Two-step Processing Is Not Essential for the Import and Assembly of Functionally Active Iron-Sulfur Protein into the Cytochrome bc$_1$ Complex in Saccharomyces cerevisiae*

Jürgen H. Nett, Elke Denke, and Bernard L. Trumpower†
From the Department of Biochemistry, Dartmouth Medical School, Hanover, New Hampshire 03755

The iron-sulfur protein of the cytochrome bc$_1$ complex is one of a small number of proteins that are processed in two sequential steps by matrix processing peptidase (MPP) and mitochondrial intermediate peptidase (MIP) during import into Saccharomyces cerevisiae mitochondria. To test whether two-step processing is necessary for import and assembly of the iron-sulfur protein into the cytochrome bc$_1$ complex, we mutated the presence of the iron-sulfur protein to eliminate the original MPP site and replace the MIP site with a new MPP site. The mutated presequence is cleaved and forms mature-sized protein in a single step, and the mature-sized iron-sulfur protein is correctly targeted to the outer side of the inner mitochondrial membrane in vitro.

Mutant iron-sulfur protein which is processed to mature size in one step complements the respiratory deficient phenotype of a yeast strain in which the endogenous gene for the iron-sulfur protein is deleted. These results establish that mature-sized iron-sulfur protein can be formed by single-step processing and assembled into a functionally active form in the cytochrome bc$_1$ complex in S. cerevisiae.

EXPERIMENTAL PROCEDURES

Materials—Reagents for in vitro transcription and translation of proteins were from Promega. The in vitro translation product was labeled using Tran35S-label from ICN. EDTA was from Fisher and o-phenanthroline from Sigma. Automated sequencing was performed using the Dye Deoxi Terminator Cycle Sequencing Kit from Applied Biosystems Inc.

Isolation of Mitochondria for in Vitro Import of Iron-Sulfur Protein—Yeast strain W303-1A was grown in 1% yeast extract, 2% peptone, 2% galactose (YPGal) to an optical density at 600 nm of 2–4. Mitochondria were isolated from spheroplasts and frozen as described previously (12). Immediately before use mitochondria were thawed at room temperature and divided into 0.2-ml aliquots. To each aliquot 1 ml of ice-cold buffer containing 0.6 M mannitol, 20 mM Hepes-KOH, pH 7.4, 0.1% bovine serum albumin, 0.5 mM magnesium acetate was added, and mitochondria were resuspended by centrifugation for 5 min at 16,000 × g at 4 °C. They were then resuspended in an appropriate volume of the same buffer.

Western Analysis of Mitochondrial Membranes—For detecting iron-sulfur protein in mitochondrial membranes by Western blot analysis, yeast cells were broken with a glass bead beater, and mitochondrial membranes were isolated as described previously (13). Mitochondrial membranes were resolved by SDS-PAGE (14), and iron-sulfur protein

*This work was supported in part by National Institutes of Health Grant GM 20379 and by a fellowship from the Deutsche Forschungsgemeinschaft (to J. H. N.). The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked “advertisement” in accordance with 18 U.S.C. Section 1754 solely to indicate this fact.
†To whom correspondence should be addressed: Dept. of Biochemistry, Dartmouth Medical School, 7200 Vail, Hanover, NH 03755. Tel.: 603-650-1621; Fax: 603-650-1389.
*The abbreviations used are: MPP, matrix processing peptidase; MIP, mitochondrial intermediate peptidase; ISP, iron-sulfur protein; p-ISP, precursor iron-sulfur protein; i-ISP, intermediate iron-sulfur protein; m-ISP, mature iron-sulfur protein; Mops, 3-(N-morpholino)propanesulfonic acid; FCCP, carbonyl cyanide p-trifluoromethoxyphenyl-hydrazone; PAGE, polyacrylamide gel electrophoresis.
and cytochrome c, were detected by Western blotting (15), using monoclonal antibodies to the iron-sulfur protein and cytochrome c (16).

Import of Iron-Sulfur Protein into Mitochondria in Vitro—The in vitro import mixture contained 9% (v/v) translated precursor in rabbit reticulocyte lysate and an additional 15% (v/v) of untranslabeled lysate. It also contained 154 mM sucrose, 49 mM KCl, 7 mM Mops-KOH, pH 7.2, 2.1% bovine serum albumin, 1.4 mM MgCl2, 1 mM ATP, 4 mM NADH, and 30 µg of mitochondrial protein in a total volume of 0.1 ml. Prior to the addition of radioactive precursor, the import mixture was kept on ice for 5 min to energize the mitochondria. To obtain deglycosylated mitochondria, a sample was incubated for 5 min on ice in the presence of 22 µM antimycin, 20 µg/ml valinomycin, and 20 µg/ml FCCP before addition of precursor. To all other samples, precursor was added, and import was performed for 20 min at 30 °C, while the deglycosylated mitochondria sample was kept on ice. Import was stopped by placing the samples on ice and adding antimycin, valinomycin, and FCCP to the concentrations indicated above.

Formation of Mitoplasts and Proteinase K Treatment—To disrupt the outer mitochondrial membrane, mitochondria were pelleted, resuspended in 20 mM Hepes, pH 7.4, and kept on ice for 25 min with gentle vortexing at 5-min intervals. Mitoplasts were then resuspended in 0.1 ml of import buffer.

For proteinase K treatment, samples were divided in half, and while one half was kept on ice, the other half was incubated with 60 µg/ml proteinase K for 30 min on ice. Digestion was stopped by addition of phenylmethylsulfonyl fluoride to 2 mM and incubation on ice for 5 min. Samples were then pelleted, resuspended in 20 µl of SDS sample buffer, and then analyzed by SDS-PAGE and fluorography of the dried gels.

Enzyme Assays—Ubiquinol-cytochrome c oxidoreductase activity was assayed at 23 °C using 2,3-dimethoxy-5-methyl-6-azoquinol as a substrate (17). Reduction of cytochrome c was monitored at 550 nm and 570 nm on an Amico DW-2a spectrophotometer in a dual wavelength mode.

In Vitro Transcription and Translation—in vitro transcription using phage SP6 RNA polymerase and in vitro translation using rabbit reticulocyte lysate were performed according to supplier recommendations. Before use in the import experiment, polysomes were removed by centrifugation at 10,000 × g for 40 min. The DNA template had been linearized with ScaI before transcription.

Construction of Plasmids—Site-directed mutagenesis was performed using the Clontech Transformer Mutagenesis Kit. The sequence of steps by which the site-directed mutations were introduced is summarized in Fig. 1. pJN4 was created by replacing the codon for the −10 arginine in the plasmid pGem3-RIP, carrying the gene for the iron-sulfur protein of S. cerevisiae, with the codon for glycine. Further mutagenesis was done by inserting a valine and an arginine after the codon for the −11 lysine. pJN6 was created in the same way as pJN5, except that the nucleotide sequence coding for arginine, leucine, and isoleucine after the codon for the +1 lysine. pJN6 was created in the same way as pJN5, except that the nucleotide sequence coding for arginine, leucine, and lysine was inserted after the +1 lysine. pJN7 was obtained from pJN4 by adding the codons for valine and arginine after the codon for the −1 serine and changing the codons for the +1 lysine and +3 threonine into the codons for tyrosine and histidine, respectively. pJN32 was obtained from pJN4 by changing the codon for the −11 lysine into the codon for glycine. In the same way pJN33 was obtained from pJN5, pJN34 from pJN6, and pJN35 from pJN7 (Fig. 1).

We encountered difficulties in performing site-directed mutagenesis of the iron-sulfur protein gene in the yeast expression vector pFL39: RIP, possibly because of secondary structure of the vector (cf. Wong and Komaromy (18)). We thus constructed the expression plasmids carrying the mutant iron-sulfur protein genes as follows. First the HindIII-PstI fragment of YEP352-drRIP1, containing the complete promoter region and the first 208 nucleotides of the open reading frame of the iron-sulfur protein gene, was cloned into pGem-3 digested with the same enzymes. Site-directed mutagenesis was then performed on the pGem constructs, generating the same mutations as described above. The HindIII-PstI fragments were then excised and directionally cloned between the HindIII-PstI sites of pFL9:RIP, a single copy yeast expression vector containing the iron-sulfur protein gene. In this way the plasmids pJN38 (analogous to pJN32), pJN39 (analogous to pJN34), and pJN40 (analogous to pJN35) were obtained. All mutations were verified by sequencing the relevant coding regions.

RESULTS

Two-step Processing of Iron-Sulfur Protein Can Be Converted to One-step Processing by Moving the MPP Site to the Amino Terminus of the Mature Protein—In order to clarify the role of two-step processing of the iron-sulfur protein of the cytochrome bc2 complex during import into yeast mitochondria, we mutagenized the presequence in such a way that the MPP cleavage site would be moved to the amino terminus of the mature protein as it is in the iron-sulfur protein of bovine heart mitochondria. For this purpose we first destroyed the existing MPP site at position −8 of the presequence as shown in Fig. 1.

The cleavage site for MPP is usually indicated by an arginyl residue at position −2 relative to the cleavage site, which is −10 relative to the amino terminus of the mature protein (6–8). We have previously shown that substitution of the −10 arginine in the presequence of yeast iron-sulfur protein by other amino acids has different effects on processing, depending on the amino acid substituted for the arginine (19). While substitution of the −10 arginine with lysine or alanine still allowed the major portion of iron-sulfur protein to be processed after import, substitution with glycine almost completely blocked maturation of iron-sulfur protein in vitro. However, upon longer exposure of the gels during autoradiography, a very small amount of mature iron-sulfur protein (m-ISP) could be detected. To further improve the inhibition of processing in the current study, we additionally substituted the −11 lysine with a glycine (Fig. 1). This residue has been shown to also play an important role in the recognition of presequences by MPP (20). When the double mutant pJN32 was imported into yeast mitochondria in vitro, no mature iron-sulfur protein could be detected even after 10 times longer exposure of the gels (Fig. 2).

The mutant in which the −10 arginine and −11 lysine at the original MPP site were both changed to glycines was then further mutagenized to create pJN33, in which there is a new MPP recognition site at the amino terminus of m-ISP as shown in Fig. 1. In mutant pJN33, the three-amino acid stretch “RLI” was inserted after the +1 lysine. This produces the “SKRLIS” amino acid motif that is found at the original MPP site and elongates the presequence by another three amino acids. It also changes the amino terminus of the mature protein from K to I. This change was made because it has been proposed that the amino terminus of a twice-cleaved precursor is incompatible with cleavage by MPP (11).

In mutant pJN34 the amino acid stretch “RLK” was inserted at the same position, thus creating a “SKRLKS” motif. This again adds three amino acids to the presequence, but keeps the amino terminus of the mature protein unchanged. This mutant sequence tests whether cleavage by MPP is incompatible with the original sequence at the amino terminus of the mature protein.

In mutant pJN35 we created a site similar to the “ASVRYSH” motif found in the bovine iron-sulfur protein, which we previously showed is processed in only one step (10). This was done by inserting a valine and an arginine after the −1 serine and changing the +1 lysine and +3 threonine into the codons for tyrosine and histidine, respectively. Since MPP now cuts in front of the +1 serine, which was previously the +2 serine, the presequence is 33 amino acids, which is three longer than the wild-type presequence, and the mature protein is one amino acid shorter than the wild-type protein.

As shown by the time course of import in Fig. 2, the three mutant proteins encoded by pJN33, 34, and 35 are imported and processed efficiently in vitro and apparently at higher rates than the wild-type control, based on the amount of protease protected m-ISP formed. As expected, no intermediate length protein is observable at any time. The substitution of the amino-terminal lysine by isoleucine in pJN33 seems to have no effect, since both pJN33 and pJN34 are imported and processed at the same rate. Even pJN35, where only the −4 serine and −2 arginine are conserved compared to the site initially found in yeast, is imported and processed reasonably well.

Import of Yeast Rieske Iron-Sulfur Protein 2213
One-step Processing Results in Cleavage of the Presequence at the Amino Terminus of the Mature Protein by MPP—To distinguish whether MPP or MIP cleaves the presequence in mutants pJN33, 34, and 35, we took advantage of the fact that processing by MIP is inhibited completely by low concentrations of EDTA and o-phenanthroline, while import and processing by MPP are only slightly diminished (9, 19). When pJN34 was imported into yeast mitochondria that had been preincubated in buffer containing 10 mM EDTA and 2.5 mM o-phenanthroline, a treatment that completely abolishes MIP activity, protease protected m-ISP was formed as shown in Fig. 3. The amount of m-ISP formed is less than in import experiments without metal chelators. This is due to the fact that the chelators also partially inhibit MPP and import itself, depending on their concentration (19). When pJN34 was imported into yeast mitochondria that had been preincubated in buffer containing 10 mM EDTA and 2.5 mM o-phenanthroline, a treatment that completely abolishes MIP activity, protease protected m-ISP was formed as shown in Fig. 3.

The amount of m-ISP formed is less than in import experiments without metal chelators. This is due to the fact that the chelators also partially inhibit MPP and import itself, depending on their concentration (19). Formation of mature protein upon import under these conditions shows that the protease which removes the presequence of pJN34 in one step is not MIP. We thus conclude that, in mutants pJN33, 34, and 35, yeast MPP is able to cleave the iron-sulfur protein presequence in one step.

Mutant Iron-Sulfur Protein That Is Processed in One Step Is Targeted to the Outer Side of the Inner Mitochondrial Membrane—To determine whether the mutant iron-sulfur protein that is processed in one step is reexported from the matrix outward across the inner mitochondrial membrane, we examined the amount of m-ISP that was protected from proteinase K in mitoplasts. When wild-type iron-sulfur protein is imported, all of the mature protein is protected from proteinase K in intact mitochondria, as shown in Fig. 4. When mitochondria are converted to mitoplasts after the import, a significant amount of mature protein becomes accessible to proteinase K, indicating that this portion has reached the outer side of the inner mitochondrial membrane. This is most obvious after 20 min of import. When pJN34 is imported under the same conditions, all of the mature protein is protease-protected in intact mitochondria, whereas in mitoplasts an amount comparable to the wild-type control is proteolysed by proteinase K, indicating that this portion of the mutant protein is on the outer side of the inner mitochondrial membrane (Fig. 4).

Mutant Iron-Sulfur Protein That Is Processed in One Step Is Functional in Vivo—To test whether mutant iron-sulfur protein that is processed in one step is able to substitute for wild-type iron-sulfur protein in vivo, we performed the mutations corresponding to pJN34 and pJN35 (see Fig. 1) in a single copy yeast expression vector containing RIP1, which encodes the wild-type iron-sulfur protein. The resulting constructs, pJN39 and pJN40, were then used to transform JPJ1, a yeast strain in which the gene for the iron-sulfur protein has been deleted (21), thus creating yeast strains JN17 and JN18, respectively. JPJ1 is unable to grow on nonfermentable carbon sources due to the lack of iron-sulfur protein (21). As shown in Fig. 5, JN17 and JN18 were able to grow on ethanol/glycerol at the same rate as the deletion strain transformed with wild-type iron-sulfur protein, indicating that the mutant proteins were able to functionally substitute for wild-type iron-sulfur protein.

When mitochondrial membranes were isolated from cultures grown in galactose, the ubiquinol-cytochrome c oxidoreductase activities of the membranes from JN17 and JN18 were essentially identical to the activity of membranes from JPJ1 transformed with wild-type iron-sulfur protein gene...
Import of Yeast Rieske Iron-Sulfur Protein

FIG. 2. Time course of import into mitochondria of iron-sulfur proteins containing mutated presequences. Wild-type iron-sulfur protein (pGem3-RIP) and mutant iron-sulfur proteins in which the processing site for MPP had been destroyed (pJN32) and new processing sites at the amino terminus had been constructed (pJN33-35) were imported into mitochondria for the indicated times. After import half of each sample was treated with proteinase K. The migration positions of precursor (p), intermediate (i), and mature (m) iron-sulfur protein are indicated. The presequences of the wild-type iron-sulfur protein, pGem3-RIP, and of the mutants, pJN32-pJN35, are shown in Fig. 1.

on the same vector (0.70 unit/mg, Fig. 5).

Whereas there is no immunodetectable iron-sulfur protein in mitochondrial membranes isolated from the deletion strain, as shown in Fig. 6, immunoblot analysis of membranes from JN17 and JN18 shows significantly increased amounts of m-ISP as compared to membranes from the wild-type strain. These results confirm the findings from the in vitro import experiments, that the mutant proteins are processed at a higher rate than wild-type protein. The immunoblots also reveal intermediate and mature forms of the wild-type protein, while only m-ISP is detected in the membranes from the mutants. The lack of an intermediate form in the mutants suggests that the one-step processing that was observed in vitro also occurs in vivo.

Mutant Iron-Sulfur Protein in Which Processing Is Blocked in Vitro Is Processed Differently in Vivo and Also Rescues the Iron-Sulfur Protein–deficient Phenotype—Simultaneous mutagenesis of the −11 lysine and −10 arginine into glycines completely blocks processing of iron-sulfur protein by MPP in vitro (Fig. 2). To determine the effect of these mutations in vivo, we also mutagenized the iron-sulfur protein on a single copy yeast expression vector in the same way. The resulting plasmid, pJN38, was used to transform JPJ1, thus creating JN16. Surprisingly, the mutant iron-sulfur protein in which processing is completely blocked in vitro also restored growth on ethanol/glycerol, and the growth rate of JN16 was essentially identical to that of JPJ1 transformed with the wild-type gene, as shown in Fig. 5. When mitochondrial membranes were isolated from
usually observed MPP site. Whether this cleavage involves
processing takes place at a site other than the
ently higher molecular weight than the normal i-ISP also sug-
the formation of the novel intermediate form with an appar-
The iron-sulfur protein to such an extent that p-ISP can be detected in
wild-type membranes (Fig. 6), and this accounts for the ability
amount of m-ISP formed is comparable to that formed in the
The iron-sulfur protein of bovine heart mitochondria (pJN35).
pJN33 and pJN34 were employed to test whether the amino
precursor protein in the pJN32 mutant, in which the MPP site
changed. Both mutants were imported into mitochondria and
process to mature protein in a single step in vitro, and the
two mutants appear to be processed to m-ISP at apparently
these results indicate that the amino terminus of m-ISP is not
incompatible with cleavage by MPP.
The third mutant that we tested (pJN35) contained an MPP
site with the ASVRYSH motif found in the iron-sulfur protein
bovine heart mitochondria. This mutant was also processed
in a single step, indicating that the amino terminus of the
mature bovine protein is also compatible with cleavage by yeast
MPP.
The difference between our results and those of Isaya et al.
(11) might be due to the fact that they used chimeric fusion
proteins in their experiments. It has been shown recently that
cleavage of the presequence of fusion proteins is strongly influ-
enced by the passenger protein (24), suggesting that the
reason for lack of processing in the earlier studies (11) might not have
been the incompatibility of the amino terminus with cleavage
by MPP, but the incompatibility of the passenger protein with the
precsequence. However, it is possible that two-step process-
ing is required for maturation of ornithine transcarbamylase,
although this has not been tested with the native passenger
protein. Likewise, our results do not bear on whether two-step
processing is required for re-export from the matrix to the inner
membrane, since the octapeptide at the amino terminus of
i-ISP is thought not to be involved in targeting iron-sulfur
protein from the matrix to the inner membrane (6).
In all of the mutants the existing MIP site was not destroyed
by the mutations, therefore the possibility remained that MIP
performed the single processing step. Three lines of evidence
contradict this possibility, however. First, it has been shown
previously that cleavage by MIP can only follow cleavage by
MPP (25), and we found that there was no cleavage of the
precursor protein in the pJN32 mutant, in which the MPP site
was destroyed, but the MIP site was retained (Fig. 2). In
addition, it is also known that MIP always removes an octape-
tide from the amino terminus of a protein or peptide (26). And
finally, we have shown that pJN34 is imported and processed
in a single step in the presence of 10 mM EDTA and 2.5 mM
e-phenanthroline, which completely block processing by
MIP but which only partially block processing by MPP (19).
We also found that processing of mutant iron-sulfur protein
in which the original MPP site is eliminated by replacement of
the –10 arginine and –11 lysine with glycines is completely
blocked in vitro, but this mutant iron-sulfur protein is pro-
cessed to m-ISP by an alternative pathway in vivo. This alter-
native processing pathway generates a novel intermediate,
which we designated as i*-ISP, that migrates slower than i-ISP
on SDS-PAGE gels. Although processing of p-ISP is retarded by
eliminating the original MPP site, as evidenced by the accu-
mulation of p-ISP in this mutant, the alternative processing
which occurs in JN16 in vivo forms essentially the same

DISCUSSION

A number of mitochondrial precursor proteins are processed
sequentially by MPP and MIP following import into mitochon-
dria while others are cleaved by MPP only. The iron-sulfur
proteins of the cytochrome bc1 complexes of S. cerevisiae (22)
and Neurospora crassa (23) belong to the first category, whereas the iron-sulfur protein of bovine heart mitochondria
belongs to the second category (10). The reason why there is
two-step processing of this protein in one species and one-step
processing in another is not understood. The aim of our studies
was to test whether two-step processing is necessary for import
and assembly of functionally active iron-sulfur protein into the
cytochrome bc1 complex in yeast.
One hypothesis regarding the function of the intermediate
octapeptide was proposed by Isaya et al. (11), who constructed
deletions in the octapeptide of the twice-cleaved precursor of
human ornithine transcarbamylase and also exchanged leader
sequences between once cleaved and twice-cleaved precursor
proteins. Their studies led them to the conclusion that the
mature amino terminus of a twice-cleaved precursor is struc-
turally incompatible with MPP, and that the octapeptides have
evolved to supply the structural requirements for cleavage.
To test this hypothesis and whether two-step processing is
necessary, we constructed a mutagenized iron-sulfur protein,
which is processed to mature protein in only one step by MPP.
We eliminated the existing MPP site in the presequence of the
yeast iron-sulfur protein and then constructed a new MPP site
at the amino terminus of the mature protein, which either
resembled the previously existing MPP site in the yeast protein
(pJN33 and pJN34) or the one found in the iron-sulfur protein
of bovine heart mitochondria (pJN35).

Fig. 6. Immunoblot analysis of mutant iron-sulfur proteins in
mitochondrial membranes. Membranes from mitochondria contain-
ing wild-type and mutant iron-sulfur proteins were probed with anti-
bodies against the iron-sulfur protein, then stripped and probed with
antibodies against cytochrome c1 to determine equal amounts of
mitochondrial protein loaded onto the gel. The migration positions of
precursor (p), intermediate (i), and mature (m) iron-sulfur protein are
indicated. i*-ISP indicates a new intermediate form of the iron-sulfur
protein that can only be detected in membranes derived from strain JN16.
JN16 is the yeast strain in which the RIP1 gene is deleted. WT, JN16,
JN17, and JN18 are described in the legend to Fig. 5.

JN16 grown in galactose, the ubiquinol-cytochrome c oxi-
doreductase activity of the membranes was 80–85% of the
activity of membranes from JN16 transformed with wild-type
iron-sulfur protein gene (Fig. 5).
Immunoblot analysis of mitochondrial membranes from
JN16 shows three major bands (Fig. 6). A significant amount of
precursor iron-sulfur protein (p-ISP), which is usually not de-
tectable in wild-type membranes, is detected in membranes
from JN16. In addition, a novel intermediate form that runs at an
apparently higher molecular weight than the normally ob-
served i-ISP, and which we have designated i*-ISP, is also
detected in JN16 in addition to mature iron-sulfur protein. It is
obvious that the mutations diminish the processing of iron-
sulfur protein to such an extent that p-ISP can be detected in
the mitochondrial membranes from this mutant. However, the
amount of m-ISP formed is comparable to that formed in the
wild-type membranes (Fig. 6), and this accounts for the ability
of the strain to grow on the nonfermentable carbon sources.
The formation of the novel intermediate form with an appar-
ently higher molecular weight than the normal i-ISP also sug-
ysts that a processing step takes place at a site other than the
usually observed MPP site. Whether this cleavage involves
MPP or another protease and where in the presequence it
occurs have not been determined.

Immunoblot analysis of mutant iron-sulfur proteins in
mitochondrial membranes containing wild-type and mutant
iron-sulfur proteins were probed with antibodies against
the iron-sulfur protein, then stripped and probed with
antibodies against cytochrome c1 to determine equal amounts of
mitochondrial protein loaded onto the gel. The migration positions of
precursor (p), intermediate (i), and mature (m) iron-sulfur protein are
indicated. i*-ISP indicates a new intermediate form of the iron-sulfur
protein that can only be detected in membranes derived from strain JN16.
JN16 is the yeast strain in which the RIP1 gene is deleted. WT, JN16,
JN17, and JN18 are described in the legend to Fig. 5.
amount of m-ISP as is present in the wild-type control (Fig. 6), and thus the yeast grow on nonfermentable carbon sources. The alternative processing which forms m-ISP in vivo presumably occurs at such a low rate that it is not observable in vitro. However, the rate of processing by this alternative pathway is sufficient to keep pace with the rate of synthesis of other components of the cytochrome bc₁ complex, since the ubiquinol-cytochrome c reductase activity of the mitochondrial membranes from JN16 was the same as that of wild-type membranes.

The finding that mutant iron-sulfur protein which is processed to mature size in one step complements the respiratory deficient phenotype of a yeast strain in which the endogenous gene for the iron-sulfur protein is deleted shows that one-step processing generates iron-sulfur protein, which is functional in vivo. Although these results clearly demonstrate that two-step processing is not essential for import and formation of functional iron-sulfur protein in S. cerevisiae, they do not explain why two-step processing of this protein occurs in some species. One possible explanation is that two-step processing may regulate the rate of formation of m-ISP to match the rate of synthesis and assembly of other subunits of the cytochrome bc₁ complex. This explanation is consistent with the observation that when two-step processing is eliminated, the amount of m-ISP formed is far in excess of the amount of cytochrome bc₁ complex, as indicated by the amount of cytochrome c₁ in JN17 and JN18 (Fig. 6).

The formation of mature iron-sulfur protein in excess of that in the bc₁ complex as observed in JN17 and JN18 is not unprecedented. Nishikimi et al. (27) showed that there is approximately twice as much iron-sulfur protein in heart mitochondria as can be accounted for by cytochrome bc₁ complex, and Van Doren et al. (28) showed that when expressed from a high copy plasmid the iron-sulfur protein of the bc₁ complex can be assembled into the plasma membrane and the iron-sulfur cluster inserted in Rhodobacter sphaeroides in the absence of the other subunits of the complex. Whether the excess iron-sulfur protein in JN17 and JN18 contains iron-sulfur cluster remains to be determined.

The bovine iron-sulfur protein is processed only once, although in positions -17 to -8 it contains a RX(F/L/I)XX(T/S/G)XXXX motif that is typical for precursors that are cleaved sequentially by MPP and MIP (10). This suggests that one-step processing has evolved out of two-step processing and not the other way around. This evolution may have occurred to prevent futile trafficking of newly synthesized iron-sulfur protein to cytochrome bc₁ complexes, which already have a resident copy of that protein. In bovine mitochondria, where one-step processing of the iron-sulfur protein has been demonstrated, the cleaved presequence stays as a subunit in the cytochrome bc₁ complex (10). If the iron-sulfur protein is the last subunit added to the cytochrome bc₁ complex (29), it could be competitively displaced by subsequently synthesized copies of iron-sulfur protein, unless there is a mechanism to prevent such displacement. The cleaved presequence is a different chemical entity than the attached presequence, but probably occupies the site in the complex that would otherwise be recognized by incoming p-ISP. In this manner newly synthesized iron-sulfur protein can discriminate between bc₁ complexes that have and complexes that do not have iron-sulfur protein.

REFERENCES
1. Attardi, G., and Schatz, G. (1988) Annu. Rev. Cell Biol. 4, 289–333
2. Planner, N., and Neupert, W. (1996) Annu. Rev. Biochem. 65, 331–353
3. Haucke, V., Lithgow, T., Rospert, S., Hahne, K., and Schatz, G. (1999) J. Biol. Chem. 270, 5565–5570
4. Hawlitschek, G., Schneider, H., Schmidt, B., Tropschug, M., Hartl, F.-U., and Neupert, W. (1998) Cell 93, 795–806
5. Isaya, G., Miklos, D., and Rollins, R. A. (1994) Mol. Cell. Biol. 14, 5603–5616
6. Hartl, F.-U., Planner, N., Nicholson, D. W., and Neupert, W. (1989) Biochim. Biophys. Acta 998, 1–45
7. Hendrick, J. P., Hodges, P. E., and Rosenberg, L. E. (1989) Proc. Natl. Acad. Sci. U. S. A. 86, 4056–4060
8. van Heijne, G., Steppuhn, J., and Herrmann, R. (1989) Eur. J. Biochem. 180, 535–543
9. Fu, W., Japa, S., and Beattie, D. S. (1990) J. Biol. Chem. 265, 16541–16547
10. Brandt, U., Yu, L., Yu, C.-A., and Trumpower, B. L. (1993) J. Biol. Chem. 268, 6387–6390
11. Isaya, G., Kalousek, F., Fenton, W. A., and Rosenberg, L. E. (1991) J. Cell Biol. 105, 65–76
12. Guthrie, C., and Fink, G. R. (1991) Methods Enzymol. 194, 631–638
13. Schmidt, M. E., and Trumpower, B. L. (1993) J. Biol. Chem. 266, 14958–14963
14. Laemmli, U. K. (1970) Nature 227, 680–685
15. Towbin, H., Staehelin, T., and Gordon, J. (1979) Proc. Natl. Acad. Sci. U. S. A. 76, 4354–4356
16. Graham, L. A., and Trumpower, B. L. (1991) J. Biol. Chem. 266, 22485–22492
17. Trumpower, B. L., and Edwards, C. A. (1979) J. Biol. Chem. 254, 8697–8706
18. Wong, F., and Komaromy, M. (1995) BioTechniques 18, 1034–1038
19. Nett, J. H., and Trumpower, B. L. (1996) J. Biol. Chem. 271, 26713–26716
20. Niidome, T., Kitada, S., Shimokata, K., Oligshina, T., and Ito, A. (1994) J. Biol. Chem. 269, 24719–24726
21. Beckmann, J. D., Ljungdahl, P. O., Lopez, J. L., and Trumpower B. L. (1987) J. Biol. Chem. 262, 8901–8909
22. Japa, S., and Beattie, D. S. (1989) Arch. Biochem. Biophys. 268, 716–720
23. Hartl, F.-U., Schmidt, B., Wachter, E., Weiss, H., and Neupert, W. (1986) Cell 47, 939–951
24. Japa, S., and Beattie, D. S. (1994) Arch. Biochem. Biophys. 312, 414–420
25. Satul, E. S., Chu, T. W., Strauss, A. W., and Rosenberg, L. E. (1988) J. Biol. Chem. 263, 12085–12091
26. Isaya, G., Kalousek, F., and Rosenberg, L. E. (1992) J. Biol. Chem. 267, 7904–7910
27. Nishikimi, M., Shimomura, Y., and Ozawa, T. (1985) J. Biol. Chem. 260, 10398–10401
28. Van Doren, S. R., Yun, C. H., Crofts, A. R., and Gennis, R. B. (1993) Biochemistry 32, 628–636
29. Crivellone, M. D., Wu, M., and Tzagoloff, A. (1988) J. Biol. Chem. 263, 14323–14333