A high-temperature water vapor equilibration method to determine non-exchangeable hydrogen isotope ratios of sugar, starch and cellulose

Philipp Schuler1 | Marc-André Cormier2 | Roland A. Werner3 | Nina Buchmann3 | Arthur Gessler1,4 | Valentina Vitali1 | Matthias Saurer1 | Marco M. Lehmann1

1Research Unit of Forest Dynamics, Research Group of Ecosystem Ecology, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
2Department of Earth Sciences, Research Group of Ocean Biogeochemistry, University of Oxford, Oxford, UK
3Department of Environmental Systems Science, Group of Grassland Sciences, ETH Zurich, Zürich, Switzerland
4Department of Environmental Systems Science, Institute of Terrestrial Ecosystems, ETH Zurich, Zürich, Switzerland

Correspondence
Philipp Schuler, Research Unit of Forest Dynamics, Research Group of Ecosystem Ecology, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Switzerland.
Email: philipp.schuler@wsl.ch

Funding information
Our work was supported by the innovative project ‘HDoor2020’ at WSL, by the SNF Ambizione project ‘TreeCarbo’ (No. 179978, granted to M.M.L.), and the SNF-project ‘Isodrought’ (No. 182092, granted to MS). M.-A.C. received funding from the UK Biotechnology and Biological Sciences Research Council.

Abstract
The analysis of the non-exchangeable hydrogen isotope ratio (δ²Hne) in carbohydrates is mostly limited to the structural component cellulose, while simple high-throughput methods for δ²Hne values of non-structural carbohydrates (NSC) such as sugar and starch do not yet exist. Here, we tested if the hot vapor equilibration method originally developed for cellulose is applicable for NSC, verified by comparison with the traditional nitration method. We set up a detailed analytical protocol and applied the method to plant extracts of leaves from species with different photosynthetic pathways (i.e., C3, C4 and CAM). δ²Hne of commercial sugars and starch from different classes and sources, ranging from −157.8 to +6.4‰, were reproducibly analysed with precision between 0.2‰ and 7.7‰. Mean δ²Hne values of sugar are lowest in C3 (−92.0‰), intermediate in C4 (−32.5‰) and highest in CAM plants (6.0‰), with NSC being ²H-depleted compared to cellulose and sugar being generally more ²H-enriched than starch. Our results suggest that our method can be used in future studies to disentangle ²H-fractionation processes, for improving mechanistic δ²Hne models for leaf and tree-ring cellulose and for further development of δ²Hne in plant carbohydrates as a potential proxy for climate, hydrology, plant metabolism and physiology.

KEYWORDS
growth, NSC, photoperiod, photosynthesis, secondary metabolism, δ²H

1 INTRODUCTION

The isotopic composition of carbohydrates, which are the primary building blocks of plant biomass, is well known as a useful proxy for hydro-climatic conditions and plant physiological processes that have occurred during their biosynthesis (Gaglioti et al., 2017; Gessler et al., 2014; Manrique-Alba et al., 2020; McCarroll & Loader, 2004; Porter et al., 2014; Sass-Klaassen et al., 2005; Saurer et al., 2012; Saurer, Borella, & Leuenberger, 1997). Various high-throughput methods have been developed to study the carbon and oxygen isotopic composition of non-structural plant carbohydrates (NSC; i.e., sugar and starch) (Lehmann et al., 2020; Richter et al., 2009; Wanek,
Heintel, & Richter, 2001), and of structural carbohydrates such as tree-ring or leaf cellulose (Boettger et al., 2007). In contrast, methods to investigate the non-exchangeable hydrogen isotopic composition (δ2Hne) in plant carbohydrates are still mainly limited to cellulose (An et al., 2014; Arosio, Ziehmer, Nicolussi, Schlüchter, & Leuenberger, 2020; Epstein, Yapp, & Hall, 1976; Filot, Leuenberger, Pazdur, & Boettger, 2006; Mischel, Esper, Keppler, Greule, & Werner, 2015; Nakatsuka et al., 2020; Sauer, Schimmelmann, Ses- sions, & Topalov, 2009; Xia et al., 2020). Existing methods to analyse δ2Hne values of NSC use site-specific natural isotope fractionation nuclear magnetic resonance spectroscopy (NMR) or sample derivatization prior to isotope ratio mass spectrometry (IRMS) (Abrahim, Cannavan, & Kelly, 2020; Augusti, Betson, & Schleucher, 2008; Dunbar & Schmidt, 1984; Schleucher, Vanderveer, Markley, & Sharkey, 1999; Zhang, Quemerais, Martin, Martin, & Williams, 1994). These methods are, however, very laborious and limited by their sample throughput and/or produce explosive compounds that are difficult to work with. As a result, publications reporting δ2Hne values of NSC are rare (Dunbar & Wilson, 1983; Ehlers et al., 2015; Luo & Sternberg, 1991). However, recent studies show the great potential of δ2H values of plant compounds to retrospectively determine hydrological and climatic conditions (Anhäuser, Hook, Halfar, Greule, & Keppler, 2018; Gamarra & Kahmen, 2015; Hepp et al., 2015, 2019; Sachse et al., 2012), as well as to disentangle metabolic and physiological processes (Cormier et al., 2018; Estep & Hoering, 1981; Sanchez-Bragado, Serret, Marimon, Bort, & Araus, 2019; Tipple & Ehleringer, 2018) such as the proportional use of carbon sources (i.e., fresh assimilates vs. storage compounds) for plant growth (Lehmann, Vitali, Schuler, Leuenberger, & Saurer, 2021; Zhu et al., 2020). Enabling the analysis of δ2Hne of NSC, especially sugar at the leaf level, will make it possible to study processes and environmental conditions which are shaping the 2H-fractionation of carbohydrates at a much higher time resolution compared to the analysis of δ2 Hne of cellulose. New routines and high-throughput analytical methods for δ2Hne values of NSC are thus needed to enable widespread application in earth and environmental sciences.

The difficulty of establishing reliable methods for δ2Hne values of NSC and cellulose is mainly caused by the presence of oxygen-bound hydrogen atoms (H2O) that can freely exchange with hydrogen atoms of the surrounding liquid water and water vapor. The interference of H2O greatly affects the analysis of δ2Hne which retains useful information on climate, hydrology, metabolism and physiology. The oldest method of measuring δ2Hne is to derivatize hydroxyl groups with nitrate esters, using a mixture of either H2SO4 or H3PO4 with HNO3 (Alexander & Mitchell, 1949; Boettger et al., 2007; DeNiro, 1981; Epstein et al., 1976). However, the nitration process requires a large sample amount, is labour intensive, uses hazardous derivatization reactions and leads to thermally unstable products. A newer derivatization method to measure δ2Hne in sugars is using N-methyl-bis-trifluoroaceticamide to replace H2O with trifluoroacetate derivatives, which are measured by gas chromatography · chromium silver reduction/high-temperature conversion-IRMS (GC-CrAg/HTC-IRMS) (Abrahim et al., 2020). This method still relies on a large sample amount of >20 mg extracted NSC, a relatively long measuring time, and the limitation of measuring only one element per analysis. Potential alternative methods that work without derivatization and use smaller amounts of material are based on water vapor equilibration, which sets H2O to a known isotopic composition that allows the determination of δ2Hne by mass balance (Cormier et al., 2018; Filot et al., 2006; Sauer et al., 2009; Schimmelmann, 1991; Wassenaar & Hobson, 2000). However, established water vapor equilibration methods are mainly calibrated for analysis of δ2Hne values of complex molecules such as cellulose, keratin and chitin (Schimmelmann et al., 1986; Wassenaar & Hobson, 2000) and whether these methods can also be used for the analysis of δ2Hne in NSC remains to be shown. The main purpose of this study was therefore to establish a high-throughput hot water vapor equilibration method to determine δ2Hne of NSC, based on already established protocols for cellulose (Sauer et al., 2009). Nitration of cellulose and starch was additionally applied as an independent method to verify our results. Finally, we used the method to determine δ2Hne values of NSC and cellulose extracted from leaves of plant species with different photosynthetic pathways (C3, C4 and CAM) grown under the same controlled climatic conditions.

2 MATERIALS AND METHODS

2.1 Cellulose, starch and sugar standards

As reference materials, we used both commercially available (n = 4; spruce cellulose, Fluka, Honeywell International Inc., Morristown, New Jersey, U.S.A., Prod. No. 22181; IAEA-CH-3. International Atomic Energy Agency (IAEA), Vienna, Austria: Merck cellulose (Cellulose native no. 2351, Merck, Darmstadt, Germany), Wei Ming (CYCLOCEL® Microcrystalline Cellulose, Wei Ming Pharmaceutical MFG. co., LTD., Taipei City, Taiwan), and in-house produced cellulose standards (n = 5; Isonet, spruce, beech, Spain and Siberia), commercially available starch standards (n = 4; starch from maize, Fluka, Prod. No. 85652; starch from rice, Calbiochem, Merck KGaA, Darmstadt, Germany, Prod. No. 569380; starch from wheat, Fluka, Prod. No. 85649 and starch from potato, Merck, Prod. No. 1.01259.0250), commercially available standards for sugars of different classes (n = 6; sucrose, Merck, Prod. No. 1.07687; α-(+)-glucose ≥99.5%, SIGMA Life Science, St. Louis, Missouri, U.S.A., Prod. No. 49139; α-(+)-fructose ≥99%, Fluka, Prod. No. 47739; α-(+)-raffinose pentahydrate ≥99%, Fluka, Prod. No. 83400; α-(+)-trehalose dihydrate ≥99%, SIGMA Life Science, Prod. No. T9449 and myo-inositol ≥99.5%, Sigma Life Science, Prod. No. S75589 and two household sugars (Finish sucrose from 2019, Suomalainen Taloussokeri, Kantvik, Finland; Russian sucrose, household sugar from a Russian supermarket supplier). All reference materials were oven-dried at 60°C for 48 hr and stored in an exicator at low relative humidity (2%−5%) until further use.
Plant species, growing conditions and sampling

Ten plant species with different photosynthetic pathways grown under controlled conditions in walk-in climate chambers (Bouygues E&S InTec Schweiz AG, Zurich, Switzerland) were used to apply the new method, and compare δ²Hne of cellulose, starch and soluble sugars. The species selection covered C₃ herbs and grasses (Abelmoschus esculentus (L.) Moench, Cannabis sativa L., Hordeum vulgare L., Salvia hispanica L. and Solanum cheesmaniae L. (Riley) Forsberg), C₄ grasses (Sorghum bicolor (L) Moench, Zea mays L.) and CAM plants (Portulaca grandiflora Hook., Kalanchoe daigremontiana Raym.-Hamet & H.Perrier and Phalaenopsis Blume hybrid). Seeds or plantlets were sown or planted in 3 L pots containing potting soil (Kübelpflanzenerde, RICOTER Erdaufbereitung AG, Aarberg, Switzerland). The orchid Phalaenopsis was bought in a local supermarket, and grown in a special substrate based on bark mulch. The climate chamber conditions were set to 16 daylight hours (30°C and 40% relative humidity), 8 nighttime hours (15°C and 60% relative humidity) and photosynthetically active radiation of 110 μmol m⁻² s⁻¹ at plant height with uniform fluorescent tubes (OSRAM L 36 W 777 Fluora, Osram Licht AG, Munich, Germany). All plants were regularly watered to field capacity with tap water (δ²H = −79.9 ± 2.4‰ during the experimental period) to avoid any water limitation, except for Phalaenopsis that was watered with 50 ml twice a week to keep the substrate moist but prevent root rot due to excess water. The plants were grown for three months to ensure ample leaf material was grown for harvest.

At the sampling day, three samples of fully developed mature leaves, each from individual plants or three pools of leaves of four plants in the case of H. vulgare, were sampled after 7 hr of light to allow the plants to synthesize enough sugars and starch on the day of harvest and to guarantee steady-state leaf water enrichment conditions (Cernusak et al., 2016). The leaf samples were immediately transferred to gas-tight 12 ml glass vials (’Exetainer’, Labco, Lampeter, UK, Prod. No. 738W), stored on ice until the harvest was complete (±2 hr), and then at −20°C in a freezer until further use (Appendix 1). The sample material was dried using a cryogenic water distillation method (West, Patrickson, and Ehleringer (2006), crumbled with a spatula (dicotyledon species) or cut with scissors (monocotyledon species) into small pieces, and 100 mg of the fragmented material was separated for cellulose extraction. The remaining leaf material was then ball-milled to powder (Retsch MM400, Retsch, Haan, Germany) for NSC extraction.

Cellulose and starch nitration, and isotopic analysis of the nitrated products

Nitrates of cellulose and starch without exchangeable H were used as reference material to assess the δ²Hne values derived from the hot water vapor equilibration method. Nitration of cellulose and starch standards was performed following the method of Alexander and Mitchell (1949), using a mixture of P₂O₅ and 90% HNO₃. δ²H values of nitrated cellulose and starch were analysed with a TC/EA-IRMS system, using a reactor filled with chromium as described by Gehre et al. (2015). Reference materials for δ²H measurements of cellulose and starch nitrates were the IAEA-CH-7 polyethylene foil (PEF; International Atomic Energy Agency, Vienna, Austria) for a first offset correction and the USGS62, USGS63 and USGS64 caffeine standards (United States Geological Survey, Reston, Virginia, U.S.A.) (Schimmelmann et al., 2016) for the final normalization.

All Isotope ratios (δ) are calculated as given in Equation (1) (Coplen, 2011):

\[\delta = \frac{R_{\text{Sample}} - R_{\text{Standard}}}{R_{\text{Standard}}} \] (1)

\[R = \frac{^2H/\text{H}}{^{14}C} \]

Every compound (i.e., sugars, starch and cellulose) was extracted once per sample. Cellulose (hemicellulose) was extracted from 100 mg of the fragmented leaf material in F57 fibre filter bags (made up of polyester and polyethylene with an effective pore size of 25 μm; ANKOM Technology, Macedon NY, U.S.A.). In brief, the samples were washed twice in a 5% sodium hydroxide solution at 60°C, rinsed with deionized water, washed 3 times for 10 hr in a 7% sodium chlorite solution, which was adjusted with 96% acetic acid to a pH between 4 and 5, and subsequently rinsed with boiling hot deionized water, and dried overnight in a drying oven at 60°C. The neutral sugar fraction (‘sugar’, a mixture of sugars, typically glucose, fructose, sucrose and sugar alcohol (Rinne, Saurer, Streit, & Siegwolf, 2012)) were extracted from 100 mg leaf powder and further purified using ion-exchange cartridges, following established protocols for carbon and oxygen isotope analyses (Lehmann et al., 2020; Rinne et al., 2012). This is needed to separate the sugar from other water-soluble compounds such as amino acids which would alter the resulting δ²Hne values (Schmidt, Werner, & Eisenreich, 2003). Starch was extracted from the remaining pellet of the sugar extraction via enzymatic digestion following the established method for carbon isotope analysis (Richter et al., 2009; Wanek et al., 2001). The same protocol was used to hydrolyse the commercial starch standards. Aliquots of the extracted sugar (including those derived from starch) were pipetted in 5.5 × 9 mm silver foil capsules (IVA Analysetechnik GmbH & Co. KG, Germany, Prod. No. SA76981106), frozen at −20°C, freeze-dried, folded into cubes and packed into an additional silver foil capsule of the same type, folded again and stored in an excicator at low relative humidity (2–5%) until isotopic analysis.
2.5 | δ\(^2\)H\(_{\text{ne}}\) analysis of cellulose and NSC using a hot water vapor equilibration method

One microgram of commercial starch or cellulose standard was packed into 3.3 × 5 mm silver foil capsules (IVA, Prod. No. SA76980506), which led to a total peak area between 20 and 30-V seconds (Vs) of each IRMS analysis. For sugar standards, one mg was transferred first into a 5.5 × 9 mm silver foil capsule (IVA), and additionally packed in a second capsule of the same size and folded again. The reason for the double packing was the observation that sugar samples become liquefied and rinsed out of single-packed capsules during the hot water vapor equilibration, which led to a loss of sample and to negative impacts on the analysis of δ\(^2\)H\(_{\text{ne}}\) in sugars. Such rinsing was prevented by double packing and had no negative impact on the drying time of the sugars (Appendix 2). The double packing did not have a negative impact on the equilibration itself, as indicated by the high \(x_e\) of the sugars (Table 1). All packed samples were stored in an excatior at low relative humidity (2–5\%) until isotope analysis.

All samples were equilibrated in a home-built offline equilibration system (Appendix 3), consisting of a heating oven with an in-house designed equilibration chamber (Appendix 4) connected to a peristaltic pump (Gilson Incorporated, Middleton, USA) for solid samples with 50 cylindrical sample positions, where samples and reference materials could be placed, inserted into a cubic stainless steel chamber with a heat-shielded metal plate, one inlet and one outlet connector were installed (Appendix 5). The inlet was connected to a stainless steel tube (i.e., feeding capillary, BGB, Switzerland), which was leading out of the oven where a sartoprene pump tubing was fitted into a peristaltic pump (Appendix 6). The end of the sartoprene pump tubing was inserted into a 50 ml falcon tube containing the equilibration water. The peristaltic pump provided a constant flow of the equilibration water (1.7 ml h\(^{-1}\)) into the equilibration chamber. The temperature setpoint of the preheated oven was set to a constant 130°C, ensuring immediate evaporation of water after entering the equilibration chamber. The end of the outlet metal tube was inserted into a glass vessel and checked for vapor flow and condensation of the blown-out vapor. After 2 hr of equilibration, the feeding capillary was switched to a capillary delivering dry nitrogen gas (N\(_2\) 5.0, PanGas AG, Dagmersellen, Switzerland, Prod No. 22209112) with a pressure of one bar for 2 hr to ensure complete removal of gaseous water in the chamber, which was still kept at 130°C. The duration of equilibration and drying, as well as the equilibration temperature, were step-wise tested for cellulose to ensure maximum equilibration and no residual vapor. However, the high equilibration temperature of 130°C might be important to break down the crystalline structure of sugars and gelatinize starch to enable the access of water vapor (Gudasz, Soto, Sparman, & Karlsson, 2020).

For testing the reproducibility of the adapted method, triplicates of each type of cellulose and sugar samples were equilibrated independently on separate days following a standardized sample sequence (Appendix 7), in total three times with Water 1 (δ\(^2\)H = -160‰) and three times with Water 2 (δ\(^2\)H = -428‰). For starch and digested starch, triplicates were equilibrated only once with Water 1 and once with Water 2.

Subsequently, all samples (still hot) were immediately transferred into a Zero Blank Autosampler (N.C. Technologies S.r.l.,) which was installed on a sample port of a high-temperature elemental analyser system. The latter was coupled via a ConFlo III interface to a Delta\(^\text{XP}\) IRMS (TC/EA-IRMS, Finnigan MAT, Bremen, Germany). It is crucial to transfer the samples as fast as possible and still hot from the equilibration chamber to the autosampler to avoid any isotopic re-equilibration of the sample with air moisture and water absorption. The autosampler carousel was evacuated to 0.01 mbar and afterwards filled with dry helium gas to 1.5 bar to avoid any contact with ambient water (vapor). The samples were pyrolysed in a reactor according to Gehre, Geilmann, Richter, Werner, and Brand (2004), and carried in a flow of dry helium (150 ml min\(^{-1}\)) to the IRMS. Raw δ\(^2\)H values of standard material (Table 1) were offset corrected using PEF standards (SD of PEF < 0.7‰ within one run).

Leaf sugar, starch and cellulose samples of three biological replicates were prepared as described above for the commercial standard material and equilibrated using identical settings. This corresponded to one equilibration with Water 1 and one with Water 2. Raw δ\(^2\)H values of plant-derived compounds were offset corrected using PEF. The calculated δ\(^2\)H\(_{\text{me}}\) of plant extracted sugar and sugar derived from starch (Table 2) were normalized against the δ\(^2\)H\(_{\text{me}}\) of Finnish, Russian and Merck sucrose from the method implementation (Table 1), while the calculated δ\(^2\)H\(_{\text{me}}\) of plant extracted cellulose were normalized against the δ\(^2\)H values of the corresponding nitrocellulose of cellulose from spruce, Spain and Siberia.

2.6 | Calculation of non-exchangeable hydrogen isotope ratio (δ\(^2\)H\(_{\text{ne}}\))

According to Filot et al. (2006), the \% proportion of exchanged hydrogen during the equilibrations \(x_e\) (Equation (2) can be calculated as:

\[
x_e = \frac{\delta^{2}\text{H}_{\text{at1}} - \delta^{2}\text{H}_{\text{at2}}}{a_{w-\text{at}}(\delta^{2}\text{H}_{\text{at1}} - \delta^{2}\text{H}_{\text{at2}})}
\]

where \(\delta^{2}\text{H}_{\text{at1}}\) and \(\delta^{2}\text{H}_{\text{at2}}\) are the δ\(^2\)H values of the two equilibrated samples, \(\delta^{2}\text{H}_{\text{at1}}\) and \(\delta^{2}\text{H}_{\text{at2}}\) are the δ\(^2\)H values of the two waters used, \(a_{w-\text{at}}\) is the fractionation factor of 1.082 for cellulose (Filot et al., 2006). While \(a_{w-\text{at}}\) needs to be adapted for different compounds and fractions with different functional groups (Schimmelmann, 1991), we consider \(a_{w-\text{at}}\) of cellulose to be transferable to other carbohydrates as they all have the exchangeable hydrogen on hydroxyl groups. The fractionation factor we use in our method lies also within the range proposed in other studies (Schimmelmann, Lewan, & Wintsch, 1999; Wassenaar & Hobson, 2000).
Table 1: Results of the hot water vapor equilibrations of cellulose, sugars and starch (including the sugars derived from digested starch) of different classes and origins (referenced against PEF)

Ref. material	δ²H₁ [‰]	SD₁	δ²H₂ [‰]	SD₂	Xₑ [%]	Xₑ.pot [%]	δ²Hₙₑ [-] [‰]	δ²Hₙᵣᵢᵦ [-] [‰]	Rep.
Cellulose									
Isonet	–57.1	1.1	–108.2	4.1	19.5	30.0	–42.2	–44.5	2.3
Beech	–57.7	1.2	–114.3	3.3	19.5	30.0	–49.7	–50.8	1.2
Spruce	–40.2	1.7	–96.3	3.3	19.4	30.0	–27.9	–30.7	2.7
Spain	–49.8	0.8	–114.1	3.7	22.1	30.0	–33.4	–27.7	N.A.
Siberia	–164.5	2.2	–224.0	1.7	20.5	30.0	–184.3	–184.9	–0.6
IAEA	–65.1	1.0	–126.0	2.8	21.0	30.0	–58.2	–57.3	–0.9
Merck	–63.5	1.0	–119.3	2.3	19.3	30.0	–56.9	–55.9	1.0
Fluka	–72.9	0.9	–120.3	3.0	16.4	30.0	–69.3	–50.5	1.8
Wei Ming	–67.0	1.8	–114.6	2.1	16.4	30.0	–62.3	–70.0	7.7
Sugar									
Finn. sucrose	–133.5	3.7	–239.1	1.3	36.4	36.4	–157.8	N.A.	N.A.
Russ. sucrose	–65.0	2.0	–169.7	2.2	36.1	36.4	–50.3	N.A.	N.A.
Merck sucrose	–107.5	3.2	–214.2	1.7	36.8	36.4	–117.0	N.A.	N.A.
Glucose	–31.3	2.2	–143.4	3.6	38.7	41.7	6.4	N.A.	N.A.
Fructose	–47.6	2.9	–155.3	3.9	37.1	41.7	–21.9	N.A.	N.A.
Raffinose	–16.4	1.6	–115.2	3.5	34.1	34.4	22.2	N.A.	N.A.
Trehalose	–91.4	2.1	–196.1	3.3	36.1	36.4	–91.5	N.A.	N.A.
Myo-Inositol	–91.5	3.7	–246.6	7.7	53.5	50.0	–91.8	N.A.	N.A.
Starch									
Maize	–32.9	1.2	–96.2	0.8	21.8	30.0	–16.6	–13.4	–3.1
Maize starch	–41.4	0.5	–132.7	1.8	31.5	41.7	–18.6	–13.4	–5.1
hydrolysed									
Rice	–71.6	2.0	–136.7	0.5	22.5	30.0	–65.9	–67.2	1.2
Rice starch	–76.2	1.1	–169.1	1.0	32.0	41.7	–69.2	–67.2	–0.0
hydrolysed									
Wheat	–58.4	2.1	–110.2	0.2	17.8	30.0	–51.3	–53.7	2.3
Wheat starch	–71.0	0.3	–162.9	0.2	31.7	41.7	–61.6	–53.7	–8.0
hydrolysed									
Potato	–127.1	1.8	–194.0	4.5	23.0	30.0	–137.9	–143.2	5.3
Potato starch	129.1	1.1	–221.8	3.7	32.0	41.7	–147.0	–143.2	–3.7

Note: The following variables are given: δ²H₁ and δ²H₂ are average δ²H values in ‰ of all replicates and repetitions (cellulose and sugars as three independent repetitions with each water, each time in triplicates; starch and digested starch as one measurement per water with three replicates) with e₁ representing the equilibration with water 1 and e₂ representing the equilibration with water 2, SD₁ and SD₂ are the standard deviations of all repetitions (= precision), Xₑ depicts the proportion of exchanged hydrogen during the equilibration in % [Equation (2)], Xₑ.pot is the potential maximum proportion of exchangeable hydrogen based on the proportion of oxygen-bound hydrogen during the equilibration in % [Equation (2)], δ²Hₙₑ represents the calculated δ²H of the non-exchangeable hydrogen in ‰ [Equation (3)], δ²Hₙᵣᵦ denotes the δ²H of the corresponding nitrated compound in ‰, δ²Hₒₑₙₑ – δ²Hₒₑᵦᵦ depicts the difference between δ²Hₒₑₙₑ and δ²Hₒₑᵦᵦ in ‰ (= accuracy), Rep. = reproducibility, given as standard deviation between the resulting δ²Hₒₑₙₑ of the three independent repetitions for cellulose and sugars in ‰, N.A. not available.
\[\delta^{2}H_{\text{ne}} \text{ can then be calculated with Equation (3) using one of the two equilibrations (in this example equilibration with Water 1 [\(\delta^{2}H_{\text{ne}}^{1} \) and \(\delta^{2}H_{\text{ne}}^{2} \))}:} \]

\[
\delta^{2}H_{\text{ne}} = \frac{\delta^{2}H_{\text{ne}}^{1} - x_{e} \cdot (\delta^{2}H_{\text{ne}}^{2} - 1000) - x_{e} \cdot (\delta^{2}H_{\text{ne}}^{1} - \delta^{2}H_{\text{ne}}^{2})}{1 - x_{e}} \\
\]

3 | RESULTS AND DISCUSSION

3.1 | A hot water vapor equilibration method for determining \(\delta^{2}H_{\text{ne}} \) of sugar, starch and cellulose

Our in-house implementation of the hot water vapor equilibration method for cellulose resulted in precise and accurate measurements of \(\delta^{2}H_{\text{ne}} \) values of cellulose (Table 1). \(\delta^{2}H_{\text{ne}} \) values of cellulose, ranging from \(-44.5\) to \(-70.0\)‰, were measured with high precision as indicated by the standard deviations \(SD_{e1} \) and \(SD_{e2} \) ranging between 0.9‰ and 4.1‰ for both equilibration waters. In addition, high accuracy was found, as indicated by a deviation of \(-1.0\) to \(+5.7\)‰ between the \(\delta^{2}H_{\text{ne}} \) value of the hot water vapor equilibration and the \(\delta^{2}H \) value of the corresponding cellulose nitrate (\(\delta^{2}H_{\text{ne}} \), \(\delta^{2}H_{\text{nitro}} \)) except for two of the commercial cellulose samples from Fluka and Wei Ming, with a deviation of \(-18.8\) and \(-7.7\)‰, respectively. For the samples with high accuracy, the calculated \(x_{e} \) ranged between 19.3 and 22.1% compared to a theoretical \(x_{e,\text{pot}} \) of 30%. These \(x_{e} \) values are comparable to those \(20.5 \pm 0.1\)% observed in the original implementation of the hot water vapor equilibration for cellulose (Sauer et al., 2009). For the two samples with low accuracy, \(x_{e} \) reached only 16.4%. The reason for the low \(x_{e} \) and the resulting low accuracy of the commercial cellulose from Fluka and the Wei Ming remains elusive. Tentatively, it could be explained by a different extraction method and purification of these cellulose samples, leading to different nanostructures (Jungnikl, Paris, Fratzl, & Burgert, 2007) or particle sizes, which in turn leads to different accessibility of water vapor to the cellulose molecule (Chami Khazraji & Robert, 2013). Nevertheless, the results show that the hot water vapor equilibration is suitable to determine \(\delta^{2}H_{\text{ne}} \) with high accuracy and precision if the principle of identical treatment (Werner & Brand, 2001) is applied, that is, all samples are prepared and measured in the same way. Besides, the calculated \(x_{e} \) values of the IAEA-CH-7 reference material without any \(H_{\text{ne}} \) were close to 0 throughout all measurements, denoting the absence of absorbed water on the surface of each compound, as well as the analytical reproducibility for all \(\delta^{2}H_{\text{ne}} \) values of cellulose, was high as indicated by a standard deviation of 0.8 to 1.9‰ for three repetitions.

The same method was also applied to analyse \(\delta^{2}H_{\text{ne}} \) of NSC (Table 1). \(\delta^{2}H_{\text{ne}} \) values of sugars of different classes, ranging from 6.4 to \(-157.8\)‰, were also measured with high precision as indicated by an SD ranging between 1.3 and 7.7‰ for both equilibration waters.
which is comparable to the precision of derivatization methods (Dunbar & Schmidt, 1984: 1.9‰; Augusti et al., 2008: 2 and 10‰; Abrahim et al., 2020: 0.4 and 3.6‰). As no nitrated sugars were available due to the safety problems with sugar nitration, we could not calculate the accuracy. We, however, can assume that the accuracies for sugars should be in a comparable range as those derived from digested starch (–8.0 and –2.0‰). The reproducibility of the results for all tested commercial sugars ranged between 4.0 and 8.6‰ for three repetitions. The \(x_e \) of the different sugars ranged between 34.1 and 53.5% and was thus similar or very close to \(x_{e, pot} \), which gives further confidence in the reliability of the method for sugars. The smaller deviation of \(x_e \) from \(x_{e, pot} \) for sugars than for cellulose might be explained by the dissolution of the sugars during the hot water vapor equilibration, leading to a breakdown of the crystal structure of the sugars. This might have facilitated a complete exchange of \(H_{ex} \) with the water vapor in sugars, that is, not feasible for cellulose (Sauer et al., 2009; Schimmelmann, 1991).

The \(\delta^2H_{ne} \) of equilibrated but undigested starch was close to the \(\delta^2H_{ne} \) of the nitrated starch, measured with a precision ranging between 0.2 to 4.5‰ and accuracy between −3.1 and +5.3‰. The \(x_e \) of the undigested starch was between 17.8 and 23.0%, and thus comparable to the results derived from cellulose. For digested starch, the precision ranged from 0.3 to 3.7‰ and the accuracy between −2.0 and −8.0‰. The \(x_e \) of the digested starch ranged between 31.5 and 32.0% and was thus lower than the measured \(x_e \) (38.7%) and \(x_{e, pot} \) of pure glucose (41.7%). This lower \(x_e \) of starch-derived sugar compared to glucose could be explained by incomplete digestion of the starch to glucose monomers, leading to a mixture of mono- and oligosaccharides.

Overall, our results show that sugars of different classes, as well as sugar derived from digested starch, can be measured with high precision, accuracy and reproducibility. On a daily routine, we were able to measure up to 66 NSC samples and 32 standards. This proves that a method is now a reliable tool that enables high-throughput analysis of \(\delta^2H_{ne} \) of NSC in plants or in other environmental or biological samples.

3.2 Application of the method for analysis of \(\delta^2H_{ne} \) in plant-derived compounds

The analyses of non-exchangeable hydrogen in sugar, starch and cellulose extracted from leaves of the plants grown in a climate chamber under controlled conditions showed strong differences (Figure 1).
Table 2). Generally, among all the plant species and photosynthesis pathway types, starch was the most δ^2H-depleted compound, followed by sugar, while cellulose was the most δ^2H-enriched compound. In C3 plants, all compounds were significantly different from each other and showed the strongest δ^2H-depletion of all photosynthetic types, with a mean δ^2H$_{se}$ of −121.7‰ for starch, −92.0‰ for sugar and −61.4‰ for cellulose. In C4 plants, mean δ^2H$_{se}$ values of −60.9‰ for starch were significantly lower compared to those of −32.5‰ and −16.5‰ for sugar and cellulose and thus reflect intermediate δ^2H$_{se}$ values compared to C3 and CAM plants. In CAM plants, only δ^2H$_{se}$ values of starch and cellulose differed significantly and showed the strongest 2H-enrichment of all photosynthetic types, with a mean δ^2H$_{se}$ of −10.2‰ for starch, 6.0‰ for sugar and 10.9‰ for cellulose. The comparison of the δ^2H$_{se}$ of the same compound between the photosynthetic types resulted in significant differences between C3 and C4 and between C3 and CAM plants. The difference in sugar and cellulose between C3 and CAM plants was only slightly significant and not significant for starch. Our results go along with studies on δ^2H$_{se}$ values of organic matter and cellulose, showing also a 2H-enrichment in C4 and CAM plants compared to C3 plants (Leaney, Osmond, Allison, & Ziegler, 1985; Sternberg, Deniro, & Ajie, 1984). While the observed variation in δ^2H$_{se}$ of NSC and cellulose among the photosynthetic pathways are unlikely to be explained solely by differences in leaf water 2H enrichment (Kahmen, Schefuß, & Sachse, 2013; Leaney et al., 1985), higher leaf water 2H values might partially contribute to higher δ^2H$_{se}$ of NSC and cellulose in CAM plants compared to C3 plants (Smith & Ziegler, 1990). Thus, δ^2H measurement of leaf water would be important to disentangle the photosynthetic 2H-fractionation from leaf water to leaf NSC and cellulose within and between the photosynthetic types. However, δ^2H$_{se}$ difference among photosynthetic pathways and compounds are likely explained by 2H-fractions in biochemical pathways, including the usage of cytoplasm derived malate as a proton source and glucose precursor in CAM and C4 plants (Yamori, Hikosaka, & Way, 2014; Zhou et al., 2018), which might overlay the signal of the strongly 2H-depleted NADPH produced via photosystem II (Luo, Steinberg, Suda, Kumazawa, & Mitsui, 1991). In summary, the analyses of δ^2H$_{se}$ in sugars, starch and cellulose might be used to generally distinguish plants with C3, C4 and CAM photosynthesis.

Above that, δ^2H$_{se}$ values in CAM plants may indicate if a facultative CAM plant performs C3 or C4 photosynthesis in the absence of water stress (Guralnick, Gilbert, Denio, & Antico, 2020; Winter, Garcia, & Holtum, 2008). The higher the contribution of C3 or C4 photosynthesis to a CAM plant’s total carbon dioxide fixation, the more depleted are the δ^2H$_{se}$ values of cellulose and NSC (Luo & Sternberg, 1991; Sternberg, Denio, & Johnson, 1984), thus indicating the absence of water stress. Among all the tested plant species, the orchid Phalaenopsis was the only species with a positive δ^2H$_{se}$ value in all compounds, and thus likely the only species with no or only a negligible amount of C3 photosynthesis in mature leaves. However, the observation that Phalaenopsis sugars are more 2H-enriched than cellulose in mature leaves could be explained by the presence of C4 photosynthesis in the developing leaves (Guo & Lee, 2006), leading to 2H-depleted cellulose during leaf formation. For the other two CAM species, the C3 or C4 photosynthesis contributed a higher fraction to the total carbon dioxide fixation due to the absence of water limitation and thus had lower δ^2H$_{se}$ values for NSC and cellulose.

The generally lower δ^2H$_{se}$ values of NSC compared to cellulose (Table 2) can be explained by the 2H-depletion during photosystem II NAPDH formation and the subsequent transfer of the 2H-depleted H during the reduction of glyceraldehyde-3-phosphate, continuous enzymatic 2H-exchange between carbohydrates and water and kinetic isotope effects during metabolic processes (Cormier et al., 2018; Cormier, Werner, Leuenberger, & Kahmen, 2019). Our results are supported by a previous study (Luo & Sternberg, 1991; Schleucher et al., 1999), showing that nitratated starch was more 2H-depleted than nitratated cellulose within the same autotrophic photosynthetic tissue, which can be interpreted as another proof for the reliability of the new method for δ^2H$_{se}$ values of NSC. The high variability in 2H-fractionation in the sequence from sugars to starch to cellulose (Table 2) between all tested species indicates high variability in common 2H-fractionation processes, which is also supported by recent studies (Cormier et al., 2018; Sanchez-Bragado et al., 2019). Thus, the variability in 2H-fractionation may find application in future plant physiological studies, investigating stress responses or short- and long-term carbon dynamics. We assume that δ^2H$_{se}$ of NSC are susceptible to diel or seasonal changes in environmental conditions such as temperature and light intensity due to their short turnover time (Fernandez et al., 2017; Gibon et al., 2004). The variability in 2H-fractionation between different species might also be important if multiple tree species are used during the establishment of tree-ring isotope chronologies in dendroclimatological studies (Arosio, Ziehmer-Wenz, Nicolussi, Schlüchter, & Leuenberger, 2020).

In conclusion, we show that a hot water vapor equilibration method originally developed for cellulose can be adapted for accurate, precise and reproducible analyses of δ^2H$_{se}$ in non-structural carbohydrates (NSC) such as sugar and starch. By applying the method for compounds from different plant species, we demonstrated that this analytical method can now be used to estimate 2H-fractionation among structural and NSC and to distinguish plant material from plants with different photosynthetic pathways. It should be noted that the method presented herein enables analysis of δ^2H$_{se}$ of bulk sugar and sugar derived from digested starch and is therefore not compound-specific nor position-specific. Yet, our δ^2H$_{se}$ method allows us to measure NSC samples in high-throughput and we thus expect that it will help to identify important 2H-fractionation processes. These findings could then eventually be studied in more detail with compound-specific methods (GC-IRMS [Abraham et al., 2020] or methods giving positional information [NMR [Ehlers et al., 2015]]. We therefore expect that the method will find widespread applications in plant physiological, hydrological, ecological and agricultural research to study NSC fluxes and plant performance, and the beverage and food industry, to distinguish between sugars of different origins, which could be applied to check if a certain product is altered by the addition of low-cost supplements. We also expect that the method can help to improve
mechanistic models for 2H distributions in organic material (Roden, Lin, & Ehleringer, 2000; Yakir & DeNiro, 1990). The method may further help, in combination with other hydrogen isotope proxies (e.g., fatty acids, n-alkanes or lignin methoxyl groups), researchers to better understand metabolic pathways and fluxes, shaping the hydrogen isotopic composition of plant material.

ACKNOWLEDGMENTS

We thank Patrick Flütsch at ETH Zurich for technical support, as well as Manuela Laski, Manuela Oettli, Oliver Rehmann and Neptun at WSL Birmensdorf for laboratory assistance. Our work was supported by the innovative project ‘HDoor2020’ at WSL, by the SNF Ambizione project ‘TreeCarbo’ (No. 197997, granted to M.L.L), the SNF-project ‘Isodrought’ (No. 182092, granted to MS), and by funding from the UK Biotechnology and Biological Sciences Research Council (received by M.-A.C). Open access funding provided by Lib4RI Library for the Research Institutes within the ETH Domain Eawag Empa PSI and WSL.

CONFLICT OF INTEREST

The authors declare no conflicts of interest.

DATA AVAILABILITY STATEMENT

The data that support the findings of this study are available from the corresponding author upon reasonable request.

ORCID

Philipp Schuler @ https://orcid.org/0000-0002-5711-2535
Marc-André Cormier @ https://orcid.org/0000-0001-7645-1375
Roland A. Werner @ https://orcid.org/0000-0002-4117-1346
Nina Buchmann @ https://orcid.org/0000-0003-0826-2980
Arthur Gessler @ https://orcid.org/0000-0002-1910-9589
Valentina Vitali @ https://orcid.org/0000-0002-3045-6178
Matthias Sauer @ https://orcid.org/0000-0002-3954-3534

REFERENCES

Abrahim, A., Cannavan, A., & Kelly, S. D. (2020). Stable isotope analysis of non-exchangeable hydrogen in carbohydrates derivatised with N-methyl-bis-trifluoroacetamide by gas chromatography-Chromium silic reduction/High temperature Conversion-isotope ratio mass spectrometry (GC-CrAg/HTC-IRMS). Food Chemistry, 318, 126413.
Alexander, W., & Mitchell, R. (1949). Rapid measurement of cellulose viscosity by nitration methods. Analytical Chemistry, 21(12), 1497–1500.
An, W., Liu, X., Leavitt, S. W., Xu, G., Zeng, X., Wang, W., ... Ren, J. (2014). Relative humidity history on the Batang-Litang Plateau of western China since 1755 reconstructed from tree-ring 18O and 13C. Climate Dynamics, 42, 2639–2654.
Anháuser, T., Hook, B. A., Halfar, J., Greule, M., & Keppler, F. (2018). Earliest Eocene cold period and polar amplification-Insights from 13C values of lignin methoxyl groups of mummified wood. Palaeoecography, Palaeoclimatology, Palaeoecology, 505, 326–336.
Arosio, T., Ziehmer, M. M., Nicolussi, K., Schlüchter, C., & Leuenberger, M. (2020). Alpine Holocene tree-ring dataset: Age-related trends in the stable isotopes of cellulose show species-specific patterns. Biogeosciences, 17(19), 4871–4882.
Arosio, T., Ziehmer-Wenz, M., Nicolussi, K., Schlüchter, C., & Leuenberger, M. (2020). Larch cellulose shows significantly depleted hydrogen isotope values with respect to evergreen conifers in contrast to oxygen and carbon isotopes. Frontiers in Earth Science, 8(579), 1–11.
Augusti, A., Betson, T. R., & Schleucher, J. (2008). Deriving correlated climate and physiological signals from deuterium isotope in tree rings. Chemical Geology, 252(1-2), 1–8.
Boettger, T., Haupt, M., Knilller, K., Weise, S. M., Waterhouse, J. S., Rinne, K. T., ... Schleser, G. H. (2007). Wood cellulose preparation methods and mass spectrometric analyses of 13C, 18O, and non-exchangeable 2H values in cellulose, sugar, and starch: An inter-laboratory comparison. Analytical Chemistry, 79(12), 4603–4612.
Cernusak, L. A., Barbour, M. M., Andrt, S. K., Cheesman, A. W., English, N. B., Feild, T. S., ... Farquhar, G. D. (2016). Stable isotopes in leaf water of terrestrial plants. Plant, Cell & Environment, 39(5), 1087–1102.
Chami Khazraji, A., & Robert, S. (2013). Interaction effects between cellulose and water in nanocrystalline and amorphous regions: A novel approach using molecular modeling. Journal of Nanomaterials, 2013, 409676.
Coplen, T. B. (2011). Guidelines and recommended terms for expression of stable-isotope-ratio and gas-ratio measurement results. Rapid Communications in Mass Spectrometry, 25(17), 2538–2560.
Cormier, M.-A., Werner, R. A., Leuenberger, M. C., & Kahmen, A. (2019). 2H-enrichment of cellulose and n-alkanes in heterotrophic plants. Oecologia, 189(2), 365–373.
Cormier, M.-A., Werner, R. A., Sauer, P. E., Gröcke, D. R., Leuenberger, M. C., Wieloch, T., ... Kahmen, A. (2018). 2H-fractionations during the biosynthesis of carbohydrates and lipids imprint a metabolic signal on the 18O values of plant organic compounds. New Phytologist, 218(2), 479–491.
DeNiro, M. J. (1981). The effects of different methods of preparing cellulose nitrate on the determination of the D/H ratios of non-exchangeable hydrogen of cellulose. Earth and Planetary Science Letters, 54(2), 177–185.
Dunbar, J., & Schmidt, H.-L. (1984). Measurement of the 2H/1H ratios of the carbon bond hydrogen atoms in sugars. Fresenius’ Zeitschrift für Analytische Chemie, 317(8), 853–857.
Dunbar, J., & Wilson, A. (1983). Oxygen and hydrogen isotopes in fruit and vegetable juices. Plant Physiology, 72(3), 725–727.
Ehlers, I., Augusti, A., Betson, T. R., Nilsson, M. B., Marshall, J. D., & Schleucher, J. (2015). Detecting long-term metabolic shifts using isotope: CO$_2$-driven suppression of photorespiration in C$_3$ plants over the 20th century. Proceedings of the National Academy of Sciences of the United States of America, 112(51), 15585–15590.
Epstein, S., Yapp, C. J., & Hall, J. H. (1976). The determination of the D/H ratio of non-exchangeable hydrogen in cellulose extracted from aquatic and land plants. Earth and Planetary Science Letters, 30(2), 241–251.
Estepe, M. F., & Hoering, T. C. (1981). Stable hydrogen isotope fractionations during autotrophic and mixotrophic growth of microalgae. Plant Physiology, 67(3), 474–477.
Fernandez, O., Ishihara, H., George, G. M., Mengin, V., Flis, A., Surnner, D., ... Stitt, M. (2017). Leaf starch turnover occurs in long days and in falling light at the end of the day. Plant Physiolog, 174(4), 2199–2212.
Filot, M. S., Leuenberger, M., Pazdur, A., & Boettger, T. (2006). Rapid online equilibration method to determine the D/H ratios of non-exchangeable hydrogen in cellulose. Rapid Communications in Mass Spectrometry, 20(22), 3337–3344.
Gaglioti, B. V., Mann, D. H., Woolier, M. J., Jones, B. M., Wiles, G. C., Groves, P., ... Reanier, R. E. (2017). Younger-Dryas cooling and sea-ice feedbacks were prominent features of the Pleistocene-Holocene transition in Arctic Alaska. Quaternary Science Reviews, 169, 330–343.
Gamarra, B., & Kahmen, A. (2015). Concentrations and 2H values of cuticular n-alkanes vary significantly among plant organs, species and habitats in grasses from an alpine and a temperate European grassland. Oecologia, 178(4), 981–998.
Gehrle, M., Gellmann, H., Richter, J., Werner, R., & Brand, W. (2004). Continuous flow 2H/1H and 18O/16O analysis of water samples with dual
inlet precision. *Rapid Communications in Mass Spectrometry*, 18(22), 2650–2660.

Gehre, M., Renpennings, J., Gilevska, T., Qi, H., Coplen, T., Meijer, H., ... Schimmelmann, A. (2015). On-line hydrogen-isotope measurements of organic samples using elemental chromium: An extension for high temperature elemental-analyzer techniques. *Analytical Chemistry*, 87(10), 5198–5205.

Gessler, A., Ferro, J. P., Hommel, R., Tredyke, K., Werner, R. A., & Monson, R. K. (2014). Stable isotopes in tree rings: Towards a mechanistic understanding of isotope fractionation and mixing processes from the leaves to the wood. *Tree Physiology*, 34(8), 796–818.

Gibson, Y., Blasing, O. E., Palacios-Rojas, N., Pankovic, D., Hendriks, J. H., Fisahn, J., & Stitt, M. (2004). Adjustment of diurnal starch turnover to short days: Depletion of sugar during the night leads to a temporary inhibition of carbohydrate utilization, accumulation of sugars and post-translational activation of ADP-glucose pyrophosphorylase in the following light period. *The Plant Journal*, 39(6), 847–862.

Gudasz, C., Soto, D. X., Sparrman, T., & Karlsson, J. (2020). A novel method to quantify exchangeable hydrogen fraction in organic matter. Paper presented at the EGU General Assembly Conference Abstracts.

Guo, W.-J., & Lee, N. (2006). Effect of leaf and plant age, and day/night temperature on net CO2 uptake in Phalaenopsis amabilis var. formosa. *The American Journal of Horticultural Science*, 131(3), 320–326.

Guralnick, L. J., Gilbert, K. E., Denio, D., & Antico, N. (2020). The development of crassulacean acid metabolism (CAM) photosynthesis in cotyledons of the C4 species, *Portulaca grandiflora* (*Portulacaceae*). *Plants*, 9(1), 55.

Hepp, J., Glaser, B., Juchelka, D., Mayr, C., Rozanski, K., Schäfer, I. K., ... Zech, M. (2019). Validation of a coupled δ2H-n-alkane-δ18O sugar palaeohygrography approach based on a climate chamber experiment. *Biogeosciences Discussions*, 1–30.

Hepp, J., Tuthorn, M., Zech, R., Mügler, I., Schlütz, F., Zech, W., & Zech, M. (2015). Reconstructing lake evaporation history and the isotopic composition of precipitation by a coupled δ2H-δ18O biomarker approach. *Journal of Hydrology*, 529, 622–631.

Jungniki, K., Paris, O., Fritzl, P., & Burgt, I. (2007). The implication of chemical extraction treatments on the cell wall nanostructure of softwood. *Cellulose*, 15(3), 407.

Kahmen, A., Schefuß, E., & Sachse, D. (2013). Leaf water deuterium enrichment shapes leaf n-alkane δD values of angiosperm plants I: Experimental evidence and mechanistic insights. *Geochimica et Cosmochimica Acta*, 111, 39–49.

Leaney, F., Osmond, C., Allison, G., & Ziegler, H. (1985). Hydrogen-isotope composition of leaf water in C3 and C4 plants: Its relationship to the composition of precipitation by a coupled δ2H biomarker approach. *Journal of Hydrology*, 529, 622–631.

Lehnert, K., Paris, O., Fritzl, P., & Burgt, I. (2007). The implication of chemical extraction treatments on the cell wall nanostructure of softwood. *Cellulose*, 15(3), 407.

Kahmen, A., Schefuß, E., & Sachse, D. (2013). Leaf water deuterium enrichment shapes leaf n-alkane δD values of angiosperm plants I: Experimental evidence and mechanistic insights. *Geochimica et Cosmochimica Acta*, 111, 39–49.

Leaney, F., Osmond, C., Allison, G., & Ziegler, H. (1985). Hydrogen-isotope composition of leaf water in C3 and C4 plants: Its relationship to the composition of precipitation by a coupled δ2H biomarker approach. *Journal of Hydrology*, 529, 622–631.

Lehnert, K., Paris, O., Fritzl, P., & Burgt, I. (2007). The implication of chemical extraction treatments on the cell wall nanostructure of softwood. *Cellulose*, 15(3), 407.

Kahmen, A., Schefuß, E., & Sachse, D. (2013). Leaf water deuterium enrichment shapes leaf n-alkane δD values of angiosperm plants I: Experimental evidence and mechanistic insights. *Geochimica et Cosmochimica Acta*, 111, 39–49.

Leaney, F., Osmond, C., Allison, G., & Ziegler, H. (1985). Hydrogen-isotope composition of leaf water in C3 and C4 plants: Its relationship to the composition of precipitation by a coupled δ2H biomarker approach. *Journal of Hydrology*, 529, 622–631.

Lehnert, K., Paris, O., Fritzl, P., & Burgt, I. (2007). The implication of chemical extraction treatments on the cell wall nanostructure of softwood. *Cellulose*, 15(3), 407.

Kahmen, A., Schefuß, E., & Sachse, D. (2013). Leaf water deuterium enrichment shapes leaf n-alkane δD values of angiosperm plants I: Experimental evidence and mechanistic insights. *Geochimica et Cosmochimica Acta*, 111, 39–49.

Leaney, F., Osmond, C., Allison, G., & Ziegler, H. (1985). Hydrogen-isotope composition of leaf water in C3 and C4 plants: Its relationship to the composition of precipitation by a coupled δ2H biomarker approach. *Journal of Hydrology*, 529, 622–631.
source rocks containing kerogen types I, II, IIS, and III. Geochimica et Cosmochimica Acta, 63(22), 3751–3766.

Schimmelmann, A., Qi, H., Coplen, T. B., Brand, W. A., Fong, J., Meier-Augenstein, W., ... Werner, R. A. (2016). Organic reference materials for hydrogen, carbon, and nitrogen stable isotope-ratio measurements: Caffeines, n-alkanes, fatty acid methyl esters, glycines, l-valines, polyethylene, and oils. Analytical Chemistry, 88(8), 4294–4302.

Schleucher, J., Vanderveer, P., Markley, J. L., & Sharkey, T. D. (1999). Intramolecular deuterium distributions reveal disequilibrium of chloroplast phosphoglucone isomerase. Plant, Cell & Environment, 22(5), 525–533.

Schmidt, H.-L., Werner, R. A., & Eisenreich, W. (2003). Systematics of δD patterns in natural compounds and its importance for the elucidation of biosynthetic pathways. Phytochemistry Reviews, 2(1), 61–85.

Sternberg, L., Deniro, M. J., & Ajie, H. (1984). Isotope ratios of cellulose from plants having different photosynthetic pathways. Plant Physiology, 74(3), 557–561.

Sternberg, L., Deniro, M. J., & Ajie, H. (1984). Stable hydrogen isotope ratios of saponifiable lipids and cellulose nitrate from CAM, C3, and C4 plants. Phytochemistry, 23(11), 2475–2477.

Tippie, B. J., & Ehleringer, J. R. (2018). Distinctions in heterotrophic and autotrophic-based metabolism as recorded in the hydrogen and carbon isotope ratios of normal alkanes. Oecologia, 187(4), 1053–1075.

Wanek, W., Heintel, S., & Richter, A. (2001). Preparation of starch and other carbon fractions from higher plant leaves for stable carbon isotope analysis. Rapid Communications in Mass Spectrometry, 15(14), 1136–1140.

Wassenaar, L. I., & Hobson, K. A. (2000). Improved method for determining the stable-hydrogen isotopic composition (δD) of complex organic materials of environmental interest. Environmental Science & Technology, 34(11), 2354–2360.

Werner, R. A., & Brand, W. A. (2001). Referencing strategies and techniques in stable isotope ratio analysis. Rapid Communications in Mass Spectrometry, 15(7), 501–519.

West, A. G., Patrickson, S. J., & Ehleringer, J. R. (2006). Water extraction times for plant and soil materials used in stable isotope analysis. Rapid Communications in Mass Spectrometry: An International Journal Devoted to the Rapid Dissemination of Up-to-the-Minute Research in Mass Spectrometry, 20(8), 1317–1321.

Winter, K., Garcia, M., & Holtum, J. A. (2008). On the nature of facultative and constitutive CAM: Environmental and developmental control of CAM expression during early growth of Clusia, Kalanchoe, and Opuntia. Journal of Experimental Botany, 59(7), 1829–1840.

Xia, Z., Zheng, Y., Stelling, J. M., Loisel, J., Huang, Y., & Yu, Z. (2020). Environmental controls on the carbon and water (H and O) isotopes in peatland Sphagnum mosses. Geochimica et Cosmochimica Acta, 277, 265–284.

Yakir, D., & DeNiro, M. J. (1990). Oxygen and hydrogen isotope fractionation during cellulose metabolism in Lemma gibba L. Plant Physiology, 93(1), 325–332.

Yamori, W., Hikosaka, K., & Way, D. A. (2014). Temperature response of photosynthesis in C3, C4, and CAM plants: Temperature acclimation and temperature adaptation. Photosynthesis Research, 119(1-2), 101–117.

Zhang, B. L., Quemerais, B., Martin, M. L., Martin, G. J., & Williams, J. M. (1994). Determination of the natural deuterium distribution in glucose from plants having different photosynthetic pathways. Phytochemical Analysis, 5(3), 105–110.

Zhou, Y., Zhang, B., Stuart-Williams, H., Grice, K., Hocart, C. H., Gessler, A., ... Farquhar, G. D. (2018). On the contributions of photorespiration and compartmentation to the contrasting intramolecular δH profiles of C3 and C4 plant sugars. Phytochemistry, 145, 197–206.

Zhu, Z., Yin, X., Song, X., Wang, B., Ma, R., Zhao, Y., ... Zhou, Y. (2020). Leaf transition from heterotrophy to autotrophy is recorded in the intraleaf C, H and O isotope patterns of leaf organic matter. Rapid Communications in Mass Spectrometry, 34(19), e8840.

SUPPORTING INFORMATION

Additional supporting information may be found in the online version of the article at the publisher’s website.

How to cite this article: Schuler, P., Cormier, M.-A., Werner, R. A., Buchmann, N., Gessler, A., Vitali, V., Saurer, M., & Lehmann, M. M. (2022). A high-temperature water vapor equilibration method to determine non-exchangeable hydrogen isotope ratios of sugar, starch and cellulose. Plant, Cell & Environment, 45, 12–22. https://doi.org/10.1111/pce.14193