Towards Transferable Speech Emotion Representation: On Loss Functions For Cross-Lingual Latent Representations

Sneha Das1, Nicole Nadine Lønfeldt2, Anne Katrine Pagsberg2,3, Line H. Clemmensen1

1Department of Applied Mathematics and Computer Science, Technical University of Denmark
2Child and Adolescent Mental Health Center, Copenhagen University Hospital, Capital Region
3Faculty of Health, Department of Clinical Medicine, Copenhagen University
Motivation

- Speech emotion recognition (SER): inferring emotional state from speech signals.
- Emotion recognition employed in healthcare, education sector, criminal justice system.
- SER: signal processing, machine learning, deep learning.
- Existing challenges: Generalizing over languages, corpora, recording condition (under low-resource conditions).
Objectives and Contributions

Objectives for transferability:

1. Latent embedding with discrimination between emotion classes.
2. Latent distribution that are consistent over corpora.

Contributions:

1. Low-complexity DAE and VAE.
2. VAE with KL-loss annealing: balancing KL-loss and reconstruction loss.
3. VAE with semi-supervision incorporating clustering in latent space.
Formulation

• DAE:

\[
\arg \min_{f_\theta, g_\phi} \mathcal{L}_{rec} = \mathbb{E} \| x - g_\phi(f_\theta(x_n)) \|_2^2, \quad (1)
\]

• VAE:

\[
\arg \min_{\theta, \phi} \mathcal{L}_{rec} + \mathcal{L}_{KL} = -\mathbb{E}_{z \sim q_\theta(z|x)} \log p_\phi(x|z) + D_{KL}(q_\theta(z|x) || p(z)), \quad (2)
\]
Formulation

• VAE with KL-annealing:

\[
\arg\min_{\theta, \phi} \mathcal{L}_{\text{rec}} + \mathcal{L}_{\text{KL}} = -\mathbb{E}_{z \sim q_\phi(z|x)} \log p_\phi(x|z) \\
+ \beta_e D_{KL}(q_\theta(z|x) || p(z)),
\]

where the standard formulation of \(\beta_e \):

\[
\beta_e = \begin{cases}
0.25 & , \tau \leq R \\
\frac{0.25}{R} \tau & , \tau > R \quad \text{where} \quad \tau = \frac{\text{mod}(e-1, \frac{T}{M})}{\frac{T}{M}},
\end{cases}
\]

(a) DAE-vanilla
(b) VAE-vanilla
(c) VAE-annealing
(d) VAE-ss
Formulation

- VAE with semi-supervision:

\[\arg \min_{\theta, \phi} \mathcal{L}_{\text{rec}} + \beta e \mathcal{L}_{\text{KL}} + \gamma \mathcal{L}_{\text{clus}}, \]

\[\mathcal{L}_{\text{clus}} = \frac{D_{\text{intra}}}{D_{\text{inter}}} = \frac{\sum_{k=1}^{K} \sum_{i \in k} D(z_i, z^k)}{\frac{K-1}{K} \sum_{k=1}^{K} \sum_{j=k+1}^{K} D(z^k, z^j)}, \quad (5) \]
Architecture

Figure: Illustration of the architecture employed for all the models explored in this work.

- Training: 50 epochs, batch size 64, Adam optimizer (learning rate: 1e-3).
- Latent embedding used as input features to a linear SVC.
Evaluation

• Datasets: IEMOCAP, SAVEE, Emo-DB, CaFE, URDU, AESD
• Input features: eGeMAPS using OpenSmile
• Preprocessing: remove outliers using z-score normalization ($-10 > z > 10$)
• 5-fold cross validation
Results: Classification performance

Figure: (1) Balanced accuracy on unseen transfer data sets using (a) 4 emotion classes, (b) 3 emotion classes; balanced accuracy with access to 20% of the unlabeled transfer data sets with (c) 4 emotions and (d) 3 emotion classes.
Results: Consistency of latent space

Figure: Scatter plots depicting the overlap between the latent embedding obtained from the methods investigated for all the transfer data sets.
Results: Consistency of latent space
Conclusions

1. DAE: highest classification accuracy, worst distribution consistency.
2. VAE-vanilla: best consistency, classification accuracy random.
3. VAE-ss: Classification accuracy similar to DAE and distribution consistency similar to VAE-vanilla.