Exercise Self-Efficacy as a Mediator between Goal-Setting and Physical Activity: Developing the Workplace as a Setting for Promoting Physical Activity

Yoshie Iwasaki1,2,*, Sumihisa Honda3, Shuji Kaneko1, Kazuhiro Kurishima1, Ayumi Honda3, Ayumu Kakinuma2, Doosub Jahng1

1 Department of Human Intelligence Systems, Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology, Fukuoka, Japan
2 Department of Health Care, NEC Corporation, Tokyo, Japan
3 Department of Human Intelligence Systems, Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology, Fukuoka, Japan

Keywords: exercise self-efficacy, goal-setting, health promotion program, physical activity, workplace

Abstract

Background: Physical activity (PA) is ranked as a leading health indicator and the workplace is a key setting to promote PA. The purpose of this study was to examine how goal-setting and exercise self-efficacy (SE) during a health promotion program influenced PA level among Japanese workers.

Methods: Using a cross-sectional study design, we surveyed 281 employees. The short version of the International Physical Activity Questionnaire was used to assess PA level. Exercise SE was assessed using a partially modified version of Oka’s exercise SE scale. Personal goals were assessed as the total number of “yes” responses to five items regarding “details of personal goals to perform PA”. A mediational model was used to examine whether exercise SE mediates between the number of personal goals and PA level.

Results: The mean age of the participants was 46.3 years, 76.2% were men, and the most common occupational category was software engineer (30.6%). The average PA level per week exceeded the recommended level in 127 participants (45.2%). One hundred and eighty-four participants (65.5%) set some form of concrete personal goal to perform PA. The relationship between the number of personal goals and PA level was mediated by exercise SE.

Conclusion: Our study showed that exercise SE mediates goal-setting and increases PA. The results suggest that the components of PA promotion programs should be tailored to enhance participants’ confidence in performing PA.

© 2016, Occupational Safety and Health Research Institute. Published by Elsevier. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Regular physical activity (PA) is associated with a reduced risk of noncommunicable diseases (NCDs) such as type 2 diabetes and cardiovascular disease [1,2]. In the second term of National Health Promotion in the 21st century (Healthy Japan 21), PA is ranked as a leading health indicator. Healthy Japan 21 announced the goals of increasing both the mean number of steps per day of adults and the percentage of individuals who perform regular PA [3]. Under Healthy Japan 21, regular PA is defined as exercising for ≥ 30 minutes at least twice per week continuously for at least 1 year. According to the 2014 National Health and Nutrition Survey, the mean number of steps per day of Japanese men and women was 7,043 and 6,015 [4], respectively; below the daily target level of 10,000 steps [5]. Moreover, only 31.2% of men and 25.1% of women performed regular PA [4].

Most employed adults spend about half of each working day at the workplace; therefore, the workplace is a key setting to promote PA [3,6]. Recent systematic reviews on effective approaches for increasing PA among workers recommend a tailor-made behavior modification program catered to each individual [7]. Many tailor-made behavior modification programs incorporate practical components and strategies based on behavioral science, including goal-setting, self-monitoring, and self-efficacy (SE) [8]. The components of health programs for increasing PA have diversified and now combine practical components and strategies, resulting in a wider
variation in the types of participants, duration, and provision of direct (face-to-face) and indirect (non-face-to-face) support [9–11].

Interest in health promotion programs at the workplace has increased, but there is controversy regarding their effectiveness. Dishman et al [12,13] reported that a 3-month intervention at the workplace significantly increased the percentage of participants with a sufficient PA level. Proper et al [14] reported that a 9-month intervention at the workplace significantly increased exercise energy expenditure but did not change the proportion of participants with a sufficient PA level. Haruyama et al [15] implemented 3 months of indirect intervention in Japanese workers, and reported no change in the proportion of those with a sufficient PA level. In a study in Canadians, Pan et al [16] reported that exercise SE was the most influential factor for increasing PA.

To develop the workplace as a setting to more effectively promote PA, the relationship between the various practical components and strategies for promoting and increasing PA must be clarified. In the present study, we focused on the relationships of “goal-setting” and “exercise SE”. Goal-setting is thought to function to reinforce continued efforts towards a goal. A goal is most successfully achieved when a person commits to that goal and has confidence to reach that goal [17]. SE is the degree of confidence one has in being able to reach a goal. Exercise SE has been suggested to influence the practice of PA [16].

The aim of this study was to investigate, using a mediational model, how goals voluntarily set by participants of an event to promote PA and their exercise SE influence their PA level.

2. Materials and methods

2.1. Participants

Participants were employees at an information and communications company in Japan. This company held a voluntary health promotion event for employees from May 15, 2012 to August 31, 2012. Just after completion of the health promotion event, the participants were asked to respond to an online survey, which was also voluntary, and 281 completed surveys were returned.

2.2. Questionnaire

The sociodemographic background data of the participants were sex, age, marital status, number of years of education, and occupational category. The online survey asked about their PA level, exercise SE, and setting of personal goals.

2.3. Physical activity level

The short version of the International Physical Activity Questionnaire (IPAQ) was used to assess PA level [18,19]. The questions were structured so as to confirm the average number of days and duration of PA per week, in terms of metabolic equivalents (METs) based on intensity. PA intensity was classified into the following four categories: “vigorous” (8 METs), “moderate” (4 METs, excluding walking), “walking”, and “sitting”. Walking was further classified into the following three categories: “a fast rate with hard breathing” (5 METs), “moderate rate with some breathlessness” (3.3 METs), and “slow” (2.5 METs).

To calculate PA level per week, intensity in METs was multiplied by the average frequency and duration (hours) of PA per week, and then the results (METs h/w) were totaled. The Japanese Ministry of Health Labour and Welfare (MHLW) recommends > 3 METs as an effective intensity to prevent NCDs [20]. Therefore, “slow walking” (2.5 METs), which is < 3 METs in intensity, was excluded from calculations in this study. IPAQ is a survey that assesses PA level at the population level, and its reliability and validity have been demonstrated at 14 centers in 12 countries worldwide using a standardized method. In Japan, Murase et al [18] confirmed the reliability and validity of the IPAQ.

2.4. Exercise SE scale

Exercise SE was assessed using a partially modified version of Oka’s exercise SE scale [21], which was created based on the scale by Marcus et al [22]. There were a total of five question items, such as “I am confident that I can participate in regular exercise even when I feel I don’t have the time”, to assess the degree of confidence in being able to engage in PA. A 5-point Likert scale was used with responses ranging from “I do not think so at all” (1 point) to “I very much think so” (5 points). The scores were totaled for the five exercise SE scale items as the exercise SE score, which ranged from 5 points to 25 points. A higher score signifies higher SE. The Oka exercise SE scale was created in Japanese, and its reliability and validity have been demonstrated [21].

2.5. Setting personal goals to perform PA

To assess “details of personal goals to perform PA”, we reviewed whether elements of the following five items were included in the personal goals: “frequency of PA”, “forms of exercise performed each time”, “duration and intensity of exercise each time”, “time limit for achieving goals”, and “outcome expectancies when goals are achieved” (e.g., “If I exercise regularly, I will lose X pounds in X months”). The two responses were either “yes” or “no”. The total number of “yes” responses to the five items is referred to hereafter as the “number of personal goals”.

2.6. Data analysis

The strength of the correlation between each of two variables among PA level, number of personal goals, and exercise SE was examined by calculating the Pearson’s product–moment correlation coefficient. Mediation analysis [23] is a method of analysis in which a third variable is added to determine the path of two variables or to examine whether there is a false association between two variables (Fig. 1). To examine whether exercise SE mediates between the number of personal goals and PA level, Baron and Kenny’s [24] 3-step single mediator framework was used.

In the first step, the correlation between number of personal goals and exercise SE score of the participants was examined by single regression analysis. In the second step, the correlation between number of personal goals and PA level was examined by single regression analysis. In the third step, whether the exercise SE score mediates the relationship between number of personal goals and PA level was examined by multiple regression analysis. Fig. 1 shows a mediator model in which the number of personal goals
is the independent variable, exercise SE score is the mediating variable, and PA level is the dependent variable.

The Sobel test was also used to examine the mediation effect of the exercise SE score on the relationship between number of personal goals and PA level. The statistical analysis software used for all analyses was SPSS version 20.0 (SPSS Inc., Chicago, IL, USA).

2.7. Ethical considerations

Information about the study, including the nature of this study and the fact that participation was voluntary, was explained to participants online, and consent was obtained online. This study was reviewed and approved by the Ethics Committee at the Kyushu Institute of Technology, Fukuoka, Japan.

3. Results

Table 1 shows the sociodemographic background of the participants. The mean age was 46.3 (standard deviation = 7.5) years, 76.2% were men, and 77.6% were married. More than half had > 16 years of education. The most common occupational category was software engineer (30.6%).

![Distribution of physical activity level. The International Physical Activity Questionnaire was used to measure PA level. PA level was calculated by the conditions described in the Materials and methods section and is shown as METs h/w. Because the Japanese Ministry of Health, Labour and Welfare recommends ≥ 3 METs as an effective intensity to prevent noncommunicable diseases, “slow walking” (2.5 METs) was excluded for the calculations. MET, metabolic equivalent; PA, physical activity.](image)

![Fig. 2. Distribution of physical activity level. The International Physical Activity Questionnaire was used to measure PA level. PA level was calculated by the conditions described in the Materials and methods section and is shown as METs h/w. Because the Japanese Ministry of Health, Labour and Welfare recommends ≥ 3 METs as an effective intensity to prevent noncommunicable diseases, “slow walking” (2.5 METs) was excluded for the calculations. MET, metabolic equivalent; PA, physical activity.](image)

Table 1
Sociodemographic background data of the participants

Age (y)	46.3 ± 7.5
Sex	Male 214 (76.2) 67 (23.8)
Marital status	Married 218 (77.6) 63 (22.4)
Years of education (y)	<12 33 (11.7) 13–15 52 (18.5) 16 166 (59.1) >16 24 (8.5) Unknown 5 (1.7)
Occupational category	Software engineer 86 (30.6) Clerical 76 (27.1) Sales 23 (8.9) Planning 25 (8.9) Technical 18 (6.4) Other 51 (18.1)

Data are presented as mean ± SD or frequency (%).

Table 2
Details and distribution of personal goals, and distribution of exercise self-efficacy scores

Details of personal goals*	Frequency (%)
Outcome expectancies when goals are achieved	103 (55.1)
Duration and intensity of exercise each time	67 (35.8)
Frequency of PA	62 (33.2)
Time limit for achieving goals	36 (19.3)
Forms of exercise performed each time	20 (10.7)

Number of personal goals	Frequency (%)
0	97 (45.4)
1	115 (40.9)
2	46 (16.4)
3	14 (5.1)
4	6 (2.1)
5	3 (1.1)

* Personal goals were defined as concrete goals to perform PA set during a health promotion event. Those who set at least one personal goal (n = 184) were included in the analysis. More than one personal goal could be selected. PA, physical activity.
Table 3
Correlations between PA level, exercise SE score, and number of personal goals

Variable	Exercise SE score	No. of personal goals
PA level	0.408*	0.159*
Exercise SE score	–	0.23*

*p < 0.01.
PA, physical activity; SE, self-efficacy.

Table 4
Mediation model for PA level, exercise SE score, and number of personal goals

Item	Regression coefficient	Standard error	p
Step 1 Mediating variable			
Independent variable			
Exercise SE score			
Number of personal goals	1.054	0.267	< 0.001
Step 2 Dependent variable			
Independent variable			
Number of personal goals	3.923	1.46	0.008
Step 3 Dependent variable			
Independent variable			
Number of personal goals	1.701	1.386	0.221
Mediating variable			
Exercise SE score	2.109	0.302	< 0.001

PA, physical activity; SE, self-efficacy.

Our study found that exercise SE not only directly influences increases in PA, but also plays a mediator role. There has been little research in Japan to date on mediators that promote PA. The present study is one of few to analyze mediators to promote PA in the workplace. Our findings suggest that exercise SE is a key factor in promoting PA in the workplace.

Goal-setting and SE are in a cyclical relationship of mutual stimulation when people achieve goals [25]. For example, when people attain goals in an upward cycle, SE increases, and this increased SE leads people toward even higher goals. The reverse phenomenon occurs in a downward cycle. In a program to promote PA, participants being able to voluntarily set more detailed goals can lead to a cycle in which exercise SE is increased. Atkinson [26] found that people exert their highest levels of effort for moderately difficult tasks, but if a task is either very difficult or very easy, their efforts toward the task decrease. Setting detailed goals may help bridge the gap between a desired result and adjusting lifestyle and behavior, and this may increase the likelihood of participants continuing to perform PA since they will be motivated when they select moderately difficult tasks.

Our study shows that exercise SE mediates goal-setting and increases PA, and at the same time, goal-setting indirectly influences increases in PA. Conn et al [9] classified interventions for achieving the outcome of increased PA into two types. One type is behavioral intervention, which includes techniques such as goal-setting, self-monitoring, cues, and rewards. The other type is cognitive intervention, which includes techniques such as decision-making, health education, and providing information. They concluded that in order to increase PA, emphasis should be placed on behavioral interventions more so than on cognitive interventions. Goal-setting is a typical technique in behavioral intervention. Therefore, goal-setting may lead to an increase in PA level.

Performing regular PA involves many behavioral factors [27]. Thus, it is difficult for health providers to effectively design and plan programs to improve PA levels in adults without identifying the different conditions that influence the initiation and continuation of regular PA, such as overtime hours, commuting time, and responsibilities at home. In the future, it will be necessary to further investigate components for discerning the different factors and conditions that are related to increasing PA and to enhance the effectiveness of various approaches for improving exercise SE as a mediator that increases PA.

This study had several limitations. First, because the study design was cross-sectional, the detected relationships cannot be interpreted as cause-and-effect. Second, because the participants in this study were employees from a single company in Japan, caution should be taken in generalizing the results. Third, no standard scales were used for goal-setting.

In conclusion, this is one of few studies in the workplace showing that exercise SE is a mediator that increases PA. It will be necessary to further develop studies regarding components for discerning conditions in which exercise SE is increased. We considered that one of the components that led to a cycle in which exercise SE was increased was setting concrete goals. The results of this study suggest that the components of PA promotion programs should be tailored to enhance participants’ confidence in performing PA.

Conflicts of interest

All authors declare no conflicts of interest.

Acknowledgments

The authors are grateful to all the volunteers who participated in this study.
