Original Research Article

Descriptive epidemiology of central nervous system tumors in rural hospital of central India: 5-year experience

Prasheelkumar Premnarayan Gupta1,*, Richa Premnarayan Goyal2

1Dept. of Neurosurgery, Mahatma Gandhi Institute of Medical Sciences, Sevagram, Maharashtra, India
2Dept. of Surgery, Jawaharlal Nehru Medical College, Wardha, Maharashtra, India

ARTICLE INFO

Article history:
Received 01-07-2019
Accepted 13-08-2019
Available online 06-09-2019

Keywords:
CNS tumors
Glioma
Meningioma
CNS tumor epidemiology

ABSTRACT

Introduction: We have undertaken this study to find the spectrum of CNS tumors in our setup over a period of 5 years.

Materials and Methods: Retrospective analysis of CNS tumors in last 5 years in our setup was done. The tumor which were histopathologically proven were included in the study. Undiagnosed cases and tumors of peripheral nerves were excluded. Tumors were classified according to the WHO 2007 classification for CNS tumors.

Results: Total 168 tumors were included in the study. There were 93 male (67.7%) and 75 female patients with male: female ratio of 1.24: 1. The median age at diagnosis 41.3 years. For Adults, most common tumor found was of Neuroepithelial tissue (36.9%) other being tumors of meninges (26.78%), tumor of cranial & spinal nerves (20.24%), sellar region (8.93%), metastatic tumors (5.95%) & germ cell tumor (1.19%). Among neuroepithelial tumors, most common group of tumors was astrocytic tumors. Paediatric tumor comprised of 7.14 % of population. The most common paediatric tumor was Astrocytoma (25%) and medulloblastoma (25%).

Conclusion: At present there is no study about epidemiology of CNS tumors in central India. This study may provide the representative incidence of various types of CNS tumors for our region.

© 2019 Published by Innovative Publication.

1. Introduction

CNS tumors comprises less than 3 % of total body tumors1. The annual incidence of primary malignant brain tumors is ~3.7 per 100,000 for males and 2.6 per 100,000 for females2,3. The incidence in India ranges from 5 to 10 per 100,000 population with increasing trend and accounts for 2% of total malignancies4,5.

The WHO classification of brain tumors in 2007 comprised of major groups as Tumors of neuroepithelial tissue, Tumors of meninges, Lymphomas and Haematopoietic neoplasm, Germ cell tumors, Tumors of sellar region, Metastatic tumors & Tumors of cranial and paraspinal nerve6. In 2016 WHO proposed the new classification of CNS tumors. For the first time, WHO classification used molecular parameters in addition to histology to define various tumors7.

Astrocytomas (38.7%) were the most common primary tumors with the majority being high-grade gliomas (59.5%) for adults in India8. The most common primary paediatric brain tumors were astrocytic tumors (34.7%), followed by medulloblastoma and supratentorial primitive neuro-ectodermal tumors (22.4%), craniohypophyseal tumors (10.2%) and ependymal tumors (9.8%). The most common astrocytic tumor was pilocytic astrocytoma9.

Reports in the literature indicate that worldwide variations exist in the pattern of CNS tumors with respect to Age, incidence, anatomical locations, gender preferences, and histological types.

Hence, epidemiological data on CNS tumor is useful for future research for specific locality. In India, hospital based registration system form the bulk of the data for estimating the disease load in the community. Until date, no epidemiological study on CNS tumor was done for central
India region. The aim of this study is to find the spectrum to CNS tumors in our setup and compare with other studies.

2. Materials and methods

This is a retrospective observational study conducted during the period of 2014 to 2019 in MGIMS, Sevagram. The inclusion criteria consist of all CNS tumor cases diagnosed in neurosurgery department, which were histopathologically proven. The exclusion criteria consist of inoperable cases, undiagnosed cases and tumor of peripheral nerves. Total 168 cases fulfilled the above criteria and were included in the study.

3. Results

This retrospective study was conducted for period between Jan 2014 and Feb 2019, in MGIMS Sewagram. Total 168 histopathological proven tumors were included in the study. Of total CNS tumors 142(84.4 %) comprised of intracranial tumors and rest 26(15.4%) comprised of spinal tumors. Paediatric tumor (<19 years) comprised of total 7.14% percent of the tumor. The CNS tumor had slight male preponderance with M :F ratio of 1:1.24. Age of patient varies from 2 to 78 years Figure 1 with average age of 41.3 years. For paediatric CNS tumor the M :F ratio was 1:1 with average age of 12.25 years. Tumor were classified according to WHO classification 2007.

Most common tumor found was of Neuroepithelial tissue (36.9 %) other being tumors of meninges (26.78%), tumor of cranial & spinal nerves (20.24 %), sellar region (8.93 %), metastatic tumors (5.95%) & Germ cell tumor (1.19%) (Figure 2 , Table 1).

Neuroepithelial tumors (62 cases) comprised mainly of astrocytoma (48 cases, 77.41%), others being oligodendrogial tumors (4 cases, 6.45%), embryonal tumors (3 cases, 4.83%), ependymal tumors (3 cases, 4.83%), mixed neuronal-glial tumors (2 cases, 3.22 %), oligoastrocytic tumors (1 case, 1.61 %) & choroid plexus tumor (1 case, 1.61%).

Among astrocytic tumors (48 cases), Glioblastoma (23 cases, 47.92%) was most common followed by diffuse astrocytoma (14 cases, 29.17 %), anaplastic astrocytoma (8 cases, 16.67%) & pilocytic astrocytoma (3 cases, 6.52). WHO grade IV was the most common astrocytic tumor (Table 2). For astrocytic tumors, average age of presentation was of 38.51 years. For glioblastoma, average age of presentation was 50.5 years, with M:F ratio of 2.2 :1.

Tumors of sellar region comprised of (10 cases) 5.9 % of total CNS tumors. Secondaries in brain constitutes (10 cases) 5.9 % of total CNS tumors with average age of 50 years with M:F ratio of 1:1.25. The most common cause of secondary was primary lung tumor followed by breast tumor (Figure 3).

Spinal tumors consists of (26 cases) 15.4 % of tumors. Average age of presentation of spinal tumor was 42.1 years with female preponderance (M:F = 1:1.36). Most common spinal tumor was schwannoma (15 cases) followed by meningioma (7 cases).

In our study paediatric tumor comprised of (12 cases) 7.14% of the study population. The mean age of presentation was 12.25 years with M :F ratio of 1:1. The most common tumor being Astrocytoma (25%) and medulloblastoma (25%).

Types of brain tumor	Subtype	Number of cases
Neuroepithelial tumors	Astrocytic tumors	48
	Oligodendrogial tumors	4
	Embryonal tumors	3
	Ependymal tumors	3
	Mixed neuronal-glial tumors	2
	Oligoastrocytic tumors	1
	Choroid plexus tumors	1
Tumors of meninges	Meningioma	44
	Hemangioepithelioma	1
Tumors of cranial and paraspinal nerves	Schwannoma/Neurofibroma	34
Germ cell tumors	Germinoma	2
Tumors of sellar region	Pituitary adenoma	14
Metastatic tumors	Craniopharyngioma	1
	Metastasis	10
	Total	168

4. Discussion

Tumor of CNS are rare and comprised of <3 % of total body tumors. In our study out of 168 tumors, 142(84.6
Table 3: Histopathology of meningioma

Types of meningioma	Present (%)
Meningothelial	47.72
Psammomatous	13.63
Transitional	13.63
Fibroblastic	11.36
Angiomatous	9.09
Atypical	4.54

Table 4: Histopathology of Spinal tumor

Histopathology	Number of cases
Schwannoma	15
Meningioma	7
Ependymoma	3
Metastasis	1
Total	26

In our study, the most common tumor was astrocytic tumors (28.57%), out of which the majority were glioblastoma (47.92%) followed by diffuse astrocytoma (29.17%). In a study done by Dasgupta A et al, Astrocytomas (38.7%) were the most common primary tumors with the majority being high-grade gliomas (59.5%)\(^\text{12}\). Ghosh et al\(^\text{13}\), Jalali and Datta\(^\text{8}\) and Patty\(^\text{14}\) also reported astrocytomas to be the commonest tumor. Study by Collins vp et al\(^\text{15}\), Das et al\(^\text{16}\), Suh YL et al\(^\text{10}\) and Lee et al\(^\text{17}\) reported meningioma as the most common tumor. Our study shows Meningiomas as second commonest tumor (26.19%). Iyengar and Chandra\(^\text{18}\), Wen-quin et al\(^\text{19}\) and Patty\(^\text{14}\) made similar observations. Our study had female preponderance with M:F ratio of 1:1.3 for meningioma. In other study by Rohringer et al\(^\text{20}\), M:F ratio was 1:2.

The most common histopathological entity encountered in our study was meningothelial variant (47.72%) Table 3. Sangamithra et al\(^\text{21}\), Nasrin Samadi et al\(^\text{22}\), Gursan et al\(^\text{23}\), all reported meningothelial as the most common variety. Spinal meningiomas comprised of 15.9% of total meningiomas in our study. In study done by Solero CL et al spinal meningiomas consist of 7.5-1 2.7% of all CNS meningiomas. In our study the most common location, for spinal meningioma was thoracic spine which is similar to the other study reported\(^\text{24–26}\).

Tumor of sellar region comprised of 8.9%, which was slightly higher than the study conducted by Jalali et al (8.3 %)\(^\text{8}\) and Goh et al (8.6%)\(^\text{27}\).
Secondary in brain constitutes 5.9 % of total CNS tumors. It goes similar to study of Suh et al (6.0%)10 but higher than that of Lopez-Gonzalez et al(4%).28. Indian study by Jalali et al8 reported 11.6% as secondaries in brain, which was significantly higher than our study. The most common cause of secondary was primary lung tumor followed by breast tumor. It was similar to the study conducted by Singh et al23.

Spinal tumor comprised of 15.4 % of tumor. The most common spinal tumor was schwannomma (57.69%) followed by meningioma (26.92%) Table 4. Albanese and Platania, 2002, reported that spinal Intradural extramedullary tumors account for 2/3rd of all intraspinal neoplasms and are mainly represented by meningiomas (25 – 46%) and schwannomas31. Schellinger et al reported that the most common histologic types were meningiomas (29%), nerve sheath tumors (24%), and ependymomas (23%)31. Cause of this variation is not known. It could be due to the small sample size or due to the variation in local population.

Paediatric tumor comprised of 7.14 % of population. The most common paediatric tumor was Astrocytoma (25%) and medulloblastoma (25%). Chen et al found astrocytomas to be leading tumors (29.2%) in this age group32. Similarly, study by Jain et al indicated that astrocytomas averaged 34.7% (range 22.3-46.7%), were the commonest paediatric tumors in India followed by medulloblastoma and PNETs (22.4%)9.

5. Conclusion
Most common group of tumor in our study was astrocytoma followed by tumor of meninges. In astrocytic tumors, the most common variety was Glioblastoma multiforme. As there is no study for central India, this study may provide the representative incidence of various types of CNS tumors.

6. Source of Funding
None.

7. Conflict of Interest
None.

References
1. Ferlay J, Soerjomataram I, Ervik M, Dikshit R, Eser S, Mathers C ; 2013, Globocan. Worldwide Incidence and Mortality of Cancer. Lyon, France: IARC ; 2002,.
2. Parkin DM, Whelan SL, Ferlay J, Teppo L, Thomas DB. Cancer in Five Continents Volume VIII. Lyon, France: IARC ; 2002,.
3. Nair M, Varghese C, Swanianathan R. Cancer: Current Scenario, Intervention Strategies and Projections for 2015. NCMH Background Papers ; 2015,
4. Yeole, Bb. Trends in the brain cancer incidence in India. Asian Pac J Cancer Prev. 2008;9:267–70.
5. LD, OH, WO, CW, editors. WHO Classification of tumors of the central nervous system. IARC, Lyon ; 2007,.
6. T K. The 2016 WHO Classification of Tumors of the Central Nervous System: The Major Points of Revision. Neurol Med Chir (Tokyo). 2016;57(7):301–311. Available from: 10.2176/nmc.ra.2017-0010,
7. Jalali R, Datta D. Prospective analysis of incidence of central nervous tumors presenting in a tertiary cancer hospital from India. J Neurooncol. 2008;87:111–115.
8. Jain A, Sharma MC, Suri V, Kale SS, Mahapatra AK, et al. Spectrum of pediatric brain tumors in India: A multi-institutional study. Neurol India. 2011;59:208–219.
9. Suh YL, Koo H, Kim TS, Chi JG, Park SH, et al. Tumors of the Central Brain Tumor Registry of the United States. Primary brain tumors in the United States: Statistical report. 1998.;
10. Dasgupta A, Gupta T, Jalali R. Indian data on central nervous tumors: A summary of published work. South Asian J Cancer. 2016;5(3):147–153. Available from: 10.4103/2278-330X.187589.
11. Ghosh A, Sarkar S, Begum Z. The first cross sectional survey on intracranial malignancy in Kolkata, India: reflection of the state of the art in Southern West Bengal. Asian Pac J Cancer Prev. 2004;5(3):259–267.
12. PISH. Central Nervous System Tumors: A Clinicopathologic Study. J Dokh Univ. 2008;11(1):173–179.
13. Collins VP Brain tumors: classification and genes. Neurosurgery & Psychiatry. 2004;75:2–11. Journal of Neurology.
14. Das A, Chapman CAT, Yap W. Histological subtypes of symptomatic central nervous system tumors in Singapore. J Neurol Neurosurg Psychiatry. 2000;68:372–374.
15. Lee CH, Jung KW, Yoo H. Epidemiology of primary brain and central nervous system tumors in Korea. J Korean Neurol Soc. 2010;48(2):145–52.
16. Iyenger B, Chandra K. The pattern of distribution of tumors in the brain and spinal cord. Ind J Cancer. 1974;11:134–138.
17. Wen-Qing H, Shi-Ju Z, Qing-Sheng T. Statistical analysis of central nervous system tumors in China. Journal of Neurosurgery. 1982;56(4):555–564.
18. Rohringer M, Sutherland GR, Louw DF, Sima AA. Incidence and clinicopathological features of meningiomas. J Neurosurgery. 1989;71(5):665–72, Pt 1.
19. S M, U G, S C, Sandip Chatterjee, Detection of progesterone receptor and the correlation with Ki-67 labeling index in Meningiomas. Neurology India. 2011;59(6):817–839.
20. N S, SA A. Meningioma: A clinicopathological evaluation. Malaysian J Med Sci. 2007;14(1):46–52.
21. Gursan N, Gundogdu C, Albayrak A, Kabalar ME. Immunohistochemical detection of progesterone receptors and the correlation with Ki-67 labeling indices in paraffin-embedded sections of meningiomas. Intern J Neurosci. 2002;112:463–70.
22. Solero CL, Fornari M, Giombini S. Spinal meningiomas: review of 174 operated cases. Neurosurg. 1989;25:153–160.
23. Roux FX, Nataf F, Pinaudeau M. Intradural extramedullary meningiomas: review of 54 cases with discussion of poor prognosis factors and modern therapeutic management. Surg Neurol. 1996;46:458–464.
24. King AT, Sharr MM, Gullan RW. Spinal meningiomas: a 20-year review. Br J Neurosurg. 1998;12:521–526.
25. Goh CH, Lu YY, Lau BL, Oy J, Lee HK, Liew D. Brain and spinal tumor. Med J Malaysia. 2014;69(6):261–267.
26. Lopez-Gonzalez MA, Sotoel J, Brain tumors in Mexico: Characteristics and prognosis of glioblastoma. Surg Neurol. 2000;53:157–62.
27. Singh S, Amirtham U, Premalata CS, Lakshmaiah KC, Viswanath L, Kumar RV. Spectrum of metastatic neoplasms of the brain: A clinicopathological study in a tertiary care cancer centre. Neurol India. 2018;66:733–741.
28. Albanese V, Platania N. Spinal intradural extramedullary tumors. Personal experience. J Neurosurg Sci. 2002;46:18–24.
29. Schellinger KA, Propp JM, Villano JL, McCarthy BJ. Descriptive epidemiology of primary spinal cord tumors. J Neurooncol.
2008;87:173–179.
32. Chen L, Zou X, Wang Y, Mao Y, Zhou L. Central nervous system tumors: A single center pathology review of 34,140 cases over 60 years. BMC Clin Pathol. 2013;13:14–14.

Author biography

Prashekkumar Premnarayan Gupta Assistant Professor

Richa Premnarayan Goyal Assistant Professor

Cite this article: Gupta PP, Goyal RP. Descriptive epidemiology of central nervous system tumors in rural hospital of central India: 5-year experience. Indian J Neurosci 2019;5(3):150-154.