CRITICAL REVIEW

Assessment of researches and case studies on Cloud Manufacturing: a bibliometric analysis

Daniel Alexandre Morelli1 · Paulo Sergio de Arruda Ignacio1

Received: 26 April 2021 / Accepted: 23 July 2021 / Published online: 4 August 2021
© The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2021

Abstract
Cloud computing technology has been studied in the context of industry 4.0 as a tool applied to manufacturing services and resources. Such concept is widely known as Cloud Manufacturing. This paper aims at mapping the current state of academic researches on this field, promoting the understanding of trends, references and practical applications in real-life conditions. A bibliometric analysis was conducted using two different databases — Scopus and Web of Sciences — and VOSviewer’s text mining tools and techniques. From a sample of 1420 papers, this study identified the countries which had the largest volume of publications, the main journals related to the subject, the most influent articles, and four clusters by keywords occurrences: (i) “Optimization of manufacturing processes”, (ii) “Collaborative networks of manufacturing resources and services”, (iii) “Industry 4.0 and cloud computing systems”, and (iv) “Data reliability and cyber-security”. Finally, this work selected and analyzed the 159 articles with applied case studies, in order to stratify and to understand the most common approaches within the four pre-established categories. This article can contribute to researchers and developers searching for successful practical applications in digitalization of manufacturing chains, as well as to those who are looking for gaps in the still unexplored fields of Cloud Manufacturing. Both the assessment and the categorization of the case studies about Cloud Manufacturing are the differentials in this article.

Keywords Cloud manufacturing · Industry 4.0 · Bibliometric analysis · Case studies · Real-life applications

1 Introduction
The manufacturing industry, in the context of the fourth industrial revolution, must be capable of applying advanced technologies and knowledge, integrating the automation of its machines, equipment and sensors. Such integration should include not only the company’s processes, systems and/or internal protocols, but also those of other companies that are part of its supply chain [1].

Academic researches and the industry’s development departments have initiated to explore a set of innovative tools, among them, a manufacturing model based on the emerging cloud computing technology, integrating different sectors and companies on the network, through the virtualization and sharing of its resources and knowledge, and the communication between machines [2].

Built over web-based architectures, these models can generate value through collaborative processes between stakeholders, cost reduction and scalability [3]. Their proposition intends to promote performance improvement in a supply chain environment over the implementation of a digital and continuous information flow [4].

The application of these standards, which associate cloud computing advantages to manufacturing resources, started to be studied in 2010 and are called Cloud Manufacturing [5]. Since then, many researches have emerged in this field. Some of them are focused on theoretical frameworks, while others propose real-life practical applications through case studies.

A bibliometric analysis about the subject of Cloud Manufacturing was accomplished in this article, in order to assess academic researches and their case studies approaches, published until January 2021.

Daniel Alexandre Morelli
damorelli@gmail.com

Paulo Sergio de Arruda Ignacio
psai@unicamp.br

1 Industrial Engineering Research Center, School of Applied Sciences, University of Campinas-UNICAMP, R. Pedro Zaccaria, 1300, Limeira SP, Brazil
This investigation aims at mapping the current state of a wide range of available researches in the field of Cloud Manufacturing, identifying publication trends, countries with the largest volume of papers, most relevant journals and influential articles, as well as the clusters of the keywords co-occurrences. This work then selected and analyzed the researches that included case studies, in order to categorize their approaches.

The contribution of this article is to generate relevant information to expand the knowledge about Cloud Manufacturing, contextualize trends of application tools, make successful practical solutions and relevant references available, as well as, identify gaps or improvement opportunities of studies in unexplored fields of Cloud Manufacturing.

2 Literature review

Cloud computing technology represents a service model that enables users or enterprises to access a whole set of adaptable, configurable and available on-demand IT resources, in an agile way and with a low level of effort [6].

According to Zárate and Mendoza [7], in a cloud computing architecture, all of the computing structures are treated as a service. Figure 1 shows the services delivered through cloud technology.

- IaaS (Infrastructure as a Service), also known as hardware as a service (HaaS), delivers computing infrastructures, such as storage or databases, using virtual machines (e.g., Amazon EC2, GoGrid, Flexiscale or Data Centers);
- PaaS (Platform as a Service) provides a system environment called middleware, driven to software development, as well as, testing and/or hosting of applications (e.g., Microsoft Azure, Google AppEngine or Amazon Simple DB/S3); and
- SaaS (Software as a Service) which offers a set of internet accessible applications to end users (e.g., Google Apps, Facebook, Youtube or Salesforce).

Cloud computing technologies applied specifically to the manufacturing sector is addressed by 3 main terms: Cloud Manufacturing, Cloud-based Manufacturing, or even Cloud-based Design and Manufacturing. By gathering the benefits of cloud computing, such as agility, flexibility, scalability and efficiency, many companies are being able not only to improve their own production processes, but also promote a greater integration and a more collaborative relationship with their business partners [9].

Based on networks, Cloud Manufacturing transforms manufacturing resources and capabilities into services performed through machine virtualization, which can be managed and operated on-demand by users for the whole life cycle of manufacturing [10].

As illustrated in Fig. 2, such process consists of three layers:

- Application Layer — This layer includes interfaces of users that need manufacturing services or resources to meet their customized demands. Those requests can be made by companies or individual users with access though the internet [12].
- Manufacturing Capability Layer — In this layer occurs the connection between the physical manufacturing machines and the cloud servers, by the virtualization of these resources [13]. Countless suppliers offer their specialized services and make their manufacturing machines available worldwide. Generally, these
facilities are CNC machining centers, foundries industries, 3D printing, plastic injection molding, and other component production processes.

- Central Service Layer — In this layer happens the smart cloud solutions management, as matching between customers’ demands and physical resources available. This assessment enables production processes evaluation, scheduling, optimal resources allocation, monitoring, quality management, big data and real time information [11].

Figure 3 describes some of the potential applications enabled by the network connection involving different
manufacturing companies. Cloud Manufacturing may be used to share resources and knowledge in order to be effective in the support of processes such as design, manufacturing, planning, controlling, analysis and decision-making. [14].

3 Methodology

In order to explore the researches on Cloud Manufacturing in a quantitative perspective, this article conducted a bibliometric study based on the appreciation of recorded information in the scientific literature. Subsequently, this analysis used tools and statistical techniques that resulted in indexes which enabled us to recognize correlations among the investigated publications [15]. Figure 4 presents the 5 steps conducted during this study.

The research and analysis methodology is illustrated as a flowchart in Fig. 5, organizing the 5 steps mentioned, with the registration of the quantity of articles detected in each step.
The 5 steps of the applied methodology are detailed as follows:

1. Identification of the scientific publications related to Cloud Manufacturing, through researches in both Scopus and Web of Science databases, using the search engine equations described on Table 1. By doing so, this paper identified a total of 907 publications on Web of Science and 1117 publications on Scopus.

2. Screening the publications using Microsoft Excel. By removing duplicates, this work found a total of 1420 publications about Cloud Manufacturing to be analyzed. Still at the screening stage, the English language publications were separate (totalizing 1219) in order to confront with other languages, at both the general and the case studies analysis steps.

3. General analysis over the 1420 publications applying text mining techniques using a software called VOSviewer, developed by the University of Leiden, for construction of bibliometric clusters and maps, providing observation of the relationship of authors, keywords, citations, journals, countries and categorization of the most relevant terms [17].

4. Eligibility of the 159 articles containing applied case studies to quantify practical implementations about the Cloud Manufacturing emerging technology. In order to select the publications with meaningful cases, this paper searched the terms and applied the filters described on Table 1.

5. Case studies analysis from both stratification and clusterization of the researches into the categories determined by VOSviewer, allowing us to identify the most relevant real-life applications of Cloud Manufacturing, as well as to recognize gaps and opportunities for future work.

4 Results

Over the 1420 publications that arose from the screening process, this work built the graph presented in Fig. 6 that shows the overall trend of publications over time about Cloud Manufacturing, since the very first publication in 2010. It is possible to perceive an increase in the number of annual publications, confirming the growing relevance of this subject on both the academic and the industrial fields.

Figure 6 also presents the fitted trend line, generated using the statistical tool from Microsoft Excel, as the following linear equation.

\[y = 16.355x + 29.873; \quad R^2 = 0.7616 \quad (1) \]

In order to avoid distortions in the trend equation, this exploration disregarded the 12 publications from January 2021, date when the bibliographic research was conducted.

Table 2 shows the countries with largest volume of publications in English language, indicating China as the leader, with an annual production greater than that of all other 14 countries together. China is also the country that presents the largest number of publications and of citations in any language.

Some countries stand out in the density of publications relative to their population, as New Zealand, Sweden and Finland, with publication rates considerably higher than those of the other countries on the list.

Table 3 ranks the top 10 journals by total number of published papers. Their origin countries are China, the UK, the Netherlands and the USA, with emphasis to the Chinese Computer Integrated Manufacturing Systems, CIMS, which boasts the largest number of publications, the highest number of citations, as well as the highest factor of citations per publication among the members of the list.

Table 1 Summary of the applied search engines [18]

Analysis of publications about Cloud Manufacturing	Web of Science and Scopus
Databases	1420 (907 from Web of Science and from 1117 Scopus)
Total number of documents	(`"cloud manufactur*" OR "cloud?based manufactur*" OR "cloud?based design and manufactur*"`)
General search engines terms	(`"cloud manufactur*" OR "cloud?based manufactur*" OR "cloud?based design and manufactur*"`)
Specific search engine terms (for case studies identification)	(`"cloud manufactur*" OR "cloud?based manufactur*" OR "cloud?based design and manufactur*" AND ("case stud*" OR "case analys*" OR "simulat*"))
Specific search filters (for case studies)	Publication Type: Article or Review Language: English
Softwares	VOSviewer and Excel
Types of analysis	Literature review, quantitative and qualitative analysis

According to the indexed categories in Scimago [20], the most relevant journals are specialized on computer science, mechanical engineering, industrial engineering, mathematics, management science, operations research, manufacturing and artificial intelligence.

Table 4 shows the most influential articles on the subject of Cloud Manufacturing ranked by total citations, presenting keywords targeted for service-oriented business models, advanced manufacturing systems or platforms, internet of things (IoT), cloud computing, services optimization, real-time monitoring, big data, and distributed resources sharing.

4.1 Clustering analysis

Using the software VOSviewer, this study built Fig. 7 that reveals the keywords co-occurrences map, determinated by the documents where they are found together. Both authors keywords, and other relevant words frequently used in titles and abstracts were considered.

Every keyword is represented by a circle, whose size is proportional to its frequency of occurrence. The positions indicate the relationship between two different keywords, and the lines signify connectivity and association of concepts.

Table 2 Top 15 ranked countries with respect to the publications about Cloud Manufacturing

Ranking	Countries	Publications (in English language)	Publications (in any language)	Number of citations	Population as of 2020 [19]	Publications per million inhabitants
1	China	422	618	6669	1,439,323,774	0.43
2	USA	101	101	988	331,002,647	0.31
3	Sweden	42	42	842	10,099,270	0.60
4	UK	41	41	841	67,886,004	0.60
5	New Zealand	40	40	113	4,822,233	8.29
6	Germany	38	40	568	83,783,945	0.48
7	Italy	32	32	181	60,461,828	0.53
8	Iran	25	25	124	83,992,953	0.30
9	India	23	23	54	1,380,004,385	0.02
10	Taiwan	17	17	74	23,568,378	0.72
11	Finland	16	16	225	5,540,718	2.89
12	France	13	13	63	65,273,512	0.20
13	Romania	12	12	60	19,237,682	0.62
14	Brazil	11	11	74	212,559,409	0.05
15	South Korea	9	9	41	51,269,183	0.18
Table 3 Top 10 journals in number of publications

Rank	Journal	Country of origin	Publications	Citations	Indexed Categories [20]
1	Computer Integrated Manufacturing Systems, CIMS	China	123	3233	Computer Science; Engineering
2	International Journal of Advanced Manufacturing Technology	UK	66	509	Computer Science; Engineering
3	International Journal of Computer Integrated Manufacturing	UK	41	472	Computer Science; Engineering
4	Robotics and Computer-Integrated Manufacturing	UK	36	645	Computer Science; Engineering; Mathematics
5	International Journal of Production Research	UK	29	251	Management Science, Operations Research; Industrial Engineering
6	China Mechanical Engineering	China	28	107	Mechanical Engineering
7	Journal of Intelligent Manufacturing	Netherlands	21	487	Computer Science; Artificial Intelligence; Industrial Engineering; Manufacturing
8	Journal of Manufacturing Systems	Netherlands	20	257	Computer Science; Engineering
9	IEEE Access	USA	19	72	Computer Science; Engineering; Materials Science
10	Journal of Manufacturing Science and Engineering-Transactions of the ASME	USA	14	98	Computer Science; Engineering

Among the 1420 analyzed papers, this step found a total of 4487 keywords, of which 104 met the requirement of having at least 10 occurrences each, being then applied in the mapping process.

Figure 7 shows the characterization of the four co-occurrences clusters:

- the first cluster (colored red) is defined as “Collaborative networks of manufacturing resources and services”, once the most frequent terms refers to manufacture, manufacturing resources and services, distributed systems architecture, and networked manufacturing environments through web-based services;
- the second (green) is defined as “Industry 4.0 and cloud computing systems”, once the most frequent keywords are related to computer-aided manufacturing processes in industry 4.0. This cluster encompasses the whole product lifecycle within industry 4.0, including cloud computing technologies, internet of things (IoT) and additive manufacturing;
- the third (blue) is defined as “Big data reliable management in cyber-physical systems, risks and challenges”, once the main occurrences are related to big data in cyber-physical systems, processes integration, interoperability, blockchain and implementation challenges; and finally
- the fourth cluster (yellow) is defined as “Optimization of manufacturing processes”, once the most frequent keywords are related to optimization algorithms and models of cloud manufacturing, as well as to optimal selection and allocation of resources and services.

The elements of each cluster are shown in Table 5.

4.2 Case studies analysis

The case study approach allows researchers to explore and understand complex problems in real-life applications and, therefore, is recognized by its capacity to generate value to the industrial and academic sectors.

In order to assess practical applications in Cloud Manufacturing, this investigation performed the eligibility step, applying the previously described search filters and terms showed in Table 1, resulting in the selection of 159 academic papers with applied case studies out of 1219 publications in English, as shown in Fig. 8.

Afterwards, all titles, abstracts and keywords of the 159 articles were analyzed, enabling the categorization of their case studies approaches within the four pre-established co-occurrences clusters. Figure 9 presents the final stratification by cluster with the number of related articles.
Table 4 Top ranked 16 most cited articles

Rank	Citations	Title	Authors	Journal	Keywords
1	943	From cloud computing to cloud manufacturing [8]	Xu, X; 2012	Robot Comput Integr Manuf	Cloud computing; Cloud manufacturing; Service-oriented business model
2	403	Cloud manufacturing: a new manufacturing paradigm [10]	Zhang, L; et al.; 2014	Enterprise Information Systems	Cloud manufacturing (CMfg); concept; manufacturing cloud service; cloud manufacturing cloud; cloud manufacturing service platform
3	386	CCIoT-CMfg: Cloud Computing and Internet of Things-Based Cloud Manufacturing Service System [9]	Tao, F; et al.; 2014	IEEE Transactions on Industrial Informatics	Advanced manufacturing systems; cloud computing; cloud manufacturing; Internet of services; Internet of things (IoT); Internet of users
4	356	IoT-Based Intelligent Perception and Access of Manufacturing Resource Toward Cloud Manufacturing [12]	Tao, F; et al.; 2014	IEEE Transactions on Industrial Informatics	Access; cloud manufacturing; intelligent perception; Internet of Things (IoT); manufacturing resource; manufacturing service
5	337	Cloud manufacturing: A computing and service-oriented manufacturing model [13]	Tao, F; et al.; 2011	Proc Inst Mech Eng B J Eng Manuf	Cloud manufacturing system; cloud manufacturing; service-oriented manufacturing; computing-oriented manufacturing; cloud computing
6	332	Current status and advancement of cyber-physical systems in manufacturing [21]	Wang, LH; et al.; 2015	Journal of Manufacturing Systems	Cloud computing; cloud manufacturing; full connection; parallel adaptive chaos optimization; reflex migration; service composition optimal-selection
7	280	FC-PACO-RM: A Parallel Method for Service Composition Optimal-Selection in Cloud Manufacturing System [22]	Tao, F; et al.; 2012	IEEE Transactions on Industrial Informatics	Cloud computing; cloud manufacturing; full connection; parallel adaptive chaos optimization; reflex migration; service composition optimal-selection
8	199	An interoperable solution for Cloud manufacturing [11]	Wang, XV; Xu, XW; 2013	Robot Comput Integr Manuf	Cloud; Cloud computing; Cloud manufacturing; Service-oriented architecture; STEP
9	193	Big Data and virtualization for manufacturing cyber-physical systems: A survey of the current status and future outlook [23]	Babiceanu, RF; Seker, R; 2016	Computers in Industry	Sensor-based real-time monitoring; Big Data; Internet of things; Cloud computing; Manufacturing cyber-physical systems
10	173	Cloud-enabled prognosis for manufacturing [14]	Gao, R; et al.; 2015	CIRP Ann Manuf Technol	Predictive model; Condition monitoring; Cloud manufacturing
Table 4 (continued)

Rank	Citations	Title	Authors	Journal	Keywords
11	164	Advanced manufacturing systems: socialization characteristics and trends [24]	Tao, F; et al.; 2017	*Journal of Intelligent Manufacturing*	Advanced manufacturing system; Socialization; Service; Resource sharing; Value creation; User participation; Cloud manufacturing
12	133	Cloud manufacturing: key characteristics and applications [25]	Ren, L; et al.; 2017	*Int. J. Comput. Integr. Manuf.*	Cloud manufacturing; cloud computing; Internet of Things; cloud business model
13	132	A state-of-the-art survey of cloud manufacturing [26]	He, W; Xu, LD; 2015	*Int. J. Comput. Integr. Manuf.*	Distributed resources; cloud manufacturing; resource integration; enterprise services; service management; Internet of Things (IoT); cloud computing
14	128	IoT-based real-time production logistics synchronization system under smart cloud manufacturing [27]	Qu, T; et al.; 2016	*Int. J. Adv. Manuf. Technol.*	Cloud manufacturing; Internet of things; Production logistic; Dynamic synchronization
15	125	Cloud manufacturing: from concept to practice [28]	Ren, L; et al.; 2015	*Enterprise Information Systems*	Cloud manufacturing; public cloud; cloud computing; service-oriented business model; cloud platform; information systems
16	118	Cloud manufacturing service platform for small- and medium-sized enterprises [29]	Huang, BQ; et al.; 2013	*Int. J. Adv. Manuf. Technol.*	Cloud manufacturing; Small- and medium sized enterprise (SME); Cloud manufacturing service platform

- Optimization of manufacturing processes (69 articles): This cluster contains all case studies which presented platform models or algorithms to generate optimized solutions on the following: (i) production planning [30], (ii) scheduling and selection of manufacturing resources or services [31, 32], (iii) reduction of operational and/or logistic total time [33], (iv) cost reduction, (v) maximization of utilization rates [34], (vi) balancing the allocation levels of machines and tools [35], (vii) minimization of industrial resources consumption by controlling process parameters [36], (viii) energy efficiency improvements [37], (ix) productivity increase, (x) task prioritization [38], as well as other strategies aiming at improving factory performance when compared to traditional approaches.

- Collaborative networks of manufacturing resources and services (52 articles): This cluster contains the models developed as tools to approach the relationship between stakeholders, aiming at assessing the following: (i) synergy of the manufacturing services and enterprises networks [39], (ii) integration of operations, information, knowledge and efforts between players [40, 41], (iii) the sharing of resources capabilities [42], (iv) collaborative troubleshooting process involving multiple companies [43], (v) the dynamic decision-making process made by customers to meet their customized demands in production networks with high levels of flexibility and responsiveness [44], (vi) procedures that increase integration of capabilities in remanufacturing, recycling and recovery [45], as well as other strategies that might increase competitiveness throughout the manufacturing supply chain.

- Industry 4.0 and cloud computing systems (31 articles): This cluster contains studies about experimental prototypes, platforms and/or applications of practical demonstrations that aimed at illustrating the
applicability of Cloud Manufacturing in a generic point of view. Such cases must either (i) present the application of emerging technologies as additive manufacturing (3D printing) [46], internet of things (IoT) [47] and other human-machine interaction approaches in advanced manufacturing of industry 4.0; (ii) test the functionality of prototypes, comparing them to other models in order to validate benefits and disadvantages of adopting Cloud Manufacturing networks and systems [23]; or (iii) highlight implementation challenges and requirements to achieve success in the adoption of virtual manufacturing [11, 29].

- Data reliability, cyber-security, risks and challenges (7 articles): This cluster contains all studies about the following: (i) modeling and simulating architectures that focus both on maximizing transparent data analysis in real-time and on improving cyber-security [48], (ii) using consensus and Proof-of-Authority (PoA) resources to improve the reliability of transaction records between various agents [49], (iii) the application of blockchain technology [50], and (iv) the evaluation of risks or potential failures in transmission of data and/or communication between companies [51].

The great majority of the case studies assessed by this work utilized various computational models, cyber-physical concepts, IT services, and mathematical methods to support decision-making and to create collaborative networks. The most common approaches include Genetic Algorithm [34], Ant Colony [52], Bee Colony [53], Particle Swarm optimization [50], K-Nearest Neighbors (KNN) [49], Chaos Theory [54], Fuzzy logic [55], Game Theory [42], TOPSIS [35], Kano model [56], Artificial Neural Networks [57], Grey Wolf optimizer [37], AHP (Analytic hierarchy process) [52], Blockchain Ethereum [49], and multi-agent systems [58]. Besides, the cases used several simulation softwares, such as Simio [59], FlexSim [60], CloudSim [61], SDMSim [62], MathLab [63], Windows Azure [64], ZigBee [65] and other web-based applications.
Table 5 Characterization and composition of the keywords clusters

Clusters	Items	Keywords (Occurrences)
(1) Collaborative networks of manufacturing resources and services (red)	31	manufacture (267); manufacturing resource (69); manufacturing service (64); cloud service (51); ontology (37); computer architecture (34); distributed database systems (30); web services (25); key technologies (23); virtualization (23); semantics (22); industry (20); manufacturing environments (18); service oriented (18); manufacturing enterprise (17); manufacturing process (17); networked-manufacturing (17); service platforms (17); service-oriented architecture (17); manufacturing capability (16); knowledge based systems (14); collaborative manufacturing (13); information services (13); machine tools (13); mathematical models (13); machinery (12); semantic web (12); knowledge management (11); virtual reality (11); manufacturing cloud services (10); manufacturing system (10).
(2) Industry 4.0 and cloud computing systems (green)	25	computer aided manufacturing (164); industry 4.0 (94); cloud computing (84); internet of things (iot) (70); industrial research (46); supply chain (35); smart manufacturing (27); manufacturing industries (24); embedded systems (23); distributed computer systems (20); product design (19); distributed manufacturing (18); life cycle (18); additive manufacturing (17); decision making (17); manufacturing (17); artificial intelligence (16); production control (14); competition (11); mass customization (11); cyber physical system (10); digital storage (10); flow control (10); industrial internet (10); production planning (10).
(3) Big data reliable management in cyber-physical systems, risks and challenges (blue)	24	systems (80); design (76); internet (63); cyber-physical systems (45); big data (37); framework (36); architecture (33); things (30); management (28); intelligent manufacturing (26); integration (25); interoperability (21); cloud (19); technology (18); future (16); smart factory (13); blockchain (11); machine learning (11); manufacturing systems (11); challenges (10); digital twin (10); implementation (10); industrial internet of things (10); resource virtualization (10).
(4) Optimization of manufacturing processes (yellow)	24	cloud manufacturing (751); optimization (93); algorithms (77); model (69); quality of service (69); genetic algorithms (61); service composition (60); selection (55); scheduling (43); resource (39); service (28); strategy (27); platform (26); optimal selection (23); service selection (23); simulation (22); multi-objective optimization (21); particle swarm optimization (19); artificial bee colony (16); allocation (15); of-the-art (13); performance (13); resource allocation (13); 3d printing (10).

Fig. 8 Publications in English language, with and without case studies
5 Conclusions

From the bibliometric analysis this research conducted on the emerging technology of Cloud Manufacturing, it was possible to map the current literature conditions and to verify that, since 2010, when the first studies appeared, there has been a growing trend in annual publications, suggesting an increasing interest about the subject.

The results obtained reveal that researchers from China are those who generate the highest volume of publications, even when only English language articles are taken into account. Another interesting evidence concerns countries such as New Zealand, Sweden and Finland, which presented considerably high publications rates relative to their populations.

It was not only possible to identify the most relevant journals, with the top editions coming from the USA, the UK, the Netherlands and China, but also a list of the top-ranked articles in terms of influence relative to their number of citations. Those lists can be useful references for researchers interested in the literature about Cloud Manufacturing.

By using the software VOSviewer, this paper elaborated a visualization of bibliometric maps and created four clusters of keywords co-occurrences: “collaborative networks of manufacturing resources and services”; “industry 4.0 and cloud computing systems”; “big data reliability, cyber-security, risks and challenges”; and “optimization of manufacturing processes”.

In order to understand the current situation about real-life applications already developed and studied in Cloud Manufacturing, this investigation selected and analyzed all 159 articles written in English that contained case studies. All of them were assessed and categorized according to the four previously cited clusters. It became evident that, while most of the models laid within three of the four clusters — “optimization of manufacturing processes”, “collaborative networks of manufacturing resources and services”, and “industry 4.0 and cloud computing systems” — only a few of them were related to “big data reliability, cyber-security, risks and challenges”.

This cluster analysis of publications containing case studies about Cloud Manufacturing revealed diverse web-based applications that may generate potential gains in production planning, scheduling of services, cost reduction, minimization of industrial resources consumption, synergy of enterprises networks, integration of operations and scalability. However, this analysis also suggests a potential research gap of practical application in the topic of data management and cyber-security, indicating the need of both a reliable data registration, and an agile and traceable information flow, in order to increment the success of this business model.

The great majority of the practical models assessed throughout this study needed a centralized third-party to manage transactions and communication between users. Such practice may reveal weaknesses in data reliability and system cyber-security, resulting in eventual loss, damage, or even manipulation of information and contents. In this context, such centralized digital platforms must apply resources and technologies to increase data management reliability and security against cyber-attacks.

The absence of depth in such an important matter is also an opportunity for development of future works and
researches about the application of technologies for the evolution of cyber-security in cloud manufacturing, improvements of transparency in data traceability, utilization of consensus resources in validation protocols, elimination of the need for a third-party in transactions management, as well as, standardization of systems in order to eliminate communication conflicts between stakeholders of the entire supply chain.

Those key recommendations for further research could potentially reduce breaches or vulnerabilities in cloud manufacturing networks, and contribute to technological advancements in such a new, yet underexplored field.

Acknowledgements We thank CENPRO (Industrial Engineering Research Center – FCA/UNICAMP) for all the intellectual contribution and the technical support that added great value to this work.

Declarations

Conflict of interest The authors declare no competing interests.

References

1. Benitez GB, Lima MJDRF, Lerman LV, Frank AG (2019) Understanding Industry 4.0: Definitions And insights from a cognitive map analysis. Brazil J Oper Prod Manag [recurso eletrônico]. Rio de Janeiro 16(2):192–200. https://doi.org/10.14488/BJOPM.2019.v16.n2.a3
2. Charro A, Schaefer D (2018) Cloud Manufacturing as a new type of Product-Service System. Int J Comput Integ Manuf 31(10):1018–1033. https://doi.org/10.1080/0951192X.2018.1493228
3. Wu D, Greer MJ, Rosen DW, Schaefer D (2013) Cloud manufacturing: Strategic vision and state-of-the-art. J Manuf Syst 32(4):564–579. https://doi.org/10.1016/j.jmsy.2013.04.008
4. da Silva Bonifácio E, Singnorete NA, de Arruda Ignácio PS, Stoco WH (2020) Integração entre fornecedor e varejista para gestão de estoque através da tecnologia cloud-uma proposta para melhorar a performance do fluxo de informações. Brazil J Bus 2(3):2049–2056. https://doi.org/10.34140/bjbv2n3-014
5. Li B, Zhang L, Wang S, Tao F et al (2010) Cloud manufacturing: a new service-oriented networked manufacturing model. Comput Integ Manuf Syst 16(1):1–7
6. Marston S, Li Z, Bandyopadhyay S, Zhang J, Ghalsasi A (2011) Cloud computing—The business perspective. Decis Support syst 51(1):176–189. https://doi.org/10.1016/j.dss.2011.102
7. Sala-Zárate M, Colombo-Mendoza L (2012) Cloud computing: a review of PAAS, IAAS, SAAS services and providers. Lämpskos, (7):47–57. https://doi.org/10.21501/21454086.844
8. Xu X (2012) From cloud computing to cloud manufacturing. Robot Comput-Integr Manuf 28(1):75–86. https://doi.org/10.1016/j.rcim.2011.07.002
9. Tao F, Cheng Y, Da Xu L, Zhang L, Li B (2014) CCIoT-CMfg: cloud computing and internet of things-based cloud manufacturing service system. IEEE Trans Indus Inform 10(2):1435–1442. https://doi.org/10.1109/TII.2014.2306383
10. Zhang L, Luo Y, Tao F, Li B et al (2014) Cloud manufacturing: a new manufacturing paradigm. Enterprise Inf Syst 8(2):167–187. https://doi.org/10.1080/17517575.2012.683812
11. Wang XV, Xu X (2013) An interoperable solution for cloud manufacturing. Robot Comput-Integr Manuf 29(4):232–247. https://doi.org/10.1016/j.rcim.2013.01.005
12. Tao F, Zuo Y, Da Xu L, Zhang L (2014) IoT-based intelligent perception and access of manufacturing resource toward cloud manufacturing. IEEE Trans Indus Inform 10(2):1547–1557. https://doi.org/10.1109/TII.2014.2306397
13. Tao F, Zhang L, Venkatesh VC, Luo Y, Cheng Y (2011) Cloud manufacturing: a computing and service-oriented manufacturing model. Procedia Manuf Eng Part B: J Eng Manuf 225(10):1969–1976. https://doi.org/10.1177/0954405411405575
14. Gao R, Wang L, Teti R, Dornfeld D, Kumara S, Helu M (2015) Cloud-enabled prognosis for manufacturing. CIRP Ann 64(2):749–772. https://doi.org/10.1016/j.cirp.2015.05.011
15. Camatti JA, Arthus MG, Silva AL, Cesar Fig, Ignacio PSA (2016) O impacto da produção enxuta no desempenho dos trabalhadores: uma análise bibliométrica. VI Congresso Brasileiro de Engenharia de Produção, APREPRO, Anais VI 2016
16. Yang GY, Wang L, Ren J, Zhang Y et al (2015) Evidence base of clinical studies on Tai Chi: a bibliometric analysis. PloS one 10(3):e0120655. https://doi.org/10.1371/journal.pone.0120655
17. Van Eck NJ, Waltman L (2010) Software survey: VOSviewer, a computer program for bibliometric mapping. Scientometrics 84(2):523–538. https://doi.org/10.1007/s11192-009-0146-3
18. De Oliveira RI, Sousa SO, De Campos FC (2019) Lean manufacturing implementation: bibliometric analysis 2007–2018. Int J Adv Manuf Technol 101(1):979–988. https://doi.org/10.1007/s00170-018-2965-y
19. Pyramids Population of the World (2020), https://www.populationpyramid.net/, Accessed: February 9, 2021
20. Scimago Institutions Ranking (2020), Journal Rankings, powered by SCOPUS, https://www.scimagojr.com/journalrank.php, Accessed: February 9, 2021
21. Wang L, Törrngren M, Onori M (2015) Current status and advancement of cyber-physical systems in manufacturing. J Manuf Syst 37:517–527. https://doi.org/10.1016/j.jmsy.2015.04.008
22. Tao F, Lai Li Y, Xu L, Zhang L (2012) FC-PACO-RM: A parallel method for service composition optimal-selection in cloud manufacturing system. IEEE Trans Indus Inform 9(4):2023–2033. https://doi.org/10.1109/TII.2012.2232936
23. Babciceanu RF, Seker R (2016) Big Data and virtualization for manufacturing cyber-physical systems: A survey of the current status and future outlook. Comput Ind 81:128–137. https://doi.org/10.1016/j.compind.2016.02.004
24. Tao F, Cheng Y, Zhang L, Nee AY (2017) Advanced manufacturing systems: socialization characteristics and trends. J Intell Manuf 28(5):1079–1094. https://doi.org/10.1007/s10845-015-942-8
25. Ren L, Zhang L, Wang L, Tao F, Chai X (2017) Cloud manufacturing: key characteristics and applications. Int J Comput Integ Manuf 30(6):501–515. https://doi.org/10.1080/0951192X.2014.902105
26. He W, Xu L (2015) A state-of-the-art survey of cloud manufacturing. Int J Comput Integ Manuf 28(3):239–250. https://doi.org/10.1080/0951192X.2013.874595
27. Qu T, Lei SP, Wang Z et al (2016) Iot-based real-time production logistics synchronization system under smart cloud manufacturing. Int J Adv Manuf Technol 84(1-4):147–164. https://doi.org/10.1007/s00170-015-7220-1
28. Ren L, Zhang L, Tao F et al (2015) Cloud manufacturing: from concept to practice. Enterprise Inf Syst 9(2):186–209. https://doi.org/10.1080/17517575.2013.839055
29. Huang B, Li C, Yin C, Zhao X (2013) Cloud manufacturing service platform for small-and medium-sized enterprises. Int J Adv Manuf Technol 65(9-12):1261–1272. https://doi.org/10.1007/s00170-012-4225-4
30. Valizadeh S, Fatahi Valilai O, Houshmard M (2020) Flexible flow line scheduling considering machine eligibility in a digital dental laboratory. Int J Prod Res 58(21):6513–6531. https://doi.org/10.1080/00207543.2019.1683247
31. Simeone A, Zeng Y, Caggiano A (2020) Intelligent decision-making support system for manufacturing solution recommendation in a cloud framework. Int J Adv Manuf Technol:1–16. https://doi.org/10.1007/s00170-020-06389-1
32. Wang L, Guo S, Li X, Du B, Xu W (2018) Distributed manufacturing resource selection strategy in cloud manufacturing. Int J Adv Manuf Technol 94(9):3375–3388. https://doi.org/10.1007/s00170-016-9866-8
33. Liu Y, Xu X, Zhang L, Tao F (2016) An extensible model for multitask-oriented service composition and scheduling in cloud manufacturing. J Comput Inf Sci Eng 16(4). https://doi.org/10.1115/1.4034186
34. Simeone A, Deng B, Caggiano A (2020) Resource efficiency enhancement in sheet metal cutting industrial networks through cloud manufacturing. Int J Adv Manuf Technol 107(3):1345–1365. https://doi.org/10.1007/s00170-020-05083-6
35. Li X, Yin C, Liu F (2017) A trust estimation method of machine tools resources in the cloud environment. J Stat Comput Simul 87(13):2572–2580. https://doi.org/10.1080/00949655.2017.1349130
36. Mourtzis D, Vlachou E, Milas N, Tapoglou N, Mehnens J (2019) A cloud-based, knowledge-enriched framework for increasing machining efficiency based on machine tool monitoring. Proc Inst Mech Eng B: J Eng Manuf 233(1):278–292. https://doi.org/10.1177/0954405417176727
37. Yang Y, Yang B, Wang S, Liu W, Jin T (2019) An improved grey wolf optimizer algorithm for energy-aware service composition in cloud manufacturing. Int J Adv Manuf Technol 105(7):3079–3091. https://doi.org/10.1007/s00170-019-04449-9
38. Zhou L, Zhang L, Zhao C, Caili Y, Xu L (2018) Diverse task scheduling for individualized requirements in cloud manufacturing. Enterprise Inf Syst 12(3):300–318. https://doi.org/10.1080/17517755.2017.1364428
39. Ren M, Ren L, Jain H (2018) Manufacturing service composition model based on synergy effect: a social network analysis approach. Appl Soft Comput 70:288–300. https://doi.org/10.1016/j.asoc.2018.05.039
40. Zhao C, Luo X, Zhang L (2020) Modeling of service agents for simulation in cloud manufacturing. Robot Comput Integr Manuf 64(101910). https://doi.org/10.1016/j.rcim.2019.101910
41. Li B, Liu S, Guo Y, Du Z, Lei Z, Ding Z (2020) Multi-Core And Cross-Chain evaluation method based on Multi-Core mesh collaboration relationship. IEEE Access 8:151829–151846. https://doi.org/10.1109/ACCESS.2020.3014212
42. Argoneto P, Renna P (2016) Supporting capacity sharing in the cloud manufacturing environment based on game theory and fuzzy logic. Enterprise Inf Syst 10(2):193–210. https://doi.org/10.1080/17517755.2014.928950
43. Cai X, Li W, He F, Li X (2015) Customized encryption of computer aided design models for collaboration in cloud manufacturing environment. J Manuf Sci Eng 137(4). https://doi.org/10.1115/1.4030592
44. Cheng Y, Tao F, Zhao D, Zhang L (2017) Modeling of manufacturing supply-demand matching hypernetwork in service-oriented manufacturing systems. Robot Comput Integr Manuf 45:59–72. https://doi.org/10.1016/j.rcim.2016.05.007
45. Wang XV, Wang L (2017) A cloud-based production system for information and service integration: an internet of things case study on waste electronics. Enterprise Inf Syst 11(7):952–968. https://doi.org/10.1080/17517755.2016.1215539
46. Zhang C, Zhao F, Wang Z (2019) Modeling of cloud 3D printing service Hyper-Network in Service-Oriented manufacturing systems. IEEE Access 8:16225–16235. https://doi.org/10.1109/ACCESS.2019.2962248
47. Rasouli MR (2020) An architecture for IoT-enabled intelligent process-aware cloud production platform: a case study in a networked cloud clinical laboratory. Int J Prod Res 58(12):3765–3780. https://doi.org/10.1080/00207543.2019.1634847
48. Li Z, Barenji AV, Huang GQ (2018) Toward a blockchain cloud manufacturing system as a peer to peer distributed network platform. Robot Comput-Integ Manuf 54:133–144. https://doi.org/10.1016/j.rcim.2018.05.011
49. Zhu X, Shi J, Huang S, Zhang B (2020) Consensus-oriented cloud manufacturing based on blockchain technology: an exploratory study. Pervas Mob Comput 62(101113). https://doi.org/10.1016/j.pmcomj.2020.101113
50. Yu C, Zhang L, Zhao W, Zhang S (2020) A blockchain-based service composition architecture in cloud manufacturing. Int J Comput Integ Manuf 33(7):701–715. https://doi.org/10.1080/09517575.2019.1571234
51. Nguyen NT, Leu MC, Liu XF (2018) RTEThernet: Real-time communication for manufacturing cyberphysical systems. Trans Emerg Telecommun Technol 29(7):c3433. https://doi.org/10.1002/ett.3433
52. Cao Y, Wang S, Kang L, Gao Y (2016) A TQCS-based service selection and scheduling strategy in cloud manufacturing. Int J Adv Manuf Technol 82(1-4):235–251. https://doi.org/10.1007/s00170-015-7350-5
53. Xu W, Tian S, Liu Q, Xie Y, Zhou Z, Pham DT (2016) An improved discrete bees algorithm for correlation-aware service aggregation optimization in cloud manufacturing. Int J Adv Manuf Technol 84(1-4):17–28. https://doi.org/10.1007/s00170-015-7738-2
54. Hu Y, Zhu F, Zhang L, Lui Y, Wang Z (2019) Scheduling of manufacturers based on chaos optimization algorithm in cloud manufacturing. Robot Comput Integr Manuf 58:13–20. https://doi.org/10.1016/j.rcim.2019.01.010
55. Luo Y, Zhang L, Tao F, Ren L, Liu Y, Zhang Z (2013) A modeling and description method of multidimensional information for manufacturing capability in cloud manufacturing system. Int J Adv Manuf Technol 69(5-8):961–975. https://doi.org/10.1007/s00170-013-6076-9
56. Yu Y, Xu W (2020) Optimized configuration of manufacturing resources for middle and lower batch customization enterprises in cloud manufacturing environment. Complexity 2020. https://doi.org/10.1155/2020/5619758
57. Chen T, Wang YC (2016) Estimating simulation workload in cloud manufacturing using a classifying artificial neural network ensemble approach. Robot Comput Integr Manuf 38:42–51. https://doi.org/10.1016/j.rcim.2015.09.011
58. Liu YK, Zhang XS, Zhang L, Tao F, Wang LH (2019) A multi-agent architecture for scheduling in platform-based smart manufacturing systems. Front Inf Technol Electron Eng 20(11):1465–1492. https://doi.org/10.1631/FITEE.1900094
59. Zhou L, Zhang L, Ren L, Wang J (2019) Real-time scheduling of cloud manufacturing services based on dynamic data-driven simulation. IEEE Trans Ind Inf 15(9):5042–5051. https://doi.org/10.1109/TII.2019.2894111
60. Jiang H, Liu CY (2019) Scheduling optimization of cloud resource supply chain through Multi-Objective particle swarm optimization. Int J Simul Modell 18(1):163–174. https://doi.org/10.2507/IJSIMM18(1)CO3
61. Taihi E, Huet JC, Forteauve V, Lamouri S (2020) A methodology for cloud manufacturing architecture in the context
of Industry 4.0. Bullet Polish Acad Sci Techn Sci 68(2). https://doi.org/10.24425/bpasts.2020.131849
62. Tao F, Cheng J, Cheng Y, Gu S, Zheng T, Yang H (2017) SDMSIm: a manufacturing service supply-demand matching simulator under cloud environment. Robot Comput-Integr Manuf 45:34–46. https://doi.org/10.1016/j.rcim.2016.07.001
63. Liang H, Sun L (2019) Improve cloud manufacturing supply chain note-enterprises optimize combination of the Cuckoo search. Concurr Comput Pract Exper 31(10):e4764. https://doi.org/10.1002/cpe.4764
64. Lojka T, Bundzel M, Zolotová I. (2016) Service-oriented architecture and cloud manufacturing. Acta Polytech Hungarica 13(6):25–44. https://doi.org/10.12700/aph.13.6.2016.6
65. Li C, Zhang M, He H, Li C, Chang Y, Shang Y (2015) Research of Improved ZigBee-based AODVjr Routing Algorithm in Cloud Manufacturing. Int J Online Eng 11(2). https://doi.org/10.3991/ijoe.v11i2.4252

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.