Armillaria root rot fungi host single-stranded RNA viruses

Riikka Linnakoski1,5, Suvi Sutela1,5, Martin P. A. Coetzee2, Tuan A. Duong3, Igor N. Pavlov3,4, Yulia A. Litovka3,4, Jarkko Hantula1, Brenda D. Wingfield2 & Eeva J. Vainio1,2

Species of Armillaria are distributed globally and include some of the most important pathogens of forest and ornamental trees. Some of them form large long-living clones that are considered as one of the largest organisms on earth and are capable of long-range spore-mediated transfer as well as vegetative spread by drought-resistant hyphal cords called rhizomorphs. However, the virus community infecting these species has remained unknown. In this study we used dsRNA screening and high-throughput sequencing to search for possible virus infections in a collection of Armillaria isolates representing three different species: Armillaria mellea from South Africa, A. borealis from Finland and Russia (Siberia) and A. cepistipes from Finland. Our analysis revealed the presence of both negative-sense RNA viruses and positive-sense RNA viruses, while no dsRNA viruses were detected. The viruses included putative new members of virus families Mymonaviridae, Botourmiaviridae and Virgaviridae and members of a recently discovered virus group tentatively named “ambiviruses” with ambisense bicistronic genomic organization. We demonstrated that Armillaria isolates can be cured of viruses by thermal treatment, which enables the examination of virus effects on host growth and phenotype using isogenic virus-infected and virus-free strains.

The fungal genus Armillaria (Fr.) Staude includes more than 40 described species. They are mainly known as notorious plant pathogens of managed natural forests and plantations of non-native tree species that infect hundreds of different plants, including economically important conifers (e.g. Abies, Picea, Pinus) and agronomic plants (e.g. Citrus, Juglans, Malus, Prunus, Vitis). Most Armillaria species are facultative necrotrophs capable of colonizing living roots, killing root tissues and utilizing dead wood as their source of nutrition. Some species produce edible fruiting bodies, generally known as honey mushrooms. Vegetative diploid individuals (clones) of A. ostoyae and A. gallica are amongst the largest and oldest organisms on earth, and single clones have been estimated to occupy up to 965 ha and be 1900–8650 years of age.

In Europe, the two Armillaria lineages causing most damage to trees and woody plants are A. mellea and A. solidipes/ostoyae, both of which have very broad host ranges. The A. mellea lineage has a transcontinental distribution in Europe, North America, Asia and Middle East, and it also occurs as an alien species after being introduced by human activities beyond its natural distribution range. This fungus was introduced into South Africa by the Dutch settlers more than 300 years ago and has escaped from the planted environment to the sensitive and ecologically important natural woody habitat of the surrounding Table Mountain. In central and northern Europe, A. ostoyae occurs sympatrically with A. borealis and A. cepistipes (syn. A. lutea). A. gallica is also native to the northern hemisphere (North America, Europe and Japan), where it is considered as a weak pathogen. The species also occurs in Kirstenbosch Botanical Gardens in South Africa, presumably being introduced in the country from Asia.

Agricultural crops may be protected against Armillaria diseases by root collar excavation or chemical pesticides. Stump removal has been shown as an effective method for controlling A. ostoyae in the boreal forest region. However, none of the methods that are presently used can fully eradicate an established Armillaria mycelium from a contaminated site.

Fungal viruses (mycoviruses) infect hosts representing diverse fungal taxa and various lifestyles including ascomycetous and basidiomycetous micro- and macrofungi, as well as early-diverging fungal lineages such as Chytridiomycota, Blastocladiomycota, Neocallimastigomycota, Zoopagomycota and Mucoromycota. They are also commonly found in edible mushrooms like the cultivated button mushroom (Agaricus bisporus) and

1Natural Resources Institute Finland (Luke), Helsinki, Finland. 2Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa. 3Laboratory of Reforestation, Mycology and Plant Pathology, V.N. Sukachev Institute of Forest SB RAS, Krasnoyarsk, Russia. 4Department of Chemical Technology of Wood and Biotechnology, Reshetnev Siberian State University of Science and Technology, Krasnoyarsk, Russia. 5These authors contributed equally: Riikka Linnakoski and Suvi Sutela. *email: eeva.vainio@luke.fi
the shiitake (Lentinula edodes) as well as true truffles (Tuber spp.)18–20. On the other hand, root rot pathogens such as Heterobasidion spp. infecting conifers and the white root fungus Rosellinia necatrix infecting fruit trees have been extensively investigated for the occurrence of mycoviruses21–23 in attempts to find viruses suitable for biological control. However, currently the only mycoviral biocontrol agent used in field conditions is the hypovirus CHV1 that significantly reduces the pathogenicity of the ascomycetous Chestnut blight fungus (Cryptonectria parasitica) in Europe24,25.

Our understanding of the virosphere has recently been revolutionized by high-throughput sequencing (HTS) studies, which have revealed many novel viruses representing yet unassigned virus groups related to but phylogenetically distinct from classified members of the orders Bunyavirales, Serpentovirales, Hepelivirales, Martellivirales, Tolvirales and Tymovirales, many of which have traditionally known to include only viruses that infect animals or plants (https://talk.ictvirtual.org/ictv-reports/ictv_online_report/). Furthermore, metagenomic studies have revealed the common occurrence of newly discovered evolutionary lineages of mycoviruses, such as the viral family Mymonaviridae in order Mononegavirales26, the viral family Botourmiaviridae in order Ouliviridae27, and the unclassified virus group tentatively named “ambiviruses”28,29.

Despite their importance as forest and agricultural pathogens, viruses of Armillaria spp. have not been molecularly characterized prior to this study. Early studies by Blattny30 and Reaves et al.31 reported the occurrence of virus-like particles in A. mellea and A. ostoyae, but these studies were not followed by viral genome sequence characterization. In this study, we used cellulose chromatography and HTS (RNA-Seq) complemented with Sanger sequencing to investigate the occurrence of virus infections in isolates of A. mellea and A. gallica from South Africa, A. borealis from Finland and Siberia and A. cepistipes from Finland. In addition, we examined transcriptomic datasets of 12 Armillaria species available in GenBank for the presence of viruses using the same bioinformatics pipeline.

Results

Virus detection. Initially, we selected 63 Armillaria strains for dsRNA virus screening (see Supplementary Table S1 online). The cellulose chromatography analysis did not reveal any clear dsRNA elements in the Armillaria isolates, whereas the partitiviruses hosted by the Heterobasidion isolates used as control were detected in every assay. Only a very faint fragment of ca. 2 kb was observed in A. borealis N40 (data not shown). For this reason, we employed an RNA-Seq approach as an alternative virus detection strategy as it enables the detection of virus-like particles in A. mellea and A. ostoyae, but these studies were not followed by viral genome sequence characterization. In this study, we used cellulose chromatography and HTS (RNA-Seq) complemented with Sanger sequencing to investigate the occurrence of virus infections in isolates of A. mellea and A. gallica from South Africa, A. borealis from Finland and Siberia and A. cepistipes from Finland. In addition, we examined transcriptomic datasets of 12 Armillaria species available in GenBank for the presence of viruses using the same bioinformatics pipeline.

Virus genome characterization and taxonomical assignment. Sequence characteristics of a new virga-like virus from a Siberian strain of A. borealis. Two nearly identical Trinity contigs shared the highest Blastx similarity with virga-like viruses (see Supplementary Table S5 online). They represented a new virus found to be hosted by A. borealis strain N40 and designated as Armillaria borealis mycovirgavirus 1 (AbMV1). The 5′ and 3′ untranslated region (UTR) sequences of AbMV1 were determined with Sanger sequencing, resulting in a complete genome sequence of 11,238 nt without the poly(A) tail and four predicted ORFs (Table 1; Fig. 1A,B). Mapping of reads (Table 1) and variant calling using Geneious R10 revealed the sequence to be nearly invariable with only three polymorphic nucleotide sites (see Supplementary Table S6 online). Based on Blastx analysis of the complete genome sequence, the closest relative of AbMV1 was Auricularia heimuer mycovirgavirus 1 (AhMV1), unclassified Virgaviridae from China32. The 5′ UTR of AbMV1 includes repeat sequences of UUCCA and UUCAA, which resemble those of the AhMV1. The largest ORF was predicted to encode a replication protein (predicted Mr = 272.504 kDa) including an RNA-dependent RNA polymerase (RdRP) domain, a methyltransferase and a helicase (Fig. 1B). The third ORF encodes a protein (predicted Mr = 75.310 kDa) homologous to virgavirus movement proteins (MPSs), and the fourth ORF resembles a coat protein (predicted Mr = 34.078 kDa) similar to those in AhMV1. Interestingly, the second ORF showed some homology with the protease domains of Setosphaeria turcica hypovirus 1 and Phomopsis longicolla hypovirus (GenBank accessions AAT88613 and AIG94930). A recombination event between distantly related viruses (a dsRNA megabirnavirus and a positive-sense ssRNA hypovirus) has been reported earlier by Wang et al.33.

Phylogenetic analysis revealed that AbMV1 forms a highly supported cluster with other virga-like viruses from asco- and basidiomycetous fungi (Fig. 2). A separate cluster with unclassified virga-like viruses included Entomophthora virgaria virus A (GenBank accession MK231110, unpublished) from a basal fungus (subkingdom Zoopagomycteta) and several viruses obtained from insect metatranscriptomic studies.
Table 1. Mycoviruses detected in our collection of Armillaria isolates or in transcriptomics datasets deposited in the NCBI SRA database. a Raw reads were mapped against the virus sequence using Geneious for RNA Seq assembler with medium–low sensitivity. b Mean value generated by Geneious 10.2.6. c The sequence having highest identity with the virus based on Blastx with nr database. d Without poly(A) tail. e Other A. borealis hosts of AbAlV2 were Ab2B, Ab4B, Ab9A and MUS36. f Mapping with custom sensitivity using 0 as a maximum mismatch % per read. g Other A. borealis ambivirus 1. h AsAlV3 hosted Al65A variants. i RNA-seq library was generated using PolyA selection. j Contact person for unpublished datasets of JGI (Joint Genome Institute). k Mapping conducted with custom sensitivity: maximum mismatch 5% per read; maximum gap 5% per read. l Mapping conducted with custom sensitivity: maximum mismatch 1% per read; maximum gap 1% per read. m NCBI GEO: G3M189980.

Putative mycoviruses hosted by A. mellea from South Africa and North America. A new myunma-like virus was identified in the RNA-Seq library of A. mellea strain CMW3973 and was represented by two contigs (Table 1; Supplementary Table S5). Mapping of reads (Table 1, Fig. 1C) and variant calling using Geneious R10 revealed that the sequence was nearly invariable with only one polymorphic site (see Supplementary Table S6 online). The terminal 5′ and 3′ UTR sequences were verified by Sanger sequencing, and the virus was named Armillaria mel-ea negative strand RNA virus 1 (AmNSRV1, Table 1). The complete AmNSRV1 genome is 10,812 nt in length and has six predicted ORFs and 5′ and 3′ terminal UTR regions showing inverted complementarity (Fig. 1C–E). It shared the highest Blastx identity with Lentinula edodes negative strand RNA virus 1 (LeNSRV1)20 (Table 1). Furthermore, uracil-rich gene junction sequences were detected in the intergenic non-coding regions of the genomic RNA strand (Fig. 1F) as reported with LeNSRV120. The longest of the predicted proteins in AmNSRV1 was identified in the RNA-Seq library of strain CMW3973 and was represented by two contigs (Table 1; Supplementary Table S5). Mapping of reads (Table 1, Fig. 1C) and variant calling using Geneious R10 revealed that AmNSRV1 resided in a highly supported cluster together with

Mycovirus Abbreviation	GenBank ID	BioProject ID	SRA run	Reference	Armillaria host strain	Length (nt)	G + C content	Mapping readsa	Average depthb	Virus with highest Blastx identityc	Identity	Query cover	e-value	
Armillaria mellea ambivirus 1	AbMV1	MW423800			A. borealis N40	11,243f.	43.5%	38,686f.	344f.	Auricularia himera myco-viravirus 1	35%	52%	0	
Armillaria mellea ambivirus 2	AmNSRV1	MW423801			A. mellea CMW3973	10,812	55.1%	35,990	336	Lentinula edodes negative strand RNA virus 1	35%	52%	0	
Armillaria mellea ambivirus 3	AmOlV1	MW423802			A. mellea CMW50256	3,919	53.8%	14,080	348	Agaricus bisporus virus 1	37%	41%	1e-95	
Armillaria mellea ambivirus 4	AmMV1	MW423803	PRJNA685612	SRR13259820	A. mellea CMW3973	3,162	47.4%	183,835	5718	Apple ousria-like virus 3 (QIC52830.1)	38%	38%	6e-74	
Armillaria mellea ambivirus 5	AbAlV1	MW423804			A. borealis N40	4,975	48.0%	135,187	2663f.	Tulanealla ambivirus 4	30%	95%	5e-73	
Armillaria mellea ambivirus 6	AbAlV2	MW423806			A. borealis N40	4,529	49.1%	411,645	8880f.	Rhizoctonia solani ambivirus 1	38%	44%	2e-104	
Armillaria mellea ambivirus 7	AsAlV3	MW423811			A. borealis N40	4,521	50.6%	144,486	3122f.	Rhizoctonia solani ambivirus 1	36%	44%	1e-104	
Armillaria mellea ambivirus 8	AmNSRV2	TPA: BK014417	PRJNA568830	SRR10392772	IGL, Francis M Martin	A. ectype FPL85.16	11,682	50.2%	484,333f.	6855f.	Bondarzewia berkeleyi negative-strand RNA virus 1	35%	44%	0
Armillaria ectype ambivirus 1	AeAlV1	TPA: BK014418	PRJNA455898	SRR796826f.	IGL, Francis M Martin	A. ectype FPL85.16	4,999	47.2%	1,730f.	51f.	Ceratobasidium ambivirus 1	32%	33%	3e-64
Armillaria luteo-bubalina ambivirus 1	AlAlV1	TPA: BK014419	PRJNA455955	SRR777679	IGL, Jonathan M Pletri	A. luteo-bubalina HWK02	4,428	48.8%	5,106	172	Tulanealla ambivirus 4	31%	40%	6e-73
Armillaria mellea ambivirus 2	AmAlV1	TPA: BK014420	PRJNA568830	SRR10392772	IGL, Francis M Martin	A. mellea ELD0317	4,329	47.6%	9,251b.	303b.	Cryptonectria parasitica ambivirus 1	29%	40%	1e-51
Armillaria mellea ambivirus 3	AmAlV2	TPA: BK014421	PRJNA297618	SRR2545913	IGL, Jonathan M Pletti	A. mellea	4,474	50.6%	14,035	229	Rhizoctonia solani ambivirus 1	37%	44%	1e-104
Armillaria novae-zelandiae ambivirus 1	AnAlV1	TPA: BK014422	PRJNA677795	SRR13091473	IGL, Francis M Martin	A. novae-zealandiae 2840	4,503	45.7%	1,189	39	Tulanealla ambivirus 4	32%	45%	2e-91
LeNSRV1, the type species of proposed genus Lentimonavirus in family Mymonaviridae (Fig. 3; https://talk.ictvonline.org/files/).

Another mymona-like virus was discovered in the SRA dataset from A. mellea ELDO17 (Supplementary Table S4). The putative viral sequence of 11,682 nt was assembled from five Trinity contigs and had six predicted ORFs. The predicted L protein of this virus and that of AmNSRV1 shared ca. 28% identity, while the most closely related viruses according to Blastx and Blastp searches were Bondarzewia berkeleyi negative-strand RNA virus 1 (BbNSRV1)34 and Auricularia heimuer negative-stranded RNA virus 1 (AhNSRV1, GenBank accession MT259204, unpublished) (Table 1). AhNSRV1 is the proposed representative species of the new genus Auriculariamoanavirus (2020.004F.Ac.v1.Mymona at https://talk.ictvonline.org/files/). The in silico detected virus sequence was named as Armillaria mellea negative strand RNA virus 2 (AmNSRV2, Table 1).

Putative members of family Botourmiaviridae in two South African isolates of A. mellea. Two distinct ourmia-like contigs were detected in isolates of A. mellea (see Supplementary Table S5 online). Coding complete virus genome sequences were deposited in GenBank and named Armillaria mellea ourmia-like virus 1 (AmOlV1) and Armillaria mellea ourmia-like virus 2 (AmOlV2) (Table 1). The nonsegmented genomes of AmOlV1 (3,919 nt) and AmOlV2 (3,162 nt) contain only a single predicted ORF, encoding for a putative RdRP (Fig. 4A–D), and their partial UTRs were verified using Sanger sequencing. The predicted size of the RdRP in AmOlV1 and AmOlV2 was 908 aa (Mr = 103.450 kDa) and 731 aa (Mr = 81.976 kDa), respectively. Based on read mapping, there were seven and five polymorphic nucleotide sites in the coding region of AmOlV1 and AmOlV2 with variant frequencies of ca. 6–30%, respectively (see Supplementary Table S6 online).

AmOlV1 shared the highest Blastx identity with Agaricus bisporus virus 1435, and AmOlV2 with Apple ourmia-like virus 3, a magoulivirus in family Botourmiaviridae (GenBank accession QIC52830, unpublished) (Table 1). Phylogenetic analysis confirmed that AmOlV2 resembles members of genus Magoulivirus, whereas AmOlV1 clustered together with Rhizoctonia solani ourmia-like virus 136, the proposed type species of new genus Rhizoulivirus and several unassigned ourmia-like viruses. Picarelli et al.37 suggested the existence of a separate family provisionally named “Basidionarnaviridae”, encompassing the Agaricus bisporus virus 1535 and Rhizoctonia ourmia-like viruses 2–537. The divergent grouping of the Rhizoctonia ourmia-like viruses seems to be based on their long predicted ORF regions. However, delimiting the phylogenetic analysis to the commonly shared sequence region supported the grouping of these viruses together with the proposed genus Rhizoulivirus (Fig. 5). To our knowledge, the size of the polymerase has not been experimentally determined for these viruses.

Viruses representing a new putative virus group called ambiviruses. Three distinct ambi-like viruses were retrieved from our RNA-Seq library, and were all found to be hosted by more than one Armillaria isolate (Table 1, Fig. 6A). The complete sequences of ambi-like viruses 1–3 hosted by A. borealis isolate N40
Figure 2. Phylogenetic tree of the family Virgaviridae and related unclassified viruses based on an alignment of RdRP aa sequences generated using MAFFT v7.450 with Blosum45 substitution matrix. The evolutionary history was inferred by using the Maximum Likelihood method and Le_Gascuel_2008 model with 4 gamma categories (+ G + I). All positions with less than 95% site coverage were eliminated, i.e., fewer than 5% alignment gaps, missing data, and ambiguous bases were allowed at any position. Evolutionary analyses were conducted in MEGA X with 1000 bootstrap repeats. Sequences originating from fungal hosts are indicated with a mushroom symbol and a star denotes the Armillaria virus.
comprised 4975, 4529 and 4521 nt, each encoding for three predicted ORFs (Table 1, Fig. 4E–J). None of the predicted proteins of the viruses showed conserved domains, but the longest predicted protein of each virus included the GDD motif, which is considered as the hallmark of RdRPs. Based on the nt and aa level sequence identities (Fig. 6A), the three ambi-like viruses hosted by N40 were not considered as variants of the same virus species (although no species delimitation criteria are available for this novel group of viruses28,29), and were des-

Figure 3. Phylogenetic tree of the family Mymonaviridae and selected related families based on an alignment of RdRP aa sequences generated using MAFFT v7.450 with Blosum45 substitution matrix. The evolutionary history was inferred by using the Maximum Likelihood method implemented in IQ-TREE web server multicore version 1.6.12 at http://iqtree.cibiv.univie.ac.at/87. The best-fit model according to ModelFinder was LG + F + I + G4. Bootstrapping was conducted using 1000 repetitions (ultrafast mode). The Armillaria viruses are designated with a star.
ignated as Armillaria borealis ambi-like virus 1 (AbAlV1), Armillaria borealis ambi-like virus 2 (AbAlV2) and Armillaria sp. ambi-like virus 3 (AsAlV3).

In addition, ambi-like viruses were discovered in five Armillaria RNA-Seq libraries deposited in the NCBI SRA database (Table 1; Supplementary Table S4; Supplementary Fig. S1; Supplementary Fig. S2). The raw reads were mapped against edited sequences of putative ambi-like viruses and were designated as Armillaria ectypa ambi-like virus 1 (AmAlV1), Armillaria mellea ambi-like virus 1 (AmAlV1), Armillaria mellea ambi-like virus 2 (AmAlV2) and Armillaria novae-zelandiae ambi-like virus 1 (Table 1). AmAlV1 and AmAlV2 shared low sequence identities, 39.8% at the nt level and 23.8% at the aa level when the predicted translation of longest ORFs of both putative viruses were aligned using MAFFT (see Supplementary Fig. S2 online). The number of ambi-like virus genomes is currently very limited, and little is known about their occurrence and variability. However, based on a small-scale phylogenetic analysis the ambi-like viruses of Armillaria seem to be of polyphyletic origin as they were found in separate clusters including also ambiviruses from distantly related host fungi (Fig. 6B).

Viral co-infections and interspecies divergence. All the other viruses except for the ambi-like viruses occurred in one host isolate only. However, some of them were found in mixed infections. For example, A. borealis N40 from Siberia hosted four different viruses, including the virga-like AbMV1 and three different ambi-like viruses. In addition, ambi-like viruses were discovered in five Armillaria RNA-Seq libraries deposited in the NCBI SRA database (Table 1; Supplementary Table S4; Supplementary Fig. S1; Supplementary Fig. S2). The raw reads were mapped against edited sequences of putative ambi-like viruses and were designated as Armillaria ectypa ambi-like virus 1, Armillaria luteobubalina ambi-like virus 1, Armillaria mellea ambi-like virus 1 (AmAlV1), Armillaria mellea ambi-like virus 2 (AmAlV2) and Armillaria novae-zelandiae ambi-like virus 1 (Table 1). AmAlV1 and AmAlV2 shared low sequence identities, 39.8% at the nt level and 23.8% at the aa level when the predicted translation of longest ORFs of both putative viruses were aligned using MAFFT (see Supplementary Fig. S2 online). The number of ambi-like virus genomes is currently very limited, and little is known about their occurrence and variability. However, based on a small-scale phylogenetic analysis the ambi-like viruses of Armillaria seem to be of polyphyletic origin as they were found in separate clusters including also ambiviruses from distantly related host fungi (Fig. 6B).

Phenotypes of virus-infected and virus-free Armillaria strains. In order to assess possible effects of viruses on the growth rate of their host, isogenic fungal strains with and without viral infections were generated using temperature treatment. Thermal treatment was successfully used to cure isolates N40, CMW3973,
Figure 5. Phylogenetic tree of the family Botourmiaviridae and selected related families based on an alignment of RdRP aa sequences generated using MAFFT v7.450 with Blosum62 substitution matrix. The evolutionary history was inferred by using the Maximum Likelihood method and Le_Gascuel_2008 model with 4 gamma categories (+G + I). All positions with less than 95% site coverage were eliminated, i.e., fewer than 5% alignment gaps, missing data, and ambiguous bases were allowed at any position (partial deletion option). Evolutionary analyses were conducted in MEGA X with 1000 bootstrap repeats. The Armillaria viruses are designated with a star.
CMW50256, Al65A and Ab9A of viral infections. The highest incubation temperature used for the thermal treatment was 35 °C for isolates CMW50256 and Al65A and 36 °C for isolates N40, CMW3973 and Ab9A.

The growth rate of the original and isogenic heat-treated virus-free Armillaria strains was compared by recording their growth on 2% malt extract agar (MEA) plates during a three-week period (Fig. 7). The presence of viruses did not appear to have a major effect on the growth rate of the Armillaria isolates in laboratory conditions.

Figure 7. Growth of isogenic virus-infected and virus-free isolates of Armillaria in three weeks at 20 °C on 2% MEA agar plates. Blue (−) = thermal treated (virus-free); orange (+) = virus-infected. The error bars indicate standard deviation. The t-test p-values ranged from 0.405 to 0.738 except for 65A that showed a p-value of 0.015 when comparing the isogenic strains (the growth of the virus-infected strain was on average 14% higher than that of the virus-free isogenic strain in three weeks). The number of replicate plates measured was 6 (4 for virus-free isolate N40 due to desiccation of two plates).
In two cases, the hosts were originally infected with single viruses (an ambivirus or a botourmiavirus), whereas three hosts were cured of multiple virus infections (Fig. 7).

Discussion

In this study, we describe the first genome sequences of mycoviruses hosted by the notorious, globally distributed plant pathogens of genus *Armillaria*. These new viruses belong to the families *Mymonaviridae*, *Botourmiaviridae* and *Virgaviridae* as well as to a recently described virus group tentatively named “ambiviruses”38,39. Many *Armillaria* species and other important root-rot fungi, such as *Heterobasidion* spp. (Bondarzewiaceae; Basidiomycota) and *Rosellinia necatrix* (Xylariaceae; Ascomycota), form large and long-living clonal individuals, which can be considered as optimal targets for viral biocontrol agents. Therefore, the viromes of both *Heterobasidion* spp. and *R. necatrix* have been extensively studied, which has led to the discovery of numerous mycoviruses, some of which cause host debilitation21–23. Interestingly, the persistent lifestyle of these root-rot pathogens seems to lead to the accumulation of viruses in the clonal individuals (via anastomosis contacts and spores)39,39 and even occasional virus transmission from other fungal species occurring in the same habitat40–42. In the case of *Armillaria* spp., there is no prior knowledge regarding the possible accumulation of viruses in ancient clones. Dvořák43 investigated the presence of dsRNA elements in 40 strains of *A. gallica*, *A. cepistipes* and *A. ostoyae* from the Czech Republic but none were detected. This is consistent with our findings that revealed only ssRNA viruses in the strains of *Armillaria* investigated in this study. Furthermore, only one negative-strand ssRNA virus was identified by in silico mining of transcriptomic datasets of several *Armillaria* species. Although more *Armillaria* isolates and species should be investigated for viral infections, our results showed that the virus diversity detected in *Armillaria* spp. is moderate compared to many other fungal species.

In this study, we identified a new virga-like virus in a Siberian strain of *A. borealis*. Classified members of family *Virgaviridae* infect plants and have rod-shaped, non-enveloped particles of about 20 nm in diameter and up to about 300 nm long44. However, virga-like viruses have been recently described in the basidiomycete *Auricularia heimuer*52, the ascomycetes *Macrocephalina phaselina*46 and *Podosphaera prunicola*45 and the oomycete *Plasmopara viticola* (Chromalveolata, Streptophyta)46. They have also been provisionally identified by metatranscriptomic analysis in the basidiomycetous *Leucocystis* spp., and the ascomycetous *Acidomyces* and *Mycosphaerella* sp. (GenBank accession MK231048, unpublished). Members of family *Virgaviridae* are classified in seven genera, four of which include viruses transmitted by soilborne organisms: members of the genera *Furovirus*, *Pecluvirus*, *Pomovirus* are vectored by plasmodiophorids (Chromalveolata, Rhizaria, Cercozoa), for example *Polymyxa graminis* and *Spongospora subterranea*, whereas members of the genus *Tobravirus* are transmitted by nematodes44. The vast majority of virga-like viruses found in fungi are monopartite with a similar predicted ORF structure and genome organization as plant viruses of genus *Tobamovirus*, which are readily transmitted mechanically but lack known vectors. However, a tripartite virga-like virus related to unclassified invertebrate-derived viruses was recently discovered in *Aspergillus fumigatus*48. Notably, viral virga-like viruses appear to encode a MP, a typical feature for plant viruses but usually lacking in mycoviruses. This supports the hypothesis that fungal viruses in the class *Alsuviricetes* could originate from plant viruses transmitted horizontally to plant-pathogenic fungi50. However, most mycoviruses in the class *Alsuviricetes* seem to have lost the MP and coat protein. In contrast to plant viruses, the persistent lifestyle and intracellular mode of transmission (via porous septa within a mycelium and anastomosis contacts between mycelia) generally enables mycoviruses to be transmitted without a MP, and the genes encoding such proteins may represent evolutionary remnants in the genomes of fungal virga-like viruses51–53.

Two isolates of *A. mellea* from South Africa also hosted positive-sense RNA viruses resembling members of family *Botourmiaviridae*. The evolutionary history of these positive-sense RNA viruses is intriguing and appears to follow an opposite trend compared to virgaviruses that seem to have been transmitted from plants to fungi. Thus, plant viruses in the genus *Ourniavirus* have a genome segment encoding an RdRP resembling those of fungal narrowviruses, another segment encoding a MP related to of plant tombusviruses, and a third genome segment encoding a CP27,53. In contrast to the plant viruses, fungal ournia-like viruses that are currently classified in four different genera have only one genome segment encoding the RdRP. Therefore, it appears that the plant ourniaviruses have evolved from a narrowvirus that has gained the proteins encoded by the two extra genome segments from plants to be able to move between plant cells54. Recently, a taxonomic proposal was submitted to accommodate two new genera and 25 new species in family *Botourmiaviridae* (2020.001.F.A.v1.Botourmiaviridae; https://talk.ictvonline.org/files/). This suggests that this previously unknown virus group is highly common among fungi. The two ournia-like viruses in *Armillaria* resemble narrowviruses found in *Rhizoctonia solani* that are within the genus *Magoulivirus*, and proposed genus *Rhizovalivirus*, as well as several unclassified fungal and plant botourmiaviruses. Based on criteria for the classification of members of *Botourmiaviridae* by the ICTV27 and virus classification guidelines in the age of metagenomics55, coding complete sequences are sufficient for the classification of new virus species.

One isolate of *A. mellea* from South Africa hosted a negative-strand RNA virus related to members of family *Mymonaviridae*. In addition, another mymona-like virus was detected in silico from a North American strain of *A. mellea*. As expected, based on the origin of the host isolates, the two mymona-like viruses in *A. mellea* were relatively distantly related. *Mymonaviridae* is a relatively new family of negative-sense RNA viruses that have been found only in fungi55. They have enveloped filamentous particles of 25–50 nm in diameter and about 1000 nm in length. Mymonaviruses have been found in the fungal pathogens *Sclerotinia sclerotiorum* and *Fusarium graminearum*, and the basidiomycetous wood decay fungi *Lentinula edodes*20 and *Bondarzewia berkeleyi*44, as well as in metatranscriptomic datasets from soybean leaves and arthropods36,38,40. However, there are currently nine classified species in two genera in family *Mymonaviridae* (2019.001.F.R.Hubramonavirus_igen at https://talk.ictvonline.org/files/). However, a recent proposal accepted by the ICTV Executive Committee (2020.004.F.Ac.v1.Mymona) suggests
the introduction of seven more genera in the family, including the genus Lentimonavirus where the newly characterized AmNSRV1 also groups based on phylogenetic analysis. AmNSRV2 was more closely associated with the genus Auriculariaviruses. The elongated viral particles discovered earlier in North American strains of pathogenic Armillaria ostoyae isolates seem to be at least 600–800 nm in length, and resemble those of mycoviruses31.

It was notable that two A. mellea isolates from Cape Town were different in their viral composition, although both represent the same introduced pathogen of European origin. Strain CMW3973 isolated in 1996 from Quercus robur in the Company Gardens hosted a mycovirus and a botourmiavirus, whereas isolate CMW50256 isolated in 2015 from Leucadendron concarpodendron in the Kirstenbosch National Botanical Garden hosted another putative species of Botourmiaviridae. The two botourmiaviruses shared only ca. 20% aa sequence identity, therefore indicating that they are separate infections. Isolate CMW3973 represents A. mellea genotype A2 and isolate CMW50256 genotype A9, which are somatically compatible. It is considered that these closely related genotypes originate from a single introduction event of the pathogen into South Africa in the 1600s.

Ambi-like viruses were found to be very common in isolates of Armillaria and occurred in almost all isolates from the Northern hemisphere. “Ambiviruses” constitute a new group of putative viruses that was recently identified by HTS in endomycorrhizal fungi28 as well as in Cryptophyta: parasitica and Rhizoctonia solani29. Based on our ongoing investigations this virus group seems to be very common among asco- and basidiomycetes, but so far there is no information on their morphology, biology or population structure. The virus-like particles described by Blattny et al.30 in A. mellea strains from the Czech Republic were described as either rod-shaped (22–28 × 119 nm) or isometric (30 nm). As botourmiaviruses are capsidless, these two viral particle types suggest the presence of a yet uncharacterized virus group, but at this point we cannot verify whether one of them represents “ambiviruses”. Moreover, Blattny and colleagues considered their results preliminary as no negative staining was performed. Very similar viral particles were observed in A. borealis isolates from two different sites in Finland as well as Siberia, and only one A. borealis isolate (Ab3B) was free of ambivirus infections. All three ambivirus types co-infected the Siberian A. borealis isolate N40 and the Finnish A. borealis isolate Ab9A. Furthermore, AAsIV3 occurred in one strain of A. cepsitapes and A. borealis from Finland was lower than that between the two A. borealis strains originating far from each other, suggesting that the ambivirus population might have differentiated based on its host species. However, further studies are needed to decipher whether the Armillaria viruses are species-specific. The Finnish A. borealis isolates infected with ambiviruses were all somatically incompatible and were therefore deemed to represent different clonal individuals, although their collection sites were relatively closely located in Southern Finland. Korhonen31 reported that the clone size of A. borealis (at that time designated as “species A”) was 120–150 m in diameter, and suggested their age to be about 100 years.

In this study, we were able to cure the Armillaria isolates from viruses and made a pilot growth experiment to investigate the possibility that viruses could affect the phenotype of their host. No major growth differences were observed between the virus-free and virus-infected isogenic strains, and it should be noted that the labortory growth rate of virus-infected fungal strains is not necessarily reduced even if they have a lower virulence in natural conditions32. Moreover, mycovirus effects have been shown to be dependent on environmental and ecological conditions, such as temperature and fungal competitors present in the substrate33,34, and infections by multiple co-infecting viruses may have a different phenotypic outcome than single virus infections35. Future studies should determine whether viral infections are transmitted to Armillaria basidiospores and if they are present in actively growing hyphal tips. In this study, the virus-infected fungal isolates originated from fruiting body tissue (Finnish isolates), from wood (Siberian A. borealis) or from diploid mycelia from rhizomorphs, mycelial fans or A. mellea mycelium growing on the roots and root collars (South African isolates). This shows that the viruses are carried into different types of mycelia of Armillaria, and potentially have a possibility to spread into the mycelial network formed by large clonal individuals.

Methods
Origin and culturing conditions of the Armillaria isolates. A total of 18 Armillaria sp. strains were isolated from fruiting body tissue samples collected mostly from Southern Finland in September 2017 (see Supplementary Table S1 online). In addition, A. borealis strains from Siberia and A. mellea and A. gallica strains from South Africa were obtained from the culture collection (CMW) of Forestry and Agricultural Biotechnology Institute (FABI) and V.N. Sukachev Institute (Supplementary Table S1).

The species determination of the Finnish Armillaria strains was based on fruitbody morphology as well as molecular characterization of the Tef-1a gene region with primer pair EF595F/EF1160R or IGS rDNA with primer pair LR12R/O1–88. The A. borealis isolates originating from closely located sampling sites in Southern Finland (see Supplementary Table S1 online) were incubated as dual cultures to decipher whether they represented the same clonal individual based on somatic compatibility as described by Korhonen35. Approximate distance between the collection sites was as follows: 17 m between Ab3 and Ab4; 150 m between Ab2 and Ab9; 770 m between Ab3/Ab4 and Ab9; 780 m between Ab3/Ab4 and Ab2 (see Supplementary Table S1 for the CMW numbers). Isolates Ab3 and Ab4 were somatically compatible whereas the other isolates were not.

Virus screening by cellulose chromatography. The Armillaria spp. culture collection was screened for dsRNA viruses using the cellulose chromatography method66,67. Briefly, the isolates were grown on liquid medium containing 2% malt and 1.5% yeast extract for 2–4 weeks, and ca. 2 g of mycelia were harvested and homogenized in a lysis buffer, followed by phenol and chloroform extractions and specific precipitation of dsRNA using Sigma cellulose fibres (medium) in 15% ethanol concentration. The presence and size of dsRNA was estimated by agarose gel electrophoresis. A virus-infected Heterobasidion isolate (H. parviporum 7R18 or
RT3.49C hosting the partitivirus HetPV2-pa1 or HetPV4-pa1, respectively\(^7\) was included in each assay as a control. The isolates used for screening included 9 strains of *A. borealis* from Russia; 16 and 6 strains of *A. borealis* and *A. cepistipes* from Finland, and 29 strains of *A. mellea* and 3 strains of *A. gallica* from South Africa (see Supplementary Table S1 online).

Total RNA extraction and HTS. For the extraction of total RNA, *Armillaria* mycelia was freeze-dried for 72 h prior to homogenization in liquid nitrogen. Total RNA was extracted using Spectrum Plant Total RNA Kit (Sigma-Aldrich) as described earlier\(^28\). RNA quality and quantity was determined using NanoDrop (Thermo Scientific) and by analysing an aliquot of each RNA by an agarose gel electrophoresis.

An RNA-Seq library was constructed using pooled RNA samples from nine *Armillaria* strains: N40, CMW3973, CMW50256, Ab2B, Ab3B, Ab4B, Ab9A, Al65A and MUS36. The RNA pool included 1 µg of total RNA from each fungal strain, except for strain N40 that was represented by two separate RNA extractions CMW3973, CMW50256, Ab2B, Ab3B, Ab4B, Ab9A, Al65A and MUS36. The RNA pool was sent in ethanol precipitation to Macrogen Korea for further quality determination, library construction and HTS. The library was generated using TruSeq Stranded Total RNA Library prep kit with Human/Mouse/Rat Gold for rRNA removal (Illumina) and 101 bp paired-end reads were obtained using Novaseq (Illumina).

Bioinformatics and in silico mining of virus sequences from transcriptomic data. The raw reads were preprocessed with Trimmomatic\(^72\) and de novo assembly was conducted using Trinity (version 2.8.4 or 2.8.5)\(^73\) in R\(^74\). Host-specific contigs were determined with a Blastx run (e-value 10e-6) using a custom *Armillaria* protein database (db), generated by combining the *A. solidipes*, *A. gallica* and *A. ostoyae* protein models\(^75\). Contigs showing significant Blastx similarity with *Armillaria* protein models were omitted and a subsequent Blastx run (e-value 10e-3) was performed against a custom viral protein db. Contigs longer than 500 nt and resembling viral proteins were then re-examined using Blastn and Blastx searches against complete nucleotide and non-redundant protein sequences. Geneious 10.2.6 (Biomatters Ltd) was used for further analysis of the putative virus contigs and mapping of reads. Additionally, fifteen publicly available RNA-Seq libraries representing 13 different *Armillaria* species (see Supplementary Table S4 online) were analysed for the presence of RNA viruses using the same bioinformatics pipeline. The genome drafts of the *Armillaria* strains hosting putative mycoviruses were analysed with Blastn to confirm the putative viruses were not detected in the host DNA (see Supplementary Table S8 online).

In order to determine putative ORFans in the *Armillaria* library, Trinity contigs (not showing similarity with *Armillaria* or putative viral contigs) ≥ 1500 nt in length, having ORF ≥400 nt were selected and examined with Blastn, Blastp and Blastx searches against complete nucleotide and non-redundant protein sequences. Finally, the raw reads of the *Armillaria* library were mapped against contigs with no hits (see Supplementary Table S3 online).

Validation of virus-like contigs. A 2-µg sample of each total RNA included in the RNA pool was converted to cDNA using RevertAid Reverse Transcriptase (Thermo Fisher Scientific) and random hexamer primers. Determination of host strains was performed using RT-PCR with DreamTaq DNA Polymerase (Thermo Fisher Scientific) and virus-specific primers (see Supplementary Table S9 online).

To investigate the possibility of genomic integration of the viral sequences, two nucleic acid extractions were performed for *Armillaria* strains N40, MUS36, CMW3973, CMW50256, and Al65A. Total nucleic acids were extracted using a modified phenol–chloroform extraction method described by Vainio et al.\(^76\) and DNA using the E.Z.N.A Forensic DNA Kit (Omega Bio-tek). Diluted nucleic acid samples were used as templates in standard PCR with DreamTaq DNA Polymerase and virus-specific primers (the same as used for host screening). The quality of DNA was verified by using it as a template for PCR amplification of ITS rDNA and M13 minisatellite markers\(^77\) as described earlier.\(^78\) Putative virus contigs DN471, DN562 and DN2538 were confirmed to occur in more than one *Armillaria* strain. For contig DN471 genomic integration was tested using DNA of N40. DNA of N40 and DNA of MUS36 were used in testing the integration of contig DN562 and DNA of N40 and DNA of Al65A for DN2538.

Determination of complete virus genome sequences. The single primer amplification technique of Lambden et al.\(^79\) was used for attempts to determine the viral 5’ and 3’ UTRs. The T4 adapter or primer A blocked at the 3’ end by an NH\(_2\) group\(^80,81\) was ligated to viral dsRNA or total RNA using the T4 RNA ligase (Thermo Fisher Scientific), followed by purification of RNA by agarose gel electrophoresis and extraction using the RNAid kit (Bio101, Carlsbad) and reverse transcription. Initial denaturation was conducted for 3–6 min at 99 °C, and reverse transcription (1 h 30 min) at 55 °C, 60 °C and 50 °C for Maxima H Minus Reverse Transcriptase (Thermo Fisher Scientific), SuperScript IV (Invitrogen) and RevertAid H minus Reverse Transcriptase (Thermo Fisher Scientific), respectively. Phusion High-Fidelity DNA Polymerase (Thermo Fisher Scientific) was used for PCRs together with a primer complementary to the T4 RNA adapter or primer A and a virus specific primer (Supplementary Table S9). Each sequence position was characterized by analysing at least two Sanger sequences determined at Macrogen Europe. The complete sequences of putative viral contigs showing similarity to genomes of ambiviruses were determined from all *A. borealis* and *A. cepistipes* hosts (Table 1) using Phusion High-Fidelity DNA Polymerase and virus specific primers (see Supplementary Table S9 online).

Virus curing and growth rate measurements. *Armillaria* strains N40, CMW3973, CMW50256, Al65A and Ab9A were grown on 2% MEA plates at RT prior to the initiation of thermal treatments. The plates were first incubated for a week at 32 °C in the dark where after the temperature was risen gradually every week up to 38 °C until the mycelial growth halted. The growth of the cultures was investigated weekly and after the final incubation.
tion, the fungal cultures were recovered on 2% MEA plates in RT for 9 days. RNA was extracted from mycelia with Spectrum Plant Total RNA Kit and the presence of mycoviruses was analysed with RT-PCR as described above. In order to validate the cDNA synthesis, the same templates were used for the amplification of host-derived markers molecules. The primer pair IST1-F/IST4 was used for the amplification of ITS rDNA, and the primer pair EF595F/EF1160R the amplification of Tef-1a. The total RNA extracts used as templates were treated with DNase I (Thermo) to prevent amplification from DNA templates. The same RNA extract without DNase treatment yielded ITS rDNA/Tef-1a amplification products, whereas the DNase-treated template without reverse transcription did not, hence validating the functionality of the DNase treatment.

The growth rates of isogenic virus infected and cured (virus-free) Armillaria strains were compared by inoculating each fungal strain on 2% MEA plates and recording their growth during three weeks at room temperature (20°C) in the dark. The inoculum was an agar piece of 0.5 mm in diameter from the actively growing part of the mycelium. There were six replicate cultures for each fungal strain. The Imagej program of the Fiji Platform was used to measure the area of mycelial growth, and the statistical difference between isogenic virus-infected and virus-free fungal strains was tested using t-test in Microsoft Excel 2016 (two sample assuming unequal variances).

Data availability
Nucleotide sequence data reported are available in the GenBank database under the accession numbers MW423800-13 and TPA: BK014417-22, and the RNA-Seq reads are deposited in the SRA and can be accessed through PRJNA685612. The datasets generated during and/or analysed during the current study are available in the NCBI SRA repository under the BioProject numbers listed in Table 1.

Received: 15 January 2021; Accepted: 10 March 2021
Published online: 01 April 2021

References
1. Coetzee, M., Wingfield, B. D. & Wingfield, M. J. Armillaria root-rot pathogens: Species boundaries and global distribution. *Pathogens* 7, 83. https://doi.org/10.3390/pathogens7040083 (2018).
2. Baumgartner, K., Coetzee, M. & Hoffmeister, D. Secrets of the subterranean pathosystem of Armillaria. *Mol. Plant Pathol.* 12, 515–534 (2011).
3. Smith, M. L., Bruhn, J. N. & Anderson, J. B. The fungus *Armillaria bulbosa* is among the largest and oldest organisms. *Nature* 356, 428–431 (1992).
4. Ferguson, B. A., Dreisbach, T. A., Parks, C. G., Filip, G. M. & Schmitt, C. L. Coarse-scale population structure of pathogenic *Armillaria* species in a mixed-conifer forest in the Blue Mountains of northeast Oregon. *Can. J. For. Res.* 33, 612–623 (2003).
5. Coetzee, M. P. A., Bloomer, P., Wingfield, M. J. & Wingfield, B. D. Paleogene radiation of a plant pathogenic mushroom. *PLoS ONE* 6, e28545. https://doi.org/10.1371/journal.pone.0028545 (2011).
6. Anderson, J. B. et al. Clonal evolution and genome stability in a 2500-year-old fungal individual. *Proc. R. Soc. B* 285, 20182233. https://doi.org/10.1098/rspb.2018.2233 (2018).
7. Guillaumin, J.-J. et al. Geographical distribution and ecology of the *Armillaria* species in western Europe. *Eur. J. Plant Pathol.* 23, 321–341 (1993).
8. Coetzee, M. P. A. et al. The root rot fungus *Armillaria mellea* introduced into South Africa by early Dutch settlers. *Mol. Ecol.* 10, 387–396 (2001).
9. Coetzee, M. P. A. et al. Armillaria root rot spreading into a natural woody ecosystem in South Africa. *Plant Pathol.* 67, 883–891 (2018).
10. Guillaumin, J.-J., Mohammed, C. & Berthelay, S. *Armillaria* species in the northern temperate hemisphere in *Proceedings of the Seventh International Conference on Root and Butt Rots* (ed. Morrison, D. J.) 27–43 (Forestry Canada, 1989).
11. Harrington, T. C. & Rizzio, D. M. Identification of *Armillaria* species from New Hampshire. *Mycologia* 85, 365–368 (1993).
12. Ota, Y. et al. Biological species of *Armillaria* in Japan. *Plant Dis.* 82, 537–543 (1998).
13. Cleeary, M. R. et al. Stump removal to control root disease in Canada and Scandinavia: A synthesis of results from long-term trial. *For. Ecol. Manag.* 290, 5–14 (2013).
14. Ghahbari, S. A., Caston, J. R., Jiang, D., Nibert, M. L. & Suzuki, N. 50-plus years of fungal viruses. *Virology* 479–480, 356–368 (2015).
15. Hillman, B. L., Aulía, A. & Suzuki, N. Viruses of plant-interacting fungi. *Adv. Virus Res.* 100, 99–116 (2018).
16. Sutela, S., Poinama, A. & Vainio, E. J. Viruses of fungi and oomycetes in the soil environment. *FEMS Microbiol. Ecol.* 95, 119. https://doi.org/10.1093/femsme/fiz119 (2019).
17. Myers, J. M. et al. Survey of early-diverging lineages of fungi reveals abundant and diverse mycoviruses. *mBio* 11, e00227. https://doi.org/10.1128/mBio.00227-20 (2020).
18. Hollings, M. Viruses associated with die-back disease of cultivated mushrooms. *Nature* 196, 962–965 (1962).
19. Stelow, B. & Menzel, W. Complete nucleotide sequence of TaV1, a novel totivirus isolated from a black truffle ascocarp (*Tuber aestivum* Vittad.). *Arch. Virol.* 155, 2075–2078 (2010).
20. Lin, Y. H. et al. Two novel fungal negative-strand RNA viruses related to mymonaviruses and phenuiviruses in the shitake mushroom (*Lentinula edodes*). *Virology* 533, 125–136 (2019).
21. Vainio, E. J. & Hantula, J. Taxonomy, biogeography and importance of *Heterobasidion* viruses. *Virus Res.* 219, 2–10 (2016).
22. Suzuki, N. Frontiers in fungal virology. *J. Gen. Plant Pathol.* 83, 419–423 (2017).
23. Vainio, E. J. Mitoviruses in the conifer root rot pathogens *Heterobasidion annosum* and *H. parviporum*. *Virus Res.* 271, 197681. https://doi.org/10.1016/j.virusres.2019.197681 (2019).
24. Milgroom, M. G. & Cortesi, P. Biological control of chestnut blight with hypovirulence: A critical analysis. *Annu. Rev. Phytopathol.* 42, 311–338 (2004).
25. Rigling, D. & Prospero, S. *Cryptonectria parasitica*, the causal agent of chestnut blight: Invasion history, population biology and disease control. *Mol. Plant Pathol.* 19, 7–20 (2018).
26. Jäng, D., Aylôn, M. A., Marzano, S. L. & ICTV Report Consortium. ICTV virus taxonomy profile: *Mymonaviridae*. *J. Gen. Virol.* 100, 1343–1344 (2019).
27. Aylôn, M. A. et al. ICTV virus taxonomy profile: *Botourmaviiridae*. *J. Gen. Virol.* 101, 454–455 (2020).
28. Sutela, S. et al. The virome from a collection of endomycorrhizal fungi reveals new viral taxa with unprecedented genome organization. *Virus Evol.* 6, 76. https://doi.org/10.1093/ve/veaa076 (2020).
31. Reaves, J. L., Allen, T. C., Shaw, C. G., Dashek, W. V. & Mayfield, J. E. Occurrence of virus-like particles in isolates of
32. Li, X.
34. Vainio, E. J. & Sutela, S. Mixed infection by a partitivirus and a negative-sense RNA virus related to mymonaviruses in the polypore
36. Marzano, S. Y. L.
35. Deakin, G.
39. Vainio, E. J., Müller, M. M., Korhonen, K., Piri, T. & Hantula, J. Viruses accumulate in aging infection centers of a fungal forest
43. Dvořák, J
47. Gilbert, K. B., Holcomb, E. E., Allscheid, R. L. & Carrington, J. C. Hiding in plain sight: New virus genomes discovered via a sys-
57. Marzano, S. Y. L. & Domier, L. L. Novel mycoviruses discovered from metatranscriptomics survey of soybean phyllosphere phy-
59. Mu, F.
58. Shi, M.
60. Wang, L.
62. Bryner, S. F. & Rigling, D. Temperature-dependent genotype-by genotype interaction between a pathogenic fungus and its hyper-
64. Vainio, E. J., Piri, T. & Hantula, J. Virus community dynamics in the conifer pathogenic fungus
66. Veldman, G. M.
69. Morris, T. J. & Dodds, J. A. Isolation and analysis of double-stranded RNA from virus-infected plant and fungal tissue.
Virology
from Azerbaijan unveiled a new mymonavirus and a putative new RNA virus unrelated to described viral sequences.
Cryphonectria parasitica
mushrooms.
(2020).
fungus
Identification of diverse mycoviruses through metatranscriptomics characterization of the viromes of five
major fungal plant pathogens. J. Virol. 90, 6846–6863 (2016)
Picarelli, M. A. S. C. et al. Extreme diversity of mycoviruses present in isolates of Rhizoctonia solani AG2–2 LP from Zeysia japonica
from Brazil. Front. Cell. Infect. Microbiol. 9, 244. https://doi.org/10.3389/fcimb.2019.00244 (2019).
Yaegashi, H. et al. Appearance of mycovirus-like double-stranded RNAs in the white root rot fungus, Rosellinia necatrix, in an
apple orchard. FEMS Microbiol. Ecol. 83, 49–62 (2013).
Vainio, E. I. Müller, M. M., Korhonen, K., Piri, T. & Hantula, J. Viruses accumulate in aging infection centers of a fungal forest
pathogen. ISME J. 9, 497–507 (2015).
Yaegashi, H. & Kanematsu, S. Natural infection of the soil-borne fungus Rosellinia necatrix with novel mycoviruses under green-
house conditions. Virus Res. 219, 83–91 (2016).
Vainio, E. I., Pennanen, T., Rajala, T. & Hantula, J. Occurrence of similar mycoviruses in pathogenic, saprotrophic and mycorrhizal fungi
inhabiting the same forest stand. PEMS Microbiol. Ecol. 89, 239–239 (2017).
Arjona-Lopez, J. M. et al. Novel, diverse RNA viruses from Mediterranean isolates of the phytopathogenic fungus, Rosellinia necatrix: insights into evolutionary biology of fungal viruses. Environ. Microbiol. 20, 1464–1483 (2018).
Dvorská, J. Výskyt RNA elementů u rodů Armillaria. 2008. Diplomová práce. Univerzita Karlova, Přírodovědecká fakulta, Katedra
genetiky a mikrobiologie. "RNA elements in the genus Armillaria" Diploma thesis (2008) [In Czech]. Permanent link: http://hdl.
thanl.com/10.51957/1261
Adams, M. J. et al. ICTV virus taxonomy profile: Virgaviroidae. J. Gen. Virol. 98, 1999–2000 (2017).
Pandy, B., Naidu, R. A. & Grove, G. G. Next generation sequencing analysis of double-stranded RNAs from sweet cherry powdery
mildew fungus Podopsphaera prunicola. J. Plant Pathol. 100, 435–446 (2018).
Chiapello, M., Rodriguez-Romero, J., Ayllon, M. A. & Turina, M. Analysis of the virome associated to grapevine downy mildew
lesions reveals new mycovirus lineages. Virus Evol. 6, 58. https://doi.org/10.1093/ve/vea058 (2020).
Gilbert, K. B., Holcomb, E. E., Allscheid, R. L. & Carrington, J. C. Hiding in plain sight: New virus genomes discovered via a sys-
tematic analysis of fungal public transcriptomes. PLoS ONE 14, e0219207. https://doi.org/10.1371/journal.pone.0219207 (2019).
Chiba, Y., Otsu, S., Yaguchi, T., Urayama, S. I. & Hagiwara, D. Discovery of divided RdRp sequences and a hitherto unknown
genomic complexity in fungal viruses. Virus Evol. 7, 101. https://doi.org/10.1093/ve/veaa101 (2021).
Koonin, E. V. & Dolja, V. V. Virus world as an evolutionary network of viruses and capsidless selfish elements. Microbiol. Mol. Biol.
Rev. 78, 278–303 (2014).
Howitt, R. L. J., Beever, R. E., Pearson, M. N. & Forster, R. L. S. Genome characterization of Botrytis virus F, a flexuous rod-shaped
mycovirus resembling plant ‘potex-like’ viruses. J. Gen. Virol. 82, 67–78 (2001).
Xie, J. et al. Characterization of debilitation-associated mycovirus infecting the plant-pathogenic fungus Sclerotinia sclerotiorum.
J. Gen. Virol. 87, 241–249 (2006).
Liu, H. et al. A novel mycovirus that is related to the human pathogen hepatitis E virus and rubi-like viruses. J. Virol. 83, 1981–1991
(2009).
Turina, M. et al. ICTV virus taxonomy profile: Oomyciaviruses. J. Gen. Virol. 98, 129–130 (2017).
Rastgou, M. et al. Molecular characterization of the plant virus genus Oomycaviirus and evidence of inter-kingdom reassortment of
virulent viral genome segments as its possible route of origin. J. Gen. Virol. 90, 2525–2535 (2009).
Simmonds, P. et al. Virus taxonomy in the age of metagenomics. Nat. Rev. Microbiol. 15, 161–168 (2017).
Liu, L. et al. Fungal negative-stranded RNA virus that is related to bornaviruses and nyaviruses. Proc. Natl. Acad. Sci. U.S.A. 111,
12205–12210 (2014).
Marzano, S. Y. L. & Domier, L. L. Novel mycoviruses discovered from metatranscriptomics survey of soybean phyllosphere phy-
lobiomes. Virus Res. 213, 332–342 (2016).
Shi, M. et al. Redefining the invertebrate RNA virophase. Nature 540, 539–543 (2016).
Mu, F. et al. Virome characterization of a collection of S. sclerotiorum from Australia. Front. Microbiol. 11, 2540. https://doi.org/
10.3389/fmicb.2017.02540 (2018).
Wang, L. et al. Evidence for a novel negative-stranded RNA mycovirus isolated from the plant pathogenic fungus Fusarium graminearum. Virology 518, 232–240 (2018).
Korhonen, K. Interférrity and clonal size in the Armillaria mellea complex. Karstenia 18, 31–42 (1978).
Bryner, S. F. & Rigling, D. Temperature-dependent genotype-by genotype interaction between a pathogenic fungus and its hyper-
parasitic virus. Am. Nat. 177, 65–74 (2011).
Hyder, R. et al. Two viruses of Heterobasidion confer beneficial, cryptic or detrimental effects to their hosts in different situations.
Fungal Ecol. 6, 387–396 (2013).
Vainio, E. I., Piri, T. & Hantula, J. Virus community dynamics in the conifer pathogenic fungus Heterobasidion parvum following
lowing a artificial introduction of a partitivirus. Microb. Ecol. 65, 28–38 (2013).
Hantula, J. et al. Multiple virus infections of Heterobasidion sp. Fungal Biol. 124, 102–109 (2020).
Veldman, G. M. et al. The primary and secondary structure of yeast 26S rRNA. Nucleic Acids Res. 9, 6935–6952 (1981).
Duchesne, L. C. & Anderson, J. B. Location and direction of transcription of the 5.5 rRNA gene in Armillaria. Mycol. Res. 94,
266–269 (1990).
Kausler, H. & Schumacher, T. Outcrossing or inbreeding: DNA markers provide evidence for type of reproductive mode in
Phellinus nigroplumatus (Basidiomycota). Mycol. Res. 105, 676–683 (2001).
Morris, T. J. & Dodds, J. A. Isolation and analysis of double-stranded RNA from virus-infected plant and fungal tissue. Phytopa-
thology 69, 854–858 (1979).
Tuomiviita, T. & Hantula, J. Two unrelated double-stranded RNA molecule patterns in Gremmeniella abietina type A code for
pputative viruses of the families Toviridae and Partitiviridae. Arch. Virol. 148, 2293–2305 (2003).
Vainio, E. J., Hakankääpä, J., Dai, Y.-C., Hansen, E. & Hantula, J. Species of Heterobasidion host a diverse pool of partitiviruses with
global distribution and interspecies transmission. Fungal Biol. 115, 1234–1243 (2011).
M. Martin, László Nagy, Neha Sahu, Sara Hortal Botifoll, Johanna Wong-Bajracharya and Jonathan M. Plett.

and we acknowledge the JGI team and the people who generated the material and RNA for the project: Francis produced by the US Department of Energy Joint Genome Institute in collaboration with the user community, grateful to the 1KFG project (CSP 1974) for access to unpublished genome data. The genome sequence data were computational resources. This work was funded by the Academy of Finland (decision number 309896). We are institutional affiliations.

Publisher's note

is available at www.nature.com/reprints.

Correspondence and requests for materials should be addressed to E.J.V.

Reprints and permissions information

is available at www.nature.com/reprints.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2021

Acknowledgements

Tuujia Hytönen, Alex Nordlund and Runlei Chang are thanked for excellent technical assistance and Pyry Veteli for providing Finnish isolates of Armillaria. The CSC - IT Center for Science, Finland, is acknowledged for providing computational resources. This work was funded by the Academy of Finland (decision number 309896). We are grateful to the 1KFG project (CSP 1974) for access to unpublished genome data. The genome sequence data were produced by the US Department of Energy Joint Genome Institute in collaboration with the user community, and we acknowledge the JGI team and the people who generated the material and RNA for the project: Francis M. Martin, László Nagy, Neha Sahu, Sara Hortal Botifoll, Johanna Wong-Bajracharya and Jonathan M. Plett.

Author contributions

E.J.V., R.L., S.S., J.H. and B.W. designed the research; R.L., S.S., E.J.V., M.P.A.C., T.D., I.P., and Y.L. contributed to acquisition, analysis, or interpretation of data; S.S., E.J.V., R.L. and M.P.A.C. drafted the work or substantively revised it.

Competing interests

The authors declare no competing interests.

Additional information

Supplementary Information The online version contains supplementary material available at https://doi.org/10.1038/s41598-021-86343-7.

© The Author(s) 2021