Noma (cancrum oris): A scoping literature review of a neglected disease (1843 to 2021)

Elise Farley, Ushma Mehta, M. Leila Srour, Annick Lenglet

1 Noma Children’s Hospital, Médecins Sans Frontières, Sokoto, Nigeria, 2 Nudibrink Research Consultancy, Cape Town, South Africa, 3 Centre for Infectious Disease Epidemiology and Research, University of Cape Town, Cape Town, Western Cape, South Africa, 4 Health Frontiers, Vientiane, Laos, 5 Médecins Sans Frontières, Amsterdam, The Netherlands, 6 Department of Medical Microbiology, Radboudumc, Nijmegen, The Netherlands

* elisefarley@gmail.com

Abstract

Background

Noma (cancrum oris) is an ancient but neglected and poorly understood preventable disease, afflicting the most disenfranchised populations in the world. It is a devastating and often fatal condition that requires urgent and intensive clinical and surgical care, often difficult to access as most cases of noma occur in resource-limited settings. We conducted a scoping review of the literature published on noma to understand the size and scope of available research on the disease and identify research gaps that need to be addressed to evolve our understanding of how to address this disease.

Methods

We searched 11 databases and collected primary peer reviewed articles on noma in all languages, the final search was conducted on 24th August 2021. The oldest manuscript identified was from 28th March 1843 and the most recently published manuscript was from 3rd June 2021. Search terms included cancrum oris and noma. Data was extracted using a standardised data extraction tool and key areas of interest were identified. The Preferred Reporting Items for Systemic review and Meta-Analyses requirements were followed.

Results

The review included 147 articles, the majority of the studies (n = 94, 64%) were case reports. Most manuscripts (n = 81, 55%) were published in the 2000s, 49 (33%) were from the 1900s and 17 (12%) from the 1800s. The main areas of interest identified were the history and epidemiology of the disease, noma’s clinical progression and aetiology, treatment regimens, mortality rates and the risk factors for the development of noma.

Conclusions

Noma has been reported in the literature for hundreds of years; however important gaps in our understanding of the disease remain. Future research should focus on determining the
The burden and distribution of disease; the true mortality rate, pathogenic cause(s) and the factors that influence prognosis and outcomes after treatment.

Author summary

Noma is a devastating and often fatal condition that mainly affects children in severely disenfranchised communities. Noma is preventable and requires urgent basic medical care in the early stages of disease. Once the disease reaches the last stage, sequelae, survivors require expert surgical care, usually difficult to access as most cases of noma occur in resource-limited settings. We conducted a scoping review of the literature published on noma to understand the size and scope of available research on the disease and to identify research priorities that will evolve our understanding of how to eradicate this disease. Our review showed that noma has been reported in the literature for hundreds of years; however, several major gaps in knowledge still exist. There is appreciation among the small community of clinicians and researchers involved in noma care and research that these gaps in knowledge impact on the ability to develop and implement sound evidence-based policies and activities aimed at eradicating noma from communities that continue to be afflicted by this ancient disease. The main focus of future research should be to study the burden and distribution of disease; the true mortality rate, and the pathogenic cause(s) and the factors that influence prognosis and outcomes after treatment.

Background

Noma is a rapidly progressing infection of the oral cavity, associated with a reported 90% mortality rate within weeks after onset, if left untreated [1]. Noma mostly affects disenfranchised children who lack access to basic nutrition, hygiene services, and health care, although cases are reported in immunocompromised adults [1]. The pathogenesis of noma is poorly understood [1]. Commonly available broad-spectrum antibiotics can be used to treat the early reversible stages of noma [1]. Once noma progresses past these stages, the sequelae of noma are numerous and include difficulty in eating, drinking, seeing, and breathing [1,2]. For those who seek care for these sequelae, it can mean hospital stays of many months with multistage surgical treatments that can take years to complete. Therefore, noma is associated with a high degree of morbidity for survivors, and this often has a significant impact on family members given the long-lasting and often permanent sequelae. Noma is an important public health issue and its existence is a painful reminder of the existing global inequalities in food distribution, health care access and living conditions. We conducted a scoping review of the literature on noma to consolidate the information available and to understand the size and scope of available research on this disease.

Methods

This scoping review was conducted in line with Preferred Reporting Items for Systemic review and Meta-Analyses (PRISMA) requirements (S1 PRISMA checklist) [3].

Databases searched

The following databases were searched manually for articles to include in this literature review: PubMed; PsycINFO via Ebsco Host; Science Direct; Social Science Citation Index via Web of
Science; MEDLINE via PubMed; Cumulative Index to Nursing and Allied Health Literature via Ebsco Host; Cochrane Library; Population Information Online; LILACS; SciELO and Scopus. The final search was conducted on 24 August 2021.

Searching methods utilized

An initial search of each database was done online. All articles identified were listed. Available full text articles were downloaded. Outstanding articles were sourced through the University of Cape Town library or via the corresponding authors.

Eligibility criteria

The databases and journals were searched using the following eligibility criteria: 1) noma, cancrum oris related; 2) peer reviewed; 3) primary study (a study including primary data collection, literature reviews and opinion pieces were not included); 4) addressed a main area of interest; 5) any publication date; 6) all study designs; and 7) all languages.

Search terms

Databases were searched with the following terms: "cancrum oris" OR "noma" OR "cancrum oris cases" OR "cancrum oris defects" OR "cancrum oris like lesions" OR "cancrum oris noma" OR "cancrum oris, noma".

Data extraction

Data from the eligible studies were extracted using a standardized data extraction tool. Data extracted included: title; author; journal; year of publication; geographic location of first author; geographic location of study; number of cases/individuals in study; research question/aim; methodology; analysis; results; area of interest; conclusions; implications for future research and practice; gaps in knowledge and any other noteworthy comments.

Our main areas of interest were the history and epidemiology of the disease, noma’s clinical progression and aetiology, treatment regimens, mortality rates and the risk factors for the development and progression of noma.

All non-English papers were translated into English using Google translate, anything unclear was checked with a native language speaker.

Analysis

A manual analysis was conducted by grouping individual factors within the areas of interest (the history and epidemiology of the disease, noma’s clinical progression and aetiology, treatment regimens, mortality rates and the risk factors for the development and progression of noma). These areas of interest were explored in-depth and findings on each area are concisely reported.

Results

Our initial search identified 200 full text articles for review, of which 147 were included in the literature review (full list of included manuscripts attached in S1 Data). The oldest manuscript identified was from 28th March 1843, and the most recently published manuscript was from 3rd June 2021. Most manuscripts (n = 81, 55%) were published in the 2000s, 49 (33%) were from the 1900s and 17 (12%) were from the 1800s. Fifty three manuscripts were excluded as they either did not directly relate to noma, did not meet the inclusion criteria, or they were not considered to be primary research. The majority of the studies (n = 94, 64%) were case reports (Fig 1).
Noma (cancrum oris): A scoping literature review of a neglected disease (1843 to 2021)

Fig 1. Flow diagram of databases searched and articles included in the noma scoping review.

https://doi.org/10.1371/journal.pntd.0009844.g001
History of noma and names for the disease

The word ‘noma’ is derived from a Greek word which, loosely translated, means ‘to devour’ [4]. It was first used by Dutch surgeon Cornelis van de Voorde in 1680, for a rapidly-spreading ulceration originating in wet soft tissues ‘typical of the mouth’ [5]. The term ‘noma’ and ‘cancrum oris’ are currently used interchangeably [6–9]. In the 1800’s, there were ongoing discussions about the usage of the terms with some viewing them as two separate diseases [10]. In a publication from 1862, ‘noma’ referred to ulcerative stomatitis (lesions on the skin or on the internal mucosal surface of the mouth) and ‘cancrum oris’ referred to gangrenous stomatitis (death of the tissue of the mouth) [10]. There are very early reports of clinical conditions similar to noma by physicians such as Hippocrates (460–370 BC) and Galen (129–200 AD) [11]. However; it was subsequently reported that this referred to general ulceration of the body and not noma as the disease is currently understood [12]. The first clinical description of the disease we now call noma, was written by Battus in 1620, who labelled it ‘water canker’ [5,12]. The 1848 definition of noma by Tourdes is similar to the modern medical understanding of the disease: “a gangrenous disease affecting the mouth and face of children living in bad hygiene conditions and suffering from debilitating diseases, especially eruptive fever, beginning with an ulcer on the oral mucosa rapidly spreading outside and destroying the soft and hard tissues of the face and almost always fatal” [13].

In Laos, the name commonly used for noma is ‘Pagnad Pak Poue’ meaning ‘disease of mouth rotting’ [14]. In Zambia, the disease has been labelled as ‘aka popo’, meaning the child has been fed a stillborn fetus, and the flesh is ‘coming out’ (describing the sloughing of the cheek) [15]. In Hausa, the most widely spoken language in northwest Nigeria, several names for noma have been documented including ‘ciwon iska’, ‘bakin kare’ [5], ‘danhurawa’, ‘tuareg’, ‘akin’ [16], ‘gaude’ and ‘sadde’ [17]. Several of these names are generalised terms and have reportedly caused confusion in patient recruitment drives for surgical interventions, as patients with ailments such as cleft lip and palate also identify with these names [5]. A further complicating etymological factor in the setting is that the word ‘noma’ means ‘farming’ in Hausa [16]. Names form a part of the understanding of the disease, and in this case, the beliefs about the causes of noma such as spirits, living creatures (insects and animals), and connections with previous illness [16]. These names and the beliefs about the disease have an impact on processes such as health-seeking behaviours and stigmatisation. If it is believed that the disease is caused by spirits or a bad omen, patients and their families are more likely to be ostracised [18].

Epidemiology

There is a shift in reporting of noma from primarily in Europe and India in the 1800’s [4,10,12,19–32], to parts of Africa and North America in the 1900’s [11,15,17,22,33–77], to Africa, South America and Asia in the 2000’s [6–9,14,16,78–150] (Fig 2). Noma cases were reported in Irish and British soldiers in India the 1880’s [26,28]; in Belsen and Auschwitz concentration camps during the Second World War [9,14,17,45,139,151,152] and in the general war-time population of the Netherlands following the famine in the winter of 1944/1945 [139]. Since the Second World War, as living conditions improved, the occurrence of noma in Europe dramatically decreased and is only sporadically reported in the region today [80,81,83,129]. In recent years, noma has been reported in many countries around the world, but primarily in low and middle income countries in Africa and Asia (Fig 2).

In 2007, the WHO carried out a survey in African member states, which found that 39 of the 46 countries surveyed had reported noma cases in the year prior to data collection [153]. Those with the highest number of reported cases were Burkina Faso, Ethiopia, Mali, Niger,
Nigeria and Senegal which led to these countries being labelled the ‘noma-belt’ [153]. This term is commonly used when reporting the epidemiology of noma. However; the information gathered that led to this term was not standardized and not based on robust global prevalence or incidence estimates across countries [153]. Since 2000, cases have also been reported in a wide range of settings (Fig 2), indicating a much wider distribution than the usually reported ‘noma-belt’ [153].

The oldest estimate we found of the burden of disease, based on hospital admissions, indicated that, noma was diagnosed once out of every 5,000 cases of children admitted to hospital with an illness, between 1860 to 1871 in Edinburgh [4]. In 1997, Barnes et al. estimated that, based on records from three referral centres, the prevalence of noma was 1 case per 1,250 children aged two to six years per year in Nigeria [154]. In 1998, the World Health Organisation (WHO) estimated that 140,000 new cases of noma occur each year globally and that 770,000 patients were living with noma sequelae at that time [155], the origin of this estimate is unclear [156]. In 1999, it was estimated that there was an annual incidence of 4.2 acute noma cases per million Senegalese children aged 1–4 years [157]. This estimate was calculated using a WHO recommended formula (S1 Equation), based on a 5–20% presentation rate of patients with acute noma or sequelae, and an 80–90% mortality rate in the acute stages of the disease [157].

A Nigerian study (retrospective chart review from 2010 to 2018) estimated the incidence of noma in the north central zone was 8.3 per 100,000 population members at risk [135] and a further study from Nigeria (2018) estimated the community-based point prevalence in the northwest was 3,300 out of every 100,000 children aged 0–15 years [142]. The large variation in these results is due to the differing study designs and the different stages of noma (and case definitions for these stages) included in the estimates.

Through a retrospective chart review (n = 6,390) in 2003, Denloye et al. estimated seven cases per 1,000 children aged between one and 16 years had noma between 1986 and 2000 in Nigeria [118]. In that same year, a Fieger et al. modelled the incidence of noma in northwest Nigeria based on the number of clefts and concluded that the incidence of noma is estimated to be 6.4 per 1,000 children from 1996 to 2001 [139]. These estimates may not accurately reflect the present incidence of acute noma or the prevalence of patients with noma sequelae as they...
are based on expert opinion or historical data. It is also unclear which stages of noma are included in these estimates [158].

Risk factors

There is limited primary evidence on the risk factors for the development of noma. The table below explores the risk factors noted in the primary studies included in this review (Table 1). Reported risk factors for the development of noma in these primary studies include chronic malnutrition [11,15,17,75,111,114,118,147], comorbidities either at the time of noma diagnosis or in the three months leading up to diagnosis [11,15,17,41,51,75,104,107,111,114,118,122,147] and low vitamin A and vitamin C levels [7]. Social and environmental risk factors include being between two and five years of age [11,15,41,51,75,96,107,118], not being breastfed [114,143], lack of access to basic health care [41]- including a lack of childhood vaccinations [100,143], poor oral hygiene practices leading to gingivitis (Stage 0 noma) [100], low socioeconomic status [104], a lack of variety in the diet [143], the mother being unmarried, not the primary caretaker [143], and having a high number of previous pregnancies [111], and the absence of chickens at home [111].

Other studies have hypothesized further risk factors for noma development including household variables, such as proximity of livestock to living areas and poor sanitation [100], which is thought to lead to possible contamination of water and food sources and consequently increasing the risk of infections [159,160]. However, caution is needed when interpreting these findings as they are based on the proportions of cases vs controls having these risk factors and more robust evidence is needed to validate these findings.

Reported comorbidities in the primary studies (case control, cohort, retrospective chart reviews) include malnutrition [11,75,107,111,114,118], respiratory disease [104,111], diarrhoea [11,111], HIV [96,104,122], malaria [104,118] and vaccine preventable diseases, specifically measles [11,107,118]. Most of the case reports and case series (n = 68) list at least one comorbidity (103 comorbidities listed in these case reports and case series). The most widely reported comorbidities in the case reports and case series included in this review are malnutrition [14,22,26,36,37,44,56,78,83,100,103,106], HIV [56,60,82,87,90,150], anaemia [8,96,106,112] and measles [4,39,49,161] (Fig 3). As this information is based solely on case reports and case series, primarily reported from health care centres, no causal link or strength of association can be measured. Infections are usually the product of a compromised host and a single offending agent or multiple offending agents. Due to challenges with conducting scientifically robust risk factor analysis for noma, it is difficult to separate comorbidities from predisposing conditions and true causative factors.

One theory for the higher incidence of noma in children aged two to five years, is that this is the teething age when deciduous teeth are formed [41]. This formation slows down the circulatory flow to the gums due to compression, leaving the oral cavity more susceptible to infections [41]. A Zambian study postulated that during the weaning period from breastfeeding, children eat more solid food, which was less nutritious and less sterile than breast milk, and this placed them at potential risk for noma development [15]. Another study showed that if weaning foods are prepared under unhygienic conditions, they are frequently contaminated with pathogens and are a major factor in the cause of diarrhoeal diseases [162], a further reported risk factor for noma [163].

Studies that attempted to identify risk factors for noma were hampered by the retrospective nature of case ascertainment limiting the kinds and standardization of risk factor data collected [11,15,75,96,104,107,118,122]. The absence of a suitable control group precluded the ability to find associations between noma and potential risk factors in some studies [11,15,41,96,164]. In other studies there was no statistically robust examination of risk factors.
Table 1. Risk factors for noma identified in primary research.

Study	Study details	Risk factors identified
Osuji, 1990 [51]	Study type: Cross-sectional Location: Nigeria n: 58 cases of acute necrotizing gingivitis (Stage 1 noma as categorized under the WHO system [1]), 5 noma cases (diagnosed as advanced acute necrotizing gingivitis with sequestrum formation)	• Respondents aged between 2–7 years (n = 49, 85% acute necrotizing gingivitis cases, n = 3, 60% noma cases)
• Rainy season (n = 42, 67%)		
• History of recent febrile illness (n = 55, 87%)		
Lazarus, 1997 [11]	Study type: Retrospective chart review, reviewing charts of cancrum oris patients from the previous 35 years Location: South Africa n: 26 respondents	• Respondents mean age 4 years 4 months (range 1–15 years)
• Malnutrition (n = 7/11 (whose records had comorbidity information), 64%)		
• Gastroenteritis (n = 4/11, 36%)		
• Measles (n = 3/11, 27%)		
Nath, 1998 [15]	Study type: Retrospective chart review over 15 years n: 81 respondents	• Respondents aged between 1 and 4 years (n = 67, 83%),
• Diarrhoea (n = 13, 28.9%)		
• HIV (n = 26/45 (children admitted between 1989–93), 60.5%),		
• Malnutrition (n = 15/45 (no. children assessed for malnutrition), 33.3%)		
• Rainy season (n = 60, 74.1%),		
Ndiaye, 1999 [41]	Study type: Prospective cohort Location: Senegal n: 25 later stage noma cases, 1058 acute necrotizing gingivitis cases	• Noma respondents mostly aged >15 years (n = 13, 52%), acute necrotizing gingivitis respondents mostly aged between 1–4 years (n = 465, 44%)
• No access to basic care (n = 20/25 (noma only), 80%)		
Enwonwu, 1999 [17]	Study type: Case control study Location: Nigeria n: 86 noma cases	• Respondents mean age 5.9 years (Standard Deviation) (SD) 2.6 years
• Malnutrition (Weight-for-height Z score (WHZ) < -2.0 SD) (n = 9, 10.2% controls, n = 17, 19.4% cases)		
Oginni, 1999 [75]	Study type: Retrospective chart review of noma patients from 1982 to 1996 Location: Nigeria n: 146 noma patients, 133 acute, 13 sequelae (which was 1.7% of all patients admitted to the hospital during this time).	• Respondents mean age 4.7 years (SD 2.6 years)
• Malnutrition (n = 146, 100%)		
• Poor oral hygiene (n = 122, 83.6%)		
Denloye, 2003 [118]	Study type: Retrospective chart review 1986 to 2000 Location: Nigeria n: 45 noma cases	• Respondents mean age 4.2 years (SD 2.7 years)
• Malnutrition (n = 45, 100%)		
• Malaria (n = 14, 31%)		
• Measles (n = 14, 31%)		
Enwonwu, 2005 [114]	Study type: Case control Location: Nigeria n: 91 noma cases	• Respondents mean age 2.6 years (SD 1.0)
• Malnutrition (median height for age z-score noma group -3.74, control group 1–1.41, control group 2 0.85)		
Phillips, 2005 [7]	Study type: Case control Location: Nigeria n: 68 noma acute cases	• Biological markers suggestive of malnutrition (lower plasma levels of vitamin A (p<0.001), vitamin C (p<0.05) and zinc (p<0.001))
• Marked reductions (p<0.001) in albumin and blood haemoglobin		
Chidzonga, 2008 [96]	Study type: Retrospective chart review of charts between 2002 and 2006 Location: Zimbabwe n: 48 acute noma cases, all HIV positive (by design)	• Respondents aged <16 years (n = 11, 64.7%)
• Gender (female n = 31, 64.6%)		
Millogo, 2012 [122]	Study type: Retrospective chart review from 1988 to 2007 Location: Burkina Faso n: 212 patients (n = 14, 6.6% had HIV)	• Respondents mean age 15.3 years for HIV group, 4.7 years for non-HIV infected group
• Concurrently HIV-infected patients had higher mortality (38% vs 6%)		
Baratti-Mayer, 2013 [111]	Study type: Case control Location: Niger n: 82 cases and 327 controls	• Respondents aged 0–12 years
• Severe stunting (Height-for-age Z score <−3 SD) (Odds Ratio) (OR) 4.87, 95% Confidence Interval (CI) 2.35–10.09
• Wasting (WHZ <−3 SD) (OR 2.45, CI 1.25–4.83)
• High number of previous pregnancies in the mother (OR 1.16, CI 1.04–1.31)
• Presence of respiratory disease, diarrhoea or fever in the 3 months prior to data collection (OR 2.70, CI 1.35–5.40)
• Absence of chickens at home (OR 1.90, CI 0.93–3.88) |

(Continued)
using proven statistical methods such as multivariable regression (which would adjust for confounders), limiting the validity and reliability of results [17,41,51,75].

Aetiology

The pathogenesis of noma is poorly understood. Strikingly, this quote from a paper written in 1893 still partly reflects the current debated nature of the pathogenesis of noma “There must

Study	Study details	Risk factors identified
Konsem, 2014	Study type: Chart review 2003 to 2012 Location: Burkina Faso n: 55 acute noma cases	• Respondents mean age 7.64 years
• Concomitant Bronchopneumonitis (n = 20, 36.4%)		
• Malaria (n = 14, 25.4%)		
• HIV (n = 11, 20.0%)		
• Low standard of living (n = 21, 38.2%)		
• Anaemia (n = 14, 25.4%)		
Braimah, 2017	Study type: Retrospective chart review from 1999 to 2011 Location: Nigeria n: 159 acute noma cases	• Mean age was 3.34 ± 2.2.
• Measles 75 (47.2%), followed by		
• Protein-energy malnutrition 67 (42.1%).		
Adeniyi, 2019	Study type: Retrospective chart review from 1999 to 2011 Location: Nigeria n: 159 acute noma cases	• Respondents aged between 1–5 years (n = 139, 87.4%)
• Concurrent disease at presentation or in the 3 months preceding their presentation at the hospital (n = 148, 93.1%)		
• Measles (n = 75, 47.2%)		
• Protein-energy malnutrition (n = 67, 42.1%)		
Farley, 2019	Study type: Case control study Location: Nigeria n: 74 cases and 222 controls	• Respondents median age 5 (IQR 3, 15)
• Vaccination coverage documented on vaccination cards for polio and measles was below 7% in both groups
• Child being fed pap every day (OR 9.8; CI 1.5, 62.7);
• Potential protective factors including:
 - the mother being the primary caretaker (OR 0.08; CI 0.01, 0.5)
 - the caretaker being married (OR 0.006; CI 0.0006, 0.5)
 - colostrum being given to the baby (OR 0.4; CI 0.09, 2.09) |

WHZ- weight-for-height Z score; OR = Odds Ratio; SD = Standard Deviation; CI = Confidence Interval; WHO = World Health Organisation; HIV = human immunodeficiency virus

https://doi.org/10.1371/journal.pntd.0009844.t001

Fig 3. Comorbidities associated with noma in case reports and case series (N = 103).
https://doi.org/10.1371/journal.pntd.0009844.g003
surely be a specific organism and a combination of predisposing causes, not poverty alone, but poverty plus a sickly habit of body” [12].

A range of organisms have been identified in the oral flora of noma patients, but none have been consistently present, casting doubt on a specific organism’s role in the development of noma [7,17,38,40,98,111,165]. Other studies have noted that the characteristics of noma are similar to that of an opportunistic infection, implicating a change in the equilibrium of commensal bacteria due to a derailment of host defences [11,96,98,166]. Evidence that supports the understanding of noma being an opportunistic infection rests in the fact that most cases have concurrent infections or occur in immunocompromised individuals [11,15,17,41,51,75,104,107,111,114,118,122,147]. Table 2 below offers a summary of the etiological studies included in this review and the organisms identified, the details of each study and limitations of the study methods.

Clinical progression

While the clinical manifestations and sequelae of noma in each case are unique, the infection invariably starts with inflammation of the gums, which then leads to ulceration and the rapid destruction (within weeks [1]) of the cheek and in some cases the jaw, lip, nose and/or the eye [15,148,167]. For the purposes of case detection, the World Health Organisation has classified noma into stages, the first stages (Stage 0 to 4) are the acute stages of noma lasting only a few weeks; Stage 0: simple gingivitis; Stage 1: acute necrotizing gingivitis; Stage 2: oedema; Stage 3: gangrene. Stage 4: scarring and Stage 5: sequelae [1]. Deaths in noma patients are primarily reported to be due to starvation, aspiration pneumonia, respiratory insufficiency or sepsis [13,128]. Even though noma primarily affects young children [2], noma cases in adults, mostly in conjunction with other severe infections (like HIV, cancer or oral myiasis) have been reported [76,82,95,150].

Treatment with antibiotics, wound debridement, and nutritional support in the early, reversible stages of the disease can reduce the duration and severity of the acute phase of noma and the extent of tissue damage, thus reducing mortality and morbidity of noma (discussed in detail below) [2]. Those who survive the acute stages will often have severe sequelae including difficulty eating, seeing and breathing [1,2,136]. Survivors often need complex surgical reconstruction to restore form and function [167]. Trismus (a restriction in mouth opening) is one of the most disabling sequelae [91,144] and can lead to complications such as aspiration, malnutrition, poor oral hygiene, speech deficits, a compromised airway, and pain [168].

The aesthetic and functional sequelae of noma are compounded by the psychological impacts of the disease, not only on the patient, but also on family members and caretakers. Studies have reported that noma has led to mental health issues due to the social isolation and shunning of survivors and their families, bullying, a lack of access to education, difficulties finding jobs, and limited marital prospects [16,102,141,156,163,169–172].

There have been no published reports of noma re-activating [163]. None of the literature included in this review provided evidence to suggest that noma was contagious [163]. Given the ethical and practical challenges of conducting studies to assess the progression of the disease among the hard-to-reach affected communities, information is lacking on the environmental, nutritional and physiological conditions that trigger the progression to the later gangrenous stages of the disease.

Treatment

Acute phase treatment (Stages 0 to 4). Historically (1800’s and early 1900’s), noma cases presenting at medical institutions were managed with nutritional support with high protein...
foods (fruit, eggs, milk, meat [12,28,37]) alcohol (wine, brandy and whisky [10,12,28,31,32]) and wound cleaning using bicarbonate of soda [27,28], leeches, [27] and nitric acid [10,26,161]. It is difficult to know whether these methods were beneficial as all evidence was derived from case series and case reports. However, these treatments clearly point to an early appreciation of poor nutrition and hygiene being contributing factors to the progression of the disease.

Table 2. Microorganisms found in the oral flora of noma patients by year.

Study	Study details	Organism	Limitations
Falkler, 1999 [38]	Study type: Cross-sectional study Location: Nigeria n: Eight cases Additional details: Cancrum oris lesions (present for six weeks to two years) were cultured for anaerobic microorganisms.	*Fusobacterium necrophorum* and *Prevotella intermedia* were isolated from seven and six of the eight lesions, respectively.	Long duration of infection before testing (up to two years), small sample size, no healthy matched comparison group.
Phillips, 2005 [7]	Study type: Case control study Location: Nigeria n: 68 acute noma cases, 63 village and 45 urban controls Additional details: Cases were found over four years through house visits. Controls were matched by age and were children attending out-patient clinics and primary health care centres for routine checks, and had no recent history of any disease, fever and diarrhea. Oral bacteria were studied by polymerase chain reaction on six cases. Excluded those treated with antibiotics or traditional medicine in last 48hrs. Excluded measles, HIV and malaria comorbid patients.	Bacteria observed at the highest frequencies in noma lesions were *Prevotella intermedia* (83%), *Tannerella forsythensis* (83%), *Porphyromonas gingivalis* (50%), *Campylobacter rectus* (50%) and *Treponema denticola* (50%).	Control selection (children attending health care facility) could have biased results as these children were already accessing care. It is unknown how long each patient had noma for. The sample size for bacterial testing was small (n = 6).
Chizonga, 2008 [96]	Study type: Retrospective chart review Location: Zimbabwe n: 48 acute noma cases, five cases had microbiologic investigations Additional details: All cases presented one to two weeks after onset of symptoms	*Staphylococcus aureus*, *Klebsiella species*, group D Streptococcus, and group B hemolytic Streptococcus.	Small sample size, retrospective chart review, no control group.
Baratti-Mayer, 2013 [111]	Study type: Prospective matched, case-control study Location: Niger n: 82 acute noma cases, 327 matched controls Additional details: Study took place over six years. Exact stage of noma cases not defined. Controls matched on age and home village. Extracted total genomic deoxyribonucleic acid. Cases who received antibiotics or whose specimens deteriorated were excluded (n = 20), 117 microbial samples were processed from noma cases and 235 from controls. Multivariable model showed organisms associated with noma.	A reduced proportion of *Spirochaeta*, *Fusobacterium*, *Capnocytophaga*, and *Neisseria* in the oral microbiota, but an increased proportion of *Prevotella* associated with noma. Controls had higher *Fusobacterium* genus levels raising doubts about previous findings.	Controls were significantly older than cases. 28% of observations in the analysis were excluded because of missing data for microbiological variables due to problems collecting data due to poor health.
Huyghe, 2013 [93]	Study type: Case control study Location: Niger n: 84 acute noma cases, 37 acute necrotizing gingivitis cases and 343 controls Additional details: Cases had no antibiotics, no dental cleaning and did not receive fortified food during the 3 previous months. Subjects with lesions older than 4 weeks were excluded.	Compared to the healthy controls, a lower bacterial diversity was found in noma samples. Less *Porphyromonadaceae*, *Tannerella* spp., *Capnocytophaga* spp., *Fusobacteria* and *Cetobacterium* spp. were found in noma samples. Raises doubts about *Fusobacterium necrophorum*.	Authors state need for time series data and the utilization of high-throughput sequencing capacity to elucidate the aetiology of noma.
More recently (later 1900’s and 2000’s), timely administration of broad-spectrum antibiotics [14,85,92,96,97], wound cleaning and debridement [9,17,73,78,84,97,106], and nutritional support [13,92,96,173] have shown to be effective in reducing the severity and sequelae of noma by arresting the acute phase of the infection in some patients. A range of antibiotics were reported in the included studies such as amoxicillin [78,84,97,106], metronidazole [8,9,38,84,103], lincomycin [80] and cefotaxime [8,81]. No studies comparing the relative efficacy of these antibiotics were identified.

The current WHO guidelines for the management of the acute stages of noma in clinical settings includes [1]: oral hygiene (mouth wash Chlorhexidine 0.2%, 10 ml), antibiotic treatment (amoxicillin and metronidazole), nutritional support (high protein), wound cleaning (compresses soaked in hydrogen peroxide) and dressing (honey for local dressing and for antibacterial action and regeneration) [1].

Sequelae treatment (Stage 5). If the patient survives the acute illness, they can live into adulthood but often require extensive reconstructive surgery and intensive physiotherapy to improve the resulting structural and functional defects [174] that often require a number of surgical treatments [137]. Studies have highlighted the fact that the time between acute illness and surgical care can be decades [136,141,144]. The clinical manifestation of each noma case is unique, and as such, the surgical procedures used to treat each noma case differ [15,39,42,74,102,115–117,145,148]. Reported surgical techniques include pedicled supraclavicular flaps for the treatment of large unilateral facial defects [102,117]; myocutaneous submental artery flaps, bony and/or soft tissue trismus releases [109], forehead flaps [109,144] and lower lid ectropion release [109]. In one study, extra-articular ankylosis due to noma was treated using soft tissue reconstruction with large free flaps [116]. Trismus was treated using a bone distractor in one study [134], and in another mouth opening was performed by bone-bridge excision, sometimes associated with contralateral coronoidectomy [116]. In a further study, the reconstruction of an upper lip defect was conducted using Gillies fan flaps [89]. A 2006 book on noma surgical techniques includes information on the reconstruction of the lips and corner of the mouth using Abbe, Estlander and fan flaps; and the reconstruction of the cheek using temporo-parietal fascia and deltopectoral flaps; and the reconstruction of central defects using radial forearm and local turnover flaps [167]. Challenges with anaesthesia for noma survivors have been reported, particularly in patients with severe trismus [125,127].

Physiotherapy is an essential part of noma treatment, especially to prevent or minimise trismus [74] and can lead to improvements in eating, chewing and speaking [112].

Noma often leads to stigmatization and resultant social isolation of the patients and their family members from their communities [2,14,16,102,156]. Several studies have highlighted the importance of including social and psychological support for noma patients and their families [136,137,156,169].

Outcomes of noma treatment are difficult to ascertain due to inconsistent patient follow-up in most studies [91]. This is mostly due to the remote locations of the home villages of patients and difficulties in accessing health care facilities [13,14,113]. However, there have been evaluations of noma survivors after surgery which have shown that surgical treatment for noma survivors greatly improves their quality of life, even if functional improvements (specifically mouth opening) are not pronounced [14,102,136,141,156]. The extent of long-term sequelae and their impact on quality of life of noma patients depends on the severity of the disease at initial presentation, efficacy of antibiotic treatment, wound debridement and the facial structures affected [91,92,96,97]. It was noted that a validated, standardized noma patient-reported outcome measurement tool would be helpful in standardizing outcome reporting after surgical treatment [136,141,175].
Traditional treatments. In Mali and Nigeria, traditional healers’ knowledge of noma was limited \([126, 146]\), however, several traditional healers in Nigeria reported treating different stages of the disease. In Nigeria, traditional treatments for noma include ground herbs, plants, ointments and piercing of the swollen cheek (in the oedema phase of noma) \([126]\). Traditional healers in Nigeria reported referring patients with the later stages of disease to hospitals and clinics and being interested in assisting with referrals of noma patients, and attending trainings on the disease \([126]\).

Mortality

There is limited and inconclusive evidence around the pathogenesis of noma leading to death. Factors that favour survival (apart from antibiotic treatment and wound debridement) are unknown. The mortality rate of noma depends on multiple factors and is poorly enumerated. The WHO (based on expert opinion and retrospective chart analyses) states that noma has a mortality rate of 90% within weeks after the onset of noma if left untreated \([1]\). The speed with which death occurs is also debated, some state death occurs in as little as two weeks from the onset of first symptoms \([1]\) but it is unclear which symptoms these are. The clearest reported estimate is that death can occur in a matter of days after the onset of oedema \([13]\). What is certain is that when noma is identified and treated in a timely manner, mortality greatly decreases \([176]\).

Table 3 explores the mortality rates reported in various studies included in this review. These estimates highlight the differences in mortality rates in groups who received no antibiotic treatment (49–94%), compared to those who had received drug therapies such as antibiotics (0–38%) (Table 3). It should be noted that these estimates are derived from case series and

Study	Location	Study design	Cases	Mortality (%)	Treatment
Tourdes, 1848 \([177]\)	Europe	Case series	239	73%	No drug therapy
Barthez, 1855 \([177]\)	Europe	Case series	29	89%	No drug therapy
Ritchie, 1872 \([4]\)	Europe	Case series	8	63%	Iron with citric-acid, nutritional support
Springer, 1904 \([177]\)	Europe	Case series	88	94%	Wound debridement
Gupta, 1945 \([44]\)	India	Case series	79	49%	Penta-valent antimony (treatment of leishmaniasis), nutritional support, vitamins, blood transfusions, local antiseptic treatment
Jelliffe, 1952 \([37]\)	Nigeria	Case series	53	30%	Penicillin
Mehrotra, 1966 \([49]\)	India	Case series	20	15%	Antibiotics, multivitamins, high protein diet, sequestrectomy, plastic reconstructive surgeries
Adekeye and Ord, 1978–1982 \([13]\)	Nigeria	Case series	13	0%	Antibiotics
Bourgeois, 1981–93 \([13]\)	Senegal	Case series	73	10%	Drug therapy, kind of treatment not specified
Oginni, 1982–96 \([13]\)	Nigeria	Case series	133	0%	Drug therapy, kind of treatment not specified
Nath, 1998 \([15]\)	Zambia	Retrospective chart review	117	20%	Nutrition, wound care
Chidzonga, 1996 \([48]\)	Zimbabwe	Case series	8	38%	Antibiotics, wound debridement, removed mobile teeth, irrigated wounds
Millogo, 2012 \([122]\)	Burkina Faso	Retrospective chart review	212	HIV 38%; non- HIV patients 6%	Antibiotics, anti-retroviral therapy
Konsem, 2014 \([104]\)	Burkina Faso	Retrospective chart review	55	15%	Antibiotics
Braimah, 2017 \([147]\)	Nigeria	Retrospective chart review	159	25%	Antibiotics

https://doi.org/10.1371/journal.pntd.0009844.t003
retrospective chart reviews; no standardized reporting of noma stage was used and the studies do not have the same follow-up periods. The evidence should be evaluated with these study design restrictions in mind, as they could over- or under-estimate the mortality rates of noma patients, particularly at the community level.

Discussion

There is a dearth of research and literature on noma. The date of the first study included in this review was 1843, and since this time, an average of one publication has been written on the disease per year (calculated based on the studies included in this review). Despite significant progress in scientific methods since the first study, the literature remains predominantly populated with case reports and case series. More scientifically robust studies are needed. The reasons behind this neglect include the lack of knowledge about the disease by healthcare workers, in part due to noma not being included in medical curricula leading to under-reporting and misdiagnosis of cases [92,140], the hypothesized low prevalence of the disease [1], which may, in part, be due to inconsistent surveillance and reporting on the disease [107], the relative inaccessibility of the affected communities and the rapid progression of the disease, high mortality, stigmatization and isolation of noma survivors [2,16,102,156,176]. There is appreciation among the small community of clinicians and researchers involved in noma care and research that this lack of awareness impacts on the ability to develop and implement sound evidence-based policies and public health initiatives aimed at eradicating noma from communities that continue to be afflicted by this ancient disease. Several studies have stated that these gaps in research could be filled with better awareness about the disease and call for the inclusion of noma in the WHO list of neglected tropical diseases which would highlight noma in the global health arena [178–180]. It is likely that addressing the causes and conditions contributing to noma will lead to wide ranging benefits.

Based on this literature review, some of the main gaps in knowledge are enumerating the burden of disease (both incidence and prevalence); describing the true mortality rate and pathogenic cause(s) of noma and the role of different comorbidities (specifically measles and HIV) play the development of noma, a finding similar to other reviews [2,13,154,165,174,180–182]. Factors that influence prognosis and the long-term outcomes after care (surgical and non-surgical) [88], including the most effective antibiotic treatment protocols [91], need to be assessed. The knowledge of health care workers about noma in high risk areas, the number of medical school and tropical medicine curriculums that include noma; and the role the varying healthcare actors could play in prevention [183] need to be explored. An additional area for future studies would be to compare prevention methods and messaging [92] to identify the most effective mechanisms. Efforts to eliminate extreme poverty may lead to a reduction in the number of cases of noma, and potentially even eliminate this disease.

There were several limitations to this review. Given the inclusion time period of this review (from the 1800’s to present) it is likely that some manuscripts (especially in the earlier years) were not available on current indexing systems and hence not included in this review. We used Google Translate to translate non-English papers, which could have led to some misinterpretation, as it is not an official academic translating service. The inclusion of published manuscripts only and not books and other grey literature could have limited the amount of information identified.

In summary, noma is a preventable disease that affects young children in the most vulnerable and impoverished communities. It is a devastating and often fatal disease that requires urgent and intensive clinical and surgical care, often difficult to access as most cases of noma occur in resource-limited settings. Noma has been reported in the literature for hundreds of
years; however major gaps in knowledge about the disease still exist. What is clear from the literature is the wide geographical spread of noma, and the need for further studies to gain an understanding of the burden and distribution of disease; the true mortality rate, and the pathogenic cause(s) and the factors that influence prognosis and outcomes after treatment. Filling these gaps in knowledge will help with the development of effective targeted interventions to reduce the burden of noma in the most affected populations.

Supporting information

S1 PRISMA Checklist. Preferred Reporting Items for Systemic review and Meta-Analyses (PRISMA) requirements.
(DOCX)

S1 Data. Full list of included articles.
(DOCX)

S1 Equation. WHO formula.
(DOCX)

Acknowledgments

The authors are grateful to all of the all of the authors whose work is cited in this review. A big thank you to Wendy Smith for helping to source the articles through the University of Cape Town medical library.

Author Contributions

Conceptualization: Elise Farley, Ushma Mehta, Annick Lenglet.

Data curation: Elise Farley.

Formal analysis: Elise Farley.

Methodology: Elise Farley.

Supervision: Ushma Mehta, M. Leila Srour, Annick Lenglet.

Validation: Ushma Mehta, M. Leila Srour, Annick Lenglet.

Visualization: Elise Farley.

Writing – original draft: Elise Farley.

Writing – review & editing: Ushma Mehta, M. Leila Srour, Annick Lenglet.

References

1. World Health Organization Regional Office for Africa. Information brochure for early detection and management of noma. 2017. Available from https://apps.who.int/iris/handle/10665/254579; 2017. Available: https://apps.who.int/iris/handle/10665/254579%

2. Ashok N, Tarakji B, Darwish S, Rodrigues JC, Altamimi MA. A Review on Noma: A Recent Update. Glob J Health Sci. 2016; 8: 53–59. https://doi.org/10.5539/gjhs.v8n4p53 PMID: 26573028

3. Tricco AC, Lillie E, Zarin W, O'Brien KK, Colquhoun H, Levac D, Moher D, Peters MD, Horsley T, Weeks L HS. PRISMA Extension for Scoping Reviews (PRISMA-ScR): Checklist and Explanation. Ann. 2018; 169: 467–73. https://doi.org/10.7326/M18-0850 PMID: 30178033

4. Ritchie P. Observations on the inflammations of the mouth in children, with an illustrative case. Trans Edinburgh Obstet Soc. 1871; 418–435.

5. Marck K. Cancrum oris and noma: Some etymological and historical remarks. Br J Plast Surg. 2003; 56: 524–527. https://doi.org/10.1016/s0007-1226(03)00224-8 PMID: 12946368
6. Adedoja D, Kabue M, Sahila P. Cancrum oris in HIV infected children in Lesotho: report of two cases. East Afr Med J. 2002; 79: 499–501. https://doi.org/10.4314/eamj.v79i9.124 PMID: 12625693
7. Phillips R, Enwonwu C, Falkier W. Pro- versus anti-inflammatory cytokine profile in African children with acute oro-facial noma (cancrum oris, noma). Eur Cytokine Netw. 2005; 16: 70–77. Available: https://www.google.com/url?q=sa%3Dj&q=%5Bsource=web&cd=2&ved%3DahUKEwinyyHHhv3AhUI7HlvKydQfJAEgQIAhAC&url=https%3A%2F%2Fpdfs.semanticscholar.org%2F460f%2Fcbb9fedf21767224f88769afceea0e6717b06.pdf&usg=AOvVaw3HkJ7Grfluyl5kHnz31cIA PMID: 15809209
8. Yuca K, Yuca S, Çankaya H, Çaksen H, Całka O, Kir M. Report of an infant with Noma (Cancrum Oris). J Dermatol. 2004; 31: 488–491. https://doi.org/10.1111/j.1346-8138.2004.tb00539.x PMID: 15235191
9. Oji C. Cancrum oris: its incidence and treatment in Enugu, Nigeria. Br J Oral Maxillofac Surg. 2002; 40: 406–409. https://doi.org/10.1016/S0266-4356(02)00192-4 PMID: 12379187
10. Keiller A. On Cancrum Oris. Edinb Med J. 1862; VII: 919–934. PMID: 29640836
11. Lazurus D. Cancrum oris—a 35-year retrospective study. S Afr Med J. 1997; 87: 1379–1382. PMID: 9472253
12. Fleming A. A Case of Cancrum Oris, with a short critique on the disease. Trans Med Chir Soc Edinb. 1892; 251–259.
13. Baratti-Mayer D, Pittet B, Montandon D, Bolivar I, Bornand JE, Jaquinet A, et al. Noma: an “infectious” disease of unknown aetiology. Lancet Infect. 2003; 3: 419–431. https://doi.org/10.1016/S1473-3099(03)00670-4
14. Enwonwu C, Falkier W, Idigbe E, Afolabi B, Ibrahim M, Onwujekwe D, et al. Pathogenesis of cancrum oris (noma): Confounding interactions of malnutrition with infection. Am J Trop Med Hyg. 1999; 60: 223–232. https://doi.org/10.4269/ajtmh.1999.60.223 PMID: 10072140
15. Kajiru I, Nyimbi I. The impact of myths, superstition and harmful cultural beliefs against albinism in Tanzania: A human rights perspective. Potchefstroom Electron Law J. 2020; 23: 1–27. https://doi.org/10.17159/1727-3781/2020/V23I0A8793
16. Steward G. Royal Hospital for Sick Children, Edinburgh. Case of cancrum oris; recovery. Lancet. 1868; 92: 601. https://doi.org/10.1016/S0140-6736(02)72116-8
17. Yates P, Kingsford EC. Cancrum oris and its successful treatment by the local application of corrosive sublimate. Lancet. 1899; 133: 880–882. https://doi.org/10.1016/S0140-6736(01)91067-0
18. Kingsford E. Cancrum oris. Lancet. 1891; 138: 607–608. https://doi.org/10.1016/S0140-6736(02)01478-2
19. Usher S, Ross D. A case of cancrum oris following typhoid fever with plastic repair. Can Med Assoc J. 1931; 446–449. PMID: 20318474
20. Locomotor ataxia with cancrum oris as a fatal complication. JAMA J Am Med Assoc. 1899; XXXIII: 234. https://doi.org/10.1001/jama.1899.02450560054015
21. Gould F. A case of broncho-pneumonia, followed by cancrum oris and subsequent necrosis of jaw; recovery. Lancet. 1872; 100: 150. https://doi.org/10.1016/S0140-6736(02)52159-0
22. Duncan JF. On the administration of mercury in cases of cancrum oris. Dublin Q J Med Sci. 1852; 14: 265–273. https://doi.org/10.1007/BF02943899
23. Fayrer J. A case of acute malarial poisoning, enteric fever ensuing, complicated by brain and lung symptoms, also by extensive cancrum oris. Lancet. 1889: 296–300.
24. Gray J. Cancrum Oris. Glas Med J. 1856; 16–21. PMID: 30432138
25. O’Gorman P. Cancrum oris in an European soldier: enlarged spleen; pancreatic disease. Post mortem results. Ind Med Gaz. 1882; 14–15. PMID: 28998790
26. Cousens J. Cancrum oris followed by extensive ulceration of the cheek and ankylosis of the jaw: recovery. Br Med J. 1893; 739–740. https://doi.org/10.1136/bmj.1.1684.739 PMID: 20754153
27. Elder G. Case of Cancrum Oris. Trans Medico-Chirurgical Soc Edinburgh. 1893; 12: 259–262. Available: http://www.ncbi.nlm.nih.gov/pubmed/29584330 PMID: 29584330
31. Barker H. Case of cancrum oris with necrosis of a large portion of the inferior maxillary bone, followed by recovery. Prov Med Surg J. 1852; 611–612. https://doi.org/10.1136/bmj.s1-16.24.611 PMID: 20795261

32. Hunt H. Remarks on cancrum oris, and the gangrenous erosion of the cheek of Mr Dease and Mr Underwood, and more particularly on the efficacy of the chlorate of potash in the treatment of those diseases. Med Chir Trans. 1843; 1–12.

33. Layman PR. Bypassing a problem airway. Anaesthesia. 1983; 38: 478–480. https://doi.org/10.1111/j.1365-2044.1983.tb01305.x PMID: 6859478

34. Hickey B. Cancrum Oris. Br Med J. 1949; 367. https://doi.org/10.1136/bmj.1.4599.367-c PMID: 18124241

35. Mackay D. Cancrum oris among African natives. Br Med J. 1949; 223.

36. Hefferman L. Cancrum oris treated by excision and subsequent tube grafting. Ind Med Gaz. 1923; 434–437. PMID: 29007986

37. Jelliffe D. Infective gangrene of the mouth (Cancrum Oris). Pediatrics. 1952; 9: 1–9. PMID: 14929608

38. Falkler W, Enwonwu C, Idigbe E. Isolation of fusobacterium necrophorum from cancrum oris (noma). Am J Trop Med Hyg. 1999; 60: 150–156. https://doi.org/10.4269/ajtmh.1999.60.150 PMID: 9988340

39. Cressy A. Cancrum oris successfully treated by excision of the cauter. Ann Surg. 1901; 288–290. https://doi.org/10.1097/00000658-190107000-00024 PMID: 17861018

40. Falkler W, Enwonwu C, Idigbe E. Microbiological understandings and mysteries of noma (cancrum oris). Oral Dis. 1999; 5: 150–155. https://doi.org/10.1002/(sici)1098-2752(1999)19:1<3::aid-micr3.0.co;2-e PMID: 10522213

41. Ndiaye F, Bourgeois D, Leclercq M, Berthe O. Noma: public health problem in Senegal and epidemiological surveillance. Oral Dis. 1999; 5: 163–166. https://doi.org/10.10111/j.1601-0825.1999.tb00083.x PMID: 10522215

42. Marck K. Noma: the Sokoto approach. Eur J Plast Surg. 1998; 21: 277–280.

43. Findlay GM. Oral aureimycin in the treatment of tropical ulcers and cancrum oris. Trans R Soc Trop Med Hyg. 1950; 44: 307–310. https://doi.org/10.1016/0035-9203(50)90057-5 PMID: 14809753

44. Gupta P, Chakravarty N. Penicillin in Cancrum Oris Complicating Kala-Azar. Ind Med Gaz. 1945; 542–545. PMID: 21022515

45. Bene M, Amadei F, Petrolati M, Rovati L, Confalone P, Caronni E. Radial forearm fasciocutaneous free flap as a solution in case of noma. Microsurgery. 1999; 19: 3–6. https://doi.org/10.1002/micr.3.0.003830050275 PMID: 9563034

46. Nath S, Jovic G. Total loss of upper and lower lips: challenges in reconstruction. Br J Oral A4axrlofacial Surg. 1998; 36: 460–461. https://doi.org/10.1016/s0266-4356(98)90464-8 PMID: 9881790

47. Chidzonga M. Noma (cancrum oris) in human immunodeficiency virus acquired/ immune deficiency syndrome patients: report of eight cases. J Oral Maxillofac Surg. 1996; 54: 1056–60. https://doi.org/10.1016/s0278-2391(96)90159-7 PMID: 8811814

48. Mehrotra M. Cancrum oris. A clinical survey of 20 cases. J Indian Med Assoc. 1966; 147: 555–7. Available: https://www.ncbi.nlm.nih.gov/pubmed/5980942 PMID: 5980942

49. Griffiths W. Dermatology in Shiraz, Iran. Trans St Johns Hosp Dermatol Soc. 1975; 61: 92–9. PMID: 1198699

50. Osuji O. Necrotizing ulcerative gingivitis and Cancrum Oris (noma) in Ibadan, Nigeria. J Periodontol. 1991; 61: 769–772. https://doi.org/10.1902/jop.1990.61.12.769 PMID: 2269198

51. Spiro MD. Use of penicillin in cancrum oris. J Pediatr. 1947; 14: 171–172. doi:https://link.springer.com/article/10.1007%2FBF02812636?LI=true
57. Griffin J, Bach D, Nespeca J, Marshall K. Noma: Report of two cases. Oral Surgery, Oral Med Oral Pathol. 1983; 56: 605–607. https://doi.org/10.1016/0030-4220(83)90077-4 PMID: 6581458
58. Rotbart HA, Levin MJ, Jones JF, Hayward AR, Allan J, McLane MF, et al. Noma in children with severe combined immunodeficiency. J Pediatr. 1986; 109: 596–600. https://doi.org/10.1016/s0022-3476(86)80219-0 PMID: 3020218
59. Stassen LF, Batchelor AG, Rennie JS, Moos KF. Cancrum oris in an adult Caucasian female. Br J Oral Maxillofac Surg. 1989; 27: 417–22. https://doi.org/10.1016/0266-4356(89)90083-1 PMID: 2804045
60. Barrios T, Aria A, Brahney C. Cancrum oris in an HIV-positive patient. J Oral Maxillofac Surg. 1995; 53: 851–5. https://www.ncbi.nlm.nih.gov/pubmed/7955806 https://doi.org/10.1016/0278-2391(95)90349-6 PMID: 7595879
61. McCURDY SL. Cancrum oris. JAMA J Am Med Assoc. 1907; XLIX: 1441. https://doi.org/10.1001/jama.1907.25320170035004
62. Linenberg WB, Schmitt J, Harpole HJ. Noma. Report of a case. Oral Surg Oral Med Oral Pathol. 1961; 14: 1138–41. https://doi.org/10.1016/0030-4220(61)90508-4 PMID: 13762416
63. Majumder D. A case note on cancrum oris following pneumonia treated by prontosil. Ind Med Gaz. 1938; October: 614.
64. Swain V. Sketches of surgical cases drawn in 1884–87 at the East London Hospital for Children, Shadwell. Prog Pediatr Surg. 1986; 20: 265–80. https://www.ncbi.nlm.nih.gov/pubmed/3095879 https://doi.org/10.1007/978-3-642-70825-1_20 PMID: 3095879
65. Kaimenyi J, Guthua S. Residual facial deformity resulting from cancrum oris: a case report. East Afr Med J. 1994; 71: 476–8. PMID: 7828506
66. STARK S. Noma or gangrenous stomatitis; report of a case. Oral Surg Oral Med Oral Pathol. 1956; 9: 1076–9. https://doi.org/10.1016/0030-4220(56)90070-6 PMID: 1061036
67. Cameron R. Cancrum oris with its common complications. Lancet. 1901; 158: 1730–1731. https://doi.org/10.1016/S0140-6736(01)74321-8
68. Laslett EE. A case of cancrum oris affecting both sides. Lancet. 1902; 159: 513–514. https://doi.org/10.1016/S0140-6736(01)89488-5
69. King H. Noma (cancrum oris) in an adult, with report of a case. J Am Med Assoc. 1911; LVI: 1449. https://doi.org/10.1001/jama.1911.02560200017011
70. Smith EC. Cancrum oris in a case of leukæmia. Trans R Soc Trop Med Hyg. 1926; 19: 394–396. https://doi.org/10.1016/S0035-9203(26)90506-3
71. Limongelli WA, Clark MS, Williams AC. Nomalike lesion in a patient with chronic lymphocytic leukemia. Oral Surg Oral Med Oral Pathol. 1976; 41: 40–4. https://doi.org/10.1016/0030-4220(76)90250-4 PMID: 1061036
72. Weinstein RA, Choukas NC, Wood WS. Cancrum oris-like lesion associated with acute myelogenous leukemia. Oral Surg Oral Med Oral Pathol. 1974; 38: 10–4. https://doi.org/10.1016/0030-4220(74)90305-3 PMID: 4600706
73. Ghose A. A case of cancrum oris as a complication of bacillary dysentery. Ind Med Gaz. 1937; 419–420. PMID: 29012703
74. Mukerji S. A case of stiff jaw after cancrum oris—surgical interference—cure. Ind Med Gaz. 1927; 387. PMID: 29010630
75. Oginni F, Oginni A, Ugboko V, Otuyemi O. A survey of cases of cancrum oris seen in Ile-Ife, Nigeria. Int J Paediatr Dent. 1999; 9: 75–80. https://doi.org/10.1046/j.1365-263x.1999.00110.x PMID: 10530215
76. Lathigara M. An unusual case of cancrum oris. Indian J Pediatr. 1935; 626–627. PMID: 29013266
77. Asai T, Matsumoto H, Shingu K. Awake tracheal intubation through the intubating laryngeal mask. Can J Anesth. 1999; 46: 182–184. https://doi.org/10.1007/BF0312555 PMID: 10084001
78. Weledji E, Njong S. Cancrum Oris (noma): the role of nutrition in management. J Am Coll Clin Wound Spec. 2016; 7: 50–52. https://doi.org/10.1016/j.jccw.2016.08.003 PMID: 28053669
79. Oginni F, Oginni A, Ugboke V, Otuyemi O. A survey of cases of cancrum oris seen in Ile-Ife, Nigeria. Int J Paediatr Dent. 1999; 9: 75–80. https://doi.org/10.1046/j.1365-263x.1999.00110.x PMID: 10530215
80. Lathigara M. An unusual case of cancrum oris. Indian J Pediatr. 1935; 626–627. PMID: 29012703
81. Asai T, Matsumoto H, Shingu K. Awake tracheal intuba- tion through the intu- bating laryngeal mask. CAN J ANESTH. 1999; 46: 182–184. https://doi.org/10.1007/BF0312555 PMID: 10084001
82. Weledji E, Njong S. Cancrum Oris (noma): the role of nutrition in management. J Am Coll Clin Wound Spec. 2016; 7: 50–52. https://doi.org/10.1016/j.jccw.2016.08.003 PMID: 28053669
83. Madabhavi I, Revannasiddiia S, Sarkar M. Cancrum oris (noma): An early sign of acute lymphoblastic leukemia relapse. Indian J Dermatology, Venereology Leprol. 2018; 84: 73–6. https://doi.org/10.4103/ijdvld.IJ DVL_1038_14 PMID: 28793529
84. Lembo S, Leonibus C, Francia M, Lembo C, Ayala F. Cancrum oris in a boy with Down syndrome. J Am Dermatology. 2011; 64: 1200–1202. https://doi.org/10.1016/j.jaad.2009.08.048 PMID: 21571193
85. Evans L, Lane H, Jones M. Cancrum oris in a Caucasian male with Type 2 diabetes mellitus. Diabet Med. 2001; 18: 246–248. https://doi.org/10.1046/j.1464-5491.2001.00375.x PMID: 11318848
82. Koech K. Cancrum oris in an adult with human immunodeficiency virus infection: case report. East Afr Med J. 2010; 87: 38–40. https://doi.org/10.4314/eamj.v87i1.59953 PMID: 23057302

83. Chiandussi S, Luzzati R, Tirelli G, Lenarda R, Biasotto M. Cancrum oris in developed countries. Aging Clin Exp Res. 2009; 21: 475–477. https://doi.org/10.1007/BF03277447 PMID: 20154519

84. Behanan A, Auluck A, Pai K. Cancrum oris. Br J Oral Maxillofac Surg. 2004; 42: 267–269. https://doi.org/10.1016/j.bjoms.2004.02.018 PMID: 15121729

85. Resident S, Vaidya S, Agrawal A. Cancrum oris: a case report. Indian J Otolaryngol Head Neck Surg. 2006; 58: 411–413. https://doi.org/10.1007/BF03049618 PMID: 23120371

86. Woon C, Wei-ee K, Tan B, Lee S. Case report: Journey of a Noma Face. Open access J Plast Surg. 2010; 10: 412–418. PMID: 20628471

87. Sykes L, Essop R. Combination intraoral and extraoral prosthesis used for rehabilitation of a patient treated for cancrum oris: A clinical report. J Prosthet Dent. 2000; 60: 165–166. PMID: 10842126

88. Huijing M, Marck K, Combes J, Mizen K, Fourie L, Demisse Y, et al. Facial reconstruction in the developing world: a complicated matter. Br J Oral Maxillofac Surg. 2011; 49: 292–296. https://doi.org/10.1016/j.bjom.s.2009.08.044 PMID: 20728253

89. Bello S. Gillies fan flap for the reconstruction of an upper lip defect caused by noma: case presentation. Clin Cosmet Investig Dent. 2012; 17–20. https://doi.org/10.2147/CCIDEN.S31190 PMID: 23674921

90. Chidzonga M. HIV/AIDS orofacial lesions in 156 Zimbabwean patients at referral oral and maxillofacial surgical clinics. Oral Dis. 2003; 9: 317–322. https://doi.org/10.1034/j.1601-0825.2003.00962.x PMID: 14629334

91. Bisseling P, Bruhn J, Erdsach T, Ettema AM, Sautter R, Berge SJ. Long-term results of trismus release in noma patients. Int J Oral Maxillofac Surg. 2010; 39: 873–877. https://doi.org/10.1016/j.ijom.2010.05.002 PMID: 20541369

92. Ahlgren M, Funk T, Marimo C, Ndiaye C. Management of noma: practice competence and knowledge among healthcare workers in a rural district of Zambia. Glob Health Action. 2017; 10: 1–9. https://doi.org/10.1080/16549716.2017.1340253 PMID: 28678680

93. Huynge A, Franc P,ombelli A, Tangomo M, Girard M, Baratti-Mayer D, et al. Microarray analysis of microbiota of gingival lesions in noma patients. PLoS Negl Trop Dis. 2013; 7. https://doi.org/10.1371/journal.pntd.0002453 PMID: 24086784

94. Kuhnel T, Dammer R, Dunzi B, Beule AG, Strutz J. New split scar cheek flap in reconstruction of noma sequelae. Br Assoc Plast Surg. 2003; 56: 528–533. https://doi.org/10.1016/s0007-1226(03)00225-x PMID: 12946369

95. Aguilar M, Enwonwu C, Pires F. Noma (cancrum oris) associated with oral myiasis in an adult. Oral Dis. 2003; 9: 158–159. https://doi.org/10.1034/j.1601-0825.2003.03942.x PMID: 12945598

96. Chidzonga M, Mahomva L. Noma (Cancrum Oris) in Human Immunodeficiency Virus Infection and Acquired Immunodeficiency Syndrome (HIV and AIDS): Clinical Experience in Zimbabwe. J Oral Maxillofac Surg. 2008; 66: 475–485. https://doi.org/10.1016/j.joms.2007.09.024 PMID: 18280380

97. Masipa J, Baloyi A, Khammissa R, Altini M, Lemmer J, Feller L. Noma (Cancrum Oris): A report of a case in a young AIDS patient with a review of the pathogenesis. Head Neck Pathol. 2013; 7: 188–192. https://doi.org/10.1007/s12105-012-0393-0 PMID: 22907664

98. Whiteson K, Lazarevic V, Tangomo-be nto M, Girard M, Maughan H, Pittet D, et al. Noma affected children from Niger have distinct oral microbial communities based on high-throughput sequencing of 16S rRNA gene fragments. PLOS NTD. 2014; 8: 1–13. https://doi.org/10.1371/journal.pntd.0003240 PMID: 25474262

99. Konsem T, Millogo M, Gare J, Ouedraogo D, Ouoba K. Noma et maladie de Burkitt, une association exceptionnelle à propos de trois observations vues au centre hospitalier universitaire Yalgado Ouedraogo (Burkina Faso). Bull Soc Pathol Exot. 2014; 107: 146–150. https://doi.org/10.1371/journal.pntd.0002695 PMID: 24792458

100. Barrera J, Connor M. Noma in an Afghani child: A case report. Int J Pediatr Otorhinolaryngol. 2012; 76: 742–744. https://doi.org/10.1016/j.ijporl.2012.01.034 PMID: 22381363

101. Madsen T, Medina C, Jespersen S, Wejse C, Hauge B, Noma in an HIV infected patient in Guinea—Bissau: a case report. Infection. 2017; 45: 897–901. https://doi.org/10.1007/s15010-017-1034-z PMID: 28898415

102. Shaye D, Winters R, Rabbels J, Adentunje A, Magee A, Vo D. Noma Surgery. Laryngoscope. 2019; 129: 96–99. https://doi.org/10.1002/lary.27230 PMID: 30194753

103. Maley A, Desai M, Parker S. Noma: A disease of poverty presenting at an urban hospital in the United States. JAAD Case Reports. 2015; 1: 18–20. https://doi.org/10.1016/j.jdcr.2014.10.001 PMID: 27075129
104. Konsem T, Millogo M, Assouan C, Ouedraogo D. Evoluting form of cancrum oris, about 55 cases collected at the Academic Hospital Yalgado Ouedraogo of Ouagadougou. Bull Soc Pathol Exot. 2014; 107: 74–78. https://doi.org/10.1007/s13149-014-0338-9 PMID: 24566885

105. Goetz A, Giessler M, Andreas B, Schmidt M. Noma: Experiences with a Microvascular Approach under West African Conditions. Plast Reconstr Surg. 2003; 947–954. https://doi.org/10.1097/01.PRS.000076217.58995.E2 PMID: 12973208

106. Auluck A, Pai K. Noma: life cycle of a devastating sore—case report and literature review. J Can Dent Assoc. 2005; 71: 757a–e. PMID: 16324228

107. Adeniyi S, Awosan K. Pattern of Noma (Cancrum Oris) and its risk factors in northwestern Nigeria: a hospital-based retrospective study. Ann Afr Med. 2019; 18: 17–22. https://doi.org/10.4103/aam.aam_5_18 PMID: 30729928

108. Vaidyanathan S, Tullu M, Lahiri K, Deshmukh C. Pseudomonas sepsis with noma: an association? Indian J Med Sci. 2005; 59: 357–361. https://doi.org/10.4103/0019-5359.16653 PMID: 16129930

109. Saleh D, Fourie L, Mizen K. Reconstruction of complex oro-facial defects using the myocutaneous sub-mental artery flap. J Cranio-Maxillofacial Surg. 2014; 42: 668–673. https://doi.org/10.1016/j.jcms.2013.09.013 PMID: 24209385

110. Goff M, Jammet P, Breton-Torres I. Rééducation des séquelles du noma Rehabilitation of noma sequelae. Kinésithérapie, la Rev. 2015; 15: 41–48. https://doi.org/10.1016/j.kine.2014.10.010

111. Baratti-Mayer D, Gayet-Ageron A, Hugonnet S, François P, Pittet-Cuend B, Huygea A, et al. Risk factors for noma disease: a 6-year, prospective, matched case-control study in Niger. Lancet Glob Heal. 2013; 1: 87–96. https://doi.org/10.1016/S2214-109X(13)70015-9 PMID: 25104163

112. García-Guilarte F, Urrea L, Frohner B, Meli G, González D, Celada E. Mandibular ankylosis: a Noma frequent sequel. Cirugía Plástica Ibero-Latinoamericana -. 2009; 35: 2–6.

113. Eip N, Neuhoefer E, La Rosee G, Choudhrie R, Samman N, Kreusch T. Case report Submental intubation for cancrum oris: a case report. Pediatr Anesth. 2005; 15: 1009–1012. https://doi.org/10.1111/j.1460-9592.2005.01573.x PMID: 16238567

114. Enwonwu C, Phillips R, Ferrell C. Temporal relationship between the occurrence of fresh noma and the timing of linear growth retardation in Nigerian children. Trop Med Int Heal. 2005; 10: 65–73. https://doi.org/10.1111/j.1365-3156.2004.01351.x PMID: 15655015

115. Marck K; van der Lei B; Spijkervet F, Adeniyi S; Mixner J; Bruijn H. The prefabricated superficial temporoparietal fascia flap in noma surgery. Eur J Plast Surg. 2000; 23: 188–191.

116. Ruegg E, Baratti-Mayer D, Jaquinet A, Montandon D, Pittet-Cuend B. The surgical management of extra-articular ankylosis in noma patients. Int J Oral Maxillofac Surg. 2018; 47: 1527–1533. https://doi.org/10.1016/j.ijoms.2018.07.012 PMID: 30104131

117. Hartman E, Van Damme P, Sauter H, Sauter H. The use of the pedicled supraclavicular flap in noma reconstructive surgery. J Plast Reconstr Aesthetic Surg. 2006; 59: 337–342. https://doi.org/10.1016/j.bjps.2005.10.005 PMID: 16756246

118. Denloye O, Aderinokun G, Lawoyin J, Bankole O. Reviewing trends in the incidence of cancrum oris in Ibadan, Nigeria. West Afr J Med. 2003; 22: 26–29. https://doi.org/10.4314/wajm.v22i1.27974 PMID: 12769302

119. Naidoo S, Chikte UM. Noma (cancrum oris): case report in a 4-year-old HIV-positive South African child. SADJ. 2000; 55: 683–6. Available: http://www.ncbi.nlm.nih.gov/pubmed/12608242 PMID: 12608242

120. Gupta A, Sardana K, Gautam RK. An unusual case of noma caused by Klebsiella pneumoniae and its management. Trop Doc. 2018; 48: 230–232. https://doi.org/10.1177/0049475518754720 PMID: 29368993

121. Zawar V, Pawar M, Kumar V, Shah M, Chaddha C. A progressive ulcer in immunocompetent man: cancrum oris. Trop Doc. 2018; 48: 60–62. https://doi.org/10.1177/0049475517709876 PMID: 28541141

122. Millogo M, Konsem T, Ouedraogo D, Ouoba K, Zvetyenga N. HIV and noma in Burkina Faso. Rev Stomatol Chir Maxillofac. 2012; 113: 433–6. https://doi.org/10.1016/j.stomax.2012.07.004 PMID: 22981207

123. Chidzonga MM, Mahonmva L. Recurrent noma (cancrum oris) in human immunodeficiency virus infection and acquired immunodeficiency syndrome (HIV and AIDS): report of a case. J Oral Maxillofac Surg. 2008; 66: 1726–30. https://doi.org/10.1016/j.joms.2007.08.012 PMID: 18634964

124. Adeola DS, Obiadiazie AC. Protocol for managing acute cancrum oris in children: an experience in five cases. Afr J Paediatr Surg. 2009; 6: 77–81. https://doi.org/10.4103/0189-6729.54767 PMID: 19661634
125. Sund GC, Muvuny i P, Harling MJ. Airway Management Through a Facial Defect Resulting From Noma (Orofacial Gangrene): A Case Report. A&A Pract. 2020; 14: e01319. https://doi.org/10.1213/XAA.00000000000001319 PMID: 32985857

126. Farley E, Muhammad H, Lenglet A, Mehta U, Abubakar N, Samuel J. ‘I treat it but I don’t know what this disease is’: a qualitative study on noma (cancrum oris) and traditional healing in northwest Nigeria. Int Health. 2019; 1–8. https://doi.org/10.1093/inthealth/ihy082 PMID: 30371786

127. Braun U, Wiese KG, Merten HA, Timmermann A. Anaesthetic care for noma (cancrum oris)—the disease, the airway and how to provide anaesthetic care without a clinical safety infrastructure. Trends Anaesth Crit Care. 2020; 31: 16–20. https://doi.org/10.1016/j.tacc.2020.02.002

128. Silva K, Twaddell S, Powers D. A 40-year-old man with a perforated cheek. Am J Med Sci. 2011; 341: 399–403. https://doi.org/10.1097/MAJ.0b013e3181e2ed3e PMID: 20562691

129. Banliyute G, Mcallister P, Shafi A, Menell M, Thomson E. Atypical orofacial necrosis of unknown aetiology: A case report with features similar to noma. Int J Oral Maxillofac Pathol. 2019; 10.

130. Traore H, Sogodogo E, Coulibaly A, Toure A, Thiocary S, Sidibé MD, et al. Case report: a rare case of NOMA (cancrum oris) in a Malian woman. New Microbes New Infect. 2021; 42: 100907. https://doi.org/10.1016/j.nmni.2021.100907 PMID: 34188939

131. Ding X, Wang QQ, Zhou Y, Xu JC. Case report: Malignant transformation of noma: Repair by forearm flap. Am J Trop Med Hyg. 2020; 103: 1697–1699. https://doi.org/10.4269/ajtmh.19-0899 PMID: 32783790

132. Bouassalo KM, Mossi EK, Padaro E, Gunepin M, Weber E. Chronic lymphocytic leukemia revealed by a rare complication: Noma. First description from Togo. J Oral Maxillofac Pathol. 2019; 25. https://doi.org/10.1051/mcbb/2019017

133. Putri IL, Agustina W, Hutagalung MR. Columella reconstruction using double nasolabial flap and costal cartilage: A case report. Ann Med Surg. 2021; 64: 102213. https://doi.org/10.1016/j.amsu.2021.102213 PMID: 33796286

134. Holle J, Kubiha N, Issa OH. Distraction Therapy to Correct Trismus Following Noma. J Craniofac Surg. 2020; 31: 488–491. https://doi.org/10.1097/SCS.0000000000006082 PMID: 31996539

135. Bello SA, Adeoye JA, Oketade I, Akadiri OA. Estimated incidence and prevalence of noma in north-central Nigeria, 2010–2018: A retrospective study. PLoS Negl Trop Dis. 2019; 13: 2010–2018. https://doi.org/10.1371/journal.pntd.0007574 PMID: 31329580

136. Rickart AJ, Rodgers W, Mizen K, Merrick G, Wilson P, Nishikawa H, et al. Facing Africa: Describing noma in Ethiopia. Am J Trop Med Hyg. 2020; 103: 613–618. https://doi.org/10.4269/ajtmh.20-0019 PMID: 32377246

137. Shafi'u I, Amirtharajah M, Farley E, Semyiu Adetunji A, Samuel J, Oluyide B, et al. Model of care, Noma Children's Hospital, northwest Nigeria. Trop Med Int Heal. 2021; 1–10. https://doi.org/10.1111/tmi.13630

138. Xu L, Wei W, Ge X, Wen S, Yu J, Zhu X. Noma in a boy with septic shock: A case report. BMC Pediatr. 2019; 19: 1–5. https://doi.org/10.1186/s12887-018-1376-4 PMID: 30606158

139. Fieger A, Marck KW, Busch R, Schmidt A. An estimation of the incidence of noma in north-west Nigeria. Trop Med Int Heal. 2003; 8: 402–407. https://doi.org/10.1046/j.1365-3156.2003.01036.x PMID: 12753633

140. Brattström-Stolt L, Funk T, Sié A, Ndiiaye C, Alfven T. Noma-knowledge and practice competence among primary healthcare workers: A scoping study in Burkina Faso. Int Health. 2019; 11: 290–296. https://doi.org/10.1093/inthealth/ihy088 PMID: 30561632

141. Farley E, Amirtharajah M, Winters R, Taiwo A, Oyemakinde M, Fotso A, et al. Outcomes at 18 mo of 37 noma (cancrum oris) cases surgically treated at the Noma Children’s Hospital, Sokoto, Nigeria. Trans R Soc Trop Med Hyg. 2020; 0: 1–8. https://doi.org/10.1093/trstmh/traa061 PMID: 32785671

142. Farley E, Oyemakinde MJ, Schuurmans J, Ariti C, Saleh F, Uzoigwe G, et al. The prevalence of noma in northwest Nigeria. BMJ Glob Heal. 2020; 5: 1–15. https://doi.org/10.1136/bmjgh-2019-002141 PMID: 32377404

143. Farley E, Lenglet A, Ariti C, Jiya NM, Adetunji AS, van der Kam S, et al. Risk factors for diagnosed noma in northwest Nigeria: A case-control study, 2017. PLoS Negl Trop Dis. 2018; 12: 1–11. https://doi.org/10.1371/journal.pntd.0006631 PMID: 30138374

144. Ghorui T, Ray A. Release of Extra Articular Ankylosis of Jaws as a Sequelae of Cancrum Oris with Extensive Gingival Myasis in a Scoliosis Patient: A Rare Case Report. Indian J Otolaryngol Head Neck Surg. 2019; 71: 734–736. https://doi.org/10.1007/s12070-018-1526-x PMID: 31742053

145. Long N, Phong H, Truong D, Tung N, Phun N, Cuong M. Rehabilitation of Severe Maxillary Noma Defect with Zygomatic Implants: A case report. J Implant Adv Clin Dent. 2019; 11: 16–23.
146. Baratti-Mayer D, Daou MB, Gayet-Ageron A, Jeannot E, Pittet-Cuënod B. Sociodemographic characteristics of traditional healers and their knowledge of noma: A descriptive survey in three regions of Mali. Int J Environ Res Public Health. 2019; 16: 1–11. https://doi.org/10.3390/ijerph16224587 PMID: 31752451

147. Braimah R, Adeniyi A, Taiwo A, Ibi kunle A, Gbotalorun M, Aregbesola S, et al. Risk factors and mortality rate of acute cancrum oris (noma) in Sokoto North-West Nigeria: A 13-year survey. J Pediatr Dent. 2017; 5: 1. https://doi.org/10.4103/jpd.jpd_58_16

148. Adeniyi S, Taiwo A, Ibi kunle A, Braimah R, Gbotalorun O, Ogbeide M, et al. Pattern of tissue destruction among patients diagnosed with cancrum oris (Noma) at a Northwestern Nigerian Hospital, Sokoto. Saudi J Oral Sci. 2017; 4: 101. https://doi.org/10.4103/sjos.sjosalsci_55_16

149. Rowe D, McKerrow N, Uys A, Winstanley T. Cancrum oris (noma) in a malnourished HIV-positive child from rural Kwazulu-Natal. South African J HIV Med. 2004; 16: 45–46.

150. Pedro K, Smit D, Morkel J. Cancrum Oris (noma) in an HIV-positive adult: a case report and literature review. SADJ. 2016; 71: 248–252.

151. Ogbureke K, Ogbureke E. NOMA: A Preventable “scourge” of African children. Open Dent J. 2010; 4: 201–206. https://doi.org/10.2174/1874210601004010201 PMID: 21243072

152. Enwonwu CO, Falklerz W, Idigbe EO, Falkler WA, Idigbe EO. Oro-facial gangrene (noma/cancrum oris): pathogenic mechanisms. Crit Rev Oral Biol Med. 2000; 11: 159–171. https://doi.org/10.1177/10454411000110020201 PMID: 12002813

153. World Health Organization (WHO) and Hilfsaktion Noma. Promoting Oral Health in Africa: Prevention and control of oral diseases and noma as part of essential noncommunicable disease interventions. 2016. Available: http://www.aho.afro.who.int/en/news/5236/official-launch-who-manual-“promoting-oral-health-africa”

154. Enwonwu C, Falkler W, Idigbe E, Savage K. Noma (cancrum oris): questions and answers. Oral Dis. 1999; 5: 144–149. https://doi.org/10.1111/j.1601-0825.1999.tb00080.x PMID: 10522212

155. World Health Organization, OMS. World Health Report Life in the 21st century A vision for all Report of the Director-General. 51st World Health Assem. 1998; 1–226. Available: https://www.who.int/whr/1998/en/whr98_en.pdf?ua=1

156. Lafferty N. Changing the face of Africa. Estimating the burden of noma in rural Ethiopia and identifying options for prevention and improvement in its diagnosis and management. Liverpool School of Tropical Medicine. 2012. https://doi.org/10.1146/annurev.soc.28.110601.140938

157. Bourgeois DM, Diallo B, Frieh C, Leclercq MH. Epidemiology of the incidence of oro-facial noma: A study of cases in Dakar, Senegal, 1981–1993. Am J Trop Med Hyg. 1999; 61: 909–913. https://doi.org/10.4269/ajtmh.1999.61.909 PMID: 10674669

158. Bourgeois D, Leclercq M. The World Health Organization initiative on noma. Oral Dis. 1999; 5: 172–174. https://doi.org/10.1111/j.1601-0825.1999.tb00085.x PMID: 10522217

159. Garrett V, Ogutu P, Mabonga P, Ombeki S, Mwaki A, Aluoch G, et al. Diarrhoea prevention in a high-risk rural Kenyan population through point-of-use chlorination, safe water storage, sanitation, and rainwater harvesting. Epidemiol Infect. 2008; 136: 1463–1471. https://doi.org/10.1017/S095026880700206X PMID: 18205977

160. Tumwine J, Thompson J, Katua-katua M, Mujwajuzi M, Johnstone N, Wood E, et al. Diarrhoea and effects of different water sources, sanitation and hygiene behaviour in East Africa. Trop Med Int Heal. 2002; 7: 750–756.

161. Fleming R. Case of Cancrum Oris. Trans Med Chir Soc Edinb. 1892; 259–262.

162. Motarjemi Y, Kaferstein F, Moy G, Quevedo F. Contaminated weaning food: a major risk factor for diarrhoea and associated malnutrition. Bull World Health Organ. 1993; 71: 79–92. PMID: 8440042

163. Feller L, Altini M, Chandra RAG, Khammissa RAG, Masipa JN, Mohamed A, et al. Noma (cancrum oris) in the South African context. J Oral Pathol Med. 2014; 43: 1–6. https://doi.org/10.1111/jop.12079 PMID: 23647162

164. Pithon M. Importance of the control group in scientific research. Dental Press J Orthod. 2013; 18: 13–14. https://doi.org/10.1590/s2176-94512013000600003 PMID: 24498644

165. Feller L, Khammissa RAG, Altini M, Lemmer J. Noma (cancrum oris): An unresolved global challenge. Periodontol2000. 2019; 80: 189–199. https://doi.org/10.1111/prd.12275 PMID: 31090145

166. Kimura T. An oro-facial disease ‘noma (cancrum oris)’ in a Japanese monkey (Macaca fuscata): clinical signs, clinicopathological features, and response to treatment. J Med Primatol. 2008; 37: 217–222. https://doi.org/10.1017/S1600-0684.2008.00312.x PMID: 18922072

167. Marck K and Bos K. The surgical treatment of Noma. Bathgate R, van Knippenberg M, editors. Amsterdam, The Netherlands: Mart Spruit bv, Amsterdam; 2006.
168. Walker M, Burns K. Trismus: diagnosis and management considerations for the speech pathologist. American Speech-Language-Hearing Association. 2006. pp. 1–55.

169. Wali IM, Regmi K. People living with facial disfigurement after having had noma disease: A systematic review of the literature. J Health Psychol. 2016;September: 1243–1255. https://doi.org/10.1177/1359105315624751 PMID: 26837690

170. World Health Organisation (WHO), World Health Organisation. A step-by-step guide to develop national action plans for noma prevention and control in priority countries. 2020. https://apps.who.int/iris/handle/10665/337203

171. Human Rights Council Advisory Committee. Study of the Human Rights Council Advisory Committee on severe malnutrition and childhood diseases with children affected by noma as an example, including annexed. “Human rights Princ Guidel to Improv Prot Child risk or Affect by malnutrition, specifically risk or Affect by noma” UN Doc A/HRC/19/73 24 Febr 2012. Available: https://documents-dds-ny.un.org/doc/undoc/GEN/G12/102/15/PDF/G1210215.pdf?OpenElement

172. Yunusa M, Obembe A. Prevalence of psychiatric morbidity and its associated factors among patients facially disfigured by cancrum oris in Nigeria a controlled study. Niger J Med. 2012; 21: 277–281. Available: https://pubmed.ncbi.nlm.nih.gov/23304920/ PMID: 23304920

173. Barmes D, Enwonwu C, Leclercq M, Bourgeois D, Falkler W. The need for action against oro-facial gangrene. Trop Med Int Heal. 1997; 2: 1111–1114. https://doi.org/10.1046/j.1365-3156.1997.d01-220.x PMID: 9438464

174. Enwonwu C, Falkler W, Phillips R. Noma (cancrum oris). Lancet. 2006; 368: 147–156. https://doi.org/10.1016/S0140-6736(06)69004-1 PMID: 16829299

175. Speiser S, Langridge B, Birkl MM, Kubiena H, Rodgers W. Update on Noma: systematic review on classification, outcomes and follow-up of patients undergoing reconstructive surgery after Noma disease. BMJ Open. 2021; 11: e046303. https://doi.org/10.1136/bmjopen-2020-046303 PMID: 34353795

176. Srour L, Marck K, Baratti-Mayer D. Noma: neglected, forgotten and a human rights issue. Int Health. 2015; 7: 149–150. https://doi.org/10.1093/inthealth/ihv001 PMID: 25609756

177. Weaver G and Tunnicliff R. Noma: (gangrenous stomatitis; water cancer; scurbutic cancer; gangrena oris; gangrene of the mouth.). J Infect Dis. 1907; 4: 8–35.

178. Farley E, Anil , A, Amirtharajah M, Kamu C, Oluyide B, Muhammad S, et al. Noma, a neglected disease: A viewpoint article. PLoS Negl Trop Dis. 2021; 15: 1–5. https://doi.org/10.1371/journal.pntd.0009437 PMID: 34138861

179. Leila Srour M, Baratti-Mayer D. Why is noma a neglected-neglected tropical disease? PLoS Negl Trop Dis. 2020; 14: 1–4. https://doi.org/10.1371/journal.pntd.0008435 PMID: 32817617

180. Farley E. Noma in northwest Nigeria: a neglected disease in neglected populations. University of Cape Town. 2020. https://open.uct.ac.za/handle/11427/32757?show=full

181. Enwonwu C. Noma in northwest Nigeria: a neglected disease in neglected populations. University of Cape Town. 2020. https://open.uct.ac.za/handle/11427/32757?show=full

182. Marck K. Noma the face of Poverty. 1st ed. Hannover: MIT-Verlag GmbH; 2003.

183. Tapsoba H, Deschamps J. Use of medicinal plants for the treatment of oral diseases in Burkina Faso. 2006; 104: 68–78. https://doi.org/10.1016/j.jep.2005.08.047 PMID: 16214302