On a class of critical N-Laplacian problems

Tsz Chung Ho and Kanishka Perera
Department of Mathematical Sciences
Florida Institute of Technology
Melbourne, FL 32901, USA
tho2011@my.fit.edu & kperera@fit.edu

Abstract

We establish some existence results for a class of critical N-Laplacian problems in a bounded domain in \mathbb{R}^N. In the absence of a suitable direct sum decomposition of the underlying Sobolev space to which the classical linking theorem can be applied, we use an abstract linking theorem based on the \mathbb{Z}_2-cohomological index to obtain a nontrivial critical point.

1 Introduction

In this paper we establish some existence results for the class of critical N-Laplacian problems

\[
\begin{aligned}
-\Delta_N u &= h(u) e^\alpha |u|^{N'} \quad \text{in } \Omega \\
u &= 0 \quad \text{on } \partial \Omega,
\end{aligned}
\]

(1.1)

where Ω is a smooth bounded domain in \mathbb{R}^N, $N \geq 2$, $\alpha > 0$, $N' = N/(N-1)$ is the Hölder conjugate of N, and h is a continuous function such that

\[
\lim_{|t| \to \infty} h(t) = 0
\]

(1.2)

and

\[
0 < \beta := \liminf_{|t| \to \infty} th(t) < \infty.
\]

(1.3)

$^*\text{MSC2010:}$ Primary 35J92, Secondary 35B33, 35B38

$^{Key \ Words \ and \ Phrases:}$ critical N-Laplacian problems, existence, critical points, linking, \mathbb{Z}_2-cohomological index
This problem is motivated by the Trudinger-Moser inequality

$$\sup_{u \in W^{1,N}_0(\Omega), \|u\| \leq 1} \int_{\Omega} e^{\alpha_N |u|^N} \, dx < \infty,$$

(1.4)

where $W^{1,N}_0(\Omega)$ is the usual Sobolev space with the norm

$$\|u\| = \left(\int_{\Omega} |\nabla u|^N \, dx \right)^{1/N},$$

and

$$\alpha_N = N \omega_{N-1}^{1/(N-1)},$$

and

$$\omega_{N-1} = \frac{2\pi^{N/2}}{\Gamma(N/2)}$$

is the area of the unit sphere in \mathbb{R}^N (see Trudinger [14] and Moser [10]). Problem (1.1) is critical with respect to this inequality and hence lacks compactness. Indeed, the associated variational functional satisfies the Palais-Smale compactness condition only at energy levels below a certain threshold (see Proposition 2.1 in the next section).

In dimension $N = 2$, problem (1.1) is semilinear and has been extensively studied in the literature (see, e.g., [2, 3, 4, 6]). In dimensions $N \geq 3$, this problem is quasilinear and has been studied mainly when

$$G(t) := \int_0^t h(s) e^{\alpha |s|^N} \, ds \leq \lambda |t|^N$$

for some $\lambda \in (0, \lambda_1)$ (see, e.g., [1, 5, 9]). Here

$$\lambda_1 = \inf_{u \in W^{1,N}_0(\Omega) \setminus \{0\}} \frac{\int_{\Omega} |\nabla u|^N \, dx}{\int_{\Omega} |u|^N \, dx}$$

(1.6)

is the first eigenvalue of the eigenvalue problem

$$\begin{cases}
-\Delta_N u = \lambda |u|^{N-2} u & \text{in } \Omega \\
\quad u = 0 & \text{on } \partial\Omega.
\end{cases}$$

(1.7)

The case $h(t) = \lambda |t|^{N-2} t$ with $\lambda > 0$, for which $\beta = \infty$, was recently studied in Yang and Perera [13]. The remaining case, where $N \geq 3$, $\lambda \geq \lambda_1$, and $\beta < \infty$, does not seem to have been studied in the literature. This case is covered in our results here, which are for large $\beta < \infty$ and allow $N \geq 3$ and $\lambda \geq \lambda_1$ in (1.5).

Let d be the radius of the largest open ball contained in Ω. Our first result is the following theorem.
Theorem 1.1. Assume that $\alpha > 0$, h satisfies (1.2) and (1.3), and G satisfies

\[
G(t) \geq -\frac{1}{N} \sigma_0 |t|^N \quad \text{for } t \geq 0, \tag{1.8}
\]

\[
G(t) \leq \frac{1}{N} (\lambda_1 - \sigma_1) |t|^N \quad \text{for } |t| \leq \delta \tag{1.9}
\]

for some $\sigma_0 \geq 0$ and $\sigma_1, \delta > 0$. If

\[
\beta > \frac{1}{N\alpha^{N-1}} \left(\frac{N}{d} \right)^N e^{\sigma_0/(N-1) \kappa}, \tag{1.10}
\]

where $\kappa = \frac{1}{N!} \left(\frac{N}{d} \right)^N$, then problem (1.1) has a nontrivial solution.

In particular, we have the following corollary for $\sigma_0 = 0$.

Corollary 1.2. Assume that $\alpha > 0$, h satisfies (1.2) and (1.3), and G satisfies

\[
G(t) \geq 0 \quad \text{for } t \geq 0, \tag{1.12}
\]

\[
G(t) \leq \frac{1}{N} (\lambda_1 - \sigma_1) |t|^N \quad \text{for } |t| \leq \delta
\]

for some $\sigma_1, \delta > 0$. If

\[
\beta > \frac{1}{N\alpha^{N-1}} \left(\frac{N}{d} \right)^N, \tag{1.13}
\]

then problem (1.1) has a nontrivial solution.

Corollary 1.2 should be compared with Theorem 1 of do Ó [9], where this result is proved under the stronger assumption $h(t) \geq 0$ for $t \geq 0$.

To state our second result, let (λ_k) be the sequence of eigenvalues of problem (1.7) based on the \mathbb{Z}_2-cohomological index that was introduced in Perera [11] (see Proposition 2.3 in the next section). We have the following theorem.

Theorem 1.3. Assume that $\alpha > 0$, h satisfies (1.2) and (1.3), and G satisfies

\[
G(t) \geq \frac{1}{N} (\lambda_{k-1} + \sigma_0) |t|^N \quad \forall t, \tag{1.11}
\]

\[
G(t) \leq \frac{1}{N} (\lambda_k - \sigma_1) |t|^N \quad \text{for } |t| \leq \delta \tag{1.12}
\]
for some $k \geq 2$ and $\sigma_0, \sigma_1, \delta > 0$. Then there exists a constant $c > 0$ depending on Ω, α, and k, but not on σ_0, σ_1, or δ, such that if

$$\beta > \frac{1}{\alpha^{N-1}} \left(\frac{N}{d} \right)^N e^{c/\sigma_0^{N-1}},$$

then problem (1.1) has a nontrivial solution.

Theorem 1.3 should be compared with Theorem 1.4 of de Figueiredo et al. \[3, 4\], where this result is proved in the case $N = 2$ under the additional assumption that $0 < 2G(t) \leq th(t) e^{at^2}$ for all $t \in \mathbb{R} \setminus \{0\}$. However, the linking argument used in \[3, 4\] is based on a splitting of $H^1_0(\Omega)$ that involves the eigenspaces of the Laplacian, and this argument does not extend to the case $N \geq 3$ where the N-Laplacian is a nonlinear operator and therefore has no linear eigenspaces. We will prove Theorem 1.3 using an abstract critical point theorem based on the \mathbb{Z}_2-cohomological index that was proved in Yang and Perera \[15\] (see Section 2.4).

In the proofs of Theorems 1.1 and 1.3, the inner radius d of Ω comes into play when verifying that certain minimax levels are below the compactness threshold given in Proposition 2.1.

2 Preliminaries

2.1 A compactness result

Weak solutions of problem (1.1) coincide with critical points of the C^1-functional

$$E(u) = \frac{1}{N} \int_\Omega |\nabla u|^N dx - \int_\Omega G(u) dx, \quad u \in W^{1,N}_0(\Omega).$$

We recall that a (PS)$_c$ sequence of E is a sequence $(u_j) \subset W^{1,N}_0(\Omega)$ such that $E(u_j) \to c$ and $E'(u_j) \to 0$. Proofs of Theorem 1.1 and Theorem 1.3 will be based on the following compactness result.

Proposition 2.1. Assume that $\alpha > 0$ and h satisfies (1.2) and (1.3). Then for all $c \neq 0$ satisfying

$$c < \frac{1}{N} \left(\frac{\alpha_N}{\alpha} \right)^{N-1},$$

every (PS)$_c$ sequence of E has a subsequence that converges weakly to a nontrivial solution of problem (1.1).

Proof. Let $(u_j) \subset W^{1,N}_0(\Omega)$ be a (PS)$_c$ sequence of E. Then

$$E(u_j) = \frac{1}{N} \|u_j\|^N - \int_\Omega G(u_j) dx = c + o(1) \quad (2.1)$$
and
\[E'(u_j) u_j = \|u_j\|^{N} - \int_{\Omega} u_j h(u_j) e^{\alpha |u_j|^N'} dx = o(\|u_j\|). \quad (2.2) \]

First we show that \((u_j)\) is bounded in \(W^{1,N}_0(\Omega)\). Multiplying \((2.1)\) by \(2\) and subtracting \((2.2)\) gives
\[\|u_j\|^N + \int_{\Omega} \left(u_j h(u_j) e^{\alpha |u_j|^N'} - 2NG(u_j) \right) dx = 2Nc + o(\|u_j\| + 1), \]
so it suffices to show that \(th(t) e^{\alpha |t|^{N'}} - 2NG(t)\) is bounded from below. Let \(0 < \varepsilon < \beta/(2N + 1)\). By \((1.2)\) and \((1.3)\), for some constant \(C_\varepsilon > 0,\)
\[|G(t)| \leq \varepsilon e^{\alpha |u_j|^N'} + C_\varepsilon \quad (2.3) \]
and
\[th(t) e^{\alpha |t|^{N'}} \geq (\beta - \varepsilon) e^{\alpha |t|^{N'}} - C_\varepsilon \quad (2.4) \]
for all \(t\). So
\[th(t) e^{\alpha |t|^{N'}} - 2NG(t) \geq [\beta - (2N + 1) \varepsilon] e^{\alpha |t|^{N'}} - (2N + 1) C_\varepsilon, \]
which is bounded from below.

Since \((u_j)\) is bounded in \(W^{1,N}_0(\Omega)\), a renamed subsequence converges to some \(u\) weakly in \(W^{1,N}_0(\Omega)\), strongly in \(L^p(\Omega)\) for all \(p \in [1, \infty)\), and a.e. in \(\Omega\). We have
\[E'(u_j) v = \int_{\Omega} |\nabla u_j|^{N-2} \nabla u_j \cdot \nabla v dx - \int_{\Omega} v h(u_j) e^{\alpha |u_j|^N'} dx \to 0 \quad (2.5) \]
for all \(v \in W^{1,N}_0(\Omega)\). By \((1.2)\), given any \(\varepsilon > 0\), there exists a constant \(C_\varepsilon > 0\) such that
\[|h(t) e^{\alpha |t|^{N'}}| \leq \varepsilon e^{\alpha |t|^{N'}} + C_\varepsilon \quad \forall t. \quad (2.6) \]
By \((2.2)\),
\[\sup_j \int_{\Omega} u_j h(u_j) e^{\alpha |u_j|^N'} dx < \infty, \]
which together with \((2.4)\) gives
\[\sup_j \int_{\Omega} e^{\alpha |u_j|^N'} dx < \infty. \quad (2.7) \]

5
For \(v \in C_0^\infty(\Omega) \), it follows from (2.6) and (2.7) that the sequence \((v h(u_j) e^{\alpha |u_j|^N'}) \) is uniformly integrable and hence

\[
\int_\Omega v h(u_j) e^{\alpha |u_j|^N'} dx \to \int_\Omega v h(u) e^{\alpha |u|^N'} dx
\]

by Vitali’s convergence theorem, so it follows from (2.5) that

\[
\int_\Omega |\nabla u|^{N-2} \nabla u \cdot \nabla v dx - \int_\Omega v h(u) e^{\alpha |u|^N'} dx = 0.
\]

Then this holds for all \(v \in W_0^{1,N}(\Omega) \) by density, so the weak limit \(u \) is a solution of problem \((1.1)\).

Suppose that \(u = 0 \). Then

\[
\int_\Omega G(u_j) dx \to 0
\]

since (2.3) and (2.7) imply that the sequence \((G(u_j)) \) is uniformly integrable, so (2.1) gives

\[
\|u_j\| \to (Nc)^{1/N}.
\]

Let \(Nc < \nu < (\alpha_N/\alpha)^{N-1} \). Then \(\|u_j\| \leq \nu^{1/N} \) for all \(j \geq j_0 \) for some \(j_0 \). Let \(q = \alpha_N/\alpha \nu^{1/(N-1)} > 1 \). By the Hölder inequality,

\[
\left(\int_\Omega u_j h(u_j) e^{\alpha |u_j|^N'} dx \right)^{1/p} \leq \left(\int_\Omega |u_j h(u_j)|^p dx \right)^{1/p} \left(\int_\Omega e^{q|u_j|^N'} dx \right)^{1/q},
\]

where \(1/p + 1/q = 1 \). The first integral on the right-hand side converges to zero since \(h \) is bounded and \(u_j \to 0 \) in \(L^p(\Omega) \), and the second integral is bounded by (1.4) since

\[
q\alpha |u_j|^N = \alpha_N |\tilde{u}_j|^N,
\]

where \(\tilde{u}_j = u_j/\nu^{1/N} \) satisfies \(\|\tilde{u}_j\| \leq 1 \) for \(j \geq j_0 \), so

\[
\int_\Omega u_j h(u_j) e^{\alpha |u_j|^N'} dx \to 0.
\]

Then \(u_j \to 0 \) by (2.2) and hence \(c = 0 \) by (2.8), contrary to assumption. So \(u \) is a nontrivial solution.

2.2 \(\mathbb{Z}_2 \)-cohomological index

The \(\mathbb{Z}_2 \)-cohomological index of Fadell and Rabinowitz \[8\] is defined as follows. Let \(W \) be a Banach space and let \(\mathcal{A} \) denote the class of symmetric subsets of \(W \setminus \{0\} \). For \(A \in \mathcal{A} \), let \(\overline{A} = A/\mathbb{Z}_2 \) be the quotient space of \(A \) with each \(u \) and \(-u \) identified, let \(f : \overline{A} \to \mathbb{R}P^\infty \) be
the classifying map of \mathcal{A}, and let $f^* : H^*(\mathbb{RP}^\infty) \to H^*(\mathcal{A})$ be the induced homomorphism of the Alexander-Spanier cohomology rings. The cohomological index of A is defined by

$$i(A) = \begin{cases} \sup \{ m \geq 1 : f^*(\omega^{m-1}) \neq 0 \}, & A \neq \emptyset \\ 0, & A = \emptyset, \end{cases}$$

where $\omega \in H^1(\mathbb{RP}^\infty)$ is the generator of the polynomial ring $H^*(\mathbb{RP}^\infty) = \mathbb{Z}_2[\omega]$. For example, the classifying map of the unit sphere S^{m-1} in \mathbb{R}^m, $m \geq 1$ is the inclusion $\mathbb{RP}^{m-1} \subset \mathbb{RP}^\infty$, which induces isomorphisms on H^q for $q \leq m-1$, so $i(S^{m-1}) = m$.

The following proposition summarizes the basic properties of the cohomological index (see Fadell and Rabinowitz [8]).

Proposition 2.2. The index $i : A \to \mathbb{N} \cup \{0, \infty\}$ has the following properties:

(i) **Definiteness:** $i(A) = 0$ if and only if $A = \emptyset$.

(ii) **Monotonicity:** If there is an odd continuous map from A to B (in particular, if $A \subset B$), then $i(A) \leq i(B)$. Thus, equality holds when the map is an odd homeomorphism.

(iii) **Dimension:** $i(A) \leq \dim W$.

(iv) **Continuity:** If A is closed, then there is a closed neighborhood $N \in A$ of A such that $i(N) = i(A)$. When A is compact, N may be chosen to be a δ-neighborhood $N_\delta(A) = \{ u \in W : \text{dist}(u, A) \leq \delta \}$.

(v) **Subadditivity:** If A and B are closed, then $i(A \cup B) \leq i(A) + i(B)$.

(vi) **Stability:** If SA is the suspension of $A \neq \emptyset$, obtained as the quotient space of $A \times [-1, 1]$ with $A \times \{1\}$ and $A \times \{-1\}$ collapsed to different points, then $i(SA) = i(A) + 1$.

(vii) **Piercing property:** If A, A_0 and A_1 are closed, and $\varphi : A \times [0, 1] \to A_0 \cup A_1$ is a continuous map such that $\varphi(-u, t) = -\varphi(u, t)$ for all $(u, t) \in A \times [0, 1]$, $\varphi(A \times [0, 1])$ is closed, $\varphi(A \times \{0\}) \subset A_0$ and $\varphi(A \times \{1\}) \subset A_1$, then $i(\varphi(A \times [0, 1]) \cap A_0 \cap A_1) \geq i(A)$.

(viii) **Neighborhood of zero:** If U is a bounded closed symmetric neighborhood of 0, then $i(\partial U) = \dim W$.

2.3 Eigenvalues

Eigenvalues of problem (1.7) coincide with critical values of the functional

$$\Psi(u) = \frac{1}{\int_{\Omega} |u|^N \, dx}, \quad u \in S = \left\{ u \in W_0^{1,N}(\Omega) : \int_{\Omega} |\nabla u|^N \, dx = 1 \right\}.$$

We have the following proposition (see Perera [11] and Perera et al. [12, Proposition 3.52 and Proposition 3.53]).
Proposition 2.3. Let F denote the class of symmetric subsets of S and set

$$
\lambda_k := \inf_{M \in F} \sup_{u \in M} \Psi(u), \quad k \in \mathbb{N}.
$$

Then $0 < \lambda_1 < \lambda_2 \leq \lambda_3 \leq \cdots \to +\infty$ is a sequence of eigenvalues of problem (1.7).

Moreover, if $\lambda_{k-1} < \lambda_k$, then

$$
i(\Psi^{\lambda_{k-1}}) = i(S \setminus \Psi_{\lambda_k}) = k - 1,
$$

where $\Psi^a = \{u \in S : \Psi(u) \leq a\}$ and $\Psi_a = \{u \in S : \Psi(u) \geq a\}$ for $a \in \mathbb{R}$.

We will also need the following result of Degiovanni and Lancelotti ([7, Theorem 2.3]).

Proposition 2.4. If $\lambda_{k-1} < \lambda_k$, then $\Psi^{\lambda_{k-1}}$ contains a compact symmetric set C of index $k - 1$ that is bounded in $C^1(S)$.

2.4 An abstract critical point theorem

We will use the following abstract critical point theorem proved in Yang and Perera [15, Theorem 2.2] to prove Theorem 1.3. This result generalizes the linking theorem of Rabinowitz [13].

Theorem 2.5. Let E be a C^1-functional defined on a Banach space W and let A_0 and B_0 be disjoint nonempty closed symmetric subsets of the unit sphere $S = \{u \in W : \|u\| = 1\}$ such that

$$
i(A_0) = i(S \setminus B_0) < \infty. \quad (2.9)
$$

Assume that there exist $R > \rho > 0$ and $\omega \in S \setminus A_0$ such that

$$
\sup E(A) \leq \inf E(B), \quad \sup E(X) < \infty,
$$

where

$$
A = \{sv : v \in A_0, 0 \leq s \leq R\} \cup \{R\pi((1 - t)v + t\omega) : v \in A_0, 0 \leq t \leq 1\},
$$

$$
B = \{\rho u : u \in B_0\},
$$

$$
X = \{sv + tw : v \in A_0, s, t \geq 0, \|sv + tw\| \leq R\},
$$

and $\pi : W \setminus \{0\} \to S, u \mapsto u/\|u\|$ is the radial projection onto S. Let

$$
\Gamma = \{\gamma \in C(X, W) : \gamma(X) \text{ is closed and } \gamma|_A = \text{id}_A\},
$$

and set

$$
c := \inf_{\gamma \in \Gamma} \sup_{u \in \gamma(X)} E(u).
$$

Then $\inf E(B) \leq c \leq \sup E(X)$, and E has a (PS)$_c$ sequence.
2.5 Moser sequence

For \(j \geq 2 \), let

\[
\omega_j(x) = \begin{cases}
\frac{(\log j)^{(N-1)/N}}{N}, & |x| \leq d/j \\
\frac{\log (d/|x|)}{(\log j)^{1/N}}, & d/j < |x| < d \\
0, & |x| \geq d
\end{cases}
\]

(2.10)

(see Moser [10]).

Proposition 2.6. We have

\[
\int_{\Omega} \omega_j^m \ dx = \frac{m! \omega_{N-1}^{1-m/N} d^N}{N^{m+1} (\log j)^{m/N}} \left[1 - \frac{1}{j^{N}} \sum_{l=1}^{m} \frac{(N \log j)^{m-l}}{(m-l)!} \right], \quad m = 1, \ldots, N
\]

(2.11)

and

\[
\int_{\Omega} |\nabla \omega_j|^m \ dx = \begin{cases}
\frac{\omega_{N-1}^{1-m/N} d^{N-m}}{(N - m) (\log j)^{m/N}} \left(1 - \frac{1}{j^{N-m}} \right), & m = 1, \ldots, N - 1 \\
1, & m = N.
\end{cases}
\]

(2.12)

Proof. We have

\[
\int_{\Omega} \omega_j^m \ dx = \frac{\omega_{N-1}^{1-m/N} d^N}{(\log j)^{m/N}} \left[I_m + \frac{(\log j)^m}{N j^N} \right],
\]

where

\[
I_m = \int_{1/j}^{1} (-\log s)^{m} s^{N-1} \ ds.
\]

We have

\[
I_1 = \frac{1}{N^2} \left[1 - \frac{1}{j^{N}} (N \log j + 1) \right],
\]

and integrating by parts gives the recurrence relation

\[
I_m = \frac{m}{N} I_{m-1} - \frac{(\log j)^m}{N j^N}, \quad m \geq 2.
\]

So

\[
I_m = \frac{m!}{N^{m+1}} \left[1 - \frac{1}{j^{N}} \sum_{l=0}^{m} \frac{(N \log j)^{m-l}}{(m-l)!} \right],
\]

and (2.11) follows. The integral in (2.12) is easily evaluated. \(\square \)
2.6 A limit calculation

We will need the following limit in the proof of Theorem 1.1.

Proposition 2.7. We have

\[
\lim_{n \to \infty} \int_0^1 ne^{-n(t-t^{'N'})} dt = N.
\]

Proof. Let \(f_n(t) = ne^{-n(t-t^{'N'})} \) and set \(t_0 = (N'-1)/(N'-1) \). For \(t \neq t_0 \),

\[
f_n(t) = g_n(t) - \frac{d}{dt} \left(\frac{e^{-n(t-t^{'N'})}}{1 - N't^{N'-1}} \right),
\]

where

\[
g_n(t) = \frac{N'(N'-1)t^{N'-2}e^{-n(t-t^{'N'})}}{(1 - N't^{N'-1})^2}.
\]

Fix \(\delta \) so small that \(0 < \delta < t_0 < 1 - \delta < 1 \) and write

\[
\int_0^1 f_n(t) dt = \int_0^\delta f_n(t) dt + \int_\delta^{1-\delta} f_n(t) dt + \int_{1-\delta}^1 f_n(t) dt.
\]

By (2.13),

\[
\int_0^\delta f_n(t) dt = \int_0^\delta g_n(t) dt - \frac{e^{-n(\delta-\delta^{'N'})}}{1 - N'\delta^{N'-1}} + 1.
\]

For all \(t \in (0, \delta) \), \(g_n(t) \to 0 \) as \(n \to \infty \) and \(|g_n(t)| \leq N'(N'-1)t^{N'-2}/(1 - N'\delta^{N'-1})^2 \), so \(\int_0^\delta g_n(t) dt \to 0 \) by the dominated convergence theorem. So \(\int_0^1 f_n(t) dt \to 1 \) by (2.13). A similar calculation shows that \(\int_{1-\delta}^1 f_n(t) dt \to N - 1 \). On the other hand, it is easily seen that \(\int_\delta^{1-\delta} f_n(t) dt \to 0 \). So \(\int_0^1 f_n(t) dt \to N \) by (2.14).

3 Proof of Theorem 1.1

In this section we prove Theorem 1.1 by showing that the functional \(E \) has the mountain pass geometry with the mountain pass level \(c \in (0, (1/N)(\alpha_N/\alpha)^{N-1}) \) and applying Proposition 2.1.

Lemma 3.1. There exists a \(\rho > 0 \) such that

\[
\inf_{\|u\|=\rho} E(u) > 0.
\]
Proof. Since (1.2) implies that \(h \) is bounded, there exists a constant \(C_\delta > 0 \) such that
\[
|G(t)| \leq C_\delta |t|^{N+1} e^{\alpha |t|^N'} \quad \text{for } |t| > \delta,
\]
which together with (1.9) gives
\[
\int_{\Omega} G(u) \, dx \leq \frac{1}{N} (\lambda_1 - \sigma_1) \int_{\Omega} |u|^N \, dx + C_\delta \int_{\Omega} |u|^{N+1} e^{\alpha |u|^N'} \, dx. \tag{3.1}
\]
By (1.6),
\[
\int_{\Omega} |u|^N \, dx \leq \frac{\rho^N}{\lambda_1}, \tag{3.2}
\]
where \(\rho = ||u||. \) By the Hölder inequality,
\[
\int_{\Omega} |u|^{N+1} e^{\alpha |u|^N'} \, dx \leq \left(\int_{\Omega} |u|^{2(N+1)} \, dx \right)^{1/2} \left(\int_{\Omega} e^{2\alpha |u|^N'} \, dx \right)^{1/2}. \tag{3.3}
\]
The first integral on the right-hand side is bounded by \(C \rho^{2(N+1)} \) for some constant \(C > 0 \) by the Sobolev embedding theorem. Since \(2\alpha |u|^N' = 2\alpha \rho^N' |\tilde{u}|^N' \), where \(\tilde{u} = u/\rho \) satisfies \(||\tilde{u}|| = 1 \), the second integral is bounded when \(\rho^N' \leq \alpha_N/2\alpha \) by (1.4). So combining (3.1)–(3.3) gives
\[
\int_{\Omega} G(u) \, dx \leq \frac{1}{N} \left(1 - \frac{\sigma_1}{\lambda_1} \right) \rho^N + O(\rho^{N+1}) \quad \text{as } \rho \to 0.
\]
Then
\[
E(u) \geq \frac{1}{N} \frac{\sigma_1}{\lambda_1} \rho^N + O(\rho^{N+1}),
\]
and the desired conclusion follows from this for sufficiently small \(\rho > 0 \).

We may assume without loss of generality that \(B_d(0) \subset \Omega \). Let \((\omega_j) \) be the sequence of functions defined in (2.10).

Lemma 3.2. We have
\begin{enumerate}[(i)]
\item \(E(t\omega_j) \to -\infty \) as \(t \to \infty \) for all \(j \geq 2 \),
\item \(\exists j_0 \geq 2 \) such that
\[\sup_{t \geq 0} E(t\omega_{j_0}) < \frac{1}{N} \left(\frac{\alpha_N}{\alpha} \right)^{N-1}. \]
\end{enumerate}
Proof. (i) Fix \(0 < \varepsilon < \beta\). By (1.3), \(\exists M_\varepsilon > 0\) such that
\[
\text{th}(t)e^{\alpha |t|^N} > (\beta - \varepsilon)e^{\alpha |t|^N} \quad \text{for } |t| > M_\varepsilon.
\] (3.4)
Since \(e^{\alpha |t|^N} > \alpha^{2N-2} t^{2N}/(2N-2)!\) for all \(t\), then there exists a constant \(C_\varepsilon > 0\) such that
\[
\text{th}(t)e^{\alpha |t|^N} \geq \frac{1}{(2N-2)!} (\beta - \varepsilon) \alpha^{2N-2} t^{2N} - C_\varepsilon |t|
\] (3.5)
and
\[
G(t) \geq \frac{2N - 1}{(2N)!} (\beta - \varepsilon) \alpha^{2N-2} t^{2N} - C_\varepsilon |t|
\] (3.6)
for all \(t\). Since \(\|\omega_j\| = 1\) and \(\omega_j \geq 0\), then
\[
E(t\omega_j) \leq \frac{t^N}{N} - \frac{2N - 1}{(2N)!} (\beta - \varepsilon) \alpha^{2N-2} t^{2N} \int_\Omega \omega_j^{2N} dx + C_\varepsilon t \int_\Omega \omega_j dx,
\]
and the conclusion follows.

(ii) Set
\[
H_j(t) = E(t\omega_j) = \frac{t^N}{N} - \int_\Omega G(t\omega_j) dx, \quad t \geq 0.
\]
If the conclusion is false, then it follows from (i) that for all \(j \geq 2\), \(\exists t_j > 0\) such that
\[
H_j(t_j) = \frac{t_j^N}{N} - \int_\Omega G(t_j\omega_j) dx = \sup_{t \geq 0} H_j(t) \geq \frac{1}{N} \left(\frac{\alpha_N}{\alpha} \right)^{N-1},
\] (3.7)
\[
H'_j(t_j) = t_j^{N-1} - \int_\Omega \omega_j h(t_j\omega_j) e^{\alpha t_j^{N'} \omega_j^{N'}} dx = 0.
\] (3.8)
Since \(G(t) \geq -C_\varepsilon t\) for all \(t \geq 0\) by (3.6), (3.7) gives
\[
t_j^N \geq t_0^N - N\delta_j t_j,
\] (3.9)
where
\[
t_0 = \left(\frac{\alpha_N}{\alpha} \right)^{(N-1)/N}
\]
and
\[
\delta_j = C_\varepsilon \int_\Omega \omega_j dx \to 0 \quad \text{as } j \to \infty
\] (3.10)
by Proposition \[2.6\]. First we will show that \(t_j \to t_0\).

By (3.9) and the Young’s inequality,

\[
(1 + \nu) t_j^N \geq t_0^N - \frac{N - 1}{\nu^{1/(N-1)}} \delta_j^N \quad \forall \nu > 0,
\]

which together with (3.10) gives

\[
\liminf_{j \to \infty} t_j \geq t_0.
\] (3.11)

Write (3.8) as

\[
t_j^N = \int_{\{t_j \omega_j > M_\varepsilon\}} t_j \omega_j h(t_j \omega_j) e^{\alpha t_j \omega_j^N} dx + \int_{\{t_j \omega_j \leq M_\varepsilon\}} t_j \omega_j h(t_j \omega_j) e^{\alpha t_j \omega_j^N} dx =: I_1 + I_2.
\] (3.12)

Set \(r_j = d e^{-M_\varepsilon (\omega_{N-1} \log j)^{1/N}/j}\). Since \(\liminf t_j > 0\), for all sufficiently large \(j\), \(d/j < r_j < d\) and \(t_j \omega_j(x) > M_\varepsilon\) if and only if \(|x| < r_j\). So (3.4) gives

\[
I_1 \geq (\beta - \varepsilon) \int_{|x| < r_j} e^{\alpha t_j \omega_j^N} dx = (\beta - \varepsilon) \left(\int_{|x| \leq d/j} e^{\alpha t_j \omega_j^N} dx + \int_{d/j < |x| < r_j} e^{\alpha t_j \omega_j^N} dx \right) =: (\beta - \varepsilon) (I_3 + I_4). \] (3.13)

We have

\[
I_3 = \frac{\omega_{N-1}}{N} \left(\frac{d}{j} \right)^N e^{\alpha t_j \log j / \omega_{N-1}^{1/(N-1)}} = \frac{\omega_{N-1}}{N} d^N j^{\alpha (t_j^N - t_0^N)/\omega_{N-1}^{1/(N-1)}}. \] (3.14)

Since \(th(t) e^{\alpha |t|^N} \geq -C_\varepsilon t\) for all \(t \geq 0\) by (3.3),

\[
I_2 \geq -C_\varepsilon t_j \int_{\{t_j \omega_j \leq M_\varepsilon\}} \omega_j dx \geq -\delta_j t_j. \] (3.15)

Combining (3.12)–(3.15) and noting that \(I_4 \geq 0\) gives

\[
t_j^N \geq (\beta - \varepsilon) \frac{\omega_{N-1}}{N} d^N j^{\alpha (t_j^N - t_0^N)/\omega_{N-1}^{1/(N-1)}} - \delta_j t_j.
\]

It follows from this that

\[
\limsup_{j \to \infty} t_j \leq t_0,
\] 13
which together with (3.11) shows that $t_j \to t_0$.

Next we estimate I_4. We have

$$I_4 = \int_{\{d/j < |x| < r_j\}} e^{\alpha t_j^N [\log (d/x)]^N / (\omega N \log j)^{1/(N-1)}} \, dx$$

$$= \omega_{N-1} \left(\int_{d/j}^d e^{\alpha t_j^N [\log (d/r)]^N / (\omega N \log j)^{1/(N-1)}} r^{-1} \, dr \right.\right.$$

$$- \left. \int_{r_j}^d e^{\alpha t_j^N [\log (d/r)]^N / (\omega N \log j)^{1/(N-1)}} r^{-1} \, dr \right)$$

$$= \omega_{N-1} d^N \left(\log j \int_0^1 e^{-N t \left[1 - (t_j/t_0)^{N'} \right]^{1/(N-1)}} \log j \, dt \right.$$

$$- \left. \int_s^1 e^{-N \left(- \log s \right)^N / (\omega N \log j)^{1/(N-1)}} \, ds \right), \quad (3.16)$$

where $t = \log (d/r) / \log j$, $s = r/d$, and $s_j = r_j/d = e^{-M \log j / \omega N}$, and goes to zero as $j \to \infty$, so the last integral converges to

$$\int_0^1 s^{N-1} \, ds = \frac{1}{N}. \quad (3.16)$$

So combining (3.12)–(3.16) and letting $j \to \infty$ gives

$$t_0^N \geq (\beta - \varepsilon) \omega_{N-1} \frac{d^N}{N} (L_1 + L_2 - 1),$$

where

$$L_1 = \lim_{j \to \infty} \inf e^{-n \left[1 - (t_j/t_0)^{N'} \right]},$$

$$L_2 = \lim_{j \to \infty} \int_0^1 ne^{-n \left[1 - (t_j/t_0)^{N'} \right]} \, dt,$$

and $n = N \log j \to \infty$. Letting $\varepsilon \to 0$ in this inequality gives

$$\beta \leq \frac{1}{\alpha^{N-1}} \left(\frac{N}{d} \right)^N \frac{1}{L_1 + L_2 - 1}. \quad (3.17)$$
By (3.7), (1.8), and Proposition 2.6,
\[t_j^N - t_0^N \geq N \int_{\Omega} G(t_j \omega_j) \, dx \geq -\sigma_0 t_j^N \int_{\Omega} \omega_j^N \, dx \geq -\frac{\sigma_0 t_j^N}{\kappa n}, \]
so
\[\left(\frac{t_j}{t_0} \right)^{N'} \geq \left(1 + \frac{\sigma_0}{\kappa n} \right)^{-1/(N-1)} \geq 1 - \frac{\sigma_0}{(N-1) \kappa n}. \]
This gives
\[L_1 \geq e^{-\sigma_0/(N-1) \kappa} \]
and
\[L_2 \geq \lim_{n \to \infty} \int_{0}^{1} n e^{-n(t-t^{N'}) - \sigma_0 t^{N'}/(N-1) \kappa} \, dt \geq N e^{-\sigma_0/(N-1) \kappa} \]
by Proposition 2.7. So (3.17) gives
\[\beta \leq \frac{1}{\alpha^{N-1}} \left(\frac{N}{d} \right)^{N} \frac{1}{N e^{-\sigma_0/(N-1) \kappa} - \left(1 - e^{-\sigma_0/(N-1) \kappa} \right)} \leq \frac{1}{N \alpha^{N-1}} \left(\frac{N}{d} \right)^{N} e^{\sigma_0/(N-1) \kappa}, \]
contradicting (1.10). \hfill \Box

We are now ready to prove Theorem 1.1.

Proof of Theorem 1.1. Let \(j_0 \) be as in Lemma 3.2 (ii). By Lemma 3.2 (i), \(\exists R > \rho \) such that \(E(R \omega_{j_0}) \leq 0 \), where \(\rho \) is as in Lemma 3.1. Let
\[\Gamma = \left\{ \gamma \in C([0, 1], W^{1,N}_\Omega) : \gamma(0) = 0, \gamma(1) = R \omega_{j_0} \right\} \]
be the class of paths joining the origin to \(R \omega_{j_0} \), and set
\[c := \inf_{\gamma \in \Gamma} \max_{u \in \gamma([0,1])} E(u). \]
By Lemma 3.1, \(c > 0 \). Since the path \(\gamma_0(t) = tR \omega_{j_0}, t \in [0,1] \) is in \(\Gamma \),
\[c \leq \max_{u \in \gamma_0([0,1])} E(u) \leq \sup_{t \geq 0} E(t \omega_{j_0}) < \frac{1}{N} \left(\frac{\alpha N}{\alpha} \right)^{N-1}. \]
If there are no (PS)\(c \) sequences of \(E \), then \(E \) satisfies the (PS)\(c \) condition vacuously and hence has a critical point \(u \) at the level \(c \) by the mountain pass theorem. Then \(u \) is a solution of problem (1.1) and \(u \) is nontrivial since \(c > 0 \). So we may assume that \(E \) has a (PS)\(c \) sequence. Then this sequence has a subsequence that converges weakly to a nontrivial solution of problem (1.1) by Proposition 2.1. \hfill \Box

15
4 Proof of Theorem 1.3

In this section we prove Theorem 1.3 using Theorem 2.5. We take A_0 to be the set C in Proposition 2.4 and $B_0 = \Psi_{\lambda_k}$. Since $i(S \setminus B_0) = k - 1$ by Proposition 2.3, (2.9) holds.

Lemma 4.1. There exists a $\rho > 0$ such that $\inf E(B) > 0$, where $B = \{\rho u : u \in B_0\}$.

Proof. As in the proof of Lemma 3.1, there exists a constant $C_\delta > 0$ such that

$$|G(t)| \leq C_\delta |t|^{N+1} e^{\alpha |t|^{N'}}$$

for $|t| > \delta$,

which together with (1.12) gives

$$G(t) \leq \frac{1}{N} (\lambda_k - \sigma_1) |t|^N + C_\delta |t|^{N+1} e^{\alpha |t|^{N'}} \forall t. \quad (4.1)$$

For $u \in B_0$ and $\rho > 0$,

$$\int_\Omega |\rho u|^N \leq \frac{\rho^N}{\lambda_k} \quad (4.2)$$

and

$$\int_\Omega |\rho u|^{N+1} e^{\alpha |\rho u|^{N'}} \leq \rho^{N+1} \left(\int_\Omega |u|^{2(N+1)} dx \right)^{1/2} \left(\int_\Omega e^{2\alpha \rho^{N'} |u|^{N'}} dx \right)^{1/2}. \quad (4.3)$$

The first integral on the right-hand side of (4.3) is bounded by the Sobolev embedding theorem, and the second integral is bounded when $\rho^{N'} \leq \alpha N / 2\alpha$ by (1.3). So combining (1.1)–(1.3) gives

$$\int_\Omega G(\rho u) dx \leq \frac{1}{N} \left(1 - \frac{\sigma_1}{\lambda_k} \right) \rho^N + O(\rho^{N+1}) \quad \text{as } \rho \to 0.$$

Then

$$E(\rho u) \geq \frac{1}{N} \frac{\sigma_1}{\lambda_k} \rho^N + O(\rho^{N+1}),$$

and the desired conclusion follows from this for sufficiently small ρ. \hfill \Box

We may assume without loss of generality that $B_d(0) \subset \Omega$. Let (ω_j) be the sequence of functions defined in (2.10).

Lemma 4.2. We have

(i) $E(sv) \leq 0 \ \forall v \in A_0, s \geq 0,$
(ii) for all $j \geq 2$,
\[
\sup \{ E(\pi((1-t)v + t\omega_j)) : v \in A_0, 0 \leq t \leq 1 \} \to -\infty \text{ as } R \to \infty,
\]

(iii) \exists j_0 \geq 2 \text{ such that }
\[
\sup \{ E(sv + t\omega_{j_0}) : v \in A_0, s, t \geq 0 \} < \frac{1}{N} \left(\frac{\alpha_N}{\alpha} \right)^{N-1}.
\]

Proof. [i] By (1.11),
\[
E(u) \leq \frac{1}{N} \left[\int_\Omega |\nabla u|^N dx - (\lambda_{k-1} + \sigma_0) \int_\Omega |u|^N dx \right]. \quad (4.4)
\]
For $v \in A_0$ and $s \geq 0$,
\[
\int_\Omega |sv|^N dx \geq \frac{s^N}{\lambda_{k-1}}
\]
since $A_0 \subset \Psi_{k-1}$, so (4.4) gives
\[
E(sv) \leq - \frac{1}{N} \sigma_0 \frac{s^N}{\lambda_{k-1}} \leq 0.
\]

[ii] Fix $0 < \varepsilon < \beta$. As in the proof of Lemma 3.2, \exists M_\varepsilon > 0 such that
\[
th(t) e^{\alpha |t|^N} > (\beta - \varepsilon) e^{\alpha |t|^N} \text{ for } |t| > M_\varepsilon
\]
and there exists a constant $C_\varepsilon > 0$ such that
\[
th(t) e^{\alpha |t|^N} \geq \frac{1}{(2N-2)!} (\beta - \varepsilon) \alpha^{2N-2} t^{2N} - C_\varepsilon |t|
\]
and
\[
G(t) \geq \frac{2N-1}{(2N)!} (\beta - \varepsilon) \alpha^{2N-2} t^{2N} - C_\varepsilon |t|
\]
for all t. Let $A_1 = \{ \pi((1-t)v + t\omega_j) : v \in A_0, 0 \leq t \leq 1 \}$. For $u \in A_1$ and $R > 0$, (4.7) gives
\[
E(Ru) \leq \frac{R^N}{N} - \frac{2N-1}{(2N)!} (\beta - \varepsilon) \alpha^{2N-2} R^{2N} \int_\Omega |u|^{2N} dx + C_\varepsilon R \int_\Omega |u| dx.
\]

The set A_1 is compact since A_0 is compact, so the first integral on the right-hand side is bounded away from zero on A_1. Since the second integral is bounded, the desired conclusion follows.
If the conclusion is false, then it follows from (i) and (ii) that for all \(j \geq 2 \), there exist \(v_j \in A_0, s_j \geq 0, t_j > 0 \) such that

\[
E(s_j v_j + t_j \omega_j) = \sup \{ E(sv + t \omega_j) : v \in A_0, s, t \geq 0 \} \geq \frac{1}{N} \left(\frac{\alpha_N}{\alpha} \right)^{N-1}.
\]

Set \(u_j = s_j v_j + t_j \omega_j \). Then

\[
E(u_j) = \frac{1}{N} \| u_j \|^N - \int_{\Omega} G(u_j) \, dx \geq \frac{1}{N} \left(\frac{\alpha_N}{\alpha} \right)^{N-1}.
\]

(4.8)

Moreover, \(\tau u_j \in \{ sv + t \omega_j : v \in A_0, s, t \geq 0 \} \) for all \(\tau \geq 0 \) and \(E(\tau u_j) \) attains its maximum at \(\tau = 1 \), so

\[
\frac{\partial}{\partial \tau} E(\tau u_j) \bigg|_{\tau=1} = E'(u_j) u_j = \| u_j \|^N - \int_{\Omega} u_j h(u_j) e^{\alpha |u_j|^N} \, dx = 0.
\]

(4.9)

Since \(\| v_j \| = \| \omega_j \| = 1 \) and \(G(t) \geq 0 \) for all \(t \) by (1.11), (4.8) gives

\[
s_j + t_j \geq t_0,
\]

where

\[
t_0 = \left(\frac{\alpha_N}{\alpha} \right)^{(N-1)/N}.
\]

First we show that \(s_j \to 0 \) and \(t_j \to t_0 \) as \(j \to \infty \).

Combining (4.8) with (1.11) gives

\[
\| s_j v_j + t_j \omega_j \|^N \geq (\lambda_{k-1} + \sigma_0) \int_{\Omega} |s_j v_j + t_j \omega_j|^N \, dx + t_0^N.
\]

Set \(\tau_j = s_j/t_j \). Then

\[
\| \tau_j v_j + \omega_j \|^N \geq (\lambda_{k-1} + \sigma_0) \int_{\Omega} |\tau_j v_j + \omega_j|^N \, dx + \left(\frac{t_0}{t_j} \right)^N.
\]

(4.10)

Since \((v_j) \) is bounded in \(C^1(\Omega) \), Proposition 2.6 gives

\[
\| \tau_j v_j + \omega_j \|^N \leq \int_{\Omega} (\tau_j |\nabla v_j| + |\nabla \omega_j|)^N \, dx = \tau_j^N \int_{\Omega} |\nabla v_j|^N \, dx + \int_{\Omega} |\nabla \omega_j|^N \, dx
\]

\[
+ \sum_{m=1}^{N-1} \binom{N}{m} \tau_j^{N-m} \int_{\Omega} |\nabla v_j|^{N-m} |\nabla \omega_j|^m \, dx \leq \tau_j^N + c_1 \sum_{m=1}^{N-1} \frac{\tau_j^{N-m}}{(\log j)^{m/N}}
\]

18
\[
\int_{\Omega} |\tau_j v_j + \omega_j|^N dx \geq \int_{\Omega} (\tau_j |v_j| - \omega_j)^N dx = \tau_j^N \int_{\Omega} |v_j|^N dx \\
+ \sum_{m=1}^{N} (-1)^m \left(\frac{N}{m} \right) \tau_j^{N-m} \int_{\Omega} |v_j|^{N-m} \omega_j^m dx \geq \frac{\tau_j^N}{\lambda_{k-1}} - c_2 \sum_{m=1}^{N} \frac{\tau_j^{N-m}}{(\log j)^{m/N}}
\]
for some constants \(c_1, c_2 > 0 \). So (4.10) gives
\[
\frac{\sigma_0}{\lambda_{k-1}} \tau_j^N + \left(\frac{t_0}{t_j} \right)^N \leq 1 + c_3 \sum_{m=1}^{N} \frac{\tau_j^{N-m}}{(\log j)^{m/N}}
\]
(4.11)
for some constant \(c_3 > 0 \), which implies that \((\tau_j) \) is bounded and
\[
\lim_{j \to \infty} t_j \geq t_0.
\]
(4.12)

Next combining (4.9) with (4.5) and (4.6) gives
\[
\|u_j\|^N = \int_{\{|u_j| > M\}} u_j h(u_j) e^{\alpha |u_j|^N} dx + \int_{\{|u_j| \leq M\}} u_j h(u_j) e^{\alpha |u_j|^N} dx \\
\geq (\beta - \varepsilon) \int_{\{|u_j| > M\}} e^{\alpha |u_j|^N} dx - C_\varepsilon \int_{\{|u_j| \leq M\}} |u_j| dx.
\]
(4.13)

For \(|x| \leq d/j\),
\[
|u_j| \geq t_j \omega_j - s_j |v_j| \geq \frac{t_j}{\omega_{N-1}^{1/N}} \left((\log j)^{(N-1)/N} - c_4 \tau_j \right)
\]
for some constant \(c_4 > 0 \), and the last expression is greater than \(M_\varepsilon \) for all sufficiently large \(j \) since \((\tau_j) \) is bounded and \(\lim \inf t_j > 0 \). So
\[
\int_{\{|u_j| > M\}} e^{\alpha |u_j|^N} dx \geq e^{\alpha t_j^{N'} (\log j)^{(N-1)/N} - c_4 \tau_j} \int_{\{|x| \leq d/j\}} dx \\
= \frac{\omega_{N-1} q^N}{N} \int_{\{|x| \leq d/j\}} dx \\
= \frac{\omega_{N-1} q^N}{N} j^{N' \left((1 - c_4 \tau_j)/(\log j)^{(N-1)/N} \right)^N - t_0^{N'}/\omega_{N-1}^{1/(N-1)}}
\]
for large \(j \). On the other hand,
\[
\int_{\{|u_j| \leq M\}} |u_j| dx \leq \int_{\Omega} (s_j |v_j| + t_j \omega_j) dx \leq c_5 t_j \left[\tau_j + \frac{1}{(\log j)^{1/N}} \right]
\]

19
for some constant $c_5 > 0$ by Proposition 2.6. So \((4.13)\) gives
\[
(\beta - \varepsilon) j^\alpha [t_j^{N'}(1-c_4\tau_j/(\log j)^{(N-1)/N})^{N'-t_0^{N'}/\omega_{N-1}^{1/(N-1)}}] \leq \frac{Nt_j^N(\tau_j + 1)^N}{\omega_{N-1} d^N} + c_6 t_j \left[\tau_j + \frac{1}{(\log j)^{1/N}} \right]
\]
for some constant $c_6 > 0$. Since τ_j is bounded, it follows from this that
\[
\limsup_{j \to \infty} t_j \leq t_0,
\]
which together with \((4.12)\) shows that $t_j \to t_0$. Then \((4.11)\) implies that $\tau_j \to 0$, so $s_j = \tau_j t_j - t_0 \to 0$.

Now we show that there exists a constant $c > 0$ depending only on Ω, α, and k such that
\[
\beta \leq \frac{1}{\alpha^{N-1}} \left(\frac{N}{d} \right)^N e^{c_0^{N-1}}. \tag{4.15}
\]
The right-hand side of \((4.14)\) goes to $(N/d)^N/\alpha^{N-1}$ as $j \to \infty$. If $\beta \leq (N/d)^N/\alpha^{N-1}$, then we may take any $c > 0$, so suppose $\beta > (N/d)^N/\alpha^{N-1}$. Then for $\varepsilon < \beta - (N/d)^N/\alpha^{N-1}$ and all sufficiently large j, \((4.14)\) gives
\[
\frac{t_0}{t_j} \geq 1 - \frac{c_4 \tau_j}{(\log j)^{(N-1)/N}}.
\]
Combining this with \((4.11)\) gives
\[
\frac{\sigma_0}{\lambda_{k-1}} \tau_j^N - \frac{N c_4 \tau_j}{(\log j)^{(N-1)/N}} \leq c_3 \sum_{m=1}^{N} \frac{\tau_j^{N-m}}{(\log j)^{m/N}},
\]
so
\[
\sigma_0 \tau_j^N \leq c_7 \sum_{m=1}^{N} \frac{\tau_j^{N-m}}{(\log j)^{m/N}}
\]
for some constant $c_7 > 0$. Set $\bar{\tau}_j = \tau_j (\log j)^{1/N}$. Then
\[
\sigma_0 \bar{\tau}_j^N \leq c_7 \sum_{m=1}^{N} \bar{\tau}_j^{N-m}. \tag{4.16}
\]
We claim that
\[\tilde{\tau}_j \leq \frac{c_8}{\sigma_0} \tag{4.17} \]
for some constant \(c_8 > 0 \). Taking \(\sigma_0 \) smaller in (4.11) if necessary, we may assume that \(\sigma_0 \leq 1 \). So if \(\tilde{\tau}_j < 1 \), then (4.17) holds with \(c_8 = 1 \), so suppose \(\tilde{\tau}_j \geq 1 \). Then (4.16) gives
\[
\left(\frac{t_0}{t_j} \right)^N \leq 1 + \frac{c_3}{\log j} \sum_{m=1}^{N} \tilde{\tau}_j^{N-m} \leq 1 + \frac{c_9}{\sigma_0^{N-1} \log j}
\]
for some constant \(c_9 > 0 \), so
\[
\left(\frac{t_0}{t_j} \right)^{N'} \leq \left(1 + \frac{c_9}{\sigma_0^{N-1} \log j} \right)^{1/(N-1)} \leq 1 + \frac{c_9}{\sigma_0^{N-1} \log j}.
\]
Then
\[
t_j^{N'} \left[1 - \frac{c_4 \tilde{\tau}_j}{(\log j)(N-1)/N} \right]^{N'} - t_0^{N'} = t_j^{N'} \left[\left(1 - \frac{c_4 \tilde{\tau}_j}{\log j} \right)^{N'} - \left(\frac{t_0}{t_j} \right)^{N'} \right]
\]
\[
\geq t_j^{N'} \left[\left(1 - \frac{c_{10}}{\sigma_0 \log j} \right)^{N'} - \left(1 + \frac{c_9}{\sigma_0^{N-1} \log j} \right) \right] \geq -t_j^{N'} \left(\frac{N' c_{10}}{\sigma_0 \log j} + \frac{c_9}{\sigma_0^{N-1} \log j} \right)
\]
\[
\geq -\frac{c_{11}}{\sigma_0^{N-1} \log j}
\]
for some constants \(c_{10}, c_{11} > 0 \), so
\[
j^{\alpha N'} \left[(1-c_4 \tilde{\tau}_j/(\log j)(N-1)/N)^{N'} - t_0^{N'} \right]/\omega_j^{N'/(N-1)} \geq e^{-c/\sigma_0^{N-1} \log j} = e^{-c/\sigma_0^{N-1}}
\]
for some constant \(c > 0 \). Combining this with (4.14) and passing to the limit gives
\[
(\beta - \varepsilon) e^{-c/\sigma_0^{N-1}} \leq \frac{1}{\alpha^{N-1}} \left(\frac{N}{d} \right)^N,
\]
and letting \(\varepsilon \to 0 \) gives (4.15). \(\square \)

We are now ready to prove Theorem 1.3.

Proof of Theorem 1.3. Let \(j_0 \geq 2 \) be as in Lemma 4.2 (iii). By Lemma 4.2 (ii), \(\exists R > \rho \) such that
\[
\sup \{ E(R \pi((1-t)v + tw_j_0)) : v \in A_0, 0 \leq t \leq 1 \} \leq 0, \tag{4.18}
\]
where $\rho > 0$ is as in Lemma 4.1. Let

$$A = \{sv : v \in A_0, 0 \leq s \leq R\} \cup \{R\pi((1-t)v + t\omega_j) : v \in A_0, 0 \leq t \leq 1\},$$

$$X = \{sv + t\omega_j : v \in A_0, s, t \geq 0, \|sv + t\omega_j\| \leq R\}.$$

Combining Lemma 4.1, (4.18), and Lemma 4.1 gives

$$\sup E(A) \leq 0 < \inf E(B),$$

(4.19)

while Lemma 4.2 (iii) gives

$$\sup E(X) \leq \sup \{E(sv + t\omega_j) : v \in A_0, s, t \geq 0\} < \frac{1}{N} \left(\frac{\alpha N}{\alpha}\right)^{N-1}.$$

(4.20)

Let

$$\Gamma = \{\gamma \in C(X, W) : \gamma(X) \text{ is closed and } \gamma|_A = \text{id}_A\},$$

and set

$$c := \inf_{\gamma \in \Gamma} \sup_{u \in \gamma(X)} E(u).$$

By Theorem 2.5, $\inf E(B) \leq c \leq \sup E(X)$, and E has a $(PS)_c$ sequence. By (4.19) and (4.20),

$$0 < c < \frac{1}{N} \left(\frac{\alpha N}{\alpha}\right)^{N-1},$$

so a subsequence of this $(PS)_c$ sequence converges weakly to a nontrivial solution of problem (1.1) by Proposition 2.1.

5 Competing interests declaration

The authors declare no competing interests.

References

[1] Adimurthi. Existence of positive solutions of the semilinear Dirichlet problem with critical growth for the n-Laplacian. *Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4)*, 17(3):393–413, 1990.

[2] Adimurthi and S. L. Yadava. Bifurcation results for semilinear elliptic problems with critical exponent in \mathbb{R}^2. *Nonlinear Anal.*, 14(7):607–612, 1990.
[3] D. G. de Figueiredo, O. H. Miyagaki, and B. Ruf. Elliptic equations in \mathbb{R}^2 with nonlinearities in the critical growth range. *Calc. Var. Partial Differential Equations*, 3(2):139–153, 1995.

[4] D. G. de Figueiredo, O. H. Miyagaki, and B. Ruf. Corrigendum: “Elliptic equations in \mathbb{R}^2 with nonlinearities in the critical growth range”. *Calc. Var. Partial Differential Equations*, 4(2):203, 1996.

[5] Djairo G. de Figueiredo, João Marcos do Ó, and Bernhard Ruf. On an inequality by N. Trudinger and J. Moser and related elliptic equations. *Comm. Pure Appl. Math.*, 55(2):135–152, 2002.

[6] Djairo G. de Figueiredo, João Marcos do Ó, and Bernhard Ruf. Elliptic equations and systems with critical Trudinger-Moser nonlinearities. *Discrete Contin. Dyn. Syst.*, 30(2):455–476, 2011.

[7] Marco Degiovanni and Sergio Lancelotti. Linking solutions for p-Laplace equations with nonlinearity at critical growth. *J. Funct. Anal.*, 256(11):3643–3659, 2009.

[8] Edward R. Fadell and Paul H. Rabinowitz. Generalized cohomological index theories for Lie group actions with an application to bifurcation questions for Hamiltonian systems. *Invent. Math.*, 45(2):139–174, 1978.

[9] João Marcos B. do Ó. Semilinear Dirichlet problems for the N-Laplacian in \mathbb{R}^N with nonlinearities in the critical growth range. *Differential Integral Equations*, 9(5):967–979, 1996.

[10] J. Moser. A sharp form of an inequality by N. Trudinger. *Indiana Univ. Math. J.*, 20:1077–1092, 1970/71.

[11] Kanishka Perera. Nontrivial critical groups in p-Laplacian problems via the Yang index. *Topol. Methods Nonlinear Anal.*, 21(2):301–309, 2003.

[12] Kanishka Perera, Ravi P. Agarwal, and Donal O’Regan. *Morse theoretic aspects of p-Laplacian type operators*, volume 161 of *Mathematical Surveys and Monographs*. American Mathematical Society, Providence, RI, 2010.

[13] Paul H. Rabinowitz. Some critical point theorems and applications to semilinear elliptic partial differential equations. *Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4)*, 5(1):215–223, 1978.

[14] Neil S. Trudinger. On imbeddings into Orlicz spaces and some applications. *J. Math. Mech.*, 17:473–483, 1967.

[15] Yang Yang and Kanishka Perera. N-Laplacian problems with critical Trudinger-Moser nonlinearities. *Ann. Sc. Norm. Super. Pisa Cl. Sci. (5)*, 16(4):1123–1138, 2016.