IMPACT OF HIGH YIELDING WHEAT VARIETIES ADOPTION ON FARM INCOME OF SMALLHOLDER FARMERS IN ETHIOPIA

Regasa D. Wake*, Degye G. Habteyesus

a Ethiopian Institute of Agricultural Research, Assosa Agricultural Research Center, Assosa, Ethiopia.
b Department of Agricultural Economics, Haramaya University, Dire Dawa, Ethiopia.

ABSTRACT

The objective of this study was to assess impact of adoption of high yielding wheat varieties on farm income in Mao-Komo district of Benishangul-Gumuz, Ethiopia. The study used cross-sectional data collected from sample of 174 farm households selected through two-stage stratified random sampling techniques. Descriptive statistics and econometric models were used to analyze the data. Propensity score matching (PSM) applied to analyze the impact of adoption on farm income. The result of the PSM estimation showed that adoption of high yielding wheat varieties has significant impact on farm income of treated households as compared to the control groups. The treated households had earned farm income of about 21452 Ethiopian Birr per year while the untreated smallholders earned farm income of only 11141 Ethiopian Birr. The average treatment effect on the treated (ATT) of farm income of adopters is greater than non-adopters that has brought about 9 % increases in farm income of smallholders. The findings suggest that the government and stakeholders should need to focus on improving farm land and livestock productivity, strengthening the provision of education, and frequency of extension visits, encouraging participation in non-farm activities, creating reliable information and awareness towards farmers’ perceptions, and improving infrastructures in the area. Finally, further support of high yielding wheat varieties adoption should be given due attention for its impact on farm income generation of smallholders.

Keywords: High yielding wheat varieties, impact, smallholder, PSM

INTRODUCTION

Agriculture contributes about 72.7% in terms of employment in Ethiopia. It is the source of food and cash for associated sector and others stakeholders. Most agricultural holders acquire the food they consume and the cash they need to cover other expenses only from farming activities. Since farming in Ethiopia is often precarious and usually at the mercy of nature, it is invariably an arduous struggle for the holders to make ends meet (UNDP, 2014).

Wheat (Triticum aestivum L.), an important cereal crop is one of the major food and cash crops for smallholders in Ethiopia. Wheat crop exhibited annual production of about 4.23 million tons and cultivated on an area of 1.66 million hectares (CSA, 2015). According to the CSA (2015) report, it occupies about 24.02 % of the total cereal area in the country and contribute the grain production about 15.65%. However, its national average yield is about 25.43 quintals per hectare which is considerably lower as compared to global average of 40 quintals per hectare (FAO, 2009). The low yield has made Ethiopia unable to meet the high demand and the country is net importer of wheat (Rashid, 2010).

To feed the rapidly growing population and meet the high demand of wheat in the country, it needs to increase the production and yield of wheat. However, increasing yield requires successful adoption of improved agricultural technologies (Dorosh & Rashid, 2013). For this reason, technological change is commonly considered as one of the major options leading to successful productivity growth in agriculture. In response to this, the intervention of high yielding wheat varieties widely undertaken in the wheat producing area of Ethiopia over the last seven years. Kathleen (2010) reported on his study that a well-
designed impact assessment study can provide insight into the causal factors behind the success and failure of various improved variety adoption activities. Impact assessment thus provides information that allows research and extension institutions to improve their services, and improve the welfare of the farmer. Moreover, ADB (2006) indicated that project impact evaluation established whether the intervention had a welfare effect on individuals, households, and communities, and whether this can be attributed to the concerned intervention. Empirical information so far is scanty in some areas of Ethiopia regarding impact of adoption of high yielding wheat varieties on farm income of smallholders. Therefore, this study was proposed to estimate impact of adoption of high yielding wheat varieties on farm income of smallholder farmers and attempts to fill the gap of information. Finally, the findings of this study can contribute to the growing body of literature and can also be used as a reference material for future researchers on the study area and areas having similar environments. Accordingly, this study would try to address the question that do high yielding wheat varieties adopted by farmers have impact on their farm income? The study was particularly expected to address the impact of adoption of high yielding wheat varieties on farm income of smallholder farmers.

METHODOLOGY

Description of Study Area: Mao-Komo Special district is one of the 20 districts found in Benishangul-Gumuz Regional State, its capital, Tongo, located 112 km away from Assosa town, the capital city of the region and found around 667 km away from Addis Ababa at the Western part of Ethiopia. It is bordered by Oromia Regional state in the East, Sudan in the West, Assosa Zone in the North and Gambela Region in the South. The altitude of the district ranges from 950-1960 meter above sea level. The temperature of the area ranges from 17.5-32 oC. The rainfall of the district is uni-modal which starts in the month of April and ends in mid-October. The annual rainfall ranges from 900-1800 mm with mean annual rainfall is 1316 mm, mostly received between May and September with the highest in July and August. The duration is about 6 to 7 months with good amount of rainfall distribution.

Having an area of about 2100 Km² and population of about 42,050 (CSA, 2007). The district is mainly characterized by two agro-ecologies; namely, “Kola” and “Woina Dega” that has been structured with 32 Kebeles that comprise 24 and 8 kebeles, respectively. From these, 5 Kebeles are the most wheat producers in the area. Farming is the predominant occupation of the people in the area since it is the main economic stay of the district. Maize, sorghum, wheat, and finger millet are the dominant cereal crops produced for consumption. Coffee and teff are produced for income generation in the district. Cattle, small ruminant, donkey, poultry and honey bee are the most important livestock species. The district has potential and favorable environmental and socio-economic conditions that would suitable to wheat production.

Sampling Procedure: The data used in this study comes from a household survey carried out in Mao-Komo special district of Benishangul-Gumuz Regional State of Ethiopia. Since the target area of wheat producers was considered by the research initially, the research used a two stage stratified random sampling method. In the first stage, rural kebele administrations were stratified into two categories as potential and less potential wheat growers. Accordingly, three potential wheat producing kebeles were randomly selected. In the second stage, members of each kebele were stratified into two groups based on their adoption status of high yielding wheat varieties. Accordingly, a total of 174 farmers were randomly sampled taking into account probability proportional to size of households in each kebele for both groups.

Data Types and Methods of Data Collection: The study considers both primary and secondary sources of data. The primary data were collected from field observation and interviewing participants and non-participants of high yielding wheat varieties on data related to the technologies. A semi structured questionnaire was used to capture both qualitative and quantitative information. Secondary data were collected from literatures/articles, reports of different organizations, district office of agriculture, and related documents.

Data Analysis: For the analysis of collected data statistical tools such as chi-square test, t-test and econometric models for concluding effect of adoption of high yielding wheat varieties on smallholder farmers in the study area.

Econometric models: Econometric analysis that was employed for propensity of adoption of high yielding wheat varieties was propensity score matching techniques for evaluating the impact of high yielding wheat varieties adoption on farm income.

Impact of Adoption: The propensity score matching (PSM) method, which was developed by Rosenbaum &
Rubin (1983), has been extensively used in economics since 1990s to solve the matching problem. Rosenbaum & Rubin (1983) defined ‘propensity score’ as the conditional probability of receiving a treatment given pre-treatment characteristics:

\[P(X) \equiv \Pr \{D = 1|X\} = E \{D|X\}, \]

Where \(D = \{0, 1\} \) is the indicator of exposure to treatment and \(X \) is the multidimensional vector of pre-treatment characteristics.

PSM constructs a statistical comparison group that is based on a model of the probability of participating in the treatment \(T \) conditional on observed characteristics \(X \), or the propensity score: \(P(X) = \Pr(T= 1|X) \). Rosenbaum & Rubin (1983) show that under certain assumptions, matching on \(P(X) \) is as good as matching on \(X \). It applies for all situations where one has a treatment, a group of treated individuals and a group of untreated individuals, i.e. in this case adopters and non-adopters of high yielding wheat varieties. The nature of treatment might be very diverse (Caliendo & Kopeinig, 2008).

The propensity score match approach tries to capture the effects of different observed covariates \(X \) on participation in a single propensity score or index. Then, outcomes of participating and non-participating households with similar propensity scores are compared to obtain the program effect. Households for which no match is found are dropped because no basis exists for comparison (Khandker, 2010). With matching methods, one tries to develop a counterfactual or control group that is as similar to the treatment group as possible in terms of observed characteristics. The idea is to find, from a large group of non-participants, individuals who are observationally similar to participants in terms of characteristics not affected by program. Each participant is matched with an observationally similar non-participant, and then the average difference in outcome across the two groups is compared to get the program treatment effect.

The study was employed ‘with and without comparisons’ the behavior in the key variables in a sample of program beneficiaries, with their behavior in non-program takings (a comparison group) to assess the impact of high yielding varieties of wheat by households’ on farm income. This is an approach to the counterfactual question, using the experiences of the comparison group as a proxy for what would otherwise have happened in the treatment beneficiaries. The aim of matching is to find the closest comparison group from a sample of non-participants to the sample of program participants. “Closest” is measured in terms of observable characteristics not affected by program participation. According to Christopher (2013) the impact of a treatment on individual \(i \), is the difference between potential outcomes with and without treatment in estimating the effect of household’s participation in the farm income for high yielding varieties of wheat due to adoption interventions being given outcome is specified as:

\[\delta_i = Y_{1i} - Y_{0i} \]

Where \(Y_{1i} \) = outcome of treatment (farm income of household, when he/she uses HYV of wheat) \(Y_{0i} \) = Outcome of untreated individuals (farm income when he/she does not involve in HYV of wheat)

\(\delta_i \) =Change in outcome as a result of treatment or change of income for participating in the program.

To evaluate the impact of a program over the population, we might be computed the average treatment effect (ATE). The average treatment effect (ATE) could be computed as follows:

\[\text{ATE} = E \{\delta\} = E \{Y_1 - Y_0\} \]

Most often, we were interested in computing the average treatment effect on the treated (ATT):

\[\text{ATT} = E \{Y_1 - Y_0| D = 1\} \]

Where \(D = 1 \) refers to the treatment.

The problem is that not all of these parameters are observable, as they rely on counterfactual outcomes. For instance, we could rewrite ATT as:

\[\text{ATT} = E \{Y_1| D = 1\} - E \{Y_0| D = 1\} \]

The second term is the average outcome of treated individuals had they not received the treatment. We couldn’t observe that, but we do observe a corresponding quantity for the untreated, and could be computed given the assumption the PSM estimator of ATT:

\[\text{ATT} = E \{Y_1 - Y_0| D = 0, p(X)\} = E \{Y_1| D = 1, p(X)\} - E \{Y_0| D = 0, p(X)\} \]
\[\Delta = E(Y_1|D = 1) - E(Y_0|D = 0) \quad \text{(6)} \]
The difference between ATT and \(\Delta \) could be defined as:

\[\Delta = \text{ATT} + \text{SB} \quad \text{(7)} \]

Where SB is the selection bias term: the difference between the counterfactual for treated units and observed outcomes for untreated units. For the computable quantity \(\Delta \) to be useful, the SB term must be zero.

The validity of the outputs of the PSM method depends on the satisfaction of two basic assumptions: the conditional independence assumption and the common support condition (Becker & Ichino, 2002). Conditional independence assumption (known as unconfoundedness assumption) states that the potential outcomes are independent of the treatment status, given \(X \). The conditional independence assumption is crucial for correctly identifying the impact of the program since it ensures that, although treated and untreated groups differ, these differences might be accounted for in order to reduce the selection bias. This allows the untreated units to be used to construct a counterfactual for the treatment group. There exists a set \(X \) of observable covariates such that after controlling for these covariates, the potential outcomes are independent of treatment status:

\[(Y_1, Y_0) \rightarrow D \mid X \]

This assumption is also known as selection on observables, and it requires that all variables relevant to the probability of receiving treatment may be observed and included in \(X \). This allows the untreated units to be used to construct an unbiased counterfactual for the treatment group. The common support condition entails the existence of sufficient overlap in the characteristics of the treated and untreated units to find adequate matches (or a common support). When these two assumptions are satisfied, the treatment assignment is said to be strongly ignorable. Common support must be defined where the distributions of the propensity score for treatment and comparison group overlap. As mentioned earlier, some of the non-participant observations may have to be dropped because they fall outside the common support. Sampling bias may still occur, however, if the dropped non-participant observations are systematically different in terms of observed characteristics from the retained non-participant sample; these differences should be monitored carefully to help interpret the treatment effect.

For PSM to work, the treatment and comparison groups must be balanced in that similar propensity scores are based on similar observed \(X \). The distributions of the treated group and the comparator must be similar, which is what balance implies. Formally, one needs to check if \(P^*(X | T = 1) = P^*(X | T = 0) \). In the third step, different matching criteria could be used to assign participants to non-participants on the basis of the propensity score. According to Caliendo & Kopeinig (2008), there are steps in implementing PSM. These are estimation of the propensity scores using binary model, choosing a matching algorithm, checking on common support condition, testing the matching quality and sensitivity analysis.

Estimating Propensity Scores: In this study probit model was employed to estimate propensity scores and selected variables would be included in the model. Because the matching procedure conditions on the propensity score but does not condition on individual covariates, one must check that the distribution of variables are 'balanced' across the adopter and non-adopter groups. Rosenbaum & Rubin (1985) recommend that standardized bias (SB) and t-test for differences be used to check matching quality. If the covariates \(X \) are randomly distributed across adopter and non-adopter groups, the value of the associated pseudo-R2 should be fairly low and likelihood ratio should also be insignificant.

Choosing a Matching Algorithm: The most commonly used matching algorithms are nearest neighbor matching, radius matching, kernel-based matching, and caliper were employed to assess the impact of high yielding wheat varieties adoption on households' farm income. The nearest neighbor matching method matches...
each farmer from the adopter group with the farmer from the non-adopter group having the closest propensity score. Nearest neighbor matching faces the risk of bad matches if the closest neighbor is far away. This risk can be reduced by using a radius matching method, which imposes a maximum tolerance on the difference in propensity scores. However, some treated units might not be matched if the dimension of the neighborhood (i.e. the radius) is too small to contain control units. The kernel-based matching method uses a weighted average of all farmers in the adopter group to construct a counterfactual. The major advantage of the kernel matching method is that it produces ATT estimates with lower variance since it utilizes greater information; its limitation is that some of the observations used may be poor matches.

Checking overlap and common support: Imposing common support condition ensures that any combination of characteristics observed in the treatment group can also be observed among the control group (Bryson et al., 2002). The common support region is the area which contains the minimum and maximum propensity scores of treatment and control groups of sample households, respectively. Comparing the incomparable must be avoided, i.e. only the subset of the comparison group that is comparable to the treatment group should be used in the analysis. Hence, an important step is to check the overlap and the region of common support between treatment and comparison group. One means to determine the region of common support more precisely is by comparing the minima and maxima of the propensity score in both groups. The basic criterion of this approach is to remove all observations whose propensity score is smaller than the minimum and larger than the maximum in the opposite group. Observations which lie outside this region are discarded from analysis (Caliendo & Kopeinig, 2008). No matches can be made to estimate the average treatment effects on the ATT parameter when there is no overlap between the treatment and non-treatment groups.

Testing the matching quality: Since we do not condition on all covariates but on the propensity score, it has to be checked if the matching procedure is able to balance the distribution of the relevant variables in both the control and treatment group. The main purpose of the propensity score matching is not to perfectly predict selection into treatment but to balance all covariates. While differences in covariates are expected before matching, these should be avoided after matching. The primary purpose of the PSM is that it serves as a balancing method for covariates between the two groups. Consequently, the idea behind balancing tests is to check whether the propensity score is adequately balanced. In other words, a balancing test seeks to examine if at each value of the propensity score, a given characteristic has the same distribution for the treated and comparison groups. The basic idea of all approaches is to compare the situation before and after matching and check if there remain any differences after conditioning on the propensity score (Caliendo & Kopeinig, 2008). The crucial issue is to ensure whether the balancing condition is satisfied or not because it reduces the influence of confounding variables (Rosenbaum &Rubin, 1983; Dehejia & Wahba, 2002).

Sensitivity analysis: Recently checking the sensitivity of the estimated results becomes an increasingly important topic in the applied evaluation literatures (Caliendo & Kopeinig, 2008). Matching method is based on the conditional independence or unconfoundedness assumption, which states that evaluator, should observe all variables simultaneously influencing the participation decision and outcome variables. This assumption is intrinsically non-testable because the data are uninformative about the distribution of the untreated outcome for treated units and vice versa (Becker & Caliendo, 2007). The estimation of treatment effects with matching estimators is based on the unconfoundedness or selection on observables assumption. However, if there are unobserved variables which affect assignment into treatment and the outcome variable simultaneously, a 'hidden bias' might arise (Rosenbaum, 2002). In other word, if treatment and outcomes are also influenced by unobservable characteristics, then CIA fails and the estimation of ATTs are biased. The size of the bias depends on the strength of the correlation between the unobservable factors, on the one hand, and treatment and outcomes, on the other.

Definition and Measurement of Variables

Outcome variable: Farm income: It is continuous variable indicating the amount of annual farm income earned by households. It is an outcome variable measured in terms of ETB that generated in the year and transformed into natural logarithm. The farm income obtained from both production of crops and livestock activities were considered because, farmers in the area could be undertaken mixed farming activities. It
considered the share of income obtained from farming activities and it is acceptable to include every source that can generate income to household from crop production and livestock raising by smallholders.

Explanatory variables: The independent variables of the study were those which were expected to have association with the adoption of agricultural technologies on basis of past research studies, based on the literature reviews and prior knowledge of the study area.

Table 1. Summary of covariate used in the study.

Variables	Measurements
Sex of household head	Dummy; 1=Male, 0=Female
Family size	Continuous, total no. of family members
Educational level	Continuous, years of schooling
Farming experience	Continuous, years of farming
Land holding of household	Continuous, hectares
Livestock holding unit (tlu)	Continuous, values
Distance from market center	Continuous, kilometers
Access to credit	Dummy; yes/not
Distance to main road	Continuous; Kilometers
Frequency of extension contacts	Continuous; no. of days
Non-farm income	Continuous (log); ETB
Farmers’ perception of HYV of wheat attributes	Dummy/ Ordinal variable
Farmer’s affiliation to organizations	Dummy; yes/no

RESULTS AND DISCUSSION

Descriptive Results: Descriptive statistics were used to describe the socio-economic and institutional characteristics of the households under considered in the study of impact of high yielding wheat varieties adoption on farm income of smallholder farmers. The descriptive results revealed that treated households were significantly different from non-treated groups in many cases such as farm land holding size, family size, livestock ownership, frequency of extension visit, and educational level. On the other hand, treated groups did not make significant difference in terms of distance from market center, distance to main road, farming experiences, access to credit services, sex of household head, off/non-farm income activities, and participation in local level organization with compared to non-treated. The average size of cultivable land owned by the sample respondents was about 1.09 ha for non-treated households and 1.79 ha for the treated. The mean difference of total land holdings for the two groups have strong significance. The average experience of the treated and non-treated were 25.39 and 23.48, respectively. Accordingly, mean experience of the two groups’ households did not have difference and statistically insignificant difference. The average tropical livestock unit (tlu) of the sample households was 4.29 and 1.46 for treated and non-treated groups, respectively. The tropical livestock unit was strongly and statistically significant difference between treated and non-treated of the sample households (Table 3). The average years of formal education of treated and non-treated were estimated to be 1.99 and 1.49 years, respectively. This indicate that education have slightly significant difference between the two groups. The average family size of households were 7.60 and 6.72 persons for treated and non-treated groups, respectively. The difference is statistically significant between the treated and non-treated sample households.

The survey result showed that frequency of extension contacts by extension workers varies among the sample households. The results indicated that about 12.97 days for non-treated, 20.48 days for treated and 16.72 days of the whole sample respondents had visited by extension workers within a year to get extension service (Table 3). This indicates that treated groups had relatively a better frequency of extension contact than non-treated ones. The mean difference between the two groups were statistically significant; showing that there is strong
discrepancies between the two groups of households based on the frequency of extension contacts with development agents. There is no significant difference in terms of household average distance from nearest market center, distance to main road between treated and non-treated.

Table 2. Summary statistics for continuous covariates (variables).

Descriptions	Treated Mean	Non-treated Mean	Total Sample Mean	T-test value
Land holding size (ha)	1.83	1.16	1.50	-5.114***
Total livestock unit (tlu)	4.29	1.46	2.88	-6.803***
Educational level (years)	1.99	1.49	1.74	-1.517*
Distance from market center (km)	4.20	4.37	4.29	0.447
Distance to main road (km)	2.83	2.77	2.80	-0.145
Farming experiences (years)	25.39	23.48	24.44	-1.165
Family size (number)	7.59	6.72	7.16	-2.100**
Off/non-farm income (ETB)	3.26	3.25	3.26	-0.024
Frequency of extension contact (days)	20.48	12.97	16.72	-3.263***

*, **, and *** indicates significant at 10 %, 5 % and 1 % significance levels, respectively.

From 174 total sample households, only 9 were female-headed and the majority of sample respondents, about 165 sample were male-headed households. On average about 47 and 48 of sample respondents of treated and non-treated were male-headed households, respectively. The survey data revealed that no significant difference is observable in the sex of household head since almost all of the respondents were male headed households. The treated groups were significantly distinguishable in terms of access to information. The survey result revealed that on average about 43.68 treated had chance to access available agricultural information while only 31.61 non-treated access to agricultural information (Table 4). The chi-square test results show that access to information related to high yielding wheat varieties between the two groups was statistically significant at 1 % significance level. The mean difference between the two groups (treated and non-treated) was statistically insignificant; showing that there is no difference between the two groups of households in terms of participation in the formal organization. The chi-square test result revealed that there is no difference between treated and non-treated farmers in relation to access to credit services in the study area (Table 4).

Table 4. Statistics for dummy/discrete covariates (variables).

Descriptions	Treated Mean	Non-treated Mean	Total Sample Mean	χ^2-value
Access to credit services				
Yes	3.45	2.87	6.45	0.755
No	46.55	47.13	93.68	
Access to information				
Yes	43.68	31.61	75.29	13.622***
No	18.39	6.32	24.71	
Affiliation to organizations				
Yes	48.28	47.13	95.40	0.469
No	1.72	2.87	4.60	
Sex of household				
Male	47.13	47.70	94.83	0.732
Female	2.87	2.30	5.17	

*, **, and *** indicates significant at 10 %, 5 % and 1 % significance levels, respectively.
Impact of high yielding wheat varieties adoption on farm income:

Propensity scores: By employing the binary probit regression model, the important variables explaining propensity of participation in high yielding wheat varieties adoption of farm income (natural log of farm income) were identified. The results showed that important explanatory variables which were hypothesized to affect participation in high yielding wheat varieties adoption was computed from propensity of adoption. The contributing of those variables on the dependent variable and could be those that sex of household, land holding size, tropical livestock unit, frequency of extension contacts, access to information, off/non-farm income, perceptions of farmers’ toward attributes of high yielding wheat varieties, affiliation to organizations would ease participation in the adoption of high yielding wheat varieties.

Propensity score distribution of adopters and non-adopters: Before launching the matching task, there are certain main tasks that should be accomplished. The estimation of predicted values of high yielding wheat varieties adoption participation (propensity scores) for all participant and non-participant households would be accomplished from the propensity of adoption. A common support condition should be imposed on the propensity score distributions of the households with and without the program (adoption of high yielding wheat varieties). After this, discarded observations whose predicted propensity scores fall outside the range of the common support region would be accomplished and at last sensitivity analysis should be done in order to check whether the hidden bias affects the estimated ATT or not.

On the basis of estimated propensity score of adopters and non-adopters households, the distribution of the propensity score for each household included in the treated and control groups were computed to identify the existence of a common support Figure 3 below portrays distribution of the sample households with respect to the estimated propensity scores. Moreover, the figure portray the kernel density distributions of the propensity score of the sample households’ (both treated and untreated groups) that the distribution for all households is relatively near to normal distribution. In case of treatment (adopters) households, most of them are partly found in the center and partly in the right side of the distribution, whereas most of the control (untreated) households are found in the left side of the distribution.

Figure 1. Kernel density of propensity score distribution for sample households.
Generally, the graph shows that there is wide area in which the propensity score of treated is similar to those of control groups. This figure portrays that there was a considerable overlap or common support between the two groups of respondents (treated and control) of smallholders. Furthermore, it depicts that there is high chance of getting good matches and large number of matched sample size from the distribution as the propensity score distribution is skewed to the left for treated and right for untreated. This is based on the minima and maxima approach of common support region identification (Caliendo & Kopeinig, 2008).

Matching of treated and control groups: Matching of treated and control households was carried out to determine the common support region. The basic criterion for determining the common support region is to discard all observations whose propensity score is smaller than the minimum propensity scores of adopters (treated) and larger than the maximum of the (control group) non-adopters (Caliendo & Kopeining, 2008). That is, excluding all observations out of the overlapping region.

Group	Mean	Std.Dev	Minimum	Maximum
Treated households	0.6748	0.2411	0.0698	0.9999
Untreated households	0.3179	0.2335	0.0001	0.9687
Total households	0.4963	0.2966	0.0001	0.9999

As shown in Table 5, the estimated propensity scores vary between 0.0698 and 0.9999 with mean of 0.675 for treated sample households and between 0.0001 and 0.9687 with mean of 0.3179 for control sample households. Thus, the common support assumption is satisfied in the region of [0.0698-0.9687] for sample households. This means that households with estimated propensity scores less than 0.0698 and greater than 0.9687 are not considered in the matching undertakings. As a result of this restriction, 26 sample households (11 treated and 15 control sample households) were discarded and 148 sample households were identified to be considered in the estimation process. The figures below portray the distribution of estimated propensity scores, with and without the imposition of the common support condition, for treated and untreated sample households, respectively. Figures 4 and 5 certify that the distribution of estimated propensity scores with the imposition of the common support condition, most of the treated households have propensity score around 0.9 while majority of the untreated households have propensity score less than 0.1.

![Kernel density estimate](image.png)

Figure 2. Kernel density of propensity scores of treated households.
Choice of matching Algorithm: Choice of matching algorithm was carried out from kernel bandwidth, nearest neighbor matching, radius caliper methods. The choice of estimator based on three criteria; namely, balancing test (number of insignificant variables), pseudo R^2 and number of matched sample size. Likewise, a matching estimator which balances more independent variables, has low pseudo R^2 value and results in large matched sample size was chosen as being the best estimator of the data. Accordingly, nearest neighbor matching method with propensity score closest to (3) was found to be the best estimator for the data at hand on the farm income of sample households.

![Kernel density estimate](image)

Figure 3. Kernel density of propensity scores of non-treated household.

Table 3. Performance of matching estimators for sample households.

Matching estimator	Performance		
	Balancing test*	Pseudo R2	Matched sample size
Kernel Matching			
Bandwidth (0.01)	8	0.073	85
Bandwidth (0.1)	7	0.059	148
Bandwidth (0.25)	7	0.039	148
Bandwidth (0.5)	7	0.070	148
Nearest Neighbor Match			
Neighbor (1)	5	0.118	148
Neighbor (2)	7	0.058	148
Neighbor (3)	7	0.030	148
Neighbor (4)	7	0.034	148
Neighbor (5)	7	0.047	148
Radius Caliper Matching (RCM)			
Radius (0.01)	7	0.078	85
Radius (0.1)	7	0.055	148
Radius (0.25)	7	0.038	148
Radius (0.5)	6	0.114	148

* Indicate number of insignificant variables.
Relatively, this estimator (NNM 3) resulted in lowest pseudo R2 (0.030) value, well balanced covariates, and large number of matched sample size that were 76 treated and 72 untreated with a total of 148 sample households by discarding only 26 unmatched (off support) households (Table 13). Moreover, in what follows estimation results and discussion are the direct outcomes of the nearest neighbor matching algorithm based on propensity score closest to 3. Therefore, estimate of ATT for sample households would be proceeded.

Testing the balance of propensity score and covariates: After choosing the best performing matching algorithm (nearest neighbor matching) the next task is to check the balancing of propensity score and covariates.

The t-test suggests that differences in household characteristics between the treatment and control groups are jointly insignificant both before and after matching. The main purpose of the estimation of propensity score is to balance the distributions of relevant variables in both treatment and control groups but not to obtain a precise prediction of selection into treatment.

Table 4. Propensity score and covariate balance.

Variables	Before matching (174)	After matching (148)				
	Treated (87)	Control (87)	T-value	Treated (76)	Control (72)	T-value
Sex of households head	0.94	0.95	0.34	0.93	0.96	0.39
Farming experiences	25.39	23.48	-1.17	25.51	25.86	0.85
Educational level	1.99	1.49	-1.52*	1.87	1.71	0.65
Distance to main road	2.83	2.77	-0.14	2.75	2.23	0.18
Family size	7.60	6.72	-2.10**	7.46	7.54	0.85
Land holding size	1.79	1.09	-5.11***	1.61	1.57	0.82
Tropical livestock unit	4.29	1.46	-6.80***	3.55	3.82	0.57
Access to credit	0.07	0.06	-0.31	0.08	0.05	0.52
Frequency of extension contacts	20.48	12.97	-3.26***	18.21	18.98	0.74
Access to information	0.87	0.63	-3.82***	0.87	0.90	0.45
Off-farm income	3.26	3.25	-0.02	3.30	2.17	0.07
Perception of households’	1.11	1.69	7.22***	0.96	1	0.08
Affiliation to organizations	0.97	0.94	-0.72	0.96	1	0.08

*, ** and *** indicates significant at 10 %, 5 % and 1% significance levels, respectively.

Table 5 displays results of balancing test of the covariate by comparing the before and after matching algorithm significant differences. Before matching, there were some variables which were significantly different for the two groups of respondents. However, after matching some of these significant covariates were conditioned to be insignificant which indicates that the balance that was made in terms of the covariates between treatments and untreated. The low pseudo-R² and the insignificant likelihood ratio tests support the hypothesis that both groups have the same distribution in covariates after matching (Table 6).

The result clearly show that the matching technique is capable to balance the characteristics in the treated and control comparison groups. It was used to evaluate the effect of the adoption of high yielding wheat varieties among groups of households having similar observed characteristics that compare observed outcome for treatments with those of a comparison group sharing a common support.

Table 5. Tests for the joint significance.

Sample	Pseudo R²	Wald/LR chi²	Prob > chi²
Unmatched	0.30	51.05	0.0000
Matched	0.03	6.08	0.868
All of the above tests suggest that the matching algorithm chosen is relatively the best for the data at hand. Thus, this study has chosen NNM (3) matching method as the best estimator and then proceed to run the ATT estimation with this best choice estimator.

Treatment effect on the treated (ATT): The estimated average treatment effect (ATT) of sample households showed that adoption of high yielding wheat varieties have strong significant effect on farm income of treated groups smallholder farmers. The result showed that adoption of high yielding wheat varieties creates on average positive farm income differences between adopters and non-adopters (matched) of the high yielding wheat varieties. As table 16 below shows, ATT estimation using nearest neighbor matching method with closest (3) which summarizes the outcome variables that is farm income of adopters and non-adopters. From the table, it is clear that the average treatment effect on the treated (ATT) of farm income of treated groups earned 9.9736 which is equal to 21452.28 ETB while controls (untreated) groups earned the farm income of 9.3184 which is equivalent to 11141.14 ETB, indicating the effective level of significance. That is the average farm income of the treatments is greater than average farm income of matched (control) groups. The result indicates that the propensity of adoption decision of high yielding wheat varieties has resulted in a positive and statistically significant difference between adopters and non-adopters in terms of farm income of smallholder households.

In general, the adoption decision of households for high yielding wheat varieties has generated about 9% increases in farm income of treated households over control groups. Accordingly, it is possible to conclude that the impact analysis of households on farm income has positive effect on the smallholder households of the study area. Overall, the results are in agreement with the findings of other researchers on the impacts of high yielding agricultural technology adoption by Mendole (2007), Kassie et al. (2010), Solomon (2010), Wu et al. (2010), Tsegaye & Bekele (2012).

Outcome variable	Sample	Treated	Controls	Difference	S.E	T-stat
Farm income (log)	Unmatched	10.1076	8.5687	1.5389	0.2065	7.45
	ATT	9.9736	9.3184	0.6552	0.4178	1.57***
	ATU	8.6519	9.5330	0.8811		
	ATE			0.7651		

*** indicate significant at 1% significance level.

Farmers during focus group discussion explained the importance of high yielding wheat varieties cultivation playing in contributing to their agricultural transformation. Those farmers cultivated high yielding wheat varieties since they started adopting in the area were benefited from this crop and transformed to business oriented/ local investors and have got around 200 hectares individually from government at periphery area (Kolla area) of the district far away at border of Sudan and started cultivation of low land crops through buying tractors and using necessary inputs of agricultural production enhancements. Therefore, the results estimated above are in line with the situations reported already by participant farmers in cultivation of high yielding wheat varieties and highly benefitted from agricultural development that adoption of new agricultural technologies promote smallholders.

Sensitivity of the estimated average treatment effects (ATT): Matching estimators work under the assumption that a convincing source of exogenous variation of treatment assignment does not exist. Based on this principle, sensitivity analysis is tested to check whether unobserved covariates have effect on the result by creating biases or not. Furthermore, after ATT is found, it is vital to test whether the estimated ATT is effective or not.
and Agribusiness from Global Development Network (BERCEA, GDN) Project of Haramaya University, Ethiopia for providing funding of this research and other logistic support. My extended gratitude goes to enumerators for their support in data collection, different individuals for technical support and the selected rural village farmers for their cooperation during data collection.

REFERENCES

Adekambi, S. A., Diagne, A. F., Simtowe, P. & Biaou, G. (2009). The impact of agricultural technology adoption on poverty: The case of Nerica rice varieties in Benin. Contributed paper prepared for presentation at the International Association of Agricultural Economists’ conference, 16-22 August 2009. Beijing, China.

Baker, J. L. (2000). Evaluating the impact of development projects on poverty: A handbook for Practitioners. Washington D.C. World Bank.

Becker, S. O. & Ichino, A. (2002). Estimation of average treatment effects based on Propensity Scores. The Stata Journal, 2 (4), 1-19.

Becker, S.O. & Caliendo, M. (2007). Sensitivity Analysis for Average Treatment Effects. The Stata Journal, 7 (1), 71-83.

Berihun K., B. Kassa & K. Aregawi. (2014). Adoption and impact of agricultural technologies on farm income: Evidence from southern Tigray, Northern Ethiopia. International Journal of Food and Agricultural Economics, 2 (4), 91-106.

Bryson, A., Dorsett, R. & Purdon, S. (2002). The use of Propensity Score Matching in the Evaluation of Labour Market Policies, Working Paper No. 4. Department for Work and Pensions.

Caliendo, M. & Kopeinig, S. (2008). Some practical guidance for the implementation of propensity score matching, IZA Discussion Paper No. 1588. University of Cologne.

CSA (Central Statistical Agency). (2007). Summary and

Table 7. Sensitivity analysis of the estimated ATT.

Gamma	σ+	σ−	Gamma	σ+	σ−
1	0	0	2.75	9.3e-09	0
1.25	0	0	3	3.6e-08	0
1.5	1.3e-14	0	3.25	1.1e-07	0
1.75	8.9e-13	0	3.5	3.1e-07	0
2	2.1e-11	0	3.75	7.3e-07	0
2.25	2.5e-10	0	4	1.6e-06	0
2.5	1.8e-09	0			
Statistical Report of the 2007 population and housing census. Addis Ababa, Ethiopia.

CSA (Central Statistical Agency). (2015). Agricultural sample survey of 2014/2015 report on area and production for major crops (private peasant holdings, Meher season). Statistical bulletin No.578. May, 2015. Addis Ababa, Ethiopia.

Dehejia, R. H. & Wahba, S. (2002). Propensity score matching methods for non-experimental causal studies. The Review of Economics and Statistics, 84 (1), 151-161.

Dehinenen G. (2014). Analyses of Impact of Improved Dairy Technology Adoption on Smallholder Household Livelihoods and Milk Value Chain in Selected Zones of Oromia and Amhara National Regional States, Ethiopia. Doctoral Dissertation, Addis Ababa University, Ethiopia.

Dixon, J., Nalley, L., Kosina, P., La Rovere, R., Hellin, J. & Aquino, P. (2006). Adoption and Economic Impact of Improved Wheat Varieties in the Developing World. Journal of Agricultural Science, 144 (489), 489-502.

Dorosh, P. & Rashid, S. (2013). Food and Agriculture in Ethiopia: Progress and Policy Challenges. University of Pennsylvania Press. Philadelphia, USA.

Ezemenari, K., Rudqvist, A. & Subbarao, K. (1999). Impact Evaluation: A Note on Concepts and Methods. Poverty Reduction and Economic Management Network, World Bank.

FAO (Food and Agriculture Organization of the United Nations). (2009). How to feed the world in 2050.

Foster, E. (2003). Propensity score matching. An illustrative analysis of dose response. Lippincott Williams and Wilkins, Inc. Journal of Medical Care, 41 (10), 1183-1192.

Goldfeld, S. & Quandt, R. (1973). The switching of structural shifts by switching regressions. Annuals of economic and social measurement, 2 (4), 475-485.

Heinrich, C., Maffioli, A. & Vázquez, G. (2010). A Primer for Applying Propensity Score Matching: Impact-Evaluation Guidelines. Inter-American Development Bank.

Jalan, J. & Ravallion, M. (2003). Estimating the benefit incidence of an antipoverty program by propensity-score matching. Journal of Business and Economics Statistics, 21 (1), 19-30.

Katheleen, O. (2010). Measuring the Impact of Microfinance. Grameen Foundation Publication Series. PP 7.

Menale K., B. Shiferaw & Muricho, G. (2011). Agricultural technology, crop income, and poverty alleviation in Uganda. World Development, 39, 1784-1795.

Menale K., B. Shiferaw, Mmbando, F. & Muricho, G. (2012). Plot and household level determinants of sustainable agricultural practices in rural Tanzania. Environment for Development, Discussion Paper Series EfD DP 12-20.

Merga C. & U. Tilahun. (2014). Determinants and Impacts of Modern Agricultural Technology Adoption in West Wollega: The Case of Gulliso District. Journal of Biology, Agriculture and Healthcare, 4, 20.

Omoto, W. (2003). Impact assessment of urban agriculture research and development in Nairobi, Kenya.

Ravallion, M. (2005). Evaluating anti-poverty programs: Policy research working paper 3625, World Bank, Washington D.C.

Rosenbaum, P.R. & Rubin, D.B. (1983). The Central Role of the Propensity Score in Observational Studies for Causal effects. Biometrika, 70 (1), 41-55.

Rover, T. & Dixon, R. (2007). Operational guidelines for assessing the impact of agricultural research on livelihoods. Good practices from CIMMYT. Mexico.

Solomon A. (2010). Estimating Welfare Effect of Modern Agricultural Technologies: A Micro-Perspective from Tanzania and Ethiopia, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT). Nairobi, Kenya.

Solomon A. & B. Shiferaw (2010). Agricultural Technology Adoption and Rural Poverty: Application of an Endogenous Switching Regression for Selected East African Countries. Poster presented at the Joint 3rd African Association of Agricultural Economists (AAAE) and 48th Agricultural Economists Association of South Africa (AEASA) Conference, Cape Town, South Africa.

Solomon T. (2012). Impact of Improved Barley Scale Up/Out Program on Household Food Security in Meket District, North Eastern Ethiopia M.Sc. thesis Haramaya University.

Solomon A., M. Kassie, Simtowe, F. & Lipper L. (2012). Poverty reduction effects of agricultural
technology adoption: A micro-evidence from rural Tanzania. Journal of Development Studies, 48 (9), 1288-1305.

SID (Support Integrated Development). (2010). Market Assessment and Value Chain Analysis in Benishangul Gumuz-Final Report. Addis Ababa, Ethiopia.

Tigist M. (2015). Agricultural Technology Adoption and Market Participation under Learning Externality: Impact Evaluation on Small-scale Agriculture from Rural Ethiopia. PhD fellow.

Tsegaye M. & B. Hundie. (2012). Impacts of adoption of improved wheat technologies on households’ food consumption in Southeastern Ethiopia. Selected Poster prepared for presentation at the International Association of Agricultural Economists (IAAE) Triennial Conference, 18-24 August 2012. Foz do Iguaçu, Brazil.

UNDP (United Nations Development Program). (2014). Ethiopia: Quarterly Economic Brief. Third Quarter, 2014. Addis Ababa, Ethiopia.

World Bank. (2003). Reaching the rural poor: A renewed strategy for rural development. Washington, DC.

Wu, H., Ding, S., Pandey, S. & Tao, D. (2010). Assessing the impact of agricultural technology adoption on farmers’ well-being in Rural China. Asian Economic Journal, 24 (2), 141-160.