Research Paper
A Comparative Study on the Effects of Functional and Non-Functional Fatigue Protocols on Dynamic Balance of Amateur Basketball Players

*Sasan Naderi1, Hamidreza Naserpour1, Fariborz Mohammadi-Pour2, Mohammadreza Amir-Seyfaddini2

1. Department of Sports Biomechanics, Faculty of Physical Education and Sports Sciences, Kharazmi University, Tehran, Iran.
2. Department of Sports Biomechanics, Faculty of Physical Education and Sports Sciences, Bahonar University, Kerman, Iran.

Objective
The purpose of the present study was to compare the effects of functional and non-functional fatigue protocols on the dynamic balance of amateur basketball players.

Methods
Ten amateur basketball players (mean age= 21.4±1.5 years, mean height= 177.5±7.1 cm, and mean weight= 67.4±8.5 kg) volunteered to participate in this study. Stair climbing and specific basketball movement circuit training were used to induce the non-functional and functional fatigues, respectively. Dynamic balance was measured by the postural stability test (level 2) using the Biodex balance system. Paired T-test and independent T-test were used for data analysis at a significance level of P<0.05.

Results
Dynamic balance of subjects was decreased after inducing both fatigue protocols, where the non-functional fatigue protocol reduced the overall balance by 21.39%, and the functional protocol reduced it by 10.49%. There was a significant difference between the pre-test and post-test scores of overall balance and the balance in the anterior-posterior direction following the non-functional fatigue protocol (P=0.03).

Conclusion
Non-functional fatigue protocol affects the dynamic balance of basketball players more than the functional protocol. Therefore, using different types of specialized exercises to experience the period of fatigue may be effective in improving the balance of basketball players.

Key words:
Balance, Basketball, Postural control, Functional fatigue
functional activities. Due to the lack of research to control the dynamic posture and fatigue caused by exercise, conducting studies using functional fatigue protocol similar to exercise as well as non-functional fatigue protocol and comparing them improves the postural control of players. In this regard, this study aimed to compare the effects of functional and non-functional fatigue protocols on dynamic balance of Basketball players (Table 1).

2. Methods

Participants were 10 physical education students of Shaheed Bahonar University of Kerman in Iran with a mean age of 21.4±1.5 years, mean height of 177.5±7.1 cm, and mean weight of 67.4±8.5 kg who had at least one year of college basketball experience who were selected using a convenience sampling method. All participants signed a written consent form to participate in this research after being informed of the test conditions. The testing process was performed in three sessions (one-week rest interval between each session). In the first session, to minimize the learning effect, participants become familiar with the balance measurement device and practiced with it. The Biodex balancing system was used to assess the balance, and postural stability test at level 2 was used to measure the dynamic balance index.

The duration of each test was 20 seconds, which was repeated three times; and there was a 10-second rest between each repetition. In the second session, the pre-test phase was performed and stair climbing was used to induce non-functional fatigue; the subject began to climb up and down the stairs (height=40 cm) and when the person’s heart rate reached 75% of the maximum heart rate (maximum heart rate=220 - age), the number of steps was counted. When the counted number reached to less than 50%, the moment was considered as the beginning of fatigue and then the post-test phase was carried out in the shortest possible time. In the third session, specific basketball movement circuit training was used to induce functional fatigue.

The protocol consisted of four 4-min stages at an intensity of 90-95% of maximum heart rate and three minutes of active rest with an intensity of 70% of maximum heart rate, which was similar to basketball in terms of duration, intensity and movement patterns. Subjects’ heart rate was monitored by a pacemaker (Polar model) during both modes. In the end, post-test measurements were conducted. Collected data were analyzed in SPSS V. 22 software. The paired t-test was used to compare the balance indicators before and after fatigue induction, and the independent t-test was used to compare the effect of the two functional and non-functional fatigue protocols at a significance level of 0.05.

3. Results

The results showed a decrease in balance indicators due to both fatigue protocols (Table 2). Among the studied parameters, the difference between pre-test and post-test scores of overall balance and postural stability in the anterior-posterior direction following non-functional fatigue protocol was significant (P=0.03). The non-functional protocol reduced the overall balance index by 21.39%, the balance in the anterior-posterior balance by 28.58%, and the balance in the medial-lateral direction by 11.33%; while the functional protocol reduced the overall balance index by 10.49%, the balance in the anterior-posterior balance by 12.50%, and the balance in the medial-lateral direction by 5.18%.

Fatigue Protocol	Balance	Phase	Mean±SD	T	P
	Overall	Post-test	2.20±0.69	2.52	*0.03
		Pre-test	3.01±1.20		
Non-functional	Anterior-posterior	Post-test	1.36±0.42	2.57	*0.03
		Pre-test	2.11±0.92		
	Medial-lateral	Post-test	1.42±0.46	2.08	0.06
		Pre-test	1.69±0.65		
	Overall	Post-test	2.01±0.65	1.74	0.11
		Pre-test	2.25±0.61		
Functional	Anterior-posterior	Post-test	1.28±0.48	1.57	0.15
		Pre-test	1.47±0.40		
	Medial-lateral	Post-test	1.30±0.40	0.99	0.35
		Pre-test	1.39±0.40		
4. Discussion

The results of the present study showed that fatigue can significantly reduce the reflex activity of the muscles around the knee and ankle joints. Decreased reflex activity for restoring balance increases the torque force in the frontal plane, which increases the risk of ankle sprain. The non-functional fatigue protocol affects balance more than functional protocol, so using specialized basketball exercises to experience the fatigue period and doing exercises to improve balance in this situation may be effective in improving the balance of basketball players. It can be concluded that the muscles affecting the postural stability in the anterior-posterior direction of the body are more affected by fatigue than those in the medial-lateral direction, which should be considered by trainers.

Ethical Considerations

Compliance with ethical guidelines

All ethical principles were considered in this article. Before the exams began, all the steps were explained to the participants, and the written consent was read and filled out by the subjects.

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Authors' contributions

Conceptualization, implementation, testing, drafting and resources: Sasan Naderi, Fariborz Mohammadi-Pour, Mohammadreza Amir-Seyfaddini; Analysis, writing and editing: Sasan Naderi, Hamidreza Naserpour.

Conflicts of interest

The authors declared no conflict of interest.

Table 2. Comparing balance indicators before and after inducing both fatigue protocols

Fatigue Protocol	Balance	Phase	Mean±SD	T	P
	Overall	Pre-test	2.20±0.69	2.52	*0.03
		Post-test	3.01±1.20		
Non-functional	Anterior-posterior	Pre-test	1.36±0.42	2.57	*0.03
		Post-test	11.2±0.92		
	Medial-lateral	Pre-test	1.42±0.46	2.80	0.60
		Post-test	1.69±0.65		
Functional	Overall	Pre-test	2.01±0.65	1.74	0.11
		Post-test	2.25±0.61		
	Anterior-posterior	Pre-test	1.28±0.48	1.57	0.15
		Post-test	1.47±0.40		
	Medial-lateral	Pre-test	1.30±0.40	0.99	0.35
		Post-test	1.39±0.40		
مقایسه تأثیر پروتکل‌های خستگی عملکردی و غیرعملکردی بر تعادل پویای بسکتبالیست‌های آماتور

امام‌ورد 1، ساسان نادری 2، محمدرضا امیر سیف‌الدینی 3

1. گروه بیومکانیک ورزش، دانشکده تربیت بدنی و علوم ورزشی، دانشگاه خوارزمی، تهران، ایران
2. گروه بیومکانیک ورزش، دانشکده تربیت بدنی و علوم ورزشی، دانشگاه شهید باهنر، کرمان، ایران

هدف تحقیق حاضر مقایسه پروتکل‌های خستگی عملکردی و غیرعملکردی بر تعادل پویای بسکتبالیست‌های آماتور بود.

روش‌ها
این تحقیق داوطلب شدند. به منظور ایجاد خستگی غیرعملکردی از پروتکل خستگی پله و برای ایجاد خستگی عملکردی از پروتکل خستگی ویژه بسکتبال استفاده شد. ارزیابی تعادل با دستگاه تعادل سنج بایودکس و با استفاده از آزمون پوسچرال استابیلیتی در سطح P > 0/05 (انجام شد. تجزیه و تحلیل داده‌ها نیز با استفاده از آزمون تی همبسته و تی مستقل انجام شد.

نتایج نشان‌دهنده کاهش تعادل در اثر هر دو پروتکل خستگی بود، طوری که پروتکل خستگی غیرعملکردی شاخص یافته‌های درصد کاهش داد. از بین پارامترهای بررسی شده، تفاوت 10/49 درصد و پروتکل عملکردی این شاخص را 21/39 تعادل کلی را P = 0/03 بین پیش آزمون و پس آزمون شاخص تعادل کلی و تعادل در جهت قدامی ـ خلفی بر اثر پروتکل غیرعملکردی (به ترتیب 20/33 و 20/40) معنی‌دار گزارش شد.

نتایج نشان‌دهنده کاهش تعادل را بیشتر از خستگی عملکردی تحت تأثیر قرار می‌دهد. بنابراین استفاده از تمرینات متفاوت از تمرینات تخصصی بر تجربه دوره خستگی ممکن است در بهبود تعادل بسکتبالیست‌ها مؤثر واقع شود.

کلیدواژه‌ها:
تعادل، بسکتبال، کنترل پوسچر، خستگی عملکردی

مقدمه
امروزه بسکتبال به یکی از پرطرفدارترین و محبوب‌ترین ورزش‌های تیمی در سراسر جهان تبدیل شده است و بر اساس درصد جمعیت جهان به طور منظم به انجام گزارش‌ها مربوط در زمینه بسکتبال مشغول هستند و این در حالی است که تعداد بسکتبالیست‌های مرد و زن جوان در حال افزایش است.

بسکتبال یکی از ورزش‌های تهاجمی و پربرخورد و در عین حال جذاب و پرطرفدار در سراسر جهان است. حرکات پیچشی، برشی، پرش و فرود جزء حرکات اصلی این ورزش محسوب می‌شود که در تمرینات بسکتبالیست‌ها در هنگام تمرین و در جلسات تمرینی نقش حیاتی و تعیین‌کننده‌ای در بهبود سطح والاس و کاهش ریسک آسیب‌های حاد بسکتبالیستان در این ورزش دارد.

تعادل یکی از عناصر اصلی برای ایستادن سالم و کنترل در فضای مجازی در سطح سایر ورزش‌ها است. حفظ مرکز ثقل بر روی سطح اتکا و ایستادگی هنگام حرکت و ایستادگی در فضاهای فیزیکی متنوع، ضروری است. خستگی عملکردی که به صورت متناوب و دائمی در زمینه‌های مختلف و بسیاری از فعالیت‌های ورزشی و فیزیکی ایجاد می‌گردد، ضروری است. در این تحقیق، مقایسه تأثیر پروتکل‌های خستگی عملکردی و غیرعملکردی بر تعادل پویای بسکتبالیست‌های آماتور محور دانشگاه خوارزمی تهران، ایران است.
سانتی متر بود) و هر زمان ضربان قلب فرد شرایط دقیقه به آزمودنی‌ها فرصت داده شد به شکل دلخواه به در جلسه دوم تست گیری ابتدا پیش آزمون تعادل انجام شد و خستگی در نظر گرفته و در حداقل زمان ممکن، پس آزمون درصد کاهش می‌یافت، این لحظه به عنوان آغاز در یک دقیقه به دست آید). زمانی که این تعداد شمارش شده اجرای آزمون نیز بدین صورت بود که آزمودنی بدون کفش و جوراب دستگاه تعادل سنج متناسب با تغییرات مرکز ثقل و فشار پاها، به ثانیه استراحت بین هر تکرار وجود داشت. در این تحقیق برای ایجاد خستگی می‌تواند وزن و سطح متفاوت می‌تواند تنظیم شود که سطح و سه دقیقه استراحت فعال با ضربان 70/10، روش اجرای آزمون دو بند و 10 ثانیه میزان وزن کمتری از پروتکل خ استفاده شد. نتایج آزمون‌‌های مختلف استفاده شده، مشخص می‌شود که خستگی ممکن است کاهشی بیشتری نسبت به تقاضای بسکتبالیست‌ها باشد. برای ایجاد خستگی شکستگی روند و محرمانه کنترل استراحت و فعالیت های عملکردی با طول مرکزی و پرتوکل‌های وابسته ممکن است. در این پژوهش برای ایجاد خستگی، نه داشتند. تمامی شرکت‌کنندگان حاضر بودند، به شیوه نمونه‌گیری در دسترس برای حضور در این برای ایجاد خستگی روش و پروتوکل‌های ممکن است تعادل را بیشتر تحت تأثیر قرار می‌گذارند که خستگی یکی از این فاکتورهاست.

روش‌شناسی

10. نفر از میکروجیون تری‌بندی‌نشده طولانی شب داده شد. که پرتوکل‌های فعال به ضربان‌های اتیستگی افتاده بود. شیوه پروتوکل‌های در سطح دو و چهار گروه به صورت پیوست شد. در این نتایج نشان داده شد که برای ایجاد خستگی، نه داشتند. تمامی شرکت‌کنندگان حاضر بودند، به شیوه نمونه‌گیری در دسترس برای حضور در این برای ایجاد خستگی روش و پروتوکل‌های ممکن است تعادل را بیشتر تحت تأثیر قرار می‌گذارند که خستگی یکی از این فاکتورهاست.

روش‌شناسی

10. نفر از میکروجیون تری‌بندی‌نشده طولانی شب داده شد. که پرتوکل‌های فعال به ضربان‌های اتیستگی افتاده بود. شیوه پروتوکل‌های در سطح دو و چهار گروه به صورت پیوست شد. در این نتایج نشان داده شد که برای ایجاد خستگی، نه داشتند. تمامی شرکت‌کنندگان حاضر بودند، به شیوه نمونه‌گیری در دسترس برای حضور در این برای ایجاد خستگی روش و پروتوکل‌های ممکن است تعادل را بیشتر تحت تأثیر قرار می‌گذارند که خستگی یکی از این فاکتورهاست.

روش‌شناسی

10. نفر از میکروجیون تری‌بندی‌نشده طولانی شب داده شد. که پرتوکل‌های فعال به ضربان‌های اتیستگی افتاده بود. شیوه پروتوکل‌های در سطح دو و چهار گروه به صورت پیوست شد. در این نتایج نشان داده شد که برای ایجاد خستگی، نه داشتند. تمامی شرکت‌کنندگان حاضر بودند، به شیوه نمونه‌گیری در دسترس برای حضور در این برای ایجاد خستگی روش و پروتوکل‌های ممکن است تعادل را بیشتر تحت تأثیر قرار می‌گذارند که خستگی یکی از این فاکتورهاست.

روش‌شناسی

10. نفر از میکروجیون تری‌بندی‌نشده طولانی شب داده شد. که پرتوکل‌های فعال به ضربان‌های اتیستگی افتاده بود. شیوه پروتوکل‌های در سطح دو و چهار گروه به صورت پیوست شد. در این نتایج

SPSS

1. Vestibular Receptors
2. Postural Stability
3. Anterior- Posterior
4. Medial-Lateral
5. Specific Basketball Movement Circuit

2. برای تجزیه و تحلیل آماری اطلاعات از نرم‌افزار SPSS استفاده شد.
مجله بیومکانیک ورزشی

استفاده شد. نرمال بودن توزیع نمرات از طریق آزمون شاپیرو ویلک بررسی شد. از آزمون تی همبسته برای مقایسه شاخص‌های تعادل قبل و بعد از خستگی و از آزمون تی مستقل برای مقایسه درصد تأثیر خستگی دو پروتکل عملکردی و غیرعملکردی در سطح معناداری (0/05) استفاده شد.

نتایج

نتایج مربوط به آزمون تی-مستقل برای مقایسه تأثیر دو پروتکل در جدول شماره 2 نمایش داده شده است. برای رسیدن به نتایج مربوط به پروتکل غیرعملکردی، شاخص تعادل کل را (جدول شماره 1) در جدول 2 کمیت شاخص‌های عملکرد قبل و بعد از اعمال پروتکل‌های خستگی.
هدف از این پژوهش، مقایسه تأثیر پروتکل های خستگی عملکردی و غیرعملکردی بر تعادل پویای بسکتبالیست های آماتور بود. در مجموع، نتایج تحقیق حاضر، کاهش تعادل در اثر خستگی را نشان داد. در مورد پروتکل خستگی عملکردی، نتایج نشان داد که حفظ تعادل به صورت معناداری تحت تأثیر این پروتکل قرار گرفته است. این نتایج در جهت قدامی ـ خلفی معنادار بودند، ولی در جهت داخلی ـ خارجی این اختلافات معنادار نبود. در مورد پروتکل خستگی غیرعملکردی هرگز قابل توجهی بر تعادل نخورد. این نتایج همچنین این موضوع را نشان داد که در بازیکنان آماتور، خستگی غیرعملکردی نسبت به خستگی عملکردی، حفظ تعادل را بیشتر تحت تأثیر قرار می گرفت. در هر دو پروتکل، کنترل قامت در جهت قدامی ـ خلفی نسبت به جهت داخلی ـ خارجی با نوسان بیشتری همراه بوده است.

خستگی ممکن است به مهار سیستم بازخورد عصبی ـ عضلانی منجر شود و بر عملکرد بیشتر بیشتر نتایج سیستم عصبی ـ عضلانی تأثیرگذار باشد. در حقیقت، خستگی باعث کاهش تخلیه فیبرهای دوک عضلانی می شود و این تأثیر احتمالاً به دلیل کاهش فعال سازی نورون های حرکتی گام است. این پدیده باعث کاهش ورودی به بخش هایی از سیستم عصبی مرکزی می شود که درون بخش ها آوران را به عنوان تغییرات ضعیفی در عملکرد تشخیص نمی گیرند که این کاهش تغییرات نهایی گزارش کرده به‌عنوان تغییرات ضعیفی در عملکرد بیان می گردد. این نتایج با نتایج تحقیق‌های سابق و همکاران کاترین و همکاران ویلکینز و همکاران، بو و همکاران لطافت کار و همکاران مشابهی بوده است.
مطالعه مقایسه تاثیر پروتکل‌های خستگی عملکردی و غیرعملکردی بر تعادل بسکتبالیست‌های آماتور

مساهمان: نادری ساسان و همکاران

نتایج

نتایج این مطالعه نشان داد که خستگی می‌تواند فعالیت‌های رفلکسی عضلات قسمت زانو و پا را به طور قابل‌توجهی کاهش دهد. کاهش فعالیت‌های رفلکسی در خستگی عملکردی، محاسبات عملکردی و تعادل نیز باعث افزایش نیروی گشتاوری پا و افزایش مرکز اعمال نیرو در صفحه فرونتال می‌شود که ممکن است خطر آسیب‌های خارجی را افزایش دهد. همچنین مشخص شد که پروتکل خستگی عملکردی، حفظ تعادل را بیشتر از خستگی عملکردی تحت تأثیر قرار می‌دهد. بنابراین استفاده از پروتکل خستگی عملکردی در مسابقات بسکتبال برای جبریدن خستگی و انجام تمرینات بازی بهبود تعادل و این وضعیت ممکن است در بهبود تعادل بازیکنان، نقش داشته باشد. در نتیجه، می‌توان نتیجه گیری کرد که مربیان می‌توانند برای تمرینات مشابه نیز به استفاده از تمرینات تخصصی رشته بسکتبال توجه کنند. در نتیجه این اطلاعات، می‌توان به این نکته نیز توجه کرد که خستگی عملکردی کمتر از خستگی عملکردی در تعادل بسکتبالیست‌ها استفاده می‌کند.

ملاحظات اخلاقی

پیروی از اصول اخلاقی تدریس در کلاس و اجتماعی

قبل از شروع آزمون‌ها تمامی مراحل برای شرکت کنندها توضیح داده شد و رخیت‌نامه‌های مرتبط آزمودن‌ها ضبط شد. همچنین همه مشارکت‌کنندگان این پژوهش حقیقی می‌باشند. مفسوی‌سازی اجرا نشده است. تجهیزات و تجهیزات مورد استفاده معمولاً مربوط به سیستم‌های تربیتی و هروستاتیک‌های فیزیک‌یابی است.
References

[1] Harmer PA. Basketball injuries. Med Sport Sci. 2005; 49:31-61. [DOI:10.1159/000085341] [PMID]

[2] McKay G, Goldie P, Payne W, Oakes B. Ankle injuries in basketball: Injury rate and risk factors. Br J Sports Med. 2001; 35(2):103-8. [DOI:10.1136/bjsm.35.2.103] [PMID] [PMCID]

[3] Martin RL, Davenport TE, Paulseh S, Wukich DK, Gogdes J. Ankle stability and movement coordination impairments: Ankle ligament sprains. J Orthop Sports Phys Ther. 2013; 43(9):A1-40. [DOI:10.2519/jospt.2013.0305] [PMID]

[4] McGuine TA, Greene JJ, Best T, Leverson G. Balance as a predictor of ankle injuries in high school basketball players. Clin J Sport Med. 2000; 10(4):239-44. [DOI:10.1097/000042752-200010000-00003] [PMID]

[5] Hewett TE, Myer GD, Ford KR, Heidt RS, JR, Colosimo AJ, McLean SG et al. Biomechanical measures of neuromuscular control and valgus loading of the knee predict anterior cruciate ligament injury risk in female athletes: A prospective study. Am J Sports Med. 2005; 33(4):492-501. [DOI:10.1177/0363546504269591] [PMID]

[6] Huston JL, Sandrey MA, Lively MW, Kotsko K. The effects of calf-muscle fatigue on sagittal-plane joint-position sense in the ankle. J Sport Rehabil. 2005; 14(2):168-84. [DOI:10.1123/jsr.14.2.168]

[7] Levangie PK, Norkin CC. Joint structure and function: A comprehensive analysis. 5th edition. Philadelphia: F.A. Davis Company; 2011.

[8] Naserpour H, Sadeghi H. The effect of short-term use of cold spray on strength and ankle joint position sense in professional wrestlers. J Sport Biomech. 2017; 3(2):43-50.

[9] Blackburn T, Gukekewicz K, Petschauer M, Prentice W. Balance and joint stability: The relative contributions of proprioception and muscular strength. J Sport Rehabil. 2000; 9(4):315-28. [DOI:10.1123/jsr.9.4.315]

[10] Gribble PA, Hertel J, Denegar CR, Buckley WE. The effects of fatigue and chronic ankle instability on dynamic postural control. J Athl Train. 2004; 39(2):156-61.

[11] Yaggie JA, McGregor SL. Effects of isokinetic ankle fatigue on the maintenance of balance and postural limits. Arch Phys Med Rehabil. 2002; 83(2):224-8. [DOI:10.1053/apmr.2002.28032] [PMID]

[12] Sparto PJ, Parindsay M, Reinseel TE, Simon S. The effect of fatigue on multijoint kinematics, coordination, and postural stability during a repetitive lifting test. J Orthop Sports Phys Ther. 1997; 25(1):3-12. [DOI:10.2519/jospt.1997.25.1.3] [PMID]

[13] Cetin N, Bayramoglu M, Aytar A, Surenkok O, Yemisci OU. Effects of Lower-Extremity and Trunk Muscle Fatigue on Balance. Open Sports Med J. 2008; 2(1):16-22. [DOI:10.2174/1874387008002010016]

[14] Vuillerme N, Forestier N, Nougier V. Attentional demands and postural sway: The effect of the calf muscles fatigue. Med Sci Sports Exerc. 2002; 34(12):1907-12. [DOI:10.1097/00005768-200212000-00008] [PMID]

[15] Khorramnejad H, Sahebazzamani M, Sharifiyan E, AmirSeyfaddini M. Effects of fatigue on performance stability basketball players with functional ankle instability. J Sport Med Rev. 2012; 9:46-60.

[16] Faraji E, Daneshmandi H, Atri AE, Onvani V, Namjoo FR. Effects of prefabricated ankle orthoses on postural stability in basketball players with chronic ankle instability. J Res Rehabil Sci. 2012; 3(4):274-8. [DOI:10.5812/ajsm.34551] [PMID] [PMCID]

[17] Smith M. Basketball skill test for the big men. FIBA Assist Mag. 2004; 07:59-60.
