報道機関各位

東京工業大学

熱安定性に優れ、結晶化が速い微生物ポリエステルを開発
－使い勝手のよい生分解性プラスチックの実用化に向けて－

【要点】
○繰返しユニットのα炭素がメチル化された微生物ポリエステル P(3H2MB)の生合成法を開発
○微生物ポリエステルの中で最も高い融点（197℃）を持ち、高い熱安定性と速い結晶化挙動を示す
○加工性に優れた生分解性プラスチックとして、石油プラスチックからの置き換えに期待

【概要】
東京工業大学 物質理工学院材料系の柘植丈治准教授と古舘祥大学院生（研究当時）らは理化学研究所、東京農業大学、米国アイダホ大学の研究者と共同で、微生物ポリエステル（用語 1）で知られるポリ（3-ヒドロキシブタン酸、P(3HB)）のα炭素（用語 2）がメチル化（用語 3）されたポリ（3-ヒドロキシ-2-メチルブタン酸、P(3H2MB)）の生合成法を開発した。この方法で生合成した P(3H2MB)の融点（用語 4）は微生物ポリエステルの中で最も高い 197℃を示し、核形成密度が高く、等温結晶化における半結晶化時間（用語 5）が高温領域においても非常に短いことを発見した。
微生物ポリエステルは土壌や河川のみならず、海洋環境においても生分解性を示すバイオプラスチック（用語 6）として知られ、難分解性プラスチックに起因するマイクロプラスチック問題（用語 7）の解決に資する材料として期待が高まっている。一方で既存の微生物ポリエステルは熱安定性が低く、緩慢な結晶化挙動を示すため溶融加工性に難点があった。
本研究で生合成法を開発した P(3H2MB)は熱安定性に優れ、速い結晶化挙動を示すため既存の微生物ポリエステルの欠点を解決した材料として利用できる。また 3H2MB ユニットを主成分とする共重合体（用語 8）は、環境中の微生物によって生分解性されることを実験により確認した。このような熱安定性や加工性が向上した使い勝手のよい生分解性プラスチックは従来から汎用されている石油プラスチックの置き換えを可能にすると期待される。
研究成果は 2021 年 4 月 2 日に Nature Publishing Group（NPG、ネイチャーパブリッシング・グループ）発行の「NPG Asia Materials」に公開された。
●研究成果

本研究の鍵となる 3-ヒドロキシ-2-メチルブタン酸（3H2MB）ユニットは、活性汚泥（用語 9）に生息する微生物によって僅かに生合成されていることが以前から知られていた。しかし、3H2MB を生合成する微生物は同定されておらず、また、3H2MB を重合可能な酵素も単離されていなかった。今回の研究では、進化分子工学（用語 10）の手法により基質特異性を変換したポリエステル重合酵素を用い、人工代謝経路を大腸菌内に構築することで、チグリン酸（用語 11）を出発原料として P(3H2MB) を生合成することに成功した。

図 1. 一般的な微生物ポリエステル P(3HB) と新しく開発したポリエステル P(3H2MB)

図 2. 大腸菌内に構築した P(3H2MB) の生合成経路

3 つの酵素から構成されており、ポリエステル重合酵素は人工進化により基質認識が広がった変成体を用いた

このようにして生合成した P(3H2MB) を大腸菌の細胞から抽出し、材料の基本的性質について調べ、以下の特性を明らかにした。

1. 生合成した P(3H2MB) の立体配置は、(2R,3R)-3H2MB（用語 12）を繰返しユニットとするイソタックチック性（用語 13）の高いポリマー（用語 14）である。
2. P(3H2MB) の融点は 197℃（平衡融点 220℃）に見られ、微生物産生のポリエステルの中で最も高い値である。これは、微生物ポリエステルの代表格である P(3HB) より約 20℃高い値である。
3. P(3H2MB) は既存の微生物ポリエステルより高い熱分解温度を示し、熱的安定性に優れる。
4. 等温結晶化における P(3H2MB) の半結晶化時間 (t1/2) は広い温度範囲で既存のプラスチックよりも短い。さらに、P(3H2MB) は高温域においても高い核生成密度（用語 15）を示し、一次核形成が速やかに進行する。
図3. P(3H2MB)の等温結晶化における半結晶化時間
他のプラスチックと比較して高温側で短い半結晶化時間を示し、P(3HB)と比較すると、約70℃高温側にシフトしている。

5. P(3H2MB)は微細な結晶を高密度に形成するため、結晶形態の観点から透明性や機械的特性に優れた材料である。

図4. P(3H2MB)の溶媒キャストフィルム（左）と引張試験の様子（右）
P(3H2MB)は比較的透明性が高く、柔軟で、引張伸びも520%に達する

さらに、本ポリマーの生分解性を確認するために、本学すずかけ台キャンパス内の土壌から分解菌の探索を行った。白いポリマー粉末（3H2MBを92モル%含むP(3H2MB-co-3HB)共重合体）を含む寒天培地に、土壌から採取した微生物を生育させ、ポリマーが分解されて生じるクリアゾーンが形成されるかを観察した。その結果、コロニー周辺にクリアゾーンが形成する微生物の存在を確認し、本ポリマーが環境中において生分解性される可能性を示した。
図5. 3H2MBポリマーを含んだ寒天培地での生分解試験
(A) 土壌由来の微生物の中で、矢印で示した菌が3H2MBポリマーを分解することでクリアゾーンを形成した
(B) 矢印の菌を新しい培地に塗布するとコロニーの周辺にクリアゾーンが観察された

●研究の背景
ポリエチレンやポリプロピレンのような汎用プラスチックは、優れた材料物性を有し、我々の身の周りで広く使われている。一方で、これらのプラスチックは難分解性であるが故に、マイクロプラスチックを生じ、環境汚染問題を引き起こしている。このような背景から、生分解性プラスチックの利用が拡大しつつあるが、汎用プラスチックに比べ熱安定性に劣り、加工が難しいなどの問題があり、これらの欠点を解決した使い勝手のよい生分解性プラスチックの開発が求められていた。

●研究の経緯
柘植准教授らの研究グループでは以前から、材料物性に優れた微生物ポリエステルの構造を探索していた。そして、α炭素がメチル化された3H2MBモノマーの特異な化学構造に着目し、このモノマーを含む共重合体ポリエステルの生合成に取り組んでいた。今回、生産菌株の改良と培養条件の最適化を行うことでP(3H2MB)を単独重合体（用語16）として生合成することに成功した。また、ポリマー収量が向上したことで、熱的および機械的性質を分析できる十分なサンプル量を得ることが可能になり、P(3H2MB)の材料特性を明らかにすることに成功した。

●今後の展開
原料として使用したチグリン酸は、植物の種子から得ることができるが、価格が高いため、安価なバイオマス資源である糖質からP(3H2MB)を生産する技術の開発が必要である。また、さらに収量を上げるために、生産菌株の改良や高効率生産法を確立する必要がある。本ポリマーの大量生産が可能になり普及が進むれば、マイクロプラスチック汚染解決の一助となるものと期待される。
付記
本研究は、公益財団法人発酵研究所（G-2019-3-013）、科学技術振興機構（JST）未来社会創造事業「ゲームチェンジングテクノロジーによる低炭素社会の実現」（JPMJMI17EC）の支援を受けて行われた。

【用語説明】
(1) 微生物ポリエステル：一部の細菌が、エネルギーおよび炭素貯蔵物質として細胞内に大量に蓄積する脂肪族ポリエステルで、一般的に優れた生分解性を有する。
(2) α炭素：カルボニル炭素から数えて2位の炭素原子。
(3) メチル化：化合物中の水素原子などがメチル基に置き換わること。
(4) 融点：結晶性高分子において結晶領域が融解する温度。
(5) 半結晶化時間：等温結晶化過程において、結晶化に基づく発熱ピークの面積の半分に到達するまでにかかる時間。半結晶化時間が短いほど結晶化が速い。
(6) バイオプラスチック：微生物によって二酸化炭素と水にまで分解される生分解性プラスチックとバイオマスを原料として生産されるバイオマスプラスチックの総称。
(7) マイクロプラスチック問題：難分解性プラスチックに由来する回収困難なプラスチック片（マイクロプラスチック）による環境汚染。特に、海洋環境におけるマイクロプラスチック汚染が深刻化している。
(8) 共重合体：2種類以上のモノマーから構成されたポリマー。
(9) 活性汚泥：排水処理において、排水中に含まれる有機物を酸化分解するために使用する好気性微生物群を含む汚泥。
(10) 進化分子工学：生物の突然変異と淘汰の繰り返しによる進化を、試験管内において実験的に高速で再現し、酵素などの生体分子の機能や性能を変換する手法。
(11) チグリン酸：(E)-2-メチル-2-ブテン酸。カルボキシ基に隣接する位置に炭素二重結合を持つ不飽和カルボン酸で、一部植物の種子にも存在する。
(12) (2R,3R)-3H2MB：2位と3位のキラル炭素がともにR配置である3H2MBユニット。
(13) イソタクチック性：立体規則性の分類の一つで、すべての側鎖が主鎖骨格の同じ側にあること。
(14) ポリマー：同種の小さい分子（モノマー）が互いに多数結合し、それに相当する構造単位の繰返しによって構成される分子、またはそれからなる物質をポリマー（重合体）という。
(15) 核生成密度：結晶化過程において、核が生成する密度。
(16) 単独重合体：単一モノマーから構成されるポリマー。
【論文情報】
掲載誌：NPG Asia Materials, 13, 31, 2021
論文タイトル：Superior Thermal Stability and Fast Crystallization Behavior of a Novel, Biodegradable α-Methylated Bacterial Polyester
著者：Sho Furutate, Junichi Kamoi, Christopher T. Nomura, Seiichi Taguchi, Hideki Abe, Takeharu Tsuge
DOI：10.1038/s41427-021-00296-x

【問い合わせ先】
東京工業大学 物質理工学院 材料系 准教授
柘植丈治
Email: tsuge.t.aa@m.titech.ac.jp
TEL: 045-924-5420 FAX: 045-924-5426

【取材申し込み先】
東京工業大学 総務部 広報課
Email: media@jim.titech.ac.jp
TEL: 03-5734-2975 FAX: 03-5734-3661