A NOTE ON PAIRS OF PROJECTIONS

N.J. Kalton
University of Missouri-Columbia

Abstract.
We give a brief proof of a recent result of Avron, Seiler and Simon.

In [1], it is proved that if \(P, Q \) are (not necessarily self-adjoint) projections on a Hilbert space and \((P - Q)^n \) is trace-class (i.e. nuclear) for some odd integer \(n \) then \(\text{tr} (P - Q)^n \) is an integer and in fact, if \(P \) and \(Q \) are self-adjoint, \(\text{tr} (P - Q)^n = \dim E_{10} - \dim E_{01} \) where \(E_{ab} = \{ x : Px = ax, Qx = bx \} \); (see also [2]). The proof given in [1] uses the structure of the spectrum of \(P - Q \) and Lidskii’s theorem; it is therefore not applicable to more general Banach spaces. The purpose of this note is to give a very brief proof of the same result which involves only simple algebraic identities and is valid in any Banach space with a well-defined trace (i.e. with the approximation property). We use \([A, B]\) to denote the commutator \(AB - BA \).

The basic material about operators on Banach spaces which we use can be found in the book of Pietsch [3]. We summarize the two most important ingredients.

We will need the following basic result from Fredholm theory. Suppose \(X \) is a Banach space and \(A : X \rightarrow X \) is an operator such that for some \(m, A^m \) is compact. Let \(S = I - A \); then \(F = \cup_{k \geq 1} S^{-k}(0) \) is finite-dimensional and if \(Y = \cap_{k \geq 1} S^k(X) \) then \(Y \) is closed and \(X \) can be decomposed as a direct sum \(X = F \oplus Y \). Furthermore \(F \) and \(Y \) are invariant for \(S \) and \(S \) is invertible on \(Y \). We refer to [3] 3.2.9 (p. 141-142) for a slightly more general result.

We will also need the following properties of nuclear operators and the trace. If \(X \) is a Banach space then an operator \(T : X \rightarrow X \) is called nuclear if it can written as a series \(T = \sum_{n=1}^{\infty} A_n \) where each \(A_n \) has rank one and \(\sum_{n=1}^{\infty} \|A_n\| < \infty \). The nuclear operators form an ideal in the space of bounded operators. When \(X \) has the approximation property, one can then define the trace of \(T \) unambiguously by \(\text{tr} T = \sum_{n=1}^{\infty} \text{tr} A_n \) (where the trace of a rank one operator \(A = x^* \otimes x \) is defined in

1991 Mathematics Subject Classification. 47A53.
Supported by NSF grant DMS-9500125

Typeset by AMS-\TeX
the usual way by \(\text{tr} A = x^*(x) \). The trace is then a linear functional on the ideal of nuclear operators and has the property that \(\text{tr} [A, T] = 0 \) if \(A \) is bounded and \(T \) is nuclear. See Chapter 4 of [3] and particularly Theorem 4.7.2.

Lemma. Let \(X \) be a Banach space and suppose \(P \) and \(Q \) are two projections on \(X \). Let \(M = P - Q, \ U = (I - Q)(I - P) +QP, \ V = (I - P)(I - Q) + PQ \) and suppose \(T \) is any operator which commutes with both \(P \) and \(Q \). Then

1. \(M^2 \) commutes with both \(P \) and \(Q \).
2. \([(I - 2Q)TM, PV] = TM(I - M^2) \).
3. If \(I - M^2 \) is invertible \([(I - 2Q)TM(I - M^2)^{-1}, PV] = TM \).

Proof. (1) was first observed by Dixmier, Kadison and Mackey as remarked in [1]. For (2) observe that \(QU = UP \) and \(UV = VU = I - M^2 \). Hence \(M(I - M^2) = PUV - QUV = PVU - UPV = \) \([I, PV] = [I - U, PV] = [(I - 2Q)M, PV] \). If \(T \) commutes with \(P \) and \(Q \) then (2) follows. Note that (3) is immediate from (2), replacing \(T \) by \(T(I - M^2)^{-1} \). \(\square \)

Theorem. Let \(X \) be a Banach space with the approximation property, and suppose \(n \) is an odd integer. If \(P, Q \) are two projections on \(X \) so that \((P - Q)^n \) is nuclear, then \(\text{tr} (P - Q)^n = \dim E_{10} - \dim \tilde{E}_{01} = \dim \tilde{E}_{10} - \dim E_{01} \), where \(E_{ab} = \{x \in X : Px = ax, \ Qx = bx \} \) and \(\tilde{E}_{ab} = \{x^* \in X^* : P^* x^* = ax^*, \ Q^* x^* = bx^* \} \).

Remark. If \(X \) is a Hilbert space and \(P \) and \(Q \) are self-adjoint this is equivalent to the result of Avron, Seiler and Simon.

Proof. We use the notation of the lemma. If \(M^n \) is nuclear then some power of \(M^2 \) is compact. Let \(S = I - M^2 \) and let \(F = \bigcup_{k \geq 1} S^{-k}(0) \) and \(Y = \cap_{k \geq 1} S^k(X) \). Then as noted above we have that \(\dim F < \infty, X = F \oplus Y \) and \(S \) is invertible on \(Y \). Since \(P \) and \(Q \) commute with \(S \) both \(F \) and \(Y \) are invariant for \(P \) and \(Q \). We denote the restriction of an operator \(T \) to \(F \) or \(Y \) by \(T_F \) or \(T_Y \).

Now \((I - M_F^n) \) is invertible on \(Y \) so that (3) of the lemma expresses \(M_Y^n \) as the commutator of a nuclear operator and a bounded operator. Hence \(\text{tr} M_Y^n = 0 \).

On the other hand, by (2) of the Lemma, \(M_F - M_F^n \) is a commutator on \(F \) which is finite-dimensional so that \(\text{tr} M_F^n = \text{tr} M_F = \text{tr} P_F - \text{tr} Q_F \in \mathbb{Z} \).

It is easy to see from elementary computations that \(\text{tr} P_F - \text{tr} Q_F = \dim F - \text{rank} (I - P_F) - \text{rank} Q_F = \dim F - \text{dim} ((I - P)F + Q(F)) - \dim E_{01} \). Now \(\dim F - \text{dim} ((I - P)F + Q(F)) \) is the dimension of the subspace of \(F^* \) of all \(f^* \) such that \(P_F f^* = f^* \) and \(Q_F f^* = 0 \); if we identify \(F^* \) with \(Y^\perp \) via the direct sum decomposition this space coincides with \(\tilde{E}_{10} \). Now, it follows easily from the properties of the trace that \(\text{tr} M^n = \text{tr} M_P^n + \text{tr} M_Y^n \). This gives the second formula for \(\text{tr} M^n \). The other formula is similar. \(\square \)
References

1. J. Avron, R. Seiler and B. Simon, *The index of a pair of projections*, J. Functional Analysis 120 (1994), 220-237.
2. E.G. Effros, *Why the circle is connected*, Math. Intelligencer 11 (1989), 27-34.
3. A. Pietsch, *Eigenvalues and s-numbers*, Cambridge studies in advanced mathematics 13, Cambridge University Press, Cambridge, 1987.

Department of Mathematics, University of Missouri Columbia, MO 65211, U.S.A.
E-mail address: nigel@math.missouri.edu