Effects of shear stress on differentiation of stem cells into endothelial cells

Yan Huang, Jia-Yi Qian, Hong Cheng, Xiao-Ming Li

Abstract

Stem cell transplantation is an appealing potential therapy for vascular diseases and an indispensable key step in vascular tissue engineering. Substantial effort has been made to differentiate stem cells toward vascular cell phenotypes, including endothelial cells (ECs) and smooth muscle cells. The microenvironment of vascular cells not only contains biochemical factors that influence differentiation but also exerts hemodynamic forces, such as shear stress and cyclic strain. More recently, studies have shown that shear stress can influence the differentiation of stem cells toward ECs. A deep understanding of the responses and underlying mechanisms involved in this process is essential for clinical translation. This review highlights current data supporting the role of shear stress in stem cell differentiation into ECs. Potential mechanisms and signaling cascades for transducing shear stress into a biological signal are proposed. Further study of stem cell responses to shear stress will be necessary to apply stem cells for pharmacological applications and cardiovascular implants in the realm of regenerative medicine.

Key Words: Shear stress; Stem cells; Cell differentiation; Endothelial cells; Mechanotransduction

©The Author(s) 2021. Published by Baishideng Publishing Group Inc. All rights reserved.
role of shear stress in stem cell differentiation into endothelial cells. Further, potential mechanisms and signaling cascades for transducing shear stress into a biological signal are proposed. Further study of stem cell responses to shear stress is necessary to utilize stem cells in pharmacological applications and cardiovascular implants in the realm of regenerative medicine.

INTRODUCTION

Cardiovascular disease continues to be the leading cause of death globally, with an increase every year[1]. Cell-based therapies have the potential to provide new solutions for treating vascular diseases[2]. Endothelial cells (ECs) derived from donors or differentiated from stem cells are required for various clinical applications, such as promoting angiogenesis in ischemic areas or re-endothelialization of tissue-engineered grafts. Patient-derived primary ECs are limited in number, have donor variabilities, and their in vitro phenotypes and functions can deteriorate over time[3]. This necessitates the exploration of alternative EC sources. Many methods have been tried to differentiate various stem cells toward ECs[4], such as exogenous growth factors, co-cultivation, and gene transfer. Exogenous growth factors mainly include vascular endothelial growth factor (VEGF), basic fibroblast growth factor (bFGF), epidermal growth factor (EGF), insulin-like growth factor, transforming growth factor and platelet-derived growth factor (PDGF)[5]. In recent years, many studies have shown that in addition to chemical factors, physical stimulation is an important way to regulate the differentiation of stem cells into ECs[6].

The biomechanical patterns of blood flow in vessels are complex[7]. Vascular cells are exposed to hemodynamic forces in vivo, including flow shear stress and cyclic stretch caused by blood flow[8]. ECs are in direct contact with blood and particularly sensitive to changes in shear stress. Shear stress can affect the morphology, orientation, metabolic activities, and homeostasis of ECs by affecting receptor regulation and signal transmission in ECs (phosphoinositide, and Ca\(^{2+}\) and K\(^{+}\) ion channels, etc.). Shear stress is a key regulator of EC function and maintenance of vascular homeostasis. Given the crucial role of shear stress in the differentiation of ECs in vivo, it is generally accepted that replicating shear stress in cell culture could be crucial for differentiating stem cells toward the endothelial phenotype[9]. More recently, studies have shown that shear stress can influence the differentiation of stem cells toward ECs. A deep understanding of the responses and the underlying mechanisms involved in this process is essential for clinical translation.

In this review, we present an overview of the role of shear stress in EC oriented differentiation of several types of stem cells, with special reference to experiments conducted using mesenchymal stem cells (MSCs), endothelial progenitor cells (EPCs), embryonic stem cells (ESCs), and induced pluripotent stem cells (iPSCs). We also elucidate potential mechanisms and signaling cascades by which stem cells sense shear stress and transduce the effects of mechanical signals into biological signals. We address various aspects associated with stem cell differentiation via fluid shear stress in the hope of bringing the prospect of regenerative medicine a step closer from bench to bedside. Various receptors and signaling pathways could be pharmacological targets for which novel drugs could be developed in cardiovascular regenerative medicine.

SHEAR STRESS PROMOTES ENDOTHELIAL DIFFERENTIATION OF STEM CELLS

MSCs

MSCs are among the most promising and suitable stem cell types for vascular tissue
Huang Y et al. FSS-induced endothelial differentiation

engineering. MSCs, also known as mesenchymal stromal cells, were first identified in the bone marrow stroma but are also suggested to be present in other tissues. Chen et al[10] proposed that shear stress was able to promote nuclear localization and up-regulate expression of β-catenin related to cardiovascular development, EC protection and angiogenesis in MSCs. Many studies have demonstrated that different types of MSCs are able to differentiate into vascular ECs when they are stimulated with shear stress[2] (Table 1).

It appears that shear stress promotes endothelial differentiation while downregulating smooth-muscle-cells-oriented differentiation. An early study treated murine embryonic mesenchymal progenitor cells with 1.5 × 10⁻⁴ N/cm² of shear stress using a parallel plate system. The system consisted of an active pump (for steady flow), a gravity head (for steady flow), and parallel-plate flow chambers. In flow chambers, fluid flowed through the chambers through a conduit, creating a constant hydrostatic pressure that forced culture medium to pass through the cells cultured on the lower plate, generating a steady shear stress. They found upregulated EC markers including CD31, von Willebrand factor (vWF), and vascular endothelial-cadherin (VE-cadherin, CD144), enhanced acetylated-low density lipoprotein LDL (ac-LDL) uptake, and increased tubule formation on Matrigel with 12 h of shear stress treatment. The study also showed mRNA expression of vascular smooth muscle cell markers, including PDGF receptor and PDGF, was downregulated relative to the static control[11]. Dong et al[12] seeded canine bone-marrow-derived MSCs onto poly-e-caprolactone and lactic acid scaffolds and applied them to shear stresses from 1 × 10⁻⁴ to 1.5 × 10⁻⁴ N/cm² over the course of 2 d with an additional 2 d at 1.5 × 10⁻⁴ N/cm² of shear stress provided by a pulsatile bioreactor. Similar to the structure of the parallel plate system mentioned above, the bioreactor consisted of chamber, a glass culture reservoir (for medium circulation and air exchange), and a culture chamber. MSCs seeded on the tubular scaffolds were installed horizontally in the culture chamber. Mean shear stress (τmean) can be calculated by the equation: τmean = 4 μQ/r² where μ is the viscosity of the culture medium, Q is the flow rate of the bioreactor, and r is the radius of the scaffolds. They observed a significant increase in the expression of EC markers platelet/EC adhesion molecule 1 (PECAM1, CD31), VE-cadherin, and CD34, and a significant decline in the protein levels of α-smooth muscle actin (α-SMA) and calponin compared to static controls.

Physiological shear stress levels are advantageous for driving MSCs into an endothelial phenotype. In the previous two independent experiments, the magnitude of shear stress applied to stem cells was 1.5 × 10⁻⁴ N/cm². There were also other studies using higher or lower shear stresses. Yuan et al[13] individually loaded human MSCs with a steady laminar shear stress of 2 × 10⁻⁴ N/cm² or 2 × 10⁻⁴ N/cm² for 2 d, and then statically cultured for 5 d. They found that shear stress (2 × 10⁻⁴ N/cm²) can induce cells to express vWF, VE-cadherin and CD31. Kim et al[14] reported that human MSCs exposed to a shear stress of 2.5 × 10⁻⁴ or 1 × 10⁻⁴ N/cm² for 1 d expressed CD31, vWF, and VEGF receptor 2 [VEGFR2, fetal liver kinase-1 (Flk-1)]. At low shear stress, CD31 was significantly expressed whereas vWF and VEGFR2 expression was only slightly higher than that, under 1 × 10⁻⁴ N/cm². In our previous work[15], we exposed rat bone-marrow-derived MSCs to a wide range of shear forces (from 1 × 10⁻⁴ to 2.5 × 10⁻⁴ N/cm²) and shear force durations (12-48 h). MSCs demonstrated a significant increase in expression of CD31, VEGFR-2, and tissue-type plasminogen activator (t-PA) at shear stress levels that were ≤ 1.5 × 10⁻⁴ N/cm², while higher and/or prolonged magnitude shear stress resulted in rapid decrease in EC oriented differentiation of MSCs. Coupled mechanical stimuli, relevant to the vasculature, can differentiate MSCs toward ECs. Engelmayr et al[16] reported that cyclic flexure and laminar flow (average fluid shear stress of 1.1505 × 10⁻⁴ N/cm²) induced sheep bone-marrow-derived MSCs to express the endothelial-associated markers CD31 and vWF. Mauel et al[17] tried 2 × 10⁻⁴ N/cm² laminar shear stress and 120/80 mmHg cyclic pressure at 1 Hz and found that the rat bone-marrow-derived MSCs under this shear stress increased expression levels of endothelial-specific genes including prominin 1 (CD133), vWF, E-selectin, and PECAM1. Kim et al[18] demonstrated that 2.5 × 10⁻⁴ N/cm² shear stress followed by 3% circumferential stretch for 3 d, and an additional 5% circumferential stretch for 4 d upregulated expression of several EC markers such as Flk-1, vWF, E-selectin, and VE-cadherin.

The combination of biochemical and mechanical stimuli promotes MSC differentiation toward ECs. Homayouni Moghadam et al[19] used fluid shear stress as a mechanical inducer and platelet lysate and estradiol as chemical inducers. Their findings indicated that 1 × 10⁻⁴ N/cm² fluid shear stress in combination with 5% platelet lysate directed MSCs to differentiate toward CD34⁺ cells, indicating the initiation of endothelial differentiation of MSCs. In addition, when stem cells from...
Table 1 Studies on shear stress regulating mesenchymal stem cell to endothelial differentiation

Cell source	Condition of shear stress	Markers expressed	Function tested	Ref.
Murine embryonic mesenchymal progenitor cells	Parallel plate system 1.5×10^4 N/cm2 6, 12 h	CD31, vWF, and VE-cadherin	Matrigel tube formation assay, ac-LDL uptake	Wang et al[11], 2005
Canine bone marrow-derived MSCs	Pulsatile bioreactor shear stress from 1×10^4 to 1.5×10^4 N/cm2 over the course of 2 d with an additional 2 d at 1.5×10^4 N/cm2 of shear stress	PECAM1, VE-cadherin, and CD34	-	Dong et al[12], 2009
Human MSCs	Parallel flow chamber system 2×10^{-5} or 2×10^0 N/cm2 1 d, 2 d	vWF, VE-cadherin, and CD31	-	Yuan et al[13], 2013
Human MSCs	Flow-engaging system 2.5×10^{-5}, 1×10^{-4} N/cm2 1 d	CD31, vWF, and VEGFR2	-	Kim et al[14], 2011
Rat bone marrow-derived MSCs	Parallel flow chamber system 1×10^2, 1.5×10^2, 2×10^2, 2.5×10^2 N/cm2 12, 24, 48 h	CD31, VEGFR-2 and t-PA	-	Bai et al[15], 2010
Sheep bone marrow-derived MSCs	Cyclic flexure and laminar flow bioreactor. Average fluid shear stress of 1.1505 10^{-3} N/cm2, 3 w	CD31 and vWF	-	Engelmayr et al[16], 2006
Rat bone marrow-derived MSCs	Unique experimental protocol 2×10^4 N/cm2 laminar shear stress and 120/80 mmHg cyclic pressure at 1 Hz 5 d	CD133, vWF, E-selectin, and PECAM1	-	Maul et al[17], 2011
Human MSCs	Bioreactor system 2.5×10^{-5} N/cm2 stress followed by 3% circumferential stretch for 3 d, and an additional 5% circumferential stretch for 4 d	Flk-1, vWF, E-selectin, and VE-cadherin	-	Kim et al[18], 2016
Rat bone marrow-derived MSCs	Orbital shaker 2×10^{-5}, 5×10^{-5}, 1×10^{-4} N/cm2 6, 12, 24 h	CD34, Cadherin5, and vWF	Matrigel tube formation assay	Homayouni Moghadam et al[19], 2014
Human exfoliated deciduous teeth (SHEDs)	cultured with or without VEGF (50 ng/mL) for 12 h 6 $\times 10^{-5}$, 1.2×10^4 N/cm2 and 12 h	VEGF, VEGFR2, DLL4, Notch1, EphrinB2, Hey1 and Hey2	In vitro Matrigel angiogenesis assay	Wang et al[20], 2018
Rat bone marrow-derived MSCs	under normoxia or hypoxia 1.2×10^{-4} N/cm2 24 h	CXCR4, phosphorylated Akt and VEGFA	-	Liu et al[21], 2017
Human ASCs	Custom-made bioreactor capable of applying both shear and tensile stresses 0-2.5 $\times 10^{-5}$ N/cm2, 1, 2, and 7 d	Flk-1, vWF, and VE-cadherin	-	Bassealene et al[22], 2010
Human ASCs	Parallel plate type flow chamber 1.8×10^{-4} N/cm2 5 d	PECAM1 and VE-cadherin	Tube structure formation in 3D matrices	Shojaei et al[23], 2013
Human ASCs	Orbital shaker 1.2×10^{-4} N/cm2 8 d	CD31	In vitro evaluation of the thrombogenicity, ac-LDL uptake	Fontijn et al[24], 2014
Human ASCs	Orbital shaker 1.2×10^{-4} N/cm2, 7, 14 d	vWF, eNOS, Flt-1, CD31, Flk-1 and VE-cadherin	-	Fischer et al[25], 2009
Human ASCs	Perfusion bioreactor 4.5×10^{-5} N/cm2 1 d	vWF, Flk-1 and VE-cadherin	-	Hasanzadeh et al[27], 2017
Human amniotic fluid-derived MSCs	Orbital shaker 1.2×10^{-4} N/cm2 2 d	CD31 and vWF	Matrigel tube formation assay, ac-LDL uptake	Zhang et al[28], 2009
Human Placenta-derived MSCs	Parallel flow chamber system 6×10^{-4}, 1.2×10^{-4} N/cm2 3, 6, 12, 24 h	Flt-1 and Flk-1	Matrigel tube formation assay, ac-LDL uptake	Wu et al[29], 2008

ac-LDL: Acetylated-low density lipoprotein LDL; CXCR4: C-X-C chemokine receptor type 4; eNOS: Endothelial nitric-oxide synthase; Flk-1: Fetal liver kinase-1; MSCs: Mesenchymal stem cells; NO: Nitric oxide; PECAM1: Platelet/endothelial cell adhesion molecule 1; PECAM1: Platelet/endothelial cell adhesion molecule 1; t-PA: Tissue-type plasminogen activator; VE-cadherin: Vascular endothelial-cadherin; VEGF: Vascular endothelial growth factor receptor 2; vWF: Von Willebrand factor.

Human exfoliated deciduous teeth (SHED) cultured with or without VEGF (50 ng/mL) for 12 h after shear stress (6×10^{-3}, 1.2×10^4 N/cm2 for 4, 8 and 12 h), mRNA expression of angiogenic markers VEGF, VEGFR2, and CD31 was increased significantly[20]. Also, our group’s previous study showed that the combined stimulation of shear stress and VEGF resulted in more EC-oriented differentiation of
MSCs in comparison to any individual stimulation[15]. Laminar shear stress (1.2 × 10^4 N/cm^2 for 24 h) facilitated rat bone-marrow-derived MSCs cultured in the endothelial growth medium (EGM) for endothelial maturation under both normoxic and hypoxic conditions[21].

Furthermore, MSCs derived from adipose tissue have been shown to differentiate into ECs under shear stress. Adipose tissue is a readily available source of multipotent adult stem cells for use in tissue engineering and regenerative medicine. Bassaneze et al[22] demonstrated that even though laminar shear stress (1 × 10^4 N/cm^2 up to 96 h), produced by a cone plate system, failed to induce EC markers (CD31, vWF and Flk-1) in human adipose tissue-derived stem cells (ASCs), it stimulated nitric oxide (NO)-dependent VEGF production. Another study found that 0-2.5 × 10^4 N/cm^2 cyclic shear stress increased expression levels of Flk-1, vWF, and VE-cadherin[23]. Fontijn et al[24] found that SOX18 transduced human ASCs, reorganized under conditions of shear stress 1.8 × 10^4 N/cm^2 for 5 d in EGM2 plus bFGF displayed VEGF-induced chemotaxis and formed tubular structures in 3D matrices in an matrix-metalloproteinase (MMP)-7-dependent manner, suggesting that shear stress can activate differentiation of ASCs into ECs.

Synergy between biochemical factors and shear stress has been shown. Fischer et al[25] exposed human ASCs to EC growth supplement medium (for up to 3 wk) and physiological shear force (1.2 × 10^4 N/cm^2 for up to 8 d). The combination synergistically promoted expression of CD31 and ac-LDL uptake. Human ASCs subjected to shear stress and VEGF expressed specific endothelial markers, including vWF, endothelial NO synthase (eNOS), fms-like tyrosine kinase-1 (Flt-1), CD31, Flk-1 and VE-cadherin[26,27]. In addition to bone-marrow-derived MSCs and adipose-derived MSCs, MSCs derived from other sources, such as amniotic fluid[28] and human placenta[29], can differentiate into ECs under shear stress[6].

Taken together, these studies suggest that different types of MSCs are able to differentiate into vascular ECs when they are stimulated with physiological shear stress. Mechanical and biochemical influences synergize in order to increase the expression of EC markers and EC functionality.

EPCs

Circulating EPCs are adult stem cells that play a central role in endothelial repair and blood vessel formation[30]. Hemodynamic conditions can influence localization and cell lineage differentiation of adult vascular progenitor cells[31]. EPCs are mobilized from bone marrow into peripheral blood, attach to existing ECs, and then migrate across the endothelium into tissues where they proliferate, differentiate, and form new blood vessels[32].

Shear stress has been shown to promote EPC differentiation into ECs[33]. Yamamoto et al[34] reported that laminar shear stress (1 × 10^4 N/cm^2 to 2.5 × 10^5 N/cm^2) accelerated cell proliferation and expression of Flk-1, Flt-1 and VE-cadherin, and upregulated capillary-like tube formation of human peripheral-blood-mononuclear-cell-derived EPCs[34]. Ye et al[35] exposed human EPCs separated from cord blood to shear stress of 5 × 10^4 N/cm^2 by using a parallel-plate coculture flow chamber. They found that shear stress increased the expression of endothelial markers CD31 and vWF[35]. Moreover, exposure of human CD34+ hematopoietic progenitor cells to shear stress increased expression of VEGF-R2, eNOS, and a VEGF-R2 promoter-driven reporter gene[36]. To identify the effects of shear stress on EPC differentiation, EPCs were exposed to 5 × 10^4, 1.5 × 10^4 and 2.5 × 10^4 N/cm^2 laminar shear stress for up to 24 h or 1.5 × 10^4 N/cm^2 laminar shear stress for 5, 10 and 20 h, which resulted in upregulation of both in vitro endothelial differentiation and in vivo reendothelialization capacity of human EPCs in a nude mouse model in magnitude-dependent and time-dependent manners[37]. Cui et al[38] treated EPCs with different levels of shear stress (2 × 10^4, 6 × 10^4, 1.2 × 10^5 and 2 × 10^5 N/cm^2). The results showed a dose-dependent increase in the shear-stress-induced gene expression of CD31 and vWF in EPCs above 2 × 10^4 N/cm^2. Cheng et al[39] exposed human umbilical-cord-blood-derived EPCs to laminar shear stress of 1.5 × 10^4 N/cm^2 using a parallel plate flow chamber system. Shear stress enhanced EPC differentiation toward ECs and inhibited smooth muscle cells differentiation[39]. In vitro and in vivo assays revealed that shear stress upregulated expression levels of vWF and CD31 in EPCs, with sub-sequently increased in vivo reendothelialization after arterial injury[40].

Further studies investigated whether EPCs differentiate into arterial or venous ECs in response to shear stress[3]. Obi et al[41] have demonstrated that controlled levels of shear stress in a flow-loading device increased the expression levels of the arterial EC markers ephrinB2, Notch1/3, Hey1/2, and activin receptor-like kinase 1, but decreased expression of the venous markers EphB4 and neuropilin 2. Exposure of
human umbilical cord blood derived EPCs to shear stress of $1 \times 10^4 - 5 \times 10^4$ N/cm2 increased the surface protein expression rate of the endothelial markers including VEGFR1 (Flt-1), VEGFR2, VE-cadherin, tyrosine kinase with immunoglobulin and EGF homology domain-2 (Tie2), vascular cell adhesion molecule 1, integrin αvβ3, E-selectin, eNOS, MMP-9 and VEGF. Likewise, in the study of Suzuki et al[42], shear stress (1.5 $\times 10^4$ N/cm2) augmented human peripheral-blood-mononuclear-cell-derived EPCs to express of CD31 and vWF as well as ephrinB2, which is a marker for arterial ECs[42].

Shear stress not only has a clear effect on mature ECs, but also significantly promotes the homing of EPCs to the site of endothelial injury, encourages EPC differentiation into arterial ECs, and induces EPCs to resist thrombosis and anti-atherosclerosis (Table 2).

ESCs

In addition to MSCs and EPCs (adult progenitor/stem cells), ESCs have been shown to differentiate into ECs under shear stress. Shear stress is involved in endothelial differentiation during embryonic development and is key to the maintenance of a healthy endothelium[2]. Several groups have provided strong evidence that pulsatile/non pulsatile shear stress promotes phenotypic differentiation of ESCs, ESC-derived stem cell antigen-1-positive (Sca-1$^+$) cells or ESC-derived Flk-1$^+$ cells into vascular ECs[43].

An early study treated mouse ESCs with a laminar shear stress of 1×10^4 N/cm2 using a cone-plate apparatus that consisted of a rotating cone placed in a tissue culture dish filled with fluid[44]. In the cone-plate system, fluid moved along the azimuth angle with the rotation of the cone and along the radial direction due to centrifugal force. Therefore, shear stress was produced at the plate. They found strongly activated transcription from the VEGFR2 promoter and early induction of endothelial markers, including VEGFR2 and PECAM1. Other cardiovascular markers, such as SMA, smooth muscle protein 22-α, myocyte enhancer factor-2C, and α-sarcomeric actin also appeared after exposure to laminar shear stress. When plated on Matrigel-coated plates, they formed tubular-like structures. Ahsan and Nerem[45] also loaded mouse ESCs with a steady laminar flow of 1.5×10^4 N/cm2 using a parallel plate flow chamber for 2 d. ESCs exposed to shear stress expressed increased levels of endothelial marker proteins (Flik-1, VE-cadherin, and PECAM1) and formed chord-like structures in an in vitro Matrigel assay. A similar result was reported on mouse ESCs by Nia\textit{s}h et al[46]. The application of 2 d of fluid shear stress at 5×10^4 N/cm2 during early differentiation of mouse ESCs promoted expression of endothelial marker genes Flik1, VE-cadherin and PECAM1, compared with statically cultured ESCs. To systematically investigate the effects of several mechanical parameters, Wolfe and Absan[47] applied laminar shear stress of 1.5×10^3, 5×10^3, and 1.5×10^4 N/cm2 to ESCs using a parallel plate bioreactor system. They found that all of them can increase the number of Flk1$^+$, endothelial PECAM1$^+$, and hematopoietic CD41$^+$ cells[47].

Flik-1 and/or Sca-1 are progenitor markers, usually used to isolate vascular progenitors from stem cell populations undergoing spontaneous differentiation[36]. Zeng et al[48] demonstrated that both mouse ESCs and Sca-1$^+$ cells exposed to laminar shear stress (1.2×10^4 N/cm2) increased expression of PECAM1, CD133, VE-cadherin, VEGFR1, VEGFR2, and eNOS, and formed tube-like structures on Matrigel[48]. Yamamoto et al[49] exposed mouse ESC-derived Flik-1$^+$ cells to laminar shear stress ranging from 1.5×10^4 to 1×10^4 N/cm2 with a parallel plate-type device. Flik1$^+$ cells under the laminar flow significantly increased expression of endothelial markers (Flik1, Flt1, VE-cadherin, and PECAM1) and accumulation of cells in S and G2/M cell cycle phases, formed tubelike structures in collagen gel, and developed an extensive tubular network significantly faster than the static controls did. Biomechanical forces might act to promote hematopoiesis. Also, when murine ESC-derived Flik1$^+$ cells were applied with 1×10^4 N/cm2 shear stress, mRNA expression of the arterial EC marker ephrinB2 increased, whereas the levels of the venous EC marker EphB4 decreased in a dose-dependent manner[50]. Fluid shear stress (5×10^4 N/cm2) generated by a dynamic flow system increased expression of CD31 (PECAM1), Runt-related transcription factor 1, Myb, and Krüppel-like factor 2 (KLF2) in mouse ESC-derived CD41$^+$ Kit$^+$ hematopoietic progenitor cells. Moreover, shear stress increased hematopoietic colony-forming potential and expression of hematopoietic markers in the para-aortic splanchnopleura/aorta–gonads–mesonephros of mouse embryos[51].

Huang et al[52] demonstrated that not only steady but also pulsatile flow can promote an EC fate in stem cells[52]. They exposed a cell mixture containing ESC-derived Flik1$^+$ cells in a compliant microporous polyurethane tube to simulate a pulsatile wall shear stress from 9.8×10^4 to 2.2×10^4 N/cm2 and a circumferential strain stress 0.46-0.96 N/cm2 for 2 d. The inner layer of the cells displayed endothelial-
like appearance, and the deeper layer of the cells stained positive for smooth muscle markers.

iPSCs have broad differentiation characteristics similar to ESCs, and avoid the immune rejection and ethical issues of ESCs, so they have quickly become a research hotspot in the field of stem cells. Our group’s previous study showed that exposure of mouse iPSCs to shear stress (5 × 10^2, 1 × 10^3, and 1.5 × 10^4 N/cm^2) with 50 ng/mL VEGF and 10 ng/mL FGF increased expression of the general EC markers and arterial markers, during which the stress amplitude of 1 × 10^5 N/cm^2 could be regarded as a proper promoter, whereas the venous and lymphatic markers had little or no expression. Shear stress caused cells to align parallel to the direction of the flow, induced cells forming functional tubes, and increased secretion of NO. In addition, Notch1 was significantly upregulated, and the Notch ligand Delta-like 4 was activated in response to shear stress, while inhibition of Notch signaling by dual antiplatelet therapy (DAPT) abolished the shear stress-induced arterial epithelial differentiation

Cell source	Condition of shear stress	Markers expressed	Function tested	Signaling molecule	Ref.
Human umbilical cord blood-derived EPCs	Rotating-disk-type flow-loading device shear stress applied ranged from 1 × 10^2 to 5 × 10^2 N/cm^2	VEGFR1, VEGFR2, VE-cadherin, Tie2, CAM1, integrin αv/β3, E-selectin, eNOS, matrix metalloproteinase 9, and VEGF	-	PI3K/Akt/mTOR	Obi et al[32], 2012
Human umbilical cord blood-derived EPCs	Perfusion system. Unidirectional shear stress (0.3 ± 0.1, 6 ± 3 × 10^3 N/cm^2) and bidirectional shear stress (0.3 ± 3 × 10^5 N/cm^2)	Tissue factor	-	-	Mazzolai et al [33], 2011
Human peripheral blood mononuclear cells-derived EPCs	Rotating-disk-type flow-loading device 0.1 to 2.5 × 10^5 N/cm^2	VEGFR2, Flk-1, Flt-1 and VE-cadherin	Matrigel tube formation assay	-	Yamamoto et al [34], 2003
Human blood mononuclear cells-derived EPCs	Parallel-plate coculture flow chamber 5 × 10^5 N/cm^2	CD31 and vWF	-	Akt	Ye et al [35], 2008
Human CD34+ hematopoietic progenitor cells	Cone-and-plate apparatus 1.5 × 10^4 N/cm^2	VEGFR2, eNOS, and a VEGFR2 promoter-driven reporter gene	-	HoxA9	Rössig et al [36], 2005
Human peripheral blood mononuclear cells-derived EPCs	Parallel plate flow chamber 1.5 × 10^4 N/cm^2	Phosphorylated Tie2, phosphorylated Akt and eNOS	-	Tie2/PI3K/Akt	Yang et al [37], 2012
EPCs isolated from rat bone marrow	Flow chamber system 2 × 10^5, 6 × 10^5, 1.2 × 10^6, and 2 × 10^6 N/cm^2	CD31 and vWF	-	Integrins	Cui et al [38], 2012
Human umbilical cord blood-derived EPCs	Parallel plate flow chamber system 1.5 × 10^4 N/cm^2	VEGFR2, VE-cadherin, vWF, and CD31	Matrigel tube formation assay	miR-34a/Fox2	Cheng et al [39], 2014
Human peripheral blood mononuclear cells-derived EPCs	Rotating-disk-type flow-loading device shear stress applied ranged from 0.1 to 5 × 10^5 N/cm^2	Phosphorylated EphB2, Notch1/3, Hey1/2, and activin receptor-like kinase 1	-	Sp1	Obi et al [41], 2009
Human peripheral blood mononuclear cells-derived EPCs	Parallel plate-type device 1.5 × 10^5 N/cm^2	CD31, vWF, and EphB2	-	p38 and MAPK pathways	Suzuki et al [42], 2012
[53].

Most of the previous experimental systems involved the use of bioreactors or viscometers, like parallel plate flow and conical flow reactors[3]. To overcome the limitations of macroperfusion systems in shear application throughput and precision, Toh and Voldman[54] used a multiplex microfluidic array that applied shear stresses varying by >1000 times (1.6 × 10^2-1.6 × 10^4 N/cm^2) to mouse ESCs. In the microfluidic device, they used a fluid column or a syringe pump to drive blood or culture medium over cells cultured in capillary tubes or in customized poly(dimethylsiloxane) chips, producing shear stress. Shear stress specifically upregulated the epiblast marker Fgf5. Epiblast-state transition involved heparan sulfate proteoglycans, which have also been shown to transduce shear stress in ECs[3]. Lee et al[55] developed an integrated microfluidic culture device consisting of an air control channel and a fluidic control channel with 4 × 4 microcolumn arrays. They demonstrated that ESCs cultured for 6 d in the integrated microfluidic culture device were more differentiated into PECAM+ ECs.

Overall, ESCs and iPSCs are potential sources for cell-based tissue engineering and regenerative medicine applications (Table 3). Increasing evidence suggests that appropriate shear stress, especially 1 × 10^2-1.5 × 10^4 N/cm^2, may be a useful tool for promoting ESC differentiation into ECs. The adoption of microfluidic technologies will help to circumvent current technical limitations and provide quantitative shear application benchmarks for future scalable stem cell culture systems.

SIGNALING PATHWAYS OF SHEAR-STRESS-INDUCED EC DIFFERENTIATION

Mechanotransduction is the process by which mechanical stimuli are converted into biochemical signals inside the cell, enabling the cell to adapt to its environment, including three stages: Mechanotransmission, mechanosensing and mechanoresponse [56]. Mechanotransmission, as the name suggests, is the propagation of mechanical forces along structures, such as the cytoskeleton. Mechanosensing refers to the process in which a force acts on a mechanically sensitive macromolecule after mechanical transmission, changing its conformation, and thus, affecting its function. Although the biological effects of different mechanical forces in different systems are specific, the underlying physical response is similar: the force promotes a change in the conformation of the applied force. The process that the perceived mechanical signal produces a series of biological effects through the complex cellular signal and transcriptional network is called mechanoresponse, which is not as fast and direct as the first two processes, and in many cases, these reactions alter the mechanically sensitive structures that cause the reactions.

Over the past few decades, it has been widely reported that shear stress plays a critical role in endothelial differentiation of types of stem cells to remodel blood vessels and repair vascular damages[57]. Evidence of several potential signaling pathways involved in shear-stress-induced endothelial specification of different stem cells has been identified; however, the connections and interactions of these mechanosensitive molecules are still unclear. In detail, the mechanism by which shear stress promotes the mobilization of circulating phenotype PSCs from the peripheral blood or bone marrow to the injured site, the differentiation of the tissue adhered cells into mature ECs, and the restoration of vascular structure and functions is worth investigating. In addition, EPCs are divided into two types according to differences in protein expression and function. The cells involved in the early endothelial differentiation, called early EPCs, lack the capacity to differentiate into functional ECs, but activate resident ECs through paracrine factors[58], while the cells associated with the latter process, named late EPCs, are able to incorporate with vascular endothelium and generate new capillaries in vivo[59]. This review shows how the mechanosensors and the downstream signals convert mechanical stimuli into biochemical signals inside the stem cells during the early (Figure 1) and late (Figure 2) stages of endothelial differentiation mediated by shear stress.

Notch signaling pathway

The Notch signaling pathway, which contains four Notch receptors and five Notch ligands (Jagged 1 and 2, and Delta-like 1, 3 and 4) in mice and humans[60], plays a fundamental role in promoting arterial-venous differentiation throughout embryonic vascular development[61-63]. It has been universally demonstrated that Notch affects embryonic vascular development[64-66] and regulation of arterial-venous differen-
Table 3 Studies on shear stress regulating embryonic stem cell to endothelial differentiation

Cell source	Condition of shear stress	Markers expressed	Function tested	Signaling molecule	Ref.
Mouse ESCs	Cone-plate apparatus 1 × 10⁴ N/cm² 1 d	VEGFR2, PECAM1, smooth muscle actin, smooth muscle protein 22-α, MEFC2, and α-sarcomerinic actin	Matrigel tube formation assay	Epigenetic modification of histones and transcription complexes bearing acetyltransferase activity	Illi et al [44], 2005
Mouse ESCs	Parallel plate flow chamber 5 × 10⁵ N/cm² 2 d	Flk-1, VE-cadherin, and PECAM1	Matrigel tube formation assay	-	Ahsan and Nerem [45], 2010
Mouse ESCs	Parallel plate bioreactor system 1.5 × 10⁵, 5 × 10⁵, and 1.5 × 10⁴ N/cm² 3 d	Flik1, PECAM1, and CD41	Matrigel tube formation assay	-	Wolfe and Ahsan [47], 2013
Mouse ESCs and Sac-1⁺ cells	Parallel plate flow chamber 1.2 × 10⁴ N/cm² 1 d	PECAM1, CD133, VE-cadherin, VEGFR1, VEGFR2, ENOS	Matrigel tube formation assay	Flik1-PI3K-Akt-HDAC3-p53-p21 pathway	Zeng et al [48], 2010
Mouse Flik-1⁺ cells	Parallel plate-type device 1.5 × 10⁵ to 1 × 10⁴ N/cm² 1, 2, 3 d	Flik1, Flt1, VE-cadherin, and PECAM1	Tube formation assay in collagen gel	Ligand-independent activation of Flik-1	Yamamoto et al [49], 2005
Murine ESCs-derived Flik-1⁺ cells	Shear stress-loading device 1 × 10⁴ N/cm² 24 h	EphrinB2	-	VEGFR-Notch signaling	Noguera-Troise et al [50], 2011
Mouse CD41⁺c-Kit⁺ cells	Dynamic flow system 5 × 10⁵ N/cm² 2 d	PECAM1, Runx1, Myb, and Klf2	In vivo assay	NO	Adamo et al [51], 2010
Mouse Flik-1⁺ cells	Pulsatile flow culture system. Pulsatile wall shear stress from 0.98 to 2.2 × 10⁵ N/cm² and a circumferential strain stress 0/46°/96 N/cm² 2 d	PECAM1 and SMA	-	-	Huang et al [52], 2005
Mouse ESCs	Multiplex microfluidic array 1.6 × 10⁻¹⁻1.6 × 10⁴ N/cm² 3 d	Fgf5	-	HSPGs	Toh and Voldman [54], 2011
Mouse ESCs	Microfluidic culture device 1-10 mL/min 6 d	PECAM1	-	-	Lee et al [55], 2011

eNOS: Endothelial nitric-oxide synthase; ESC: Embryonic stem cells; Flik-1: Fetal liver kinase-1; Flt-1: Fms-like tyrosine kinase-1; HDAC3: Histone deacetylase 3; HSPGs: Heparan sulfate proteoglycans; MEFC2: Myocyte enhancer factor-2C; NO: Nitric oxide; PECAM1: Platelet/endothelial cell adhesion molecule 1; PI3K: Phosphoinositide 3-kinase; SMA: Smooth muscle actin; VE-cadherin: Vascular endothelial-cadherin; VEGFR1: Vascular endothelial growth factor receptor 1; VEGFR2: Vascular endothelial growth factor receptor 2; vWF: Von Willebrand factor.

Huang Y et al. FSS-induced endothelial differentiation
Figure 1 Shear-stress-induced signaling pathways in early endothelial differentiation. This figure describes how the mechanosensitive molecules tyrosine kinase with immunoglobulin and epidermal growth factor homology domain-2 and C-X-C chemokine receptor type 4 sense the shear stress, induce phosphoinositide 3-kinase-protein kinase B signaling activation, and further influence the gene expression of various paracrine factors ultimately regulating vessel maintenance and reformation. Akt: Protein kinase B; bFGF: Basic fibroblast growth factor; CXCR4: C-X-C chemokine receptor type 4; EPC: Endothelial progenitor cells; PI3K: Phosphoinositide 3-kinase; Tie2: Tyrosine kinase with immunoglobulin and epidermal growth factor homology domain-2; VEGF: Vascular endothelial growth factor.

which could be regulated by VEGFR-Notch signaling[98]. According to previous studies, Notch signaling has been suggested to downregulate expression of EphB4 in ESCs, human umbilical vein ECs, and adult ECs, which is reported to be HERP-dependent[99]. To be more specific, activation of the Delta-like 4/Notch pathway by VEGF selectively increases expression of EphrinB2, and thus, promotes angiogenesis [100]. Shear stress induces EC differentiation via VEGFR-Notch-EphrinB2 signaling. For instance, murine ESC–derived VEGFR2+ cells in a shear-stress-loading device with a shear stress of 1×10^{-4} N/cm2 for 24 h upregulated EphrinB2 expression, which was found to be blocked by DAPT (2.5 μmol/L) and L685 458 (0.1 μmol/L), inhibitors of γ-secretase, which was required in the sequential proteolytic events in Notch signaling pathway activation. The VEGFR kinase inhibitor SU1498 (10 μmol/L) suppresses shear-stress-induced cleaved Notch, which is essential in transactivation of various gene promoters during embryonic vascular development. Our previous study demonstrated that mouse iPSCs cultured with 50 ng/mL VEGF and 10 ng/mL FGF induced expression of Notch 1 and Delta-like 4 in response to shear stress (5×10^3, 1×10^4, and 1.5×10^4 N/cm2) for 4 h. In turn, this caused upregulation of arterial markers EphrinB2 and neuropilin-1, which was blocked by DAPT (50 μmol/L)[53]. However, shear stress cannot continuously maintain high mRNA expression of EphrinB2 and EphB4 in murine tumor models, which might be related to a negative-feedback loop between VEGF-Notch signaling[50]. In addition, the mRNA expression of VEGF and VEGFR2 was upregulated in SHED cultured with or without VEGF (50 ng/mL) for 12 h after shear stress values of 4×10^3 and 1.6×10^4 N/cm2 for 2 h. There were no significant changes in the expression of EphrinB2 and EphB4[20]. These results suggest that the EC differentiation potential of post-natal MSCs mediated by VEGFR-Notch-Ephrin B2 signaling is limited.

As mentioned above, Notch is the junctional adhesion receptor activated by binding to ligands expressed on adjacent cells. This adhesion appears in shear-stress-induced late EC differentiation of PSCs with high plasticity. Therefore, the Notch signaling pathway regulates cells to home to ischemic lesions and generate mature endothelial progeny under shear stress. More importantly, Ephrin B2, a downstream molecule of Notch, plays a key role in arteriovenous differentiation, and is not persistently expressed in post-natal MSCs under shear stress conditions. More studies are required to clarify the mechanisms.
Figure 2 Shear stress-induced signaling pathways in late endothelial differentiation. This figure describes how the mechanosensitive molecules such as Notch 1/4, vascular endothelial growth factor receptor, integrins respond to the shear stress, accompanied by cytoskeleton reorganization via RhoA, Ras, ERK 1/2 and paxillin, and activate phosphoinositide 3-kinase-protein kinase B signaling, regulating various pathways including guanosine triphosphate cyclohydrolase-tetrahydrobiopterin, histone deacetylase (HDAC) 1/3/6-P53, HoxA9 and sirnuit 1-H3. These signaling cascades influence the gene expression of stem cells, ultimately regulating vessel maintenance and reformation. Akt: Protein kinase B; GTPCH: Guanosine triphosphate cyclohydrolase; BH4: Tetrahydrobiopterin; ECM: Extracellular matrix; HDAC: Histone deacetylase; KLF2: Krüppel-like factor 2; P3K: Phosphoinositide 3-kinase; PTEN: Tumor suppressor phosphatase and tensin homolog; VEGFR: Vascular endothelial growth factor receptor.

Phosphoinositide 3-kinase-Akt signaling

Shear stress promotes early endothelial differentiation of stem cells mobilized from bone marrow, such as MSCs and early EPCs, via phosphatidylinositol 3 kinase (PI3K)-Akt signaling. Tie2 and its ligand, angiopoietin 2 (Ang2), contribute to the increase in proliferation, migration, and survival of CD34+ stem cells derived from human umbilical cord blood, and enhance neovascularization to restore injured vasculature [101-104]. Shear stress (2 × 10^{-4} N/cm^{2} for 5 min) activated PI3K and Akt signals via Tie2/Ang2 signaling in human ECs[105], which might also occur in EC differentiation of stem cells. Thus, Yang et al[37] focused on the Tie2/PI3k/Akt signaling pathway in early EPCs exposed to laminar shear stress and demonstrated that shear stress activated Tie2 and phosphorylated Akt (pAkt) in a dose-dependent manner, thus increasing in vitro endothelial differentiation and in vivo re-endothelialization capacity of human EPCs in nude mouse model, which was markedly inhibited after Tie2 knockdown or PI3K inhibition[37]. More importantly, they found that eNOS, one of the recognized vascular repair molecules of circulating EPCs[106-108], could be directly controlled by shear stress through the Tie2/PI3K/Akt pathway on account that shRNA knockdown of the Tie2 gene or pharmacological inhibition of PI3K could significantly inhibit shear-stress-induced phosphorylation of Akt and eNOS in EPCs. Recently, it was demonstrated that an increase of C-X-C chemokine receptor type 4 (CXCR4) and pAkt protein expression in MSCs and eEPCs, which could be promoted by shear stress (1.2 × 10^{-4} N/cm^{2}) for 24 h even under hypoxic conditions, facilitated these cells toward mature ECs, reflected by an increase in endothelial markers PECAM-1 and VEGFA, indicating that the CXCR4-PI3K-Akt pathway was important to regulate the early endothelial differentiation in a hypoxic microenvironment[21]. All these findings demonstrate that Tie2-PI3K-Akt signaling or CXCR4-PI3K-Akt signaling was, at least in part, concerned with the shear-stress-mediated function of MSCs and eEPCs both in vitro and in vivo.

PI3K-Akt signaling was also involved in the late stage of endothelial differentiation induced by shear stress through increasing adhesion, migration, proliferation, and finally, tube formation. The tumor suppressor phosphatase and tensin homolog
(PTEN) is activated during angiogenesis of ECs and EPCs by reducing expression of the PI3K-Akt pathway, and in turn downregulates angiogenesis and vasculogenesis [109-111]. Recently, Wu et al[112] demonstrated that shear stress (5×10^4, 1.5×10^4, and 2.5×10^4 N/cm2 for 5, 10, and 15 h) enhanced the functions of EPCs in vitro and in vivo, which was associated with downregulation of PTEN expression, phosphorylation of Akt and activation of the guanosine triphosphate cyclohydrolase (GTPCH)-tetrahydrobiopterin (BH4) pathway, which is critical to the synthesis of NO. When Akt phosphorylation specific inhibitor, LY was added, shear-stress-induced activation of the GTPCH-BH4 pathway and tube formation of late EPCs were suppressed, suggesting that the PTEN-Akt-GTPC-BH4 pathway contributed to shear-stress-enhanced functions of late EPCs during angiogenesis[112]. Moreover, VEGFR2 was another accepted upstream signaling molecule of PI3K-Akt signaling, which could further stably activate histone deacetylases (HDACs). In late EPCs derived from human umbilical cord blood, culture with shear stress (2.5×10^4, 5×10^4, 1×10^4, 2.5×10^4 N/cm2) for 24 and 48 h promoted differentiation of the cells into mature ECs, with expression of the endothelial marker VEGF-R2 increasing in a ligand-independent manner. After treatment with PI3K inhibitor and mTOR inhibitor in EPCs exposed to a shear stress of 2.5×10^4 N/cm2 for 48 h, expression of endothelial marker proteins VEGFR1, VEGFR2, VE-cadherin, and Tie2 was markedly decreased, indicating that PI3K-Akt-mTOR signaling is the most potent transduction pathway of endothelial differentiation in response to shear stress[113]. Rösseig et al[36] found that inhibition of HDACs prevented endothelial differentiation from adult progenitor cells. Furthermore, overexpression of HoxA9, a homeobox transcription factor, partially rescued the negative influence of HDAC inhibitors in the late-mediated EC maturation induced by shear stress (1.5×10^4 N/cm2 for 24 h). These results indicated that inhibition of HDACs increased expression of HoxA9 and then inhibited the endothelial lineage commitment of different progenitor cell sources induced by shear stress[36]. Furthermore, 1.2×10^4 N/cm2 laminar shear stress for 12 and 24 h enhanced the differentiation of ESC-derived progenitor cells into ECs by stabilizing and activating HDAC3 through the Flk-1-PI3K-Akt pathway, which in turn deacetylated p53, leading to p21 activation, thus promoting EC differentiation in vitro and in vivo [48]. As for the sirtuin (SIRT) family, class III HDACs, shear stress of 1.5×10^4 N/cm2 for 2, 6, 12, and 24 h upregulated SIRT1 by activation of the PI3k-Akt pathway and resulted in deacetylating histone H3, which induced EPC differentiation toward ECs in vitro [114]. HDAC6 is important for restoring primary cilia after 24 h of 2×10^4 N/cm2 shear stress applied to iPSC-derived ECs [115]. However, the HDAC inhibitor trichostatin A increases expression of EC markers, such as VE-cadherin, vWF and Flk1 in bone marrow progenitor cells and stimulates vascular network formation in vitro, indicating that the HDACs have an opposite effect and suppress endothelial differentiation [116]. Therefore, the role of HDACs in differentiation into ECs and the effect of the PI3K-Akt pathway on shear-stress-induced HDACs regulation require further research.

PI3K-Akt binding to different upstream and downstream molecules plays an important role at any stage of shear-stress-induced endothelial differentiation. Early endothelial differentiation is regulated by the Tie2-PI3K-Akt-eNOS signaling pathway in early EPCs and CXCR4-PI3K-Akt pathway in MSCs, while the inhibitory effect of PTEN on PI3K-Akt signaling and VEGFR2-PI3K-Akt-mTOR pathway occurs in late endothelial differentiation of several stem cells, including ESCs, EPCs and iPSCs. HDACs are known for their effects in regulating vascular health [117-119]. However, the mechanisms by which HDACs regulate shear-stress-induced EC differentiation via the PI3K-Akt pathway have not been elucidated.

Integrin-cytoskeleton system

Integrin[120] and cytoskeletal filaments[121] have been verified to contribute to mechanotransduction, i.e. mediating the shear-stress-induced endothelial commitment of stem cells. Integrin can be activated by shear stress and mediate cell-extracellular matrix (ECM) and cell-cell interactions, which trigger downstream signals, including RhoA, Rac (belonging to the Ras super-family of proteins), and Cdc42 activation[122, 123]. Cui et al[38] have shown that shear stress at 1.2×10^4 N/cm2 for 2, 6, 12 and 20 h upregulated the expression of integrin β1 and β3 and increased expression of EC differentiation markers in late EPCs isolated from rat bone marrow, in a time-dependent manner. This process could be inhibited by anti-β1 integrin and anti-β3 integrin antibodies that blocked the binding of integrins to the ECM. Therefore, integrins β1 and β3 play a key role in regulating the shear-stress-induced late EPC differentiation[38]. During integrin β1-related signals, Ras, one of the small G proteins, was the earliest link between mechanical perception and the downstream signal
transduction cascades[124]. Moreover, integrins associated with RhoA participate in the process of cytoskeletal rearrangement, and further EPC differentiation after applying shear stress[125]. Cheng et al[126] have demonstrated that Ras, ERK1/2 and paxillin activated by integrin β1 are important mechanosensors involved in cytoskeletal remodeling, which subsequently upregulate expression of endothelial markers vWF and CD3 in late EPCs from rat bone marrow exposed to shear stress at $1.2 \times 10^4 \text{N/cm}^2$ for 5, 30 or 60 min and promotes re-endothelialization in rats with arterial injury[126]. Additionally, to determine the order in which these signaling molecules act, pretreatment of EPCs with the anti-integrin β1 antibody (50 mg/mL), Ras-negative mutant (RasN17), ERK1/2 specific inhibitor PD98059, and the mediated silencing of the paxillin under shear stress at $1.2 \times 10^4 \text{N/cm}^2$ for 1 h was applied. This suggested that cytoskeletal remodeling is associated with shear-stress-induced endothelial differentiation by activating integrins, especially integrin β1 and β3, Ras, ERK1/2 and paxillin in sequence.

Cytoskeletal rearrangement associated with integrins might mediate the translocation of numerous signaling molecules, which in turn facilitate activation of the downstream signal transduction cascades that regulate endothelial differentiation on encountering shear stress. For instance, VEGFR-2/Flk-1 might be of importance to transduce signals through the integrin-cytoskeleton system and contribute to shear stress-induced endothelial differentiation because of the upregulation of integrin expression by VEGF during angiogenesis in mature ECs[127,128]. Also, cytoskeletal rearrangement contributes to the shear-stress-induced PI3K and Akt activation mediated by integrins, which in turn facilitates endothelial differentiation. More recently, the Notch signaling-regulating role of cytoskeletal protein vimentin has been addressed during arterial remodeling[129]. In this research, 1 Pa shear stress for 24 h enhanced Jagged 1 levels and further increased Notch signal activation. When the Notch reporter cells cocultured with vimentin knock-out cells were exposed to shear stress, the regulation of Jagged 1-Notch signaling was inhibited, indicating the importance of vimentin in Jagged 1-Notch transactivation during shear stress. Chu et al[130] also pointed out that KLF2, a member of the zinc finger transcription factor family, was essential for the regulation of the integrin-cytoskeleton system in endothelial differentiation of rat late EPCs under shear stress ($1.2 \times 10^4 \text{N/cm}^2$)[130]. Downregulation of KLF2 expression by siRNA resulted in inhibition of endothelial differentiation, with decreased protein levels of EC markers, CD31, and vWF. Moreover, blocking integrin β1/β3 with antiintegrin antibodies, or disrupting cytoskeletal protein F-actin with cytochalasin D, interfered with activation of KLF2. Upregulation of KLF2 expression is involved in shear-stress-induced differentiation of EPCs toward mature ECs, which may be associated with the integrin-cytoskeleton system.

The association of integrins and the cytoskeleton mediated by RhoA, Ras, ERK1/2, paxillin and focal adhesion kinase in turn happens at focal adhesions[131], indicating that the integrin-cytoskeleton system reacts to shear-stress-induced endothelial differentiation of attached tissue type EPCs. In addition, the integrin-cytoskeleton system, as a critical mechanosensor, responds to shear stress and activates signaling pathways that regulate EC differentiation, such as VEGFR-2/Flk-1, PI3K-Akt pathway, Notch signaling and KLF2.

CONCLUSION

The present review summarizes recent results on how shear stress influences stem cell differentiation into ECs. The underlying mechanisms involved in this process include integrin-mediated signaling, cytoskeletal reorganization, activation of intracellular signaling cascades, such as Notch signaling, PI3K-Akt pathway, VEGFR-2/Flk-1, KLF2, and nuclear translocation, leading to expressions of a variety of genes, which finally promotes an endothelium-oriented phenotype in stem cells.

However, many questions concerning the relationship between shear stress and the responses of stem cells remain unanswered. For example, stem cells can differentiate into ECs, muscle cells, osteocytes, adipocytes, and neural cells in vitro, and also are stimulated by shear stretch and compressive stress in vivo. How do the stem cells sense these physical forces to go in a specific direction? Further investigation on this issue would enhance our control or manipulation of stem cell differentiation. Individual shear stress discussed here does not seem to drive stem cells toward arterial or venous ECs. It is unlikely that a single factor will be able to determine the clear demarcation between arterial and venous phenotypes. Hence, it is necessary to combine a variety of
biophysical and biochemical cues to support more effective phenotypic specification. In addition, it is unknown if the blood flow under physiological or pathological conditions influences the EC-oriented differentiation of stem cells. Finally, with the advent of nanotechnology and microfluidic technologies, elucidating microfluidic conditions influences the EC-oriented differentiation of stem cells. Taken together, the deeper understanding of how stem cells respond to shear stress affects stem cell differentiation. In addition, it is unknown if the blood flow under physiological or pathological conditions influences the EC-oriented differentiation of stem cells.

REFERENCES

1. Pham TP, Kremer V, Boon RA. RNA-based therapeutics in cardiovascular disease. *Curr Opin Cardiol* 2020; 35: 191-198 [PMID: 32068614 DOI: 10.1097/HOC.0000000000000724]
2. Henderson K, Sligar AD, Le VP, Lee J, Baker AB. Biomechanical Regulation of Mesenchymal Stem Cells for Cardiovascular Tissue Engineering. *Adv Healthc Mater* 2017; 6 [PMID: 28945009 DOI: 10.1002/adhm.201700556]
3. Arora S, Yim EKF, Toh YC. Environmental Specification of Pluripotent Stem Cell Derived Endothelial Cells Toward Arterial and Venous Subtypes. *Front Bioeng Biotechnol* 2019; 7: 143 [PMID: 31259171 DOI: 10.3389/fbioe.2019.00143]
4. Klein D. iPSCs-based generation of vascular cells: reprogramming approaches and applications. *Cell Mol Life Sci* 2018; 75: 1141-1143 [PMID: 29243171 DOI: 10.1007/s00018-017-2730-7]
5. Ikuno T, Masumoto H, Yamazumi K, Yoshioka M, Minakata K, Ikeda T, Sakata R, Yamashita JK. Efficient and robust differentiation of endothelial cells from human induced pluripotent stem cells via lineage control with VEGF and cyclic AMP. *PLoS One* 2017; 12: e0173271 [PMID: 28288160 DOI: 10.1371/journal.pone.0173271]
6. Welsh DG, Tran CHT, Hald BO, Sancho M. The Conducted Vasomotor Response: Function, Biophysical Basis, and Pharmacological Control. *Annu Rev Pharmacol Toxicol* 2018; 58: 391-410 [PMID: 28968190 DOI: 10.1146/annurev-pharmtox-010617-052623]
7. Tian GE, Zhou JT, Liu XJ, Huang YC. Mechanoresponse of stem cells for vascular repair. *World J Stem Cells* 2019; 11: 1104-1114 [PMID: 31875871 DOI: 10.4225/wjsc.v11i12.1104]
8. Qi XY, Han Y, Jiang ZL. Mechanobiology and Vascular Remodeling: From Membrane to Nucleus. *Adv Exp Med Biol* 2018; 1097: 69-82 [PMID: 30315540 DOI: 10.1007/978-3-319-96445-4_4]
9. Dan P, Velot É, Decot V, Menu P. The role of mechanical stimuli in the vascular differentiation of mesenchymal stem cells. *J Cell Sci* 2015; 128: 2415-2422 [PMID: 26116570 DOI: 10.1242/jcs.167783]
10. Chen WT, Hsu WT, Yen MH, Changou CA, Han CL, Chen YJ, Cheng YJ, Chang TH, Lee OK, Ho JH. Alteration of mesenchymal stem cells polarity by laminar shear stimulation promoting β-catenin nuclear localization. *Biomaterials* 2019; 190-191: 1-10 [PMID: 30391708 DOI: 10.1016/j.biomaterials.2018.10.026]
11. Wang H, Ritha GM, Yan S, Li M, Chai H, Yang H, Yao Q, Chen C. Shear stress induces endothelial differentiation from a murine embryonic mesenchymal progenitor cell line. *Atheroscler Thromb Vasc Biol* 2005; 25: 1817-1823 [PMID: 15994439 DOI: 10.1161/01.ATV.0000175840.90510.a8]
12. Dong JD, Gu YQ, Li CM, Wang CR, Feng ZG, Qiu RX, Chen B, Li JX, Zhang SW, Wang ZG, Zhang J. Response of mesenchymal stem cells to shear stress in tissue-engineered vascular grafts. *Acta Pharmacol Sin* 2009; 30: 530-536 [PMID: 19417732 DOI: 10.1038/aps.2009.40]
13. Yuan L, Sakamoto N, Song G, Sato M. High-level shear stress stimulates endothelial differentiation and VEGF secretion by human mesenchymal stem cells. *Cell Mol Bioeng* 2013; 6: 220-229 [DOI: 10.1007/s12195-013-0275-x]
14. Kim DH, Heo SJ, Kim SH, Shin JW, Park SH. Shear stress magnitude is critical in regulating the differentiation of mesenchymal stem cells even with endothelial growth medium. *Biotecnol Lett* 2011; 33: 2351-2359 [PMID: 21805363 DOI: 10.1007/s10529-011-0706-5]
15. Bai K, Huang Y, Jia X, Fan Y, Wang W. Endothelium oriented differentiation of bone marrow mesenchymal stem cells under chemical and mechanical stimulations. *J Biomech* 2010; 43: 1176-1181 [PMID: 20022602 DOI: 10.1016/j.jbiomech.2009.11.030]
16. Engelmayr GC Jr, Sales VL, Mayer JE Jr, Sacks MS. Cyclic flexure and laminar flow synergistically accelerate mesenchymal stem cell-mediated engineered tissue formation: Implications for engineered heart valve tissues. *Biomaterials* 2006; 27: 6083-6095 [PMID: 16930686 DOI: 10.1016/j.biomaterials.2006.07.045]
17. Maoz TM, Chew DW, Niepomnice A, Vorp DA. Mechanical stimuli differentially control stem cell behavior: morphology, proliferation, and differentiation. *Biomech Model Mechanobiol* 2011; 10: 939-953 [PMID: 21253809 DOI: 10.1007/s10237-010-0285-8]
18. Kim DH, Heo SJ, Kang YG, Shin JW, Park SH. Shear stress and circumferential stretch by pulsatile flow directly vascular endothelial lineage commitment of mesenchymal stem cells in engineered blood vessels. *J Mater Sci Mater Med* 2016; 27: 60 [PMID: 26800691 DOI: 10.1007/s10856-016-5670-0]
19. Homayouni Moghadam F, Tayebi T, Moradi A, Nadiri H, Barzegar K, Esami G. Treatment with platelet lysate induces endothelial differentiation of bone marrow mesenchymal stem cells under fluid shear stress. *EXCLI J* 2014; 13: 638-649 [PMID: 26417289]
Huang Y et al. FSS-induced endothelial differentiation

20 Wang P, Zhu S, Yuan C, Wang L, Xu J, Liu Z. Shear stress promotes differentiation of stem cells from human exfoliated deciduous teeth into endothelial cells via the downstream pathway of VEGF-Notch signaling. *Int J Mol Med* 2018; 42: 1827-1836 [PMID: 30015843 DOI: 10.3892/ijmm.2018.3761]

21 Liu C, Tsai AL, Li PC, Huang CW, Wu CC. Endothelial differentiation of bone marrow mesenchyme stem cells applicable to hypoxia and increased migration through Akt and NFkB signals. *Cell Stem Cell* 2017; 8: 29 [PMID: 28173835 DOI: 10.1016/j.stem.2017.04.070-0]

22 Bassanez V, Barauna VG, Lavini-Ramos C, Kalil I, Schettert JT, Miyakawa AA, Krieger JE. Shear stress induces nitric oxide-mediated vascular endothelial growth factor production in human adipose tissue mesenchymal stem cells. *Stem Cells Dev* 2010; 19: 371-378 [PMID: 19754225 DOI: 10.1089/scd.2009.0195]

23 Shojaei S, Tafazzoli-Shahdpor M, Shokrgozar MA, Highghipour N. Effects of mechanical and chemical stimuli on differentiation of human adipose-derived stem cells into endothelial cells. *Int J Artif Organs* 2013; 36: 663-673 [PMID: 23918273 DOI: 10.5301/ijao.20000242]

24 Fontijn RD, Favre J, Naujikens BA, Meinstein E, Paauw NJ, Raggiose SL, Nauta TD, van den Broek MA, Weijers EM, Niessen HW, Koolwijk P, Horrevoets AJ. Adipose tissue-derived stromal cells acquire endothelial-like features upon reprogramming with SOX18. *Cell Stem Cell* 2014; 13: 367-378 [PMID: 25290189 DOI: 10.1016/j.stem.2014.09.004]

25 Fischer LJ, McIlhenny S, Tulenko T, Goleoskhe N, Zhang P, Larson R, Lombardi J, Shapiro I, DiMuzio PJ. Endothelial differentiation of adipose-derived stem cells: effects of endothelial cell growth supplement and shear force. *J Surg Res* 2009; 152: 157-166 [PMID: 19883057 DOI: 10.1016/j.jss.2008.06.029]

26 Colazzo F, Alnashed F, Sarachandra P, Carubelli I, Chester AH, Yacoub MH, Taylor PM, Somers P. Shear stress and VEGF enhance endothelial differentiation of human adipose-derived stem cells. *Growth Factors* 2014; 32: 139-149 [PMID: 25112491 DOI: 10.3109/08977194.2014.945642]

27 Hasanzadeh E, Amobediny G, Highghipour N, Gholami N, Mohammadnejad J, Shojaei S, Salehi-Nik N. The stability evaluation of mesenchymal stem cells differentiation toward endothelial cells by chemical and mechanical stimulation. *In Vitro Cell Dev Biol Anim* 2017; 53: 818-826 [PMID: 28702926 DOI: 10.1007/s11626-017-0165-y]

28 Zhang P, Baxter J, Vinod K, Tulenko TN, Di Muzio PJ. Endothelial differentiation of amniotic fluid-derived stem cells: synergism of progenesis and shear force stimuli. *Stem Cells Dev* 2009; 18: 1299-1308 [PMID: 19501512 DOI: 10.1089/scd.2008.0331]

29 Wu CC, Chao YC, Chen CN, Chien YC, Chien CC, Chiu JJ, Linju Yen B. Synergism of biochemical and mechanical stimuli in the differentiation of human placenta-derived multipotent stem cells into endothelial cells. *J Biomech* 2008; 41: 813-821 [PMID: 18190919 DOI: 10.1016/j.jbiomech.2007.11.008]

30 Del Papa N, Pignataro F. The Role of Endothelial Progenitors in the Repair of Vascular Damage in Systemic Sclerosis. *Front Immunol* 2018; 9: 1383 [PMID: 29967618 DOI: 10.3389/fimmu.2018.01383]

31 Sho E, Sho M, Nanjo H, Kawamura K, Masuda H, Dalman RL. Hemodynamic regulation of CD34+ cell localization and differentiation in experimental aerynms. *Arterioscler Thromb Vasc Biol* 2004; 24: 1916-1921 [PMID: 15319272 DOI: 10.1161/01.ATV.0000142805.20398.7c]

32 Obi S, Masuda H, Shizuno T, Sato A, Yamamoto K, Ando J, Abe Y, Asahara T. Fluid shear stress induces differentiation of circulating phenotype endothelial progenitor cells. *Am J Physiol Cell Physiol* 2012; 303: C595-C606 [PMID: 22744008 DOI: 10.1152/ajpcell.00133.2012]

33 Mazzolai L, Bouzourene K, Hayoz D, Dignat-George F, Liu JW, Bounameaux H, Dunoyer-Geindre S, Krieger JE. Characterization of human late outgrowth endothelial progenitor-derived cells under various flow conditions. *J Vasc Res* 2011; 48: 443-451 [PMID: 21625177 DOI: 10.1159/000342444]

34 Yamamoto K, Takahashi T, Asahara T, Ohura N, Sokabe T, Kamiya A, Ando J. Proliferation, differentiation, and tube formation by endothelial progenitor cells in response to shear stress. *J Appl Physiol (1985)* 2003; 95: 2081-2088 [PMID: 12857765 DOI: 10.1152/japplphysiol.00232.2003]

35 Ye C, Bai L, Yan QZ, Wang YH, Jiang ZL. Shear stress and vascular smooth muscle cells promote endothelial differentiation of endothelial progenitor cells via activation of Akt. *Clin Biomech (Bristol, Avon)* 2008; 23 Suppl 1: S118-S124 [PMID: 17928113 DOI: 10.1016/j.clinbiomech.2007.08.018]

36 Rössig L, Urbich C, Brühl T, Dernbach E, Heeschen C, Chavakis E, Sasaki K, Aicher D, Diehl F, Seeger F, Potente M, Aicher A, Zanetta L, Dejana E, Zeiher AM, Dimmeler S. Histone deacetylase activity is essential for the expression of HoxA9 and for endothelial commitment of progenitor cells. *J Exp Med* 2005; 201: 1825-1835 [PMID: 15928198 DOI: 10.1084/jem.20042097]

37 Yang Z, Xia WH, Zhang YY, Xu SY, Liu X, Zhang XY, Yu BB, Qiu YX, Tao J. Shear stress-induced activation of Tie2-dependent signaling pathway enhances reendothelialization capacity of early endothelial progenitor cells. *J Mol Cell Cardiol* 2012; 52: 1155-1163 [PMID: 22326430 DOI: 10.1016/j.yjmcc.2012.01.019]

38 Cui X, Zhang X, Yuan X, Li H, Li X, Lu H, Cheng M. Shear stress augments the endothelial cell differentiation marker expression in late EPCs by upregulating integrins. *Biochem Biophys Res Commun* 2012; 425: 419-423 [PMID: 22846566 DOI: 10.1016/j.bbrc.2012.07.115]

39 Cheng BB, Qu MJ, Wu LL, Shen Y, Yan ZQ, Zhang P, Qi YX, Jiang ZL. MicroRNA-34a targets Forkhead box J2 to modulate differentiation of endothelial progenitor cells in response to shear stress. *J Mol Cell Cardiol* 2014; 74: 4-12 [PMID: 24792364 DOI: 10.1016/j.yjmcc.2014.08.016]
Zhao J, Mitrofan CG, Appleby SL, Morrell NW, Lever AM. Disrupted Endothelial Cell Layer and Exposed Extracellular Matrix Proteins Promote Capture of Late Outgrowth Endothelial Progenitor Cells. Stem Cells Int 2016; 2016: 1406304 [PMID: 27413378 DOI: 10.1155/2016/1406304]

Obi S, Yamamoto K, Shimizu N, Kumagaya S, Masamura T, Sokabe T, Asahara T, Ando J. Fluid shear stress induces arterial differentiation of endothelial progenitor cells. J Appl Physiol (1985) 2009; 106: 203-211 [PMID: 18988767 DOI: 10.1152/japplphysiol.00197.2008]

Suzuki Y, Yamamoto K, Ando J, Matsumoto K, Matsuda T. Arterial shear stress augments the differentiation of endothelial progenitor cells adhered to VEGF-bound surfaces. Biochem Biophys Res Commun 2012; 423: 91-97 [PMID: 22634005 DOI: 10.1016/j.bbrc.2012.05.088]

Zhang C, Zeng L, Emanuelli C, Xu Q. Blood flow and stem cells in vascular disease. Cardiovasc Res 2013; 99: 251-259 [PMID: 23551927 DOI: 10.1093/cvr/cvt061]

Illi B, Scopcece A, Nanni S, Farsetti A, Morgante L, Biglioli P, Capogrossi MC, Gaetano C. Epigenetic histone modification and cardiovascular lineage programming in mouse embryonic stem cells exposed to laminar shear stress. Circ Res 2005; 96: 501-508 [PMID: 15705964 DOI: 10.1161/01.RES.0000159181.06379.63]

Ahsan T, Nerem RM. Fluid shear stress promotes an endothelial-like phenotype during the early differentiation of embryonic stem cells. Tissue Eng Part A 2010; 16: 3547-3553 [PMID: 20666609 DOI: 10.1089/teng.TEA.2010.0014]

Nsiah BA, Ahsan T, Griffiths S, Cooke M, Nerem RM, McDevitt TC. Fluid shear stress preconditioning promotes endothelial morphogenesis of embryonic stem cells within embryoid bodies. Tissue Eng Part A 2014; 20: 954-965 [PMID: 24138406 DOI: 10.1089/teng.TEA.2013.0243]

Wolfe RP, Ahsan T. Shear stress during early embryonic stem cell differentiation promotes hematopoietic and endothelial phenotypes. Biotechnol Bioeng 2013; 110: 1231-1242 [PMID: 23138937 DOI: 10.1002/bit.24782]

Zeng L, Xiao Q, Margariti A, Zhang Z, Zampetaki A, Patel S, Capogrossi MC, Yu X, Xu Q. HDAC3 is crucial in shear- and VEGF-induced stem cell differentiation toward endothelial cells. J Cell Biol 2006; 174: 1059-1069 [PMID: 16982804 DOI: 10.1083/jcb.200605113]

Yamamoto K, Sokabe T, Watabe T, Miyazono K, Yamashita JK, Ohi S, Ohura N, Matsuohita A, Kaniya A, Ando J. Fluid shear stress induces differentiation of Flk-1-positive embryonic stem cells into vascular endothelial cells in vitro. Am J Physiol Heart Circ Physiol 2005; 288: H1915-H1924 [PMID: 15576436 DOI: 10.1152/ajpheart.00956.2004]

Noguera-Troise I, Daly C, Papadopoulos NJ, Coetsee S, Boland P, Gale NW, Lin HC, Yancopoulos GD, Thurston G. Blockade of Dll4 inhibits tumour growth by promoting non-productive angiogenesis. Nature 2006; 444: 1032-1037 [PMID: 17183313 DOI: 10.1038/nature05355]

Adamo L, Naveiras O, Wenzel PL, McKinney-Freeman S, Mack PJ, Gracia-Sancho J, Suchy-Dicey A, Yoshimoto M, Lensch MW, Yoder MC, García-Cardeña G, Daley GQ. Biomechanical forces promote embryonic haematopoiesis. Nature 2009; 459: 1131-1135 [PMID: 19440194 DOI: 10.1038/nature08073]

Huang H, Nakayama Y, Qin K, Yamamoto K, Ando J, Yamashita J, Itoh H, Kanda K, Yaku H, Okamoto Y, Nemoto Y. Differentiation from embryonic stem cells to vascular wall cells under in vitro pulsatile flow loading. J Arterio Organs 2005; 8: 110-118 [PMID: 16094516 DOI: 10.1007/s10344-005-0291-2]

Huang Y, Chen X, Che J, Zhan Q, Ji J, Fan Y. Shear Stress Promotes Arterial Endothelium-Oriented Differentiation of Mouse-Induced Pluripotent Stem Cells. Stem Cells Int 2019; 2019: 1847098 [PMID: 31827524 DOI: 10.1155/2019/1847098]

Toh YC, Voldman J. Fluid shear stress primes mouse embryonic stem cells for differentiation in a self-renewing environment via heparan sulfate proteoglycan transduction. FASEB J 2011; 25: 1208-1217 [PMID: 21183594 DOI: 10.1096/fj.10-168971]

Lee JM, Kim JE, Kang E, Lee SH, Chung BG. An integrated microfluidic culture device to regulate endothelial cell differentiation from embryonic stem cells. Electrophoresis 2011; 32: 3133-3137 [PMID: 22102496 DOI: 10.1002/elps.201001061]

LaCroix AS, Rothenberg KE, Hoffman BD. Molecular-Scale Tools for Studying Mechanotransduction. Annu Rev Biomed Eng 2015; 17: 287-316 [PMID: 26421895 DOI: 10.1146/annurev-biomedeng-071114-040531]

Yamamoto K, Ando J. Emerging Role of Plasma Membranes in Vascular Endothelial Mechano-sensing. Circ J 2018; 82: 2691-2698 [PMID: 30282847 DOI: 10.1253/circj.CJ-18-0052]

Kanzer I, Tuchscheerer N, Steffens G, Simsekylizmaz S, Konshalla S, Kroh A, Simons D, Assare Y, Schober A, Bucala R, Weber C, Bernhagen J, Liehn EA. Differential roles of angiogenic chemokines in endothelial progenitor cell-induced angiogenesis. Basic Res Cardiol 2013; 108: 310 [PMID: 23184390 DOI: 10.1007/s00395-012-0310-4]

Melero-Martin JM, Khan ZA, Picard A, Wu X, Parachuri S, Bischoff J. In vivo vasculogenic potential of human blood-derived endothelial progenitor cells. Blood 2007; 109: 4761-4768 [PMID: 17327403 DOI: 10.1182/blood-2006-12-062471]

Shawber CJ, Kitajewski J. Notch function in the vasculature: insights from zebrafish, mouse and man. Bioessays 2004; 26: 225-234 [PMID: 14988924 DOI: 10.1002/bies.20004]

Swift MR, Weinstein BM. Arterial-venous specification during development. Circ Res 2009; 104: 576-588 [PMID: 19286613 DOI: 10.1161/CIRCRESAHA.108.188805]

Kume T. Novel insights into the differential functions of Notch ligands in vascular formation. J Angiogenes Res 2009; 1: 8 [PMID: 20016694 DOI: 10.1186/2040-2384-1-8]
Mesenchymal stem cells can be differentiated into endothelial cells in vitro. Oswald J et al. 10.1016/s0925-4773(01)00468-3

Biomaterials endothelial cells derived from human induced pluripotent stem cells in a biomimetic flow bioreactor. Liang D. 10.1182/blood-2008-08-174508

in mouse fetal arteries. [PMID: 16805464 DOI: 10.1161/ATV.0000234978.10658.41]

upstream of the Notch pathway during arterial endothelial differentiation. Rossant J. DOI: 10.1016/j.biomaterials.2015.02.121

endothelial Progenitors Is Regulated by Cyclin-Dependent Kinase Inhibitors Driven by Notch Khosrotehrani K. 10.1038/s41467-017-01741-8

molecular differentiation and specialization of vascular beds. Angiogenesis 2009; 12: 139-147 [PMID: 19212819 DOI: 10.1007/s10456-009-9132-x]

expression pattern of Notch, a mouse homolog of Drosophila Notch, suggests an important role in early postimplantation mouse development. Development 1992; 115: 737-744 [PMID: 14425322]

WJSC
https://www.wjgnet.com
910
July 26, 2021 | Volume 13 | Issue 7 |

Stem Cells 2004; 22:
Huang Y et al. FSS-induced endothelial differentiation

377-384 [PMID: 15153614 DOI: 10.1634/stemcells.22-3-377]

86 D’Amore PA. Vascular endothelial cell growth factor-a: not just for endothelial cells anymore. Am J Pathol 2007; 171: 14-18 [PMID: 17591949 DOI: 10.2353/ajpath.2007.070385]

87 Holmes K, Roberts OL, Thomas AM, Cross MJ. Vascular endothelial growth factor receptor-2: structure, function, intracellular signalling and therapeutic inhibition. Cell Signal 2007; 19: 2003-2012 [PMID: 17638244 DOI: 10.1016/j.cellsig.2007.05.013]

88 Wang N, Zhang R, Wang SJ, Zhang CL, Mao LB, Zhuang CY, Tang YY, Luo XG, Zhou H, Zhang TC. Vascular endothelial growth factor stimulates endothelial differentiation from mesenchymal stem cells via Rho/myocardin-related transcription factor-a signaling pathway. Int J Biochem Cell Biol 2013; 45: 1447-1456 [PMID: 23624342 DOI: 10.1016/j.biocel.2013.04.021]

89 Zhang Z, Nör F, Oh M, Cucco C, Shi S, Nör JE. Wnt-β-Catenin Signaling Determines the Vasculogenic Fate of Postnatal Mesenchymal Stem Cells. Stem Cells 2016; 34: 1576-1587 [PMID: 26866635 DOI: 10.1002/stem.2334]

90 Ge Q, Zhang H, Hou J, Yan L, Cheng W, Wang X, Dong D, Chen C, Xia J, Guo J, Chen X, Wu X. VEGF secreted by mesenchymal stem cells mediates the differentiation of endothelial progenitor cells into endothelial cells via paracrine mechanisms. Mol Med Rep 2018; 17: 1667-1675 [PMID: 29138837 DOI: 10.3892/mmr.2017.8059]

91 Bekhite MM, Müller V, Tröger SH, Müller JP, Figulla HR, Sauer H, Wartenberg M. Involvement of phosphoinositide 3-kinase class IA (PI3K 110α) and NADPH oxidase 1 (NOX1) in regulation of vascular differentiation induced by vascular endothelial growth factor (VEGF) in mouse embryonic stem cells. Cell Tissue Res 2016; 364: 159-174 [PMID: 26553657 DOI: 10.1007/s00441-015-2303-8]

92 Marchand M, Anderson EK, Phadnis SM, Longaker MT, Cooke JP, Chen B, Reijo Pera RA. Concurrent generation of functional smooth muscle and endothelial cells via a vascular progenitor. Stem Cells Transl Med 2014; 3: 91-97 [PMID: 24311701 DOI: 10.5966/sctm.2013-0124]

93 Yamashita J, Itoh H, Hirashima M, Ogawa M, Nishikawa S, Yurugi T, Naito M, Nakao K. FkI-positive cells derived from embryonic stem cells serve as vascular progenitors. Nature 2000; 408: 92-96 [PMID: 11081514 DOI: 10.1038/35040568]

94 Hayashi S, Asahara T, Masuda H, Isner JM, Losordo DW. Functional ephrin-B2 expression for promotive interaction between arterial and venous vessels in postnatal neovascularization. Circulation 2005; 111: 2210-2218 [PMID: 15851594 DOI: 10.1161/01.CIR.0000163566.07427.73]

95 Torres-Vázquez J, Kamei M, Weinstein BM. Molecular distinction between arteries and veins. Cell Tissue Res 2003; 314: 43-59 [PMID: 14505031 DOI: 10.1007/s00441-003-0771-8]

96 le Noble F, Moyon D, Pardanaud L, Yuan L, Djovon N, Matthijsen R, Bréant C, Fleury V, Eichmann A. Flow regulates arterial-venous differentiation in the chick embryo yolk sac. Development 2004; 131: 361-375 [PMID: 14681188 DOI: 10.1242/dev.00929]

97 Bai J, Wang YJ, Liu L, Zhao YL. Ephrin B2 and EphB4 selectively mark arterial and venous vessels in cerebral arteriovenous malformation. J Int Med Res 2014; 42: 405-415 [PMID: 24517927 DOI: 10.1177/0300067X13478091]

98 Carmeliet P, Jain RK. Molecular mechanisms and clinical applications of angiogenesis. Nature 2011; 473: 296-307 [PMID: 21593862 DOI: 10.1038/nature10144]

99 Fitulescu ME, Adams RH. Eph/ephrin molecules—a hub for signaling and endocytosis. Genes Dev 2010; 24: 2480-2492 [PMID: 20708717 DOI: 10.1101/gad.1973910]

100 Hainaud P, Contreras JO, Villenain A, Liu LX, Plouët J, Tobelem G, Dupuy E. The role of the vascular endothelial growth factor-Delta-like 4 ligand/Notch4-ephrin B2 cascade in tumor vessel remodeling and endothelial cell functions. Cancer Res 2006; 66: 8501-8510 [PMID: 16951162 DOI: 10.1158/0008-5472.CAN-05-4226]

101 Hildbrand P, Cirulli V, Prinsen RC, Smith KA, Torbetti BE, Salomon DR, Crisa L. The role of angiopoietins in the development of endothelial cells from cord blood CD34+ progenitors. Blood 2004; 104: 2010-2019 [PMID: 15213103 DOI: 10.1182/blood.2003-12-4219]

102 Gill KA, Brindle NP. Angiopoietin-2 stimulates migration of endothelial progenitors and their interaction with endothelium. Biochem Biophys Res Commun 2005; 336: 392-396 [PMID: 16129411 DOI: 10.1016/j.bbrc.2005.08.097]

103 Brindle NP, Saharinren P, Altalal K. Signaling and functions of angiopoietin-1 in vascular protection. Circ Res 2006; 98: 1014-1023 [PMID: 16645151 DOI: 10.1161/01.RES.0000218275.54089.12]

104 Shyu KG. Enhancement of new vessel formation by angiopoietin-2/Tie2 signaling in endothelial progenitor cells: a new hope for future therapy? Cardiovasc Res 2006; 72: 359-360 [PMID: 17059272 DOI: 10.1016/j.cardiores.2006.09.017]

105 Lee HJ, Koh GY. Shear stress activates Tie2 receptor tyrosine kinase in human endothelial cells. Biochem Biophys Res Commun 2003; 304: 390-404 [PMID: 12771129 DOI: 10.1016/s0006-291x(03)00592-8]

106 Aicher A, Heeschen C, Mildner-Rihm C, Urbich C, Baling C, Technau-Flügling K, Zelter AM, Dimmel M. Essential role of endothelial nitric oxide synthase for mobilization of stem and progenitor cells. Nat Med 2003; 9: 1370-1376 [PMID: 14556003 DOI: 10.1038/nm948]

107 Giannetti G, Doerries C, Mochurlo PS, Mueller MF, Bahlmann FH, Horvath T, Jiang H, Sorrentino SA, Steenken N, Manes C, Marzilli M, Rudolph KL, Lüscher TF, Drexler H, Landmesser U. Impaired endothelial repair capacity of early endothelial progenitor cells in hypertension: relation to endothelial dysfunction. Hypertension 2010; 55: 1389-1397 [PMID: 20458006 DOI:]
Huang Y et al. FSS-induced endothelial differentiation

10.1161/HYPERTENSIONAHA.109.141614

108 Bai YP, Xiao S, Tang YB, Tan Z, Tang H, Ren Z, Zeng H, Yang Z. Shear stress-mediated upregulation of GTP cyclohydrolase/etirolide/biotin pathway ameliorates hypertension-related decline in reendothelialization capacity of endothelial progenitor cells. *J Hypertens* 2017; 35: 784-797 [PMID: 28033126 DOI: 10.1097/HJH.0000000000001216]

109 Hamada K, Sasaki T, Koni PA, Natsumi M, Kishimoto H, Sasaki J, Yajima N, Horie Y, Hasegawa G, Naito M, Miyazaki J, Suda T, Itoh H, Nakao K, Ma TW, Nakano T, Suzuki A. The PTEN/Pi3K pathway governs normal vascular development and tumor angiogenesis. *Genes Dev* 2005; 19: 2054-2065 [PMID: 16107612 DOI: 10.1101/gad.1308805]

110 Morello F, Perino A, Hirsch E. Phosphoinositide 3-kinase signalling in the vascular system. *Cardiovasc Res* 2009; 82: 261-271 [PMID: 19038971 DOI: 10.1093/cvr/cvz325]

111 Koide M, Ikeda K, Akakabe Y, Kitamura Y, Ueyama T, Matoba S, Yamada H, Okigaki M, Matsubara H. Apoptosis regulator through modulating IAP expression (ARIA) controls the PI3K/Akt pathway in endothelial and endothelial progenitor cells. *Proc Natl Acad Sci USA* 2011; 108: 9472-9477 [PMID: 21593423 DOI: 10.1073/pnas.1101296108]

112 Wu SH, Zhang F, Yao S, Tang L, Zeng HT, Zhu LP, Yang Z. Shear Stress Triggers Angiogenesis of Late Endothelial Progenitor Cells via the PTEN/Akt/GTPCH/BH4 Pathway. *Stem Cells Int* 2020; 2020: 5939530 [PMID: 33290044 DOI: 10.1155/2020/5939530]

113 Kutikhin AG, Sinitsky MY, Yuzhalin AE, Velikanova EA. Shear stress: An essential driver of endothelial progenitor cells. *J Mol Cell Cardiol* 2018; 118: 46-69 [PMID: 29549046 DOI: 10.1016/j.yjmcc.2018.03.007]

114 Cheng BB, Yan QZ, Yao QP, Shen BR, Wang JY, Gao LZ, Li YQ, Yuan HT, Qi YX, Jiang ZL. Association of SIRT1 expression with shear stress induced endothelial progenitor cell differentiation. *J Cell Biochem* 2012; 113: 3663-3671 [PMID: 22740055 DOI: 10.1002/jcb.24239]

115 Smith Q, Macklin B, Chan XY, Jones H, Trempel M, Yoder MC, Gerecht S. Differential HDAC6 Activity Modulates Cilogenesis and Subsequent Mechanosensing of Endothelial Cells Derived from Pluripotent Stem Cells. *Cell Rep* 2018; 24: 895-908. e6 [PMID: 30044986 DOI: 10.1016/j.celrep.2018.06.083]

116 Mahapatra S, Firpo MT, Bacanamwo M. Inhibition of DNA methyltransferases and histone deacetylases induces bone marrow-derived multipotent adult progenitor cells to differentiate into endothelial cells. *Etnh Dis* 2010; 20: S1-60 [PMID: 20521387]

117 Kane AE, Sinclair DA. Sirtuins and NAD+ in the Development and Treatment of Metabolic and Cardiovascular Diseases. *Circ Res* 2018; 123: 868-885 [PMID: 30355082 DOI: 10.1161/CIRCRESAHA.118.312498]

118 Chen X, He Y, Fu W, Sahебkar A, Tan Y, Xu H, Li H. Histone Deacetylases (HDACs) and Atherosclerosis: A Mechanistic and Pharmacological Review. *Front Cell Dev Biol* 2020; 8: 581015 [PMID: 33282662 DOI: 10.3389/fcell.2020.581015]

119 Zhang HN, Dai Y, Zhang CH, Omondi AM, Ghosh A, Khanna I, Chakraborty M, Yu XB, Liang J. Sirtuins family as a target in endothelial cell dysfunction: implications for vascular ageing. *Biogerontology* 2020; 21: 495-516 [PMID: 32285331 DOI: 10.1007/s10522-020-09873-2]

120 Jalali S, del Pozo MA, Chen K, Miao H, Li Y, Schwartz MA, Shyy JY, Chien S. Integrin-mediated mechanotransduction requires its dynamic interaction with specific extracellular matrix (ECM) ligands. *Proc Natl Acad Sci USA* 2001; 98: 1042-1046 [PMID: 11158591 DOI: 10.1073/pnas.031562998]

121 Li S, Kim M, Hu YL, Jalali S, Schlaepfer DD, Hunter T, Chien S, Shyy JY. Fluid shear stress activation of focal adhesion kinase. Linking to mitogen-activated protein kinases. *J Biol Chem* 1997; 272: 30455-30462 [PMID: 9374537 DOI: 10.1074/jbc.272.48.30455]

122 Tzima E, Del Pozo MA, Kiosses WB, Mohamed SA, Li S, Chien S, Schwartz MA. Activation of Rac1 by shear stress in endothelial cells mediates both cytoskeletal reorganization and effects on gene expression. *EMBO J* 2002; 21: 6791-6800 [PMID: 12486000 DOI: 10.1093/emboj/cdf688]

123 Tzima E, Kiosses WB, del Pozo MA, Schwartz MA. Localized cd42 activation, detected using a novel assay, mediates microtubule organizing center positioning in endothelial cells in response to fluid shear stress. *J Biol Chem* 2003; 278: 31020-31023 [PMID: 12754216 DOI: 10.1074/jbc.M201179200]

124 Shyy JY, Chien S. Role of integrins in endothelial mechanosensing of shear stress. *Circ Res* 2002; 91: 769-775 [PMID: 12411390 DOI: 10.1161/01.RES.0000038487.19924.18]

125 Tzima E, del Pozo MA, Shattil SJ, Chien S, Schwartz MA. Activation of integrins in endothelial cells by fluid shear stress mediates Rho-dependent cytoskeletal alignment. *EMBO J* 2001; 20: 4639-4647 [PMID: 11539298 DOI: 10.1093/emboj/cbo74.17.4639]

126 Cheng M, Guan X, Li H, Cui X, Zhang X, Li X, Jing X, Wu H, Avsar E. Shear stress regulates late EPC differentiation via mechanosensitive molecule-mediated cytoskeletal rearrangement. *PLoS One* 2013; 8: e67675 [PMID: 23844056 DOI: 10.1371/journal.pone.0067675]

127 Urbich C, Dernbach E, Reissner A, Vasa M, Zeiher AM, Dimmeler S. Shear stress-induced endothelial cell migration involves integrin signaling via the fibronectin receptor subunits alpha(5) and beta(1). *Arterioscler Thromb Vasc Biol* 2002; 22: 69-75 [PMID: 11788463 DOI: 10.1161/hq1012.101518]

128 Lee TH, Seng S, Li H, Kennel SJ, Avraham HK, Avraham A. Shear regulation by vascular endothelial growth factor in human brain microvascular endothelial cells: role of alphabeta1 integrin in angiogenesis. *J Biol Chem* 2006; 281: 40450-40460 [PMID: 17085437 DOI:]
van Engeland NCA, Suarez Rodriguez F, Rivero-Müller A, Ristori T, Duran CL, Stassen OMJA, Antfolk D, Driessen RCH, Ruohonен S, Ruohonен ST, Nuutinen S, Savontaus E, Loerakker S, Bayless KJ, Sjöqvist M, Bouten CVC, Eriksson JE, Sahlgren CM. Vimentin regulates Notch signaling strength and arterial remodeling in response to hemodynamic stress. *Sci Rep* 2019; 9: 12415 [PMID: 31455807 DOI: 10.1038/s41598-019-48218-w]

Chu HR, Sun YC, Guo Y, Guan XM, Yan H, Cui XD, Zhang XY, Li X, Li H, Cheng M. Function of Krüppellike factor 2 in the shear stressinduced cell differentiation of endothelial progenitor cells to endothelial cells. *Mol Med Rep* 2019; 19: 1739-1746 [PMID: 30628700 DOI: 10.3892/mmr.2019.9819]

Bershadsky AD, Balaban NQ, Geiger B. Adhesion-dependent cell mechanosensitivity. *Annu Rev Cell Dev Biol* 2003; 19: 677-695 [PMID: 14570586 DOI: 10.1146/annurev.cellbio.19.111301.153011]
