolated to the toes, with improved perfusion to the mid foot. The SARS-CoV-2 IgG and IgM antibody titers drawn on hospital day 5, after 3 plasmapheresis sessions, were negative. Repeat testing using paired sera (hospitalization day 16/day 20) revealed up trending positive SARS-CoV-2 IgM antibody titers 28.8 units (day16) to 43.2 units (day 20) (reference...
valve, <9.0 units) and negative SARS-CoV-2 IgG titers. She underwent hyperbaric oxygen treatments with improvement in sensorimotor deficits, but with continued severe cyanosis of all toes. She was discharged home on day 20 of hospitalization without neurologic deficits (Pediatric Cerebral Performance Category 1) on amlodipine, a prednisone taper, therapeutic enoxaparin, and gabapentin for continued neuropathic pain.

Discussion

Coronavirus disease 19 (COVID)-19 respiratory syndrome is associated with a hypercoagulable state in adults. Severe hypoxia, systemic inflammation, sepsis, cytokine surge, and an “endothelitis” prompting prothrombotic states have been postulated mechanisms. An elevated d-dimer, low normal or normal fibrinogen level, elevated fibrin degradation products, mild thrombocytopenia, and mildly elevated partial thromboplastin time in adults with severe COVID-19 has led some investigators to postulate the occurrence of a compensated DIC syndrome. Nonsurvivors met International Society of Thrombosis and Hemostasis criteria for DIC in 71.4% of patients vs 0.6% among COVID-19 survivors in 1 intensive care unit study. Admission coagulation tests were markedly abnormal in our patient. She met International Society of Thrombosis and Hemostasis criteria for nonovert DIC; International Society of Thrombosis and Hemostasis DIC score 4: prolonged prothrombin time (1 point) and severely elevated d-dimer (3 points). Importantly, her investigation for acute infection was negative. Thrombophilia workup was positive for APLA. Pediatric primary antiphospholipid syndrome (APS) is rare, and disease onset before age 15 years is reported in only 2.8% of all pediatric APS. Although arterial thrombosis is more often associated with primary APS, deep vein thrombosis is predominantly seen with secondary APS. Adult COVID-19-associated APLA and lupus anticoagulant have been reported.

With repeat confirmatory APS testing pending, given the rarity of pediatric PCD, admission DIC score of 4 with positive APLA and anti-SARS-CoV-2 IgM assay, we opine that the PCD likely was the result of a community-acquired SARS-CoV-2 antibody testing. Repeated serology confirmed our finding of APLA. Plasmapheresis likely confounded SARS-CoV-2 antibody testing. Repeated serology confirmed our suspicion of relationship to SARS-CoV-2 infection. SARS-CoV-2 infection should be considered in the differential diagnosis for children with unusual thrombotic presentations. Earlier detection and treatment of coagulopathy may prevent severe complications of the nature described here.

We thank the dedicated nursing staff of the pediatric intensive care unit, surgical, and catheterization laboratory for the exceptional care delivered.

Submitted for publication Jun 10, 2020; last revision received Jul 6, 2020; accepted Jul 8, 2020.

Reprint requests: Gautam K. Visveswaran, MD, Division of Cardiology, Newark Beth Israel Medical Center, Newark, NJ 07112. E-mail: gaukart2925@gmail.com

References

1. Kuo I, Smith J, Abou-Zamzam AM. A multimodal therapeutic approach to phlegmasia cerulea dolens in a pediatric patient. J Vasc Surg 2011;53: 212-5.
2. Spentzouris G, Scriven RJ, Lee TK, Labropoulos N. Pediatric venous thromboembolism in relation to adults. J Vasc Surg 2012;55: 1785-93.
3. Tran J, Rafique Z. Phlegmasia cerulea dolens in the pediatric population: a life-threatening condition. J Emerg Med 2015;49:e11-4.
4. Ibrahim H, Krouskop R, Jeroudi M, McCulloch C, Parupia H, Dhanireddy R. Venous gangrene of lower extremities and Staphylococcus aureus sepsis. J Perinatol 2001;21:136-40.
5. Middeldorp S, Coppens M, van Haap TS, Poppen M, Vlaar AP, Muller MCA, et al. Incidence of venous thromboembolism in hospitalized patients with COVID-19. J Thromb Haemost 2020;18:1955-2002.
6. Klok FA, Kruip MJHA, van der Meer NJM, Arbous MS, Gommers DAMPJ, Kant KM, et al. Incidence of thrombotic complications in critically ill ICU patients with COVID-19. Thromb Res 2020;191:145-7.
7. Capone CA, Subramony A, Sweberg T, Schneider J, Shah S, Rubin L, et al. Characteristics, cardiac involvement, and outcomes of multi-system inflammatory syndrome of childhood associated with severe acute respiratory syndrome coronavirus 2 infection. J Pediatr 2020;224:141-5.
8. Kaushik S, Aydin SI, Derespina KR, Bansal PB, Kowalsky S, Gommers DAMPJ, et al. Characteristics of children with COVID-19: a systematic review and meta-analysis. Semin Thromb Hemost 2020;37:1585-93.
9. Tapson VF, Sterling K, Jones N, Elder M, Tripathy U, Brower J, et al. A prospective, single-arm, multicenter trial of ultrasound-facilitated, catheter-directed, low-dose fibrinolysis for acute massive pulmonary embolism during catheter-directed thrombectomy for phlegmasia cerulea dolens. J Vasc Surg Cases Innov Tech 2020;6:212-5.
10. Rouyer JL, Roux A, Oudin P, Desibel C, Bauduin P, Cuzin C, et al. Clinical and laboratory criteria, and a scoring system for disseminated intravascular coagulation. J Intern Med 2020;337:1-17.
11. Sethuraman N, Jeremiah SS, Ryo A. Interpreting Diagnostic Tests for SARS-CoV-2. JAMA 2020.
12. Boccia M, Aronne L, Celia B, Mazzeo G, Ceparano M, D’Agnano V, et al. Multisystem inflammatory syndrome in children associated with severe acute respiratory syndrome coronavirus 2 infection (MIS-C): a multi-institutional study from New York City. J Pediatr 2020;224:24-9.
13. Varga Z, Flammer AJ, Steiger P, Haberecker M, Andermatt R, Zinkernagel AS, et al. Endothelial cell infection and endotheliitis in COVID-19. Lancet 2020;395:1417-8.
14. Thachil J, Tang N, Gando S, Falanga A, Cattaneo M, Levi M, et al. ISTH interim guidance on recognition and management of coagulopathy in COVID-19. J Thromb Haemost 2020;18:1023-6.
15. Morales MH, Leigh CL, Simon EL. COVID-19 infection with extensive thrombosis: a case of phlegmasia cerulea dolens. Am J Emerg Med 2020 [Epub ahead of print].
16. Shekerdemian LS, Mahmood NR, Wolfe KK, Riggs BJ, Ross CE, McKiernan CA, et al. Characteristics and outcomes of children with coronavirus disease 2019 (COVID-19) infection admitted to US and Canadian pediatric intensive care units. JAMA Pediatr 2020 [Epub ahead of print].
17. Bowles L, Plattou S, Yartey N, Dave M, Lee K, Hart DP, et al. Lupus anticoagulant and abnormal coagulation tests in patients with Covid-19. N Engl J Med 2020;383:288-90.
Figure 2. Extensive venous thrombosis of the A, left posterior tibial B, femoral vein to C, left common iliac vein.