Internal structure of the $\Lambda(1405)$ resonance probed in chiral unitary amplitude

T. Sekihara, T. Hyodo, and D. Jido

aDepartment of Physics, Tokyo Institute of Technology, Tokyo 152-8551, Japan
bYukawa Institute for Theoretical Physics, Kyoto University, Kyoto 606-8502, Japan

The internal structure of the resonant $\Lambda(1405)$ state is investigated based on meson-baryon coupled-channels chiral dynamics. We evaluate $\Lambda(1405)$ form factors which are extracted from current-coupled scattering amplitudes in meson-baryon degrees of freedom. Using several probe currents and channel decomposition, we find that the resonant $\Lambda(1405)$ state is dominantly composed of widely spread K around N, with escaping $\pi\Sigma$ component.

1 Introduction

There are hadrons which are expected to have exotic structures, e.g., hadronic molecules, and it is one of the important issues in hadron physics to clarify their structures. A classical example is the excited baryon $\Lambda(1405)$, which has been considered as an s-wave KN quasi-bound state [1]. It is also suggested by the modern theoretical approach based on the chiral dynamics within the unitary framework (the chiral unitary approach) [2–7] that $\Lambda(1405)$ is dynamically generated in the meson-baryon scattering, in addition to the good reproduction of the low-energy K^-p cross sections and the $\Lambda(1405)$ peak in $\pi\Sigma$ mass spectrum. Moreover, the chiral unitary approach predicts double-pole structure for $\Lambda(1405)$ [4, 6] and one of the poles is expected to originate from the $\bar{K}N$ bound state [8, 9]. Some approaches for the survey on the $\Lambda(1405)$ structure in experiments have been proposed, e.g., in Refs. [10, 11].

If $\Lambda(1405)$ is dominated by the $\bar{K}N$ quasibound state with a small binding energy, one can expect that $\Lambda(1405)$ has a larger size than typical ground state baryons dominated by genuine qqq components. Motivated by this expectation, in Ref. [12] we have investigated the internal structure of the resonant $\Lambda(1405)$ state by evaluating density distributions obtained from the form factors on the $\Lambda(1405)$ pole originating from the $\bar{K}N$ bound state. In our study the $\Lambda(1405)$ form factors are directly extracted from the current-coupled scattering amplitude, which involves a response of $\Lambda(1405)$ to the external current. The current-coupled scattering amplitude is evaluated in a charge conserved way by considering current couplings to the constituent hadrons inside $\Lambda(1405)$. Here we note that the wave functions and form factors of $\Lambda(1405)$ were studied also in Ref. [13] in a cut-off scheme within chiral unitary approach, which results were not significantly different from ours, except for the high momentum region compared to the cut-off.
2 Internal structure of Λ(1405)

In the chiral unitary approach, the meson-baryon scattering amplitude T_{ij} with channel indices i and j is obtained by a coupled-channels equation,

\[T_{ij}(\sqrt{s}) = V_{ij}(\sqrt{s}) + \sum_{k} V_{ik}(\sqrt{s}) G_{k}(\sqrt{s}) T_{kj}(\sqrt{s}), \]

with the interaction kernel V_{ij} given by chiral perturbation theory, a meson-baryon loop integral G_{k}, and the center-of-mass energy \sqrt{s}. The obtained amplitude contains dynamically generated $\Lambda(1405)$ in s wave. Next, in order to observe response of $\Lambda(1405)$ to the conserved probe current in the chiral unitary approach, we evaluate current-coupled scattering amplitude $T_{\gamma ij}^{\mu}$ in a charge conserved way, considering current couplings to the constituent hadrons as \cite{[12,14]}:

\[T_{\gamma ij}^{\mu}(\sqrt{s'}, \sqrt{s}; Q^{2}) = T_{\gamma(1)ij}^{\mu} + T_{\gamma(2)ij}^{\mu} + T_{\gamma(3)ij}^{\mu}, \]

with the squared current momentum Q^{2} and

\[T_{\gamma(1)ij}^{\mu} = \sum_{k} T_{ik} D_{M_{k}}^{\mu} T_{kj}, \quad T_{\gamma(2)ij}^{\mu} = \sum_{k} T_{ik} D_{B_{k}}^{\mu} T_{kj}, \quad T_{\gamma(3)ij}^{\mu} = \sum_{k,l} T_{ik} G_{k} \Gamma_{kl} G_{l} T_{lj}, \]

where $D_{M_{k}}$ and $D_{B_{k}}$ are respectively loop integrals with the current couplings to the meson and baryon and Γ_{ij} represents $MBM'B'\gamma$ vertex. Then the $\Lambda(1405)$ form factor, $F^{\mu}(Q^{2})$, can be extracted by \cite{[12,15]},

\[F^{\mu}(Q^{2}) = - \left(\frac{(\sqrt{s'} - Z_{R}) T_{\gamma ij}^{\mu}(\sqrt{s'}, \sqrt{s}; Q^{2})}{T_{ij}(\sqrt{s})} \right) \bigg|_{\sqrt{s} \rightarrow Z_{R}}, \]

where Z_{R} is the $\Lambda(1405)$ pole position. Here we note that we have following relations:

\[\hat{Q} \frac{dG_{k}}{d\sqrt{s}} = (D_{M_{k}}^{0} + D_{B_{k}}^{0})|_{Q^{2}=0}, \quad \hat{Q} \frac{dV_{ij}}{d\sqrt{s}} = \Gamma_{ij}|_{Q^{2}=0}, \]

with \hat{Q} being the charge of $\Lambda(1405)$ with respect to the probe current. These are the Ward-Takahashi identity for the two-body free propagator G_{k} and the elementary vertex V_{ij}.

Now let us show our results for the internal structure of the resonant $\Lambda(1405)$. First, we write a normalization relation for the baryonic [$F_{B}(Q^{2})$] and strangeness [$F_{S}(Q^{2})$] form factors of $\Lambda(1405)$ proved in Ref. \cite{[12]},

\[F_{B}(Q^{2}) = -F_{S}(Q^{2}) = - \sum_{i,j} g_{i} g_{j} \left(\frac{dG_{i}}{d\sqrt{s}} \delta_{ij} + G_{i} \frac{dV_{ij}}{d\sqrt{s}} G_{j} \right) \bigg|_{\sqrt{s} \rightarrow Z_{R}} = 1, \]

where $g_{i} g_{j}$ is a residue of T_{ij} at the $\Lambda(1405)$ pole position and $dG_{i}/d\sqrt{s}$ ($dV_{ij}/d\sqrt{s}$) term comes from $D_{M_{i}}^{0} + D_{B_{i}}^{0}$ (Γ_{ij}^{0}) at $Q^{2} = 0$. This relation corresponds to the Ward identity for
the vertex and wave-function renormalization factors, and this originates from that we evaluate $T^{\mu}_{\gamma ij}$ in a charge conserved way with current couplings satisfying Ward-Takahashi identity \((5)\). With this relation, we can pin down the dominant component of the $\Lambda(1405)$ structure by decomposing the summation in Eq. \((6)\). As a result, we find that contribution from the $\overline{K}N(I = 0)$ channel ($= -g_{\overline{K}N}^2 dG_{\overline{K}N}/d\sqrt{s}$) is $0.994 \pm 0.048i$ whereas contributions from other channels and the vertex term ($= -\sum_{ij} g_{ij} G_{ij} dV_{ij}/d\sqrt{s} G_{ij} g_{ij}$) are negligibly small \([12]\). Therefore, this result indicates that the $\overline{K}N(I = 0)$ channel generates more than 99% of the $\Lambda(1405)$ charge, which is consistent with the $\overline{K}N$ quasibound state picture for $\Lambda(1405)$.

Next we show the electric, baryonic, and opposite-sign strangeness density distributions (P_E, P_B, and $-P_S$, respectively) of $\Lambda(1405)$ in each component in Fig. 1. From P_E, we can see that the negative (positive) charge distribution appears in $\Lambda(1405)$ due to the existence of lighter K^- (heavier p) in the outside (inside) region, bearing in mind the $\overline{K}N$ dominance for $\Lambda(1405)$. Also it is interesting to see the dumping oscillation in $\pi^+\Sigma^-$ (equivalently $\pi^-\Sigma^+$ with the opposite sign) component in P_E as the decay of the system, although this is not observed in the total P_E due to the cancellation of $\pi^+\Sigma^-$ and $\pi^-\Sigma^+$ components. On the other hand, P_B and P_S indicate that inside $\Lambda(1405)$ the \overline{K} component has longer tail than the N component and \overline{K} distribution largely exceeds typical hadronic size $\lesssim 1$ fm, bearing in mind that the baryonic (strangeness) current probes the N (\overline{K}) distribution inside $\Lambda(1405)$.

3 Summary

We have investigated the internal structure of the resonant $\Lambda(1405)$ state in the chiral unitary approach, in which $\Lambda(1405)$ is dynamically generated in meson-baryon coupled-
channels chiral dynamics. Probing $\Lambda(1405)$ with conserved current in a charge conserved way, we have observed that $\bar{K}N$ component gives more than 99% of the total $\Lambda(1405)$ charge. The electric density distribution indicates that inside $\Lambda(1405)$ lighter K^- (heavier p) exists in the outside (inside) region and the escaping $\pi\Sigma$ component appears as the decay mode of $\Lambda(1405)$. Also from the baryonic and strangeness density distributions we have found that inside $\Lambda(1405)$ the \bar{K} component has longer tail than the N component and \bar{K} distribution largely exceeds typical hadronic size $\lesssim 1$ fm.

This work is partly supported by the Grand-in-Aid for Scientific Research from MEXT and JSPS (No. 21840026, 22105507, 22740161, and 22-3389).

References

[1] R. H. Dalitz and S. F. Tuan, Annals Phys. 10, 307 (1960).

[2] N. Kaiser, P. B. Siegel and W. Weise, Nucl. Phys. A 594, 325 (1995).

[3] E. Oset and A. Ramos, Nucl. Phys. A 635, 99 (1998).

[4] J. A. Oller and U. G. Meissner, Phys. Lett. B 500, 263 (2001).

[5] M. F. M. Lutz and E. E. Kolomeitsev, Nucl. Phys. A 700, 193 (2002).

[6] D. Jido, J. A. Oller, E. Oset, A. Ramos and U. G. Meissner, Nucl. Phys. A 725, 181 (2003).

[7] T. Hyodo and D. Jido, Prog. Part. Nucl. Phys. (2011), doi:10.1016/j.ppnp.2011.07.002.

[8] T. Hyodo and W. Weise, Phys. Rev. C 77, 035204 (2008).

[9] T. Hyodo, D. Jido and A. Hosaka, Phys. Rev. C 78, 025203 (2008).

[10] D. Jido, E. Oset and T. Sekihara, Eur. Phys. J. A 42, 257 (2009); ibid. 47, 42 (2011).

[11] S. Cho et al. [ExHIC Collaboration], Phys. Rev. Lett. 106, 212001 (2011); arXiv:1107.1302 [nucl-th].

[12] T. Sekihara, T. Hyodo and D. Jido, Phys. Lett. B 669, 133 (2008); Phys. Rev. C 83, 055202 (2011).

[13] J. Yamagata-Sekihara, J. Nieves and E. Oset, Phys. Rev. D 83, 014003 (2011).

[14] B. Boraso, P. C. Bruns, U. G. Meissner and R. Nissler, Phys. Rev. C 72, 065201 (2005).

[15] D. Jido, A. Hosaka, J. C. Nacher, E. Oset and A. Ramos, Phys. Rev. C 66, 025203 (2002).