Sex differences in the prevalence of obesity in 800,000 Chinese adults with type 2 diabetes

Running title: obesity in T2D

Fang Lv¹, Xiaoling Cai*¹, Chu Lin¹, Tianpei Hong², Xiaomei Zhang³, Zhufeng Wang⁴, Huifang Xing⁵, Guizhi Zong⁶, Juming Lu⁷, Xiaohui Guo⁸, Jing Wu¹, Leili Gao¹, Xianghai Zhou¹, Xueyao Han¹, Linong Ji*¹.

¹Department of Endocrinology and Metabolism, Peking University People’s Hospital, Beijing, China;
²Department of Endocrinology and Metabolism, Peking University Third Hospital, Beijing, China;
³Department of Endocrinology, Peking University International Hospital, Beijing, China;
⁴Department of Endocrinology and Metabolism, China Academy of Traditional Chinese Medicine Guanganmen Hospital, Beijing, China;
⁵Department of Endocrinology and Metabolism, Beijing Mentougou Hospital, Beijing, China;
⁶Department of Endocrinology and Metabolism, Beijing Jingmei Group General hospital, Beijing, China;
⁷Department of Endocrinology, Chinese PLA General Hospital, Beijing, China;
⁸Department of Endocrinology, Peking University First Hospital, Beijing, China.

Copyright © 2019 the authors
*Correspondence: Xiaoling Cai and Linong Ji

Xiaoling Cai, Department of Endocrinology and Metabolism, Peking University People’s Hospital, No 11, Xizhimen South Street No.11, Xicheng District, Beijing, China. E-mail: dr_junel@sina.com, Tel: +86 10 88324105;

Linong Ji, Department of Endocrinology and Metabolism, Peking University People's Hospital, Xizhimen South Street No.11, Xicheng District, Beijing, China. Tel: +86 10 88325578; Fax:+86 10 68358517; e-mail: jiln@bjmu.edu.cn.
Abstract

Aims: To estimate the sex differences in the prevalence of overweight and obesity aged 20-89 in Chinese patients with type 2 diabetes (T2D).

Methods: 811,264 patients with T2D from six hospital-based, cross-sectional studies, and 46,053 subjects from general population were included in our analysis. Prevalence of underweight, overweight, obesity were calculated in each sex.

Results: In patients with T2D, the standardized prevalence of underweight (BMI <18.5 kg/m²), overweight (24 kg/m² ≤ BMI< 28 kg/m²), and general obesity (BMI ≥28 kg/m²) were 2.2%, 43.2%, and 11.6%, respectively. Similar trend patterns of the prevalence of underweight and overweight were observed in general and T2D population, in males and females with T2D (all p for trend <0.01). In patients with T2D, patients at younger age and older age were more likely to be underweight. The prevalence of overweight increased first, then stabilized or decreased with age. However, different trend patterns of the prevalence of obesity in males and females were found. In males, the prevalence of obesity decreased first, and then stabilized after 60 years of age. In females, the prevalence of obesity decreased first, then increased after 50 years of age. In general population, the prevalence of obesity increased with age in females, while, the trend of prevalence of obesity with age in males was not obvious.

Conclusion: Different trends in the prevalence of obesity with age in different sex were found in Chinese patients with T2D.

key words: Sex differences; obesity; overweight; type 2 diabetes.
Introduction

It was well-known that the prevalence of overweight and obese is increasing worldwide. It was reported that 39% of adults aged more than 18 years were overweight, and about 13% of the world’s adult population were obese in 2016 [Obesity and overweight. https://www.who.int/en/news-room/fact-sheets/detail/obesity-and-overweight. 1 April 2020.]. It was also suggested that the epidemic of obesity and overweight [1] was associated with the increased risk of type 2 diabetes (T2D) [2-3]. In China, approximately 31.3%-37.1% patients with T2D were obese or overweight [4-6].

As obesity was one of the risk factors for cardiovascular diseases (CVD) in patients with T2D, management of body weight was highly recommended. It was demonstrated that weight loss could result in various metabolic benefits, including glycaemic control, blood pressure improvement, and lipid profiles management [7-9]. In patients with T2D, weight loss was associated with a reduced risk of CVD [10-11]. Therefore, curbing or reversing BMI in a reasonable range is quite important, which might affect the medical resources utilization and health care policies making, especially in people with diabetes.

To fulfill the management of body weight in patients with T2D, it is important to understand the trends in the prevalence of obesity and overweight with age. So far, few studies estimated the obesity trends with age in the overall population. In a
Chinese population, it was found that men ages 45 to 54 years had the highest prevalence of overweight and obesity, whereas the prevalence varied among age groups in women in general population [12]. It was also observed that males reached their highest prevalence of obesity at 45-54 years of age, whereas females had the highest obesity prevalence at 55-64 years in a southern China population [13]. However, data of the distribution trend in BMI stratified by sex and age in Chinese patients with T2D is lacking.

Therefore, our aims were to delineate the trends in BMI and the trends in the prevalence of overweight, obesity with age in Chinese male and female patients with T2D, which we believe would provide useful guidance on intervention strategies for weight control and nutrition management in T2D.

Methods

Study design

We used data from several studies to describe the trends of BMI and prevalence of underweight, overweight, and obesity among Chinese patients with T2D, aged 20-89 years. The China National Diabetes and Metabolic Disorders Study (conducted in 2007-2008) was used as a reference data for general population in China. We used data sets for patients with T2D from 6 studies: China National HbA1c Surveillance System (CNHSS) from 2009 to 2012, China Cardiometabolic Registries 3B study (CCMR-3B, conducted in 2010-1011), and China-DiaLEAD (conducted in 2016). The inclusion criteria was as following: participants with T2D aged 20-89 years;
participants with available data on age, sex and detailed physical examination (e.g., weight and height). The exclusion criteria was as follows: those being pregnant or lactating at the time of survey; and those with missing or implausible outlying data.

The design and data of the seven studies have been published previously [14-19]. In brief, the China National Diabetes and Metabolic Disorders Study, conducted from June 2007 through May 2008, was a cross-sectional study designed to provide reliable data on the prevalence of diabetes and associated metabolic risk factors in the adult population in China. This study used a complex multistage stratified sampling method according to geographical region, economic development status, and degree of urbanization. CNHSS study was launched by the Chinese Diabetes Society in 2009 to monitor glycaemic control in outpatients with T2D in China. The CCMR-3B was an observational, cross-sectional, multicenter study, conducted across China from Aug 2010 to March 2011 with the aim to investigate blood glucose, blood lipid, and blood pressure control status in patients with T2D. China-DiaLEAD was a cross-sectional study which aimed to assess the epidemiological characteristics of lower extremity arterial disease in Chinese diabetes patients at high risk. The number of participants and the inclusion and exclusion criteria for each study were collected in Supplemental Table 1.

All the studies were approved by the institutional review board or independent ethics committee of each participating institution. All participants gave written informed consent.

Measures and definitions
Weight, and height were measured following standardized protocols from the World Health Organization (WHO) or self-reported. BMI was calculated as weight in kilograms divided by height in meters squared. The BMI cutoff points were recommended by WHO and Working Group for Obesity in China (WGOC) [20], which were used to define underweight, normal weight, overweight and obesity. Using the WHO criteria, normal weight was $18.5 \text{ kg/m}^2 \leq \text{BMI} < 25 \text{ kg/m}^2$, overweight was defined as $25 \text{ kg/m}^2 \leq \text{BMI} < 30 \text{ kg/m}^2$, and obesity as $\text{BMI} \geq 30 \text{ kg/m}^2$. Using the WGOC criteria, normal weight was defined as $18.5 \text{ kg/m}^2 \leq \text{BMI} < 24 \text{ kg/m}^2$, overweight as $24 \text{ kg/m}^2 \leq \text{BMI} < 28 \text{ kg/m}^2$ and obesity as $\text{BMI} \geq 28 \text{ kg/m}^2$. In both criteria underweight was defined as $\text{BMI} < 18.5 \text{ kg/m}^2$.

Established cardiovascular disease (CVD) was defined as the presence of coronary heart disease or stroke or peripheral artery disease. Previous coronary heart disease and date of diagnosis were retrieved from the patient database. Coronary heart disease included ischaemic heart disease with abnormal electrocardiogram or stress test, myocardial infarction with typical changes in electrocardiogram and plasma enzyme testing, coronary revascularisation, percutaneous transluminal coronary angioplasty, or coronary atherectomy. Stroke included ischaemic or haemorrhagic stroke—ie, subarachnoid haemorrhage, intracerebral haemorrhage, and other or unspecified intracranial haemorrhage, irrespective of whether the patient had completely or incompletely recovered. Cardiovascular disease was defined as having either coronary heart disease or stroke. Peripheral vascular disease was defined as intermittent claudication, foot ulcer, or amputation. Nephropathy was defined as as
the presence of albuminuria and low glomerular filtration rate (defined as eGFR < 30 mL/min/1.73 m²). The diagnosis retinopathy was confirmed by eye exams, included nonproliferative diabetic retinopathy and proliferative diabetic retinopathy.

Statistical analysis

Data were presented as mean ± standard deviation (SD) for continuous variables and as proportions for categorical variables. Analyses were stratified by sex (males and females), age group (20–29, 30–39, 40–49, 50–59, 60–69, 70–79, 80-89 years), history of CVD and four quartiles of diabetes duration. Prevalence of underweight, overweight and obesity were calculated and stratified on the basis of sex, and age. Direct standardization was performed using the Chinese population structure in 2010 aged 20–89 years, and prevalence of diabetes at different age and sex reported in 2007-2008 [14]. In this study, the prevalence of T2D at 70–79 years, and 80-89 years were approximately equivalent to the prevalence of patient aged more than 70 years. Comparisons were statistically analyzed using one-way anova and chi-squared tests. The linear-by-linear association test was used to analyse the trend of prevalence over various age groups. Statistical analysis was performed using SPSS software (version 20.0, SPSS Corp, Chicago, IL, USA). P value < 0.05 for the two-tailed test was considered as statistically significant.

Results

Totally, 811,264 patients with T2D from six hospital-based, cross-sectional studies, and 46,053 subjects from general population were included in our analysis.
The clinical characteristics of included participants in each study were presented in Supplemental Table 2.

Clinical characteristics and diabetes complications categorized by BMI groups

Clinical characteristics, such as age, duration of diabetes, HbA1c, blood pressure, and lipid profiles, as well as diabetes complications categorized by the groups of underweight, normal weight, overweight and obese were shown in Table 1. The levels of systolic blood pressure, diastolic blood pressure, cholesterol, triglycerides, and the percentage of CVD, retinopathy, and nephropathy in the obesity group were the highest one among the four BMI groups (all $p < 0.001$). The values of systolic and diastolic blood pressure, cholesterol, triglycerides, low density lipoprotein cholesterol, and the prevalence of CVD, retinopathy, and nephropathy increased with BMI category increased (p for trend < 0.001). In addition, the levels of systolic blood pressure, diastolic blood pressure, cholesterol, and triglycerides in general population were lower than that in patients with T2D (all $p < 0.001$).

Prevalence of underweight, normal weight, overweight and obesity

For patients with T2D, the mean age was 58.9±11.5 years with the mean BMI of 24.4±3.1 kg/m², males accounted for 52.4% of the patients. The standardized prevalence of underweight in patients with T2D was 2.2%. According to WHO criteria, the standardized prevalence of overweight and obesity were 34.6%, and 4.4%, respectively. According to WGOC standard, the standardized prevalence of overweight and obesity were 43.0%, and 11.6%, respectively.

For general population, the mean age was 45.0±13.7 years, younger than patients
with T2D ($p<0.001$). Males accounted for 39.9% of the patients. The mean BMI was 24.1±3.7 kg/m2, and was lower than that in patients with T2D ($p<0.001$). According to WGOC standard, the prevalence of underweight (4.7%) and general obesity (14.5%) were higher, while, the prevalence of overweight (32.6%) was lower in general population than that in patients with T2D (all $p<0.001$).

Trends in BMI, prevalence of underweight, overweight and obesity with age

In patients with T2D, there was significant difference in the trends of BMI with age stratified by sex (p for trend <0.001). In males, the mean BMI level gradually declined with age. In females, the mean BMI level gradually increased from 20-29 years of age, then peaked at 70-79 years of age (Figure 1). The trends in BMI with age was significantly different between general populations and T2D. For general population, the mean BMI increased gradually and stabilized after middle age or old age (Figure 1).

Similar trends in the prevalence of underweight with age were observed between males and females (p for trend <0.01). Patients at young age or old age were more likely to be underweight in both males and females with T2D (Figure 2). The trend in the prevalence of underweight with age in general population was similar to that in patients with T2D (Supplemental Figure 1).

Similar trends in the prevalence of overweight with age were observed in males and females. In males, the prevalence of overweight increased first, then stabilized after 50 years of age (p for trend <0.001). In females, the prevalence of overweight increased with age, and decreased after 70 years of age (p for trend <0.001) (Figure
2). The trend in the prevalence of overweight with age in general population was similar to that in patients with T2D (Supplemental Figure 1).

Different trend patterns in the prevalence of obesity in males and females with T2D were observed. In males, the prevalence of obesity decreased first, and then stabilized after 60 years of age (p for trend < 0.001). In females, the prevalence of obesity decreased first, then increased after 50 years of age, and had a trend to decline after 80 years (p for trend < 0.001) (Figure 2). There was significant difference between general and T2D population in the trends of the prevalence of obesity with age. In general population, the prevalence of obesity increased with age in females. However, age-stratified analysis did not reveal obvious trend of the prevalence of obesity in males (p for trend > 0.05) (Supplemental Figure 1).

The trends in the prevalence of obesity with age did not changed significantly in male patients with T2D when stratified by the history of CVD (Supplemental Figure 2). We also observed similar trends in the prevalence of obesity with age in patients with first, second and third quartile of diabetes duration (Supplemental Figure 3).

Discussion

Our study estimated the mean BMI and the prevalence of underweight, overweight, obesity in Chinese patients with T2D by using hospital-based national survey data sources with 811,264 adult participants. Patients with higher BMI had relatively worse metabolic markers, including blood pressure and lipids profiles. Trends in the prevalence of obesity with age between general and T2D population
were significant different. Trends in the prevalence of obesity with age between males and females were also with significant difference in Chinese T2D patients.

According to this study, we observed different trends in the prevalence of obesity with age between males and females, both in patients with T2D and in general population. Obesity might be influenced by many factors, such as genetics, cultures, lifestyles, sex hormones, environments, and socioeconomic status [21]. As for sex-and age- difference in the trend of BMI, it was supposed that, younger males generally have more fat-free muscle compared with females [22-23], which might exhibit higher BMI in younger males. Aging, in particular menopause transition with loss of estrogen production, was associated with a preferential increase of abdominal fat in females [24]. A continuous decrease in lean mass with age in both females and males (although more striking for the latter) could result in decreased BMI with age [25]. The mechanisms of obesity might be more complex in patients with T2D since certain lifestyle modifications, hypoglycemic drugs, and the associated complications might affect the body weight in T2D. These reasons above may explain sex and age difference of prevalence of obesity between patients with T2D and the general population.

Few studies evaluated age- or sex- difference of BMI in patients with T2D. Hillier et al. observed a striking inverse linear relation between BMI and age at diagnosis of T2D in a population-based study of 2437 patients newly diagnosed with type 2 diabetes. Average BMI decreased from 38.3 kg/m² in the youngest age group to 28.8 kg/m² in the oldest age group [26]. However, this study did not describe the
trend of BMI with age in males and females separately. Further prospective studies with longer term follow-up and specific attention to BMI trend may enhance our understanding of the trends of BMI with age in different sex.

Learning the different trends in the prevalence of obesity with age should have important clinical implications. There seemed to be a natural tendency to lose weight with age in males. It was supposed that treatment for obesity was more complex in the elderly population when compared with the general population, since that the ‘elderly’ included various groups with different levels of overall health [27]. Therefore, it should be wondered if intensive weight control was appropriately employed in old male patients. In addition, to avoid increasing the risk for mortality, management of body weight should not be over-stressed when certain complications occurred or at certain ages. According to our results, the prevalence of overweight and obesity in females was increased with age until 80 years, which might suggested that weight management in females should be active and be kept for the whole life.

In our study, we found the levels of systolic blood pressure, diastolic blood pressure, total cholesterol, triglycerides, and diabetes complications were highest in T2D patients with obesity, indicating that obesity resulted in relatively worse metabolic profiles. As obesity is an important cardiovascular risk factor in the assessment and treatment of cardiovascular disease (CVD) [28], curbing or reversing BMI in a reasonable range in T2D patients is of vital importance, and should be an essential target for Chinese T2D patients besides the management of glucose control,
blood pressure control, and lipids control.

Our study had clinical implications and strengths. Firstly, this study was based on six hospital-based national surveys designed to be the representatives of the adult patients with T2D in China, which allowed us to explore BMI within detailed clusters of sex, and age. Evidence for the prevalence of overweight and obesity in Chinese patients with type 2 diabetes added the urgency of the need for prevention of obesity and management of body weight. Secondly, in this study, we observed different trends in the prevalence of obesity with age in males and females with T2D, which might give the evidence for building up the health promotion strategies in T2D.

However, our study had several limitations. Firstly, we did not have information available on the reasons for weight loss with age. Unintentional weight loss is generally indicative of deteriorating health and is associated with all-cause and cardiovascular mortality. We could not distinguish intentional weight loss and unintentional weight loss. Secondly, we did not analyze if the type of glucose-lowering treatment might alter weight. Some variables, including education level, detailed dietary habits, family income, smoking and physical activity, were also not included for analyses. Thirdly, there were various indices used to assess obesity, such as BMI, waist circumference, waist-to-hip ratio, and total adipose tissue (TAT) of the abdomen assessed by computed tomography or magnetic resonance imaging. Though BMI was not the best marker to differentiate between fat, muscle and skeletal weight, BMI was the most practical one. In this study, we only used BMI as an index...
of obesity. More studies with better evaluation of waist circumference, waist-to-hip ratio and adipose tissue of the abdomen are needed to plan health services in T2D. Fourthly, measurement methods of blood lipids were not unified in different studies, and the inconsistent measurement methods might cause bias in research results.

Conclusion

By using 811264 individual data of adult patients with T2D in China, we observed different trends in the level of BMI with age in males and females with T2D. We also found that the trends in the prevalence of obesity were different with age in males and females patients. Results from this study provided evidence that different sex, and age should be taken full consideration when designing effective preventive intervention strategies for weight control and nutrition management in Chinese patients with T2D.

Acknowledgments. The authors thank all the staff who did work in China National HbA1c Surveillance System from 2009 to 2012, China Cardiometabolic Registries 3B study, China-DiaLEAD, and China National Diabetes and Metabolic Disorders Study.

Funding: This work was supported by National Natural Science Foundation of China (No.81970698, No.81900805, and No.81970708), National Key Research and Development Program (No.2016YFC1304901) of China.

Disclosure: Linong Ji has received fees for lecture presentations and consulting fees from AstraZeneca, Merck, Novartis, Novo Nordisk, Lilly, Roche, Sanofi-Aventis and
Takeda, and grants/research support from AstraZeneca, Merck, Novartis, Novo Nordisk and Sanofi-Aventis; no other relationships or activities that could appear to have influenced the submitted work.

Data sharing: No additional data available.

References

1. NCD Risk Factor Collaboration (NCD-RisC). Trends in adult body-mass index in 200 countries from 1975 to 2014: a pooled analysis of 1698 population-based measurement studies with 19·2 million participants. *Lancet* 2016 **387** 1377-1396.

2. Tirosh A, Shai I, Afek A, Dubnov-Raz G, Ayalon N, Gordon B, Derazne E, Tzur D, Shamis A, Vinker S, et al. Adolescent BMI trajectory and risk of diabetes versus coronary disease. *N Engl J Med* 2011 **364** 1315-25.

3. Saeedi P, Petersohn I, Salpea P, Malanda B, Karuranga S, Unwin N, Colagiuri S, Guariguata L, Motala AA, Ogurtsova K, et al. Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: Results from the International Diabetes Federation Diabetes Atlas, 9th edition. *Diabetes Res Clin Pract* 2019 **157** 107843.

4. Xu Y, Wang L, He J, Bi Y, Li M, Wang T, Wang L, Jiang Y, Dai M, Lu J, et al. Prevalence and control of diabetes in Chinese adults. *JAMA* 2013 **310** 948-959.

5. Wang L, Gao P, Zhang M, Huang Z, Zhang D, Deng Q, Li Y, Zhao Z, Qin X, Jin D, et al. Prevalence and Ethnic Pattern of Diabetes and Prediabetes in China in 2013. *JAMA* 2017 **317** 2515-2523.
6. Li Y, Teng D, Shi X, Qin G, Qin Y, Quan H, Shi B, Sun H, Ba J, Chen B, et al. Prevalence of diabetes recorded in mainland China using 2018 diagnostic criteria from the American Diabetes Association: national cross sectional study. *BMJ* 2020 369 m997.

7. Stevens VJ, Obarzanek E, Cook NR, Lee IM, Appel LJ, Smith West D, Milas NC, Mattfeldt-Beman M, Belden L, Bragg C, et al. Long-term weight loss and changes in blood pressure: results of the Trials of Hypertension Prevention, phase II. *Ann Intern Med* 2001 134 1-11.

8. Boulé NG, Haddad E, Kenny GP, Wells GA, Sigal RJ. Effects of exercise on glycemic control and body mass in type 2 diabetes mellitus: a meta-analysis of controlled clinical trials. *JAMA* 2001 286 1218-1227.

9. Aucott L, Gray D, Rothnie H, Thapa M, Waweru C. Effects of lifestyle interventions and long-term weight loss on lipid outcomes - a systematic review. *Obes Rev* 2011 12 e412-425.

10. Look AHEAD Research Group, Gregg EW, Jakicic JM, Blackburn G, Bloomquist P, Bray GA, Clark JM, Coday M, Curtis JM, Egan C, et al. Association of the magnitude of weight loss and changes in physical fitness with long-term cardiovascular disease outcomes in overweight or obese people with type 2 diabetes: a post-hoc analysis of the Look AHEAD randomised clinical trial. *Lancet Diabetes Endocrinol* 2016 4 913-921.

11. Strelitz J, Ahern AL, Long GH, Hare MJL, Irving G, Boothby CE, Wareham NJ, Griffin SJ. Moderate weight change following diabetes diagnosis and 10 year
incidence of cardiovascular disease and mortality. *Diabetologia* 2019 **62** 1391-1402.

12. Reynolds K, Gu D, Whelton PK, Wu X, Duan X, Mo J, He J, InterASIA Collaborative Group. Prevalence and risk factors of overweight and obesity in China. *Obesity (Silver Spring)* 2007 **15** 10-18.

13. Hu L, Huang X, You C, Li J, Hong K, Li P, Wu Y, Wu Q, Wang Z, Gao R, et al. Prevalence of overweight, obesity, abdominal obesity and obesity-related risk factors in southern China. *PLoS One* 2017 **12**:e0183934.

14. Yang W, Lu J, Weng J, Jia W, Ji L, Xiao J, Shan Z, Liu J, Tian H, Ji Q, et al. Prevalence of diabetes among men and women in China. *N Engl J Med* 2010 **362** 1090-1101.

15. Zhang X, Ran X, Xu Z, Cheng Z, Shen F, Yu Y, Gao L, Chai S, Wang C, Liu J, et al. Epidemiological characteristics of lower extremity arterial disease in Chinese diabetes patients at high risk: a prospective, multicenter, cross-sectional study. *J Diabetes Complications* 2018 **32** 150-156.

16. Huo X, Gao L, Guo L, Xu W, Wang W, Zhi X, Li L, Ren Y, Qi X, Sun Z, et al. Risk of non-fatal cardiovascular diseases in early-onset versus late-onset type 2 diabetes in China: a cross-sectional study. *Lancet Diabetes Endocrinol* 2016 **4** 115-124.

17. Ji L, Hu D, Pan C, Weng J, Huo Y, Ma C, Mu Y, Hao C, Ji Q, Ran X, et al. Primacy of the 3B approach to control risk factors for cardiovascular disease in type 2 diabetes patients. *Am J Med* 2013 **126** 925.e11-22.

18. Li L, Ji L, Guo X, Ji Q, Gu W, Zhi X, Li X, Kuang H, Su B, Yan J, et al.
Prevalence of microvascular diseases among tertiary care Chinese with early versus late onset of type 2 diabetes. *J Diabetes Complications* 2015 29 32-37.

19、Lyu Y, Luo Y, Li C, Guo X, Lu J, Wu H, Huo X, Gu W, Yang G, Ji L, Yang X. Regional Differences in the Prevalence of Coronary Heart Disease and Stroke in Patients With Type 2 Diabetes in China. *J Clin Endocrinol Metab* 2018 103 3319-3330.

20、Chunming Chen, Frank C Lu, Department of Disease Control Ministry of Health, PR China. The guidelines for prevention and control of overweight and obesity in Chinese adults. *Biomed Environ Sci* 2004 17 Suppl 1-36.

21、Kautzky-Willer A, Harreiter J, Pacini G. Sex and Gender Differences in Risk, Pathophysiology and Complications of Type 2 Diabetes Mellitus. *Endocr Rev* 2016 37 278-316.

22、Ito H, Ohshima A, Ohto N, Ogasawara M, Tsuzuki M, Takao K, Hijii C, Tanaka H, Nishioka K. Relation between body composition and age in healthy Japanese subjects. *Eur J Clin Nutr* 2001 55 462-470.

23、Bazzocchi A, Diano D, Ponti F, Andreone A, Sassi C, Albisinni U, Marchesini G, Battista G. Health and ageing: a cross-sectional study of body composition. *Clin Nutr* 2013 32 569-578.

24、Carr MC, Brunzell JD. Abdominal obesity and dyslipidemia in the metabolic syndrome: importance of type 2 diabetes and familial combined hyperlipidemia in coronary artery disease risk. *J Clin Endocrinol Metab* 2004 89 2601-2607.

25、Henche SA, Torres RR, Pellico LG. An evaluation of patterns of change in total
and regional body fat mass in healthy Spanish subjects using dual-energy X-ray absorptiometry (DXA). *Eur J Clin Nutr* 2008 62 1440-1448.

26. Hillier TA, Pedula KL. Characteristics of an adult population with newly diagnosed type 2 diabetes: the relation of obesity and age of onset. *Diabetes Care* 2001 24 1522-1527.

27. LeRoith D, Biessels GJ, Braithwaite SS, Casanueva FF, Draznin B, Halter JB, Hirsch IB, McDonnell ME, Molitch ME, Murad MH, et al. Treatment of Diabetes in Older Adults: An Endocrine Society* Clinical Practice Guideline. *J Clin Endocrinol Metab* 2019 104 1520-1574.

28. Rawshani A, Rawshani A, Franzén S, Sattar N, Eliasson B, Svensson AM, Zethelius B, Miftaraj M, McGuire DK, Rosengren A, et al. Risk Factors, Mortality, and Cardiovascular Outcomes in Patients with Type 2 Diabetes. *N Engl J Med* 2018 379 633-644.

Legends

Table 1. Clinical characteristics categorized by four BMI groups in this pooled analysis with type 2 diabetes.

CVD: cardiovascular disease; CNHSS: China National HbA1c Surveillance System; CCMR-3B: China Cardiometabolic Registries 3B study.

Figure 1. Trends of BMI with age in total (A), male (B) and female (C) adults with type 2 diabetes and general population in China (all p for trend <0.01).
Figure 2. Trends in the prevalence of underweight, overweight and obesity with age in male and female patients with type 2 diabetes in China.

Figure 2-A. Trends in the prevalence of underweight with age stratified by sex (p for trend <0.01).

Figure 2-B. Trends in the prevalence of overweight with age stratified by sex (p for trend <0.01).

Figure 2-C. Trends in the prevalence of obesity with age stratified by sex (p for trend <0.01 in males).

According to the WGOC criteria: underweight was defined as BMI < 18.5 kg/m2, overweight as 24 kg/m$^2 \leq$ BMI < 28 kg/m2 and obesity as BMI ≥ 28 kg/m2.

Supplemental Figure 1. Sex difference of trends in the prevalence of underweight, normal weight, overweight and obesity with age in general population in China.

Supplemental Figure 1-A. Trends in the prevalence of underweight with age in male and female participants (p for trend <0.01).

Supplemental Figure 1-B. Trends in the prevalence of overweight with age in male and female participants (p for trend <0.01).

Supplemental Figure 1-C. Trends in the prevalence of obesity with age in male and female participants (p for trend <0.01).

According to the WGOC criteria: underweight was defined as BMI < 18.5 kg/m2, overweight as 24 kg/m$^2 \leq$ BMI < 28 kg/m2 and obesity as BMI ≥ 28 kg/m2.

Copyright © 2019 the authors
Supplemental Figure 2. Trends in the prevalence of obesity with age in patients with T2D stratified by history of CVD and sex.

*p for trend 0.051 in females with CVD, *p for trend <0.01 for other groups

According to the WGOC criteria: obesity was defined as BMI ≥ 28 kg/m².

Supplemental Figure 3. Trends in the prevalence of obesity with age in patients with T2D stratified by duration of diabetes and sex.

Supplemental Figure 3-A. Trends in the prevalence of obesity with age in first quartile of diabetes duration (*p for trend <0.01).

Supplemental Figure 3-B. Trends in the prevalence of obesity with age in second quartile of diabetes duration (*p for trend <0.01).

Supplemental Figure 3-C. Trends in the prevalence of obesity with age in third quartile of diabetes duration (*p for trend <0.01).

Supplemental Figure 3-D. Trends in the prevalence of obesity with age in fourth quartile of diabetes duration (*p for trend <0.01).

According to the WGOC criteria: obesity was defined as BMI ≥ 28 kg/m².

Supplemental Table 1. The number of participants and the inclusion and exclusion criteria for each study.

Supplemental Table 2. Demographic and clinical characteristics of the
participants in this pooled analysis with type 2 diabetes.

CNHSS: China National HbA1c Surveillance System; CCMR-3B: China Cardiometabolic Registries 3B study; SBP: systolic blood pressure; DBP: diastolic blood pressure.
Table 1. Clinical characteristics categorized by four BMI groups in this pooled analysis with type 2 diabetes.

BMI categories	General patients (n, %)	patients with T2D (n, %)	P value
<18.5 kg/m²			
18.5-23.9 kg/m²			
≥24-27.9 kg/m²			
≥28 kg/m²			

- **Patients (n, %)**: 46053 / 811264
- **Male sex (n, %)**: 18355 (39.9%) / 424810 (52.4%)<0.001
- **Age (years)**: 45.0±13.7 / 58.9±11.5<0.001
- **Duration (years)**: / 6.3±5.3 / 6.0±6.0 / 5.7±5.3 / 5.7±5.3 / 6.2±5.7 <0.001
- **Weight (Kg)**: 63.2±11.7 / 67.2±10.6<0.001
- **BMI (kg/m²)**: / 24.1±3.7 / 24.4±3.1<0.001
- **Glycated hemoglobin (%)**: / 7.85±1.77 / 8.31±2.39<0.001
- **Glucose (mmol/l)**: / 122±19 / 132±15<0.001
- **Blood pressure (mmHg)**: / 78±11 / 81±11<0.001
- **Total cholesterol (mmol/l)**: 4.72±0.99 / 4.77±1.44<0.001
- **Triglycerides (mmol/l)**: 1.55±1.13 / 2.19±1.60<0.001
- **HDL-C (mmol/l)**: 1.34±0.34 / 1.43±0.73<0.001
- **LDL-C (mmol/l)**: 2.76±0.85 / 2.89±1.23<0.001
- **Diabetes complications**: CVD (n, %): / 126028 (15.6%) / 2129 (13.3%)<0.001
 Retinopathy (n, %): / 65327 (8.1%) / 1370 (8.6%)<0.001
 Nephropathy (n, %): / 66153 (8.2%) / 1386 (8.7%)<0.001

CVD: cardiovascular disease; CNHSS: China National HbA1c Surveillance System; CCMR-3B: China Cardiometabolic Registries 3B study.

Copyright © 2019 the authors

Downloaded from Bioscientifica.com at 02/06/2021 05:08:17AM via free access
Figure 1. Trends of BMI with age in total (A), male (B) and female (C) adults with type 2 diabetes and general population in China (all p for trend < 0.01).
Figure 2. Trends in the prevalence of underweight, overweight and obesity with age in male and female patients with type 2 diabetes in China.

Figure 2-A. Trends in the prevalence of underweight with age stratified by sex (p for trend < 0.01).
Figure 2-B. Trends in the prevalence of overweight with age stratified by sex (p for trend < 0.01).
Figure 2-C. Trends in the prevalence of obesity with age stratified by sex (p for trend < 0.01 in males).

According to the WGOC criteria: underweight was defined as BMI < 18.5 kg/m2, overweight as 24 kg/m2 ≤ BMI < 28 kg/m2 and obesity as BMI ≥ 28 kg/m2.
Supplemental Figure 1. Sex difference of trends in the prevalence of underweight, normal weight, overweight and obesity with age in general population in China.

Supplemental Figure 1-A. Trends in the prevalence of underweight with age in male and female participants (p for trend < 0.01).

Supplemental Figure 1-B. Trends in the prevalence of overweight with age in male and female participants (p for trend < 0.01).

Supplemental Figure 1-C. Trends in the prevalence of obesity with age in male and female participants (p for trend < 0.01 in female).

According to the WGOC criteria: underweight was defined as BMI < 18.5 kg/m², overweight as 24 kg/m² ≤ BMI < 28 kg/m² and obesity as BMI ≥ 28 kg/m².
Supplemental Figure 2. Trends in the prevalence of obesity with age in patients with T2D stratified by history of CVD and sex.

p for trend 0.051 in females with CVD, p for trend <0.01 for other groups

According to the WGOC criteria: obesity was defined as $\text{BMI} \geq 28 \text{ kg/m}^2$.
Supplemental Figure 3. Trends in the prevalence of obesity with age in patients with T2D stratified by duration of diabetes and sex.

Supplemental Figure 3-A. Trends in the prevalence of obesity with age in first quartile of diabetes duration (p for trend < 0.01).
Supplemental Figure 3-B. Trends in the prevalence of obesity with age in second quartile of diabetes duration (p for trend < 0.01).
Supplemental Figure 3-C. Trends in the prevalence of obesity with age in third quartile of diabetes duration (p for trend < 0.01).
Supplemental Figure 3-D. Trends in the prevalence of obesity with age in fourth quartile of diabetes duration (p for trend < 0.01).

According to the WGOC criteria, obesity was defined as BMI ≥ 28 kg/m².
Supplemental Table 1. The number of participants and the inclusion and exclusion criteria for each study.

Study	Number of survey participants	Hospital levels	Study design	Ethical approval
China National HbA1c Surveillance System (CNHSS), 2009-2012	Totally 775856 (2009: 142741; 2010: 172164; 2011: 238066; 2012: 222885)	Tier 1,2,3	Cross-sectional survey	Ethical approval for the CNHSS was obtained from the Ethics Committee of the Chinese People’s Liberation Army General Hospital.
China Cardiometabolic Registries 3B study (CCMR-3B), 2010-2011	A total of 25,342 outpatients	Tier 1,2,3	Cross-sectional, multicenter, multispecialty study	CCMR-3B study was approved by Ethics Committee of Peking University People’s Hospital.
China Dia-LEAD, 2016-2017	10,974 patients	Tier 3	Cross-sectional	China DiaLEAD was approved by the Ethics Committee of Peking University International Hospital.

Copyright © 2019 the authors
Inclusion criteria

- being an outpatient with type 2 diabetes diagnosed by the 1999 World Health Organization criteria for diagnosis of diabetes and being treated with antidiabetic drugs;
- aged 18 years or older;
- having at least one previous outpatient medical record for diabetes;
- and being a local resident for at least 6 months consecutively before participation in the study.

Patients aged 18 years or older who were diagnosed with type 2 diabetes according to the World Health Organization criteria, as recommended by the Chinese diabetes guidelines, at least 6 months before screening, were eligible for inclusion.

1) were aged 50 years or older, had a well documented diagnosis of type 2 diabetes (comprehensive medical records with diagnosis date, methods for diagnosis, diagnostic criteria, and test results), and at least one of the following risk factors: history of cardiovascular disease or cerebrovascular disease, hypertension, dyslipidemia, current smoking, and diabetic duration greater than 5 years

2) were more than 65 years old with a type 2 diabetes diagnosis in their medical record.

Exclusion criteria

1) having type 1 diabetes, defined as acute presentation with diabetic ketoacidosis, heavy ketonuria, or continuous need for insulin within 1 year of diagnosis;
2) having diabetes secondary to other diseases;

Patients were ineligible if they were pregnant, participating in any other clinical studies, or unable to report their medical history.

Patients with type 1 diabetes or gestational diabetes were excluded from this study.
3) being on diet and other lifestyle therapy or Chinese herbal medicine only;

4) inpatients;

5) pregnancy or breastfeeding;

6) being unable to complete the survey owing to mental illness;

7) being unconscious or unable to communicate.

Primary aim

- To monitor glycaemic control in outpatients with type 2 diabetes in China.
- To assess the proportion of patients who achieved the targeted goals for control of hyperglycemia, hypertension, and dyslipidemia.
- To determine the epidemiological characteristics of lower extremity arterial disease (LEAD) in high risk patients of type 2 diabetes patients.
Supplemental Table 2. Demographic and clinical characteristics of the participants in this pooled analysis with type 2 diabetes.

Demographic	Total	2009 CNHSS	2010 CNHSS	2010-2011 CCMR-3B	2011 CNHSS	2012 CNHSS	2016-2017 China Dia-LEAD							
Number of participants, n	811264	142741	172164	25342	238066	222885	10066							
Male sex, n (%)	424810 (52.4%)	73340 (51.4%)	90051 (52.3%)	11901 (47.0%)	124203 (52.2%)	119929 (53.8%)	5386 (53.5%)							
Age (years)	58.9±11.5	59.4±11.9	58.9±11.3	62.5±11.8	58.7±11.6	58.3±11.3	64.0±8.0							
BMI (kg/m²)	24.4±3.1	24.5±3.2	24.3±3.1	24.8±3.6	24.4±3.1	24.5±3.0	24.8±3.6							
<18.5 kg/m², n (%)	16017 (2.0%)	3254 (2.3%)	4002 (2.3%)	596 (2.4%)	4145 (1.7%)	3805 (1.7%)	215 (2.1%)							
18.5-23.9 kg/m², n (%)	352833 (43.5%)	61704 (43.2%)	76910 (44.7%)	9942 (39.2%)	105625 (44.4%)	94631 (42.5%)	4021 (39.9%)							
24-27.9 kg/m², n (%)	353088 (43.5%)	60619 (42.5%)	73455 (42.7%)	10649 (42.0%)	103499 (43.5%)	100631 (45.1%)	4235 (42.1%)							
≥28 kg/m², n (%)	89326 (11.0%)	17164 (12.0%)	17797 (10.3%)	4155 (16.4%)	24797 (10.4%)	23818 (10.7%)	1595 (15.8%)							
Duration of diabetes (years)	5.7±5.3	6.2±5.8	5.1±4.7	8.0±6.7	5.5±5.3	5.4±5.0	10.0±7.3							
0 to <1 years, n (%)	127325 (15.7%)	22965 (16.1%)	28339 (16.5%)	2250 (8.9%)	36229 (15.2%)	37539 (16.8%)	3 (0%)							
Age Group	Count (n)	(%)												
-------------------	-----------	-------	-----------	-------	-----------	-------	-----------	-------	-----------	-------	-----------	-------	-----------	-------
1 to <5 years	328716	40.5%	49880	34.9%	71960	41.8%	8382	33.1%	93604	42.0%	2524	25.1%		
5 to <10 years	201692	24.9%	39651	27.8%	46608	27.1%	6073	24.0%	55623	23.4%	2592	25.8%		
10 to <20 years	131353	16.2%	24849	17.4%	22194	12.9%	6768	26.7%	37732	15.8%	36270	16.3%	3540	35.2%
≥20 years	22143	2.7%	5396	3.8%	3063	1.8%	1834	7.2%	4327	1.9%	1407	14.0%		
Glycated hemoglobin (%)	7.85±1.77	7.97±2.00	7.89±1.79	7.62±2.03	7.85±1.72	7.74±1.57	8.43±2.11							
SBP (mmHg)	131±15	132±16	131±15	133±16	132±15	132±15	136±19							
DBP (mmHg)	82±11	80±10	87±10	79±9	81±11	81±10	79±11							
Total cholesterol (mmol/l)	4.77±1.44	4.81±1.31	4.85±1.33	4.98±1.45	4.74±1.47	4.71±1.56	4.63±1.33							
Triglycerides (mmol/l)	2.19±1.60	2.14±1.53	2.15±1.54	1.97±1.67	2.16±1.56	2.30±1.69	1.94±2.22							
HDL-C (mmol/l)	2.89±1.23	1.68±1.14	1.40±0.61	1.31±0.53	NA	NA	1.18±0.61							
LDL-C (mmol/l)	1.43±0.73	2.79±1.03	2.76±0.98	2.82±0.92	2.92±1.16	3.03±1.57	2.73±1.03							
CNHSS: China National HbA1c Surveillance System; CCMR-3B: China Cardiometabolic Registries 3B study; SBP: systolic blood pressure; DBP: diastolic blood pressure.