STANLEY DECOMPOSITIONS IN LOCALIZED POLYNOMIAL RINGS

SUMIY A NASIR AND ASIA RAUF

Abstract. We introduce the concept of Stanley decompositions in the localized polynomial ring S_f where f is a product of variables, and we show that the Stanley depth does not decrease upon localization. Furthermore it is shown that for monomial ideals $J \subset I \subset S_f$ the number of Stanley spaces in a Stanley decomposition of I/J is an invariant of I/J. For the proof of this result we introduce Hilbert series for \mathbb{Z}^n-graded K-vector spaces.

Introduction

Let K be a field, $S = K[x_1, \ldots, x_n]$ be the polynomial ring in n variables over K, $A \subset \{1, 2, \ldots, n\}$ and $f = \prod_{j \in A} x_j$. Then S_f is a \mathbb{Z}^n-graded K-algebra whose K-basis consists of the monomials $x_1^{a_1}x_2^{a_2} \cdots x_n^{a_n}$ with $a_j \in \mathbb{Z}$ and $a_j \geq 0$ if $j \notin A$.

Standard algebraic operations like reduction module regular elements or restricted localizations have been considered in the papers [5] and [6]. To better understand localization of Stanley decompositions we define in this paper Stanley decompositions of S_f-modules of the type I/J where $J \subset I \subset S_f$ are monomial ideals in S_f. To do this we first have to extend the definition of Stanley spaces as it is given for \mathbb{N}^n-graded K-algebras. Here the K-subspace of the form $uK[Z] \subset I/J$, where u is a monomial in $I \setminus J$ and $Z \subset \{x_1, \ldots, x_n\} \cup \{x_j^{-1}: j \in A\}$ such that $\{x_j, x_j^{-1}\} \not\subseteq Z$ for all $j \in A$, is called Stanley space if $uK[Z]$ is a free $K[Z]$-module of I/J. The dimension of the Stanley space $uK[Z]$ is defined to be $|Z|$. As in the classical case we define a Stanley decomposition of I/J as a finite direct sum of Stanley spaces $\mathcal{D} : I/J = \bigoplus_{i=1}^{r} u_iK[Z_i]$, and set $sdepth(\mathcal{D}) = \min\{|Z_i| : 1 \leq i \leq r\}$ and $sdepth I/J = \max\{sdepth(\mathcal{D}) : \mathcal{D} \text{ is a Stanley decomposition of } I/J\}$.

Our more general definition of Stanley spaces is required for S_f, because otherwise it would be impossible to obtain a Stanley decomposition of S_f when $f \neq 1$. Actually we show in Proposition 2.1 that S_f has a nice canonical Stanley decomposition with Stanley spaces as defined above. Indeed, we have $S_f = \bigoplus_{L \subseteq A} \bigoplus_{l \in L} x_l^{-1}K[Z_L]$, where $Z_L = \{x_l^{-1} \mid l \in L\} \cup \{x_l \mid l \notin L\}$.

Key words and phrases. Stanley decompositions, Stanley depth, Prime filtrations. 2000 Mathematics Subject Classification: Primary 13H10, Secondary 13P10, 13C14, 13F20.

The second author wants to acknowledge Higher Education Commission Pakistan for partial financial support during preparation of this work.
and $f_L = \prod_{i \in L} x_i$. In this decomposition all Stanley spaces are of dimension n and the number of summands is $2^{|A|}$. One may ask if there exist Stanley decompositions of S_f with less summands. We will show that this is not possible. Indeed, as a generalization of a result in [3] we show in Theorem 6.5 that number of Stanley spaces of maximal dimension in a Stanley decomposition of an S_f-module of the form I/J is independent of the particular Stanley decomposition of I/J that of $(I/J)_f$. We note that this fact we introduce in Section 6 a modified Hilbert function for \mathbb{Z}^n-graded finitely generated K-vector spaces M with the property that $\dim_K M_a < \infty$ for all $a \in \mathbb{Z}^n$.

For such modules we set $H(M, d) = \sum_{a \in \mathbb{Z}^n, \ |a| = d} \dim_K M_a$ and call the formal power series $H_M(t) = \sum_{d \geq 0} H(M, d) t^d$ the Hilbert series of M. Here we use the notation $|a| = \sum_{i=1}^n |a_i|$ for $a = (a_1, a_2, \ldots, a_n)$. Our Hilbert series does not as well behave as the usual Hilbert series with respect to shifts. Nevertheless Proposition 6.2 implies that for any monomial u in S_f one has $H_{uS_f}(t) = t^{\deg(u')} (1 + t)^{|A|} / (1 - t)^n$, where u' is obtained from u by removing the unit factors in u. Quite generally we show that, just as for the usual Hilbert series, one has $H_{I/J}(t) = P(t) / (1 - t)^d$ where d is the Krull dimension of I/J and $P(1) > 0$.

Any monomial ideal $I \subset S_f$ is obtained by localization from a monomial ideal in S. Therefore, for $J \subset I \subset S$ it is natural to compare the Stanley depth of I/J with that of $(I/J)_f$. Theorem 3.1 states that $\text{sdepth}(I/J) \leq \text{sdepth}(I/J)_f$, and we give examples that show that this inequality can be strict. In Theorem 5.1 we prove a similar result for the so-called fdepth which is define via filtrations. Theorem 5.1 is related to a theorem proved by the first author in [4], where it is shown that $\text{sdepth}(S'/I_{x_1} \cap S') \geq \text{sdepth}(S'/I - 1)$, where $S' = K[x_2, \ldots, x_n]$.

Let $J \subset I \subset S$ be monomial ideals, and consider the polynomial ring $S[t]$ over S. Herzog, Vladoiu and Zheng in [2] proved that $\text{sdepth}(I/J)[t] = \text{sdepth}(I/J) + 1$. In Theorem 4.1 we see that a similar relation holds between the Stanley depth of I/J and $\text{sdepth}(I/J)[t, t^{-1}]$ for monomial ideals $J \subset I \subset S_f$. It implies that Stanley depth of I/J, where $J \subset I \subset S_f$ monomial ideals, also if $f \neq 0$ can be computed.

1. Monomial ideals in S_f

Let K be a field and $S = K[x_1, x_2, \ldots, x_n]$ be the polynomial ring in n variables over K. We fix a subset $A \subset \{1, \ldots, n\}$ and set

$$f = \prod_{j \in A} x_j.$$

As usual, the localization of S with respect to multiplicative set $\{1, f, f^2, \ldots\}$ is denoted by S_f. We note that $S_f = K[x_1, x_2, \ldots, x_n, x_{j}^{-1} : j \in A]$.

The monomials in S_f are the element $x_1^{a_1} x_2^{a_2} \cdots x_n^{a_n}$ with $a_j \in \mathbb{Z}$ if $j \in A$ and $a_j \in \mathbb{N}$ if $j \notin A$. The set $\text{Mon}(S_f)$ of monomials is a K-basis of S_f. An ideal $I \subset S_f$ is called a monomial ideal if it is generated by monomials. A minimal set of monomial generators of I is uniquely determined, and is denoted $G(I)$.

Any element $g \in S_f$ is a unique K-linear combination of monomials.

$$g = \sum a_u u,$$

with $a_u \in K$ and $u \in \text{Mon}(S_f)$.

We call the set
\[\text{Supp}(g) = \{ u \in \text{Mon}(S_f) : a_u \neq 0 \} \]
the support of \(g \).

For monomial \(u = x_1^{a_1} x_2^{a_2} \cdots x_n^{a_n} \), we set \(\text{supp}(u) = \{ i \in [n] : a_i \neq 0 \} \), \(\text{supp}_+(u) = \{ i \in [n] : a_i > 0 \} \) and \(\text{supp}_-(u) = \{ i \in [n] : a_i < 0 \} \), and call these sets support, positive support, and negative support of \(u \), respectively.

Just as for monomial ideals in the polynomial ring one shows that the set of monomials \(\text{Mon}(I) \) belonging to \(I \) is a \(K \)-basis of \(I \). We obviously have

Proposition 1.1. Let \(I \subset S_f \) be an ideal. The following are equivalent.

(a) \(I \subset S_f \) is a monomial ideal.
(b) There exists a monomial ideal \(I' \subset S \) such that \(I = I'S_f \).

If the equivalent conditions hold, then \(I' \) can be chosen such that \(\text{supp}(u) \subset [n] \setminus A \) for all \(u \in G(I') \). The monomial ideal \(I' \) satisfying this extra condition is uniquely determined. Indeed, \(I' = I \cap S \).

Let \(J \subset I \subset S_f \) be monomial ideals. Observe that the residue classes of the monomials belonging to \(I \setminus J \) form a \(K \)-basis of the residue class \(I/J \). Therefore we may identify the classes of \(I/J \) with the monomials in \(I \setminus J \).

2. Stanley decomposition of \(I/J \)

Let \(J \subset I \subset S_f \) be monomial ideals and \(f = \prod_{j \in A} x_j \). A Stanley space of \(I/J \) is a free \(K[Z] \)-submodule \(uK[Z] \) of \(I/J \), where \(u \) is a monomial of \(I/J \) and

\[Z \subset \{ x_1, \ldots, x_n \} \cup \{ x_j^{-1} : j \in A \}, \]

satisfying the condition that \(\{ x_j, x_j^{-1} \} \notin Z \) for all \(j \in A \).

A Stanley decomposition of \(I/J \) is a finite direct sum of Stanley spaces

\[D : I/J = \bigoplus_{i=1}^r u_i K[Z_i]. \]

We set

\[\text{sdepth} D = \min\{|Z_i| : 1 \leq i \leq r\}, \]

and

\[\text{sdepth}(I/J) = \max\{ \text{sdepth} D : D \text{ is a Stanley decomposition of } I/J \}. \]

This number is called the Stanley depth of \(I/J \).

Proposition 2.1. The ring \(S_f \) admits the following canonical Stanley decomposition

\[D : S_f = \bigoplus_{L \subseteq A} f_L^{-1} K[Z_L], \]

where \(Z_L = \{ x_l^{-1} | l \in L \} \cup \{ x_l | l \notin L \} \) and \(f_L = \prod_{l \in L} x_l \).
Proof. Consider a monomial \(h = x_1^{a_1} \cdots x_n^{a_n} \) of \(S_f \). We choose

\[
L = \{1 \leq l \leq n : a_l < 0\} \subset A.
\]

Then

\[
h = f_L^{-1}(x_1^{a_1} \cdots x_n^{a_n} f_L) = f_L^{-1}x_1^{b_1} \cdots x_n^{b_n},
\]

where \(b_l = a_l \in \mathbb{N} \) if \(l \notin L \) and \(b_l = a_l + 1 \in \mathbb{Z} \) if \(l \in L \), and hence \(h \in f_L^{-1}K[Z_L] \).

To show that this sum is direct, it is enough to prove any two distinct Stanley spaces in the decomposition of \(I/J \) have no monomial in common, since the multigraded components of \(I/J \) are of dimension \(\leq 1 \).

Let \(L, L' \subset A \) with \(L \neq L' \). Then \(f_L^{-1} \neq f_{L'}^{-1} \). Suppose that there is a monomial \(u \in I/J \) such that

\[
u \in f_L^{-1}K[Z_L] \cap f_{L'}^{-1}K[Z_{L'}],
\]

that is

\[
u = f_L^{-1}v = f_{L'}^{-1}v'
\]

for some monomials \(v \in K[Z_L], v' \in K[Z_{L'}] \). Since is a contradiction, because

\[L = \text{supp}(u) = L',\]

as follows from the above equation.

\[\square\]

Example 2.2. Let \(S = K[x, y, z] \) and \(f = yz \). Then according to Lemma 2.1, \(S_f = K[x, y, z] \oplus y^{-1}K[x, y^{-1}, z] \oplus z^{-1}K[x, y, z^{-1}] \oplus y^{-1}z^{-1}K[x, y^{-1}, z^{-1}] \) is a Stanley decomposition of \(S_f \).

As a consequence of Proposition 2.1, we have

Corollary 2.3. \(\text{sdepth}(S_f) = n. \)

3. Localization of Stanley decompositions

Let \(J \subset I \subset S \) be monomial ideals and we set \(f = \prod_{j \in A} x_j \). The next result shows how a Stanley decomposition of \(I/J \) localizes.

Theorem 3.1. Let \(D : I/J = \bigoplus_{i=1}^r u_iK[Z_i] \) be a Stanley decomposition of \(I/J \). Then

\[
D_f : (I/J)_f = \bigoplus_{i \in C} (\bigoplus_{L \in A} u_i f_L^{-1}K[Z_i^L]) \]

is a Stanley decomposition of \((I/J)_f \), where

\[C = \{i : Z_A \subset Z_i\} \]

and \(Z_i^L = \{x_i^{-1} \mid l \in L, x_i \in Z_i\} \cup \{x_i \mid l \notin L, x_i \in Z_i\} \).

In particular, we have

\[\text{sdepth}(I/J) \leq \text{sdepth}(I/J)_f.\]

Proof. Let \(u \in (I/J)_f \) be a nonzero monomial. We claim that

\[
u \in \bigoplus_{i \in C} (\bigoplus_{L \in A} u_i f_L^{-1}K[Z_i^L]).
\]

Since \(u \in (I/J)_f \) is nonzero it follows that \(uf^a \in I \setminus J \) for all \(a \gg 0 \). Hence there exists an integer \(i \) such that \(uf^a \in u_i K[Z_i] \) for infinitely many \(a > 0 \). This
implies that \(Z_A \subset Z_i \), that is, \(i \in C \). So, \(u f^a \in u_i K[Z_i] \), that is, \(u f^a = u_i v \) where \(v = x_1^{a_1} \cdots x_n^{a_n} \in \text{Mon}(Z_i) \). Then \(u = u_i v f^{-a} = u_i x_1^{b_1} \cdots x_n^{b_n} \), where

\[
\begin{align*}
b_i &= \begin{cases}
a_i - a, & \text{if } i \in A \\
a_i, & \text{otherwise.}
\end{cases}
\end{align*}
\]

Say \(L = \text{supp}_-(x_1^{b_1} \cdots x_n^{b_n}) \). Note that \(L \subset A \). Hence \(u \in u_i f_L^{-1} K[Z_i] \).

In order to prove other inclusion, consider a monomial \(w \in \sum_{i \in C} (\sum_{L \subseteq A} u_i K[Z_i^L]) \).

This implies that there exists an \(i \in C \) and \(L \subset A \) such that \(w \in u_i K[Z_i^L] \). Since \(Z_A \subset Z_i \), we have \(w f^a \in u_i K[Z_i] \) for \(a \gg 0 \). It follows that \(w f^a \in I \), so \(w \in I_f \). On the other hand, \(w \notin J_f \). Otherwise \(w f^a \in J \) for \(a \gg 0 \), which is a contradiction, since \(w f^a \in u_i K[Z_i] \) for \(a \gg 0 \).

Now we prove that the sum is direct. Let \(L, H \subset A \) and

\[
u \in u_i f_L^{-1} K[Z_i^L] \cap u_j f_H^{-1} K[Z_i^H]
\]

be a monomial such that \(i \neq j \) or \(L \neq H \). Since \(Z_A \subset Z_i, Z_j \), we have for \(a \gg 0 \) that

\[
u f^a \in u_i K[Z_i] \cap u_j K[Z_j].
\]

If \(i \neq j \), then \(u f^a = 0 \) in \(I/J \) implies \(u = 0 \) in \((I/J)_f \). If \(i = j \) and \(L \neq H \) then \(u = u_i f_L^{-1} v = u_i f_H^{-1} v' \) for some monomials \(v \in K[Z_i^L] \) and \(v' \in K[Z_i^H] \). Since \(\text{supp}_-(u_i f_L^{-1} v) = L \) and \(\text{supp}_-(u_i f_H^{-1} v') = H \), so \(\text{supp}_-(u) = L = H \), which is a contradiction.

The next examples show that in the inequality on Theorem 3.1 we may have equality or strict inequality.

Example 3.2. Let \(J = (xy, yz) \subset I = (y) \subset S = K[x, y, z] \) be ideals, \(D : I/J = yK[y] \) is a Stanley decomposition of \(I/J \). Thus \(\text{sdepth} D = 1 \). Localizing with the monomial \(f = y \), we obtain that \(D_f : (I/J)_f = yK[y] \oplus K[y^{-1}] \) is a Stanley decomposition of \((I/J)_f \) and \(\text{sdepth} D_f = 1 \).

Example 3.3. Let \(J = (x^2 y, x^2 y^2) \subset I = (x, y) \subset S = K[x, y] \) be ideals, \(D : I/J = xy K[y] \oplus x^2 K[x] \oplus x^2 y K \) is a Stanley decomposition of \(I/J \). Thus \(\text{sdepth} D = 0 \). Localizing with the monomial \(f = x \), \(D_f : (I/J)_f = x^2 K[x] \oplus x K[x^{-1}] \) is a Stanley decomposition of \((I/J)_f \) and \(\text{sdepth} D_f = 1 \).

The following example shows that a Stanley decomposition of \(I/J \) which gives the Stanley depth of \(I/J \) may localize to a Stanley decomposition whose Stanley depth is smaller than the Stanley depth of the localization of \(I/J \).

Example 3.4. Let \(I = (x, y, z) \subset S = K[x, y, z] \) be the graded maximal ideal of \(S \) \(D : I = xK[x, y] \oplus yK[y, z] \oplus zK[x, z] \oplus xyzK[x, y, z] \) is a Stanley decomposition of \(I \). Thus \(\text{sdepth} D = 2 \) which is also the Stanley depth of \(I \). Localizing with the monomial \(f = x \), we get the Stanley decomposition \(D_f \) of \(I_f \) which is

\[
xK[x, y] \oplus K[x^{-1}, y] \oplus zK[x, z] \oplus zx^{-1} K[x^{-1}, z] \oplus xyzK[x, y, z] \oplus yzK[x^{-1}, y, z].
\]

Thus \(\text{sdepth} D_f = 2 \). However \(I_f = K[x^\pm 1, y, z] \), and hence \(\text{sdepth} I_f = 3 \).
4. STANLEY DECOMPOSITIONS AND POLYNOMIAL EXTENSIONS

Herzog et al. in [2, Lemma 3.6] proved that the Stanley depth of the module increases by one in a polynomial ring extension by one variable. We generalize this result to localized rings.

Theorem 4.1. Let \(J \subset I \subset S_f \) be monomial ideals. Then

\[
\text{sdepth}(I/J)[t] = \text{sdepth}(I/J)[t, t^{-1}] = \text{sdepth} I/J + 1.
\]

Proof. Let \(\mathcal{D} : I/J = \bigoplus_{i=1}^r v_i K[Z_i] \) be a Stanley decomposition of \(I/J \). Then we obtain the Stanley decompositions

\[
(I/J)[t] = \bigoplus_{i=1}^r v_i K[Z_i][t] = \bigoplus_{i=1}^r v_i K[Z_i, t]
\]

\[
((I/J)[t])_t = \bigoplus_{i=1}^r (v_i K[Z_i, t] \oplus v_i t^{-1} K[Z_i, t^{-1}]).
\]

This implies that

\[
1 + \text{sdepth} I/J \leq \text{sdepth}(I/J)[t, t^{-1}], \text{sdepth}(I/J)[t].
\]

Let \(\mathcal{D'} : (I/J)[t, t^{-1}] = \bigoplus_{i=1}^r v_i K[W_i] \) be a Stanley decomposition of \((I/J)[t, t^{-1}] \). Next we show that

\[
I/J = \bigoplus_{i\in[r]} v_i K[W_i] \cap S_f,
\]

and that each \(v_i K[W_i] \cap S_f = u_i K[W_i \setminus \{t, t^{-1}\}] \) for a suitable monomial \(u_i \in S_f \), provided \(v_i K[W_i] \cap S_f \neq 0 \).

Since the direct sum \(\mathcal{D'} \) commutes with taking the intersection with \(S_f \) and since \((I/J)[t, t^{-1}] \cap S_f = I/J \), the desired decomposition of \(I/J \) follows.

Suppose \(v_i K[W_i] \cap S_f \neq 0 \). Then there exist monomials \(v \in S_f \) and \(w \in K[W_i] \) such that \(v = v_i w \). We may assume that \(v_i \) does not contain \(t \) as a factor, because \(t^{-1} \) must be a factor of \(w \) which implies that \(t^{-1} \in W_i \). Thus we may replace \(v_i \) by the monomial which is obtained from \(v_i K \) by removing the power of \(t \) which appears in \(v_i \). Similarly we may assume \(t^{-1} \) is not a factor of \(v_i \). Then it follows that \(v_i K[W_i] \cap S_f \) consists of all monomials \(v_i w \) with \(w \in K[W_i] \) where neither \(t \) nor \(t^{-1} \) is a factor of \(w \). In other words, \(w \in K[W_i \setminus \{t, t^{-1}\}] \).

From these considerations we conclude that \(1 + \text{sdepth} I/J \geq \text{sdepth}(I/J)[t, t^{-1}] \). In the same way one proves the inequality \(1 + \text{sdepth} I/J \geq \text{sdepth}(I/J)[t] \). This yields the desired conclusions. \(\square \)

An immediate consequence of Theorem 4.1 is the following

Corollary 4.2.

\[
\text{sdepth}(I/J)[t_1^{\pm 1}, \ldots, t_r^{\pm 1}] = \text{sdepth} I/J + r.
\]
Let $J \subset I \subset S_f$ be monomial ideals, and $S' = K[x_i : i \notin A] \subset S$. Then there exist monomial ideals $J' \subset I' \subset S'$ such that $J'S_f = J$ and $I'S_f = I$. We have

$$I'/J'[x_i^{\pm 1} : i \in A] = I/J.$$

Hence $\text{sdepth} I'/J' + |A| = \text{sdepth} I/J$, by Corollary 1.2. Since the Stanley depth of I'/J' can be computed in finite number of steps by the method given by Herzog, Vladoiu and Zheng [2], the Stanley depth of I/J can be computed as well in a finite number of steps.

5. Fdepth and localization

Let $J \subset I \subset S$ be monomial ideals of S. A chain $F : J = J_0 \subset J_1 \subset \ldots \subset J_r = I$ of monomial ideals is called a prime filtration of I/J, if $J_i/J_{i-1} \cong S/P_i(-a_i)$ where $a_i \in \mathbb{Z}^n$ and where each P_i is a monomial prime ideal. We call the set of prime ideals \{P_1, \ldots, P_r\} the support of F and denote it by $\text{Supp}(F)$. In [2], Herzog, Vladoiu and Zheng define fdepth of I/J as follows:

$$\text{fdepth}(F) = \min \{\dim S/P : P \in \text{Supp}(F)\}$$

and

$$\text{fdepth} I/J = \max \{\text{fdepth} F : F \text{ is a prime filtration of } I/J\}.$$

These definitions can be immediately extended to monomial ideals $J \subset I \subset S_f$. We then get

Theorem 5.1.

$$\text{fdepth} I/J \leq \text{fdepth}(I/J)_f.$$

Proof. Let $F : J = J_0 \subset J_1 \subset \ldots \subset J_r = I$ be a prime filtration of I/J with $\text{Supp}(F) = \{P_1, \ldots, P_r\}$. Then we obtain a filtration $F_f : J_f = (J_0)_f \subset (J_1)_f \subset \ldots \subset (J_r)_f = I_f$ with factors S_f/P_iS_f. Thus if we drop the ideals $(J_i)_f$ for which $S_f/P_iS_f = 0$ we obtain a prime filtration of $(I/J)_f$. Since $\dim S_f/P_iS_f = \dim S/P_i$, whenever $\dim S_f/P_iS_f \neq 0$, it follows that $\text{fdepth} F_f \geq \text{fdepth} F$. This implies the desired conclusion. \qed

6. Hilbert series of multigraded K-vector spaces

Let $J \subset I \subset S_f$ be monomial ideals. In this section we want to show that the number of maximal Stanley spaces in any Stanley decomposition of I/J is an invariant of I/J. To prove this we introduce a new kind of Hilbert series.

Note that the localized ring S_f is naturally \mathbb{Z}^n-graded with \mathbb{Z}^n-graded components

$$(S_f)_a = \begin{cases}
Kx^a, & a_i \geq 0 \text{ if } i \notin \text{supp}(f); \\
0, & \text{otherwise.}
\end{cases}$$

Let $M = \bigoplus_{a \in \mathbb{Z}^n} M_a$ be \mathbb{Z}^n-graded K-vector space with $\dim_K M_a < \infty$ for all $a \in \mathbb{Z}^n$. Then for all $d \in \mathbb{N}$ we define

$$M_d = \bigoplus_{|a|=d} M_a \text{ where } |a| = \sum_{j=1}^r |a_j|,$$
and set \(H(M, d) = \text{dim}_k M_d \). We call the function \(H(M, -): \mathbb{N} \to \mathbb{N} \) the Hilbert function, and the series \(H_M(t) = \sum_{d \geq 0} H(M, d)t^d \) the Hilbert series of \(M \).

We consider an example to illustrate our definition. Figure 1 displays the ideal \(I = (x^3, x^2y, y^2) \subset S = K[x, y] \). The grey area represents the monomial \(K \)-vector space spanned by the monomials in \(I \). The slanted lines represent \(S_d = \bigoplus_{|a|=d} S_a \).

Figure 1.

The \(S \)-modules \(I(a) \) with \(a = (4, 3) \) is an \(S \)-submodule of \(S_f \) where \(f = xy \). In Figure 2, the grey area displays \(I(a) \). For all \(d \in \mathbb{N} \), the boundaries of the squares of diagonal length 2\(d \), represent \(\bigoplus_{|a|=d} (S_f)_a \).

In this example, if we consider \(I(a) \) as a graded \(S \)-module in the usual sense, then \(I(a)_4 = I_{11} \), and hence \(\text{dim}_K I(a)_4 = 12 \). If we apply our new definition of \(M_d \) to \(I(a) \), then \(\text{dim}_K I(a)_4 = 15 \), as can be seen in the picture.

In case that \(f = 1 \), and \(M \) is a finitely generated \(\mathbb{Z}^n \)-graded \(S \)-module with the property that the multidegree of all generators of \(M \) belong to \(\mathbb{N}^n \), then our definition of the Hilbert function coincides with the usual definition. For properties of classical Hilbert series we refer to the book [1].

If we would define \(H(M, d) \) in the usual way as \(\text{dim}_K \left(\bigoplus_{a \in \mathbb{N}^n} \sum_{a_i = d} M_a \right) \), then this number would be in general infinite. On the other hand, our definition has the drawback, that the components \((S_f)_d \) don’t define a grading of \(S_f \). In other words, we do not have in general that \((S_f)_{d_1} (S_f)_{d_2} \subset (S_f)_{d_1 + d_2} \) for all \(d_1 \) and \(d_2 \). Nevertheless, we shall prove that \(H(I/J, d) \) is a polynomial function for \(d \gg 0 \).

In the case that \(J \subset I \subset S_f \) are monomial ideals, then the Hilbert function of \(I/J \) is given by

\[
H(I/J, d) = |\{a \in \mathbb{Z}^n \mid x^a \in I \setminus J \text{ and } |a| = d\}|.
\]

Let \(u = x_1^{a_1} \cdots x_n^{a_n} \in \text{Mon}(S_{[n]}) \). We set \(|u| = x_1^{|a_1|} \cdots x_n^{|a_n|}|. Then \(|u| \in \text{Mon}(S)\).
Figure 2.

Let \(S_{[n]} = K[x_1^{\pm 1}, \ldots, x_n^{\pm 1}] \) and \(K[Z] \subset S_{[n]} \) be a Stanley space. We set
\[
\overline{Z} = \{ x_i : x_i \in Z \text{ or } x_i^{-1} \in Z \}.
\]

Lemma 6.1. Let \(v \in \text{Mon}(S_{[n]}) \) such that
\[
\text{supp}_+(v) \cap \{ i : x_i^{-1} \in Z \} = \emptyset
\]
and
\[
\text{supp}_-(v) \cap \{ i : x_i \in Z \} = \emptyset.
\]
Then \(vK[Z] \cong |v|K[Z] \), and for each \(d \in \mathbb{N} \) we have
\[
(vK[Z])_d \cong (|v|K[Z])_d.
\]

Proof. Since \(v \in \text{Mon}(S_{[n]}) \) such that \(\text{supp}_+(v) \cap \{ i : x_i^{-1} \in Z \} = \emptyset \) and \(\text{supp}_-(v) \cap \{ i : x_i \in Z \} = \emptyset \), it follows that \(|vw| = |v||w| \) for all \(w \in K[Z] \). Therefore the map \(u \mapsto |u| \) induces for each \(d \) an isomorphism \((vK[Z])_d \cong (|v|K[Z])_d \) of \(K \)-vector spaces. □

Proposition 6.2. Let \(T_A = K[x_i^{\pm 1} : i \in A, x_{i_1}, \ldots, x_{i_t}] \subset S_{[n]} \), where \(\{i_1, \ldots, i_t \} \subset [n] \setminus A \). Let \(u \in \text{Mon}(S_{[n]}) \), \(u = x_1^{a_1}x_2^{a_2} \cdots x_n^{a_n} \) such that \(a_i \geq 0 \) for \(i \notin A \). We set \(u' = \prod_{i \notin A} x_i^{a_i} \). Then
\[
H_{uT_A}(t) = H_{u'T_A}(t) = t^{\deg(u')}H_{T_A}(t) = t^{\deg(u')(1 + t)^{|A|}} \frac{(1 + t)^{|A|}}{(1 - t)^d},
\]
where \(d = \dim T_A \).

Proof. Since \(uT_A = u'T_A \), it follows that \(H_{uT_A}(t) = H_{u'T_A}(t) \). In order to prove the second equality, we use the Stanley decomposition \(T_A = \bigoplus_{L \subset A} f_L^{-1}K[Z_L] \) where
$f_L = \prod_{i \in L} x_i$ and $Z_L = \{x_i^{-1} : i \in L\} \cup \{x_i : i \in A \setminus L\} \cup \{x_{i_1}, \ldots, x_{i_r}\}$, from which we obtain the Stanley decomposition

$$u'T_A = \bigoplus_{L \subseteq A} u'f_L^{-1}K[Z_L].$$

Applying Lemma 6.1, we obtain from this decomposition the following identities

$$H_{u'T_A}(t) = \sum_{k=0}^{|A|} \sum_{L \subseteq A, |L|=k} H_{u'f_L^{-1}K[Z_L]}(t) = \sum_{k=0}^{|A|} H_{u'f_L^{-1}K[Z_L]}(t)$$

$$= \sum_{k=0}^{|A|} \frac{t^{k+\deg(u')}}{(1-t)^d} = t^{\deg(u')} \sum_{k=0}^{|A|} \binom{|A|}{k} \frac{t^k}{(1-t)^d}$$

$$= t^{\deg(u')} \frac{(1+t)^{|A|}}{(1-t)^d} = t^{\deg(u')} H_{T_A}(t),$$

since $T_A = \bigoplus_{L \subseteq A} f_L^{-1}K[Z_L]$ and $H_{f_L^{-1}K[Z_L]} = \frac{(1+t)^{|A|}}{(1-t)^d}$ by Lemma 6.1, we get that

$$H_{T_A}(t) = \sum_{L \subseteq A} H_{f_L^{-1}K[Z_L]}(t) = \frac{(1+t)^{|A|}}{(1-t)^d}. \quad \square$$

It follows from the next result that the Hilbert series of finitely generated \mathbb{Z}^n-graded S_f-module I/J can be written as a rational function with denominator $(1-t)^d$, where $d = \dim I/J$.

Theorem 6.3. Let $A \subseteq [n], f = \prod_{i \in A} x_i$, and $J \subseteq I \subseteq S_f$ be monomial ideals. Then I/J admits a filtration

$$0 = M_0 \subset M_1 \subset \ldots \subset M_r = I/J$$

of \mathbb{Z}^n-graded S_f-submodules of I/J such that for each i we have

$$M_{i+1}/M_i \cong (S_f/P_i)(-a_i),$$

where $\{P_1, \ldots, P_r\}$ is a set of \mathbb{Z}^n-graded prime ideals of S_f containing all minimal prime ideals of I/J, and where $a_i \in \mathbb{N}^n$ with $a_i(j) = 0$ if $j \in A$. Moreover,

$$H_{I/J}(t) = \sum_{i=1}^r H_{S_f/P_i(-a_i)}(t) \quad \text{and} \quad H_{S_f/P_i(-a_i)}(t) = \frac{Q_i(t)(1+t)^{|A|}}{(1-t)^{d_i}},$$

where $d_i = \dim S_f/P_i$ and $Q_i(t)$ is a polynomial with $Q_i(1) = 1$. In particular, $H_{I/J}(t) = Q(t)/(1-t)^d$ with $Q(1) = k \cdot 2^{|A|}$, where

$$k = \{|i : \dim S_f/P_i = d|\} \quad \text{and} \quad d = \dim I/J.$$

Proof. Since $J \subseteq I \subseteq S_f$ monomial ideals, we may assume that $\supp(u) \subseteq [n] \setminus A$ for all $u \in G(I) \cup G(J)$, see Proposition 11.1. Let $S' = K[x_i : i \notin A] \subseteq S$ be the polynomial ring over K. Then there exist monomial ideals $J' \subseteq I' \subseteq S'$ such that $J = J'S_f$, $I = I'S_f$. Consider a prime filtration

$$J' = I_0 \subset I_1 \subset \ldots \subset I_r = I'$$

10
of I'/J' where $I_{i+1}/I_i \cong (S'/p_i)(-a_i)$, where p_i is a monomial prime ideal $a_i \in \mathbb{N}^n$ with $a_i(j) = 0$ if $j \in A$. It follows that

$$J = J'S_f = I_0S_f \subset I_1S_f \ldots \subset I_rS_f = I$$

is a prime filtration of I/J with $I_{i+1}S_f/I_iS_f \cong S_f/P_i(-a_i)$ where $p_iS_f = P_i$. Because of the additivity of our Hilbert function, it suffices to show that

$$H_{S_f/P_i(-a_i)}(t) = Q_i(t)H_{S_f/P_i}(t)$$

for some polynomial $Q_i(t)$ with $Q_i(1) \neq 0$. But this follows from Proposition 6.2. The rest of the statements are obvious. □

For the proof of our main result, we need the following

Lemma 6.4. Let $uK[Z]$ be a Stanley space of S_f. Then $H_{uK[Z]}(t) = Q(t)/(1 - t)^m$ where $Q(1) = 1$ and $m = |Z|$.

Proof. Let $u = x_1^{a_1} \cdots x_n^{a_n}$, and let \mathcal{I} be the set of indices i for which either $a_i > 0$ and $x_i \in Z$, or $a_i < 0$ and $x_i \in Z$. Then we set $r = \sum_{i \in \mathcal{I}} |a_i|$, and prove the lemma by induction on $s = \min\{r, m\}$. If $m = 0$, then the assertion is trivial, and if $r = 0$, then the result follows from Lemma 6.1.

Now let $s > 0$. Then we may assume that $a_1 > 0$ and $x_1 \in Z$. In this case we have the following direct sum of K-vector spaces

$$uK[Z] = uK[Z \setminus \{x_1^{-1}\}] \oplus vK[Z],$$

where $v = x_1^{a_1-1} \cdots x_n^{a_n}$. In the first summand m is smaller and in the second r is smaller than the corresponding numbers for $uK[Z]$. Thus we may apply our induction hypothesis according to which there exist polynomials $Q_1(t)$ and $Q_2(t)$ with $Q_1(1) = 1$, and such that

$$H_{uK[Z \setminus \{x_1^{-1}\}]}(t) = Q_1(t)/(1 - t)^{m-1} \quad \text{and} \quad H_{vK[Z]}(t) = Q_2(t)/(1 - t)^m.$$

It follows that $H_{uK[Z]}(t) = Q(t)/(1 - t)^m$ with $Q(t) = Q_1(t)(1 - t) + Q_2(t)$. Since $Q(1) = 1$, the proof is completed. □

Theorem 6.5. Let $J \subset I \subset S_f$ be monomial ideals, $\mathcal{D} : I/J = \bigoplus_{i=1}^r u_iK[Z_i]$ a Stanley decomposition of I/J and $d = \max\{|Z_i| : i \in 1, 2, \ldots, r\}$. Then $H_{I/J}(t) = P_{I/J}(t)/(1 - t)^d$ with $P_{I/J}(1) = \{|i: |Z_i| = d\}$.

Proof. We have

$$H_{I/J}(t) = \sum_{i=1}^r H_{u_iK[Z_i]}(t)$$

By Lemma 6.4, for all $i \in \{1, 2, \ldots, r\}$ we obtain that $H_{u_iK[Z_i]}(t) = \frac{Q_i(t)}{(1 - t)^{|Z_i|}}$, where $Q_i(1) = 1$. Thus

$$H_{I/J}(t) = \sum_{i=1}^r \frac{Q_i(t)}{(1 - t)^{|Z_i|}} = \frac{P_{I/J}(t)}{(1 - t)^d}$$

where, $P_{I/J}(t) = \sum_{i=1}^r (1 - t)^{d-|Z_i|}Q_i(t)$. It follows that $P_{I/J}(1) = \{|i: |Z_i| = d\}$.

□
This Theorem implies that the number of Stanley spaces of maximal dimension in a Stanley decomposition of I/J is independent of the special Stanley decomposition of I/J.

Proposition 2.1 and Theorem 6.5 yield the following result.

Corollary 6.6. The number of Stanley spaces of maximal dimension in any Stanley decomposition of S_f is equal to $2^{|A|}$.

We conclude our paper with the following concrete example.

Example 6.7. Let $S = K[x, y, z]$ and $f = z$. Then $S_f = K[x, y, z^{±1}]$. Let $J = (x^2) \subset I = (x, y^2) \subset S_f$ be monomial ideals in S_f. A Stanley decomposition of I/J is $xK[y, z] \oplus xz^{-1}K[y] \oplus xz^{-2}K[y, z^{-1}] \oplus y^2K[y, z] \oplus y^2z^{-1}K[y, z^{-1}]$. Thus in any other Stanley decomposition of I/J the number of maximal Stanley spaces is 4. Calculating the Hilbert function of I/J by using this Stanley decomposition we find that $H_{I/J}(t) = \frac{t + 2t^2 + t^3}{(1-t)^2}$. Thus $P(t) = t + 2t^2 + t^3$, and $P(1) = 4$, as expected.

References

[1] W. Bruns, J. Herzog, *Cohen-Macaulay rings*, Revised Edition, Cambridge, 1996.
[2] J. Herzog, M. Vladoiu, X. Zheng, How to compute the Stanley depth of a monomial ideal. J. Alg. in press.
[3] A. Soleyman Jahan, Prime filtrations of monomial ideals and polarizations. J. Alg. **312**(2)(2007), 1011–1032.
[4] S. Nasir, Stanley decompositions and localization, Bull. Math. Soc. Sc. Math. Roumanie, **51**(99), no. 2, (2008), 151-158 (see www.rms.unibuc.ro/bulletin).
[5] A. Rauf, Stanley decompositions, pretty clean filtrations and reductions modulo regular elements, Bull. Math. Soc. Sc. Math. Roumanie, **50**(98), no. 4, (2007), 347-354 (see www.rms.unibuc.ro/bulletin).
[6] A. Rauf, Depth and Stanley depth of multigraded modules, *Comm. Alg.*, **38** (2010), 773–784.

SUMIYA NASIR, ABDUS SALAM SCHOOL OF MATHEMATICAL SCIENCES, GC UNIVERSITY, LAHORE, PAKISTAN

E-mail address: snasir@sms.edu.pk

ASIA RAUF, ABDUS SALAM SCHOOL OF MATHEMATICAL SCIENCES, GC UNIVERSITY, LAHORE, PAKISTAN

E-mail address: asia.rauf@gmail.com