FIRST RECORD OF OZOGNATHUS CORNUTUS (LECONTE, 1859) (COLEOPTERA PTINIDAE) FROM SARDINIA, ITALY

The genus Ozognathus LeConte, 1861 (Bostrichoidae, Ptinidae, Ermobiinæ) currently includes twelve described species from the Nearctic and Neotropical regions (Zahradník & Mifsud, 2005).

Among these, Ozognathus cornutus (LeConte, 1859) was described in California (USA) (LeConte, 1859, as Anobium cornutum); its type specimen is deposited in the California Academy of Sciences (White, 1982). Confirmed in California (White, 1982), in the areas adjacent to Mexico, in South America (e.g., in Chile; Honor & Rothmann, 2017), as well as in Réunion in the Indian Ocean (Lemagnen, 2013), this species recently spread to Australia (Sydney, New South Wales) (Plant Health Australia, 2019), New Zealand (Bercedo et al., 2005), Israel (Milkowski, 2019), Tunisia (Zahradník & Mifsud, 2005) and, recently, in Europe. It has been recorded in Latvia (around Ulbroka) (Telnov et al., 2016), Great Britain (Eccles, 2017), Germany (Tübingen), Switzerland (Zurich) (Germann & Schmidt, 2017; Chittaro & Sanchez, 2019), southern France (Pourcieux) (Allemand et al., 2008), Spain (Cadiz, Catalonia, Alicante, Valencia) (Bercedo et al., 2005; Vinolas & Verdugo, 2012, Trócoli et al., 2020), Madeira Island (Funchal) (Zahradník & Mifsud, 2005), Gibraltar (GONHS, 2020), Canary Islands (Island of La Palma and Island of Tenerife) (Vinolas et al., 2018), and Malta (Marsa, TalMuxar, Żejtun) (Zahradník & Mifsud, 2005). The first published Italian records were reported from Sicily (Palermo) and Campania (Portici) regions by Cusimano et al. (2014) and subsequently reconfirmed, without further details, for Sicily by Sidoti et al. (2016).

We provide the first records of Ozognatus cornutus (LeConte, 1859) in Sardinia based on an intensive sampling conducted in Southern-Sardinia from April 2018 to December 2019.

INTRODUCTION

The genus Ozognathus LeConte, 1861 (Bostrichoidae, Ptinidae, Ermobiinae) currently includes twelve described species from the Nearctic and Neotropical regions (Zahradník & Mifsud, 2005).

Among these, Ozognathus cornutus (LeConte, 1859) was described in California (USA) (LeConte, 1859, as Anobium cornutum); its type specimen is deposited in the California Academy of Sciences (White, 1982). Confirmed in California (White, 1982), in the areas adjacent to Mexico, in South America (e.g., in Chile; Honor & Rothmann, 2017), as well as in Réunion in the Indian Ocean (Lemagnen, 2013), this species recently spread to Australia (Sydney, New South Wales) (Plant Health Australia, 2019), New Zealand (Bercedo et al., 2005), Israel (Milkowski, 2019), Tunisia (Zahradník & Mifsud, 2005) and, recently, in Europe. It has been recorded in Latvia (around Ulbroka) (Telnov et al., 2016), Great Britain (Eccles, 2017), Germany (Tübingen), Switzerland (Zurich) (Germann & Schmidt, 2017; Chittaro & Sanchez, 2019), southern France (Pourcieux) (Allemand et al., 2008), Spain (Cadiz, Catalonia, Alicante, Valencia) (Bercedo et al., 2005; Vinolas & Verdugo, 2012, Trócoli et al., 2020), Madeira Island (Funchal) (Zahradník & Mifsud, 2005), Gibraltar (GONHS, 2020), Canary Islands (Island of La Palma and Island of Tenerife) (Vinolas et al., 2018), and Malta (Marsa, TalMuxar, Żejtun) (Zahradník & Mifsud, 2005). The first published Italian records were reported from Sicily (Palermo) and Campania (Portici) regions by Cusimano et al. (2014) and subsequently reconfirmed, without further details, for Sicily by Sidoti et al. (2016).

We provide the first records of Ozognatus cornutus (LeConte, 1859) in Sardinia based on an intensive sampling conducted in Southern-Sardinia from April 2018 to December 2019.

STUDY AREA

Sardinia, one Mediterranean hotspot for biodiversity conservation (Marignani et al., 2017a, b; Médail, 2017), located in the middle of the Mediterranean Sea, is the second-largest Mediterranean island, after Sicily, covering a surface area of around 24,000 km² (Palumbo et al., 2020). Thanks to its variety of landforms, complex orographic patterns (with hilly lands, plateaus, mountain and plains), heterogeneous geological substrata and climate variability (Bazzato et al., 2021), the island is characterized by high levels of biodiversity and different vegetation types (Bacchetta et al., 2009).

We collected the species during a field campaign aimed to investigate the impact of land-use matrices on plants and arthropod communities of Small Woodlots Outside Forests (hereafter, SWOFs) in the Metropolitan City of Cagliari (Palumbo et al., 2020; E.Bazzato, PhD dissertation 2021). We randomly selected 30 SWOFs (Fig. 1) ranging from 0.1 to 0.5 hectares, by means of a stratified random sampling design in proportion to the number of target SWOFs present in each land-use stratum: 11 sites in natural and semi-natural (NAT) and agricultural (AGR) areas, 8 in urban and artificial surfaces (URB). All sampled sites were listed following the site code assigned based on the correspondent land-use stratum (Tab. 1).

DATA COLLECTION

In the centroid of each SWOF, we placed at 5–10 meters above ground a Cross-vanes Window Flight Trap (CWFT, Fig II) for a total of 30 traps. Traps were active starting from July to October for the first year (2018), and from June to December for the second year (2019). Traps were re-triggered every 30–40 days (except for the last period ranging from August to December 2019) with ethylene glycol as non-attractive liquid preservative. All specimens from each site and trap were sorted
Fig. I - Study area located in the Metropolitan City of Cagliari (southern Sardinia, Italy), characterized by a gradient of land-use intensification from natural and semi-natural areas to urbanised coastline zones.

Fig. II – Cross-vanes Window Flight Trap (CWFT) placed on Robinia pseudoacacia within the SWOF located in Quartu Sant’Elena (Is Arenas, Via Pizzetti; site code URB 176) (photo by E. Bazzato).

Fig. III – Habitus of Ozognathus cornutus (LeConte, 1859) ♀ (photo by C. Ancona; scale bar 1 mm).
and stored by the authors (EB, MC, CA). The determination is still in progress.

IDENTIFICATION AND NOMENCLATURE

Specimens were examined using an Optika SZM-T stereomicroscope. They were morphologically identified by the authors (EB, CA, DC) using photographs reported by ZAHRADNÍK & MIFSUD (2005), as well as dichotomous key provided by FALL (1905). Habitus photograph was taken with a Pentax K7 digital camera attached to a Optika SZM-T stereoscope (Fig. III). Dry specimens were prepared and deposited in the private collection of the first and fifth authors (EB & DC).

The species has been reported on several host plant species (Tab. 2); nomenclature of host plant species follows BARTOLUCCI et al. (2018, 2020), GALASSO et al. (2018, 2020), FREIBERG et al. (2020), and ROSATI et al. (2020).

RESULTS AND DISCUSSION

Ozognathus cornutus (LeConte, 1859)

(Fig. III)

EXAMINED MATERIAL: Sardinia: Quartu Sant’Elena (Cagliari province), Is Arenas, Via Pizzetti, site code URB 176: 19.VII–19.VIII.2019, 1 ♂ window trap on Robinia pseudoacacia, E. Bazzato, M. Caria & C. Ancona legerunt, det. E. Bazzato & C. Ancona; 19.VIII–03.XII.2019, 1 ♂ window trap on Robinia pseudoacacia, E. Bazzato, M. Caria & C. Ancona leg, det. E. Bazzato & D. Cillo.

The biology of O. cornutus is poorly known (STENHOUSE, 2017; VINOLAS, 2017), although recently its distribution range increased considerably in the temperate areas of the Euro-Mediterranean region, with the possibility of a further spread in Mediterranean territories in a relatively short time (ZAHRADNÍK & MIFSUD, 2005; VINOLAS, 2017; MIŁKOWSKI, 2019). This species is known as polyphagous and easily adapts to a multitude of climates and a wide variety of microhabitats (dried fruit, gall produced by insects), herbaceous plants, as well as in the bark and wood of various deciduous and coniferous trees (STENHOUSE, 2017; VINOLAS, 2017). The species seems to spread easily: in Switzerland, some specimens hatched from a head of garlic (Allium sativum) from Sicily bought on a market in Zurich (CHITTARO & SANCHEZ 2019; GERMANN & SCHMIDT, 2017).

Given its known adaptability, it is not surprising that O. cornutus has been found in different part of plants and different species. In particular, previous records were mainly attributable to Asteraceae family (Tab. 2), for a total of six species belonging to six genera (Achillea L., Argyranthemum Webb, Baccharis L., Helianthus L., Scolymus L., Silybum Vaill.) and secondly, to Fagaceae family, with four species belonging to a genus (Quercus L.). Furthermore, other families fairly represented by these records are Araucariaceae and Rosaceae, each with three species (Tab. 2).

To a lesser extent, with one or two species, Acanthaceae, Aizoaceae, Amaryllidiaceae, Areaceae, Ebenaceae, Euphorbiaceae, Fabaceae, Lauraceae, Lythraceae, Moraceae, Oleaceae, Passifloraceae, Pinaceae, Rutaceae, Proteaceae and Simmondsiaceae families are mentioned (Tab. 2).

We recorded samples from 30 cross-vanes window flight traps placed in 30 individual trees belonging to 8 families, for a total of 9 genera and 11 different species considered (Tab. 1). Data reported were gathered in 30 randomly selected small woodlots outside forest along an area with an increasing urbanization gradient: notably, we found two individuals of O. cornutus only in one of those traps, placed on the invasive alien tree Robinia pseudoacacia L., native to eastern North America, (WESTBROOKS, 1998; REJMÁNEK & RICHARDSON, 2013), within a SWOF located in a public garden of the urban area, at the extreme of our gradient of land-use intensification.

Our finding, as well as being the first record from Sardinia island, reports an association with an invasive alien plant species not yet reported in other studies. Furthermore, although O. cornutus is able to colonize different environmental condition and climates, finding it only in an urban area suggests that its introduction could have occurred accidentally and in recent times, mainly due to the international trade in fruit, vegetables and alien plants (CUSIMANO et al., 2014).

Data on the presence of alien species are important since early detection and rapid response are key components for the successful management of Invasive Alien Species (COUGHLAN et al., 2020): our data suggest a relatively recent introduction on the island and the hypothesis of a possible rapid expansion of this species into other areas.

CONCLUSIONS

Monitoring of newly introduced species is of great importance for preventing new biological invasions, which can cause damage to biodiversity, economy and human well-being (GENOVAI & SHINE, 2004). As for now, O. cornutus is considered to be harmful to heritage works (MANACHI, 2017); nevertheless, although there is no particular evidence in the literature of phytosanitary emergencies caused by O. cornutus (PENCE, 1950; BERCEO et al., 2005), due to the behavior of the species (polyphagia, adaptability, marked propensity to passive transport), its rapid expansion in other urban areas up to natural ones cannot be excluded. Hence, this species deserves to be monitored with caution and, in case of discovery, it would be good practice to inform the competent bodies of the sector by providing location data to monitor the dispersal capacity of the species and evaluate the expansion of its distribution range.
Table 1 – List of the 30 Small Woodlots Outside Forests investigated along the gradient of land-use intensification. Municipality, locality, coordinates (expressed as metric units in the Monte Mario/Italy Zone reference system, EPSG 3003), altitude (m a.s.l.) and plant species hosting the cross-vanes window flight trap are listed.

Site code	Municipality	Locality	E	N	Altitude	Family	Plant species
AGR_14	Maracalagonis	Corongiu, Sirigra-giu	1524102	4348373	81	Myrtaceae	Eucalyptus tereticornis Sm.
AGR_18	Maracalagonis	Corongiu, Carro-ghedda	1522637	4348319	85	Myrtaceae	Eucalyptus camaldulensis Dehnh. subsp. camaldulen-sis
AGR_35	Quartucciu	Piscina Nuxedda	1526348	4345063	52	Oleaceae	Olea europaea L.
AGR_66	Quartu S.E.	Cani Nieddu, Frap-ponti, Corongiu	1526881	4342688	84	Oleaceae	Olea europaea L.
AGR_85	Maracalagonis	Corongiu	1524097	4346644	60	Myrtaceae	Eucalyptus camaldulensis Dehnh. subsp. camaldulen-sis
AGR_102	Quartu S.E.	Simbirizzi, Sa Guardia Lada	1520859	4345293	35	Myrtaceae	Eucalyptus camaldulensis Dehnh. subsp. camaldulen-sis
AGR_152	Maracalagonis	Gruxi Lilius, Bacca Aruis	1525980	4346952	99	Myrtaceae	Eucalyptus camaldulensis Dehnh. subsp. camaldulen-sis
AGR_163	Quartu S.E.	Stagno di Quarto, C. D'Aquila	1515340	4341892	3	Oleaceae	Olea europaea L.
AGR_FA_6	Quartu S.E.	Str. Comunale Cani Nieddu	1526824	4342368	68	Oleaceae	Olea europaea L.
AGR_FA_21	Maracalagonis	Riu Piscina Nuxe-dda	1527337	4347432	80	Myrtaceae	Eucalyptus camaldulensis Dehnh. subsp. camaldulen-sis
NAT_1	Quartucciu	Corti de Perda	1528394	4344041	120	Myrtaceae	Eucalyptus camaldulensis Dehnh. subsp. camaldulen-sis
NAT_2	Maracalagonis	Sette Fratelli, Co-doleddu	1533610	4344508	700	Salicaceae	Salix atrocinerea Brot. subsp. atrocinerea
NAT_12	Maracalagonis	Riu Monte Nieddu	1528748	4346698	140	Myrtaceae	Eucalyptus camaldulensis Dehnh. subsp. camaldulen-sis
NAT_31	Sinnai	Sette Fratelli, Monte Cresia	1534230	4347117	663	Ericaceae	Arbutus unedo L.
NAT_32	Sinnai	Sette Fratelli, Monte Cresia	1534003	4347255	677	Ericaceae	Arbutus unedo L.
NAT_34	Maracalagonis	Villagio dei Gigli	1528227	4347442	120	Myrtaceae	Eucalyptus camaldulensis Dehnh. subsp. camaldulen-sis
NAT_42	Sinnai	Burranca	1527821	4349531	150	Myrtaceae	Eucalyptus camaldulensis Dehnh. subsp. camaldulen-sis
NAT_48	Maracalagonis	Sette Fratelli, Co-doleddu	1533816	4344788	714	Salicaceae	Salix atrocinerea Brot. subsp. atrocinerea
NAT_101	Maracalagonis	Corongiu, Sedda Brandanu	1525242	4349318	140	Salicaceae	Populus canescens (Aiton) Sm.
NAT_115	Maracalagonis	Sette Fratelli, Co-doleddu	1533989	4344598	706	Salicaceae	Salix atrocinerea Brot. subsp. atrocinerea
NAT_116	Maracalagonis	Sette Fratelli, Co-doleddu	1533830	4344308	700	Fagaceae	Quercus suber L.
AGR_FA_5	Quartu S.E.	Stagno di Quarto, Binga Spada	1514588	4341874	5	Myrtaceae	Eucalyptus camaldulensis Dehnh. subsp. camaldulen-sis
URB_48	Quartu S.E.	Via delle Bougan-ville	1524342	4342823	22	Tamarica-ceae	Tamarix canariensis Wild.
URB_77	Quartu S.E.	Sant'Antonio, Via Belgio	1517111	4343897	9	Myrtaceae	Eucalyptus camaldulensis Dehnh. subsp. camaldulen-sis
URB_176	Quartu S.E.	Is Arenas, Via Pizzetti	1515564	4342648	6	Fabaceae	Robinia pseudoacacia L.
URB_186	Quartu S.E.	Sant'Andrea, Via Rimini	1523304	4340905	4	Pinaceae	Pinus halepensis Mill. subsp. halepensis
Family	Current accepted host plant name	Reference and host plant name originally reported					
---------------------	----------------------------------	--					
Acanthaceae	*Acanthus mollis* L.	LUER, 2020, as *Acanthus mollis* L.					
Aizoaceae	*Carpobrotus edulis* (L.) N.E.Br.	KNAPP, 2014, as *Carpobrotus edulis* (L.) N.E.BROWN, 1926					
Amaranthaceae	*Allium sativum* L.	GERMANN & SCHMIDT, 2017, as *Allium sativum*					
Apiaceae	*Eryngium campestre* L.	YUS RAMOS et al., 2019, as *Eryngium campestre* L.					
Apiaceae	*Foeniculum vulgare* Mill.	BERCEO et al., 2005, as *Foeniculum vulgare*					
Araliaceae	*Schefflera arboricola* (Hayata) Merr.	TRÓCOLI et al., 2020, as *Schefflera arboricola* (Hayata) Merr. 1916					
Araucariaceae	*Araucaria angustifolia* (Bertol.) Kuntze	LUER, 2020, as *Araucaria angustifolia* (Bertol.) Kuntze					
Araucariaceae	*Araucaria bidwillii* Hook.	LUER, 2020, as *Araucaria bidwillii* Hook.					
Araucariaceae	*Araucaria heterophylla* (Salish.) Franco	LUER, 2020, as *Araucaria heterophylla* (Salish.) Franco					
Areceaceae	*Phoenix dactylifera* L.	TRÓCOLI et al., 2020, as *Phoenix dactylifera* L. 1753					
Asteraceae	*Achillea millefolium* L.	BERCEO et al., 2005, as Cardo					
Asteraceae	*Argyranthemum* spp.	GARCIA et al., 2016, as *Argyranthemum* spp.					
Asteraceae	*Baccharis pilularis* D.C.	TILDEN, 1951, as *Baccharis pilularis* De Candolle					
Asteraceae	*Helianthus annuus* L.	LUER, 2020, as *Helianthus annuus* L.					
Asteraceae	*Scolymus hispanicus* L.	BERCEO et al., 2005, as *Scolymus hispanicus*					
Asteraceae	*Silybum marianum* (L.) Gaertn.	GARCIA et al., 2016, as *Silybum marianum* (L.) Gaertn.					
Betulaceae	*Alnus* sp.	VIÑOLAS & VERDUGO, 2011, as *Alnus* sp.					
Ebenaceae	*Diospyros kaki* L.f.	LUER, 2020, as *Diospyros kaki* L. f.					
Euphorbiaceae	*Euphorbia characias* L.	TRÓCOLI et al., 2020, as *Euphorbia characias* L. 1753					
Fabaceae	*Retama monosperma* (L.) Boiss.	BERCEO et al., 2005, as *Retama monosperma*; GARCIA et al., 2016, as *Retama rhodorhizoides* Webb & Berthel.					
Fabaceae	**Robinia pseudacacia** L.	**Present work**					
Fabaceae	*Tamarindus indica* L.	TRÓCOLI et al., 2020, as *Tamarindus indica* L. 1753					
Fabaceae	*Quercus agrifolia* Née	TRÓCOLI et al., 2020, as *Quercus agrifolia* Née, 1801					
Fabaceae	*Quercus crassipes* Kunth	VIÑOLAS, 2017, as *Quercus crassipes* Bonpl.					
Fabaceae	*Quercus obtusa* Kunth	VIÑOLAS, 2017, as *Quercus obtusa* Bonpl.					
Fabaceae	*Quercus suber* L.	BERCEO et al., 2005, as *Quercus suber* L.					
Lauraceae	*Persea americana* Mill.	PENCE, 1950; EBELING, 1959, as Avocado					
Lythraceae	*Punica granatum* L.	LUER, 2020, as *Punica granatum* L.					
Moraceae	*Ficus carica* L.	BERCEO et al., 2005, as *Ficus carica*; MIŁKOWSKI, 2019, as *Ficus carica* L.					
Oleaceae	*Fraxinus angustifolia* subsp. syriaca (Boiss.) Valt.	MILKOWSKI, 2019, as *Fraxinus angustifolia* subsp. syriaca (Boiss.)					
Passifloraceae	*Passiflora caerulea* L.	LUER, 2020, as *Passiflora caerulea* L.					
Pinaceae	*Pinus* sp.	WHITE, 1982; PHILIPS, 2002, as Pine					
Proteaceae	*Macadamia* sp.	USDA, 1970, as Macadamia					
Rosaceae	*Prunus dulcis* (Mill.) D.A. Webb	ALLEMAND et al., 2008, as *Prunus dulcis*					
Rosaceae	*Rheophilepis* bijas (Lour.) Galasso & Banfi	USDA, 1964, as Locus tree; TRÓCOLI et al., 2020, as *Rheophilepis bijas* (Lour.) Galasso & Banfi					
Rosaceae	*Rosa* sp.	LUER, 2020, as *Rosa* sp.					
Rutaceae	*Citrus limon* (L.) Osbeck	PENCE, 1950, as Lemon					
Simmondsiaceae	*Simmondsia chinensis* (Link) C.K.Schneider	PINTO & FROMMER, 1980, as *Simmondsia chinensis* (Link) Schneider					
ACKNOWLEDGEMENTS

We thank two anonymous reviewers for providing helpful comments on an earlier draft of the manuscript and to the English reviewer for the proof-reading.

REFERENCES

ALLEMAND R., DE LACLOS E., BÜCHE B., PONEL P., 2008 – Anobiidae nouveaux ou méconnus de la faune de France (3e note) (Coleoptera). - Bulletin de la Société Entomologique de France, 113(3): 397-402.

AUDISIO P., GOBBI G., LIBERTI G., NARDI G., 1995 – Coleoptera Polyphaga IX (Bostrichoidea, Cleridae, Lymexyloidea). In: Checklist delle specie della fauna italiana, Minelli A., Ruffo S. & La Posta S. a cura di, Calderini, Bologna, 54, 27 pp.

BACCHIATI G., BALEGGA S., BIONDI E., FARRIS E., FILIGHEDDU R., MOSSA L., 2009 – Vegetazione forestale e serie di vegetazione della Sardegna (con rappresentazione cartografica alla scala 1:350.000). - Fitosociologia, 46: 3-82.

BARTOLOTTI F., DOMINA G., ANDREATTI S., ANGIUS R., AREDENGH N. M. G., BACCHIATI G., BALLETTI S., BANI E., BARBERIS D., BARBERIS G., BERNAUDO L., BERTOLI G., BOVIO M., BRIACO I., BUCCOMINO G., CALVIA G., CHIANESE G., CIBI C., CONTI F., COPEZ M., CRISANTI A., D'AGNOLO D., FILIPPO A. D., ESPOSITO A., FANNI F., FESTI F., FORTE L., GALASSO G., GENTILI R., GOTTSCHELLICH G., LATTANZI E., LIGOURI P., LOCCI M. C., LONGO D., LONATI M., LUCHESE F., MARCHETTI D., MARIOTTI M. G., MENINI F., MINUTO L., ORRU G., PALA M. L., PASSALACQUA N. G., PELLEGRINO M., PENNESI R., PERUZZI L., PINZANI L., PIETRO R. D., DOMINA G., FASCIETTI S., FUGIO G., FESTI F., FOGLIO B., GALLO L., GOTTSCHILICH G., GUBELLINI L., IAMONICO D., IBERITE M., JIMÉNEZ-MEJÍAS P., LATTANZI E., MARCHETTI D., MARTINETTO E., MASIN R. R., MEDAGLIA P., PASSALACQUA N. G., PECCENI S., PENNESI R., PIERINI B., POLDINI L., PROSSER F., RAIMONDO F. M., ROMA-MARZIO F., ROSATI L., SANTANGELO A., SCOPOLI A., SCORTEGANIA S., SELVAGGI A., SELVI F., SOLDANO A., STINCA A., WAGENSSOMMER R. P., WILHM T., CONTI F., 2018 – An Updated Checklist of the Vascular Flora Native to Italy. - Plant Biosystems, 152(2): 179-303. https://doi.org/10.1080/11263504.2017.1419996

BAZZATO E., ROSATI L., CANU S., FIORI M., FARRIS E., MARIGNANI M., 2021 – High spatial resolution bioclimatic variables to support ecological modelling in a Mediterranean biodiversity hotspot. - Ecological Modelling, 441: 109354. https://doi.org/10.1016/j.ecolmodel.2020.109354

BERCEDO P., ARNAIZ L., COELLO P., BAENA M., 2005 – Ozognathus cornutus (LeConte, 1859)., Nuevo Anobiida para la Fauna Ibérica (Coleoptera: Anobiidae). - Boletín Sociedad Entomológica Aragonesa, 37(1): 213-214.

CHITTARO Y., SANCHEZ A., 2019 – Liste commentées des Bostrichoïde et Derodontoïde de Suisse (Coleoptera: Bostrichiformia, Derodontiformia). - Alpine Entomology, 3: 175-275.

COUGHLAN N. E., LYNE L., CUTHBERT R. N., CUNNINGHAM E. M., LUCY F. E., DAVIS E., CAFFREY J. M., DICK J. T. A., 2020 – In the black: Information harmonisation and educational potential amongst international databases for invasive alien species designated as of Union Concern. - Global Ecology and Conservation, 24: e01332. https://doi.org/10.1016/j.gecco.2020.e01332

CUSIMANO C., CERASA G., LO GREEN G., MASSA B., 2014 – Ozognathus cornutus (LeConte, 1859) (Coleoptera Anobiidae), new record for Italy. - Il Naturalista Siciliano S. IV, 38 (1): 131-132.

EBELING W., 1959 – Subtropical Fruit Pests University of California, Part Three: Biology and Control of Pests Affecting Noncitrus Fruits, Avocado Pests. Division of Agricultural Sciences, Berkeley, pp. 285-320.

FALL H. C., 1905 – Revision of Pinidae of boreal America. - Transactions of the American Entomological Society Philadelphia, 31(1): 97-296.

FREIBERG M., WINTER M., GENTILE A., ZIZKA A., MUELLNER-RIEHL A. N., WEIGELT A., WIRTH C., 2020 – LCVP, The Leipzig catalogue of vascular plants, a new taxonomic reference list for all known vascular plants. - Sci. Data, 7: 416. https://doi.org/10.1038/s41597-020-00702-z

GALASSO G., DOMINA G., ADORNI M., ANGIOLINI C., APRUZZESI M., AREDENGH N. M. G., ASSINI S., AVERSA M., BACCHIATI G., BANI F., BARBERIS G., BARTOLOTTI F., BERNARDO L., BERTOLI A., BONALI F., BONARI L., BRACCO F., BRUNEU L., BUCCOMINO G., BUONO S., CALVIA G., CAMBRA S., CASTAGNINI P., CESCHINI S., D’AGNOLO D., GUSTINO E. D., TURI A. D., FASCIETTI S., FERRETTI G., FOIS M., GENTILI R., GHEZA G., GUBELLINI L., HOFMANN N., IAMONICO D., ILARIA A., KIRÁLY A., KIRÁLY G., LAFACE V. L. A., LALLAI A., LAZZARO L., LONATI M., LONGO D., LOZANO V., LUPOLETTI J., MAGRINI S., MAINETTI A., MANCA M., MARCHETTI D., MARIANI F., MARIOTTI M. G., MASIN R. R., MEI G., MENINI F., MERLI M., MILANI A., MINUTO L., MUGNAI M., MUSARELLA C. M., OLIVIERI N., ONNIS L., PASSALACQUA N. G., PECCENI S., PERUZZI L., PICA A., PINZANI L., PITTARELLO M., PODDA L., PROSSER F., ENRI S. R., ROMA-MARZIO F., ROSATI L., SARIGU M., SACFALI S., SELVAGGI A., SPAMPINATO G., STINCA A., TAVILLA G., TOFFOLO C., TOMASI G., TURCATO C., VILLANO C., NEPI C., 2020 – Notulae
FIRST RECORD OF OZOGNATHUS CORNUTUS (LECONTE, 1859) (COLEOPTERA PTINIDAE) FROM SARDINIA...
1093-1094.
SidoTt A., CamPo G., PerrottIta G., PasotiTt L., Raciti E., Corno G., 2016 – Aversità degli alberi e delle foreste. Rapporto sullo Stato delle Foreste in Sicilia. Dipartimento Regionale dello Sviluppo Rurale e Territoriale, Servizio 9 - Innovazione, Ricerca, Divulgazione, Vivaiismo Forestale e Difesa dei Boschi dalle Aversità, Palermo, 37 pp.
Rosati L., Fascetti S., Romano V. A., Potenza G., Lapenna M. R., Capano A., Nicoletti P., Farris E., De Lange P. J., Del Vico E., Facioni L., Fanfarillo E., Lattanzi E., Cano-Ortiz A., Marignani M., Fogu M. C., Bazzeto E., Lallai E., Laface V. L. A., Musarella C. M., Spampinato G., Mei G., Misano G., Salerno G., Esposito A., Stinca A., 2020 – New Chorological Data for the Italian Vascular Flora. - Diversity, 12(1): 1-29. https://doi.org/10.3390/d12010022.
Stenhouse D., 2017 – Ozognathus cornutus (LeConte, 1859) (Ptinidae) in Britain. - The Coleopterist, 26(2): 94-96.
Telnov D., 2018 – Species to be deleted from Latvian list. Addenda to: Telnov, D. 2004. Check-List of Latvian Beetles (Insecta: Coleoptera). In: Compendium of Latvian Coleoptera, Vol. I., Telnov D. Ed., 140 pp.
Tilden J.W., 1951. – The insect associates of Baccharis pilularis De Candolle. - Microentomology, 16(1): 149-185.
Trócoli S., Tomás M., Lencina J.L., Torres J.L., Vela J.M., Baena M., 2020 – Nuevos registros ibéricos de Ozognathus cornutus (LeConte, 1859) y notas sobre su biología y distribución (Coleoptera: Ptinidae). - Boletín de la SAE, 30: 83-95.
USDA, 1964 – Cooperative economic insect report. Economic Insect Survey and Detection, Plant Protection Division, Agricultural Research Service, United States Department of Agriculture, Hyattsville, Maryland, 14(1):507.
USDA, 1970 – Cooperative economic insect report. Economic Insect Survey and Detection, Plant Protection Division, Agricultural Research Service, United States Department of Agriculture, Hyattsville, Maryland, 20(1):132.
Viñolas A., 2017 – Nueva aportación al conocimiento de los Ptinidae (Coleoptera) de la Península Ibérica e Islas Canarias, con la descripción de un nuevo Stagetus Wollaston, 1861 de Navarra. - Arquivos Entomológicos, 18: 137-148.
Viñolas A., Recalde Irurzun J.I., Muñoz Batet J., 2018 – Noves aportacions al coneixement de la fauna coleopterològica de la península Ibèrica i illes Canàries. Nota 3a, amb revisió dels Lissodema Curtis, 1833 ibèrics (Coleoptera, Salpingidae, Lissodemia). - Butlletí de la Institució Catalana d'Història Natural, 82: 41-52.
Viñolas A., Verdugo A., 2011 – Nuevas citaciones de Ptinidae para la provincia de Cádiz (Coleoptera: Bostrichoidea). - Butlletí de la Institució Catalana d'Història Natural, 76: 129-137.
Westbrooks R.G., 1998 – Invasive plants, changing the landscape of America: Fact book., Federal Interagency Committee for the Management of Noxious and Exotic Weeds (FICMNEW), Washington DC, USA, 109 pp.
White R.E., 1974 – Type-species for World genera of Anobiidae (Coleoptera). - Transactions of the American Entomological Society, 99: 415-475.
White R.E., 1982 – A catalog of the Coleoptera of America north of Mexico. Family: Anobiidae. Agriculture Handbook 529-70. Washington, DC, U.S. Department of Agriculture, Agricultural Research Service, XI + 58 pp.
Yus Ramos R., Verdugo Páez A., Coello García P., 2019 – Observaciones sobre la coleoptera fauna del cardo corredor Eryngium campestre L. (Apiaceae). - Revista gaditana de Entomología, 10(1): 117-126.
Zahradník P. 2007 – Ptinidae (without Gibbiinae and Ptininae). In: Catalogue of Palaeartic Coleoptera. Elateroidea - Derodontoidea - Bostrichoidea - Lymexyloidea - Cleroidea - Cucujooidea, Löbl I., Smetana A. Eds., Vol. 4, Apollo Books, Stenstrup, pp. 339-362.
Zahradník P., Mifsud D., 2005 – Ozognathus cornutus (LeConte) - new record for the Palaeartic Region (Coleoptera: Anobiidae). - Studies and reports of District Museum Prague-East Taxonomical, 1(1-2): 141-143.