Field Induced Chiral Soliton Phase in the Kitaev Spin Chain

Erik S. Sørensen,1, ⋆ Jacob Gordon,2 Jonathon Riddell,1 Tianyi Wang,2 and Hae-Young Kee2,3, †
1Department of Physics & Astronomy, McMaster University, Hamilton ON L8S 4M1, Canada.
2Department of Physics, University of Toronto, Ontario M5S 1A7, Canada.
3Canadian Institute for Advanced Research, CIFAR Program in Quantum Materials, Toronto, ON M5G 1M1, Canada
(Dated: September 15, 2022)

The bond-dependent Ising interaction present in the Kitaev model has attracted considerable attention. The appearance of an unexpected intermediate phase under a magnetic field is particularly intriguing, and one may wonder if a similar phase occurs in the Kitaev spin chain with alternating x- and y-bond Ising interactions. Previous studies have focused on a transverse field, h_y, and reported a direct transition to the polarized state. Here, we investigate phases with arbitrary angle of two longitudinal fields, h_x and h_y. For a magnetic field applied along the diagonal, $h_x = h_y$, the chain remains gapless up to a critical field $h_{x,y}^{c1}$. Surprisingly, above $h_{x,y}^{c1}$ it enters an unusual intermediate phase before reaching the polarized state at h_x^{c2}. This phase is characterized by a staggered vector chirality and for periodic boundary conditions, a two-fold degeneracy with a finite gap. For open boundary systems the ground-state exhibits a single soliton, lowering the energy, and gapless excitations. However, the corresponding anti-soliton raises the energy sufficiently that a gap appears for soliton and anti-soliton pairs in periodic systems. An intuitive variational picture is developed describing the soliton phase.

Introduction: The Kitaev model, characterized by the bond-dependent Ising spin interaction in the honeycomb lattice [1], has recently generated considerable interest, as it offers a rare quantum spin liquid as an exact ground-state. Among several exotic phenomena discussed in relation to the extended Kitaev model [2], the proposed field-induced $U(1)$ spin liquid in the antiferromagnetic (AFM) Kitaev model under a magnetic field is especially fascinating [3–5]. While the mechanism of the $U(1)$ spin liquid is still missing, a magnetically disordered phase featuring a staggered scalar chirality has been found in the quasi-one-dimensional AFM Kitaev ladder under a [111] magnetic field [6]. The relation between these phases, if any, is at present not clear and a detailed understanding of the field dependent phase diagram as the two-dimensional limit is approached, starting from the purely one-dimensional (1D) Kitaev spin chain, would clearly be desirable. This then raises the question if any non-trivial phases exists for the Kitaev spin chain in a magnetic field.

The 1D Kitaev $s=\frac{1}{2}$ spin chain, has been investigated and shown to map to a free fermion model [7–11]. With the Kitaev chain defined in terms of x- and y-bond Ising interactions, it has been shown that under a transverse magnetic field h_x, the model directly enters the polarized state without any phase transition [8]. In fact, so far no intermediate phase in an applied field has been reported for the Kitaev spin chain. One may then wonder if the Kitaev spin chain exhibits any intermediate phase under a magnetic field like the ladder and C_3 symmetric honeycomb lattice mentioned above. Here we address this question, and report an unusual intermediate chiral phase possessing magnetic solitons in the AFM Kitaev spin chain under a magnetic field close to the $h_x \sim h_y$. This phase is absent in the ferromagnetic (FM) Kitaev spin chain.

The $s=\frac{1}{2}$ Kitaev spin chain is described by the Hamiltonian:

$$\mathcal{H} = K \sum_j \left(S^{x}_{2j+1} S^{x}_{2j+2} + S^{y}_{2j+2} S^{y}_{2j+3} \right) - \sum \mathbf{h} \cdot \mathbf{S} \quad (1)$$

where we set $\hbar = \mu_B = 1$ and consider the AF model with $K=1$ and a parameterization of the field term as $h = h(\cos \phi_{xy} \cos \theta_z, \sin \phi_{xy} \cos \theta_z, \sin \theta_z)$. We refer to the coupling $K S^x S^x$ as an x-bond (\circlearrowleft) and $K S^y S^y$ as a y-bond (\circlearrowright). Below, we determine the phase diagram of Eq. (1) in a field using Lanczos exact diagonalization (ED) techniques in combination with DMRG and iDMRG [12–15] methods typically performed with a bond dimension larger than 1,000 and a $\epsilon < 10^{-10}$. Subsequently, we describe our variational cal-

FIG. 1. (a) The phase diagram in the (h_x, h_y) plane from ED, $N=24$ (solid blue points), iDMRG (solid red points). The soliton phase is marked by ‘B’. Open circles indicate cross-over observed in ED due to incommensurability effects. (b) iDMRG results for $\chi_{\phi_{xy}}^\circlearrowright$ at $|h| = 0.6$ versus ϕ_{xy}. (c) X^\circlearrowright versus h_{xy} at a field angle to 45° from iDMRG (orange points) and the bipartite entanglement entropy S (blue line).
culation valid in the chiral soliton phase.

Phase Diagram: In the presence of a field in the z-direction the Kitaev chain, Eq. (1) is exactly solvable and it is known that the system immediately enters the polarized state (PS) [8] directly. The integrability is lost when the field is applied in the x- or equivalently the y-direction and the situation is less clear. We have therefore studied the correlation functions $C(r)=\langle S_i^x S_{i+r}^x \rangle$ for small fields in the x-direction. For $h_x=0$ a power-law is found, $C(r)\sim r^{-0.25(1)}$, as shown in [16], however, for any non-zero h_x an exponential decay is observed with a resulting finite gap [16]. The polarized state is then entered directly for any non-zero h_x and by symmetry for any non-zero h_y.

Next we study the phase diagram for fields in the entire x-y plane, Fig. 1(a). Although difficult to establish numerically, our results indicate that for $\phi_{xy}=45^\circ$ the Kitaev chain remain gapless up to a critical field, $h_{xy}^{c_1}=0.511K$ where ν a new unexpected phase is entered, marked by ‘B’. We determine the phase boundary for this phase by studying the energy susceptibility $\chi_{\phi_{xy}}=\partial^2 \epsilon_0/\partial \phi_{xy}^2$ which scales as $N^{2/\nu-(d+z)}$ at a quantum critical point [17]. Here, ϵ_0 is the energy per site and ν, z the correlation and dynamical exponents. The solid blue points denote results from $N=24$ ED where $\chi_{\phi_{xy}}$ is maximal. The position of these peaks are confirmed by iDMRG (solid red points) as illustrated in the inset, Fig. 1(b). The open circles denote crossover due to incommensurability effects where the position of the ED peak cannot be reproduced with iDMRG and is strongly finite-size dependent. The phase extends out of the x-y plane to non-zero θ_z[16]. At a 45° angle another quantum critical point is observed at the critical field $h_{xy}^{c_2}=0.726K$ where the chain transitions from the soliton phase to the polarized state.

The gapless phase, extending from zero field to $h_{xy}^{c_1}$ at a 45° angle, is a critical line. For $\phi_{xy} \neq 45^\circ$, or $\theta_z \neq 0$, a gap opens up and the chain enters the PS phase. The B phase is characterized by a non-zero staggered vector chirality, χ^α:

$$\chi^\alpha = (-1)^i \langle \mathbf{S}_i \times \mathbf{S}_{j+1} \rangle. \quad (2)$$

While $\chi^{x,y}=0$ in the B phase $\chi^z \neq 0$ as shown in Fig. 1(c). In the context of of the anisotropic J_1-J_2 model with $J_1 < 0$, $J_2 > 0$ [18–20] phases with non-zero χ^x have been found and recently observed in the $s=\frac{1}{2}$ chain LiCuVO$_4$ [21].

To understand the nature of the unexpected B phase we focus on the spectrum of excitations. Using ED for chain sizes ranging from $N=12-36$ at $h_{xy}=0.7, \phi_{xy}=45^\circ, \theta_z=0^\circ$ results for the gap to the 10 lowest states are shown in Fig. 2(a) for PBC (orange points) and Fig. 2(b) for OBC (blue points). For PBC there are two almost degenerate states that become degenerate as $N \to \infty$ below a well defined but small gap of $\Delta_{PBC}=0.02962K$. For PBC we determine the momentum of the lowest excited state above the 2 degenerate ground-states to be at $k=0$. For OBC the spectrum is more intriguing. As seen in Fig. 2(b) the spectrum evolves smoothly with N for both even and odd N. While it is possible to identify Δ_{PBC} in the spectrum for OBC an increasing number of states appear below this gap, quickly approaching the ground-state energy. Counter-intuitively, as shown in Fig. 2(c) the ground-state energy is always lower for OBC as compared to PBC for

FIG. 2. Energy gap Δ to the first 10 energy levels above the ground-state (not shown) versus $1/N$ at $h_{xy} = 0.7$. (a) ED results with PBC for even $N = 12–36$ (orange points). Note the twice degenerate ground-state below a well defined gap. The dashed line indicates $\Delta_{PBC} = 0.02962K$. Two soliton variational results (red points). (b) ED results with OBC for $N = 12 – 36$ (blue points). Variational estimates for the lowest gaps in the space of single defects (green lines) and with $\{0, 1, 2\}$ defects (red points). (c) ED results for the ground-state energy versus N at $h_{xy}=0.7$, for OBC (blue) and PBC (red).

FIG. 3. (a)-(d) Finite chain DMRG results for the on-site magnetization $\langle S_i^\alpha \rangle$, $\langle S_i^\alpha \rangle$ versus position, i, for a $N = 384$ site chain with OBC at different field strengths. (a) $h_{xy} = 0.51 < h_{c1}$, (b) $h_{xy} = 0.55$ (c) $h_{xy} = 0.70$ (d) $h_{xy} = 0.75 > h_{xy}^{c_2}$. Only odd sites are shown.
any N, despite the missing bond. At $h_{xy}=0.7$ we determine $\Delta_{O-PBC} = -0.2121K$. Open boundary conditions therefore allow the chain to significantly lower the energy. The proliferation of states below the gap for OBC is an unusual feature reflecting excited states of the soliton, as we discuss below.

The ground-state magnetization (S_{xy}^\pm) is very unique in the B phase for OBC. As seen in Fig. 3(b)-(c), (S_{xy}^\pm) (shown only for odd sites) alternates between x- and y-directions with a single twist, a topological soliton, occurring in the middle of the chain. For $h_{xy} < h_{xy}^c$, the onsite magnetization is much more complicated and 5 crossings are present for $N = 384$. In the PS phase for $h_{xy} > h_{xy}^c$ the spins simply align with the field and the soliton is absent. A useful way to visualize the solitons is to plot the energy density for each bond e_i. In the bulk this is just a constant, $e_0^{X,Y}$, but the presence of the soliton lowers e_i below this value, locally. This is shown in Fig. 4(b) where $(e_i) - e_0^{X,Y}$ is plotted versus i for $h_{xy} = 0.6$, showing a sharply localized soliton. If we now evaluate:

$$\Delta_b = \sum_i ((e_i) - e_0^{X,Y}),$$

we can determine by how much the soliton has lowered the total energy which we denote the soliton mass, Δ_b. Results for Δ_b calculated this way are shown in Fig. 4(a) throughout the soliton phase. While closely related, Δ_{O-PBC} includes boundary effects from the missing bond with OBC.

Variational Picture, PBC: As shown in Fig. 1(c) the entanglement entropy S is relatively low in the soliton phase. In fact, for PBC and N even the two-fold degeneracy noted in the ground-state subspace in Fig. 2(a) is closely described by two (zero-defect) product states of the following form:

$$|X'Y'\rangle = |x'y'x'\ldots\rangle, \quad |Y'X'\rangle = |y'x'y'\ldots\rangle,$$

where $|y'\rangle = (e^{-i(\pi/2+c)}, 1)/\sqrt{2}$, $|x'\rangle = (e^{ic}, 1)/\sqrt{2}$. The $|x'\rangle$ and $|y'\rangle$ are eigen-states of $\vec{S} \cdot \vec{n}_i$ where the unit vectors $\vec{n}_{x'}, \vec{n}_{y'}$ are close to the $x-$ and $y-$ direction but crucially with an angle between them exceeding $\pi/2$, by $2c$. The usual $|x\rangle$ and $|y\rangle$ states are obtained by setting $c = 0$. The optimal value for c depends on the field h_{xy} and is determined in [16] to be: $c = \cos^{-1}(h_{xy}/K) - \pi/4$. The solitons shown in Fig. 3(b)-(c) for OBC then interpolate between these two degenerate states as is typical for topological solitons [22]. Although $\langle X'Y'|H|Y'X'\rangle$ is non-zero for very short chains this coupling quickly goes to zero with N.

OBC, any N: We now focus on OBC irrespective of N, and we focus exclusively on the case where the chain starts with a $S_x^1S_x^2$ term (a), in which case the solitons in Fig. 3 transition from the $y'x'$ to the $x'y'$ pattern. Within the soliton phase the lowest energy subspace is well described by linear combinations of (single defect) states of the form:

$$|\psi_B(i)\rangle = |y' - y' - x' - x' - y - y' - y' - x - x' - y'\rangle,$$

$$|\psi_B(i)\rangle = |y' - y' - x' - y' - y' - y' - y' - x' - x' - y'\rangle,$$

transiting from the $y'x'$ to the $x'y'$ pattern at bond i. Note that, even though $x' - x'$ have the spins aligned ferromagnetically along x, it costs little energy since it occurs on a y-bond. Similarly, the spins at $y' - y'$ are aligned ferromagnetically along y, but on a x-bond. Analogously, we can define ‘anti’-defects of the form

$$|\psi_B(i)\rangle = |y' - y' - x' - y' - y' - y' - y' - x' - x' - y'\rangle,$$

$$|\psi_B(i)\rangle = |y' - y' - x' - y' - y' - y' - y' - x' - x' - y'\rangle,$$

in this case transitioning from the $x'y'$ to the $y'x'$ pattern at bond i. Contrary to the defects, ψ_B, these anti-defects are relatively costly since $y' - y'$ now occurs on a y-bond and $x' - x'$ on a x-bond.

The states ψ_B and ψ_B are not eigenstates of the Hamiltonian [16] but we expect linear combinations of the single defect $|\psi_B(i)\rangle$ to realistically define the low-energy sub-space of the system in a variational manner. We therefore define the (single defect) soliton states:

$$|\Psi_b\rangle = \sum_k \alpha_k |\psi_B(k)\rangle,$$

Similarly, we can define $|\Psi_B\rangle = \sum |\psi_B(l)\rangle$ but this leads to high energy states. It is important to note that the states $|\psi_B(l)\rangle$, while normalized, are not orthogonal. Due to the non-orthogonality, determining the optimal values for the coefficients α_k in $|\Psi_b\rangle$ in Eq. (7) from a variational calculation therefore defines a generalized eigenvalue problem in terms of the matrices $H_{kl} = \langle \psi_B(k) | H | \psi_B(l) \rangle$ and $S_{kl} = \langle \psi_B(k) | \psi_B(l) \rangle$, with similar definitions for the state Ψ_B. The generalized eigenvalue problem can be solved using standard methods and the optimal Ψ_b and Ψ_B determined.

Variational Results: Solving the generalized eigenvalue problem yields a series of states for Ψ_b and Ψ_B. With OBC
we expect the lowest Ψ_0 state to be a good approximation to the ground-state. This is illustrated in Fig. 5(a),(c) where the variational results for $\langle S_{x,y} \rangle_{\Psi_0}$ are compared to finite chain DMRG results for a system with $N=120$ at $h_{xy}=0.7$. We find $E_{DMRG}=-29.9169$ while $E_{\Psi_0}=-29.9019$ less than 0.05% higher. For comparison, the defect free $Y'X'$ state has an energy $E_{Y'X'}=-29.6975$ significantly higher and the soliton has therefore lowered the energy with respect to the $Y'X'$ state. However, for the ‘anti’-soliton state Ψ_B shown in Fig. 5(b),(d) we instead find $E_{\Psi_B}=-29.4520$ above the $Y'X'$ state. Using the defect free $Y'X'$ state as reference we can now estimate the energy difference (mass) for the two states at $h_{xy}=0.7$: $\Delta_0=-0.2044K$ compared to $-0.2085K$ from DMRG in Fig. 4(a) and $\Delta_0=0.2455K$ which cannot be determined from DMRG nor ED. A similar asymmetry has been noted in the Rice-Mele model [23] and the nonsymmorphic symmety [24] present also in the Kitaev spin chain could be crucial.

For PBC the ground-state in the soliton phase is well described by the degenerate and defect-free $Y'X'$ and $X'Y'$ states. While for OBC the number of solitons, n_{sol}, can be both even and odd, with PBC it is not possible to consider a single soliton, they have to come in a bB pair or multiple pairs, $0,bB,bBbB,\ldots$ with n_{sol} even. This explains the gap seen in Fig 2(a) since to a first approximation we expect that

$$\Delta_{\text{PBC}} = \Delta^b + \Delta^B,$$

which would predict a gap for PBC of 0.0411K from the variational results. For OBC the gap to the lowest $bBbB$ state from the b ground-state should then also be equal to Δ_{PBC} which agrees with the results in Fig 2(b). We then extend the variational calculations to two-defect bB states by considering:

$$|\psi_{bB}(i,j)\rangle = |y' \rangle - |x' \rangle - |y' \rangle - |x' \rangle - |y'' \rangle - |x'' \rangle,$$

and defining two-soliton states of the form:

$$|\Psi_{bB}\rangle = \sum_{i,j} a_{i,j} |\psi_{bB}(i,j)\rangle.$$ (9)

If we include the $Y'X'$ and $X'Y'$ states in the variational calculation, extending the subspace to $\{0,2\}$ defects, we find at $h_{xy}=0.7$ a gap of $\Delta_{\text{PBC}}=0.04289K$ (red circles in Fig. 2(a)), in qualitative agreement with the ED result of $\Delta_{\text{PBC}}=0.09262K$ and close to $\Delta_0+\Delta_B$. We expect the inclusion of multiple pairs of defects in the variational subspace to further improve the agreement. We can now intuitively understand the transition at h_{xy}^c. At this point $\Delta_0=-\Delta_B$ and the cost of a bB pair becomes zero. As is clearly seen in Fig. 3(a) a number of bB pairs then condense into the single soliton ground-state in this case creating a $bBbBb$ state. As the field is increased the solitons then effectively evaporate. On the other hand, the transition at h_{xy}^e occurs due to the closing of the gap to spin-wave excitations.

The solution of the generalized eigenvalue problem leads not only to the variational ground-state Ψ_0 but also a series of excitations of these states, Ψ_s, which are in good agreement with results for excited states obtained from DMRG [16]. For OBC, these states correspond to static excitations of the single soliton present in the system [25]. As the system size is increased the excited states gradually fill in the gap in the spectrum. The variationally determined gaps obtained from the single defect states, Eq. (5) are shown as the green lines in Fig. 2(b). For short chains with OBC we can extend the variational subspace in Eq. (7) to include $\{0,1,2\}$ defects with the resulting gaps shown as red circles in Fig. 2(b) significantly improving the agreement with the ED results for short chains.

Discussion: In parallel with studies of solitons in conduct- ing polymers [26], magnetic solitons have been studied since the late seventies [27–32] with signatures observed experimentally [33] in the 1D easy-plane ferromagnetic chain system CsNiF$_3$ as well as the 1D AF materials TMCC [34, 35], CsCoBr$_3$ [36] and CsMnBr$_3$ [37] among others. The excitations of interest here are topological solitons linking distinguishable ground-states [22]. Building on this picture, domain walls between degenerate ground-states in dimerized spin chains, such as the $s=\frac{1}{2}, J_1-J_2$ model, have been viewed as solitons [38–43] and observed experimentally in BiCu$_2$PO$_6$ above a critical field [44]. Comparing periodic (PBC) and open (OBC) boundary conditions, a positive mass, Δ_\ast, has then been defined [41–43] for both the soliton and anti-soliton in the dimerized phase with well defined spin, $s=\frac{1}{2}$.

In contrast, for the Kitaev chain we find here that the soliton mass, Δ_0 is negative, lowering the energy in the soliton phase, while the anti-soliton has positive mass, raising the energy by Δ_B, more than compensating the soliton. In periodic systems,
the low lying excitation, a pair of soliton and anti-soliton then has a small gap given by the difference between ΔI_2 and ΔI_3. At $h^{(1)}_{\text{gap}}$, the two masses cancels out, $\Delta I = -\Delta I_2$. Furthermore, the soliton and anti-soliton do not have well defined spin.

Several important tasks remain to be addressed in future work. One is finding candidate Kitaev spin chain systems. Recently CoNb$_2$O$_6$ was proposed as a twisted Kitaev chain [45]. However, the Kitaev interaction is FM and finding an AFM sister material would be of considerable interest. Preliminary results for the AFM twisted Kitaev chain show that the phase diagram is similar to the Kitaev chain considered here [16]. Furthermore, the presence of solitons should have important implications for thermodynamic properties such as the specific heat measurements and the presence of solitons should be detectable in scattering experiments. Another task is the connection, if any, of the soliton phase to the puzzling intermediate phase found in the two-dimensional AFM Kitaev model under the field. Finally, it would be interesting to study the dynamics of the solitons in a non-equilibrium setting.

This research was supported by NSERC and CIFAR. Computations were performed in part on the GPC and Niagara supercomputers at the SciNet HPC Consortium. SciNet is funded by: the Canada Foundation for Innovation under the auspices of Compute Canada; the Government of Ontario; Ontario Research Fund - Research Excellence; and the University of Toronto. Computations were also performed in part by support provided by SHARCNET (www.sharcnet.ca) and Compute/Calcul Canada (www.computecanada.ca). Part of the numerical calculations were performed using the ITensor library [15].

1 sorensen@mcmaster.ca
2 hykee@physics.utoronto.ca

[1] A. Y. Kitaev, Anyons in an exactly solved model and beyond, Annals of Physics 321, 2 (2006).
[2] J. G. Rau, E. K.-H. Lee, and H.-Y. Kee, Generic spin model for the honeycomb iridates beyond the Kitaev limit, Phys. Rev. Lett. 112, 077204 (2014).
[3] C. Hickey and S. Trebst, Emergence of a field-driven u(1) spin liquid in the katev honeycomb model, Nature Communications 10, 530 (2019).
[4] H.-C. Jiang, C.-Y. Wang, B. Huang, and Y.-M. Lu, Field induced quantum spin liquid with spinon fermi surfaces in the Kitaev model (2018), arXiv:1809.08247.
[5] L. Zou and Y.-C. He, Field-induced qcd_3-chern-simons quantum criticalities in katev materials, Phys. Rev. Research 2, 013072 (2020).
[6] E. S. Sørensen, A. Catuneanu, J. S. Gordon, and H.-Y. Kee, Heart of entanglement: Chiral, nematic, and incommensurate phases in the katev-gamma ladder in a field, Phys. Rev. X 11, 011013 (2021).
[7] X.-Y. Feng, G.-M. Zhang, and T. Xiang, Topological characterization of quantum phase transitions in a spin-1/2 model, Phys. Rev. Lett. 98, 087204 (2007).
[8] K.-W. Sun and Q.-H. Chen, Quantum phase transition of the one-dimensional transverse-field compass model, Physical Review B 80, 174417 (2009).
[9] N. Wu and W.-L. You, Exact zero modes in a quantum compass chain under inhomogeneous transverse fields, Physical Review B 100, 085130 (2019), 1904.09729.
[10] W.-L. You, Y. Wang, T.-C. Yi, C. Zhang, and A. M. Oles, Quantum coherence in a compass chain under an alternating magnetic field, Physical Review B 97, 224420 (2018), 1806.03337.
[11] L. C. Wang and X. X. Yi, Geometric phase and quantum phase transition in the one-dimensional compass model, The European Physical Journal D 57, 281 (2010).
[12] S. R. White, Density matrix formulation for quantum renormalization groups, Phys. Rev. Lett. 69, 2863 (1992).
[13] I. P. McCulloch, Infinite size density matrix renormalization group, revisited, ArXiv.org arXiv:0804.2509 (2008).
[14] U. Schollwöck, The density-matrix-renormalization group in the age of matrix product states, Annals of Physics 326, 96 (2011), january 2011 Special Issue.
[15] M. Fishman, S. R. White, and E. M. Stoudenmire, The ITensor software library for tensor network calculations (2020), arXiv:2007.14822.
[16] See supplementary material.

[1] A. F. Albuquerque, F. Alet, C. Sire, and S. Capponi, Quantum critical scaling of fidelity susceptibility, Physical Review B 81, 064418 (2010).
[2] S. Furukawa, M. Sato, Y. Saiga, and S. Onoda, Quantum fluctuations of chirality in one-dimensional spin-1/2 multiferroics: Gapless dielectric response from phasons and chiral solitons, Journal of the Physical Society of Japan 77, 123712 (2008), https://doi.org/10.1143/IPSJ.77.123712.
[3] S. Furukawa, M. Sato, and S. Onoda, Chiral order and electromagnetic dynamics in one-dimensional multiferroic cuprates, Phys. Rev. Lett. 105, 257205 (2010).
[4] S. Furukawa, M. Sato, S. Onoda, and A. Furusaki, Ground-state phase diagram of a spin-$\frac{1}{2}$ frustrated ferromagnetic xxz chain: Haldane dimer phase and gapped/gapless chiral phases, Phys. Rev. B 86, 094417 (2012).
[5] C. P. Grams, D. Brüning, S. Kopatz, T. Lorenz, P. Becker, L. Bohatý, and J. Hemberger, Observation of chiral solitons in LiCuVO4, Communications Physics 5, 37 (2022).
[6] T. Dauxois and M. Peyrard, Physics of Solitons (Cambridge University Press, 2006).
[7] R. E. J. Allen, H. V. Gibbons, A. M. Sherlock, H. R. M. Stanley, and E. McCann, Nonsymmorphic chiral symmetry and solitons in the rice-mele model (2022).
[8] W. Yang, C. Xu, S. Xu, A. Nocera, and I. Affleck, Nonsymmorphic luttinger liquids in the generalized antiferromagnetic katev spin-1/2 chain (2022).
[9] R. Rajaraman, Solitons and Instations (North-Holland, 1987).
[10] A. J. Heeger, S. Kivelson, J. R. Schrieffer, and W. P. Su, Solitons in conducting polymers, Reviews of Modern Physics 60, 781 (1988).
[11] H. J. Mikeska, Solitons in a one-dimensional magnet with an easy plane, Journal of Physics C: Solid State Physics 11, L29 (1978).
[12] H. J. Mikeska, Non-linear dynamics of classical one-dimensional antiferromagnets, Journal of Physics C: Solid State Physics 13, 2913 (2000).
[13] H. C. Fogedby, Solitons and magnons in the classical Heisenberg chain, Journal of Physics A: Mathematical and General 13, 1467 (1980).
[14] H. C. Fogedby, The spectrum of the continuous isotropic quantum Heisenberg chain: quantum solitons as magnon bound states, Journal of Physics C: Solid State Physics 13, L195 (1980).
A. Kosevich, B. Ivanov, and A. Kovalev, Magnetic Solitons, *Physics Reports* **194**, 117 (1990).

H.-J. Mikeska and M. Steiner, Solitary excitations in one-dimensional magnets, *Advances in Physics* **40**, 191 (1991).

J. K. Kjems and M. Steiner, Evidence for Soliton Modes in the One-Dimensional Ferromagnet CsNiF3, *Physical Review Letters* **41**, 1137 (1978).

J. P. Boucher, F. Mezei, L. P. Regnault, and J. P. Renard, Diffusion of solitons in the antiferromagnetic chains of (CD3)4NMnCl3: A study by neutron spin echo, *Physical Review Letters* **55**, 1778 (1985).

L. P. Regnault, J. P. Boucher, J. Rossat-Mignod, J. P. Renard, J. Bouillot, and W. G. Stirling, A neutron investigation of the soliton regime in the one-dimensional planar antiferromagnet (cd14)2nmncl3, *Journal of Physics C: Solid State Physics* **15**, 1261 (1982).

W. J. L. Buyers, M. J. Hogan, R. L. Armstrong, and B. Briat, Solitons in the one-dimensional ising-like antiferromagnet CsCoBr3, *Phys. Rev. B* **33**, 1727 (1986).

B. D. Gaulin and M. F. Collins, Evidence for out-of-easy-plane solitons in CsMnBr3, *Canadian Journal of Physics* **63**, 1235 (1985), https://doi.org/10.1139/p85-202.

B. S. Shastry and B. Sutherland, Excitation spectrum of a dimerized next-neighbor antiferromagnetic chain, *Phys. Rev. Lett.* **47**, 964 (1981).

W. J. Caspers and W. Magnus, Some exact excited states in a linear antiferromagnetic spin system, *Phys. Lett. A* **88A**, 103 (1982).

W. J. Caspers, K. M. Emmett, and W. Magnus, The majumdar-ghosh chain. twofold ground state and elementary excitations, *J. Phys. A* **17**, 2687 (1984).

E. Sørensen, I. Affleck, D. Augier, and D. Poilblanc, Soliton approach to spin-peiierls antiferromagnets: Large-scale numerical results, *Phys. Rev. B* **58**, R14701 (1998).

E. S. Sørensen, M.-S. Chang, N. Laflorencie, and I. Affleck, Impurity entanglement entropy and the kondo screening cloud, *Journal of Statistical Mechanics: Theory and Experiment* **2007**, L01001 (2007).

E. S. Sørensen, M.-S. Chang, N. Laflorencie, and I. Affleck, Quantum impurity entanglement, *Journal of Statistical Mechanics: Theory and Experiment* **2007**, P08003 (2007).

F. Casola, T. Shiroka, A. Feiguin, S. Wang, M. S. Grbić, M. Horvatić, S. Krämer, S. Mukhopadhyay, K. Conder, C. Berthier, H.-R. Ott, H. M. Rønnow, C. Rüegg, and J. Mesot, Field-induced quantum soliton lattice in a frustrated two-leg spin-1/2 ladder, *Phys. Rev. Lett.* **110**, 187201 (2013).

C. M. Morris, N. Desai, J. Viirok, D. Huvonen, U. Nagel, T. Room, J. W. Krizan, R. J. Cava, T. M. McQueen, S. M. Kooihey, R. K. Kaul, and N. P. Armitage, Duality and domain wall dynamics in a twisted kitaev chain, *Nature Physics* **17**, 832 (2021).