Advanced glycation end products correlate with breast cancer metastasis by activating RAGE/TLR4 signaling

Shuo Pan,1,2 Yitong Guan,3 Yanpeng Ma,1,2 Qianwei Cui,1,2 Zhiguo Tang,1,2 Jingyuan Li,4 Chao Zu,5 Yong Zhang,1,2 Ling Zhu,1,2 Jie Jiang,6 Zhongwei Liu

ABSTRACT

Introduction This study was aimed to investigate the mechanisms of advanced glycation end products (AGEs) in promoting invasion and metastasis of breast cancer.

Research design and methods Patients with 131 breast cancer were enrolled in a cohort and followed up to investigate the association between AGEs and metastasis. Serum AGE concentrations were detected by ELISA. Breast cancer MDA-MB-231 cells were exposed to generated AGE-bovine serum albumin (BSA). CCK-8 assay was used to select the non-cytotoxic concentrations of AGE-BSA. Small interfering RNA was used to knock down Toll-like receptor 4 (TLR4). Migration and invasion were evaluated by wound healing and transwell assays. Real-time PCR and western blotting were used to detect the gene expressions.

Results In the cohort study, metastasis incidence was significantly correlated with serum AGE concentrations in patients with breast cancer (adjusted OR=1.75, 95% CI=1.20 to 2.57, p=0.004). Follow-up study showed metastasis interval was significantly shorter in diabetic breast cancer patients than non-diabetic breast cancer patients. AGE-BSA incubation significantly promoted migration and invasion of cancer cells in a concentration-dependent manner. AGE-BSA dramatically increased expressions of receptor for AGEs (RAGE), TLR4, myeloid differentiation factor (MyD88), matrix metalloproteinase 9 (MMP9), promoted nuclear translocation of nuclear factor κB (NFκB) p65, but decreased the expression of inhibitor of NFκB (IκBα). TLR4 silencing significantly suppressed migration and invasion of cancer cells exposed to AGE-BSA. TLR4 silencing reduced the expression of MyD88 and MMP9, as well as nuclear translocation of NFκB p65 but increased IκBα expression in AGE-BSA-incubated breast cancer cells.

Conclusions AGEs are correlated with metastasis of breast cancer. AGEs' promoting effects on migration and invasion of breast cancer cells via activating RAGE/TLR4/MyD88 signaling were suggested as the involved mechanism.

INTRODUCTION

As the prevalence of western diets and static lifestyle, the occurrence of type 2 diabetes mellitus (T2DM) has been growing fast since recent decades and becomes one of the major public health concerns worldwide. Moreover, T2DM subjects exhibited higher risks in developing malignant cancers such as bladder cancer, colorectal cancer and breast cancer.1 A population-based study suggested that the breast-cancer-specific mortality was significantly higher in women with diabetes than non-diabetic subjects though they received similar treatments.2 Notably, cancer patients with diabetes exhibited higher prevalence of metastasis which was accepted as the major factor lowering survival rate.3 4 However, the underlying mechanisms are still unclear.

Advanced glycation end products (AGEs) are characterized diabetic pathological metabolites produced after Maillard reactions among biomolecules including nucleic acids, lipids and amino groups.5 It is now believed that as ligands, AGEs induce activation of multiple intracellular signaling cascades to result in a wide range of adverse pathological outcomes in cancer such as migration, invasion and proliferation.6 Several downstream effectors of
RAGE pathway were associated with cancer immune, cell proliferation, angiogenesis and metastasis. Targeted silencing of RAGE was reported to inhibit proliferation and invasion of breast cancer. Thus, it is reasonable for us to speculate that AGEs produced in diabetic individuals may promote invasion and metastasis of breast cancer via RAGE-mediated signaling pathways.

After binding with AGEs, RAGE activates its downstream signaling such as Toll-like receptor 4 (TLR4)/myeloid differentiation factor 88 (MyD88) in cytoplasm. MyD88 further triggers the activation of nuclear factor κB (NFκB) which participates in cancer invasion and metastasis by regulating the expression of targeted genes such as matrix metalloproteinase 9 (MMP9) after nuclear translocation. In this study, a human breast cancer cell line MDA-MB-231 cells were exposed to synthesized AGE-BSA at non-cytotoxic concentrations. Migration and invasion of cancer cells were evaluated. The involvement of RAGE/TLR4/MyD88/NFκB signaling pathway was investigated by specific TLR4 silencing. Moreover, a follow-up cohort study was implemented to investigate the association between AGEs and metastasis in patients with breast cancer. Results from this study would add more knowledge to our current understanding of the mechanisms concerning promoted cancer malignance in diabetes.

MATERIALS AND METHODS

Cohort study

In the period from January 2013 to January 2016, 131 female patients diagnosed as breast cancer at stage II and III received surgical treatments discharged from Department of Medical Oncology, Shaanxi Provincial People's Hospital were enrolled. These patients were followed up till metastasis was diagnosed or till January 2021 for non-metastatic subjects. Diabetes was diagnosed according to current guideline. The exclusion criteria were: age below 18 years or above 80 years, pregnant females, previous cancer history, cardiac/respiratory/renal/hepatic dysfunctions, autoimmune diseases and mental disorders. Medical records were collected from all subjects. Fasting venous blood samples were collected. Serum was harvested and subjected to AGE-BSA ELISA detections with a Human AGEs ELISA Kit (CUSABIO). All patients gave informed consent to participate in this study and agreed the research purposes of blood samples for our study.

AGES-BSA preparation and detection

The protocol of AGE-BSA synthesis was adopted from ours and others' investigations. Briefly, BSA (Gibco) at 100 mg/mL was incubated with D-glucose (Sigma) at 90 mg/mL and sodium azide at 1.0 mmol/L in phosphate buffer (pH=7.6) at 0.4 mmol/L at 37°C in sterilized condition for 14 days. Unreacted D-glucose was eliminated by dialysis of glucose-BSA against phosphate buffer. BSA prepared without D-glucose was used as control. Concentrations of AGE-BSA were detected with an AGE Assay Kit (BioVision).

Small interfering RNA (siRNA) transfection

TLR4 was knocked down by using siRNA transfection in this study. Specific siRNA against TLR4 (TLR4-siRNA) was adopted from one of our previous investigations. The targeting sequence was 5’-GUCUCAGAUUCUAUACUC-3’. TLR4-siRNA and scrambled control siRNA (TaKaRa) were transfected into seeded cells by using Lipofectamine RNAiMAX Reagent (Thermo) per the instruction provided by the manufacturer. Cells were then cultured for 48 hours at 37°C before subsequent experiments.

Cell line and treatment

Human breast cancer MDA-MB-231 cell line was purchased from China Cellular Institute in Shanghai. Cells were maintained in Dulbecco’s modified Eagle’s Medium (Gibco) supplemented with 10% fetal bovine serum (FBS, Gibco), L-glutamine at 2 mmol/L and antibiotics mix (Santa Cruz) at 37°C in an atmosphere consisted of 5% CO2 and 95% fresh air. Cells were exposed to

Table 1 Baseline clinical characteristics of enrolled subjects

	Total (N=131)	Metastasis (−) (n=69)	Metastasis (+) (n=62)	P value
Age (year)	55.37±13.55	56.26±11.52	54.59±15.52	0.531
Cancer history (%)	7 (5.34)	6 (8.70)	1 (1.61)	0.118
Body surface area (m²)	1.59±0.11	1.61±0.11	1.58±0.12	0.183
TNBC (%)	19 (14.50)	9 (13.04)	10 (16.13)	0.644
Ki-67 (%)	31.92±19.91	33.46±20.52	29.75±19.21	0.386
Diabetes (%)	42 (32.06)	22 (31.88)	20 (32.26)	0.964
Neoadjuvant chemotherapy (%)	16 (12.21)	10 (14.49)	6 (9.68)	0.400
Adjuvant chemotherapy (%)	117 (89.31)	63 (91.30)	54 (87.10)	0.436
Serum AGEs (μg/mL)	5.77±1.73	5.40±1.63	6.14±1.75	0.021
HbA1c (%)	7.47±1.77	7.52±1.80	7.43±1.82	0.903

AGEs, advanced glycation end products; HbA1c, glycosylated hemoglobin A1c; TNBC, triple-negative breast cancer.
AGE-BSA at 0, 10 and 20 µg/mL for 8 hours. Cells treated with AGEs at 20 µg/mL were also transfected with above TLR4-siRNA 24 hours prior to the exposure.

AGE-BSA toxicity assessment

To eliminate the bias brought by the impacts on cell viability, the AGE-BSA exposure applied to MDA-MB-231 cells were at non-cytotoxic concentrations. CCK-8 assay was carried out to select these non-cytotoxic concentrations. Cells were seeded to plates at 3000 per well. Cells were then treated with AGEs at 0, 10, 20, 40, 80 and 100 µg/mL for 48 hours, respectively. CCK-8 reagent (Solarbio) of 10 µL was added to each well 4 hours before culturing termination. A plate reader (Bio-Rad) was used to detect the optical density (OD) values at 450 nm. The cell viability was calculated as Treatment OD450/Control OD450. Then the non-cytotoxic concentrations were selected.

Cell migration evaluation

Wound-healing assay was used to evaluate cell migration. When at a confluence over 80%, cultured MDA-MB-231 cells were seeded in a 24-well plate and cultured for 24 hours. A 200 µL micropipette tip was used to scratch the confluent monolayer cells. After phosphate-buffered saline washing, cells were exposed to AGE-BSA at 0, 5, 10 and 20 µg/mL for 48 hours. Then a microscope was used to capture the images and the distance of migration was calculated.

Cell invasion assessment

Transwell assay was used to assess cell invasion. Cells at density of 2×10⁵/mL were plated into a transwell chamber (Corning). Medium supplemented with 10% FBS was used to fill the lower chamber to induce chemotaxis. After 24-hour culturing, a cotton swab was used to scrap the non-migrated cells in the upper chamber gently. Methanol was used to fix the cells adhering to the lower surface of the insert, which were then stained by staining buffer containing 1% toluidine and 1% borax. A microscope was used to observe the membranes. The invaded cells were counted by analyzing six random fields.

Quantitative real-time PCR (qPCR)

Total RNA of cultured cells were extracted by using RNeasy plus mini kit (Qiagen) and reversely transcribed into cDNA by using ExScript RT Reagent Kit (Invitrogen) per the protocols provided by the manufacturers. SYBR Premix Ex Taq (Invitrogen) was used for qPCR. The conditions were the following: denaturing at 95°C for 15s and annealing at 60°C for 60s for 40 cycles. Primer for RAGE was: forward 5′-GGGAGATTCAGTGTGGTG-3′ and reverse 5′-GACTGTCGTCCTT-3′; for MMP9 was: forward 5′-TGGACAGCAGAAGAATG-3′ and reverse 5′-TCAGCGTGCTCCTATTAGA-3′; for TLR4 was: forward 5′-ATGGGATGGGACCTGACT-3′ and reverse 5′-GCTTGTCTCAAGGGTGTCT-3′; for GAPDH was: forward 5′-GTCAGTCGAGGACAGAAGG-3′ and reverse 5′-GAGTGAGAGGTCGACCT-3′; and for MYD88 was: forward 5′-GCGGCCAGTGTGGTTG-3′ and reverse 5′-CTGCAGTGTGGTTGTTG-3′. GAPDH (glyceraldehyde-3-phosphate dehydrogenase) was introduced as the internal reference. The primer for GAPDH was: forward 5′-GTCAGTGTTGGAAGACTGAG-3′ and reverse 5′-AGGGAGATTACCTGTTG-3′.

Western blotting

Cell lysate were acquired after harvested cells were treated with RIPA buffer system containing protease inhibitor cocktail and PMSF (phenylmethylsulfonyl fluoride) at 1 mmol/L (Santa Cruz). Cytoplasmic and nuclear protein samples were extracted by using a Cytoplasmic Protein Extraction kit (Beyotime) and a Nuclear Protein Extraction kit (Beyotime). Protein...
Signal transduction

concentration was determined by using a BCA Protein Assay Kit (Beyotime). After separated by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE), proteins were then transferred to polyvinylidene fluoride membranes. After incubated with blocking buffer (Beyotime) for 1 hour, the membranes were probed by primary antibodies specific to RAGE (Abcam, 1:2500), TLR4 (CST, 1:2000), MyD88 (Abcam, 1:2500), MMP9 (Abcam, 1:2000), NFκB p65 (Abcam, 1:2000), IkBα (CST, 1:2500), GAPDH (Abcam, 1:5000) and Lamin B1 (Abcam, 1:2500) at 4°C for 10 hours. After Tris-buffered saline Tween 20 (TBST) washing, horseradish peroxidase-conjugated secondary antibodies were used to incubate the membranes at room temperature for 20 min. ECL Chemiluminescent Substrate Reagent Kit (Invitrogen) was used to develop the membranes. Image of the immunobands were captured and analyzed by a luminescent image analyzer.

Statistics

Data in this study were presented in (mean±SD) or percentage manners which were further analyzed by using SPSS 20.0 software. Participants were divided into two groups (metastasis and non-metastasis). Comparisons of baseline data between two groups were carried out by t-test (for parametric variables), Mann-Whitney U test (for non-parametric variables) and χ² test (for categorical variables). The association between metastasis and serum AGE concentration was evaluated by univariate and multivariate logistic regression models. Model 1 was unadjusted. Model 2 was adjusted for age, malignant cancer family history, body surface area and diabetes. Model 3 was adjusted for age, malignant cancer family history, body surface area, diabetes, Ki-67 value, triple-negative breast cancer (TNBC), neoadjuvant chemotherapy and adjuvant chemotherapy. When p<0.05,
Signal transduction

the compared differences would be considered statistically significant.

RESULTS

Cohort study

Baseline data of these patients were listed in table 1. Patients were divided into metastasis group and non-metastasis group. Differences of age, malignant cancer family history, body surface area, diabetes, Ki-67 value, TNBC, neoadjuvant chemotherapy and adjuvant chemotherapy were found not significant between two groups. Serum AGE concentration in metastasis group was significantly higher than non-metastasis group. As demonstrated in online supplemental table S1, the univariable Cox regression analysis (model 1, unadjusted) of AGE concentration was positively correlated with metastasis (OR=1.29, 95% CI 1.05 to 1.60, p=0.016). Multivariate regression analysis indicated serum AGE concentrations were significantly correlated with metastasis in model 2 (adjusted OR=1.78, 95% CI 1.22 to 2.60, p=0.003) and model 3 (adjusted OR=1.75, 95% CI 1.20 to 2.57, p=0.004). We further analyzed clinical characters in metastasis group which were demonstrated in online supplemental table S2. Age, body surface area, Ki-67 value, TNBC, neoadjuvant chemotherapy and adjuvant chemotherapy were found not significant different between two groups.

Compared with patients without diabetes, patients with diabetes showed significant shorter metastatic interval and higher serum AGE concentrations. As demonstrated in online supplemental figure S1, serum AGE concentration was significantly and positively correlated with glycosylated hemoglobin A1c (HbA1c) level in enrolled subjects.

Selection of AGE-BSA concentrations and verification of TLR4 silencing

As demonstrated in figure 1A, cultured MDA-MB-231 cells were exposed to AGEs at 0, 5, 10, 20, 40, 80 and 100 µg/mL for 48 hours. Cell viabilities were significantly inhibited by AGEs starting at 40 µg/mL, indicating AGE concentration above 40 µg/mL was cytotoxic against MDA-MB-231 cells. Thus, AGEs at 0, 05, 10 and 20 µg/mL were used in subsequent experiments. As demonstrated in figure 1B, TLR4-siRNA transfection effectively knocked down TLR4 expression in MDA-MB-231 cells.

Effects of TLR4 silencing on migration of MDA-MB-231 breast cancer cells

MDA-MB-231 cells were exposed to AGEs at 0, 5, 10 and 20 µg/mL. As demonstrated in figure 2, evidenced by wound healing assay, AGE treatment strengthened the ability of cell migration of MDA-MB-231 cells in a concentration-dependent manner. However,
the AGE-enhanced cell migration was dramatically suppressed in TLR4-siRNA transfected MDA-MB-231 cells.

Effects of TLR4 silencing on invasion of MDA-MB-231 breast cancer cells

Transwell assay was used to evaluate the invasion behavior of MDA-MB-231 cells, which were demonstrated in figure 3A. AGE exposure significantly enhanced the invasion in a concentration-dependent manner, which was attenuated by TLR4 silencing in MDA-MB-231 cells. MMP9 is capable of degrading extracellular matrix (ECM) and considered taking responsibility in cancer invasion. As demonstrated in figure 3B, AGEs exposure dramatically increased MMP9 expression in MDA-MB-231 cells in an AGEs concentration-dependent manner. TLR4 silencing significantly reduced MMP9 expression in AGE-incubated breast cancer cells.

Effects of TLR4 silencing on RAGE/TLR4/MyD88 signaling pathway activation in AGE-exposed MDA-MB-231 cells

As demonstrated in figure 4, AGE exposure significantly increased RAGE, TLR4 and MyD88 expressions but decreased IκBα expression in cytoplasm in a concentration-dependent manner. AGE exposure increased nuclear expression of NFκB p65 in breast cancer cells in a concentration-dependent manner. TLR4 silencing, however, reduced MyD88 without affecting RAGE expression in AGE-incubated breast cancer cells. Moreover, TLR4-siRNA transfection increased IκBα in cytoplasm but decreased NFκB p65 expression in nuclei in MDA-MB-231 cells exposed to AGEs.

DISCUSSION

Breast cancer is currently one of the leading causes of cancer-associated death in women. It was reported that less than one-third patients diagnosed with metastasis failed to survive the first 5 years.14 Evidences indicated that women with diabetes exhibited a 40% higher risk of breast cancer-specific mortality than non-diabetic patients.15 Metastasis takes responsibility for the cancer-related mortality. However, the mechanisms are still in vague. In this study, 131 patients with breast cancer participated our follow-up investigation. Our results suggested that breast cancer patients with diabetes showed shorter metastatic interval than non-diabetic ones. Moreover, serum AGE concentrations in these patients were significantly higher. Our further investigation proposed serum AGE concentration was closely correlated with metastasis.
Thus, it is reasonable to speculate AGEs may be the pathological metabolite promoting cancer metastasis under circumstances of diabetes.

A large amount of AGEs are produced and accumulated in diabetes due to sustained glucose metabolism disorder. AGEs are the most representative metabolites with various biological activities. In this study, a human breast cancer cell line of MDA-MB-231 cells was exposed to AGE-BSA at non-cytotoxic concentrations. Our results suggested that AGE-BSA exposure significantly promoted migration and invasion abilities of MDA-MB-231 cells in a concentration-dependent manner. AGEs induce biological effects mainly via binding with their receptor RAGE, which takes responsibilities in regulating various cell functions such as inflammation, differentiation and immune response.16 It was reported that RAGE-associated pathway activation was associated with the progression of several human cancers.17

TLR4/MyD88 signaling plays vital roles in various diseases including cancer. Our previous study showed TLR4 pathway was the downstream effector of RAGE signaling.15 Activation of TLR4 would further mobilize MyD88. Previous investigations reported activation of TLR4/MyD88 pathway potentiated the metastatic behavior of human breast cancer cells.18 MyD88 relieves the inhibition of IκBα on NFKB and thus facilitates the activation of NFKB p65, which translocates into nuclei to initiate the transcription of targeted genes.19 In this study, we found that AGE exposure significantly activated RAGE/TLR4/MyD88/NFKB signaling, resulting in elevated expression of MMP9 which expedites cancer invasion by degrading ECM. Targeted TLR4 silencing dramatically impaired migration and invasion of AGE-incubated breast cancer cells by deactivating this MyD88/NFKB signaling.

In summary, results from the present study suggested that the characterized diabetic metabolite AGEs participated in promoting breast cancer metastasis. Activation of RAGE/TLR4/MyD88 signaling pathway may involve in the underlying mechanisms. We believe that our study would be benefit in further understating the mechanisms of the clinical scenario that breast cancer was exacerbated by diabetes. Moreover, RAGE/TLR4/MyD88 signaling could be a novel potential therapeutic target for breast cancer patients with diabetes.

LIMITATION

There were several limitations of this study. First, though the human breast cancer cell line MDA-MB-231 was characterized with the abilities of invasion and metastasis, investigation on multiple cell lines would be more convincing. Second, establishment of an AGE-exposed nude mice bearing breast cancer animal model would add more evidence to support our conclusion. Third, the employment of high-performance liquid chromatography might be more accurate in evaluating AGE levels. Fourth, the detection of AGEs-BSA by using a human ELISA-based assay was not accurate enough. It would be more persuasive if fluorescence or chromatography-based methods were employed.

REFERENCES

1 Giovannucci E, Harlan DM, Archer MC, et al. Diabetes and cancer: a consensus report. Diabetes Care 2010;33:1674–85.
2 Lega IC, Austin PC, Fischer HD, et al. The impact of diabetes on breast cancer treatments and outcomes: a population-based study. Diabetes Care 2018;41:755–61.
3 Lutz SZ, Todenhäfer T, Wagner R, et al. Higher prevalence of lymph node metastasis in prostate cancer in patients with diabetes. Endocr Relat Cancer 2018;25:L19–22.
4 Pearl O. Metastatic breast cancer. Radiol Technol 2017;88:519m–39.
5 Simo-Servat O, Planas A, Ciudin A, et al. Assessment of advanced glycation end-products as a biomarker of diabetic outcomes. Endocrinol Diabetes Nutr 2018;65:540–5.
6 Rowan S, Bejarano E, Taylor A. Mechanistic targeting of advanced glycation end-products in age-related diseases. Biomch Biophys Acta Mol Basis Dis 2018;1864:3631–43.
7 Ahmad S, Khan H, Siddiqui Z, et al. Ages, RAGEs and s-RAGE: friend or foe for cancer. Semin Cancer Biol 2018;49:44–55.
8 Kwak T, Drews-Elger K, Ergonul A, et al. Targeting of RAGE-ligand signaling impairs breast cancer cell invasion and metastasis. *Oncogene* 2017;36:1559–72.

9 Baek J-H, Yun HS, Kwon GT, et al. PLOD3 promotes lung metastasis via regulation of STAT3. *Cell Death Dis* 2018;9:1138.

10 American Diabetes Association. 2. Classification and Diagnosis of Diabetes: Standards of Medical Care in Diabetes-2019. *Diabetes Care* 2019;42:S13–28.

11 Liu Z, Zhu H, Ma Y, et al. Ages exacerbates coronary microvascular dysfunction in NoCAD by activating endoplasmic reticulum stress-mediated PERK signaling pathway. *Metabolism* 2021;117:154710.

12 Nishad R, Meshram P, Singh AK. Activation of Notch1 signaling in podocytes by glucose-derived ages contributes to proteinuria 2020;8.

13 Liu Z, Ma Y, Cui Q, et al. Toll-like receptor 4 plays a key role in advanced glycation end products-induced M1 macrophage polarization. *Biochem Biophys Res Commun* 2020;531:602–8.

14 Dent R, Trudeau M, Pritchard KL, et al. Triple-negative breast cancer: clinical features and patterns of recurrence. *Clin Cancer Res* 2007;13:4429–34.

15 Peairs KS, Barone BB, Snyder CF, et al. Diabetes mellitus and breast cancer outcomes: a systematic review and meta-analysis. *JCO* 2011;29:40–6.

16 El-Far AH, Sroga G, Al Jaouni SK, et al. Role and mechanisms of RAGE-Ligand complexes and RAGE-Inhibitors in cancer progression. *Int J Mol Sci* 2020;21:3613.

17 Chen M-C, Chen K-C, Chang G-C, et al. Rage acts as an oncogenic role and promotes the metastasis of human lung cancer. *Cell Death Dis* 2020;11:265.

18 Wu K, Zhang H, Fu Y, et al. Tlr4/Myd88 signaling determines the metastatic potential of breast cancer cells. *Mol Med Rep* 2018;18:3411–20.

19 Xu Z, Ren T, Xiao C, et al. Nickel promotes the invasive potential of human lung cancer cells via TLR4/MyD88 signaling. *Toxicology* 2011;285:25–30.