The Evolution of X-ray Bursts in the “Bursting Pulsar”
GRO J1744–28

J.M.C. Court1,\star, D. Altamirano1, A.C. Albayati2, A. Sanna3, T. Belloni4, T. Overton5, N. Degenaar6, R. Wijnands6, K. Yamaoka7, A. B. Hill8,1, C. Knigge1

1School of Physics and Astronomy, University of Southampton, Southampton, SO17 1BJ, UK
2School of Physics and Astronomy, Queen Mary University of London, London, E1 4NS, UK
3Dipartimento di Fisica, Università degli Studi di Cagliari, SP Monserrato-Sestu km 0.7, 09042 Monserrato, Italy
4Osservatorio Astronomico di Brera, Via E. Bianchi 46, 23807 Merate (LC), Italy
5Department of Physics, Royal Holloway, University of London, Egham, TW20 0EX, UK
6Anton Pannekoek Institute for Astronomy, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands
7Department of Physics, Nagoya University, Aichi 464-8602, Japan
8HAL24K, Building B.3, Johan Huizingalaan 400, 1066 JS Amsterdam, The Netherlands

Accepted XXX. Received YYY; in original form ZZZ

ABSTRACT

GRO J1744–28, commonly known as the ‘Bursting Pulsar’, is a low mass X-ray binary containing a neutron star and an evolved giant star. This system, together with the Rapid Burster (MXB 1730-33), are the only two systems that display the so-called Type II X-ray bursts. These type of bursts, which last for 10s of seconds, are thought to be caused by viscous instabilities in the disk; however the Type II bursts seen in GRO J1744–28 are qualitatively very different from those seen in the archetypal Type II bursting source the Rapid Burster. To understand these differences and to create a framework for future study, we perform a study of all X-ray observations of all 3 known outbursts of the Bursting Pulsar which contained Type II bursts, including a population study of all Type II X-ray bursts seen by RXTE. We find that the bursts from this source are best described in four distinct phenomena or ‘classes’ and that the characteristics of the bursts evolve in a predictable way. We compare our results with what is known for the Rapid Burster and put out results in the context of models that try to explain this phenomena.

Key words: accretion discs – instabilities – stars: neutron – X-rays: binaries – X-rays: individual: GRO J1744-28 – X-rays: individual: MXB 1730-335

1 INTRODUCTION

Low Mass X-ray Binaries (hereafter LMXBs) are extremely dynamic astrophysical systems, which exhibit high-amplitude X-ray variability on timescales of milliseconds to years. In these systems a compact object accretes matter from a stellar companion, either via a stellar wind or via Roche-lobe overflow. The donated matter spirals in towards the compact object, forming an accretion disk of matter which heats up by friction to temperatures of $\gtrsim 1\text{\,keV}$.

LMXBs are an excellent laboratory in which to explore the behaviour of matter under extreme physical conditions. In addition to extreme temperatures, the inner portion of an accretion disk is a region of extreme gravity, gas pressure and photon pressure. If the primary object in the binary is a neutron star, these systems also contain regions of extreme magnetic fields.

Many LMXBs containing a neutron star are known to exhibit ‘bursts’; discrete periods of increased X-ray emission over timescales of seconds. These bursts are generally categorised as either Type I or Type II, depending on the profile of the burst and its spectral evolution (Hoffman et al. 1978; Lewin et al. 1993). Type I bursts are caused by accreted matter on the surface of the neutron star reaching a critical pressure and temperature which triggers runaway thermonuclear burning (see e.g. Lewin et al. 1993; Strohmayer &
Bursting Pulsar” GRO J1744–28 (Kouveliotou et al. 1996). "Rapid Burster" MXB 1730–335 (Lewin et al. 1976a) and the II bursts in the 1995–1996 outburst of the Bursting Pulsar did not transition to the soft state (such events are referred to as ‘failed outbursts’ or failed state-transition outbursts’, see e.g. Sturner & Shrader 1996). Isolated Type II bursts may have also been observed in at least one additional X-ray Binary (SMC X-1, Angelini et al. 1991), but the identification of these features remains unclear.

The Type II bursting behaviour in the Rapid Burster has been extensively studied (e.g. Lewin et al. 1976a; Hoffman et al. 1978). Bagnoli et al. (2015) performed a full population study of all Type II bursts observed in this object by the Rossi X-ray Timing Explorer (RXTE, Bradt et al. 1993). Their results suggest that gating of the accretion by a strong magnetic field plays some role in the creation of Type II bursts. To further probe the physics behind Type II X-ray bursts, in this paper we perform a similar population study on bursts from the Bursting Pulsar.

The Bursting Pulsar (Paciesas et al. 1996) is a system containing a neutron star and a G or K class evolved companion star (e.g. Sturman & Dermer 1996; Gosling et al. 2007; Masetti et al. 2014). The system lies at a distance of ~4–8 kpc in the direction of the Galactic centre (e.g. Kouveliotou et al. 1996; Gosling et al. 2007; Sanna et al. 2017). The bursting Pulsar accretes matter from a companion star. We considered the outburst in 2017 in this paper, as no Type II bursts were observed during this time, nor do we analyse data taken while the source was in quiescence. See Daigne et al. (2002), Wijnands & Fang (2002) and Degenaar et al. (2012) for studies of the Bursting Pulsar during quiescence.

We analysed data from all X-ray instruments which observed the Bursting Pulsar during these outbursts. Specifically, we analysed lightcurves, the evolution of hardness ratios as a function of time and of count rate, and performed statistical analysis of properties associated with each individual burst.

2.1 RXTE

We analysed data from the Proportional Counter Array (PCA, Jahoda et al. 1996) aboard RXTE corresponding to the Outbursts 1 & 2 of the Bursting Pulsar. This in turn corresponded to observation IDs starting with 10401-01, 20077-01, 20078-01, 20401-01 and 30075-01, between MJDs 51117 and 51225. This resulted in a total of 743 ks of data over 300 observations, which we have listed in Appendix A. Lightcurve data were extracted from fits files using FTOOLS\(^1\). Errors were calculated and quoted at the 1σ level.

We also use data from the All-Sky Monitor (ASM, Levine et al. 1996) to monitor the long-term evolution of the source. ASM data was taken from MIT’s ASM Light Curves Overview website\(^2\).

2.1.1 Long-Term Evolution

To analyse the long-term evolution of the source during its outbursts, we extracted 2–16 keV count rates from the Standard2 data in each observation. Following Altamirano et al. (2008b), we normalised the intensity estimated in each observation by the intensity of the Crab nebula, using the Crab observation that is the closest in time but within the same PCA gain epoch as the observation in question (see Jahoda et al. 2006).

\(^1\) https://heasarc.gsfc.nasa.gov/ftools/ftools_menu.html

\(^2\) http://xte.mit.edu/ASM_lc.html
2.1.2 Burst Identification and Analysis

To perform population studies on the Type II bursts in the Bursting Pulsar, we first extracted lightcurves from the Standard data in each observation, as this data is available for all RXTE observations. We used our own software\(^3\) to search these lightcurves and return a list of individual bursts, using the algorithm described in Appendix A of Court et al. (2017). We manually cleaned spurious detections from our sample. We defined a ‘burst’ as an event that lasted at least 3 seconds during which the 1 s binned count rate exceeded 3 standard deviations above the persistent emission level and reached a maximum of at least five standard deviations above the persistent emission level. We did not subtract background, as all count rate-related parameters we analyse are persistent emission subtracted, automatically removing background contribution.

During the analysis, we discovered a number of different “classes”, similar to the multiple classes of burst described by Giles et al. (1996). Our classes varied significantly in terms of overall structure, and as such needed to be treated separately; we show representative lightcurves from our classes in Figure 2. These classes were separated from one another by a number of criteria including peak count rate and recurrence time (the time between peaks of consecutive bursts).

The vast majority of detected bursts resembled the Type II seen in the Rapid Burster (referred to as ‘Normal Bursts’ in Section 3) in terms of shape, duration and amplitude. We rehinned the data corresponding to these Normal Bursts to 0.5 s. We sampled the persistent emission before the burst, and defined the start of the burst as the first point at which count rate exceeded 5 standard deviations above the persistent emission before the burst. The end of the burst was defined similarly, but instead sampling the persistent emission after the burst; by doing this, we avoid making the implicit assumption that the persistent emission is equal before and after the burst. We fitted phenomenologically-motivated lightcurve models to each of these bursts (described in detail in Section 3.3.2), and used these fits to extract a number of parameters which characterise the shape and energetics of a burst (such as burst duration, total photon counts associated with a burst and persistent emission count rate).

Due to the high peak count rates of Normal Bursts, data were affected by dead-time (compare e.g. GRANAT data presented in Sazonov et al. 1997). We calculate the approximate Dead-Time Factors (DTFs) for a number of the brightest Normal Bursts in our sample, using 1 s binned data, using the following formula in the RXTE Cookbook\(^4\):

\[
\Delta = \frac{C_{xe} + C_{pc} + C_{ke} + 15C_{vl}}{N_{pcu}} \times 10^{-5}
\]

(1)

Where \(\Delta\) is the fractional detector deadtime, \(C_{xe}\) is the Good Xenon count rate, \(C_{pc}\) is the coincident event count rate, \(C_{ke}\) is the propane layer count rate, \(C_{vl}\) is the very large event count rate and \(N_{pcu}\) is the number of PCUs active at the time.

We estimate that dead-time effects reduce the peak count rates by no more than \(\sim 12\%\); however, due to the sharply-peaked nature of bursts from the Bursting Pulsar, the deadtime effect depends on the binning used. Due to this ambiguity we do not correct for dead-time in Normal Bursts. The dead-time corrections required for the count rates seen in other classes of burst are minimal, as they are orders of magnitude fainter (Giles et al. 1996).

To test for correlations between parameters in a model-independent way, we used the Spearman’s Rank correlation coefficient (as available in Scipy, Jones et al. 2001). This metric only tests the hypothesis that an increase in the value of one parameter is likely to correspond to an increase in the value of another parameter, and it is not affected by the shape of the monotonic correlation to be measured. Although dead-time effects lead to artificially low count rates being reported, a higher intensity still corresponds to a higher reported count rate. As such, using this correlation coefficient removed the effects of dead-time on our detection of any correlations.

To calculate the distribution of recurrence times between consecutive bursts, we considered observations containing multiple bursts. If fewer than 25 s of data gap exists between a pair of bursts, we considered them to be consecutive and added their recurrence time to the distribution. We choose this maximum gap size as this is approximately the timescale over which a Normal Burst occurs.

To perform basic phenomenological analysis of the spectral behaviour of these bursts, we divided our data into two energy bands when SB\(_{62}\)us\(_{0}\)23\(_{500}\)ms and SB\(_{62}\)us\(_{24}\)249\(_{500}\)ms mode data were available: A (PCA channels 0–23, corresponding to \(\sim 2–7\)keV\(^3\)) and B (channels 24–249, corresponding to \(\sim 8–60\)keV\(^6\)). The evolution of colour (defined as the ratio of the count rates in B and A) throughout a burst could then be studied. Due to the very high count rates during Normal Bursts, we did not correct for background. During fainter types of burst we estimate the background in different energy bands by subtracting count rates from RXTE observation 30075-01-26-00 of this region, when the source was inactive. Unlike using the RXTE background model, this method subtracts the contributions from other sources in the field. However, as it is unclear whether any of the rest of these sources are variable, the absolute value of colours we quote should be treated with caution. We created hardness-intensity diagrams to search for evidence of hysteric loops in hardness-intensity space.

Following Bagnoli et al. (2015), we used the total number of persistent emission-subtracted counts as a proxy for fluence for all bursts other than Normal Bursts. As the contribution of the background does not change much during a single observation, this method also automatically subtracts background counts from our results.

\(^3\) https://github.com/jmcourt/pantheon, (Court 2017)
\(^4\) https://heasarc.gsfc.nasa.gov/docs/xte/recipes/pca_deadtime.html

5 In RXTE gain epoch 1, corresponding to dates before MJD 50163. This corresponds to \(\sim 2–9\)keV in epoch 2 (MJDs 50163–50188) and \(\sim 2–10\)keV in epoch 3 (MJDs 50188–51259).
6 In RXTE gain epoch 1. This corresponds to \(\sim 9–60\)keV in epoch 2 and \(\sim 10–60\)keV in epoch 3.
2.1.3 Detecting Pulsations

The Bursting Pulsar is situated in a very dense region of the sky close to the Galactic centre, and so several additional objects also fall within the 1° RXTE/PCA field of view. Therefore it is important to confirm that the variability we observe in our data does in fact originate from the Bursting Pulsar.

To ascertain that all bursts considered in this study are from the Bursting Pulsar, we analyse the coherent X-ray pulse at the pulsar spin frequency to confirm that the source was active. We first corrected the photon time of arrivals (ToA) of the RXTE PCA dataset, and barycentre this data using the *faxbary* tool (DE-405 Solar System ephemeris). We corrected for the binary motion by using the orbital parameters reported by Finger et al. (1996).

For each PCA observation we investigated the presence of the ~ 2.14 Hz coherent pulsation by performing an epoch-folding search of the data using 16 phase bins and starting with the spin frequency value $v = 2.141004$ Hz, corresponding to the spin frequency measured from the 1996 outburst of the source (Finger et al. 1996), with a frequency step of 10^{-5} Hz for 10001 total steps. We detected X-ray coherent pulsations in all PCA observations performed during Outbursts 1 & 2.

2.2 Swift

In this study, we made use of data from the X-Ray Telescope (XRT, Burrows et al. 2003) and the Burst Alert Telescope (BAT, Krimm et al. 2013) aboard the Neil Gehrels Swift Observatory (Swift, Gehrels 2004). We extracted a long-term 0.3–10 keV Swift/XRT lightcurve of Outburst 3 using the lightcurve generator provided by the UK Swift Science Data Centre (UKSSDC, Evans et al. 2007). We also make use of Swift/BAT lightcurves from the Swift/BAT Hard X-ray Transient website

2.3 INTEGRAL

We also made use of data from the Imager on Board INTEGRAL (Winkler et al. 2003). We extracted 17.3–80 keV IBIS/ISGRI lightcurves of the Bursting Pulsar during Outburst 3 using the INTEGRAL Heavens portal. This is provided by the INTEGRAL Science Data Centre (Lubisiski 2009).

2.4 Chandra

The Bursting Pulsar was targeted with Chandra (Weisskopf 1999) three times during Outburst 3 (Table 1). One of these observations (OBSID 16596) was taken simultaneously with a NuSTAR observation (80002017004). In all three observations data were obtained with the High Energy Transmission Grating (HETG), where the incoming light was dispersed onto the ACIS-S (Garmire et al. 2003) array. The ACIS-S was operated in continued clocking (CC) mode to minimize the effects of pile-up. The Chandra/HETG observations were analysed using standard tools available within

```
https://swift.gsfc.nasa.gov/results/transients/
```

2.5 XMM-Newton

A single pointed XMM-Newton observation of the Bursting Pulsar was taken during Outburst 3 on MJD 56722 (OBSID 0729560401) for 85 ks. We extracted a 0.5–10 keV lightcurve from EPIC-PN at 1 s resolution using *xmmmas* version 15.0.0. During this observation, EPIC-PN was operating in Fast Timing mode. We use EPIC-PN as the statistics are better than in MOS1 or MOS2.

2.6 Suzaku

Suzaku (Mitsuda et al. 2007) observed the Bursting Pulsar once during Outburst 3 on MJD 56740 (OBSID 908004010). To create a lightcurve, we reprocessed and screened data from the X-ray Imaging Spectrometer (XIS, Koyama et al. 2007) using the *aeepipeline* script and the latest calibration database released on June 7, 2016. The attitude correction for the thermal wobbling was made by *aeattcor2* and *xiscoord* (Uchiyama et al. 2008). The source was extracted within a radius of 250 pixels corresponding to 260″ from the image center. The background was extracted from two regions near either end of the XIS chip, and subtracted from the source.

2.7 NuSTAR

NuSTAR (Harrison et al. 2013) consists of two grazing-incidence X-ray telescopes. These instruments only observed the Bursting Pulsar three times during its outbursts, all times in Outburst 3. One of these observations was taken while the Bursting Pulsar was not showing X-ray bursts, and the other two are shown in Table 2. We extracted lightcurves from both of these observations using *nupipeline* and *nuproducts*, following standard procedures.

```
https://www.cosmos.esa.int/web/xmm-newton/sas-threads.
```

OBSID	Exposure (ks)	MJD	Reference
16596	10	56719	Younes et al. (2015)
16605	35	56745	Degenaar et al. (2014)
16696	35	56747	Degenaar et al. (2014)

Table 1. Information on the three *Chandra* observations of the Bursting Pulsar during Outburst 3. All other observations of the Bursting Pulsar in the Chandra archive were obtained at times that the source was in quiescence.
Evolution of Bursts in GRO J1744–28

3 RESULTS

3.1 Outburst Evolution

We show the long-term monitoring lightcurves of Outbursts 1, 2 and 3 in Figure 1, as well as mark the dates of pointed observations with various instruments.

The Bursting Pulsar was discovered already in outburst on December 12, 1995 (Fishman et al. 1995); BATSE data suggest that this outburst began several days earlier on December 3 (Paciesas et al. 1996; Bildsten et al. 1997). The main outburst ended around May 10, 1996 (Woods et al. 2000). We show the global lightcurve of this outburst in Figure 1, Panel 1. As RXTE did not observe the object before or during the peak of Outburst 1, we can only obtain a lower limit of ~ 1.75 Crab for the peak $2–16$ keV flux.

There are at least two major rebrightening events in the tail of Outburst 1, which can be seen clearly in Figure 1 centred at MJDs of ~ 50235 and ~ 50280. During these rebrightening events, the $2–16$ keV flux peaked at ~ 0.10 and ~ 0.18 Crab respectively.

Outburst 2 began on December 1, 1996 and ended around April 7, 1997 (Woods et al. 1999). The $2–16$ keV flux peaked at 1.02 Crab on MJD 50473; we show the global lightcurve of this outburst in Figure 1, Panel 2. Type II bursts are seen in RXTE/PCA lightcurves from Outburst 2 between MJDs 50466 and 50544. One rebrightening event occurred during the tail of Outburst 2, centred at an MJD of ~ 50615 with a peak $2–16$ keV flux of ~ 54 mCrab. A second possible rebrightening event occurs at MJD 50975, with a peak $2–16$ keV flux of 11 mCrab, but the cadence of RXTE/PCA observations was too low to unambiguously confirm the existence of a reflare at this time.

Outburst 3 began on January 31, 2014 (Negoro et al. 2014; Kennea et al. 2014) and ended around April 23 (e.g. D’Ai et al. 2015). The daily $0.3–10$ keV Swift/XRT rate peaked at 81cts s^{-1} on MJD 56729, corresponding to 0.4 Crab. We show the global lightcurve of this outburst in Figure 1, Panel 3.

During the main part of Outburst 3, Swift, XMM-Newton and Suzaku made one pointed observation each, Chandra made four observations, and NuSTAR made three observations. The Chandra observation on March 3, 2014 was made simultaneously with one of the NuSTAR observations (see Younes et al. 2015). After the main part of the outburst, the source was not well-monitored, although it remained detectable by Swift/BAT, and it is unclear whether any rebrightening events occurred. A single NuSTAR observation was made during the outburst tail on August 14, 2014.

As can be seen in Figure 1, the main section of all three outburst follow a common profile, over a timescale of ~ 150 days. A notable difference between outbursts 1 & 2 is the number of rebrightening events; while we find two rebrightening events associated with Outburst 1, we only find one associated with Outburst 2 unless we assume the event at MJD 50975 is associated with the outburst. Additionally, Outburst 2 was at least a factor ~ 1.7 fainter at its peak than Outburst 1 (see also Woods et al. 1999), while Outburst 3 was a factor of $\gtrsim 4$ fainter at peak than Outburst 1.

3.1.1 Pulsations

We found pulsations in PCA data throughout the entirety of Outbursts 1 & 2. This confirms that the Bursting Pulsar was active as an X-ray pulsar in all of our observations, leading us to conclude that all the types of Type II bursts we see are from the Bursting Pulsar.

3.1.2 Bursting Behaviour

Bursts are seen in RXTE/PCA lightcurves from the start of the Outburst 1 (e.g. Kouveliotou et al. 1996). These Type II bursts occur until around MJD 50200, as the source flux falls below ~ 0.1 Crab in the $2–16$ keV band.

During the latter part of the first rebrightening after Outburst 1, between MJDs 50238 and 50246, we found Type II-like bursts with amplitudes ~ 2 orders of magnitude smaller than those found during the main outburst event. These gradually increased in frequency throughout this period of time until evolving into a period of highly structured variability which persisted until MJD 50261.

In Outburst 2, we found Type II bursts occurring between MJDs ~ 50466 and 50542. Low-amplitude Type II-like bursts are seen during the latter stages of the main outburst, between MJDs 50562 and 50577. These again evolve into a period of highly structured variability; this persists until MJD 50618, just after the peak of the rebrightening event.

High-amplitude Type II bursts were also seen in Outburst 3 (e.g. Linares et al. 2014). As no soft ($\lesssim 10$ keV) X-ray instrument was monitoring the Bursting Pulsar during the latter part of Outburst 3, it is unknown whether this Outburst showed the lower-amplitude bursting behaviour seen at the end of Outbursts 1 & 2. Low amplitude bursting behaviour is not seen in the pointed NuStar observation which was made during this time.

3.2 Categorizing Bursts

We find that bursts in the Bursting Pulsar fall into a number of discrete classes, lightcurves from which we show in Figure 2. These classes are as follows:

- Normal Bursts (Figure 2, Panel a): the brightest bursts seen from this source, with peak count 1 s binned rates of $\sim 10000 \text{cts s}^{-1} \text{PCU}^{-1}$, and recurrence timescales of order ~ 1000 s. These bursts are roughly Gaussian in shape with durations of ~ 10 s, and are followed by a ‘dip’ in the persistent emission count rate with a duration of order 100 s (see also e.g. Giles et al. 1996).

- Minibursts (Figure 2, Panel b): faint bursts with 1s binned peak count rates of ~ 2 times the persistent emission count rate. Minibursts are variable, with duration timescales between $\sim 5–50$ s. These bursts are also sometimes followed by dips similar to those seen after Normal Bursts.

OBSID	Exposure (ks)	MJD	Reference
80002017002	29	56703	D’Ai et al. (2016)
80002017004	9	56719	Younes et al. (2015)

Table 2. Information on the two NuSTAR observations of the Bursting Pulsar during the main part of Outburst 3.
Mesobursts (Figure 2, Panel c): Type II-like bursts. These bursts differ from Normal Bursts in that they do not show well-defined subsequent ‘dips’. They are also fainter than Normal Bursts, with peak count 1 s binned count rates of ~ 1000 cts s$^{-1}$ PCU$^{-1}$. Their burst profiles show fast rises on timescales of seconds, with slower decays and overall durations of ~ 50 s. The structure of the bursts is very non-Gaussian, appearing as a small forest of peaks in lightcurves.

Structured Bursts (Figure 2, Panel d): the most complex class of bursting behaviour we observe from the Bursting Pulsar, consisting of patterns of flares and dips in the X-ray lightcurve. The amplitudes of individual flares are similar to those of the faintest Mesobursts. The recurrence timescale is of the order of the timescale of an individual flare, meaning that it is difficult to fully separate individual flares of this class.

In the upper panel of Figure 3 we show a histogram of persistent-emission-subtracted peak count rates for all Normal and Mesobursts observed by RXTE. We split these two classes based on the bimodal distribution in peak count rate as well as the lack of dips in Mesobursts.

In the lower panel of Figure 3, we show the histogram of peak count rates for all Normal and Minibursts observed by RXTE as a fraction of the persistent emission at that time. We split these two classes based on the strongly bimodal distribution in fractional amplitude.

We also find 6 bursts with fast (~ 1 s) rises and exponential decays that occur during the lowest flux regions of the outburst ($\lesssim 50$ mCrab). Strohmayer et al. (1997) and Galloway et al. (2008) have previously identified these bursts as being Type I X-ray bursts from another source in the RXTE field of view. To show that these unrelated Type I bursts would not be confused with Minibursts, we add examples of the Type I bursts to lightcurves from observations containing Minibursts. We find that the peak count rates in Type I bursts are roughly equal to the amplitude of the noise in the persistent flux in these observations, hence they would not be detected by our algorithms.

We show when in Outbursts 1 & 2 each type of burst was observed in Figures 4 and 5 respectively. Normal Bursts and Minibursts (red) occur during the same periods of time from around the peak of an outburst until the persistent emission falls beneath ~ 0.1 Crab; assuming an Eddington Limit of ~ 1 Crab (e.g. Sazonov et al. 1997), this corresponds to an Eddington ratio of ~ 0.1. After this point, bursting is not observed for a few tens of days. Mesobursts (blue) begin at the end of a rebrightening event in Outburst 1 and during the final days of the main part of the outburst in Outburst 2. Structured Bursts (yellow) occur during the first part of a rebrightening event in both outbursts. Although there was a second rebrightening event after Outburst 1, neither Mesobursts nor Structured Bursts were observed at

Figure 1. Comparisons of the three outbursts of the Bursting Pulsar reported on in this paper. Times corresponding to pointed observations with Chandra, NuSTAR, Suzaku, Swift and XMM-Newton are marked.
3.3 Normal Bursts

We define Normal Bursts as the set of all bursts with a persistent-emission-subtracted peak 1 s binned \(RXTE \)/PCA-equivalent count rate above 3000 cts s\(^{-1}\) PCU\(^{-1}\). Normal Bursts account for 99 out of the 190\(^9\) bursts identified for this study. They are observed during all three outbursts covered in this study. They occurred between MJDs 50117 and 50200 in Outburst 1, and between 50466 and 50542 in Outburst 2; during these intervals, \(RXTE \) observed the source for a total of 192 ks. See Table 3 to compare these with numbers for the other classes of burst identified in this study. They occur during the same time intervals during which Minibursts are present. In both of these outbursts, the region of Normal and Minibursts correspond to the time between the peak of the outburst and and the time that the persistent intensity falls below \(\sim 0.1 \) Crab.

\(^9 \) This number does not include Structured Bursts as their complex structure makes them difficult to separate.
3.3.1 Recurrence Time

Using Outburst 3 data from Chandra, XMM-Newton, NuSTAR and Suzaku, we find minimum and maximum recurrence times of ~ 345 and ~ 5660 s respectively\(^\text{10}\). We show

\(^{10}\) To avoid double-counting peak pairs, we do not use NuSTAR observation 800002017004, which was taken simultaneously with Chandra observation 16596.
the histogram of recurrence times from Outburst 3 in Figure 6, showing which parts of the distribution were observed with which observatory. Compared to data from *Chandra* and *XMM-Newton*, data from *Suzaku* generally suggests shorter recurrence times. This is likely due to *Suzaku* observations consisting of a number of ~ 2 ks windows; as this number is of the same order of magnitude as the recurrence time between bursts, there is a strong selection effect against high recurrence times in the *Suzaku* dataset.

From the *RXTE* data we find minimum and maximum burst recurrence times of ~ 250 and ~ 2510 s during Outburst 1, and minimum and maximum recurrence times of ~ 250 and ~ 2340 s during Outburst 2. As the length of an *RXTE* pointing ($\lesssim 3$ ks) is also of the same order of magni-
The distribution of recurrence times between consecutive Normal Bursts seen in pointed Chandra, XMM-Newton, NuSTAR and Suzaku observations of Outburst 3 of the Bursting Pulsar. Distributions of bursts observed by different instruments are stacked on top of each other and colour coded.

To test whether consecutive bursts are independent events, we tested the hypothesis that bursts are randomly distributed in time in a Poisson distribution (Poisson 1837). Assuming our hypothesis, as well as assuming that the frequency of Normal Bursts does not change during an outburst (e.g. Aptekar et al. 1998), we could concatenate different observations and the resultant distribution of burst times will still be Poissonian. For each of Outbursts 1 & 2, we concatenated all RXTE data during the Normal Bursting part of the outburst into a single lightcurve. We split our lightcurves into windows of length w and counted how many bursts were in each, forming a histogram of number of bursts per window. We fit this histogram with a Poisson probability density function, obtaining the value λ which is the mean number of bursts in a time w. λ/w is therefore an expression of the true burst frequency per unit time, and should be independent of our choice of w. We tried values of w between 100 and 10000 s for both outbursts, and found that in all cases λ/w depends strongly on w. Therefore our assumptions cannot both be valid, and we rejected the hypothesis that these bursts are from a Poisson distribution with constant λ. This in turn suggests at least one of the following must be correct:

(i) The average recurrence time of bursts was not constant throughout the outburst. Or:

(ii) The arrival time of a given burst depends on the arrival time of the preceding burst, and therefore bursts are not independent events.

3.3.2 Burst Structure

In the top panel of Figure 7 we show a plot of all Normal Bursts observed with RXTE overlayed on top of one another. We find that all Normal Bursts follow a similar burst profile with similar rise and decay timescales but varying peak intensities. In the lower panel of Figure 7 we show a plot of Normal Bursts overlaid on top of each other after being normalised by the persistent emission count rate in their respective observation. The bursts are even closer to following a single profile in this figure, suggesting a correlation between persistent emission level in an outburst and the individual fluence of its bursts.

The structure of the lightcurve of a Normal Burst can be described in three well-defined parts:

(i) The main burst: roughly approximated by a skewed Gaussian (see e.g. Azzalini 1985).

(ii) A ‘plateau’: a period of time after the main burst during which count rate remains relatively stable at a level above the pre-burst rate.

(iii) A ‘dip’: a period during which the count rate falls below the persistent level, before exponentially decaying back up towards the pre-burst level (e.g. Younes et al. 2015).

The dip is present after every burst in our RXTE sample from Outbursts 1 & 2, whereas the plateau is only seen in 39 out of 99. We show example lightcurves of bursts with and without plateaus in Figure 8, which also show that the dip is present in both cases.

In order to study Normal Bursts, we fit the burst profiles with phenomenologically-motivated mathematical functions. In Figure 9 we show a schematic plot of our model, as well as annotations explaining the identities of the various parameters we use. We fit the main burst with a skewed Gaussian, centred at $t = t_0$ with amplitude a_0, standard deviation σ_0 and skewness$^{11} \gamma$, added to the persistent emission rate k. We fit the ‘dip’ with the continuous piecewise function $f(t)$:

$$f(t) = \begin{cases} k - \frac{a_d(t - t_0)}{d - t_0}, & \text{if } t \leq d \\ k - a_d\exp\left(\frac{d - t}{\lambda}\right), & \text{otherwise} \end{cases}$$

Where t is time, t_0 is the start time of the dip, a_d is the amplitude of the dip, d is the time at the local dip minimum and λ is the dip recovery timescale. This function is based on the finding by Younes et al. (2015) that dip count rates

11 A measure of how far the peak of the Gaussian is displaced from its centre.
recover exponentially, but has the added advantage that the start of the recovery phase can also be fit as an independent parameter. Using this fit, we can estimate values for burst fluence ϕ_b, burst scale-length σ_B, ‘missing’ dip fluence ϕ_d, and dip scale-length λ and compare these with other burst parameters. When present, we also calculate the fluence of the plateau ϕ_B by summing the persistent emission-subtracted counts during the region between the end of the burst (as defined in Section 2.1.2) and the start of the dip. For each pair of parameters, we do not consider datapoints when the magnitude of the error on a parameter is greater than the value of the parameter.

We only extract these parameters from Normal Bursts observed by RXTE during Outbursts 1 & 2. This ensures that the resultant parameter distributions we extracted are not affected by differences between instruments.

3.3.3 Parameter Distributions

We extracted a total of ten parameters from our fit to each burst: the parameters a_d, d, and λ of the fit to the dip, the missing fluence ϕ_d of the dip, the parameters a_B, σ_B and c of the skewed Gaussian fit to the main burst, the main burst fluence ϕ_B, the maximum persistent emission-subtracted rate in the plateau a_p and the plateau fluence ϕ_P.

Using our RXTE sample of Normal Bursts, we can construct distributions for all of the burst parameters described in Section 3.3.2 for bursts in Outbursts 1 & 2. We give the
Table 4. A table showing the mean and standard deviation of 10 Normal Burst parameters of RXTE-sampled bursts. In each case, we give the values for populations from only Outburst 1, from only Outburst 2 and from the combined population from both outbursts. Histograms for each parameter can be found in Appendix B.

Parameter	Outburst 1	Outburst 2	Outbursts 1&2			
\(\lambda \)	2.74e6	7.8e5	2.25e6	7.6e5	2.43e6	8.0e5
\(a_B \)	3.18e5	8.4e4	2.72e5	9.9e4	2.90e5	9.6e4
\(a_r \)	3.39	0.35	3.42	0.59	3.41	0.52
\(c \)	2.68	1.9	2.79	2.0	2.75	2.0
\(\phi_B \)	1.74e6	1.3e6	1.17e6	3.6e5	1.38e6	8.7e5
\(a_d \)	550	335	536	307	541	318
\(d \)	49	46	20	22	31	36
\(\lambda \)	294	176	229	124	254	150
\(\phi_B \)	1.89e5	2.3e5	7577	5707	1.4e5	1.8e5
\(a_p \)	1289	1113	767	463	1063	928

3.3.4 Correlations

In total, we extracted 12 parameters for each Normal Burst in our RXTE sample: the 10 burst parameters listed in Section 3.3.3, the recurrence time \(t_r \) until the next burst and the persistent emission rate \(k \) at the time of the burst. For each parameter, we show the covariance matrix with all 66 possible pairings of these normalised parameters in Figure 10 (we present the covariance matrix of these parameters before being rescaled in Appendix C). Using the Spearman’s Rank Correlation Coefficient, we find the following \(\geq 5 \sigma \) correlations which are highlighted in Figure 10:

- Persistent emission \(k \) anticorrelates with normalised burst fluence \(\phi_B/k (>10 \sigma) \) and normalised burst amplitude \(a_B/k (>10 \sigma) \).
- Normalised burst fluence \(\phi_B/k \) correlates with normalised burst amplitude \(a_B/k (8.0 \sigma) \).
- Normalised dip fluence \(\phi_d/k \) correlates with dip recovery timescale \(\lambda (6.3 \sigma) \).
- Normalised dip fluence \(\phi_d/k \) anticorrelates with dip falltime \(t_d (5.7 \sigma) \) and dip recovery timescale \(\lambda (7.1 \sigma) \).
- Normalised plateau fluence \(\phi_p/k \) correlates with normalised plateau amplitude \(a_p (6.4 \sigma) \).

As \(\phi_B \) can be approximated to first order as a product of \(a_B \) and \(\sigma \), the correlation between \(\phi_B \) and \(a_B \) is expected as they are not independent parameters. Similarly, the correlations between \(\phi_d \) & \(\lambda \) and \(\phi_p \) and \(a_p \) are likely due to these pairs of parameters not being independent.

3.3.5 Colour Evolution

To explore the spectral behaviour of Normal Bursts, we studied the evolution of the hardness (the ratio between count rate in the energy bands \(\sim 2–7 \) and \(\sim 8–60 \) keV energy bands) as a function of count rate during the individual bursts. These ‘hardness-intensity diagrams’ allow us to check for spectral evolution in a model-independent way. We do not correct them for background as the count rates in both bands are very high.

We find evidence of hysteretic loops in hardness-intensity space in some, but not all, of the Normal Bursts in our sample; see Figure 11 for an example of such a loop. The existence of such a loop suggests significant spectral evolution throughout the burst. This finding can be contrasted with results from previous studies in different energy bands (e.g. Woods et al. 1999 from \(\sim 25–100 \) keV) which suggested no spectral evolution during Type II bursts in this source.

3.4 Minibursts

We define Minibursts as the set of all bursts with a peak 1 s binned RXTE/PCA-equivalent count rate of < 300% of the persistent rate. Minibursts account for 48 out of the 190 bursts identified for this study. They are observed during all 3 Outbursts, and occur during the same times that Normal Bursts are present. Minibursts occurred between MJDs 50117 and 50200 in Outburst 1, and between 50466 and 50542 in Outburst 2; during these intervals, RXTE observed the source for a total of 192 ks. These intervals correspond to the times between the peak of each outburst and the time that the persistent intensity falls below \(\sim 0.1 \) Crab.

3.4.1 Recurrence Time

There are only 10 observations with RXTE which contain multiple Minibursts. Using these, we find minimum and maximum Miniburst recurrence times of 116 and 1230 s.

We find 17 RXTE observations which contain both a Miniburst with a preceding Normal Burst, and find minimum and maximum Normal Burst \(\rightarrow \) Miniburst recurrence times of 461 and 1801 s.

3.4.2 Structure

In Figure 12, we show a representative Miniburst, and we show all Minibursts overplotted on each other in Figure 13. These bursts are roughly Gaussian in shape with a large variation in peak count rate; as can be seen in Figure 13, however, the persistent-normalised peak count rates of Minibursts are all roughly consistent with 2.

Minibursts are all \(\sim 5 \) s in duration, and some show signs of a ‘dip’ feature similar to those seen in Normal Bursts. We find that the timescales of these dips are all \(\lesssim 10 \) s. We estimate ‘missing’ fluence in each dip by integrating the total persistent-rate-subtracted counts between the end of the burst and a point 10 s later. If this ‘missing fluence’ is less
Figure 10. Covariance Matrix with a scatter plot of each of the 66 pairings of the 12 Normal Burst parameters listed in section 3.3.4. Amplitudes and fluences have been normalised by dividing by the persistent count rate k. Pairings which show a correlation using the Spearman Rank metric with a significance $\geq 5\sigma$ are highlighted in red.

Due to the relatively short duration and low peak count rates of Minibursts, we are unable to reliably discern whether they contain a single peak or multiple peaks. For this reason we also do not fit them mathematically.

3.4.3 Parameters & Correlations

For each Miniburst, we are able to extract the same parameters that we extracted from Mesobursts (see list in Section 3.5.3). The mean and standard deviation of each of these parameters, calculated from RXTE data, is presented in Table 5 for Outburst 1, Outburst 2 and the combined population of Minibursts from Outbursts 1 & 2. The standard deviations on the fluence and peak rates of Minibursts are very large, suggesting that these parameters are distributed broadly.

Using the Spearman’s Rank metric, we find only two correlations above the 5σ level:
Figure 11. A 1 s-binned hardness-intensity diagram of a Normal Burst from \textit{RXTE}/PCA observation 10401-01-08-00, with an inset 2–60 keV lightcurve. Significant colour evolution can be seen during the burst, taking the form of a loop.

Figure 12. A representative \textit{RXTE} lightcurve of a Miniburst from OBSID 20077-01-03-00 in Outburst 2.

Table 5. A table showing the mean and standard deviation of 7 parameters of \textit{RXTE}-sampled Minibursts from Outburst 1, Outburst 2 and both outbursts combined. Fluence is given in cts PCU$^{-1}$, peak rate is given in cts s$^{-1}$ PCU$^{-1}$ and rise, fall and total time are given in s. k is the persistent emission rate during the observation in which a given burst was detected.

	Outburst 1	Outburst 2	Outbursts 1$\&$2
Fluence	6792	5776	4474
Peak Rate	3501	2851	2473
Fluence/k	3.67	1.13	3.58
Peak Rate/k	1.90	0.37	1.76
Rise Time	2.33	0.8	2.03
Fall Time	2.32	0.9	2.35
Tot. Time	4.61	1.0	4.38

• Fluence is correlated with peak rate (7.3 σ).
• Fluence divided by persistent rate is correlated with peak rate divided by persistent rate (7.1 σ).

As in Normal Bursts, a correlation between peak rate and fluence is to be expected. However, due to the poor statistics associated with Miniburst parameters, it is likely that other parameter pairs are also correlated.

3.4.4 Colour Evolution

Minibursts show the greatest magnitude of evolution in colour of all the classes of burst. In Figure 14, we show how the hardness ratio between the 4–10 and 2–4 keV energy bands changes during an observation containing both a Miniburst and a Normal Burst. We find that the hardness ratio increases by $\sim 50\%$ in a Miniburst, significantly more than the change in hardness during Normal or Mesobursts. The statistics in minibursts were too poor to check for the presence of hysteresis.
3.5 Mesobursts

We define Mesobursts as the set of all bursts with a persistent-emission-subtracted peak 1 s binned RXTE/PCA-equivalent count rate below 3000 cts s$^{-1}$ PCU$^{-1}$ in which the peak of the burst reaches at least 300% of the persistent rate. Mesobursts account for 43 out of the 190 bursts identified for this study. They are observed in RXTE data from both Outbursts 1 & 2; in both cases they occur after the main outburst and before or during a rebrightening event. Mesobursts occurred between MJDs 50238 and 50248 in Outburst 1, and between 50562 and 50577 in Outburst 2; during these intervals, RXTE observed the source for a total of 44 ks. As no soft X-ray instrument monitored the Bursting Pulsar during the latter stages of Outburst 3, it is unclear whether Mesobursts occurred during this outburst. The one pointed observation of NuSTAR made during this time did not detect any Mesobursts.

3.5.1 Recurrence Time

Only 6 RXTE observations in Outburst 1, and 4 in Outburst 2, contain multiple Mesobursts. From our limited sample we find minimum and maximum recurrence times of ∼ 230 and ∼ 1550 s in Outburst 1 and minimum and maximum recurrence times of ∼ 310 and ∼ 2280 s in Outburst 2.

3.5.2 Structure

The structure of the main part of a Mesoburst is significantly more complex than in Normal Bursts, consisting of a large number of secondary peaks near the main peak of the burst. Mesobursts never show the post-burst ‘dip’ feature that we see in Normal Bursts, but they can show ‘plateaux’. In Figure 15 we show an example of a Mesoburst with a plateau similar to those seen after Normal Bursts, suggesting a connection between the two classes.

In Figure 16 we show the plot of all Mesobursts observed by RXTE overlayed on top of each other before (top panel) and after (bottom panel) being renormalised by persistent emission rate. It can be seen that the intensity and structure of these bursts is much more variable than in Normal Bursts (see Figure 7). However, each Mesoburst has a fast rise followed by a slow decay, and they occur over similar timescales of ∼ 10–30 s.

3.5.3 Parameters & Correlations

Due to the complexity structure of Mesobursts, we do not fit them mathematically as we did for Normal Bursts. Instead we define a number of different parameters for each Mesoburst, listed below:

- Total burst fluence and burst fluence divided by persistent emission.
- Peak 1 s binned rate and peak rate divided by persistent emission.
- Rise time, fall time and total time.

The mean and standard deviation of each of these parameters, calculated from RXTE data, is presented in Table 6. Due to the relative low number of Mesobursts compared to Normal Bursts, we only present the results from the combined set of bursts in both Outbursts 1 & 2. In general, Mesobursts are longer in duration than Normal Bursts, and have significantly smaller amplitudes and fluences (compare e.g. Table 4).

Using the Spearman’s Rank metric, we find a number correlations above the 5σ level:

Figure 14. A portion of observation 10401-01-16-00, featuring a Normal Burst (∼ 30 s) and a Miniburst (∼ 410 s). The top panel shows the total 2–10 keV lightcurve. The middle panel shows lightcurves from two different energy bands; the count rates from the soft energy band have been multiplied by 5.4 so they can more easily be compared with the hard energy band. The bottom panel shows the evolution over time of the ratio between the rates in the two bands. As can be seen in panels 2 and 3, the Miniburst has a significantly higher fractional amplitude in the 4–10 keV energy band than in the 2–4 keV band.

Figure 15. A lightcurve from RXTE observation 20078-01-17-00 from Outburst 2, showing an apparent ‘plateau’ feature after a Mesoburst.

and ∼ 1550 s in Outburst 1 and minimum and maximum recurrence times of ∼ 310 and ∼ 2280 s in Outburst 2.
Figure 16. Top: a plot of every Mesoburst, centred by the time of its peak, overlaid on top of each other. Bottom: a plot of every Mesoburst in which count rates have been normalised by the persistent emission count rate during the observation from which each burst was observed.

Table 6. A table showing the mean and standard deviation of 7 burst parameters of RXTE-sampled Mesobursts from Outbursts 1 & 2. k is the persistent emission rate during the observation in which a given burst was detected.

Parameter	Mean	Standard Deviation
Fluence (cts PCU$^{-1}$)	6067	6707
Peak Rate (cts s$^{-1}$ PCU$^{-1}$)	665.4	658.4
Fluence/k	48.6	32.8
Peak Rate/k	5.32	4.0
Rise Time (s)	6.95	4.9
Fall Time (s)	18.28	10.8
Total Time (s)	25.88	13.3

Figure 17. A lightcurve from RXTE/PCA observation 10401-01-57-03, showing a Mesoburst occurring during a period of Structured Bursting.

- Rise time correlates with total time (5.4σ).
- Fall time correlates with total time (>10σ).

Again, the correlation between fluence and peak rate is expected, as is the correlation between peak rate and peak rate divided by persistent rate.

3.5.4 Colour Evolution

The hardness ratio of the emission from the source decreases significantly during Mesobursts, with the PCA 8–60/2–7 keV colour decreases from ~ 0.6 between bursts to ~ 0.2 at the peak of a burst. Due to the poor statistics of these features compared with Normal Bursts, we were unable to check for evidence of hardness-intensity hysteresis.

3.6 Structured “Bursts”

We define Structured Burst observations as observations in which the recurrence time between bursts is less than, or approximately the same as, the duration of a single burst. Structured Bursts constitute the most complex behaviour we find in our dataset. Unlike the other classes of burst we identify, Structured Bursts are not easily described as discrete phenomena. We find Structured Bursts in 54 observations which are listed in Appendix A.

In both outbursts covered by RXTE, Structured Bursts occur in the time between the end of the main outburst and the start of a rebrightening event. In both cases these periods of structured outbursts are preceded by a period populated by Mesobursts. Mesobursts occurred between MJDs 50248 and 50261 in Outburst 1, and between 50577 and 50618 in Outburst 2; during these intervals, RXTE observed the source for a total of 81 ks. Notably, as we show in Figure 17, one Outburst 1 RXTE lightcurve containing Structured Bursting also contains a bright Mesoburst.

In both outbursts, the amplitude of Structured Bursting behaviour decreases as the outburst approaches the peak of the rebrightening event. This amplitude continues to decrease as the Structured Burst behaviour evolves into the...
low-amplitude noisy behaviour associated with the source’s evolution towards the hard state.

3.6.1 Colour Evolution

We produce hardness-intensity diagrams for a number of Structured Burst observations; we show a representative example in Figure 18. We find that hardness is strongly correlated with count rate during this class of bursting, but that the magnitude of the change in hardness is no greater than \(~30\%\). This is less than the change in hardness that we see during Normal or Minibursts. We also find no evidence of hysteretic hardness-intensity loops from Structured Bursts.

3.6.2 Types of Structured Bursting

In Figure 19, we present a selection of lightcurves which show the different types of variability that can be seen during periods of Structured Bursting. These consist of a variety of patterns of peaks and flat-bottomed dips, and both RXTE-observed outbursts show several of these different patterns of Structured Bursting. As all types of Structured Bursting have similar amplitudes and occur in the same part of each outburst, we consider them to be generated by the same physical process. We do not separate these patterns into separate subclasses in this paper.

4 DISCUSSION

We analyse all available X-ray data from the first 3 outbursts of the Bursting Pulsar. The bursting behaviour evolves in a similar way during these outbursts, strongly associating them with the Bursting Pulsar and suggesting an underlying connection between the classes of burst. We also find that both Outbursts 1 & 2 showed ‘rebrightening events’ similar to those seen in a number of other LMXBs as well as in dwarf novae (e.g. Wijnands et al. 2001; Patruno et al. 2016).

We find that the Type II X-ray bursts from these data can be best described as belonging to four phenomenological classes: Normal Bursts, Minibursts, Mesobursts and Structured Bursts. For each of these four classes, we collect a number of statistics to shed light on the physical mechanisms that generate these lightcurve features.

Normal Bursts and Minibursts both represent the “Type II” bursting behaviour which is observed most commonly from this source. Mesobursts occur much later on in the outburst and show fast-rise slow-decay profiles; they are generally much fainter and more structured than Normal Bursts. Finally, Structured Bursts form continuous highly structured regions of bursting over timescales of days. All Normal Bursts and some Minibursts show count rate ‘dips’ after the main burst, while Mesobursts and Structured Bursts do not. In addition to this, some Normal and Mesobursts show count rate ‘plateaux’; regions of roughly stable count rate above the persistent level which last for \(\sim 10\)s of seconds. These features are also sometimes seen in Mesobursts, while Minibursts and Structured Bursts never show these structures.

Here we discuss these results in the context of models proposed to explain Type II bursting. We also compare our...
results with those of previous studies on bursting in both the Bursting Pulsar and the Rapid Burster.

4.1 Evolution of Outburst and Bursting Behaviour

In general, Outburst 1 was brighter than Outburst 2, with the former having a peak 2–60 keV intensity a factor of ~ 1.7 greater than the latter. However, in Figure 1 we show that both outbursts evolve in a similar way. In both outbursts, the intensity of the Bursting Pulsar reaches a peak of order ~1 Crab before decreasing over the next ~100 days to a level of a few tens of mCrab. A few 10s of days after reaching this level, the lightcurves of both outbursts show a pronounced ‘rebrightening’ event, during which the intensity increases to ~100 mCrab for ~10 days. Outburst 1 shows a second rebrightening event ~50 days after the first. It is unclear whether any rebrightening events occurred in Outburst 3 due to a lack of late-time observations with soft X-ray telescopes. X-ray ‘rebrightening’ events have been seen after the outbursts of a number of other LMXBs with both neutron star and black hole primaries: including SAX J1808.4-3658 (Wijnands et al. 2001), XTE J1650-500 (Tomsick et al. 2003) and IGR J17091-3625 (Court et al. 2017).

As we have shown in Figures 4 & 5, the nature of bursts from the Bursting Pulsar evolves in a similar way in both Outbursts 1 & 2. Starting from around the peak of each outburst, both Normal and Minibursts are observed. The fluence of these bursts decrease over time as the X-ray intensity of the source decreases, before bursting shuts off entirely when the 2–16 keV flux falls below ~0.1 Crab. After a few 10s of days with no bursts, bursting switches back on in the form of Mesobursts; this occurs during the tail of a rebrightening event in Outburst 1, but in the tail of the main outburst in Outburst 2. Mesobursting continues until the 2–16 keV source flux falls below ~0.03 Crab, at which point we observe the onset of Structured Bursting. In both outbursts, Structured Bursting stops being visible a few 10s of days later during the start of a rebrightening event. Because this evolution is common to both of the outbursts observed by RXTE, this strongly indicates that the nature of bursting in the Bursting Pulsar is connected with the evolution of its outbursts. Additionally, with the exceptions of Normal and Minibursts, we show that each class of burst is mostly found in a distinct part of the outburst corresponding to a different level of persistent emission.

In Figure 20, we show lightcurves from Outburst 2 taken a few days before and after the transition from Mesobursts to Structured Bursting. We can see that, as the system approaches this transition, Mesobursts become more frequent and decrease in amplitude. Additionally in Figure 17 we show a lightcurve which contains both a Mesoburst and Structured Bursting. We find that, instead of a well-defined transition between these burst classes, there is a more gradual change as Mesobursting evolves into Structured Bursting. This suggests that the same mechanism is likely to be responsible for both of these types of burst.

The transition between Normal Bursts and Mesobursts, however, is not smooth; in both outbursts these two classes of bursting are separated by ~10 day gaps in which no bursts of any kind were observed at all. If all our classes of burst are caused by the same or similar processes, any model to explain them will also have to explain these periods with no bursts.

4.2 Parameter Correlations

We extracted a number of phenomenological parameters from each Normal Burst, Miniburst and Mesoburst. For Normal Bursts, we extracted a large number of parameters by fitting a phenomenological model described in Section 3.3.2. For Minibursts and Mesobursts we extracted recurrence times and persistent emission-subtracted peak rates; we also calculated burst fluences by integrating the persistent emission-subtracted rate over the duration of the burst. We do not extract similar parameters for Structured Bursts due to their complex nature.

In all three of the classes of burst we consider, we found that fluence and peak rate correlate strongly with persistent emission. For each type of burst case, the slope of these correlations is consistent with being equal during Outbursts 1 & 2.

We also compared the Normal Bursts in Outburst 1 with the Normal Bursts in Outburst 2. The only significant statistical differences we found between these two populations were in the burst peak rate and the burst fluence; both of these parameters are generally higher for Normal Bursts in Outburst 1. As both of these parameters strongly depend on the persistent emission, both of these differences can be attributed to the fact that Outburst 1 was significantly brighter at peak than Outburst 2.

For Normal Bursts, we found additional correlations. Of particular note, we found that both the fall time and the recovery timescale of a ‘dip’ is proportional to its amplitude, which has implications for the possible mechanism behind these features. We discuss this further in Section 4.5.

These findings strongly suggest that the properties of Normal, Mini and Mesobursts depend on the persistent luminosity of the Bursting Pulsar. Assuming that this persistent luminosity is proportional to M, this suggests that all classes of bursting are sensitive to the accretion rate of the system. Additionally, with the exceptions of Normal and Minibursts, we find that each class of burst is mostly found in a distinct part of the outburst corresponding to a different level of persistent emission. We do not extract similar parameters for Structured Bursts due to their complex nature.

4.3 Comparison with Previous Studies

In their study of bursts in the Bursting Pulsar, Giles et al. (1996) found evidence for three distinct classes of Type II bursts in the Bursting Pulsar:

- “Bursts” (hereafter G1 bursts to avoid confusion), the common Type II bursts seen from the source.
- “Minibursts” (hereafter G2 Bursts), with smaller amplitudes up to ~2 times the persistent emission level.
Figure 20. A series of lightcurves from RXTE/PCA observations of Outburst 2, showing a gradual evolution from Mesobursts to Structured Bursting over a period of \(\sim 30 \) days. Each inset lightcurve is plotted with the same y-scaling, and each corresponds to 2 ks of data.

Our Class	Giles et al. Class
Normal Bursts	G_1
Mesobursts	G_1
Minibursts	G_2
Structured Bursts	-
	G_3

Table 7. A table showing how our burst classes map to those described in Giles et al. (1996). Giles et al. do not consider the times during the outburst when Structured Bursts appear, and we consider G_3 bursts described by Giles et al. to be consistent with flicker noise.

- “Microbursts” (hereafter G_3 Bursts), second-scale bursts with amplitudes of \(\sim 50-100\% \) of the persistent level.

We find that Giles et al’s G_1 category contains the bursts that we identify as Normal Bursts, while our Miniburst category contains the same bursts as Giles’ G_2 category. Giles et al. (1996) only consider bursts up to MJD 50204 in their classification, and they could not classify any bursts that we identify as Mesobursts; under their framework, we find that Mesobursts would also be categorised as G_1. We present the full mapping between Giles classes and our classes in a schematic way in Table 7.

Giles et al. (1996) note the presence of both dips and plateaus in Normal Bursts. To calculate the fluence of each main burst and its associated dip, Giles et al. integrate the total persistent-emission-subtracted counts in each feature. They calculate that ratio between burst fluence and ‘missing’ dip fluence \(\phi_B/\phi_d \) is between 0.26 and 0.56 in Outburst 1 before correcting for dead-time effects. Using bursts in which our mathematical fit gave well-constrained \((> 5\sigma) \) values for both burst and dip fluence, we find that \(\phi_B/\phi_d \) is between 1.3 and 2.0 in Outburst 1 and between 1.3 and 2.9 in Outburst 2. Our values differ significantly from those reported from Giles et al.; this is likely due to differing definitions of the persistent emission level and the start and end times of each dip, as Giles et al. do not report how they define these features.

Our values for the ratios between burst and dip fluences, as well as those of Giles et al., are affected by dead-time. These effects cause the fluence of bursts to be under-reported, as can be inferred from Figure 22, but the integrated counts in dips are not significantly affected (Giles et al. 1996). Therefore correcting for dead-time can only increase the value of \(\phi_B/\phi_d \), and our result shows that the fluence of a burst is always greater than the fluence ‘missing’ from a dip.

We find evidence of significant colour evolution during both Normal Bursts and Minibursts, which is strongly indicative of a spectral evolution (see also e.g. Woods et al. 1999). Further work on the time-resolved spectra of this source will likely allow us to better understand the underlying physics of its behaviour.

Using data from the KONUS experiments aboard the GGS-Wind and Kosmos-2326 satellites, Aptekar et al. (1998) have previously found that the recurrence times between consecutive bursts in Outburst 1 are distributed with a constant mean of \(\sim 1776 \) s. This is substantially longer than our value of 1209 s that we find for Outburst 1, but our value is likely an underestimate due to a selection bias caused by the relatively short pointings of RXTE.

Using Chandra and XMM-Newton data, we find a mean recurrence time for Outburst 3 of 1986 s; as pointings with these instruments are significantly longer than the burst recurrence timescale, windowing effects are negligible. As this value is close to the value that Aptekar et al. (1998) find for mean recurrence time, our result is consistent with the burst rate in all three outbursts being approximately the same.

Previous studies with CGRO/BATSE have found that the burst rate during the first few days of Outbursts 1 & 2
was significantly higher than during the rest of each outburst (Kouveliotou et al. 1996; Woods et al. 1999). As RXTE did not observe either of these times, we are unable to test this result.

4.4 Comparison with other objects

In Court et al. (2018) we discuss the possibility that some of the behaviour in the Bursting Pulsar could be due to fluctuations in the magnetospheric radius of the system close to the corotation radius. This behaviour (e.g. Bogdanov et al. 2015; Ferrigno et al. 2014) is also seen in ‘Transitional Millisecond Pulsars’ (TMSPs): objects which alternate between appearing as X-ray pulsars and radio pulsars (see e.g. Archibald et al. 2009; Papitto et al. 2013).

Another natural comparison to the Bursting Pulsar is the Rapid Burster (Lewin et al. 1976b), a neutron star LMXB in the globular cluster Liller I. This object is the only LMXB other than the Bursting Pulsar known to unambiguously exhibit Type II bursting behaviour during outbursts. Rappaport & Joss (1997) have previously proposed that the Bursting Pulsar, the Rapid Burster and other neutron star LMXBs form a continuum of objects with different magnetic field strengths.

We compare our study of bursts in the Bursting Pulsar with studies of Type II bursts in the Rapid Burster, particularly the detailed population study performed by Bagnoli et al. (2015). Bagnoli et al. (2015) found that Type II bursting begins during the decay of an outburst in the Rapid Burster. This is the same as what we see in the Bursting Pulsar, where we find Normal Bursting behaviour starts during the outburst decay. Bagnoli et al. (2015) found that all bursting in the Rapid Burster shuts off above an Eddington Fraction of ≥ 0.05, whereas we find bursting in the Bursting Pulsar shuts off below a 2–16 keV flux of Eddington fraction of ~ 0.1 Crab: assuming that the peak persistent luminosity of the Bursting Pulsar was approximately Eddington Limited (e.g. Sazonov et al. 1997), this value corresponds to an Eddington fraction of order ~ 0.1. This suggests that Type II bursting in these two objects happen in very different accretion regimes.

Bagnoli et al. showed that bursting behaviour in the Rapid Burster falls into a number of ‘bursting modes’, defined by the morphology of individual Type II bursts. In particular, they find that Type II bursts in the Rapid Burster fall into two classes (see also Marshall et al. 1979), lightcurves of which we reproduce in Figure 21:

- Short near-symmetric Bursts with timescales of $\sim 10s$ of seconds and peak rates near the Eddington Limit.
- Long bursts with a fast rise, a long $\sim 100s$ plateau at peak rate followed by a fast decay. The level of the plateau is generally at or near the Eddington Limit.

Short bursts are very similar in shape to Normal Bursts in the Bursting Pulsar, but we find no analogue of long bursts in our study. Bagnoli et al. (2015) suggests that the ‘flat-top’ profile of long bursts could be due to the effects of near-Eddington accretion, and they show that the intensity at the ‘flat top’ of these bursts is close to Eddington limit. Previous works have shown that the persistent emission of the Bursting Pulsar is Eddington-limited at peak, and therefore bursts from the Bursting Pulsar are significantly super-Eddington (Sazonov et al. 1997). We suggest, therefore, that Long Bursts cannot occur in systems with a persistent rate approaching the Eddington Limit. This could explain why Long Bursts are not seen during periods of Normal Bursting in the Bursting Pulsar (during which the persistent emission is $\geq 20\%$ of Eddington), but it remains unclear why these features are not seen later in each outburst when the Bursting Pulsar is fainter. Alternatively, all the differences we see between bursts produced by the Rapid Burster and the Bursting Pulsar could be explained if the physical mechanisms behind these bursts are indeed different between the objects.

Bagnoli et al. (2015) also find a number of correlations between burst parameters in the Rapid Burster, which we can compare with our results for the Bursting Pulsar. We find a number of similarities between the two objects:

- The fluence of a burst correlates with its amplitude.
- The duration of a burst does not correlate\(^{12}\) with the persistent emission.
- The recurrence time between consecutive bursts does not depend on the persistent emission.

There are also a number of differences between the set of correlations between burst parameters in these two systems:

- Burst duration is correlated with burst fluence in the Rapid Burster, but these have not been seen to correlate in the Bursting Pulsar.
- Burst duration, peak rate and burst fluence are all correlated with burst recurrence time in the Rapid Burster. We have not found any of these parameters to correlate with burst recurrence time in the Bursting Pulsar.
- Peak rate and burst fluence correlate with persistent emission in the Bursting Pulsar, but this is not true for bursts of a given type in the Rapid Burster.

As the neither the fluence nor the class of a burst in the Rapid Burster depend strongly on persistent emission,\(^{12}\) We state two parameters do not correlate if their Spearman Rank score corresponds to a significance $< 3\sigma$.
which can be used as a proxy for M, this suggests that the process that triggers Type-II bursts in this source is not strongly dependent on the global accretion rate. However the strong correlations between persistent emission and burst peak and fluence we find in the Bursting Pulsar show that the energetics of individual bursts strongly depend global accretion rate at that time.

It has previously been noted that consecutive Normal Bursts in the Bursting pulsar do not show a strong correlation between recurrence time and fluence (Taam & Lin 1984; Lewin et al. 1996, however see Aptekar et al. 1997). This correlation would be expected if the instability took the form of a relaxation oscillator, as it does in the Rapid Burster (Lewin et al. 1976a). However, we also find that the arrival times of Normal Bursts from the Bursting Pulsar are not consistent with a Poisson distribution with constant mean. This implies either that bursts are also not independent events in the Bursting Pulsar, or that the frequency of these bursts is not constant throughout an outburst as reported by Aptekar et al. (1998).

4.5 Comparison with Models of Type II Bursts

To our knowledge no models have been proposed which can fully explain Type II bursting behaviour, but several models have been proposed in the context of Type II bursting from the Rapid Burster MXB 1730-33. A number of models invoke viscous instabilities in the inner disk as the source of cyclical bursting (e.g. Taam & Lin 1984; Hayakawa 1985), but these fail to explain why the majority of Neutron Star LMXBs do not show this behaviour.

Spruit & Taam (1993) use a different approach. They show that, in some circumstances, the interaction between an accretion disk and a rapidly rotating magnetospheric boundary can naturally set up a cycle of discrete accretion events rather than a continuous flow (see also D'Angelo & Spruit 2010, 2012; van den Eijnden et al. 2017; Scaringi et al. 2017). Walker (1992) suggests that, for a neutron star with a radius less than its ISCO, a similar cycle of accretion can be set up when considering the effects of a high radiative torque. All of these models suggest that Type II bursts are caused by sporadic accretion events onto the neutron star, which in turn are caused by instabilities that originate in the inner part of the accretion disk. For a more detailed review of these models, see Lewin et al. (1993).

All of the models discussed above are able to reproduce some of the features we see from bursts in the Bursting Pulsar. In particular, the ‘dip’ we see after Normal Bursts has previously been interpreted as being caused by the inner disk refilling after a sudden accretion event (e.g. Younes et al. 2015). As these dips are also seen after some Minibursts, we could also interpret Minibursts as being caused by a similar cycle. To test this idea, in Figure 22 we present a scatter plot of the burst and dip fluences for all Normal Bursts and Minibursts. In both classes of burst, there is a strong correlation between these two parameters. We find that a power law fit to the Normal Bursts in this parameter space also describes the Minibursts. This suggests that the same relationship between burst fluence and missing dip fluence holds for both types of burst, although the two populations are not continuous. This suggests that Minibursts are energetically consistent with being significantly fainter versions of Normal Bursts.

The models of Spruit & Taam (1993) and Walker (1992) also have shortcomings when used to describe the Bursting Pulsar. Walker (1992) state that their model only produces Type II bursts for a very specific set of criteria on the system parameters. One of these criteria is an essentially non-magnetic ($B = 0$) neutron star. This is inconsistent with observations of cyclotron lines from the Bursting Pulsar and the presence of a persistent pulsar, which suggest a surface field strength of order 10^{11} G (Doroshenko et al. 2015).

Unlike models based on viscous instability, the model of Spruit & Taam (1993) does not impose a correlation between burst fluence and burst recurrence time (see e.g. the evaluation of this model in the context of the Rapid Burster performed by Bagnoi et al. 2015). However, it does predict a strong correlation between burst recurrence time and mean accretion rate, which is not consistent with our results for the Bursting Pulsar.

In general, we find that models established to explain bursting in the Rapid Burster are poor at explaining bursting in the Bursting Pulsar. Any model which can produce Type II bursting in both systems fails to explain why other systems do not also show this behaviour. Our results suggest that Type II bursts in the Rapid Burster and the Bursting Pulsar may require two separate models to be explained.

4.5.1 Evidence of Thermonuclear Burning

We also consider the possibility that some of our observations could be explained by thermonuclear burning in the Bursting Pulsar. A thermonuclear origin for the main part of Normal Type II X-ray bursts has been ruled out by previous authors (e.g. Lewin et al. 1996), but it is less clear that associated features could not be explained by this process.

It has been shown that, above a certain accretion rate, thermonuclear burning on the surface of a neutron star
should be stable; below this rate, thermonuclear burning takes place in the form of Type I bursts (e.g. Fujimoto et al. 1981; Bildsten 1995). Bildsten & Brown (1997) have previously studied which form thermonuclear burning on the Bursting Pulsar would take. They find that the presence and profile of a thermonuclear burning event on the Bursting Pulsar would be strongly dependent on both the accretion rate \dot{M} and the magnetic field strength B. They predict that, for $B \gtrsim 3 \times 10^{10}$ G, burning events would take the form of a slowly propagating burning front which would result in a low-amplitude X-ray burst with a timescale of several minutes. Measurements of the Bursting Pulsar taken during Outburst 3 suggest a surface field strength of $> 10^{11}$ G, in turn suggesting that the Bursting Pulsar exists in the regime in which this burning behaviour is possible.

The ‘plateau’ events after Normal Bursts are consistent with the slow burning predicted by Bildsten & Brown (1997). This picture is consistent with models for Type II X-ray bursts involving spasmodic accretion events (e.g. Spruit & Taam 1993; Walker 1992), as plateaus always occur after a Type II burst has deposited a large amount of ignitable material onto the neutron star surface. However, in this picture it would be unclear why many Normal Bursts do not show this plateau feature. Mesobursts can also exhibit plateaus, and are therefore may also be products of spasmodic accretion onto the neutron star.

However, the interpretation of Mesobursts as being caused by discrete accretion events is difficult to reconcile with the fact that these features never show dips. Bildsten & Brown (1997) show that, at smaller values of \dot{M}, nuclear burning on the Bursting Pulsar could become unstable. Mesobursts are only seen during the latter stages of Outbursts 1 & 2, when the accretion rate is well below 0.1 Eddington. An interesting alternative possibility is that Mesobursts are a hybrid event, consisting of a flash of unstable thermonuclear X-ray burning followed by a slower quasi-stable burning of residual material in the form of a propagating burning front.

This picture would also be able to explain why Mesobursts are only seen during the latter parts of each outburst. As the accretion rate onto the Bursting Pulsar approaches Eddington during the peak of its outbursts, it is likely that the accretion rate is high enough that only stable burning is permitted. During the smaller rebrightening events after the main part of each outburst, the accretion rate is \sim 1–2 orders of magnitude lower, and hence the system may then be back in the regime in which Type I burning is possible. Additional studies of the spectral evolution of Mesobursts will be required to further explore this possibility.

Previous authors have discussed the possibility of a marginally stable burning regime on the surface of neutron stars (not to be confused with the previously mentioned quasi-stable burning). In this regime, which occurs close to the boundary between stable and unstable burning, Heger et al. (2007) showed that an oscillatory mode of burning may occur. They associated this mode of burning with the mHz QPOs which have been observed in a number of neutron star LMXBs (e.g. Revnivtsev et al. 2001; Altamirano et al. 2008a). These QPOs only occur over a narrow range of source luminosities, show a strong decrease in amplitude at higher energies, and they disappear after a Type I burst (e.g. Altamirano et al. 2008a).

Lightcurves of objects undergoing marginally stable burning qualitatively resemble those of Structured Bursting in the Bursting Pulsar, raising the possibility of a thermonuclear explanation for Structured Bursting. However, as we show in Figure 4, Structured Bursting during Outburst 1 occurred during a period of time in which the Bursting Pulsar’s luminosity changed by \sim 1 order of magnitude. In addition to this, in Figure 17 we show an example of a Mesoburst during a period of Structured Bursting. If Mesobursts can be associated with Type I bursts, any marginally stable burning on the surface of the Bursting Pulsar should have stopped after this event. Due to these inconsistencies with observations of marginally stable burning on other sources, it is unlikely that Structured Bursting is a manifestation of marginally stable burning on the Bursting Pulsar.

Linares et al. (2012) observed yet another mode of thermonuclear burning during the 2010 outburst of the LMXB Terzan 5 X-2. They observed a smooth evolution from discrete Type I bursts into a period of quasi-periodic oscillations resembling Structured Bursting. This behaviour resembles the evolution we observe between Mesobursts and Structured Bursting in Outbursts 1 & 2 of the Bursting Pulsar (as shown in Figure 20; compare with Figure 1 in Linares et al. 2012). However there are a number of differences between the evolutions seen in both objects. In Terzan 5 X-2 the recurrence timescale of Type I bursts during the evolution is strongly related to the accretion rate of the source at the time, whereas there is no such strong relation between the two in Mesobursts from the Bursting Pulsar. Additionally, the quasi-periodic oscillations in Terzan X-2 evolved smoothly back into Type I bursts later in the outburst, whereas Structured Bursting does not evolve back into Mesobursts in the Bursting Pulsar. As such, it is unclear that Mesobursts and Structured Bursting can be associated with the unusual burning mode seen on Terzan 5 X-2.

5 CONCLUSIONS

We analyse all X-ray bursts from the Rapid Burster seen by RXTE/PCA during its first and second outbursts, as well as bursts seen by other missions during the third outburst of the source. We conclude that these bursts are best described as belonging to four separate classes of burst: Normal Bursts, Mesobursts, Minibursts and Structured Bursts. We find that the bursting behaviour in these four classes evolves in a similar way throughout the first two outbursts of the Bursting Pulsar. We present a new semi-mathematical model to fit to the Normal Bursts in this object. Using this new framework, we will be able better quantify Bursting-Pulsar-like X-ray bursts when they are observed in other objects in the future.

We find the bursts in the Rapid Burster and the Bursting Pulsar to be different in burst profile, peak Eddington ratio, and durations. While the fluence of Type II bursts in the Bursting Pulsar depend strongly on the persistent emission at the time, this is not the case in the Rapid Burster. Additionally the waiting time between bursts in the Rapid Burster depend heavily on the fluence of the preceding burst, but we do not find this in the Bursting Pulsar. Therefore, it
would be reasonable to conclude that the bursting in these two objects is generated by two different mechanisms.

However, it is also important to note a number of similarities between the Bursting Pulsar and the Rapid Burster. Bursting behaviour in both objects depends on the global accretion rate of the system and the evolution of its outbursts. For example, the recurrence times of bursts do not depend on persistent emission in either object, and nor does the duration of an individual burst. Notably while Type II bursts in the Rapid Burster only occur at luminosities $L \lesssim 0.05L_{\text{Edd}}$, we find that normal bursts in the Bursting Pulsar only occur at $L \lesssim 0.1L_{\text{Edd}}$. There is no overlap between the luminosity regimes, in terms of the Eddington Luminosity, at which bursting is observed in the two objects. This leads to the alternative hypothesis that bursts in the two systems may be caused by similar processes, but that these processes take place in very different physical regimes.

ACKNOWLEDGEMENTS

J. C. thanks the Science & Technology Facilities Council and the Royal Astronomical Society for their financial support. D.A. thanks the Royal Society, and the International Space Science Institute (ISSI) for its support. N.D. is supported by a Vidi grant from the Dutch Organisation for Scientific Research (NWO). T.B. acknowledges financial contribution from the agreement ASI-INAF n.2017-14-H.0. The authors acknowledge the use of AstroPy (Astropy Collaboration et al. 2013), NumPy (Jones et al. 2001) and MatPlotLib (Hunter 2007) libraries for Python. We also acknowledge the use of public data from the RXTE (Bradt et al. 1999) archive, as well as FTOOL (Blackburn 1995) for data manipulation. Results provided by the ASM/RXTE teams at MIT and at the RXTE SOF and GOF at NASA’s GSFC.

REFERENCES

Altamirano D., van der Klis M., Wijnands R., Cumming A., 2008a, ApJ, 675, L35
Altamirano D., van der Klis M., Méndez M., Jonker P. G., Klein-Wolt M., Lewin W. H. G., 2008b, ApJ, 685, 436
Angelini L., White N. E., Stella L., 1991, ApJ, 371, 332
Aptekar R. L., et al., 1998, ApJ, 493, 404
Archibald A. M., et al., 2009, Science, 324, 1411
Astropy Collaboration et al., 2013, A&A, 558, A33
Azzalini A., 1985, Scandinavian Journal of Statistics, 12, 171
Bagnoli T., in’t Zand J. J. M., D’Angelo C. R., Galloway D. K., 2015, MNRAS, 449, 268
Bildsten L., 1995, ApJ, 438, 852
Bildsten L., Brown E. F., 1997, ApJ, 477, 897
Bildsten L., et al., 1997, ApJS, 113, 367
Blackburn J. K., 1995, in Shaw R. A., Payne H. E., Hayes J. J. E., Bildsten L., et al., eds, Proc. SPIEVol. 4851, X-Ray and Gamma-Ray Telescopes and Instruments for Astronomy., pp 1320–1325, doi:10.1117/12.461279

Evolution of Bursts in GRO J1744–28

Court J., 2017, jmcourt/PANTHEON: Zenodo Release, doi:10.5281/zenodo.1040704, https://doi.org/10.5281/zenodo.1040704

Court J. M. C., Altamirano D., Perezrya M., Boon C. M., Yamaoka K., Belloni T., Wijnands R., Pahari M., 2017, MNRAS, 469, 4748

Court J. M. C., Altamirano D., Sanna A., 2018, MNRAS, 477, L106

D’Aì A., et al., 2015, MNRAS, 449, 4288

D’Aì A., Burderi L., Di Salvo T., Iaria R., Pintore F., Riggio A., Sanna A., 2016, MNRAS, 463, L84

D’Angelo C. R., Spruit H. C., 2010, MNRAS, 406, 1208

D’Angelo C. R., Spruit H. C., 2012, MNRAS, 420, 416

Daigle F., Goldoni P., Ferrando P., Goldwurm A., Decourchelle A., Warwick R. S., 2002, A&A, 386, 531

Degenaar N., Wijnands R., Cackett E. M., Homan J., in’t Zand J. J. M., Kuulkers E., Maccarone T. J., van der Klis M., 2012, A&A, 545, A49

Degenaar N., Miller J. M., Harrison F. A., Kennea J. A., Kouveliotou C., Yonnes G., 2014, ApJ, 796, L9

Durouchenko R., Santangelo A., Durouchenko V., Saleimyanov V., Piraino S., 2015, MNRAS, 452, 2490

Evans P. A., et al., 2007, A&A, 469, 379

Ferrigno C., et al., 2014, A&A, 567, A77

Finger M. H., Koh D. T., Nelson R. W., Prince T. A., Vaughan B. A., Wilson R. B., 1996, Nature, 381, 291

Fishman G. J., Kouveliotou C., van Paradijs J., Harmon B. A., Paciesas W. S., Briggs M. S., Kommers J., Lewin W. H. G., 1995, IAU Circ., 6272

Fruscione A., et al., 2006, in Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series. p. 62701V, doi:10.1117/12.671760

Fujimoto M. Y., Hanawa T., Miyaji S., 1981, ApJ, 247, 267

Galloway D. K., Munu M. P., Hartman J. M., Psaltis D., Chakrabarty D., 2008, ApJS, 179, 360

Garmire G. P., Bautz M. W., Ford P. G., Nousek J. A., Ricker Jr. G. R., 2003, in Trümper J. E., Tananbaum H. D., eds, Proc. SPIEVol. 4851, X-Ray and Gamma-Ray Telescopes and Instruments for Astronomy., pp 28–44, doi:10.1117/12.461599

Gehrels N., 2004, in Schoenfelder V., Lichti G., Winkler C., eds, ESA Special Publication Vol. 552, 5th INTEGRAL Workshop on the INTEGRAL Universe. p. 777

Gehrels N., Chipman E., Kniffen D., 1994, ApJS, 92, 351

Giles A. B., Swan J. H., Jahoda K., Zhang W., Strohmayer T., Stark M. J., Morgan E. H., 1996, ApJ, 469, L25

Gosling A. J., Bandyopadhyay R. M., Miller-Jones J. C. A., Farrell S. A., 2007, MNRAS, 380, 1511

Harrison F. A., et al., 2013, ApJ, 770, 103

Hayakawa S., 1985, Phys. Rep., 121, 317

Heger A., Cumming A., Woosley S. E., 2007, ApJ, 665, 1311

Hoffman J. A., Marshall H. L., Lewin W. H. G., 1978, Nature, 271, 630

Hunter J. D., 2007, Computing In Science & Engineering, 9, 90

Jahoda K., Swan J. H., Giles A. B., Stark M. J., Strohmayer T., Zhang W., Morgan E. H., 1996, in Siegmund O. H., Gummin M. A., eds, Proc. SPIEVol. 2808, EUV, X-Ray, and Gamma-Ray Instrumentation for Astronomy VII. pp 59–70

Jahoda K., Markwardt C. B., Radeva Y., Rots A. H., Stark M. J., Swan J. H., Strohmayer T. E., Zhang W., 2006, ApJS, 163, 401

Jones E., Oliphant T., Peterson P., et al., 2001, SciPy: Open source scientific tools for Python, http://www.scipy.org/

Kennea J. A., Kouveliotou C., Yonnes G., 2014, The Astronomer’s Telegram, 5845

Kouveliotou C., van Paradijs J., Fishman G. J., Briggs M. S., Kommers J., Harmon B. A., Meegan C. A., Lewin W. H. G., 1996, Nature, 379, 799

Koyama K., et al., 2007, PASJ, 59, 23

MNRAS 000, 1–26 (2018)
we show the distributions of ϕ_B. In Figures B1–B10, we present histograms showing the distributions of ϕ_B, a_B, c, ϕ_d, a_d, λ, ϕ_p and a_p we find in our population study. Each of these is a parameter we used to fit the Normal Bursts in our sample: see Section 3.3.2 for a full explanation of these parameters. In Figures B11–B16 we show the distributions of ϕ_B, a_B, c, ϕ_d, a_d, λ, ϕ_p and a_p after being normalised by the persistent emission rate k at the time of each burst.

Figure B1. A histogram showing the distribution of burst fluence ϕ_B amongst our sample of Normal Bursts.

Figure B2. A histogram showing the distribution of burst amplitude a_B amongst our sample of Normal Bursts.
Table A1. A list of all RXTE observations of the Bursting Pulsar used in this study. Exposure is given in seconds, and date is given in days from MJD 50000. The prefixes A, B, C, D and E correspond to OBSIDs beginning with 10401-01, 20077-01, 20078-01, 20401-01 and 30075-01 respectively.
Figure B3. A histogram showing the distribution of burst width σ_B amongst our sample of Normal Bursts.

Figure B4. A histogram showing the distribution of burst skewness c amongst our sample of Normal Bursts.

Figure B5. A histogram showing the distribution of dip fluence ϕ_d amongst our sample of Normal Bursts.

Figure B6. A histogram showing the distribution of dip amplitude a_d amongst our sample of Normal Bursts.

APPENDIX C: PARAMETER CORRELATIONS IN NORMAL BURSTS

Before normalizing for persistent rate, we find $> 5 \sigma$ correlations between 12 pairs of the parameters we use to describe Normal Bursts:

- Persistent emission k correlates with burst fluence ϕ_B ($> 10 \sigma$), burst amplitude a_B ($> 10 \sigma$), dip fluence ϕ_D ($> 10 \sigma$) and dip amplitude a_d (7.2σ).

- Burst fluence ϕ_B also correlates with burst amplitude a_B ($> 10 \sigma$), dip fluence ϕ_D ($> 10 \sigma$) and dip amplitude a_d (7.1σ).

- Burst amplitude a_B also correlates with dip fluence ϕ_D (6.2σ) and dip amplitude a_d (5.7σ).

- Burst width σ_B correlates with burst skewness c (5.8σ).

- Dip amplitude a_d anticorrelates with dip recovery timescale λ (5.0σ).

- Plateau fluence ϕ_p correlates with plateau amplitude a_p (6.6σ).

The full correlation matrix can be found in Figure C1, in which these pairs with $> 5 \sigma$ correlations are highlighted.
Figure B7. A histogram showing the distribution of dip fall-time d amongst our sample of Normal Bursts.

Figure B10. A histogram showing the distribution of plateau amplitude a_p amongst our sample of Normal Bursts.

Figure B8. A histogram showing the distribution of dip recovery timescale λ amongst our sample of Normal Bursts.

Figure B11. A histogram showing the distribution of persistent-emission-normalised burst fluence ϕ_B/k amongst our sample of Normal Bursts.

Figure B9. A histogram showing the distribution of plateau fluence ϕ_p amongst our sample of Normal Bursts.

Figure B12. A histogram showing the distribution of persistent-emission-normalised burst amplitude $a_{B/k}$ amongst our sample of Normal Bursts.
Figure B13. A histogram showing the distribution of persistent-emission-normalised dip fluence \(\phi_d/k \) amongst our sample of Normal Bursts.

Figure B14. A histogram showing the distribution of persistent-emission-normalised dip amplitude \(a_d/k \) amongst our sample of Normal Bursts.

Figure B15. A histogram showing the distribution of persistent-emission-normalised plateau fluence \(\phi_p/k \) amongst our sample of Normal Bursts.

Figure B16. A histogram showing the distribution of persistent-emission-normalised plateau amplitude \(a_p/k \) amongst our sample of Normal Bursts.
Figure C1. Covariance Matrix with a scatter plot of each of the 66 pairings of the 12 Normal Burst parameters listed in section 3.3.4. Pairings which show a correlation using the Spearman Rank metric with a significance $\geq 5\sigma$ are highlighted in red.