Poly[\(\mu_5\{-\text{hydrogen bis[(E)-cinnamato]}\}\)-caesium]

Graham Smith

Acta Cryst. (2014). **E70**, m43–m44

This open-access article is distributed under the terms of the Creative Commons Attribution Licence http://creativecommons.org/licenses/by/2.0/uk/legalcode, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Acta Crystallographica Section E: Structure Reports Online is the IUCr’s highly popular open-access structural journal. It provides a simple and easily accessible publication mechanism for the growing number of inorganic, metal-organic and organic crystal structure determinations. The electronic submission, validation, refereeing and publication facilities of the journal ensure very rapid and high-quality publication, whilst key indicators and validation reports provide measures of structural reliability. The average publication time is less than one month. Articles are published in a short-format style with enhanced supplementary materials. Each publication consists of a complete package – the published article, HTML and PDF supplements, CIF, structure factors, graphics, and any other submitted supplementary files.

Crystallography Journals Online is available from journals.iucr.org
Poly[μ₅-[hydrogen bis[(E)-cinnamato]]-caesium]

Graham Smith

Science and Engineering Faculty, Queensland University of Technology, GPO Box 2434, Brisbane, Queensland 4001, Australia
Correspondence e-mail: g.smith@qut.edu.au

Received 8 January 2014; accepted 13 January 2014

Key indicators: single-crystal X-ray study; T = 200 K; mean σ(C–C) = 0.017 Å; R factor = 0.071; wR factor = 0.144; data-to-parameter ratio = 16.0.

In the structure of the title polymeric complex, [Cs(C₉H₇O₂)(C₉H₈O₂)], a caesium salt of trans-cinnamic acid, the Cs⁺ ions of the two individual irregular Cs₅O₈ coordination polyhedra lie on twofold rotation axes and are linked by four bridging carboxyl O-atom donors from two cinnamate ligand species. These two ligand components are interlinked through a delocalized H atom within a short O · · ·H · · ·O hydrogen bond. Structure extension gives a two-dimensional coordination polymer which lies parallel to (001). The structure was determined from a crystal twinned by non-merohedry, with a twin component ratio of approximately 1:1.

Related literature

For the structures of the ammonium salts of hydrogen bis(3-chlorocinnamate) and hydrogen bis(3-bromocinnamate), see: Chowdhury & Kariuki (2006). For structures of alkali metal salts of ring-substituted trans-cinnamic acid, see: Kariuki et al. (1994, 1995); Crowther et al. (2008); Smith & Wermuth (2009, 2011). For the structure of trans-cinnamic acid, see: Wierda et al. (1989); Abdelmoty et al. (2005).

Experimental

Crystal data

[Cs(C₉H₇O₂)(C₉H₈O₂)]

Mᵣ = 428.21
Monoclinic, P2₁/c
a = 7.8608 (6) Å
b = 5.6985 (7) Å
c = 38.817 (3) Å
β = 98.733 (6)°

V = 1718.6 (3) Å³
Z = 4
Mo Kα radiation
μ = 2.17 mm⁻¹
T = 200 K
0.35 × 0.35 × 0.06 mm

Data collection

Oxford Diffraction Gemini-S CCD-detector diffractometer
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2013)
Tmin = 0.711, Tmax = 0.980
3353 reflections
6675 measured reflections
3353 independent reflections
2552 reflections with I > 2σ(I)
Rint = 0.046

Refinement

R[FW2 > 2σ(F²)] = 0.071
wR(F²) = 0.144
S = 1.19
210 parameters
H-atom parameters constrained
Δρmax = 1.26 e Å⁻³
Δρmin = −2.19 e Å⁻³

Table 1

Selected bond lengths (Å).

	C1—O13B	3.060 (8)	C2—O13B	3.063 (8)
C1—O14A	3.182 (8)	C2—O14A	3.377 (9)	
C1—O13A¹	3.132 (9)	C2—O13A¹	3.108 (9)	
C1—O14B¹	3.183 (9)	C2—O14B¹	3.130 (9)	
C1—O13B¹	3.060 (8)	C2—O13B¹	3.063 (8)	
C1—O14A¹	3.182 (8)	C2—O14A¹	3.377 (9)	
C1—O13A¹m	3.132 (9)	C2—O13A¹m	3.108 (9)	
C1—O14B¹m	3.183 (9)	C2—O14B¹m	3.130 (9)	

Symmetry codes: (i) x, y, z + 1; (ii) −x + 1, y, −z + 1/2; (iii) −x + 1, y + 1, −z + 1/2; (iv) −x, y, −z + 3/2; (v) −x, y + 1, −z + 1/2.

Table 2

Hydrogen-bond geometry (Å, °).

D—H···A	D—H	H···A	D···A	D—H···A
O14B—H14B···O14A	1.21	1.25	2.462 (10)	180

Data collection: CrysAlis PRO (Agilent, 2013); cell refinement: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008) within WinGX (Farrugia, 2012); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: PLATON.

The author acknowledges financial support from the Science and Engineering Faculty and the University Library, Queensland University of Technology.

Supporting information for this paper is available from the IUCr electronic archives (Reference: WM2798).

References

Abdelmoty, I., Bucholz, V., Di, L., Guo, C., Kowitz, K., Enkelmann, V., Wegner, G. & Foxman, B. M. (2005). Cryst. Growth Des. 5, 2210–2217.
Agilent (2013). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, England.
Chowdhury, M. & Kariuki, B. M. (2006). Cryst. Growth Des. 6, 774–780.
Crowther, D., Chowdhury, M. & Kariuki, B. M. (2008). J. Mol. Struct. 872, 64–71.
metal-organic compounds

Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
Kariuki, B. M., Valim, J. B., Jones, W. & King, J. (1994). Acta Cryst. C50, 1665–1667.
Kariuki, B. M., Valim, J. B., Jones, W. & King, J. (1995). Acta Cryst. C51, 1051–1053.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.
Smith, G. & Wermuth, U. D. (2009). Acta Cryst. E65, m1048.
Smith, G. & Wermuth, U. D. (2011). Acta Cryst. E67, m1594–m1595.
Spek, A. L. (2009). Acta Cryst. D65, 148–155.
Wierda, D. A., Feng, T. L. & Barron, A. R. (1989). Acta Cryst. C45, 338–339.
Poly[μ_5-{hydrogen bis[(E)-cinnamato]}]-caesium

Graham Smith

1. Comment

The crystal structure of trans-cinnamic acid was reported by Wierda et al. (1989) and Abdelmoty et al. (2005). The alkali metal salts of trans-cinnamic acid are unknown in the crystallographic literature although a limited number of examples of salts of ring-substituted cinnamates have been reported, e.g. the sodium salts of 2-nitrocinnamate [a dihydrate (Smith & Wermuth, 2009)], of 2-chlorocinnamate [a dihydrate (Kariuki et al., 1995)], of 3-chlorocinnamate [anhydrous (Crowther et al., 2008), of 4-chlorocinnamate [a dihydrate (Kariuki et al., 1994); potassium salts of 3-chloro- and 3-bromocinnamate [both anhydrous (Crowther et al., 2008)]; and a rubidium salt of 2-nitrocinnamate [a monohydrate (Smith & Wermuth, 2011)].

The reaction of trans-cinnamic acid with caesium hydroxide in aqueous ethanol afforded crystals of the title complex, [Cs(C$_9$H$_7$O$_2$)(C$_9$H$_8$O$_2$)]$_n$, (I), the structure of which is reported herein.

In the structure of (I) the asymmetric unit (Fig. 1) comprises two independent irregular CsO$_8$ coordination polyhedra [Cs$_1$—O, 3.060 (8)–3.183 (9) Å; Cs$_2$—O, 3.063 (9)–3.377 (9) Å: Table 1], in which the Cs$^+$ ions lie on a twofold rotation axis and are linked by four bridging carboxyl O-donors from the two trans-cinnamate ligand species. These two ligand species are inter-linked through a delocalized H atom on an approximately central intermediate site within a short O$_4^A$···H$_14^B$···O$_4^B$ hydrogen bond [2.462 (10) Å] (Table 2). Although this phenomenon involving coordinating dimeric carboxylate species is not known among the alkali metal substituted-cinnamate structures, it is found in both ammonium hydrogen bis(3-chlorocinnamate) and ammonium hydrogen bis(3-bromocinnamate) (Chowdhury & Kariuki, 2006), with the O···H···O values [2.554 (6) Å for the 3-Cl-analogue and 2.466 (5) Å for the 3-Br-analogue] similar to that in the structure of (I). In this complex, the two Cs$^+$ ions are quadruply bridged giving a Cs$_1$···Cs$_2$ separation of 3.9318 (3) Å and generate an overall two-dimensional coordination polymer lying parallel to (001) (Figs. 2, 3). No inter-ring π–π interactions are present in the structure [minimum ring centroid separation = 4.826 (8) Å].

The two linked cinnamate species in the title complex are close to coplanar [inter-ring dihedral angle = 3.9 (6)$^\circ$], with the side chain carboxyl group of the A ligand component slightly rotated out of the plane [torsion angle C$_{11}^A$—C$_{12}^A$—C$_{13}^A$—O$_{13}^A$ = 169.0 (13)$^\circ$] compared to that of the B ligand component [torsion angle C$_{11}^B$—C$_{12}^B$—C$_{13}^B$—O$_{14}^B$ = -179.2 (11)$^\circ$]. With the analogous ammonium hydrogen salts of the 3-chloro- and 3-bromocinnamates (Chowdhury & Kariuki, 2006), the two cinnamate components are related either by crystallographic inversion symmetry (3-Cl) with the two benzene rings essentially planar, or by twofold rotational symmetry (3-Br) with the two rings significantly rotated out of the least-squares plane [inter-ring dihedral angle = 29.8 (2)$^\circ$].

2. Experimental

The title compound was synthesized by heating together for 10 minutes, 148 mg (1.0 mmol) of trans-cinnamic acid and 75 mg (0.5 mmol) of CsOH in 15 ml of an 1:9 (vol/vol) ethanol–water mixture. Partial room temperature evaporation of the solution gave colourless elongated crystals of the title complex from which a specimen was cleaved for the X-ray
analysis. These crystals were invariably twinned, a feature identified in the later structure solution and refinement routines.

3. Refinement

Hydrogen atoms were placed in calculated positions [C—H = 0.95 Å] and allowed to ride in the refinement, with $U_{iso}(H) = 1.2U_{eq}(C)$. The carboxylic acid H-atom was found to be delocalized in a site approximating to midway between two carboxyl O-atoms of the dimeric acid–anion unit and was subsequently allowed to ride at that site, with $U_{iso}(H) = 1.5U_{eq}(O)$. The presence of a non-merohedral twin was identified using TwinRotMat within PLATON (Spek, 2009) (twin law: $\overline{1}0\overline{0}$, $0\overline{1}0$, $1.5\overline{0}1$) reducing the conventional R-factor from 0.23 to 0.072, with a final BASF factor (HKLF 5 format) of 0.4836. Maximum and minimum residual electron densities were 1.26 eÅ$^{-3}$ (1.00 Å from Cs1) and -2.19 eÅ$^{-3}$ (1.94 Å from H14B), respectively.

Computing details

Data collection: CrysAlis PRO (Agilent, 2013); cell refinement: CrysAlis PRO (Agilent, 2013); data reduction: CrysAlis PRO (Agilent, 2013); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008) within WinGX (Farrugia, 2012); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: PLATON (Spek, 2009).

Figure 1

The atom-numbering scheme and the molecular configuration of the two ligands and the two CsO₈ coordination polyhedra of the title complex, with non-H atoms drawn with displacement ellipsoids at the 40% probability level. The two Cs⁺ cations lie on twofold rotation axes. The O14A···O14B hydrogen bond with the delocalized H atom (H14B) is shown as a dashed link. [For symmetry codes: see Table 1].
Figure 2
A view of the partially expanded polymeric extension of the structure viewed along the approximate a-cell direction. C-bound H atoms are omitted. A and B denote the two different ligand components.

Figure 3
The packing of the layered structure of compound (I) viewed along b.

Poly[μ-hydrogen bis[(E)-cinnamato]]-caesium

Crystal data

$[\text{Cs}($C$_9$H$_7$O$_2$)(C$_9$H$_8$O$_2$)]$

$M_r = 428.21$

Monoclinic, $P2_1/c$

Hall symbol: -P 2yc

$a = 7.8608$ (6) Å

$b = 5.6985$ (7) Å

$c = 38.817$ (3) Å

$\beta = 98.733$ (6)$^\circ$
supplementary materials

\(V = 1718.6 \pm 3 \, \text{Å}^3 \)
\(Z = 4 \)
\(F(000) = 840 \)
\(D_r = 1.655 \, \text{Mg m}^{-3} \)
Mo Kα radiation, \(\lambda = 0.71073 \, \text{Å} \)

Cell parameters from 1674 reflections

\[\theta = 3.6^\circ - 28.2^\circ \]
\[\mu = 2.17 \, \text{mm}^{-1} \]
\(T = 200 \, \text{K} \)
Plate, colourless

0.35 × 0.35 × 0.06 mm

Data collection

Oxford Diffraction Gemini-S CCD-detector

Radiation source: Enhance (Mo) X-ray source

Detector resolution: 16.077 pixels mm\(^{-1}\)

Absorption correction: multi-scan

\(R_{int} = 0.046 \)

\(\theta_{max} = 26.0^\circ, \theta_{min} = 3.2^\circ \)

Absorption correction: multi-scan

\(k = -7 \rightarrow 7 \)

\(l = -11 \rightarrow 47 \)

Refinement

Refinement on \(F^2 \)

Least-squares matrix: full

H-atom parameters constrained

\(R[F^2 > 2\sigma(F^2)] = 0.071 \)

\(wR(F^2) = 0.144 \)

3353 reflections

210 parameters

\(S = 1.19 \)

Primary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier map

Hydrogen site location: inferred from neighbouring sites

\(w = 1/[\sigma^2(F_o^2) + (0.020P)^2 + 18.34P] \)

\(P = (F_o^2 + 2F_c^2)/3 \)

\((\Delta/\sigma)_{max} = 0.001 \)

\(\Delta\rho_{max} = 1.26 \, \text{e Å}^{-3} \)

\(\Delta\rho_{min} = -2.19 \, \text{e Å}^{-3} \)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å\(^2\))

	\(x \)	\(y \)	\(z \)	\(U_{iso} \)/\(U_{eq} \)
Cs1	0.50000	0.6438 (2)	0.25000	0.0261 (3)
Cs2	0.00000	0.6257 (2)	0.25000	0.0300 (3)
O13A	0.2828 (13)	-0.1322 (15)	0.3028 (2)	0.037 (3)
O13B	0.2180 (12)	0.3903 (14)	0.20079 (19)	0.030 (3)
O14A	0.3036 (12)	0.2355 (14)	0.28374 (18)	0.029 (3)
O14B	0.2197 (13)	0.0396 (14)	0.22718 (18)	0.033 (3)
C1A	0.5037 (15)	0.4316 (19)	0.3905 (3)	0.025 (3)
C1B	0.0000 (15)	0.079 (2)	0.1031 (3)	0.025 (3)
C2A	0.5963 (19)	0.636 (2)	0.3964 (3)	0.035 (4)
C2B	0.0132 (16)	0.208 (2)	0.0728 (3)	0.028 (3)
C3A	0.6620 (19)	0.707 (2)	0.4301 (4)	0.042 (5)
C3B	-0.0664 (16)	0.128 (3)	0.0403 (3)	0.040 (4)

Acta Cryst. (2014). E70, m43–m44

sup-4
C4A 0.6346 (18) 0.574 (3) 0.4585 (3) 0.042 (5)
C4B −0.1524 (18) −0.082 (2) 0.0373 (3) 0.041 (4)
C5A 0.5426 (19) 0.373 (3) 0.4529 (3) 0.039 (4)
C5B −0.1628 (16) −0.210 (2) 0.0668 (3) 0.035 (4)
C6A 0.4764 (15) 0.299 (2) 0.4191 (3) 0.029 (4)
C6B −0.0870 (15) −0.133 (2) 0.0997 (3) 0.031 (4)
C11A 0.3456 (17) 0.359 (2) 0.3444 (3) 0.023 (3)
C11B −0.0831 (14) −0.210 (2) 0.0668 (3) 0.025 (3)
C12A 0.3722 (13) 0.155 (2) 0.3078 (3) 0.028 (4)
C12B −0.1628 (13) −0.133 (2) 0.0997 (3) 0.026 (3)
C13A 0.3148 (16) 0.076 (2) 0.3078 (3) 0.028 (4)
C13B −0.1901 (15) −0.176 (2) 0.1998 (3) 0.027 (4)
H2A 0.61560 0.73090 0.37720 0.0410*
H2B 0.07640 0.35110 0.07440 0.0340*
H3A 0.72650 0.84820 0.43360 0.0510*
H3B −0.06090 0.21990 0.02000 0.0480*
H4A 0.67930 0.62310 0.48150 0.0500*
H4B −0.20410 −0.13800 0.01520 0.0490*
H5A 0.52280 0.28000 0.47230 0.0470*
H5B −0.22320 −0.35490 0.06480 0.0410*
H6A 0.41240 0.15700 0.41580 0.0350*
H6B −0.09500 −0.22560 0.11970 0.0370*
H11A 0.43910 0.47280 0.33640 0.0380*
H11B 0.11540 0.33430 0.13740 0.0290*
H12A 0.36110 0.04540 0.36230 0.0280*
H12B 0.09570 −0.10990 0.16760 0.0320*
H14B 0.26080 0.13620 0.25500 0.0500*

Atomic displacement parameters (Å²)

	U¹¹	U²²	U³³	U¹²	U¹³	U²³
Cs1	0.0221 (5)	0.0212 (5)	0.0350 (5)	0.0000	0.0041 (5)	0.0000
Cs2	0.0232 (5)	0.0238 (6)	0.0438 (6)	0.0000	0.0075 (6)	0.0000
O13A	0.056 (5)	0.027 (5)	0.028 (4)	−0.001 (6)	0.003 (4)	−0.006 (4)
O13B	0.047 (5)	0.026 (4)	0.016 (4)	−0.004 (5)	0.000 (4)	0.000 (3)
O14A	0.046 (6)	0.033 (5)	0.006 (3)	−0.003 (4)	−0.006 (3)	−0.005 (3)
O14B	0.055 (5)	0.025 (4)	0.013 (4)	−0.004 (5)	−0.015 (4)	−0.005 (3)
C1A	0.022 (6)	0.022 (6)	0.030 (6)	0.003 (5)	0.006 (5)	−0.009 (5)
C1B	0.020 (5)	0.034 (6)	0.022 (5)	0.004 (6)	0.005 (5)	−0.007 (5)
C2A	0.038 (7)	0.027 (6)	0.039 (6)	−0.004 (7)	0.007 (6)	0.003 (6)
C2B	0.027 (6)	0.028 (6)	0.027 (6)	0.007 (6)	0.005 (5)	−0.003 (5)
C3A	0.044 (9)	0.021 (7)	0.059 (9)	0.012 (6)	−0.002 (7)	−0.024 (6)
C3B	0.043 (8)	0.050 (8)	0.027 (6)	0.026 (8)	0.005 (5)	0.000 (7)
C4A	0.031 (7)	0.059 (10)	0.033 (7)	0.006 (8)	−0.001 (6)	−0.022 (7)
C4B	0.037 (7)	0.053 (8)	0.030 (7)	−0.011 (8)	−0.003 (6)	−0.012 (6)
C5A	0.035 (7)	0.048 (7)	0.035 (6)	−0.003 (8)	0.005 (6)	0.012 (7)
C5B	0.029 (7)	0.021 (6)	0.054 (8)	−0.005 (6)	0.006 (6)	−0.004 (6)
C6A	0.031 (7)	0.027 (7)	0.030 (6)	−0.007 (6)	0.005 (5)	0.004 (5)
C6B	0.032 (7)	0.027 (6)	0.032 (6)	−0.002 (6)	0.002 (5)	−0.002 (6)
C11A	0.035 (7)	0.029 (6)	0.032 (6)	−0.002 (7)	0.006 (6)	0.002 (6)
Geometric parameters (Å, °)

Bond	Length (Å)	Angle (°)	
Cs1—O13B	3.060 (8)	C2A—C3A	1.392 (19)
Cs1—O14A	3.182 (8)	C2B—C3B	1.397 (17)
Cs1—O13Ai	3.132 (9)	C3A—C4A	1.38 (2)
Cs1—O14Bi	3.183 (9)	C3B—C4B	1.37 (2)
Cs1—O13Bii	3.060 (8)	C4A—C5A	1.35 (2)
Cs1—O14Aii	3.182 (8)	C4B—C5B	1.371 (16)
Cs1—O13Aiii	3.132 (9)	C5A—C6A	1.401 (17)
Cs1—O14Biii	3.183 (9)	C5B—C6B	1.396 (16)
C3A—O14Aiv	3.063 (8)	C11A—C12A	1.298 (16)
C2A—O14Av	3.377 (9)	C11A—C12A	1.349 (16)
C2A—O13B	3.060 (8)	C13A—C13B	1.222 (14)
C1B—C11B	1.492 (16)	C6A—C6B	0.950
O13A—C13A	1.222 (14)	C4A—C4B	0.950
O14A—C13A	1.297 (14)	C5A—C5B	0.950
O14B—C13B	1.309 (14)	C5B—C5B	0.950
O14B—H14B	1.2100	C6A—H6B	0.950
C1A—C11A	1.492 (16)	C6B—H6B	0.950
C1A—C2A	1.374 (17)	C11A—H11A	0.950
C1A—C6A	1.386 (16)	C11B—H11B	0.950
C1B—C11B	1.475 (16)	C12A—H12A	0.950
C1B—C6B	1.385 (16)	C12B—H12B	0.950
C1B—C2B	1.404 (16)	C1A—C11A	135.0 (8)
O13B—Cs1—O14A	64.0 (2)	Cs2—O14A—C13A	132.6 (7)
O13A—Cs1—O13B	100.7 (2)	Cs1iv—O14B—C13B	129.8 (7)
O13B—Cs1—O14Bi	75.9 (2)	Cs2iv—O14B—C13B	77.04 (18)
O13B—Cs1—O13Bii	123.7 (2)	Cs1iv—O14B—Cs2ii	93.00
O13Aiii—Cs1—O13B	75.4 (2)	Cs1—O14A—H14B	83.00
O13B—Cs1—O14Biii	101.5 (2)	Cs2—O14A—H14B	100.00
O13A—Cs1—O14A	155.98 (19)	Cs2iv—O14B—H14B	90.00
O13B—Cs1—O14Biv	71.5 (2)	Cs1iv—O14B—H14B	116.00
O14A—Cs1—O14A	105.9 (2)	C13B—O14B—H14B	122.0 (10)
O14B—Cs1—O14A	75.4 (2)	C6A—C1A—C11A	118.1 (11)
O14A—Cs1—O14Ai	86.0 (2)	C2A—C1A—C6A	119.9 (10)
O14A—Cs1—O14Aii	156.1 (2)	C2A—C1A—C11A	118.4 (11)
O13A—Cs1—O14Biii	139.65 (18)	C2B—C1B—C6B	118.4 (11)
O13A—Cs1—O14Biv	58.0 (2)	C2B—C1B—C11B	118.4 (11)
supplementary materials

Bond	Distance (Å)	Angle (°)
O13A^i—Cs1—O13B^ii	101.5 (2)	
O13A^i—Cs1—O14A^i	156.1 (2)	
O13A^i—Cs1—O13A^ii	131.9 (2)	
O13B^ii—Cs1—O14B^ii	87.3 (2)	
O13B^ii—Cs1—O14B^i	155.98 (19)	
O14A^ii—Cs1—O14B^i	139.65 (18)	
O13A^iii—Cs1—O14B^ii	87.3 (2)	
O14B^ii—Cs1—O14B^ii	89.8 (2)	
O13B^ii—Cs1—O14A^i	64.0 (2)	
O13A^iii—Cs1—O13B^ii	100.7 (2)	
O13B^ii—Cs1—O14A^ii	7.5 (2)	
O14B^ii—Cs1—O14A^ii	71.5 (2)	
O14A^iv—Cs1—O14B^ii	105.9 (2)	
O13A^iv—Cs1—O14B^ii	58.0 (2)	
O13C—Cs2—O14A	61.58 (19)	
O13A—Cs2—O13B	101.2 (2)	
O13B—Cs2—O14B	76.6 (2)	
O14B—Cs2—O13B	128.1 (2)	
O13B—Cs2—O14A	84.2 (2)	
O14A—Cs2—O14B	101.3 (2)	
O13B—Cs2—O14B	153.1 (2)	
O13A—Cs2—O14A	69.2 (2)	
O14A—Cs2—O14B	102.6 (2)	
O13B—Cs2—O14B	84.2 (2)	
O14A—Cs2—O14B	97.7 (2)	
O13B—Cs2—O14B	160.1 (2)	
O14A—Cs2—O14B	140.74 (18)	
O13A—Cs2—O14B	58.8 (2)	
O13C—Cs2—O14B	101.3 (2)	
O13A—Cs2—O14A	160.1 (2)	
O13B—Cs2—O14A	127.3 (2)	
O13A—Cs2—O14A	81.3 (2)	
O13B—Cs2—O14B	153.1 (2)	
O14A—Cs2—O14B	140.74 (18)	
O13A—Cs2—O14B	81.3 (2)	
O13B—Cs2—O14B	82.2 (2)	
O13B—Cs2—O14B	61.58 (19)	
O13A—Cs2—O14B	101.2 (2)	
O13B—Cs2—O14B	76.6 (2)	
O13A—Cs2—O14B	69.2 (2)	
O13B—Cs2—O14B	102.6 (2)	
O13A—Cs2—O14B	58.8 (2)	
Cs1—O13A—C13A	112.3 (8)	
Cs1—O13A—C13A	130.2 (8)	
Cs1—O13A—C13A	78.11 (18)	
Cs1—O13B—Cs2	79.91 (18)	
Cs1—O13B—C13B	126.3 (7)	
Cs1—O13B—C13B	109.7 (7)	
Cs1—O14A—Cs2	73.59 (16)	
Cs1—O14A—C13A 145.6 (8)

Bond	Angle (°) (°)
O14A—Cs1—O13B—Cs2	65.6 (2)
O14A—Cs1—O13B—C13B	-41.6 (9)
O13A—Cs1—O13B—C13B	2.5 (2)
O13A—Cs1—O13B—C13B	-104.7 (9)
O14B—Cs1—O13B—C13B	-50.38 (19)
O14B—Cs1—O13B—C13B	-157.5 (9)
O13Bii—Cs1—O13B—C13B	114.2 (2)
O13Bii—Cs1—O13B—C13B	7.0 (10)
O14Aii—Cs1—O13B—C13B	158.3 (2)
O14Aii—Cs1—O13B—C13B	51.2 (9)
O13Aiii—Cs1—O13B—C13B	-134.6 (2)
O13Aiii—Cs1—O13B—C13B	118.3 (9)
O14Biii—Cs1—O13B—C13B	147.6 (9)
O13B—Cs1—O14A—C13A	151.0 (13)
O13B—Cs1—O14A—C13A	54.52 (19)
O13B—Cs1—O14A—C13A	-96.5 (12)
O14B—Cs1—O14A—C13A	7.10 (18)
O14B—Cs1—O14A—C13A	-57.9 (2)
O13B—Cs1—O14A—C13A	162.23 (19)
O13B—Cs1—O14A—C13A	11.2 (9)
O14A—Cs1—O14A—C13A	-133.66 (17)
O14A—Cs1—O14A—C13A	75.3 (12)
O13A—Cs1—O14A—C13A	-114.2 (5)
O13A—Cs1—O14A—C13A	94.7 (13)
O14B—Cs1—O14A—C13A	116.3 (3)
O14B—Cs1—O14A—C13A	-34.7 (14)
O13B—Cs1—O14A—C13A	-2.5 (2)
O14A—Cs1—O14A—C13A	-60.15 (19)
O13B—Cs1—O14A—C13A	49.60 (18)
O14A—Cs1—O14A—C13A	-7.55 (19)
O14A—Cs1—O14A—C13A	-61.2 (2)
O14A—Cs1—O14A—C13A	63.9 (7)
O13A—Cs2—O13B—C13B	-2.5 (2)
O13A—Cs2—O13B—C13B	122.6 (7)
O14B—Cs2—O13B—C13B	51.35 (19)
O14B—Cs2—O13B—C13B	176.5 (8)
O13B—Cs2—O13B—C13B	-116.5 (2)
O13B—Cs2—O13B—C13B	8.6 (8)
O14A—Cs2—O13B—C13B	-163.16 (19)
O14A—Cs2—O13B—C13B	-38.1 (7)
O13A—Cs2—O13B—C13B	129.5 (2)
O13A—Cs2—O13B—C13B	-105.4 (7)
O14B—Cs2—O13B—C13B	90.3 (5)
O14B—Cs2—O13B—C13B	-144.6 (7)
O13B—Cs2—O14A—Cs1	59.9 (2)

Acta Cryst. (2014). E70, m43–m44
O13B—Cs2—O14A—C13A −142.9 (10) C1B—C11B—C12B—C13B −175.3 (11)
O13A1—Cs2—O14A—Cs1 −56.3 (2) C11A—C12A—C13A—O13A 169.0 (13)
O13A1—Cs2—O14A—C13A 100.9 (10) C11A—C12A—C13A—O14A −10.7 (18)
O14B—Cs2—O14A—Cs1 −7.12 (18) C11B—C12B—C13B—O13B 1.6 (18)
O14B1—Cs2—O14A—C13A 150.1 (9) C11B—C12B—C13B—O14B −179.2 (11)

Symmetry codes: (i) x, y+1, z; (ii) −x+1, y, −z+1/2; (iii) −x+1, y+1, −z+1/2; (iv) −x, y, −z+1/2; (v) −x, y+1, −z+1/2; (vi) x, y−1, z.

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D···A	D—H···A
O14B—H14B···O14A	1.21	1.25	2.462 (10)	180
C11B—H11B···O13B	0.95	2.49	2.830 (14)	101