Enzymatic Synthesis of Nucleic Acids with Defined Regioisomeric 2′-5′ Linkages

Christopher Cozens, Hannes Mutschler, Geoffrey M. Nelson, Gillian Houlihan, Alexander I. Taylor, and Philipp Holliger*

Abstract: Information-bearing nucleic acids display universal 3′-5′ linkages, but regioisomeric 2′-5′ linkages occur sporadically in non-enzymatic RNA synthesis and may have aided prebiotic RNA replication. Herein we report on the enzymatic synthesis of both DNA and RNA with site-specific 2′-5′ linkages by an engineered polymerase using 3′-deoxy- or 3′-O-methyl-NTPs as substrates. We also report the reverse transcription of the resulting modified nucleic acids back to 3′-5′ linked DNA with good fidelity. This enables a fast and simple method for “structural mutagenesis” by the position-selective incorporation of 2′-5′ linkages, whereby nucleic acid structure and function may be probed through local distortion by regioisomeric linkages while maintaining the wild-type base sequence as we demonstrate for the 10–23 RNA endonuclease DNAzyme.

Genetic information storage and propagation in biology is based on nucleic acids with uniform 3′-5′ phosphodiester linkages. In contrast, 2′-5′ linked RNA oligoanenylates[1] and mixed 2′-5′/3′-5′ dinucleotides (e.g. Gp(2′-5′)Ap(3′-5′)) are involved in innate immune signaling but not genetic information transfer. Sporadic 2′-5′ linkages occur in non-enzymatic RNA synthesis[3] and have been proposed to facilitate primordial RNA replication and evolution via transient duplex destabilization[3d] while retaining overall RNA folding and function.[4] Duplex destabilization by sporadic 2′-5′ linkages has been examined in detail[5] and results from weakened Watson–Crick base pairing and base stacking caused by lateral displacement of the base and adoption of non-canonical C2′ endo puckering.[6] Nevertheless, 2′-5′ linked核酸 acids specifically hybridize with complementary 3′-5′ RNA and 2′-5′ RNA and DNA, albeit more weakly.[5a,d,7] Thus, despite their destabilizing influence on duplex structures, we reasoned that 2′-5′ linked nucleic acids should be able to both encode and transmit genetic information to the canonical 3′-5′ linked nucleic acids. Furthermore, their non-canonical backbone conformations might be harnessed to expand the structural and functional space of nucleic acid ligands and enzymes.

2′-5′ linkages are accessible through solid-phase synthesis, but this is time- and cost-intensive. Herein we report a rapid, inexpensive and scalable strategy for synthesizing defined 2′-5′ linked DNA and RNA regioisomers by an engineered DNA polymerase capable of forming both canonical 3′-5′ and non-canonical 2′-5′ linkages in either DNA or RNA (Figure 1).

We first screened a panel of engineered[8] and commercial polymerases for DNA synthesis in which dGTP was completely replaced by 3′-deoxy-GTP (3′dGTP). The engineered polymerases TgoT[8b] (a Tgo mutant comprising V93Q, D141A, E141A, A485L), and TGK (TgoT: Y409G, E664K, previously described for primer-dependent RNA synthesis[8b]) as well as the related commercial polymerase Vent(exo−) were capable of full-length DNA synthesis with mixed 3′-5′/2′-5′ linkages (Figure S1 in the Supporting Information). However, none of these efficiently synthesized RNA with mixed 3′-5′/2′-5′ linkages when GTP was replaced by 3′O-methyl-GTP (3′OMe-GTP). To this end, we prepared a TGK variant with two further mutations known to expand the polymerase substrate spectrum (I521L, F545L) yielding polymerase TGLLK (TgoT: Y409G, I521L, F545L,

![Figure 1. Structure of partially substituted a) 2′-5′ DNA and b) 2′-5′ RNA, with 3′O-methyl groups as synthesized by polymerase TGLLK.](image-url)
Figure 2. Enzymatic synthesis of partially substituted a) 2'-5' DNA and b) 3'-5' RNA by TGLLK on a 57 nt template (TempN, see Supporting Information) encoding all possible dinucleotide combinations. Reactions in (a) involve dNTPs apart from 3'dA/G as indicated. Reactions in (b) involve NTPs apart from 3'OMeA/G as indicated. c,d) Error spectra of c) 3'dG/dHTP synthesis (aggregate misincorporation rate 5.08×10^{-5}) and d) 3'OMeA/BTP synthesis (aggregate misincorporation rate 7.18×10^{-5}). The columns show the misincorporation frequency for each incorrect nucleotide.

E664K: Figure S2), which proved effective at synthesizing both DNA and RNA with defined 2'-5' linkages (Figure 2).

TGLLK is capable of fully replacing purine dNTPs and NTPs with their respective 3' deoxy (3'dATP, 3'dGTP) or 3'-O-methyl analogues (3'OMeA, 3'OMe-GTP) during processive synthesis (Figure 2) even though these normally act as potent chain terminators (e.g. Cordycepin, 3'dATP[11]). Activity with 3'-analogues of pyrimidine nucleotides or a combination of any two nucleotide analogues was poor, although some full-length synthesis was possible with 3'dUTP or 3'OMe-ATP/3'OMe-GTP (Figure S3). Pausing is observed mostly at sequential 3'dNTP insertion sites, presumably because consecutive 2'-5' linkages weaken duplex stability and cause progressive conformational distortions relative to canonical 3'-5' helices,[8c,13] benefiting TGLLK to insert specific 2'-5' linkages using Taq DNA polymerase (Taq) and Avian Myeloblastosis Virus RT (AMV RT) respectively (as previously reported[16]) allowed us to determine aggregate fidelity of the information transfer through 2'-5' linkages in both DNA and RNA by deep sequencing, revealing misincorporation frequencies ranging from 8×10^{-3} for 3'dATP to 2×10^{-4} for 3'OMe-GTP (Figure 2c,d; Table S1).

Next, we set out to probe the impact of 2'-5' linkages on nucleic acid function. Limited, sporadic substitution (< 25%) of randomly distributed 2'-5' linkages is compatible with function in some ribozymes and aptamers as polyclonal populations.[12] We reasoned that a better understanding of the functional impact of 2'-5' linkages might be gained from site-specific insertion of regioisomeric linkages. Such a “structural mutagenesis” approach would not replace functional groups—like conventional mutagenesis—but instead alter their three-dimensional positioning, potentially allowing a novel interrogation of the roles of different nucleotides in nucleic acid structure and function.

We chose the well-studied 10-23 RNA-endonuclease DNAzyme[17] (Figure 4a) to validate this “structural mutagenesis” approach and first synthesized 10-23 with progressively more 2'-5' linked purines (Figure 4 and Figure S4). This “primer scanning” approach allows a quick determination of obligatory 3'-5' linkages sensitive to distortion, neutral positions tolerating both 3'-5' and 2'-5' geometry, and any positions where 2'-5' introduction is beneficial. We identified nucleotide positions broadly falling into each category (Figure 4). For example, structural mutagenesis of the distal RNA-binding arm revealed that introducing 2'-5' linkages after G18 and G22 results in a modest activity gain (Figure 4b,c), presumably because of reduced product inhibition.[18]

Previous analysis had shown that G14 is highly sensitive to mutation as changes to A, C, or T result in around a 20-fold loss of activity and even conservative substitution of G with inosine or 2-aminopurine results in a greater than 10-fold
In contrast, we find that structural mutations, base deletions, or replacement with linkages produced down-linkage after A5 backbone linkage (Figure S5).

We also describe a rapid method for position-selective structural mutagenesis of nucleic acids, whereby structure, conformation, and activity may be altered through insertion of regioisomeric backbone distortions, or indeed any unnatural nucleotide. While currently limited by the inefficient incorporation of 3'deoxy and 3'O-methyl pyrimidines as well as multiple substitutions, the described methodologies allow rapid, template-directed synthesis and reverse transcription of nucleic acid polymers containing mixed 2'-5'/3'-5' backbone linkages. This procedure forms the foundation for future in vitro evolution experiments and a new approach for expanding the structural and functional repertoire of nucleic acid enzymes, ligands, and sensors.

Acknowledgements

This work was supported by a FEBS long-term fellowship (H.M.) and by the Medical Research Council (program no. U105178804).

Keywords: DNAzyme · nucleic acids · nucleotides · polymerase · regioselectivity

How to cite: Angew. Chem. Int. Ed. 2015, 54, 15570–15573

Angew. Chem. 2015, 127, 15791–15794
[1] R. Hartmann, J. Justesen, S. N. Sarkar, G. C. Sen, V. C. Yee, Mol. Cell 2003, 12, 1173–1185.
[2] A. Ablasser, M. Goldeck, T. Cavlar, T. Deimling, G. Witte, I. Rohl, K. P. Hopfner, J. Ludwig, V. Hornung, Nature 2013, 498, 380–384.
[3] a) R. Lohrmann, L. E. Orgel, Tetrahedron 1978, 34, 853–855; b) A. Kanavarioti, L. F. Lee, S. Gangopadhyay, Origins Life Evol. Biospheres 1999, 29, 473–487; c) P. A. Monnard, A. Kanavarioti, D. W. Deamer, J. Am. Chem. Soc. 2003, 125, 13734–13740; d) J. W. Szostak, J. Syst. Chem. 2012, 3, 2.
[4] A. E. Engelhart, M. W. Powner, J. W. Szostak, Nat. Chem. 2013, 5, 390–394.
[5] a) T. P. Prakash, K. E. Jung, C. Switzer, Chem. Commun. 1996, 1793–1794; b) T. L. Sheppard, R. C. Breslow, J. Am. Chem. Soc. 1996, 118, 9810–9811; c) P. A. Giannaris, M. J. Damha, Nucleic Acids Res. 1993, 21, 4742–4749; d) M. Wasner, D. Arion, G. Borkow, A. Noronha, A. H. Uddin, M. A. Parniak, M. J. Damha, Biochemistry 1998, 37, 7478–7486.
[6] a) B. J. Premraj, N. Yathindra, J. Biomol. Struct. Dyn. 1998, 16, 313–328; b) L. Li, J. W. Szostak, J. Am. Chem. Soc. 2014, 136, 2858–2865; c) J. Sheng, L. Li, A. E. Engelhart, J. Gan, J. Wang, J. W. Szostak, Proc. Natl. Acad. Sci. USA 2014, 111, 3050–3055.
[7] a) K. E. Jung, C. Switzer, J. Am. Chem. Soc. 1994, 116, 6059–6061; b) H. Robinson, K. E. Jung, C. Switzer, A. H. J. Wang, J. Am. Chem. Soc. 1995, 117, 857–838.
[8] a) C. Cozens, V. B. Pinheiro, A. Vaisman, R. Woodgate, P. Holliger, Proc. Natl. Acad. Sci. USA 2012, 109, 8067–8072; b) V. B. Pinheiro, A. I. Taylor, C. Cozens, M. Abramov, M. Rengers, S. Zhang, J. C. Chaput, I. Wengel, S.-Y. Peak-Chew, S. H. McLaughlin, P. Herdewijn, P. Holliger, Science 2012, 336, 341–344.
[9] M. J. Fogg, L. H. Pearl, B. A. Connolly, Nat. Struct. Biol. 2002, 9, 922–927.
[10] A. F. Gardner, W. E. Jack, Nucleic Acids Res. 1999, 27, 2545–2553.
[11] N. Ramsay, A. S. Jemth, A. Brown, N. Crampton, P. Dear, P. Holliger, J. Am. Chem. Soc. 2010, 132, 5096–5104.
[12] a) V. D. Axelrod, R. M. Varikyan, V. A. Aivazashvili, R. S. Beabealashvili, Nucleic Acids Res. 1978, 5, 3549–3563; b) D. C. Montefiori, R. W. Sobol, Jr., S. W. Li, N. L. Reichenbach, R. J. Suhadolnik, R. Charubala, W. Pfleiderer, A. Modliszewski, W. E. Robinson Jr., W. M. Mitchell, Proc. Natl. Acad. Sci. USA 1989, 86, 7191–7194.
[13] B. J. Premraj, P. K. Patel, E. R. Kandimalla, S. Agrawal, R. V. Hosur, N. Yathindra, Biochem. Biophys. Res. Commun. 2001, 285, 537–543.
[14] C. Gloeckner, K. B. M. Sauter, A. Marx, Angew. Chem. Int. Ed. 2007, 46, 3115–3117; Angew. Chem. 2007, 119, 3175–3178.
[15] F. R. Bowler, C. K. Chan, C. D. Duffy, B. Gerland, S. Islam, M. W. Powner, J. D. Sutherland, J. Xu, Nat. Chem. 2013, 5, 383–389.
[16] a) J. R. Lorsch, D. P. Bartel, J. W. Szostak, Nucleic Acids Res. 1995, 23, 2811–2814; b) S. Sinha, P. H. Kim, C. Switzer, J. Am. Chem. Soc. 2004, 126, 40–41.
[17] S. W. Santoro, G. F. Joyce, Proc. Natl. Acad. Sci. USA 1997, 94, 4262–4266.
[18] M. J. Cairns, A. King, L. Q. Sun, Nucleic Acids Res. 2003, 31, 2883–2889.
[19] Z. Zaborowska, J. P. Furste, V. A. Erdmann, J. Kurreck, J. Biol. Chem. 2002, 277, 40617–40622.
[20] B. J. Premraj, S. Raja, N. Yathindra, Biochem. Biophys. Chem. 2002, 95, 253–272.
[21] Y. Liu, E. Holmstrom, J. Zhang, P. Yu, J. Wang, M. A. Dyba, D. Chen, J. Ying, S. Lockett, D. J. Nesbitt, A. R. Ferre-D’Amare, R. Sousa, J. R. Stagno, Y. X. Wang, Nature 2015, 522, 368–372.
[22] Z. Zaborowska, S. Schubert, J. Kurreck, V. A. Erdmann, Febs Lett. 2005, 579, 554–558.
[23] B. Wang, L. Q. Cao, W. Chiuman, Y. F. Li, Z. Xi, Biochemistry 2010, 49, 7553–7562.
[24] B. Nawrot, K. Widera, M. Wojcik, B. Rebowska, G. Nowak, W. J. Stec, FEBS J. 2007, 274, 1062–1072.
[25] J. Guo, N. Xu, Z. Li, S. Zhang, J. Wu, D. H. Kim, M. Sano Marma, Q. Meng, H. Cao, X. Li, S. Shi, L. Yu, S. Kalachikov, J. J. Russo, N. J. Turro, J. Ju, Proc. Natl. Acad. Sci. USA 2008, 105, 9145–9150.

Received: September 16, 2015
Published online: November 3, 2015