Development of closed systems of oil-field water treatment as a basis of ecological safety of oil deposits settlements maintenance

O G Dubrovskaya¹, D I Dubrovskiy¹, E V Zhmakov¹ and A I Matushenko¹

¹ Federal State Autonomous Educational Institution of Higher Education "Siberian Federal University" pr. Svobodny, 82, Krasnoyarsk, 660041, Russian Federation

E-mail: dubrovskayaolga@mail.ru

Abstract. Abstract. The methods used for oil-containing sewage treatment and the efficiency of an existing water treatment system are dealt with in the paper. The importance of work is stipulated by the necessity of improvement of technical sewage conditioning systems of oil complex enterprises. To optimize the operation of the waste water treatment closed system, a block of sorption structures is suggested to be included in the filtering stage. This method allows to achieve the required quality both for using this water as return oil – field water and technical one. The use of Unisorb-Bio sorbent is substantiated to implement the treatment process of heavily polluted oil-containing sewage water. In the course of an experiment the optimal temperature of maximum sorption treatment is revealed. Sorption filtration rational modes are selected and scientifically based. The data obtained can be used in the design of closed systems structures of oil-containing sewage treatment.

1. Introduction

The relevance of research aimed at the problem of development of a closed technological scheme of sewage treatment in oil and gas fields is stipulated by the necessity to reduce environmental loads and to realize resource-saving principles on the territories with complicated climatic conditions.

The basic approach in the construction of oil wells is a concept of "zero discharge". For the phased implementation of the principles of this concept, identification of waste liquids generated during construction and operation of oil fields is of key importance. The main technological waste of oil drilling includes drill dirt, used drilling fluids and sewage formed in the rinsing wells.

Mineralogical composition of the drill dirt is determined by the lithological composition of rocks and can significantly change with the deepening of the well. Chemical composition of the drill dirt depends both on its mineral composition and the properties of the rinsing fluid. In the process of drilling, in addition to this fluid, other technological fluids are used, e.g., buffer, perforating fluids. After use they are fully or partially transferred to the category of waste. Used drilling rinsing fluid (UDRF) is mostly formed.

The second category of sewage is the drilling sludging wastewater generated during the drilling site and equipment washing, the equipment cooling system.

The third category is the waste fluid for the well inflow and muffling, and the fluids (oil - field water, oil, gas) obtained during the test.

Environmental hazard of all sewage generated only at the stage of construction of oil and gas wells is primarily determined by the high toxic effects on organisms of any classification.
As for the concept of "zero discharge", development of waste treatment technology and its reuse as technical water for maintaining oil field water pressure is the only possible principle of its implementation.

The required amount of return oil – field water is quite large. An estimated water consumption for the production of one ton of oil is on average 1.6 - 2.5 m³ with peripheral water flooding and 10 -15 m³ with the site flooding.

Water injected into the formation, requires special preparation, and since 40-50 % of it is sewage of different origin, it is necessary to look for the treatment equipment with high removal efficiency of such pollutants as oil products, suspended solids, iron, calcium, magnesium, potassium (carbonate, bicarbonates, sulfates), microorganisms.

Particles of algae, silt, iron compounds contained in the inlet water, hardness salts clog the pore channels of the formation, reducing the capacity of forcing wells. Microorganisms available in the injected water can form undesirable compounds. For example, sulphate restorable bacteria in the process of life produce hydrogen sulfide in an amount up to 100 mg/L. later this corrosive gas destructs pipelines, devices and equipment. In addition, these bacteria provoke the release of calcium carbonate and iron sulfide, which in turn form the mineral deposits in pipes, structures, and equipment.

According to Standard 39-225-88 "Water for waterflooding of oil formations. Quality requirements", the water intended for injection is to contain not more than 2 mg/l of suspended solids with a particle size of 1-5 mcm, 0.3 mg/l of iron, 0.5 mg/l of oil with the size of the emulsified particles of not more than 5 microns, 0.05 mg/l of dissolved oxygen.

The existing technological schemes of sewage treatment, with the condition of reuse, provide for the application of the following processes:

1) Coagulation; 2) Decarbonization; 3) Iron removal; 4) Decontamination.

Coagulation generally refers to the preliminary stage of water treatment. This step is necessary to improve the efficiency of subsequent treatment steps. Without this phase the use of some treatment methods presents significant difficulties. For example, the presence of organic substances in water leads to changes in technological ammonites, contributes to their aging and sharp (4-8 times) reduction in service life [1 – 3].

Water subjected to pre-treatment, almost does not contain coarse impurities, but it still contains a significant amount of emulsified organic compounds, a variety of fine impurities, as well as various bio-organisms, some of which may have pathogenic viruses and bacteria. To remove these contaminants various treatment methods are used: oxidation, ion exchange, sodium-cation exchange, sodium-chlorine-ionization, hydrogen-sodium-cation exchange, ammonium-sodium-cation exchange, anation, baromembrane, electromagnetic, etc.

The most common methods of the organic compounds physical-chemical treatment are oxidizing methods, that are used in case of impossibility or economic inexpediency of impurities extraction from sewage, and in case the runoff compounds are biochemically insoluble or toxic. Such methods of treatment are often referred to as destructive, because as a result of water treatment from impurities, organic compounds are broken down and the decomposition products are removed from the water or harmless for aquatic bodies compounds are formed. These include biological and chemical oxidation of contaminants, chemical recovery by hydrogen, electrochemical destruction, etc. [1, 3, 4 – 12].

Reagents oxidation is most widely used nowadays as a method of sewage treatment from oil products. Chlorine and its compounds, ozone, oxygen, hydrogen peroxide, copper sulfate, potassium dichromate, etc. are used as oxidizers [13].

When traditional methods of mechanical, biological and physical-chemical treatment of water are insufficient or cannot be used, because of the deficit of production areas, the complexity of delivery and the use of reagents or for other reasons, electrochemical methods for wastewater treatment are applied.

Electrochemical methods can be used to adjust physical-chemical properties of the treated effluent, they have a high bactericidal effect, allow to oxidize organic compounds to the required standards, simplify the technological scheme of treatment. In many instances electrical and chemical methods eliminate secondary pollution.
Electrical and chemical destruction is based on the oxidation and recovery of inorganic and organic compounds. Moreover, these reactions include a wide variety of processes starting from the simplest ionic recharge to complex transformations that underlie organic synthesis.

The mechanisms of electrical and chemical oxidation (or recovery) depend on the electrode material, the nature of substances subjected to electrolysis, temperature and electrolyte composition.

Currently, based on anodic oxidation and cathodic recovery, technology of sewage treatment has been developed from phenols, thiocyanates, nitro compounds, formaldehyde, methanol, dyes, simazine, cinar chloride, derivatives of anthraquinone, ethylene glycol, 2,4-D-acids, peroxide organic compounds, sulfur-containing and other organic pollutants present in industrial effluents [2, 4, 14 – 16].

The application of membrane techniques for treatment of oily waste is increasingly used especially abroad [4, 17 – 21].

One of the most effective methods of advanced sewage treatment from dissolved organic contaminants in petrochemical industry is sorption [22, 23]. As sorbents different porous materials are used: ash, coke waste peat, silicagels, alumogels, active clay, materials on the base of intercalated thermoeexpanded graphite and its modifications, sorbents based on carbonized rice peelings, etc. Activated carbons of different brands are also effective adsorbents.

The main advantage of the sorption method is the repeated use of the sorbent in the "sorption-desorption" cycle, which significantly increases the economic efficiency of sorption treatment. Besides solving the problem of sewage treatment to maximum permissible concentration it is possible to make extraction of a valuable component from the surface of the sorbent.

The use of coal-sorption technology for additional treatment of sewage waters will enable the use of treated water in recycled water production, improve ecological situation and help preserve the mineral resources, which are currently subject to high depletion [22, 24].

The use of microorganisms immobilized biocenosis on the surface of sorption particles [1, 6, 8, 25] is a new development in the field of sorption conditioning of oily sewage for various purposes.

2. Description of research

Open and closed types of diagrams are used for sewage treatment in oil and gas fields. Diagram of water treatment of an open type enables to treat technical and storm waste water in the same flow regardless of composition, pressure and water gas saturation, and together upload them into injection wells. It is usually recommended to be used for sewage with a high content of hydrogen sulfide and carbon dioxide. However, the efficiency of drain treatment according to this diagram does not exceed 60%, and the economic costs of its layout and operation are relatively high. In addition, as a result of contact with oxygen the corrosiveness of the water increases.

A schematic diagram of the treatment unit of the oil – field water of the closed type is shown in Figure 1.

Separated from the oil in the sedimentation chamber of preliminary discharge (SCPD) the water along line 1 goes into the reservoir – chamber 2 and then partially dehydrated oil (till 5 %), having passed the oil complex preparation unit (OCPU) goes to thermally insulated sedimentation chambers 3. The process of water separation in them is accelerated due to the OCPU heating and introduction of surface-active substances. Separated hot water is supplied to pump intake 4 and then fed back to the SCPD of the OCPU, which allows to reduce the consumption of demulsifier and the emulsion heating temperature. From the reservoir – chamber 2 the oil – field water is drawn by pump 5 and is fed to the sewerage pump station (SPS).

The application of a closed system of treatment allows intensifying the process of water preparation with the use of sedimentation and filtration under pressure, significantly reducing the aggressiveness of the sewage water by eliminating its contact with oxygen, to use the residual pressure existing in the system of oil preparation. The disadvantage of the closed system is the necessity of building a block for parallel treatment of surface stormwater runoff.
Figure 1. A schematic diagram of the treatment unit of the oil–field water of the closed type: 1 - the water discharge line from sedimentation chamber; 2 - reservoir-sedimentation chamber; 3 — thermally insulated sedimentation chamber; 4,5 - pumps; I - cold raw oil; II - dehydrated oil; III - hot water with surfactants; IV - water for SPS

To optimize the operation of the closed system treatment of sewage water, a block of sorption structures is proposed to be included in the filtering stage. This method allows to achieve the required quality both for return oil – field and technical water.

A Unisorb-BIO, as a sorbent is suggested to use which is a complex with an addition of oil-oxidizing cultures of microorganisms fixed in the pores of the installation. One of the main advantages of the resulting sorbent is that it not just accumulates oil as other sorbents, but exposes it to degradation under the influence of immobilized microflora (Table 1). This sorbent belongs to the class of biosorbents. Granules have microporous, mesoporous and layered flaky macroporous structure with the surface coated with a carbon water – repellant film. The investigated sorbent is non-flammable, non-explosive, with a long operating life (up to 3 years), is bioregenerated, utilized according to the IV class of hazard.

Table 1. The Unisorb – BIO sorbent characteristics

Property	Value
Bulk density, kg/m^3	18...25
Flakes (granulated material), mm	3...10
Oil sorption capacity, kg of oil / specimen kg	30...60
Flotation capacity for a month, %	90...100
Reduction of interfacial tension (water - oil), erg/ cm^2	2.5...3.5
The share of processed oil by microorganisms after 7 - 14 days	
a) biodestructable activity under aerobic conditions, %	Above more than 10 ºC
	At 0 ... +10 ºC
b) biodestructive activity under anaerobic conditions, %	
	More than 10 ºC
	at 0 ... +10 ºC
Decrease in the activity after three years of storage, %	30...40

In the course of research there were 7 lines of experiment with model and field water with different concentration of oil (10 – 20mg/l). The water was filtered through the Unisorb-Bio sorbent at different temperatures. The concentration of surface and emulsified oil infiltration was monitored (Table. 2) in the experiment.

Table 2. Results of the experiment

№ of lines	Original concentration of oil products in model water	Conditions of filtration	Final concentration (surface/ emulsified)	Treatment effect, %
	10 mg/l		0.12 mg/l/1.3 mg/l	99.98/99.87
The experiment has shown that when the temperature of sewage is 30 – 60 °C, the effect of sorption treatment is maximum, and when the sewage temperature is reduced, the indicators are considerably worsened (Figure 2).

Figure 2. Effectiveness of oil-containing sewage treatment under different temperatures of original water

3. Conclusion

The relevance of research aimed at the issue of technological scheme composition and equipment selection for oil-containing sludging sewage is stipulated by the necessity of reuse of treated water as formation water for technical purposes of enterprises and reduction of environmental loads.

3.1 It has been experimentally shown that the high effect of sewage treatment demonstrates the feasibility of introducing a host of sorption filters for the treatment and conditioning of industrial water in closed circulating cycles.

3.2 The main characteristics and trends of the sorption processes with the use of Unisorb-Bio sorbent have been identified, which is a complex with the addition of oil-oxidizing cultures of microorganisms fixed in the pores of the device.

3.3 It is revealed that the used sorbent not just accumulates oil products as other sorbents, but exposes them to destruction under the influence of immobilized microflora, which enhances its competitive advantages from the point of view of sustainability of a full cycle of use.

This work was funded by RFBR and the Government of Krasnoyarsk Territory in the framework of research project 18-41-242008.

References

[1] Pinkin A V and Kasatkin A V 2012 New solutions for the collection of oil and fat production *Ecology of production* 2012 4 pp 70-72

[2] Koganovsky A M, Klimenko N A, Levchenko T M, Marutovsky R M and Roda I G 1983 Purification and use of wastewater in industrial water supply *Chemistry*

[3] Alekseev M I, Ivanov V G, Kurganov A M, Medvedev G P, Mishukov B G, Feofanov Y A,
Tsvetkova L I, Chernikov N A 2007 Engineering manual of water treatment New Journal p 360

[4] Chernenko T V, Imatullina G K 2011 Methods of wastewater treatment of oil products Scientific works collection of the Fourth International Teleconference "Basic Science and Practice" (Problems and perspectives of modern science) 3

[5] Zhao D, You F 2015 Mechanisms of chemical cleaning of ion exchange membranes: a case study of plant-scale electrodialysis for oily wastewater treatment Journal of Membrane Science 496 pp 310-317

[6] Guo H, Yu S, Li L, Zhao D and You F 2015 Mechanisms of chemical cleaning of ion exchange membranes: a case study of plant-scale electrodialysis for oily wastewater treatment Journal of Membrane Science 496 pp. 310-317

[7] Strepetov I V and Moskvicheva E V 2006 The use of sorbents based on polymer waste materials for waste water treatment of oil contamination Internet-Herald VolgGASU 1

[8] Hua F L, Tsang Y F, Wang Y J, Chan S Y, Chua H and Sin S N 2007 Performance study of ceramic microfiltration membrane for oily wastewater treatment Chemical Engineering Journal 128 pp 169-175.

[9] Kovaleva N G, Kovalev V G 1987 Biochemical waste water purification of chemical industry (Chemistry) p 160

[10] Lü T, Zhao H, Qi D, Chen Y 2015 Synthesis of a novel amphiphilic and cationic chitosan-based flocculant for efficient treatment of oily wastewater Advances in Polymer Technology 34 (3) pp 21502

[11] Azimov Yu I, Savdur S N and Fesina E L 2014 Ensuring environmental safety based on the modelling of biological process of oily sewage Mediterranean Journal of Social Sciences 5 (24) pp 372-376

[12] Stepanov S V 2014 Features of the calculation of structures of biological wastewater treatment refineries Water supply and sanitary engineering 3 pp 49-56

[13] Salu O A, Adams M, Robertson P K J, McCullagh C and Wong L S 2011 Remediation of oily wastewater from an interceptor tank using a novel photocatalytic drum reactor Desalination and Water Treatment 26 (1-3) pp 87-91

[14] Dubrovskaya O G, Evstigneev B B and Kulagin V A 2011 Conditioning of Waste Water of Energy Systems Journal of Siberian Federal University. Engineering & Technologies 4 pp 665–675

[15] Sobgaya N A, Ol'shanskaya L N and Makarova Y A 2012 Filters from the waste effluent treatment Egelessky Institute of Technology. Industrial ecology 3 pp 40 - 41

[16] Smirnov A N, Stepanchikova I G, Baryshenko A V, Kuznetsov Y N and Kotljarova N B 2008 New technology for industrial wastewater treatment from oil products Ecology and Industry of Russia 4 pp 4-5

[17] Maksimov E A, Vasiliev V I 2015 Innovative methods and apparatus for cleaning oily waste water treatment Water treatment. Water supply 10 (94) pp 28-39

[18] Padaki M, Surya Murali R, Abdullah M S, Misdan N, Moslehyan A, Kassim M A, Ismail A F and Hilal N 2015 Membrane technology enhancement in oil-water separation. A review Desalination 357 pp 197-207

[19] Li X, Ang W L, Liu Y and Chung T S 2015 Engineering design of outer-selective triborec hollow fiber membranes for forward osmosis and oil-water separation AIChE Journal 61 (12) pp 4491-4501

[20] Zhang Y, Gan F, Li J, Li S, Gao Y and Li M 2010 Oily wastewater treatment by porous ceramics mediums with surface lipophilic modification Journal Wuhan University of Technology, Materials Science Edition 25 (5) pp 807-810

[21] Peng H, Tremblay A Y 2008 Membrane regeneration and filtration modeling in treating oily wastewaters Journal of Membrane Science 324 (1-2) pp 59-66

[22] Li Y S, Yan L, Xiang C B and Hong L J 2006 Treatment of oily wastewater by organic-
inorganic composite tubular ultrafiltration (UF) membranes *Desalination* 196 (1-3) pp 76-83

[23] Dvadnenko M V, Privalov N M, Lyavina E B, Protsay A A and Dinchenko Y V 2009 The use of sorption technology for oily wastewater *Basic Research* 5 pp 45-46

[24] Nikolaeva L A and Golubchikov M A 2016 Cleaning of manufacturing waste water from oil modified sorption materials based on carbonaceous sludge // *Water supply and sanitary engineering* 7 pp 51-58

[25] Trusov V V 2014 Coal sorption technology oily waste and recycled water *Water Treatment* 12 pp 32-41

[26] Klimov E S and Buzaeva M V 2011 *Natural sorbents and chelators in wastewater treatment* Monograph (Ulyanovsk, Ulyanovsk State Technical University) p 201