The ACURATE neo™ and neo2™ Valve Systems

Michael J Reardon
Department of Cardiovascular Surgery, Houston Methodist DeBakey Heart and Vascular Center, Houston, TX, USA

Keywords
ACURATE neo valve system, transcatheter aortic valve replacement (TAVR), symptomatic aortic stenosis

Disclosures: Michael J Reardon serves as the national surgical principal investigator for the ACURATE neo IDE trial in the USA.

Acknowledgements: Writing and editorial assistance was provided by MaryEllen Carlile Klusacek of Boston Scientific.

Review process: Double-blind peer review

Compliance with ethics: This study involves a review of the literature and did not involve any studies with human or animal subjects performed by the author.

Authorship: The named author meets the criteria of the International Committee of Medical Journal Editors for authorship for this manuscript, takes responsibility for the integrity of the work as a whole and has given final approval for the version to be published.

Access: This article is freely accessible at touchCARDIO.com. © Touch Medical Media 2021.

Received: 25 January 2021
Accepted: 21 May 2021
Published online: 16 July 2021

Citation: Heart International. 2021;15(1):37–41

Corresponding author: Michael Reardon, Houston Methodist Hospital, Cardiovascular Surgery 6550 Fannin, 1401, Houston, TX 77030 USA. E: mreardon@houstonmethodist.org

Support: No funding was received for the publication of this article.

Based on the strength of data from randomized trials and real-world clinical studies, transcatheter aortic valve replacement (TAVR) has become a popular and effective alternative to surgical valve replacement in patients with symptomatic aortic stenosis. The ACURATE neo™ (Boston Scientific, Marlborough, MA, USA) valve system has been commercially available for transfemoral TAVR in Europe since 2014. ACURATE neo™ is an evolution of the neo design and was declared CE marked by the manufacturer in 2020. The neo and neo2 valves have been studied in high-risk patients, and the currently active randomized trial for neo2 will include over 1,500 patients of all risk categories in the USA. The goal of this review is to help inform the TAVR community about the ACURATE valve.

Transcatheter aortic valve replacement (TAVR) has seen worldwide explosive growth. The current USA guidelines no longer use risk in choosing between TAVR and surgical aortic valve replacement, and the European guidelines have extended the recommendation for TAVR to lower risk groups.1,2 This rapid expansion has been driven by data from randomized trials showing TAVR as either non-inferior or superior to surgery.3–6 The ACURATE neo2™ system (Boston Scientific, Marlborough, MA, USA) was declared CE marked for use in Europe in higher-risk patients. The current ACURATE IDE trial (NCT03735667) will test the ACURATE neo2 valve against commercially available valves in all risk categories in the USA.7 This manuscript will discuss the valve system, the current data and why this valve may be a good choice in all risk groups, but particularly in younger, lower-risk patients.

The ACURATE neo2 valve maintains key features of the ACURATE neo™ while introducing new innovations designed to alleviate some of the most common complications of TAVR (Figure 1). The valve is comprised of a self-expanding nitinol frame with porcine pericardium leaflets in a supra-annular position, which favours large effective orifice areas (EOAs) and low transvalvular gradients.8,9 The top-down, two-step deployment provides haemodynamic stability during the procedure, with annular co-axial alignment aided by the stabilization arches. The radial force exerted by the valve frame is relatively low, reducing the risk of annular rupture and mechanical injury during implantation.10 The ACURATE neo2 has an open-cell design, which facilitates coronary access, and the upper crown both anchors the valve to reduce the risk of embolization and captures the native valve leaflets to provide coronary clearance.10,11 The lower crown of the valve protrudes minimally into the left ventricular outflow tract to reduce the risk of conduction system interference.10,11

While both the neo and neo2 valves have a pericardial sealing skirt to reduce paravalvular leak (PVL), the skirt on the ACURATE neo2 is 60% larger, reaching to the waist of the stent. Additionally, the flexible ACURATE neo delivery catheter has been upgraded with a new atrumatic tip design, and when coupled with the low-profile expandable introducer, is able to accommodate a wide range of complex patient anatomies. The ACURATE neo2 also features a new radiopaque positioning marker to enhance visualization and accuracy. Valve sizing remains the same, with the largest valve treating up to a 27 mm annulus, and the addition of a larger valve planned. Valve crimping and loading remains essentially unchanged in the new system.

ACURATE clinical evidence

Initial safety and effectiveness of transfemoral TAVR with the ACURATE neo valve were demonstrated in the TF89 “CE-approval cohort” (NCT03093650) and confirmed by the 1,000-patient SAVI-TF post-market registry (NCT02306226).12,13 SAVI-TF had a procedural success rate of 98.7%, with no instances of annular rupture, ventricular septal perforation or coronary obstruction requiring intervention, and no cases of endocarditis or valve thrombosis through 30 days. Patients exhibited favourable clinical outcomes – the 1-year mortality rate (8.0%) was comparable to that observed in large registries of Sapien 3 (Edwards Lifesciences, Irvine, CA, USA) (11.8% in SOURCE 3; NCT02698956), CoreValve (Medtronic, Minneapolis, MN, USA) (16.0% in ADVANCE; NCT01074658), and Lotus (Boston Scientific, Marlborough, MA, USA) (16.0% in SOURCE 2; NCT02306226) devices, respectively.

The ACURATE neo2™ system (Boston Scientific, Marlborough, MA, USA) was declared CE marked for use in Europe in higher-risk patients. The current clinical trial (NCT03735667) will test the ACURATE neo2 valve against commercially available valves in all risk categories in the USA. This manuscript will discuss the valve system, the current data and why this valve may be a good choice in all risk groups, but particularly in younger, lower-risk patients.
A number of independent head-to-head studies have compared the ACURATE neo to contemporary competitor devices (Table 1). While the neo was shown to perform well over a variety of procedural and clinical outcomes, these studies have produced conflicting data regarding PVL. In two separate propensity-matched comparisons between the ACURATE neo and the Sapien 3, the MoRENA registry and a study by Mauri et al., there was no difference between the devices in terms of procedural success or safety outcomes.20,21 In both of these studies, the ACURATE neo was less likely to result in patient–prosthesis mismatch, with significantly better transvalvular mean gradient and EOA compared with Sapien 3, and patients treated with the neo had a significantly lower rate of permanent pacemaker implantation. While the incidence of PVL grade ≥2 at discharge was significantly greater with the neo versus Sapien 3 in the MoRENA study (4.8% versus 1.8%, respectively; p=0.008), the difference between devices was not significant in the Mauri et al. study (4.5% versus 3.6%; p=0.208). The NEOPRO registry, which included a propensity-matched comparison of the ACURATE neo and Evolut R/PRO, likewise found no significant differences in procedural success or 30-day clinical safety outcomes between the matched pairs.21 In this study, patients treated with the ACURATE neo had significantly higher AV gradients, but the incidence of moderate or greater PVL was similar between the two groups (7.3% versus 5.7%; p=0.584).

More recently, the SCOPE I (NCT03011346) and SCOPE II (NCT03192813) studies evaluated outcomes in patients randomized to treatment with the ACURATE neo versus the Sapien 3 and the Evolut™ R/PRO (Medtronic, Minneapolis, MN, USA), respectively.22,23 In the SCOPE I study, the ACURATE neo did not meet non-inferiority criteria compared with the Sapien 3 on the 30-day composite primary endpoints of all-cause mortality, stroke, life-threatening/disabling bleeding, major vascular complications, coronary obstruction, acute kidney injury, rehospitalization, repeat intervention and valve dysfunction (23.7% versus 16.5%; p=0.42).22,23 Patients treated with the ACURATE neo were at greater risk for acute kidney injury (3% versus 1%; p=0.03) and moderate or greater PVL (9.4% versus 2.8%; p<0.001) at 30 days. A secondary analysis found that, for the individual components of death, stroke, rehospitalization, bleeding and vascular complications, outcomes were not significantly different between the two devices at either 30 days or 1 year.23,26 Conduction disturbances were low for both valves, with new permanent pacemaker implantation rates ≤10%, and patients in SCOPE I treated with the ACURATE neo had more favourable gradients and valve areas compared with those treated with the Sapien 3, which led to statistically lower rates of prosthesis–patient mismatch for the neo (p<0.001).21

In the SCOPE II study, the primary endpoint was all-cause death or stroke at 1 year, evaluated in both the intent-to-treat (ITT) and per-protocol populations to establish non-inferiority.24 While the ACURATE neo did not meet non-inferiority criteria versus Evolut R/PRO in the ITT analysis (15.8% versus 13.9%; p=0.05), thus missing the primary endpoint, it did meet non-inferiority criteria in the per-protocol analysis (15.3% versus 14.3%; p=0.03).25 Patients treated with the ACURATE neo were shown to have a greater risk for cardiac death at 30 days (2.8% versus 0.8%; p=0.03) and 1 year (8.4% versus 3.9%; p=0.01), as well as more frequent incidence of moderate or severe PVL at 30 days (9.6% versus 2.9%; p<0.001).25 However, the ACURATE neo did demonstrate a statistically significant advantage over the Evolut on the secondary endpoint of permanent pacemaker implantation at 30 days (10.5% versus 18.0%; p=0.003) and 1 year (11.0% versus 18.3%; p=0.004).

The primary contributing factor to the ACURATE neo not achieving non-inferiority in the SCOPE studies was a greater incidence of moderate

Figure 1: ACURATE valve family design features

ACURATE neo	ACURATE neo2
CE mark 2014 for transfemoral TAVR	CE mark 2020 (Investigational device in the USA)

- **Nitinol frame**
 - Self-expanding: top-down, two-step deployment
 - Low radial force reduces mechanical injury

- **Supra-annular positioning**
 - Large effective orifice areas and low gradients

- **Stabilization arches**
 - Axial self-alignment of valve within native annulus
 - Open cells facilitate coronary access

- **Upper crown**
 - Supra-annular anchoring
 - Captures native leaflets to provide coronary clearance

- **Pericardial sealing skirt**
 - Compared with neo, the skirt on neo2 is 60% larger and features ‘active sealing’

- **Lower crown**
 - Minimal protrusion into LVOT
 - Low risk of conduction system interference

Images provided courtesy of Boston Scientific.

LVOT = left ventricular outflow tract; TAVR = transcatheter aortic valve replacement.
Table 1: Key clinical studies of the ACURATE neo/ne2™ Valve Systems

Study	Baseline characteristics	Clinical outcomes	Echocardiographic outcomes										
	Device (N)	Mean age (y)	STS score (%)	Early safety composite (%)	30 d major vascular complications (%)	30 d all-cause death (%)	1 y all-cause death (%)	30 d major/ disabling stroke (%)	30 d new PPI (%)	30 d mean AV gradient (mmHg)	30 d mean EOA (cm²)	PVL grade ≥2 discharge/30 d (%)	PVL grade ≥2 1 y (%)
TF89 'CE-approval cohort' (NCT03003650)¹²	neo (89)	83.7	6.8 ± 4.1	15.7	3.4	3.4	22.5	2.2	10.3*	8.0 ± 2.9	1.8 ± 0.3	4.9	4.5
SAVI-TF (NCT02306226)¹⁸¹⁹	neo (1,000)	81.1	6.0 ± 5.6	8.6	3.2	1.4	8.0	1.2	8.3	8.4 ± 4.0	1.8 ± 0.5	4.1	3.6
MoRENA, matched population⁰⁰	neo (311)	81	18 ± 10	15.8	10.3	2.3	--	2.3	10.2*†	12 ± 5	--	4.8†	--
S3 (622)	81	18 ± 12	15.6	8.6	1.9	--	3.1	16.4*†	8 ± 4	--	1.8†	--	
Mauri et al., matched population¹¹	neo (92)	82.8	16.2 ± 8.8	6.5	2.2	1.1	8.3	3.3§	12.0	9.3 ± 3.9	1.0 ± 0.3	4.5	3.9
S3 (92)	81.9	16.6 ± 8.8	9.8	6.5	2.2	13.3	2.2§	15.2	14.5 ± 5.5	0.8 ± 0.2	3.6	3.6	
NEOPRO, matched population¹²	neo (251)	81.4	5.1 ± 3.1	10.6	4.9	3.2	--	2.0	11.0	8.3 ± 4.0	--	7.3	--
Ev PRO (251)	81.6	5.3 ± 3.7	10.4	3.2	1.2	--	1.6	12.8	7.3 ± 3.6	--	5.7	--	
SCOPE I (NCT03111346)²³²⁴	neo (372)	82.6	3.7	--	8.0	2.0	11.1	2.0§	10.0	7.5 ± 3.7	1.8 ± 0.5	9.4	8.9
S3 (367)	83.0	3.4	--	5.0	1.0	8.5	3.0§	9.0	112 ± 4.2	1.6 ± 0.4	2.8	3.6	
SCOPE II (NCT03192813)²⁵²⁶	neo (3938)	83.4	4.6	--	3.0	13.0	2.0	10.5	--	--	9.6	4.0	
Ev R/PRO (3938)	82.9	4.5	--	2.0	9.0	3.0	18.0	--	--	2.9	3.3		
PROGRESS PVL (NCT02987894)²⁷²⁸	neo (500)	81.8	6.0	9.2	3.6	2.2	11.3	2.4	10.2	6.7 ± 3.2	1.9 ± 0.6	4.6	2.6
neo AS (NCT02909556)²⁹³⁰	neo2	82.1	4.8	13.3	3.3	3.3	12.2	1.7	15.0	7.9 ± 3.2	1.7 ± 0.4	3.0	2.5

*Among PM-naïve patients; †Data reported at discharge/7 days post-TAVR; ‡Logistic EuroSCORE; §All stroke.
AV = aortic valve; d = day; EOA = effective orifice area; Ev = Evolut; PPI = permanent pacemaker implantation; PVL = paravalvular leak; S3 = Sapien 3; STS = Society of Thoracic Surgeons; TAVR = transcatheter aortic valve replacement; y = year.
In addition to patient selection and procedural considerations, the features incorporated into the next iteration of the ACURATE valve, neo2, are intended to reduce PVL in comparison to the prior generation ACURATE neo system. The addition of radiopaque markers to neo2 helps to facilitate highly accurate valve positioning, and the enhanced and extended pericardial sealing skirt features a supra-annular flapp that actively seals during each cardiac cycle. Clinical and echocardiographic outcomes in patients treated with the ACURATE neo2 valve were investigated in the ACURATE neo AS study (NCT02909556,29,30).

Patients in the ACURATE neo AS study achieved a high rate of procedural success (97.5%).30 There were no reinterventions for valve-related dysfunction and a low rate of major vascular complications (3.3%). Safety outcomes were consistent with results from prior studies of the ACURATE neo and comparable to those observed in other TAVI studies in similar patient populations. The VARC-2 composite safety endpoint rate at 30 days was 13.3%, which was lower than prior studies of the ACURATE neo (15.8% in the MORENA study; 16.4% overall in the NEOPRO study). Core laboratory-adjudicated data demonstrated significant early haemodynamic improvement, maintained through 12-month follow-up.29,31 The overall rate of moderate PVL at 30 days was 3.0%, comparable to the rate observed with the Sapien 3 (3.6% by Mauri et al; 2.8% in SCOPE I and the Evolut R/PRO (3.0% in SCOPE II), and an improvement over ACURATE neo.29,30 Overall, the ACURATE neo AS study demonstrated the safety and performance of the ACURATE neo2 valve in patients with severe aortic valve stenosis.

Recently, promising data on real-world outcomes with the ACURATE neo2 was presented from two investigator-led European registries. The ITAL-neo Registry, which evaluated 95 patients treated with the ACURATE neo2, reported a low rate of in-hospital stroke (1.1%) and excellent valve haemodynamics (8.2 mmHg pre-discharge mean gradient).21 In this study, 3.1% of patients exhibited moderate or greater PVL at discharge, 56.9% had mild PVL and 40% had no detectable PVL. The observed PVL rates for patients with data available at 30 days (34/95) were further reduced: 0% moderate or greater PVL, 53% mild PVL and 47% no PVL. In the Early neo2 Registry (NCT04810195), which collected data from 554 patients treated with the ACURATE neo2, patients had a low in-hospital stroke rate (2.1%), an in-hospital new PPI rate of 6%, excellent valve haemodynamics (post-procedural mean gradient of 9 mmHg) and a low 30-day mortality rate (1.3%).36,37 According to site-reported, post-procedure echocardiographic data, 1.3% of patients exhibited moderate/severe PVL, 33.3% had mild PVL and 65.4% had no/trace PVL.37 This study also included a retrospective analysis of core-lab adjudicated echocardiographic data from patients treated with the neo (n=108) versus the neo2 (n=120).36 The ACURATE neo2 was associated with a 5.5% absolute risk reduction of aortic regurgitation fraction (p<0.001) and the rate of moderate or severe aortic regurgitation was significantly lower with the neo2 compared with the neo (1.7% versus 13.9%; p<0.001).36

Summary

The ACURATE neo2 valve builds on the strengths of the well-tested ACURATE neo platform. The flexible delivery catheter allows for tractability through tortuous anatomy; radiopaque markers help to refine positioning; and a simple two-step, top-down deployment method allows for stable and predictable release, making it a reliable and relatively easy-to-use device. This ease of use, evidenced in the high rate of procedural success and low peri-procedural complication rates observed in clinical studies, will be an advantage as TAVR procedures become more commonplace and are performed in a wider patient population.

Extension of TAVR to younger, more active patients will require consideration for features related to long-term valve performance. As a supra-annular valve, the ACURATE neo offers a high degree of haemodynamic performance, with larger EOA and lower gradients compared with valves with an intra-annular leaflet position. The stent’s open-frame design allows for preservation of coronary access, which is particularly important for patients who may have follow-up procedures. As with all TAVR systems, the potential for re-intervention and valve-in-valve procedures should be considered; while TAVR-in-TAVR has been successfully performed with ACURATE, there is certainly a need for additional experience. The enhancements to the anti-leak skirt for ACURATE neo2 may further decrease PVL, which will be investigated in prospective clinical studies, including the currently enrolling ACURATE IDE Study comparing the ACURATE neo2 to either the Sapien 3 or the Evolut R/PRO.23 Continued commitment to head-to-head studies of TAVR devices will be critical in evaluating longer-term outcomes in a widening, diversified patient population.

1. Michimura RA, Otto CM, Bonow RO, et al. 2017 AHA/ACC focused update of the 2014 AHA/ACC guideline for the management of patients with valvular heart disease. Am Coll Cardiol. 2017;70:252–89.
2. Baumgartner H, Falk V, Bax JJ, et al. 2017 ESC/EACTS guidelines for the management of valvular heart disease. Eur Heart J. 2017;38:2799–91.
3. Adams DH, Poppas JA, Reardon MJ, et al. Transcatheter aortic valve-replacement with a self-expanding prosthesis. N Engl J Med. 2014;370:1796–8.
4. Smith CR, Leon MB, Mack MJ, et al. Transcatheter versus surgical aortic-valve replacement in intermediate-risk patients. N Engl J Med. 2011;364:2187–98.
5. Mack MJ, Leon MB, Smith CR, et al. 5-year outcomes of transcatheter aortic valve replacement or surgical aortic valve replacement for high surgical risk patients with aortic stenosis (PARTNER 1B): a randomised controlled trial. Lancet. 2015;385:2477–84.
6. Leon MB, Smith CR, Mack MJ, et al. Transcatheter or surgical aortic-valve replacement in intermediate-risk patients. N Engl J Med. 2016;374:1609–20.
7. ClinicalTrials.gov. ACURATE IDE: Safety and efficacy study of Acurate valve for transcatheter aortic valve replacement. ClinicalTrials.gov identifier: NCT01336567. Available at: https://clinicaltrials.gov/ct2/show/NCT01336567 (accessed 24 June 2021).
8. Mollmann H, Hengstenberg C, Hiltik M, et al. Real world experience using the ACURATE neo prosthesis: 30-day outcomes of 1,000 enrolled patients enrolled in the Sapien TF registry. EuroIntervention. 2018;13:e1764–70.
9. Kim WK, Hengstenberg C, Hiltik M, et al. The SAVI TF Registry: 1-year outcomes of the European post-market registry using the ACURATE neo transcatheter heart valve under real-world conditions in 1,000 patients. JACC Cardiovasc Interv. 2018;11:1368–74.
10. Norlak M, Amiri M, Mika L. Safety of new-discharge after transfemoral transcatheter aortic valve replacement with a self-expandable versus balloon-expandable valve prosthesis. Circ Cardiovasc Interv. 2019;12:e005755.
11. Mollmann H, Wohler T, Siqueira D, et al. Transforlmal TAVI using the self-expanding ACURATE neo prosthesis: one-year outcomes of the multicentre “CE approval cohort”. EuroIntervention. 2017;13:e1164–6.
12. ClinicalTrials.gov. ACURATE TF™ transcatheter aortic bioprosthesi for implantation in patients with severe aortic stenosis: CE approval cohort. ClinicalTrials.gov identifier: NCT00016630. Available at: https://clinicaltrials.gov/ct2/show/NCT00016630 (accessed 24 June 2021).
13. ClinicalTrials.gov. Symetis ACURATE Neo™ valve implantation SAV TF Registry (SAVI TF) and CORE TF Registry (CORE TF). ClinicalTrials.gov identifier: NCT03362626. Available at: https://clinicaltrials.gov/ct2/show/NCT03362626 (accessed 24 June 2021).
14. Wender G, Schymik G, Treder H, et al. SOURCE 3. 1-year outcomes post-transcatheter aortic valve implantation using the latest generation of the balloon-expandable transcatheter heart valve. Eur Heart J. 2017;38:2717–24.
15. Linke A, Wenneower P, Goeckler L, et al. Treatment of aortic stenosis with a self-expanding transcatheter valve: the International multi-centre ADVANCE study. Eur Heart J. 2014;35:2672–84.
16. Van Mieghem NM, Wöhrle J, Hildick-Smith D, et al. Comparison of the SAPIEN 3 and SAPIEN 3 TF transcatheter aortic valve implantation with a self-expanding transcatheter heart valve. JACC Cardiovasc Interv. 2019;12:38–49.
17. ClinicalTrials.gov. SOURCE 3: Observational study to evaluate safety and performance of SAPIEN 3 TVN system in real life

HEART INTERNATIONAL
practice (SOURCE 3). ClinicalTrials.gov Identifier: NCT030269956. Available at: https://clinicaltrials.gov/ct2/show/NCT030269956 (accessed 24 June 2021).

18. ClinicalTrials.gov. COREValve advance international post market study. ClinicalTrials.gov Identifier: NCT01074658. Available at: https://clinicaltrials.gov/ct2/show/NCT01074658 (accessed 24 June 2021).

19. ClinicalTrials.gov. RESPOND post market study (RESPOND). ClinicalTrials.gov Identifier: NCT02031302. Available at: https://clinicaltrials.gov/ct2/show/NCT02031302 (accessed 24 June 2021).

20. Hussner O, Kim W-K, Pellegatti C, et al. Multicenter comparison of novel self-expanding versus balloon-expandable transcatheter heart valves. JACC Cardiovasc Interv. 2017;10:2084–97.

21. Mauri V, Kim WK, Abumayyaleh M, et al. Short-term outcome and hemodynamic performance of next-generation self-expanding versus balloon-expandable transcatheter aortic valves in patients with small aortic annulus: a multicenter propensity-matched comparison. Circ Cardiovasc Interv. 2017;10:e00513.

22. Pagnesi M, Kim W-K, Conradi L, et al. Transcatheter aortic valve replacement with next-generation self-expanding devices: a multicenter, retrospective, propensity-matched comparison of Evolut PRO versus Acurate neo transcatheter heart valves. JACC Cardiovasc Interv. 2019;12:433–43.

23. Walther T. SCOPE I: one-year outcomes of a randomized trial comparing a self-expanding to a balloon-expandable transcatheter aortic valve. Presented at: Transcatheter Cardiovascular Therapeutics (TCT) 2020, virtual meeting, 17 October 2020. Available at: www.tctmd.com/slidescope/gray-one-year-outcomes-randomized-trial-comparing-self-expanding-balloon-expandable (accessed 28 May 2021).

24. ClinicalTrials.gov. Safety and efficacy of the Symetis ACURATE Neo™ TF compared to the Edwards SAPIEN 3 bioprosthesis (SCOPE II). ClinicalTrials.gov Identifier: NCT03011346. Available at: https://clinicaltrials.gov/ct2/show/NCT03011346 (accessed 24 June 2021).

25. Tamburino C, Bleiziffer S, Thele H, et al. Comparison of self-expanding bioprostheses for transcatheter aortic valve replacement in patients with symptomatic severe aortic stenosis: the SCOPE II randomized clinical trial. Circulation. 2020;142:2431–42.

26. ClinicalTrials.gov. Safety and efficacy comparison of two TAM systems in a prospective randomized evaluation 4 (SCOPE IV). ClinicalTrials.gov Identifier: NCT03192813. Available at: https://clinicaltrials.gov/ct2/show/NCT03192813 (accessed 24 June 2021).

27. Kim W-K. One-year safety and performance outcomes with the ACURATE neo valve system: an analysis of the PROGRESS neo Registry. Presented at the Congress for the European Association of Percutaneous Cardiovascular Interventions (EuroPCR) 2020. Available at: https://clinicaltrials.gov/ct2/show/NCT02987894 (accessed 15 June 2021).

28. ClinicalTrials.gov. Prospective observational study comparing II TAVI valve. Presented at the Congress for the European Association of Percutaneous Cardiovascular Interventions (EuroPCR) 2021. Available at: https://clinicaltrials.gov/ct2/show/NCT02909556 (accessed 28 May 2021).

29. Möllmann H, Holzhey DM, Hilker M, et al. The ACURATE neo2 Valve System: an Analysis of the ACURATE neo2 AS Aortic Bioprosthesis for transcatheter aortic valve replacement in patients with symptomatic severe aortic stenosis: a randomised non-inferiority trial. Lancet. 2019;394:1619–28.

30. Kim W-K, Möllmann H, Liebetrau C, et al. The ACURATE neo transcatheter heart valve: a comprehensive analysis of predictors of procedural outcome. JACC Cardiovasc Interv. 2018;11:1721–9.

31. Kim W-K, Möllmann H, Liebetrau C, et al. Effectiveness and safety of the ACURATE neo prosthesis in 1,000 patients with aortic stenosis. Am J Cardiol. 2020;131:21–6.

32. Buono A. Short-term outcomes of a novel self-expanding device (TAL-neo Registry. Presented at the Congress for the European Association of Percutaneous Cardiovascular Interventions (EuroPCR) 2021. Available at: https://eposter.epesp.org/EP/2020110518_0906Clinical_Science_Buono_Andrea_0000_87840/Buono_Andrea_20210605_1048_VOD.pdf (accessed 15 June 2021).

33. Ruck A. Results from the early neo2 registry Acurate neo2 TAVI valve. Presented at the Congress for the European Association of Percutaneous Cardiovascular Interventions (EuroPCR) 2021. Available at: https://media.pcronline.com/diapos/EuroPCR2021/3899-20210518_0992_Clinical_Science_Ruck_andrea_0000_78635/Ruck_andrea_20210518_1408_VOD.pdf (accessed 15 June 2021).

34. ClinicalTrials.gov. Early neo2 registry of the Acurate neo2 TAVI prosthesis. ClinicalTrials.gov Identifier: NCT04810195. Available at: https://clinicaltrials.gov/ct2/show/NCT04810195 (accessed 24 June 2021).

35. Ruck A. Quantitative angiographic assessment of ACURATE neo2 versus ACURATE neo. Presented at the Congress for the European Association of Percutaneous Cardiovascular Interventions (EuroPCR) 2021. Available at: https://eposter.epesp.org/EP/2020110518_0906Clinical_Science_Ruck_andrea_0000_87840/Ruck_andrea_20210605_1048_VOD.pdf (accessed 28 May 2021).