THE EFFECTS OF PHYSICAL ACTIVITY ON OBESITY AMONG THE ELDERLY – A SYSTEMATIC REVIEW

UDC 615:796

Miljan Hadžović, Ljiljana Jelenković, Bojan Jorgić, Ana Lilić, Nikola Prvulović

Faculty of Sport and Physical Education, University of Niš, Niš, Serbia

Abstract. The aim of this review research was to determine the effects of the physical activity (PA) on obesity among the elderly. To compile existing studies on the effects of PA on obese elderly individuals, PubMed, SCIndeks, PEDro, J-GATE, DOAJ and Google Scholar electronic databases were searched. By analyzing and applying the set criteria, the final analysis included 20 studies, and the positive influence of the PA on the obesity of the elderly was confirmed. The greatest effect on the decrease in body mass was achieved by the simultaneous application of a combination of exercise programs and dietary regimen for a period of 6 months. It was concluded that combined programs of aerobics, weight training, flexibility and balance exercises for a period of at least 12 weeks lead to a mild decrease in body mass and the amount of fat mass, while maintaining and increasing lean body mass mostly in the form of muscle tissue. PA is an effective mean in reducing obesity, and thus its use among the elderly is recommended.

Key words: Physical Exercise, Ageing, Body Composition, Body Mass Index, Weight Loss.

INTRODUCTION

Pronounced demographic changes and the increase in the number of the elderly with certain health issues characteristics for their age have been a feature of most countries in the world over the past two decades. Poor habits and lifestyle choices at a young age are described as possible triggers for the health disorders later in life, e.g. diabetes or cardiovascular diseases are the most common health disorders that are caused largely by unhealthy habits (Chan & Woo, 2010; Sourtzi et al., 2019). Obesity, as a consequence of insufficient physical activity (PA) and an inappropriate way of life represents one of the quickest growing trends among the elderly population. As a result, physical exercise (PE) is...
recommended as one of the most effective means of solving the aforementioned problem (Han, Tajar, & Lean, 2011; Petrović & Marinković, 2018), as it also contributes to the improvement in quality of life, increase in muscle strength, and endurance (Blair, LaMonte, & Nichaman, 2004). In addition to numerous recommendations regarding the frequency and intensity of the physical activities of the elderly, the effects of the applied exercises, due to great variations in the aging process, according to certain authors, primarily depend on the health status, psychophysical characteristics and functional abilities of each individual (Taylor et al., 2004).

During the normal aging process, changes in body composition occur in the form of a decrease in muscle mass and increase in fat mass, that is, the development of sarcopenia, which represents an important cause of bone brittleness, instability, the occurrence of disability and loss of independent movement among the elderly (Weinheimer, Sands, & Campbell, 2010). In addition to the effects of PE on the elderly, related to the prevention and eradication of sarcopenia and cachexia through a combination of aerobic and weight training exercises (Scalabrin & Caporossi, 2016), it was determined that PA have a beneficial effect on relieving joint pain among individuals with rheumatoid arthritis, osteoarthritis, osteoarthritis of the knees, chronic obstructive pulmonary disease (Rejeski, Brawley, & Shumaker, 1996), a decrease in fatigue, increase in energy (Cochrane, Munro, Davey, & Nicholl, 1998) and quality of sleep (Singh, Clements, & Fiatarone, 1997). Obesity, accompanied by physical weakness and other health complications due to a decrease in daily PA, represents one of the main causes of the occurrence of disability among the elderly (Villareal, Banks, Siener, Sinacore, & Klein, 2004). This inactivity is related to low percentages of lean body mass (LBM) and increased amount of body fat (BF), a decrease in muscle mass and quality of life. As the number of the elderly in the world population is increasing, and obesity is proving to be one of the greatest problems of modern times, the question is: “What are the effects of the PA on obesity among the elderly, and what type of PE has the greatest effect?”

The aim of this research is to determine the effects of PA on obesity among the elderly.

METHODS

The tasks that originated from the research aim included: 1) a search of electronic databases; 2) the compilation and translation of existing literature from English; 3) an analysis of the research results; and 4) result representation, that is, determining the effects of exercise programs on obesity among the elderly.

To compile existing studies on the effects of the PA on obesity among the elderly, the following electronic databases were searched: PubMed, SCIndeks, PEDro, J-GATE, DOAJ and Google Scholar. Following the compilation of the relevant data from studies previously carried out from 2000 to 2017, under the assumption that the PA has a positive effect on the reduction of obesity among the elderly, an evaluation of its effects was carried out.

During the database search, the following key words were used: exercise, ageing, body composition, body mass index, weight loss, health promotion. The titles of identified studies, their abstracts and entire texts were read and analyzed. The research was carried out by several authors, and the studies were analyzed in detail based on the set criteria.
The Effects of Physical Activity on Obesity Among the Elderly – a Systematic Review

Inclusion criteria

In order for a study to be included in the final analysis, it had to satisfy certain criteria:

- that it included obese individuals with a body mass index ≥30 (Body mass index – BMI=kg/m²);
- that it included obese elderly individuals, with an average age ranging from 55 to 80, independent of lifestyle;
- that the experimental group took part in an exercise program as part of which the evaluation of the effects of the PA on obese elderly individuals took place;
- that the study was written in English.

The experimental studies which met the set criteria were analyzed afterwards and presented based on the following parameters: references (the author’s initials and date of publication of the study), the sample of participants (health status, age, overall number and subgroups of the participants), the PE program, the duration and frequency of the PE, the research results.

Exclusion criteria

The exclusion criteria included:

- that the study was carried out on a sample of participants whose average age is outside the range of 55 to 80;
- that the study was not published in English.

RESULTS

The search of the electronic databases identified 716 studies on the relevant topic. Following a further analysis and application of the set criteria, in accordance with the aims of this study, the final analysis included 20 studies, as can be seen from the following Flow diagram 1.
Study year	Health status	Gender	Age of the participants (Mean±SD)	Sample size (n)	Number of participants per group	Duration Frequency (days/weeks)	Intensity Duration of the training (min)	Type of the activity	Results (p)	
Womack et al. (2000)	Obese individuals	M	60±8	81	EG1: BMI = 30.4 ± 2.5, EG2: BMI = 29.9 ± 2.8, CG: BMI = 31.2 ± 2.4	36 weeks 3/7	30-45 min, HRR 50-80%	EG1: dietary regimen EG2: aerobic exercise (running on a treadmill and riding a bicycle ergometer), CG: no physical activity	EG1 > BW (p<0.05), BMI (p<0.05), WC (p<0.05), WHR (p<0.05), FFM (p<0.05), VO2max (p<0.05)	
Messier et al. (2000)	Obese individuals with osteoarthritis	M = 7, F = 17	64±5	24	EG1: BMI = 38.6 ± 5, EG2: BMI = 35.0 ± 5	12 weeks 3/7	60 min, HRR 50-75%	EG1: combined training (aerobic walking + weight training exercises), EG2: combined training (aerobic walking + weight training exercises) + dietary regimen (nutrition education 60 min per week)	EG1 > EG2	BW (p=0.01)
The Effects of Physical Activity on Obesity Among the Elderly – a Systematic Review

Study	Participants	EG1	EG2	BMI (kg/m²)	Duration	Intervention Details
Durstan et al. (2002)	Obese individuals with type 2 diabetes (postmenopausal women)	M = 16	F = 17	67.6 ± 5.2	6 months	EG1: dietary regimen + progressive high intensity weight training exercise (warm-up and cool down on a stationary bicycle and weight training exercises) EG2: controlled program which includes 5 min of exercise on the stationary bicycle without weights and static stretching exercises for 30 min
		EG1 = 31.5 ± 3.7	EG2 = 32.5 ± 3.8		3 months: EG1 = 55min, BMI > 30% EG2 = 69.0 ± 5.3	
Irwin et al. (2003)	Postmenopausal obese individuals	CG = 60.6	EG = 61.0	BMI = 30.5	12 months	CG = only minimal intensity stretching exercises were suggested \ EG = combined training (moderate intensity aerobic training (walking on a treadmill and riding a stationary bicycle) and supervised weight training with walking, aerobics and cycling recommended as home exercises)
		EG1 = 30.6	EG2 = 87		45min, HRmax, 40–75%	\ EG1 = BMI = 30.6

Note: CG = Control Group, EG = Exercise Group, BMI = Body Mass Index, HRmax = Maximum Heart Rate, p = Statistical Significance Level.
Study (2006)	Group	Intervention Details	n	BMI (Mean ± SD)	Duration	Outcomes
You et al.	Postmenopausal obese individuals	EG1: 15 min dietary regimen, HRR 45-50%	45	33.0 ± 0.6	20 weeks	VO_{max} ↓ p<0.001
		EG2: 14 min dietary regimen, HRR 70-75%		30 min		BW ↓ p<0.001
		EG3: 16 min dietary regimen, HRR 55 min				BF_P ↓ p<0.001
Villarreal	Obese, physically weak individuals	CG: 27 min dietary regimen, combined training	29	30 ± 2	26 weeks	VO_{max} ↑ p<0.001
et al.		EG: 17 min dietary regimen, flexibility exercises		39.0 ± 5.0		BW ↓ p<0.001
		EG: 17 min dietary regimen, endurance exercises		38.5 ± 5.3		BF_P ↑ p<0.001
		EG: 17 min dietary regimen, weight training exercises				FFM ↓ p<0.04
		EG: 17 min dietary regimen, balance exercises				PPT ↑ p<0.001
		EG: 17 min dietary regimen, no physical activities				VO_{max} ↑ p<0.001
O’Leary	Obese individuals (postmenopausal women)	EG: 16 min aerobic exercise program (riding a bicycle, running on a treadmill and stretching)	16	33.2 ± 1.4	50-60 min	BW ↓ p<0.0001
et al.		EG: 16 min aerobic exercise program (riding a bicycle, running on a treadmill and stretching)		HR_{max} 60-85%		BMI ↓ p<0.0001
		EG: 16 min aerobic exercise program (riding a bicycle, running on a treadmill and stretching)				BF_P ↑ p<0.005
		EG: 16 min aerobic exercise program (riding a bicycle, running on a treadmill and stretching)				FFM ↑ p<0.0005
		EG: 16 min aerobic exercise program (riding a bicycle, running on a treadmill and stretching)				TAF ↑ p<0.003
		EG: 16 min aerobic exercise program (riding a bicycle, running on a treadmill and stretching)				SCT ↑ p<0.03
		EG: 16 min aerobic exercise program (riding a bicycle, running on a treadmill and stretching)				VCF ↑ p<0.0001
The Effects of Physical Activity on Obesity Among the Elderly – a Systematic Review

Study	Participants	M ± SD	F ± SD	n	BMI ± SD	12 weeks	24 weeks	Study Design	Comparison
Lambert et al. (2008)	Obese, physically weak individuals	M = 8							
F = 8	69 ± 1	16							
38 ± 6	12 weeks	90min	EG1 = 8						
EG2 = 8	3 / 7	EG1 = dietary regimen							
EG2 = combined training (aerobic exercise, weight training exercise, flexibility and balance exercises)									
EG3 = dietary regimen + combined training (aerobic exercise, weight training exercise, flexibility and balance exercises)									
Frined et al. (2008)	Obese, physically weak individuals	M = 12							
F = 18	70 ± 5	30							
36.9 ± 4.9	24 weeks	90min	EG1 = 15						
EG2 = 15	3 / 7	EG1 = dietary regimen							
EG2 = combined training (aerobic exercise, weight training exercise, flexibility and balance exercises)									
EG3 = dietary regimen + combined training (aerobic exercise, weight training exercise, flexibility and balance exercises)									
EG4 = UELB, S									
BMI > 30									
BF > 0.5									
FFM < 0.5									
Davidson et al. (2009)	Obese individuals	M = 57							
F = 79 | M = 67.7 ± 5.1
F = 67.5 ± 5.1 | 136
84 | CG = 24
EG1 = 30
EG2 = 30
EG3 = 33
EG4 = 33
EG5 = 33
12 months | 20min | EG1 = 30
EG2 = 30
EG3 = 30
EG4 = 30
EG5 = 30
6 months | EG1 = Seminars on nutrition during the exercise program for all groups of participants
EG2 = CG – no physical activity
EG3 = weight training exercises (1 set of 9 exercises)
EG4 = aerobic exercises (moderate intensity walking on a treadmill)
EG5 = combined training (moderate intensity walking on a treadmill + weight training exercises)
EG3 = CG, EG1
BMI > 0.05
BF > 0.05
FFM < 0.05 |

Note: The table above summarizes the study designs and comparisons for the different studies included in the systematic review.
Study	Type of Study	Sample Size	Mean ± SD	Measurements	Participants	Results
Wycherley et al. (2010)	Obese individual with type 2 diabetes	n = 59	BMI = 34.8 ± 4.9	CG1 = 16, CG2 = 12, EG1 = 17, EG2 = 14	CG1 = low protein and no fat diet, CG2 = high protein and low fat diet, EG1 = low protein and no fat diet + weight training exercise program, EG2 = high protein and low fat diet + weight training exercise program	
Villarreal et al. (2011)	Obese, physically weak individuals	n = 107	BMI = 37.2 ± 4.5	CG1 = 70 ± 4, EG1 = 70 ± 4, EG2 = 70 ± 4	EG1 and EG2 = 90 min 3/7, 65-85% HRmax, 65-80%	

Note: CG = Control Group, EG = Exercise Group, BMI = Body Mass Index, HRmax = Maximum Heart Rate, FFM = Fat Free Mass.
Foster-Schubert et al. (2012)	Menopausal F	58.0 ± 5.0	n = 439	BMI = 30.9 ± 4.0	CG = 80	EG₁ = 105	EG₂ = 106	EG₃ = 108	12 months	≥45min	HRmax 60-85%	CG = no physical activity	EG₁ = CG	EG₁ = dietary regimen	EG₂ = moderate to high intensity aerobic exercise	EG₃ = dietary regimen + moderate to high intensity aerobic exercise			
	obese		study completed by 399									BW↓, p=0.0001	BFP%↓, p=0.0001	BMI↓, p=0.0001	WC↓, p=0.0001	EG₁ = CG	EG₁ = dietary regimen	EG₂ = moderate to high intensity aerobic exercise	EG₃ = dietary regimen + moderate to high intensity aerobic exercise
												EG₁ = CG	BFP%↓, p=0.0001	BMI↓, p=0.001	WC↓, p=0.0001	EG₁ = CG	EG₁ = dietary regimen	EG₂ = moderate to high intensity aerobic exercise	EG₃ = dietary regimen + moderate to high intensity aerobic exercise
												EG₁ = CG	BFP%↓, p=0.0001	BMI↓, p=0.001	WC↓, p=0.0001	EG₁ = CG	EG₁ = dietary regimen	EG₂ = moderate to high intensity aerobic exercise	EG₃ = dietary regimen + moderate to high intensity aerobic exercise
												EG₁ = CG	BFP%↓, p=0.0001	BMI↓, p=0.001	WC↓, p=0.0001	EG₁ = CG	EG₁ = dietary regimen	EG₂ = moderate to high intensity aerobic exercise	EG₃ = dietary regimen + moderate to high intensity aerobic exercise
												EG₁ = CG	BFP%↓, p=0.0001	BMI↓, p=0.001	WC↓, p=0.0001	EG₁ = CG	EG₁ = dietary regimen	EG₂ = moderate to high intensity aerobic exercise	EG₃ = dietary regimen + moderate to high intensity aerobic exercise
												EG₁ = CG	BFP%↓, p=0.0001	BMI↓, p=0.001	WC↓, p=0.0001	EG₁ = CG	EG₁ = dietary regimen	EG₂ = moderate to high intensity aerobic exercise	EG₃ = dietary regimen + moderate to high intensity aerobic exercise
												EG₁ = CG	BFP%↓, p=0.0001	BMI↓, p=0.001	WC↓, p=0.0001	EG₁ = CG	EG₁ = dietary regimen	EG₂ = moderate to high intensity aerobic exercise	EG₃ = dietary regimen + moderate to high intensity aerobic exercise
												EG₁ = CG	BFP%↓, p=0.0001	BMI↓, p=0.001	WC↓, p=0.0001	EG₁ = CG	EG₁ = dietary regimen	EG₂ = moderate to high intensity aerobic exercise	EG₃ = dietary regimen + moderate to high intensity aerobic exercise
												EG₁ = CG	BFP%↓, p=0.0001	BMI↓, p=0.001	WC↓, p=0.0001	EG₁ = CG	EG₁ = dietary regimen	EG₂ = moderate to high intensity aerobic exercise	EG₃ = dietary regimen + moderate to high intensity aerobic exercise
												EG₁ = CG	BFP%↓, p=0.0001	BMI↓, p=0.001	WC↓, p=0.0001	EG₁ = CG	EG₁ = dietary regimen	EG₂ = moderate to high intensity aerobic exercise	EG₃ = dietary regimen + moderate to high intensity aerobic exercise
												EG₁ = CG	BFP%↓, p=0.0001	BMI↓, p=0.001	WC↓, p=0.0001	EG₁ = CG	EG₁ = dietary regimen	EG₂ = moderate to high intensity aerobic exercise	EG₃ = dietary regimen + moderate to high intensity aerobic exercise
												EG₁ = CG	BFP%↓, p=0.0001	BMI↓, p=0.001	WC↓, p=0.0001	EG₁ = CG	EG₁ = dietary regimen	EG₂ = moderate to high intensity aerobic exercise	EG₃ = dietary regimen + moderate to high intensity aerobic exercise
Armamento - Obese individuals	M = 40	F = 67	CG1 = 69 ± 0.8	n = 107	BMI ≥ 30	CG2 = 26	CG3 = 28	52 weeks	EG2 and EG3	CG = no physical activity	EG1, EG2, EG3	BMI	HRmax	BW	p ≤ 0.001				
-------------------------------	--------	--------	----------------	--------	---------	--------	--------	----------	-------------	----------------	----------------	------	-------	-----	----------				
			EG1 = 70 ± 0.8																
			EG2 = 70 ± 0.8																
			EG3 = 70 ± 0.8																
			CG1 = 37.3 ± 0.9																
			CG2 = 37.2 ± 0.9																
			CG3 = 36.9 ± 1.1																
			CG1 = 37.2 ± 1.0																

Boccali et al. (2012) Obese individuals	F = 69	EG1 = 66 ± 4	n = 69	CG1 = 67 ± 9	BMI = 18.5 - 24.9	CG1 = 10	CG3 = 9	50min	HRmax, 70%	CG4, CG5, CG6 = no physical activities	EG1, EG2, EG3	BMI	BF	p ≤ 0.05
		EG2 = 63 ± 2		EG1 = 64 ± 4	BMI = 25.0 - 29.9	CG2 = 14	EG1 = 9							
		EG3 = 62 ± 1		EG1 = 62 ± 2	BMI = 30.0	CG3 = 9	EG1 = 9							
		EG1 = 62 ± 1		EG1 = 62 ± 2	BMI = 30.0	CG3 = 9	EG1 = 9							
Study	Group	Gender	Age Mean ± SD	n	BMI Mean ± SD	Duration	Exercise Intensity	Treatment	Outcomes					
-------	-------	--------	---------------	---	---------------	----------	-------------------	-----------	----------					
Amari et al. (2013)	Obese individuals	M = 26 F = 38	67 ± 0.5	n = 64	BMI = 30.7 ± 0.4	16 weeks	45min VO₂max 50 - 75%	EG₁: dietary regimen, EG₂: moderate intensity aerobic exercises, EG₃: moderate intensity aerobic exercises + dietary regimen	EG₁: BMI ↓ p<0.05, BF₃ ↓ p<0.05, LBM ↓ p<0.05, VO₂max ↑ \% EG₂: BMI ↓ p<0.05, BF₃ ↓ p<0.05, LBM ↑ \% VO₂max ↑ p<0.05 EG₃: BMI ↓ p<0.05, BF₃ ↓ p<0.05, LBM ↓ p<0.05 VO₂max ↑ \%					
Romero-Arenas et al. (2013)	Obese and overweight individuals	M/F	61.6 ± 5.3	n = 37	BMI = 29.7 ± 4.1	12 weeks	EG₁: circuit training with high intensity weight training exercises, EG₂: classic weight training, CG: no physical activity	EG₁: BMI ↓ p<0.001, BF₃ ↓ p<0.002, BMD ↑ p<0.001, IS ↑ p<0.001 EG₂: BMI ↓ p<0.025, BMD ↑ p<0.011 EG₃: BMI ↓ p<0.001, BF₃ ↓ p<0.008, BMD ↑ p<0.018 CG: BMI ↓ p<0.03, BF₃ ↓ p<0.039						

The Effects of Physical Activity on Obesity Among the Elderly - A Systematic Review
Study	Participants	Age	BMI	Duration	Intervention	Outcome	Significance	
Beavers et al. (2014)	Obese individuals with osteoarthritis of the knee	M = 75 F = 209	66.0 ± 6.2	n = 284	EG₁: BMI = 33.5 ± 3.7, EG₂: BMI = 33.2 ± 3.6, EG₃: BMI = 33.4 ± 3.7	18 months	60min	EG₁: combined training (walking and weight training exercises)
								EG₂: dietary regimen
								EG₃: dietary regimen + combined training (walking and strength exercises)
Ryan & Harduarsingh-Permaul (2014)	Postmenopausal obese individuals	50 - 76	n = 65	EG₁: BMI = 32 ± 1, EG₂: BMI = 34 ± 1	EG₁: 43, EG₂: 22	6 months	60min	EG₁: dietary regimen + aerobic exercise on a treadmill
								EG₂: dietary regimen
								EG₃: EG₁ + EG₂ BMD
The Effects of Physical Activity on Obesity Among the Elderly – a Systematic Review

| Villarel et al.(2017) | Obese, physically weak individuals | M = 57 | F = 103 | n = 160 | BMI ≥ 30 | CG = 40 | EG1 = 40 | EG2 = 40 | EG3 = 40 | CG | 26 weeks | 3/7 | ET1 | BMI = 37.3 ± 0.9 | ET2 | BMI = 35.9 ± 4.4 | ET3 | BMI = 36.7 ± 5.8 | ET3 | BMI = 35.8 ± 4.5 | EG1 | 60min. HRmax 65-85% | CG – instructions regarding dietary regimen and no physical activity | EG1 + EG2 + EG3 » CG | PPT † p < 0.001 | EG1 + EG2 | PPT † p < 0.01 | EG2 + EG3 | PPT † p < 0.02 | EG3 | VO2max † p < 0.001 | EG2 | EG2 + EG3 | BW † 9% | CG » BW † ▼ | EG2 | EG2 + EG3 | BMI » p < 0.05 | BMDI » p < 0.05 |
|----------------------|-----------------------------------|--------|---------|--------|----------|--------|--------|--------|--------|--------|--------|--------|----------------|----------------|----------------|--------|----------------|----------------|----------------|--------|----------------|----------------|----------------|--------|----------------|----------------|----------------|--------|----------------|----------------|

Legend: M - male; F - female; X - unavailable; n - number of participants; EG - experimental group; CG - control group; PPT – (Functional Performance Test); FSQ – (Functional Status Questionnaire); p – level of statistical significance; † - improvement/increase; ‡ - decrease; ‡ - moderate statistical significance; ▼ - no statistical significance; » - differences between the initial and final measurement; (GxT) - significant effect of interaction between the groups and time; BMI - body mass index (kg/m²); HRmax – maximal heart rate frequency; HRR – resting heart rate; EGsCG – differences in favor of the experimental group in relation to the control group following the exercise program; VO2max – maximum oxygen uptake (ml/kg/min); MS – muscle strength; BW – body weight; LBM – lean body mass including essential body fat (kg); UELBM – upper extremities weight without body mass (kg); LELBM – lower extremities weight without body mass (kg); BMD – bone mineral density (g/cm²); 1RM – 1 repetition maximum; LS – (sclerostin levels); BFRg – amount of body fat (kg); FFM – fat free mass (kg); BF% - percentage of body mass; WC – waist circumference (cm); HC – hip circumference; WHR – waist to hip ratio; TAF – total abdominal fat (g/cm²); SCF – subcutaneous fat tissue (g/cm²); VCF – visceral fat (g/cm²); IS – isokinetic strength.
The research results whose aim was the evaluation of the effects of PE on the changes in body composition and decrease in the body weight among elderly obese individuals are shown in table form (Table 1). They indicate that the most prevalent programs were those that included the simultaneous use of a combined means of exercise (aerobic exercises, weight training exercises, flexibility and balance exercises) and a dietary regimen (Messier et al., 2000; Villareal, Banks, Sinacore, Siener, & Klein, 2006; Frimel, Sinacore, & Villareal, 2008; Davidson et al., 2009; Villareal et al., 2011; Armamento-Villareal et al., 2012; Beavers et al., 2014; Villareal et al., 2017).

The effect of exercise on obesity, on the changes in body weight and other anthropometric data among the elderly, isolated by a combination of exercise programs without a reduction in food intake, was analyzed in seven studies (Messier et al., 2000; Irwin et al., 2003; Lambert, Wright, Finck, & Villareal, 2008; Villareal et al., 2011; Armamento-Villareal et al., 2012; Bocalini et al., 2012; Beavers et al., 2014). The authors of six studies relied on aerobic exercises in combination with a dietary regimen to induce changes in one of the groups of obese participants (You et al., 2006; Amati, Dubé, Shay, & Goodpaster, 2008; Davidson et al., 2009; Foster-Schubert et al., 2012; Ryan & Harduarsingh-Permaul, 2014; Villareal et al., 2017), while in four of the studies only an aerobic exercise program was used (Womack et al., 2000; O’Leary et al., 2006; Amati et al., 2008; Foster-Schubert et al., 2012).

A combination of a dietary regimen and weight training exercises was prescribed to a group of participants in four studies (Dunstan et al., 2002; Davidson et al., 2009; Wycherley, Noakes, Cleanthous, Keogh, & Brinkworth, 2010; Villareal et al., 2017), and only a weight training exercise program was used in one of the studies (Romero-Arenas et al., 2013).

Seminars on proper nutritional intake during exercise, dietary regimens for the reduction of body weight, and various types of supplements, as well as consultations with nutritionists, were provided to a group of participants in 12 of the included studies (Womack et al., 2000; You et al., 2006; Amati et al., 2008; Frimel et al., 2008; Lambert et al., 2008; Wycherley et al., 2010; Villareal et al., 2011; Armamento-Villareal et al., 2012; Foster-Schubert et al., 2012; Beavers et al., 2014; Ryan & Harduarsingh-Permaul, 2014; Villareal et al., 2017).

The total number of participants included in this systematic review was 2029. In five of the studies the participants were only women (Irwin et al., 2003; You et al., 2006; Bocalini et al., 2012; Foster-Schubert et al., 2012; Ryan & Harduarsingh-Permaul, 2014), that is 791 female participants in total, while in one of the studies only male participants took part, that is 81 male participants (Womack et al., 2000). The remaining 14 studies had mixed samples of participants (n=1157).

The smallest number of obese participants in the experimental group which took part in combined training (aerobic exercises, weight training exercises, flexibility and balance exercises) was eight (Lambert et al., 2008) and the largest was 108, in a study which at the same time was also the study which included the largest sample of participants (n=439). In this study, a group of obese women took part in a combined dietary regimen and moderate to high intensity aerobic exercise (Foster-Schubert et al., 2012).

The duration of the studies differed and ranged from an interval of 12 weeks (Messier et al., 2000; O’Leary et al., 2006; Lambert, et al., 2008; Bocalini et al., 2012; Romero-
Arenas et al., 2013) which also represents the most frequently used duration of the applied program, to 18 months (Beavers et al., 2014). The most frequent weekly rate of training sessions was applied in 16 of the studies, and included three training sessions per week. The shortest duration of individual training sessions was 20 minutes of aerobic exercise (Davidson et al., 2009), and the longest 90 minutes of combined aerobic and weight training exercises (Villareal et al., 2006; Frimel et al., 2008; Lambert et al., 2008; Villareal et al., 2011; Armamento-Villareal et al., 2012).

The intensity of the exercise in the analyzed studies differed and ranged from 40% to 85% of maximum heart rate (HR$_{max}$) and from 45% to 80% of resting heart rate during aerobic and combined training, while intensity during weight training ranged from 45% to 90% of 1RM. The maximum intensity of the aerobic exercise as part of combined training ranged from 70% to 90% of HR$_{max}$ (Lambert et al., 2008), while in one of the studies which focused on the effects of circuit and classical weight training, the maximum intensity ranged from 85% to 90% of 1RM (Romero-Arenas et al., 2013).

The systematic review of the measurements of the included parameters identified multiple effects of the applied exercise programs on the obesity levels of the elderly in the form of a reduction in body weight. The best statistically significant effects ($p<0.001$) on the reduction in body mass were achieved in studies with a longer duration of the experimental treatment from 26 and 52 weeks, the simultaneous application of a dietary regimen and combined program of aerobic and weight training exercises (Villareal et al., 2006; Villareal et al., 2011; Armamento-Villareal et al., 2012). In addition, a somewhat lower effect on the decrease in body weight was determined for the programs which included a dietary regimen for the reduction of energy intake through food in combination with aerobic exercises of moderate and high intensity over a longer period of time, from 6 and 12 months (You et al., 2006; Foster-Schubert et al., 2012), then independently applied programs of aerobic exercise with a greater weekly frequency (O’Leary et al., 2006), as well as training sessions which included weight training of a moderate to high intensity in combination with a dietary regimen (Dunstan et al., 2002; Wycherley et al., 2010). The results of this study confirmed the claims of authors of previous studies (Villareal, Apovian, Kushner, & Klein, 2005; Jakićić & Otto, 2006), that exercise without a reduction in food intake is less effective when it comes to the decrease in body mass.

The effect of a combined program of exercise with changes in the dietary regimen led to a decrease in the BMI, with a statistically significant difference identified in studies whose PE program lasted for 6 months or longer (Irwin et al., 2003; Davidson et al., 2009; Foster-Schubert et al., 2012; Ryan & Harduarsingh-Permaul, 2014). A significant decrease in the values of BMI was achieved in studies which included aerobic exercise programs without dietary restrictions, but of a shorter duration, of 12 and 16 weeks, and a frequency of exercise of five training sessions a week (O’Leary et al., 2006; Amati et al., 2008).

By comparing the results of the applied programs, the greatest statistically significant reduction ($p<0.001$) in the amount ofBF in kg (BF$_{kg}$), was noted in studies with the simultaneous application of a dietary regimen and combined aerobic and weight training exercises, where the exercise program lasted over a longer period of time, 26 weeks and 52 weeks (Villareal et al., 2006; Villareal et al., 2011), as well as over aerobic exercise programs combined with a dietary regimen which lasted for longer periods of time, 20 weeks and 6 months (You et al., 2006; Ryan & Harduarsingh-Permaul, 2014). The amount of BF in the body decreased in the studies with isolated programs of aerobic and weight training
exercises, without changes in the dietary regimen, but with more training sessions per week. However, these changes were statistically smaller than the ones that occurred in combination with a dietary regimen (Irwin et al., 2003; O’Leary et al., 2006). The greatest noted decrease in percentage of BF (BFP%), compared to the control group of participants, was determined for aerobic exercise programs which lasted for a period of 12 months, in combination with a reduction in food intake (Foster-Schubert et al., 2012).

The effects of the exercise programs, when it comes to the results recorded for LBM, which also included essential BF, indicate that the increase occurred in the studies which used a combination of aerobic and weight training exercises with no dietary regimen (Villareal et al., 2011; Armamento-Villareal et al., 2012; Bocalini et al., 2012). The simultaneous application of combined exercise programs and dietary regimens in most cases leads to a decrease in LBM (Armamento-Villareal et al., 2012; Villareal et al., 2011), while weight training exercises of high intensity combined with a dietary regimen or without a change in diet contribute to an increase in the LBM among obese elderly individuals (Dunstan et al., 2002; Romero-Arenas et al., 2013).

Based on the analysis of the results of the compiled studies, the claims of previous authors could be confirmed (Yassine et al., 2009). The application of an exercise program without a change in the dietary regimen for a period of 12 or more weeks could lead to a slight decrease in body mass, that is, the amount of BF in the body and an increase in fat free and LBM among obese elderly individuals (Lambert et al., 2008; Romero-Arenas et al., 2013). In addition, it should be pointed out that a much greater effect on body composition of obese elderly individuals is achieved by a combined exercise program which includes both weight training exercises and aerobic exercises, with the simultaneous application of dietary regimen, which is reflected in a decrease in energy intake through food and adequate protein intake, in accordance with the claims of previous studies (Villareal et al. 2005; Jakićić & Otto, 2006; Weinheimer et al., 2010; Mathus-Vliegen, 2012; Miller et al., 2013).

CONCLUSION

The research results indicate that there are many studies which analyze the effects of various PA programs either independently or in combination with dietary regimens on the health and obesity levels among the elderly, of an average age of 55 to 80.

The analysis of the compiled studies has confirmed the existence of the positive effect of PA on obesity among the elderly, and led to the conclusion that a combined program of aerobic, weight training, flexibility and balance exercises for a period of at least 12 weeks leads to a mild decrease in body mass and amount of fat mass in the body, while maintaining and increasing LBM, mostly in the form of muscle tissue. However, a much greater effect on the decrease on BF was achieved with the simultaneous application of a combined program of PE and dietary regimens for a period of 6 months.

Finally, following a summation of all the results, we could conclude that PA is an effective means of reducing obesity, and so its use is recommended among the population of the elderly.
REFERENCES

Amati, F., Dubé, J.J., Shay, C., & Goodpaster, B.H. (2008). Separate and combined effects of exercise training and weight loss on exercise efficiency and substrate oxidation. *Journal of Applied Physiology*, 105, 825-831.

Armamento-Villareal, R., Sadler, C., Napoli, N., Shah, K., Chode, S., Sinacore, D.R., et al. (2012). Weight loss in obese older adults increases serum sclerostin and impairs hip geometry but both are prevented by exercise training. *Journal of Bone and Mineral Research*, 27(5), 1215-1221.

Beavers, D.P., Beavers, K.M., Loeser, R.F., Walton, N.R., Lyles, M.F., Nicklas, B.J., et al. (2014). The independent and combined effects of intensive weight loss and exercise training on bone mineral density in overweight and obese older adults with osteoarthritis. *Osteoarthritis and Cartilage*, 22(6), 726-733.

Blair, S.N., LaMonte, M.J., & Nichaman, M.Z. (2004). The evolution of physical activity recommendations: how much is enough?. *The American Journal of Clinical Nutrition*, 79(5), 913S-920S.

Boccalini, D.S., Lima, L.S., de Andrade, S., Madureira, A., Rica, R.L., dos Santos, R.N., et al. (2012). Effects of circuit-based exercise programs on the body composition of elderly obese women. *Clinical Interventions in Aging*, 7, 551-556.

Chan, R.S., & Woo, J. (2010). Prevention of overweight and obesity: How effective is the current public health approach. *International Journal of Environmental Research and Public Health*, 7(3), 765-783.

Cochrane, T., Munro, J., Davey, R., & Nicholl, J. (1998). Exercise, physical function and health perceptions of older people. *Physiotherapy*, 84(12), 598-602.

Davidson, L.E., Hudson, R., Kilpatrick, K., Kuk, J.L., McMillan, K., Janiszewski, P.M., et al. (2009). Effects of exercise modality on insulin resistance and functional limitation in older adults: a randomized controlled trial. *Archives of Internal Medicine*, 169(2), 122-131.

Dunstan, D.W., Daly, R.M., Owen, N., Jolley, D., De Courten, M., Shaw, J., et al. (2002). High-intensity resistance training improves glycemic control in older patients with type 2 diabetes. *Diabetes Care*, 25(10), 1729-1736.

Foster-Schubert, K.E., Alfano, C.M., Duggan, C.R., Xiao, L., Campbell, K.L., Kong, A., et al. (2012). Effect of diet and exercise, alone or combined, on weight and body composition in overweight-to-obese postmenopausal women. *Obesity*, 20(8), 1628-1638.

Frimel, T.N., Sinacore, D.R., & Villareal, D.T. (2008). Exercise attenuates the weight-loss-induced reduction in muscle mass in frail obese older adults. *Medicine and Science in Sports and Exercise*, 40(7), 1213-1219.

Han, T.S., Tajar, A., & Lean, M.E.J. (2011). Obesity and weight management in the elderly. *British Medical Bulletin*, 97(1), 169-196.

Irwin, M.J., Yasui, Y., Ulrich, C.M., Bowen, D., Rudolph, R.E., Schwartz, R.S., et al. (2003). Effect of exercise on total and intra-abdominal body fat in postmenopausal women: a randomized controlled trial. *Jama*, 289(3), 323-330.

Jakičić, J.M., & Otto, A.D. (2006). Treatment and prevention of obesity: what is the role of exercise?. *Nutrition Reviews*, 64(2), S57-S61.

Lambert, C.P., Wright, N.R., Finch, B.N., & Villareal, D.T. (2008). Exercise but not diet-induced weight loss decreases skeletal muscle inflammatory gene expression in frail obese elderly persons. *Journal of Applied Physiology*, 105(2), 473-478.

Mathus-Vliegen, E.M. (2012). Obesity and the elderly. *Journal of Clinical Gastroenterology*, 46(7), 533-544.

Messier, S.P., Loeser, R.F., Mitchell, M.N., Valle, G., Morgan, T.P., Rejeski, W.J., et al. (2000). Exercise and weight loss in obese older adults with knee osteoarthritis: a preliminary study. *Journal of the American Geriatrics Society*, 48(9), 1062-1072.

Miller, C.T., Fraser, S.P., Levinger, I., Straznicky, N.E., Dixon, J.B., Reynolds, J., et al. (2013). The effects of exercise training in addition to energy restriction on functional capacities and body composition in obese adults during weight loss: a systematic review. *PloS One*, 8(11), 1-13.

O’Leary, V.B., Marchetti, C.M., Krishnan, R.K., Stetzer, B.P., Gonzalez, F., & Kirwan, J.P. (2006). Exercise-induced reversal of insulin resistance in obese elderly is associated with reduced visceral fat. *Journal of Applied Physiology*, 100(5), 1584-1589.

Petrović, I., & Marinčković, M. (2018). Effects of different types of exercise programs on arterial blood pressure of the elderly. *Factual Universitas Series Physical Education and Sport*, 16(4), 725-737.

Rejeski, W.J., Brawley, L.R., & Shumaker, S.A. (1996). Physical activity and health-related quality of life. *Exercise and Sport Sciences Reviews*, 24(1), 71-108.

Romero-Arenas, S., Blazevich, A.J., Martínez-Pascual, M., Pérez-Gómez, J., Luque, A.J., López-Román, F.J., et al. (2013). Effects of high-resistance circuit training in an elderly population. *Experimental Gerontology*, 48(3), 334-340.

Ryan, A.S., & Harduarisingh-Permal, A.S. (2014). Effects of weight loss and exercise on trunk muscle composition in older women. *Clinical Interventions in Aging*, 9, 395-402.
Scalabrin, M., & Caporossi, D. (2016). The role of physical activity in counteracting age-related sarcopenia and cancer cachexia: A brief literature review. Medicinski podmladak, 67(2), 5-12.

Singh, N.A., Clements, K.M., & Fiatarone, M.A. (1997). Aerobic exercise and body composition in obese elderly men and women. Obesity Research, 12(6), 913-920.

Taylor, A.H., Cable, N.T., Faulkner, G., Hillsdon, M., Narici, M., & Van Der Bij, A.K. (2004). Physical activity and older adults: a review of health benefits and the effectiveness of interventions. Journal of sports sciences, 22(8), 703-725.

Villareal, D.T., Aguirre, L., Gurney, A.B., Waters, D.L., Sinacore, D.R., Colombo, E., et al. (2017). Aerobic or resistance exercise, or both, in dieting obese older adults. New England Journal of Medicine, 376(20), 1943-1955.

Villareal, D.T., Apovian, C.M., Kushner, R.F., & Klein, S. (2005). Obesity in older adults: technical review and position statement of the American Society for Nutrition and NAASO, The Obesity Society. Obesity Research, 13(11), 1849-1863.

Villareal, D.T., Banks, M., Stener, C., Sinacore, D.R., & Klein, S. (2004). Physical frailty and body composition in obese elderly men and women. Obesity Research, 12(6), 913-920.

Villareal, D.T., Banks, M., Sinacore, D.R., Stener, C., & Klein, S. (2006). Effect of weight loss and exercise on frailty in obese older adults. Archives of Internal Medicine, 166(8), 860-866.

Villareal, D.T., Chode, S., Parimi, N., Sinacore, D.R., Hilton, T., Armamento-Villareal, R., et al. (2011). Weight loss, exercise, or both and physical function in obese older adults. The New England Journal of Medicine, 364(13), 1218-1229.

Weinheimer, E.M., Sands, L.P., & Campbell, W.W. (2010). A systematic review of the separate and combined effects of energy restriction and exercise on fat-free mass in middle-aged and older adults: implications for sarcopenic obesity. Nutrition Reviews, 68(7), 375-388.

Womack, C.J., Harris, D.L., Katzel, L.I., Hagberg, J.M., Bleecker, E.R., & Goldberg, A.P. (2000). Weight loss, not aerobic exercise, improves pulmonary function in older obese men. The Journal of Gerontology Series A: Biological Sciences and Medical Sciences, 55(8), M453-M457.

Wycherley, T.P., Noakes, M., Clifton, P.M., Cleathous, X., Keogh, J.B., & Brinkworth, G.D. (2010). A high-protein diet with resistance exercise training improves weight loss and body composition in overweight and obese patients with type 2 diabetes. Diabetics Care, 33(5), 969-976.

Yassine, H.N., Marchetti, C.M., Krishnan, R.K., Vrobel, T.R., Gonzalez, F., & Kirwan, J.P. (2009). Effects of exercise and caloric restriction on insulin resistance and cardiometabolic risk factors in older obese adults—a randomized clinical trial. Journals of Gerontology Series A: Biomedical Sciences and Medical Sciences, 64(1), 90-95.

You, T., Murphy, K.M., Lyles, M.F., Demons, J.L., Lenchik, L., & Nicklas, B.J. (2006). Addition of aerobic exercise to dietary weight loss preferentially reduces abdominal adipocyte size. International Journal of Obesity, 30(8), 1211-1216.

UTICAJ FIZIČKE AKTIVNOSTI NA GOJAZNOST STARIH OSOBA - SISTEMATSKO PREGLEDNO ISTRAŽIVANJE

Cilj ovog preglednog istraživanja bio je da se utvrdi efekti fizičke aktivnosti (PA) na gojaznost starih osoba. Za pregled postojećih istraživanja o efektnima (PA) na gojaznost starih osoba, pretraživane su elektronske baze PubMed, SCIndeks, PEDro, J-GATE, DOAJ i Google Scholar. Analizom i primenom zadatah kriterijum, konacna analiza oduvratila je 20 studija i potvrden je pozitivan uticaj PA na gojaznost starih osoba. Najveci efekat na smanjenje telesne mase postignut je istovremenom primenom kombinacije programa vežbanja i režima ishrane u trajanju od 6 meseci. Zaključeno je da kombinovani programe aerobika, treninga sa opterećenjem, vežbi fleksibilnosti i ravnoteže tokom perioda od najmanje 12 nedelja dovode do hlagog smanjenja telesne mase i količine masne mase, istovremeno održavajući i povećavajući bezmasnu telesnu masu, uglavnom u formi mišićnog tkiva. PA je efikasno sredstvo za smanjenje gojaznosti, pa se stoga preporučuje njena upotreba među starih osobama.

Ključne reči: fizička vežba, starenje, sastav tela, indeks telesne mase, gubitak mase tela