Long paths and cycles in random subgraphs of graphs with large minimum degree

Stefan Ehard and Felix Joos

Abstract
For a graph G and $p \in [0, 1]$, let G_p arise from G by deleting every edge mutually independently with probability $1 - p$. The random graph model $(K_n)_p$ is certainly the most investigated random graph model and also known as the $G(n, p)$-model. We show that several results concerning the length of the longest path/cycle naturally translate to G_p if G is an arbitrary graph of minimum degree at least $n - 1$.

For a constant c, we show that asymptotically almost surely the length of the longest path is at least $(1 - (1 + \epsilon(c)) e^{-c})n$ for some function $\epsilon(c) \to 0$ as $c \to \infty$, and the length of the longest cycle is at least $(1 - O(c^{-\delta}))n$.
The first result is asymptotically best-possible. This extends several known results on the length of the longest path/cycle of a random graph in the $G(n, p)$-model.

1 Introduction

Around 1960 Erdős and Rényi proved the first results about random graphs – especially about graphs on n vertices where every possible edge is present independently with probability p, which is nowadays known as the $G(n, p)$-model. It is not an overstatement saying that this field has grown enormously since then and for numerous graph parameters the typical value is (precisely) known for large n. In particular, the lengths of paths and cycles are investigated.

As for any $\epsilon > 0$ and $p \geq \frac{1 - \epsilon}{1 + \epsilon + \log n} n$ a.a.s. a graph in $G(n, p)$ is hamiltonian, we consider the length of a longest path/cycle if $p = \frac{c}{n}$ for some constant $c > 1$.

A series of papers [1, 3, 4, 6, 5] finally led to the following theorem, where

$$\alpha(c) = \sup_{\alpha \geq 0} \{G \in G(n, cn^{-1}) \text{ contains a path of length } \alpha \text{ a.a.s.}\}$$

and $\beta(c)$ analogously for the length of cycles.

Theorem 1. There exists a function $\epsilon(c) \to 0$ as $c \to \infty$ such that

$$\alpha(c), \beta(c) = 1 - (1 + \epsilon(c)) e^{-c}.$$

Let us consider a more general random graph model. For a graph G, we denote by G_p the random subgraph obtained by deleting every edge independently with probability $1 - p$ from the edge set of G. Thus $(K_n)_p$ is a uniformly at random chosen member of $G(n, p)$. In this paper we consider the typical asymptotic behavior of $(G_k)_p$ instead of $(K_n)_p$ where G_k is a simple graph of minimum at least k. In our setting p depends on k instead of the order of G_k.

1
We denote by G the set of all graph sequences G_1, G_2, \ldots such that G_k has minimum degree at least k. We define

$$\alpha'(c) = \inf_{k \geq 1} \sup_{G \in G} \{ \alpha(G) \mid \text{G contains a path of length } \alpha k \text{ a.a.s.} \}$$

and $\beta'(c)$ analogously for cycles. It is clear that $\alpha'(c) \leq \alpha(c)$ and $\beta'(c) \leq \beta(c)$. We prove that there is essentially no difference between $\alpha'(c)$ and $\alpha(c)$ and our second contribution is a lower bound on $\beta'(c)$.

Theorem 2. There exists a function $\epsilon(c) \to 0$ as $c \to \infty$ such that

$$\alpha'(c) = 1 - (1 + \epsilon(c))ce^{-c}.$$

Theorem 3. We have

$$\beta'(c) = 1 - O(c^{-\frac{1}{5}}).$$

Thus Theorem 2 describes precisely the asymptotic behavior of $\alpha'(c)$ as $c \to \infty$ improving a result due to Krivelevich, Lee and Sudakov [8] who showed that $\alpha'(c) = 1 - O(c^{-\frac{1}{2}})$. In addition, it generalizes results concerning the length of the longest path in the $G(n, p)$-model due to Ajtai, Komlós and Szemerédi [1], Fernandez de la Vega [5], Bollobás [3], Bollobás, Fenner and Frieze [4], and Frieze [6].

Theorem 3 improves a result of Krivelevich, Lee and Sudakov [8] and Riordan [10] implying $\beta'(c) = 1 - o(1)$. It also generalizes several results of the length of the longest cycle in the $G(n, p)$-model.

Note that the questions of hamiltonicity in the $G(n, p)$ setting translates to the question whether G_k has a cycle of length at least $k + 1$. These extensions are successfully settled by Krivelevich, Lee and Sudakov [8], and by Glebov and Naves and Sudakov [7].

2 Preliminaries

We will frequently need to show that a binomial random variable is very close to its expected value and use for these purposes Chernoff’s inequality.

Theorem 4 (Chernoff’s inequality [2]). If X is a binomial distributed random variable with $X \sim \text{Bin}(n, p)$ and $0 < \lambda \leq np = \mathbb{E}X$, then

$$P[|X - np| \geq \lambda] \leq 2e^{-\frac{\lambda^2}{np}}.$$

Several results in this paper are based on the depth-first-search algorithm (DFS-algorithm) which is a frequently used exploration method of graphs. We briefly describe this algorithm and introduce some notation along the way. Several recent results apply this algorithm to random graphs leading to very nice and short proofs [5, 6, 10].

The DFS-algorithm is an algorithm traversing a graph such that all vertices of a given graph G are finally visited and outputs a rooted spanning forest T of G. It proceeds in the following way.

At any step, there is a partition of the vertex set $V(G)$ into three sets R, S and U. The set U contains the vertices that have not yet been visited during the
exploration, \(R \) denotes the set of vertices whose exploration is complete, and all the remaining vertices that are currently under exploration are contained in \(S \). The vertices of \(S \) are kept in a stack, which is a last-in-first-out data structure.

The algorithm starts with \(U = V(G) \) and \(R = S = \emptyset \) and executes the following rounds until every vertex is explored, i.e. \(R = V(G) \) and \(S = U = \emptyset \).

- If \(S = \emptyset \), then some unreached vertex \(v \) in \(U \) is moved to \(S \). This vertex \(v \) will be the root of a new component of our rooted spanning forest \(T \).
- Otherwise, let \(v \) be the top element of the stack \(S \) (the last-in vertex). The algorithm queries whether \(v \) has some neighbor \(w \) in \(U \). If so, \(w \) is placed on top of the stack \(S \). If \(v \) has no neighbor in \(U \), it is completely explored and is moved to \(R \).
- As long as \(U \neq \emptyset \), the algorithm moves to the next round.

In each round of the algorithm there is exactly one vertex moved either from \(U \) to \(S \) or from \(S \) to \(R \). So indeed, after \(2|V(G)| \) rounds every vertex has been moved from \(U \) to \(R \) through \(S \) and the algorithm terminates with a rooted spanning forest \(T \).

The following properties of the DFS-algorithm are important to us:

(I) Every positively answered query about a neighbor in \(U \) increases the size of \(R \cup S \) by exactly one.

(II) The set \(S \) always spans a path.

(III) At any round of the algorithm, all possible edges between the set \(R \) and \(U \) have been queried and answered negatively.

(IV) Every edge \(e = uv \) of the graph \(G \) which is not tested during the exploration of \(G \) joins two vertices on some vertical path in the rooted spanning forest \(T \) (because otherwise the algorithm would have queried for the edge \(uv \) during the exploration).

We will use the DFS-algorithm to explore the random graph \(G_p \). Therefore, we assume that the algorithm already knows the underlying graph \(G \) and all the edges of \(G \). The DFS-algorithm only queries about these edges of \(G \) during the exploration of \(G_p \). That is, if the DFS-algorithm looks for neighbors of some vertex \(v \), it only considers the neighbors \(w \) of \(v \) in \(G \), and queries whether this vertex is also a neighbor of \(v \) in \(G_p \). We receive a positive answer of each such query independently with probability \(p \). In this way, following this algorithm, we explore a rooted spanning forest of our random graph \(G_p \). Note that by definition the answer of a query does not depend on the answers of the previous queries. We say an edge of \(G \) is tested if the DFS-algorithm queried whether this edge is in \(G_p \) and otherwise we say it is untested.

Throughout the paper we consider graphs \(G_k \) of minimum degree at least \(k \). Almost all our results include asymptotic statements and an event occurs asymptotically almost surely (a.a.s.) if the probability that this event occurs tends to 1 as \(k \to \infty \). Furthermore, several inequalities in our computations are only correct if \(k \) is large enough and for the purpose of readability we often drop the index \(k \) and simple write \(G \).
3 Auxiliary Results

Before we begin with the proofs of Theorem2 and3 we cite and prove some results for later use. The first one uses a nice and direct analysis of the DFS-algorithm.

Lemma 5 (Krivelevich, Lee, Sudakov [8]). Let $p = \frac{c}{k}$ for c sufficiently large, and let G be a graph of minimum degree at least k. If G is bipartite, then G_p a.a.s. contains a path of length $(2 - 6c^{-1/2})k$.

The next lemma is of a similar flavor as the last one. We suitably modify a result of [8] for our purposes.

Lemma 6. Let $p = \frac{c}{k}$ for c sufficiently large, and let G be a graph of minimum degree at least k. If $V_0 \subseteq V(G)$ with $|V_0| \geq \log k$, then G_p a.a.s. contains a path of length $(1 - 2c^{-1/2})k$ which starts at a vertex in V_0.

Proof. Let $\epsilon = c^{-1/2}$. Let $V_0 \subseteq V(G)$, and we may assume that $|V_0| = \lfloor \log k \rfloor$. We modify the DFS-algorithm as follows.

Recall that the stack S denotes the vertices that are currently under exploration. If $S = \emptyset$ in some step of the algorithm, then as long as possible we take a vertex of $V_0 \cap U$ as the new root of a component and put it onto the stack S. Hence, by this modified DFS-algorithm, at least up to the point when we explored at most $\log k$ vertices, the root of the current component is in V_0.

We run this modified DFS-algorithm until the moment at which we reach $|R \cup S| = (1 - \epsilon)k$. Let \mathcal{A} be the event that $S = \emptyset$ at some moment after $\frac{1}{2} \log k \epsilon k$ steps of the algorithm and let \mathcal{B} be the event that there are less than $(1 - \epsilon)k$ positive answers among the first $\frac{1}{2} \log k$ tested edges.

Claim. $\mathbb{P}[\mathcal{A} \cap \mathcal{B}] = o(1)$.

Assuming this claim we can a.a.s. find a path of length $(1 - \epsilon)k$ starting in a vertex of V_0 as follows.

Suppose neither \mathcal{A} nor \mathcal{B} holds. Consider the step of the DFS-algorithm at which we reach $|R \cup S| = (1 - \epsilon)k$. Thus the root of the current component is contained in V_0, as \mathcal{A} does not hold. Due to property (I) such a step exists. Recall that the vertices in S form a path (property (II)). If $|S| \geq (1 - 2\epsilon)k$, then the statement of the lemma follows directly. Thus, we may assume that

$$|S| < (1 - 2\epsilon)k \quad (1)$$

which implies $|R| > \epsilon k$. Moreover, each vertex in R has at least $k - |R \cup S| \geq \epsilon k$ neighbors in G in the set of unexplored vertices U. Due to property (III), all these edges between R and U have been queried and answered negatively. Hence at least $|R| \cdot \epsilon k > \epsilon^2 k^2$ queries are answered negatively and less than $(1 - \epsilon)k$ are answered positively. Thus \mathcal{B} holds, which is a contradiction.

We complete the proof of the lemma by the proof of claim. For a positive integer i, let \mathcal{A}_i be the event that we complete exploring a component when $|R| = i$. Since every vertex has degree at least k, in this moment of the algorithm every vertex in R has at least $k - i \geq \epsilon k$ neighbors in U (for $i \leq (1 - \epsilon)k$) and all these edges are queried negatively. Thus we queried at least $i \epsilon k$ edges in total, and had at most i positive answers. The probability that this occurs is at most the probability that a binomial distributed random variable X_i with $X_i \sim$
\[\text{Bin}(i "k, p) \] is at most \(i \). Hence \(E X_i = i \epsilon c = i \epsilon^{1/2} \). By Chernoff’s inequality, we obtain
\[P[A_i] \leq P[X_i \leq i] \leq P \left[X_i = i \epsilon^{1/2} \geq \frac{i \epsilon^{1/2}}{2} \right] \leq 2e^{-\frac{i \epsilon^{1/2}}{2}} \leq \frac{1}{2i}. \]

Using the union bound leads to the desired result
\[P[A] \leq \sum_{i = \frac{1}{2} \ln k}^{(1-\epsilon)k} P[A_i] \leq \frac{(1-\epsilon)k}{2} \ln k = o(1). \]

An upper bound for the event \(B \) follows by a direct application of Chernoff’s inequality. Let \(Y \) be a binomial distributed random variable with \(Y \sim \text{Bin} \left(\frac{k}{p} \right) \). Then,
\[P[B] \leq P[Y \leq (1-\epsilon)k] \leq 2 \exp \left(-\frac{c^2 k}{3} \right) = o(1). \]

This implies \(P[A \cup B] = o(1) \), which completes the proof of the claim and thus the proof of the lemma.

4 Long Cycles

In this section we prove Theorem 3. Let \(G \) be a graph of minimum degree at least \(k \) on \(n \) vertices and let \(p = \frac{c}{k} \) for \(c \) sufficiently large.

This proof is based on ideas of Riordan [10] and follows its strategy. In particular, the first two short lemmas naturally transfer to our setting.

In this section, we consider a rooted forest \(T \) which is an output of the DFS-algorithm described in the beginning. We emphasize that every untested edge of \(G \) is in \(G_p \) independently of \(T \).

Lemma 7. During the DFS-algorithm on \(G_p \) a.a.s. at most \(\frac{2n}{p} = \frac{2nk}{c} \) many edges are tested.

Proof. We run the DFS-algorithm on \(G_p \). Note that the rooted spanning forest \(T \) of \(G_p \) has at most \(n - 1 \) edges and that every positively answered query contributes an edge to our exploration of this forest. Let \(X \) be the number of tested edges. If at least \(\frac{2n}{p} \) many edges are tested, then let \(Y \) be the number of positively answered queries of the first \(\frac{2n}{p} \) tested edges. Thus, \(Y \) is a binomial distributed random variable with \(Y \sim \text{Bin} \left(\frac{2n}{p}, p \right) \) and \(EY = \frac{2n}{p} \cdot p = 2n \). By Chernoff’s inequality, we obtain
\[P \left[X > \frac{2n}{p} \right] \leq P[Y < n] \leq P[|Y - 2n| \geq n] \leq 2e^{-\frac{n}{2}} = o(1). \]

This completes the proof.

From now on, let \(\epsilon = c^{-1/5} \). Let \(E_u \) be the set of untested edges of \(G \) during the DFS-algorithm. We call a vertex free if it is incident with at least \((1 - \epsilon)k \) untested edges in \(E_u \).
Lemma 8. At most $4\epsilon^4n$ vertices of the rooted forest T are a.a.a. not free.

Proof. Let $v \in V(T)$ be a vertex that is not free. Since the minimum degree of G is at least k, the vertex v is incident with at least ϵk tested edges. Assume that there are more than $4\epsilon^4n$ vertices that are not free. Hence, we have more than $\frac{1}{4}4\epsilon^4n \cdot \epsilon k = \frac{2nk}{k}$ many tested edges in total. By Lemma 7, the probability of this is $o(1)$, which implies the statement. \hfill \square

For a rooted forest T and a vertex $v \in V(T)$, we introduce the following notation.

(i) Let $A(v)$ be the set of ancestors of v in T excluding v and let $D(v)$ be the set of descendants of v in T excluding v.

(ii) Let $A_i(v)$ and $D_i(v)$ be the sets of ancestors and descendants of v at distance exactly i, respectively, and let $A_{\leq i}(v)$ and $D_{\leq i}(v)$ be the sets of ancestors and descendants of v at distance at most i.

(iii) The height of the vertex v is defined as $\max \{i : D_i(v) \neq \emptyset \}$.

(iv) For two vertices u, v, let $d(u, v)$ be the number of edges on a shortest u,v-path in T.

(v) We say a vertex v is up if it has many descendants, say if $|D(v)| \geq \epsilon k$. If this is not the case, then v is down.

(vi) We call the vertex v skinny if $|D_{\leq (1-5\epsilon)k}(v)| \leq (1-4\epsilon)k$. Let Y denote the set of vertices in T that are not skinny.

Lemma 9. If the rooted forest T of G_p contains at most $5\epsilon^4n$ down vertices, then, for any constant $h \geq 1$, at most $6h\epsilon^3n$ vertices of T are at height less than hk.

Proof. For each up vertex $v \in V(T)$, let $P(v)$ be a set of ϵk descendants of v, obtained by choosing vertices of $D(v)$ one-by-one starting with those with largest distance to v in T. For every $w \in P(v)$, we have $|D(w)| < |P(v)| = \epsilon k$, because $D(w) \subseteq P(v)$. This implies that every vertex $w \in P(v)$ is down.

We define the set $S_1 = \{(v, w) : v \text{ is up and } w \in P(v)\}$. Each up vertex v appears in exactly ϵk pairs $(v, w) \in S_1$ and by the assumption of the lemma, we have at least $(1-5\epsilon^4)n$ up vertices. Hence, we obtain

$$|S_1| \geq (1-5\epsilon^4)\epsilon kn.$$

We consider the pairs $(v, w) \in S_1$ that satisfy $d(v, w) \leq hk$. For pairs $(v, w) \in S_1$, we conclude that $v \in A(w)$ and w is down. Note that each vertex has at most one ancestor at each distance, hence $|A_{hk}(w)| \leq hk$. Since we have at most $5\epsilon^4n$ down vertices, this implies that there are at most $hk \cdot 5\epsilon^4n$ pairs $(v, w) \in S_1$ satisfying $d(v, w) \leq hk$. Hence, if we consider the set $S'_1 = \{(v, w) \in S_1 : d(v, w) > hk\}$, then

$$|S'_1| \geq |S_1| - 5h\epsilon^4kn$$
$$\geq (1-5\epsilon^4)\epsilon kn - 5h\epsilon^4kn$$
$$\geq (1-6\epsilon^3)\epsilon kn.$$
Recall that each up vertex v appears in exactly εk pairs $(v, w) \in S_1$, and since $S'_1 \subset S_1$, each such v appears also in at most εk pairs $(v, w) \in S'_1$. Hence, at least
\[
\frac{(1 - 6\varepsilon^3) \varepsilon kn}{\varepsilon k} = (1 - 6\varepsilon^3) n
\]
distinct up vertices v appear in pairs $(v, w) \in S'_1$. By the definition of S'_1, each such vertex v is at height at least hk, which completes the proof. \]

Lemma 10. If the rooted forest T of G_p contains at most $5\varepsilon^4 n$ down vertices and $X \subseteq V(T)$ such that $|X| \leq 5\varepsilon^4 n$, then, for c sufficiently large, T contains a vertical path P of length at least $4k$ containing at most $\frac{1}{4} \varepsilon k$ vertices in $X \cup Y$.

Proof. Let X be a subset of $V(T)$ of size at most $5\varepsilon^4 n$. First we show that the set $Y \subseteq V(T)$ which contains the vertices that are not skinny is small enough for our purposes. We define the set
\[
S_2 = \{(v, w) : v \in A(w), \ 0 < d(v, w) \leq (1 - 5\varepsilon)k\}.
\]
Since a vertex has at most one ancestor at any given distance, we conclude
\[
|S_2| \leq (1 - 5\varepsilon)kn.
\]
By Lemma 9 all but at most $6\varepsilon^3 n$ vertices v are at height at least k and thus, each such v appears in at least $(1 - 5\varepsilon)k$ pairs $(v, w) \in S_2$. This contributes at least
\[
(1 - 5\varepsilon)(1 - 6\varepsilon^3)kn
\]
(1 - 5\varepsilon) \left(1 - 6\varepsilon^3\right) kn + (1 - 5\varepsilon) 6\varepsilon^2 n \cdot \varepsilon k = (1 - 5\varepsilon) kn,
\]
is an upper bound for $|S_2|$.

By the definition of S_2 all vertices v appearing in at most $(1 - 4\varepsilon)k$ pairs $(v, w) \in S_2$ are skinny. Hence,
\[
|Y| \leq (1 - 4\varepsilon) 6\varepsilon^2 n \leq 6\varepsilon^2 n.
\]
Next we want to find the desired path P. We define the set
\[
S_3 = \{(v, w) : w \in X \cup Y, \ v \in A(w), \ d(v, w) \leq 4k\}.
\]
Since a vertex has at most one ancestor at each distance, for a pair $(v, w) \in S_3$, the vertex w can appear in at most $4k$ different pairs in S_3. We obtain
\[
|S_3| \leq 4k \cdot |X \cup Y|
\leq 4k \cdot (5\varepsilon^4 n + 6\varepsilon^2 n)
\leq 25\varepsilon^2 kn.
\]
This implies that the number of vertices \(v \) that can appear in more than \(\frac{1}{4}ek \) pairs \((v, w) \in S_3 \), is bounded from above by

\[
\frac{25e^2kn}{\frac{1}{4}ek} = 100en.
\]

By Lemma 8, all but at most 24\(e^3n \) vertices of \(T \) are at height at least 4\(k \) and from above follows that all but at most 100\(en \) vertices \(v \) appear in at most \(\frac{1}{4}ek \) pairs \((v, w) \in S_3 \). Hence, for \(c \) sufficiently large such that \(\epsilon \) is small enough, there exists a vertex \(v \) at height at least 4\(k \) that appears in at most \(\frac{1}{4}ek \) pairs \((v, w) \in S_3 \). Let \(P \) be the vertical path from \(v \) to some vertex in \(D_{4k}(v) \). Then \(P \) has length 4\(k \) and by the choice of \(v \), the path \(P \) contains at most \(\frac{1}{4}ek \) vertices in \(X \cup Y \).

Proof of Theorem 3. Recall, \(G \) is a graph of minimum degree at least \(k \) and \(p = \frac{\epsilon}{2} \) for \(c \) sufficiently large.

We run the DFS-algorithm on \(G_p \). Let \(T \) be the spanning forest and let \(E_u \) be the set of untested edges of \(G \) that we obtain from this algorithm. By Lemma 8, we may assume that all but at most 4\(e^3n \) vertices of \(T \) are free, that is, incident with at least \((1 - \epsilon)k \) untested edges in \(E_u \). Due to property (IV) of the DFS-algorithm, for every untested edge \(uv \in E_u \), either \(u \in A(v) \) or \(u \in D(v) \).

Assume that for more than 2\(\log k \) vertices \(u \), we have

\[
\left| \{ u : uv \in E_u, \ d(u, v) \geq (1 - 5\epsilon)k \} \right| \geq \epsilon k.
\]

This means, that we can find at least \(\epsilon k \log k \) untested edges \(uv \in E_u \) in \(G \) with \(d(u, v) \geq (1 - 5\epsilon)k \). Using Chernoff’s inequality, we can easily find one of these edges present in \(G_p \) with probability \(1 - o(1) \). As we expect \(\epsilon c \log k = \epsilon^{-4} \log k \) edges, the probability for the event that at least one edge is present is at least

\[
1 - 2 \exp\left(-\frac{\epsilon^{-4} \log k}{3}\right) = 1 - o(1).
\]

Thus we can a.a.s. find such an edge present in \(G_p \) that forms together with \(T \) a cycle of length at least \((1 - 5\epsilon)k \) in \(G_p \).

Now assume that for all vertices \(v \) except for at most 2\(\log k \), we have

\[
\left| \{ u : uv \in E_u, \ d(u, v) \geq (1 - 5\epsilon)k \} \right| < \epsilon k.
\]

Let \(V_0 \) be the set of vertices \(v \) that do not satisfy (3), that is, \(|V_0| \leq 2 \log k \).

Claim. A.a.s. there are at most \(4\epsilon^4 n \) down vertices.

Proof. Assume that some vertex \(v \in V(T) \setminus V_0 \) is free and down. Since \(|D(v)| < \epsilon k \) and \(v \) is free, there are at least \((1 - \epsilon)k - \epsilon k = (1 - 2\epsilon)k \) pairs of untested edges \(uv \in E_u \) with \(u \in A(v) \). Since each vertex has at most one ancestor at each distance, \(v \) has at least \((1 - 2\epsilon)k - (1 - 5\epsilon)k = 3\epsilon k \) ancestors \(u \) with \(w \in E_u \) and \(d(u, v) \geq (1 - 5\epsilon)k \), which is a contradiction as \(v \notin V_0 \). Therefore, no down vertex in \(V(T) \setminus V_0 \) is free. By Lemma 8 a.a.s. all but \(4\epsilon^4 n \) vertices are free. Hence, at most

\[
4\epsilon^4 n + |V_0| \leq 4\epsilon^4 n + 2 \log k \leq 5\epsilon^4 n
\]

vertices are down.
Thus we may apply Lemma 10 where X is the union of V_0 and the set of vertices that are not free, that is, $|X| \leq 5\epsilon^4 n$, and recall that Y is the set of vertices that are not skinny. Let P be the path that is given by the Lemma 10 and let Z be the set of vertices of $V(P) \setminus V_0$ that are free and skinny. By Lemma 10 we obtain

$$|V(P) \setminus Z| = |(X \cup Y) \cap V(P)| \leq \frac{1}{4} k.$$

For any vertex $v \in Z$, there are at least $(1 - \epsilon)k$ untested edges $uv \in E_u$ with $u \in A(v) \cup D(v)$. We want to show that there are sufficiently many of these vertices u in $A(v)$.

Because of (3) and because $v \in Z$ implies $v \notin V_0$, at least $(1 - 2\epsilon)k$ of these vertices u with $uv \in E_u$ satisfy $d(u, v) \leq (1 - 5\epsilon)k$. Moreover, as v is skinny, at least $(1 - 2\epsilon)k - (1 - 4\epsilon)k = 2\epsilon k$ vertices u must be ancestors of v with $d(u, v) \leq (1 - 5\epsilon)k$. We define a set of ancestors of v within a certain distance, namely

$$B(v) = \{u \in A(v) : uv \in E_u, \epsilon k \leq d(u, v) \leq (1 - 5\epsilon)k\}.$$

Again, since G has only one ancestor at each distance, we obtain $|B(v)| \geq \epsilon k$.

Let $u_1 \in V(P)$ be the vertex on the path P, which is at height k. Let V_1 be the set of the first descendants of u_1 on P, such that $|V_1 \cap Z| \geq \log k$. Since $|V(P) \setminus Z| \leq \frac{1}{4} k$, we have

$$V_1 \subset D_{\leq 4\epsilon k + \log k}(v) \cap V(P).$$

For each of these vertices $v \in V_1 \cap Z$, we have $|B(v)| \geq \epsilon k$. Hence, there are at least $\epsilon k \log k$ untested edges $uv \in E_u$ such that $v \in V_1 \cap Z$ and $u \in B(v)$. Using Chernoff’s inequality similar as before, there is an edge $u_1 u_2$ present in G_p such that $v_1 \in V_1$, $u_2 \in B(v_1)$ and $\epsilon k \leq d(v_1, u_2) \leq (1 - 5\epsilon)k$ with probability $1 - o(k^{-1})$.

Let V_2 be the set of the first descendants of u_2 on P such that $|V_2 \cap Z| \geq \log k$. Thus for every vertex $w \in V_2$, we have $d(w, u_1) \geq \epsilon k - \frac{1}{4} \epsilon k - 2 \log k > \frac{\epsilon}{4} k$.

Again, as $|V_2 \cap Z| \geq \log k$, and there is an edge $v_2 u_3$ present in G_p with $v_2 \in V_2$ and $u_3 \in B(v_2)$ with probability $1 - o(k^{-1})$.

Next, let V_3 be the set of the first descendants of u_3 on P such that $|V_3 \cap Z| \geq \log k$.

We may continue in this manner to find such edges $v_i u_{i+1}$ until we reach a vertex u_{j+1} which is at least $2k$ steps higher than the vertex v_i. Since each vertex v_{j+1} is at least $\frac{1}{4} k$ steps above v_i, after at most $4\epsilon - 1$ many steps we reach the vertex u_{j+1}, that is, $j \leq 4\epsilon - 1$. Thus the procedure does not fail with probability $1 - o(\epsilon^{-1} k^{-1}) = 1 - o(1)$.

Note that we also remain within the path P, since P has length at least $4k$ and we start at most at height k and with each step we go up at most $(1 - 5\epsilon)k$.

Suppose j is even. Consider the following cycle C:

$$v_1 u_2 P v_3 u_4 P v_5 u_6 P v_7 \ldots v_j u_{j+1} P u_j v_{j-1} P u_{j-2} \ldots u_2 v_1.$$

Note that every vertex in $V(P) \setminus V(v_1 P u_{j+1})$ is contained in some V_i. Therefore, the length of C is at least

$$2k - 4\epsilon^{-1} \log k - \frac{1}{4} \epsilon k > k.$$

A similar argument applies if j is odd.
5 Long Cycles in Pseudo-Cliques

Consider the well-known $G(n, p)$-model and with our notation a uniform at random chosen member is $(K_n)_p$. It is very natural and intuitive that $(K_n)_p$ and H_p typically have the same properties if H is a graph on n vertices which is almost a clique. In this section we indicate that a result of Frieze [6] can be suitably modified.

Let $\gamma > 0$ be a constant sufficiently small. We call a graph G on n vertices a k-pseudo-clique (or simply pseudo-clique) if its minimum degree is at least k and $n \leq 1(1+\gamma)k$. We start with some properties of a pseudo-clique G, but before we need to introduce some notation.

A vertex v has small degree if $d(G) \leq \frac{\gamma}{10}$ and otherwise its degree is large. Let S and L be the set of all vertices of small and large degree in G_p, respectively. For $1 \leq i \leq 4$, let W_i be the set of all vertices v of small degree such that there is a vertex w of small degree and a v, w-path of length i or v is contained in a cycle of length i. We set $W = W_1 \cup \ldots \cup W_4$.

The following lemmas are extensions of the results of Frieze [6], who prove the analogous results for $G = K_{k+1}$. As the proofs are quite standard, a bit tedious and can be done along the lines of the proofs of Frieze, we omit the proofs.

Lemma 11. Let G be a k-pseudo-clique on n vertices, $p = \frac{c}{k}$ and let $\ell \geq 7$ be an integer. Then a.a.s. G_p has the following properties,

(a) $|\{v \in V(G) : d_{G_p}(v) \leq \frac{\gamma}{10} + 1\}| \leq (1 + \gamma)ke^{-\frac{\gamma}{3}e}$,

(b) for all sets $Z \subseteq V(G)$ with $|Z| \geq ke^{-\gamma}$, we have $|\{e \in E(G_p) : e \cap S \neq \emptyset\}| \leq 4e|S|$,

(c) $\Delta(G_p) \leq 4\log k$,

(d) $|W| \leq e^e e^{-\frac{\gamma}{3}e}k$,

(e) $\emptyset \neq Z \subseteq L$ and $|Z| \leq \frac{\gamma}{10}$ implies $|N_{G_p}(Z)| \geq \ell|Z|$, and

(f) $Z \subseteq V(G)$ and $\frac{\gamma}{10} \leq |Z| \leq \frac{\gamma}{2k}$ implies $m(G_p[Z]) \geq \frac{4|Z|^2}{\gamma k}$.

Lemma 12. Let G be a k-pseudo-clique on n vertices, $p = \frac{c}{k}$, and let X_1, X_2, \ldots be a sequence obtained by the following rule

$$X_i = \left\{ v \in V(G) : |N_{G_p}(v) \cap \left(S \cup \bigcup_{j=1}^{i-1} X_j\right)| \geq 2 \right\}.$$

If $X = \bigcup_{j \geq 1} X_j$, then $|X| \leq 500e^e e^{-\frac{\gamma}{3}e}k$ a.a.s.

Let V_2 be vertex set of the largest subgraph of G_p with minimum degree 2 ($G_p[V_2]$ is also known as the 2-core). Moreover, let Y be the set of all vertices v in G which have degree 2 and have a neighbor in X in G_p. Let $A = V_2 \setminus (W \cup X \cup Y)$.

Lemma 13. Let G be a k-pseudo-clique on n vertices and $p = \frac{c}{k}$. Then, a.a.s.

$$|A| \geq (1 - (1 + \epsilon(c))ce^{-\gamma})k,$$

where $\epsilon(c) \to 0$ as $c \to \infty$.

10
Having proved these three lemmas for pseudo-cliques, one can go once again along the lines of the result of Frieze to obtain the following.

Theorem 14. If \(G \) be a \(k \)-pseudo-clique on \(n \) vertices and \(p = \frac{c}{k} \), then a.a.s. \(G_p \) contains a cycle of length at least

\[
(1 - (1 + \epsilon(c))ce^{-c})k,
\]

where \(\epsilon(c) \to 0 \) as \(c \to \infty \).

6 Long Paths

This section is devoted to the proof of Theorem 2. This proof is inspired by a result in [8] proving that a.a.s. the random subgraph \(G_p \) of a graph \(G \) of minimum degree at least \(k \) contains a path of length \(k \) if \(p = \frac{(1+\epsilon)\log k}{k} \) for any fixed \(\epsilon > 0 \).

Proof of Theorem 2. Let \(c \) be sufficiently large and let \(\epsilon = 5 \left(\frac{c}{4k} \right)^{-1/5} \). If \(G \) contains a set \(V' \subseteq V(G) \) such that

\[
\left(1 - \frac{1}{\log k} \right) k \leq |V'| \leq (1 + 10\epsilon)k
\]

and the minimum degree of the graph \(G[V'] \) is at least \((1 - \frac{2}{\log k})k \), then by Theorem 14 \(G_p \) a.a.s. contains a cycle of length at least

\[
(1 - (1 + \epsilon(c))ce^{-c})k,
\]

for some function \(\epsilon(c) \to 0 \) as \(c \to \infty \), which implies the statement. Hence, we may assume that \(G \) does not contain such a set \(V' \).

In the following, we use a technique which is known as sprinkling. In our case, we expose the edges of \(G_p \) in three rounds and in each round we suppose an edge to be present independently with probability \(\frac{c}{3k} \). Thus we consider the union of three graphs \(G_{p_1} \cup G_{p_2} \cup G_{p_3} \), where \(p_i = \frac{c}{3k} \). As

\[
1 - (1 - p_1)(1 - p_2)(1 - p_3) = \left(1 - \frac{c}{3k} + \frac{c^2}{27k^2} \right) \frac{c}{k} \leq p,
\]

the union of these three graphs underestimates the model \(G_p \). Therefore, if we can show that \(G_{p_1} \cup G_{p_2} \cup G_{p_3} \) a.a.s. contains a path of the desired length, then also \(G_p \) a.a.s. contains such a path.

By Theorem 3, we know that \(G_{p_1} \) a.a.s. contains a cycle \(C \) of length at least \((1 - \epsilon)k \). Moreover, we may assume that \(|C| < (1 + \epsilon(c))ce^{-c} \). Let \(A \subseteq V(G) \setminus V(C) \) be the set of vertices having at least \((1 - 20\epsilon)k \) neighbors in \(V(C) \) and let \(B = V(G) \setminus (V(C) \cup A) \).

We divide the proof into two parts. First, we suppose that \(|A| \leq 10ck \). Hence, if \(B \neq \emptyset \), then \(G[B] \) has minimum degree at least \(10ck \). Suppose first that at least \(4k \log k \) edges joining \(C \) and \(B \) in \(G \) and denote this set by \(E \). Consider an ordering \(b_1, b_2, \ldots \) of the vertices in \(B \) and consider an ordering \(e_1, e_2, \ldots \) of the edges in \(E \) which respects the ordering on \(C \), that is, if \(i < j \), then the indices of the edges incident to \(b_i \) are smaller than the indices
of the edges incident to b_j. For $1 \leq i \leq \lfloor 2\log k \rfloor$, let $E_i = \{ e_j : (2i - 2)k + 1 \leq j \leq (2i - 1)k \}$. This implies that there is no vertex $b \in B$ incident to an edge in E_i and E_j for $i \neq j$, since a vertex in B has at most $|V(C)| \leq k$ neighbors in C. Moreover, with probability $1 - e^{-\frac{1}{k}}$ every set E_i contains at least one edge in G_{p_2} independently for every i. Thus by Chernoff's inequality, at least $\log k$ sets E_i contain an edge in G_{p_2} with probability $1 - o(1)$. Let S be a set of $\log k$ vertices in B incident to an edge in G_{p_2}. By Lemma 4 with probability $1 - o(1)$, there is a path in $G_{p_1}[B]$ starting in S of length, say, ϵk. Combining C, a suitable edge in some E_i, and this path leads to a path in $G_{p_1} \cup G_{p_2} \cup G_{p_3}$ of length at least k with probability $1 - o(1)$.

Therefore, we may assume that at most $4k \log k$ edges joining C and B in G. Hence

$$|A \cup C| \geq k - 5 \log k,$$

otherwise every vertex in C has at least $5 \log k$ neighbors in B contradicting our assumption.

Next, we suppose that there exists a set $A' \subseteq A$ with at least \sqrt{k} many vertices having at least $k^{\frac{1}{3}}$ many neighbors in B. As any vertex in A' is adjacent to at least one vertex in C in G_{p_3} with probability close to 1, say $\frac{1}{2}$, independently of each other, with probability $1 - o(1)$, there exists a A'' of size at least $\frac{|A'|}{3}$ such that every vertex in A'' is adjacent to C in G_{p_3}. By a similar argument as before, with probability $1 - o(1)$, there are $\log k$ vertices in B such that each of them has a neighbor in A'' in G_{p_2}. Again, with probability $1 - o(1)$, there is a path in G_{p_2} of length at least ϵk starting in one of these vertices in B and this leads to a path of length at least k in $G_{p_1} \cup G_{p_2} \cup G_{p_3}$ with probability $1 - o(1)$.

Therefore, there are at most $2\sqrt{k}$ vertices v in $A \cup C$ with $d_B(v) \geq k^{\frac{1}{3}}$ and let Z be obtained from $A \cup C$ by deleting all these vertices. Clearly, $|Z| \geq k - 2\sqrt{k}$. As $|Z| \leq (1 + 10e)k$, the set Z is a set as in (1), which is a contradiction.

Thus from now on, we may assume that $|A| \geq 10ek$. Let $A_1 \subseteq A$ with $|A_1| = 10ek$. We partition C into $\frac{1}{10k}$ cycle segments S_1, S_2, \ldots each of length almost $10ek$. As every vertex in A_1 at least $(1 - 20e)k$ neighbors in C, by a simple average argument, there is a segment, say S_1, such that the number of edges between S_1 and A_1 is at least $(1 - 20e)|A_1||S_1|$. Let H be the bipartite subgraph of G which is induced by A_1 and S_1. This implies that the bipartite complement of H has at most $2000e^3k^2$ edges. Of course, this graph contains at most $1000e^3k^2$ vertices of degree at least $100e^3k$. Let H' be the graph obtained by deleting these vertices from H. Thus H' has minimum degree at least $(1 - 20(\sqrt{e}) \cdot 10ek$.

For some orientation of C, let L and R be the first and last ϵk vertices on C in S_1. Moreover, remove an arbitrary subset of A_1 to obtain from the graph $H' \setminus (R \cup L)$ a balanced bipartite graph H''. Thus H'' has minimum degree at least $(1 - 25(\sqrt{e}) \cdot 8ek$.

By Lemma 5, H'' contains a path P of length $15ek$ in G_{p_2} with probability $1 - o(1)$. Let P_1 and P_2 be the subpaths at the beginning and at the end of P of length ϵk, respectively. By Chernoff’s inequality, with probability $1 - o(1)$, in G_{p_2}, there exists an edge e_1 joining a vertex in L and $V(P_1) \cap A_1$ and an edge e_2 joining a vertex in R and $V(P_2) \cap A_1$.

Combining the subpath of C between the endpoints of e_1 and e_2 that contains the segment S_2, the subpath of P between the endpoints of e_1 and e_2, and
the edges e_1 and e_2 results in a cycle in $G_{p_1} \cup G_{p_2} \cup G_{p_3}$ of length at least $(1 - 11\epsilon)k + 13\epsilon k \geq k$ and this completes the proof.

References

[1] M. Ajtai, J. Komlós, and E. Szemerédi, The longest path in a random graph, Combinatorica 1 (1981), 1–12.

[2] N. Alon and J. H. Spencer, The probabilistic method, John Wiley & Sons, 2004.

[3] B. Bollobás, Long paths in sparse random graphs, Combinatorica 2 (1982), 223–228.

[4] B. Bollobás, T. I. Fenner, and A. M. Frieze, Long cycles in sparse random graphs, Graph theory and combinatorics (Cambridge, 1983), Academic Press, London, 1984, pp. 59–64.

[5] W. Fernandez de la Vega, Long paths in random graphs, Studia Sci. Math. Hungar. 14 (1979), 335–340.

[6] A. M. Frieze, On large matchings and cycles in sparse random graphs, Disc. Math. 59 (1986), 243–256.

[7] R. Glebov, H. Naves, and B. Sudakov, The threshold probability for long cycles, arXiv:1408.4332 (2014).

[8] M. Krivelevich, C. Lee, and B. Sudakov, Long paths and cycles in random subgraphs of graphs with large minimum degree, Random Structures Algorithms 46 (2015), 320–345.

[9] M. Krivelevich and B. Sudakov, The phase transition in random graphs: a simple proof, Random Structures Algorithms 43 (2013), 131–138.

[10] O. Riordan, Long cycles in random subgraphs of graphs with large minimum degree, Random Structures Algorithms 45 (2014), 762–765.