Epigenetic and genetic components of height regulation

Stefania Benonisdottir1,*, Asmundur Oddsson1,*, Agnar Helgason1,2, Ragnar P. Kristjansson1, Gardar Sveinbjornsson1, Arna Oskarsdottir1, Gudmar Thorleifsson1, Olafur B. Davidsson1, Gudny A. Arnadottir1, Gerald Sulem1, Brynjar O. Jensson1, Hilma Holm1, Kristjan F. Alexandersson1, Laufey Tryggvadottir3,4, G. Bragi Walters1, Sigurjón A. Gudjonsson1, Lucas D. Ward1, Jon K. Sigurdsson1, Paul D. Iordache1,5, Michael L. Frigge1, Thorunn Rafnar1, Augustine Kong1,6, Gisli Masson1, Hannes Helgason1,6, Unnur Thorsteinsdottir1,3, Daniel F. Gudbjartsson1,6, Patrick Sulem1 & Kari Stefansson1,3

Adult height is a highly heritable trait. Here we identified 31.6 million sequence variants by whole-genome sequencing of 8,453 Icelanders and tested them for association with adult height by imputing them into 88,835 Icelanders. Here we discovered 13 novel height associations by testing four different models including parent-of-origin (|β| = 0.4-10.6 cm). The minor alleles of three parent-of-origin signals associate with less height only when inherited from the father and are located within imprinted regions (IGF2-H19 and DLK1-MEG3). We also examined the association of these sequence variants in a set of 12,645 Icelanders with birth length measurements. Two of the novel variants, (IGF2-H19 and TET1), show significant association with both adult height and birth length, indicating a role in early growth regulation. Among the parent-of-origin signals, we observed opposing parental effects raising questions about underlying mechanisms. These findings demonstrate that common variations affect human growth by parental imprinting.
H
eight is an easily assessed trait in humans, with a
narrow-sense heritability estimated to be 80% (refs 1–4).
Abnormal stature is one of the most common phenotypic
features of Mendelian conditions, as catalogued in the
Online Mendelian Inheritance in Man (OMIM) (Supplementary
Table 1). A large genome-wide association study (GWAS) meta-
analysis by the GIANT consortium, based on the imputation
of 2.6 million sequence variants into 253,288 individuals of
European ancestry (including 26,799 Icelanders), discovered 697
sequence variants associated with height. Most are common
(Minor allele frequency (MAF) > 5%) and together they explain
16% of the variance in height13.

Previously, we performed GWAS for various diseases and other
traits based on variants identified through whole-genome sequen-
cing (WGS) of Icelanders (median read depth of 20X) and
subsequent imputation into individuals from the same population.
This led to the uncovering of associations of many low frequency
and rare sequence variants with a large number of traits8–12.
Discovery of uncommon and rare variants through GWAS is
facilitated by random effects and the relaxed homogeneity of the
Icelandic gene pool, resulting from a relatively small population
size during the past 1,100 years13. Moreover, extensive genealogical
records enable the determination of the parent-of-origin of each
genotyped or imputed allele, making it possible to evaluate the
phenotypic impact of maternal and paternal inheritance of any given
allele14. Phenotypic differences that result from the parental origin
of alleles are usually attributed to epigenetic processes. The best known
is genomic imprinting, wherein gene dosage is affected by the
monoallelic expression of a particular gene, due to local epigenetic
silencing of transcription from one chromosome15. In addition, the
full genotypes of parents can sometimes influence the phenotype of
offspring, for example through in utero effects from the mother.
Such parental genotype effects can be hard to distinguish from
parent-of-origin effects arising from genomic imprinting16. Genomic
imprinting is estimated to affect about 1% of the genes in the human
genome16–18 (Supplementary Data 1). These genes typically occur in
large clusters, where the non-random monoallelic expression
depending on parental origin is maintained by imprinting control
regions (ICR), that are differentially methylated regions (DMR)
depending on parental origin. Parental specific methylation of
DMRs is acquired in germ cells through epigenetic reprogramming
and persists into adulthood18,19. The importance of ICRs for
the regulation of gene dosage is revealed by the study of imprinting
disorders. The best known example is provided by the growth factor
IGF2 and the closely linked long noncoding RNA (lncRNA) growth
suppressors H19, which are reciprocally imprinted genes located on
the distal end of chromosome 11 that have been intensively studied
both as a model system for understanding mechanisms of genomic
imprinting and growth20. The dysregulation of IGF2 gene expression
is associated with the growth disorders Beckwith–Wiedemann
syndrome and Silver–Russell dwarfism (OMIM, http://
www.omim.org; accessed 17.02.2016)20,21.

Parent-of-origin effects and genomic imprinting have been shown
to contribute to variation in complex traits in both animal models
and humans22–24. As the vast majority of GWAS cannot assign
parent-of-origin to an allele, there have been few reported GWASs of
complex traits that apply parent-of-origin specific models25–28, and
we are aware of only one such association with height29.

Adult height is to some extent determined by factors
in utero30,31 and numerous imprinted genes are essential for
regulating fetal growth and placental development32–34. It is
therefore of interest to assess the effect of adult height variants
on birth length.

Here, we search for sequence variants associated with adult
height in the Icelandic population and their effect on birth length
using parent-of-origin, additive and recessive models.
and conditional analysis shows that they are independently associated with height (Supplementary Table 7).

The former, rs147239461, has nine strong correlates ($r^2 > 0.8$) (Fig. 2; Supplementary Fig. 13), clustering within 65 Kb and are located within 30 Kb downstream of $H19$ at the 3’ boundary of the $IGF2-H19$ imprinted domain (Fig. 1, Supplementary Data 6). The minor allele of rs147239461[T] is associated with reduced height when paternally inherited (MAF = 5.09 %, $\beta_{pat} = -0.12$ s.d. (corresponding to -0.8 cm), $P_{pat} = 5.9 \times 10^{-13}$; a chi-squared test was used to calculate P-values for all GWAS associations.). In contrast, when maternally inherited, the same allele is associated with greater height ($\beta_{mat} = 0.056$ s.d. (0.4 cm), $P_{mat} = 9.4 \times 10^{-6}$). The difference between the paternal and maternal effect of rs147239461[T] is significant ($P_{pat \text{versus} mat} = 1.2 \times 10^{-13}$) (Table 2). When parent-of-origin models are applied, two heterozygous genotypes of a biallelic marker were all at similar frequency (MAF Sardinia = 7–5.6 %, $P_{mat} = 2.0 \times 10^{-13}$) (ref. 29). We were able to both confirm the association and refine it to rs143840904[T] when maternally inherited ($P_{mat} = 0.076$ (0.1 cm), $P_{mat} = 0.076$) (Table 2). The variant rs7482510 is located at an oestrogen receptor (ESR1) binding site as observed in ENCODE ChIP-seq data (Supplementary Data 6). Interestingly, ESR1 is the main oestrogen receptor regulating skeletal growth. We will refer to this signal as $IGF2-H19(B)$.

The second signal in the telomeric imprinted domain of 11p15 is represented by rs7482510, which is located 28 Kb upstream of $IGF2$ (Fig. 1). It has no strong correlates according to either the deCODE data or the 1,000 Genomes phase 1 data (max $r^2 = 0.66$; SNP SNAP, https://www.broadinstitute.org/mpg/snap/ldeSearch.php; accessed 09.02.2016). The minor allele G associates with less height when paternally inherited (MAF = 16.84 %, $\beta_{pat} = -0.065$ s.d. (−0.4 cm), $P_{pat} = 5.1 \times 10^{-11}$) (Table 2, Fig. 2, Supplementary Fig. 14), but does not affect height when maternally inherited ($P_{mat} = 0.12$ s.d. (0.1 cm), $P_{mat} = 0.065$) (Table 2). The variant rs7482510 is located at an oestrogen receptor (ESR1) binding site as observed in ENCODE ChIP-seq data (Supplementary Data 6). Interestingly, ESR1 is the main oestrogen receptor regulating skeletal growth. We will refer to this signal as $IGF2-H19(B)$.

The third parent-of-origin association signal at 11p15 is best captured by rs143840904[T] when maternally inherited ($P_{mat} = 0.12$ s.d. (−1.7 cm), $P_{mat} = 2.0 \times 10^{-13}$). The SNP rs143840904[T] is located in the more centromeric domain at 11p15 in an intron 15 of $KCNG1$. This signal was first described in the Sardinian population and was there represented by six highly correlated variants, ($r^2 > 0.70$), including rs143840904, that were all at similar frequency (MAF$_{Sardinia}$ = 7.60–10.60 %, $P_{Sardinia} = 5.2 \times 10^{-7}$–5.6 × 10$^{-9}$) (ref. 29). We were able to both confirm the association and refine it to rs143840904[T], despite a lower frequency (MAF$_{Iceland} = 1.78$ % versus MAF$_{Sardinia} = 9.40$ %) (Supplementary Data 3). In contrast to the situation in Sardinia, rs143840904 has no strong correlates in Iceland (all $r^2 < 0.73$) (Fig 2 and Supplementary Fig. 15), and conditional analysis revealed that it alone accounts for the maternal effect ($P_{adj} > 0.05$ for each of the other five variants,
of proline (non-polar) to threonine (polar). This variant on chromosome 14q32, leading to an amino acid substitution from growth retardation43.

The final parent-of-origin variant is a low frequency missense variant (rs41286560[T], MAF ¼ 0.12 s.d. (0.8 cm), Pmat ¼ 0.0017, Ppat versus mat ¼ 7.4 £ 10−10) (Table 2). rs41286560 has no strong correlations in our data or in the 1,000 Genomes phase 1 data (all P < 0.57; SNP SNAP, https://www.broadinstitute.org/mpg/snap/l6dsearch.php; accessed 09.02.2016) and is therefore likely to be the causative variant. RTL1 is known to be a paternally expressed gene located within the ovine Callipyge locus42. Paternal RTL1 knockout mice suffer from growth retardation43.

Association of sequence variants with opposing parent-of-origin effects can be missed under the additive model. Indeed, in our data these four parent-of-origin association signals’ variants would not have been detected under the additive model (Padd > 1.2 £ 10−7) (Table 2). This exemplifies the value of being able to test for parent-of-origin effect and shows that the ability to test separately the chromosomes of the two parents is sometimes needed to assess effects accurately.

Determining the cause of parent-of-origin effects. Parent-of-origin effects could be caused by genomic imprinting of the transmitted alleles or by external effects attributable to the full genotypes of the parents – that is both the transmitted and non-transmitted alleles34–47. An obvious example of the latter is the influence of maternal uterine environment on birth length48.

To disentangle these two possible causes of parent-of-origin effects, we assessed the relative impact of the maternal and paternal transmitted and non-transmitted alleles on adult height and birth length for the four parent-of-origin association signals (Supplementary Table 9). This analysis was limited to individuals who had directly genotyped parents and height measurements and/or birth length measurements. The effects of the transmitted allele remained in this reduced dataset, but we did not observe an effect of the non-transmitted alleles (Supplementary Table 9). This is consistent with parent-of-origin effects resulting from genomic imprinting rather than the full genotypes of the parents.

To assess the effect of the height associated variants identified under parent-of-origin models on gene expression, we scrutinized data from the Genotype-Tissue Expression (GTEx) project, available for multiple tissues. In GTEx (ref. 49) (analysis release V6, http://www.gtexportal.org; accessed 14.07.2016), none of the four variants rs143840904, rs147239461, rs41286560 or rs7482510 had a significant eQTL with a neighbouring gene (cis eQTL) in our data. In addition, a cis-eQTL analysis was performed in our data based on RNA sequencing of blood (N ¼ 1,990) and adipose tissue (N ¼ 675) samples. We assessed 125 genes within ± 500 Kb of the variants corresponding to the four parent-of-origin signals. Association was tested under four different models, additive, paternal, maternal and paternal versus maternal. At a significance threshold of 1.0 £ 10−4 (P < 0.05/4 £ 125) we did not observe significant associations of the parent-of-origin variants with gene expression in blood or adipose tissue.

Birth length. We observed a positive association between birth length and adult height in Iceland (R 2 ¼ 0.11, N ¼ 539) (Supplementary Fig. 17), consistent with previous results40. To examine to what degree adult height variants collectively explain birth length, we computed adult height polygenic scores for chip-type Icelanders based on adjusted GWAS scores from the GIANT (ref. 5) study (excluding Icelandic data) (Methods). In our data these polygenic scores explain 16.4% of the variance in adult height (P < 1.0 £ 10−300, N ¼ 80,546) and 2.0% of birth

Table 2 | Parent-of-origin associations with height.

SNV ID	Position(hg38)	Minor/ major	MAF (%)	Impact	Locus	Additive	Paternal	Maternal	Pat. versus Mat.			
rs147239461	chr11:1,965,172	T/G	5.09	intergen	IGFI2-H19	0.0028	−0.043	5.9 £ 10−13	0.12	9.4 £ 10−4	0.056	1.2 £ 10−13
rs7482510	chr11:2,169,361	G/C	16.64	intron	IGFI2-H19	4.5 ± 10−4	−0.030	5.1 ± 10−11	−0.065	0.076	4.7 ± 10−9	
rs143840904	chr11:2,792,092	T/C	1.78	intron	KCNO1	1.3 ± 10−5	−0.11	0.042	0.057	2.0 ± 10−17	−0.26	1.6 ± 10−14
rs41286560	chr14:100,883,117	T/G	3.20	snms	RTL1	0.078	−0.031	2.2 ± 10−8	−0.12	0.0017	0.067	7.4 ± 10−10

Minor/Major allele and major allele. MAF (%): Minor allele frequency in percentages. Impact: divided into fs: franshift, snms: missense, intrac/intronic or intergenic/intergenic. Parental association analysis for paternally inherited alleles. Maternal association analysis for maternally inherited alleles. Pat. versus Mat.: difference between the effects of the paternally and maternally inherited allele. P value (β ± s.d.): effect in standard deviation units (1 s.d. male−female = 6.9 cm, 1 s.d. female−male = 6.3 cm). For each variant, the significance threshold for concluding that a parental allele has an effect in a direction opposite to the genome-wide significant parental allele, was set at P < 0.05/4. *Previously reported in a Sardinian population39. A chi-squared test was used to calculate P-values.

Figure 1 | Schematic diagram showing the position (hg38) of variants corresponding to height association signals (Signal-A and Signal-B). The diagram depicts IGFI2-H19 imprinted domain in relation to the imprinting control region of the domain (H19-ICR), imprinted differentially methylated regions (IGF-DMR and IGF-DMR2) and predicted CTCF binding sites. Signal-A corresponds to rs147239461, rs113666865, rs79515490, chr11:1940471, rs76592672, rs75711836, rs145861779, rs141703487, rs75676658 and Signal-B to the variant rs7482510 (Supplementary Data 6 for detail).

Supplementary Table 8, indicating that rs143840904 is the causative variant. rs143840904 is located in an EHZ2 transcription factor binding site (Supplementary Data 6). Interestingly, EHZ2 is the functional enzymatic component of polycomb repressive complex 2 (PRC2), which along with the paternally expressed long noncoding RNA KCNO1OT1 participates in maintaining monoallelic expression at the KCNO1 imprinted domain30,41.

Table 2 | Parent-of-origin associations with height.
length ($P = 2.7 \times 10^{-20}$, $N = 4,275$; a t-test was used to calculate P-values.) (Supplementary Fig. 18).

The 63 variants found to be associated with adult height in this study were tested for association with birth length under the appropriate models (Supplementary Data 2). Two variants, rs147239461[T] at IGF2-H19(A) and rs558226101[T] in TET1, were found to be significant using a threshold of 7.9×10^{-4} ($P < 0.05/63$). As in the case of adult height, rs147239461[T] reduces birth length when paternally inherited ($P_{\text{pat}} = 6.6 \times 10^{-4}$, $\beta_{\text{pat}} = -0.25$ s.d. (-0.6 cm)) and increases birth length when maternally inherited ($P_{\text{mat}} = 4.1 \times 10^{-2}$, $\beta_{\text{mat}} = 0.14$ s.d. (0.4 cm), $P_{\text{pat}}versus\text{mat} = 1.0 \times 10^{-4}$). In s.d. units, the effect of rs147239461 on birth length is twice its effect on adult height (Supplementary Data 2, Fig. 5). This is consistent with observations that the imprinted $IGF2-H19$ gene cluster on chromosome 11p15 is central for the control of fetal and postnatal growth.

The second variant, rs558226101[T], a rare missense variant in the TET1 gene, associates with both adult height ($P_{\text{adult}} = 0.48$ s.d. (3.2 cm), $P_{\text{adult}} = 1.6 \times 10^{-8}$, Table 1, Supplementary Data 5 and Supplementary Fig. 3) and birth length ($P_{\text{birth}} = 0.86$ s.d. (2.2 cm), $P_{\text{birth}} = 5.3 \times 10^{-4}$, Supplementary Data 2) under the additive model. This rare variant causes a missense change in the TET1 gene (MAF = 0.13%, p.Arg1783Trp), has no strong correlates in our data (all $r^2 < 0.79$) and is not present in the 1000 Genomes phase 1 data (SNP SNAP, https://www.broadinstitute.org/mpg/snap/ldeSearch.php; accessed 09.02.2016). TET1 has not been reported to affect height in humans (GWAS catalogue v1.0.
but the association of this missense variant with adult height and birth length reported here supports a role of **TET1** in growth regulation in humans, beginning during *in-utero* development and probably continuing after birth. **TET1** is reported to play a critical role in genomic erasure of paternal imprints in the female germ line. Furthermore, **Tet1** paternal knockout mice suffer placental, fetal and postnatal growth defects as a result of hypermethylation of differentially methylated regions of paternally imprinted genes.

Figure 3 | **Ordered genotype height effects of the four variants identified in the present study under a parent-of-origin model.** The x-axis in each plot shows the four possible ordered genotypes with the first allele being inherited from the father and the second from the mother. The y-axis shows adult height (s.d.) in plots (a, c–e) and birth length (s.d.) in plot (b). Means were computed from the groups of imputed and family imputed Icelanders for which we have adult height and/or birth length measurements. Ordered genotypes were assigned to individuals based on allele probabilities (see Methods). Each grey dot represents the mean for individuals with the ordered genotype in question and the error-bars represent 95% confidence interval of the mean, taking the correction factor into account (Methods). The number of individuals behind the computations of each mean is shown on x-axis below each ordered genotype. Axes are not the same scale.
Discussion
Among 13 novel height associations, the association is primarily with the paternally inherited allele (two at IGF2-H19 and one in RTL1) in three instances, and one of the variants associates with height under the recessive model (LECT2). The other nine novel signals associate with height under an additive model and eight of them are represented by low frequency or rare sequence variants.

By examining the effect of non-transmitted alleles, we conclude that the effects of the parent-of-origin variants described here are mediated through imprinting. This conclusion is further supported by the fact that all four variants are located within known imprinted regions (GenEmprint; Supplementary Data 1), they have been reported to have a pivotal role in growth and development (Supplementary Data 1). Three of the four parent-of-origin association signals fall within the well-studied 11p15 imprinted region that comprises two neighbouring imprinted domains, IGF2-H19 and KCNQ1, which contain both maternally and paternally expressed genes. The paternally expressed gene IGF2 is one of the best-characterized imprinted genes that plays a key role in the regulation of cell proliferation and growth.

Generally, it is assumed that parent-of-origin imprinting leads to either paternal or maternal mono-allelic gene expression. Alternatively, there could be incomplete gene expression, with genes from both parental chromosomes expressed but to different degrees. In addition to these patterns based on complete or partial silencing of gene expression, more complex patterns of effects have been observed. Interestingly, for two of the variants we report, rs147239461[T] at IGF2-H19(A) and rs41286560[T] in RTL1 at DLK1-MEG3, the minor allele is associated with less adult height when paternally inherited and greater height when maternally inherited. The same kind of effect for rs147239461[T] at IGF2-H19(A) was also observed with birth length indicating that this phenomenon is already at play in utero. Furthermore, we previously reported a distinct 11p15 variant associated with type 2 diabetes, where the minor allele confers risk when paternally inherited but is protective when maternally inherited. Differential silencing of genes within the IGF2-H19 domain is normally tightly regulated and under the control of a differentially methylated ICR making it vulnerable to genetic and epigenetic variations. The 11p15 imprinted region that comprises two neighboring imprinted domains, IGF2-H19 and H19, is located downstream from H19 35 Kb from the H19-ICR. Therefore, it is unlikely that the variant directly disrupts methylation of the ICR. However, since the variant and three of its strong correlates are located at a CTCF binding site it might affect methylation at the ICR and thus disturb the balanced expression of imprinted genes in the region.

RTL1 (Retrotransposon-like 1) on chromosome 14p32 is an intronless gene with an overlapping maternally expressed antisense transcript, which contains seven miRNAs regulating the expression of this gene through an RNA interference mediated mechanism. We note that the height-associated missense variant (rs41286560) with parent-of-origin effect is located 42 bp from miR127 that has been linked to placental megaly in mice when maternally knocked out. Given that the effect is predominantly from the paternal chromosome we find it more likely that the effect is mediated through missense in RTL1 itself. Paternal RTL1 knockout mice develop growth retardation at the fetal stage that persists into adulthood, but to our knowledge RTL1 has not been linked to growth defects in humans.

In animal models, the influence of parent-of-origin effects has been observed in traits associated with growth or allocation of nutritional resources, and a large portion of imprinted genes are reported to have effects on the placenta. This has been taken to support the evolutionary hypothesis of a conflict between the maternal and paternal genomes in offspring prior to weaning, whereby fathers use imprinting to increase nutritional demands at the expense of the mother, who uses imprinting to avoid excessive demands on resources. In line with this hypothesis, it has been argued that reciprocal imprinting of the growth enhancer gene IGF2 and the neighbouring growth suppressor gene H19 at 11p15 represents a mechanism that is consistent with the parental conflict theory and has been widely used as the basis for its interpretation. Interestingly, imprinting disorders involved in both retarded and excessive growth map to chromosome 11p15 and are linked to depressed versus elevated expression of IGF2. In knockout mice, paternal Ig2 knockouts are growth retarded, whereas embryos overexpressing Ig2 exhibit overgrowth. Taken at face value, our results seem contrary to the expectations of parental conflict through imprinting. Rather than paternal alleles increasing growth and maternal alleles decreasing growth, the paternally inherited minor alleles at IGF2 and RTL1 result in reduced adult height, and in the case of rs147239461 at IGF2-H19 reduced birth length.

Taken altogether our results demonstrate that common variations affect human growth by parental imprinting in humans. Moreover, by studying adult height variants and birth length, we demonstrate that genomic imprinting is not restricted to effects in utero. Additionally, the unusual imprinting patterns observed in this study raise questions of what mechanism of imprinting at the molecular level can create opposite effects depending on the parent-of-origin.

Methods
Population. Height measurements from 88,835 Icelanders were collected in deCODE’s obesity, cancer and resident assessment instrument studies. Height was either measured using a stadiometer with the subjects wearing no shoes or self-reported on questionnaires by individuals. Birth length measurements were collected from 12,645 Icelanders in deCODE’s obesity study. This group has very little overlap with the group of individuals with adult height measurements.

These studies were approved by the Data Protection Commission of Iceland and the National Bioethics Committee of Iceland. Written informed consent was obtained from all participants. Personal identifiers associated with phenotypic information and samples were encrypted using a third-party encryption system.

Genotyping and imputation. Genotyping and imputation methods and the association analysis method in the Icelandic samples are described, with some modifications as follows:

Sequencing, genotype calling and annotation. The whole genomes of 8,453 Icelanders were sequenced using Illumina technology to a mean depth of at least 10X (median 32X). SNPs and indels were identified and their genotypes were called for all samples simultaneously using the Genome Analysis Toolkit (gatk version 3.3.0) [Genotype calls were improved by using information about haplotype sharing, taking advantage of the fact that all the sequenced individuals had also been chip-typed and long range phased. The sequence variants identified in the 8,453 sequenced Icelanders were then imputed into 130,656 Icelanders who had been genotyped with various Illumina SNP chips and their genotypes phased using long-range phasing].

Imputation of variants. Imputation of untyped variants into the mix of typed variants is now regular procedure in human genetics. These imputations are usually based on local linkage disequilibrium (LD) and work well for common variants, but they are not reliable for low-frequency variants and rarely work for rare variants. The long-range phasing of 150,656 Icelanders genotyped for 654,788 autosomal SNPs using Illumina chips increases imputation accuracy and speed by removing uncertainty of phasing. Of variants with a MAF over 0.1%, 96.7% were imputed with information over 0.8.

Genealogy and imputation. Using genealogic information, the sequence variants were imputed into un-typed relatives of the chip-typed to further increase the sample size for association analysis and increased the power to detect associations. Individuals with height measurements were either chip-typed individuals (N = 80,546) or first and second degree relatives of chip-typed individuals that were not chip-typed themselves (N = 8,289). The group of individuals with birth length measurement consisted of chip-typed individuals (N = 4,275) and first and second degree relatives of chip-typed (N = 8,370). A total of 31.6 million variants were used in the association analysis under an additive model and parent-of-origin
models. Both parent-of-origin models (paternal and maternal) were tested for variants for which Icelandic genealogy was assigned parental origin to phased haplotypes. Long-range phasing of haplotypes using surrogate parents allows for accurate phasing of Icelandic samples and the Icelandic genealogy coupled with the large fraction of chip-typed individuals in the population enabled the determination of the parent-of-origin for the genotypes [refs 6,14]. Initially this method was applied to a set of 38,167 Icelanders (ref. 6), in the current study we apply it to a larger set of chip-typed individuals (N = 150,656). For parent-of-origin models, we note that the number of variants that reside in or are adjacent to (±250 kb) known or predicted imprinted genes (N = 284, corresponding to 1% of the genome) was 1.3 million (41% of all variants tested). Our analyses, the number of tested variants for which we had homozygotes for the minor allele was 19.2 million. All of the tested variants had imputation information over 0.8.

To enrich for very rare variants affecting height, we included in our sequencing all individuals in the dataset who deviated more than three standard deviations (s.d.) from the mean value of adult height in the sample set (N = 165) (Supplementary Fig. 1).

Sample preparation and sequencing DNA and whole-genome sequencing methods. Our dataset contains samples obtained using three different library preparation methods from Illumina. In addition, sequencing was performed using three different types of Illumina sequencing instruments.

(a) Standard TruSeq DNA library preparation method. Illumina GAIIx and/or HiSeq 2,000 sequencers.

(b) TruSeq DNA PCR-free library preparation method. Illumina HiSeq 2,500 sequencers.

(c) TruSeq Nano DNA library preparation method. Illumina HiSeq X sequencers.

Sample preparation and sequencing using the standard TruSeq DNA library preparation method. Approximately 1 μg of genomic DNA, isolated from frozen blood samples, was fragmented to a mean target size of ~300–400 bp using a Covaris E210 instrument. The resulting fragmented DNA was end repaired using T4 and Klenow polynucleases and T4 polynucleotide kinase with 10 mM BNTP following addition of an A′ base at the ends using Klenow exon fragment (3′ to 5′-exo minus) and dATP (1 mM). Sequencing adaptors containing T′ overhangs were ligated to the DNA products following by agarose (2%) gel electrophoresis. Fragments of about 450–500 bp were isolated from the gels (QIAGEN Gel Extraction Kit), and the adaptor-modified DNA fragments were PCR enriched for ten cycles using Phusion DNA polymerase (Finzymes Oy) and a PCR primer cocktail needed for paired-end sequencing. Enriched libraries were purified using AMPure XP beads. The quality and concentration of the libraries were assessed with the Agilent 2,100 Bioanalyzer using the DNA 1,000 LabChip kit. Libraries were stored at ∼20 °C. Sequencing-by-synthesis (SBS) was performed on either Illumina GAII, or HiSeq 2,000 instruments, respectively. Paired-end libraries were sequenced using 2 × 76, 2 × 101 or 2 × 120 cycles of incorporation and imaging with Illumina SBS kits, TruSeq v5 for the GAIIx. For the HiSeq 2,000, 2 × 101 cycles with SBS kits v2.5 or v3 were employed. Each library was initially run on a single lane on a GAII, for validation, assessing optimal cluster densities, insert size, duplication rates and comparison to chip genotyping data. Following validation, the desired sequencing depth (10X to 30X) was then obtained using either sequencing platform. Targeted raw cluster densities ranged from 300–400 bp using a Covaris E210 ultrasonicator followed by clean-up using AmPure XP purification beads. Blunt-end DNA from the resulting fragments was generated using a mix of 3′ > 5′ exonuclease and 5′ > 3′ polynuclease activities, respectively, followed by 5′-phosphorylation using T4 polynucleotide kinase. Size-selection of the blunt-end fragments was done using a two-step purification strategy with different ratios of the AmPure XP purification beads (0.6X and 1X). Finally, 3′-adenylation and ligation of barcoded adaptors was performed, followed by clean-up with magnetic beads. The quality and concentration of the libraries were assessed with the Agilent 2,100 Bioanalyzer using the DNA 1,000 LabChip (Agilent Technologies, Santa Clara, CA) BARCODED library preparation method. Libraries were stored at −20 °C. All steps in the workflow were monitored using an in-house laboratory information management system with barcode tracking of all samples and reagents. All samples were first pooled (12–24plex) and sequenced on Illumina’s MiSeq instruments (2 × 25 cycles) to assess quality and effective concentration of sequencing libraries. Subsequent deep sequencing was done on HiSeq 2,500 instruments; where each sample was sequenced on 3 lanes, generating >100 GB of raw data and at least 30X coverage. Sequencing was done using TruSeq v3 reagents, paired-end 2 × 100 cycles. System operation and base calling in real-time was done using HIS 2.23.8 and RTA 1.18.61.

Sample preparation and sequencing using the TruSeq Nano DNA method. The sample preparation workflow was essentially the same as described above for the TruSeq DNA PCR-free method, except the input amount was 100 ng of genomic DNA (instead of 1 μg) and following clean-up of adaptored ligated DNA, the samples were enriched by 8-cycles of PCR using a PCR primer cocktail, followed by Ampure XP bead clean-up. The quality and concentration of the libraries were assessed with the Perkin Elmer LabChip GX instrument using the HT DNA HSens reagent kit. Sequencing was done using the HiSeq X HD reagent kit. Each sample was loaded onto the HiSeq X instrument at a concentration of 300 pM and sequenced to high depth (>30X). System operation and base calling in real-time was done using HCX 3.1.26 and RTA 2.3.9.

Association analysis. Adult height measurements and birth length measurements were corrected for year of birth and standardized separately for each of the sexes to have a standard normal distribution. Measured and self-reported heights were corrected separately.

Genetic models. Four different genetic models were tested: additive, recessive and parent-of-origin (paternal and maternal). Parent-of-origin models were performed by testing the paternal and maternal alleles separately. For SNPs that associated with height under multiple models, the appropriate model was concluded to be the one that gave the most significant height association. All tests reported in the present study are two-sided.

Quantitative trait association testing. A generalized form of linear regression was used to test for association of adult height and birth length with SNPs. Let y be the vector of quantitative measurements, and let g be the vector of expected allele counts for the SNP and a variance covariance matrix proportional to the kinship matrix:

\[\mathbf{y} \sim N(\mathbf{x} + \mathbf{g}^{T} \mathbf{b}) \]

Where

\[\mathbf{b}_{i} = \begin{pmatrix} \frac{1}{2} \cdot \mathbf{1} \cdot \mathbf{1}^{T} \mathbf{b}_{i} \end{pmatrix} \]

is the kinship matrix as estimated from the Icelandic genealogical database. It is not computationally feasible to use this full model and we therefore split the individuals into smaller clusters. The maximum likelihood estimates for the parameters \(\mathbf{b} \) involve inventing the kinship matrix. If there are \(n \) individuals in the cluster, then this inversion requires \(O(n^{2}) \) calculations, but since these calculations only need to be performed once the computational cost of doing a genomewide association scan will only be \(O(n^{3}) \) calculations; the cost of calculating the maximum likelihood estimates if the kinship matrix has already been inverted involves only \(O(n) \) inversion.

To account for inflation or stratification, we applied the method of LD score regression64.

With a set of 1.1 M variants we regressed the \(y^{2} \) statistics from our GWAS scan against LD score and used the intercept as a correction factor. The LD scores were downloaded from a LD score database (ftp://aitghftp.mgh.harvard.edu/brendan/1k_ex, hm3_snps_se_weights_KDN, accessed 23.06.2015). The estimated correction factor for adult height was 1.48 for the additive model, 1.15 for the recessive model, 1.22 for the maternal model and 1.23 for the paternal model (Supplementary Fig. 19). The estimated correction factor for birth length was 1.04 for the additive model, 1.01 for the recessive model, 1.02 for the maternal model and 1.03 for the paternal model.

Significance thresholds. The threshold for genome-wide significance was corrected for multiple testing using a class-specific Bonferroni procedure based on predicted functional impact of classes of variants53 (Supplementary Fig. 2). This yielded significance thresholds of \(1.7 \times 10^{-8} \) for high-impact variants (including stop-gained, frameshift, splicing variants and frame-shifts), \(10^{-8} \) for low-impact variants (including missense, splicing-region variants and in-frame indels, \(N = 170,692 \)) and \(5.3 \times 10^{-8} \) for low-impact variants (\(N = 31,421,778 \)). For the parent-of-origin association analysis, to test if an parental allele had effect in a direction opposite to the genome-wide significant parental allele, the threshold of \(10^{-7} \) was corrected to \(10^{-8} \) and applied to a mean target size of 500–800 Kbp. The group of reported variants consisted of: (i) the 697 SNPs reported by GIANT (ref. 5) to associate with height under the additive model, (ii) one SNP reported by Zoledziewska et al.27 to associate with height when maternally inherited and (iii) all variants in entries containing the word ‘height’ in the column: DISEASE/TRAIT in the GWAS catalogue (GWAS catalogue
2. Carmichael, C. M. & McGue, M. A cross-sectional examination of height, et al.
3. Visscher, P. M.

4. Perola, M. et al. Combined genome scans for body stature in 6,602 European twins: evidence for common loci. *LoSoGenet*. 3, 1019–1028 (2007).

5. Wood, A. R. et al. Defining the role of common variation in the genomic and biological architecture of adult human height. *Nat. Genet.* 46, 1173–1186 (2014).

6. Gudbjartsson, D. F. et al. Large-scale whole-genome sequencing of the Icelandic population. *Nat. Genet.* 47, 435–444 (2015).

7. Sulem, P. et al. Identification of low-frequency variants associated with gout and serum uric acid levels. *Nat. Genet.* 43, 1127–1130 (2011).

8. Rafnar, T. et al. Mutations in BRI1 confer high risk of ovarian cancer. *Nat. Genet.* 43, 1104–1107 (2011).

9. Jonsson, T. et al. Variant in *AP2B1* protects against Alzheimer’s disease and age-related cognitive decline. *Nature* 488, 96–99 (2012).

10. Jonsson, T. et al. Variant of TREM2 associated with the risk of Alzheimer’s disease. *N. Engl. J. Med.* 368, 107–116 (2013).

11. Holm, H. et al. A rare variant in MYH6 is associated with high risk of sick sinus syndrome. *Nat. Genet.* 43, 316–320 (2011).

12. Styrkarsdottir, U. et al. Nonsense mutation in the LGR4 gene is associated with several human diseases and other traits. *Nature* 497, 517–520 (2013).

13. Helgason, A., Nicholson, G., Stefánsson, K. & Donnelly, P. A reassessment of genetic diversity in Icelanders: strong evidence from multiple loci for relative homogeneity caused by genetic drift. *Ann. Hum. Genet.* 67, 281–297 (2003).

14. Kong, A. et al. Parental origin of sequence variants associated with complex diseases. *Nature* 462, 868–874 (2009).

15. Reik, W. & Walter, J. Genomic imprinting: parental influence on the genome. *Nat. Rev. Genet.* 2, 21–32 (2001).

16. Morison, I. M., Ramsay, J. P. & Spencer, H. G. A census of mammalian imprinting. *Trends Genet.* 21, 457–465 (2005).

17. Babk, T. et al. Genetic conflict reflected in tissue-specific maps of genomic imprinting in human and mouse. *Nat. Genet.* 47, 544–549 (2015).

18. Edwards, C. A. & Ferguson-Smith, A. C. Mechanisms regulating imprinting genes in curns. *Curr. Opin. Cell Biol.* 19, 281–289 (2007).

19. Quenneville, S. et al. In embryonic stem cells, ZFP57/KAP1 recognize a methylated hexanucleotide to affect chromatin and DNA methylation of imprinting control regions. *Mol. Cell* 44, 361–372 (2011).

20. Delaval, K., Wagschal, A. & Feil, R. Epigenetic deregulation of imprinting in congenital diseases of aberrant growth. *Bioessays* 28, 453–459 (2006).

21. Smith, A. C., Choufani, S., Ferreira, J. C. & Wéskés, R. Growth regulation, imprinting genes, and chromosome 11p15.5. *Pediatr. Res.* 61, 411–417 (2007).

22. Mott, R. et al. The architecture of parent-of-origin effects in mice. *Cell* 156, 332–342 (2014).

23. Wolf, J. B., Cheverud, J. M., Rosenman, C. & Hager, R. Genome-wide analysis reveals a complex pattern of genomic imprinting in mice. *PloS Genet.* 4, e1000091 (2008).

24. Lawson, H. A., Cheverud, J. M. & Wolf, J. B. Genomic imprinting and parent-of-origin effects on complex traits. *Nat. Rev. Genet.* 14, 609–617 (2013).

25. Wallace, C. et al. The imprinted DLK1-MEG3 gene region on chromosome 14q32.2 alters susceptibility to type 1 diabetes. *Nat. Genet.* 42, 68–71 (2010).

26. Kong, A. et al. Parental origin of sequence variants associated with complex diseases. *Nature* 462, 868–874 (2009).

27. Perry, J. R. B. et al. Parent-of-origin-specific allelic associations among 106 genomic loci for age at menarche. *Nature* 514, 92–97 (2014).

28. Gudbjartsson, D. F. et al. Large-scale whole-genome sequencing of the Icelandic population. *Nat. Genet.* 47, 435–444 (2015).

29. Zeoledziwska, M. et al. Height-reducing variants and selection for short stature in Sardinia. *Nat. Genet.* 47, 1352–1356 (2015).

30. Bacalao, J., Amador, M. & Hermelo, M. The relationship of birthweight with height at 14 and with the growing process. *Nutrition* 12, 250–254 (1996).

31. Eide, M. G. et al. Size at birth and gestational age as predictors of adult height and weight. *Epidemiology* 16, 175–181 (2005).

32. Tunster, S. J., Jensen, A. B. & John, R. M. Imprinted genes in mouse placental development and the regulation of fetal energy stores. *Reproduction* 145, R117–R137 (2013).

33. Wang, X., Miller, D. C., Harman, R., Antczak, D. F. & Clark, A. G. Paternally expressed genes predominate in the placenta. *Proc. Natl. Acad. Sci. USA* 110, 10705–10710 (2013).

34. Monck, D. Genomic imprinting in the human placenta. *Ann. J. Obstet. Gynecol.* 213, S152–S162 (2015).

35. Swamyjohnsson, G. et al. Weighting sequence variants based on their annotation increases power of whole-genome association studies. *Nat. Genet.* 48, 314–317 (2016).

36. Bell, A. C., West, A. G. & Felsenfeld, G. The protein CTCF is required for the enhancer blocking activity of vertebrate insulators. *Cell* 98, 387–396 (1999).

37. Bergman, J. et al. The molecular function and clinical phenotype of partial deletions of the IGFL2/H19 imprinting control region depends on the spatial arrangement of the remaining CTCF-binding sites. *Hum. Mol. Genet.* 22, 544–557 (2013).
38. Morali, O. G., Jouneau, A., McLaughlin, K. J., Thiery, J. P. & Larue, L. IGF-II promotes mesoderm formation. *Dev. Biol.* 227, 133–145 (2000).
39. Deroo, B. J. & Korach, K. S. Estrogen receptors and human disease. *J. Clin. Invest.* 116, 561–570 (2006).
40. Terranova, R. et al. Polycystic group proteins Ezh2 and Rnf2 direct genomic contraction and imprinted repression in early mouse embryos. *Dev. Cell* 15, 668–679 (2008).
41. Pandey, R. R. et al. Ken41q11 antisense noncoding RNA mediates lineage-specific transcriptional silencing through chromatin-level regulation. *Mol. Cell* 32, 232–246 (2008).
42. Lewis, A. & Redrup, L. Genetic imprinting: conflict at the callipyge locus. *Curr. Biol.* 15, R291–R294 (2005).
43. Ito, M. et al. A trans-homologue interaction between reciprocally imprinted mir-127 and Ril1 regulates placenta development. *Development* 142, 2425–2430 (2015).
44. Hager, R., Cheverud, J. M. & Wolf, J. B. Maternal effects as the cause of parent-of-origin effects that mimic genomic imprinting. *Genetics* 178, 1755–1762 (2008).
45. Wei, Y., Schatten, H. & Sun, Q.-Y. Environmental epigenetic inheritance through gametes and implications for human reproduction. *Hum. Reprod. Update* 21, 194–208 (2014).
46. Chong, S. et al. Modifiers of epigenetic reprogramming show paternal effects in the mouse. *Nat. Genet.* 39, 614–622 (2007).
47. Yazbek, S. N., Spiezo, S. H., Nadeau, J. H. & Buchner, D. A. Ancestral paternal genome controls body weight and food intake for multiple generations. *Hum. Mol. Genet.* 19, 4134–4140 (2010).
48. Petry, C. J. et al. Common polymorphism in H19 associated with birthweight and cord blood IGF-II levels in humans. *BMC Genet.* 6, 22 (2005).
49. Consortium, G. T. E. The genotype-tissue expression (GTex) project. *Nat. Genet.* 45, 580–585 (2013).
50. Sørensen, H. T. et al. Birth weight and length as predictors for adult height. *Am. J. Epidemiol.* 149, 726–729 (1999).
51. Yamaguchi, S., Shen, L., Liu, Y., Sendler, D. & Zhang, Y. Role of Tet1 in erasure of genomic imprinting. *Nature* 504, 460–464 (2013).
52. Ferguson-Smith, A. C. Genomic imprinting: the emergence of an epigenetic paradigm. *Nat. Rev. Genet.* 12, 565–575 (2011).
53. Matsu, T. et al. Using RNA sequencing for identifying gene imprinting and random monoallelic expression in human placenta. *Epigenetics* 9, 1397–1409 (2014).
54. Sakatani, T. et al. Epigenetic heterogeneity at imprinted loci in normal populations. *Biochem. Biophys. Res. Commun.* 283, 1124–1130 (2001).
55. Hayward, B. E., Moran, V., Strain, L. & Bonthron, D. T. Bidirectional imprinting of a single gene: GNAT1 encodes maternally, paternally, and biallelically derived proteins. *Mol. Cell* 95, 15475–15480 (1998).
56. Moore, T. & Haig, D. Genomic imprinting in mammalian development: a parental tug-of-war. *Trends Genet.* 7, 45–49 (1991).
57. Haig, D. Coadaptation and conflict, misconception and muddle, in the evolution of genomic imprinting. *Hereditas (Edim)* 113, 96–103 (2014).
58. Wilkins, J. F. & Haig, D. What good is genomic imprinting: the function of parent-specific gene expression. *Nat. Rev. Genet.* 4, 359–368 (2003).
59. DeChiara, T. M., Efstratiadis, A. & Robertson, E. J. A growth-deficiency phenotype in heterozygous mice carrying an insulin-like growth factor II gene disrupted by targeting. *Nature* 345, 78–80 (1990).
60. Lau, M. M. et al. Loss of the imprinted IGF2/cation-independent mannose 6-phosphate receptor results in fetal overgrowth and perinatal lethality. *Genes Dev.* 8, 2953–2963 (1994).
61. McKenna, A. et al. The genome analysis toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. *Genome Res.* 20, 1297–1303 (2010).
62. Kong, A. et al. Detection of sharing by descent, long-range phasing and haplotype imputation. *Nat. Genet.* 40, 1068–1075 (2008).
63. Marchini, J., Howie, B., Myers, S., McVean, G. & Donnelly, P. A new multipoint method for genome-wide association studies by imputation of genotypes. *Nat. Genet.* 39, 906–913 (2007).
64. Bulik-Sullivan, B. K. et al. LD Score regression distinguishes confounding from polygenicity in genome-wide association studies. *Nat. Genet.* 47, 291–295 (2015).
65. Steinthorsdottir, V. et al. Identification of low-frequency and rare sequence variants associated with elevated or reduced risk of type 2 diabetes. *Nat. Genet.* 46, 294–298 (2014).
66. Vilhjalmsdottir, B. J. et al. Modeling linkage disequilibrium increases accuracy of polygenic risk scores. *Am. J. Hum. Genet.* 97, 576–592 (2015).
67. Consortium, R. E. et al. Integrative analysis of 111 reference human epigenomes. *Nature* 518, 317–330 (2015).
68. Gudbjartsson, D. F. et al. Sequence variants from whole genome sequencing a large group of Icelanders. *Sci. Data* 2, 150011 (2015).