Improved quantum entropic uncertainty relations

Zhihua Chen1, Zhihao Ma2, Yunlong Xiao3, and Shao-Ming Fei4,5\ast
1Department of Applied Mathematics, College of Science, Zhejiang University of Technology, Hangzhou, 310014, China
2Department of Mathematics, Shanghai Jiaotong University, Shanghai 200240, China
3Department of Mathematics and Statistics and Institute for Quantum Science and Technology, University of Calgary, Calgary, Alberta T2N 1N4, Canada
4School of Mathematical Sciences, Capital Normal University, Beijing 100048, China
5Max-Planck-Institute for Mathematics in the Sciences, 04103 Leipzig, Germany

\ast Corresponding author (email: \texttt{feishm@cnu.edu.cn})

We study entropic uncertainty relations by using stepwise linear functions and quadratic functions. Two kinds of improved uncertainty lower bounds are constructed: the state-independent one based on the lower bound of Shannon entropy and the tighter state-dependent one based on the majorization techniques. The analytical results for qubit and qutrit systems with two or three measurement settings are explicitly derived, with detailed examples showing that they outperform the existing bounds. The case with the presence of quantum memory is also investigated.

PACS numbers:

I. INTRODUCTION

At the heart of quantum theory, uncertainty principle reveals the intrinsic difference between classical physics and quantum physics: experimentalists' (in)ability to perform precise measurements on a quantum system is fundamentally limited in the quantum world. For example, the Heisenberg uncertainty principle\cite{1} tells us that the uncertainty of a quantum particle implies less certainty about its position and vice versa. This principle gives rise to wide applications in quantum cryptographic tasks, as well as in detection of entanglement, Einstein-Podolsky-Rosen (EPR) steering, nonlocality and quantum metrology\cite{2,3}.

The uncertainty principle concerns the uncertainty of a quantum variable. In terms of different uncertainty measures, one can formulate different uncertainty relations. Pioneered by Kennard\cite{8} (see also the work of Weyl\cite{9}), many physicists have employed variances to express uncertainty relations\cite{10,10}. Another approach to describe the uncertainty is to use differential entropy. In 1975, Białynicki-Birula and Mycielski\cite{17} obtained the first entropic formulation of uncertainty relation. Entropic uncertainty relations were later studied by means of shannon entropy for finite-dimensional quantum systems\cite{13}. Consider a quantum state ρ belonging to an N-dimensional Hilbert space \mathcal{H}_N, and observables A_1 and A_2, the eigenstates $|a_1^{(1)}\rangle$ ($|a_2^{(2)}\rangle$) of A_1 (A_2) constitute an orthonormal basis in \mathcal{H}_N. According to Born’s rule, the probability of measuring A_1 (A_2) on ρ with the j-th outcome is given by $p_j(\rho) = \text{tr}(\rho |a_j^{(1)}\rangle \langle a_j^{(1)}|)$ and $q_j(\rho) = \text{tr}(\rho |a_j^{(2)}\rangle \langle a_j^{(2)}|)$, and the corresponding Shannon non entropy is defined by $H(A_1) = -\sum p_j(\rho) \log_2 p_j(\rho)$ $H(A_2) = -\sum q_j(\rho) \log_2 q_j(\rho)$. If the non-degenerate observables A_1 and A_2 do not have a common eigenstate, $H(A_1) + H(A_2)$ is bounded from below, and the bound depends only on the overlap between observables’ eigenvectors, $e_{ij} = |\langle a_1^{(1)} | a_j^{(2)}\rangle|$. Denote $c = \max |\langle a_1^{(1)} | a_j^{(2)}\rangle|$. The entropic uncertainty relation reads

$$H(A_1) + H(A_2) \geq -2 \log_2 \frac{1+c}{2}. \quad (1)$$

The lower bound has been improved by Maassen and Uffink\cite{19}. They proved that, for any quantum state ρ, it holds

$$H(A_1) + H(A_2) \geq -2 \log_2 c. \quad (2)$$

Later the bound was further improved\cite{20},

$$H(A_1) + H(A_2) \geq \begin{cases} -2 \log_2 c, & \text{if } 0 < c \leq \frac{1}{\sqrt{2}} \\ H_1(c), & \text{if } \frac{1}{\sqrt{2}} < c \leq c^* \quad (3) \\ F(c), & \text{if } c^* < c \leq 1 \end{cases}$$

where $F(c) = -(1 + c) \log_2 \frac{1+c}{2} - (1 - c) \log_2 \frac{1-c}{2}$ and $H_1(c) = -P_A P_\alpha - P_B P_\alpha - (1 - P_A) \log_2 (2 - P_A) - P_B \log_2 (2 - P_B) - (1 - P_B) \log_2 (2 - P_B)$, with $P_A = \cos^2 \alpha$, $P_B = \cos^2 (\gamma - \alpha)$, $c = \cos \gamma$, α is a numerical solution of the equation

$$0 = \sin(2\alpha) \log_2 \frac{1 + \cos(2\alpha)}{2} - (1 - \cos(2\alpha)) + \sin[2(\alpha - \gamma)] \log_2 \frac{1 + \cos(2(\alpha - \gamma))}{2(1 - \cos^2(\alpha - \gamma))},$$

such that $\alpha \neq \frac{\pi}{2}$ and $\alpha \neq \frac{\pi}{2} + \frac{\pi}{2}$, and c^* is determined numerically in\cite{21}.

*Corresponding author (email: *feishm@cnu.edu.cn)
The uncertainty principle in the presence of quantum memory was later introduced by M. Berta et al. [21], in which the measured system is correlated with another quantum system. For any bipartite state ρ_{AB}, Bob’s uncertainty about Alice’s measurement outcomes of observables A_1 and A_2 on Alice’s system A is bounded,

$$H(A_1|B) + H(A_2|B) \geq -2 \log_2 c + H(|A|), \quad (4)$$

where $H(A|B) = H(\rho_{AB}) - H(\rho_B)$ is the conditional entropy, $H(A_1|B)$ stands for Bob’s ignorance about the Alice measurement A_1 on system A, given that Bob can access to the quantum memory B (similarly for $H(A_2|B)$).

However, in the context of the uncertainty principle, the measures of uncertainty should satisfy the following conditions [22]: first, the uncertainty cannot decrease under randomly chosen symmetry transformations; second, the uncertainty cannot decrease under classical processing channels (followed by recovery). Friedland et al. [23] therefore defined a measure of uncertainty from any non-negative Schur-concave functions such as Shannon entropy and Rényi entropy, and formulated the so-called “universal uncertainty relations” [23]. Majorization technique was also used to construct such uncertainty relations [24] as in Ref. [23]. Meanwhile, many efforts have been made to improve the uncertainty relations [21, 25, 32].

In this paper we improve the lower bounds for entropic uncertainty relations by polynomial functions. Besides improving the uncertainty relations, we provide the insight that the mutually unbiased bases can be used to form a conservation law. The uncertainty relations with quantum memory are also investigated.

II. SETTING UP THE STAGE

Given two probability vectors $x = \{x_1, x_2, \cdots, x_N\}$ and $y = \{y_1, y_2, \cdots, y_N\}$, arranged in descending order, the vector x is said to be majorized by y, $x \prec y$, if

$$\sum_{i=1}^{k} x_i \leq \sum_{i=1}^{k} y_i \quad (k = 1, 2, \cdots, N - 1) \quad \text{and} \quad \sum_{i=1}^{N} x_i = \sum_{i=1}^{N} y_i.$$

A function $f : \mathbb{R}^N_+ \to \mathbb{R}$ is said to be Schur concave if $f(x) \geq f(y)$ whenever $x \prec y$. Both Shannon entropy and Rényi entropy are all Schur concave functions. It has been shown in Refs. [22, 24] that for two measurement probability distributions $p = \{p_1(\rho), p_2(\rho), \cdots, p_N(\rho)\}$ and $q = \{q_1(\rho), q_2(\rho), \cdots, q_N(\rho)\}$, one has $p \otimes q \prec \omega$, which implies

$$f(p \otimes q) \geq f(\omega),$$

where $\omega = \{\Omega_1, \Omega_2 - \Omega_1, \cdots, \Omega_N - \Omega_{N-1}, 0, \cdots, 0\}$ is state-independent, f is any nonnegative Schur concave function. The term $\Omega_k = \sum_{(m,n) \in I_k} p_{mn}(\rho)q_{mn}(\rho)$ with $I_k \subset [N] \times [N]$ being a subset of k distinct pairs of indices (m,n) and $[N]$ the set of the natural numbers from 1 to N.

Note that, for pure state $|\psi\rangle$ and observables A_1 and A_2 with eigenstates $|a_j^{(1)}\rangle$ and $|a_j^{(2)}\rangle$ respectively, one has $p_j(|\psi\rangle) = |\langle a_j^{(1)}|\psi\rangle|^2$ and $q_j(|\psi\rangle) = |\langle a_j^{(2)}|\psi\rangle|^2$. The uncertainty relation becomes

$$\min_{|\psi\rangle} H(A_1) + H(A_2) \geq \hat{H}(\omega),$$

where $\hat{\omega} = (s_1, s_2 - s_1, \cdots, s_N - s_{N-1})$, $\hat{H}(\omega) = - \sum_{k=1}^{N} (s_k - s_{k-1}) \log_2 (s_k - s_{k-1})$, $s_0 = 0$, $s_k = \max\{\|U(1,k)\|, \|U(2,k-1)\|, \cdots, \|U(k,1)\|\}$, $\|U(n,m)\| = \max\{\|U(I,J)\| : I, J \subset \{1, 2, \cdots, N\}, |I| = n, |J| = m\}$ and $\|U(I,J)\|$ is the operator norm: the maximal singular value of $U(I,J) = \{|a_i^{(1)}|a_j^{(2)}\rangle\}_{i \in I, j \in J}$. The strong entropic uncertainty relations for multiple measurements are given in Ref. [24]. For any given d-dimensional mixed quantum state ρ and N measurements $A_k = \{|a_j^{(k)}\rangle\}$, the following uncertainty relations hold:

$$\min_{|\psi\rangle} \sum_{k} H(A_k) \geq \hat{H}(\omega),$$

where $\hat{\omega} = (1, S_1 - 1, S_2 - 1, \cdots, S_d - 1)$.

The strong entropic uncertainty relations for multiple measurements are given in Ref. [24]. For any given d-dimensional mixed quantum state ρ and N measurements $A_k = \{|a_j^{(k)}\rangle\}$, the following uncertainty relations hold:

$$\min_{|\psi\rangle} \sum_{k} H(A_k) \geq \hat{H}(\omega),$$

where $\omega = (\Omega_1, \Omega_2 - \Omega_1, \cdots, \Omega_N - \Omega_{N-1}, 0, \cdots, 0)$, $\Omega_k = (\Omega_{k+1})^N$, $S_k = \max\{\lambda_1[U(s_1, s_2, \cdots, s_N)]\}$, with $\lambda_1[U(s_1, s_2, \cdots, s_N)]$ being the maximal eigenvalue of

$$U(s_1, s_2, \cdots, s_N) = \begin{pmatrix}
I_{s_1} & U_{12} & \cdots & U_{1N} \\
U_{21} & I_{s_2} & \cdots & U_{2N} \\
\vdots & \vdots & \ddots & \vdots \\
U_{N1} & U_{N2} & \cdots & I_{s_N}
\end{pmatrix}.$$
The matrices \(U_{ij} \) are defined by the subsets \(\{|a^{(1)}_{ij}\}, |a^{(2)}_{ij}\}, \ldots, |a^{(N)}_{ij}\}\), \(\{|a^{(1)}_{1s}, |a^{(2)}_{1s}\}, \ldots, |a^{(N)}_{1s}\}\). \(U_{12}, U_{13}, \ldots, U_{N-1,N} \) are constructed similarly.

For any given qubit state \(\rho \) with spectral decomposition \(\rho = p |r\rangle \langle r| + (1 - p) |r_1\rangle \langle r_1| \), and two measurements \(\mathcal{A}_1 \) and \(\mathcal{A}_2 \), an improved bound was given in Ref.\[32\],

\[
H(\mathcal{A}_1) + H(\mathcal{A}_2) \geq \frac{\sqrt{2P - 1(2c - 1)} + 1}{2} + S(p),
\]

where \(P = 2p^2 - 2p + 1 \) is the purity of the state. The bound in Ref.\[34\] is

\[
H(\mathcal{A}_1) + H(\mathcal{A}_2) \geq -2 \log_2 c + 2S(p)[1 + \log_2 c].
\]

In this work, we give a tighter uncertainty relation by using the eigenvalues of quantum states and the transition from one measurement basis to the other one for mixed states. Also we give a tighter uncertainty relations based on the lower bound of Shannon entropy.

III. Entropic Uncertainty Relation with State-Independent Bound

We now investigate entropic uncertainty relations with bounds given by polynomial functions. Let \(H_s(x) = -x \log_2 x - (1 - x) \log_2 (1 - x) \) and \(H_s(x, y) = -x \log_2 x - y \log_2 y - (1 - x - y) \log_2 (1 - x - y) \). For \(H_s(x) \) and stepwise linear function, we divide the interval \(0 \leq x \leq 1 \) into \(n \) equal parts, in each part \(\frac{i}{n} \leq x \leq \frac{i}{n} \), the linear function \(\mathcal{P}_1^{(i)}(x) \) is determined by the two points \((\frac{i}{n}, H_s(\frac{i}{n})) \) and \((\frac{i}{n}, H_s(\frac{n}{n})) \). Actually the difference between \(H_s(x) \) and the stepwise linear function \(\mathcal{P}_1^{(i)}(x) \), \(\frac{i}{n} \leq x \leq \frac{i}{n} \), decreases as the number of the equal parts \(n \) increases. Similarly, for \(H_s(x, y) \) and stepwise linear function, we divide the region \(0 \leq x \leq 1, 0 \leq y \leq 1 \) into \(n^2 \) equal triangle region: \(\frac{i-1}{n} \leq x \leq \frac{i}{n}, \frac{j}{n} \leq y \leq \frac{j+1}{n} \) or \(\frac{i}{n} \leq x \leq \frac{i+1}{n}, \frac{j-1}{n} \leq y \leq \frac{j}{n} \). In each triangle region, the linear function \(\mathcal{P}_1^{(i,j)}(x, y) \) is determined by three points, \((\frac{i-1}{n}, \frac{j-1}{n}, H_s(\frac{i-1}{n}, \frac{j-1}{n})), (\frac{i}{n}, \frac{j}{n}, H_s(\frac{i}{n}, \frac{j}{n})) \) or \((\frac{i}{n}, \frac{j}{n}, H_s(\frac{i}{n}, \frac{j}{n})), (\frac{i+1}{n}, \frac{j}{n}, H_s(\frac{i+1}{n}, \frac{j}{n})) \).

We have the following relations:

\[
H_s(x) \geq \mathcal{P}_2(x), \quad \text{or} \quad H_s(x) \geq \mathcal{P}_1^{(i)}(x), \quad \frac{i-1}{n} \leq x \leq \frac{i}{n}, \quad 1 \leq i \leq n
\]

and

\[
H_s(x, y) \geq \mathcal{P}_2(x, y), \quad \text{or} \quad H_s(x, y) \geq \mathcal{P}_1^{(i,j)}(x, y), \quad 1 \leq i \leq n, \quad 1 \leq j \leq n - i + 1,
\]

where

\[
\mathcal{P}_2(x) = 2[1 - x^2 - (1 - x)^2],
\]

\[
\mathcal{P}_1^{(i)}(x) = n[(x - \frac{i-1}{n})H_s(\frac{i}{n}) - (x - \frac{i}{n})H_s(\frac{i-1}{n})],
\]

\[
\mathcal{P}_2(x, y) = 2[1 - x^2 - y^2 - (1 - x - y)^2]
\]

and

\[
\mathcal{P}_1^{(i,j)}(x, y) = \left\{ \begin{array}{ll}
 a_{ij}x + b_{ij}y + c_{ij}, & x \in h_i, \ y \in u_{ij}(x), \\
 a_{ij}x + b_{ij}y + c_{ij}, & x \in h_i, \ y \in v_{ij}(x),
\end{array} \right.
\]

where \(h_i = (\frac{i-1}{n}, \frac{j}{n}), u_{ij}(x) = (\frac{i}{n}, \frac{i+j-1}{n} - x), v_{ij}(x) = (\frac{i+j-1}{n} - x, \frac{j}{n}) \), and the coefficients \(a_{ij}, b_{ij}, c_{ij} \), etc., are given by

\[
[a_{ij}, b_{ij}, c_{ij}]^T = D^{-1}H^T, \quad [a_{ij}', b_{ij}', c_{ij}]^T = D'^{-1}H'^T,
\]

where

\[
D = D_1^{[\frac{i-1}{n}, \frac{j-1}{n}, \frac{i}{n}, \frac{j}{n}, \frac{i}{n}, \frac{j}{n}]},
\]

\[
D' = D_1^{[\frac{i}{n}, \frac{j}{n}, \frac{j-1}{n}, \frac{j}{n}, \frac{j}{n}, \frac{j}{n}]},
\]

\[
H = [H_s(\frac{i-1}{n}, \frac{j-1}{n}), H_s(\frac{i}{n}, \frac{j-1}{n}), H_s(\frac{i-1}{n}, \frac{j}{n})],
\]

\[
H' = [H_s(\frac{i}{n}, \frac{j-1}{n}), H_s(\frac{i-1}{n}, \frac{j}{n}), H_s(\frac{i}{n}, \frac{j}{n})],
\]

\[
D[x_1, y_1, x_2, y_2, x_3, y_3] = \begin{pmatrix}
 x_1 & y_1 & 1 \\
 x_2 & y_2 & 1 \\
 x_3 & y_3 & 1
\end{pmatrix}.
\]

It is also worth noticing that, when a quantum memory is in
absentia, entropic uncertainty relations are entirely specified by the overlap matrix \(U \) defining the transition from one measurement basis to the another one, \(U = (|a^{(1)}_{ij}|^2)_{i,j=1}^n \). If we make the same unitary transformations to the two measurement bases simultaneously, i.e. \(|a^{(1)}_{ij}'\rangle = T|a^{(1)}_{ij}\rangle \) and \(|a^{(2)}_{ij}'\rangle = T|a^{(2)}_{ij}\rangle \) for some basis transformation \(T \), the entanglement lower bound will not be changed.

Theorem I: For any pure state \(|\psi\rangle \) and observables given by the bases \(\mathcal{A}_k = \{|a^{(k)}_i\rangle\}, k = 1, 2, \ldots, N \), we have strengthened uncertainty lower bounds by the quadratic
function,

\[
\sum_k H(A_k) \geq \min_{|\psi\rangle} \sum_{k=1}^N P_2[p_j^{(k)}(|\psi\rangle)] \\
\geq \min_{|\psi\rangle} \sum_{k=1}^N 2(1 - \sum_i [p_j^{(k)}(|\psi\rangle)]^2)
\]

or by the stepwise linear function,

\[
\sum_k H(A_k) \geq \min_{|\psi\rangle} \sum_{k=1}^N P^{(i)}_2[p_j^{(k)}(|\psi\rangle)],
\]

where \(p_j^{(k)}(|\psi\rangle) = \langle a_j^{(k)}|\psi\rangle|^2, k = 1, 2, \ldots, N.\)

To show that (10) and (11) give better lower bounds of uncertainties, let us consider the following detailed cases.

Case I: First consider the most simple case: qubit states \(|\psi\rangle\) and two measurement \(A_k = \{|a_j^{(k)}\rangle\}, k = 1, 2.\) We have \(p = \{p_1, p_2\}\) and \(q = \{q_1, q_2\}\) with \(p_j = \langle\langle a_j^{(1)}|a_j^{(2)}\rangle\rangle^2, q_j = \langle\langle a_j^{(1)}|a_j^{(2)}\rangle\rangle^2.\) Denote \(a_j^{(1)}|a_j^{(2)}\rangle = \cos \gamma\) and \(\langle\langle a_j^{(1)}|a_j^{(2)}\rangle\rangle = \cos \theta.\) From (10) we obtain the following uncertainty relations:

\[
H(A_1) + H(A_2) \\
\geq \min_{\theta} \{P_2[p_j(|\psi\rangle)]\} + P_2[q_j(|\psi\rangle)] \\
\geq \min_{\theta} (4 \cos^2 \theta \sin^2 \theta + 4 \cos^2 (\theta - \gamma) \sin^2 (\theta - \gamma)) \\
\geq 1 - |\cos 2\gamma|
\]

by quadratic function. As for the stepwise linear function, the interval \(0 \leq \cos^2 \theta \leq 1\) is divided into \(n\) equal parts. Hence, \(P^{(i)}_1(\cos^2 \theta) = n(\cos^2 \theta - \frac{1}{n})l_i - (\cos^2 \theta - \frac{1}{n})l_{i-1}\) with \(l_{i-1} = H_s(\frac{1}{n})\) and \(l_i = H_s(\frac{2}{n}).\) Correspondingly, \(\cos^2 (\theta - \gamma)\) is also divided into \(n\) parts determined by the points \((t_{i-1}, s_{i-1})\) and \((t_i, s_i)\) with \(t_{i-1} = \cos^2 (\theta_{i-1} - \gamma), t_i = \cos^2 (\theta_i - \gamma), s_{i-1} = H_s(\cos^2 (\theta_{i-1} - \gamma)), s_i = \cos^2 (\theta_i - \gamma), \theta_i = \arccos \sqrt{\frac{1}{n}}, 1 \leq i \leq n.\) Therefore, \(P^{(i)}_1(\cos^2 (\theta - \gamma)) = \frac{\cos^2 (\theta - \gamma) - t_i}{t_i - t_{i-1}} l_i - \frac{\cos^2 (\theta - \gamma) - t_{i-1}}{t_i - t_{i-1}} s_{i-1}.\) From (11) we have

\[
H(A_1) + H(A_2) \\
\geq \min_{\theta, \gamma} \{P^{(i)}_1(|p_j(|\psi\rangle)|) + P^{(i)}_1(|q_j(|\psi\rangle)|)\} \\
\geq \min_{\theta, \gamma} \{P^{(i)}_1(\cos^2 \theta) + P^{(i)}_1(\cos^2 (\theta - \gamma))\} \\
\geq \min L_i,
\]

where \(L_i\) are given by following. Let \(\theta_i^*\) be the extreme points of \(P^{(i)}_1(\cos^2 \theta) + P^{(i)}_1(\cos^2 (\theta - \gamma)).\) We have

\[
\tan 2\theta_i^* = \frac{\sin 2\gamma(s_i - s_{i-1})}{\cos 2\gamma(s_i - s_{i-1}) + n(l_i - t_{i-1})(t_i - t_{i-1})}.
\]

If \(\frac{1}{\sqrt{\gamma}} \leq \cos^2 (\theta_i^*) \leq \frac{1}{\sqrt{\gamma}},\) i.e. \(\min \{\theta_{i-1}, \theta_i\} \leq \theta_i^* \leq \max \{\theta_{i-1}, \theta_i\},\) we have

\[
L_i = \min \{P^{(i)}_1(\cos^2 \theta_i) + P^{(i)}_1(\cos^2 (\theta_i - \gamma))\}, \\
P^{(i)}_1(\cos^2 \theta_i) + P^{(i)}_1(\cos^2 (\theta_i - \gamma)), \\
P^{(i)}_1(\cos^2 \theta_{i-1}) + P^{(i)}_1(\cos^2 (\theta_{i-1} - \gamma))\},
\]

otherwise

\[
L_i = \min \{P^{(i)}_1(\cos^2 \theta_i) + P^{(i)}_1(\cos^2 (\theta_i - \gamma)), \\
P^{(i)}_1(\cos^2 \theta_{i-1}) + P^{(i)}_1(\cos^2 (\theta_{i-1} - \gamma))\}.
\]

Figure 1 shows our bounds with respect to \(c:\) bound (12) by the quadratic function is represented by the solid line, and bound (13) by the stepwise linear function is represented by the medium size dotted line with \(n = 64.\) The bound (5) derived in Ref. \(22\) is plotted by the small size dotted line, which is almost identical to the bound (dot-dashed line) obtained in Ref. \(26.\) Meanwhile, the result (5) obtained in Ref. \(23\) is given by the big size dotted line for \(c^* < c < 1,\) which is almost identical to the bound (thick solid line) using mathematica program, and the bound (7) appeared in Ref. \(24\) is denoted by dashed line, which is just a little less than the bound (8). The optimal bound is given by the thick solid line. From Fig. 1 we see that our bound by the quadratic function is better than the bounds in Ref. \(24,\) the bound (4) and (8) for \(c < 0.79.\) Our bound by the stepwise linear function, with \(n = 64,\) is better than the bounds in Ref. \(26,\) the bound (7) and (8) for \(\frac{1}{\sqrt{2}} \leq c \leq 1.\) It is a good approximation to the exact value of \(H(A_1) + H(A_2).\)

FIG. 1: The solid line is for our bound by the quadratic function; the medium size dotted line for our bound by the stepwise linear function; the small size dotted line for the the bound (5), the dot-dashed line for the bound given in Ref. \(26;\) the big size dotted line for (4), the dashed line for the bound given in (7) and the thick solid line for \(H(A_1) + H(A_2)\) using mathematica program.

Case II: Qubit state with three measurements \(A_k\) given by \(|a_j^{(k)}\rangle\) \((k = 1, 2, 3).\) Denote \(p = \{p_1, p_2\}, q = \{q_1, q_2\}\) and \(r = \{r_1, r_2\}\) with \(p_j = \langle\langle a_j^{(1)}|a_j^{(1)}\rangle\rangle, q_j = \langle\langle a_j^{(1)}|a_j^{(2)}\rangle\rangle, r_j = \langle\langle a_j^{(1)}|a_j^{(3)}\rangle\rangle.\)
and $\langle \psi | a_j^{(2)} \rangle$ and $r_j = |\langle \psi | a_j^{(3)} \rangle|$. Set $q = \arccos(|a_1^{(1)}| |a_1^{(2)}|)$, $r = \arccos(|a_1^{(1)}| |a_1^{(3)}|)$, $g = \arg(a_1^{(1)} |a_1^{(2)}| - \arg(a_1^{(2)} |a_1^{(2)}|)$ and $h = \arg(a_1^{(1)} |a_1^{(3)}| - \arg(a_1^{(2)} |a_1^{(3)}|)$. From (10) we obtain

$$H(A_1) + H(A_2) + H(A_3) = -p_1 \log_2 p_1 - p_2 \log_2 p_2 - q_1 \log_2 q_1 - q_2 \log_2 q_2 - r_1 \log_2 r_1 - r_2 \log_2 r_2 \geq \min_{\theta, \alpha}(p_1(p_1) + P_2(q_1) + P_2(r_1))$$

(15)

$$\geq \min\{P_2(p_1) + P_2(q_1) + P_2(r_1)|\theta = \frac{\pi}{2} - \alpha = \frac{\pi}{2}, P_2(p_1) + P_2(q_1) + P_2(r_1)|\theta = \theta, \alpha = \alpha^* \}$$

with

$$\tan 2\alpha^* = \frac{\sin^2 q \cos^2 2q \sin g + \sin^2 r \cos 2r \sin 2h}{\sin^2 q \cos^2 2q \cos 2g + \sin^2 r \cos 2r \cos 2h} \text{ and } \sin 2\theta^* = 0 \text{ or }$$

$$\tan 2\theta^* = \frac{2[1 + \sin^2 2q \cos^2 (g - \alpha^*) + \sin^2 2r \cos^2 (h - \alpha^*)]}{\sin 4q \cos (g - \alpha^*) + \sin 4r \cos (h - \alpha^*)}.$$

From (11) we have

$$H(A_1) + H(A_2) + H(A_3) = -p_1 \log_2 p_1 - p_2 \log_2 p_2 - q_1 \log_2 q_1 - q_2 \log_2 q_2 - r_1 \log_2 r_1 - r_2 \log_2 r_2 \geq \min_{\theta, \alpha}(p_1(i) + Q_1(i) + R_1(i, \theta, \alpha)) \geq \min_{i} L_i,$$

(16)

where if $\min\{\theta_{i-1}, \theta_i\} \leq \theta_i^* \leq \max\{\theta_{i-1}, \theta_i\}$,

$$L_i = \{P_1(i) \{\theta_i^* \} + Q_1(i) \{\theta_i^*, \alpha_i^* \} + R_1(i) \{\theta_i^*, \alpha_i^* \},$$

$$P_1(i, \theta_i) + Q_1(i, \theta_i, \alpha_i) + R_1(i, \theta_i, \alpha_i)$$

$$P_1(i, \theta_{i-1}) + Q_1(i, \theta_{i-1}, \alpha_{i-1}) + R_1(i, \theta_{i-1}, \alpha_{i-1}) \}$$

otherwise,

$$L_i = \{P_1(i) \{\theta_i \} + [Q_1(i) \{\theta_i, \alpha_i \} + R_1(i) \{\theta_i, \alpha_i \},$$

$$P_1(i, \theta_{i-1}) + [Q_1(i) \{\theta_{i-1}, \alpha_{i-1} \} + R_1(i, \theta_{i-1}, \alpha_{i-1}) \}.$$}

$P_1(i, \theta_i)$ and $Q_1(i, \theta_i, \alpha_i)$ and $R_1(i, \theta_i, \alpha_i)$ are given in Appendix A with $p = 1$. $\alpha_i^* = \alpha_i^*$ are extreme points of

$$P_1(i) \{\theta_{i-1} \} + Q_1(i) \{\theta_{i-1}, \alpha \} + R_1(i) \{\theta_{i-1}, \alpha \}$$

and

$$P_1(i) \{\theta_i \} + Q_1(i) \{\theta_i, \alpha \} + R_1(i) \{\theta_i, \alpha \},$$

respectively.

Example 1: In Ref. [26], the authors consider qubit case with three measurements A_k ($k = 1, 2, 3$) given by vectors $|a_1^{(1)} \rangle = \{1, 0\}, |a_2^{(2)} \rangle = \{\cos \theta, \sin \theta\}, |a_2^{(3)} \rangle = \{\sin \theta, \cos \theta\}$ and $|a_3^{(3)} \rangle = \{\cos \theta, \sin \theta\}$, respectively. From (14), we have that $H(A_1) + H(A_2) + H(A_3)$ is lower bounded by

$$\min\{\frac{1}{4}(7 - \frac{18 \cos^2 2\theta}{\sqrt{8 + \cos^2 2\theta}}) - \cos 4\theta - \frac{8 \sin 2\theta \sin 4\theta}{\sqrt{8 + \cos^2 2\theta}}\}$$

$$\frac{1}{4}(7 + \frac{18 \cos^2 2\theta}{\sqrt{8 + \cos^2 2\theta}}) - \cos 4\theta + \frac{8 \sin 2\theta \sin 4\theta}{\sqrt{8 + \cos^2 2\theta}}\}.$$

From (16), we have also the lower bound by stepwise linear function. Figure 2 shows that our bound by quadratic function is better than (9) and (17) when $\theta \in (0, 0.5, 1.0)$. Our bound by stepwise linear function is better than the bounds (9) and (17) for $0 \leq \theta \leq \pi$.

FIG. 2: Our bound (13) is represented by the solid line, and our bound (16) is plotted by the dotted line with $n = 32$. The bound (18) from Ref. [26] is shown by the dot-dashed line, and the lower bound in (11) is depicted by the dashed line. The thick solid line is the value of $H(A_1) + H(A_2) + H(A_3)$.

Case III: Qutrit states with three measurements A_k given by $|a_j^{(k)} \rangle$ ($k = 1, 2, 3$). Denote $p = \{p_1, p_2, p_3\}$ with $p_1 = \sin^2 \theta \cos^2 \phi, p_2 = \sin^2 \theta \sin^2 \phi$ and $p_3 = \cos^2 \theta$. Let $q = \{q_1, q_2, q_3\}$ and $r = \{r_1, r_2, r_3\}$, with

$$q_i = |\langle a_1^{(1)} |a_2^{(2)} \rangle| \sqrt{p_1} + |\langle a_2^{(1)} |a_2^{(2)} \rangle| \sqrt{p_2} e^{i\alpha}$$

$$+ |\langle a_3^{(1)} |a_2^{(2)} \rangle| \sqrt{p_3} e^{i\beta} \},$$

$$r_i = |\langle a_1^{(1)} |a_3^{(3)} \rangle| \sqrt{p_1} + |\langle a_2^{(1)} |a_3^{(3)} \rangle| \sqrt{p_2} e^{i\alpha}$$

$$+ |\langle a_3^{(1)} |a_3^{(3)} \rangle| \sqrt{p_3} e^{i\beta} \}.$$
From (10) we get
\[
H(A_1) + H(A_2) + H(A_3)
\]
\[
\geq \min_{\theta, \phi, \alpha, \beta}[2(1 - \sum_{i=1}^{3} p_i^2) + 2(1 - \sum_{i=1}^{3} q_i^2) + 2(1 - \sum_{i=1}^{3} r_i^2)]
\]
\[
= \min_{\theta, \phi, \alpha, \beta} 2\left[3 - \sum_{i=1}^{3} (p_i^2 + q_i^2 + r_i^2)\right]
\]
\[
\geq \min\{(3 - \sum_{i=1}^{3} (p_i^2 + q_i^2 + r_i^2))|\theta = \theta^*, \phi = \phi^*, \alpha = \alpha^*, \beta = \beta^*\}
\]
\[
2\left[3 - \sum_{i=1}^{3} (p_i^2 + q_i^2 + r_i^2)\right] \geq \min\{(3 - \sum_{i=1}^{3} (p_i^2 + q_i^2 + r_i^2))|\theta = \theta^*, \phi = \phi^*, \alpha = \alpha^*, \beta = \beta^*\}
\]
where \(m_j\) \((j = 1, 2, 3, 4)\) are integers, while \(\theta^*, \phi^*, \alpha^*, \beta^*\)
are the stationary points of the function \(2\left[3 - \sum_{i=1}^{3} (p_i^2 + q_i^2 + r_i^2)\right]\).

From (11) we have the following uncertainty relation based on stepwise linear function,
\[
H(A_1) + H(A_2) + H(A_3)
\]
\[
\geq \min_{\theta, \phi, \alpha, \beta} \left|\mathbf{P}_1^{(ij)}(p_1, p_2) + \mathbf{Q}_1^{(ij)}(q_1, q_2) + \mathbf{R}_1^{(ij)}(r_1, r_2)\right|
\]
\[
\geq \min_{i, j} \mathbf{L}_{ij},
\]
where \(\mathbf{P}_1^{(ij)}(p_1, p_2)\), \(\mathbf{Q}_1^{(ij)}(q_1, q_2)\), \(\mathbf{R}_1^{(ij)}(r_1, r_2)\)
and \(\mathbf{L}_{ij}\) are given in Appendix B.

Example 2: Consider qutrit states with three measurements \(\mathcal{A}_k\) \((k = 1, 2, 3)\) given by the vectors \(29\):
\[
|a_1^{(1)}\rangle = \{1, 0, 0\}, \ |a_2^{(1)}\rangle = \{0, 1, 0\}, \ |a_3^{(1)}\rangle = \{0, 0, 1\};
\]
\[
|a_1^{(2)}\rangle = \{1, -\sqrt{2}, 0\}, \ |a_2^{(2)}\rangle = \{0, 1, 0\}, \ |a_3^{(2)}\rangle = \{\sqrt{2}, 0, 1\};
\]
\[
|a_1^{(3)}\rangle = \{\sqrt{2}, 0, 0\}, \ |a_2^{(3)}\rangle = \{0, 0, 1\}, \ |a_3^{(3)}\rangle = \{0, 0, 0\}\] respectively. A bound \(H_k(\omega_0)\), \(\omega_0 = \{0, 1, 0\}\), is obtained in Ref. 29. Our bound based on quadratic function for this case is \(4a(1 - a)\); see Fig. 3 for comparison.

IV. ENTROPIC UNCERTAINTY RELATION WITH STATE-DEPENDENT BOUND

In this section we illustrate our state-dependent bounds, showing how our results provide a better estimation for the sum of entropies. Consider an \(N\)-dimensional quantum state \(\rho\) with spectral decomposition \(\rho = \sum_{i=1}^{d} p_i^0|v_i\rangle\langle v_i|\). Performing two measurements \(A_1\) and \(A_2\) given by bases \(|a_j^{(1)}\rangle\) and \(|a_j^{(2)}\rangle\) \((j = 1, 2, \ldots, d)\), we have the following entropic uncertainty relation:
\[
H(A_1) + H(A_2) \geq \min_{\theta_{ij}, \alpha_{ij}} [H(A_1) + H(A_2)],
\]
with the probabilities
\[
p_j = \sum_{i} p_i^0|\langle v_j|a_j^{(1)}\rangle|^2 = \sum_{i} p_i^0 \cos^2 \theta_{ij}
\]
and
\[
q_j = \sum_{i} p_i^0|\langle v_j|a_j^{(2)}\rangle|^2 = \sum_{i} p_i^0 \cos^2 \theta_{ij}
\]
respectively. The above results have been derived based on the fact that \(\langle v_j|a_j^{(1)}\rangle = \cos \theta_{ij} e^{i\alpha_{ij}}\) and \(\sum_{j} \cos^2 \theta_{ij} = \sum_{j} \cos^2 \theta_{ij} = 1\). The minimum in (17) runs over all the measurements \(|a_j^{(1)}\rangle = T|a_i\rangle\) and \(|a_j^{(2)}\rangle = T|b_i\rangle\) under base transformation \(T\). In general, we have the following theorem:

Theorem II: Given measurements \(\mathcal{A}_k\) \((k = 1, 2, \ldots, N)\) with bases \(|a_j^{(k)}\rangle\), for arbitrary state \(\rho = \sum_{i=1}^{d} p_i^0|v_i\rangle\langle v_i|\), we have
\[
\sum_{k=1}^{N} H(A_k) \geq \min_{\theta_{ij}, \alpha_{ij}} \sum_{k=1}^{N} H(A_k) \geq \tilde{H}(\Omega)
\]
with the corresponding probabilities
\[
p_j^{(1)} = \sum_{i} p_i^0|\langle v_j|a_j^{(1)}\rangle|^2 = \sum_{i} p_i^0 \cos^2 \theta_{ij}
\]
and
\[p_j^{(k)} = \sum_i p_i^0 |\langle v_i | a_j^{(k)} \rangle|^2 \]
\[= \sum_i p_i^0 \sum_{s=1}^N (a_s^{(1)} | a_j^{(k)} \rangle \langle v_i | a_s^{(1)} \rangle |^2) \]
\[= \sum_i p_i^0 \sum_{s=1}^N (a_s^{(1)} | a_j^{(k)} \rangle \cos \theta_{is} | e^{\theta_{is}} \rangle |^2), \]
where the probability vectors satisfy the direct-sum majorization uncertainty relation,
\[\biguplus_k p^{(k)} \prec \Omega = \{\omega_1, \omega_2 - \omega_1, \omega_3 - \omega_2, \cdots , \omega_d - \omega_{d-1}\}, \]
and \(\omega_i \) (i = 1, 2, \cdots, d) are defined by
\[\omega_1 = \max_{j,k} \{ p_j^{(k)} \}, \]
\[\omega_2 = \max_{j_1,k_1,j_2,k_2} \{ p_{j_1}^{(k_1)} + p_{j_2}^{(k_2)} \}, \]
\[\cdots \]
\[\omega_d = d. \]

Let us consider the following detailed case.

Case IV: Consider qubit states with the spectral decomposition \(\rho = p|v\rangle + (1-p)|\perp\rangle \langle v| \), and two measurements \(A_k \) given by \(|a_j^{(k)}\rangle \langle a_j^{(k)}| \), j = 1, 2, k = 1, 2. We have
\[H(A_1) + H(A_2) = -p_1 \log_2 p_1 - p_2 \log_2 p_2 - q_1 \log_2 q_1 - q_2 \log_2 q_2 \]
\[\geq -\omega_1 \log_2 \omega_1 - (\omega_2 - \omega_1) \log_2 (\omega_2 - \omega_1) \]
\[- (\omega_3 - \omega_2) \log_2 (\omega_3 - \omega_2) - (\omega_4 - \omega_3) \log_2 (\omega_4 - \omega_3) \]
\[= - (\omega_2 - \omega_1) \log_2 (\omega_2 - \omega_1) - (\omega_3 - \omega_2) \log_2 (\omega_3 - \omega_2) + S(\rho), \]
where \(p_1 = p \cos^2 \theta + (1-p) \sin^2 \theta \), \(p_2 = p \sin^2 \theta + (1-p) \cos^2 \theta \), \(q_1 = p \cos^2 (\theta - \alpha) + (1-p) \sin^2 (\theta - \alpha) \), and \(q_2 = p \sin^2 (\theta - \alpha) + (1-p) \cos^2 (\theta - \alpha) \), while \(\cos q = |\langle a_1^{(1)} | a_2^{(2)} \rangle| \) and \(\sin q = |\langle a_1^{(1)} | a_1^{(2)} \rangle| \),
\[\omega_1 = \max\{ p, 1-p \}, \]
\[\omega_2 = \max\{ 1 + (2p-1) \cos q, 1 + (2p-1) \sin q, 1 + (1-2p) \sin q, 1 + (1-2p) \cos q \}, \]
\[\omega_3 = \max\{ 1 + p, 2-p \}, \]
\[\omega_4 = 2. \]

For the case \(\rho = p|v\rangle + (1-p)|\perp\rangle \langle v| \) with three measurements \(|a_j^{(k)}\rangle \langle a_j^{(k)}| \), k = 1, 2, 3, j = 1, 2, we have
\[H(A_1) + H(A_2) + H(A_3) \]
\[= -p_1 \log_2 p_1 - p_2 \log_2 p_2 - q_1 \log_2 q_1 - q_2 \log_2 q_2 \]
\[- r_1 \log_2 r_1 - r_2 \log_2 r_2 \]
\[\geq -\omega_1 \log_2 \omega_1 - (\omega_2 - \omega_1) \log_2 \omega_2 - \omega_1 \]
\[\cdots - (\omega_5 - \omega_4) \log_2 (\omega_5 - \omega_4) - (3 - \omega_5) \log_2 (3 - \omega_5) \]
\[= - (\omega_2 - \omega_1) \log_2 \omega_2 - \omega_1 \cdots - (\omega_5 - \omega_4) \log_2 (\omega_5 - \omega_4) + S(\rho), \]
where \(p_i, q_i, r_i \) (i = 1, 2) and \(w_i \) (i = 1, 2, \cdots , 6) are listed in Appendix C.

In terms of the stepwise linear function, we have the following conclusion.

Theorem III: Given an arbitrary state \(\rho \) and measurements \(A_k \) (k = 1, 2, \cdots , N) associated to vectors \(|a_j^{(k)}\rangle \), respectively, we have
\[\sum_{k=1}^N H(A_k) \geq \min_{\theta_{ij}, \alpha_{ij}} \sum_{k=1}^N H(p^{(k)}) \]
\[\geq \min_{\theta_{ij}, \alpha_{ij}} \mathbf{P}_{1,1}^{(\theta_{ij})} + \sum_{k=2}^N \mathbf{P}_{1,k}^{(\theta_{ij}, \alpha_{ij})}, \]
where \(\mathbf{P}_{1,1}^{(\theta_{ij})} \) and \(\mathbf{P}_{1,k}^{(\theta_{ij}, \alpha_{ij})} \) are stepwise linear functions for \(\{p_j^{(1)}\} = \{ \text{tr}(\rho |a_j^{(1)}\rangle \langle a_j^{(1)}|) \} \) and \(\{p_j^{(k)}\} = \{ \text{tr}(\rho |a_j^{(k)}\rangle \langle a_j^{(k)}|) \} \).

As a particular case, from (21) we have the following entropic uncertainty relations.

Case V: For two measurement case, one has
\[H(A_1) + H(A_2) = -p_1 \log_2 p_1 - p_2 \log_2 p_2 - q_1 \log_2 q_1 - q_2 \log_2 q_2 \]
\[\geq \min_{\theta_i, \alpha_i} (\mathbf{P}_{1}^{(\theta_i)} + \mathbf{Q}_{1}^{(\theta_i)}) \]
\[\geq \min_{i} \mathbf{L}_i, \]
where if \(\min\{\theta_{i-1}, \theta_i\} \leq \theta_i^* \leq \max\{\theta_{i-1}, \theta_i\} \),
\[\mathbf{L}_i = (\mathbf{P}_{1}^{(\theta_i^*)} + \mathbf{Q}_{1}^{(\theta_i^*)}) + \mathbf{P}_{1}^{(\theta_i)} + \mathbf{Q}_{1}^{(\theta_i)}, \]
\[\mathbf{P}_{1}^{(\theta_i-1)} + \mathbf{Q}_{1}^{(\theta_i-1)} \]
otherwise
\[\mathbf{L}_i = (\mathbf{P}_{1}^{(\theta_i)} + \mathbf{Q}_{1}^{(\theta_i)}) + \mathbf{P}_{1}^{(\theta_i-1)} + \mathbf{Q}_{1}^{(\theta_i-1)}, \]
and \(\mathbf{P}_{1}^{(\theta_i)}, \mathbf{Q}_{1}^{(\theta_i)} \) and \(\theta_i^* \) are given in Appendix D.
Example 3: Consider the qubit state with eigenvalues $p, 1 - p$ and two measurements $A_k (k = 1, 2): |a_j^{(k)}⟩$, $j = 1, 2$. We compare our result in this case with the existing bounds in Fig. 4. From Fig. 4 we see that when $p = 0.2$, our bound (21) is better than the bound (19) in Ref. [34] and the bound (5) in Ref. [26] for $0.8 \leq c \leq 1$, and is almost the same as the bound (8) in Ref. [32]. Our bound (24) for $n = 32$ is better than all the other bounds. From Fig. 5 we see that when $p = 0.055$, our bound (22) is better than the bound (9) in Ref. [34] and the bound (5) in Ref. [26] for $0.78 \leq c \leq 1$, and is almost the same as the bound (8) in Ref. [32]. Our bound (24) with $n = 8$ is better than all the other bounds.

Case VI: For the case of three measurements one gets

$$H(A_1) + H(A_2) + H(A_3)$$

$$= -p_1 \log_2 p_1 - p_2 \log_2 p_2 - q_1 \log_2 q_1 - q_2 \log_2 q_2$$

$$- r_1 \log_2 r_1 - r_2 \log_2 r_2$$

$$\geq \min_{i, \theta, \alpha} [P_1^{(i)}(\theta) + Q_1^{(i)}(\theta, \alpha) + R_1^{(i)}(\theta, \alpha)]$$

$$\geq L_i$$

if $\min\{\theta_{i-1}, \theta_i\} \leq \theta^*_i \leq \max\{\theta_{i-1}, \theta_i\}$,

$$L_i = \{P_1^{(i)}(\theta^*_i) + Q_1^{(i)}(\theta^*_i, \alpha^*_i) + R_1^{(i)}(\theta^*_i, \alpha^*_i),$$

$$P_1^{(i)}(\theta_i) + \min_{\alpha_i} [Q_1^{(i)}(\theta_i, \alpha_i) + R_1^{(i)}(\theta_i, \alpha_i)],$$

$$P_1^{(i)}(\theta_{i-1}) + \min_{\alpha_i} [Q_1^{(i)}(\theta_{i-1}, \alpha_i) + R_1^{(i)}(\theta_{i-1}, \alpha_i)]\},$$

otherwise,

$$L_i = \{P_1^{(i)}(\theta_i) + \min_{\alpha_i} [Q_1^{(i)}(\theta_i, \alpha_i) + R_1^{(i)}(\theta_i, \alpha_i)],$$

$$P_1^{(i)}(\theta_{i-1}) + \min_{\alpha_i} [Q_1^{(i)}(\theta_{i-1}, \alpha_i)],$$

$$R_1^{(i)}(\theta_{i-1}, \alpha_i)\},$$

where $P_1^{(i)}(\theta), Q_1^{(i)}(\theta, \alpha), R_1^{(i)}(\theta, \alpha)$ and θ^*, α^* are given in Appendix A.

Example 4: Consider qubit states with eigenvalues $p, 1 - p$, and three measurements $A_i (i = 1, 2, 3)$ given by $|a_1^{(1)}⟩ = \{1, 0\}, |a_2^{(1)}⟩ = \{0, 1\}, |a_1^{(2)}⟩ = \{\cos \theta, \sin \theta\}, |a_2^{(2)}⟩ = \{\sin \theta, -\cos \theta\}, |a_1^{(3)}⟩ = \{\cos \theta, i\sin \theta\}, |a_2^{(3)}⟩ = \{\sin \theta, -i\cos \theta\}$. We compare our results with the existing bounds in Fig. 6.

FIG. 5: Our bound (21) by majorization techniques is represented by the solid line, and our bound (24) with $n = 8$ by the stepwise linear function is represented by the big size dotted line. The bound (3) in Ref. [34] is represented by the small size dot-dashed line, the bound (5) in Ref. [26] is represented by the thick solid line, and our bound (24) is represented by the thick dashed line, and the thick solid line is for $\sum_{k=1}^{2} H(A_k)$ with $p = 0.055$.

FIG. 6: Our bound (22) by majorization is represented by the solid line, and our bound (25) by the stepwise linear function with $n = 16$ is represented by the dotted line. The bound in Ref. [29] is represented by the dashed line, and the thick solid line is for $\sum_{k=1}^{3} H(A_k)$ with $p = 0.2$. When $\{|a_j^{(k)}⟩⟩, k = 1, 2, 3, j = 1, 2,\}$ are mutually
unbiased bases, straightforward computation shows
\[
\begin{align*}
\omega_1 &= \max\{p, 1-p\}, \\
\omega_2 &= \max\{1 + \frac{\sqrt{3}}{2}(2p-1), 1 + \frac{\sqrt{3}}{2}(-2p+1)\}, \\
\omega_3 &= \max\{\frac{3}{2} + \frac{\sqrt{3}}{2}(2p-1), \frac{3}{2} + \frac{\sqrt{3}}{2}(-2p+1)\}, \\
\omega_4 &= 1 + \omega_2, \\
\omega_5 &= 2 + \max\{p, 1-p\}, \\
\omega_6 &= 3.
\end{align*}
\]

Theorem IV: If the three measurements on a qubit state are given by the three mutually unbiased bases, we have
\[
H(A_1) + H(A_2) + H(A_3) \geq S(p) + 2. \tag{26}
\]

Proof: Assume that the qubit state has eigen-decomposition, \(\rho = \sum_i p_i |v_i\rangle \langle v_i|\), where \(|v_i\rangle\), \(i = 1, 2\), are orthonormal basis. By choosing the first basis of the three mutually unbiased bases to be \(B_1 = \{|v_1\}, |v_2\}\), one can directly prove \(26\). □

V. DISCUSSION AND CONCLUSION

We have presented improved uncertainty relations based on the Shannon entropy and the majorization techniques. Analytical formulas are derived for qubits subjected to two or three measurements, which outperform the previous results. Our results can be also generalized to other forms of uncertainty relation, such as the uncertainty relations of quantum coherence.

Moreover, our improved uncertainty relations can be generalized to the case with the presence of quantum memory. Let the entropic uncertainty relation without quantum memory be given by
\[
\sum_k H(A_k) \geq B_{\text{play}},
\]
where \(B_{\text{play}}\) denotes our lower bounds by polynomial functions. Now consider bipartite quantum states \(\rho_{AB}\) with the subsystem \(B\) as the quantum memory. Generally it is not true that \(\sum_k H(A_k|B) \geq B_{\text{play}} + H(A|B)\), where, without confusion we still using the symbol \(H\) to denote the von Neummann (conditional) entropy. In order to generalize our bounds to the case with quantum memory, we first define the mutual information \(\mathcal{Q}_k\) with respect to the \(k\)-th measurement,
\[
\mathcal{Q}_k = \sum_j \text{tr}(|a_j^{(k)}\rangle \langle a_j^{(k)}| |\rho_{AB}\rangle \langle \rho_{AB}| \text{tr}(|a_j^{(k)}\rangle \langle a_j^{(k)}| \text{tr}(|a_j^{(k)}\rangle \langle a_j^{(k)}| |\rho_{AB}\rangle \langle \rho_{AB}| \\
- H(\rho_B)). \tag{27}
\]

\(\sum_k \mathcal{Q}_k\) is a type of quantum correlation measure \(Q_2\). We have the following entropic correlation measure in the presence of quantum memory,
\[
\sum_k H(A_k|B) \geq B_{\text{play}} + \sum_k \mathcal{Q}_k. \tag{28}
\]

The uncertainty principle has profound applications in many quantum information processing such as quantum cryptography. The quantum cryptography in the absence of quantum memory has the possibility for being an eavesdropper to utilizing the quantum correlations. Using uncertainty relations with the presence of quantum memory one can overcome such eavesdropping. Our lower bound \(B_{\text{play}} + \sum_k \mathcal{Q}_k\) can be used in quantum key distribution directly. Besides improving the entropic uncertainty relations and extending our results to the case with quantum memory, our bound is also related to the information exclusion relations [35].

Moreover, our method can be generalized to the case with Dirac fields: when we consider the bipartite system with Dirac fields, near the event horizon of a Schwarzschild black hole, the quantity \(\sum_k \mathcal{Q}_k\) provides a better bound than the previous bounds based on the mutual information. As reported in Ref. [37], if the quantum memory moves away from the black hole, the difference between the total uncertainty and \(B_{\text{play}} + \sum_k \mathcal{Q}_k\) remains a constant, independent on the properties of the black hole.

Acknowledgments This work is supported by the NSFC under Grants No. 11571313, 11371247, 11761141014 and 11675113, and the NSF of Beijing under Grant No. KZ201810028042.

[1] W. Heisenberg, Über den anschaulichen Inhalt der quantentheoretischen Kinematik und Mechanik, Z. Phys. 43, 172 (1927).
[2] O. Gühne, Characterizing entanglement via uncertainty relations, Phys. Rev. Lett. 92, 117903 (2004).
[3] J. Schmoolch, C. J. Broadbent, and J. C. Howell, Cryptography from Noisy Storage, Phys. Lett. A 378, 766 (2014).
[4] V. Giovanetti, S. Lloyd, and L. Maccone, Quantum-enhanced measurements: beating the standard quantum limit, Science 306, 1330 (2004).
[5] M. Koashi, Simple security proof of quantum key dis-
turbation based on complementarity, New J. Phys. 11, 045018 (2009).
[6] J. M. Renes and J. C. Boileau, Physical underpinnings of privacy, Phys. Rev. A 78, 032335 (2008).
[7] M. Tomamichel, C. C. W. Lim, N Gisin, and R. Renner, Tight finite-key analysis for quantum cryptography, Nat. Commun. 3, 634 (2012).
[8] E. H. Kennard, Zur Quantenmechanik einfacher Bewegungstypen, Z. Phys. 34, 326 (1927).
[9] H. Weyl, Gruppentheorie und Quantenmechanik, (Hirzel, Leipzig) (1928).
[10] H. P. Robertson, The uncertainty principle, Phys. Rev. 34, 163 (1929).
[11] E. Schrödinger, Zum Heisenbergschen Unschärfeprinzip, Ber. Kgl. Akad. Wiss. Berlin 24, 296 (1930).
[12] L. Maccone and A. K. Pati, Stronger uncertainty relation for all incompatible observables, Phys. Rev. Lett. 113, 260401 (2014).
[13] Y. Xiao, N. Jing, X. Li-Jost, and S.-M. Fei, Weighted uncertainty relations, Sci. Rep. 6, 23201 (2016).
[14] Y. Xiao, and N. Jing, Mutually exclusive uncertainty relations, Sci. Rep. 6, 36616 (2016).
[15] Y. Xiao, N. Jing, B. Yu, S.-M. Fei, X. Li-Jost, Strong variance-based uncertainty relations and uncertainty intervals arXiv:1610.01692 (2016).
[16] Y. Xiao, C. Guo, F. Meng, N. Jing, and M.-H. Yung, Incompatibility of Observables as State-Independent Bound of Uncertainty Relations, arXiv:1706.05650 (2017).
[17] I. Bialynicki-Birula and J. Mycielski, Uncertainty relations for information entropy in wave mechanics, Commun. Math. Phys. 44, 129 (1975).
[18] D. Deutsch, Uncertainty in quantum measurements, Phys. Rev. Lett. 50, 631 (1983).
[19] H. Maassen and J. B. M. Uffink, Generalized entropic uncertainty relations, Phys. Rev. Lett. 60, 1103 (1988).
[20] J. I. de Vicente, J. Sánchez-Ruiz, Improved bounds on entropic uncertainty relations, Phys. Rev. A 77, 042110 (2008).
[21] M. Berta, M. Christandl, R. Colbeck, J. M. Renes, and R. Renner, The uncertainty principle in the presence of quantum memory, Nature Physics 6, 1734 (2010).
[22] V. Narasimhachar, A. Poostindouz, and G. Gour, Uncertainty, joint uncertainty, and the quantum uncertainty principle, New J. Phys. 18 033019 (2016).
[23] S. Friedland, V. Gheorghiu, and G. Gour, Universal uncertainty relations, Phys. Rev. Lett. 111, 230401 (2013).
[24] Z. Puchaa, L. Rudnicki, and K. Życzkowski, Majorization entropic uncertainty relations, J. Phys. A 46, 272002 (2013).
[25] P. Coles and M. Piani, Improved entropic uncertainty relations and information exclusion, Phys. Rev. A 89, 022112 (2014).
[26] L. Rudnicki, Z. Puchala, and K. Życzkowski, Strong majorization entropic uncertainty relations, Phys. Rev. A 89, 052115 (2014).
[27] T. Li, Y. Xiao, T. Ma, S.-M. Fei, N. Jing, X. Li-Jost, Z.-X. Wang, Optimal Universal Uncertainty Relations, Sci. Rep. 6, 35735 (2016).
[28] S. Liu, L. Z. Mu, H. Fan, Entropic uncertainty relations for multiple measurements, Phys. Rev. A 91, 042133 (2015).
[29] Y. Xiao, N. Jing, S.-M. Fei, T. Li, X. Li-Jost, T. Ma, Z.-X. Wang, Strong entropic uncertainty relations for multiple measurements, Phys. Rev. A 93, 042125 (2016).
[30] S. Wehner and A. Winter, Entropic uncertainty relations—A survey, New J. Phys. 12, 025009 (2010).
[31] P. J. Coles, M. Berta, M. Tomamichel, and S. Wehner, Entropic uncertainty relations and their applications, Rev. Mod. Phys. 89, 015002 (2017).
[32] X. Yuan, G. Bai, T.-Y. Peng, X.-F. Ma, Quantum uncertainty relation using coherence, Phys. Rev. A 96, 032313 (2017).
[33] Y. Xiao, N. Jing, S.-M. Fei, X. Li-Jost, Improved uncertainty relation in the presence of quantum memory, J. Phys. A 49, 49LT01 (2016).
[34] K. Korzekwa, M. Lostaglio, D. Jennings, and T. Rudolph, Quantum and classical entropic uncertainty relations, Phys. Rev. A 89, 042122 (2014).
[35] Y. Xiao, N. Jing, and X. Li-Jost, Enhanced information Exclusion Relations, Sci. Rep. 6, 30440 (2016).
[36] Y. Xiao, N. Jing, and X. Li-Jost, Uncertainty under quantum measurements and quantum memory, Quantum Inf Process 16, 104 (2017).
[37] J.-L. Huang, W.-C. Gan, Y. Xiao, F.-W. Shu, and M.-H. Yung, Holevo Bound of Entropic Uncertainty in Schwarzschild Spacetime, Eur. Phys. J. C 78, 545 (2018).

VI. APPENDIXES

A. Lower bound by stepwise linear function for mixed states subjected to three measurements

For any qubit state \(\rho = |v⟩⟨v| + (1 - p)|v^⊥⟩⟨v^⊥| \) subjected to three measurements \(A_k \) given by \(|a_j^{(k)}⟩ \), \(k = 1, 2, 3 \), set \(|⟨v|a_j^{(1)}⟩| = \cos θ \). The corresponding probabilities are

\[
p_1 = p \cos^2 θ + (1 - p) \sin^2 θ, \\
p_2 = p \sin^2 θ + (1 - p) \cos^2 θ, \\
q_1(θ, α) = p(\cos^2 θ \cos^2 q + \sin^2 θ \sin^2 q + 2 \sin θ \cos θ \sin q × \cos q \cos (g - α)) + (1 - p)(\sin^2 θ \cos^2 q + \cos^2 θ \sin^2 q - 2 \sin θ \cos θ \sin q \cos q \cos (g - α)), \\
q_2(θ, α) = p(\cos^2 θ \cos^2 q + \cos^2 θ \sin^2 q - 2 \sin θ \cos θ \sin q \sin q × \cos q \cos (g - α)) + (1 - p)(\cos^2 θ \cos^2 q + \sin^2 θ \sin^2 q + 2 \sin θ \cos θ \sin q \cos q \cos (g - α)), \\
r_1(θ, α) = p(\cos^2 θ \cos^2 r + \sin^2 θ \sin^2 r + 2 \sin θ \cos θ \sin r × \cos r \cos (h - α)) + (1 - p)(\sin^2 θ \cos^2 r + \cos^2 θ \sin^2 r - 2 \sin θ \cos θ \sin r \cos r \cos (h - α)), \\
r_2(θ, α) = p(\cos^2 θ \cos^2 r + \cos^2 θ \sin^2 r - 2 \sin θ \cos θ \sin r × \cos r \cos (h - α)) + (1 - p)(\cos^2 θ \cos^2 r + \sin^2 θ \sin^2 r + 2 \sin θ \cos θ \sin r \cos r \cos (h - α)),
\]
We have

\[
H(A_1) + H(A_2) + H(A_3)
= -p_1 \log_2 p_1 - p_2 \log_2 p_2 - q_1 \log_2 q_1 - q_2 \log_2 q_2
- r_1 \log_2 r_1 - r_2 \log_2 r_2
\geq \min_{i,j,\theta,\alpha} \left(\mathbf{P}_1^{(i)}(\theta) + \mathbf{Q}_1^{(i)}(\theta, \alpha) + \mathbf{R}_1^{(i)}(\theta, \alpha) \right),
\]

where \(\mathbf{P}_1^{(i)}(\theta) \), \(\mathbf{Q}_1^{(i)}(\theta, \alpha) \) and \(\mathbf{R}_1^{(i)}(\theta, \alpha) \) are given by

\[
\mathbf{P}_1^{(i)}(\theta) = n(l_{i+1} - l_i)(p\cos^2 \theta + (1 - p)\sin^2 \theta - u_i) + l_i,
\]

\[
\mathbf{Q}_1^{(i)}(\theta, \alpha) = \frac{s_{i+1} - s_i}{l_{i+1} - l_i}(p\cos^2 \theta \cos^2 q + \sin^2 \theta \sin^2 q
+ 2\sin \theta \cos \theta \sin q \cos \cos \cos (g - \alpha))
+ (1 - p)(\sin^2 \theta \cos^2 q + \cos^2 \theta \sin^2 q
- 2\sin \theta \cos \theta \sin q \cos \cos (g - \alpha)) - t_i) + s_i,
\]

\[
\mathbf{R}_1^{(i)}(\theta, \alpha) = \frac{u_{i+1} - u_i}{v_{i+1} - v_i}(p\cos^2 \theta \cos^2 r + \sin^2 \theta \sin^2 r
+ 2\sin \theta \cos \theta \sin r \cos \cos \cos (h - \alpha))
+ (1 - p)(\sin^2 \theta \cos^2 r + \cos^2 \theta \sin^2 r
- 2\sin \theta \cos \theta \sin r \cos \cos (h - \alpha)) - v_i) + w_i,
\]

with

\[
u_i = \min\{p, 1 - p\} + \frac{1 - 2p|i}{n},
\]

\[
t_i = \max q_i(\theta_i, \alpha), v_i = \max r_i(\theta_i, \alpha),
\]

\[
l_i = -u_i \log_2 u_i - (1 - u_i) \log_2(1 - u_i),
\]

\[
s_i = -t_i \log_2 t_i - (1 - t_i) \log_2(1 - t_i),
\]

\[
w_i = -v_i \log_2 v_i - (1 - v_i) \log_2(1 - v_i),
\]

\[
q = \arccos(\vert a_1^{(1)} \vert a_1^{(2)}),
\]

\[
r = \arccos(\vert a_1^{(1)} \vert a_1^{(3)}),
\]

\[
g = \arg(a_1^{(1)} a_1^{(2)}) - \arg(a_2^{(1)} a_2^{(2)}),
\]

\[
h = \arg(a_1^{(1)} a_1^{(3)}) - \arg(a_2^{(1)} a_2^{(3)}),
\]

\[
\theta_i = \arccos\left(\frac{1}{n}, p \geq 1 - p, \text{ or}, \right)
\]

\[
\theta_i = \arccos\left(1 - \frac{1}{n}, p \leq 1 - p, \right)
\]

and the extreme points of \(\mathbf{P}_1^{(i)}(\theta) + \mathbf{Q}_1^{(i)}(\theta, \alpha) + \mathbf{R}_1^{(i)}(\theta, \alpha) \) are given by

\[
\theta_i^* = \frac{k\pi}{2},
\]

or

\[
\tan 2\theta^*_i = \frac{\frac{s_{i+1} - s_i}{l_{i+1} - l_i} \sin 2q \cos (g - \alpha^*)}{\frac{s_{i+1} - s_i}{l_{i+1} - l_i} \cos 2q + \frac{u_{i+1} - u_i}{v_{i+1} - v_i} \cos 2r + n(l_{i+1} - l_i)}
+ \frac{\frac{u_{i+1} - u_i}{v_{i+1} - v_i} \sin 2r \cos (h - \alpha^*)}{\frac{u_{i+1} - u_i}{v_{i+1} - v_i} \cos 2r + \frac{w_{i+1} - w_i}{h_{i+1} - h_i} \cos 2r + n(l_{i+1} - l_i)},
\]

with \(\theta^* \) satisfying the condition that \(\min\{\theta_1, \theta_2\} \leq \theta^* \leq \min\\{\theta_{i-1}, \theta_i\} \).

B. Lower bound by stepwise linear function for qudit pure states subjected to three measurements

For any qubit state \(|\psi\rangle \) subjected to three measurements \(A_k \) given by \(|a_k^{(i)}\rangle \) \(k = 1, 2, 3 \), the probabilities are

\[
p_1 = |\langle a_1^{(1)} | \langle a_1^{(2)} | = \sin^2 \theta \cos^2 \phi
\]

\[
p_2 = |\langle a_2^{(1)} | \langle a_2^{(2)} | = \sin^2 \theta \sin^2 \phi
\]

\[
p_3 = |\langle a_3^{(1)} | \langle a_3^{(2)} | = \cos^2 \theta
\]

\[
q_i = |\langle a_1^{(1)} | a_1^{(2)} \rangle \sqrt{p_1} + \langle a_2^{(1)} | a_2^{(2)} \rangle \sqrt{p_2} e^{i\alpha}
+ \langle a_3^{(1)} | a_3^{(2)} \rangle \sqrt{p_3} e^{i\beta}|^2,
\]

\[
r_i = |\langle a_1^{(1)} | a_1^{(3)} \rangle \sqrt{p_1} + \langle a_2^{(1)} | a_2^{(3)} \rangle \sqrt{p_2} e^{i\alpha}
+ \langle a_3^{(1)} | a_3^{(3)} \rangle \sqrt{p_3} e^{i\beta}|^2.
\]

The lower bound for stepwise linear function is given by

\[
H(A_1) + H(A_2) + H(A_3)
\geq H_s(p_1, p_2) + H_s(q_1, q_2) + H_s(r_1, r_2)
\geq \min_{i,j,\theta,\phi,\beta} \mathbf{P}_i^{(j)}(p_1, p_2) + \mathbf{Q}_i^{(j)}(q_1, q_2) + \mathbf{R}_i^{(j)}(r_1, r_2)
= \min_{i,j} L_i^{j}.
\]

If \(p^* \) and \(p^* \) satisfy \(p^*_1 \in h_i, p^*_2 \in u_{ij}(p_1) \) or \(p^*_2 \in v_{ij}(p_1) \), then

\[
L_i^{j} = \min\{P_i^{j}(p^*_1, p^*_2) + Q_i^{j}(q^*_1, q^*_2) + R_i^{j}(r^*_1, r^*_2),
\]

\[
\min_{1, 2, 3, 4, 5, 6}\}.
\]
where

\[
\begin{align*}
min_1 & = \min_{\frac{i-1}{n} \leq p_2 \leq \frac{i}{n}} P_1^{i,j}(p_1, p_2) + Q_1^{i,j}(p_1, p_2) + R_1^{i,j}(p_1, p_2), \\
min_2 & = \min_{\frac{i-1}{n} \leq p_1 \leq \frac{i}{n}} P_1^{i,j}(p_1, p_{1y}) + Q_1^{i,j}(p_1, p_{1y}) + R_1^{i,j}(p_1, p_{1y}), \\
min_3 & = \min_{\frac{i-1}{n} \leq p_2 \leq \frac{i}{n}} P_1^{i,j}(p_1, p_{2y}) + Q_1^{i,j}(p_1, p_{2y}) + R_1^{i,j}(p_1, p_{2y}), \\
min_4 & = \min_{\frac{i-1}{n} \leq p_2 \leq \frac{i}{n}} P_1^{i,j}(p_1, p_{2y}) + Q_1^{i,j}(p_1, p_{2y}) + R_1^{i,j}(p_1, p_{2y}), \\
min_5 & = \min_{\frac{i-1}{n} \leq p_1 \leq \frac{i}{n}} P_1^{i,j}(p_1, p_{1y}) + Q_1^{i,j}(p_1, p_{1y}) + R_1^{i,j}(p_1, p_{1y}), \\
min_6 & = \min_{\frac{i-1}{n} \leq p_2 \leq \frac{i}{n}} P_1^{i,j}(p_1, p_{2y}) + Q_1^{i,j}(p_1, p_{2y}) + R_1^{i,j}(p_1, p_{2y}).
\end{align*}
\]

If \(p_1^* \) and \(p_2^* \) do not satisfy \(p_1^* \in h_i, p_2^* \in u_{ij}(p_1) \) and \(p_2^* \in v_{ij}(p_1) \), then

\[L_{i,j} = \min \{ min_1, min_2, min_3, min_4, min_5, min_6 \}. \]

The above \(min_i, 1 \leq i \leq 6 \) can be obtained by using the following extreme points,

\[
\begin{align*}
p_1^* &= |\langle \psi | a_1^{(1)} \rangle|^2 = \sin^2 \theta^* \cos^2 \phi^*, \\
p_2^* &= |\langle \psi | a_2^{(1)} \rangle|^2 = \sin^2 \theta^* \sin^2 \phi^*, \\
p_3^* &= |\langle \psi | a_3^{(1)} \rangle|^2 = \cos^2 \theta^*, \\
q_1^* &= |\langle a_1^{(1)} | a_1^{(2)} \rangle|^2 \sqrt{p_1^*} + (a_2^{(1)} | a_2^{(2)} \rangle \sqrt{p_2^*} e^{i \alpha^*}) + (a_3^{(1)} | a_3^{(2)} \rangle \sqrt{p_3^*} e^{i \beta^*})^2, \\
r_i^* &= |\langle a_1^{(1)} | a_1^{(3)} \rangle|^2 \sqrt{p_1^*} + (a_2^{(1)} | a_2^{(3)} \rangle \sqrt{p_2^*} e^{i \alpha^*}) + (a_3^{(1)} | a_3^{(3)} \rangle \sqrt{p_3^*} e^{i \beta^*})^2,
\end{align*}
\]

where \(\theta^*, \phi^*, \alpha^* \) and \(\beta^* \) are the stationary points of

\[P_1^{i,j}(p_1, p_2) + Q_1^{i,j}(q_1, q_2) + R_1^{i,j}(r_1, r_2), \]

and

\[
\begin{align*}
P_1^{i,j}(p_1, p_2) &= \begin{cases}
\alpha_{i,j}^1 p_1 + b_{i,j}^{(1)} p_2 + c_{i,j}^{(1)}, & p_1 \in h_i, p_2 \in u_{ij}(p_1), \\
\alpha_{i,j}^{1'} p_1 + b_{i,j}^{(1)'} p_2 + c_{i,j}^{(1)'}, & p_1 \in h_i, p_2 \in v_{ij}(p_1),
\end{cases} \\
Q_1^{i,j}(q_1, q_2) &= \begin{cases}
\alpha_{i,j}^2 q_1 + b_{i,j}^{(2)} q_2 + c_{i,j}^{(2)}, & p_1 \in h_i, p_2 \in u_{ij}(p_1), \\
\alpha_{i,j}^{2'} q_1 + b_{i,j}^{(2)'} q_2 + c_{i,j}^{(2)'}, & p_1 \in h_i, p_2 \in v_{ij}(p_1),
\end{cases} \\
R_1^{i,j}(r_1, r_2) &= \begin{cases}
\alpha_{i,j}^3 r_1 + b_{i,j}^{(3)} r_2 + c_{i,j}^{(3)}, & p_1 \in h_i, p_2 \in u_{ij}(p_1), \\
\alpha_{i,j}^{3'} r_1 + b_{i,j}^{(3)'} r_2 + c_{i,j}^{(3)'}, & p_1 \in h_i, p_2 \in v_{ij}(p_1),
\end{cases}
\end{align*}
\]

The coefficients \(a_{i,j}^{(k)}, b_{i,j}^{(k)} \) and \(c_{i,j}^{(k)} \) are given by

\[
\begin{align*}
[a_{i,j}^{(1)}, b_{i,j}^{(1)}] & = D_{p}^{-1} H_{p}^{-T} (a_{i,j}^{(1)}, b_{i,j}^{(1)}, c_{i,j}^{(1)})^T, \\
[a_{i,j}^{(2)}, b_{i,j}^{(2)}] & = D_{q}^{-1} H_{q}^{-T} (a_{i,j}^{(2)}, b_{i,j}^{(2)}, c_{i,j}^{(2)})^T, \\
[a_{i,j}^{(3)}, b_{i,j}^{(3)}] & = D_{r}^{-1} H_{r}^{-T} (a_{i,j}^{(3)}, b_{i,j}^{(3)}, c_{i,j}^{(3)})^T,
\end{align*}
\]

where

\[
\begin{align*}
D_{p} &= D[p_{1x}, p_{1y}, p_{2x}, p_{2y}, p_{3x}, p_{3y}], \\
H_{p} &= [H(p_{1x}, p_{1y}), H(p_{2x}, p_{2y}), H(p_{3x}, p_{3y})], \\
D_{p}' &= D[p_{1x}', p_{1y}', p_{2x}', p_{2y}', p_{3x}', p_{3y}], \\
H_{p}' &= [H(p_{1x}', p_{1y}'), H(p_{2x}', p_{2y}'), H(p_{3x}', p_{3y})], \\
D_{q} &= D[q_{1x}, q_{1y}, q_{2x}, q_{2y}, q_{3x}, q_{3y}], \\
H_{q} &= [H(q_{1x}, q_{1y}), H(q_{2x}, q_{2y}), H(q_{3x}, q_{3y})], \\
D_{q}' &= D[q_{1x}', q_{1y}', q_{2x}', q_{2y}', q_{3x}', q_{3y}], \\
H_{q}' &= [H(q_{1x}', q_{1y}'), H(q_{2x}', q_{2y}'), H(q_{3x}', q_{3y})], \\
D_{r} &= D[r_{1x}, r_{1y}, r_{2x}, r_{2y}, r_{3x}, r_{3y}], \\
H_{r} &= [H(r_{1x}, r_{1y}), H(r_{2x}, r_{2y}), H(r_{3x}, r_{3y})], \\
D_{r}' &= D[r_{1x}', r_{1y}', r_{2x}', r_{2y}', r_{3x}', r_{3y}], \\
H_{r}' &= [H(r_{1x}', r_{1y}'), H(r_{2x}', r_{2y}'), H(r_{3x}', r_{3y})].
\end{align*}
\]
and

\[p_{ix} = \frac{i - 1}{n}, \quad p_{iy} = \frac{j - 1}{n}, \quad p_{2x} = \frac{i}{n}, \quad p_{2y} = \frac{j - 1}{n}, \]
\[p_{3x} = \frac{i - 1}{n}, \quad p_{3y} = \frac{j}{n}, \quad p_{1x}' = \frac{i}{n}, \quad p_{1y}' = \frac{j - 1}{n}, \]
\[p_{2x}' = \frac{i - 1}{n}, \quad p_{2y}' = \frac{j}{n}, \quad p_{3x}' = \frac{i}{n}, \quad p_{3y}' = \frac{j}{n}. \]

\[q_{ix} = \max_{\alpha, \beta} q_1(p_{ix}, p_{iy}), \quad q_{iy} = \max_{\alpha, \beta} q_2(p_{ix}, p_{iy}) - q_{ix}, \]
\[q_{ix}' = \max_{\alpha, \beta} q_1(p_{ix}', p_{iy}), \quad q_{iy}' = \max_{\alpha, \beta} q_2(p_{ix}', p_{iy}) - q_{ix}', \]
\[r_{ix} = \max_{\alpha, \beta} r_1(p_{ix}, p_{iy}), \quad r_{iy} = \max_{\alpha, \beta} r_2(p_{ix}, p_{iy}) - r_{ix}, \]
\[r_{ix}' = \min_{\alpha, \beta} r_1(p_{ix}', p_{iy}), \quad r_{iy}' = \min_{\alpha, \beta} r_2(p_{ix}', p_{iy}) - r_{ix}', \]

with \(h_i = (\frac{i - 1}{n}, \frac{i}{n}), \quad u_{ij}(x) = (\frac{i - 1}{n}, \frac{i + j - 1}{n} - x), \quad v_{ij}(x) = (\frac{i + j - 1}{n} - x, \frac{j}{n}). \)

C. Lower bound by majorization techniques for mixed states subjected to three measurements

For the state \(\rho = p|v_i\rangle + (1 - p)|v_{\perp}\rangle \langle v_{\perp}| \) subjected to three measurements \(|a_j^{(k)}\rangle \langle a_j^{(k)}|, \ k = 1, 2, 3, \ j = 1, 2, \) we have the probabilities \(p_i, \ q_i, \ r_i \ i = 1, 2, \)

\[p_1 = p \cos^2 \theta + (1 - p) \sin^2 \theta, \]
\[p_2 = p \sin^2 \theta + (1 - p) \cos^2 \theta, \]
\[q_1 = p(\cos^2 \theta \cos^2 q + \sin^2 \theta \sin^2 q + 2 \sin \theta \cos \theta \sin q \cos q \]
\[* \cos[g - \alpha]) + (1 - p)(\sin^2 \theta \cos^2 q + \cos^2 \theta \sin^2 q \]
\[- 2 \sin \theta \cos \theta \sin q \cos q \cos[g - \alpha]), \]
\[q_2 = p(\sin^2 \theta \cos^2 q + \cos^2 \theta \sin^2 q - 2 \sin \theta \cos \theta \sin q \cos q \]
\[* \cos[g - \alpha]) + (1 - p)(\cos^2 \theta \cos^2 q + \sin^2 \theta \sin^2 q \]
\[+ 2 \sin \theta \cos \theta \sin q \cos q \cos[g - \alpha]), \]
\[r_1 = p(\cos^2 \theta \cos^2 r + \sin^2 \theta \sin^2 r + 2 \sin \theta \cos \theta \sin r \cos r \]
\[* \cos[h - \alpha]) + (1 - p)(\sin^2 \theta \cos^2 r + \cos^2 \theta \sin^2 r \]
\[- 2 \sin \theta \cos \theta \sin r \cos r \cos[h - \alpha]), \]
\[r_2 = p(\sin^2 \theta \cos^2 r + \cos^2 \theta \sin^2 r - 2 \sin \theta \cos \theta \sin r \cos r \]
\[* \cos[h - \alpha]) + (1 - p)(\cos^2 \theta \cos^2 r + \sin^2 \theta \sin^2 r + \]
\[2 \sin \theta \cos \theta \sin r \cos r \cos[h - \alpha]), \]

with \(q = \arccos(|a_1^{(1)}|a_1^{(2)}|), \ r = \arccos(|a_1^{(1)}|a_2^{(3)}|), \)
\[g = \arg(a_1^{(1)}|a_2^{(2)}), \ h = \arg(a_1^{(1)}|a_3^{(3)}) \]
\[\arg(a_2^{(1)}|a_3^{(3)}). \]

Therefore,

\[\omega_1 = \max_{\theta, \alpha, i, j, k} \max\{p_i, q_j, r_k\} = \max\{p, 1 - p\}; \]
\[\omega_2 = \max_{\theta, \alpha, i, j, k, i', j', k'} \max\{p_i + q_j, p_i + r_k, q_j + r_k\} \]
\[= \max\{1 + (2p - 1) \cos q, 1 + (2p - 1) \sin q, \]
\[1 + (1 - 2p) \sin q, 1 + (1 - 2p) \cos q, 1 + (2p - 1) \cos r, \]
\[1 + (2p - 1) \sin r, 1 + (1 - 2p) \sin r, 1 + (1 - 2p) \cos r, \]
\[p(\cos^2 q + \cos^2 r) + (1 - p)(\sin^2 q + \sin^2 r), \]
\[p(\sin^2 q + \sin^2 r) + (1 - p)(\cos^2 q + \cos^2 r), \]
\[p(\sin^2 q + \cos^2 r) + (1 - p)(\cos^2 q + \sin^2 r), \]
\[p(\cos^2 q + \sin^2 r) + (1 - p)(\cos^2 q + \sin^2 r), \]
\[(q_1 + r_1)_{\theta = \theta_1, \alpha = \alpha_1}, (q_1 + r_1)_{\theta = \theta_2, \alpha = \alpha_2}, \]
\[(q_2 + r_1)_{\theta = \theta_2, \alpha = \alpha_2}, (q_2 + r_2)_{\theta = \theta_1, \alpha = \alpha_1} \]

with

\[\tan \alpha_1 = \frac{\sin 2q \sin g + \sin 2r \sin h}{\sin 2q \cos g + \sin 2r \cos h}, \]
\[\tan 2\theta_1 = \frac{\sin 2q \cos(g - \alpha_1) + \sin 2r \cos(h - \alpha_1)}{\cos 2q + \cos 2r}, \]
\[\tan \alpha_2 = \frac{\sin 2q \sin g - \sin 2r \sin h}{\sin 2q \cos g - \sin 2r \cos h}, \]
\[\tan 2\theta_2 = \frac{\sin 2q \cos(g - \alpha_2) - \sin 2r \cos(h - \alpha_2)}{\cos 2q - \cos 2r}; \]

\[\omega_3 = \max_{\theta, \alpha, i, j, k} \max\{1 + p_i + q_j + r_k\} \]
\[= \max\{p(1 + \cos^2 q + \cos^2 r) + (1 - p)(\sin^2 q + \sin^2 r), \]
\[p(\sin^2 q + \sin^2 r) + (1 - p)(1 + \cos^2 q + \cos^2 r), \]
\[p(1 + \cos^2 q + \sin^2 r) + (1 - p)(\sin^2 q + \cos^2 r), \]
\[p(\sin^2 q + \cos^2 r) + (1 - p)(1 + \cos^2 q + \sin^2 r), \]
\[p(1 + \sin^2 q + \cos^2 r) + (1 - p)(\cos^2 q + \sin^2 r), \]
\[p(\cos^2 q + \sin^2 r) + (1 - p)(1 + \sin^2 q + \cos^2 r), \]
\[p(1 + \sin^2 q + \sin^2 r) + (1 - p)(1 + \sin^2 q + \cos^2 r), \]
\[p(\cos^2 q + \cos^2 r) + (1 - p)(\sin^2 q + \sin^2 r), \]
\[(p_1 + q_1 + r_1)_{\theta = \theta_1, \alpha = \alpha_1}, (p_1 + q_1 + r_2)_{\theta = \theta_2, \alpha = \alpha_2}, \]
\[(p_1 + q_2 + r_1)_{\theta = \theta_1, \alpha = \alpha_2}, (p_1 + q_2 + r_2)_{\theta = \theta_2, \alpha = \alpha_1}, \]
\[(p_2 + q_1 + r_1)_{\theta = \theta_1, \alpha = \alpha_1}, (p_2 + q_1 + r_2)_{\theta = \theta_1, \alpha = \alpha_2}, \]
\[(p_2 + q_2 + r_1)_{\theta = \theta_2, \alpha = \alpha_2}, (p_2 + q_2 + r_2)_{\theta = \theta_2, \alpha = \alpha_1}, \]
\[1 + \max\{p, 1 - p\} \} \]
with
\[
\begin{align*}
\tan 2\theta'_1 &= \frac{\sin 2q \cos(g - \alpha_1) + \sin 2r \cos(h - \alpha_1)}{\cos \alpha_1 (\cos 2q + \cos 2r + 1)} , \\
\tan 2\theta'_2 &= \frac{\sin 2q \cos(g - \alpha_2) - \sin 2r \cos(h - \alpha_2)}{\cos \alpha_2 (\cos 2q - \cos 2r + 1)} , \\
\tan 2\theta'_3 &= \frac{\sin 2q \cos(g - \alpha_2) - \sin 2r \cos(h - \alpha_2)}{\cos \alpha_2 (\cos 2q - \cos 2r - 1)} , \\
\tan 2\theta'_4 &= \frac{\sin 2q \cos(g - \alpha_1) + \sin 2r \cos(h - \alpha_1)}{\cos \alpha_1 (\cos 2q + \cos 2r - 1)} ,
\end{align*}
\]
\[
\omega_4 = 1 + \omega_2 ;
\omega_5 = 2 + \max\{p, 1 - p\} ;
\omega_6 = 3 .
\]

D. Lower bound by stepwise linear function for mixed states subjected to two measurements

For qubit states with the spectral decomposition \(\rho = p|v\rangle\langle v| + (1 - p)|v_\perp\rangle\langle v_\perp| \), and two measurements \(A_k \) given by \(|a_j^{(k)}\rangle\langle a_j^{(k)}| , \ j = 1, 2, k = 1, 2, \) the probabilities are \(p_1 = p \cos^2 \theta + (1 - p) \sin^2 \theta , \ p_2 = p \sin^2 \theta + (1 - p) \cos^2 \theta , \ q_1 = p \cos^2 (q - \theta) + (1 - p) \sin^2 (q - \theta) , \) and \(q_2 = p \sin^2 (q - \theta) + (1 - p) \cos^2 (q - \theta) \), while \(\cos q = |\langle a_1^{(1)} | a_2^{(2)} \rangle| \) and \(\sin q = |\langle a_2^{(1)} | a_1^{(2)} \rangle| \). We have the expressions of \(P^{(i)}_1 , Q^{(i)}_1 \) by stepwise linear function and \(\theta^{* (i)} \) as follows:
\[
\begin{align*}
P^{(i)}_1 (\theta) &= n(l_{i+1} - l_i)(p \cos^2 (\theta) + (1 - p) \sin^2 (\theta) - u_i) + l_i , \\
Q^{(i)}_1 (\theta) &= \frac{s_{i+1} - s_i}{t_{i+1} - t_i} (p \cos^2 (\theta - \gamma) + (1 - p) \sin^2 (\theta - \gamma) - t_i) + s_i ,
\end{align*}
\]
and
\[
\theta_i = \arccos \sqrt{1 - \frac{1}{n}} \text{ for } p \leq 1 - p ,
\]
and
\[
\theta_i = \arccos \sqrt{\frac{1}{n}} \text{ for } p \geq 1 - p ,
\]
\[
t_i = p \cos^2 (\theta_i - \gamma) + (1 - p) \sin^2 (\theta_i - \gamma) ,
\]
\[
s_i = -t_i \log_2 t_i - (1 - t_i) \log_2 (1 - t_i) ,
\]
\[
u_i = \min\{p, 1 - p\} + \frac{|1 - 2p|}{n} ,
\]
\[
l_i = -u_i \log_2 u_i - (1 - u_i) \log_2 (1 - u_i) ,
\]
\[
\tan 2\theta_i^* = \frac{s_{i+1} - s_i}{(s_{i+1} - s_i) \cos 2q + n(l_{i+1} - l_i)(t_{i+1} - t_i)} ,
\]
with \(\theta_i^* \) satisfying the following conditions:
\[
\min\{\theta_{i-1}, \theta_i\} \leq \theta_i^* \leq \max\{\theta_{i-1}, \theta_i\} .
\]