Interaction of vitamin D with membrane-based signaling pathways

María Jesús Larriba¹, José Manuel González-Sancho¹, Félix Bonilla² and Alberto Muñoz¹*

¹ Instituto de Investigaciones Biomédicas “Alberto Sols,” Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Madrid, Spain
² Department of Medical Oncology, Hospital Universitario Puerta de Hierro Majadahonda, Majadahonda, Spain

Many studies in different biological systems have revealed that 1α,25-dihydroxyvitamin D₃ (1α,25(OH)₂D₃) modulates signaling pathways triggered at the plasma membrane by agents such as Wnt, transforming growth factor (TGF)-β, epidermal growth factor (EGF), and others. In addition, 1α,25(OH)₂D₃ may affect gene expression by paracrine mechanisms that involve the regulation of cytokine or growth factor secretion by neighboring cells. Moreover, post-transcriptional and post-translational effects of 1α,25(OH)₂D₃ add to or overlap with its classical modulation of gene transcription rate. Together, these findings show that vitamin D receptor (VDR) cannot be considered only as a nuclear-acting, ligand-modulated transcription factor that binds to and controls the transcription of target genes. Instead, available data support the view that much of the complex biological activity of 1α,25(OH)₂D₃ resides in its capacity to interact with membrane-based signaling pathways and to modulate the expression and secretion of paracrine factors. Therefore, we propose that future research in the vitamin D field should focus on the interplay between 1α,25(OH)₂D₃ and agents that act at the plasma membrane, and on the analysis of intercellular communication. Global analyses such as RNA-Seq, transcriptomic arrays, and genome-wide ChIP are expected to dissect the interactions at the gene and molecular levels.

Keywords: 1α,25(OH)₂D₃, VDR, membrane-based signaling, Wnt, growth factors, cytokines, paracrine effects

INTRODUCTION

The active vitamin D metabolite 1α,25-dihydroxyvitamin D₃ (1α,25(OH)₂D₃) is a key regulator of gene expression in higher organisms. It modulates the activity of the vitamin D receptor (VDR), a member of the superfamily of nuclear hormone receptors that regulate gene transcription. Genome-wide chromatin immunoprecipitation studies have shown that VDR binds to hundreds of genome sites even in the absence of 1α,25(OH)₂D₃ and that ligand binding increases and partially changes these binding sites, which depend on the cell type and the duration of treatment (Carlberg and Campbell, 2013). While a subset of VDR binding sites may be responsible for the control of gene expression (VDREs or vitamin D response elements), others might be temporary anchorage places for a population of unliganded “dormant” VDR. According to the classical view, VDR binds DNA as heterodimers with a retinoid X receptor (RXRα, β, or γ) and, upon ligand binding, changes the transcription rate of neighboring genes.

However, many genes whose expression is altered by 1α,25(OH)₂D₃ do not contain VDREs. Putative mechanisms of this action include post-transcriptional regulation via changes in the levels of microRNAs that modulate the half-life and/or translation of their messenger RNAs (Thorne et al., 2011; Wang et al., 2011; Alvarez-Díaz et al., 2012; Kasiappan et al., 2012; Guan et al., 2013). Also, 1α,25(OH)₂D₃ may regulate genes post-translationally via changes in the phosphorylation or other modifications of proteins which affect their stability (Lin et al., 2003; Li et al., 2004), or through changes in the level or activity of proteases that target them (Alvarez-Díaz et al., 2010).

Increasing importance has recently been accorded to another mechanism of 1α,25(OH)₂D₃ action: the modulation of signaling pathways triggered by other agents at the plasma membrane. Indeed, a number of studies have shown that 1α,25(OH)₂D₃ modulates the effects of growth factors and cytokines by altering either their cytosolic signaling pathways or the activity of target transcription factors in the nucleus, or even in a paracrine fashion by inhibiting their synthesis and secretion by neighboring cells.

Here we review the available data on these non-classical, alternative mechanisms by which 1α,25(OH)₂D₃ modulates gene expression. Notably, for specific genes such as c-MYC, both direct transcriptional and indirect modes of regulation by 1α,25(OH)₂D₃ have been described (Pan and Simpson, 1999; Pålmer et al., 2001; Toropainen et al., 2010; Salehi-Tabar et al., 2012).

INTERACTION OF 1α,25(OH)₂D₃ WITH WNT, HEDGEHOG, AND NOTCH PATHWAYS

Wnt, Hedgehog, and Notch signaling pathways, which have long been known to play crucial roles during development, are now considered critical for many tumorigenic processes in which they function abnormally due to mutation and/or changes in expression of components.
Wnt factors activate several signaling pathways upon binding to different plasma membrane receptors: the canonical or Wnt/β-catenin and the non-canonical (planar polarity, Ca²⁺... pathways (Clevers and Nusse, 2012). Activation of the Wnt/β-catenin pathway by mutation of APC or AXIN tumor suppressor genes or of CTNNB1/β-catenin oncogene together with changes in the expression of a number of regulatory genes (SFRPs, DICKKOPF (Dkk)s...) is a hallmark of most colorectal cancers and of a variable proportion of several other malignancies (Clevers and Nusse, 2012). A series of studies report that 1α,25(OH)₂D₃ antagonizes Wnt/β-catenin signaling in colon cancer cells by several mechanisms: the reduction of transcriptionally active β-catenin/T-cell factor complexes, the induction of β-catenin relocation from the nucleus toward the adherens junctions structures at the plasma membrane, and the increase in the level of the Wnt inhibitor DKK-1 (Pálmer et al., 2001; Shah et al., 2006; Aguilera et al., 2007) (Figure 1). In this way, the pathway endpoint, i.e., the activation of β-catenin target genes, is attenuated by 1α,25(OH)₂D₃ (Pálmer et al., 2001). Emphasizing the importance of this action, an additional indirect mechanism of Wnt/β-catenin antagonism in colon cancer has been proposed involving IL-1β, which will be reviewed in section 1α,25(OH)₂D₃ and Cytokines. Although 1,25(OH)₂D₃ inhibits β-catenin/TCF transcriptional activity in colon and other cancer cells, the upregulation of the Wnt/β-catenin pathway by either ligand-activated or unliganded VDR has been described in osteoblasts and keratinocytes, where it promotes bone formation and hair follicle differentiation, respectively (Larriba et al., 2013). However, the results reported in keratinocytes are controversial: while VDR enhances Wnt signaling through direct binding to Lymphocyte Enhancer-binding Factor (LEF)-1 independently of ligand and β-catenin (Luderer et al., 2011), ligand-activated VDR is believed to inhibit Wnt/β-catenin signaling (Bikle, 2011; Jiang et al., 2012).

Inhibition of Hedgehog (Hh) signaling by vitamin D compounds has also been suggested. In a study combining experiments in zebrafish, the yeast Pichia pastori and mouse fibroblasts, secreted vitamin D₃, or its precursor 7-dehydrocholesterol (7-DHC), was shown to mediate the paracrine inhibition of Smoothened (Smo) by Patched (Ptc)1 which leads to pathway inactivation (Bijlsma et al., 2006). In the model proposed, which includes the binding of vitamin D₃ to Smo at high (micromolar) concentrations, Hh ligands activate the pathway by blocking the induction of the secretion of vitamin D₃/7-DHC by Ptc1 (Bijlsma et al., 2006) (Figure 1). The Hh pathway is aberrantly activated in basal cell carcinoma, the most frequent human tumor type. Interestingly, 1α,25(OH)₂D₃ inhibits proliferation and induces differentiation of mouse basal cell carcinomas and embryonal rhabdomyosarcomas with an activated Hh pathway due to Ptc1 deletion (Uhmann et al., 2011, 2012). As in the previous study, 1α,25(OH)₂D₃ acts at the level of Smo in a VDR-independent manner (Figure 1). Curiously, Tang et al. found that vitamin D₃ inhibits Hh and cell proliferation more effectively than 7-DHC, 25(OH)₂D₃, or 1α,25(OH)₂D₃ in murine basal cell carcinoma cells (Tang et al., 2011). Vitamin D₃ also inhibits proliferation and Hh pathway through inactivation of Smo in cultured mouse pancreatic adenocarcinoma cells, but has no antitumor activity in vivo (Brüggemann et al., 2010). A common concern in all these studies is the high concentration of vitamin D₃ required to observe the reported effects. Research in Vdr-deficient mice and in mouse skin explants has shown that lack of VDR increases the expression of several components of the Hh pathway such as Shh, Smo, Gli1, Gli2, and Ptch1, while 1α,25(OH)₂D₃ suppresses their expression (Bikle et al., 2013) (Figure 1). However, the interaction between 1α,25(OH)₂D₃ and Hh signaling in human skin remains to be elucidated.

Few studies link vitamin D with Notch signaling. Differentiation of human osteoblasts with vitamin D₃ and dexamethasone distinctly affects the expression of Notch receptor family members (Schnabel et al., 2002). In rodent osteoblasts, the transcription factor Hes-1, which is an effector of the Notch pathway, enhances the induction of SPP1/osteopontin transcription by 1α,25(OH)₂D₃, indicating the collaboration of 1α,25(OH)₂D₃ and Notch pathways in bone remodeling (Shen and Christakos, 2005) (Figure 1). Transcriptomic analyses in human RWPE1 immortalized non-tumorigenic prostate cells showed the reduction of the RNA levels of the NOTCH ligands JAGGED (JAG)1, JAG2, and Delta-like (DLL)1 by 1α,25(OH)₂D₃ (Kovalenko et al., 2010) (Figure 1). By contrast, no changes in the expression of NOTCH-1 and JAG1 were detected in cultured human keratinocytes upon 1α,25(OH)₂D₃ treatment (Reichrath and Reichrath, 2012). As JAG1 transcription and, consequently, Notch signaling are upregulated by Wnt/β-catenin in colorectal cancer cells (Rodilla et al., 2009), the repressive effect of 1α,25(OH)₂D₃ on the Notch pathway in this system may be secondary to the antagonism of the Wnt/β-catenin pathway (Figure 1).

INTERPLAY OF 1α,25(OH)₂D₃ WITH AGENTS THAT TRIGGER SIGNALING PATHWAYS VIA PLASMA MEMBRANE KINASE RECEPTORS

There is mutual antagonism between 1α,25(OH)₂D₃ and epidermal growth factor (EGF), a potent mitogen, in primary colon epithelial cells and in established colon (Caco-2) and breast (T47D) tumor cell lines. This is based on the cross-inhibition of the expression of their respective receptors, VDR and EGF (Tong et al., 1998, 1999). However, it is a cell type-dependent effect as EGF increases VDR in the rat small intestine and 1α,25(OH)₂D₃ and TGF-β (Bikle et al., 1989; Desprez et al., 1991). In addition, 1α,25(OH)₂D₃ inhibits EGFR signaling by increasing the level of E-cadherin protein at the plasma membrane, which downregulates EGFR (Pálmer et al., 2001; Andl and Rustgi, 2005), and by decreasing that of SPROUTY-2, a cytosolic protein that reduces EGFR ubiquitination, internalization and degradation (Cabrita and Christofori, 2008; Barbáchano et al., 2010).
(Yanagisawa et al., 1999), an effect that is abrogated by Smad7 in transfected COS-7 cells (Yagi et al., 1999). Reinforcing the interaction between both signaling pathways, 1α,25(OH)2D3 induces the expression of Smad anchor for receptor activation (SARA) (Pálmer et al., 2003), which maintains the epithelial phenotype by recruiting Smads 2/3 to the activated TGF-β receptors and regulates endocytic trafficking of EGFR and other proteins (Tang et al., 2011; Kostaras et al., 2013). Notably, a recent study of R. M. Evans’ group has revealed a genome-wide overlap of VDR and Smad3 binding sites that is responsible for the abrogation by VDR ligands of the TGF-β1-mediated activation of hepatic stellate cells during liver fibrosis (Ding et al., 2013). These authors show that TGF-β1 signaling redistributes VDR-binding sites in the genome and facilitates VDR binding at Smad3 profibrotic target genes. Upon ligand activation, VDR binding to coregulated genes decreases Smad3 occupancy at these sites, causing inhibition of fibrosis (Ding et al., 2013). This is a regulatory feedback mechanism in which VDR ligands limit the fibrotic process and so ensure an appropriate non-pathological tissue response. Given the crucial roles of TGF-β in carcinogenesis, future studies should examine whether vitamin D compounds play similar roles in the maintenance of epithelial integrity opposing the onset of carcinomas.

1α,25(OH)2D3 and TGF-β interact also in bone. Curiously, in rat (UMR 106 and ROS 17/2.8) and human (MG-63) osteoblastic cells TGF-β increases VDR expression but inhibits the stimulation of osteocalcin and osteopontin transcription and RNA levels by 1α,25(OH)2D3 (Staal et al., 1994). TGF-β exerts this inhibitory effect by reducing the binding of VDR-RXR complexes to VDREs localized in the promoter of these genes without affecting the nuclear availability of VDR at least in ROS 17/2.8 cells (Staal et al., 1996). In contrast to the stimulation of osteocalcin synthesis in human and rat cells, 1α,25(OH)2D3 decreases osteocalcin production in mouse fetal long bone cultures and neonatal osteoblastic MC3T3 cells while stimulating bone resorption (Staal et al., 1998). This bone resorption action of 1α,25(OH)2D3 is dose-dependently inhibited by TGF-β (Staal et al., 1998).

A complex, cell type-, context- and sometimes age-dependent relation exists between 1α,25(OH)2D3 and insulin-like growth factors (IGF)-I and II. For instance, in C2C12 myoblasts 1α,25(OH)2D3 decreases IGF-I expression while it increases that of IGF-II (Garcia et al., 2011). In HT29 colon carcinoma cells several vitamin D compounds inhibit the secretion of IGF-II thus attenuating its cell proliferation activity (Oh et al., 2001). In addition, 1α,25(OH)2D3 blocks the mitogenic activity of insulin.
IGFs and also modulate cell survival/apoptosis: a group of molecules with pleiotropic actions that transport the expression of several IGF binding proteins (IGFBPs), a group of molecules with pleiotropic actions that transport IGFs and also modulate cell survival/apoptosis: 1

HGF cooperate to increase osteogenic differentiation of human bone marrow stem cells and maturation of chondrocyte progenitor cells (Grumbles et al., 1996; D’Ippolito et al., 2002; Chen et al., 2000). Curiously, recent studies show that IGFBP3 interacts with VDR (Li et al., 2013) and that IGFBP6 binds VDR and blocks the expression of the pro-invasive integrin αβ₆ exerted by PTHrP signaling (Shen et al., 2007).

1α,25(OH)₂D₃ AND CYTOKINES

The anti-inflammatory and immunomodulatory actions, and thus some of the anticancer and antimicrobial effects of 1α,25(OH)₂D₃, are mediated by the regulation of cytokine production and/or through the control of their receptors or downstream signaling pathways. Globally, 1α,25(OH)₂D₃ contributes to the autocrine and paracrine control of innate and adaptive immune responses (Adorini and Penna, 2008).

1α,25(OH)₂D₃ regulates the function of antigen-presenting cells and T-lymphocytes. It inhibits Th1 cells differentiation and, therefore, the secretion of Th1-type cytokines, enhances the development of Th2 cells, and induces tolerogenic monocytes and dendritic cells. IL-4 and IL-10 are among the commonly increased cytokines, while IL-1, IL-2, IL-6, IL-17, tumor necrosis factor (TNF)-α and interferon (IFN)-γ are decreased (Adorini and Penna, 2008).

Mechanistically, ligand-activated VDR directly downregulates the expression of IL-10, IL-2, and IL-12B in lipopolysaccharide-treated human monocytes (THP-1) through its binding to VDREs located in the genomic regions of these genes and the recruitment of the co-repressor NCOR/SMRT and histone deacetylases (Matilainen et al., 2010a,b; Gynther et al., 2011). Remarkably, IL-10 is downregulated by short 1α,25(OH)₂D₃ treatment (8 h) but upregulated at late time points (48 h) (Matilainen et al., 2010a). In addition, direct VDR binding to a single VDRE mediates the upregulation of IL-8 gene by 1α,25(OH)₂D₃ in undifferentiated and differentiated THP-1 cells (Rydnänen and Carlberg, 2013).

1α,25(OH)₂D₃ also changes the expression of target genes in immune cells by repressing crucial transcription factors such as nuclear factor kappa B (NFκB) and signaling pathways such as Janus kinase-signal transducer and activator of transcription (JAK-STAT) (Yu et al., 1995; Muthian et al., 2006; Geldmeyer-Hilt et al., 2011). 1α,25(OH)₂D₃ also represses NFκB activity in fibroblasts and adipocytes (Harant et al., 1998; Mutt et al., 2012), and fibroblasts lacking VDR have increased NFκB activity (Sun et al., 2006). Direct (increase in IkBα expression and reduction

and IGF-I in MCF7 breast cancer cells, at least in part due to the inhibition of c-FOS upregulation (Vink-van Wijngaarden et al., 1996). 1α,25(OH)₂D₃ and IGF-I have also opposite effects on mouse long bones: IGF-I increases osteocalcin production, which is completely blocked by 1α,25(OH)₂D₃, and inhibits the enhancement of bone resorption caused by 1α,25(OH)₂D₃ (Staal et al., 1998). Furthermore, 1α,25(OH)₂D₃ variably regulates the expression of several IGF binding proteins (IGFBPs), a group of molecules with pleiotropic actions that transport IGFs and also modulate cell survival/apoptosis: 1α,25(OH)₂D₃ induces IGFBP3 expression in SW480-ADH colon carcinoma, SaOS-2 osteosarcoma, PC3 prostate cancer, MCF7 breast carcinoma and MCF-10A normal mammary cells (Pålmer et al., 2003; Matilainen et al., 2005; Malinen et al., 2011; Brosseau et al., 2013), IGFBP6 in SaOS-2, SW480-ADH and colon carcinoma HT29 cells (Oh et al., 2001; Pålmer et al., 2003; Matilainen et al., 2005), IGFBP1 and IGFBP5 in SaOS-2 and PC3 cells, and IGFBP4 in SaOS-2 cells (Matilainen et al., 2005). Conversely, 1α,25(OH)₂D₃ represses IGFBP4 in HT29 and SW480-ADH cells, and IGFBP2 in HT29 cells (Oh et al., 2001; Pålmer et al., 2003). In ovarian cells, 1α,25(OH)₂D₃ alone induces IGFBP1 production but, conversely, it enhances the inhibitory effect of insulin (Parikh et al., 2010). Curiously, recent studies show that IGFBP3 interacts with VDR (Li et al., 2013) and that IGFBP6 binds VDR and blocks the induction of osteoblast differentiation by 1α,25(OH)₂D₃ (Cui et al., 2011).

Cell type-dependent effects of 1α,25(OH)₂D₃ have also been described for hepatic growth factor (HGF) signaling. 1α,25(OH)₂D₃ activates the HGF gene promoter and induces HGF expression and secretion in rat NRK-49F renal interstitial fibroblasts (Li et al., 2005) and in human keloid fibroblasts (Zhang et al., 2011). Consistently with these results, vitamin D deficiency reduces HGF and HGF receptor/c-Met expression during liver regeneration in rats (Goupil et al., 1997). Conversely, 1α,25(OH)₂D₃ decreases the level of HGF RNA in human HL-60 promyelocytic leukemia cells (Inaba et al., 1993), smooth muscle cells (Shalhoub et al., 2010) and MG-63 osteosarcoma cells (Chattopadhay et al., 2003). Moreover, the expression of c-Met is inhibited by 1α,25(OH)₂D₃ in human MHC97 hepatocellular carcinoma cell line (Wu et al., 2007). Curiously, 1α,25(OH)₂D₃ and HGF cooperate to increase osteogenic differentiation of human bone marrow stem cells and maturation of chondrocyte progenitor cells (Grumbles et al., 1996; D’Ippolito et al., 2002; Chen et al., 2011, 2012). Also, 1α,25(OH)₂D₃ and HGF additively inhibit proliferation of androgen-unresponsive prostate cancer cells (Qadan et al., 2000).

In concordance with its regulatory role in the organism, 1α,25(OH)₂D₃ favors physiological and homeostatic angiogenesis but inhibits angiogenesis in pathological conditions. Thus, 1α,25(OH)₂D₃ promotes myogenic differentiation of C2C12 cells by increasing the expression of two key angiogenic factors: vascular endothelial growth factor (VEGF) and fibroblast growth factor-1 (Garcia et al., 2013). In addition, 1α,25(OH)₂D₃ stimulates pro-angiogenic properties of endothelial progenitor cells by increasing VEGF levels (Grundmann et al., 2012). 1α,25(OH)₂D₃ also upregulates VEGF expression in osteoblast-like cells but not in breast cancer cells (Schlaeppi et al., 1997). Likewise, ED-71, a vitamin D analog, enhances VEGF expression and promotes angiogenesis in a murine bone marrow ablation model (Okuda et al., 2007). Indeed, increased production of VEGF in vascular smooth muscle cells results from the activation of a VDRE present in the VEGF gene promoter (Cardus et al., 2009). By contrast, 1α,25(OH)₂D₃ downregulates hypoxia-inducible factor (HIF)-1 and VEGF protein expression in several human colon, prostate and breast cancer cell lines (Ben-Shoshan et al., 2007), decreases VEGF production by human lumbar annulus cells (Gruber et al., 2008), and protects against diabetic retinopathy in rats by inhibiting VEGF expression in the retina (Ren et al., 2012).

1α,25(OH)₂D₃ also modulates the activity of signaling pathways mediated by other types of plasma membrane receptors such as G protein-coupled receptors. Shen et al. found that 1α,25(OH)₂D₃ suppresses the expression of parathyroid hormone-related protein (PTHrP) in prostate cancer cells via a negative VDRE localized within the non-coding region of the gene, thus antagonizing the induction of cell proliferation and of the expression of the pro-inflammatory cytokines αβ₆ exerted by PTHrP signaling (Shen et al., 2007).
of nuclear translocation of p65) and indirect (upregulation of IGFBP3 and clusterin) mechanisms contribute to the inhibition of NFκB activation (Krishnan and Feldman, 2010). D. Feldman’s group has reported that, in addition to inhibiting NFκB, the anti-inflammatory effects of 1α,25(OH)2D3 in prostate cancer cells include the reduction of pro-inflammatory prostaglandins (PG) production via suppression of cyclooxygenase-2, downregulation of PG receptors, and upregulation of 15-hydroxyprostaglandin dehydrogenase, which inactivates PGs (Krishnan and Feldman, 2010). Moreover, 1α,25(OH)2D3 decreases the synthesis of pro-inflammatory IL-6 through the inactivation of p38 kinase due to the upregulation of the mitogen kinase phosphatase (MKP)5 and the blockade of TNF-α (Krishnan and Feldman, 2010). In Jurkat cells, the repression of IL-2 gene by 1α,25(OH)2D3 is at least partially due to the blockade of NFATp/AP-1 complex formation at a positive regulatory NFAT-1 site, which is bound by VDR-RXR heterodimers (Alroy et al., 1995).

1α,25(OH)2D3 reduces the secretion of interleukin (IL)1-β in THP macrophages by blocking the activation of STAT1 (Kaler et al., 2009). As IL1-β activates the Wnt/β-catenin pathway in colon carcinoma cells via inhibition of GSK3β activity and subsequent stabilization and nuclear translocation of β-catenin, this mechanism may contribute to the antagonism of Wnt signaling by 1α,25(OH)2D3 (Kaler et al., 2009) (Figure 1). Curiously, IL-1α is believed to be upregulated and to mediate the antiproliferative effects of 1α,25(OH)2D3 in prostate progenitor/stem cells (Maund et al., 2011).

In human osteoblasts, 1α,25(OH)2D3 completely overrules the inhibitory effect of IFN-β on mineralization. This dominant effect on osteoblast differentiation and bone formation is reflected in the downregulation of IFN-related and -regulated genes by 1α,25(OH)2D3 (Woeckel et al., 2012). Concomitantly, 1α,25(OH)2D3 also induces activin A, a strong inhibitor of mineralization, and represses follistatin, the natural antagonist of activin A, to ensure a fine-tuned regulation of the mineralization process (Woeckel et al., 2013b).

Recent findings have underscored the complexity of 1α,25(OH)2D3 action and its role in the antimicrobial response as part of innate and adaptive immunity. Thus, activation of macrophage Toll-like receptors (TLRs) by intracellular bacteria such as Mycobacterium tuberculosis upregulates VDR and CYP27B1 genes that allow the induction of the antimicrobial peptide cathelicidin by 1α,25(OH)2D3 (Liu et al., 2006). In monocytes, TLR activation triggers induction of defensin β4 (DEFB4) gene requiring the cooperation between IL-1β and 1α,25(OH)2D3, which is explained by the presence of one VDRE and two IL-1β-activatable NFkB sites in the DEFB4 promoter (Liu et al., 2009). In addition, 1α,25(OH)2D3 is required for the antimicrobial effect of IFN-γ in human macrophages (Fabri et al., 2011). Moreover, by inducing the expression of TLR2 and CD14 receptors and cathelicidin, 1α,25(OH)2D3 mediates the effect of TGF-β favoring the response to microbial infection and wound injury by keratinocytes (Schauer et al., 2007). These findings show also unexpected cooperation of 1α,25(OH)2D3 with agents (IL-1β, TGF-β, IFN-γ) that are antagonistic in other cell types.

Table 1 | Interplay between VDR and other transcription factors.

Transcription factor	Biological effect	References
Sp1/NF-Y	Potentiation	Inoue et al., 1999; Huang et al., 2004
AP-1/NFAT1	Repression	Towers et al., 1999
CREB	Activation	Chen et al., 1999
FOXO3a, FOXO4	Repression	Yuan et al., 2007
p53	Activation	An et al., 2010
PPAR-α/β	Mutual repression	Stambolsky et al., 2010; Chen et al., 2013
PPAR-γ		Sertznig et al., 2009a,b
RAR		Alimirah et al., 2012; Woeckel et al., 2013a
VAR		Jiménez-Lara and Aranda, 1999; Tavera-Mendoza et al., 2006; Anand et al., 2008; Ng et al., 2010
ER	Downregulation	Krishnan et al., 2010; Swami et al., 2013
AR	Crossregulation	Zhao et al., 1999; Ting et al., 2005
PIT-1	Downregulation	Seoane and Pérez-Fernández, 2006
In renal cells, 1α,25(OH)₂D₃ suppresses renin gene expression by blocking the cyclic AMP response element (CRE) through direct binding of VDR to CRE-binding protein (CREB) and so inhibiting the binding of CREB to the CRE (Yuan et al., 2007). By a complex mechanism, 1α,25(OH)₂D₃ also regulates several Forkhead box (FOX) transcription factors. Ligand-activated VDR binds FOXO3a and FOXO4 together with their regulators, sirtuin 1 deacetylase and protein phosphatase 1, inducing deacetylation and dephosphorylation of FOXO proteins, thereby activating these (An et al., 2010). In the case of the p53 tumor suppressor protein a mutual regulation takes place: while mutated p53 interacts physically with VDR and changes VDR-target genes, converting 1α,25(OH)₂D₃ from a pro-apoptotic into an anti-apoptotic agent (Stambolsky et al., 2010), 1α,25(OH)₂D₃ activates the promoter of Mdm2 in a p53-dependent fashion promoting the expression of this negative regulator of p53 protein stability and function (Chen et al., 2013).

Multiple interplays between 1α,25(OH)₂D₃/VDR and other nuclear receptor ligands have been described. Among them, crosstalk between liganded VDR and peroxisome proliferator-activated receptor (PPAR)-α/δ in melanoma cells (Sertenzig et al., 2009a,b) may involve the stimulation of PPAR-δ expression by 1α,25(OH)₂D₃ (Dunlop et al., 2005). A synergistic action of 1α,25(OH)₂D₃ and rosiglitazone, a PPAR-γ ligand, has been shown during osteoblast-mediated mineralization (Woeckel et al., 2013a), while in human T47D breast cancer cells PPAR-γ binds VDR and represses its transcriptional activity, possibly also by competing for RXR heterodimerization (Alimirah et al., 2012). Titration out of common co-activators, but not of RXR, may be the mechanism by which ligand-bound VDR represses retinoic acid receptor (RAR) transactivation in GH4C1 pituitary cells (Jiménez-Lara and Aranda, 1999). The relation between 1α,25(OH)₂D₃ and retinoic acid is however complex, as cooperative effects on target genes and cellular outcome (proliferation inhibition and differentiation) have been described in other systems (Tavera-Mendoza et al., 2006; Anand et al., 2008; Ng et al., 2010). As for estrogen receptor (ER), D. Feldman’s group has shown that 1α,25(OH)₂D₃ exerts a multilevel protective effect against breast cancer that includes the inhibition of estrogen synthesis through the direct and indirect repression of aromatase (CYP19) and the downregulation of ER-α expression through two VDREs in its promoter region (Krishnan et al., 2010; Swami et al., 2013). Likewise, there is a complex and unresolved relationship between 1α,25(OH)₂D₃ and androgen receptor (AR) synthesis and signaling. 1α,25(OH)₂D₃ induces AR in LNCaP cells (Zhao et al., 1999) while AR reduces VDR transcriptional activity (Ting et al., 2005), perhaps in some cells by a mechanism mediated by prohibitin (Mooso et al., 2010). In addition, 1α,25(OH)₂D₃ inhibits glucuronidation and so, inactivation of androgen in prostate cancer cells through the repression of UDP-glucuronosyltransferases (UGT) 2B15 and 2B17, which is counterintuitive given the growth promoting action of androgen and the antiproliferative effect of 1α,25(OH)₂D₃ in prostate cancer cells (Kaeding et al., 2008). In human bladder, 1α,25(OH)₂D₃ and analogs inhibit cell proliferation promoted by androgen and keratinocyte growth factor and induce apoptosis at least in part by repressing Bcl-2 expression (Crescioli et al., 2005).

Pituitary transcription factor (Pit)-1 activates growth hormone and prolactin genes in the anterior pituitary and also in breast cancer cells (Seoane and Pérez-Fernández, 2006). In MCF7 cells, VDR homodimers bind the PIT-1 promoter and inhibit its expression in the presence of 1α,25(OH)₂D₃ without involvement of RXR (Seoane and Pérez-Fernández, 2006).

CONCLUSIONS

The available evidence shows that the classical view of VDR only as a nuclear-acting ligand-modulated transcription factor that regulates the rate of transcription of those genes to which it binds is outdated. Instead, VDR and its ligand constitute a multilevel main regulator of gene expression in higher cells acting directly or indirectly, and via a variety of different mechanisms, on many signaling pathways. Some of them are triggered from the plasma membrane by paracrine or endocrine agents, and 1α,25(OH)₂D₃ interacts at different levels: membrane receptors, cytosolic signaling molecules or effector nuclear transcription factors. In most cases 1α,25(OH)₂D₃ action is mediated by nuclear VDR but in a few others this is unclear and non-canonical VDR-independent or extranuclear effects have been proposed. Available studies show that 1α,25(OH)₂D₃ and these signaling pathways interact variably and with distinct outcomes in a cell/tissue-specific fashion and sometimes also differentially between normal and malignant cells.

PERSPECTIVES

The increasingly recognized importance of its non-cell autonomous actions has widened the scope of the study of 1α,25(OH)₂D₃. On the one hand, an in-depth study of the interplay between 1α,25(OH)₂D₃ and other agents, which seems to be cell-specific in terms of biological outcome, is necessary to elucidate the possibilities of combined therapies using vitamin D compounds and inhibitors or activators of a variety of signaling pathways. On the other hand, several of these interactions take place at the intercellular level. By using high-throughput techniques and genome-wide analyses, we expect to be able to identify secreted paracrine and intracellular mediators of the interaction between 1α,25(OH)₂D₃ and other signaling pathways responsible for the regulatory actions of 1α,25(OH)₂D₃ in the organism. Future research should aim to discern how vitamin D compounds modulate tissue and organ physiology and how they may be used to treat pathological processes such as infections, autoimmune disorders, or cancer.

AUTHOR CONTRIBUTIONS

María Jesús Larriba, José Manuel González-Sancho, Félix Bonilla, and Alberto Muñoz wrote the manuscript.

ACKNOWLEDGMENTS

We thank Robin Rycroft for his valuable assistance in the preparation of the English manuscript. The work in the authors’ laboratory is supported by Ministerio de Economía y Competitividad of Spain (SAF2010-18302, BFU2010-19659), Fondo Europeo de Desarrollo Regional-Instituto de Salud.
Carlos III (RD12/0036/0021, RD12/0036/0041), and Comunidad de Madrid (S2010/BMD-2344, Colomics2).

REFERENCES

Adorini, L., and Penna, G. (2008). Control of autoimmune diseases by the vitamin D endocrine system. *Nat. Clin. Pract. Rheumatol.* 4, 404–412. doi: 10.1038/ncprheum0855

Aguilera, O., Peña, C., García, J. M., Larriba, M. J., Ordoñez-Morán, P., Navarro, D., et al. (2007). The Wnt antagonist DICKKOPF-1 gene is induced by 1α,25-dihydroxyvitamin D3 associated to the differentiation of human colon cancer cells. *Carcinogenesis* 28, 1877–1884. doi: 10.1093/carcin/bgm094

Alimirah, F., Peng, X., Yuan, L., Mehta, R. R., von Knethen, A., Choubey, D., et al. (2012). Crosstalk between the peroxisome proliferator-activated receptor γ (PPARγ) and the vitamin D receptor (VDR) in human breast cancer cell: PPARγ binds to VDR and inhibits 1α,25-dihydroxyvitamin D3 mediated transactivation. *Exp. Cell Res.* 318, 2490–2497. doi: 10.1016/j.yexcr.2012.07.020

Alroy, I., Towers, T. L., and Freedman, L. P. (1995). Transcriptional repression of the interleukin-2 gene by vitamin D3: direct inhibition of NFATp/AP-1 complex formation by a nuclear hormone receptor. *Mol. Cell. Biol.* 15, 5799–5799.

Alvarez-Díaz, S., Larriba, M. J., López-Otín, C., and Muñoz, A. (2010). Vitamin D: proteases, protease inhibitors and cancer. *Cell Cycle* 9, 32–37. doi: 10.4161/cc.9.1.10266

Alvarez-Díaz, S., Valle, N., Ferrer-Mayorga, G., Lombardía, L., Herrera, M., Domínguez, O., et al. (2012). MicroRNA-22 is induced by vitamin D and contributes to its antiproliferative, antimigratory and gene regulatory effects in colon cancer cells. *Hum. Mol. Genet.* 21, 2157–2165. doi: 10.1093/hmg/ddz031

An, B. S., Tavera-Mendoza, L. E., Dimitrov, V., Wang, X., Calderon, M. R., Wang, H. J., et al. (2010). Stimulation of Sirt1-regulated FoxO protein function by the ligand-bound vitamin D receptor. *Mol. Cell. Biol.* 30, 4890–4900. doi: 10.1128/MCB.00180-10

Anand, P. K., Kaul, D., and Sharma, M. (2008). Synergistic action of vitamin D and retinoic acid restricts invasion of pathogenic mycobacteria. *J. Microbiol. Immunol. Infect.* 41, 17–25.

Andl, C. D., and Rustgi, A. K. (2005). No one-way street: crosstalk between E-cadherin and receptor tyrosine kinase (RTK) signaling: a mechanism to regulate RTK activity. *Cancer Biol. Ther.* 4, 28–31. doi: 10.1016/j.cyt.2004.11.041

Barbáchano, A., Ordoñez-Morán, P., García, J. M., Sánchez, A., Pereira, F., Larriba, M. J., et al. (2010). SPROUTY-2 and E-cadherin regulate reciprocally and dictate colon cancer cell tumourigenicity. *Oncogene* 29, 4800–4813. doi: 10.1038/onc.2010.225

Ben-Shoshan, M., Amir, S., Dang, D. T., Dang, L. H., Weissman, Y., and Majbrees, N. J. (2007). 1α,25-dihydroxyvitamin D3 (Calcitriol) inhibits hyposia-inducible factor-1α vascular endothelial growth factor pathway in human cancer cells. *Cancer Lett.* 26, 1433–1439. doi: 10.1016/j.slc.2007.08.007

Bijlsma, M. F. (2010). Assessing the efficacy of the hedgehog pathway inhibitor vismodegib in patients with Hh-proficient aggressive melanoma. *J. Transl. Med.* 8, 105. doi: 10.1186/1479-5876-8-105

Birnstein, G. R., Li, D., Ferron, M., and Colston, K. W. (2013). Role of insulin-like growth factor binding protein-3 in 1,25-dihydroxyvitamin-D3-stimulated breast cancer cell proliferation. *Carcinogenesis* 34, 861–869. doi: 10.1093/carcin/bgs260

Brunicardi, F. C., Anderson, D. A., Billiar, T. R., Dunn, D. M., Hunter, J. G., Matthews, J. W., et al. (2005). *Sabbott’s Basic Pathology*. 9th edn. McGraw-Hill, New York, NY.

Bruns, D. E., Krishnan, A. V., Feldman, D., Gray, R. W., Christakos, S., Hirsch, G. N., et al. (1989). Epidermal growth factor increases intestinal calbindin-D10k and 1,25-dihydroxyvitamin D receptors in neonatal rats. *Endocrinology* 125, 478–485. doi: 10.1210/endo-125-1-478

Cabrita, M. A., and Christofori, G. (2008). Sproty proteins, masterminds of receptor tyrosine kinase signaling. *Angiogenesis* 11, 53–62. doi: 10.1007/s10456-008-9089-1
Grundmann, M., Haidar, M., Placzko, S., Niendorf, R., Darashchonak, N., Hubel, α J., Jiang, Y. J., Teichert, A. E., Fong, F., Oda, Y., and Bikle, D. D. (2012). 1 α Guan, H., Liu, C., Chen, Z., Wang, L., Li, C., Zhao, J., et al. (2013). 1,25-

Grumbles, R. M., Howell, D. S., Wenger, L., Altman, R. D., Howard, G. A., and Kostaras, E., Sflomos, G., Pedersen, N. M., Stenmark, H., Fotsis, T., and Murphy, K., Augenlicht, L., and Klampfer, L. (2009). Macrophage-derived IL-1 β

Kasiappan, R., Shen, Z., Tse, A. K., Jinwal, U., Tang, J., Lungchukiet, P., et al. (2012). 1,25-Dihydroxyvitamin D3 suppresses telomerase expression and human cancer growth through microRNA-498. J. Biol. Chem., 287, 41297–41309. doi: 10.1074/jbc.M112.407189

Kostaras, E., Sifromos, G., Pedersen, N. M., Stemmark, H., Fotis, T., and Murphy, C. (2013). SARA and RNF11 interact with each other and ESCRT-0 core proteins and regulate degradative EGFR trafficking. Oncogene 32, 5220–5232. doi: 10.1038/onc.2012.554

Kovalenko, P. L., Zhang, Z., Cui, M., Clinton, S. K., and Fleet, J. C. (2010). 1,25-dihydroxyvitamin D3-mediated orchestration of anticancer, transcript-level effects in the immortalized, non-transformed prostate epithelial cell line, RWPE1. BMC Genomics 11:26. doi: 10.1186/1471-2164-11-26

Kristhavan, A. V., and Feldman, D. (2010). Molecular pathways mediating the anti-inflammatory effects of calcitriol: implications for prostate cancer chemoprevention and treatment. Endoc. Relat. Cancer 17, R19–R38. doi: 10.1017/S1043-279X09013000180-9

Kristhavan, A. V., Swami, S., Peng, L., Wang, J., Moreno, J., and Feldman, D. (2010). Tissue-selective regulation of aromatase expression by calcitriol: implications for breast cancer therapy. Endocrinology 151, 32–42. doi: 10.1210/en.2009-0855

Larriba, M., González-Sancho, J. M., Barbachano, A., Niell, N., Ferrer-Mayorga, M., and Muñoz, A. (2013). Vitamin D is a multilevel repressor of Wnt/β-catenin signaling in cancer cells. Cancers 5, 1242–1260. doi: 10.3390/cancers5040124

Li, J., Jin, D., Fu, S., Mei, G., Zhou, J., Lei, L., et al. (2013). Insulin-like growth factor binding protein-3 modulates osteoblast differentiation via interaction with vitamin D receptor. Biochem. Biophys. Res. Commun. 436, 632–637. doi: 10.1016/j.bbrc.2013.04.111

Li, P., Li, C., Zhao, X., Zhang, X., Nicosia, S. V., and Bai, W. (2004). p27Kip1 stabilization and G1 arrest by 1,25-dihydroxyvitamin D3 in ovarian cancer cells mediated through down-regulation of cyclin E/cyclin-dependent kinase 2 and Skp1-Cullin-F-box protein/Skp2 ubiquitin ligase. J. Biol. Chem., 279, 25260–25267. doi: 10.1074/jbc.M311052200

Li, Y., Spataro, B. C., Vang, J., Dai, C., and Liu, Y. (2005). 1,25-dihydroxyvitamin D3 inhibits renal interstitial myofibroblast activation by inducing hepatocyte growth factor expression. Kidney Int. 68, 1500–1510. doi: 10.1111/j.1523-1755.2005.00562.x

Lin, R., Wang, T. T., Miller, W. H., and White, J. H. (2003). Inhibition of F-Box protein p53 and growth suppression and activation of transcription factor β mediates the antiproliferative effects of vitamin D3 in prostate cancer cells. Endocrinology 144, 749–753. doi: 10.1210/en.2002-0002

Liu, P. T., Schenk, M., Walker, V. P., Dempsey, P. W., Kanchanapoomi, M., Wheelwright, M., et al. (2009). Convergence of IL-1β and VDR activation pathways in human TLR2/1-induced antimicrobial responses. PLoS ONE 4:e8510. doi: 10.1371/journal.pone.0008510

Liu, P. T., Stenger, S., Li, H., Wenzel, L., Tan, B. H., Krutzik, S. R., et al. (2006). Toll-like receptor triggering of a vitamin D-mediated human antimicrobial response. Science 311, 1770–1773. doi: 10.1126/science.1125933

Luderer, H. E., Gori, E., and Demay, M. B. (2011). Lymphoid enhancer-binding factor-1 (LEFI) interacts with the DNA-binding domain of the vitamin D receptor. J. Biol. Chem. 286, 18444–18451. doi: 10.1074/jbc.M111.188219

Malinen, M., Ryynänen, J., Heiniäniemi, M., Väisänen, S., and Carlberg, C. (2011). Cyclical regulation of the insulin-like growth factor binding protein 3 gene in response to 1,25-dihydroxyvitamin D3. Nucleic Acids Res. 39, 502–512. doi: 10.1093/nar/gkr820

Matilainen, J. M., Huss, T., Toropainen, S., Seuter, S., Turunen, M. P., Gynter, P., et al. (2010a). Primary effect of 1α,25-dihydroxyvitamin D3 on IL-10 expression in monocytes is short-term down-regulation. Biochim. Biophys. Acta 1803, 1276–1286. doi: 10.1016/j.bbamcr.2010.07.009

Matilainen, J. M., Räsänen, A., Gynter, P., and Väisänen, S. (2010b). The genes encoding cytokines IL-2, IL-10 and IL-12B are primary targets of 1α,25-dihydroxyvitamin D3. FEBS Lett. 583, 351–356. doi: 10.1016/j.febslet.2009.10.042

Matilainen, M., Malinen, M., Saavalainen, K., and Carlberg, C. (2005). Regulation of multiple insulin-like growth factor binding protein genes by 1α,25-dihydroxyvitamin D3. Nucleic Acids Res. 33, 5321–5332. doi: 10.1093/nar/gki872

Maund, L. S., Barclay, W. W., Hover, L. D., Axanov, L. S., Sui, G., Hipp, J. D., et al. (2011). Interleukin-1α mediates the anti-inflammatory effects of 1,25-dihydroxyvitamin D3 in prostate progenitor/stem cells. Cancer Res. 71, 5276–5286. doi: 10.1158/0008-5472.CAN-10-2160

Mooss, B., Madhav, A., Johnson, S. R., Moore, M. E., Moya, C., et al. (2010). Androgen Receptor regulation of Vitamin D D3 receptor in response to castration-resistant prostate cancer cells to 1α,25-Dihydroxyvitamin D3 - a cell culture analog. Genes Cancer 1, 927–940. doi: 10.1177/194761910385450

Muthian, G., Raikwar, H. P., Rajasingh, J., and Bright, J. J. (2006). 1,25-Dihydroxyvitamin D3 modulates IAκk-STAT pathway in IL-12/IFNγ axis leading to Th1 response in experimental allergic encephalomyelitis. J. Neurosci. Res. 83, 1299–1309. doi: 10.1002/jnr.20826

Frontiers in Physiology | Integrative Physiology February 2014 | Volume 5 | Article 60 | 8
Mutt, S. J., Karhu, T., Lehtonen, S., Lehenkanen, P., Carlgberg, C., Saarnio, J., et al. (2012). Inhibition of cytokine secretion from adipocytes by 1,25-dihydroxyvitamin D3 via the NF-kB pathway. FASEB J. 26, 4400–4407. doi: 10.1096/fj.12-210880

Ng, K. Y., Ma, M. T., Leung, K. K., and Leung, P. S. (2010). Vitamin D and vitamin A receptor expression and the proliferative effects of ligand activation of these receptors on the development of pancreatic progenitor cells derived from human fetal pancreas. Stem Cell Rev. 7, 53–63. doi: 10.1007/s12015-010-9146-1

Oh, Y. S., Kim, E. J., Schaffer, B. S., Kang, Y. H., Binderup, L., MacDonald, R. G., et al. (2001). Synthetic low-calcemic vitamin D3 analogues inhibit secretion of insulin-like growth factor II and stimulate production of insulin-like growth factor-binding protein-6 in conjunction with growth suppression of HT-29 colon cancer cells. Mol. Cell. Endocrinol. 183, 141–149. doi: 10.1016/S0303-7207(01)00598-6

Okuda, N., Takeda, S., Shinomiya, K., Muneta, T., Itoh, S., Noda, M., et al. (2007). ED-71, a novel vitamin D analog, promotes bone formation and angiogenesis and inhibits bone resorption after bone marrow ablation. Bone 40, 281–292. doi: 10.1016/j.bone.2006.08.017

Pålmer, H. G., González-Sancho, J. M., Espada, J., Berciano, M. T., Puig, I., Baulida, J., et al. (2001). Synthetic low-calcaemic vitamin D 3 analogues inhibit secretion of vitamin D receptor and peroxisome proliferator-activated receptor (PPAR)-signaling in melanoma cells. Anticancer Res. 21, 3647–3658.

Sertzing, P., Dunlop, T., Seifert, M., Tilgen, W., and Reichrath, J. (2009a). Cross-talk between vitamin D receptor (VDR)– and peroxisome proliferator-activated receptor (PPAR)-signaling in melanoma cells. Anticancer Res. 29, 3647–3658.

Shah, S., Islam, M. N., Dakhanamurthy, S., Rizvi, Z., Rao, M., Herrell, R., et al. (2006). The molecular basis of vitamin D receptor and β-catenin crossregulation. Mol. Cell. 21, 799–809. doi: 10.1016/j.molcel.2006.01.037

Shallhoub, V., Shatzhen, E. M., Ward, S. C., Young, J. I., Boedigheimer, M., Tewehue, L., et al. (2010). Chondro/osteoblastic and cardiovascular gene modulation in human artery smooth muscle cells that calcify in the presence of phosphate or paricalcitol. J. Cell. Biochem. 111, 911–921. doi: 10.1002/jcb.22779

Shen, Q., and Christakos, S. (2005). The vitamin D receptor, Runx2, and the Notch signaling pathway cooperate in the transcriptional regulation of osteopontin. J. Biol. Chem. 280, 40589–40598. doi: 10.1074/jbc.M504166200

Sertzing, P., Mula, R. V. R., Li, J., Weigel, N. L., and Falini, B. (2007). PTHrP contributes to the anti-proliferative and integrin αvβ3-regulating effects of 1,25-dihydroxyvitamin D3. Steroids 72, 930–938. doi: 10.1016/j.steroids.2007.08.003

Stambolsky, P., Tabash, Y., Fontemaggi, G., Weisz, L., Maor-Aloni, R., Siegfried, Z., et al. (2010). Regulation of osteocalcin production and bone resorption by 1,25-dihydroxyvitamin D3 in mouse long bones: interaction with the bone-derived growth factors TGF-β and IGF-I. J. Bone Miner. Res. 15, 357–366. doi: 10.1359/jbmr.1010.1.3.1.036

Sun, I., Kong, J., Duan, Y., Sieto, F. L., Liao, A., Madara, J. L., et al. (2006). Increased NF-kB activity in fibroblasts lacking the vitamin D receptor. Am. J. Physiol. Endocrinol. Metab. 291, E315–E322. doi: 10.1152/ajpendo.00590.2005

Swami, S., Krishnan, A. V., Peng, L., Lundqvist, J., and Feldman, D. (2013). Transrepression of the estrogen receptor promoter by calcitriol in human breast cancer cells via two negative vitamin D response elements. Endocrinology 147, 10120–10121. doi: 10.1210/en.147.10.12120

Tang, J. Y., Xiao, T. Z., Oda, Y., Chang, K. S., Shpall, E., Wu, A., et al. (2011). Vitamin D3 inhibits hedgehog signaling and proliferation in marine basal cell carcinoma. Cancer Res. 71, 273–285. doi: 10.1158/0008-5472.CAN-10-2825

Tang, W. B., Ling, G. H., Sun, L., and Liu, F. Y. (2010). Smad anchor for receptor activation (SARA) in TGF-β signaling. Front. Biosci. 2, 857–860. doi: 10.2741/E147

Tavares-Mendoza, L., Wang, T. T., Lallemant, B., Zhang, R., Nagai, Y., Bourdeau, V., et al. (2006). Convergence of vitamin D and retinoic acid signalling at a common hormone response element. EMBO Rep. 7, 180–185. doi: 10.1038/sj.embor.7400594

Thorne, J. L., Maguire, O., Doig, C. L., Battaglia, S., Fehr, L., Sucheston, L. E., et al. (2011). Epigenetic control of a VDR-governed feed-forward loop that regulates p21WAF1 expression and function in non-malignant prostate cells. Nucl. Acids Res. 39, 2045–2056. doi: 10.1093/nar/gkr875

Ting, H. J., Bao, B. Y., Hsu, C. L., and Lee, Y. F. (2005). Androgen-receptor coregulators mediate the suppressive effect of andrographol signals on vitamin D receptor activity. Endocrine 26, 1–9. doi: 10.1080/ENDO:26:1:001
Tong, W.-M., Hofer, H., Ellinger, A., Peterlik, M., and Cross, H. S. (1999). Mechanism of antimitogenic action of vitamin D in human colon carcinoma cells: relevance for suppression of epidermal growth factor-stimulated cell growth. Oncol. Res. 11, 77–84.

Tong, W. M., Kallay, E., Hofer, H., Hulla, W., Manhardt, T., Peterlik, M., et al. (1998). Growth regulation of human colon cancer cells by epidermal growth factor and 1,25-dihydroxyvitamin D$_3$ is mediated by mutual modulation of receptor expression. Eur. J. Cancer 34, 2119–2125. doi: 10.1016/S0959-8049(98)00267-6

Toropainen, S., Väisänen, S., Heikkinen, S., and Carlberg, C. (2010). The down-regulation of the human MYC gene by the nuclear hormone 1α,25-dihydroxyvitamin D$_3$ is associated with cycling of coresspressors and histone deacetylases. J. Mol. Biol. 400, 284–294. doi: 10.1016/j.jmb.2010.05.031

Towers, T. L., Staeva, T. P., and Freedman, L. P. (1999). A two-hit mechanism for vitamin D3-mediated transcriptional repression of the granulocyte-macrophage colony-stimulating factor gene: vitamin D receptor competes for DNA binding with NFAT1 and stabilizes c-Jun. Mol. Cell. Biol. 19, 4191–4199.

Uhmann, A., Niemann, H., Lammering, B., Henkel, C., Hess, I., Nitzki, F., et al. (2011). Antitumoral effects of calcitriol in basal cell carcinomas involve inhibition of hedgehog signaling and induction of vitamin D receptor signaling and differentiation. Mol. Cancer Ther. 10, 2179–2188. doi: 10.1158/1535-7163.MCT-11-0422

Uhmann, A., Niemann, H., Lammering, B., Henkel, C., Hess, I., Rosenberger, A., et al. (2012). Calcitriol inhibits Hedgehog signaling and induces vitamin D receptor signaling and differentiation in the patched mouse model of embryonal rhabdomyosarcoma. Sarcoma 2012, 357040. doi: 10.1155/2012/357040

Vink-van Wijngaarden, T., Pols, H. A. P., Buurman, C. J., Birkenhäuser, J. C., and van Leeuwen, J. P. T. M. (2013b). 1α,25-dihydroxyvitamin D$_3$-stimulated growth of human breast cancer cells by 1,25-dihydroxyvitamin D$_3$. J. Cell. Physiol. 228, 2167–2174. doi: 10.1002/jcp.24388

Wu, F. S., Zheng, S. S., Wu, L. J., Teng, L. S., Ma, Z. M., Zhao, W. H., et al. (2007). Calcitriol inhibits the growth of MHCC97 hepatocellular cell lines by down-modulating c-met and ERK expressions. Liver Int. 27, 700–707. doi: 10.1111/j.1478-3231.2007.01487.x

Yanagi, Y., Suzawa, M., Kawabata, M., Miyazono, K., Yanagisawa, J., and Kato, S. (1999). Positive and negative modulation of vitamin D receptor function by transforming growth factor-β signaling through Smad proteins. J. Biol. Chem. 274, 12971–12974.

Yanagisawa, J., Yanagi, Y., Masuhiyo, Y., Suzawa, M., Watanabe, M., Kashiwagi, K., et al. (1999). Convergence of transforming growth factor-β and vitamin D signaling pathways on SMAD transcriptional coactivators. Science 283, 1317–1321.

Yu, X. P., Bellido, T., and Manolagas, S. C. (1995). Down-regulation of NF-κB protein levels in activated human lymphocytes by 1,25-dihydroxyvitamin D$_3$. Proc. Natl. Acad. Sci. U.S.A. 92, 10990–10994.

Yuan, W., Pan, W., Kong, L., Zheng, W., Szeto, F. L., Wong, K. E., et al. (2007). 1,25-dihydroxyvitamin D$_3$ suppresses renin gene transcription by blocking the activity of the cyclic AMP response element in the renin gene promoter. J. Biol. Chem. 282, 29821–29830. doi: 10.1074/jbc.M705495200

Zhang, G. Y., Cheng, T., Luan, Q., Liao, T., Nie, C. L., Zheng, X., et al. (2011). Vitamin D: a novel therapeutic approach for keloid. An in vitro analysis. Br. J. Dermatol. 164, 729–737. doi: 10.1111/j.1365-2133.2010.10130.x

Zhao, X. Y., Li, L. H., Peehl, D. M., and Feldman, D. (1999). Induction of androgen receptor by 1α,25-dihydroxyvitamin D$_3$ and 9-cis retinoic acid in LNCaP human prostate cancer cells. Endocrinology 140, 1205–1212. doi: 10.1210/endo.140.3.5651

Conflict of Interest Statement: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Received: 10 January 2014; paper pending published: 21 January 2014; accepted: 30 January 2014; published online: 18 February 2014.

Citation: Larriba MJ, González-Sancho JM, Bonilla F and Muñoz A (2014). Interaction of vitamin D with membrane-based signaling pathways. Front. Physiol. 5:60. doi: 10.3389/fphys.2014.00060

This article was submitted to Integrative Physiology, a section of the journal Frontiers in Physiology.

Copyright © 2014 Larriba, González-Sancho, Bonilla and Muñoz. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.