Shell-model study of the $N=82$ isotonic chain with a realistic effective Hamiltonian

L. Coraggio,¹ A. Covello,¹,² A. Gargano,¹ N. Itaco,¹,² and T. T. S. Kuo³

¹Istituto Nazionale di Fisica Nucleare,
Complesso Universitario di Monte S. Angelo, Via Cintia – I-80126 Napoli, Italy
²Dipartimento di Scienze Fisiche, Università di Napoli Federico II,
Complesso Universitario di Monte S. Angelo, Via Cintia – I-80126 Napoli, Italy
³Department of Physics, SUNY, Stony Brook, New York 11794
(Dated: September 29, 2009)

PACS numbers: 21.60.Cs, 21.30.Fe, 27.60.+j

I. INTRODUCTION

The $N=82$ region has long been the subject of shell-model studies owing to the strong doubly magic character of 132Sn. In this context, several calculations have been performed employing purely phenomenological two-body effective interactions [1]. Clearly, a main issue in the study of this region is that it provides the opportunity to investigate the effect of adding protons to a doubly-magic core over a large number of nuclei (from mass number $A=133$ to $A=152$). Comprehensive studies of this kind were conducted some twenty years ago in Refs. [2] and [3]. In the former a simple pairing Hamiltonian and empirical single-particle (SP) energies were used, while in the latter the two-body matrix elements and single-particle energies were determined simultaneously by a least squares fit to the ground-state and excited-state energies drawn from all experimentally studied $N=82$ nuclei.

Starting in the mid 1990s, however, shell-model calculations employing effective interactions derived from realistic nucleon-nucleon (NN) potentials have been performed in the $N=82$ region, which have generally yielded very good results [4, 5, 6, 7, 8]. Some of these studies [5, 6, 7] have focused attention on the evolution of the low-energy properties of the $N=82$ isotones as a function of A, showing that the observed behavior is well reproduced by the theory. In Refs. [6, 7] the shell-model results were also compared with those of a quasiparticle random-phase approximation calculation leading to the conclusion that the low-lying states are equally well described by these two approaches.

A main merit of the above mentioned realistic shell-model calculations is, of course, that no adjustable parameter appears in the matrix elements of the two-body effective interaction. In all of them, however, the single-particle energies have been taken from experiment. Actually, the calculational techniques used in these studies are based on the time-dependent degenerate linked-diagram perturbation theory [6], which provides an effective shell-model Hamiltonian, H_{eff}, containing both one- and two-body components. Usually, however, the one-body components, which represent the theoretical SP energies, are subtracted from H_{eff} and replaced by those obtained from the experimental spectra of nuclei with one valence nucleon [10]. This procedure has indeed led to a very good description of nuclear properties in different mass regions [11].

Recently, we have performed fully realistic shell-model calculations employing both theoretical SP energies and two-body interactions in studies of p- and sd-shell nuclei [12, 13]. In these studies we have renormalized the high-momentum repulsive components of the bare NN potential V_{NN} by way of the so-called $V_{\text{low}-k}$ approach [14, 15], which provides a smooth potential preserving exactly the on-shell properties of the original V_{NN} up to a cutoff Λ. The effective Hamiltonian has then been derived within the framework of the time-dependent degenerate linked-diagram perturbation theory. In both papers [12, 13] a cutoff momentum $\Lambda = 2.1$ fm$^{-1}$ was employed. This corresponds to the laboratory energy $E_{\text{lab}} \simeq 350$ MeV, which is the inelastic threshold of the NN scattering. The results of these studies compare well with experiment and other shell-model calculations [16, 17].

On these grounds, we have found it interesting to carry out a similar shell-model study of the $N=82$ chain, focusing attention on the low-lying states of both even- and odd-mass isotones. In this case, the SP energies and two-body effective interaction are determined from a $V_{\text{low}-k}$ derived from the high-precision CD-Bonn potential [18] with a cutoff momentum $\Lambda = 2.6$ fm$^{-1}$. This value of Λ, which is somewhat larger than that used in our studies of the light nuclei, is needed to obtain a reasonable description of the experimental SP spectrum of the medium-heavy nucleus 133Sb. This is mainly due to the fact that, at variance with the model spaces for light nuclei, in this case the 50-82 major shell contains the intruder $0h_{11/2}$ state, whose relative energy turns out to be strongly sensitive to the value of Λ. More precisely, for small values of Λ this state lies far away from the other SP levels of
the 50-82 shell, while the correct structure of this shell is restored when increasing the value of \(\Lambda \) [19].

The dependence of the results on \(\Lambda \) would obviously vanish when complementing the \(V_{\text{low}-k} \) effective two-body interaction with different three- and higher-body components for each value of \(\Lambda \). However, it is at present a very hard task, from the computational point of view, to take into account two- and three-body forces on an equal footing in a third-order perturbative calculation for medium- and heavy-mass nuclei. Therefore, the value of the cutoff \(\Lambda \) may be considered as a parameter that we have chosen so as to reproduce satisfactorily the experimental SP spectrum. For the sake of completeness, it should be mentioned that the trend of our calculated SP energies suggests that a larger value of the cutoff could even improve the agreement with experiment. However, this would amount to include higher-momentum components, which would rapidly deteriorate the convergence properties of the perturbative expansion used to derive the effective shell-model Hamiltonian. In the following section we show that our choice of \(\Lambda \) is a reasonable compromise to assure both good perturbative properties and quality of the results.

The paper is organized as follows. In Sec. II we give a brief outline of our calculations, focusing attention on the convergence properties of the effective Hamiltonian. Sec. III is devoted to the presentation and discussion of our results, while some concluding remarks are given in Sec. IV.

II. OUTLINE OF CALCULATIONS

Our goal is to derive an effective Hamiltonian for shell-model calculations in the proton 2s1d0g0h shell, which is the standard model space to describe the spectroscopic properties of \(N = 82 \) isotones. Within the framework of the shell model, an auxiliary one-body potential \(U \) is introduced in order to break up the Hamiltonian for a system of \(A \) nucleons as the sum of a one-body term \(H_0 \), which describes the independent motion of the nucleons, and a residual interaction \(H_1 \):

\[
H = \sum_{i=1}^{A} \frac{p_i^2}{2m} + \sum_{i<j=1}^{A} V_{ij}^{NN} = T + V = (T + U) + (V - U) = H_0 + H_1.
\]

Once \(H_0 \) has been introduced, a reduced model space is defined in terms of a finite subset of \(H_0 \)'s eigenvectors. The diagonalization of the many-body Hamiltonian [11] in an infinite Hilbert space, that it is obviously unfeasible, is then reduced to the solution of an eigenvalue problem for an effective Hamiltonian \(H_{\text{eff}} \) in a finite space.

In this paper, we derive \(H_{\text{eff}} \) by way of the time-dependent perturbation theory [9]. Namely, \(H_{\text{eff}} \) is expressed through the Kuo-Lee-Ratcliff (KLR) folded-diagram expansion in terms of the vertex function \(Q \)-box, which is composed of irreducible valence-linked diagrams [20, 21]. We include in the \(Q \)-box one- and two-body Goldstone diagrams through third order in \(H_1 \). The folded-diagram series is summed up to all orders using the Lee-Suzuki iteration method [22].

The Hamiltonian \(H_{\text{eff}} \) contains one-body contributions, whose collection is the so-called \(S \)-box [10]. As mentioned in the Introduction, in realistic shell-model calculations it is customary to use a subtraction procedure, so that only the two-body terms of \(H_{\text{eff}} \), which make up the effective interaction \(V_{\text{eff}} \), are retained while the SP energies are taken from experiment. In this work, we have adopted a different approach employing SP energies obtained from the \(S \)-box calculation. In this regard, it is worth pointing out that, owing to the presence of the \(-U\) term in \(H_1 \), \(U \)-insertion diagrams arise in the \(Q \)-box. In our calculation we use the harmonic oscillator (HO) potential, \(U = \frac{1}{2}m\omega^2r^2 \), and take into account all \(U \)-insertion diagrams up to third order. The oscillator parameter is \(\hbar\omega = 7.88 \text{ MeV} \), according to the expression [22] \(\hbar\omega = 45A^{-1/3} - 25A^{-2/3} \) for \(A = 132 \).

Let us now outline the \(V_{\text{low}-k} \) approach [14, 15] to the renormalization of \(V_{NN} \). The repulsive core contained in \(V_{NN} \) is smoothed by integrating out the high-momentum modes of \(V_{NN} \) down to a certain cutoff \(\Lambda \). This integration is carried out with the requirement that the deuteron binding energy and phase shifts of \(V_{NN} \) are preserved by \(V_{\text{low}-k} \), which is achieved by the following \(T \)-matrix equivalence approach. We start from the half-on-shell \(T \) matrix for \(V_{NN} \):

\[
T(k', k, k^2) = V_{NN}(k', k) + \mathcal{P} \int_0^\infty q^2 dq V_{NN}(k', q) \frac{1}{k^2 - q^2} T(q, k, k^2) ,
\]

where \(\mathcal{P} \) denotes the principal value and \(k \), \(k' \), and \(q \) stand for the relative momenta. The effective low-momentum \(T \) matrix is then defined by

\[
T_{\text{low}-k}(p', p, p^2) = V_{\text{low}-k}(p', p) + \mathcal{P} \int_0^\Lambda q^2 dq V_{\text{low}-k}(p', q) \frac{1}{p^2 - q^2} T_{\text{low}-k}(q, p, p^2) ,
\]

where the intermediate state momentum \(q \) is integrated from 0 to the momentum space cutoff \(\Lambda \) and \((p', p) \leq \Lambda \). The above \(T \) matrices are required to satisfy the condition

\[
T(p', p, p^2) = T_{\text{low}-k}(p', p, p^2) , \quad (p', p) \leq \Lambda .
\]

The above equations define the effective low-momentum interaction \(V_{\text{low}-k} \), and it has been shown [15] that their solution is provided by the KLR folded-diagram expansion [8, 20] mentioned before. In addition to the preservation of the half-on-shell \(T \) matrix, which implies preservation of the phase shifts, this \(V_{\text{low}-k} \) preserves the deuteron binding energy, since eigenvalues are preserved by the KLR effective interaction. For any value
of J^π, the $V_{\text{low} - k}$ can be calculated very accurately using iteration methods. Our calculation of $V_{\text{low} - k}$ is performed by employing the method proposed in [24], which is based on the Lee-Suzuki similarity transformation [22].

As mentioned in the Introduction, our $V_{\text{low} - k}$ has been derived from the CD-Bonn NN potential with a cutoff momentum $\Lambda = 2.6$ fm$^{-1}$, and for protons the Coulomb force has been explicitly added to $V_{\text{low} - k}$.

A discussion of the convergence properties of H_{eff} is now in order. For the sake of clarity, we first consider the two-body matrix elements (TBME) of V_{eff} and then the SP energies.

TABLE I: Q-box $J^\pi = 0^+$ two-body matrix elements at third order in $V_{\text{low} - k}$ (in MeV) compared with those obtained by calculating the Padé approximant [21].

Configuration	3rd order	Padé [21]		
$\langle 0g_{7/2}^s	V_{\text{box}}	0g_{7/2}^s \rangle$	-0.8624	-0.8757
$\langle 0g_{7/2}^s	V_{\text{box}}	1d_{5/2}^s \rangle$	-1.0022	-1.0196
$\langle 0g_{7/2}^s	V_{\text{box}}	1d_{3/2}^s \rangle$	-0.8948	-0.9099
$\langle 0g_{7/2}^s	V_{\text{box}}	2s_{1/2}^s \rangle$	-0.4642	-0.4662
$\langle 0h_{11/2}^s	V_{\text{box}}	0h_{11/2}^s \rangle$	2.0532	2.058
$\langle 1d_{5/2}^s	V_{\text{box}}	1d_{5/2}^s \rangle$	-0.7009	-0.7138
$\langle 1d_{5/2}^s	V_{\text{box}}	1d_{3/2}^s \rangle$	-1.7611	-1.8191
$\langle 1d_{5/2}^s	V_{\text{box}}	2s_{1/2}^s \rangle$	-0.6807	-0.755
$\langle 1d_{5/2}^s	V_{\text{box}}	0h_{11/2}^s \rangle$	1.2028	1.2081
$\langle 1d_{3/2}^s	V_{\text{box}}	1d_{3/2}^s \rangle$	0.8038	0.8447
$\langle 1d_{3/2}^s	V_{\text{box}}	2s_{1/2}^s \rangle$	-0.4817	-0.4857
$\langle 1d_{3/2}^s	V_{\text{box}}	0h_{11/2}^s \rangle$	1.0457	1.0459
$\langle 2s_{1/2}^s	V_{\text{box}}	2s_{1/2}^s \rangle$	-0.882	-0.8686
$\langle 2s_{1/2}^s	V_{\text{box}}	0h_{11/2}^s \rangle$	0.658	0.6586
$\langle 0h_{11/2}^s	V_{\text{box}}	0h_{11/2}^s \rangle$	-0.8025	-0.8391

In Table I we report all the Q-box $J^\pi = 0^+$ TBME calculated at third order with those given by the [21] Padé approximant.

In Fig. 1 we report the diagonal $J^\pi = 0^+$ TBME of V_{eff} as a function of the maximum allowed excitation energy of the intermediate states expressed in terms of the oscillator quanta N_{max}. We have chosen the $J^\pi = 0^+$ matrix elements because they are the largest ones in the entire set of V_{eff} TBME and play a key role in determining the relative spectra and ground-state (g.s.) properties of the even $N = 82$ isotones. From Fig. 1 it is clear that our results have practically achieved convergence at $N_{\text{max}} = 15$.

As regards the order-by-order convergence, an estimate of the value to which the perturbative series should converge may be obtained by using Padé approximants. In Table II we compare all the Q-box $J^\pi = 0^+$ TBME calculated at third order with those from the [21] Padé approximant [27].

$$[21] = V_{Q_{\text{box}}}^0 + V_{Q_{\text{box}}}^1 + \frac{V_{Q_{\text{box}}}^2}{1 - V_{Q_{\text{box}}}^3/V_{Q_{\text{box}}}^2}, \quad (5)$$

$V_{Q_{\text{box}}}^n$ being the nth-order contribution to the $J^\pi = 0^+$ TBME in the linked-diagram expansion. From Table II we see that our third-order results are in good agreement with those from the [21] Padé approximant, the differences being all in the order of few tens of keV with the exception of the diagonal matrix element for the $(2s_{1/2})^2$ configuration. This indicates a weak dependence of our results on higher-order Q-box perturbative terms.

In Fig. 2 we report the relative SP energies calculated at third order in H_1 as a function of N_{max}. In the same figure, the results obtained by calculating the Padé approximant [21] are also reported (red lines). Once again, the agreement between third-order results and those from this approximant points to a good perturbative behavior.
of the calculated relative SP energies. We also see that an $N_{\text{max}} = 15$ calculation yields satisfactorily converged values for the relative SP energies.

A different situation occurs for the absolute SP energies. Actually, the calculated energy of the $1d_{5/2}$ level relative to ^{132}Sn is -4.468, -5.225, and -5.954 MeV for $N_{\text{max}}=11$, 13, and 15, respectively. This shows that there is no sign of convergence of the absolute SP energies as a function of the number of intermediate states. Moreover, the Padé approximant [21] of the $1d_{5/2}$ energy for $N_{\text{max}} = 15$ is equal to -7.262, showing that also the order-by-order convergence of the absolute SP energies is unsatisfactory. This poor perturbative behavior may be traced to the chosen value of the cutoff momentum, $\Lambda = 2.6$ fm$^{-1}$, which is substantially larger than the standard one, $\Lambda \simeq 2.1$ fm$^{-1}$. However, the inaccuracy of the absolute SP energies affects only the g.s. energies of the nuclei considered. In fact, the calculated spectroscopic properties (energy spectra, electromagnetic transition rates) are certainly reliable, based on the good convergence of the relative SP energies and TBME.

III. RESULTS AND DISCUSSION

We have performed calculations, using the Oslo shell-model code [26], for the even-mass $N = 82$ isotones up to ^{134}Hf, which is the last known nucleus belonging to this chain, and for the odd-mass ones up to ^{149}Ho, the last odd-mass nucleus with a well-established experimental low-lying energy spectrum. This is the longest isotonic chain approaching the proton drip line, and therefore provides an interesting laboratory to study the evolution of nuclear structure when adding pairs of identical particles.

nlj	Calc.	Expt.
$0g_{7/2}$	0.000 (-6.999)	0.000 (-9.663)
$1d_{5/2}$	1.045	0.962
$1d_{3/2}$	2.200	2.440
$2s_{1/2}$	2.006	
$0h_{11/2}$	3.645	2.793

In Table II our calculated SP energies are reported and compared with the experimental spectrum of ^{133}Sb [27]. The values in parenthesis are the absolute SP energies with respect to the doubly closed ^{132}Sn. We see that the latter is on the whole reasonably well reproduced by the theory. However, while the calculated positions of the $1d_{5/2}$ and $1d_{3/2}$ levels come very close to the experimental ones, the energy of the $0h_{11/2}$ level is overestimated by about 0.85 MeV. As we shall discuss later in this section, the energy of the $2s_{1/2}$ level, for which there is no experimental information, appears to be somewhat underestimated.

A strong test for our effective hamiltonian is given by the calculation of the energy spectrum of ^{134}Te, since the theory of the effective interaction is tailored for systems with two valence nucleons. From Fig. 3, where the experimental [27] and calculated ^{134}Te spectra are reported up to 3.5 MeV excitation energy, we see that a very good agreement is indeed obtained.

In Fig. 4 we show the calculated and experimental [28] g.s. energies (relative to the ^{132}Sn core) per valence proton as a function of the number of valence particles Z_{val} of even-mass isotopes. We see that the experimental and theoretical curves are practically straight lines having the same slope, while being about 2.4 MeV apart. This discrepancy is essentially the same as that existing between the theoretical and experimental g.s. energies of

![FIG. 3: Experimental and calculated ^{134}Te spectra.](image-url)

![FIG. 4: (Color online) Experimental and calculated ground-state energies per valence proton for $N = 82$ isotones from $A = 134$ to 154. Z_{val} is the number of valence protons.](image-url)
133Sb (see Table III). This confirms the reliability of our SP spacings and TBME, since the pattern of the theoretical curve depends only on these quantities.

![Figure 5](image5.png)

FIG. 5: (Color online) Experimental and calculated excitation energies of the yrast $J^\pi = 2^+$ states for $N = 82$ isotones.

![Figure 6](image6.png)

FIG. 6: (Color online) Experimental and calculated excitation energies of the yrast $J^\pi = 4^+$ states for $N = 82$ isotones.

![Figure 7](image7.png)

FIG. 7: (Color online) Experimental and calculated excitation energies of the yrast $J^\pi = 6^+$ states for $N = 82$ isotones.

In Figs. 8 and 9 we report, as a function of the mass number A, the experimental and calculated excitation energies of the 2^+, 4^+, and 6^+ yrast states, respectively. The experimental behavior is well reproduced, especially for the $J^\pi = 2^+$ and 4^+ states, for which the discrepancies do not exceed 350 keV. However, it should be noted that according to our calculations the proton subshell closure, which experimentally occurs at 146Gd, is not reproduced. As mentioned before, this can be traced to the theoretical position of the $2s_{1/2}$ orbital, which appears to be too low in energy. This is confirmed by the fact that this level has to be placed at 2.8 MeV in order to reproduce the experimental energy of the $J^\pi = 2^+$ at 2.150 MeV in 137Cs, which is predominantly of SP nature.

We have verified that, if the $2s_{1/2}$ SP level is placed at 2.8 MeV, we obtain that the 2^+ excitation energy in 146Gd raises from 1.716 MeV to 1.976 MeV, while in 148Dy it decreases from 1.827 to 1.758 MeV, thus reproducing the observed subshell closure.

Nucleus	Calc.	Expt.
134Te	5.5	6.3 ± 2.0
136Xe	9.06	16.6 ± 2.4
138Ba	11.1	10.8 ± 0.5
140Ce	14.5	13.8 ± 0.3
142Nd	16.26	12.03 ± 0.22
144Sm	16.6	11.9 ± 0.4

To have a more complete test of the theory, we have also calculated the $B(E2; 2^+_1 \rightarrow 0^+_1)$ transition rates up to 144Sm employing an effective operator obtained at third order in perturbation theory, consistently with the derivation of H_{eff}. Our results are reported and compared with the experimental data in Table III. We see that the agreement is quite good, providing evidence for the reliability of our calculated effective operator which takes into account microscopically core-polarization effects.

Let us now come to the odd-mass isotones. In Figs. 10 and 11 we report, as a function of the mass number A, the experimental and calculated energies of the $\frac{2}{3}^+$, $\frac{4}{3}^+$, $\frac{5}{3}^+$, and $\frac{6}{3}^-$ yrast states relative to the $\frac{2}{3}^+$ yrast state, respectively. The experimental behavior is well reproduced for the $\frac{2}{3}^+$ and $\frac{4}{3}^+$ states. For the latter, however, most of the calculated energies are higher than the experimental ones by about 300–400 keV, which reflects the theoretical overestimation of the value of the $0h_{11/2}$ SP energy. Less satisfactory is the comparison between the calculated and experimental behavior of the $\frac{2}{3}^+$ yrast states, which is a further confirmation that the theoretical $2s_{1/2}$ level in 133Sb lies too low in energy. As a matter of fact, by performing a calculation within the seniority scheme up to $v = 3$, we have found that in 137Cs and 139La the lowest $\frac{2}{3}^+$ states, which are quite well reproduced by the theory, have significant seniority $v = 3$ components. From $A = 141$ on, the experimental $(\frac{4}{3}^+)_1$ levels are predominantly of SP nature, as testified by the
spectroscopic factors \[27\], and the corresponding calculated states, which are dominated by \(v = 1 \) components, underestimate their energies.

![Graph](image1)

FIG. 8: (Color online) Experimental and calculated excitation energies of the yrast \(J^x = \frac{5}{2}^+ \) states relative to \(J^x = (\frac{5}{2}^+)_1 \) for odd-mass \(N = 82 \) isotones.

![Graph](image2)

FIG. 9: (Color online) Experimental and calculated excitation energies of the yrast \(J^x = \frac{3}{2}^+ \) states relative to \(J^x = (\frac{5}{2}^+)_1 \) for odd-mass \(N = 82 \) isotones.

![Graph](image3)

FIG. 10: (Color online) Experimental and calculated excitation energies of the yrast \(J^x = \frac{1}{2}^+ \) states relative to \(J^x = (\frac{5}{2}^+)_1 \) for odd-mass \(N = 82 \) isotones.

![Graph](image4)

FIG. 11: (Color online) Experimental and calculated excitation energies of the yrast \(J^x = \frac{11}{2}^- \) states relative to \(J^x = (\frac{7}{2}^-)_1 \) for odd-mass \(N = 82 \) isotones.

As pointed out in the Introduction, the main purpose of this study has been to test the use of a fully realistic shell-model hamiltonian for the description of medium-heavy mass nuclei. In this context, it should be noted that, aside from adopting experimental single-particle energies, earlier calculations on the \(N=82 \) isotones differ from the present ones in other respects, like the starting \(NN \) potential and the renormalization procedure. For instance, while we employ the CD-Bonn potential renormalized through the \(V_{\text{low-k}} \) procedure, in the works of Refs. \[6, 7\] use is made of the Bonn A potential and the Brueckner \(G \)-matrix approach. A comparison between the results of earlier works and the present one would not therefore be very meaningful. It is worth mentioning, however, that the agreement between experiment and theory achieved in this paper is on the whole comparable with that obtained in the previous calculations employing realistic effective interactions.

IV. CONCLUDING REMARKS

As discussed in detail in the Introduction, the \(N=82 \) isotonic chain has long been considered a benchmark for shell-model calculations. This has resulted in a number of theoretical works which have practically all led to a good description of low-energy properties of these nuclei, evidencing the strong doubly magic character of \(^{132}\text{Sn} \).

A main step towards a microscopic shell-model description of nuclear structure has been the use of two-body effective interactions derived from the free nucleon-nucleon potential. This approach, in which no adjustable parameter is involved in the calculation of the TBME, has been successfully applied to the \(N=82 \) isotones in the last decade, showing the ability of realistic effective interactions to provide an accurate description of nuclear structure properties.

However, some important theoretical questions still remain open. In particular, these concern the calculation of the single-particle energies and the role of three-body correlations. In the present paper, we have tried to inves-
igate the former issue by constructing a realistic effective shell-model hamiltonian for the $N = 82$ isotones, where both the SP energies and TBME have been obtained starting from a $V_{\text{low}-k}$ derived from the CD-Bonn potential. This is a natural extension of our studies of p–shell nuclei \cite{12} and oxygen isotopes \cite{13}. Here, we have shown that our effective hamiltonian yields results which are in quite good agreement with experiment along the whole chain of the $N = 82$ isotones. As regards the calculated single-particle energies, significant discrepancies with the experimental values occur only for the $0h_{11/2}$ and $2s_{1/2}$ levels. Note that for the latter no direct comparison is possible since the single-particle $2s_{1/2}$ state is still missing in the experimental spectrum of ^{133}Sb. However, we have verified that increasing the calculated value by 0.8 MeV the proton subshell closure occurs at ^{146}Gd, in agreement with the experimental findings.

At this point, the question naturally arises as to how contributions from three-body forces would modify the present results, in particular as regards the single-particle energies. While this remains a major task for future investigations, we feel that the present study paves the way toward a better understanding of the microscopic foundations of the nuclear shell model.

Acknowledgments

This work was supported in part by the U.S. DOE Grant No. DE-FG02-88ER40388.

[1] S. Sarkar and M. S. Sarkar, Phys. Rev. C 64, 014312 (2001), and references therein.
[2] F. Andreozzi, A. Covello, A. Gargano, and A. Porrino, Phys. Rev. C 41, 250 (1990).
[3] B. H. Wildenthal, in Understanding the Variety of Nuclear Excitations: Proceedings of the 3rd International Spring Seminar on Nuclear Physics, Ischia, 1990, edited by A. Covello (World Scientific, Singapore, 1991), p. 35.
[4] F. Andreozzi, L. Coraggio, A. Covello, A. Gargano, T. T. S. Kuo, and A. Porrino, Phys. Rev. C 56, R16 (1997).
[5] A. Covello, F. Andreozzi, L. Coraggio, A. Covello, A. Gargano, T. T. S. Kuo, and A. Porrino, Prog. Part. Nucl. Phys. 38, 165 (1997).
[6] A. Holt, T. Engeland, E. Osnes, M. Hjorth-Jensen, and J. Suhonen, Nucl. Phys. A 618, 107 (1997).
[7] J. Suhonen, J. Toivanen, A. Holt, T. Engeland, E. Osnes, and M. Hjorth-Jensen, Nucl. Phys. A 628, 41 (1998).
[8] A. Covello, L. Coraggio, A. Gargano, N. Itaco, and T. T. S. Kuo, in Challenges in Nuclear Structure: Proceedings of the 7th International Spring Seminar on Nuclear Physics, Maiori, 2001, edited by A. Covello (World Scientific, Singapore, 2002), p. 139.
[9] T. T. S. Kuo and E. Osnes, Lecture Notes in Physics, vol. 364 (Springer-Verlag, Berlin, 1990).
[10] J. Shurpin, T. T. S. Kuo, and D. Strottman, Nucl. Phys. A 408, 310 (1983).
[11] L. Coraggio, A. Covello, A. Gargano, N. Itaco, and T. T. S. Kuo, Prog. Part. Nucl. Phys. 62, 135 (2009).
[12] L. Coraggio and N. Itaco, Phys. Lett. B 616, 43 (2005).
[13] L. Coraggio, A. Covello, A. Gargano, N. Itaco, T. T. S. Kuo, D. R. Entem, and R. Machleidt, Phys. Rev. C 75, 024311 (2007).
[14] S. Bogner, T. T. S. Kuo, and L. Coraggio, Nucl. Phys. A 684, 432c (2001).
[15] S. Bogner, T. T. S. Kuo, L. Coraggio, A. Covello, and N. Itaco, Phys. Rev. C 65, 051301(R) (2002).
[16] S. Cohen and D. Kurath, Nucl. Phys. 73, 1 (1965).
[17] B. A. Brown and W. A. Richter, Phys. Rev. C 74, 034315 (2006).
[18] R. Machleidt, Phys. Rev. C 63, 024001 (2001).
[19] L. Coraggio, A. Covello, A. Gargano, N. Itaco, and T. T. S. Kuo (2008), arXiv:0805.2478v1[nucl-th].
[20] T. T. S. Kuo, S. Y. Lee, and K. F. Ratcliff, Nucl. Phys. A 176, 65 (1971).
[21] T. T. S. Kuo, J. Shurpin, K. C. Tam, E. Osnes, and P. J. Ellis, Ann. Phys. (NY) 132, 237 (1981).
[22] K. Suzuki and S. Y. Lee, Prog. Theor. Phys. 64, 2091 (1980).
[23] J. Blomqvist and A. Molinari, Nucl. Phys. A 106, 545 (1968).
[24] F. Andreozzi, Phys. Rev. C 54, 684 (1996).
[25] G. A. Baker and J. L. Gammel, The Padé Approximant in Theoretical Physics, vol. 71 of Mathematics in Science and Engineering (Academic Press, New York, 1970).
[26] T. Engeland, the Oslo shell-model code 1991-2006, unpublished.
[27] Data extracted using the NNDC On-line Data Service from the ENSDF database, file revised as of July 7, 2009.
[28] G. Audi, A. H. Wapstra, and C. Thibault, Nucl. Phys. A 729, 337 (2003).
[29] B. H. Wildenthal, E. Newman, and R. L. Auble, Phys. Rev. C 3, 1199 (1971).