Roles of microRNAs in tumorigenesis and metastasis of esophageal squamous cell carcinoma

Di Cui, Annie LM Cheung

ORCID number: Di Cui 0000-0001-7095-959X; Annie LM Cheung 0000-0003-3217-1456.

Author contributions: Cui D and Cheung ALM contributed to writing, discussion, and critical revision of the article.

Supported by: Research Grants Council of the Hong Kong SAR, China, General Research Fund, No. 17111917.

Conflict-of-interest statement: The authors have no conflict of interest to declare.

Open-Access: This article is an open-access article that was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution NonCommercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: https://creativecommons.org/License s/by-nc/4.0/

Manuscript source: Invited manuscript

Specialty type: Oncology

Abstract

Esophageal squamous cell carcinoma (ESCC) is the major subtype of esophageal cancer that is prevalent in Eastern Asia. Despite recent advances in therapy, the outcome of ESCC patients is still dismal. MicroRNAs (miRNAs) are non-coding RNAs which can negatively modulate gene expression at the post-transcriptional level. The involvement and roles of miRNAs have become one of the hot topics of cancer research in recent years. In ESCC, genetic variations within miRNA coding genes were found to have distinct epidemiological significance in different populations. Dysregulated expression of several miRNAs was reported to be associated with therapeutic response. Functionally, miRNAs can act either in an oncogenic or a tumor-suppressive manner during tumorigenesis of ESCC by interrupting signaling pathways associated with cell proliferation, metabolism, cancer stemness, and resistance to chemo- or radiotherapy. Moreover, miRNAs modulate metastasis of ESCC by targeting genes that regulate cytoskeleton dynamics, extracellular matrix remodeling, epithelial-mesenchymal transition, and tumor microenvironment. Most importantly, mounting evidence suggests that inhibiting oncogenic miRNAs or restoring the loss of tumor-suppressive miRNAs has therapeutic potential in the treatment of ESCC. Here, we review and discuss recent studies on the significance, biological functions, and therapeutic potential of miRNAs in tumorigenesis and metastasis of ESCC.

Key Words: MicroRNAs; Dysregulation; Tumorigenesis; Metastasis; Therapeutic potential; Esophageal squamous cell carcinoma

© The Author(s) 2021. Published by Baishideng Publishing Group Inc. All rights reserved.

Core Tip: Esophageal squamous cell carcinoma (ESCC) is a deadly disease worldwide. Its poor prognosis is mainly due to the rapid tumor progression and high rate of
invasion and metastasis. It is of great importance to understand the mechanisms underlying ESCC tumorigenesis and metastasis. Increasing studies confirmed the involvement of microRNAs (miRNAs) in cancer progression. Dysregulated miRNAs can serve as possible biomarkers for ESCC diagnosis or prognosis evaluation. Moreover, miRNAs function as small post-transcriptional regulators with notable therapeutic value. This review summarizes recent studies on the significance, biological functions, and clinical potential of miRNAs in tumorigenesis and metastasis of ESCC.

INTRODUCTION

Esophageal cancer is one of the most aggressive cancers worldwide. According to 2018 global cancer statistics based on 185 countries, esophageal cancer is the seventh most common cancer and the sixth in terms of mortality globally [1]. The two major subtypes of esophageal cancer, esophageal squamous cell carcinoma (ESCC) and esophageal adenocarcinoma (EAC), differ in symptoms, geographic distribution, and etiology. ESCC is the most common subtype of esophageal cancer globally. It constitutes more than 80% of esophageal cancer cases worldwide [2-4]. In 2012, there were about 398000 new cases of ESCC, which was 7.6-fold higher than EAC cases [5]. Like many other cancer types, genetic alterations, uncontrollable proliferation, and escaping from cell death and immune-response are associated with the pathogenesis of ESCC. The high rates of local invasion and distant metastasis also contribute to the malignancy of ESCC. In fact, most patients have distant metastasis at initial diagnosis [6]. Delayed diagnosis and treatment lead to the poor prognosis. The 5-year survival rate of ESCC patients is only 20%-30% [7].

For decades, oncology studies mainly focused on dysfunction of protein-coding genes. It is only recently that the wide involvement of non-coding RNAs in cancer biology has been recognized. MicroRNAs (miRNAs) constitute one of the major families of non-coding transcripts. Typically, miRNAs are 20-24 ribonucleotides in length, and are transcribed from different genome locations, such as introns or junk DNA sequences between genes. MicroRNAs can bind to the 3'-untranslated region (UTR) of target mRNAs through imperfect base-pair complementation, and functionally promote target mRNA degradation or inhibit translation. The biogenesis of miRNAs is tightly controlled within normal cells, but mutations within miRNAs and dysregulated miRNA expression have been observed in many tumor types [8]. This highlights the possibility that miRNAs may be useful as diagnostic biomarkers. It has also been shown that miRNAs are involved in regulating multiple biological processes during cancer pathogenesis, which suggests that they may be exploited as therapeutic targets or tools [9]. In the last decades, increasing evidence supports that miRNAs have important roles in the pathophysiology of esophageal cancer [10,11]. In this review, we will summarize recent discoveries on the altered expression and functions of miRNAs in ESCC.

DYSREGULATION OF MICRORNAS IN ESCC

Genetic variations within miRNA sequence, as well as dysregulated level of miRNA, are frequently observed in multiple tumor types including ESCC [8]. Most of the genetic variations of miRNAs are due to the single nucleotide polymorphisms within miRNA coding genes (miR-SNPs) [12]. Studies in the last decades have demonstrated the epidemiological significance of miR-SNP associated with susceptibility to ESCC in different populations. As a typical example, multiple studies reported that an SNP of miR-196a2, rs11614913 CC>TT, is associated with a reduced risk of ESCC in the Chinese Han population [13,14]. Another SNP of pro-miR-423, rs6505162 A>C, was found to be correlated with the incidence of ESCC in the Black population of South

Citation: Cui D, Cheung AL. Roles of microRNAs in tumorigenesis and metastasis of esophageal squamous cell carcinoma. *World J Clin Oncol* 2021; 12(8): 609-622

URL: https://www.wjgnet.com/2218-4333/full/v12/i8/609.htm

DOI: https://dx.doi.org/10.5306/wjco.v12.i8.609

Country/Territory of origin: China

Peer review report's scientific quality classification

- Grade A (Excellent): A
- Grade B (Very good): B
- Grade C (Good): 0
- Grade D (Fair): 0
- Grade E (Poor): 0

Received: January 27, 2021

Peer review started: January 27, 2021

First decision: May 7, 2021

Revised: May 11, 2021

Accepted: July 22, 2021

Article in press: July 22, 2021

Published online: August 24, 2021

P-Reviewer: Kim HS, Koritala T

S-Editor: Ma YJ

L-Editor: Wang TQ

P-Editor: Guo X
miRNAs. MiRNAs have been found to be involved in regulation of multiple biological processes. Beyond merely identifying alterations in miRNA expression patterns, researchers have become more focused on studying the functional significance of aberrantly expressed miRNAs. Some examples include the role of miR-31 in tumor development. In one study, the SOX4/EZH2/HDAC3 co-repressor complex mediates hypermethylation of H3K27 around miR-31 promoter in ESCC cells. In that study, the authors found that the SOX4/EZH2/HDAC3 corepressor complex mediates hypermethylation of H3K27 around miR-31 promoter [31]. However, up to now, little is known about the regulatory function of other types of histone modifications on miRNA expression in ESCC. Further studies are needed to reveal the possible contribution of different histone modifications in modulating miRNA expression pattern in ESCC.

ROLES OF MICRORNAS IN TUMORIGENESIS OF ESCC

Beyond merely identifying alterations in miRNA expression patterns, researchers have become more focused on studying the functional significance of aberrantly expressed miRNAs. miRNAs have been found to be involved in regulation of multiple biological processes.
processes during ESCC development (Figure 1). According to the distinct roles, miRNAs can be broadly described as tumor-suppressive and oncogenic miRNAs. Generally speaking, tumor-suppressive miRNAs functionally impede tumor malignancy, and are frequently repressed in expression level in tumor cells. For example, miR-503 was reported to negatively regulate cyclin D1 and induce cell cycle arrest in G1/S phase in ESCC[32]. Similar cell proliferation-repressive miRNAs include miR-200c and miR-939, which interfere with mitosis by targeting P21 and target polo-like kinase 1 (PLK1), respectively[33,34]. Some miRNAs also suppress development of ESCC by regulating metabolic processes, especially glucose metabolism. For instance, miR-375 exerts a metabolism-repressive role by directly inhibiting lactate dehydrogenase B, which is a key enzyme in post-glycolysis process and catalyzes pyruvate-lactate interconversion[35]. Similarly, rate-limiting enzymes in glycolysis, such as glucose-6-phosphate dehydrogenase (G6PD) and hexokinase 2 (HK2), were reported to be negatively regulated by miR-613[36] and miR-125/143 cluster in ESCC[37]. Besides, miRNAs can also exert tumor-suppressive function by inhibiting cancer stemness. For example, Li et al[38] found that miR-377 was frequently downregulated in ESCC tumor, and that ectopic miR-377 expression could inhibit sphere formation and tumorigenic potential of ESCC cells by directly inhibiting CD133, which is a well-known stemness biomarker in cancer. In addition, it was reported that miR-377 can target chromobox protein homolog 3 (CBX3) and contributes to maintenance of stem cell potential in ESCC[39], which further emphasized the importance of miR-377 as a critical tumor suppressor in ESCC.

Moreover, tumor-suppressive miRNAs can also promote the effect of chemoradiotherapies. A previous study by our group reported the tumor-suppressive role of miR-29c in reducing chemoresistance[40]. Overexpressing miR-29c in fluorouracil (5-FU)-resistant ESCC cell sublines increased their response to 5-FU treatment, shown as decreased cell viability and increased cell death, while miR-29c antagonist had opposite effect and could desensitize parental cells to 5-FU treatment. F-box only protein 31 (FBXO31), which has oncogenic function in ESCC[41] and lung cancer[42], was found to be one of the direct target genes of miR-29c that mediates its tumor-suppressive function. Further investigation found signal transducer and activator of transcription 5A (STAT5A) to be a transcription factor that can negatively regulate miR-29c expression in 5-FU-resistant cells[40]. This study highlighted the key role of the STAT5A/miR-29c/FBXO31 axis as a modulator of ESCC chemoresistance. By utilizing the same 5-FU-resistant cell model, Han et al[43] proved that miR-338-5p directly targets Id-1 (Inhibitor of DNA Binding 1) in ESCC cells to reverse chemoresistance. Interestingly, miR-338-5p was also able to attenuate cisplatin resistance and enhance radiotherapy efficiency by targeting focal adhesion protein kindlin-2 (also known as FERMT2)[44] and survivin[45], respectively. These studies suggest that miR-338-5p may be an essential tumor inhibitor.

On the other hand, onco-miRNAs are often upregulated in expression and functionally promote cancer progression by inhibiting tumor-suppressive proteins. One of the most well-studied oncogenic miRNAs in ESCC is miR-21. Several studies have reported that this miRNA is upregulated in the tumor[46-48], as well as in the serum or plasma of patients with ESCC[49-51]. Functionally, miR-21 was reported to promote cell growth and inhibit apoptosis in ESCC by activating the ERK/mitogen-activated protein kinase (MAPK) signaling cascade[52], or targeting genes including Fas ligand (FASL)[53], programmed cell death 4 (PDCD4)[54], phosphatase and tensin homolog (PTEN)[55-57], and RAS p21 protein activator 1 (RASA1)[58]. Further study also found miR-21 to play a role in maintaining cancer cell stemness in ESCC by upregulating stem cell markers such as Oct4 and Nanog and targeting TNF receptor-associated factor 4 (TRAF4)[59]. Oncogenic effects of miR-21 were also reported in breast cancer[60] and colorectal cancer[61], indicating its potential value as a pan-cancer therapeutic target. Onco-miRNAs can also interrupt cancer-related inflammation. For instance, miR-31 was found to be overexpressed in an orthotopic ESCC rat model promoted by Zn-deficiency, and functional tests revealed that miR-31 knockout abolished ESCC development and altered the expression profile of inflammation genes[62]. This effect was mediated by tumor suppressors egfl-9 family hypoxia inducible factor 3 (EGLN3) and membrane bound o-acetyltransferase domain containing 2 (MOAT2)[62]. Actually, both oncogenic and tumor-suppressive functions of miR-31 were found in different cancer types[63], but knockout of miR-31 failed to show obvious genomic and metabolic instability in the rat esophagus, indicating that it might be of great value as a potential therapeutic target for ESCC[62].
Cui D et al. Roles of microRNAs in ESCC

Figure 1 Multiple roles of miRNAs during development of esophageal squamous cell carcinoma. This figure summarizes the targets and regulatory functions of miRNAs in multiple biological processes during esophageal squamous cell carcinoma (ESCC) development. The roles of microRNAs in ESCC include inhibition or promotion of tumorigenesis and recurrence of ESCC by modulating cell proliferation, metabolism, cancer stemness, and resistance to chemoradiotherapy. They also regulate metastasis by targeting functional molecules involved in epithelial-mesenchymal transformation, remodeling of the cytoskeleton, extracellular matrix, and tumor microenvironment. Oncogenic miRNAs and target genes are marked in orange. PLCE1: Phospholipase C epsilon 1; VEGF: Vascular endothelial growth factor.

ROLES OF MICRONAS IN METASTASIS OF ESCC

The high incidence of metastasis is a serious issue associated with poor prognosis of ESCC. In addition to investigating the involvement of protein-coding genes in modulating tumor metastasis, recent studies have provided much information on the regulatory roles of miRNAs (Figure 1, also summarized in Table 1). MiRNAs were reported to modulate motility of ESCC cells by regulating cytoskeleton dynamics. For instance, miR-145 was demonstrated to have a suppressive effect on metastasis of ESCC by targeting phospholipase C epsilon 1 (PLCE1)[64], which is a Ras protein associated effector that can functionally remodel actin cytoskeleton[65,66]. Another example is miR-200b, which was reported to target FERMT2[67]. Therefore, the miR-200b/FERMT2 regulatory axis can reduce cell invasiveness by modulating the structure of the cytoskeleton and blocking the formation of focal adhesion[67].

The invasiveness of cancer cells is largely dependent on remodeling of the extracellular matrix (ECM) by matrix metalloproteinases (MMPs)[68]. Members of the MMP family are endopeptidases that catalyze the degradation of ECM components. In ESCC, highly expressed MMPs are often associated with strong malignancy and poor prognosis[69,70]. MiRNAs can modulate ESCC cell invasiveness by targeting MMPs. Yang et al[71] reported that a p53-downstream miRNA, miR-34a, suppressed ESCC cell migration and invasion by directly targeting and suppressing MMP2 and MMP9. Interestingly, miR-34a was also found to inhibit the expression of an upstream transcription factor of MMP2 and MMP9, namely, Yin Yang 1 (YY1), in ESCC cells, so that MMP2 and MMP9 levels were negatively regulated in ESCC[72]. Besides, MMP2 was also reported to be regulated by miR-29b in ESCC[73]. Qi et al[73] showed that the miR-29b/MMP2 axis inhibited cell invasion in vitro, as well as tumor growth in an animal model, indicating its involvement in both tumor development and metastasis. Other members of the MMP protein family, such as MMP3, MMP13, and MMP14, were found to be regulated by miR-515-3p[74], miR-375[75], and miR-133a[76], respectively.

Apart from gain of cell motility and remodeling ECM by MMPs, epithelial-mesenchymal transition (EMT) is another important process during pre-metastasis stage. Generally speaking, EMT describes the loss of epithelial cell phenotype to
MicroRNA	Validated target(s)	Effect	Ref.
miR-1	Notch2	Represses proliferation, migration, and invasion	[105]
miR-9	E-cadherin	Promotes metastasis	[91]
miRNA-10b-3p	TSGA10	Promotes cell growth and metastasis	[106]
miR-17/20a	TGFB1	Promotes TGFβ-induced EMT	[108]
miR-21	PCD4	Promotes cell growth and invasion	[54]
	PTEN	Promotes invasion	[57]
miR-25	E-cadherin	Promotes metastasis	[93]
miR-26a and miR-144	COX2	Repress proliferation and metastasis	[109]
miR-29b	MMP2	Represses proliferation and invasion	[73]
miR-29c	VEGF	Represses angiogenesis and metastasis	[95]
miR-30c	SNAI1	Represses proliferation, EMT and invasion	[86]
miR-34a	MMP2, MMP9, and FNDC3B	Represses migration and invasion	[71]
	CD44	Represses invasion and metastasis	[110]
	Yin Yang-1	Represses migration and invasion	[72]
miR-92a	E-cadherin	Promotes lymph node metastasis	[92]
miR-92b	ITGAV	Represses invasion and metastasis	[111]
miR-100b	PTEN	Promotes invasion and metastasis	[112]
miR-128-3p	ZEB1	Represses EMT and metastasis	[89]
miR-130a-5p	ZEB1	Represses EMT and metastasis	[113]
miR-130-3p	SMAD4	Represses EMT, migration, and invasion	[82]
miR-133a	MMP14, FSCN1	Represses cell invasion	[78]
miR-145	PLCE1	Represses proliferation and metastasis	[64]
miR-146a	Vimentin	Represses tumor invasion	[85]
miR-150	ZEB1	Represses EMT and metastasis	[90]
miR-200b	Kindlin-2	Represses focal adhesion formation and invasion	[67]
miR-218	BMI1	Represses proliferation and metastasis	[114]
miR-339-5p	TSPAN15	Represses metastasis	[115]
miR-375	SHOX2	Represses invasion and metastasis	[116]
miR-377	MMP13	Represses migration and invasion	[75]
miR-424-5p	CD133 and VEGF	Represses tumor initiation and progression	[38]
miR-429	SMAD7	Represses EMT, migration and invasion	[83]
miR-515-3p	MMP3 and Vimentin	Represses invasion and metastasis	[74]
miR-548k	ADAMTS1	Promotes lymph node metastasis	[96]
miR-630	Slug	Represses invasion and metastasis	[117]
miR-644a	PITX2	Repressing aggressiveness and stem cell-like phenotype	[118]
miR-655	TGFB1 and ZEB1	Represses EMT	[86]
miR-1290	SCAI	Promotes proliferation and metastasis	[119]
miR-4324	FAK	Represses EMT	[120]
assume a mesenchymal cell phenotype. It is considered to be a transitional process with a spectrum of stages, such as losing cell polarity and cell-cell junction, enhancing migratory property and invasiveness, and acquiring resistance to anoikis[77-79]. The EMT process is controlled by many growth factors, but the dominant inducer is considered to be transforming growth factor β (TGF-β)[80]. TGF-β stimulates Smad and MAPK signaling, thereby inducing a series of genetic events during EMT. Activation of SNAIL, ZEB, and TWIST transcription factor families is the initiation step. These transcription factors silence the gene expression of tight junction molecules of epithelial cells such as E-cadherin, tight junction protein 1 (TJP1), and zonula occludens 1 (ZO-1), and translationally activate the expression of mesenchymal marker molecules such as N-cadherin and vimentin[81]. Up to now, several miRNAs have been found to regulate the EMT process by directly targeting these related elements during metastasis of ESCC. For example, miR-130a-3p was reported to suppress EMT in ESCC by targeting SMAD4, which is one of the downstream molecules of the TGFβ signaling pathway[82]. Similarly, SMAD7 can be regulated by miR-424-5p[83] and miR-106b[84]. The miR-515-3p/vimentin regulatory axis can reverse EMT and negatively regulate ESCC metastasis[74]. Another study performed by our group found that VEGF was also demonstrated that miR-548k directly inhibited metalloproteinase ADAMTS1, which acted as a chaperone and blocked intrinsic VEGFC. In addition, high level of miR-548k in ESCC cells facilitated VEGFC secretion. As a consequence, the miR-548k/ADAMTS1/VEGFC axis promoted lymph node metastasis by activating VEGFR3 in lymphatic endothelial cells[96].

THERAPEUTIC POTENTIAL OF MICRORNAS IN ESCC

In view of increasing evidence proving that miRNAs have important regulatory roles in cancer, miRNAs are considered as a pool of ideal therapeutic targets for developing novel treatment strategies. To be specific, treatment with synthetic antagonists or inhibitors may specifically neutralize and block the endogenous activity of oncogenic miRNAs. This is proposed as “miRNA suppression therapy”. As for tumor-suppressive miRNAs, “miRNA replacement therapy”, which is defined as restoring the loss of tumor-suppressive miRNA and enhancing the post-transcriptional repression using miRNA mimicking oligonucleotides or agomirs, is appropriate[97,98]. As a type of gene therapy, miRNA-based therapy has numerous advantages. First, the small molecular weight of miRNA oligonucleotides[98] renders them easier to deliver in vivo
than plasmids or viral-based gene therapies. Second, miRNAs act as network regulators and can mediate silencing of multiple target genes or pathways simultaneously. This is believed to induce enhanced anti-cancer effects, compared to conventional therapies such as chemoradiotherapy and single-targeting inhibitors[37,99]. Third, miRNAs have lower toxicity compared with DNA or protein-based therapies because they are endogenously produced by cells[80,99]. Therefore, novel miRNA-based cancer therapies have become an exciting development in recent years.

Current studies on miRNAs in ESCC mostly focus on the identification of clinical correlation and novel targeting axes[100-102]. Less is known about the therapeutic potential of specific miRNAs in treatment. Isozaki et al.[103] showed that subcutaneous injection of miR-375 suppressed ectopic ESCC tumor growth in vivo. Another miRNA, mir-27a, had similar tumor-suppressive effect on ESCC tumor growth in vivo after direct injection into implanted tumor[104]. Most recently, three miRNAs including mir-377, mir-29c, and mir-515-3p proved to have therapeutic potential through systemic delivery via intravenous injection in mouse models[38,40,74]. Specifically, systemically administered miR-377 was able to suppress the growth of subcutaneous ESCC tumor xenografts and lung metastasis in a mouse model[38]. Systemic delivery of miR-29c produced a synergistic effect in inhibiting tumor growth when combined with 5-FU treatment[40]. Oligonucleotide mimicking mir-515-3p inhibited lung metastasis of ESCC in nude mice[74].

CONCLUSION

Studies in recent years have underscored the salient involvement of miRNAs in cellular events and human disease. A number of dysregulated miRNAs have been identified in multiple cancer types and nominated as potential novel cancer biomarkers. We now have a better understanding of how miRNAs can simultaneously regulate multiple target genes, and thereby functionally behave as oncocenes or tumor suppressors during cancer development and progression. Most importantly, researchers have discovered the therapeutic potential of miRNAs as novel targets or agents. In summary, studies in ESCC confirmed that miRNAs form a complex regulatory network in modulating tumor progression and malignancy. However, related investigations on the clinical application of miRNAs are still scarce. Therefore, future in-depth research on regulatory mechanisms of miRNAs and further validation of their therapeutic efficacy will allow us to better exploit this ubiquitous class of small molecules.

REFERENCES

1 Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 185 cancers in 185 countries. CA Cancer J Clin 2018; 68: 394-424 [PMID: 30207593 DOI: 10.3322/caac.21492]

2 Pennathur A, Gibson MK, Jobe BA, Luketic JD. Oesophageal carcinoma. Lancet 2013; 381: 400-412 [PMID: 23374478 DOI: 10.1016/S0140-6736(12)60643-6]

3 Lin DC, Wang MR, Koeffler HP. Genomic and Epigenomic Aberrations in Esophageal Squamous Cell Carcinoma and Implications for Patients. Gastroenterology 2018; 154: 374-389 [PMID: 28757263 DOI: 10.1053/j.gastro.2017.06.066]

4 Enzinger PC, Mayer RJ. Esophageal cancer. N Engl J Med 2003; 349: 2241-2252 [PMID: 14657432 DOI: 10.1056/NEJMra0305010]

5 Arnold M, Soerjomataram I, Ferlay J, Forman D. Global incidence of oesophageal cancer by histological subtype in 2012. Gut 2015; 64: 381-387 [PMID: 25320104 DOI: 10.1136/gutjnl-2014-308124]

6 Napier KJ, Scheerer M, Misra S. Esophageal cancer: A Review of epidemiology, pathogenesis, staging workup and treatment modalities. World J Gastrointest Oncol 2014; 6: 112-120 [PMID: 24834141 DOI: 10.4251/wjgo.v6.i5.112]

7 Torre LA, Bray F, Siegel RL, Ferlay J, Lortet-Tieulent J, Jemal A. Global cancer statistics, 2012. CA Cancer J Clin 2015; 65: 87-108 [PMID: 25651787 DOI: 10.3322/caac.21262]

8 Aguda BD. Modeling microRNA-transcription factor networks in cancer. Adv Exp Med Biol 2013; 774: 149-167 [PMID: 23379793DOI: 10.1007/978-94-007-5590-1_9]

9 Hemmatzadeh M, Mohammadi H, Karimi M, Musavishenas MH, Baradaran B. Differential role of microRNAs in the pathogenesis and treatment of Esophageal cancer. Biomed Pharmacother 2016; 82: 509-519 [PMID: 27470391 DOI: 10.1016/j.biopha.2016.05.009]

10 Patnaik SK, Mallick R, Yendamuri S. MicroRNAs and esophageal cancer. J Gastrointest Oncol 2010; 1: 55-63 [PMID: 22811805 DOI: 10.3978/j.issn.2078-6891.2010.011]
hematopoiesis.
Pagano F, Jin J

Promotes Esophageal Carcinogenesis by Targeting ROBO1.

Liu R, Kong KL

MicroRNA-10b-3p targets FOXO3 to promote the progression of esophageal squamous cell carcinoma.

Hu YZ, Zhang SD, Zhang LJ, Lehrman B, Scott AF, Lin D, Zeng YX, Shugart YY, Jia WH.

Qin HD, Goldstein AM, Giffen C, Lee MP, Taylor PR. Integrative genomics analysis of genes with biallelic loss in patients with esophageal squamous cell carcinoma (ESCC) and relation to prognosis.

BMC Cancer 2020; 20: 388 [PMID: 32375686 DOI: 10.1186/s12885-020-06901-6]

Kano M, Seki N, Kikkawa N, Fujimura L, Hoshino I, Akatsu Y, Chiyomaru T, Enokida H, Nakagawa M, Matsubara H. miR-145, miR-133a and miR-133b: Tumor-suppressive miRNAs target PTPRT with the Risk of Esophageal Squamous Cell Carcinoma in a Chinese Population.

Cell Physiol Biochem 2015; 36: 306-314 [PMID: 25967969 DOI: 10.1159/000374073]

Yang H, Su H, Hu N, Wang C, Wang L, Giffen C, Goldstein AM, Lee MP, Taylor PR. Integrated analysis of genome-wide miRNAs and targeted gene expression in esophageal squamous cell carcinoma (ESCC) and relation to prognosis.

BMC Cancer 2020; 20: 388 [PMID: 32375686 DOI: 10.1186/s12885-020-06901-6]

Chen G, Nakagawa M, Matsubara H. miR-145, miR-133a and miR-133b: Tumor-suppressive miRNAs target PTPRT with the Risk of Esophageal Squamous Cell Carcinoma in a Chinese Population.

Cell Physiol Biochem 2015; 36: 306-314 [PMID: 25967969 DOI: 10.1159/000374073]

Becker K, Langer R. MicroRNA expression profiling for the prediction of resistance to neoadjuvant therapy in esophageal squamous cell carcinoma undergoing paclitaxel-based chemotherapy.

Med Oncol 2014; 31: 263 [PMID: 25280517 DOI: 10.1002/ijc.25284]

Chen G, Peng J, Zha W, Tao G, Song Y, Zhou X, Wang W. Combined downregulation of microRNA-133a and microRNA-133b predicts chemosensitivity of patients with esophageal squamous cell carcinoma undergoing paclitaxel-based chemotherapy.

Med Oncol 2014; 31: 263 [PMID: 25280517 DOI: 10.1002/ijc.25284]

Slotta-Huspenina J, Drecoll E, Feith M, Habermehl D, Combs S, Weichert W, Bettstetter M, Becker K, Langer R. MicroRNA expression profiling for the prediction of resistance to neoadjuvant radiochemotherapy in squamous cell carcinoma of the esophagus.

J Transl Med 2018; 16: 109 [PMID: 29692553 DOI: 10.1186/s12967-018-1492-9]

Hu N, Wang C, Clifford RJ, Yang HH, Su H, Wang L, Wang C, Xu Y, Tang ZZ, Ding T, Zhang T, Goldstein AM, Giffen C, Lee MP, Taylor PR. Integrative genomics analysis of genes with biallelic loss in patients with esophageal squamous cell carcinoma undergoing paclitaxel-based chemotherapy.

Med Oncol 2014; 31: 263 [PMID: 25280517 DOI: 10.1002/ijc.25284]

Qin HD, Liao XY, Chen YB, Huang SY, Xue WQ, Li FF, Ge XS, Liu DQ, Cai Q, Long J, Li XZ, Hu YZ, Zhang SD, Zhang LJ, Lehrman B, Scott AF, Lin D, Zeng YX, Shugart YY, Jia WH. Genomic Characterization of Esophageal Squamous Cell Carcinoma Reveals Critical Genes Underlying Tumorigenesis and Poor Prognosis.

Am J Hum Genet 2016; 98: 709-727 [PMID: 27058444 DOI: 10.1016/j.ajhg.2016.02.021]

Lu YF, Yuan Y, Weidhaas JB. Functional microRNA binding site variants.

Nat Rev Cancer 2016; 16: 306-314 [PMID: 25967969 DOI: 10.1159/000374073]

Kong KL, Liu R, Li X, Liao J, Pu Y, Pan E, Wang Y, Yin L. Epigenetic Repression of miR-218 Promotes Esophageal Carcinogenesis by Targeting ROBO1.

Int J Mol Sci 2015; 16: 27781-27795 [PMID: 26610476 DOI: 10.3390/ijms16112606]

Yang M, Liu R, Li X, Liu C, Liao J, Pu Y, Pan E, Wang Y, Yin L. Epigenetic Repression of miR-218 Promotes Esophageal Carcinogenesis by Targeting ROBO1.

Int J Mol Sci 2015; 16: 27781-27795 [PMID: 26610476 DOI: 10.3390/ijms16112606]

Jin J, Guo T, Guo Y, Liu J, Qu F, He Y. Methylation-associated silencing of miR128 promotes the development of esophageal cancer by targeting COX2 in areas with a high incidence of esophageal cancer.

Int J Oncol 2019; 54: 644-654 [PMID: 30535495 DOI: 10.3892/ijo.2018.4653]

Pagano F, De Marinis E, Grignani F, Nervi C. Epigenetic role of miRNAs in normal and leukemic hematopoiesis.

Epigenomics 2013; 5: 539-552 [PMID: 24059800 DOI: 10.2217/epi.13.55]
Konishi H, Shiozaki A, Fujiwara H, Okamoto K, Otsuji E. Circulating miR-21 as an independent biomarker for esophageal squamous cell carcinoma. *Cancer Res* 2011; 71: 2134-2146 [PMID: 21170987 DOI: 10.1158/0008-5472].

Isosaki Y, Hoshino I, Nohata N, Kinoshita T, Akutsu Y, Hanari N, Mori M, Yoneyama Y, Akanuma N, Takeshita N, Maruyama T, Seki N, Nishino N, Yoshida M, Matushara H. Identification of novel molecular targets regulated by tumor suppressive miR-375 induced by histone acetylation in esophageal squamous cell carcinoma. *Int J Oncol* 2012; 41: 985-994 [PMID: 22752059 DOI: 10.3892/ijo.2012.1537].

Su X, Gao C, Feng X, Jiang M. miR-613 suppresses migration and invasion in esophageal squamous cell carcinoma via the targeting of G6PD. *Exp Ther Med* 2020; 19: 3081-3089 [PMID: 32256796 DOI: 10.3892/etm.2020.8540].

Ma J, Fan Y, Feng T, Chen F, Xu Z, Li S, Lin Q, He X, Shi W, Liu Y, Liu Z, Zhu B, Cao X. hTFAIR regulates HK2 expression by binding endogenous miR-125 and miR-143 in esophageal squamous cell carcinoma progression. *Oncotarget* 2017; 8: 86410-86422 [PMID: 29136804 DOI: 10.18632/oncotarget.21195].

Li B, Yu WW, Han L, Chan KT, Tsao SW, Lee NPY, Law S, Xu LY, Li EM, Chan KW, Qin YR, Guan XY, He QY, Cheung ALM. MicroRNA-377 suppresses initiation and progression of esophageal cancer by inhibiting CD133 and VEGF. *Oncogene* 2017; 36: 3986-4000 [PMID: 28288140 DOI: 10.1038/onc.2017.29].

He Z, Chen J, Chen X, Wang H, Tang L, Han C. microRNA-377 acts as a suppressor in esophageal squamous cell carcinoma through CBX3-dependent P53/P21 pathway. *J Cell Physiol* 2021; 236: 107-120 [PMID: 33459391 DOI: 10.1002/jcp.29631].

Li B, Hong P, Zheng CC, Dai W, Chen WY, Yang QS, Han L, Tsao SW, Chan KT, Lee NPY, Law S, Xu LY, Li EM, Chan KW, Qin YR, Guan XY, Meng ML, He QY, Xu WW, Cheung AL. Identification of miR-29c and its target FBXO31 as a key regulatory mechanism in esophageal cancer. *Cancer Sci* 2019; 10: 1599-1613 [PMID: 31037126 DOI: 10.1111/thno.13072].

Lin J, Han L, Li B, Yang J, Huen MS, Pan X, Tsao SW, Cheung AL. F-box only protein 31 (FBXO31) negatively regulates p38 mitogen-activated protein kinase (MAPK) signaling by mediating lysine 48-linked ubiquitination and degradation of mitogen-activated protein kinase kinase 6 (MKK6). *J Biol Chem* 2014; 289: 21508-21518 [PMID: 24936062 DOI: 10.1074/jbc.M114.500342].

Huang HL, Jiang Y, Wang VH, Chen T, He HJ, Liu T, Yang T, Yang LW, Chen J, Song QZ, Yao W, Wu B, Liu G. FBXO31 promotes cell proliferation, metastasis and invasion in lung cancer. *Am J Cancer Res* 2015; 5: 1814-1822 [PMID: 26175949].

Han L, Cui D, Li B, Xu WW, Lam AKY, Chan KT, Zhu Y, Lee NPY, Law SYK, Guan XY, Qin YR, Chan KW, Ma S, Tsao SW, Cheung ALM. MicroRNA-338-5p reverses chemoresistance and inhibits invasion of esophageal squamous cell carcinoma cells by targeting Id1. *Cancer Sci* 2019; 110: 3677-3688 [PMID: 31646712 DOI: 10.1111/cas.14220].

Lin WC, Chen LH, Hsieh YC, Yang PW, Lai LC, Chuang EY, Lee JM, Tsai MH. miR-338-5p inhibits cell proliferation, colony formation, migration and cisplatin resistance in esophageal squamous cancer cells by targeting FERMT2. *Carcinogenesis* 2019; 40: 883-892 [PMID: 30576425 DOI: 10.1093/carcin/bgy189].

Park M, Yoon HJ, Kang MC, Kwon J, Lee HW. MiR-338-5p enhances the radiosensitivity of esophageal squamous cell carcinoma by inducing apoptosis through targeting survivin. *Sci Rep* 2017; 7: 10932 [PMID: 28883406 DOI: 10.1038/s41598-017-0977-9].

Wen SW, Zhang YF, Li Y, Liu ZX, Lv HL, Li ZH, Xu YZ, Zhu YG, Tian ZQ. Characterization and effects of miR-21 expression in esophageal cancer. *Genet Mol Res* 2015; 14: 8810-8818 [PMID: 26435812 DOI: 10.4231/2015.August.3-1].

Kimura S, Nagamura S, Suzuki D, Hirono Y, Yamaguchi A, Fujieda S, Sano K, Itoh H. Expression of microRNAs in squamous cell carcinoma of human head and neck and the esophagus: miR-205 and miR-21 are specific markers for HNSCC and ESCC. *Oncol Rep* 2010; 23: 1625-1633 [PMID: 20428818 DOI: 10.3892/or.0000804].
Paolillo M, Schinelli S. Extracellular Matrix Alterations in Metastatic Processes. Int J Mol Sci 2019; 20 [PMID: 31591367 DOI: 10.3390/ijms20194947]

Li Y, Ma J, Guo Q, Duan F, Tang F, Zheng P, Zhao Z, Lu G. Overexpression of MMP-2 and MMP-9 in esophageal squamous cell carcinoma. Dis Esophagus 2009; 22: 664-667 [PMID: 19191857]

Cui D et al. Roles of microRNAs in ESCC

WJCO 2016; 6: 1511-1523 [PMID: 27508093]

50 Cai EH, Gao YX, Wei ZZ, Chen WY, Yu P, Li K. Serum miR-21 expression in human esophageal squamous cell carcinomas. Asian Pac J Cancer Prev 2012; 13: 1563-1567 [PMID: 22799367 DOI: 10.7314/apjc.2012.13.4.1563]

51 Komatsu S, Ichikawa D, Takeshita H, Konishi H, Nagata H, Hirajima S, Kawaguchi T, Arita T, Shiozaki A, Fujihara H, Okamoto K, Otsuji E. Prognostic impact of circulating miR-21 and miR-375 in plasma of patients with esophageal squamous cell carcinoma. Expert Opin Biol Ther 2012; 12 Suppl 1: S53-S59 [PMID: 22519435 DOI: 10.1517/14725982.2012.681373]

52 Liu F, Zheng S, Liu T, Liu Q, Liang M, Li X, Sheyhidin I, Lu X, Liu W. MicroRNA-21 promotes the proliferation and inhibits apoptosis in Eca109 via activating ERK1/2/MAPK pathway. Mol Cell Biochem 2013; 381: 115-125 [PMID: 23709426 DOI: 10.1007/s11010-013-1693-8]

53 Wang Z, Zhang CQ, He JH, Duan XF, Wang YY, Ji X, Zang WQ, Li M, Ma Y, Wang T, Zhao GQ. MiR-21 down-regulation suppresses cell growth, invasion and induces cell apoptosis by targeting FASL, TIMP3, and RECK genes in esophageal carcinoma. Dig Dis Sci 2013; 58: 1863-1870 [PMID: 23504349 DOI: 10.1007/s10620-013-2612-2]

54 Liu T, Liu Q, Zheng S, Gao X, Lu M, Yang C, Dai F, Sheyhidin I, Lu X. MicroRNA-21 promotes cell growth and migration by targeting programmed cell death 4 gene in Kazakh's esophageal squamous cell carcinoma. Dis Markers 2014; 2014: 232837 [PMID: 25400316 DOI: 10.1155/2014/232837]

55 Ma WJ, Lv GD, Tuersun A, Liu Q, Liu H, Zheng ST, Huang CG, Feng JG, Wang X, Lin RY, Sheyhidin I, Lu XM. Role of microRNA-21 and effect on PTEN in Kazakh's esophageal squamous cell carcinoma. Mol Biol Rep 2011; 38: 3253-3260 [PMID: 21104017 DOI: 10.1007/s11033-010-0490-9]

56 Peng J, Lv Y, Wu C. Radiation-resistance increased by overexpression of microRNA-21 and inhibition of its target PTEN in esophageal squamous cell carcinoma. J Int Med Res 2020; 48: 300060519882543 [PMID: 32268810 DOI: 10.1177/0300060519882543]

57 Li P, Mao WM, Zheng ZG, Dong ZM, Ling ZQ. Down-regulation of PTEN expression modulated by dysregulated miR-21 contributes to the progression of esophageal cancer. Dig Dis Sci 2013; 58: 3483-3493 [PMID: 24221338 DOI: 10.1007/s10620-013-2854-z]

58 Chen X, Cai S, Li B, Zhang X, Li W, Liang H, Cao X, Wang L, Wu Z. MicroRNA21 regulates the biological behavior of esophageal squamous cell carcinoma by targeting RASA1. Oncol Rep 2019; 41: 1627-1637 [PMID: 30561490 DOI: 10.3892/or.2018.6944]

59 Gao Z, Liu H, Shi Y, Yin L, Zhu Y, Liu R. Identification of Cancer Stem Cell Molecular Markers and Effects of has-miR-21-3p on Stemness in Esophageal Squamous Cell Carcinoma. Cancers (Basel) 2019; 11 [PMID: 30979011 DOI: 10.3390/cancers11040518]

Frankel LB, Christoffersen NR, Jacobsen A, Lindow M, Krogh A, Lund AH. Programmed cell death 4 (PDCD4) is an important functional target of the microRNA miR-21 in breast cancer cells. J Biol Chem 2008; 283: 1026-1033 [PMID: 17991735 DOI: 10.1074/jbc.M707224200]

Asangani IA, Rasheed SA, Nikolova DA, Leupold JH, Colburn NH, Post S, Allgayer H. MicroRNA-21 (miR-21) post-transcriptionally downregulates tumor suppressor Pdcd4 and stimulates invasion, intravasation and metastasis in colorectal cancer. Oncogene 2008; 27: 2128-2136 [PMID: 17968323 DOI: 10.1038/sj.onc.1210856]

Fong LY, Taccioli C, Palamarchuk A, Tagliazucchi GM, Jing R, Smalley KJ, Fan S, Altemus J, Fiehn O, Huebner K, Farber JL, Croce CM. Abrogation of esophageal carcinoma development in miR-31 knockout rats. Proc Natl Acad Sci USA 2020; 117: 6075-6085 [PMID: 32123074 DOI: 10.1073/pnas.1902033117]

Yu T, Ma P, Wu D, Shu Y, Gao W. Functions and mechanisms of microRNA-31 in human cancers. Biomed Pharmacother 2018; 108: 1162-1169 [PMID: 30372817 DOI: 10.1016/j.biopha.2018.09.132]

Cui XB, Li S, Li TT, Peng H, Jin TT, Zhang SM, Liu CX, Yang L, Shen YY, Li SG, Li N, Li Y, Hu JM, Jiang SF, Suo J, Qi Y, Liang WH, Wang LH, Dang HW, Li L, Cao WW, Wei Y, Laibo-Yin, Wu CY, Yuan XL, Zhou H, Zheng Y, Chen YZ, Li F. Targeting oncogenic PLCE1 by miR-145 impairs tumor proliferation and metastasis of esophageal squamous cell carcinoma. Oncotarget 2016; 7: 1777-1795 [PMID: 26657507 DOI: 10.18632/oncotarget.6491]

Zhao L, Wei ZB, Yang CQ, Chen JJ, Li D, Ji AF, Ma L. Effects of PLCE1 gene silencing by RNA interference on cell cycle and apoptosis in esophageal carcinoma cells. Asian Pac J Cancer Prev 2014; 15: 5437-5442 [PMID: 25041015 DOI: 10.7314/apjc.2014.15.13.5437]

Yu S, Choi WJ, Choi YJ, Kim HY, Hildebrandt F, Gee HY. PLCE1 regulates the migration, proliferation, and differentiation of podocytes. Exp Mol Med 2020; 52: 594-603 [PMID: 32238860 DOI: 10.1038/s12276-020-0410-4]

Zhang HF, Zhang K, Liao LD, Li LY, Du ZP, Wu BL, Wu JY, Xu XE, Zeng FM, Chen B, Cao HH, Zha MX, Dai LH, Long L, Wu ZY, Lai R, Xu LY, Li EM. miR-200b suppresses invasiveness and modulates the cytoskeleton and adhesive machinery in esophageal squamous cell carcinoma cells via targeting Kindlin-2. Carcinogenesis 2014; 35: 292-301 [PMID: 24064224 DOI: 10.1093/carcin/bgt320]

Paolillo M, Schinelli S. Extracellular Matrix Alterations in Metastatic Processes. Int J Mol Sci 2019; 20 [PMID: 31591367 DOI: 10.3390/ijms20194947]
Cui D et al. Roles of microRNAs in ESCC

DOI: 10.1111/j.1442-2050.2008.00928.x

70 Guan X, Wang X, Luo H, Wu J, Zhang X. Matrix metalloproteinase 1, 3, and 9 polymorphisms and esophageal squamous cell carcinoma risk. Med Sci Monit 2014; 20: 2269-2274 [PMID: 25391977 DOI: 10.12659/MSM.892413]

71 Yang L, Song X, Zhu J, Li M, Ji Y, Wu F, Chen Y, Cui X, Hu J, Wang L, Cao Y, Wei Y, Zhang W, Li F. Tumor suppressor microRNA-34a inhibits cell migration and invasion by targeting MMP-2/MMP-9/FNDC3B in esophageal squamous cell carcinoma. Int J Oncol 2017; 51: 378-388 [PMID: 28534900 DOI: 10.3892/ij.2017.4015]

72 Nie J, Ge X, Geng Y, Cao H, Zhu W, Yao Y, Wu J, Zhou J, Cao J. miR-34a inhibits the migration and invasion of esophageal squamous cell carcinoma by targeting Yin Yang-1. Oncol Rep 2015; 34: 311-317 [PMID: 25954093 DOI: 10.3892/opr.2015.3962]

73 QI W, Li X, Zhao S. miR-29b inhibits the progression of esophageal squamous cell carcinoma by targeting MMP-2. Neoplasma 2015; 62: 384-390 [PMID: 25866219 DOI: 10.1414/neo.2015.046]

74 Hu HF, Xu WW, Zhang WX, Yan X, Li YJ, Li B, He QY. Identification of miR-515-3p and its targets, vimentin and MMP3, as a key regulatory mechanism in esophageal cancer metastasis: functional and clinical significance. Signal Transduct Target Ther 2020; 5: 271 [PMID: 33243974 DOI: 10.1038/s41392-020-00275-8]

75 Osako Y, Seki N, Kita Y, Yonemori K, Kurozumi K, Kurozumi O, Motoi I, Sasaki K, Uchiyado K, Kurahara H, Maemura K, Natsugoe S. Regulation of MMP13 by antitumor microRNA-437 markedly inhibits cancer cell migration and invasion in esophageal squamous cell carcinoma. Int J Oncol 2016; 49: 2255-2264 [PMID: 27779648 DOI: 10.3892/ij.2016.3745]

76 Akanuma N, Nishio I, Akutsu Y, Murakami K, Isozaki Y, Maruyama T, Yusuop G, Qin W, Toyozumi T, Takahashi M, Suito H, Hu X, Sekino N, Matsuura H. MicroRNA-133a regulates the mRNAs of two invadopodia-related proteins, FSCN1 and MMP14, in esophageal cancer. Br J Cancer 2014; 110: 189-198 [PMID: 24196787 DOI: 10.1038/bjc.2013.676]

77 Kalluri R, Weinberg RA. The basics of epithelial-mesenchymal transition. J Clin Invest 2009; 119: 1420-1428 [PMID: 19487818 DOI: 10.1172/JCI39164]

78 Frisch SM, Schaller M, Cieply B. Mechanisms that link the oncocgenic epithelial-mesenchymal transition to suppression of anoikis. J Cell Sci 2013; 126: 21-29 [PMID: 23516327 DOI: 10.1242/jcs.120907]

79 Lamouille S, Xu J, Derynck R. Molecular mechanisms of epithelial-mesenchymal transition. Nat Rev Mol Cell Biol 2014; 15: 178-196 [PMID: 24556840 DOI: 10.1038/nrm3758]

80 Tsukakihara Y, Moustakas A. Epithelial-Mesenchymal Transition and Metastasis under the Control of Transforming Growth Factor β. Int J Mol Sci 2018; 19: 30463358 DOI: 10.3390/ijms19113672

81 Xu J, Lamouille S, Derynck R. TGF-beta-induced epithelial to mesenchymal transition. Cell Res 2009; 19: 156-172 [PMID: 19153598 DOI: 10.1083/ijres.2009.5]

82 Tian X, Fei Q, Du M, Zhu H, Ye J, Qian L, Lu Z, Zhang W, Wang Y, Peng F, Chen J, Liu B, Li Q, He X, Yin L. miR-130a-3p regulated TGF-β1-induced epithelial-mesenchymal transition depends on SMAD4 in EC-1 cells. Cancer Med 2019; 8: 1197-1208 [PMID: 30741461 DOI: 10.1002/cam4.1981]

83 Wang F, Wang J, Yang X, Chen D, Wang L. MiR-424-5p participates in esophageal squamous cell carcinoma invasion and metastasis via SMAD7 pathway mediated EMT. Diagno Pathol 2016; 11: 88 [PMID: 27628042 DOI: 10.1186/s13000-016-0536-9]

84 Dai F, Liu T, Zheng S, Liu Q, Yang C, Zhou J, Chen Y, Sheyhidin I, Lu X. MiR-106b promotes migration and invasion through enhancing EMT via downregulation of Smad 7 in Kazakh's esophageal squamous cell carcinoma. Tumour Biol 2016; 37: 14595-14604 [PMID: 27619676 DOI: 10.1007/s13277-016-5383-x]

85 Chang HY, Lee CH, Li YS, Huang JT, Lan SH, Wang YF, Lai WW, Wang YC, Lin YJ, Liu HS, Cheng HC. MicroRNA-146a suppresses tumor malignancy via targeting vimentin in esophageal squamous cell carcinoma cells with lower fibronectin membrane assembly. J Biomed Sci 2020; 27: 102 [PMID: 32348456 DOI: 10.1186/s12929-020-00693-4]

86 Ma T, Zhao Y, Lu Q, Lu Y, Liu Z, Xue T, Shao Y. MicroRNA-30c functions as a tumor suppressor via targeting SNAI1 in esophageal squamous cell carcinoma. Biomed Pharmacother 2018; 98: 680-686 [PMID: 29304493 DOI: 10.1016/j.biopha.2017.12.095]

87 Zong M, Liu Y, Zhang K, J Y, Chen L. The effects of miR-429 on cell migration and invasion by targeting Slug in esophageal squamous cell carcinoma. Pathol Res Pract 2019; 215: 152526 [PMID: 31324391 DOI: 10.1016/j.prp.2019.152526]

88 Harazono Y, Muramatsu T, Endo H, Uzawa N, Kawano T, Harada K, Inazawa J, Kozaki K. miR-655 Is an EMT-suppressive microRNA targeting ZEB1 and TGFBR2. PLoS One 2013; 8: e62757 [PMID: 23690952 DOI: 10.1371/journal.pone.0062757]

89 Zhao L, Li R, Xu S, Li Y, Zhao P, Dong W, Liu Z, Zhao Q, Tan B. Tumor suppressor miR-128-3p inhibits metastasis and epithelial-mesenchymal transition by targeting ZEB1 in esophageal squamous-cell carcinoma. Acta Biochem Biophys Sin (Shanghai) 2018; 50: 171-180 [PMID: 29329360 DOI: 10.1093/abbs/gnx132]

90 Yokobori T, Suzuki S, Tanaka N, Inose T, Solha M, Sano A, Sakai M, Nakajima M, Miyazaki T, Kato H, Kawanou H. MiR-150 is associated with poor prognosis in esophageal squamous cell carcinoma via targeting the EMT inducer ZEB1. Cancer Sci 2013; 104: 48-54 [PMID: 23013135 DOI: 10.1111/j.1442-2050.2008.00928.x]
Song Y, Li J, Zhu Y, Dai Y, Zeng T, Liu L, Wang H, Qin Y, Zeng M, Guan XY, Li Y. MicroRNA-9 promotes tumor metastasis via repressing E-cadherin in esophageal squamous cell carcinoma. *Oncotarget* 2014; 5: 11669-11680 [PMID: 25375090 DOI: 10.18632/oncotarget.2581]

Chen ZL, Zhao XH, Wang JW, Li BZ, Wang Z, Sun J, Tan FW, Ding DP, Xu XH, Zhou F, Tan XG, Hang J, Shi SS, Feng XL, He J. microRNA-92a promotes lymph node metastasis of human esophageal squamous cell carcinoma via E-cadherin. *J Biol Chem* 2011; 286: 10725-10734 [PMID: 21148369 DOI: 10.1074/jbc.M110.165654]

Liu B, Li X, Li C, Xu R, Sun X. mir-25 mediates metastasis and epithelial-mesenchymal-transition in human esophageal squamous cell carcinoma via regulation of E-cadherin signaling. *Bioengineered* 2019; 10: 679-688 [PMID: 31679450 DOI: 10.1080/21655970.2019.1687391]

Chen F, Chu L, Li J, Shi Y, Xu B, Gu J, Yao X, Tian M, Yang X, Sun X. Hypoxia induced changes in miRNAs and their target miRNAs in extracellular vesicles of esophageal squamous cancer cells. *Thorac Cancer* 2020; 11: 570-580 [PMID: 31922357 DOI: 10.1111/1759-7714.13295]

Xu WW, Li B, Guan XY, Chung SK, Wang Y, Yip YL, Law SY, Chan KT, Lee NP, Chan KW, Xu LY, Li EM, Tsao SW, He QY, Cheung AL. Cancer cell-secreted IGFB2 instigates fibroblasts and bone marrow-derived vascular progenitor cells to promote cancer progression. *Nat Commun* 2017; 8: 14399 [PMID: 28186102 DOI: 10.1038/ncomms14399]

Zhang W, Hong R, Li L, Wang Y, Du P, Ou Y, Zhao Z, Liu X, Xiao W, Dong D, Wu Q, Chen J, Song Y, Zhan Q. The chromosome 11q13.3 amplification associated lymph node metastasis is driven by miR-548k through modulating tumor microenvironment. *Mol Cancer* 2018; 17: 125 [PMID: 30131072 DOI: 10.1186/s12933-018-0871-4]

Fu Y, Chen J, Huang Z. Recent progress in microRNA-based delivery systems for the treatment of human disease. *ExRNA* 2019; 1: 24 [DOI: 10.1186/s41544-019-0024-y]

Chen Y, Gao DY, Huang L. In vivo delivery of miRNAs for cancer therapy: challenges and strategies. *Adv Drug Deliv Rev* 2015; 81: 128-141 [PMID: 24859533 DOI: 10.1016/j.addr.2014.05.009]

Myoung S, Kasinski AL. Chapter 14: Strategies for safe and targeted delivery of microRNA therapeutics. In: MicroRNAs in Diseases and Disorders. Emerging Therapeutic Targets: The Royal Society of Chemistry, 2019: 386-415 [DOI: 10.1039/9781788016421-00386]

Sakai NS, Samia-Aly E, Barbera M, Fitzgerald RC. A review of the current understanding and clinical utility of miRNAs in esophageal cancer. *Semin Cancer Biol* 2013; 23: 512-521 [PMID: 24013023 DOI: 10.1016/j.semcancer.2013.08.005]

Harada K, Baba Y, Ishimoto T, Shigaki H, Kosumi K, Yoshida N, Watanabe M, Baba H. The role of microRNA in esophageal squamous cell carcinoma. *J Gastroenterol* 2016; 51: 520-530 [PMID: 26794004 DOI: 10.1007/s00535-016-1161-9]

Mei LL, Qiu YT, Zhang B, Shi ZZ. MicroRNAs in esophageal squamous cell carcinoma: Potential biomarkers and therapeutic targets. *Cancer Biomark* 2017; 19: 1-9 [PMID: 28269750 DOI: 10.3233/CBM-160240]

Isozaki Y, Hoshino I, Akutsu Y, Hanari N, Mori M, Nishimori T, Murakami K, Akanuma N, Takeshita N, Maruyama T, Toyozumi T, Takahashi M, Suito H, Matsubara H. Usefulness of microRNA375 as a prognostic and therapeutic tool in esophageal squamous cell carcinoma. *Int J Oncol* 2015; 46: 1059-1066 [PMID: 25501018 DOI: 10.3892/ijo.2014.2789]

Wang X, An D, Liu X, Wang X, Li B. MicroRNA-27a downregulates the expression of Hsp90 and enhances the radiosensitivity in esophageal squamous cell carcinoma. *Onco Targets Ther* 2012; 6: 5967-5977 [PMID: 31413593 DOI: 10.2147/OTT.S197456]

Liu W, Li M, Chen X, Zhu S, Shi H, Zhang D, Cheng C, Li B. MicroRNA-1 suppresses proliferation, migration and invasion by targeting Notch2 in esophageal squamous cell carcinoma. *Sci Rep* 2018; 8: 5183 [PMID: 29581534 DOI: 10.1038/s41598-018-23421-3]

Zhang Q, Zhang J, Fu Z, Dong L, Tang Y, Xu C, Wang H, Zhang T, Wu Y, Dong C, Shao S, Wang G. Hypoxia-induced microRNA-10b-3p promotes esophageal squamous cell carcinoma growth and metastasis by targeting TSGA10. *Aging (Albany NY)* 2019; 11: 10374-10384 [PMID: 31772141 DOI: 10.18632/aging.102462]

Jing C, Ma G, Li X, Wu X, Huang F, Liu K, Liu Z. MicroRNA-17/20a impedes migration and invasion via TGF-β/ITGB6 pathway in esophageal squamous cell carcinoma. *Am J Cancer Res* 2016; 6: 1549-1562 [PMID: 27508097]

Zhang Y, Pan T, Zhong X, Cheng C. Nicotine upregulates microRNA-21 and promotes TGF-β-dependent epithelial-mesenchymal transition of esophageal cancer cells. *Tumour Biol* 2014; 35: 7063-7072 [PMID: 24756761 DOI: 10.1007/s13277-014-1968-2]

Shao Y, Li P, Zhu ST, Yue JP, Ji XJ, Ma D, Wang L, Wang YJ, Zong Y, Wu YD, Zhang ST. MiR-26a and miR-144 inhibit proliferation and metastasis of esophageal squamous cell cancer by inhibiting cyclooxygenase-2. *Oncotarget* 2016; 7: 15173-15186 [PMID: 26595737 DOI: 10.18632/oncotarget.7908]

Zuo J, Zhu K, Wang Y, Yu Z. MicroRNA-34a suppresses invasion and metastatic in esophageal squamous cell carcinoma by regulating CD44. *Mol Cell Biochem* 2018; 443: 139-149 [PMID: 29094237 DOI: 10.1007/s11010-017-3218-3]

Ma G, Jing C, Li L, Huang F, Ding F, Wang B, Lin D, Luo A, Liu Z. MicroRNA-92b represses invasion-metastasis cascade of esophageal squamous cell carcinoma. *Oncotarget* 2016; 7: 20209-20222 [PMID: 26934001 DOI: 10.18632/oncotarget.7747]

Wang S, Zhang L, Shi P, Zhang Y, Zhou H, Cao X. Genome-wide profiles of metastasis-associated...
mRNAs and microRNAs in salivary adenoid cystic carcinoma. Biochem Biophys Res Commun 2018; 500: 632-638 [PMID: 29678584 DOI: 10.1016/j.bbrc.2018.04.122]

113 Wang W, Wu D, He X, Hu X, Hu C, Shen Z, Lin J, Pan Z, He Z, Lin H, Wang M. CCL18-induced HOXA1R upregulation promotes malignant progression in esophageal squamous cell carcinoma through the miR-130a-5p-ZEB1 axis. Cancer Lett 2019; 460: 18-28 [PMID: 31207321 DOI: 10.1016/j.canlet.2019.06.009]

114 Wang T, Chen T, Niu H, Li C, Xu C, Li Y, Huang R, Zhao J, Wu S. MicroRNA-218 inhibits the proliferation and metastasis of esophageal squamous cell carcinoma cells by targeting BMI1. Int J Mol Med 2015; 36: 93-102 [PMID: 25999024 DOI: 10.3892/ijmm.2015.2216]

115 Zhang B, Zhang Z, Li L, Qin YR, Liu H, Jiang C, Zeng TT, Li MQ, Xie D, Li Y, Guan XY, Zha YH. TSPAN15 interacts with BRCA1 to promote esophageal squamous cell carcinoma metastasis via activating NF-kB signaling. Nat Commun 2018; 9: 1423 [PMID: 29650964 DOI: 10.1038/s41467-018-03716-9]

116 Yi J, Jin L, Chen J, Feng B, He Z, Chen L, Song H. MiR-375 suppresses invasion and metastasis by direct targeting of SHOX2 in esophageal squamous cell carcinoma. Acta Biochim Biophys Sin (Shanghai) 2017; 49: 159-169 [PMID: 28069583 DOI: 10.1093/abbs/gmw131]

117 Jin L, Yi J, Gao Y, Han S, He Z, Chen L, Song H. MiR-630 inhibits invasion and metastasis in esophageal squamous cell carcinoma. Acta Biochim Biophys Sin (Shanghai) 2016; 48: 810-819 [PMID: 27563011 DOI: 10.1093/abbs/gmw073]

118 Zhang JX, Chen ZH, Xu Y, Chen JW, Weng HW, Yun M, Zheng ZS, Chen C, Wu BL, Li EM, Fu JH, Ye S, Xie D. Downregulation of MicroRNA-644a Promotes Esophageal Squamous Cell Carcinoma Aggressiveness and Stem Cell-like Phenotype via Dysregulation of PITX2. Clin Cancer Res 2017; 23: 298-310 [PMID: 27407092 DOI: 10.1158/1078-0432.CCR-16-0414]

119 Li M, He XY, Zhang ZM, Li S, Ren LH, Cao RS, Feng YD, Ji YL, Zhao Y, Shi RH. MicroRNA-1290 promotes esophageal squamous cell carcinoma cell proliferation and metastasis. World J Gastroenterol 2015; 21: 3245-3255 [PMID: 25805931 DOI: 10.3748/wjg.v21.i11.3245]

120 Zhou J, Zhu J, Jiang G, Feng J, Wang Q. Downregulation of microRNA-4324 promotes the EMT of esophageal squamous-cell carcinoma cells via upregulating FAK. Onco Targets Ther 2019; 12: 4595-4604 [PMID: 31354293 DOI: 10.2147/OTT.S198333]

121 Meng L, Liu F, Ju Y, Ding P, Liu S, Chang S, Zhang Y, Lian Y, Gu L, Zhang X, Sang M. Tumor suppressive miR-6775-3p inhibits ESCC progression through forming a positive feedback loop with p53 via MAGE-A family proteins. Cell Death Dis 2018; 9: 1057 [PMID: 3033480 DOI: 10.1038/s41419-018-1119-3]
