Cation vacancy stabilization of single-atomic-site Pt$_1$/Ni(OH)$_x$ catalyst for diboration of alkynes and alkenes

Jian Zhang1, Xi Wu2, Weng-Chon Cheong1, Wenxing Chen1, Rui Lin1, Jia Li2, Lirong Zheng3, Wensheng Yan4, Lin Gu5, Chen Chen1, Qing Peng1, Dingsheng Wang1 & Yadong Li1

Development of single-atomic-site catalysts with high metal loading is highly desirable but proved to be very challenging. Although utilizing defects on supports to stabilize independent metal atoms has become a powerful method to fabricate single-atomic-site catalysts, little attention has been devoted to cation vacancy defects. Here we report a nickel hydroxide nanoboard with abundant Ni$^{2+}$ vacancy defects serving as the practical support to achieve a single-atomic-site Pt catalyst (Pt$_1$/Ni(OH)$_x$) containing Pt up to 2.3 wt% just by a simple wet impregnation method. The Ni$^{2+}$ vacancies are found to have strong stabilizing effect of single-atomic Pt species, which is determined by X-ray absorption spectrometry analyses and density functional theory calculations. This Pt$_1$/Ni(OH)$_x$ catalyst shows a high catalytic efficiency in diboration of a variety of alkynes and alkenes, yielding an overall turnover frequency value upon reaction completion for phenylacetylene of \sim3000 h$^{-1}$, which is much higher than other reported heterogeneous catalysts.
Single-atomic-site (SAS) heterogeneous catalysts have attracted much recent interest owing to their specific activity and maximum atom efficiency for low cost. However, synthesis of such SAS catalysts is not trivial because isolated metal atoms are often very mobile and easy to sinter under realistic reaction conditions due to their high surface free energy. For this reason, most available SAS catalysts must keep a low loading density of guest metals (usually <0.5 weight percent (wt%)) to resist their aggregation, and it remains a great challenge to improve the loading content in such catalysts for practical applications. Exploiting defects on supports to enhance the interaction between individual metal atoms and the supports has been an effective strategy to fabricate SAS catalysts. So far, much work has focused on oxygen vacancy defects on oxides and carbon vacancy defects on graphene. Cation vacancies are another kind of classical defects but are comparatively little investigated in the research field of SAS catalysts, probably because of their difficult characterization and scarce suitable support materials with such defects. Hydroxides are a large class of functional, environmentally friendly, and inexpensive host materials. As far as we know, the cation vacancies on hydroxides have never been reported, and utilizing the defect-rich hydroxide to achieve a high metal-loading SAS catalyst has not been realized yet.

Boronic acids and their derivatives are versatile and useful compounds for various applications in organic synthesis, material science, and biomedicine. Over the past decades, a broad variety of transition-metal-catalyzed protocols have been developed for the preparation of these compounds. Among them, the diboration of carbon–carbon multiple bonds represents a straightforward and atom-economic strategy. Since the first discovery of the Pt-catalyzed diboration of alkenes by Suzuki and Miyaura et al. in 1993, various homogeneous transition-metal catalysts have been successfully applied into the diboration of alkenes or alkynes. However, up to now, the development of heterogeneous catalysts for such diboration reactions lags far behind the homogeneous catalysts with limited reported cases that include Pd/C, nanoporous-gold, Pt/TiO$_2$, and Pt/MgO. To make matters worse, these heterogeneous catalysts are restricted in practical application for their low catalytic efficiency (overall turnover frequency (TOF$_{overall}$) upon reaction completion <50 h$^{-1}$). There is thereby an urgent need to prepare a new heterogeneous catalyst with better catalytic efficiency for diboration reactions. Given that the catalytically active components in these reported catalysts are all metal nanoparticles and down sizing metal particles to single atoms is ordinarily a great impetus to improve the performance of a catalyst, we expect that the rational design of SAS catalysts will offer exciting opportunities to achieve the ideal heterogeneous catalysts for diboration reactions.

Here we report that a defect-rich nickel hydroxide (Ni(OH)$_x$) nanoboard (NBs) supported SAS Pt catalyst (Pt$_{1}$/Ni(OH)$_x$) fabricated by a simple wet impregnation method. Notably, although there have been a few reports on the combination of nickel hydroxides with Pt nanoparticles, the construction of SAS Pt species on nickel hydroxides has never been achieved. In this work, a polycrystalline Ni(OH)$_x$ NBs are synthesized on a large scale via a one-pot solvo thermal reaction between nickel nitrate (Ni(NO$_3$)$_2$·6H$_2$O), urea, sodium bicarbonate (NaHCO$_3$), and tetrabutylammonium hydroxide (TBAH) in water/triethylene glycol mixed solvent (for details, see the Methods section). The typical transmission electron microscopic (TEM) image clearly illustrates that the as-synthesized samples display a uniformly NB morphology. This high-resolution TEM (HR-TEM) image (Supplementary Figs. 1 and 2). X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared spectroscopy (FT-IR) of this polycrystalline NBs both exhibit features that are typical nickel hydroxide. Scanning transmission electron microscopy (STEM) images and XRD detections of the obtained Pt$_{1}$/Ni(OH)$_x$ reveal that no formation of Pt nanoparticles are observed on Ni(OH)$_x$ NBs, even with the

Results

Synthesis and characterization of the Pt$_{1}$/Ni(OH)$_x$ catalyst. To prepare the Pt$_{1}$/Ni(OH)$_x$ catalyst, a polycrystalline Ni(OH)$_x$ NB material was first synthesized on a large scale through a solvo thermal reaction between nickel nitrate (Ni(NO$_3$)$_2$·6H$_2$O), urea, sodium bicarbonate (NaHCO$_3$), and tetrabutylammonium hydroxide (TBAH) in water/triethylene glycol mixed solvent (for details, see the Methods section). The typical transmission electron microscopic (TEM) image clearly illustrates that the as-synthesized samples display a uniformly NB morphology (Fig. 1a). Clear irregular crystal lattice fringes are observed on the NBs in the high-resolution TEM (HR-TEM) image (Fig. 1b), indicating the polycrystalline structure of the sample, which is further proved by the selected-area electron diffraction pattern and X-ray diffraction (XRD) pattern (Supplementary Figs. 1 and 2). X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared spectroscopy (FT-IR) of this polycrystalline NBs both exhibit features that are typical nickel hydroxide (Supplementary Fig. 3). To the best of our knowledge, this one-dimensional polycrystalline nanostructures of nickel hydroxide are newly synthesized by our work, which are more challenging in synthesis compared with common nickel hydroxide nanosheets.

The Pt$_{1}$/Ni(OH)$_x$ catalyst was then prepared with the as-synthesized Ni(OH)$_x$ NB material as a support by a wet impregnation method, which stands for an easy-handling, straightforward, and low-cost pathway to synthesize catalysts. Hexachloroplatinic acid (H$_2$PtCl$_6$) was introduced into an ethanol dispersion of Ni(OH)$_x$ NBs to allow the adsorption of Pt precursors. The mixture was then centrifuged and the recovered solid was reduced with hydrogen to provide the Pt$_{1}$/Ni(OH)$_x$ catalyst (for details, see the Methods section). Scanning transmission electron microscopy (STEM) images and XRD detections of the obtained Pt$_{1}$/Ni(OH)$_x$ reveal that no formation of Pt nanoparticles are observed on Ni(OH)$_x$ NBs, even with the

![Fig. 1 Characterization of Ni(OH)$_x$ NBs and the Pt$_{1}$/Ni(OH)$_x$ catalyst.](image-url)
loading amount of Pt as high as 2.3 wt% as analyzed by inductively coupled plasma optical emission spectrometry (ICP-OES) (Supplementary Fig. 4). Further energy-dispersive X-ray (EDX) elemental mapping analysis confirms that Pt species are evenly dispersed in Pt1/Ni(OH)x (Fig. 1c). To verify the SAS Pt species on the Ni(OH)x NBs, we performed the aberration-corrected high-angle annular dark-field STEM (AC HAADF-STEM) measurements on Pt1/Ni(OH)x (Fig. 1d). It is clear that all the Pt species exist exclusively at isolated single atomic sites; neither subnanometer clusters nor nanoparticles are detected.

The presence of SAS Pt can be further confirmed by X-ray absorption spectrometric (XAS) studies. Figure 2a represents the extended X-ray absorption fine structure (EXAFS) spectrum of Pt1/Ni(OH)x and the reference spectra of Pt foil and PtO2 at the Pt L3-edge using a Fourier transform (for corresponding EXAFS in K-space, see Supplementary Fig. 5). There is one prominent peak at ~1.6 Å from the Pt–O contribution and a relatively weak peak at ~2.9 Å from the Pt–Ni contribution but no peak at ~2.6 Å from the Pt–Pt contribution, confirming the sole presence of SAS Pt in the Pt1/Ni(OH)x catalyst. Moreover, the oxidation state of these SAS Pt is determined by the X-ray absorption near-edge structure (XANES) spectra, as shown in Fig. 2b. The white-line intensities in the spectra reflect the oxidation state of Pt in different samples, so the white-line intensity of Pt1/Ni(OH)x, which is close to that of PtO2, implies that the SAS Pt in the Pt1/Ni(OH)x catalyst still remain in a high oxidation state even after the reduction by hydrogen.

Catalytic performance evaluation for diboration reactions. We next investigated the catalytic activity of the as-prepared Pt1/Ni(OH)x for diboration reactions. Initially, the diboration of phenylacetylene (1a) with bis(pinacolato)diboron (B2pin2) (2a) was chosen as a model reaction (Supplementary Table 1, entry 1). To our delight, the Pt1/Ni(OH)x displayed a high activity and selectivity for this reaction. The conversion of phenylacetylene (97%) within 20 min at a molar ratio of 1:103 (Pt: phenylacetylene) can reach a high level as ~3000 h–1 with Pt1/Ni(OH)x, furnishing the desired products in high yields. Differently from substituent types, substituent positions have no influence on the catalytic efficiency of Pt1/Ni(OH)x, whether meta- or ortho-substituted diborylated phenylacetylene can completely transform into the products 3ia–3ia in excellent yield. When the substituents are electron-withdrawing groups (R = Cl, Br, NO2) on the aryl ring, however, a longer reaction time is required to give the target molecular 3ia–3ia with a relatively low catalytic activity, although a complete conversion of the substrate and a quantitative selectivity of diborylated product 3ia can be also achieved. To our delight, different kinds of aliphatic alkenes are appropriate for the diboration reactions over Pt1/Ni(OH)x, furnishing the desired products 3ia–3ia with the similar reaction efficiency to the terminal aryl alkenes. Besides the various alkenes, different boronate esters like bis(neopentylglycolato)diboron (B2neop2) can also work well with phenylacetylene to provide the product 3ab in an excellent yield and selectivity at the same reaction rate of B2pin2. Even more, alkenes were also chosen as substrates to evaluate the catalytic performance of Pt1/Ni(OH)x for diboration reactions. It shows that the diboration of styrene and 1-octene catalyzed by Pt1/Ni(OH)x can proceed well and provide a selectivity to products 3na and 3na of 99% at the conversion level of 90% and 86%, respectively, although the reaction rates are lower than that of alkenes with similar molecular structures.

Discussion

Apparently, the good catalytic performance of Pt1/Ni(OH)x derives from the high loading content of Pt at isolated single atomic sites. It is noteworthy that such a high loading density of SAS catalyst is quite difficult in fabrication through the wet impregnation method47–50. The impregnated metal precursors generally adsorb on the surface of supports and thus tend to aggregate to form clusters or nanoparticles easily during the post-treatment processes1. For comparison, a conventional perfect Ni (OH)2 material was synthesized and impregnated with H2PtCl6 with a lower Pt loading at 0.9 wt% (as determined by ICP-OES)
under the same conditions as that of Ni(OH)\textsubscript{x} NBs (Supplementary Fig. 10). As expected, in the obtained Pt/Ni(OH)\textsubscript{2} sample, numbers of Pt nanoparticles are observed clearly on the perfect Ni(OH)\textsubscript{2} by HR-TEM (Supplementary Fig. 11), which results in a relatively low catalytic efficiency of Pt/Ni(OH)\textsubscript{2} for diboration reactions (Supplementary Table 1, entry 3 and 4). This visible difference indicates that Ni(OH)\textsubscript{x} NBs have a stronger interaction with isolated Pt atoms than the perfect Ni(OH)\textsubscript{2} to prevent the formation of Pt clusters or nanoparticles.

To explore the nature of this strong interaction, we first carried out the EXAFS spectrometry analysis to probe the atomic structure of these two different nickel hydroxides. As shown in Fig. 4a, the Ni K-edge Fourier-transformed EXAFS spectrum of Ni(OH)\textsubscript{x} NBs exhibit an apparent difference in spectral shape compared with that of the perfect Ni(OH)\textsubscript{2}, implying the different local atomic arrangement and a defective structure of Ni(OH)\textsubscript{x} NBs51. Further EXAFS fitting analysis revealed that the values of Debye–Waller factor (σ2) for the first Ni–O and Ni–Ni shells of Ni(OH)\textsubscript{x} NBs are both higher than that of the perfect Ni(OH)\textsubscript{2}, suggesting a higher degree of disorder in Ni(OH)\textsubscript{x} NBs, which is in accord with the polycrystalline structure of Ni(OH)\textsubscript{x} NBs (Supplementary Table 2). More importantly, the coordination number (N) of the first Ni–Ni shell of Ni(OH)\textsubscript{x} NBs is about 4.8, which is lower than that of the perfect Ni(OH)\textsubscript{2} (~6.2), whereas their coordination numbers of the first Ni–O shell are nearly same (~6.0), indicating the formation of Ni2+ vacancies in Ni(OH)\textsubscript{x} NBs. Many studies show that the formation of Ni2+ vacancies will lead some Ni2+ ions to transform into Ni3+ ions due to the

Fig. 3 Substrate scope of diboration reactions over the Pt\textsubscript{1}/Ni(OH)\textsubscript{x} catalyst. Standard reaction conditions: substrate 1 (0.50 mmol) and 2 (0.50 mmol), Pt\textsubscript{1}/Ni(OH)\textsubscript{x} catalyst, Pt/substrate = 0.1%, mesitylene (2.0 mL) as solvent, T = 120 °C, t = 0.3 h. Conversion are determined by gas chromatography (GC) analysis with dodecane as internal standard. Selectivities are determined by GC-MS analysis. *t = 1.0 h. *t = 6.0 h and substrate 2 (0.75 mmol) was used.
charge neutrality52. Hence, we carried out XPS measurements to detect the Ni3+ ions in the Ni(OH)\textsubscript{x} NBs. Figure 4b displays the representative XPS spectrum in Ni 2p\textsubscript{3/2} region of Ni(OH)\textsubscript{x} NBs and the perfect Ni(OH)\textsubscript{2}, which can be deconvoluted into four peaks. The signal of Ni3+ ions can be clearly distinguished from that of Ni2+ ions (centered at 855.3 eV and 861.0 eV) with higher binding energies at 857.2 eV and 864.7 eV, respectively, which correspond with the data reported53–55. Distinctly, unlike the perfect Ni(OH)\textsubscript{2}, Ni(OH)\textsubscript{x} NBs display a stronger signal of Ni3+ ions, manifesting the possession of more Ni3+ ions in the Ni(OH)\textsubscript{x} NBs. The proof of Ni3+ ions in Ni(OH)\textsubscript{x} NBs is garnered from the soft XAS (sXAS) analysis. As shown in Fig. 4c, the obviously increased intensity at 532.0 eV (Ni–O interaction) at O K-edge of Ni(OH)\textsubscript{x} NBs relative to that of the perfect Ni(OH)\textsubscript{2} suggests that electrons transfer intensively from oxygen to nickel, which is consistent with the presence of Ni3+ ions56–58. In addition, the ultraviolet-visible diffuse reflectance spectroscopy (UV-Vis DRS) experiments also evidence the Ni3+ ions in Ni(OH)\textsubscript{x} NBs. As can be seen from Fig. 4d, besides the two absorption bands of Ni2+ ions at 388 nm and 679 nm in the both two samples, a unique absorption band of Ni(OH)\textsubscript{x} NBs appears at 314 nm and is characteristic of Ni3+ ions59,60. On the basis of all above evidences, we conclude that abundant Ni2+ vacancies exist on the Ni(OH)\textsubscript{x} NBs and induce the strong interaction with isolated Pt atoms.

To gain more insight into the interaction between Ni2+ vacancies and isolated Pt atoms, density functional theory (DFT) calculations were conducted to verify the different formation energies of the isolated Pt atoms loaded on the Ni(OH)\textsubscript{2} with and without Ni2+ vacancies (for details, see Supplementary Methods section). As can be seen from Fig. 5a, the Pt atom adsorbed on the Ni(OH)\textsubscript{2} with Ni2+ vacancies displays a formation energy at \(-3.89\) eV, which is much lower than that of the Pt atom adsorbed on the Ni(OH)\textsubscript{2} without Ni2+ vacancies (at \(-0.72\) eV). For the Ni(OH)\textsubscript{2} with Ni2+ vacancies, the most stable adsorption site for the Pt atom is found to be the Ni2+ vacancy site as well as the three-fold hollow site of the oxygen atoms, and the Pt atom is fixed by the three top oxygen atoms near to the Ni2+ vacancy according to the charge density difference (Fig. 5a). In contrast, the Pt atom on the Ni(OH)\textsubscript{2} without Ni2+ vacancies tends to locate at the site slightly deviated from three-fold hollow site of oxygen atoms, which is caused by the competition between the strong interaction between the Pt atom and three top oxygen atoms and the electrostatic repulsion between positive charged Pt and Ni atoms (Fig. 5b).

Furthermore, the oxidation states of isolated Pt atoms anchored on the Ni(OH)\textsubscript{2} with and without Ni2+ vacancies were also estimated by evaluating Bader charges of the Pt atoms in the film and by normalizing them to Bader charges of PtO\textsubscript{2} (for details, see Supplementary Methods section). As a result, the oxidation state of the Pt atom on the Ni(OH)\textsubscript{2} with Ni2+ vacancies is +3.55, which is higher than that on the Ni(OH)\textsubscript{2} without Ni2+ vacancies (+2.70) and very compatible with the aforementioned XANES data of Pt\textsubscript{1}/Ni(OH)\textsubscript{x} in Fig. 2b. This higher oxidation state illustrates the increase of charge transfer from the support to the Pt atoms4. In terms of these DFT calculation results and the XANES data, it is convinced that the Ni2+ vacancies play a vital role in the stabilization of isolated Pt atoms deposited on the Ni(OH)\textsubscript{x} by eliminating the spatial segregation between the Pt atoms and uncoordinated O atoms, as well as decreasing the formation energy of the Pt atoms through promoting charge transfer from Ni(OH)\textsubscript{x} to them. Further DFT calculations on the catalytic mechanism of the Pt\textsubscript{1}/Ni(OH)\textsubscript{x} catalyst for diboration reactions even disclosed that the Ni2+ vacancies not only play an important role in locating isolated Pt atoms but also are conducive to the diboration reactions because the low-coordination oxygen atoms at the vacancy site around the located Pt atoms benefit the dissociation of B–B bonds (for details, see Supplementary Methods section).

In summary, we report that a defect-rich Ni(OH)\textsubscript{x} NBs supported SAS Pt catalyst with remarkable performance in diboration reactions. The Ni(OH)\textsubscript{x} NBs with a polycrystalline structure are newly synthesized and successfully loaded with SAS Pt to a high
Ni, O, and H atoms, respectively. For charge density difference, yellow (blue) corresponds to charge accumulation (depletion) plotted with an isovalue of −0.01 e Å⁻³ displays a good activity and selectivity in diboration of various solvents and commercially available reagents were used as received. In a typical procedure, alkenes or alkynes (0.5 mmol), B₂pin₂ (0.5 mmol), and Pt₁/Ni(OH)x (Pt/substrate = 0.1%) were placed in a Schlenk tube equipped with a stir bar, and then mesitylene (2.0 mL) was injected and the mixture was stirred at 120 °C for the corresponding reaction time. After the reaction was completed, the reaction mixture was analyzed by GC and GC-MS with dodecane as the internal standard. The overall TOF value was measured upon completion of reactions and the calculation of it was based on the total Pt loading in the catalyst.

Characterization. TEM images were taken from a Hitachi H-800 transmission electron microscope operated at 100 kV. HR-TEM, STEM, and EDX elemental mapping characterizations were carried out on a JEOL JEM-2100F field emission transmission electron microscope operated at 200 kV. The AC-HAADF STEM characterization was conducted on a Titan 80–300 scanning/transmission electron microscope operated at 300 kV, equipped with a probe spherical aberration corrector. XPS data were collected from a Thermofisher Scientific ESCALAB 250Xi XPS System, and the binding energy of the C1s peak at 284.8 eV was taken as an internal reference. The O K-edge sXAS spectra were collected at BL12B station of National Synchrotron Radiation Laboratory (NRLS) in Hefei, China. EXAFS spectra at Pt L₁-edge and Ni K-edge and the XANES spectra at Pt L₂-edge were all collected at the 1W1B station in Beijing Synchrotron Radiation Facility in transmission mode using a fixed-exit Si (111) double crystal monochromator. The incident X-ray beam was monitored by an ionization chamber filled with N₂, and the acquired EXAFS data were processed according to the standard procedures using the ATHENA module implemented in the IFEFFIT software packages. XRD data were acquired from a Rigaku RU-200B X-ray powder diffractometer with Cu Ka radiation (λ = 1.5406 Å). ICP-OES measurements were conducted on a Thermofisher iCAP® 7000 Series ICP-OES analyzer. FT-IR spectroscopy was performed on a Bruker V70 infrared spectrometer in the frequency of 600–4000 cm⁻¹. UV-Vis DRS spectra were acquired from a Hitachi U-3900 UV–vis spectrophotometer. The GC analysis was conducted on a Thermo Trace 1300 series GC with a FID detector using a capillary column (TR-5MS, from Thermo Scientific, length 30 m, i.d. 0.25 mm, film 0.25 μm). The GC-MS analysis was carried out on a ISQ GC-MS with a GC/MS detector (Thermo Trace GC Ultra) using a capillary column (TR-5MS, from Thermo Scientific, length 30 m, i.d. 0.25 mm, film 0.25 μm).¹H nuclear magnetic resonance (NMR) and ¹³C NMR data were recorded with a Bruker Advance III (400 MHz) spectrometer. High-resolution exact mass measurements were performed on Thermo Scientific Q Exactive mass spectrometer. The detailed characterization of products in the article are present in the Supplementary Methods section, and for the corresponding NMR spectra, see Supplementary Figs. 14–43.

Data availability. The data supporting this study are available from the authors upon reasonable request.

Received: 11 August 2017 Accepted: 6 February 2018
Published online: 08 March 2018

References
1. Yang, X. F. et al. Single-atom catalysts: a new frontier in heterogeneous catalysis. Acc. Chem. Res. 46, 1740–1748 (2013).
2. Fytzani-Stephanopoulos, M. & Gates, B. C. Atomically dispersed supported metal catalysts. Annu. Rev. Chem. Biomol. Eng. 3, 545–574 (2012).
1. Thomas, J. M. Catalysis: tens of thousands of atoms replaced by one. Nature 525, 325–326 (2015).
2. Qiao, B. et al. Single-atom catalysis of CO oxidation using Pt/FeO2. Nat. Chem. 3, 634–641 (2011).
3. Liu, P. et al. Photocatalytic route for synthesizing atomically dispersed palladium catalysts. Science 352, 797–801 (2016).
4. Guo, X. et al. Direct, nonoxidative conversion of methane to ethylene, aromatics, and hydrogen. Science 344, 616–619 (2014).
5. Kyriakou, G. et al. Isolated metal atom geometries as a strategy for selective heterogeneous hydrogenations. Science 335, 1209–1212 (2012).
6. Fan, L. et al. Atomically isolated nickel species anchored on graphitized carbon for efficient hydrogen evolution electrocatalysis. Nat. Commun. 7, 10667 (2016).
7. Fei, H. et al. Atomic cobalt on nitrogen-doped graphene for hydrogen generation. Nat. Commun. 6, 8668 (2015).
8. Lucci, F. R. et al. Selective hydrogenation of 1,3-butadiene on platinum-copper alloys at the single-atom limit. Nat. Commun. 6, 8550 (2015).
9. Mao, K. et al. A theoretical study of single-atom catalysis of CO oxidation using Au embedded 2D h-BN monolayer: a CO-promoted O2 activation. Sci. Rep. 4, 5441 (2014).
10. Abbet, S. et al. Acetylene cyclotrimerization on supported size-selected Pd clusters (15nm30): one atom is enough! J. Am. Chem. Soc. 122, 3453–3457 (2000).
11. Gong, X. Q., Selliomi, A., Dubol, O., Jacobson, P. & Diebold, U. Small Au and Pt clusters at the TiO2(110)101 surface: behavior at terraces, steps, and surface oxygen vacancies. J. Am. Chem. Soc. 130, 370–381 (2008).
12. Matthey, D. et al. Enhanced bonding of gold nanoparticles on oxidized TiO2(110). Science 315, 1692–1696 (2007).
13. Wu, P., Du, P., Zhang, H. & Cai, G. Graphyne-supported single Fe atom catalysts for CO oxidation. Phys. Chem. Chem. Phys. 17, 1441–1449 (2015).
14. Sun, W. et al. Single-atom catalysis using Pt/graphene achieved through atomic layer deposition. Sci. Rep. 3, 1777 (2013).
15. Jia, Q. et al. Experimental observation of redox-induced Fe-N switching behavior as a determinant role for oxygen reduction activity. ACS Nano 9, 12496–12505 (2015).
16. Wang, H. et al. Doping monolayer graphene with single atom substitutions. Nano Lett. 12, 141–144 (2012).
17. Bliem, R. et al. Subsurface cation vacancy stabilization of the magnetite (001). Surf. Sci. 346, 1215–1218 (2014).
18. Qiao, B. et al. Ultrastable single-atom gold catalysts with strong covalent metal-support interaction (CMSi). Nano Res. 8, 2913–2924 (2015).
19. Qiao, B. et al. Highly efficient catalysis of preferential oxidation of CO in H2 rich stream by gold single-atom catalysts. ACS Catal. 5, 6249–6254 (2015).
20. Peterson, E. J. et al. Low-temperature carbon monoxide oxidation catalysed by regenerable atomically dispersed palladium on alumina. Nat. Commun. 5, 4885 (2014).
21. Hahn, B. P., Long, J. W. & Rolison, D. R. Something from nothing: enhancing electrochemical charge storage with cation vacancies. Acc. Chem. Res. 46, 1181–1191 (2013).
22. Li, F. & Duan, X. Layered Double Hydroxides (Springer, Berlin, Heidelberg, 2006).
23. Miyaura, N. & Suzuki, A. Palladium-catalyzed cross-coupling reactions of organoboron compounds. Chem. Rev. 95, 2457–2483 (1995).
24. Jakle, F. Borlated polyolefins and their applications. J. Inorg. Organomet. Polym. Mater. 15, 293–307 (2005).
25. Hawthorne, M. F. & Maderna, A. Applications of radiolabeled boron clusters to the diagnosis and treatment of cancer. Chem. Rev. 99, 3421–3434 (1999).
26. Burgess, K. & Ohmeyer, M. J. Transition-metal-promoted hydroborations of alkenes, emerging methodology for organic transformations. Chem. Rev. 91, 1179–1191 (1991).
27. Takaya, J. & Iwawasa, N. Catalytic, direct synthesis of bis(boronate) compounds. ACS Catal. 2, 1993–2006 (2012).
28. Ishiyama, T., Matsuda, N., Miyaura, N. & Suzuki, A. Platinum(0)-catalyzed diboration of alkynes. J. Am. Chem. Soc. 115, 11018–11019 (1993).
29. Ishiyama, T. et al. Platinum(0)-catalyzed diboration of alkenes with tetrakis(alkoxo)diborons: an efficient and convenient approach to cis-bis(boryl) alkenes. Organometallics 15, 713–720 (1996).
30. Ansell, M. B. et al. An experimental and theoretical study into the facile, homogeneous (N-heterocyclic carbene)2-Pd(0) catalyzed diboration of internal and terminal alkynes. Catal. Sci. Technol. 6, 7461–7467 (2016).
31. Morgan, J. B. & Morken, J. P. Catalytic enantioselective hydroboration of vinyl bis(boronates). J. Am. Chem. Soc. 126, 15338–15339 (2004).
32. Ansell, M. B., Navarro, O. & Spencer, J. Transition metal catalyzed element–element’ additions to alkynes. Coord. Chem. Rev. 336, 54–77 (2017).
33. Neve, E. C., Geier, S. J., Mkhidil, I. A., Westcott, S. A. & Marder, T. B. Diboron(4) compounds: from structural curiosity to synthetic workhorse. Chem. Rev. 116, 9091–9161 (2016).
34. Braunschweig, H. et al. Synthesis, reactivity, and electronic structure of [n] vanadoureneoxanes: an experimental and theoretical study. J. Am. Chem. Soc. 137, 11376–11393 (2015).
35. Chen, Q. et al. Remarkable catalytic property of nanoporous gold on activation of diborons for direct diboration of alkenes. Org. Lett. 15, 5766–5769 (2013).
36. Alonso, F., Moglie, Y., Pastor-Perez, L. & Sepulveda-Escribano, A. Solvent- and ligand-free diboration of alkenes and alkyne catalysis by platinum nanoparticles on titania. Chem. Commun. 6, 857–865 (2014).
37. Griranne, A., Corma, A. & Garcia, H. Stereoselective single (copper) or double (platinum) boronation of alkynes catalyzed by magnesia-supported copper oxide or platinum nanoparticles. Chem. 17, 2467–2478 (2011).
38. Wang, L. et al. Optimizing the Volmer step by single-layer nickel hydroxide nanosheets in hydrogen evolution reaction of platinum. ACS Catal. 5, 3801–3806 (2015).
39. Yin, H. et al. Ultrathin platinum nanowires grown on single-layered nickel hydroxide with high hydrogen evolution activity. Nat. Commun. 6, 6430 (2015).
Acknowledgements
This work was supported by the China Ministry of Science and Technology under Contract of (2016YFA0203801), 2014CB932400, 2017YFB0701600 and the National Natural Science Foundation of China (21521091, 21390393, U1463202, 21471089, 21671117, 51232005) and Shenzhen Projects for Basic Research (Grant Nos. KQCX20140521161756227, JCYJ20170412171430026).

Author contributions
J.Z. performed the experiments, collected and analyzed the data, and wrote the paper. X.W. and J.L. conducted the density functional theory calculation and analysis. W.-C.C. and R.L. assisted in HR-TEM, STEM, and EDX elemental mapping characterizations. W.C. and L.Z. helped with XANES and EXAFS spectrometry analyses. W.Y. helped with the sXAS analysis. L.G. assisted in the AC HAADF-STEM characterization. C.C. and Q.P. helped with data analyses and discussions. D.W. and Y.L. conceived the experiments, planned synthesis, analyzed results, and wrote the paper.

Additional information
Supplementary Information accompanies this paper at https://doi.org/10.1038/s41467-018-03380-z.

Competing interests: The authors declare no competing interests.

Reprints and permission information is available online at http://npg.nature.com/reprintsandpermissions/

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2018