ON PROPERLY CONVEX REAL-PROJECTIVE MANIFOLDS WITH
GENERALIZED CUSPS

DARYL COOPER AND STEPHAN TILLMANN

ABSTRACT. Suppose E is an end of an irreducible, properly convex, real-projective n-manifold M. If $\pi_1 E$ contains a subgroup of finite index isomorphic to \mathbb{Z}^{n-1}, and $E \hookrightarrow M$ is π_1-injective, then E is a generalized cusp. We list some consequences when all ends are of this type. Under certain hypotheses we prove the holonomy of a properly convex manifold is irreducible.

A generalized cusp is a properly convex, real-projective manifold C that is diffeomorphic to $[0, \infty) \times \partial C$ such that ∂C contains no line segment, and $\pi_1 C$ is virtually nilpotent.

Generalized cusps were introduced in [13] and their theory developed in [4, 5]. It was shown in [4] that if C has compact boundary then the fundamental group is virtually abelian, but see [12] and [14] (5.9) for counter-examples when ∂C is not compact. In the rest of this paper the term generalized cusp will be only be used in the narrow sense that the boundary is compact.

There is a growing literature concerning properly convex manifolds with ends of this type [1, 3, 4, 5, 6, 2, 8, 9, 12, 14, 13, 17, 18].

In applications it is desirable to replace the geometric hypothesis on the boundary of a generalized cusp by an algebraic one. This is done in Theorem (0.1), and is needed for forthcoming work by the authors [13]. Theorem (3.5) lists some consequences when all the ends are generalized cusps, and the fundamental group is relatively hyperbolic.

A properly convex set $\Omega \subset \mathbb{RP}^n$ is reducible if there are disjoint proper subspaces $\mathbb{RP}^a, \mathbb{RP}^b \subsetneq \mathbb{RP}^n$ and every point in Ω is contained in a line segment in Ω with one endpoint in $\mathbb{RP}^a \cap \text{cl} \Omega$ and the other in $\mathbb{RP}^b \cap \text{cl} \Omega$. Otherwise Ω is irreducible. A properly convex manifold $M = \Omega / \Gamma$ is irreducible if Ω is irreducible. Given $\Omega \subset \mathbb{RP}^n$ recall that $\text{Fr} \Omega = \text{cl}(\Omega) \setminus \text{int}(\Omega)$ and $\partial \Omega = \Omega \cap \text{Fr} \Omega$.

A non-compact submanifold $E \subset M$ is called an end of M if E is the closure of a component of $M \setminus \partial E$, and for all $i \in \mathbb{N}$ there are compact submanifolds $K_i \subset K_{i+1}$ with $\partial E \subset K_i \subset E$, and $E \setminus K_i$ is connected, and $E = \cup K_i$. This is a special case of a more general definition of end that suffices for our applications, and makes various statements simpler. An end, E, of a properly convex manifold is called a generalized cusp of M if E deformation retracts to a generalized cusp C. A subspace $A \subset B$ is π_1-injective if, whenever a loop in A is contractible in B, then the loop is contractible in A.

Theorem 0.1 (irreducible implies generalized cusps). Suppose M is an irreducible properly convex n-manifold, and C is an end of M. If C is π_1-injective, and $\pi_1 C$ contains a subgroup of finite index isomorphic to \mathbb{Z}^{n-1}, then C is a generalized cusp of M.

Recall that a radial flow ([13] p. 1384) is a one-parameter subgroup of $\text{PGL}(n+1, \mathbb{R})$ such that the orbit of every point is a proper subset of a projective line, and there is a point $c \in \mathbb{RP}^n$ called the center of the flow that is in the closure of every flowline. The stationary set is $H \cup \{c\}$, where $H \cong \mathbb{RP}^{n-1}$. A displacing hyperplane ([13] p. 1385) for a radial flow Φ is a hyperplane $P \neq H$ such that $c \notin P$.

Date: September 15, 2020.
Sketch proof of (0.1). We may assume \(\pi_1 C \cong \mathbb{Z}^{n-1} \), and the holonomy of \(C \) is a lattice \(\Gamma \) in an abelian upper-triangular subgroup \(T \subset \text{PGL}(n+1, \mathbb{R}) \). Moreover there is a radial flow \(\Phi \) that centralizes \(T \) and fixes a hyperplane \(H \), that is disjoint from \(\Omega \). Furthermore the orbit of a generic point under \(T \oplus \Phi \) is open. The \(T \)-orbit of some point deep inside \(\Omega \) is a convex hypersurface \(S \subset \Omega \). Then \(C \) is a generalized cusp if and only if \(S \) contains no line segment. If \(S \) is strictly convex we are done, otherwise \(S \) contains a maximal flat \(F \). The subgroup \(\text{stab}(F) \subset T \) that preserves \(F \) acts simply transitively on \(F \). Hence \(F \) is an open simplex, and there is a one-parameter subgroup \(L \subset \text{stab}(F) \) whose orbits in \(F \) are line segments. Since \(L \) commutes with \(T \oplus \Phi \) there is an open set of points whose \(L \)-orbits are line segments. This implies \(L \) preserves \(\Omega \), and hence \(\Omega \) is reducible. ∎

A complete proof of Theorem (0.1) is given in Section 1. Section 2 provides the following:

Theorem 0.2 (irreducible holonomy). Suppose \(\Omega \) is properly convex and \(\Gamma \subset \text{PGL}(\Omega) \) is finitely generated, discrete and torsion free, and contains no non-trivial normal abelian subgroup. Suppose either \(\Omega/\Gamma \) is closed, or there is a subgroup \(G \cong \mathbb{Z}^{n-1} \) and \(|\Gamma : G| = \infty \). Then \(\Gamma \) does not preserve any proper projective subspace.

For example, this applies if \(M \) is the interior of a compact \(n \)-manifold that contains an embedded \(\pi_1 \)-injective torus. Theorems (0.1) and (0.2) imply:

Theorem 0.3 (Generalized cusps are completely general). Suppose \(M \) is a properly convex \(n \)-manifold, and \(C \) is an end of \(M \) and

- \(\pi_1 C \) contains a subgroup of finite index isomorphic to \(\mathbb{Z}^{n-1} \),
- \(C \) is \(\pi_1 \)-injective,
- \(\pi_1 M \) does not contain a non-trivial normal abelian subgroup,
- \(|\pi_1 M : \pi_1 C| = \infty \),

then \(C \) is a generalized cusp.

In particular this applies if \(M \) is homeomorphic to a complete hyperbolic manifold of finite volume. Theorem (3.5) in Section 3 gives some useful properties of manifolds whose ends are generalized cusps.

Acknowledgements. The first author thanks the University of Sydney Mathematical Research Institute (SMRI) for partial support and hospitality during completion of this work. Research of the second author is supported in part under the Australian Research Council’s ARC Future Fellowship FT170100316.

1. **Generalized cusps are completely general**

Let \(W = \mathbb{R}^{n+1} \). If \(\Omega \subset \mathbb{P} W \), then \(\text{PGL}(\Omega) \subset \text{PGL} W \) is the subgroup that preserves \(\Omega \). We write \(\text{SL} W \) for the subgroup of \(\text{GL} W \) with determinant \(\pm 1 \), and \(\text{SL} \Omega \) is the preimage in \(\text{SL} W \) of \(\text{PGL} \Omega \). An element \(A \in \text{SL} \Omega \) is hyperbolic if \(A \) has an eigenvalue \(\lambda \) with \(|\lambda| \neq 1 \), and is strongly hyperbolic if, in addition, \(A \) has unique eigenvalues of largest and smallest modulus, and they are real, and have algebraic multiplicity one. It is elliptic if it is conjugate into \(\text{O}(n+1) \) and is parabolic if it is not hyperbolic and not elliptic. The same terms are applied to \([A] \in \text{PGL} \Omega \). A subgroup is parabolic if every element is parabolic or trivial.

Suppose \(M^n = \Omega / \Gamma \) is properly convex and \(\Gamma \cong \mathbb{Z}^{n-1} \). We will show that \(\Gamma \) is a lattice in a subgroup \(T \cong \mathbb{R}^{n-1} \) of \(\text{PGL} W \). Moreover the orbit of a generic point under \(T \) is a convex hypersurface \(S \), and \(M \) is a generalized cusp if and only if \(S \) is strictly convex. In the remaining case \(T \) contains a one-parameter subgroup called a linear flow whose orbits are contained in lines. Moreover \(\Omega \) is foliated by orbits and is reducible.

A linear flow is an injective homomorphism \(\Phi : \mathbb{R} \to \text{PGL}(n+1, \mathbb{R}) \) such that the orbit of every point in \(\mathbb{R} \mathbb{P}^n \) is a proper subset of a projective line. If \(\phi : \mathbb{R} \to \mathbb{R} \) is an isomorphism then \(\Phi \circ \phi \) is
called a reparameterization of Φ. There is a homomorphism $\Psi : \mathbb{R} \to \text{GL}(n+1, \mathbb{R})$ with $\Phi = [\Psi]$, and $\Psi_t = \exp(tM)$ for some matrix M. The eigenvalues of M correspond to weights for Ψ. If Ψ' is another homomorphism and $\Phi = [\Psi']$, then $\Psi'_t = \exp(\lambda t)\psi_t = \exp(t(M + \lambda I))$. This operation is called rescaling. We will abuse notation by also referring to Ψ as a linear flow.

The stationary subset of Φ is the subset of $\mathbb{R}P^n$ consisting of all points that are fixed by the flow. A linear flow is parabolic if, after reparamerization, there is $\pi \in \text{End}(\mathbb{R}^{n+1})$ with $\pi^2 = 0$ and $\Phi_t[x] = [x + t\pi(x)]$, in which case the stationary subset is $\mathbb{P}(\ker \pi)$. It is hyperbolic if, after reparamerization, there is a direct sum decomposition $\mathbb{R}^n = A \oplus B$ and $\Phi_t[a + b] = [a + \exp(t)b]$, where $a \in A$ and $b \in B$; in which case the stationary subset is $\mathbb{P}(A) \cup \mathbb{P}(B)$.

Lemma 1.1. Every linear flow is parabolic or hyperbolic.

Proof. Let Ψ be a linear flow. The hypothesis implies every point $0 \neq x \in \mathbb{R}^{n+1}$ is contained in some 2-dimensional subspace V that is preserved by the flow. Moreover $\Psi[V]$ has real weights, otherwise the orbit of $[x]$ is $\mathbb{R}P^1$. Hence all the eigenvalues of M are real. Suppose there are 3 distinct eigenvalues α, corresponding to three points $[x_i] \in \mathbb{R}P^n$ each fixed by the flow. Then there is an orbit $\sum \exp(\alpha t)x_i$ that is not contained in any $\mathbb{R}P^1$. If there is only one eigenvalue, by rescaling Ψ, we may assume it is 0. If $M^2 \neq 0$ consideration of Jordan normal form contradicts that Ψ is a linear flow. In this case Ψ is parabolic.

This leaves the case there are exactly two eigenvalues $\alpha \neq \beta$. If there is a Jordan block for α of size bigger than 1, then we may assume $\alpha = 0$ by rescaling, and there is a 2-dimensional subspace $V = \langle a, b \rangle$ with $\Psi_t(a + b) = a + t \cdot b$. There is also $c \neq 0$ with $\Psi_t(c) = \exp(\beta t)c$. The orbit of $a + b + c$ is $[(a + tb) + \exp(\beta t)c]$ which is not contained in any $\mathbb{R}P^1$. Thus M is diagonalizable. By rescaling we may assume one eigenvalue $\alpha = 0$ and let A be the eigenspace for $\exp \alpha$ and B the other eigenspace. Then $\mathbb{R}^n = A \oplus B$ and Ψ_t is hyperbolic.

Lemma 1.2. Suppose $\Phi \subset \text{PGL}(n, \mathbb{R})$ is a one parameter subgroup and $U \subset \mathbb{R}P^{n-1}$ is a non-empty open set such that the orbit under Φ of each point in U is a proper subset of a projective line. Then Φ is a linear flow.

Proof. Let $\Phi = [\Psi]$. The set V consists of all triples (a, b, c) with $a, b, c \in \mathbb{R}^n$ that are contained in some 2-dimensional linear subspace of \mathbb{R}^n. Then V is defined by the polynomial equations given by setting the determinants of all 3×3 sub-matrices of $(a : b : c)$ equal to zero. Let $W \subset \mathbb{R}^n$ consist of all $a \in \mathbb{R}^n$ such that the flow line containing $[a]$ is contained in a projective line. Then W equals the set of all a such that $(a, \Psi(a), \Psi^2(a)) \in V$ for all $s, t \in \mathbb{R}$, and is therefore also a real algebraic variety. Since W contains the non-empty open set U it follows that $W = \mathbb{R}^n$ and therefore every orbit of Φ is a subset of a projective line. It only remains to show that no orbit is an entire projective line. If there is such an orbit then Φ has a weight that is not real.

If Φ has a weight that is not real then there are $b_1, b_2 \in \mathbb{R}^n$ and $\gamma, \delta \in \mathbb{R}$ with $\gamma \neq 0$ such that the orbit of b_1 is $\Phi_t(b_1) = \exp(\gamma t)(\cos(\delta t)b_1 + \sin(\delta t)b_2)$. Choose $[a] \in U$. For all small ϵ, then $c = a + \epsilon b \in U$. First assume the orbit of $[a]$ limits on two distinct points $[a_1], [a_2] \in \mathbb{R}P^{n-1}$. Then a_1, a_2 and Φ can be chosen so that $\Phi_t(a) = a_1 + \exp(\alpha t)a_2$ with $\alpha \neq 0$. Moreover $\langle a_1, a_2 \rangle \cap \langle b_1, b_2 \rangle = 0$. The four functions 1, $\exp(\alpha t)$, $\exp(\gamma t)\cos(\delta t)$, $\exp(\gamma t)\sin(\delta t)$ are linearly independent. It follows that the orbit of c contains four linearly independent vectors, which contradicts that the orbit of $[c]$ is contained in a line.

The remaining case is that $\Phi_t(a) = a + td$. The four functions 1, t, $\exp(\gamma t)\cos(\delta t)$, $\exp(\gamma t)\sin(\delta t)$ are linearly independent, which is again a contradiction.

Suppose $\Phi \subset \text{PGL}(n, \mathbb{R})$ is a 1-parameter group. A subgroup $\Gamma \subset \text{PGL}(n, \mathbb{R})$ approaches Φ at infinity if for every neighborhood $U \subset \text{PGL}(n, \mathbb{R})$ of the identity, and every $s \in \mathbb{R}$ there are $\gamma, \gamma' \in \Gamma$ and $t > s$ and $t' < -s$ such that

$$\gamma \in U \cdot \Phi(t), \quad \gamma' \in U \cdot \Phi(t')$$
In particular, if Γ is a lattice in $T \cong \mathbb{R}^n$, and $\Phi \subset T$ then Γ approaches Φ at infinity.

Lemma 1.3. Suppose Ω is properly convex, and $\Gamma \subset \text{PGL}(\Omega)$ approaches a linear flow Φ at infinity. Then Ω is preserved by Φ.

Proof. Suppose $p \in \Omega$ is not fixed by Φ. Let $\ell = [a, b]$ be the closure of the flowline containing p. There is sequence $\gamma_n \in \Gamma$ with $\gamma_n = e_n \circ \Phi(t_n)$ with $e_n \rightarrow 1$ and $t_n \rightarrow \infty$. Then $\Phi(t_n)(p) \rightarrow b$ so $\gamma_n(p) \rightarrow b$. Thus $b \in \text{cl} \Omega$. Similarly $a \in \text{cl} \Omega$ so $(a, b) \subset \Omega$.

Lemma 1.4. If a closed properly convex domain Ω is preserved by a linear flow Φ, then Ω is reducible and Φ is hyperbolic.

Proof. Given $p \in \text{int} \Omega$ the closure, ℓ, of the flowline containing p is contained in Ω. If Φ is parabolic, then $\ell \cong \mathbb{R}P^1$. Thus Φ is hyperbolic and $\ell = [a, b]$ has endpoints $a \in A \cap \Omega$ and $b \in B \cap \Omega$, where A and B are the stationary subsets of Φ. It follows that Ω is the convex hull of $A \cap \Omega$ and $B \cap \Omega$, and it is therefore reducible.

The following is central to our approach.

Corollary 1.5. Suppose $M = \Omega/\Gamma$ is properly convex and Γ approaches a linear flow at infinity. Then M is reducible.

Proof. By (1.3) Ω is preserved by a linear flow, and by (1.4) Ω is reducible.

Lemma 1.6. Suppose Ω is open, properly convex, and there is an abelian group $T \subset \text{PGL}(\Omega)$ that acts simply transitively on Ω. Then Ω is the interior of a simplex.

Proof. Since $\dim T > \dim \text{Fr} \Omega$, for every $p \in \text{Fr} \Omega$ there is $1 \neq A_p \subset T$ with $A_p(p) = p$. Let C_p be the component of $\text{Fr} \Omega \cap \text{Fix}(A_p)$ that contains p. Then C_p is a non-empty compact convex subset of $\text{Fr} \Omega$. Since T is abelian and connected it follows that C_p is preserved by T. Hence $\text{Fr} \Omega$ is the union of T-invariant convex sets. Let $q \in \text{cl} \Omega$ be an extreme point. Then q equals the intersection of those C_p that contain it. Hence q is fixed by all of T. Every point in Ω is in the convex hull of an n-simplex, Δ, with vertices that are extreme points of $\text{cl} \Omega$. The vertices of Δ are fixed by T, therefore T preserves the interior of Δ. Since T acts transitively on Ω, and $\text{int} \Delta$ contains a point in Ω, it follows that $\Omega = \text{int} (\Delta)$.

Definition 1.7. A quasi-cusp is a properly convex n-manifold $Q = \Omega/\Gamma$ such that Γ contains a finite index subgroup isomorphic to \mathbb{Z}^{n-1}.

Every cusp is a quasi-cusp. Observe that there is no requirement on $\partial \Omega$. If Q is a quasi-cusp with boundary, then $\text{int} Q$ is also a quasi-cusp. The proof of Theorem (0.1) amounts to showing quasi-cusps are generalized cusps under some extra hypotheses. The definitions imply:

Lemma 1.8. Suppose Q is a quasi-cusp of dimension n. Then $H^{n-1}(Q; \mathbb{Z}_2) \cong \mathbb{Z}_2$.

Suppose $C_i = \Omega_i/\Gamma_i$ are generalised cusps for $i = 1, 2$ and $\dim C_i = n_i$. Then there is a quasi-cusp Ω/Γ, where $\Omega = \Omega_1 * \Omega_2 \subset \mathbb{RP}^{n_1+n_2+1}$ and $\Gamma = \Gamma_1 \oplus \Gamma_2 \oplus K$ and $K \cong \mathbb{Z}^2$ is a discrete subgroup of $\Phi_1 \otimes \Phi_2 \otimes \Phi \cong \mathbb{R}^3$, where Φ_i is a radial flow for C_i and Φ is the linear flow that fixes each point in Ω_1 and Ω_2.

If $Q \cong \partial Q \times [0, 1) = \Omega/\Gamma$ is a quasi-cusp with compact boundary, there is a decomposition of $\text{Fr} \Omega$ into three parts

$$\text{Fr} \Omega = \partial \Omega \cup \text{Fr}_v \Omega \cup \partial_{\infty} \Omega$$

that is described below. Moreover $\partial_{\infty} \Omega = \mathbb{RP}^{n-1}_{\infty} \cap \text{cl} \Omega$ and $\text{Fr}_v \Omega$ is empty for generalized cusps.

Example. In the following example the quasi-cusp is $Q = \Omega/\Gamma$, with $\Omega \subset \mathbb{R}^3$, and $\Gamma \subset \text{Aff}(3)$. As an affine manifold $Q = S^1 \times R$ where S^1 is the quotient of $(0, \infty)$ by a homothety, and R is the quotient of the parabolic model $\{(y, z) : 2y \geq z^2\}$ of \mathbb{H}^2 by a cyclic group of parabolics.
ON PROPERLY CONVEX REAL-PROJECTIVE MANIFOLDS WITH GENERALIZED CUSPS

Figure 1. $\Omega_M = \{(x, y, z) : 2y \geq z^2, x > 0\}$

This can be referred to during the proof of Theorem (1.9). Define $\Omega = \text{int}(\Omega_M)$ where $\Omega_M \subset \mathbb{R}^3$ and $\tau : \mathbb{R}^2 \to \text{Aff}(\Omega)$ are given by

$$\Omega_M = \{(x, y, z) : 2y \geq z^2, x > 0\}, \quad \tau(a, b) = \begin{pmatrix} e^a & 0 & 0 & 0 \\ 0 & 1 & b & 0 \\ 0 & b & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

Then $T = \tau(\mathbb{Z}^2)$ is a lattice in $T = \text{Im}\tau$. Observe that Ω is properly convex and preserved by T, so $Q = \Omega/\Gamma$ is a quasi-cusp. Moreover, T acts simply transitively on $\partial \Omega_M$. The radial flow $\Psi_t(x, y, z) = (x, y - t, z)$ is centralized by T and $\Psi \oplus T$ acts simply transitively on $\Omega^+ = \cup_t \Psi_t(\Omega) = \{(x, y, z) : x > 0\}$. The plane H where $y = -1$ is a displacing hyperplane for Ψ that is disjoint from Ω.

Also Ω is backwards invariant, i.e. $\Psi_t(\Omega) \subset \Omega$ for all $t \leq 0$. The surface

$$\partial \Omega_M = \{(x, y, z) : 2y = z^2, x > 0\}$$

is convex and every point in $\partial \Omega_M$ is contained in a straight line segment. Moreover, $\partial \Omega_M$ is transverse to the flow lines of Ψ and is called the flow boundary. The vertical frontier

$$\text{Fr}_v \Omega := (\text{Fr} \Omega \setminus \partial \Omega) \cap \mathbb{R}^3 = \{(x, y, z) : 2y \geq z^2, x = 0\}$$

is backwards invariant under Ψ. The ideal boundary is a 1-simplex

$$\partial_\infty \Omega = \text{Fr} \Omega \cap \mathbb{R}P^2_\infty = \{[x : 1 - x : 0 : 0] : x \in [0, 1]\}$$

The quasi-cusp Q is foliated by convex ruled tori that are covered by level sets of $2y - z^2$. These levels sets are permuted by Ψ. Also Q is a convex submanifold of $Q^+ = \Omega^+/\Gamma \cong T^2 \times \mathbb{R}$ where $\Omega^+ = \{(x, y, z) : x > 0\} \supset Q$. There is another radial flow $L_t(x, y, z) = (\exp(t)x, y, z)$ that commutes with T. This flow preserves Ω and shows it is reducible: Ω_M is a cone from $[1 : 0 : 0 : 0]$ to $\text{Fr}_v \Omega$, which is a closed disk with one point deleted from the boundary. Moreover L_t is a subgroup of $T \oplus \Psi$.

The subgroup $\text{UT}(n) < \text{GL}(n, \mathbb{R})$ consists of upper-triangular matrices with positive diagonal entries. Let $\text{D}(n) < \text{UT}(n)$ be the subgroup of diagonal matrices. Suppose Ω is properly convex and $K \subset \Omega$. The convex hull $\text{CH}(K)$ is the intersection of all closed convex subsets of Ω that contains K.

Theorem 1.9. Suppose $Q = \Omega/\Gamma$ is a quasi-cusp of dimension n. Then either Q contains a generalized cusp or Ω is reducible.
Proof. We may assume Ω is open in \mathbb{RP}^n. By [13](6.18) there is a finite index subgroup $\Gamma_0 \subset \Gamma$ such that (after conjugacy) Γ_0 is a lattice in an upper-triangular connected nilpotent Lie subgroup $T \subset \text{UT}(n+1)$. It follows from the definition that if Q has a finite cover that is a generalized cusp then Q is a generalized cusp. Thus we may assume $\Gamma_0 = \Gamma$. By [13](6.19) there is a radial flow Φ that centralizes T.

Here is a sketch of the proof when the radial flow is parabolic. We want to show that the T-orbit of a point x deep inside Ω is a convex hypersurface inside Ω. Since Γ is a lattice in T and $\Gamma \cdot x \subset \Omega$ this seems reasonable. Let $\Omega_\ell = \Phi_t(\Omega)$. To prove it, we enlarge Ω to be the set $\Omega^+ = \cup_\ell \Omega_\ell$ that is the union of flow lines thorough Ω. This is preserved by Γ because Φ centralizes Γ. Then $Q^+ = \Omega^+/\Gamma$ is Q plus an open collar. A bit of work shows that Ω^+ is preserved by all of T. If $x \in \Omega$ then $\Omega' = T \cdot x$ is a hypersurface in Ω^+. We do not yet know that Ω' is convex. We use the fundamental-domains trick from [13](6.24) to produce from Ω' a convex codimension-1 submanifold $S \subset \Omega_\ell$ (for some t) that is preserved by T. The action of T on S is simply transitive. If S is strictly convex we are done. Otherwise there is a maximal flat $F \subset S$ and the stabilizer $H \subset T$ of F acts simply transitively on F. There is a subgroup L of H such that the H-orbit of every point in F is a line segment. Since L commutes with $T \oplus \Phi$ it follows that the orbit under L of every point in Ω^+ is a line segment, thus L is a linear flow, and Ω is reducible. Now for the details.

If $T \cap \Phi \neq 1$, then $\Phi \subset T$ so Γ approaches Φ at infinity, and this implies Ω is reducible. Thus we may assume $T \cap \Phi = 1$. Let H be the stationary hyperplane and c the center for Φ. We may assume H is disjoint from Ω, otherwise replace Ω by one of the components, Ω_ℓ, of Ω. Since $\Omega^+ = \cup_\ell \Omega_\ell$ is a hypersurface in Ω^+, we are done. If Ω^+ / Γ does not contain a generalized cusp, then below we show that Γ approaches a linear flow at infinity, and then it follows from (1.5) that Ω is reducible.

The first case is that Φ is parabolic, so $c \in H$. By [13](6.19) we may choose Φ to be parabolic whenever T is not diagonal. The affine patch $\mathbb{R}^n = \mathbb{RP}^n \setminus H$ contains Ω. Since Ω is properly convex there is a displacing hyperplane $P \subset \mathbb{RP}^n$ that is disjoint from $\text{cl}(\Omega)$.

After reversing the direction of the radial flow if needed, we may assume $P_\ell := \Phi_t(P)$ moves away from Ω as t increases. After an affine change of coordinates we may assume that P is the hyperplane $x_1 = 0$ and $x_1 > 0$ on Ω and $\Phi_t(x) = x - t \cdot e_1$. Since Φ centralizes T, it centralizes Γ, so Γ preserves $\Omega_\ell = \Phi_t(\Omega)$.

It follows from Claims 2, 3 and 4 of [13](6.23) that $\Omega_\ell \subset \Omega$, whenever $t < 0$, i.e. Ω is backwards invariant. Moreover it follows that there is a properly convex set $\Omega_M = \partial \Omega_M \times [0, \infty)$ with $\Omega \subset \Omega_M \subset \text{cl}(\Omega)$, and that $Q = \text{int}(M)$, where $M = \Omega_M / \Gamma \cong \partial M \times [0, \infty)$. Then $\Omega^+ = \cup_\ell \Omega_\ell$ is the union of flowlines that contain a point of ∂M. Moreover $\Omega^+ \subset \mathbb{R}^n$ is convex and $F : \partial \Omega_M \times \mathbb{R} \to \Omega^+$ given by $F(x, t) = \Phi_t(x)$ is a homeomorphism. Also Γ acts freely and properly discontinuously on $\Omega^+ / \Gamma \cong \partial M \times \mathbb{R}$.

We claim that T preserves Ω^+. Given $g \in T$, then $V(g) := \Omega^+ \cap g(\Omega)^+ = \Omega^+$ is convex, open and Γ–invariant, but it might be empty. Let $W \subset T$ be the set of all $g \in T$ such that $V(g)$ is not empty. Then W is open. Moreover if $V(g) \neq \emptyset$ then $V(g) = \Omega^+$ because $V(g) / \Gamma$ is a convex submanifold of Ω^+ / Γ and it is a union of flowlines. Thus $V(g) = N \times \mathbb{R}$ for some submanifold $N \subset \partial M$. But N and M are $K(\Gamma, 1)$’s so $V(g)$ is a closed submanifold and therefore $N = \partial M$. It follows that a neighborhood of the identity in T preserves Ω^+, and therefore T preserves Ω^+.

Following the proof of the first claim of [13](6.24) there is a compact $X \subset T$ and compact $D \subset \partial M$ so that $\Gamma \cdot D = \partial M$ and $\Gamma \cdot X = T$. Let $\pi : \Omega^+ \to \Omega^+ / \Gamma$ be the projection and define

$$F : T \times \partial M \to \Omega^+ / \Gamma$$

by $F(g, x) = \pi(g \cdot x)$. Then $K = \text{Im}(F) = F(X \times D)$ is compact. Thus there is t such that $K \subset \Omega_\ell / \Gamma$. Hence $\partial M = \Gamma \cdot K \subset \Omega_\ell$. Now Ω_ℓ is properly convex, so

$$Y = \text{cl}(\text{CH}(\pi^{-1}(K))) \subset \Omega_{t+1}$$
is properly convex, and T-invariant, and a closed subset of Ω_{t+1}. Hence $S = \partial Y$ is a convex hypersurface that is T-invariant.

Since $\dim T = \dim S$, and T contains no elliptics, T acts freely on S. This action is transitive since otherwise $(T \cdot x)/\Gamma$ is a $K(\Gamma, 1)$ that is a proper submanifold of Σ, which is impossible. If S is strictly convex then Y is a generalized cusp.

Otherwise there is a line segment in S. Hence S contains a maximal flat F. Then the subgroup $H \subset T$ that preserves F acts simply transitively on F. By (1.6) $F \cong \text{int}(\Delta^k)$ is the interior of a simplex and H/F is the projective diagonal group. There is a 1-parameter subgroup $L \subset H$ given by $L_t = \text{Diag}(t, 1, \cdots, 1)$ such that every orbit of L in F is a segment of a line. Now $T \oplus \Phi$ acts simply transitively on Ω^+. Since L commutes with T and Φ, it follows that the orbit under L of every point in Ω^+ is contained in a line. Then by (1.2) L is a linear flow. But Γ approaches L at infinity so by (1.3) Ω is preserved by L. Then by (1.4) Ω is reducible. This completes the proof when Φ is parabolic.

If Φ is hyperbolic, then $G = T \times \Phi$ is the diagonal group in $\text{UT}(n + 1)$, and it follows that Ω^+ is the interior of the n-simplex Δ with vertices $[e_1], \cdots, [e_{n+1}]$. Let $x \in \text{int}(\Delta)$ and consider the hypersurface $S = T \cdot x \subset \Delta$. If S is strictly convex then C is a generalized cusp. If S is not convex then $\Omega = \text{int}(\Delta)$ is reducible. If S is convex, but contains a flat, the argument above implies that Ω is reducible.

2. Discreteness and Irreducibility

This section shows that if $\pi_1 M$ satisfies certain algebraic conditions then the holonomy of a properly convex structure on M is irreducible (0.2), and that a limit of such holonomies is always discrete and faithful (2.2).

Theorem 2.1 (Cluckrow’s theorem [11],[16](8.4)). Suppose Γ is a finitely generated group that does not contain a normal infinite nilpotent subgroup N. Then the subset of $\text{Hom}(\Gamma, \text{GL}(n, \mathbb{R}))$ consisting of discrete faithful representations is closed in the usual (Euclidean) topology.

If $\Omega \subset \mathbb{RP}^n$, then $\text{PGL}(\Omega) \subset \text{PGL}(n + 1, \mathbb{R})$ is the subgroup that preserves Ω. We will make frequent use of the following implication.

Corollary 2.2. Suppose Γ is finitely generated and does not contain a non-trivial normal abelian subgroup. Then the subset of $\text{Hom}(\Gamma, \text{GL}(n + 1, \mathbb{R}))$ consisting of discrete faithful representations is closed.

Proof. Suppose Γ contains an infinite normal nilpotent subgroup G. Let Z be the center of G. Then Z is non-trivial and abelian. Since Z is characteristic in G, and G is normal in Γ, it follows that Z is normal in Γ. This contradicts a hypothesis. The result now follows from (2.1). □

The next result, is due to Benoist [7], see also [10].

Lemma 2.3. If M is closed and properly convex, then $\pi_1 M$ contains a non-trivial normal abelian subgroup if and only if $\pi_1 M$ has non-trivial virtual center.

Proof. Set $G = \pi_1 M$. Suppose $Z = Z(H) \neq 1$ is the center of a finite index subgroup $H \subset G$. Since the universal cover of M is contractible, G is torsion-free, so Z is infinite. There is a subgroup $H' \subset H$ of finite index with $H' \lhd G$. Then $H' \cap Z$ has finite index in Z, and is central in H', therefore $Z' = Z(H')$ is non-trivial. Thus, after replacing H by H', we may assume $H \lhd G$. Now Z is characteristic in H and thus normal in G. Hence $Z \neq 1$ is an infinite normal abelian subgroup of G.

For the converse, suppose $1 \neq A \lhd G$ and A is abelian. Let Γ be the image of the holonomy $\rho : \pi_1 M \to \text{SL}_k^+(n + 1, \mathbb{R})$ of M. Every element of Γ is hyperbolic because M is closed. Let d_Ω be
the Hilbert metric on Ω. The displacement function $\tau : \Gamma \to \mathbb{R}$ is given by
\[
\tau(g) = \inf\{d_\Omega(x, gx) : x \in \Omega\}
\]
and $\mu = \min \tau(\pi_1 M) > 0$ because M is compact. Since A is abelian, the moduli of the weights of $\rho|A$ give a homomorphism
\[
\lambda : A \to \mathbb{R}_+^{n+1}
\]
By (2.1) in [14] for $a \in A$ we have $\tau(a) = \log(\lambda_+ / \lambda_-)$, where λ_+, λ_- are the maximum and minimum moduli of eigenvalues of $\rho(a)$. Since $\mu > 0$ it follows that λ is discrete and faithful. Hence the subset $B \subset A$ of elements that minimize $\tau|A$ is finite. Now $\tau(ghg^{-1}) = \tau(h)$ so the action of G on A by conjugation permutes B. Since B is finite, the kernel of this action is a finite index subgroup $H \subset \pi_1 M$ that fixes each element of B. Thus $B \subset Z(H)$.

However when one deals with manifolds that are not closed, these statements are not equivalent, as the following example illustrates.

Example. Let M be a 3-manifold that is a torus bundle over S^1 with monodromy $A \in \text{SL}(2, \mathbb{Z})$. Then M is Euclidean if A is periodic; NIL if $\text{tr}(A) = \pm 2$ and $A \neq \pm \text{Id}$; and otherwise M has a SOLV geometry. For each $s > 0$ there is an affine realization of this structure as \mathbb{R}^3 / Γ_s, where $\Gamma_s \cong \pi_1 M \cong \mathbb{Z} \times A \mathbb{Z}^2$ is the image of
\[
\rho_s(m, n, p) = \begin{pmatrix} A^p & 0 & s \begin{pmatrix} m \\ n \end{pmatrix} \\ 0 & 1 & p \\ 0 & 0 & 1 \end{pmatrix} \quad m, n, p \in \mathbb{Z}
\]
This gives a path of discrete faithful representations $\rho_s : \pi_1 M \to \text{PGL}(4, \mathbb{R})$ whose images converge to a cyclic group as $s \to 0$.

Now $\text{PGL}(4, \mathbb{R})$ acts on $\text{SL}(4, \mathbb{R}) / \text{SO}(4)$ realized as the properly convex domain $\Omega \subset \mathbb{R}P^5$ obtained by projectivizing the space of positive definite quadratic forms on \mathbb{R}^3. This gives a sequence of properly convex projective 5-manifolds, homeomorphic to an \mathbb{R}^3-bundle over M, and the holonomies converge to a non-faithful representation. In the SOLV case $\pi_1 M$ has trivial virtual center, but contains \mathbb{Z}^2 as a normal subgroup.

Let $W = \mathbb{R}^{n+1}$ and suppose $\Omega \subset \mathbb{P}W$ is open and $M = \Omega / \Gamma$ is a properly convex manifold. We say Γ is reducible if there is a proper projective subspace $P = \mathbb{P}U \subset \mathbb{P}W$ that is preserved by Γ. Let $W^* = \text{Hom}(W, \mathbb{R})$ denote the dual vector space. The dual manifold $M^* = \Omega^* / \Gamma^*$ is properly convex and diffeomorphic to M. Now $W = U \oplus V$ and $W^* = U^* \oplus V^*$ where $V^* = \{ \phi \in W^* : \phi(U) = 0 \}$ and similarly for U^*. Moreover Γ preserves $\mathbb{P}(U)$ if and only if Γ^* preserves $\mathbb{P}(V^*)$.

Lemma 2.4. With the notation above, if $\Omega = P \cap \Omega \neq \emptyset$ then $L = \Omega' / \Gamma$ is a convex submanifold of M and $\dim L = \dim P$, and the inclusion $L \hookrightarrow M$ is a homotopy equivalence.

If $P \cap \text{cl} \Omega = \emptyset$ then M contains a closed submanifold L of codimension $\dim P$ and $L \hookrightarrow M$ is a homotopy equivalence.

Proof. The first conclusion is immediate. Now suppose that $P \cap \text{cl} \Omega = \emptyset$. There is a projective hyperplane H that contains P and is disjoint from $\text{cl} \Omega$. Then $H = \ker \phi$ for some $\phi \in V^*$ with $\phi(U) = 0$. It follows that $[\phi] \in W = \mathbb{P}(V^*) \cap \Omega^* \neq \emptyset$. The result now follows from the first part, using the diffeomorphism $M \cong M^*$.

Lemma 2.5. With the hypotheses of (2.4) suppose either that M is closed or else that Γ contains a subgroup Γ' of infinite index and $H_{n-1}(\Omega / \Gamma'; \mathbb{Z}_2) \neq 0$, then $\emptyset \neq P \cap \text{cl} \Omega \subset \text{Fr} \Omega$

Proof. Otherwise by (2.4) there is a submanifold L of M such that the inclusion $L \hookrightarrow M$ is a homotopy equivalence and $\dim L < \dim M$. If M is closed then $H_n(M; \mathbb{Z}_2) \neq 0$ but $\dim L < \dim M$ so $H_n(L; \mathbb{Z}_2) = 0$ which is a contradiction.
If M is not closed, let M' and L' be the covers of M and L corresponding to Γ'. Then $H_{n-1}(L'; \mathbb{Z}) \cong H_{n-1}(\Omega/\Gamma'; \mathbb{Z}) \neq 0$ and it follows that L' is a closed manifold of dimension $(n - 1)$, and therefore a finite cover of L. Hence $|\Gamma : \Gamma'| < \infty$, which contradicts $|\Gamma : \Gamma'| = \infty$.

We will apply this when M contains a convex, closed submanifold $N = \Omega'/\Gamma'$ of codimension one with $\Omega' \subset \Omega$ and $|\Gamma : \Gamma'| = \infty$. The following applies to a properly convex manifold that contains a generalized cusp.

Lemma 2.6. Suppose $M = \Omega/\Gamma$ is a properly convex manifold, and $\Omega' \subset \Omega$ is a convex closed subset bounded by a smooth, connected hypersurface $\partial \Omega' \neq \emptyset$, that contains no line segment. Let $\Gamma' \subset \Gamma$ be the subgroup that preserves Ω' and suppose that $|\Gamma : \Gamma'| = \infty$, and $N = \partial \Omega'/\Gamma'$ is a compact manifold. Suppose there is $\gamma \in \Gamma$ such that $\gamma \Omega' \cap \Omega' = \emptyset$. Then Γ does not preserve a proper projective subspace.

Proof. Suppose Γ preserves $P = \mathbb{P}(U)$. By (2.5) we may assume that $W^+ = \text{cl} \Omega \cap P$ is not empty, convex, and is contained in $\text{Fr} \Omega$. Let $W = W^+ \setminus \partial W^+$, so that W is an open properly convex set and $\dim W < \dim M$.

First suppose there is $x \in W \cap \partial \Omega'$. Then $\gamma x \in W \cap \Omega'$ and $d_{W^+}(x, \gamma x) < \infty$. Given $p \in \partial \Omega'$ then, since Ω' is convex, the segment $\ell = [p, x]$ is contained in Ω' and $\gamma \ell \subset \Omega'$. If y is on ℓ and close enough to x then $d_{\Omega'}(y, \gamma y) \leq d_W(x, \gamma x) + 1$. This implies $d_{\Omega'}(y, \partial \Omega') \leq d_W(x, \gamma x) + 1$. But $d_{\Omega'}(x, \partial \Omega') \to \infty$ as $y \to x$. It follows that $W \cap \partial \Omega' = \emptyset$.

Since Ω' is closed in Ω, for each $x \in \Omega$ there is a point $y \in \Omega'$ that minimizes $d_{\Omega'}(x, y)$. Since Ω' is convex, and $\partial \Omega'$ smooth, and contains no line segment, y is unique and the map $\pi : \Omega \to \Omega'$ given by $\pi x = y$ is distance non-increasing. Moreover, if $x \in \partial \Omega'$ then $\pi^{-1} x$ has closure a segment $[x, y]$ with $y \in \partial \Omega$. Thus there is a continuous extension $\pi : \text{cl} \Omega \to \text{cl} \Omega'$ where the closures are in projective space. Let $W' = \text{Fr} \Omega \setminus \partial \Omega'$, then $\pi | W \to \partial \Omega'$ is a homeomorphism.

Clearly π is Γ' equivariant. Restricting gives an injective map $\pi : W \to \partial \Omega'$. The action of Γ on Ω' is free and properly discontinuous. Thus the same is true for the action on W, and π covers a map $f : W/\Gamma' \to \Omega'/\Gamma' = N$ that is a homotopy equivalence. Since N is closed it follows that f is surjective and thus π is a surjective. Hence $W = W' = \text{Fr} \Omega \setminus \partial \Omega'$. But the same is true when Ω is replaced by $\gamma \Omega$. Thus there is $x \in \text{Fr} \Omega' \cap \text{Fr} \Omega = \text{Fr} \Omega' \cap \text{Fr} \gamma \Omega$. As before there is a line $\ell = [p, x] \in \Omega$ and another line $\ell' = [p', x] \in \Omega'$ and this is a contradiction.

The following restricts the fundamental group of a reducible manifold.

Lemma 2.7. Suppose Ω is reducible and $M = \Omega/\Gamma$ is properly convex. If Γ contains no non-trivial normal abelian subgroup then there is a properly convex manifold Ω/Γ^+ with $\Gamma^+ \cong \Gamma \times \mathbb{Z}$.

Proof. We have $\Omega = \Omega_U \ast \Omega_V$ with $\Omega_U \subset \mathbb{P} U$ and $\Omega_V \subset \mathbb{P} V$. Let $k = \dim U$ and $l = \dim V$. Let $\rho : \pi_1 M \to \text{GL} U \oplus \text{GL} V$ be the holonomy of M, so that $\Gamma = \rho(\pi_1 M)$. Given $s \in \mathbb{R}$ there is a homomorphism $\theta_s : \text{GL} U \oplus \text{GL} V \to \text{GL} U \oplus \text{GL} V$ given by

$$
\begin{pmatrix} A & 0 \\ 0 & B \end{pmatrix} \mapsto \begin{pmatrix} |\det A|^{-s/k} A & 0 \\ 0 & |\det B|^{-s/l} B \end{pmatrix}
$$

If $s \neq 1$ then θ_s is injective and has inverse $\theta_{1/(1-s)}$. For $s \in [0, 1]$ define $\rho_s = \theta_s \circ \rho$.

Observe that $\alpha I_U + \beta I_V \in \text{GL}(U) \oplus \text{GL}(V)$ preserves Ω. Hence $\Gamma_s = \rho_s(\pi_1 M)$ preserves Ω. When for $s \neq 1$ then $\theta_s : \Gamma \to \Gamma_s$ has an inverse, so ρ_s is discrete and faithful. It follows from (2.2) that $\rho_1 : \pi_1 M \to \text{SL} U \oplus \text{SL} V$ is discrete faithful. Moreover ρ_1 preserves Ω, and Ω is properly convex, so this action is free and properly discontinuous.

Observe that Ω is preserved by the hyperbolic linear flow for (U, V) given by $\Phi : \mathbb{R} \to \text{GL} U \oplus \text{GL} V$ where $\Phi(t) = I_U + \exp(t) I_V$. Let

$$
\tau : \pi_1 M \oplus \mathbb{Z} \to \text{GL} U \oplus \text{GL} V \quad \text{given by} \quad \tau(\alpha, n) = \sigma(\alpha) \circ \Phi(n)
$$
Then $\Gamma^{+} = \tau(\pi_{1} M \oplus \mathbb{Z})$ preserves Ω and τ is discrete and faithful, because $\det \tau(\alpha, n) = \exp(n)$. Thus Γ^{+} acts freely and properly discontinuously on Ω, so $R = \Omega / \Gamma^{+}$ is a properly convex manifold. \hfill \square

Theorem 2.8 (Benoist). Suppose M is a closed properly convex manifold and $\pi_{1} M$ has trivial virtual center. Then the holonomy of M is irreducible.

Proof. Let $M = \Omega / \Gamma$. By (2.5) we may assume that $\emptyset \neq X = \mathbb{P}(U) \cap \overline{\Omega} \subset \text{Fr} \; \Omega$. Let $\Omega_{U} = X \setminus \partial X$ be the relative interior of X. Thus Ω_{U} is properly convex, and $\dim \Omega_{U} \leq \dim \mathbb{P} U$. Now $W = U \oplus V$ and Γ preserves U. We may assume U is chosen to minimize $\dim V$. The representation $\rho : \pi_{1} M \to \Gamma$ is given in matrix form by

$$
\rho = \begin{pmatrix}
A & 0 \\
0 & C
\end{pmatrix}
$$

where $A : \pi_{1} M \to \text{GL}(U)$ and $C : \pi_{1} M \to \text{GL}(V)$.

We claim that replacing B by 0 gives a discrete faithful representation, $\rho_{0} = A \oplus C : \pi_{1} M \to \text{GL} U \oplus \text{GL} V$, that preserves a reducible properly convex set $\Omega_{0} = \Omega_{U} \ast \Omega_{V}$. Then by (2.7) there is a properly convex manifold $N = \Omega_{0} / \Gamma^{+}$. But N is an n-manifold that is homotopy equivalent to $M \times S^{1}$. The latter is a closed manifold of dimension $(n+1)$, and this is a contradiction.

It only remains to prove the claim. Observe that A preserves the properly convex set $\Omega_{U} = \mathbb{P}(U) \cap \overline{\Omega} \subset \mathbb{P}(U)$. The holonomy of the dual manifold M^{*} is the dual representation $\rho_{0}^{*} : \pi_{1} M \to \text{GL}(\mathbb{P}^{*} V)$ which preserves $\mathbb{P}^{*} V^{*}$. By (2.5) $\Omega' = \mathbb{P}(V^{*}) \cap \overline{\Omega}$ is a non-empty subset of $\text{Fr} \; \Omega^{*}$ and therefore properly convex. Also $\dim \Omega' = \dim \mathbb{P}^{*} V^{*}$, otherwise Ω' lies in a proper projective subspace of $\mathbb{P}^{*} V^{*}$ that is preserved by $\rho'(\pi_{1} M)$, and this contradicts minimality of $\dim V$. Hence $\Omega' = (\Omega')^{*} \subset \mathbb{P}(V)$ is a non-empty properly convex open set that is preserved by C.

For $0 < t \leq 1$ define

$$
P_{t} = \begin{pmatrix} 1 & 0 \\ 0 & t^{-1} \end{pmatrix} \quad \text{and} \quad \rho_{t} = \begin{pmatrix} A & tB \\ 0 & C \end{pmatrix}.
$$

Observe that $\rho_{1} = \rho$ and ρ_{0} is defined for $t = 0$ and $\rho_{0} = A \oplus C$. For $t > 0$ notice that $\rho_{t} = P_{t} \rho_{1} P_{t}^{-1}$, so ρ_{t} is discrete and faithful. Since $\rho_{t} \to \rho_{0}$ as $t \to 0$ and $\pi_{1} M$ has trivial virtual center, it follows that ρ_{0} is discrete and faithful by (2.2). The action of ρ and ρ_{0} on U are both equal to A and ρ_{0} preserves Ω_{U}.

Now ρ_{0} preserves Ω' and the action of ρ_{0} and ρ on $\mathbb{P} V$ are both given by C and are thus equal. Hence ρ_{0} preserves Ω_{V}.

Thus $\Omega' = \Omega_{U} \ast \Omega_{V}$ is properly convex and preserved by ρ_{0}. We claim that $\dim \Omega_{0} = \dim \Omega$. Let $W' \subset W$ be the vector subspace of minimal dimension such that $\Omega' \subset \mathbb{P} W'$. Then $\dim \Omega' = \dim \mathbb{P} W'$ and ρ_{0} preserves Ω_{0} and thus preserves W_{0}. Let $\rho_{0} : \pi_{1} M \to \text{GL}(W')$ be the restricted action. Replace Ω' be the interior of Ω' in W'.

We claim ρ_{0} is discrete and faithful. Suppose $g \in \pi_{1} M$ and $\rho(g) = [L]$ is hyperbolic. Then there are $w_{\pm} \in W$ such that $[w_{\pm}] \in \text{Fr} \; \Omega$ and w_{+} is an attracting, and w_{-} a repelling, fixedpoint of $[L]$. This means $Lw = \lambda_{\pm} v$ with $\lambda_{+} > 0$ real and λ_{-} is the spectral radius of $L^{\pm 1}$. Moreover the displacement distance of $\rho(g)$ for the Hilbert metric d_{h} is $\log \lambda_{+} / \lambda_{-}$.

Write $w_{\pm} = u_{\pm} \pm v_{\pm}$ with $u_{\pm} \in U$ and $v_{\pm} \in V$. Now ρ_{0} preserves the properly convex domain $\Omega_{t} = P_{t} \Omega$ and $P_{t}(w_{\pm}) = u_{\pm} + t^{-1} v_{\pm}$. If $v_{\pm} = 0$ then $P_{t}(w_{\pm}) = u_{\pm}$ gives a point Ω_{0}. If $v_{\pm} \neq 0$ then $\lim_{t \to 0} P_{t}[w_{\pm}] = [v_{\pm}]$ is in $\text{Fr} \; \Omega_{V}$. Thus in both cases $\lim_{t \to 0} P_{t}[w_{\pm}]$ is in $\text{Fr} \; \Omega'$. It follows that ρ and ρ_{0} have the same the displacement distance. Since M is compact there is an element of $\pi_{1} M$ of shortest length. Hence ρ_{0} is discrete faithful. \hfill \square

Proof of irreducible holonomy (0.2). If M is closed this follows from (2.8). Otherwise there is a subgroup $G \cong \mathbb{Z}^{n-1}$ of Γ. If Ω / G is a generalized cusp the result follows from (2.6). Otherwise Ω is reducible by (1.9). Then by (2.7) there is a properly convex manifold $P = \Omega / \Gamma^{+}$. Now Γ^{+} contains the subgroup $G^{+} = G \times Z \cong \mathbb{Z}^{n}$. Then $N = \Omega / G^{+}$ is an n-manifold with $\pi_{1} N \cong \mathbb{Z}^{n}$, so
Lemma 3.2. Suppose that π is a subgroup of H such that $p \in H$ and $H \cap \text{int} \Omega = \emptyset$. The point p is a smooth point if H is unique, and is a strictly convex point if there is H with $p = H \cap \text{cl} \Omega$, and p is a round point if it is both conditions hold.

If Ω is properly convex then a properly embedded triangle or PET in Ω is a flat triangle Δ with $\text{int} \Delta \subset \text{int} \Omega$ and $\partial \Delta \subset \text{Fr} \Omega$. We say that the generalized cusp $C \cong \partial C \times [0,1)$ is minimal size if the only convex submanifold of $\text{cl} C$ that contains ∂C is $\text{cl} C$. This is always the case unless the holonomy is diagonalizable, see [4](1.4) It follows from [4](1.24) that $\text{cl}(\Omega)$ is a properly convex and $\Gamma \subset \text{Aff}(\mathbb{R}^n)$ such that $\Gamma = \Omega$. Moreover $\partial \Omega \subset \mathbb{R}^n$ is a properly embedded, strictly-convex hypersurface and $\text{Fr} \Omega = \partial \Omega \cup \Delta^r$, where $\Delta^r \subset \mathbb{RP}^{n-1}$ is a flat simplex called the end flat, and $0 \leq r \leq n-1$ is the rank of C. In particular Ω does not contain a PET.

If Ω is properly convex, then a flat in $\text{Fr} \Omega := \text{cl} \Omega \setminus \text{int} \Omega$ is a convex set that contains more than one point. A flat is maximal if it is not a proper subset of another flat in $\text{Fr} \Omega$. Every flat is contained in at least one maximal flat. Suppose M is properly convex and $C \subset M$ is a generalized cusp. Let $\pi : \Omega \to M$ be the projection and let $U \subset \Omega$ be a component of $\pi^{-1} C$. Then $V = \text{Fr} \Omega \cap \text{cl} U = \partial_U U$ is called the end flat of Ω corresponding to U. By (3.1) it is a flat simplex of dimension r.

If M is properly convex we say all the ends of M are generalized cusps if there are pairwise disjoint π_1-injective generalized cusps $E_1, \cdots, E_n \subset M$ such that $\text{cl}(M \setminus \cup E_i)$ is compact. In this case we say $\pi_1 M$ is hyperbolic rel ends if $\pi_1 M$ is hyperbolic rel the subgroups $\{\pi_1 E_i : 1 \leq i \leq n\}$ in the sense of Drutu [15]. Note that it follows from the definitions that $\text{cl}(M \setminus \cup E_i)$ is connected. A subgroup of $\pi_1 M$ is an end group if it is conjugate to some $\pi_1 E_i$.

Lemma 3.2. Suppose $M = \Omega/\Gamma$ is properly convex and V, V' are end flats of M corresponding to $U, U' \subset \Omega$. If U and U' are disjoint, then V and V' are disjoint.

Proof. Suppose $x \in \text{cl}(U) \cap \text{cl}(U') \cap \text{Fr} \Omega$. Generalized cusps are convex, therefore there are line segments $\ell : [0, \infty) \to \text{cl} U$ and $\ell' : [0, \infty) \to \text{cl} U'$ both parameterized by arc length that both limit to x. Then $d(\ell(t), \ell'(t'))$ is not increasing, and so is bounded above. Let $C = \pi U \subset M$ be the end covered by U. Since U and U' are disjoint $d(\ell(t), \ell'(t'')) \geq d(\ell(t), \partial U)$. But $d(\ell(t), \partial U) = d(\pi(\ell(t)), \partial C) \to \infty$ as t increases, a contradiction.

Theorem 3.3. Suppose $M = \Omega/\Gamma$ is properly convex with ends that are generalized cusps, and $\pi_1 M$ is hyperbolic rel the ends. Then the end flats of Ω are pairwise disjoint, and every flat in $\text{Fr} \Omega$ is contained in an end flat. Moreover Ω does not contain a PET.

Proof. Suppose T is a PET in Ω. Then by [15], there is $R > 0$, and an end E of M, and a component U of $\pi^{-1} E$ so that T is contained in the R-neighborhood, W, of U. However W is the universal cover of a generalized cusp. By (3.1) W does not contain a PET, hence Ω does not contain a PET.

The pairwise disjoint property follows from (3.2). Let $B \subset M$ be compact such that the closure of each component of $M \setminus B$ is a generalized cusp. Suppose $\ell \subset \text{Fr} \Omega$ is a closed non-trivial line segment. Choose $p \in \text{int} \Omega$ and let $T = \text{cl} \Omega$ be the triangle that is the convex hull of p and ℓ. Given $s > 0$ let $T(s) = \{x \in \text{int} T : d_{\Omega}(x, \partial T) \geq s\}$.

Let $\pi : \Omega \to M$ be the projection. The first case is that for some $s > 0$ the set $\pi(T(s))$ is disjoint from B. Then $\pi(T(s))$ is contained in some end C of M. This implies ℓ is contained in an end flat corresponding to a component of $\pi^{-1}(C)$.

$H_n(N) \cong \mathbb{Z}$ and N is closed. But N covers the manifold $P = \Omega/G^+$ so this covering is finite. This implies $|\Gamma : G^+| < \infty$. This contradicts $|\Gamma : G| = |\Gamma^+ : G^+| = \infty$. \square
Suppose Lemma 3.4. Then the dual manifold $M^* = \Omega^*/\Gamma^*$ has the same structure.

Proof. If C is a generalized cusp then it follows from the definition that C^* is also a generalized cusp. Suppose $C \subset M$ is a generalized cusp. Then $C^* \supset M^*$ and C^* is a generalized cusp. By the classification, [4](0.2), C^* contains a smaller generalized cusp that is contained in an end of M^*. □

Theorem 3.5 (properties of generalized cusps). Suppose $M = \Omega/\Gamma$ is a properly convex manifold without boundary, and all the ends of M are generalized cusps with compact boundary. Also suppose π_1M is hyperbolic rel the ends, and π_1M is not the union of the end groups. Let $\mathcal{F} \subset \text{Fr } \Omega$ be the union of the flats. Then

1) Maximal flats are pairwise disjoint.
2) Every maximal flat is an end flat.
3) Every end flat is a maximal flat.
4) The stabilizer in Γ of a maximal flat is an end group.
5) Every parabolic subgroup is contained in an end group.
6) Every parabolic subgroup is conjugate in $\text{PGL}(n+1,\mathbb{R})$ into $\text{PO}(n,1)$.
7) Every element of π_1M is strongly hyperbolic or contained in an end group.
8) The set $X = \{x \in \text{Fr }\Omega : \gamma(x) = x \text{ and } \gamma \text{ is strongly hyperbolic}\}$ consists of round points.
9) $\Omega' = \text{int}(\text{CH}X)$ is the unique minimal, non-empty, properly convex set preserved by Γ.
10) X is dense in $\text{Fr } (\Omega) \setminus \mathcal{F}$.
11) Ω' does not contain a PET.
12) The dual manifold M^* has the same properties.

Proof. Theorem (3.3) implies (1), (2), (3) and (11). Let $V = \text{cl}(\tilde{C}) \cap \text{Fr }\Omega$ be the end flat corresponding to the component $\tilde{C} \subset \pi^{-1}(C)$ for a generalized cusp $C \subset M$. If $\gamma \in \Gamma$ stabilizes V, then $\gamma(\tilde{C}) = \tilde{C}$, so γ is an endgroup of C. This proves (4).

If $\Gamma_0 \subset \Gamma$ is a parabolic subgroup, then by [14](4.7) Γ_0 preserves a hyperplane H and a point $p \in H \cap \text{Fr }\Omega$. The only points in $\text{Fr }\Omega$ that are fixed by a parabolic are points in the end flat. Hence the end flat for every element of Γ_0 is the same one. Thus Γ_0 is conjugate into an endgroup, which proves (5). The classification of generalized cusps in [4], with (5) implies (6).

Suppose $\gamma \in \Gamma$ is hyperbolic. The attracting and repelling sets $S_{\pm} \subset \text{Fr }\Omega$ of γ are flat. If one of them is not a single point, then it is contained in a flat, and thus an end flat. But this implies γ preserves the end flat and is therefore in an endgroup. Thus, if γ is not in an end group, then the proof of [14](2.8) now shows that γ is strongly hyperbolic, which proves (7).

The set X is not empty because there is $\gamma \in \pi_1M$ that is not conjugate into an end group, so by (7) γ is strictly hyperbolic. Thus if $\gamma(x) = x$ then x is an attracting or repelling fixed point of γ and is a strictly convex point. Moreover x is a smooth point because the fixed points of the action of γ on the dual domain are strictly convex points. This proves (8).

Since X is preserved by Γ it follows that Ω' is Γ-invariant, so $\dim \Omega' = n$ because ρ is irreducible. Clearly $\Omega' \subset \Omega$, so Ω' is properly convex, which proves (9).

Every point $p \in \text{Fr }\Omega'$ is in the limit of a sequence n-simplices with vertices in X. If this limit is not a single point then it is a flat that contains p. Hence p is in a maximal flat. Otherwise p is a limit of points in X, which proves (10). Finally, (3.4) implies (12). □
References

[1] S. Ballas. Finite Volume Properly Convex Deformations of the Figure Eight Knot. Geom. Dedicata, 178:49–73, 2015.
[2] S. Ballas and L. Marquis. Properly convex bending of hyperbolic manifolds. Groups Geom. Dyn., 14(2):653–688, 2020.
[3] S. A. Ballas. Constructing convex projective 3-manifolds with generalized cusps, 2018.
[4] S. A. Ballas, D. Cooper, and A. Leitner. Generalized cusps in real projective manifolds: classification. J. Topol., 13(4):1455–1496, 2020.
[5] S. A. Ballas, D. Cooper, and A. Leitner. The moduli space of marked generalized cusps in real projective manifolds, 2020.
[6] S. A. Ballas, J. Danciger, and G.-S. Lee. Convex projective structures on nonhyperbolic three-manifolds. Geom. Topol., 22(3):1593–1646, 2018.
[7] Y. Benoist. Convexes divisibles. III. Ann. Sci. Ecole Norm. Sup. (4), 38(5):793–832, 2005.
[8] S. Choi. The classification of ends of properly convex real projective orbifolds II: Properly convex radial ends and totally geodesic ends. ArXiv e-prints, Jan. 2015.
[9] S. Choi. Real projective orbifolds with ends and their deformation theory. in progress, 2020.
[10] S. Choi, G.-S. Lee, and L. Marquis. Deformations of convex projective manifolds and orbifolds. In Handbook of group actions. Vol. III, volume 40 of Adv. Lect. Math. (ALM), pages 263–310. Int. Press, Somerville, MA, 2018.
[11] V. Chuckrow. Schottky groups and limits of Kleinian groups. Bull. Amer. Math. Soc., 73:139–141, 1967.
[12] D. Cooper. The Heisenberg group acts on a strictly convex domain. Conform. Geom. Dyn., 21:101–104, 2017.
[13] D. Cooper, D. Long, and S. Tillmann. Deforming convex projective manifolds. Geom. Topol., 22(3):1349–1404, 2018.
[14] D. Cooper, D. D. Long, and S. Tillmann. On convex projective manifolds and cusps. Adv. Math., 277:181–251, 2015.
[15] C. Drutu. Relatively hyperbolic groups: geometry and quasi-isometric invariance. Comment. Math. Helv., 84(3):503–546, 2009.
[16] M. Kapovich. Hyperbolic manifolds and discrete groups. Modern Birkhäuser Classics. Birkhäuser Boston, Inc., Boston, MA, 2009. Reprint of the 2001 edition.
[17] A. Leitner. A classification of subgroups of SL(4, R) isomorphic to R^3 and generalized cusps in projective 3 manifolds. Topology Appl., 206:241–254, 2016.
[18] L. Marquis. Espace des modules marqués des surfaces projectives convexes de volume fini. Geom. Topol., 14(4):2103–2149, 2010.

DC: Department of Mathematics, University of California, Santa Barbara, CA 93106, ULSA
ST: School of Mathematics and Statistics, The University of Sydney, NSW 2006, Australia

E-mail address: cooper@math.ucsb.edu
E-mail address: stephan.tillmann@sydney.edu.au