Pygmy dipole resonance: collective features and symmetry energy effects

V. Baran 1, B. Frecus1, M. Colonna2, M. Di Toro2,3
1 Physics Faculty, University of Bucharest, Romania
2 Laboratori Nazionali del Sud INFN, I-95123 Catania, Italy
3 Physics and Astronomy Dept., University of Catania, Italy

A very important open question related to the pygmy dipole resonance is about its quite elusive collective nature. In this paper, within a harmonic oscillator shell model, generalizing an approach introduced by Brink, we first identify the dipole normal modes in neutron rich nuclei and derive the energy weighted sum rule exhausted by the pygmy dipole resonance. Then solving numerically the self-consistent Landau-Vlasov kinetic equations for neutrons and protons with specific initial conditions, we explore the structure of the different dipole vibrations in the 132Sn system and investigate their dependence on the symmetry energy. We evidence the existence of a distinctive collective isoscalar-like mode with an energy well below the Giant Dipole Resonance (GDR), very weakly dependent on the isovector part of the nuclear effective interaction. At variance the corresponding strength is rather sensitive to the behavior of the symmetry energy below saturation, which rules the number of excess neutrons in the nuclear surface.

PACS numbers: 25.70.Pq, 25.70.Mn, 21.65.Ef, 24.10.Cn

Keywords:
tor well with the Hamiltonian $H_{sm} = \sum_{i=1}^{A} \frac{\vec{p}_i^2}{2m} + \frac{K}{2} \sum_{i=1}^{N} \vec{r}_i^2$, it is possible to perform a separation in four independent parts $H_{sm} = H_{n\, int} + H_{p\, int} + H_{CM} + H_{D}$. The first two terms determine the internal motion of protons and neutrons respectively, depending only on proton-proton and neutron-neutron relative coordinates. The Hamiltonian $H_{CM} = \frac{1}{2A} \vec{R}_{CM}^2 + \frac{KA}{2} \vec{R}_{CM}$ characterizes the nucleus center of mass (CM) motion, while $H_D = \frac{A}{2mN} Z \vec{P}_z^2 + \frac{KNZ}{2A} \vec{X}_e^2$, describes a Goldhaber-Teller (G-T) vibration of protons against neutrons. The oscillator constant K can be determined by fitting the nuclear size [24]. In the expressions above \vec{X} and \vec{R}_{CM} denote the neutron-proton relative coordinate and the center of mass position, and we have introduced the conjugate momenta $\vec{P} = \frac{NZ}{A} \vec{P}_z - \frac{1}{N} \vec{P}_N$ and $\vec{P}_{CM} = \vec{P}_z + \vec{P}_N$, where $\vec{P}_z (\vec{P}_N)$ are proton (neutron) total momenta. Correspondingly, the eigenstates of the nucleus are represented as a product of four wave functions $\Psi = \psi_{n \, int} \psi_{e \, int} \alpha(\vec{R}_{CM}) \beta(\vec{X})$, simultaneous eigenvectors of the four Hamiltonians constructed above. For an $E1$ absorption a G-T collective motion with a specific linear combination of single particle excitations is produced and the wave function $\beta(\vec{X})$ is changing from the ground state to the one GDR phonon state. Denoting by E_i the energy eigenvalues of the system and by D the dipole operator, with the help of the Thomas-Runke-Kuhn (TRK) sum rule, the total absorption cross section is given by: $\sigma_D = \int_0^\infty \sigma(E) dE = \frac{4\pi^2 e^2}{\hbar c} \sum_i E_i |\langle i | D | 0 \rangle|^2 = \frac{4\pi^2 e^2}{\hbar c} \frac{1}{2} |\langle D, [H_{sm}, D] | 0 \rangle| = 60 \frac{N}{A} Z \frac{N}{A} \sigma_D$. This shows that a fraction $f_{y} = \frac{N_{e} Z}{N_{A} N_{e}}$ of the EWSR is exhausted by the pygmy mode. It is worth to mention that this result is consistent with the molecular sum rule introduced by Allhassid et al. [23]. For the tin isotope ^{132}Sn, if the excess neutrons were simply defined as the difference between neutron and proton numbers, i.e. $N_e = 32$, one would expect $f_y = 19.5\%$. This is greater than the value estimated experimentally, which is around 5%. A possible explanation for this difference is that only a part of the excess neutrons, N_y, with $N_y < N_e$, contribute to PDR, the rest being still bound to the core [26].

Now let us turn to the physical situation, corresponding to the case of very neutron-rich nuclei, where the system is conveniently described in terms of a bound core containing all protons and N_c neutrons, plus some (less bound) excess neutrons N_y. Thus the total neutron number N is split into the sum $N = N_c + N_y$ and we denote by $A_c = Z + N_c$ the number of nucleons contained in the core. In this case we have worked out an exact separation of the HOSM Hamiltonian in a sum of six independent (commuting) quantities: $H_{sm} = H_{n\, int} + H_{p\, int} + H_{e\, int} + H_{CM} + H_{c} + H_{y}$. The first three terms contain only relative coordinates and momenta among nucleons of each ensemble, i.e. core neutrons, core protons and excess neutrons and, as before, describe their internal motion. $H_{c} = \frac{A_{c}}{2Z N_{m} m} \vec{P}_c^2 + \frac{KN_{c} Z}{2A_{c}} \vec{X}_c^2$, characterizes the core dipole vibration, while the relative motion of the excess neutrons against the core, usually associated with the pygmy mode, is determined by $H_y = \frac{A}{2Z N_{c} N_{m}} \vec{P}_y^2 + \frac{KN_{c} A_{c}}{2A} \vec{Y}_y^2$. Here \vec{X}_c denotes the distance between neutron and proton centers of mass in the core, while \vec{Y} is the distance between the core center of mass and the center of mass of the excess neutrons. The corresponding canonically conjugate momenta are $\vec{P}_c = \frac{N_{c} Z}{A_{c}} (\frac{1}{Z} \vec{P}_z - \frac{1}{N_{c}} \vec{P}_{N_e})$, and $\vec{P}_y = \frac{N_{c} A_{c}}{A} (\frac{1}{A} \vec{P}_z + \vec{P}_{N_e}) - \frac{1}{A} \vec{P}_{N_e}$. The eigenstates of H_c and H_y are describing two independent collective excitations and both of them will contribute to the dipole response since the total dipole momentum can be expressed as: $\vec{D} = \frac{N_{c} Z}{A} \vec{X} = \frac{Z}{A} N_{e} \vec{X}_e + \frac{Z}{A} N_{e} \vec{Y}_e \equiv \vec{D}_e + \vec{D}_y$. In this picture the PDR results in a collective motion of G-T type with the excess neutrons oscillating against the core. The $E1$ absorption leads also to the change of the wave function associated with the coordinate \vec{Y}. The total cross section for the PDR is: $\sigma_y = \frac{4\pi^2 e^2}{\hbar c} \frac{1}{2} |\langle D_y, [H_{sm}, D_y] | 0 \rangle| = \frac{N_{c} Z}{N_{A} N_{c}} \sigma_D$. This shows that a fraction $f_y = \frac{N_{c} Z}{N_{A} N_{c}}$ of the EWSR is exhausted by the pygmy mode. It is worth to mention that this result is consistent with the molecular sum rule introduced by Allhassid et al. [23]. For the tin isotope ^{132}Sn, if the excess neutrons were simply defined as the difference between neutron and proton numbers, i.e. $N_e = 32$, one would expect $f_y = 19.5\%$. This is greater than the value estimated experimentally, which is around 5%. A possible explanation for this difference is that only a part of the excess neutrons, N_y, with $N_y < N_c$, contribute to PDR, the rest being still bound to the core [26].

Therefore it is important to test this assumption within a more sophisticated analysis of the dipole response. Indeed, a more accurate picture of the GDR in nuclei corresponds to an admixture of G-T and Stonewield-Jensen (S-J) vibrations. The latter, in symmetric nuclear matter, is a volume type oscillation of the isovector density $\rho_v = \rho_p - \rho_n$ keeping the total density $\rho = \rho_p + \rho_n$ constant [27]. A microscopic, self-consistent study of the collective features and of the role of the nuclear effective interaction upon the PDR can be performed within the Landau theory of Fermi liquids. This is based on two coupled Landau-Vlasov kinetic equations for neutron and proton one-body distribution functions $f_q(\vec{r}, \vec{p}, t)$ with $q = n, p$:

$$\frac{\partial f_q}{\partial t} + \frac{\vec{p}}{m} \frac{\partial f_q}{\partial \vec{r}} - \frac{\partial U_q}{\partial \vec{r}} \frac{\partial f_q}{\partial \vec{p}} = I_{coll} f_q,$$

(1)

and was applied quite successfully in describing various features of the GDR, including pre-equilibrium dipole excitation in fusion reactions [28]. Within a linear response approach, it was also considered to investigate properties of the PDR [29]. However, it should be noticed that within such a semi-classical description shell effects are absent, certainly important in shaping the fine structure of the dipole response [30]. We neglect here the two-body collisions effects and hence the main ingredient of the dynamics is the nuclear mean-field, for which we
Consider a Skyrme-like (SKM*) parametrization $U_q = A \rho + B(\rho \rho_0)^{\alpha+1} + C(\rho)^2 \rho_0 - \frac{1}{2} \rho_0, \tau_q + \frac{1}{2} \partial C(\rho_0 - \rho_0 + \rho_0)^2$, where $\tau_q = +1(-1)$ for $q = n(p)$ and ρ_0 denotes the saturation density. The saturation properties of symmetric nuclear matter are reproduced with the values of the coefficients $A = -356 MeV$, $B = 303 MeV$, $\alpha = 1/6$, leading to a compressibility modulus $K = 200 MeV$. For the isovector sector we employed three different parameterizations of $C(\rho)$ with the density: the asysoft, the asystiff and asysuperstiff respectively, see [31] for a detailed description. The value of the symmetry energy, $E_{sym}/A = \frac{\epsilon_F}{3} + \frac{C(\rho)}{2} \frac{\rho}{\rho_0}$, at saturation, as well as the slope parameter, $L = 3 \rho_0 \frac{dE_{sym}/A}{d\rho}|_{\rho=\rho_0}$, are reported in Table I for each of these asy-EoS. Just below the saturation density the asysoft mean field has a weak variation with density while the asysuperstiff shows a rapid decrease. Then, due to surface contributions to the collective oscillations, we expect to see some differences in the energy position of the dipole response of the system.

The numerical procedure to integrate the transport equations is based on the test-particle (t.p.) method. For a good spanning of phase-space we work with 1200 t.p. per nucleon. We consider the neutron rich nucleus ^{132}Sn and we determine its ground state configuration as the equilibrium (static) solution of Eq. (1). Then proton and neutron densities $\rho_q(\vec{r}, t) = \int \frac{2d^3p}{(2\pi\hbar)^3} f_q(\vec{p}, \vec{r}, t)$ can be evaluated. The radial density profiles for two asy-EOS are reported in Fig. 1. As an additional check of our initialization procedure, the neutron and proton mean square radii $\langle r_q^2 \rangle = \frac{1}{N_q} \int r^2 \rho_q(\vec{r}, t)d^3r$, as well as the skin thickness $\Delta R_{np} = \sqrt{\langle r_n^2 \rangle} - \sqrt{\langle r_p^2 \rangle}$, were also calculated in the ground state and shown in Table I. The values obtained with our semi-classical approach are in a reasonable agreement with those reported by employing other models for similar interactions [32]. The neutron skin thickness is increasing with the slope parameter, as expected from a faster reduction of the symmetry term on the surface [5, 31]. This feature has been discussed in detail in [5].

To inquire on the collective properties of the pygmy dipole we excite the nuclear system at the initial time $t = t_0 = 30 fm/c$ by boosting along the z direction all excess neutrons and in opposite direction all core nucleons, while keeping the CM of the nucleus at rest (Pygmy-like initial conditions). The excess neutrons were identified as the most distant $N_e = 32$ neutrons from the nucleus CM. Then the system is left to evolve and the evolution of the collective coordinates Y, X_e and X_n, associated with the different dipole modes, is followed for $600 fm/c$ by solving numerically the equations (1). The simple estimate of the EWSR provided by the HOSM suggests, when compared to experiments, that some of the N_e neutrons boosted in the initial conditions are still bound to the core. This is confirmed by the transport simulations. Indeed, apart from the quite undamped oscillations of the Y coordinate, we also remark that the core does not remain inert. In Fig. 2 we plot the time evolution of the dipole D_y, of the total dipole D and core dipole D_c moments, for two asy-EoS. As observed, while D_y approaches its maximum value, an oscillatory motion of the dipole D_y initiates and this response is symmetry energy dependent: larger is the slope parameter L, more delayed is the isovector core reaction. This can be explained in terms of low-density (surface) contributions to the vibration and therefore of the density behavior of the symmetry energy below normal density: a larger L corresponds to a larger neutron presence in the surface and so to a smaller coupling to the core protons. We see that the total dipole $D(t)$ is strongly affected by the presence of isovector core oscillations, mostly related to the isovector part of the effective interaction. Indeed, $D(t)$ gets a higher oscillation frequency with respect to D_y, sensitive to the asy-EOS. The fastest vibrations are observed in the asysoft case, which gives the largest value of the symmetry energy below saturation. In correspondence the frequency of the pygmy mode seems to be not much affected by the trend of the symmetry energy below saturation, see also next Fig. 4 clearly showing the different nature, isoscalar-like, of this oscillation. For each case we calculate the power spectrum of D_y: $|D_y(\omega)|^2 = \int_{t_0}^{t_{max}} D_y(t)e^{-i\omega t}dt|^2$ and simi-

Table I: The symmetry energy at saturation (in MeV), the slope parameters, neutron rms radius, protons rms radius, neutron skin thickness for the three asy-EoS.

asy-EoS	E_{sym}/A	L(MeV)	R_n(fm)	R_p(fm)	ΔR_{np}(fm)
asysoft	30.0	14.0	4.90	4.65	0.25
asystiff	28.0	73.0	4.95	4.65	0.30
asysuperstiff	28.0	97.0	4.96	4.65	0.31

Fig. 1: (Color online) The total (black), neutrons (blue) and protons (red) radial density profiles for asysoft (solid lines) and asysuperstiff (dashed lines).
FIG. 2: (Color online) The time evolution of the total dipole \(D\) (top) of the dipole \(D_y\) (middle) and of core dipole \(D_c\) for asysoft (blue, solid) and asysuperstiff (red, dashed) EoS. Pygmy-like initial excitation.

FIG. 3: (Color online) The power spectrum of total dipole \(D\) (left) and of the dipole \(D_y\) (right) (in \(fm^2/c^2\)), for asysoft (blue, solid line), asystiff (black, dot-dashed line) and asysuperstiff (red, dashed line) EoS. Pygmy-like initial conditions.

larly for \(D\). The results are shown in Fig. 3. The position of the centroids corresponding to the GDR shifts toward larger values when we move from supersystiff (largest slope parameter \(L\)) to asysoft EoS. This evidences the importance of the volume, S-J component of the GDR in \(^{132}\)Sn. The energy centroid associated with the PDR is situated below the GDR peak, at around 8.5\(MeV\), quite insensitive to the asy-EOS, pointing to an isoscalar-like nature of this mode. A similar conclusion was reported within a relativistic mean-field approach.\(^{33}\) While in the schematic HOSM all dipole modes are degenerate, with an energy \(E = 41A^{-1/3} \approx 8MeV\) for \(^{132}\)Sn, within the Vlasov approach the GDR energy is pushed up by the isovector interaction. Hence the structure of the dipole response can be explained in terms of the development of isoscalar-like (PDR) and isovector-like (GDR) modes, as observed in asymmetric systems.\(^{34}\) Both modes are excited in the considered, pygmy-like initial conditions. Looking at the total dipole mode direction, that is close to the isovector-like normal mode, one observes a quite large contribution in the GDR region. On the other hand, considering the \(Y\) direction, more closely related to the isoscalar-like mode, a larger response amplitude is detected in the pygmy region. To check the influence of the initial conditions on the dipole response, let us consider the case of a GDR-like excitation, corresponding to a boost of all neutrons against all protons, keeping the CM at rest. The initial collective energy corresponds to first GDR excited state, around 15\(MeV\). Now the initial excitation favours the isovector-like mode and even in the \(Y\) direction we observe a sizeable contribution in the GDR region, see the Fourier spectrum of \(D_y\) in Fig. 4. From this result it clearly emerges that a part of the \(N_y\) excess neutrons is involved in a GDR type motion and the relative weight depends on the symmetry energy: more neutrons are involved in the pygmy mode in the asysuperstiff EOS case, in connection to the larger neutron skin size. We have also checked that, if the coordinate \(Y\) is constructed by taking the \(N_y\) most distant neutrons (with \(N_y < N_c\)), the relative weight increases in the PDR region. In any case, since part of the excess nucleons contributes to the GDR mode, a lower EWSR value than the HOSM predictions corresponding to \(N_y = N_c\) is expected. Indeed, in the Fourier power spectrum of \(D\) in Fig. 4 a weak response is seen at the pygmy frequency.

These investigations also rise the question of the appropriate way to excite the PDR. Nuclear rather than electromagnetic probes can induce neutron skin excitations closer to our first class of initial conditions.\(^{35}\) In the case of the GDR-like initial excitation we can relate the strength function to \(Im(D(\omega))\)\(^{36}\) and then the corresponding cross section can be calculated. Our estimate of the integrated cross section over the PDR region represents 2.7% for asysoft, 4.4% for asystiff and 4.5% for asysuperstiff, out of the total cross section. Hence the EWSR exhausted by the PDR is proportional to the skin thickness, in agreement with the results of\(^ {37}\). The fraction of photon emission probability associated with the PDR region can be estimated from the total dipole acceleration, within a bremsstrahlung approach.\(^ {38}\) We obtain a percentage of 4.7% for asysoft, 7.7% for asystiff and 9% for asysuperstiff EOS, consistent with the previous interpretation.
Summarizing, in this work we evidence, both within HOSM and a semi-classical Landau-Vlasov approach, the existence, in neutron rich nuclei, of a collective pygmy dipole mode determined by the oscillations of some excess neutrons against the nuclear core. From the transport simulation results the PDR energy centroid for 132Sn appears around 8.5 MeV, rather insensitive to the density dependence of the symmetry energy and well below the GDR peak. This supports the isoscalar-like character of this collective motion. A complex pattern, involving the coupling of the neutron skin with the core dipole mode, is noticed. While HOSM can provide some predictions of the EWSR fraction exhausted by the pygmy mode, $f_y = \frac{N_y Z}{N A_e}$, depending on the number $N_y \leq N_e$ of neutrons involved, the transport model indicates that part of the excess neutrons N_e are coupled to the GDR mode and gives some hints about the number of neutrons, N_y, actually participating in the pygmy mode. This reduces considerably the EWSR acquired by the PDR, our numerical estimate providing values well below 10%, but proportional to the symmetry energy slope parameter L, that affects the number of excess neutrons on the nuclear surface. We consider these effects as related also to the S-J component of the dipole dynamics in medium-heavy nuclei. It is therefore interesting to extend the present analysis to lighter nuclei, like Ni or Ca isotopes, where the Goldhaber-Teller component can be more important. We would like to mention that such self-consistent, transport approaches, can be valuable in exploring the collective response of other mesoscopic systems where similar normal modes may manifest, see [39].

This work for V. Baran was supported by a grant of the Romanian National Authority for Scientific Research, CNCS - UEFISCDI, project number PN-II-ID-PCE-2011-3-0972. For B. Fuceti this work was supported by the strategic grant POSDRU/88/1.5/S/56668.

[1] N. Paar, D. Vretenar, E.Khan, G. Colo, Rep. Prog. Phys. 70 691 (2007).
[2] P. Adrich et al., Phys. Rev. Lett. 95 132501 (2005).
[3] B. Ozell et al., Nucl. Phys. A 788 385c (2007).
[4] A. Klinkiewicz et al., Phys. Rev. C 76 051603(R) (2007).
[5] S. Yoshida, H. Sagawa, Phys. Rev. C 69 024318 (2004); Phys. Rev. C 73 044320 (2006).
[6] J. Piekarewicz, Phys. Rev. C 73 044325 (2006).
[7] A. Carbone et al., Phys. Rev. C 81 041301R (2010).
[8] P.G. Reinhard, W. Nazarewicz, Phys. Rev. C 81 051303(R) (2010).
[9] R. Mohan, M. Danos, L.C. Biedenharn, Phys. Rev. C 3 1740 (1971); Y. Suzuki, K. Ieda, H. Sato, Prog. Theor. Phys. 83 180 (1990).
[10] S.I. Bastrukov et al., Phys. Lett. B 664 258 (2008).
[11] N. Tsoneva, H. Lenske, Phys. Rev. C 77 044321 (2008).
[12] G Co’ et al., Phys. Rev. C 80 014309 (2009).
[13] K. Yoshida, Phys. Rev. C 80 044324 (2009).
[14] D. Vretenar, N. Paar, P. Ring, G.A. Lalazissis, Nucl. Phys. A 692 496 (2001); D. Vretenar, T. Nisic, N. Paar, P. Ring, Nucl. Phys. A 731 281 (2004).
[15] E.Litvinova, P. Ring, V. Tseluyaev, Phys. Rev. C 78 014312 (2008); D. Pena Arteaga, E. Khan, P. Ring, Phys. Rev. C 79 034311 (2009); J.Endres et al. Phys. Rev. Lett. 105 212503 (2010).
[16] D. Savran et al., Phys. Rev. Lett. 100 232501 (2008).
[17] O. Wieland et al., Phys. Rev. Lett. 102 092502 (2010); O. Wieland, A. Bracco, Prog.Part. Nucl. Phys. 66 304 (2011); H.K. Toft et al., Phys. Rev. C 81 064311 (2010).
[18] A.P. Tonchev et al., Phys. Rev. Lett. 104 072501 (2010).
[19] A. Makinaga et al., Phys. Rev. C 82 024314 (2010).
[20] N. Paar, J. Phys. G: Nucl. Part. Phys. 37 064014 (2010).
[21] D. Sarchi, P.F. Bortignon, G. Colo, Phys. Lett. B 601 27 (2004).
[22] D.M. Brink, Nucl. Phys. 4 215 (1957).
[23] M. Goldhaber and E. Teller, Phys. Rev. 74 1046 (1948).
[24] A.Bohr, B.R. Mottelson, Nuclear Structure, Vol. I, pag.209. World Scientific.
[25] V.Álhassid, M. Gai and G.F. Bertsch, Phys. Rev. Lett. 49 1482 (1982).
[26] If naively we assume the core neutrons to be the ones of the most bound Sn isotopes (118Sn and 120Sn) we get as excess neutrons $N_e \simeq 12 \div 14$. The HOSM-EWSR fraction is then reduced to $f_y \simeq 7.3 \div 8.5%$.
[27] H. Steinwedel, J.H.D. Jensen, Z. Naturf. 5A 413 (1950).
[28] V. Baran, C. Rizzo, M. Colonna, M. Di Toro, D. Pierroustaw, Phys. Rev. C 79 021603(R) (2009).
[29] V.I. Abrosimov, O.I. Davydovs’ka, Ukr. J. Phys. 54 1068 (2009); M. Urban, [arXiv:1103.0801]v2 (2011).
[30] X. Roca-Maza et al., Phys. Rev. C 85 024601 (2012).
[31] V. Baran, M. Colonna, M. Di Toro, V. Greco, Phys. Rep. 410 335 (2005).
[32] N. Paar, T. Nisicik, D. Vretenar, P Ring, Phys. Lett. B 606 288 (2005).
[33] Jun Liang, Li-Gang Cao, Zhong-Yu Ma, Phys. Rev. C 75 054320 (2007).
[34] V. Baran, M. Colonna, M. Di Toro, V. Greco, Phys. Rev. Lett. 86 4492 (2001); M. Colonna, P. Chomaz, S. Ayik Phys. Rev. Lett. 88 122701 (2002).
[35] A. Vitturi et al., J.Phys:Conf.Ser.267 012006 (2011); E.G. Lanza et al., Phys. Rev. C 84 064602 (2011).
[36] F. Calvayrac, P.G. Reinhard, E. Suraud, Ann. Phys. 225 125 (1997); we consider that a number of six oscillations in the presence of Landau damping will provide a reliable, though approximate, estimate of the strength function.
[37] T.Inakura, T. Nakatsukasa, K. Yabana, Phys. Rev. C 84 021302(R) (2011).
[38] V. Baran, D.M. Brink, M. Colonna, M. Di Toro, Phys. Rev. Lett. 87 182501 (2001); we estimate the photon spectrum from $\frac{d\sigma}{d\omega} = \frac{2e^2}{3\hbar c E_\gamma} |d''(\omega)|^2$, where $|d''(\omega)|^2$ is the power spectrum of dipole acceleration.
[39] S.W.J. Scully et al., Phys. Rev. Lett. 94 065603 (2005), for a time-dependent approach to the surface and volume plasmons in Buckminsterfullerene; D.M. Stamper-Kurn et al., Phys. Rev. Lett. 81 500 (1998), for a study of out-of-phase dipolar oscillation of the thermal cloud and Bose-Einstein condensate.