AN ANALOG OF LECLERC’S CONJECTURE FOR BASES OF QUANTUM CLUSTER ALGEBRAS

FAN QIN

Abstract. Dual canonical bases are expected to satisfy a certain (double) triangularity property by Leclerc’s conjecture. We propose an analogous conjecture for common triangular bases of quantum cluster algebras. We show that a weaker form of the analogous conjecture is true. Our result applies to the dual canonical bases of quantum unipotent subgroups. It also applies to the t-analogs of q-characters of simple modules of quantum affine algebras.

Contents

1. Introduction 1
1.1. Background 1
1.2. Main results 3
1.3. Contents 3
2. Basics of cluster algebras 4
2.1. Seeds 4
2.2. Mutations 5
2.3. Cluster algebras 6
3. Dominance orders and pointedness 6
3.1. Dominance orders 6
3.2. Pointedness 6
3.3. Tropical transformations and compatibility 8
3.4. Injective-reachability and distinguished functions 11
4. Bidegrees and bases 15
4.1. Bases with different properties 16
4.2. From triangular bases to double triangular bases 17
4.3. Properties of common triangular bases 19
5. Main results 20
5.1. An analog of Leclerc’s conjecture 20
5.2. Properties of dual canonical bases 22
References 24

1. Introduction

1.1. Background.
Dual canonical bases and cluster theory. Let \(\mathfrak{g} \) denote a Kac-Moody algebra with a symmetrizable Cartan datum, and \(U_q = U_q(\mathfrak{g}) \) the corresponding quantized enveloping algebra, where \(q \) is not a root of unity. The negative (or positive) part \(U_q^- \) of \(U_q \) possesses the famous canonical bases [Lus90] [Lus91] [Kas90]. The corresponding dual basis \(B^{\text{up}} \) also has fascinating properties and is related to the theory of total positivity [Lus94].

Fomin and Zelevinsky invented cluster algebras as a combinatorial framework to understand the total positivity [Lus94] and the dual canonical bases \(B^{\text{up}} \). We refer the reader to the survey [Kel08] for further details of cluster algebras.

Let there be given any Weyl group element \(w \in W \). Then the dual canonical basis \(B^{\text{up}} \) of \(U_q^- \) restricts to a basis \(B^{\text{up}}(w) = B^{\text{up}} \cap A_q[N^-(w)] \) for the quantum unipotent subgroup \(A_q[N^-(w)] \), see [Kim12]. Notice that, if \(\mathfrak{g} \) is a finite dimensional semi-simple Lie algebra, then \(A_q[N(w_0)] \) agrees with \(U_q^- \) where \(w_0 \) denotes the longest element in \(W \).

Thanks to previous works (such as [BFZ05] [BZ05] [GLS11] [GLS13] [GY16] [GY20]), it is known that the quantum unipotent subgroup \(A_q[N^-(w)] \) is a (partially compactified) quantum cluster algebra \(\mathcal{A}_q(t_0) \), where the initial seed \(t_0 = t_0(\overrightarrow{w}) \) is constructed using a reduced word \(\overrightarrow{w} \) of \(w \). By Fomin and Zelevinsky [FZ02], the dual canonical basis \(B^{\text{up}}(w) \) is expected to contain all quantum cluster monomials, which was formulated as the quantization conjecture for Kac-Moody cases in [Kim12]. This conjecture has been verified for acyclic cases by [HL10] [Nak11] [KQ14], for symmetric semisimple cases and partially for symmetric Kac-Moody cases by [Qin17], for all symmetric Kac-Moody cases by [KKKO18], and recently, for all symmetrizable Kac-Moody cases by [Qin20].

Leclerc’s conjecture. A basis element \(b \in B^{\text{up}} \subset U_q^- \) is said to be real if \(b^2 \in q\mathbb{Z} B^{\text{up}} \). Leclerc proposed the following conjecture regarding the multiplication by a real element of \(B^{\text{up}} \), which is analogous to Kashiwara crystal graph operator.

Conjecture 1.1.1 (Leclerc’s Conjecture [Lec03, Conjecture 1]). Assume that \(b_1 \) is a real element of \(B^{\text{up}} \). Then, for any \(b_2 \in B^{\text{up}} \) such that \(b_1 b_2 \notin q\mathbb{Z} B^{\text{up}} \), the expansion of their product on \(B^{\text{up}} \) takes the form

\[
(1.1) \quad b_1 b_2 = q^h b' + q^s b'' + \sum_{c \neq b', b''} \gamma_{b_1, b_2} c
\]

where \(b' \neq b'' \), \(h < s \in \mathbb{Z} \), \(\gamma_{b_1, b_2} \in q^{h+1}\mathbb{Z}[q] \cap q^{s-1}\mathbb{Z}[q^{-1}] \).

This conjecture was proved by [KKKO18] for symmetric Kac-Moody cases using quiver Hecke algebras [KL09] [KL10] [Rou08].
1.2. Main results. By [Qin17] [KK19] [Qin20], after localization and rescaling, the dual canonical basis $B^\text{up}(w)$ agrees with the common triangular basis of the corresponding quantum cluster algebra in the sense of [Qin17]. Correspondingly, we formulate the following analog of Leclerc’s conjecture.

Conjecture 1.2.1 (Conjecture 5.1.3). *Conjecture 1.1.1 is true if we replace the dual canonical basis by the common triangular basis.*

Recall that the quantum cluster monomials provide a subset of the real elements in the dual canonical basis $B^\text{up}(w)$ (we conjecture that all real elements take this form, see Conjecture 5.2.2). Our first main result is the following weaker form of the analogous conjecture.

Theorem 1.2.2 (Theorem 5.1.2). *Conjecture 1.2.1 is true for the real basis elements corresponding to quantum cluster monomials.*

Theorem 1.2.2 implies a triangularity property for the t-analsogs of q-characters of simple modules of quantum affine algebras (Theorem 5.1.4) and a possible categorical interpretation (Remark 5.1.5).

Our second main result follows as a consequence of Theorem 1.2.2.

Theorem 1.2.3 (Theorem 5.2.1). *If we consider the dual canonical basis $B^\text{up}(w)$ of the quantum unipotent subgroup $A_q[N_-(w)]$, then Conjecture 1.1.1 holds true for the real elements corresponding to quantum cluster monomials.*

In order to study the analog of Leclerc’s conjecture and prove Theorem 1.2.2, we will consider not only triangularity with respect to degrees but also triangularity with respect to codegrees. Correspondingly, we introduce the notion of double triangular bases (Definition 4.1.5). We show that the common triangular basis is necessarily the double triangular basis with respect to every seed (Theorem 4.3.2).

It is worth remarking that, if the cluster algebra is categorified by a rigid monoidal category, then degrees and codegrees are related to the two different ways of taking the dual objects in the category, see [KK19].

1.3. Contents. In Section 2, we briefly review basic notions in cluster theory needed by this paper.

In Sections 3.1, 3.2, we review notions and techniques introduced and studied by [Qin17] [Qin19] such as dominance orders, (co)degrees, (co)pointed functions. In Section 3.3, we define tropical transformation for codegrees in analogous to that for degrees. In Section 3.4, we review the notion of injective-reachability, and define the set of distinguished functions I^t, P^t for seeds t, and we present some related statements.

In Section 4, we define various bases whose degrees or codegrees satisfy certain properties. In particular, we introduce the notion of double triangular bases. We discuss the relation between double triangular
bases and (common) triangular bases. We prove that common triangular bases have good properties on their codegrees (Theorem 4.3.2).

In Section 5, we propose an analog of Leclerc’s conjecture for common triangular bases (Conjecture 5.1.3) and show a weaker form holds true (Theorem 5.1.2). We discuss its consequence for modules of quantum affine algebras (Theorem 5.1.4, Remark 5.1.5). We deduce that the weaker form is satisfied by the dual canonical bases of $U_q(w)$ (Theorem 5.2.1).

2. Basics of cluster algebras

We briefly review notions in cluster theory necessary for this paper following [Qin17] [Qin19] [Qin20]. A reader unfamiliar with cluster theory is referred to [Kel08] [BZ05] for background materials.

Denote $\mathbb{k} = \mathbb{Z}[q^\frac{1}{2}, q^{-\frac{1}{2}}] = \mathbb{Z}[v^\pm 1]$, where $v = q^{\frac{1}{2}}$ is a formal parameter. Define $m = v^{-1}\mathbb{Z}[v^{-1}]$. Notice that we have a natural bar involution $\overline{\cdot}$ on \mathbb{k} which sends v to v^{-1}. Let $(\cdot)^T$ denote the matrix transposition and $[\cdot]_+$ denote the function $\max(0, \cdot)$.

2.1. Seeds. Fix a finite set of vertices I and its partition $I = I_u \sqcup I_f$ into the unfrozen and frozen vertices.

Let there be given a quantum seed $t = (\tilde{B}(t), \Lambda(t), (X_i(t))_{i\in I})$ where $X_i(t)$ are indeterminate, the integer matrices $\tilde{B}(t) = (b_{ij}(t))_{i,j \in I_u}$ and $\Lambda(t) = (\Lambda_{ij}(t))_{i,j \in I}$ form a compatible pair, i.e. there exists some diagonal matrix $D = \text{diag}(d_k)_{k \in I_u}$ with strictly positive integer diagonals, such that $\tilde{B}(t)^T \Lambda(t) = \begin{pmatrix} D & 0 \end{pmatrix}$. $X_i(t)$ are called the i-th X-variables or quantum cluster variables associated to t, $\tilde{B}(t)$ the \tilde{B}-matrix, $\Lambda(t)$ the Λ-matrix, and $B(t) := (b_{ij}(t))_{i,j \in I_u}$ the principal part of $\tilde{B}(t)$ or the B-matrix.

Lemma 2.1.1 ([BZ05]). (1) We have $d_i b_{ik}(t) = -d_k b_{ki}(t)$ for $i, k \in I_u$.

(2) The matrix $\tilde{B}(t)$ is of full rank $|I_u|$.

Define the following lattices (of column vectors):

$$M^o(t) = \bigoplus_{i \in I} \mathbb{Z} f_i(t) \cong \mathbb{Z}^I$$
$$N_{uf}(t) = \bigoplus_{k \in I_u} \mathbb{Z} e_k(t) \cong \mathbb{Z}^{I_u},$$

where $f_i(t)$, $e_k(t)$ denote the i-th and k-th unit vectors respectively. Denote $N_{uf}^0(t) = \bigoplus_{k \in I_u} \mathbb{N} e_k(t) \cong \mathbb{N}^{I_u}$.

Define the linear map $p^*: N_{uf}(t) \to M^o(t)$ such that $p^* n = \tilde{B}(t)n$. Let λ denote the bilinear form on $M^o(t)$ such that

$$\lambda(g,g') = g^T \Lambda(t) g'.$$

Lemma 2.1.2. For any $i \in I$, $k \in I_u$, we have $\lambda(f_i(t), p^* e_k(t)) = -\delta_{ik} d_k$.

The group algebra of \(M^\circ(t) \) is the Laurent polynomial ring \(\mathbb{k}[M^\circ(t)] := \mathbb{k}[X(t)^m]_{m \in M^\circ(t)} = \mathbb{k}[X_i(t)]_{i \in I} \) with the usual addition and multiplication \((\cdot, \cdot)\), where we denote \(X(t)^{f(t)} = X_i(t) \).

The quantum Laurent polynomial ring (also called the quantum torus) \(\mathcal{LP}(t) \) associated to \(t \) is defined as the commutative algebra \(\mathbb{k}[M^\circ(t)] \) further endowed with the twisted product \(*\):

\[
X(t)^m \ast X(t)^{m'} = v^{\lambda(m, m')} X(t)^{m+m'}.
\]

By the algebraic structure on \(\mathcal{LP}(t) \), we mean \((+, \ast)\) unless otherwise specified.

The monomials \(X(t)^m, m \in \mathbb{N}^I \), are called the quantum cluster monomials associated to \(t \). The Laurent monomials \(X(t)^m, m \in \mathbb{N}^I \oplus \mathbb{Z}^I \), are called the localized quantum cluster monomials associated to \(t \).

Define the \(Y \)-variables to be \(Y_k(t) := X(t)^{p^k_e(t)}, k \in I_{af} \). Denote \(Y(t)^n = X(t)^{p^k_n} \) for \(n \in N_{af}(t) \).

We also define \(\mathcal{F}(t) \) to be the skew field of fractions of \(\mathcal{LP}(t) \).

For simplicity, we often omit the symbol \(t \) when there is no confusion.

2.2. Mutations. For any \(k \in I_{af} \), we have an operation called mutation \(\mu_k \) which gives us a new seed \(\mu_k t = \mu_k t = (\tilde{B}(t'), \Lambda(t'), (X_i(t'))_{i \in I} \) where \(X'_i := X_i(t') \) are indeterminate. See [BZ05] for precise definitions of \(\tilde{B}(t'), \Lambda(t') \). Recall that we have \(\mu_k^2 t = t \).

Given any initial seed \(t_0 \), we let \(\Delta^+_0 \) denote the set of seeds obtained from \(t_0 \) by iterated mutations. Then we have \(\Delta^+_0 = \Delta^+ \) if \(t \in \Delta^+_0 \). Throughout this paper, we will always work with seeds from the same set \(\Delta^+ = \Delta^+_0 \) where the initial seed \(t_0 \) is often omitted for simplicity.

For simplicity, denote \(t = (\tilde{B}, \Lambda, (X_i)) \) and \(t' = (\tilde{B}', \Lambda', (X'_i)) \).

Denote \(v_k = v^{d_k} \). Recall that there is an algebra isomorphism \(\mu_k^* : \mathcal{F}(t') \simeq \mathcal{F}(t) \) called the mutation birational map, such that

\[
\mu_k^*(X'_i) = \begin{cases}
X_i & i \not= k \\
-v^{(f_k, \sum_{j \in I} [-bj_k]+f_j)} X^{-1}_{k} \ast (X^{\sum_{j \in I} [-bj_k]+f_j} v_k^{-1} X^\sum_{i \in I} [b_{ij_k}]+f_i) & i = k
\end{cases}
\]

Notice that we can also write \(\mu_k^*(X'_i) = X^{-f_k+\sum_{j \in I} [-bj_k]+f_j} \cdot (1 + Y_k) \).

Recall that \((\mu_k^*)^2 \) is an identity.

Let there be given any seed \(t' = \mu_{\rho}^{*} t \), where \(\mu_{\rho}^{*} t = \mu_{\rho}^{*} = \mu_{k_1} \cdots \mu_{k_2} \mu_{k_1} \) is a sequence of mutations (read from right to left). We define the mutation birational map \(\tilde{\mu}_{t', t}^{*} : \mathcal{F}(t') \simeq \mathcal{F}(t) \) as the composition \(\mu_{k_1}^{*} \cdots \mu_{k_2}^{*} \).

It is known that \(\tilde{\mu}_{t', t}^{*} \) is independent of the choice for the mutation sequence \(\mu_{\rho}^{*} t \) from \(t \) to \(t' \). Define \(\hat{\mu}_{t, t'}^{*} = \tilde{\mu}_{t', t}^{-1} \). Then it is clear that \(\hat{\mu}_{t', t}^{*} = \tilde{\mu}_{t, t'}^{* \ast} \).

Notice that, if \(i \in I_t \), we have \(\hat{\mu}_{t', t}^{*} X_i(t') = X_i(t) \) for all \(t' \in \Delta^+ \). Correspondingly, we call \(X_i(t'), i \in I_t, t' \in \Delta^+ \), the frozen variables,
and denote them by X_i for simplicity. Define the set of frozen factors to be $\mathcal{P} = \{X^m | m \in \mathbb{Z}^l\}$.

2.3. Cluster algebras. Let there be given a quantum seed $t \in \Delta^+$.

Definition 2.3.1. The (partially compactified) quantum cluster algebra $\mathcal{A}_q(t)$ is defined to be the k-subalgebra of $\mathcal{L}\mathcal{P}(t)$ generated by the quantum cluster variables $\tilde{\mu}_{t',t}^* X_i(t')$, $i \in I$, $t' \in \Delta^+$.

The (localized) quantum cluster algebra $\mathcal{A}_q(t)$ is defined to be the localization of $\mathcal{A}_q(t)$ at \mathcal{P}.

The upper quantum cluster algebra $\mathcal{U}_q(t)$ is defined to be $\bigcap_{t' \in \Delta^+} \tilde{\mu}_{t',t}^* \mathcal{L}\mathcal{P}(t')$.

Recall that we have $\mathcal{A}_q(t) \subset \mathcal{A}_q(t) \subset \mathcal{U}_q(t)$. Moreover, for $t, t' \in \Delta^+$, we have $\tilde{\mu}_{t',t}^* \mathcal{U}_q(t') = \mathcal{U}_q(t)$, $\tilde{\mu}_{t',t}^* \mathcal{A}_q(t') = \mathcal{A}_q(t)$, $\tilde{\mu}_{t',t}^* \mathcal{A}_q(t') = \mathcal{A}_q(t)$. It is sometimes convenient to forget the symbols t, t' by viewing $\tilde{\mu}_{t',t}^*$ as an identification.

3. Dominance orders and pointedness

In this section, we recall the notions and some basic results concerning dominance orders and pointed functions from [Qin17] [Qin19]. We also describe properties of codegrees and copointed functions in analogous to those of degrees and pointed functions.

3.1. Dominance orders.

Definition 3.1.1 (Dominance order). We denote $g' \preceq_t g$ if there exists some $n \in N_{af}^0(t)$ such that $g' = g + p^* n$. In this case, we say g' is dominated by g, or g' is inferior to g.

The meanings of symbols $\prec_t, \succ_t, \succeq_t$ are given in the obvious way.

Lemma 3.1.2 ([Qin17]). For any $g, g' \in M^0(t)$, there exist finitely many g'' such that $g'' \preceq_t g$ and $g'' \succeq_t g'$.

3.2. Pointedness. Let there be given a quantum seed t.

Notice that $\mathcal{L}\mathcal{P}(t)$ has a subring $k[N_{af}^0(t)] := k[Y_k(t)]_{k \in I_{af}}$. Let $k[Y_k(t)]_{k \in I_{af}}$ denote the completion of $k[Y_k(t)]_{k \in I_{af}}$ with respect to the maximal ideal generated by $Y_k(t)$, $k \in I_{af}$. The formal completion of $\mathcal{L}\mathcal{P}(t)$ is defined to be

$$
\widehat{\mathcal{L}\mathcal{P}}(t) = \mathcal{L}\mathcal{P}(t) \otimes_{k[Y_k(t)]_{k \in I_{af}}} k[Y_k(t)]_{k \in I_{af}}.
$$

Elements in $\widehat{\mathcal{L}\mathcal{P}}(t)$ will be called functions or formal Laurent series.

Similarly, we consider the subring $k[Y_k^{-1}(t)]_{k \in I_{af}}$ of $\mathcal{L}\mathcal{P}(t)$ and its completion $k[Y_k^{-1}(t)]_{k \in I_{af}}$ with respect to the maximal ideal generated by $Y_k^{-1}(t)$, $k \in I_{af}$. We define the following completion of $\mathcal{L}\mathcal{P}(t)$:

$$
\widehat{\mathcal{L}\mathcal{P}}(t) := \mathcal{L}\mathcal{P}(t) \otimes_{k[Y_k^{-1}(t)]_{k \in I_{af}}} k[Y_k^{-1}(t)]_{k \in I_{af}}.
$$
By a formal sum, we mean a possibly infinite sum. Let Z denote a formal sum $Z = \sum_{m \in M^\circ(t)} b_m X(t)^m$. Notice that it belongs to $\hat{\mathcal{LP}}(t)$ (resp. $\hat{\mathcal{LP}}(t)$) if and only if its Laurent degree support $\text{supp}_{M^\circ(t)} Z = \{m|b_m \neq 0\}$ has finitely many \prec_t-maximal elements (resp. finitely many \prec_t-minimal elements).

Definition 3.2.1 ((Co)degrees and (co)pointedness). The formal sum Z is said to have degree g if $\text{supp}_{M^\circ(t)} Z$ has a unique \prec_t-maximal element g, and we denote $\text{deg}^t Z = g$. It is said to be pointed at g or g-pointed if we further have $b_g = 1$.

The formal sum Z is said to have codegree η if $\text{supp}_{M^\circ(t)} Z$ has a unique \prec_t-minimal element η, and we denote $\text{codeg}^t Z = \eta$. It is said to be copointed at η or η-copointed if we further have $b_\eta = 1$.

Let there be given a set S. It is said to be $M^\circ(t)$-pointed if it takes the form $S = \{S_g\mid g \in M^\circ(t)\}$ where S_g are g-pointed functions in $\hat{\mathcal{LP}}(t)$. Similarly, it is said to be $M^\circ(t)$-copointed, if it takes the form $S = \{S_\eta\mid \eta \in M^\circ(t)\}$ where S_η are η-copointed functions in $\hat{\mathcal{LP}}(t)$.

Definition 3.2.2 (Normalization). Let $\mathcal{F}(k)$ denote the fraction field of k. If Z has degree g, we define its (degree) normalization in $\hat{\mathcal{LP}}(t) \otimes_k \mathcal{F}(k)$ to be

$$[Z]^t : = b_g^{-1}Z.$$

Similarly, if Z has codegree η, we define its codegree normalization in $\hat{\mathcal{LP}}(t) \otimes_k \mathcal{F}(k)$ to be:

$$\{Z\}^t : = b_\eta^{-1}Z.$$

Definition 3.2.3 (Degree triangularity). A formal sum $\sum_j b_j Z_j$ of pointed elements $Z_j \in \hat{\mathcal{LP}}(t)$, $b_j \in k$, is said to be degree \prec_t-unitriangular, or \prec_t-unitriangular for short, if $\{\text{deg}^t Z_j\mid b_j \neq 0\}$ has a unique \prec_t-maximal element $\text{deg}^t Z_{j_0}$ and $b_{j_0} = 1$. It is further said to be degree (\prec_t, m)-unitriangular, or (\prec_t, m)-unitriangular for short, if we further have $b_j \in m$ for $j \neq j_0$.

Definition 3.2.4 (Codegree triangularity). A formal sum $\sum_j b_j Z_j$ of copointed elements $Z_j \in \hat{\mathcal{LP}}(t)$, $b_j \in k$, is said to be codegree \succ_t-unitriangular if $\{\text{codeg}^t Z_j\mid b_j \neq 0\}$ has a unique \succ_t-minimal element $\text{codeg}^t Z_{j_0}$ and $b_{j_0} = 1$. It is further said to be codegree (\succ_t, m)-unitriangular, if we further have $b_j \in m$ for $j \neq j_0$.
Notice that, Lemma 3.1.2 implies that a degree \(\preceq_t \)-unitriangular sum is a well-defined sum in \(\widehat{LP}(t) \) and, similarly, a codegree \(\succ_t \)-unitriangular sum is a well-defined sum in \(\widehat{LP}(t) \).

Lemma 3.2.5. (1) [Qin17] Let there be given a \(M^o(t) \)-pointed set \(S \), then any pointed function \(Z \in \widehat{LP}(t) \) can be written uniquely as a (degree) \(\preceq_t \)-unitriangular sum in terms of \(S \).

(2) Let there be given a \(M^c(t) \)-copointed set \(S \), then any copointed element \(Z \in \widehat{LP}(t) \) can be written uniquely as a codegree \(\succ_t \)-unitriangular sum in terms of \(S \).

Proof. (1) is proved as in [Qin17, Lemma 3.1.10(i)], see also [Qin19, Definition-Lemma 4.1.1].

(2) can be proved similarly, or we can deduce it from (1) by using the map \(\iota \) defined in (3.2).

In the cases of Lemma 3.2.5, we say \(Z \) is (degree) \(\preceq_t \)-unitriangular to \(S \) or codegree \(\succ_t \)-unitriangular to \(S \) respectively. It is further said to be (degree) \((\preceq_t, m) \)-unitriangular to \(S \) or codegree \((\succ_t, m) \)-unitriangular to \(S \) respectively, if its decomposition in \(S \) has such properties.

3.3. Tropical transformations and compatibility.

As before, let there be given seeds \(t' = \overrightarrow{\mu} t \), where \(\overrightarrow{\mu} = \overrightarrow{\mu_{t,t'}} \) is a sequence of mutations. Denote \(\overrightarrow{\mu_{t,t'}} = \overrightarrow{\mu_{t',t}}^{-1} \). Denote the \(i \)-th cluster variables associated to \(t \) and \(t' \) by \(X_i \) and \(X_i' \) respectively. Let \(f_i, f_i' \) denote the \(i \)-th unit vectors associated to \(t \) and \(t' \) respectively.

Definition 3.3.1 (Tropical transformation). If \(t' = \mu_k t \), \(k \in I_{af} \), we define the (degree) tropical transformation \(\phi_{t,t'} : M^o(t) \simeq M^o(t') \) such that, for any \(g = (g_i)_{i \in I} \in M^o(t) \simeq \mathbb{Z}^I \), its image \(\phi_{t,t'} g = (g'_i)_{i \in I} \in M^o(t') \simeq \mathbb{Z}^I \) is given by

\[
\begin{align*}
g'_i &= \begin{cases}
eg g_k & i = k, \\ g_i + b_k[g_k]^+ & i \neq k, \ b_k \geq 0, \\ g_i + b_k[-g_k]^+ & i \neq k, \ b_k < 0 \end{cases}
\end{align*}
\]

In general, we define the (degree) tropical transformation \(\phi_{t,t'} : M^o(t) \simeq M^o(t') \) as the composition of the tropical transformations for adjacent seeds along the mutation sequence \(\overrightarrow{\mu} \) from \(t \) to \(t' \). By [GHK15], \(\phi_{t,t'} \) is the tropicalization of certain birational maps between the split algebraic tori associate to \(t, t' \) and, consequently, independent of the choice of \(\overrightarrow{\mu} \).

Recall that \(\overrightarrow{\mu_{t,t'}} X_i \) is a pointed Laurent polynomial in \(LP(t') \) by [DWZ10] [Tra11] [GHKK18].
Definition 3.3.2 (Degree linear transformation [Qin19, Definition 3.3.1]).
 Define \(\psi_{r,t} : M^\circ(t) \simeq M^\circ(t') \) to be the linear map such that \(\psi_{r,t}(f_i) = deg^r \hat{\mu}_{t,t'}^{*} X_i \).

By [Qin19, Lemma 3.3.4], the mutation map \(\hat{\mu}_{t,t'}^{*} : F(t) \simeq F(t') \) induces an injective algebra homomorphism \(\hat{\mu} : \mathcal{LP}(t) \hookrightarrow \mathcal{LP}(t') \). It has the following property.

Lemma 3.3.3 ([Qin19]). For any \(m \in \mathbb{Z}^d \), \(\hat{\mu}X^m \) is a well-defined function in \(\mathcal{LP}(t') \) pointed at degree \(\psi_{r,t}m \).

Moreover, for \(Z \in \mathcal{LP}(t) \cap \mathcal{LP}(t') \), we have \(\hat{\mu}(Z) = \hat{\mu}_{t,t'}^{*}Z \), see [Qin19, Lemma 3.3.4]. Correspondingly, denote \(\hat{\mu} \) by \(\hat{\mu}_{t,t'}^{*} \), for simplicity.

Consider the following set of Laurent polynomials

\[
\mathcal{LP}(t; t') : = \mathcal{LP}(t) \cap \mathcal{LP}(t').
\]

Then \(\mathcal{LP}(t; t') \) is a \(k \)-algebra, such that \(\hat{\mu}_{t,t'}^{*} \mathcal{LP}(t; t') = \mathcal{LP}(t; t) \).

The following very useful result shows that certain mutation sequences swap pointedness and copointedness.

Proposition 3.3.4 (Swap [Qin19, Propositions 3.3.9, 3.3.10]). (1) For any \(g, \eta \in M^\circ(t) \), we have \(\eta \preceq g \) if and only if \(\psi_{[-1],t} \eta \preceq \psi_{[-1],t}g \).

(2) Let there be given \(Z \in \mathcal{LP}(t; [-1]) \subset \mathcal{LP}(t) \). Then \(Z \) is \(\eta \)-copointed if and only if \(\hat{\mu}_{t,t}^{*} Z \) is \(\psi_{[-1],t} \eta \)-pointed.

Definition 3.3.5 (Compatibility). If \(Z \) belongs to \(\mathcal{LP}(t; t') \subset \mathcal{LP}(t) \), then \(Z \) is said to be compatibly pointed at \(t, t' \) if it is \(g \)-pointed for some \(g \in M^\circ(t) \), and \(\hat{\mu}_{t,t'}^{*} Z \) is \(\phi_{r,t,g} \)-pointed.

If \(Z \) belongs to \(\mathcal{U}_q(t) \subset \mathcal{LP}(t) \), then \(Z \) is said to be compatibly pointed at \(\Delta^+ \) if it is compatibly pointed at \(t, t' \) for any \(t' \in \Delta^+ \).

Let \(S \) denote a set consisting of \(g \)-pointed functions \(S_g \subset \mathcal{LP}(t) \) for distinct \(g \in M^\circ(t) \). If \(S_g \) are compatibly pointed at \(t, t' \) for all \(g \), we say \(S \) is compatibly pointed at \(t, t' \), or the pointed sets \(S \) and \(\hat{\mu}_{t,t'}^{*} S \) are (degree) compatible.

Definition 3.3.6 (Codegree tropical transformation). For any seeds \(t' = \mu_{k,t}, k \in I_{af} \), we define the codegree tropical transformation \(\phi_{r,t}^{\circ} : M^\circ(t) \simeq M^\circ(t') \) as such that, for any \(g = (g_i)_{i \in I} \in M^\circ(t) \simeq \mathbb{Z}^I \), its image \(\phi_{r,t}^{\circ} g = (g_i)_{i \in I} \in M^\circ(t') \simeq \mathbb{Z}^I \) is given by

\[
g'_i = \begin{cases}
-g_k & i = k \\
g_i - b_{ik}g_k & i \neq k, \ b_{ik} \leq 0 \\
g_i - b_{ik}[-g_k]_+ & i \neq k, \ b_{ik} > 0
\end{cases}
\]
In general, we define the codegree tropical transformation \(\phi^\op_{v,t} : M^\circ(t) \simeq M^\circ(t') \) as the composition of the codegree tropical transformations for adjacent seeds along the mutation sequence \(\hat{\mu} \) from \(t \) to \(t' \).

Let us justify our definition of the codegree tropical transformation.

To any given seed \(t = (\check{B}, \Lambda, (X_i)_{i \in I}) \), we associate the opposite seed \(t' := t^\op = (-\check{B}, -\Lambda, (X_i)_{i \in I}) \). Then [Qin19, Lemma 2.2.5] implies that, for any mutation sequence \(\hat{\mu} \), we have \((\hat{\mu})^\op = \hat{\mu}^\op \).

Let us define \(\iota : M^\circ(t) \simeq M^\circ(t^\op) \) as an isomorphism on \(\mathbb{Z}^I \) such that \(\iota(f_i(t)) = \iota(f_i(t^\op)) \). Correspondingly, by defining \(\iota(X^m) = X^m \), we obtain natural \(k \)-algebra anti-isomorphisms

\[
\iota : \mathcal{LP}(t) \simeq \mathcal{LP}(t^\op) \tag{3.1}
\]
\[
\iota : \mathcal{LP}(t) \simeq \mathcal{LP}(t^\op) \tag{3.2}
\]
\[
\iota : \mathcal{LP}(t) \simeq \mathcal{LP}(t^\op). \tag{3.3}
\]

Notice that \(\iota : \mathcal{LP}(t) \simeq \mathcal{LP}(t^\op) \) induces an anti-isomorphism \(\iota : \mathcal{F}(t) \simeq \mathcal{F}(t^\op) \).

For any given \(k \in I_{st} \), we have \(\mu_k(t^\op) = (\mu_k t)^\op \). It is straightforward to check the commutativity of the following diagram:

\[
\begin{array}{ccc}
\mathcal{F}(t) & \xrightarrow{\iota} & \mathcal{F}(t^\op) \\
\uparrow \mu_k^* & & \uparrow \mu^*_k \\
\mathcal{F}(\mu_k t) & \xrightarrow{\iota} & \mathcal{F}(\mu_k(t^\op))
\end{array}
\tag{3.4}
\]

In particular, \(\iota(\mu_k^* X_i(\mu_k t)) = \mu_k^*(\iota X_i(\mu_k t)) \) is given by \(X_i(t^\op) \) if \(i \neq k \), or \(X(t^\op) - f_k(t^\op) + \sum_{j \in I} \mu_k^* X_j(t^\op) + X(t^\op) - f_k(t^\op) + \sum_{j \in I} \mu_k^* X_j(t^\op) \) if \(i = k \).

Notice that \(Y(t)^n = X^B \) while \(Y(t^\op)^n = X^B \). It follows that \(Z \in \mathcal{LP}(t) \) is \(g \)-pointed if and only if \(\iota Z \in \mathcal{LP}(t^\op) \) is \(g \)-copointed. We have the following result.

Lemma 3.3.7. Let there be given seeds \(t' = \hat{\mu}_{v,t} \). Then the codegree tropical transformation \(\phi^\op_{v,t} : M^\circ(t) \simeq M^\circ(t') \) equals the composition

\[
M^\circ(t) \xrightarrow{\phi^\op(v,t) \circ \phi^\op_{v,t}} M^\circ(t^\op) \xrightarrow{\iota} M^\circ(t').
\]

In particular, it is independent of the choice of \(\hat{\mu}_{v,t} \).

Proof. By the commutativity between \(\iota \) and mutations, it suffices to check the claim for adjacent seeds \(t' = \mu_k t \), which follows from definition.

\(\square \)

Notice that we have \(\mathcal{LP}(t; t') = \iota \mathcal{LP}(t^\op; (t')^\op) \) and \(\mathcal{U}_q(t) = \iota(\mathcal{U}_q(t^\op)) \) by the commutativity between \(\iota \) and mutations.

Definition 3.3.8 (Codegree compatibility). If \(Z \) belongs to \(\mathcal{LP}(t; t') \subset \mathcal{LP}(t) \), then \(Z \) is said to be compatibly copointed at \(t, t' \) if it is \(\eta \)-copointed for some \(\eta \in M^\circ(t) \), and \(\tilde{\mu}_{t, t'} Z \) is \(\phi^\op_{v,t} \eta \)-copointed.
If Z belongs to $\mathcal{U}_q(t) \subset \mathcal{LP}(t)$, then Z is said to be compatibly copointed at Δ^+ if it is compatibly copointed at t, t' for any $t' \in \Delta^+$.

Let S denote a set consisting of η-copointed elements $S^\eta \in \mathcal{LP}(t)$ for distinct $\eta \in M^\circ(t)$. If S^η is compatibly copointed at t, t' for all η, we say S is compatibly copointed at t, t', or the copointed sets S and S^η are (codegree) compatible.

Remark 3.3.9. We refer the reader to [KK19, Section 3.5] for a categorical view of the degrees and the codegrees together with their tropical transformations, which are obtained by taking dual objects in the module category of quiver Hecke algebras.

3.4. Injective-reachability and distinguished functions

Let σ denote a permutation of I_{af}. For any mutation sequence $\check{\mu} = \mu_{k_r} \cdots \mu_{k_1}$, we define $\check{\sigma} = \sigma_{k_r} \cdots \sigma_{k_1}$.

Let $pr_{I_{af}}$ and pr_{I_t} denote the natural projection from \mathbb{Z}^I to $\mathbb{Z}^{I_{af}}$ and \mathbb{Z}^H respectively.

Definition 3.4.1 ([Qin17, Definition 5.1.1]). A seed t is said to be injective-reachable if there exists a mutation sequence $\check{\mu} = \check{\mu}_{\check{\nu}, t}$ and a permutation σ of I_{af}, such that the seed $t' = \check{\mu}_{\check{\nu}, t}$ satisfies $b_{\sigma_i \sigma_j}(t') = b_{ij}(t)$ for $i, j \in I_{af}$, and for any $k \in I_{af}$,

$$\deg^t \check{\mu}_{\check{\nu}, t} X_{\sigma_k}(t') = -f_k + u_k$$

for some $u_k \in \mathbb{Z}^H$.

In this case, we denote $t' = t[1]$ and say it is shifted from t (by $[1]$) with the permutation σ. Similarly, we denote $t = t'[1]$ and say it is the shifted from t' (by $[-1]$) with the permutation σ^{-1}.

Let there be given an injective-reachable seed t. Recursively, we construct a chain of seeds $\{t[d] | d \in \mathbb{Z}\}$ called an injective-reachable chain, such that $t[d] = (\sigma^{d-1} \mu(t[d-1]))$, see [Qin17, Definition 5.2.1].

We denote $I_k(t) = \check{\mu}(\check{\nu}[1], t) X_{\sigma_k}(t[1])$ and $P_k(t) = \check{\mu}_{\check{\nu}[1], t} X_{\sigma^{-1}[1]}(t[-1])$.

For any $d \in \mathbb{N}$, define the cluster monomial $I(t)^d := \prod_k I_k(t)^{d_k} t$ and $P(t)^d := \prod_k P_k(t)^{d_k}$.

Since a quantum cluster monomial is pointed, it is also copointed by [FZ07] (we can also see this using the map ι). It follows that $I(t)^d = \{\prod_k I_k(t)^{d_k}\}^t$ and $P(t)^d = \{\prod_k P_k(t)^{d_k}\}^t$.

Notice that if t is injective-reachable, then so is any seed $t' \in \Delta^+$. Such properties is equivalent to the existence of a green to red sequence. See [Qin17] [Qin19] for more details.

For any $g = (g_i)_{i \in I} \in \mathbb{Z}^I \simeq M^\circ(t)$, denote $[g]_+ = ([g_i]_+)_{i \in I}$. We have the following g-pointed element in $\mathcal{LP}(t)$:

$$1^g_g = [p_g * X(t)[g]^+ * I(t)[pr_{I_{af}}[g]^+]^t]$$
for some frozen factor \(p_g \in \mathcal{P} \). Define the following set of distinguished pointed functions
\[
\mathbf{I}^t := \{ \mathbf{I}^t_g | g \in M^o(t) \}.
\]

Denote \(t' = t[1] \). By (3.5), the linear map \(\psi_{t,t'} : M^o(t') \simeq M^o(t) \) is determined by
\[
\psi_{t,t'}(f'_{\sigma k}) = -f_k + u_k, \quad k \in I_{uf}
\]
\[
\psi_{t,t'}(f'_i) = f_i, \quad i \in I_t.
\]

Using Proposition 3.3.4, we deduce that
\[
\text{codeg}^t_{\mathcal{P}} \sigma_k(t[1]) = \text{codeg}^t_{\mathcal{P}} \left(\frac{1}{\mu} \cdot \mu^\pi_{t[1]}X_k(t) = \psi_{t,t[1]}^{-1}f_k \right)
\]
\[
= -f_{\sigma k}(t[1]) + u_k.
\]

Notice that (3.6) appears in [Qin17, (18)] as an assumption. Replacing \(t \) by \(t[-1] \) in the above argument, we obtain
\[
\text{codeg}^t_{\mathcal{P}} \sigma_k(t) = -f_{\sigma k} + u'_k
\]
for any \(k \in I_{uf} \) and some \(u'_k \in \mathbb{Z}^{I_{uf}} \).

Correspondingly, for any \(\eta \in \mathbb{Z}^I \simeq M^o(t) \), we have the following \(\eta \)-copointed element in \(\mathcal{LP}(t) \):
\[
\mathbf{P}^{t,\eta} = [p_{\eta} \ast X(t)^{[\eta]} \ast \mathbf{P}(t)^{[-pr_{I_{uf}} \eta]}]^t
\]
for some frozen factor \(p_{\eta} \in \mathcal{P} \). Define the following set of distinguished copointed functions
\[
\mathbf{P}^t := \{ \mathbf{P}^{t,\eta} | \eta \in M^o(t) \}.
\]

The two kinds of distinguished functions are related by the following result. At a categorical level, it can be viewed as the duality between injective representations and projective representations for a pair of opposite quivers, see [Qin17, Section 5.3] for more discussion.

Lemma 3.4.2. Denote \(\frac{1}{\mu} = \mu_{t[1],t} \). The following claims are true.

1. For any \(k \in I_{uf} \), we have \(\iota P_k(t) = I_k(t^{op}) \).
2. We have \(t[-1]^{op} = (t^{op})[1] = \frac{1}{\mu} t^{op} \), which is shifted from \(t^{op} \) with the permutation \(\sigma^{-1} \).
3. We have \(t[1]^{op} = (t^{op})[-1] = \frac{1}{\mu} t^{op} \), which is shifted from \(t^{op} \) with the permutation \(\sigma \).

Proof.

1. Recall that \(\iota P_k(t) \) is a quantum cluster variable contained in \(\mathcal{LP}(t^{op}) \). By (3.7), \(\iota P_k(t) \) is pointed at \(-f_k + u\) for some \(u \in \mathbb{Z}^I \). The claim follows.

2. By the commutativity between mutations and \(\iota \), we have \(t[-1]^{op} = (\frac{1}{\mu} t^{op})^{op} = \frac{1}{\mu} t^{op} \).

The seed \(t[-1]^{op} \) has the principal \(B \)-matrix given by \(b_{ij}(t[-1]^{op}) = -b_{ij}(t[-1]) = -b_{\sigma^{-1}i,\sigma^{-1}j}, i, j \in I_{uf} \). Using the commutativity between
4.3.1 is a shifted seed between mutations and \(k\).

Lemma 3.4.3 (Substitution) following Laurent expansion in \(\mathcal{LP}(3.8)\):

\[
\left(\frac{t}{\mu}^{i-1}\right)^* (X_{\sigma^{-1}k}(\frac{t}{\mu}^{-1}t^{op})) = \iota \left(\frac{t}{\mu}^{i-1}\right)^* X_{\sigma^{-1}k}(\frac{t}{\mu}^{-1}t) = \iota(F_{k}(t)),
\]

\(k \in I_{df}\), which are pointed at \(-f_k + u, u \in \mathbb{Z}^h\). It follows that \(t[-1]^{op}\) is a shifted seed \(t^{op}[1]\) with the permutation \(\sigma^{-1}\).

(3) Notice that \(t[1]^{op} = (\frac{t}{\mu}^{-1}t)^{op} = \frac{t}{\mu}(t^{op})\) by the commutativity between mutations and \(\iota\). Since \(\frac{t}{\mu}^{-1}t^{op} = t^{op}[1]\) with the permutation \(\sigma^{-1}\) by (2), we have \(\frac{t}{\mu}t^{op} = t^{op}[-1]\) with the permutation \(\sigma\).

Proof. (1) has been proved in [Qin17]. We can prove (2) using similar arguments as those for (1), or deduce (2) from (1) by using the map \(\iota\).

We have the following relation between degree and codegree tropical transformations, which will be useful for studying properties of double triangular bases (Proposition 4.3.1).

Proposition 3.4.4. For any \(t, t' \in \Delta^+\), the following diagram commutes:

\[
\begin{array}{ccc}
M^o(t[1]) & \xrightarrow{\phi^o_{t',t[1]}} & M^o(t) \\
\downarrow \phi^o_{t[1],t[1]} & & \downarrow \phi^o_{t',t} \\
M^o(t'[1]) & \xrightarrow{\phi^o_{t',t[1]}} & M^o(t')
\end{array}
\] (3.8)

Proof. It suffices to check the claim for the case \(t' = \mu_k t, k \in I_{df}\). Notice that, in this case, we have \(t'[1] = \mu_{\sigma k}(t[1])\) and \(\frac{t}{\mu}_{t',t}^* I_i(t) = I_i(t')\) for \(i \neq k\).

Notice that the maps in the diagram are isomorphisms for \(u \in \mathbb{Z}^h\). In view of the piecewise linearity of \(\phi^o_{t',t} \) and \(\phi^o_{t[1],t[1]}\), it remains to check the claim that, for \(i \in I_{df}\),

\[
\phi^o_{t',t[1]}(f_{\sigma i}(t[1])) = \psi_{t',t[1]}(\phi^o_{t[1],t[1]})(\pm f_{\sigma i}(t[1])).
\]

(i) By definition, for \(i \neq k\) in \(I_{df}\), we have

\[
\phi^o_{t',t[1]}(f_{\sigma i}(t[1])) = \deg^o' \frac{t}{\mu}_{t',t}^* I_i(t) = \deg^o' I_i(t')
\]
and also
\[
\psi_{t',t'[1]} \phi^{op}_{t',t'[1]}(f_{\sigma_1}(t[1])) = \psi_{t',t'[1]}(f_{\sigma_1}(t'[1])) = \deg^{t'} I_i(t')
\]

It follows that these two vectors in \(M^\circ(t')\) agree.

(ii) For the non-trivial case \(i = k\), we have
\[
\phi_{t',t}[f_{\sigma_k}(t[1])] = \deg^{t'} \mu_{t,t'} I_k(t)
\]

\[
\psi_{t',t'[1]} \phi_{t',t'[1]}(f_{\sigma_k}(t[1])) = \psi_{t',t'[1]}(f_{\sigma_k}(t'[1])) = -\deg^{t'} I_i(t')
\]

\[
= \deg^{t'} I_k(t) + \sum_{i \in I_d} [-b_{\sigma_i,\sigma_k}(t[1]) + f_{\alpha_i}(t'[1]) - \sum_{s \in I_f} [-b_{\sigma_s,\sigma_k}(t[1])] + f_s)
\]

\[
= -\deg^{t'} I_k(t') + \sum_{i \in I_d} [b_{\alpha_i}(t')] + \deg^{t'} I_k(t') + \sum_{s \in I_f} [b_{\sigma_s,\sigma_k}(t'[1])] + f_s
\]

Notice that \(I_k(t)\) and \(I_k(t')\) are related by an exchange relation for the seeds \((t[1], t'[1])\). It follows that we have

\[
\deg^{t'} \mu_{t,t'} I_k(t) = -\deg^{t'} I_k(t') + \sum_{i \in I_d} [b_{\alpha_i}(t')] + \deg^{t'} I_k(t') + \sum_{s \in I_f} [b_{\sigma_s,\sigma_k}(t'[1])] + f_s,
\]

see [Qin17, (14)].

(iii) By (3.5) and the linearity of \(\psi_{t,t'}\), for \(i \neq k\) in \(I_d\), we have
\[
\phi_{t,t}[f_{\sigma_1}(t[1])] = \phi_{t,t}(f_i(t) - u_i) = f_i(t') - u_i
\]

and also
\[
\psi_{t',t'[1]} \phi^{op}_{t',t'[1]}(f_{\sigma_1}(t[1])) = \psi_{t',t'[1]}(f_{\sigma_1}(t'[1])) = -\deg^{t'} I_i(t')
\]

(3.5) implies that the two vectors in \(M^\circ(t')\) agree.

(iv) For the non-trivial case \(i = k\), we have
\[
\psi_{t,t[1]}(f_{\sigma_k}(t[1])) = -\deg^t I_k(t)
\]
Proof. By Proposition 3.4.5.

Notice that $I_k(t)$ and $I_k(t')$ are related by an exchange relation for the seeds $(t[1], t'[1])$. It follows that we have

$$
\deg^I \mu_{t,t'}^s I_k(t') = - \deg^I I_k(t) + \sum_{i \in \mathcal{I}} [b_{ik}(t)] + \deg^I I_i(t) + \sum_{s \in \mathcal{I}} [b_{s,\sigma}(t[1])] + f_s,
$$

see [Qin17, (14)]. Consequently, we get $\psi_{t,t[1]}(-f_{\sigma}(t[1])) = \phi_{t,t',\sigma} \psi_{t,t'[1]} \phi_{t,t'[1],t[1]}(-f_{\sigma}(t[1]))$ and the claim follows.

Consequently, we obtain a relation between the degree compatibility and the codegree compatibility.

Proposition 3.4.5. Let there be given seeds $t, t' \in \Delta^+$ and $Z \in \mathcal{L}(t) \cap \mu_{t,t'}^{*} \mathcal{L}(t') \cap \mu_{t,t'}^{*} \mathcal{L}(t[1]) \cap \mu_{t,t'}^{*} \mathcal{L}(t'[1])$. Then Z is compatibly pointed at $t[1], t'[1] \in \Delta^+$ if and only if it is compatibly copointed at t, t'.

Proof. By Proposition 3.3.4, $\mu_{t,t[1]}^{*} Z$ is η-copointed in $\mathcal{L}(t[1])$ if and only if Z is $\psi_{t,t[1]} \eta$-pointed in $\mathcal{L}(t)$, and similar statements hold in $\mathcal{L}(t'[1])$ and $\mathcal{L}(t')$. The claim follows from Proposition 3.4.4.

4. Bidegrees and bases

Let there be given an injective-reachable quantum seed t and a subalgebra $A(t) \subset \mathcal{U}_q(t)$. Assume that $A(t)$ possesses a κ-basis \mathbf{L}. Then $A(t)$ naturally gives rise to a subalgebra $A(t') := \mu_{t',t}^{*} A(t) \subset \mathcal{U}_q(t') = \mu_{t,t'}^{*} \mathcal{U}_q(t)$. And \mathbf{L} naturally gives rise to a basis $\mu_{t',t}^{*} \mathbf{L}$ of $A(t')$. We sometimes omit the symbols t, t', identifying $A(t)$ and $A(t')$, \mathbf{L} and $\mu_{t,t'}^{*} \mathbf{L}$.
4.1. Bases with different properties.

Definition 4.1.1 (Degree-triangular basis). A \(\mathbb{k} \)-basis \(L \) of \(A(t) \) is said to be a degree-triangular basis with respect to \(t \) if the following conditions hold:

1. \(X_i(t) \in L \) for \(i \in I \).
2. (Bar-invariance) \(L \) is invariant under the bar involution.
3. (Degree parametrization) \(L \) is \(M^\circ(t) \)-pointed, i.e., it takes the form \(L = \{ L_g | g \in M^\circ(t) \} \) such that \(L_g \) is \(g \)-pointed.
4. (Degree triangularity) For any basis element \(L_g \), \(i \in I \), the decomposition of the pointed function \([X_i(t) * L_g]^t \) in terms of \(L \) is degree \((\prec_t, m)\)-unitriangular:

\[
[X_i(t) * L_g]^t = \sum_{g' \leq g + f_i} b_{g'} L_{g'}
\]

where \(b_{g+f_i} = 1 \), \(b_{g'} \in m \) for \(g' \prec_t g + f_i \).

The basis is said to be a cluster degree-triangular basis with respect to \(t \), or a triangular basis for short, if it further contains the quantum cluster monomials in \(t \) and \(t[1] \).

It is not clear if a degree-triangular basis is unique or not. Nevertheless, a triangular basis must be unique if it exists, see [Qin17, Lemma 6.3.2]. By definition, \(P_t \) is degree \((\prec_t, m)\)-unitriangular to the triangular basis.

We now propose the dual version below.

Definition 4.1.2 (Codegree-triangular basis). A \(\mathbb{k} \)-basis \(L \) of \(A(t) \) is said to be a codegree-triangular basis with respect to \(t \) if the following conditions hold:

1. \(X_i(t) \in L \) for \(i \in I \).
2. (Bar-invariance) \(L \) is invariant under the bar involution.
3. (Codegree parametrization) \(L \) is \(M^\circ(t) \)-copointed, i.e., it takes the form \(L = \{ L_\eta | \eta \in M^\circ(t) \} \) such that \(L_\eta \) is \(\eta \)-copointed.
4. (Codegree triangularity) For any basis element \(L_\eta \), \(i \in I \), the decomposition of the copointed function \(\{ L_\eta * X_i(t) \}^t \) in terms of \(L \) is degree \((\succ_t, m)\)-unitriangular:

\[
\{ L_\eta * X_i(t) \}^t = \sum_{\eta' \geq \eta + f_i} c_{\eta'} L_{\eta'}
\]

where \(c_{\eta+f_i} = 1 \), \(c_{\eta'} \in m \) for \(\eta' \succ_t \eta + f_i \).

The basis is said to be a cluster codegree-triangular basis with respect to \(t \) if it further contains the quantum cluster monomials in \(t \) and \(t[1] \).

By definition, \(P^t \) is codegree \((\succ_t, m)\)-unitriangular to the cluster codegree-triangular basis. Similar to [Qin17, Lemma 6.3.2], we can show that the cluster codegree-triangular basis is unique.
Lemma 4.1.3 (Factorization). (1) [Qin17, Lemma 6.2.1] Let there be given a degree-triangular basis \(L \). Then \([X_i(t) \ast S]^t = [S \ast X_i(t)]^t \in L \) for any \(i \in I_t \).

(2) Let there be given a codegree-triangular basis \(L \). Then \(\{X_i(t) \ast S\}^t = \{S \ast X_i(t)\}^t \in L \) for any \(i \in I_t \).

Definition 4.1.4 (Bidegree-triangular basis). If \(L \) is both degree-triangular and codegree-triangular with respect to \(t \), we call it a bidegree-triangular basis with respect to \(t \).

Definition 4.1.5 (Double triangular basis). If \(L \) is bidegree-triangular with respect to \(t \) and further contains the quantum cluster monomials in \(t, t[-1], t[1] \), we call it a cluster bidegree-triangular basis of \(A(t) \) or a double triangular basis with respect to \(t \).

Definition 4.1.6 (Common triangular basis). Assume that \(L \) is the triangular basis of \(A(t) \) with respect to \(t \). If \(\tilde{\mu}^*_{t,t'} L \) is the triangular basis of \(A(t') = \tilde{\mu}^*_{t,t'} A(t) \) with respect to \(t' \) and is compatible with \(L \) for any \(t' \in \Delta^+ \), we call \(L \) the common triangular basis.

4.2. From triangular bases to double triangular bases.

Proposition 4.2.1. Let there be given the triangular basis \(L' \) of \(A(t) \) with respect to the seed \(t \). If \(L'[t[-1]] := \tilde{\mu}^*_{t,t[-1]} L' \) is the triangular basis with respect to \(t[-1] \), then \(L' \) is the double triangular basis with respect to \(t \).

Proof. By assumption, \(L' \) contains the quantum cluster monomials in \(t, t[1], t[-1] \). It remains to check that \(L' \) satisfies the defining conditions of a codegree triangular basis for \(t \).

(i) Since \(L'[t[-1]] \) is \(M^\sigma(t[-1]) \)-pointed, \(L' = \tilde{\mu}^*_{t,t[-1]} L'[t[-1]] \) is \(M^\sigma(t) \)-copointed by Proposition 3.3.4.

(ii-a) Take any \(i \in I_t \). Then for any \(V \in L' \) which is bipointed by (i), we have \(\{V \ast X_i(t)\}^t = [V \ast X_i(t)]^t = [X_i(t) \ast V]^t \in L' \) by Lemma 4.1.3.

(ii-b) Take any \(k \in I_{df} \) and any \(\eta \)-copointed element \(V \in L' \). Then \(\tilde{\mu}^*_{t,t[-1]} X_k(t) = I_{\sigma^{-1}k}(t[-1]) \), and \(\tilde{\mu}^*_{t,t[-1]} V \) is pointed at \(g = \psi_{t[1], 0} \eta \).

Since \(\tilde{\mu}^*_{t,t[-1]} V \) belongs to the triangular basis \(\tilde{\mu}^*_{t,t[-1]} L' = L'[t[-1]] \), the normalized product \([\tilde{\mu}^*_{t,t[-1]} V \ast I_{\sigma^{-1}k}(t[-1])]_{t[-1]} = v^\alpha \tilde{\mu}^*_{t,t[-1]} V \ast I_{\sigma^{-1}k}(t[-1]), \alpha \in \mathbb{Z}, \) is \((<_{t[1]}, m)\)-unitriangular to \(L'[t[-1]] \) by Lemma 3.4.3. Therefore, it is \((<_{t[1]}, m)\)-unitriangular to \(L'[t[-1]] \). Then it has the following finite \((<_{t[1]}, m)\)-unitriangular decomposition in \(L'[t[-1]] \):

\[
Z := v^\alpha \tilde{\mu}^*_{t,t[-1]} V \ast I_{\sigma^{-1}k}(t[-1]) = S^{(0)} + \sum_{j=1}^r b^{(j)} S^{(j)}
\]

with \(b^{(j)} \in m, r \in \mathbb{N}, \deg^{t[-1]} S^{(j)} <_{t[-1]} \deg^{t[-1]} S^{(0)} = \deg^{t[-1]} Z \) for \(j > 0 \).
Applying the mutation $\widehat{\mu}_{t[-1],t}$, we obtain

$$Z' := \widehat{\mu}_{t[-1],t} Z = v^\alpha V \star X_k(t) = \widehat{\mu}_{t[-1],t} S^{(0)} + \sum_{j=1}^r b(j) \widehat{\mu}_{t[-1],t} S^{(j)}.$$

Proposition 3.3.4 implies that Z' is copointed and, for any $j > 0$, $\text{codeg}^t \widehat{\mu}_{t[-1],t} S^{(j)} \prec \text{codeg}^t \widehat{\mu}_{t[-1],t} S^{(0)} = \text{codeg}^t Z'$. Then this is a codegree (\succ_t, \mathbf{m})-unitriangular decomposition in terms of the copointed set L'.

\square

We prove the following inverse result, although it will not be used in this paper.

Proposition 4.2.2. Assume that L' is the double triangular basis of $A(t)$ with respect to the seed t. Then $L'|{-1} := \widehat{\mu}_{t,t[-1]} L'$ is the triangular basis with respect to $t|{-1}$.

Proof. By assumption, $L'|{-1}$ contains the quantum cluster monomials in $t[-1], t$. It remains to check that $L'|{-1}$ satisfies the definition condition of a degree triangular basis for $t|{-1}$.

(i) Since L' is $M^\circ(t)$-copointed, $L'|{-1} = \widehat{\mu}_{t,t[-1]} L'$ is $M^\circ(t|{-1})$-copointed by Proposition 3.3.4.

(ii-a) Take any $i \in I_t$. Then for any $(g-f)_i$-pointed element $V \in L'|{-1}$, we have $X_i \star V = v^\alpha X_i \cdot V = v^{2\alpha} V \star X_i$ for some $\alpha \in \mathbb{Z}$. Since $X_i \cdot V$ is g-pointed, it agrees with $[X_i \star V]|{-1}$. Moreover, $\widehat{\mu}_{t[-1],t}(X_i \cdot V)$ is η-copointed by Proposition 3.3.4, where $\eta = \psi_{t[-1],t}^{-1} g$. Therefore, $\widehat{\mu}_{t[-1],t}(v^{-\alpha} X_i \star V) = v^{-\alpha} X_i \star \widehat{\mu}_{t[-1],t} V$ agrees with the copointed function $\{X_i \star \widehat{\mu}_{t[-1],t} V\}^t$. Using Lemma 4.1.3, we deduce that $\widehat{\mu}_{t[-1],t}(X_i \star V)|{-1} = \{X_i \star \widehat{\mu}_{t[-1],t} V\}^t$ is contained in codegree triangular basis L'. Consequently, $[X_i \star V]|{-1}$ belongs to $L'|{-1}$.

(ii-b) Take any $k \in I_t$ and g-pointed element $V \in L'|{-1}$. Then $\widehat{\mu}_{t[-1],t} X_k(t[-1]) = P_{sk}(t) \in L'$, and $\widehat{\mu}_{t[-1],t} V$ is copointed at $\eta = \psi_{t[-1],t}^{-1} g$. The function $\widehat{\mu}_{t[-1],t}[X_k(t[-1]) \star V]|{-1}$ is copointed by Proposition 3.3.4, i.e., $\widehat{\mu}_{t[-1],t}[X_k(t[-1]) \star V]|{-1} = \{P_{sk}(t) \star \widehat{\mu}_{t[-1],t} V\}^t$. Since L' is a double triangular basis, $\widehat{\mu}_{t[-1],t} V$ is codegree (\succ_t, \mathbf{m})-unitriangular to P^t. Lemma 3.4.3 implies that $\{P_{sk}(t) \star \widehat{\mu}_{t[-1],t} V\}^t$ is codegree (\succ_t, \mathbf{m})-unitriangular to P^t and, consequently, is codegree (\succ_t, \mathbf{m})-unitriangular to L'. We obtain a finite codegree (\succ_t, \mathbf{m})-unitriangular decomposition

$$Z := \{P_{sk}(t) \star \widehat{\mu}_{t[-1],t} V\}^t = \sum_{j=0}^{r-1} b(j) S^{(j)} + S^{(r)}$$
with \(r \in \mathbb{N} \), \(b^{(j)} \in \mathfrak{m} \), \(\text{codeg} S^{(j)} \gtrless_{t} \text{codeg}^{t} S^{(r)} = \text{codeg}^{t} Z \) for \(j < r \).

Applying the mutation \(\mu_{t,t[-1]}^{*} \), we obtain

\[
Z' = \mu_{t,t[-1]}^{*} Z = [X_{k}(t[-1]) \ast V]^{t[-1]} = \sum_{j=1}^{r} b^{(j)} \mu_{t,t[-1]}^{*} S^{(j)} + \mu_{t,t[-1]}^{*} S^{(r)}.
\]

Proposition 3.3.4 implies that \(Z' \) is pointed and, for any \(j < r \), we have \(\deg^{t[-1]} \mu_{t,t[-1]}^{*} S^{(j)} \gtrless_{t[-1]} \deg^{t[-1]} \mu_{t,t[-1]}^{*} S^{(r)} = \deg^{t[-1]} Z' \). Therefore, this decomposition is a degree \((-\gtrless_{t[-1]}\mathfrak{m})\)-unitriangular decomposition in \(L^{t} \).

\[\square\]

4.3. Properties of common triangular bases. Define the subalgebra \(\mathcal{A}(t^{op}) = \iota \mathcal{A}(t) \subset U_{q}(t^{op}) \).

Proposition 4.3.1. If \(\mathcal{A}(t) \) possesses the common triangular basis \(L \subset \mathcal{L}P(t) \), then \(\mathcal{A}(t^{op}) \) possesses the common triangular basis \(\iota L \subset \mathcal{L}P(t^{op}) \).

Proof. Notice that \(\iota \) sends (quantum) cluster monomials \(\mu^{*}_{t,t} X(t')^{m} \) to (quantum) cluster monomials \(\mu^{*}_{(t')^{op},(t')^{op}} X((t')^{op})^{m} \), \(m \in \mathbb{N}_{op} \), because it commutes with mutations. In particular, it gives a bijection between the sets of cluster monomials.

Because the common triangular basis \(L \) gives rise to the double triangular bases for all seeds by Proposition 4.2.1, it gives rise to a codegree triangular bases \(L' \subset \mathcal{L}P(t') \) for any seed \(t' \in \Delta^{+} \). Then \(\iota L' \subset \mathcal{L}P((t')^{op}) \) is a degree triangular bases containing all cluster monomials. Therefore, \(\iota L' \) is the triangular basis with respect to \((t')^{op}\).

Moreover, for any \(t, t' \in \Delta^{+} \), because the elements of \(L \) are compatibly pointed at \(t[1], t'[1] \), the elements of \(L \) are compatibly copointed at \(t, t' \) by Proposition 3.4.5. It follows that the elements of \(\iota L \) are compatibly pointed at \(t^{op}, (t')^{op} \).

Therefore, \(\iota L \) is the common triangular basis by definition.

\[\square\]

Recall that a common triangular basis is necessarily compatibly pointed at \(\Delta^{+} \). We have the following results.

Theorem 4.3.2. Let there be a \(k \)-subalgebra \(\mathcal{A}(t) \) of the upper quantum cluster algebra \(U_{q}(t) \). Assume that \(\mathcal{A}(t) \) possesses the common triangular basis \(L \). Then the following statements are true.

1. \(\mu_{t,t}^{*} L \) is the double triangular basis of \(\mathcal{A}(t') = \mu_{t,t}^{*} \mathcal{A}(t) \) for any seed \(t' \in \Delta^{+} \).

2. \(L \) is compatibly copointed at \(\Delta^{+} \).

Proof. (1) The claim follows from Proposition 4.2.1.
(2) By Proposition 4.3.1, ιL is the common triangular basis of $A(t^{op})$, which is necessarily compatibly pointed at $(\Delta^+)^{op}$. Applying ι again, we deduce that $L = \iota(iL)$ is compatibly copointed at Δ^+.

\[\Box\]

5. **Main results**

5.1. **An analog of Leclerc’s conjecture.** Let there be given an injective-reachable seed t and a k-subalgebra $A(t)$ of the upper quantum cluster algebra $U_q(t)$.

Proposition 5.1.1. Assume that $A(t)$ possesses a bidegree-triangular basis L. Take any $i \in I$ and $g \in M^\circ(t)$. Denote the codegree of the g-pointed basis element L_g by η. Then we have either $X_i(t) * L_g \in v^s L$ or

\[X_i(t) * L_g = v^s S + \sum_j b_j L^{(j)} + v^h H\]

such that $s > h \in \mathbb{Z}$, $b_j \in v^{h+1} \mathbb{Z}[v] \cap v^{s+1} \mathbb{Z}[v^{-1}]$, and $S, L^{(j)}, H$ are finitely many distinct elements of L with

\[\deg^t H, \deg^t L^{(j)} < t \quad \deg^t S = f_i + g,\]

\[\text{codeg}^t S, \text{codeg}^t L^{(j)} < t \quad \text{codeg}^t H = f_i + \eta.\]

Moreover, we have $s = \lambda(f_i, g)$, $h = \lambda(f_i, \eta)$.

Proof. Omit the symbol t for simplicity.

Denote the codegree of L_g by $\eta = g + \check{B}n$, where $n \in N^\geq(t) \simeq N^\check{I}f$. Then $X_i * L_g$ has degree $f_i + g$ with coefficient $v^s := v^{\lambda(f_i, g)}$, codegree $f_i + \eta$ with coefficient $v^h := v^{\lambda(f_i, \eta)}$. It follows that $h = s + \lambda(f_i, \check{B}n) \leq s$ where $h = s$ if and only if $n_i = 0$.

Because L is a degree-triangular basis, we have a degree ($<_t, m$)-unitriangular decomposition with finitely many $S^{(0)}, \ldots, S^{(r)} \in L$:

\[(5.1) \quad [X_i * L_g]^t = v^{-s} X_i * L_g = S^{(0)} + \sum_{j > 0} b^{(j)} S^{(j)}\]

such that $b^{(j)} \in m$, $\deg S^{(j)} < \deg S^{(0)} = f_i + g$ for $j > 0$.

(i) Assume $n_i = 0$, then $v^{-s} X_i * L_g$ is pointed and bar-invariant. Because every basis elements $S^{(j)}$ appearing in (5.1) are bar-invariant and $b^{(j)} \in m$, it follows that $v^{-s} X_i * L_g = S^{(0)} \in L$.

(ii) Assume $n_i \neq 0$. Then $h < s$. In addition, $v^{-s} X_i * L_g$ is pointed but not bar-invariant, because it has the Laurent monomial $v^{h-s} X^{\eta+f_i}$ at the codegree.

Notice that $v^{-h} X_i * L_g$ is copointed. Multiplying the decomposition (5.1) by v^{s-h} and applying the bar involution, we get a decomposition of copointed elements.
Because \(L \) is a codegree-triangular basis and \(v^h L_g \ast X_i \) is copointed, the above decomposition must be codegree \((\succ_t, m)\)-unitriangular. But \(v^{h-s} S^{(0)} \) is not copointed since \(S^{(0)} \in L \) is copointed but \(h < s \). Relabeling \(S^{(j)} \), \(j > 0 \), if necessary, we assume codeg \(S^{(j)} \succ_t \) codeg \(S^{(r)} \) for \(j < r \). Then the codegree term \(X^\eta + f_i \) is contributed from \(S^{(r)} \) and \(S^{(r)} \) is copointed at codeg \(L_g \ast X_i) = \eta + f_i \) with decomposition coefficient 1 = \(v^{h-s} b^{(r)} \). In addition, the remaining terms \(S^{(j)} \), \(0 < j < r \) must have coefficients \(v^{h-s} \cdot b^{(j)} \) in \(m \). It follows that \(b_j := b^{(j)} v^s \) belongs to \(v^{h+1} \mathbb{Z}[v] \) for \(0 < j < r \). The claim follows by taking \(S = S^{(0)} \), \(H = S^{(r)} \), \(L^{(j)} = S^{(j)} \) for \(0 < j < r \).

\[R \ast V = v^s S + \sum_j b_j L^{(j)} + v^H \]

\[\text{such that } s > h \in \mathbb{Z}, b_j \in v^{h+1} \mathbb{Z}[v] \cap v^{s-1} \mathbb{Z}[v^{-1}], \text{ and } S, L^{(j)}, H \text{ are finitely many distinct elements of } L. \]

Proof. Since \(L \) is the common triangular basis, Proposition 4.2.1 implies that \(\widehat{\mu}_{t,v}^* \mathcal{L} \) is the double triangular basis (and thus bidegree-triangular) of \(\mathcal{A}(t') = \widehat{\mu}_{t,v}^* \mathcal{A}(t) \) for any seed \(t' \in \Delta^+ \). We apply Proposition 5.1.1 for localized quantum cluster monomials associated to \(t' \).

Theorem 5.1.2 is a weaker form of the following analog of Leclerc’s conjecture.

Conjecture 5.1.3. Assume that \(L \) is the common triangular basis. Assume that \(R \) is a real basis element in \(L \) (i.e. \(R^2 \in L \)). Then, for any \(V \in L \), we have either \(R \ast V \in v^2 L \) or

\[R \ast V = v^s S + \sum_j b_j L^{(j)} + v^H \]

\(\text{such that } s > h \in \mathbb{Z}, b_j \in v^{h+1} \mathbb{Z}[v] \cap v^{s-1} \mathbb{Z}[v^{-1}], \text{ and } S, L^{(j)}, H \text{ are finitely many distinct elements of } L. \)
Let \mathfrak{g} be a Lie algebra of type ADE. Let $K_t(\mathcal{C})$ denote its t-deformed Grothendieck ring, t a quantum parameter. By [Qin17], $K_t(\mathcal{C})$ is a (partially compactified) quantum cluster algebra \mathcal{A}_q. Notice that $K_t(\mathcal{C})$ has a bar-invariant basis $\{[S]\}$ where S are simple modules. By [Qin17], $\{[S]\}$ becomes the common triangular basis of the corresponding quantum cluster algebra \mathcal{A}_q after localization at the frozen factors.

A simple module R in \mathcal{C} is called real if $R \otimes R$ remains simple. Theorem 5.1.2 implies the following result.

Theorem 5.1.4. Let R be any real simple module in \mathcal{C} corresponding to a cluster monomial. Then, for any simple modules $V \in \mathcal{C}$, either $R \otimes V$ is simple, or there exists finitely many distinct simple modules $S, L^{(j)}, H$ in \mathcal{C} such that the following equation holds in the deformed Grothendieck ring $K_t(\mathcal{C})$:

$$[R] \ast [V] = t^s[S] + \sum_j b_j[L^{(j)}] + t^h[H]$$

where $s > h \in \frac{1}{2}\mathbb{Z}$, $b_j \in t^{h+\frac{1}{2}}\mathbb{Z}[t^{\frac{1}{2}}] \cap t^{s-\frac{1}{2}}\mathbb{Z}[t^{-\frac{1}{2}}]$.

Notice that we can replace $[S]$ by the t-analog of q-character of S and embed $K_t(\mathcal{C})$ into the completion of a quantum torus, see [Nak04] [VV03] [Her04]. Correspondingly, Theorem 5.1.4 gives an algebraic relation for such characters.

Remark 5.1.5. Assume that the quantum cluster algebra arises from a quantum unipotent subgroup of symmetric Kac-Moody type, which possesses the dual canonical basis correspond to the set of self-dual simple modules of the corresponding quiver Hecke algebra. In this case, up to v-power rescaling, S and H correspond to the simple socle and simple head of the convolution product $R \circ V$ respectively. See [KKKO18, Section 4] for more details.

From this view, Theorem 5.1.4 suggests that an analog of Leclerc’s conjecture might hold for the deformed Grothendieck ring $K_t(\mathcal{C})$ of quantum affine algebra and, in addition, it might have a categorical interpretation in analogous to that in [KKKO18, Section 4].

5.2. Properties of dual canonical bases. Let us consider the quantum unipotent subgroup $\mathcal{A}_q[N_{-}(w)]$ of symmetrizable Kac-Moody types in the sense of [Kim12][Qin20]. It is isomorphic to a (partially compactified) quantum cluster algebra after rescaling, see [GY16] [GY20] or [Qin20]. Theorem 5.1.2 implies the following weaker version of Conjecture 1.1.1.

Theorem 5.2.1. Consider the dual canonical basis $\mathcal{B}^{up}(w)$ of $\mathcal{A}_q[N_{-}(w)]$. If $b_1 \in \mathcal{B}^{up}(w)$ corresponds to a quantum cluster monomial after rescaling, then for any $b_2 \in \mathcal{B}^{up}(w)$, either $b_1 b_2 \in q^{Z} \mathcal{B}^{up}(w)$ or (1.1) holds true.
Proof. By [Qin20], after rescaling and localization at the frozen factors, the dual canonical basis $B^{\text{up}}(w)$ of $A_q[N_-(w)]$ becomes the common triangular basis of the corresponding quantum cluster algebra. Therefore, elements of $B^{\text{up}}(w)$ satisfy the algebraic relation (5.2) after rescaling. Notice that the rescaling factors depend on the natural root-lattice grading of U_q, which is homogeneous for $\mu_{t',t}^*, X_i(t') * V, S, L^{(j)}, H$ in (5.2), because the Y-variables have 0-grading [Qin20, Section 9.1]. The claim follows from Theorem 5.1.2. □

Theorem 5.2.1 would implies Conjecture 1.1.1 if the following multiplicative reachability conjecture can be proved.

Conjecture 5.2.2. If $b \in B^{\text{up}}(w) \subset A_q[N_-(w)]$ is real (i.e. $b^2 \in q^{\mathbb{Z}} B^{\text{up}}(w)$), then it corresponds to a quantum cluster monomial after rescaling.

Conjecture 5.2.2 can be generalized as the following, which implies Conjecture 5.1.3 by Theorem 5.1.2.

Conjecture 5.2.3 (Multiplicative reachability conjecture). Let L denote a common triangular basis. If $b \in L$ is real (i.e. $b^2 \in L$), then it corresponds to a localized quantum cluster monomial.

Remark 5.2.4 (Reachability conjectures). When the cluster algebra admits an additive categorification by triangulated categories (cluster categories), we often expect that the rigid objects (objects with vanishing self-extensions) correspond to the (quantum) cluster monomials. If so, such objects can be constructed from the initial cluster tilting objects via (categorical) mutations. Let us call such an expectation the additive reachability conjecture. This conjecture is not true for a general cluster algebra because the cluster algebra seems too small for the cluster category.

When the cluster algebra admits a monoidal categorification by monoidal categories, we similarly expect that the real simple objects correspond to the (quantum) cluster monomials (see [HL10]). If so, such objects can be constructed from the an initial collection of real simple objects via (categorical) mutations. Let us call such an expectation the multiplicative reachability conjecture. Conjecture 5.2.2 is related to the special case for $A_q[N_-(w)]$.

We also conjecture an equivalence between the additive reachability conjecture and the multiplicative reachability conjecture, which can be viewed as an analog of the open orbit conjecture [GLS11, Conjecture 18.1]. See [Nak11, Section 1] for a comparison between additive categorification and monoidal categorification.

All these conjectures are largely open.
REFERENCES

[BFZ05] Arkady Berenstein, Sergey Fomin, and Andrei Zelevinsky, Cluster algebras. III. Upper bounds and double Bruhat cells, Duke Math. J. 126 (2005), no. 1, 1–52.

[BZ05] Arkady Berenstein and Andrei Zelevinsky, Quantum cluster algebras, Adv. Math. 195 (2005), no. 2, 405–455, arXiv:math/0404446v2.

[DWZ10] Harm Derksen, Jerzy Weyman, and Andrei Zelevinsky, Quivers with potentials and their representations II: Applications to cluster algebras, J. Amer. Math. Soc. 23 (2010), no. 3, 749–790, arXiv:0904.0676v2.

[FZ02] Sergey Fomin and Andrei Zelevinsky, Cluster algebras. I. Foundations, J. Amer. Math. Soc. 15 (2002), no. 2, 497–529 (electronic), arXiv:math/0104151v1.

[FZ07] ______, Cluster algebras IV: Coefficients, Compositio Mathematica 143 (2007), 112–164, arXiv:math/0602259v3.

[GHK15] Mark Gross, Paul Hacking, and Sean Keel, Birational geometry of cluster algebras, Algebraic Geometry 2 (2015), no. 2, 137–175.

[GHKK18] Mark Gross, Paul Hacking, Sean Keel, and Maxim Kontsevich, Canonical bases for cluster algebras, Journal of the American Mathematical Society 31 (2018), no. 2, 497–608.

[GLS11] Christof Geiß, Bernard Leclerc, and Jan Schröer, Kac-Moody groups and cluster algebras, Advances in Mathematics 228 (2011), no. 1, 329–433, arXiv:1001.3545v2.

[GLS13] ______, Cluster structures on quantum coordinate rings, Selecta Mathematica 19 (2013), no. 2, 337–397, arXiv:1104.0531.

[GY16] K.R. Goodearl and M.T. Yakimov, Quantum cluster algebra structures on quantum nilpotent algebras, Memoirs of the American Mathematical Society 247 (2016), no. 1169, arXiv:1309.7869.

[GY20] ______, Integral quantum cluster structures, arXiv:2003.04434.

[Her04] David Hernandez, Algebraic approach to q,t-characters, Advances in Mathematics 187 (2004), no. 1, 1–52, arXiv:math/0212225, doi:10.1016/j.aim.2003.07.016.

[HL10] David Hernandez and Bernard Leclerc, Cluster algebras and quantum affine algebras, Duke Math. J. 154 (2010), no. 2, 265–341, arXiv:0903.1452.

[Kas90] Masaki Kashiwara, Bases cristallines, C. R. Acad. Sci. Paris Sér. I Math. 311 (1990), no. 6, 277–280.

[Kel08] Bernhard Keller, Cluster algebras, quiver representations and triangulated categories, 2008, arXiv:0807.1960v11.

[Kim12] Yoshiyuki Kimura, Quantum unipotent subgroup and dual canonical basis, Kyoto J. Math. 52 (2012), no. 2, 277–331, arXiv:1010.4242, doi:10.1215/21562261-1550976.

[KK19] Masaki Kashiwara and Myungho Kim, Laurent phenomenon and simple modules of quiver Hecke algebras, Compositio Mathematica 155 (2019), no. 12, 2263–2295, arXiv:1811.02237.

[KKKO18] S.-J. Kang, M. Kashiwara, M. Kim, and S.-j. Oh, Monoidal categorification of cluster algebras, J. Amer. Math. Soc. 31 (2018), 349–426, arXiv:1801.05145, doi:https://doi.org/10.1090/jams/895.

[KL09] Mikhail Khovanov and Aaron D. Lauda, A diagrammatic approach to categorification of quantum groups I, Represent. Theory 13 (2009), 309–347, arXiv:0803.4121v2.

[KL10] ______, A diagrammatic approach to categorification of quantum groups III, Quantum Topology 1 (2010), no. 1, 1–92, arXiv:0807.3250.
Yoshiyuki Kimura and Fan Qin, Graded quiver varieties, quantum cluster algebras and dual canonical basis, Advances in Mathematics 262 (2014), 261–312, arXiv:1205.2066.

B. Leclerc, Imaginary vectors in the dual canonical basis of $U_q(n)$, Transform. Groups 8 (2003), no. 1, 95–104.

G. Lusztig, Canonical bases arising from quantized enveloping algebras, J. Amer. Math. Soc. 3 (1990), no. 2, 447–498.

Quivers, perverse sheaves, and quantized enveloping algebras, J. Amer. Math. Soc. 4 (1991), no. 2, 365–421.

Total positivity in reductive groups, Lie theory and geometry, Progr. Math., vol. 123, Birkhäuser Boston, Boston, MA, 1994, pp. 531–568.

Hiraku Nakajima, Quiver varieties and t-analog of q-characters of quantum affine algebras, Ann. of Math. (2) 160 (2004), no. 3, 1057–1097, arXiv:math/0105173v2.

Quiver varieties and cluster algebras, Kyoto J. Math. 51 (2011), no. 1, 71–126, arXiv:0905.0002v5.

Fan Qin, Triangular bases in quantum cluster algebras and monoidal categorification conjectures, Duke Mathematical Journal 166 (2017), no. 12, 2337–2442.

Bases for upper cluster algebras and tropical points, 2019, arXiv:1902.09507.

Dual canonical bases and quantum cluster algebras, 2020, arXiv:2003.13674.

Raphaël Rouquier, 2-Kac-Moody algebras, 2008, arXiv:0812.5023.

Thao Tran, F-polynomials in quantum cluster algebras, Algebr. Represent. Theory 14 (2011), no. 6, 1025–1061, arXiv:0904.3291v1.

M. Varagnolo and E. Vasserot, Perverse sheaves and quantum Grothendieck rings, Studies in memory of Issai Schur (Chevaleret/Rehovot, 2000), Progr. Math., vol. 210, Birkhäuser Boston, Boston, MA, 2003, pp. 345–365, arXiv:math/0103182v3. MR MR1985732 (2004d:17023)

E-mail address: qin.fan.math@gmail.com