Research Article
Hypersurfaces with Null Higher Order Anisotropic Mean Curvature

Hua Wang¹ and Yijun He²

¹ School of Mathematical Sciences, Shanxi University, Taiyuan 030006, China
² Research Institute of Mathematics and Applied Mathematics, Shanxi University, Taiyuan 030006, China

Correspondence should be addressed to Yijun He; sxheyijun@163.com

Received 18 April 2013; Accepted 11 June 2013

Copyright © 2013 H. Wang and Y. He. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Given a positive function F on S^n which satisfies a convexity condition, for $1 \leq r \leq n$, we define for hypersurfaces in \mathbb{R}^{n+1} the rth anisotropic mean curvature function $H_{r,F}$, a generalization of the usual rth mean curvature function. We call a hypersurface anisotropic minimal if $H_{r,F} = H_{r,1,F} = 0$, and anisotropic r-minimal if $H_{r+1,F} = 0$. Let W be the set of points which are omitted by the hyperplanes tangent to M. We will prove that if an oriented hypersurface M is anisotropic minimal, and the set W is open and nonempty, then $x(M)$ is a part of a hyperplane of \mathbb{R}^{n+1}. We also prove that if an oriented hypersurface M is anisotropic r-minimal and its rth anisotropic mean curvature $H_{r,F}$ is nonzero everywhere, and the set W is open and nonempty, then M has anisotropic relative nullity $n - r$.

1. Introduction

Let $F : S^n \rightarrow \mathbb{R}^n$ be a smooth function which satisfies the following convexity condition:

$$\left(D^2 F + FI\right) x > 0, \quad \forall x \in S^n,$$

where S^n is the standard unit sphere in $\mathbb{R}^{n+1}, D^2 F$ denotes the intrinsic Hessian of F on S^n, I denotes the identity on $T_x S^n$, and > 0 means that the matrix is positive definite. We consider the map

$$\phi : S^n \rightarrow \mathbb{R}^{n+1},
\quad x \rightarrow F(x)x + \left(\text{grad}_{S^n} F\right)_x;$$

its image $W_F = \phi(S^n)$ is a smooth, convex hypersurface in \mathbb{R}^{n+1} called the Wulff shape of F (see [1–9]). When $F \equiv 1$, the Wulff shape W_F is just S^n.

Now let $x : M \rightarrow \mathbb{R}^{n+1}$ be a smooth immersion of an oriented hypersurface. Let $N : M \rightarrow S^n$ denote its Gauss map. The map $v = \phi \circ N : M \rightarrow W_F$ is called the anisotropic Gauss map of x.

Let $S_F = -d\nu$. S_F is called the F-Weingarten operator, and the eigenvalues of S_F are called anisotropic principal curvatures. Let σ_r be the elementary symmetric functions of the anisotropic principal curvatures $\kappa_1, \kappa_2, \ldots, \kappa_n$:

$$\sigma_r = \sum_{i_1 < i_2 < \ldots < i_r} \kappa_{i_1} \cdots \kappa_{i_r} \quad (1 \leq r \leq n).$$

We set $\sigma_0 = 1$. The rth anisotropic mean curvature $H_{r,F}$ is defined by $H_{r,F} = \sigma_r/C^n$, also see Reilly [10]. $H_{1,F} : = H_{1,1,F}$ is called the anisotropic mean curvature. When $F \equiv 1, S_F$ is just the Weingarten operator of hypersurfaces, and $H_{r,F}$ is just the rth mean curvature H_r of hypersurfaces which has been studied by many authors (see [11–14]). Thus, the rth anisotropic mean curvature $H_{r,F}$ generalizes the rth mean curvature H_r of hypersurfaces in the $(n+1)$-dimensional Euclidean space \mathbb{R}^{n+1}.

We say that $x : M \rightarrow \mathbb{R}^{n+1}$ is anisotropic r-minimal if $H_{r+1,F} = 0$.

For $p \in M$, we define $v(p) = \dim \ker(S_F)$. We call $v = \min_{p \in M} v(p)$ the anisotropic relative nullity; it generalized the usual relative nullity.
For a smooth immersion $x : M \rightarrow Q^{n+1}_c$ of a hypersurface into an $(n+1)$-dimensional space form with constant sectional curvature c, we denote by
\[W = Q^{n+1}_c - \bigcup_{p \in M} (Q^n_c)_p, \tag{4} \]
where for every $p \in M$, $(Q^n_c)_p$ is the totally geodesic hyper-surface of Q^{n+1}_c tangent to $x(M)$ at $x(p)$. So, in the case of $c = 0$, W is the set of points which are omitted by the hyperplanes tangent to $x(M)$.

We will study immersion with W nonempty. In this direction, Hasanis and Koutroufiotis (see [15]) proved the following.

Theorem 1. Let $x : M \rightarrow Q^3_c$ be a complete minimal immersion with $c \geq 0$. If W is nonempty, then x is totally geodesic.

Later, in [16], Alencar and Frensel extended the result above assuming an extra condition. They proved the following.

Theorem 2. Let $x : M \rightarrow Q^3_c$ be an oriented, minimally immersed hypersurface. If W is open and nonempty, then x is totally geodesic.

In [17], Alencar and Batista studied hypersurfaces with null higher order mean curvature; they proved the following.

Theorem 3. Let M be a complete and orientable Riemannian manifold and let $x : M \rightarrow Q^n_{c+1}$ be an isometric immersion with $H_{n+1} = 0$ and $H_{r} \neq 0$ everywhere, $r \geq 1$. If W is open and nonempty, then the relative nullity $\nu = n - r$.

We note that, Alencar in [18] provides examples of nontotally geodesic minimal hypersurfaces in \mathbb{R}^{2n}, $n \geq 4$, with nonempty W; in [17], Alencar and Batista provides examples of 1-minimal hypersurfaces in \mathbb{H}^n with $H_{r} \neq 0$ everywhere in \mathbb{R}^{2n}, $n \geq 5$, with nonempty W but $\nu \neq n - 1$. These examples show that it is necessary to add an extra hypothesis.

In this paper, we prove the anisotropic version of Theorems 2 and 3 for an immersion $x : M \rightarrow \mathbb{R}^{n+1}$. Explicitly, we prove the following two theorems.

Theorem 4. Let $x : M \rightarrow \mathbb{R}^{n+1}$ be an oriented, anisotropic minimally immersed hypersurface. If W is open and nonempty, then $x(M)$ is a part of a hyperplane of \mathbb{R}^{n+1}.

Theorem 5. Let $x : M \rightarrow \mathbb{R}^{n+1}$ be an oriented immersed hypersurface with $H_{n+1} = 0$ and $H_{r} \neq 0$ everywhere, $r \geq 1$. If W is open and nonempty, then the anisotropic relative nullity $\nu = n - r$.

2. Preliminaries

In this paper, we use the summation convention of Einstein and the following convention of index ranges unless otherwise stated:
\[1 \leq i, j, \ldots \leq n; \quad 1 \leq \alpha, \beta, \ldots \leq n + 1. \tag{5} \]

We define $F^* : \mathbb{R}^{n+1} \rightarrow \mathbb{R}$ to be
\[F^*(y) = \frac{1}{F(z)} \sup \left\{ (y,z) \mid z \in \mathbb{R}^{n+1} \setminus \{0\} \right\}; \tag{6} \]
then F^* is a Minkowski norm on \mathbb{R}^{n+1}. In fact, as proved in [19], $F^* : \mathbb{R}^{n+1} \setminus \{0\} \rightarrow \mathbb{R}$ is smooth and we have the following.

Proposition 6. (1) $F^*(y) > 0$, for all $y \in \mathbb{R}^{n+1} \setminus \{0\}$; (2) $F^*(ty) = tF^*(y)$, for all $y \in \mathbb{R}^{n+1}$, $t > 0$; (3) $F^*(y+z) \leq F^*(y) + F^*(z)$, for all $y, z \in \mathbb{R}^{n+1}$, and the equality holds if and only if $y = 0$, or $z = 0$ or $y = kz$ for some $k > 0$. (4) $W_F = \{ y \in \mathbb{R}^{n+1} \mid F^*(y) = 1 \}$.

We define
\[\overline{g}_{\alpha\beta}(y) = \frac{1}{2} \frac{\partial^2 (F^*)^2}{\partial y^\alpha \partial y^\beta} (y), \tag{7} \]
\[g_{\gamma}(X,Y) = \overline{g}_{\alpha\beta}(y) X^\gamma Y^\beta, \]
where $y \in \mathbb{R}^{n+1} \setminus \{0\}$ and $X = (X^1, X^2, \ldots, X^{n+1})$, $Y = (Y^1, Y^2, \ldots, Y^{n+1}) \in T_y \mathbb{R}^{n+1} \equiv \mathbb{R}^{n+1}$.

From the Euler’s theorem for homogeneous functions, we have
\[\frac{\partial \overline{g}_{\alpha\beta}}{\partial y^\gamma} (z) z^\beta = \frac{1}{2} \frac{\partial^3 (F^*)^2}{\partial y^\alpha \partial y^\beta \partial y^\gamma} (z) z^\beta = 0, \tag{8} \]
where $z = (z^1, z^2, \ldots, z^{n+1}) \in \mathbb{R}^{n+1} \setminus \{0\}$. Thus,
\[\frac{\partial g_{\gamma}(X,Z)}{\partial y^\gamma} = \overline{g}_{\alpha\beta}(z) \frac{\partial X^\alpha}{\partial y^\gamma} z^\beta + \overline{g}_{\alpha\gamma}(z) X^\alpha \frac{\partial z^\beta}{\partial y^\gamma}, \tag{9} \]
where $z = (z^1, z^2, \ldots, z^{n+1}) \in T_y \mathbb{R}^{n+1}$ is nonzero everywhere and $X = (X^1, X^2, \ldots, X^{n+1}) \in T_y \mathbb{R}^{n+1}$.

As F^* is a Minkowski norm on \mathbb{R}^{n+1}, the following lemma holds (see [20, 21]).

Lemma 7. For any $y \in \mathbb{R}^{n+1} \setminus \{0\}$ and $u \in \mathbb{R}^{n+1}$ one has
\[g_{\gamma}(y,z) \leq F^*(y) F^*(z), \tag{10} \]
and the equality holds if and only if there exists $t \geq 0$ such that $z = ty$.

Let $x : M \rightarrow \mathbb{R}^{n+1}$ be an oriented hypersurface in the Euclidean space \mathbb{R}^{n+1}. Let $v : M \rightarrow W_F$ denote its anisotropic Gauss map. Then for any $p \in M$, $v(p)$ is perpendicular to $x_c(T_p M)$ with respect to the inner product $g(v(p))$ and $F^*(v(p)) = 1$. Thus, we call $v(p)$ an anisotropic unit normal vector of $T_p M$.

3. A Connection on Hypersurfaces of Minkowski Space

Let $x : M \rightarrow \mathbb{R}^{n+1}$ be an oriented hypersurface in the Euclidean space \mathbb{R}^{n+1} and denote $v : M \rightarrow W_F$ its anisotropic Gauss map.
Let ∇ be the standard connection on the $(n+1)$-dimensional Euclidean space \mathbb{R}^{n+1}. For vector fields X, Y on M, we decompose $\nabla_X Y$ as the tangent part $\nabla_X Y$ and the anisotropic normal part $\Pi (X, Y)_\nu$ with respect to the inner product g_ν. That is,

$$\nabla_X Y = \nabla_X Y + \Pi (X, Y)_\nu, \quad (11)$$

where $g_\nu(\nabla_X Y, \nu) = 0$.

We also have the Weingarten formula:

$$\nabla_X \nu = -S_F X, \quad g_\nu (S_F X, Y) = \Pi (X, Y), \quad (12)$$

where we have used (9).

It is easy to verify that ∇ is a torsion free connection on M and Π is a symmetric second order covariant tensor field on M. We call Π the anisotropic second fundamental form.

Let $\{e_1\}^n_{i=1}$ be a local frame of M and $\{\omega^i\}^n_{i=1}$ its dual frame. Let $g_{ij} = g(e_i, e_j), \nabla e_i = \omega^j \otimes e_j, \Pi(e_i, e_j) = h_{ij}, h_{ij} = g^{ik} h_{ki}$, where (g^{ik}) is the inverse matrix of (g_{ij}). Then we have

$$d x = \omega^j e_j, \quad (13)$$

$$d e_i = \omega^j_i e_j + h_{ij} \omega^i_j, \quad (14)$$

$$d \nu = -h^i_j \omega^j_i e_j, \quad (15)$$

Differentiating (13) and using (14), we get

$$d \omega^i = \omega^i \wedge \omega^j, \quad (16)$$

$$h_{ij} = h_{ji}, \quad (17)$$

Differentiating (14) and using (14)-(15), we get

$$d h_{ij} = -h_{ik} h_{kj}^{;} \omega^k \wedge \omega^j, \quad (18)$$

where

$$d h_{ij} = -h_{ik} \omega^k \wedge h_{kj}^{;}, \quad (19)$$

and $R_{ik}^{;j} = -R_{ik}^{;j} = h_{ik} h_{kj}^{;} - h_{kj}^{;} h_{ik}^{;}$.

Differentiating (15) and using (14), we get

$$d h_{ij} = h_{i,j}^{;} - h_{j,i}^{;} \omega^i \wedge \omega^j, \quad (20)$$

Note that $h_{ij}^{;}$ is the matrix of the F-Weingarten operator $S_F = -d \nu$, its eigenvalues are called the anisotropic principal curvatures, and we denote them by $\kappa_1, \ldots, \kappa_n$.

We have n invariants, the elementary symmetric function σ_r of the anisotropic principal curvatures:

$$\sigma_r = \sum_{i_1 < \ldots < i_r} \kappa_{i_1} \ldots \kappa_{i_r} \quad (1 \leq r \leq n). \quad (21)$$

For convenience, we set $\sigma_0 = 1$. The rth anisotropic mean curvature $H_{r,F}$ is defined by

$$H_{r,F} = \frac{\sigma_r}{C_n}, \quad C_n = \frac{n!}{r!(n-r)!}. \quad (22)$$

Using the characteristic polynomial of S_F, σ_r is defined by

$$\det (t I - S_F) = \sum_{r=0}^n (-1)^r \sigma_r t^{n-r}. \quad (23)$$

So, we have

$$\sigma_r = \frac{1}{r!} \sum_{i_1, \ldots, i_r} \delta_{i_1 \ldots i_r}^{j_1 \ldots j_r} h_{j_1}^{;} \ldots h_{j_r}^{;}, \quad (24)$$

where $\delta_{i_1 \ldots i_r}^{j_1 \ldots j_r}$ is the usual generalized Kronecker symbol; that is, $\delta_{i_1 \ldots i_r}^{j_1 \ldots j_r}$ equals $+1$ (resp., -1) if $i_1 \ldots i_r$ are distinct and $(j_1 \ldots j_r)$ is an even (resp., odd) permutation of $(i_1 \ldots i_r)$ and in other cases it equals zero.

Definition 8. Let $f : M \to \mathbb{R}$ be a smooth function. One defines the gradient (with respect to the induced metric g_ν on M) $\text{grad } f$ of the function f by

$$g_\nu (\text{grad } f, X) = X (f), \quad (25)$$

where X is any smooth vector field on M.

Define f_i by $df = f_i \omega^i$; then

$$\text{grad } f = g_i \omega^i, \quad (26)$$

We define

$$d V = |e_1, \ldots, e_n| \omega^1 \wedge \ldots \wedge \omega^n, \quad (27)$$

where $|e_1, \ldots, e_n|$ is the determinant of the matrix (e_1, \ldots, e_n, ν). Then $d V$ is a volume element on M.

Definition 9. Let X be a smooth vector field on M. One defines the divergence (with respect to the volume element dV) $\text{div } X$ by $d \langle i(X) dV \rangle = \langle dV(X, Y) \rangle, \forall Y \in \mathcal{X}(M).$

Lemma 10. Let $X = X^i e_i$; then $\text{div } X = X^i$, where

$$d X^i + X^j \omega^i_j = X^i \omega^i_j. \quad (29)$$

Proof. By (14), (15), we get

$$d |e_1, \ldots, e_n| = \omega^i_j |e_1, \ldots, e_n, | \omega^i_j. \quad (30)$$

From the definition of $i(X)$, we have

$$i (X) dV = \sum_i (-1)^{i+1} X_i |e_1, \ldots, e_n, | \omega^1 \wedge \ldots \wedge \omega^n. \quad (31)$$
So,
\[
d (i(X) dV) = \sum_i (-1)^{i+1} (dX^i) \wedge [e_1, \ldots, e_{n}, y] \omega^i \\
\wedge \cdots \wedge \omega^n \\
+ \sum_{j=2} (-1)^{j+1} X^j \left(d [e_1, \ldots, e_{n}, y] \right) \\
\wedge \omega^1 \wedge \cdots \wedge \omega^j \wedge \cdots \wedge \omega^n \\
+ \sum_{j=i+1} (-1)^{j+1} X^j \left(d [e_1, \ldots, e_{n}, y] \right) d\omega^j \wedge \omega^i \\
\wedge \omega^1 \wedge \cdots \wedge \omega^j \wedge \cdots \wedge \omega^n \\
= X^i_j dV.
\] (32)

4. \(L_{r,F} \) Operator for Hypersurfaces

We introduce the Newton transformation defined by
\[
P_r = \sigma_r I - \sigma_{r-1} S_F + \cdots + (-1)^r S_F^r, \quad r = 0, \ldots, n; \quad (33)
\]
then
\[
P_0 = I, \quad P_n = 0, \quad P_r = \sigma_r I - P_{r-1} S_F. \quad (34)
\]

Lemma 11. The matrix of \(P_r \) is given by:
\[
(P_r)_{ij}^j = \frac{1}{r!} \delta^{i-j}_{1-j} h_1^j \cdots h_r^j. \quad (35)
\]

Proof. We prove Lemma II inductively. For \(r = 0 \), it is easy to check that (35) is true.

We can check directly
\[
\delta^{i-j}_{1-j} = \begin{vmatrix}
\delta_{i_1}^{j_1} & \delta_{i_2}^{j_2} & \cdots & \delta_{i_{r-1}}^{j_{r-1}} & \delta_{i_r}^{j_r} \\
\delta_{i_1}^{j_1} & \delta_{i_2}^{j_2} & \cdots & \delta_{i_{r-1}}^{j_{r-1}} & \delta_{i_r}^{j_r} \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
\delta_{i_1}^{j_1} & \delta_{i_2}^{j_2} & \cdots & \delta_{i_{r-1}}^{j_{r-1}} & \delta_{i_r}^{j_r} \\
\delta_{i_1}^{j_1} & \delta_{i_2}^{j_2} & \cdots & \delta_{i_{r-1}}^{j_{r-1}} & \delta_{i_r}^{j_r} \\
\end{vmatrix}.
\] (36)

Assume that (35) is true for \(r = k \), we only need to show that it is also true for \(r = k + 1 \). For \(r = k + 1 \), using (24) and (36), we have
\[
\text{RHS of (35)} = \frac{1}{(k+1)!} \sum_{i_{k+1}} \delta^{i_{k+1}} h_1^{i_{k+1}} \cdots h_r^{i_{k+1}}
\]
\[
= \frac{1}{(k+1)!} \sum_{i_{k+1}} \left(\delta^{i_{k+1}} h_1^{i_{k+1}} - \delta^{i_{k+1}} h_1^{i_{k+1}} \cdots h_r^{i_{k+1}} + \cdots \right) h_1^{i_{k+1}} \cdots h_r^{i_{k+1}}
\]
\[
= \sigma_k h_i^{i_{k+1}} - \frac{1}{(k+1)!} \sum_{i_{k+1}} \delta^{i_{k+1}} h_1^{i_{k+1}} \cdots h_r^{i_{k+1}} + \cdots
\]
\[
= \delta^{i_{k+1}} - \frac{1}{(k+1)!} \sum_{i_{k+1}} \left(P_{k+1}^{i_{k+1}} \right)^j h_j^{i_{k+1}}
\] (37)

Lemma 12. For each \(r \), one has
(a) \((P_r)_{ij}^j = 0 \);
(b) Trace\((P_r S_F^r) = (r + 1) \sigma_r \);
(c) Trace\((P_r) = (n - r) \sigma_r \);
(d) Trace\((P_r S_F^r) = \sigma_r \sigma_{r+1} - (r + 2) \sigma_{r+2} \).

Proof. (a) Noting \((j, j) \) is skew symmetric in \(\delta^{i-j}_{1-j} \) and \((j, j) \) is symmetric in \(h_1^j \cdots h_r^j \) (from (19)), we have
\[
\sum_j (P_r)_{ij}^j = \frac{1}{(r-1)!} \sum_{i_{r-1}, \ldots, i_1} \delta^{i-j}_{1-j} h_1^j \cdots h_r^j = 0. \quad (38)
\]
(b) Using (35) and (24), we have
\[
\text{Trace} (P_r S_F^r) = \sum_{ij} (P_r)_{ij}^j h_j^i
\]
\[
= \frac{1}{r!} \sum_{i_{r-1}, \ldots, i_1} \delta^{i-j}_{1-j} h_1^j \cdots h_r^j \quad (39)
\]
\[
= (r + 1) \sigma_r. \quad (40)
\]
(c) Using (b) and the definition of \(P_r \), we have
\[
\text{Trace} (P_r) = \text{tr} (\sigma_r I) - \text{tr} (P_{r-1} S_F) = n \sigma_r - r \sigma_r = (n - r) \sigma_r. \quad (41)
\]
(d) Using (b) and the definition of \(P_{r+1} \), we have
\[
\text{Trace} (P_r S_F^r) = \text{Trace} (\sigma_{r+1} S_F) - \text{Trace} (P_{r+1} S_F)
\]
\[
= \sigma_r \sigma_{r+1} - (r + 2) \sigma_{r+2}. \quad (42)
\]
Remark 13. When $F = 1$, Lemma 12 was a well-known result (e.g., see Barbosa and Colares [22], or Reilly [23]).

Lemma 14. One has

$$ (\sigma_r)_k = \sum_{i,j} (P_{r-1})_{i,j}^j h_{i,j}^k. \quad (42) $$

Proof. From the definition of σ_r, we have the following calculation:

$$ (\sigma_r)_k = \frac{1}{r!} \sum_{i_1,\ldots,i_r, j_1,\ldots,j_r} \delta_{i_1,j_1}^1 \cdots \delta_{i_r,j_r}^r (h_{i_1}^1 \cdots h_{i_r}^r)_k \\
= \frac{1}{(r-1)!} \sum_{i_1,\ldots,i_{r-1}, j_1,\ldots,j_{r-1}} \delta_{i_1,j_1}^1 \cdots h_{i_r}^r \cdots h_{i_k}^k \\
= \sum_{i,j} (P_{r-1})_{i,j}^j h_{i,j}^k. \quad (43) $$

We define an operator $L_{r,F} : C^\infty(M) \to C^\infty(M)$ by

$$ L_{r,F} (f) = \text{div} \left(P_r \nu \gamma \right). \quad (44) $$

In the sequel, we will need the following lemma. Item (a) is essentially the content of Lemma 1.1 and Equation (1.3) in [24], while item (b) is quoted as Proposition 1.5 in [25].

Lemma 15. Let $x : M \to \mathbb{R}^{n+1}$ be an oriented hypersurface, and $0 \leq r \leq n-1$, $p \in M$.

(a) If $\sigma_{r+1}(p) = 0$, then P_r is semidefinite at p;
(b) if $\sigma_{r+1}(p) = 0$ and $\sigma_{r+2}(p) \neq 0$, then P_r is definite at p.

Another important result is as follows (see [26]).

Lemma 16. Let $x : M \to \mathbb{R}^{n+1}$ be an oriented hypersurface, and $p \in M$.

(a) For $1 \leq r \leq n$, one has $H_{r+1,F}^2 \geq H_{r,F} H_{r+1,F}$. Moreover, if equality happens for $r = 1$ or for some $1 < r < n$, with $H_{r+1,F} \neq 0$ in this case, then p is an anisotropic umbilical point (i.e. $\kappa_1(p) = \kappa_2(p) = \cdots = \kappa_n(p)$);
(b) if, for some $1 \leq r < n$, one has $H_{r,F} = H_{r+1,F} = 0$, then $H_{r+2,F} = 0$ for all $r \leq j \leq n$. In particular, at most $r - 1$ of the anisotropic principal curvatures are different from zero.

The result below is standard, so we omit the proof.

Lemma 17. Let $x : M \to \mathbb{R}^{n+1}$ be an oriented hypersurface. The operator $L_{r,F}$ associated to the immersion x is elliptic if and only if P_r is positive definite.

Definition 18. Let $f : M \to \mathbb{R}$ be a smooth function. The Laplacian Δf is defined by $\Delta f := L_{0,F} f = \text{div} (\text{grad} f)$.

It is easy to see that Δ is an elliptic differential operator.
Lemma 20. For $0 \leq r \leq n-1$, one has the following
\[L_{r,F}u = -g_r(\nabla \sigma_{r+1}, x) - (r + 1) \sigma_{r+1} - (\sigma_1 \sigma_{r+1} - (r+2) \sigma_2). \]
(52)

Remark 21. Recall $\sigma_1 = nH_F$ and $\|I\|^2 = \sigma_1^2 - 2\sigma_2$; let $r = 0$ in (52); we get
\[\Delta u = -n(H_F + g_r(\text{grad} H_F, x)) - \|I\|^2 u. \]
(53)

5. Proof of Theorems 4 and 5

We fix a point $o \in W$ as the origin of \mathbb{R}^{n+1}. Without loss of generality, we assume, for each $p \in M$, $\nu(p)$ is the anisotropic unit normal vector of $x(M)$ at $x(p)$ such that \(\langle x(p), \nu(p) \rangle \nu(p) > 0 \) (otherwise we consider the function $-u$ instead). This gives an orientation to M; indeed, the component of the position vector x perpendicular (with respect to the inner product g_2) to M defines a never zero, anisotropic normal, vector field on M, such that the support function $u = \langle x(p), \nu(p) \rangle \nu(p)$ is positive on M.

5.1. Proof of Theorem 4. Since x is anisotropic minimal, from (53) we get
\[\Delta u = -\|I\|^2 u \leq 0, \quad \text{on } M. \]
(54)

Let $u_* = \inf_M u$. We claim that u_* is attained at some point $x_0 \in M$. Consider a sequence $\{x_k\} \subset M$ such that $u(x_k) \to u_*$ as $k \to +\infty$. To each x_k we associate $y_k = u(x_k)\nu(x_k)$; then $y_k \in T_{x_k}^* M$. Since $\|y_k\|_{2^{n+1}} = u(x_k)\|\nu(x_k)\|_{2^{n+1}}$ is bounded, there exists a subsequence, which again we call $\{y_k\}$, such that $y_k \to y_0$ for some $y_0 \in \mathbb{R}^{n+1}$. Since $\bigcup_{p \in M} T_p^* M$ is closed and $\{y_k\} \subset \bigcup_{p \in M} T_p^* M$ we deduce that $y_0 \in T_{x_0}^* M$ for some $x_0 \in M$. Thus, by the continuity of F^* and Lemma 7,
\[u_* = \lim_{k \to -\infty} u(x_k) = \lim_{k \to +\infty} F^*(y_k) \]
(55)

\[= F^*(y_0) \geq g(x_0)(y_0, \nu(x_0)) = u(x_0), \]
so $u^* = u(x_0)$ as needed. Now, from the usual maximum principle u is constant, $u = u_* = u(x_0) > 0$. From (54) we then have $\Delta u \equiv 0$ and x is totally geodesic.

5.2. Proof of Theorem 5. Since $H_{r+1,F} = 0$, from Lemma 20 we get
\[L_{r,F}u = (r + 2) \sigma_{r+1}u. \]
(56)

Using Lemma 15(a) we have that P_r is semidefinite. Since $H_{r,F}$ does not vanish, we have that $H_{r,F}$ is positive or negative, because $c(r)H_{r,F} = \text{Trace}(P_r)$, where $c(r) = (n-r)C_n$. Now we use Lemma 16 and obtain the following:
\[0 = H_{r+1,F}^2 \geq H_{r,F}H_{r+2,F}. \]
(57)

Using the information above, we claim that $H_{r+2,F} \equiv 0$.

Case (i) $(H_{r,F} > 0)$. In this case, P_r is positive definite, and $L_{r,F}$ is elliptic by Lemma 17. Using (57) we conclude that $H_{r+2,F} \leq 0$. Whereas from (56) we have
\[L_{r,F}u \leq 0. \]
(58)

Following exactly the proof as in Theorem 4, we conclude that u is constant, $u = u_* = u(x_0) > 0$. From (56) we then have $H_{r+2,F} \equiv 0$.

Case (ii) $(H_{r,F} < 0)$. In this case, P_r is negative definite, and $-L_{r,F}$ is elliptic by Lemma 17. Using (57) we conclude that $H_{r+2,F} \geq 0$. Whereas from (56) we have
\[-L_{r,F}u \leq 0. \]
(59)

Now, following exactly the proof as in Theorem 4, we conclude that u is constant, $u = u_* = u(x_0) > 0$. From (56) we then have $H_{r+2,F} \equiv 0$.

Thus we conclude that $H_{r+2,F} \equiv 0$. Now, we use Lemma 16(b) to conclude that $H_{j,F} = 0$ for $j \geq r + 1$ and so that $v \geq n - r$. Since $H_{r,F}$ does not change sign we have that $v = n - r$.

References

[1] J. E. Brothers and F. Morgan, "The isoperimetric theorem for general integrands," The Michigan Mathematical Journal, vol. 41, no. 3, pp. 419–431, 1994.
[2] U. Clarenz, "The Wulff shape minimizes an anisotropic Willmore functional," Interfaces and Free Boundaries. Mathematical Modelling, Analysis and Computation, vol. 6, no. 3, pp. 351–359, 2004.
[3] M. Koiso and B. Palmer, "Geometry and stability of surfaces with constant anisotropic mean curvature," Indiana University Mathematics Journal, vol. 54, no. 6, pp. 1817–1852, 2005.
[4] M. Koiso and B. Palmer, "Stability of anisotropic capillary surfaces between two parallel planes," Calculus of Variations and Partial Differential Equations, vol. 25, no. 3, pp. 275–298, 2006.
[5] M. Koiso and B. Palmer, "Anisotropic capillary surfaces with wetting energy," Calculus of Variations and Partial Differential Equations, vol. 29, no. 3, pp. 295–345, 2007.
[6] M. Koiso and B. Palmer, "Uniqueness theorems for stable anisotropic capillary surfaces," SIAM Journal on Mathematical Analysis, vol. 39, no. 3, pp. 721–741, 2007.
[7] F. Morgan, "Planar Wulff shape is unique equilibrium," Proceedings of the American Mathematical Society, vol. 133, no. 3, pp. 809–813, 2005.
[8] B. Palmer, "Stability of the Wulff shape," Proceedings of the American Mathematical Society, vol. 126, no. 12, pp. 3661–3667, 1998.
[9] J. E. Taylor, "Crystalline variational problems," Bulletin of the American Mathematical Society, vol. 84, no. 4, pp. 568–588, 1978.
[10] R. C. Reilly, "The relative differential geometry of nonparametric hypersurfaces," Duke Mathematical Journal, vol. 43, no. 4, pp. 705–721, 1976.
[11] L. Cao and H. Li, "r-minimal submanifolds in space forms," Annals of Global Analysis and Geometry, vol. 32, no. 4, pp. 311–341, 2007.
[12] H. Li, "Hypersurfaces with constant scalar curvature in space forms," Mathematische Annalen, vol. 305, no. 4, pp. 665–672, 1996.
[13] S. Montiel and A. Ros, "Compact hypersurfaces: the Alexandrov theorem for higher order mean curvatures," in Differential geometry, B. Lawson and K. Teneblat, Eds., vol. 52, pp. 279–296, Longman, Harlow, UK, 1991.
[14] A. Ros, “Compact hypersurfaces with constant higher order mean curvatures,” Revista Matemática Iberoamericana, vol. 3, no. 3-4, pp. 447–453, 1987.

[15] T. Hasanis and D. Koutroufiotis, ”A property of complete minimal surfaces,” Transactions of the American Mathematical Society, vol. 281, no. 2, pp. 833–843, 1984.

[16] H. Alencar and K. Frensel, ”Hypersurfaces whose tangent geodesics omit a nonempty set,” in Pitman Monographs, vol. 52, pp. 1–13, Surveys in Pure and Applied Mathematics, 1991.

[17] H. Alencar and M. Batista, ”Hypersurfaces with null higher order mean curvature,” Bulletin of the Brazilian Mathematical Society, vol. 41, no. 4, pp. 481–493, 2010.

[18] H. Alencar, Hipersuperfícies Mínimas de \mathbb{R}^{2m} Invariantes por SO(m), SO(m) [Doctor thesis], IMPA-Brazil, 1988.

[19] Y. He, H. Li, H. Ma, and J. Ge, ”Compact embedded hypersurfaces with constant higher order anisotropic mean curvatures,” Indiana University Mathematics Journal, vol. 58, no. 2, pp. 853–868, 2009.

[20] D. Bao, S.-S. Chern, and Z. Shen, An Introduction to Riemann-Finsler Geometry, Springer, New York, NY, USA, 2000.

[21] Z. Shen, Lectures on Finsler Geometry, World Scientific, Singapore, 2001.

[22] J. L. M. Barbosa and A. G. Colares, ”Stability of hypersurfaces with constant r-mean curvature,” Annals of Global Analysis and Geometry, vol. 15, no. 3, pp. 277–297, 1997.

[23] R. C. Reilly, ”Variational properties of functions of the mean curvatures for hypersurfaces in space forms,” Journal of Differential Geometry, vol. 8, pp. 465–477, 1973.

[24] J. Hounie and M. L. Leite, ”The maximum principle for hypersurfaces with vanishing curvature functions,” Journal of Differential Geometry, vol. 41, no. 2, pp. 247–258, 1995.

[25] J. Hounie and M. L. Leite, ”Two-ended hypersurfaces with zero scalar curvature,” Indiana University Mathematics Journal, vol. 48, no. 3, pp. 867–882, 1999.

[26] A. Caminha, ”On spacelike hypersurfaces of constant sectional curvature lorentz manifolds,” Journal of Geometry and Physics, vol. 56, no. 7, pp. 1144–1174, 2006.
