Improved reconstruction and comparative analysis of chromosome 12 to rectify Mis-assemblys in *Gossypium arboreum*

Javaria Ashraf¹,², Dongyun Zuo¹,³, Hailiang Cheng¹,³, Waqas Malik², Qiaolian Wang¹,³, Youping Zhang¹,³, Muhammad Ali Abid², Qiuhong Yang⁴, Xiaoxu Feng¹,³, John Z. Yu⁵ and Guoli Song¹,³*

Abstract

Background: Genome sequencing technologies have been improved at an exponential pace but precise chromosome-scale genome assembly still remains a great challenge. The draft genome of cultivated *G. arboreum* was sequenced and assembled with shotgun sequencing approach, however, it contains several misassemblies. To address this issue, we generated an improved reassembly of *G. arboreum* chromosome 12 using genetic mapping and reference-assisted approaches and evaluated this reconstruction by comparing with homologous chromosomes of *G. raimondii* and *G. hirsutum*.

Results: In this study, we generated a high quality assembly of the 94.64 Mb length of *G. arboreum* chromosome 12 (A_A12) which comprised of 144 scaffolds and contained 3361 protein coding genes. Evaluation of results using syntenic and collinear analysis of reconstructed *G. arboreum* chromosome A_A12 with its homologous chromosomes of *G. raimondii* (D_D08) and *G. hirsutum* (AD_A12 and AD_D12) confirmed the significant improved quality of current reassembly as compared to previous one. We found major misassemblies in previously assembled chromosome 12 (A_Ca9) of *G. arboreum* particularly in anchoring and orienting of scaffolds into a pseudo-chromosome. Further, homologous chromosomes 12 of *G. raimondii* (D_D08) and *G. arboreum* (A_A12) contained almost equal number of transcription factor (TF) related genes, and showed good collinear relationship with each other. As well, a higher rate of gene loss was found in corresponding homologous chromosomes of tetraploid (AD_A12 and AD_D12) than diploid (A_A12 and D_D08) cotton, signifying that gene loss is likely a continuing process in chromosomal evolution of tetraploid cotton.

Conclusion: This study offers a more accurate strategy to correct misassemblies in sequenced draft genomes of cotton which will provide further insights towards its genome organization.

Keywords: Genetic map, Reference-assisted assembly, Syntenic relationship, Gene loss, Transcription factor
Background
A high-quality genome sequence of species is a prerequisite to provide an inclusive access to complete genes catalog, different regulatory elements controlling their functions, and provides a framework for exploring genomic variations. During the early stages of genome sequencing, capillary technique was used to sequence the free-living organisms, starting with simple microbial genomes [1] followed by plant genomes including Arabidopsis thaliana [2], Oryza sativa [3] and Carica papaya [4]. Afterwards, many other complex plant genomes have been sequenced [5–8] using next-generation sequencing techniques (NGS). In current era, long-read sequencing (LRS) holds the promises due to its long-reads lengths [9], and many complex plants genome have been sequenced by this technique [10, 11].

In contrast to significant improvement of sequencing techniques, genome assembling continues to encounter many challenges [12, 13]. Particularly, complex and large plant genomes have remained a great challenge for de novo assembly due to its large genome size [14], high ploidy level [15], high rate of repeat elements [16], complex gene contents and high transposon’s activities [17]. One of the most difficult problems during de-novo genome assembly is the ordering and orientation of scaffolds to reconstruct the pseudo-chromosomes. A vigorous de novo assembly of chromosomes requires good quality physical and genetic maps [18, 19], optical maps [20], Hi-C sequence data [21] and genome collinearity and synteny [22] to anchor and orient the scaffolds to reconstruct the chromosomes. However, lack of good genetic or physical maps for most of the newly sequenced species makes difficult the accurate ordering of scaffolds into chromosomes. In this situation, good quality sequenced and assembled “reference genome” of closely related species would guide to an alternative approach which is referred as reference-assisted chromosome assembly. Orientation of scaffolds into chromosomes by reference-assisted chromosome assembly helps to exploit the benefits of assembled chromosomes without adding further efforts of sequencing or map construction [23].

Cotton (Gossypium spp.) is an important natural fiber and edible oil crop, mainly grown in subtropical and temperate areas of the world. Tetraploid genome of cotton is complicated by the presence of two sub-genomes (A_T and D_T) in its nucleus which were derived from diploid A-genome (G. arboreum) and D-genome (G. raimondii) progenitors. Diploid A genome is about 2-fold larger than D progenitor genome, and A_T sub-genome is more stable in G. hirsutum than D_T sub-genome [24].

Furthermore, G. arboreum possesses valuable and unique traits such as early maturity, tolerance to biotic and abiotic stresses and great fiber strength, providing a valuable germplasm resource for improving modern tetraploid cotton cultivars [25]. Therefore, existence of high quality reference draft genome sequence of G. arboreum is an essential task for tracing the origin of genome segments and interference of homoeology i.e. genes and RNA-seq [26] in tetraploid cotton.

Previously, genome of cultivated diploid cotton G. arboreum (Shixiya1) was sequenced and assembled using whole-genome shotgun approach which contained a total of 1694 Mb length including 41,330 protein coding genes and 1145 Mb long terminal repeats (LTR)-type retrotransposons [27]. Subsequently, genome sequence of tetraploid cotton G. hirsutum [28] was released which showed a conserved gene order with the A cotton genome (G. arboreum) [27]. However, another sequenced version of G. hirsutum genome [8] reported unobvious collinearity with the sequenced genome of G. arboreum [27], which is mainly due to numerous mis-assemblies in G. arboreum genome [27]. For instance, several scaffolds belong to different chromosomes were present in one pseudo-molecule of G. arboreum. Several previous studies reported that draft sequenced genome of G. arboreum [27] contained errors and mis-assemblies [8, 29, 30], however this draft genome did not undergo precise quality improvement to correct errors. So, knowing how to assemble this genome accurately, how to best make use of the highly fragmented assemblies and how to perform these applications at the lowest cost are important in today’s funding environment [31]. Here, we demonstrated an initial more accurate effort to reassemble chromosome 12 (A_A12) of G. arboreum using NGS data from previous study [27] without adding any other sequencing efforts, as its homologous chromosomes of allotetraploid cotton contain important genes related to male sterility, fiber quality and gland development [32–34]. The advantage of selecting chromosome 12 also includes that it do not show any translocation [8, 35] in diploid and tetraploid cotton species. Subsequently, reassembled G. arboreum chromosome A_A12 was compared using collinear and syntenic analysis, whole chromosome alignment and dotplotting with its homologous chromosomes 12 of G. raimondii (D_D08) and G. hirsutum (AD_A12 and AD_D12) as well as previously assembled G. arboreum chromosome 12 (A_Ca9) [27] to support the more accuracy of reconstructed chromosome. Furthermore, we performed different comparative analysis such as gene loss, identification and mapping of transcription factor-related genes within homologous chromosomes 12 (A_A12, D_D08, AD_A12 and AD_D12) of three cotton species including G. arboreum, G. raimondii and G. hirsutum.

Results
Re-assembling of G. arboreum chromosome 12 (A_A12)
Here, we combined genetic mapping and reference-assisted approaches (Fig. 1) to reassemble G. arboreum chromosome A_A12.
Genetic map construction for re-assembling

Initially, 3735 high quality markers were selected out of 24,569 SNP markers used in previous study [27] for construction of linkage map. A total of 3544 loci were classified into 13 linkage groups at LOD 06 with a total length of 1599.8 cM. Linkage groups 01 and 02 contained more number of markers as compared to others, while linkage group 13 enclosed lowest number of markers (Additional File 1: Fig. S1, Additional File 2: Table S1). Afterwards, chromosomes names were assigned to 13 linkage groups of *G. arboreum* according to the available mapped markers data of *G. hirsutum* and *G. raimondii* which gave the similar good results (Additional File 2: Table S2 and Table S3). However, we did not get same results in case of using mapped marker data of *G. arboreum* (Additional File 2: Table S4), provided first evidence of misassembles in sequenced genome of *G. arboreum* [27]. After assigning chromosomes names to 13 linkage groups, linkage group belong to *G. arboreum* chromosome 12 (A_A12) was used for re-assembling. We checked the alignments of scaffolds belonging to *G. arboreum* chromosome 12 for following levels: (i) Alignment of *G. arboreum* scaffolds (obtained by the genetic map) to *G. raimondii* scaffolds [7], (ii) Orientation of *G. raimondii* (obtained from the previous step) and *G. arboreum* scaffolds along *G. hirsutum* chromosome (D_D08) [36], and (iii) adjacency of *G. arboreum* scaffolds within *G. hirsutum* chromosome (AD_A12) [8].

Reference assisted approach for reassembling

After construction of genetic map which served as a backbone for subsequent reassembling steps, we assessed *G. arboreum* chromosome A_A12 against two criteria: adjacency of scaffolds and gene integrity via BLAT and
gene-wise BLASTN approaches (Fig. 1). We checked scaffolds and gene integrity according to three steps: (i) Alignment of G. arboreum scaffolds (obtained by genetic map) to G. raimondii scaffolds [7], (ii) Orientation of G. raimondii (obtained from previous step) and G. arboreum scaffolds along G. raimondii chromosome D_D08 [36], and (iii) adjacency of G. arboreum scaffolds within G. hirsutum chromosome AD_A12 [8].

Based on linkage map and reference assisted approaches, we also identified inter-chromosomal mis-assemblies in 08 scaffolds of G. arboreum having a total of 19.79 Mb length (Additional File 2: Table S5). The final assembly of G. arboreum chromosome A_A12 comprised of 144 scaffolds (N50 = 912 kb) with 94.64 Mb final assembly of G. arboreum assemblies in 08 scaffolds of G. arboreum as in Fig. 1. We checked scaffolds and gene integrity according to three steps: (i) Alignment of G. arboreum scaffolds (obtained by genetic map) to G. raimondii scaffolds [7], (ii) Orientation of G. raimondii (obtained from previous step) and G. arboreum scaffolds along G. raimondii chromosome D_D08 [36], and (iii) adjacency of G. arboreum scaffolds within G. hirsutum chromosome AD_A12 [8].

Gene contents of G. arboreum chromosome A_A12
We generated an updated list of protein coding genes of reconstructed G. arboreum chromosome A_A12 which showed a total of 3361 predicted protein coding genes with an average transcript size of 1263 bp and a mean of 4.7 exons per gene (Table 1). The Cotton_A_14584 gene contained the largest CDS (14,331 bp) with 13 exons, while smallest CDS (90 bp) was enclosed by Cotton_A_37648 with 02 exons. Out of 3361 predicted genes, 2456 have predicted functional description. Gene density is 36 per Mb in G. arboreum chromosome A_A12 which is lower than in G. raimondii chromosome (53 per Mb of chromosome) [36]. Almost similar difference in gene density was reported between A12 and D12 chromosomes of G. hirsutum (29.4 vs 50 per Mb of chromosome) [8] and G. barbadense (33 vs 55.2 per Mb of chromosome), respectively [37].

Category	Statistics
Total length of the assembly (Mb)	94.64
Number of oriented scaffolds	144
Oriented scaffolds (NS0) (Mb)	0.912
Maximum scaffold length (Mb)	2.360
Minimum scaffold length (Mb)	0.002
Number of protein coding genes	3361
Average gene size (bp)	2527
Average transcript length (bp)	1263
Gene density (per Mb of chromosome)	36
Total gene region	8,493,379
Total coding Region	3,796,446
Maximum CDS length (bp)	14,331
Average CDS length (bp)	1130
Mean exon number	4.7

Collinear and syntenic relationship

Comprehensive search of synteny and collinearity was carried out using BLASTP search comparing G. arboreum chromosome A_A12 with its corresponding homologous chromosomes of G. raimondii (D_D08) [36] and G. hirsutum (AD_A12 and AD_D12) [8]. Results indicated that the corresponding homologous chromosomes 12 of different Gossypium species possess a good syntenic relationship (Fig. 2a-c) such as 25 and 18 collinear blocks (with ≥5 genes per block) were aligned with G. raimondii (D_D08) and G. hirsutum (AD_A12) chromosomes (Additional File 2: Table S6), respectively. Overall gene order and collinearity was also highly conserved (Fig. 3 and Fig. 4a-c, Additional File 1: Fig. S3 and Fig. S4) between re-assembled G. arboreum chromosome A_A12 with its homologous chromosomes of G. raimondii [36] and G. hirsutum [8]. However, this collinearity was not apparent (Fig. 5a-b, Additional File 1: Fig. S5) between re-assembled G. arboreum chromosome A_A12 with its homologous chromosomes of G. raimondii (AD_A12) and G. hirsutum (AD_A12) chromosomes (Additional File 2: Table S7). A total of 2485 ortholog pairs were identified between diploid A_A12 and D_D08 chromosomes.

Identification of orthologous gene pairs

We identified 2382 and 2603 orthologous gene pairs within homologous chromosomes (AD_A12 and AD_D12) of G. hirsutum and subsequent ancestral diploid A_A12 and D_D08 chromosomes (Additional File 2: Table S7). A total of 2485 ortholog pairs were identified between diploid A_A12 and D_D08 chromosomes.

Gene loss

Gene order was generated among the homologous chromosomes 12 of three Gossypium species by quartet alignments in MCScan [38]. Flanking gene method has been used to find gene loss in the syntenic blocks. Homologous chromosomes of allotetraploid cotton have greater gene loss; 26 genes were lost from AD_A12 and 22 from AD_D12 chromosomes (Table 2). In contrast, 13 and 09 genes were absent from A_A12 and D_D08 chromosomes of G. arboreum and G. raimondii, respectively (Table 3).

Identification and mapping of transcription factor (TF) related genes

Firstly, we generated an updated list of putative TF-related genes of G. arboreum chromosome A_A12 using PlantTFDB [39]. This led to the identification of 266 putative members from 40 TF families, representing 8% of the protein-coding genes (Additional File 2: Table S8). There was more enrichment of ERF (35) related genes on chromosome A_A12 followed by bHLH (24), MYB...
We also identified TF members of these five major families (ERF, bHLH, MYB, C2H2 and WRKY) in homologous chromosomes 12 of G. raimondii and G. arboreum (A_A12). We also identified TF members of these five major families (ERF, bHLH, MYB, C2H2 and WRKY) in homologous chromosomes 12 of_G. raimondii and G. arboreum (A_A12). We also identified TF members of these five major families (ERF, bHLH, MYB, C2H2 and WRKY) in homologous chromosomes 12 of G. raimondii and G. arboreum (A_A12). Comparative physical mapping of these genes on homologous chromosomes 12 of diploid and tetraploid cotton species revealed good collinear relationships among most of the TF-related genes (Fig. 6a-e). In particular, the chromosomal distribution of TF members in AD_A12 and AD_D12 chromosomes were more similar to their diploid progenitor’s chromosomes (A_A12 and D_D08). Moreover, TF encoding genes were not evenly distributed within the chromosomes. In general, the central region of chromosomes contained less number of TF-related genes, while comparatively high densities of TF members were found in bottom section of chromosomes.

Discussion

Chromosome-scale assemblies of sequenced plant genomes facilitated the discovery of important features of genome evolution. However, a consistent method for chromosome assembling from NGS data continues to present a serious constraint. Cultivated G. arboreum is important diploid cotton species that contains important
traits such as resistance to biotic and abiotic stresses [40, 41]. Previously, draft genome of G. arboreum has been sequenced and assembled [27] using 193.6 Gb of high-quality sequence reads. However, it contained several errors in ordering and orienting of scaffolds into pseudo-molecules [8, 30]. To address this problem, we reconstructed G. arboreum chromosome A_A12 by combining genetic mapping and reference assisted approaches. Initially, a high density genetic map of G. arboreum was constructed using 3735 good quality SNP markers from previous study [27], consisted of 3544 SNP loci and spanned 1599.8 cM in 13 linkage groups. Subsequently, linkage group belong to G. arboreum chromosome A_A12 was proceed for reassembling using reference assisted approach as it contains important genes for different traits [32–34], and do not contain any translocation [8, 35]. Final assembly of G. arboreum chromosome A_A12 comprised of 144 scaffolds and spanned 94.64 Mb length, which is almost twice the size (57.13 Mb) of its homologous chromosome (D_D08) of G. raimondii [36]. These results were consistent with chromosome size difference between the homologous chromosome 12 of At (87.4 Mb) and Dt (59.1 Mb) sub-genome of G. hirsutum [8]. Similarly, tetraploid genome of G. barbadense [37] contained A12 and D12 chromosomes of 103.3 Mb and 58.2 Mb, respectively.

Further, both G. arboreum and G. raimondii chromosomes (A_A12 and D_D08) contained 3361 and 2990 genes, resulted lower gene density (36 vs 53 per Mb of chromosome) in A_A12 chromosome than D_D08 [36]. Similar difference in gene density was observed between the A12 and D12 chromosomes of G. hirsutum [8] and G. barbadense [37]. This lower gene density in chromosome A_A12 than D_D08 is mainly due to the presence of more repetitive elements. Previously, several studies also reported that larger genome size of G. arboreum...
relative to *G. raimondii* was mainly due to the presence of repetitive elements [42, 43]. Additionally, *G. arboreum* genome contained [27] high percentage of transposable elements as compared to *G. raimondii* [7, 36].

Polypliodization is often followed by whole genome duplication that is illustrated by genome reorganization and immense gene loss [44–46]. This process has been observed in different plants i.e. wheat [47], *Brassica* [48] and maize [49]. Though, some other plants including *Arabidopsis* [50] and cotton [51] do not illustrate various changes in their genome sequences. In current study, synteny and collinearity, whole chromosomal alignment and homologous gene dotplotting showed highly conserved syntenic and collinear relationship among homologous chromosomes of *G. hirsutum*, *G. raimondii* and reassembled *G. arboreum* chromosome, depicting preservation of very similar genomic structure since their divergence [52, 53]. Previous studies also reported highly conserved collinear relationship among different cotton species, which is also consistent to our results [8, 54]. This is possibly because actual progenitors which may form stable cultivated allotetraploid were lost or unstable tetraploid was eliminated by natural selection during early generations. However, this synteny was not apparent with previously assembled chromosome of *G. arboreum* (A_Ca9) [27]. In addition, homologous gene dotplotting with *G. arboreum* chromosome A_Ca9 also showed unobvious collinear relationship, confirming various mistakes in ordering and anchoring of scaffolds. Previous report [8] also showed unobvious collinearity between the homologous chromosomes of *G. hirsutum* and *G. arboreum*, which was consistent to our result.

Differential gene loss is an important factor during genome evolution which affects synteny between corresponding regions of different chromosomes [55–57], and can lead to immediate loss of gene function. In current study, we found a higher rate of gene loss in homologous chromosomes of tetraploid (AD_A12 and AD_D12) than diploid (A_A12 and D_D08) cotton. These results were consistent with the previous reports [8, 28], suggesting gene loss is probably an enduring process in chromosomal evolution of tetraploid cotton.

Transcription factors play a significant role in plant growth and development, secondary metabolism, organ morphogenesis and resistance against different stresses in cotton [58–60]. Several previous reports computed genome-wide analysis of TF-related genes in different cotton species and compared their physical location on different chromosomes [61–64]. In current study, distribution of TF-related genes showed that homologous chromosomes of *G. raimondii* (D_D08) and *G. arboreum* (A_A12) contained almost similar number of TF genes with minimum deviation, and they had good collinear relationship with each other. For Instance, 13 WRKY genes were identified on each of re-constructed *G. arboreum* A_A12 and *G. raimondii* D_D08 chromosomes with high collinearity. Recent study also reported highly conserved collinearity among TF-related genes of four *Gossypium* species [65]. In contrast, another study using previously assembled *G. arboreum* genome [27] identified different number of WRKY genes and their unobvious collinearity in *G. arboreum* and *G. raimondii* chromosomes 12, respectively [63]. Furthermore, distribution of TF encoding genes was not even within the corresponding

Fig. 4 Dotplot representation between homologous chromosomes of different cotton species. A BLASTP search (with an E-value cutoff of 1×10^{-5}) was performed to identify orthologous genes. Afterwards, dotplots representation among homologous chromosomes of three cotton species was carried out by MCScan. a *G. arboreum* chromosome A_A12 (Y-axis) vs *G. raimondii* chromosome D_D08 (X-axis), b *G. arboreum* chromosome A_A12 (Y-axis) vs *G. hirsutum* chromosome AD_A12 (X-axis), and c *G. arboreum* chromosome A_A12 (Y-axis) vs *G. hirsutum* chromosome AD_D12 (X-axis).
homologous chromosome of three cotton species which is likely due to sequence exchange through recombination mispairing [66].

Conclusion

In conclusion, we generated an improved reassembly of *G. arboreum* chromosome A_A12 using NGS data of a previous study [27] by combining genetic mapping and reference assisted approaches. This study provides an initial more accurate strategy for correcting misassemblies in sequenced genome of *G. arboreum* which can also be applied to improve chromosome-scale assemblies of large and complex plant genomes without having good genetic or physical maps.

Methods

Genomes and markers data

Sequenced genome data of *G. arboreum* [27] including scaffolds, predicted annotated genes and genotypic data of 24,569 SNP markers as well as scaffolds data of *G. hirsutum* [7] was obtained from Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China. Chromosomal and genes annotation data of *G. hirsutum* [8] and *G. raimondii* [36] was downloaded from the CottonFGD (https://cottonfgd.org/). Meanwhile, sequence data of previous mapped markers of *G. hirsutum* and *G. raimondii* for each chromosome was downloaded from COTTONGEN (https://www.cottongen.org/find/markers).
SNP markers selection
Markers data of 24,569 SNPs [27] was filtered out to obtain good quality linkage map of *G. arboreum*. Firstly, Chi-square test was executed to find markers diverging from Mendelian segregation patterns. Markers were excluded from analysis when they displayed very significant distortion (\(P < 0.01\)) from expected segregation ratio, also when they had more than 30% missing genotypic data. We identified markers with more than 95% similarity, and only one such marker was used for linkage map analysis.

Genetic map construction
Linkage groups were constructed by JoinMap 4.0 [67] using F2 generation from previous study [27]. Markers were allocated to linkage groups by independence logarithm of odds (LOD) of 2.5–50.0 with a step of 1.0. Linkage groups were generated using LOD thresholds of 6.0 and maximum recombination thresholds of 0.4. We used a maximum likelihood mapping algorithm for calculation efficiency of marker order [68] if linkage group contained more than 500 markers. However, the scope of corresponding linkage groups (3000–6000 cM) exceeded JoinMap 4.0. Therefore, linkage length was divided by 100 for the presentation of genetic map [69]. In other linkage groups having less than 500 markers, a linear regression algorithm and the Kosambi mapping function [70] was used to convert recombination frequencies into centiMorgan (cM) map distances. Final linkage map was drawn using Mapchart 2.2 [71].

Assign chromosomes names to linkage groups
To assign chromosomes names to each linkage group, sequence data of mapped markers for each chromosome of *G. hirsutum* and *G. raimondii* was obtained from COTTONGEN (https://www.cottongen.org/find/markers). Then

| Table 2 Gene loss in homologous chromosomes 12 of *G. hirsutum* |
|----------------------|----------------------|----------------------|----------------------|
| Genes loss in AD_A12 chromosome | Genes loss in AD_D12 chromosome |
| D_D08 | A_A12 | AD_D12 | D_D08 | A_A12 | AD_D12 |
| Gorai.008G015200 | Cotton_A_15792 | Gh_D12G0137 | Gorai.008G026700 | Cotton_A_10793 | Gh_A12G0236 |
| Gorai.008G041500 | Cotton_A_02090 | Gh_D12G0372 | Gorai.008G063700 | Cotton_A_11364 | Gh_A12G0558 |
| Gorai.008G063000 | Cotton_A_11373 | Gh_D12G0567 | Gorai.008G080200 | Cotton_A_34337 | Gh_A12G0688 |
| Gorai.008G106800 | Cotton_A_31201 | Gh_D12G0942 | Gorai.008G095800 | Cotton_A_35255 | Gh_A12G0798 |
| Gorai.008G110900 | Cotton_A_27718 | Gh_D12G0984 | Gorai.008G157500 | Cotton_A_23027 | Gh_A12G1304 |
| Gorai.008G133700 | Cotton_A_26243 | Gh_D12G1202 | Gorai.008G160900 | Cotton_A_35616 | Gh_A12G1336 |
| Gorai.008G136900 | Cotton_A_22647 | Gh_D12G1233 | Gorai.008G161100 | Cotton_A_30134 | Gh_A12G1338 |
| Gorai.008G138200 | Cotton_A_22060 | Gh_D12G1246 | Gorai.008G164600 | Cotton_A_21032 | Gh_A12G1366 |
| Gorai.008G141000 | Cotton_A_33185 | Gh_D12G1271 | Gorai.008G171300 | Cotton_A_31070 | Gh_A12G1433 |
| Gorai.008G159100 | Cotton_A_23046 | Gh_D12G1444 | Gorai.008G187700 | Cotton_A_38211 | Gh_A12G1570 |
| Gorai.008G165500 | Cotton_A_21019 | Gh_D12G1498 | Gorai.008G190100 | Cotton_A_25801 | Gh_A12G1593 |
| Gorai.008G178300 | Cotton_A_06177 | Gh_D12G1616 | Gorai.008G193900 | Cotton_A_13403 | Gh_A12G1616 |
| Gorai.008G182200 | Cotton_A_06137 | Gh_D12G1649 | Gorai.008G206100 | Cotton_A_08046 | Gh_A12G1715 |
| Gorai.008G188300 | Cotton_A_25782 | Gh_D12G1706 | Gorai.008G217000 | Cotton_A_13589 | Gh_A12G1810 |
| Gorai.008G194300 | Cotton_A_13398 | Gh_D12G1760 | Gorai.008G230800 | Cotton_A_07177 | Gh_A12G1938 |
| Gorai.008G196900 | Cotton_A_13365 | Gh_D12G1787 | Gorai.008G240500 | Cotton_A_07085 | Gh_A12G2029 |
| Gorai.008G202800 | Cotton_A_27500 | Gh_D12G1844 | Gorai.008G241600 | Cotton_A_07074 | Gh_A12G2040 |
| Gorai.008G203500 | Cotton_A_08073 | Gh_D12G1852 | Gorai.008G283400 | Cotton_A_01373 | Gh_A12G2388 |
| Gorai.008G231000 | Cotton_A_07174 | Gh_D12G2120 | Gorai.008G202900 | Cotton_A_24594 | Gh_A12G0175 |
| Gorai.008G235800 | Cotton_A_07128 | Gh_D12G2164 | Gorai.008G151100 | Cotton_A_30237 | Gh_A12G1241 |
| Gorai.008G242300 | Cotton_A_14421 | Gh_D12G2224 | Gorai.008G207500 | Cotton_A_8032 | Gh_A12G1729 |
| Gorai.008G268800 | Cotton_A_19242 | Gh_D12G2414 | Gorai.008G244100 | Cotton_A_14443 | Gh_A12G2062 |
| Gorai.008G017400 | Cotton_A_15816 | Gh_D12G0157 | Gorai.008G077500 | Cotton_A_31087 | Gh_D12G0672 |
| Gorai.008G017600 | Cotton_A_25559 | Gh_D12G1546 | Gorai.008G194300 | Cotton_A_13398 | Gh_D12G1760 |

A_A12, G. *arboreum* chromosome; D_D08, G. *raimondii* chromosome; AD_A12 & AD_D12, G. *hirsutum* chromosomes
a BLAST search was made using the marker sequence data of *G. hirsutum* and *G. raimondii* as a query and *G. arboreum* scaffolds corresponding to SNP markers of each linkage group as a database.

Initial alignment of *G. arboreum* scaffolds

All scaffolds belonging to 189 SNP markers of *G. arboreum* chromosome A_A12 were pairwise aligned with the *G. raimondii* scaffolds [7] by BLAST-Like Alignment Tool (BLAT). The resulted alignments were required to have score values showing the length and similarity of aligned regions, while only best BLAT hit was counted from the alignments. Afterward, each of the pairwise alignment was validated by anchoring the protein coding genes of *G. raimondii* scaffolds [7] within *G. arboreum* scaffolds by BLASTN. If a gap between two coordinated scaffolds was > 100 kb then the corresponding nucleotide sequence of *G. raimondii* scaffolds was extracted and used as a query to align it with *G. arboreum* scaffolds by BLAT and BLASTN. Eventually, all resulted scaffolds were further confirmed by arranging them on the homologous chromosome (AD_A12) of *G. hirsutum* [8].

Correction of assembly using genetic map and syntenic relationship

The linkage map of *G. arboreum* chromosome A_A12 and its synteny with the homologous chromosome of *G. raimondii* [36] and *G. hirsutum* [8] was used to find false joins within the scaffolds and to anchor the scaffolds into chromosome. Scaffolds were broken if they enclosed a false join based on genetic map and syntenic relationship. Then, corrected scaffolds were arranged to generate chromosome A_A12 of *G. arboreum*.

Gene contents of *G. arboreum* chromosome A_A12

An AGP (a golden path) file that records the position of protein-coding genes for each scaffold of *G. arboreum* [27] was obtained from Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China. We generated an updated list of genes and proteins for re-assembled *G. arboreum* chromosome A_A12 by arranging the genes and proteins of each scaffolds in their respective order. Putative functional description of all genes was explored by CottonFGD (https://cottonfgd.org/search/).

Syntenic and collinear analysis

Syntenic blocks between corresponding homologous chromosomes of *G. arboreum* (A_A12), *G. hirsutum* (AD_A12 and AD_D12) [8] and *G. raimondii* (D_D08) [36] were identified by MCScan [38] with default parameters. After removing multiple matches and tandem duplications, syntenic blocks having more than five gene pairs were identified.

Table 3 Gene loss in homologous chromosomes 12 of *G. arboreum* and *G. raimondii*

Genes loss in A_A12 chromosome	Genes loss in D_D08 chromosome				
AD_D12	AD_A12	D_D08	AD_D12	AD_A12	A_A12
Gh_D12G0154	Gh_A12G0141	Gorai.008G016900	Gh_D12G0046	Gh_A12G0031	Cotton_A_21998
Gh_D12G1069	Gh_A12G0957	Gorai.008G119400	Gh_D12G0145	Gh_A12G0131	Cotton_A_15801
Gh_D12G1172	Gh_A12G1052	Gorai.008G130700	Gh_D12G0571	Gh_A12G0555	Cotton_A_11368
Gh_D12G1313	Gh_A12G1191	Gorai.008G145300	Gh_D12G0937	Gh_A12G0857	Cotton_A_29573
Gh_D12G1414	Gh_A12G1292	Gorai.008G156000	Gh_D12G1073	Gh_A12G0961	Cotton_A_20925
Gh_D12G1862	Gh_A12G1699	Gorai.008G204500	Gh_D12G1353	Gh_A12G1228	Cotton_A_14576
Gh_D12G2015	Gh_A12G1845	Gorai.008G220400	Gh_D12G1992	Gh_A12G1821	Cotton_A_13578
Gh_D12G2032	Gh_A12G1861	Gorai.008G222300	Gh_D12G2303	Gh_A12G2123	Cotton_A_23201
Gh_D12G2315	Gh_A12G2135	Gorai.008G254600	Gh_D12G2444	Gh_A12G2310	Cotton_A_01291
Gh_D12G2573	Gh_A12G2447	Gorai.008G291600	Gh_D12G1292	Gh_A12G1821	Cotton_A_13578
Gh_D12G2634	Gh_A12G2507	Gorai.008G297900	Gh_D12G2444	Gh_A12G2310	Cotton_A_01291
Gh_D12G2440	Gh_A12G2304	Gorai.008G275000	Gh_D12G2444	Gh_A12G2310	Cotton_A_01291
Gh_D12G0980	Gh_A12G0894	Gorai.008G110500	Gh_D12G2444	Gh_A12G2310	Cotton_A_01291

A_A12, *G. arboreum* chromosome; D_D08, *G. raimondii* chromosome; AD_A12 & AD_D12, *G. hirsutum* chromosomes
Identification of orthologous gene sets

All protein sequences of corresponding homologous chromosomes 12 of each cotton species (G. arboreum, G. raimondii and G. hirsutum) were compared by BLASTP (e-value < 1 × 10^{-5}). Genes were classified into ortholog clusters with OrthoMCL against OrthoMCL database proteins [72]. Multiple sequence alignment of G. arboreum, G. raimondii and G. hirsutum protein coding sequences was performed with ClustalW [73]. Based on the orthologous gene sets between homologous chromosomes of G. arboreum (A_A12), G. raimondii (D_D08) [36], and two sub-genomes of G. hirsutum (AD_A12 and AD_D12) [8], synonymous and non-synonymous substitutions per site among three cotton species were calculated by Synonymous Non-synonymous Analysis Program (SNAP) [74].

Gene loss

Gene-loss events were depicted using flanking gene method from the synteny table generated by MCScan [38]. For instance, given flanking genes X, Y and Z in order, if gene Y is present in the corresponding homologous chromosomes 12 of three Gossypium genomes, but missed in chromosome of other one genome, then gene Y is referred as a lost gene. However, both X and Z genes are essentially to be present in homologous chromosome (A_A12, D_D08, AD_A12 and AD_D12) of all four Gossypium genomes.

Identification and mapping of transcription factor related genes

Transcription factor (TF) related genes were identified by searching all protein sequences of re-assembled G. arboreum chromosome A_A12 using Plant Transcription Factor Database, PlantTFDB [39]. Afterwards, only top five putative TF-related genes including ERF, bHLH, MYB, C2H2 and WRKY were used for further analysis. The Hidden Markov Model (HMM) profiles of gene domains were obtained from Pfam [75] for gene family identification. HMMER 3.0 [76] search was used to confirm the putative TF-related genes in homologous
chromosomes 12 of *G. arboreum*, *G. raimondii* and *G. hirsutum*. Chromosomal position of all TF-related genes was resolved by BLASTN searches against chromosomes of *G. arboreum* (A_D12), *G. raimondii* (D_D08) [36] and *G. hirsutum* (AD_A12 and AD_D12) [8]. All TF-related genes were mapped on the chromosomes using the Mapchart 2.2 [71].

Supplementary information

Supplementary information accompanies this paper at https://doi.org/10.1186/s12864-020-06814-5.

Additional file 1: Fig. S1

Genetic map of *G. arboreum* genome. Fig. S2

Arrangement of *G. arboreum* scaffolds within reassembled *G. arboreum* chromosome 12 (A_A12). Fig. S3

Collinearity among homologous chromosomes 12 of three cotton species. Fig. S4

Alignments of reassembled *G. arboreum* chromosome A_A12 with the whole genome of *G. hirsutum*. Fig. S5

Dotplot representation with the previously assembled *G. arboreum* chromosome.

Additional file 2 Table S1

Genetic map construction of *G. arboreum*. Table S2

Chromosomes names assignment to each linkage group with respect to previous mapped markers of *G. raimondii*. Table S3

Chromosomes names assignment to each linkage group with respect to previous mapped markers of *G. hirsutum*. Table S4

Chromosomes names assignment to each linkage group with respect to previous mapped markers of *G. arboreum*. Table S5

Statistics for misassembled scaffolds. Table S6

Collinear blocks among the homologous chromosome 12 of different cotton species. Table S7

Orthologous gene pairs between homologous chromosomes 12 of different cotton species. Table S8

TF-related genes in reassembled *G. arboreum* chromosome A_A12. Table S9

TF-related genes on homologous chromosome 12 of three cotton species. (XLS 1436 kb)

Abbreviations

A_A12: Re-assembled *G. arboreum* chromosome 12; A_Ca9: Chromosome 12 of *G. arboreum* [27]; D_D08: Chromosome 12 of *G. raimondii* [36]; AD_A12: Chromosome 12 for At subgenome of *G. hirsutum* [8]; AD_D12: Chromosome 12 for Dt subgenome of *G. hirsutum* [8]; NGS: Next-generation sequencing; LRS: Long-read sequencing; CM: Canti-Morgan; LOD: Logarithm of the odds; SNP: Single nucleotide polymorphism; BLAST: Basic local alignment search tool; BLAT: BLAST-like alignment tool; HMM: Hidden markov model; N50: 50% of the assembled nucleotides within scaffolds; TF: Transcription factor

Acknowledgements

We would like to thank anonymous reviewers for their valuable suggestions.

Authors’ contributions

JA and GS conceived and designed the experiments. JA, DZ, HC and QY performed the experiment. JA, QW, YZ, MAA and XF analyzed the data. JA and GS wrote the paper. WM, JZY and GS critically revised the paper. All authors read and approved the final version of manuscript.

Funding

This work was supported by grants from National Natural Science Foundation of China (31621005), and National Key Research and Development Program (2018YFD0100400, 2016YFD0101008). The funding agencies had no role in study design, data collection and analysis, decision to publish and preparation of the manuscript.

Availability of data and materials

The sequence data of re-constructed *G. arboreum* chromosome 12 has been deposited at the NCBI Genbank under the accession number CP053561. The other data sets generated in this study are included within the article and supplementary files.

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare that there is no conflict of interests regarding the publication of this paper.

Author details

1 Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China. 2 Genomics Lab, Department of Plant Breeding and Genetics, Faculty of Agricultural Sciences and Technology, Bahauddin Zakariya University, Multan, Punjab 60000, Pakistan. 3 Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou 450001, China. 4 College of Life Sciences, Tarim University, Alar 843300, China. 5 Crop Germplasm Research Unit, Southern Plains Agricultural Research Center, US Department of Agriculture–Agricultural Research Service (USDA-ARS), College Station, TX 77845, USA.

Received: 28 October 2019 Accepted: 9 June 2020

Published online: 08 July 2020

References

1. Fleischmann RD, Adams MD, White O, Clayton RA, Kirkness EF, Kerlavage AR, Bult CJ, Tomb JF, Dougherty BA, Merrick JM. Whole-genome random sequencing and assembly of Haemophilus influenzae Rd. Science. 1995; 269(5223):496–512.

2. Initiative AG. Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature. 2000;408(6814):796–815.

3. Sasaki T. The map-based sequence of the rice genome. Nature. 2005; 436(7052):793–800.

4. Ming R, Hou S, Feng Y, Qiu D, Jinne-Laporte A, Sah JH, Senin P, Wang W, Ly BV, Lewis KL. The draft genome of the transgenic tropical fruit tree papaya (Carica papaya Linnaeus). Nature. 2008;452(7190):991–6.

5. Shulaev V, Sargent DJ, Crowhurst RN, Mockler TC, Folkerts D, Delcher AL, Jaiswal P, Mockaitis K, Liston A, Mane SP. The genome of woodland strawberry (Fragaria vesca). Nat Genet. 2011;43(2):109–16.

6. Vaninney RK, Chen W, Li Y, Bharti AK, Sawena RK, Schlueter JA, Donoghue MT, Azam S, Fan G, Whaley AM. Draft genome sequence of pigeonpea (Cajanus cajan), an orphan legume crop of resource-poor farmers. Nat Biotechnol. 2012;30(1):83–9.

7. Wang K, Wang Z, Li F, Ye W, Wang J, Song G, Yue Z, Cong L, Shang H, Zhu S. The draft genome of a diploidy cotton (Gossypium raimondii). Nat Genet. 2012;44(10):1098–103.

8. Zhang T, Hu Y, Jiang W, Fang L, Guan X, Chen J, Zhang J, Sasaki CA, Scheffler BE, Stelly DM. Sequencing of allotetraploid cotton (Gossypium hirsutum L. acc. TM-1) provides a resource for fiber improvement. Nat Biotechnol. 2015;33(5):531–7.

9. van Dijk EL, Jaszczyzyn Y, Naquin D, Thermes C. The third revolution in sequencing technology. Trends Genet. 2018;34(6):666–8.

10. Xia E, Li F, Tong W, Yang J, Wang S, Zhao J, Liu C, Gao L, Tai Y, She G. The tea plant reference genome and improved gene annotation using long-read and paired-end sequencing. Sci Data. 2019;6(1):1–9.

11. Girollet N, Rubio B, Lopez-Roques C, Valiere S, Ollat N, Bert PF. De novo assembly of the Citrus rani grape genome. Sci Data. 2016;4(1):1–8.

12. Schatz MC, Delcher AL, Salzberg SL. Assembly of large genomes using second-generation sequencing. Genome Res. 2010;20(9):1165–73.

13. Earl D, Bradnam K, John JS, Darling A, Lin D, Fass J, Yu HOK, Buffalo V, Zerbino DR, Diekhans M. Assemblathon 1: A competitive assessment of de novo short read assembly methods. Genome Res. 2011;21(12):2224–41.

14. Pellicer J, Fay MF, Leitch IJ. The largest eukaryotic genome of them all? Bot J of Linn Soc. 2010;164(1):10

15. Meyers LA, Levin DA. On the abundance of polyploids in flowering plants. Evolution. 2006;60(5):1198–206.

16. Gore MA, Chia JM, Elshire RJ, Sun Q, Ersoz ES, Hurvitz BL, Peiffer JA, McMullen MD, Grills GS, Ross-Ibarra J. A first-generation haplotype map of maize. Science. 2009;326(5956):1115–7.
51. Liu B, Brubaker C, Mergeai G, Cronn R, Wendel J. Polyploid formation in cultivated cotton revealed by a genome-wide SSR genetic map constructed from a BC1 population between Gossypium hirsutum (TM-1) and Gossypium barbadense. Genome. 2001;44(3):293–9.

52. Yang, W. Y., Song, Y., Cheng, C., Liao, M., Lu, Y., Chen, L., and Li, J. Fine mapping and candidate gene analysis of the dominant disease gene G2 in cotton. Theor Appl Genet. 2005;111(6):1137–46.

53. Chen, D., Ding, Y., Guo, W., Zhang, T. Molecular mapping of genomic male sterility genes ms15, ms10 and ms1 in tetraploid cotton. Plant Breed. 2006;125(2):193–8.

54. Cheng, H., Lu, C., John ZY, Zou, C., Zhang, Y., Wang, Q., Huang, J., Feng, X., Jiang, P., Yang, W. Fine mapping and candidate gene analysis of the dominant g planta gene in cotton genomics. Theor Appl Genet. 2016;129(1):347–55.

55. Gerstel D. Chromosomal translocations in interspecific hybrids of the genus Gossypium. Evolution. 1953;23:24–44.

56. Paterson AH, Wendel JF, Gundlach H, Guo H, Jenkins J, Jin D, Llewellyn D, Showmaker KC, Shu S, Udall J. Repeated polyploidization of Gossypium genomes and the evolution of spinable cotton fibers. Nature. 2012;492(7420):423–7.

57. Liu X, Zhao B, Zheng H, Hu Y, Lu G, Yang CQ, Chen JD, Chen JJ, Chen DY, Zhang L. Gossypium barbadense genome sequence provides insight into the evolution of extra-long staple fiber and specialized metabolites. Sci Rep. 2015;5:14391.

58. Wang Y, Tang H, DeBarry JD, Tan X, Li J, Wang X, Lee T, Jin J, Harler MB, Guo H. MCsCaN1x: a toolkit for detection and evolutionary analysis of gene synteny and collinearity. Nucleic Acids Res. 2012;40(7):e49.

59. Jin J, Tian F, Yang DC, Meng YQ, Kong L, Luo J, Gao G. PlantTFDB 4.0: toward a central hub for transcription factors and regulatory interactions in plants. Nucleic Acids Res. 2017;45(D1):D1040–5.
63. Ding M, Chen J, Jiang Y, Lin L, Cao Y, Wang M, Zhang Y, Rong J, Ye W. Genome-wide investigation and transcriptome analysis of the WRKY gene family in Gossypium. Mol Genet Genomics. 2015;290(1):151–71.

64. Lei Z, He D, Xing H, Tang B, Lu B. Genome-wide comparison of AP2/ERF superfamily genes between Gossypium arboreum and G. raimondii. Genet Mol Res. 2016;15(3):15038211.

65. Liu Z, Fu M, Li H, Chen Y, Wang L, Liu R. Systematic analysis of NAC transcription factors in Gossypium barbadense uncovers their roles in response to Verticillium wilt. Peer J. 2019;7:e7995.

66. Friedman AR, Baker BJ. The evolution of resistance genes in multi-protein plant resistance systems. Curr Opin Genet Dev. 2007;17(6):493–9.

67. Van Ooijen J. JoinMap 4. Software for the calculation of genetic linkage maps in experimental populations. Kyazma BV, Wageningen, Netherlands; 2006. p. 33.

68. Haldane J. The combination of linkage values and the calculation of distances between the loci of linked factors. J Genet. 1919;8(29):299–309.

69. Xiao B, Tan Y, Long N, Chen X, Tong Z, Dong Y, Li Y. SNP-based genetic linkage map of tobacco (Nicotiana tabacum L.) using next-generation RAD sequencing. J Biol Res-Thessaloniki. 2015;22(1):11.

70. Kosambi D. The estimation of map distances from recombination values. Annals Eugen. 1942(172):1:75.

71. Voorrips R. MapChart: software for the graphical presentation of linkage maps and QTLs. J Hered. 2000;93(1):77–8.

72. Fischer S, Brunck BP, Chen F, Gao X, Harbs OS, Iodice JB, Shanmugam D, Roos DS, Stoeckert CJ. Using OrthoMCL to assign proteins to OrthoMCL-DN groups or to cluster proteomes into new Ortholog groups. Curr Prot Bioinformatics. 2011;35(1):6–12.

73. Thompson JD, Higgins DG, Gibson TJ. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 1994;22(22):4673–80.

74. Korber B. HIV signature and sequence variation analysis. Computational analysis of HIV molecular sequences. 2000;4:55–72.

75. Finn RD, Coggill P, Eberhardt RY, Eddy SR, Mistry J, Mitchell AL, Potter SC, Punta M, Qureshi M, Sangrador-Vegas A. The Pfam protein families database: towards a more sustainable future. Nucleic Acids Res. 2015;44(D1):D279–85.

76. Finn RD, Clements J, Eddy SR. HHMER web server: interactive sequence similarity searching. Nucleic Acids Res. 2011;39:W29–37.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.