Resequencing and signatures of selection scan in two Siberian native sheep breeds point to candidate genetic variants for adaptation and economically important traits

J. Sweet-Jones*, A. A. Yurchenko†, A. V. Igoshin†, N. S. Yudin†, M. T. Swain‡ and D. M. Larkin*†
*Royal Veterinary College, University of London, London NW1 0TU, UK. †The Federal Research Center Institute of Cytology and Genetics, The Siberian Branch of the Russian Academy of Sciences (ICG SB RAS), Novosibirsk 630090, Russia. ‡Institute of Biological, Environmental and Rural Sciences, University of Aberystwyth, Aberystwyth SY23 3DA, UK.

Summary
Russian sheep breeds represent an important economic asset by providing meat and wool, whilst being adapted to extreme climates. By resequencing two Russian breeds from Siberia: Tuva (n = 20) and Baikal (n = 20); and comparing them with a European (UK) sheep outgroup (n = 14), 41 million variants were called, and signatures of selection were identified. High-frequency missense mutations on top of selection peaks were found in genes related to immunity (LOC101109746) in the Baikal breed and wool traits (IDUA), cell differentiation (GLIS1) and fat deposition (AADACL3) in the Tuva breed. In addition, genes found under selection owing to haplotype frequency changes were related to wool traits (DSC2), parasite resistance (CLCA1), insulin receptor pathway (SOCS6) and DNA repair (DDB2) in the Baikal breed, and vision (GPR179) in the Tuva breed. Our results present candidate genes and SNPs for future selection programmes, which are necessary to maintain and increase socioeconomic gain from Siberian breeds.

Keywords local breeds, selection, sheep, whole-genome resequencing

Following the domestication of sheep (*Ovis aries*) and their migration with human populations, natural selection allowed improved adaptation to local environments, and artificial selection and breed formation affected economically important traits (Zeder, 2008). In Russia, where populations of livestock face environmental stresses in temperature, sheep have been selectively bred to meet production demands while being adapted to their local conditions. Using whole-genome genotyping, Deniskova et al. (2018) demonstrated genetic clustering of Russian breeds based on their wool type and further showed coarse wool breeds clustering with Asian breeds, and fine-wool breeds with European breeds. Therefore, it may be expected that each of these two clusters would demonstrate distinct molecular traces of adaptation. This was shown through a signatures of selection scan using high-density genotyping of 15 Russian sheep breeds (Yurchenko et al., 2019). Promising candidate gene regions were identified including those linked to wool traits, environmental adaptations, and domestication. The next step is to identify candidate genetic variants contributing to adaptations and economic traits. The aim of this study was to identify candidate genes containing missense SNPs under selection from two resequenced Russian sheep breeds from Siberia – the Tuva and Baikal.

Samples of two Russian breeds, a fine-wool Baikal long-thin-tailed sheep (n = 20) and a coarse-wool Tuva short-fat-tailed sheep (n = 20) were resequenced to approximately 15× raw coverage using paired-ended Illumina reads (150 bp) by Novogene (Hong Kong). In addition, 11 samples from 11 UK sheep breeds were resequenced to approximately 13× raw coverage each, and three samples from three additional UK breeds were downloaded from the Sequence Repository Archive (Table S1). Russian sheep samples were described in Yurchenko et al. (2019) whereas the UK samples were described in Heaton et al. (2014) and Beynon et al. (2015). Reads were mapped to Texel reference genome Oar version 3.1 with the BWA-MEM algorithm (BWA version 0.7.10; Li, 2013), then sorted with SAMTOOLS version 0.1.18 (Li et al., 2009). Duplicates were marked and libraries merged with PICARD version 2.18 (http://broadinstitute.github.io/piceand error checking for reads and optical duplicates with CEGAR (Ontanon et al., 2013)).
The decorrelated composite of multiple signals pipeline was used to calculate H_1, H_12, Tajima’s D, $F\text{-}ST$ and $F\text{ST}$ as described in Yurchenko et al. (2019). The method allows integration of the major measures of the signatures of selection into a single statistic (Ma et al., 2015). P-values were converted to q-values to correct for false discovery rate using BioCONDUCTOR qvalue package. q-Values were used to render Manhattan plots using qman manhattan function in R. To identify regions under selection genome-wide, all intervals with SNPs expressing decorrelated composite of multiple signal q-values less than 0.01 were identified. Selected interval boundaries were defined by the first SNP with q-value greater than 0.2 up- and downstream. SNPs found within the regions were annotated using the NGS-SNP pipeline (Grant et al., 2011). Putative effects of missense SNPs were predicted using PolyPhen score range 0–1 (0 = benign, 1 = deleterious; Adzhubei et al., 2013). Representation of haplotypes was rendered by HAPLOSTRIPS (Marnetto & Hue-trá-Sánchez, 2017) from phased SNP data.

Copy number variant (CNV) analyses were conducted with cn.Mops r package (Klambauer et al., 2012) in windows of 700 SNPs. These were merged into CNV regions (CNVRs) with BzOps bedmap function using at least 50% reciprocal overlap in at least three individuals per breed. Duplicate CNVRs were removed and count number was used to infer duplication or deletion. Effective population sizes (N_e) were calculated with SMC++ version 1.15.2 (Terhorst et al., 2017) retrospectively excluding individuals with excessive homozygosity, all SNPs within regions under selection and CNVRs. Generation times of 4 years and mutation rate 1.0×10^{-8} were assumed from the literature (Kijas et al., 2012).

Fifty-four resequenced samples with mean coverage of 11.9× were aligned to the reference genome (Table S1). The GENOME ANALYSIS TOOLKIT pipeline called 41.6 million SNPs, which were pruned to 18.3 million after filtering. Population statistics (Table S2), showed high levels of polymorphic loci in both breeds as well as low inbreeding in the Baikal breed and moderate inbreeding in Tuva. Equal ranges of H_1 were seen in both breeds and the N_e calculated was larger for the Tuva than the Baikal breed (Fig. S1), in line with estimates by Deniskova et al. (2018). Transition–transversion ratios align with those previously seen in commercial cattle breeds (Jiang et al., 2008).

CNV regions covered 1 and 3% of Baikal and Tuva breed genomes respectively (Tables S3 & S4), which overlapped a list of known ovine CNVRs by 78% in Baikal and 81% in Tuva sheep. Non-overlapping CNVRs can be seen in Tables S5 & S6. Four regions under selection in Baikal and 34 in Tuva breeds overlapped CNVRs present in their respective breeds (Tables S7 & S8). These regions, clustering on OAR3, OAR6 and OAR17 in Tuva and OAR17 in Baikal breeds, were treated as artefacts of alignment and SNPs from these regions were discounted from the selection scan.

The remaining 739 selected intervals (Baikal = 296; Tuva = 443) spanned 1.0 and 1.3 Mbp in Baikal and Tuva breeds respectively containing 15 954 and 24 978 SNPs where 3084 (19%) and 9430 (38%) SNPs were not present in the NCBI SNPdb. Annotaton of SNPs in the regions under selection found 31 missense mutations in Baikal (Table S9) and 12 in Tuva sheep (Table S10). DAVID functional clustering demonstrated enrichment for ubiquitination, transmembrane helix proteins and keratin filament formation terms in Baikal (Table S11) and none in the Tuva breed. A list of all genes found within the regions under selection entered for DAVID analysis is available (Tables S12 & S13).

We focused on the genes found in the top selected intervals with the difference in allele frequencies between populations supported by F_{ST} or haplotype analysis ($H1$/$H2$ statistics; Fig. 1: Table 1). In the Baikal sheep, DSC2 (q-
Table 1 Positions of loci under selection in the Baikal and Tuva breed genomes

OAR Interval	Missense position	breed	Gene	Reference allele	Alternate allele	Mutation	PolyPhen score	Strongest statistic (value)	statistic q-Value	Function	Accession number
1 27 855 091–27 857 655	27 857 114	Tuva	GLIS1	T	G1	T215P	0.000	F_ST (0.3)	0.001	Cell fate	rs426118206
1 62 996 080–62 996 303	62 997 655	Baikal	CLCA1	A	T1	C229S	0.600	F_ST (0.5)	0.0004	Metabolism	rs159996479
2 190 814 967–190 816 753	190 815 407	Baikal	SOCS6	A	T1	C229S	0.600	F_ST (0.5)	0.0004	Metabolism	rs159996479
6 116 488 669–116 512 658	116 493 086	Tuva	IDUA	A	T1	C229S	0.600	F_ST (0.5)	0.0004	Metabolism	rs159996479
11 38 565 876–38 568 609	38 568 331	Tuva	GPR117	G	T1	C229S	0.600	F_ST (0.5)	0.0004	Metabolism	rs159996479
12 52 799 667–52 807 569	52 800 010	Tuva	AAACL3	C1	T	V355I	0.001	F_ST (0.6)	0.0009	Metabolism	rs405926468
15 75 333 055–75 345 371	75 337 780	Baikal	DDB2	A	T	V355I	0.001	F_ST (0.6)	0.0009	Metabolism	rs405926468
20 7 355 294–7 356 865	7 356 331	Baikal	LOC101109746	T	A1	R655S	0.005	F_ST (0.3)	0.009	Immunity	rs416908264
23 26 347 439–26 352 033	26 347 620	Baikal	DSC2	A	T	R655S	0.005	F_ST (0.3)	0.009	Immunity	rs416908264

1 Denotes selected allele.
2 Denotes listed statistics are at maximum: H1/H12 = 1, Pi = 0, Tajima’s D = –2.
value = 0.001), which encodes a desmosomal protein found in hair follicles, linked to cashmere traits in goats (Simpson et al., 2009; Wang et al., 2016), overlapped a selected interval with the strongest signal originating from the H1/H2 statistics. We failed to identify missense mutations with large FST values in the gene, suggesting that selection probably acts on haplotypes. This locus was previously found under selection in a scan for selected regions in Russian long-haired sheep (Yurchenko et al., 2019). Three additional genes in Baikal breed overlapped intervals recognised by H1/H2 statistics: CLCA1, a chloride channel regulatory protein, upregulated in sheep resistant to Teladorsagia infection (Chitneedi et al., 2018); SOCS6, which is known to regulate the insulin receptor pathway (Krebs et al., 2002); and DDB2, which recruits DNA repair factors after ultraviolet radiation damage (Nag et al., 2001). Only one of the top signatures of selection contained missense mutation with a high FST (FST = 0.3) in the LOC101109746 gene which encodes the HLA class II histocompatibility antigen DM beta chain, needed for the major histocompatibility complex for antigen presentation to the adaptive immune system (Fling et al., 1994: Fig 1).

Tuva sheep showed multiple missense mutations on the top peaks of selected regions supported by the FST statistics. Of these, the strongest signature of selection was found in the derived allele of IDUA (q-value = 0.0004; FST = 0.5), encoding -iduronidase. Human pathologies in this gene lead to mucopolysaccharidosis type I, which presents a global phenotype that includes coarse hair (Scott et al., 1995; Kloska et al., 2005). Furthermore, an alternative allele of GLIS1, an enhancer of pluripotency markers (Maekawa et al., 2011), and the reference allele of AADACL3, which is associated with fat deposition in Chinese sheep breeds (Lu et al., 2020), were found in the regions under selection with support from FST. The reference allele of GPR179, highlighted by H1/H2 statistics, which is linked to genetic blindness, was also found under selection in Tuva sheep (Audo et al., 2012).

The results of this study, based on whole-genome resequencing, point to stronger and often more narrow signatures of selection than previously reported in the literature using the same two Russian sheep breeds but with high-density genotyping data (Yurchenko et al., 2019). Owing to whole-genome resequencing data, we were able to point to novel candidate SNPs and haplotypes under selective pressure in both breeds. These include haplotypes in candidate genes and missense SNP candidates for wool traits, fat deposition and immunity in the Baikal and Tuva sheep breeds. Knowledge of these genetic variants confers insight into the adaptations of each breed to its local environment, highlights economically important traits and provides variations for marker-assisted breeding.

Acknowledgements
The work was supported by the Russian Science Foundation grant RSF 19-76-20026.

Data availability statement
Sequence data for Russian and UK breeds are available from the NCBI SRA with the Bioproject ID: PRJNA646642.

References
Adzhubei I., Jordan D.M. & Sunyaev S.R. (2013) Predicting functional effect of human missense mutations using PolyPhen-2. Current Protocols in Human Genetics 76, 7–20.
Audo I., Bujakowska K., Orhan E. et al. (2012) Whole-exome sequencing identifies mutations in GPR179 leading to autosomal-recessive complete congenital stationary night blindness. American Journal of Human Genetics 90, 321–30.
Beynon S.E., Slavov G.T., Farré M. et al. (2015) Population structure and history of the Welsh sheep breeds determined by whole genome genotyping. BMC Genetics 16, 65.
Chitneedi P. K., Suárez-Vega A., Martínez-Valladares M., Arranz J. & Gutiérrez-Gil B. (2018) Exploring the mechanisms of resistance to Teladorsagia circumcincta infection in sheep through transcriptome analysis of abomasal mucosa and abomasal lymph nodes. Veterinary Research, 49(1), e39.
Danecek P., Auton A., Abecasis G. et al. (2011) The variant call format and VCF tools. Bioinformatics 27, 2156–8.
Deniskova T.E., Dotsev A.V., Selionova M.I. et al. (2018) Population structure and genetic diversity of 25 Russian sheep breeds based on whole-genome genotyping. Genetics Selection Evolution 50, 29.
Fling S.P., Arp B. & Pious D. (1994) HLA-DMA and -DMB genes are recognized by the major histocompatibility antigen DM beta chain, needed for the major histocompatibility complex for antigen presentation to the adaptive immune system (Fling et al., 1994: Fig 1).
Grant J.R., Arantes A.S., Liao X. & Stothard P. (2011) In-depth annotation of SNPs arising from resequencing projects using NGS-SNP. Bioinformatics 27, 2300–1.
Heaton M.P., Leymaster K.A. & Kalbfleisch T.S. (2014) SNPs for parentage testing and traceability in globally diverse breeds of sheep. PLoS One 9, e94851.
Huang D.W., Sherman B.T. & Lempicki R.A. (2009) Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nature Protocols 4, 44–57.
Jiang Z., Wu X.-L., Zhang M., Michal J.J. & Wright R.W. Jr (2008) The complementary neighborhood patterns and methylation-to-mutation likelihood structures of 15,110 single-nucleotide polymorphisms in the bovine genome. Genetics 180, 619–47.
Kijas J.W., Lenstra J.A., Hayes B. et al. (2012) Genome-wide analysis of the world’s sheep breeds reveals high levels of historic mixture and strong recent selection. PLoS Biology 10, e1001258.
Klambauer G., Schwarzauer K., Mayr A., Clevert D.-A., Mitterecker A., Bodenhofer U. & Hochreiter S. (2012) cnMOPS: mixture of Poissons for discovering copy number variations in next-generation sequencing data with a low false discovery rate. Nucleic Acids Research 40, e69.
Kloska A., Bohdanowicz J., Konopa G., Tylki-Szymańska A., Jakóbkiewicz-Banecka J., Czartoryska B., Liberek A., Węgrzyn
A. & Węgrzyn G. (2005) Changes in hair morphology of mucopolysaccharidosis I patients treated with recombinant human α-L-iduronidase (laronidase, Aldurazyme). American Journal of Medical Genetics 139A, 199–203.

Krebs D.L., Uren R.T., Metcalf D. et al. (2002) SOCS-6 binds to insulin receptor substrate 4, and mice lacking the SOCS-6 gene exhibit mild growth retardation. Molecular and Cellular Biology 22, 4567–78.

Li H. (2013) Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. arXiv, 1303.3997v2. https://arxiv.org/abs/1303.3997v2

Li H., Handsaker B., Wysoker A., Fennell T., Ruan J., Homer N., Marth G., Abecasis G. & Durbin R. (2009) The sequence alignment/map format and SAMtools. Bioinformatics 25, 2078–9.

Lu Z., Yue Y., Yuan C. et al. (2020) Genome-wide association study of body weight traits in chinese fine-wool sheep. Animals 10, 170.

Ma Y., Ding X., Qanbari S., Weigend S., Zhang Q. & Simianer H. (2015) Properties of different selection signature statistics and a new strategy for combining them. Hereditiy 115, 426–36.

Maekawa M., Yamaguchi K., Nakamura T., Shibukawa R., Kodanaka I., Ichisaka T., Kawamura Y., Mochizuki H., Goshima N. & Yamanaka S. (2011) Direct reprogramming of somatic cells is promoted by maternal transcription factor Glis1. Nature 474, 225–9.

Marnetto D. & Huerta-Sánchez E. (2017) Haplostrips: revealing population structure through haplotype visualization. Methods in Ecology and Evolution 8, 1389–92.

McKenna, A., Hanna, M., Banks, E., Sivachenko, A., Cibulskis, K., Kernytsky, A., Garimella, K., Altshuler, D., Gabriel, S., Daly, M. & DePristo, M. A. (2010) The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Research, 20, 1297–1309.

Nag A., Bondar T., Shiv S. & Raychaudhuri P. (2001) The xerodera pigmentosum group E gene product DDB2 is a specific target of cullin 4A in mammalian cells. Molecular and Cellular Biology 21, 6738–47.

Purcell S., Neale B., Todd-Brown K. et al. (2007) PLINK: a tool set for whole-genome association and population-based linkage analyses. American Journal of Human Genetics 81, 559–75.

Scott H. S., Bunge S., Gal A., Clarke L. A., Morris C. P. & Hopwood J. J. (1995) Molecular genetics of mucopolysaccharidosis type I: Diagnostic, clinical, and biological implications. Human Mutation, 6(4), 288–302.

Simpson M.A., Mansour S., Alnood D., Kalidas K., Patton M.A., McKenna W.J., Behr E.R. & Crosby A.H. (2009) Homozygous mutation of desmocollin-2 in arrhythmogenic right ventricular cardiomyopathy with mild palmoplantar keratoderma and woolly hair. Cardiology 113, 28–34.

Terhorst J., Kamm J.A. & Song Y.S. (2017) Robust and scalable inference of population history from hundreds of unphased whole genomes. Nature Genetics 49, 303–9.

Wang X., Liu J., Zhou G. et al. (2016) Whole-genome sequencing of eight goat populations for the detection of selection signatures underlying production and adaptive traits. Scientific Reports 6, 38932.

Yurchenko A.A., Deniskova T.E., Yudin N.S. et al. (2019) High-density genotyping reveals signatures of selection related to acclimation and economically important traits in 15 local sheep breeds from Russia. BMC Genomics 20, 294.

Zeder M.A. (2008) Domestication and early agriculture in the Mediterranean Basin: origins, diffusion, and impact. Proceedings of the National Academy of Sciences 105, 11597–604.

Supporting information
Additional supporting information may be found online in the Supporting Information section at the end of the article.

Figure S1. Demographic inference of Baikal and Tuva Russian sheep breeds scaled to standard mutation rate (1.0 × 10^{-8}) and generation years (4)

Table S1. List of genes entered for DAVID clustering analysis of the Tuva breed