 Cliques and the Spectral Radius

Béla Bollobás*†‡ and Vladimir Nikiforov*

March 30, 2022

Abstract

We prove a number of relations between the number of cliques of a graph G and the largest eigenvalue $\mu (G)$ of its adjacency matrix. In particular, writing $k_s (G)$ for the number of s-cliques of G, we show that, for all $r \geq 2$,

$$\mu^{r+1} (G) \leq (r+1) k_{r+1} (G) + \sum_{s=2}^{r} (s-1) k_s (G) \mu^{r+1-s} (G),$$

and, if G is of order n, then

$$k_{r+1} (G) \geq \left(\frac{\mu (G)}{n} - 1 + \frac{1}{r} \right) \frac{r (r-1)}{r+1} \left(\frac{n}{r} \right)^{r+1}.$$

Keywords: number of cliques, clique number, spectral radius, stability

1 Introduction

Our graph-theoretic notation is standard (e.g., see [1]); in particular, we write $G (n)$ for a graph of order n. Given a graph G, a k-walk is a sequence of vertices v_1, \ldots, v_k of G such that v_{i-1} is adjacent to v_i for all $i = 2, \ldots, k$. We write $w_k (G)$ for the number of k-walks in G and $k_r (G)$ for the number of its r-cliques. We order the eigenvalues of the adjacency matrix of a graph $G = G (n)$ as $\mu (G) = \mu_1 (G) \geq \ldots \geq \mu_n (G)$.

*Department of Mathematical Sciences, University of Memphis, Memphis TN 38152, USA
†Trinity College, Cambridge CB2 1TQ, UK
‡Research supported in part by DARPA grant F33615-01-C-1900.
Let \(\omega = \omega(G) \) be the clique number of \(G \). Wilf [12] proved that
\[
\mu(G) \leq \frac{\omega - 1}{\omega} v(G) = \frac{\omega - 1}{\omega} w_1(G),
\]
and Nikiforov [9] extended this, showing that the inequality
\[
\mu^s(G) \leq \frac{\omega - 1}{\omega} w_s(G)
\]
holds for every \(s \geq 1 \). Note that for \(s = 2 \) inequality (1) implies a concise form of Turán’s theorem. Indeed, if \(G \) has \(n \) vertices and \(m \) edges, then \(\mu(G) \geq 2m/n \), and so,
\[
\left(\frac{2m}{n} \right)^2 \leq \mu^2(G) \leq \frac{\omega - 1}{\omega} w_2(G) = \frac{\omega - 1}{\omega} 2m.
\]
This shows that
\[
m \leq \frac{\omega - 1}{2\omega} n^2,
\]
which is best possible whenever \(\omega \) divides \(n \). If we combine (1) with other lower bounds on \(\mu(G) \), e.g., with
\[
\mu^2(G) \geq \frac{1}{n} \sum_{u \in V(G)} d^2(u),
\]
we obtain generalizations of (2).

Moreover, inequality (1) follows from a result of Motzkin and Straus [7] following in turn from (2) (see [10]). The implications
\[
(1) \implies (2) \implies \text{MS} \implies (1)
\]
justify regarding inequality (1) as a spectral form of Turán’s theorem, well suited for nontrivial generalizations. For example, the following conjecture seems to be quite subtle.

Conjecture 1 Let \(G \) be a \(K_{r+1} \)-free graph with \(m \) edges. Then
\[
\mu_1^2(G) + \mu_2^2(G) \leq \frac{r - 1}{r} 2m.
\]
If true, this conjecture is best possible whenever \(r \) divides \(n \). Indeed, for \(r \mid n \), \(n = qr \), the Turán graph \(T_r(n) \) (i.e., the complete \(r \)-partite graph \(K_r(q) \) with \(q \) vertices in each class) has \(r(r - 1)q^2/2 \) edges, and there are three eigenvalues: \((r - 1)q\), with multiplicity 1, \(-q\), with multiplicity \(r - 1 \), and 0, with multiplicity \(r(q - 1) \), so that \(\mu_1(G) = (r - 1)q \) and \(\mu_2(G) = 0 \).
The aim of this note is to prove further relations between $\mu(G)$ and the number of cliques in G. In [8] it is proved that

$$\mu^\omega (G) \leq \sum_{s=2}^{\omega} (s - 1) k_s (G) \mu^{\omega-s} (G) \quad (3)$$

with equality holding if and only if G is a complete ω-partite graph with possibly some isolated vertices. It turns out that this inequality is one of a whole sequence of similar inequalities.

Theorem 1 For every graph G and $r \geq 2$,

$$\mu^{r+1} (G) \leq (r + 1) k_{r+1} (G) + \sum_{s=2}^{r} (s - 1) k_s (G) \mu^{r+1-s} (G).$$

Observe that, with $r = \omega + 1$, Theorem 1 implies (3). Theorem 1 also implies a lower bound on the number of cliques of any given order, as stated below.

Theorem 2 For every graph $G = G(n)$ and $r \geq 2$,

$$k_{r+1} (G) \geq \left(\frac{\mu (G)}{n} - 1 + \frac{1}{r} \right) r (r - 1) \left(\frac{n}{r} \right)^{r+1}.$$

We also prove the following extension of an earlier result of ours [2].

Theorem 3 Let $1 \leq s \leq r < \omega (G)$ and $\alpha \geq 0$. If $G = G(n)$ and

$$(s + 1) k_{s+1} (G) \geq n^{s+1} \prod_{t=1}^{s} \left(\frac{r - t}{rt} + \alpha \right), \quad (4)$$

then

$$k_{r+1} (G) \geq \alpha \frac{r^2}{r + 1} \left(\frac{n}{r} \right)^{r+1}. \quad (5)$$

Note that Theorems 3 and 2 hold for all values of the parameters satisfying the conditions there; in particular, α may depend on n.

Our final theorem is the following stability result.
Theorem 4 For all \(r \geq 2 \) and \(0 \leq \alpha \leq 2^{-10}r^{-6} \), if \(G = G(n) \) is a \(K_{r+1} \)-free graph with
\[
\mu(G) \geq \left(1 - \frac{1}{r} - \alpha \right)n, \tag{6}
\]
then \(G \) contains an induced \(r \)-partite graph \(G_0 \) of order \(v(G_0) > (1 - 3\alpha^{1/3})n \) and minimum degree
\[
\delta(G_0) > \left(1 - \frac{1}{r} - 6\alpha^{1/3} \right)n.
\]

2 Proofs

2.1 Proof of Theorem \[1\]

For a vertex \(u \in V(G) \), write \(w_l(u) \) for the number of \(l \)-walks starting with \(u \) and \(k_r(u) \) for the number of \(r \)-cliques containing \(u \). Clearly, it is enough to prove the assertion for \(2 \leq r < \omega(G) \), since the case \(r \geq \omega(G) \) follows easily from \([3] \).

It is shown in \[8\] that for all \(2 \leq s \leq \omega(G) \) and \(l \geq 2 \),
\[
\sum_{u \in V(G)} \left(k_s(u) w_{l+1}(u) - k_{s+1}(u) w_l(u) \right) \leq (s - 1) k_s(G) w_l(G), \tag{7}
\]

Summing these inequalities for \(s = 2, \ldots, r \), we obtain
\[
\sum_{u \in V(G)} \left(k_2(u) w_{l+r-1}(u) - k_{r+1}(u) w_l(u) \right) \leq \sum_{s=2}^{r} (s - 1) k_s(G) w_{l+r-s}(G),
\]

and so, after rearranging,
\[
 w_{l+r}(G) - \sum_{s=2}^{r} (s - 1) k_s(G) w_{l+r-s}(G) \leq \sum_{u \in V(G)} k_{r+1}(u) w_l(u). \]

Noting that \(w_l(u) \leq w_{l-1}(G) \), this implies that
\[
\sum_{u \in V(G)} k_{r+1}(u) w_l(u) \leq w_{l-1}(G) \sum_{u \in V(G)} k_{r+1}(u) = (r + 1) k_{r+1}(G) w_{l-1}(G),
\]

and so,
\[
\frac{w_{l+r}(G)}{w_{l-1}(G)} - \sum_{s=2}^{r} (s - 1) k_s(G) \frac{w_{l+r-s}(G)}{w_{l-1}(G)} \leq (r + 1) k_{r+1}(G).
\]
Given n, there are non-negative constants c_1, \ldots, c_n such that for $G = G(n)$ we have

$$w_l(G) = c_1 \mu_1^{l-1}(G) + \cdots + c_n \mu_n^{l-1}(G),$$

(See, e.g., [3], p. 44.) Since $\omega > 2$, our graph G is not bipartite and so $|\mu_n(G)| < \mu_1(G)$. Therefore, for every fixed q, we have

$$\lim_{l \to \infty} \frac{w_{l+q}(G)}{w_{l-1}(G)} = \mu^{q+1}(G),$$

and the assertion follows. \hfill \Box

2.2 Proof of Theorem 3

Moon and Moser [6] stated the following result (for a proof see [4] or [5], Problem 11.8): if $G = G(n)$ and $k_s(G) > 0$, then

$$\frac{(s + 1) k_{s+1}(G)}{sk_s(G)} - \frac{n}{s} \geq \frac{sk_s(G)}{(s - 1) k_{s-1}(G)} - \frac{n}{s - 1}. $$

Equivalently, for $1 \leq s < t < \omega(G)$, we have

$$\frac{(t + 1) k_{t+1}(G)}{tk_t(G)} - \frac{n}{t} \geq \frac{(s + 1) k_{s+1}(G)}{sk_s(G)} - \frac{n}{s}. \quad (8)$$

Let $s \in [1, r]$ be the smallest integer for which (11) holds. This implies either $s = 1$ or

$$sk_s(G) < n^s \prod_{t=1}^{s-1} \left(r - \frac{t}{rt} + \alpha \right) \quad (9)$$

for some $s \in [2, r]$. Suppose first that $s = 1$. (This case is considered in [2], but for the sake of completeness we present it here.) We have

$$\frac{2k_2(G)}{k_1(G)} - n \geq \left(\frac{r - 1}{r} + \alpha \right) n - n = \alpha n - \frac{n}{r};$$

and so, for all $t = 1, \ldots, r$, inequality (8) implies that

$$\frac{(t + 1) k_{t+1}(G)}{tk_t(G)} \geq \alpha n + \frac{n}{t} - \frac{n}{r}. $$

5
Multiplying these inequalities for \(t = 1, \ldots, r \), we obtain that
\[
(r + 1) k_{r+1}(G) \geq n^{r+1} \prod_{t=1}^{r} \left(\frac{r-t}{rt} + \alpha \right) \geq \alpha r^2 \left(\frac{n}{r} \right)^{r+1} \prod_{t=1}^{r-1} \frac{r-t}{t} = \alpha r^2 \left(\frac{n}{r} \right)^{r+1},
\]
proving the result in this case.

Assume now that (9) holds for some \(s \in [2, r] \). Then we have
\[
\frac{(s+1) k_{s+1}(G)}{sk_s(G)} > \left(\frac{r-s}{rs} + \alpha \right) n.
\]
and so, for every \(t = s, \ldots, r \),
\[
\frac{(t+1) k_{t+1}(G)}{tk_t(G)} > \frac{n}{s} - \frac{n}{s} + \frac{r-s}{rs} n + \alpha n = \left(\frac{r-t}{rt} + \alpha \right) n.
\]
Multiplying these inequalities for \(t = s + 1, \ldots, r \), we obtain
\[
\frac{(r+1) k_{r+1}(G)}{(s+1) k_{s+1}(G)} > n^{r-s} \prod_{t=s+1}^{r} \left(\frac{r-t}{rt} + \alpha \right).
\]
Appealing to (10), this implies that
\[
(r + 1) k_{r+1}(G) > n^{r+1} \prod_{t=1}^{r} \left(\frac{r-t}{rt} + \alpha \right) = \alpha n^{r+1} \prod_{t=1}^{r-1} \left(\frac{r-t}{rt} + \alpha \right) \geq \alpha r^2 \left(\frac{n}{r} \right)^{r+1},
\]
as required. \(\square \)

2.3 Proof of Theorem [2]

Set
\[
\alpha = \frac{\mu}{n} - 1 + \frac{1}{r-1}.
\]
Clearly we may assume that \(\alpha > 0 \), since otherwise the assertion is trivial. Suppose that
\[
sk_s(G) > n^s \prod_{t=1}^{s-1} \left(\frac{r-t}{rt} + \alpha \right)
\]
for some \(s \in [2, r] \). Then, by Theorem [3]
\[
(r + 1) k_{r+1}(G) > \alpha \frac{r^2}{r+1} \left(\frac{n}{r} \right)^{r+1} \geq \alpha \frac{r (r-1)}{r+1} \left(\frac{n}{r} \right)^{r+1},
\]
completing the proof. Thus we may and shall assume that (10) fails for every \(s \in [r - 1] \).

From Theorem 1 we have

\[
(r + 1) k_{r+1} (G) \geq \mu^{r+1} (G) - \sum_{s=2}^{r} (s - 1) k_s (G) \mu^{r+1-s} (G).
\]

(11)

Substituting the bounds on \(k_s (G) \) into (11), and setting \(\mu = \mu (G) / n \), we obtain

\[
\frac{(r + 1) k_{r+1} (G)}{n^{r+1}} \geq \mu^{r+1} - \sum_{s=2}^{r} \frac{r - 1 - s}{s} \prod_{t=1}^{s-1} \left(\frac{r - t}{rt} + \alpha \right)
\]

\[
\geq \mu^{r+1} - \mu^{r+1-2} \frac{1}{2} \left(\frac{r - 1}{r} + \alpha \right) + \sum_{s=3}^{r} \frac{s - 1}{s} \mu^{r+1-s} \prod_{t=1}^{s-1} \left(\frac{r - t}{rt} + \alpha \right)
\]

\[
\geq \mu^{r+1-2} \left(\mu^2 - \frac{1}{2} \left(\frac{r - 1}{r} + \alpha \right) \right) + \sum_{s=3}^{r} \frac{s - 1}{s} \mu^{r+1-s} \prod_{t=1}^{s-1} \left(\frac{r - t}{rt} + \alpha \right)
\]

\[
\geq \mu^{r+1-2} \left(\frac{r - 1}{r} + \alpha \right) \left(\frac{r - 2}{2r} + \alpha \right) + \sum_{s=3}^{r} \frac{s - 1}{s} \mu^{r+1-s} \prod_{t=1}^{s-1} \left(\frac{r - t}{rt} + \alpha \right).
\]

By induction on \(k \) we prove that, for all \(k = 2, \ldots, r \),

\[
\frac{(r + 1) k_{r+1} (G)}{n^{r+1}} \geq \mu^{r+1-k} \prod_{t=1}^{k} \left(\frac{r - t}{rt} + \alpha \right) - \sum_{s=k+1}^{r} \frac{s - 1}{s} \mu^{r+1-s} \prod_{t=1}^{s-1} \left(\frac{r - t}{rt} + \alpha \right)
\]

and hence,

\[
\frac{(r + 1) k_{r+1} (G)}{n^{r+1}} \geq \mu \prod_{t=1}^{r} \left(\frac{r - t}{rt} + \alpha \right) \geq \alpha \frac{r - 1}{r} \prod_{t=1}^{r-1} \frac{r - t}{rt} = \alpha \frac{r - 1}{r^r}.
\]

It follows that

\[
k_{r+1} (G) \geq \alpha \frac{r (r - 1)}{r + 1} \left(\frac{n}{r} \right)^{r+1},
\]

as required. \(\square \)

2.4 Proof of Theorem 4

Inequality (11) for \(s = 2 \) together with (6) implies that

\[
2 \frac{r - 1}{r} e (G) \geq \mu^2 (G) \geq \left(\frac{r - 1}{r} - \alpha \right)^2 n^2 \geq \left(\left(\frac{r - 1}{r} \right)^2 - 2 \alpha \frac{r - 1}{r} \right) n^2.
\]
and so,
\[e(G) \geq \left(\frac{r - 1}{2r} - 2\alpha \right) n^2. \]

To complete our proof, let us recall the following stability theorem proved by Nikiforov and Rousseau in [11]. Let \(r \geq 2 \) and \(0 < \beta \leq 2^{-9}r^{-6} \), and let \(G = G(n) \) be a \(K_{r+1} \)-free graph satisfying
\[e(G) \geq \left(\frac{r - 1}{2r} - \beta \right) n^2. \]

Then \(G \) contains an induced \(r \)-partite graph \(G_0 \) of order \(v(G_0) > (1 - 2\alpha^{1/3}) n \) and with minimum degree
\[\delta(G_0) \geq \left(1 - \frac{1}{r} - 4\beta^{1/3} \right) n. \]

Setting \(\beta = 2\alpha \), in view of \(4 \cdot 2^{1/3} < 6 \), the required inequalities follow. \(\square \)

Acknowledgement. Part of this research was completed while the authors were enjoying the hospitality of the Institute for Mathematical Sciences, National University of Singapore in 2006.

References

[1] B. Bollobás, *Modern Graph Theory*, Graduate Texts in Mathematics, 184, Springer-Verlag, New York, (1998), xiv+394 pp.

[2] B. Bollobás and V. Nikiforov, Joints in graphs, submitted.

[3] D. Cvetković, M. Doob, and H. Sachs, *Spectra of Graphs*, VEB Deutscher Verlag der Wissenschaften, Berlin, 1980, 368 pp.

[4] N. Khadžiivanov and V. Nikiforov, The Nordhaus-Stewart-Moon-Moser inequality. (Russian), *Serdica* 4 (1978), 344–350.

[5] L. Lovász, *Combinatorial problems and exercises*, North-Holland Publishing Co., Amsterdam-New York, 1979, 551 pp.

[6] J. Moon and L. Moser, On a problem of Turán, *Magyar Tud. Akad. Mat. Kutató Int. Közl.* 7 (1962), 283–286.

[7] T. Motzkin and E. Straus, Maxima for graphs and a new proof of a theorem of Turán, *Canad. J. Math.* 17 (1965), 533-540.
[8] V. Nikiforov, Some inequalities for the largest eigenvalue of a graph. *Combin. Probab. Comput.* **11** (2002), 179–189.

[9] V. Nikiforov, Walks and the spectral radius of graphs, to appear in *Linear Algebra Appl.*

[10] V. Nikiforov, An extension of Maclaurin’s inequalities, submitted.

[11] V. Nikiforov and C.C. Rousseau, Large generalized books are p-good, *J. Combin. Theory Ser. B* **92** (2004), 85-97.

[12] H. Wilf, Spectral bounds for the clique and independence numbers of graphs, *J. Combin. Theory Ser. B* **40** (1986), 113-117.