AVATARS OF MARGULIS INVARIANT AND PROPER ACTIONS

SOURAV GHOSH

Abstract. In this article, we provide a necessary and sufficient criterion for proper actions on \(\mathbb{H}^{n,n-1} \) in terms of certain special Anosov representations in \(\text{SO}(n,n) \). Moreover, we show that affine Anosov representations of any word hyperbolic group in \(\text{SO}(n,n-1) \ltimes \mathbb{R}^{2n-1} \) are infinitesimal versions of such special Anosov representations. Finally, using the above two results we interpret Margulis spacetimes as infinitesimal versions of quotient manifolds of \(\mathbb{H}^{n,n-1} \).

In the appendix, we give a description of the appropriate cross-ratios in our setting and their infinitesimal versions.

Contents

1. Introduction 2
Acknowledgements 7
2. Preliminaries 7
 2.1. Anosov representations 7
 2.2. Pseudo-orthogonal groups 9
 2.3. Maximal isotropic spaces 12
3. Proper actions on \(\mathbb{H}^{n,n-1} \) 14
 3.1. Proto-neutral sections 14
 3.2. Proto-Labourie-Margulis invariants 16
 3.3. An equivalent criterion 19
 3.4. Special Anosov representations 22
4. Infinitesimal proper actions 25
 4.1. Affine Anosov representations 25
 4.2. Margulis invariants as derivatives 27
 4.3. Margulis spacetimes and quotients of \(\mathbb{H}^{n,n-1} \) 31
Appendix 32
 4.4. Affine Crossratios and Margulis Invariants 32
 4.5. Crossratios and Eigenvalues 37
References 39

Date: December 24, 2024.
The author acknowledge support from DFG SPP 2026 grant, OPEN/16/11405402 grant and the Ashoka University annual research grant.
1. Introduction

The study of tilings gives rise to the study of proper actions. In a celebrated result, Bieberbach classified the symmetries of ‘crystals’. Any subgroup of \(O(n, \mathbb{R}) \rtimes \mathbb{R}^n\) whose action on \(\mathbb{R}^n\) is proper and cocompact is called a crystallographic group. Bieberbach [Bie11, Bie12] (see also [Bus85]) showed that for each fixed \(n\) there are only finitely many isomorphism classes of \(n\)-dimensional crystallographic groups and they contain a normal subgroup of infinite index isomorphic to \(\mathbb{Z}^n\). Later, Auslander and Markus [AM59] constructed examples of subgroups of \(\text{Aff}(n, \mathbb{R}) := \text{GL}(n, \mathbb{R}) \rtimes \mathbb{R}^n\) whose action on \(\mathbb{R}^n\) is proper and cocompact and which do not have a normal subgroup of infinite index isomorphic to \(\mathbb{Z}^n\). Auslander [Aus64, Aus65] attempted to show that any subgroup of \(O(n, \mathbb{R}) \rtimes \mathbb{R}^n\) whose action on \(\mathbb{R}^n\) is proper and cocompact is virtually polycyclic and failed. Later, the statement was rechristened as Auslander conjecture by Fried–Goldman [FG83]. This conjecture is still unsolved for the general case but has been shown to hold true in dimension less than 7 by the work of Fried–Goldman [FG83] and Abels–Margulis–Soifer [AMS20]. Recently, a generalization of the Auslander conjecture for homogeneous spaces appeared in [Tom16] with partial resolution. In fact, the study of proper action of discrete groups on homogeneous spaces can be traced back to Borel [Bor63]. He studied compact quotients of symmetric spaces. Later, the study of pseudo-Riemannian homogeneous spaces was pioneered by Kulkarni [Kul81], Kobayashi [Kob89], Benoist [Ben96] and Okuda [Oku13]. They found that the signature of a homogeneous space acts as an obstruction for the existence of proper actions of a discrete group on it (please check [Kob22] for a recent survey). Let \(g \in \text{GL}(n, \mathbb{R}), v \in \mathbb{R}^n\) and \((g, v) \in \text{Aff}(n, \mathbb{R})\). Then we call \(\text{GL}(n, \mathbb{R})\) (resp. \(g\)) the linear part of \(\text{Aff}(n, \mathbb{R})\) (resp. \((g, v)\)) and \(\mathbb{R}^n\) (resp. \(v\)) the translational part of \(\text{Aff}(n, \mathbb{R})\) (resp. \((g, v)\)). We observe that the map \(L\) sending any element to its linear part is a homomorphism and for any subgroup \(H\) of \(\text{Aff}(n, \mathbb{R})\) we call \(L(H)\) the linear part of \(H\).

Meanwhile, Margulis [Mar83, Mar84] answered a question asked by Milnor [Mil77] related to the Auslander conjecture in the negative. He showed that the conjecture would fail if one drops the cocompactness assumption. He constructed actions of non-abelian free subgroups of \(\text{GL}(3, \mathbb{R}) \rtimes \mathbb{R}^3\) which act properly on \(\mathbb{R}^3\). It was known due to prior works of Kostant–Sullivan [KS75] and Fried–Goldman [FG83] that the linear part of the Zariski closure of such a group has to be \(\text{SO}(2, 1)\). The quotient manifolds obtained from \(\mathbb{R}^3\) under the proper action of a non-abelian free subgroup of \(\text{SO}(2, 1) \rtimes \mathbb{R}^3\) are called Margulis spacetimes. Furthermore, Drumm [Dru93] classified the linear holonomy of Margulis spacetimes and constructed [Dru92] nice fundamental domains for a large class of them. It was conjectured that any Margulis spacetime admits a fundamental domain of the type constructed by Drumm. This conjecture is known as the Crooked plane conjecture. Recently, the Crooked plane conjecture was resolved by Danciger–Guéritaud–Kassel [DGK16b]. While constructing Margulis spacetimes, Margulis introduced certain invariants, which later came to be known as the Margulis invariants, to give a necessary criterion for proper actions. Later,
Labourie [Lab01] introduced continuous versions of the Margulis invariants. We call these invariants as Labourie-Margulis invariants. Subsequently, Goldman–Labourie–Margulis [GLM09] used the Labourie-Margulis invariants to give a necessary and sufficient condition for a representation to be a Margulis spacetime. Classification results of similar nature were also independently obtained by Danciger–Guéritaud–Kassel [DGK16a] using different techniques. In fact, using those techniques they went on to prove a twenty year old conjecture of Drumm-Goldman. They demonstrated that Margulis spacetimes are tame, i.e. Margulis spacetimes are homeomorphic to the interior of a compact manifold with boundary. Tameness of Margulis spacetimes was also independently proved by Choi–Goldman [CG17]. Recently, similar results for Margulis spacetimes with parabolics was obtained by Choi–Drumm–Goldman [CDG17]. The construction of Margulis spacetimes and Margulis invariants were generalized by Abels–Margulis–Soifer [AMS02]. For n even they constructed more examples of non-abelian free subgroups of $\text{GL}(2n-1, \mathbb{R}) \ltimes \mathbb{R}^{2n-1}$ whose Zariski closure is $\text{SO}(n, n-1) \ltimes \mathbb{R}^{2n-1}$ and which act properly on \mathbb{R}^{2n-1}. They also proved the nonexistence of any such subgroups for odd n. Suppose Γ is a finitely generated hyperbolic group. We abuse notation and call an injective homomorphism $(\rho, u) : \Gamma \to \text{SO}(n, n-1) \ltimes \mathbb{R}^{2n-1}$ a Margulis spacetime if $(\rho, u)(\Gamma) \setminus \mathbb{R}^{2n-1}$ is a manifold. The constructions of [AMS02] were further generalized by Smilga in [Smi16, Smi22]. Generalizing previous works of Kim [Kim05] and Ghosh [Gho20], recently it was proved in [Gho21] that only finitely many well chosen Margulis invariants are enough to determine a conjugacy class of Margulis spacetimes. It might appear from the above discussion that free groups are the only groups which admit proper affine actions but that is not the case. First examples of proper affine actions of right-angled Coxeter groups was obtained by Danciger–Guéritaud–Kassel [DGK20]. It remains to be seen if there are other classes of groups which admit proper actions or not.

The classification results of Goldman–Labourie–Margulis [GLM09] and Goldman–Labourie [GL12] point towards a description of Margulis spacetimes in terms of Anosov representations. This project is still ongoing with affirmative results by Ghosh [Gho18] and Ghosh–Treib [GT17]. Anosov representations generalize the notion of convex cocompactness for higher rank Lie groups [GGKW17]. They were introduced by Labourie [Lab06] to provide a geometric characterization of certain special representations of surface groups called Hitchin representations. Hitchin representations can be defined as those representations which lie in the components of the representation variety containing Fuchsian representations of a surface group. One interesting thing about Hitchin representations is that their moduli space is topologically trivial and it is the same as the moduli of solutions of the Yang–Mills equations under certain symmetry conditions [Hit92]. Interestingly, Hitchin representations also make their appearance in the study of Margulis spacetimes through the works of Danciger–Zhang [DZ19] and Labourie [Lab22]. Generalizing previous results of Goldman–Margulis [GM00], Mess [Mes07] and Labourie [Lab01], they showed that Hitchin representations in $\text{SO}(n, n-1)$ do not admit affine deformations which act properly on
The definition of an Anosov representation given by Labourie is
dynamical in nature and its dynamics resembles the notion of an Axiom A
flow appearing in the dynamical systems literature \cite{Bow08, Rue04}. Later
on, Guichard–Wienhard \cite{GW12} extended the notion of an Anosov rep-
resentation to include representations of any finitely generated hyperbolic
group into semisimple Lie groups. They also established relations between
Anosov representations and proper actions on homogeneous spaces. Subse-
quently, a more algebraic description of Anosov representations, in terms of
uniform gaps in singular value or eigenvalue spectra, and relation between
Anosov representations and proper actions on homogeneous spaces appeared
in the works of Kapovich–Leeb–Porti \cite{KLP14, KLP17, KLP18}, Guéritaud–
Guichard–Kassel–Wienhard \cite{GGKW17}, Bochi–Potrie–Sambarino \cite{BPS19}
and Kassel–Potrie \cite{KP22}. In this article, we stick to the dynamical descrip-
tion of an Anosov representation. Further dynamical properties of these
representations were proved by Bridgeman–Canary–Labourie–Sambarino in
\cite{BCLS15}. The appropriate version of Anosov representations of a hy-
perbolic group into affine Lie groups of the kind \(\text{SO}(n, n − 1) \rtimes \mathbb{R}^{2n−1}\),
was introduced in the works of Ghosh \cite{Gho18, Gho17} and Ghosh–Treib
\cite{GT17}. They showed that Margulis spacetimes can be charact erized by
affine Anosov representations. We prove a similar characterization relat-
ing proper actions of hyperbolic groups on the homogeneous space \(\mathbb{H}^{n,n−1}\)
and certain special Anosov representations (this generalization provide an
alternate proof of a statement from \cite{DZ19} communicated to us by Danc-
ciger and Zhang). Let \(\Gamma\) be a finitely generated hyperbolic group. We
prove the following:

Theorem 1.1. (see Theorem 3.7) We recall that \(G\) is the connected com-
ponent of \(\text{SO}(n, n)\) containing identity. Suppose \(\rho\) is a representa-
tion of \(\Gamma\) in \(G\) which is Anosov with respect to the stabilizer of an ori-
yaed \((n − 1)\)-
dimensional isotropic subspace of \(\mathbb{R}^{n,n}\), that is, \(\rho \in \text{Hom}(\Gamma, G, P^±)\). Then
the action of \(\rho(\Gamma)\) on \(\mathbb{H}^{n,n−1}\) is proper if and only if \(\rho\) is Anosov in \(\text{SL}(2n, \mathbb{R})\)
with respect to the stabilizer of an \(n\)-dimensional subspace.
Goldman–Margulis \cite{GM00} kicked off the study of Margulis spacetimes via deformation of related objects. They showed that the marked Margulis invariant spectrum of an affine representation in dimension three can be interpreted as derivatives of the marked length spectrum of surfaces. Deformation techniques were also used by Danciger–Guéritaud–Kassel \cite{DGK16a} to show that three dimensional Margulis spacetimes are the rescaled limits of collapsing AdS spacetimes. In fact, their proof of the Crooked plane conjecture \cite{DGK20} also used deformation techniques but in the context of arc complexes. A general framework to describe transitions between geometries which are sub-geometries of a larger ambient geometry was developed by Cooper–Danciger–Wienhard \cite{CDW18}. Furthermore, in a different context Kassel \cite{Kas12} and Guéritaud–Kassel \cite{GK17} showed that small deformations of proper actions still give rise to proper actions. In this article, we generalize the derivative interpretation of the Margulis invariants and show that Margulis invariant spectra can be obtained as the derivative of the middle eigenvalue gap spectra of representations in G.

Let $h \in G_0$ be pseudo-hyperbolic i.e. the unit eigenspace of h is one dimensional and h does not have -1 as an eigenvalue. Let W^h_\pm respectively be the subspaces of \mathbb{R}^{2n-1} on which the action of h is contracting or expanding. There is a consistent way of choosing a direction along the unique eigenspace of h with eigenvalue 1 (for more details please see Section 4.1). Let v^h_0 be the unique eigenvector of h with eigenvalue 1 such that $\langle v^h_0, v^h_0 \rangle = 1$ and which is positively oriented with respect to the aforementioned choice of direction. In particular, when $n = 2$, the subspaces W^h_\pm are one dimensional and light-like. The space of light-like vectors is a double cone. The choice in this case is done as follows: we choose non zero vectors $v^h_\pm \in W^h_\pm$ which lie in the upper cone and choose v^h_0 in such a way that (v_0^h, v^h_0, v^h_+) is positively oriented with respect to the standard orientation on \mathbb{R}^3. Then the Margulis invariant of an element $g = (h, u) \in G_a$ is defined as

$$\alpha(h, u) := \langle u, v^h_0 \rangle.$$

We observe that the dimensions of W^h_\pm are $(n - 1)$. Let $h_t \in G$ be an analytic one parameter family with $h = h_0$. Then, for t small enough we obtain a pair of attracting and repelling subspaces of h_t denoted by $W^h_t\pm$ and whose dimensions are also $(n - 1)$. Moreover, there is a consistent way of choosing a maximal isotropic subspace V^h_\pm inside $(W^h_t)_\perp \subset \mathbb{R}^{2n}$. It is the maximal isotropic subspace of $(W^h_t)_\perp$ which is the deformation of $V^h_\pm = W^h_\pm \oplus \mathbb{R}(v^h_0 + e_{2n}) \subset (W^h_t)_\perp$ (for more details please see Sections 3.1 and 4.1). We observe that $(W^h_t)_\perp \cap V^h_\pm = \mathbb{R}(v^h_0 + e_{2n})$ and that h_t preserves the line $(W^h_t)_\perp \cap V^h_\pm$. Let $\lambda(h_t)$ be the eigenvalue of the action of h_t on this line. We prove the following:

Lemma 1.1. Suppose $g \in G_0$ is a pseudo-hyperbolic element and $g_t \in G$ is an analytic one parameter family whose tangent direction at $g = g_0$ is G and $G\mathbb{E}_{2n} = v$. Then

$$\alpha(g, v) = \frac{d}{dt} \bigg|_{t=0} \lambda(g_t).$$
We give a similar interpretation of Labourie-Margulis invariant too and use it to show that the notion of an affine Anosov representation detect the infinitesimal versions of certain special Anosov representations in G:

Theorem 1.2. (see Theorem 4.3) We recall that $\mathbb{R}^{n,n} = \mathbb{R}^{n,n-1} \oplus \mathbb{R}e_{2n}$, G is the connected component of $SO(n, n)$ containing identity, G_0 is the subgroup of G which fixes e_{2n} and $G_a = G_0 \ltimes \mathbb{R}^{n,n-1}$.

Let $\{\rho_t\}_{t \in (-1,1)}$ be an analytic one parameter family of representations of Γ in G with $\rho_0(\Gamma) \subset G_0$. Let U be the tangent vector to $\{\rho_t\}_{t \in (-1,1)}$ at $\rho = \rho_0$ and $u = Ue_{2n}$. Suppose (ρ, u) is affine Anosov in G_a with respect to the stabilizer of an n-dimensional null subspace of $\mathbb{R}^{n,n-1}$, that is, $(\rho, u) \in \text{Hom}(\Gamma, G_a, P^\pm_a)$. Then there exists $\epsilon > 0$ such that for all t with $|t| \in (0, \epsilon)$, ρ_t is Anosov in $\text{SL}(2n, \mathbb{R})$ with respect to the stabilizer of an n-dimensional subspace.

Finally, combining these two results and using the characterization of Margulis spacetimes in terms of affine Anosov representations, we show that Margulis spacetimes of dimension $(2n - 1)$ are infinitesimal versions of manifolds obtained from quotients of the homogeneous space $H^{n,n-1}$:

Corollary 1.1. Let $\{\rho_t\}_{t \in (-1,1)}$ be an analytic one parameter family of representations of Γ in G with $\rho = \rho_0$ Anosov in G_0 with respect to the stabilizer of an n-dimensional null subspace of $\mathbb{R}^{n,n-1}$. Let U be the tangent vector to $\{\rho_t\}_{t \in (-1,1)}$ at $\rho = \rho_0$ and $u = Ue_{2n}$. Suppose (ρ, u) is a Margulis spacetime. Then there exists $\epsilon > 0$ such that for all t with $|t| \in (0, \epsilon)$, $\rho_t(\Gamma)$ acts properly on $H^{n,n-1}$.

Moreover, using the work of Abels–Margulis–Soifer [AMS02] and our main result we provide an alternate proof of the following fact which was first obtained by Benoist [Ben96]:

Corollary 1.2. Suppose n is even. Then there exists a non-abelian free subgroup with finitely many generators inside G which act properly on $H^{n,n-1}$.

In the appendix, we also generalize results by Charette–Drumm [CD04] and Ghosh [Gho18]. We define affine cross ratios β for any four mutually transverse affine null subspaces in $\mathbb{R}^{n,n-1}$ and show the following:

Proposition 1.1. Suppose n is even, $\rho \in \text{Hom}(\Gamma, G_0, P^\pm_a)$ and $(\rho, u) \in \text{Hom}(\Gamma, G_a)$. Suppose $\gamma, \eta \in \Gamma$ are two infinite order elements such that the four points $\gamma^-, \eta^+ \in \partial_\infty \Gamma$ are distinct and the sequence $\{\gamma^n \eta^n\}_{n \in \mathbb{N}} \subset \Gamma$ contains a subsequence $\{\gamma^n \eta^n\}_{n \in \mathbb{N}}$ consisting only of infinite order elements. Then the following identity holds:

$$\lim_{i \to \infty} (\alpha(\gamma^n \eta^n) - \alpha(\gamma^n) - \alpha(\eta^n)) = \beta(\eta^-, \gamma^-, \gamma^+, \eta^+) .$$

Moreover, we also define the linear counterparts θ of these affine cross ratios defined for any four mutually transverse $(n-1)$-dimensional isotropic subspaces in $\mathbb{R}^{n,n}$ and show that

Proposition 1.2. Suppose n is even, $\rho \in \text{Hom}(\Gamma, G, P^\pm)$ and $\gamma, \eta \in \Gamma$ are two infinite order elements such that the four points $\gamma^-, \eta^+ \in \partial_\infty \Gamma$ are distinct and the sequence $\{\gamma^n \eta^n\}_{n \in \mathbb{N}} \subset \Gamma$ contains a subsequence $\{\gamma^n \eta^n\}_{n \in \mathbb{N}}$.
consisting only of infinite order elements. Then the following identity holds:

$$\lim_{i \to \infty} \frac{\lambda(\gamma_{n_i})^{2}}{\lambda(\gamma_{n_i})^{2} \lambda(\eta_{n_i})^{2}} = 0(\eta^{-}, \gamma^{-}, \gamma^{+}, \eta^{+})^{2}.$$

Remark 1.1. Lastly, we would like to mention that Danciger–Zhang has announced independent work in [DZ19] which has overlap with some of our results. In particular, Theorem 1.1, Lemma 1.1 and Theorem 1.2 of this article when applied to fundamental groups of compact surfaces without boundary, are respectively similar to Lemma 8.2, Theorem 8.8 and Theorem 6.1 of [DZ19]. On the other hand, the results about cross ratios contained in Sections 4.4 and 4.5 are not obtained by Danciger–Zhang. We would also like to note that, even though Corollary 1.1 has not been stated as a result in [DZ19], for the case of fundamental groups of compact surfaces without boundary, it can also be obtained by jointly applying Theorems 8.8 and 6.1 of [DZ19]. In [DZ19], Danciger–Zhang use Lemma 8.2, Theorem 8.8, Theorem 6.1 and they also use certain properties special to Hitchin representations obtained from the works of Labourie [Lab06] and Fock–Goncharov [FG06] to generalize Theorem 1.1 of [Lab01] and conclude that representations in $\text{PSL}(2n-1, \mathbb{R}) \ltimes \mathbb{R}^{2n-1}$ whose linear parts are Hitchin do not admit proper affine actions on \mathbb{R}^{2n-1}.

Acknowledgements

I acknowledge the independent results obtained in [DZ19] and I would like to thank Dr. Tengren Zhang and Dr. Jeffrey Danciger for the statement of Theorem 3.1. I would also like to thank Prof. François Labourie, Prof. Anna Wienhard, Dr. Nicolas Tholozan, Dr. Binbin Xu and Dr. Zhe Sun for helpful discussions.

Moreover, I want to express my sincerest regards to Ms. Saumya Shukla for helping me achieve a smooth simultaneous arXiv publication with [DZ19]. Unfortunately, during the revision of this manuscript, she died an untimely death fighting for justice. I miss her terribly and dedicate this work to her indomitable spirit.

2. Preliminaries

In this section we introduce certain preliminary notions and results needed to establish our results.

2.1. Anosov representations. In this subsection we define the notion of an Anosov representation and mention some important properties of Anosov representations which will be used later on. Anosov representations into $\text{SL}(n, \mathbb{R})$ were introduced by Labourie in [Lab06] to show that Hitchin representations satisfy certain nice geometric properties. Later on, Guichard–Wienhard [GW12] extended the notion of an Anosov representation to representations of any hyperbolic group into a semisimple Lie group. Recently, Kapovich–Leeb–Porti gave a different algebraic characterization of Anosov representations in [KLP14] and [KLP17]. In this article, we use the dynamical definition of an Anosov representation from the work of Labourie [Lab06] and Guichard–Wienhard [GW12].
We start by defining the Gromov flow space. It plays a very central role in the dynamical definition of an Anosov representation. Let Γ be a finitely generated word hyperbolic group, $\partial_\infty \Gamma$ be its boundary at infinity and let
\[
\partial_\infty \Gamma^{(2)} := \{ (p_+, p_-) \mid p_\pm \in \partial_\infty \Gamma, p_+ \neq p_- \}.
\]
Gromov [Gro87] (see also Champetier [Cha94] and Mineyev [Min05]) constructed a cocompact, proper action of Γ on $\tilde{U}_\Gamma := \partial_\infty \Gamma^{(2)} \times \mathbb{R}$, which commutes with the flow:
\[
\phi_t : \tilde{U}_\Gamma \to \tilde{U}_\Gamma
\]
p := (p_+, p_-, p_0) \mapsto $(p_+, p_-, p_0 + t)$

and whose restriction on $\partial_\infty \Gamma^{(2)}$ is the diagonal action coming from the natural action of Γ on its boundary $\partial_\infty \Gamma$. Moreover, there exists a metric on \tilde{U}_Γ well defined up to Hölder equivalence such that the Γ action is isometric, the flow ϕ_t acts by Lipschitz homeomorphisms and every orbit of the flow $\{ \phi_t \}_{t \in \mathbb{R}}$ gives a quasi-isometric embedding. The resulting quotient space denoted by U_Γ is called the Gromov flow space. We note that the Gromov flow space is connected and it admits partitions of unity (for more details please see [GT17]).

The other important ingredients in the definition of Anosov representations are parabolic subgroups (for a detailed exposition on parabolic subgroups please see Section 3.2 of [GW12]). In this article, to prove certain results we also work with stabilizers of oriented subspaces. These groups strictly speaking are not necessarily parabolic subgroups but they are subgroups of finite index inside parabolic subgroups. We call such subgroups virtually parabolic subgroups. Hence, although the theory of Anosov representations due to Guichard-Wienhard [GW12] does not directly apply to these cases, the original theory due toLabourie [Lab06] does. Let H be a connected semisimple Lie group. Moreover, let P_\pm be a pair of virtually parabolic subgroups of H such that their respective overgroups which are parabolic are opposite and $P_+ \cap P_-$ is a finite index subgroup of the intersection of the two opposite parabolic overgroups. We call such a pair of virtually parabolic subgroups as opposite. Let $\mathcal{X} \subset H/P_+ \times H/P_-$ be the space of all pairs (hP_+, hP_-) for $h \in H$. We consider the left action of H on $H/P_+ \times H/P_-$ and observe that the action is transitive on \mathcal{X} and the stabilizer of the point $(P_+, P_-) \in \mathcal{X}$ is $P_+ \cap P_-$. Hence $H/(P_+ \cap P_-) \cong \mathcal{X}$. Moreover, \mathcal{X} is open in $H/P_+ \times H/P_-$. Therefore,
\[
T_{(hP_+, hP_-)} = T_{hP_+} H/P_+ \oplus T_{hP_-} H/P_-.
\]

Definition 2.1. Let Γ be a hyperbolic group and let H be a semisimple Lie group with a pair of opposite virtually parabolic subgroups P_\pm. Then any representation $\rho : \Gamma \to H$ is called P_\pm-Anosov if and only if

1. There exist continuous, injective, $\rho(\Gamma)$-equivariant limit maps
 \[
 \xi^\pm : \partial_\infty \Gamma \to H/P_\pm
 \]
such that $\xi(p) := (\xi^+(p_+), \xi^-(p_-)) \in \mathcal{X}$ for any $p \in \tilde{U}_\Gamma$.

2. There exist positive constants C, c and a continuous collection of $\rho(\Gamma)$-equivariant Euclidean metrics $\| \cdot \|_p$ on $T_{\xi(p)}X$ for $p \in U$ such that
\[
\| v^+ \|_{\phi^+ p} \leq C e^{-ct} \| v^+ \|_p
\]
for all $v^+ \in T_{\xi^+(p)}H/P$ and for all $t \geq 0$.

Notation 2.2. We denote the space of all representations $\rho : \Gamma \to G$ by $\text{Hom}(\Gamma, G)$, the space of P_\pm-Anosov representations in G by $\text{Hom}(\Gamma, G, P_\pm)$ and the space of all α-Hölder maps from $\partial_\infty \Gamma$ to H/P_\pm by $C^\alpha(\partial_\infty \Gamma, H/P_\pm)$.

Now we state a few theorems which will be important for us later on.

Theorem 2.1 (Labourie [Lab06], Guichard–Wienhard [GW12]). Suppose $\rho \in \text{Hom}(\Gamma, G, P_\pm)$. Then there exists an open neighborhood $U \subset \text{Hom}(\Gamma, H)$ with $\rho \in U$ such that $U \subset \text{Hom}(\Gamma, G, P_\pm)$.

Theorem 2.2 (Bridgeman–Canary–Labourie–Sambarino [BCLS15]). Suppose $U \subset \text{Hom}(\Gamma, H, P_\pm)$ is an open ball and suppose ξ^\pm_ρ are the limit maps of $\rho \in U$ such that for all $\rho \in U_0$ the limit maps $\xi^\pm_\rho \in C^\alpha(\partial_\infty \Gamma, H/P_\pm)$ for some $\alpha > 0$ and the following map is analytic:
\[
\xi^\pm : U_0 \to C^\alpha(\partial_\infty \Gamma, H/P_\pm)
\]
\[
\rho \mapsto \xi^\pm_\rho.
\]

Theorem 2.3 (Guichard–Wienhard [GW12]). Suppose P_\pm and Q_\pm respectively are two pairs of opposite virtually parabolic subgroups of H such that P_\pm respectively are subgroups of Q_\pm. Then $\text{Hom}(\Gamma, H, P_\pm) \subset \text{Hom}(\Gamma, H, Q_\pm)$.

Remark 2.1. Theorems 2.1 and 2.2 as stated above is not proved in [GW12] and [BCLS15] but these results also hold true if we replace parabolic subgroups with virtually parabolic subgroups. This is because the proofs given in [BCLS15] (Theorems 6.1, 6.5, 6.6 and Lemma 6.7) only depend on the fact that the space H/P is an analytic manifold and the limit map at the origin satisfies the contraction property (for more details please see Theorem 3.8 of [HPS06] and Theorem 5.18 of [Shu87]). Finally, Theorem 2.3 would also hold true in this setting as we would get the new limit map for free from the old limit map by composing it with the natural projection of H/P onto H/Q and the contraction property would still hold due to its independence from the particular collection of Euclidean norms chosen. Hence, in the remainder of this article we would use the notion of an Anosov representation to include groups of this general nature too.

Recently, Stecker–Treib [ST18] have given a more algebraic way of characterizing Anosov representations with respect to stabilizers of oriented flags. They use techniques from [KLP14, KLP17, KLP18] and [GGKW17] to construct domains of discontinuity for oriented flag manifolds.

2.2. Pseudo-orthogonal groups

In this subsection we give a brief description of certain well known properties of pseudo-orthogonal groups which will be helpful later on.

Let \mathbb{R}^k be the space of all column vectors of size k (i.e. matrices of size $k \times 1$) and let I_k be the identity matrix of size $k \times k$. We endow \mathbb{R}^{p+q} with
the following quadratic form of signature \((p, q)\):

\[
I_{p,q} := \begin{bmatrix} I_p & 0 \\ 0 & -I_q \end{bmatrix}.
\]

We denote \(\mathbb{R}^{p+q}\) endowed with the quadratic form \(I_{p,q}\) by \(\mathbb{R}^{p,q}\) and the group of invertible linear transformations preserving the quadratic form \(I_{p,q}\) by \(O(p, q)\). We note that any element of \(O(p, q)\) either has determinant 1 or \(-1\) and denote the subgroup of \(O(p, q)\) whose elements have determinant 1 by \(SO(p, q)\) and denote the connected component of \(SO(p, q)\) which contains the identity transformation by \(SO_0(p, q)\).

Remark 2.2. Suppose \(g \in O(p, q)\) is such that \(A_g\) is a \(p \times p\) matrix and

\[
g = \begin{bmatrix} A_g & B_g \\ C_g & D_g \end{bmatrix}.
\]

Then both \(A_g\) and \(D_g\) are invertible. Let \(\text{sgn}\) denote the sign of a non-zero real number. We note that \(O(p, q)\) has four connected components characterized as follows:

\[
O_0^a(p, q) := \{g \mid \text{sgn} \det(A_g) = a \text{ and } \text{sgn} \det(D_g) = d\},
\]

where \(a, d \in \{\pm\}\). Moreover, using a quick computation we obtain that \(\det(g) = \det(A_g) \det(D_g)^{-1}\). Hence, \(SO_0(p, q) = O_0^+(p, q)\) and \(SO(p, q) = O_0^+(p, q) \cup O_0^-(p, q)\). (For more details please see Chapter 9 of \([O'N83]\) and Proposition 7.3 of \([GQ20]\).)

Lemma 2.1. Any element of \(O(k, k)\) which fixes \([I_k, I_k]^t\) lies in \(SO_0(k, k)\).

Proof. We start by observing that any matrix \(X\) of dimension \(2k \times 2k\) which satisfy the equation \(X[I_k, I_k]^t = [I_k, I_k]^t\) is of the following form for some matrices \(A\) and \(C\) of dimension \(k \times k\),

\[
X = \begin{bmatrix} A & (I - A) \\ (I - C) & C \end{bmatrix}.
\]

Now we characterize such elements of \(O(k, k)\). We observe that \(X^tI_{k,k}X = I_{k,k}\) impose the following set of constraints on \(A\) and \(C\):

\[
A^tA - (I - C^t)(I - C) = I,
\]

\[
(I - A)^t(I - A) - C^tC = -I,
\]

\[
A^t(I - A) - (I - C^t)C = 0.
\]

The first and third equations give us \((A + C) = 2I\) and replacing \((I - C)\) with \((A - I)\) in the first equation we deduce that \(A^t + A = 2I\).

Let us denote \((A^t - A)\) by \(2M\). We note that \(M\) is skew-symmetric. Hence, we obtain that \(A = (I - M)\) and \(C = (I + M)\). As \(M\) is skew-symmetric, using the spectral theorem for skew-symmetric matrices we deduce that \(\det(I - M) > 0\) and \(\det(I + M) > 0\). Finally, using Remark 2.2 we conclude our result.

\[\square\]

Lemma 2.2. Suppose \(k = \min\{p, q\}\) and \(p \neq q\). Then any element of \(SO(p, q)\) which fixes \([I_k, 0, I_k]^t\) lies inside \(SO_0(p, q)\).
Proof. Let us denote \((p - q)\) by \(m\). We start by observing that any matrix \(X\) of dimension \((p + q) \times (p + q)\) which satisfies the equation \(X[I_k, 0, I_k]^t = [I_k, 0, I_k]^t\) is of the following form for some matrices \(A, C\) of dimension \(k \times k\), \(B\) of dimension \(|m| \times |m|\) and column vectors \(u, v, w \in \mathbb{R}^k\),

\[
X = \begin{bmatrix}
A & v (I - A) \\
u^t & B - u^t \\
(I - C) & w & C
\end{bmatrix}
\]

Now we characterize all such elements of \(O(p, q)\). We observe that \(X^t I_{p,q} X = I_{p,q}\) impose the following set of constraints on \(A, B, C, u, v, w\):

\[
\begin{align*}
A^tA + \text{sgn}(m)uw^t - (I - C^t)(I - C) = I, \\
(I - A)^t(I - A) + \text{sgn}(m)uu^t - C^tC = I, \\
A^t(I - A) - \text{sgn}(m)uu^t - (I - C^t)C = 0, \\
v^t v + \text{sgn}(m)B^tB - w^t w = \text{sgn}(m)I, \\
A^t v + \text{sgn}(m)uB - (I - C^t)w = 0, \\
(I - A^t) v - \text{sgn}(m)uB - C^t w = 0.
\end{align*}
\]

The last two equations give us \(v = w\) and plugging it in the fourth equation we obtain that \(B \in O(|m|)\). Furthermore, from the first and third equations we obtain that \((A + C) = 2I\) and replacing \((I - C)\) with \((A - I)\) in the first equation we deduce that \(\text{sgn}(m)uu^t = 2I - A^t - A\). As \(v = w\), replacing \((I - C)\) with \((A - I)\) in the fifth equation gives us \(\text{sgn}(m)uB + w = 0\). It follows that, any \(X \in O(p, q)\) which fix \([I_k, 0, I_k]^t\) are of the following form

\[
X = \begin{bmatrix}
A & -\text{sgn}(m)u & (I - A) \\
u^t & I & -u^t \\
(A - I) & -\text{sgn}(m)u & (2I - A)
\end{bmatrix}
\begin{bmatrix}
I & 0 & 0 \\
0 & B & 0 \\
0 & 0 & I
\end{bmatrix}.
\]

We observe that

\[
\begin{bmatrix}
I & 0 & -I \\
0 & I & 0 \\
0 & 0 & I
\end{bmatrix}
\begin{bmatrix}
A & -\text{sgn}(m)u & (I - A) \\
u^t & I & -u^t \\
(A - I) & -\text{sgn}(m)u & (2I - A)
\end{bmatrix}
\begin{bmatrix}
I & 0 & I \\
0 & I & 0 \\
0 & 0 & I
\end{bmatrix} = \begin{bmatrix}
I & 0 & 0 \\
* & I & 0 \\
* & * & I
\end{bmatrix}.
\]

Hence, for \(X \in SO(p, q)\) we have \(\det(B) = 1\).

Let us denote \((A^t - A)\) by \(M\). We note that \(M\) is skew-symmetric. Hence, for \(p > q\) we obtain that \(\det(2I - A) = \det(I + (M + uu^t)/2)\) and for \(p < q\) we obtain that \(\det(A) = \det(I - (M - uu^t)/2)\). As \(M\) is skew-symmetric we have \(\det(I + (M + uu^t)/2) = \det(I - (M - uu^t)/2)\). Moreover, as \(I + uu^t/2\) is a symmetric positive definite matrix, using Cholesky factorization (see Corollary 7.2.9 of [11]) we obtain the existence of a real lower triangular matrix \(T\) with positive entries on the diagonal such that \(I + uu^t/2 = TT^t\). Hence,

\[
\det(I + uu^t/2) = \det(T) \det(I + T^{-1}(M/2)(T^t)^{-1}) \det(T^t).
\]

As \(T^{-1}M(T^t)^{-1}\) is skew-symmetric, using the spectral theorem for skew-symmetric matrices we deduce that \(\det(I + T^{-1}(M/2)(T^t)^{-1}) > 0\). Finally, using Remark 2.2 we conclude our result. □
2.3. Maximal isotropic spaces. Let V be a subspace of $\mathbb{R}^{p,q}$. Then V is called isotropic if and only if for all $v \in V$ we have $v^t I_{p,q} v = 0$. In this subsection we list and demonstrate a few properties of maximal isotropic subspaces. These properties are used many times in the later part of this text. Although we expect these results to be well known, we were unable to find appropriate sources in the literature for them. Keeping in mind their centrality we have decided to include them.

Remark 2.3. Let V be a maximal isotropic space of $\mathbb{R}^{p,q}$. Then there exists a maximal isotropic space W which is transverse to V i.e. $V^\perp \cap W = \{0\}$. Note that V, W are spaces of dimension $k = \min\{p, q\}$ and the existence of W is guaranteed by the fact that $I_{p,q} V$ is a maximal isotropic space which is transverse to V.

Notation 2.3. We denote the space spanned by the column vectors of a matrix X by $\text{cspan}(X)$.

Lemma 2.3. Suppose (V, W) is a pair of transverse maximal isotropic subspaces of $\mathbb{R}^{p,q}$, suppose $k = \min\{p, q\}$ and $J = I_{2k-1, 1}$. Then

1. for $p = q = k$, there exists $g \in SO_0(p, q)$ such that either of the following holds:

 \begin{align*}
 (V, W) &= (\text{gcspan}(I_k, I_k^t), \text{gcspan}(I_k, -I_k^t)), \\
 (V, W) &= (g \text{Jcspan}(I_k, I_k^t), g \text{Jcspan}(I_k, -I_k^t)),
 \end{align*}

2. and for $p \neq q$, there exists $g \in SO_0(p, q)$ such that

 \begin{align*}
 (V, W) &= (\text{gcspan}(I_k, 0, I_k^t), \text{gcspan}(I_k, 0, -I_k^t)).
 \end{align*}

Proof. Let $B_j = \{v_1, \ldots, v_k\}$ be a basis of V. Let $B_j = B \setminus \{v_j\}$. Then $\dim(B_j^\perp \cap W) \geq 1$. Choose $w_j \in (B_j^\perp \cap W)$ such that $w_j^t I_{p,q} w_j = 1/2$. We note that the existence of such a w_j is guaranteed by the maximality of V.

- Case $p = q = k$: We observe that $V^\perp \cap W^\perp = \{0\}$ and deduce that

$$h = [v_1 + w_1, \ldots, v_k + w_k, v_1 - w_1, \ldots, v_k - w_k] \in O(k, k).$$

Hence, $h[I_k, I_k]^t = 2[v_1, \ldots, v_k]$ and $h[I_k, -I_k]^t = 2[w_1, \ldots, w_k]$. Now we use Remark 2.2 and observe that up to a sign change in v_1 (consequently in w_1) we can make sure that $h \in O_+^+(k, k) \cup O_-^-(k, k)$. Now, if $h \in SO_0(k, k)$, then we choose $g = h$. Otherwise, we choose $g = hJ$. We use Remark 2.2 to observe that $g \in SO_0(k, k)$, $gJ[I_k, I_k]^t = 2[v_1, \ldots, v_k]$ and $gJ[I_k, -I_k]^t = 2[w_1, \ldots, w_k]$.

- Case $p \neq q$: As both V and W are maximal, any non-zero $u \in V^\perp \cap W^\perp$ satisfy $u^t I_{p,q} u \neq 0$. As $u^t I_{p,q} u = (-u)^t I_{p,q} (-u)$, using continuity we obtain that either $I_{p,q}$ restricts to a positive definite form on $V^\perp \cap W^\perp$ or a negative definite one. In either case, using a Gram-Schmidt process we obtain an orthonormal basis $u_1, \ldots, u_{|p - q|}$. Now we use Remark 2.2 and observe that up to a sign change in v_1 (consequently in w_1 too) and in u_1,

\begin{align*}
 g &= [v_1 + w_1, \ldots, v_k + w_k, v_1, \ldots, u_{|p - q|}, v_1 - w_1, \ldots, v_k - w_k] \in SO_0(p, q).
\end{align*}

Hence, V is spanned by the column vectors of $g[I_k, 0, I_k]$ and W is spanned by the column vectors of $g[I_k, 0, -I_k]$. \square
Notation 2.4. Suppose $K \in \text{GL}(k, \mathbb{R})$. We consider the following functions:

$$f_{k,0}(K) := \begin{bmatrix} \frac{K^{-1} + K^t}{2} & \frac{K^{-1} + K^t}{2} \\ \frac{K^{-1} - K^t}{2} & \frac{K^{-1} - K^t}{2} \end{bmatrix} \quad \text{and} \quad f_{k,m}(K) := \begin{bmatrix} \frac{K^{-1} + K^t}{2} & 0 & \frac{K^{-1} - K^t}{2} \\ 0 & I & 0 \\ \frac{K^{-1} - K^t}{2} & 0 & \frac{K^{-1} + K^t}{2} \end{bmatrix}$$

and observe that $f_{k,m}(K) \in SO(k + m, m) \cap SO(k, m + k)$ for all $m \geq 0$.

Lemma 2.4. Suppose $V, V' \subset \mathbb{R}^{k,k}$ are such that V is the span of the column vectors of $[I_k, I_k]^t$ and V' is the span of the column vectors of $[I_k, I_{k-m,m}]^t$ with odd m. Then there does not exist any $g \in SO(k, k)$ such that $gV = V'$.

Proof. We observe that $J = I_{2k - m, m} \in O(k, k)$. We will prove this result by contradiction. If possible let us assume that $gV = V'$ for some $g \in SO(k, k)$ then $JgV = V$. Hence, $Jg[I_k, I_k]^t = [I_k, I_k]^t K$ for some invertible $k \times k$ matrix K. We observe that $f_{k,0}(K)Jg[I_k, I_k]^t = [I_k, I_k]^t$. Hence, using Lemma 2.4 we have $f_{k,0}(K)Jg \in SO(k, k)$. As both $f_{k,0}(K)$ and g have determinant 1, we deduce that $\text{det}(J) = 1$, a contradiction. \qed

Lemma 2.5. Any element of $SO(0,p,q)$ which preserves a maximal isotropic space also preserves the orientation on it.

Proof. Let V be a maximal isotropic subspace of $\mathbb{R}^{p,q}$ and let $g \in SO(0,p,q)$ be such that $gV = V$.

\(\diamond\) Case $p = q = k$: We use Lemma 2.4 to obtain that there exists $h \in O(k, k)$ such that $h^{-1}gh[I_k, I_k]^t = [I_k, I_k]^t K$ for some $k \times k$ matrix K. We observe that $h^{-1}gh \in SO_0(k, k)$. Hence, $f_{k,0}(K)h^{-1}gh \in SO(k, k)$. Also, $f_{k,0}(K)h^{-1}gh[I_k, I_k]^t = [I_k, I_k]^t$. Now we use Lemma 2.1 and obtain that $f_{k,0}(K)h^{-1}gh \in SO_0(k, k)$. Therefore, $f_{k,0}(K) \in SO_0(k, k)$ and by Remark 2.2 it follows that $\text{det}(K) > 0$.

\(\diamond\) Case $p \neq q$: We denote $|p - q|$ by m and $\min\{p, q\}$ by k. We use Lemma 2.4 to obtain that there exists $h \in O(p, q)$ such that $h^{-1}gh[I_k, 0, I_k]^t = [I_k, 0, I_k]^t K$ for some $k \times k$ matrix K. We observe that $h^{-1}gh \in SO_0(p, q)$. Hence, $f_{k,m}(K)h^{-1}gh \in SO(p, q)$. Also,

$$f_{k,m}(K)h^{-1}gh[I_k, 0, I_k]^t = [I_k, 0, I_k]^t.$$

Now we use Lemma 2.2 and obtain that $f_{k,m}(K)h^{-1}gh \in SO_0(p, q)$. Therefore, $f_{k,m}(K) \in SO_0(p, q)$ and by Remark 2.2 it follows that $\text{det}(K) > 0$. \qed

Lemma 2.6. Let W be a $(k - 1)$-dimensional isotropic subspace of $\mathbb{R}^{k,k}$. Then W^\perp contain exactly two different maximal isotropic subspaces. One of them lies in the orbit of $cspan([I_k, I_k]^t)$ under the action of $SO_0(n, n)$ and the other one lies in the orbit of $cspan(J[I_k, I_k]^t)$ under the action of $SO_0(n, n)$.

Proof. As the dimension of W is $(k - 1)$, we can extend W to a maximal isotropic subspace V of $\mathbb{R}^{k,k}$. Clearly, $V = V^\perp \subset W^\perp$. Moreover, let U be a maximal isotropic subspace of $\mathbb{R}^{k,k}$ transverse to V. We choose a basis $B = \{v_1, \ldots, v_k\}$ of V such that $W = \text{span}(B \setminus \{v_k\})$. Moreover, suppose $\{u_1, \ldots, u_k\}$ is a basis of U such that $u_j \in (B \setminus \{v_j\})^\perp \cap U$ and $u_j^t I_{k,k} v_j = 1$.

Note that by construction $u_k \in W^\perp$ and $u_k^t I_{k,k} v_k = 1$. Hence, $W \oplus \mathbb{R}v_k$ is a maximal isotropic subspace of W^\perp different from V.

AVATARS OF MARGULIS INVARIANT AND PROPER ACTIONS 13
Also, $W^\perp = W \oplus \mathbb{R}_{v_k} \oplus \mathbb{R}_{u_k}$. Hence, for any $w \in W^\perp$, there exist $a, b \in \mathbb{R}$ such that $w - aw_k - bu_k \in W$. Moreover, if $\langle w \mid w \rangle = 0$, then $ab = 0$ and it follows that either $w \in V$ or $w \in W \oplus \mathbb{R}_{u_k}$.

Finally, for $J = I_{2k-1,1}$ we observe that
\[
\begin{align*}
h &= [v_1 + u_1, \ldots, v_k + u_k, v_1 - u_1, \ldots, v_k - u_k] \in O(k, k), \\
h[I_k, I_k]^t &= 2[v_1, \ldots, v_k-1, v_k] \\
hJ[I_k, I_k]^t &= 2[v_1, \ldots, v_k-1, u_k].
\end{align*}
\]
Moreover, up to a sign change we can choose v_1 (consequently u_1), such that $h \in O^+_k(k, k) \cup O^-_k(k, k)$. Finally, we conclude by noting that $h \in O^+_k(k, k)$ if and only if $hJ \in O^+_k(k, k)$.

\section{Proper actions on $\mathbb{H}^{n,n-1}$}

In this section we demonstrate a necessary and sufficient criterion for proper actions of a hyperbolic group Γ on $\mathbb{H}^{n,n-1}$ in terms of certain special Anosov representations. This statement is inspired from Danciger–Zhang \cite{Danz19} and we provide an alternate proof. The constructions, statements and proofs in this section parallels similar constructions, statements and proofs given for affine spaces in \cite{GT17}.

\subsection{Proto-neutral sections}

In this subsection we introduce a few notions in order to state the necessary and sufficient criterion of Theorem 1.1.

We consider \mathbb{R}^{2n} and henceforth for all vectors v, w we denote $v^tI_{n,n}w$ by $\langle v \mid w \rangle$. Let $e_j \in \mathbb{R}^{2n}$ be the column vector whose only non-vanishing entry is the j-th entry and its j-th entry is 1. We consider the embedding of \mathbb{R}^{2n-1} inside $\mathbb{R}^{n,n}$ which is spanned by the vectors e_1, \ldots, e_{2n-1}. We note that the quadratic form $I_{n,n}$ induces a form of signature $(n, n-1)$ on \mathbb{R}^{2n-1}. Henceforth, we denote this embedding along with the induced form by $\mathbb{R}^{n,n-1}$, the group $SO_0(n, n)$ by G and the subgroup of G which fixes e_{2n} by G_0 i.e.

\[G_0 := \{ g \in G \mid ge_{2n} = e_{2n} \} \]

We observe that $ge_{2n} = e_{2n}$ imply $g'e_{2n} = e_{2n}$. Hence, G_0 is a subgroup of $O(n, n-1)$. Moreover, we use Remark 2.2 to obtain that $G_0 \cong SO_0(n, n-1)$. We fix the following four subspaces:

\[
\begin{align*}
V_\pm &:= \text{span}\{e_j \pm e_{n+j} \mid j = 1, \ldots, n\}, \\
W_\pm &:= \text{span}\{e_j \pm e_{n+j} \mid j = 1, \ldots, n-1\}.
\end{align*}
\]

We observe that V_\pm are a transverse pair of maximal isotropic subspaces of $\mathbb{R}^{n,n}$ and W_\pm are a transverse pair of maximal isotropic subspaces of $\mathbb{R}^{n,n-1}$.

We define V_\pm to be the space V_\pm along with the orientation coming from the ordered basis $(e_1 \pm e_{n+1}, \ldots, e_n \pm e_2)$ and W_\pm to be the space W_\pm along with the orientation coming from $(e_1 \pm e_{n+1}, \ldots, e_{n-1} \pm e_{2n-1})$. Furthermore, we define

\[
P_\pm := \text{Stab}_G(W_\pm) \quad \text{and} \quad P_0^\pm := \text{Stab}_{G_0}(W_\pm).
\]

\textbf{Remark 3.1.} We use Lemma 2.5 to deduce that $P_0^\pm = \text{Stab}_{G_0}(W_\pm)$.

We observe that $P_0^\pm = P_\pm \cap G_0$ and $G_0/P_0^\pm \subset G/P_\pm$. Let $L_0 := P_0^+ \cap P_0^-$ and $L := P^+ \cap P^-$.
Remark 3.2. We observe that $W_+ \oplus W_- \oplus \mathbb{R}e_n = \mathbb{R}^{2n-1}$. As elements of L_0 preserve orientations on W_\pm, we obtain that they preserve orientations on $\mathbb{R}e_n$ too. Also, for any $g \in G_0$ we have $\langle ge_n \mid ge_n \rangle = 1$. It follows that the elements of L_0 preserve the vector e_n.

We use the above Lemma and obtain a well defined map:

$$\nu : G_0/L_0 \rightarrow \mathbb{R}^{2n+1}$$

$$\quad [g] \mapsto ge_n.$$

The map ν is called the neutral section.

Remark 3.3. Any element in G_0/L_0 can be interpreted as a tuple of transverse null subspaces. The neutral section keeps track of the directional intersection of a pair of transverse null subspaces (for more details about its usage please see Remark 1.1). In particular, for $n = 2$, let (V, W) be a pair of transverse null subspaces of \mathbb{R}^3. Then V, W are tangent planes to the light-cone, they touch the light-cone at two distinct lines. In fact, $V \cap W$ is also a line. Let $v \in V$, $w \in W$ be such that v, w lie in the upper light-cone and let $u \in V \cap W$ be such that $[v, u, w]$ give the standard orientation on \mathbb{R}^3. Then we have

$$\langle u \mid u \rangle > 0 \text{ and } \nu(V, W) = \frac{u}{\sqrt{\langle u \mid u \rangle}}.$$

Henceforth, we fix an Euclidean norm $\|\cdot\|$ on \mathbb{R}^{2n} and choose the following two vectors

$$v_+ := \frac{e_n + e_{2n}}{2} \quad \text{and} \quad v_- := \frac{e_n - e_{2n}}{2}.$$

Lemma 3.1. Suppose $L = P^+ \cap P^-$. Then the elements of L preserve the orientations on the isotropic lines $\mathbb{R}v_\pm$.

Proof. We observe that $V_\pm = W_\pm \oplus \mathbb{R}v_\pm$. As elements of L preserve the oriented space \mathbb{W}_\pm, we deduce that they preserve orientations on $\mathbb{R}v_\pm \oplus \mathbb{R}v_-$. Hence, the action of L on $\mathbb{R}v_\pm \oplus \mathbb{R}v_-$ is isomorphic to the action of $SO(1, 1)$ on $\mathbb{R}^{1,1}$. As the action of $SO(1, 1)$ on $\mathbb{R}^{1,1}$ preserves the individual isotropic lines, we deduce that the elements of L preserve the lines $\mathbb{R}v_\pm$. Hence, the action of L preserves V_\pm. Moreover, V_\pm are maximal isotropic subspaces of $\mathbb{R}^{n,n}$. Hence, by Lemma 2.4 we obtain that the action of L preserves \mathbb{W}_\pm. In fact, the action of L also preserves \mathbb{W}_\pm. It follows that the elements of L preserves the orientations on the isotropic lines $\mathbb{R}v_\pm$. □

We use the above Lemma and obtain two well defined maps:

$$\nu_\pm : G/L \rightarrow \mathbb{R}^{2n}$$

$$\quad [g] \mapsto gv_\pm/\|gv_\pm\|.$$

We also observe that for all $g, h \in G$, $\|\nu_\pm([g])\| = 1$ and

$$h\nu_\pm([g]) = \frac{\|hg\nu_\pm\|}{\|\nu_\pm([h]\nu_\pm)|} \nu_\pm([h\nu_\pm]) = \|h\nu_\pm([g])\| \nu_\pm(h\nu_\pm).$$

We call the maps ν_\pm as proto-neutral sections as they play a role similar to the one played by the neutral section ν in [GT17].
Remark 3.4. Any element in G/L can be interpreted as a tuple of oriented $(n-1)$-dimensional isotropic subspaces of $\mathbb{R}^{n,n}$ whose orthogonal spaces are transverse to each other. The intersection of these two orthogonal spaces is a space of dimension two which contains exactly two isotropic lines. The proto-neutral sections provide a consistent way of distinguishing one isotropic line from the other of the two isotropic lines (for more details about its usage please see Remark 4.6).

Lemma 3.2. Suppose $x, y \in \{\pm\}$ and $g \in G$ is such that $g \in P^x$ then

$$W_x + \mathbb{R} \nu_y([-g]) = W_x + \mathbb{R} \nu_y.$$

Proof. Suppose $g \in P^x$. Hence, $gW_x = W_x$ and $(W_x + \mathbb{R} \nu_y([-g]))$ is in the G-orbit of $(W_x + \mathbb{R} \nu_y)$. As $W_x \subset (W_x + \mathbb{R} \nu_y)$ and $(W_x + \mathbb{R} \nu_y)$ is maximally isotropic, we have $(W_x + \mathbb{R} \nu_y) \subset W_x$. It follows that

$$g(W_x + \mathbb{R} \nu_y) \subset gW_x^\perp = (gW_x)^\perp = W_x^\perp.$$

As $g(W_x + \mathbb{R} \nu_y)$ is in the G-orbit of $(W_x + \mathbb{R} \nu_y)$ and both of them are maximal isotropic subspaces of W_x^\perp, we use Lemma 2.6 and conclude that $g(W_x + \mathbb{R} \nu_y) = (W_x + \mathbb{R} \nu_y)$ and our result follows. □

Lemma 3.3. Suppose $x, y \in \{\pm\}$ and $g, h \in G$ satisfy $g^{-1}h \in P^x$. Then

$$\langle \nu_y([-g]) \mid \nu_y([h]) \rangle = 0,$$

$$\langle \nu_y([-g]) \mid \nu_{-y}([h]) \rangle \neq 0.$$

Proof. As $g^{-1}h \in P^x$, using Lemma 3.2 we deduce that both $g^{-1}hv_y$ and ν_y lie in the same maximal isotropic subspace $W_x \oplus \mathbb{R} \nu_y$. Hence, $\langle \nu_y \mid g^{-1}hv_y \rangle = 0$. Moreover, $g^{-1}hv_y \in W_x \oplus \mathbb{R} \nu_y$ and $g^{-1}h \nu_y \notin W_x$. Hence, $g^{-1}h \nu_y + a \nu_y \in W_x$ for some $a \neq 0$. It follows that $\langle \nu_{-y} \mid g^{-1}h \nu_y \rangle = a \langle \nu_{-y} \mid \nu_y \rangle \neq 0$. Therefore,

$$\langle \nu_y([-g]) \mid \nu_y([h]) \rangle = \frac{\langle g \nu_y \mid h \nu_y \rangle}{\|g \nu_y\| \|h \nu_y\|} = \frac{\langle \nu_y \mid g^{-1}h \nu_y \rangle}{\|g \nu_y\| \|h \nu_y\|} = 0,$$

$$\langle \nu_y([-g]) \mid \nu_{-y}([h]) \rangle = \frac{\langle g \nu_y \mid h \nu_{-y} \rangle}{\|g \nu_y\| \|h \nu_{-y}\|} = \frac{\langle \nu_y \mid g^{-1}h \nu_{-y} \rangle}{\|g \nu_y\| \|h \nu_{-y}\|} \neq 0,$$

and our result follows. □

Remark 3.5. We note that $I_{n,n} \in O_+(n,n)$ for even n and $I_{n,n} \in O_+(n,n)$ for odd n. Hence, for even n we deduce that $\nu_\pm([I_{n,n}]) = \nu_\pm([I])$,

$$\nu_\pm([gI_{n,n}]) = \frac{g \nu_\pm([I_{n,n}])}{\|g \nu_\pm([I_{n,n}])\|} = \frac{g \nu_\pm([I])}{\|g \nu_\pm([I])\|} = \nu_\pm([-g]),$$

Moreover, $-I \in O_+(n,n)$ for even n and we have $\nu_\pm([-g]) = -\nu_\pm([g])$.

3.2. Proto-Labourie-Margulis invariants. In this subsection we define the notion of diffused eigenvalues and call them proto-Labourie-Margulis invariants due to their relation with diffused Margulis invariants introduced by Labourie.

Suppose Γ is a word hyperbolic group and $U\Gamma$ is its Gromov flow space. We denote the period of the periodic orbit in $U\Gamma$ corresponding to an infinite order element $\gamma \in \Gamma$ by $l(\gamma)$ and the flow invariant probability measure on
this periodic orbit by μ_-. Now for any $\rho \in \text{Hom}(\Gamma, G, P^\pm)$, any infinite order element $\gamma \in \Gamma$ and $t \in \mathbb{R}$ we have,
\[
\nu_\pm(\xi_\rho(\gamma^+, \gamma^-, t)) = \nu_\pm(\xi_\rho(\gamma^+, \gamma^-, 0)).
\]
Moreover, we denote $(\gamma^+, \gamma^-, 0)$ by p_γ and denote $\nu_\pm \circ \xi_\rho$ by ν_ρ^\pm. We observe that $\nu_\rho^\pm(p_\gamma)$ is an eigenvector of $\rho(\gamma)$. Indeed, we have
\[
\nu_\rho^\pm(p_\gamma) = \nu_\pm(\rho(\gamma)\xi_\rho(p_\gamma)) = \frac{\rho(\gamma)\nu_\rho^\pm(p_\gamma)}{\|\rho(\gamma)\nu_\rho^\pm(p_\gamma)\|}.
\]
As $(\rho(\gamma)\nu_\rho^+(p_\gamma) \mid \rho(\gamma)\nu_\rho^-(p_\gamma)) = (\nu_\rho^+(p_\gamma) \mid \nu_\rho^-(p_\gamma))$ it follows that
\[
\|\rho(\gamma)\nu_\rho^+(p_\gamma)\|\|\rho(\gamma)\nu_\rho^-(p_\gamma)\| = 1.
\]

Notation 3.1. We denote the eigenvalues of $\rho(\gamma)$ corresponding to the eigenvectors $\nu_\rho^\pm(p_\gamma)$ by $\lambda_\rho^\pm(\gamma)$. We observe that
\[
\lambda_\rho^\pm(\gamma) = \|\rho(\gamma)\nu_\rho^\pm(p_\gamma)\| \text{ and } \lambda_\rho^+(\gamma)\lambda_\rho^-(\gamma) = 1.
\]

Suppose $\{\rho_\ell\}_{\ell \in (-1, 1)} \subset \text{Hom}(\Gamma, G, P^\pm)$ is an analytic one parameter family. We now present a partition of unity type argument to construct a family of Euclidean norms indexed by points in the Gromov flow space $\bar{\mathcal{U}}$ and P^\pm-Anosov representations in G. Recall that $\pi: \bar{\mathcal{U}} \to \mathcal{U}$ is the standard projection map.

Remark 3.6. As $\bar{\mathcal{U}}$ is compact, there exist $\{V_i\}_{i=1}^k$ such that $V_i \subset \bar{\mathcal{U}}$ are small open balls and $\bigcup_{i=1}^k \pi(V_i) = \mathcal{U}$. Hence $\bigcup_{\gamma \in \Gamma} \bigcup_{i=1}^k \gamma V_i = \bar{\mathcal{U}}$. We know from Section 8.2 of [GT17] that there exist maps
\[
\{f_i: \bar{\mathcal{U}} \to \mathbb{R}^+\}_{i=1}^k
\]
with $\text{Supp}(f_i) \subset \pi(V_i)$ such that the functions f_i are H"{o}lder continuous and differentiable along flow lines with $\sum_{i=1}^k f_i = 1$. We use this to construct a collection
\[
\left\{ \| \cdot \|_p^i \mid (\rho_i, p) \in \text{Hom}(\Gamma, G, P^\pm) \times \bar{\mathcal{U}} \right\}
\]
of Euclidean norms on \mathbb{R}^{2n} indexed by $\text{Hom}(\Gamma, G) \times \bar{\mathcal{U}}$ such that:

1. it is H"{o}lder continuous in the variable $p \in \bar{\mathcal{U}}$,
2. it is smooth along the flow lines of $\{\phi_s\}_{s \in \mathbb{R}}$,
3. it is analytic along the variable ρ_i,
4. it is equivariant i.e. $\|\rho_\ell(\gamma)v\|_{\gamma p}^i = \|v\|_{\gamma p}^i$ for all $v \in \mathbb{R}^{2n}$ and $\gamma \in \Gamma$.

We start by considering the fixed Euclidean norm $\| \cdot \|$ on \mathbb{R}^{2n} mentioned in Section 3.1. We observe that for any $p \in \Gamma V_i$ there exists a unique $\gamma_{p, i}$ such that $\gamma_{p, i} V_i \subset V_i$. Note that in such a situation $\gamma_{p, i} \eta = \gamma_{p, i}$. We define
\[
\|v\|_{p, i}^i := \|\rho_\ell(\gamma_{p, i})v\|
\]
for all $v \in \mathbb{R}^{2n}$ and for any $p \in \bar{\mathcal{U}}$ we define:
\[
\|v\|_{p}^i := \sum_{i=1}^k f_i(\pi(p))\|v\|_{p, i}^i.
\]
We check that this collection of norms are equivariant. Indeed, as
\[
\|\rho_\ell(\gamma)v\|_{p}^k = \sum_{i=1}^k f_i(\pi(\gamma p))\|\rho_\ell(\gamma)v\|_{p, i}^k = \sum_{i=1}^k f_i(\pi(p))\|\rho_\ell(\gamma_{p, i})\rho_\ell(\gamma)v\| = \sum_{i=1}^k f_i(\pi(p))\|\rho_\ell(\gamma_{p, i})v\| = \sum_{i=1}^k f_i(\pi(p))\|\rho_\ell(\gamma_{p, i})v\|
\]
which is differentiable along the flow ϕ

Moreover, it follows from our construction that this collection of norms satisfies all the first three conditions listed above. More details about properties of these kinds of constructions can be found in [HPS06] and [Shu87] (see also [Gho18, Gho17] and [BCLS15]).

Notation 3.2. Henceforth, to simplify our notations we denote $\nu_+ \circ \xi$ (resp. $\nu_\pm \circ \xi_t$) by ν_\pm (resp. ν_\pm^\pm) and observe that by definition it is invariant under the flow ϕ.

Suppose $\xi : \widetilde{U}\Gamma \to (G/L)$ are the limit maps corresponding to the representations $\rho \in \text{Hom}(\Gamma, G, P^\pm)$. We recall the proto-neutral sections from Section 3.1 and using the above collection of norms we define:

$$
\sigma^\pm : \widetilde{U}\Gamma \to \mathbb{R}^{2n}
$$

$$
p \mapsto \nu^\pm(p) / ||\nu^\pm(p)||_p.
$$

We call these maps *proto-neutralised sections*. We observe that for all $p \in \widetilde{U}\Gamma$, $(\sigma^+(p) \mid \sigma^-(p)) > 0$, and for $\gamma \in \Gamma$ we obtain that,

$$
\sigma^\pm(\gamma p) = \frac{\nu^\pm(\gamma p)}{||\nu^\pm(\gamma p)||_p} = \frac{\rho(\gamma)\nu^\pm(p)}{||\rho(\gamma)\nu^\pm(p)||_\gamma} = \frac{\rho(\gamma)\nu^\pm(p)}{||\nu^\pm(p)||_p} = \rho(\gamma)\sigma^\pm(p).
$$

Also, we deduce that

$$
\sigma^\pm(\phi_s p) = \frac{\nu^\pm(\phi_s p)}{||\nu^\pm(\phi_s p)||_{\phi_s} p} = \frac{\nu^\pm(p)}{||\nu^\pm(p)||_{\phi_s} p} = \frac{||\nu^\pm(p)||_{\rho_s} \sigma^\pm(p)}{||\nu^\pm(p)||_{\phi_s} p}.
$$

Remark 3.7. We recall that for $p_\gamma = (\gamma^+, \gamma^-), 0)$ we have $\phi_t(\gamma) p_\gamma = \gamma p_\gamma$ and hence $||\nu^\pm(p_\gamma)||_{\phi_t(\gamma)p_\gamma} = \lambda^\pm(\gamma)||\nu^\pm(p_\gamma)||_{p_\gamma}$. It follows that

$$
\sigma^\pm(\gamma p_\gamma) = \lambda^\pm(\gamma) \sigma^\pm(p_\gamma).
$$

Notation 3.3. We consider the proto-neutralised sections and define

$$
\nabla_\phi \sigma^\pm := \frac{\partial}{\partial s} \bigg|_{s=0} \sigma^\pm(\phi_s p) = -\frac{\partial}{\partial s} \bigg|_{s=0} \log ||\nu^\pm(p)||_{\phi_s} \sigma^\pm(p).
$$

Furthermore, for all $p \in \widetilde{U}\Gamma$ we define:

$$
f^\pm(p) := \frac{\langle \nabla_\phi \sigma^\pm(p) \mid \sigma^\pm(p) \rangle}{\langle \sigma^\pm(p) \mid \sigma^\pm(p) \rangle} = -\frac{\partial}{\partial s} \bigg|_{s=0} \log ||\nu^\pm(p)||_{\phi_s} \sigma^\pm(p).
$$

Remark 3.8. As the action of Γ commutes with the flow and the proto-neutralised sections are Γ-equivariant, we obtain that the functions f^\pm are Γ-invariant i.e. $f^\pm(\gamma p) = f^\pm(p)$ for all $\gamma \in \Gamma$ and $p \in \widetilde{U}\Gamma$. Hence, f^\pm induce functions on $U\Gamma$. We abuse notation and denote these functions by f^\pm too.

Definition 3.4. Let $f, g : U\Gamma \to \mathbb{R}$ be two Hölder continuous functions. Then f is said to be Livšic cohomologous to g if there exists a function $h : U\Gamma \to \mathbb{R}$ which is differentiable along the flow ϕ_t and satisfies the following property:

$$
f - g = \frac{\partial}{\partial t} \bigg|_{t=0} h \circ \phi_t.
$$
Definition 3.5. The Livšic cohomology classes \([f^+\gamma]\) (resp. \([f^-\gamma]\)), of the functions on \(U\Gamma\) mentioned in Remark 3.8, are called left (resp. right) proto-Labourie-Margulis invariants of \(\rho\).

Proposition 3.1. Suppose \(\mu_\gamma\) is the flow invariant probability measure supported on the periodic orbit of \(U\Gamma\) corresponding to \(\gamma \in \Gamma\) with period \(l(\gamma)\) and \(f^\pm : U\Gamma \to \mathbb{R}\) is defined as above. Then
\[
\int f^\pm d\mu_\gamma = \frac{\log \lambda^\pm(\gamma)}{l(\gamma)}.
\]

Proof. Suppose \(p_\gamma\) belongs to the periodic orbit corresponding to \(\gamma\). We deduce that
\[
\|\nu^+(p_\gamma)\|_{\phi(\gamma)p_\gamma} = \|\nu^+(p_\gamma)\|_{\gamma p_\gamma} = \|\rho(\gamma)^{-1}\nu^+(p_\gamma)\|_{\gamma p_\gamma}.
\]

Hence, we obtain that
\[
\int_0^{l(\gamma)} f^\pm(\phi_s p_\gamma) ds = \log \|\nu^+(p_\gamma)\|_{\gamma p_\gamma} = \log \lambda^\pm(\gamma),
\]
and our result follows. \(\square\)

Remark 3.9. As \(\lambda^+(\gamma)\lambda^-(\gamma) = 1\), we obtain that
\[
\int \frac{1}{2}(f^+ + f^-) d\mu_\gamma = 0 \quad \text{and} \quad \int \frac{1}{2}(f^+ - f^-) d\mu_\gamma = \frac{\log \lambda^+(\gamma)}{l(\gamma)}
\]
for all appropriate \(\gamma \in \Gamma\). Hence, by Livšic’s Theorem [Liv72] we obtain that the functions \((f^+ + f^-)/2\) are Livšic cohomologous to zero and the the functions \((f^+ - f^-)/2\) are Livšic cohomologous respectively to \(f^+\).

3.3. An equivalent criterion. In this subsection we prove an equivalent criterion for proper actions of hyperbolic groups \(\Gamma\) on \(\mathbb{H}^{n,n-1}\) in terms of proto-Labourie-Margulis invariants.

Lemma 3.4. Suppose \(p \in \widetilde{U}\Gamma\) and \(\sigma^\pm\) are as in Subsection 3.2. Then there exists \(h(p) \in G\) such that \(\nu^\pm(p) = \nu^\pm([h(p)])\), \(h(\phi_s p) = h(p)\) and
\[
\frac{\sigma^\pm(p)}{\sqrt{2(\sigma^+(p) \mid \sigma^-(p))}} = \frac{1}{2} \langle \frac{\|h(p)v_-\|_p}{\|h(p)v_+\|_p} \rangle^{\pm 1} h(p)v_\pm.
\]

Moreover, there exists some \(g(p) \in G\) such that
\[
\frac{(\sigma^+(p) - \sigma^-(p))}{\sqrt{2(\sigma^+(p) \mid \sigma^-(p))}} = g(p)v_{2n}.
\]

Proof. We observe that \(\nu^\pm(p) = \nu^\pm([h(p)]) = (h(p)v_-)/\|h(p)v_-\|\) for some \(h(p) \in G\). We can choose \(h(p)\) such that it does not depend on the flow. Hence, we obtain that
\[
\sigma^\pm(p) = \frac{h(p)v_\pm}{\|h(p)v_\pm\|_p}, \quad \langle \sigma^+(p) \mid \sigma^-(p) \rangle = \frac{2}{\|h(p)v_+\|_p\|h(p)v_-\|_p}.
\]

and for \(a = \sqrt{\|h(p)v_-\|_p/\|h(p)v_+\|_p}\), we deduce that
\[
\frac{\sigma^\pm(p)}{\sqrt{2(\sigma^+(p) \mid \sigma^-(p))}} = \frac{1}{2} a^{\pm 1} h(p)v_\pm.
\]
Now we can choose \(h_a \in G \) such that \(h_a v_\pm = a^\pm v_\pm \) and consider \(g(p) = h(p)h_a \) to conclude our result.

\[\Box \]

Remark 3.10. As \(\text{Stab}_G(e_{2n}) = G_0 \), we obtain that \(\mathbb{H}^{n,n-1} := G_{e_{2n}} \cong G/G_0 \). We define

\[\sigma := \frac{(\sigma^+ - \sigma^-)}{\sqrt{2(\sigma^+ | \sigma^-)}} \]

and observe that \(\sigma : \tilde{\Gamma} \to \mathbb{H}^{n,n-1} \). As \(\sigma^\pm \) are \(\Gamma \)-equivariant, we deduce that \(\sigma(\gamma p) = \rho(\gamma)\sigma(p) \) for all \(p \in \tilde{\Gamma} \).

Suppose \(s \in \mathbb{R}, \gamma \in \Gamma \) and \((p, x) \in \tilde{\Gamma} \times \mathbb{H}^{n,n-1} \). We observe that \(\mathbb{R} \) acts on \(\tilde{\Gamma} \times \mathbb{H}^{n,n-1} \) by sending \((p, x) \) to \((\phi_s p, x) \) and \(\Gamma \) acts on \(\tilde{\Gamma} \times \mathbb{H}^{n,n-1} \) by sending \((p, x) \) to \((\gamma p, \rho(\gamma)x) \).

Lemma 3.5. The \(\Gamma \) action on \((\tilde{\Gamma} \times \mathbb{H}^{n,n-1})/\mathbb{R} \) is proper if and only if the \(\mathbb{R} \) action on \(\Gamma \setminus (\tilde{\Gamma} \times \mathbb{H}^{n,n-1}) \) is proper.

Proof. As the action of \(\Gamma \) and the action of \(\mathbb{R} \) on \(\tilde{\Gamma} \) commute with each other, we see that

\[\gamma \phi_t(p, x) = \gamma(\phi_t p, x) = (\gamma \phi_t p, \rho(\gamma)x) \]

\[= (\phi_t \gamma p, \rho(\gamma)x) = \phi_t(\gamma p, \rho(\gamma)x) = \phi_t \gamma(p, x). \]

Now we use Lemma 5.2 of [GLM09] (See also Lemma 3.1 of [Ben96]) to conclude our result. \(\Box \)

Lemma 3.6 (Goldman–Labourie [GL12]). Suppose \(f : \tilde{\Gamma} \to \mathbb{R} \) is a Hölder continuous function such that

\[\int f d\mu > 0 \]

for all \(\phi \) invariant measures \(\mu \) on \(\tilde{\Gamma} \). Then \(f \) is Livšic cohomologous to a positive function.

Proof. The proof follows verbatim the proof given in the proof of Lemma 3 of [GL12] once we replace all the appearances of a manifold by the compact metric space \(\tilde{\Gamma} \). \(\Box \)

Proposition 3.2. Suppose \(\rho \in \text{Hom}(\Gamma, G, P^\pm) \) and the action of \(\rho(\Gamma) \) on \(\mathbb{H}^{n,n-1} \) is proper. Then the proto-Labourie-Margulis invariants of \(\rho \) are non-vanishing.

Proof. Let us assume on contrary that the action of \(\rho(\Gamma) \) on \(\mathbb{H}^{n,n-1} \) is proper but the proto-Labourie-Margulis invariants \(f^\pm \) of \(\rho \) are not non-vanishing. Then neither \(f^+ \) nor \(f^- \) is Livšic cohomologous to a strictly positive function. Hence using Lemma [3.6] and the fact that \((f^+ + f^-)/2 \) is Livšic cohomologous to 0, we get that there exists a flow invariant probability measure \(\mu \) such that

\[\int \frac{1}{2}(f^+ - f^-)d\mu = 0. \]

Suppose \(T > 0 \). We consider

\[f_T(p) := \frac{1}{T} \int_0^T \frac{1}{2}(f^+ - f^-)(\phi_s p)ds \]
and observe that $\int f_T \, d\mu = 0$. Hence for all $T > 0$ there exists $p_T \in \U$ such that $f_T(p_T) = 0$. It follows that

$$\log \left(\frac{\|\nu^+(p_T)\|_{p_T}}{\|\nu^+(\phi_{p_T})\|_{p_T}} \right) - \log \left(\frac{\|\nu^-(p_T)\|_{p_T}}{\|\nu^-(\phi_{p_T})\|_{p_T}} \right) = 0.$$

We use Lemma 3.4 to obtain that

$$\frac{\|\nu^+(p_T)\|_{p_T}}{\|\nu^+(\phi_{p_T})\|_{p_T}} = \frac{\|h(p_T)\nu^+_z\|_{p_T}}{\|h(p_T)\nu^-_{c}\|_{p_T}}$$

and hence for all $T > 0$, we have $\sigma_{\rho}(\phi_{p_T}) = \sigma_{\rho}(p_T)$. Moreover, \U is compact. It follows that \mathbb{R} does not act properly on $\Gamma(\U \times \mathbb{H}^{n-1})$. Now we use Lemma 3.5 to get that Γ does not act properly on $(\U \times \mathbb{H}^{n-1})/\mathbb{R} = \partial_{\infty}(\Gamma(2) \times \mathbb{H}^{n-1})$ and hence Γ does not act properly on \mathbb{H}^{n-1} a contradiction.

Proposition 3.3. If $\rho \in \text{Hom}(\Gamma, G, \mathbb{P}^\pm)$ is such that the proto-Labourie-Margulis invariants of ρ are non-vanishing. Then the action of $\rho(\Gamma)$ on \mathbb{H}^{n-1} is proper.

Proof. Suppose the action of $\rho(\Gamma)$ on \mathbb{H}^{n-1} is not proper. Hence, there exist $\gamma_k \in \Gamma$ going to infinity and $x_k \in \mathbb{H}^{n-1}$ such that the sequence $\{x_k\}$ converges to some $x \in \mathbb{H}^{n-1}$ and $\{y_k := \rho(\gamma_k)x_k\}$ converge to some $y \in \mathbb{H}^{n-1}$. As $\rho(\Gamma)$ is Anosov with respect to \mathbb{P}^\pm, we use Theorem 1.7 of [GW12] and Remark 2.11 to get that $\rho(\Gamma)$ is AMS proximal. Hence without loss of generality we can assume that γ_k is of infinite order for all k and $\lim_{k \to \infty} \gamma_k^+ \neq \lim_{k \to \infty} \gamma_k^-$ (please see Section 8.1 of [GT17] for a more detailed version of this argument). Therefore, we obtain that the flowlines corresponding to γ_k converge to a flowline with boundary points $\lim_{k \to \infty} \gamma_k^+$ and

$$\lim_{k \to \infty} l(\gamma_k) = \infty.$$

We choose $q_k \in \mathbb{U}$ such that q_k is a point on the flowline corresponding to γ_k and q_k converges to some $q \in \U$. For $z \in \{x, y\}$ suppose $w_{z,k}^+ \in \xi^+(\gamma_k^+)$ and $v_{z,k}^+ \in \mathbb{R}\nu^+(q_k)$ are such that

$$z_k = w_{z,k}^+ + w_{z,k}^- + v_{z,k}^+ + v_{z,k}^-.$$

As $\lim_{k \to \infty} z_k = z$, we obtain that $\lim_{k \to \infty} w_{z,k}^+ = w_z^+$ and $\lim_{k \to \infty} v_{z,k}^+ = v_z^+$ for some finite w_z^+ and v_z^+. Hence, for $z \in \{x, y\}$ it follows that,

$$\langle z \mid \nu^+(q) \rangle \langle z \mid \nu^-(q) \rangle = \langle v_z^+ \mid v_z^- \rangle \langle \nu^+(q) \mid \nu^-(q) \rangle,$$

$$\langle w_z^+ \mid v_z^- \rangle + \langle v_z^+ \mid v_z^- \rangle = \langle z \mid z \rangle = -1.$$

Moreover, as ρ is \mathbb{P}^\pm-Anosov, we deduce that $w_x^+ = 0$ and $w_y^+ = 0$. Hence,

$$\langle x \mid
u^+(q) \rangle \langle x \mid \nu^-(q) \rangle = -\langle \nu^+(q) \mid \nu^-(q) \rangle = \langle y \mid \nu^+(q) \rangle \langle y \mid \nu^- (q) \rangle.$$

We also observe that

$$\lim_{k \to \infty} \lambda^\pm(\gamma_k) = \lim_{k \to \infty} \frac{\langle x_k \mid \nu^+(q_k) \rangle}{\langle x_k \mid \rho(\gamma_k)^{-1} \nu^+(q_k) \rangle} = \lim_{k \to \infty} \frac{\langle x_k \mid \nu^+(q_k) \rangle}{\langle \rho(\gamma_k) x_k \mid \nu^+(q_k) \rangle} = \frac{\langle x \mid \nu^+(q) \rangle}{\langle y \mid \nu^+(q) \rangle}.$$
Therefore, we deduce that $\lim_{k \to \infty} \lambda^\pm(\gamma_k)$ are finite nonzero numbers. Suppose f^\pm are the proto-Labourie-Margulis invariants of ρ. As $\lim_{k \to \infty} l(\gamma_k) = \infty$, it follows that

$$\lim_{k \to \infty} \int_{\gamma_k} f^+ = \lim_{k \to \infty} \frac{\log \lambda^+(\gamma_k)}{l(\gamma_k)} = 0.$$

We also know that the space of flow invariant probability measures on $U\Gamma$ is weak* compact. Hence, there exists a flow invariant probability measure μ on $U\Gamma$ such that $\int f^+ d\mu = 0$. It follows that f^+ is not Livšic cohomologous to any non-vanishing function and we conclude our result.

3.4. Special Anosov representations. In this subsection we relate the existence of non-vanishing proto-Labourie-Margulis invariants with certain special Anosov representations in G.

Notation 3.6. Suppose $f : U\Gamma \to \mathbb{R}$. We define,

$$I_{a,b}(f)(p) := \frac{1}{b - a} \int_a^b f(\phi_s p) ds$$

Lemma 3.7 (Goldman–Labourie [GL12]). Let $f : U\Gamma \to \mathbb{R}$ be a Hölder continuous function which is differentiable along the flow lines of ϕ and $\int f d\mu > 0$ for all ϕ invariant measure μ. Then $I_{0,T}(f) > 0$ for some $T > 0$.

Proof. The proof follows verbatim the proof given in the proof of Lemma 7 of [GL12] once we replace all the appearances of a manifold by the compact metric space $U\Gamma$.

Lemma 3.8. Suppose $\rho \in \text{Hom}(\Gamma, G, P^\pm)$ and $[f^\pm]$ are the proto-Labourie-Margulis invariants of ρ. Also, suppose f^+ is Livšic cohomologous to a strictly positive function. Then there exist positive constants C and k such that for all $t > 0$ and $p \in U\Gamma$ the following hold:

$$\|\nu^+(p)\|_{\phi_t p} \leq C \exp(-kt)\|\nu^+(p)\|_p,$$

$$\|\nu^-(p)\|_{\phi_{-t} p} \leq C \exp(-kt)\|\nu^-(p)\|_p.$$

Proof. Suppose f^+ is Livšic cohomologous to a strictly positive function. Hence $-f^-$ is also Livšic cohomologous to a strictly positive function. Then using Lemma 3.7 we get that there exists $c > 0$ such that $I_{0,c}(f^+) > 0$. Now as $U\Gamma$ is compact we get that $I_{0,c}(f^+) > k^+ > 0$ for some k^+. Hence for $t > 0$ and integer n such that $(n + 1) > (t/c) \geq n$ we have

$$tI_{0,t}(f^+)(p) \geq (t - nc)I_{0,t-nc}(f^+)(p) + nck^+$$

As both $[0,c]$ and $U\Gamma$ are compact, we obtain that

$$\min\{I_{0,t}(f^+)(p) | (t,p) \in [0,c] \times U\Gamma\} > k'$$

for some $k' < 0$. As $(t - nc) \in [0,c]$, we have $I_{0,t-nc}(f^+)(p) \geq k'$. Hence,

$$tI_{0,t}(f^+)(p) \geq (t - nc)k' + nck^+.$$
As $k' < 0$, we obtain that $(t - nc)k' > ck'$. We denote $\exp(k^+c - k'c)$ by C^+ and recalling the definition of f^+ deduce that
\[
\|\nu^+(p)\|_{\phi_{-t}} \leq C^+ \exp(-k^+ t)\|\nu^+(p)\|_p
\]
for all $t > 0$ and for all $p \in \widetilde{\Gamma}$. As $-f^-$ is also Livšic cohomologous to a strictly positive function, we can do a similar computation to obtain positive constants C^- and k^- such that
\[
\|\nu^-(p)\|_{\phi_{-t}} \leq C^- \exp(-k^- t)\|\nu^-(p)\|_p
\]
for all $t > 0$ and for all $p \in \widetilde{\Gamma}$. Finally, we choose $C := \max\{C^+, C^-, k^+, k^-, k\}$ and conclude our result. \hfill \Box

Notation 3.7. We denote $\text{SL}(2n, \mathbb{R})$ by SL and the stabilizer of the oriented n-dimensional subspace V_\pm inside SL by Q_\pm i.e.
\[
Q_\pm := \text{Stab}_{\text{SL}}(\mathbf{V}_\pm).
\]
Also, we consider the orientation on $\mathbb{R}\nu^\pm(p)$ coming from the direction of the vector $\nu^\pm(p)$ to be positive and denote this oriented line by $\mathbb{R}\nu^\pm(p)$.

Proposition 3.4. Suppose $\rho \in \text{Hom}(\Gamma, G, P_\pm)$ and the left proto-Labourie–Margulis invariant $[f^+]$ is positive. Then $\rho \in \text{Hom}(\Gamma, \text{SL}, Q_\pm)$.

Proof. Suppose $p = (p_+, p_-, t) \in \widetilde{\Gamma}$ and $\xi^\pm : \partial_\infty \Gamma \to G/P_\pm$ are the limit maps of $\rho \in \text{Hom}(\Gamma, G, P_\pm)$. We define
\[
\eta^\pm : \partial_\infty \Gamma \to \text{SL}/Q^\pm
\]
\[
p^\pm \mapsto \xi^\pm(p^\pm) \oplus \mathbb{R}\nu^\pm(p).
\]
and let $\eta(p) := (\eta^+(p_+), \eta^-(p_-))$. We use Lemmas 3.2 and 3.3 to observe that η^\pm is well defined and
\[
\eta(\widetilde{\Gamma}) \subset \text{SL}/(Q^+ \cap Q^-).
\]
Moreover, using properties of ν^\pm we obtain that η^\pm are $\rho(\Gamma)$-equivariant. Therefore, to show that $\rho \in \text{Hom}(\Gamma, \text{SL}, Q^\pm)$ we only need to produce equivariant metrics with contraction properties on:
\[
T_{\eta^+(p_+)}(\text{SL}/(Q^+ \cap Q^-)) \cong T_{\eta^+(p_+)}(\text{SL}/Q^+) \oplus T_{\eta^+(p_+)}(\text{SL}/Q^+).
\]
As the underlying subspaces of $\eta^\pm(p_\pm)$ add up to \mathbb{R}^{2n}, we use Proposition 10.1 of [Voi02] to obtain that
\[
T_{\eta^\pm(p_\pm)}(\text{SL}/Q^+) \cong \text{Hom}(\eta^\pm(p_\pm), \eta^\pm(p_\pm)).
\]
We use Corollary 3.3 of [GT17] and Lemma 3.8 to obtain equivariant metrics with contraction properties on $\eta^\pm(p_\pm) = \xi^\pm(p_\pm) \oplus \mathbb{R}\nu^\pm(p)$. Indeed, we use the following recipe: for $v \in \xi^\pm(p_\pm)$ and $w \in \mathbb{R}\nu^\pm(p)$ we define,
\[
\|\langle v, w \rangle\|_p^2 := \|v\|_p^2 + \|w\|_p^2.
\]
Now for $A \in \text{Hom}(\eta^\pm(p_\pm), \eta^\pm(p_\pm))$ we define
\[
\|A\|_p = \sup_{v \neq 0} \frac{\|A(v, w)\|_p}{\|\langle v, w \rangle\|_p}
\]
As \(\rho \in \text{Hom}(\Gamma, G, P^\pm) \) and the left proto-Labourie-Margulis invariant is positive, we obtain that \(\|(v, w)\|_{\phi_{\pm,p}} \leq C e^{-kt}\|(v, w)\|_p \) and \(\|A(v, w)\|_{\phi_{\mp,p}} \leq C e^{-kt}\|A(v, w)\|_p \) for all \(t > 0 \). Hence, for all \(v \neq 0 \) we deduce that

\[
\frac{\|A(v, w)\|_{\phi_{\mp,p}}}{\|(v, w)\|_{\phi_{\pm,p}}} \leq C e^{-2kt}\|A(v, w)\|_p \leq C e^{-2kt}\|A\|_p
\]

and take the supremum over all \(v \neq 0 \) in the left hand side to conclude that \(\|A\|_{\phi_{\mp,p}} \leq C e^{-2kt}\|A\|_p \) for all \(t > 0 \).

Proposition 3.5. Suppose \(\rho \in \text{Hom}(\Gamma, G, P^\pm) \cap \text{Hom}(\Gamma, SL, Q^\pm) \). Then the left proto-Labourie-Margulis invariant \([f^+]\) is positive.

Proof. Suppose \(\xi^\pm : \partial_\infty \Gamma \rightarrow G/P^\pm \) and \(\eta^\pm : \partial_\infty \Gamma \rightarrow SL/Q^\pm \) are the two pairs of limit maps. As \(\rho(\Gamma) \subset G \) and the action of \(\rho(\gamma) \) (resp. \(\rho(\gamma)^{-1} \)) is contracting on \(\eta^+(\gamma^+) \) (resp. \(\eta^-\gamma^- \)), we obtain that \(\eta^\pm(\gamma^\pm) \) are isotropic subspaces of \(R^{n,n} \). As \(\eta^\pm(\gamma^\pm) \) are of dimension \(n \), it follows that they are maximally isotropic. Hence by continuity of the limit maps we deduce that the image of \(\eta^\pm \) lies inside the space of all maximal isotropic subspaces of \(R^{n,n} \). Also, as the action of \(\rho(\gamma) \) (resp. \(\rho(\gamma)^{-1} \)) is contracting on \(\xi^+(\gamma^+) \) (resp. \(\xi^-\gamma^- \)), we obtain that \(\xi^\pm(\gamma^\pm) \subset \eta^\pm(\gamma^\pm) \). Now using the orientation on \(\eta^\pm(p_\pm) \) and the orientations already on \(\xi^\pm(p_\pm) \) we get positive orientations on \(\eta^\pm(p_\pm) \cap (\xi^\pm(p_\pm))^\perp \). As \(\eta^\pm(\gamma^\pm) \) are respectively in the orbits of \(V_\pm \), we use Lemmas 2.3 and 2.6 to obtain that

\[
\eta^\pm(p_\pm) \cap (\xi^\pm(p_\pm))^\perp = R\nu^\pm(p).
\]

Moreover, we know that the contraction property of an Anosov representation does not depend on a particular choice of norms up to Hölder equivalence. Hence we can choose the collection of norms to be smooth along flow lines (please see Remark 3.6) and the contraction property would still hold. Now using Lemma 5.3 of [BCLS15] we can choose \(C = 1 \). Hence, we get that there exists a positive constant \(k \) and a collection \(\{\|\cdot\|_p \mid p \in \hat{\Gamma}^c\} \) of Euclidean norms on \(R^{2n} \) such that:

1. it is Hölder continuous in the variable \(p \in \hat{\Gamma}^c \),
2. it is smooth along the flow lines of \(\{\phi_s\}_{s \in R} \),
3. it is equivariant i.e. \(\|\rho(\gamma)v\|_{\gamma p} = \|v\|_p \) for all \(v \in \mathbb{R}^{2n} \) and \(\gamma \in \Gamma \),
4. it is contracting i.e for all \(p \in \hat{\Gamma}^c \), \(v \in \eta^+(p_\pm) \), \(w \in \eta^-(p_-) \) and \(s > 0 \):

\[
\frac{\|v\|_{\phi_s p}}{\|w\|_{\phi_s p}} \leq \exp(-ks)\|v\|_p.
\]

Therefore, for all \(p \in \hat{\Gamma}^c \) we obtain

\[
g(p) := \frac{\partial}{\partial s}_{s=0} \log \frac{\|\nu^+(p)\|_{\phi_s p}}{\|\nu^-(p)\|_{\phi_s p}} = \lim_{s \rightarrow 0} \frac{1}{s} \log \left(\frac{\|\nu^+(p)\|_{\phi_s p}}{\|\nu^-(p)\|_{\phi_s p}} \right) \leq \lim_{s \rightarrow 0} \frac{1}{s} \log (\exp(-ks)) = -k.
\]

Hence for all flow invariant probability measure \(\mu \) on \(\hat{\Gamma}^c \) we get that

\[
\int \frac{1}{2}(f^+ - f^-)d\mu = - \int gd\mu \geq k > 0.
\]

Finally, using Remark 3.9 we conclude our result. \(\square \)
Remark 3.11. Suppose $\rho \in \text{Hom}(\Gamma, SL)$. We observe that

$$JQ^\pm J = \text{Stab}_G(J\hat{V}_\pm).$$

1. If $\rho \in \text{Hom}(\Gamma, G, P^\pm)$, then we use Lemmas 2.5 and 2.6 to deduce that the left proto-Labourie-Margulis invariant $[f^+]$ is negative if and only if $\rho \in \text{Hom}(\Gamma, SL, JQ^\pm J)$.

2. If $\rho(\Gamma) \subset G$, then by Lemma 2.5 we deduce that $\rho \in \text{Hom}(\Gamma, SL, Q^\pm)$ (resp. $\text{Hom}(\Gamma, SL, JQ^\pm J)$) if and only if ρ is Anosov with respect to the stabilizers of V_\pm (resp. JV_\pm).

3. If ρ is Anosov in SL with respect to the stabilizers of a pair of transverse n dimensional subspaces and $\rho(\Gamma) \subset G$, then we use Lemma 2.6 to deduce that either ρ is Anosov with respect to the stabilizers of V_\pm or ρ is Anosov with respect to the stabilizers of JV_\pm.

Theorem 3.1. Suppose $\rho \in \text{Hom}(\Gamma, G, P^\pm)$. Then the action of $\rho(\Gamma)$ on $H^{n,n-1}$ is proper if and only if ρ is Anosov in SL with respect to the stabilizer of an n-dimensional subspace.

Proof. We use Propositions 3.2, 3.3, 3.4, 3.5 and Remark 3.11 to conclude our result. \square

4. INFINITESIMAL PROPER ACTIONS

In this section we show that proper affine actions on $\mathbb{R}^{n,n-1}$ can be seen as infinitesimal versions of proper actions on $H^{n,n-1}$. We do this by recalling the notion of affine Anosov representations from [GT17] and relating them with the special Anosov representations appearing in Section 3.

4.1. Affine Anosov representations. In this subsection we recall the notion of an affine Anosov representation. Suppose $G_a := G_0 \times \mathbb{R}^{2n-1}$. We call an element $h \in G_0$ pseudo-hyperbolic if the unit eigenspace of h is one dimensional and h does not have -1 as an eigenvalue. We call an element $g = (h, u) \in G_a$ pseudo-hyperbolic if its linear part h is pseudo-hyperbolic.

We call an n dimensional subspace $V \subset \mathbb{R}^{n,n-1}$ a null space if $(V^\perp) \cap \mathbb{R}^{2n-1}$ is a maximal isotropic subspace of $\mathbb{R}^{n,n-1}$. Affine subspaces which are parallel to null spaces are called affine null spaces. We recall Lemmas 2.3 and 2.5 and note that we can consistently provide the maximal isotropic spaces and the null spaces with positive orientations.

Now suppose $g = (h, u) \in G_a$ is such that h is pseudo-hyperbolic. Let

$$W_\pm^h := \left\{ v \mid \lim_{k \to \infty} h^{\mp k}v = 0 \right\} \subset \mathbb{R}^{2n-1}.$$

We note that W_\pm^h are maximal isotropic subspaces of $\mathbb{R}^{n,n-1}$ and let v_0^h be the unique eigenvector of h with eigenvalue 1 such that $\langle v_0^h \mid v_0^h \rangle = 1$ and which is positively oriented with respect to the orientations on W_+^h and $(W_+^h)^\perp \cap \mathbb{R}^{n,n-1}$ (for more details please see [AMS02]). Then the Margulis invariant of g is defined as:

$$\alpha(g) := \langle u \mid v_0^h \rangle.$$
Let Γ be a word hyperbolic group and let $(\rho, u) : \Gamma \to G_0$ be an injective homomorphism such that the linear part ρ is P_0^\pm-Anosov with limit maps given by
\[\xi^\pm_\rho : \partial_\infty \Gamma \to G_0/P_0^\pm \]
and $\xi_\rho(p) = (\xi^+_\rho(p_+), \xi^-_\rho(p_-))$ for all $p = (p_+, p_-, t) \in \tilde{\Gamma}$. Henceforth, in this section we treat (ρ, u).

Remark 4.1. Suppose $(\rho, u) : \Gamma \to G_0$ is an injective homomorphism such that $\rho \in \text{Hom}(\Gamma, G, P_0^\pm)$ and $\gamma^\pm \in \partial_\infty \Gamma$ are respectively the attracting and repelling points of the action of any infinite order element $\gamma \in \Gamma$. We observe that $\xi_\rho(\gamma^+, \gamma^-, t)$ is independent of t. Henceforth, we denote $\nu(\xi_\rho(\gamma^+, \gamma^-, t))$ by $\nu_\rho(\gamma^+, \gamma^-)$ and observe that $\nu_\rho(\gamma^+, \gamma^-) = v_0^{\rho(\gamma)}$. It follows that
\[\alpha((\rho, u) (\gamma)) = \langle u_\rho(\gamma) | \nu_\rho(\gamma^+, \gamma^-) \rangle. \]

Definition 4.1. Let Γ be a word hyperbolic group and let (ρ, u) be an injective homomorphism from Γ to G_0 such that $\rho \in \text{Hom}(\Gamma, G_0, P_0^\pm)$. Then the Labourie-Margulis invariant of this representation is a Livšic cohomology class $[f_{\rho,u}]$ of H"older continuous functions $f_{\rho,u}$ such that
\[\int f_{\rho,u} d\mu_\gamma = \frac{\alpha(\rho, u)(\gamma)}{l(\gamma)} \]
where μ_γ is a flow invariant probability measure supported on the periodic orbit of $U\Gamma$ corresponding to γ and $l(\gamma)$ is the period of this orbit.

Remark 4.2. The existence of the Labourie-Margulis invariants follow from the constructions in Appendix 8.2 and Lemma 7.2 of [GT17]. Moreover, the uniqueness follows from Livšic’s theorem [Liv72].

Now we define the notion of affine Anosov representations. Suppose $W_\pm \subset \mathbb{R}^{2n-1}$ be as in the previous section. We observe that
\[\text{Stab}_{G_0}(W_\pm) = \text{Stab}_{G_0}(W_\pm^1 \cap \mathbb{R}^{2n-1}). \]
Henceforth, in this section we treat $(W_\pm^1 \cap \mathbb{R}^{2n-1})$ as affine subspaces in \mathbb{R}^{2n-1} and call the stabilizers,
\[P_a^\pm := \text{Stab}_{G_a}(W_\pm^1 \cap \mathbb{R}^{2n-1}), \]
of these subspaces under the action of the affine group G_a as pseudo parabolic subgroups. These subgroups of G_a are used in the definition of an affine Anosov representation in the same way as parabolic subgroups are used in the definition of an Anosov representation. We observe that for L_0 and e_n as defined in the previous section we have
\[L_a := P_a^+ \cap P_a^- = L_0 \ltimes \mathbb{R}e_n. \]
Let \mathcal{X}_a be the space of all affine null subspaces in \mathbb{R}^{2n-1} and let \mathcal{Y}_a be the space of all transverse pairs of affine null subspaces. Then \mathcal{Y}_a is an open and dense subset of $\mathcal{X}_a \times \mathcal{X}_a$. The group G_a acts transitively on the space \mathcal{X}_a and we have $\mathcal{X}_a \cong G_a/P_a^\pm$. Moreover, the diagonal action of G_a is transitive on \mathcal{Y}_a and we have $\mathcal{Y}_a \cong G_a/L_a$.

Definition 4.2. Let $(\rho, u) : \Gamma \to G_a$ be an injective homomorphism. Then (ρ, u) is called affine Anosov with respect to P_a^\pm if and only if the following conditions hold:
1. (a) There exist a continuous, injective, \((\rho, u)(\Gamma)\)-equivariant limit maps \(\xi^\pm : \partial_\infty \Gamma \to G_a/P_a^\pm\) such that \(\xi(p) := (\xi^+(p^+), \xi^-(p^-)) \in G_a/L_a\) for \(p = (p^+, p^-, t) \in \tilde{U} \Gamma\).

(b) There exist positive constants \(C, e\) and for \(p \in \tilde{U} \Gamma\) a continuous collection of \((\rho, u)(\Gamma)\)-equivariant Euclidean metrics \(\|\cdot\|_p\) on \(T_{\xi(p)}(G_a/L_a)\) such that for all \(v^\pm \in T_{\xi^+(p^\pm)}(G_a/P_a^\pm)\) and \(t \geq 0:\)

\[
\|v^\pm\|_{\phi_t^\pm p} \leq Ce^{-ct}\|v^\pm\|_p.
\]

2. There exists a \((\rho, u)(\Gamma)\)-equivariant map \(s : \tilde{U} \Gamma \to \mathbb{R}^{2n-1}\) which is Hölder continuous and is differentiable along the flow lines of \(\phi\). Moreover, for all \(p \in U \Gamma\) the function

\[
f(p) := \left. \frac{\partial}{\partial t} \bigg|_{t=0} s(\phi_t p) \right|_{\nu_t(p)} \neq 0.
\]

Remark 4.3. We note that whenever the first condition of the above definition is satisfied one can use a partition of unity type argument to guarantee the existence of a \((\rho, u)(\Gamma)\)-equivariant map \(s : U \Gamma \to \mathbb{R}^{2n-1}\) which is Hölder continuous and is differentiable along the flow lines of \(\phi\) (for more details please see the Appendix 8.2 of [GT17]).

We denote the space of all representations in \(G_a\) which are affine Anosov with respect to \(P_a^\pm\) by \(\text{Hom}(\Gamma, G_a, P_a^\pm)\).

Remark 4.4. Suppose \((\rho, u) \in \text{Hom}(\Gamma, G_a)\). Then we note that \((\rho, u)\) satisfy Condition [1] in the above definition if and only if \(\rho \in \text{Hom}(\Gamma, G_0, P_0^\pm)\). Moreover, Condition [2] in the above definition is equivalent to saying that the Labourie–Margulis invariant of \((\rho, u)\) is non-vanishing.

We state the key property of affine Anosov representations:

Theorem 4.1 (Ghosh–Treib [GT17]). Suppose \(\rho \in \text{Hom}(\Gamma, G_0, P_0^\pm)\) and \((\rho, u) \in \text{Hom}(\Gamma, G_a)\). Then \((\rho, u) \in \text{Hom}(\Gamma, G_a, P_a^\pm)\) if and only if the action of \((\rho, u)(\Gamma)\) on \(\mathbb{R}^{2n-1}\) is proper.

It is important to mention here the existence and non-existence results due to Abels–Margulis–Soifer [AMS02]:

Theorem 4.2 (Abels–Margulis–Soifer [AMS02]). The following holds:

1. There exist free subgroups of \(\text{Aff}(2n - 1, \mathbb{R})\) with linear part Zariski dense in \(\text{SO}(n, n - 1)\) which act properly discontinuously on \(\mathbb{R}^{2n-1}\), when \(n\) is even.

2. There does not exist any subgroup of \(\text{Aff}(2n - 1, \mathbb{R})\) with linear part Zariski dense in \(\text{SO}(n, n - 1)\) which acts properly discontinuously on \(\mathbb{R}^{2n-1}\), when \(n\) is odd.

4.2. Margulis invariants as derivatives. In this subsection we relate Margulis invariants with derivatives of certain eigenvalues.

Remark 4.5. Suppose \(\mathfrak{g}\) (resp. \(\mathfrak{g}_0\)) denote the Lie algebra of \(G\) (resp. \(G_0\)) and \(G \in \mathfrak{g}\). We observe that \(G \in \mathfrak{g}_0\) if and only if \(Ge_{2n} = 0\).
Finally, we conclude by observing that (Remark 4.7 is Anosov in Proposition 4.1. Suppose \(v \in \mathbb{R}^{n,n-1} \subset \mathbb{R}^{n,n} \) we consider
\[
G = \begin{bmatrix}
0 & v \\
v^t I_{n,n-1} & 0
\end{bmatrix}
\]
and observe that \(G \in \mathfrak{g} \) with \(Ge_{2n} = v \).

Remark 4.6. Suppose \(g \in G_0 \) is a pseudo-hyperbolic element and \(W^g_{\pm} \) be the attracting and repelling subspaces of \(g \) (see Section 4.1). Observe that the dimensions of \(W^g_{\pm} \) are \((n - 1)\). Also, suppose \(g_t \in G \) is an analytic one parameter family with \(g = g_0 \). Then, for \(t \) small enough we obtain a pair of attracting and repelling subspaces of \(g_t \) denoted by \(W^{g_t}_{\pm} \) and whose dimensions are also \((n - 1)\). Moreover, using Lemma 2.6 we obtain that there is a unique maximal isotropic space inside \((W^g_{\pm})^\perp\) which is in the orbit of \(V_+ \) (see Section 3.1). We denote this space by \(V^g_{\pm} \). We observe that \(g_t \) preserves the line \((W^g_{\pm})^\perp \cap V^g_+ \). Let \(\lambda(g_t) \) be the eigenvalue of the action of \(g_t \) on this line. We observe that the definition of \(\lambda \) given here is compatible with the definition of \(\lambda^+ \) given in Notation 3.1.

Finally, we start using the following notation:
\[
d\lambda(g, G) := \frac{d\lambda}{dt}\bigg|_{t=0} \lambda(g_t).
\]

Lemma 4.1. Suppose \(g \in G_0 \) is a pseudo-hyperbolic element and \(g_t \in G \) is an analytic one parameter family whose tangent direction at \(g = g_0 \) is \(G \) and \(Ge_{2n} = v \). Then
\[
\alpha(g, v) = d\lambda(g, G).
\]

Proof. We consider the orientation on \(V^g_{\pm} \) coming from \(V^g_\pm \) and the orientation on \(W^g_{\pm} \) coming from \(W^g_\pm \). Let \(v^+_t \in (W^g_{\pm})^\perp \cap V^g_+ \) respectively be the \(||\cdot|| \)-unit vectors which is positively oriented with respect to the orientations on \(V^g_{\pm} \) and \(W^g_{\pm} \). Hence,
\[
\lambda(g_t) = \langle g^+_t v^+_t, v^+_t \rangle / \langle v^+_t, v^-_t \rangle.
\]
We take derivative on both sides and deduce that
\[
\frac{d}{dt}\bigg|_{t=0} \lambda(g_t) = \langle \pm Gv^+_0, v^+_0 \rangle / \langle v^+_0, v^-_0 \rangle.
\]
We observe that \(e_{2n} = (av^+_0 - bv^-_0) \) for some \(a, b \in \mathbb{R} \). As \(e_{2n} = e_{2n} = -1 \), we obtain that \(2ab \langle v^+_0, v^-_0 \rangle = 1 \). It follows that
\[
d\lambda(g, G) = 2ab \langle Gv^+_0, v^-_0 \rangle.
\]
Moreover, as \(\langle g_t v^+_t, v^-_t \rangle = 0 \), we obtain that \(\langle Gv^+_0, v^-_0 \rangle = 0 \). Therefore,
\[
d\lambda(g, G) = \langle G(au^+_0 - bv^-_0) \rangle \| (av^+_0 + bv^-_0) \rangle = \langle v, (av^+_0 + bv^-_0) \rangle.
\]
Finally, we conclude by observing that \((av^+_0 + bv^-_0) = v^+_0 \).

Remark 4.7. If \(\alpha(g, v) \neq 0 \), then for \(t \) small enough \(\lambda(g_t) \neq \lambda^{-1}(g_t) \).

Proposition 4.1. Suppose \(\rho : \Gamma \to G_0 \) is Anosov with respect to \(P^\pm_0 \). Then \(\rho \) is Anosov in \(G \) with respect to \(P^\pm \) i.e. \(\text{Hom}(\Gamma, G_0, P^\pm_0) \subset \text{Hom}(\Gamma, G, P^\pm) \).
Proof. Let \(\rho : \Gamma \to G_0 \) be Anosov with respect to \(P_0^\pm \) with limit map

\[\xi : \tilde{\Gamma} \to G_0/L_0. \]

We recall that \(G_0/L_0 \subset G/L. \) Hence we get limit maps

\[\xi : \tilde{\Gamma} \to G_0/L_0 \subset G/L. \]

Therefore, to show that \(\rho \in \text{Hom}(\Gamma, G, P^\pm) \) we need only to show that the contraction properties hold true.

We observe that \(\xi^\pm(p_\pm)^\perp = (\xi^\pm(p_\pm)^\perp \cap \mathbb{R}^{2n-1}) \oplus \mathbb{R}e_{2n}, \)

\[
\begin{align*}
T_{(\xi^+(p_+),\xi^-(p_-))}(G_0/L_0) &= T_{\xi^+(p_+)}(G_0/P^+_0) \oplus T_{\xi^-(p_-)}(G_0/P^-_0), \\
T_{(\xi^+(p_+),\xi^-(p_-))}(G/L) &= T_{\xi^+(p_+)}(G/P^+) \oplus T_{\xi^-(p_-)}(G/P^-),
\end{align*}
\]

Hence, using Proposition 10.1 of [Voi02] we obtain that

\[T_{\xi^\pm(p_\pm)}(G/P^\pm) \cong \text{Hom}_{\text{skew}}(\xi^\pm(p_\pm), \xi^\mp(\rho_t)^\perp) \cong \text{Hom}_{\text{skew}}(\xi^\pm(p_\pm)^\perp \cap \mathbb{R}^{2n-1}) \oplus \text{Hom}(\xi^\pm(p_\pm), \mathbb{R}e_{2n}) \cong T_{\xi^\pm(p_\pm)}(G_0/P^\pm_0) \oplus \text{Hom}(\xi^\pm(p_\pm), \mathbb{R}e_{2n}). \]

As \(\rho \in \text{Hom}(\Gamma, G_0, P^\pm) \), we have a collection of norms satisfying contraction properties on \(T_{\xi^\pm(p_\pm)}(G_0/P^\pm_0) \). We use Corollary 3.3 of [GT17] to obtain a norm satisfying contraction properties on \(\text{Hom}(\xi^\pm(p_\pm), \mathbb{R}e_{2n}) \). Finally, we obtain equivariant norms satisfying contraction properties on \(T_{\xi^\pm(p_\pm)}(G/P^\pm) \) by using the following recipe:

\[\|(v, w)\|^2 := \|v\|^2 + \|w\|^2 \]

where \(v \in T_{\xi^\pm(p_\pm)}(G_0/P^\pm_0) \) and \(w \in \text{Hom}(\xi^\pm(p_\pm), \mathbb{R}e_{2n}). \)

Let \(\{\rho_t\}_{t \in (-1,1)} \subset \text{Hom}(\Gamma, G, P^\pm) \) be an analytic one parameter family and \(U : \Gamma \to g \) be such that \(\rho_0 = \rho \) and for all \(\gamma \in \Gamma \),

\[U(\gamma) = \left. \frac{d}{dt} \right|_{t=0} \rho_t(\gamma)\rho(\gamma)^{-1}. \]

We call \(U \) a tangent vector of \(\text{Hom}(\Gamma, G, P^\pm) \) at \(\rho \). We observe that

\[U \in Z^1_{\text{ad},\rho}(\Gamma, g) := \{ V \mid V(\gamma\eta) = \text{Ad}(\rho(\gamma))V(\eta) + V(\gamma) \text{ for all } \gamma, \eta \in \Gamma \}. \]

We consider, \(u(\gamma) := U(\gamma)e_{2n} \) for all \(\gamma \in \Gamma \) and observe that

\[u \in Z^1_{\rho}(\Gamma, \mathbb{R}^{2n-1}) := \{ v \mid v(\gamma\eta) = \rho(\gamma)V(\eta) + V(\gamma) \text{ for all } \gamma, \eta \in \Gamma \}. \]

Remark 4.8. We observe that for all \(\gamma \in \Gamma \) and \(p_\gamma = (\gamma^+, \gamma^-, 0) \), the action of \(\rho(\gamma) \) fixes both \(u_0^\pm(p_\gamma) \). Hence \(\lambda_\rho^+(\gamma) = 1 \) for all \(\gamma \in \Gamma \).

Proposition 4.2. Suppose \(\rho \in \text{Hom}(\Gamma, G_0, P_0^\pm) \subset \text{Hom}(\Gamma, G, P^\pm) \) and \(U \in Z^1_{\text{ad},\rho}(\Gamma, g) \) is a tangent vector to \(\text{Hom}(\Gamma, G, P^\pm) \) at \(\rho \). Then for \(u = Ue_{2n} \),

\[\alpha(\rho, u) = d\lambda^+(\rho, U). \]

Proof. Follows directly from Lemma 4.1. \qed
Remark 4.9. Suppose \(\rho \in \text{Hom}(\Gamma, G_0, P^\pm_{0}) \subset \text{Hom}(\Gamma, G, P^\pm) \). Hence, for \(t \) small enough \(\rho_t \in \text{Hom}(\Gamma, G, P^\pm) \). We use Remark 2.1 and Theorem 2.2 to obtain that the limit maps of \(\rho_t \) vary analytically along the variable \(t \) (for more details please see Theorem 6.1 of [BCLS15], Theorem 3.8 of [HPS06] and Theorem 5.18 of [Shu87]).

Suppose \(f_t^\pm \) be the functions whose Livšic cohomology classes are proto-Labourie–Margulis invariants and which are obtained via the construction and Theorem 5.18 of [Shu87].

We recall that \(f_t^\pm \) are Hölder continuous in the variable \(p \) and vary analytically over a neighborhood of \(\rho \) inside the representation variety i.e. for some collection of Hölder continuous funtions \(\{h_n^\pm\}_{n=0}^\infty \) over \(\hat{\Gamma} \) we have

\[
f_t^\pm = \sum_{n=0}^\infty t^n h_n^\pm.
\]

Henceforth, to simplify our notations we denote \(h_1^\pm \) by \(h^\pm \) and \(\sum_{n=2}^\infty t^{n-2} h_n^\pm \) by \(h_t^\pm \). We note that \(h_0^\pm = f_0^\pm \) and \(h_t^\pm \) is analytic in the variable \(t \).

Proposition 4.3. Suppose \(\{\rho_t\}_{t \in (-2,2)} \subset \text{Hom}(\Gamma, G, P^\pm) \) be an analytic one parameter family with \(\rho = \rho_0 \in \text{Hom}(\Gamma, G_0, P^\pm_{0}) \), \(U \) is the corresponding tangent vector to \(\text{Hom}(\Gamma, G, P^\pm) \) at \(\rho \) and \(u = U \varepsilon_{2\pi} \). Then the derivative of the left proto-Labourie–Margulis invariants of \(\rho_t \) at \(t = 0 \) is the Labourie–Margulis invariant of \((\rho, u) \in \text{Hom}(\Gamma, G_0) \), i.e.

\[
[f_{\rho,u}] = \left[\frac{\partial}{\partial t} \right]_{t=0} f_t^+.
\]

Proof. Suppose \(h^+, h_t^+ : \hat{\Gamma} \to \mathbb{R} \) be as mentioned in Remark 4.9. Hence \(f_t^+ = f_0^++t h^++ t^2 h_t^+ \). It follows that for all flow invariant probability measures \(\mu_\gamma \) supported on the closed orbits corresponding to infinite order elements \(\gamma \in \Gamma \),

\[
\int f_t^+ d\mu_\gamma = \int (f_0^++t h^++t^2 h_t^+)d\mu_\gamma.
\]

We use Proposition 3.1 and deduce that

\[
\log \lambda_t^+(\gamma) - \log \lambda_0^+(\gamma) = l(\gamma)t \int h^+ d\mu_\gamma + l(\gamma)t^2 \int h_t^+ d\mu_\gamma.
\]

We recall that \(\hat{\Gamma} \) is compact, the functions \(\{h_t^+\}_{t \in [-1,1]} \) vary analytically in the variable \(t \) and \([-1,1]\) is a compact set. Hence, for \(t \in [-1,1] \),

\[
\int h_t^+ d\mu_\gamma \leq \max_{t \in [-1,1]} \max_{p \in \hat{\Gamma}} |h_t^+(p)| = K \in \mathbb{R}.
\]

It follows that \(\lim_{t \to 0} \int h_t^+ d\mu_\gamma = 0 \). Also, we use Remark 4.8 to obtain

\[
\int h^+ d\mu_\gamma = \frac{d\lambda^+((\rho, U)(\gamma))}{l(\gamma)\lambda_0^+(\gamma)} = \frac{\alpha((\rho, u)(\gamma))}{l(\gamma)}.
\]

Finally, using Livšic’s theorem [Liv72] we conclude our result. \(\square \)

Remark 4.10. Similarly, we can show that the derivative of the right proto-Labourie–Margulis invariants of \(\rho_t \) at \(t = 0 \) is the negative of the Labourie–Margulis invariant of \((\rho, u) \).
Also, we recall that the negative of the Labourie–Margulis invariant of \((\rho, u)\) is the Labourie–Margulis invariant of \((\rho, -u)\).

4.3. Margulis spacetimes and quotients of \(\mathbb{H}^{n,n-1}\). In this subsection we relate elements of \(\text{Hom}(\Gamma, G_0)\) with deformations in \(\text{Hom}(\Gamma, G)\) of elements in \(\text{Hom}(\Gamma, G_0)\). Moreover, we use this to relate proper affine actions on \(\mathbb{R}^{n,n-1}\) with proper actions on \(\mathbb{H}^{n,n-1}\).

Lemma 4.2. Suppose \(\rho \in \text{Hom}(\Gamma, G_0, P^\pm_0)\) and
\[
E : Z_{\text{Adop}}^1(\Gamma, g) \to Z_{\rho}^1(\Gamma, \mathbb{R}^{2n-1})
\]
is the map which sends \(U \in Z_{\text{Adop}}^1(\Gamma, g)\) to \(u = Ue_{2n}\). Then \(E\) is surjective and the kernel of \(E\) is \(Z_{\text{Adop}}^1(\Gamma, g_0)\).

Proof. Suppose \(u \in Z_{\rho}^1(\Gamma, \mathbb{R}^{2n-1})\). We consider \(U : \Gamma \to g\) such that,
\[
U(\gamma) := \begin{bmatrix} 0 & u(\gamma) \\ u(\gamma)^t I_{n,n-1} & 0 \end{bmatrix}.
\]
We observe that \(U \in Z_{\text{Adop}}^1(\Gamma, g)\). As \(Ue_{2n} = u\), we deduce \(E\) is surjective.

Suppose \(U \in Z_{\text{Adop}}^1(\Gamma, g)\) is such that \(Ue_{2n} = 0\). As \(U(\gamma) \in g\), we compute and conclude that \(U(\gamma) \in g_0\) and our result follows. \(\square\)

Lemma 4.3. Let \(\{\rho_t\}_{t \in (-1,1)} \subset \text{Hom}(\Gamma, G, P^\pm)\) be an analytic one parameter family with \(\rho = \rho_0 \in \text{Hom}(\Gamma, G_0, P^\pm_0)\), \(U\) be the tangent vector to \(\{\rho_t\}_{t \in (-1,1)}\) at \(\rho\) and \(u = Ue_{2n}\). Suppose the Labourie–Margulis invariant of \((\rho, u)\) is non-vanishing. Then there exists \(\epsilon \in (0,1)\) such that for all \(t\) with \(|t| \in (0, \epsilon)\), the proto-Labourie–Margulis invariants of \(\rho_t\) are also non-vanishing.

Proof. We use Remark 4.9 to deduce the existence of H"older continuous functions \(h^\pm, h_t^\pm : \Gamma \to \mathbb{R}\) such that \(h_t^\pm\) vary analytically over \(t\) in a neighborhood of zero (i.e. \(|t| < \epsilon\) for some \(\epsilon \in (0,1)\)) with
\[
f_t^\pm = f_0^\pm + th^\pm + t^2 h_t^\pm
\]
and \([f_t^\pm]\) are respectively the proto-Labourie–Margulis invariants of \(\rho_t\). We use Proposition 4.3 to deduce that \(h^\pm\) are Livšic cohomologous to non-vanishing functions. Without loss of generality suppose \(h^+\) is Livšic cohomologous to a function \(h > 0\). We define
\[
f_t := th + t^2 h_t^+.
\]
Moreover, let us consider \(c > \max\{|h_t^+(p)| \mid p \in \Gamma, s \in [-\epsilon, \epsilon]\}\). Then for \(|t| \in (0, \epsilon)\) with \(c|t| < \min\{|h(p)| \mid p \in \Gamma\}\) we have
\[
h + th_t^+ \geq h - |h_t^+| > h - c|t| > 0.
\]
It follows that for all \(t\) with \(|t| \in (0, \epsilon)\), the functions \(f_t\) are non-vanishing. We recall that \(h\) is Livšic cohomologous to \(h^+\) and use Proposition 3.1 to deduce that
\[
\int (f_t^+ - f_t) d\mu_{\gamma} = \int f_0 d\mu_{\gamma} + t \int (h^+ - h) d\mu_{\gamma} = \frac{\log 1}{l(\gamma)} + 0 = 0.
\]
Hence, using Livšic’s Theorem [Liv72] we obtain that \([f_t^+] = [f_t]\) and our result follows. \(\square\)
Theorem 4.3. Let \(\{ \rho_t \}_{t \in (-1, 1)} \) be an analytic one parameter family of representations of \(\Gamma \) in \(G \) with \(\rho_0(\Gamma) \subset G_0 \). Let \(U \) be the tangent vector to \(\{ \rho_t \}_{t \in (-1, 1)} \) at \(\rho = \rho_0 \) and \(u = Ue_{2n} \). Suppose \((\rho, u) \in \text{Hom}(\Gamma, G_0, P_0^\pm) \) for \(\rho = \rho_0(\Gamma) \subset G_0 \). Then there exists \(\epsilon > 0 \) such that for all \(t \) with \(|t| \in (0, \epsilon) \), \(\rho_t \) is Anosov in \(\text{SL}(2n, \mathbb{R}) \) with respect to the stabilizer of an \(n \)-dimensional subspace.

Proof. As \((\rho, u) \in \text{Hom}(\Gamma, G_0, P_0^\pm) \), we obtain that \(\rho \in \text{Hom}(\Gamma, G_0, P_0^\pm) \). We use Proposition 4.1 to obtain an \(\epsilon > 0 \) such that for all \(|t| < 2\epsilon \), \(\rho_t \in \text{Hom}(\Gamma, G, P_0^\pm) \). Finally, we use Lemma 3.3 Proposition 3.4 and Remark 3.11 to conclude our result.

Corollary 4.1. Let \(\{ \rho_t \}_{t \in (-1, 1)} \) be an analytic one parameter family of representations of \(\Gamma \) in \(G \) with \(\rho = \rho_0 \in \text{Hom}(\Gamma, G_0, P_0^\pm) \), \(U \) be the tangent vector to \(\{ \rho_t \}_{t \in (-1, 1)} \) at \(\rho \) and \(u = Ue_{2n} \). Suppose \((\rho, u) \) is a Margulis spacetime. Then there exists \(\epsilon > 0 \) such that for all \(t \) with \(|t| \in (0, \epsilon) \), \(\rho_t(\Gamma) \) acts properly on \(\mathbb{H}^{n, n-1} \).

Proof. As \((\rho, u) \) is a Margulis spacetime, we recall that \((\rho, u)(\Gamma) \) acts properly on \(\mathbb{R}^{2n-1} \). We use Theorem 4.1 to obtain that \((\rho, u) \in \text{Hom}(\Gamma, G_0, P_0^\pm) \). Finally, we use Theorems 4.3 and 3.1 to conclude our result.

Corollary 4.2. Suppose \(n \) is even. Then there exists a non-abelian free subgroup with finitely many generators inside \(G \) which act properly on \(\mathbb{H}^{n, n-1} \).

Proof. The result follows from Theorem B of [AMS02] and Corollary 4.1.

APPENDIX

In this section we introduce affine crossratios corresponding to Margulis invariants and crossratios corresponding to the eigenvalues whose derivative give rise to Margulis invariants. Moreover, we relate these affine crossratios (resp. crossratios) with a limiting result corresponding the Margulis invariants (resp. eigenvalues).

4.4. Affine Crossratios and Margulis Invariants

In this subsection we define affine crossratios.

Suppose \(\{ V_i \}_{i=1}^4 \) are four null vector subspaces of \(\mathbb{R}^{2n-1} \) which are mutually transverse to each other and \(\{ A_i \}_{i=1}^4 \) are four affine subspaces in \(\mathbb{R}^{2n-1} \) such that \(V_i \) is respectively parallel to \(A_i \). Moreover, for \(i \neq j \) suppose \(x_{i,j} \) be a point in \(A_i \cap A_j \) and suppose \(v_{i,j} := \nu(V_i^\perp, V_j^\perp) \).

Lemma 4.4. Suppose \(V_i, V_j, V_k \) are three null vector subspaces of \(\mathbb{R}^{2n-1} \) which are mutually transverse to each other. Then \(v_{i,j} = (-1)^{n-1} v_{j,i} \) and
\[
\langle v_{i,j} \mid v_{i,k} \rangle = 1 = \langle v_{i,j} \mid v_{k,j} \rangle.
\]

Proof. As \(\dim(V_i) = n \), \(\dim(V_i^\perp) = (n-1) \) and \(\langle v_{i,s} \mid v_{i,s} \rangle = 1 \), we obtain that \((v_{i,j} - av_{i,k}) \in V_i^\perp \) for some non-zero constant \(a \). It follows that
\[
a = \langle v_{i,j} \mid v_{i,k} \rangle = a^{-1}.
\]

Hence, \(a^2 = 1 \). As \(\langle v_{i,j} \mid v_{i,j} \rangle = 1 \), using continuity we conclude that \(a = 1 \).

We note that \(-I \) and \(I \) lie in the same connected component of the orthogonal group \(O(n) \) if and only if \(n \) is even. Hence, \(I_{n,n-1} \in SO_0(n, n-1) \) for \(n \) odd and \(-I_{n,n-1} \in SO_0(n, n-1) \) for \(n \) even. It follows that for \(n \)
odd, $\nu(W_-, W_+) = \nu([-I_{n,n-1}]) = \nu(W_+, W_-) = (-1)^{n-1}\nu(W_+, W_-)$ and for n even, $\nu(W_-, W_+) = \nu([-I_{n,n-1}]) = -\nu(W_+, W_-) = (-1)^{n-1}\nu(W_+, W_-)$. Our result follows. \hfill \Box

We define the affine crossratio as

$$\beta_{1,2,3,4} = \beta(A_1, A_2, A_3, A_4) := \langle x_{1,3} - x_{2,4} | v_{1,4} - v_{2,3} \rangle.$$

In particular, for $n = 2$, null subspaces of $\mathbb{R}^{2,1}$ are planes which are tangent to the light-cone. Now given four affine subspaces of \mathbb{R}^3 which are mutually transverse to each other and whose underlying vector spaces are null subspaces, we obtain that their mutual intersections give us four affine lines. Then $x_{1,3}$ (resp. $x_{2,4}$) is a point on the line of intersection between the first (resp. second) and the third (resp. fourth) affine subspace and $v_{1,4}$ (resp. $v_{2,3}$) are vectors which are unit with respect to the bilinear form $\langle \cdot, \cdot \rangle$, parallel with the intersection between the first (resp. second) and the fourth (resp. third) affine subspace and whose directions are consistent with the choice made in Remark 3.3.

The above definition is well defined since using Lemma 4.4 it follows that for all $a, b \in \mathbb{R}$, $\langle av_{1,3} - bv_{2,4} | v_{1,4} - v_{2,3} \rangle = 0$. We also observe that the following equality holds for any other points $x_{3,1} \in A_3 \cap A_1$ and $x_{4,2} \in A_4 \cap A_2$:

$$\langle x_{1,3} - x_{2,4} | v_{1,4} - v_{2,3} \rangle = \langle x_{3,1} - x_{4,2} | v_{1,4} - v_{2,3} \rangle.$$

Now for $i \neq j$ we consider the following decomposition:

$$\mathbb{R}^{2n-1} = V_i^\perp \oplus V_j^\perp \oplus (V_i \cap V_j).$$

Let x_i^j be the projection of $x_{i,j}$ on V_i^\perp with respect to this decomposition. We observe that as $x_{i,j}$ varies along $A_i \cap A_j$ the projection x_i^j stays fixed. Moreover, $x_i^i + V_j = A_j$. Using these observations we obtain:

$$\beta_{1,2,3,4} = \langle x_{1,3} - x_{2,4} | v_{1,4} - v_{2,3} \rangle = \langle x_3^1 + x_1^3 - x_4^2 - x_2^4 | v_{1,4} - v_{2,3} \rangle$$

$$= \langle x_3^1 | v_{1,4} \rangle - \langle x_1^3 | v_{2,3} \rangle - \langle x_4^2 | v_{1,4} \rangle + \langle x_2^4 | v_{2,3} \rangle$$

$$= \langle x_3^3 | v_{1,4} - v_{1,3} \rangle - \langle x_1^3 | v_{2,3} - v_{1,3} \rangle - \langle x_4^2 | v_{1,4} - v_{4,2} \rangle + \langle x_2^4 | v_{2,3} - v_{2,4} \rangle.$$

Hence for any $x_i \in A_i$ we obtain the following identity:

$$(4.4.1) \quad \beta_{1,2,3,4} = \langle x_1 | v_{1,4} - v_{1,3} \rangle + \langle x_2 | v_{2,3} - v_{2,4} \rangle + \langle x_3 | v_{1,3} - v_{2,3} \rangle + \langle x_4 | v_{2,4} - v_{1,4} \rangle.$$

Proposition 4.4. Let β be defined as above. Then for any five affine null spaces $A_i, \{A_i\}_{i=1}^4$ which are mutually transverse to each other and for any $(g, u) \in G_n$ the following identities hold:

1. $\beta((g, u)A_1, (g, u)A_2, (g, u)A_3, (g, u)A_4) = \beta(A_1, A_2, A_3, A_4)$,
2. $\beta_{1,2,3,4} = \beta_{2,1,4,3} = (-1)^n \beta_{3,4,1,2} = (-1)^n \beta_{1,3,2,4}$,
3. $\beta_{1,2,3,4} + \beta_{1,2,4,3} = 0$,
4. $\beta_{1,3,3,4} + \beta_{2,2,3,4} = \beta_{1,2,3,4}$.

Moreover, for n even, $\beta_{1,2,3,4} + \beta_{1,3,4,2} + \beta_{1,4,2,3} = 0$.

Proof. We use the definition of β to deduce that for all $(g, u) \in G_n$,

$$\beta((g, u)A_1, (g, u)A_2, (g, u)A_3, (g, u)A_4) = \beta(A_1, A_2, A_3, A_4).$$
Therefore, we conclude that Proposition 4.5. Suppose and add them up to conclude our result.

of affine null subspaces has an attracting (resp. repelling) fixed point by \(\beta \). We use the identity 4.4.1 and deduce that \(h \) fixes \(\gamma \).

As \(x_h = hx' \) for some \(x' \in A \), we obtain \(g^{-1}x_h = g^{-1}u + x' \). Suppose \(V \) is the underlying vector subspace of \(A \). We observe that \(x' - x \in V \) and \((v_{A_{-}A} - v_{A_{+}A}) \in V_{\perp} \). It follows that

\[
\langle x_h \mid v_{A_{-}hA} - v_{A_{+}hA} \rangle = \langle g^{-1}u + x \mid v_{A_{-}A} - v_{A_{+}A} \rangle.
\]

We use the identity 4.4.1 and deduce that

\[
\beta(A_{-}, A_{+}, hA, A) = \langle x_{-} - h^{-1}x_{-} \mid v_{A_{-}A} \rangle + \langle h^{-1}x_{+} - x_{+} \mid v_{A_{+}A} \rangle.
\]

Suppose \(V \) are the vector spaces which are respectively parallel to \(A_{\pm} \). We recall that \(h \) fixes \(A_{\pm} \) and hence \((x_{\pm} - h^{-1}x_{\pm}) \in V_{\pm} \). On the other hand \((v_{A_{\pm}A} - v_{A_{\pm}A_{\pm}}) \in V_{\perp}^\perp \) and therefore we deduce that

\[
\beta(A_{-}, A_{+}, (g, u)A, A) = \langle u \mid v_{A_{-}A_{+}} - v_{A_{+}A_{-}} \rangle.
\]

As \(v_{i,j} = (-1)^{n-1}v_{j,i} \), our result follows.

Remark 4.11. Suppose \((\rho, u) \in \text{Hom}(\Gamma, G_{\alpha}) \) is such that \(\rho \in \text{Hom}(\Gamma, G_{0}, P_{0}^{\pm}) \). Hence, \((\rho, u) \) admits limit maps \(\xi^{\pm} : \partial_{\infty}\Gamma \to G_{\alpha}/P_{\alpha}^{\pm} \) which satisfy the first two properties of being an affine Anosov representation (for more details please see Proposition 5.3 of [GT17]). In general, it only fails to satisfy the third property. Hence, for all infinite order elements \(\gamma \in \Gamma \) we obtain that the action of \((\rho, u)(\gamma) \) on \(X_{\alpha} \) has an attracting fixed point and a repelling fixed point. We abuse notation and let \(\xi_{\rho,u}^{+} \) (resp. \(\xi_{\rho,u}^{-} \)) denote the attracting (resp. repelling) fixed point. Henceforth, we fix the representation \((\rho, u) \) and omit the subscripts \((\rho, u) \) from the notation of the Margulis invariants and the affine crossratios. Also, when there is no confusion of notation, for \(a, b, c, d \in \partial_{\infty}\Gamma \) all distinct, we denote \(\beta(\xi(a), \xi(b), \xi(c), \xi(d)) \) by \(\beta(a, b, c, d) \).
Proposition 4.6. Suppose n is even, $\rho \in \text{Hom}(\Gamma, G_0, P_0^\pm)$ and $(\rho, u) \in \text{Hom}(\Gamma, G_0)$. Also, suppose $\gamma, \eta \in \Gamma$ are two infinite order elements such that the four points $\gamma^\pm, \eta^\pm \in \partial_\infty \Gamma$ are distinct and the sequence $\{\gamma^n\eta^m\}_{m \in \mathbb{N}} \subset \Gamma$ contains a subsequence $\{\gamma^n\eta^k\}_{k \in \mathbb{N}}$ consisting only of infinite order elements. Then the following identity holds:

$$\beta(\eta^-, \gamma^-, \gamma^+, \eta^k \gamma^+) + \beta(\eta^+, \gamma^+, \gamma^-, \eta^{-k} \gamma^-) = 2 \lim_{i \to \infty} [\alpha(\gamma^n \eta^k) - \alpha(\gamma^i)] - 2\alpha(\eta^k).$$

Proof. Suppose ξ is the affine limit map as mentioned in the previous remark and A, B, C are affine null spaces such that A is transverse to both $\xi(\gamma^\pm), B$ is transverse to both $\xi(\gamma)$ and C is transverse to both $\xi(\eta^\pm)$. We use Proposition 4.3 and obtain the following three identities:

$$2\alpha(\gamma^n \eta^k) = \beta(\xi(\gamma^n \eta^k),\xi(\gamma^n \eta^k), (\rho, u)(\gamma^n \eta^k)A, A),$$
$$2\alpha(\gamma^n) = \beta(\xi(\gamma^-), \xi(\gamma^+), (\rho, u)(\gamma^n)B, B),$$
$$2\alpha(\eta^k) = \beta(\xi(\eta^-), \xi(\eta^+), (\rho, u)(\eta^k)C, C).$$

We observe that $\lim_{i \to \infty}(\gamma^n \eta^k)^+ = \gamma^+$ and $\lim_{i \to \infty}(\gamma^n \eta^k)^- = \eta^{-k} \gamma^-$. Also, $\eta^\pm \neq \gamma^\pm$. It follows that $\eta^- \neq \lim_{i \to \infty}(\gamma^n \eta^k)^\pm$. Hence, we can choose $A = B = \xi(\eta^-), C = \xi(\gamma^-)$. We use Proposition 4.4 (4) to obtain:

$$2\alpha(\gamma^n \eta^k) = \beta(\gamma^+, (\gamma^n \eta^k)^+, \gamma^n \eta^-, \eta^-) + \beta((\gamma^n \eta^k)^-, \gamma^+, \gamma^n \eta^-, \eta^-),$$
$$2\alpha(\gamma^n) = \beta((\gamma^n \eta^k)^-, \gamma^+, \gamma^n \eta^-, \eta^-) + \beta(\gamma^-, (\gamma^n \eta^k)^-, \gamma^n \eta^+, \eta^-).$$

Also, using Proposition 4.4 (1) we deduce that

$$\beta(\gamma^+, (\gamma^n \eta^k)^+, \gamma^n \eta^-, \eta^-) = \beta(\gamma^+, (\eta^k \gamma^n)^+, \eta^-, \gamma^n \eta^-),$$
$$2\alpha(\eta^k) = \beta(\eta^-, \eta^+, \gamma^-, \eta^{-k} \gamma^-).$$

Hence, taking the limit and then using Proposition 4.4 (2) and (3) we obtain:

$$2 \lim_{i \to \infty} [\alpha(\gamma^n \eta^k) - \alpha(\gamma^n)] = \beta(\gamma^+, \eta^k \gamma^n, \eta^-) - \beta(\gamma^-, \eta^{-k} \gamma^-, \gamma^+, \eta^-)$$
$$= \beta(\eta^-, \gamma^-, \gamma^+, \eta^k \gamma^+) + \beta(\eta^-, \gamma^+, \gamma^-, \eta^{-k} \gamma^-).$$

Now we use Proposition 4.4 (4) to deduce that

$$\beta(\eta^-, \gamma^+, \gamma^-, \eta^{-k} \gamma^-) = \beta(\eta^-, \gamma^+, \gamma^-, \eta^{-k} \gamma^-) + \beta(\eta^+, \gamma^-, \gamma^-, \eta^{-k} \gamma^-).$$

Finally, our result follows from combining the last three identities. □

Proposition 4.7. Suppose n is even, $\rho \in \text{Hom}(\Gamma, G_0, P_0^\pm)$ and $(\rho, u) \in \text{Hom}(\Gamma, G_0)$. Suppose $\gamma, \eta \in \Gamma$ are two infinite order elements such that the four points $\gamma^\pm, \eta^\pm \in \partial_\infty \Gamma$ are distinct and the sequence $\{\gamma^n \eta^m\}_{m \in \mathbb{N}} \subset \Gamma$ contains a subsequence $\{\gamma^n \eta^k\}_{k \in \mathbb{N}}$ consisting only of infinite order elements. Then the following identity holds:

$$\lim_{i \to \infty} (\alpha(\gamma^n \eta^k) - \alpha(\gamma^n) - \alpha(\eta^n)) = \beta(\eta^-, \gamma^-, \gamma^+, \eta^+).$$

Proof. Suppose ξ is the corresponding limit map and suppose $\{A_i, B_i, C_i\}_{i \in \mathbb{N}}$ is a collection of affine null spaces such that A_i is transverse to $\xi((\gamma^n \eta^k)^\pm)$,
Finally, we observe that D_i is transverse to $\xi(\gamma^\pm)$ and C_i is transverse to $\xi(\eta^\pm)$. We use Proposition 4.3 to obtain the following three identities:

$$2\alpha(\gamma^m, \eta^m) = \beta(\xi((\gamma^m \eta^m)^+), (\rho, u)(\gamma^m \eta^m) A_i, A_i),$$

$$2\alpha(\gamma^m) = \beta(\xi(\gamma^-), \xi(\gamma^+), (\rho, u)(\gamma^m) B_i, B_i),$$

$$2\alpha(\eta^m) = \beta(\xi(\eta^-), \xi(\eta^+), (\rho, u)(\eta^m) C_i, C_i).$$

Suppose $D_i := (\rho, u)(\eta^m) A_i$. We use Proposition 4.3 (1) and (4) to derive

$$\beta(\xi((\gamma^m \eta^m)^-), (\rho, u)(\gamma^m) D_i, (\rho, u)(\gamma^m) D_i)$$

$$= \beta(\xi((\gamma^m \eta^m)^-, \xi(\gamma^-), (\rho, u)(\gamma^m) D_i, D_i) + \beta(\xi(\gamma^+), (\gamma^m \eta^m)^+, (\rho, u)(\gamma^m) D_i, D_i)$$

$$= \beta(\xi((\gamma^m \eta^m)^-), (\rho, u)(\gamma^m) D_i, D_i).$$

Moreover, by applying Proposition 4.3 (4) twice we deduce that

$$\beta(\xi((\gamma^m \eta^m)^-), (\rho, u)(\gamma^m) D_i, D_i)$$

$$= \beta(\xi((\gamma^m \eta^m)^-), \xi(\gamma^-), (\rho, u)(\gamma^m) D_i, D_i) + \beta(\xi(\gamma^+), (\gamma^m \eta^m)^+, (\rho, u)(\gamma^m) D_i, D_i)$$

$$= \beta(\xi((\gamma^m \eta^m)^-), (\rho, u)(\gamma^m) D_i, D_i).$$

Similarly, we also have

$$\beta(\xi((\gamma^m \eta^m)^-), (\rho, u)(\gamma^m) D_i, D_i)$$

$$= \beta(\xi((\gamma^m \eta^m)^-), \xi(\gamma^-), (\rho, u)(\gamma^m) D_i, D_i) + \beta(\xi(\gamma^+), (\gamma^m \eta^m)^+, (\rho, u)(\gamma^m) D_i, D_i)$$

$$= \beta(\xi((\gamma^m \eta^m)^-), (\rho, u)(\gamma^m) D_i, D_i).$$

We observe that $\lim_{i \to \infty}(\gamma^m \eta^m)^- = -\gamma^-$ and also $\lim_{i \to \infty}(\gamma^m \eta^m)^+ = \eta^+$. We recall that the four points η^\pm, γ^\pm are distinct. Let $x \in \partial_\infty \Gamma$ be such that it is distinct from all the following four points: γ^\pm, η^\pm. Hence without loss of generality we can choose $B_i = C_i = D_i = \xi(x)$ for all $i \in \mathbb{N}$. It follows that

$$2(\alpha(\gamma^m \eta^m) - \alpha(\gamma^m) - \alpha(\eta^m))$$

$$= \beta((\gamma^m \eta^m)^-, \gamma^-, \gamma^m x, x) + \beta((\gamma^m \eta^m)^+, \gamma^m x, x)$$

$$+ \beta((\eta^m \gamma^m)^-, \eta^-, \eta^m x, x) + \beta((\eta^m \gamma^m)^+, \eta^m x, x)$$

$$= \beta((\gamma^m \eta^m)^-, \gamma^-, \gamma^m x, x) + \beta(\gamma^+, (\gamma^m \eta^m)^+, x, x)$$

$$+ \beta((\eta^m \gamma^m)^-, \eta^-, \eta^m x, x) + \beta(\eta^+, (\eta^m \gamma^m)^+, x, x)$$

$$\lim_{i \to \infty} \beta((\gamma^m \eta^m)^-, \gamma^-, \gamma^m x, x) = \beta(\gamma^-, \gamma^-, \gamma^+)$$

$$\lim_{i \to \infty} \beta((\gamma^m \eta^m)^+, \gamma^-, \gamma^m x, x) = \beta(\gamma^+, \gamma^+, \gamma^-)$$

$$\lim_{i \to \infty} \beta((\eta^m \gamma^m)^-, \eta^-, \eta^m x, x) = \beta(\eta^-, \eta^-, \eta^+)$$

$$\lim_{i \to \infty} \beta((\eta^m \gamma^m)^+, \eta^-, \eta^m x, x) = \beta(\eta^+, \eta^+, \eta^-).$$
and conclude our result using Proposition 4.4 (4).

4.5. Crossratios and Eigenvalues. In this subsection we define, for the linear case, appropriate counterparts of the affine crossratios. Affine crossratios can be seen as infinitesimal versions of these crossratios.

Let \(\{W_i\}_{i=1}^4 \) be four \((n-1)\)-dimensional isotropic subspaces in \(\mathbb{R}^{n,n} \) such that their orthogonal spaces are mutually transverse to each other. We recall that for \(i \neq j \), \(W_i^+ \cap W_j^+ \) contain exactly two isotropic lines. We use Lemmas 2.3 and 2.6 to choose \(J \) and \(R \) to choose \(v_{i,j}^{+} \), arbitrarily from one of these two lines such that \(\mathbb{R} \ v_{i,j}^+ \oplus W_i \) (resp. \(\mathbb{R} \ v_{i,j}^- \oplus W_i \)) lies in the orbit of \(\text{cspan}([I_n, I_n]^t) \) (resp. \(\text{cspan}([I_n, I_n]^t) \)) under the action of \(SO_0(n,n) \).

We define the following crossratio:

\[
\theta_{1,2,3,4} = \theta(W_1, W_2, W_3, W_4) := \frac{\langle v_{1,3}^+ | v_{2,3}^- \rangle \langle v_{2,4}^+ | v_{1,4}^- \rangle}{\langle v_{2,4}^+ | v_{2,3}^- \rangle \langle v_{1,3}^+ | v_{1,4}^- \rangle}.
\]

As \(v_{i,j}^+ \) are unique up to scaling, we observe that the above expression does not depend on the choice of the vectors \(v_{i,j}^\pm \) and hence is well defined.

Lemma 4.5. Let \(W_i, W_j, W_k \) be four \((n-1)\) dimensional isotropic subspaces such that their orthogonal spaces are mutually transverse to each other. Then the following identity holds:

\[
\frac{(v_{i,j}^+ | v_{i,k}^-)(v_{i,j}^+ | v_{i,k}^-)}{(v_{i,j}^+ | v_{i,k}^-)(v_{i,j}^+ | v_{i,k}^-)} = 1 = \frac{(v_{i,j}^+ \ | v_{i,k}^-)(v_{i,j}^+ | v_{i,k}^-)}{(v_{i,j}^+ | v_{i,k}^-)(v_{i,j}^+ | v_{i,k}^-)}.
\]

Moreover, for \(n \) even, \(\mathbb{R} v_{i,j}^+ = \mathbb{R} v_{j,i}^+ \) and for \(n \) odd, \(\mathbb{R} v_{i,j}^+ = \mathbb{R} v_{j,i}^+ \).

Proof. As \(\mathbb{R} v_{i,j}^+ \oplus W_i \subset W_i^+ \) is a maximal isotropic subspace for \(y = i, j, k \) and \(\mathbb{R} v_{i,j}^+ \oplus W_i \) lie in the orbit of \(\text{cspan}([I_k, I_k]^t) \) (resp. \(J_{\text{cspan}}([I_k, I_k]^t) \)) under the action of \(SO_0(n,n) \), we deduce that there exist non-zero constants \(a^+, b^+ \) such that

\[
v_{i,j}^+ - b^+ v_{i,k}^+ \in W_i \ni v_{i,j}^+ - b^+ v_{i,k}^+.
\]

Hence, \(\langle v_{i,j}^+ | v_{i,k}^- \rangle = a^+ \langle v_{i,j}^+ | v_{i,k}^- \rangle = b^+ \langle v_{i,j}^+ | v_{i,k}^- \rangle = a^+ b^- \langle v_{i,j}^+ | v_{i,k}^- \rangle \) and the left hand side of the identity follows.

Moreover, we observe that \(I_{n,n} W_\pm = W_\mp = -I_{n-1,n+1} V_\pm \), \(I_{n,n} v_\pm = v_\pm \) and \(-I_{n-1,n+1} v_\pm = v_\pm \). As \(I_{n,n} \in SO_0(n,n) \) for \(n \) even, we obtain that \(\nu_\pm ([I_{n,n}]) = \nu_\pm ([I]) \). As \(-I_{n-1,n+1} \in SO_0(n,n) \) for \(n \) odd, we obtain that \(\nu_\pm ([I_{n-1,n+1}]) = \nu_\pm ([I]) \). Suppose \(g \in SO_0(n,n-1) \) is such that \(g W_+ = W_i \) and \(g W_- = W_j \). Then \(\mathbb{R} v_{i,j}^+ = \mathbb{R} \nu_\pm ([g]) \). Finally, we conclude by observing that, for \(n \) even, \(\mathbb{R} v_{i,j}^+ = \mathbb{R} \nu_\pm ([g]) = \mathbb{R} \nu_\pm ([g I_{n,n}]) = \mathbb{R} v_{j,i}^+ \) and for \(n \) odd, \(\mathbb{R} v_{i,j}^+ = \mathbb{R} \nu_\pm ([g]) = \mathbb{R} \nu_\pm ([g I_{n,n+1}]) = \mathbb{R} v_{j,i}^+ \).

Proposition 4.8. Let \(\{W_i\}_{i=1}^4 \) and \(W_i \) be five \((n-1)\)-dimensional isotropic subspaces such that their orthogonal subspaces are transverse to each other and let \(g \in G \). Then the following identities hold:

1. \(\theta(g W_1, g W_2, g W_3, g W_4) = \theta(W_1, W_2, W_3, W_4) \),
2. \(\theta_{1,2,3,4} = \theta_{2,1,4,3} = \theta_{3,4,1,2} = \theta_{4,3,2,1} \),
3. \(\theta_{1,2,3,4} = \theta_{2,1,4,3} = \theta_{3,4,1,2} = \theta_{4,3,2,1} \).
4. \(\theta_{1,*3,4} \theta_{2,3,4} = \theta_{1,2,3,4} \).

Moreover, for \(n \) even, \(\theta_{1,2,3,4} \theta_{1,3,4,2} \theta_{1,4,2,3} = 1. \)

\textbf{Proof.} The first two identity follows from the definition of \(\theta \) and \(\text{Lemma 4.5} \).

Also, the third identity follows from \(\text{Lemma 4.5} \) by taking \(j = k \).

We use the definition of \(\theta \) and cancel the terms appearing both in the numerator and denominator to see that

\[
\frac{\theta_{2,3,4} \theta_{1,*3,4}}{\theta_{1,2,3,4}} = \frac{\langle v_{3,3}^+ | v_{3,4}^- \rangle \langle v_{1,3}^- | v_{1,4}^+ \rangle \langle v_{1,3}^+ | v_{1,4}^- \rangle}{\langle v_{1,3}^+ | v_{1,4}^- \rangle \langle v_{1,3}^- | v_{1,4}^+ \rangle \langle v_{1,3}^+ | v_{1,4}^- \rangle}.
\]

The fourth identity follows by replacing the above formula by the following identities which are obtained by repeated application of \(\text{Lemma 4.5} \):

\[
\langle v_{3,3}^+ | v_{3,4}^- \rangle \langle v_{1,3}^- | v_{1,4}^+ \rangle \langle v_{1,3}^+ | v_{1,4}^- \rangle = \langle v_{3,3}^+ | v_{3,4}^- \rangle \langle v_{1,3}^- | v_{1,4}^+ \rangle \langle v_{1,3}^+ | v_{1,4}^- \rangle,
\]

\[
\langle v_{3,3}^+ | v_{3,4}^- \rangle \langle v_{1,3}^- | v_{1,4}^+ \rangle \langle v_{1,3}^+ | v_{1,4}^- \rangle = \langle v_{1,3}^- | v_{1,4}^+ \rangle \langle v_{1,3}^+ | v_{1,4}^- \rangle,
\]

\[
\langle v_{1,3}^- | v_{1,4}^+ \rangle \langle v_{1,3}^+ | v_{1,4}^- \rangle = \langle v_{1,3}^- | v_{1,4}^+ \rangle \langle v_{1,3}^+ | v_{1,4}^- \rangle.
\]

Moreover, by repeated use of \(\text{Lemma 4.5} \) we obtain the following identities:

\[
\langle v_{3,3}^+ | v_{3,4}^- \rangle \langle v_{1,3}^- | v_{1,4}^+ \rangle \langle v_{1,3}^+ | v_{1,4}^- \rangle = \langle v_{1,3}^- | v_{1,4}^+ \rangle \langle v_{1,3}^+ | v_{1,4}^- \rangle,
\]

\[
\langle v_{1,3}^- | v_{1,4}^+ \rangle \langle v_{1,3}^+ | v_{1,4}^- \rangle = \langle v_{1,3}^- | v_{1,4}^+ \rangle \langle v_{1,3}^+ | v_{1,4}^- \rangle,
\]

\[
\langle v_{1,3}^- | v_{1,4}^+ \rangle \langle v_{1,3}^+ | v_{1,4}^- \rangle = \langle v_{1,3}^- | v_{1,4}^+ \rangle \langle v_{1,3}^+ | v_{1,4}^- \rangle.
\]

Plugging it in we obtain that

\[
\theta_{1,2,3,4} \theta_{1,3,4,2} \theta_{1,4,2,3} = \frac{\langle v_{3,3}^+ | v_{3,4}^- \rangle \langle v_{1,3}^- | v_{1,4}^+ \rangle \langle v_{1,3}^+ | v_{1,4}^- \rangle}{\langle v_{1,3}^+ | v_{1,4}^- \rangle \langle v_{1,3}^- | v_{1,4}^+ \rangle \langle v_{1,3}^+ | v_{1,4}^- \rangle}.
\]

As \(v_{i,j}^+ = v_{j,i}^- \) for \(n \) even, we conclude that \(\theta_{1,2,3,4} \theta_{1,3,4,2} \theta_{1,4,2,3} = 1. \)

\(\square \)

\textbf{Remark 4.12.} Suppose \(g \in G \) is such that its action on the space of \((n - 1) \) dimensional isotropic subspaces has an attracting fixed point \(W_a \) and a repelling fixed point \(W_r \) and suppose \(W_a^\perp \) and \(W_r^\perp \) are transverse to each other. We call such elements \(\text{proto-pseudo-hyperbolic} \) and recall that

\[
g^{\pm 1} v_{a,r}^+ = \lambda(g)^{\pm 1} v_{a,r}^+.
\]

\textbf{Proposition 4.9.} Suppose \(g \in G \) is a \(\text{proto-pseudo-hyperbolic} \) element with attracting fixed point \(W_a \) and a repelling fixed point \(W_r \). Then for any \((n - 1) \) dimensional isotropic subspace \(W_s \) whose orthogonal space is transverse to both \(W_a^\perp \) and \(W_r^\perp \) the following holds:

1. \(\theta(W_r, W_a, gW_s, W_s) = \lambda(g)^2 \) when \(n \) is even,
2. \(\theta(W_r, W_a, gW_s, W_s) = 1 \) when \(n \) is odd.

\textbf{Proof.} We denote \(gA_s \) by \(A_s \) and use \(\text{Lemma 4.5} \) to deduce that

\[
\theta(A_r, A_s, gA_s, A_s) = \frac{\langle v_{r,g}^+ | v_{a,g}^- \rangle \langle v_{a,s}^+ | v_{r,s}^- \rangle}{\langle v_{a,s}^+ | v_{a,g}^- \rangle \langle v_{r,g}^+ | v_{r,s}^- \rangle} = \frac{\langle g v_{r,s}^- | g v_{a,s}^+ \rangle \langle v_{a,s}^+ | v_{r,s}^- \rangle}{\langle v_{a,s}^+ | g v_{a,s}^- \rangle \langle g v_{r,s}^+ | v_{r,s}^- \rangle} = \frac{\langle v_{r,s}^- | v_{a,s}^+ \rangle \langle v_{a,s}^+ | v_{r,s}^- \rangle}{\langle v_{r,s}^- | g v_{a,s}^- \rangle \langle g v_{r,s}^+ | v_{r,s}^- \rangle}.
\]

Again using \(\text{Lemma 4.5} \) twice more we obtain the following two identities:

\[
\langle v_{r,g}^+ | v_{r,a}^- \rangle = \langle v_{r,g}^+ | v_{r,a}^- \rangle.
\]
\[\langle v_{a,g} \mid v_{a,s} \rangle v_{a,r} = \langle v_{a,s} \mid v_{a,r} \rangle v_{a,g} \].

Therefore, we deduce that:
\[\langle g v_{r,s} \mid v_{r,a} \rangle v_{r,a} = \langle g v_{r,s} \mid v_{r,a} \rangle v_{r,a} = \langle v_{r,s} \mid g^{-1} v_{r,a} \rangle v_{r,a} = \langle v_{r,s} \mid v_{r,a} \rangle v_{r,a} = \lambda(g)^{(-1)n-1} \langle v_{r,s} \mid v_{r,a} \rangle v_{r,a} \]
\[= \lambda(g)^{-1} \langle v_{r,s} \mid v_{r,a} \rangle v_{r,a} \],
\[\langle g v_{a,s} \mid v_{a,r} \rangle v_{a,r} = \langle g v_{a,s} \mid v_{a,r} \rangle v_{a,r} = \langle v_{a,s} \mid g^{-1} v_{a,r} \rangle v_{a,r} = \langle v_{a,s} \mid v_{a,r} \rangle v_{a,r} = \lambda(g)^{-1} \langle v_{a,s} \mid v_{a,r} \rangle v_{a,r} \],
\[= \lambda(g)^{-1} \langle v_{a,s} \mid v_{a,r} \rangle v_{a,r} \].

Hence, \(\theta(A_r, A_s, g A_s, A_s) = \lambda(g) \lambda(g)^{(-1)n} \) and our result follows. \(\square \)

Remark 4.13. Suppose \(\rho \in \text{Hom}(\Gamma, G, P^\pm) \). Hence, for all infinite order elements \(\gamma \in \Gamma \) we obtain that the action of \(\rho(\gamma) \) on the space of \((n - 1) \)-dimensional isotropic subspaces of \(\mathbb{R}^{n,n} \) has an attracting fixed point and a repelling fixed point. We abuse notation and denote the attracting fixed point by \(\xi_{\rho}(\gamma^+) \) and the repelling fixed point by \(\xi_{\rho}(\gamma^-) \). Henceforth, we fix \(\rho \) and omit the subscripts \(\rho \) from the eigenvalues and crossratios. Also, when there is no confusion of notation, for \(a, b, c, d \in \partial_{\infty} \Gamma \) all distinct, we denote \(\theta(\xi(a), \xi(b), \xi(c), \xi(d)) \) by \(\theta(a, b, c, d) \).

Proposition 4.10. Suppose \(n \) is even, \(\rho \in \text{Hom}(\Gamma, G, P^\pm) \) and \(\gamma, \eta \in \Gamma \) are two infinite order elements such that the four points \(\gamma^\pm, \eta^\pm \in \partial_{\infty} \Gamma \) are distinct and the sequence \(\{\gamma^n \eta^k\}_{m \in \mathbb{N}} \subset \Gamma \) contains a subsequence \(\{\gamma^n \eta^k\}_{i \in \mathbb{N}} \) consisting only of infinite order elements. Then the following identity holds:
\[\lim_{i \to \infty} \frac{\lambda(\gamma^n \eta^k)^2}{\lambda(\gamma^n)^2 \lambda(\eta^k)^2} = \theta(1, -1, -1, 1) \theta(1, -1, 1, 1) \theta(1, 1, 1, 1) \theta(1, 1, 1, 1) \]

Proof. The proof follows exactly word to word as in the proof of Proposition 4.6 by replacing the appearances of \(\alpha \) by \(\log \lambda, \beta \) by \(\log \theta \) and replacing the appearances of Proposition 4.3 and Proposition 4.9 respectively by Proposition 4.6 and Proposition 4.9. \(\square \)

Proposition 4.11. Suppose \(n \) is even, \(\rho \in \text{Hom}(\Gamma, G, P^\pm) \) and \(\gamma, \eta \in \Gamma \) are two infinite order elements such that the four points \(\gamma^\pm, \eta^\pm \in \partial_{\infty} \Gamma \) are distinct and the sequence \(\{\gamma^n \eta^m\}_{m \in \mathbb{N}} \subset \Gamma \) contains a subsequence \(\{\gamma^n \eta^m\}_{i \in \mathbb{N}} \) consisting only of infinite order elements. Then the following identity holds:
\[\lim_{i \to \infty} \frac{\lambda(\gamma^n \eta^m)^2}{\lambda(\gamma^n)^2 \lambda(\eta^m)^2} = \theta(1, -1, -1, 1) \theta(1, 1, 1, 1) \]

Proof. The proof follows exactly word to word as in the proof of Proposition 4.7 by replacing the appearances of \(\alpha \) by \(\log \lambda, \beta \) by \(\log \theta \) and replacing the appearances of Proposition 4.3 and Proposition 4.9 respectively by Proposition 4.8 and Proposition 4.9. \(\square \)

References

[AM59] L. Auslander and L. Markus. Flat Lorentz 3-manifolds. Mem. Amer. Math. Soc. No., 30:60, 1959.
[FG06] Vladimir Fock and Alexander Goncharov. Moduli spaces of local systems and higher Teichmüller theory. *Publ. Math. Inst. Hautes Études Sci.*, (103):1–211, 2006.

[GGKW17] François Guéritaud, Olivier Guichard, Fanny Kassel, and Anna Wienhard. Anosov representations and proper actions. *Geom. Topol.*, 21(1):485–584, 2017.

[Gho17] S. Ghosh. Anosov structures on Margulis spacetimes. *Groups Geom. Dyn.*, 11(2):739–775, 2017.

[Gho18] Sourav Ghosh. The pressure metric on the Margulis multiverse. *Geom. Dedicata*, 193:1–30, 2018.

[Gho20] Sourav Ghosh. Isospectrality of Margulis-Smilga spacetimes for irreducible representations of real split semisimple Lie groups. *arXiv e-prints*, page arXiv:2009.12746, September 2020.

[Gho21] Sourav Ghosh. Finite step Rigidity of Hitchin representations and special Margulis-Smilga spacetimes. *arXiv e-prints*, page arXiv:2107.01626, July 2021.

[GK17] François Guéritaud and Fanny Kassel. Maximally stretched laminations on geometrically finite hyperbolic manifolds. *Geom. Topol.*, 21(2):693–840, 2017.

[GL12] W. M. Goldman and F. Labourie. Geodesics in Margulis spacetimes. *Ergodic Theory Dynam. Systems*, 32(2):643–651, 2012.

[GLM09] W. M. Goldman, F. Labourie, and G. Margulis. Proper affine actions and geodesic flows of hyperbolic surfaces. *Ann. of Math.* (2), 170(3):1051–1083, 2009.

[GM00] William M. Goldman and Gregory A. Margulis. Flat Lorentz 3-manifolds and cocompact Fuchsian groups. In *Crystallographic Groups and Their Generalizations: Workshop, Katholieke Universiteit Leuven Campus Kortrijk, Belgium, May 26-28, 1999*, Contemporary mathematics - American Mathematical Society, Providence, RI, 2000.

[GQ20] Jean Gallier and Jocelyn Quaintance. *Differential geometry and Lie groups—a computational perspective*, volume 12 of *Geometry and Computing*. Springer, Cham, [2020] ©2020.

[Gro87] M. Gromov. Hyperbolic groups. In *Essays in group theory*, volume 8 of *Math. Sci. Res. Inst. Publ.*, pages 75–263. Springer, New York, 1987.

[GT17] Sourav Ghosh and Nicolaus Treib. Affine Anosov representations and Proper actions. *ArXiv e-prints*, page arXiv:1711.09712, November 2017.

[GW12] O. Guichard and A. Wienhard. Anosov representations: domains of discontinuity and applications. *Invent. Math.*, 190(2):357–438, 2012.

[Hit92] N. J. Hitchin. Lie groups and Teichmüller space. *Topology*, 31(3):449–473, 1992.

[HJ13] Roger A. Horn and Charles R. Johnson. *Matrix analysis*. Cambridge University Press, Cambridge, second edition, 2013.

[HPS06] M.W. Hirsch, C.C. Pugh, and M. Shub. *Invariant Manifolds*. Lecture Notes in Mathematics. Springer Berlin Heidelberg, 2006.

[Kas12] Fanny Kassel. Deformation of proper actions on reductive homogeneous spaces. *Math. Ann.*, 353(2):599–632, 2012.

[Kim05] I. Kim. Affine action and margulis invariant. *Journal of Functional Analysis*, 219(1):205–225, 2005.

[KLP14] Michael Kapovich, Bernhard Leeb, and Joan Porti. Morse actions of discrete groups on symmetric space. *arXiv e-prints*, page arXiv:1403.7671, Mar 2014.

[KLP17] Michael Kapovich, Bernhard Leeb, and Joan Porti. Anosov subgroups: dynamical and geometric characterizations. *Eur. J. Math.*, 3(4):808–898, 2017.

[KLP18] Michael Kapovich, Bernhard Leeb, and Joan Porti. Dynamics on flag manifolds: domains of proper discontinuity and cocompactness. *Geom. Topol.*, 22(1):157–234, 2018.

[Kob89] Toshiyuki Kobayashi. Proper action on a homogeneous space of reductive type. *Math. Ann.*, 285(2):249–263, 1989.
[Kob22] Toshiyuki Kobayashi. Conjectures on reductive homogeneous spaces. arXiv e-prints, page arXiv:2204.08854, April 2022.

[KP22] Fanny Kassel and Rafael Potrie. Eigenvalue gaps for hyperbolic groups and semigroups. J. Mod. Dyn., 18:161–208, 2022.

[KS75] B. Kostant and D. Sullivan. The Euler characteristic of an affine space form is zero. Bull. Amer. Math. Soc., 81(5):937–938, 1975.

[Kul81] Ravi S. Kulkarni. Proper actions and pseudo-Riemannian space forms. Adv. in Math., 40(1):10–51, 1981.

[Lab01] F. Labourie. Fuchsian affine actions of surface groups. J. Differential Geom., 59(1):15–31, 2001.

[Lab06] F. Labourie. Anosov flows, surface groups and curves in projective space. Invent. Math., 165(1):51–114, 2006.

[Lab22] François Labourie. Entropy and affine actions for surface groups. J. Topol., 15(3):1017–1033, 2022.

[Liv72] A. N. Livshits. Kohomologien dynamischer Systeme. Izv. Akad. Nauk SSSR, Ser. Mat., 36:1296–1320, 1972.

[Mar83] G. A. Margulis. Free completely discontinuous groups of affine transformations. Dokl. Akad. Nauk SSSR, 272(4):785–788, 1983.

[Mar84] G. A. Margulis. Complete affine locally flat manifolds with a free fundamental group. Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI), 134:190–205, 1984. Automorphic functions and number theory, II.

[Mes07] G. Mess. Lorentz spacetimes of constant curvature. Geom. Dedicata, 126:3–45, 2007.

[Mil77] J. Milnor. On fundamental groups of complete aﬃnely ﬂat manifolds. Advances in Math., 25(2):178–187, 1977.

[Min05] I. Mineyev. Flows and joins of metric spaces. Geometry and Topology, 9:403–482, 2005.

[Oku13] Takayuki Okuda. Classification of semisimple symmetric spaces with proper SL(2, R)-actions. J. Differential Geom., 94(2):301–342, 2013.

[O’N83] Barrett O’Neill. Semi-Riemannian geometry, volume 103 of Pure and Applied Mathematics. Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York, 1983. With applications to relativity.

[Rue04] David Ruelle. Thermodynamic formalism. Cambridge Mathematical Library. Cambridge University Press, Cambridge, second edition, 2004. The mathematical structures of equilibrium statistical mechanics.

[Shu87] Michael Shub. Global stability of dynamical systems. Springer-Verlag, New York, 1987. With the collaboration of Albert Fathi and Rémi Langevin, Translated from the French by Joseph Christy.

[Smi16] I. Smilga. Proper aﬃne actions on semisimple Lie algebras. Ann. Inst. Fourier (Grenoble), 66(2):785–831, 2016.

[Smi22] Ilia Smilga. Proper aﬃne actions: a suﬃcient criterion. Math. Ann., 382(1-2):513–605, 2022.

[ST18] Florian Stecker and Nicolaus Treib. Domains of discontinuity in oriented flag manifolds. ArXiv e-prints, page arXiv:1806.04459, June 2018.

[Tom16] George Tomanov. Properly discontinuous group actions on aﬃne homogeneous spaces. Tr. Mat. Inst. Steklova, 292(Algebra, Geometriya i Teoriya Chisel):268–279, 2016.

[Voi02] Claire Voisin. Hodge theory and complex algebraic geometry. I, volume 76 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge, 2002. Translated from the French original by Leila Schneps.

Ashoka University
Email address: sourav.ghosh@ashoka.edu.in, sourav.ghosh.bagui@gmail.com