Exclusive meson pair production in proton-proton collisions

Piotr Lebiedowicz$^{(a)}$, Antoni Szczurek$^{(a,b)}$

$^{(a)}$ Institute of Nuclear Physics PAN, PL-31-342 Cracow, Poland
$^{(b)}$ University of Rzeszów, PL-35-959 Rzeszów, Poland

We present a study of the exclusive production of meson pairs, $M\bar{M} = \pi\pi, KK$, in the four-body $pp \to ppM\bar{M}$ reactions at high energies which constitute an irreducible background to three-body processes (e.g. $pp \to pp\phi, f_2(1275), f_0(1500), f'_2(1525), \chi_{c0}$). We consider central diffractive contribution mediated by Pomeron and Reggeon exchanges and new diffractive mechanism of emission of pions/kaons from the proton lines. We include absorption effects due to proton-proton interaction and pion/kaon rescattering. We compare our results with measured cross sections for the CERN ISR experiment. We also take into account photon-photon mechanism calculated in the framework of equivalent photon approximation and the cross section for elementary $\gamma\gamma \to M\bar{M}$ processes calculated in the framework of pQCD Brodsky-Lepage approach with the distribution amplitude used recently to describe recent data of the BaBar Collaboration on pion transition form factor. For comparison we consider the soft hand-bag mechanism proposed by Diehl, Kroll and Vogt advocated to describe recent Belle data. We compare the photon-photon mechanisms with the contribution of the diffractive mechanism through the pQCD $gg \to M\bar{M}$ subprocesses, which can be calculated within the hard exclusive formalism proposed recently by Cambridge-Durham group.

Several observables related to the $pp \to ppM\bar{M}$ process are calculated. Sizeable cross sections are obtained that can be measured at RHIC, Tevatron and LHC. Predictions for the total cross section and differential distributions in pion/kaon rapidity and transverse momentum as well as two-meson invariant mass are presented. We find that the pions/kaons from the new mechanism of emission directly from the proton lines are produced rather forward and backward what offers a possibility of efficient studies of exclusive $\pi^0\pi^0$ pair production with help of the Zero Degree Calorimeters at LHC. Finally we consider a measurement of exclusive production of a scalar χ_{c0} meson via $\chi_{c0} \to \pi^+\pi^-, K^+K^-$ decay.

[1] P. Lebiedowicz and A. Szczurek, Exclusive $pp \to pp\pi^+\pi^-$ reaction: from the threshold to LHC, Phys. Rev. D81 (2010) 036003.

[2] R. Staszewski, P. Lebiedowicz, M. Trzebinski, J. Chwastowski and A. Szczurek, Exclusive $\pi^+\pi^-$ Production at the LHC with Forward Proton Tagging, Acta Phys. Polon. B42 (2011) 1861.

[3] P. Lebiedowicz and A. Szczurek, Measurement of exclusive production of scalar χ_{c0} meson in proton-(anti)proton collisions via $\chi_{c0} \to \pi^+\pi^-$ decay, Phys. Lett. B701 (2011) 434.

[4] P. Lebiedowicz and A. Szczurek, $pp \to ppK^+K^-$ reaction at high energies, Phys. Rev. D85 (2012) 014026.

E-mail: piotr.lebiedowicz@ifj.edu.pl