We previously demonstrated that *Bothrops jararaca* venom (*BjV*) has an antitumor effect on Ehrlich ascites tumor (EAT) cells and induces an increase of polymorphonuclear leukocytes in early stages of tumor growth. It has been reported that this venom presents an important inflammatory effect when inoculated in animal models and in human snakebites, and that cytokine levels have been detected in these cases. To evaluate whether the cytokines can be involved with the suppression of the tumoral growth, we evaluate the cytokine profile in the peritoneal cavity of mice inoculated with EAT cells and treated with *BjV*. Swiss mice were inoculated with EAT cells by the intraperitoneal route and treated with *BjV* venom (0.4 mg/kg, intraperitoneally), on the 1st, 4th, 7th, 10th, and 13th day. Mice were evaluated for cytokine levels on the 2nd, 5th, 8th, 11th and 14th day. Analysis was performed using an enzyme-linked immunosorbent assay for interleukin (IL)-1α, IL-2, IL-4, IL-6, IL-10, IL-13, and tumor necrosis factor-α (TNF-α) levels in the peritoneal washing supernatant. Results were analyzed statistically by the Kruskal–Wallis and Dunn's tests at the 5% level of significance. We observed that *BjV* treatment induces IL-6 production on the 11th and 14th days of tumor growth, IL-10 on the 11th day and TNF-α on the 14th day. The treatment with *BjV* suppresses production of these cytokines. In addition, IL-13 was produced by animals that were inoculated only with venom on the 11th and 14th days, and by the group inoculated with EAT cells and treated with venom on the 2nd and 14th days. Furthermore, we suggest that the IL-6 detected in the present study is produced by the EAT cells and the suppression of its production could be associated with the antitumor effect of *BjV*.

Key words: Cytokines, Ehrlich ascites tumor, *Bothrops jararaca*, Snake venom

Introduction

We previously demonstrated that *Bothrops jararaca* venom (*BjV*) has an antitumor effect on Ehrlich ascites tumor (EAT) cells. Other experimental studies have been performed using snake venoms for treating animal tumors, and we observed that there are still many controversies on this subject and that the mechanism of tumor growth inhibition was not clear.

Inflammation induced by snake venoms, with inflammatory cell involvement and cytokine liberation, was suggested as an important factor in tumor growth inhibition. Elevated levels of some cytokines in human accidents with venomous animals and experimental studies have been demonstrated.

Literature on neoplasias and cytokines is quite extensive, and its approach in the *in vivo* models is very complex. Several reports have demonstrated that snake venoms may induce increased serum levels of interferon alpha (INFα), tumor necrosis factor-α (TNF-α), interleukin (IL)-1, IL-6, IL-8, and IL-10. It has also been demonstrated that certain snake venoms show a proteolytic effect on cytokines. In this sense, it is already known that *Crotalus atrox* venom degrades interferon and IL-2. In addition to the proteolytic effect, the literature also describes an inhibitory effect in cytokine production by certain snake venoms.

There are other reports that demonstrate an association between cytokines and tumor growth inhibition. The main cytokines involved in this response are TNFα, IL-1α, IL-2, IL-4, IL-6, IL-8, and IL-10. These cytokines can act as inhibitory substances or growth factors for tumor cells.

In our previous report on this subject, we demonstrated that the *in vivo* treatment of mice bearing EAT...
cells with BjV-induced tumor growth inhibition (70 \times 10^6 EAT cells/ml versus 0.7 \times 10^6 EAT cells/ml, on the 14th day), increased animal survival time (15.5% versus 64.3%), and induced an increase of polymorphonuclear leukocytes in early stages of tumor growth (2nd and 5th days), but the total number of mononuclear leukocytes was not affected. We suggest that the antitumor effect of BjV is due to the direct action of some substance of the venom, mainly proteases, but could also be by an indirect action, through stimulation of the inflammatory reaction, with involvement of cells and cytokines. To evaluate whether the cytokines can be involved with the suppression of the tumoral growth, we evaluate the cytokine profile in the peritoneal cavity of mice inoculated with EAT cells and treated with BjV.

Materials and methods

Animals

Swiss strain male mice, 4–6 weeks old, from our own animal facilities were used throughout the experiment.

Venoms

BjV was obtained from snakes maintained in captivity at The Center for the Study of Venoms and Venomous Animals of São Paulo State University, Brazil. Newly extracted venom was centrifuged for 10 min at 1500 rpm, filtered using a GSWP00250 Millipore filter and then lyophilized. The lethal dose 50 (LD_{50}) for this venom was previously determined as 2.4 mg/kg of animal weight. The venom was stored at 4°C during the experiment.

Ehrlich ascites tumor

The tumor was maintained in Swiss mice in the ascitic form. Tumor cells were collected by aspiration with a Pasteur pipette, centrifuged for 10 min at 200 g, and washed twice with phosphate-buffered saline (pH 7.2). In all experimental protocols, mice were injected intraperitoneally with \(1 \times 10^3 \) tumor cells/ml into the peritoneal cavity. Cell viability was evaluated by trypan blue exclusion test, and only cell suspensions that presented more than 95% viability were used.

Experimental design (Fig. 1)

Four groups of 25 animals were formed: G1, saline control group; G2, venom control group (0.4 mg/kg); G3, EAT control group; and G4, EAT + venom group (0.4 mg/kg) of venom. Animals of groups G3 and G4 were inoculated with \(1 \times 10^3 \) tumor cells/ml into the peritoneal cavity. Treatment began 24 h after tumor cell inoculation and consisted of five intraperitoneal injections at 72-h intervals between each. The saline (G1) and tumor (G3) control groups were injected with saline solution, and the venom control group (G2) and the venom + EAT group (G4) were inoculated with BjV (0.4 mg/kg). On the 2nd, 5th, 8th, 11th, and 14th days after inoculation, five animals from each group were sacrificed in a sulfur ether chamber. After abdominal asepsis, each mouse was inoculated with 3 ml of saline. After homogenization, the solution containing peritoneal cells was removed and centrifuged, and the supernatant was stored at −20°C. These procedures were repeated twice and data were grouped for statistical analysis.

Immunoenzymatic assay

The cytokine profile was obtained through immunoenzymatic assay (enzyme-linked immunosorbent assay) using supernatant aliquots of the peritoneal washing. The following cytokines were analyzed: TNF-α, IL-1α, IL-2, IL-4, IL-6, IL-10 and IL-13. The protocols, antibodies and reagents employed were as per the manufacturer’s recommendations (R&D Systems Inc., Minneapolis, USA).

Statistical analysis

The data were analyzed by the Kruskal–Wallis non-parametric test for independent samples. The differences between the groups were appraised by the Dunn’s method. The significance level was 5%.

Results

There were no significant differences observed in IL-1α and IL-2 production to any group throughout the study. However, IL-1α was slightly increased on the 2nd and 5th days for the group inoculated with EAT cells and treated with venom, and IL-2 on the 8th day for the group inoculated only with BjV (Table 1). IL-4
levels were not detected in all groups (data not shown).

Results for IL-6 production are shown in Fig. 2. The group inoculated with EAT cells and treated with saline (G3) presented significantly higher IL-6 levels on the 11th and 14th days in relation to the saline control group (G1). On the contrary, in the group inoculated with EAT cells and treated with BjV (G4), this exponential increase of IL-6 was not observed. IL-6 levels was also observed in the group treated just with EAT and treated with saline (G3). On the 14th day, IL-13 increase in the venom control group (G2) was also significant compared with the EAT and saline group (G3) (Fig. 4).

TNF-α production analysis showed that the group inoculate with EAT cells and treated with saline (G3) presented significantly higher levels on the 14th day than the two non-inoculated groups treated (G2) or not treated (G1) with BjV (Fig. 5).

Discussion

The present study was performed because we were interested in determining whether some cytokine was involved in the process of inhibition of the growth tumoral after treatment with BjV, as previously demonstrated.1

The analysis of cytokines in the peritoneal cavity showed that, in the EAT group, TNF-α. IL-6, IL-10 were produced in later stages of tumor growth (11th and/
or 14th day). IL-13 levels was detected mainly in the groups treated with BjV, independently of the presence of EAT cells. IL-1 and IL-2 levels were very low when compared with those obtained for TNF-α, IL-6, IL-10 and IL-13. However, the most important cytokine detected in our protocols was IL-6. After treatment of EAT cells with BjV, the production of TNF-α, IL-6, and IL-10 was suppressed. There were no significant increases between EAT groups for IL-1α, IL-2, IL-4, and IL-13 throughout the experiment. However, we observed a slight tendency for increased IL-1α levels in the beginning stages of the experiment, in IL-2 levels on day 8 of tumor growth, and in IL-13 during the final stages of the experiment. Although these slight increases are not significant, these cytokines may also be involved in tumor growth inhibition.

Although we did not observe increased IL-4 levels, the structure of L-amino acid oxidase, a very common enzyme in snake venoms, shows a high degree of homology with murine IL-425 and therefore it is possible that this enzyme present in BjV24,25 exerts an antitumor effect on the EAT cells similar to that obtained with IL-4 treatment.14,15 There are reports in the literature that show the direct toxic effect of L-amino acid oxidase Ophiophagus hannah on stomach cancer cells, murine melanoma, fibrosarcoma, and colorectal cancer.26 In the present study, comparing cytokine levels in the animals treated only with venom, we observed a significant increase in IL-6 on the 5th day, and IL-13 on the 11th and 14th days in relation to the saline control group. Also, although not statistically significant, we detected an increase in TNF-α and IL-2 on the 8th day and in IL-4 and IL-10 from day 11. These data suggest that treatment with BjV induces a Th2 behavior in the cytokine profile during the end stages of the study period, as reported for the Crotalus durissus terrificus venom.7

After analyzing the literature, we can infer that there is a close relationship between snake venoms, cytokines, and tumor cells. However, the literature on this subject is controversial and shows that treatment of tumors with snake venoms may or may not induce an anti-neoplastic effect7 and that, in certain situations, snake venoms induce cytokine release;5–5 in others, they either did not induce7,8 or degraded6 the produced cytokines. For some cytokines evaluated in this study, an antitumor effect13,19 or that they are used as growth factors by tumor cells9,18 has been reported.

The results observed in our previous paper, in which we reported inhibition of EAT cell growth1, associated with modulation of the cytokine profile observed in the present paper, mainly for TNF-α, IL-6, and IL-10 production, suggest a effective inter-relation among cytokines and inhibition of EAT cell growth. Since IL-6 was produced in significantly higher quantities than TNF-α and IL-10, we believe that IL-6 is the main cytokine associated with EAT growth, either as a growth factor or a host suppressor factor. We suggest that tumor growth inhibition was largely due to the suppression of IL-6 production and that this suppression may be associated in part with proteolysis induced by BjV.
Comparing the results obtained for the cytokine levels with those obtained for the tumoral growth, we can note a correlation between the increase in TNF-α, IL-6 and IL-10 levels and the tumoral growth in the non-venom EAT group, which was the group where a high rate of tumoral growth was observed. On the contrary, no significant levels of these cytokines were observed in EAT groups that were treated with BJV. In our previous observation, in this latter group, the tumoral growth was inhibited. We can suggest that the tumor cells are producing or inducing production of these cytokines. These results are in agreement with the literature on the production of TNF-α, IL-6 and IL-10 by tumor cells and also induction of IL-10 by cells of the host, the latter stimulating tumoral growth.

Although the treatment of mice bearing EAT cells with BJV did not induce a significant difference in the total number of mononuclear leukocytes, we do not rule out the possibility that different subpopulations may be involved in tumoral growth inhibition. At the moment, we are evaluating through flow cytometry which populations of mononuclear cells are involved in the response of inhibition of the tumoral growth, so that we will better be able to understand the relationships among the tumor evolution, the inflammatory influx, and the cytokine profile in mice bearing EAT cells treated with BJV.

ACKNOWLEDGEMENT Financial support from the Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP).

References

1. Silva RJ, Silva MG, Vilela LC, Fecchio D. Antitumor effect of Bothrops jararaca venom. Mediat Inflamm 2002; 11: 99–104
2. Silva RJ, Fecchio D, Barraviera B. Antitumor effect of snake venoms. J Venom Animal Toxins 1996; 2: 79–90
3. Barraviera B, Lomonte B, Tarkowski A, Hanson LA, Meira DA. Acute phase reactions including cytokines in patients bitten by Bothrops and Crotalus snakes in Brazil. J Venom Animal Toxins 1995; 1: 11–22
4. Lomonte B, Tarkowski A, Hanson LA. Host response to Bothrops asper snake venom: analysis of edema formation, inflammatory cells and cytokines release in a mouse model. Inflammation 1993; 17: 93–105
5. Petricevic VL, Teixeira CPF, Tambourgi DV, Gutierrez JM. Increments in serum cytokine and nitric oxide levels in mice injected with Bothrops asper and Bothrops jararaca snake venoms. Toxicon 2000; 38: 1255–1260
6. Kuo WN, Ganesan U, Robinson JR. et al. Proteolysis of interleukin–2–interferon and immunoglobulin by venoms. Cytobios 1991; 67: 145–151
7. Cardoso DF, Mota I. Effect of Crotalus venom on the humoral and cellular immune response. Toxicon 1997; 35: 607–612
8. Sousa e Silva MCC, Gon alves LRC, Mariano M. The venom of South American rattlesnakes inhibits macrophage functions and is endowed with anti-inflammatory properties. Mediat Inflamm 1996; 5: 18–23
9. Beissert S, Berghoft M, Woosie I. et al. Regulation of tumor necrosis factor gene expression in colorectal adenocarcinoma in situ hybridization. Proc Natl Acad Sci USA 1989; 86: 5064–5068
10. Sprigge D, Imamura K, Rodrigues C, Horiguchi J, Kufe DW. Induction of tumor necrosis factor expression and resistance in a human breast tumor cell line. Proc Natl Acad Sci USA 1987; 84: 6563–6566
11. Kimura H, Yamashita S, Namba H, et al. Interleukin–1 inhibits human thyroid carcinoma cell growth. J Clin Endocrinol Metab 1992; 75: 590–602
12. Onozaki K, Matsushima K, Aggarwal BB, Oppenheim JJ. Human interleukin–1 is a cytoxicidal factor for several tumor cell lines. J Immunol 1985; 135: 3962–3968
13. Wagstaff J, Baars JW, Wolbink GJ, et al. Renal cell carcinoma and interleukin–2: a review. Eur J Cancer 1995; 31: 401–408
14. Defrance T, Hicker AC, Ross JF, et al. Antiproliferative effects of interleukin–4 on freshly isolated non-Hodgkin malignant Blymphoma cells. Blood 1992; 79: 900–906
15. Toi M, Bicknell R, Harris AL. Inhibition of colon and breast carcinoma cell growth by interleukin–4. Cancer Res 1992; 52: 275–279
16. Kinoshita T, Ito H, Miki C. Serum interleukin–6 level reflects the tumor proliferative activity in patients with colorectal carcinoma. Cancer 1999; 85: 2526–2531
17. Watson JM, Senintastaff JL, Berck JS, Matinez-Maza O. Constitutive production of interleukin–6 by ovarian cancer cell lines and by primary ovarian tumor cultures. Cancer Res 1990; 50: 6959–6965
18. Halak BK, Maguire HC, Lattime EC. Tumor-induced interleukin–10 inhibits type I immune responses directed at a tumor antigen as well as a non-tumor antigen present at the tumor site. Cancer Res 1999; 59: 911–917
19. Wakos S, Scary J, Saza S. Inhibition of tumor growth by interleukin–10 gene transfer in B16 (F10) melanoma cells. Acta Biochim Pol 1999; 46: 967–970
20. Obiri NI, Husain SR, Debinski W, Puri RK. Interleukin–13 inhibits growth of human renal cell carcinoma cells independently of the p140 interleukin 4 receptor chain. Clin Cancer Res 1996; 2: 1743–1749
21. Serve H, Oelmann E, Herweg A, et al. Inhibition of proliferation and clonal growth of human breast cancer cells by interleukin–13. Cancer Res 1996; 56: 3583–3588
22. Rizzo E, Tuchiya HN. Cytopathic effect by Bothrops jararaca venom on animal cell cultures. Ciência Cult 1972; 24: 184–189
23. Raibekas AA, Massey V. Primary structure of the snake venom L-amino acid oxidase shows high homology with the mouse B cell interleukin 4–induced Figl protein. Biochem Biophys Res Commun 1998; 248: 876–878
24. Pesatti M, Fontana JD, Furtado MF, et al. Screening of Screening of Bothrops snake venoms for L-amino acid oxidase activity. Appl Biochem Biotechnol 1995; 51–52: 197–210
25. Tan NH, Panndurai G. A comparative study of the biological properties of some venoms of snakes of the genus Bothrops (American lance-headed viper). Comp Biochem Physiol B 1991; 100: 361–365
26. Ahn MY, Lee BM, Kim YS. Characterization and cytotoxicity of L-amino acid oxidase from the venom of king cobra (Ophiophagus hannah). Int J Biochem Cell Biol 1997; 29: 911–919
27. Brunda M, Luistro L, Warrier RR, et al. Antitumor and antimitastatic activity of interleukin 12 murine tumors. Clin Cancer Res 1999; 5: 1253–1259
28. Eleopuru A, Martin-Nieto J, Jimenez A, Gomez C, Villalobo A. Ehrlich ascites tumor cells produce a transforming growth factor-beta (TGF-beta)–like activity but lack receptors with TGFbeta binding capacity. Mol Cell Biochem 1997; 170: 153–162

Received 25 February 2002
Accepted 22 March 2002