Universality in conformations and transverse fluctuations of a semi-flexible polymer in a crowded environment

I. INTRODUCTION

Polymers in a crowded environment are a common phenomenon both in synthetic systems and in living matter. Molecular crowding significantly affects the structure and function of bio-macromolecules. For example, individual DNA molecules in a crowded environment have been observed to undergo compactification in the presence of negatively charged proteins. Likewise, in the industrial world, the presence of nanoparticles affects the static phase diagram and dynamics of polymer-nano-composites in a non-trivial way. Various factors, e.g., the volume fraction of the crowding species, the strength of the polymer-particle, intra-polymer, and intra-particle interactions, the temperature, the contour length \(L \), and the persistence length \(\ell_p \), affect their statics and dynamics. Thus, it is useful to use scaling theories of polymers to understand the interdependencies of various factors toward a universal theory of polymer conformations and dynamics in such systems. This approach also helps to plot experimental data in terms of scaled quantities to develop a better understanding of the experimental system studied.\(^{5-12}\)

In order to understand experimental data, biopolymers are typically described by a Worm-Like-Chain (WLC) Kratky–Porod model\(^{13,14}\) whose mean square end-to-end distance \(\langle R_0^2 \rangle \) is given by

\[
\frac{\langle R_0^2 \rangle}{L^2} = \frac{2\ell_p}{L} \left(1 - \frac{\ell_p}{L} \right) \left[1 - \exp \left(-L/\ell_p \right) \right].
\]

For \(\ell_p \gg L \), \(\langle R_0^2 \rangle = L^2 \) and the chain behaves like a rod, while for \(L \gg \ell_p \), the limiting behavior of the WLC is that of a Gaussian chain \(\langle R_0^2 \rangle = 2L^2 \). However, it is expected that for \(L \gg \ell_p \), the chain will eventually feel the effect of the EV interaction and will exhibit the conformation statistics for a swollen chain that are not captured in the WLC description. Indeed, we know from theoretical arguments...
following Schaefer et al.15 and Nakanishi16 that a proper description of an EV swollen chain in d spatial dimensions is given by

$$
\sqrt{\langle R_0^2 \rangle} \approx b_1^{d/2} N^{d/2} \ell_p^{d/2} \approx b_1^{d/2} \left(\frac{L}{b} \right)^{d/2} \ell_p^{d/2}.
$$

Here, N is the number of monomers of the chain so that $L = (N - 1)b \approx Nb$ (for $N > 1$), b_1 is the bond length between two neighboring monomers, and the mean field Flory exponent $\nu = 3/(d + 2)$ in 2D = 0.75 and in 3D = 0.60 (≈ 0.586 actual), respectively.

In previous publications, we demonstrated the universal scaling behavior of conformation and transverse fluctuations17 and crossover dynamics16 of an excluded volume (EV) swollen chain in 2D. We showed that the scaled chain conformation, $(R_0^2)/2L\ell_p$, and the transverse fluctuations $\sqrt{(l_i^2)/L}$ obey universal scaling laws in that, when plotted as a function of L/ℓ_p, both $(R_0^2)/2L\ell_p$ and $\sqrt{(l_i^2)/L}$ for all combinations of L and ℓ_p collapse onto the same master curve (Figs. 3 and 4). For $L/\ell_p \ll 1$, in the rod limit, we observe the expected behavior: $(R_0^2)/2L\ell_p \sim L^2/2L\ell_p \rightarrow L/\ell_p$. However, for $L \gg \ell_p$, we found the absence of the Gaussian regime and the scaling behavior of a swollen chain such that $(R_0^2)/2L\ell_p \sim L^2/(L^2\ell_p) \sim (L/\ell_p)^{3/2}$. We interpret that, in 2D, the extreme dominance of the EV interaction results in a complete absence of the Gaussian regime, and we observe a direct crossover from the rod limit to the EV swollen chain. The universality of the result was further reassured by the observation that the data from lattice Monte Carlo simulations using the pruned-enriched Rosenbluth scheme by Hsu et al. without any fitting parameter collapsed onto the data obtained from Brownian dynamics (BD) simulations on the Grest–Kremer bead-spring model.13,21 We also provide general arguments regarding the collapse of the transverse fluctuations onto the same master plot for all values of L/ℓ_p.

In this article, we first generalize and establish those results in three dimensions (3D) and then extend these studies in the presence of additional particles interacting with themselves as well as with a single polymer chain with a short range repulsive (EV) interaction for several different area/volume fractions in 2D/3D. We have also studied the size effect of the EV particles on these scaling relations. The investigation in 3D is partly motivated by the theoretical results using the scaling theory of polymers due to Nakanishi, who conjectured that in 3D there will be a broad Gaussian regime before the chain conformation develops characteristics of a swollen chain for $L \gg \ell_p$.16 Using lattice MC methods, Hsu et al. demonstrated that for a 3D semi-flexible chain, there is a Gaussian regime, which eventually becomes dominated by EV effects. We will demonstrate that, unlike as depicted in Ref. 16, the width of the Gaussian regime is very narrow, although it can, however, be differentiated from that of a 2D universal master curve (Figs. 3(a) and 3(b)).

II. THE MODEL AND THE METHOD

Our BD scheme is implemented on a Grest–Kremer bead-spring model of a polymer14 with the monomers interacting via an excluded volume (EV), a Finite Extension Nonlinear Elastic (FENE) spring potential, and a three-body bond-bending potential that enables variation of the chain persistence length ℓ_p [Fig. 1 and Eqs. (6a) and (6b)].

![Fig. 1. Schematic showing an eight unit long (N = 8) bead-spring model of a polymer (purple beads connected by black springs) in a crowded environment consisting of mobile (pink) particles. The bond angle for the ith bead is shown as described in Eq. (5). In the figure, the diameter of the EV particles $\sigma_{\text{part}} = 1.5\sigma_{\text{poly}}$.](http://pubs.aip.org/aip/jcp/article-pdf/doi/10.1063/5.0143814/17795265/204902_1_5.0143814.pdf)
and the additional EV particles with \(\sigma_i \) or \(\sigma_j \) being either \(\sigma_{\text{poly}} \) or \(\sigma_{\text{part}} \), respectively.

We use Langevin dynamics with the following equations of motion for the \(i \)th monomer:

\[
m\ddot{r}_i = -\nabla(U_{\text{li}} + U_{\text{FENE}} + U_{\text{bond}} + U_{\text{wall}}) - \Gamma \dot{r}_i + \eta_i.
\]

(8)

Here, \(\eta_i(t) \) is a Gaussian white noise with zero mean at temperature \(T \) and satisfies the fluctuation-dissipation relation in \(d = 2 \) and 3 physical dimensions,

\[
\langle \eta_i(t) \cdot \eta_j(t') \rangle = 2dkT \delta(t - t').
\]

(9)

We express length and energy in units of \(\sigma \) and \(\epsilon \), respectively. The parameters for the FENE potential in Eq. (4), \(k_F \) and \(R_0 \), are set to \(k_F = 30\epsilon/\sigma^2 \) and \(R_0 = 1.5\sigma \), respectively. The friction coefficient and the temperature are set to \(\Gamma = 0.7\sqrt{me\sigma^2} \) and \(k_B T/\epsilon = 1.2 \), respectively. The force is measured in units of \(k_B T/\sigma \). The mass of each bead for both the polymers and the EV particles is chosen to be the same.

The numerical integration of Eq. (8) is implemented using the algorithm introduced by van Gunsteren and Berendsen.23 Our previous experiences with BD simulation suggest that for a time step \(\Delta t = 0.01 \), these parameter values produce stable trajectories over a very long period of time and do not lead to the unphysical crossing of a bond by a monomer.23 The average bond length stabilizes at \(l_1 = 0.971 \pm 0.001 \) with negligible fluctuation regardless of the chain size and rigidity.17 We have used a Verlet neighbor list25 instead of a link-cell list to expedite the computation. In addition, the simulation runs for the EV particles were done using LAMMPS26 with the same potentials for numerical expediency. We have checked that these runs yield the same results.

III. RESULTS

We first present results for a single semi-flexible chain and the universal scaling properties in 2D and 3D in Secs. III A–III C. In Secs. III D and III E, we present the results for the effect of the additional EV particles.

A. Persistence length and end-to-end distance

First, we show the results for the universal properties of a 3D semi-flexible chain. For comparison, we have also shown the 2D results published earlier but with new, added data points.17 This is required to compare the 2D results in the presence of the EV particles. A large number of combinations of chain lengths, \(N = 16 \rightarrow 512 \) for 2D systems and \(N = 16 \rightarrow 1500 \) for 3D systems, were chosen. A larger chain length for the 3D system was necessary to study the crossover from a Gaussian regime, as discussed later. Before we show the scaling results, we would like to mention that the expression of the persistence length in Eqs. (6a) and (6b) is derived for a WLC22 in the continuum limit, but we used Eq. (2) to describe a swollen chain. The validity of Eqs. (6a) and (6b) and of Eq. (2) for a swollen chain in 2D and 3D are shown in Fig. 2. We rationalize this result by arguing that the persistence length is a local property of the chain. Thus, when \(\ell_p \) is calculated using a discrete model for a swollen semi-flexible chain with the three-body interaction term incorporated using Eq. (7), it does not affect the result derived using a continuum approximation.

B. Universal aspects of chain conformation

Now we show the universal aspects of a swollen chain. Figures 3(a) and 3(b) show the universal scaling and crossover plots in 2D and 3D, respectively. First, we discuss the data collapse of the root-mean-square (rms) end-to-end distance \(\langle R_N^2 \rangle \). The choice of the dimensionless \(y \)-axis \(\langle R_N^2 \rangle /2Lp_0^2 \) in Figs. 3(a) and 3(b) is guided by noting that in the limit \(L \gg \ell_p \), Eq. (1) results in \(\langle R_N^2 \rangle \rightarrow 2Lp_0^2 \), the Gaussian limit of the WLC. Thus, in the absence of the EV interaction, the quantity \(\langle R_N^2 \rangle /2Lp_0 \rightarrow 1 \) and would exhibit a zero slope [dashed purple line in Figs. 3(a) and 3(b)]. However, for \(L \gg \ell_p \), eventually, the EV effect will become important, and from Eq. (2), it is easy to check that \(\langle R_N^2 \rangle \sim (L/\ell_p)^{2v-1} \). This is clearly the case, as evident from Figs. 3(a) and 3(b) for 2D and 3D, respectively. However, we note that for 2D, there is no Gaussian regime. For the 3D case, the Gaussian regime is very short. This trend has also been reported in the MC simulation10 using a completely different method.
C. Universal aspects of transverse fluctuations

We now discuss the universality of transverse fluctuation. For each configuration of the polymer chain generated during the simulation, we choose the unit vector \(\vec{R}_N = \vec{R}_N/N \) as the longitudinal axis to calculate transverse fluctuations as follows:

\[
\langle t_r^2 \rangle = \left(\frac{1}{N} \sum_{i=1}^{N} y_i^2 \right),
\]

where \(y_i \) is the perpendicular distance of the \(i \)th monomer with respect to the instantaneous direction \(\vec{R}_N \) and \(\langle \cdot \cdot \cdot \rangle \) represents the ensemble average. We have repeated this calculation for several chain lengths, from extremely stiff chains to fully flexible chains. In the rod limit \(\ell_p \gg L \), it can be shown that for a WLC chain, the transverse fluctuation with respect to the direction of the end-to-end vector obeys the following scaling relation:

\[
\langle t_r^2 \rangle \sim L^2/\ell_p.
\]

The transverse fluctuation in this limit of a weakly bending rod is related to the roughness exponent \(\zeta \):

\[
\sqrt{\langle t_r^2 \rangle} \sim L^\zeta,
\]

where \(\zeta = \frac{3}{2} - \nu \) [27,28]. Thus, in the limit \(\ell_p \gg L \) for an extremely stiff chain, the transverse fluctuation is governed by the roughening exponent \(\langle t_r^2 \rangle \sim L^{3/2} \), independent of the spatial dimension of the system. In the other limit of a fully flexible chain, the transverse fluctuation depends on the physical dimension and is governed by the Flory exponent of the given spatial dimension as follows:

\[
\langle t_r^2 \rangle \sim L^{2\nu}.
\]
We find that when \(\ln(L/\ell_p) \approx 1 \), or \(L \approx 3\ell_p \), the transverse fluctuation becomes maximum. The limiting slopes for the \(\sqrt{(L_c^2)/L} \) for \(L/\ell_p \ll 1 \) and for \(L/\ell_p \gg 1 \) follow from Eqs. (12) and (13) can be written as

\[
\lim_{L/\ell_p \to 0} \sqrt{(L_c^2)/L} \sim (L/\ell_p)^{\nu - 1},
\]

\[
\lim_{L/\ell_p \to \infty} \sqrt{(L_c^2)/L} \sim (L/\ell_p)^{1-\nu}.
\]

These asymptotic limits are clearly shown in Figs. 4(a) and 4(b), both in 2D and in 3D, respectively. The simulation data fits extremely well with these predictions. The scaling relation can be used to extract either the \(\ell_p \) or the \(L \) if one or the other is known by simply adjusting the ratio \(L/\ell_p \) (such as a knob) until the point falls onto the universal plot.

D. Effect of crowding

Having established the universal scaling relations for the conformations and fluctuations for a single chain, we now study the effect of the EV particles on these results. The motivation comes from the living world, where biopolymers such as double stranded DNA inside a cell encounter crowded environments that affect their conformation and dynamics and, hence, their various functionalities. In order to check how the universal scaling relations are affected by the presence of the EV particles, we have studied chains of different lengths \((N = 64 \text{--} 192) \) in the presence of dynamic EV particles of different diameters \((\sigma_{\text{part}} = 1.0\sigma, 1.5\sigma, \text{and } 2.0\sigma) \) with repulsive cutoff interaction potentials as a function of the density \(\rho = 0.1 \text{--} 0.5 \) (or equivalent volume fraction \(\phi = \frac{1}{2}\rho\sigma_{\text{part}}^2 \) in 3D) of the EV particles in both 2D and 3D. We have also varied the chain persistence length \(\ell_p \) such that the ratio \(L/\ell_p \) spans a broad range of values.

First, we studied the effect of crowding due to EV particles whose diameters are the same as those of the polymer beads \((\sigma_{\text{part}} = 1.0\sigma) \); please refer to Sec. II and Fig. 1). Then, for two fixed area fractions \((\phi = 0.2356 \text{ and } 0.3927) \), we studied the size effects of EV particles of different diameters \(\sigma_{\text{part}} = 1.0\sigma, 1.5\sigma, \text{ and } 2.0\sigma \). For this part, we have carried out the BD simulation in 2D, keeping the mass of the beads the same.

1. Effect of the density of the EV particles of the same diameter

Figures 5 and 6 show the results of the effect of the additional EV particles of the same diameter on the scaled end-to-end distance and the transverse fluctuations, respectively, both in 2D and 3D. The simulations were carried out for particle densities \(\rho = 0.1, 0.2, 0.3, 0.4, \text{ and } 0.5 \) respectively. Only \(\rho = 0.1, 0.3, \text{ and } 0.5 \) are shown along with \(\rho = 0.0 \) for comparison.

For all of the densities studied, the data indicates that the EV particles have hardly any effect on the chain conformations and fluctuations. We have provided raw and scaled data for two different area fractions for further comparison.

2. Size effect of the EV particles of different diameters

In order to investigate how the diameters of the EV particles affect the results, additional simulations were carried out in 2D for EV particles with diameters \(\sigma_{\text{part}} = 1.5\sigma \text{ and } 2.0\sigma \), respectively. We studied two area fractions of \(\phi = 0.2356 \text{ and } \phi = 0.3927 \text{ in } 2D \). For these simulations, the mass of each EV particle remained the same. For an area fraction of \(\phi = 0.2356 \), the densities for \(\sigma_{\text{part}} = 1.0, 1.5, \text{ and } 2.0 \) were \(\rho = 0.3, 0.133, \text{ and } 0.075 \), respectively. For an area fraction of \(\phi = 0.3927 \), the densities for particles with \(\sigma_{\text{part}} = 1.0, 1.5, \text{ and } 2.0 \) were \(\rho = 0.5, 0.22, \text{ and } 0.125 \), respectively. These results are shown in Figs. 7 and 8. We find that for both the EV particle area fractions of \(\phi = 0.2356 \text{ and } \phi = 0.3927 \text{ regardless of the diameter } \sigma_{\text{part}} \text{ of the included EV particles, } \text{the data points for each chain tend to collapse onto the same curve. These results indicate that, for fixed EV particle area fractions, the size of the additional EV particles that are introduced does not appear to invalidate the scaling relationships up to the maximum diameter of the EV particles.}

We have further investigated the physical origin of the effect of the EV particles on the scaling laws. We have analyzed the simulation data for rms transverse fluctuation per unit length \(\sqrt{(l_c^2)/L} \) and...
noticed that this quantity (≈0.1) is at least an order of magnitude less than the average separation among the particles (1.26σ−1.7σ) for EV particle density \(\rho = (0.5−0.2) \). A similar argument holds for the 2D system. Thus, the average presence of the particles hardly affects the conformations of the chain. This explains the robustness of the result.

E. Comparison with experiments

Biopolymers have a wide range of flexibility. Single stranded DNA (ssDNA) is more flexible than double stranded DNA (dsDNA). Actins and microtubules are much more rigid. We have gathered experimental values of \(\frac{L}{\ell_p} \) in Table I and determined how they will be described (rod, Gaussian, or a swollen chain) with reference to the universal scaling plot of Fig. 3. We notice that a microtubule and other synthetic stiff polymers are characterized by rods, while a 30 μm long Actin \(^{10}\) filament with a persistence length of \(\ell_p = 16.7 \) μm falls in the Gaussian regime, while an ss-DNA \(^2\) is described as a swollen chain. For the λ-phage dsDNA (L = 75 nm, \(\ell_p = 46.6 \) nm), we also have an experimental value for the mean-square end-to-end distance, \(\langle R_N^2 \rangle = 3844 \), nm, that enables us to obtain the scaled coordinate \(\langle L/\ell_p, \langle R_N^2 \rangle/2L\ell_p \rangle \approx (1.61, 0.55) \). This coordinate falls right onto the universal plot (●) in Fig. 3 in the Gaussian regime and serves as a testimonial to our theory. It is worth noting in this context that most of the biopolymers are described as WLC. However, a large number of them will behave as swollen chains. The universal curve of Fig. 3 can be used to classify them. Figure 4 can then be used to extract the transverse fluctuations of the chains.

IV. SUMMARY AND CONCLUSION

In conclusion, we have established the universal aspects of conformations and fluctuations of a semi-flexible chain by studying the scaled end-to-end distance \(\langle R_N^2 \rangle/2L\ell_p \) and the scaled transverse fluctuation \(\sqrt{\langle l^2 \rangle}/L \) as a function of the scaled contour length \(L/\ell_p \). The purpose of the choice for the former is that in the limit of a flexible J. Chem. Phys. 158, 204902 (2023); doi: 10.1063/5.0143814
Published under an exclusive license by AIP Publishing

\[\text{ARTICLE} \]
The chain stiffness is measured in units of \(k_B T / \ell_p \), where \(k_B T \) is the thermal energy and \(\ell_p \) is the persistence length of the chain. It is defined as the length over which the chain is statistically linear.

The root-mean-square fluctuation of the chain is given by \(\langle l^2 \rangle \sim z^{\zeta} \), where \(\zeta \) is the roughening exponent. In a semi-flexible chain, the fluctuation is dimension dependent and grows as \(\langle l^2 \rangle \sim L^{\nu} \), where \(\nu \) is the corresponding Flory exponent in a given dimension.

The authors have carried out simulations to study the behavior of semi-flexible chains in the presence of excluded volume (EV) particles. The EV particles are assumed to be repulsive and affect the chain dynamics. The EV effects are incorporated in the chain persistence length \(\ell_p \) and its parameter-free universal aspects are brought out in this paper.

The transverse fluctuations, as expected in the rod limit, are independent of the spatial dimensions and grow as \(\langle l^2 \rangle \sim L^{\nu} \), as described by the roughening exponent \(\zeta = 1.5 \) (Fig. 4), while in the limit of a flexible chain, the fluctuation is dimension dependent and grows as \(\langle l^2 \rangle \sim L^{\nu} \), where \(\nu \) is the corresponding Flory exponent in a given dimension.

Moreover, we observe that crowding due to EV particles of different area/volume fractions and of the same and different sizes does not change the universality of these results. We understand this by noting that the magnitudes of the scaled transverse fluctuations are much less than the average separation of the EV particles, indicating that, on average, chain fluctuations and conformations are hardly affected by the EV particles for the densities studied here. However, HD effects may change these results when the mass of the spherical particles is varied, indicating that semi-flexible biopolymers and synthetic polymers with respect to a universal scale. It is worth noting that the situation will be completely different if the EV particles are frozen, in which case reptation will set in and the dynamics will be very different.

To analyze the data, the authors used universal plots, indicating that the appropriate length scale to analyze the data is \(L/\ell_p \), which brings out these universal aspects.

The authors have not varied the mass of the spherical particles alone is not likely to change the universal scaling laws, as they are polymer specific and are not affected by the presence of particles of equal mass. However, HD effects may change these results, which is beyond the scope of these studies. The authors conclude by stating that these results can be used as references to classify the properties of intrinsically disordered proteins (IDPs), which remain in an extended state and whose studies have become an increasingly important and emerging field.

ACKNOWLEDGMENTS

All calculations have been carried out under the auspices of UCF's high-performance cluster Stokes. A.B. thanks the late Professor Kurt Binder for various discussions on this problem. We thank the two anonymous referees for their comments on the manuscript.

AUTHOR DECLARATIONS

Conflict of Interest

The authors have no conflicts to disclose.
Author Contributions

Jacob Bair: Data curation (supporting); Software (supporting); Validation (supporting); Writing – original draft (supporting); Writing – review & editing (supporting). Swarnadeep Seth: Data curation (equal); Formal analysis (supporting); Investigation (equal); Methodology (equal); Validation (equal); Visualization (lead); Writing – original draft (supporting); Writing – review & editing (supporting). Aniket Bhattacharya: Conceptualization (lead); Formal analysis (lead); Methodology (lead); Project administration (lead); Supervision (lead); Writing – original draft (lead); Writing – review & editing (lead).

DATA AVAILABILITY

The data that support the findings of this study are available from the corresponding author upon reasonable request.

REFERENCES

1. C.-C. Lin, E. Parrish, and R. J. Composto, Macromolecules 49, 5755–5772 (2016).
2. X.-W. Huang, Y. Peng, and J.-H. Huang, Colloid Polym. Sci. 296, 689–696 (2018).
3. G. Chauhan, M. L. Simpson, and S. M. Abel, J. Chem. Phys. 155, 034904 (2021).
4. M. K. Krotova, V. V. Vasilevkaya, N. Makita, K. Yoshikawa, and A. R. Khokhlov, Phys. Rev. Lett. 105, 128302 (2010).
5. P. G. deGennes, Scaling Concepts of Polymer Physics (Cornell University Press, Ithaca, 1979).
6. J. Moukhtar, E. Fontaine, C. Faivre-Moskalenko, and A. Arneodo, Phys. Rev. Lett. 98, 178101 (2007).
7. J. Moukhtar, C. Faivre-Moskalenko, P. Milani, B. Audit, C. Vaillant, E. Fontaine, F. Mongelard, G. Lavorel, P. St.-Jean, P. Bouvet, F. Argoul, and A. Arneodo, J. Phys. Chem. B 114, 5125 (2010).
8. B. Tinland, A. Pluen, J. Sturm, and G. Weill, Macromolecules 30, 5783–5765 (1997).
9. P. Valle, M. Favre, P. De Los Rios, A. Rosa, and G. Dietler, Phys. Rev. Lett. 95, 185105 (2005).
10. A. Ott, M. Magnasco, A. Simon, and A. Libchaber, Phys. Rev. E 48, R1642 (1993).
11. J. M. Drake, C. L. Gettinger, A. J. Heeger, and D. J. Pine, J. Chem. Phys. 101, 1673 (1994).
12. J. Nettleton, F. Gittes, B. Mickey, and J. Howard, J. Cell Biol. 120, 923–934 (1993).
13. M. Rubinstein and R. H. Colby, Polymer Physics (Oxford University Press, 2003).
14. O. Kratky and G. Porod, J. Colloid Sci. 4, 35 (1949).
15. D. W. Scharf, J. F. Joanny, and P. Pincus, Macromolecules 13, 1280 (1980).
16. H. Nakaniishi, J. Phys. 48, 979 (1987).
17. A. Huang, A. Bhattacharya, and K. Binder, J. Chem. Phys. 140, 214902 (2014).
18. A. Huang, R. Adhikari, A. Bhattacharya, and K. Binder, Europhys. Lett. 105, 18002 (2014).
19. H. -P. Hsu, W. Paul, and K. Binder, Europhys. Lett. 95, 68004 (2011).
20. H. -P. Hsu, W. Paul, and K. Binder, Europhys. Lett. 92, 28003 (2010).
21. G. S. Grest and K. Kremer, Phys. Rev. A 33, 3628 (1986).
22. L. D. Landau and E. M. Lifshitz, Statistical Physics, Part I, 3rd ed. (Pergamon Press, 1980).
23. W. F. van Gunsteren and H. J. C. Berendsen, Mol. Phys. 45, 637 (1982).
24. A. Huang, H.-P. Hsu, A. Bhattacharya, and K. Binder, J. Chem. Phys. 143, 243102 (2015).
25. M. P. Allen and D. J. Tildesley, Computer Simulation of Liquids, 2nd ed. (Oxford University Press, 1997).
26. A. P. Thompson, H. M. Aktulga, R. Berger, D. S. Bolintineanu, W. M. Brown, P. S. Crozier, P. J. ’t Veld, A. Kohlmeyer, S. G. Moore, T. D. Nguyen, R. Shan, M. J. Stevens, J. Tranchida, C. Trott, and S. J. Plimpton, “LAMMPS—A flexible simulation tool for particle-based materials modeling at the atomic, meso, and continuum scales,” Comput. Phys. Commun. 271, 10817 (2022).
27. H. Yamakawa and M. Fujii, J. Chem. Phys. 59, 6641 (1973).
28. T. Odiik, Macromolecules 16, 1340 (1983).
29. A. Caspi, M. Elbaum, R. Granek, A. Lachish, and D. Zbaida, Phys. Rev. Lett. 80, 1106 (1998).
30. A.-L. Barabasi and H. E. Stanley, Fractal Concepts in Surface Growth (Cambridge University Press, 1995).
31. H. Yamakawa, Helical Wormlike Chains in Polymer Solutions (Springer, 2016).
32. C. Domb and A. J. Barrett, Polymer 17, 179–184 (1976).
33. M. Mathukumul and B. G. Nickel, J. Chem. Phys. 86, 460 (1987).
34. M. Fixman, “Excluded volume in polymer chains,” J. Chem. Phys. 23, 1656–1659 (1955).
35. P. S. Crozier, P. J. ’t Veld, A. Kohlmeyer, and S. G. Moore, T. D. Nguyen, R. Shan, M. J. Stevens, J. Tranchida, C. Trott, and S. J. Plimpton, “LAMMPS—A flexible simulation tool for particle-based materials modeling at the atomic, meso, and continuum scales,” Comput. Phys. Commun. 271, 10817 (2022).
36. V. N. Uversky, J. R. Gillespie, and A. L. Fink, Proteins: Struct., Funct., Genet. 41, 415–427 (2000).