Individual focused studies of functional brain development in early human infancy
Tanya Poppe¹, Jucha Willers Moore¹ and Tomoki Arichi¹,²,³

Across the perinatal period, the human brain undergoes a rapid yet highly programmed sequence of maturation. In this time, neural activity has a key role in establishing the brain’s early circuits and guiding essential processes including cell differentiation, neuronal and axonal growth, arborization and synaptogenesis. fMRI studies of young infants hold great potential to understand developmental changes in systems-wide activity and their relationship to regional growth and development. These studies have shown that the brain’s activity rapidly evolves across the perinatal period, as neurovascular coupling matures and resting state networks are established. The high variability of spatial and temporal properties in functional activity may be attributed to the sensitivity of neurovascular coupling to developing cellular structure and connectivity as well as fluctuations in cerebral physiology, behavioral state, and pathology. Longitudinal studies may precisely explore these relationships and provide mechanistic understanding of the relationship between physiology, behavior, injury, and functional activity.

Addresses
¹ Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King’s College London, UK
² Department of Bioengineering, Imperial College London, UK
³ Paediatric Neurosciences, Evelina London Children’s Hospital, Guy’s and St Thomas’ NHS Trust, London, UK

Corresponding author: Arichi, Tomoki (tomoki.arichi@kcl.ac.uk)

Current Opinion in Behavioral Sciences 2021, 40:137–143
This review comes from a themed issue on Deep imaging – personalized neuroscience
Edited by Caterina Gratton and Rodrigo M Braga
For a complete overview see the Issue and the Editorial
Available online 19th May 2021
https://doi.org/10.1016/j.cobeha.2021.04.017
2352-1546/© 2021 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Introduction
In recent years, advances in functional neuroimaging have provided profound insights into how the brain’s activity and organization enable a broad spectrum of essential functions, from sensory processing to complex cognitive functioning and behavior. The focus of most studies has been to map the spatial properties of brain activity at a population level, both during specific tasks or at rest. This approach probes the organization of normal brain function and of neurological and psychiatric diseases. However, brain activity is highly dynamic, with its properties and organization constantly shifting across the day, from one day to another, and during different behavioral states [1]. These considerations are particularly pertinent in the context of early life, when the brain undergoes more dramatic changes to its structure and function than at any other time across the lifespan. In the neonatal brain, rapid developmental changes in tissue composition and physiology are guided firstly by genetic mechanisms, followed by the activity itself, and are finally shaped and refined by environmental influences [2]. This neurobiological maturation is accompanied by ongoing and highly programmed developmental changes in behavior as new skills are attained through early infancy and into childhood. Therefore, understanding longitudinal changes in brain activity during these crucial stages of development and their contribution to lifelong brain function may provide basic mechanistic insight into the link between brain activity and behavior, and ultimately how this relationship is altered by pathology.

Perinatal development
The perinatal period is characterized by dramatic but highly programmed sequences of maturation during which the fetus is prepared for life outside the womb (summarized in Figure 1). The critical importance of this time for brain maturation is emphasized by the effects of preterm birth, where early exposure to the ex utero environment (during the equivalent period to the late second and third trimesters of normal gestation) results in widespread disruptions in brain connectivity and a marked increase in the risk of later adverse neurodevelopmental outcome. By 28 weeks of gestation, radial glia form a scaffold for neural progenitor cells to migrate from the central proliferative zones via the subplate and then differentiate to form the peripheral layers of the cortical plate and the supporting glia (upper rows, Figure 1) [3,4]. Angiogenesis occurs first within the periventricular central proliferative zones and then, alongside synaptogenesis and neuronal maturation, in the cortical plate [5]. Endogenously generated and synchronous neural activity has a key role in establishing early circuits through guiding fundamental processes including synaptogenesis, neuronal maturation and dendritic arborization from approximately 24 weeks gestation to full term age (middle rows, Figure 1) [2]. In the mammalian brain, spontaneous activity first emerges as oscillatory calcium waves and giant depolarizing potentials which spread locally across the maturing cortex,
before large amplitude bursting events emerge in the latter half of gestation with further neurochemical maturation (specifically that of the GABA and glutamate neurotransmitter systems) [2]. Together with molecular cues, events of synchronous endogenous activity (known as spindle bursts in small animals and spontaneous activity transients in human infants) are responsible for the formation of a coarse cortical template before a subsequent ‘critical’ period when exposure to external sensory stimulation refines and strengthens this organization [2,6]. Ultimately, these processes establish the distinct patterns of short and long range cortico-cortical and thalamo-cortical connectivity which provide the life-long structural substrate for mature neural networks [7]. Changes in connectivity are accompanied by maturation of the associated vascular network which increases capillary branching, density and endothelial proliferation (lower rows, Figure 1) [8,9]. Sensory stimulation further influences angiogenesis, as sensory enhancement increases and sensory deprivation decreases microvascular density and branching, but chronic overstimulation conversely results in near arrest of angiogenesis [10,11]. Crucially, the effects of these short term environmental influences on cerebral microvasculature may persist as long-term adaptations [8].

Developmental changes in neurovascular coupling and the hemodynamic response to stimulation

A fundamental premise in functional magnetic resonance imaging (fMRI) studies using blood oxygen level-dependent (BOLD) contrast is that neural activity is tightly coupled to changes in local cerebral blood flow (CBF) so that the necessary metabolic substrates (in particular oxygen and glucose) are readily available. The BOLD response to neural activity is typically represented within fMRI analyses as a hemodynamic response function (HRF), which models the cumulative effects of neurovascular coupling on the acquired MR signal and in particular, the associated localized changes in oxygenated and deoxygenated hemoglobin (Hb) [12]. Importantly, HRF morphology is generally considered to be consistent both within subject events and across populations (Figure 2). A small amplitude ‘initial dip’ seen immediately following onset which is thought to represent an early increase in deoxygenated Hb; followed by a large
amplitude *positive peak* due to functional hyperemia (an overcompensation of oxygen supply to capillaries in the activated brain tissue) [13]; and finally a *negative undershoot* during which the signal falls beneath baseline [12]. The assumption of a consistent HRF across trials and subjects is crucial for fMRI analyses, as it is typically convolved with the experimental paradigm or a timeseries representative of neural ‘input’ to identify spatial patterns of activity [14,15]. Detailed studies however suggest that there is significant inter-regional and between subject HRF variability, which can lead to false negative task analyses and the identification of aberrant patterns of functional connectivity [16,17]. In addition, the amplitude, time-to-peak, and morphology of the HRF have also all been shown to be sensitive to factors which influence CBF and/or cerebral vascular reactivity such as the partial pressure of carbon dioxide (PaCO₂) [18]. Key HRF parameters also change during aging, with older adults (54–74 years old) showing a significantly reduced positive peak amplitude and a longer time-to-peak in comparison to young adults (18–30 years old) [19].

Hemodynamic response variability in early life is likely to explain, in part, the high variability in results of fMRI studies of neonates and young infants where both negative and positive amplitude BOLD responses have been reported [20]. An unresolved area in the neonatal task-fMRI field remains the reporting of negative BOLD responses, suggestive of a counterintuitive stimulus induced localized rise in deoxygenated-Hb. Such negative BOLD responses were consistently reported in early studies, particularly those involving visual stimuli and in infants >8 weeks of age, leading to the suggestion that they were representative of a specific time window when rapid neuronal development led to local metabolic demand that outstripped the ability of the vascular system to supply oxygen [21]. During the neonatal period, the aforementioned rapid maturational changes in brain tissue composition and vascular density lead to marked developmental changes in CBF and the cerebral metabolic rate of oxygen (CMRO₂) [22,23]. In preterm infants, global CBF approximately doubles during the first few days following birth as the cerebral circulation adapts to postnatal life, well beyond rates that could be explained by changes in mean arterial blood pressure, hematocrit or PaCO₂ alone [24]. Maturation of the vasculature itself also occurs in conjunction with increased angiogenesis, with proliferation of pericytes which mediate capillary dilatation [13]. Interestingly, despite large increases in total brain volume, global cerebral blood volume (CBV) remains relatively static across the preterm period [22]. Together with the concomitant increases in CBF, static CBV translates to a reduction in the mean transit time of Hb according to the Stewart-Hamilton principle [12]. Therefore, it is perhaps unsurprising that significant maturational changes are also seen in the morphology and parameters of the hemodynamic responses across the equivalent period to the perinatal time window in both animal models and preterm human infants [9,25–27]. Responses in human preterm infants have a significantly longer time to peak, are more prolonged and are lower in amplitude in comparison to the canonical adult HRF (Figure 2) [22,26]. With increasing age and rising CBF, the time to peak markedly shortens by term equivalent age when a proportionately deeper post-stimulus undershoot is also observed [26]. Consideration of these developmental effects and use of an age appropriate HRF is therefore essential when designing and analyzing fMRI studies for the neonatal population [28].

Developmental changes in functional activity across the perinatal period

There is now a growing body of literature exploring the temporal and spatial properties of functional activity in the developing human brain using fMRI, with the field now benefitting from large open-source data repositories such as the developing Human Connectome Project http://www.developingconnectome.org/project/, [29**] and the HCP Lifespan Baby Connectome Project https://www.humanconnectome.org/study/lifespan-baby-connectome-project [30**] which will enable detailed characterization of developmental effects and exploration of the effects of population level sociodemographic and clinical factors. These cohorts are important, as
cross-sectional resting state studies in infants show a pattern consistent with increasing patterns of connectivity across the perinatal period, resulting in a rapidly changing network spatial representation encompassing more distinct and widespread cortical regions with age [31]. This appears to occur firstly in networks subserving the primary motor and sensory (somatosensory, visual, auditory) systems which are seen to have assumed an adult-like bilateral representation by term equivalent age [29,31,32,33]. Similarly, maturing patterns consistent with the establishment of long-range patterns of connectivity and the integration of associative areas leading up to term equivalent age are also seen in task-based fMRI experiments using simple sensory stimuli [34]. In contrast, the associative networks (such as the default mode, executive control and salience networks) are generally reported to be either immature or unidentifiable in the neonatal period, suggesting that they are established through childhood as their associated higher cognitive functions emerge [33,35]. This has important implications for what we can learn about the fundamental relationship between functional connectivity and behavior. Across the first year following birth, young infants rapidly transition from predominately ‘passive’ interaction with their environment to acquiring the ability to actively engage with their surroundings. In this context, the aforementioned large open-source datasets of children developing normally through early infancy present a unique opportunity to precisely characterize how emerging patterns of connectivity correlate temporally with recognized developmental milestones in behavior. These developmental milestones occur across several distinct domains ranging from gross motor skills to social interaction, all with their own characteristic timelines of achievement [36,37]. Therefore, one might envisage that specific ‘phase transition’ points in connectivity could not only be related to but even predict the later attainment of specific behavioral skills in infancy. On an individual subject level, this highlights the exciting possibility that identifying deviations from this relationship and aberrant trajectories could provide not only novel mechanistic insight into hitherto poorly understood conditions such as autism and learning difficulties, but importantly also opportunities for targeted intervention.

Individual variability and development

Most fMRI work in young infants has been cross-sectional, with patterns of activity characterized by averaging within groups of similar ages. Activity maps are then compared with those from a distinct group at another age to infer developmental changes, or with patients of known clinical pathology to identify the differences related to disease mechanisms. Whilst group averaging approaches study the fundamental functional organization of the developing human brain, there has been no work focused specifically on characterizing individual differences in functional activity. It is therefore unknown whether an individual ‘fingerprint’ of functional activity [38] is present in infancy such as that of cortical folding [39]. Interestingly though, the strength of resting functional connectivity in a network thought to be related to the descending pain modulatory system has been previously shown to be significantly related to an individual infant’s amplitude of noxious-evoked brain activity, suggesting that individual patterns of connectivity are important [40]. Furthermore, interpretation may be further impacted by other unaccounted sources of individual variance and in particular, their behavioral state during data collection which may further contribute to the inconsistent results reported more broadly in the neonatal fMRI literature.

Newborn infants transition between various states of alertness and sleep [41]. The duration of each state is dependent on maturation and is influenced by external sources of stress and the ability of an infant to regulate their state [42]. An inability to appropriately regulate behavioral state is seen in infants with a history of prenatal opioid exposure [43], abnormal brain development following preterm birth [44], and hypoxic ischemic encephalopathy [45]. Infants spend approximately 75% of their time sleeping and aberrant establishment of sleep-wake architecture correlates with adverse neurodevelopmental outcomes [46]. The importance of sleep is in early infancy is demonstrated by its crucial role in supporting activity-dependent sensorimotor development and learning [47]. Elegant fMRI studies of visual [48] and cognitive development in awake older infants represent a truly exciting opportunity to explore the neural correlates underlying complex domains such as semantic cognition and theory of mind as they emerge in early human life [49]. In these cases, fMRI informs whether and how the infant brain creates the internal representations required for higher cognitive functions such as learning, where the information gained through behavioral testing alone is constrained by their levels of communication [50]. However, fMRI data in younger infants studied around the time of birth can only really be acquired during sleep, and short acquisition times and challenges inherent to collecting simultaneous EEG-fMRI data from this population have thus far limited opportunities to explore the relationship between the presence of and transition between different sleep states, BOLD responses and functional connectivity. Innovations such as prolonged multimodal acquisition and analyses of simultaneous EEG-fMRI, physiological (heart and respiratory rate) and behavioral monitoring through video recording (combined with deep learning-based classification algorithms) could offer dramatic insights into the role of distinct brain regions and network-wide activity on the neural processes that underlie sleep states.

Understanding individual hemodynamic response variability may elucidate basic facets of early cerebral physiology and their relationship to brain function and development. Preterm infants (particularly those requiring intensive care management) are often exposed to rapid
changes in their ventilatory support (and subsequently PaCO₂), circulatory volume and cardiac contractility across a single day. Coupled with relatively immature cerebral autoregulation, such changes may lead to significant fluctuations in global CBF which increase the risk of intracerebral hemorrhage and/or ischemia [51]. Interestingly, this “pressure passive” pattern (in which CBF is directly dependent on arterial blood pressure) has been suggested to underlie the equivalent to a positive BOLD response in anesthetized immature rodents, with negative responses seen without a rise in systemic blood pressure [27]. Neurovascular coupling models incorporating heart rate and mean arterial blood pressure recordings with EEG and near-infrared spectroscopy into dynamic graph theory [52] and tensor models [53] have shown age-dependent decreased coupling under sedation. Therefore, understanding the role of factors such as PaCO₂ blood pressure and the influence of commonly used medications which can affect baseline global CBF and vascular reactivity is of fundamental importance as each could profoundly influence the amplitude and timing of responses in younger infants.

Significant HRF parameter differences are seen within-subject across distinct brain regions in adults [17]. Characterizing patterns of within-subject HRF variability during infancy could provide specific information about regional brain development and functional integrity. This is exemplified by altered HRF amplitudes reported following stroke [54] and in preterm infants with intraventricular hemorrhage [55], suggestive of impaired neurovascular coupling in pathological states. Markedly altered hemodynamic responses have also been described in neonatal seizures with diffuse optical tomography, with an initial large increase in blood volume followed by a prolonged decrease lasting several minutes [56]. Therefore, longitudinal studies are vital to provide a mechanistic understanding of how acute alterations in neurovascular coupling might link to longer term effects on the establishment of network topography and functional connectivity, such as those seen in infants born preterm [33], with brain injuries [57], and those with a familial risk of autism [58]. Given that disruptions in neonatal connectivity have been shown to significantly relate to later neurodevelopmental outcome [57,59], characterizing acute and developing individual neurovascular coupling will inform its predictive power as a biomarker for later clinical prognosis.

Summary
Longitudinal explorations of infant fMRI hold great potential for providing dramatic new insight into how the brain’s functional activity is organized and matures in early human life. Detailed fMRI study of individual variability in physiology and function will facilitate understanding of the cumulative effects of neurovascular coupling as measured by the HRF. Fundamental new knowledge would provide insight to the possible causal relationships between the maturation of behavior, regional brain development and functional activity to identify therapeutic targets.

Conflict of interest statement
Nothing declared.

Acknowledgements
TP and TA are supported by funding from a Medical Research Council (MRC) UK Clinician Scientist Fellowship [MR/P008712/1, MRV036874/1]. JWM is in receipt of PhD funding support from the Medical Research Council Centre for Neurodevelopmental Disorders, King’s College London [MR/N026063/1]. The authors additionally acknowledge support from the Department of Health via the National Institute for Health Research (NIHR) comprehensive Biomedical Research Centre award to Guy’s & St Thomas’ NHS Foundation Trust in partnership with King’s College London and King’s College Hospital NHS Foundation Trust, and the Wellcome Engineering and Physical Sciences Research Council (EPSRC) Centre for Medical Engineering at King’s College London [WT 203148/Z/16/Z].

References and recommended reading
Papers of particular interest, published within the period of review, have been highlighted as:

- of special interest
- of outstanding interest

1. Gordon EM, Laumann TO, Gilmore AW, Newbold DJ, Greene DJ, Berg JJ, Ortega M, Hoyt-Drazen C, Gratton C, Sun H et al.: Precision functional mapping of individual human brains. Neuron 2017, 95:791-807.e7.

2. Khazipov R, Luhmann HJ: Early patterns of electrical activity in the developing cerebral cortex of humans and rodents. Trends Neurosci 2006, 29:414-418.

3. Rakic P: Specification of cerebral cortical areas. Science 1988, 241:170-176.

4. Martinez-Cerdeño V, Noctor SC: Neural progenitor cell terminology. Front Neuroanat 2018, 12:104.

5. Raybaum C: Normal and abnormal embryology and development of the intracranial vascular system. Neurosurg Clin North Am 2010, 21:399-426.

6. Hangaru-Opatz IL: Between Molecules and Experience: Role of Early Patterns of Coordinated Activity for the Development of Cortical Maps and Sensory Abilities. Elsevier; 2010.

7. Vasung L, Raguz M, Kostovic I, Takahashi E: Spatiotemporal relationship of brain pathways during human fetal development using high-angular resolution diffusion MR imaging and histology. Front Neurosci 2017, 11:1-16.

8. Harb R, Whiteus C, Freitas C, Grutzendler J: In vivo imaging of cerebral microvascular plasticity from birth to death. J Cereb Blood Flow Metab 2013, 33:146-156.

9. Kozberg MG, Hillman EMC: Neurovascular coupling develops alongside neural circuits in the postnatal brain. Neurogenesis 2016, 3:1-6.

10. Lacoste B, Comin CH, Ben-Zvi A, KAESER PS, Xu X, COSTA LF, GU C: Sensory-related neural activity regulates the structure of vascular networks in the cerebral cortex. Neuron 2014, 83:1117-1130.

11. Whiteus C, Freitas C, Grutzendler J: Perturbed neural activity disrupts cerebral angiogenesis during a postnatal critical period. Nature 2014, 508:407-411.

12. Buxton RB, Uludag K, Dubowitz DJ, LIU TT: Modeling the hemodynamic response to brain activation. Neuroimage 2004, 23:220-233.
The Baby Connectome Project is longitudinally and cross-sectionally imaging individuals from birth to five years of age, to study structural and functional development of the brain alongside behavioral measures of neurodevelopment. The bespoke imaging provides a rich dataset to study typical development into childhood.

30. Howell BR, Stynor MA, Gao W, Yap PT, Wang L, Baluyot K, • Yazoub E, Chen G, Potts T, Salzwedel A et al.: The UNC/UMN Baby Connectome Project (BCP): an overview of the study design and protocol development. Neuroimage 2019, 189:891-922. The Baby Connectome Project is longitudinally and cross-sectionally imaging individuals from birth to five years of age, to study structural and functional development of the brain alongside behavioral measures of neurodevelopment. The bespoke imaging provides a rich dataset to study typical development into childhood.

Hemodynamic response function (HRF) variability confounds resting-state fMRI functional connectivity. Magn Reson Med 2018, 80:1697–1713 http://dx.doi.org/10.1002/mrm.27146.

Handwerker DA, Ollinger JM, D’Esposito M: Variation of BOLD hemodynamic responses across subjects and brain regions and their effects on statistical analyses. Neuroimage 2004, 21:1639–1651.

Chen ER, Ugurbil K, Kim SG: Effect of basal conditions on the magnitude and dynamics of the blood oxygenation level dependent fMRI response. J Cereb Blood Flow Metab 2002, 22:1042–1053.

West KL, Zuppichini MD, Turner MP, Sivakolundu DK, Zhao Y, Abdelkarim D, Spence JS, Rypma B: BOLD hemodynamic response function changes significantly with healthy aging. Neuroimage 2019, 188:198–207.

Cusack R, McCuaig O, Linke AC: Methodological challenges in the comparison of infant fMRI across age groups. Dev Cogn Neurosci 2015, 13:1-12.

Yamada H, Sadato N, Koniyi Y, Kimura K, Tanaka M, Yonekura Y, Ishii Y: A rapid brain metabolic changes in infants detected by fMRI. Neuroreport 1997, 8:3775–3778.

Roche-Labarbe N, Fenoglio A, Radhakrishnan H, Kocinski-Filip M, Carp SA, Dubb J, Bosu DA, Grant PE, Franceschi MA: Somatosensory evoked changes in cerebral oxygen consumption measured non-invasively in premature neonates. Neuroimage 2014, 85:279–296.

Kim HG, Lee JH, Choi JW, Han M, Gho SM, Moon Y: Multidelay arterial spin-labeling MRI in neonates and infants: cerebral perfusion changes during brain maturation. Am J Neuroradiol 2018, 39:1912–1918.

Meek JH, Firbank M, Elwell CE, Atkinson J, Bradrick O, Wyatt JS: Regional hemodynamic responses to visual stimulation in awake infants. Pediatr Res 1998, 43:840–843.

Colonnese MT, Phillips MA, Constantine-Paton M, Kaila K, Jasanoff A: Development of hemodynamic responses and functional connectivity in rat somatosensory cortex. Nat Neurosci 2008, 11:72–79.

Arichi T, Fagiolo G, Varella M, Melendez-Calderon A, Allievi A, Merchant N, Tusor N, Counsell SJ, Burdet E, Beckman CF et al.: Development of BOLD signal hemodynamic responses in the human brain. Neuroimage 2012, 63:663–673.

Kozberg MG, Chen BR, DeLeo SE, Bouchard MB, Hillman EMC: Resolving the transition from negative to positive blood oxygen level-dependent responses in the developing brain. Proc Natl Acad Sci U S A 2013, 110:4390–4395.

Cusack R, Wild C, Linke AC, Arichi T, Lee DSC, Han VK: Optimizing stimulation and analysis protocols for neonatal fMRI. PLoS One 2015, 10:1–13.

Fitzgibbon SP, Harrison SJ, Jenkinson M, Baxter L, Robinson EC, • Bastiani M, Bozek J, Karolis V, Cordero Grande L, Price AN et al.: The developing Human Connectome Project (dHCP) automated resting-state functional processing framework for newborn infants. Neuroimage 2020, 223:117303. Describes an fMRI minimal pre-processing pipeline developed for neonatal data. The pipeline includes slice-to-volume motion correction and dynamic susceptibility distortion correction, a robust multimodal registration approach, bespoke ICA-based denoising which address many of the common changes in fMRI of young infants.
consequences and future research priorities. *Pediatrics* 2019, 144.

44. George JM, Fiori S, Fripp J, Pannek K, Guzzetta A, David M, Ware RS, Rose SE, Colditz PS, Boyd RN: Relationship between very early brain structure and neuromotor, neurological and neurobehavioral function in infants born <31 weeks gestational age. *Early Hum Dev* 2018, 117:74–82.

45. Peeples ES, Rao R, Dizon MLV, Johnson YR, Joe P, Filbette J, Hossain T, Smith D, Hamnick S, DiGeronimo R et al.: Predictive models of neurodevelopmental outcomes after neonatal hypoxic-ischemic encephalopathy. *Pediatrics* 2021, 147:e202002962.

46. Shellhaas RA, Burns JW, Hassan F, Carlson MD, Barks JDE, Chervin RD: Neonatal sleep–wake analyses predict 18-month neurodevelopmental outcomes. *Sleep* 2017, 40.

47. Dall’Orso S, Fifer WP, Balsam PD, Brandon J, O’Keefe C, Poppe T, Vecchiato K, Edwards AD, Burdet E, Arichi T: Cortical processing of multimodal sensory learning in human neonates. *Cereb Cortex* 2021, 31:1827–1836.

48. Deen B, Richardson H, Dilks DD, Takahashi A, Kell B, Wald LL, Kanwisher N, Saxe R: Organization of high-level visual cortex in human infants. *Nat Commun* 2017, 8:1–10.

49. Ellis CT, Skalaban LJ, Yates TS, Beijanki VR, Córdova NL, Turk-Browne NB: Re-imaging fMRI for awake behaving infants. *Nat Commun* 2020, 11:1–12.

50. Yates TS, Ellis CT, Turk-Browne NB: The promise of awake behaving infant fMRI as a deep measure of cognition. *Curr Opin Behav Sci* 2021, 40:5–11.

51. Greisen G: Autoregulation of cerebral blood flow in newborn babies. *Early Hum Dev* 2005, 81:423–428.

52. Hendriks D, Thewissen L, Smits A, Naulaers G, Allegaert K, Van Huffel S, Caicedo A: Using graph theory to assess the interaction between cerebral function, brain hemodynamics, and systemic variables in premature infants. *Complexity* 2018, 2018.

53. Caicedo A, De Wel O, Van decappelle M, Thewissen L, Smits A, Allegaert K, De, Lathauwer L, Naulaers G, Van Huffel S: Monitoring of brain hemodynamics coupling in neonates using updated tensor decompositions. *Proc Annu Int Conf IEEE Eng Med Biol Soc* EMBS 2019 http://dx.doi.org/10.1109/EMBC.2019.8657846.

54. Seghier ML, Lazeyras F, Zimine S, Maier SE, Hanquinet S, Delavelle J, Volpe JJ, Huppi PS: Combination of event-related fMRI and diffusion tensor imaging in an infant with perinatal stroke. *Neuroimage* 2004, 21:463–472.

55. Mahmoudzadeh M, Dehaene-Lambertz G, Kongolo G, Fournier M, Goudjil S, Wallois F: Consequence of intraventricular hemorrhage on neurovascular coupling evoked by speech syllables in preterm neonates. *Dev Cogn Neurosci* 2018, 30:60–69.

56. Singh H, Cooper RJ, Wai Lee C, Dempsey L, Edwards A, Brigadoi S, Arantzig D, Everdell N, Michell A, Holder D et al.: Mapping cortical haemodynamics during neonatal seizures using diffuse optical tomography: a case study. *Neuroimage Clin* 2014, 5:256–265.

57. Linke AC, Wild C, Zubiurre-Elorza L, Herzmann C, Duffy H, Han VK, Lee DSC, Cusack R: Disruption to functional networks in neonates with perinatal brain injury predicts motor skills at 8 months. *Neuroimage Clin* 2018, 18:389–405.

58. Ciarrushta J, Dimitrova R, Batalie D, O’Murcheartaigh J, Cordiero-Grande L, Price A, Hughes E, Kangas J, Perzy E, Javed A et al.: Emerging functional connectivity differences in newborn infants vulnerable to autism spectrum disorders. *Transl Psychiatry* 2020, 10.

59. Merhar SL, Gozdas E, Tkach JA, Parikh NA, Kline-Fath BM, He L, Yuan W, Altaye M, Leach JL, Holland SK: Neonatal functional and structural connectivity are associated with cerebral palsy at two years of age. *Am J Perinatol* 2020, 80:43–48 http://dx.doi.org/10.1055/s-0039-1683874.