Arteriovenous fistulae are an abnormal communication between the artery and vein arising commonly following penetrating injury such as percutaneous arterial or venous punctures and after open surgical interventions. They are encountered in the groin due to frequent use of the femoral artery and vein for diagnostic and interventional radiological procedures such as coronary and peripheral angiography.

In the acute phase, arteriovenous fistulae are commonly associated with localized symptoms such as hematoma and bruising. However, they may remain totally asymptomatic and present in the long term with chronic limb oedema, aneurysmal degeneration of the arterial tree and high output cardiac failure. This case report discusses a unique case of an arteriovenous fistula in the groin in a patient presenting with painful lower limb ulcerations, which has not been reported in the literature previously. The investigations leading to confirmation of the diagnosis and the subsequent management of the fistula are also discussed along with a brief review of the literature.

Case Report

An 80-year-old man presented with painful leg ulceration due to steal phenomenon from a groin arteriovenous fistula (AVF) 10 years following a coronary angiogram. The diagnosis of the AVF was confirmed by duplex examination of the groin vessels which demonstrated characteristic flow pattern in the femoral arterial and venous system. Angiography further confirmed the site of the fistulous communication and this was managed by a covered stent graft. We discuss the incidence of AVF, risk factors for its development, relevant diagnostic investigations and management options along with strategies to reduce the incidence of AVF following percutaneous punctures.

Key words: arteriovenous fistula, duplex, leg ulcers, percutaneous puncture
the right lower limb. The right common femoral and profundal artery demonstrated loss of triphasic flow with continuous forward flow in diastole with no reversal of flow in diastole. In addition, an arteriovenous fistula with a high velocity jet stream of blood was visualized between the profundal femoral artery and common femoral vein (Fig. 1).

To delineate the anatomy and assess suitability for endovascular intervention, the patient underwent a retrograde intra-arterial digital subtraction angiogram via left femoral puncture using a 6 Fr vascular sheath and pigtail catheter. This demonstrated early contrast filling of the right iliac venous system, suggesting a communication between the arterial and venous system (Fig. 2). In addition, selective cannulation of the right profundal and superficial femoral arteries revealed two separate fistulae originating from the superficial femoral artery and profundal femoral artery, both communicating with the common femoral vein. After an initial diagnostic angiography, a 7 Fr guiding sheath (Destination Guiding sheath, Terumo, Europe) was introduced via the left common femoral artery and placed across the aortic bifurcation to the right external iliac artery by the up and over approach. Selective angiography revealed two separate fistulae originating from the superficial femoral artery and profundal femoral artery, both communicating with the common femoral vein. A bolus of 3000 iu of heparin was administered via the sheath. With roadmap assistance, the superficial femoral artery was catheterized using an angled hydrophilic guidewire (Standard Glidewire®, Terumo Medical Corporation) and exchanged for a 0.035 inch stiff guide wire (Amplatz Super Stiff, Boston Scientific, USA) over a straight exchange catheter. After calibrating the vessel diameter and using roadmap guidance, a 4 to 9-mm Jomed covered stent (Jomed, Rangendingen, Netherlands) mounted on a 6 mm balloon was accurately deployed across the arteriovenous fistula (AVF). The profundal femoral artery was next cannulated and a 4 to 9-mm Jomed covered stent (Jomed, Rangendingen, Netherlands) on a 5-mm balloon was deployed over the AVF defect in the profundal femoral artery. A final check angiography confirmed a satisfactory position of the stents with exclusion of both fistulae (Fig. 3). A vascular closure device (6 Fr Angio-Seal™, St Jude Medical) was used to seal the left femoral artery puncture site. These were amenable to endovascular treatment by placing a covered stent over the fistulous defect and thus avoiding an open surgical procedure (Fig. 3). The patient was subsequently discharged on the second day following the procedure with no immediate complications. There was a significant improvement in the right leg ulcerations on subsequent review in the vascular clinic with an ankle brachial pressure index of 0.8 from a pre intervention recording of 0.37.

DISCUSSION

Arteriovenous fistula occur following penetrating injuries such as percutaneous interventions, surgical procedures and venous catheterization although they can
rarely present after blunt trauma.2 The overall incidence of arteriovenous fistula following percutaneous femoral puncture for cardiac catheterization is 1\%.3 The risk factors for arteriovenous fistula formation following percutaneous femoral puncture from multivariate analysis were use of anticoagulation, arterial hypertension, female gender, puncture of superficial femoral or profunda artery and left groin puncture.4, 5

AVF may be relatively asymptomatic with bruising and small haematomas in the acute phase attributed to the percutaneous intervention. However chronic arteriovenous fistula may present with symptoms of intermittent claudication due to the steal phenomenon. Iliac and femoral artery aneurysms occur due to increased flow of blood through the arterial tree due to short circuiting of the blood. Venous hypertension and high output cardiac failure are also a consequence of this increased handling of high-volume blood flow.2, 6

The diagnosis of arteriovenous fistula is by clinical findings of bruit in conjunction with corroborating history. However, a bruit may not always be detected clinically, especially when the arteriovenous fistula is deep within the tissues. Due to the steal phenomenon, blood flow to the extremities may be compromised, as evidenced by reduced or absent distal peripheral pulses. Patients may present with intermittent claudication. Although critical limb ischaemia, resulting in ischaemic ulceration is possible with a significant steal, this has not been reported in the literature previously.

Duplex imaging is diagnostic for arteriovenous fistula and offers the advantage of a non-invasive investigation. The waveform is characteristically high volume, monophasic with turbulence and the jet stream, visualized by the color aliasing. It gives dynamic information of the site of the arteriovenous fistula in addition to the grade of steal into the venous system. It is a diagnostic investigation for peripheral arteriovenous fistula. Intra-arterial digital subtraction angiography has the advantage of high specificity and helps localize the arteriovenous fistula by selective cannulation of the vessel.

The management of arteriovenous fistula is multimodal. Non-invasive management with manual pressure applied using an ultrasound probe or simple prolonged bandaging have been proven to be effective and economical.5, 6 One third of all arteriovenous fistula close spontaneously in one year, and hence, there is some evidence to manage asymptomatic arteriovenous fistula conservatively by a wait and watch policy before initiating any treatment.4

Endovascular techniques have the advantage of being a minimally invasive intervention with reduced patient morbidity and in-patient stay. Covered stents help exclude the fistula from the arterial blood flow and thus results in thrombotic occlusion of the fistula.9–11 In addition, there is also the option of using glue to occlude the fistula by selective catheterization of the affected vessel.12

Surgical management is reserved for arteriovenous fistulae that are symptomatic and fail treatment by non-invasive techniques. It is the gold standard and involves identification of the fistula, resecting it and repair of the artery. Although it has a high success rate of over 96\%, there are potential complications of major bleeding from the arterialized vein, groin infection and scarring.13, 14

The complication of arteriovenous fistula resulting from percutaneous procedures can be minimized by various precautionary measures. The use of an ultrasound-guided, central venous line cannulation has been recognized as a safe technique to reduce complications. Similarly, there is emerging evidence to demonstrate that the use of ultrasound-guided femoral puncture reduces the incidence of complications such as arteriovenous fistula, false aneurysm formation and haematoma. Ultrasound helps determine the level of bifurcation of the common femoral artery and thus avoids the inadvertent puncture of the superficial femoral or profunda artery. The latter are well identified risk factors for arteriovenous fistula formation.15

The use of fluoroscopy to mark the head of the femur, which is also a reliable anatomical landmark for bifurcation of the common femoral artery, has been demonstrated.
to be a safe technique to avoid puncture of the superficial femoral artery and profunda artery.5)

Commercially available vascular closure devices are increasingly being used in the clinical practice due to their convenience and ease of use. These devices are introduced intra-luminally and deploy a seal or ligature over the arterial puncture site. There is evidence to suggest that these devices, when used appropriately, help reduce the complications associated with percutaneous puncture.15)

REFERENCES

1) Straton CS, Tisnado J. Spontaneous arteriovenous fistulas of the lower extremities: angiographic demonstration in five patients with peripheral vascular disease. Cardiovasc Intervent Radiol 2000; 23: 318-21.
2) Kotelis D, Klemm K, Tengg-Kobligk H, Allenberg JR, Böckler D. Intermittent claudication secondary to a traumatic arteriovenous fistula. Vasa 2007; 36: 285-7.
3) Perings SM, Kelm M, Jax T, Strauer BE. A prospective study on incidence and risk factors of arteriovenous fistulae following transfemoral cardiac catheterization. Int J Cardiol 2003; 88: 223-8.
4) Kelm M, Perings SM, Jax T, Lauer T, Schoebel FC, Heintzen MP, et al. Incidence and clinical outcome of iatrogenic femoral arteriovenous fistulas: implications for risk stratification and treatment. J Am Coll Cardiol 2002; 40: 291-7.
5) Kim D, Orron DE, Skillman JJ, Kent KC, Porter DH, Schlam BW, et al. Role of superficial femoral artery puncture in the development of pseudoaneurysm and arteriovenous fistula complicating percutaneous transfemoral cardiac catheterization. Cathet Cardiovasc Diagn 1992; 25: 91-7.
6) Melliere D, Barres G, Saada F, Becquemin JP. Late arterial aneurysm proximal to corrected post-traumatic arteriovenous fistula. J Cardiovasc Surg (Torino) 1987; 28: 510-5.
7) Wery D, Delcour C, Golzarain J, Azancot M, Grand C, Struyven J. Iatrogenic femoral pseudo-aneurysm and arteriovenous fistula. Non-surgical treatment. J Radiol 1991; 72: 91-4.
8) Zhou T, Liu ZJ, Zhou SH, Shen XQ, Liu QM, Fang ZF, et al. Treatment of postcatheterization femoral arteriovenous fistulas with simple prolonged bandaging. Chin Med J (Engl) 2007; 120: 952-5.
9) Cil BE, Akmanoglu I, Peynircioglu B, Karcaaltincaba M, Cekirge S. Iatrogenic femoral arteriovenous fistula: endovascular treatment with covered stent implantation and 4-year follow-up. Diagn Interv Radiol 2006; 12: 50-2.
10) O’Brien J, Buckley O, Torreggiani W. Hemolytic anemia caused by iatrogenic arteriovenous iliac fistula and successfully treated by endovascular stent-graft placement. AJR Am J Roentgenol 2007; 188: 306.
11) Onal B, Kosar S, Gumus T, Ilgit ET, Akpek S. Post-catheterization femoral arteriovenous fistulas: endovascular treatment with stent-grafts. Cardiovasc Intervent Radiol 2004; 27: 453-8.
12) Onal B, Ilgit ET, Akpek S, Coskun B. Postcatheterization femoral arteriovenous fistula with N-butyl-cyanoacrylate embolization. Cardiovasc Intervent Radiol 2006; 29: 276-8.
13) Parodi JC, Schonholz C, Ferreira LM, Bergan J. Endovascular stent-graft treatment of traumatic arterial lesions. Ann Vasc Surg 1999; 13: 121-9.
14) Linder F. Acquired arterio-venous fistulas. Report of 223 operated cases. Ann Chir Gynaeol 1985; 74: 1-5.
15) Jaff MR, Hadley G, Hermiller JB, Simonton C, Hinohara T, Cannon L, et al. The safety and efficacy of the StarClose Vascular Closure System: the ultrasound substudy of the CLIP study. Catheter Cardiovasc Interv 2006; 68: 684-9.