Pneumomediastinunm: A severe complication of dermatomyositis

Shawn Zhenhui Lee, Mohammed Tousif Syed, Pranav Kumar

ABSTRACT

Dermatomyositis is an autoimmune disease that is considered a subset of idiopathic inflammatory myopathy. It is characterized by a skin rash with progressive muscle weakness. Pneumomediastinum is a rapidly progressive complication of dermatomyositis, which is hypothesized to be a result of ruptured subpleural cysts, pulmonary vasculopathy, and steroid-mediated weakening of alveolar walls. This complication is associated with a high mortality rate of 30%. Hence, it should be rapidly investigated and treated when there is a high clinical suspicion. In this article, we report a rare case of patient with dermatomyositis (DM) who developed pneumomediastinum and discussed a literature review of this occurrence.

Keywords: Dermatomyositis, Dyspnoea, Pneumomediastinum

INTRODUCTION

Dermatomyositis (DM) is an autoimmune inflammatory myopathy, characterized by muscle weakness in combination with a pruritic or burning rash predominantly present in sun-exposed areas of the body [1]. This report evaluates the presentation of pneumomediastinum (PnM) in a patient with DM. An extensive review of the literature reveals that this finding is not as uncommon as previously thought.

CASE REPORT

A 48-year-old Filipino female was diagnosed with DM, after presenting with Gottron papules, a heliotrope rash, and muscle weakness. Laboratory studies and muscle biopsy were used to confirm her diagnosis. She was treated in the Philippines and was discharged on a drug regime which included prednisolone, hydroxychloroquine (HCQ) 200 mg daily, and mycophenolate mofetil (MMF) 500 mg daily.

On her return to Australia, her general practitioner (GP) referred her to the outpatient department due to a poor clinical response to treatment after eight months. On outpatient review, she was found to have ongoing cutaneous manifestations and shortness of breath (SOB) (Figure 1A–C). She also had per rectum bleeding, a weight loss of 12 kg in the past one year, severe proximal muscle weakness limiting her mobility, and ongoing arthralgia primarily affecting her wrists, interphalangeal joints, and left knee. On physical examination, she had a blood pressure of 118/78 mmHg, a heart rate of 110 bpm, a respiratory rate of 16 bpm, oxygen saturation of 96% on room air, and was afebrile with a temperature of 37.1°C. She was cachectic with a typical heliotrope rash over her eyelids, Gottron papules localized to her hands and feet, and swollen metacarpophalangeal and carpometacarpal joints. Respiratory examination revealed bibasal, end inspiratory crepitations and coarse crackles. She had proximal weakness with muscle power graded 4/5 in the upper and lower extremities bilaterally.

Shawn Zhenhui Lee1, Mohammed Tousif Syed1, Pranav Kumar2

Affiliations: 1MBBS, Mackay Base Hospital, 475 Bridge Road, Mackay, Queensland, Australia; 2FRACP, Mackay Base Hospital, 475 Bridge Road, Mackay, Queensland, Australia.

Corresponding Author: Pranav Kumar, FRACP, Mackay Base Hospital, 475 Bridge Road, Mackay, Queensland, 4740, Australia; Email: drpranavkumar@gmail.com

Received: 27 October 2021
Accepted: 11 May 2021
Published: 20 August 2021

doi: 10.5348/101247Z01SL2021CR
Initial investigations included a comprehensive laboratory panel, computed tomography (CT) of her chest, abdomen and pelvis, a positron emission tomography (PET)-CT scan, gastroscopy, and colonoscopy. Her creatine kinase (CK) was normal (84 U/L). Her gamma-glutamyltransferase (GGT: 257 U/L), alanine transaminase (ALT: 127 U/L), and aspartate transaminase (AST: 108 U/L) were all elevated. Her autoimmune panel which consisted of rheumatoid factor, antinuclear antibodies, anti-dsDNA, anti-neutrophil cytoplasmic antibodies (ANCA) and extractable nuclear antigens (including anti-soluble liver antigen/liver-pancreas (SLA/LP), anti-LC-1, anti-gp210, anti-PML, anti-sp100, anti-3E, and anti-Mi-2) each returned negative results. Tests for hepatitis, HIV, tuberculosis, syphilis, G6PD deficiency and thyroid disease were also negative.

Imaging of the chest, abdomen, and pelvis revealed extensive PnM and multiple bilateral peripheral patches of consolidation (Figure 2A–C). In her previous chest radiograph five years prior, she was noted to have bilateral apical fibrosis so extensive progression was evident. Following CT, a PET-CT scan was arranged to exclude malignancy and it revealed mild fluorodeoxyglucose (FDG) uptake (SUV\textsubscript{max} = 4) within the multifocal, predominantly peripheral, and subpleural pulmonary consolidation. Other findings on imaging included subcutaneous emphysema (SE), peribronchial thickening, and ground glass opacities with mild avidity. There was no dominant nodule or mass visible. There was also mildly increased multifocal FDG uptake throughout the proximal upper and lower limbs and larger muscle groups of the shoulder and pelvic girdles. There was no associated abdominal or pelvic mass or lymphadenopathy. Finally, the colonoscopy and gastroscopy were performed and did not reveal any concerning pathologies.

The patient was commenced on Prednisolone 50 mg once daily. A bronchoscopy was then performed, revealing a posterior tracheal wall disruption (Figure 2D) with bronchoalveolar lavage (BAL) showing bronchial epithelial cells, fungal elements, and alveolar macrophages. She was then prescribed Methylprednisolone IV 500 mg daily and antibiotics consisting of ceftriaxone and clarithromycin. Following clinical improvement on day four of admission, she was discharged from the hospital on Prednisolone 50 mg daily and MMF 1g BD, with outpatient follow-up arranged. Few days later, the patient was seen by her GP and was given antibiotics, which was not effective. She represented to the hospital one month later following a two-week history of increasing swelling in her neck and face associated with difficulty swallowing solids; she denied shortness of breath. The patient was arranged for an inter-hospital transfer to a tertiary center for persisting PnM confirmed on repeat chest X-ray (Figure 2E). A repeat bronchoscopy did show same anatomical defect in the tracheobronchial tree. A barium contrast swallow study revealed no concerning features and importantly, no sign of esophageal tear. As the patient showed clinical improvement, she was discharged home. At a one-month review, her chest radiograph (CXR) showed ongoing blunting of the left costophrenic angle, similar to her previous study, and a more prominent extensive SE overlying the neck and chest when compared to previous CXR, suggesting further deterioration. She was admitted to the hospital for observation and was managed conservatively with a constant input from cardio-thoracic team. One stable, she was discharged for outpatient follow-up.

Figure 1: (A) Heliotrope rash with associated mid-facial edema involving the nasolabial folds; (B) Multiple Gottron papules in bilateral metacarpal and interphalangeal joints; (C) Gottron sign in right elbow.

Figure 2: (A) CT chest: Multiple peripheral patches of consolidation are seen in both lungs. Small area of consolidation is also seen involving the inferior aspect of the posterior segment of left upper lobe of lung. Subsegmental atelectasis is seen involving both lower lobes basal segments; (B) CT chest: There is significant pneumomediastinum; (C) CXR: New extensive pneumomediastinum, subcutaneous surgical emphysema in the lower neck and left supraclavicular fossa, and new left lower lobe pulmonary infiltrate; (D) Bronchoscope: Tracheal wall defect at 5 o’clock position likely causing pneumomediastinum and subcutaneous emphysema in patient (yellow arrow); (E) Repeat CXR one month later: There is surgical emphysema over the chest wall extending to the neck with pneumomediastinum and no pneumothorax. There are some increased peribronchial lung markings peripherally in the right mid and at both lung bases particularly the left.
DISCUSSION

Dermatomyositis is an autoimmune condition that involves rash and muscle weakness with an estimated annual incidence of 1.9–7.7 cases per million people and a prevalence of 20 cases per million people with a predilection toward females (2:1) [2]. A five-point criterion was first conceptualized in 1975 by Bohan and Peter, who combined clinical findings, investigation results, and pathological features in order to diagnose this. The requirements include the presence of typical DM rashes, symmetrical proximal muscle weakness, elevated serum levels of muscle-associated enzymes, muscle biopsy showing evidence of myositis and myopathic changes on electromyography. Definite DM was defined as the presence of a rash with three other features; probable DM was defined as the presence of a rash with two other features; and possible DM was defined as the presence of rash with one other feature (Table 1) [3].

Dermatomyositis is sometimes associated with respiratory disease, such as bronchiolitis obliterans, organizing pneumonia, interstitial pneumonia, and diffuse alveolar damage, in up to 50% of patients [4]. The authors would like to further add that spontaneous PnM is a rare but distinctive complication of DM. The first reported case of PnM in a patient with DM was in 1986 [5]. To date, there are 63 reported cases of PnM in the context of DM, presenting at a mean age of 40.7 years old, with an age range between 10 and 74 years (Table 2) [1, 4–13]. Dermatomyositis can happen in any age groups, however, previous case reports suggest that are more common in the adult population with only 3 children. In these 63 cases, 36 were male and 27 were female. Pneumomediastinum in DM has been associated with a poor prognosis, especially when the patient has normal CK level. Previous research reveals that the mortality rate of PnM in DM patients may reach as high as 50%, a rate which is directly related to the severity of the patient’s interstitial lung disease (ILD) [6, 7]. In our literature review of 63 patients, 20 patients (31.7%) had died, with the deaths mostly related to rapidly progressive ILD.

There are three hypotheses surrounding the pathogenesis of PnM in DM. The first of these is the rupture of subpleural cysts secondary to raised intra-alveolar pressure in ILD patients with previously damaged alveoli. Secondly, pulmonary vasculopathy causing disruption of the mucosal barrier and rupture of airway lesions has been proposed. Finally, the use of glucocorticoids in the treatment of ILD resulting in alveolar wall weakening and thus increasing the risk of rupture has also been suggested [4, 8, 9]. Known risk factors for the development of PnM in DM include the presence of ILD, cutaneous vasculopathy, hoarseness of the voice, laryngeal lesions, previous steroid use, younger age, and normal CK levels [8, 10].

Previously reported clinical features of DM-specific patients developing PnM include SOB, DM-specific dermatological features, no or little evidence of muscular involvement, the presence of cutaneous vasculopathy, normal or slightly elevated levels of CK, ILD and a history of systemic glucocorticoid use [13]. The differential diagnosis for dyspnoea in patients with DM should include: pulmonary infections, aspiration pneumonia from esophageal dysfunction, concomitant ILD or drug-mediated ILD, pneumothorax, and hypoventilation from weakened respiratory muscle activity [8].

There are four categories of investigations that can be performed to assess this. These include laboratory studies, imaging, electromyography, and histology. In laboratory testing, the two foci are the assessment of muscle-associated enzyme levels, which include CK, aldolase, lactate dehydrogenase (LDH) and AST, as well as an autoimmune screen [3]. Of the muscle enzyme levels, the most sensitive and specific is CK [3, 14]. Autoimmune assessment of DM is complex and fraught with low sensitivities [15]. Such tests should be subclassified into DM-specific autoantibodies and DM-associated

Table 1: Clinical features of DM
Cutaneous manifestations
Muscular manifestations
Extramuscular manifestations
Table 2: Previous cases of pneumomediastinum in patients with DM categorized by age

Age	Gender	Symptoms/Signs	Investigations	Initial management prior to pneumothorax, pneumomediastinum or subcutaneous emphysema	Progression	Initial diagnosis	References			
10/F	F	- Goltz’s papules, photosensitivity, armpits	CT Chest	- Initial management of chloroquine and prednisone	Steroid	-	[31]			
16/M	M	- Periungual erythema, Gottron’s papules	CXR: LR	- Initial presentation > Strict bed rest for 2 months > Ongoing steroids and intravenous	- Steroid	-	[22]			
18/F	F	- Scarring lesions in the finger pads, periungual	ESR: 84 mm/h,	- Initial presentation > Steroid and Methotrexate management > Partial improvement of SOB	-	-	[33]			
38/F	F	- Heliotrope rash, Gottron’s signs, Shawl sign	CK: 3031 U/L	- Initial presentation > Steroid and AZA management > Radiological improvement > SOB	-	-	[7]			
20/F	F	- Proximal upper and lower limb weakness	CK: 43 U/L	- Initial presentation > Steroid and Methotrexate management > Partial improvement of SOB	-	-	[5]			
Age/Gender	Symptoms/Signs	Investigations	Biopsy	Initial management prior to pneumothorax, pneumomediastinum or subcutaneous emphysema	Progression					
------------	----------------	----------------	--------	--	-------------					
20/F	Heliotrope rash, Malar rash, Gottron’s papules	Polyarthralgia, No weakness	SOB, Neck pain	CK: 293 IU/L, Aldolase: normal	ANA, Anti-dsDNA, Anti-Jo-1: -ve	Progression of subcutaneous emphysema, pneumomediastinum, thickening of interlobular septa, and a reticulonodal pattern	Muscle biopsy: No abnormal finding	Steroid, AZA	Initial diagnosis → Steroid & AZA therapy → Ongoing cutaneous manifestation → Addition of Hydroxychloroquine → Deceased due to increased steroid and commenced CYC → Steroid pulse and Rituximab therapy → ICU admission for severe hypoxemia → Chest tube insertion into both pleural spaces → Intubated → Percutaneous tracheostomy 1 week later → Deceased secondary to severe hypoxemia despite intensive therapy	
23/M	Heliotrope rash, Gottron’s sign	No muscle weakness	Subcutaneous emphysema	CK: 24 U/L	Anti-MDA5: +ve, Anti-ARS, Anti-SRP, Anti-TIFγ, Anti-Mi2, Anti-SAE, Anti-NXP2: -ve	Unknown	Unknown	Unknown	Lost to follow-up	
23/M	Cutaneous vasculopathy	No muscle weakness	Interstitial pneumonitis	CK 219 IU/L	Unknown	Unknown	Unknown	Steroid, AZA, CSA	Initial diagnosis → Steroid & AZA therapy → Alive	
25/M	Cutaneous vasculopathy	No muscle weakness	Interstitial pneumonitis	CK: 377 IU/L	Unknown	Unknown	Unknown	Steroid, AZA, CSA	Initial diagnosis → Steroid, AZA and CY management → Deceased	
25/M	Heliotrope rash, digital tip ulceration, alopecia	Proximal upper and lower limb weakness	Radiological evidence of pneumomediastinum	CK: 56 U/L, LDH: Not done, AST: 65 U/L	Anti-RNP 28 U/ml, (raised), Anti-SSA 55 Ru/mL, (raised)	HRCT Chest: pneumomediastinum, consistent with dermamyositis	Muscle biopsy: No abnormal finding	NIL	Initial presentation and diagnosis → Steroid and MMF management → Symptomatic improvement	
27/M	Heliotrope rash, Gottron’s signs	Proximal upper and lower limb weakness	SOB, Interstitial pneumonopathy, Pulmonary fibrosis	CK: 190 U/L	Anti-Mi2 and Anti-MDA-5: -ve	Unknown	Unknown	Steroid, AZA, Methotrexate, CY	Clinical remission	
28/M	Heliotrope rash, Gottron’s signs, Shawl sign	Proximal upper and lower limb weakness	SOB, Interstitial pneumonopathy	CK: 65 U/L	Anti-Mi2 and Anti-MDA-5: -ve	Unknown	Unknown	Steroid, AZA, Methotrexate, CY	Complete clinical response	
28/M	Heliotrope rash, periangual erythema and erythematous rash over dorson of hands, Gottron’s papules	Fatigue, Proximal muscle weakness of limbs	Interstitial pneumonitis	ESR: 30 mm/h, CK: 287 U/L, AST: 93 U/L, ALT: 49 U/L	ANA, Anti-Jo-1, RF: -ve	CXR: Mild asebor and interstitial pattern in both lower lobes	Muscle biopsy: Degeneration of muscle fibers and a mild degree of mononuclear cell infiltration	Steroid	Initial diagnosis → Steroid management → ILD, skin and muscular changes → Cyclophosphamide and steroid therapy → Complete resolution of subcutaneous emphysema	
Age/Gender	Symptoms/Signs	Investigations	Autoimmune panel	Imaging	Biopsy	Initial management prior to pneumothorax, pneumomediastinum or subcutaneous emphysema	Progression	References		
------------	----------------	----------------	------------------	---------	--------	---	-------------	-----------		
30/M	Heliotrope rash, Gottron’s papules, Periungual telangiectasia	• No proximal muscle weakness	SOB	CK: Normal, LDH: Normal, Aldolase: Normal	Unknown	CXR: subcutaneous emphysema in the laterocervical spaces HRCT Chest: scattered “ground glass” opacities, subcutaneous emphysema and a pneumomediastinum	Unknown	Steroid	[20]	
30/M	Cutaneous vasculopathy	• NIL	Interstitial pneumonitis	CK: 403 IU/L	Unknown	CT Chest: Air around trachea and in anterior mediastinum, Honeycomb pattern in posterior bases of lungs	Muscle biopsy: No abnormal findings	Steroid, CSA	Initial diagnosis → Steroid & CSA management → Progression of interstitial pneumonitis with subsequent development of pneumomediastinum and subcutaneous emphysema → Steroid and CY management → Resolution of symptoms	[30]
31/F	Gottron’s papules	• Nil	Late inspiratory crackles	Unknown	Anti-Jo-1: -ve, ANA: 1:80 +ve, KL-6: 3,090 U/mL	CT scan: Subpleural patchy ground glass attenuation and consolidation in both lobes, with bronchiectasis	Unknown	Steroid, CY	Initial diagnosis → Steroid and CY therapy → Massive pneumothorax, subcutaneous emphysema → Compression of major vessels and main bronchi → Deceased	[25]
31/M	Heliotrope rash, Gottron’s signs, Periungual hypertrophy	• Proximal upper and lower limbs weakness	SOB, Interstitial pneumonopathy, Pulmonary fibrosis	CK: 120 U/L	Anti-Mi2 and Anti-MDA-5: -ve	Unknown	Unknown	Steroid, AZA, Methotrexate, Leflunomide, CY	Clinical remission	[7]
33/M	Heliotrope rash, Gottron’s signs, Periungual hypertrophy	• No weakness	SOB, Interstitial pneumonopathy	CK: 124 U/L	Anti-Mi2 and Anti-MDA-5: -ve	Unknown	Unknown	Steroid, AZA	Deceased	[7]
33/M	Heliotrope rash, Gottron’s lesion	• Slow progressive weakness in shoulders, hipgirdle and thighs	• Weak neck muscles	CK: 173 U/L, LDH: 1995 U/L, AST: 554 U/L	Extractable nuclear antigens: -ve	HRCT Chest: pneumomediastinum, HRCT Chest: pneumomediastinum, Mild fiber atrophy of non-specific interstitial pneumonia (NSIP) with ground glass opacity; features of bronchiolitis obliterans with organizing pneumonia	Muscle biopsy: Steroid	Initial diagnosis → Steroid treatment → Worsening symptoms & subcutaneous emphysema → Deflazacort and MMF management → Symptomatic improvement on follow-up	[31]	
Age/Gender	Symptoms/Signs	Investigations	Autoimmune Panel	Imaging	Biopsy	Initial management prior to pneumothorax, pneumomediastinum or subcutaneous emphysema	Progression	References		
------------	----------------	---------------	------------------	---------	--------	---	-------------	-----------		
34/M	MACULAR ERYTHEMA AT NECK AND ARM EXTENSORS	SOB WITH BILATERAL FINE CRACKLES	BIOSPHER: N, ESR 70 MM/H, CRP 32.3 MG/DL, CK: NORMAL, AKDLASE: NORMAL	ANA, ANCA, RF, AND OTHER AUTOIMMUNE MARKERS WERE ALL NEGATIVE	ANTI-SS-A(Ro) +VE	CXR: BILATERAL OPACITIES, CT: BILATERAL GROUND GLASS OPACITY IN SUBPLEURAL AREAS, CONSOLIDATION, AND PNEUMOMEDIASTINUM	SKIN BIOPSY: NO SPECIFIC PATHOLOGY	SULTASALAZINE FOR ARTHRITIS		
36/M	UNKNOWN	UNKNOWN	INTERSTITIAL LUNG DISEASE	UNKNOWN	UNKNOWN	ANA, ANTI-SS-A, ANTI-SS-B, ANTI-SM, ANTI-RNP, ANTI-SC170, ANTI-JO-1	CXR: PNEUMOTHORAX, PNEUMOMEDIASTINUM AND SUBCUTANEOUS EMPHYSEMA	STEROID, HYDROXYCHLOROQUINE		
38/F	HELIOtrope rash, GOTTORn’s sign, PERIUNGUAL erytheMA	MUSCLE WEAKNESS	CK: 2379 U/L, ANTI-MDA5: +VE, ANTI-ARS, ANTI-SRP, ANTI-Mi2, ANTI-SAE, ANTI-NXP2: -VE	Unknown	Unknown	CT CHEST: PNEUMOMEDIASTINUM AND CERVICAL SUBCUTANEOUS EMPHYSEMA	STEROID, HYDROXYCHLOROQUINE			
38/M	PERIUNGUAL erytheMA on fingers	PROXIMAL MUSCLE WEAKNESS	ESR: 27 MM/H, CRP: NORMAL, CK: 2379 U/L, LDH: 311 IU/L, AKDLASE: 6.6 IU/L, ALT: 86 IU/L	ANA, dsSNA, ANTI- Jo-1, ANCA, RF: -VE	CT CHEST: PNEUMOMEDIASTINUM AND CERVICAL SUBCUTANEOUS EMPHYSEMA	MUSCLE BIOPSY: SLEIGHT DEGENERATION AND ATROPHY OF MUSCLE FIBERS, AND INFILTRATES OF MONONUCLEAR CELLS, SUCH AS LYMPHOCYTES, PLASMA CELLS, AND MACROPHAGES AROUND THE SMALL VESSELS IN CONNECTIVE TISSUE AROUND THE MUSCLE	STEROID, HYDROXYCHLOROQUINE MANAGEMENT	ACUTE CHEST PAIN AND SOB → ADDITION OF CY → SYMPTOM RESOLUTION & RECURRENCE FREE AT 7 MONTHS FOLLOW-UP		
39/F	UNKNOWN	UNKNOWN	INTERSTITIAL LUNG DISEASE	UNKNOWN	UNKNOWN	ANA, ANCA, RF, AND OTHER AUTOIMMUNE MARKERS WERE ALL NEGATIVE	ANTI-SS-A(Ro) +VE	CXR: BILATERAL OPACITIES, CT: BILATERAL GROUND GLASS OPACITY IN SUBPLEURAL AREAS, CONSOLIDATION, AND PNEUMOMEDIASTINUM	SKIN BIOPSY: NO SPECIFIC PATHOLOGY	SULTASALAZINE FOR ARTHRITIS

References:

[1] Initial presentation with respiratory symptoms → ICU support for severe hypoxic respiratory failure → Steroid + CYC management → Discharged on MMF and Steroids → Re-presentation for refractory severe hypoxic respiratory failure 1 month later → Given immunosuppressive therapy and mechanical ventilation → Deceased

[10] Initial presentation with respiratory symptoms → ICU support for severe hypoxic respiratory failure → Steroid + CYC management → Discharged on MMF and Steroids → Re-presentation for refractory severe hypoxic respiratory failure 1 month later → Given immunosuppressive therapy and mechanical ventilation → Deceased

[12] Initial presentation with respiratory symptoms → ICU support for severe hypoxic respiratory failure → Steroid + CYC management → Discharged on MMF and Steroids → Re-presentation for refractory severe hypoxic respiratory failure 1 month later → Given immunosuppressive therapy and mechanical ventilation → Deceased

[29] Initial presentation with respiratory symptoms → ICU support for severe hypoxic respiratory failure → Steroid + CYC management → Discharged on MMF and Steroids → Re-presentation for refractory severe hypoxic respiratory failure 1 month later → Given immunosuppressive therapy and mechanical ventilation → Deceased
Age/Gender	Symptom/Signs	Dermatological	Muscular	Respiratory	Autoimmune panel	Imaging	Biopsy	Initial management prior to pneumothorax, pneumomediastinum or subcutaneous emphysema	Progression	References
39/F	Gottron's signs	Proximal upper and lower limbs weakness	SOB, Interstitial pneumonopathy, Pulmonary fibrosis	CK: 674 U/L	Anti-Mi2 and Anti-MDA-5: -ve	Unknown	Unknown	Steroid, AZA, CYC	Complete clinical response	[7]
40/F	Heliotrope rash, Gottron's sign, Periungual erythema, Skin ulcer	No muscle weakness	Subcutaneous emphysema	CK: 1170 U/L	Anti-Mi2: +ve, Anti-ARS, Anti-SRP, Anti-TIFγ, Anti-MDA5, Anti-SAE, Anti-NXP2: -ve	Unknown	Unknown	Unknown	Alive	[12]
41/F	Cutaneous vasculopathy	Unknown	Interstitial lung disease	CK: Normal, Aldolase: Normal	Unknown	CXR: Pneumomediastinum, HRCT Chest: Pneumomediastinum	Tracheal biopsy: Unspecified inflammatory disease with predominant polymorphonuclear infiltrate	Steroid & Immunosuppressives	Initial diagnosis → Steroid and Immunosuppressive management → Interstitial lung disease → Deceased	[19]
42/F	Unknown	No muscle weakness	Unknown	CK: Normal	Unknown	HRCT Chest: Ground glass opacities, subpleural blebs	Muscle biopsy: No changes	Unknown	Lost to follow-up	[6]
42/F	Unknown	Muscle weakness	Unknown	CK: Elevated (5 x Normal)	Unknown	HRCT Chest: Diffuse opacities predominant in the basal area	Muscle biopsy: Typical inflammatory changes	Unknown	Resolution	[6]
42/F	Unknown	Muscle weakness	Unknown	CK: Elevated (5 x Normal)	Unknown	HRCT Chest: Diffuse opacities predominant in the basal area	Muscle biopsy: Typical inflammatory changes	Unknown	Resolution	[6]
42/F	Unknown	No muscle weakness	Unknown	CK: Normal	Unknown	HRCT Chest: Ground glass opacities, paracardiac blebs	Unknown	Unknown	Deceased 9 months after pneumomediastinum	[6]
42/F	Unknown	No muscle weakness	Unknown	CK: Normal	Unknown	HRCT Chest: Ground glass opacities, paracardiac blebs, honeycomb cysts	Muscle biopsy: Typical inflammatory changes	Unknown	Deceased 2 months after pneumomediastinum	[6]
42/F	Heliotrope rash, Chest or back erythema, Gottron's sign	Muscle weakness	Unknown	CK: 67 U/L	Anti-MDA5: +ve, Anti-ARS, Anti-SRP, Anti-TIFγ, Anti-Mi2, Anti-SAE, Anti-NXP2: -ve	Unknown	Unknown	Alive	[12]	
42/M	Unknown	No muscle weakness	Unknown	CK: Normal	Unknown	HRCT Chest: Ground glass opacities	Muscle biopsy: No changes	Unknown	Resolution	[6]
42/M	Unknown	No muscle weakness	Unknown	CK: Normal	Unknown	HRCT Chest: Ground glass opacities, paracardiac blebs	Muscle biopsy: No changes	Unknown	Resolution	[6]
Age/Gender	Dermatological Symptoms/Signs	Muscular Symptoms/Signs	Respiratory Symptoms/Signs	Bloods	Autoimmune panel	Imaging	Biopsy	Initial management prior to pneumothorax, pneumomediastinum or subcutaneous emphysema	Progression	References
------------	-----------------------------	------------------------	-----------------------------	--------	-------------------	---------	--------	--	-------------	-----------
42/M	• Unknown	• Muscle weakness	• Unknown	CK: Normal	Unknown	HRCT Chest: Honeycomb cysts, paracardiac blebs	Muscle biopsy: Typical inflammatory changes	Unknown	Resolution	[6]
42/M	• Gottron’s papules on the MCP and proximal joints, Periorbital heliotrope rash	• Mild myalgias and moderate proximal muscular weakness	• Anterior neck pain and SOB	RF, Anti-platelet antibodies, cryoglobulin, ANA, ANCA, Anti-cardiolipin: all –ve	CXR & CT scan: Subcutaneous emphysema, pneumomediastinum and diffuse reticulonodular infiltration in both lungs	Muscle biopsy: Moderate necrosis of the muscular fibers	Steroid, Methotrexate, Hydroxychloroquine	[26] Initial diagnosis → Steroid, Methotrexate and Hydroxychloroquine therapy SOB, neck pain bilateral inspiratory crackles → IV CYC & IVIG → Severe condition but stable at 1 year after diagnosis		
42/M	• Heliotrope rash, Gottron’s papules	• Lower limbs weakness	• Asymptomatic subcutaneous emphysema	CK: 2260 IU	Unknown	CXR: Increased interstitial markings	Unknown	Steroid, AZA	[5] Initial diagnosis → Steroid management → Readmission due to muscle weakness → IV steroid management → Development of bilateral aspiration pneumonia → Steroid and AZA management → Development of a lung sinus tract with purulent drainage and local cellulitis → Increase in AZA and reduction of Steroid → Asymptomatic subcutaneous emphysema and extensive pneumomediastinum managed as outpatient as per patient → Reduction in subcutaneous emphysema on 1 month follow-up	
42/M	• Chest or back erythema, Gottron’s sign, Periungual erythema	• No muscle weakness	• Unknown	CK: 1127 U/L	Anti-MDA5: +ve, Anti-ARS, Anti-SRP, Anti-TIFγ, Anti-Mi2, Anti-SAE, Anti-NXP2: -ve	Unknown	Unknown	Unknown	Alive	[12]
43/M	• Heliotrope rash, Chest or back erythema, Gottron’s sign	• Muscle weakness	• Subcutaneous emphysema	CK: 4306 U/L	Anti-MDA5: +ve, Anti-ARS, Anti-SRP, Anti-TIFγ, Anti-Mi2, Anti-SAE, Anti-NXP2: -ve	Unknown	Unknown	Unknown	Deceased	[12]
44/M	• Chest or back erythema, Gottron’s sign, Periungual erythema	• Muscle weakness	• Subcutaneous emphysema	CK: 3457 U/L	Anti-MDA5: +ve, Anti-ARS, Anti-SRP, Anti-TIFγ, Anti-Mi2, Anti-SAE, Anti-NXP2: -ve	Unknown	Unknown	Unknown	Deceased	[12]
Table 2: (Continued)

Age/Gender	Symptoms/Signs	Investigations	Initial management prior to pneumothorax, pneumomediastinum or subcutaneous emphysema	Progression	References							
44/M	Unknown	Interstitial lung disease	CT: Normal, LDH: Normal	Unknown	Unknown	Steroid, AZA	[10]					
45/F	Vasculitis-like skin lesions on the dorsum of both hands	Increased interstitial lung infiltrates in both lower lung fields	ANA, dsDNA, Anti-Smith, SSA, SSB, Jo-1, Scl-70, Centromere, ANCA, RF, Anti-CCP: −ve	HRCT Chest: Reticulonodular and scattered ground grass appearance in the lower lung fields	Lung biopsy: Mild chronic inflammatory cell infiltrate admixed with the spindle cells	Steroid, AZA	[11]					
45/M	Heliotrope rash	No weakness	CK: 120 U/L	Anti-Mi2 and Anti-MDA-5: −ve	Unknown	Complete clinical response	[7]					
46/F	Skin vasculopathy	Head and neck were swollen and subcutaneous emphysema and crepitance observed	CK: 1280 U/L	CT Scan: Pneumomediastinum & Subcutaneous emphysema from head to upper arm	Unknown	Steroid, CY	[27]					
46/M	Heliotrope rash	Mild proximal muscle weakness	CK: 170 U/L	Anti-Mi2 and Anti-MDA-5: −ve	Unknown	Steroid, AZA	[4]					
46/M	Gottron’s papules	Proximal upper and lower limb weakness	CK: 170 U/L	Anti-Mi2 and Anti-MDA-5: −ve	Unknown	Complete clinical response	[7]					
50/M	Facial erythema, scaly papules on the fingers, heliotrope rash, shawl sign, Gottron papules	Weakness of flexors of neck, shoulders and hips	CK: 309 IU/L (elevated), LDH: 228 IU/L (elevated), Aldolase: Myoglobin 89.0 ng/mL, Transaminase elevated	Muscle biopsy: Small groups of necrotic fibers, some variation in fiber size, muscle fibrosis, and mononuclear cell infiltration of lymphocytes around the small vessels		Steroid, AZA	[9]					
Age/Gender	Symptoms/Signs	Investigations	Autoimmune panel	Imaging	Biopsy	Initial management prior to pneumothorax, pneumomediastinum or subcutaneous emphysema	Progression	References				
------------	----------------	----------------	------------------	---------	--------	---	-------------	------------				
51/F	Gottron’s sign	• Pneumothorax	Anti-MDA5: +ve,	Unknown	Unknown	Deceased		[12]				
	Skin ulcer	and Subcutaneous	Anti-ARS, Anti-SRP, Anti-TIFγ, Anti-Mi2, Anti-SAE, Anti-NXP2: -ve	Unknown	Unknown							
	Muscle weakness	emphysema			Unknown							
52/F	Confluent and	• SOB on	Anti-Jo-1: -ve,	CT scan: Bilateral pneumomediastinum with subcutaneous emphysema	Skin Biopsy: consistent with dermatomyositis	Steroid, Hydroxychloroquine, Clobetasol	Initial diagnosis → Steroid management → Addition of Hydroxychloroquine and Clobetasol → SOB, facial and neck edema → Bilateral chest tubes and CY → Discharged with significant improvement	[8]				
	violaceous	representation										
	erythema on	CK: Normal,										
	upper chest	Aldolase: Normal,										
	• Nil											
54/F	Heliotrope rash	• Sudden onset	Anti-Ro: 52	CXR: Right sided pneumothorax affecting 50% of right hemithorax	Muscle biopsy: Perifascicular atrophy	Steroid	Diagnosis → Steroid management → SOB, tachypnea and cyanosis → Chest drain insertion → Respiratory failure despite resuscitation → Deceased	[23]				
	Erythematous	of SOB	(positive),									
	rashes over		Anti-smRNP, SS-A/B, Jo-1, ANA: -ve									
	anterior chest											
	wall											
56/M	Heliotrope rash,	• No muscle	Anti-MDA5: +ve,	Unknown	Unknown	Deceased		[12]				
	Gottron’s sign,	weakness	Anti-ARS, Anti-SRP, Anti-TIFγ, Anti-Mi2, Anti-SAE, Anti-NXP2: -ve	Unknown	Unknown							
	Skin ulcer											
57/F	Heliotrope rash	• Proximal upper	Anti-Mi2 and	Unknown	Unknown	Steroid	Deceased	[7]				
	Gottron’s signs	and lower limbs	Anti-MDA5: -ve	Unknown	Unknown							
	Shallow sign	weakness										
	Periungual											
	hypertrophy											
57/M	Skin ulcers	• Muscle	CK: 41 U/L	Unknown	Unknown	Steroid, CYC	Initial diagnosis → Steroid and CYC management → Subcutaneous emphysema → Addition of Rituximab → Symptomatic resolution	[37]				
	Cutaneous	weakness										
	erythema											
	Facial and neck											
	swelling											
Age/Gender	Dermatological	Muscular	Respiratory	Symptoms/Signs	Investigations	Autoimmune panel	Imaging	Biopsy	Initial management prior to pneumothorax, pneumomediastinum or subcutaneous emphysema	Progression	References	
------------	----------------	----------	-------------	----------------	----------------	-------------------	---------	--------	---	------------	-----------	
58/F	Unknown	Unknown	Unknown	Neck swelling, Dysphagia	Unknown	Unknown	CXR & CT	Chest: Extensive pneumomediastinum and subcutaneous emphysema. Bibasilar ground-glass and reticular opacities.	CYC	[34]		
59/F	Unknown	Unknown	Unknown	Interstitial pneumonitis	CK: 3501 IU/L	Unknown	Unknown	Unknown	Steroid	Initial diagnosis → Steroid management	Alive	[30]
59/M	Unknown	Unknown	Unknown	Interstitial lung disease	Unknown	Unknown	Unknown	Unknown	Steroid, CYC, AZA, IVIG	Initial diagnosis → Steroid, CYC, AZA and IVIG management	Intestinal lung disease progression → Rituximab management → Improved lung function	[32]
60/M	Gottron’s sign	No muscle weakness	Unknown	CK: 25 U/L	Anti-MDA5: +ve, Anti-ARS, Anti-SRF, Anti-TIFγ, Anti-Mi2, Anti-SAE, Anti-NXP2: -ve	Unknown	Unknown	Unknown	Alive	[12]		
64/F	Rash on forearm and lower extremities	No muscle weakness	Radiological evidence of pneumomediastinum	ESR: 114 mm, CRP: 34.2 mg/dL, CK: Normal, Aldolase: 15.5 U/L	Anti-Jo, Anti-SSA, MPO antibody, RF: +ve	Anti-Jo, ANA, ANCA, Myositis, MDA-5, RF: -ve	CT scan: Extensive subcutaneous emphysema in the neck, groin, and buttocks, pneumomediastinum, and air in the bladder wall and retroperitoneum. Lower lobe predominant chronic interstitial infiltration and mild bronchiectasis. Skin biopsy: Minimal perivascular inflammation and hemorrhagic crust not consistent with vasculitis	Steroid, AZA	Initial diagnosis → Steroid, AZA therapy → Several major complications including diverticular perforation and CMV reactivation	[35]		
66/M	Rash	Residual muscle weakness	SOB	CK: 69 IU/L	Unknown	Unknown	CXR & CT scan: Severe pneumomediastinum and ILD, mainly in the lower lobes	Steroid, Methotrexate	Initial diagnosis → Steroid and Methotrexate management → Presented to hospital with dysphagia, dysphonia and dyspnea over 2 weeks → Given pulse steroid therapy → Discharged on high dose steroids → Weaned off steroids → Increased symptomatic resolution at 6 months follow-up, off methotrexate and tapered off steroids	[24]		
Age/Gender	Symptoms/Signs	Initial management prior to pneumothorax, pneumomediastinum or subcutaneous emphysema	Progression	References								
------------	---------------	---	-------------	------------								
74/M	Chest or back erythema, Gottron’s sign, Periungual erythema		Deceased	[12]								
	No muscle weakness, Subcutaneous emphysema											
	CK: 144 U/L	Anti-MDA5: +ve, Anti-ARS, Anti-SRP, Anti-TIFγ, Anti-Mi2, Anti-SAE, Anti-NXP2: −ve	Unknown	Unknown								
7/M	Periorbital heliotrope rash, Gottron’s papules, Vasculitic ulcers											
	Proximal muscle weakness, Interstitial lung disease											
	CK: 347 IU/mL, LDH: 437 IU/mL	Anti-SRP, Anti-Pl7, Anti-Ro52: +ve	CXR: pneumomediastinum with pneumopericardium without pneumothorax, HRCT Chest: Usual interstitial pneumonia pattern of interstitial lung disease	Unknown								
			Steroid, CYC	Initial diagnosis → steroid & CYC management → SOB → Continued current management → Improvement of pneumomediastinum with good clinical response on 1 month follow-up	[38]							
autoantibodies. There are six subtypes of DM-specific autoantibodies, namely, anti-aminocyl transfer RNA synthetase (ARS) (including Anti-Jo-1 anti-DNA helicase (anti-Mi2); anti-melanoma differentiation-associated gene 5 (MDA5); anti-transcription intermediary factor (TIF-1γ); anti-nuclear matrix protein-2 (NXP-2); and anti-small ubiquitin-like modifier activating enzyme (SAE) [15]. DM-associated antibodies include anti-Ku, which is involved in DNA repair, antinuclear antibody (ANA), and anti-SSA/Ro, which are antibodies for ribonucleoprotein complexes with small cytoplasmic RNAs (hY-RNA) [15, 16].

In terms of imaging modalities, chest radiograph (CXR) has a low sensitivity for early detection but is useful as a baseline assessment of the lungs and to assess for significant ILD. When diagnosed, serial CXR should be conducted to not only assess the progression of the disease, but also to determine the presence of complications, such as spontaneous pneumothorax (PTX), PnM, SE, and infection [17]. High-resolution CT (HRCT) of the chest can provide a better assessment of ILD, including findings of irregular linear opacities, consolidation, ground glass opacities, pleural effusion, and honeycombing, as well as providing information about the location and extent of PTX, PnM, and SE, when CXR is inconclusive [18]. The utility of bronchoscopy includes assessment of the size and site of laryngeal lesions, bronchial wall necrosis and the ability to perform a histological assessment when lung biopsy is performed [6, 10, 19]. Histological findings may include nonspecific interstitial pneumonia, organizing pneumonia, diffuse alveolar damage, and usual interstitial pneumonia [1]. Bronchoalveolar lavage plays a supportive role, as it may provide some information regarding disease progression, however, there is no characteristic BAL cell profile for parenchymal involvement in DM [20].

The management of DM with ILD is complex and involves a multi-disciplinary approach. With regard to dermatological presentation, non-pharmacological management includes avoidance of sunlight and using protective clothing. For extensive erythematous lesions and muscle weakness, steroids are titrated to CK levels. The addition of immunosuppressive agents and anti-pruritic agents are given as per treating rheumatologist or dermatologist recommendations, with due consideration of patient’s tolerability and medication side effects [21]. The most effective treatment for ILD has yet to be decided. Currently, patients are treated with corticosteroids as first-line management. However, since high dose steroids alone are associated with poorer prognosis, patients are often given one or more immunosuppressive agents including azathioprine (AZA), cyclophosphamide (CYC), cyclosporine (CS), mycophenolate mofetil (MMF), and/or intravenous immunoglobulins (IVIG) [13, 21].

CONCLUSION

In conclusion, PnM is a rapid progressive complication of DM with concomitant ILD. A respiratory physician should regularly follow up patients with PnM to ensure that the condition can be monitored and respiratory function optimized.

REFERENCES

1. Kaya AG, Çiledağ A, Küçükşahin O, Kumbasar ÖÖ. A case of amyopathic dermatomyositis with pneumomediastinum and subcutaneous emphysema. Case Rep Rheumatol 2015;2015:819302.
2. Anquetil C, Benveniste O. Dermatomyositis. 2021. [Available at: https://www.orpha.net/consor/cgi-bin/OC_Exp.php?lng=en&Expert=221]
3. Khan S, Christopher-stine L. Polymyositis, dermatomyositis, and autoimmune necrotizing myopathy: Clinical features. Rheum Dis Clin North Am 2011;37(2):143–58.
4. Kuroda T, Morikawa H, Satou T, et al. A case of dermatomyositis complicated with pneumomediastinum successfully treated with cyclosporin A. Clin Rheumatol 2003;22(1):45–8.
5. Bradley JD. Spontaneous pneumomediastinum in adult dermatomyositis. Ann Rheum Dis 1986;45(9):780–2.
6. Le Goff B, Chérin P, Cantagrel A, et al. Pneumomediastinum in interstitial lung disease associated with dermatomyositis and polymyositis. Arthritis Rheum 2009;61(1):108–18.
7. Olivo Pallo PA, Shinjo SK. Spontaneous pneumomediastinum in dermatomyositis: A case series and literature review. MedicalExpress (São Paulo, online) 2018;5:mo18009.
8. Tang R, Millett CR, Green JJ. Amyopathic dermatomyositis complicated by pneumomediastinum. J Clin Aesthet Dermatol 2013;6(3):40–3.
9. Vinicki JP, Pellet SC, Raimondi A, Dubinsky D, Nasswetter G. Antisynthetase syndrome with subcutaneous emphysema and pneumomediastinum. J Clin Rheumatol 2014;20(7):401–2.
10. Zhuang T, Shi X, Zhang W, Wang H. Hoarseness and laryngeal lesions may be poor prognostic factors for pneumomediastinum in dermatomyositis with interstitial lung disease. Int J Clin Exp Med 2017;10(12):16657–62.
11. Park SH, Kum YS, Kim KC, Choe JY, Park SH, Kim SK. Pneumomediastinum and subcutaneous emphysema secondary to amyopathic dermatomyositis with cryptogenic organizing pneumonia in invasive breast cancer: A case report and review of literature. Rheumatol Int 2009;29(10):1231–5.
12. Ma X, Chen Z, Hu W, et al. Clinical and serological features of patients with dermatomyositis complicated by spontaneous pneumomediastinum. Clin Rheumatol 2016;35(2):489–93.
13. Kim HJ, Hong YK, Yoo WH. Dermatomyositis, complicated with pneumomediastinum, successfully treated with cyclosporine A: A case report and review of literature. Rheumatol Int 2009;29(9):1101–4.
14. Volochayev R, Csako G, Wesley R, Rider LG, Miller FW. Laboratory test abnormalities are common in polymyositis and dermatomyositis and differ among clinical and demographic groups. Open Rheumatol J 2012;6:54–63.

15. Sato S, Kuwana M. Utility of dermatomyositis-specific autoantibodies for diagnosis and clinical subclassing. Int J Clin Rheumatol 2015;10(4):257–71.

16. Yoshimi R, Ueda A, Ozato K, Ishigatsubo Y. Clinical and pathological roles of Ro/SSA autoantibody system. Clin Dev Immunol 2012;2012:606195.

17. Tornling G, Fathi M, Lundberg IE. Pulmonary involvement in polymyositis and dermatomyositis. Int J Clin Rheumatol 2009;4(1):45–56.

18. Douglas WW, Tazelaar HD, Hurtman TE, et al. Polymyositis—dermatomyositis-associated interstitial lung disease. Am J Respir Crit Care Med 2001;164(7):1182–5.

19. Rodrigues AJ, Jacomelli M, Scordamaglio PR, Figueiredo VR. Spontaneous pneumomediastinum associated with laryngeal lesions and tracheal ulcer in dermatomyositis. Rev Bras Reumatol 2012;52(5):796–9.

20. Cozzani E, Cinotti E, Felletti R, Pelucco D, Rebora A, Parodi A. Amyopathic dermatomyositis with lung involvement responsive to myophenolate mofetil. Immunopharmacol Immunotoxicol 2013;35(6):687–92.

21. Koler RA, Montemarano A. Dermatomyositis. Am Fam Physician 2001;64(9):1565–72.

22. Terao M, Ozawa K, Inui S, Murota H, Yokomi A, Itami S. A case of dermatomyositis complicated with pneumomediastinum. Mod Rheumatol 2007;17(2):156–9.

23. Agarwal R, Lahiri D, Biswas A, Mukhopadhyay J, Roy MK. Fatal recurrence of pneumothorax in an adult dermatomyositis. J Assoc Chest Physicians 2015;3(1):17–9.

24. Masrouha KZ, Kanj N, Uthman I. Late-onset pneumomediastinum in dermatomyositis. Rheumatol Int 2009;30(2):291–2.

25. Saraya T, Tanaka Y, Okhuma K, et al. Massive tension pneumomediastinum. Intern Med 2012;51(6):677.

26. Barvaux VA, Van Mullem X, Pieters TH, Houssiau FA. Persistent pneumomediastinum and dermatomysitis: A case report and review of the literature. Clin Rheumatol 2001;20(5):359–61.

27. Onishi S, Ono F, Hasegawa H, Yasukawa M. Pneumomediastinum and massive subcutaneous emphysema associated with dermatomyositis. Intern Med 2012;51(24):3449–50.

28. Korkmaz C, Ozkan R, Akay M, Hakan T. Pneumomediastinum and subcutaneous emphysema associated with dermatomyositis. Rheumatology (Oxford) 2001;40(4):476–8.

29. Yoshida K, Kurosaka D, Kingetsu I, Hirai K, Yamada A. Pneumomediastinum in dermatomyositis itself is not a poor prognostic factor: Report of a case and review of the literature. Rheumatol Int 2008;28(9):913–7.

30. Kono H, Inokuma S, Nakayama H, Suzuki M. Pneumomediastinum in dermatomyositis: association with cutaneous vasculopathy. Ann Rheum Dis 2000;59(5):372–6.

31. Sandhya P, Keshava SN, Danda D, Padhan P, Mathew J, Gibikote S. Pneumorrhachis and pneumomediastinum in connective tissue disease-related interstitial lung disease: Case series from a tertiary care teaching hospital in South India. Rheumatol Int 2012;32(5):1415–9.

32. Marie I, Dominique S, Janvresse A, Levesque H, Menard JF. Rituximab therapy for refractory interstitial lung disease related to antisynthetase syndrome. Respir Med 2012;106(4):581–7.

33. Sifuentes-Giraldo WA, Garcia-Villanueva MJ, Gorospe L. Spontaneous pneumomediastinum complicating interstitial lung disease, associated with clinically amyopathic dermatomyositis and positive anti-MDA5 antibodies. Rev Colomb Reumatol 2017;24(4):259–64.

34. Mohan V, Cherian SV. Spontaneous pneumomediastinum in dermatomyositis. Am J Med Sci 2017;354(6):e11.

35. Ziaee S, Weddington CM, Colbert C. Spontaneous pneumomediastinum, retroperitoneal air, and subcutaneous emphysema in patient with connective tissue disease associated interstitial lung disease. CasesMed Res J 2018;6(1):1–4.

36. Bakhshaei M, Jokar MH, Mirfeizi Z, Atabati E, Tarighat S. Subcutaneous emphysema, pneumomediastinum and pneumothorax in a patient with dermatomyositis. Iran J Otorhinolaryngol 2017;29(91):113–6.

37. Rekik S, Moalla M, Boussaid S, et al. A rare case of spontaneous pneumomediastinum in dermatomyositis successfully treated With a low dose of rituximab. J Clin Rheumatol 2020;26(3):e144–5.

38. Jain A, Misra DP, Jain VK, Negi VS. Spontaneous pneumomediastinum in dermatomyositis. Indian J Rheumatol 2017;12(1):54–5.

Author Contributions
Shawn Zhenhui Lee – Conception of the work, Drafting the work, Raising the work critically for important intellectual content, Final approval of the version to be published, Agree to be accountable for all aspects of the work in ensuring that questions related to the accuracy or integrity of any part of the work are appropriately investigated and resolved

Mohammed Tousif Syed – Design of the work, Interpretation of data, Drafting the work, Final approval of the version to be published, Agree to be accountable for all aspects of the work in ensuring that questions related to the accuracy or integrity of any part of the work are appropriately investigated and resolved

Pranav Kumar – Acquisition of data, Interpretation of data, Drafting the work, Final approval of the version to be published, Agree to be accountable for all aspects of the work in ensuring that questions related to the accuracy or integrity of any part of the work are appropriately investigated and resolved

Guarantor of Submission
The corresponding author is the guarantor of submission.
Source of Support
None.

Consent Statement
Written informed consent was obtained from the patient for publication of this article.

Conflict of Interest
Authors declare no conflict of interest.

Data Availability
All relevant data are within the paper and its Supporting Information files.

Copyright
© 2021 Shawn Zhenhui Lee et al. This article is distributed under the terms of Creative Commons Attribution License which permits unrestricted use, distribution and reproduction in any medium provided the original author(s) and original publisher are properly credited. Please see the copyright policy on the journal website for more information.
Submit your manuscripts at
www.edoriumjournals.com