GENETICS & GENOMICS | SHORT COMMUNICATION

Heritability of growth traits and correlation with hepatic gene expression among hybrid striped bass exhibiting extremes in performance

S. Adam Fuller1*, Benjamin H. Beck2, Matthew E. McEntire1, Eric Peatman3 and Jason Abernathy1*

Abstract: Hybrid striped bass is a major aquaculture species in the United States. Artificial breeding of this species can introduce large variation in growth during production to market size. To assess the genetic and nutrigenomic basis behind growth variability in these hybrids, fingerlings \((n = 5072)\) from 47 families were size-matched and communally grown in earthen ponds for 115 days. Families were then ranked by weight gain and individuals from the three fastest growing (mean 240.8 ± 9.75 g; 242.0 ± 11.52 mm) and three slowest growing families (mean 153.5 ± 52.38 g; 223.3 ± 21.31 mm) were collected for liver RNA sequencing. As expected, growth characteristics in hybrid striped bass are highly heritable \((p < 0.0001)\). Through differential gene expression analysis we identified 86 genes that were responsive between groups including 40 up-regulated \((1.89 < \text{fold-change} < 7.66)\) and 46 down-regulated \((-1.71 > \text{fold-change} > -4.59)\) genes in the largest fish. This included two somatic growth-related genes, growth factor receptor gene and a gene encoding an insulin-like growth factor binding protein, that may directly explain some of the genetic variation between families. Several additional genes involved in metabolic pathways such as glycolysis/gluconeogenesis and lipid metabolism were also up and down-regulated. This study provides insights into the underlying genetic and nutrigenomic mechanisms that contribute to growth variability in hybrid striped bass, which can inform future breeding and management strategies for this species.
biosynthesis were also revealed. The candidate gene list may also provide some evidence that both physiological and behavioral factors may be influencing growth differences in communally reared fish.

Subjects: Fisheries Science; Aquaculture; Bioinformatics; Genetics; Marine Biology

Keywords: bass; gene expression; RNA sequencing; moronid; liver; growth; heritability; aquaculture; breeding; hepatic

1. Introduction
Hybrid striped bass (HSB; “sunshine”; Morone chrysops × M. saxatilis), created by artificial crosses of white bass (WB; M. chrysops) and striped bass (SB; M. saxatilis) are a major commodity in US aquaculture production (Hallerman, 1994). As a high value finfish, HSB are typically sold whole and thus weight at harvest can significantly impact economic gain. In HSB culture, the major breeders utilize wild parental bass in their breeding programs and thus selection programs for growth characteristics remain in their infancy (Garber & Sullivan, 2006). This uncontrolled breeding schema can and often does lead to great variability in HSB size at harvest, even when fish are size-matched at stocking. For instance, in a study of growth characteristics among Morone crosses communally reared in 0.10 ha earthen ponds for over a year, a wide range of sizes occurred from 268 g to over 1 kg (mean 634 ± 6 g), even though the HSB were tightly graded at the beginning of the experiment (19.8 ± 0.4 g) (McEntire, Snyder, & Freeman, 2015). We set out to better understand the genetic basis behind this variation by determining whether gene expression changes could be detected between the largest and smallest HSB in a population. Using a global gene expression approach by RNA sequencing of liver, a major metabolic tissue, and de novo assembly of a transcriptome, genes that may contribute at least in part to the variation in somatic growth during HSB culture could be detected. We hypothesized that any observed changes would be related to genes involving growth factors which predominate the liver such as insulin-like growth factor (IGF) along with energy production pathways.

2. Methods
Reciprocal cross HSB (♀ white bass × ♂ striped bass) were created by random-matings from F₁ domesticated WB and F₂ domesticated SB originally from North Carolina State University (Garber, 2006; Garber & Sullivan, 2006), utilizing a series of 2 × 2 diallel crosses from 25 contributing females and 30 contributing males, resulting in 47 families (46 dam half-sib, 30 sire half-sib, and 24 full-sib families) and reared in replicate 35-L fiberglass tanks at approximately 40 fry·L⁻¹ according to Fuller, McEntire, and Freeman (2013). Fingerlings were then grown until 25.0 ± 0.41 g, 105 days post hatch in 280-L fiberglass tanks with flow-through well water and continuous aeration at which time 128 fingerlings from each family were tagged intramuscularly with a passive integrated transponder (PIT) tag for individual identification according to the methods of Fuller and McEntire (2013). Fingerlings were monitored for one week for PIT tag retention, and initial total length and weight were recorded. Fingerlings were assigned randomly to one of four earthen 0.04 hectare ponds (32 fingerlings·family⁻¹·pond⁻¹; 1268 fingerlings per pond) at 121 dph supplied with 3/4-hp aerators (Little John Inc) set to run 24 h per day. Ponds were fed to apparent satiation twice per day with a standard high fish protein commercial diet (Cargill Animal Nutrition; 45% crude protein, 12% crude fat) for 115 d, with the amount of food that each pond was fed not differing over the study period (p > 0.05).

At the end of the communal rearing period, each pond was seined, fingerlings were individually identified and measured for growth characteristics, where mean weight was 235.3 ± 17.8 g and mean length was 192.1 ± 48.7 mm with a mean survival of 90.7 ± 0.05% (range 87.8–97.5%). Statistically significant differences (p < 0.05) in sire and dam components of variance were then determined by analysis of variance using PROC GLM, and least square mean total length and weight, with initial total length and initial weight as covariates, was determined by analysis of covariance using PROC MIXED in SAS ver. 9.2 (SAS Institute). Genetic correlations for each trait were based on
sire and dam (co)variance components obtained using PROC MIXED, and standard errors were calculated using PROC IML in SAS ver. 9.2 (Xiang & Li, 2001). Pairwise phenotypic correlations among traits were estimated via Pearson’s product-moment correlation coefficient using PROC CORR in SAS ver. 9.2. We found significant dam and sire effects on least square weight (LS-weight) and least square total length (LS-length) \((p < 0.0001)\), and dam × sire interaction \((p < 0.0001)\) for both traits. Estimates of heritability were high for both traits. Values for LS-weight and LS-length were \(0.33 ± 0.02\) and \(0.75 ± 0.02\), respectively, for dams, and \(0.83 ± 0.09\) and \(0.56 ± 0.04\), respectively, for sires. Genetic correlation between LS-weight and LS-length based on the dam and sire components of variance were 0.92 and 0.95, respectively; the phenotypic correlation was 0.88.

After inspection of all HSB, families were ranked by weight gain and six individuals from the three fastest growing families (mean 240.8 ± 9.75 g; 229.2 to 241.9 g range; 242.0 ± 11.52 mm) and six individuals from the three slowest growing families (mean 153.5 ± 52.38 g; 105.1 to 140.2 g range; 223.3 ± 21.31 mm) were collected and euthanized. Liver tissue was harvested from each individual and total RNA was extracted using the RNeasy Plus Mini Kit (Qiagen). Equimolar amounts of total RNA were pooled in multiples of six to create three biological replicate pools for the largest HSB and smallest HSB. The six RNA pools were sent to a commercial service provider (Data2Bio, Ames, IA, USA) for library construction and high-throughput sequencing, using the TruSeq RNA Sample Preparation Kit (Illumina) and 100-bp, paired-end RNA sequencing (RNAseq) on an Illumina HiSeq2000.

The bioinformatics workflow for the RNAseq data is illustrated in Figure 1. Raw sequencing reads from each sample were processed for quality control (QC) using the TrimGalore! software with the default parameters. Since genomic and transcriptomic information on HSB is lacking, a de novo transcriptome was built by the Trinity (Grabherr et al., 2011) software using all QC reads. Transcripts were subjected to a preliminary functional characterization using Trinotate (Haas et al., 2013), where those with a significant \(10^{-5}\) BLASTx hit to the UniProt database were selected. These transcripts with putative protein-coding ability were then analyzed by CD-HIT (Fu, Niu, Zhu, Wu, & Li, 2012) to help remove redundancy in the transcriptome by collapsing similar sequences. Clustering was performed from 85 to 100% identity, in increments of 1%. Each set of contigs were analyzed with BUSCO (Simao, Waterhouse, Ioannidis, Kriventseva, & Zdobnov, 2015) to help determine completeness of the protein-coding transcriptome by comparing gene content from orthologs in the “actinopterygii_odb9” subset of the OrthoDB v9 database. Based on these analyses, we selected 90% clustering, a level at which transcript redundancy was best reduced without a reduction in gene diversity. The workflow to this point (Figure 1) produced 38,047 putative protein-coding transcripts (herein HSB

![Figure 1. Bioinformatic pipeline for identifying and characterizing differentially expressed genes between hybrid striped bass presenting extremes in growth.](image-url)
transcriptome) in which to align our reads for gene expression analysis. Raw RNAseq data sets along with HSB transcriptome sequences and normalized expression counts from which conclusions were drawn have been submitted to the NCBI Gene Expression Omnibus (GEO) and can be retrieved under the accession number GSE97547.

3. Results and discussion

After construction of a reference HSB transcriptome, QC data were aligned to the reference using bowtie2 (Langmead & Salzberg, 2012) and then effective read counts were assigned using eXpress (Roberts & Pachter, 2013) software (Figure 1). Using this read count information, statistical comparisons between groups (low growing HSB vs. high growing HSB) were performed using the DESeq2 (Love, Huber, & Anders, 2014) package of R-bioconductor. Significant (padj < 0.05; p-value adjusting for multiple testing) differentially expressed genes (DEGs) between low and high growth HSB were collected and identified by BLASTx searches (1e−3) to the non-redundant (nr) protein database at the NCBI. After manual screening for duplicates, unknown and uncharacterized proteins as well as genes with low mapping rates (median FPKM < 1) for highest confidence of expression (Yendrek, Ainsworth, & Thimmapuram, 2012), we identified 86 DEGs between groups (Table 1). This included 40 up-regulated (1.89 < fold-change < 7.66) and 46 down-regulated (−1.71 > fold-change > −4.59) genes in large HSB, as we are using small HSB as the baseline for comparison.

Upon initial inspection, somatic growth-related genes were identified from our candidate gene list (Table 1) that may directly explain some of the genetic differences observed between the largest and smallest HSB families. A growth factor receptor gene was expressed greater than two-fold higher in the largest HSB. Endocrine control of growth in fish is regulated primarily through the growth hormone (GH)/insulin-like growth factor (IGF) axis (Wood, Duan, & Bern, 2005). An increase in hepatic expression of growth hormone receptors has been shown to signal IGF-1 production and somatic growth in carnivorous fish (Norbeck, Kittilson, & Sheridan, 2007; Picha et al., 2009; Picha, Turano, Tipsmark, & Borski, 2008; Won & Borski, 2013). Further, the gene for insulin-like growth factor binding protein 2a was highly down-regulated in the largest HSB. Insulin growth factor binding proteins are reported to bind to insulin-like growth factors thus preventing binding between IGFs and their associated receptors, which inhibits the activities of IGFs (Chauvigné, Gabillard, Well, & Rescan, 2003; Clemmons, 2001; Li et al., 2009; Picha et al., 2014). Activity of ILGFBP2a as a growth inhibitory protein dependent upon nutritional status appears to be conserved, as observed from fish to mammals (Duan, Ding, Li, Tsai, & Pizios, 1999; Kang et al., 2015). Growth factor binding proteins have also been indicated in the nutritional status of carp, where up-regulation was observed in fish under fasting conditions (He et al., 2015). Thus, up-regulated ILGFBP2a in the smallest HSB as observed in this study may also be a contributing factor for their decreased weight.

DEGs were separated by regulation (+ or −) and functionally categorized by gene ontology (GO) using the Blast2GO (Gotz et al., 2008) software. This classified genes based on the major GO categories of cellular component (CC), molecular function (MF) and biological processes (BP). For the positively regulated DEGs, all three GO categories are represented, with metabolic processes being the top represented (Figure 2). Cellular processes, catalytic activity, binding, and cell membrane terms are also among the most represented in the positively regulated DEGs (Figure 2). For the negatively regulated DEGs, again all three GO categories are represented and as well the most-represented terms are similar to the down-regulated DEGs but the top represented category by number of sequences is single-organism processes (Figure 3).

As GO was similar for both up and down-regulated DEGs, and as positive and negative perturbation of a biological pathway can and often does occur in concert, we were interested in a systems approach where all 86 DEGs (Table 1) were grouped for enrichment analysis. For this analysis, first BLASTx searches (1e−3) to the nr database were performed on the complete HSB transcriptome. These data were supplied to the Blast2GO software, where the transcriptome was functionally characterized with gene ontology, protein structure, enzyme commission and gene pathway information. Blast2GO was then used to perform functional enrichment analysis comparing all DEGs (Table
Table 1. List of genes significantly differentially regulated between high and low growth HSB

Gene	FC	p-adj	Accession	Gene description
HSB_liver_CDS_3407	7.66	8.22E-12	KKF17585.1	6-Phosphofructo-2-kinase/fructose-2,6-bisphosphatase 2
HSB_liver_CDS_25458	4.91	2.73E-09	CBN80677.1	GTP-binding protein REM 1
HSB_liver_CDS_26173	3.43	2.58E-05	KKF10972.1	Farnesyl pyrophosphate synthase
HSB_liver_CDS_29463	3.40	4.15E-05	XP_003439749.1	3-Keto-steroid reductase isoform X1
HSB_liver_CDS_8509	3.17	6.97E-06	XP_007550766.1	Beta-sarcoglycan
HSB_liver_CDS_15540	2.96	1.03E-03	KKF28278.1	OX-2 membrane glycoprotein
HSB_liver_CDS_12535	2.93	1.27E-03	XP_003964007.1	Phosphatidylinositol 3,4,5-trisphosphate 3-phosphatase/dual-specificity PTEN
HSB_liver_CDS_16126	2.86	1.85E-03	KKF17856.1	Sterol-4-alpha-carboxylate 3-dehydrogenase, decarboxylating
HSB_liver_CDS_17655	2.76	1.85E-03	NP_001133968.1	Diphosphoehavalonate decarboxylase
HSB_liver_CDS_17931	2.74	2.94E-03	XP_003972472.1	Methylsterol monoxygenase 1
HSB_liver_CDS_22701	2.74	3.56E-03	XP_005812741.1	Inhibitor of growth protein 3
HSB_liver_CDS_29195	2.66	6.17E-03	XP_009289469.1	Disks large homolog 3 isoform X1
HSB_liver_CDS_25813	2.57	9.27E-03	XP_005462201.1	Glucose-6-phosphatase-exchanger SLC37A2
HSB_liver_CDS_27639	2.55	6.90E-03	XP_003971109.1	Delta(14)-sterol reductase
HSB_liver_CDS_13734	2.54	9.89E-03	XP_019218129.1	1-phosphatidylinositol 4,5-bisphosphate phosphodiesterase epsilon-1
HSB_liver_CDS_17852	2.51	1.12E-02	NP_001293026.1	Mitochondrial carrier homolog 2
HSB_liver_CDS_23759	2.47	1.55E-02	XP_00347658.1	3-Hydroxy-3-methylglutaryl-coenzyme A reductase
HSB_liver_CDS_24341	2.46	1.51E-02	AA68786.1	MHC class II alpha
HSB_liver_CDS_17284	2.43	2.09E-02	XP_019131981.1	N-acetylg glucosamine-6-phosphate deacetylase
HSB_liver_CDS_19643	2.39	8.34E-03	XP_003974861.1	Protein MAK16 homolog
HSB_liver_CDS_29445	2.38	2.51E-02	XP_005447809.1	7-Dehydrocholesterol reductase isoform X2
HSB_liver_CDS_25387	2.36	3.13E-02	AHY22365.1	Growth factor receptor-1
HSB_liver_CDS_15819	2.31	1.13E-02	XP_007566227.1	Acyl-CoA-binding domain-containing protein 7 isoform X1
HSB_liver_CDS_7939	2.30	4.34E-04	ADX01347.1	Rhamnose-binding lectin
HSB_liver_CDS_21813	2.30	3.97E-02	KKF23443.1	E3 ubiquitin-protein ligase KCMF1
HSB_liver_CDS_30838	2.30	3.13E-02	XP_010752877.2	Cyclic AMP-responsive element-binding protein 3-like protein 4
HSB_liver_CDS_31012	2.29	9.64E-03	XP_003452513.1	Lanosterol 14-alpha demethylase
HSB_liver_CDS_4795	2.27	4.31E-02	ACQ58692.1	Transmembrane protein LOC124446
HSB_liver_CDS_8725	2.27	4.01E-02	XP_005462617.1	RNA-sphling endonuclease subunit Sen2 isoform X2
HSB_liver_CDS_37813	2.25	4.31E-02	XP_019119287.1	Acetoacetyl-CoA synthetase
HSB_liver_CDS_26662	2.23	3.84E-02	XP_011610382.1	Squalene synthase isoform X1
HSB_liver_CDS_24347	2.23	2.68E-02	CAQ13207.1	MHC class I antigen, partial
HSB_liver_CDS_3261	2.21	3.34E-02	XP_003451814.1	Ubiquitin-conjugating enzyme E2 D2 isoform X1
HSB_liver_CDS_25360	2.21	2.57E-02	KKF27353.1	GTPase IMAP family member 4
HSB_liver_CDS_31450	2.17	9.34E-03	AKM12675.1	Complement component C7-1
HSB_liver_CDS_3968	2.16	4.44E-02	KKF21934.1	Zinc finger protein RFP
HSB_liver_CDS_26056	2.11	3.84E-02	KFO28071.1	Formimidoyltransferase-cyclodeaminase
HSB_liver_CDS_15397	2.09	8.83E-03	XP_00345809.1	Pyrroline-5-carboxylate reductase 1, mitochondrial
HSB_liver_CDS_7138	2.00	1.85E-03	XP_007559381.1	Single-stranded DNA-binding protein 2 isoform X4
HSB_liver_CDS_18581	1.89	4.62E-02	XP_010739859.2	Multiple inositol polyphosphate phosphatase 1-like
HSB_liver_CDS_36553	−1.71	3.89E-02	XP_003450339.1	Alkylglycerol monoxygenase isoform X1
HSB_liver_CDS_20407	−1.80	4.31E-02	KKF32204.1	Lys protease
HSB_liver_CDS_3635	−1.85	4.62E-02	XP_019123002.1	Tetraspanin-8-like

(Continued)
Table 1. (Continued)

Gene	FC	p-adj	Accession	Gene description
HSB_liver_CDS_28368	−1.99	9.00E-03	XP_005809173.1	Extracellular matrix protein 1
HSB_liver_CDS_22594	−2.01	4.02E-02	NP_001129616.1	Type I iodothyronine deiodinase
HSB_liver_CDS_26296	−2.14	6.59E-03	XP_004068320.1	Dimethyline monoxygenase
HSB_liver_CDS_21376	−2.18	4.96E-02	XP_014325892.1	Kruempel-like factor 10
HSB_liver_CDS_25849	−2.19	1.27E-02	CBN81681.1	Glucose-6-phosphatase
HSB_liver_CDS_37502	−2.20	2.45E-02	AEK25827.1	Diazepam-binding inhibitor
HSB_liver_CDS_37688	−2.21	9.30E-03	XP_007565477.1	Bile salt export pump-like
HSB_liver_CDS_24400	−2.22	4.31E-02	XP_007561743.1	Histone H1-like
HSB_liver_CDS_12163	−2.22	7.19E-03	ACQ58208.1	Cytochrome b-c1 complex subunit 10
HSB_liver_CDS_17141	−2.24	3.29E-02	KKF15775.1	Next to BRCA1 1 protein
HSB_liver_CDS_25849	−2.27	3.65E-02	XP_005451949.1	DNA excision repair protein ERCC-1
HSB_liver_CDS_18320	−2.28	3.18E-02	KKF13003.1	Mortality factor 4-like protein 1
HSB_liver_CDS_20848	−2.28	4.39E-02	XP_014330388.1	Phosphatidylcholine-sterol acyltransferase
HSB_liver_CDS_15489	−2.31	3.56E-02	XP_011472633.1	Zinc transporter 7 isoform X2
HSB_liver_CDS_9077	−2.31	3.17E-02	KKF21186.1	Sodium/glucose cotransporter 4
HSB_liver_CDS_4527	−2.33	3.13E-02	XP_010748887.1	Tumor necrosis factor ligand superfamily member 11
HSB_liver_CDS_34927	−2.34	2.69E-02	XP_019113738.1	Tyrosine aminotransferase
HSB_liver_CDS_12249	−2.36	1.77E-02	AC132417.1	Pentraxin
HSB_liver_CDS_32520	−2.39	2.26E-02	AIN76765.1	Complement component 2
HSB_liver_CDS_22713	−2.43	9.65E-03	XP_003451768.1	Sodium- and chloride-dependent GABA transporter
HSB_liver_CDS_37868	−2.44	8.56E-03	KKF21859.1	Alpha-2-macroglobulin
HSB_liver_CDS_9353	−2.47	6.59E-03	XP_003446783.1	Multidrug and toxin extrusion protein 1
HSB_liver_CDS_5697	−2.48	1.57E-02	AAP49009.1	Transposase
HSB_liver_CDS_14963	−2.50	1.31E-02	XP_005807612.1	Phosphoenolpyruvate carboxykinase, cytosolic
HSB_liver_CDS_7767	−2.50	8.12E-03	XP_003451846.1	Sorting nexin-25
HSB_liver_CDS_9522	−2.50	2.93E-03	XP_005799791.1	Very long-chain acyl-CoA synthetase
HSB_liver_CDS_26221	−2.54	1.50E-03	ABH06553.1	Proto-oncogene protein c-Fos
HSB_liver_CDS_21684	−2.56	9.81E-03	XP_019134360.1	Lysine-specific demethylase 2B-like isoform X3
HSB_liver_CDS_16964	−2.59	2.58E-03	XP_007552581.1	NADH dehydrogenase
HSB_liver_CDS_23535	−2.62	5.82E-03	AEB31271.1	Hydraoxypenolpyruvate dioxygenase, partial
HSB_liver_CDS_20770	−2.67	2.86E-03	XP_003458375.1	Galectin-9
HSB_liver_CDS_4201	−2.68	3.09E-03	EMP35734.1	Solute carrier family 13 member 3
HSB_liver_CDS_16883	−2.72	3.88E-03	XP_019121404.1	Nectin-4-like isoform X1
HSB_liver_CDS_25413	−2.99	1.44E-04	XP_005490943.1	Gamma-glutamyl hydrolase
HSB_liver_CDS_23170	−3.00	7.62E-04	XP_010753892.2	Protein-S-isoprenylcysteine-O-methyltransferase
HSB_liver_CDS_7217	−3.01	7.78E-04	ACO07708.1	Serine/arginine repetitive matrix protein 1
HSB_liver_CDS_23211	−3.09	9.94E-08	AHH84195.1	Insulin-like growth factor binding protein-2a
HSB_liver_CDS_13489	−3.43	5.19E-05	KKF24190.1	Phospholipid transfer protein
HSB_liver_CDS_2534	−3.51	3.59E-06	XP_004084485.1	V-type proton ATPase subunit G 1-like
HSB_liver_CDS_30999	−3.62	3.33E-06	XP_003456777.1	Cholesterol 7-alpha-monooxygenase
HSB_liver_CDS_31055	−3.76	2.35E-06	KKF10925.1	Cytochrome P450 2K1
HSB_liver_CDS_26126	−4.59	2.40E-09	ACN80998.1	Ferritin heavy polypeptide

Notes: Data includes gene name based on contig numbering, fold-change of expression (FC) and p-value adjusted for multiple comparisons (p-adj) along with top-hit BLAST accession number and description of the gene annotated from BLAST results. Fold-change direction and magnitude are representative of the largest change observed.
1) to the HSB transcriptome by Fisher’s Exact test, using the False Discover Rate (FDR) to assess significance (FDR < 0.05). The result of this enrichment analysis is shown in Table 2.

Assessment of both DEGs and GO terms indicated that differences in hepatic gene expression between large and small HSB after grow-out in a communal pond are linked to those genes involved in cellular and metabolic processes as well as immunity. There also appears to be a relationship of metabolic or nutritional status between HSB extremes and our DEG list and GO terms. For instance, in terms of the cellular and metabolic processes GO, the bifunctional enzyme 6PF-2K/F-2,6BPase is a key regulator of glycolysis/gluconeogenesis in the liver and is highly differentially regulated in this study (Table 1). This gene is in fact the largest by magnitude of our DEGs, displaying greater than a seven-fold up-regulation in the largest HSB (Table 1). This gene produces fructose 2,6-bisphosphate and was found in rainbow trout to be highly correlated with the nutritional status of the fish, where feeding induced expression (Panserat, Plagnes-Juan, & Kaushik, 2001). There is also evidence that hepatic 6PF-2K/F-2,6BPase is regulated by diet composition and ration size in another carnivorous fish, the gilthead sea bream, Sparus aurata (Metón, Caseras, Fernandez, & Baanante, 2000). Hepatic glucose-6-phosphatase (G6Pase), whose gene expression is hormonally and nutritionally regulated, is a positive DEG in small HSB (Table 1). Even though carnivorous finfish utilize carbohydrates differently than their mammalian counterparts (Metón, Fernández, & Baanante, 2003; Panserat et al., 2001), G6Pase was identified across the spectrum of playing an important role in providing glucose during starvation (van...
GO ID	GO name	Gene ID	Gene description	FC
GO:0006694	Steroid biosynthetic process	HSB_liver_CDS_16126	Sterol-4-alpha-carboxylate 3-dehydrogenase	2.86
	Steroid metabolic process	HSB_liver_CDS_17655	Diphosphomevalonate decarboxylase	2.76
		HSB_liver_CDS_27639	Delta(14)-sterol reductase	2.55
		HSB_liver_CDS_23759	3-hydroxy-3-methylglutaryl-coenzyme A reductase	2.47
		HSB_liver_CDS_26662	Squalene synthase	2.23
		HSB_liver_CDS_30999	Cholesterol 7-alpha-monoxygenase	-3.62
GO:0008610	Lipid biosynthetic process	HSB_liver_CDS_26173	Farnesyl pyrophosphate synthase	3.43
GO:0006629	Lipid metabolic process	HSB_liver_CDS_16126	Sterol-4-alpha-carboxylate 3-dehydrogenase	2.86
		HSB_liver_CDS_17655	Diphosphomevalonate decarboxylase	2.76
		HSB_liver_CDS_17931	Methylsterol monoxygenase 1	2.74
		HSB_liver_CDS_30999	Cholesterol 7-alpha-monoxygenase	-3.62
		HSB_liver_CDS_27639	Delta(14)-sterol reductase	2.55
		HSB_liver_CDS_23759	3-hydroxy-3-methylglutaryl-coenzyme A reductase	2.47
		HSB_liver_CDS_26662	Squalene synthase	2.23
		HSB_liver_CDS_36553	Alkylglycerol monoxygenase isoform X1	-1.71
GO:0006955	Immune response	HSB_liver_CDS_16126	Sterol-4-alpha-carboxylate 3-dehydrogenase	2.86
		HSB_liver_CDS_17655	Diphosphomevalonate decarboxylase	2.76
		HSB_liver_CDS_17931	Methylsterol monoxygenase 1	2.74
		HSB_liver_CDS_30999	Cholesterol 7-alpha-monoxygenase	-3.62
		HSB_liver_CDS_27639	Delta(14)-sterol reductase	2.55
		HSB_liver_CDS_23759	3-hydroxy-3-methylglutaryl-coenzyme A reductase	2.47
		HSB_liver_CDS_26662	Squalene synthase	2.23

Note: Data include GO ID and name along with the underlying gene information contributing to the GO together with the gene sequence ID, top-hit BLAST description and fold-change (FC) information. Note that no molecular function (MF) GO categories were significantly enriched and cellular component (CC) GO has been omitted for brevity.
Schaftingen & Gerin, 2002). Reports in carnivorous fish showed that long-term starvation and energy restriction increase hepatic G6Pase activity (Caseras et al., 2002; Salgado, Meton, Egea, & Baanante, 2004). Similarly, He et al. (2015) found that the most significant down-regulated genes involved glucose and fatty acid metabolism in starved carp. Growth hormone receptor type 1 genes also show reduced expression in fasted carnivorous fish (Norbeck et al., 2007). As immune response GO (Table 2) was also indicated in our DEG list (Table 1), it is well-established that there is a significant interplay between nutritional status and proper immune functioning in fish [reviewed in (Martin & Krol, 2017)].

Taken together, our candidate gene list may provide some evidence that both physiological and behavioral factors may be at work with regards to HSB growth when communally reared. That is, evidence from this study may have revealed that larger HSB could also be more efficient feeders than their smallest counterparts. This is demonstrated by the fact that several DEGs in this study are similar to those that would be revealed in finfish life-cycle and/or aquaculture studies where nutrition is restricted, such as those involving no/limited access to food during migration, while undergoing a period of fasting, or during diet replacement trials (e.g. Picha et al., 2014, 2009, 2008). This notion should supplement the original hypothesis that within these domesticated populations certain HSB have a genetic predisposition to processing a manufactured diet more efficiently toward somatic growth, while all other factors are even. Thus even though diet and feeding schedule were uniform throughout this study and HSB were communally reared, we cannot rule out that the largest HSB families may have had preferential feeding behavior or advantage within the population in addition to being genetically superior feed metabolizers, which would require further exploration.

4. Conclusions
Genetic effects for growth (weight and length) were observed in HSB. Differences in hepatic gene expression between large and small HSB after grow-out in communal ponds revealed that those genes involved in cellular and metabolic processes as well as immunity signify important differences. These differences may be at least in part explained by up-regulation of two growth-related genes. The differentially regulated genes might also suggest that these physiological processes as well as variation in feeding behavior may be at play, where fish from the largest HSB families may have been more active feeders or were better competitors for feed, even as fish were fed to apparent satiation twice daily. While this study was focused on mimicking typical stocking and grow-out conditions as would take place in an aquaculture production setting, future studies that focus on feeding behavior and/or specific feed rations in a controlled environment may explain even more of the variation observed in growth differences among HSB.

List of abbreviations

Abbreviation	Description
BP	biological processes
CC	cellular component
DEGs	differentially expressed genes
FDR	False Discover Rate
G6Pase	glucose-6-phosphatase
GEO	NCBI Gene Expression Omnibus
GH	growth hormone
GO	gene ontology
HSB	hybrid striped bass
IGF	insulin-like growth factor
MF	molecular function
nr	non-redundant
QC	quality control
WB	white bass
Ethics statement
Use of animals in this study was conducted under established policies and procedures at the Harry K. Dupree Stuttgart National Aquaculture Research Center. Fish were euthanized by an overdose of tricaine methane sulphonate prior to dissections.

Acknowledgements
The authors would like to thank Troy Bader, Bobby Kelly, Julia Scheiderer and other technical staff at the Harry K. Dupree Stuttgart National Aquaculture Center for their assistance in animal husbandry and sample collection. Mention of trade names or commercial products in this article is solely for the purpose of providing specific information and does not imply recommendation or endorsement by the U.S. Department of Agriculture. The USDA is an equal opportunity provider and employer.

Funding
This research was supported by funds appropriated for USDA Agricultural Research Service Research Project number 6028-31630-008-00D.

Competing interests
The authors declare no competing interests.

Author details
S. Adam Fuller1
E-mail: Adam.Fuller@ars.usda.gov
ORCID ID: http://orcid.org/0000-0001-6804-8239

Benjamin H. Beck2
E-mail: benjamin.beck@ars.usda.gov

Matthew E. McEntire1
E-mail: Matthew.McEntire@ars.usda.gov

Eric Peatman3
E-mail: peatmer@auburn.edu

Jason Abernathy4
E-mail: Jason.Abernathy@ars.usda.gov
ORCID ID: http://orcid.org/0000-0001-6804-8239

1 USDA, Agricultural Research Service, Harry K. Dupree Stuttgart National Aquaculture Research Center, 2955 Highway 130 East, Stuttgart, AR 72160, USA
2 USDA, Agricultural Research Service, Aquatic Animal Health Research Unit, 990 Wire Road, Auburn, AL 36832, USA.
3 School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL 36849, USA.

Citation information
Cite this article as: Heritability of growth traits and correlation with hepatic gene expression among hybrid striped bass exhibiting extremes in performance, S. Adam Fuller, Benjamin H. Beck, Matthew E. McEntire, Eric Peatman & Jason Abernathy, Cogent Biology (2018), 4: 1453319.

References
Caseras, A., Meton, I., Vives, C., Egea, M., Fernandez, F., & Boamante, I. V. (2002). Nutritional regulation of glucose-6-phosphatase gene expression in liver of the gilt head sea bream (Sparus aurata). British Journal of Nutrition, 88(8), 607–616. doi:10.1079/BJN2002701

Chauvigné, F., Gobillard, J. C., Weil, C., & Rescan, P. Y. (2003). Effect of refeeding on IGFI, IGFI1, IGFI receptors, FGF2, FGF6, and myostatin mRNA expression in rainbow trout myotomal muscle. General and Comparative Endocrinology, 132(2), 209–215. doi:10.1016/S0016-6480(03)00081-9

Clemmons, D. R. (2000). Use of mutagenesis to probe IGFBinding protein structure/function relationships. Endocrine Reviews, 22(6), 800–817. doi:10.1210/edrv.22.6.0449

Duan, C., Ding, J., Li, Q., Tsoi, W., & Pozios, K. (1999). Insulin-like growth factor binding protein 2 is a growth inhibitory protein conserved in zebrafish. Proceedings of the National Academy of Sciences of the United States of America, 96(26), 15274–15279. doi:10.1073/pnas.96.26.15274

Fu, L., Niu, B., Zhu, Z., Wu, S., & Li, W. (2012). CD-HIT: Accelerated for clustering the next-generation sequencing data. Bioinformatics, 28(23), 3150–3152. doi:10.1093/bioinformatics/bts565

Fuller, S. A., & McEntire, M. (2013). The effect of PIT tagging on survival, tag retention, and weight gain in fingerling white bass. Journal of Applied Aquaculture, 25(2), 95–101. doi:10.1080/10454438.2012.759894

Fuller, S. A., McEntire, M. E., & Freeman, D. (2013). Genetic effects and estimates for the heritability of size in fingerling hybrid striped bass reared indoors. Journal of Applied Aquaculture, 25(3), 198–205. doi:10.1080/10454438.2013.791910

Garber, A. F. (2006). Assessing genetic contributions to performance of communally reared families of wild and domesticated reciprocal hybrid striped bass (Doctoral dissertation). North Carolina State University, Raleigh, NC.

Garber, A. F., & Sullivan, C. V. (2006). Selective breeding for the hybrid striped bass (Morone chrysops, Rafinesque x M. saxatilis, Walbaum) industry: Status and perspectives. Aquaculture Research, 37(4), 319–338. doi:10.1111/j.1365-2109.2005.01439.x

Gotz, S., Garcia-Gomez, J. M., Terol, J., Williams, T. D., Nagaraj, S. H., Nueda, M. J., & Conesa, A. (2008). High-throughput functional annotation and data mining with the Blast2GO suite. Nucleic Acids Research, 36(10), 3420–3435. doi:10.1093/nar/gkn176

Grabherr, M. G., Haas, B. J., Yassour, M., Levin, J. Z., Thompson, D. A., Amit, I., & Regev, A. (2011). Trinity: Reconstructing a full-length transcriptome without a genome from RNA-Seq data. Nature Biotechnology, 29(7), 644–652. doi:10.1038/nbt.1883

Haas, B. J., Papanicolaou, A., Yassour, M., Grabherr, M., Blood, P. D., Bowden, J., & Regev, A. (2013). De novo transcript sequence reconstruction from RNA-seq using the Trinity platform for reference generation and analysis. Nature Protocols, 8(8), 1494–1512. doi:10.1038/nprot.2013.084

Hollerman, E. M. (1994). Toward coordination and funding of long-term genetic improvement programs for striped and hybrid bass Morone sp. Journal of the World Aquaculture Society, 25, 360–365. doi:10.1111/j.1751-0867.1994.tb00522.x

He, L., Pei, Y., Jiang, Y., Li, Y., Liao, L., Zhu, Z., & Wang, Y. (2015). Global gene expression patterns of grass carp following compensatory growth. BMC Genomics, 16, 1751. doi:10.1186/s12864-015-1427-2

Kang, Hye S., Kim, M.-Y., Kim, S.-J., Lee, J.-H., Kim, Y.-D., Seo, Y.-K., & Im, S.-S. (2013). Regulation of IGF-II expression during fasting. Biochemical Journal, 467(3), 453–460. doi:10.1042/BJ20141248

Langmead, B., & Salzberg, S. L. (2012). Fast gapped-read alignment with Bowtie 2. Nature Methods, 9(4), 357–359. doi:10.1038/nmeth.1923

Li, M., Li, Y., Liu, L., Wang, X., Gong, Q., & Duan, C. (2009). Structural, gene expression, and functional analysis of the fugu (Takifugu rubripes) insulin-like growth factor binding protein-4 gene. American Journal of Physiology - Regulatory, Integrative and Comparative Physiology, 296(3), R558–R566. doi:10.1152/ajpregu.90439.2008

Love, M. I., Huber, W., & Anders, S. (2014). Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biology, 15(12), 31. doi:10.1186/s13059-014-0550-8
Martin, S. A. M., & Krol, E. (2017). Nutrigenomics and immune function in fish: New insights from omics technologies. Developmental & Comparative Immunology, 75, 86–98. doi:10.1016/j.dci.2017.02.024

McEntire, M., Snyder, S., & Freeman, D. (2015). Comparison of growth between morone hybrids (palmetto and sunshine) in earthen ponds. Journal of the World Aquaculture Society, 46(5), 557–563. Retrieved from https://doi.org/10.1111/jwas.12213

Picha, M. E., Bigo, P. R., Golt, N., McGinty, A. S., Gross, K., Hedgath, V. S., & Borski, R. J. (2014). Overcompensation of circulating and local insulin-like growth factor-1 during catch-up growth in hybrid striped bass (Morone chrysops×Morone saxatilis) following temperature and feeding manipulations. Aquaculture, 428, 174–183. doi:10.1016/j.aquaculture.2014.02.028

Roberts, A., & Pechter, L. (2013). Streaming fragment assignment for real-time analysis of sequencing experiments. Nature Methods, 10(1), 71–73. doi:10.1038/nmeth.2251

Salgado, M. C., Meton, I., Egeo, M., & Baanante, I. V. (2004). Transcriptional regulation of glucose-6-phosphatase catalytic subunit promoter by insulin and glucose in the carnivorous fish, Sparus aurata. Journal of Molecular Endocrinology, 33(3), 783–795. doi:10.1677/jme.1.01552

Simao, F. A., Waterhouse, R. M., Ioannidis, P., Kriventseva, E. V., & Zdobnov, E. M. (2015). BUSCO: Assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics, 31(19), 3210–3212. doi:10.1093/bioinformatics/btv351

Won, E. T., & Borski, R. J. (2013). Endocrine regulation of compensatory growth in fish. Frontiers in Endocrinology, 4, 74. doi:10.3389/fendo.2013.00074

Wood, A. W., Duan, C., & Bern, H. A. (2005). Insulin-like growth factor signaling in fish. International Review of Cytology, 243, 215–285. doi:10.1016/S0074-7696(05)4004-1

Yendrek, C. R., Ainsworth, E. A., & Thimmapuram, J. (2012). The bench scientist’s guide to statistical analysis of RNA-Seq data. BMC Research Notes, 5, 506. doi:10.1186/1756-0500-5-506

Metön, I., Caseras, A., Fernandez, F., & Baanante, I. V. (2000). 6-Phosphofructo-2-kinase/fructose-2,6-bisphosphatase gene expression is regulated by diet composition and ration size in liver of gilthead seabream, Sparus aurata. Biochimica Et Biophysica Acta-Gene Structure and Expression, 1491(1–3), 220–228. doi:10.1016/S0167-4781(00)00040-3

Metón, I., Fernández, F., & Baanante, I. V. (2003). Short- and long-term effects of refeeding on key enzyme activities in glycolysis–gluconeogenesis in the liver of gilthead seabream (Sparus aurata). Aquaculture, 225(1-4), 99–107. doi:10.1016/S0044-8486(03)00281-3

Norbeck, L. A., Kittilson, J. D., & Sheridan, M. A. (2007). Resolving the growth-promoting and metabolic effects of growth hormone: Differential regulation of GH-IGF-I system components. General and Comparative Endocrinology, 151(3), 332–341. doi:10.1016/j.ygcen.2007.01.039

Panserat, S., Plagnes-Juan, E., & Kaushik, S. (2001). Nutritional regulation and tissue specificity of gene expression for proteins involved in hepatic glucose metabolism in rainbow trout (Oncorhynchus mykiss). Journal of Experimental Biology, 204(Pt 13), 2351–2360.

Picha, M. E., Strom, C. N., Riley, L. G., Walker, A. A., Won, E. T., Johnstone, W. M., & Borski, R. J. (2009). Plasma ghrelin and growth hormone regulation in response to metabolic state in hybrid striped bass: Effects of feeding, ghrelin and insulin-like growth factor-1 on in vivo and in vitro GH secretion. General and Comparative Endocrinology, 161(3), 365–372. doi:10.1016/j.ygcen.2009.01.026

Picha, M. E., Bigo, P. R., Golt, N., McGinty, A. S., Gross, K., Hedgath, V. S., & Borski, R. J. (2014). Overcompensation of circulating and local insulin-like growth factor-1 during catch-up growth in hybrid striped bass (Morone chrysops×Morone saxatilis) following temperature and feeding manipulations. Aquaculture, 428, 174–183. doi:10.1016/j.aquaculture.2014.02.028

Picha, M. E., Turano, M. J., Tipsmark, C. K., & Borski, R. J. (2008). Regulation of endocrine and paracrine sources of Igfs and Gh receptor during compensatory growth in hybrid striped bass (Morone chrysops X Morone saxatilis). Journal of Endocrinology, 199(1), 81–94. doi:10.1677/JOE-07-0649

Picha, M. E., Strom, C. N., Riley, L. G., Walker, A. A., Won, E. T., Johnstone, W. M., & Borski, R. J. (2009). Plasma ghrelin and growth hormone regulation in response to metabolic state in hybrid striped bass: Effects of feeding, ghrelin and insulin-like growth factor-1 on in vivo and in vitro GH secretion. General and Comparative Endocrinology, 161(3), 365–372. doi:10.1016/j.ygcen.2009.01.026
