Membrane-mediated action of the endocannabinoid anandamide on membrane proteins: implications for understanding the receptor-independent mechanism

Djalma Medeiros1,2,*, Laíz da Costa Silva-Gonçalves1,*, Annielle Mendes Brito da Silva1, Marcia Perez dos Santos Cabrera3 & Manoel Arcisio-Miranda1

Endocannabinoids are amphiphilic molecules that play crucial neurophysiological functions acting as lipid messengers. Antagonists and knockdown of the classical CB1 and CB2 cannabinoid receptors do not completely abolish many endocannabinoid activities, supporting the idea of a mechanism independent of receptors whose mode of action remains unclear. Here we combine gramicidin A (gA) single channel recordings and membrane capacitance measurements to investigate the lipid bilayer-modifying activity of endocannabinoids. Single channel recordings show that the incorporation of endocannabinoids into lipid bilayers reduces the free energy necessary for gramicidin channels to transit from the monomeric to the dimeric conformation. Membrane capacitance demonstrates that the endocannabinoid anandamide has limited effects on the overall structure of the lipid bilayers. Our results associated with the theory of membrane elastic deformation reveal that the action of endocannabinoids on membrane proteins can involve local adjustments of the lipid/protein hydrophobic interface. The current findings shed new light on the receptor-independent mode of action of endocannabinoids on membrane proteins, with important implications towards their neurobiological function.

Endocannabinoids are amphiphilic molecules which are synthesized from membrane phospholipids within the nervous system. In association with their G-protein coupled receptors they form the so-called endocannabinoid system1–5. This lipid system, alone or in combination with other signaling systems, is involved in a number of fundamental neurophysiological processes, including neurogenesis, reward, cognition, learning, memory acquisition, and pain sensation6–8. Disorders of the endocannabinoid system have been correlated with several neuro-inflammatory diseases such as Alzheimer, Parkinson, Huntington, Multiple Sclerosis, and Amyotrophic Lateral Sclerosis9–12. Also, the hyperactivity of this system is associated to metabolic disorders and obesity13.

The best studied endocannabinoids are the N-arachidonylethanolamide (AEA or anandamide) and the 2-arachidonoylglycerol (2-AG) (Fig. 1a). They consist of an amide or an ester head, conjugated with an arachidonyl chain (20 C with 4 unsaturations, ω6). Although it is well accepted that their (patho)physiological activities mainly occur by binding to cannabinoid receptors or TRP channels14,15, AEA and 2-AG can also produce effects that are not mediated by these mechanisms16–22. In fact, it has been shown that the endocannabinoids can modulate the activity of many membrane proteins even in the presence of antagonists of their classical receptors. However, the molecular basis underlying the receptor-independent mechanism remains poorly understood.

The modulation of the activity of different types of membrane proteins with diverse amino acid sequences and membrane topologies suggests the lack of a specific binding site for the endocannabinoids into those proteins. In
consonance, a common mechanism arising from changes in lipid bilayer properties that modifies the energy of hydrophobic coupling between protein and their host bilayer could be hypothesized. Indeed, several studies have shown that different classes of amphiphiles can partition into the lipid bilayer and regulate the membrane protein function by altering the physico-chemical properties of the lipid bilayer.

The insertion of a membrane protein into the hydrophobic environment of the lipid bilayer is associated with an energy cost, the bilayer deformation energy (ΔG_{def}), which is related to the adjustments of the lipid bilayer to the membrane protein hydrophobic portion. Andersen and others $26-34$, using the theory of membrane elastic deformation, have extensively analyzed the association between different conformations of a membrane protein and ΔG_{def} (for review see Lundbaek et al. 35). The free energy cost for the conformational change of a membrane protein from state I to state II ($\Delta G_{\text{total}}^{\text{II-I}}$) depends on contributions from the membrane protein ($\Delta G_{\text{protein}}^{\text{II-I}}$) and the bilayer ($\Delta G_{\text{bilayer}}^{\text{II-I}}$). Thus, amphiphilic molecules that change the physico-chemical properties of the lipid bilayer as elasticity, thickness, and intrinsic curvature, may alter the conformational distribution of membrane proteins by changing $\Delta G_{\text{bilayer}}^{\text{II-I}}$.

Here we combined single channel gramicidin A recordings and membrane capacitance measurements to study the bilayer-modifying properties of endocannabinoids. Our observations reveal that, in a model free of cannabinoid receptors, these amphiphilic molecules may reduce the free energy for a membrane protein to transit between different conformational states. Membrane capacitance results show that the insertion of endocannabinoids into model phospholipid bilayers has limited effects on the bilayer thickness, supporting the idea of local modifications. Together, these data imply on the proposal of a new mode of action for the endocannabinoids, independent of receptors and based on their effects on membrane/protein hydrophobic interface. This membrane-mediated action may serve as a good model for understanding the endocannabinoid’s receptor-independent effects observed in neurobiological and other systems.

Results

AEA modifies gA single channel activity. To test the hypothesis that endocannabinoids are bilayer-modifying amphiphiles, we first measured the effects of AEA on the single channel activity of gramicidin A (gA) channels. A gA monomer is a 15-amino acids peptide, right-handed β-helical, single-stranded, with 1.3 nm length.36

In a bilayer, two nonconductive gA monomers from opposite leaflets can be brought into contact and form the conductive gA channel by establishing formyl end-bonds via six head-to-head hydrogen bonds.35 The gA channel formation involves a local deformation of the lipid bilayer which occurs to match the hydrophobic length of the channel (Fig. 1b). There is an energy cost associated with this phenomenon. In opposition, the lipid bilayer...
responds exerting a disjoining force (F_{dis}) on the gA channel, where the magnitude of F_{dis} is mainly determined by the elastic properties of the lipid bilayer. The kinetics of gA channel formation and dissociation is described by the reaction

$$M + M \rightleftharpoons D$$

where M and D represent the gA monomer and dimer, respectively, and k_1 and k_{-1} are the association and dissociation rate constants, respectively.

AEA is a strong modifier of gA activity in DOPC bilayers (Fig. 1c), increasing the appearance rate of gA channels. To quantify this variation, we measured the effects on channel appearance frequency (f) and open channel lifetime (τ) in DOPC and DPhPC bilayers. The x-axis represents the hydrophobic mismatch between gA and the phospholipids used in this study. gA estimated length is based on results from ref. 36. DOPC and DPhPC estimated lengths are based on results from refs. 38–40.

Figure 2. Hydrophobic mismatch-dependent effects of AEA on gA channels. (a) Molecular structures of phospholipids used in this study. (b) Effects of 3 μmol L$^{-1}$ AEA on gA channel appearance frequency (f) and open channel lifetime (τ) in DOPC and DPhPC bilayers. The x-axis represents the hydrophobic mismatch between gA and the phospholipids used in this study. gA estimated length is based on results from ref. 36. DOPC and DPhPC estimated lengths are based on results from refs. 38–40.

Global vs. local membrane modification. The above findings raise the following question: If AEA is a bilayer-modifier amphiphile, which are the lipid bilayer properties that it alters? To answer this question we investigated global changes on lipid bilayers by membrane capacitance measurements, which are mainly determined by the thickness of the membrane. This parameter is largely determined by the lipid constituents of the membrane. Figure 3 shows the effects of AEA on the global structure of DOPC bilayers, indicating that the addition of AEA molecules does not induce significant changes in membrane thickness (Fig. 3b). Thus, these results suggest that global changes on the lipid bilayer cannot account for the observed effects of AEA on the gA channel activity.
Next, we evaluated the effects of AEA on gA channel kinetic parameters, k_1 and k_{-1}. Changes on these parameters have been associated with local deformation of lipid bilayers\(^{33,43}\). Considering that f and τ can be related to gA channel kinetics by the following relations: $f/f_{\text{control}} = k_1/k_{1,\text{control}}$ and $\tau_{\text{control}}/\tau = k_{-1}/k_{-1,\text{control}}$, and the equilibrium constant $K_{eq}/K_{eq,\text{control}} = (f \times \tau)/(f_{\text{control}} \times \tau_{\text{control}})$, we can obtain the changes in gA channel energetics as

$$\Delta \Delta G_x = \Delta G_x - \Delta G_{x,\text{control}} = -k_BT \ln \left(k_{x,\text{control}}/k_x \right)$$

and

$$\Delta \Delta G^0 = \Delta G^0 - \Delta G_{x,\text{control}}^0 = -k_BT \ln \left(K_{eq}/K_{eq,\text{control}} \right)$$

where $\Delta \Delta G_x$ and $\Delta \Delta G^0$ are the AEA-induced difference in the activation and equilibrium free energies relative to the control (i.e., in the absence of AEA), respectively. The subscript x denotes 1 or -1, k_B is the Boltzmann’s constant, and T is the temperature (Kelvin).

We observed that AEA-induced changes on gA channel activity is a linear function of the relation between $\Delta \Delta G^1$ vs. $\Delta \Delta G^0$, with high r-values ($\text{DOPC} = 0.997$ and DPhPC = 0.997) (Fig. 4). These results can be interpreted as a reduction in the activation energy for the monomeric subunit association ($\Delta \Delta G^1$) and an increase in the activation energy for the dimer dissociation ($\Delta \Delta G^{-1}$). These observations are consistent with the fact that modifications in the energy of a reaction lead into a linear rate-equilibrium relation between the activation free energy (ΔG^\ddagger) and the equilibrium free energy (ΔG^0)\(^{33,43}\).

Using the theory of membrane elastic deformation (see Lundbaek et al., for a review)\(^{35}\), several works have shown that the energetic cost associated with amphiphile-induced alterations in gA channels (ΔG^0) is primarily due to changes in bilayer deformation energy ($\Delta G_{\text{bilayer}}^0$), which is related with local deformations (bending or compression) into the lipid/protein hydrophobic interface. In short, the changes in $\Delta G^1_{x,\text{bilayer}}$ are due to changes in $\Delta G^2_{1,\text{bilayer}}$, and the slope α of the relation between $\Delta \Delta G^1_{x,\text{bilayer}}$ vs. $\Delta \Delta G^0_{\text{bilayer}}$ can be written as

$$\alpha = \Delta \Delta G^1_{x,\text{bilayer}}/\Delta \Delta G^0_{\text{bilayer}} = [(l + \delta) - d_0]^2/(l - d_0)^2$$

where δ is the distance of ~ 0.16 nm that separates the gA monomers in the nonconductive state\(^{33}\), l is the gA hydrophobic length, and d_0 is the bilayer hydrophobic length.

We found α equal to 0.776 and 0.775 for DOPC and DPhPC bilayers, respectively, in good accordance with the previous reported value of 0.83 for many structural diverse amphiphiles\(^{43}\).
Discussion

Our understanding of the mode of action of amphiphilic molecules on membrane proteins remains limited. Two mechanisms that do not exclude each other have been proposed. A direct mechanism that requires the binding of the molecules at specific sites within the protein and a nonspecific mechanism whose mode of action involves the perturbation of the host lipid bilayer. For endocannabinoids, the most widespread mode of action involves their binding to G-coupled receptors or TRP channels\(^\text{14,15}\). However, this mechanism does not fully explain the endocannabinoid action on membrane proteins. For example, AEA reduces the ionic currents of many voltage-gated ion channels even in the presence of antagonists of their classical CB\(_1\) and CB\(_2\) receptors\(^\text{16–19,21,22}\). The action of endocannabinoids that alters the function of multiple membrane proteins can indicate the existence of a common, receptor-independent, and more general mechanism.

Thus, in this study we used an inter-disciplinary approach to address the nature of the receptor-independent mode of action of endocannabinoids. Electrophysiology techniques provided the basis to characterize the lipid bilayer-modifying activity of these amphiphiles and allowed to integrate the present results with the well-established theory of membrane elastic deformation. Our experimental strategy of using gA single channel and membrane capacitance measurements to have an energetic examination of the process has followed the studies by Andersen and Lundbaek\(^\text{33,44,45}\). This strategy has been successfully employed to analyze the promiscuous action of diverse structural amphiphilic drugs and has shown good correlation with the action of these drugs with more complex membrane proteins.

Our results of gA single channel show that AEA increases the channel appearance frequency (f) and the average lifetime (τ) of the channel open state. Additionally, the observed effects are more potent in membranes with higher hydrophobic mismatch. Indeed, 3 μmol L\(^{-1}\) AEA increased f by a factor of 7.2 in DOPC (18:1) versus 4 in DPhPC (16:0) bilayers. τ was increased by a factor of 1.8 in DOPC versus 1.4 in DPhPC.

Following the footsteps of the theory of membrane elastic deformation, the changes in f and τ indicate that AEA increases the bilayer elasticity (bending or compression), reducing the bilayer deformation energy associated with channel formation\(^\text{35}\). The correlation between channel kinetics and energetics shows that the action of
AEA on gA channels has a linear rate-equilibrium relation with a slope determined by $\Delta \Delta G_{\text{bilayer}}^\circ / \Delta \Delta G^\circ$. This result provides strong evidence for the hypothesis that the effects of AEA are mediated by a more general and nonspecific mechanism associated with locally adjusting the bilayer hydrophobic thickness to match the channel length. Similar results with other amphiphiles, including curcumin, DHA, and PIP2, have also been interpreted to mean that their effects are not due to a direct modification of the membrane protein properties, but are related to a nonspecific modification of the bilayer properties.

Concluding Remarks

Endocannabinoids are known to exert many neurophysiological functions and are also involved in neuropathological conditions. By applying electrophysiology studies we provide direct evidence of a membrane-mediated action for the endocannabinoids on membrane proteins. The lack of evidence for a direct binding on gA and the limited changes on the overall structure of the lipid bilayer supports the hypothesis of a local action for the endocannabinoids. This is also sustained by an energetic analysis following the theory of membrane elastic deformation that shows a linear rate-equilibrium relation for the action of AEA on gA single channel activity. Given the remarkable agreement between our endocannabinoids’ data and results from other amphiphiles, this study proposes a mechanistic model for the receptor-independent action of the endocannabinoids. By changing the lipid bilayer elastic properties, the endocannabinoids can modulate the activities of embedded proteins. Thus, our findings may benefit other endocannabinoids’ signaling studies by providing for the first time a molecular explanation of the receptor-independent mode of action suggested by several studies. However, the deciphering of the membrane-mediated action of endocannabinoids in more complex neurological systems with all possible endocannabinoids’ targets will be an experimental challenge in the next years, as well as the understanding of the endocannabinoids’ structural features and the functional interaction between the receptor-dependent and receptor-independent modes of action of these amphiphilic molecules. At the same time, understanding this complex scenario will define specific functions for each mode of action and may provide useful templates for the design of new therapeutics that mimic endocannabinoids.

Experimental Section

Materials. We purchased the following lipids from Avanti Polar Lipids, Inc. (Alabama, USA): 1,2-diphtanoyl-sn-glycero-3-phosphocholine (DPhPC) and 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC). Gramicidin A (gA), Arachidonylethanolamide (AEA), 2-Arachidonyl glycerol (2-AG), cholesterol, and all other chemicals were purchased from Sigma-Aldrich (Missouri, USA). gA was further purified by high performance liquid chromatography (HPLC) using the Vydac C18 column and a gradient of 10 to 100% acetonitrile.

Electrophysiology experiments. Planar lipid bilayers were formed following the “painting method” in a custom-made bilayer setup fabricated in acrylic with two compartments – cis (front) and trans (posterior) – of 4 mL capacity. These two compartments were separated by a thin Polyethylene film that contained one aperture with a diameter of ~150 µm. For the bilayer formation, the desired lipid solution (25 mg mL$^{-1}$ stock solution) was spread across the polyethylene film aperture. The compartments cis and trans were filled with an electrolyte solution composed of 0.1 mol L$^{-1}$ HEPES and 1 mol L$^{-1}$ KCl, pH 7.4. All experiments were carried out at room temperature (23 ± 2°C). The electrical access to the bath solutions was made by a pair of Ag/AgCl electrodes. The cis compartment was held at ground and the trans compartment was clamped at chosen potential by a patch-clamp amplifier (PC-One, Dagan Corporation, Minnesota, USA) configured in voltage-clamp mode. The amplifier was connected to a data acquisition board (DigiData 1440 A, Molecular Devices, USA) set at a sampling frequency of 1 kHz. Data acquisition was carried out using Axoscope 10.2 (Molecular Devices, USA).

For single-channel recordings, after formation of a stable lipid bilayer, small volumes (0.5 µL) of a 300 nmol L$^{-1}$ gA solution in ethanol were added to both compartments of the bilayer setup until one gA channel could be observed in the bilayer. After each addition of gA, the bath solutions were stirred for at least two minutes. To measure the single-channel conductance of gA channels, current-versus-time traces were recorded while a voltage of ~100 mV was applied across the lipid bilayers. The frequency of gA current events largely agrees with the theoretical arguments presented above and also goes against a direct binding within the protein.
from the number of channel events divided by the total recording time. Open state single-channel g \(A \) lifetimes (\(\tau \)) were obtained by fitting survivor histograms with single-exponential function as

\[
\frac{N(t)}{N(0)} = e^{-\frac{t}{\tau}}
\]

where \(N(0) \) is the number of channels with lifetime longer than the time \(t \).

For membrane capacitance measurements, an arbitrary waveform generator (33521 A Agilent Technologies, USA) was connected to the voltage input channel of the amplifier and the membrane capacitance (\(C_m \)) was obtained using an auxiliary triangular voltage pulse of 1 Hz frequency and 100 mVp-p amplitude. \(C_m \) values were determined as\(^{55} \)

\[
C_m = \frac{I_c}{(dV/dt)}
\]

where \(I_c \) is the membrane capacitive current and \(dV/dt \) is the sweep rate of the auxiliary triangular voltage pulse.

The bilayer thickness (\(dB \)) was then obtained as

\[
d_B = \frac{A}{C_m}
\]

where \(\varepsilon \) is the material dielectric constant, and \(A \) is the membrane area.

Aliquots of endocannabinoid ligands (5 mmol L\(^{-1} \) stock solutions in ethanol) were added, at the desired concentration, to both compartments of the lipid bilayer setup. Final ethanol concentration was less than 0.1% and showed no change, per se, on the electrical parameters of the lipid bilayers or \(g_A \) single channel activity.

g \(A \) single channel activity and the membrane capacitance were analyzed with the Clampfit software 10.4 (Axon Instruments, CA, USA). Statistical analyses were performed with GraphPad Prism 6.0 (GraphPad Software, Inc., CA, USA) and the significance (\(p < 0.05 \)) was determined by two-way ANOVA test and Bonferroni’s method. The results are shown as mean ± s.e.m.

References

1. Demuth, D. G. & Molleman, A. Cannabinoid signalling. *Life Sci.* 78, 549–563 (2006).
2. Di Marzo, V. The endocannabinoid system: its general strategy of action, tools for its pharmacological manipulation and potential therapeutic exploitation. *Pharmacol. Res.*** 60, 77–84 (2009).
3. Castillo, P. E., Younts, T. J., Chávez, A. E. & Hashimotodani, Y. Endocannabinoid signaling and synaptic function. *Neuron* 76, 70–81 (2012).
4. Elphick, M. R. The evolution and comparative neurobiology of endocannabinoid signalling, *Philos. Trans. R. Soc. Lond. B. Biol. Sci.* 367, 3201–15 (2012).
5. Blankman, J. L. & Cravatt, B. F. Chemical probes of endocannabinoid metabolism. *Pharmacol. Rev.*** 65, 849–71 (2013).
6. Mechoulam, R. & Parker, L. A. The endocannabinoid system and the brain. *Annu. Rev. Psychol.* 64, 21–47 (2013).
7. Maccarrone, M., Guzmán, M., Mackie, K., Doherty, P. & Harkany, T. Programming of neural cells by (endo)cannabinoids: from physiological rules to emerging therapies. *Nat. Rev. Neurosci.* 15, 786–801 (2014).
8. Parsons, L. H. & Hurd, Y. L. Endocannabinoid signalling in reward and addiction. *Nat. Rev. Neurosci.* 16, 579–94 (2015).
9. Piomelli, D. The molecular logic of endocannabinoid signalling. *Nat. Rev. Neurosci.* 4, 873–884 (2003).
10. Klein, T. W. Cannabinoid-based drugs as anti-inflammatory therapeutics. *Nat. Rev. Immunol.* 5, 400–11 (2005).
11. Maccarrone, M., Battista, N. & Centonze, D. The endocannabinoid pathway in Huntington’s disease: a comparison with other neurodegenerative diseases. *Prog. Neurobiol.* 81, 349–79 (2007).
12. Farkas, S. & Bucsko, P. \(11^{th} \)SD-7015 reveals fine modalities of CB1 cannabinoid receptor density in the prefrontal cortex during progression of Alzheimer’s disease. *Neurochem. Int.* 60, 286–91 (2012).
13. Hansen, H. S. & Freie, T. A. N-acylthanolamines, anandamide and food intake. *Biochem. Pharmacol.* 78, 553–560 (2009).
14. Reggio, P. H. Endocannabinoid binding to the cannabinoid receptors: what is known and what remains unknown. *Curr. Med. Chem.* 17, 1468–86 (2010).
15. Janero, D. R. & Makriyannis, A. Terpenes and lipids of the endocannabinoid and transient-receptor-potential-channel biosignaling systems. *ACS Chem. Neurosci.* 5, 1097–106 (2014).
16. Chemin, J., Monteil, A., Perez-Reyes, E., Nargeot, J. & Lory, P. Direct inhibition of T-type calcium channels by the endogenous cannabinoid anandamide. *EMBO J.* 20, 7033–40 (2001).
17. Oz, M. Receptor-independent actions of cannabinoids on cell membranes: focus on endocannabinoids. *Pharmacol. Ther.* 111, 114–44 (2006).
18. Oz, M. Receptor-independent effects of endocannabinoids on ion channels. *Curr. Pharm. Des.* 12, 227–39 (2006).
19. Fisyunov, A., Tsintsadze, V., Min, R., Burnashev, N. & Lozovaya, N. Cannabinoids modulate the P-type high-voltage-activated calcium currents in purkinje neurons. *J. Neurophysiol.* 96, 1267–77 (2006).
20. Mato, S., Alberdi, E., Ledent, C., Watanabe, M. & Matute, C. CB1 cannabinoid receptor-dependent and -independent inhibition of depolarization-induced calcium influx in oligodendrocytes. *Glia* 57, 295–306 (2009).
21. Barana, A. & et al. Endocannabinoids and cannabinoid analogues block cardiac hKv1.5 channels in a cannabinoid receptor-independent manner. *Cardiovasc. Res.* 85, 56–67 (2010).
22. Lishko, P. V., Botchkina, I. L., Fedorenko, A. & Kirichok, Y. Acid extrusion from human spermatozoa is mediated by flagellar voltage-gated proton channel. *Cell Biol. Physiol.* 140, 327–37 (2010).
23. Tillman, T. S. & Cascio, M. Effects of membrane lipids on ion channel structure and function. *Cell Biochem. Biophys.* 38, 161–90 (2003).
24. Andersen, O. S. & Koepp, R. E. Bilayer thickness and membrane protein function: an energetic perspective. *Annu. Rev. Biophys. Biomol. Struct.* 36, 107–30 (2007).
25. Marsh, D. Protein modulation of lipids, and vice-versa, in membranes. *Biochim. Biophys. Acta* 1778, 1545–75 (2008).
26. Huang, H. W. Deformation free energy of bilayer membrane and its effect on gamicidin channel lifetime. *Biophys. J.* 50, 1061–70 (1986).
27. Heilrich, P. & Jakobsen, E. Calculation of deformation energies and conformations in lipid membranes containing gamicidin channels. *Biophys. J.* 57, 1075–84 (1990).
28. Aranda-Espinoza, H., Berman, A., Dan, N., Pincus, P. & Safran, S. Interaction between inclusions embedded in membranes. *Biophys. J.* 71, 648–56 (1996).
29. Nielsen, C., Goulain, M. & Andersen, O. S. Energetics of inclusion-induced bilayer deformations. *Biophys. J.* 74, 1966–83 (1998).
30. Nielsen, C. & Andersen, O. S. Inclusion-induced bilayer deformations: effects of monolayer equilibrium curvature. *Biophys. J.* 79, 2583–604 (2000).
31. Partenskii, M. B. & Jordan, P. C. Membrane deformation and the elastic energy of insertion: Perturbation of membrane elastic constants due to peptide insertion. *J. Chem. Phys.* 117, 10768–10776 (2002).
32. Ingólfsson, H. I., Koepe, R. E. & Andersen, O. S. Curcumin is a modulator of bilayer material properties. *Biochemistry* 46, 10384–91 (2007).
33. Lundbaek, J. A., Koepe, R. E. & Andersen, O. S. Amphiphile regulation of ion channel function by changes in the bilayer spring constant. *Proc. Natl. Acad. Sci. USA* 107, 15427–30 (2010).
34. Lee, K. I., Pastor, R. W., Andersen, O. S. & Inn, W. Assessing smectic liquid-crystal continuum models for elastic bilayer deformations. *Chem. Phys. Lipids* 169, 19–26 (2013).
35. Lundbaek, J. A., Collingwood, S. A., Ingólfsson, H. I., Kapoor, R. & Andersen, O. S. Lipid bilayer regulation of membrane protein function: ganglioside channels as molecular force probes. *J. R. Soc. Interface* 7, 373–95 (2010).
36. Killian, J. A. Gramicidin and ganglioside-lipid interactions. *Biochim. Biophys. Acta* 1113, 391–425 (1992).
37. Di Pasquale, E., Chahinian, H., Sanchez, P. & Fantini, J. The insertion and transport of anandamide in synthetic lipid membranes are both cholesterol-dependent. *PLoS One* 4, e4989 (2009).
38. Redwood, W. R., Pfeiffer, F. R., Weisbach, J. A. & Thompson, T. E. Physical properties of bilayer membranes formed from a synthetic saturated phospholipid in n-decane. *Biochim. Biophys. Acta* 233, 1–6 (1971).
39. Benz, R., Fröhlich, O., Laüger, P. & Montal, M. Electrical capacity of black lipid films and of lipid bilayers made from monolayers. *Biochim. Biophys. Acta* 394, 323–34 (1975).
40. Hwang, T.-C., Koepe, R. E. & Andersen, O. S. Genistein can modulate channel function by a phosphorylation-independent mechanism: importance of hydrophobic mismatch and bilayer mechanics. *Biochemistry* 42, 13646–58 (2003).
41. Rusinova, R., Koepe, R. E. & Andersen, O. S. A general mechanism for drug promiscuity: Studies with amiodarone and other antiarrhythmics. *J. Gen. Physiol.* 146, 463–475 (2015).
42. Gentet, L. J., Stuart, G. J. & Clements, J. D. Direct Measurement of Specific Membrane Capacitance in Neurons. *Biophys. J.* 79, 314–320 (2000).
43. Greisen, P. et al. Linear rate-equilibrium relations arising from ion channel-bilayer energetic coupling. *Proc. Natl. Acad. Sci. USA* 108, 12717–12722 (2011).
44. Lundbaek, J. A. et al. Regulation of sodium channel function by bilayer elasticity: the importance of hydrophobic coupling. Effects of Micelle-forming amphiphiles and cholesterol. *J. Gen. Physiol.* 123, 599–621 (2004).
45. Lundbaek, J. A. et al. Capsaicin regulates voltage-dependent sodium channels by altering lipid bilayer elasticity. *Mol. Pharmacol.* 68, 680–9 (2005).
46. Bruno, M. J., Koepe, R. E. & Andersen, O. S. Docosahexaenoic acid alters bilayer elastic properties. *Proc. Natl. Acad. Sci. USA* 104, 9638–43 (2007).
47. Rusinova, R., Hobart, E. A., Koepe, R. E. & Andersen, O. S. Phosphoinositides alter lipid bilayer properties. *J. Gen. Physiol.* 141, 673–90 (2013).
48. Dainese, E. et al. Impact of embedded endocannabinoids and their oxygenation by lipoygenase on membrane properties. *ACS Chem. Neurosci.* 3, 386–92 (2012).
49. Lee, A. G. Lipids and their effects on membrane proteins: evidence against a role for fluidity. *Prog. Lipid Res.* 30, 323–48 (1991).
50. Cantor, R. S. Lateral Pressures in Cell Membranes: A Mechanism for Modulation of Protein Function. *J. Phys. Chem. B* 101, 1723–1725 (1997).
51. Cantor, R. S. The influence of membrane lateral pressures on simple geometric models of protein conformational equilibria. *Chem. Phys. Lipids* 101, 45–56 (1999).
52. Ingólfsson, H. I. et al. Phytochemicals perturb membranes and promiscuously alter protein function. *ACS Chem. Biol.* 9, 1788–1798 (2014).
53. Stankovic, C. J., Delfino, J. M. & Schreiber, S. L. Purification of gramicidin A. *Anal. Biochem.* 184, 100–3 (1990).
54. Arcisio-Miranda, M., Abdulkader, F., Brunaldi, K., Curi, R. & Procopio, J. Proton flux induced by free fatty acids across phospholipid bilayers: new evidences based on short-circuit measurements in planar lipid membranes. *Arch. Biochem. Biophys.* 484, 63–9 (2009).
55. Arcisio-Miranda, M., dos Santos Cabrera, M. P., Konno, K., Rangel, M. & Procopio, J. Effects of the cationic antimicrobial peptide eumenitin from the venom of solitary wasp Eumenes rubronotatus in planar lipid : surface charge and pore formation activity. *Toxicon* 51, 736–45 (2008).

Acknowledgements

This study was supported by research grants from Fundação de Amparo à Pesquisa do Estado de São Paulo (Processo Fapesp n° 2012/02065-0 to M.A.-M. and Processo Fapesp n° 2012/24259-0 and n° 2014/08372-7 to M.P.S.C.) and a grant from Conselho Nacional de Desenvolvimento Científico e Tecnológico (Processo CNPq n° 477780/2010-5 to M.A.-M.), L.C.S.-G. (Processo CNPq n° 142066/2014-1) is CNPq fellowship recipient. A.M.B.S is Capes fellowship recipient.

Author Contributions

M.A.-M., D.M., L.C.S.-G., and A.M.B.S. performed and analyzed the electrophysiology experiments. M.A.-M. and M.P.S.C. supervised the project. D.M., L.C.S.-G., M.P.S.C., and M.A.-M. wrote the manuscript. All authors reviewed the manuscript.

Additional Information

Supplementary information accompanies this paper at http://www.nature.com/srep

Competing financial interests: The authors declare no competing financial interests.

How to cite this article: Medeiros, D. et al. Membrane-mediated action of the endocannabinoid anandamide on membrane proteins: implications for understanding the receptor-independent mechanism. *Sci. Rep.* 7, 41362; doi: 10.1038/srep41362 (2017).

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
