Astrophysical S-factor of the direct $\alpha(d, \gamma)^6\text{Li}$ capture reaction in a three-body model

E. M. Tursunov,1 D. Baye,2 and S.A. Turakulov1,

1Institute of Nuclear Physics, Academy of Sciences, 100214, Ulugbek, Tashkent, Uzbekistan

2Physique Quantique, and Physique Nucléaire Théorique et Physique Mathématique, C.P. 229, Université libre de Bruxelles (ULB), B-1050 Brussels Belgium

Abstract

At the long-wavelength approximation, electric dipole transitions are forbidden between isospin-zero states. In an $\alpha+n+p$ model with $T=1$ contributions, the $\alpha(d, \gamma)^6\text{Li}$ astrophysical S-factor is in agreement with the experimental data of the LUNA collaboration, without adjustable parameter. The exact-masses prescription used to avoid the disappearance of $E1$ transitions in potential models is not founded at the microscopic level.

PACS numbers:
I. INTRODUCTION

A radiative-capture reaction is an electromagnetic transition between an initial scattering state and a final bound state. Astrophysical collision energies can be very low with respect to the Coulomb barrier and cross sections are then tiny. The dominant multipolarity is $E1$ in general. In the special case of reactions between $N = Z$ nuclei however, $E1$ transitions are forbidden by an isospin selection rule at the long-wavelength approximation (LWA) and $E2$ transitions become crucial. Nevertheless, $E1$ transitions are not exactly forbidden since isospin is an approximate symmetry. The analysis of the recent LUNA data \cite{1,2} for the $\alpha(d,\gamma)^6\text{Li}$ reaction indicates that $E1$ cross sections dominate the $E2$ cross sections below about 0.1 MeV. Since $E1$ transitions vanish in many models, recent calculations use the exact-masses prescription to avoid their disappearance \cite{3}. Here we present results of the simplest model allowing $E1$ transitions thanks to small $T=1$ components, i.e. the $\alpha+n+p$ three-body model.

II. ISOSPIN-FORBIDDEN $E1$ TRANSITIONS

The electric multipole operators read at the LWA,
\begin{equation}
\mathcal{M}_{\mu}^{E\lambda} = e \sum_{j=1}^{A} (\frac{1}{2} - t_{j3}) r'_{j} Y_{\lambda\mu}(\Omega'_j),
\end{equation}
where A is the number of nucleons, $r'_{j} = (r_j',\Omega'_j)$ is the coordinate of nucleon j with respect to the centre of mass of the system, and t_{j3} is the third component of its isospin operator t_j. The isoscalar (IS) part of the $E1$ operator vanishes at the LWA since $\sum_{j=1}^{A} r'_{j} Y_{1\mu}(\Omega'_j) = 0$ and this operator becomes an isovector (IV),
\begin{equation}
\mathcal{M}_{\mu}^{E1} = -e \sum_{j=1}^{A} t_{j3} r'_{j} Y_{1\mu}(\Omega'_j) = \mathcal{M}_{\mu}^{E1,IV}.
\end{equation}

At the LWA, $E1$ matrix elements thus vanish between isospin-zero states. This leads to the total isospin T selection rule in $N = Z$ nuclei and reactions: $T_i = 0 \rightarrow T_f = 0$ is forbidden. But $E1$ transitions are not exactly forbidden in these $N = Z$ systems because isospin is not an exact quantum number. Small $T=1$ admixtures appear in the wave functions. The main isovector $E1$ contributions are due to $T_f = 1$ admixtures in the final state or to $T_i = 1$
admixtures in the initial state. Moreover, the isoscalar $E1$ operator reads beyond the LWA,

$$\mathcal{M}_{\mu}^{E1,IS} \approx -\frac{1}{60} e\kappa_{\gamma}^{2} \sum_{j=1}^{A} r_{j}^{3} Y_{1\mu}(\Omega_{j}),$$ \hspace{1cm} (3)$$

up to terms that should give only a small contribution [4], contrary to other expressions often used in the literature. The isoscalar $E1$ contribution to the capture involves the $T = 0$ parts of the wave functions.

III. THREE-BODY MODEL OF $\alpha(d,\gamma)^6LI$ REACTION

The present wave functions [5] are adapted from the $\alpha + n + p$ model of Ref. [3]. The $J_f = 1^+$ final bound state is described in hyperspherical coordinates and the initial scattering states are described in Jacobi coordinates. Three-body effective $E1$ and $E2$ operators are constructed which assume that the α particle or cluster is in its 0^+ ground state. For example, the isovector part of the effective three-body $E1$ operator reads at the LWA,

$$\tilde{\mathcal{M}}_{\mu}^{E1,IV} = \frac{1}{2} e r Y_{1\mu}(\Omega_{r}),$$ \hspace{1cm} (4)$$

where r is the Jacobi coordinate between n and p. The expressions of the isoscalar part of the $E1$ operator beyond the LWA and of the $E2$ operator can be found in Ref. [3].

The three-body states contain $S = 0$ and 1 components. Because of the isospin zero of the α particle and the antisymmetry of the $n + p$ subsystem with orbital momentum l, the components with $l + S$ odd correspond to $T = 0$ and those with $l + S$ even to $T = 1$. The initial scattering state is described by the product of a frozen deuteron wave function ($l_i = 0, S_i = 1$) and $\alpha + d$ L partial scattering waves. Hence, it is purely $T_i = 0$. The $J_f = 1^+$ final bound state contains a small $T_f = 1$ component (about 0.5%). The $E1$ transitions start from $L_i = 1$ and the $E2$ transitions from $L_i = 0$ and 2.

This model requires an asymptotic correction to the $E2$ matrix elements. Indeed the overlap integrals $I_L(R)$ of the deuteron and $\alpha + n + p$ final wave functions decrease too fast beyond 10 fm as shown for $L = 0$ by Fig. [1]. This is corrected by matching at 7.75 fm the overlap integrals with the exact Whittaker asymptotic function multiplied by realistic asymptotic normalization coefficients.

Total $E1 + E2$ astrophysical S factors calculated in the three-body model with the $E2$ correction are compared in Fig. [2] with experimental data. The isoscalar $E1$ capture contribution is small and can be neglected in first approximation. The isovector $E1$ contribution
IV. COMMENT ON THE EXACT-MASSES PRESCRIPTION

To obtain non-vanishing $E1$ transitions in the two-body or potential model, experimental masses are used in the effective charge of $N = Z$ nuclei,

$$Z_{\text{eff}}^{(E1)} \propto \left(\frac{Z_1}{A_1} - \frac{Z_2}{A_2} \right) \rightarrow Z_{\text{eff}}^{(E1)} \propto m_N \left(\frac{Z_1}{M_1} - \frac{Z_2}{M_2} \right)$$ \hspace{1cm} (5)

where m_N is the nucleon mass and $Z_{1,2}$, $A_{1,2}$ and $M_{1,2}$ are the charges, mass numbers and experimental masses of the colliding nuclei, respectively. This exact-masses prescription is unfounded.

(i) $E1$ transitions would remain exactly forbidden in the $d(d, \gamma)^4\text{He}$ reaction, in contradiction with ab $initio$ calculations.

(ii) Using the mass expression $M = A m_N + (N - Z) \frac{1}{2} (m_n - m_p) - B(A, Z)/c^2$, effective charges would depend on the binding energies $B(A_{1,2}, Z_{1,2})$,

$$m_N \left(\frac{Z_1}{M_1} - \frac{Z_2}{M_2} \right) \approx \frac{1}{2m_Nc^2} \left(\frac{B(A_1, Z_1)}{A_1} - \frac{B(A_2, Z_2)}{A_2} \right).$$ \hspace{1cm} (6)

Binding energies per nucleon $B(A, Z)/A$ mostly depend on the main $T = 0$ components of the wave functions and not on the small $T = 1$ components physically responsible for the non vanishing of “forbidden” $E1$ transitions.

(iii) $E1$ matrix elements would be unphysically sensitive to the long $T_f = 0 \alpha + d$ tail of the ^6Li wave function.
V. CONCLUSION

Isovector $E1$ transitions with $T = 1$ admixtures in the final state and $E2$ transitions explain the order of magnitude of the LUNA data \cite{1,2}, without any adjustable parameter. Isoscalar $E1$ transitions beyond the LWA are negligible for the $\alpha(d,\gamma)^6\text{Li}$ reaction. The exact-masses prescription is not founded and should not be trusted for reactions between $N = Z$ nuclei, such as $\alpha(d,\gamma)^6\text{Li}$ and $^{12}\text{C}(\alpha,\gamma)^{16}\text{O}$. A three-body model with $T = 1$ admixtures in both initial and final states should be developed. Microscopic six-body and \textit{ab initio} calculations are difficult but possible and necessary for a deeper understanding of this reaction.

![Graph](image)

FIG. 2: Total $E1 + E2$ astrophysical S factor (full and dashed lines). Experimental data from Refs. \cite{6} (triangles), \cite{7} (open circles), and \cite{2} (full circles). Adapted from Ref. \cite{5}.

\begin{thebibliography}{9}
\bibitem{1} Anders, M. et al.: Phys. Rev. Lett. \textbf{113}, 042501 (2014).
\bibitem{2} Trezzi, D. et al.: Astropart. Phys. \textbf{89}, 57 (2017).
\bibitem{3} Tursunov, E.M. et al.: Phys. Rev. C \textbf{94}, 015801 (2016).
\bibitem{4} Baye, D.: Phys. Rev. C \textbf{86}, 034306 (2012).
\bibitem{5} Baye, D., Tursunov, E.M.: J. Phys. G \textbf{45}, 085102 (2018).
\bibitem{6} Robertson, R.G.H. et al.: Phys. Rev. Lett. \textbf{47}, 1867 (1981).
\bibitem{7} Mohr, P. et al.: Phys. Rev. C \textbf{50}, 1543 (1994).
\end{thebibliography}