ON THE DYNAMICS OF NONCANONICALLY COUPLED OSCILLATORS AND ITS HIDDEN SUPERSTRUCTURE

DENIS V. JURIJEV

Erwin Schrödinger Institute für Mathematische Physik,
Pasteurgasse 6/7, Wien, A-1090, Österreich (Austria)

ABSTRACT. The classical and quantum dynamics of the noncanonically coupled oscillators is considered. It is shown that though the classical dynamics is well-defined for both harmonic and anharmonic oscillators, the quantum one is well-defined in the harmonic case, admits a hidden (super)Hamiltonian formulation, and thus, preserves the initial operator relations, whereas a naïve quantization of the anharmonic case meets with principal difficulties.

The classical and quantum dynamics of Hamiltonian systems is often described by remarkable algebraic structures such as Lie algebras, their nonlinear generalizations and (quantum) deformations [1]. It seems that not less important objects govern a behaviour of the interacting Hamiltonian systems and that they maybe unravelled in a certain way. There exist several forms of an interaction of Hamiltonian systems: often it has a potential character, sometimes it is ruled by a deformation of the Poisson brackets; however, one of the most intriguing, physically important but mathematically less explored forms is a nonHamiltonian interaction, which can not be described by deformations of the standard Hamiltonian data (Poisson brackets and Hamiltonians). Sometimes, such interaction may be realized by a dependence of the Poisson brackets of one Hamiltonian system on the state of another. This is just the magnetic–type interaction, which is realised in systems of charged bodies interacting via Ampère–Lorentz forces. Such interaction is universal as a certain "classical mechanics" approximation for the most of the field (e.g. gravitational or nonabelian gauge) or continuum media theories. For example, the Ampère–Lorentz–type approximation in the general relativity is sufficient for the quantitative derivations of the Mercury perihelion’s shift, Lenze–Thirring effect, etc. Also the magnetic–type nonHamiltonian interactions appear in the classical mechanics itself (gyroscopic systems).

The pair of noncanonically coupled oscillators is one of the simplest and the most crucial examples of the nonHamiltonian interaction [2]; this Letter is devoted to an investigation of the related classical and quantum dynamics. It is shown that though the classical dynamics is well-defined for both harmonic and anharmonic case, the quantum one is well-defined for noncanonically coupled harmonic oscillators, admits

1991 Mathematics Subject Classification. 17B60, 17D99, 70D99, 81Rxx.
Key words and phrases. Magnetic–type nonHamiltonian interactions, Harmonic and anharmonic oscillators, Classical and quantum dynamics.
a hidden (super)Hamiltonian formulation, and hence, preserves the initial operator relations (cf. [3]), whereas a naïve quantization of anharmonic oscillators meets with principal difficulties.

1. Isotopic pair of noncanonically coupled oscillators.

1.1. General algebraic definitions. Let’s describe algebraic objects underlying the dynamics, which we are interested in.

Definition 1 [2] (cf. [4]). The pair \((V_1, V_2)\) of linear spaces is called an isotopic pair iff there are defined two mappings \(m_1 : V_2 \otimes \wedge^2 V_1 \mapsto V_1\) and \(m_2 : V_1 \otimes \wedge^2 V_2 \mapsto V_2\) such that the mappings \((X, Y) \mapsto [X, Y]_A = m_1(A, X, Y)\) \((X, Y \in V_1, A \in V_2)\) and \((A, B) \mapsto [A, B]_X = m_2(X, A, B)\) \((A, B \in V_2, X \in V_1)\) obey the Jacobi identity for all values of a subscript parameter (such operations will be called isocommutators and the subscript parameters will be called isotopic elements) and are compatible to each other, i.e. the identities

\[
[X, Y]_{[A,B]_z} = \frac{1}{2} \left([[X, Z]_A, Y]_B + [[X, Y]_A, Z]_B + [[Z, Y]_A, X]_B - [[X, Z]_B, Y]_A - [[X, Y]_B, Z]_A - [[Z, Y]_B, X]_A \right)
\]

\((X, Y, Z \in V_1, A, B \in V_2\) or \(X, Y, Z \in V_2, A, B \in V_1)\) hold.

This definition may be considered as a result of an axiomatization of the following construction: let \(\mathcal{A}\) be an associative algebra (f.e. any matrix one) and \(V_1, V_2\) be two linear subspaces in it such that \(V_1\) is closed under the isocommutators \((X, Y) \mapsto [X, Y]_A = XAY - YAX\) with isotopic elements \(A\) from \(V_2\), whereas \(V_2\) is closed under the isocommutators \((A, B) \mapsto [A, B]_X = AXB - BXA\) with isotopic elements \(X\) from \(V_1\).

Isotopic pairs are closely related to the (polarized) anti–Lie triple systems and Lie superalgebras (cf. [4]). Namely,

Definition 2. The ternary algebra \(V\) with product \([xyz]\) is called an anti–Lie triple system if (1) \([xyz] = [xzy]\), (2) \([xyz] + [zxy] + [yzx] = 0\), (3) \([[xyz]uv] = [[xuv]yz] + [x[yvu]z] + [xy[zuv]].\) An anti–Lie triple system \(V\) is polarized iff \(V = V_1 \oplus V_2\) and \([xyz] = 0\) for \(y, z \in V_1\) or \(y, z \in V_2\).

If \(V\) is an anti–Lie triple system let’s put \(R_{yz} \in \text{End}(V) : R_{yz}x = [xyz]\). The operators \(R_{yz}\) are closed under commutators so that \(g_0(V) = \text{span}(R_{yz}; y, z \in V)\) is a Lie algebra. The space \(g_0(V) \oplus V\) possesses a natural structure of a Lie superalgebra with the even part \(g_0(V)\) and the odd part \(V\) [4]. It will be denoted by \(g(V)\). Polarized anti–Lie triple systems \(V = V_1 \oplus V_2\) produce polarized Lie superalgebras \(g(V) = g_0(V) \oplus (V_1 \oplus V_2)\) such that \([V_i, V_i]^+ = 0, [g(V), V_i]^- \subseteq V_i\) (it should be marked that there is sometimes asserted that \(V_2 \cong V_1^*\) as \(g_0(V)\)–modules, however, we shall not do it in general).

An arbitrary isotopic pair has a structure of a polarized anti–Lie triple system (cf. [4]). Namely, one should put \([xyz] = [z, x]_y\) (iff \(z\) belongs to the same space \(V_i\) as \(x\)) and \([y, x]_z\) (iff \(y\) belongs to the same space \(V_i\) as \(x\)).

An illustrative example to the construction of a Lie superalgebra by an isotopic pair is convenient. Example: let \(H_1\) and \(H_2\) be two linear spaces, \((\text{Hom}(H_1, H_2) ; \text{Hom}(H_2, H_1))\) is an isotopic pair, the corresponding Lie superalgebra is isomorphic to \(g(\text{Sym})\), \(n = \dim H_-, m = \dim H_+\).
1.2. Nonlinear dynamical equations associated with isotopic pairs. Note that the isocommutators in an isotopic pair \((V_1, V_2)\) define families of compatible Poisson brackets \(\{\cdot, \cdot\}_A\) and \(\{\cdot, \cdot\}_X\) \((A \in V_2, X \in V_1)\) in the spaces \(S(V_1)\) and \(S'(V_2)\), respectively. The compatibility means that a linear combination of any two Poisson brackets is also a Poisson bracket.

Definition 3 (cf.[2]). Let’s consider two elements \(H_1\) and \(H_2\) ("Hamiltonians") in \(S'(V_1)\) and \(S'(V_2)\), respectively. The equations

\[
\dot{X}_t = \{H_1, X_t\}_A, \quad \dot{A}_t = \{H_2, A_t\}_X,
\]

where \(X_t \in V_1\) and \(A_t \in V_2\) are called the (nonlinear) dynamical equations associated with the isotopic pair \((V_1, V_2)\) and "Hamiltonians" \(H_1\) and \(H_2\).

1.3. Isotopic pair of noncanonically coupled oscillators. Let’s now consider the isotopic pairs of noncanonically coupled oscillators [2,5]. The space \(V_1\) is spanned by the elements \(p, q\) and \(r\) and the space \(V_2\) is spanned by the elements \(a, b\) and \(c\). The isocommutators have the form

\[
\begin{align*}
[p, q]_a &= 2\varepsilon_1 q, & [p, q]_b &= 2\varepsilon_1 p, & [p, q]_c &= \varepsilon_3 r \\
[p, r]_a &= \varepsilon_2 r, & [p, r]_b &= 0, & [p, r]_c &= 0 \\
[q, r]_a &= 0, & [q, r]_b &= -\varepsilon_2 r, & [q, r]_c &= 0 \\
[a, b]_p &= 2\tilde{\varepsilon}_1 b, & [a, b]_q &= 2\tilde{\varepsilon}_1 a, & [a, b]_r &= \tilde{\varepsilon}_3 c \\
[a, c]_p &= \tilde{\varepsilon}_2 c, & [a, c]_q &= 0, & [a, c]_r &= 0 \\
[b, c]_p &= 0, & [b, c]_q &= -\tilde{\varepsilon}_2 c, & [b, c]_r &= 0
\end{align*}
\]

where \(\varepsilon_1 + \tilde{\varepsilon}_1 = 0, \varepsilon_2 - \tilde{\varepsilon}_2 = \varepsilon_1 - \tilde{\varepsilon}_1, \varepsilon_3 \tilde{\varepsilon}_3 - \varepsilon_2 \tilde{\varepsilon}_2 = 0\).

The corresponding Lie algebra \(\mathfrak{g}_0(V_1 \oplus V_2)\) is spanned (for generic \(\varepsilon_i, \tilde{\varepsilon}_i\)) by 6 operators \(R_{p,a}, R_{p,b}, R_{q,a}, R_{q,b}, R_{r,b} = \frac{2\varepsilon}{\varepsilon_3} R_{p,c}, R_{r,a} = \frac{2\varepsilon}{\varepsilon_3} R_{q,c}\), which have the form

\[
\begin{align*}
R_{p,a} &= \begin{pmatrix} 2\varepsilon_1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & \varepsilon_2 \end{pmatrix}, & R_{p,b} &= \begin{pmatrix} 0 & 0 & 0 \\ 2\varepsilon_1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, & R_{q,a} &= \begin{pmatrix} 0 & -2\varepsilon_1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \\
R_{q,b} &= \begin{pmatrix} 0 & 0 & 0 \\ 0 & -2\varepsilon_1 & 0 \\ 0 & 0 & \varepsilon_2 \end{pmatrix}, & R_{p,c} &= \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ \varepsilon_3 & 0 & 0 \end{pmatrix}, & R_{q,c} &= \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & -\varepsilon_3 & 0 \end{pmatrix}
\end{align*}
\]

in the basis \((q, p, r)\) and the form

\[
\begin{align*}
R_{p,a} &= \begin{pmatrix} 0 & 0 & 0 \\ 0 & 2\varepsilon_1 & 0 \\ 0 & 0 & \varepsilon_2 \end{pmatrix}, & R_{p,b} &= \begin{pmatrix} 0 & 0 & 0 \\ -2\varepsilon_1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, & R_{q,a} &= \begin{pmatrix} 0 & 2\varepsilon_1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \\
R_{q,b} &= \begin{pmatrix} -2\varepsilon_1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & -\varepsilon_2 \end{pmatrix}, & R_{p,c} &= \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & -\varepsilon_2 \end{pmatrix}, & R_{q,c} &= \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & \varepsilon_2 \end{pmatrix}
\end{align*}
\]

in the basis \((a, b, c)\).
The Lie superalgebra \(\mathfrak{gl}(V_1 \oplus V_2) \) has a (super)dimension \((6|6)\) and is generated by \(R_{p,a}, R_{p,b}, R_{q,a}, R_{q,b}, R_{p,c}, R_{q,c}, p, q, r, a, b, c \) with (super)commutation relations

\[
[q, p]_+ = [q, r]_+ = [p, r]_+ = [a, b]_+ = [a, c]_+ = [b, c]_+ = [r, c]_+ = 0,
[p, a]_+ = R_{p,a}, \ [q, a]_+ = R_{q,a}, \ [p, b]_+ = R_{p,b},
[q, b]_+ = R_{q,b}, \ [p, c]_+ = R_{p,c}, \ [q, c]_+ = R_{q,c},
[r, a]_+ = \frac{\varepsilon_2}{\varepsilon_3} R_{q,c} , \ [r, b]_+ = \frac{\varepsilon_2}{\varepsilon_3} R_{p,c};
\]

\[
[R_{p,a}, q]_-= 2\varepsilon_1 q, \ [R_{p,a}, p]_-= 0, \ [R_{p,a}, r]_-= \varepsilon_2 r,
[R_{q,a}, q]_-= 0, \ [R_{q,a}, p]_-= -2\varepsilon_1 q, \ [R_{q,a}, r]_-= 0,
[R_{p,b}, q]_-= 2\varepsilon_1 p, \ [R_{p,b}, p]_-= 0, \ [R_{p,b}, r]_-= 0,
[R_{q,b}, q]_-= 0, \ [R_{q,b}, p]_-= -2\varepsilon_1 p, \ [R_{q,b}, r]_-= -\varepsilon_2 r,
[R_{p,c}, q]_-= \varepsilon_3 r, \ [R_{p,c}, p]_-= 0, \ [R_{p,c}, r]_-= 0,
[R_{q,c}, q]_-= 0, \ [R_{q,c}, p]_-= -\varepsilon_3 r, \ [R_{q,c}, r]_-= 0,
[R_{p,a}, a]_-= 0, \ [R_{p,a}, b]_-= 2\varepsilon_1 b, \ [R_{p,a}, c]_-= \varepsilon_2 c,
[R_{q,a}, a]_-= 0, \ [R_{q,a}, b]_-= 2\varepsilon_1 a, \ [R_{q,a}, c]_-= 0,
[R_{p,b}, a]_-= -2\varepsilon_1 b, \ [R_{p,b}, b]_-= 0, \ [R_{p,b}, c]_-= 0,
[R_{q,b}, a]_-= -2\varepsilon_1 a, \ [R_{q,b}, b]_-= 0, \ [R_{q,b}, c]_-= -\varepsilon_2 c,
[R_{p,c}, a]_-= -\varepsilon_2 c, \ [R_{p,c}, b]_-= 0, \ [R_{p,c}, c]_-= 0,
[R_{q,c}, a]_-= 0, \ [R_{q,c}, b]_-= \varepsilon_2 c, \ [R_{q,c}, c]_-= 0;
\]

\[
[R_{p,a}, R_{p,b}]_-= -2\varepsilon_1 R_{p,b}, \ [R_{p,a}, R_{q,a}]_-= 2\varepsilon_1 R_{q,a}, \ [R_{p,a}, R_{p,b}]_-= 0,
[R_{p,a}, R_{p,c}]_-= \varepsilon_2 R_{p,c}, \ [R_{p,a}, R_{q,a}]_-= \varepsilon_2 R_{q,c}, \ [R_{p,b}, R_{q,a}]_-= 2\varepsilon_1 (R_{q,b} + R_{p,a}),
[R_{p,b}, R_{q,b}]_-= 2\varepsilon_1 R_{p,b}, \ [R_{p,b}, R_{q,c}]_-= 0, \ [R_{p,b}, R_{q,c}]_-= 2\varepsilon_1 R_{p,c},
[R_{q,a}, R_{q,b}]_-= -2\varepsilon_1 R_{q,a}, \ [R_{q,a}, R_{p,c}]_-= -2\varepsilon_1 R_{p,c}, \ [R_{q,a}, R_{q,c}]_-= 0,
[R_{q,b}, R_{p,c}]_-= -\varepsilon_2 R_{p,c}, \ [R_{q,b}, R_{q,c}]_-= -\varepsilon_2 R_{q,c}, \ [R_{p,c}, R_{q,c}]_-= 0.
\]

The even part of the Lie superalgebra \(\mathfrak{gl}(V_1 \oplus V_2) \) is isomorphic to the semidirect sum of \(\mathfrak{gl}(2,\mathbb{C}) \) and \(\mathbb{C}^2 \). On the other hand \(\mathfrak{gl}(V_1 \oplus V_2) \) may be considered as a semidirect product of the Lie superalgebra \(\mathfrak{gl}(2|1,\mathbb{C}) \) generated by \(R_{p,a}, R_{p,b}, R_{q,a}, R_{q,b}, p, q, a, b \) and the \((2|2)\)–dimensional vector superspace \(V^{2|2} \) generated by \(R_{p,c}, R_{q,c}, r, c \).

2. Classical and quantum dynamics of noncanonically coupled oscillators.

2.1. Classical dynamics of noncanonically coupled harmonic oscillators. First of all, let’s describe the classical dynamics of noncanonically coupled harmonic oscillators. The dynamical equations with ”Hamiltonians” \(\mathcal{H}_1 = P^2 + Q^2 \) and \(\mathcal{H}_2 = A^2 + B^2 \) have the form

\[
\begin{align*}
\dot{P} &= -4\varepsilon_1 (Q^2 A + P QB) - 2\varepsilon_3 RQC \\
\dot{Q} &= 4\varepsilon_1 (PQA + P^2 B) + 2\varepsilon_3 RPC \\
\dot{R} &= 2\varepsilon_1 (QPB - QRB) \\
\dot{A} &= -4\varepsilon_1 (B^2 P + ABQ) - 2\varepsilon_3 CBR \\
\dot{B} &= 4\varepsilon_1 (ABP + A^2 Q) + 2\varepsilon_3 CAR \\
\dot{C} &= 2\varepsilon_1 (ACB - PQC).
\end{align*}
\]
Note that "Hamiltonians" $H_1 = T_1^2$ and $H_2 = T_2^2$ are integrals of motion here, so it is rather convenient to put $P = I_1 \cos \varphi, Q = I_1 \sin \varphi, A = I_2 \cos \psi, B = I_2 \sin \psi$. Then
\[
\begin{align*}
\dot{\varphi} &= 2\varepsilon_3 RC + 4\varepsilon_1 I_1 I_2 \sin(\varphi + \psi) \\
\dot{\psi} &= 2\varepsilon_3 RC + 4\tilde{\varepsilon}_1 I_1 I_2 \sin(\varphi + \psi)
\end{align*}
\]
\[
\begin{align*}
\dot{R} &= 2\varepsilon_2 \cos(\varphi + \psi) R \\
\dot{C} &= 2\tilde{\varepsilon}_2 \cos(\varphi + \psi) C
\end{align*}
\]
Let’s introduce $\vartheta = \varphi + \psi, \chi = \varepsilon_3 \psi - \tilde{\varepsilon}_3 \varphi$ and mark that $\varepsilon_1 + \tilde{\varepsilon}_1 = 0,$ then
\[
\begin{align*}
\dot{\vartheta} &= 2(\varepsilon_3 + \tilde{\varepsilon}_3) RC \\
\dot{\chi} &= -4\varepsilon_1 I_1 I_2 (\varepsilon_3 - \tilde{\varepsilon}_3) \sin \vartheta
\end{align*}
\]
Also $(RC)' = 2(\varepsilon_2 + \tilde{\varepsilon}_2) \cos \vartheta(RC)$, therefore, $(RC)'_\vartheta = \frac{2\varepsilon_2 + \tilde{\varepsilon}_2}{\varepsilon_3 + \tilde{\varepsilon}_3} \cos \vartheta$, and $RC = \mathcal{L} + \frac{\varepsilon_2 + \tilde{\varepsilon}_2}{\varepsilon_3 + \tilde{\varepsilon}_3} I_1 I_2 \sin \vartheta$, whereas
\[
\dot{\vartheta} = 2\mathcal{L}(\varepsilon_3 + \tilde{\varepsilon}_3) + 2I_1 I_2 (\varepsilon_2 + \tilde{\varepsilon}_2) \sin \vartheta.
\]
Here $\mathcal{L} = RC - \frac{\varepsilon_2 + \tilde{\varepsilon}_2}{\varepsilon_3 + \tilde{\varepsilon}_3} (QA + PB)$ is an integral of motion. Note that $(R^2 C^{-\vartheta})' = 0,$ so it is convenient to put $\Lambda = R^2 C^{\vartheta} C^{-\vartheta}.$

Then
\[
\begin{align*}
R &= \Lambda (L - \frac{\varepsilon_2 + \tilde{\varepsilon}_2}{\varepsilon_3 + \tilde{\varepsilon}_3} I_1 I_2 \sin \vartheta) \frac{\varepsilon_2}{\varepsilon_3 + \tilde{\varepsilon}_3} \\
C &= \frac{1}{\Lambda} (L - \frac{\varepsilon_2 + \tilde{\varepsilon}_2}{\varepsilon_3 + \tilde{\varepsilon}_3} I_1 I_2 \sin \vartheta) \frac{\varepsilon_2}{\varepsilon_3 + \tilde{\varepsilon}_3}
\end{align*}
\]
I_1, I_2, L and Λ form a complete set of integrals of motion for generic values of $\varepsilon_i, \tilde{\varepsilon}_i$.

Let’s also denote $\xi = (\varepsilon_2 + \tilde{\varepsilon}_2) \chi + 2\varepsilon_1 (\varepsilon_3 - \tilde{\varepsilon}_3) \vartheta = [(\varepsilon_2 + \tilde{\varepsilon}_2) \varepsilon_3 + 2\varepsilon_1 (\varepsilon_3 - \tilde{\varepsilon}_3)] \varphi - [(\varepsilon_2 + \tilde{\varepsilon}_2) \tilde{\varepsilon}_3 + 2\varepsilon_1 (\varepsilon_3 - \tilde{\varepsilon}_3)] \varphi,$ then
\[
\xi = 4\mathcal{L}(\varepsilon_3^2 - \tilde{\varepsilon}_3^2) \varepsilon_1 t + \xi_0.
\]

2.2. Classical dynamics of noncanonically coupled anharmonic oscillators.

The dynamical equations with anharmonic "Hamiltonians" $H_1 = P^2 + V(Q^2)$ and $H_2 = A^2 + V(B^2)$ have the form
\[
\begin{align*}
\dot{P} &= -V'(Q^2)(4\varepsilon_1 (Q^2 A + PQB) + 2\varepsilon_3 RQC) \\
\dot{Q} &= 4\varepsilon_1 (PQA + P^2 B) + 2\varepsilon_3 RPC \\
\dot{R} &= 2\varepsilon_2 (PRA - QRBV'(Q^2))
\end{align*}
\]
\[
\begin{align*}
\dot{A} &= -V'(B^2)(4\tilde{\varepsilon}_1 (B^2 P + ABQ) + 2\tilde{\varepsilon}_3 CBR) \\
\dot{B} &= 4\varepsilon_1 (ABP + A^2 Q) + 2\tilde{\varepsilon}_3 CAR \\
\dot{C} &= 2\varepsilon_2 (ACP - BCQV'(B^2))
\end{align*}
\]
Let’s put $S = RC, T = AQ + BP$, then
\[
\begin{align*}
\dot{S} &= 2S((\varepsilon_2 + \tilde{\varepsilon}_2) PA - QB(\varepsilon_2 V'(Q^2) + \tilde{\varepsilon}_2 V'(B^2))) \\
\dot{T} &= 2S((\varepsilon_2 + \tilde{\varepsilon}_2) PA - QB(\tilde{\varepsilon}_2 V'(Q^2) + \varepsilon_2 V'(B^2)))
\end{align*}
\]
At the same time
\[
\begin{align*}
\dot{Q} &= P(2\varepsilon_3 \mathcal{L} + (2\varepsilon_3 + 4\varepsilon_1)T) \\
\dot{P} &= -QV'(Q^2)(4\varepsilon_1 \mathcal{L} + (2\varepsilon_3 + 4\varepsilon_1)T)
\end{align*}
\]

Let's consider the case \(\varepsilon_3 = \varepsilon_2\) (and, hence, \(\bar{\varepsilon}_3 = \bar{\varepsilon}_2\)). Then \(\mathcal{L} = S - T\) is an integral of motion. Therefore,
\[
\begin{align*}
\dot{Q} &= P(2\bar{\varepsilon}_3 \mathcal{L} + (2\bar{\varepsilon}_3 + 4\bar{\varepsilon}_1)T) \\
\dot{P} &= -QV'(Q^2)(4\bar{\varepsilon}_1 \mathcal{L} + (2\bar{\varepsilon}_3 + 4\bar{\varepsilon}_1)T)
\end{align*}
\]

Note that the "Hamiltonians" \(\mathcal{H}_i = \mathcal{T}_i^2\) are integrals of motion so put \(P = \sqrt{\mathcal{T}_1^2 - V(Q^2)}, A = \sqrt{\mathcal{T}_2^2 - V(B^2)}\) and, hence
\[
\begin{align*}
\dot{Q} &= \sqrt{\mathcal{T}_1^2 - V(Q^2)}(4\varepsilon_3 \mathcal{L} + (2\varepsilon_3 + 4\varepsilon_1)T) \\
\dot{B} &= \sqrt{\mathcal{T}_2^2 - V(B^2)}(4\bar{\varepsilon}_3 \mathcal{L} + (2\bar{\varepsilon}_3 + 4\bar{\varepsilon}_1)T)
\end{align*}
\]

where \(T = \sqrt{\mathcal{T}_1^2 - V(B^2)}Q + \sqrt{\mathcal{T}_2^2 - V(B^2)}B\). Put \(F_i(x) = \int \frac{dx}{\sqrt{\mathcal{T}_i^2 - V(x)}}\), then
\[
\begin{align*}
\dot{F}_1(Q) &= 4\varepsilon_3 \mathcal{L} + (2\varepsilon_3 + 4\varepsilon_1)\left(\frac{Q}{F_1'(B)} + \frac{B}{F_1'(Q)}\right) \\
\dot{F}_2(B) &= 4\bar{\varepsilon}_3 \mathcal{L} + (2\bar{\varepsilon}_3 + 4\bar{\varepsilon}_1)\left(\frac{Q}{F_2'(B)} + \frac{B}{F_2'(Q)}\right)
\end{align*}
\]

Let's denote \(\Theta = F_1(Q), \Xi = F_2(B)\) and put \(G_i = F_i^{-1}\), then \(\Xi = \alpha \Theta + \beta t + \gamma\), where \(\alpha, \beta\) are constants, which may be easily expressed via \(\varepsilon_i, \bar{\varepsilon}_i\) and \(\mathcal{L}, \gamma\) is an arbitrary number, determined by the initial conditions.

Put \(G(x, t) = G_1(x)G_2(\alpha x + \beta t + \gamma)\), then \(\Theta\) obeys the following differential equation
\[
\dot{\Theta} = 4\varepsilon_3 \mathcal{L} + (2\varepsilon_3 + 3\varepsilon_1)\frac{\partial G(\Theta, t)}{\partial \Theta}.
\]

2.3. Representations of the isotopic pairs of noncanonically coupled oscillators.

To quantize the classical dynamics one needs in representations of algebraic objects underlying it.

Definition 4 [5]. A representation of the isotopic pair \((V_1, V_2)\) in the linear space \(W\) is a pair \((T_1, T_2)\) of mappings \(T_i : V_i \rightarrow \text{End}(W)\) such that
\[
\begin{align*}
T_1([X, Y], A) &= T_1(X)T_2(A)T_1(Y) - T_1(Y)T_2(A)T_1(X), \\
T_2([A, B], X) &= T_2(A)T_1(X)T_2(B) - T_2(B)T_1(X)T_2(A),
\end{align*}
\]

where \(X, Y \in V_1, A, B \in V_2\). A representation of the isotopic pair \((V_1, V_2)\) in the linear space \(W\) is called *split* iff \(W = W_1 \oplus W_2\) and
\[
\begin{align*}
\forall X \in V_1 \quad T_1(X)|_{W_2} &= 0, \\
T_1(X) : W_1 &\rightarrow W_2, \\
\forall A \in V_2 \quad T_2(A)|_{W_1} &= 0, \\
T_2(A) : W_2 &\rightarrow W_1.
\end{align*}
\]
Otherwords, operators \(T(X) \) and \(T(A) \) have the form \[
\begin{pmatrix}
0 & 0 \\
* & 0
\end{pmatrix}
\] and \[
\begin{pmatrix}
0 & * \\
0 & 0
\end{pmatrix}
\], respectively.

Not that a split representation of an isotopic pair \((V_1, V_2)\) defines a representation \(T\) of the corresponding anti–Lie triple system and Lie superalgebra \(g(V_1 \oplus V_2)\) (or its central extension \(\hat{g}(V_1 \oplus V_2)\)). The resulted representation of the Lie superalgebra \(g(V_1 \oplus V_2)\) always have a special ” polarized” form: \(W = W_1 \oplus W_2, \ T(V_1) : W_1 \rightarrow W_2, \ T(V_2) : W_2 \rightarrow W_1, \ g_0(V_1 \oplus V_2) : W_i \rightarrow W_i\). Note that each representation \((T_1, T_2)\) of the isotopic pair \((V_1, V_2)\) in the space \(W\) defines a split representation \((T_1^s, T_2^s)\) of the same pair in the space \(W_1 \oplus W_2\) \((W_i \simeq W)\):

\[
(\forall X \in V_1) \ T_1^s(X) = \begin{pmatrix} 0 & 0 \\ T_1(X) & 0 \end{pmatrix}, \quad (\forall A \in V_2) \ T_2^s(A) = \begin{pmatrix} 0 & T_2(A) \\ 0 & 0 \end{pmatrix}.
\]

2.4. Quantum dynamics of noncanonically coupled harmonic oscillators.

The formal quantum dynamical equations have the form

\[
\begin{align*}
\frac{d}{dt} \hat{P}_t &= -2\varepsilon_1 \hat{P}_t \hat{B}_t \hat{Q}_t + \hat{Q}_t \hat{B}_t \hat{P}_t + 2\hat{Q}_t \hat{A}_t \hat{Q}_t - \varepsilon_3 (\hat{R}_t \hat{C}_t \hat{Q}_t + \hat{Q}_t \hat{C}_t \hat{R}_t), \\
\frac{d}{dt} \hat{Q}_t &= 2\varepsilon_1 \hat{P}_t \hat{A}_t \hat{Q}_t + \hat{Q}_t \hat{A}_t \hat{P}_t + 2\hat{Q}_t \hat{B}_t \hat{P}_t + \varepsilon_3 (\hat{R}_t \hat{C}_t \hat{P}_t + \hat{C}_t \hat{R}_t \hat{P}_t), \\
\frac{d}{dt} \hat{R}_t &= \varepsilon_2 (\hat{P}_t \hat{A}_t \hat{R}_t + \hat{R}_t \hat{A}_t \hat{P}_t - \hat{Q}_t \hat{B}_t \hat{R}_t - \hat{R}_t \hat{B}_t \hat{Q}_t), \\
\frac{d}{dt} \hat{A}_t &= -2\varepsilon_1 \hat{A}_t \hat{B}_t \hat{Q}_t + \hat{B}_t \hat{Q}_t \hat{A}_t + 2\hat{B}_t \hat{P}_t \hat{B}_t - \varepsilon_3 (\hat{C}_t \hat{R}_t \hat{B}_t + \hat{B}_t \hat{R}_t \hat{C}_t), \\
\frac{d}{dt} \hat{B}_t &= 2\varepsilon_1 \hat{A}_t \hat{P}_t \hat{B}_t + \hat{B}_t \hat{P}_t \hat{A}_t + 2\hat{A}_t \hat{Q}_t \hat{A}_t + \varepsilon_3 (\hat{C}_t \hat{R}_t \hat{A}_t + \hat{A}_t \hat{R}_t \hat{C}_t), \\
\frac{d}{dt} \hat{C}_t &= \varepsilon_2 (\hat{A}_t \hat{P}_t \hat{C}_t + \hat{C}_t \hat{P}_t \hat{A}_t - \hat{B}_t \hat{Q}_t \hat{C}_t - \hat{C}_t \hat{Q}_t \hat{B}_t).
\end{align*}
\]

The dynamics is considered in arbitrary representation of the isotopic pair of noncanonically coupled oscillators. Let’s consider such dynamics in the corresponding split representation. First of all renormalize \(c\) and \(r\) so that \(R_{p,c} = R_{b,r}\) and \(R_{q,c} = R_{a,r}\).

Proposition. Equations of quantum dynamics of noncanonically coupled oscillators are a reduction of formal super Heisenberg equations

\[
\frac{d}{dt} \hat{F}_t = [\hat{H}_{\text{hidden}}, \hat{F}_t]
\]

in \(\mathcal{U}(g(V_1 \oplus V_2))\) with quadratic quantum Hamiltonian

\[
\hat{H}_{\text{hidden}} = \hat{R}_{q,a}^2 + \hat{R}_{p,b}^2 + \hat{R}_{q,b}^2 + \hat{R}_{p,a}^2 + \hat{R}_{p,c}^2 + \hat{R}_{q,c}^2
\]

Proof. The statement of the proposition is verified by straightforward explicit computation.

So quantum dynamics of noncanonically coupled oscillators admits a hidden super–Hamiltonian formulation in terms of Lie superalgebra \(g(V_1 \oplus V_2)\). It leads to a very important consequence.
Corollary. The quantum dynamics preserves the initial operator relations:

\[\hat{P}_t \hat{A}_t \hat{Q}_t - \hat{Q}_t \hat{A}_t \hat{P}_t = 2\varepsilon_1 \hat{Q}_t, \quad \hat{P}_t \hat{A}_t \hat{R}_t - \hat{R}_t \hat{A}_t \hat{P}_t = \varepsilon_2 \hat{R}_t, \quad \hat{Q}_t \hat{A}_t \hat{R}_t - \hat{R}_t \hat{A}_t \hat{Q}_t = 0, \]

\[\hat{P}_t \hat{B}_t \hat{Q}_t - \hat{Q}_t \hat{B}_t \hat{P}_t = 2\varepsilon_1 \hat{P}_t, \quad \hat{P}_t \hat{B}_t \hat{R}_t - \hat{R}_t \hat{B}_t \hat{P}_t = 0, \quad \hat{Q}_t \hat{B}_t \hat{R}_t - \hat{R}_t \hat{B}_t \hat{Q}_t = -2\varepsilon_2 \hat{R}_t, \]

\[\hat{P}_t \hat{C}_t \hat{Q}_t - \hat{Q}_t \hat{C}_t \hat{P}_t = \varepsilon_3 \hat{R}_t, \quad \hat{P}_t \hat{C}_t \hat{R}_t - \hat{R}_t \hat{C}_t \hat{P}_t = 0, \quad \hat{Q}_t \hat{C}_t \hat{R}_t - \hat{R}_t \hat{C}_t \hat{Q}_t = 0, \]

\[A_t \hat{P}_t \hat{B}_t - \hat{B}_t \hat{P}_t \hat{A}_t = 2\varepsilon_1 \hat{B}_t, \quad A_t \hat{P}_t \hat{C}_t - \hat{C}_t \hat{P}_t \hat{A}_t = \varepsilon_2 \hat{C}_t, \quad B_t \hat{P}_t \hat{C}_t - \hat{C}_t \hat{P}_t \hat{B}_t = 0, \]

\[A_t \hat{Q}_t \hat{B}_t - \hat{B}_t \hat{Q}_t \hat{A}_t = 2\varepsilon_1 \hat{A}_t, \quad A_t \hat{Q}_t \hat{C}_t - \hat{C}_t \hat{Q}_t \hat{A}_t = 0, \quad B_t \hat{Q}_t \hat{C}_t - \hat{C}_t \hat{Q}_t \hat{B}_t = -\varepsilon_2 \hat{C}_t, \]

\[A_t \hat{R}_t \hat{B}_t - \hat{B}_t \hat{R}_t \hat{A}_t = \varepsilon_3 \hat{C}_t, \quad B_t \hat{R}_t \hat{C}_t - \hat{C}_t \hat{R}_t \hat{B}_t = 0, \quad A_t \hat{R}_t \hat{C}_t - \hat{C}_t \hat{R}_t \hat{A}_t = 0. \]

2.5. Remark on the quantum dynamics of noncanonically coupled anharmonic oscillators. It should be marked that the quantization of anharmonic oscillators meets with a principal difficulty. Namely, each representation of an isotope pair may be splitted. After such splitting the elements of \(V_1 \oplus V_2 \) become odd, and therefore, nilpotent. It provides that all terms in the classical equations of motion related to the higher (non–quadratic) terms of a Hamiltonian are suppressed by the quantization. Such effect is not realistic. Of course, one may consider well–defined quantum Hamiltonians by use of the hidden Lie superalgebraic structure in a way analogous to the proposition above. The quantum dynamics will preserve the initial operator relations for such Hamiltonians. However, there is no any a priori relation between it and classical one.

3. Conclusions.

So the classical and quantum dynamics of noncanonically coupled oscillators was investigated. It appears that though the classical one is well–defined for both harmonic and anharmonic oscillators, the quantum one is well–defined for the noncanonically coupled harmonic oscillators, admits a hidden (super)Hamiltonian formulation, and thus, preserves the initial operator relations, but a naive quantization of the anharmonic oscillators meets with principal difficulties.

Acknowledgements.

The author thanks the International Erwin Schrödinger Institute for Mathematical Physics (Vienna, Austria) for a support and a kind hospitality. This Letter appeared as Preprint ESI no.167 (December 1994) and also as e–print of LANL e–arch. on solvable and integrable systems no.”[solv-int/9503003]” (March 1995).

REFERENCES

1. Arnol’d V.I., Mathematical methods of classical mechanics, Springer–Verlag, 1976;
 Dubrovin B.A., Novikov S.P., Fomenko A.T., Modern geometry — methods and applications, Springer–Verlag, 1988;
 Perelomov A.M., Integrable systems of classical mechanics and Lie algebras. Birkhauser–Verlag, 1990;
 Karasev M.V., Maslov V.P., Nonlinear Poisson brackets. Geometry and quantization. Amer. Math. Soc., R.I., 1993.
2. Juriev D., Russian J. Math. Phys. 3:4 (1995) [e–version (LANL E-Arch. on Solv. Integr. Systems), 1995.]
3. Juriev D., *Russian J. Math. Phys.*, to appear [e-version (SISSA E-Arch. on Funct. Anal.): funct-an/9409003 (1994)]; Juriev D., e-print (Texas Univ. E-Arch. on Math. Phys.): mp_arc/95-538 (1995).

4. Faulkner J.R., Ferrar J.C., *Commun. Alg.* 8:11, 993 (1980).

5. Juriev D., *Theor. Math. Phys.* 105:1, 18 (1995) [e-print version (Texas Univ. E-Arch. on Math. Phys.): mp_arc/94-267 (1994)]; Juriev D., e-print (Duke Univ. E-Arch. on Quantum Alg.): q-alg/9511013 (1995).