Enhancement of T_c in CeIr(In$_{1-x}$Cd$_x$)$_5$ studied by In-NQR

Mitsuharu Yashima1, Kyohei Tani1, Kazuhiro Nishimoto1, Hidekazu Mukuda1, Yoshio Kitaoka1, Fuminori Honda2, Rikio Settai3, Yoshichika Ōnuki4

1Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
2Institute for Materials Research, Tohoku University, Oarai, Ibaraki 311-1313, Japan
3Department of Physics, Niigata Univ., Ikarashi, Niigata, 950-2181, Japan
4Department of Physics and Earth Sciences, Faculty of Science, University of the Ryukyus, Nishihara, Okinawa 903-0213, Japan

E-mail: mitsuharu@nmr.mp.es.osaka-u.ac.jp

Abstract. We report on superconducting nature under pressure in CeIr(In$_{1-x}$Cd$_x$)$_5$ by In-Nuclear-Quadrupole-Resonance (NQR) studies. In CeIr(In$_{0.925}$Cd$_{0.075}$)$_5$, the inhomogeneous antiferromagnetic order at $T_N \sim 2.3$ K is induced by Cd-dopants and superconductivity disappears at ambient pressure. However, the measurements of a nuclear-spin-lattice-relaxation rate $1/T_1$ have revealed that the superconductivity suddenly occurs above 2.1 GPa. It is observed that the superconducting gap is enhanced in the Cd-doped sample, indicating that the Cd-doping induces the strong coupling superconductivity leading to the enhancement of T_c in the CeIrIn$_5$ system. Furthermore, we found that the residual density of states at the Fermi level increases with increasing pressure, suggesting that the superconducting nature of CeIrIn$_5$ is quite different from those of CeCoIn$_5$ and CeRhIn$_5$.

1. Introduction
The cerium (Ce)-based heavy-fermion compounds, CeMIn$_5$ ($M =$ Co, Rh, and Ir) provide us with the opportunity to systematically investigate an interplay between antiferromagnetism (AF) and superconductivity (SC) [1, 2, 3, 4]. CeIrIn$_5$ and CeCoIn$_5$ show SC at ambient pressure (P) below $T_c =$ 0.4 K and 2.3 K, respectively [1, 2, 3, 4]. In CeRhIn$_5$, which is an antiferromagnet with $T_N =$ 3.8 K at ambient P, SC occurs at $T_c \sim 2.2$ K under P over 2 GPa. Since the existence of two superconducting phases was reported in CeRh$_{1-y}$Ir$_y$In$_5$ [5], it has been suggested that the superconducting nature in CeIrIn$_5$ is distinguished from those in CeCoIn$_5$ and CeRhIn$_5$. Figs. 1(a) and 1(b) show the respective phase diagrams of SC (denoted as SC1 and SC2) for CeRh$_{1-y}$Ir$_y$In$_5$ and CeIrIn$_5$ under P. SC1 is closely related to antiferromagnetic interactions, as argued extensively in CeCoIn$_5$[6] and CeRhIn$_5$[7], whereas it is reported from the previous NQR measurements that the SC2 in CeIrIn$_5$ occurs in a different situation from SC1 as follows [8]. The maximum of $T_c(= 0.9$ K) around 3 GPa takes place under the absence of antiferromagnetic correlations that is confirmed from the fact that the $(T_1T)^{-1}$-constant behavior is observed above T_c, where T_1 is a nuclear-spin-lattice-relaxation time. However, the values of $(T_1T)^{-1}$ still remain an order of magnitude larger than those in LaIrIn$_5$, indicating that some fluctuation except for AF spin fluctuations are dominant under high P. Actually, the large electronic specific heat...
Figure 1. (Color online) (a) The phase diagram for CeRh$_{1-y}$Ir$_y$In$_5$ as a function of Ir concentration. T_N and T_c are referred from Refs. [24, 25]. SC1 is expected to be mediated by magnetic correlations. (b) The $P-T$ phase diagram for CeIr(In$_{0.925}$Cd$_{0.075}$)$_5$ partly from Ref. [26]. The T_N(solid) and T_N′(open triangles) are determined from the peak in the T dependence of $1/T_1$ and the broadening of NQR spectrum due to the onset of the antiferromagnetic order, respectively. The diamonds indicates T_c in pure CeIrIn$_5$ [8].

Coefficient $\gamma \sim 0.38$ J/molK2 at $P = 1.56$ GPa is observed in CeIrIn$_5$ [9]. Furthermore, from the resistivity measurements, a non-Fermi liquid behavior that the resistivity approximately follows a $T^{1.5}$ law has been observed in the wide P range up to 3.1 GPa [3].

Meanwhile, it was reported that all the anomalous transport properties observed in CeRh$_{0.2}$Ir$_{0.8}$In$_5$(SC1) and CeIrIn$_5$(SC2) originate from the AF spin fluctuations irrespective of the superconducting phase to which the system belongs. [10]. The detailed characteristics of AFM spin fluctuations including the dimensionality at ambient P in CeIrIn$_5$ are reported from the NMR measurements [11, 12]. In this context, the reason why the maximum T_c of SC2 in CeIrIn$_5$ is realized far away from an AF quantum critical point (QCP) is not clarified yet. The existence of two superconducting domes(SC1 and SC2) was first reported in CeCu$_2$(Si$_{1-x}$Ge$_x$)$_2$ [13]. It is suggested from extensive experimental and theoretical studies that the occurrence of SC2 in the high P region is mediated by valence fluctuations [14, 15, 16, 17]. In order to clarify the characters of SC2, we report the nuclear-quadrupole-resonance (NQR) measurement under P in pure and Cd-doped CeIrIn$_5$.

Single crystals of CeIr(In$_{1-x}$Cd$_x$)$_5$ were grown by the In-flux method. They were crushed into coarse powder in order to allow RF pulses to easily penetrate the sample for NQR measurements. T_c's for the samples are determined by a sudden decrease in $1/T_1$ below T_c. Hydrostatic P was applied by utilizing a piston-cylinder cell(NiCrAl-BeCu double cylinder) filled with Daphne 7474 as a P-transmitting medium [18]. To calibrate P at low T's, the shift in T_c of Sn metal at P was monitored by resistivity measurements. CeMIn$_5$ consists of alternating layers of CeIn and MIn$_4$, and there are two sites—In(1) and In(2)—per unit cell. The In(1) and In(2) sites are located in the CeIn and MIn$_4$ layers, respectively. The measurements of T_1 were mainly performed at the transition of $2\nu_Q$ for the high symmetry In(1) site in CeMIn$_5$. T_1 was measured by the
conventional saturation-recovery method. Here, an NQR frequency (ν_Q) is defined by the NQR Hamiltonian, $H_Q = (h\nu_Q/6)[3I_z^2 - I(I+1) + \eta(I_x^2 - I_y^2)]$, where η is the asymmetric parameter of the electric field gradient. $\eta = 0$ at the In(1) site is expected because of its good symmetry.

2. Experiments and discussion

Figure 1(b) shows the $P-T$ phase diagram in CeIr(In$_{0.925}$Cd$_{0.075}$)$_5$. The antiferromagnetic order induced by the Cd-doping is observed in the wide P range. Fig. 2(a) shows the NQR spectra at the 3ν_Q of the In(2) site above and below T_N at ambient P in CeIr(In$_{0.925}$Cd$_{0.075}$)$_5$. The full width at half maximum (σ) of the paramagnetic NQR spectrum at $T = 4.2$ K is less than 350 kHz and considerably sharp, indicating the relatively high-quality of sample in spite of the Cd-doping as impurities. The main peak from 115In nuclei is observed at ~ 52.2 MHz and the small peak at a little lower frequency is derived from the isotope 113In. The origin of another peak at higher frequency than the main peak is not identified. Since it hardly broadens and is distinguishably observed below T_N in spite of no detection of the signal from 113In, it may be associated with some impurity mixed into the sample. It is also possible that another peak at higher frequency than the main peak is derived from impurities induced by the Cd doping. The antiferromagnetic NQR spectrum at $T = 1.5$ K exhibits no clear splitting, but a large broadening at its tail in CeIr(In$_{0.925}$Cd$_{0.075}$)$_5$. From the previous NQR measurements at the In(2) site in Cd-doped CeCoIn$_5$, as shown in Fig. 2(b), the clear splitting of the NQR spectrum is observed below T_N, indicating that the homogeneous antiferromagnetic order with a uniform magnetic moment M_{AF} over the whole sample is realized [19]. Therefore, the spectral shape below T_N in CeIr(In$_{0.925}$Cd$_{0.075}$)$_5$ indicates the inhomogeneous antiferromagnetic order (IAF) with a large distribution of M_{AF}. The amplitude of M_{AF} may be locally enhanced near Cd-dopants through the reduction of hybridization between 4f and conduction electrons. The difference in the character of the AFM order is probably relevant to the fact that CeCoIn$_5$ is much closer to an AFM QCP than CeIrIn$_5$.

Next, we discuss superconducting characteristics for CeIr(In$_{1-x}$Cd$_x$)$_5$. As shown in Fig. 1(b), T_c is enhanced by the application of P in CeIrIn$_5$ in spite of moving the system further away from
Figure 3. (Color online) (a) The T dependence of $1/T_1$ normalized at T_c at $P = 0$ and 2.73 GPa in CeIrIn$_5$. (b) The T dependences of $1/T_1$ normalized at T_c at $P = 2.34$ and 2.75 GPa in CeIr(In$_{0.925}$Cd$_{0.075}$)$_5$. The inset is the T dependence of $(T_1T)^{-1}$ at $P = 2.16$ and 2.34 GPa. The solid lines in both figures are the calculated results (see text).

The solid lines in both figures are the calculated results (see text). The IAF phase is observed in wide P region in CeIr(In$_{0.925}$Cd$_{0.075}$)$_5$. Therefore, SC is suppressed by the onset of the antiferromagnetic order and/or the impurity effect from Cd-dopants. The anomaly in the T dependence of $(T_1T)^{-1}$ at $T_N = 2.7$ K is derived from the onset of the IAF order at 2.16 GPa in the inset of Fig. 3, and no anomalies are found below T_N, indicating that SC does not occurs up to 2.16 GPa. When P is slightly more increased to 2.34 GPa, the rapid decrease of $(T_1T)^{-1}$ suddenly appears at 0.7 K, suggesting the occurrence of SC. The diamagnetism is also confirmed from the ac-susceptibility measurement using the in-situ NQR coil. Above 2.34 GPa, T_c continues to increase and reaches about 0.9 K, which is the maximum value of T_c around 2.8 GPa in pure CeIrIn$_5$.

The T dependences of $1/T_1$ normalized at T_c are shown for the pure and Cd-doped samples in Figs. 3(a) and (b), respectively. The T dependence of $1/T_1$ below T_c allows us to estimate a superconducting gap $(2\Delta_0/k_BT_c)$ and a residual density of states (RDOS) at the Fermi level due to some impurity effect by assuming a certain pairing symmetry. Several models as a pairing symmetry in CeIrIn$_5$ have been suggested from experimental studies, but a $d_{x^2-y^2}$-wave model is recently supported by the thermal-conductivity, magnetic-penetration-depth, and specific-heat measurements [20, 21, 22]. Therefore, we tentatively assume a $d_{x^2-y^2}$-wave model to analyze $1/T_1$ data obtained from the present NQR measurements. The solid lines in Figs. 3 are the calculated results for CeIrIn$_5$ with parameters of $(2\Delta_0/k_BT_c$, RDOS) = (5.2, 0.44) at $P = 0$ and (5.2, 0.66) at $P = 2.73$ GPa. $2\Delta_0/k_BT_c$ is almost independent of P in CeIrIn$_5$, consistent with the previous NQR measurements [8]. The value of RDOS in CeIrIn$_5$ is fairly large. RDOS = 0.08 and 0.14 are confirmed at $P = 0$ in CeCoIn$_5$ [6] and at $P = 2.35$ GPa in CeRhIn$_5$ [23], respectively. Since the linewidth (σ) of the NQR spectrum at $2\nu_Q$ for the In(1) site in CeIrIn$_5$ is about 50 kHz, it is expected that the sample quality is considerably high. In the case of CeCoIn$_5$ and CeRhIn$_5$, $\sigma \sim 20$ and 50 kHz, respectively. Considering the existence of the large RDOS in spite of its high purity, it is possible that a superconducting gap is not formed or very small to be easily broken even by weak impurity scattering in one or a few bands of the Fermi surface. Here, we highlight the fact that RDOS in CeIrIn$_5$ increases from 0.44 to 0.66.
despite the enhancement of T_c from 0.4 to 0.9 K. When T_c increases, it is simply expected that RDOS is reduced through the formation of a strong-coupling superconductivity. Nevertheless, RDOS is unexpectedly enhanced by the application of P. Such a behavior contrasts with those in CeCoIn$_5$ and CeRhIn$_5$ in which RDOS remains almost unchanged and is reduced as P increases, respectively. The unexpected enhancement of RDOS by the application of P cannot be understood in terms of a simple impurity effect. Furthermore, since CeIrIn$_5$ is probably farther from an AFM QCP than CeCoIn$_5$, the influence of antiferromagnetic spin fluctuations on RDOS should be small in CeIrIn$_5$, as compared with that in CeCoIn$_5$. In fact, antiferromagnetic spin fluctuations are greatly suppressed by the application of P in CeIrIn$_5$ [8]. The cause of the unexpected enhancement by P cannot be explained by the effect of antiferromagnetic spin fluctuation. Analogous SC characteristics are also observed in the Cd-doped sample with the parameters of $(2\Delta_0/k_BT_c, \text{RDOS}) = (6.4, 0.64)$ and $(7.7, 0.73)$ at $P = 2.34$ and 2.75 GPa, respectively, indicating that it is intrinsic in the CeIr(In$_{1-x}$Cd$_x$)$_3$ system. The value of RDOS in the Cd-doped sample is larger than that in the pure sample due to the impurity effect. It should be noted that $2\Delta_0/k_BT_c$ is enhanced by the Cd-doping in spite of the impurity effect and the induced IAF order. In order to solve the mechanism of SC2, it would be important to understand the role of the Cd-doping for SC2.

3. Conclusion
In conclusion, the present In-NQR measurements have revealed that the nature of SC2 in pure and Cd-doped CeIrIn$_5$ differs from that of SC1 that is closely related to the AFM correlation. In pure CeIrIn$_5$, the unexpected enhancement of RDOS by the application of P is observed in spite of no addition of impurity and the increase in T_c. The similar behavior is also observed in Cd-doped CeIrIn$_5$. The unexpected enhancement of RDOS may be related with the mechanism of SC2. The similar T_c to the maximum value($T_c^{\text{max}} \sim 0.9$ K) in pure CeIrIn$_5$ is realized even in Cd-doped CeIrIn$_5$ in spite of the existence of Cd impurities and the AF order. The Cd-doping induces the strong coupling superconductivity in the CeIrIn$_5$ system, leading to the enhancement of T_c for SC2. In order to understand the mechanism of SC2 in more detail, it is inevitable to clarify the cause for the unexpected enhancement of RDOS and T_c in the Cd-doped CeIrIn$_5$ system.

4. Acknowledgments
We thank S. Watanabe and K. Miyake for enlightening discussions and theoretical comments. This work was supported by Grants-in-Aid for Specially Promoted Research (Grant No. 20001004) and for Scientific Research (C) (Grant No. 24540372) from the Ministry of Education, Culture, Sports, Science and Technology (MEXT) of Japan. It was partially supported by the Global COE Program from MEXT.

5. References
[1] C. Petrovic, P. G. Pagliuso, M. F. Hundley, R. Movshovich, J. L. Sarrao, J. D. Thompson, Z. Fisk, and P. Montheux, J. Phys.: Cond. Mat. 13, L337 (2001).
[2] H. Hegger, C. Petrovic, E. G. Moshopoulou, M. F. Hundley, J. L. Sarrao, Z. Fisk, and J. D. Thompson, Phys. Rev. Lett. 84, 4986 (2000).
[3] T. Muramatsu, N. Tateiwa, T. C. Kobayashi, K. Shimizu, K. Amaya, D. Aoki, H. Shishido, Y. Haga, and Y. Ônuki, J. Phys. Soc. Jpn. 70, 3362 (2001), and unpublished.
[4] C. Petrovic, R. Movshovich, M. Jaime, P. G. Pagliuso, M. F. Hundley, J. L. Sarrao, Z. Fisk, and J. D. Thompson, Europhys. Lett. 53, 354 (2001).
[5] M. Nicklas, V. A. Sidorov, H. A. Borges, P. G. Pagliuso, J. L. Sarrao, and J. D. Thompson, Phys. Rev. B 70, 020505(R) (2004).
[6] M. Yashima, S. Kawasaki, Y. Kawasaki, G.-q. Zheng, Y. Kitaoka, H. Shishido, R. Settai, Y. Haga and Y. Ônuki, J. Phys. Soc. Jpn. 73, 2073 (2004).
[7] M. Yashima, H. Mukuda, Y. Kitaoka, H. Shishido, R. Settai, and Y. Onuki, Phys. Rev. B 79, 214528 (2009).
[8] S. Kawasaki, G.-q. Zheng, H. Kan, Y. Kitaoka, H. Shishido, and Y. Onuki, Phys. Rev. Lett. 94, 037007 (2005).
[9] R. Bortha, E. Lengyel, P. G. Pagliuso, J. L. Sarrao, G. Sparna, F. Steglich, and J. D. Thompson, Physica B 312-313, 136 (2002).
[10] Y. Nakajima, H. Shishido, H. Nakai, T. Shibauchi, M. Hedo, Y. Uwatoko, T. Matsumoto, R. Settai, Y. Onuki, H. Kontani, and Y. Matsuda, Phys. Rev. B 77, 214504 (2008).
[11] S. Kambe, Y. Tokunaga, H. Sakai, H. Chudo, Y. Haga, T. D. Matsuda, and R. E. Walstedt, Phys. Rev. B 81, 140405(R) (2010).
[12] S. Kambe, H. Sakai, Y. Tokunaga, and R. E. Walstedt, Phys. Rev. B 82, 144503 (2010).
[13] H. Q. Yuan, F. M. Grosche, M. Deppe, C. Geibel, G. Sparn, and F. Steglich, Science 302, 2104 (2003).
[14] A. T. Holmes, D. Jaccard, and K. Miyake, Phys. Rev. B 69, 024508 (2004).
[15] K. Fujiwara, Y. Hata, K. Kobayashi, K. Miyoshi, J. Takeuchi, Y. Shimaoka, H. Kotegawa, T. C. Kobayashi, C. Geibel, and F. Steglich, J. Phys. Soc. Jpn. 77, 123711 (2008).
[16] Y. Onishi, and K. Miyake, J. Phys. Soc. Jpn. 69, 3955 (2000).
[17] S. Watanabe, M. Imada, and K. Miyake, J. Phys. Soc. Jpn. 75, 043710 (2006).
[18] K. Murata, K. Yokogawa, H. Yoshino, S. Klotz, P. Munsch, A. Irizawa, M. Nishiyama, K. Iizuka, T. Nanba, T. Okada, Y. Shiraga, and S. Aoyama, Rev. Sci. Instrum. 79, 085101 (2008).
[19] R. R. Urbano, B.-L. Young, N. J. Curro, J. D. Thompson, L. D. Pham, and Z. Fisk, Phys. Rev. Lett. 99, 146402 (2007).
[20] Y. Kasahara, T. Iwasawa, Y. Shimizu, H. Shishido, T. Shibauchi, I. Vekhter, and Y. Matsuda, Phys. Rev. Lett. 100, 207003 (2008).
[21] D. Vandervelde, H. Q. Yuan, Y. Onuki, and M. B. Salamon, Phys. Rev. B 79, 212505 (2009).
[22] S. Kittaka, Y. Aoki, T. Sakakibara, A. Sakai, S. Nakatsuji, Y. Tsutsumi, M. Ichida, and Kazushige Machida, Phys. Rev. B 85, 060505(R) (2012).
[23] M. Yashima, H. Mukuda, Y. Kitaoka, H. Shishido, R. Settai, and Y. Onuki, Phys. Rev. B 79, 214528 (2009).
[24] G.-q. Zheng, N. Yamaguchi, H. Kan, Y. Kitaoka, J. L. Sarrao, P. G. Pagliuso, N. O. Moreno, and J. D. Thompson, Phys. Rev. B 70, 014511 (2004).
[25] S. Kawasaki, M. Yashima, Y. Mugino, H. Mukuda, Y. Kitaoka, H. Shishido, and Y. Onuki, Phys. Rev. Lett. 96, 147001 (2006).
[26] M. Yashima, N. Tagami, S. Taniguchi, T. Unemori, K. Uematsu, H. Mukuda, Y. Kitaoka, Y. Ota, F. Honda, R. Settai, and Y. Onuki, Phys. Rev. Lett. 109, 117001 (2012).