Intravitreal conbercept for diabetic macular oedema: 2-year results from a randomised controlled trial and open-label extension study

Kun Liu,1,2 Hanying Wang,1,2 Wei He,3 Jian Ye,4 Yanping Song,5 Yusheng Wang,6,7 Xiaoling Liu,8 Zhifeng Wu,9 Shaojun Chen,10 Ke Fan,11 Yuling Liu,12 Feng Zhang,13,14 Zhiqing Li,15 Lin Liu,16 Junjun Zhang,17 Xuedong Zhang,18 Junjie Ye,19 Xiaoling Liang,20 Xiaoxin Li,21 Xiao Ke,22 Quan Wu,22 Jie Li,23 Shanshan Tao,23 Xinguo Wang,22 Philip Rosenfeld,24 Jeffrey S Heier,25 Peter Kaiser,26 Xun Xu1,2

ABSTRACT

Background To demonstrate the efficacy and safety of intravitreal injections of conbercept versus laser photocoagulation in the treatment of diabetic macular oedema (DME).

Methods A 12-month multicentre, randomised, double-masked, double-sham, parallel controlled, phase III trial (Sailing Study), followed by a 12-month open-label extension study. Patients with centretargeted DME were randomly assigned to receive either laser photocoagulation followed by pro re nata (PRN) sham intravitreal injections (laser/sham) or sham laser photocoagulation followed by PRN 0.5 mg conbercept intravitreal injections (sham/conbercept). Patients who entered the extension study received PRN conbercept treatment. The primary endpoint was the changes in best-corrected visual acuity (BCVA) from baseline.

Results A total of 248 eyes were included in the full analysis set and 157 eyes continued in the extension study. Significant improvement in mean change in BCVA from baseline to month 12 was observed in the sham/conbercept group (8.2±9.5 letters), whereas no improvement was observed in the laser/sham group (0.3±12.0 letters). Patients in the laser/sham group showed a marked improvement in BCVA after the switch to conbercept in the extension study, and there was no difference in BCVA between the two groups at the end of the extension study.

Conclusion The use of a conbercept PRN intravitreal injection regimen improved the BCVA of patients with DME, and its efficacy was better than that of laser photocoagulations, and the same efficacy was observed when the eyes treated with laser alone were switched to conbercept.

Trial registration number NCT02194634.

INTRODUCTION

Diabetic retinopathy and diabetic macular oedema (DME) are the most common causes of preventable blindness worldwide,1–3 and the worldwide prevalence of DME is 4.7%–10.1%.4,5 Retinal thickening and hard exudates that threaten or involve the centre of the macula are considered to have clinical significance.6,7

For decades, focal and grid laser photocoagulation has been the mainstay treatment to prevent vision loss. However, the intraocular administration of antivascular endothelial growth factor (VEGF) agents reduces DME without tissue damage and is more effective in improving vision.1–3 Due to its advantages, currently, anti-VEGF agents have become the gold standard for the treatment of DME.

VEGF has been shown to have a major role in promoting exudation and neovascularisation,8,9 and the inhibition of VEGF can stabilise or even reverse the retinal damage due to DME.10 Over the past two decades, anti-VEGF agents such as pegaptanib, bevacizumab, ranibizumab and aflibercept were approved for the treatment of ocular diseases that involve retinal neovascularisation and exudation, including DME.1,2,11–17

Conbercept (KH902; Chengdu Kanghong Biotech Co., China) is a recombinant fusion protein with key domains 2, 3 and 4 from VEGF receptors 1 and 2. It has a high affinity for all VEGF isoforms and for placental growth factor.18,19 In 2013, it was approved in China for the treatment of neovascular (wet) age-related macular degeneration.18 In addition, conbercept is approved for the treatment of choroidal neovascularisation secondary to pathological myopia. The objective of the Sailing Study was to compare the efficacy and safety of intravitreal conbercept injections versus laser for the treatment of DME. This report includes the 1-year results of the Sailing Study and the 1-year results of its extension study in which patients crossed over to conbercept therapy.

METHODS

Study design and patients

The Sailing Study was a multicentre, randomised, double-masked, parallel controlled, phase III trial (registered at ClinicalTrials.gov) conducted at 18 centres in China. An open-label extension study was conducted after patients completed the Sailing Study.

For each patient, only one eye was enrolled in the study. If both eyes of a subject met the inclusion criteria, the investigators determined the target eye from the medical perspective, with the eye with poorer vision selected in principle. The
The criteria for repeated conbercept treatments were (any of the following criteria satisfied): (1) CRT increased by at least 50 µm compared with the previous minimum value; (2) CRT of ≥300 µm; (3) cystoid degeneration of retina, subretinal fluid or pigment epithelial detachment in the macular region; (4) ETDRS BCVA was improved by at least five letters if compared with that during the previous visit; and (5) ETDRS BCVA declined by at least five letters if compared with the maximum number of letters previously, combining with CRT increase, in comparison with that when ETDRS BCVA is at its optimum level.

Other treatments forbidden from the study included (1) anti-VEGF drugs other than conbercept; (2) any other antiangiogenic drugs; (3) ocular or systemic steroids; (4) drugs with toxicity to the lens, retina or nerves; (5) anticoagulant or antiplatelet therapy, except for low-dose prophylactic use; and (6) treatments to the study eye with impact on the efficacy and safety assessments of the present study, such as panretinal photocoagulation, verteporfin photodynamic therapy, external beam radiotherapy, vitrectomy, transpupillary thermotherapy and macular surgery.

Starting at month 6, whether the patients needed rescue treatment was assessed monthly. If patients met either one of the criteria for rescue treatment: (1) ETDRS BCVA declined by at least 15 letters compared with the maximum number of letters previously and lowered to a degree below the baseline; or (2) ETDRS BCVA decreased to a level that at least 10 letters fewer than the baseline during visits of two consecutive months, and the investigators believed that the visual impairment was caused by the persistent or worsening oedema from the DME, then their sham designation was switched to active treatment in whatever group they were assigned.

During the extension study, patients in both groups received PRN conbercept treatment with monthly follow-up.

Assessment

The primary endpoint of the Sailing Study was the mean change in BCVA from baseline to month 12. Secondary endpoints included the change in CRT from baseline to month 12 and safety. Safety assessments included both ocular and non-ocular adverse events (AEs) and serious adverse events (SAEs). Other endpoints included changes in CRT, total macular volume (TMV), fluorescein angiographic leakage area, BCVA and the total score of 25-Item National Eye Institute Visual Function Questionnaire (NEI VFQ-25) from baseline to month 12, as well as the proportion of ≤5, 10 and 15 letters vision gain or loss from baseline to months 6 and 12.

The primary outcome of the extension study was the mean change in BCVA from month 12 to 24. Secondary outcomes included the long-term safety of conbercept, change in BCVA from month 12 to 24, change in CRT from month 12 to 24, change in TMV from month 12 to 24, change in leakage area from month 12 to 24 and the number of injections in the extension study.

Patients were followed up monthly for ophthalmological examinations, including ETDRS protocol BCVA, intraocular pressure, slit-lamp examination and OCT. Colour fundus photography (CFP) and fundus fluorescein angiography (FFA) were performed every 3 months. NEI VFQ-25 was completed every 6 months. Protocol BCVA was measured by using the standard ETDRS visual acuity chart (starting at the 4 m testing distance). All study-related image acquisitions were certificated by EyeKor, LLC (online supplemental table 1). OCT, CFP and FFA images were assessed by the reading centre of the University of Wisconsin–Madison.
RESULTS
Patient disposition, baseline characteristics and treatment experience
Between August 2014 and December 2015, a total of 251 eligible patients were randomised. After completing the Sailing Study, 157 patients enrolled in the extension study. Figure 1 shows the study flowchart and analysis sets. The baseline characteristics of the patients in the Sailing Study were well balanced between groups (table 1). The patient disposition in the extension study is shown in online supplemental table 2. Eyes in the Sailing Study received an average of 2.6 and 2.7 sham or laser treatments in the sham/conbercept group and laser/sham groups, respectively, and 9.5 and 9.7 intravitreal or sham injections, respectively. More patients in the laser group required a rescue treatment compared with the conbercept group in the Sailing Study (20.3% vs 4.0%, p<0.001). During the extension study, the numbers of conbercept treatments were 8.5±3.5 and 8.6±3.4 in the conbercept and laser groups, respectively (online supplemental table 3).

Efficacy
Significant improvement in BCVA from baseline to month 12 was observed in the conbercept group (8.2±9.5 letters, p<0.001), whereas no improvement was observed in the laser group (0.3±12.0 letters, p=0.810) (figure 2A). The changes in BCVA from baseline were significantly different between the two groups at all time points during the first year (all p<0.001). The subset of eyes that continued in the extension study also showed a similar result during the first year (figure 2B). During the extension study, after patients in the laser group crossed over to receiving PRN conbercept treatment, there was a significant improvement in BCVA at all time points of the second year (vs month 12, all p<0.05) (figure 2B). The change in BCVA at month 24 in the laser group was 4.9±9.4 letters from month 12 (p<0.001) and 8.0±11.4 letters from baseline (p<0.001). For patients in the conbercept group, 2-year results showed that they continued to maintain visual acuity gains from intravitreal injection. The changes in BCVA at month 24 in the sham conbercept group were 2.3±8.8 letters from month 12 (p=0.030) and 8.3±12.4 letters from baseline (p<0.001).

Both the results of 6 months and those of 12 months showed that significantly more eyes treated with conbercept gained vision from baseline, whereas significantly more eyes treated with laser lost letters from baseline (all p<0.001) (online supplemental table 4). The proportion of eyes with vision gain of ≥15 letters from baseline were 17.4% (21/121) and 25.0% (28/112) at months 6 and 12 in the sham/conbercept group compared with 6.8% (8/118) and 14.9% (13/87) in the laser/sham group, respectively, at the same time points. The proportion of eyes with vision loss of ≥15 letters from baseline were 1.7% (2/121) and 3.4% (4/112) at months 6 and 12 in the sham/conbercept group compared with 0% (0/118) and 1.1% (1/87) in the laser/sham group, respectively.

Significant differences in CRT were observed between the two groups at all time points in the first 12 months (all p<0.01).

Figure 1 Study flowchart.

Statistical analysis
Assuming that the changes in BCVA from baseline to month 12 had a difference of five letters between the two groups, the SD of the two groups was 10 and 12 letters, respectively. A total of 208 patients (104 in each group) were calculated with a one-sided significance level of 2.5% and a power of 90%. Assuming the drop-out rate of 20%, 124 patients were needed in each group.

The full analysis set in the Sailing Study included all randomised patients who received at least one treatment with the corresponding efficacy assessment. The safety set (SS) in the Sailing Study included all patients who received at least one treatment and at least one safety assessment. The intention-to-treat population in the extension study included all patients who agreed to continue the follow-up and received at least one extension assessment. The SS in the extension study included all patients who received at least one conbercept treatment during the 2-year period. For the primary endpoint of the Sailing Study, the missing values were imputed using the last observation carried forward (LOCF) method. For patients who had a rescue treatment, the missing values were imputed using LOCF method prior to the first rescue treatment. Missing values for the secondary endpoints in the Sailing Study and all outcomes in the extension study were not imputed.

Statistical analyses were performed using SAS V.9.4. Continuous variables were presented as means±SD. The analysis of covariance was used for the primary outcome comparison. For secondary efficacy outcomes, the independent t-test was used for intergroup comparisons and a paired t-test was used for comparisons between two time points. Categorical variables were presented as frequencies (percentages) and compared with the Cochran-Mantel-Haenszel χ² test or Fisher’s exact test, as appropriate. A two-sided p value of <0.05 was considered statistically significant.
Clinical science

The mean reduction of CRT from baseline to month 12 was 200±210 μm (p<0.001) in the sham/conbercept group and 130±190 μm (p<0.001) in the laser/sham group. Significant reduction of TMV from baseline was observed by month 3 (1.3±0.9 mm³, p<0.001) in eyes treated with sham/conbercept, whereas this reduction was observed at month 6 (0.6±0.7 mm³, p=0.004) in eyes treated with laser/sham (figure 3C). There was a significant difference in TMV between the two groups at months 3 and 6 (both p<0.05), but not at months 9 and 12. The trends of the leakage area changes were similar to those of the CRT changes. The mean reduction of leakage area from baseline to month 12 was 7.9 mm² (p<0.001) in the sham/conbercept group and 3.9 mm² (p<0.001) in the laser/sham group, and the leakage area was significantly decreased in the sham/conbercept group compared with the laser/sham group (p<0.001). The mean change in the NEI VFQ-25 total score from baseline was significantly different between the sham/conbercept group and the laser/sham groups at months 6 (4.4±16.0 vs −1.5±15.5, p=0.004) and 12 (4.3±19.5 vs −3.8±17.7, p=0.001) (figure 3E). During the extension study, the improvements in anatomical outcomes (CRT, TMV and leakage area) were maintained in both groups (figure 3B,D), and the laser group did better in reducing fluorescein leakage area.

Safety

In the Sailing Study, the proportion of total AEs (87.2% vs 87.1%) and SAEs (17.6% vs 19.4%) were similar between the sham/conbercept and laser/sham groups (table 2). The most common AEs were visual impairment (20.0%), upper respiratory tract infection (20.0%), intraocular hypertension (12.8%), hypertension (12.0%), elevated blood pressure (12.0%) and subconjunctival haemorrhage (12.0%) in patients treated with conbercept. The most common AEs were visual impairment (19.4%), upper respiratory tract infection (17.7%), hypertension (10.5%) and diabetic nephropathy (10.5%) in patients treated with laser. More patients reported ocular AEs (57.6%) in the

Table 1 Baseline characteristics of patients in the Sailing Study

Variables	Conbercept (95% CI)	Laser (95% CI)	P value
Age (years)	58.9±8.5 (57.43 to 60.42)	58.7±8.8 (57.18 to 60.30)	0.863
Sex, n (%)			0.527
Male	66 (52.8) (51.31 to 53.27)	60 (48.8) (47.27 to 49.23)	
Female	59 (47.2) (46.73 to 48.69)	63 (51.2) (50.77 to 52.73)	
BMI (kg/m²)	24.2±3.4 (24.13 to 24.50)	25.0±4.5 (24.83 to 25.32)	0.095
Duration of diabetes (years)	12.3±7.0 (12.16 to 12.92)	11.0±6.3 (10.77 to 11.44)	0.138
HbA1c	7.06±1.19 (6.85 to 7.27)	7.13±1.19 (6.92 to 7.35)	0.646
Study eye, n (%)			0.881
Right	72 (57.6) (56.21 to 58.16)	72 (58.5) (57.19 to 59.13)	
Left	53 (42.4) (41.84 to 43.79)	51 (41.5) (40.87 to 42.81)	
BCVA (ETDRS letter)	56.6±11.5 (54.50 to 59.19)	57.6±11.5 (54.59 to 59.62)	0.505
IOP (mm Hg)	15.2±3.0 (14.62 to 15.68)	15.1±3.4 (14.45 to 15.66)	0.819
CRT (µm)	480.0±180.0 (476.36 to 495.90)	470.0±160.0 (464.09 to 481.28)	0.753
TMV (mm³)	9.9±1.2 (9.45 to 10.39)	10.1±1.4 (9.68 to 10.72)	0.534
Leakage area (mm²)	28.2±11.0 (26.20 to 30.11)	27.8±10.8 (25.92 to 29.76)	0.820
NEI VFQ-25 total score	65.9±17.1 (62.88 to 68.93)	66.7±17.9 (63.47 to 69.85)	0.733
History of laser treatments, n (%)			0.622
Yes	77 (61.60) (60.14 to 62.06)	72 (58.54) (57.25 to 59.19)	
No	48 (38.40) (37.94 to 39.86)	51 (41.46) (40.81 to 42.75)	
History of ocular anti-VEGF treatments, n (%)	0.098		
Yes	14 (11.20) (10.08 to 11.30)	23 (18.70) (17.61 to 19.13)	
No	111 (88.80) (88.70 to 89.92)	100 (81.30) (80.87 to 82.39)	

BCVA, best-corrected visual acuity; BMI, Body Mass Index; CRT, central retinal thickness; ETDRS, Early Treatment Diabetic Retinopathy Study; HbA1c, haemoglobin A1c; IOP, intraocular pressure; NEI VFQ-25, 25-Item National Eye Institute Visual Function Questionnaire; TMV, total macular volume; VEGF, vascular endothelial growth factor.

Figure 2 Mean changes in BCVA for laser and conbercept study groups in the Sailing Study. (A) One-year results compared with baseline. (B) Two-year results compared with baseline for the subset of eyes that continued in the extension study. Error bars denote SD. BCVA, best-corrected visual acuity.
Figure 3 Mean changes of secondary endpoints for laser and conbercept study groups in the Sailing Study. (A) One-year results of mean CRT changes compared with baseline. (B) Extension study results of mean CRT changes from 12 to 24 months. (C) Mean changes in TMV compared with baseline (1-year results). (D) Mean changes in TMV from 12 to 24 months (extension study results). (E) Mean change in NEI VFQ-25 total score from baseline to month 12 of the Sailing Study. Error bars denote SD. CRT, central retinal thickness; NEI VEQ-25, 25-Item National Eye Institute Visual Function Questionnaire; TMV, total macular volume.
sham/conbercept group compared with 39.5% in the laser/sham group. Most of the additional ocular AEs with conbercept treatment were intraocular hypertension (12.8% vs 4.8% with laser) and subconjunctival haemorrhage (12.0% vs 3.2% with laser). Endophthalmitis occurred in two patients treated with conbercept and one thereof was non-infectious intraocular inflammation. Endophthalmitis did not occur in patients treated with laser. The incidence of non-ocular SAEs in the laser/sham group (16.9%) was higher than in the sham/conbercept (12.0%). The incidences of Anti-Platelet Trialists’ Collaboration-defined arterial thromboembolic events (APTC-ATEs) were equal (3.2%) in both groups.

The AEs that occurred during the extension study were similar to those in the Sailing Study. Intraocular hypertension (24/156, 15.4%) and upper respiratory tract infection (24/156, 15.4%) were the most frequently reported AEs in the second year. For APTC-ATEs, rates were 7.7% (12/156) in the extension study. No death occurred in the conbercept group during the 2-year period. One patient in the laser group died from cerebral aemic cardiomyopathy in the second year.

DISCUSSION

The Sailing Study was designed to evaluate the use of conbercept for the management of patients with centre-involved DME. The primary endpoint of the Sailing Study was the mean change in BCVA from baseline to month 12. The primary outcomes of the extension study were safety and mean change in BCVA from month 12 of the Sailing Study to month 12 of the extension study. The results of the study show that conbercept can improve the BCVA in patients with centre-involved DME, and its efficacy was better than that of traditional ETDRS laser photoacoagulation. The safety of conbercept was good with the total occurrence of AEs being similar between the two groups.

In the present study, the sham/conbercept group followed a PRN regimen of conbercept injections after the first injection at baseline and over 12 months, the actual number of injections was 9.5 with a mean improvement of +8.2 letters. The results of the 1-year open-label extension study showed that the efficacy of conbercept was maintained for 24 months, but the number of injections was not significantly reduced. In the extension study after 12 months, patients in the laser/sham group were crossed over and received conbercept PRN. The laser/sham group showed a significant improvement in BCVA after crossing over to conbercept therapy; there was no difference in BCVA between the two groups at the end of the extension study. This is a different result from other studies where anti-VEGF was delayed and the delayed anti-VEGF group did not catch up to the group treated with anti-VEGF from baseline.

Several studies have demonstrated that anti-VEGF treatment is superior to laser in DME. The RISE and RIDE trials compared the efficacy of ranibizumab for DME with PRN laser photoacoagulation, and the results showed that ranibizumab improved BCVA, reduced the risk of vision loss and improved the parameters of macular oedema. The VISTA and VIVID studies examined two regimens of aflibercept versus laser photoacoagulation for DME and showed that aflibercept was superior to laser photoacoagulation in terms of visual acuity and anatomic changes. Despite using a different anti-VEGF agent, the Sailing Study showed similar results to the RIVE, RIDE, VISTA and VIVID trials. Conbercept, which is similar to aflibercept, is a recombinant fusion protein composed of VEGF binding domain from human VEGF receptors 1 and 2. However, conbercept may have a higher potency and a longer half-life compared with aflibercept because of an additional portion in the fourth binding domain of VEGF receptor 2, which enhances the rate of binding and the stability of the binding complex. In one 12-month results of aflibercept in the phase III studies, the mean injection numbers of 2q4 and 2q8 groups were 11.8 and 8.4 in VISTA, and 12.2 and 8.7 in VIVID, respectively. In our Sailing Study, the number of conbercept injections was 9.5, which is similar to the number of injections in 2q8 group. While this number is lower, it is important to recognise that the injection frequency in VIVID and VISTA were fixed not PRN. Of note, at the time of the study, aflibercept and ranibizumab had not been approved for the treatment of DME in China. Thus, additional clinical studies are needed to compare the efficacy of conbercept with other anti-VEGF agents in DME.

The efficacy of laser photoacoagulation in improving BCVA during the Sailing Study was similar to that in VISTA and VIVID, with +0.3±12.0, +0.2±12.5 and +1.2±10.6 letters in BCVA, respectively. In our study, the percentage of eyes that had BCVA improvement in the laser group was greater than similar laser groups in other clinical trials. The reason for this is unknown but may depend on external factors such as the investigators’ operational approaches and the type of laser used, as well as the patient population. The factors associated with differences in visual acuity outcomes in eyes treated with panretinal photoacoagulation include the HbA1c levels and the severity of the diabetic retinopathy in these patients. However, our results do indicate that the standard treatment of laser photoacoagulation is still a good therapeutic option for some patients, but it is noteworthy
that the laser group had a higher proportion of eyes with vision loss than the conbercept group. However, the proportion of patients with loss of ≥15 letters in the laser therapy group was 1.1%, far less than the 9.1% and 10.6% observed in the VIVID and VISTA trials.15–17

During the extension study, patients in the laser group had significant improvement in visual acuity after crossing over to receive PRN conbercept injections and reached similar mean change in BCVA levels compared with patients in the conbercept group at 24 months, suggesting the promising efficacy of conbercept in DME. However, it took 2 months to demonstrate a four-letter BCVA improvement in the laser group, while the conbercept group achieved it in the first month. The delayed benefit from conbercept injection in the laser group could be due to the longer duration of the oedema and resulting outer retinal changes due to the prolonged oedema in the macular tissue. Nonetheless, compared with the RESTORE extension study of ranibizumab where it took nearly 12 months to gain +4 letters after switching to ranibizumab,20 conbercept cross-over patients exhibited a faster visual acuity improvement. The rapid and sustained effect of conbercept could improve the quality of life and reduce the risk of vision loss for patients with DME.

With respect to the anatomical outcomes (CRT, TMV and leakage area) and the vision-related quality of life scores (NEI VFQ-25 total score), rapid and sustained improvements were observed in the conbercept group over the first 12 months. The laser group showed worse vision-related quality of life results, despite steady but slow improvement in anatomical indices. In the extension study, CRT in the laser group decreased to a similar level as that in the conbercept group. This supports the fact that conbercept improved the pathological changes in the eye, resulting in better visual acuity and better vision-related quality of life. This was also observed in the RISE, RIDE, VISTA, VIVID and RESTORE trials.15–17 19 23

In the Sailing Study, the major AEs in the conbercept group were intraocular hypertension and subconjunctival haemorrhage (mostly mild), which were consistent with the AEs reported in previous studies.15–20 23–25 Endophthalmitis occurred in two patients after the injection of conbercept, which was aligned with the low incidence of endophthalmitis reported after the injection of saline,26 bevacizumab,27 ranibizumab28 29 and aflibercept.30 The incidence of non-infectious intraocular inflammation was 0.12% (1/861) of all injections, within the range of 0.09%–0.37% reported in the literatures.29 These AEs were predominantly associated with any routine intravitreal injection. The 2-year results of safety were similar to the safety profile of conbercept in the 1-year Sailing Study. No new ocular and non-ocular AEs were identified. Overall, the safety of conbercept treatment was similar to other anti-VEGF agents.

A limitation of the extension study is that only 62.6% (157/251) of the initial patients entered the study. Of the 157 subjects enrolled, 142 completed the extension study and 15 withdrew before completing the study. Due to the limited sample size, it is hard to identify the significance of infrequent SAEs that occurred across groups, such as cerebrovascular accident and myocardial infarction.

In conclusion, the 0.5 mg conbercept PRN treatment regimen significantly improved the functional and anatomical outcomes of patients with centre-involved DME, compared with laser photocoagulation. The evidence from the Sailing extension study confirms that conbercept was well tolerated and its efficacy was sustained through 24 months. Intravitreal injections of conbercept can be considered an additional option in the management of patients with DME.
Open access This is an open access article distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited, appropriate credit is given, any changes made indicated, and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/.

ORCID ID
Xun Xu http://orcid.org/0000-0002-4246-4343

REFERENCES
1 American Diabetes Association. 11. Microvascular Complications and Foot Care: Standards of Medical Care in Diabetes—2019. Diabetes Care 2019;42:5124–38.
2 Cheung N, Mitchell P, Wong TY. Diabetic retinopathy. Lancet 2010;376:124–36.
3 Wong TY, Sun J, Kawasaki R, et al. Guidelines on diabetic eye care: the International Council of ophthalmology recommendations for screening, follow-up, referral, and treatment based on resource settings. Ophthalmology 2018;125:1608–22.
4 Yau JWY, Rogers SL, Kawasaki R, et al. Global prevalence and major risk factors of diabetic retinopathy. Diabetes Care 2012;35:556–64.
5 Sivaprasad S, Gupta B, Gullford MC, et al. Ethnic variations in the prevalence of diabetic retinopathy in people with diabetes attending screening in the United Kingdom (drive UK). PLoS One 2012;7:e32182.
6 Sivaprasad S, Gupta B, Crosby-Nwaozi R, et al. Prevalence of diabetic retinopathy in various ethnic groups: a worldwide perspective. Surv Ophthalmol 2012;57:347–70.
7 Browning DJ, Stewart MW, Lee C. Diabetic macular edema: evidence-based management. Indian J Ophthalmol 2018;66:1736–50.
8 Shah CP, Chen C. Review of therapeutic advances in diabetic retinopathy. Ther Adv Endocrinol Metab 2011;2:38–53.
9 Ferrara N, Gerber H-P, LeCouter J. The biology of VEGF and its receptors. Nat Med 2003;9:669–76.
10 Spilsbury K, Garrett KL, Shen WY, et al. Overexpression of vascular endothelial growth factor (VEGF) in the retinal pigment epithelium leads to the development of choroidal neovascularization. Am J Pathol 2000;157:135–44.
11 van Lookeren Campagne M, LeCouter J, Yaspan BJ, et al. Mechanisms of age-related macular degeneration and therapeutic opportunities. J Pathol 2014;232:151–64.
12 Homayouni M. Vascular endothelial growth factors and their inhibitors in ocular neovascular disorders. J Ophthalmic Vis Res 2009;4:105–14.
13 Solomon SD, Lindsey K, Vedula SS, et al. Anti-Vascular endothelial growth factor for neovascular age-related macular degeneration. Cochrane Database Syst Rev 2019;3:CD005139.
14 Ollendorf DA, Colby JA, Pearson SD. Comparative effectiveness of anti-VEGF agents for diabetic macular edema. Int J Technol Assess Health Care 2013;29:392–401.
15 Korobelnik J-F, Do DV, Schmidt-Erfurth U, et al. Intravitreal aflibercept for diabetic macular edema. Ophthalmology 2014;121:2247–54.
16 Brown DM, Schmidt-Erfurth U, Do DV, et al. Intravitreal aflibercept for diabetic macular edema: 100-Week results from the VISTA and VIVID studies. Ophthalmology 2015;122:2044–52.
17 Heier JS, Korobelnik J-F, Brown DM, et al. Intravitreal aflibercept for diabetic macular edema: 148-Week results from the VISTA and VIVID studies. Ophthalmology 2016;123:2376–85.
18 Zhang J, Liang Y, Xie J, et al. Conbercept for patients with age-related macular degeneration: a systematic review. BMC Ophthalmol 2018;18:142.
19 Nguyen QD, Brown DM, Marcus DM, et al. Ranibizumab for diabetic macular edema: results from 2 phase III randomized trials: rise and ride. Ophthalmology 2012;119:789–801.
20 Wang Q, Li T, Wu Z, et al. Novel VEGF decoy receptor fusion protein conbercept targeting multiple VEGF isoforms provide remarkable anti-angiogenesis effect in vivo. PLoS One 2013;8:e70544.
21 Li H, Lei N, Zhang M, et al. Pharmacokinetics of a long-lasting anti-VEGF fusion protein in rabbit. Exp Eye Res 2012;97:154–9.
22 Bressler SB, Beaulieu WT, Glassman AR, et al. Panretinal photocoagulation versus ranibizumab for proliferative diabetic retinopathy: factors associated with vision and edema outcomes. Ophthalmology 2018;125:1776–83.
23 Schmidt-Erfurth U, Lang GE, Holz FG, et al. Three-Year outcomes of individualized ranibizumab treatment in patients with diabetic macular edema: the restore extension study. Ophthalmology 2014;121:1045–53.
24 Liu K, Song Y, Xu G, et al. Conbercept for treatment of neovascular age-related macular degeneration: results of the randomized phase 3 Phoenix study. Am J Ophthalmol 2019;197:152–66.
25 Sun Z, Zhou H, Lin B, et al. Efficacy and safety of intravitreal CONBERCEPT injections in macular edema secondary to retinal vein occlusion. Retina 2017;37:1723–30.
26 Diabetic Retinopathy Clinical Research Network*. Randomized clinical trial evaluating intravitreal ranibizumab or saline for vitreous hemorrhage from proliferative diabetic retinopathy. JAMA Ophthalmol 2013;131:283–93.
27 Ahn J, Woo SJ, Chung H, et al. The effect of adjunctive intravitreal bevacizumab for preventing postvitrectomy hemorrhage in proliferative diabetic retinopathy. Ophthalmology 2011;118:2218–26.
28 Googe J, Bruker AJ, Diabetic Retinopathy Clinical Research Network, et al. Randomized trial evaluating short-term effects of intravitreal ranibizumab or triamcinolone acetonide on macular edema after focal/grid laser for diabetic macular edema in eyes also receiving panretinal photocoagulation. Retina 2011;31:1009–27.
29 Dafih V, Nguyen V, Essex RW, et al. Incidence and outcomes of infectious and noninfectious endophthalmitis after intravitreal injections for age-related macular degeneration. Ophthalmology 2018;125:66–74.
Supplementary Table 1. Image acquisitions at each center

No.	Center	FFA	FFA-serial	4 wide-field CFP	CFP-serial	Spectral domain OCT	OCT-serial
1	Shanghai General Hospital	Heidelberg Engineering, Inc. Spectralis (cSLO)	Serial #(HRA2-KT-00641)	Topcon Corporation	Serial #(947899)	Heidelberg Engineering, Inc. Spectralis (OCT)	Serial #(#1003)
2	He Eye Hospital	Topcon Corporation	Serial #(#948122)	Topcon Corporation	Serial #(#948122)	Topcon Corporation	Serial #(#209079)
3	The Third Affiliated Hospital of Third Military Medical University	Heidelberg Engineering, Inc. HRA2	Serial #(#1103225)	Carl Zeiss Meditec, Inc. Visucam	Serial #(#1103225)	Carl Zeiss Meditec, Inc. Visucam	Serial #(#209079)
4	Wuhan General Hospital of Guangzhou Military	Heidelberg Engineering, Inc. Spectralis (cSLO)	Serial #(#HRA2-KT-01419)	Topcon Corporation	Serial #(#677290)	Topcon Corporation	Serial #(#209032)
5	The First Affiliated Hospital of the Fourth Military Medical University	Heidelberg Engineering, Inc. Spectralis (cSLO)	Serial #(#04734-S1600)	Topcon Corporation	Serial #(#948084)	Topcon Corporation	Serial #(#688057)
6	The Eye Hospital of Wenzhou Medical University	Heidelberg Engineering, Inc. Spectralis (cSLO)	Serial #(#HRA2-00445)	Topcon Corporation	Serial #(#947590)	Heidelberg Engineering, Inc. Spectralis (OCT)	Serial #(#12052-010-005)
No.	Hospital Name	Manufacturer(s)	Model/Model Number	Serial Number(s)	Manufacturer(s)	Model/Model Number	Serial Number(s)
-----	---	--------------------------------------	--------------------	------------------	--------------------------------------	--------------------	------------------
7	Wuxi No. 2 People's Hospital	Topcon Corporation	50IX	#(175258)	Topcon Corporation	50IX	#(175258)
8	Southwest Hospital	Heidelberg Engineering, Inc.	Spectralis (cSLO)	11774-004-002	Kowa Company, Ltd	nonmyd a-DIII	#(1579000605)
9	The Ophthalmological Research Institute of Henan	Heidelberg Engineering, Inc.	Spectralis (cSLO)	02572	Carl Zeiss Meditec, Inc.	FF450 Plus	#(988819)
10	Peking University Third Hospital	Heidelberg Engineering, Inc.	Spectralis (cSLO)	00093	Carl Zeiss Meditec, Inc.	FF450 Plus	#(201999088)
11	Beijing Tongren Hospital, Capital Medical University	Heidelberg Engineering, Inc.	Spectralis (cSLO)	04768-S3600	Topcon Corporation	50DX	#(870707)
12	TianJin University Medical Eye Hospital	Heidelberg Engineering, Inc.	Spectralis (cSLO)	15131-003-001	Topcon Corporation	50EX	#(274768)
13	Shanghai Renji Hospital	Carl Zeiss Meditec, Inc.	Visucam 500	#(1100811)	Carl Zeiss Meditec, Inc.	Visucam 500	#(1100811)

BMJ Publishing Group Limited (BMJ) disclaims all liability and responsibility arising from any reliance placed on this supplemental material which has been supplied by the author(s).

Liu K, et al. Br J Ophthalmol 2021;0:1–8. doi: 10.1136/bjophthalmol-2020-318690
No.	Location	Manufacturer 1	Model 1	Serial 1	Manufacturer 2	Model 2	Serial 2
14	West China Hospital, Sichuan University	Heidelberg Engineering, Inc. Spectralis (cSLO)	Serial #(HRA2-00617)	Topcon Corporation	Serial #(948400)	Heidelberg Engineering, Inc. Spectralis (OCT)	Serial #01596-S2000
15	The First Affiliated Hospital of Chongqing Medical University	Heidelberg Engineering, Inc. Spectralis (cSLO)	Serial #(01848-S1300)	Canon, Inc. CR-DGi	Serial #(DGI311808- BX00271)	Heidelberg Engineering, Inc. Spectralis (OCT)	Serial #03721-S2000
16	Peking Union Medical College Hospital	Topcon Corporation	Serial #(8710039)	50DX	Serial #(8710039)	Heidelberg Engineering, Inc. Spectralis (OCT)	Serial #03986-S3600
17	Zhongshan Ophthalmic Center, Sun Yat-Sen University	Heidelberg Engineering, Inc. Spectralis (cSLO)	Serial #(HRA2-KT-03251)	Topcon Corporation	Serial #(948133)	Heidelberg Engineering, Inc. Spectralis (OCT)	Serial #2867-5-3600
18	Peking University People's Hospital	Topcon Corporation	Serial #(945906)	50DX	Serial #(1076503)	Heidelberg Engineering, Inc. Spectralis (OCT)	Serial #01225-S3300

CFP, Color fundus photography; FFA, fundus fluorescein angiography; OCT, optical coherence tomography.
Supplementary Table 2. Patient disposition in the extension study

	Conbercept	Laser	Total
Enrolled, n	76	81	157
Enrolled but not treated, n (%)	1 (1.3)	1 (1.2)	2 (1.3)
Completed the study, n (%)	67 (88.2)	75 (92.6)	142 (90.4)
Withdrew from the study, n (%)	9 (11.8)	6 (7.4)	15 (9.6)
Adverse event	4 (5.3)	1 (1.2)	5 (3.2)
Investigator judgement	3 (3.9)	3 (3.7)	6 (3.8)
Withdrawal of consent	1 (1.3)	1 (1.2)	2 (1.3)
Lost to follow up	1 (1.3)	0	1 (0.6)
Death	0	1 (1.2)	1 (0.6)
Supplementary Table 3. Treatment experience

	Sailing study (baseline to month 12)		Extension study (month 12 to month 24)	
	Conbercept	Laser	Conbercept	Laser
	(n=125)	(n=123)	(n=76)	(n=81)
Number of intravitreal injections	9.5±2.8	9.7±3.1^a	8.5±3.5	8.6±3.4
Number of laser photocoagulation treatments	2.6±1.3^b	2.7±1.3	NA	NA
Rescue treatment	5 (4.0)	25 (20.3)	NA	NA

NA, not applicable.

- a. In the laser group, the number of sham injections was counted and did not include all treatments after the first rescue treatment.
- b. In the conbercept group, the number of sham laser treatment was counted and did not include all treatments after the first rescue treatment.
Supplementary Table 4. Visual distribution in the Sailing Study

Variables	6 months			12 months		
	Conbercept	Laser	P	Conbercept	Laser	P
Vision gain						
≥0 letter	110(90.9)	65(55.1)	<0.001	104(92.9)	62(71.3)	<0.001
≥5 letters	81(66.9)	40(33.9)	<0.001	81(72.3)	46(52.9)	0.005
≥10 letters	51(42.1)	20(16.9)	<0.001	56(50.0)	26(29.9)	0.004
≥15 letters	21(17.4)	8(6.8)	0.012	28(25.0)	13(14.9)	0.082
Vision loss						
≥0 letter	11(9.1)	53(44.9)	<0.001	8(7.1)	25(28.7)	<0.001
≥5 letters	7(5.8)	25(21.2)	0.001	4(3.6)	6(6.9)	0.287
≥10 letters	6(5.0)	15(12.7)	0.034	3(2.7)	3(3.4)	0.753
≥15 letters	2(1.7)	4(3.4)	0.391	0	1(1.1)	0.255
Subjects

Subjects can be included in this study if they meet all of the following inclusion criteria and do not meet any of the exclusion criteria during the screening.

1.1 Inclusion criteria:

1) The subjects have provided the written informed consent, and are willing to receive the follow-up at the time points as specified in the trial;

2) The subjects are males or females at least 18 years of age;

3) The subjects have confirmed Type 1 or type 2 diabetes;

4) The glycated hemoglobin (HbA1c) is ≤ 10%;

5) The target eye shall meet the following requirements:
 - DME involving the fovea and leading to decreased vision is present;
 - BCVA measured ≥ 24 letters and ≤ 73 letters at the 4m/1m ETDRS eye chart (equivalent to 20/40 to 20/320 of the Snellen eye chart);
 - The OCT examination shows CRT ≥ 300 μm (using spectral domain OCT, the measured values of CRT shall be subject to confirmation by the imaging reading center);
 - There is absence of opaque opacity of the refractive medium and pupil contraction affecting fundus examination.

6) The BCVA of the subject’s non-target eye ≥ 24 letters (equivalent to 20/320 of the Snellen vision).
Note: Only one target eye of a subject can be selected in the study. If both eyes of a subject meet the inclusion criteria, the investigators shall determine the target eye from the medical perspective.

1.2 Exclusion criteria

1.2.1 Patients with any of the following eye diseases:

1) Active eye infection occurs in either eye (e.g., blepharitis, keratitis, scleritis, and conjunctivitis, etc.);

2) Proliferative diabetic retinopathy (PDR) occurs in the target eye, with the exception of PDR resolving after full retina photocoagulation, and inactive, and fibrotic PDR;

3) The target eye has a history of vitreous bleeding within 2 months prior to screening;

4) The target eye has structural damage of the retina that involves the fovea (e.g., retinal pigment epithelium (RPE) atrophy, retinal fibrosis, laser scar, and dense hard exudation), or the investigators believe that there are other retinal damage in the target eye that may prevent vision improvement following resolution of macular edema.

5) The target eye, in addition to DR, has other ophthalmic conditions leading to macular edema or alterations in vision (e.g., retinal vein occlusion (RVO), CNV, retinal detachment, macular hole, traction of macular retina, and preretinal membrane, etc.);

6) The target eye contains iris neovascularization;
7) The target eye has uncontrolled glaucoma (which is defined as an intraocular pressure \(\geq 25 \text{ mmHg} \)) after the treatment with anti-glaucoma drugs, or a history of glaucoma filtering surgery.

8) The investigators believe that cataract of the target eye may affect the examination or judgment of the trial results, or surgical treatment is required within the next 6 months; or

9) The target eye has no crystal (inclusion is acceptable if there is artificial lens).

1.2.2 Patients having undergone any of the following eye treatment

10) Either eye has been intraocularly injected with corticosteroids (e.g., triamcinolone) within 3 months prior to screening, or particularly injected with corticosteroids within 1 month prior to screening;

11) The target eye has a history of vitrectomy;

12) The target eye has undergone panretinal photocoagulation within 6 months prior to screening, or there is a possibility of panretinal photocoagulation during the study;

13) The target eye has undergone \(\geq 2 \) times of local/grid retinal photocoagulation, or local/grid retinal photocoagulation within 3 months prior to screening;

14) The target eye or the general system has been treated with anti-VEGF drugs (e.g., aflibercept, pegaptanib sodium, ranibizumab, and bevacizumab, etc.) within 6 months prior to screening, or the non-target eye has been treated with anti-VEGF drugs within the first 3 months prior to screening;
15) The target eye has received any type of intraocular surgery (e.g., cataract surgery, and YAG posterior capsulotomy, etc.) within 3 months prior to screening; or

16) The target eye has undergone eye surgery that involves the macular region (e.g., PDT, and macular transposition, etc.), except for local/grid retinal photocoagulation;

1.2.3 Patients with any of the following systemic diseases

17) The blood glucose is not well controlled within 3 months prior to screening (which is defined as the switch from the oral administration of hypoglycemic drugs to the insulin therapy, initiation of the insulin pump therapy, or an increase in the number of daily insulin injections);

18) Impaired renal function (Crea is 2-fold the upper limit of the normal value in the laboratory of this center) or abnormal hepatic function (ALT and AST are 2-fold the upper limit of the normal value in the laboratory of this center) are identified;

19) Poor control of blood pressure (which is defined as systolic blood pressure ≥ 150 mmHg or diastolic blood pressure ≥ 95 mmHg following treatment with antihypertensive medications) is noted;

20) Patients are now developing systemic infections requiring oral, intramuscular or intravenous administration;

21) Patients have stroke, transient ischemic attack, myocardial infarction or acute
congestive heart failure within 6 months prior to screening;

22) Patients have abnormal blood coagulation function (prothrombin time $\geq 3s$ above the upper limit of the normal value, activated partial thromboplastin time $\geq 10s$ above the upper limit of the normal value);

23) Patients are currently receiving drugs toxic to the lens, retina or optic nerve or may do so during the study (e.g., deferoxamine, chloroquine, hydroxychloroquine (chloroquinine), tamoxifen, phenothiazine or ethambutol, etc.);

24) Patients have confirmed systemic immune diseases (e.g., ankylosing spondylitis, and systemic lupus erythematosus, etc.) or any uncontrollable clinical conditions (e.g., AIDS, malignancies, active hepatitis, and severe mental, neurological, cardiovascular and respiratory diseases, etc.); or

25) Patients have allergic reactions or a history of allergy to sodium fluorescein, a history of allergy to therapeutic or diagnostic protein products, allergy to two or more drugs and/or non-drug factors, or allergic diseases currently;

1.2.4 Others

26) Subjects who have not undergone effective contraception;

Note: the following circumstances do not fall into the scope of exclusion.

i. Amenorrhea for 12 months under the natural conditions, or amenorrhea for 6 months with the level of serum follicle stimulating hormone > 40 mIU/ml;

ii. Bilateral ovariectomy with or without hysterectomy received 6 weeks ago;
iii. One or several acceptable contraception means as follows haven been used:
 ➢ Sterilization (bilateral vasoligation or vasectomy in males)
 ➢ Hormonal contraception (implanted, patch, and oral)
 ➢ Intrauterine contraceptive devices, double blocking

iv. Use of reliable contraceptives throughout the study until 30 days after the discontinuation of the study drug (The unacceptable contraceptive methods include regular abstinence - by calendar, ovulation period, temperature measurement, post-ovulation, and coitus interruptus).

27) Pregnant (pregnancy is defined as a positive testing of the urine pregnancy in this trial) and lactating women;

28) Patients participating in any drug (not including vitamins and minerals) clinical trials within 3 months prior to screening (If the study drug has a long half-life and the duration of 5 half-life is > 3 months, then the 5 half-life is used); or

29) Patients whose exclusion investigators deem necessary.