Association of endogenous retroviruses and long terminal repeats with human disorders

Iyoko Katoh1* and Shun-ichi Kurata2

1 Department of Microbiology, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Chuo, Yamanashi, Japan
2 Redox Response Cell Biology, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan

Since the human genome sequences became available in 2001, our knowledge about the human transposable elements which comprise ~40% of the total nucleotides has been expanding. Non-long terminal repeat (non-LTR) retrotransposons are actively transposing in the present-day human genome, and have been found to cause ~100 identified clinical cases of varied disorders. In contrast, almost all of the human endogenous retroviruses (HERVs) originating from ancient infectious retroviruses lost their infectivity and transposing activity at various times before the human-chimpanzee speciation (~6 million years ago), and no known HERV is presently infectious. Insertion of HERVs and mammalian apparent LTR retrotransposons (MaLRs) into the chromosomal DNA influenced a number of host genes in various modes during human evolution. Apart from the aspect of genome evolution, HERVs and solitary LTRs being suppressed in normal biological processes can potentially act as extra transcriptional apparatuses of cellular genes by re-activation in individuals. There has been a reasonable prediction that aberrant LTR activation could trigger malignant disorders and autoimmune responses if epigenetic changes including DNA hypomethylation occur in somatic cells. Evidence supporting this hypothesis has begun to emerge only recently: a MaLR family LTR activation in the pathogenesis of Hodgkin’s lymphoma and a HERV-E antigen expression in an anti-renal cell carcinoma immune response. This mini review addresses the impacts of the remnant-form LTR retrotransposons on human pathogenesis.

Keywords: human endogenous retrovirus, HERV, long terminal repeat, LTR, cancer, retrotransposon, autoimmune

HUMAN ENDOGENOUS RETROVIRUSES AND MAMMALIAN APPARENT LTR RETROTRANSPOSONS ARE LONG TERMINAL REPEAT-RETROTRANSPOSONS IN THE HUMAN GENOME

Endogenous retroviruses (ERVs) stem from ancient infectious retroviruses that were reverse transcribed and integrated into the germ cell chromosomal DNA of ancestral host animals. The integrated viral genomes, termed proviruses, were subsequently fixed, and have been inherited for tens of millions of years (Myr). “Human endogenous retroviruses” (HERVs) refer to human ERVs, most of which appear to have entered the genome after the separation of Old and New World monkeys (~35 Myr ago), and have increased in copy numbers through the human/primate evolution (~4–5). The present-day human genome contains ~400 thousand copies of HERVs and related sequences, accounting for ~4.6% of the ~3 billion nucleotide sequences (5, 6). In the era of their copy number expansion, HERVs in the original form of 5’LTR-gag-pro-pol-env-3’LTR amplified themselves autonomously. However, all HERVs in the present-day humans are replication-incompetent, having varying degrees of mutations and deletions. Despite the absence of an obvious transposing activity, HERVs are classified as transposons based on the evidence of transposition during the human evolution and the existence of numerous animal ERV’s presently mobilizing in their host genomes as represented by mouse intracisternal A particles (7, 8).

Human endogenous retroviruses are divided into 50–200 families primarily depending on the primer binding site (PBS) sequences complementary to the 3′ end of a cellular tRNA (9–11). For example, HERV-K and -W indicate utilization of tRNAlys and tRNAThr as the primers for reverse transcription, respectively. This terminology has nothing to do with their histories or functions. Nevertheless, the HERV-F/H family represents the oldest HERVs which entered into our genome before the split of simians and prosimians ~60–70 Myr ago (12), while the HERV-K (HML-2) family contains the youngest HERVs having the best-preserved retroviral open reading frames (ORFs) (13, 14).

In addition to HERVs, the long terminal repeat (LTR) retrotransposon class in humans have another big subclass of “mammalian apparent LTR retrotransposons” (MaLRs), which consists of ~240,000 copies accounting for 3.65% of the genomic sequences (5) (Table 1). Despite the classification, MaLRs lack a PBS and gag-pro-pol genes shared by animal retroelements (Copia/Ty1, Gypsy/Ty3, etc.) and retroviruses, and are thought to have originated before the radiation of eutherian mammals, 80–100 Myr ago (15, 16). The simple 5’LTR-ORF-3’LTR structure without a pol gene encoding reverse transcriptase (RT) and integrase suggests non-autonomous transposition. The transposon-like human element-1 (THE1) is known as a most widespread MaLR family in primates.
Table 1 | Transposons in the human genome and their influences on health and diseases.

Classification	Class II	Class I
DNA transposons	Human endogenous retroviruses (HERVs/ERVs)	Solitary LTRs
LTR retrotransposons	Mammalian apparent LTR retrotransposons (MaLRs)	LINEs (L1, L2, L3)
Non-LTR retrotransposons	Autonomously, ”cut and paste”	SINEs (Alu), SVAs, B1s pseudogenes

Mechanisms of transposition or replication	HERV, autonomous, ”copy and paste” (13): (1) retrotransposition, (2) reinfection (complementation in trans)	Autonomous, ”copy and paste” (17)
Reverse transcriptase	HERV(+) MaLR(−)	(+) (−)
Number of copies in the genome (× 1,000)	443 (ERV-class I, 112; class II, 8; class III, 83; Ma LR, 240)	868 (L1, 516)
Percentage (%) of the genome	8.29 (HERV, 4.64 ; MaLR, 3.65)	20.42
Structural integrity	L1 (+)	(+) (−)
Transposing activity in present-day humans	Inactive	Active (L1 only)

Time of transposition in human development	None reported	Germline, embryo, and somatic cells (28)
Recent transpositions/insertions in evolution	8–17 HERV-K insertion the past ~6 Myr (31)	>7500 Transpositions in the past 6 Myr (23)
Impacts of the identified elements on human health and homeostasis	Placenta development	Gene family generated by SVA through transduction (IAMAC, ~7–14 Myr ago)
	(Syncytin-1/ERVW-F1) (65, 56)	Modulation of gene expression by Alu through RNA editing (APOBEC3G, F11R, etc.) (19)
	(Syncytin-2/ERVFRD-F1) (57)	
Transcriptional activation	Hypomethylation (51)	Hypomethylation (27)
	Trans-activation (37)	Trans-activation (SRY, RUNX3, YY1)
Disease-related mechanisms (28, 83)	Transcriptional activation of neighboring gene expression (hypothesized)	Insertional mutagenesis by transposition
Related disorders	Hodgkin’s lymphoma (91) (activation of CSF1R by a THE1B LTR)	Transduction by transposition
	Renal cell carcinoma (89, 90) (HERV-E CT-RCC-8/9, target antigen of CD8+ cells)	
	Other tumors (6, 68) (expression of HERVs)	
	Autoimmune disorders including rheumatoid arthritis, multiple sclerosis, Sjögren’s, and psoriasis (92, 100, 101) (expression of HERVs)	
	Facioscapulohumeral dystrophy (108) (THE1D LTR activation by DUX4)	

Related disorders	None reported	~100 Reported cases by transposition (columns below) (27, 28, 83)
Related disorders	Hypomethylation detected in malignancy	
Related disorders	Hemophilia (FVIII, FIX), duchenne muscular dystrophy (DMD), neurofibromatosis type I (NF1), tumors, etc.	Hemophilia (FVIII, FIX), breast cancer (BRCA2), neurofibromatosis type I (NF1), etc.

Frontiers in Oncology | Molecular and Cellular Oncology | September 2013 | Volume 3 | Article 234 | 2
MOBILIZATION OF NON-LTR RETROTRANSPOSONS

Transposons currently mobilizing on the human chromosomes include the long interspersed elements (LINEs), short interspersed elements (SINEs), and “SINE-R,” variable of number of tandem repeats (VNTRs) and Alu” (SVA) elements, all of which are in the “non-LTR retrotransposons” family. L1 elements in the LINE family, are the only active autonomous retrotransposons, and replicate by a simple “copy and paste” mechanism involving target-site primed reverse transcription (17). Alu elements, the youngest subtypes of SINEs, and SVAs are apparently mobilized in trans by L1s (18, 19). Retrotransposition of these elements occurs in germline, early embryonic development, and in somatic cells (20–22).

In the past 6 Myr, >7,500 transpositions occurred in the primate genome (23). One retrotransposition per 10–100 births is estimated (19, 24). Thus, L1, Alu, and SVA elements have substantially impacted the human genome organization in evolution (25). Furthermore, the non-LTR retrotransposons are caustive agents of human genetic disorders (26, 27); ∼100 cases of disorders caused by non-LTR retrotransposon insertions have been reported (27, 28) (Table 1).

HERVs AND MaLRs EXIST AS NON-TRANSPOSABLE ELEMENTS

In comparison with the intra-nuclear transposition mechanisms of non-LTR retrotransposables, both of the ERV amplification pathways, “retrotransposition,” and “reinfection,” are tricky. The former comprises multiple steps including particle-like assembly in the cytosol, reverse transcription, nuclear translocation, and chromosomal insertion. The latter requires infectious virus particle production followed by germ-line infection ultimately leading to chromosomal integration and fixation (13, 29, 30). Defective ERVs are also able to increase their copy numbers by “complementation in trans,” where a matching element at a different locus serves as the helper (13, 29). These mechanisms underlay the HERV amplification in the past.

However, no evidence of HERV transposition has been detected in present-day humans, either in a scientific or clinical background. Studies suggested 8–17 full-length HERV-K insertions after the divergence of humans from chimpanzees ∼6 Myr ago (31, 32). The insertion of HERV-K113 and -K115 were estimated to be a minimum 0.8–1 Myr ago, and that of HERV-K106 to be ∼150,000 years ago (33, 34). Even though the possibility of the youngest HERV-K mobilization still remains (35), HERVs as transposable elements do not impose a “clear and present danger” to humans. In addition, transposition of the older resident MaLRs is the most improbable.

HUNDREDS OF THOUSANDS OF LTRs IN THE GENOME CAN PROVIDE BINDING SITES FOR TRANSCRIPTION FACTORS

Solitary LTRs, or solo LTRs, were generated from existing HERVs and MaLRs by the loss of internal sequences upon recombination between the 5′ and 3′ LTRs within the same copies or between separate LTRs. The human genome contains ∼50 copies of ERV-9 provirus forms and 3,000–4,000 copies of ERV-9 solitary LTRs (36). A recent study identified 944 HERV-K (HML-2) solitary LTRs versus 91 copies of full-length and nearly full-length HERV-K (HML-2) (14). In general, 85% of the HERV copies consist of solitary LTRs (5). The majority of MaLRs also exist as solitary LTRs (15).

Retrovirus LTRs (300–1300 bp) in the U3–R–U5 architecture are essential for high-level expression of the viral sequences (37). The U3 region contains a TATA box and transcription regulatory sequences which govern ubiquitous or tissue-specific gene expression. For instance, the U3 regions of human immunodeficiency viruses (HIVs) and the group of human T-cell leukemia viruses (HTLVs) have NF-κB and CREB/ATF binding sequences, respectively (38–41). Regulatory factors bind to the cognate cis-acting sequences to induce transcription from the initiation site corresponding to the 5′ terminus of the R region. In fact, the HERV-K (HML-2) LTR has Sp1/Sp3 and microphthalmia-associated transcription factor-M (MITF-M) binding sites in U3 (42, 43).

Therefore, the ∼400,000 copies of the LTR-retroelements scattered throughout the human chromosomes potentially provide extra enhancer-promoter sequences and initiation sites for neighboring cellular genes. By utilization of a nearby LTR as its alternative transcription machinery, one gene can give rise to new isoforms, enhance its transcription, and alter the tissue-specificity. In this context, HERVs and MaLRs could have significantly influenced the human genome evolution (44).

INFLUENCE OF LTR/HERV INSERTIONS ON CELLULAR GENE EXPRESSION IN HUMAN EVOLUTION

More than 25 experimentally characterized cellular genes show LTR-mediated evolutionary changes, in which inserted LTRs act as alternative promoters to provide new tissue-specificity, play as the major promoters, or exert only minor effects (45). For example, anERV-L LTR plays as an alternative promoter of β,3-galactosyltransferase 5 gene (B3GALT5) to induce colon-specific transcription (46). A HERV-K(HML-5) LTR serves as the major promoter of INS1A, a primate-specific insulin-like growth factor gene expressed in placenta (47). A HERV-E family LTR plays as an alternative tissue-specific promoter of the endothelin B receptor (EDNRB) gene, by which the gene expression increased ∼15% in placenta (48). LTR-derived promoters often increase placenta-specific gene expression, although the overall effect of the LTR insertion appears moderate in many cases (45). Notably, the 5′ terminus of a HERV-E insert in reversed orientation provides a salivary-specific enhancer for the human-only amylase gene AMY1C (49, 50).

The LTR of ERV-9 located in the β-globin locus control region (β-LCR) serves as an additional enhancer region for the downstream globin loci (36, 51). The U3 region has 5–17 tandem repeats of 37–41 bases with GAGA, CCAAT, and CCACC motifs, in which the strong affinity of NF-Y, a ubiquitous transcriptional regulatory factor, to the CCAAT motif allows a robust enhancer complex formation with other proteins (52). An ERV-9 LTR upstream of TP63 (p63), a member of the tumor suppressor TP53 (p53) gene family, acts as a strong promoter to express novel p63 isoforms in the testis of hominidae (53). Thus, some of the 5,000 copies of ERV-9 LTRs, 15–38 Myr after their integration (54), are involved in adjacent host gene control.

A HERV-W-derived Env glycoprotein encoded by ERVW-1 (7q21.2) (also termed syncytin-1 or ERVWE1) causes cytotrophoblast fusion, suggesting an essential function in
syncytiotrophoblast formation in placenta tissue development (55). In addition, a HERV-FRD Env protein encoded by ERVFRD-I, or syncytin-2 (6p24), was found to have an immunosuppressive activity (56), while a role in placenta morphogenesis was also suggested (57). In conjunction with the upstream regulatory sequences, the HERV-W LTR drives the strong ERVW-1 expression in placenta (58).

THE HYPOTHESIS OF HERV-MEDIATED ONCOGENESIS
Animal exogenous retroviruses carrying oncogenes can trigger transformation of the host cells by expression of the viral oncogenes (59). The virus env gene can act like an oncogene (60, 61). Retroviruses without an oncogene are also oncogenic. If retroviral integration occurs in the vicinity of a proto-oncogene which typically encodes a growth factor receptor, signaling molecule, or transcriptional activator, the LTR can activate it. “Transduction” of oncogenes and “insertional mutagenesis” by the LTRs represent major retroviral tumorigenesis mechanisms (59, 62). Based on the knowledge of retroviral functions, contribution of HERVs and solitary LTRs to human tumorigenesis has long been hypothesized.

The Np9 and Rec genes overlapping the env gene of HERV-K are particularly intriguing as candidate oncogenes. HERV-K was found as an endogenous retrovirus expressed in teratocarcinoma cell lines in an earlier study (63). Nuclear protein Np9 interacts with E3 ubiquitin ligase Ligand of Numb Protein-X (LNX), and thereby possibly influences the Notch pathway (64). Rec transgenic mice manifest neoplastic changes in the testes which correspond to the precursor phenotype of seminoma in humans (65). The Rec protein enhances androgen receptor-mediated transcription (66). High-level expression of Rec and Np9 also occurs in melanoma (67).

Activation of specific or selective HERVs occurs in various tumors and cell lines (68). HERV-K has been most extensively analyzed in cancers from different tissue origins. For example, HERV-K mRNA and proteins were detected in melanoma tissues and cell lines (69, 70). A recent study identified 24 HERV-K (HML-2) loci being transcribed in melanoma tissues (67). The RT and its enzyme activity increase in breast cancer tissues and hormone-treated cell lines (71). A large population (>85%) of breast cancer patients express HERV-K ENV proteins which elicit both serologic and cell-mediated immune responses (72). HERV-K virus-like particle production was observed in teratocarcinoma cell lines (73, 74). HERV-K Gag and Env proteins are expressed in germ cell tumors, and the patients produce antibodies against these viral proteins (75, 76). Forward and reverse transcripts of several HERV-K loci are detected in prostate cancer cell lines (77). Furthermore, the gag gene of a HERV-H locus on chromosome Xp22 is frequently expressed in colon cancer tissues (78). Ovarian cancer tissues produce the Env proteins of HERV-K, ERV3, and HERV-E (79).

TRANSCRIPTIONAL ACTIVATION OF HERVs BY EPIGENETIC CHANGES IN CANCERS
Transposons undergo long-term epigenetic silencing by DNA methylation, which is stably maintained from gametes to early embryos and the adult tissues (80). Cancer-associated hypomethylation, or derepression, frequently occurs in repeated DNA sequences including heterochromatic DNA repeats, dispersed retrotransposons, and endogenous retroviral elements (81). Although genome-wide hypomethylation in cancers seems to be a side effect of carcinogenesis rather than the cause (82), site-specific hypomethylation may possibly cause re-activation of tumor-related genes leading to initiation and progression of malignancies and other diseases (83).

Recent results show that increased HERV-K (22q11.23) expression in prostate and ovarian cancers is associated with hypomethylation of the HERV-K locus (84, 85). Reduced methylation of CpG dinucleotides within the promoter region corresponds to HERV-W expression in ovarian cancer (86) and HERV-H (Xp22.3) expression in colon, gastric, and pancreatic cancers (87). Hypomethylation of the U3 region of several HERW-W loci seems to be critical for the HERV-W activation in testicular cancer (88).

IDENTIFICATION OF LTRs THAT CONTRIBUTE TO TUMOR IMMUNITY AND ONCOGENESIS
A pioneering study identified a HERV-encoded peptide as a tumor-specific antigen that works in the successful hematopoietic stem cell transplantation for the therapy of metastatic renal cell carcinoma (RCC) (89). The tumor antigen, CT-RCC-1, recognized by RCC-specific CD8+ T cells is encoded by novel spliced variants of the HERV-E transcript from chromosome 6q. Furthermore, this antigen expression results from hypomethylation of the LTR sequences, as well as hypoxia-inducible transcription factor (HIF-2α) binding to the HIF-responsive element (HRE) in the LTR (90). HIF-2α is stabilized in many cases of RCC due to the von Hippel–Lindau (VHL) tumor suppressor gene inactivation. This whole scenario enlightens the relevance of HERVs in cancer biology and treatment.

A study on tumorigenesis of Hodgkin’s lymphoma provided the first and so far only evidence that endogenous LTR activation can be oncogenic (91). These malignant cells strongly express CSF1R, the colony stimulating factor 1 receptor gene, to allow CSF1/CSF1R-dependent cell growth. Intriguingly, a LTR of THE1B (a MaLR family LTR retrotransposon) is located 6.2 kb upstream of the CSF1R coding sequences, and is activated by the loss of CpG methylation to drive the aberrant CSF1R gene expression from the initiation site within the LTR. The regulatory region contains Sp1, GATA, AP-1, and NF-κB binding motifs. Anaplastic large cell lymphomas also have the same CSF1R transcript. Thus, hypomethylation of the THE1B LTR causes the CSF1R oncogene activation, reminiscent of “insertional mutagenesis” by exogenous retroviruses.

POSSIBLE CONTRIBUTION OF HERVs TO AUTOIMMUNE DISEASES
Human endogenous retroviruses have also been implicated in autoimmune diseases including rheumatoid arthritis (RA), multiple sclerosis (MS), and systemic lupus erythematosus (SLE). Expression of multiple HERVs was detected in RA patients (92), and that of HERV-K10 in juvenile RA (93). A recent report indicated a strong linkage between the MS-associated retroviral element (MRSV)-type HERV-W and MS: the env RNA and protein expression significantly increases in the blood and brain cells.
REFERENCES
1. Sverdlov ED. Retroviruses and pri-
mate evolution. Bioessays (2000)
22:161–71. doi:10.1002/(SICI)
1521-1878(200002)22:2<161:
.AID-BIES7>3.0.CO;2-X
2. Bannert N, Kurth R. Retroelem-
ents and the human genome: new perspectives on an old rela-
tion. Proc Natl Acad Sci U S A
(2004) 101:14572–9. doi:10.1073/pnas.0404838101
3. Hughes IF, Coffin JM. Human endogenous retroviral ele-
ments as indicators of ectopic recombination events in the pri-
mate genome. Genetics (2005) 171:183–94. doi:10.1534/
genetics.105.049376
4. Moyes DL, Martin A, Sawyer S, Temperton N, Worthington J, Griffiths DJ, et al. The distrib-
ution of the endogenous retro-
viruses HERV-K113 and HERV-
K115 in health and disease. Genomi-
cs (2005) 86:337–41. doi:
10.1016/j.gene.2005.06.004
5. Lander ES, Linton LM, Birren B, Nusbaum C, Zody MC, Baldwin J, et al. Initial sequencing and analy-
sis of the human genome. Nature
(2001) 409:660–921. doi:10.1038/35075062
6. Paces J, Pavlicek A, Paces V. HERV4: database of human endogenous retroviruses. Nucleic
Acids Res (2002) 30:205–6. doi:
10.1093/nar/30.1.205
7. Ribeiro PM, Harper F, Dupressoir A, Dewannieux M, Pierron G, Hei-
dmann T. An infectious progen-
itator for the murine IAP retro-
transposon: emergence of an intra-
cellular genetic parasite from an ancient retrovirus. Genome Res
(2008) 18:597–609. doi:10.1101/gr.
073486.107
8. Gifford WD, Pfaff SL, Macfar-
lan TN. Transposable elements as genetic regulatory substrates in early develop-
ment. Trends Cell Biol (2013) 23:218–26. doi:10.1016/j.
txc.2013.01.001
9. Jurka J. Repbase update: a data-
base and an electronic journal of repetitive elements. Trends Genet
(2000) 16:418–20. doi:10.1016/S0168-9525(00)02093-X
10. Tristem M. Identification and charac-
terization of novel human endogenous retrovirus families by phylogenetic screening of the human genome mapping project database. J Virol (2000)
74:3715–30. doi:10.1128/JVI.74.8.
3715-3730.2000
11. Mager DL, Medstrand P. Retrovi-
ral repeat sequences. In: Cooper D, editor. Nature Encyclopedia of the Human Genome. Hampshire: MacMillan Publishers (2003). p. 291–315.
12. Benit L, Calteau A, Heidmann T. Charac-
terization of the low-copy HERV-Fc family: evidence for recent integrations in primates of elements with coding enve-
lope genes. Virology (2003) 312:159–68. doi:10.1016/S0042-
6822(03)00163-6
13. Bannert N, Kurth R. The evo-
olutionary dynamics of human endogenous retroviral families. Annu Rev Genomics Hum Genet
(2006) 7:149–73. doi:10.1146/annurev.genom.7.080505.115700
14. Subramanian R, Wildschutte J, Russo C, Coffin J. Identifica-
tion, characterization, and compar-
ative genomic distribution of the HERV-K (HML-2) group of human endogenous retroviruses. Retrovirology (2011) 8:90. doi:
10.1186/1742-4690-8-90
15. Smit AFA. Identification of a new, abundant superfamil of mam-
malian LTR-transposons. Nucleic
Acids Res (1993) 21:1863–72. doi:
10.1093/nar/21.8.1863
16. Lynch C, Tristem M. A co-opted gypsy-type LTR-retrotranspo-
sion is conserved in the genomes of humans, sheep, mice, and rats. Curr Biol (2003) 13:1518–23. doi:
10.1016/S0960-9822(03)00618-3
17. Cost GJ, Peng Q, Jacquier A, Boeke JD. Human L1 element target-primed reverse transcrip-
tion in vitro. EMBO J (2002) 21:5899–910. doi:10.1093/emboj/ cd2592
18. Dewannieux M, Esnault C, Heidmann T. LINE-mediated retrotransposition of marked

ACKNOWLEDGMENTS
The work was partially supported by Grant-in-Aid for Scientific Research (C) 25460475 from MEXT, Japan (to Iyoko Katoh).

CONCLUDING REMARKS
Human endogenous retroviruses are remnant forms of infec-
tious retroviruses that integrated into the chromosomal DNA of germ-line cells of human ancestors, increased their copy num-
bers and have been inherited by present-day humans. None of the HERVs poses an immediate risk as a transposable element. However, solitary LTRs derived from HERVs and MalRs dom-
ninate the provirus forms in the copy numbers, and can serve as redundant enhancer-promoter sequences for nearby cellular
genes. When the DNA methylation-mediated suppression system becomes compromised, HERVs and LTRs can cause detrimen-
tal and/or self-protecting effects. Two prominent examples of the clinically significant HERV/LTR activation have been reported: CSF1r oncone gene activation by a MalR LTR in Hodgkin’s lym-
phoma and RCC-specific novel HERV-E antigen expression facilit-
ing the immunotherapy. Future researches in oncology and immunogenetics will unveil more details about the endogenous LTR functions in human pathogenesis.

ACKNOWLEDGMENTS
The work was partially supported by Grant-in-Aid for Scientific Research (C) 25460475 from MEXT, Japan (to Iyoko Katoh).
25. Deininger PL, Moran JV, Batzer MA, Kazazian HH Jr. Mobile elements and mammalian genome evolution. Curr Opin Genet Dev (2003) 13:651–8.

26. Chen JM, Stenson PD, Cooper DN, Ferec C. A systematic analysis of LINE-1 endonuclease-dependent retrotranspositional events causing human genetic disease. Hum Genet (2005) 117:411–27. doi:10.1007/s00439-005-1321-0

27. Ishow RC, McCabe MT, Mills RE, Torene S, Pittard WS, Neuwald AE, et al. Natural mutagenesis of human genomes by endogenous retrotransposons. Cell (2010) 141:1253–61. doi:10.1016/j.cell.2010.05.020

28. Hancks DC, Kazazian HH Jr. Evolutionary history of the human endogenous retrovirus family ERV9. Mol Biol Evol (2000) 17:320–30. doi:10.1093/molbev/msa063

29. Belshaw R, Katzourakis A, Paces J, Letzelter C, Ribet D, Pierron G, et al. Cross-sectional dating of the human/ape common ancestor retrovirus K106 (HERV-K106) was acquired in Africa before Homo sapiens. Mol Biol Evol (2011) 28:2179–82. doi:10.1093/molbev/msr029

30. Jha AR, Nixon DF, Rosenberg MG, Griffiths DJ. Endogenous retroviruses in the human genome. Genome Biol (2011) 12:1081–92. doi:10.1186/gb-2011-2-6-reviews1017

31. Jha AR, Nixon DF, Rosenberg MG, Griffiths DJ. Endogenous retroviruses in the human genome. Genome Biol (2011) 12:REVIEWS1017. doi:10.1186/gb-2001-2-6-reviews1017

32. Hancks DC, Kazazian HH Jr. Dissemination of full-length endogenous retrovirus element. J Virol (2001) 75:4110–27. doi:10.1128/JVI.75.7.4110-4127.2001

33. Katoh I, Mirova A, Kurata N. Molecular and Cellular Oncology HERVs and LTRs in pathogenesis.

34. Jha AR, Nixon DF, Rosenberg MG, Griffiths DJ. Endogenous retroviruses in the human genome. Genome Biol (2011) 12:REVIEWS1017. doi:10.1186/gb-2001-2-6-reviews1017

35. Katoh I, Mirova A, Kurata N. Molecular and Cellular Oncology HERVs and LTRs in pathogenesis.

36. Katoh I, Mirova A, Kurata N. Molecular and Cellular Oncology HERVs and LTRs in pathogenesis.

37. Katoh I, Mirova A, Kurata N. Molecular and Cellular Oncology HERVs and LTRs in pathogenesis.

38. Katoh I, Mirova A, Kurata N. Molecular and Cellular Oncology HERVs and LTRs in pathogenesis.

39. Katoh I, Mirova A, Kurata N. Molecular and Cellular Oncology HERVs and LTRs in pathogenesis.

40. Katoh I, Mirova A, Kurata N. Molecular and Cellular Oncology HERVs and LTRs in pathogenesis.

41. Katoh I, Mirova A, Kurata N. Molecular and Cellular Oncology HERVs and LTRs in pathogenesis.

42. Katoh I, Mirova A, Kurata N. Molecular and Cellular Oncology HERVs and LTRs in pathogenesis.

43. Katoh I, Mirova A, Kurata N. Molecular and Cellular Oncology HERVs and LTRs in pathogenesis.

44. Katoh I, Mirova A, Kurata N. Molecular and Cellular Oncology HERVs and LTRs in pathogenesis.

45. Katoh I, Mirova A, Kurata N. Molecular and Cellular Oncology HERVs and LTRs in pathogenesis.

46. Katoh I, Mirova A, Kurata N. Molecular and Cellular Oncology HERVs and LTRs in pathogenesis.

47. Katoh I, Mirova A, Kurata N. Molecular and Cellular Oncology HERVs and LTRs in pathogenesis.

48. Katoh I, Mirova A, Kurata N. Molecular and Cellular Oncology HERVs and LTRs in pathogenesis.

49. Katoh I, Mirova A, Kurata N. Molecular and Cellular Oncology HERVs and LTRs in pathogenesis.

50. Katoh I, Mirova A, Kurata N. Molecular and Cellular Oncology HERVs and LTRs in pathogenesis.

51. Katoh I, Mirova A, Kurata N. Molecular and Cellular Oncology HERVs and LTRs in pathogenesis.

52. Katoh I, Mirova A, Kurata N. Molecular and Cellular Oncology HERVs and LTRs in pathogenesis.

53. Katoh I, Mirova A, Kurata N. Molecular and Cellular Oncology HERVs and LTRs in pathogenesis.

54. Katoh I, Mirova A, Kurata N. Molecular and Cellular Oncology HERVs and LTRs in pathogenesis.

55. Katoh I, Mirova A, Kurata N. Molecular and Cellular Oncology HERVs and LTRs in pathogenesis.

56. Katoh I, Mirova A, Kurata N. Molecular and Cellular Oncology HERVs and LTRs in pathogenesis.

57. Katoh I, Mirova A, Kurata N. Molecular and Cellular Oncology HERVs and LTRs in pathogenesis.

58. Katoh I, Mirova A, Kurata N. Molecular and Cellular Oncology HERVs and LTRs in pathogenesis.

59. Katoh I, Mirova A, Kurata N. Molecular and Cellular Oncology HERVs and LTRs in pathogenesis.

60. Katoh I, Mirova A, Kurata N. Molecular and Cellular Oncology HERVs and LTRs in pathogenesis.

61. Katoh I, Mirova A, Kurata N. Molecular and Cellular Oncology HERVs and LTRs in pathogenesis.

62. Katoh I, Mirova A, Kurata N. Molecular and Cellular Oncology HERVs and LTRs in pathogenesis.

63. Katoh I, Mirova A, Kurata N. Molecular and Cellular Oncology HERVs and LTRs in pathogenesis.

64. Katoh I, Mirova A, Kurata N. Molecular and Cellular Oncology HERVs and LTRs in pathogenesis.

65. Katoh I, Mirova A, Kurata N. Molecular and Cellular Oncology HERVs and LTRs in pathogenesis.

66. Katoh I, Mirova A, Kurata N. Molecular and Cellular Oncology HERVs and LTRs in pathogenesis.

67. Katoh I, Mirova A, Kurata N. Molecular and Cellular Oncology HERVs and LTRs in pathogenesis.

68. Katoh I, Mirova A, Kurata N. Molecular and Cellular Oncology HERVs and LTRs in pathogenesis.

69. Katoh I, Mirova A, Kurata N. Molecular and Cellular Oncology HERVs and LTRs in pathogenesis.

70. Katoh I, Mirova A, Kurata N. Molecular and Cellular Oncology HERVs and LTRs in pathogenesis.

71. Katoh I, Mirova A, Kurata N. Molecular and Cellular Oncology HERVs and LTRs in pathogenesis.

72. Katoh I, Mirova A, Kurata N. Molecular and Cellular Oncology HERVs and LTRs in pathogenesis.

73. Katoh I, Mirova A, Kurata N. Molecular and Cellular Oncology HERVs and LTRs in pathogenesis.
HERVs and LTRs in pathogenesis

Katoh and Kurata

1. Golan M, Hizi A, Resau JH, Y aal...
2. Muster T, Waltenberger A, Gras...
3. Büscher K, Trefzer U, Hofmann...
4. Hanke K, Chudak C, Kurth R, Ban...
5. Galli UM, Sauter M, Lecher B, ...
6. Armbruester V, Sauter M, Roemer...
7. Löwer R, Löwer J, T ondera-Koch...
8. Neoplasia
9. scriptase as a breast cancer prog...
10. retrovirus (HERV-K) reverse tran...
11. Cancer Res
e10
12. Cancer Res
e10
13. Cancer Res
e10
14. Cancer Res
e10
15. Cancer Res
e10
16. Cancer Res
e10
17. Cancer Res
e10
18. Cancer Res
e10
19. Cancer Res
e10
20. Cancer Res
e10
21. Cancer Res
e10
22. Cancer Res
e10
23. Cancer Res
e10
24. Cancer Res
e10
25. Cancer Res
e10
26. Cancer Res
e10
27. Cancer Res
e10
28. Cancer Res
e10
29. Cancer Res
e10
30. Cancer Res
e10
31. Cancer Res
e10
32. Cancer Res
e10
33. Cancer Res
e10
34. Cancer Res
e10
35. Cancer Res
e10
36. Cancer Res
e10
37. Cancer Res
e10
38. Cancer Res
e10
39. Cancer Res
e10
40. Cancer Res
e10
41. Cancer Res
e10
42. Cancer Res
e10
43. Cancer Res
e10
44. Cancer Res
e10
45. Cancer Res
e10
46. Cancer Res
e10
47. Cancer Res
e10
48. Cancer Res
e10
49. Cancer Res
e10
50. Cancer Res
e10
51. Cancer Res
e10
52. Cancer Res
e10
53. Cancer Res
e10
54. Cancer Res
e10
55. Cancer Res
e10
56. Cancer Res
e10
57. Cancer Res
e10
58. Cancer Res
e10
59. Cancer Res
e10
60. Cancer Res
e10
61. Cancer Res
e10
62. Cancer Res
e10
63. Cancer Res
e10
64. Cancer Res
e10
65. Cancer Res
e10
66. Cancer Res
e10
67. Cancer Res
e10
68. Cancer Res
e10
69. Cancer Res
e10
70. Cancer Res
e10
71. Cancer Res
e10
72. Wang-Johanning F, Radvanyi L, Rycaj K, Plummer JB, Yan P, Sast...
73. Boller K, König H, Sauter M, Mueller-Lantsch N, Lower R, Löwer J, et al. Evidence that HERV-K is the endogenous retrovirus sequence that codes for the human tetrasaccharin-derived retrovirus HTDV. Virology (1993) 196:349–53. doi:10.1006/viro.1993.1487
74. Lower R, Boller K, Hasenmaier B, Korbmbacher C, Muller-Lantsch N, Lower J, et al. Identification of human endogenous retroviruses with complex mRNA expression and particle formation. Proc Natl Acad Sci U S A (1993) 90:4480–4. doi:10.1073/pnas.90.10.4480
75. Sauter M, Schommer S, Kreemmer E, Remberger K, Dolken G, Lemen I, et al. Human endogenous retrovirus K10: expression of Gag protein and detection of antibodies in patients with seminomas. J Virol (1995) 69:414–21
76. Sauter M, Roemer K, Best B, Afting M, Schommer S, Seitz G, et al. Specificity of antibodies directed against Env protein of human endogenous retroviruses in patients with germ cell tumors. Cancer Res (1996) 56:4362–5
77. Agoni L, Guha C, Lenz J. Detection of human endogenous retrovirus K (HERV-K) transcripts in human prostate cancer cell lines. Front Oncol (2013) 3:180. doi:10.3389/fonc.2013.00180
78. Alves PM, Levy N, Stevenson BJ, et al. Human endogenous retrovirus type W envelope expression in biopsy and blood cells provides new insights into multiple sclerosis. Mult Scler (2012) 18:1721–36. doi:10.1177/135245851144381
79. Laska MJ, Brudek T, Nissen KK, Christensen T, Møller-Larsen A, Petersen T, et al. Expression of HERV-Fc1, a human endogenous retrovirus, is increased in patients with active multiple sclerosis. J Virol (2012) 86:3713–22. doi:10.1128/JVI.00723-11
80. Tsuchiya A, O’Reilly E, Alroy K, Simon K, Munger K, Huber B, et al. Human endogenous retrovirus K18 Env as a risk factor in multiple sclerosis. Mult Scler (2008) 14:175–80. doi:10.1177/1352458508094641
81. de la Hera B, Varadé J, García-Montojo M, Lamas JR, de la Encarnación A, Arroyo R, et al. Role of the human endogenous retrovirus HERV-K18 in autoimmunity disease susceptibility: study in the Spanish population and meta-analysis. PLoS One (2013) 8:e62090. doi:10.1371/journal.pone.0062090
82. Wild L, Flanagan JM. Genome-wide hypomethylation in cancer may be a passive consequence of transformation. Biochim Bio
83. Wilson AS, Power BE, Molloy PL. DNA hypomethylation and human diseases. Biochim Biophys Acta (2007) 1775:138–62.
84. Goering W, Ribarska T, Schulz WA. Selective changes of retroelement expression in human prostate cancer. Car gogenesis (2011) 32:1484–92. doi:10.1093/carcin/bgr181
85. Ibarra A, Mateos JL, Muriel MC, O’Connor M, et al. Derepression of an endogenous retrovirus in the synovial compartment in rheuma toid arthritis. Arthritis Rheum (1997) 40:627–38. doi:10.1002/art.1780400407
86. Sicat J, Sutkowski N, Huber BT. Expression of human endogenous retrovirus HERV-K18 superantigen is elevated in juvenile rheumato id arthritis. J Rheumatol (2005) 32:1821–31.
87. Pernon H, Germi R, Bernard C, García-Montojo M, Deluca A, Farinelli L, et al. Human endogenous retrovirus type W envelope expression in biopsy and blood cells provides new insights into multiple sclerosis. Mult Scler (2012) 18:1721–36. doi:10.1177/135245851144381
Katoh and Kurata HERVs and LTRs in pathogenesis

Dermatol (2005) 153:83–9. doi:10.1111/j.1365-2133.2005.06555.x

100. Nelson PN, Hooley P, Roden D, Davari Ejtehadi H, Ryalance P, Warren P, et al. Human endogenous retroviruses: transposable elements with potential? Clin Exp Immunol (2004) 138:1–9.

101. Tugnet N, Ryalance P, Roden D, Trela M, Nelson P. Human endogenous retroviruses (HERVs) and autoimmune rheumatic disease: is there a link? Open Rheumatol J (2013) 7:13–21. doi:10.2174/1874312901307010013

102. Stauffer Y, Marguerat S, Meylan F, Ucla C, Sutkowski N, Huber B, et al. Interferon-α-induced endogenous superantigen: a model linking environment and autoimmunity. Immunity (2001) 15:59–601. doi:10.1016/S1074-7613(01)00212-6

103. Sutkowski N, Conrad B, Thorley-Lawson DA, Huber BT. Epstein-Barr virus transactivates the human endogenous retrovirus HERV-K18 that encodes a superantigen. Immunity (2001) 15:579–89. doi:10.1016/S1074-7613(01)00210-2

104. Seidl C, Donner H, Petershofen E, Usadel KH, Seifried E, Kaltwasser JP, et al. An endogenous retroviral long terminal repeat at the HLA-DQB1 gene locus confers susceptibility to rheumatoid arthritis. Hum Immunol (1999) 60:63–8. doi:10.1016/S0198-8859(98)00095-0

105. Pascual M, Martin J, Nieto A, Giphart MJ, van der Slak AR, de Vries RR, et al. Distribution of HERV-LTR elements in the 5′-flanking region of HLA-DQB1 and association with autoimmunity. Immunogenetics (2001) 53:114–8. doi:10.1007/s002510100307

106. Pani MA, Seidl C, Bieda K, Seissler J, Krause M, Seifried E, et al. Preliminary evidence that an endogenous retroviral long-terminal repeat (LTR13) at the HLA-DQB1 gene locus confers susceptibility to Addison’s disease. Clin Endocrinol (2002) 56:773–7. doi:10.1046/j.1365-2265.2002.t01-1-01548.x

107. Freimanis G, Hooley P, Ejtehadi HD, Ali HA, Veitch A, Ryalance PB, et al. A role for human endogenous retrovirus-K (HML-2) in rheumatoid arthritis: investigating mechanisms of pathogenesis. Clin Exp Immunol (2010) 160:340–7. doi:10.1111/j.1365-2249.2010.04110.x

108. Geng LN, Yao Z, Snider L, Fong AP, Cech JN, Young JM, et al. DUX4 activates germline genes, retroelements, and immune mediators: implications for facioscapulohumeral dystrophy. Dev Cell (2012) 22:58–51. doi:10.1016/j.devcel.2011.11.013

109. Nakkuntod J, Sukkapan P, Avihingsanon Y, Mutirangura A, Hirankarn N. DNA methylation of human endogenous retrovirus in systemic lupus erythematosus. J Hum Genet (2013) 58:241–9. doi:10.1038/jhg.2013.6

Conflict of Interest Statement: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Received: 30 June 2013; accepted: 27 August 2013; published online: 11 September 2013.

Citation: Katoh I and Kurata S (2013) Association of endogenous retroviruses and long terminal repeats with human disorders. Front. Oncol. 3:234. doi: 10.3389/fonc.2013.00234

This article was submitted to Molecular and Cellular Oncology, a section of the journal Frontiers in Oncology. Copyright © 2013 Katoh and Kurata. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.