Partial-order reduction for parity games and parameterised Boolean equation systems

Thomas Neele¹ · Tim A. C. Willemse¹ · Wieger Wesselink¹ · Antti Valmari²

Accepted: 29 August 2022 © The Author(s) 2022

Abstract

In model checking, reduction techniques can be helpful tools to fight the state-space explosion problem. Partial-order reduction (POR) is a well-known example, and many POR variants have been developed over the years. However, none of these can be used in the context of model checking stutter-sensitive temporal properties. We propose POR techniques for parity games, a well-established formalism for solving a variety of decision problems, including model checking. As a result, we obtain the first POR method that is sound for the full modal μ-calculus. We show how our technique can be applied to the fixed point logic called parameterised Boolean equation systems, which provides a high-level representation of parity games. Experiments with our implementation indicate that substantial reductions can be achieved.

Keywords Partial-order reduction · Parity games · Parameterised Boolean equation systems · Stubborn sets

1 Introduction

In the field of formal methods, model checking [2] is a popular technique to analyse the behaviour of concurrent processes. However, the arbitrary interleaving of these parallel processes can cause an exponential blow-up, which is known as the state-space explosion problem. Several approaches have been identified to alleviate this issue, by reducing the state space while it is generated. Two established techniques are symmetry reduction [17] and partial-order reduction (POR) [11,32,37]. Whereas symmetry reduction can only be applied to systems that contain several copies of a component, POR also applies to heterogeneous systems. The idea behind POR is that, out of many interleavings arising from commutative behaviour of concurrent processes, exploring just one interleaving is often sufficient to draw conclusions on the properties of the system. This is achieved by exploring only a specific subset of the outgoing transitions in every state that is visited.

However, a major drawback of POR is that most variants at best preserve only stutter-insensitive temporal properties. The application of POR is thus limited to fragments of popular logics, namely LTL or CTL* without the next operator (LTL$_{-\neg X}$/CTL$_{*}$) [10,39] or the weak modal μ-calculus [35]. Furthermore, most of the variants of POR that preserve the semantics of formulae in a branching time logic impose significant restrictions on the reduction. This decreases the amount of reduction achieved.

In previous work [30], we addressed these shortcomings by applying POR on parity games. A parity game is an infinite-duration, two-player game played on a directed graph with decorations on the nodes, in which the players even (denoted \Diamond) and odd (denoted \Box) strive to win the nodes of the graph. Parity games find common application in model checking, where every node v in the parity game encodes whether a state s in a transition system satisfies a subformula φ of a given formal property, formulated in a temporal logic such as the modal μ-calculus [20]. Under a typical encoding, player \Diamond wins in the node v if and only if φ holds in s.

In the context of model checking, parity games suffer from the same state-space explosion that models do. Exploring the state space of a parity game under POR can be a very effective way to address this. We investigated these ideas in [30] and proposed a number of conditions with the aim of preserving the winning player after reduction. Furthermore, we identi-
fied a typical structure that occurs in the setting of model checking and exploited this to improve the reduction potential. We showed how this POR technique can be applied in the context of solving a parameterised Boolean equation system (PBES) [13]—a fixed point logic closely related to LFP—as a high-level representation of a parity game. Finally, we extended the implementation ideas of [22] with support for non-determinism and applied these to create an experimental implementation, which we used to evaluate our ideas.

After [30] was presented, Antti Valmari noticed an issue with the POR conditions that affects their correctness, that is, the winning player is not necessarily preserved. This problem was subsequently resolved in Thomas Neele’s thesis [26] with the introduction of an additional condition called \(P \), for Player. The condition \(P \) prevents a situation where our reduction forces one player to hand control of the game to the other player, effectively giving the latter player a chance to win. The current work extends [30] as follows:

- The POR conditions are amended with the additional condition \(P \). We show the correctness with completely reworked proofs (Theorem 1).
- Extended discussion of the intricacies of applying POR to PBESs. In traditional POR approaches, transition labels are used to determine which transitions should be grouped together. However, this information is lost in the construction of a PBES; grouping related transitions thus relies on heuristics. We show how the choice for such a heuristic may impact reduction.
- We include full proofs for the lemmata that show that our implementation satisfies the POR conditions we set.

Our approach has two distinct benefits over traditional POR techniques that operate on transition systems. First, it is the first work that enables the use of partial-order reduction for model checking with the full modal \(\mu \)-calculus. Second, the conditions that we propose are strictly weaker than those necessary to preserve the branching structure of a transition system used in other approaches to POR for branching time logics [10,35], increasing the effectiveness of POR.

In our implementation of POR for PBESs, it is necessary to first conduct static analysis on the PBES to identify reduction opportunities. Both this preparatory step and the additional computation required during the exploration phase create overhead compared to a regular exploration procedure. Our experiments show, however, that particularly those instances in which PBESs encode model checking problems involving large state spaces benefit from the use of partial-order reduction. In such cases, a significant size reduction is possible, even when checking complex \(\mu \)-calculus formulae, and the time overhead mentioned above is more than made up for by the reduction in the number of states.

Related Work

The literature is rich with many variants of partial-order reduction; the most prominent are ample sets [32], persistent sets [11] and stubborn sets [37]. These methods are conceptually very similar, although the stubborn set method is the only one that allows reasoning about disabled actions (which label the transition relation), and thus offers more reduction potential. We discuss several extensions and applications of these methods.

There are several proposals for the application of POR in the context of verifying branching-time logics. Groote and Sellink [12] define several forms of confluence reduction and prove which behavioural equivalences (and by extension, which fragments of logics) are preserved. In confluence reduction, one tries to identify internal transitions, typically labelled with the action \(\tau \) that can safely be prioritised, leading to a smaller state space. Ramakrishna and Smolka [35] propose a notion that coincides with strong confluence from [12], preserving weak bisimilarity and the corresponding logic, the weak modal \(\mu \)-calculus.

Similar ideas are presented by Gerth et al. [10]. Their approach is based on the ample sets method [32] and preserves a relation that they call visible bisimulation and the associated logic CTL\(^{-\chi} \). To preserve the branching structure, they introduce a singleton proviso which, contrary to our theory, can greatly impair the amount of reduction that can be achieved (see our Example 3, p. 6).

An approach that does preserve a branching semantics but does not need a singleton proviso is proposed by Valmari and Vogler [41]. Their POR conditions are sufficient for preservation of fair testing equivalence, which is the weakest congruence that preserves livelocks that cannot be exited. This method is thus suited for checking properties under a fairness assumption.

Valmari [38] (see [40] for an up-to-date discussion) describes the stubborn sets method for LTL\(^{-\chi} \) model checking. While investigating the use of stubborn sets for parity games, we identified a subtle issue in one of the stubborn set conditions (called \(D_1 \) in [40]). When applied to labelled transition systems or Kripke structures, this means that LTL\(^{-\chi} \) is not necessarily preserved. Moreover, using the condition in the setting of parity games may result in games with different winners; see Example 2. In [27], we further explore the consequences of the faulty condition for stubborn-set-based POR techniques that can be found in the literature. We here resort to a strengthened version of condition \(D_1 \) that does not suffer from these issues.

Peled [33] applies POR on the product of a transition system and a Büchi automaton, which represents an LTL\(^{-\chi} \) property. The resulting product automaton thus encodes both the transition system and the property, in a way similar to parity games, resulting in a POR approach that is similar to ours. It is important to note, though, that this original theory is not sound, as discussed in [36]. Kan et al. [18] improve on
Peled’s ideas and manage to preserve all of LTL. To achieve this, they analyse the Büchi automaton that corresponds to the LTL formula to identify which part is stutter insensitive. With this information, they can reduce the state space in the appropriate places and preserve the validity of the LTL formula under consideration.

The work of Bønneland et al. [3,4] is close to ours in spirit: they apply POR to reachability games. Such games can be used for synthesis and for model checking reachability properties. The formalism they consider thus has less expressive power than the parity games we consider. Their technique is applied to weighted Petri net games with inhibitor arcs, which are more low-level than our PBESs, and hence some intricacies related to PBESs (see Sect. 4) are avoided. As we already discussed in [30], the conditions proposed in [3] contain a small correctness issue that was later resolved in [4].

Outline We give a cursory overview of parity games in Sect. 2. In Sect. 3 we introduce partial-order reduction for parity games and prove its correctness. A further improvement is introduced in Sect. 3.3. Section 4 briefly introduces game based POR for PBESs in Sect. 6. We conclude in Sect. 7.

2 Preliminaries

Parity games are infinite-duration, two-player games played on a directed graph. The objective of the players, called even (denoted by ◊) and odd (denoted by □), is to win nodes in the graph.

Definition 1 A parity game is a directed graph \(G = (V, E, \Omega, \mathcal{P}) \), where:

- \(V \) is a set of nodes, called the state space;
- \(E \subseteq V \times V \) is a total edge relation;
- \(\Omega : V \rightarrow \mathbb{N} \) is a bounded function that assigns a priority to each node; and
- \(\mathcal{P} : V \rightarrow \{◊, □\} \) is a function that assigns a player to each node.

We write \(s \rightarrow t \) whenever \((s, t) \in E\). The set of successors of a node \(s \) is denoted with \(\text{succ}(s) = \{ t \mid s \rightarrow t \} \).

We use \(\bigcirc \) to denote an arbitrary player and \(\overline{\bigcirc} \) to denote its opponent. Furthermore, we write \(V_{\bigcirc} = \{ v \mid \mathcal{P}(v) = \bigcirc \} \) for the set of nodes that belong to \(\bigcirc \).

A parity game is played as follows: initially, a token is placed on some node of the graph. The owner of the node can decide where to move the token; the token may be moved along one of the outgoing edges. This process continues ad infinitum, yielding an infinite path of nodes that the token moves through. Such an infinite path is called a play. A play \(\pi \) is won by player \(◊ \) if the minimal priority that occurs infinitely often along \(\pi \) is even. Otherwise, it is won by player \(□ \). Note that at least one priority occurs infinitely often on \(\pi \) because \(\Omega \) is bounded. We stress that we consider min parity games (smaller priorities dominate larger priorities); max parity games (larger priorities dominate) are also commonly found in literature.

To reason about moves that a player may want to take, we use the concept of strategies. A strategy \(\sigma_Ω : V^+ \cdot V_\bigcirc \rightarrow V \) for player \(\bigcirc \) is a function that determines where \(\bigcirc \) moves the token next, after the token has passed through a finite sequence of nodes. More formally, for all non-empty paths \(s_1 \ldots s_n \) such that \(\mathcal{P}(s_n) = \bigcirc \), it holds that \(\sigma_Ω(s_1 \ldots s_n) \in \text{succ}(s_n) \). A play \(s_1, s_2, \ldots \) is consistent with a strategy \(\sigma \) if and only if \(\sigma(s_1 \ldots s_i) = s_{i+1} \) for all \(i \) such that \(\mathcal{P}(s_i) = \bigcirc \). A player \(\bigcirc \) wins in a node \(s \) if and only if there is a strategy \(\sigma_Ω \) such that all plays that start in \(s \) and that are consistent with \(\sigma_Ω \) are won by player \(\bigcirc \).

Example 1 Consider the parity game in Fig. 1. Here, priorities are inscribed in the nodes and the nodes are shaped according to their owner (◊ or □). Let \(\pi \) be an arbitrary, possibly empty, sequence of nodes. In this game, the strategy \(\sigma_Ω \), partially defined as \(\sigma_Ω(\pi s_1) = s_2 \) and \(\sigma_Ω(\pi s_2) = s_1 \), is winning for ◊ in \(s_1 \) and \(s_2 \). After all, the minimal priority that occurs infinitely often along \(s_1 s_2 \) is 0, which is even. Player □ can win node \(s_3 \) with the strategy \(\sigma_Ω(\pi s_3) = s_4 \). Note that player ◊ is always forced to move the token from node \(s_4 \) to \(s_3 \).

\[\square \]

The strategies \(\sigma_◊ \) and \(\sigma_□ \) used in the above example are memoryless; a strategy \(\sigma \) is called memoryless if and only if \(\sigma(\pi s) \) is equivalent for all histories \(\pi \). In fact, memoryless strategies are sufficient for determining the winner of a node; as shown by Zielonka [42], for all players \(\bigcirc \), parity games \(G \) and nodes \(s \), there is a winning \(\bigcirc \)-strategy for \(s \) in \(G \) if and only if there is a winning memoryless \(\bigcirc \)-strategy for \(s \) in \(G \). In the remainder, we mostly use memoryless strategies and specify them as a partial function \(\sigma : V \rightarrow V \). Only in the proof of Theorem 1, we apply strategies with memory.

\footnote{For this reason, the players are sometimes also referred to as player even (◊) and player odd (□) in the literature.}
3 Partial-order reduction

In model checking, arbitrary interleaving of concurrent processes can lead to a combinatorial explosion of the state space. By extension, parity games that encode model checking problems for concurrent processes suffer from the same phenomenon. Partial-order reduction (POR) techniques help combat the blow-up. The current work is based on Valmari’s theory of stubborn sets [37] and its extension to LTL–μ model checking [38] as it can easily deal with non-determinism [39].

The name “partial-order reduction” came from the idea that if two events occur concurrently, then it is artificial to say that one of them occurred before the other. Therefore, the “occurred before” relation is thought of as a partial order. Permutations of concurrent events span equivalence classes of executions. According to this idea, to analyse the behaviour of the system, it suffices to represent each equivalence class by a single execution. This intuition has proven misleading. When constructing representatives that are kept for executions, such that the answer to the verification question is not reduced, such events and edge labelling for parity games and refer to the theory of stubborn sets [37] and its extension to LTL (POR) techniques help model checking [38] as it can easily deal with nondeterminism [39].

Definition 2 A labelled parity game is a triple \(L = (G, A, \ell) \), where \(G = (V, E, \Omega, \mathcal{P}) \) is a parity game, \(A \) is a set of events and \(\ell : A \rightarrow 2^E \) is an edge labelling; it is required that for all \((s, t) \in E\) there is at least one \(a \in A \) such that \((s, t) \in \ell(a)\).

For the remainder of this section, we fix an arbitrary labelled parity game \(L = (G, A, \ell) \). We write \(s \xrightarrow{a} t \) whenever \(a \in A \) and \((s, t) \in \ell(a) \). The same notation extends to labelled paths, which we call executions: \(s \xrightarrow{a_1} s_1 \xrightarrow{a_2} \ldots \). We omit the intermediate states when they are clear from the context or not relevant and write \(s \xrightarrow{a_1 \ldots a_n} t \) (or \(s \xrightarrow{a_1 \ldots a_n} t \) for finite executions). We say an event \(a \) is enabled in a node \(s \), notation \(s \xrightarrow{a} t \), if and only if there is a transition \(s \xrightarrow{a} t \) for some \(t \).

The set of all enabled events in a node \(s \) is denoted with \(\text{enabled}_L(s) \).

The set of events \(A \) has a subset \(I \) whose elements are called invisible, such that for every \(a \in I, s \xrightarrow{a} t \) implies \(\mathcal{P}(s) = \mathcal{P}(t) \) and \(\Omega(s) = \Omega(t) \) for all \(s, t \in V \). The elements of \(A \setminus I \) are visible. This definition allows an implementation to over-approximate \(A \setminus I \), i.e., if it is too difficult to find out whether \(s \xrightarrow{a} t \) implies \(\mathcal{P}(s) = \mathcal{P}(t) \) and \(\Omega(s) = \Omega(t) \) for all \(s, t \in V \), then \(a \) may be classified as visible.

A reduction function indicates which edges are to be explored in each node, based on the events associated to the edges. Given some initial node \(\hat{s} \), such a function induces a unique reduced labelled parity game as follows.

Definition 3 Given a node \(\hat{s} \in V \) and a reduction function \(r : V \rightarrow 2^A \), the reduced labelled parity game induced by \(r \) and starting from \(\hat{s} \) is defined as \(L_r = (G_r, A, \ell_r) \), where \(G_r = (V_r, E_r, \Omega_r, \mathcal{P}_r) \) and \(\ell_r \) are such that:

- if we let \(E' = \{(s, t) \in E \mid \exists a \in r(s), (s, t) \in \ell(a)\} \) be the transition relation under \(r \), then \(V_r = \{s \mid \hat{s} E'^*s\} \) is the set of nodes reachable with \(E' \), where \(E'^* \) is the reflexive transitive closure of \(E' \); and \(E_r = E' \cap (V_r \times V_r) \) is the restricted transition relation;
- \(\Omega_r \) and \(\mathcal{P}_r \) are the respective restrictions of \(\Omega \) and \(\mathcal{P} \) on \(V_r \);
- \(\ell_r(a) = \ell(a) \cap E_r \) for all \(a \in A \).

Note that a reduced labelled parity game is only well-defined when \(r(s) \cap \text{enabled}_L(s) \neq \emptyset \) for every node \(s \in V_r \); if this property does not hold, \(E_r \) is not total. Even if totality of \(E_r \) is guaranteed, the same node \(s \) may be won by different players in \(L \) and \(L_r \) if no restrictions are imposed on \(r \). In case the reduced game is finite, the following conditions on \(r \), as we will show, are sufficient to ensure both. Below, we say an event \(a \) is a key event in \(s \) iff for all executions \(s \xrightarrow{a_1 \ldots a_n} s' \) such that \(a_1 \notin r(s), \ldots, a_n \notin r(s) \), we have \(s' \xrightarrow{a} s \). (The underlying intuition will be explained later.) Key events are typically denoted \(a_{\text{key}} \). Note that every key event is enabled, by taking \(n = 0 \).

Definition 4 Given a labelled parity game \(L = (G, A, \ell) \), where \(G = (V, E, \Omega, \mathcal{P}) \), we say that a reduction function
Partial-order reduction for parity games and parameterised Boolean equation systems

\[r : V \rightarrow 2^A \] is a weak stubborn set for \(L \) iff for all nodes \(s \in V \), the following conditions hold:\(^2\)

D1 For all \(a \in r(s) \) and \(a_1 \notin r(s), \ldots, a_n \notin r(s) \), if \(s \overset{a_1}{\rightarrow} s_1 \overset{a_2}{\rightarrow} \ldots \overset{a_n}{\rightarrow} s_n \overset{a}{\rightarrow} s' \), there are nodes \(s', s_1', \ldots, s'_{n-1} \) such that \(s \overset{a}{\rightarrow} s' \overset{a_1}{\rightarrow} s_1' \overset{a_2}{\rightarrow} \ldots \overset{a_n}{\rightarrow} s'_{n-1} \). Furthermore, if \(a \) is invisible, then \(s_i \overset{a}{\rightarrow} s_i' \) for every \(1 \leq i \leq n \).

D2w \(r(s) \) contains a key event in \(s \).

V If \(r(s) \) contains an enabled visible event, then it contains all visible events.

I If an invisible event is enabled, then \(r(s) \) contains an invisible key event.

L For every visible event \(a \), every cycle in the reduced game contains a node \(s' \) such that \(a \in r(s') \).

P If there is an event \(a \in r(s) \) and a node \(t \) such that \(s \overset{a}{\rightarrow} t \) and \(\mathcal{P}(s) \neq \mathcal{P}(t) \), then \(r(s) = A \).

Below, we also use the term (weak) stubborn set to refer to the set of events \(r(s) \) in some node \(s \). Originally \([37]\), the set \(r(s) \) was constructed so that, if there is an enabled event, it always contained an enabled event that could not be disabled by events outside \(r(s) \). This is the origin of the word “stubborn” in its name: at least one event in \(r(s) \) is selected for the stubborn set, it does not disable execution produced by \(r(s) \). Hence, executions that are removed from the state space can still be mimicked, albeit with a slightly different order of events. (The events \(a \) and \(a_1, \ldots, a_n \) are commuted.) The key event required by \(D2w \) must be enabled (as mentioned above), which guarantees totality of \(E_r \). Furthermore, condition \(D1 \) applies in particular to key events, and thus executions that are removed can always be mimicked via a key event. In this sense, \(D1 \) and \(D2w \) together capture the core idea of POR: reduce the number of similar interleavings that are explored. In a traditional setting where POR is applied on a transition system, the combination of \(D1 \) and \(D2w \) is sufficient to preserve deadlocks, hence their name.

To preserve the winning player in a parity game, we, furthermore, require conditions \(V, I, L \), which originate from the LTL-\(\pi \)-preserving stubborn set method \([38]\), and condition \(P \), which is specific for parity games. Condition \(V \) ensures that reduction only occurs when the mimicking execution produced by \(D1 \) does not reorder visible events compared to the executions that are pruned from the state space. Condition \(L \) prevents the so called action-ignoring problem, where a certain visible event is never selected for the stubborn set and ignored indefinitely. Since we assumed the reduced game is finite, such indefinite ignoring can only happen on cycles; this is thus properly addressed by \(L \). Condition \(I \) ensures that if the game has an invisible infinite execution from some state, then also the reduced game has one.

In the traditional setting of POR for transition systems, the LTL-\(\pi \) method using conditions \(D1, D2w, V, I \) and \(L \) was designed to show that each infinite (or deadlocking) execution has a stuttering-equivalent representative in the reduce transition system. Our parity game setting adds to this the problem that control of the token may move from one player to another. We thus need the additional condition \(P \); this guarantees that the winning player is preserved in roughly the following way. Let \(s \) be a node that is won by \(\Box \) in the original game and \(\pi \) an execution that is consistent with a winning strategy for \(\Box \) in \(s \). When the loser \(\Diamond \) is in control of the token in the reduced game, wherever it moves the token next, the token will stay in nodes that \(\Box \) loses in the original game. On the other hand, when the winner \(\Box \) is in control of the token, the LTL-\(\pi \) arguments for representative paths apply until \(\Box \) loses control. When that happens, condition \(P \) ensures that all original events chosen by \(\Box \) in \(\pi \) have been executed also in the reduced game. Invisible events may have been added compared to the original execution \(\pi \), but the \(\Box \)-node \(r \) that the token ends up in can also be reached by \(\Box \) in the original game by following those same invisible events. Hence, the winner \(\Box \) also wins \(t \) in the original game. Thus, as sketched above, we are able to reduce those parts the game that belong to a single player, and where multiple paths exist that observe the same priorities (up to stuttering).

We use the example below to further illustrate the purpose of—and need for—conditions \(V, I, L, \) and \(P \). In particular, the example illustrates that the winning player in the original game and the reduced game might be different if one of these conditions is not satisfied.

Example 2 First, see the labelled parity games of Fig. 2. These four games show a reduced game under a reduction function satisfying \(D1 \) and \(D2w \) but not \(I, L, V \) or \(P \), respectively. In each case, we start exploration from the node called \(\hat{s} \), using the indicated reduction function in \(\hat{s} \); for all other nodes \(s' \) we have \(r(s') = A \). This yields the respective games that only contain the solid nodes and edges; the dashed parts have been pruned. Consequently, the winning strategy for player \(\Diamond \) in the original game (highlighted in grey in the figures) is lost. The example in Fig. 2d, showing the necessity of condition \(P \), is due to Antti Valmari. Our previous work \([30]\) did not contain condition \(P \) and may thus fail to preserve the winner in this game.

\(^2\) As noted before, the condition \(D1 \) that we propose is stronger than the version in the literature \([38,40]\) since that one suffers from the inconsistent labelling problem \([27,28]\) which also manifests itself in the parity game setting, as we will demonstrate in Example 2.
Fig. 2 Four games that show the winner is not necessarily preserved if we drop one of the conditions V, I, L or P. The dashed nodes and edges are present in the original game, but not in the reduced game. The edges taken from \hat{s} by the winning strategy for player \Diamond in the original game are highlighted in grey.

Fig. 3 A parity game that shows condition L cannot be weakened to reason about strongly connected components (condition S) instead of cycles.

Now consider the parity game of Fig. 3, which is inspired by an example from Valmari and Hansen [40]. Here, the condition L is replaced by a weaker condition which states that for all visible events a, every strongly connected component (SCC) in the reduced game must contain a node s such that $a \in r(s)$. This condition is often called S in the literature. Remark that the two leftmost nodes form an SCC and we have $a_1 \in r(\hat{s})$, thus satisfying S. However, condition L is not satisfied in the cycle consisting of only the bottom-left node.

Finally, consider the parity game in Fig. 4. This game shows that, if instead of condition $D1$ as presented in the current work, we use the original formulation [38]

For all $a \in r(s)$ and $a_1 \notin r(s), \ldots, a_n \notin r(s)$, if $s \xrightarrow{a_1} s_1 \xrightarrow{a_2} \ldots \xrightarrow{a_n} s_n \xrightarrow{a_1} s'_1$, then there are nodes $s', s'_1, \ldots, s'_{n-1}$ such that $s \xrightarrow{a} s' \xrightarrow{a_1} s'_1 \xrightarrow{a_2} \ldots \xrightarrow{a_n} s'_n$, then the winning player is not necessarily preserved. We refer the reader to [28] for an in-depth discussion of this problem in the setting of LTL-\forall model checking.

Noe that the games in Figs. 2a–c and 3 are from a subclass of parity games called weak solitaire, illustrating the need for the identified conditions even in restricted settings. A game is solitaire iff at most one player can make non-trivial choices, i.e., the player owns a node with more than one outgoing edge. A game is weak iff the priorities along all its paths are non-decreasing, i.e., if $s \rightarrow t$ then $\Omega(s) \leq \Omega(t)$. The game in Fig. 2d is weak, but not solitaire. Conversely, the game in Fig. 4 is solitaire, but not weak. Weak solitaire games can encode the model checking of safety properties, solitaire games can capture logics such as LTL and \forallCTL* [14] (the universal fragment of CTL*) and weak games can be used to check CTL properties.

Before we argue for the correctness of our POR approach in the next section, we shortly demonstrate how our approach improves over existing methods for branching time logics. On top of the basic conditions $C1$–$C3$, which preserve LTL-\forall and are similar in spirit to our conditions $D1$ through L, Gerth et al. [10] propose the following singleton proviso:

$C4$ Either $\text{enabled}_G(s) \subseteq r(s)$ or $|r(s)| = 1$.

This extra condition helps preserve the branching structure and is thus needed for preservation of CTL-\forall. However, it can severely impact the amount of reduction achieved; see the following example.

\[\square\] Springer
Example 3 Consider the two transition systems below, where \(n \geq 1 \) is some large natural number.

![Transition Systems Diagram]

The cross-product of these transition systems contains \((n + 1)^2\) states.

Assume we want to check the CTL-property \(\varphi = \forall \Box \exists a_n \), where \(a_n \) is true in a state if and only action \(a_n \) is enabled, on this cross-product. This property expresses: “for all reachable states, there is a path to a state where \(a_n \) is enabled”, which does not hold. There is no equivalent formula in LTL, and hence, condition \(\text{C4} \) is required for POR to preserve this property.

In the initial state \(\hat{s} \), neither \(r(\hat{s}) = \{a_1, a_1'\} \) nor \(r(\hat{s}) = \{b_1, b_1'\} \) is a valid stubborn set, due to \(\text{C4} \). Other choices for \(r(\hat{s}) \) are ruled out by the remaining conditions, so we are forced to set \(r(\hat{s}) = \mathcal{A} \). A similar argument applies to all other states and thus no reduction can be achieved.

Alternatively, we can choose to attack our model checking problem by encoding it in a parity game. For this, we use a \(\mu \)-calculus formula which corresponds to \(\varphi \), namely \(\nu X.(\neg X \land \mu Y.((\neg Y \lor (a_n)\text{true})) \). The resulting labelled parity game is depicted in Fig. 5. When not explicitly indicated, horizontal edges are labelled with events \(b_i \) and \(b_i' \) (and therefore drawn twice), vertical edges are labelled with events \(a_i \) and \(a_i' \) and diagonal edges are labelled with \(c \). This game contains \(2(n + 1)^2+1 \) nodes: there is one node for each combination of state (of which there are \((n + 1)^2\) and fixpoint variable (\(X \) and \(Y \)) in the formula, and one auxiliary node.

Applying POR with our conditions \(\text{D1} \) through \(\text{P} \) allows choosing \(r(\hat{v}) = \{b_1, b_1'\} \) in the initial node \(\hat{v} \); an analogous choice can be made in the other nodes. This ultimately results in a game of \(3(n + 1)^2 \) nodes, which we can solve to answer our model checking question.

While several optimisations for CTL-\(X \) model checking under POR are proposed in [24], unlike our approach, those optimisations can only be applied to certain classes of CTL-\(X \) formulas and not in general.

3.2 Correctness

Condition \(\text{D2w} \) suffices, as we already argued, to ensure totality of the transition relation of the reduced labelled parity game. Hence, we are left to argue that the reduced game preserves and reflects the winner of the preserved nodes of the original game; this is formally claimed in Theorem 1. We do so by constructing a strategy in the reduced game that mimics the winning strategy in the original game. We use stutter equivalence (formally defined below) to compare plays that follow these strategies and use this to conclude that the mimicking strategy we constructed is winning in the reduced game. This reasoning is based on [9].

We introduce a couple of auxiliary lemmata, required for our main correctness theorem. Fix a labelled parity game \(L = (G, A, \ell) \) with \(G = (V, E, \Omega, P) \), a node \(\hat{s} \), a weak stubborn set \(r \) and the reduced labelled parity game \(L_r = (G_r, A, \ell_r) \), with \(G_r = (V_r, E_r, \Omega_r, P_r) \), induced by \(r \) and \(\hat{s} \). We assume \(r \) and \(\hat{s} \) are such that \(V_r \) is of finite size. Given a path \(\pi = s_0 s_1 s_2 \ldots \) (either in \(G \) or \(G_r \)), we define the no-stutter trace, notation no-stut(\(\pi \)), as the sequence of those \(\Omega(s_i) \) such that \(i = 0 \) or \(\Omega(s_i) \neq \Omega(s_{i-1}) \).

Definition 5 Let \(s_0 s_1 s_2 \ldots \) and \(\rho = t_0 t_1 t_2 \ldots \) be two paths in \(G \). We say \(\pi \) and \(\rho \) are stutter equivalent, notation \(\pi \equiv \rho \), if and only if they are both finite or both infinite, and no-stut(\(\pi \)) = no-stut(\(\rho \)).

Lemma 1 All infinite stutter equivalent paths have the same winner.

Proof Let \(\pi = s_0 s_1 s_2 \ldots \) be an infinite path and \(p \) the minimal priority that occurs infinitely often on \(\pi \). Take an arbitrary infinite path \(\rho \) such that no-stut(\(\pi \)) = no-stut(\(\rho \)).

If no-stut(\(\pi \)) is finite, then \(p \) must be its last element and \(p \) is in fact the only priority that occurs infinitely often on \(\pi \). The same then applies to \(\rho \); \(p \) is the only priority that occurs infinitely often on \(\rho \).

Otherwise, if no-stut(\(\pi \)) is infinite, then it is equal to \(\Omega(s_0)\Omega(s_1)\Omega(s_2) \ldots \) where finite repetitions are collapsed. This operation does not influence which priorities occur infinitely often. Hence, \(p \) is also the minimal priority that occurs infinitely often in no-stut(\(\rho \)) and, consequently, on \(\rho \).
Since \(p \) is the minimal priority that occurs infinitely often on both \(\pi \) and \(\rho \), they must have the same winner.

Our second lemma provides a basic stubborn set fact on the availability of key transitions.

Lemma 2 If, for some event \(a \), it holds that \(s \xrightarrow{a} \) and \(a \notin r(s) \), then \(r(s) \) contains an invisible key event in \(s \).

Proof If \(a \) is invisible, \(r(s) \) contains at least one invisible key event, due to I.

Otherwise, if \(a \) is visible, we obtain a key event \(a_{\text{key}} \in r(s) \) from \(D2w \). In case \(a_{\text{key}} \) is visible, we violate condition V with the assumption that \(a \notin r(s) \) and since \(a_{\text{key}} \) is enabled by the key event property. We conclude that \(a_{\text{key}} \) is invisible. \(\square \)

In the lemmata below, we write \(\rightarrow_r \) to stress which transition must occur in \(G_r \).

Lemma 3 [28, Lemma 5.1] If \(D1 \) yields \(\rho = s \xrightarrow{a_0 \ldots a_n} s' \) from \(\pi = s \xrightarrow{a_0 \ldots a_n} s' \), then \(\pi \triangleq \rho \).

Proof Assume the executions are of the shape \(\pi = s_0 \xrightarrow{a_0} s_1 \xrightarrow{a_1} \ldots s_n \xrightarrow{a_n} s'_n \) and \(\rho = s_0 \xrightarrow{a'_0} s'_1 \xrightarrow{a'_1} \ldots \xrightarrow{a'_n} s'_{n'} \).

If \(a \) is invisible, then it follows from \(D1 \) that \(s_i \xrightarrow{a} s'_i \) for all \(1 \leq i < n \). With the transitions \(s_0 \rightarrow a_0 s'_0 \) and \(s_n \rightarrow a_n s'_n \) that we already had, we obtain \(\Omega(s_i) = \Omega(s'_i) \) for all \(0 \leq i \leq n \). It follows that \(\pi \triangleq \rho \).

If \(a \) is visible, then our assumption that \(a \in r(s_0) \) means that \(r(s_0) \) contains an enabled visible event, and, by V, it contains all visible events. Thus the events \(a_0, \ldots, a_n \), which we assumed are not in \(r(s_0) \), must be invisible. We get \(\Omega(s_0) = \Omega(s_1) = \ldots = \Omega(s_n) \) and \(\Omega(s'_0) = \Omega(s'_1) = \ldots = \Omega(s'_{n'}) \).

If \(\Omega(s_0) \neq \Omega(s'_0) \), we reason that

\[
\text{no-stut}(\pi) = \Omega(s_0)\Omega(s'_0) = \Omega(s_0)\Omega(s'_0) = \text{no-stut}(\rho).
\]

Otherwise, \(\text{no-stut}(\pi) = \Omega(s_0) = \text{no-stut}(\rho) \) holds trivially. We conclude \(\pi \triangleq \rho \). \(\square \)

Lemma 4 Let \(\pi = s_0 \xrightarrow{a_0} s_1 \xrightarrow{a_1} \ldots \) be any execution such that \(a_i \notin r(s_0) \) for every \(a_i \) occurring on \(\pi \). Then there is an execution \(\rho = s_0 \xrightarrow{a_{\text{key}}} s'_0 \xrightarrow{a_1} s'_1 \xrightarrow{a_2} \ldots \) for some invisible event \(a_{\text{key}} \), and it holds that \(\pi \triangleq \rho \).

Proof Let \(a_{\text{key}} \in r(s_0) \) be an invisible key event, obtained through Lemma 2 by \(s_0 \xrightarrow{a_0} \) and \(a_1 \notin r(s_0) \). The key event property gives us, for each \(i \), a state \(s_{i,i}' \) such that \(s_i \xrightarrow{a_{\text{key}}} s_{i,i}' \).

In case \(\pi \) has finite length \(n \), we can simply apply \(D1 \) to the execution \(s_0 \xrightarrow{a_0} s_1 \xrightarrow{a_1} \ldots s_{n-1} \xrightarrow{a_{n-1}} s_n \) to obtain \(\rho = s_0 \xrightarrow{a_{\text{key}}} s'_0 \xrightarrow{a_1} s'_1 \xrightarrow{a_2} \ldots s'_{n,n} \). By Lemma 3, we have \(\pi \triangleq \rho \).

If \(\pi \) is infinite, we use a reasoning similar to that of König’s Lemma [21]. We can apply \(D1 \) to obtain a finite execution \(\pi_i = s_0 \xrightarrow{a_{\text{key}}} s'_{i,0} \xrightarrow{a_1} \ldots s'_{i,i} \) for every \(i \geq 0 \). Because \(a_{\text{key}} \) is invisible, \(D1 \) furthermore gives us \(s_k \xrightarrow{a_{\text{key}}} s'_k \) for every \(i \geq 0 \) and \(1 \leq k < i \). We prove by induction that for every \(k \), there is \(s_{i,k} \) such that \(s_0 \xrightarrow{a_{\text{key}}} s'_0 \) (for \(k = 0 \)) or \(s_{k-1} \xrightarrow{a_{\text{key}}} s'_k \) (for \(k > 0 \)) and \(s_{i,k} = s'_{i,k} \) for infinitely many values of \(i \).

Because there are only finitely many states, there is a state \(s'_0 \) that is the same as \(s_0 \), for infinitely many values of \(i \). This constitutes the base case.

To prove the induction step, we observe that all or all but one of the infinitely many \(i \) with \(s_{i,k} = s'_k \) satisfy \(i > k \), and thus have an \(s'_{i,k+1} \) such that \(s_k \xrightarrow{a_{\text{key}}} s'_{i,k+1} \). Infinitely many of these \(s'_{i,k+1} \) are the same state, again because there are only finitely many states. This state qualifies as \(s'_{i,k+1} \).

Then we define \(\rho = s_0 \xrightarrow{a_{\text{key}}} s'_0 \xrightarrow{a_1} s'_1 \xrightarrow{a_2} \ldots \). Since \(a_{\text{key}} \) is invisible, we have \(\Omega(s_j) = \Omega(s'_j) \) for every \(j \geq 0 \). This implies \(\pi \triangleq \rho \). \(\square \)

We remark that Lemma 4 also holds for reduced labelled parity games that have an infinite state space, but where all the events are finitely branching. Before we continue with the next lemmata, we first consider a short example to provide some intuition on how Lemmata 3 and 4 can be applied to construct alternative paths in the reduced game.

Example 4 The structure of Fig. 6, in which parallel edges have the same label, visualises part of a game in which the execution \(\pi = s \xrightarrow{a_1 a_2 a_3} \) (drawn with solid edges) is part of a play that traverses nodes of player □. If we assume \(a_1 \notin r(s) \), then \(\pi \) does not exist in the reduced game. However, it might be possible to mimic \(\pi \) through the path that follows the edges \(a_{\text{key}} a_2 a_1 a_{\text{key}} a_3 \) (drawn with dashes). The new play reorders the events \(a_1, a_2 \) and \(a_3 \) according to the construction of Lemma 3 and introduces the key events \(a_{\text{key}} a_2 a_1 a_{\text{key}} a_3 \) according to the construction of Lemma 4. Note that existence of \(a_{\text{key}}' \) is only guaranteed if \(a_3 \notin r(□) \) (the stubborn set in the fourth node of the mimicking path). \(\square \)

We now continue with two lemmata that, respectively, show how finite and infinite executions from the original game can be mimicked in the reduced game.

\(\odot \) Springer
Fig. 7 Showing the relation between the paths \(\pi, \rho, \rho'_i \) and \(\pi_i \) from the proof of Lemma 5

Lemma 5 If \(s_0 \in V_f \) and \(\pi = s_0 \overset{a_1}{\longrightarrow} s_1 \overset{a_2}{\longrightarrow} \ldots \overset{a_n}{\longrightarrow} s_n \), where \(\mathcal{P}(s_0) = \cdots = \mathcal{P}(s_{n-1}) \neq \mathcal{P}(s_n) \), then there are executions \(\rho := s_0 = t_0 \overset{b_1}{\longrightarrow} t_1 \overset{b_2}{\longrightarrow} \ldots \overset{b_m}{\longrightarrow} t_m \), where \(\mathcal{P}(t_0) = \cdots = \mathcal{P}(t_{m-1}) \neq \mathcal{P}(t_m) \), and \(k = s_n \overset{c_1}{\longrightarrow} \ldots \overset{c_n}{\longrightarrow} t_m \) such that \(\pi \equiv \pi \kappa \equiv \rho \).

Proof We use induction to prove, for some \(m \) and each \(0 \leq i \leq m \), the existence of the following executions for some \(k(i) \), where \(l(i) = i + k(i) - n \):

\[
\begin{align*}
\rho_i &= t_0 \overset{b_1}{\longrightarrow} t_1 \overset{b_2}{\longrightarrow} \ldots \overset{b_i}{\longrightarrow} t_i \\
\rho'_i &= t_{i,0} \overset{a_{i,1}}{\longrightarrow} t_{i,1} \overset{a_{i,2}}{\longrightarrow} \ldots \overset{a_{i,k(i)}}{\longrightarrow} t_{i,k(i)} \\
\kappa_i &= u_0 \overset{c_1}{\longrightarrow} u_1 \overset{c_2}{\longrightarrow} \ldots \overset{c_{k(i)}}{\longrightarrow} u_{k(i)}
\end{align*}
\]

These executions, and also \(\pi \), are connected; we have \(s_0 = t_0 \), \(t_i = t_{i,0} \), \(u_0 = s_n \) and \(u_{k(i)} = t_{i,k(i)} \) (see Fig. 7). Below, let \(\mathcal{P}(\rho_i \rho'_i) \) be the sequence of node owners observed along \(\rho_i \rho'_i \). The induction assumption, furthermore, contains:

\[
\begin{align*}
\text{no-stut}(\pi) &= \text{no-stut}(\pi \kappa_i) \\
\text{no-stut}(\rho_i \rho'_i) &= \text{no-stut}(\pi \kappa_i) \\
\mathcal{P}(\rho_i \rho'_i) &= \mathcal{P}(s_0)^{i+k(i)-1} \mathcal{P}(s_n)
\end{align*}
\]

(1) (2) (3)

The intuition behind the hypothesised executions is as follows: \(\rho_i \) contains transitions of \(\pi \) that have been able to mimic in the reduced game after \(i \) steps, as well as key events that were necessarily introduced along the way. Those same key events can also be used to extend \(\pi \) in the original game, this is the execution \(\kappa_i \). The transitions from \(\pi \) that are still to be mimicked make up \(\rho'_i \).

The base case \(i = 0 \) of the induction is obtained by setting \(\rho_0 \) and \(\kappa_0 \) to the empty execution and \(\rho'_0 = \pi \). By \(\pi = \pi \kappa_0 \), (1) holds. Thanks to \(\rho_0 \rho'_0 = \pi \kappa_0 \), (2) and (3) also hold.

For the induction step, we distinguish two cases when \(k(i) > 0 \). The situation where \(k(i) = 0 \) will be handled at the end of the proof.

If at least one of \(a_{i,1}, \ldots, a_{i,k(i)} \) is in \(r(t_i) \), then \(\text{D1} \) can be applied to the first such \(a_{i,j} \), yielding \(t_i \overset{a_{i,j}}{\rightarrow} t_{i+1} \overset{a_{i,j}+\ldots+a_{i,k(i)}}{\rightarrow} t_{i,k(i)} \). This specifies \(t_{i+1} \), and we choose \(b_{i+1} = a_{i,j} \) and \(a_{i,j+1}, \ldots, a_{i,k(i)} \). We call this “moving \(a_{i,j} \) to the front”.

Execution \(\kappa_{i+1} \) remains unchanged from \(\kappa_i \), since \(\rho'_i \) still ends in \(t_{i,k(i)} = t_{i+1,k(i+1)} \) (and also \(l(i+1) = l(i) \)), since \(k(i+1) = k(i) - 1 \). Using (1) the induction hypothesis, it thus follows that \(\text{no-stut}(\pi) \equiv \text{no-stut}(\pi \kappa_i) = \text{no-stut}(\pi \kappa_{i+1}) \), and (1) also holds for \(i = 1 \).

For (2), we apply Lemma 3 and part of the induction hypothesis to deduce

\[
\begin{align*}
\text{no-stut}(t_0) &\overset{b_1, \ldots, b_i}{\rightarrow} t_{i+1} \overset{a_{i,j}+\ldots+a_{i,k(i)}}{\rightarrow} t_{i,k(i)} \\
=\text{no-stut}(t_0) &\overset{b_1, \ldots, b_i}{\rightarrow} t_{i} \overset{a_{i,j}}{\rightarrow} t_{i+1} \overset{a_{i,j}+\ldots+a_{i,k(i)}}{\rightarrow} t_{i,k(i)} \\
\overset{(3)}{=}\text{no-stut}(t_0) &\overset{b_1, \ldots, b_i}{\rightarrow} t_{i} \overset{a_{i,j}}{\rightarrow} t_{i,k(i)} \\
=\text{no-stut}(\pi \kappa_i) &\equiv\text{no-stut}(\pi \kappa_{i+1})
\end{align*}
\]

Therefore, \(i + 1 \) also satisfies (2).

Finally, for (3), we reason that the last event will not be moved forward unless it is the only event in \(\rho'_i \), i.e., \(j = k(i) \) implies \(k(i) = 1 \). Assume that \(a_{i,1}, \ldots, a_{i,k(i)-1} \notin r(t_i) \) and \(a_{i,k(i)} \in r(t_i) \). By our initial assumption on the owners of nodes in \(\pi \), we have

\[
\mathcal{P}(t_{i,k(i)-1}) \overset{(3)}{=} \mathcal{P}(s_0) \neq \mathcal{P}(s_n) \overset{(3)}{=} \mathcal{P}(t_{i,k(i)})
\]
so \(a_{i,k(i)} \) must be visible\(^3\) and, by D1, enabled in \(t_i \). Condition \(V \) thus requires that all visible events are in \(r(t_i) \); \(a_{i,1}, \ldots, a_{i,k(i)-1} \) are not, so they must all be invisible. We can deduce:

\[
P(t_i) \equiv P(s_0) \neq P(s_n) \equiv P(t_i,k(i)) = P(t_i+1)
\]

Thus, the antecedent of condition \(P \) is fulfilled by the transition \(t_i \xrightarrow{a_{i,k(i)}} t_{i+1}, \) and we have to set \(r(t_i) = A \). This then contradicts our assumption that \(a_{i,1}, \ldots, a_{i,k(i)-1} \not\in r(t_i) \), unless \(k(i) = 1 \). So, after moving the event \(a_{i,j} \) to the front, we must have \(P(\rho_i \rho_i') = P(\rho_i+1 \rho_i'+1) \) for one of the following reasons:

- \(a_{i,j} \) is invisible: in this case the vertical transitions \(t_i \xrightarrow{a_{i,j}} t_{i+1}, \) required by D1 guarantee \(P(t_i,v) = P(t_i+1,v) \) for all \(0 \leq v < j \). It immediately follows that \(P(\rho_i \rho_i') = P(\rho_i+1 \rho_i'+1) \).
- \(a_{i,j} \) is visible and \(j < k(i) \): now the events \(a_{i,0}, \ldots, a_{i,j-1} \) must be invisible by V, since we assumed that they are not contained in \(r(t_i) \). This gives us \(P(t_i,0) = \cdots = P(t_i,j-1) \) and \(P(t_i+1,0) = \cdots = P(t_i+1,j-1) \). By \(j < k(i) \) and assumption (3), we obtain \(P(t_i,j-1) = P(t_i,j) \), which together with the previous equalities gives us \(P(\rho_i \rho_i') = P(\rho_i+1 \rho_i'+1) \).
- \(a_{i,j} \) is visible and \(j = k(i) \): as we argued above, this implies that \(k(i) = 1 \). Thus, \(a_{i,j} \) was already at the front and \(\rho_i \rho_i' \) and \(\rho_i+1 \rho_i'+1 \) actually coincide. The result \(P(\rho_i \rho_i') = P(\rho_i+1 \rho_i'+1) \) follows trivially.

We also have \(i + k(i) = (i+1) + k(i+1) \), and we conclude that (3) remains valid:

\[
P(\rho_i+1 \rho_i'+1) = P(\rho_i \rho_i') \equiv P(s_0)^{(i+1)} \prod^{k(i)+1}_i P(s_n) = P(s_0)^{(i+1)} \prod^{k(i)+1}_i P(s_n)
\]

In the opposite case none of \(a_{i,1}, \ldots, a_{i,k(i)} \) is in \(r(t_i) \). In that case, we obtain an invisible key event \(a_{\text{key}} \in r(t_i) \) from Lemma 2 by \(t_i \xrightarrow{a_{i,j-1}} t_i \xrightarrow{a_{i,j}} \) and \(a_{i,j} \not\in r(t_i) \). The key event property yields the transition \(t_i,k(i) \xrightarrow{a_{\text{key}}} t_{i+1,k(i+1)}, \) to which we can apply Lemma 3 to obtain \(t_i \xrightarrow{a_{i,k(i)}} t_{i+1} \xrightarrow{a_{i+1,k(i+1)}} t_{i+1,k(i+1)} \). We choose \(b_{i+1} = a_{\text{key}} \) and \(a_{i+1,1}, \ldots, a_{i+1,k(i+1)} = a_{i,1}, \ldots, a_{i,k(i)} \). We call this "introducing a key event". Note that \(i(i+1) = i(i) + 1 \) (since \(k(i+1) = k(i) \)), so we need to extend \(k_i \), for which we use the transition \(t_i,k(i) \xrightarrow{a_{\text{key}}} t_{i+1,k(i+1)}, \) yielding \(u(t_{i+1}) = u(t_{i+1,k(i+1)}) \) and \(a_{\text{key}} = c_{l(i+1)} \). The invisibility of \(a_{\text{key}} \) gives us:

\[
\text{no-stut}(\pi) \equiv \text{no-stut}(\pi \kappa_i) = \text{no-stut}(\pi \kappa_{i+1}),
\]

and so (1) also holds for \(i + 1 \).

The invisibility of \(a_{\text{key}} = b_{i+1} = c_{l(i+1)} \) also allows us to deduce

\[
\text{no-stut}(s_0) \xrightarrow{a_{i+1} \ldots a_n} s_{n} \xrightarrow{c_{l(i)+1}} u(t_i(i))
\]

So (2) remains valid in the step from \(i \) to \(i + 1 \).

Since \(a_{\text{key}} \) is invisible, \(\rho_{i+1} \) is simply extended with one more node belonging to \(P(s_0) \) and, by D1, we have \(P(t_{i+1}) = P(t_{i+1}, j) \) for all \(0 < j \leq k(i) \), so it follows that (3) remains valid as well:

\[
P(\rho_i+1 \rho_i'+1) = P(s_0)^{(i+1)} \prod^{k(i)+1}_i P(s_n)
\]

As the proof of Lemma 6 will show in more detail, due to condition L and finiteness of the reduced game, the introduction of a key event can only happen at most \(|V_{\pi}| \) consecutive times before a cycle is closed and some \(a_{i,j} \) necessarily occurs in \(r(t_i) \). Thus, we are guaranteed to eventually reach an iteration \(m \) such that \(k(m) = 0 \). In that case, \(\rho'_m \) is empty and all events in \(\pi \) have been mimicked, so we can stop the induction. We obtain the required executions \(\rho = \rho_m \) and \(\kappa = \kappa_m \).

\[\square\]

Lemma 6 If \(s_0 \in V_\pi \) and \(\pi = s_0 \xrightarrow{a_{i+1} \ldots a_n} \), then there is an execution \(\rho = s_0 \xrightarrow{a_i \ldots a_n} \), such that \(\pi \equiv \rho \).

Proof We use induction to prove, for each \(i \geq 0 \):

- the existence of \(s_i \) and, if \(i > 0 \), \(b_i \) such that \(s_{i-1} \xrightarrow{b_i} s_i \); and
- the existence of an execution \(s_{i,0} \xrightarrow{a_{i,1}} s_{i,1} \xrightarrow{a_{i,2}} \ldots, \) where \(s_{i} = s_{i,0} \).

We assume the following:

\[
\text{no-stut}(s_0) \xrightarrow{b_i \ldots b_n} r \xrightarrow{a_{i,1} \ldots a_{n}} \xrightarrow{a_{i+1} a_{i+2}} (\text{IH})
\]

Then, \(\rho \) is the infinite execution \(s_0 \xrightarrow{b_i \ldots b_n} r \xrightarrow{a_{i,1} \ldots a_{n}} \).

The base case \(i = 0 \) of the induction is obtained by choosing \(s_0 \xrightarrow{a_{i,0} \ldots a_{n}} \), which is equivalent to \(\pi \). Thanks to \(b_1 \ldots b_n = \varepsilon \), (IH) holds.

Regarding the induction step, if at least one of \(a_{i,1}, a_{i,2}, \ldots \) is in \(r(s_i) \), then D1 can be applied to the first such \(a_{i,j} \), yielding \(s_{i,j} \xrightarrow{a_{i,j}} s_{i+1,j} \), which moves \(a_{i,j} \) to the front. This specifies \(s_{i+1} \) and for our events we choose

\[\odot \] Springer
Therefore, \(i + 1 \) also satisfies (IH).

In the opposite case none of \(a_{i,1}, a_{i,2}, \ldots \) is in \(r(s_i) \). Lemma 4 yields \(s_{i + 1} \) such that \(s_{i + 1} \xrightarrow{b_{i + 1}} s_i \). We can thus introduce a key event and choose \(b_{i + 1} = a_{\text{key}} \) and \(a_{i+1,1}a_{i+1,2} \ldots = a_{i,1}a_{i,2} \ldots \). Furthermore, invisibility of \(a_{\text{key}} \) gives

\[
\text{no-stut}(s_0) \xrightarrow{b_1} b_{i + 1} \xrightarrow{a_{i+1,1}a_{i+1,2} \ldots} s_{i + 1} \xrightarrow{a_{i+1,1}a_{i+1,2} \ldots} s_{i + 1} = \text{no-stut}(s_0) \xrightarrow{b_{i + 1}} s_i.
\]

So (IH) remains valid in the step from \(i \) to \(i + 1 \).

Since we have shown that (IH) holds for every \(i \geq 0 \), it follows that \(\text{no-stut}(\rho) \) is a prefix of \(\text{no-stut}(\pi) \). To show that \(\text{no-stut}(\rho) \) and \(\text{no-stut}(\pi) \) are in fact equal, we assume that \(\text{no-stut}(\rho) \) is a proper prefix of \(\text{no-stut}(\pi) \) and try to derive a contradiction.

The fact that \(\text{no-stut}(\rho) \) is a proper prefix means that it must be finite, and hence there is an \(i \) such that \(\text{no-stut}(\rho) = \text{no-stut}(s_0) \xrightarrow{b_1} b_i \xrightarrow{a_{i,1}a_{i,2} \ldots} s_i \). By the latter fact and the proper prefix property, there is a \(v \) such that \(\Omega(s_i, v) \neq \Omega(s_{i + 1}, v) \), and so \(a_{i,v} \) is visible. We use the smallest such \(v \).

Observe that if D1 is applied at \(s_i \) to move event \(a_{i,j} \) to the front, where \(j > v \), or D2w is applied, then \(a_{i+1,k} = a_{i,k} \) for \(1 \leq k \leq v \). If the same also happens at \(s_{i + 1} \), then \(a_{i+2,k} = a_{i,k} \) for \(1 \leq k \leq v \), and so on, either forever or until D1 is applied such that \(j \leq v \), whichever comes first. We show next that the latter comes first.

Because \(S_\rho \) is finite, we may let \(n = i + |S_\rho| \). By the pigeonhole principle, \(s_1, \ldots, s_n \) cannot all be distinct. So the execution \(s_i \xrightarrow{b_1} s_2 \xrightarrow{b_2} s_n \) contains a cycle. L implies that there is an \(i \leq l < n \) such that \(a_{i,v} \in r(s_l) \). This guarantees that there is the smallest \(h \) such that \(i \leq h < i + |S_\rho| \) and \(\{a_{i,1}, \ldots, a_{i,v}\} \cap r(s_h) \neq \emptyset \). Observe that at any step \(i \leq i' < h \), whether D1 is applied to move \(a_{i',j} \) forward, where \(j > v \), or D2w is applied to introduce a key event, we have \(a_{i',v} = a_{i,v} \). Furthermore, for all \(i \leq i' < h \), V and the fact that \(a_{i,v} \notin r(s_i) \) imply that \(b_{i'} \) must be invisible, so the priorities occurring before and after \(a_{i,v} \) are preserved, that is, \(\Omega(s_i, v) = \Omega(s_i', v) = \Omega(s_{i + 1}, v) \). By D1, \(b_{h+1} \) is one of \(a_{h,1}, \ldots, a_{h,v} \). So either \(b_{h+1} = a_{i,v} \) or \(a_{i,v} = a_{h+1,1}a_{h+1,2}^{-1} \). In the latter case, \(s_{i'+1} = s_{i'+1,v} = s_{i'+1,v} \).

Repeating the argument at most \(v \) times proves that there is \(i \leq h < i + v |S_\rho| \) such that \(b_{h+1} = a_{i,v} \). Furthermore, we have \(\Omega(s_i) = \Omega(s_{i,v-1}) = \Omega(s_{i+1}) = \Omega(s_{i+1,v}) \), which contradicts \(\text{no-stut}(\rho) = \text{no-stut}(s_0) \xrightarrow{b_{h+1}} s_i \).
that originate from the subformula \(\langle - \rangle \) depicted on the right. The edges in the labelled parity game transition system is depicted on the left and a possible parity clearly this property holds true of the process. Below, the must unavoidably be done within a finite number of steps;

Example 5 Consider the process \((a \parallel b) \cdot c\), in which actions \(a\) and \(b\) are executed in (interleaved) parallel, and action \(c\) is executed upon termination of both \(a\) and \(b\). In the context of this process, the \(\mu\)-calculus property \(\mu X. ([a]X \land [b]X \land \langle - \rangle true)\), also expressible in LTL, expresses that the action \(c\) must unavoidably be done within a finite number of steps; clearly this property holds true of the process. Below, the transition system is depicted on the left and a possible parity game encoding of our liveness property on this state space is depicted on the right. The edges in the labelled parity game that originate from the subformula \(\langle - \rangle true\) are labelled with \(d\).

Whereas the state space of the process can be reduced by prioritising \(a\) or \(b\), the labelled parity game cannot be reduced due to the presence of a \(d\)-labelled edge in every node. For example, if \(s\) is the top-left node in the labelled parity game, then \(r(s) = \{a, d\}\) violates condition \(D1\), since the execution \(s \to d\) exists, but \(s \to b\) does not.

In order to deal with games that contain triangular structures, we propose a condition that is weaker than \(D2w\).

\[D2t \] There is an event \(a \in r(s)\) such that for all \(a_1 \neq r(s), \ldots, a_n \neq r(s)\), if \(s \xrightarrow{a_1} s_1 \xrightarrow{a_2} \ldots \xrightarrow{a_n} s_n\), then either \(s_n \xrightarrow{a} s'\) or there are nodes \(s', s_1', \ldots, s_n'\) such that \(s \xrightarrow{a} s' \xrightarrow{a_1} s_1' \xrightarrow{a_2} \ldots \xrightarrow{a_n} s_n'\) and for all \(i\), \(s_i = s_i'\) or \(s_i \xrightarrow{a_i} s_i'\).

Theorem 1 holds even for reduction functions satisfying the weak stubborn set conditions in which condition \(D2t\) is used instead of condition \(D2w\). The proof thereof resorts to a modified construction of a mimicking winning strategy that is based on Lemma 7, described below, instead of Lemma 4.

Lemma 7 Let \(r\) be a reduction function satisfying conditions \(D1, D2t, V, I, L\). Suppose \(\pi = s_0 \xrightarrow{a_1} s_1 \xrightarrow{a_2} \ldots \) is such that \(a_i \notin r(s_0)\) for every \(a_i\) occurring on this execution. Then, the following holds:

- If \(\pi\) ends in \(s_n\), there exist a key event \(a_{key}\) and nodes \(s_0', \ldots, s_n'\) such that:
 \[
 s_n \xrightarrow{a_{key}} s_n' \\
 s_0 \xrightarrow{a_{key}} s_0' \xrightarrow{a_1} s_1' \ldots \xrightarrow{a_n} s_n'\]
 and \(s_0 = s_0'\) and \(\pi = s_0' s_1' \ldots s_n'\).

- If \(\pi\) is infinite, there exists another execution \(s_0 \xrightarrow{a_{key}} s_0' \xrightarrow{a_1} s_1' \ldots\) and \(\pi = s_0' s_1' \ldots\).

Proof Let \(a_{key} \in r(s_0)\) be an invisible key event; its existence follows from Lemma 2 and \(s_0 \xrightarrow{a_{key}} s_1\) and \(a_1 \notin r(s_0)\).

In case \(\pi\) has finite length \(n\), we derive the existence of \(s \xrightarrow{a_{key}} s' \xrightarrow{a_1} \ldots \xrightarrow{a_n} s_n'\) either directly from \(D2t\) (if \(s_n = s_n'\)) or from \(D1\) (if \(s_n \xrightarrow{a_{key}} s_n'\)). Stutter-equivalence follows by the same reasoning as in Lemma 3.

If \(\pi\) is infinite, we distinguish the following cases:

- If \(s \xrightarrow{a_{key} a_1 \ldots a_i} s_i\) for some \(i\), we can trivially extend this execution along \(\pi\) to obtain \(\pi' = s \xrightarrow{a_{key} a_1 \ldots a_i} s_i \xrightarrow{a_{i+1}} s_{i+1} \xrightarrow{a_{i+2}} \ldots\)
- Otherwise, if there is no \(i\) such that \(s \xrightarrow{a_{key} a_1 \ldots a_i} s_i\), we can apply the same reasoning as in the proof of Lemma 4.
With the fact that a_{key} is invisible and $s_i \xrightarrow{a_{key}} s_i'$ or $s_i = s_i'$, we conclude that $\pi \equiv \pi'$.

We remark that the concepts of triangular and rectangular structures bear similarities to the concept of weak confluence from [12].

4 Parameterised Boolean equation systems

Parity games are used, among others, to solve parameterised Boolean equation systems (PBESs) [13], which, in turn, are used to answer, e.g., first-order modal μ-calculus model checking problems [5]. In the remainder of this paper, we show how to apply POR in the context of solving a PBES (and, hence, the encoded decision problem). We first introduce PBESs and show how they induce labelled parity games.

A parameterised Boolean equation system is a sequence of fixed point equations over predicate formulae, i.e., first-order logic formulae with second order variables. A PBES is given in the context of an abstract data type, which is used to reason about data. Non-empty data sorts of the abstract data type are typically denoted with the letters D and E. The corresponding semantic domains are \mathbb{D} and \mathbb{E}. We assume that sorts B and N represent the Booleans and the natural numbers respectively, and have \mathbb{B} and \mathbb{N} as semantic counterparts. The set of data variables is \mathcal{V}, and its elements are usually denoted with d and e. To interpret expressions with variables, we use a data environment δ, which maps every variable in \mathcal{V} to an element of the corresponding sort. The semantics of an expression f in the context of such an environment is denoted $[[f]]\delta$. For instance, $[[x < 2 + y]]\delta$ holds true iff $\delta(x) < 2 + \delta(y)$. To update an environment, we use the notation $\delta[v/d]$, which is defined as $\delta[v/d](d) = v$ and $\delta[v/d](d') = \delta(d')$ for all variables $d \neq d'$.

For conciseness, we only consider PBESs in standard recursive form (SRF) [29], a normal form in which each right-hand side of an equation is a guarded formula instead of an arbitrary (monotone) predicate formula. We remark that a PBES can be rewritten to SRF in linear time, while the number of equations grows linearly in the worst case [29, Proposition 2]. For a formalisation of the transformation to SRF, see [26, section 3.1].

Let \mathcal{X} be a countable set of predicate variables. In the exposition that follows we assume for the sake of simplicity (but without loss of generality) that all predicate variables $X \in \mathcal{X}$ are of type D. We permit ourselves the use of non-uniformly typed predicate variables in our example.

Definition 6 A guarded formula ϕ is a disjunctive or conjunctive formula of the form:

$$\bigvee_{j \in J} \exists e_j : E_j \wedge X_j(g_j) \quad \text{or} \quad \bigwedge_{j \in J} \forall e_j : E_j \Rightarrow X_j(g_j)$$

where J is an index set, each f_j is a Boolean expression, referred to as guard, every e_j is a (bound) variable of sort E_j, each g_j is an expression of type D and each X_j is a predicate variable of type D. A guarded formula ϕ is said to be total if for each data environment δ, there is a $j \in J$ and $v \in E_j$ such that $[[f_j]]\delta[v/e_j]$ holds true.

We refer to the conjuncts, respectively, disjuncts, of a guarded formula as clauses. The denotational semantics of a guarded formula is given in the context of a data environment δ for interpreting data expressions and a predicate environment $\eta : \mathcal{X} \rightarrow 2^\mathbb{D}$, yielding an interpretation of $X_j(g_j)$ as the truth value $\eta(g_j) \delta \in \eta(X_j)$. Given a predicate environment and a data environment, a guarded formula induces a monotone operator on the complete lattice $(2^\mathbb{D}, \subseteq)$. By Tarski’s theorem, least (μ) and greatest (ν) fixed points of such operators are guaranteed to exist.

Definition 7 A parameterised Boolean equation in SRF normal form is an equation that has the shape

$$(\mu X(d:D) = \phi(d)) \text{ or } (\nu X(d:D) = \phi(d)),$$

where $\phi(d)$ is a total guarded formula in which d is the only free data variable. A parameterised Boolean equation system in SRF is a sequence of parameterised Boolean equations in SRF, in which no two equations have the same left-hand side variable.

Henceforward, let

$$\mathcal{E} = (\sigma_1 X_1(d:D) = \varphi_1(d)) \ldots (\sigma_n X_n(d:D) = \varphi_n(d))$$

be a fixed, arbitrary PBES in SRF, where $\sigma_i \in \{\mu, \nu\}$. The set of bound predicate variables of \mathcal{E}, denoted by $\bnd(\mathcal{E})$, is the set $\{X_1, \ldots, X_n\}$. If the predicate variables occurring in the guarded formulae $\varphi_i(d)$ of \mathcal{E} are taken from $\bnd(\mathcal{E})$, then \mathcal{E} is said to be closed; we only consider closed PBESs. Every bound predicate variable is assigned a rank, where $\text{rank}_\mathcal{E}(X_i)$ is the number of alternations in the sequence of fixpoint symbols $\nu \sigma_1 \sigma_2 \ldots \sigma_l$. The sequence of fixpoint symbols in this definition is prepended with a ν to ensure that $\text{rank}_\mathcal{E}(X_i)$ is even if and only if $\sigma_i = \nu$. We use the function $\text{op}_{\mathcal{E}} : \bnd(\mathcal{E}) \rightarrow \{\lor, \land\}$ to indicate for each predicate variable in \mathcal{E} whether the associated equation is disjunctive or conjunctive. As a notational convenience, we write J_i to refer to the index set of the guarded formula $\varphi_i(d)$, and we assume that the index sets are disjoint for different equations.

Note that for the sake of simplicity, we only consider PBESs in which each equation carries the same parameter $d:D$. The theory presented in the following can be straightforwardly extended to support PBESs where each equation has a different number of parameters, something we also permit ourselves in the examples.
4.1 Semantics

The standard denotational fixed point semantics of a closed PBES associates a subset of \(\mathbb{D} \) to each bound predicate variable (i.e., their meaning is independent of the predicate environment used to interpret guarded formulae). For details of the standard denotational fixed point semantics of a PBES we refer to [13]. We forego the denotational semantics and instead focus on the (provably equivalent, see e.g. [6,29]) game semantics of a PBES in SRF. Below, recall that, in the PBES \(\mathcal{E} \) that we fixed, each predicate variable \(X_i \) carries a data parameter named \(d \) and uses the set \(J_i \) to index the clauses in its right-hand side.

Definition 8 The solution to \(\mathcal{E} \) is a mapping \([\mathcal{E}] : \text{bnd}(\mathcal{E}) \rightarrow 2^\mathbb{D} \), defined as

\[
[\mathcal{E}](X_i) = \{ v \in \mathbb{D} | (X_i, v) \text{ is won by } \Diamond \text{ in } G_{\mathcal{E}} \},
\]

where \(X_i \in \text{bnd}(\mathcal{E}) \) and \(G_{\mathcal{E}} \) is the parity game associated with \(\mathcal{E} \). The game \(G_{\mathcal{E}} = (V, E, \Omega, \mathcal{P}) \) is defined as:

- \(V = \text{bnd}(\mathcal{E}) \times \mathbb{D} \) is the set of nodes;
- \(E \) is the edge relation, satisfying \((X_i, v) \rightarrow (X_j, w) \) for given \(X_i, j \in J_i, v \) and \(w \) if and only if there exists an environment \(\delta \) such that both \([f_j]\delta[v/d] \) and \(w = [g_j]\delta[v/d] \) hold;
- \(\Omega((X_i, v)) = \text{rank}_{\mathcal{E}}(X_i) \); and
- \(\mathcal{P}((X_i, v)) = \Diamond \text{ iff } \text{opt}_{\mathcal{E}}(X_i) = \vee \).

In the definition of the transition relation \(E \), the successors of \((X_i, v) \) are exactly those \((X_j, w) \) which may influence the validity of the right-hand side \(\varphi_i \) of \(X_i \); this does not depend on whether \(\varphi_i \) is disjunctive or conjunctive. Note that the parity game \(G_{\mathcal{E}} \) may have an infinite state space when \(\mathbb{D} \) is infinite. In practice, we are often interested in the part of the parity game that is reachable from some initial node \((X, v) \); this is often (but not always) finite. We illustrate the PBES semantics with an example.

Example 6 Consider the following PBES \(\mathcal{E} \) in SRF:

\[
\begin{align*}
vX(b; B) &= (b \land Z) \lor \\
\exists n : N. &n \leq 2 \land Y(b, n) \\
\mu Y(b; B, n; N) &= true \Rightarrow Y(false, 0) \\
vZ &= true \land Y(false, 0)
\end{align*}
\]

The six nodes in the parity game \(G_{\mathcal{E}} \) which are reachable from \((X, true) \) are depicted in Fig. 8. We study the clause \(\exists n : N. n \leq 2 \land Y(b, n) \) in detail. The conditions \([n \leq 2] \delta[true/b] \) and \(true, 2 = [b, n] \delta[true/b] \) from Definition 8 are satisfied if \(\delta(n) = 2 \). Hence, the edge \((X, true) \rightarrow (Y, true, 0) \) is present in the game. In fact, all three horizontal edges at the top stem from this same clause.

The leftmost vertical edge originates from the clause \(b \land Z \), while the horizontal edge from \(Z \) to \((Y, false, 0) \) originates from \(true \land Y(false, 0) \). The remaining edges, including the selfloop, are induced by the clause \(true \Rightarrow Y(false, 0) \).

All plays in this game end in the node \((Y, false, 0) \) and iterate there ad infinitum. Since its priority is odd, all plays – and consequently all nodes – are won by player odd. This means that the semantics of \(\mathcal{E} \) satisfies \(true \notin [\mathcal{E}](X) \).

As suggested by the above example, each edge is associated with (at least) one clause in \(\mathcal{E} \). Consequently, we can use the index sets \(J_i \) to event-label the edges emanating from nodes associated with the equation for \(X_i \). We denote the set of all events in \(\mathcal{E} \) by \(\text{evt}(\mathcal{E}) \), defined as \(\text{evt}(\mathcal{E}) = \bigcup_{X_i \in \text{bnd}(\mathcal{E})} J_i \).

Definition 9 Let \(G_{\mathcal{E}} \) be the parity game associated with \(\mathcal{E} \). The labelled parity game associated with \(\mathcal{E} \) is the structure \((G_{\mathcal{E}}, \text{evt}(\mathcal{E}), \ell) \), where \(G_{\mathcal{E}} \) as defined in Definition 8, and, for \(j \in J_i \), we have

\[
\ell(j) = \{(X_i, v), (X_j, w) | [f_j]\delta[v/d] \text{ holds true and } w = [g_j]\delta[v/d] \text{ for some } \delta\}
\]

It follows from the definition that the event \(j \in J_i \) is invisible if \(\text{rank}_{\mathcal{E}}(X_i) = \text{rank}_{\mathcal{E}}(X_j) \) and \(\text{opt}_{\mathcal{E}}(X_i) = \text{opt}_{\mathcal{E}}(X_j) \), and visible otherwise. Since solving the parity game \(G \) corresponding to a PBES \(\mathcal{E} \) also yields a solution for \(\mathcal{E} \) (Definition 8) and POR preserves the solution of a parity game (Theorem 1), it suffices to solve a reduced game \(G_r \) to obtain a (partial) solution to \(\mathcal{E} \).

As discussed before, our main application domain is model checking. When checking a \(\mu \)-calculus formula \(\varphi \) on a transition system \(T \), we typically only need to determine whether the initial node of \(T \) satisfies \(\varphi \). That corresponds to finding the solution of a single node \((X, v) \) in the PBES that encodes \(T \) and \(\varphi \). Our approach is thus, given a PBES \(\mathcal{E} \), to compute a reduced game \(G_r \), starting from \((X, v) \), and then determine the winner of \((X, v) \) in \(G_r \). If \(G_r \) is sufficiently smaller than the full game \(G \) and the overhead of computing the reduction function \(r \) is limited, this is faster than solving the PBES through the full game \(G \).
Definition 10 Let \(R \subseteq \text{evt}(E) \times \text{evt}(E) \) an equivalence relation on events and \(\text{evt}(E)/R \) the corresponding set of equivalence classes. Then, the labelled parity game corresponding to \(E \) and \(R \) is the structure \((G_E, \text{evt}(E)/R, \ell)\), where \(G_E \) is the parity game corresponding to \(E \), and, for all \(X_i \in \text{evt}(E) \) and \(J \in \text{evt}(E)/R \), the labelling \(\ell(J) \) is defined as follows:

\[
\ell(J) = \bigcup_{X_i \in \text{evt}(E), J = ((X_i, v), (X_j, w))} \{((X_i, v), (X_j, w)) \mid \llbracket f_j \rrbracket \| v/d \} \text{ holds true and } w = \llbracket g_j \rrbracket \| v/d \text{ for some } \delta \}
\]

Here, an event \(J \in \text{evt}(E)/R \) is invisible if and only if all its constituting clauses \(j \in J \) are invisible. Henceforth, we adopt the strategy to identify two clauses \(j \) and \(j' \) when the corresponding conditions and update expressions are syntactically equal, i.e., we set \(j \models R \models j' \) iff \(f_j = f_{j'} \) and \(g_j = g_{j'} \).

4.2 Choice of edge labelling

The labelled parity game derived from a PBES \(E \) associates exactly one event with every clause in \(E \). However, our POR correctness theorem (Theorem 1) in principle allows any edge labelling as long as the stubborn set conditions are satisfied. The choice for the labelling function does influence the amount of reduction that can be achieved. In the extreme cases that every edge has a unique label or all edges are labelled the same, no reduction can be achieved. The below example shows a case for which our current labelling function hinders reduction.

Example 7 Consider the SRF-PBES below, where the name of each clause is indicated on the right, and its labelled parity game in Fig. 9.

\[
\begin{align*}
\nu X(b; B) &= b \land X(false) & (a_1) \\
\lor Y(b) & & (a_2) \\
\mu Y(b; B) &= b \implies Y(false) & (a_3) \\
\land \neg b & \implies Z & (a_4) \\
\nu Z &= Z & (a_5)
\end{align*}
\]

Note that \(a_2 \) and \(a_4 \) are visible; the other events are invisible. It is impossible to reduce the parity game: the only viable location is \((X, true)\), but it does not allow stubborn sets smaller than \([a_1, a_2, a_4]\). Setting \(r((X, true)) = [a_1] \) is not possible due to \(D2w \), since \(a_1 \) is not a key event in that case. Conversely, \(r((X, true)) = [a_2] \) is not allowed by \(D1 \). Furthermore, if we have \(a_2 \in r((X, true)) \), then \(V \) requires that \(a_4 \in r((X, true)) \). However, if we label both the \(a_1 \) edge and the \(a_3 \) edge with \(a \), then it becomes possible to set \(r((X, true)) = [a] \).

The example suggests that it can be beneficial to use the same event for multiple clauses. Specifying which clauses should correspond to the same event can be done with an equivalence relation on clauses. The next definition formalises the parity game that follows from such an equivalence relation.

Definition 10 Let \(E \) be an SRF-PBES, \(R \subseteq \text{evt}(E) \times \text{evt}(E) \) an equivalence relation on events and \(\text{evt}(E)/R \) the corresponding set of equivalence classes. Then, the labelled parity game corresponding to \(E \) and \(R \) is the structure \((G_E, \text{evt}(E)/R, \ell)\), where \(G_E \) is the parity game corresponding to \(E \), and, for all \(X_i \in \text{evt}(E) \) and \(J \in \text{evt}(E)/R \), the labelling \(\ell(J) \) is defined as follows:

\[
\ell(J) = \bigcup_{X_i \in \text{evt}(E), J = ((X_i, v), (X_j, w))} \{((X_i, v), (X_j, w)) \mid \llbracket f_j \rrbracket \| v/d \} \text{ holds true and } w = \llbracket g_j \rrbracket \| v/d \text{ for some } \delta \}
\]

Here, an event \(J \in \text{evt}(E)/R \) is invisible if and only if all its constituting clauses \(j \in J \) are invisible. Henceforth, we adopt the strategy to identify two clauses \(j \) and \(j' \) when the corresponding conditions and update expressions are syntactically equal, i.e., we set \(j \models R \models j' \) iff \(f_j = f_{j'} \) and \(g_j = g_{j'} \).
such as “for all \(s \in V \), it holds \(s \xrightarrow{a} \)” can be approximated
on the PBES level by checking whether the event \(a \) occurs in
each right-hand side of the PBES and evaluating the expression
\(\forall d: D \exists e_j; E_j, f_j \land X_j(g_j) \) where \(d \) is the data parameter
carried by each equation in our PBES \(\mathcal{E} \). Whether this closed Boolean
expression is equal to \textit{true} or \textit{false} can, for example, be determined with the help of an SMT-solver.

To reason about which events are independent, we rely on
the idea of \textit{accordance}.

Definition 11 Let \(a, b \in \mathcal{A} \). We define the accordance
relations \(\text{DNL}, \text{DNS}, \text{DNT} \) and \(\text{DNA} \) on \(\mathcal{A} \) as follows:

- \(a \) \textit{left-accords} with \(b \) if for all nodes \(s, s' \in V \), if \(s \xrightarrow{ba} s' \),
 then also \(s \xrightarrow{ab} s' \). If \(a \) does not left-accord with \(b \), we
 write \((a, b) \notin \text{DNL}\).

- \(a \) \textit{square-accords} with \(b \) if for all nodes \(s, s_1, s_2 \in V \),
 if \(s \xrightarrow{\alpha} s_1 \) and \(s \xrightarrow{\alpha} s_2 \), then for some \(s' \in V \),
 \(s_1 \xrightarrow{b} s' \) and \(s_2 \xrightarrow{b} s' \). If \(a \) does not square-accord with \(b \) we write
 \((a, b) \notin \text{DNS}\).

- \(a \) \textit{triangle-accords} with \(b \) if for all nodes \(s, s_1, s_2 \in V \),
 if \(s \xrightarrow{\alpha} s_1 \) and \(s \xrightarrow{\alpha} s_2 \), then \(s_2 \xrightarrow{b} s_1 \). If \(a \) does not
 triangle-accord with \(b \) we write \((a, b) \notin \text{DNT}\).

- \(a \) \textit{accords} with \(b \) if a square-accords or triangle-accords
 with \(b \). If \(a \) does not accord with \(b \) we write \((a, b) \notin \text{DNA}\).

Note that \(\text{DNL} \) and \(\text{DNT} \) are not necessarily symmetric
relations. An illustration of the conditions for left-according,
square-according and triangle-according is given in Fig. 10.

For the case of left-accordance, we illustrate how the
definition can be translated to an analysis on the level of
PBESs. Recall that a clause \(\exists e_j; E_j, f_j \land X_j(g_j) \) (respectively
\(\forall e_j; E_j, f_j \Rightarrow X_j(g_j) \)) contains a condition \(f_j \) as well
as an update expression \(g_j \) that determines what the next
state is. The expression \(f_j \), respectively, \(g_j \), depends on the
data parameter \(d \) of the surrounding equation, as well as on the
quantified variable \(e_j \). We write \(f_j(d, e_j) \), respectively,
\(g_j(d, e_j) \), to make this explicit. Given an event \(a \) (or, equivalently, equivalence class of clauses), we write \(X_i \xrightarrow{a} Y \) if
and only if there is a \(j \in a \cap J_i \) such that \(Y = X_j \), i.e., a
clause \(j \in a \) occurs in the right-hand side of \(X_i \) and leads to
\(Y \). With this, left-accordance of \(a \) with \(b \) can be characterised exactly by

\[
\forall d, e_h, e_a, X, X_1, X' \in \text{bnd}(\mathcal{E}).(f_h(d, e_h) \land
f_a(g_h(d, e_h), e_a) \land X \xrightarrow{a} X_1 \land X_1 \xrightarrow{b} X') \Rightarrow
(\exists e'_a, e'_b, X_2 \in \text{bnd}(\mathcal{E}).f_b(d, e'_a) \land f_b(g_a(d, e'_a), e'_b) \land
\exists g_a(g_b(d, e'_b), e'_a) = g_h(g_a(d, e'_a), e'_b) \land
X \xrightarrow{a} X_2 \land X_2 \xrightarrow{b} X')
\]

This expression considers whether the left-accordance
condition is satisfied by the data expressions \(f_a, f_b, g_a \) and \(g_b \)
contained in \(\mathcal{E} \), as well as by the presence of clauses in different
equations (as captured by \(\xrightarrow{a} \) and \(\xrightarrow{b} \)).

Accordance relations safely approximate the independence
of events. The dependence of events, required for satisfying \(\text{D2w} \), can be approximated using Godefroid’s \textit{necessary enabling sets} [11].

Definition 12 Let \(a \) be an event that is disabled in some
node \(s \). A \textit{necessary-enabling set} (NES) for \(a \) in \(s \) is any
set \(\text{NES}_s(a) \subseteq \mathcal{A} \) such that for every execution \(s \xrightarrow{a_1 \ldots a_n} \)
there is at least one \(a_i \) such that \(a_i \in \text{NES}_s(a) \).

For every node and event there might be more than one
NES. In particular, every superset of a NES is also a NES.
A larger-than-needed NES may, however, have a negative
impact on the reduction that can be achieved. Given a PBES,
computing a NES can be done in a similar fashion as the
accordance relations, by constructing an expression over
elements of the clauses and analysing their presence in each
equation.

The following lemmata show how the accordance relations
and necessary-enabling set can be used to implement
conditions \(\text{D1}, \text{D2w} \) and \(\text{D2t} \), respectively. A combination
of Lemmata 8 and 9 in a deterministic setting appeared as
Lemma 1 in [22]. Note that as a notational convention we
write \(R(a) \) to denote the projection \(\{ b \mid (a, b) \in R \} \) of a
binary relation.

Lemma 8 A reduction function \(r \) satisfies \(\text{D1} \) in node \(s \in V \)
if for all \(a \in r(s) \):

- if \(a \) is disabled in \(s \), then \(\text{NES}_s(a) \subseteq r(s) \) for some \(\text{NES}_s \);
- if \(a \) is enabled in \(s \), then \(\text{DNL}(a) \subseteq r(s) \).

Proof Let \(s \) be an arbitrary node and let \(r \) be a reduction
function that satisfies the conditions above. Furthermore, let
\(s \xrightarrow{a_1 \ldots a_n} s'_n \) be an execution such that \(a_1 \notin r(s) \), ..., \(a_n \notin r(s) \) and \(a \in r(s) \). We distinguish the following cases:

- If \(a \) is disabled in \(s \), it must hold that \(\text{NES}_s(a) \subseteq r(s) \)
 for some \(\text{NES}_s \). However, according to the definition of a
 necessary-enabling set, at least one of \(a_1, \ldots, a_n \) is contained
 in \(\text{NES}_s(a) \) and thus in \(r(s) \). Since this contradicts
 our assumption that \(a_1 \notin r(s) \), ..., \(a_n \notin r(s) \), we conclude
 that the execution \(s \xrightarrow{a_1 \ldots a_n} s'_n \) does not exist, and
 so \(\text{D1} \) is satisfied.

- If \(a \) is enabled in \(s \), it must be that \(\text{DNL}(a) \subseteq r(s) \).
 Since that implies \(a_1, \ldots, a_n \notin \text{DNL}(a) \), it follows that for
every \(a_i \) and all nodes \(t, t_1 \) and \(t' \), the following holds:
By inductively applying this implication from right to left on the execution \(s^a \rightarrow^\ast s_n^a \rightarrow^a s_n \), we derive the existence of the dashed transitions in the figure below.

![Fig. 10 Illustrations of the concepts left-according, square-according and triangle-according](image)

By inductively applying this implication from right to left on the execution \(s^a \rightarrow^\ast s_n^a \rightarrow^a s_n \), we derive the existence of the dashed transitions in the figure below.

![Fig. 10 Illustrations of the concepts left-according, square-according and triangle-according](image)

We conclude that the conditions of D1 are satisfied. □

Lemma 9 A reduction function \(r \) satisfies D2w in a node \(s \in V \) if there is an enabled event \(a \in r(s) \) such that \(DNS(a) \subseteq r(s) \).

Proof Let \(s^a \rightarrow^\ast s_n^a \rightarrow^a s_n \) be an execution such that all \(a_1, \ldots, a_n \notin r(s) \) and let \(a \in r(s) \cap enabled(s) \) be an event such that \(DNA(a) \subseteq r(s) \). We distinguish two cases:

- It holds that \(a_1, \ldots, a_n \notin DNT(a) \). Since \(a_1 \notin r(s), \ldots, a_n \notin r(s) \) and \(r(s) \supseteq DNA(a) = DNS(a) \cap DNT(a) \), we can deduce that \(a_1, \ldots, a_n \notin DNS(a) \). By following the same reasoning as in the proof of Lemma 9, we derive the validity of D2t.
- There is an \(0 < i \leq n \) such that \(ai \notin DNT(a) \). We consider the smallest such \(i \), i.e., \(a_1, \ldots, ai-1 \in DNT(a) \). With \(ai \notin r(s), \ldots, ai \notin r(s) \) and \(r(s) \supseteq DNA(a) = DNS(a) \cap DNT(a) \), we deduce that \(a_1, \ldots, ai-1 \notin DNS(a) \) and \(ai \notin DNT(a) \).

Thus \(a \) satisfies the conditions of D2t. □

More reduction can be achieved if a PBES is partly or completely “deterministic”, in which case some of the conditions can be relaxed. We say that an event \(a \) is deterministic, denoted by \(det(a) \), if for all nodes \(t, t', t'' \in V \), if \(t \not\rightarrow_t t' \) and \(t \not\rightarrow_t t'' \), then also \(t' = t'' \). This means event-determinism can be characterised as follows:

\[
det(a) \iff \exists f_a \delta \text{ and } \exists f_a' \delta' \implies [g_a] \delta = [g_a] \delta'
\]

for all \(\delta, \delta' \) with \(\delta(d) = \delta'(d) \).

The following lemma specialised Lemma 8 and shows how knowledge of deterministic events can be applied to potentially improve the reduction.

Lemma 10 A reduction function \(r \) satisfies D2t in a node \(s \in V \) if there is an enabled event \(a \in r(s) \) such that \(DNA(a) \subseteq r(s) \).

Proof Let \(s^a \rightarrow^\ast s_n^a \rightarrow^a s_n \) be an execution such that all \(a_1, \ldots, a_n \notin r(s) \) and let \(a \in r(s) \cap enabled(s) \) be an event such that \(DNA(a) \subseteq r(s) \). We distinguish two cases:

- It holds that \(a_1, \ldots, a_n \notin DNT(a) \). Since \(a_1 \notin r(s), \ldots, a_n \notin r(s) \) and \(r(s) \supseteq DNA(a) = DNS(a) \cap DNT(a) \), we can deduce that \(a_1, \ldots, a_n \notin DNS(a) \). By following the same reasoning as in the proof of Lemma 9, we derive the validity of D2t.
- There is an \(0 < i \leq n \) such that \(ai \notin DNT(a) \). We consider the smallest such \(i \), i.e., \(a_1, \ldots, ai-1 \in DNT(a) \). With \(ai \notin r(s), \ldots, ai \notin r(s) \) and \(r(s) \supseteq DNA(a) = DNS(a) \cap DNT(a) \), we deduce that \(a_1, \ldots, ai-1 \notin DNS(a) \) and \(ai \notin DNT(a) \).

Thus \(a \) satisfies the conditions of D2t. □

More reduction can be achieved if a PBES is partly or completely “deterministic”, in which case some of the conditions can be relaxed. We say that an event \(a \) is deterministic, denoted by \(det(a) \), if for all nodes \(t, t', t'' \in V \), if \(t \not\rightarrow_t t' \) and \(t \not\rightarrow_t t'' \), then also \(t' = t'' \). This means event-determinism can be characterised as follows:

\[
det(a) \iff \exists f_a \delta \text{ and } \exists f_a' \delta' \implies [g_a] \delta = [g_a] \delta'
\]

for all \(\delta, \delta' \) with \(\delta(d) = \delta'(d) \).

The following lemma specialised Lemma 8 and shows how knowledge of deterministic events can be applied to potentially improve the reduction.

Lemma 11 A reduction function \(r \) satisfies D1 in a node \(s \) if for all \(a \in r(s) \):

- if \(a \) is disabled in \(s \), then \(NES_s(a) \subseteq r(s) \) for some \(NES_s \); and
– if det(a) and a is enabled in s, then DNS(a) ⊆ r(s) or DNL(a) ⊆ r(s).
– if ¬det(a) and a is enabled in s, then DNL(a) ⊆ r(s).

Proof Let s be an arbitrary node and let r be a reduction function that satisfies the conditions above. For the cases where a is disabled or a is enabled and DNL(a) ⊆ r(s), see the proof of Lemma 8. Here, we only consider the new case where a is deterministic and enabled in s and DNS(a) ⊆ r(s).

Let \(s \xrightarrow{a_1\ldots a_n} s_n \xrightarrow{a} s_n' \) be an execution such that \(a_1 \notin r(s) \), \(\ldots, a_n \notin r(s) \) and \(a \in r(s) \) and let \(s \xrightarrow{a} s' \). The following implication holds for all \(a_i \) and nodes \(t, t_1 \) and \(t_2 \):

\[
\begin{align*}
t & \xrightarrow{a_1} t_1 & t & \xrightarrow{a} t_1 \\
\downarrow & \quad \quad \downarrow \quad \quad \downarrow & \downarrow \\
t_2 & \Rightarrow a & t_2 & \xrightarrow{a_i} t' \\
\end{align*}
\]

Applying this inductively from left to right on the transition \(s_n \xrightarrow{a_i} s_n' \) and the execution \(s \xrightarrow{a_1\ldots a_n} s_n \), we deduce the existence of the dashed transitions for some node \(s_n'' \).

\[
\begin{align*}
s & \xrightarrow{a_1} s_1 & \ldots & s_{n-1} & \xrightarrow{a_n} s_n \\
\downarrow & \quad \downarrow & \quad \downarrow & \quad \downarrow \\
s' & \xrightarrow{a} s_1' & \ldots & s_{n-1}' & \xrightarrow{a_n} s_n''
\end{align*}
\]

Since a is deterministic it follows that \(s_n' = s_n'' \). Regardless of whether a is invisible, the transitions \(s_i \xrightarrow{a} s_i' \) are present for every \(1 \leq i < n \), and thus D1 is satisfied. \(\square \)

Since relations DNS and DNL are incomparable we cannot decide a priori which should be used for deterministic events. However, Lemma 11 permits the choice between DNS and DNL to be made individually for every state, so we can do this during exploration of the state space. This choice can be made based on a heuristic function, similar to the function for NESs proposed in [22].

As sketched above, both the accordance relations and the NESs can be computed based on the condition \(f_a \) and update expression \(g_a \) associated with each clause, as well as the presence of clauses captured by \(\xleftarrow{a} \). Evaluation of the expressions constructed in this way can be computationally expensive, so often it is better to compute a (cheaper) approximation. In a PBES with multiple parameters per predicate variable, this can, for example, be done by analysing which parameters influence the validity of condition \(f_a \) and which parameters are changed in the update functions \(g_a \). Two clauses \(a \) and \(b \) that operate on disjoint sets of parameters are often left- and square-according (depending on \(\xleftarrow{a} \) and \(\xrightarrow{b} \)). NESs may be approximated using techniques to extract control flow graphs from a PBES [19], although we have not done so.

6 Experiments

We implemented the ideas from the previous section in a prototype tool, called pbespor, as part of the mCRL2 toolset [5]; it is written in C++. Our tool converts a given input PBES to a PBES in SRF, runs a static analysis to compute the accordance relations (see Sect. 5), and uses a depth-first exploration to compute the parity game underlying the PBES in SRF. Since our previous work [30], we have updated the implementation to produce stubborn sets that adhere to the new condition P. The static analysis relies on an external SMT solver. (We use Z3 in our experiments.) Experiments are conducted on a machine with four Intel Xeon 6136 CPUs @ 3.00GHz and 3TB of RAM, running mCRL2 with Git commit hash b7976da39c4e. All our code is single-threaded, so similar performance may be obtained on a more modest machine.

To measure the effectiveness of our implementation, we analysed the following models, encoded in mCRL2:

- Anderson’s mutual exclusion protocol [1], the dining philosophers problem, the gas station problem [15], Hesselink’s handshake register [16], Le Lann’s leader election protocol [23], Milner’s Scheduler [25] and the Krebs cycle of ATP production in biological cells (model inspired by [31]). Most of these models are scalable, i.e., the number of components can easily be adjusted. Each model is subjected to one or more requirements phrases as mCRL2’s first-order modal µ-calculus formulae. If possible, Table 1 provides a CTL* formula that captures the essence of the requirement.

We analyse the effectiveness of our partial-order reduction technique by measuring the reduction of the size of the state space, and the time that is required to generate the state space. Since the static analysis that is conducted can require a non-negligible amount of time, we pay close attention to the various forms of static analysis that can be conducted. In particular, we compare the total time and effectiveness (in terms of reduction) of running the following static analysis:

- computing left-accordance (the relation DNL) vs. over-approximating it with the complete relation.
- computing a NES vs. over-approximating it with the set of all events \(\mathcal{A} \).
- using D2w vs. the use of D2t (i.e., use Lemma 9 vs. Lemma 10);

\[\text{The models are archived online at } \text{https://doi.org/10.5281/zenodo.3602969.} \]
As a baseline for comparisons, we take a basic static analysis (over-approximated DNL, over-approximated NES, D2w), see column “basic” in Table 1. In order to guarantee termination of the static analysis phase, we set a timeout of 200 ms per formula that is sent to the solver. Table 1 reports on the statistics we obtained for exploring the full state space and the four possible POR configurations described above; the table is sorted with respect to the time needed for a full exploration. The time we list consists of the time needed to conduct the analysis plus the time needed for the exploration.

For most small instances, the time required for static analysis dominates any speed-up gained by the state space reduction. When the state spaces are larger, it becomes more likely to achieve a speed-up, while the highest overhead suffered by “basic” is 55% (Hesselin, cache consistency). Significant reduction can be achieved even for non-trivial properties, such as “lann.5” with “no data loss”. Scheduler is an extreme case: its processes have very few dependencies, leading to an exponential reduction, both in terms of the state space size and in terms of time. In several cases, the use of a NES or D2w brings extra reduction (highlighted in bold). Moreover, the extra time required to conduct the additional analysis seems limited. The use of DNL, on the other hand, never pays off in our experiments; it even results in a slightly larger state space in two cases. These results are very similar to those of our earlier experiments [30], and thus, the addition of condition P has little impact on the reduction for these particular PBESs.

We note that there are also models, not listed in Table 1, where our static analysis does not yield any useful results and no reduction is achieved. Even if in such cases a reduction would be possible in theory, the current static analysis engines are unable to deal with the more complex data types often used in such models; e.g., recursively defined lists or infinite sets, represented symbolically with higher-order constructions. This calls for further investigations into static analysis theories that can effectively deal with complex data.

Furthermore, we remark that all the models we listed here contain symmetry: two or more processes that show almost the same behaviour. This may mean that our results cannot be generalised to non-symmetric models, although [7] suggests that partial-order reduction and symmetry reduction exploit different aspects of a model.

Finally, we point out that in the case of, e.g., the dining philosophers problem, the relative reduction under the “no deadlock” property is much better than under the “∀□∀◊eat” property. This demonstrates the impact properties can have on the reductions achievable and the importance of the way edges are labelled. We explain this in the following example.

Example 8 Consider the PBES below, which encodes the formula \(\nu X. (\neg X \land \forall i. \mu Y. (i \neq 1) Y \land \neg \text{true}) \) on the transition system of Fig. 11a. For reference, in Table 1, we denoted formulae of this shape as \(\forall \square \forall \diamond a_i \). Below, the names of each of the clauses are indicated on the right.

\[
\begin{align*}
\nu X(b_0, b_1; B) &= b_0 \Rightarrow X(\text{false}, b_1) \\
& \land b_1 \Rightarrow X(b_0, \text{false}) \\
& \land \neg b_1 \Rightarrow X(b_0, b_1, b) \\
\end{align*}
\]

\[
\begin{align*}
\mu Y(b_0, b_1, B; b) &= (b \land b_0) \Rightarrow Y(\text{false}, b_1, b) \\
& \land (\neg b \land b_1) \Rightarrow Y(b_0, false, b) \\
& \land \neg (b \land b_0 \lor \neg b \land b_1) \Rightarrow Z \\
\mu Z &= Z
\end{align*}
\]

The event \(xy \) represents the transition from fixpoint \(X \) into \(Y \), which does not involve an action from the transition system. Note that the complete state space is encoded once in the fixpoint \(X \) and twice in \(Y \), albeit with a subset of the transitions. In the corresponding labelled parity game, depicted in Fig. 11b, no reduction can be achieved.

To achieve reduction in this example, we need to do three things. First, the quantifier in the clause \(xy \) needs to be unfolded; this yields two clauses, namely \(Y(b_0, b_1, false) \) (name \(xy_0 \)) and \(Y(b_0, b_1, true) \) (name \(xy_1 \)). Furthermore, we should identify clauses \(j_0 \) and \(j_0' \) (resp. \(j_1 \) and \(j_1' \)); the resulting event is called \(a_0 \) (resp. \(a_1 \)). Lastly, we have to change the fixpoint of \(X \) to ensure \(xy_0 \) and \(xy_1 \) are invisible. Remark that this does not change the solution of the PBES. In that case, four nodes can be eliminated, see Fig. 11c.

In the experiments, we achieve the identification of clauses \(j_0 \) and \(j_0' \) (resp. \(j_1 \) and \(j_1' \)) by partially instantiating the PBES [34]. This procedure is implemented in the mCRL2 tool pbesinst. In the example above, instantiating parameter \(b:B \) of \(Y \) results in two new equations:

\[
\begin{align*}
\mu Y_{\text{true}}(b_0, b_1) &= b_0 \Rightarrow Y_{\text{true}}(false, b_1) \\
& \land \neg b_0 \Rightarrow Z \\
\mu Y_{\text{false}}(b_0, b_1) &= b_1 \Rightarrow Y_{\text{false}}(b_0, false) \\
& \land \neg b_1 \Rightarrow Z
\end{align*}
\]

The clauses in these equations can be identified with the first two clauses in the right-hand side of \(X \) with our original strategy based on syntactic equivalence of the condition and update expressions.

7 Conclusion

We have presented an approach for applying partial-order reduction on parity games. This has two main advantages over POR applied on labelled transition systems or Kripke structures: our approach supports the full modal \(\mu \)-calculus, not just a fragment thereof, and the potential for reduction is greater, because we do not require a singleton proviso.
Table 1 Runtime (analysis + exploration; in seconds) and number of states when exploring either the full state space or the reduced state space, for four different static analysis approaches

Model	Property	Full Nodes	Full Time	Basic Nodes	Basic Time	+DNL Nodes	+DNL Time	+NES Nodes	+NES Time	+D2t Nodes	+D2t Time
gas station.c3	∃♦pumping	1261	0.11	967	0.89	967	2.20	967	1.77	967	1.55
gas station.c3	No deadlock	1197	0.13	735	0.79	735	2.17	735	1.69	735	1.27
gas station.c3	∃♦accept	1197	0.15	1077	0.83	1077	2.08	1077	1.55	735	1.36
scheduler8	No deadlock	3073	0.28	34	0.18	34	0.64	34	0.45	34	0.30
scheduler10	No deadlock	15361	1.70	42	0.23	42	0.77	42	0.59	42	0.36
anderson.5	∀♦cs	23597	4.44	2957	2.63	2957	5.56	2957	3.44	2957	4.26
hesselink	Cache consistent	91,009	5.66	82602	7.39	83,601	10.45	81,673	8.18	71,943	7.49
dining10	No deadlock	154,451	19.89	4743	1.59	4743	1.37	4743	1.00	4743	1.00
krebs.3	∀♦energy	238,877	24.17	232,273	25.93	232,273	25.93	232,273	25.93	232,273	25.93
gas station.c6	∃♦♦pumping	192,700	35.52	114,130	23.12	114,130	26.93	114,130	28.23	114,130	24.96
gas station.c6	∃♦accept	186,381	38.65	150,741	41.01	150,741	39.22	75,411	19.64	75,411	19.56
gas station.c6	No deadlock	186,381	47.52	75,411	21.41	75,411	24.11	75,411	24.51	75,411	23.09
scheduler14	No deadlock	344,065	58.11	58	1.20	58	0.94	58	0.55	58	0.55
hesselink	∀□(ur ⇒ ∃♦fin)	1,047,232	64.91	1,013,441	77.77	1,013,441	74.96	791,270	59.21	791,270	59.21
hesselink	∀□(ur ⇒ ∀♦fin)	1,047,232	70.82	791,371	61.25	791,371	58.82	791,339	59.21	791,339	59.21
lann.5	Consistent data	818,104	115.27	818,104	145.34	818,104	146.90	761,239	124.96	761,239	124.96
krebs.4	∀♦energy	1,047,406	136.06	971,128	122.04	971,128	104.05	971,128	122.04	971,128	120.08
anderson.5	∀♦cs	1,698,951	228.50	100,619	12.34	100,680	12.34	100,680	12.34	100,680	11.15
lann.5	No deadlock	1,286,452	182.16	453,130	68.91	453,130	67.42	453,130	67.42	453,130	64.17
dining10	∀□∀♦eat	3,964,599	1397.89	124,707	68.74	124,707	70.27	124,707	70.27	124,707	70.27
lann.5	∀□loc	7,077,889	1520.15	74	1.73	74	1.31	74	1.31	74	1.31

Figures printed in boldface indicate which of the additional static analyses is able to achieve the largest reduction over “basic” (if any)
Furthermore, we have shown how the ideas can be implemented with PBESs as a high-level representation. In future work, we aim to gain more insight into the effect of identifying events across PBES equations in several ways. We also want to investigate the possibility of solving a reduced parity game while it is being constructed. In certain cases, one may be able to decide the winner of the original game from this partial solution.

Acknowledgements We would like to thank the reviewers for their in-depth comments. Their suggestions helped us improve the presentation significantly.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Anderson, T.E.: The performance of spin lock alternatives for shared-memory multiprocessors. IEEE Trans. Parallel Distrib. Syst. 1(1), 6–16 (1990). https://doi.org/10.1109/71.80120
2. Baier, C., Katoen, J.P.: Principles of Model Checking. MIT Press, Cambridge (2008)
3. Bønneland, F.M., Jensen, P.G., Larsen, K.G., Muñiz, M.: Partial order reduction for reachability games. In: CONCUR 2019, 140, 23:1–23:15 (2019). https://doi.org/10.4230/LIPIcs.CONCUR.2019.23
4. Bønneland, F.M., Jensen, P.G., Larsen, K.G., Muñiz, M., Srba, J.: Stubborn set reduction for two-player reachability games. Log. Methods Comput. Sci. 17(1), 1–26 (2021). https://doi.org/10.23638/LMCS-17(1:21)2021
5. Bunte, O., Groote, J.F., Keiren, J.J.A., Laveaux, M., Neele, T., de Vink, E.P., Wesselink, J.W., Wijs, A.W., Willemse, T.A.C.: The mCRL2 toolset for analysing concurrent systems: improvements in expressivity and usability. In: TACAS 2019, LNCS, vol. 11428, pp. 21–39 (2019). https://doi.org/10.1007/978-3-030-17465-1_2
6. Cranen, S., Luttik, B., Willemse, T.A.C.: Proof graphs for parameterised Boolean equation systems. In: CONCUR 2013, LNCS, vol. 8052, pp. 470–484 (2013). https://doi.org/10.1007/978-3-642-40184-8_33
7. Emerson, E.A., Jha, S., Peled, D.: Combining partial order and symmetry reductions. In: TACAS 1997, LNCS, vol. 1217, pp. 19–34 (1997). https://doi.org/10.1007/BFb0053738
8. Evangelista, S., Pajault, C.: Solving the ignoring problem for partial order reduction. Int. J. Softw. Tools Technol. Transf. 12, 155–170 (2010). https://doi.org/10.1007/s10009-010-0137-y
9. Gazda, M., Willemse, T.A.C.: On parity game preorders and the logic of matching plays. In: SOFSEM 2016, LNCS, vol. 9587, pp. 277–289 (2016). https://doi.org/10.1007/978-3-662-49192-8_23
10. Gerth, R., Kuiper, R., Peled, D., Penczek, W.: A partial order approach to branching time logic model checking. Inf. Comput. 150(2), 132–152 (1999). https://doi.org/10.1006/inco.1998.2778
11. Godefroid, P.: Partial-Order Methods for the Verification of Concurrent Systems, LNCS, vol. 1032. Springer, Berlin (1996). https://doi.org/10.1007/3-540-60761-7
12. Groote, J.F., Sellink, M.P.A.: Confluence for process verification. Theor. Comput. Sci. 170(1–2), 47–81 (1996). https://doi.org/10.1016/s0304-3975(96)00175-2
13. Groote, J.F., Willemse, T.A.C.: Parameterised Boolean equation systems. Theor. Comput. Sci. 343(3), 332–369 (2005). https://doi.org/10.1016/j.tcs.2005.06.016
14. Grumberg, O., Long, D.E.: Model checking and modular verification. ACM Trans. Program. Lang. Syst. 16(3), 384–871 (1994). https://doi.org/10.1145/177492.177725
15. Heimbold, D., Luckham, D.: Debugging ada tasking programs. IEEE Softw. 2(2), 47–57 (1985). https://doi.org/10.1109/MS.1985.230351
16. Hesselink, W.H.: Invariants for the construction of a handshake register. Inf. Process. Lett. 68(4), 173–177 (1998). https://doi.org/10.1016/S0020-0190(98)00158-6
17. Ip, C.N., Dill, D.L.: Better verification through symmetry. Formal Methods Syst. Des. 9(1–2), 41–75 (1996). https://doi.org/10.1007/BF00625968
18. Kan, S., Huang, Z., Chen, Z., Li, W., Huang, Y.: Partial order reduction for checking LTL formulae with the next-time operator. J. Log. Comput. 27(4), 1095–1131 (2017). https://doi.org/10.1093/logcom/exw004
19. Keiren, J.J.A., Wesselink, J.W., Willemse, T.A.C.: Liveness analysis for parameterised Boolean equation systems. In: ATVA 2014, LNCS, vol. 8837, pp. 219–234 (2014). https://doi.org/10.1007/978-3-319-11936-6_16
20. Kozen, D.: Results on the propositional μ-calculus. Theor. Comput. Sci. 27(3), 333–354 (1982). https://doi.org/10.1016/0304-3975(82)90125-6
21. König, D.: Über eine Schlussweise aus dem Endlichen ins Unendliche. Acta Sci. Math. (Szeged) 3(2–3), 121–130 (1927)
22. Laarman, A., Pater, E., van de Pol, J., Hansen, H.: Guard-based partial-order reduction. Int. J. Softw. Tools Technol. Transf. 18(4), 427–448 (2016). https://doi.org/10.1007/s10009-014-0363-9
23. Lann, G.L.: Distributed systems—towards a formal approach. In: IFIP, 1977, pp. 155–160 (1977)
24. Liebke, T., Wolf, K.: Taking some burden off an explicit CTL model checker. In: Petri Nets 2019, LNCS, vol. 11522, pp. 321–341 (2019). https://doi.org/10.1007/978-3-030-21571-2_18
25. Milner, R.: A Calculus of Communicating Systems, LNCS, vol. 92. Springer, Berlin (1980)
26. Neele, T.: Reductions for Parity Games and Model Checking. Ph.D. thesis, Eindhoven University of Technology (2020)
27. Neele, T., Valmari, A.: The inconsistent labelling problem of stutter-preserving partial-order reduction. In: FoSSaCS 2020, LNCS, vol. 12077, pp. 482–501 (2020). https://doi.org/10.1007/978-3-030-45231-5_25
28. Neele, T., Valmari, A., Wesselink, W.: Partial-order reduction for parity games with an application on parameterised Boolean equation systems. Sci. Comput. Program. 188, 102389 (2020). https://doi.org/10.1016/j.scico.2019.102389
29. Pelánek, R.: BEEM: benchmarks for explicit model checkers. In: SPIN 2007, LNCS, vol. 4595, pp. 263–267 (2007). https://doi.org/10.1007/978-3-540-73370-6_17
30. Peled, D.: All from one, one for all: on model checking using representatives. In: CAV 1993, LNCS, vol. 697, pp. 409–423 (1993). https://doi.org/10.1007/3-540-56922-7_34
31. Pelánek, R.: BEEM: benchmarks for explicit model checkers. In: SPIN 2007, LNCS, vol. 4595, pp. 263–267 (2007). https://doi.org/10.1007/978-3-540-73370-6_17
32. Peled, D.: All from one, one for all: on model checking using representatives. In: CAV 1993, LNCS, vol. 697, pp. 409–423 (1993). https://doi.org/10.1007/3-540-56922-7_34
33. Siegel, S.F.: What’s wrong with on-the-fly partial order reduction. In: CAV 2019, LNCS, vol. 11562, pp. 478–495 (2019). https://doi.org/10.1007/978-3-030-25543-5_27
34. Valmari, A.: Error detection by reduced reachability graph generation. In: APN 1988, pp. 95–112 (1988)
35. Valmari, A.: A stubborn attack on state explosion. Formal Methods Syst. Des. 1(4), 297–322 (1992). https://doi.org/10.1007/BF00709154
36. Valmari, A.: A stubborn set methods for process algebras. In: POMIV 1996, DIMACS, vol. 29, pp. 213–231 (1997). https://doi.org/10.1090/dimacs/029/12
37. Valmari, A., Vogler, W.: Fair testing and stubborn sets. Int. J. Softw. Tools Technol. Transf. 20(5), 589–610 (2018). https://doi.org/10.1007/s10009-017-0481-2
38. Zielonka, W.: Infinite games on finitely coloured graphs with applications to automata on infinite trees. Theor. Comput. Sci. 208(1–2), 135–183 (1998). https://doi.org/10.1016/S0304-3975(98)00009-7

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.