Mapping PTGERs to the Ovulatory Follicle: Regional Responses to the Ovulatory PGE2 Signal

Soon Ok Kim and Diane M. Duffy

Department of Physiological Sciences, Eastern Virginia Medical School, Norfolk, Virginia

ABSTRACT

Prostaglandin E2 (PGE2) is a key intrafollicular mediator of ovulation in many, if not all, mammalian species. PGE2 acts at follicular cells via four distinct PGE2 receptors (PTGERs). Within the ovulatory follicle, each cell type (e.g., oocyte, cumulus granulosa cell, mural granulosa cell, theca cell, endothelial cell) expresses a different subset of the four PTGERs. Expression of a subset of PTGERs has consequences for the generation of intracellular signals and ultimately the unique functions of follicular cells that respond to PGE2. Just as the ovulatory LH surge regulates PGE2 synthesis, the LH surge also regulates expression of the four PTGERs. The pattern of expression of the four PTGERs among follicular cells before and after the LH surge forms a spatial and temporal map of PGE2 responses. Differential PTGER expression, coupled with activation of cell-specific intracellular signals, may explain how a single paracrine mediator can have pleotropic actions within the ovulatory follicle. Understanding the role of each PTGER in ovulation may point to previously unappreciated opportunities to both promote and prevent fertility.

folicule, ovary, ovulation, prostaglandin, receptor

PROSTAGLANDIN E2: AN ESSENTIAL PARACRINE MEDIATOR OF OVULATION

The ovulatory surge of LH is the initial endocrine stimulus for ovulation in mammals. LH acts at its receptors, which are located on a subset of follicular cells, including theca and the outermost mural granulosa cells [1, 2]. For the other cells of the follicle, the LH signal is transmitted indirectly via paracrine signals.

Prostaglandin E2 (PGE2) is a key paracrine mediator of ovulation. LH increases granulosa cell expression of essential prostaglandin synthesis enzymes, including the key enzyme PTGS2 (also known as COX2, [3]). The time interval between the LH surge and ovulation varies between rodents (12–16 h), cows (28–30 h), monkeys and women (37–42 h), and horses (39–48 h). However, in many (if not all) mammalian species, follicular levels of PGE2 reach peak levels in the hours just before ovulation (reviewed in [4]).

The interplay between PGE2 and other LH-stimulated paracrine mediators is unclear. For example, epidermal growth factor (EGF)-like growth factors such as amphiregulin have been reported to increase follicular PGE2, but PGE2-stimulated amphiregulin production has also been reported [5–7]. Similarly, progesterone has been reported to regulate PGE2 synthesis and also to be regulated by PGE2 [8–11].

Elevated follicular PGE2 is essential for successful ovulation. Mice lacking expression of PTGS2 or the PGE2 receptor PTGER2 fail to ovulate [12–14]. Administration of drugs that inhibit PTGS2 activity disrupts ovulatory events, such as cumulus expansion, follicle rupture, and oocyte release [15–35]. For many species, cotreatment with PGE2 restored ovulatory events [25, 35–37]. Based on these findings, it is widely accepted that PGE2 is the ovulatory prostaglandin and that PGE2 is an essential paracrine mediator of the LH surge in mammalian species. It is interesting to note that, at the time of ovulation, follicular concentrations of PGE2 are in the micromolar range, well in excess of the amount needed to bind to and activate >99% of PGE2 receptors. Of course, only cells with PGE2 receptors are able to respond directly to elevated PGE2 and initiate PGE2-stimulated ovulatory events.

PROSTAGLANDIN E2 RECEPTORS: THE PTGERs

Prostaglandin E2 receptors (PTGERs) transduce the PGE2 signal within individual cells of the follicle (Fig. 1). There are four PGE2 receptors: PTGER1, PTGER2, PTGER3, and PTGER4 [38]. Each of these G-protein coupled receptors activates different intracellular signaling pathways. Each cell type within the ovulatory follicle expresses a different subset of all PTGERs. In this way, each cell can respond to the ovulatory PGE2 stimulus with a unique series of intracellular signals, leading to cell-specific structural and functional changes. Finally, PTGER expression is regulated by the ovulatory LH surge, so PGE2 responses can be altered over the course of the interval between the LH surge and ovulation. For these reasons, mapping the spatial and temporal distribution of PTGERs to the cells of the ovulatory follicle is needed to fully understand the essential and complex role of PGE2 in the ovulatory cascade.

PTGERs are members of the guanine nucleotide-binding (G) protein-coupled family of receptors (GPCRs) [38, 39]. GPCRs are integral membrane proteins consisting of an
PLC), elevated intracellular Ca$^{2+}$ responds to PGE2 binding with activation of phospholipase C.

PTGER1 cDNA and genomic sequence information is available for many mammalian species [51–54]. PTGER1 transcript variants, including one which yields an estimated molecular mass of 42 kDa [51]. The rat PTGER1 shares 83% amino acid identity with the human PTGER1 [52]. PTGER1 is a 402-amino acid polypeptide with an estimated molecular mass of 42 kDa [51]. The rat PTGER1 shares 83% amino acid identity with the human PTGER1 [52]. PTGER1 transcript variants, including one which yields an inactive PTGER1 receptor variant [52], have been reported. Currently, PTGER1 cDNA and genomic sequence information is available for many mammalian species [51–54]. PTGER1 responds to PGE2 binding with activation of phospholipase C (PLC), elevated intracellular Ca$^{2+}$, and activation of protein kinase C (PKC), presumably via interaction with Gαq and generation of inositol trisphosphate (IP3) [51, 55–58]. PTGER1 is most often detected in the plasma membrane [56], but functional PTGER1 has also been localized to the nuclear envelope [43]. Plasma membrane and intracellular PTGER1 share similar PGE2-binding kinetics and activation of similar signal transduction intermediaries [43]. 17-Phenyltrinor-PGE2 is commonly used as a selective agonist for PTGER1 [59]. Several PTGER1-selective agonists and antagonists have been reported [60–67]. Most notably, GW848687X is highly selective for PTGER1 over other PTGERs. GW848687X blocked PGE2-induced migration in monkey ovarian microvascular endothelial cells [68] and is a candidate for the treatment of acute and chronic inflammatory pain [60].

PTGER2

Human PTGER2 is a protein of 358 amino acids with an estimated mass of 53 kDa [69]. PTGER2 cDNA and genomic sequence information is available for many mammalian species [54, 70–74]. Regardless of species, PGE2 stimulation of PTGER2 leads to activation of the Gαs protein, which in turn stimulates adenylyl cyclase activity and increases cAMP production [38, 69, 73]. Indeed, PTGER2 stimulation is thought to alter cell function exclusively through cAMP generation [75]. PTGER2 shares 30% amino acid identity with PTGER4, so these PGE2 receptors may be inaccurately thought to alter cell function exclusively through cAMP production. However, PTGER2 antagonists are rare [77–79]. A recent study described the novel PTGER2 antagonist PF-0441894 with over 2000-fold selectivity for PTGER2 when compared to other PTGERs and can block the ability of both native PGE2 and the selective PTGER2 agonist butaprost to activate PTGER2 [80].

PTGER3

PTGER3 is unique among PTGERs in that multiple isoforms are formed by alternative RNA splicing, resulting in proteins of 40–45 kDa [81–91]. PTGER3 isoforms have essentially identical amino acid sequences in the ligand-binding region and, therefore, possess very similar ligand-binding properties. PTGER3 affinity for PGE2 is at least 40-fold higher than PGE2 affinity for PTGER1 and PTGER2 [50]. PTGER3 isoforms possess distinct sequences in their carboxy-terminal (cytoplasmic) tails, a key region of the receptor for interaction with G proteins and other signal transduction proteins of 40–45 kDa [81–91]. PTGER3 isoforms have essentially identical amino acid sequences in the ligand-binding region and, therefore, possess very similar ligand-binding properties. PTGER3 affinity for PGE2 is at least 40-fold higher than PGE2 affinity for PTGER1 and PTGER2 [50]. PTGER3 isoforms possess distinct sequences in their carboxy-terminal (cytoplasmic) tails, a key region of the receptor for interaction with G proteins and other signal transduction proteins of 40–45 kDa [81–91]. PTGER3 isoforms have essentially identical amino acid sequences in the ligand-binding region and, therefore, possess very similar ligand-binding properties. PTGER3 affinity for PGE2 is at least 40-fold higher than PGE2 affinity for PTGER1 and PTGER2 [50]. PTGER3 isoforms possess distinct sequences in their carboxy-terminal (cytoplasmic) tails, a key region of the receptor for interaction with G proteins and other signal transduction proteins of 40–45 kDa [81–91]. PTGER3 isoforms have essentially identical amino acid sequences in the ligand-binding region and, therefore, possess very similar ligand-binding properties. PTGER3 affinity for PGE2 is at least 40-fold higher than PGE2 affinity for PTGER1 and PTGER2 [50]. PTGER3 isoforms possess distinct sequences in their carboxy-terminal (cytoplasmic) tails, a key region of the receptor for interaction with G proteins and other signal transduction proteins of 40–45 kDa [81–91]. PTGER3 isoforms have essentially identical amino acid sequences in the ligand-binding region and, therefore, possess very similar ligand-binding properties. PTGER3 affinity for PGE2 is at least 40-fold higher than PGE2 affinity for PTGER1 and PTGER2 [50]. PTGER3 isoforms possess distinct sequences in their carboxy-terminal (cytoplasmic) tails, a key region of the receptor for interaction with G proteins and other signal transduction proteins of 40–45 kDa [81–91]. PTGER3 isoforms have essentially identical amino acid sequences in the ligand-binding region and, therefore, possess very similar ligand-binding properties. PTGER3 affinity for PGE2 is at least 40-fold higher than PGE2 affinity for PTGER1 and PTGER2 [50]. PTGER3 isoforms possess distinct sequences in their carboxy-terminal (cytoplasmic) tails, a key region of the receptor for interaction with G proteins and other signal transduction proteins of 40–45 kDa [81–91]. PTGER3 isoforms have essentially identical amino acid sequences in the ligand-binding region and, therefore, possess very similar ligand-binding properties. PTGER3 affinity for PGE2 is at least 40-fold higher than PGE2 affinity for PTGER1 and PTGER2 [50]. PTGER3 isoforms possess distinct sequences in their carboxy-terminal (cytoplasmic) tails, a key region of the receptor for interaction with G proteins and other signal transduction
molecules [87, 92]. PTGER3 isoforms can increase cAMP, reduce cAMP, or elevate intracellular Ca^{2+} and IP3 response to PGE2, depending on individual isoforms and types of cells [38, 85, 87, 89]. In addition, certain PTGER3 isoforms can interact with the small G protein Rho [93, 94]. PTGER3 has been reported to regulate Gzα-induced adenyl cyclase inhibition as well as intracellular Ca^{2+} mobilization via a pertussis toxin-sensitive G protein [38, 95]. Some PTGER3 isoforms interact with more than one type of G protein to regulate multiple signal transduction pathways. For example, the mouse sensitive G protein [38, 95]. Some PTGER3 isoforms interact in distinct subpopulations based upon their location (reviewed in [125, 126]) (Fig. 2). The granulosa cells can be classified into distinct subpopulations based upon their location by somatic cells, including granulosa cells and theca cells [178, 180, 181; 188]. Of specific interest is L-798106, which prevented PGE2- and sulprostone-stimulated monkey ovarian endothelial cell migration [68].

PTGER4

The receptor currently known as PTGER4 was originally referred to as the EP2 receptor [69, 106]. Human PTGER4 is predicted to be 488 amino acids with molecular mass of 53 kDa [73]. In addition to the human, PTGER4 has been identified in many species including dog, mouse, rabbit, rat, and cow [70, 73, 106–110]. PTGER4 contains a longer carboxyl-terminal tail than that of PTGER2; this longer tail may participate in short-term, agonist-stimulated desensitization and interaction with multiple G proteins [111, 112]. PTGER4 stimulates cAMP production by coupling to the Gzα protein as its major signal transduction pathway [113]. PTGER4 also activates IP3-dependent intracellular signaling [48, 114–116]. Furthermore, PTGER4 can couple to a pertussis toxin-sensitive G protein that can reduce cAMP-dependent signaling in some cells [113]. These additional signal transduction pathways distinguish PTGER4 from PTGER2, which appears to utilize Gzα exclusively. PTGER4 binds PGE2 with at least 10-fold higher affinity than does PTGER2 [50, 112]. Pharmacologically, PTGER4 may be discriminated from other PTGERs by its insensitivity to both the PTGER1/PTGER3 agonist sulprostone and the PTGER2 agonist butaprost and its selectivity for PGE1 alcohol as an agonist [70, 76]. Several agonists that are selective for PTGER4 have also been reported [64, 117], including APS-999 that induced ovarian follicle growth and maturation in rats [118] as well as an orally active PTGER4 agonist (KAG-308; [119]). PTGER4-selective antagonists have also been reported [64, 117, 119–123]. Of specific interest is GW627368x, which is 100-fold selective for PTGER4 over other PTGERs but does have modest affinity for thromboxane receptors [118, 120, 121, 124].

PTGER EXPRESSION AND FUNCTION IN FOLLICULAR CELLS

The ovarian follicle consists of a single oocyte surrounded by somatic cells, including granulosa cells and theca cells (reviewed in [125, 126]) (Fig. 2). The granulosa cells can be classified into distinct subpopulations based upon their location within the follicle and their functions in ovulatory events. Cumulus granulosa cells support the oocyte and expand to facilitate oocyte release at ovulation. Mural granulosa cells line the wall of the ovarian follicle, produce many paracrine
mediators of ovulation, and remain behind at ovulation to form the corpus luteum. Mural granulosa cells at the follicle apex likely play a key role in follicle rupture, whereas mural granulosa cells located away from the apex may be more involved in steroidogenesis and contribute to the formation of the corpus luteum. Theca cells are steroidogenic cells located outside the granulosa cell basement membrane. Vascular endothelial cells branch from stromal vessels to form the extensive vascular network of the corpus luteum. PTGER localization has been described within many of these follicular cell types. Each PTGER shows a different pattern of expression that varies by cell type and exposure to the ovulatory gonadotropin surge. For some cell types of the ovulatory follicle, specific PGE2-regulated functions have been associated with individual PTGERs.

Global knockout of individual PTGERs has provided useful but limited information on the role of each PTGER in ovulatory processes. Mice lacking PTGER2 demonstrate reduced or failed ovulation, reduced in oocyte fertilization, and reduced litter size from multiple studies [14, 127, 128]. No reproductive abnormalities were reported for mice lacking expression of PTGER1 or PTGER3 [129, 130]. Mice lacking PTGER4 die soon after birth, so adult reproductive function has not been examined [131, 132]. The observation of a reproductive phenotype in only one PTGER knockout focused attention on PTGER2 as the key PGE2 receptor involved in mediating the ovulatory effects of PGE2. However, the role of other PTGERs in ovulation could not be effectively examined using the global knockout strategy. More recent studies using PTGER-selective agonists and antagonists have provided additional and important information to support roles for each PTGER in ovulatory events. Ovulatory functions linked to individual PTGERs are summarized in Table 1 and discussed below.

Oocytes

Multiple PTGERs are expressed in oocytes of several mammalian species, including mouse, rat, cow, pig, horse, monkey, and human [118, 133, 138, 140, 142–145]. While sensitive microarray techniques can detect expression of most or all PTGERs in cumulus cells, patterns of PTGER expression have emerged that cross species. PTGER1 is rarely detected in cumulus cells. Expression of PTGER2 and PTGER4 is commonly measured, and expression of these PTGERs is elevated after the ovulatory gonadotropin surge in many species [54, 133, 140, 143, 144]. Cumulus expression of PTGER3 has been reported for mouse, cow, and monkey [138, 142, 144], but increased PTGER3 mRNA has been reported after the ovulatory gonadotropin surge only in primates [144]. In monkey cumulus, the PTGER3 isoform 9 was the predominant PTGER3 isoform detected, with mRNA levels elevated 100-fold after the ovulatory gonadotropin surge [91].

The presence of receptor protein for PTGER2 [54, 133, 143], PTGER3 [138, 144], and PTGER4 [138, 144] has been confirmed for cumulus from several species. In monkey ovary, where PGE2 regulates expression of key germ cell genes [141].

Cumulus Granulosa Cells

Cumulus cell expression of PTGERs has been examined for many mammalian species, including mouse, rat, cow, pig, horse, monkey, and human [118, 133, 138, 140, 142–145]. While sensitive microarray techniques can detect expression of most or all PTGERs in cumulus cells, patterns of PTGER expression have emerged that cross species. PTGER1 is rarely detected in cumulus cells. Expression of PTGER2 and PTGER4 is commonly measured, and expression of these PTGERs is elevated after the ovulatory gonadotropin surge in many species [54, 133, 140, 143, 144]. Cumulus expression of PTGER3 has been reported for mouse, cow, and monkey [138, 142, 144], but increased PTGER3 mRNA has been reported after the ovulatory gonadotropin surge only in primates [144]. In monkey cumulus, the PTGER3 isoform 9 was the predominant PTGER3 isoform detected, with mRNA levels elevated 100-fold after the ovulatory gonadotropin surge [91].

The presence of receptor protein for PTGER2 [54, 133, 143], PTGER3 [138, 144], and PTGER4 [138, 144] has been confirmed for cumulus from several species. In monkey

Table 1. PTGER functions in ovulation.

Receptor	Technique	Species	Ovarian Phenotype	References
PTGER1	Knockout	Mouse	Normal fertility	[129, 177]
17-Phenyl-trinor-PGE2 (agonist)	Mouse	Increased follicular angiogenesis	[68]	
17-Phenyl-trinor-PGE2 (agonist)	Monkey	Increased follicle rupture, increased cumulus expansion	[25]	
PTGER2	Knockout	Mouse	Increased fertility, reduced cumulus expansion, decreased oocyte maturation, failure of fertilization	[14, 127, 154]
Butaprost (agonist)	Mouse	Increased cumulus expansion	[138]	
Butaprost (agonist)	Mouse	Decreased cumulus expansion, decreased oocyte nuclear maturation	[138]	
Butaprost (agonist)	Monkey	Decreased cumulus expansion, decreased oocyte nuclear maturation	[135]	
Butaprost (agonist)	Monkey	Increased follicle rupture, increased cumulus expansion	[25]	
Butaprost (agonist)	Monkey	Decreased oocyte nuclear maturation, decreased fertilization	[135]	
PTGER3	Knockout	Mouse	Normal fertility	[129, 177]
Sulprostone (agonist)	Monkey	Decreased follicular angiogenesis	[68]	
PTGER4	Knockout	Mouse	Neonatal lethal	[131, 132]
PGE1 alcohol (agonist)	Mouse	Decreased oocyte nuclear maturation	[135]	
AH23848 (agonist)	Mouse	Decreased cumulus expansion, decreased oocyte nuclear maturation	[138]	
Butaprost (agonist)	Monkey	Increased follicle rupture	[25]	
PGE1 alcohol (agonist)	Monkey	Decreased oocyte nuclear maturation, reduced fertilization	[135]	
cumulus, the ovariatory gonadotropin surge increased the levels of PTGER2 and PTGER3 proteins. PTGER2, PTGER3 isoform 9, and PTGER4 respond to PGE2 stimulation with increased cAMP (discussed above), consistent with a role for elevated cAMP mediation of essential cumulus functions such as expansion (discussed below). However, increased cAMP production by cumulus cells via receptor-selective agonist has only been confirmed for PTGER2 stimulation of monkey cumulus [146].

PGE2 is well-established as a paracrine mediator of cumulus cell function. PGE2 treatment stimulates expansion of cumulus-oocyte complexes in vitro in mouse, pig, horse, and monkey [13, 140, 146–148]. PTGER2 is known to increase cumulus cell synthesis of proteins such as hyaluronan synthase 2 (HAS2) and hyaluronan, which play important roles in the production of the novel extracellular matrix of the expanded cumulus [140, 146, 147]. Inhibition of PTGS2 activity and PGE2 synthesis in porcine cumulus-oocyte complexes blunted FSH-stimulated production of the EGF-like factors amphilcumus [140, 146, 147]. PGE2 cotreatment restored FSH-stimulated synthesis of these important ovulator mediators in porcine cumulus-oocyte complexes [140], indicated a key role for PGE2 in these ovulatory events. In addition, the expression of the cumulus expansion-related HAS2 and tumor necrosis factor α-induced protein 6 (Tnfaip6) genes were decreased by inhibition of prostaglandin production with suppression of cumulus expansion, which was restored by PGE2 as well as EGF [140].

PTGER2 is the only PTGER that shows a reproductive deficit with global deletion [14, 127, 128, 149], so examination of PGE2 receptors in mice has focused on PTGER2. PTGER2-deficient mice were found to have a failure of cumulus expansion after an ovulatory gonadotropin stimulus in vivo, and cumulus-oocyte complexes from mice lacking PTGER2 expression failed to undergo cumulus expansion in response to PGE2 in vitro [14]. In monkeys, cumulus-oocyte complexes experienced cumulus expansion when an agonist selective for either PTGER1, PTGER2, or PTGER4 was co-administered with a PGE2 synthesis inhibitor in vivo [25], but the specific cellular target of these PTGER-selective agonists is not known in these in vivo studies. In vitro, stimulation of either PTGER2 or PTGER4 resulted in full expansion of mouse cumulus-oocyte complexes [138], while PTGER2 was shown to mediate cumulus expansion in porcine cumulus-oocyte complexes in vitro [146]. Proper expression of cumulus expansion-related proteins is disrupted in mice lacking PTGER2 expression [150, 151]. While studies continue to focus on PTGER2 as the key receptor to mediate PGE2-stimulated cumulus expansion, PTGER1, PTGER3, and PTGER4 may participate in this process as well.

Mural Granulosa Cells

Considerably less attention has been paid to individual PTGERs in mural granulosa cells. Expression of many or all PTGERs have been reported in granulosa cells from ovulatory follicles of mouse, rat, cows, sheep, horse, monkey, and human [118, 133, 143, 144, 152–157]. PTGER2 is expressed in mural granulosa cells of mouse follicles [133], but, perhaps surprisingly, little or no information is available for expression of other PGE2 receptors specifically in mural granulosa cells of rodent follicles. Mural granulosa cell expression of PTGER2 and PTGER4 was shown to increase in response to the ovulatory gonadotropin surge in horse and monkey [143, 144]. Additional studies identified five distinct PTGER3 isoforms with increased mRNA levels after the ovulatory gonadotropin surge in monkey mural granulosa cells [91]. The ovulatory gonadotropin surge also led to significant increases in granulosa cell levels of PTGER1, PTGER3, and PTGER4 proteins in monkey [144] and PTGER2 protein in horse [143]. In summary, all four PTGERs are expressed by mural granulosa cells in a dynamic fashion, with changes in mRNA and/or protein reported in response to the ovulatory gonadotropin surge.

Few studies have examined differential PTGER expression in subpopulations of mural granulosa cells. Recently, laser capture microscopy was used to successfully separate mural granulosa cell subpopulations based on their location within monkey ovarian follicles and examine PTGER expression in mural granulosa cell at the apex of the follicle and mural granulosa cells not at the follicle apex [91, 144]. While the ovulatory gonadotropin surge increased PTGER1 protein levels in all mural granulosa cells, PTGER1 protein was present at higher levels in granulosa cells not at the follicle apex when compared to granulosa cells at the follicle apex just before ovulation. PTGER4 protein levels were lower in apex when compared to nonapex mural granulosa cells before the ovulatory gonadotropin surge, but no differences in PTGER4 protein levels were noted between these subpopulations after the gonadotropin surge. No differences in PTGER2 protein levels were noted between mural granulosa cell subpopulations before or after the ovulatory gonadotropin surge [144]. While overall mural granulosa cell PTGER3 protein levels were significantly higher after the ovulatory gonadotropin surge, this increase was not specific to an individual granulosa cell subpopulation [144]. Interestingly, mRNA for PTGER3 isoform 5 increased in apex mural granulosa cells in response to the ovulatory gonadotropin surge, while PTGER3 isoform 5 mRNA levels were not altered in nonapex mural granulosa cells, suggesting preferential expression of this PTGER3 isoform in subpopulations of mural granulosa cells [91].

Certain PGE2-stimulated follicular events have been attributed to mural granulosa cells. In vivo studies using an ablative-and-replace model have demonstrated unequivocally that PGE2 is involved in follicle rupture [32, 35]. Despite this critical role, very few PGE2-regulated mRNAs or proteins have been identified. Certain proteases, protease inhibitors, and components of the extracellular matrix are regulated by PGE2, including matrix metalloproteinases 1 (MMP1), tissue-type plasminogen activator (PLAT, also known as tPA), PA inhibitor type 1 (SERPINE1, also known as PAI-1), glucosamine, and some forms of collagen [158–161]. In monkey mural granulosa cells, regulation of PLAT and SERPINE1 were attributed to specific PTGERs, with PTGER2 and PTGER3 mediating increased PLAT protein while PTGER1 and PTGER3 stimulation increased SERPINE1 protein in vitro [159].

Steroidogenesis is widely believed to be a key function of mural granulosa cells. PGE2 increased both aromatase (CYP19) expression and progesterone production by rat granulosa cells [162, 163]. PGE2 stimulated progesterone production by bovine cells from both small (<5mm) and large (>8mm) ovarian follicles while inhibiting estradiol secretion [164]. In human follicular fluid, elevated PGE2 concentrations correlated with elevated progesterone concentrations, and PGE2 increased STAR mRNA and protein as well as progesterone production by human granulosa-luteal cells in vitro [165, 166]. Overall, these findings suggest that PGE2 may enhance progesterone synthesis by the ovulatory follicle or young corpus luteum. In contrast, PGE2 did not alter estrogen or progesterone production by pieces of human ovariatory
that PTGER1 and PTGER2 may be most important for new induced tube formation in vitro [174]. These findings indicate induced tube formation and partly suppressed the VEGF-luteal endothelial cells, PTGER2 antagonist inhibited PGE2-using human ovarian endothelial cells in vitro [173]. In rat luteal endothelial cells, PTGER2 antagonist inhibited PGE2-induced tube formation and partly suppressed the VEGF-induced tube formation in vitro [174]. These findings indicate that PTGER1 and PTGER2 may be most important for new capillary formation in the ovulatory follicle.

Theca Cells

Theca cells have been suggested as targets for PGE2 action. Expression of PTGER2, PTGER3, and PTGER4 has been reported in bovine theca cells surrounding ovulatory follicles [168]. PTGER2 mRNA has also been detected in theca cells of horse and mouse ovulatory follicles [14, 133, 143]. No change in PTGER2 mRNA was observed in theca cells of mouse preovulatory follicle in response to the ovulatory gonadotropin surge [14, 133]. In contrast, PTGER expression is regulated by the ovulatory gonadotropin surge in domestic animal species. The ovulatory gonadotropin surge increased PTGER2 mRNA and protein in theca surrounding ovulatory follicles, where PTGER2 mRNA and protein increased from pre-hCG levels to peak late in the ovulatory interval [143]. In detailed studies of theca PTGER expression, it was reported that the ovulatory gonadotropin surge increased theca expression of PTGER2 while decreasing PTGER3 and PTGER4 expression levels [155, 156]. There are no reports of PTGER1 detection in theca for any species.

The role of PGE2 action at theca PTGERs has received little attention. PGE2 stimulates steroidogenesis in isolated theca cells from a variety of mammalian species, with increases in production of progesterone, estradiol, androstenedione, and testosterone reported [155, 156, 169, 170]. However, PGE2-stimulated steroid hormone production has not been attributed to individual PTGERs.

Vascular Endothelial Cells

The ovulatory LH surge promotes angiogenesis of the luteinizing follicle in mammals [171], and blockade of follicular angiogenesis prevents ovulation [172], supporting an essential role for new capillary formation in the ovulatory cascade. Recently, PGE2 was shown to mediate some actions of the ovulatory gonadotropin surge to increase capillary formation in the luteinizing follicle [68].

Endothelial cells from monkey and human ovulatory follicles expressed all PTGERs in vitro [68, 173]. Immunodetection of PTGERs in monkey ovarian tissues confirmed spatial differences in PTGER distribution. PTGER1 and PTGER2 were only detected on endothelial cells of capillary-like structures forming in the granulosa cell layer of the ovulatory follicle while PTGER3 and PTGER4 were present in stromal vessels and in follicular endothelial cells forming capillary-like structures [68]. Agonists selective for PTGER1 and PTGER2 promoted new capillary formation while stimulation of PTGER3 inhibited capillary formation sprouting in monkey ovarian endothelial cells in vitro and in monkey ovulatory follicles in vivo [68]; similar findings were recently reported using human ovarian endothelial cells in vitro [173]. In rat luteal endothelial cells, PTGER2 antagonist inhibited PGE2-induced tube formation and partly suppressed the VEGF-induced tube formation in vitro [174]. These findings indicate that PTGER1 and PTGER2 may be most important for new capillary formation in the ovulatory follicle.

SUMMARY: THE PTGER SPATIAL AND TEMPORAL MAP

Each type of cell within the ovulatory follicle possesses a unique complement of PTGERs. Functional studies, when available, support the concept that a subset of all PTGERs mediates PGE2 action within a specific type of cell. In addition, PTGER levels often change in response to the ovulatory gonadotropin surge, providing another variable in the ovulatory follicle’s response to rising PGE2 levels.

We have summarized the expression of key PTGERs within distinct cell types of the monkey ovulatory follicle, which shares many features of PTGER expression with other mammalian species. As PGE2 levels peak and ovulation approaches, the oocyte, cumulus cells, apex mural granulosa cells, nonapex mural granulosa cells, and vascular endothelial cells each express a different subset of all PTGERs. The PTGERs anticipated to dominate PGE2 responses in each cell type are shown in Figure 2.

In the oocyte, PTGER2 and PTGER4 dominate, and both receptors couple to Gαs to increase cAMP. Stimulation of these receptors delays nuclear maturation and fertilization of the oocyte in vitro and may play a similar role in vivo.

Cumulus cells express primarily PTGER2 and PTGER4, with evidence of PTGER3 isoform 9 expression specifically in primates. These PTGERs couple to Gαs to increase cAMP in cumulus cells. PGE2 action via these receptors may promote cumulus expansion and may also support oocyte health, maturation, and ultimately fertilization.

Mural granulosa cells express all PTGERs. All four PTGERs may be expressed in the majority, if not all, mural granulosa cells. However, PGE2 action via PTGER2 and PTGER4 likely dominates granulosa cell responses at the follicle apex while PGE2 action via PTGER1 and PTGER3 isoform 5 likely dominates in mural granulosa cells elsewhere along the follicle wall. The importance of this spatial distribution is highlighted in studies examining components of the plasminogen activator family of proteases. PTGER2 and PTGER4 couple to Gαs to increase cAMP levels [54]; this signaling pathway increased PLAT levels in monkey granulosa cells [159] and is consistent with the presence of multiple rupture sites in monkey ovulatory follicles injected with agonists selective for PTGER2 and PTGER4 [25]. In contrast, PGE2 stimulation of PTGER1 and PTGER3 isoform 5 overall reduces cAMP while increasing intracellular Ca2+ and presumably additional downstream intracellular signals [54, 91]. These pathways were linked to enhanced expression of SERPINE1 [159], consistent with limited proteolysis in regions of the follicle other than the follicle apex. In this way, the distribution of PGE2 receptors may regulate proteolysis in a regional fashion to ensure that a single rupture site occurs at ovulation.

The vascular endothelial cells of stromal vessels express PTGER3 and PTGER4 [68] and may participate in maintenance of stable vessels. Endothelial cells invading the granulosa cell layer as ovulation nears continue to express PTGER3 and PTGER4 but also express PTGER1 and PTGER2. PTGER1 and PTGER2 promoted ovarian endothelial cell sprout formation in vitro and angiogenesis in the ovulatory follicle in vivo [68, 173], supporting the concept that PGE2 action via PTGER1 and PTGER2 are critical for ovulatory angiogenesis.

Information regarding PTGER expression in primate theca cells is not available. However, data obtained from other species suggest that PTGER2 and likely additional PTGERs respond to PGE2 stimulation to regulate steroid hormone production.
CONCLUSIONS AND PERSPECTIVES

PGE2 action via PTGERS within the ovarian follicle is clearly a necessary step in the ovulatory cascade. However, very limited information is available regarding specific, critical actions of PGE2. Few gonadotropin-regulated gene products have been shown to be dependent on elevated intrafollicular PGE2 levels. Microarray approaches have identified few PGE2-regulated gene products [175]. Use of technologies to eliminate expression of a single PTGER in individual follicular cell types may be helpful to clarify the physiological changes mediated via each PTGER during the ovulatory cascade.

Assessment of PGE2 action at each follicular cell type has provided some insight into possible ovulatory functions of PGE2. This review considers effects of PGE2 on oocytes, cumulus cells, mural granulosa cells, theca cells, and vascular endothelial cells. However, the ovulatory follicle includes other cell types including stromal fibroblasts, lymphatic endothelial cells, and invading cells of the immune system. Virtually nothing is known about PTGER localization and PGE2 action at these cells in the context of the ovulatory follicle. However, important roles for PGE2 in the regulation of inflammatory and immune responses in immune cells are well established, and work in this area includes identification of individual PTGERS responsible for mediating PGE2 actions [48, 176].

The spatial and temporal map of PTGER distribution within the ovulatory follicle may be useful to target therapeutics to enhance or reduce ovulation. Infertility in mice with global deletion of PTGER2 focused researchers on the critical role of PTGER2 in ovulatory events. Recently, Peluffo and colleagues demonstrated the potential for a selective PTGER2 antagonist as a novel method to block ovulation for contraceptive use [146]. Conversely, agonist action at PTGER2 may promote fertility. In monkeys, PTGER1 has been specifically implicated in both follicle rupture and follicular angiogenesis [25, 159], suggesting that this PTGER is also a potential target for promoting fertility or for development of novel contraceptives.

ACKNOWLEDGMENT

The authors would like to thank Drs. Thomas E. Curry Jr. and CheMyoung Lee for critically reading this manuscript. Study in Dr. Duffy’s laboratory were supported by generous donations of recombinant human gonadotropins and GnRH antagonists by Merck & Co. (Whitehouse Station, NJ) and Serono Reproductive Biology Institute (Rockland, MA).

REFERENCES

1. Peng XR, Hsueh AJ, LaPolt PS, Bjerings L, Ny T. Localization of luteinizing hormone receptor messenger ribonucleic acid expression in ovarian cell types during follicle development and ovulation. Endocrinology 1991; 129:3200–3207.
2. Yung Y, Aviel-Rosen S, Maman E, Rubinstein N, Avivi C, Orvieto R, Hovurzt A. Localization of luteinizing hormone receptor protein in the human ovary. Mol Hum Reprod 2014; 20:844–849.
3. Duffy DM. Novel contraceptive targets to inhibit ovulation: the prostaglandin E2 pathway. Hum Reprod Update 2015; 21:652–670.
4. Richards JS. Sounding the alarm–does induction of prostaglandin endoperoxide synthase-2 control the mammalian ovulatory clock? Endocrinology 1997; 138:4047–4048.
5. Shimada M, Hernandez-Gonzalez I, Gonzalez-Robaya I, Richards JS. Paracrine and autocrine regulation of epidermal growth factor-like factors in cumulus oocyte complexes and progonereta cells: key roles for prostaglandin synthase 2 and progonereta receptor. Mol Endocrinol 2006; 20:1352–1365.
6. Fang L, Cheng JC, Chang HM, Sun YP, Leung PC. EGF-like growth factors induce COX-2-derived PGE2 production through ERK1/2 in human granulosa cells. J Clin Endocrinol Metab 2013; 98:4932–4941.
7. Ben-Ami I, Freiman S, Armon L, Dantes A, Strasserbeck D, Friedler S, Raziell A, Seger R, Ron-El R, Amsterdam A. PGE2 up-regulates EGF-like growth factor biosynthesis in human granulosa cells: new insights into the coordination between PGE2 and LH in ovulation. Mol Hum Reprod 2006; 12:593–599.
8. Channing CP. Stimulatory effects of prostaglandins upon luteinization of theca monkey granulosa cell cultures. Prostaglandins 1972; 2:331–349.
9. Hedin L, Eriksson A. Prostaglandin synthesis is suppressed by progesterone in rat preovulatory follicles in vitro. Prostaglandins 1997; 53:91–106.
10. Elvin JA, Yan C, Matzuk MM. Growth differentiation factor-9 stimulates progesterone synthesis in granulosa cells via a prostaglandin E2/E2 receptor pathway. Proc Natl Acad Sci U S A 2000; 97:10288–10293.
11. Mori D, Ogino N, Yonezawa T, Kawaminami M, Kusuru S. Anti-ovulatory effects of RU486 and trilostane involve impaired cyclooxygenase-2 expression and mitotic activity of follicular granulosa cells in rats. Prostaglandins Other Lipid Mediat 2011; 94:118–123.
12. Lim H, Pariá BC, Das SK, Dzunchk JE, Langenbach R, Trzaskos JM, Dey SK. Multiple female reproductive failures in cyclooxygenase-2-deficient mice. Cell 1997; 91:197–208.
13. Davis BJ, Lennard DE, Lee CA, Tiano HF, Morham SG, Wessel WC, Langenbach R. Anovulation in cyclooxygenase-2-deficient mice is restored by prostaglandin E2 and interleukin-1beta. Endocrinology 1999; 140:2685–2695.
14. Hizaki H, Segi E, Sugimoto Y, Hirose M, Saij T, Ushikubi F, Matsuoka T, Noda Y, Taka T, Kamiya N, Narumiya S, Ichikawa A. Aborting expansion of the cumulus and impaired fertility in mice lacking the prostaglandin E receptor subtype EP(2). Proc Natl Acad Sci U S A 1999; 96:10501–10506.
15. Gaytán F, Bellido C, Gaytán M, Morales C, Sánchez-Criado JE. Differential effects of RU486 and indomethacin on follicle rupture during the ovulatory process in the rat. Biol Reprod 2003; 69:99–105.
16. Gaytán M, Bellido C, Morales C, Sánchez-Criado JE. Gaytán F. Effects of selective inhibition of cyclooxygenase and lipoxygenase pathways in follicle rupture and ovulation in the rat. Reproduction 2006; 132:571–577.
17. Armstrong DT, Grinchw DL. Blockade of spontaneous and LH-induced ovulation in rats by indomethacin, an inhibitor of prostaglandin biosynthesis. Prostaglandins 1972; 1:21–28.
18. Orczyk GP, Behrmann HR. Ovulation blockade by aspirin or indomethacin–in vivo evidence for a role of prostaglandin in gonadotrophin secretion. Prostaglandins 1972; 1:3–20.
19. O’Grady JP, Caldwell BV, Aulett JF, Sperry LF. The effects of an inhibitor of prostaglandin synthesis (indomethacin) on ovulation, pregnancy, and pseudopregnancy in the rabbit. Prostaglandins 1972; 1:97–106.
20. Tsafiri A, Lindner HR, Zor U, Lamprecht SA. Physiological role of prostaglandins in the induction of ovulation. Prostaglandins 1972; 2:1–10.
21. Saksena SK, Lau IF, Shaikh AA. Cyclic changes in the uterine tissue content of F-prostaglandins and the role of prostaglandins in ovulation in mice. Fertil Steril 1974; 25:636–643.
22. Wallach EE, Cruz A, Hunt J, Wright KH, Stevens VC. The effect of indomethacin on HMGC-HDC induced ovulation in the rhesus monkey. Prostaglandins 1975; 9:645–658.
23. Lau IF, Saksena SK, Chang MC. Prostaglandins F and ovulation in mice. J Reprod Fertil 1974; 40:467–469.
24. Ainsworth L, Tsang BK, Downey BR, Baker RD, Marcus GI, Armstrong DT. Effects of indomethacin on ovulation and luteal function in guinea pigs. Biol Reprod 1979; 21:401–411.
25. Kim SO, Harris SM, Duffy DM. Prostaglandin E2 (EP) receptors mediate PGE2-specific events in ovulation and luteinization within primate ovarian follicles. Endocrinology 2014; 155:1466–1475.
26. de l’Etoile AB, Jensen JT, Doom C, Hennebold JD. Impact of the prostaglandin synthase-2 inhibitor celecoxib on ovulation and luteal events in women. Contraception 2013; 87:352–357.
27. Hester KE, Harper MJ, Duffy DM. Oral administration of the cyclooxygenase-2 (COX-2) inhibitor meloxicam blocks ovulation in non-human primates when administered to simulate emergency contraception. Hum Reprod 2010; 25:360–367.
28. Jongsma C, Salvaterra AM, Schwartz IL, Croxatto HB. Suppression of follicular rupture with meloxicam, a cyclooxygenase-2 inhibitor: potential for emergency contraception. Hum Reprod 2010; 25:368–373.
29. De Silva M, Reeves JJ. Indomethacin inhibition of ovulation in the cow. J Reprod Fertil 1985; 75:547–549.
30. Diaz-Infante A Jr, Wright KH, Wallach EE. Effects of indomethacin and prostaglandin F-2-alpha on ovulation and ovarian contractility in the rabbit. Prostaglandins 1974; 5:567–581.
31. Downey BR, Ainsworth L. Reversal of indomethacin blockade of ovulation in gilts by prostaglandins. Prostaglandins 1980; 19:17–22.
32. Duffy DM, Stouffer RL. Follicular administration of a cyclooxygenase inhibitor can prevent oocyte release without alteration of normal luteal function in rhesus monkeys. Hum Reprod 2002; 17:2825–2831.

33. Pull M, Frieden BE, Brännström M. Induction of delayed follicular rupture in the human by the selective COX-2 inhibitor rofecoxib: a randomized double-blind study. Hum Reprod 2001; 16:1323–1328.

34. Peters MW, Pursley JR, Smith GW. Inhibition of intracellular PGE2 synthesis and ovulation following ultrasound-mediated intracellular injection of the selective cyclooxygenase-2 inhibitor NS-398 in cattle. J Anim Sci 2004; 82:1656–1662.

35. Sogn JH, Curry TE Jr, Brännström M, Lemaire WJ, Koos RD, Papkoff L, Hanson PO. Inhibition of follicle-stimulating hormone-induced ovulation by indomethacin in the perfused rat ovary. Biol Reprod 1987; 36:536–542.

36. Gaytán F, Tarradas E, Bellido C, Morales C, Sánchez-Criado JE. Prostaglandin E1 inhibit abnormal follicle rupture and restores ovulation in indomethacin-treated rats. Biol Reprod 2002; 67:1140–1147.

37. Duffy DM, Stouffer RL. The ovulatory gonadotrophin surge stimulates cyclooxygenase expression and prostaglandin production by the monkey follicle. Mol Hum Reprod 2001; 7:731–739.

38. Narumiya S, Sugimoto Y, Ushikubi F. Prostanoid receptors: structures, properties, and functions. Physiol Rev 1999; 79:1193–1226.

39. Kennedy I, Coleman RA, Humphrey PP, Levy GP, Lumley P. Studies on the characterisation of prostanoid receptors: a proposed classification. Prostaglandins 1996; 52:247–669.

40. Coleman RA, Smith WL, Narumiya S. International Union of Pharmacology classification of prostanoid receptors: properties, distribution, and structure of the receptors and their subtypes. Pharmacol Rev 1994; 46:205–229.

41. Toh H, Ichikawa A, Narumiya S. Molecular evolution of receptors for eicosanoids. FEBS Lett 1995; 361:17–21.

42. Luton D, Moszczynski A, Tkacz J, Palczewski K, Filipek S, G protein-coupled receptors—recent advances. Acta Biochim Pol 2012; 59:515–529.

43. Bhattacharya M, Peri KG, Almazan G, Ribeiro-da-Silva A, Shichi H, Durocher Y, Abramovitz M, Hou X, Varma DR, Chemtob S. Nuclear localization of prostaglandin E2 receptors. Proc Natl Acad Sci U S A 1999; 96:15792–15797.

44. Bhattacharya M, Peri K, Ribeiro-da-Silva A, Almazan G, Shichi H, Hou X, Varma DR, Chemtob S. Localization of functional prostaglandin E2 receptors EP3 and EP4 in the nuclear envelope. J Biol Chem 1999; 274:15719–15724.

45. Nakamura K, Kaneko T, Yamashita Y, Hasegawa H, Katoh H, Negishi M. Immunohistochemical localization of prostaglandin EP3 receptor in the rat central nervous system. J Comp Neurol 2000; 421:543–569.

46. Gobeil F Jr, Dumont I, Marrache AM, Vazquez-Tello A, Bernier SG, Lamontagne S, Rochette C, Sawyer N, Tremblay NM, Belley M, Gallant A, Abran D, Hou X, Beauchamp MH, Quiniou C, Bouayd A, Choufani S, Ducharme Y, Blouin M, Carrière MC, Chateauneuf A, Côté B, Denis D, Frenette R, Greig G, Karmagan S, Lamontagne S, Martins E, Nantel F, et al. 2,3-Diarylthiophenes as selective EP1 receptor antagonists. Bioorg Med Chem Lett 2005; 15:1155–1160.

47. Root JA, Davce DA, Af Forselles KJ. Prostanoid receptors mediating contraction in rat, macaque and human bladder smooth muscle in vitro. Eur J Pharmacol 2015; 769:274–279.

48. Trau HA, Davis JS, Duffy DM. Angiogenesis in the primate ovulatory follicle is stimulated by late-acting hormone via prostaglandin E2. Biol Reprod 2015; 92:15.

49. Regan JW, Bailey TJ, Pepper DJ, Pierce KL, Bogardus AM, Donello JL, Fairbairn CE, Kedzie KM, Woodward DF, Gil DW. Cloning of a novel human prostanoid E receptor subtype EP1 selective agonist, ONO-8713, on development of azoxymethane-induced aberrant crypt foci in mice. Cancer Lett 2000; 156:57–61.

50. Ducharme Y, Blouin M, Carrière MC, Chateauneuf A, Côté B, Denis D, Frenette R, Greig G, Karmangan S, Lamontagne S, Martins E, Nantel F, et al. 2,3-Diarylthiophenes as selective EP1 receptor antagonists. Bioorg Med Chem Lett 2005; 15:1155–1160.

51. Arosh JA, Banu SK, Chappelaine P, Emond V, Kim JJ, MacLaren LA, Fortier MA. Molecular cloning and characterization of bovine prosta-
glandin E2 receptors EP2 and EP4: expression and regulation in endometrium and myometrium during the estrous cycle and early pregnancy. Endocrinology 2003; 144:3076–3091.

75. Regan JW. EP2 and EP4 prostaglandin receptor signaling. Life Sci 2003; 74:143–153.

76. Kiriya M, Usukii F, Kobayashi T, Hirata M, Sugimoto Y, Narumiya S. Ligand binding specificity of the eight types and subtypes of the mouse prostaglandin receptors expressed in Chinese hamster ovary cells. Br J Pharmacol 1997; 127:217–224.

77. Jiang J, Ganeshe T, Du Y, Quan Y, Serrano G, Qui M, Speigel I, Rojas A, Lehtun I, Dingledine R. Small molecule antagonist reveals seizure-induced mediation of neuronal injury by prostaglandin E2 receptor subtype EP2. Proc Natl Acad Sci U S A 2012; 109:3149–3154.

78. Ganeshe T, Jiang J, Dingledine R. Development of second generation EP2 antagonists with high selectivity. Eur J Mol Med 2014; 8:521–535.

79. Fu Y, Yang MS, Jiang J, Ganesh T, Du Y, Quan Y, Serrano G, Qui M, Speigel I, Rojas A. Human prostaglandin E2 receptor transduce both intracellular calcium and cAMP signals. Biochemistry 1994; 33:14496–14502.

80. Adam M, Boie Y, Rushmore TH, Müller G, Bastien L, McKee KT, Lelutiu N, Goribau AM, Woodward DF, Gil DW. Coupling of a pertussis toxin-sensitive guanine nucleotide regulatory protein to the rabbit prostaglandin E2 receptor. J Biol Chem 1994; 269:6163–6169.

81. An S, Yang J, Xia M, Goetzl EJ. Alternative splicing of C-terminal tail of human prostaglandin E2 receptor transduce both intracellular calcium and cAMP signals. Biochemistry 1994; 33:14496–14502.

82. Fujino H, Xu W, Regan JW. Prostaglandin E2 induced functional and selective prostaglandin EP2 receptor antagonist. Br J Pharmacol 2010; 164:1847–1856.

83. Kedzie KM, Fairbairn CE, Bogardus AM, Woodward DF, Gil DW. Identification of prostaglandin E receptor 'EP2 subtype of human receptors for prostaglandin E2. Biochem Biophys Res Commun 1993; 197:263–270.

84. Otos T, Sugimoto Y, Naka K, Narumiya S, Ichikawa A. Identification of the eight types and subtypes of the rat prostaglandin E receptor. FEBS Lett 1995; 364:339–341.

85. Ishii K, Ishikawa H, Dvir M, Zeng L, Goetzl EJ. Alternative splicing generates multiple isoforms of the EP2 subtype of human prostaglandin E2 receptor. J Biol Chem 1994; 269:6163–6169.

86. Irie A, Sugimoto Y, Namba T, Harazono A, Honda A, Watabe A, Negishi M, Narumiya S, Ichikawa A. Structural organization of the human prostaglandin EP3 receptor subtype gene (PTGER3). Genomics 1997; 40:425–434.

87. Kiriya M, Usukii F, Kobayashi T, Hirata M, Sugimoto Y, Narumiya S, Ichikawa A. Identification of prostaglandin E receptor subtype EP3 with different C-terminal tail coupling to both stimulation and inhibition of adenylate cyclase. Eur J Biochem 1993; 217:313–318.

88. Fujino H, Xu W, Regan JW. Identification of prostaglandin E receptor 'EP2 subtype of human receptors for prostaglandin E2. Biochem Biophys Res Commun 1993; 197:263–270.

89. Otos T, Sugimoto Y, Negishi M, Irie A, Usukii F, Kikuzaki A, Ito S, Ichikawa H, Narumiya S, Yoshimori T. Structural organization of the human prostaglandin EP3 receptor subtype gene (PTGER3). Genomics 1997; 40:425–434.

90. Kiriya M, Usukii F, Kobayashi T, Hirata M, Sugimoto Y, Narumiya S, Ichikawa A. Identification of prostaglandin E receptor subtype EP3 with different C-terminal tail domains. Identical ligand binding properties and different coupling properties with Gi proteins. J Biol Chem 1993; 268:2712–2718.

91. Yang J, Xia M, Goetzl EJ, An S. Cloning and expression of the EP3-subtype of human receptors for prostaglandin E2. Biochem Biophys Res Commun 1994; 198:999–1006.

92. Kim SO, Dozier BL, Korn FA. Coupled to a pertussis toxin-sensitive guanine nucleotide regulatory protein in rabbit cortical collecting tubules. J Biol Chem 1990; 265:8479–8483.

93. Coleman RA, Kennedy I, Sheildrick RL. New evidence with selective agonists and antagonists for the subclassification of PGE2-sensitive (EP) receptors. Adv Prostaglandin Thromboxane Leukot Res 1987; 17A:467–470.

94. Lawrence RA, Jones RL, Wilson NH. Characterization of receptors involved in the direct and indirect actions of prostaglandins E and I on the guinea-pig ileum. Br J Pharmacol 1992; 105:271–278.

95. Clarke DL, Giembycz MA, Patel HJ, Belvisi MG. E-ring 8-isoprostanes inhibit ACh release from parasympathetic nerves innervating guinea-pig trachea through agonism of prostanooid receptors of the EP3-subtype. Br J Pharmacol 2004; 141:600–609.

96. Blocker RA, Schulte K, Wenzel D, Malinowska B, Schlicker E. Prostaglandins of the E series inhibit mononucleate release via EP3 receptors: proof with the competitive EP3 receptor antagonist L-826,266. Naunyn Schmiedebergs Arch Pharmacol 2010; 381:21–31.

97. Amarno H, Hayashi I, Endo H. Kitaosato H, Yamashina S, Maruyama T, Kobayashi M, Satoh K, Narita M, Sugimoto Y, Murata T, Yoshimura H, et al. Host prostaglandin EP2/E3-prostaglandin signaling regulates tumor-associated angiogenesis and tumor growth. J Exp Med 2003; 197:221–232.

98. Fujino H, Xu W, Regan JW. Identification of prostaglandin E receptor 'EP2 subtype of human receptors for prostaglandin E2. Biochem Biophys Res Commun 1993; 197:263–270.

99. Lelutiu N, Dingledine R. Small molecule antagonist reveals seizure-induced mediation of neuronal injury by prostaglandin E2 receptor subtype EP2. Proc Natl Acad Sci U S A 2004; 101:7630–7635.

100. An S, Yang J, Xia M, Goetzl EJ. Identification of prostaglandin E receptor 'EP2 subtype of human receptors for prostaglandin E2. Biochem Biophys Res Commun 1993; 198:999–1006.

101. Fujino H, Regan JW. EP4 prostaglandin receptor coupling to a pertussis toxin-sensitive inhibitory G protein. Mol Pharmacol 2006; 70:575–590.

102. Fujino H, West KA, Regan JW. Phosphorylation of glycosynthetic kinase-3 and stimulation of T-cell factor signaling following activation of EP2 and EP4 prostanooid receptors by prostaglandin E2. J Biol Chem 2002; 277:2614–2619.

103. Sheng H, Shao J, Washington MK, DuBois RN. Prostaglandin E2 increases growth and motility of colorectal carcinoma cells. J Biol Chem 2001; 276:18075–18081.

104. Fujino H, Xu W, Regan JW. Prostaglandin E2 induced functional evaluation of early growth response factors-1 and -2, but not EP2, prostanoiod receptors via the phosphatidylinositol 3-kinase and extracellular signal-regulated kinase (ERK) pathways. J Biol Chem 2001; 276:17925–17932.

105. Fujino H, Regan JW. Prostaglandin E2 induced functional evaluation of early growth response factors-1 and -2, but not EP2, prostanoiod receptors via the phosphatidylinositol 3-kinase and extracellular signal-regulated kinases. J Biol Chem 2003; 278:12151–12156.

106. Tang EH, Cai Y, Wang CK, Rocha VZ, Sukhova GK, Shimizu K, Xuan Y. Prostaglandins of the E series inhibit mononucleate release via EP3 receptors: proof with the competitive EP3 receptor antagonist L-826,266. Naunyn Schmiedebergs Arch Pharmacol 2010; 381:21–31.
vanhouthe pm, libby p, xu a. activation of prostaglandin e2-e4 signaling reduces chemokine production in adipose tissue. j lipid res 2015; 56:358–366.

118. el-niefawy n, abdel-hakim k, kanayama n. the selective prostaglan-
din ep4 agonist, aps-999 na, induces follicular growth and maturation in the rat ovary. eur j endocrinol 2005; 152:315–323.

119. watanabe y, murata t, amakawa m, miyake y, handa t, konishi k, matsumura y, tanaka t, takeuchi k. kag-308, a newly-identified ep4-selective agonist shows efficacy for treating ulcerative colitis and can bring about lower risk of colorectal neoplasia by oral administration. eur j pharmacol 2015; 754:179–189.

120. machwate m, harada s, leu ct, seeder g, labelle m, gallant m, hutchins s, lachance n, sawyer n, sliepitz d, metters km, rodan sb, et al. prostaglandin receptor ep4 mediates the bone anabolic effects of e2. mol pharmacol 2001; 60:36–41.

121. nakao k, murase a, ohshiro h, okumura t, taniguchi k, murata y, masuda m, kato t, okumura y, takada j. ct-023, a novel, potent and selective prostaglandin ep4 receptor antagonist with antihyperglycaemic properties. j pharmac Exp ther 2007; 322:682–694.

122. maubach ka, davis rj, clark de, fenton g, lockey pm, clark kl, oxford aw, hagan rm, routledge c, coleman ra. bgc2-1531, a novel, potent and selective prostanoid ep receptor antagonist: a putative new treatment for migraine headache. br j pharmacol 2009; 156:316–327.

123. bai x, wang j, guo y, han d, konishi k, matsumura y, tanaka t, takeuchi k. kag-308, a newly-identified ep4-selective agonist shows efficacy for treating ulcerative colitis and can bring about lower risk of colorectal neoplasia by oral administration. eur j pharmacol 2015; 754:179–189.

124. takahashi t, morrow jd, wang h, dey sk. cyclooxygenase-2-derived prostaglandin e2 directs oocyte maturation by differentially influencing multiple signaling pathways. j biol chem 2006; 281:37117–37129.

125. nuttink f, gall l, ruffini s, laffont l, clement l, reinaud p, adenot p, beaudoin b, charpigny g, marquard-le guenene b. ptgs2-related pge2 affects oocytes mapk phosphorylation and meiosis progression in cattle: late effects on early embryonic development. biol reprod 2011; 84:1248–1257.

126. kennedy cr, zhang y, brandon s, guan y, coffee k, funk cd, tilley sl, audoly lp, hicks eh, kim hs, flannery pj, coffman tm, wassarman pm, albertini df. the mammalian ovum. in: knobil e, neill shi fl, shu w, wang y, et al. prostaglandin e2 stimulates oocyte cumulus cell expansion on marker gene transcripts in bovine cumulus-oocyte complexes during maturation in vitro. fertil steril 2005; 83:1765–1768.

127. el-niefawy n, abayasekara dr, rath dc, foulds-ladha saa. role of ptgs2-generated pge2 during gonadotrophin-induced bovine oocyte maturation and cumulus cell expansion. reprod biomed online 2014; 28:388–400.

128. watanabe y, murata t, amakawa m, miyake y, handa t, konishi k, matsumura y, tanaka t, takeuchi k. kag-308, a newly-identified ep4-selective agonist shows efficacy for treating ulcerative colitis and can bring about lower risk of colorectal neoplasia by oral administration. eur j pharmacol 2015; 754:179–189.

129. watanabe y, murata t, amakawa m, miyake y, handa t, konishi k, matsumura y, tanaka t, takeuchi k. kag-308, a newly-identified ep4-selective agonist shows efficacy for treating ulcerative colitis and can bring about lower risk of colorectal neoplasia by oral administration. eur j pharmacol 2015; 754:179–189.

130. kennedy cr, zhang y, brandon s, guan y, coffee k, funk cd, tilley sl, audoly lp, hicks eh, kim hs, flannery pj, coffman tm, wassarman pm, albertini df. the mammalian ovum. in: knobil e, neill shi fl, shu w, wang y, et al. prostaglandin e2 stimulates oocyte cumulus cell expansion on marker gene transcripts in bovine cumulus-oocyte complexes during maturation in vitro. fertil steril 2005; 83:1765–1768.

131. eppig jj, prostaglandin e2 stimulates cumulus expansion and hyaluronic acid synthesis by cumuli oophori isolated from mice. biol reprod 1981; 25:191–195.

132. kennedy cr, zhang y, brandon s, guan y, coffee k, funk cd, magnuson ma, oates ja, breyer md, breyer rm. salt-sensitive hypertrophy and reduced blood pressure in mice lacking the ep2 prostaglandin e2 receptor. j clin invest 1999; 103:1539–1545.

133. kennedy cr, zhang y, brandon s, guan y, coffee k, funk cd, magnuson ma, oates ja, breyer md, breyer rm. salt-sensitive hypertrophy and reduced blood pressure in mice lacking the ep2 prostaglandin e2 receptor. j clin invest 1999; 103:1539–1545.

134. kennedy cr, zhang y, brandon s, guan y, coffee k, funk cd, magnuson ma, oates ja, breyer md, breyer rm. salt-sensitive hypertrophy and reduced blood pressure in mice lacking the ep2 prostaglandin e2 receptor. j clin invest 1999; 103:1539–1545.

135. kennedy cr, zhang y, brandon s, guan y, coffee k, funk cd, magnuson ma, oates ja, breyer md, breyer rm. salt-sensitive hypertrophy and reduced blood pressure in mice lacking the ep2 prostaglandin e2 receptor. j clin invest 1999; 103:1539–1545.

136. kennedy cr, zhang y, brandon s, guan y, coffee k, funk cd, magnuson ma, oates ja, breyer md, breyer rm. salt-sensitive hypertrophy and reduced blood pressure in mice lacking the ep2 prostaglandin e2 receptor. j clin invest 1999; 103:1539–1545.
156. Tsai SJ, Wiltbank MC, Bodensteiner KJ. Distinct mechanisms regulate induction of messenger ribonucleic acid for prostaglandin (PG) G/H synthase-2, PGE (EP3) receptor, and PGF2 alpha receptor in bovine preovulatory follicles. Endocrinology 1996; 137:3348–3355.
157. Tsai SJ, Anderson LE, Juengel J, Niswender GD, Wiltbank MC. Regulation of prostaglandin F2 alpha and E receptor mRNA by prostaglandin F 2 alpha in ovine corpora lutea. J Reprod Fertil 1998; 114:69–75.
158. Duffy DM, Stouffer RL. Luteinizing hormone acts directly at granulosa cells to stimulate periovulatory processes: modulation of luteinizing hormone effects by prostaglandins. Endocrinology 2003; 22:249–256.
159. Markosyan N, Duffy DM. Prostaglandin E2 acts via multiple receptors to regulate plasminogen-dependent proteolysis in the primate periovulatory follicle. Endocrinology 2009; 150:435–444.
160. Tjugum J, Norström A, Dennefors B. Influence of prostaglandin E2 on proteoglycan synthesis in the human ovarian follicle wall. Prostaglandins 1983; 25:71–77.
161. Dennefors B, Tjugum J, Norström A, Jansson PO, Nilsson L, Hamberger L, Wilhelmsson L. Collagen synthesis inhibition by PGE2 within the human follicular wall—one possible mechanism underlying ovulation. Prostaglandins 1982; 24:295–302.
162. Cai Z, Kwikinskiewicz J, Young ME, Stocco C. Prostaglandin E2 increases cyp19 expression in rat granulosa cells: implication of GATA-4. Mol Cell Endocrinol 2007; 263:181–189.
163. Ahsan S, Lacey M, Whitehead SA. Interactions between interleukin-1 beta, nitric oxide and prostaglandin E2 in the rat ovary: effects on steroidogenesis. Eur J Endocrinol 1997; 137:293–300.
164. Basini G, Tamanini C. Interrelationship between nitric oxide and prostaglandins in bovine granulosa cells. Prostaglandins Other Lipid Mediat 2001; 66:179–202.
165. Wang J, Shen XX, Huang XH, Zhao ZM. Follicular fluid levels of prostaglandin E2 and the effect of prostaglandin E2 on steroidogenesis in granulosa-lutein cells in women with moderate and severe endometriosis undergoing in vitro fertilization and embryo transfer. Chin Med J (Engl) 2012; 125:3985–3990.
166. Väinänen JE, Tong BL, Väinänen CC, Chan IH, Yuen BH, Leung PC. Interaction of prostaglandin F(2alpha) and prostaglandin E(2) on progesterone production in human granulosa-luteal cells. Biol Signals Recept 2001; 10:380–388.
167. Tjugum J, Norström A, Dennefors B, Hamberger L. On the specificity of prostaglandin and steroid induced inhibition of 3H-proline incorporation in the human follicular wall. J Endocrinol Invest 1987; 10:531–535.
168. Bridges PJ, Komar CM, Fortune JE. Gonadotropin-induced expression of messenger ribonucleic acid for cyclooxygenase-2 and production of prostaglandins E and F2alpha in bovine preovulatory follicles are regulated by the progesterone receptor. Endocrinology 2006; 147:4713–4722.
169. Erickson GF, Ryan KJ. Stimulation of testosterone production in isolated rabbit testicular tissue by LH/FSH, dibutryl cyclic AMP, PGE2alpha, and PGE2. Endocrinology 1976; 99:452–458.
170. Evans G, Dobias M, King GJ, Armstrong DT. Production of prostaglandins by porcine preovulatory follicular tissues and their roles in intrafollicular function. Biol Reprod 1983; 28:322–328.
171. Acosta TJ, Miyamoto A. Vascular control of ovarian function: ovulation, corpus luteum formation and regression. Anim Reprod Sci 2004; 82–83:127–140.
172. Fraser HM. Regulation of the ovarian follicular vasculature. Reprod Biol Endocrinol 2006; 4:18.
173. Trau HA, Brännström M, Curry TE Jr, Duffy DM. Prostaglandin E2 and vascular endothelial growth factor A mediate angiogenesis of human ovarian follicular endothelial cells. Hum Reprod 2016; 31:436–444.
174. Sakurai T, Suzuki K, Yoshie M, Hashimoto K, Tachikawa E, Tamura K. Stimulation of tube formation mediated through the prostaglandin EP2 receptor in rat luteal endothelial cells. J Endocrinol 2011; 209:33–43.
175. Scachor CL, VandeVoort CA, Duffy DM. Adipose differentiation-related protein: a gonadotropin- and prostaglandin-regulated protein in primate periovulatory follicles. Biol Reprod 2005; 72:1305–1314.
176. Nakaniishi M, Rosenberg DW. Multifaceted roles of PGE2 in inflammation and cancer. Semin Immunopathol 2013; 35:123–137.
177. Kobayashi T, Narumiya S. Function of prostanoid receptors; studies on knockout mice. Prostaglandins Other Lipid Mediat 2002; 68-69: 557–573.