Cerebral ischemia and neuroregeneration

Reggie H. C. Lee1,2,4, Michelle H. H. Lee3, Celeste Y. C. Wu1,2, Alexandre Couto e Silva1, Harlee E. Possoit1,2, Tsung-Han Hsieh1,2, Aliereza Minagar1, Hung Wen Lin1,2,3,5,6

1 Department of Neurology, Louisiana State University Health Science Center, Shreveport, LA, USA
2 Center for Brain Health, Louisiana State University Health Science Center, Shreveport, LA, USA
3 Department of Cellular Biology and Anatomy, Louisiana State University Health Science Center, Shreveport, LA, USA
4 Institute of Cellular and System Medicine, National Health Research Institutes, Zhunan, Taiwan, China
5 Cardiovascular and Metabolomics Research Center, Hualien Tzu Chi Hospital, Hualien, Taiwan, China

Abstract
Cerebral ischemia is one of the leading causes of morbidity and mortality worldwide. Although stroke (a form of cerebral ischemia)-related costs are expected to reach 240.67 billion dollars by 2030, options for treatment against cerebral ischemia/stroke are limited. All therapies except anti-thrombolytics (i.e., tissue plasminogen activator) and hypothermia have failed to reduce neuronal injury, neurological deficits, and mortality rates following cerebral ischemia, which suggests that development of novel therapies against stroke/cerebral ischemia are urgently needed. Here, we discuss the possible mechanism(s) underlying cerebral ischemia-induced brain injury, as well as current and future novel therapies (i.e., growth factors, nicotinamide adenine dinucleotide, melatonin, resveratrol, protein kinase C isoform, pifithrin, hypothermia, fatty acids, sympathoplegic drugs, and stem cells) as it relates to cerebral ischemia.

Key Words: cerebral ischemia; melatonin; resveratrol; protein kinase C, pifithrin-a; fatty acids; sympathetic nervous system; neuromodulation therapy; traditional Chinese therapies; stem cell

Introduction
Stroke (a form of cerebral ischemia) remains the fifth leading cause of death and disability in the United States. A first or recurrent stroke occurs every 40 seconds, which affects approximately 800,000 people per year (Go et al., 2014). Stroke occurs when blood vessel(s) are interrupted by a blood clot/thrombus or when blood vessel(s) rupture (i.e., hemorrhage) due to arteriovenous malformations or aneurysms. Since the brain is one of the most high-energy consuming organs, the lack of oxygen and nutrient supply elicited by stroke can cause severe brain damage resulting in neurological disorders.

Stroke can be classified into two categories: ischemic (87% of the population) and hemorrhagic stroke (23% of the population) (Ovbiagele and Nguyen-Huynh, 2011). Ischemic stroke is characterized by vascular thrombus formation, interruption of blood supply to the brain, which causes neuronal cell death and neurological deficits, such as learning/memory and locomotor deficiencies (Janardhan and Qureshi, 2004; Li et al., 2013). The middle cerebral artery, the largest branch of the internal carotid artery, is a prevalent site for ischemic stroke, which provides oxygen and nutrient supply to the primary motor, sensory, and speech areas of the brain including the frontal and the lateral surface of the temporal and parietal lobes. Thus, patients with middle cerebral artery occlusions suffer from hemiparesis or monoparesis, hemisensory and visual deficits, dysarthria, and ataxia (Gautier and Pullicino, 1985; No authors listed, 1990).

Another common type of ischemic stroke is transient ischemic attack (TIA or mini-stroke). TIA is characterized by a temporary blockage of cerebral blood flow (CBF), caused by the formation of blood clots and/or atherosclerotic plaques, damaging inner walls of brain vasculature (Eliaziw et al., 2004; Ovbiagele et al., 2008; Coutts, 2017). This form of ischemic stroke does not cause permanent brain damage due to the acute (minutes to hours) nature of the ischemia. However, One-third of TIA patients are expected to have an ischemic stroke within a year indicating that post-TIA care/treatment is paramount to favorable outcomes (Amarenco et al., 2016).

Hemorrhagic stroke is characterized by an aneurysm, arteriovenous malformation, or weakening of blood vessel walls causing rupture in the brain. Untreated hypertension and aging blood vessels are the major risk factors for hemorrhagic stroke. In fact, if hypertension is not properly controlled, patients are 10 times more likely to develop hemorrhagic stroke as compared to normotensive patients (Semple, 1995). An added consequence of hemorrhagic stroke is the elevation of intracranial pressure causing severe brain damage leading to high morbidity and mortality (van Asch et al., 2010; Keep et al., 2012). Hemorrhagic strokes can be further classified into two subtypes: intracerebral hemorrhage (ICH) and subarachnoid hemorrhage (SAH) (Grysiewicz et al., 2008; Caceres and Goldstein, 2012). ICH occurs in the brain parenchyma, while SAH is predominately found between the pial and arachnoid space caused by the rupture of cerebral vessels.

Other non-stroke ischemia-related conditions include global ischemia (i.e., cardiac arrest) and small vessel diseases (SVD). Life-threatening medical conditions, such as cardiac arrest, shock, severe hypotension, and asphyxia, result in insufficient blood supply throughout the entire brain (namely global ischemia) to cause neuronal cell death in the vulner-

Funding: This work was supported by the National Institutes of Health/National Institute of Neurological Disorders and Stroke grant 1R01NS096225-01A1, the American Heart Association grants AHA-13SDG1395001413, AHA-17GRNT33660336, AHA-17POST33660174, the Louisiana State University Grant in Aid research council, and The Malcolm Feist Cardiovascular Research Fellowship.

Abstract
Cerebral ischemia and neuroregeneration

Introduction
Stroke (a form of cerebral ischemia) remains the fifth leading cause of death and disability in the United States. A first or recurrent stroke occurs every 40 seconds, which affects approximately 800,000 people per year (Go et al., 2014). Stroke occurs when blood vessel(s) are interrupted by a blood clot/thrombus or when blood vessel(s) rupture (i.e., hemorrhage) due to arteriovenous malformations or aneurysms. Since the brain is one of the most high-energy consuming organs, the lack of oxygen and nutrient supply elicited by stroke can cause severe brain damage resulting in neurological disorders.

Stroke can be classified into two categories: ischemic (87% of the population) and hemorrhagic stroke (23% of the population) (Ovbiagele and Nguyen-Huynh, 2011). Ischemic stroke is characterized by vascular thrombus formation, interruption of blood supply to the brain, which causes neuronal cell death and neurological deficits, such as learning/memory and locomotor deficiencies (Janardhan and Qureshi, 2004; Li et al., 2013). The middle cerebral artery, the largest branch of the internal carotid artery, is a prevalent site for ischemic stroke, which provides oxygen and nutrient supply to the primary motor, sensory, and speech areas of the brain including the frontal and the lateral surface of the temporal and parietal lobes. Thus, patients with middle cerebral artery occlusions suffer from hemiparesis or monoparesis, hemisensory and visual deficits, dysarthria, and ataxia (Gautier and Pullicino, 1985; No authors listed, 1990).

Another common type of ischemic stroke is transient ischemic attack (TIA or mini-stroke). TIA is characterized by a temporary blockage of cerebral blood flow (CBF), caused by the formation of blood clots and/or atherosclerotic plaques, damaging inner walls of brain vasculature (Eliaziw et al., 2004; Ovbiagele et al., 2008; Coutts, 2017). This form of ischemic stroke does not cause permanent brain damage due to the acute (minutes to hours) nature of the ischemia. However, One-third of TIA patients are expected to have an ischemic stroke within a year indicating that post-TIA care/treatment is paramount to favorable outcomes (Amarenco et al., 2016).

Hemorrhagic stroke is characterized by an aneurysm, arteriovenous malformation, or weakening of blood vessel walls causing rupture in the brain. Untreated hypertension and aging blood vessels are the major risk factors for hemorrhagic stroke. In fact, if hypertension is not properly controlled, patients are 10 times more likely to develop hemorrhagic stroke as compared to normotensive patients (Semple, 1995). An added consequence of hemorrhagic stroke is the elevation of intracranial pressure causing severe brain damage leading to high morbidity and mortality (van Asch et al., 2010; Keep et al., 2012). Hemorrhagic strokes can be further classified into two subtypes: intracerebral hemorrhage (ICH) and subarachnoid hemorrhage (SAH) (Grysiewicz et al., 2008; Caceres and Goldstein, 2012). ICH occurs in the brain parenchyma, while SAH is predominately found between the pial and arachnoid space caused by the rupture of cerebral vessels.

Other non-stroke ischemia-related conditions include global ischemia (i.e., cardiac arrest) and small vessel diseases (SVD). Life-threatening medical conditions, such as cardiac arrest, shock, severe hypotension, and asphyxia, result in insufficient blood supply throughout the entire brain (namely global ischemia) to cause neuronal cell death in the vulner-
able CA1 region of the hippocampus and cortex (Kirino, 1982; White et al., 1996; Schaller and Graf, 2004; Nour et al., 2013). Since the neurons in the CA1 region of the hippocampus and cortex play an important role in learning/memory formation, patients with global ischemia suffer severe learning/memory deficits. SVD has been frequently diagnosed in the elderly via neuroimaging (i.e., computed tomography and magnetic resonance imaging scans). The pathological progression of SVD includes small cortical infarctions or hemorrhages, microbleeds, white matter attenuation (leukoaraiosis), Virchow-Robin spaces (enlarged perivascular spaces), and brain atrophy (brain volume loss) (Nikunen et al., 2011; Wardlaw et al., 2013a, b), which are highly related to vascular dementia, cognitive or motor impairments, and depression (Mok et al., 2004; Panton and Gorelick, 2014).

Therapeutic strategies against cerebral ischemia are limited. For example, treatments against hemorrhagic stroke are dependent on surgery (i.e., aneurysm clipping, coil embolization, and arteriovenous malformation repair) to reduce bleeding and intracranial pressure. In terms of ischemic stroke, intravenous thrombolysis with tissue plasminogen activator (tPA) (National Institute of Neurological Disorders and Stroke rt-PA Stroke Study Group, 1995; Kanazawa et al., 2017) is the only FDA approved therapy for the treatment of acute ischemic stroke (Hackett et al., 2008; Zivin, 2009; Farbu et al., 2011; Cheng and Kim, 2015). However, tPA’s narrow therapeutic time window (within 4.5 hours after the onset of stroke) significantly reduces its’ therapeutic efficacy in the treatment against ischemic stroke. As for treatments against TIA and cardiac arrest, all therapies except hypothermia have failed to reduce neuronal injury. Thus, the goal of the treatments mainly focus on preventing risk factors for TIA and cardiac arrest (i.e., high blood pressure, hyperlipidemia, smoking, and heart disease) indicating that developing novel therapies against cerebral ischemia is greatly needed. We will discuss the mechanisms underlying stroke/cerebral ischemia-induced brain injury as well as current and future novel therapies as it relates to cerebral ischemia.

Mechanisms Underlying Ischemic Brain Injury

Excitotoxicity and apoptosis/necrosis

Glutamate, the most abundant excitatory neurotransmitter in the brain, is a major contributor to cerebral ischemia-induced excitotoxicity (excitatory amino acids-induced neurotoxicity) and subsequent apoptosis/necrosis (Xu et al., 2001; Lai et al., 2014). Adenine triphosphate (ATP) deficiency (energy failure) and glutamate transporter dysfunction following cerebral ischemia can cause an increase in neuronal excitability and subsequent glutamate release and accumulation in the synaptic cleft (Bosley et al., 1983; Benveniste et al., 1984; Drejer et al., 1985; Hagberg et al., 1985; Silverstein et al., 1986; Dawson et al., 2000). This results in excessive activation of N-methyl-D-aspartate receptors (an ionotropic receptor) to cause massive calcium influx and dyshomeostasis in neurons (Berdichevsky et al., 1983; Jancso et al., 1984). Neuronal calcium overload can further activate calpains (calcium-dependent proteases) to cleave apoptotic regulatory proteins (i.e., caspase family), as a result of lysosome-associated apoptosis and necrosis (Bisset, 1978; Schielke et al., 1998; Yamashima, 2004; Li and Yuan, 2008; Msrchitik and Ryan, 2015).

In addition to glutamate-induced cellular excitotoxicity, cerebral ischemia alone can induce overexpression of the death receptor ligands (i.e., tumor necrosis factor (TNF)-α and FasL), as a result of serine/threonine-protein kinase 1-mediated neuronal necrosis (Holler et al., 2000; Degtrev et al., 2005, 2008). Furthermore, enhanced expression of c-Jun N-terminal kinase (JNK, a stress-activated protein kinase) after cerebral ischemia (Irving and Bamford, 2002; Borsello et al., 2003) can activate Fas- and Bim-mediated pro-apoptotic signals (Herdegen et al., 1998; Putcha et al., 2003; Okuno et al., 2004) leading to neuronal cell death.

Reperfusion injury and neuroinflammation

Reperfusion injury occurs when a tissue/organ encounters deprivation of blood supply followed by a restoration of blood flow to the ischemic area (Nour et al., 2013). Following reperfusion, reoxygenation, however, causes secondary injury (Chen and Nunez, 2010; Eltzschig and Ecke, 2011) due to excessive formation of reactive radical oxygen species (ROS) and/or peroxynitrite (Peters et al., 1998; Bolanos and Almeida, 1999; Shen et al., 2003; Vitturi and Patel, 2011; Kietadisorn et al., 2012; Li et al., 2012; Olmez and Ozyurt, 2012; Rodriguez et al., 2013) and activation of the immune system (Eltzschig and Ecke, 2011).

In terms of ischemia induced-neuroinflammation, infiltrating immune cells release inflammatory mediators to recruit multiple immune and glia cells. These immunoreactive cells further limit the extent of the injury and restore tissue integrity (Kumar and Loane, 2012; Xanthos and Sandkühler, 2014). However, excessive activation of microglia can occur following cerebral ischemia resulting in the release of pro-inflammatory cytokines, such as TNF-α, interleukin (IL)-1β, IL-6, IL-12, and interferon (IFN)γ (Schmidt et al., 2005; Hernandez-Ontiveros et al., 2013), as a result of blood brain barrier leakage (Chodobski et al., 2011). Moreover, pro-inflammatory cytokines increases neurotoxic molecules and free radicals (i.e., ROS), reactive nitrogen species, cyclooxygenase-2, and inducible nitric oxide synthase] to cause secondary neuronal cell death (Qin et al., 2007; Erickson and Banks, 2011; Tremblay et al., 2011; Park et al., 2012; Biesmans et al., 2013; Hernandez-Ontiveros et al., 2013; Kabadi and Faden, 2014).

It is interesting to note that the ischemia-induced neuroinflammation mainly occurs in the non-microbial environment. Thus, the host receptor (i.e., toll-like receptors) can be can be activated via non-microbial ligands, namely damage-associated molecular patterns (Chen and Nunez, 2010; Eltzschig and Ecke, 2011). These damage-associated molecular patterns, such as high-mobility group box1 protein and ATP are released from the cytoplasm upon tissue injury and/or cell death to initiate series of innate immune responses, as a result of excessive production of proin-
flammatory cytokines/chemokines (Iyer et al., 2009; Chen and Nunez, 2010; McDonald et al., 2010), which causes peroxynitrite- and ROS-mediated lipid peroxidation, DNA damage, and cell dysfunction/death (Garry et al., 2015).

Impaired axonal regeneration

Besides excitotoxicity, apoptosis/necrosis, reperfusion, and neuroinflammation, impaired axonal regeneration is an other major contributor to neuronal cell death following cerebral ischemia. One of the major hallmarks of cerebral ischemia is the inherent glial scar formation. Glial scar (a tissue barrier) is formed by reactive astrocytes, microglia, and infiltrating immune cells to protect survival neurons from the harmful environment (i.e., nitric oxide toxicity and glutamate-induced cellular excitotoxicity) (Reier and Houle, 1988; Fitch and Silver, 1997; Rolls et al., 2009; Huang et al., 2014b). These immunoreactive cells are responsible for trophic and metabolic support (i.e., insulin-like growth factors, nerve growth factors, brain-derived neurotrophic factor, and neurotrophin-3), as well as scavenging excessive accumulation of glutamate, potassium, and other ions after cerebral ischemia (Schwartz and Nishiyama, 1994; Wu et al., 1998; do Carmo Cunha et al., 2007; White et al., 2008; Rolls et al., 2009). However, the immunoreactive cells, in particular astrocytes, become hypertrophic and release chondroitin sulfate proteoglycans (an inhibitory extracellular molecule) in response to cerebral ischemia (McKeon et al., 1991), which restricts axonal regeneration and neuronal survival via Rhod/ROCK-mediated pathways (Silver and Miller, 2004; Yiu and He, 2006). In addition to glial scar, myelin (the laminated membrane structure that surrounds the axon) is also responsible for the failure of axonal regeneration. Although myelin has been reported to regulate the axonal cytoskeleton, axon caliber, neurofilament spacing (Yin et al., 1998), and microtubule formation (Hsieh et al., 1994; Nguyen et al., 2009), numerous studies have shown that myelin-associated glycoproteins, such as oligodendrocyte-myelin glycoprotein and nogoA are actually detrimental to axonal regeneration and sprouting after cerebral ischemia (Caroni and Schwab, 1988; McKerracher et al., 1994; Mukhopadhyay et al., 1994).

Novel Neuroregenerative Agents

A stroke lesion can be classified into the ischemic core and the surrounding penumbra (Yuan, 2009), while the irreversible cell death mainly occurs in the ischemic core area. Thus, most of the studies are targeted to prevent neuronal cell death in the hypoperfused penumbra region. We will discuss current and future novel neuroregenerative agents as it relates to cerebral ischemia in subsequent paragraphs. The clinical evidence for each neuroregenerative agent is summarized in the Table 1.

Fibroblast growth factors (FGFs)

FGFs are a group of structurally similar polypeptide mitogens, which promote tissue repair, angiogenesis, neurogenesis, axonal growth, embryonic development, and various endocrine signaling pathways. 23 members of FGFs have been isolated (Zechel et al., 2010), while the expression of FGF-2 is significantly increased after various brain injuries including seizures (Riva et al., 1992), transient forebrain ischemia (Takami et al., 1993; Speliotes et al., 1996), and traumatic ischemic brain injury (Christian Alzheimer, 2000-2013). In addition, the FGF-2-deficient mice presented with larger infarct volume (75% more) following experimental brain ischemia, via middle cerebral artery occlusion (MCAO) suggesting that FGF-2 had neuroprotective effects against ischemic brain injury (Kiprianova et al., 2004).

The use of FGF-2 has been implicated in several pre-clinical trials of cerebral ischemia. Administration of FGF-2 in rats has been shown to increase the number of neurons and markers for neurogenesis in the hippocampus and dentate gyrus after MCAO (Bethel et al., 1997; Wagner et al., 1999; Cheng et al., 2002; Wang et al., 2008). Subsequent studies by Leker et al, 2007 and Yoshimura et al. 2001 further indicate that up-regulation of FGF-2 via adeno-associated viral vectors in the infarct area can increase the number of proliferating cells and motor behavior after MCAO (Yoshimura et al., 2001; Leker et al., 2007). Overall, FGF-2 can enhance neural proliferation/differentiation following cerebral ischemia, which may provide future therapeutic opportunities.

Nicotinamide adenine dinucleotide (NAD)

NAD is a coenzyme of vitamin B3 critical for many biochemical reactions including energy production, ion homeostasis, and biosynthesis of glucose and fatty acids (Ying, 2006; Belenky et al., 2007). Numerous studies indicate that NAD+ (oxidized form) depletion and subsequent ATP loss during/after cerebral ischemia result in energy failure and cell death (Jagtap and Szabo, 2005), which suggests that repletion of NAD+ is beneficial in the treatment against cerebral ischemia.

Zhao et al. (2015) found that overexpression of nicotinamide phosphoribosyltransferase (Nampt, the rate-limiting enzyme for NAD+ biosynthesis) enhanced neurogenesis after MCAO in mice. Additionally, post-treatment of nicotinamide mononucleotide (an intermediate of NAD+ biosynthesis) enhanced neuronal survival and neurogenesis after MCAO (Zhao et al., 2015), while intraperitoneal (IP) injection of nicotinamide (a NAD+ precursor) after MCAO enhanced intracellular NAD+ concentration in the brain. NAD+ derivatives reduced infarct volume via sirtuin-1 and sirtuin-2-mediated pathways (Liu et al., 2009; Siegel and McCullough, 2013; Zhao et al., 2015). Overall, the development of novel therapies targeting the Nampt-NAD+ cascade may be valuable against ischemic brain injury.

Melatonin (N-acetyl-5-methoxy tryptamine)

Melatonin, a hormone synthesized and released from the pineal gland, plays a crucial role in the regulation of sleep and wake cycles (Reiter, 1991). Thus, melatonin has been widely used for the treatment of sleep disorders including insomnia, delayed sleep phase syndrome, and rapid eye movement sleep behavior disorder (Laudon and Frydman-Marom, 2014; Tordjman et al., 2017; Xie et al., 2017). Interestingly,
Lee RHC, Lee MHH, Wu CYC, Couto e Silva A, Possot HE, Hsieh TH, Minagar A, Lin HW (2018) Cerebral ischemia and neuroregeneration. Neural Regen Res 13(3):373-385. doi:10.4103/1673-5374.228711

Table 1 Neuroregenerative agents in cerebral ischemia

Agents	Pre-clinical trials	Clinical trials/uses	Applications
Fibroblast growth factors	Kiprianova et al., 2004; Bethel et al., 1997; Wagn er et al., 1999; Cheng et al., 2002; Wang et al., 2008; Yoshimura et al., 2001; Leker et al., 2007	N/A	MCAO-induced ischemic brain injury
Nicotinamide adenine dinucleotide	Jagtap and Szabo, 2005; Liu et al., 2009; Siegel and McCullough, 2013; Zhao et al., 2015	N/A	MCAO-induced ischemic brain injury
Melatonin (N-acetyl-5-methoxy tryptamine)	Pei et al., 2003; Kilic et al., 2004; Koh, 2008; Kim and Lee, 2014	N/A	MCAO-induced ischemic brain injury; bilateral common carotid arteries occlusion-induced transient cerebral ischemia
Resveratrol	Tsai et al., 2007; Dong et al., 2008; Fang et al., 2015; Kizmazoglu et al., 2015; Narayan et al., 2015; Koronowski et al., 2015; He et al., 2017	N/A	MCAO- and bilateral common carotid artery occlusion-induced cerebral ischemia
Protein kinase C (PKC) isozymes, δPKC and εPKC	Raval et al., 2003; Gonzalvez et al., 2005; He et al., 2007; Shimohata et al., 2007a, b; DeFazio et al., 2009; Ghibelli and Diederich, 2010; Dave et al., 2011; Lin et al., 2012	N/A	Oxygen and glucose deprivation; ACA- and bilateral carotid artery occlusion-induced cerebral ischemia
Pifithrin-α	Culmsee et al., 2001; Zhang et al., 2016	N/A	MCAO-induced ischemic brain injury
Hypothermia	Busto et al., 1987; Dietrich et al., 1990, 1991, 1993, 1994; Morikawa et al., 1992; Globus et al., 1995; Hall, 1997; Prakasa Babu et al., 2000; Kollmar et al., 2007; Zhao et al., 2007; Li and Wang, 2011; Yenari and Han, 2012; Lee et al., 2016; Jiang et al., 2017	Schwab et al., 1998; Els et al., 2006; Hong et al., 2014	MCAO- and bilateral common carotid artery occlusion-induced cerebral ischemia; traumatic brain injury; patients with middle cerebral artery infarction
Fatty acids	Lin et al., 2008, 2014	N/A	MCAO- and ACA-induced cerebral ischemia
Attenuation of sympathetic nervous system	Lee et al., 2017	Treggiari et al., 2003	ACA-induced cerebral ischemia; aneurysmal subarachnoid hemorrhage
Neuromodulation therapy	Adkins-Muir and Jones, 2003; Kleim et al., 2003; Plautz et al., 2003; Teskey et al., 2003	Naeser et al., 2005; Kirton, 2017; Lindenberg et al., 2010; Cazzoli et al., 2012; Bonni et al., 2014; Yamada et al., 2014; Lee and Lee, 2015; Triccas et al., 2015; Allman et al., 2016; Rocha et al., 2016; Kirton, 2017	MCAO-induced cerebral ischemia; patients with ischemic stroke
Traditional Chinese therapy	Wang et al., 2002; Cai et al., 2007; Chen et al., 2008, 2015; Ma and Luo, 2008; Wang and Jiang, 2009; Lang et al., 2011; Kim et al., 2013a, b, 2014; Xie et al., 2013; Xin et al., 2013b ; Huang et al., 2014a, 2017; Mu et al., 2014; Shen et al., 2014; Lu et al., 2016	Tan et al., 2013; Huang et al., 2014c; Mu et al., 2014; Liu et al., 2015; Zhang et al., 2015; Lu et al., 2016; Li et al., 2017; Yang et al., 2017; Wang et al., 2017	MCAO-induced cerebral ischemia; patients with acute stroke
Stem cell therapy	Goldman and Nottebohm, 1983; Gage, 2000; Li et al., 2000; Anderson, 2001; Chen et al., 2001; Doetsch et al., 2002; Arvidsson et al., 2002; Chen et al., 2003; Dempsey et al., 2003; Picard-Riera et al., 2004; Ryan et al., 2005; Kobayashi et al., 2006; Leker et al., 2007; Chojnicki and Weiss, 2008; Liao et al., 2008; Yoo et al., 2008; Daadi et al., 2009; Jin-qiao et al., 2009	Kondziolkowi et al., 2005; Riera et al., 2004; Bliss et al., 2010; Zhao et al., 2012; Ankrum et al., 2014; Trounson and McDonald, 2015; Azad et al., 2016; Polymery et al., 2016	MCAO-induced cerebral ischemia; patients with acute stroke

N/A: Not applicable; MCAO: middle cerebral artery occlusion; ACA: asphyxial cardiac arrest.

Recent studies suggest that melatonin provides other non-sleep/wake cycle related pharmacological effects, such as anti-nitric oxide (NO) production, anti-oxyradicals, and anti-peroxynitrite effects (Poeggeler et al., 1994; Pozo et al., 1994; Gilad et al., 1997; Cuzzocrea et al., 2000). Oxyradicals, NO, and peroxynitrite play a crucial role in the pathological progression of neuronal cell death following cerebral ischemia (Beckman et al., 1990; Crow and Beckman, 1995), which suggests that melatonin may provide neuroprotection against cerebral ischemia.

IP injection and/or oral treatment of melatonin has been shown to reduce infarct volume and neuronal cell death (Pei et al., 2003; Kilic et al., 2004; Koh, 2008) after MCAO. Administration of melatonin (via IP) 30 minutes before bilateral common carotid arteries occlusion-induced transient cerebral ischemia alleviates neuronal cell death in the CA1.
and CA2 regions of the hippocampus (Kim and Lee, 2014). Mechanisms underlying melatonin-induced neuroprotection after cerebral ischemia are highly complicated and remains to be elucidated. Kilic et al., (2004) reported that melatonin prevents cerebral ischemia-induced brain injury via inhibition of endothelin converting enzyme-1, while others’ suggest that melatonin reduces ischemic brain injury via inhibition of matrix metalloproteinase-9 (Kim and Lee, 2014) or enhanced MEK/ERK/p90RSK/Bad signaling cascade (Koh, 2008). In summary, melatonin may be used to combat cerebral ischemia by inhibition of oxynitrite production, endothelin biosynthesis, and promote MEK/ERK-mediated cell proliferation and differentiation.

Resveratrol

Resveratrol, 3,5,4′-trihydroxy-trans-stilbene, is a polyphenol found in red wine, grapes, chocolate, and many plants, such as knotweeds and pine trees. Numerous studies have shown that resveratrol has multifactorial effects including anti-inflammation and anti-oxidation, which suggests that the use of resveratrol may provide benefits in the treatment against cerebral ischemia. Many studies conducted in experimental brain ischemia further suggest that administration of resveratrol (0.1 μg/kg to 40 mg/kg) reduced infarct volume following MCAO- and bilateral common carotid artery occlusion-induced cerebral ischemia (Tsai et al., 2007; Dong et al., 2008; Fang et al., 2015; Kizmazoglu et al., 2015; Narayanan et al., 2015; He et al., 2017).

Mechanisms underlying resveratrol-induced neuroprotection against cerebral ischemia are multifactorial. Tsai et al. (2007) reported that resveratrol reduced MCAO-induced infarction by inhibition of inducible nitric oxide synthase (iNOS) production, while upregulation of endothelial nitric oxide synthase (eNOS) expression. Other studies suggest that resveratrol attenuates ischemic brain injury via inhibition of myeloperoxidase levels, pyrin domain-containing 3 inflamasome formation, cerebral TNF-α production, and markers for apoptosis (i.e., Bcl-2, Bax, p53, and annexin V) (Fang et al., 2015; Kizmazoglu et al., 2015; He et al., 2017). Furthermore, resveratrol activates nuclear erythroid 2-related factor 2- and sirtuin-1-mediated pathways to enhance neuronal survival in response to cerebral ischemia (Koronowski et al., 2015; Narayanan et al., 2015) indicating that resveratrol is a potential candidate in the treatment of cerebral ischemia.

Protein kinase C (PKC) isozymes, δPKC and εPKC

Enhanced expression of δPKC after cerebral ischemia (Shimohata et al., 2007b; Dave et al., 2011) can initiate phosphorylation of mitochondrial phospholipid scramblase 3 (PLSCR3) (He et al., 2007), dephosphorylation of Bad, and formation of Bax/Bak pores, as a result of cytochrome c release and mitochondria-mediated apoptosis (Gonzalvez et al., 2005; He et al., 2007; Ghibelli and Diederich, 2010). Subsequent studies by Lin et al. (2012) further suggest that inhibition of δPKC via δPKC specific inhibitor, δV1-1, can alleviate neuronal cell death and CBF derangements, which suggest the neuroprotective effects of δPKC inhibition after cerebral ischemia. Unlike the detrimental role of δPKC in ischemic brain injury, εPKC (another PKC isozyme) expression is actually enhanced during therapeutic hypothermia and ischemic preconditioning, which suggest εPKC’s possible neuroprotective role in ischemic brain injury (Raval et al., 2003; Shimohata et al., 2007a).

The Perez-Pinzon research group further investigated the activation of εPKC following oxygen and glucose deprivation (an *in vitro* ischemia injury model) can reduce GABAA receptor-mediated excitotoxicity in the hippocampal neurons (DeFazio et al., 2009). Furthermore, pretreatment of specific εPKC activator, ψεRACK, can attenuate CBF derangements and neuronal cell death elicited by asphyxial cardiac arrest (ACA)- and bilateral carotid artery occlusion-induced cerebral ischemia, which suggests that development of novel therapies to inhibit δPKC but activate εPKC may provide potential benefits in the treatment against cerebral ischemia.

Pifithrin-α (PFT-α)

Recent studies suggest that the tumor suppressor protein p53-induced apoptosis plays a crucial role in neuronal cell death after cerebral ischemia (Broughton et al., 2009; Hong et al., 2010). Culmsee et al. (2001) thus developed a synthetic p53 inhibitor, PFT-α, to evaluate the therapeutic potentials of p53 inhibition on ischemic brain injury. They found that IP injection of PFT-α 30 minutes before MCAO can reduce neuronal cell death in the CA1 region of the hippocampus, which suggests that the use of PFT-α may have therapeutic potential against cerebral ischemia in the near future. Mechanisms underlying PFT-α-induced neuroprotection after cerebral ischemia remains to be elucidated. Zhang et al. (2016) reported that PFT-α can stimulate angiogenesis and neurogenesis after MCAO, while other studies suggest PFT-α reduces infarct volume and neurological and locomotor deficits via vascular endothelial growth factor-mediated pathways.

Other Neuroregenerative Factors/Agents

Hypothermia

The normal body core temperature is near 37°C in humans, while hypothermia is defined as body core temperature below 35°C. Hypothermia can be a medical emergency if the body temperature falls below 32°C or less, which results in multiple organ failure and even death. However, Busto et al. (1987) first discovered that moderate decrease of brain temperature provides neuroprotection against experimental brain ischemia. In Busto et al.’s studies, the rat brain temperature was maintained at 36, 33, or 30°C following four-vessel or bilateral carotid artery occlusion-induced cerebral ischemia. They found that hypothermia treatment (at 33 and 30°C) significantly reduced neuronal metabolic demand and glutamate release, ultimately attenuating neuronal cell death in the CA1 region of the hippocampus after cerebral ischemia (Busto et al., 1987; Dietrich et al., 1993). Busto et al.’s landmark findings were further established by a different experimental brain ischemia including MCAO and traumatic brain injury (Morikawa et al., 1992; Dietrich et al., 1994; Kollmar et al., 2007; Li and Wang, 2011) suggesting...
that hypothermia is actually beneficial in the treatment of general cerebral ischemia.

In addition to experimental brain ischemia, moderate hypothermia has been shown to significantly reduce intracranial pressure, cerebral edema, and neurological deficits in patients with severe middle cerebral artery infarction (Schwab et al., 1998; Els et al., 2006; Hong et al., 2014). Multiple factors are involved in hypothermia-mediated neuroprotection after cerebral ischemia. Hypothermia inhibits glutamate-induced excitotoxicity (Busto et al., 1987; Zhao et al., 2007; Yenari and Han, 2012), while reducing the production of superoxide, peroxynitrite, hydrogen peroxide, and hydroxyl radicals to relieve oxidative stress after cerebral ischemia (Globus et al., 1995; Hall, 1997; Yenari and Han, 2012). Furthermore, hypothermia has also been reported to reduce apoptosis, autophagy, and inflammation (Prakasa Babu et al., 2000; Lee et al., 2016; Jiang et al., 2017), as well as blood-brain barrier leakage and brain metabolism after cerebral ischemia (Busto et al., 1987; Dietrich et al., 1990; Dietrich et al., 1991), which suggests that the use of hypothermia during/after cerebral ischemia provides high therapeutic potential in the treatment of patients with stroke or other central nervous system disorders.

Fatty acids
Saturated fatty acids were traditionally considered as a “detrimental” class of fatty acids, which can increase the risk of cardiovascular diseases. Lin et al. (2008, 2014) however, found palmitic acid methyl ester (PAME) released from the sympathetic nervous system is a novel vasodilator and CBF mediator. Since hypoperfusion (decrease in CBF) following cerebral ischemia plays a crucial role in the pathologic progression of neuronal cell death and neurological deficits, the vasodilatory properties of PAME suggest its therapeutic potential in the treatment against cerebral ischemia. Subsequent investigations by Lin’s research group further indicate that pre-treatment of PAME increased CBF and neuronal viability after MCAO and ACA (Lin et al., 2014), which suggests that PAME is a novel neuroprotective agent against cerebral ischemia.

Attenuation of sympathetic nervous system
Autonomic dysregulation after cardiac arrest can be detrimental to the brain. Lee et al, 2017 first reported that excessive activation of perivascular sympathetic nervous system in the brain is one of the major causes of hypoperfusion, neuronal cell death, and neurological deficits after ACA-induced cerebral ischemia (Lee et al., 2017). Thus, surgical interruption of perivascular sympathetic nerves via decentralization of superior cervical ganglion (a sympathetic ganglion that innervates cerebral arteries) can alleviate ACA-induced hypoperfusion and brain injury (Lee et al., 2017). Interestingly, interruption of cervical sympathetic chain via bolus injection of bupivacaine and clonidine (ganglionic and a2 blocker, respectively) in the superior cervical ganglion has been shown to reduce neurological deficits after aneurysmal subarachnoid hemorrhage in humans (Treggiari et al., 2003), which suggests that developing novel therapies target on the perivascular sympathetic nervous system may be beneficial.

Neuromodulation therapy
Neuromodulation therapy is a novel technique that utilizes implantable neuromodulatory device/stimulator to deliver electrical or magnetic stimuli directly upon injured neurons. There are growing evidences suggest that neuromodulation therapies can promote functional recovery, in particular locomotor function after stroke. For example, the use of repetitive transcranial magnetic stimulation (TMS) (at ~1 and ~10 Hz) to stimulate motor cortex has been shown to enhance motor function after experimental ischemia (Adkins-Muir and Jones, 2003; Kleim et al., 2003; Plautz et al., 2003; Teskey et al., 2003; Naeser et al., 2005; Kirton, 2017). In addition to experimental ischemia, recent clinical studies suggest that non-invasive brain stimulation via transcranial direct current stimulation (tDCS) or theta burst stimulation (TBS, a neuromodulatory device that provides continuous theta frequency low-intensity stimuli into target brain regions) can facilitate motor and language recovery after chronic stroke (Lindenberg et al., 2010; Cazzoli et al., 2012; Bonni et al., 2014; Yamada et al., 2014; Lee and Lee, 2015; Tricas et al., 2015; Allman et al., 2016; Rocha et al., 2016; Kirton, 2017). Since over 70% of stroke survivors suffer from gait abnormalities, one of the major therapeutic challenges for stroke survivors is gait re habilitation indicating that neuromodulation therapy’s potential in the treatment of cerebral ischemia.

Traditional Chinese therapies
Traditional Chinese therapies (i.e., plant-based medicines and acupuncture) are considered novel therapies against stroke/cerebral ischemia due to their multifactorial effects (i.e., anti-inflammation and anti-oxidation). For example, Buyang Huanwu decoction (BHD) is derived from extracts from various Chinese herbs, including Radix Astragali (the root of Astragalus membranaceus), Radix Angelicae Sinensis (the root of Angelica sinensis), Radix Paeoniae Rubra (chishao, the root of Paeonia lactiflora Pall), Chuanxiong Rhizoma (the root and rhizome of Ligusticum chuanxiong Hort), Semen Persicae (taoren, the seeds of Amygdalus persica), Flos Carthami (the flower of Carthamus tinctorius L, and Pheretima [the body of Pheretima aspergillum (earth worm)]) (Mu et al., 2014). Numerous studies have shown that BHD can reduce cerebral ischemia-induced neuronal damage by inhibiting excitotoxicity, inflammation, and apoptosis (Chen et al., 2008; Wang and Jiang, 2009), while promoting angiogenesis (Shen et al., 2014), proliferation, differentiation, and migration of neuroprogenitor cells (NPCs) to the infarct area (Cai et al., 2007).

In addition to BHD, Dragon’s blood dropping pills (the red resin from Draecena cochinchinensis) and Bilobalide (EGb 761, a ginkgo biloba extract) have also been shown to alleviate cerebral water content, oxidative stress, and glutamate release in the infarct area following MCAO, thus reducing excitotoxicity, infarct volume, and neurological deficits (Lang et al., 2011; Xin et al., 2013b). Furthermore, clinical studies suggest that flower extracts, including Dengzhan Xixin (erigeron...
breviscapus, a Chinese daisy) and *Dengzhanhua* can enhance acute stroke patients’ CBF, plasma viscosity, and platelet adhesion to improve neurological function (Huang et al., 2014c; Li et al., 2017; Wang et al., 2017).

In addition to the aforementioned traditional Chinese medicines, acupuncture has also been considered as a complementary and alternative therapies for stroke patients in Asian countries. Acupuncture can be divided into traditional acupuncture and electro-acupuncture. The traditional acupuncture utilizes thin metal needles to stimulate acupuncture points over the body, while electro-acupuncture combines traditional acupuncture with modern electrotherapy to enhance stimulations to acupuncture points. Acupuncture has been shown to ameliorate neuronal cell death, neurological deficits, and brain edema following MCAO (Lu et al., 2016). In addition to experimental stroke models, recent clinical studies suggest that acupuncture can reduce disability rates, while enhance stroke patients’ activities of daily living evaluated by Barthel Index, National Institutes of Health Stroke Scale, and Revised Scandinavian Stroke Scale (Tan et al., 2013; Liu et al., 2015; Yang et al., 2017). Furthermore, a multicenter randomized controlled trial from 862 stroke patients suggests that patients received acupuncture therapies 5 times per week for 3 to 4 weeks have higher survival rate than patients without acupuncture treatments (Zhang et al., 2015), which suggest acupuncture’s potential in the treatment against stroke/cerebral ischemia.

Multiple pathways are involved in acupuncture-mediated neuroprotective effects following cerebral ischemia. Huang et al. (2017) reported that acupuncture enhances ξB-α expression to reduce NF-κB-mediated inflammation. Kim et al. (2013b) and Wang et al. (2002), however, suggest that acupuncture can inhibit apoptotic signaling cascade via enhancing Akt, Bcl-2, Bcl-XL, and cIAP1/2, while reducing apoptotic mediators (i.e., death receptor 5 and caspases-3, -8, and -9). In addition to acupuncture’s anti-inflammatory and anti-apoptotic effects, Kim et al. (2014) reported that acupuncture promotes astrocytes and neuronal progenitor cells proliferation via Wnt/β-catenin- and ERK1/2-mediating pathways (Xie et al., 2013; Huang et al., 2014a; Chen et al., 2015), as a result of brain-derived neurotrophic factor/vascular endothelial growth factor (VEGF)-mediated neurogenesis (Kim et al., 2014). Furthermore, acupuncture enhances post-ischemia CBF by promoting VEGF and angiogenin-1-mediated angiogenesis (Ma and Luo, 2008), as well as enhanced release of vasoactive mediators (i.e., acetylcholine and nitric oxide) (Kim et al., 2013a) after cerebral ischemia. Overall, traditional Chinese therapies (i.e., plant-based medicines and acupuncture) can inhibit cerebral ischemia-induced excitotoxicity, inflammation, and apoptosis, while promoting angiogenesis and cerebral blood flow after cerebral ischemia. The use of traditional Chinese traditional may provide therapeutic opportunities against cerebral ischemia.

Stem cell therapy

In addition to the above mentioned neuroregenerative agents, stem cell therapy is also a promising option for patients with stroke/cerebral ischemia due to stem cells’ self-regenerative, differentiating, and multifunctional properties (Trounson and McDonald, 2015). Stem cell therapies can be divided into endogenous and exogenous therapies. The endogenous therapies utilize neurotrophic and growth factors, such as epidermal growth factor, glial cell-derived neurotrophic factor, FGF-2, insulin-like growth factor-1, and brain-derived neurotrophic factor (Dempsey et al., 2003; Kobayashi et al., 2006; Leker et al., 2007; Jin-qiao et al., 2009) to enhance vascular regeneration and brain synaptic plasticity, while it stimulates the reparative abilities of the endogenous neural stem cells (NSCs) in the injured dentate gyrus and subventricular zone (SVZ) (Picard-Riera et al., 2004), thus reducing lesion size and locomotor deficits. On the contrary, exogenous therapies use tissue extraction, *in vitro* cultivation, and subsequent stem cell transplantation into damaged brain regions caused by stroke/cerebral ischemia (Azad et al., 2016).

Mechanisms underlying endogenous stem cell therapies against cerebral ischemia are highly complicated and remains to be elucidated (Arvidsson et al., 2002). Endogenous activation of neural stem cells (NSCs) in the subgranular zone (SGZ) and SVZ after cerebral ischemia have been shown to produce neurotrophic factors (i.e., brain-derived neurotrophic factor), which reduce inflammation, while promoting angiogenesis via activation of pro-angiogenic complexes, such as netrin-4, laminins, and integrins (Goldman and Nottebohm, 1983; Anderson, 2001; Doetsch et al., 2002; Staquicini et al., 2009), thus reducing brain injury elicited by hypoxia/ischemia. Additionally, the activated NSCs after cerebral ischemia can produce and secrete thrombospondins to promote synaptic regeneration and axonal sprouting (Liuw et al., 2008).

In terms of exogenous stem cell therapies, NPCs, bone-marrow derived stem cells (BMSCs), and immortalized cell lines have been widely used in the treatment of cerebral ischemia (Bliss et al., 2010). Transplantation of NPCs following ischemic stroke results in the migration of mature and immature neurons towards the injured brain regions, as a result of long-term cell survival, electrical balance, synaptic plasticity recovery (Daadi et al., 2009; Clarkson et al., 2010; Darsalia et al., 2011; Bacigaluppi et al., 2016), and functional outcome improvement (i.e., sensorimotor and memory) (Jin et al., 2010). The major advantage of the NPCs therapy is NPCs’ self-differentiate abilities into astrocytes, neurons, and oligodendrocytes (Gage, 2000; Chojnacki and Weiss, 2008). However, NPCs are commonly associated with teratoma formation due to their endless self-renewing ability (Rong et al., 2012), which reduces NPCs’ therapeutic efficacy in the treatment of cerebral ischemia indicating that further studies are necessary to evaluate safety and efficacy of NPCs in the treatment against cerebral ischemia.

BMSCs are another type of multipotent stem cells with high-differentiation and migration (Polymeri et al., 2016). BMSCs’ anti-inflammatory, immune suppressive, and low tissue rejection properties (Ryan et al., 2005; Zhao et al., 2012; Ankrum et al., 2014) provide therapeutic potential in
the treatment against cerebral ischemia. In vivo studies have shown that implantation of BMSCs in rats after cerebral ischemia results in an increase in axonal sprouting (Li et al., 2000), neurogenesis, and angiogenesis (Chen et al., 2001, 2003; Yoo et al., 2008; Xin et al., 2013a), thus reducing brain injury, neuronal cell death, and neurological deficits (Chen et al., 2003; Zheng et al., 2010; Xin et al., 2013a). Mechanisms underlying BMSCs-induced neuroprotection remains unclear. Previous studies, however, suggest that trophic factors (i.e., brain-derived neurotrophic factor) released from BMSCs after cerebral ischemia are the major contributors to BMSCs-induced angiogenesis and regrowth/repair of nerve tissue (Bao et al., 2011). Additionally, BMSCs have also been reported to reduce the expression of axonal-growth inhibitory proteins (i.e., Rho-associated and coiled-coil-containing protein kinase 2) (Song et al., 2013), thus enhancing axon growth and formation following cerebral ischemia.

In addition to NPCs and BMSCs, recent studies also focus on investigating the therapeutic potential of immortalized cell lines as another option for cerebral ischemia treatment due to immortalized cell lines' ability to proliferate indefinitely (Kondziolka et al., 2000, 2005; Stroemer et al., 2009). Furthermore, immortalized cell lines can differentiate into oligodendroglial and endothelial cells to promote/restore endogenous neurogenesis in the SVZ after cerebral ischemia (Stroemer et al., 2009). Thus, treatment with immortalized cell lines (i.e., CTX0E03) can enhance functional sensorimotor recovery (evaluated via bilateral asymmetry and rotometer test) after cerebral ischemia elicited by MCAO. Since immortalized cell lines are mainly derived from tumor cells and contain oncogenes, the major drawback of immortalized cell lines is their propensity to form tumors. Although results from several Phase I and II clinical trials suggest that implantation of Ntera2/D1 neuron-like cells, another immortalized cell line derived from teratocarcinoma, has no adverse effects in stroke patients (Kondziolka et al., 2000, 2005), more studies are needed to evaluate the safety and efficacy of the immortalized cell lines in the treatment against cerebral ischemia.

Conclusions

Despite improved education (i.e., dietary), psychological care, and better therapeutic treatments (i.e., less door-to-needle time for plasminogen activator), cerebral ischemia is still one of the leading causes of morbidity and mortality worldwide (Lopez et al., 2006; Feigin et al., 2009). The stroke-related costs are expected to reach 240.67 billion by 2030 according to the American Heart Association (Ovbiagele et al., 2013) indicating that developing novel therapies that can effectively alleviate post-stroke long-term disability is greatly needed. Although more studies are needed to evaluate the safety and efficacy of the novel neuroregenerative agents as we have already discussed, agents that have been investigated in clinical studies, such as hypothermia, bolus injection of bupivacaine and clonidine in the superior cervical ganglion, neuromodulation therapy, stem cell and traditional Chinese therapies should be considered for treatment against stroke and general ischemia.

Author contributions: RHCL, MHHL: drafted manuscript, revised manuscript critically for important intellectual content, and final approval. CYCW, ACS, HEP, THH: drafted manuscript and final approval. AM, and HWL: revised manuscript critically for important intellectual content and final approval.

Conflicts of interest: None declared.

Financial support: This work was supported by the National Institutes of Health/National Institute of Neurological Disorders and Stroke grant R01NS096225-01A1, the American Heart Association grants AHA-13SDG1395001413, AHA-17GRNT33660336, AHA-17POST33660174, The Louisiana State University Grant in Aid research council, and The Malcolm Feist Cardiovascular Research Fellowship.

Plagiarism check: Checked twice by iThenticate.

Peer review: Externally peer reviewed.

Open access statement: This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial-Share-aLike 3.0 License, which allows others to remix, tweak, and build upon the work non-commercially, as long as the author is credited and the new creations are licensed under identical terms. Open peer reviewer: Shasha Li, Harvard Medical School, USA.

References

Adkins-Muir DL, Jones TA (2003) Cortical electrical stimulation combined with rehabilitative training: enhanced functional recovery and dextric plasticity following focal cortical ischemia in rats. Neurol Res 25:780-788.

Allman C, Amadi U, Winkler AM, Wilkins L, Filippini N, Kischu U, Stagg CJ, Johannsen-Berg H (2016) Ipsilateral anodal tDCS enhances the functional benefits of rehabilitation in patients after stroke. Sci Transl Med 8.330tre331.

Amarencio P, Lavallee PC, Labreuche J, Albers GW, Bornstein NM, Canhao P, Caplan LR, Donnan GA, Ferro JM, Hennerici MG, Molino C, Rothwell PM, Sisanti L, Skoloudik D, Steg PG, Touboul PJ, Uchiyama S, Varga E, Wong IK, Investigators Tio (2016) One-year risk of stroke after transient ischemic attack or minor stroke. N Engl J Med 374:1533-1542.

Anderson DJ (2001) Stem cells and pattern formation in the nervous system: the possible versus the actual. Neuron 30:19-35.

Akrum JA, Ong JF, Karp JM (2014) Mesenchymal stem cells: immune evasive, not immune privileged. Nat Biotechnol 32:252-260.

Avdissos A, Collin T, Kiri K, Kokaia Z, Lindvall O (2002) Neuronal replacement from endogenous precursors in the adult brain after stroke. Nat Med 8:963-970.

Azad TD, Veeravagu A, Steinberg GK (2016) Neurorestoration after stroke. Neurourolog Focus 40:32.

Bacigaluppi M et al. (2016) Neural stem cell transplantation induces stroke recovery by upregulating glutamate transporter GLT-1 in astrocytes. J Neurosci 36:10529-10544.

Bao X, Wei J, Feng M, Lu S, Li G, Dou W, Ma W, Ma S, An Y, Qin C, Zhao RC, Wang B (2011) Transplantation of human bone marrow-derived mesenchymal stem cells promotes behavioral recovery and endogenous neurogenesis after cerebral ischemia in rats. Brain Res 1367:103-113.

Beckman JS, Beckman TW, Chen J, Marshall PA, Freeman BA (1990) Apparent hydroxyl radical production by peroxynitrite: implications for endothelial injury from nitric oxide and superoxide. Proc Natl Acad Sci USA 87:1620-1624.

Belenky P, Bogan KL, Brenner C (2007) NAD+ metabolism in health and disease. Trends Biochem Sci 32:12-19.

Benveniste H, Drejer J, Schousboe A, Diemer NH (1984) Elevation of the extracellular concentrations of glutamate and aspartate in rat hippocampus during transient cerebral ischemia monitored by intracerebral microdialysis. J Neurochem 43:1369-1374.

Berdichevsky E, Riveros N, Sanchez-Armass S, Orrego F (1983) Kainate, N-methylaspartate and other excitatory amino acids increase calcium influx into rat brain cortex cells in vitro. Neurosci Lett 36:75-80.

Bethel A, Kirsch JR, Koehler RC, Finklespin ST, Traysman RJ (1997) In vivo analysis of injured brain after focal ischemia in cats. Stroke 28:609-615; discussion 615-616.

Biesmans S, Meert TF, Bouwknecht JA, Acton PD, Davoodi N, De Haes P, Biesmans S, Meert TF, Bouwknecht JA, Acton PD, Davoodi N, De Haes P, Bisset KA (1978) Demonstration of the initial cell in Streptomyces griseus by a new microscopic technique. J Gen Microbiol 104:157-159.
Bliss TM, Andres RH, Steinberg GK (2010) Optimizing the success of cell transplantation therapy for stroke. Neurobiol Dis 37:275-283.

Bolanos JP, Almeida A (1999) Roles of nitric oxide in brain hypoxia-ischemia. Biochim Biophys Acta 1411:415-436.

Bonnin S, Ponzo V, Callagheone C, Koch G (2014) Cerebellar theta burst stimulation improves stroke patients with ataxia. Front Neurol 29:41-45.

Borsello T, Clarke PG, Hirt L, Vercelli A, Repici M, Schoreder DF, Bogousslavsky J, Bonny C (2003) A peptide inhibitor of c-Jun N-terminal kinase protects against excitotoxicity and cerebral ischemia. Nat Med 9:1180-1186.

Boyles TM, Woodhams PL, Gordon RD, Balas R (1983) Effects of anoxia on the stimulated release of amino acid neurotransmitters in the cerebellum in vitro. J Neurochem 40:189-201.

Broughton BR, Reynolds DC, Sobey CG (2009) Apoptotic mechanisms after cerebral ischemia. Stroke 40:e331-339.

Busto R, Dietrich WD, Globus MY, Valentas I, Scheinberg P, Ginsberg MD (1987) Small differences in intras ischemic brain temperature critically determine the extent of ischemic neuronal injury. J Cereb Blood Flow Metab 7:729-738.

Caceres JA, Goldstein JK (2012) Intracranial hemorrhage. Emerg Med Clin North Am 30:771-794.

Cai G, Liu B, Liu W, Tan X, Rong J, Chen X, Tong L, Shen J (2008) Antibody against myelin-associated inhibitor of neurite growth neutralizes nonpermissive substrate properties of CNS white matter. Neuron 1:85-96.

Cazzoli D, Muri RM, Schumacher R, von Arx S, Chaves S, Gutbrod K, Bonni S, Ponzo V, Caltagirone C, Koch G (2014) Cerebellar theta burst stimulation reduces disability following the activities of daily living in spatial neglect. Brain 135:3426-3439.

Chen A, Wang H, Zhang J, Wu X, Liao J, Hui C, Wu J, Xue J, Gu (2008) BV3HD rescues activated neurons and promotes functional recovery after spinal cord injury in rats. J Ethnopharmacol 117:451-456.

Chen B, Tao J, Lin Y, Lin R, Liu W, Chen L (2015) Electro-acupuncture exerts beneficial effects against cerebral ischemia and promotes the proliferation of neuro progenitor cells in the cortical peri-infarct area through the Wnt/beta-catenin signaling pathway. Int J Mol Med 36:1213-1222.

Chen GN, Xun G (2010) Sterile inflammation: sensing and reacting to damage. Nat Rev Immunol 10:826-837.

Chen J, Li Y, Wang L, Lu M, Zhang X, Chopp M (2001) Therapeutic benefit of intracerebral transplantation of bone marrow stem cells after cerebral ischemia in rats. J Neurol Sci 189:74-80.

Chen J, Li Y, Katakowski M, Chen X, Wang L, Lu D, Lu M, Gautam SC, Chopp M (2001) Bone marrow stem cell therapy reduces apoptosis and promotes endogenous cell proliferation after stroke in female rats. J Neurosci Res 73:778-786.

Cheng NT, Kim AS (2015) Intravenous thrombolysis for acute ischemic stroke. Continuum 23:82-92.

Crow JP, Beckman JS (1985) The role of peroxyxynitrite in nitric oxide-mediated toxicity. Curr Top Microbiol Immunol 196:57-73.

Culmsee C, Zhu X, Yu QS, Chan SL, Camandola S, Guo Z, Greig NH, Mattson MP (2001) A synthetic inhibitor of p53 protects neurons against death induced by ischemic and excitotoxic insults, and amyloid beta-peptide. J Neurochem 77:220-228.

Cuzzocrea S, Costantino G, Gatto E, Mazzon E, Fulia E, Serraino I, Cordero S, Barberi I, De Sarro A, Caputi AP (2000) Protective effects of melatonin in ischemic brain injury. J Pineal Res 29:217-227.

Daadi MM, Lee SH, Arac A, Grueter BA, Bhattacharjee R, Maag AL, Schaar B, Malekac RG, Palmer TD, Steinberg GK (2009) Functional engraftment of the medial ganglionic eminence cells in experimental stroke model. Cell Transplant 18:815-826.

Darsalia V, Allison SJ, Cusulin C, Monni E, Kuzdas D, Kallur T, Lindvall O, Kokaji Z (2011) Cell number and timing of transplantation determine survival of human neural stem cell grafts in stroke-damaged rat brain. J Cereb Blood Flow Metab 31:235-242.

Davie KR, Bhattacharya SK, Saul I, DeFazio RA, Dezfulian C, Lin HW, Raval AP, Perez-Pinzon MA (2011) Activation of protein kinase C delta following cerebral ischemia leads to release of cytokine C from the mitochondria via bad pathway. PLoS One 6:e22057.

Dawson LA, Dali S, Gonzales C, Vinuela MA, Zaleska MM (2000) Characterization of transient focal ischemia-induced increases in extracellular glutamate and aspartate in spontaneously hypertensive rats. Brain Res Bull 53:767-776.

DeFazio RA, Raval AP, Lin HW, Dave KR, Della-Morte D, Perez-Pinzon MA (2009) GABA synapses mediate neuroprotection after ischemia and epsilonPKC preconditioning in rat hippocampal slice cultures. J Cereb Blood Flow Metab 29:375-384.

Degterev A, Huang Z, Boyce M, Li Y, Jagtap P, Mizushima N, Cuny GD, Mitchison TJ, Moskowitz MA, Yuan J (2005) Chemical inhibitor of nonapoptotic cell death with therapeutic potential for ischemic brain injury. Nat Chem Biol 1:112-119.

Degterev A, Hitomi J, Germisch M, Chen L, Korkina O, Teng X, Abbott D, Cuny GD, Yuan C, Wagner G, Hedrick SM, Gerber SA, Lugovskoy A, Yuan J (2008) Identification of RIP1 kinase as a specific cellular target of necrostatins. Nat Chem Biol 4:313-321.

Dempsey RJ, Sailor KA, Bowen K, Tureyen K, Venuganti R (2003) Stroke-induced progenitor cell proliferation in adult spontaneously hypertensive rat brain: effect of exogenous IGF-1 and GDNF. J Neurochem 87:586-597.

Dietrich WD, Busto R, Halley M, Valdes I (1990) The importance of brain temperature in alterations of the blood-brain barrier following cerebral ischemia. J Neuronal Transpir Ep Neurrol 49:486-497.

Dietrich WD, Halley M, Valdes I, Busto R (1991) Interrelationships between increased vascular permeability and acute neuronal damage following temperature-controlled brain ischemia in rats. Acta Neuropathol 81:615-623.

Dietrich WD, Busto R, Alonso O, Globus MY, Ginsberg MD (1993) Intracerebral but not postischemic brain hypothermia protects chronically following global forebrain ischemia in rats. J Cereb Blood Flow Metab 13:541-549.

Dietrich WD, Alonso O, Busto R, Globus MY, Ginsberg MD (1994) Posttraumatic brain hypothermia reduces histopathological damage following concussive brain injury in the rat. Acta Neuropathol 87:250-258.

do Carmo Cunha J, de Freitas Azvedo Levy B, de Luca BA, de Andrade MS, Gomide VC, Chadi G (2007) Responses of reactive astrocytes containing S100beta protein and fibroblast growth factor-2 in the border and in the adjacent preserved tissue after a contusion injury of the spinal cord in rats: implications for wound repair and neuroregeneration. Wound Repair Regen 15:101-109.

Eliasziw M, Kennedy J, Hill MD, Buchan AM, Barnett HJ, North American Symptomatic Carotid Endarterectomy Trial G (2004) Early risk of stroke and death following carotid endarterectomy. Stroke 35:250-256.

Eliasziw M, Kennedy J, Hill MD, Buchan AM, Barnett HJ, North American Symptomatic Carotid Endarterectomy Trial G (2004) Symptomatic carotid endarterectomy for asymptomatic carotid stenosis. N Engl J Med 350:217-225.

Eliasziw M, Kennedy J, Hill MD, Buchan AM, Barnett HJ, North American Symptomatic Carotid Endarterectomy Trial G (2004) Symptomatic carotid endarterectomy for asymptomatic carotid stenosis. N Engl J Med 350:217-225.

Eliasziw M, Kennedy J, Hill MD, Buchan AM, Barnett HJ, North American Symptomatic Carotid Endarterectomy Trial G (2004) Symptomatic carotid endarterectomy for asymptomatic carotid stenosis. N Engl J Med 350:217-225.

Eliasziw M, Kennedy J, Hill MD, Buchan AM, Barnett HJ, North American Symptomatic Carotid Endarterectomy Trial G (2004) Symptomatic carotid endarterectomy for asymptomatic carotid stenosis. N Engl J Med 350:217-225.
Eltzschig HK, Eckel T (2011) Ischemia and reperfusion—from mechanism to translation. Nat Med 17:1391-1401.

Erickson MA, Banks WA (2011) Cytokine and chemokine responses in serum and brain after single and repeated injections of lipopolysaccharide: multiplex quantification with path analysis. Brain Behav Immun 25:1637-1648.

Fang L, Gao H, Zhang W, Zhang W, Wang Y (2015) Resveratrol alleviates nerve injury after cerebral ischemia and reperfusion in mice by inhibiting inflammation and apoptosis. Int J Clin Exp Med 8:3219-3226.

Farbu E, Kurz KD, Kurz MW (2011) Ischemic stroke—novel therapeutic strategies. Acta Neurol Scand Suppl 282:1-12.

Feiglin VL, Lawes CM, Bennett DA, Barker-Collo SL, Parag V (2009) Worldwide stroke incidence and early case fatality reported in 56 population-based studies: a systematic review. Lancet Neurol 8:355-369.

Fitch MT, Silver J (1997) Activated macrophages and the blood-brain barrier: inflammation after CNS injury leads to increases in putative inhibitory molecules. Exp Neurol 148:587-603.

Gage FH (2000) Mammalian neural stem cells. Science 287:1433-1438.

Garry PS, Ezra M, Rowland MJ, Westbrook J, Pattinson KT (2015) The role of the nitric oxide pathway in brain injury and its treatment— from bench to bedside. Exp Neurol 263:235-243.

Gautier JC, Pullicino P (1985) A clinical approach to cerebrovascular disease. Neuroangiography 27:452-459.

Ghibelli L, Diederich M (2010) Multistep and multitask Bax activation. Mitochondrion 10:604-613.

Gliala S, Cuzza S, Zingarelli B, Salzman AL, Szabo C (1997) Melatonin is a scavenger of peroxynitrite. Life Sci 60:PI169-174.

Glousby MO, Alonso O, Dietrich WD, Busto R, Ginsberg MD (1995) Glutamate release and free radical production following brain injury: effects of posttraumatic hypothermia. J Neurochem 65:1704-1711.

Go AS, Mozaffarieh D, Benjamin EJ, Berry JD, Blaha MJ, Dai S, Ford ES, Fox CS, Franco S, Fullerton HJ, Gillespie C, Halpern SM, Heit JA, Howard VJ, Huffman MD, Judde SE, Kissela BM, Kittner SJ, Lackland DT, et al. (2014) Heart disease and stroke statistics—2014 update: a report from the American Heart Association. Circulation 129:e28-692.

Goldman SA, Nottebohm F (1983) Neuronal production, migration, and differentiation in a vocal control nucleus of the adult female canary brain. Proc Natl Acad Sci U S A 80:2390-2394.

Gonzalez-F, Parielli F, Dupagne B, Buschardt J, Lutter M, Antonsson B, Yang PH, He Y, Liu J, Grossman D, Durrant D, Sweatman T, Lothstein L, Epand RF, He Q, Li Z, Wang Y, Hou Y, Li L, Zhao J (2017) Resveratrol alleviates cerebral ischemia/reperfusion injury in rats by inhibiting NLRP3 inflammasome. Neurosurg Clin N Am 8:195-206.

Gottschaldt K, Lehnardt S, Jain R, Kurihara H, Leininger C, Seifert H, Goesmann A, Surges R, Mayer F, Blöchel D, Ziller R, Mioszynski R, Schild H, Krieglstein K, Takahashi T, Trapp BD, Sies H, Corrado F, Lassmann H, Grill J (2009) Neuroprotection by endogenous neurogenesis in mouse focal cerebral ischemia. PLoS One 8:e56736.

Hong JM, Lee JS, Song HJ, Jeong HS, Choi HA, Lee K (2014) Therapeutic hypothesis after recanalization in patients with acute ischemic stroke. Stroke 45:134-140.

Hong LZ, Zhao XY, Zhang HL (2010) p53-mediated neuronal cell death in ischemic brain injury. Neurobiol Bull 26:232-240.

Hsieh ST, Kidd GJ, Crawford TO, Xu Z, Lin WM, Trapp BD, Cleveland DW, Griffin JW (1994) Regional modulation of neurofilament organization by myelination in normal axons. J Neurosci 14:6392-6401.

Huang J, Ye X, You Y, Liu G, Yang S, Peng J, Hong Z, Tao Y, Chen L (2014a) Electroacupuncture promotes neural cell proliferation in vivo through activation of the ERK1/2 signaling pathway. Int J Mol Med 33:1537-1543.

Huang L, Wu ZB, Zhuge Q, Zheng W, Shao B, Wang B, Sun F, Jin K (2014b) Glial scar formation occurs in the human brain after ischemic stroke. Int J Med Sci 11:344-348.

Huang W, Zhou Z, Wan B, Chen G, Li J (2017) Nuclear Factor kB and Inhibitor of kB: Acupuncture Protection Against Acute Focal Cerebral Ischemia in Rodents. Altern Ther Health Med 23:20-28.

Huang ZJ, He SA, Lei B (2014c) Clinical analysis of acute cerebral infarction by Dengzhuanhua injection and Xiongjin injection combined with Xueaotang treatment. Zhong Yao Cai 37:1093-1095.

Irving EA, Bamford M (2002) Role of mitogen- and stress-activated kinases in ischemic injury. J Cereb Blood Flow Metab 22:631-647.

Iyer SS, Pulskens WP, Sadler JJ, Butter LM, Tsakos G, Ulland TK, Eiken BC, F洛rellin SC, Flavell RA, Leemans JC, Sutterwala FS (2009) Necrotic cells trigger a sterile inflammatory response through the Nlrp3 inflammasome. Proc Natl Acad Sci U S A 106:20388-20393.

Jagtap P, Szabo C (2005) Poly(ADP-ribose) polymerase and the therapeutic effects of its inhibitors. Nat Rev Drug Discov 4:241-240.

Janardhan V, Qureshi AI (2004) Mechanisms of ischemic brain injury. Curr Cardiol Rep 6:117-123.

Jangc G, Karcus S, Kiraly E, Szebeni A, Toth L, Bacity E, Joo F, Purdauc A (1984) Neurotoxin induced nerve cell degeneration: possible involvement of calcium. Brain Res Bull 12:211-216.

Jiang MQ, Zhao YY, Cao W, Wei ZZ, Gu X, Wei L, Yu SP (2017) Long-term survival and regeneration of neuronal and vasculature cells inside the core region after ischemic stroke in adult mice. Brain Pathol 27:480-498.

Jin-qiao S, Bin S, Wen-hao Z, Yi Y (2009) Basic fibroblast growth factor stimulates the proliferation and differentiation of neural stem cells in neonatal rats after ischemic brain injury. Brain Dev 31:331-340.

Jin K, Mao X, Xie L, Galvan V, Lai B, Wang Y, Gorostiza O, Wang X, Greenberg DA (2010) Transplantation of human neural precursor cells in Matrigel scaffolding improves outcome from focal cerebral ischemia after delayed postischemic treatment in rats. J Cereb Blood Flow Metab 30:534-544.

Kabadi SV, Faden AI (2014) Neuroprotective strategies for traumatic brain injury: improving clinical translation. Int J Mol Sci 15:1216-1236.

Kanazawa M, Takahashi T, Nishizawa M, Shimohama T (2017) Therapeutic Strategies to Attenuate Hemorrhagic Transformation After Tissue Plasminogen Activator Treatment for Acute Ischemic Stroke. J Atheroscler Thromb 24:240-253.

Keep RF, Hua Y, Xi G (2012) Intracerebral haemorrhage: mechanisms of injury and therapeutic targets. Lancet Neuro 11:720-731.

Kietridorn S, Jun J, Moens A (2012) Tackling endothelial dysfunction by modulating NOS uncoupling: new insights into its pathogenesis and therapeutic possibilities. Am J Physiol Endocrinol Metab 302:E481-495.

Kelic E, Kelic U, Reiter RJ, Bassetti CL, Hermann DM (2004) Prophylactic melatonin against transient global cerebral ischemia-induced neuronal cell damage via inhibition of caspase-8-independent cell death pathway using the kinase RIP as effector molecule. Nat Immunol 1:489-495.
Lee RHC, Lee MHH, Wu CYC, Couto e Silva A, Possoto HE, Hsieh TH, Minagar A, Lin HW (2018) Cerebral ischemia and neuroregeneration. Neural Regen Res 13(3):373-385. doi:10.4103/1673-5374.228711

Qiu L, Wu X, Block ML, Liu Y, Breese GR, Hong JS, Knapp DJ, Crews FT (2007) Systemic LPS causes chronic neuroinflammation and progressive neurodegeneration. Glia 55:453-462.

Raval AP, Dave KR, Mochly-Rosen D, Sick TJ, Perez-Pinzon MA (2003) Epsilon PKC is required for the induction of tolerance by ischemic and NMDA-mediated preconditioning in the organotypic hippocampal slice. Neurosci 23:384-390.

Reiter PJ, Houle JD (1988) The glial scar: its bearing on axonal elongation and transplantation approaches to CNS repair. Adv Neurol 47:87-138.

Reiter RJ (1991) Pineal melatonin: cell biology of its synthesis and of its physiological interactions. Endocr Rev 12:151-180.

Riva MA, Gale K, Moccetti I (1992) Basic fibroblast growth factor mRNA increases in specific brain regions following convulsive seizures. Brain Res Mol Brain Res 15:311-318.

Rocha S, Silva E, Foerster A, Wiesolek C, Chagas AP, Machado G, Baltar A, Monte-Silva K (2016) The impact of transcranial direct current stimulation (tDCS) combined with modified constraint-induced movement therapy (mCIMT) on upper limb function in chronic stroke: a double-blind randomized controlled trial. Disabil Rehabil 38:653-660.

Rodriguez F, Bonacasa B, Penso F, Salom MG (2013) Reactive oxygen and nitrogen species in the renal ischemia/reperfusion injury. Curr Pharm Des 19:2776-2794.

Rolls A, Shechter R, Schwartz M (2009) The bright side of the glial scar in CNS repair. Nat Rev Neurosci 10:235-241.

Rong Z, Fu X, Wang M, Xu Y (2012) A scalable approach to prevent teratoma formation of human embryonic stem cells. J Biol Chem 287:32338-32345.

Ryan JM, Barry FP, Murphy JM, Mahon BP (2005) Mesenchymal stem cells avoid allogeneic rejection. J Immunol (Lond) 2:8.

Schaller B, Graf R (2004) Cerebral ischemia and reperfusion: the pathophysiological concept as a basis for clinical therapy. J Cereb Blood Flow Metab 24:351-357.

Schielke GP, Yang GY, Shivers BD, Betz AL (1998) Reduced ischemic brain injury in interleukin-1 beta converting enzyme-deficient mice. J Cereb Blood Flow Metab 18:180-186.

Schmidt OI, Heyde CE, Ertel W, Stahel PF (2005) Closed head injury--an in vivo model of human brain trauma. Stroke 4:2361-2375.

Pantoni L, Gorelick PB (2014) Cerebral Small Vessel Disease. Cambridge, United Kingdom: Cambridge University Press.

Park SM, Choi MS, Sohn NW, Shin JW (2012) Ginsenoside Rg3 attenuates microglia activation following systemic lipopolysaccharide treatment in mice. Biol Pharm Bull 35:1546-1552.

Pei Z, Pang SF, Cheung YT (2003) Administration of melatonin after onset of ischemia reduces the volume of cerebral infarction in a rat middle cerebral artery occlusion stroke model. Stroke 34:770-775.

Pei Z, Pang SF, Cheung YT (2003) Administration of melatonin after onset of ischemia reduces the volume of cerebral infarction in a rat middle cerebral artery occlusion stroke model. Stroke 34:770-775.

Peters O, Back T, Lindauer U, Busch C, Megow D, Dreier J, Dirnagl U (2005) Difficult hypertension: practical management and decision making. BMJ 311:293-295.

Shen J, Qiu X, Jiang B, Zhang D, Xin W, Fung PC, Zhao B (2003) Nitric oxide and oxygen radicals induced apoptosis via bcl-2 and p53 pathway in hypoxia-reoxygenated cardiomyocytes. Sci China C Life Sci 46:28-39.

Shen J, Zhu Y, Yu H, Fan ZX, Xiao F, Wu P, Zhang QH, Xiong XX, Pan JW, Zhan RN (2014) Buyang Huanwu decoction increases angiopoietin-1 expression and promotes angiogenesis and functional outcome after focal cerebral ischemia. J Zhejiang Univ Sci B 15:272-280.

Shimohata T, Zhao H, Steinberg GK (2007a) Epsilon PKC may contribute to the protective effect of hypothermia in a rat focal cerebral ischemia model. Stroke 38:375-380.

Shimohata T, Zhao H, Sun GH, Sun G, Mochly-Rosen D, Steinberg GK (2007b) Suppression of deltaPKC activation after focal cerebral ischemia contributes to the protective effect of hypothermia. J Cereb Blood Flow Metab 27:1463-1475.

Siegel CS, McCullough LD (2013) NAD+ and nicotinamide: sex differences in cerebral ischemia. Neuroscience 237:223-231.

Silver J, Miller JH (2004) Regression beyond the glial scar. Nat Rev Neurosci 5:146-156.

Silverstein FS, Buchanan K, Johnson KM (1986) Perinatal hypoxia-ischemia disrupts striatal high-affinity [3H]glutamate uptake into synaptosomes. J Neurochem 47:1643-1647.

Staufenbiel M, Li D, Snyder EW, Sidman RL, Pasqualini R, Arap W (2009) Discovery of a functional protein complex of netrin-4, laminin gamma1 chain, and integrin alpha6beta1 in mouse neural stem cells. Proc Natl Acad Sci U S A 106:2903-2908.
Stroemer P, Patel S, Hope A, Oliveira C, Pollock K, Sinden J (2009) The neural stem cell line CTX0603 promotes behavioral recovery and endogenous neurogenesis after experimental stroke in a dose-dependent fashion. Neurorehabil Neural Repair 23:895-909.

Takami K, Kiyota Y, Iwane M, Miyamoto M, Tsukuda R, Igashiri K, Shino A, Wanaka A, Shiosaka S, Tofiyama M (1993) Upregulation of fibroblast growth factor-receptor messenger RNA expression in rat brain following transient forebrain ischemia. Exp Brain Res 97:185-194.

Tan F, Wang X, Li HQ, Lu L, Li M, Li JH, Fang M, Meng D, Zheng GQ (2013) A randomized controlled pilot study of the triple stimulation technique in the administration of electroacupuncture for motor function recovery in patients with acute ischemic stroke. Evid Based Complement Alternat Med 2013:431986.

Teskey GC, Flynn C, Goertzen CD, Monfils MH, Young NA (2003) Cortical stimulation improves skilled forelimb use following a focal ischemic infarct in the rat. NeuroRes 25:794-800.

Tordoir L, Chen JS, Delorme R, Carriére A, Bellissant E, Iaffari N, Fougerou C (2017) Melatonin: Pharmacology, Functions, and Therapeutic Benefits. Curr Neuropharmacol 15:434-443.

Tregear MM, Romand JA, Martin JB, Revedin A, Rufenacht DA, de Tribolet N (2003) Cervical sympathetic block to reverse delayed ischemic neurological deficits after aneurysmal subarachnoid hemorrhage. Stroke 34:961-967.

Tremblay ME, Stevens B, Sierra A, Wake H, Bessis A, Nimmerjahn A (2011) The role of microglia in the healthy brain. J Neurosci 31:16064-16069.

Tricosa LT, Eddleston M, Hughes A, Verheyden G, Deukhan M, Rothwell J (2015) A double-blinded randomised controlled trial exploring the effect of anodal transcranial direct current stimulation and uni-lateral robot therapy for the impaired upper limb in sub-acute and chronic stroke. NeuroRehabilitation 37:181-191.

Trounson A, McDonald C (2015) Stem cell therapies in clinical trials: progress and challenges. Cell Stem Cell 17:11-22.

Tsai SK, Hung LM, Fu YT, Cheng H, Nien MW, Liu HY, Zhang FB, Huang Y (2005) Cervical sympathetic block to reverse delayed ischemic neurological deficits after aneurysmal subarachnoid hemorrhage. Stroke 36:346-353.

van Asch CJ, Luitse MJ, Rinkel GJ, van der Tweel I, Algra A, Klijn CJ (2010) Incidence, case fatality, and functional outcome of intracerebral haemorrhage over time, according to age, sex, and ethnic origin: a systematic review and meta-analysis. Lancet Neurol 9:167-176.

Vitturi DA, Patel RP (2011) Current perspectives and challenges in understanding the role of nitrite as an integral player in nitric oxide biology and therapy. Free Radic Biol Med 51:805-812.

Wagner JP, Black IB, DiCicco-Bloom E (1999) Stimulation of neonatal and adult brain neurogenesis by subcutaneous injection of basic fibroblast growth factor. J Neurosci 19:6006-6016.

Wang ZL, Cheng SM, Ma MM, Ma YP, Yang JP, Xu GL, Liu XF (2008) Intranasally delivered BFGF enhances neurogenesis in adult rats following cerebral ischemia. Neurosci Lett 446:30-35.

Wardlaw JM, Smith C, Dichgans M (2013a) Mechanisms of sporadic cerebral ischemia-reperfusion injury. Acta Neurol Belg 113:279-284.

Yao YG, He Z (2006) Glial inhibition of CNS axon regeneration. Nat Rev Neurosci 7:617-627.

Yoo SW, Kim SS, Lee SY, Lee HS, Kim HS, Lee YD, Suh-Kim HY (2008) Mesenchymal stem cells promote proliferation of endogenous neural stem cells and survival of newborn cells in a rat stroke model. Exp Mol Med 40:387-397.

Yoshimura S, Takagi Y, Harada J, Teramoto T, Thomas SS, Waerber B, Bakowska JC, Breakefield XO, Moskovitz MA (2001) FGF-2 regulation of neurogenesis in adult hippocampus after brain injury. Proc Natl Acad Sci USA 98:5874-5879.

Yuan J (2009) Neuroprotective strategies targeting apoptotic and necrotic cell death for stroke. Apoptosis 14:469-477.

Zechel S, Werner U, Unsicker K, von Bohlen und Halbach O (2010) Expression and functions of fibroblast growth factor 2 (FGF-2) in hippocampal formation. Neuroscientist 16:357-373.

Zhang P, Lei X, Sun Y, Zhang H, Chang L, Li C, Liu D, Bhata N, Zhang Z, Jiang C (2016) Regenerative repair of Pifithrin-alpha in cerebral ischemia via VEGF dependent manner. Sci Rep 6:26295.

Zhang S, Wu B, Liu M, Li N, Zeng X, Liu H, Yang Q, Han Z, Rao P, Wang D, all I (2015) Acupuncture efficacy on ischemic stroke recovery: multi-center randomized controlled trial in China. Stroke 46:1301-1306.

Zhao E, Xu H, Wang L, Kryczek I, Wu K, Hu Y, Wang G, Zou W (2012) Neuron-specific peroxisome proliferator-activated receptors alpha and delta regulate brain injury following global ischemia. Proc Natl Acad Sci USA 98:4323-4328.