Complete genome sequence of Citrobacter freundii 705SK3, an OXA-48 encoding wastewater isolate

Zurfluh, Katrin; Stephan, Roger; Klumpp, Jochen; Nüesch-Inderbinen, Magdalena; Hummerjohann, Jörg; Bagutti, Claudia; Marti, Roger

Abstract: We present the genome sequence of Citrobacter freundii 705SK3, a wastewater isolate harboring an IncL OXA-48-encoding plasmid. Assembly of the genome resulted in a 5,242,839-bp circular chromosome (GC content, 52%) and two closed plasmids of 296,175 bp and 63,458 bp in size.

DOI: https://doi.org/10.1128/genomeA.00842-17

Posted at the Zurich Open Repository and Archive, University of Zurich
ZORA URL: https://doi.org/10.5167/uzh-148757
Journal Article
Accepted Version

Originally published at:
Zurfluh, Katrin; Stephan, Roger; Klumpp, Jochen; Nüesch-Inderbinen, Magdalena; Hummerjohann, Jörg; Bagutti, Claudia; Marti, Roger (2017). Complete genome sequence of Citrobacter freundii 705SK3, an OXA-48 encoding wastewater isolate. Genome Announcements, 5(33):e00842-17.
DOI: https://doi.org/10.1128/genomeA.00842-17
Complete genome sequence of *Citrobacter freundii* 705SK3, an OXA-48 encoding wastewater isolate

Genome of OXA-48 encoding *Citrobacter freundii* 705SK3

Katrin Zurfluh¹#, Roger Stephan¹, Jochen Klumpp², Magdalena Nüesch-Inderbinen¹, Jörg Hummerjohann³, Claudia Bagutti⁴, Roger Marti¹

¹ Institute for Food Safety and Hygiene, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland

² Institute of Food, Nutrition and Health, ETH Zurich, Zurich, Switzerland

³ Division of Food Microbial Systems, Microbiological Safety of Foods of Animal Origin Group, Agroscope, Bern, Switzerland

⁴ Biosafety Laboratory, State Laboratory Basel-City, Basel, Switzerland.

#Address correspondence to Katrin Zurfluh, katrin.zurfluh@uzh.ch
Abstract. We present the genome of *Citrobacter freundii* 705SK3, a wastewater isolate, harboring an IncL OXA-48 encoding plasmid. Assembly of the genome resulted in a 5,242,839 bp circular chromosome (GC content 52 %), and two closed plasmids of 296,175 bp and 63,458 bp in size.
Citrobacter freundii is an opportunistic pathogen and is frequently found in the environment (water, soil), but can also be isolated from food or the intestines of animals and humans. Although its virulence potential is rather low, *C. freundii* can be the causative agent of a wide spectrum of infections involving the gastrointestinal, urinary, or respiratory tract or even the central nervous system (1). *C. freundii* possesses an inducible AmpC β-lactamase which can be a challenge for antibiotic susceptibility reporting, meaning an *in vitro* susceptibility may not correlate with clinical efficacy (2). With the general increasing number of carbapenemase-producing Enterobacteriaceae, also the reports of carbapenemase-producing *C. freundii* has increased (3-6). The main carbapenemases produced by Enterobacteriaceae belong to the Ambler class A (e.g. KPC), B (e.g. IMP, VIM and NDM) or the class D (e.g. OXA-48 and its variants). The latter generally possess weak but significant carbapenemase activity (7). However, the combination of an (inducible) AmpC β-lactamase together with an OXA-48 makes such isolates resistant against almost all β-lactams available.

Here, we present the genome of an OXA-48 producing *C. freundii* isolated from wastewater near Basel, Switzerland in December 2015 (8). The genome was sequenced at the Functional Genomics Center Zurich (FGCZ) using Pacific Biosciences (PacBio) single-molecule real-time (SMRT) technology RS2 reads (C4/P6 chemistry). *De novo* assembly was performed using SMRTAnalysis 2.3 with the HGAP3 protocol. Annotation was done using the NCBI Prokaryotic Genome Annotation Pipeline (9). MLST-1.8 Server (10), ResFinder 2.1 (11), and PlasmidFinder 1.3 (12) were used to identify sequence type (ST), acquired resistance genes and plasmid incompatibility types.

The assembly resulted in one chromosome and two plasmids (all sequences were
The chromosome is 5,242,839 bp in size (GC content 52%) and encodes the AmpC β-lactamase CMY-75. The isolate could not be assigned to an existing ST, although it is highly similar to ST112 (only one point mutation in the fadD gene: allele 69 position 363G→A). The larger of the two plasmids, p705SK3_1, is 296,175 bp in size with a GC content of 47.8% and does not encode any antimicrobial resistance genes. PlasmidFinder was not able to assign it to any plasmid incompatibility group. The second plasmid (63,458 bp, GC content 51.2%), p705SK3_2, belongs to the incompatibility type IncL and carries the bla_{OXA-48} gene. It shows remarkable similarities to the prototype of the IncL plasmids involved in the worldwide spread of OXA-48 (7, 13). The main difference were two IS/IR elements present on p705SK3_2 compared to pOXA-48 (JN626286). The first IS/IR is located 163 bp downstream of the bla_{OXA-48} gene and the second one is 380 bp downstream of korC, which encodes a hypothetical transcriptional repressor. Furthermore, p705SK3_2 possesses 99.96% identity to p704SK10_2 (CP022150), an OXA-48 encoding IncL plasmid extracted from an Enterobacter cloacae isolate from the same wastewater (14).

The isolate C. freundii 705SK3 is a further proof that Citrobacter species have to be considered as potential reservoir for the wide disseminated OXA-48 encoding IncL plasmids.

Nucleotide sequence accession numbers. Sequence and annotation data of the genome have been deposited at GenBank under accession numbers CP022151 (chromosome), CP022152 (p705SK3_1) and CP022153 (p705SK3_2). This is the first version of this genome.
Acknowledgments:

This work was supported by funding from the University of Zurich.
References

1. Lavigne JP, Defez C, Bouziges N, Mahamat A, Sotto A. 2007. Clinical and molecular epidemiology of multidrug-resistant *Citrobacter* spp. infections in a French university hospital. Eur J Clin Microbiol Infect Dis 26:439-441.

2. Harris PNA, Ferguson JK. 2012. Antibiotic therapy for inducible AmpC β-lactamase-producing Gram-negative bacilli: what are the alternatives to carbapenems, quinolones and aminoglycosides? Int J Antimicrob Agents 40:297-305.

3. Carrér A, Poirel L, Yilmaz M, Akan OA, Feriha C, Cuzon G, Matar G, Honderlick P, Nordman P. 2010. Spread of OXA-48-encoding plasmid in Turkey and beyond. Antimicrob Agents Chemother. 54:1369-73.

4. Majewski P, Wieczorek P, Lapuc I, Ojdana D, Sienko A, Sacha P, Kloczko J, Tryniszewska E. 2017. Emergence of a multidrug-resistant *Citrobacter freundii* ST8 harboring an unusual VIM-4 gene cassette in Poland. Int J Infec Dis 61:70-73.

5. Venditti C, Fortini D, Villa L, Vulcano A, D’Arezzo S, Capone A, Petrosillo N, Nisii C, Carattoli A, Di Caro A. 2017. Circulation of *bla*KPC-3-carrying IncX3 plasmids among *C. freundii* isolates in an Italian hospital. Antimicrob Agents Chemother doi: 10.1128/AAC.00505-17.

6. Wu W, Espedido B, Feng Y, Zong Z. 2016. *Citrobacter freundii* carrying *bla*KPC-2 and *bla*NDM-1: characterization by whole genome sequencing. Sci Rep 6:30670. doi: 10.1038/srep30670.

7. Poirel L, Potron A, Nordmann P. 2012. OXA-48-like carbapenemases: the phantom menace. J Antimicrob Chemother 67:1597-606.
8. Zurfluh K, Bagutti C, Brodmann P, Alt M, Schulze J, Fanning S, Stephan R, Nüesch-Inderbinen M. 2017. Wastewater is a reservoir for clinically relevant carbapenemase and 16S rRNA methylase producing Enterobacteriaceae. Int J Antimicrob Agents, http://dx.doi.org/10.1016/j.ijantimicag.2017.04.017.

9. Tatusova T, DiCuccio M, Badretdin A, Chetvernin V, Nawrocki EP, Zaslavsky L, Lomsadze A, Pruitt KD, Borodovsky M, Ostell J. 2016. NCBI prokaryotic genome annotation pipeline. Nucleic Acids Res 44:6614-24.

10. Larsen MV, Cosentino S, Rasmussen S, Friis C, Hasman H, Marvig RL, Jelsbak L, Sicheritz-Ponten T, Ussery DW, Aarestrup FM, Lund O. 2012. Multilocus sequence typing of total-genome-sequenced bacteria. J Clin Microbiol 50:1355-61.

11. Zankari E, Hasman H, Cosentino S, Vestergaard M, Rasmussen S, Lund O, Aarestrup FM, Larsen MV. 2012. Identification of acquired antimicrobial resistance genes. J Antimicrob Chemother 67:2640-4.

12. Carattoli A, Zankari E, Garcia-Fernandez A, Voldby Larsen M, Lund O, Villa L, Moller Aarestrup F, Hasman H. 2014. In silico detection and typing of plasmids using PlasmidFinder and plasmid multilocus sequence typing. Antimicrob Agents Chemoter 58:3895-903.

13. Carattoli A, Seiffert SN, Schwendener S, Perreten V, Endimiani A. 2015. Differentiation of IncL and IncM plasmids associated with the spread of clinically relevant antimicrobial resistance. PLoS One 10:e0123063.
14. Marti R, Stephan R, Klumpp J, Hummerjohann J, Bagutti C, Zurfluh K. 2017. Genome of *Enterobacter cloacae* isolate 704SK10, an OXA-48 encoding wastewater isolate. Genome Announc. submitted.