This is the accepted manuscript made available via CHORUS. The article has been published as:

Single-Crystal Alkali Antimonide Photocathodes: High Efficiency in the Ultrathin Limit

C. T. Parzyck, A. Galdi, J. K. Nangoi, W. J. I. DeBenedetti, J. Balajka, B. D. Faeth, H. Paik, C. Hu, T. A. Arias, M. A. Hines, D. G. Schlom, K. M. Shen, and J. M. Maxson

Phys. Rev. Lett. **128**, 114801 — Published 18 March 2022

DOI: [10.1103/PhysRevLett.128.114801](https://doi.org/10.1103/PhysRevLett.128.114801)
A single-crystal alkali antimonide photocathode: high efficiency in the ultra-thin limit

C. T. Parzyck,1,* A. Galdi,2,* J. K. Nangoi,1 W. J. I. DeBenedetti,3 J. Balajka,3 B. D. Faeth,4 H. Paik,4 C. Hu,1 T. A. Arias,1 M. A. Hines,3 D. G. Schlom,5,6,7 K. M. Shen,1,6 and J. M. Maxson2†

1Laboratory of Atomic and Solid State Physics, Department of Physics, Cornell University, Ithaca, NY 14853, USA
2Cornell Laboratory for Accelerator-Based Sciences and Education, Cornell University, Ithaca, NY 14853, USA
3Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA
4Platform for the Accelerated Realization, Analysis, and Discovery of Interface Materials (PARADIM), Cornell University, Ithaca, NY 14853, USA
5Department of Materials Science and Engineering, Cornell University, Ithaca, NY 14853, USA
6Kavli Institute at Cornell for Nanoscale Science, Cornell University, Ithaca, NY 14853, USA
7Leibniz-Institut für Kristallzüchtung, Max-Born-Straße 2, 12489 Berlin, Germany

(Dated: January 4, 2022)

The properties of photoemission electron sources determine the ultimate performance of a wide class of electron accelerators and photon detectors. To date, all high-efficiency visible-light photocathode materials are either polycrystalline or exhibit intrinsic surface disorder, both of which limit emitted electron beam brightness. In this letter we demonstrate the synthesis of epitaxial thin films of CsSb on 3C-SiC (001) using molecular-beam epitaxy. Films as thin as 4 nm have quantum efficiencies exceeding 2% at 532 nm. We also find that epitaxial films have an order of magnitude larger quantum efficiency at 650 nm than comparable polycrystalline films on Si. Additionally, these films permit angle-resolved photoemission spectroscopy measurements of the electronic structure, which are found to be in good agreement with theory. Epitaxial films open the door to dramatic brightness enhancements via increased efficiency near threshold, reduced surface disorder, and the possibility of engineering new photoemission functionality at the level of single atomic layers.

Dense and coherent electron beams generated via photoemission have enabled many revolutionary tools in the physical sciences. These include x-ray free electron lasers with 10^9 times higher peak x-ray brightness than previous sources [1, 2], ultrafast electron microscopes that achieve femtosecond temporal and atomic structural resolution [3, 4], hadron collider luminosity-enhancing systems based on electron beams [5], and next-generation electron linear colliders [6, 7], which will probe physics beyond the standard model. Electron beam brightness, defined as the density of the beam in position-momentum phase space, is a central figure of merit for each of these applications [8]. According to Liouville’s theorem, the brightness of an electron beam in a linear accelerator can be no greater than at its source [9, 10]. Thus, the photoemission performance of photocathodes can determine the ultimate performance of accelerators ranging from meters to kilometers in length [11]. Photocathodes are also the critical enabling technology for many photon detectors, ranging from photomultipliers [12], image intensifiers and ultrafast time-resolved streak cameras [13], to detectors for high energy physics applications [14].

For intense beam generation or sensitive detection applications, many metallic photocathodes are infeasible choices due to their low quantum efficiencies (QE)—the number of emitted electrons per incident photon. For metals, QEs generally range from 10^{-3} to 10^{-5} with ultraviolet illumination [15]. In contrast, the highest quantum efficiency materials, semiconductors containing or coated with alkali metals, have peak quantum efficiencies exceeding 1% in the the visible, with response extending into the near-infrared [15]. In particular, the spectral response of alkali antimonides extends near the lasing wavelength of common high-bandwidth gain media and therefore can eliminate lossy wavelength conversion stages in both accelerator and detector applications [16–18]. Additionally, by limiting the required light intensity for a given photoelectron density, high quantum efficiency can mitigate multiphoton photoemission (MPPE). Since MPPE causes a dramatic increase in the momentum spread of photoelectrons, its suppression can dramatically improve beam brightness [19].

Owing to momentum conservation in the photoemission process, the transverse momentum spread of photoelectrons from clean, ordered, crystalline surfaces can be reduced by exploiting the material’s band structure [20]. For single-crystal metal photocathodes this has been theoretically modeled and experimentally verified [21, 22]. Record low momentum spread has been achieved in Cu (100) near the photoemission threshold; however, the efficiency ($\sim 10^{-8}$) is too low for the beam current requirements of moderate to high-intensity applications [22]. It is therefore desirable to synthesize maximally-efficient cathodes as single-crystal films, where the smoothness, homogeneity, and termination can be controlled.

To date, all high-efficiency visible light photocathodes are either grown as (often defect-rich) polycrystals, or produced by activating a semiconductor surface (e.g., GaAs) with an alkali metal, commonly cesium, resulting in an intrinsically disordered emitter surface [23–25]. Owing to their alkali metal content, these photocathodes are extremely sensitive to vacuum contamination and cannot be characterized ex situ: a single Langmuir of oxygen is sufficient to alter their efficiency and surface
chemistry [26–29]. While great progress has been made in the growth of alkali antimonide films using evaporation and sputtering techniques [30–35], smooth, epitaxial, single-phase samples remain elusive. This presents a barrier not only to the reduction of physical [36, 37] and surface potential [38] roughness, but also to the engineering of these unique low-work function semiconducting materials.

In this Letter, we demonstrate the first epitaxial growth of thin films of the high-efficiency photocathode material Cs$_3$Sb via molecular-beam epitaxy. The resulting films were characterized using a variety of in situ diagnostics including reflection high-energy electron diffraction (RHEED), x-ray and ultraviolet photoemission spectroscopy (XPS, UPS), and angle-resolved photoemission spectroscopy (ARPES). Structural and spectroscopic measurements of our films agree well with both previous studies of polycrystalline samples and density functional theory (DFT) calculations of the electronic structure.

Cs$_3$Sb has a photoemission threshold > 600 nm, QE exceeding 1% at 530 nm, and crystallizes exclusively in a cubic structure with lattice constant, a_{bulk}, in the range of 9.14 to 9.19 Å [15, 39–44]. Earlier work identified a $F\bar{d}3m$ space group (NaTl-like)[39, 41], while more recent studies favor an ordered $Fm\bar{3}m$ Cu$_3$Al structure [40, 44]. The large cubic lattice constant presents a challenge in the selection of a suitable substrate, however, recent studies have identified 3C-SiC as a promising candidate due to its lattice parameter, $a_{\text{SiC}} = 4.36$ Å, nearly matching $a_{\text{bulk}}/2 \approx 4.59$ ($\sim 5\%$ strain), and the stability of its (001) surface [37, 45].

Epitaxial thin films were grown on cubic 3C-SiC (001) substrates (epitaxial film on Si, MTI corporation) via MBE, using a sequence of shuttered growth of two unit-cells (u.c.) at a substrate temperature of 40 °C and a recrystallization step at 85 °C. This process is described schematically in Fig. 1 (a). During the growth phase, Sb is provided in eight doses of 1/4 nominal monolayers per SiC unit-cell, separated by a 20 s pause, while Cs is provided continuously. The sample is then heated to the recrystallization temperature in vacuum, annealed in Cs flux for 15 min, and cooled in Cs flux back to the growth temperature. Each cycle produces nominally 2 unit cells of Cs$_3$Sb, within the $\pm 15\%$ uncertainty of the quartz-crystal microbalance measurement of the Sb flux. This growth process departs from traditional co-deposition procedures in favor of a solid-phase epitaxy approach as we have observed that films grown by codeposition at a single temperature are either crystalline or efficient photoemitters, but not both simultaneously. Films codeposited at low temperatures (< 80 °C) appear stoichiometric and have high QE, but lack ordered surfaces. Conversely, films codeposited at higher temperatures (90-150 °C) form an ordered crystalline phase, but are generally Cs deficient (measured by XPS) and have low QE ($< 1 \times 10^{-4}$ at 532 nm). A low deposition temperature is necessary to reduce the Cs desorption rate and produce the correct stoichiometry; then the anneal is required to improve crystallinity and order the domains to produce an epitaxial film.

RHEED patterns of a SiC substrate and a 10 u.c. (nominally 9.2-9.5 nm) thick film are displayed in Fig. 1 (b-e). Comparison of the film diffraction patterns with the reciprocal lattice of Cs$_3$Sb confirm the cube-on-
FIG. 2. XPS Spectra of a 7.4 nm thick epitaxial Cs₃Sb film. (a) Sb 3d and O 1s regions. Cyan bars indicate binding energy references for different Sb species; gray bars denote the O 1s references for different oxides. (b) Cs 3d region of the same sample. Orange bars indicate the literature references for the Cs oxidation states. (c) Valence band spectra including Cs 4s, 5s, 6s and Sb 4d and 5p regions. Data from a high efficiency polycrystalline Cs₃Sb film (reproduced from [46]) are provided for reference.

cube epitaxial relationship between film and substrate: Cs₃Sb ⟨100⟩ // SiC ⟨100⟩. The in-plane ordering of the film is confirmed by a RHEED line profile intensity map presented in Fig. 1 (g). This map shows both a 90° period, consistent with cubic symmetry, and no repetition of the Bragg peaks within a 45° window, precluding the presence of rotationally misaligned macroscopic domains. From the RHEED diffraction streak spacing, the in-plane lattice constant for the thinnest (4 u.c.) film is found to be $a_{film} = 8.97 \pm 0.13$ Å, indicating partial relaxation ($2 \times a_{SiC} < a_{film} < a_{bulk}$) at a thickness of only 3.8 nm. In Fig. 1 (e), weak half-order streaks are present in the RHEED pattern along the [11] azimuth, evidenced by the line profiles in (f). These correspond to forbidden odd-index reflections in either the $F_{m\overline{3}m}$ or the $F_{\overline{d}3m}$ Cs₃Sb structure; their presence may signal the presence of lattice distortions (either intrinsic or induced by defects or vacancies) or a surface reconstruction.

To confirm the formation of the Cs₃Sb phase, in situ XPS measurements were performed and typical spectra are reported in Fig. 2. The dominant peaks in the Sb region correspond to the 3- valence, as expected for Cs₃Sb, while weak features corresponding to more oxidized species (1-, 3+) are also visible at higher binding energy. Between the Sb 3d₃/₂ and 3d₅/₂ peaks, weak peaks assigned to O 1s states of various Cs and Sb oxides are also visible; typical of Cs₃Sb that has been exposed to trace amounts of oxygen [26, 28, 29]. We attribute the surface oxidation to reaction with residual gasses in the UHV transfer system. The Cs 3d₅/₂ peak, Fig. 2(b), is shifted to slightly higher binding energy than the 1+ reference, attributed to band bending induced by surface oxidation [29], and is accompanied by a strong plasmon peak—typically correlated with high quantum efficiency [46, 47]. Finally, valence band measurements, Fig. 2(c), agree with data on polycrystalline films reported in [46]. In particular, the Cs 5s to Cs 5p peak-area ratios closely match those reported by Bates et al. for high QE Cs₃Sb (attributed to minimal excess metallic Cs on the surface). We find area ratios ranging from 0.23 to 0.30 (or 0.15 - 0.21 if the Sb 4d tail contributions are subtracted) for samples with QE ranging from 2.1 to 3.3%.

Following growth, the QE of the samples was measured in an adjoining chamber using a biased collection coil. The QE of the ~ 10 nm (10 u.c.) sample of Fig. 1 (d-e), is shown in Fig. 3, demonstrating that its quantum efficiency exceeds 3% below 532 nm, and is significantly enhanced at 650 nm (0.24%) compared to typical polycrystalline Cs₃Sb on silicon. In the inset, we report the QE (at 532 nm) of a sequentially grown thickness series; the QE exceeds 2% for the 4 u.c. sample and is not strongly affected by increasing thickness up to 9 nm. It is unlikely that the measured photocurrent includes electrons excited from the substrate since silicon carbide is a
2.3 eV indirect bandgap semiconductor where direct optical transitions require photon energies exceeding 4 eV [48], well outside the measurement range. The measured thickness dependence departs from that of previous polycrystalline samples and represents an interesting avenue for future research.

Thickness is a critical parameter in determining a photocathode’s response time—the resulting electron pulse length following illumination by a delta-function optical impulse. For semiconductor photocathodes, this is governed by the transit time of excited electrons to the surface [49] and is naturally restricted in thin samples. In our case, the electron transit time is expected to be of order ~10 fs, based on our DFT-based ab initio photoemission calculations. This suggests that these thin, epitaxial cathodes are excellent candidates for time-resolved electron beam instruments such as ultrafast microscopes [50], or high time-resolution streak cameras [13].

There is significant evidence that the electronic band structure, in concert with many-body effects, determines the momentum distribution of photoemitted electrons from atomically ordered surfaces, even when the photon energy is very near the photocathode workfunction [20–22, 51, 52]—where brightness is often largest [8, 18]. Nonetheless, the minimum mean transverse energy measured in polycrystalline Cs$_3$Sb, ~20 meV at 90 K [53], is a factor of 2.6 larger than the free-electron thermal limit estimate [54], and an order of magnitude larger than the minimum predicted by our DFT-based ab initio photoemission theory [55]. Fully utilizing the electron band structure and maximizing photoemission brightness requires an atomically ordered surface [21, 52, 56], which has not been possible in alkali antimonides until now.

A major advantage of the epitaxial growth method presented here is that the resulting Cs$_3$Sb films possess sufficiently ordered surfaces such that the band structure is observed in the photoemitted electrons, and can be measured using ARPES for comparison with theoretical calculations. Measurements were performed at room temperature in a background pressure of P < 1 × 10$^{-10}$ torr using a helium plasma discharge lamp and the results are summarized in Fig. 4. Due to the highly three-dimensional nature of the band structure, determination of the out-of-plane momentum, k_z, is required to make quantitative comparisons to DFT calculations. We estimate the inner potential to be $V_0 = \phi + W$ [57] using the bandwidth $W \approx 1.2$ eV estimated from UPS spectra and the work function $\phi \approx 1.7$ eV measured from polycrystalline samples. This yields estimates of $k_z \approx 2.4$ Å$^{-1}$ and $k_z \approx 3.3$ Å$^{-1}$ for He-I ($h\nu = 21.2$ eV) and He-II ($h\nu = 40.8$ eV), respectively. To assign the absolute momenta to positions in the Brillouin zone, in the presence of uncertainty in the out-of-plane lattice constant, c_{film}, comparison of the ARPES spectra and DFT calculations is performed across several independent measurements (c.f. supplemental materials [58]). This gives a best fit with $k_z = 1.63$ r.l.u. (1 r.l.u. = 2π/c_{film}) for He-I and $k_z = 1.06$ r.l.u. for He-II along with an overall shift of the Fermi level by 0.63 eV (attributable to pinning of E_f in the gap)—consistent with an inner potential of $V_0 = 3.2$ eV and lattice constant of $c_{film} = 9.5$ Å.

Figure 4(a) shows a photoemission intensity map taken with He-I light at $E - E_f = 0.550$ eV, just cutting through the tops of the valence bands. The measured intensity pattern is consistent with a FCC Brillouin zone with $a_{film} = 9.0$ Å. An overlay showing the calculated tops of the valence bands (at the same k_z, and at an energy of $E - E_{VB} = -0.190$ eV) agrees well with identified band positions. Figure 4(c) shows a cut along the $\bar{X} - \bar{X}$ direction taken with He-I light and Fig. 4(d) a cut along the $\bar{K} - \bar{\Gamma} - \bar{K}$ line taken with He-II. In the $\bar{X} - \bar{X}$ cut we observe good agreement between the predicted and observed bands, with one brighter set between 0.5 and 1.0 eV of binding energy separated from a heavier and less intense band between 1.2 and 1.5 eV. In the $\bar{K} - \bar{\Gamma} - \bar{K}$ cut we again observe a reasonable match between the predicted and observed dispersions—in particular the hole-like band at $\bar{\Gamma}$, at a k_z of 1.06 r.l.u., lies nominally at the \bar{X} point of the FCC zone and constitutes the valence band maximum.

While there is good qualitative agreement with our calculations, we observe a roughly 10-20% larger bandwidth in the ARPES spectra than is predicted by DFT. Preliminary calculations indicate that the Sb $3p$ / Cs $6s$ bandwidth is influenced by the presence of both distortions from the ideal $Fm\overline{3}m$ structure and by biaxial compressive strain. The effects are found to be in competition, with distortions decreasing the bandwidth and strain increasing it, so we cannot disentangle their individual effects at present. This motivates further in situ structural characterization of this epitaxial phase, such as x-ray diffraction measurements [31–34] and a more detailed study of strain effects on the photoemission processes of Cs$_3$Sb.

In conclusion, we have used solid-phase epitaxy to grow (001)-oriented Cs$_3$Sb films on 3C-SiC (001) substrates. These films display unusually high efficiency at thicknesses as low as 4 u.c. (~ 3.8 nm). Thanks to the ordered nature of the sample surface, we have obtained the first ARPES measurements of the band structure, allowing direct comparison with DFT. As an indicator of what may be possible in the future, epitaxial control in other classes of semiconducting photocathodes has yielded remarkable new capabilities. Epitaxial strain induced in a GaAs/GaAsP superlattices lifts a band degeneracy at the valence band maximum and significantly enhances the spin polarization of the emitted electrons [59]. An even more intricate epitaxial layered structure enables an interferometric enhancement of absorption in GaAs, improving quantum efficiency by nearly an order of magnitude [60]. Control of the surface dipole moment in epitaxial GaN, an ultraviolet semiconductor photocathode, yields a negative electron
affinity surface without cesium, greatly enhancing its intrinsic quantum efficiency and ease of use [61]. This work opens the door to similar engineering at the level of single atomic layers in the alkali antimonides: controlled doping, strain, termination, surface dipole moment, and heterostructuring are prime targets of future work for enhanced brightness in these remarkable photoemissive compounds.

The data that support the findings of this study are available within the paper and supplementary material [58]. Additional data related to the growth and structural characterization are available at https://doi.org/??? (DOI pending publication). Any additional data connected to the study are available from the corresponding author upon reasonable request.

This work was supported by the U.S. National Science Foundation Grant PHY-1549132, the Center for Bright Beams, and by the National Science Foundation (Platform for the Accelerated Realization, Analysis, and Discovery of Interface Materials (PARADIM)) under Cooperative Agreement No. DMR-2039380. This work made use of the Cornell Center for Materials Research Shared Facilities which are supported through the NSF MRSEC program (DMR-1719875).

\[* \text{C.T.P and A.G. contributed equally to this work.} \\
\text{†} \text{Corresponding Author: jmm586@cornell.edu} \]

[1] P. Emma, R. Akre, J. Arthur, R. Bionta, C. Bostedt, J. Bozek, A. Brachmann, P. Bucksbaum, R. Coffee, F.-J. Decker, Y. Ding, D. Dowell, S. Edstrom, A. Fisher, J. Frisch, S. Gilevich, J. Hastings, G. Hays, P. Hering, Z. Huang, R. Iverson, H. Loos, M. Messerschmidt, A. Miahnahri, S. Moeller, H.-D. Nuhn, G. Pile, D. Ratner, J. Rzepiela, D. Schultz, T. Smith, P. Stefan, H. Tompkins, J. Turner, J. Welch, W. White, J. Wu, G. Yocky, and J. Galayda, First lasing and operation of an Angstrom-wavelength free-electron laser, Nature Photonics 4, 641 (2010).

[2] M. Scholz, FEL performance achieved at European XFEL, Proceedings of the 9th Int. Particle Accelerator Conf. IPAC2018, Canada (2018).

[3] V. A. Lobastov, R. Srinivasan, and A. H. Zewail, Four-dimensional ultrafast electron microscopy, Proceedings of the National Academy of Sciences 102, 7069 (2005).

[4] G. Sciaini and R. J. D. Miller, Femtosecond electron diffraction: heralding the era of atomically resolved dynamics, Reports on Progress in Physics 74, 096101 (2011).

[5] V. N. Litvinenko and Y. S. Derbenev, Coherent electron cooling, Phys. Rev. Lett. 102, 114801 (2009).

[6] M. Bai, T. Barklow, R. Bartoldus, M. Breidenbach, P. Grenier, Z. Huang, M. Kagan, J. Lewellen, Z. Li, T. W. Markiewicz, E. A. Nanni, M. Nasr, C.-K. Ng, M. Orioni, M. E. Peskin, T. G. Rizzo, J. Rosenzweig, A. G. Schwartzman, V. Shiltsev, E. Simakov, B. Spataro, D. Su, S. Tantawi, C. Vernieri, G. White, and C. C. Young, C3: A “cool” route to the Higgs boson and beyond (2021), arXiv:2110.15800 [hep-ex].

[7] S. Michizono, The international linear collider, Nature Reviews Physics 1, 244 (2019).

[8] P. Musumeci, J. Giner Navarro, J. Rosenzweig, L. Cultrera, I. Bazarov, J. Maxson, S. Karkare, and H. Padmore, Advances in bright electron sources, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 907, 209 (2018).
imum achievable beam brightness from photoinjectors, Phys. Rev. Lett. 102, 104801 (2009).

[10] D. Filippetto, P. Musumeci, M. Zolotorev, and G. Stupakov, Maximum current density and beam brightness achievable by laser-driven electron sources, Phys. Rev. ST Accel. Beams 17, 024201 (2014).

[11] C. M. Pierce, M. B. Andorf, E. Lu, C. Gulliford, I. V. Bazarov, J. M. Maxson, M. Gordon, Y.-K. Kim, N. P. Norvell, B. M. Dunham, and T. O. Raubenheimer, Low intrinsic emittance in modern photoinjector brightness, Phys. Rev. Accel. Beams 23, 070101 (2020).

[12] A. G. Wright, The Photomultiplier Handbook (Oxford University Press, 2017).

[13] J. Liang, L. Zhu, and L. V. Wang, Single-shot real-time femtosecond imaging of temporal focusing, Light: Science & Applications 7, 42 (2018).

[14] A. Lyashenko, B. Adams, M. Aviles, T. Cremer, C. Ertley, M. Foley, M. Minot, M. Popecki, M. Stochaj, W. Worstell, J. Elam, A. Mane, O. W. Siegmund, H. Frisch, A. Elgin, E. Angelico, and E. Spiegel, Performance of large area picosecond photo-detectors (LAP-PDTM), Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 958, 162834 (2020).

[15] A. Sommer, Photoemissive Materials: Preparation, Properties, and Uses (Krieger, 1980).

[16] P. Musumeci, L. Cultrera, M. Ferrario, D. Filippetto, G. Gatti, M. S. Gutierrez, J. T. Moody, N. Moore, J. B. Rosenzweig, C. M. Scoby, G. Travish, and C. Vicario, Multiphoton photoemission from a copper cathode illuminated by ultrashort laser pulses in an rf photoinjector, Phys. Rev. Lett. 104, 084801 (2010).

[17] L. Cultrera, C. Gulliford, A. Bartnik, H. Lee, and I. Bazarov, Ultra low emittance electron beams from multi-alkali antimonide photocathode operated with infrared light, Applied Physics Letters 108, 134105 (2016).

[18] J. Masson, L. Cultrera, C. Gulliford, and I. Bazarov, Measurement of the tradeoff between intrinsic emittance and quantum efficiency from a NaKSB photocathode near threshold, Applied Physics Letters 106, 234102 (2015).

[19] J. K. Bae, I. Bazarov, P. Musumeci, S. Karkare, H. Padmore, and J. Maxson, Brightness of femtosecond nonequilibrium photoemission in metallic photocathodes at wavelengths near the photoemission threshold, Journal of Applied Physics 124, 244903 (2018).

[20] B. L. Rickman, J. A. Berger, A. W. Nicholls, and W. A. Schroeder, Intrinsic electron beam emittance from metal photocathodes: The effect of the electron effective mass, Phys. Rev. Lett. 111, 237401 (2013).

[21] S. Karkare, W. Wan, J. Feng, T. C. Chiang, and H. A. Padmore, One-step model of photoemission from single-crystal surfaces, Phys. Rev. B 95, 075439 (2017).

[22] S. Karkare, G. Adhikari, W. A. Schroeder, J. K. Nangoi, T. Arias, J. Maxson, and H. Padmore, Ultracold electrons via near-threshold photoemission from single-crystal Cu(100), Phys. Rev. Lett. 125, 054801 (2020).

[23] T. Yamada, J. Fuji, and T. Mizoguchi, STM, STS, and local work function study of Cs/p-GaAs(110), Surface Science 479, 33 (2001).

[24] R. Fukuzoe, M. Hirao, D. Yamanaka, Y. Iwabuchi, H. Iijima, and T. Meguro, Preparation of Ga-terminated negative electron affinity-GaAs(100) surface by HCl-isopropanol treatment for nanoanalysis by scanning tunneling microscopy, Journal of Vacuum Science & Technology B 36, 06JK01 (2018).

[25] J. Biswas, J. Cen, M. Gaowei, O. Rahman, W. Liu, X. Tong, and E. Wang, Revisiting heat treatment and surface activation of GaAs photocathodes: In situ studies using scanning tunneling microscopy and photoelectron spectroscopy, Journal of Applied Physics 128, 045308 (2020).

[26] C. W. Bates, T. M. van Atekwum, G. K. Wertheim, D. N. E. Buchanan, and K. E. Clements, X-ray photoemission studies of superficially oxidized cesium antimonide photoemitters, Applied Physics Letters 38, 387 (1981).

[27] L. Danielson, C. Lee, and P. Oettinger, Laser illuminated high current photocathodes, Applications of Surface Science 16, 257 (1983).

[28] L. Soriano and L. Galán, Interaction of Cesium-Potassium Antimonide Photocathode Materials with Oxygen: an X-Ray Photoelectron Spectroscopy Study, Japanese Journal of Applied Physics 32, 4737 (1993).

[29] A. Galdi, W. J. I. DeBenedetti, J. Balajka, L. Cultrera, I. V. Bazarov, J. M. Maxson, and M. A. Hines, The effects of oxygen-induced phase segregation on the interfacial electronic structure and quantum efficiency of Cs,Sb photocathodes, The Journal of Chemical Physics 153, 144705 (2020).

[30] J. Feng, S. Karkare, J. Nasiatka, S. Schubert, J. Smedley, and H. Padmore, Near atomically smooth alkali antimonide photocathode thin films, Journal of Applied Physics 121, 044904 (2017).

[31] M. Ruiz-Osés, S. Schubert, K. Attenkofer, I. Ben-Zvi, X. Liang, E. Muller, H. Padmore, T. Rao, T. Vecchiole, J. Wong, J. Xie, and J. Smedley, Direct observation of bi-alkali antimonide photocathodes growth via in operando x-ray diffraction studies, APL Materials 2, 121101 (2014).

[32] S. Schubert, J. Wong, J. Feng, S. Karkare, H. Padmore, M. Ruiz-Osés, J. Smedley, E. Muller, Z. Ding, M. Gaowei, K. Attenkofer, X. Liang, J. Xie, and J. Kühn, Bi-alkali antimonide photocathode growth: An X-ray diffraction study, Journal of Applied Physics 120, 035303 (2016).

[33] M. Gaowei, Z. Ding, S. Schubert, H. B. Bhandari, J. Simshiemer, J. Kuehn, V. V. Nagarkar, M. S. J. Marshall, J. Walsh, E. M. Muller, K. Attenkofer, H. J. Frisch, H. Padmore, and J. Smedley, Synthesis and x-ray characterization of sputtered bi-alkali antimonide photocathodes, APL Materials 5, 116104 (2017).

[34] Z. Ding, M. Gaowei, J. Simshiemer, J. Xie, S. Schubert, H. Padmore, E. Muller, and J. Smedley, In-situ synchrotron X-ray characterization of K$_2$CsSb photocathode grown by ternary co-evaporation, Journal of Applied Physics 121, 055305 (2017).

[35] J. Xie, M. Demarteau, R. Wagner, S. Schubert, M. Gaowei, K. Attenkofer, J. Walsh, J. Smedley, J. Wong, J. Feng, H. Padmore, M. Ruiz-Osés, Z. Ding, X. Liang, E. Muller, and I. Ben-Zvi, Synchrotron x-ray study of a low roughness and high efficiency K$_2$CsSb photocathode during film growth, Journal of Applied Physics 125, 055303 (2017).

[36] J. Feng, S. Karkare, J. Nasiatka, S. Schubert, J. Smedley, and H. Padmore, Near atomically smooth alkali antimonide photocathode thin films, AIP Advances 7, 065303 (2017).
of surface roughness emittance of Cs$_3$Sb photocathodes grown via codeposition on single crystal substrates, Applied Physics Letters 118, 241101 (2021).
[68] J. P. Perdew, K. Burke, and M. Ernzerhof, Generalized Gradient Approximation Made Simple, Physical Review Letters 77, 3865 (1996).

[69] S. H. Wei and A. Zunger, Electronic structure of M₃ISb-type filled tetrahedral semiconductors, Physical Review B 35, 3952 (1987).

[70] A. R. Ettema and R. A. de Groot, Electronic structure of Cs₂KsB and K₂CsSb, Physical Review B - Condensed Matter and Materials Physics 66, 1151021 (2002).

[71] L. Kalarasse, B. Bennecer, and F. Kalarasse, Optical properties of the alkali antimonide semiconductors Cs₃Sb, Cs₂KsB, CsK₂Sb and K₃Sb, Journal of Physics and Chemistry of Solids 71, 314 (2010).

[72] C. Cocchi and H. D. Saßnick, Ab initio quantummechanical predictions of semiconducting photocathode materials, Micromachines 12, 22 (2021).

[73] H-D. Saßnick and C. Cocchi, Electronic structure of cesium-based photocathode materials from density functional theory: performance of PBE, SCAN, and HSE06 functionals, Electronic Structure 3, 027001 (2021).

[74] J. F. Moulder, W. F. Stickle, P. E. Sobol, and K. D. Bomben, Handbook of X-ray Photoelectron Spectroscopy (Perkin-Elmer Corporation, 1992).

[75] J. Yeh and I. Lindau, Atomic subshell photoionization cross sections and asymmetry parameters: 1 ≤ Z ≤ 103, Atomic Data and Nuclear Data Tables 32, 1 (1985).

[76] M. A. H. Schmeißer, S. Mistry, H. Kirschner, S. Schubert, A. Jankowiak, T. Kamps, and J. Kühn, Towards the operation of Cs-K-Sb photocathodes in superconducting RF photoinjectors, Phys. Rev. Accel. Beams 21, 113401 (2018).

[77] C. D. Wagner, Chemical shifts of Auger lines, and the Auger parameter, Faraday Discuss. Chem. Soc. 60, 291 (1975).

[78] W. E. Morgan, W. J. Stec, and J. R. Van Wazer, Inner-orbital binding-energy shifts of antimony and bismuth compounds, Inorganic Chemistry 12, 953 (1973).

[79] J. Jupille, P. Dolle, and M. Besançon, Ionic oxygen species formed in the presence of lithium, potassium and cesium, Surface Science 260, 271 (1992).

[80] S. J. Yang and C. W. Bates, The role of cesium suboxides in low-work-function surface layers studied by x-ray photoelectron spectroscopy: Ag-O-Cs, Applied Physics Letters 36, 675 (1980).

[81] C. D. Wagner, D. A. Zatko, and R. H. Raymond, Use of the oxygen KLL Auger lines in identification of surface chemical states by electron spectroscopy for chemical analysis, Analytical Chemistry 52, 1445 (1980).

[82] N. G. Krishnan, W. N. Delgass, and W. D. Robertson, Electron binding energies of core levels in caesium adsorbed on a nickel (100) surface, Journal of Physics F: Metal Physics 7, 2623 (1977).

[83] G. Ebbinghaus and A. Simon, Electronics structures of Rb, Cs and some of their metallic oxides studied by photoelectron spectroscopy, Chemical Physics 43, 117 (1979).

[84] K. Momma and F. Izumi, VESTA3 for three-dimensional visualization of crystal, volumetric and morphology data, Journal of Applied Crystallography 44, 1272 (2011).