Experimental Study on the Hysteresis Performance of Stiffened Square CFST

Xinzi Zheng1,2,3,* Zhixiang Zhou1 Shuang Zheng4 Taotao Wang3
1Post-doctoral research station of civil engineering, Chongqing Jiaotong University, Chongqing 40074, China;
2Henan engineering laboratory of ecological architecture and environment construction, Henan Polytechnic University, Jiaozuo 454000, China;
3Institute of bridge detection and reinforcement technology, Huanghe Jiaotong University, Jiaozuo 454950, China;
4School of civil Engineering, Zhengzhou Institute of Technology, Zhengzhou 450044, China.
*Corresponding author’s e-mail: zxz@hpu.edu.cn

Abstract: Stiffened Square Concrete Filled Steel Tubular Columns (SSCFST) were proposed to solve the problem that ordinary square concrete-filled steel tubular columns (SCFST) are prone to appear local buckling and poor hysteresis performance before reaching the limits of carrying capacity in 3 cases such as the thin steel tubular wall, the larger diameter to thickness ratio or width to thickness ratio. In order to investigate its hysteresis behavior, based on introducing its basic concept, the manufacturing method was expounded, and the low cyclic loading tests of 15 SSCFST and 1 SCFST with binding bars were carried out. The author observed experimental phenomena, failure process and failure mode, then analyzed hysteresis loop area and energy dissipation of SSCFST columns under reciprocating loading, and discussed the effect of various factors to its anti-seismic behavior. Compared to SCFST with binding bars, SSCFST has superior anti-seismic performance.

1. Introduction
The constraint of ordinary SCFST columns on the inner filled concrete is mainly focused on the corner region, and the lateral constraint depends on the out-of-plane stiffness of the steel tubular wall(Han and Tao, 2001; Vrcelj and Uy, 2001) [1].

Scholars at home and abroad have conducted a series of studies on the improvement of axial compression behavior of CFST(Liang and Uy, 2000; Uy, 2000; Cai and He, 2006; Cai and He, 2007; Cai and Sun, 2008; Huang and Zhou, 2001; Tao and Han, 2005; Zhou et al., 2008; Susantha et al., 2001) [1-9].

2. Characteristics of SSCFST
The set of binding bars can greatly improve the mechanical properties of SCFST. Meanwhile, the elastic-plastic buckling phenomena will still appear in the area between the binding bars and as a result the constraints on inner filled concrete are undermined.
SSCFST proposed in this paper contain two enhanced measures that have been set with binding bars and stiffeners.

Fig.1(a)(b)(d)(e) show a typical elevations and cross-sections diagram of stiffened square concrete filled steel tube columns (SSCFST), in which (a) (b) are outer transverse and internal longitudinal type, (d) is outer transverse type, (e) is inner longitudinal type.

Fig.1(c) is SCFST with binding bars, Fig.1(f) is an ordinary SCFST.

![Diagram of specimens](image)

1- Anchoring end 2- Longitudinal stiffener 3- Horizontal stiffener 4-Binding bar 5-Concrete

3. Making of specimens

No.	b (mm)	t (mm)	L (mm)	a (mm)	b (mm)	d (mm)	b_s*t_s (mm)	b_j*t_j (mm)	binding bars	n_0
B2	200	6	600	100	100	10	-	-	ordinary	0.6
B6	200	6	600	100	100	10	40*6	40*6	ordinary	0.4
B7	200	5	600	100	100	10	40*5	40*5	ordinary	0.4
B8	200	4	600	100	100	10	40*4	40*4	ordinary	0.4
B9	200	6	600	100	100	10	40*6	40*6	ordinary	0.6
B10	200	5	600	100	100	10	40*5	40*5	high strength	0.6
B11	200	4	600	100	100	8	40*4	40*4	ordinary	0.6
B12	200	6	600	100	100	10	40*6	40*6	ordinary	0.8
B13	200	5	600	100	100	10	40*5	40*5	high strength	0.8
B14	200	4	600	100	100	8	40*4	40*4	ordinary	0.8
B15	200	6	600	100	85.7	10	40*6	40*6	ordinary	0.6
In the table1, B, t, L respectively represent the length of sectional side, the thickness of the pipe wall, and the length of the columns; a, b, d respectively represent the horizontal spacing, the vertical spacing and the diameter of binding bar; ih, iv respectively represent the thickness and the width of the built-in stiffeners; oh, ov respectively represent the thickness and the width of the external stiffeners; n_0 represents the axial compression ratio.

The local buckling development of each specimen is shown in Table 2.

Table 2: Hysteretic testing eigenvalues of specimens

No.	occur of local buckling	1 buckling wave length	1 buckling wave length	1 buckling wave length	buckling wave form a ring
B2	12r1 12r2	180mm	12r3 190mm	20r1 190mm	20r2
B6	20r1 20r3	50mm	30r1 60mm	30r3 60mm	
B7	12r3 20r2	60mm	20r3 70mm	30r2 70mm	
B8	12r3 20r1	65mm	20r2 75mm	30r2 75mm	
B9	20r1 20r1	55mm	20r2 75mm	40r1 65mm	
B10	20r1 20r2	70mm	20r3 80mm	40r1 75mm	
B11	12r2 12r3	68mm	20r1 80mm	30r1 80mm	
B12	12r3 20r2	65mm	20r2 75mm	30r1 75mm	
B13	20r1 20r2	75mm	20r3 80mm	30r2 80mm	
B14	12r2 12r3	72mm	20r1 75mm	20r2 85mm	
B15	30r2 30r3	45mm	40r1 50mm	-	
B16	30r3 40r1	40mm	-	-	
B17	30r2 30r2	50mm	40r1 55mm	-	
C5	30r2 30r3	30mm	30r3 30mm	-	
C6	20r3 30r2	35mm	30r3 35mm	-	
C7	30r3 40r1	30mm	-	-	

In the table, the digital in front of "r" is horizontal displacement (mm) under load; the digital in the back of "r" is the cycling number of the amplitude.

Table 3: Area of hysteresis loops and energy dissipation coefficients of specimens

No.	3mm (1/200)	6mm (1/100)	9mm (1/67)	12mm (1/50)	20mm (1/30)	30mm (1/20)	40mm (1/15)
B2	1198.915	1869.226	3404.275	1478.850	2056.500	20118.336	23419.755
B6	1584.555	1864.455	3334.235	1468.861	2089.906	23419.755	40376.120
B7	1365.815	1863.761	3334.235	1468.861	2089.906	23419.755	40376.120
B8	1347.735	1863.761	3334.235	1468.861	2089.906	23419.755	40376.120
C5	2079.825	1908.728	3259.395	1703.950	2203.240	25839.190	40633.230
C6	1819.090	1908.728	3259.395	1703.950	2203.240	25839.190	40633.230

In the table, the digital in front of "r" is horizontal displacement (mm) under load; the digital in the back of "r" is the cycling number of the amplitude.
4. Conclusion
Based on the hysteresis behavior test of 15 SSCFST and 1 SCFST with binding bars, the failure process and hysteresis loop area of SSCFST under reciprocating load are analyzed.

(1) The local buckling time is significantly delayed, the buckling wave length is obviously reduced, and the buckling modes emerged as a fundamental change. It shows the excellent anti-seismic resistance performance of SSCFST.

(2) The area of hysteresis loops and the energy dissipation coefficients of specimens with the thinner steel tubular wall still have good energy dissipation capacity. It shows SSCFST are considerably better than that of thick wall of SCFT specimen with binding bars specimens.

(3) The energy dissipation capacity of specimens can be improved with smaller ratio of width to thickness of the external stiffening plate or larger ratio of width to thickness of internal stiffening plate.

Acknowledgments
The research described in this paper is part of the project entitled “Research on behavior of stiffened square CFST columns”, supported by Key scientific and technological project of Henan Province(No.182102310010); Key Scientific Research projects in Henan Province Universities (No.17A560023); LABEABE2018K01. The support is greatly appreciated.

References
[1] Cai, J. and He, Z.Q. (2006). “Axial Load Behavior of Square CFT Stub Column with Binding Bars.” Journal of Constructional Steel Research, Vol.62, pp.472-483.
[2] Cai, J. and He, Z.Q. (2007). “Eccentric-loaded behavior of square CFT columns with binding bars.” Journal of building structures, Vol.28, pp.25-35.
[3] Liang, Q.Q. and Uy, B. (2000). “Theoretical study on the post-local buckling of steel plates in concrete filled box columns.” Computer and Structure, Vol.75, pp.479-490.
[4] Uy, B. (2000). “Strength of concrete filled steel box columns incorporating local buckling.” Journal of Structural Engineering, ASCE, Vol.126, pp.341-352.
[5] Cai, J. and Sun, Gang. (2008). “Constitutive relationship of L-shaped CFT with binding bars.” Engineering Mechanics, Vol.25, pp.173-179. (In Chinese)
[6] Huang, X.Y., Zhou, F.L. and Xu, Z.G. (2001). “Comparative study on the filled steel earthquake behavior of concrete tubular structures.” World information on earthquake engineering, Vol.17, pp.86-89.
[7] Tao, Z., Han, L.H. and Wang, Z.B. (2005). “Experimental behavior of stiffened concrete filled thin-walled hollow steel structural stub columns.” Journal of Constructional Steel Research, Vol.61, pp.962-983.
[8] Zhou, J.Z., Zheng, Y.Q. and Tao, Z. (2008). “Economical comparison of stiffened concrete filled

In the table, area represents the area of the hysteresis loops; co. shows energy dissipation coefficients.
thin-walled and common steel tubular columns.”Journal of Fuzhou University (Natural Science), Vol.36, pp.598-603.

[9] Susantha, K. A. S., Ge, H. B. and Usami, T. (2001). “Confinement evolution of concrete-filled box shaped steel columns.” Steel and Composite Structures, Vol.1, pp.313-328.