Electronically Tunable Fractional Order All Pass Filter

Rakesh Verma¹, Neeta Pandey², Rajeshwari Pandey²
¹Ph.D. Scholar, ²Associate Professor
Department of Electronics and Communication Engineering, Delhi Technological University Delhi, Delhi INDIA
¹dce.rkverma@gmail.com, ²n66pandey@rediffmail.com, rajeshwaripandey@gmail.com

Abstract: In this paper, an electronically tunable fractional order all pass filter (FOAPF) based on operational transconductance amplifier (OTA) is presented. It uses two OTAs and single fractional order capacitor (FC) of non-integer order α to provide FOAPF of α order. Two different values of α, in particular 0.5 and 0.9, for FC are taken for investigation. The functionality of the proposal is verified through SPICE simulations using TSMC 0.18 μm Complementary Metal Oxide Semiconductor (CMOS) process parameters. Simulated and theoretical frequency and time domain responses are found to be in close agreement.

Keywords: All pass filter, fractional order element, fractional order filter, OTA

1. INTRODUCTION

All pass filters (APF) are widely used in phase shifting application for analog signal processing system [1]-[6] where they pass all frequencies over the desired frequency range with a predictable phase shift. Several active first order filter realization based on various active building blocks such as current differencing buffer amplifier (CDBA) [6], [7], current conveyor (CC) [8], universal voltage conveyor (UVC) [9], [10], second generation current conveyor (CCII) [3], [11]-[13], third generation current conveyor (CCIII) [14], second generation current controlled conveyor (CCCII) [15], differential voltage current conveyor (DVCC) [4], [16]-[21], differential difference current conveyor (DDCC) [22], [23], dual-X second generation current conveyor (DXCCII) [24], [25], fully differential CCII [5], [26], [27], current controlled conveyor transconductance amplifier (CCCTA) [28], operational transconductance amplifiers (OTAs) [9], [20], [29], [30], voltage differencing invertingbuffered amplifier (VDIBA) [31], voltage differencing transconductance amplifier (VDTA) [32] are available in literature. It is observed that the active blocks with OTA or in particular having OTA block are useful for achieving electronic tuning of phase response of APF.
Research interest in fractional order filters (FOFs) is growing recently due to inherent extra degree of freedom and possibility of embedding concept of scaling effect on frequency which leads to increase design flexibility. Their design equations are generalized from the theory of classical filter. The FOFs make use of fractional order element (FOE) whose behavior is approximated by Oustaloup Recursive approximation [33], Carlson approximation [33], Matsuda approximation [33], Chareff approximation [33], Continued Fraction Expansion (CFE) [33], Modified Oustaloup [34] and El-Khazali reduced order approximations [35]. Based on the finite element approximation of FOE, the implementation of fractional order capacitor (FC) may be obtained by a structure approximating half order FC as presented via semi-infinite RC trees in [36] or by other combinations of RC ladder networks [37] such as cross RC ladder network, domino ladder, tree structure etc. The method outlined in [38] gives structure for approximating FC of any order.

This work presents electronically tunable fractional order all pass filter (FOAPF). Two FOAPFs [39], [40] are available in open literature to the best of authors’ knowledge but these lacks in electronic tuning feature. The remaining part of this paper is organized as follows. Section 2 is divided into three subsections which include FOE, OTA and realization of FOAPF. Section 3 deals with theoretical and simulation results and finally conclusion is placed in section 4.

2. Proposed Circuit

2.1 Fractional Order Element (FOE)

The impedance function of an FOE (denoted as F) may be expressed as \(Z_F(s) = a s^\alpha \) [41], where \(\alpha \) represents non-integer value and is termed as fractional order. The FOE impedance function can be represented in terms of magnitude (\(|a s^\alpha| \)) and phase (\(\alpha \pi / 2 \)) functions. It may be noted that though, its magnitude function is frequency dependent but phase is independent of frequency and has a constant value for a given fractional order. Therefore, the FOE is also termed as a constant phase element (CPE). The FOE is not commercially available though, its behavior can be simulated by finding an appropriate rational approximation [42] of its impedance function. The FOE is versatile element and is used to generate various basic structures such as fractional order capacitor (FC), fractional order inductor (FI), differentiator [43], [44], integrator [43], [44] inverted-L type [42] and the derived RC and RL circuits as imaginary impedance [45] in fractional domain and is found in designing of various fractional order analog circuits.

2.2 Operational Transconductance Amplifier (OTA)

The circuit symbol of OTA is given in Fig. 1. It processes differential voltage and provides output current as

\[
I_o = \pm g_m (V_+ - V_-)
\]

(1)
Here the transconductance gain g_m of OTA can be characterized by

$$g_m = \sqrt{\mu_n C_{ox} \frac{W}{L} I_b}$$

(2)

Where μ_n, C_{ox} and W/L are the electron mobility of NMOS, gate oxide capacitance per unit area and transistor aspect ratio respectively. This expression shows that the value of g_m depends on bias current (I_b) which allows electronic tunability of the circuit parameters. Fig. 2 shows MOS circuit realization of OTA [46] for the simulation.

2.3 Realization of Fractional Order All Pass Filter (FOAPF)

Fig. 3(a) shows FOAPF based on OTA which is generalized by replacing traditional capacitor with FC in structure [47]. The impedance function of FC gives magnitude as $1/(\omega C)$ and phase as $-\alpha \pi / 2$. The behavior of FC is approximated by CFE method and then realized with the RC ladder network of Fig. 3(b).
A single component of FC having non-integer order α and capacitor value C is chosen for designing of FOAPF. The impedance function of FC gives its magnitude as $1/|\omega^\alpha C|$ and phase as $-\alpha \pi / 2$.

Routine analysis of Fig. 3(a) provides following transfer function

$$T(s)_{\text{FAPF}} = \frac{s^\alpha - g_{m1}/C}{s^\alpha + g_{m2}/C}$$ \hspace{1cm} (3)

The pole-zero plot of classical first order filter in complex s-plane allocates zero at $s = \omega_{b1}$ and pole at $s = -\omega_{b2}$. Consequently s-plane transformation into fractional domain (s^α) yields zero at $s^\alpha = \omega_{b1}^\alpha$ and pole at $s^\alpha = -\omega_{b2}^\alpha$.

Setting $s = \omega e^{j\pi/2} (= j\omega)$, $\omega_{b1}^\alpha = g_{m1}/C$ and $\omega_{b2}^\alpha = g_{m2}/C$, the frequency response of (3) becomes

$$T(j\omega)^\alpha = \frac{(\omega e^{j\pi/2})^\alpha - (\omega_{b1})^\alpha}{(\omega e^{j\pi/2})^\alpha + (\omega_{b2})^\alpha}$$ \hspace{1cm} (4)

The magnitude and phase of FOAPF may be expressed by (5) and (6) respectively

$$|T(j\omega)| = \left| \frac{\omega^{2\alpha} + \omega_1^{2\alpha} - 2\omega^\alpha \omega_1^\alpha \cos (\alpha \pi / 2)}{\omega^{2\alpha} + \omega_2^{2\alpha} + 2\omega^\alpha \omega_2^\alpha \cos (\alpha \pi / 2)} \right|$$ \hspace{1cm} (5)

$$\angle T(j\omega) = \tan^{-1} \left[\frac{\omega^\alpha \sin (\alpha \pi / 2) / \omega_1^\alpha \cos (\alpha \pi / 2) - \omega_2^\alpha}{\omega^\alpha \sin (\alpha \pi / 2) / \omega_2^\alpha \cos (\alpha \pi / 2) + \omega_1^\alpha} \right]$$ \hspace{1cm} (6)

It has been seen [40] that the gain at $\omega = \omega_p$ (at which $\angle T(j\omega) = \pm \pi / 2$) has minima if $\alpha < 1$, maxima if $\alpha > 1$ and flat if $\alpha = 1$. In this work the behavior of FC is emulated through RC ladder network as shown in Fig. 3(b) which is based on 4th order CFE approximation.

3. Circuit Simulation

The proposed FOAPF is functionally verified through SPICE simulation wherein CMOS based schematic of OTA [46] is used with 0.18 μm TSMC CMOS process parameters. Simulations are carried out for two different FCs of fractional orders 0.5 and 0.9 respectively. The FCs of 1μF each are designed around a centre frequency of 1 kHz. To obtain electronic tunability of FOAPF parameters the g_m of OTAs is controlled through bias currents (I_{b1} and I_{b2}) variation. The supply voltages are taken as ± 1.8 V. The frequency responses of the designed FOAPF, as obtained through SPICE simulation (solid lines) and theoretical (dash lines) results are depicted in Figs. 4 and 5 respectively. The theoretical results are calculated from (5) and (6) and are plotted using MATLAB program. In the responses of Figs. 4 and 5 the pole frequencies ($\omega_{b1} = \omega_{b2}$) of 2.5 krad/s, 10 krad/s, 22.5 krad/s, 40 krad/s are chosen for $\alpha = 0.5$ whereas for $\alpha = 0.9$ the pole frequencies are fixed at 500 rad/s, 750 krad/s, 1 krad/s, 1.25 krad/s.

It may be observed from various responses that the simulation and theoretical results are quite close for a wide range of frequencies.
Fig. 5 FOAPF (a) magnitude (b) phase responses for order of FC is $\alpha=0.9$

The time domain response of proposed filter is shown in Fig. 6 where inputs (i) 10 mV amplitude and 1 kHz frequency sinusoidal signal for order $\alpha = 0.5$ as shown in Fig. 6(a) and (ii) 100 mV amplitude and 100 Hz frequency sinusoidal signal for order $\alpha = 0.9$ as shown in Fig. 6(b); are applied to the filter and output is about -90^0 phase shifted. In addition, their X-Y plot (Lissajous pattern) with -90^0 phase shift is also illustrated in Fig. 7 which verifies the circuit as a phase shifter.

Fig. 6: Time domain response of FOAPF having (a) $\alpha = 0.5$ and (b) $\alpha = 0.9$

Fig. 7: (a) and (b) Lissajous (XY) pattern of Fig. 4 (a) and (b)
4 CONCLUSION

This paper proposes an electronically tunable FOAPF by generalizing first order all pass filter into fractional domain where tuning operation is executed through bias currents of OTAs. The phase shift operation is also tuned electronically. It is shown that all pass filter has more flexibility in shaping the filter response when generalizing into fractional domain. The frequency and time domain responses of FOAPF of order 0.5 and 0.9 are depicted which are close to theoretical results.

REFERENCES

[1] R. Schaumann, and M. E. Van Valkenbrg, "Design of analog filters," Oxford University Press, New York, 2001.
[2] D. Comer, and J. McDermid, "Inductorless bandpass characteristics using all-pass networks," IEEE Transactions on Circuit Theory. vol. 15, no. 4, pp. 501–503, 1968.
[3] O. Cicekoglu, H. H. Kuntman, and S. Berk, "All pass filters using a single current conveyor," Proceedings of the 6th International Conference on Optimization of Electrical and Electronic Equipments, Brasov, pp. 649–654. 1998.
[4] J. W. Horng, "DVCCs based high input impedance voltage-mode first-order allpass, highpass and lowpass filters employing grounded capacitor and resistor," Radioengineering. vol. 19, no. 4, pp. 653–656, 2010.
[5] B. Metin, N. Herencsar, and K. Pal, "Supplementary first-order all-pass filters with two grounded passive elements using FDCCII," Radioengineering, vol. 20, no. 2, pp. 433-437, 2011.
[6] A. Toker, S. Ozoguz, O. Cicekoglu, and C. Acar, "Current-mode all-pass filters using current differencing buffered amplifier and a new high-Q bandpass filter configuration," IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing, vol. 47, no. 9, pp. 949-954, 2000.
[7] F. Kacar, Y. Ozcelep, "CDBA based voltage-mode first-order all-pass filter topologies" Istanbul University-Journal of Electrical & Electronics Engineering, vol. 11, no.1, 2011.
[8] H. P. Chen, and K. H. Wu, “Grounded-capacitor first-order filter using minimum components,” IEICE Transactions of Fundamentals, Vol. E89-A, pp. 3730-3731, 2006.
[9] N. Herencsar, J. Koton, and K. Vrba, "A new electronically tunable voltage-mode active-C phase shifter using UVC and OTA," IEICE Electronics Express, vol. 6, no. 17, pp. 1212-1218, 2009.
[10] N. Herencsar, J. Koton, J. Jerabek, K. Vrba, and O. Cicekoglu, “Voltage-mode all-pass filters using universal voltage conveyor and MOSFET-based electronic Resistors,” Radioengineering, vol. 20, no. 1, pp. 10-18, 2011.
[11] A. Toker, S. Ozcan, H. Kuntman, and O. Cicekoglu, “Supplementary all-pass sections with reduced number of passive elements using a single current conveyor,” International Journal of Electronics, vol. 88, no. 9, pp. 969-976, 2001.
[12] M. A. Ibrahim, H. Kuntman, S. Ozcan, O. Suvak, and O. Cicekoglu, “New first-order inverting-type second-generation current conveyor-based all-pass sections including canonical forms,” Electrical Engineering, vol. 86, no. 5, pp. 299-301, 2004.
[13] F. Yucel, and E. Yuce, “CCII based more tunable voltage-mode all-pass filters and their quadrature oscillator applications,” International Journal of Electronics and Communication (AEU), vol. 68, no. 1, pp. 1-9, 2014.

[14] S. Maheshwari, and I. A. Khan, “Novel first order all-pass sections using a single CCIII,” International Journal of Electronics, vol. 88, no. 7, pp. 773-778, 2001.

[15] S. Minaei and O. Cicekoglu, “A resistorless realization of the first-order all-pass filter”, International Journal of Electronics, vol. 93, no. 3, pp. 177-183, 2006.

[16] S. Maheshwari, "High input impedance VM-APSs with grounded passive elements," IET Circuits, Devices and Systems, vol. 1, pp. 1, 72-78, 2007.

[17] S. Maheshwari, "A canonical voltage-controlled VM-APS with a grounded capacitor," Circuits, Systems and Signal Processing, vol. 27, no. 1, pp. 123-132, 2008.

[18] S. Maheshwari, "High input impedance voltage-mode first-order all-pass sections," International Journal of Circuit Theory and Applications, vol. 36, no. 4, pp. 511-522, 2008.

[19] S. Minaei, and E. Yuce, "Novel voltage-mode all-pass filter based on using DVCCs," Circuits, Systems, and Signal Processing, vol. 29, no. 3, pp. 391-402, 2010.

[20] T. Tsukutani, H. Tsunetsugu, Y. Sumi, and N. Yabuki, “Electronically tunable first-order all-pass circuit employing DVCC and OTA,” International Journal of Electronics, vol. 97, no. 3, pp. 285-293, 2010.

[21] S. Maheshwari, J. Mohan, and D. S. Chauhan, “Novel voltage-mode cascadable all-pass sections employing grounded passive components,” Journal of Circuits, Systems, and Computers, vol. 22, 2013.

[22] M. A. Ibrahim, H. Kuntman, and O. Cicekoglu, “First-order all-pass filter canonical in the number of resistors and capacitors employing a single DDCC,” Circuits, Systems, and Signal Processing, vol. 22, no. 5, pp. 525-536, 2003.

[23] J. W. Horng, C. M. Wu, and N. Herencsar, “Fully differential first-order all pass filters using a DDCC,” Indian Journal of Engineering and Materials Sciences, vol. 21, no. 4, pp. 345-350, 2014.

[24] S. Minaei, and E. Yuce, “Unity/variable-gain voltage-mode/current-mode first-order all-pass filters using single dual-X second-generation current conveyor,” IETE Journal of Research, vol. 56, no. 6, pp. 305-312, 2010.

[25] S. Maheshwari, and B. Chaturvedi, “High-input low-output impedance all-pass filters using one active element,” IET Circuits, Devices and Systems, vol. 6, no. 2, pp. 103-110, 2012.

[26] S. Maheshwari, J. Mohan, and D. S. Chauhan, “Voltage-mode cascadable all-pass sections with two grounded passive components and one active element,” IET Circuits, Devices and Systems, vol. 4, no. 2, pp. 113-122, 2010.

[27] J. Mohan, and S. Maheshwari, “Additional high-Input low-output impedance voltage-mode all pass section,” Journal of Circuits, Systems, and Computers, vol. 23, no. 6, pp. 1-14, 2014.

[28] W. Tangsrirat, J. Budboonchu, and T. Pukkalanun, “Resistorless voltage-mode first-order allpass section using single current-controlled conveyor transconductance amplifier,” Indian Journal of Pure & Applied Physics, vol. 53, no. 5, pp. 335-340, 2015.

[29] A. U. Keskin, K. Pal, and E. Hancioglu, "Resistorless first order all-pass filter with electronic tuning," AEU-International Journal of Electronics and Communications, vol. 62, no. 4, pp. 304-306, 2008.
[30] I. A. Khan, and M. T. Ahmed, “Electronically tunable first-order OTA-capacitor filter sections,” International Journal of Electronics, vol. 61, no. 2, pp. 233-237, 1986.

[31] N. Herencsar, S. Minaei, J. Koton, E. Yuce, and K. Vrba, “New resistorless and electronically tunable realization of dual-output VM all-pass filter using VDIBA,” Analog Integrated Circuits and Signal Processing, vol. 74, no. 1, pp. 141-154, 2013.

[32] S. Maneewan, N. Udorn, P. Silapan, D. Duangmalai, and W. Jaikla, "A voltage-mode first order all pass filter based on VDTA," Advances in Electrical and Electronic Engineering, vol. 12, no. 1, 2014.

[33] B. M. Vinagre, I. Podlubny, A. Hernandez, and V. Feliu, "Some approximations of fractional order operators used in control theory and applications," Fractional Calculus & Applied Analysis, vol. 3, no. 3, pp. 945-950, 2000.

[34] D. Y. Xue, C. Zhao, and Y. Q. Chen, "A modified approximation method of fractional order system," IEEE Conference on Mechatronics and Automation, pp. 1043–1048, 2006.

[35] R. El-Khazali, "On the biquadratic approximation of fractional order laplacian operators," Springer-Analog Integrated Circuits and Signal Processing, vol. 82, no. 3, pp. 503-517, 2015.

[36] M. Nakagava, and K. Sorimachi, "Basic characteristics of a fractance device," IEICE Transactions on Fundamentals, vol. E75-A, no. 12, pp. 1814–1818, 1992.

[37] I. Podlubny, I. Petras, B. M. Vinagre, P. O. Leary, and L. Dorcak, "Analogue realizations of fractional order controllers," Springer-Nonlinear Dynamics, vol. 29, no. 4, pp. 281-296, 2012.

[38] M. Sugi, Y. Hirano, Y. F. Miura, and K. Saito, "Simulation of fractal immittance by analog circuits: an approach to the optimized circuits," IEICE Transactions on Fundamentals, vol. E82-A, no. 8, pp. 205-209, 1999.

[39] B. Maundy, A. Elwakil, and S. Gift, "On the realization of multiphase oscillators using fractional-order allpass filters," Circuits, Systems, and Signal Processing, vol. 31, no. 1, pp. 3-17, 2012.

[40] A. G. Radwan, A. M., Soliman, and A. S. Elwakil, "First-Order Filters Generalized to the Fractional Domain, World Scientific-Journal of Circuits, Systems, and Computers," vol. 17, no.1, pp. 55–66, 2008.

[41] T. J. Freebom, B. Maundy, and A. Elwakil, “Fractional resonance-based $RL_\alpha C_\beta$ filters,” Hindawi-Mathematical Problems in Engineering, 2013. doi:10.1155/2013/726721.

[42] B.T. Krishna, "Studies on Fractional Order Differentiators and Integrators: A Survey," Elsevier Signal Processing, Vol. 91, Issue 3, pp. 386-426, 2011.

[43] G. Tsirimokou, C. Psychalinos, "Ultra-Low Voltage Fractional Order Differentiator and Integrator Topologies: An Application for Handling Noisy ECGs," Springer-Analog Integrated Circuits and Signal Processing Journal, Vol. 81, Issue 2, pp. 393-405, 2014.

[44] T. Suksang, W. Loedhammacakra, V. Pirajnanchai, "Implement the Fractional Order, Half Integrator and Differentiator on the OTA Based PID Controller Circuit," IEEE Conference on ECTICON, pp. 1-4, 2012.

[45] A.G. Radwan, K.N. Salama, "Fractional Order RC and RL Circuits," Springer-Circuits, Systems, and Signal Processing, Vol. 31, Issue 6, pp. 1901-1915, 2012.

[46] Raj Senani, D. R. Bhaskar, M. Gupta, and A. K. Singh, "Canonic OTA-C sinusoidal oscillators: Generation of new grounded-capacitor versions," American Journal of Electrical and Electronic Engineering, vol. 3, no. 6, pp. 137-146, 2015.
[47] R. L. Geiger, and E. Sanchez-Sinencio, “Active filter design using operational transconductance amplifiers: a tutorial,” IEEE Circuits and Devices Magazine, vol. 1, no. 2, pp. 20–32, 1985.

Rakesh Verma received B. Tech degree in Electronics and Communication Engineering (ECE) from Birla Institute of Applied Sciences, Bhimtal and M. Tech degree in Control and Instrumentation Engineering from Delhi Technological University, Delhi. He has served as Assistant Professor in ECE department, National Institute of Technology, Delhi. At present, he is a Ph. D research scholar in ECE department, Delhi Technological University, Delhi. His research interest is focused on fractional order current mode circuits.

Neeta Pandey is currently working as an Associate Professor in Department of Electronics and Communication Engineering, Delhi Technological University. She did her M. E. in Microelectronics from Birla Institute of Technology and Sciences, Pilani and Ph. D. from Guru Gobind Singh Indraprastha University Delhi. She is a life member of ISTE, and senior member of IEEE, IEEE WIE USA. She has published papers in International, National Journals of repute and conferences. Her research interests are in Analog and Digital VLSI Design.

Rajeshwari Pandey is currently working as an Associate Professor in Department of Electronics and Communication Engineering, Delhi Technological University, Delhi, India. She did her M.E (Electronics and Control) from BITS, Pilani, Rajasthan, India and Ph. D. from Faculty of Technology, Delhi University, India. Her research interests include Analog Integrated Circuits, and Microelectronics. She has published papers in International, National Journals of repute and conferences. She is life member of IETE, ISTE and member of IEEE, IEEE WIE for 10 years.