The complete mitochondrial genome of Schizothorax eurystomus Kessler, 1872 (Cypriniformes, Cyprinidae)

Jiangong Niua,b, Hong Liua,b, Jiangwei Hua,b, Tao Zhanga,b and Hui Zhangc

aXinjiang Fisheries Research Institute, Urumqi, PR China; bMinistry of Agriculture, Scientific Observing and Experimental Station of Fishery Resources and Environment in Northwest China, Urumqi, PR China; cCAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, PR China

ABSTRACT

Schizothorax eurystomus, Kessler 1872 is a unique economic fish in Xinjiang, China that is rarely seen in the market. Next-generation sequencing (NGS) was used to determine the complete mitochondrial genome of \textit{S. eurystomus} collected from the Yarkand River in Xinjiang. The results showed that the mitochondrial genome is a circular, 16,488-bp-long nucleotide with the typical vertebrate genome structure of 13 protein-coding genes, 2 ribosomal RNA genes, 22 transfer RNA genes, and a control region. The termination-associated sequence (TAS), central conserved sequence block (CSB), and conserved sequence block were detected in the control region. Phylogenetic analysis placed \textit{S. eurystomus} in a fully supported clade with \textit{S. biddulphi}, and that clade was sister to \textit{S. yunnanensis}. To our knowledge, this is the first study on the complete mitochondrial genome of \textit{S. eurystomus} from the Yarkand River in Xinjiang, and it provides baseline genetic information for future studies.

Schizothorax eurystomus, Kessler 1872, also known as the wide-mouth hip scale fish, is a cold-water white fish that belongs to order Cypriniformes, family Cyprinidae, and sub-family Schizothoracinae (Cao et al. 2019). The \textit{S. eurystomus} body is lengthened and slightly laterally flattened, and its head is tapered; \textit{S. eurystomus} characteristics are shown in Figure 1. \textit{S. eurystomus} used to be the main economic fish in the Tarim River and its tributaries and affiliated lakes (Cao et al. 2019). Recently, with the impact of hydropower development and human activities, the \textit{S. eurystomus} resources are decreasing, and the Xinjiang autonomous region plans to list it as a protected fish (Nie et al. 2014).

Next-generation sequencing (NGS) has revolutionized the field of molecular biology because it is rapid and can generate large amounts of genomic data (Schuster 2008; Koboldt et al. 2013). Therefore, in this study, the complete mitochondrial genome of \textit{S. eurystomus} was determined using NGS technology to provide insight into the population processes and evolutionary history of this species (Zhang and Xian 2015).

DNA was extracted from muscle tissue of \textit{S. eurystomus} collected from Altash Station (76.29E, 37.59 N) of the Xinjiang Yarkand River in September 2021. A specimen was deposited at the CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences (Hui Jia, jiahui@qdio.ac.cn) under voucher number L212. The Illumina NovaSeq sequencing platform (Illumina, San Diego, CA) was used to process sequences.

The high-quality second-generation genome sequence was assembled and analyzed using A5-miseq v20150522 (Coil et al. 2015) and SPAdes version 3.9.0 (Bankevich et al. 2012). Pilon version 1.18 (Walker et al. 2014) was used to correct the results and obtain the final mitochondrial sequence. Annotation of the complete mitochondrial genome sequence was performed on the MITOS web server (http://mitos2.bio-inf.uni-leipzig.de/index.py) (Bernt et al. 2013). After sequencing, the maximum likelihood (ML) method with K2P distances was used to construct the ML tree in MEGA10 with 1000 bootstrap replicates (Kumar et al. 2018).

Similar to the size of other teleost mitogenomes, the complete mitochondrial genome of \textit{S. eurystomus} was 16,488-bp long (GenBank accession ON920824). The circular map of the complete \textit{S. eurystomus} mitochondrial genome is shown in Figure 1. The complete mitochondrial genome contained 13 protein-coding genes, 2 ribosomal RNA (rRNA) genes (12S rRNA and 16S rRNA), 22 transfer RNA (tRNA) genes, and a control region, similar to other vertebrates (Miya et al. 2001).

Among the 13 protein-coding genes, ATP6 and ATP8 overlapped by 7 nucleotides, and NAD4 and NAD4L shared 7 nucleotides. The NAD5 and NAD6 genes overlapped by 4 nucleotides on the opposite strand. Most of the genes of \textit{S. eurystomus} were encoded on the heavy-strand (H-strand), with only NAD6 and 8 tRNA genes (tRNAGln, tRNAAla, tRNAAsn, tRNAPhe, tRNALys, tRNALeu, tRNACys, tRNAArg).

ARTICLE HISTORY

Received 29 August 2022
Accepted 26 October 2022

KEYWORDS

Schizothorax eurystomus; mitochondrial genome; NGS; freshwater fish

CONTACT

Hui Zhang \(\text{zhanghui@qdio.ac.cn}\) CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, PR China

© 2022 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
tRNA_{Cys}, tRNA_{Tyr}, tRNA_{Ser}, tRNA_{Glu}, and tRNA_{Pro} encoded on the light-strand (L-strand) (Table 1). The ATG codon initiated 12 of the 13 protein-coding genes (NAD1, NAD2, COII, ATP8, ATP6, COIII, NAD3, NAD4L, NAD4, NAD5, NAD6, and COB), and GTG was the initiation codon for COI (Figure 2). The stop codon TAA terminated seven genes (NAD1, COI, ATP6, COIII, NAD3, NAD4L, and NAD6), TAG terminated three genes (NAD2, ATP8, and NAD3); the incomplete T– terminated the COII, NAD4, and COB genes by post-transcriptional polyadenylation (Ojala et al. 1981).

The 12S and 16S rRNA genes of <i>S. eurystomus</i> were 956- and 1630-bp long, respectively. They were located between tRNAPhe and tRNALeu, and were separated by tRNAVal, similar to other vertebrates (Zhang et al. 2016). The 22 tRNA genes were scattered throughout the genome, ranging 67–76 bp and folded into a cloverleaf secondary structure with normal base shedding. The major non-coding region in <i>S. eurystomus</i> was located between tRNA_{Pro} and tRNA_{Phe}, and was 821-bp long. The termination-associated sequence (TAS), central conserved sequence block (CSB), and CSB were detected in the control region and were similar to those of most bony fishes (Jia et al. 2021).

One complete mitogenome of <i>S. eurystomus</i> has been deposited in GenBank (https://www.ncbi.nlm.nih.gov/nucleotide/KY436758.1), however, there is no paper published for the description in details on it. In this study, we collected and identified five specimens, and then used NGS to obtain their mitochondrial genome. The complete sequences were used for phylogenetic analysis and the phylogenetic results revealed that a previously collected specimen (KY436758.1) was genetically distant from other related species; therefore, the complete mitochondrial genome of <i>S. eurystomus</i> needed to be updated. Phylogenetic analysis of the complete mitochondrial genome of <i>S. eurystomus</i> revealed that it belonged to a clade with <i>S. biddulphi</i>, and they are sister to <i>S. yunnanensis</i> (Figure 3). This study is the first to phylogenetically analyze <i>S. eurystomus</i> in detail and provides a scientific basis for future molecular systematic and phylogenetic studies of bony fishes in Cyprinidae.

Figure 1. Schizothorax eurystomus.

Table 1. Analysis of mitochondrial genome characteristics.

Feature	Strand	Position	Length (bp)	Initiation codon	Stop codon	Anticodon	Intergenic nucleotide
trnF	N	1–69	69				GAA
trnS	N	70–1025	956				2
trnV	N	1028–1099	72				22
trnL	N	1122–2751	1630				24
trnL2	N	2776–2851	76				22
nad1	N	2852–3826	975	ATG	TAA		4
trnl	N	3831–3902	72				2
trnQ	J	3901–3971	71				2
trnM	N	3974–4042	69				2
nad2	N	4043–5089	1047	ATG	TAG		2
trnW	N	5088–5158	71				2
trnA	J	5161–5229	69				1
trnN	J	5231–5303	73				2
OL	N	5306–5,337	32				1
trnC	J	5337–5403	67				1
trnY	J	5403–5473	71				1
cox1	N	5475–7025	1551	GTG	TAA		3
trnS2	J	7026–7096	71				13
trnD	N	7010–7177	72				13
cox2	N	7185–7875	691	ATG	T(AA)		1
trnK	N	7876–7951	76				1
atp8	N	7953–8117	165	ATG	TAG		2
atp6	N	8111–8794	684	ATG	TAA		1
cox3	N	8794–9579	786	ATG	TAA		1
trnG	N	9579–9650	72				1
nad3	N	9631–10,001	351	ATG	TAG		2
trnR	N	10,000–10,069	70				1
nad4	N	10,070–10,366	297	ATG	TAA		7
nad4	N	10,360–11,740	1381	ATG	T(AA)		1
trnH	N	11,741–11,809	69				1
trnS1	N	11,810–11,877	68				1
trnL1	N	11,879–11,951	73				1
nad5	N	11,955–13,778	1624	ATG	TAA		4
nad6	J	13,775–14,296	522	ATG	TAA		4
cob	N	14,370–15,510	1141	ATG	T(AA)		4
trnT	N	15,511–15,582	72				1
trnP	J	15,582–15,651	70				16
OH	N	15,668–16,488	821				101
Figure 2. Complete mitochondrial genome circle map of Schizothorax eurystomus.

Figure 3. Maximum likelihood tree of Schizothorax eurystomus and seventeen related Cypriniformes based on complete mitogenomes. Bootstrap values based on 1000 replicates and are represented at the nodes.
Ethical approval

This study did not involve ethical approval, and the field investigation was supported by the Xinjiang Fisheries Research Institute, Urumqi 830000, China.

Author contributions

Conceptualization, J.N., H.L., J.H., T.Z., H.Z.; methodology, J.N., H.Z.; software, H.L., J.H., T.Z.; formal analysis, J.N., H.L., J.H.; investigation, J.N., H.L., J.H.; resources, H.Z.; data curation, J.H., T.Z.; writing, J.N., H.L., J.H., T.Z., H.Z.; supervision, H.Z. All authors have read the published version of the manuscript and agreed to be accountable for all aspects of the work.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Funding

The present work was supported by the Youth Fund of Natural Science Foundation of Xinjiang Uygur Autonomous Region [2021D01886].

Data availability statement

Mitogenome data supporting this study are openly available in GenBank at nucleotide database, https://www.ncbi.nlm.nih.gov/nuccore/ON920824, Associated BioProject, https://www.ncbi.nlm.nih.gov/bioproject/PRJNA855635, BioSample accession number at https://www.ncbi.nlm.nih.gov/biosample/ SAMN29499325 and Sequence Read Archive at https://www.ncbi.nlm.nih.gov/sra/SRR1997642.

References

Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS, Lesin VM, Nikolenko SI, Pham S, Prjibelski AD, et al. 2012. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol. 19(5):455–477.

Bernt M, Donath A, Jühling F, Externbrink F, Florentz C, Fritzsch G, Pütz J, Middendorf M, Stadler PF. 2013. MITOS: improved de novo metazoan mitochondrial genome annotation. Mol Phylogenet Evol. 69(2):313–319.

Cao XQ, Li YH, Wei JNZ, Yang Z. 2019. Relationship of body mass, body length, and fatness of Schizothorax eurystomus. Acut Agric Boreali-Occidentalis Sin. 28(08):1380–1386.

Coil D, Jospin G, Darling AE. 2015. A5-miseq: an updated pipeline to assemble microbial genomes from Illumina MiSeq data. Bioinformatics. 31(4):587–589.

Jia H, Xu H, Xian WW, Li YQ, Zhang H. 2021. The complete mitochondrial genome of the spiny red gurnard Chelidonichthys spinosus McClelland, 1844 (Scorpaeniformes: triglidae). Mitochondrial DNA B Resour. 6(3):980–982.

Koboldt DC, Steinberg KM, Larson DE, Wilson RK, Mardis ER. 2013. The next-generation sequencing revolution and its impact on genomics. Cell. 155(1):27–38.

Kumar S, Stecher G, Li M, Knyaz C, Tamura K. 2018. MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol. 35(6):1547–1549.

Miya M, Kawaguchi A, Nishida M. 2001. Mitogenomic exploration of higher teleostean phylogenies: a case study for moderate-scale evolutionary genomics with 38 newly determined complete mitochondrial DNA sequences. Mol Biol Evol. 18(11):1993–2009.

Nie ZL, Wei J, Ma ZH, Zhang L, Song W, Wang WM, Zhang J. 2014. Morphological variations of Schizothoracinae species in the Muzhati River. J Appl Ichthyol. 30(2):359–365.

Ojala D, Montoya J, Attardi G. 1981. tRNA punctuation model of RNA processing in human mitochondria. Nature. 290(5806):470–474.

Schuster SC. 2008. Next-generation sequencing transforms today’s biology. Nat Methods. 5(1):16–18.

Walker BJ, Abeel T, Shea T, Priest M, Abouellel A, Sakhlikumar S, Cuomo CA, Zeng Q, Wortman J, Young SK, et al. 2014. Pilon: an integrated tool for comprehensive microbial variant detection and genome assembly improvement. PLoS One. 9(11):e112963.

Zhang H, Wang W, Xian WW. 2016. The complete mitochondrial genome of Anguilla japonica (Anguilliformes, Anguillidae) collected from Yangtze estuary and the phylogenetic relationship in genus Anguilla. Mitochondrial DNA A DNA Mapp Seq Anal. 27(6):4421–4422.

Zhang H, Xian WW. 2015. The complete mitochondrial genome of the larvae Japanese anchovy Engraulis japonicus (Clupeiformes, Engraulidae). Mitochondrial DNA. 26(6):935–936.