Supporting Information

Direct visualisation of supramolecular binding and separation of light hydrocarbons in MFM-300(In)

Lixia Guo,1§ Mathew Savage,1§ Joe H. Carter,1,2§ Xue Han,1 Ivan da Silva,3 Pascal Manuel,3 Svemir Rudić3, Chiu C. Tang,2 Sihai Yang1* and Martin Schröder1*

[1] Department of Chemistry, University of Manchester, Manchester, M13 9PL (UK)
[2] Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE (UK)
[3] ISIS Facility, STFC Rutherford Appleton Laboratory, Chilton, Oxfordshire, OX11 0QX (UK)
Contents of Supplementary Information

1. Experimental

2. Powder X-Ray Diffraction

3. Thermo Gravimetric Analysis

4. Characterisation of Porosity

5. Additional Gas Adsorption Isotherms

6. Comparison of CH₄, C₂H₂, C₂H₄, C₃H₆, C₃H₄, C₃H₆ and C₃H₈ isotherms

7. Analysis and Derivation of the Isosteric Heats of Adsorption

8. Calculation of IAST Selectivity for Gas Adsorption

9. Breakthrough Experiments

10. Comparison of Separation Performance of State-of-the-art MOFs

11. Neutron Powder Diffraction

12. Inelastic Neutron Scattering Measurement

13. References
1. Experimental

Synthesis of MFM-300(In). H$_2$L (330 mg, 1.00 mmol), In(NO$_3$)$_3$·5H$_2$O (585 mg, 1.50 mmol) were mixed in a DMF/MeCN mixture (30 ml, 2:1 v/v) with conc. HNO$_3$ (1.0 mL) in a 250 mL glass pressure reactor. Then the vessel sealed and heated at 80 °C for 48 h. The resultant flaky white precipitate was then washed with DMF and immersed in an excess of acetone for 3 days with frequent exchange of solvent.1 Yield: 347 mg (42% yield based upon solvent content from microanalysis).

Gas Adsorption Isotherms and Breakthrough Experiments. Gravimetric isotherms (0-1000 mbar) were recorded at 273, 283, 293, 303, and 308 K (temperature controlled water-bath) for C$_2$H$_2$, C$_2$H$_4$, C$_2$H$_6$, C$_3$H$_4$, C$_3$H$_6$ and C$_3$H$_8$ and at 195 K (dry ice/acetone) for C$_2$H$_2$, C$_2$H$_4$, C$_2$H$_6$. Data were collected using an IGA-003 system (Hiden Isochema, Warrington, UK) equipped with a turbomolecular pumping system. Acetone exchanged samples were loaded into the system and degassed at 120 °C and 1 × 10$^{-6}$ mbar for 20 h to give a dry, desolvated material of typical mass ca. 50 mg. Ultra-pure research grade (99.99 %) gases were purchased from Air Liquide or BOC and used as received. C$_3$H$_2$ was purified by dual-stage cold trap systems operated at 195 K (dry ice) and an activated carbon filter before introduction to the IGA system. Dynamic breakthrough experiments were conducted on a Hiden Isochema IGA-003 with ABR attachments and a Hiden Analytical mass spectrometer by using a fixed-bed tube packed with 750 mg of MFM-300(In) powder. The sample was heated at 120 °C under a flow of dry He for 12h for activation, and then cooled to room temperature (293 K). Single-component gas breakthrough experiments with an inlet gas flow rate of 2 mL min$^{-1}$ diluted in a flow of He (total flow rate of 20 mL min$^{-1}$) were measured through a fixed-bed packed with MFM-300(In).

For equimolar mixtures of hydrocarbons, the flow rate of 2.0 mL min$^{-1}$/2.0 mL min$^{-1}$ diluted in He (total flow rate of 20 mL min$^{-1}$) was applied. Dynamic breakthrough experiments for 1:99 mixtures of C$_2$H$_2$/C$_2$H$_4$, C$_2$H$_2$/C$_2$H$_6$, and C$_2$H$_2$/C$_3$H$_4$ were conducted at the rate of 0.2 mL min$^{-1}$/19.8 mL min$^{-1}$. All breakthrough experiments were conducted at a total flow of 20 mL min$^{-1}$ at 293 K. The concentration of hydrocarbon gas at the outlet was determined by mass spectrometry and compared with the inlet concentration C_0, where $C/C_0 = 1$ indicates complete breakthrough.

Table S1. Physical parameters for C$_2$ and C$_3$ hydrocarbons.$^{2-8}$

Gas	Molecular size (Å3)	Boiling point (K)	Kinetic diameter (Å)
C$_2$H$_2$	3.3 × 3.3 × 5.7	188.40	3.3
C$_2$H$_4$	3.3 × 4.2 × 4.8	169.42	4.2
C$_2$H$_6$	3.8 × 4.1 × 4.8	184.55	4.4
C$_3$H$_4$	4.0 × 4.1 × 6.5	249.8	4.8
C$_3$H$_6$	4.2 × 5.3 × 6.4	225.46	4.7
C$_3$H$_8$	4.2 × 4.8 × 6.8	231.02	4.3-5.1
2. Powder X-ray Diffraction

![PXRD patterns](image)

Figure S1. PXRD patterns of as-synthesised, activated MFM-300(In), and sample after breakthrough experiments.

3. Thermogravimetric Analysis

The as-synthesised, acetone exchanged and activated MFM-300(In) were heated from room temperature to 510 °C at a rate of 5 °C min⁻¹ under a flow of air. The result shows that the MFM-300(In) can tolerate up to 400 °C confirming its high thermal stability.

![TGA curves](image)

Figure S2. TGA curves for as-synthesised, acetone-exchanged and activated MFM-300(In).
4. Characterisation of Porosity

Figure S3. N_2 adsorption/desorption isotherms for a) MFM-300(Al) and c) MFM-300(In) at 77 K. Micropore size distribution plots for b) MFM-300(Al) and d) MFM-300(In).

5. Additional Gas Adsorption Isotherms

Figure S4. Adsorption/desorption isotherms for acetylene in MFM-300(In).
Figure S5. Adsorption/desorption isotherms for ethylene in MFM-300(In).

Figure S6. Adsorption/desorption isotherms for ethane in MFM-300(In).
Figure S7. Adsorption/desorption isotherms for propyne in MFM-300(In).

Figure S8. Adsorption/desorption isotherms for propene in MFM-300(In).
Figure S9. Adsorption/desorption isotherms for propane in MFM-300(In).
6. Comparison of C_2H_2, C_2H_4, C_2H_6, C_3H_4, C_3H_6 and C_3H_8 isotherms

![Graph showing adsorption isotherms at 273 K for C_2H_2, C_2H_4, C_2H_6, C_3H_4, C_3H_6 and C_3H_8 in MFM-300(In) to a pressure of 1 bar. Desorption isotherms are omitted for clarity; the nature of reversible adsorption has been demonstrated above.]

Figure S10. Adsorption isotherms at 273 K of C_2H_2, C_2H_4, C_2H_6, C_3H_4, C_3H_6 and C_3H_8 in MFM-300(In) to a pressure of 1 bar. Desorption isotherms are omitted for clarity; the nature of reversible adsorption has been demonstrated above.

![Graph showing adsorption isotherms at 303 K for C_2H_2, C_2H_4, C_2H_6, C_3H_4, C_3H_6 and C_3H_8 in MFM-300(In) to a pressure of 1 bar. Desorption isotherms are omitted for clarity; the nature of reversible adsorption has been demonstrated above.]

Figure S11. Adsorption isotherms at 303 K of C_2H_2, C_2H_4, C_2H_6, C_3H_4, C_3H_6 and C_3H_8 in MFM-300(In) to a pressure of 1 bar. Desorption isotherms are omitted for clarity; the nature of reversible adsorption has been demonstrated above.
7. Analysis and Derivation of the Isoestic Heats of Adsorption

To estimate the isosteric enthalpies (ΔH) for adsorption of C₂H₂, C₂H₄, C₂H₆, C₃H₄, C₃H₆ and C₃H₈ isotherms between 273–308 K were fitted to the Van ’ Hoff equation;

\[
\ln P = \frac{\Delta H}{RT} - \frac{\Delta S}{R}
\]

(1)

where \(p \) is pressure in Pa, \(T \) is the temperature, and \(R \) is the ideal gas constant. All linear fittings show \(R^2 \) above 0.99 indicating the consistency of the isotherm data and of the fitting.

Figure S12. Linear fitting of 1/T vs LnP at intervals of 0.1 mmolg⁻¹ for substrates in MFM-300(In) to determine the isosteric heat of adsorption by the Van ’ Hoff method.
Figure S13. Entropy of adsorption for C\textsubscript{2} and C\textsubscript{3} hydrocarbons in MFM-300(In) calculated from isotherm data.
8. Calculation of IAST selectivity for gas adsorption.

To estimate the selectivity observed for each substrate isotherm data at 293 K were fitted using the dual-site Langmuir-Freundlich (DSLF) model (equation 2).

\[
N^*(f) = \frac{q_1 b_1 P^{n_1}}{1 + b_1 P^{n_1}} + \frac{q_2 b_2 P^{n_2}}{1 + b_2 P^{n_2}} \quad [2]
\]

where \(P \) is the pressure of the bulk gas at equilibrium with the adsorbed phase, \(q_i \) is the maximum adsorption amount, \(b_i \) is the affinity constant and \(n_i \) is the deviation from the simple Langmuir equation. Using this fitting, the IAST selectivity can be calculated by equation 3.

\[
S = \frac{x_1 / y_1}{x_2 / y_2} \quad [3]
\]

where \(x_i \) is the amount of each component adsorbed and \(y_i \) is the mole fraction of each component at equilibrium.
Figure S14. Selectivities as a function of pressure for C\textsubscript{2} and C\textsubscript{3} hydrocarbons in MFM-300(In) calculated by IAST from single component adsorption isotherms.
Figure S15. IAST fitting of isotherms for (a) C\textsubscript{2}H\textsubscript{2}, (b) C\textsubscript{2}H\textsubscript{4}, (c) C\textsubscript{2}H\textsubscript{6}, (d) C\textsubscript{3}H\textsubscript{4}, (e) C\textsubscript{3}H\textsubscript{6} and (f) C\textsubscript{3}H\textsubscript{8}-loaded MFM-300(In) at 293 K and up to 1 bar.
9. Dynamic Breakthrough Experiments

Calculation of dynamic adsorption capacity and productivity

To determine the dynamic adsorption capacity, the uptake of each component \(n_m \) was calculated based on the breakthrough curves by the equation described as follows:

\[
V_m = \frac{\int_0^t v_{gas\ out} \, dt - V_{dead}}{W_{MOF}}
\]

\[
n_m = \frac{PV_m}{RT}
\]

where \(v_{gas\ out} \) is the flow rate of the target gas with the unit of mL min\(^{-1}\); \(V_{dead} \) is the dead volume of the system (mL); \(W \) represents the mass of MFM-300(In) packed in the breakthrough bed (g); \(t \) is the retention time for the specific gas (min); \(P \) is atmospheric pressure (Kpa); \(R \) is Avogadro constant. \(T \) is the measurement temperature (K).

The productivity \(q_m \) of \(\text{C}_2\text{H}_4 \) and \(\text{C}_3\text{H}_8 \) was determined through the breakthrough amount of \(\text{C}_2\text{H}_4 \) and \(\text{C}_3\text{H}_8 \), which is calculated by integration of the breakthrough curves during a period from \(t_1 \) to \(t_2 \) during which the gas purity is greater than 99.9%:

\[
q_m = \frac{\int_{t_1}^{t_2} v_{gas\ out} \, dt - V_{dead}}{W_{MOF}}
\]

where \(v_{gas\ out} \) is the flow rate of target gas with the unit of mL min\(^{-1}\); \(V_{dead} \) is the dead volume of the system (mL); \(W \) represents the mass of MFM-300(In) packed in the breakthrough bed (g);

Figure S16. Breakthrough plots for single component (a) \(\text{C}_2\text{H}_2 \) and (b) \(\text{C}_3\text{H}_8 \) with an inlet gas flow rate of 2.0 mL min\(^{-1}\) diluted in He through MFM-300(In) at a total flow of 20 mL min\(^{-1}\) at 293 K.
Figure S17. Dynamic breakthrough plots for equimolar mixtures of (a) C$_2$H$_4$/C$_2$H$_2$, (b) C$_2$H$_6$/C$_2$H$_2$, (c) C$_3$H$_8$/C$_3$H$_4$ and (d) C$_3$H$_8$/C$_3$H$_6$ with an inlet gas flow rate of 2.0 mL min$^{-1}$/2.0 mL min$^{-1}$ diluted in He through a fixed-bed packed with MFM-300(In) at a total flow of 20 mL min$^{-1}$ at 293 K.

Figure S18. Dynamic breakthrough experiments for 1:99 mixtures of (a) C$_2$H$_2$/C$_2$H$_4$, (b) C$_2$H$_6$/C$_2$H$_4$, and (c) C$_2$H$_6$/C$_3$H$_6$ with an inlet gas flow rate of 0.2 mL min$^{-1}$/19.8 mL min$^{-1}$ through a fixed-bed packed with MFM-300(In) at a total flow rate of 20 mL min$^{-1}$ at 293 K.
Table S2. Dynamic adsorption of substrates on MFM-300(In) based on the breakthrough experiments.

Substrate	Amount adsorbed (mmol g$^{-1}$)
C$_2$H$_2$	1.4
C$_3$H$_4$	1.0
C$_3$H$_6$	1.6
C$_3$H$_4$	4.4
C$_3$H$_6$	3.5
C$_3$H$_8$	3.1
C$_2$H$_4$ in equimolar C$_2$H$_6$/C$_2$H$_4$ mixture	0.7
C$_3$H$_6$ in equimolar C$_2$H$_6$/C$_2$H$_4$ mixture	1.4
C$_3$H$_4$ in equimolar C$_3$H$_4$/C$_3$H$_6$ mixture	4.6
C$_3$H$_6$ in equimolar C$_3$H$_4$/C$_3$H$_6$ mixture	3.1
Table S3. Comparison of separation performance for state-of-the-art MOFs.

MOF	Pore size (Å)	Pore volume (cm³ g⁻¹)	BET surface area (m² g⁻¹)	T (K)	Uptake (mmol g⁻¹)	Selectivity C₂H₆/C₂H₄ : 50/50	Qst (KJ mol⁻¹) C₂H₆/C₂H₄	C₂H₄ Productivity (L/kg)
MFM-300(In) This work	6.8	0.43	1030	293 K	5.1/4.9	1.7	30/28	4.6 L/kg
MFM-300(Al)⁹	6.5	0.43	1370	293 K	0.85/4.28	/	/	/
JNU-2¹⁰	3.4, 4.6, 6.7 Å	0.56	1219	298 K	4.19/3.68	1.6	/	21.2 L/kg
TJT-100¹¹	8.7 × 11.6	0.39	890	298 K	~3.66/3.4	1.2	29/25	/
IRMOF-8¹²	17.5	0.69	1360	298 K	2.16/1.25	1.8	52.5/50	2.5 L/kg
PCN-250¹³	5.9, 6.8, 9.3	0.56	1470	298 K	5.21/4.22	1.9	23/21	10 L/kg
MUF-15¹⁴	8.5 × 3.5, 7 × 3.8, 3.2 × 1.2	0.51	1130	293 K	4.69/4.15	1.96	28.2/29.2	14 L/kg
Cu(Qc)₂¹⁵	3.3	0.11	240	298 K	1.85/0.78	3.4	29/25.4	4.3 L/kg
Ni(bdc)(ted)₁₆	7.94	0.79	1701	298 K	5.0/3.4	2	21.5/18.2	/
PCN-245¹⁷	10	0.71	1743	298 K	3.27/2.39	1.9	20.5/23.0	5.8 L/kg
Fe₂(O₂)dobdc²⁰	/	/	1073	298 K	3.45/2.68	4.4	19.3 L/kg	/
ZIF-4¹⁹	/	0.38	300	293 K	2.3/2.2	1.7	/	/
ZIF-8²₀	3.4	0.73	1844	293 K	2.54/1.5	1.8	17.2/16.1	/
11. Neutron Powder Diffraction

Neutron powder diffraction experiments were undertaken at the WISH diffractometer at the ISIS Facility. MFM-300(In) was loaded into a 6 mm diameter vanadium sample can and outgassed at 1×10^{-7} mbar and 100 °C for 1 day. The sample was loaded into a liquid helium cryostat and cooled to 7 K for data collection. C$_2$H$_2$, C$_2$H$_4$, C$_3$H$_6$, C$_4$H$_4$, C$_6$H$_6$ and C$_3$H$_8$ gas were introduced by warming the samples to 298 K and the gas dosed volumetrically from a calibrated volume. The gas-loaded sample was then cooled to 7 K over a period of 2 h to ensure good mobility of adsorbed species within the crystalline structure of MFM-300(In) and for a further 30 mins to ensure thermal equilibrium. Rietveld structural refinements were carried out on the NPD data using the TOPAS software package.21

![Rietveld fit profiles of the NPD data of MFM-300(In)·1.32(C$_2$D$_2$).](image)

Figure S19. Rietveld fit profiles of the NPD data of MFM-300(In)·1.32(C$_2$D$_2$).
Figure S20. Rietveld fit profiles of the NPD data of MFM-300(In)·1.66(C2D4)
Figure S21. Rietveld fit profiles of the NPD data of MFM-300(In):0.72(C$_2$D$_6$).
Figure S22. Rietveld fit profiles of the NPD data of MFM-300(In)\(0.2\)(C\(_3\)D\(_4\)).

Figure S23. Rietveld fit profiles of the NPD data of MFM-300(In)\(0.48\)(C\(_3\)D\(_4\)).
Figure S24. Rietveld fit profiles of the NPD data of MFM-300(\text{In})-0.46(\text{C}_3\text{D}_4).

Figure S25. NPD structure of MFM-300(\text{In})-0.2(\text{C}_3\text{D}_4).
Figure S26. NPD structure of MFM-300(In)-0.48(C_{3}D_{6}).

Figure S27. NPD structure of MFM-300(In)-0.46(C_{3}D_{6}).

Table S4. Host–Guest Interactions in MFM-300(In)-1.32(C_{2}D_{2}).

Site	Interactions	Distances (Å)	Colour
Site I	H (HO-In)···C≡C (site I)	2.52(1)	Violet
	H (site I)···C≡C (site II)	3.73(1)	Bright green
	C≡C (site I)···phenyl groups	3.83(1)	Orange
		4.04(1)	
Site II	C≡C (site II)···H (site I)	3.73(2)	Bright green
Table S5. Host–Guest Interactions in MFM-300(In)·1.66(C₂H₄).

Interactions	Distances (Å)	Colour
H (HO-In)···C=C (site I)	3.85(1)	Violet
H (site I)···C=C (site II)	3.91(1)	
	4.01(1)	Bright green
H (site I)···phenyl groups	2.92(1)	Orange
	3.03(1)	
	3.73(2)	
	4.40(1)	
C=C (site II)···H (site I)	3.91(1)	Bright green
	4.01(1)	
H (site II)···phenyl groups	4.27(1)	Pink

Table S6. Host–Guest Interactions in MFM-300(In)·0.72(C₂H₆).

Interactions	Distances (Å)	Colour
H (HO-In)···C (site I)	3.22(2)	Violet
H (site I)···C (site II)	2.99(4)	Bright green
H (site I)···phenyl groups	2.65(2)	Orange
	3.30(2)	
	3.68(1)	
	4.18(2)	
C (site II)···H (site I)	2.99(4)	Bright green
Table S7. Host–Guest Interactions in MFM-300(In)∙0.2(C₃H₄).

MFM-300(In)∙0.2(C₃H₄)	Interactions	Distances (Å)	Colour
Site I	H (HO-In)···C₃D₄	3.26(6)	Violet
	H (site I)···phenyl groups	3.18(6)	Orange
	C≡C (site I)···phenyl groups	3.56(1)	Green

Table S8. Host–Guest Interactions in MFM-300(In)∙0.48(C₃H₆).

MFM-300(In)∙0.48(C₃H₆)	Interactions	Distances (Å)	Colour
Site I	H (HO-In)···C≡C (site I)	3.37(1)	Violet
	H (site I)···phenyl groups	3.03(2)	Orange
		4.17(2)	
	C≡C (site I)···phenyl groups	3.89(1)	Blue
Site II	C≡C (site II)···H (site I)	1.91(2)	Bright green
	H (site II)···phenyl groups	4.07(1)	Orange
Table S9. Host–Guest Interactions in MFM-300(In)·0.46(C₃H₈).

MFM-300(In)·0.46(C₃H₈)	Interactions	Distances (Å)	Colour
Site I	H (HO-In)···C (site I)	2.72(2) Å	Violet
	H (site I)····C (site II)	2.92(2)	Bright green
	C (site I)···H (site II)	3.19(2)	
	H (siteI)···phenyl groups		Orange
		3.17(2)	
		4.87(2)	
		4.02 (2)	
		3.37(2)	
Site II	C (site II)···H (site I)	2.92(2)	Bright green
	C (site I)···H (site II)	3.19(2)	
	H (site II)··· phenyl groups	3.35(1)	Pink
		3.02(1)	

12. Inelastic Neutron Scattering Measurement

Inelastic neutron scattering (INS) experiments were undertaken using the TOSCA spectrometer at the ISIS Facility. MFM-300(In) was loaded into an 11 mm diameter vanadium sample can and outgassed at 1×10^{-7} mbar and 100 °C for 1 day. The sample was loaded into a helium closed cycle refrigerator (CCR) cryostat and cooled to 11 K for data collection. C₂H₂, C₂H₄ and C₃H₆ gas were introduced by warming the sample to 298 K and the gas was dosed volumetrically from a calibrated volume. The gas-loaded sample was then cooled to 7 K over a period of 2 h to ensure good mobility of adsorbed species within the crystalline structure of MFM-300(In). The sample was kept at 7 K for an additional 30 mins before data collection to ensure the thermal equilibrium.
Figure S28. Comparison of bare and C$_2$H$_2$ loaded MFM-300(In).

Figure S29. Comparison of bare and C$_2$H$_4$ loaded MFM-300(In).
Figure S30. Comparison of bare and C$_2$H$_6$ loaded MFM-300(In).
13. References

1. Savage, M.; Cheng, Y.; Easun, T. L.; Eleye, J. E.; Argent, S. P.; Warren, M. R.; Lewis, W.; Murray, C.; Tang, C. C.; Frogley, M. D.; Cinque, G.; Sun, J.; Rudic, S.; Murden, R. T.; Benham, M. J.; Fitch, A. N.; Blake, A. J.; Ramírez-Cuesta, A. J.; Yang, S.; Schröder, M., Selective Adsorption of Sulfur Dioxide in a Robust Metal-Organic Framework Material. *Adv. Mater.* 2016, 28, 8705–8711.

2. Li, J. R.; Kupper, R. J.; Zhou, H. C., Selective Gas Adsorption and Separation in Metal-Organic Frameworks. *Chem. Soc. Rev.* 2009, 38, 1477–1504.

3. Geng, S.; Lin, E.; Li, X.; Liu, W.; Wang, T.; Wang, Z.; Sensharma, D.; Darwish, S.; Andaloussi, Y. H.; Pham, T.; Cheng, P.; Zaworotko, M. J.; Chen, Y.; Zhang, Z., Scalable Room-Temperature Synthesis of Highly Robust Ethane-Selective Metal-Organic Frameworks for Efficient Ethylene Purification. *J. Am. Chem. Soc.* 2021, 143, 8654–8660.

4. Wang, S.-M.; Wang, F.; Dong, Y.-L.; Shivanna, M.; Dong, Q.; Mu, X.-T.; Duan, J.; Yang, Q.; Zaworotko, M. J.; Yang, Q.-Y., Reversed C2H6/C3H8 Separation in Interpenetrated Diamondoid Coordination Networks with Enhanced Host–Guest Interaction. *Sep. Purif. Technol.* 2021, 276, 119385.

5. Liu, P.; Wang, Y.; Chen, Y.; Yang, J.; Wang, X.; Li, L.; Li, J., Construction of Saturated Coordination Titanium-Based Metal–Organic Framework for One-Step C2H2/C2H6/C3H8 Separation. *Sep. Purif. Technol.* 2021, 276, 119284.

6. Gao, J.; Qian, X.; Lin, R. B.; Krishna, R.; Wu, H.; Zhou, W.; Chen, B., Mixed Metal-Organic Framework with Multiple Binding Sites for Efficient C2H2/CO2 Separation. *Angew. Chem. Int. Edit.* 2020, 59, 4396–4400.

7. Ding, Q.; Zhang, Z.; Yu, C.; Zhang, P.; Wang, J.; Kong, L.; Cui, X.; He, C. H.; Deng, S.; Xing, H., Separation of Propylene and Propane with a Microporous Metal-Organic Framework via Equilibrium–Kinetic Synergetic Effect. *AIChE J.* 2020, 67, 17094.

8. Kim, S.-J.; Lee, P. S.; Chang, J.-S.; Nam, S.-E.; Park, Y.-I., Preparation of Carbon Molecular Sieve Membranes on Low-Cost Alumina Hollow Fibers for Use in C3H6/C3H8 Separation. *Sep. Purif. Technol.* 2018, 194, 443–450.

9. Yang, S.; Ramírez-Cuesta, A. J.; Newby, R.; Garcia-Sakai, V.; Manuel, P.; Callear, S. K.; Campbell, S. I.; Tang, C. C.; Schröder, M., Supramolecular Binding and Separation of Hydrocarbons within a Functionalized Porous Metal-Organic Framework. *Nat. Chem.* 2015, 7, 121–129.

10. Zeng, H.; Xie, X. J.; Xie, M.; Huang, Y. L.; Luo, D.; Wang, T.; Zhao, Y.; Lu, W.; Li, D., Cage-Interconnected Metal-Organic Framework with Tailored Apertures for Efficient C2H6/C3H8 Separation under Humid Conditions. *J. Am. Chem. Soc.* 2019, 141, 20390–20396.

11. Hao, H. G.; Zhao, Y. F.; Chen, D. M.; Yu, J. M.; Tan, K.; Ma, S.; Chabal, Y.; Zhang, Z. M.; Dou, J. M.; Xiao, Z. H.; Day, G.; Zhou, H. C.; Lu, T. B., Simultaneous Trapping of C2H2 and C2H6 from a Ternary Mixture of C2H2/C2H6/C3H8 in a Robust Metal–Organic Framework for the Purification of C2H4. *Angew. Chem. Int. Edit.* 2018, 130, 16299–16303.

12. Pires, J.; Pinto, M. L.; Saini, V. K., Ethane Selective IRMOF-8 and its Significance in Ethane-Ethylene Separation by Adsorption. *ACS Appl. Mater. Interfaces* 2014, 6, 12093–12099.
13. Chen, Y.; Qiao, Z.; Wu, H.; Lv, D.; Shi, R.; Xia, Q.; Zhou, J.; Li, Z., An Ethane-Trapping MOF PCN-250 for Highly Selective Adsorption of Ethane over Ethylene. *Chem. Eng. J.* **2018**, *175*, 110–117.

14. Qazvini, O. T.; Babarao, R.; Shi, Z. L.; Zhang, Y. B.; Telfer, S. G., A Robust Ethane-Trapping Metal-Organic Framework with a High Capacity for Ethylene Purification. *J. Am. Chem. Soc.* **2019**, *141*, 5014–5020.

15. Lin, R. B.; Wu, H.; Li, L.; Tang, X. L.; Li, Z.; Gao, J.; Cui, H.; Zhou, W.; Chen, B., Boosting Ethane/Ethylene Separation within Isoreticular Ultramicroporous Metal-Organic Frameworks. *J. Am. Chem. Soc.* **2018**, *140*, 12940–12946.

16. Liang, W.; Xu, F.; Zhou, X.; Xiao, J.; Xia, Q.; Li, Y.; Li, Z., Ethane Selective Adsorbent Ni(Bdc)(Ted)_{0.5} with High Uptake and Its Significance in Adsorption Separation of Ethane and Ethylene. *Chem. Eng. J.* **2016**, *148*, 275–281.

17. Lv, D.; Shi, R.; Chen, Y.; Wu, Y.; Wu, H.; Xi, H.; Xia, Q.; Li, Z., Selective Adsorption of Ethane over Ethylene in PCN-245: Impacts of Interpenetrated Adsorbent. *ACS Appl. Mater. Interfaces* **2018**, *10*, 8366–8373.

18. Li, L.; Lin, R. B.; Krishna, R.; Li, H.; Xiang, S.; Wu, H.; Li, J.; Zhou, W.; Chen, B., Ethane/Ethylene Separation in a Metal-Organic Framework with Iron-peroxo Sites. *Science* **2018**, *362*, 443–446.

19. Hartmann, M.; Bohme, U.; Hovestadt, M.; Paula, C., Adsorptive Separation of Olefin/Paraffin Mixtures with ZIF-4. *Langmuir* **2015**, *31*, 12382–12389.

20. Bohme, U.; Barth, B.; Paula, C.; Kuhnt, A.; Schwieger, W.; Mundstock, A.; Caro, J.; Hartmann, M., Ethene/Ethane and Propene/Propane Separation via The Olefin and Paraffin Selective Metal-Organic Framework Adsorbents CPO-27 And ZIF-8. *Langmuir* **2013**, *29*, 8592–600.

21. Coelho, A. A., TOPAS And TOPAS-Academic: An Optimization Program Integrating Computer Algebra and Crystallographic Objects Written in C++. *J. Appl. Cryst.* **2018**, *51*, 210–218.