Identification of cell surface proteins as potential immunotherapy targets in 12 pediatric cancers

Rimas J. Orentas1*, James J. Yang1,2, Xinyu Wen1, Jun S. Wei2, Crystal L. Mackall1 and Javed Khan2

1 Immunology Section, Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
2 Oncogenomics Section, Advanced Technology Center, Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Gaithersburg, MD, USA

*Correspondence:
Rimas J. Orentas, Pediatric Oncology Branch, National Institutes of Health, 10 Center Drive, 1W3840, Bethesda, MD 20892, USA.
e-mail: rimas.orentas@nih.gov

Technological advances now allow us to rapidly produce CARs and other antibody-derived therapeutics targeting cell surface receptors. To maximize the potential of these new technologies, relevant extracellular targets must be identified. The Pediatric Oncology Branch of the NCI curates a freely accessible database of gene expression data for both pediatric cancers and normal tissues, through which we have defined discrete sets of over-expressed transcripts in 12 pediatric cancer subtypes as compared to normal tissues. We coupled gene expression profiles to current annotation databases (i.e., Affymetrix, Gene Ontology, Entrez Gene), in order to categorize transcripts by their sub-cellular location. In this manner we generated a list of potential immune targets expressed on the cell surface, ranked by their difference from normal tissue. Global differences from normal between each of the pediatric tumor types studied varied, indicating that some malignancies expressed transcript sets that were more highly diverged from normal tissues than others. The validity of our approach is seen by our findings for pre-B cell ALL, where targets currently in clinical trials were top-ranked hits (CD19, CD22). For some cancers, reagents already in development could potentially be applied to a new disease class, as exemplified by CD30 expression on sarcomas. Moreover, several potential new targets shared among several pediatric solid tumors are herein identified, such as MCAM (MUC18), metadherin (MTDH), and glypican-2 (GPC2). These targets have been identified at the mRNA level and are yet to be validated at the protein level. The safety of targeting these antigens has yet to be demonstrated and therefore the identified transcripts should be considered preliminary candidates for new CAR and therapeutic antibody targets. Prospective candidate targets will be evaluated by proteomic analysis including Westerns and immunohistochemistry of normal and tumor tissues.

Keywords: cancer antigens, rhabdomyosarcoma, Ewing's sarcoma, osteosarcoma, hepatoblastoma, glioblastoma, neuroblastoma, sarcoma

INTRODUCTION

“Tumor-associated antigens” are multi-faceted and can be defined as any entity that the immune system can avail itself of to protect the host from disease. Virus-encoded tumor antigens are currently being targeted by preventive vaccines, such as for papilloma viruses, or by adoptive immunotherapy, as in EBV-associated post-transplant lymphoma. Self-antigens presented on major histocompatibility antigens (MHC) molecules are also key to clearing disease by donor-derived cells in the context of bone-marrow or hematopoietic stem cell transplantation (HSCT; Miller et al., 2010). However, with the advent of antibody-based therapies, cell-surface antigens on tumor cells can be targeted without first requiring processing and presentation by the MHC. Thus, a tumor antigen may be a unique molecule expressed by a tumor that is not encoded by the healthy genome, a non-mutated developmental antigen now re-expressed on a tumor cell, or a self-antigen than can be safely targeted without loss of host integrity. One example of recent interest is the re-expression of the developmentally regulated ALK protein on neuroblastoma (Mosse et al., 2008). The work we present here indicates that there are other such targets that remain to be discovered.

Our goal was to develop a method for identifying tumor antigen candidates that could be targeted by antibody or CAR-based therapies by leveraging publically available microarray gene expression databases of pediatric cancer. Previously we explored a series of established xenograft cell lines from pediatric cancers in support of the Pediatric Oncology Pre-clinical Protein-Tissue Array Project (POPP-TAP), a project jointly supported by the Children’s Oncology Group and the NCI (Whiteford et al., 2007). In analyzing these xenograft models we also began to assemble comparator normal tissue databases1 (“Pediatric Xenograft & Tumor Gene Expression Database”). This earlier study was carried out using a gene expression array from Research Genetics (Huntsville, AL, USA). These studies were expanded to include normal tissue analysis on the commonly available Affymetrix platform (“Pediatric Tumor

1http://pob.abcc.ncifcrf.gov/cgi-bin/JK

www.frontiersin.org

December 2012 | Volume 2 | Article 194 | 1
Affymetrix Database at see text footnote 1), allowing for easier comparison to analyses from other groups (Chen et al., 2008). Averaging gene expression levels from individual tumor samples according to diagnostic category, and comparing this expression level transcript by transcript to average normal tissue expression levels allowed for a statistical measure of the difference in expression of targets across normal tissue. Ranking the identified transcripts, and then filtering them for plasma membrane expression is a first step in the high-throughput identification of all available targets on the surface of pediatric cancers. We propose that this approach will be especially valuable in solid tumors, and also includes the most common hematologic malignancies of children.

MATERIALS AND METHODS

EXPRESSION DATABASE FOR PEDIATRIC TUMORS

The Pediatric Tumor Affymetrix Database is freely accessible and can be found on-line at the NCI Pediatric Oncology Branch Oncogenomics Section web-site. The gene chip used was U133 P2 (Affymetrix, Santa Clara, CA, USA).

CONSTRUCTION OF AN ALGORITHM TO IDENTIFY CANDIDATE MEMBRANE PROTEINS FOLLOWING DISEASE-SPECIFIC ANALYSIS OF GENE EXPRESSION

The design of this program was broken down into stages. First, annotation data from several public databases were collated and used to identify cell surface proteins. This included Gene Ontology, Affymetrix chip data references, the Human Protein Reference Database, and the primary literature. Second, a database was constructed using this data, along with our gene expression data, to store the data in a usable format for analysis in MySQL, using a set of Python scripts to automate core database functions. Using this database, an auxiliary table was built, combining gene expression levels over tissue sample categories, corresponding specifically to samples from indicated pediatric cancers, using a two-sample t-test (implemented using the Scipy Python package for scientific and statistical functions) with all samples in each category tested against a series of normal tissue samples (expression profiles of lung, liver, kidney, heart, adrenal, cerebrum, cerebellum, uterus, testes, stomach, spleen, bladder, skeletal muscle, prostate, and ovary, previously described in; Whiteford et al., 2007) in order to generate a T-statistic and p value, scoring each gene's expression level in each cancer type vs. normal expression levels. Genes in this auxiliary table were then sorted in order of descending differential expression.

RESULTS

TUMORS ANALYZED

We restricted our current analysis to the 12 pediatric tumor types that had more than five samples available in the Pediatric Tumor Affymetrix Database: Pre-B Acute Lymphocytic Leukemia (Pre_B_ALL), Embryonal Rhabdomyosarcoma (ERMS), Alveolar Rhabdomyosarcoma (ARMS), Soft-Tissue Sarcoma (STS) that is not classified as Rhabdomyosarcoma (Non-RMS_STS or simply STS), Desmoplastic Small Round Cell Tumor (DSRCT), Ewing’s Sarcoma (EWS), Alveolar Soft Part Sarcoma (ASPS), Glioblastoma (GBM), Osteosarcoma (OS), Neuroblastoma-MYC-N-amplified (NBL_MA, MYCNA-NBL), Neuroblastoma non-MYC-N-amplified (NBL), and Hepatoblastoma (HBL). Some well-known tumors, like Wilm’s tumor, could not yet be included; nevertheless, these 12 types represent the majority of all pediatric solid tumors, and also includes the most common hematologic malignancies of children.

CANDIDATE ANTIGENS

We present here Pre_B_ALL as an example to demonstrate how data mining searches were organized. A standard t-test was used to compare the average gene expression signal from tumor vs. the set of normal tissues analyzed in the database. The normal tissue data was used as an aggregate average expression score per each query. The algorithm was also set to report out a p value, while filtering for surface membrane expression to define the targets of interest. We initially calculated t-test values > 10, and ordered the output to select for the highest T values. This process was repeated in a similar manner for each disease category. Table 1 shows the number of hits for each disease type in the database returned when this arbitrary T threshold of > 10 was selected. A wide range of hits was returned, with some diseases like ARMS having 62 hits score above 10, while DSRCT had 0. This does not mean DSRCT has no significant hits, as a T-statistic of 10 is a very high-value. Rather it illustrates that on a global level each malignancy has developed its own phenotypic “distance” from the normal cell surface landscape.

A major challenge for our approach is that annotation of membrane-associated protein expression has not (or perhaps currently cannot) been validated for accuracy. On-line programs such

Table 1 | Tumor-associated membrane proteins identified with a T value greater than 10.

Disease	Sample size, n	Hits
Pre-B ALL	9	120
ARMS	12	62
ASPS	7	52
Glioblastoma	7	52
NBL-MYC-N-amplified	24	44
Non-RMS-STS	6	38
Osteosarcoma	17	31
Hepatoblastoma	7	24
Ewing’s sarcoma	19	22
ERMS	9	16
Neuroblastoma (NBL)	15	4
DSRCT	8	0

The table lists the 12 disease categories analyzed and the number of individual gene expression profiles for each disease type currently featured in the Oncogenomics database. “Hits” refers to the number of tumor-associated membrane antigens reported whose T value is > 10 in comparison to normal.
as the highly sophisticated TMHMM package5 can predict transmembrane structure, but cannot assign sub-cellular localization. The most extensive and accurate protein database groups (for example the Human Protein Reference Database/Pandey Lab6) are hand-annotating proteins and tracing them to the original literature in order to define sub-cellular localization. Therefore, we also had to utilize this approach and individually examine each membrane protein hit yielded by our algorithm by searching the available primary literature, primarily using Gene hosted by NCBI7, to determine if the “membrane” tag associated with a transcript’s annotation truly denotes the extracellular plasma membrane. If an antigen is not expressed at the surface, that antigen will not be useful for immune targeting as we have described. We thus excluded proteins restricted to the mitochondria, nuclear membrane, Golgi, endoplasmic reticulum, sorting vesicles, and other intracellular membrane-bound bodies. Membrane proteins expressed both on the surface and another sub-cellular compartment were included. Table 2 lists the top 25 extracellular membrane proteins for each disease type after individual annotation/inspection.

To better understand the antigens we have identified, we ordered the transcripts according to functional groups (Table 3). The first group consists of known CD antigens or immune marker proteins. The possession of a CD designation ensures that an antibody has been created to that transcript, and the only known CD antigen we did not list in this section was CD222 (glucagon-like peptide 1 R), which was placed in the growth factor receptor category. In the CD antigen group, 12 out of 47 (appx. 25%) are peptide 1 R, which was placed in the growth factor receptor category. In the CD antigen group, 12 out of 47 (appx. 25%) are expressed in pre-B ALL. This is representative of the tissue of origin, as CD antigens are often of immune cell origin. Nevertheless, many CD antigens are also expressed on other pediatric tumors.

\begin{table}[h]
\centering
\caption{Top 25 pediatric cancer transcripts arranged by category.}
\begin{tabular}{|l|l|}
\hline
\textbf{CD antigens/immunology markers} & \\
\hline
CD19, B cell marker & \\
CD22, B cell marker & \\
CD25, IL2RA & \\
CD28 & \\
CD30, TNFRSF8 & \\
CD43, sialophorin & \\
CD49D, ITGA4 (VLA-4) & \\
CD53 (a tetraspanin) & \\
CD72, B cell marker & \\
CD73, NT5E & \\
CD79A, B cell marker & \\
CD79B, B cell marker & \\
CD85k, LILRB4, ILT3, leukocyte Ig-like R, subfamily B, member 4 & \\
CD107a & \\
CD112, PVR/LBL poliovirus R-related 2 & \\
CD115, CSF1R, colony-stimulating factor 1 receptor & \\
CD146, MCAM, MUC18 & \\
CD155, PVR, polio-virus receptor & \\
CD185, CXCR5 & \\
CD204, MSR1, macrophage scavenger receptor 1 & \\
CD271, NGFR & \\
CD276, B7-H3 & \\
CD279, PDCD1 (PD1) & \\
CD280, MRC2, mannose R, C-type 2 & \\
CD281, TLR1, toll-like receptor 1 & \\
CD301 (CLEC10A) & \\
CD393, SLAMF8 & \\
CD382, SDC2, syndecan 2 & \\
CKLF, chemokine-like factor & \\
CLEC2D, C-type lectin domain family 2, member D (NK cells) & \\
FLT3LG & \\
GP1Bβ glycoprotein lb, β polypeptide, CD42c & \\
HLA-G & \\
ICAM5, telencephalin & \\
IGHA1/IgA1 & \\
IL1RAP, Il1R accessory protein & \\
IL17RE, Interleukin-17 receptor E & \\
IL27RA, on EWS & \\
MILR1, mast cell Ig-like receptor 1 & \\
MR1, MHC class 1-related & \\
PTCRA, pre-TCR α & \\
PODXL2, endoglycan, podocalyxin-like 2 & \\
PTPRC/CD45-AP & \\
ULBP2, UL16 binding protein 2, NK2D ligand 2, on OS & \\
XG, Xg blood group & \\
\hline
\end{tabular}
\end{table}

To better understand the antigens we have identified, we ordered the transcripts according to functional groups (Table 3). The first group consists of known CD antigens or immune marker proteins. The possession of a CD designation ensures that an antibody has been created to that transcript, and the only known CD antigen we did not list in this section was CD222 (glucagon-like peptide 1 R), which was placed in the growth factor receptor category. In the CD antigen group, 12 out of 47 (appx. 25%) are expressed in pre-B ALL. This is representative of the tissue of origin, as CD antigens are often of immune cell origin. Nevertheless, many CD antigens are also expressed on other pediatric tumors.

3http://www.cbs.dtu.dk/services/TMHMM/
6http://pandeylab.igm.jhmi.edu
7http://www.ncbi.nlm.nih.gov/gene

(Continued)
Table 2 | Continued

Gene	Description
CDH23	cadherin-related 23
CDHR8	MUCDHL
CELSR3	cadherin, EGF LAG seven-pass G-type receptor 3
CSPG4	chondroitin sulfate proteoglycan 4 (HMW-MAA, melanoma-associated)
FAT4	FAT tumor suppressor homolog 4, protocadherin CDHF14
GJA3	gap junction protein a 3 (connexin family)
GJB2	gap junction protein b 2
GPC2	glypican-2
GSF9	Ig superfamily, member 9
LRFN4	leucine-rich repeat (LRR), and fibronecetin type III domain
ACVR2B	Activin R2B
ACVR2A	Activin R2A
GJA3	gap junction protein a 3 (connexin family)
GJB2	gap junction protein b 2
GPC2	glypican-2
VEZT	vezatin, adherens junctions transmembrane protein

Enzymatic function

Enzyme	Description
DAGLb	diacylglycerol lipase b
SYT11	synaptogamin XI
WDFC10A	WAP four-disulfide core domain 10A, peptidase inhibitor, extracellular

Growth factor Rdevelopment R

R	Description
ACVR2A	Activin R2A
ACVR2B	Activin R2B
EPHB2	ephrin receptor B2 (RTK)
EPHB3	ephrin receptor B3
EPHB4	ephrin receptor B4
EFNB1	ephrin-B1
EPOR	erythropoietin receptor
FGFR2	fibroblast growth factor receptor 2
FGFR4	fibroblast growth factor receptor 4
GALR1	galanin receptor 2 (GPCR)
GLG1	glucagon-like peptide 1 R
HBEFG	heparin-binding EGFlke growth factor (cleaved at membrane)
IGFR2	insulin-like growth factor 2 receptor
MET	met proto-oncogene, HGFR, hepatocyte growth factor receptor

Neurotransmitter receptor

R	Description
UNCSC	unc-5 homolog C, a netrin R
VASN	vasonin, TGFR6 R on vascular smooth muscle cells
DLL3	delta-like 3, a notch ligand
FZD10/COD350	frizzled homolog 10 (GPCR, Wnt pathway)
KREMEN2	kringle containing transmembrane protein 2 (DKK1 receptor)
TMEM198	MGC99813, required for Wnt signal transduction
NRG1	neuregulin 1
TMEFF1	transmembrane protein w/EGF-like, and two follistatin-like domains

Ion channels, ion channel regulation

Channel	Description
APT8B2	ATPase, cation transport, phospholipid translocation
NKAIN4	Na+/K+ transporting ATPase interacting 4
CACNA1A	Ca2+ channel, voltage-dependent, P/Q type, a 1A subunit
CACNA1B	Ca2+ channel, voltage-dependent, L-type, a 1B subunit
CACNA1I	Ca2+ channel, voltage-dependent, a 1I subunit
CACNG8	Ca2+ channel, voltage-dependent, y subunit 8
CACNG4	Ca2+ channel, voltage-dependent, y subunit 4
CLCN7	chloride channel 7
NKAIN1	Na+/K+ transporting ATPase interacting 1, FMA77C
KCNE4A	K+ voltage-gated channel, Isk-related family, member 4
KCNG2	K+ voltage-gated channel, subfamily G, member 2
KCNN3	K+ intermediate/small conductance Ca2+ activated channel, subfamily N, member 3
KCNQ2	K+ voltage-gated channel, KQT-like subfamily, member 2
KCNU1	K+ channel, subfamily U, member 1
TRPV3	purinergic receptor P2X, ligand-gated ion channel, 3
PKD1L2	polycystic kidney disease 1-like 2
PKD2L1	polycystic kidney disease 2-like 1
SLC9A1L1	SLC9A1L1, SLC9A1 pseudogene
SLC39A8	SLC39A8, SLC39 (zinc transporter), member 8
TRPM4	transient receptor, potential cation channel, subfamily M, member 4
TRPV4	transient receptor, potential cation channel, subfamily V, member 4
Table 2 | Continued

TMEM16J/ANO9, anoctamin 9, Ca\(^{2+}\)-activated Cl\(-\) channel

SLC6A15, SLC6 (neutral amino acid transporter), member 15

SLC5A8, SLC5 (iodide transporter), member 8

SLC7A1, SLC7 (cationic amino acid transporter, \(y^+ \) system), member 1

SLC7A6, SLC7 (amino acid transporter light chain, \(y^+ + L\) system), member 6

SLC10A3, SLC10 (sodium/bile cotransporter family), member 3

SLC10A4, SLC10 (sodium/bile acid cotransporter family), member 4

SLC13A5, SLC13 (sodium-dependent citrate transporter), member 5

SLC16A8, SLC16, member 8 (monocarboxylic acid transporter 3)

SLC19A1, FOLT, SLC19 (folate transporter), member 1

SLC35E2, SLC35, member E2

SLC38A6, SLC38, member 6

SLC38A9, SLC38, member 9 (putative sodium-coupled neutral amino acid transporter 9)

SLC43A3, EEG1 (embryonic epithelial gene-1), SLC43, member 3

G-protein, G-protein coupled, or associated receptor

ADORA2B, Adenosine R

BAI1 (brain angiogenesis inhibitor 1)

EDG6, S1PR4, sphingosine-1-phosphate R4

GPR1, G-coupled protein receptor 1

GPR26

GPR34

GPR44, PTGDR2 prostaglandin D2 receptor 2

GPR56

GPR88 (OGR-1, ovarian cancer G-protein-coupled receptor 1)

GPR175, TRPA1 transmembrane protein, adipocyte associated 1

LGR4, LRR containing G-protein-coupled receptor 4

MMD, monocyte macrophage differentiation-associated (has 7 transmembrane domains, not proven as a GPCR)

NTSR2, neutrotensin receptor 2

OPN3, opsin 3

OR2L1, olfactory R, family 2, subfamily B, member 2

OSTM1, osteopetrosis associated transmembrane protein 1

P2RY8, purinogenic R P2Y, G-coupled, 8

P2RY11, purinogenic R P2Y, G-coupled, 11

PTGEE3, prostaglandin E R 3 (subtype EP3)

SSTR5, somatostatin R 5

TBX2A2, thromboxane A2 receptor

Migration/metastasis/motility

ADAM22

CST11, cystatin 11 (epididymal specific)

MMP14, matrix metallopeptidase 14

LPPR1, RPL13A-NL1, lipid phosphate phosphatase-related protein type 1

LPPR3, PRG2 (plasticity related gene 2), LPPR type 3

LPPR5, PAPRD, LPPR type 5

SEMA6B, semaphorin 6B

Tetraspanin

ALS2CR4 (amyotrophic lateral sclerosis 2 [juvenile])

LEPROTL1, leptin R overlapping transcript-like 1

MS4A4A, membrane-spanning, 4-domains, subfamily A, member 4A, CD20L1

MS4A6A, membrane-spanning 4-domains, subfamily A, member 6A, CD20L3

ROM1, retinal outer segment membrane protein 1

TM4SF5, transmembrane 4 L six family member 5

VANGL1, vang-like 1 (van gogh, Drosophila)

VANGL2, vang-like 2

Uncharacterized

C18orf11 (contains a LDLRA domain)

GSL1, germ cell specific gene 1-like

ITM2A, integral membrane protein 2A

KIAA1171, LNP

LDLRAD3 (provisional), LDL receptor class A domain containing 3

ODZ3, odz Oz/ten-m homolog 3

SLC7A5P1 (LAT1-3TM) SLC7 (aminoacid transporter light chain, L system)

PSR5, psuedogene-1

STEAP1, six transmembrane epithelial antigen of the prostate 1

The pediatric top 25. The membrane-bound proteins with the highest T value with respect to normal tissue expression are listed by disease type. ALL, Pre-B, Acute Lymphocytic Leukemia; ASPS, Alveolar Soft Part Sarcoma; DSRCT, Desmoplastic Small Round Cell Tumor; ERMS, Embryonal Rhabdomyosarcoma; ARMS, Alveolar Rhabdomyosarcoma; Non-RMS_STS or simply STS, Soft-Tissue Sarcoma that is not classified as Rhabdomyosarcoma; EWS, Ewing’s Sarcoma; GBM, Glioblastoma, OS, Osteosarcoma; NBL, Neuroblastoma; NBL_MA, MYCN-MYCN-amplified; NBL, Neuroblastoma non-MYCN-amplified; HBL, Hepatoblastoma. This list was individually annotated to include only those transcripts whose proteins could be targeted from their extracellular aspect.

FIGURE 1 | T-Statistic overview of the top 25 tumor-specific transcripts. For each disease category (listed on the x-axis), the range of T-statistic values for the 25 membrane proteins most different from normal tissue, along with their average and quartiles, is represented as a box and whisker plot.
Antigens in the “Cell Adhesion, Cell Junction” group include well-known adhesion family receptor members, like cadherins, cell-to-cell junction associated proteins, and other scavenger or immunoglobulin-related proteins. One would expect that the proteins in this family also would readily have antibodies created to them, and are likely to receive CD designations in the future. This is also likely to be true for the “Growth Factor Receptor/Development Receptor” grouping. These hits also provide ready targets such as the FGFR2, FGFR4, known oncogenes like MET, and the activin and ephrin receptors, that are likely to be linked to the oncogenic activation of the cancer tissues in which they are expressed. The final groups of cell surface proteins that are likely to be targetable are the “Migration/Metastasis/Motility” and the “Enzymatic Function” group. In general these proteins exhibit their activity outside of the cell and mediate interaction of the cell with its surrounding matrix.

Comprising about half the proteins on the list are membrane-expressed proteins to which it cannot be assumed an antibody or CAR exists or that could be readily generated. These groups are the Neurotransmitter Receptors, Ion Channels, Solute Carrier Family, Tetrastatin, and G-protein groups. Although exceptions certainly exist, these membrane proteins interact with small molecules or ions and transport them across the cell membrane, or they coordinate other proteins within the membrane. In general they do not evidence a large extracellular component.

Another way to ascribe relative value to the “hits” we have identified is to determine how broadly they are expressed across the different pediatric cancer types. Figure 2 demonstrates that 12 proteins are expressed in at least three distinct disease categories, and that another 12 transcripts are expressed in more than three disease types. From this view, the highest value targets are MCAM and GPC2, which are expressed in the Top 25 for eight different cancers. Similarly, small molecule transporters like SLC19A1 and neurotransmitter receptors like purogenic G-protein coupled (P2RY11) are prevalent across histologies. Whether the limited size of their extracellular domains will affect the ability to target these antigens with antibody derivatives or CARs is unknown, but their prevalence across disease types makes this an interesting question.

TARGET-SPECIFIC OBSERVATIONS

The ability of our algorithm to identify high-value targets is demonstrated by our results for Pre-B ALL, where a number of cell surface molecules currently being targeted in the clinic were identified as hits, Table 2. One of the most important immunotherapeutic trials to date features CAR-modified T-cells specific for CD19, which is the top hit for B_ALL (Kochenderfer et al., 2010; Porter et al., 2011). Another Top 25 hit, CD22, is the target of an antibody-toxin conjugate experimental protocol that continues to show promise for children with ALL (Mussai et al., 2010). Another target, CD79 is also the subject of interest in therapy for B cell malignancy, as antibody-drug conjugates are being developed and tested (Polson et al., 2007). While our bioinformatic approach is validated by these results with ALL, the value of our approach is in the identification of antigens of interest for pediatric solid tumors for which substantial numbers of candidate antigens have not been previously identified.

The two most broadly expressed targets we identified for pediatric solid tumors are melanoma cell adhesion molecule (MCAM, CD146, MUC18), and glypican-2 (GPC2). MCAM and GPC2 are expressed in eight of the 12 tumor types analyzed, Figure 2. The other most commonly expressed adhesion molecule, metadherin (MTDH), is expressed in four of 12 tumor types. MCAM is involved in the pathogenesis of melanoma, breast carcinoma, and other cancers (Wu et al., 2011; Zeng et al., 2012). Both antibody-based and vaccine approaches targeting MCAM/MUC18 have been proposed (Melnikova and Bar-Eli, 2006; Leslie et al., 2007). GPC2 (also known as cerebroglycan) is normally expressed in the developing brain (Stipp et al., 1994). Molecules in the same family, Glypican-3 and Glypican-5, have been described in melanoma, neuroblastoma, and rhabdomyosarcoma (Saikali and Sinnett, 2000; Nakatsuru et al., 2004a,b; Williamson et al., 2007). Our report here of the specific expression of Glypican-2 on pediatric tumors should now focus attention on this glypican as well. Metadherin (MTDH) is expressed on hepatocellular carcinoma, may play a role in epithelial-to-mesenchymal transition (Zhu et al., 2011), and plays a role in the metastatic spread of breast cancer to the lung (Brown and Ruoslahti, 2004). These three adhesion receptors are therefore top candidates to explore further as targets in pediatric tumors given their overexpression and the ability to create antibodies against cell surface adhesion receptors.

The largest family of cell surface proteins is the G-proteins (GPCR, approximately 800 members), followed by the solute carrier family (SLC, approximately 380 members; Almen et al., 2009; Höglund et al., 2011). One of our top hits, SLC19A1 (expressed in ALL, HBL, MYCNA-NBL, GBM, ERMS, and ARMS), is a folate transporter. Unlike the GPI-linked α folate receptor (FOLR1), which is currently the target of antibody-based trials, SLC19A1 (FOL) is a multi-pass membrane protein that looks very much like an ion channel (Konner et al., 2010). Each of the SLC proteins are regulated in expression, responsive to cellular stress or nutritional requirement, and could serve as suitable immune targets, but little is known about targeting them. The better known GPCR, ion channels, and neurotransmitter receptors we have described have in some cases had antibodies produced against them. In general, producing antibodies, and therefore scFv and CARs, against multi-membrane pass proteins with limited extracellular sequence is more difficult than for proteins with large extracellular domains.

The solid pediatric malignancies we analyzed also preferentially overexpress a number of receptors associated with the activin and ephrin receptor systems. Hits in the activin family include ACVR2A (ERMS, ARMS), ACVR2B (HBL); and in the ephrin family, EPHB2 (DRCT, HBL), EPHB3 (DRCT), EPHB4 (ERMS, DRCT), and EFNB1 (EWS). Activins are growth factors in the activin family that bind dual chain receptors composed of ligand-binding and signaling subunits. The ACVR2 chains have the ability to signal as constitutive kinases and are thought to regulate muscle growth through binding of myostatin (Lee et al., 2005). The ACVR2A/2B expression patterns and their biological activity make them very high-value hits for pediatric oncology. Ephrins function in neuronal development and are divided in to A and B types, as are the receptors that bind to them. The ligand, ephrin-B1, is a transmembrane protein and the receptors we list as Top 25 hits, all in the receptor tyrosine kinase family, are also of the B type.
Table 3 | Pediatric tumor antigens arranged by functional category.

Affy ID	Gene symbol	T value	P value	Gene name
206398_s_at	CD19	19.85	1.56E−15	CD19 molecule
205049_s_at	CD79A	17.90	1.33E−14	CD79a, immunoglobulin-associated alpha
205885_s_at	CD49D	16.64	6.01E−14	Integrin, alpha 4 (VLA-4)
205297_s_at	CD79B	16.18	1.06E−13	CD79b, immunoglobulin-associated beta
1569864_x_at	CD43	15.80	1.71E−13	Sialophorin (leukosialin)
222935_x_at	SLC39A8	14.78	6.59E−13	Solute carrier family 39 (zinc transporter)
209776_s_at	SLC19A1	13.84	2.47E−12	Solute carrier family 19 (folate transporter)
204960_at	CD45-AP	13.59	3.50E−12	PTPRCAP, CD45-associated protein
229686_at	P2RY8	13.37	3.61E−12	Purinergic R P2Y, G-protein coupled, 8 (fused w/CRLF2 in pre-B ALL)
214548_s_a	P2RY11	13.26	5.73E−12	Purinergic R P2Y, G-protein coupled, 11
236186_x_at	IL17RE	13.22	6.03E−12	Interleukin 17 receptor E
21076_at	CD281	12.70	1.32E−11	Toll-like receptor 1
206437_at	SIPR4	12.64	1.46E−11	Sphingosine-1-phosphate R 4, EDG6
215925_s_at	CD72	12.58	1.60E−11	CD72 molecule
212250_at	MTDH	12.47	1.89E−11	Metadherin
211014_x_at	CD146/MCAM	12.38	2.18E−11	Melanoma cell adhesion molecule (MUC18)
220132_s_at	CLEC2D	12.03	3.77E−11	C-type lectin domain family 2, member D
217513_at	MLR1	11.66	6.94E−11	Mast cell immunoglobulin-like receptor 1
208590_x_at	GJA3	11.38	1.09E−10	Gap junction protein, alpha 3, 46kDa
217422_s_at	CD22	11.33	1.18E−10	CD22 molecule
208574_at	C18or1	11.29	1.26E−11	Chromosome 18 open reading frame 1
203578_s_at	SLC7A6	11.09	1.78E−10	SLC7 (caticnic a. a. transporter), member 6
239422_at	GPC2	11.09	1.79E−10	Glypican 2 (cerebroglycan)
208299_at	CACNA1I	11.07	1.85E−10	Ca channel, voltage-dep., alpha 11 subunit
203416_at	CD53	11.05	1.91E−10	CD53 molecule

ASPS

Affy ID	Gene symbol	T value	P value	Gene name
209963_s_at	EPOR	25.54	1.90E−20	Erythropoietin receptor
235197_s_at	OSTM1	24.96	3.45E−20	Osteopetrosis assoc. transmembr. protein 1
227393_at	ANO9	22.55	4.75E−19	Anocytin 9 (TMEM16J)
244444_at	PKD1L2	18.60	6.34E−17	Polycystic kidney disease 1-like 2
202827_s_at	MMP14	18.42	8.12E−17	Matrix metallopeptidase 14
208590_x_at	GJA3	11.38	1.09E−10	Gap junction protein, alpha 3, 46kDa
217422_s_at	CD22	11.33	1.18E−10	CD22 molecule
208574_at	C18or1	11.29	1.26E−11	Chromosome 18 open reading frame 1
203578_s_at	SLC7A6	11.09	1.78E−10	SLC7 (caticnic a. a. transporter), member 6
239422_at	GPC2	11.09	1.79E−10	Glypican 2 (cerebroglycan)
209998_at	NTSR2	11.25	8.68E−15	Neurotensin receptor 2
219607_s_at	MS4A4A/CD20L1	15.07	1.16E−14	Membrane-spanning 4-domains, A4
230550_at	MS4A6A/CD20L3	14.78	1.83E−14	Membrane-spanning 4-domains, A6
38069_at	CLCN7	14.49	2.96E−14	Chloride channel 7
214839_at	SL2C8A6	14.21	4.77E−14	Solute carrier family 38, member 6
206582_s_at	GPRTB6	14.14	5.32E−14	G protein-coupled receptor 56
201393_s_at	IGF2R/CD222	13.93	7.86E−14	Insulin-like growth factor 2 receptor
206545_at	CD28	13.49	1.63E−13	CD28 molecule
208552_s_at	GRIK4	13.48	1.65E−13	Glutamate receptor, ionotropic, kainate 4
219764_at	FZD10/CD50	13.34	2.12E−13	FZD10/frizzled homolog 10
223020_at	GPRT3	13.03	3.69E−13	G protein-coupled receptor 34
210514_x_at	HLA-G	13.00	3.87E−13	HLA-G histocompatibility antigen, class I, G
214770_at	MSRY/CD204	12.86	5.05E−13	Macrophage scavenger receptor 1
206980_s_at	FLT3LG	12.79	5.70E−13	Fms-related tyrosine kinase 3 ligand
220314_at	CSF1R/CD115	12.76	6.06E−13	Colony stimulating factor 1 receptor
207568_s_at	MR1	12.58	8.32E−13	MHC, class I-related
213728_at	CD107a	12.50	9.76E−13	LAMP1
210692_at	SLC43A3	12.48	1.01E−12	Solute carrier family 43, member 3 (EEG)

(Continued)
DRCT	Affy ID	Gene symbol	T value	P value	Gene name
	212662_at	CD155	9.34	6.28E-09	Poliovirus receptor
	211879_x_at	PCDHGA3	9.13	9.24E-09	Protocadherin gamma subfamily A, 3
	206083_at	BA1	8.81	1.71E-08	Brain-specific angiogenesis inhibitor 1
	219692_at	KREMN2	7.80	1.24E-07	Kringle containing transmembrane protein 2
	214546_s_at	P2RY11	7.71	1.49E-07	Purinergic R P2Y, G-protein coupled, 11
	215169_at	SLC38E2	7.66	1.63E-07	Solute carrier family 35, member E2
	227281_at	SLC29A4	7.62	1.78E-07	SLC29 (nucleoside transporters), member 4
	210651_s_at	EPHB2	7.51	2.22E-07	EPH receptor B2
	204600_at	EPHB3	7.43	2.64E-07	EPH receptor B3
	208215_x_at	DRD4	7.39	2.85E-07	Dopamine receptor D4
	207634_at	CD279/PD1	7.38	2.91E-07	Programmed cell death 1
	220798_x_at	LPPR5/PRG2	7.32	3.33E-07	Lipid phosphate phosphatase-related pr. 3
	239422_at	GPC2	7.18	4.49E-07	Glypican 2 (cerebroglycan)
	230668_at	NKA1N4	7.17	4.56E-07	Na++/K++ transporting ATPase interacting 4
	206906_at	ICAM5	6.97	6.92E-07	Intercellular adhesion molecule 5
	203149_at	CD112	6.82	9.71E-07	PVRL2, poliovirus receptor-related 2
	204736_s_at	CSPG4	6.77	1.07E-06	Chondroitin sulfate proteoglycan 4
	222293_at	CADM4/GSF4C	6.69	1.29E-06	IGSF4C, Ig superfamily member 4C
	206460_at	AJAP1	6.64	1.43E-06	Adherens junction assoc. prot. 1 (SHREW-1)
	232415_at	PCDHB13	6.60	1.54E-06	Protocadherin beta 13
	206341_at	CD25	6.57	1.66E-06	Interleukin 2 receptor, alpha
	236196_x_at	IL17RE	6.45	2.16E-06	Interleukin 17 receptor E
	208590_at	GJA3	6.40	2.42E-06	Gap junction protein, alpha 3, 46kDa
	214605_x_at	GJA3	6.31	2.96E-06	G protein-coupled receptor 1
	216880_s_at	EPHB4	6.29	3.10E-06	EPH receptor B4
	1554062_at	XG	11.76	3.69E-13	Xg blood group
	212250_at	MTDH	10.10	1.76E-11	Metadherin
	218989_x_at	SLC30A5	10.08	1.86E-11	SLC30 (zinc transporter), member 5
	223675_s_at	VEZT	10.05	2.01E-11	Vezatin
	205642_at	STEAP1	9.96	2.49E-11	6 transmembr. epithelial ag of the prostate 1
	219427_at	FAT4	9.94	2.62E-11	FAT tumor suppressor homolog 4
	220798_x_at	LPPR5/PRG2	9.78	3.90E-11	Lipid phosphate phosphatase-related prot. 3
	239422_at	GPC2	9.51	7.60E-11	Glypican 2 (cerebroglycan)
	235241_at	SLC30A5	9.51	7.64E-11	Solute carrier family 38, member 9
	227393_at	LRRN6A/LINGO1	9.41	9.91E-11	Leucine rich repeat neuronal 6A
	211042_x_at	CD146/MCAM	9.27	1.38E-10	Melanoma cell adhesion molecule (MUC18)
	224392_s_at	OPN3	9.15	1.89E-10	Opsin 3 (encephalopsin, panopsin)
	208299_at	CACNA1I	9.15	1.90E-10	Voltage-dependent, alpha 11 subunit
	219360_at	TRPM4	9.11	2.11E-10	Transient R potential cation channel, M4
	208550_x_at	KCNQ2	8.71	5.88E-10	Voltage-gated channel, subfamily G2
	212909_at	LYPD1	8.50	1.03E-09	LY6/PLAUR domain containing 1
	205227_s_at	ILTRAP	8.50	1.04E-09	Interleukin 1 receptor accessory protein
	214739_at	GLG1	8.44	1.22E-09	Golgi apparatus protein 1 (SEMA6C)
	202747_at	ITM2A	8.41	1.30E-09	Integral membrane protein 2A
	209768_s_at	CD42c	8.41	1.32E-09	GP1BB, glycoprotein lb (platelet), beta
	222062_at	IL27RA	8.34	1.56E-09	Interleukin 27 receptor, alpha
	225717_at	KIAA1715	8.29	1.78E-09	KIAA1715 (Lrp, Lunapark)
	202717_at	EFNB1	8.28	1.86E-09	Ephrin-B1
	214830_at	SLC38A6	8.25	2.01E-09	Solute carrier family 38, member 6
	236186_x_at	IL17RE	7.31	2.58E-08	Interleukin 17 receptor E

(Continued)
Table 3 | Continued

Affy ID	Gene symbol	T value	P value	Gene name	
GBM					
1	208590_x_at	GJA3	11.85	1.69E−10	Gap junction protein, alpha 3, 46kDa
2	222935_x_at	SLC39A8	11.16	4.88E−10	SLC39 (zinc transporter), member 8
3	217573_at	GRIN2C	11.02	6.04E−10	Glutamate R, ionotropic, NMDA 2C
4	212250_at	MTDH	10.77	8.95E−10	Metadherin
5	236186_x_at	IL17RE	10.71	9.80E−10	Interleukin 17 receptor E
6	211226_at	GALR2	10.19	2.31E−09	Galanin receptor 2
7	205806_at	ROM1	9.72	5.12E−09	Retinal outer segment membrane protein 1
8	205891_at	ADORA2B	9.71	5.16E−09	Adenosine A2b receptor
9	232432_s_at	GRIN2C	9.64	5.83E−09	SLC39 (zinc transporter), member 8
10	212250_at	MTDH	10.77	8.95E−10	Metadherin
11	222596_s_at	LGR4	9.47	7.87E−09	Leucine-rich repeat-containing GPCR4
12	208550_x_at	KNC2	9.09	1.55E−08	K voltage-gated channel, subfamily G2
13	1553995_a_at	CD73	9.08	1.56E−08	5′-Nucleotidase, ecto
14	207048_at	SLC6A11	8.99	1.84E−08	SLC6 (GABA transporter), member 11
15	205120_s_at	SGCB	8.79	2.66E−08	Sarcoglycan, beta
16	235197_s_at	CD146/MCAM	8.65	3.40E−08	Melanoma cell adhesion molecule (MUC18)
17	207634_at	CD279/PD1	9.61	6.20E−09	Programmed cell death
18	223452_s_at	CKLF	8.68	3.25E−08	Chemokine-like factor
19	211042_x_at	CD146/MCAM	8.65	3.40E−08	Melanoma cell adhesion molecule (MUC18)
20	209776_s_at	SLC19A1	8.26	7.13E−06	SLC19 (folate transporter), member 1
21	216464_x_at	PTGDR2	8.15	8.72E−08	Prostaglandin D2 receptor 2/CD294
HBL					
1	206242_at	TM4SF5	15.37	1.54E−12	Transmembrane 4 L six family member 5
2	212662_at	CD155	14.66	3.68E−12	Poliovirus receptor
3	235955_at	MARVELD2	12.90	3.75E−11	MARVEL domain containing 2
4	211576_s_at	SLC19A1	12.26	9.25E−11	SLC19 (folate transporter), member 1
5	214546_s_at	P2RY11	8.55	4.11E−08	Purinergic R P2Y, G-protein coupled, 11
6	206682_at	CD301	9.91	3.65E−09	C-type lectin domain family 10, member A
7	207334_at	CD279/PD1	9.61	6.20E−09	Programmed cell death
8	237273_at	KCNU1	9.55	6.82E−09	Potassium channel, subfamily U, member 1
9	206743_s_at	ASGR1	9.53	7.04E−09	Asialoglycoprotein receptor 1
10	223278_at	GJB2	9.27	1.11E−08	Gap junction protein, beta 2
11	220028_at	ACVR2B	9.23	1.20E−08	Activin A receptor, type IIIB
12	209839_s_at	EPHB2	9.10	1.50E−08	Eph receptor B2
13	219796_s_at	CDH5	9.06	1.82E−08	Cadherin-related family member 5
14	206130_s_at	ASGR2	8.83	2.45E−08	Asialoglycoprotein receptor 2
15	224392_s_at	OPN3	8.74	2.92E−08	Opsin 3 (encephalopsin, panopsin)
16	218366_s_at	CD35	8.53	4.33E−08	SLAM family member 8 (CD353)
17	227281_at	SLC29A4	8.44	5.04E−08	SLC29 (nucleoside transporters), member 4
18	1553995_a_at	CD73	8.41	5.35E−08	5′-Nucleotidase, ecto
19	211249_at	GPR68	8.40	5.42E−08	G protein-coupled receptor 68
20	220844_at	SLC13A5	8.33	6.18E−08	SLC13 (Na-dep. citrate transporter), 5
21	213728_s_at	CD107a	8.12	9.28E−08	LAMP1
22	211042_x_at	CD146/MCAM	7.99	1.19E−07	Melanoma cell adhesion molecule (MUC18)
23	207565_s_at	M1R	7.86	1.53E−07	MHC, class I-related
24	206361_at	PTGDR2	7.82	1.85E−07	Prostaglandin D2 receptor 2/CD294
25	219732_at	LPPR1/PRG3	7.56	2.79E−07	Lipid phosphate phosphatase-related prot. 1

(Continued)
Table 3 | Continued

Affy ID	Gene symbol	T value	P value	Gene name
239913_at	SLC10A4	12.60	4.66E−13	SLC10 (Na/bile acid cotransporter family), 4
210221_at	CHRNA3	9.39	3.75E−10	Cholinergic receptor, nicotinic, alpha 3
227281_at	SLC29A4	9.02	8.84E−10	SLC29 (nucleoside transporters), member 4
205122_at	TMEFF1	8.21	6.22E−09	TMEFF1
207516_at	CHRB4	8.14	7.39E−09	Cholinergic receptor, nicotinic, beta 4
203414_at	MMD	7.75	1.93E−06	Monocyte to macrophage different.-assoc.
212290_at	SLC7A1	7.32	5.77E−08	SLC7 (cationic amino acid transporter), 1
218811_at	ORAI2	7.14	9.11E−08	ORAI Ca-release-activated Ca-modulator 2
221585_at	CACNG4	7.07	1.09E−07	Ca-channel, voltage-dep., gamma subunit 4
239422_at	GPC2	7.01	1.26E−07	Glycican 2 (cerebroglycan)
209198_s_at	SYT11	6.95	1.46E−07	Synaptotagmin XI
206343_s_at	NRG1	6.92	1.62E−07	Neuregulin 1
226029_at	VANGL2	6.65	3.26E−07	Vang-like 2 (van gogh, Drosophila)
219491_at	LRFN4	6.63	3.42E−07	Leucine rich repeat and fn type III domain,4
210353_s_at	SLC8A2	6.57	3.97E−07	SLC6 (noradrenalin transporter), member 2
219523_s_at	ODZ3	6.49	4.96E−07	Odz, odd O2/ten-m homolog 3 (Drosophila)
1553956_at	TMEM237	6.42	5.96E−07	ALS2CR4, atrophic lateral sclerosis 2CR4
1552914_a_at	CD276	6.39	6.46E−07	CD276 molecule
220798_x_at	LPPR3/PRG2	6.31	7.97E−07	Lipid phosphate phosphatase-related pr. 3
219152_at	PODXL2	6.18	1.14E−06	Podocalyxin-like 2
40020_at	CELSR3	6.12	1.34E−06	Cadherin, EGF LAG seven-pass-G-type R 3
206189_at	UNC5C	6.12	1.34E−06	Unc-5 homolog C (netrin receptor)
223854_g_at	PCDH10	6.04	1.64E−06	Protocadherin beta 10
208118_s_at	SLC7A5P2	5.98	1.95E−06	SLC 7, member 5 pseudogene 2/IMAA
225832_s_at	DAGLBETA	5.86	2.65E−06	Diacylglycerol lipase beta

NBL-MYCNA

Affy ID	Gene symbol	T value	P value	Gene name
239913_at	SLC10A4	14.03	2.18E−16	SLC10 (Na/bile acid cotransporter family), 4
205122_at	TMEFF1	13.74	4.15E−16	TMEFF1
210221_at	PODXL2	13.46	7.85E−16	Podocalyxin-like 2
219491_at	LRFN4	12.66	5.07E−15	Glycican 2 (cerebroglycan)
220798_x_at	LPPR3/PRG2	12.58	6.16E−15	Lipid phosphate phosphatase-related pr. 3
211042_x_at	CD146/MCAM	12.11	1.93E−14	Melanoma cell adhesion molecule (MUC18)
209776_s_at	SLC19A1	11.23	1.77E−13	SLC19 (folate transporter), member 1
210508_s_at	KCNO2	11.11	2.43E−13	K voltage-gated channel, KQT-like, 2
203414_at	MMD	10.91	4.09E−13	Monocyte to macrophage different.-assoc.
219537_x_at	DLL3	10.43	1.45E−12	Delta-like 3
219438_at	NKA1N1	10.41	1.53E−12	Na+ +/K+ + transporting ATPase interacting 1
227281_at	SLC29A4	10.40	1.55E−12	SLC29 (nucleoside transporters), member 4
227690_at	GABRB3	10.35	1.80E−12	GABA, A receptor, beta 3
226029_at	VANGL2	10.09	3.62E−12	Vang-like 2 (van gogh, Drosophila)
242782_x_at	TMEM198	9.89	6.20E−12	Transmembrane protein 198
229376_at	IGF5	9.39	2.46E−11	Immunoglobulin superfamily, member 9
1553956_at	TMEM237	9.25	3.69E−11	ALS2CR4, atrophic lateral sclerosis 2CR4
202594_at	LEPROT1	9.13	5.15E−11	Leptin receptor overlapping transcript-like 1
221290_at	SLC7A1	9.07	6.08E−11	SLC7 (cationic a.a. transporter), 1/LAT1-3TM
231397_at	LPRRS/PRG5	9.03	6.90E−11	PAP2D (phosphatidic acid phosphatase, 2)
222263_at	SLC6A15	8.98	7.98E−11	SLC6, member 15
1552914_a_at	CD276	8.94	8.90E−11	CD276 molecule (B7-H3)
219491_at	LRFN4	8.91	9.76E−11	LRFN4
207162_s_at	CACNA1B	8.88	1.12E−10	Ca channel, voltage-dep., L type, alpha 1B
Table 3 | Continued

Affy ID	Gene symbol	T value	P value	Gene name
1 202667_s_at	SLC39A7	12.57	1.75E−13	SLC39 (zinc transporter), member 7
2 240955_at	PANX3	11.06	4.14E−12	Pannexin 3
3 210087_s_at	MPZL1	10.96	5.22E−12	Myelin protein zero-like 1
4 212250_at	MTDH	10.92	5.69E−12	Metadherin
5 238542_at	ULBP2	10.11	3.58E−11	UL16 binding protein 2 (NKG2D)
6 218989_x_at	SLC30A5	9.93	5.34E−11	SLC30 (zinc transporter), member 5
7 206328_at	CDH15	9.78	7.67E−11	Cadherin 15, M-cadherin (myotubule)
8 209280_at	CD280	9.45	1.70E−10	MRC2, mannose receptor, C type 2
9 219330_at	VANG1	9.18	3.21E−10	Vang-like 1 (van gogh, Drosophila)
10 202282_s_at	MPZL1	9.07	4.21E−10	Matrix metallopeptidase 14
11 206328_at	CDH15	9.78	7.67E−11	Cadherin 15, M-cadherin (myotubule)
12 209280_at	CD280	9.45	1.70E−10	MRC2, mannose receptor, C type 2
13 211042_x_at	CD146/MCAM	8.57	1.47E−09	Melanoma cell adhesion molecule (MUC18)
14 225867_at	VASN	8.44	2.04E−09	Vasa
15 204928_s_at	SLC10A3	8.20	3.71E−12	SLC10 (Na/bile acid cotransporter fam.), 3
16 219692_at	KREMEN2	14.78	7.27E−14	Activin A receptor, type IIA
17 211237_s_at	FGFR4	14.00	2.46E−13	K intermediate/small conductance, CNN3
18 205275_s_at	CD7A6	8.00	6.31E−09	SPC7 (cationic amino acid transporter), 6
19 212662_at	CD155	7.98	6.53E−09	Poliovirus receptor
20 208299_at	CACNA1A	7.88	8.61E−09	Ca channel, voltage-dep., alpha 11 subunit
21 209030_s_at	CADM1/IGSF4A	7.88	8.66E−09	Immunoglobulin superfamily, member 4
22 213909_at	LRRC15	7.72	1.29E−08	Leucine rich repeat containing 15
23 220455_at	SLC16A8	7.48	2.43E−08	SLC16, member 8
24 211837_s_at	PTCRA	7.43	2.77E−08	Pre-T-cell antigen receptor alpha
25 239422_at	GPC2	7.40	3.00E−08	Glypican 2 (cerebroglycan)

Affy ID	Gene symbol	T value	P value	Gene name
1 211042_x_at	CD146/MCAM	27.88	2.82E−20	Melanoma cell adhesion molecule (MUC18)
2 206633_at	CTRNA1	24.21	7.16E−19	Cholinergic R, nicotinic, alpha 1 (muscle)
3 211237_s_at	FGFR4	19.67	1.00E−16	Fibroblast growth factor receptor 4
4 236517_at	MEGF10	19.19	1.78E−16	Multiple EGF-like-domains 10
5 205327_s_at	ACVR2A	14.78	7.27E−14	Activin A receptor, type II A
6 205903_s_at	KCNN3	14.00	2.46E−13	K intermediate/small conductance, CNN3
7 206328_at	CDH15	13.85	3.14E−13	Cadherin 15, M-cadherin (myotubule)
8 221418_x_at	SEMA4B	12.15	4.56E−12	Semaphorin 6B
9 239422_at	GPC2	11.89	8.69E−12	Glypican 2 (cerebroglycan)
10 205858_at	CD271/NGFR	11.43	2.03E−11	NGFR, nerve growth factor receptor
11 208299_at	CACNA11	11.30	2.60E−11	Ca channel, voltage-dep., alpha 11 subunit
12 203510_at	MET	11.07	3.97E−11	Met proto-oncogene
13 221409_x_at	PCDHB12	10.99	4.65E−11	Protocadherin beta 12
14 218692_at	KREMEN2	10.85	6.01E−11	Kringle containing transmembrane protein 2
15 221355_at	ChRNA6	10.80	6.64E−11	Cholinergic receptor, nicotinic, gamma
16 212157_at	CD862/SDC2	10.59	1.00E−10	Syndecan 2
17 211693_at	IGH1A	10.43	1.36E−10	Immunoglobulin heavy constant alpha 1
18 212290_at	SLC7A1	10.41	1.43E−10	SLC7 (cationic a.a. transp., y++ system), 1
19 211837_s_at	PTCRA	10.32	1.70E−10	Pre-T-cell antigen receptor alpha
20 207555_s_at	TXB2R	10.29	1.80E−10	Thromboxane A2 receptor
21 208668_at	NKA1N4	10.28	1.83E−10	Na++/K++ transporting ATPase interacting 4
22 222595_s_at	LG4	10.01	3.11E−10	Leucine-rich repeat-containing GPCR4
23 206128_at	ADRA2C	9.99	3.27E−10	Adrenergic, alpha-2C-, receptor
24 209776_s_at	SLC19A1	9.98	3.31E−10	SLC19 (folate transporter), member 1
25 221450_x_at	PCDHB13	9.98	3.45E−10	Protocadherin beta 13
Table 3 | Continued

Affy ID	Gene symbol	T value	P value	Gene name	
ERMS					
1	211042_x_at	CD146/MCAM	20.87	5.46E–16	Melanoma cell adhesion molecule (MUC18)
2	206633_at	CHRNA1	12.63	1.47E–11	Cholinergic R, nicotinic, alpha 1 (muscle)
3	239422_at	GPC2	11.62	7.31E–11	Glypican 2 (cerebroglycan)
4	208299_at	CACNA1I	11.07	1.83E–10	Ca channel, voltage-dependent, alpha 1
5	206328_at	CDH15	11.00	2.06E–10	Cadherin 15, M-cadherin (myotubule)
6	224182_x_at	SEMA6B	11.00	2.07E–10	Semaphorin 6B
7	236701_at	GSG1L	10.62	4.00E–10	GSG1-like (has a PMP22 claudin domain)
8	236186_x_at	EPH84	9.52	2.95E–10	Eph (ephrin) receptor B4
9	222596_s_at	ACVR2A	9.52	2.95E–10	Activin A receptor, type 1IA
10	214555_at	CD85k/LILRB4	9.08	6.75E–09	MRC2, mannose receptor, C type 2
11	207048_at	SLCA11	8.71	1.40E–08	SLC6 (GABA transporter), member 11
12	236517_at	MEGF10	8.65	1.59E–08	Multiple EGF-like-domains 10
13	205327_s_at	ACVR2A	8.59	1.76E–08	5-Hydroxytryptamine (serotonin) receptor 7
14	216880_s_at	EPH84	8.19	3.96E–08	Purinergic R PY, G-protein coupled, 11
15	237503_at	SLC5A8	8.45	3.22E–09	Solute carrier family 5, member 8
16	209769_s_at	CD42c	9.04	3.71E–09	GP1BB, glycoprotein lb, beta polypeptide
17	211693_at	IGHA1	9.10	6.57E–09	Immunoglobulin heavy constant alpha 1
18	211837_s_at	PTCRA	9.09	6.67E–09	Pre-T-cell antigen receptor alpha
19	209260_at	CD280	9.08	6.75E–09	MRC2, mannose receptor, C type 2
20	209776_s_at	SLCA11	8.71	1.40E–08	SLC6 (GABA transporter), member 11
21	222395_x_at	SLCA9B	8.65	1.59E–08	SLC39 (zinc transporter), member 8
22	207927_at	HTR7	8.59	1.76E–08	5-Hydroxytryptamine (serotonin) receptor 7
23	214546_s_at	P2RY11	8.19	3.96E–08	Purinergic R PY, G-protein coupled, 11
24	207555_s_at	TBXA2R	8.12	4.56E–08	Thromboxane A2 receptor
25	234724_x_at	PCDHB18	7.99	6.03E–08	Protocadherin beta 18 pseudogene
Non_RMS_STS					
1	244857_at	HBEGF	15.03	5.30E–12	Heparin-binding EGF-like growth factor
2	207555_s_at	TBXA2R	14.55	9.40E–12	Thromboxane A2 receptor
3	208338_at	P2RX3	14.40	1.13E–11	Purinergic R P2X, ligand-gated ion channel, 3
4	210152_at	CD88k/LILRB4	13.51	3.41E–11	Leukocyte Ig-like receptor, subfamily B4
5	211693_at	IGHA1	12.80	8.60E–11	Immunoglobulin heavy constant alpha 1
6	206616_s_a	ADAM22	12.76	9.07E–11	ADAM metallopeptidase domain 22
7	211909_x_at	PTGER3	12.25	1.84E–10	Prostaglandin E receptor 3 (subtype EP3)
8	214546_s_at	P2RY11	12.01	2.57E–10	Purinergic R PYZ, G-protein coupled, 11
9	233171_at	GRIN3A	11.77	3.57E–10	Glutamate receptor, ionotropic, NMDA 3A
10	219516_at	TRPV4	11.57	4.76E–10	Transient R potential cation channel, V4
11	234756_at	CACNG8	11.49	5.41E–10	Ca channel, voltage-dep., gamma subunit 8
12	1554728_at	SLCA9A	11.35	6.55E–10	SLC9 (Na/H exchanger), member 1
13	206729_at	CD30	11.13	9.07E–10	(TNFRSF8, K-1)
14	216734_s_at	CD185	11.03	1.07E–09	CXCR5
15	207927_at	HTR7	11.02	1.07E–09	5-Hydroxytryptamine (serotonin) receptor 7
16	208401_s_at	GLP1R	10.99	1.13E–09	Glucagon-like peptide 1 receptor
17	233968_at	CST1	10.96	1.17E–09	Cystatin 1
18	232846_s_at	CDH23	10.88	1.34E–09	Cadherin-like 23
19	233913_at	WDFC1OA	10.71	1.73E–09	WAP four-disulfide core domain 10A
20	207048_at	SLCA11	10.65	1.89E–09	SLC6 (GABA transporter), member 11
21	1567238_at	OR2L2	10.37	2.92E–09	Olfactory R, family 2, subfamily L, member 2
22	221061_at	PKD2L1	10.33	3.10E–09	Polycystic kidney disease 2-like 1
23	244617_at	GPR26	10.16	3.89E–09	G protein-coupled receptor 26
24	216873_s_at	ATP8B2	10.02	5.14E–09	ATPase, Class I, type 8B, member 2
25	211399_at	FGFR2	9.83	6.88E–09	Fibroblast growth factor receptor 2

Antigens identified in Table 2 were grouped according to functional activity (CD antigens/markers, cell adhesion or cell junction, enzymatic function, growth factor or developmental factor receptor, neurotransmitter receptor, ion channel protein or ion channel regulator, SLC, solute carrier family member, G-protein or G-protein associated, migration or metastasis or cell motility function, tetraspansins, or uncharacterized) in order to give an overview of target types.
Aberrant expression of these family members has been described in colon carcinoma (Herath et al., 2012). EPHB4 plays a role in vascular development and may participate in tumor metastatic spread (Heroult et al., 2010). Antibodies to EphB4 have been described to inhibit tumor growth (Krasnoperov et al., 2010). Both activin and ephrin receptors are promising for further investigation as cell surface targets in pediatric solid tumors.

Fibroblast growth factor receptors (FGFRs) are of great interest in pediatric oncology, and our bioinformatic hit for FGFR4 in ARMS confirms our previous genomic studies. There are 4 FGFRs that mediate cellular activation by the more than 20 known fibroblast growth factors (Olsen et al., 2003). Alterations or mutation of the FGFRs have been described in a number of cancer types, and they have been proposed as targets for both kinase inhibitor chemotherapy as well as immunotherapy (Wescie et al., 2011). Our group had previously identified FGFR4 as a target in rhabdomyosarcoma using gene expression array analysis and we have demonstrated FGFR4 activity in disease (Taylor et al., 2009). The closely related FGFR2 was also identified as a hit in STS and GBM. FGFR2 has been associated with a number of cancers making both of these FGFRs exciting findings for pediatric oncology (Bai et al., 2010).

DISEASE-SPECIFIC OBSERVATIONS

The most intriguing hit for Non-Rhabdomyosarcoma STS is CD30 (TNFRSF8). CD30 is the current target of a number of immunotherapy trials, and our report suggests that these reagents should be evaluated for use in STS (Kasamon and Ambinder, 2008). In DSRCT we find expression of two very exciting hits, poliovirus receptor (PVR)/CD115 and PVR-related 2 (PVRL2)/CD112. Both these adhesion molecules have been described as NK-ligands and should serve as suitable immune targets (Pende et al., 2005). An equally exciting target on DSRCT is PDCD1 (PD1/CD279). The antigen is well-described as an anti-immune effector and efforts to block or target PD1 in cancer are actively underway (Flies et al., 2011).

The immune markers expressed EWS represent a unique group of targets. XG, is part of the Xg blood group antigen, the only other member of which is CD99, a well-known over-expressed protein in EWS, and expression of these antigens is closely linked to CD99 (Johnson, 2011). Although transcripts are known to be found in non-erythroid tissues not much else is known for this target (Fouchet et al., 2000). Meynet et al. (2010), have also recently described XG as a marker for EWS and demonstrate that its expression is associated with poor outcome. Three cytokine receptors are expressed on EWS: IL17RE, IL27RA, and IL1RAP. A recent mutational study demonstrated that IL27RA has transforming potential, although its expression on non-lymphoid malignancies has not previously been described (Lambert et al., 2011). IL1RAP, Interleukin-1 receptor accessory protein, can exist as a membrane or soluble form and is essential for IL-1 receptor activity. Expression of IL1RAP has been described in endometriosis and various leukemias, notably in leukemia stem cells, making IL1RAP a high-value target for EWS (Jaras et al., 2010; Guay et al., 2011).

Glioblastoma expresses the immune markers in CD73/NT5E (5' nucleotidase, ecto), and CKLF. CD73 is present on cancer exosomes and has been shown to blunt immune responses (Clayton et al., 2011). CD73 is also a hit for HBL. CKLF, chemokine-like factor 1, binds CCR4 and can be either secreted or membrane-bound and contains a MARVEL transmembrane domain (Chowdhury et al., 2008). MARVELD2 is a transmembrane protein associated with tight junction that serves as a hit for HBL. The wide distribution of these targets requires more developmental work before considering using them as immune targets. GALR2, galanin...
receptor 2, is a growth factor receptor that also is an interesting GBM target. GALR2 has been proposed as a therapeutic target in head and neck carcinoma and is an active area of study (Kanazawa et al., 2010). GALR2 targeting should be explored in GBM as well.

Osteosarcoma expresses the intriguing hit UL16 binding protein 2 (ULBP2), which is a ligand for the NK cell activation marker NKG2D. To date, ULBP2 has been thought of as a means to alert to immune system due to p53 activation on target cells, and not as a means of cancer immune escape (Textor et al., 2011). The matrix metalloproteinase MMP14 is known to participate in tumor metastasis and is the subject of intense research activity, making this a high-value target in OS and ASPS (Zarrabi et al., 2011). VASN, vasorin, is a transforming growth factor beta (TGF-β) trap, its biology is regulated by ADAM17, and it appears to play a role in epithelial to mesenchymal transition in other cancer types (Malapeira et al., 2011). Both of these two OS surface targets may play a role in disease progression.

In the analysis of MYCN-Amplified Neuroblastoma (NBL-MYCN) our algorithm identified one of the most interesting current targets, CD276 (B7-H3). CD276 is the target of a number of immune directed therapies in NBL (Castriconi et al., 2004). The other targets identified for NML-MYCN and for NB are all of great interest, but CD276 is likely to be a focus of future immune based strategies.

Hepatoblastoma overexpresses ASGR1 asialoglycoprotein receptor 1, and ASGR2. ASGR2 serves as a receptor for a series of glycoproteins including those on the surface of hepatitis virus (Yang et al., 2010). The only report of association with cancer is the reported increase in the rate of cell division of colorectal carcinoma cell lines when grown on ASGR1 coated surfaces, which makes both ASGRs intriguing hits (Fang et al., 2009). Another potential target for HBL is MR1, MHC class I-related, which is also expressed in ASPS. MR1 is an invariant class I MHC molecule known to interact with a subset of T lymphocytes with invariant or restricted TCRs (Gozalbo-Lopez et al., 2009). The expression of MR1 in cancer has not been reported, making this a novel finding. CD301 (CLEC10A, C-type lectin domain family 10, member A) has not been reported in cancer either, but like any adhesion receptor it has the potential to mediate metastasis. Another adhesion receptor hit is CD353, SLAMF8 [signal lymphocyte activation molecule (SLAM), family member 8]. SLAM proteins are in the CD2 family of lymphocyte activation proteins and may also contribute to the activation of cancer cells (Furukawa et al., 2010).

ALVEOLAR SOFT PART SARCOMA

ASPS is a very distinct entity as evidenced by the unique set of antigens we report as top 25 hits, many of which are not shared with other tumors. EPOR, the erythropoietin receptor, was the highest-ranking hit for ASPS. The ETV6-RUNX1 fusion in ALL activates transcription of EPOR and it is likely to contribute a growth signal to leukemia, making this a potential target of interest (Torrano et al., 2011). Two CD antigens that were strong hits for ASPS are also growth factor receptors. Colony-stimulating factor 1/CD115 (CSF1R) modulates a number of myeloid differentiation steps and inhibitors have been designed for a number of disease states (Hume and Macdonald, 2012). CD222/ insulin-like growth factor-2 (IGF2R) has long been recognized as a cancer-expressed protein (Martin-Kleiner and Gall Troselj, 2010). Each of these receptors should be explored as targets in ASPS. Also intriguing is the expression of HLA-G. HLA-G is a class I MHC paralog, normally expressed on placental cells, and its expression has been described on malignant cells, perhaps shielding them from immunosurveillance (Yan, 2011). CD204/macrophage scavenger receptor 1 (MSR1) is another immune molecule expressed on ASPS. Expression of CD204 on tumor stromal macrophages has been associated with aggressiveness in lung cancer (Ohtaki et al., 2010). Thus ASPS provides a number of CD or CD-like antigens that can be targeted by means of immunotherapy.

DISCUSSION

How a cell surface antigen expressed on a tumor becomes a locus of tumor-protective immune activation, and how this response spares healthy tissue has yet to be fully defined. An antigen may be “revealed” by inhibiting immune checkpoints, or newly recognized as an antigenic target by vaccination (such as with PMSA; May et al., 2011). The key for both approaches is that a response has been induced that now sufficiently differentiates between cancer and normal host tissue. What “sufficient differentiation” is, remains a term in need of clarification. For example, some self-antigens, such as CD20, can readily be targeted, while others, such as HER2, are highly dependent on how they are targeted. The mature B cells compartment is apparently dispensable, as use of anti-CD20 antibody in lymphoma therapy has demonstrated. Once the B cell compartment is no longer targeted by the therapy, the B cell population is then replenished. HER2 (Neu, CD340, ErbB-2) has been effectively targeted in thousands of women with breast cancer using anti-HER2 antibody. However, administration of a T-cell population expressing a HER2-specific CAR resulted in treatment related mortality. In this special instance a large number of anti-HER-2-CAR engineered T-cells presumably bound to the low levels of HER2 present in the lung, and a massive cytokine storm ensued leading to death (Morgan et al., 2010). This event clearly shows that “how” a tumor antigen is targeted by the immune system may be as important as the expression level of that antigen on various tissues. It also illustrates that we have yet to create a universal definition of whether or not it is safe to target a tumor antigen expressed at very low levels on normal tissue. Targeting B cell malignancies has worked so well because the mature B cell compartment that expresses CD20 and CD19 is expendable (Biagi et al., 2007). A database that would begin to define what an “expendable” normal tissue is would be ideal. However, we have yet to even clearly formulate this question with regard to a specific bioinformatic search algorithm. For pediatric cancers, the issue is even more concerning, as certain growth factor receptors may be present on normal tissue that are crucial to development, and would not be part of the “normal” gene expression signature, if it was defined by specimens from adult tissues. Before proceeding with targeting any of the antigens we have identified in this report, we must both confirm expression on tumor and more importantly, confirm as best as we can the lack of expression on “non-expendable” tissues. In this report we identified the major pediatric tumor-associated antigens that are expressed on the plasma membrane, as defined by standard
gene chip analysis, statistical analysis, and filtering of annotated attributes. The strength of gene expression profiling is its utility in differential analysis (comparisons of transcript expression in different samples or comparison of tumor versus normal tissue). One potential drawback is that gene chip technology may be skewed, in some instances, toward identification of 3’ transcripts, and thus tumor-specific splice variations or deletions may be missed. Nevertheless studies, including our own, have shown a significant correlation between mRNA and protein levels (Chen et al., 2010). The Affymetrix plus2 array used here attempts to capture multiple independent measurements for each transcript and therefore measures expression of the major transcript as well as other splice variants. However a better more precise but not yet perfect measurement of the expression levels of each transcript is afforded by next generation technologies, e.g., whole RNA sequencing (RNASeq). We are pursuing these measurements, but until complete RNASeq is available for the major pediatric tumor types, along with normal tissue, our approach remains current. Validation with antibody or ligand-based staining for receptors in tumor normal tissues will be needed to definitively credential each candidate transcript.

Ultimately, we plan to continue to refine our definition of which membrane proteins can be safely targeted by CAR or antibody-based therapies, as new analysis techniques emerge. We propose that given the breadth of the antigen list presented here, that a large-scale effort be made to systematically evaluate cell surface targets on pediatric tumors for their potential for immunotherapy. Specifically, antibodies or scFv binding fragments for these antigens need to be screened in a large-scale manner for reactivity to normal tissues. The small size of the overall market in pediatric oncology for these reagents makes it unlikely that industry will engage in this approach on its own. However, given the wealth of genomic and proteomic data being generated, academia can take advantage of these findings and translate them into reagents that can be tested in pre-clinical settings. The analysis framework we present here may also inspire a new look at common adult malignancies, and encourage the development of a new generation of broad-based approaches for identifying immunotherapy targets.

ACKNOWLEDGMENTS

This research was supported by the Intramural Research Program of the NIH, CCR, NCI.

REFERENCES

Almen, M. S., Nordstrom, K. J., Fredriksson, R., and Schioth, H. B. (2009). Mapping the human membrane proteome: a majority of the human membrane proteins can be classified according to function and evolutionary origin. BMC Biol. 7:50. doi:10.1186/1471-7007-5-50

Bai, A., Meetze, K., Vo, N. Y., Kollias, S., Marza, E. K., Winstan, W. M., et al. (2010). GP369, an FGFR2-IIIb-specific antibody, exhibits potent antitumor activity against human cancers driven by activated FGFR2 signaling. Cancer Res. 70, 7630–7639.

Biagi, E., Marin, V., Giordano Attianese, G. M., Dander, E., D’Amico, G., and Biondi, A. (2007). Chimeric T-cell receptors: new challenges for targeted immunotherapy in hematologic malignancies. Haematologica 92, 381–388.

Brown, D. M., and Ruoslahti, E. (2004). Metadherin, a cell surface protein in breast tumors that mediates lung metastasis. Cancer Cell 5, 365–374.

Castriconi, R., Dondero, A., Augugliaro, R., Cantoni, C., Carmemolla, B., Sementa, A. R., et al. (2004). Identification of 4g8-B7-H3 as a neuroblastoma-associated molecule that exerts a protective role from an NK cell-mediated lysis. Proc. Natl. Acad. Sci. U.S.A. 101, 12640–12645.

Chen, Q. R., Song, Y. K., Yu, L. R., Wei, J. S., Chung, I. Y., Hewitt, S. M., et al. (2010). Global genomic and proteomic analysis identifies biological pathways related to high-risk neuroblastoma. J. Proteome Res. 9, 373–382.

Chowdhury, M. H., Nagai, A., Terashima, M., Sheikh, A., Murakawa, Y., Kobayashi, S., et al. (2008). Chemokine-like factor expression in the idiopathic inflammatory myopathies. Acta Neurol. Scand. 118, 106–114.

Clayton, A., Al-Taei, S., Webber, J., Mason, M. D., and Tabi, Z. (2011). Cancer exosomes express CD39 and CD73, which suppress T cells through adenosine production. J. Immunol. 187, 676–683.

Fang, I., Izawa, R., Gomez-Santos, L., Ueno, S., Sawaguchi, T., Usami, K., et al. (2009). Potentiation of proliferation of some but not all human colon carcinoma cell lines by immobilized hepatic asialoglycoprotein receptor 1. Oncol. Res. 17, 437–445.

Flies, D. B., Sandler, B. J., Szmol, M., and Chen, L. (2011). Blockade of the B7-1/H1-1/P1-1 pathway for cancer immunotherapy. Yale J. Biol. Med. 84, 409–421.

Fouchet, C., Ganz, P., Huett, M., Feljous, M., Rouger, P., Banting, G., et al. (2000). A study of the coregulation and tissue specificity of XG and MIC2 gene expression in eukaryotic cells. Blood 95, 1819–1826.

Furukawa, H., Tohma, S., Kitazawa, H., Komori, H., Nose, M., and Ono, M. (2010). Role of SLAM-associated protein in the pathogenesis of autoimmune diseases and immunological disorders. Arch. Immunol. Ther. Exp. (Warsz.) 58, 37–44.

Gozalbo-Lopez, B., Gomez del Moral, M., Campos-Martin, Y., Setien, F., Martin, P., Bellas, C., et al. (2009). The MHC-related protein 1 (MR1) is expressed by a subpopulation of CD38+ IgA+ cells in the human intestinal mucosa. Histol. Histopathol. 24, 1439–1449.

Guay, S., Michaud, N., Bourcier, N., Leboeuf, M., Lennery, M., Mailieux, J. L., et al. (2011). Distinct expression of the soluble and the membrane-bound forms of interleukin-1 receptor accessory protein in the endometrium of women with endometriosis. Fertil. Steril. 95, 1284–1290.

Herath, N. L., Spannello, D. M., Doeeke, J. D., Smith, F. M., Poupnot, C., and Boyd, A. W. (2012). Complex expression patterns of Eph receptor tyrosine kinases and their ephrin ligands in colorectal carcinogenesis. Eur. J. Cancer 48, 753–762.

Heroult, M., Schaffner, P., Pfaff, D., Praht, C., Kirmse, R., Kutschera, S., et al. (2010). EphB4 promotes site-specific metastatic tumor cell dissemination by interacting with endothelial cell-expressed ephrinB2. Mol. Cancer Res. 8, 1297–1309.

Hoglund, P., Nordstrom, K. J., Schioth, H. B., and Fredriksson, R. (2011). The solute carrier families have a remarkably long evolutionary history with the majority of the human families present before divergence of Bilaterian species. Mol. Biol. Evol. 28, 1531–1541.

Hume, D. A., and Macdonald, K. P. (2012). Therapeutic applications of macrophage colony-stimulating factor (CSF-1) and antagonists of CSF-1 receptor (CSF-1R) signaling. Blood 119, 1810–1820.

Jaras, M., Johnels, P., Hansen, N., Agerstam, H., Tsapogas, P., Risler, M., et al. (2010). Isolation and killing of candidate chronic myeloid leukemia stem cells by antibody targeting of IL-1 receptor accessory protein. Proc. Natl. Acad. Sci. U.S.A. 107, 16280–16285.

Johnson, N. C. (2011). XG: the forgotten blood group system. Immunohematology 27, 68–71.

Kanazawa, T., Misawa, K., and Carey, T. E. (2010). Galanin receptor subtypes 1 and 2 as therapeutic targets in head and neck squamous cell carcinoma. Expert Opin. Ther. Targets 14, 289–302.

Kasamon, Y. L., and Ambinder, R. F. (2008). Immunotherapies for Hodgkin’s lymphoma. Crit. Rev. Oncol. Hematol. 66, 135–144.

Kochenderfer, J. N., Wilson, W. H., Janik, J. E., Dudley, M. E., Steletor-Stevenson, M., Feldman, S. A., et al. (2010). Eradication of B-lineage cells and regression of lymphoma in a patient treated with autologous T cells genetically engineered to recognize CD19. Blood 116, 4099–4102.

www.frontiersin.org
