Metal-insulator transition and optical conductivity in BaVS$_3$

Arata Tanaka
Department of Quantum Matter, ADSM, Hiroshima University, Higashi-Hiroshima 739-8530, Japan
E-mail: atanaka@hiroshima-u.ac.jp

Abstract. Possible orbital orders below the metal-insulator transition temperature in quasi-one-dimensional BaVS$_3$ have been investigated in relation to the monoclinic lattice distortion in the insulating phase using a one-dimensional two-band Hubbard model. Orbital occupations in the ground state and optical conductivity have been calculated by means of exact diagonalization of finite size clusters. Depending on the size of crystal field splitting of the t_{2g} levels, two different orbital orders in the t_{2g} orbitals with the periodicity of four V ion sites along the c-axis are found to be stabilized with the lattice distortion. The on-site exchange interaction plays important role in the formation of these orbital orders.

1. Introduction
Quasi-one-dimensional BaVS$_3$ has the hexagonal perovskite structure, in which the face-sharing VS$_6$ octahedrons form linear chains of V ions along the c-axis. It exhibits three successive second order phase transitions, whose origin are still controversial. A hexagonal to orthorhombic structural transition occurs at $T_S = 240$ K, where the V ion chains become zigzag chains. A metal-insulator transition (MIT) at $T_{MI} = 70$ K is accompanied by a monoclinic distortion doubling the unit cell with four different V ion sites along the chain. An incommensurate magnetic ordering occurs below $T_X = 30$ K. The t_{2g} level of each of V ions is split into doubly degenerated e_g^π and single a_{1g} levels by a small trigonal field. Both the a_{1g} orbitals with one-dimensional character forming wide bands and the e_g^σ orbitals with their lobes towards interchain directions forming narrow bands contribute the states near the Fermi level [1]. This t_{2g} orbital degree of freedom is considered to play important role in MIT. The formations of charge and orbital orders [2, 3, 4] and a spin-orbital liquid [5] have been proposed for the origin of MIT.

2. Model and Methods of Calculations
To elucidate the 3d electronic state of the V ion chain across MIT in connection with the t_{2g} orbital degeneracy and the monoclinic lattice distortion, a linear-chain two-band Hubbard model consists of eight sites with periodic boundary condition is considered. Since the degeneracy of the e_g^π level is lifted by the orthorhombic lattice distortion below T_S, the lowest two t_{2g} orbitals, the a_{1g} and one of the e_g^π orbitals, are taken into account in this model. The Hamiltonian of the
The optical conductivity has been calculated using the method in Ref. [8]. The optical conductivity with the electric polarization vector along the chain as a function of photon energy \(\omega \) can be described as

\[
\sigma_{zz}(\omega) = D_W \delta(\omega) + \frac{e^2}{N_\pi \omega} \text{Im} \left[\langle g | j_z \frac{1}{H - E_g - \omega - i\delta} | g \rangle \right],
\]

where

\[
j_z = -i \sum_{l,m,m',\sigma} T_{l,m,m'} (c_{l+1,m,\sigma}^\dagger c_{l,m',\sigma} + c_{l,m',\sigma}^\dagger c_{l+1,m,\sigma}).
\]

Table 1. V-V bond lengths \(R_l \) between sites \(l \) and \(l+1 \) at 40 K in Ref. [6] and hopping integrals \(T_{l,a,a} \) for insulating phase calculated using eq. 2.

\(l \)	\(R_l (\text{Å}) \)	\(T_{l,a,a} (\text{eV}) \)
1, 5	2.896	-0.526
2, 6	2.941	-0.492
3, 7	2.753	-0.600
4, 8	2.806	-0.605

The optical conductivity with the electric polarization vector along the chain as a function of photon energy \(\omega \) can be described as

\[
\int_0^\infty \sigma_{zz}(\omega) \, d\omega = -\frac{\pi e^2}{4N} \sum_{l,m,m',\sigma} T_{l,m,m'} \langle g | (c_{l+1,m,\sigma}^\dagger c_{l,m',\sigma} + c_{l,m',\sigma}^\dagger c_{l+1,m,\sigma}) | g \rangle.
\]
The energy and wave function of the ground state are calculated using the Lanczos method and $\sigma_{zz}(\omega)$ in eq. 3 is obtained by the recursion method.

3. Results and Discussions

![Figure 1](image1.png)

Figure 1. (a) a_{1g} orbital occupation per site as a function of D with (circles) and without (triangles) the effect of the monoclinic lattice distortion. (b) a_{1g} (circles) and e_{g}^a (triangles) orbital occupations of each site for $D = -0.4$ eV and $D = -0.24$ eV with monoclinic lattice distortion. The lines are drawn as guides for eyes.

Figure 1(a) shows the averaged occupation number of the a_{1g} orbital over sites π_a as a function of D with and without the monoclinic lattice distortion. The a_{1g} orbital occupation is increased steadily with increasing D without the lattice distortion. However, the state with $\pi_a \sim 1/2$ and $\pi_a \sim 1/4$ are particularly stabilized with the lattice distortion. To examine these two states more closely, the a_{1g} and e_{g}^a orbital occupations in each site are presented in Fig. 1(b) for $D = -0.24$ eV with $\pi_a \sim 1/2$ and for $D = -0.4$ eV with $\pi_a \sim 1/4$. The patterns of the orbital order are different between these two states. The alignment $e_{g}^a-e_{g}^a-a_{1g}-a_{1g}$ is found with $D = -0.24$ eV, whereas $e_{g}^a-e_{g}^a-e_{g}^a-a_{1g}$ with $D = -0.4$ eV. While there are large variations in the orbital occupations among the sites, the disproportionation of the charge $n_{l,a} + n_{l,e}$ among the sites is small as discussed in the previous work [4].

The a_{1g} orbital is preferably occupied at site 4, because of the strong $a_{1g}-a_{1g}$ hybridization to the neighboring site owing to short V-V distance (see table 1). This can be regarded as the effective $a_{1g}-e_{g}^a$ level splitting at site 4 is larger than the other sites and also implies that switching from the high-spin $S = 1 (a_{1g})^1(e_{g}^a)^1$ configuration to the low-spin $S = 0 (a_{1g})^2$ configuration occurs at smaller D than the other sites when the site is doubly occupied. The orbital and spin correlations between site 4 and the neighbors are strongly depend on the electronic configuration of the d^2 state of site 4 created by charge fluctuation. For small D, the high-spin $(a_{1g})^1(e_{g}^a)^1$ configuration at site 4 is preferred and this induces the $a_{1g}-e_{g}^a$ orbital order with ferromagnetic spin correlation between site 4 and the neighbors. Similarly, the $a_{1g}-e_{g}^a$ orbital order with antiferromagnetic spin correlation are expected between site 4 and the neighbors for large D. In fact, the $e_{g}^a-a_{1g}-e_{g}^a$ orbital alignment of sites 3 to 5 and the ferromagnetic spin correlation of site 4 and the neighbors $\langle S_3 \cdot S_4 \rangle \sim \langle S_4 \cdot S_5 \rangle \sim 0.19$ with $D = -0.4$ eV are contrasted with the $a_{1g}-a_{1g}$ orbital alignment and the antiferromagnetic spin correlation $\langle S_3 \cdot S_4 \rangle \sim -0.45$ between sites 3 and 4 with $D = -0.24$ eV. Similar high- to low-spin state switching at doubly occupied sites at MIT in VO$_2$ and Ti$_2$O$_3$ has been discussed [9].

To examine the effects of the monoclinic lattice distortion on the electric transport properties, in Fig. 2(a), the Drude weight D_W as a function of D calculated with and without the distortion are shown. The unphysical negative D_W values are the result of the finite size effect and indicate insulating behavior of the system [8]. While such insulating behavior can be seen rather limited
Figure 2. (a) Drude weight D_W as a function of D with (circles) and without (triangles) the effect of the monoclinic lattice distortion. (b) Optical conductivity spectra for $D = -0.24$ eV with (upper panel) and without (lower panel) the effect of the monoclinic lattice distortion. (c) The same to (b) but for $D = -0.4$ eV.

The range of D where the value of $\bar{\pi}_a$ is $\sim 1/2$ without distortion, much wider ranges of D where the orbital orders $e^g_{a_g}e^g_{a_{1g}} \pm a_{1g}$ or $e^x_{a_g}e^x_{a_{1g}} \pm a_{1g}$ occur are insulating with the distortion. The sign of D_W changes from positive to negative by including the effects of distortion in the ranges $-2.6 \text{ eV} \leq D \leq -2.4 \text{ eV}$, and $-4.8 \text{ eV} \leq D \leq -3.8 \text{ eV}$.

In Figs. 2(b) and 2(c), optical conductivity spectra calculated with $D = -0.24$ eV (b) and $D = -0.4$ eV (c) are shown. In the case of the spectra with $D = -0.24$ eV, the spectral weight distributed within $\omega < 2 \text{ eV}$ without the lattice distortion converges into a sharp peak located at $\omega \sim 0.8 \text{ eV}$ when the lattice distortion is considered. On the other hand, although large spectral weight transfer to the Drude peak can be seen, no such drastic change in the intensity of the peak at $\omega \sim 1.2 \text{ eV}$ is found for the spectra with $D = -0.4$ eV. This is consistent with the fact that no clear change in the intensity of a peak centered around $\omega \sim 1.2 \text{ eV}$ is found across MIT in experimental spectra with the polarization vector parallel to the c-axis [10].

4. Conclusions

Possible orbital orders below T_{MI} and the optical conductivity are investigated as a function of the $e^g_{a_g} \pm a_{1g}$ level separation. States having small Drude weights with orbital alignments $e^x_{a_g}e^x_{a_{1g}}$ and $e^g_{a_g}e^g_{a_{1g}}$ are particularly stabilized when the effects of the monoclinic distortion is considered. The on-site exchange interaction plays important role in the formation of these orders. From these findings, it is inferred that the MIT is caused by the orbital order stabilized by the strong electron-lattice coupling.

References

[1] Mitrovic S, Fazekas P, Sandergaard C, Ariosa D, Barišić N, Berger H, Cloëtt D, Forró L, Höchst H, Kupčić I, Pavuna D and Margaritondo G 2007 Phys. Rev. B 75 153103.
[2] Fagot S, Foury-Leylekian P, Ravy S, Pouget J P and Berger H 2003 Phys. Rev. Lett. 90 196401.
[3] Radočzi K and Fazekas P 2006 Physica B 378–380 663.
[4] Tanaka A 2006 J. Magn. Magn. Mater. 310 898.
[5] Vernay F, Penc K, Fazekas P and Mila F 2004 Phys. Rev. B 70 014428.
[6] Fagot S, Foury-Leylekian P, Ravy S, Pouget J P, Anne M, Popov G, Lobanov M V and Greenblatt M 2005 Solid State Sciences 7 718.
[7] Harrison W A 1980 Electronic Structure and Physical Properties of Solids (San Francisco: Freeman).
[8] Dagotto E 1994 Rev. Mod. Phys. 66 763.
[9] Tanaka A 2004 J. Phys. Soc. Jpn. 73 152.
[10] Kézmárki I, Mihály G, Gaál R, Barišić N, Akráp A, Berger H, Forró L, Homes C C and Mihály L 2006 Phys. Rev. Lett. 96 186402.