Research Article

A New Modified Model of the Streaming Potential Coupling Coefficient Depends on Structural Parameters of Soil-Rock Mixture

Xin Zhang,1 Mingjie Zhao,1,2 and Kui Wang1

1Key Laboratory of Hydraulic and Waterway Engineering of the Ministry of Education, Chongqing Jiaotong University, Chongqing 400074, China
2Engineering Research Center of Diagnosis Technology and Instruments of Hydro-Construction, Chongqing Jiaotong University, Chongqing 400074, China

Correspondence should be addressed to Kui Wang; anhuiwk@163.com

Received 19 August 2021; Revised 5 October 2021; Accepted 6 November 2021; Published 27 November 2021

Abstract

The streaming potential effect in soil-rock mixture (SRM) is related to the compactness and rock content, but there is no model to quantitatively describe this behavior. In this paper, the Kozeny–Carman (KC) equation is modified by using the compactness and rock content. Then, the modified KC equation is substituted into the equation of streaming potential coupling coefficient. A new modified model of streaming potential coupling coefficient that depends on the compactness, rock content, particle shape, and particle gradation is proposed. The reliability of the new modified model is tested by experiments, and the applicable scope of the model is obtained. The results show that when the rock content is 30%, the permeability coefficient prediction accuracy of the modified KC equation is higher in the range of 85–95% compactness. The new modified model of the streaming potential coupling coefficient represents well the control of the compactness (75–95%) on the coupling coefficient. When the compactness remains 85%, the permeability coefficient calculated by the modified KC equation in the range of 10–70% rock content is consistent with the experimental data. The influence of the rock content (10–90%) on the coupling coefficient is well described by the new modified model of the streaming potential coupling coefficient. The new modified model of streaming potential coupling coefficient is helpful to quantitatively evaluate the internal structure evolution of embankment dam by using streaming potential phenomenon.

1. Introduction

Embankment dams play an important role in flood control, irrigation, and power generation. However, the structural aging problem and service life prediction have become the primary concerns of embankment dams in long-term operation. Streaming potential effect is a kind of electrokinetic phenomenon, and the generation process is closely related to the seepage of porous media [1, 2]. It is often used for monitoring of water flow process and has the potential to obtain information on the structure of embankment dams [3]. At present, a large number of studies have been conducted on the streaming potential coupling coefficient model of pure rock and soil. SRM as filling material of embankment dam and the seepage characteristics of SRM are mainly affected by structural factors such as rock content, compactness, particle shape, and grading curve [4–6]; that means the model of streaming potential coupling coefficient of SRM is different from that of rock and soil. Therefore, the existing streaming potential coupling coefficient model cannot describe the structural characteristics of the SRM.

The issue of the permeability coefficient model of SRM has received considerable critical attention. Xu and Wang [7] point out that the seepage problem of geotechnical media can be solved by means of the heat conduction problem in thermodynamics, and according to the four basic structural models of the thermal conductivity of composite materials (parallel, series, Maxwell-Eucken, and effective medium...
theory), the relationship between the permeability coefficient of the SRM and the rock content is obtained (see Table 1). A variety of hybrid structural models are obtained by using the simple combination for the four basic structural models [8]. The series-and-parallel model is developed on the basis of the series model and the parallel model, and the phenomenon that the volume of the SRM will decrease after the fine particles are filled into the pores of the coarse particles is taken into account in this model; then, the model is verified by experiments and shows high accuracy [9]. As shown in Table 1, the relationship between permeability coefficient and rock content has been established in the permeability coefficient model of SRM, but the model does not depend on compactness, particle gradation, and particle shape, and it is difficult to incorporate these structural factors into the model.

The KC equation shows good performance in predicting the permeability of porous media. A large number of scholars have successfully applied the KC equation to the prediction of the permeability of coarse-grained soil [14–16]. Recently, some scholars have extended the scope of application to the permeability prediction of fine-grained soil by substituting the effective porosity into the KC equation [17–19]. Previous studies indicate that the KC equation has the potential to describe the permeability of SRM. The KC equation reveals the relationship among porosity, particle shape, and particle gradation [20]. However, the KC equation is not related to the compactness and rock content. This triggers us to consider establishing the relationship between the KC equation and compaction and rock content through porosity.

The streaming potential coupling coefficient has been the subject of many classic studies in the streaming potential phenomenon. Based on the capillary model, the Helmholtz-Smoluchowski (HS) equation for obtaining streaming potential coupling coefficient is proposed [21, 22]:

$$C = \frac{\varepsilon \zeta}{\mu \sigma_f},$$

(1)

where C (V Pa$^{-1}$) is the streaming potential coupling coefficient, ε (F m$^{-1}$) is the dielectric permittivity, μ (Pa s) is the dynamic viscosity, σ_f (S m$^{-1}$) is the fluid conductivity, and ζ (V) is the zeta potential. The HS equation is valid when the surface conductivity is not considered. The HS equation is independent of the medium structure, so scholars have studied the streaming potential effect of a large number of different porous media materials by using the HS equation [23–26]. Revil and Leroy [31] established a theoretical model by taking the analytical models of zeta potential and fluid conductivity into the HS equation and studied the effects of the structure of the medium and surface conductivity [38]. In addition, the permeability is easy to establish relationship with other parameters.

In this work, we propose a new modified model directly relating streaming potential coupling coefficient to the compactness, rock content, particle shape, and particle gradation. The basic idea is to substitute the KC equation improved by compactness and rock content into Equation (2) to obtain a new modified model of streaming potential coupling coefficient. The new modified model is verified via comparison with laboratory data. Our goal in this study is to provide a model that quantitatively explains the effect of the compactness, rock content, particle shape, and particle gradation on the streaming potential coupling coefficient of SRM. This is of great significance to analyze and explain the failure mechanism and health status of embankment dams.

2. Model Development

The model is developed by the following method. We first calculate the porosity of SRM by the parameters of rock content and compactness, then substitute porosity into the KC equation to obtain the relationship between permeability and compaction, rock content, particle gradation, and particle shape, and finally take the permeability into Equation (2) to establish the new modified model of the streaming potential coupling coefficient of SRM.
Table 1: The model of permeability coefficient of SRM [7, 8].

Model	Reference	Equation	Notes
Parallel model		\(K_{S, \text{RM}} = C_s K_s + C_R K_R \)	Layered parallel seepage direction
Series model		\(K_{S, \text{RM}} = \frac{K_s K_R}{C_s K_R + C_R K_S} \)	Layered vertical seepage direction
Series-and-parallel model	[9]	\(K_{S, \text{RM(SP)}} = \frac{n_s^2}{2(1-n_s C_s + n_R C_R)^2} \left(\frac{K_s K_R}{C_s K_R + C_R K_S} + C_s + C_R K_R \right) \)	50% in series and parallel after mixing
M-E model	[10, 11]	\(K_{S, \text{RM(ME)}} = \frac{K_s C_s + K_R C_R (3K_s/(2K_s + K_R))}{C_s + C_R (3K_s/(2K_s + K_R))} \)	One continuous phase and one or more dispersed phases
EMT model	[12, 13]	\(\frac{C_s K_s - K_{S, \text{RM(EMT)}}}{K_s + 2K_{S, \text{RM(EMT)}}} + C_R \frac{K_R - K_{S, \text{RM(EMT)}}}{K_R + 2K_{S, \text{RM(EMT)}}} = 0 \)	All phases being mutually dispersed

\(K_s \) is the permeability coefficient of soil; \(K_R \) is the permeability coefficient of rock. \(K_{S, \text{RM(SP)}} \) is the permeability coefficient of soil and broken rock connected in parallel, \(K_{S, \text{RM(ME)}} \) is the permeability coefficient of soil and broken rock connected both in series and in parallel, \(K_{S, \text{RM(EMT)}} \) is the permeability coefficient of the Maxwell-Eucken model of SRM, \(K_{S, \text{RM(EMT)}} \) is the permeability coefficient of effective medium model for SRM, \(C_s \) is the percentage of soil volume, \(C_R \) is the percentage of rock volume, \(n_s \) is the porosity of soil, \(n_R \) is the porosity of broken rocks, and \(n_{S, \text{RM}} \) is the porosity of SRM after blending.

2.1. Permeability Coefficient Model of SRM. We assume that the rock is impermeable and water flows through the pores between fine particles. Figure 1 shows the sketch of three phases of SRM, which is composed of air, water, and solid (rock and soil). We set the volume of solid as \(V_s = 1 \) (m3). The void ratio can be expressed by

\[
e = \frac{V - V_s}{V_s} = \frac{V}{V_s} - 1, \tag{3}
\]

where \(V \) (m3) is the total volume of SRM and \(V_s \) (m3) is the total void volume. The total volume of SRM is

\[
V = V_s + V_v = 1 + e V_s = 1 + e. \tag{4}
\]

The mass of the solid phase can be expressed by

\[
m_s = G_s V_s \rho_w = G_s \rho_w, \tag{5}
\]

where \(m_s \) (kg) is the mass of solid phase, \(G_s \) is the specific gravity of soil, and \(\rho_w \) (kg m$^{-3}$) is the density of water. Based on the moisture content, it is defined as

\[
m_w = w m_s = w G_s \rho_w, \tag{6}
\]

where \(m_w \) (kg) is the mass of water and \(w \) is the moisture content. The total mass of the SRM \(m \) (kg) is

\[
m = m_s + m_w = (1 + w) G_s \rho_w. \tag{7}
\]

Based on Equation (7), we can get another expression of the total volume of SRM:

\[
V = \frac{m}{\rho} = \frac{G_s \rho_w (1 + w)}{\rho} = \frac{G_s \rho_w}{\rho_d}, \tag{8}
\]

where \(\rho_d \) (kg m$^{-3}$) is the dry density of SRM. Combining Equations (4) and (8), another expression of void ratio can be obtained:

\[
e = \frac{G_s \rho_w}{\rho_d} - 1. \tag{9}
\]

Using \(n = e/(1 + e) \) and Equation (9), we obtain

\[
n = 1 - \frac{\rho_d}{\rho_w G_s}. \tag{10}
\]

According to the geotechnical test standard [39], the average specific gravity of SRM can be calculated by

\[
G_s = \frac{1}{P_1/G_1 + (P_2/G_2)}, \tag{11}
\]

where \(G_1 \) is the specific gravity of soil particles with a particle size greater than 5 mm, \(G_2 \) is the specific gravity of soil particles with a particle size less than 5 mm, \(P_1 \) is the percentage of the total mass of soil particles with a particle size greater than 5 mm, and \(P_2 \) is the percentage of the total mass of soil particles with a particle size less than 5 mm. In this study, the threshold value of soil and rock is referred to the 5 mm adopted by Zhou et al. [9], that is, more than 5 mm is rock and less than 5 mm is soil. The KC equation is developed by Kozeny [40] and Carman [41, 42] and widely used to describe hydraulic conductivity of porous media. The permeability \(k \) (m/s) is obtained by the KC equation:

\[
k = \frac{1}{C_{K-C} S_0^2 (1 - n)^2}, \tag{12}
\]

where \(C_{K-C} \) is the KC empirical constant, with a value of 5,
be obtained by taking Equations (10) and (11) into (12):

\[f_i = wGs_i \]

where \(wGs \) for poorly graded grain sizes, \(D \) are the larger and smaller sieve sizes, \(\alpha \) for poorly graded grain sizes, \(\rho \) for uniform spherical particles, \(S \) is the specie constant value. We will substitute these two constant values by experimental data. This empirical relationship is widely used to capture water flow information and geometrical properties of media [48–50].

3. Experimental Methods

The experimental scheme is shown in Table 2. We use the self-designed device to measure the potential and water pressure when the brine flow through the SRM. The quality of material is strictly controlled, and the same test procedures are adopted. The specific experimental methodology is described by Zhang et al. [51].

The particle size distribution of SRM material (weathered broken argillaceous rock) is shown in Table 3. The SRM with \(C_w \geq 5 \) and \(C_r = 1 - 3 \) is thought to be well graded, if not, the SRM is regarded as poorly graded [52]. So we consider gradations 1 and 5 to be poorly graded, while gradations 2, 3, and 4 are well graded (see Table 4). The particle shape is angular. The X-ray diffraction tests show that the mineralogy of argillaceous rock is composed of quartz (48.8%), illite (22%), albite (17.9%), kaolinite (2.7%), chlorite (5.5%), calcite (1.8%), and hematite (1.2%). The test results indicate that the SRM is silty soil.

Figure 2 shows the new apparatus. The device is mainly composed of a water tank, PVC pipe, and acquisition system. The SRM is compacted in the middle of the water tank. The foam board is placed between the SRM and the upper cover to prevent the water flow. Arrangement of pressure sensors, Ag/AgCl nonpolarized electrodes, and moisture content meters during compaction. The pressure and potential are measured by DH3821 and DM3058, respectively. The saturation of SRM material is monitored by moisture content meters. All experiments are performed at NaCl solution of 0.01 mol L\(^{-1}\).
The hydraulic head difference is determined by Equation (2). The relationship between effective excess charge density and permeability can be obtained by fitting the experimental data (see Figure 3(b)). We use a two-electrode device to measure the conductivity of SRM. The permeability obtained by the modified KC equation is substituted into Equation (2) to calculate the streaming potential coupling coefficient. Although there is a great difference between measured permeability and predicted permeability at 75–80% compactness and 90% rock content, but the predicted streaming potential coupling coefficient of the new modified model is consistent with the experimental data at different compactness (see Figure 5(a)). Similarly, this new modified model represents the experimental data very well when the rock content varies between 10% and 90% (see Figure 5(b)). Moreover, we use Guarracino and Jougnot’s [37] model to calculate the streaming potential coupling coefficient, and the results show that this model reproduces the experimental data very well, but the new modified model is more accurate than Guarracino and Jougnot’s [37] model in this study.

5. Discussion

5.1. The Modified KC Equation. At compactness 75% and 80%, the predicted permeability coefficient of the modified KC equation shows poor consistency with the experimental data. The reason for this phenomenon is that the low compactness leads to insufficient bonding of the SRM materials, and the fine particles are loose. When the hydraulic gradient is large, the fine particles are easily carried away, and the flow section becomes larger. Therefore, the measured permeability coefficient is larger than the predicted permeability coefficient. When the compactness is more than 80%, the prediction accuracy of the modified KC equation is higher due to the slight impact on the flow state at high compactness.

In the SRM with 90% rock content, the pore size and the seepage velocity are large, and the fluid is in the state of inertial laminar flow at high water head, so the measured permeability coefficient (apparent permeability coefficient) is smaller than the predicted permeability coefficient [24]. When the rock content is reduced from 70% to 10%, the measured permeability coefficient is closer to the predicted permeability coefficient.
This result can be interpreted by the macropores developed between the coarse particles are filled by the fine particles and hence the soil particles are relatively compact and the seepage velocity in the pores is low.

Compactness and rock content are the key parameters in quality management of embankment dam construction. In the project, the compactness is controlled above 90%, and the reference range of rock content is 25–75% [9]. The modified KC equation shows high prediction accuracy of permeability coefficient when the compactness varies between 85% and 95% (30% rock content) and the rock content varies between 10% and 70% (85% compactness). Therefore, the modified KC equation can be considered valid in most projects. The permeability coefficient of sandstone–mudstone mixture with a particle size ranges from 60 mm to 0.075 mm is successfully predicted by the KC equation [53]; it appears that the modified KC equation will have a wider application range.

At present, the height of some embankment dams has exceeded 100 meters, and the SRM materials are in complex occurrence conditions of high stress and high water level. It is necessary to establish the relationship between permeability and more parameters, such as effective stress and buried depth, so as to expand the application scope of the model. This means that the physical model for predicting permeability of SRM may become more complex. In recent years, the advantages of artificial intelligence technology in multisource
information fusion and prediction have been rapidly developed, such as predicting the change of coal seam permeability during CO2 geological sequestration [54] and predicting the permeability of tight carbonate rocks [55]. This provides a new idea for using multiparameters to predict the permeability of SRM.

The modified KC equation as a function of compactness, rock content, particle shape, and grading curve helps us to understand the seepage mechanism of SRM in dam projects and provides a scientific basis for the design and selection of materials for embankment dams.

5.2. The New Modified Model of the Streaming Potential Coupling Coefficient. The two coefficients are reported by other authors larger than ours. This is because the effective excess charge density and permeability are related to the specific surface area of porous media. The content of coarse particles in the SRM is high and the particle size is large, so

![Figure 3: The streaming potential coupling coefficient and the effective excess charge density.](image)
the specific surface area is small. This means that the effective excess charge density dragged by the water flow in the pores decreases under the same permeability.

When the compactness is 75–80% and the rock content is 90%, the predicted permeability coefficient is not in good agreement with the measured value, but the predicted streaming potential coupling coefficient is close to the measured value. We ascribe this phenomenon to the relationship between effective excess charge density and permeability. When the permeability of SRM increases, and the effective excess charge density decreases. It appears that this relationship can improve the difference caused by permeability.

The new modified model shows higher accuracy than Guarracino and Jougnot’s [37] model. This result can be explained by the empirical relationship between effective excess charge density and permeability, which is proposed

Figure 4: The permeability coefficient with different compactness and different rock content. (a) Predicted and measured values of permeability coefficient with different compactness. (b) Predicted and measured values of permeability coefficient with different rock content.

Figure 5: The streaming potential coupling coefficient with different compactness and different rock content. (a) Predicted and measured values of the streaming potential coupling coefficient with different compactness. (b) Predicted and measured values of the streaming potential coupling coefficient with different rock content.
for specific research objects. The model proposed by Guarracino and Jougnot [37] includes the porosity, permeability, tortuosity, concentration, Debye length, and zeta potential, but more influences are considered in the empirical relationship, such as complex chemical reactions on the solid-liquid surface and particle deformation. Nevertheless, Guarracino and Jougnot’s [37] model still represents the experimental data very well at the different compactness and different rock content.

It should be noted that the zeta potential would not depend on the compactness and rock content of SRM as long as rock mineralogy and chemical composition of water do not change. According to the HS equation, the streaming potential coupling coefficient remains a constant. The change of flow regime leads to the deviation of streaming potential from the HS equation [56]. Therefore, the streaming potential coupling coefficient decrease at low compactness and high rock content.

The relationships between streaming potential coupling coefficient, compactness, rock content, particle shape, and grading curve reported in this study are important for monitoring the structure of embankment dam. At present, the new modified model is rarely used in embankment dams, but Guarracino and Jougnot’s [37] model has verified the reliability of the new modified model, which lays the foundation for field application. In addition, Boleve et al. [24] and Soueid Ahmed et al. [57] have successfully implemented the numerical simulation of the response of the potential when the leakage path structure changes, which further promotes the application of the new modified model.

6. Conclusion

In this paper, the compactness, rock content, particle shape, and grading curve of the SRM are substituted into the formulation of the streaming potential coupling coefficient by the KC equation, and a new modified model of the streaming potential coupling coefficient depends on structural parameters of SRM is proposed. The modified KC equation and the new modified model of the streaming potential coupling coefficient are verified by the experiment. The main conclusions are as follows:

1. Based on the relationship between the porosity, compactness, and rock content of SRM, we obtain the modified KC equation. The modified KC equation fits well with the experimental data and shows high prediction accuracy when the rock content is 30% and compactness ranges from 85% to 95%, and the compactness is 85% and the rock content ranges from 10% to 70%.

2. By taking the modified KC equation into the streaming potential coupling coefficient model, the quantitative relationship between the structural parameters of the SRM and the streaming potential coupling coefficient is established. For the rock content remains 30% and compactness varies from 75% to 95%, and the compactness is 85% and the rock content varies from 10% to 90%, the new modified model is in good agreement with the experimental data.

3. The modified model of streaming potential coupling coefficient provides a method for studying the mesostructure of the SRM by using the streaming potential effect. It is helpful to reveal and estimate the structural aging mechanism and service life of embankment dams.

Data Availability

The data used to support the findings of this study are available from the corresponding author upon request.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Acknowledgments

This research was funded by the National Natural Science Foundation of China (Grant No. 51879017), Chongqing Research Program of Basic Research and Frontier Technology (Grant No. cstc2017jcyjBX0066), Key Laboratory of Hydraulic and Waterway Engineering of the Ministry of Education, Chongqing Jiaotong University (Grant No. SLK2018B06), and Graduate Education Innovative Fund Program of Chongqing Jiaotong University (Grant no. 2019B0102). The authors appreciate all the institutions and individuals that have provided support for this paper.

References

[1] P. W. J. Glover and M. D. Jackson, "Borehole electrokinetics," The Leading Edge, vol. 29, no. 6, pp. 724–728, 2010.
[2] J. Vinogradov, M. D. Jackson, and M. Chamerois, "Zeta potential in sandpacks: effect of temperature, electrolyte pH, ionic strength and divalent cations," Colloids and Surfaces A: Physical Chemistry and Engineering Aspects, vol. 553, pp. 259–271, 2018.
[3] A. Soueid Ahmed, A. Revil, A. Boleve et al., "Determination of the permeability of seepage flow paths in dams from self-potential measurements," Engineering Geology, vol. 268, article 105514, 2020.
[4] W. Xu, S. Wang, H. Zhang, and Z. Zhang, "Discrete element modelling of a soil-rock mixture used in an embankment dam," International Journal of Rock Mechanics and Mining Sciences, vol. 86, pp. 141–156, 2016.
[5] N. Zhao, Y. Wang, B. Meng, and N. Luo, "Numerical simulation on the seepage properties of soil-rock mixture," Advances in Materials Science and Engineering, vol. 2018, Article ID 1859319, 10 pages, 2018.
[6] W. Wu, Y. Yang, and H. Zheng, "Hydro-mechanical simulation of the saturated and semi-saturated porous soil-rock mixtures using the numerical manifold method," Computer Methods in Applied Mechanics and Engineering, vol. 370, article 113238, 2020.
[7] W. Xu and Y. Wang, "Meso-structural permeability of S-RM based on numerical test," Chinese Journal of Geotechnical Engineering, vol. 32, no. 4, pp. 542–550, 2010.
[8] J. Wang, J. K. Carson, M. F. North, and D. J. Cleland, "A new structural model of effective thermal conductivity for heterogeneous materials with co-continuous phases," International
C. J. F. Böttcher, A. Eucken, "A Treatise on Electricity and Magnetism, vol. 17, no. 4, article 04016106, 2017.

J. C. Maxwell, A Treatise on Electricity and Magnetism, Dover Publications Inc., New York, third ed. edition, 1954.

A. Eucken, "Allgemeine Gesetzmäßigkeiten für das Wärmeleitvermögen verschiedener Stoffarten und Aggregatzustände," Forschung Gabiete Ingenieur, vol. 11, no. 1, pp. 6–20, 1940.

C. J. F. Böttcher, Theory of Electric Polarization, Elsevier, Houston, 1952.

R. Landauer, "The electrical resistance of binary metallic mixtures," Journal of Applied Physics, vol. 23, no. 7, pp. 779–784, 1952.

T. T. Nguyen and B. Indraratna, "The role of particle shape on hydraulic conductivity of granular soils captured through Kozeny–Carman approach," Géotechnique Letters, vol. 10, no. 3, pp. 398–403, 2020.

J. Song, X. Chen, C. Cheng, D. Wang, S. Lackey, and Z. Xu, "Feasibility of grain-size analysis methods for determination of vertical hydraulic conductivity of streambeds," Journal of Hydrology, vol. 375, no. 3–4, pp. 428–437, 2009.

K. Urumović and K. Urumović Sr., "The referential grain size and effective porosity in the Kozeny–Carman model," Hydrology and Earth System Sciences, vol. 20, no. 5, pp. 1669–1680, 2016.

B. Hong, X. Li, L. Wang, L. Li, Q. Xue, and J. Meng, "Using the effective void ratio and specific surface area in the Kozeny–Carman equation to predict the hydraulic conductivity of loess," Water, vol. 12, no. 1, p. 24, 2020.

X. Ren, Y. Zhao, Q. Deng, J. Kang, D. Li, and D. Wang, "A relation of hydraulic conductivity – void ratio for soils based on Kozeny-Carman equation," Engineering Geology, vol. 213, pp. 89–97, 2016.

F. Dang, H. Liu, X. Wang, H. Xue, and Z. Ma, "Empirical formulas of permeability of clay based on effective pore ratio," Chinese Journal of Rock Mechanics and Engineering, vol. 34, no. 9, pp. 1909–1917, 2015.

W. D. Carrier III, "Goodbye, Hazen; hello, Kozeny-Carman," Journal of Geotechnical and Geoenvironmental Engineering, vol. 129, no. 11, pp. 1054–1056, 2003.

H. V. Helmholtz, "Studien über elektrische Grenzschichten," Annalen der Physik, vol. 243, no. 7, pp. 337–382, 1879.

M. von Smoluchowski, "Contribution to the theory of electromosmosis and related phenomena," Bulletin International de l'Academie des Sciences de Cracovie, vol. 3, pp. 184–199, 1903.

E. Walker and P. W. J. Glover, "Measurements of the relationship between microstructure, pH, and the streaming and zeta potentials of sandstones," Transport in Porous Media, vol. 121, no. 1, pp. 183–206, 2018.

A. Bolève, A. Crespy, A. Revil, F. Janod, and J. L. Mattiuzzo, "Streaming potentials of granular media: influence of the Dukhin and Reynolds numbers," Journal of Geophysical Research: Solid Earth, vol. 112, no. B8, 2007.

E. Walker, P. W. J. Glover, and J. Ruel, "A transient method for measuring the DC streaming potential coefficient of porous and fractured rocks," Journal of Geophysical Research: Solid Earth, vol. 119, no. 2, pp. 957–970, 2014.

A. Alroudhan, J. Vinogradov, and M. D. Jackson, "Zeta potential of intact natural limestone: impact of potential-determining ions Ca, Mg and SO₄," Colloids and Surfaces A: Physicochemical and Engineering Aspects, vol. 493, pp. 83–98, 2016.

A. Revil, P. A. Pezard, and P. W. J. Glover, "Streaming potential in porous media: I. Theory of the zeta potential," Journal of Geophysical Research: Solid Earth, vol. 104, no. B9, pp. 20021–20031, 1999.

P. W. J. Glover and N. Déry, "Streaming potential coupling coefficient of quartz glass bead packs: dependence on grain diameter, pore size, and pore throat radius," Geophysics, vol. 75, no. 6, pp. F225–F241, 2010.

P. W. J. Glover, E. Walker, and M. D. Jackson, "Streaming-potential coefficient of reservoir rock: a theoretical model," Geophysics, vol. 77, no. 2, pp. D17–D43, 2012.

P. W. J. Glover, "Modelling pH-dependent and microstructure-dependent streaming potential coefficient and zeta potential of porous sandstones," Transport in Porous Media, vol. 124, no. 1, pp. 31–56, 2018.

A. Revil and P. Leroy, "Constitutive equations for ionic transport in porous shales," Journal of Geophysical Research: Solid Earth, vol. 109, no. B3, 2004.

A. Revil, N. Linde, A. Cerepi, S. Matthäi, S. Finsterle, and S. Finsterle, "Electrokinetic coupling in unsaturated porous media," Journal of Colloid and Interface Science, vol. 313, no. 1, pp. 315–327, 2007.

N. Linde, D. Jougnot, A. Revil et al., "Streaming current generation in two-phase flow conditions," Geophysical Research Letters, vol. 34, no. 3, 2007.

A. Revil, W. F. Woodruff, and N. Lu, "Constitutive equations for coupled flows in clay materials," Water Resources Research, vol. 47, no. 5, 2011.

A. Jardani, A. Revil, A. Bolèvè et al., "Tomography of the Darcy velocity from self-potential measurements," Geophysical Research Letters, vol. 34, no. 24, 2007.

A. Bolève, J. Vandeneulebrouck, and J. Grangeon, "Dyke leakage localization and hydraulic permeability estimation through self-potential and hydro-acoustic measurements: self-potential 'abacus' diagram for hydraulic permeability estimation and uncertainty computation," Journal of Applied Geophysics, vol. 86, pp. 17–28, 2012.

L. Guarracino and D. Jougnot, "A physically based analytical model to describe effective excess charge for streaming potential generation in water saturated porous media," Journal of Geophysical Research: Solid Earth, vol. 123, no. 1, pp. 52–65, 2018.

A. Revil, "Transport of water and ions in partially water-saturated porous media. Part 1. Constitutive equations," Advances in Water Resources, vol. 103, pp. 119–138, 2017.

Ministry of Water Resources of the People’s Republic of China, Standard for Soil Test Method, China Hydroelectricity Press, Beijing, 1999.

J. Kozeny, "Über kapillare leitung der wasser in boden," Royal Academy of Science, Vienna, Proceedings Class I, vol. 136, pp. 271–306, 1927.

P. C. Carman, "Permeability of saturated sands, soils and clays," The Journal of Agricultural Science, vol. 29, no. 2, pp. 262–273, 1939.

P. C. Carman, Flow of Gas through Porous Media, Butterworths Scientific Publications, London, 1956.
[43] A. G. Loudon, “The computation of permeability from simple soil tests,” Geotechnique, vol. 3, no. 4, pp. 165–183, 1952.
[44] W. Zheng and D. D. Tannant, “Improved estimate of the effective diameter for use in the Kozeny–Carman equation for permeability prediction,” Géotechnique Letters, vol. 7, no. 1, pp. 1–5, 2017.
[45] A. Revil and N. Linde, “Chemico-electromechanical coupling in microporous media,” Journal of Colloid and Interface Science, vol. 302, no. 2, pp. 682–694, 2006.
[46] A. Revil, P. Leroy, and K. Titov, “Characterization of transport properties of argillaceous sediments: application to the Callovo-Oxfordian argillite,” Journal of Geophysical Research: Solid Earth, vol. 110, no. B6, 2005.
[47] D. Jougnot, A. Mendieta, P. Leroy, and A. Maineult, “Exploring the effect of the pore size distribution on the streaming potential generation in saturated porous media, insight from pore network simulations,” Journal of Geophysical Research: Solid Earth, vol. 124, no. 6, pp. 5315–5335, 2019.
[48] A. Boléve, F. Janod, A. Revil, A. Lafon, and J. J. Fry, “Localization and quantification of leakages in dams using time-lapse self-potential measurements associated with salt tracer injection,” Journal of Hydrology, vol. 403, no. 3–4, pp. 242–252, 2011.
[49] J. Bolèkve, A. Revil, F. Janod, J. L. Mattiuzzo, and J. J. Fry, “Preferential fluid flow pathways in embankment dams imaged by self-potential tomography,” Near Surface Geophysics, vol. 7, no. 5–6, pp. 447–462, 2009.
[50] A. Soueid Ahmed, A. Jardani, A. Revil, and J. P. Dupont, “Hydraulic conductivity field characterization from the joint inversion of hydraulic heads and self-potential data,” Water Resources Research, vol. 50, no. 4, pp. 3502–3522, 2014.
[51] X. Zhang, M. Zhao, and K. Wang, “Experimental study on the streaming potential phenomenon response to compactness and salinity in soil–rock mixture,” Water, vol. 13, no. 15, p. 2071, 2021.
[52] X. R. Liu, Y. L. Tu, P. Wang, Z. L. Zhong, W. B. Tang, and L. B. Du, “Particle breakage of soil-rock aggregate based on large-scale direct shear tests,” Chinese Journal of Geotechnical Engineering, vol. 39, no. 8, pp. 1425–1434, 2017.
[53] Z. Qiu and J. Wang, “Experimental study on the anisotropic hydraulic conductivity of a sandstone–mudstone particle mixture,” Journal of Hydrologic Engineering, vol. 20, no. 11, article 04015029, p. 9, 2015.
[54] H. Yan, J. Zhang, S. S. Rahman, N. Zhou, and Y. Suo, “Predicting permeability changes with injecting CO₂ in coal seams during CO₂ geological sequestration: a comparative study among six SVM-based hybrid models,” Science of the Total Environment, vol. 705, article 135941, 2020.
[55] H. Al Khalifah, P. W. J. Glover, and P. Lorinczi, “Permeability prediction and diagenesis in tight carbonates using machine learning techniques,” Marine and Petroleum Geology, vol. 112, article 104096, 2020.
[56] T. Watanabe and Y. Katagishi, “Deviation of linear relation between streaming potential and pore fluid pressure difference in granular material at relatively high Reynolds numbers,” Earth, Planets and Space, vol. 58, no. 8, pp. 1045–1051, 2006.
[57] A. Soueid Ahmed, A. Revil, B. Steck, C. Vergniault, A. Jardani, and G. Vincelas, “Self-potential signals associated with localized leaks in embankment dams and dikes,” Engineering Geology, vol. 253, pp. 229–239, 2019.