Algebraic surfaces and hyperbolic geometry

Burt Totaro

Many properties of a projective algebraic variety can be encoded by convex cones, such as the ample cone and the cone of curves. This is especially useful when these cones have only finitely many edges, as happens for Fano varieties. For a broader class of varieties which includes Calabi-Yau varieties and many rationally connected varieties, the Kawamata-Morrison cone conjecture predicts the structure of these cones. I like to think of this conjecture as what comes after the abundance conjecture. Roughly speaking, the cone theorem of Mori-Kawamata-Shokurov-Kollár-Reid describes the structure of the curves on a projective variety \(X\) on which the canonical bundle \(K_X\) has negative degree; the abundance conjecture would give strong information about the curves on which \(K_X\) has degree zero; and the cone conjecture fully describes the structure of the curves on which \(K_X\) has degree zero.

We give a gentle summary of the proof of the cone conjecture for algebraic surfaces, with plenty of examples [42]. For algebraic surfaces, these cones are naturally described using hyperbolic geometry, and the proof can also be formulated in those terms.

Example 6.3 shows that the automorphism group of a K3 surface need not be commensurable with an arithmetic group. This answers a question by Barry Mazur [27, section 7].

Thanks to John Christian Ottem, Artie Prendergast-Smith, and Marcus Zibrowius for their comments.

1 The main trichotomy

Let \(X\) be a smooth complex projective variety. There are three main types of varieties. (Not every variety is of one of these three types, but minimal model theory relates every variety to one of these extreme types.)

- **Fano.** This means that \(-K_X\) is ample. (We recall the definition of ampleness in section [2])
- **Calabi-Yau.** We define this to mean that \(K_X\) is numerically trivial.
- **ample canonical bundle.** This means that \(K_X\) is ample; it implies that \(X\) is of “general type.”

Here, for \(X\) of complex dimension \(n\), the **canonical bundle** \(K_X\) is the line bundle \(\Omega^n_X\) of \(n\)-forms. We write \(-K_X\) for the dual line bundle \(K^*_X\), the determinant of the tangent bundle.

Example 1.1. Let \(X\) be a curve, meaning that \(X\) has complex dimension 1. Then \(X\) is Fano if it has genus zero, or equivalently if \(X\) is isomorphic to the complex
projective line \mathbb{P}^1; as a topological space, this is the 2-sphere. Next, X is Calabi-Yau if X is an elliptic curve, meaning that X has genus 1. Finally, X has ample canonical bundle if it has genus at least 2.

Example 1.2. Let X be a smooth surface in \mathbb{P}^3. Then X is Fano if it has degree at most 3. Next, X is Calabi-Yau if it has degree 4; this is one class of $K3$ surfaces. Finally, X has ample canonical bundle if it has degree at least 5.

Belonging to one of these three classes of varieties is equivalent to the existence of a Kähler metric with Ricci curvature of a given sign, by Yau [45]. Precisely, a smooth projective variety is Fano if and only if it has a Kähler metric with positive Ricci curvature; it is Calabi-Yau if and only if it has a Ricci-flat Kähler metric; and it has ample canonical bundle if and only if it has a Kähler metric with negative Ricci curvature.

We think of Fano varieties as the most special class of varieties, with projective space as a basic example. Strong support for this idea is provided by Kollár-Miyaoka-Mori’s theorem that smooth Fano varieties of dimension n form a bounded family [22]. In particular, there are only finitely many diffeomorphism types of smooth Fano varieties of a given dimension.

Example 1.3. Every smooth Fano surface is isomorphic to $\mathbb{P}^1 \times \mathbb{P}^1$ or to a blow-up of \mathbb{P}^2 at at most 8 points. The classification of smooth Fano 3-folds is also known, by Iskovskikh, Mori, and Mukai; there are 104 deformation classes [20].

By contrast, varieties with ample canonical bundle form a vast and uncontrollable class. Even in dimension 1, there are infinitely many topological types of varieties with ample canonical bundle (curves of genus at least 2). Calabi-Yau varieties are on the border in terms of complexity. It is a notorious open question whether there are only finitely many topological types of smooth Calabi-Yau varieties of a given dimension. This is true in dimension at most 2. In particular, a smooth Calabi-Yau surface is either an abelian surface, a K3 surface, or a quotient of one of these surfaces by a free action of a finite group (and only finitely many finite groups occur this way).

2 Ample line bundles and the cone theorem

After a quick review of ample line bundles, this section states the cone theorem and its application to Fano varieties. Lazarsfeld’s book is an excellent reference on ample line bundles [25].

Definition 2.1. A line bundle L on a projective variety X is **ample** if some positive multiple nL (meaning the line bundle $L^\otimes n$) has enough global sections to give a projective embedding

$$X \hookrightarrow \mathbb{P}^N.$$

(Here $N = \dim \mathbb{C}H^0(X, nL) - 1$.)

One reason to investigate which line bundles are ample is in order to classify algebraic varieties. For classification, it is essential to know how to describe a variety with given properties as a subvariety of a certain projective space defined by equations of certain degrees.
Example 2.2. For X a curve, L is ample on X if and only if it has positive degree. We write $L \cdot X = \deg(L|_X) \in \mathbb{Z}$.

An \mathbb{R}-divisor on a smooth projective variety X is a finite sum

$$D = \sum a_i D_i$$

with $a_i \in \mathbb{R}$ and each D_i an irreducible divisor (codimension-one subvariety) in X. Write $N^1(X)$ for the “Néron-Severi” real vector space of \mathbb{R}-divisors modulo numerical equivalence: $D_1 \equiv D_2$ if $D_1 \cdot C = D_2 \cdot C$ for all curves C in X. (For me, a curve is irreducible.)

We can also define $N^1(X)$ as the subspace of the cohomology $H^2(X, \mathbb{R})$ spanned by divisors. In particular, it is a finite-dimensional real vector space. The dual vector space $N^1(X)$ is the space of 1-cycles $\sum a_i C_i$ modulo numerical equivalence, where C_i are curves on X. We can identify $N^1(X)$ with the subspace of the homology $H_2(X, \mathbb{R})$ spanned by algebraic curves.

Definition 2.3. The closed cone of curves $\overline{\text{Curv}}(X)$ is the closed convex cone in $N^1(X)$ spanned by curves on X.

Definition 2.4. An \mathbb{R}-divisor D is nef if $D \cdot C \geq 0$ for all curves C in X. Likewise, a line bundle L on X is nef if the class $[L]$ of L (also called the first Chern class $c_1(L)$) in $N^1(X)$ is nef. That is, L has nonnegative degree on all curves in X.

Thus $\text{Nef}(X) \subset N^1(X)$ is a closed convex cone, the dual cone to $\overline{\text{Curv}}(X) \subset N^1(X)$.

Theorem 2.5. (Kleiman) A line bundle L is ample if and only if $[L]$ is in the interior of the nef cone in $N^1(X)$.

This is a numerical characterization of ampleness. It shows that we know the ample cone $\text{Amp}(X) \subset N^1(X)$ if we know the cone of curves $\overline{\text{Curv}}(X) \subset N^1(X)$. The following theorem gives a good understanding of the “K-negative” half of the cone of curves [23, Theorem 3.7]. A rational curve means a curve that is birational to \mathbb{P}^1.

Theorem 2.6. (Cone theorem; Mori, Shokurov, Kawamata, Reid, Kollár). Let X be a smooth projective variety. Write $K_X^\leq 0 = \{u \in N_1(X) : K_X \cdot u < 0\}$. Then every extremal ray of $\overline{\text{Curv}}(X) \cap K_X^\leq 0$ is isolated, spanned by a rational curve, and can be contracted.

In particular, every extremal ray of $\overline{\text{Curv}}(X) \cap K_X^\leq 0$ is rational (meaning that it is spanned by a \mathbb{Q}-linear combination of curves, not just an \mathbb{R}-linear combination), since it is spanned by a single curve. A contraction of a normal projective variety X means a surjection from X onto a normal projective variety Y with connected fibers. A contraction is determined by a face of the cone of curves $\overline{\text{Curv}}(X)$, the set of elements of $\overline{\text{Curv}}(X)$ whose image under the pushforward map $N_1(X) \to N_1(Y)$ is zero. The last statement in the cone theorem means that every extremal ray in the K-negative half-space corresponds to a contraction of X.

Corollary 2.7. For a Fano variety X, the cone of curves $\overline{\text{Curv}}(X)$ (and therefore the dual cone $\text{Nef}(X)$) is rational polyhedral.
A rational polyhedral cone means the closed convex cone spanned by finitely many rational points.

Proof. Since $-K_X$ is ample, K_X is negative on all of $\text{Curv}(X) - \{0\}$. So the cone theorem applies to all the extremal rays of $\text{Curv}(X)$. Since they are isolated and live in a compact space (the unit sphere), $\text{Curv}(X)$ has only finitely many extremal rays. The cone theorem also gives that these rays are rational. QED

It follows, in particular, that a Fano variety has only finitely many different contractions. A simple example is the blow-up X of \mathbb{P}^2 at one point, which is Fano. In this case, $\text{Curv}(X)$ is a closed strongly convex cone in the two-dimensional real vector space $N_1(X)$, and so it has exactly two 1-dimensional faces. We can write down two contractions of X, $X \rightarrow \mathbb{P}^2$ (contracting a (-1)-curve) and $X \rightarrow \mathbb{P}^1$ (expressing X as a \mathbb{P}^1-bundle over \mathbb{P}^1). Each of these morphisms must contract one of the two 1-dimensional faces of $\text{Curv}(X)$. Because the cone has no other nontrivial faces, these are the only nontrivial contractions of X.

3 Beyond Fano varieties

“Just beyond” Fano varieties, the cone of curves and the nef cone need not be rational polyhedral. Lazarsfeld’s book [25] gives many examples of this type, as do other books on minimal model theory [11, 23].

3.1 Example

Let X be the blow-up of \mathbb{P}^2 at n very general points. For $n \leq 8$, X is Fano, and so $\text{Curv}(X)$ is rational polyhedral. In more detail, for $2 \leq n \leq 8$, $\text{Curv}(X)$ is the convex cone spanned by the finitely many (-1)-curves in X. (A (-1)-curve on a surface X means a curve C isomorphic to \mathbb{P}^1 with self-intersection number $C^2 = -1$.) For example, when $n = 6$, X can be identified with a cubic surface, and the (-1)-curves are the famous 27 lines on X.

But for $n \geq 9$, X is not Fano, since $(-K_X)^2 = 9 - n$ (whereas a projective variety has positive degree with respect to any ample line bundle). For p_1, \ldots, p_n very general points in \mathbb{P}^2, X contains infinitely many (-1)-curves; see Hartshorne [17, Exercise V.4.15]. Every curve C with $C^2 < 0$ on a surface spans an isolated extremal ray of $\text{Curv}(X)$, and so $\text{Curv}(X)$ is not rational polyhedral.

Notice that a (-1)-curve C has $K_X \cdot C = -1$, and so these infinitely many isolated extremal rays are on the “good” (K-negative) side of the cone of curves, in the sense of the cone theorem. The K-positive side is a mystery. It is conjectured (Harbourne-Hirschowitz) that the closed cone of curves of a very general blow-up of \mathbb{P}^2 at $n \geq 10$ points is the closed convex cone spanned by the (-1)-curves and the “round” positive cone $\{x \in N_1(X) : x^2 \geq 0 \text{ and } H \cdot x \geq 0\}$, where H is a fixed ample line bundle. This includes the famous Nagata conjecture [25, Remark 5.1.14] as a special case. By de Fernex, even if the Harbourne-Hirschowitz conjecture is correct, the intersection of $\text{Curv}(X)$ with the K-positive half-space, for X a very general blow-up of \mathbb{P}^2 at $n \geq 11$ points, is bigger than the intersection of the positive cone with the K-positive half-space, because the (-1)-curves stick out a lot from the positive cone [10].
3.2 Example

Calabi-Yau varieties (varieties with $K_X \equiv 0$) are also “just beyond” Fano varieties ($-K_X$ ample). Again, the cone of curves of a Calabi-Yau variety need not be rational polyhedral.

For example, let X be an abelian surface, so $X \cong \mathbb{C}^2/\Lambda$ for some lattice $\Lambda \cong \mathbb{Z}^4$ such that X is projective. Then $\overline{\text{Curv}}(X) = \text{Nef}(X)$ is a round cone, the positive cone

$$\{x \in N^1(X) : x^2 \geq 0 \text{ and } H \cdot x \geq 0\},$$

where H is a fixed ample line bundle. (Divisors and 1-cycles are the same thing on a surface, and so the cones $\overline{\text{Curv}}(X)$ and $\text{Nef}(X)$ lie in the same vector space $N^1(X)$.) Thus the nef cone is not rational polyhedral if X has Picard number $\rho(X) := \dim \mathbb{R}N^1(X)$ at least 3 (and sometimes when $\rho = 2$).

For a K3 surface, the closed cone of curves may be round, or may be the closed cone spanned by the (-2)-curves in X. (One of those two properties must hold, by Kovács [24].) There may be finitely or infinitely many (-2)-curves. See section 4.1 for an example.

4 The cone conjecture

But there is a good substitute for the cone theorem for Calabi-Yau varieties, the Morrison-Kawamata cone conjecture. In dimension 2, this is a theorem, by Sterk-Looijenga-Namikawa [38, 30, 21]. We call this Sterk’s theorem for convenience:

Theorem 4.1. Let X be a smooth complex projective Calabi-Yau surface (meaning that K_X is numerically trivial). Then the action of the automorphism group $\text{Aut}(X)$ on the nef cone $\text{Nef}(X) \subset N^1(X)$ has a rational polyhedral fundamental domain.

Remark 4.2. For any variety X, if $\text{Nef}(X)$ is rational polyhedral, then the group $\text{Aut}^*(X) := \text{im}(\text{Aut}(X) \to GL(N^1(X)))$ is finite. This is easy: the group $\text{Aut}^*(X)$ must permute the set consisting of the smallest integral point on each extremal ray of $\text{Nef}(X)$. Sterk’s theorem implies the remarkable statement that the converse is also true for Calabi-Yau surfaces. That is, if the cone $\text{Nef}(X)$ is not rational polyhedral, then $\text{Aut}^*(X)$ must be infinite. Note that $\text{Aut}^*(X)$ coincides with the discrete part of the automorphism group of X up to finite groups, because $\ker(\text{Aut}(X) \to GL(N^1(X)))$ is an algebraic group and hence has only finitely many connected components.

Sterk’s theorem should generalize to Calabi-Yau varieties of any dimension (the Morrison-Kawamata cone conjecture). But in dimension 2, we can visualize it better, using hyperbolic geometry.

Indeed, let X be any smooth projective surface. The intersection form on $N^1(X)$ always has signature $(1, n)$ for some n (the Hodge index theorem). So $\{x \in N^1(X) : x^2 > 0\}$ has two connected components, and the positive cone $\{x \in N^1(X) : x^2 > 0$ and $H \cdot x > 0\}$ is the standard round cone. As a result, we can identify the quotient of the positive cone by $\mathbb{R}^{>0}$ with hyperbolic n-space. One way to see this is that the negative of the Lorentzian metric on $N^1(X) = \mathbb{R}^{1,n}$ restricted to the quadric $\{x^2 = 1\}$ is a Riemannian metric with curvature -1.

For any projective surface X, $\text{Aut}(X)$ preserves the intersection form on $N^1(X)$. So $\text{Aut}^*(X)$ is always a group of isometries of hyperbolic n-space, where $n = \rho(X) - 1$.

By definition, two groups G_1 and G_2 are *commensurable*, written $G_1 \cong G_2$, if some finite-index subgroup of G_1 is isomorphic to a finite-index subgroup of G_2. Since the groups we consider are all virtually torsion-free, we are free to replace a group G by G/N for a finite normal subgroup N (that is, G and G/N are commensurable).

4.1 Examples

For an abelian surface X with Picard number at least 3, the cone $\text{Nef}(X)$ is round, and so $\text{Aut}^*(X)$ must be infinite by Sterk’s theorem. (For abelian surfaces, the possible automorphism groups were known long before [29, section 21].)

For example, let $X = E \times E$ with E an elliptic curve (not having complex multiplication). Then $\rho(X) = 3$, with $N^1(X)$ spanned by the curves $E \times 0$, $0 \times E$, and the diagonal Δ_E in $E \times E$. So $\text{Aut}^*(X)$ must be infinite. In fact,

$$\text{Aut}^*(X) \cong \text{PGL}(2, \mathbb{Z}).$$

Here $GL(2, \mathbb{Z})$ acts on $E \times E$ as on the direct sum of any abelian group with itself. This agrees with Sterk’s theorem, which says that $\text{Aut}^*(X)$ acts on the hyperbolic plane with a rational polyhedral fundamental domain; a fundamental domain for $\text{PGL}(2, \mathbb{Z})$ acting on the hyperbolic plane (not preserving orientation) is given by any of the triangles in the figure.

For a K3 surface, the cone $\text{Nef}(X)$ may or may not be the whole positive cone. For any projective surface, the nef cone modulo scalars is a convex subset of hyperbolic space. A finite polytope in hyperbolic space (even if some vertices are at infinity) has finite volume. So Sterk’s theorem implies that, for a Calabi-Yau surface, $\text{Aut}^*(X)$ acts with finite covolume on the convex set $\text{Nef}(X)/\mathbb{R}^>0$ in hyperbolic space.

For example, let X be a K3 surface such that $\text{Pic}(X)$ is isomorphic to \mathbb{Z}^3 with intersection form

$$
\begin{pmatrix}
0 & 1 & 1 \\
1 & -2 & 0 \\
1 & 0 & -2
\end{pmatrix}.
$$

Such a surface exists, since Nikulin showed that every even lattice of rank at most 10 with signature $(1,*)$ is the Picard lattice of some complex projective K3 surface [31, section 1, part 12]. Using the ideas of section 5, one computes that the nef cone of X modulo scalars is the convex subset of the hyperbolic plane shown in the figure. The surface X has a unique elliptic fibration $X \to \mathbb{P}^1$, given by a nef line bundle P with $\langle P, P \rangle = 0$. The line bundle P appears in the figure as the point where $\text{Nef}(X)/\mathbb{R}^>0$ meets the circle at infinity. And X contains infinitely many (-2)-curves, whose orthogonal complements are the codimension-1 faces of the nef cone. Sterk’s theorem says that $\text{Aut}(X)$ must act on the nef cone with rational
polyhedral fundamental domain. In this example, one computes that Aut(X) is commensurable with the Mordell-Weil group of the elliptic fibration (Pic^0 of the generic fiber of X \to \mathbb{P}^1), which is isomorphic to \mathbb{Z}. One also finds that all the (-2)-curves in X are sections of the elliptic fibration. The Mordell-Weil group moves one section to any other section, and so it divides the nef cone into rational polyhedral cones as in the figure.

5 Outline of the proof of Sterk’s theorem

We discuss the proof of Sterk’s theorem for K3 surfaces. The proof for abelian surfaces is the same, but simpler (since an abelian surface contains no (-2)-curves), and these cases imply the case of quotients of K3 surfaces or abelian surfaces by a finite group. For details, see Kawamata [21], based on the earlier papers [38, 30].

The proof of Sterk’s theorem for K3 surfaces relies on the Torelli theorem of Piatetski-Shapiro and Shafarevich. That is, any isomorphism of Hodge structures between two K3s is realized by an isomorphism of K3s if it maps the nef cone into the nef cone. In particular, this lets us construct automorphisms of a K3 surface X: up to finite index, every element of the integral orthogonal group O(Pic(X)) that preserves the cone Ne(X) is realized by an automorphism of X. (Here Pic(X) \cong \mathbb{Z}^\rho, and the intersection form has signature (1, \rho(X) − 1) on Pic(X).)

Moreover, Ne(X)/\mathbb{R}^{>0} is a very special convex set in hyperbolic space H_{\rho-1}: it is the closure of a Weyl chamber for a discrete reflection group W acting on H_{\rho-1}. We can define W as the group generated by all reflections in vectors x \in Pic(X) with x^2 = −2, or (what turns out to be the same) the group generated by reflections in all (-2)-curves in X. By the first description, W is a normal subgroup of O(Pic(X)). In fact, up to finite groups, O(Pic(X)) is the semidirect product group

O(Pic(X)) \cong \text{Aut}(X) \rtimes W.

By general results on arithmetic groups going back to Minkowski, O(Pic(X)) acts on the positive cone in N^1(X) with a rational polyhedral fundamental domain D. (This fundamental domain is not at all unique.) And the reflection group W acts on the positive cone with fundamental domain the nef cone of X. Therefore, after we arrange for D to be contained in the nef cone, Aut(X) must act on the nef cone with the same rational polyhedral fundamental domain D, up to finite index. Sterk’s theorem is proved.

6 Non-arithmetic automorphism groups

In this section, we show for the first time that the discrete part of the automorphism group of a smooth projective variety need not be commensurable with an arithmetic group. This answers a question raised by Mazur [27, section 7]. Corollary 6.2 applies to a large class of K3 surfaces.

An arithmetic group is a subgroup of some \mathbb{Q}-algebraic group H_\mathbb{Q} which is commensurable with H(\mathbb{Z}) for some integral structure on H_\mathbb{Q}; this condition is independent of the integral structure [39]. We view arithmetic groups as abstract groups, not as subgroups of a fixed Lie group.
Borcherds gave an example of a K3 surface whose automorphism group is not isomorphic to an arithmetic group [5, Example 5.8]. But, as he says, the automorphism group in his example has a nonabelian free subgroup of finite index, and so it is commensurable with the arithmetic group $SL(2, \mathbb{Z})$. Examples of K3 surfaces with explicit generators of the automorphism group have been given by Keum, Kondo, Vinberg, and others; see Dolgachev [13, section 5] for a survey.

Although they need not be commensurable with arithmetic groups, the automorphism groups G of K3 surfaces are very well-behaved in terms of geometric group theory. More generally this is true for the discrete part G of the automorphism group of a surface X which can be given the structure of a klt Calabi-Yau pair, as defined in section 7. Namely, G acts cocompactly on a CAT(0) space (a precise notion of a metric space with nonpositive curvature). Indeed, the nef cone modulo scalars is a closed convex subset of hyperbolic space, and thus a CAT(−1) space [8, Example II.1.15]. Removing a G-invariant set of disjoint open horoballs gives a CAT(0) space on which G acts properly and cocompactly, by the proof of [8, Theorem II.11.27]. This implies all the finiteness properties one could want, even though G need not be arithmetic. In particular: G is finitely presented, a finite-index subgroup of G has a finite CW complex as classifying space, and G has only finitely many conjugacy classes of finite subgroups [8, Theorem III.Γ.1.1].

For smooth projective varieties in general, very little is known. For example, is the discrete part G of the automorphism group always finitely generated? The question is open even for smooth projective rational surfaces. About the only thing one can say for an arbitrary smooth projective variety X is that G modulo a finite group injects into $GL(\rho(X), \mathbb{Z})$, by the comments in section 4.

In Theorem 6.1 a lattice means a finitely generated free abelian group with a symmetric bilinear form that is nondegenerate $\otimes \mathbb{Q}$.

Theorem 6.1. Let M be a lattice of signature $(1, n)$ for $n \geq 3$. Let G be a subgroup of infinite index in $O(M)$. Suppose that G contains \mathbb{Z}^{n-1} as a subgroup of infinite index. Then G is not commensurable with an arithmetic group.

Corollary 6.2. Let X be a K3 surface over any field, with Picard number at least 4. Suppose that X has an elliptic fibration with no reducible fibers and a second elliptic fibration with Mordell-Weil rank positive. (For example, the latter property holds if the second fibration also has no reducible fibers.) Suppose also that X contains a (-2)-curve. Then the automorphism group of X is a discrete group that is not commensurable with an arithmetic group.

Example 6.3. Let X be the double cover of $\mathbb{P}^1 \times \mathbb{P}^1 = \{(x, y), [u, v]\}$ ramified along the following curve of degree $(4, 4)$:

$$0 = 16x^4u^4 + xy^3u^3 + y^4u^3v - 40x^4u^2v^2 - x^3y^2u^2v^2 - x^2y^2uv^3 + 33x^4v^4 - 10x^2y^2v^4 + y^4v^4.$$

Then X is a K3 surface whose automorphism group (over \mathbb{Q}, or over $\overline{\mathbb{Q}}$) is not commensurable with an arithmetic group.

Proof of Theorem 6.1. We can view $O(M)$ as a discrete group of isometries of hyperbolic n-space. Every solvable subgroup of $O(M)$ is virtually abelian [8, Corollary II.11.28 and Theorem III.Γ.1.1]. By the classification of isometries of hyperbolic space as elliptic, parabolic, or hyperbolic [1], the centralizer of any subgroup

\(Z \subset O(M) \) is either commensurable with \(Z \) (if a generator \(g \) of \(Z \) is hyperbolic) or commensurable with \(Z^a \) for some \(a \leq n - 1 \) (if \(g \) is parabolic). These properties pass to the subgroup \(G \) of \(O(M) \). Also, \(G \) is not virtually abelian, because it contains \(Z^{n-1} \) as a subgroup of infinite index, and \(Z^{n-1} \) is the largest abelian subgroup of \(O(M) \) up to finite index. Finally, \(G \) acts properly and not cocompactly on hyperbolic \(n \)-space, and so \(G \) has virtual cohomological dimension at most \(n - 1 \).

Suppose that \(G \) is commensurable with some arithmetic group \(\Gamma \). Thus \(\Gamma \) is a subgroup of some \(\mathbb{Q} \)-algebraic group \(H_\mathbb{Q} \), and \(\Gamma \) is commensurable with \(H(\mathbb{Z}) \) for some integral structure on \(H_\mathbb{Q} \). We freely change \(\Gamma \) by finite groups in what follows. So we can assume that \(H_\mathbb{Q} \) is connected. After replacing \(H_\mathbb{Q} \) by the kernel of some homomorphism to a product of copies of the multiplicative group \(G_m \) over \(\mathbb{Q} \), we can assume that \(\Gamma \) is a lattice in the real group \(H(\mathbb{R}) \) (meaning that \(\text{vol}(H(\mathbb{R})/\Gamma) < \infty \)), by Borel and Harish-Chandra [3].

Every connected \(\mathbb{Q} \)-algebraic group \(H_\mathbb{Q} \) is a semidirect product \(R_\mathbb{Q} \rtimes U_\mathbb{Q} \) where \(R_\mathbb{Q} \) is reductive and \(U_\mathbb{Q} \) is unipotent [\(\text{II} \) Theorem 5.1]. By the independence of the choice of integral structure, we can assume that \(\Gamma = R(\mathbb{Z}) \rtimes U(\mathbb{Z}) \) for some arithmetic subgroups \(R(\mathbb{Z}) \) of \(R_\mathbb{Q} \) and \(U(\mathbb{Z}) \) of \(U_\mathbb{Q} \). Since every solvable subgroup of \(G \) is virtually abelian, \(U_\mathbb{Q} \) is abelian, and \(U(\mathbb{Z}) \cong \mathbb{Z}^a \) for some \(a \). The conjugation action of \(R_\mathbb{Q} \) on \(U_\mathbb{Q} \) must be trivial; otherwise \(\Gamma \) would contain a solvable group of the form \(\mathbb{Z} \rtimes \mathbb{Z}^a \) which is not virtually abelian. Thus \(\Gamma = \mathbb{Z}^a \times R_\mathbb{Z} \). But the properties of centralizers in \(G \) imply that \(G \) does not contain the product of \(\mathbb{Z} \) with any infinite nonabelian group. Therefore, \(a = 0 \) and \(H_\mathbb{Q} \) is reductive.

Modulo finite groups, the reductive group \(H_\mathbb{Q} \) is a product of \(\mathbb{Q} \)-simple groups and tori, and \(\Gamma \) is a corresponding product modulo finite groups. Since \(G \) does not contain the product of \(\mathbb{Z} \) with any infinite nonabelian group, \(H_\mathbb{Q} \) must be \(\mathbb{Q} \)-simple. Since the lattice \(\Gamma \) in \(H(\mathbb{R}) \) is isomorphic to the discrete subgroup \(G \) of \(O(M) \subset O(n, 1) \) (after passing to finite-index subgroups), Prasad showed that \(\dim(H(\mathbb{R})/K_H) \leq \dim(O(n, 1)/O(n)) = n \), where \(K_H \) is a maximal compact subgroup of \(H(\mathbb{R}) \). Moreover, since \(G \) has infinite index in \(O(M) \) and hence infinite covolume in \(O(n, 1) \), Prasad showed that either \(\dim(H(\mathbb{R})/K_H) \leq n - 1 \) or else \(\dim(H(\mathbb{R})/K_H) = n \) and there is a homomorphism from \(H(\mathbb{R}) \) onto \(PSL(2, \mathbb{R}) \) [34 Theorem B].

Suppose that \(\dim(H(\mathbb{R})/K_H) \leq n - 1 \). We know that \(\Gamma \) acts properly on \(H(\mathbb{R})/K_H \) and that \(\Gamma \) contains \(\mathbb{Z}^{n-1} \). The quotient \(\mathbb{Z}^{n-1}\backslash H(\mathbb{R})/K_H \) is a manifold of dimension \(n - 1 \) with the homotopy type of the \((n - 1) \)-torus (in particular, with nonzero cohomology in dimension \(n - 1 \)), and so it must be compact. So \(\mathbb{Z}^{n-1} \) has finite index in \(\Gamma \), contradicting our assumption.

So \(\dim(H(\mathbb{R})/K_H) = n \) and \(H(\mathbb{R}) \) maps onto \(PSL(2, \mathbb{R}) \). We can assume that \(H_\mathbb{Q} \) is simply connected. Since \(H \) is \(\mathbb{Q} \)-simple, \(H \) is equal to the restriction of scalars \(R_K/\\mathbb{Q}L \) for some number field \(K \) and some absolutely simple and simply connected group \(L \) over \(K \) [\(\text{III} \) section 3.1]. Since \(H(\mathbb{R}) \) maps onto \(PSL(2, \mathbb{R}) \), \(L \) must be a form of \(SL(2) \). We know that \(G \cong \Gamma \) has virtual cohomological dimension at most \(n - 1 \), and so \(\Gamma \) must be a non-cocompact subgroup of \(H(\mathbb{R}) \). Equivalently, \(H \) has \(\mathbb{Q} \)-rank greater than zero [6], and so \(\text{rank}_K(L) = \text{rank}_\mathbb{Q}(H) \) is greater than zero. Therefore, \(L \) is isomorphic to \(SL(2, o_K) \) over \(K \).

It follows that \(\Gamma \) is commensurable with \(SL(2, o_K) \), where \(o_K \) is the ring of
If the group of units \mathfrak{o}_K^* has positive rank, then $\mathfrak{o}_K^* \ltimes \mathfrak{o}_K$ is a solvable group which is not virtually abelian. So the group of units is finite, which means that K is either \mathbb{Q} or an imaginary quadratic field, by Dirichlet. If K is imaginary quadratic, then $H_\mathbb{Q} = R_{K/\mathbb{Q}} SL(2)$ and $H(\mathbb{R}) = SL(2, \mathbb{C})$, which does not map onto $PSL(2, \mathbb{R})$. Therefore $K = \mathbb{Q}$ and $H_\mathbb{Q} = SL(2)$. It follows that Γ is commensurable with $SL(2, \mathbb{Z})$. So Γ is commensurable with a free group. This contradicts that $G \cong \Gamma$ contains \mathbb{Z}^{n-1} with $n \geq 3$. QED

Proof of Corollary 6.2 Let M be the Picard lattice of X, that is, $M = \text{Pic}(X)$ with the intersection form. Then M has signature $(1, n)$ by the Hodge index theorem, where $n \geq 3$ since X has Picard number at least 4.

For an elliptic fibration $X \to \mathbb{P}^1$ with no reducible fibers, the Mordell-Weil group of the fibration has rank $\rho(X) - 2 = n - 1$ by the Shioda-Tate formula [37, Cor. 1.5], which is easy to check in this case. So the first elliptic fibration of X gives an inclusion of \mathbb{Z}^{n-1} into $G = \text{Aut}^*(X)$. The second elliptic fibration gives an inclusion of \mathbb{Z}^a into G for some $a > 0$. In the action of G on hyperbolic n-space, the Mordell-Weil group of each elliptic fibration is a group of parabolic transformations fixing the point at infinity that corresponds to the class $e \in M$ of a fiber (which has $\langle e, e \rangle = 0$). Since a parabolic transformation fixes only one point of the sphere at infinity, the subgroups \mathbb{Z}^{n-1} and \mathbb{Z}^a in G intersect only in the identity. It follows that the subgroup \mathbb{Z}^{n-1} has infinite index in G.

We are given that X contains a (-2)-curve C. I claim that C has infinitely many translates under the Mordell-Weil group \mathbb{Z}^{n-1}. Indeed, any curve with finitely many orbits under \mathbb{Z}^{n-1} must be contained in a fiber of $X \to \mathbb{P}^1$. Since all fibers are irreducible, the fibers have self-intersection 0, not -2. Thus X contains infinitely many (-2)-curves. Therefore the group $W \subset O(M)$ generated by reflections in (-2)-vectors is infinite. Here W acts simply transitively on the Weyl chambers of the positive cone (separated by hyperplanes v^\perp with v a (-2)-vector), whereas $G = \text{Aut}^*(X)$ preserves one Weyl chamber, the ample cone of X. So G and W intersect only in the identity. Since W is infinite, G has infinite index in $O(M)$. By Theorem 6.1 G is not commensurable with an arithmetic group. QED

Proof of Example 6.3 The given curve C in the linear system $|O(4, 4)| = | -2K_{\mathbb{P}^1 \times \mathbb{P}^1} |$ is smooth. One can check this with Macaulay 2, for example. Therefore the double cover X of $\mathbb{P}^1 \times \mathbb{P}^1$ ramified along C is a smooth K3 surface. The two projections from X to \mathbb{P}^1 are elliptic fibrations. Typically, such a double cover $\pi : X \to \mathbb{P}^1 \times \mathbb{P}^1$ would have Picard number 2, but the curve C has been chosen to be tangent at 4 points to each of two curves of degree $(1, 1)$, $D_1 = \{ xv = yu \}$ and $D_2 = \{ xv = -yu \}$. (These points are $[x, y] = [u, v]$ equal to $[1, 1], [1, 2], [1, -1], [1, -2]$ on D_1 and $[x, y] = [u, -v]$ equal to $[1, 1], [1, 2], [1, -1], [1, -2]$ on D_2.) It follows that the double covering is trivial over D_1 and D_2, outside the ramification curve C: the inverse image in X of each curve D_i is a union of two curves, $\pi^{-1}(D_i) = E_i \cup F_i$, meeting transversely at 4 points. The smooth rational curves E_1, F_1, E_2, F_2 on X are (-2)-curves, since X is a K3 surface.

10
The curves D_1 and D_2 meet transversely at the two points $[x, y] = [u, v]$ equal to $[1, 0]$ or $[0, 1]$. Let us compute that the double covering $\pi : X \to \mathbb{P}^1 \times \mathbb{P}^1$ is trivial over the union of D_1 and D_2 (outside the ramification curve C). Indeed, if we write X as $w^2 = f(x, y, z, w)$ where f is the given polynomial of degree $(4, 4)$, then a section of π over $D_1 \cup D_2$ is given by $w = 4x^2u^2 - 5x^2v^2 + y^2v^2$. We can name the curves E_i, F_i so that the image of this section is $E_1 \cup E_2$ and the image of the section $w = -(4x^2u^2 - 5x^2v^2 + y^2v^2)$ is $F_1 \cup F_2$. Then E_1 and F_2 are disjoint. So the intersection form among the divisors $\pi^*O(1, 0), \pi^*O(0, 1), E_1, F_2$ on X is given by

$$
\begin{pmatrix}
0 & 2 & 1 & 1 \\
2 & 0 & 1 & 1 \\
1 & 1 & -2 & 0 \\
1 & 1 & 0 & -2
\end{pmatrix}
$$

Since this matrix has determinant -32, not zero, X has Picard number at least 4.

Finally, we compute that the two projections from $C \subset \mathbb{P}^1 \times \mathbb{P}^1$ to \mathbb{P}^1 are each ramified over 24 distinct points in \mathbb{P}^1. It follows that all fibers of our two elliptic fibrations $X \to \mathbb{P}^1$ are irreducible. By Corollary 6.2 the automorphism group of X (over \mathbb{C}, or equivalently over \mathbb{Q}) is not commensurable with an arithmetic group. Our calculations have all worked over \mathbb{Q}, and so Corollary 6.2 also gives that $\text{Aut}(X_{\mathbb{Q}})$ is not commensurable with an arithmetic group. QED

7 Klt pairs

We will see that the previous results can be generalized from Calabi-Yau varieties to a broader class of varieties using the language of pairs. For the rest of the paper, we work over the complex numbers.

A normal variety X is \mathbb{Q}-factorial if for every point p and every codimension-one subvariety S through p, there is a regular function on some neighborhood of p that vanishes exactly on S (to some positive order).

Definition 7.1. A pair (X, Δ) is a \mathbb{Q}-factorial projective variety X with an effective \mathbb{R}-divisor Δ on X.

Notice that Δ is an actual \mathbb{R}-divisor $\Delta = \sum a_i\Delta_i$, not a numerical equivalence class of divisors. We think of $K_X + \Delta$ as the canonical bundle of the pair (X, Δ). The following definition picks out an important class of “mildly singular” pairs.

Definition 7.2. A pair (X, Δ) is klt (Kawamata log terminal) if the following holds. Let $\pi : \tilde{X} \to X$ be a resolution of singularities. Suppose that the union of the exceptional set of π (the subset of \tilde{X} where π is not an isomorphism) with $\pi^{-1}(\Delta)$ is a divisor with simple normal crossings. Define a divisor $\tilde{\Delta}$ on \tilde{X} by

$$K_{\tilde{X}} + \tilde{\Delta} = \pi^*(K_X + \Delta).$$

We say that (X, Δ) is klt if all coefficients of $\tilde{\Delta}$ are less than 1. This property is independent of the choice of resolution.

Example 7.3. A surface $X = (X, 0)$ is klt if and only if X has only quotient singularities [23 Proposition 4.18].
Example 7.4. For a smooth variety X and Δ a divisor with simple normal crossings (and some coefficients), the pair (X, Δ) is klt if and only if Δ has coefficients less than 1.

All the main results of minimal model theory, such as the cone theorem, generalize from smooth varieties to klt pairs. For example, the Fano case of the cone theorem becomes [23, Theorem 3.7]:

Theorem 7.5. Let (X, Δ) be a klt Fano pair, meaning that $-(K_X + \Delta)$ is ample. Then $\text{Curv}(X)$ (and hence the dual cone $\text{Nef}(X)$) is rational polyhedral.

Notice that the conclusion does not involve the divisor Δ. This shows the power of the language of pairs. A variety X may not be Fano, but if we can find an \mathbb{R}-divisor Δ that makes (X, Δ) a klt Fano pair, then we get the same conclusion (that the cone of curves and the nef cone are rational polyhedral) as if X were Fano.

Example 7.6. Let X be the blow-up of \mathbb{P}^2 at any number of points on a smooth conic. As an exercise, the reader can write down an \mathbb{R}-divisor Δ such that (X, Δ) is a klt Fano pair. This proves that the nef cone of X is rational polyhedral, as Galindo-Monserrat [15, Corollary 3.3], Mukai [28], and Castravet-Tevelev [9] proved by other methods. These surfaces are definitely not Fano if we blow up 6 or more points. Their Betti numbers are unbounded, in contrast to the smooth Fano surfaces.

More generally, Testa, Várilly-Alvarado, and Velasco proved that every smooth projective rational surface X with $-K_X$ big has finitely generated Cox ring [40]. Finite generation of the Cox ring (the ring of all sections of all line bundles) is stronger than the nef cone being rational polyhedral, by the analysis of Hu and Keel [19]. Chenyang Xu showed that a rational surface with $-K_X$ big need not have any divisor Δ with (X, Δ) a klt Fano pair [40]. I do not know whether the blow-ups of higher-dimensional projective spaces considered by Mukai and Castravet-Tevelev have a divisor Δ with (X, Δ) a klt Fano pair [28, 9].

It is therefore natural to extend the Morrison-Kawamata cone conjecture from Calabi-Yau varieties to *Calabi-Yau pairs* (X, Δ), meaning that $K_X + \Delta \equiv 0$. The conjecture is reasonable, since we can prove it in dimension 2 [42].

Theorem 7.7. Let (X, Δ) be a klt Calabi-Yau pair of dimension 2. Then $\text{Aut}(X, \Delta)$ (and also $\text{Aut}(X)$) acts with a rational polyhedral fundamental domain on the cone $\text{Nef}(X) \subset N^1(X)$.

Here is a more concrete consequence of Theorem 7.7:

Corollary 7.8. [42] Let (X, Δ) be a klt Calabi-Yau pair of dimension 2. Then $\text{Aut}(X, \Delta)$ (and also $\text{Aut}(X)$) acts with a rational polyhedral fundamental domain on the cone $\text{Nef}(X) \subset N^1(X)$.

This was shown in one class of examples by Dolgachev-Zhang [14]. These results are false for surfaces in general, even for some smooth rational surfaces:

Example 7.9. Let X be the blow-up of \mathbb{P}^2 at 9 very general points. Then $\text{Nef}(X)$ is not rational polyhedral, since X contains infinitely many (-1)-curves. But $\text{Aut}(X) = 1$ [16, Proposition 8], and so the conclusion fails for X.

12
Moreover, let Δ be the unique smooth cubic curve in \mathbb{P}^2 through the 9 points, with coefficient 1. Then $-K_X \equiv \Delta$, and so (X, Δ) is a log-canonical (and even canonical) Calabi-Yau pair. The theorem therefore fails for such pairs.

We now give a classical example (besides the case $\Delta = 0$ of Calabi-Yau surfaces) where Theorem 7.7 applies.

7.1 Example

Let X be the blow-up of \mathbb{P}^2 at 9 points p_1, \ldots, p_9 which are the intersection of two cubic curves. Then taking linear combinations of the two cubics gives a \mathbb{P}^1-family of elliptic curves through the 9 points. These curves become disjoint on the blow-up X, and so we have an elliptic fibration $X \to \mathbb{P}^1$. This morphism is given by the linear system $|-K_X|$. Using that, we see that the (-1)-curves on X are exactly the sections of the elliptic fibration $X \to \mathbb{P}^1$.

In most cases, the Mordell-Weil group of $X \to \mathbb{P}^1$ is $\simeq \mathbb{Z}^8$. So X contains infinitely many (-1)-curves, and so the cone $\text{Nef}(X)$ is not rational polyhedral. But $\text{Aut}(X)$ acts transitively on the set of (-1)-curves, by translations using the group structure on the fibers of $X \to \mathbb{P}^1$. That leads to the proof of Theorem 7.7 in this example. (The theorem applies, in the sense that there is an \mathbb{R}-divisor Δ with (X, Δ) log canonical Calabi-Yau: let Δ be the sum of two smooth fibers of $X \to \mathbb{P}^1$ with coefficients $1/2$, for example.)

8 The cone conjecture in dimension greater than 2

In higher dimensions, the cone conjecture also predicts that a klt Calabi-Yau pair (X, Δ) has only finitely many small \mathbb{Q}-factorial modifications $X \to X_1$ up to pseudo-automorphisms of X. (See Kawamata [21] and [42] for the full statement of the cone conjecture in higher dimensions.) A pseudo-automorphism means a birational automorphism which is an isomorphism in codimension 1.

More generally, the conjecture implies that X has only finitely many birational contractions $X \to Y$ modulo pseudo-automorphisms of X, where a birational contraction means a dominant rational map that extracts no divisors. There can be infinitely many small modifications if we do not divide out by the group $\text{PsAut}(X)$ of pseudo-automorphisms of X.

Kawamata proved a relative version of the cone conjecture for a 3-fold X with a K3 fibration or elliptic fibration $X \to S$ [21]. Here X can have infinitely many minimal models (or small modifications) over S, but it has only finitely many modulo $\text{PsAut}(X/S)$.

This is related to other finiteness problems in minimal model theory. We know that a klt pair (X, Δ) has only finitely many minimal models if Δ is big [3, Corollary 1.1.5]. It follows that a variety of general type has a finite set of minimal models. A variety of non-maximal Kodaira dimension can have infinitely many minimal models [35, section 6.8], [21]. But it is conjectured that every variety X has only finitely many minimal models up to isomorphism, meaning that we ignore the birational identification with X. Kawamata’s results on Calabi-Yau fiber spaces imply at least that 3-folds of positive Kodaira dimension have only finitely many minimal models up to isomorphism [21, Theorem 4.5]. If the abundance conjecture [23, Corollary...
3.12] holds (as it does in dimension 3), then every non-uniruled variety has an Itaka fibration where the fibers are Calabi-Yau. The cone conjecture for Calabi-Yau fiber spaces (plus abundance) implies finiteness of minimal models up to isomorphism for arbitrary varieties.

The cone conjecture is wide open for Calabi-Yau 3-folds, despite significant results by Oguiso and Peternell [32], Szendrői [39], Uehara [43], and Wilson [44]. Hassett and Tschinkel recently checked the conjecture for a class of holomorphic symplectic 4-folds [18].

9 Outline of the proof of Theorem 7.7

The proof of Theorem 7.7 gives a good picture of the Calabi-Yau pairs of dimension 2. We summarize the proof from [42]. In most cases, if \((X, \Delta)\) is a Calabi-Yau pair, then \(X\) turns out to be rational. It is striking that the most interesting case of the theorem is proved by reducing properties of certain rational surfaces to the Torelli theorem for K3 surfaces.

Let \((X, \Delta)\) be a klt Calabi-Yau pair of dimension 2. That is, \(K_X + \Delta \equiv 0\), or equivalently

\[-K_X = \Delta,\]

where \(\Delta\) is effective. We can reduce to the case where \(X\) is smooth by taking a suitable resolution of \((X, \Delta)\).

If \(\Delta = 0\), then \(X\) is a smooth Calabi-Yau surface, and the result is known by Sterk, using the Torelli theorem for K3 surfaces. So assume that \(\Delta \neq 0\). Then \(X\) has Kodaira dimension

\[\kappa(X) := \kappa(X, K_X)\]

equal to \(-\infty\). With one easy exception, Nikulin showed that our assumptions imply that \(X\) is rational [2, Lemma 1.4]. So assume that \(X\) is rational from now on.

We have three main cases for the proof, depending on whether the Iitaka dimension \(\kappa(X, -K_X)\) is 0, 1, or 2. (It is nonnegative because \(-K_X \sim_R \Delta \geq 0\).) By definition, the Iitaka dimension \(\kappa(X, L)\) of a line bundle \(L\) is \(-\infty\) if \(h^0(X, mL) = 0\) for all positive integers \(m\). Otherwise, \(\kappa(X, L)\) is the natural number \(r\) such that there are positive integers \(a, b\) and a positive integer \(m_0\) with \(am^r \leq h^0(X, mL) \leq bm^r\) for all positive multiples \(m\) of \(m_0\) [25, Corollary 2.1.38].

9.1 Case where \(\kappa(X, -K_X) = 2\)

That is, \(-K_X\) is big. In this case, there is an \(R\)-divisor \(\Gamma\) such that \((X, \Gamma)\) is klt Fano. Therefore \(\text{Nef}(X)\) is rational polyhedral by the cone theorem, and hence the group \(\text{Aut}^*(X)\) is finite. So Theorem 7.7 is true in a simple way. More generally, for \((X, \Gamma)\) klt Fano of any dimension, the Cox ring of \(X\) is finitely generated, by Birkar-Cascini-Hacon-McKernan [3].

This proof illustrates an interesting aspect of working with pairs: rather than Fano being a different case from Calabi-Yau, Fano becomes a special case of Calabi-Yau. That is, if \((X, \Gamma)\) is a klt Fano pair, then there is another effective \(R\)-divisor \(\Delta\) with \((X, \Delta)\) a klt Calabi-Yau pair.
9.2 Case where $\kappa(X, -K_X) = 1$

In this case, some positive multiple of $-K_X$ gives an elliptic fibration $X \to \mathbb{P}^1$, not necessarily minimal. Here $\text{Aut}^*(X)$ equals the Mordell-Weil group of $X \to \mathbb{P}^1$ up to finite index, and so $\text{Aut}^*(X) = \mathbb{Z}^n$ for some n. This generalizes the example of \mathbb{P}^2 blown up at the intersection of two cubic curves.

The (-1)-curves in X are multisections of $X \to \mathbb{P}^1$ of a certain fixed degree. One shows that $\text{Aut}(X)$ has only finitely many orbits on the set of (-1)-curves in X. This leads to the statement of Theorem 7.7 in terms of cones.

9.3 Case where $\kappa(X, -K_X) = 0$

This is the hardest case. Here $\text{Aut}^*(X)$ can be a fairly general group acting on hyperbolic space; in particular, it can be highly nonabelian.

Here $-K_X \equiv \Delta$ where the intersection pairing on the curves in Δ is negative definite. We can contract all the curves in Δ, yielding a singular surface Y with $-K_Y \equiv 0$. Note that Y is klt and hence has quotient singularities, but it must have worse than ADE singularities, because it is a singular Calabi-Yau surface that is rational.

Let I be the “global index” of Y, the least positive integer with IK_Y Cartier and linearly equivalent to zero. Then

$$Y = M/(\mathbb{Z}/I)$$

for some Calabi-Yau surface M with ADE singularities. The minimal resolution of M is a smooth Calabi-Yau surface. Using the Torelli theorem for K3 surfaces, this leads to the proof of the theorem for M and then for Y, by Oguiso and Sakurai [33, Corollary 1.9].

Finally, we have to go from Y to its resolution of singularities, the smooth rational surface X. Here $\text{Nef}(X)$ is more complex than $\text{Nef}(Y)$: X typically contains infinitely many (-1)-curves, whereas Y has none (because $K_Y \equiv 0$). Nonetheless, since we know “how big” $\text{Aut}(Y)$ is (up to finite index), we can show that the group

$$\text{Aut}(X, \Delta) = \text{Aut}(Y)$$

has finitely many orbits on the set of (-1)-curves. This leads to the proof of Theorem 7.7 for (X, Δ). QED

10 Example

Here is an example of a smooth rational surface with a highly nonabelian (discrete) automorphism group, considered by Zhang [46, Theorem 4.1], Blache [4, Theorem C(b)(2)], and [42, section 2]. This is an example of the last case in the proof of Theorem 7.7, where $\kappa(X, -K_X) = 0$. We will also see a singular rational surface whose nef cone is round, of dimension 4.

Let X be the blow-up of \mathbb{P}^2 at the 12 points: $[1, \zeta^i, \zeta^j]$ for $i, j \in \mathbb{Z}/3$, $[1, 0, 0]$, $[0, 1, 0]$, $[0, 0, 1]$. Here ζ is a cube root of 1. (This is the dual of the “Hesse configuration” [42, section 4.6]. There are 9 lines L_1, \ldots, L_9 through quadruples of the 12 points in \mathbb{P}^2.)
On \mathbb{P}^2, we have

$$-K_{\mathbb{P}^2} \equiv 3H \equiv \sum_{i=1}^{9} \frac{1}{3} L_i.$$

On the blow-up X, we have

$$-K_X \equiv \sum_{i=1}^{9} \frac{1}{3} L_i,$$

where L_1, \ldots, L_9 are the proper transforms of the 9 lines, which are now disjoint and have self-intersection number -3. Thus $(X, \sum_{i=1}^{9} (1/3)L_i)$ is a klt Calabi-Yau pair.

Section 9.3 shows how to analyze X: contract the 9 (-3)-curves L_i on X. This gives a rational surface Y with 9 singular points (of type $1/3(1,1)$) and $\rho(Y) = 4$. We have $-K_Y \equiv 0$, so Y is a klt Calabi-Yau surface which is rational. We have $3K_Y \sim 0$, and so $Y \cong M/(\mathbb{Z}/3)$ with M a Calabi-Yau surface with ADE singularities. It turns out that M is smooth, $M \cong E \times E$ where E is the Fermat cubic curve

$$E \cong \mathbb{C}/\mathbb{Z}[\zeta] \cong \{[x, y, z] \in \mathbb{P}^2 : x^3 + y^3 = z^3\},$$

and $\mathbb{Z}/3$ acts on $E \times E$ as multiplication by (ζ, ζ) \([42\text{ section 2}]\).

Since E has endomorphism ring $\mathbb{Z}[\zeta]$, the group $GL(2, \mathbb{Z}[\zeta])$ acts on the abelian surface $M = E \times E$. This passes to an action on the quotient variety $Y = M/(\mathbb{Z}/3)$ and hence on its minimal resolution X (which is the blow-up of \mathbb{P}^2 at 12 points we started with). Thus the infinite, highly nonabelian discrete group $GL(2, \mathbb{Z}[\zeta])$ acts on the smooth rational surface X. This is the whole automorphism group of X up to finite groups \([42\text{ section 2}]\).

Here $\text{Nef}(Y) = \text{Nef}(M)$ is a round cone in \mathbb{R}^4, and so Theorem 7.7 says that $\text{PGL}(2, \mathbb{Z}[\zeta])$ acts with finite covolume on hyperbolic 3-space. In fact, the quotient of hyperbolic 3-space by an index-24 subgroup of $\text{PGL}(2, \mathbb{Z}[\zeta])$ is familiar to topologists as the complement of the figure-eight knot \([26\text{ 1.4.3, 4.7.1}]\).

References

[1] D. Alekseevskij, E. Vinberg, and A. Solodovnikov. Geometry of spaces of constant curvature. Geometry II, 1–138. Encyclopaedia Math. Sci. 29, Springer (1993).

[2] V. Alexeev and S. Mori. Bounding singular surfaces of general type. Algebra, arithmetic and geometry with applications (West Lafayette, 2000), 143–174. Springer (2004).

[3] C. Birkar, P. Cascini, C. Hacon, and J. Mckernan. Existence of minimal models for varieties of log general type. J. Amer. Math. Soc. 23 (2010), 405–468.

[4] R. Blache. The structure of l.c. surfaces of Kodaira dimension zero. J. Alg. Geom. 4 (1995), 137–179.

[5] R. Borcherds. Coxeter groups, Lorentzian lattices, and K3 surfaces. Internat. Math. Res. Notices 1998, 1011-1031.
[6] A. Borel and Harish-Chandra. Arithmetic subgroups of algebraic groups. *Ann. Math.* **75** (1962), 485–535.

[7] A. Borel and J.-P. Serre. Théorèmes de finitude en cohomologie galoisienne. *Comment. Math. Helv.* **39** (1964), 111–164.

[8] M. Bridson and A. Haefliger. *Metric spaces of non-positive curvature.* Springer (1999).

[9] A.-M. Castravet and J. Tevelev. Hilbert’s 14th problem and Cox rings. *Compos. Math.* **142** (2006), 1479–1498.

[10] T. de Fernex. The Mori cone of blow-ups of the plane. [arXiv:1001.5243](https://arxiv.org/abs/1001.5243)

[11] O. Debarre. *Higher-dimensional algebraic geometry.* Springer (2001).

[12] I. Dolgachev. Abstract configurations in algebraic geometry. *The Fano conference*, 423–462. Univ. Torino (2004).

[13] I. Dolgachev. Reflection groups in algebraic geometry. *Bull. Amer. Math. Soc.* **45** (2008), 1–60.

[14] I. Dolgachev and D.-Q. Zhang. Coble rational surfaces. *Amer. J. Math.* **123** (2001), 79–114.

[15] C. Galindo and F. Monserrat. The total coordinate ring of a smooth projective surface. *J. Alg.* **284** (2005), 91–101.

[16] M. Gizatullin. Rational G-surfaces. *Math. USSR Izv.* **16** (1981), 103–134.

[17] R. Hartshorne. *Algebraic geometry.* Springer (1977).

[18] B. Hassett and Y. Tschinkel. Flops on holomorphic symplectic fourfolds and determinantal cubic hypersurfaces. *J. Inst. Math. Jussieu* **9** (2010), 125–153.

[19] Y. Hu and S. Keel. Mori dream spaces and GIT. *Michigan Math. J.* **48** (2000), 331–348.

[20] V. Iskovkikh and Yu. Prokhorov. Fano varieties. *Algebraic geometry* V, 1–247, ed. A. Parshin and I. Shafarevich. Springer (1999).

[21] Y. Kawamata. On the cone of divisors of Calabi-Yau fiber spaces. *Int. J. Math.* **8** (1997), 665–687.

[22] J. Kollár, Y. Miyaoka, and S. Mori. Rational connectedness and boundedness of Fano varieties. *J. Diff. Geom.* **36** (1992), 765–779.

[23] J. Kollár and S. Mori. *Birational geometry of algebraic varieties.* Cambridge (1998).

[24] S. Kovács. The cone of curves of a K3 surface. *Math. Ann.* **300** (1994), 681–691.

[25] R. Lazarsfeld. *Positivity in algebraic geometry*, v. 1. Springer (2004).
[26] C. Maclachlan and A. Reid. *The arithmetic of hyperbolic 3-manifolds.* Springer (2003).

[27] B. Mazur. The passage from local to global in number theory. *Bull. AMS* 29 (1993), 14–50.

[28] S. Mukai. Finite generation of the Nagata invariant rings in A-D-E cases. RIMS preprint 1502 (2005).

[29] D. Mumford. *Abelian varieties.* Tata (1970).

[30] Y. Namikawa. Periods of Enriques surfaces. *Math. Ann.* 270 (1985), 201–222.

[31] V. Nikulin. Integral symmetric bilinear forms and some of their geometric applications. *Math. USSR Izv.* 14 (1979), 103–167 (1980).

[32] K. Oguiso and T. Peternell. Calabi-Yau threefolds with positive second Chern class. *Comm. Anal. Geom.* 6 (1998), 153–172.

[33] K. Oguiso and J. Sakurai. Calabi-Yau threefolds of quotient type. *Asian J. Math.* 5 (2001), 43–77.

[34] G. Prasad. Discrete subgroups isomorphic to lattices in Lie groups. *Amer. J. Math.* 98 (1976), 853–863.

[35] M. Reid. Minimal models of canonical 3-folds. *Algebraic varieties and analytic varieties* (Tokyo, 1981), 131–180. North-Holland (1983).

[36] J.-P. Serre. Arithmetic groups. *Homological group theory* (Durham, 1977), 105–136, Cambridge (1979); *Oeuvres*, v. 3, Springer (1986), 503–534.

[37] T. Shioda. On elliptic modular surfaces. *J. Math. Soc. Japan* 24 (1972), 20–59.

[38] H. Sterk. Finiteness results for algebraic K3 surfaces. *Math. Z.* 189 (1985), 507–513.

[39] B. Szendrői. Some finiteness results for Calabi-Yau threefolds. *J. London Math. Soc.* 60 (1999), 689–699.

[40] D. Testa, A. Várilly-Alvarado, and M. Velasco. Big rational surfaces. [arXiv:0901.1094](https://arxiv.org/abs/0901.1094)

[41] J. Tits. Classification of algebraic semisimple groups. *Algebraic groups and discontinuous subgroups* (Boulder, 1965), 33–62. Amer. Math. Soc. (1966).

[42] B. Totaro. The cone conjecture for Calabi-Yau pairs in dimension two. *Duke Math. J.* 154 (2010), 241–263.

[43] H. Uehara. Calabi-Yau threefolds with infinitely many divisorial contractions. *J. Math. Kyoto Univ.* 44 (2004), 99–118.

[44] P.M.H. Wilson. Minimal models of Calabi-Yau threefolds. *Classification of algebraic varieties* (L’Aquila, 1992), 403–410.
[45] S.-T. Yau. On the Ricci curvature of a compact Kähler manifolds and the complex Monge-Ampère equation. I. *Comm. Pure Appl. Math.* 31 (1978), 339–411.

[46] D.-Q. Zhang. Logarithmic Enriques surfaces, I, II. *J. Math. Kyoto Univ.* 31 (1991), 419–466; 33 (1993), 357–397.

DPMMS, Wilberforce Road, Cambridge CB3 0WB, England
b.totaro@dpmms.cam.ac.uk