Search for the rare decays $J/\psi \to D_s^- \rho^+$ and $J/\psi \to D^0 K^{*0}$
The branching fractions of so possible in the standard model (SM) framework, and J/ψ cays of by both the intermediate gluons and photons are produced from electromagnetic interactions through virtual photons, where strong interactions through intermediate gluons and electromagnetic interactions through virtual intermediate bosons are all-

I. INTRODUCTION

The decays of the low-lying charmonium state J/ψ, which is below open-charm threshold, are dominated by strong interactions through intermediate gluons and electromagnetic interactions through virtual photons, where both the intermediate gluons and photons are produced by c̄c annihilation. However, flavor-changing weak decays of J/ψ through virtual intermediate bosons are also possible in the standard model (SM) framework, and the branching fractions of J/ψ inclusive weak decays are estimated to be on the order of 10⁻₈ [1]. Several models addressing new physics, including the top-color model, the minimal supersymmetric standard model (MSSM) with R-parity violation and a general two-Higgs-doublet model (2HDM), allow J/ψ flavor-changing processes to occur with branching fractions around 10⁻⁵, which may be measurable in experiments [2, 3]. Searches for rare J/ψ decays to a single charmed meson provide an experimental test of the SM, and a way to look for possible new physics beyond the SM.

A search for the rare decays of J/ψ → D⁺μ⁻ν, c.c. and J/ψ → D⁺τ⁻ν, c.c. is performed with a data sample of 225.3 million J/ψ events collected with the BESIII detector. No evident signal is observed. Upper limits on the branching fractions are determined to be B(J/ψ → D⁺μ⁻ν, c.c.) < 1.3 × 10⁻⁵ and B(J/ψ → D⁺τ⁻ν, c.c.) < 2.5 × 10⁻⁶ at the 90% confidence level.

PACS numbers: 13.25.Gv, 14.40.Lb, 12.60.-i
decays of $J/\psi \to DP/DV$, where D represents a charmed meson and P and V the pseudoscalar and vector mesons, respectively, have been performed \cite{12}. The branching fractions of $J/\psi \to D_s^- \rho^+$ and $J/\psi \to D^0 \bar{K}^0$ are predicted to be higher than those of $J/\psi \to D_s^- \pi^+$ and $J/\psi \to D^0 \bar{K}^0$, e.g. the relative ratio $B(J/\psi \to D_s^- \rho^+)/B(J/\psi \to D_s^- \pi^+) = 4.2 \pm 1.2$ \cite{12}.

In this analysis, we search for two Cabibbo-favored decay modes $J/\psi \to D_s^- \rho^+$ [Fig. 1(a)] and $J/\psi \to D^0 \bar{K}^0$ [Fig. 1(b)] based on (225.3 ± 2.8) x 10^6 J/ψ events \cite{13} accumulated with the Beijing Spectrometer III (BESIII) detector \cite{14}, located at the Beijing Electron-Positron Collider (BEPCII) \cite{15}.

![FIG. 1. Leading order Feynman diagrams for (a) $J/\psi \to D_s^- \rho^+$ and (b) $J/\psi \to D^0 \bar{K}^0$.](image)

II. THE BESIII EXPERIMENT AND MONTE CARLO SIMULATION

The BESIII detector with a geometrical acceptance of 93% of 4π, consists of: a small-celled, helium-based main drift chamber (MDC), an electromagnetic calorimeter (EMC) made of CsI(Tl) crystals, a plastic scintillator time-of-flight system (TOF), a super-conducting solenoid magnet, and a muon chamber system (MUC) made of Resistive Plate Chambers (RPCs). The detector has been described in detail elsewhere \cite{14}.

The optimization of the event selection and the estimation of physics backgrounds are performed using Monte Carlo (MC) simulated data samples. The GEANT4-based simulation software \textsc{boost} \cite{10} includes the geometric and material description of the BESIII detectors and the detector response and digitization models, as well as the tracking of the detector running conditions and performance. The production of the J/ψ resonance is simulated by the MC event generator \textsc{kkmc} \cite{17}; the known decay modes are generated by \textsc{evtgen} \cite{18} with branching fractions set at world average values \cite{19}, while the remaining unknown decay modes are modeled by \textsc{lundcharm} \cite{20}.

III. DATA ANALYSIS

In order to avoid large background contamination from conventional J/ψ hadronic decays, the D_s^- and D^0 mesons are identified by their semileptonic decays $D_s^- \to \phi e^-$, π^-, $\phi \to K^+ K^-$, and $D^0 \to K^+ e^- \pi^-$, where the electron is used to tag the events and the missing energy due to the escaping neutrino is also used to suppress backgrounds. Since the neutrinos are undetectable, the D_s^- and D^0 mesons cannot be directly identified by their invariant mass of the decay products. However, because of the two-body final states, they can be identified in the distribution of mass recoiling against the ρ^+ and K^0 in $\rho^+ \to \pi^+ \pi^0 (\pi^0 \to \gamma \gamma)$ and $K^0 \to K^- \pi^+$ decays, respectively.

Charged tracks in BESIII are reconstructed from MDC hits. For each charged track, the polar angle must satisfy $|\cos \theta| < 0.93$, and it must pass within ± 20 cm from the interaction point in the beam direction and within ± 2 cm of the beam line in the plane perpendicular to the beam. The number of charged tracks is required to be four with zero net charge. The TOF and the specific energy loss dE/dx of a particle measured in the MDC are combined to calculate particle identification (ID) probabilities $\text{Prob}(i)$, where $i(i = e/\pi/K/p)$ is the particle type. $\text{Prob}(K) > \text{Prob}(\pi)$ and $\text{Prob}(K) > \text{Prob}(p)$ are required for kaon candidates, while $\text{Prob}(\pi) > \text{Prob}(e)$, $\text{Prob}(\pi) > \text{Prob}(K)$, and $\text{Prob}(\pi) > \text{Prob}(p)$ are required for pion candidates. For electron candidates, besides the particle identification requirement of $\text{Prob}(e) > \text{Prob}(\pi)$ and $\text{Prob}(e) > \text{Prob}(K)$, $E/eP > 0.8$ is also required, where E/eP is the ratio of the energy deposited in the EMC to the momentum reconstructed from the MDC. In addition, $|\cos \theta| < 0.8$ is required for electron candidates since the particle ID efficiencies between data and MC agree better in the barrel.

Photon candidates are reconstructed by clustering EMC crystal energies. Efficiency and energy resolution are improved by including energy deposits in nearby TOF counters. A photon candidate has to be more than 20° away from any charged track, and the minimum energy is 25 MeV for barrel showers ($|\cos \theta| < 0.80$) and 50 MeV for end cap showers ($0.86 < |\cos \theta| < 0.92$). An EMC timing requirement, i.e., $0 \leq t \leq 700$ ns, is used to suppress electronic noise and energy deposits in the EMC unrelated to the events. Kinematic fits of pairs of photon candidates to the π^0 mass are performed. When there are more than two photons, all possible $\gamma \gamma$ combinations are considered, and the one yielding the smallest $\chi^2_{\gamma \gamma}$ is retained.

In the selection of $J/\psi \to D_s^- \rho^+ \to \phi e^- \pi^+ \pi^0 \to \gamma \gamma K^+ K^- \pi^+ e^- \pi^-$, four charged track candidates and at least two photons are required. The invariant mass of $K^+ K^-$ for a ϕ candidate is required to satisfy $M_{K^+ K^-} \in (1.01, 1.03)$ GeV/c^2. The invariant mass distribution of $\rho^+ (\pi^0 \pi^+)$ candidates is shown in Fig. 2(a) \cite{21}, and the requirement 0.62 GeV/$c^2 < M_{\pi^+ \pi^-} < 0.95$ GeV/c^2 is used to select ρ candidates. The $\chi^2_{\gamma \gamma}$ of the kinematic fit should be less than 200 for the π^0 candidates in this selection.

The missing four-momentum ($E_{\text{miss}}, \mathbf{P}_{\text{miss}}$), which represents the four-momentum of the missing neutrino, is determined from the difference between the net four-momentum of the J/ψ particle and the sum of the four-momenta of all detected particles in the event. The miss-
The invariant mass distributions of resonance candidates for (a) ρ^+ from $J/\psi \rightarrow D^-\rho^+$, $\rho^+ \rightarrow \pi^+\pi^0(\pi^0 \rightarrow \gamma\gamma)$, and (b) K^{*0} from $J/\psi \rightarrow D^{\ast}\bar{K}^{*0}$, $\bar{K}^{*0} \rightarrow K^-\pi^+$. The requirements of $M_{\rho^+\pi^0} \in (0.62, 0.95)$ GeV/c2 and $M_{K^-\pi^+} \in (0.82, 0.98)$ GeV/c2 are shown in the figures by vertical arrows. The dots with error bars are data, while the histograms represent distributions of the arbitrarily normalized exclusive signal MC events.

FIG. 3. P_{miss} distributions for the decay of (a) $J/\psi \rightarrow D^-\rho^+$, and (b) $J/\psi \rightarrow D^{\ast}\bar{K}^{*0}$. The requirement $P_{miss} > 0.1$ GeV/c is shown in the figures by vertical arrows. The dots with error bars are data, while the histograms represent distributions of the arbitrarily normalized exclusive signal MC events.

The P_{miss} (GeV/c) distribution is shown in Fig. 3(a). P_{miss} is required to be larger than 0.1 GeV/c to reduce the backgrounds from J/ψ decays to final states with four charged particles and no missing particles but with e/π misidentification. Figure 4(a) shows the distribution of $U_{miss} = E_{miss} - cP_{miss}$, and $|U_{miss}|$ is required to be less than 0.05 GeV to reduce backgrounds such as $K^+K^-\pi^\pm\pi^\mp$ with multiple π^0 or γ in the final state, which were not rejected by prior criteria. After all selection criteria are applied, 11 events survive in the (1.85, 2.10) GeV/c2 mass region in the distribution of P_{miss} recoiling against the ρ^+, which is shown in Fig. 5(a). No accumulation of events in the signal region is found.

In the selection of $J/\psi \rightarrow D^{\ast}\bar{K}^{*0}$, there are only four charged tracks in the final state. To suppress backgrounds containing π^0's, kinematic fits to the π^0 mass are also performed if there are at least two photons in addition to the charged tracks. If there is a π^0 candidate with $\chi_{\gamma\gamma} < 20$, the event is vetoed. The $K^-\pi^+$ invariant mass distribution is shown in Fig. 2(b). To select K^{*0} candidates, the $K^-\pi^+$ invariant mass is required to satisfy $M_{K^-\pi^+} \in (0.82, 0.98)$ GeV/c2. The $P_{miss} > 0.1$ GeV/c and $|U_{miss}| < 0.02$ GeV requirements are also used to suppress the backgrounds with e/π misidentification or multiphotons in the final states, and their distributions are shown in Figs. 3(b) and 4(b) respectively. After all selection criteria are applied, 11 events survive in the (1.82, 1.90) GeV/c2 mass region in the distribution of mass recoiling against the \bar{K}^{*0}, which is shown in Fig. 5(b). No accumulation of events in the signal region is found.

MC simulations are used to determine mass resolutions, selection efficiencies and to study possible backgrounds. 600,000 exclusive signal MC events are generated, and the selection efficiencies are determined to be $(7.79 \pm 0.04)\%$ and $(21.83 \pm 0.06)\%$ for $J/\psi \rightarrow D^-\rho^+$ and $J/\psi \rightarrow D^{\ast}\bar{K}^{*0}$, respectively. 200 million inclusive J/ψ MC events are used to investigate possible backgrounds.
from J/ψ decays. For the decay $J/\psi \rightarrow D_s^- \rho^+$, 11 MC events pass the final selection criteria and 8 of them are due to e/π misidentification, where a pion is identified as an electron. For the remaining three events, two events are from $\pi^0 \rightarrow \gamma e^+e^-$, where an electron is identified as a pion, and the other is $\pi^+ \rightarrow \mu^+ \nu_\mu, \mu^+ \rightarrow e^+ \nu_e \overline{\nu}_\mu$. For the decay $J/\psi \rightarrow D_s^- \overline{K}^0$, 10 MC events pass the final selection criteria. Seven events are due to e/π misidentification, two events are from $\pi^0 \rightarrow \gamma e^+e^-$, and the other event from $\pi^+ \rightarrow \mu^+ \nu_\mu, \mu^+ \rightarrow e^+ \nu_e \overline{\nu}_\mu$. From the inclusive MC study, both the number of surviving background events and their distributions shown as the dashed histogram in Fig. 5 are consistent with data.

Sideband events are also used to estimate the background. Here, the backgrounds contributions are estimated using U_{miss} sidebands, defined as $|U_{\text{miss}}| \in (0.05, 0.10)$ GeV and $|U_{\text{miss}}| \in (0.08, 0.10)$ GeV for $J/\psi \rightarrow D_s^- \rho^+$ and $J/\psi \rightarrow D_s^- \overline{K}^0$ respectively. There are 15 and 9 sideband events surviving in the D_s^- and D_s^0 mass region. The number of surviving background events and their distributions from sideband data are also consistent with data.

IV. SYSTEMATIC ERRORS

In this analysis, the systematic errors in the determination of the branching fraction upper limits mainly come from the following sources:

- **MDC tracking:** The MDC tracking efficiency is studied in clean channels like $J/\psi \rightarrow \rho \pi \rightarrow \pi^+\pi^-\pi^0$, $J/\psi \rightarrow \rho \pi \pi^0$, and $J/\psi \rightarrow K_S^0 K^+ K^-$ samples. It is found that the MC simulation agrees with data within 1.0% for each charged track. Therefore 4.0% is taken as the systematic error on the tracking efficiency for the two channels analyzed with four charged tracks in the final states.

- **Photon detection:** The photon detection efficiency is studied from $J/\psi \rightarrow \rho^0 \pi^0$ and photon conversion via $e^+ e^- \rightarrow \gamma \gamma$. The difference between the detection efficiencies of data and MC simulation is 1.0% for each photon.

- **Particle ID:** The particle ID efficiencies of electrons, pions, and kaons are studied with samples of radiative Bhabha events, $J/\psi \rightarrow \rho \pi^+\pi^-$, and $J/\psi \rightarrow K_S^0 K^+\pi^-$, respectively. The kaon, pion, and electron particle ID efficiencies for data agree with MC simulation within 1% for each charged particle, and 4% is taken as the systematic error from this source.

- **π^0 kinematic fit:** To estimate the systematic error from the π^0 kinematic fit in the analysis of $J/\psi \rightarrow D_s^- \rho^+$, a clean π^0 sample is selected from $J/\psi \rightarrow \rho^+\pi^- (\rho^+ \rightarrow \pi^0\pi^+)$ without the kinematic fit. Events with two oppositely charged tracks identified as pions and two photons are selected. Further, the π^- momentum is required to be in the range of $P_{\pi^-} \in (1.4, 1.5)$ GeV/c, and the $\pi^+\pi^-\pi^0$ invariant mass is required to be in the J/ψ mass region $|M_{\pi^+\pi^-\pi^0} - M_{J/\psi}| < 0.05$ GeV/c2. In addition, E/cP is required to be less than 0.8 to remove Bhabha events. After the above selection, a same π^0 kinematic fit as the one in the selection of $J/\psi \rightarrow D_s^- \rho^+$ is done on the candidates. The same analysis is also performed with MC events. The efficiency difference between data and MC simulation due to the π^0 kinematic fit with $\chi^2 < 200$ is 0.2%, which is regarded as the systematic error.

Applying a similar method, the efficiency difference of the π^0 kinematic fit used for vetoing events in the decay $J/\psi \rightarrow D_s^- \overline{K}^0$ is determined to be 1.0% using a sample of $J/\psi \rightarrow K_S^0 \overline{K}^0 (\overline{K}^0 \rightarrow K^-\pi^+, K_S^0 \rightarrow \pi^+\pi^-)$ events.
Mass window requirements: The systematic errors of the mass window requirements are due to the difference in mass resolution between MC simulation and data and are estimated from some control samples, which are selected without the mass window requirements. The uncertainty is obtained by comparing the efficiencies of mass window requirements between data and MC events. The uncertainties of ϕ, ρ^+, and K^{*0} mass window requirements are 1.0%, 1.0%, 0.5% using samples of $J/\psi \rightarrow \gamma \phi (\phi \rightarrow K^+K^-)$, $J/\psi \rightarrow \rho^+\pi^-$, and $J/\psi \rightarrow K^{*0}K^{0}_{\Sigma}$, respectively.

U_{miss} requirement: The systematic error of the U_{miss} window requirement is due to the mass resolution difference between MC simulation and data. Using a similar method as that used for the mass window requirement, the uncertainties of the U_{miss} requirements are 1.0% for $J/\psi \rightarrow D_s^-\rho^+$ and 4.0% for $J/\psi \rightarrow D^0K^{*0}$, which are different for the two channels since the U_{miss} requirements are due to the mass resolution difference between MC simulation and data.

Intermediate decays: The errors on the intermediate decay branching fractions of $D_s^- \rightarrow \phi e^-\nu_e$, $\phi \rightarrow K^+K^-$, $\rho^+ \rightarrow \pi^+\pi^0, \pi^0 \rightarrow \gamma\gamma$, and $D^0 \rightarrow K^+e^-\nu_e, \overline{K}^{*0} \rightarrow K^-\pi^+$ are taken from world average values [15], and by adding them in quadrature, 5.7% and 1.1% are the errors for $J/\psi \rightarrow D_s^-\rho^+$ and $J/\psi \rightarrow D^0K^{*0}$, respectively.

The systematic error contributions studied above, the error due to the uncertainty on the number of J/ψ events [15] and MC statistics are all summarized in Table I. The total systematic errors are obtained by summing them in quadrature, assuming they are independent.

![Graph](image.png)

FIG. 5. Mass distributions recoiling against (a) ρ^+ from $J/\psi \rightarrow D_s^-\rho^+$ and (b) \overline{D}^0K^{*0} from $J/\psi \rightarrow D^0K^{*0}$. Data are shown by dots with error bars. The solid histograms are the unnormalized MC simulated signal events, while the dashed histograms are background distributions from selected inclusive MC events.

TABLE I. Summary of systematic errors (%).

Sources	$J/\psi \rightarrow D_s^-\rho^+$	$J/\psi \rightarrow D^0K^{*0}$
MDC tracking	4.0	4.0
Photon detection	2.0	2.0
Particle ID	4.0	4.0
π^0 kinematic fit	0.2	1.0
ϕ mass window	1.0	–
ρ^+ mass window	1.0	–
K^{*0} mass window	–	0.5
U_{miss} window	1.0	4.0
Intermediate decays	5.7	1.1
MC statistics	0.5	0.3
Number of J/ψ events	1.2	1.2
Total	8.6	7.5

V. RESULTS

No excess of $J/\psi \rightarrow D_s^-\rho^+$ or $J/\psi \rightarrow D^0K^{*0}$ events above background is observed. The upper limits on the branching fractions of these decay modes are calculated using

$$B < \frac{N_{UL}}{N_{J/\psi}\varepsilon B_{\text{inter}}(1 - \sigma^{sys})},$$

where N_{UL} is the upper limit of the number of observed events at the 90% confidence level (90% C.L.), $N_{J/\psi}$ is the number of J/ψ events, ε is the detection efficiency, B_{inter} is the intermediate branching fraction, and σ^{sys} is the systematic error.

The upper limits for the observed number of events at the 90% C.L. are 2.5 for $J/\psi \rightarrow D_s^-\rho^+$ and 2.7 for $J/\psi \rightarrow D^0K^{*0}$ using a series of unbinned extended maximum likelihood fits. In the fit, the recoil mass distributions of data, shown in Fig. 5, are fitted with a proba-
TABLE II. Numbers used in the calculation of upper limits on the branching fractions of $J/\psi \rightarrow D_\pm \rho^\pm$ and $J/\psi \rightarrow D^{\ast} K$0. ε is the detection efficiency, B_{inter} is the intermediate branching fraction, σ^sys is the systematic error, N_{UL} is the upper limit of the number of observed events at the 90% C.L., B is the upper limit at the 90% C.L. on the branching fraction.

Decay mode	Intermediate decay	ε	B_{inter}	σ^sys	N_{UL}	B (90% C.L.)
$J/\psi \rightarrow D_+ \rho^+$	$D_\ast^0 \rightarrow \phi e^- \bar{\nu}_e$, $\phi \rightarrow K^+ K^-$, $\rho^+ \rightarrow \pi^+ \pi^0, \pi^0 \rightarrow \gamma \gamma$	7.79%	1.20%	8.6%	2.5	$< 1.3 \times 10^{-5}$
$J/\psi \rightarrow D^{\ast} K$0	$D^{\ast}_0 \rightarrow K^+ e^- \bar{\nu}_e, K^{\ast 0} \rightarrow K^- \pi^+$	21.83%	2.37%	7.5%	2.7	$< 2.5 \times 10^{-6}$

In summary, a search for the weak decays of $J/\psi \rightarrow D^- \rho^-$ and $J/\psi \rightarrow D^{\ast} K$0 has been performed using a sample of $(225.3 \pm 2.8) \times 10^6 J/\psi$ events collected at the BESIII detector. No evident signal is observed and upper limits at the 90% C.L. are set on the branching fractions around 10^{-5}. The fit-related uncertainties are estimated by using different fit ranges and different orders of the background polynomial, and N_{UL} is taken as maximum value among the variations. All numbers used in the calculations of the upper limits on the branching fractions are shown in Table II.

VI. ACKNOWLEDGEMENT

The BESIII collaboration thanks the staff of BEPCII and the computing center for their strong support. This work is supported in part by the Ministry of Science and Technology of China under Contract No. 2009CB825200; Joint Funds of the National Natural Science Foundation of China under Contracts Nos. 11079008, 11179007, 11179014, U1332201; National Natural Science Foundation of China (NSFC) under Contracts Nos. 10625524, 10821063, 10825524, 10835001, 10935007, 11005122, 11235011, 11275210; the Chinese Academy of Sciences (CAS) Large-Scale Scientific Facility Program; CAS under Contracts Nos. KJCX2-YW-N29, KJCX2-YW-N45; 100 Talents Program of CAS; German Research Foundation DFG under Contract No. Collaborative Research Center CRC-1044; Istituto Nazionale di Fisica Nucleare, Italy; Ministry of Development of Turkey under Contract No. DPT2006K-120470; U. S. Department of Energy under Contracts Nos. DE-FG02-04ER41291, DE-FG02-05ER41374, DE-FG02-94ER40823, DESC00010118; U. S. National Science Foundation; University of Groningen (RuG) and the Helmholtzzentrum fuer Schwerionenforschung GmbH (GSI), Darmstadt; WCU Program of National Research Foundation of Korea under Contract No. R32-2008-000-10155-0.

[1] M. A. Sanchis, Z. Phys. C 62, 271 (1994).
[2] A. Datta, P. J. O’Donnell, S. Pakvasa, X. Zhang, Phys. Rev. D 60, 014011 (1999).
[3] X. Zhang, High Energy Phys. Nucl. Phys. 25, 461 (2001).
[4] The charge conjugate states are implicitly included throughout this paper.
[5] M. Ablikim et al. (BES Collaboration), Phys. Lett. B 639, 418 (2006).
[6] M. Ablikim et al. (BES Collaboration), Phys. Lett. B 663, 297 (2008).
[7] Y. M. Wang et al., Eur. Phys. J. C 55, 607 (2008).
[8] Y. L. Shen and Y. M. Wang, Phys. Rev. D 78, 074012 (2008).
[9] H. B. Li and S. H. Zhu, Chinese Physics C 36, 932 (2012).
[10] R. C. Verma, A. N. Kamal, A. Czarnecki, Phys. Lett. B 252, 690 (1990).
[11] R. Dhir, R. C. Verma, A. Sharma, Adv. High Energy Phys. 2013, 706543 (2013).
[12] K. K. Sharma and R. C. Verma, Int. J. Mod. Phys. A 14, 937 (1999).
[13] M. Ablikim et al. (BESIII Collaboration), Chinese Physics C 36, 915 (2012).
[14] M. Ablikim et al. (BESIII Collaboration), Nucl. Instrum. Methods A 614, 345 (2010).
[15] J. Z. Bai et al. (BES Collaboration), Nucl. Instrum. Methods A 344, 319 (1994); J. Z. Bai et al. (BES Collaboration), Nucl. Instrum. Methods A 458, 627 (2001).
[16] S. Agostinelli et al. (GEANT4 Collaboration), Nucl. Instrum. Methods A 506, 250 (2003).
[17] S. Jadach, B. F. L. Ward, and Z. Was, Comput. Phys. Commun. 130, 260 (2000); S. Jadach, B. F. L. Ward,
and Z. Was, Phys. Rev. D 63, 113009 (2001).
[18] D. J. Lange, Nucl. Instrum. Methods A 462, 152 (2001).
[19] J. Beringer et al. (Particle Data Group), Phys. Rev. D 86, 010001 (2012).
[20] J. C. Chen et al., Phys. Rev. D 62, 034003 (2000).
[21] Throughout this paper, the plot shows the distribution with requirements applied to all other variables except the one shown on it.
[22] M. Ablikim et al. (BESIII Collaboration), Phys. Rev. D 83, 112005 (2011).
[23] M. Ablikim et al. (BESIII Collaboration), Phys. Rev. D 81, 052005 (2010).