Dynamic Axonal Translation in Developing and Mature Visual Circuits

Graphical Abstract

Highlights
- Dynamic translatome of retinal axons in vivo matches changing subcellular function
- Adult CNS axons translate mRNAs for synaptic transmission and axon survival in vivo
- Target mRNAs of key translation regulators show developmental co-regulation
- Axon-specific sequence motifs link alternative splicing to axonal translation

Authors
Toshiaki Shigeoka, Hosung Jung, Jane Jung, ..., Julie Qiaojin Lin, Paul S. Amieux, Christine E. Holt

Correspondence
hosungjung@yonsei.ac.kr (H.J.), ceh33@cam.ac.uk (C.E.H.)

In Brief
Local mRNA translation in axons of developing and adult CNS neurons in vivo shows dynamic regulation, suggesting functional relevance for neural circuit formation and maintenance.

Accession Numbers
GSE79352

Shigeoka et al., 2016, Cell 166, 181–192
June 30, 2016 © 2016 The Author(s). Published by Elsevier Inc.
http://dx.doi.org/10.1016/j.cell.2016.05.029
Dynamic Axonal Translation in Developing and Mature Visual Circuits

Toshiaki Shigeoka,1,4 Hosung Jung,2,4,5,* Jane Jung,2 Benita Turner-Bridger,1 Jiyeon Ohk,2 Julie Qiaojin Lin,1 Paul S. Amieux,3 and Christine E. Holt1,5,*
1Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3DY, UK
2Department of Anatomy, Brain Research Institute, and Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
3Bastyr University Research Institute, Bastyr University, Kenmore, WA 98028, USA
4Co-first author
5Co-senior author
*Correspondence: hosungjung@yonsei.ac.kr (H.J.), ceh33@cam.ac.uk (C.E.H.)
http://dx.doi.org/10.1016/j.cell.2016.05.029

SUMMARY

Local mRNA translation mediates the adaptive responses of axons to extrinsic signals, but direct evidence that it occurs in mammalian CNS axons in vivo is scant. We developed an axon-TRAP-RiboTag approach in mouse that allows deep-sequencing analysis of ribosome-bound mRNAs in the retinal ganglion cell axons of the developing and adult retinotectal projection in vivo. The embryonic-to-postnatal axonal translome comprises an evolving subset of enriched genes with axon-specific roles, suggesting distinct steps in axon wiring, such as elongation, pruning, and synaptogenesis. Adult axons, remarkably, have a complex translome with strong links to axon survival, neurotransmission, and neurodegenerative disease. Translationally co-regulated mRNA subsets share common upstream regulators, and sequence elements generated by alternative splicing promote axonal mRNA translation. Our results indicate that intricate regulation of compartment-specific mRNA translation in mammalian CNS axons supports the formation and maintenance of neural circuits in vivo.

INTRODUCTION

RNA localization and local translation are evolutionarily conserved mechanisms employed by cells to control the precise subcellular positioning of nascent proteins. Neurons are highly compartmentalized cells with functionally distinct cytoplasmic/membrane domains (dendrites, axons, and somas), and emerging evidence indicates that localized mRNA translation supports this subcellular differentiation (Holt and Schuman, 2013; Martin and Ephrussi, 2009). Recent in vitro studies revealed an unexpectedly large population of mRNAs in axons, and inhibiting the translation of just one or two of them can cause specific defects in fundamental axonal behaviors, such as neurotrophin-induced outgrowth, branching, cue-induced chemothropic responses, and injury-induced regeneration (references in Jung et al., 2012). In vitro studies have also provided evidence that extrinsic signals, such as guidance cues and growth factors, selectively induce rapid axonal synthesis of distinct protein subsets (references in Jung et al., 2012). A rational interpretation of these results is that specific subsets of mRNAs are coordinately translated when required whereas most axonally localized mRNAs remain translationally repressed. Thus, to understand the function of axonal mRNA translation, it is important to carry out a comprehensive and unbiased global analysis of the mRNAs that are specifically translated in the axonal compartment in vivo.

The axons of retinal ganglion cells (RGCs) terminate in the superior colliculus (SC) of the midbrain. A point-to-point topographic projection of RGC axons to the SC allows the brain to reconstruct a map of the outside world. In mouse, the formation of this retinotopic map in the SC can be divided into three distinct phases (Feldheim and O’Leary, 2010). First, embryonic RGC axons enter the SC and initially extend beyond their topographically correct “termination zones (TZs)” without branching or synapsing (“elongation” period). Second, interstitial branches arise from the primary axon shafts of RGCs in their appropriate TZs and begin to form synapses (“branching/synaptogenesis” period). Third, in the first 2 postnatal weeks, correctly wired axon branches are strengthened and excess inappropriate branches are pruned (“pruning” period), resulting in the mature topographic map in adulthood (Figure 1A; Godement et al., 1984). Intriguingly, evidence suggests that local mRNA translation in the RGC axons may regulate subtle aspects of the formation of the retinotectal projection in vivo (Brunet et al., 2005). It is not known, however, which mRNAs are axonally translated and which specific aspects of visual circuit assembly they affect.

To address this issue, we developed axon-TRAP (translating ribosome affinity purification) in mouse, a method that allows specific isolation of ribosome-bound mRNAs in the distal compartment of RGC axons in vivo. Analysis of these axon-specific translomes at multiple ages reveals that axonal translation may play two major roles: regulation of protein and energy homeostasis, which is supported by mRNAs constitutively translated regardless of developmental stage, and regulation of stage-specific events, such as axon elongation, branching, pruning, synapse formation, and synaptic transmission, which...
is supported by mRNAs whose translation is developmentally regulated. We also found that axonal mRNA translation continues in adulthood, when regulators of neurotransmission and axon survival are locally translated. Bioinformatic analysis of key translational regulators, such as mammalian target of rapamycin complex 1 (mTORC1), fragile X mental retardation protein (FMRP), and adenomatous polyposis coli (APC), reveals that their target mRNAs are translationally co-regulated in a stage-specific manner. In addition, axonally translated mRNAs show extensive isoform diversity, yet only one single isoform is usually translated at any given time and these axonally translated isoforms share common regulatory sequence motifs that promote axonal mRNA translation. Collectively, the results provide direct evidence for the occurrence of developmental stage-specific, compartmentalized mRNA translation in developing and mature CNS axons and provide a deeper understanding of the molecular machinery involved in CNS wiring and maintenance.

RESULTS

Retinal RiboTag Labels RGC Axonal Ribosomes In Vivo

In order to isolate mRNAs translated in RGC axon terminals in the SC in vivo, we used the RiboTag knockin mouse line (Sanz et al., 2009), in which Cre-mediated recombination switches the RiboTag allele, which encodes the 60S subunit protein ribosomal protein L22 (RPL22), to the hemagglutinin (HA)-tagged Rpl22 allele (Rpl22-HA). We crossed this mouse with a Pax6-alpha-Cre mouse (Marquardt et al., 2001), which transiently expresses Cre in the neural progenitors in the peripheral retinal primordium, permanently labeling RGCs (Figure 1B; green area in the eye). We confirmed that no resident cells in the SC express Cre by two independent approaches, histological and molecular biological assays (Figures 1C, 1D, and S1; see Supplemental Experimental Procedures). Therefore,
the immunopurification of ribosome-mRNA complexes from the dissected SC allows us to profile local translation in axon terminals of RGCs in vivo (axon-TRAP; Figure 1B).

We sought to visualize the labeled ribosomes using an HA antibody. HA immunoreactivity was observed in the distal neural retina (Figures 1E and S1) and the optic nerve head (ONH) (Figure 1E, white box), the soma-free region where RGC axons collect to exit the eye, indicating that the RGC axons do contain HA-tagged ribosomes. To visualize the tagged ribosomes with higher resolution, we employed immuno-electron microscopy (EM). Immuno-gold particles specifically labeled a subpopulation of ultrastructurally identifiable ribosomes (Figure 1F) in the distal neural retina in a Cre-dependent manner (Figure 1G). We successfully detected HA-tagged ribosomes in the axon shaft in the ONH and the optic nerve (ON) (Figures 1H and 1I) and presynaptic terminals in the SC (Figures 1J–1L) at all stages, indicating that HA-labeled endogenous ribosomes are transported to the axon, even in the adult.

Together, our histological, molecular biological, and ultrastructural analyses indicate that Retinal RiboTag faithfully labels retinal axonal ribosomes in the SC.

An Unbiased Identification of the Axonal Translatome

Because the mRNA bound to the labeled axonal ribosomes of RGCs represents only a small fraction of the mRNA in the SC, a major caveat of axon-TRAP is non-specific binding of mRNAs derived from the SC cells to immunoglobulins, Protein G, and magnetic beads. To reduce this background noise, we first optimized the immunopurification protocol before performing axon-TRAP. We estimated that approximately 40% of HA-tagged translating ribosomes could be purified with this optimized protocol (Figures 2A, S2A, and S2B; see Supplemental Experimental Procedures). Successful isolation of axonal ribosomes was confirmed by silver staining (Figure S2B) followed by mass spectrometry (unpublished observation), although RPL22-HA pulled down from the SC was below the level of detection by western blot. To assess the levels of background noise, we compared the levels of cDNAs amplified from TRAPed mRNAs (Figure S2C) between
In vitro ribosome run-off (see Supplemental Experimental Procedures) decreased the amount of TRAPed mRNA from Cre-positive over Cre-negative SC samples, which showed a clear correlation (Figure 2D, left panel, blue dots). To select Cre-dependent mRNAs in an unbiased way, we performed “differential expression analysis” on biological replicates of Cre-positive and -negative SC samples using NOIseq, which is well suited for quantitative comparisons for independently performed RNA-seq samples (Tarazona et al., 2011; Figures 2D and S2F; see Supplemental Experimental Procedures). We defined these genes as “differentially expressed genes (DEGs)” (Figures 2D and S2F, right panel, red dots; Table S1) and used these for most of the downstream analyses.

The total number of axonally translated mRNAs was higher in early stages, peaking at P0.5, and decreased postnatally, whereas mRNAs that are translated within the retinal somas showed little change over the periods examined (Figure 2E), consistent with the amounts of axon-TRAPed cDNAs (Figure S2A). Although previous studies demonstrated that proteins are synthesized in developing axons, it has been controversial whether mature CNS axon terminals also have the ability to synthesize proteins at all, partly because of early studies detecting few or no ribosomes in mature axons (references in Piper and Holt, 2004). However, the presence of DEGs, approximately 85% of which were confirmed as being translated (Figures 2C and S2E) and ribosomes (Figures 1I and 1L) in adult axons indicates that axonal mRNA translation persists in adult CNS axons. The axonal translatome of RGCs is largely an evolving subset of the significantly larger somal translatome (Figure 2F), indicating that axon-TRAPed mRNAs originate from RGC neurons. Unlike the somal translatome (Figure S3A), however, the axonal translatome showed extensive developmental regulation (see detailed analysis below) with only 694 out of 2,576 (27%) mRNAs translated at all stages (Figures 2G and S3A), indicating that the axonal translatome is not due to the simple passive diffusion of translated mRNAs from the soma.

Axon-TRAP Identifies Changing Population of Ribosome-Bound mRNAs in Developing and Mature Axons In Vivo

We used axon-TRAP on SCs dissected out at three specific stages during retinotectal development and in the adult: embryonic day 17.5 (E17.5) (elongating); postnatal day 0.5 (P0.5) (branching); P7.5 (pruning); and adult (mature; Figure 1A). To compare the axonal translatome with the somal translatome, we also analyzed the ribosome-bound mRNAs in dissected Cre-positive retina, which contains the cell bodies of RGCs. When we plotted the normalized read count (fragments per kilobase of transcript per million mapped reads [FPKM]) of each mRNA TRAPed from Cre-positive over Cre-negative SC samples, Cre-dependent signals of mRNAs were immediately visible (Figure 2D, left panel, black dots). This was in contrast with the plot with two biological replicates of Cre-negative SC samples, which showed a clear correlation (Figure 2D, left panel, blue dots). To select Cre-dependent mRNAs in an unbiased way, we performed “differential expression analysis” on biological replicates of Cre-positive and -negative samples using NOIseq, which is well suited for quantitative comparisons for independently performed RNA-seq samples (Tarazona et al., 2011; Figures 2D and S2F; see Supplemental Experimental Procedures). We defined these genes as “differentially expressed genes (DEGs)” (Figures 2D and S2F, right panel, red dots; Table S1) and used these for most of the downstream analyses.

The total number of axonally translated mRNAs was higher in early stages, peaking at P0.5, and decreased postnatally, whereas mRNAs that are translated within the retinal somas showed little change over the periods examined (Figure 2E), consistent with the amounts of axon-TRAPed cDNAs (Figure S2A). Although previous studies demonstrated that proteins are synthesized in developing axons, it has been controversial whether mature CNS axon terminals also have the ability to synthesize proteins at all, partly because of early studies detecting few or no ribosomes in mature axons (references in Piper and Holt, 2004). However, the presence of DEGs, approximately 85% of which were confirmed as being translated (Figures 2C and S2E) and ribosomes (Figures 1I and 1L) in adult axons indicates that axonal mRNA translation persists in adult CNS axons. The axonal translatome of RGCs is largely an evolving subset of the significantly larger somal translatome (Figure 2F), indicating that axon-TRAPed mRNAs originate from RGC neurons. Unlike the somal translatome (Figure S3A), however, the axonal translatome showed extensive developmental regulation (see detailed analysis below) with only 694 out of 2,576 (27%) mRNAs translated at all stages (Figures 2G and S3A), indicating that the axonal translatome is not due to the simple passive diffusion of translated mRNAs from the soma.

Axon-TRAPed mRNAs Encode Axon-Specific Proteome

To discover which classes of mRNAs are preferentially translated in the axon, we performed a gene ontology (GO) enrichment/depletion analysis for genes whose translation level is significantly higher (>100-fold difference) in the axon than in the retina (Figure 3A; “axon-enriched mRNAs”). Reassuringly, analysis with the cellular component category showed that...
Axon-enriched mRNAs generally encode proteins that are already known to function in axons, growth cones, and synapses (Figures 3B and S3B). In contrast, mRNAs encoding nuclear proteins (e.g., modifier of chromatin structures) are depleted from axonal translatome. GO terms selectively enriched in the axonal translatome included those involved in vesicle-mediated transport and calcium-mediated signaling (Figure S3C), suggesting that these processes, which play key roles in the distal axon, may be regulated by local mRNA translation.

To explicitly compare axonal and somal translatomes, we used ClueGO software, which reports how many genes in each cluster are assigned with specific GO terms. We compared 2,576 axonally translated mRNAs (“axon translatome”) with the same number of mRNAs that are most abundant in the somal translatome but absent in the axonal translatome (“retina-only” translatome). We found that synapse- and axon-related GO terms were generally associated with the axonal translatome, whereas the retina-only translatome was enriched with basal body and nuclear GO terms (Figure 3C). These results indicate the presence of mechanisms for selecting specific mRNAs for axonal translation.

Axonal Translatome Changes from Axon Elongation to Neurotransmission during Development

To correlate the local translation with the stage-specific events in axon development, we performed a GO-based analysis for genes that are translated in axons at each developmental stage using 455 neuron-related GO terms (Table S2). The translatome in younger axons (E17.5 and P0.5) was highly enriched with axon-development-related GO terms, including “axon projection morphogenesis,” whereas that of older axons (adult) was enriched with synaptic-transmission-related GO terms, such as “synaptic transmission” (Figures 4A and S4A; Table S3). The ingenuity pathway analysis (IPA) for canonical signaling pathways also suggests that synapse function was most highly regulated in adult axons (Figure S4B). This result suggests that axonal mRNA translation continues in the mature CNS of mammals in vivo and may regulate presynaptic function. We found that a number of genes, which are robustly translated in adult axons, encode glutamate receptors and neurotrophin receptors (Figures 4B and S4C), some of which are known to related GO terms, such as “synaptic transmission.”
regulate synaptic transmission in the presynaptic compartment (Pinheiro and Mulle, 2008). Furthermore, key components of the trans-SNARE complex, which mediates neurotransmitter exocytosis, are highly translated in mature axons (Figure 4B), suggesting that their local translation plays a role in supporting the core machinery of neurotransmission in presynapses.

Intriguingly, translation of receptors for axon guidance molecules peaks around birth (P0.5) and falls off thereafter (Figures 4B and S4A). Because this is when interstitial branches arise from axon shafts in a topographically biased manner to connect with targets (Figure 1A), stage-specific synthesis of these receptors in the RGC axon may help to fine-tune topographically biased branching. We also noted that the GO terms “neuron remodeling” and “collateral sprouting” were among most enriched in the pruning stage (P7.5). Genes that function in synapse assembly, which include neurexins and presynaptic cell adhesion molecules, were translated in all axons (Figures 4B and S4A).

The Axonal Translatome Changes from Degenerative to Survival Modes at the End of Development

Axon survival is regulated through at least two pathways: by maintaining axonal protein/energy homeostasis and by inhibiting a destruction program mediated by SARM1. Sarm1, which initiates a soma-independent axon destruction program by counteracting Nmrat function (Gerds et al., 2015), is highly translated in developing, but not in adult, axons (Figures 4B and S4C). The same pattern of local translation was observed for caspases, whose local action mediates axon dynamics and developmentally controlled branch destruction (Campbell and Holt, 2003; Campbell and Okamoto, 2013; Simon et al., 2012). These results suggest that developing (arborizing) axons synthesize the components of axon degeneration pathways, perhaps in highly restricted subcellular compartments within the axon, for the selective withdrawal of branches, whereas adult axons shut them off to maintain mature neural connections for long periods of time.

GO terms related to mitochondrial and homeostatic functions, such as “cellular metabolism” and “mitochondrial respiratory chain,” were enriched at all stages, supporting the previous finding that axonal mRNA translation supports mitochondrial function and is required for axon survival (Figures 4A and S4A; Cosker et al., 2016; Hillefors et al., 2007; Yoon et al., 2012). The survival of a neuron whose axon reaches its correct target is regulated by retrograde transmission of a survival signal from the axon terminal, which turns on a transcriptional program for cell survival (Ricci et al., 1997). Previous studies showed that axonal synthesis of transcription factors, such as neurotrophin-induced synthesis of CREB (Cox et al., 2008) and SMAD1/5/8 (Ji and Jaffrey, 2012) and axon-injury-induced synthesis STAT3 (Ben-Yaakov et al., 2012), regulates cell survival during development and in adulthood. Indeed, our IPA analysis revealed that components of these nuclear signaling pathways, including CREB and STAT3 signaling, are enriched in adult axons (Figure S4B). Therefore, our results suggest that local translation promotes survival of mature axons both by supporting mitochondrial function and actively generating survival signals.

Pathological axon degeneration in neurodegenerative diseases has been associated with impaired axonal translation (references in Jung et al., 2012). A KEGG pathway enrichment analysis showed a significant over-representation of genes linked to neurodegenerative diseases, such as Alzheimer’s, Parkinson’s, and Huntington’s diseases (Figure 4A). In particular, we detected robust axonal translation of huntingtin (Htt), Prion protein (Prp), microtubule-associated tau (Mapt), and amyloid beta precursor protein (App), whose aggregates are strongly associated with neurodegenerative disorders (Figure 4B), suggesting a possible connection between axonal translation and neurodegeneration involving protein aggregation. Intriguingly, activating transcription factor 4 (Atf4), whose excessive axonal translation spreads Alzheimer’s disease pathology across the brain (Baleriola et al., 2014), is also axonally translated at all stages tested. These results support the idea that dysregulated axonal translation may be an underlying cause of neurodegenerative diseases (Jung et al., 2012).

Targets of mTORC1, FMRP, and APC Show Translational Co-regulation in a Stage-Specific Manner

We have shown that the axonal translatome is dynamically regulated during development, and this raises the important question of how axonal translation is controlled by upstream signaling pathways. To investigate this, we performed IPA upstream regulator analysis, which is based on published data of gene knockdown or knockout studies where protein products were measured when translational regulator function was impaired. mTORC1 activity was predicted to peak in actively wiring axons, as its target mRNAs showed a steep increase at P0.5 (Figure S5A), consistent with previous studies demonstrating that axonal mRNA translation is regulated by mTORC1 (Campbell and Holt, 2001) and required for axon branching (Spillane et al., 2013). In contrast, the activity of FMRP was predicted to peak later at P7.5, because its target mRNAs (whose translation is repressed) showed a coordinate decrease in translation in mature axons (Figures 5A, 5B, S5A, and S5B). This result suggests that the translational brake mediated by FMRP is utilized in maturing CNS axons as in dendrites (Bagni and Greenough, 2005; Darnell and Klann, 2013). Consistent with this result, known targets of FMRP and mTORC1 in the axonal translatome showed clearly different translational patterns from the non-target mRNAs: their translation increased at P0.5 (Figure 5A, left panel, red and blue; median shifts right) and decreased at P7.5 (right panel). Another intriguing translational regulator was APC, which was recently shown to regulate microtubule assembly and axonal growth by local translation (Prentner et al., 2014). Our analysis indicates that the translation of APC target mRNAs is highest in the youngest axons (E17.5) and steadily decreases thereafter (Figures 5A and S5B), consistent with the primary role of microtubule assembly in axon growth. In contrast, the targets of TDP-43 and FUS, well-known neuronal RNA-binding proteins (RBPs), showed a distribution not significantly different from the total axonal translatome (Figures 5B and S5C), although the possibility remains that TDP-43 and FUS regulate stage-independent axonal mRNA translation. A principal-component analysis (PCA) also showed clear separation of the mTORC1, FMRP, and APC targets from the rest of the axonal translatome (Figure S5D). MicroRNAs (miRNAs) make up another class of translational regulators that function in the axon (Sasaki et al., 2014). We found that the translation of miR-1 target mRNAs...
decreases as the axon matures, suggesting that miR-1 abundance and/or activity increases during RGC axonal development (Figure S5A).

We took an independent approach to investigate the possibility of developmental-stage-dependent regulation of mTOR and FMRP signaling in RGC axons. We measured the abundance of phosphorylated mTOR (p-mTOR) and S6 (p-S6) in cultured primary mouse RGC axons by quantitative immunofluorescence (QIF), which positively correlate with mTORC1 activity (Copp et al., 2009; Laplante and Sabatini, 2012; Figure 5C). We found that they increased between E17.5 and P0.5, supporting our hypothesis that mTORC1 activity rises in RGC axons during this period. In contrast, the level of FMRP decreased in the same period, in accordance with our model that the translational brake is weakened in P0.5 axons (Figure 5C).

To gain more insight into mRNA-specific translation in the axon, we compared the RGC axon transcriptome of E17.5 (Zivraj et al., 2010) to the axon translatome at the same stage. We analyzed the genes that are detected in the transcriptome, but not in the translatome, because this group may contain candidates for translationally repressed (“masked”) mRNAs. We found that a significant portion of these candidates was translated at the three later stages tested (P0.5, P7.5, or adult) because their levels in the transcriptome correlated with the probability for translation at later stages (Figure 5D). This suggests the possibility that the mRNAs, which are present in high abundance, but not translated, are being stored for translation in later stages. In contrast, the genes that are present both in the young transcriptome and translatome did not show this trend (Figure S5E).

Figure 5. Trans-Acting Elements that Regulate the Axonal Translatome

(A) Density plots of the change in FPKM values of axonal translatomes during two consecutive developmental stages (log2(stage A [FPKM]/stage B [FPKM]); gray, distribution of all genes; colors, distribution of target genes) with p values (Kolmogorov-Smirnov test).

(B) Average log2 (FPKM) values of target genes (mean ± 95% confidence interval).

(C) Representative immunofluorescence images (left) and their quantification (right; mean ± SEM).

***p < 0.001, Mann-Whitney test. The scale bar represents 10 μm.

(D) Relationship between transcript abundance of genes not detected in E17.5 axonal translatome (read count = 0) and probability of their translation at later stages (upper left: blue line, mRNA level in transcriptome; red line, moving averages of percentage of genes detected at any of three later stages over a window size of 100 genes; r, Pearson correlation coefficient). The upper right and lower heatmaps show mRNA abundance in the translatome and enriched regulators/pathways, respectively.

See also Figure S5.
Alternative Splicing Generates mRNA Isoform Diversity in the Axon

Post-transcriptional RNA processing events, including alternative splicing, are widely used to control gene expression in neurons. To assess whether these regulate local mRNA translation, we analyzed the mRNA isoforms on mapped sequence reads using MISO software (Katz et al., 2010). Intriguingly, the axonal translatome showed more-extensive diversity of mRNA isoforms than the somal translatome (Figure 6A). To address the possibility of isoform-specific axonal translation, we selected 164 alternative events that produce two isoforms both in the axonal and retinal translatomes. Then, we calculated the “percentage spliced in” (PSI or \(\Psi \)) values, which represent the fraction of the longer isoform (Katz et al., 2010). \(\Psi \) retinal was uniformly distributed (0 < \(\Psi \) < 1), indicating that there is no clear bias in translational efficacy (Figures 6B and 6C). However, \(\Psi \) axonal was biased to the two extremes (i.e., \(\Psi = 0 \) or \(\Psi = 1 \)), indicating that only one of the two isoforms is selectively translated in the axon (Figures 6B and 6C). Notable examples are Acot7, an acyl-coenzyme A (CoA) thioesterase gene required for lipid biosynthesis and neuron survival (Ellis et al., 2013); Syntaxin 3 (Stx3), a SNARE component gene; and Clta, a clathrin light chain A gene, which show clear axon-specific usage of first, last, and internal exons, respectively (Figures 6D, 6E, and S6A). Intriguingly, axon-specific isoforms of Acot7 and Stx3 encode proteins with slightly different amino acids at the N and C termini, respectively (see gene models in Figures 6D and 6E), suggesting that alternative splicing may couple axon-specific protein isoforms with a unique sequence tag in the UTR.

Unexpectedly, we detected a number of back splicing events for three genes (Rhoobb3, Ubn2, and Ankrd12), which indicate the potential presence of circRNAs in the axonal, but not in the retinal, translatome, and we could detect these mRNAs by RT-PCR of unamplified axonal translatome (Figure S6B). Although previous studies suggested that the circRNAs are not translated (Guo et al., 2014), our result raises the possibility that the ribosomes can associate with circRNAs in axons. However, further studies are needed to address whether proteins are actually synthesized from these circRNAs.

Cis-Regulatory Elements Couple Alternative Splicing with Axonal Translation

The dominance of a single alternative exon in axons suggests that axonal mRNA translation might be mechanistically linked to alternative splicing. We focused on the axonally enriched mRNAs with an alternative first or last exon because 5′ and 3′ UTRs generally contain localization signals (references in Jung et al., 2012; Figures 6D and 6E). In order to investigate whether the axon-specific exons are sufficient to promote axonal mRNA transport and translation, we used a diffusion-limited, membrane-targeted EGFP (myr-d2EGFP), which is a faithful reporter of local protein synthesis in dendrites (Aakalu et al., 2001) and in axons (Andreassi et al., 2010; Cox et al., 2008). We fused the axon-specific or axon-absent (retina-restricted) alternative exon of each gene to myr-d2EGFP so that a reporter mRNA containing each motif would be generated in cells (Figures 7A and 7B). To test these reporters in RGCs, the same cell type from which they were identified, we used Xenopus primary retinal cultures (Campbell and Holt, 2001), which are amenable to screening multiple motifs. We confirmed that alternative usages of the 5′ and 3′ UTRs of Acot7 and Stx3, respectively, are conserved between mouse and Xenopus (Kenbase and UCSC genome browser). Fluorescence recovery after photobleaching (FRAP) was monitored in the growth cones of cultured RGCs at 1-min intervals for 10 min. Remarkably, the axon-specific
isoforms showed rapid and robust FRAP signals, whereas the retina-specific isoforms did not (Figures 7A and 7B). These results indicate that axon-specific exons of Acot7 and Stx3 are sufficient to promote axonal mRNA translation (Figures 7A and 7B).

We next investigated whether axon-specific exons might contain “generalizable” motifs responsible for axonal mRNA translation. We searched for common sequence elements that are enriched in axon-specific alternative exons (Figure 7C) and in the 5’ and 3’ UTRs in constitutive exons (Figures S7A and S7B) of axon-enriched mRNAs (Figure 3A). To understand the potential function of identified sequence elements, we searched for genes that contain these elements in the entire mouse genome. Remarkably, the element-containing genes generally encode regulators of axon and synapse function (Figures 7C and S7C). Strikingly, five of six motifs identified from alternative exons and five of twelve motifs in constitutive exons of axon-enriched mRNAs showed a significant FRAP signal at 10 min, indicative of increased axonal mRNA translation of a reporter mRNA when incorporated in the 5’ or 3’ UTR as in Figure 7B (Figures 7C and S7C). These results suggest the potential links between the sequence elements and axonal mRNA translation and thus provide further insight into the mechanisms underlying the selective and dynamic nature of the axonal mRNA translation.

DISCUSSION

Here, we developed a mouse model of axon-TRAP to isolate mRNAs translated in the distal axon of RGCs in vivo and performed a genome-wide survey of the axonal translatome at critical time points during the assembly of visual circuitry and in adulthood. The axonal translatome is generally a subpopulation of its somal counterpart but is enriched in genes with axon-specific roles. We found that broadly two classes of local translatomes exist in the distal axon: one being constitutively translated and the other developmentally regulated. The former generally encodes the regulators of protein and energy homeostasis, and the latter encodes proteins required for stage-specific events, such as axon elongation, axon branching, synapse

Figure 7. Cis-Regulatory Elements Link Alternative Splicing to Axonal Translation

(A and B) Axon- and retina-specific Acot7 and Stx3 UTR isoforms fused with myr-d2EGFP were expressed in cultured RGCs (Xenopus). Quantification of fluorescence intensity after photobleaching (FRAP) revealed axon-specific isoforms of Acot7 (A) and Stx3 (B) markedly increase axonal translation of the myr-d2EGFP reporter construct compared to retina-specific UTR counterparts. Data at each 1 min time point represent the mean fraction of recovery relative to pre- and post-bleach levels ± SEM (n = 9 and 10 for axon and eye-specific 5’ UTR of Acot7, respectively; n = 14 and 14 for axon and eye-specific 3’ UTR of Stx3, respectively). ***p < 0.0001; two-way ANOVA. FRAP signal recovery was abolished by 40 mM anisomycin (10 min post-photobleach: Acot7 axon-isoform + anisomycin 0.064 ± 0.028; Stx3 axon-isoform + anisomycin 0.085 ± 0.026). Representative images of RGC axonal growth cones showing fluorescent recovery after photobleaching for each reporter construct are shown (right). The scale bars represent 10 μm.

(C) GO enrichment analysis for entire genome containing axon-specific sequence motifs associated with alternative exons (S: G or C) and their relative efficiency in axonal mRNA translation using myr-d2EGFP reporter constructs. Significance of FRAP recovery curves were compared to no UTR control across 10 min (n ≥ 10 for each construct). Statistical significance of FRAP compared to the no-UTR control was tested across all time points (1–10 min) using a two-way ANOVA (***p < 0.0001 compared to no-UTR control). For representative purposes, the mean fluorescence recovery at 10 min post-photobleaching is shown. Error bars represent SEM. See also Figure S7.
formation, and synaptic transmission. The adult axonal translata-
tome is unique, and its main role is likely to regulate synapse
function. Developmentally regulated translataomes were subdi-
vided according to the changes in translation between stages,
and those that showed a coordinate change were found to share
common upstream regulators, such as mTORC1, FMRP, and
APC, as well as novel sequence elements that possibly regulate
axonal mRNA translation. Additionally, we found that axonally
translated mRNAs were frequently specific splice variants that
carried axon-specific motifs. Together, our results show that
extensive local mRNA translation occurs in the developing and
mature mammalian CNS axons in vivo and provide strong evi-
dence that highly regulated axonal mRNA translation might be
at the heart of CNS development and the maintenance of synap-
tic function.

Previous studies using cultured neurons have revealed that
some mRNAs are stored in a translationally repressed state
(Buxbaum et al., 2014; Graber et al., 2013). Two independent
and complementary approaches have been developed to ask
which mRNAs are translated in the axon (Kim and Jung, 2015):
metabolic labeling of newly synthesized proteins and isolation
of ribosome-bound mRNAs. Proteomic approaches provide
the ultimate readout of gene expression, as they can identify
post-translationally modified protein products, but a critical lim-
itation of proteomics is that the probe-tagged amino acid or its
analogs label all cells, limiting its use to compartmentalized
axon culture. An alternative strategy to identify newly synthe-
sized proteins is to look at translated mRNAs (translatome),
because these are the obligate precursor to the de novo prote-
ome. A key advantage of this approach is that ribosomes can
be isolated from a specific cell type by expressing a genetically
encoded epitope-tagged ribosomal protein in just the cells of in-
terest (TRAP; Heiman et al., 2008). Isolated ribosome-mRNA
complexes either can be partially digested by RNase, and the
fragments protected by ribosome binding can be sequenced
(“ribosome profiling”; Ingolia et al., 2011), or the entire mRNA
can be separated from the ribosome and directly sequenced.
Only the latter method, which we use in this study, allows the dis-
covery of novel isoforms outside the protein-coding region.

We compared translataomes of RGC axons and retinal cell
bodies in the same animals. It should be noted that the retinal
translatome includes the translataome of the short axons and
dendrites of the intraretinal circuitry, as well as their cell bodies.
Therefore, the number of mRNAs that are identified as selectively
translated in the axon in this study may be an underestimation.
Additionally, the expression of tagged ribosomes in non-RGC
retinal neurons can potentially introduce bias into the axon/
soma ratio. However, given the previous observations on retinal
cell populations (Young, 1985), the presence of non-RGC
mRNAs in the retinal sample cannot explain the axonal enrich-
ment of mRNAs above the threshold (FPKM_{axon}/FPKM_{retina} >
100), which we used for the axon-soma comparison. The strong
enrichment of genes with axonal function in the axonal transla-
tome compared to the retinal translataome suggests that these
mRNAs were disproportionately represented in the axonal trans-
lataome, indicating that axonal translation is mRNA specific.

In this study, we show that the RGC axonal translataome
changes in a developmental-stage-specific manner, in such a
way that proteins playing a key role at specific periods are syn-
thesized when needed. This result is in agreement with a recent
study using the Drosophila visual system, which reported that
neuronal differentiation associated with maturatin of presynap-
tic terminals is regulated by coordinate control of mRNA transla-
tion (Zhang et al., 2016), although the subcellular location of
mRNA translation was not addressed in that study. Whether sig-
als that regulate mRNA-specific translation come from a cell-
intrinsic timer or cell-extrinsic cues remains to be investigated,
but our bioinformatic and experimental analyses suggest that
this involves stage-dependent activation of RNA-binding pro-
teins, including FMRP. Because FMRP is known to inhibit trans-
lating of proteins required for synapse formation and its loss of
function leads to over-branching of CNS axons (references in
Darnell and Richter, 2012), it is reasonable to assume that
FMRP may be activated after CNS axons make appropriate syn-
apses to limit the number of synapses that a single axon makes.
In this sense, it is intriguing that defective translational machin-
ery, which is expected to affect all cells in the organism, leads
to enigmatically synapse-specific phenotypes, ranging from
defective synaptic transmission to impaired cognitive function
and memory (references in Buffington et al., 2014). Although
the subcellular location of this pathogenesis is unknown, it will
be interesting to test whether the axonal translataome of devel-
oping cortical neuronal axons in these mouse models of neuro-
developmental disorders is any different from normal mice.

The local mRNA translation in axons of mature neurons has
been a subject of long-standing debate (Piper and Holt, 2004).
Evidence indicates that ribosomes exist in mature CNS axons
(Koenig et al., 2000; Kun et al., 2007; Walker et al., 2012) and
that their number is dynamically regulated under normal and
pathological conditions (Verheijen et al., 2014). However, what
proteins are locally translated in the mature axons was
unknown. Our comparative analysis of mature and developing
retinal axonal translataomes suggests that local protein synthe-
sis regulates synaptic transmission and axon maintenance.
Because axonal translation has been implicated in axonal sur-
vival and degeneration (Jung et al., 2012), it will be important
to find out whether pathological axon degeneration is preceded
by defective axonal translation. The power of axon-TRAP is that
it can be extended to other neurons whose cell bodies and axons
are anatomically separated. One such example is cortical and
spinal motor neurons, whose axonal degeneration leads to
human diseases, such as amyotrophic lateral sclerosis (ALS).
Recent evidence suggests that defective axonal mRNA transport
and translation may be an underlying cause of ALS pathology
(Alami et al., 2014; Murakami et al., 2015). Our new technical
approach and datasets should provide a valuable resource for
future studies.

EXPERIMENTAL PROCEDURES

Histological Analysis

For immunohistochemistry, tissue sections (12 µm) were visualized using an
anti-HA antibody (Abcam ab9110) and a secondary antibody conjugated to
Alexa 488 (Life Technologies). For immuno-gold EM, tissues were fixed in
4% paraformaldehyde in 0.1 M HEPES (pH 7.4), and the HA-tagged ribosomes
were visualized by the same anti-HA antibody and immunoglobulin G (IgG)
conjugated with gold (10–15 nm). Mouse RGC axon culture and QIF were
performed as previously described (Zivraj et al., 2010) using the following antibodies: anti-mTOR (phospho S2448) antibody (Abcam 109268), anti-FMRP antibody (Abcam 17722), and anti-RPS6 (phospho S235 + S236) antibody (Abcam 12864).

Axon-TRAP

A homozygote RiboTag female mouse was mated with a Pax6-alpha-Cre male to produce Cre-positive and Cre-negative mice in a single litter. Three eyes or six SCs were homogenized, and post-mitochondrial fractions were collected. The mRNA-ribosome complexes were precipitated using the polyclonal HA antibody and Dynabeads Protein G (Life Technologies 10004D). For the in vitro ribosome run-off experiments, TRAP was performed after lysisate was incubated with rabbit reticulocyte lysate (Promega), harringtonine (Sigma), and 4E1RCat (Sigma) at 37°C for 30 min. Ribosome-bound mRNAs were amplified by a method developed by Tang et al. (2009) with slight modification and sequencing using Illumina HiSeq2000 or NextSeq500. All experiments compiled with protocols approved by the University of Cambridge and the Yonsei University College of Medicine Institutional Animal Care and Use Committees.

Data Analysis

The sequence reads were mapped using TopHat 2 version 2.0.12, and FPKM values were estimated using Cufflinks. Read counts for each gene were determined using HTSeq version 0.6.1p1. For the identification of translated mRNAs in RGC axons, we applied differential gene expression analysis on read count using NOISeq. De novo motif analysis was performed using HOMER version 3.0 with custom FASTA files.

A detailed description of all experimental procedures is provided in the Supplemental Information.

ACCESSION NUMBERS

The accession number for the RNA-seq data reported in this paper is GEO: GSE79352.

SUPPLEMENTAL INFORMATION

Supplemental Information includes Supplemental Experimental Procedures, seven figures, and three tables and can be found with this article online at http://dx.doi.org/10.1016/j.cell.2016.05.029.

AUTHOR CONTRIBUTIONS

H.J. and C.E.H. conceived and supervised the project. H.J. performed histological experiments. H.J. and T.S. performed biochemical and molecular biological experiments. J.J. performed bioinformatic analyses. J.J. performed Cre specificity experiments, J.O. performed motif imaging and QIF, and B.T.-B. and J.Q.L. performed FRAP and QIF. P.S.A. provided RiboTag mice and the original TRAP protocol. H.J., T.S., and C.E.H. wrote the manuscript.

ACKNOWLEDGMENTS

We apologize to authors of key papers, which we could not cite due to space limitations. We thank W. Harris for many valuable discussions and critical reading of the manuscript. We thank A. Riccio for myr-d2EGFP; J. Skepper for EM; Ghoon Son for advice on IPA; M. Minett for advice on mouse genetics; and K. Mooslehner, A. Dwivedy, and Jeeun Song for technical assistance. This work was supported by Wellcome Trust Programme Grant (085314/Z/08/Z), and K. Mooslehner, A. Dwivedy, and Jeeun Song for technical assistance. This work was supported by Wellcome Trust Programme Grant (085314/Z/08/Z), and K. Mooslehner, A. Dwivedy, and Jeeun Song for technical assistance. This study was supported by the National Research Foundation of Korea (NRF-2015M3C7A1028396) funded through the NRF by the Korean government (MSIP), Yonsei University Future-Leading Research Initiative of 2015 (2015-22-0095), and a faculty research grant from Yonsei University College of Medicine for 2013 (6-2013-0064-2-1) to H.J.

Received: November 26, 2015
Revised: March 9, 2016
Accepted: May 4, 2016
Published: June 16, 2016

REFERENCES

Azakian, G., Smith, W.B., Nguyen, N., Jiang, C., and Schuman, E.M. (2001). Dynamic visualization of local protein synthesis in hippocampal neurons. Neuron 30, 489–502.

Alami, N.H., Smith, R.B., Carrasco, M.A., Williams, L.A., Winborn, C.S., Han, S.S., Kiskinis, E., Winborn, B., Freibau, B.D., Kanagaraj, A., et al. (2014). Axonal transport of TDP-43 mRNA granules is impaired by ALS-causing mutations. Nature 81, 536–543.

Andreassi, C., Zimmermann, C., Mitter, R., Fusco, S., De Vitta, S., Saiardi, A., and Riccio, A. (2010). An NGF-responsive element targets myo-inositol monophosphatase-1 mRNA to sympathetic neuron axons. Nat. Neurosci. 13, 291–301.

Bagni, C., and Greenough, W.T. (2005). From mRNP trafficking to spine dysmorphogenesis: the roots of fragile X syndrome. Nat. Rev. Neurosci. 6, 376–387.

Baleriola, J., Walker, C.A., Jean, Y.Y., Cray, J.F., Troy, C.M., Nagy, P.L., and Hengst, U. (2014). Axonally synthesized ATF4 transmits a neurodegenerative signal across brain regions. Cell 158, 1159–1172.

Ben-Yaakov, K., Dagan, S.Y., Segal-Ruder, Y., Shalem, O., Vuppalanchi, D., Willis, D.E., Yudin, D., Rishal, I., Rother, F., Bader, M., et al. (2012). Axonal transcription factors signal retrogradely in lesioned peripheral nerve. EMBO J. 31, 1350–1363.

Brunet, I., Weini, C., Piper, M., Trembleau, A., Volvitch, M., Harris, W., Prochiantz, A., and Holt, C. (2005). The transcription factor Engrailed-2 guides retinal axons. Nature 436, 94–98.

Bulfin, S.A., Huang, W., and Costa-Mattioli, M. (2014). Translational control in synaptic plasticity and cognitive dysfunction. Annu. Rev. Neurosci. 37, 17–38.

Buxbaum, A.R., Wu, B., and Singer, R.H. (2014). Single β-actin mRNA detection in neurons reveals a mechanism for regulating its translatability. Science 343, 419–422.

Campbell, D.S., and Holt, C.E. (2001). Chemosotropic responses of retinal growth cones mediated by rapid local protein synthesis and degradation. Neuron 32, 1013–1026.

Campbell, D.S., and Holt, C.E. (2003). Apoptotic pathway and MAPKs differentially regulate chemotrophic responses of retinal growth cones. Neuron 37, 939–952.

Campbell, D.S., and Okamoto, H. (2013). Local caspase activation interacts with Slt-Robo signaling to restrict axonal arborization. J. Cell Biol. 203, 657–672.

Copp, J., Manning, G., and Hunter, T. (2009). TORC2-specific phosphorylation of mammalian target of rapamycin (mTOR): phospho-Ser2481 is a marker for intact mTOR signaling complex 2. Cancer Res. 69, 1821–1827.

Darnell, J.C., and Richter, J.D. (2012). Cytoplasmic RNA-binding proteins and the control of complex brain function. Cold Spring Harb. Perspect. Biol. 4, a012344.

Darnell, J.C., and Klann, E. (2013). The translation of translational control by mammalian target of rapamycin (mTOR): phospho-Ser2481 is a marker for intact mTOR signaling complex 2. Cancer Res. 69, 1821–1827.

Darnell, J.C., and Richter, J.D. (2012). Cytoplasmic RNA-binding proteins and the control of complex brain function. Cold Spring Harb. Perspect. Biol. 4, a012344.
Darnell, J.C., Van Driessche, S.J., Zhang, C., Hung, K.Y., Mele, A., Fraser, C.E., Stone, E.F., Chen, C., Fak, J.J., Chi, S.W., et al. (2011). FMRP stalls ribosomal translocation on mRNAs linked to synaptic function and autism. Cell 146, 247–261.

Ellis, J.M., Wong, G.W., and Wolfgang, M.J. (2013). Acyl coenzyme A thioesterase 7 regulates neuronal fatty acid metabolism to prevent neurotoxicity. Mol. Cell Biol. 33, 1869–1882.

Feldheim, D.A., and O’Leary, D.D. (2010). Visual map development: bidirectional signaling, bifunctional guidance molecules, and competition. Cold Spring Harb. Perspect. Biol. 2, a001768.

Gerds, J., Brace, E.J., Sasaki, Y., DiAntonio, A., and Milbrandt, J. (2015). SARM1 activation triggers axon degeneration locally via NAD+ destruction. Science 348, 453–457.

Godemert, P., Salaun, J., and Imbert, M. (1984). Prenatal and postnatal development of retinogeniculate and retinocollicular projections in the mouse. J. Comp. Neurol. 230, 552–575.

Graber, T.E., Hébert-Soyer, S., Khoutorsky, A., David, A., Yewdell, J.W., Lacaille, J.C., and Sossin, W.S. (2013). Reactivation of stalled polyribosomes in synaptic plasticity. Proc. Natl. Acad. Sci. USA 110, 16205–16210.

Guo, J.U., Agarwal, V., Guo, H., and Bartel, D.P. (2014). Expanded identification and characterization of mammalian circular RNAs. Genome Biol. 15, 409.

Heiman, M., Schaefer, A., Gong, S., Peterson, J.D., Day, M., Ramsey, K.E., Suiárez-Farría, M., Schwarz, C., Stephan, D.A., Surneier, D.J., et al. (2008). A translational profiling approach for the molecular characterization of CNS cell types. Cell 135, 738–748.

Hillefors, M., Gioio, A.E., Nameza, M.G., and Kaplan, B.B. (2007). Axon viability and mitochondrial function are dependent on local protein synthesis in sympathetic neurons. Cell. Mol. Neurobiol. 27, 701–716.

Holt, C.E., and Schuman, E.M. (2013). The central dogma decentralized: new perspectives on RNA function and local translation in neurons. Neuron 80, 648–657.

Ingolia, N.T., Lareauf, L.F., and Weissman, J.S. (2011). Ribosome profiling of perspectives on RNA function and local translation in neurons. Neuron 78, 1009–1015.

Jung, H., Yoon, B.C., and Holt, C.E. (2012). Subcellular profiling reveals distinct and developmentally regulated repertoire of growth cone mRNAs. J. Neurosci. 32, 17540–17553.

Martin, K.C., and Ephrussi, A. (2009). mRNA localization: gene expression in the spatial dimension. Cell 136, 719–730.

Murakami, T., Qamar, S., Lin, J.Q., Schier, G.S., Rees, E., Miyashita, A., Costa, A.R., Dodd, R.B., Chan, F.T., Michel, C.H., et al. (2015). ALS/FTD mutation-induced phase transition of FUS liquid droplets and reversible hydrogels into irreversible hydrogels impairs RNP granule function. Neuron 88, 678–690.

Pinheiro, P.S., and Mulle, C. (2008). Presynaptic glutamate receptors: physiological functions and mechanisms of action. Nat. Rev. Neurosci. 9, 423–436.

Piper, M., and Holt, C. (2004). RNA translation in axons. Annu. Rev. Cell Dev. Biol. 20, 505–523.

Prentner, N., Quan, J., Nowakowski, D.W., Hancock, M.L., Shi, J., Tcherkezian, J., Young-Pearse, T.L., and Flanagan, J.G. (2014). APC is an RNA-binding protein, and its interactome provides a link to neural development and microtubule assembly. Cell 158, 368–382.

Riccio, A., Pierchala, B.A., Ciarelli, C.L., and Ginty, D.D. (1997). An NGF-TrkA-mediated retrograde signal to transcription factor CREB in sympathetic neurons. Science 277, 1097–1100.

Sanz, E., Yang, L., Su, T., Morris, D.R., McKnight, G.S., and Amieux, P.S. (2009). Cell-type-specific isolation of ribosome-associated mRNA from complex tissues. Proc. Natl. Acad. Sci. USA 106, 13939–13944.

Sasaki, Y., Gross, C., Xing, L., Goshima, Y., and Bassell, G.J. (2014). Identification of axon-enriched microRNAs localized to growth cones of cortical neurons. Dev. Neurobiol. 74, 397–406.

Simon, D.J., Weinmer, R.M., McLaughlin, T., Kallop, D., Stanger, K., Yang, J., O’Leary, D.D., Hannoush, R.N., and Tessier-Lavigne, M. (2012). A caspase cascade regulating developmental axon degeneration. J. Neurosci. 32, 71540–71553.

Spillane, M., Ketschek, A., Merianda, T.T., Twiss, J.L., and Gallo, G. (2013). Mitochondria coordinate sites of axon branching through localized intron-protein synthesis. Cell Rep. 5, 1564–1575.

Tang, F., Barbacioru, C., Wang, Y., Nordman, E., Lee, C., Xu, N., Wang, X., Bodeau, J., Tuch, B.B., Siddiqui, A., et al. (2009). mRNA-seq whole-transcriptome analysis of a single cell. Nat. Methods 6, 377–382.

Tarazona, S., Garcia-Alcalde, F., Dopazo, J., Ferrer, A., and Conesa, A. (2011). Differential expression in RNA-seq: a matter of depth. Genome Res. 21, 2213–2223.

Verheijen, M.H., Peviani, M., Hendricusdottir, R., Bell, E.M., Lammens, M., Smit, A.B., Bendotti, C., and van Minnen, J. (2014). Increased axonal ribosome numbers is an early event in the pathogenesis of amyotrophic lateral sclerosis. PLoS ONE 9, e87255.

Walker, B.A., Hengst, U., Kim, H.J., Leon, N.L., Schmidt, E.F., Heintz, N., Miller, T.A., and Jaffrey, S.R. (2012). Reprogramming axonal behavior by axon-specific viral transduction. Gene Ther. 19, 947–955.

Yoon, B.C., Jung, H., Dwivedy, A., O’Hare, C.M., Zivraj, K.H., and Holt, C.E. (2012). Local translation of extranuclear lamin B promotes axon maintenance. Cell 148, 752–764.

Young, R.W. (1985). Cell differentiation in the retina of the mouse. Anat. Rec. 212, 199–205.

Zhang, K.X., Tan, L., Pellegrini, M., Zipursky, S.L., and McEwen, J.M. (2016). Rapid changes in the transcriptome during the conversion of growth cones to synaptic terminals. Cell Rep. 14, 1258–1271.

Zivraj, K.H., Tung, Y.C., Piper, M., Gumy, L., Fawcett, J.W., and Holt, C.E. (2010). Subcellular profiling reveals distinct and developmentally regulated repertoire of growth cone mRNAs. J. Neurosci. 30, 15464–15478.