NONSTABLE K–THEORY FOR EXTENSION ALGEBRAS OF THE SIMPLE PURELY INFINITE C^*–ALGEBRA BY CERTAIN C^*–ALGEBRAS

ZHIHUA LI * AND YIFENG XUE **

Abstract. Let $0 \rightarrow B \stackrel{j}{\rightarrow} E \stackrel{\pi}{\rightarrow} A \rightarrow 0$ be an extension of A by B, where A is a unital simple purely infinite C^*–algebra. When B is a simple separable essential ideal of the unital C^*–algebra E with $RR(B) = 0$ and (PC), $K_0(E) = \{[p] \mid p$ is a projection in $E \setminus B\}$; When B is a stable C^*–algebra, $\mathcal{U}(C(X, E))/\mathcal{U}_0(C(X, E)) \cong K_1(C(X, E))$ for any compact Hausdorff space X.

Keywords K–groups; simple purely infinite C^*–algebra; real rank zero.
2000 MR Subject Classification 46L05.

1. Introduction

Let \mathcal{E} be a C^*–algebra. Denote by $M_n(\mathcal{E})$ the C^*–algebra of all $n \times n$ matrices over \mathcal{E}. If \mathcal{E} is unital, write $\mathcal{U}(\mathcal{E})$ to denote the unitary group of \mathcal{E} and $\mathcal{U}_0(\mathcal{E})$ to denote the connected component of the unit in $\mathcal{U}(\mathcal{E})$. Put $U(\mathcal{E}) = \mathcal{U}(\mathcal{E})/\mathcal{U}_0(\mathcal{E})$. If \mathcal{E} has no unit, we set $U(\mathcal{E}) = \mathcal{U}(\mathcal{E}^+)/\mathcal{U}_0(\mathcal{E}^+)$, where \mathcal{E}^+ is the C^*–algebra obtained by adding a unit to \mathcal{E}. Two projections p, q in \mathcal{E} are equivalent, denoted $p \sim q$, if $p = v^*v, q = vv^*$ for some $v \in \mathcal{E}$. Let $[p]$ denote the equivalence of p with respect to \sim. Let p, r be projections in \mathcal{E}. $[p] \leq [r]$ (resp. $[p] < [r]$) means that there is projection $q \leq r$ (resp. $q < r$) such that $p \sim q$. A projection p in \mathcal{E} is called to be infinite, if $[p] < [p]$. The simple C^*–algebra \mathcal{E} is called to be purely infinite if every nonzero hereditary subalgebra of \mathcal{E} contains an infinite projection.

Let $K_0(\mathcal{E})$ and $K_1(\mathcal{E})$ be the K–groups of the C^*–algebra \mathcal{E} and let $i_\mathcal{E}: U(\mathcal{E}) \rightarrow K_1(\mathcal{E})$ be the canonical homomorphism (cf. [1]).

The main tasks in non–stable K–theory are how to use the projection in \mathcal{E} to represent $K_0(\mathcal{E})$ and how to show $i_\mathcal{E}$ is isomorphic. Cuntz showed in [2] that $K_0(\mathcal{E}) \cong \{[p] \mid p \in \mathcal{E}$ nonzero projection\} and $i_\mathcal{E}$ is isomorphic, when \mathcal{E} is a simple unital purely infinite C^*–algebra. Rieffel and Xue proved
that under some restrictions of stable rank on the C^\ast–algebra E, i_E may be injective, surjective or isomorphic (cf. [6, 7], [12]).

Let B be a closed ideal of a unital C^\ast–algebra E. Let $\pi: E \rightarrow E/B = A$ be the quotient map. We will use these symbols E, B, A and π throughout the paper. Liu and Fang proved in [5] that

1. $K_0(E) = \{[p]| p \text{ is a projection in } E\B\}$ and

2. $i_E: U(E) \rightarrow K_1(E)$ is isomorphic.

when $B = K$ (the algebra of compact operators on some separable Hilbert space) and A is a unital simple purely infinite C^\ast–algebra. Visinescu showed in [10] that the above results are also true when B is purely infinite.

In this short note, we show that (1) is true when B is a separable simple C^\ast–algebra with $\text{RR}(B) = 0$ and (PC) (see §2 below) and A is unital simple purely infinite; We also prove that $i_{C(X,E)}$ is isomorphic for any compact Hausdorff space X when B is stable and A is unital simple purely infinite.

2. K_0–GROUP OF THE EXTENSION ALGEBRA

Let E be a C^\ast–algebra. E is of real rank zero, denoted by $\text{RR}(E) = 0$, if every self–adjoint element in E can be approximated by a self–adjoint element in E with finite spectra (cf. [3]). A non–unital, σ–unital C^\ast–algebra E with $\text{RR}(E) = 0$ is said to have property (PC) if it has finitely many (densely defined) traces, say $\{\tau_1, \ldots, \tau_k\}$ such that following conditions are satisfied:

1. there is an approximate unit $\{e_n\}$ of E consisting of projections such that $\lim_{n \to \infty} \tau_i(e_n) = \infty$, $i = 1, \ldots, k$;

2. for two projections $p, q \in E$, if $\tau_i(p) < \tau_i(q)$, $i = 1, \ldots, k$, then $[p] \leq [q]$.

Obviously, stable simple AF–algebras with only finitely many extremal traces have (PC) and $A_\theta \otimes K$ also has (PC), where A_θ is the irrational rotation algebra and K is the algebra of compact operators on some complex separable Hilbert space.

Remark 2.1. Let E be a non–unital, σ–unital C^\ast–algebra with $\text{RR}(E) = 0$ and (PC). Let $\{f_n\}$ be an approximate unit of E consisting of increased projections. Suppose $\lim_{n \to \infty} \tau_i(e_n) = \infty$, $i = 1, \ldots, k$, for some approximate unit $\{e_n\}$ of E consisting of projections. Then there $\{e_{n_j}\} \subset \{e_n\}$ such that $\tau_i(e_{n_j}) > j$, $j \geq 1$, $i = 1, \ldots, k$. Since $\lim_{s \to \infty} \|fs_{e_{n_j}} f_s - e_{n_j}\| = 0$, $j \geq 1$, we can find projections $f_{s_j} \leq f_s$ for s large enough such that $f_{s_j} \sim e_{n_j}$, $j \geq 1$. Then

$$\tau_i(f_s) \geq \tau_i(f_{s_j}) = \tau_i(e_{n_j}) > j, \quad i = 1, \ldots, k,$$
so that \(\lim_{n \to \infty} \tau_i(f_n) = \infty, \ i = 1, \cdots, k. \)

With symbols as above, we can extend \(\tau_i \) to \(M(\mathcal{E}) \) by \(\tau_i(x) = \sup_{n \geq 1} \tau_i(f_n x f_n) \)

for positive element \(x \in M(\mathcal{E}) \) (cf. \[11, \text{P324}] \), \(i = 1, \cdots, k \), where \(M(\mathcal{E}) \) is the multiplier algebra of \(\mathcal{E} \).

Lemma 2.2. Suppose that \(\mathcal{B} \) is an essential ideal of \(E \) and \(A, \mathcal{B} \) are simple. Then every positive element in \(E \setminus \mathcal{B} \) is full.

Proof. Let \(a \in E \setminus \mathcal{B} \) with \(a \geq 0 \) and let \(I(a) \) be closed ideal generated by \(a \) in \(E \). Since \(\pi(I(a)) \) is a nonzero closed ideal in \(A \) and \(A \) is simple, we get that \(1_A \in \pi(I(a)) \) and hence there is \(x \in \mathcal{B} \) such that \(1_E + x \in I(a) \). Since \(\mathcal{B} \) is an essential ideal, it follows that \(aB a \neq \{0\} \). Choose a nonzero element \(b \in aB a \subset I(a) \). Since \(\mathcal{B} \) is simple, \(x \) is in the closed ideal of \(\mathcal{B} \) generated by \(b \). Thus, \(x \in I(a) \) and consequently, \(1_E \in I(a) \). \(\Box \)

The following lemma slightly improves Lemma 2.1 of \[10\], whose proof is essentially same as it in \[11\] Lemma 3.2 and \[10\] Lemma 2.1.

Lemma 2.3. Suppose that \(\text{RR}(\mathcal{B}) = 0 \). Let \(p, q \) be projections in \(E \) and assume that there is \(v \in A \) such that \(\pi(p) = v^*v \) and \(vv^* \leq \pi(q) \) in \(A \). Then there is a projection \(e \in pBp \) and a partial isometry \(u \in E \) such that \(p - e = u^*u \), \(uu^* \leq q \) and \(\pi(u) = v \).

Proof. Let \(v \in A \) such that \(\pi(p) = v^*v \), \(vv^* \leq \pi(q) \). Choose \(u_0 \in E \) such that \(\pi(u_0) = v \) and set \(w = qu_0p \). Then \(\pi(w^*w) = \pi(p) \), \(\pi(w) = v \). Thus, \(p - w^*w \in pBp \). Since \(\text{RR}(\mathcal{B}) = 0 \), \(pBp \) has an approximate unit consisting of projections. So there is a projection \(e \in pBp \) such that

\[
\|(p - e)(p - w^*w)(p - e)\| = \|(p - e) - (p - e)w^*w(p - e)\| < 1.
\]

Then \(z = (p - e)w^*w(p - e) \) is invertible in \((p - e)E(p - e) \) and \(\pi(z) = \pi(p) \). Let \(s = ((p - e)w^*w(p - e))^{-1} \), i.e., \(zs = sz = p - e \). Then \(\pi(s) = \pi(p) \). Put \(u = ws^{1/2} \). Then \(uu^* = wsw^* \leq q \), \(\pi(u) = v \) and

\[
\begin{align*}
 u^*u &= s^{1/2}w^*ws^{1/2} = s^{1/2}(p - e)w^*w(p - e)s^{1/2} \\
 &= (p - e)w^*w(p - e)s = p - e.
\end{align*}
\]

\(\Box \)

Lemma 2.4. Suppose that \(A \) is unital simple purely infinite and \(\mathcal{B} \) is an essential ideal of a unital \(C^* \)-algebra \(E \), moreover \(\mathcal{B} \) is separable simple with \(\text{RR}(\mathcal{B}) = 0 \) and \(\text{PC} \). Let \(p, q \) be projections in \(E \setminus \mathcal{B} \) and let \(r \) be a nonzero projection in \(pBp \). Then there is a projection \(r' \) in \(qBq \) such that \(|r| \leq |r'| \).
Proof. Since \mathcal{B} has (PC), there are densely defined traces τ_1, \cdots, τ_k on \mathcal{B} and an approximate unit $\{f_n\}$ of \mathcal{B} consisting of increased projections such that $\lim_{n \to \infty} \tau_i(f_n) = \infty$, $i = 1, \cdots, k$ and $\tau_i(e) < \tau_i(f)$, $i = 1, \cdots, k$ implies that $[e] \leq [f]$ for any two projections e, f in \mathcal{B}.

By Lemma 2.2, there are $x_1, \cdots, x_m \in \mathcal{B}$ such that $\sum_{i=1}^{m} x_i^* q x_i = 1_E$. We regard E as a C^*-subalgebra of $M(\mathcal{B})$ for \mathcal{B} is essential. Thus,

$$\infty = \tau_i(1_E) = \sum_{j=1}^{m} \tau_i(x_j^* q x_j) \leq \sum_{j=1}^{m} \tau_i(\|x_j\|^2 q),$$

i.e., $\tau_i(q) = \infty$, $i = 1, \cdots, k$. Let r be a nonzero projection in $p\mathcal{B}p$. Let $\{g_n\}$ be an approximate unit for $q\mathcal{B}q$ consisting of increased projections. Since $\sup_{n \geq 1} \tau_i(g_n) = \tau_i(q) = \infty$, $i = 1, \cdots, k$, it follows that there is n_0 such that $\tau_i(g_{n_0}) > \tau_i(r)$, $i = 1, \cdots, k$. Put $r' = g_{n_0}$. Then we get $[r] \leq [r']$. \hfill \Box

Now we can prove the main result of the section as follows:

Theorem 2.5. Suppose that \mathcal{A} is unital simple purely infinite and \mathcal{B} is an essential ideal of E, moreover \mathcal{B} is separable simple with $\text{RR}(\mathcal{B}) = 0$ and (PC). Then

$$K_0(E) = \{ [p] \mid p \text{ is a projection in } E \setminus \mathcal{B} \}.$$

Proof. Set $\mathcal{P}(E) = \{ p \text{ is a projection in } E \setminus \mathcal{B} \}$. By [2, Theorem 1.4], when $\mathcal{P}(E)$ satisfies following conditions:

$$(\Pi_1)\text{ If } p, q \in \mathcal{P}(E) \text{ and } pq = 0, \text{ then } p + q \in \mathcal{P}(E);$$

$$(\Pi_2)\text{ If } p \in \mathcal{P}(E) \text{ and } p' \text{ is a projection in } E \text{ such that } p \sim p', \text{ then } p' \in \mathcal{P}(E);$$

$$(\Pi_3)\text{ For any } p, q \in \mathcal{P}(E), \text{ there is } p' \text{ such that } p' \sim p, p' < q \text{ and } q - p' \in \mathcal{P}(E);$$

$$(\Pi_4)\text{ If } q \text{ is a projection in } E \text{ and there is } p \in \mathcal{P}(E) \text{ such that } p \leq q, \text{ then } p \in \mathcal{P}(E),$$

then $K_0(E) = \{ [p] \mid p \in \mathcal{P}(E) \}$. Therefore, we need only check that $\mathcal{P}(E)$ satisfies above conditions.

Let $\mathcal{P}(A)$ be the set of all nonzero projections in \mathcal{A}. By [2, Proposition 1.5], $\mathcal{P}(A)$ satisfies $(\Pi_1) \sim (\Pi_4)$. Clearly, $\mathcal{P}(E)$ satisfies (Π_1), (Π_2) and (Π_4). We now show that $\mathcal{P}(E)$ satisfies (Π_3).

Let $p, q \in \mathcal{P}(E)$. Then there exists a projection $f \in \mathcal{P}(A)$, such that $f \sim \pi(p)$, $f < \pi(q)$ and $\pi(q) - f \in \mathcal{P}(A)$, that is, there is a partial isometry $v \in A$ such that $f = vv^* < \pi(q)$ and $\pi(p) = v^* v$. Thus, there are $u \in E$ and a projection $r \in p\mathcal{B}p$ such that $p - r = u^* u$, $uu^* \leq q$ and $\pi(u) = v$ by Lemma 2.3. Note that $q - uu^* \notin \mathcal{B}$ and $(q - uu^*)\mathcal{B}(q - uu^*) \neq \{0\}$ (B is an
we have following exact sequence of groups:

\[j \quad \text{(cf. [12, lemma 2.2]), where} \ E \quad \text{we say} \ \partial \ \text{(for} \ \pi \ \text{in} \ M_{\pi} \text{w essential ideal). Then by Lemma 2.4, there is}\]

\[p \quad \text{jection}\]

\[\text{24.4.3 of [1] that the sequence of groups}\]

\[\text{functor, it follows from Proposition 21.4.1, Corollary 21.4.2 and Theorem}\]

\[i\]

\[\text{is isomorphic and}\]

\[\partial \quad \text{We also have the exact sequence}\]

\[\text{Suppose that}\]

\[\text{Combining (3.1), (3.2) with (3.3), we have following diagram}\]

\[\text{Proof. Combining (3.1), (3.2) with (3.3), we have following diagram}\]

\[\eta = \partial_0 \circ i_A, \ \pi_* \circ i_E = i_A \circ \pi_*, \ j_* \circ i_B = i_E \circ j_* .\]
Since \(e_\ast \) is isomorphic, it follows from the commutative diagram
\[
\begin{array}{ccc}
U(SA) & \xrightarrow{i_\ast} & U(C_\pi) \\ \downarrow i_{SA} & & \downarrow i_{C_\pi} \\ K_1(SA) & \xrightarrow{i_\ast} & K_1(C_\pi)
\end{array}
\]
that \(\partial \circ i_{SA} = i_B \circ \partial \). Thus, (3.4) is a commutative diagram. Using the Five–Lemma to (3.4), we can obtain the assertion. \(\square \)

For a \(C^\ast \)–algebra \(\mathcal{E} \), let \(csr(\mathcal{E}) \) and \(gsr(\mathcal{E}) \) be the connected stable rank and general stable rank of \(\mathcal{E} \), respectively, defined in [6]. We summarize some properties of these stable ranks as follows:

Lemma 3.2. Let \(\mathcal{E} \) be a \(C^\ast \)–algebra. Then

1. \(gsr(\mathcal{E}) \leq csr(\mathcal{E}) \) (cf. [6]);
2. \(csr(\mathcal{E}) \leq 2 \) when \(\mathcal{E} \) is a stable \(C^\ast \)–algebra (cf. [9, Theorem 3.12]);
3. \(\mathcal{E} \) has 1–cancellation if \(gsr(\mathcal{E}) \leq 2 \) (cf. [12]);
4. if \(csr(\mathcal{E}) \leq 2 \) and \(gsr(C(S^1, \mathcal{E})) \leq 2 \), then \(i_\mathcal{E} \) is isomorphic (cf. [7, Theorem 2.9] or [12, Corollary 2.2]).

Now we present the main result of this section as follows:

Theorem 3.3. Assume that \(\mathcal{A} \) is a unital simple purely infinite \(C^\ast \)–algebra and \(\mathcal{B} \) is a stable \(C^\ast \)–algebra. Let \(X \) be a compact Hausdorff space. Then \(i_{C(X, \mathcal{E})} \) is an isomorphism.

Proof. If \(\mathcal{B} \) is stable, then so is \(C(Y, \mathcal{B}) \) for any compact Hausdorff space \(Y \). Thus, \(gsr(C(S^1, C(X, \mathcal{B}))) \leq 2 \) and \(csr(C(X, \mathcal{B})) \leq 2 \) by Lemma 3.2 (1) and (2). So we get that \(i_{C(X, \mathcal{B})} \) is isomorphic by Lemma 3.2 (4). Since \(\mathcal{A} \) is unital simple purely infinite, it follows from [12, Corollary 3.1] that \(i_{C(X, \mathcal{A})} \) and \(i_{SC(X, \mathcal{A})} \) are all surjective. Now we prove \(i_{C(X, \mathcal{A})} \) is injective by using some methods appeared in [8].

Let \(f \in \mathcal{U}(C(X, \mathcal{A})) \) with \(i_{C(X, \mathcal{A})}(\langle f \rangle) = 0 \) in \(K_1(C(X, \mathcal{A})) \). Let \(p \) be a non–trivial projection in \(\mathcal{A} \). Then there exists \(g \in \mathcal{U}(C(X, p\mathcal{A})) \) such that \(f \) is homotopic to \(g + 1 - p \) by [13, Lemma 2.7]. Thus, there is a continuous path \(f_t : [0, 1] \to \mathcal{U}(M_{n+1}(C(X, \mathcal{A}))) \) such that \(f_0 = 1_{n+1} \) and \(f_1 = \text{diag}(g + 1 - p, 1_n) \) for some \(n \geq 2 \). Since \(M_{n+1}(\mathcal{A}) \) is purely infinite, we can find a partial isometry \(v = (v_{ij}) \in M_{n+1}(\mathcal{A}) \) such that \(\text{diag}(1 - p, 1_n) = v^*v, vv^* \leq \text{diag}(1 - p, 0) \). Consequently, we get that

\[
v_{11}'v_{11} = 1 - p, \ v_{1j}'v_{1j} = 1, \ v_{1i}'v_{1i} = 0, \ i \neq j, \sum_{i=1}^{n+1} v_{ii}v_{ii}' \leq 1 - p.
\]
Set \(v_1 = p + v_{11}, \) \(v_i = v_{1i}, \) \(i = 2, \cdots, n + 2. \) Then \(v_1, \cdots, v_{n+1} \) are isometries in \(\mathcal{A} \) and \(v_i^* v_j = 0, \) \(i \neq j, \) \(s = \sum_{i=1}^{n+1} v_i v_i^* \) is a projection. Put

\[
w_t(x) = (v_1, \cdots, v_{n+1}) f_t(x) \left(\begin{array}{c} v_1^* \\ v_2^* \\ \vdots \\ v_{n+1}^* \end{array} \right) + 1 - s, \quad t \in [0, 1], \ x \in X.\]

It is easy to check that \(w_t \) is a continuous path in \(\mathfrak{U}(M_n(\mathbb{C}(X, \mathcal{A}))) \) with \(w_0 = 1 \) and \(w_1 = g + 1 - p. \) Thus, \(i_{\mathcal{A}(X, \mathcal{A})} \) is injective.

The final result follows from Proposition [3.1].

Combining Theorem 3.3 with standard argument in Algebraic Topology, we can get

Corollary 3.4. Let \(\mathcal{A}, \mathcal{B} \) and \(E \) be as in Theorem 3.3. Then

\[
\pi_n(\mathfrak{U}(E)) = \begin{cases}
K_0(E) & n \text{ odd} \\
K_1(E) & n \text{ even}
\end{cases}
\]

References

[1] Blackadar, B., *K*-theory for operator algebras, New York: Springer-Verlag Press, 1986.
[2] Cuntz, J., *K*-theory for certain \(C^* \)-algebras. *J. Ann. Math.*, 113(1981), 181–197.
[3] Brown, L.G. and Pedersen, G.K., \(C^* \)-algebras of real rank zero. *J. Funct. Anal.*, 99(1991), 131–149.
[4] Higson, H. and Rørdam, M., The Weyl–Von Neumann theorem for multipliers of some AF-algebras, *Canadian J. Math.*, 43(2) (1991), 322–330.
[5] Liu, S and Fang, X., *K*-theory for extensions of purely infinite simple \(C^* \)-algebras, *Chinese Ann. of Math.*, 29A(2)(2008), 195–202.
[6] Rieffel, M.A., Dimensional and stable rank in the *K*-theory of *C*-Algebras, *Proc. London Math. Soc.*, 46(3) (1983), 301–333.
[7] Rieffel, M.A., The homotopy groups of the unitary groups of non-commutative tori, *J. Operator Theory*, 17 (1987), 237–254.
[8] Rørdam, M., Larsen, F. and Laustsen, N., An introduction to K-theory for \(C^* \)-algebras, *London Math. Soc. Student Text*, 49, Cambridge University Press, 2000.
[9] Sheu, A.J.L., A cancellation theorem for modules over the group \(C^* \)-algebras of certain nilpotent Lie groups, *Canadian J. Math.*, 39(1987), 365–427.
[10] Visinescu, B., Topological structure of the unitary group of certain \(C^* \)-algebras. *J. Operator Theory*, 60 (2008), 113–124.
[11] Xue, Y., The reduced minimum modulus in \(C^* \)-algebras, *Integr. equ. Oper. Theory*, 59 (2007), 269–280.
[12] Xue, Y., The general stable rank in nonstable \(K \)-theory, *Rocky Mountain J. Math.*, 30(2)(2000), 761–775.
[13] Zhang, S., On the homotopy type of the unitary group and the Grassmann space of purely infinite simple \(C^* \)-algebras, *K-Theory*, 24(2001), 203–225.