Pathophysiology of anorexia in the cancer cachexia syndrome

Chukwuemeka Charles Ezeoke1 & John E. Morley2,3*

1United States Navy Medical Corps and PGY-2, Internal Medicine Residency, Saint Louis University Hospital, St. Louis, MO, USA; 2Division of Geriatrics, Saint Louis University School of Medicine, 1402 S. Grand Blvd., M238, St. Louis, MO, 63104, USA; 3Division of Endocrinology, Saint Louis University School of Medicine, St. Louis, MO, USA

Abstract

Anorexia is commonly present in persons with cancer and a major component of cancer cachexia. There are multiple causes of anorexia in cancer. Peripherally, these can be due to (i) substances released from or by the tumour, e.g. pro-inflammatory cytokines, lactate, and parathormone-related peptide; (ii) tumours causing dysphagia or altering gut function; (iii) tumours altering nutrients, e.g. zinc deficiency; (iv) tumours causing hypoxia; (v) increased peripheral tryptophan leading to increased central serotonin; or (vi) alterations of release of peripheral hormones that alter feeding, e.g. peptide tyrosine tyrosine and ghrelin. Central effects include depression and pain, decreasing the desire to eat. Within the central nervous system, tumours create multiple alterations in neurotransmitters, neuropeptides, and prostaglandins that modulate feeding. Many of these neurotransmitters appear to produce their anorectic effects through the adenosine monophosphate kinase/methylmalonyl coenzyme A/fatty acid system in the hypothalamus. Dynamin is a guanosine triphosphatase that is responsible for internalization of melancortin 4 receptors and prostaglandin receptors. Dynamin is up-regulated in a mouse model of cancer anorexia. A number of drugs, e.g. megestrol acetate, cannabinoids, and ghrelin agonists, have been shown to have some ability to be orexigenic in cancer patients.

Keywords Anorexia; Cancer cachexia syndrome; Pathophysiology; Loss of appetite

Received: 15 April 2014; Revised: 11 June 2015; Accepted: 22 June 2015

*Correspondence to: John E. Morley, Division of Geriatric Medicine, Saint Louis University School of Medicine, 1402 S. Grand Blvd., M238, St. Louis, MO 63104, USA, Tel: +314-977-8462, Email: morley@slu.edu

Introduction

Anorexia (loss of appetite) is a common concomitant of cancer.1 Anorexia in cancer has many causes, but the primary cause is often an increase in pro-inflammatory cytokines or an increase in lactate. These two factors then modulate central nervous system neurotransmitter cascades. In this article, we will review the pathophysiology of cancer anorexia and its treatment. For this literature review, we ran a PubMed search based on the keywords ‘anorexia cachexia cancer’, and we generated 1170 results. We reviewed 650 abstracts, of which we read 233 articles. Abstracts that were not read were because the title made it obvious that it was a review or not relevant to this review. In addition, we also utilized references in some of these articles and the awareness of one of us (J. E. M.) of other pertinent articles. The decision on whether or not an agent was a mediator was based on the senior author’s opinion. In most cases, there is inadequate experimental data to determine the importance of any single mediator. This is a narrative review. It is important to recognize that the anorexia associated with cancer is derived from conserved evolutionary responses to the physiological challenges of cancer. In addition, there is a secondary set of responses due to the variety of toxins that are currently infused into patients in an effort to cure the primary disease. It is the overlap of these two responses that leads to the cancer cachexia syndrome.

Causes of anorexia

There are numerous causes of anorexia in cachexia (Figure 1).2 These can be conveniently categorized as being due to central or peripheral mechanisms. In each group, there are also a series of secondary causes due to chemotherapy.
Peripheral causes can be directly due to (i) tumours causing dysphagia or directly impinging on gastrointestinal function; (ii) tumours producing substances that alter food intake, e.g. lactate, tryptophan, or parathormone-related peptide; (iii) tumours leading to alterations in nutrients resulting in anorexia, e.g. zinc; or (iv) tumours producing inflammation leading to cytokine release. Alterations in gastrointestinal function can alter visceral receptor function, leading to altered secretion of gastrointestinal peptides, e.g. peptide tyrosine tyrosine (PYY), and alterations in stomach emptying can alter feedback of satiating hormones. Peripherally, chemotherapy can alter taste perception and cause nausea, vomiting, mucositis, abdominal cramping, bleeding, and ileus. Dysgeusia is present in 39% of patients receiving chemotherapy.

Central causes of anorexia can be depression, pain, or a variety of alterations in central neurotransmitters. The neurotransmitter changes in depression that lead to anorexia appear to be alterations in serotonin and corticotrophin-releasing factor (CRF). When cancer patients are infused with interferon, there is an increased kyreunine/keurinic acid, which is associated with depression and anorexia. This leads to alterations in tryptophan and serotonin levels. Sickness behaviour is due to a variety of pro-inflammatory cytokines. The behavioural characteristics of sickness behaviour consist of fatigue, weakness, social withdrawal, sleepiness, sadness, lack of motivation, hyperalgesia, failure to concentrate, and anorexia. Hypoxia has been considered to lead to anorexia in patients with head and neck cancer.

There is some evidence that some of the central anorectic effects of chemotherapy involve ghrelin (vide infra). Methotrexate leads to a decrease in proopiomelanocortin (POMC) messenger RNA (mRNA) (potentially decreasing opioid-mediated feeding) and activation of brain pathways associated with dehydration. Tamoxifen, which induces anorexia when used for the treatment of breast cancer, inhibits fatty acid synthase in the hypothalamus, leading to an accumulation of malonyl coenzyme A (CoA). Increased malonyl CoA is associated with anorexia in cancer (vide infra). Common chemotherapeutic agents act on the chemo-receptor trigger zone, which contains serotonin 5-HT3 receptors. These receptors activate neurokinin-1 receptors, leading to emesis. At present, there is limited information on how chemotherapeutic agents produce anorexia in cancer patients.

Cytokines and adipokines

Cytokines are a group of peptide hormones that are released from the immune system or from tumours themselves. They can act in either a paracrine, autocrine, or endocrine fashion. Cytokines generally act in a synergistic or antagonist cascade system to produce their effects. Inflammatory cytokines such as tumour necrosis factor alpha (TNFα), interleukin-1 (IL-1), and interleukin-6 (IL-6) are elevated in many cancers. Administration of cytokines to rodents has been demonstrated to reduce food intake.

Interleukin-1, which is produced by lymphocytes and macrophages, is the most potent anorectic cytokine. IL-1 reduces the size, duration, and frequency of meals but does not reduce the desire for food. IL-1 has its most potent anorectic effects when injected into the ventromedial hypothalamus. It can produce its effects either by directly crossing the blood–brain barrier or by activating ascending fibres of the vagal nerve to release IL-1 in the central nervous system. Antibodies to IL-1 enhance food intake in tumour-bearing rodents. IL-1 enhances serotonin activation, leading to increased POMC activity. IL-1 stimulates CRF production in the hypothalamus, leading to anorexia. The anorectic effect of IL-1 can be partially blocked by antibodies to CRF. IL-1 alpha is the major peripheral mediator, whereas within the brain, it is the paracrine effects of IL-beta that are more important.

Interleukin-6 is secreted by T-cells and macrophages, as well as microglia, astrocytes, and neurons. While there is evidence that IL-6 plays a role in the cachexia of colon adenocarcinoma-26 bearing mice, these tumours do not produce anorexia in the host, suggesting that IL-6 does not play a role in cancer anorexia.

Monocytes, macrophages, and tumours produce TNFα. TNFα levels are increased in cachectic mice. TNFα produces anorexia either peripherally or centrally. It can cross the
blood–brain barrier29 or produce its effects by stimulating ascending fibres of the vagus.30 An inhibitor of TNF\textsubscript{α} increased food intake in anorectic tumour-bearing rats.28 The TNF\textsubscript{α} rs800629 single-nucleotide polymorphism is associated with anorexia in patients with non-small-cell lung cancer.31

Interferon-\textgamma reduces meal size when administered into the cerebral ventricles.32 Anti-interferon-\textgamma antibodies reverse cachexia in mice with Lewis lung tumours.33 Cytokines stimulate immunoreactive nitric oxide synthase in the hypothalamus, suggesting a mechanism by which they alter central neuropeptides.34 Figure 2 provides an overview of the potential mechanisms by which cytokines may produce anorexia.

Leptin is an adipokine, produced from fat cells, that produces anorexia within the central nervous system.35 There is no evidence that leptin plays a role in cancer anorexia.24 There is also no evidence for a role in the pathogenesis of cancer anorexia for adiponectin, resistin, and chimerin.

Visfatin or pre-B colony-enhancing factor (PEBF) or nicotinamide phosphoribosyl transferase (Namprt) is a cytokine that is involved in obesity by promoting vascular smooth cell maturation and inhibition of neutrophil apoptosis in the presence of IL-7 and stem cell factors. Its gene, PEBF, is encoded as a pseudogene in chromosome 10.36 Its role is in catalysing the conversion of nicotinamide with 5-phosphoribosyl-1-pyrophosphate to yield nicotinamide mononucleotide. Nicotinamide mononucleotide is an adipokine substrate that promotes insulin sensitivity by mimicking insulin and lowering blood sugar levels. Its serum level is increased in obese patients because of its expressivity in visceral tissues. Cell culture experiments and high visfatin levels in mice after a high-fat diet have shown that visfatin contributes to metabolic syndrome in obese patients.37 Visfatin elevation in obese patients was described by Haider \textit{et al.}37 After 6 months, gastric banding decreased visfatin level and leptin but increased adiponectin level.

Cancer cells have increased levels of visfatin, and Namprt/PEBF/visfatin plays a role in cancer signalling pathways. It was first discovered in increased levels in colorectal cancer.38 Moreover, cells that overexpressed Namprt/PEBF/visfatin were more resistant to chemotherapy than cell lines

\textbf{Figure 2} Potential mechanisms by which cytokines produce anorexia.

IL-1 = interleukin 1; TNF\textsubscript{α} = tumor necrosis factor alpha; INF\textsubscript{γ} = interferon \textgamma; CNTF = ciliary neurotrophic factor; iNOS = inducible nitric oxide synthase; NPY = neuropeptide Y; CRF = corticotropin
with stable knockdown of Namp/nPEBF/visfatin genes. In addition, prostate cancer cells with exogenous expression of visfatin genes show rapid tumour cell proliferation.

Intracerebroventricular administration of visfatin decreased food intake, resulting in weight loss. This was associated with an increase in POMC mRNA and α-melanocyte-stimulating hormone (α-MSH). The decrease in food intake was prevented by the administration of SHU9119, an inhibitor of melanocortin receptor 3 and melanocortin receptor 4 (MC4R). While the visfatin data are somewhat paradoxical, it can be hypothesized that this is due to an attempt of the body to protect itself against the anorectic effect of visfatin.

Lactate

Malignant tumours often have an increase in glycolysis associated with an increase in lactic dehydrogenase activity (LDH). The LDH is of the type that preferentially converts pyruvate to lactate. Numerous studies have found an increase in LDH and lactate in the serum in both experimental tumour-bearing animals and humans with cancer.

A number of studies have found that lactate is a potent anorexic agent. Bales et al. reported that lactate reduced feed intake in goats and monkeys. Spontaneous food intake is inhibited after both intravenous and intraportal infusion of lactate in rats. Lactate infusion into the carotid artery of rats decreased levels of c-Fos in the paraventricular nuclei of the hypothalamus. This effect of lactate activates glucose responsive neurons in the ventromedial hypothalamus, resulting in a reduction in satiation. Lactate infusion into the hypothalamus plays a key role in glucosensing and regulation of food intake. Lactate can be transported across the blood–brain barrier by monocarboxylate transporters. Thus, a peripheral increase in lactate can interfere with the glucosensing mechanisms in the hypothalamus, which is dependent on the interaction of tanycytes and neuronal cells secondary to lactate flux through monocarboxylate transporters. Physiologically, this system regulates food intake via orexigenic neurons [synthesizers of neuropeptide Y (NPY) and agouti gene-related peptide (AGRP)] and anorectic POMC neurons by altering the activity of the monocarboxylate transporter 4. Lactate infusion decreased food intake in humans.

In persons undergoing peritoneal dialysis, lactate-based dialysis solutions are more anorectic than are bicarbonate-based solutions.

Lactate levels increase in tumour-bearing animals but not in pair-fed animals. In tumour-bearing animals, lactate levels increased contiguously with the onset of anorexia. Lactate infusion was associated with elevated levels of NPY in the ventromedial hypothalamus and dorsomedial hypothalamus, but there was no alteration in CRF. Lactate suppresses food intake by activating adenosine monophosphate (AMP) kinase/methylmalonyl CoA signalling pathway (Figure 3). Dichloroacetate enhances pyruvate dehydrogenase, leading to a reduction of lactate. Dichloroacetate failed to decrease anorexia in tumour-bearing rats. This may be due to conflicting effects of dichloroacetate on central levels of lactate.

Overall, it would appear that lactate is a strong candidate for one of the reasons why cancer is associated with anorexia.

Monoamines

Historically, studies have shown that norepinephrine is a potent enhancer of food and serotonin is an anorectic agent. Dopamine appears physiologically to increase motivation for food intake.

Figure 3 Lactate mechanism of tumour induced anorexia.

↑ = Increased; - = inhibits; BBB = Blood Brain Barrier; MCT4 = Monocarboxylate transporter
In 1979, Krause et al. found that anorectic rats carrying a Walker 256 tumour had increased plasma free tryptophan, brain tryptophan, and 5-hydroxyindole acetic acid. These results suggested a role of serotonin in cancer anorexia. In 1986, Rossi Fanelli and his colleagues found that plasma free tryptophan was elevated in cancer patients with anorexia. In addition, the free tryptophan-to-neutral amino acid ratio was elevated in cancer patients with anorexia and early satiety compared with controls and with non-anorectic cancer patients. Another study reported that plasma and cerebrospinal fluid tryptophan were increased in persons with cancer anorexia. Surgical ablation of tumours in cancer patients reduced plasma tryptophan and anorexia. Utilizing a branched-chain amino acid supplement designed to reduce tryptophan entry into the brain and thus serotonin synthesis improved appetite in cancer patients.

In other tumour models in rats (MCG101), serum tryptophan does not correlate with food intake, and in cancer anorexic humans given interleukin 2, plasma tryptophan levels are low. Overall, these data suggest that tryptophan elevations may play a role in some, but not all, anorexia associated with cancer.

Chance et al. found elevated tryptophan, serotonin, and 5-hydroxyindole acetic acid in a variety of brain areas in rats with Walker 256 tumours. They found similar increases in the brains of the methylcholanthrene-induced sarcoma model of cancer anorexia. However, serotonin depletion in rats with the Walker 256 tumour had minimal effects on food intake. Similarly, the serotonin antagonist failed to increase feeding after injection into the ventromedial nucleus of the hypothalamus in tumour-bearing rats. Other studies have also shown an activation of serotonin in the hypothalamus in methylcholanthrene sarcoma rats, which could be reversed by surgical removal of the tumour.

Using in vivo/microdialysis tumour-bearing rats increased the serotonin-to-dopamine ratio. In tumour-bearing rats, the hypothalamic serotonin (5-HT1B) receptor is up-regulated, and tumour resection leads to normalization of food intake and the serotonin receptor. Serum serotonin levels increase and dopamine levels decrease in the hypothalamus of rats with cancer anorexia.

Finally, in humans with cancer, small increases of food intake have been seen with the serotonin antagonist cyproheptadine, the serotoninergic-3-receptor blocker, ondansetron, ramosetron, and granisetron. However, this small increase did not alter the cachexia-associated weight loss.

In general, dopamine levels appear to be decreased in hypothalamic nuclei of tumour-bearing animals. Dopamine receptors (D1 and D2) are increased in tumour-bearing animals. The D2 dopamine antagonist, sulpiride, increased food intake in tumour-bearing rats when injected bilaterally into the supraoptic nucleus. This effect is due to an increase in meal size.

There is a paucity of data on norepinephrine effects on cancer anorexia. In the Walker 256 cancer model, there was an increase in hypothalamic norepinephrine at night, which correlated with the size of the rats’ food intake. In a benzo(a)pyrene murine fibrosarcoma, norepinephrine levels were reduced. In a murine lymphoma cell line, norepinephrine levels were increased. Norepinephrine injections into the hypothalamus continued to elicit feeding during the anorexic phase in methylcholanthrene sarcoma-bearing rats. These data suggest that the norepinephrinergic system increases its activity in some cancers in an attempt to overcome cancer cachexia.

Peptides, nitric oxide, and adenosine monophosphate kinase

A number of gastrointestinal peptides such as cholecystokinin (CCK), bombesin-like peptides, amylin, and glucagon-like peptide-1 have been demonstrated to be anorectic in animals and humans. There are little data on changes in these peptides and their relationship to anorexia in cancer in either animals or humans. CCK is unaltered peripherally in tumour-bearing rats but may be increased in the central nervous system. CCK8 levels were not elevated in anorectic cancer patients and did not correlate with anorexia severity. An animal study suggested that increases in bombesin-like peptide in salivary glands may play a role in irradiation-induced anorexia. PYY causes severe weight loss when administered peripherally. PYY levels were found to be elevated in children with acute lymphoblastic leukaemia, but not in adults with cancer cachexia. Overall, these studies provide little evidence for peripheral peptides playing a role in cancer anorexia.

In the central nervous system, a number of neuropeptides interact with classical neurotransmitters to regulate food intake. Of these, NPY has been considered one of the most potent orexigenic agents. In rats with the Yoshida sarcoma, NPY concentrations were increased in the arcuate nucleus but decreased in the paraventricular nucleus. CRF, an anorectic peptide, was reduced in both nuclei. This was confirmed by other studies despite an increase in NPY mRNA. NPY immunostaining was decreased in the supraoptic nucleus, the parvocellular portion of the paraventricular nucleus, and the suprachiasmatic and arcuate nuclei of tumour-bearing rats. In addition, hypothalamic concentrations of NPY release measured by microdialysis were reduced. Hypothalamic injections of NPY into the hypothalamus of tumour-bearing rats were limited in their ability to increase food intake. The Y1 receptor showed a reduction in the arcuate and paraventricular nucleus of tumour-bearing rats. These studies suggest that, in tumour-bearing rats, there is dysfunction of the NPY feeding...
regulatory system. It is possible that this down-regulation of the NPY system is due to overactivation of the POMC/cocaine and amphetamine-regulated transcript system.118

There is now evidence that most of the central effect of neuropeptides on feeding is mediated through neuronal nitric oxide synthase (nNOS).119 Nitric oxide antagonists block the effects of NPY, ghrelin, and orexins.120,121 nNOS-knockout mice also block the effects of orexigenic agents.122 Leptin’s anorexic effects are also mediated through nNOS.123 In tumour-bearing mice, nNOS was significantly increased in the paraventricular and ventromedial hypothalamus.124 This suggests that nNOS may be increased to try and overcome a distal effect of tumours on anorexia (Figure 4).

Adenosine monophosphate-activated protein kinase has been shown to regulate appetite and to control energy metabolism.125 Nitric oxide stimulates AMP kinase.126 Phosphorylated AMP kinase activates acetyl CoA carboxylase, which inhibits the conversion of acetyl CoA to malonyl CoA.126 Inhibition of malonyl CoA reverses its anorectic effect. In anorectic tumour-bearing rats, infusion of 5-amino-4-imidazolecarboxamide-riboside into the third cerebral ventricle activates AMP kinase.127 This leads to an increase in food intake in these tumour-bearing rats.

Melanocortin

Pre-POMC is a 285-amino-acid precursor to its anorexigenic product, POMC, a 241-amino-acid precursor by the translational removal of 44 amino acids.128 POMC is synthesized in the corticotrophin cells of the anterior pituitary, melanotrope cells of the pituitary, skin melanocytes, nucleus tractus solitarius of the brainstem, and the arcuate nucleus of the hypothalamus. It can be cleaved to form [Met]enkephalin, β-lipotropin, γ-melanotropin (γ-MSH), corticotropin-like intermediate peptide, corticotropin (adrenocorticotropic hormone), α-MSH, γ-lipotropin, β-melanotropin (β-MSH), β-endorphin, and N-terminal peptide of POMC. It plays a role in appetite regulation.129 In the arcuate nucleus, neurons of the cocaine and amphetamine-regulated transcript and POMC are produced by satiety neurons.130

In 1989, Tsujii et al.130 found that acetylated α-MSH decreased food intake after central administration. This effect is secondary to melanocortin receptors 3 and MC4R. AGRP is produced by NPY-expressing cells and is an inverse agonist of the MC4R and blocks the effects of α-MSH. Our unpublished studies suggest that α-MSH works through nNOS activation (Morley and Farr, unpublished data). POMC neurons have a receptor for IL-1β, which when activated increased α-MSH release.131 Leukaemia inhibitory factor is induced by a number of tumours and activates the POMC neurons in the arcuate nucleus, causing the release of α-MSH.132 A number of small-molecule inhibitors of the MC4R are available.133 Lipopolysaccharide-induced anorexia is reversed by AGRP administered centrally and is resisted in MC4R-knockout mice.134 AGRP has also been shown to prevent a decrease in food intake in sarcoma-bearing mice.134 Food intake was preserved in Lewis lung adenocarcinoma-implanted MC4R-knockout mice.135 A number of other studies in the Lewis lung carcinoma mouse model of cachexia have shown that melanocortin antagonists increase food intake.136,129,137,138 Melanocortin antagonists also increase food intake in mice implanted with C26 adenocarcinoma cells139,140 and prostate cancer.135 However, in a methylcholanthrene-induced sarcoma in rats, an MC4R antagonist failed to reverse the anorexia.141 In another tumour model, Buffalo rats implanted with Morris hepatoma 7777 cells, the tumour-bearing rats failed to show an increase in AGRP in the hypothalamus, normally seen in food-restricted rats.142 LC-6 lung cancer-bearing rats secrete parathyroid hormone-related peptide (PTHRP). In these animals, there is a decrease in mRNA and peptide levels of the anorectic agents, POMC, and cocaine and amphetamine-regulated transcript and an increase in NPY and AGRP levels and their mRNA.143,144 These findings suggest that, in this model of cancer anorexia, POMC works through a mechanism separate from the classic neuropeptide model. It was also shown that this effect was not due to the hypercalcaemia produced by the PTHRP. The C26 colon adenocarcinoma mouse model has increased food intake with increasing food burden and decreased levels of POMC.145

Overall, the findings suggest that the melanocortin plays a role in the anorexia produced by some cancers, but in others, the anorectic effect occurs distal to the neurons activated by α-MSH (Figure 5).

Dynamin

Dynamin is a 96 kDa guanosine triphosphatase that plays a role in endocytosis in cells. Using proteomic profiling in a mouse model of cancer anorexia, dynamin-1 was up-regulated compared with both tumour-bearing and pair-fed mice.146 Dynamin-1 is important for the internalization of MC4Rs. In HEK293 cells, dominant negative mutants of dynamin-1 prevent internalization of the MC4R when it is stimulated by α-MSH.147 Stimulation of MC4R leads to anorexia.134 This suggests that dynamin internalization of MC4Rs is a cellular component of cancer anorexia, possibly acting as a physiological factor to try and attenuate cancer anorexia.

Prostaglandins (PGE2 and PGF2α) reduce food intake after central administration.148 Cyclooxygenase-1 inhibition reduces cancer-induced anorexia.149 PGE2 activation of the EP4 signalling in the hypothalamus is the mediator of PGE2
suppression of feeding.150 Dynamin-1 is responsible for the internalization of EP4 receptors, leading to mitogen-activated protein kinase.151

G-proteins play a role in allowing melanocortin coupling to MC4R. Central administration of an antisense to a guanine nucleotide-binding protein (G\textsubscript{\alpha\text{o}}) subunit slows weight recovery in rats following starvation.152 In the proteomic profiling, G\textsubscript{\alpha\text{o}} was down-regulated two-fold in both anorectic and pair-fed mice.146 As previously discussed, dopamine plays a role in food intake in tumor-bearing rats. \textit{N-ethylmaleimide-
sensitive factor plays a role in the localization of the D₁ receptor to the membrane. Both D₁ and D₂ receptors were upregulated in the brains of cancer-bearing rats. These findings point to proteomic profiling as a useful technique to explore intracellular effects of tumour anorexia. Utilization of mRNA microarrays may prove equally useful. In the C26 colon adenocarcinoma tumour-bearing animals, there were increases in mRNA expression for NPY and AGRP and a decrease for CCK and POMC. Unfortunately, this tumour line, while causing cachexia, actually increased food intake, making these data of little use in understanding cancer anorexia.

Zinc deficiency

Zinc is a trace element needed in transcription, nutrition, gastrointestinal motility, digestion, oxidative processes, synaptic signalling, signal transduction, memory, ligand binding, apoptosis, and healing. Cancer disrupts zinc metabolism as a result of the acute phase response to inflammatory cytokine activity. There are several mechanisms of zinc deficiency in cancer patients: low albumin reducing zinc binding, anorexia contributing to low intake, ubiquitin-proteasome activation causing accumulation and wasting in muscle cells, gastrointestinal loss, diversion of zinc away from muscle production, and increased urinary excretion of zinc. There is limited investigation in the relationship between cachexia and zinc. Normal serum zinc levels are 95.5–99.3 μg/dL. Lindsey et al. identified an average weight loss of 7.6 kg in 10 lung carcinoma patients with a mean zinc level of 71 μg/dL. These patients also failed to consume about 30% of the recommended dietary allowance of meals daily.

Zinc deficiency is well recognized to produce anorexia. In part, this is because low zinc levels result in hypogeusia. Zinc-deficient animals have a reduced response to norepinephrine-induced and dopamine-induced feeding. Similarly, dynorphin, an endogenous opiate agonist that is a potent orexigenic peptide, has a decreased ability to produce feeding in zinc-deficient animals.
have lower levels of dynorphin in the hypothalamus. Zinc deficiency in cachexia blocks the release of NPY and administration of zinc results in increased expression of both NPY and orexin mRNA. The putative mechanisms by which zinc deficiency results in cancer anorexia are shown in Figure 6.

Treatment

A number of specific orexigenics have been developed to treat anorexia in cancer patients. They have all been demonstrated to have some utility, but none of them are disease modifying.

Megestrol acetate

Megestrol was approved by the Food and Drug Administration in the USA to treat anorexia and weight loss in patients with AIDS in 1993. Megestrol is a mixed drug having androgenic, corticosteroid, and progestogenic properties. In rodents, megestrol has been shown to increase NPY in a number of hypothalamic nuclei in both normal and zinc-deficient animals. When progesterone increases, NPY activity in the paraventricular nucleus also increases, coinciding with an increase in feeding activity. This suggests that the progestational action of megestrol is a major component in its ability to increase feeding. Corticosteroid Type II receptor stimulation has been also shown to increase NPY gene expression in the hypothalamus. There is also some evidence that megestrol may reduce serotonin. Two studies have also found that megestrol acetate decreases certain cytokines, such as IL-1 and TNFα, most probably secondarily to the corticosteroid effects.

Normal doses of megestrol used to enhance appetite are between 600 and 800 mg. A Cochrane meta-analysis found that megestrol increased weight [risk ratio 1.55 (1.06–2.26), appetite 2.57 (1.48–4.49)] and quality of life (1.02–3.59) in cancer patients. The majority of these studies lasted between 56 and 84 days. Higher doses were more effective for weight gain but had more adverse effects. The adverse effects that were increased included deaths, oedema, dyspnoea, and deep vein thrombosis.

Subsequent to this meta-analysis, megestrol was shown to improve weight gain and reduce anorexia in children with cancer and weight loss. Adrenal suppression was a common side effect in this study. A number of combination studies of megestrol with a variety of other agents (β2 agonist, meloxicam, celecoxib, thalidomide, and olanzapine) have shown improvement in weight gain and appetite, with, in most cases, a better response to the combination agents.

Megestrol acetate has been shown to be poorly absorbed when taken without food. A nanocrystal formulation of megestrol acetate (625 mg/5 mL) has been shown to have greater absorption and bioavailability than megestrol acetate (800 mg/200 mL). There is a lack of controlled trials in cancer patients showing an improved clinical outcome with the nanocrystal formulation.

Overall, there is little evidence to support the use of megestrol acetate in cancer patients.

Cannabinoids

Cannabis has long been recognized to improve appetite (the ‘munchies’), decrease nausea, and enhance food taste. It is now known that endogenous cannabinoids (anandamide) acting through the four-protein coupled-cannabinoid receptors (CB1) increase appetite. Cannabinoids increase NPY in the hypothalamus. Activation of the CB1 receptor results in stimulation of AMP-activated protein kinase.

Figure 6 Possible mechanisms by which zinc deficiency produces anorexia in cancer.
Another mechanism by which cannabinoids may regulate feeding is directly at the intestinal level where release of anandamide acts as a ‘hunger signal’ while another fatty acid ethanolamide, oleoylethanolamide, is increased during feeding and acts as a satiation signal. It appears that these signals are transmitted to the brain through ascending fibres of the vagus nerve. There is some evidence that anandamide may be negatively linked to PYY, which peripherally causes weight loss. When smoked medicinal cannabis was used in HIV-infected adult men, PYY was decreased, and ghrelin levels increased.

In 1994, Nelson et al. evaluated the effect of tetrahydrocannabinol on appetite in 18 patients with cancer. Appetite was improved in 13 patients. In patients with AIDS anorexia, dronabinol improved appetite and mood and decreased nausea compared with placebo. There was a tendency for patients on dronabinol to maintain weight better than placebo over the 3 week study period. In the extension of this study, appetite continued to improve, and body weight remained stable. In the study by Jatoi et al. on advanced cancer patients, 49% showed an improved appetite, and 3% gained at least 10% of their weight from baseline. Dronabinol in combination with megestrol acetate had no advantages. Strasser et al. in a placebo-controlled study of 243 patients found no significant difference of oral cannabis extract or tetrahydrocannabinol compared with placebo. In an uncontrolled study of malnourished nursing home residents, 53% gained weight. Finally, in patients with advanced cancer, tetrahydrocannabinol enhanced chemosensory perception and appetite. There was also an improved quality of sleep and relaxation.

There is a paucity of evidence to support the use of cannabis in any form to enhance weight gain in cancer patients. On the other hand, the data suggest that it may be an excellent drug for palliative care patients.

Ghrelin

Ghrelin is a 28-amino-acid peptide secreted from the fundus of the stomach. It increases food intake through a nitric oxide-dependent mechanism. It also improves memory and results in growth hormone release from the pituitary. Patients with cancer cachexia have elevated levels of circulating ghrelin. In a study of rats implanted with a sarcoma, a long-acting ghrelin analogue (BIM-28131) resulted in increased food intake and weight gain, as well as

Figure 7. The mechanism(s) by which drugs developed to treat cancer anorexia produce their antral nervous system effects.
maintenance of lean mass.205 The ghrelin analogue’s effects were coupled with a significant increase in hypothalamic NPY and AGRP. In another rat tumour-bearing model, ghrelin failed to increase food intake.206 In this model, NPY was increased, but the increase in AGRP was not different from that in the saline controls. In rats, ghrelin prevented cisplatin-induced anorexia, weight loss, and hyperalgesia.207 Cisplatin reduces hypothalamic ghrelin secondarily to overactivity of the serotonin 2c receptor208 and CRF.209 Animal studies have suggested a Japanese herbal product, Rikkunshito, may enhance peripheral ghrelin secretion and central ghrelin activity through inhibiting the 2HT2c receptor. A recent study suggested that Rikkunshito can suppress cisplatin-induced anorexia in humans.210 This is in keeping with the low levels of plasma active ghrelin seen during chemotherapy.211

A small study in cancer patients with anorexia found that ghrelin could increase food intake and meal appreciation over a single meal.212 A short-term study in patients with advanced cancer found no effect of ghrelin on nutritional intake nor eating-related symptoms.213

Hiura \textit{et al.}214 studied 42 patients with oesophageal cancer who were receiving cisplatin. They received ghrelin (3 μg/kg) twice daily or saline. Food intake and appetite were improved, and the ghrelin group had less anorexia and nausea following cisplatin. Yamamoto \textit{et al.}215 found ghrelin reduced weight loss in patients with oesophagectomy and gastric tube reconstruction.

Anamorelin is an oral ghrelin mimetic. In a placebo-controlled crossover study of 16 patients with cancer, anamorelin increased weight gain and appetite.216 Two studies of anamorelin in non-small-cell lung cancer cachexia are ongoing (ROMANA 1 and ROMANA 2) (www.clinicaltrials.gov).217

Overall, the studies on ghrelin have been somewhat patchy, and there is a need for a substantially powered trial to determine the future of this agent.218 Figure 7 provides the mechanisms by which drugs used in development of cancer anorexia produce their effects in the central nervous system.

Acknowledgements

The authors certify that they have complied with the ethical guidelines for authorship and publishing of the Journal of Cachexia, Sarcopenia and Muscle (von Haehling S, Morley JE, Coats AJS, Anker SD. Ethical guidelines for authorship and publishing in the Journal of Cachexia, Sarcopenia and Muscle. J Cachexia Sarcopenia Muscle. 2010;1:7–8).

Conflict of interest

Chukwuemeka Charles Ezeoke and John E. Morley declare they have no conflicts of interest regarding the writing of this article.

References

1. Amitani M, Asakawa A, Amitani H, Inui A. Control of food intake and muscle wasting in cachexia. \textit{Int J Biochem Cell Biol} 2013 Oct;45:2179–85.
2. Morley JE, Thomas DR, Wilson MM. Cancer cachexia: Pathophysiology and clinical relevance. \textit{Am J Clin Nutr} 2006;83:735–743.
3. Asakawa A, Fujimya M, Nijijama A, Fujino K, Kodama N, Sato Y, Kato I, Nanba H, Laviano A, Mequid MM, Inui A. Parathyroid hormone-related protein has an anorexigenic activity via activation of hypothalamic urocortins 2 and 3. \textit{Psychoneuroendocrinology} 2010;35:1178–1186.
4. DeWys WD. Anorexia in cancer patients. \textit{Cancer Res} 1977;37:2354–2358.
5. Imai H, Soeda H, Komine K, Otsuka K, Shibata H. Preliminary estimation of the prevalence of chemotherapy-induced dysgeusia in Japanese patients with cancer. \textit{BMC Palliat Care} 2013;12:38.
6. Lloyd RB, Nemeroff CB. The role of corticotropin-releasing hormone in the pathophysiology of depression: Therapeutic implications. \textit{Curr Top Med Chem} 2011;11:609–617.
7. Rosenthal MJ, Morley JE. Corticotropin releasing factor (CRF) and age-related differences in behavior of mice. \textit{Neurobiol Aging} 1989;10:167–171.
8. Wichers MC, Koek GH, Robaesys G, Verkerk R, Scharpe S, Maes M, et al.IDO and interferon-alpha-induced depressive symptoms: A shift in hypothesis from tryptophan depletion to neurotoxicity. \textit{Mol Psychiatry} 2005;10:538–544.
9. Meyers JS. Proinflammatory cytokines and sickness behavior: Implications for depression and cancer-related symptoms. \textit{Oncol Nurs Forum} 2008;35:802–807.
10. Fraga CAC, Sousa AA, Correa GTB, Jorge ASB, Jesus SF, Jones KM, et al. High hypoxia-inducible factor-1α expression genotype associated with Eastern Cooperative Oncology Group performance in head and neck squamous cell carcinoma. \textit{Head Neck Oncol} 2012;4:77.
11. Sinno MH, Coquerel Q, Boukhettala N, Coeffier M, Gallas S, Terashi M, et al. Chemotherapy-induced anorexia is accompanied by activation of brain pathways signaling dehydration. \textit{Physiol Behav} 2010;101:639–648.
12. Loyoza M, Lelliott CJ, Tovar S, Kimber W, Langhans W, Hrupka B. Interleukins and anorexia-cachexia syndrome. \textit{Cytokine and Neuropeptides} 1999;19:469–473.
13. Hornby P. Central neurocircuitry associated with emesis. \textit{Am J Med} 2001;111:1065–1125.
14. Ramos EJB, Suzuki S, Marks D, Inui A, Asakawa A, Meguid MM. Cancer anorexia-cachexia syndrome: Cytokines and neuropeptides. \textit{Curr Opin Clin Nutr Metab Care} 2004;7:427–434.
15. Noguchi Y, Yoshikawa T, Matsumoto A, Svaninger G, Gelin J. Are cytokines possible mediators of cancer cachexia? \textit{Surg Today} 1996;26:467–475.
16. Matthys P, Billiau A. Cytokines and cachexia. \textit{Nutrition} 1997;13:763–770.
17. Patra SK, Arora S. Integrative role of neuropeptides and cytokines in cancer anorexia-cachexia syndrome. \textit{Clin Chim Acta} 2012;413:1025–1034.
18. Inui A. Cytokines and sickness behavior: Implications from knockout animal models. \textit{Trends Immunol} 2001;22:469–473.
19. Langhans W, Hrupka B. Interleukins and tumor necrosis factor as inhibitors of food intake. \textit{Neuropeptides} 1999;33:415–424.
20. Laviano A, Meguid MM, Yang ZJ, Gleason JR, Cangiano C, Rossi-Fanelli F. Crack the riddle of cancer anorexia. \textit{Nutrition} 1996;12:706–710.
21. Yang ZJ, Blaha V, Meguid MM, Laviano A, Oler A, Zadak Z. Interleukin-1alpna injection into ventromedial hypothalamic...
nucleus of normal rats depresses food intake and increases release of dopamine and serotonin. Pharmacol Biochem Behav 1999;62:61–65.

22. Banks WA, Farr SA, Morley JE. Entry of blood-borne cytokines into the central nerv-ous system: Effects on cognitive processes. Neuroimmunomodulation 2002–2003:30:319–327.

23. Martignoni ME, Kunze P, Friess H. Cancer cachexia. Mol Cancer 2003:2:36.

24. Bennani-Baiti N, Davis MP. Cytokines and cancer anorexia cachexia syndrome. Am J Hospice Pall Med 2008;25:407–411.

25. Uehara A, Sekiya C, Takasugi Y, Namiki M, Arimura A. Anorexia induced by interleukin 1: Involvement of corticotropin-releasing factor. Am J Physiol 1989;257:R613–R617.

26. Strassmann G, Jacob CO, Evans R, Beal D, Fong M. Mechanisms of experimental cancer cachexia. Interaction between mononuclear phagocytes and colon-26 carcinoma and its relevance to IL-6 mediated cancer cachexia. J Immunol 1992;148:3674–3678.

27. Lira FS, Yamashita AS, Rosa JC, Tavares FL, Capureto E, Carnevali LC Jr, et al. Blockade of cytokine induced conditioned taste aversion by subdiaphragmatic vagotomy: Further evidence for vagal mediation of immune-brain communication. Neurosci Lett 1995;185:163–166.

28. Torelli GF, Meguid MM, Moldawer LL, Edwards CK 3rd, Kim HJ, Carter JL, et al. Use of recombinant human soluble TNF receptor in anorectic tumor-bearing rats. Am J Physiol Regul Integr Comp Physiol 1999;277:R830–R855.

29. Gutierrez EG, Banks WA, Kastin AJ. Murine tumor necrosis factor alpha is transported from blood to brain in the mouse. J Neuroimmunol 1993;47:169–176.

30. Goehler LE, Busch CR, Tagartiglia N, Relton J, Sisk D, Maier SF, Billiau A. Anti-interferon-gamma antibody mediates cancer cachexia. Mol Cancer 2003;1:607–R613.

31. Martignoni ME, Kunze P, Friess H. Cancer cachexia. Mol Cancer 2003:2:36.

32. Goehler LE, Busch CR, Tagartiglia N, Relton J, Sisk D, Maier SF, Billiau A. Anti-interferon-gamma antibody mediates cancer cachexia. Mol Cancer 2003;1:607–R613.

33. Matthys P, Heremans H, Opdenakker G, Schepers J, Grootjans S, Van Den bossche et al. The role of cytokines in cancer cachexia. Eur J Cancer 1991;27:182–187.

34. Gadek-Michalska A, Tadeusz J, Rachwalska P, Spyrka J, Bugajski J. Brain nitric oxide synthase in the interleukin-1β-induced activation of hypothalamic-pituitary-adrenal axis. Pharmacol Rep 2012;64:1455–1465.

35. Nitkouidi E, Kliaias M, Boura P, Syrigos KN. Hormones of adipose tissue and their biologic role in lung cancer. Cancer Treat Rev 2014;40:22–30.

36. Shackelford RE, Mayhall K, Maxwell NM, Kandil E, Coppel D. Nicotinamide Phosphoribosyltransferase in Malignancy: A review. Genes Cancer 2013;4:447–456.

37. Aider DG, Schindler K, Schaller G, Prager G, Woltz M, Ludvik B. Increased plasma visfatin concentrations in morbidly obese subjects are reduced after gastric banding. J Clin Endocrinol Metab 2006;91:1578–1581.

38. Hufton SE, Moerkert PT, Brandwijk R, de Bruine AP, Arends JW, Hoogenboom HR. A profile of differentially expressed genes in primary colorectal cancer using suppression subtractive hybridization. FEBS Lett 1999;463:771–82.

39. Yang H, Yang T, Baur JA, Perez E, Matsui T, Carmona Ji, et al. Nutrient-sensitive mitochondrial NAD+ levels dictate cell survival. Cell 2010;140:1095–1107.

40. Patel ST, Mistry T, Brown JE, Digby JE, Adya R, Desai KM, et al. A novel role for the adipokine visfatin/pre-B colony enhancing factor 1 in prostate carcinoma genesis. Peptides 2010;31:51–57.

41. Park BS, Kishimoto YJ, Park JW, Namgung JS, Kim YI, et al. Visfatin induces sickness responses in the brain. PLoS One 2011;6:e15981.

42. Goldman RD, Kaplan NO, Hall TC. Lactic dehydrogenase in human neoplastic tissues. Cancer Res 1964;24:389–399.

43. Warburg O. On the origin of cancer cells. Science 1956;123:309–314.

44. Crispens CG. Serum lactic dehydrogenase levels in mice during the development of autochthonous and chemically induced tumors. J Natl Cancer Inst 1963;30:361–366.

45. Hsieh KM, Mao SS, Sasamototh K. Serum lactic dehydrogenase activity after excision of transplanted tumors. Cancer Res 1959;19:700–704.

46. Wennner CE, Spirtes MA, Weinhouse S. Metabolism of neoplastic tissue. II. A survey of enzymes of the citric acid cycle in transplanted tumors. Cancer Res 1952;12:47–49.

47. Bierman HR, Hill BR, Reinhardt L, Emory E. Serum lactic dehydrogenase in cancer patients. J Natl Cancer Inst 1957;18:307–313.

48. White LP. Serum enzymes. II. Glycolytic enzymes in patients with cancer and other diseases. J Natl Cancer Inst 1958;21:671–684.

49. Brindley CO, Francis FL. Serum lactic dehydrogenase and glutamic-oxaloacetic transaminase correlations with measurements of tumor masses during therapy. Cancer Res 1963;23:112–117.

50. Michaelson MD, Stadler WM. Predictive markers in advanced renal cell carcinoma. Semin Oncol 2013;40:459–464.

51. Hailes CA, Hider RC. Depression of food intake of goats by metabolites injected during meals. Am J Physiol 1969;217:1830–1836.

52. Hailes CA, Zinin WM, Mayer J. Effects of lactate and other metabolites on food intake of monkeys. Am J Physiol 1970;219:1606–1613.

53. Silberbauer CJ, Surina-Baumgartner DM, Arnold M, Langhans W. Prandial lactate infusion inhibits spontaneous feeding in rats. Am J Physiol Regul Integr Comp Physiol 2000;278:R646–R653.

54. Guillod-Maximin E, Lorsignol A, Alquier T, Pénicaud L. Acute intracarotid glucose infusion towards the brain induces specific c-fos activation in hypothalamic nuclei: Involvement of astrocytes in cerebral glucose-sensing in rats. J Neuroendocrinol 2004;16:456–471.

55. Boré MA, Tamborlane WV, Shulman GI, Sherwin RS. Local lactate perfusion of the ventromedial hypothalamus suppresses hypoglycemic counter-regulation. Diabetes 2003;52:653–666.

56. Kokorovic A, Cheung GW, Rossetti L, Lam TK. Hypothalamic sensing of circulating lactate regulates glucose production. J Cell Mol Med 2009;13:4403–4408.

57. Lam CK, Chari M, Lam TK. CNS regulation of glucose homeostasis. Physiology (Bethesda) 2009;24:159–170.

58. Lam CK, Chari M, Wang PY, Lam TK. Central lactate metabolism regulates food intake. Am J Physiol Endocrinol Metab 2008;295:E491–E496.

59. Cortes-Campos C, Elizondo R, Carril C, Martinez F, Boric K, Nuartal F, et al. MCT2 expression and lactate influx in anorexigenic and orexigenic neurons of the arcuate nucleus. PLoS One 2013;8:e62532.

60. Schultes B, Schmid SR, Wilsch B, Lauch-Chara K, Oltmanns KM, Hallschmidt M. Lactate infusion during euglycemia but not hypoglycemia reduces subsequent food intake in healthy men. Appetite 2012;58:818–821.

61. Zheng ZH, Sederholm F, Anderstam B, Qureshi AR, Wang T, Sodersten P, et al. Acute effects of peritoneal dialysis solutions on appetite in non-uremic rats. Kidney Int 2001;60:2392–2398.

62. Zheng ZH, Anderstam B, Yu X, Qureshi AR, Hiemburger O, Lindholm B, et al. Bicarbonate-based peritoneal dialysis solution has less effect on ingestive behavior than lactate-based dialysis solution. Perit Dial Int 2009;29:656–663.

63. Cassolla P, Moreira CC, Liboni TF, Yu X, Zaia CT, Borba-Murad GR, Bazotte RB, et al. Changes in blood metabolic parameters during the development of Walker 256 tumour-induced cachexia in rats are not caused by decreased food intake. Clin Biochem Funct 2012;30:265–270.

64. Chance WT, Dayal R, Friend LA, James JH. Effects of lactate on food intake. J Biol Chem 1963;238:216–218.

65. Sha CH, Lane MD. Central lactate metabolism suppresses food intake via the hypothalamic AMP kinase/malonyl-CoA signaling pathway. Biochem Biophys Res Commun 2009;386:212–216.

66. Morley JE. The neuroendocrine control of appetite. The role of the opioid, cholecystokinin, TRH, gamma-aminobutyric-acid and the diazepam receptor. Life Sci 1980;27:355–368.

67. Morley JE, Levein AS, Grace M, Kneip J. Dynorphin-(1–13), dopamine and feeding
in rats. *Pharmacol Biochem Behav* 1982;16:701–705.

98. Krause R, James JH, Ziparo V, Fischer JE. Brain tryptophan and the neoplastic anorexia-cachexia syndrome. *Cancer* 1979;44:1003–1008.

99. Ross F, Cangiano C, Ceci F, Cellierino R, Franchi M, Menichetti ET, et al. Plasma tryptophan and anorexia in human cancer. *Eur J Cancer Clin Oncol* 1986;22:89–95.

100. Cangiano C, Cusino C, Ceci F, Laviano A, Muscaritoli M, et al. Plasma and CSF tryptophan in cancer anorexia. *J Neural Transm Gen Sect* 1990;81:225–233.

101. Cangiano C, Testa U, Muscaritoli M, Meguid MM, Mulleri M, Laviano A, et al. Cytokines, tryptophan and anorexia in cancer patients before and after surgical tumor ablation. *Anticancer Res* 1994;14:1451–1456.

102. Kardinal CG, Loprinzi CL, Schaad DJ, Hass AC, Dose AM, Achmann LM, et al. A controlled trial of cyproheptadine in cancer patients with anorexia and/or cachexia. *Cancer* 1990;65:2657–2662.

103. Chance WT, von Meyenfeldt MF, Fischer JE. Changes in brain amines associated with cancer anorexia. *Neurosci Biobehav Rev* 1983;7:471–479.

104. Chance WT, Von Meyenfeldt M, Fischer JE. Delay of cancer anorexia following intraventricular injection of paraldehyde. *Pharmacol Biochem Behav* 1982;17:1043–1048.

105. Chance WT, von Meyenfeldt M, Fischer JE. Serotonin immnunolocalization by 5,7-dihydroxytryptamine or paraldehyde administration does not affect cancer anorexia. *Pharmacol Biochem Behav* 1983;18:115–121.

106. Wang W, Danielsson A, Svaneberg E, Lundholm K. Lack of effects by triyclic antidepressant and serotonin inhibitors in anorexia on MCG 101 tumor-bearing mice with eicosanoid-related cachexia. *Nutrition* 2003;19:47–53.

107. Laviano A, Gleason JR, Meguid MM, Yang ZJ, Cangiano C, Rossi FF. Effects of intravenous mianserin and IL-1α on meal number in anorectic tumor-bearing rats. *J Investig Med* 2000;48:40–48.

108. Chance WT, Cao L, Nelson JI, Foley-Nelson T, Fischer JE. Reversal of neurochemical aberrations after tumor resection in rats. *Am J Surg* 1988;155:124–130.

109. Blaha V, Yang ZJ, Meguid MM, Chai JK, Oler A, Zadak Z. Ventromedial nucleus of hypothalamus is related to the development of cancer-induced anorexia: In vivo microdialysis study. *Acta Medica (Hradec Kralove)* 1998;41:3–11.

110. Makarenko IG, Meguid MM, Gatto L, Chen C, Ramos EJ, Goncalves CG, Ugrumov MV. Normalization of hypothalamic serotonin (S-HT 1B) receptor and NPY in cancer anorexia after tumor resection: An immunocytochemical study. *Neurosci Lett* 2005;383:322–327.

111. Makarenko IG, Meguid MM, Gatto L, Goncalves CG, Ramos EJ, Chen C, et al. Hypothalamic S-HT1B receptor changes in anorectic tumor bearing rats. *Neurosci Lett* 2005;376:71–75.

112. Meguid MM, Ramos EJ, Laviano A, Varma M, Sato T, Chen C, et al. Tumor anorexia: Effects on neuropeptide Y and monoamines in paraventricular nucleus. *Peptides* 2004;25:261–266.

113. Edelman MJ, Gandara DR, Meyers FJ, Ishii AS, Kralove K. Lack of effects by tricyclic antidepressants on body weight and food intake in mice with eicosanoid-related cachexia. *Pharmacol Biochem Behav* 1985;20:376–383.

114. Nelson T, Fischer JE. Reversal of neurochemical aberrations after tumor resection in rats. *Am J Surg* 1988;155:124–130.

115. Blaha V, Yang ZJ, Meguid MM, Chai JK, Oler A, Zadak Z. Ventromedial nucleus of hypothalamus is related to the development of cancer-induced anorexia: In vivo microdialysis study. *Acta Medica (Hradec Kralove)* 1998;41:3–11.
Hypothalamic appetite-regulating neuropeptide mRNA levels in cachectic nude mice bearing human tumor cells. Metabolism 2001;50:1213–1219.

112. Nara-ashizawa N, Tsukada T, Maruyama K, Akiyama Y, Kajimura N, Yamaguchi K. Response of hypothalamic NPV mRNAs to a negative energy balance is less sensitive in cachectic mice bearing human tumor cells. Nutr Cancer 2001;41:111–118.

113. Bing C, Taylor S, Tisdale MJ, Williams G. Cachexia in MAC16 adenocarcinoma: Suppression of hunger despite normal regulation of leptin, insulin and hypothalamic neuropeptide Y. J Neurochem 2001;79:1004–1012.

114. Makareno IG, Meguid MM, Gatto L, Chen C, Ugrumov MW. Decreased NPY innervation of the hypothalamic nuclei in rats with cancer anorexia. Brain Res 2003;961:100–108.

115. Chance WT, Balasubramaniam A, Dayal R, Brown J, Fischer JE. Hypothalamic concentration and release of neuropeptide Y into microdialysates is reduced in anorectic tumor-bearing rats. Life Sci 1994;54:1869–1874.

116. Chance WT, Balasubramaniam A, Thompson H, Mohapatra B, Ramo J, Fischer JE. Assessment of feeding response of tumor-bearing rats to hypothalamic injection and infusion of neuropeptide Y. Peptides 1996;17:797–801.

117. Chance WT, Xiao C, Dayal R, Sheriff S. Alteration of NPY and Y1 receptor in dorsomedial and ventromedial areas of hypothalami in anorectic tumor-bearing rats. Peptides 2007;28:295–301.

118. Laviano A, Inui A, Meguid MM, Molinero F, Conte C, Rossi FF. NPY and brain monoamines in the pathogenesis of cancer anorexia. Nutrition 2008;24:802–805.

119. Morley JE, Flood JF. Competitive antagonism of nitric-oxide synthetase causes weight-loss in mice. Life Sci 1992;51:1285–1289.

120. Farr SA, Banks WA, Kumar VB, Morley JE. Orexin-A-induced feeding is dependent on nitric oxide. Peptides 2005;26:759–765.

121. Gaskin FS, Farr SA, Banks WA, Kumar VB, Morley JE. Ghrelin-induced feeding is dependent on nitric oxide. Peptides 2003;24:913–918.

122. Morley JE, Farr SA, Sell RL, Hileman SM, Banks WA. Nitric oxide is a central component in neuropeptide regulation of appetite. Peptides 2011;32:776–780.

123. Morley JE, Alshaher MM, Farr SA, Flood JF, Kumar VB. Leptin and neuropeptide Y (NPY) modulate nitric oxide synthase: Further evidence for a role of nitric oxide in feeding. Peptides 1999;20:595–600.

124. Wang W, Svanberg E, Delbro D, Lundholm K. NOS isozyme content in brain nickel as related to food intake in experimental cancer cachexia. Brain Res Mol Brain Res 2005;134:205–214.

125. Kola B. Role of AMP-activated protein kinase in the control of appetite. J Neuroendocrinol 2008;20:942–951.

126. Pimentel GD, Ropelle ER, Rocha GZ, Carvalheiro JB. The role of neuronal AMPK as a mediator of nutritional regulation of food intake and energy homeostasis. Metabolism 2013;62:171–178.

127. Ropelle ER, Pauli JR, Zechcin KG, Ueno M, de Souza CT, Morari J, et al. A central role for neuronal adenosine 5’-monophosphate-activated kinase in cancer-induced anorexia. Endocrinology 2007;148:5220–5229.

128. Millington GW. The role of proopiomelanocortin (POMC) neurons in feeding behavior. Nutr Metab (Lond) 2007;4:18.

129. Chen C, Tucci FC, Jiang W, Tran JA, Fleck BA, Hoare SR, et al. Pharmacological and pharmacokinetic characterization of 2-piperazine-alpha-isopropyl benzylamine derivatives as melanocortin-4 receptor antagonists. Bioorg Med Chem 2008;16:5606–5618.

130. Tsujii S, Bray GA. Acetylation alters the feeding response to MSH and beta-endorphin. Brain Res Bull 1989;23:165–169.

131. Scarlett JM, Jobst EE, Enriori PJ, Bowe J, Kumar VB. Leptin and neuropeptide Y derivatives as melanocortin-4 receptor antagonists. J Neuroendocrinol 2001;13:942–951.

132. DeBoer MD. Update on melanocortin receptors mRNAs and plasma leptin levels in PTHrP-, LIF-secreting tumors-induced cachectic rats and adjuvant arthritic rats. Int J Cancer 2011;128:2215–2223.

133. Marks DL, Ling N, Cone RD. Role of the central melanocortin system in cachexia. J Neuroendocrinol 2001;13:432–438.

134. Wisse BE, Frayo RS, Schwartz MW, Cummings DE. Reversal of cancer anorexia by blockade of central melanocortin receptors in rats. Endocrinology 2001;142:3292–3301.

135. Tran JA, Jiang W, Tucci FC, Fleck BA, Jen Y, Sライび, et al. Design, synthesis, in vitro, and in vivo characterization of phenylepidermines and pyridylpiperidines as potent and selective antagonists of the melanocortin-4 receptor. J Med Chem 2007;50:6356–6366.

136. Jiang W, Tucci FC, Tran JA, Fleck BA, Jen Y, Marksion S, et al. Pyrrolidinones as potent functional antagonists of the human melanocortin-4 receptor. Bioorg Med Chem Lett 2007;17:5610–5613.

137. Markson S, Foster AC, Chen C, Brookhart GB, Hesse A, Hoare SR, et al. The regulation of feeding and metabolic rate and the prevention of murine cancer cachexia with a small-molecule melanocortin-4 receptor antagonist. Endocrinology 2005;246:2766–2773.

138. Dallmann R, Weyermann P, Anklin C, Boroff M, Bray-French K, Cardel B, et al. The orally active melanocortin-4 receptor antagonist BL-620/970: A promising candidate for the treatment of cancer cachexia. J Cachexia Sarcopenia Muscle 2011;2:163–174.

139. Weyermann P, Dallmann R, Magyar J, Anklin C, Hufschmid M, Dubach-Powell J, et al. Orally available selective melanocortin-4 receptor antagonists stimulate food intake and reduce cancer-induced cachexia in mice. PLoS One 2009;4:e4774.

140. Chance WT, Sheriff S, Sayal R, Balasubramaniam A. Refractor hypothalamic alpha-mSH satiety and AGRP feeding systems in rats bearing MCA sarcomas. Peptides 2003;24:1909–1919.

141. Pourtou L, Leemburg S, Roux P, Lest Lasserre T, Costaglioli P, Garbay B, et al. Hormonal, hypothalamic and striatal responses to reduced body weight gain are attenuated in anorectic rats bearing small tumors. Brain Behav Immun 2011;25:777–786.

142. Suzuki H, Hashimoto H, Kawasaki M, Watanabe M, Otsubo H, Ishikura T, et al. Similar changes of hypothalamic feeding-regulating peptides mRNAs and plasma leptin levels in PTHrP-, LIF-secreting tumors-induced cachectic rats and adjuvant arthritic rats. Int J Cancer 2011;128:2215–2223.

143. Hashimoto H, Azuma Y, Kawasaki M, Fujihara H, Onuma E, Yamada-Oka H, et al. Parathyroid hormone-related protein induces cachexia without directly modulating the expression of hypothalamic feeding-regulating peptides. Clin Cancer Res 2007;13:292–298.

144. Dwarkasing JT, van Dijk M, Dijk JF, Boekshoten MV, Faber J, Argiles JM, et al. Hypothalamic food intake regulation in a cancer-cachectic mouse model. J Cachexia Sarcopenia Muscle 2014;5:159–169.

145. Ihnatto R, Post C, Blomqvist A. Proteomic profiling of the hypothalamus in a mouse model of cancer-induced anorexia-cachexia. Brit J Cancer 2013;109:1867–1875.

146. Shinyama H, Masuzaki H, Fang H, Flier JS. Regulation of melanocortin-4 receptor signaling agonist mediated desensitization and internalization. Endocrinology 2003;144:1301–1314.

147. Levine AS, Morley JE. The effect of prostat glandins (PGE2 and PGF2 alpha) on food intake in rats. Pharmacol Biochem Behav 1981;15:735–738.

148. Ruud J, Nilsson A, Engstrom Ruud L, Wang W, Nilssberth C, Iresio BM, et al. Cancer-induced anorexia in tumor-bearing mice is dependent on cyclooxygenase-1. Brain Behav Immun 2013;29:124–135.

149. Ohinata K, Suetsugu K, Fujiiwa Y, Yoshikawa M. Activation of prostaglandin E receptor EP4 subtype suppresses food intake in mice. Protag Oth Lipid M 2006;81:31–36.

150. Desai S, Ashby B. Agonist-induced internalization and nitric-oxid-activated protein kinase activation of the human prostat glandin EP4 receptor. FEBS Lett 2001;501:156–160.

151. Hadjimarkou MM, Silva RM, Rossi GC, Pasternak GW, Bodnar RJ. Feeding induced by food deprivation is differentially reduced by G-protein α-subunit antisense probes in rats. Brain Res 2002;955:45–54.

152. Carr KD, Tsimberg Y, Berman Y, Yamamoto N. Evidence of increased dopamine receptor signaling in food-restricted rats.

DOI: 10.1002/jcsm.12059
154. Milbury PE, Richer AC. Understanding the Antioxidant controversy: Scrutinizing the ‘fontain of youth’. Santa Barbara, CA: Greenwood Publishing Group; 2006. p.9.

155. Aydemir TB, Blanchard RK, Cousins RJ. Zinc supplementation of young men alters metallothionein, zinc transporter, and cytokine gene expression in leukocyte populations. Proc Natl Acad Sci U S A 2006;103:1699–1704.

156. Valko M, Morris H, Cronin MTD. Metals, antioxidants and human health. Curr Med Chem 2005;12:1161–1208.

157. Nakashima AS, Dyck RH. Zinc and cortical plasticity. Brain Res Rev 2009;59:347–373.

158. Hambidge KM. Krebs PE. Zinc deficiency: A special challenge J Nutr 2007;137:1101.

159. Siren PM, Siren MJ. Systemic zinc redistribution and dyshomeostasis in cancer cachexia. J Cachexia Sarcopenia Muscle 2010;1:23–31.

160. Westin T, Ahlan E, Johansson E, Sandström B, Karlberg I, Edström S. Circulating levels of selenium and zinc in relation to nutritional status in patients with head and neck cancer. Arch Otolaryngol Head Neck Surg 1989;115:1079–1082.

161. Gao C, LAI MC, McClain CJ, Tallwalker RT, Shedlofsky ST. Effects of endotoxin on zinc metabolism in human volunteers. Am J Physiol 1997;272:E953–E956.

162. Allen JJ, Bell E, Boosalis MG, Oken MM, McClain CJ, Levine AS, et al. Association between urinary zinc excretion and lymphpocyte dysfunction in patients with lung cancer. Am J Med 1985;79:209–215.

163. Lindsey AM, Piper BF. Anorexia, serum zinc, and immunologic response in small cell lung cancer patients receiving chemotherapy and prophylactic cranial radiotherapy. J Nutr Cancer 1986.

164. Essatara MB, Levine AS, Morley JE, McClain CJ. Zinc deficiency and anorexia in rats: Normal feeding patterns and stress induced feeding. Physiol Behav 1984;34:469–474.

165. Yagi T, Asakawa A, Ueda H, Ikeda S, Miyashita S, Inui A. The role of zinc in the treatment of taste disorders. Recent Pat Food Nutr Agric 2013;5:44–51.

166. Essatara MB, McClain CJ, Levine AS, Morley JE. Zinc deficiency and anorexia in rats: The effect of central administration of norepinephrine, muscimol and bromergocryptine. Physiol Behav 1984;34:479–482.

167. Essatara MB, Morley JE, Levine AS, Elson MK, Shafer RB, McClain CJ. The role of the endogenous opiates in zinc deficiency anorexia. Physiol Behav 1984;34:475–478.

168. Suzuki H, Asakawa A, Li JB, Tsai M, Amritani H, Ghinata K, et al. Zinc as an appetite stimulator – the possible role of zinc in the progression of diseases such as cachexia and sarcopenia. Recent Pat Food Nutr Agric 2011;3:226–231.

169. Williamson PS, Brownein, zinc, MacDonald RS. Megestrol acetate increases short-term food intake in zinc-deficient rats. Physiol Behav 2002;75:323–330.

170. McCarthy MD, Crowder RE, Dryden S, Williams G. Megestrol acetate stimulates food intake in the rat: Effects on regional hypothalamic neuropeptide Y concentrations. Eur J Pharmacol 1994;265:99–102.

171. Leibowitz SF. Gonadal steroids and hypothalamic galanin and Neuropeptide Y: Role in eating behavior and body weight control in female rats. Endocrinology 1998;139:1771–1780.

172. White BD, Dean RG, Edwards GL, Martin RJ. Type II corticosteroid receptor stimulation increases NPY gene expression in basomedial hypothalamus of rats. Am J Physiol 1994;266:R1523–R1529.

173. Mantovani G, Maccio A, Lai P, Massa E, Ghiani M, Santona MC. Cytokine involvement in cancer anorexia/cachexia: Role of megestrol acetate and medroxyprogesterone acetate on cytokine down regulation and improvement of clinical symptoms. Crit Rev Oncog 1998;9:99–106.

174. Montovani G, Maccio A, Bianchi A, Curreli L, Ghiani M, Santona MC, et al. Megestrol acetate in neoplastic anorexia/cachexia: Clinical evaluation and comparison with cytokine levels in patients with head and neck carcinoma treated with neoadjuvant chemotherapy. Int J Clin Lab Res 1995;25:135–141.

175. Jatoi A, Yamashita J, Sloan JA, Novotny PJ, Windschitl HE, Loprinzi CL. Dose megestrol acetate down-regulate interleukin-6 in patients with cancer-associated anorexia and weight loss. A North Central Cancer Treatment Group investigation. Support Care Cancer 2002;10:71–75.

176. Ruiz Garcia V, López-Briz E, Carbonell Sanchis R, Gonçalvez Perales JL, Bort-Martí S. Megestrol acetate for the treatment of anorexia-cachexia syndrome. Cochrane Database Syst Rev 2013 Mar 28;3:CD004310.

177. Cuveller GD, Baker TJ, Peddie EF, Casey LA, Lambert PJ, Distefano DS, et al. A randomized, double-blind, placebo-controlled clinical trial of megestrol acetate as adjuvant treatment in children with weight loss due to cancer and/or cancer therapy. Pediatr Blood Cancer 2014;61:672–679.

178. Greig CA, Johns N, Gray C, Macdonald A, Stephens NA, Skipworth RJ, et al. Phase I/II trial of formoterol fumarate combined with megestrol acetate in cachectic patients with advanced malignancy. Support Care Cancer 2014;22:1269–1275.

179. Kanat O, Cubukcu E, Avci N, Budak F, Ercan I, Canhoroz M, et al. Comparison of three different treatment modalities in the management of cancer cachexia. Tumori 2013;99:229–233.

180. Macciò A, Madeddu C, Gramignano G, Mulas C, Fioris C, Sanna E, et al. A randomized phase III clinical trial of a combined treatment for cachexia in patients with gynecological cancers: Evaluation of the impact on metabolic and inflammatory profiles and quality of life. Gynecol Oncol 2012;124:417–425.

181. Madeddu C, Dessi M, Panzone F, Serpe R, Antoni G, Cau MC, et al. Randomized phase III clinical trial of a combined treatment with carniotine + celecoxib + megestrol acetate for patients with cancer-related anorexia/cachexia syndrome. Clin Nutr 2012;31:176–182.

182. Wen HS, Li X, Cao YZ, Zhang CC, Yang F, Shi YM, et al. Clinical studies on the treatment of cancer cachexia with megestrol acetate plus thalidomide. Chemotherapy 2012;58:461–467.

183. Navari RM, Brenner MC. Treatment of cancer-related anorexia with olanzapine and megestrol acetate: A randomized trial. Support Care Cancer 2010;18:951–956.

184. Capasso R, Izzo AA. Gastrointestinal regulation of food intake: General aspects and focus on anandamide and oleoylthanolamide. J Neuroendocrinol 2008;20:39–46.

185. Deschamps B, Musaji N, Gillespie JA. Food effect on the bioavailability of two distinct formulations of megestrol acetate oral suspension. Int J Nanomedicine 2009;4:185–192.

186. Anonymous. Megestrol acetate NCD oral suspension—Par Pharmaceutical: Megestrol acetate nanocrystal dispersion oral suspension. JAMA 2000;284:467–468.

187. Morley JE, Logie P, Bensusan AD. The subjective effects of dagga: Including comparative studies with Britain and America. S Afr Med J 1973;47:1145–1149.

188. Wiley JI, Burston JJ, Leggett DC, Akesevea OO, Razdan RK, Mahadevan A, et al. CB1 cannabinoid receptor-mediated modulation of food intake in mice. Br J Pharmacol 2005;145:293–300.

189. Gamber KM, Macarthur H, Westfall TC. Cannabinoids augment the release of neuropeptide Y in the rat hypothalamus. Neuropharmacology 2005;49:646–652.

190. Kola B, Hubina E, Tucci SA, Kirkham TC, Garcia EA, Mitchell SE, et al. Cannabinoids and ghrelin have both central and peripheral metabolic and cardiac effects via AMP-activated protein kinase. J Biol Chem 2005;280:25162–25200.

191. Piomelli D. A fatty gut feeling. Trends Endocrinol Metab 2013;24:332–341.

192. Gatta-Cherifi B, Matias I, Vallee M, Tabarin A, Marsicano G, Piazza PV, et al. Simultaneous postprandial deregulation of the orexigenic endocannabinoid anandamide and the anorexigenic peptide YY in obesity. Int J Obes (Lond) 2012;36:880–885.

193. Riggs PK, Vaida F, Rossi SS, Sorkin LS, Gouaux B, Grant I, Ellis RJ. A pilot study of the effects of cannabis on appetite hormones in HIV-infected adult men. Brain Res 2012;1431:46–52.

194. Nelson K, Walsh D, Deeter P, Sheehan F. A phase II study of delta-9-tetrahydrocannabinol for appetite stimulation in cancer-associated anorexia. J Pain Palliat Care Pharmacother 1998;12:14–18.

195. Beal JE, Olson R, Laubenstein L, Morales JO, Bellman P, Yangco B, et al. Dronabinol as a treatment for anorexia associated with weight loss in patients with AIDS. J Pain Symptom Manage 1995;10:89–97.

DOI: 10.1002/jcsm.12059
Beal JE, Olson R, Lefkowitz L, Laubenstein L, Bellman P, Yangco B, et al. Long-term efficacy and safety of dronabinol for acquired immunodeficiency syndrome-associated anorexia. J Pain Symptom Manage 1997;14:7–14.

Strasser F, Luftner D, Possinger K, Ernst G, Ruhstaller T, Meissner W, Cannabis-In-Cachexia-Study-Group. Comparison of orally administered cannabis extract and delta-9-tetrahydrocannabinol in treating patients with cancer-related anorexia-cachexia syndrome: A multicenter, phase III, randomized, double-blind, placebo-controlled clinical trial from the Cannabis-In-Cachexia-Study-Group. 2006;30:280–287.

Wilson MM, Philpot C, Morley JE. Anorexia of aging in long term care: Is dronabinol an effective appetite stimulant?—A pilot study. J Nutr Health Aging 2007;11:195–198.

Brisbois TD, de Kock IH, Watanabe SM, Mirhosseini M, Lamoureux DC, Chasen M, et al. Delta-9-tetrahydrocannabinol may palliate altered chemosensory perception in cancer patients: Results of a randomized, double-blind, placebo-controlled pilot trial. Ann Oncol 2011;22:2086–2093.

Morley JE. End-of-life care in the nursing home. J Am Med Dir Assoc 2011;12:77–83.

Diano S, Farr SA, Benoit SC, McNay EC, da Silva I, Horvath B, et al. Ghrelin controls hippocampal spine synapse density and memory performance. Nat Neurosci 2006;9:381–388.

Müller TD, Perez-Tilve D, Tong J, Pfluger PT, Tschöp MH. Ghrelin and its potential in the treatment of eating/wasting disorders and cachexia. J Cachexia Sarcopenia Muscle 2010;1:159–167.

Shimizu Y, Nagaya N, Isobe T, Imazu M, Okumura H, Hosoda H, et al. Increased plasma ghrelin level in lung cancer cachexia. Clin Cancer Res 2003;9:774–778.

Wolf I, Sadetksi S, Kanety H, Kundel Y, Pariente C, Epstein N, et al. Adiponectin, ghrelin, and leptin in cancer cachexia in breast and colon cancer patients. Cancer 2006;106:966–973.

DeBoer MD, Zhu XX, Levasseur P, Meguid MM, Suzuki S, Inui A, et al. Ghrelin treatment model causes increased food intake and retention of lean body mass in a rat model of cancer cachexia. Endocrinology 2007;148:3004–3012.

Chance WT, Dayal R, Friend LA, Thomas I, Sheriff S. Continuous intravenous infusion of ghrelin does not stimulate feeding in tumor-bearing rats. Nutr Cancer 2008;60:75–90.

Garcia JM, Cata JP, Dougherty PM, Smith RG. Ghrelin prevents cisplatin-induced mechanical hyperalgesia and cachexia. Endocrinology 2008;149:455–460.

Yakabi K, Sadakane C, Noguchi M, Ohno S, Ro S, Chinen K, et al. Reduced ghrelin secretion in the hypothalamus of rats due to cisplatin-induced anorexia. Endocrinology 2010;151:3773–3782.

Fujitsuka N, Asakawa A, Amiata H, Hattori T, Inui A. Efficacy of ghrelin in cancer cachexia: Clinical trials and a novel treatment by rikkunshito. Crit Rev Oncol 2012;17:277–284.

Ohno T, Yanai M, Ando H, Toyomasu Y, Ogawa A, Morita H, et al. Rikkunshito, a traditional Japanese medicine, suppresses cisplatin-induced anorexia in humans. Clin Exp Gastroenterol 2011;4:291–296.

Moschovi M, Trimson G, Vounatsou M, Katsibardi K, Margeli A, Dimitriadi F, et al. Serial plasma concentrations of PY and ghrelin during chemotherapy in children with acute lymphoblastic leukemia. J Pediatr Hematol Oncol 2008;30:733–737.

Neary NM, Small CJ, Wren AM, Lee JL, Druce MR, Palmieri C, et al. Ghrelin increases energy intake in cancer patients with impaired appetite: Acute, randomized, placebo-controlled trial. J Clin Endocrinol Metab 2004;89:2832–2836.

Strasser F, Lutz TA, Maeder MT, Thurerliamann B, Bueche D, Tschöp M, et al. Safety, tolerability and pharmacokinetics of intravenous ghrelin for cancer-related anorexia/cachexia: A randomized, placebo-controlled, double-blind, double-crossover study. Br J Cancer 2008;98:300–308.

Hiura Y, Takiguchi S, Yamamoto K, Takahashi T, Kurokawa YM, Yamasaki M, et al. Effects of ghrelin administration during chemotherapy with advanced esophageal cancer patients: A prospective, randomized, placebo-controlled phase 2 study. Cancer 2012;118:4785–4794.

Yamamoto K, Takiguchi S, Miyata H, Adachi S, Hiura Y, Yamasaki M, et al. Randomized phase II study of clinical effects of ghrelin after esophagectomy with gastric tube reconstruction. Surgery 2010;148:31–38.

Garcia JM, Friend J, Allen S. Therapeutic potential of anamorelin, a novel, oral ghrelin mimetic, in patients with cancer-related cachexia: A multicenter, randomized, double-blind, crossover, pilot study. Sup Care Cen 2013;21:129–137.

Morley JE, von Haehling S, Anker SD, Vellas B. From sarcopenia to frailty: A road less traveled. J Cachexia Sarcopenia 2014;5:5–8.

Morley JE. Weight loss in older persons: New therapeutic approaches. Curr Pharm Disc 2007;13:3637–3647.