Spontaneous Air-leak Syndrome and COVID-19: A Multifaceted Challenge

Pranshuta Sabharwal, Sangeeta Chakraborty, Niraj Tyagi, Rahul Kumar, Ashutosh Taneja

ABSTRACT

Spontaneous air-leak syndromes have emerged as rare but significant complication of Coronavirus disease-2019 (COVID-19) pneumonia in the last few months. This complication has been documented in both spontaneous and mechanically ventilated patients. Although few studies have used computed tomographic scans to confirm the diagnosis, this could be challenging in resource-limited setup. We present a series of 15 cases that highlight the clinical heterogeneity with respect to stage of illness, ventilatory status, and varied clinical scenarios at the time of development of these syndromes. All cases in our series were diagnosed clinically and confirmed by bedside chest X-ray and were managed promptly. Though mortality was not so infrequent in our experience, these air-leak syndromes were not directly attributed as cause of death in these patients. Therefore, high level of clinical suspicion and vigilance is necessary to identify and manage cases of air-leak syndrome.

Keywords: Air-leak syndrome, COVID-19, Pneumomediastinum, Pneumothorax, Subcutaneous emphysema.

Indian Journal of Critical Care Medicine (2021): 10.5005/jp-journals-10071-23819

INTRODUCTION

Coronavirus disease-2019 (COVID-19) has emerged as a multisystemic disorder over the last few months, leading to a myriad of complications. Pneumothorax and subcutaneous emphysema with or without pneumomediastinum have been reported in small number of patients with COVID-19, although the frequency and significance of this association remain uncertain. The incidence of spontaneous pneumomediastinum as reported varies from 1 to 1.1%. These pathologies were well-documented complications of severe acute respiratory syndrome coronavirus (SARS-CoV-1) and Middle East respiratory syndrome (MERS) and were indicative of severe disease with poor prognosis. The current literature comprises of case reports and retrospective cohort studies, all pointing toward clinical heterogeneity and indeterminate causal association of these complications in COVID-19 pneumonia. We hereby report the largest single-center case series of spontaneous pneumothorax and/or subcutaneous emphysema with or without mediastinal emphysema in both ventilated and nonventilated patients from a tertiary care intensive care unit in India over 4 months.

CASE DESCRIPTIONS

Cases 1–15

Out of the 15 patients documented in our series, nine were on invasive ventilation, five were on noninvasive ventilation (NIV), and one patient (Case 11) presented with spontaneous pneumothorax from home. This patient developed it as a sequela of COVID-19 pneumonia, 15 days after discharge. This patient came with breathlessness and was managed with intercostal drain (ICD) insertion. During his first admission in ICU, the patient was managed with high-flow nasal cannula. Patient had no apparent risk factors for spontaneous pneumothorax.

Out of the five patients on NIV, four developed subcutaneous emphysema and one developed pneumothorax requiring ICD insertion and rescue intubation with invasive mechanical ventilation (Case 2). Two of them also had evidence of pneumomediastinum

in the high-resolution computed tomography (HRCT) chest. All five patients were ventilated with a target minute ventilation of 10 to 15 mL/minute and positive end-expiratory pressure (PEEP) not exceeding 10 cm of H2O.

Out of the nine patients on invasive mechanical ventilation, four patients developed tension pneumothorax necessitating ICD insertion. Rest of the patients developed subcutaneous emphysema with evidence of mediastinal emphysema in only 3 cases in chest X-ray. HRCT thorax could not be done in these patients due to logistic reasons. All these patients were ventilated following lung-protective ventilation (LPV) strategy with the target of maintaining plateau pressure below 30 cm of H2O and tidal volume and PEEP not exceeding 6 mL/kg of IBW and 15 of H2O, respectively.

Most of the patients developed these complications in second week of illness and beyond but at different stages of illness, for example, one even in weaning phase (Case 10) and one patient while on extracorporeal life support (Case 13). Out of the 15 cases, only two had underlying lung condition which was chronic obstructive pulmonary disease (Case 1) and the other was interstitial lung disease (Case 6). None of the patient had any procedure (central venous cannulation/bronchoscopy/tracheostomy) done 24–48 hours prior to the development or detection of pneumothorax/subcutaneous emphysema. Eight out of nine intubated patients

© Jaypee Brothers Medical Publishers. 2021 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by-nc/4.0/), which permits unrestricted use, distribution, and non-commercial reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
Table 1: Details of all 15 cases of pneumothorax

Cases	Age/sex	Ventilation status/mode	Day of intubation (onset of illness)	Day of pneumothorax/SC emphysema	X-ray finding	ANC	ALCS	NLR at admission	Ferritin	D-dimer	IL-6	Outcome
1	59/M	Invasive CMV	D11	D17	Pneumothorax (L)	16,553	160	48:1	33,511	8.22	1,487	Death on D19
2	51/M	Invasive NI PSV	D14	D14	Pneumothorax (L)	20,640	731	12:1	511	8.45	1.45	Death on D17
3	48/M	Invasive CMV	D16	D19	Pneumothorax (R)	27,081	300	17:1	609	1.36	1.06	Death on D16
4	57/M	Invasive CMV	D10	D17	Pneumothorax (R)	30,827	280	15:1	816	1.1	1.8	Death on D20
5	46/M	Invasive NI PSV	D2	D21	SC and mediastinal emphysema	15,842	448	7.1	4,115	0.96	0.96	Death on D25
6	73/F	Invasive CMV	D5	D12	SC emphysema	34,560	85	24:1	5,780	3.45	3.45	Death on D26
7	71/M	Invasive CMV	D8	D7	SC emphysema	34,032	110	31:1	2,913	0.59	0.59	Death on D16
8	53/M	Invasive CMV	D28	D11	SC emphysema	30,559	152	2:1	211	8.0	8.0	Death on D18
9	56/M	Invasive NI PSV	D9	D15	SC emphysema	25,906	363	23:1	2,446	3.69	3.69	Death on D28
10	40/M	Invasive CMV	D18	D35	SC emphysema	2,755	210	23:1	1,265	0.89	0.89	Death on D50
11	61/M	Spontaneous on room air at home	D12	D15	SC emphysema and mediastinal emphysema	12,517	480	23:1	72,454	1.16	1.16	Death on D26
12	73/M	Invasive CMV	D15	D12	SC emphysema and mediastinal emphysema	17,466	461	23:1	1,515	1.12	1.12	Shifted to ward
13	57/M	Invasive ECMO/PCV	D10	D35	SC emphysema	35,514	36	23:1	2,180	4.94	4.94	Shifted to ward
14	42/M	Invasive NI PSV	D5	D15	SC emphysema	17,242	380	11:1	3,017	23	23	Shifted to ward
15	41/F	Invasive NI PSV	D10	D10	SC emphysema	18,050			104			Shifted to ward

CMV, controlled mode of ventilation; NI PSV, noninvasive pressure support ventilation; SC emphysema, subcutaneous emphysema; ANC, absolute neutrophil count; ALC, absolute lymphocyte count; NLR, neutrophil lymphocyte ratio; IL-6, interleukin 6

highest value of ANC, ferritin, D-dimer IL6, lowest value of ALC during the illness and at admission NLR taken into consideration
received prone ventilation. Hemodynamic instability was associated with all cases of pneumothorax along with hypoxemia and increased peak airway pressures that resolved after ICD placement. Rest of the cases were clinically identified by the presence of crepitus in neck region and later confirmed by chest radiograph and HRCT thorax whichever possible (Figs 1 and 2). Although the mortality was high in the patients in this series (13/15), the primary cause of death was not directly attributed to air-leak syndrome (Table 1).

Discussion

Pneumothorax, subcutaneous emphysema, and mediastinal emphysema are components of air-leak syndrome, documented to occur in acute respiratory distress syndrome (ARDS). Contribution of barotrauma, volutrauma, atelectrauma, and biotrauma has been implicated in pathological lung damages in ARDS patients on mechanical ventilation termed as ventilator-induced lung injury (VILI). Clinical and experimental data over the years have supported the use of LPV strategies to prevent VILI and therefore recommended in COVID-19-related ARDS.6 Our case series describes 15 cases of air-leak syndrome, out of which nine patients were on invasive mechanical ventilation. Although LPV was largely achieved, it was insufficient in preventing the development of air-leak syndrome in these patients. The insufficiency of LPV in preventing air-leak syndrome has also been documented in other studies,5 indicating that the pathological lung damages occurring in COVID-19 is much more complicated and multifactorial.

The consistent finding in most patients in this series is of laboratory parameters, suggesting a severe inflammatory state characterized by neutrophilia, lymphopenia, high neutrophil–lymphocyte ratio (NLR), and high inflammatory markers. Previous experience with SARS-CoV-1/ MERS showed that association of pneumothorax was consistent with higher neutrophil counts, more severe disease, and prolonged duration of lung inflammation.6 Earlier studies have attempted to explain pathological processes leading to air-leak syndromes that include consolidation, interstitial pneumonia, and in situ thrombosis leading to friable lung and pleura.6 These findings were demonstrated in our patients on X-ray. However, in situ thrombosis could not be confirmed in all but one patient. Although indirect evidence of thrombosis was suggested by elevated D-dimer levels. A few studies demonstrated the presence of bullae,6 subpleural blebs, ground-glass opacities (GGO),7 crazy paving patterns,6 and pneumatocele6 in HRCT thorax of patients presenting with air-leak syndrome (Fig. 1). Subpleural

Figs 1A to C: (A) Subcutaneous emphysema, pneumomediastinum, subpleural blebs, ground-glass opacities; (B) Ground-glass opacities only; (C) Subcutaneous emphysema, pneumomediastinum, subpleural blebs, ground-glass opacities, crazy paving, reverse halo sign
blebs, GGO, and crazy paving patterns could be demonstrated in HRCT thorax of our patients.

The occurrence of air-leak syndrome in spontaneously breathing patients raises further question on possible association of patient self-inflicted lung injury (P-SILI). Large swings in a minute ventilation could not be avoided, which may have put patients on NIV at risk of P-SILI. The possibility of P-SILI contributing to air-leak syndromes has also been suggested in other studies.9,10 Considering the possible factors putting patients at risk of air-leak syndromes, few probable preventive strategies could be to strictly maintain low driving pressure (plateau pressure—PEEP) and ultra-low tidal volume, prevent all possible patient ventilator asynchrony by maintaining appropriate sedation even in patients on NIV, and prevent cough as far as possible.

Conclusion

Our series presents a heterogeneous clinical scenario of air-leak syndrome. In a resource-limited setup where HRCT thorax is not possible in all patients, clinical diagnosis is paramount to identify air-leak syndrome. A high level of alertness, clinical suspicion, and prompt action are mandatory to prevent fatal consequences. Further randomized controlled studies are warranted for better understanding of pathogenesis of air-leak syndromes in COVID-19.

Highlights

This series highlights the heterogeneity of COVID-19-induced air-leak syndrome in terms of clinical presentation, day of illness from first symptom, mode of ventilation, and radiological features. However, the laboratory values in all our patients point toward a state of severe inflammatory response characterized by lymphopenia, high NLR, and higher value of other inflammatory markers. Further studies are required to understand the pathophysiology and predictors of air-leak syndrome associated with COVID-19 for better management of these patients.

REFERENCES

1. Chen N, Zhou M, Dong X, Qu J, Gong F, Han Y, et al. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. Lancet 2020;395(10223):507–513. DOI: 10.1016/S0140-6736(20)30211-7.
2. Yang F, Shi S, Zhu J, Shi J, Dai K, Chen X. Analysis of 92 deceased patients with COVID-19. J Med Virol 2020:10.1002/jmv.25891. DOI: 10.1002/jmv.25891.
3. Das KM, Lee EY, Al Jawder SE, Enani MA, Singh R, Skakni L, et al. Acute middle east respiratory syndrome coronavirus: temporal lung changes observed on the chest radiographs of 55 patients. Am J Roentgenol 2015;205(3):W267–W274. DOI: 10.2214/AJR.15.14445.
4. Berlin DA, Gulick RM, Martinez FJ. Severe covid-19. N Engl J Med 2020. DOI: 10.1056/NEJMcp2009575.
5. Jones E, Gould A, Pillay TD, Khorasanee R, Sykes R, Bazo-Alvarez JC, et al. Subcutaneous emphysema, pneumomediastinum, and pneumothorax in critically ill patients with coronavirus disease 2019: a retrospective cohort study. Crit Care Explor 2020;2(9):e0210. DOI: 10.1097/CCE.0000000000000210.
6. Mallick T, Dinesh A, Engdahl R, Sabado M. COVID-19 complicated by spontaneous pneumothorax. Cureus 2020;12(7):e9104. DOI: 10.7759/ cureus.9104.
7. Do Lago VC, Cezare TJ, Fortaleza CMCB, Okoshi MP, Baldi BG, Tanni SE. Does COVID-19 increase the risk for spontaneous pneumothorax? Am J Med Sci 2020;S0002-9629(20)30320-7. DOI: 10.1016/j. amjms.2020.07.024.
8. Zantah M, Dominguez Castillo E, Townsend R, Dikengil F, Criner GJ. Pneumothorax in COVID-19 disease: incidence and clinical characteristics. Respir Res 2020;21(1):236. DOI: 10.1186/s12931-020-01504-y.
9. Marin JJ, Gattinoni L. Management of COVID-19 respiratory distress. JAMA 2020;323:2329–2330. DOI: 10.1001/jama.2020.6825.
10. Brochard L, Slutsky A, Pesenti A. Mechanical ventilation to minimize progression of lung injury in acute respiratory failure. Am J Respir Crit Care Med 2017;195:438–442. DOI: 10.1164/rccm.201605-1081CP.