Naringenin as a Possible Candidate Against SARS-CoV-2 Infection and in the Pathogenesis of COVID-19

Pawan K. Agrawal1, Chandan Agrawal1 and Gerald Blunden2

Abstract
Naringenin, widely distributed in fruits and vegetables, is endowed with antiviral and other health beneficial activities, such as immune-stimulating and anti-inflammatory actions that could play a role in contributing, to some extent, to either preventing or alleviating coronavirus infection. Several computational studies have identified naringenin as one of the prominent flavonoids that can possibly inhibit internalization of the virus, virus-host interactions that trigger the cytokine storm, and replication of the virus. This review highlights the antiviral potential of naringenin in COVID-19 associated risk factors and its predicted therapeutic targets against SARS-CoV-2 infection.

Keywords
naringenin, anti-inflammatory, covid-19, antiviral, receptor binding

Received: October 26th, 2021; Accepted: November 27th, 2021.

Introduction
Coronavirus disease 2019 (COVID-19) is an infectious disease caused by an infection with Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2).1,2 The surface spike protein (S protein) of SARS-CoV-2 plays a recognition role, which is directly involved in the infection process.3 For viral endocytosis, cleavage of the S-protein by host serine proteases such as transmembrane protease serine 2 (TMPRSS2) is necessary, and is followed by binding of the receptor-binding domain (RBD) in the S1 subunit of S protein to angiotensin-converting enzyme 2 (ACE2) in host cells,4 and/or cluster of differentiation 147 (CD147), also known as basigin or EMMPRIN.5 The S-protein has two subdivisions named S1 and S2, with S1 as the RBD.6,7 The RBD of the S-protein binds to ACE2 receptors of the host after activation by two host serine proteases: TMPRSS2 and furin.8 ACE2 expression is one of the main explanations for the higher airways infection, as it is highly expressed in the respiratory tract, such as epithelial cells of the alveoli, trachea, and bronchi, some bronchial glands, and alveolar macrophages.9 However, ACE2 is also expressed in the kidney, adipose tissue, heart, brain, blood vessels, stomach, liver, and oral and nasal mucosa,10 which could corroborate the systemic inflammatory profile in COVID-19.

Pathogenesis of SARS-CoV-2
The SARS-CoV-2 spike protein plays an important role in the process of the virus infecting host cells, as it mediates the attachment, fusion, and entering of host cells. The S-protein consists of subunits S1 and S2. While S1 is important for the virus attachment to the ACE2 receptor, S2 allows the fusion of the virus to the cell membranes, followed by internalization of the viral genetic material. Therefore, after attachment to the ACE2 receptor, the S-protein needs to be primed at the S1–S2 site by cellular proteases such as TMPRSS2.11,12 Therefore, the virus is capable of infecting human cells containing both ACE2 receptors and proteases, including lungs, small intestine, heart and kidney cells, as well as the nose, nasopharynx and oral mucosa.13

After the fusion of SARS-CoV-2 with the host cell, the viral RNA is released into the cytosol, which is translated into replicase proteins. The synthesized polyproteins are then processed by a 3C-like protease (3CLpro), also known as the main protease (Mpro), and papain like protease (PLpro) to release non-structural proteins (NSPs), including Nsp13 helicase, responsible for the replication and transcription of the viral genome.14 Thus, these proteins are very crucial for the viral replication cycle and inhibiting them may block the viral replication cycle and thus provide treatment of COVID-19.

1Natural Product Inc., 7963 Anderson Park Lane, Westerville, OH 43081, USA
2University of Portsmouth, Portsmouth PO1 2DT, UK

Corresponding Author:
Pawan K. Agrawal, Natural Product Inc., 7963, Anderson Park Lane, Westerville, Ohio, United States.
Email: agrawal@naturalproduct.us
Viral-ACE2 binding is followed by excessive signal rewiring, which alters basic cellular processes (eg, metabolism, antioxidant production, and autophagy) and accelerates processes involved in cell cycle arrest. PLpro, which is involved in viral replication, modulates signaling that alters immune defenses and contributes to the cytokine storm (eg, nuclear factor kappa B and interferon 1) through its deubiquitinating activity and removal of interferon-stimulated gene 15 from cellular proteins. Thus, after cell entry and multiplication, the virus can cause an increase in the natural inflammatory response (defined as a cytokine storm), which can lead to greater immune activation. This cytokine storm has been associated with severe damage to the respiratory tract, blood hypercoagulation, cardiac arrest and lymphocytopenia, among other life-threatening conditions.

Drug Repurposing and Flavonoids

Drug repurposing is gaining wider attention in comparison to elucidating new drugs for disease management as it can aid in determining new indications for existing drugs. In this scenario, flavonoids, secondary metabolites found in fruits, vegetables, nuts, seeds, herbs, spices, and flowers, as well as in tea and red wine, represent an important subgroup of naturally occurring nephelic compounds. These have been intensively investigated for their pharmacological properties, such as anti-inflammatory, antilipidemic, antiangiogenic, antihyperglycemic, antiviral, hepatoprotective, anti-gastric ulcer, cardioprotective, neuroprotective, antioxidant and anticancer.

Computational in silico analysis, based on the concept of estimated free energy of binding and the formation of various intermolecular interactions such as hydrogen bonds, hydrophobic interactions and van der Waal’s interactions, predicted that flavonoids can target various essential structural features of Sars-CoV-2 protein required for virus entry and/or replication. Several flavonoids have been identified to be adsorbed to the Spike protein, inhibiting Sars-CoV-2 attachment to ACE2, thus preventing infection, and/or to interact with PLpro/Mpro/RdRp, thus inhibiting the replication process.

Naringenin: Occurrence and Beneficial Effects

Naringenin (NAR) [(2S)-4′,5,7-trihydroxyflavan-4-one; (2S)-5,7-dihydroxy-2-(4-hydroxyphenyl)-2,3-dihydro-4H-1-benzo- pyran-4-one, Figure 1], an important natural flavonoid, is present in a wide variety of fruits and vegetables, either in the free state or as glycosides or acylglycosides; the highest concentrations are reported in grapefruit, tangerines, oranges, and tomatoes. NAR is of great interest due to its numerous beneficial activities, such as analgesic, antioxidant, hypolipidemic, hepatoprotective, elastase inhibitor, anti-inflammatory, anti-mutagenic, antitumor, antimicrobial and antiviral effects, and may control neurological, rheumatological, cardiovascular and liver diseases. Emerging evidence has revealed NAR efficacy in treating inflammatory-associated atherosclerosis, arthritis, metabolic syndrome, corneal neovascularization, metabolic diseases, and possibly in treating inflammatory-associated disorders.

Anti-Inflammatory Activity of Naringenin

Upon viral entry, the virus induces the host to increase the production and release of inflammatory cytokines, which can lead to greater immune activation and tissue damage. Thus, compounds having antiviral and anti-inflammatory properties could impact and/or restrict COVID-19 development. NAR has been reported to exert anti-inflammatory activity through inhibition of the nuclear factor kappa B (NF-κB) signaling pathway. NF-κB stimulates the expression of several inflammatory proteins, such as tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6), cyclooxygenase-2 (COX-2), interleukin-1 (IL-1), and inducible nitric oxide synthase (iNOS). In vitro and in vivo animal model studies indicate that NAR can down-regulate the expression of several inflammatory markers, such as toll like receptor 4 (TLR4), TNF-α, IL-1β, IL-6, iNOS, and COX-2 through attenuation of the NF-κB pathway and activation of AMP-activated protein kinase (AMPK), which is associated with the regulation and/or inhibition of multiple pro-inflammatory signaling pathways.

NAR has been reported to inhibit the secretion of IL-6, IL-1 β, and TNF-α in LPS-stimulated acute lung injury in C57/BL6 mice by targeting inhibition of the phosphatidylinositol-3-kinase (PI3K)/Akt pathway. NAR also reduces the levels of IL-6 and TNF-α in LPS-stimulated acute lung injury in rats by inhibition of the NF-κB pathway. In both cases, the required effective dose was found to be 100 mg/kg through the oral route.

NAR inhibits the phosphorylation of MAPKs by reducing NF-κB and AP-1 translocation and DNA binding, which limits the development of pro-inflammatory cytokines such as IL-33, TNF-α, IL-1β, and IL-6. NAR has been reported to have suppressed respiratory overexpression and eosinophilic airway inflammation in asthma and thus reduced acute neutrophilic airway inflammation by blocking the NF-κB pathway. Naringenin may be used against pneumonia associated with the spread of COVID-19 owing to its good anti-inflammatory and antioxidant activity.

In murine macrophages, NAR reduced inflammatory mediators production induced by LPS. In murine macrophages
infected with *Chlamydia trachomatis*, NAR reduced the production of IL-1β, IL-1α, IL-6, TNF, IL-12p70, and IL-10 in a dose-dependent manner. Moreover, NAR’s anti-inflammatory effects have been demonstrated in *ex vivo* human whole-blood models, reducing IL-1β, IL-6, IL-8, and TNF upon LPS stimulus close to that of non-stimulated levels. In an animal model of acute respiratory distress syndrome (ARDS), a syndrome with an increase in IL-6, TNF, and neutrophils in the lungs, NAR supplementation reduced neutrophil infiltration and oxidative stress, greatly reducing airway inflammation and lung injury. In a murine asthma model, treatment with NAR reduced airway hyperactivity and airway inflammation, with a reduction in the levels of IL-4 and IL-13 in bronchoalveolar lavage and serum IgE levels, as well as improvement in lung function assay. NAR has been reported to modulate different inflammation syndromes and at different sites, such as colitis, hepatitis, obesity, cancer, and acute respiratory syndrome. This is particularly important in COVID-19 because SARS-CoV-2 infection induces a systemic inflammation and can infect many different organs including lungs, heart, liver, brain, kidneys, and intestines. In addition, NAR can promote lysosome-dependent cytokine protein degradation, which may be important in COVID-19. Overall, various studies have demonstrated that NAR is a strong candidate as an adjuvant in reducing airway and systemic inflammation.

Antiviral Significance of Naringenin

The antiviral effect of NAR has been studied in several viruses, such as dengue, hepatitis B, hepatitis C, zika, chikungunya, Semliki Forest, herpes simplex 1 and 2, Sindbis neuroviral strain (NSV), rotavirus, yellow fever, and human immunodeficiency virus. NAR has been extensively investigated in *in vitro* models of viral infection, but very few results are available for *in vivo* studies. Nevertheless, the *in vitro* and *in vivo* anti-inflammatory potential of NAR has been highlighted in several animal models, including respiratory syndromes. NAR had been recommended as a therapeutic adjunct to Nucleoside-Reverse-Transcriptase-Inhibitors for antiretroviral therapy. In *in silico* docking studies, NAR has demonstrated blocking of the neuraminidase site by NAR and other flavonoids in Influenza *Type A* viruses. Thus, NAR exhibits a broad-spectrum antiviral activity which involves inhibiting a variety of viruses.

Goncalves et al demonstrated that intake of 2.7 mg NAR in patients with hepatitis C resulted in a greatly improved lipid profile and reduction in liver enzyme AST (Aspartate aminotransferase). Therefore, NAR can reduce HCV infection, and, in a dose-dependent manner, its administration can inhibit the post entry stages of CHIKV replication activity by downregulating the production of the viral proteins involved in replication. Moreover, NAR is an inhibitor of endolysosome two-pore channels (TPCs), involved in SARS-CoV-2 and Ebola virus infections, as well as in the ability of HIV-1 protein Tat to escape endolysosomes. NAR can induce cancer cell death by promoting autophagy and downregulating the Akt/mTOR signaling pathway. In *Vero E6* cells infected with SARS-CoV-2, NAR inhibited the cytopathic effect in a time and concentration-dependent manner. This effect was mediated through inhibition of endolysosomal TPCs, a pathway involves in the infectivity of SARS-CoV-2, Ebola, and MERS via facilitating viral entry. These findings suggest a possible use of naringenin against COVID-19 by targeting TPCs and the Akt/mTOR signaling pathway.

Based on existing knowledge, efforts directed toward designing anti-COVID-19 drugs are focused on impeding virus entry into host cells, inhibiting virus-host protein interactions, and interrupting viral replication, with the aim of aborting the inflammatory responses induced by viral invasion. Thus, therapies that may act on the coronavirus can be divided principally into three categories: (i) either blocking the virus from binding to human cell receptors, or acting on the host’s specific receptors, thus preventing the virus from entering the host’s cells ie, inhibiting viral entry; (ii) preventing virus RNA synthesis and replication; and (iii) reducing the virulence factor to restore the host’s innate immunity. As such, in *in silico* studies have investigated the use of flavonoids as effective therapeutic candidates against COVID-19 by targeting S protein cleavage, S protein binding to cell surface receptors such as ACE 2, and binding to viral proteases such as PLpro, Mpro and RdRp, as well as by interfering with NSPs of SARS-CoV-2 in order to hamper viral replication.

Coronavirus and Naringenin

The current COVID-19 pandemic has triggered global efforts for the rapid identification of vaccines and specific antiviral treatments. Based on the known mechanisms of SARS-CoV-2 infection, substances with potentially beneficial effects may act at various stages, such as preventing the binding of the virus to the receptors or inhibiting the function of the receptor, suppressing viral replication, helping cells to resist viral attack via inhibition of cytotoxicity processes, and blocking the virus spread in the body. Coronavirus infection can lead to cytokine storm, progress to septic shock, and cause death, thus, modulating the cytokine storm is a vital process for treating COVID-19. NAR has been used in experimental models to regulate the production of IL-6 and TNF, cytokines that are increased in COVID-19. Also, in an animal model of septic shock, the consumption of NAR has been demonstrated to reduce kidney damage via an increase in antioxidant enzymes.

Various computational or *in silico* techniques, based on the concept of estimated free energy of binding and the formation of various intermolecular interactions such as hydrogen bonds,
hydrophobic interactions and van der Waal’s interactions, have been widely used to gain insights into ligand-protein interactions. Several docking studies have identified naringenin as an important flavonoid which can interact with the host ACE2 receptor, viral spike protein, and proteases, thus inhibiting entry, as well as replication of coronavirus.

Naringenin as a Potential Inhibitor of SARS-CoV-2 Proteins: In Silico Studies

The in silico approach is important to identify antagonist compounds that can specifically target the binding sites of viral proteins through complex molecular interactions responsible for virus inoculation and replication. This goal can be achieved by targeting structurally important binding sites of the host, such as the RBD domain of spike protein, the ACE2 receptor of the host and/or viral proteases, such as Mpro and PIpro. ACE2 and Mpro represent important targets for the development of new antiviral agents. Based on several receptor-ligand interaction studies, NAR has been found to bind effectively with several targets of the virus, as well as the host.

Binding with Spike-Protein

Spike glycoprotein is a type I glycoprotein that extends out of the surface of the virus and is the first component to come into contact with the host cell, and thus it mediates the entry of SARS-CoV-2 into host cells. This glycoprotein protrudes from the surface of mature virions and is critical for SARS-CoV-2 entry into the host cell as it interacts with ACE2, enabling virus penetration into the host. In fact, spike glycoprotein contains a Receptor Binding Domain (RBD) that recognizes the ACE2 receptor leading to cleavage of the trimeric spike protein into S1 and S2 that facilitate membrane fusion and virus infection, followed by endocytosis.

In a study to identify flavonoids in peppermint leaf that prevent RBD/ACE2 (PDB: 6M0J) attachment, NAR was found to have moderate binding affinity regarding the RBD/ACE2 complex (about −6.44 Kcal/mol). Binding site surface analysis showed pocket-like regions on the RBD/ACE2 complex that yield several interactions (mostly hydrogen bonds and π-stacking bonds) between the flavonoid and distinct amino acid residues of both RBD and ACE2 proteins. The target RBD/ACE2 amino acid residues are Arg375, Asn15, and Glu19 from ACE2, and Arg668 from RBD, based on their higher occurrence. In a moleculardocking study by Utomo et al to reveal the antiviral potential of citrus and galangal constituents, NAR was identified to exhibit low energy binding, with a docking score to the spike glycoprotein (PDB: 6LXT) receptor of −7.40 Kcal/mol.

In an another study, NAR was found to have more substantial binding affinity (−9.0 kcal/mol) to viral spike glycoprotein (PDB: 6VSB) than remdesivir. In a docking study by Maurya et al, NAR exhibited significant interactions with spike glycoprotein, PDB: 6VXX (MolDock score - 82.10, interactions - 103.13 kcal/mol), exhibiting binding interactions with Lys304, Arg765, and Thr768.

Among 10 flavonoids docked into S protein, naringin (naringenin-7-O-neohesperidoside) exhibited the highest binding affinity (− 9.8 kcal/mol), even higher than that of dexamethasone (− 7.9 kcal/mol), a standard drug repurposed for treating critically ill COVID-19 patients. Molecular dynamics simulation denoted conformational stability of naringin within the active site of S protein, and decreased viral load and related cytopathic effects in Vero E6 cells. It should be noted that the binding of NAR to the S protein has not been experimentally validated.

Binding with TMPRSS2

Virus infection is initiated by the interaction between the S protein and host cell surface receptors. The S protein would be cleaved by the cellular serine proteases TMPRSS2 into S1 and S2 subunits, which are responsible for receptor recognition and membrane fusion. A computational study involving TMPRSS2 (PDB: 2OQ5) and naringenin reflected that NAR exhibited a strong binding affinity (- 7.3 kcal/mol), and thus may prevent viral entry.

Binding with ACE2

ACE2, which is located on the surface of the host cells, has been identified as a key preferable receptor for the binding of the spike protein of COVID-19. This enzyme acts as the receptor that the virus uses to enter the cell. The S protein is activated by the host TMPRSS2 or cathepsin L. Previous studies showed that certain flavonoids exhibit angiotensin-converting enzyme inhibition activity.

The invasion of SARS-CoV-2 involves binding of S protein to the ACE2 receptor on the host’s cell surface, thus substances that may either compete with the ACE2 receptor or reduce the ACE2 expression may represent an alternative or adjuvant therapy. In fact, NAR consumption has been associated with a reduction in ACE2 expression in the kidneys of rats. However, nutritional interventions aiming to regulate SARS-CoV-2 entry receptor ACE2 need to be carefully evaluated, as downregulation of ACE2 could also lead to greater inflammation and lung damage. Oral consumption of NAR reduced acute lung injury in a mouse model and reduced the production of pro-inflammatory cytokines.

ACE2, the major receptor for SARS-CoV-2 viruses in humans, represents the gateway for entry. In fact, ACE2 is abundantly expressed in the lungs, heart, kidney, vasculature, and cardiorespiratory neurons within the brainstem. An issue regarding ACE2 and coronavirus infections is that most of the chronic treatment of hypertension and diabetes involves the use of ACE inhibitors (ACEIn). Molecular docking studies have been performed to predict the binding affinity of various flavonoids, including NAR, to ACE2. Cheng et al
showed that NAR could bind to ACE2 with an estimated docking energy of −6.05 kcal/mol, with binding sites to Pro146, Leu143, and Lys131. In another study, Alzaabi et al have shown that NAR binds to ACE2 (PDB: 1R4L) having a binding energy of −8.5 kcal/mol.\(^{11}\) NAR exhibited low energy binding with a docking score of −7.69 Kcal/mol to the PD-ACE2 (PDB: 6VW1) receptor.\(^{66}\)

Naringin, which is the 7-O-rutinoside of NAR, exhibits the highest binding activity to the ACE2 enzyme with an estimated docking energy of −6.85 kcal/mol, with potential binding sites at Tyr515, Glu402, Glu398, and Asn394.\(^{179}\) NAR interacts with Ala348, Asp350, His378, Asp382, Tyr385, Arg393, Asn394, and His401 at the active site of ACE2 (PDB: 1R42), with a generated MolDock score of − 83.42 kcal/mol, and interaction energy of − 102.46.\(^{167}\) Thus, NAR has significant binding affinity towards the ACE2 receptor and, therefore, may be used for ACE2-mediated attachment inhibition of SARS-CoV-2

Binding with PLpro

The papain-like protease (PLpro) is an essential coronavirus enzyme that is required for processing viral polyproteins to generate a functional replicase complex, and thus is a validated antiviral drug target.\(^{180,181}\) A study by Cho et al found that *Paulownia tomentosa* Steud flavonoids (quercetin, catechin, naringenin and geranylated flavonoids) inhibit SARS-CoV-PLpro and reduce the concentration of pro-inflammatory cytokines (IL-1β) and TNFα.\(^{182,183}\) It should also be noted that NAR has not been tested against PLpro in the enzymatic assay.

COVID-19 Main Protease (Mpro) Inhibition

Among the coronaviral targets that have been studied in the past, the main proteases (Mpro, 3CLpro, nsps) received major attention as being responsible for processing CoV-encoded polyproteins that facilitate viral transcription and replication. They are responsible for the proteolytic cleavage of virus polyprotein in 11 non-structural proteins responsible for its replication. Thus, Mpro plays an indispensable role in the maturation of NSPs and promotes the biosynthesis of the virus, and so can be considered as a dominant target against SARS-CoV-2.\(^{184}\) Mpro exclusively cleaves polypeptide sequences after a glutamine residue, positioning the main protease as an ideal drug target.\(^{185-189}\) Mpro has 3 domains, and the substrate-active site of binding is located in the cleft of domain I and domain II, consisting of His41 and Cys145.\(^{190}\) Thus, Mpro is a cysteine protease with a catalytic dyad (cysteine and histidine) in its active center and is surrounded by other residues which confer substrate specificity. Thus, the occurrence of Mpro only within SARS-CoV-2 and not in the host cell has focused attention on this as a possible inhibition site for COVID-19 treatment.\(^{190-195}\)

In a molecular docking study, aimed at identifying compounds found in medicinal plants with the potential to be COVID-19 Mpro inhibitors, NAR exhibited a binding energy of −7.99 kcal/mol when docking with Mpro (PDB: 6LU7), suggesting NAR as a potential COVID-19 Mpro inhibitor. NAR forms H-bonds with the 6LU7 amino acid His164, Glu166, Asp187, and Thr190.\(^{191}\) In another computer-aided virtual screening approach to identify potential Mpro inhibitors, more than 8000 natural products were screened and eighteen showing promising in silico studies were selected for further in vitro screening, which resulted in five potential hits (naringenin, 2,3',4,5',6-pentahydroxybenzophenone, apigenin-7-O-glucoside, sennoside B, and acetoside). Naringenin displayed high activity (98% inhibition of enzyme activity at 100 µM concentration) against the viral protein.\(^{196}\) The most potent compounds were tested in vitro on SARS-CoV-2 Egyptian strain. Of the compounds tested, only naringenin showed moderate anti-SARS-CoV-2 activity at non-cytotoxic micromolar concentrations, with a promising selectivity index (CC50/IC50 = 178.748/28.347 = 6.3). The IC50 value for naringenin was 92 nM, compared to 44 nM of the positive control (GC376). Docking studies for NAR with SARS-CoV-2 MPRO active site (PDB entry: 6w63) showed that naringenin was able to form hydrogen bonds with the carbonyl of Thr190 and the phe- nolic group of Tyr54, in addition to van der Waal’s interactions with His41, Met49, Met165, and Pro168, and having an XP GScore of −7.083.\(^{192}\) In another study, NAR’s docking with Mpro (PDB: 6LU7) showed a binding energy of −6.8 Kcal/mol.\(^{31}\) In another report, NAR exhibited low energy binding with a docking score of −12.44 Kcal/mol to the Mpro (PDB: 6LU7) receptor.\(^{68}\)

A virtual docking screening study related to 49 bioactive phytochemicals from several medicinal plants used in Jamu (Indonesian traditional herbal medicine) and 3CLpro (PDB: 6LU7) showed that eleven compounds exhibited good binding affinity with 3CLpro (-7.2 to −8.5 Kcal/mol), with an energy binding of 7.7 Kcal/mol for naringenin. Naringenin interacted with three hydrogen bonds (HBs) with residues Cys145, Glu166, and Asp187, van der Waal’s interaction with residues His41, Pro54, Tyr54, Leu141, Asn142, Ser144, His164, Met165, Arg188, and Glu189, unfavorable donor-donor interaction with residue Gly143, cation-π interaction with residue His163, and pi-alkyl interaction with Met49. Thus, naringenin has interactions with the active site and substrate-binding pocket located between the clefts of domain I and II of 3CLpro.\(^{193}\) NAR, having a log p value of 2.46, followed the Lipinski rule of five for high drug ability, with no violation.\(^{168}\)

Additionally, pharmacokinetic studies showed that NAR possesses favorable drug-likeness properties. NAR showed low GI absorption and a high volume of distribution, and, therefore, it should attain therapeutic effects upon oral administration.\(^{169}\) In a study by Nguyen et al, related to the inhibitory effects of plant polyphenols on SARS-CoV-2 Mpro, it was found that NAR exhibited 50% inhibition and an IC50 of 150 ± 10 µM.\(^{194}\) Using an in silico method, via AutoDock Vina 1.1.2., for selected components of grapefruit seed extract (narrirutin, naringin, naringenin, limonin, ascorbic acid and citric acid) against SARS-CoV-2 main protease (PDB ID: 6Y84), naringenin was identified as one of the components, having a
binding affinity of −8.2 kcal/mol. In a docking study involving Mpro (PDB:6lu7) and Mpro (PDB: 6y2f), NAR displayed HB interactions with Glu166, Gly143, and Leu141 and two HBs with Thr25, respectively. In addition to HB interactions, the 4′-hydroxyl group of NAR occupied the amino acid clefs through hydrophobic–hydrophobic interactions. In order to ensure the effect of NAR’s absolute configuration in docking mode (enantioselective docking relationship) and subsequently explore the structure activity relationship (SAR), the NAR-(R) isomer demonstrated a different binding pose and mode with the receptor. Docking results clarify that the two enantiomers of NAR display dissimilarity in their binding pose inside the active site. These findings suggest that naringenin shows potential for inhibition of SARS-CoV-2 Mpro, but further studies are needed, as well as preclinical and clinical trials for final confirmation of its inhibitory functionality.

Binding with RNA-Dependent RNA Polymerase (RdRp)

RNA-dependent RNA polymerase (RdRp or NSP12) is an essential enzyme required for viral replication and transcription. In a virtual docking screening study with RdRp (PDB: 7BV2), NAR exhibited significant binding, showing a binding energy of −7.7 Kcal/mol.

Targeting the Endo-Lysosomal Two-Pore Channels (TPCs)

It has been shown that CoV infection depends on trafficking of the virus to lysosomal compartments and processing of the S protein by lysosomal proteases. The role played by endo-lysosomal Two-Pore Channels (TPCs) on CoV biology and the feasibility of blocking the intracellular pathway of the virus by inhibiting these channels can be of significance to impede virus trafficking. Interestingly, NAR can inhibit the activity of TPC1 and TPC2, both in humans and plants. NAR is a hydrophilic substance with a higher affinity for the cytoplasmic membrane, generating intracellular accumulation of NAR. It has recently been demonstrated that the activity of human TPC channels can be inhibited by NAR. Naringenin exhibited a partial inhibition of SARS-CoV-2 replication observed at 24 h post-infection (hpi) in cells upon Two-pore channel 2 (TPC2) silencing, while stronger inhibition was observed at 48 and 72 hpi. Therefore, the TPC’s modulation by NAR should be further investigated as a possible anti-coronavirus intervention.

Nasal Spray, Containing Xylitol Plus GSE (Grapefruit Seed Extract)

Grapefruit seed extract (GSE), a commercial product made from grapefruit seeds and pulp, is often used as a dietary supplement. The secondary metabolites of grapefruit seeds are predominately limonoids and flavonoids, such as limonin, naringin, narirutin, naringenin and hesperidin. GSE showed anti-viral activity against enveloped viruses, but not against non-enveloped viruses. A study by Go et al showed that GSE plus xylitol as a nasal spray solution, commercially available as Xlear nasal spray, can be used as a potential adjunct treatment of COVID-19. In silico analysis showed that several components of grapefruit seed extract, including naringenin, bind with Mpro with a binding affinity of −8.2 kcal/mol.

Traditional Chinese Medicine (TCM)

Traditional Chinese Medicines (TCM) or Chinese herbal medicines (CHM) have often been used in treating epidemic diseases and in the management of COVID-19. Molecular docking was found to be a method of choice, which has often been complemented with drug target prediction and network pharmacology analyses to evaluate the potential of TCM as it allows identification of molecules and formulations that have the highest potential to either affect host-pathogen interaction or treat already infected patients.

By using molecular docking and network pharmacology analyses, Deng et al screened out naringenin, robinin, kaempferol, quercetin, isorhamnetin and iridoidene from Huoxiang Zhengqi as potential 3CLpro inhibitors, by targeting PIK3CG and E2F1 through the PI3K-Akt signaling pathway. Wu et al, Zhao et al, Xu et al and Fan et al applied network pharmacology to analyze Qingfei PaiDou decoction and found that quercetin, luteolin, kaempferol, naringenin, β-sitosterol, isorhamnetin, baicalein, and tussilagone could be the main active ingredients. Ren et al showed that kaempferol, naringenin, and wogonin in Jinhua Qinggan granules docked well with specific target proteins of SARS-CoV-2. Ling et al reported that 18β-glycyrrhetinic acid, stigmasterol, indigo, β-sitosterol, luteolin, quercetin and naringenin in Lianhua Qingwen Prescription might target ACE2 and protect the target organs of COVID-19 through the renin-angiotensin pathway. Network pharmacology combined with molecular docking was used to rationalize the mechanism of action for other TCM formulations, such as Qing-Fei-Da-Yuan (QFDY) granules; quercetin, luteolin, and naringenin showed strong binding abilities with COVID-19 3CL hydrolase.

These studies suggest that quercetin, kaempferol, luteolin, isorhamnetin, baicalein, naringenin, and wogonin are important ingredients having potentially high affinity for druggable targets; AEC2 and 3CL protein could be the potential direct targets for anti-SARS-CoV-2; COX-2, CASP3, IL-6, MAPK1, MAPK14, MAPK8 and RELA are the top seven targets; and IL-17, arachidonic acid metabolic, HIF-1, NF-kB, Ras, and TNF are the top six signaling pathways. These ingredients exert beneficial effects in the management of COVID-19 via inhibition of viral adsorption and replication, as well as the regulation of inflammatory mediators, and anti-inflammatory, and immune-regulatory
effects to prevent cytokine storm and to protect the target organs. It was suggested that various known TCM formulations could be effective due to the multicomponent, multitarget, synergistic action of their constituents. However, there is a lack of knowledge of other interactions, including drug-natural products and off-target interactions, that could cause adverse effects. Studies that include molecular dynamics simulations of multicomponent systems and experimental validation of theoretical studies should be considered as important components of an integrated approach for drug development.

Consumption, Pharmacokinetics and Safety

The consumption of NAR via citrus fruits or supplementation can rapidly increase circulating and intracellular levels of NAR. An increase in the concentration of NAR in plasma samples can be observed around 4 h post-consumption. In addition, in vitro models have also demonstrated a long-term anti-viral benefit, even after discontinuation of supplementation with NAR. The consumption of 500 mL/day for 8 weeks of orange juice, rich in NAR, has demonstrated an adjuvant effect in antiviral therapy. The consumption of 340 mL of grapefruit juice per day (containing approximately 210 mg of NAR) also improved cardiac-related measurements. NAR is mostly absorbed in the small intestine and differences in microbiota may also be an important inter-individual variable.

From a clinical point of view, the therapeutic potential and safety, as well as pharmacokinetics and metabolism of NAR indicated its safety. A dose of 600 mg in healthy volunteers resulted in a serum Cmax of about 50 µM, without relevant toxicity. In addition, the hydrophobic nature of NAR facilitates its crossing of biological membranes and reaching the cell in a suitable concentration.

TPSA (Topological polar surface area) is used as a good measure for prediction of drug transport properties. It correlated efficiently with human intestinal absorption. Naringenin revealed a good TPSA value of 86.9 Å, indicating its possible intestinal permeability and 68% absorption.

Furthermore, NAR interactions with the cytochrome P450 (CYP) system need to be evaluated, as NAR can affect drug-metabolizing enzymes and pharmacokinetics of important drugs that may be of either regular use or specific to COVID-19 patients.

Concluding Remarks

In silico analysis demonstrated that NAR can prevent the entry of the virus into host cells by inhibiting the binding capacity of ACE2 receptors and by lowering Mpro and PLpro activities. It consequently inhibits viral transcription and replication (Figure 2). NAR’s potential as an anti-inflammatory nutritional intervention has been demonstrated in many different diseases. Therefore, NAR might provide a promising treatment strategy, and consumption of foods enriched with flavonoids can be of importance for the prevention and treatment of SARS-CoV-2, while providing enough safety for the human body. However, further investigations and clinical trials are necessary before the use of NAR can be recommended as part of antiviral therapy.

Declaration of Conflicting Interests

The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

Funding

The author(s) received no financial support for the research, authorship and/or publication of this article.

ORCID iD

Pawan K. Agrawal https://orcid.org/0000-0002-7149-8358

References

1. Alberca GGF, Fernandes IG, Sato MN, Alberca RW. What is COVID-19? Front Young Minds. 2020;8:74. doi: 10.3389/frym.2020.00074
2. Cao X. COVID-19: immunopathology and its implications for therapy. Nat Rev Immunol. 2020;20:269-270. doi: 10.1038/s41577-020-0308-3
3. Li F. Structure, function, and evolution of coronavirus spike proteins. Annu Rev Virol. 2016;3(1):237-261. doi: 10.1146/annurev-virology-110615-042301
4. Li W, Moore MJ, Vasileva N, et al. Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus. Nature. 2003;426(6965):450-454. doi: 10.1038/nature02145
5. Kubo K, Imai Y, Rao S, et al. A crucial role of angiotensin converting enzyme 2 (ACE2) in SARS coronavirus-induced lung injury. Nat Med. 2005;11(8):875-879. doi: 10.1038/nm1267
6. Wang K, Chen W, Zhang Z, et al. CD147-spike Protein is a novel route for SARS-CoV-2 infection to host cells. *Sig Transduct Target Ther.* 2020;5(1):283. doi:10.1038/s41392-020-00426-x

7. Xiu S, Dick A, Ju H, et al. Inhibitors of SARS-CoV-2 entry: current and future opportunities. *J Med Chem.* 2020;63(21):12256-12274. doi:10.1021/acs.jmedchem.0c00502

8. Tai W, He I, Zhang X, et al. Characterization of the receptor-binding domain (RBD) of 2019 novel coronavirus: implication for development of RBD protein as a viral attachment inhibitor and vaccine. *Cell Mol Immunol.* 2020;17(6):613-620. doi:10.1038/s41423-020-0400-4

9. Palmeira P, Barbuto JAM, Silva CAA, et al. Why is SARS-CoV-2 infection milder among children? *Clinics.* 2020;75:e1947. doi: 10.6061/clinics/2020/e1947

10. Yin Y, Wunderink RG. MERS, SARS and other coronaviruses as causes of pneumonia. *Respirology.* 2018;23(2):130-137. doi: 10.1111/resp.13196

11. Gembardt F, Sterner-Kock A, Imboden H, et al. Organ-specific distribution of ACE2 mRNA and correlating peptide activity in rodents. *Peptides.* 2005;26(7):1270-1277. doi: 10.1016/j.peptides.2005.01.009

12. Shen LW, Mao HJ, Wu YL, et al. TMPRSS2: a potential target for treatment of influenza virus and coronavirus infections. *Biochimie.* 2017;142:1-10. doi: 10.1016/j.biochi.2017.07.016

13. Li H, Liu SM, Yu XH, Tang SL, Tang CK. Coronavirus disease 2019 (COVID-19): current status and future perspectives. *Int. J. Antimicrob. Agents.* 2020;55(5):105951. doi:10.1016/j.ijantimicag.2020.105951

14. Tahir M, Alqhtani S, Alamri M, Chen L. Structural basis of SARS-CoV-2 3CLpro and anti-COVID-19 drug discovery from medicinal plants. *J Pharm. Anal.* 2020;10(4):313-319. doi:10.1016/j.jpha.2020.03.009

15. Bouhaddou M, Memon D, Meyer B, et al. The global phosphorylation landscape of SARS-CoV-2 infection. *Cell.* 2020;182(3):685-712. doi:10.1016/j.cell.2020.06.034

16. Pitsillou E, Liang J, Ververis K, Hung A, Karagiannis TC. Interaction of small molecules with the SARS-CoV-2 papain-like protease; in silico studies and in vitro validation of protease activity inhibition using an enzymatic inhibition assay. *J Mol Graph Model.* 2021;107851. doi:10.1016/j.jmgm.2021.107851

17. Conti P, Ronconi G, Caraffa A, et al. Induction of pro-inflammatory cytokines (IL-1 and IL-6) and lung inflammation by COVID-19: anti-inflammatory strategies. *J Biol Regul Homeost Agents.* 2020;34(2):327-331. doi: 10.23812/CONTI-E

18. Middleton EJr, Kandaswami C, Theoharides TC. The effects of plant flavonoids on mammalian cells: implications for inflammation, heart disease, and cancer. *Pharma Rev.* 2000;52(4):673-751

19. Kumar S, Pandey AK. Chemistry and biological activities of flavonoids: an overview. *The Scientific World Journal.* 2013, Article ID 162750, doi:10.1155/2013/162750

20. Brunetti C, Di Ferdinando M, Fini A, Pollastri S, Tartini M. Flavonoids as antioxidants and developmental regulators: relative significance in plants and humans. *Int J Mol Sci.* 2013;14(2):3540-3555. doi:10.3390/ijms14023540

21. Romano B, Pagano E, Montanaro V, Fortunato AL, Milic N, Borrelli F. Novel insights into the pharmacology of flavonoids. *Phytotol Res.* 2013;27(11):1588-1596. doi: 10.1002/phr.20023

22. Gortlach S, Fichna J, Lewandowska U. Polyphenols as mitochondria-targeted anticancer drugs. *Cancer Lett.* 2015;366(2):141-149. doi: 10.1016/j.canlet.2015.07.004

23. Xie Y, Yang W, Tang F, Chen X, Ren L. Antibacterial activities of flavonoids: structure-activity relationship and mechanism. *Curr Med Chem.* 2015;22(1):132-149. doi: 10.2174/092967321666140916113443

24. Panche AN, Diwan AD, Chandra SR. Flavonoids: an overview. *J Nutr Sci.* 2016;5:e47. doi:10.1017/ins.2016.41

25. Amawi H, Ashby CRJr, Tiwari AK. Cancer chemoprevention through dietary flavonoids: what’s limiting? *Chin J Cancer.* 2017;36(1):50. doi:10.1186/s40880-017-0217-4

26. Tominagamithum D, Thongboonyou A, Pholboon A, Yangsabai A. Flavonoids and other phenolic compounds from medicinal plants for pharmaceutical and medical aspects: an overview. *Medicines.* 2018;5(3):93. doi:10.3390/medicines5030093

27. Datta T, Du D, Yang L, et al. Exploring the mechanism of flavonoids through systematic bioinformatics analysis. *Front. Pharmacol.* 2019;10:918. doi:10.3389/fphar.2019.00918

28. Maleki SJ, Crespo JF, Cabanillas B. Anti-inflammatory effects of flavonoids. *Food Chem.* 2019;299:e125124. doi:10.1016/j.foodchem.2019.125124

29. Shahla H, Munir S, Badshah SI, et al. Important flavonoids and their role as a therapeutic agent. *Molecules.* 2020;25:5243. doi:10.3390/molecules25225243

30. Mutha RE, Tariya AU, Surana SU. Flavonoids as natural phenolic compounds and their role in therapeutics: an overview. *Future J Pharm. Sci.* 2021;7(1):25. doi:10.1186/s43094-020-00161-8

31. Alzaabi MM, Hamdy R, Ashmawy NS, et al. Flavonoids are promising safe therapy against COVID-19. *Phytotol Res.* 2021;221:1. doi:10.1007/s11101-021-09759-z

32. Russo M, Moccia S, Spagnuolo C, et al. Roles of flavonoids against coronavirus infection. *Chem Biol Interact.* 2020;328:109211. doi:10.1016/j.cbi.2020.109211

33. Santana FPR, Thevenard F, Gomes KS, et al. New perspectives on natural flavonoids on COVID-19-induced lung injuries. *Phytotol Res.* 2021;29:10.1002/ptr.7131. doi: 10.1002/ptr.7131

34. Solnier J, Fladerer JP. Flavonoids: a complementary approach to conventional therapy of COVID-19. *Phytotol Res.* 2021;20:773-795. doi: 10.1007/s11101-020-09720-6

35. Godinho PIC, Soengas RG, Silva VLM. Therapeutic potential of glycosyl flavonoids as anti-coronavirus agents. *Pharmaceuticals.* 2021;14(6):546. doi: 10.3390/pharmacy14060546

36. Agrawal PK, Agrawal C, Blunden G. Quercetin: antiviral significance and possible COVID-19 integrative considerations. *Nat Prod Commun.* 2020;15(12):1-10. doi: 10.1177/1934578X20976293

37. Agrawal PK, Agrawal C, Blunden G. Rutin: a potential antiviral for repurposing as a SARS-CoV-2 main protease (mpro) inhibitor. *Nat Prod Commun.* 2021;16(4):1-12. doi:10.1177/1934578X21991723
42. Levy E, Delvin E, Marcil V, Spahis S. Can phytotherapy with
39. Limanaqi F, Busceti CL, Biagioni F, et al. Cell clearing systems as
targets of polyphenols in viral infections: potential implications
for COVID-19 pathogenesis. Antioxidants. 2020;9(11):1105.
doi:10.3390/antiox9111105
40. Margina D, Ungurianu A, Purdel C, et al. Analysis of the intricate
effects of polyunsaturated fatty acids and polyphenols on inflammatory
pathways in health and disease. Food Chem Toxicol. 2020;143:11158.
doi: 10.1016/j.fct.2020.111588
41. Ali AM, Kunugi H. Propolis, bee honey, and their components
protect against coronavirus disease 2019 (COVID-19): a review of
in silico, in vitro, and clinical studies. Molecules. 2021;26-
(5):1232. doi: 10.3390/molecules26051232
42. Levy E, Delvin E, Marcil V, Spahis S. Can phytotherapy with
polyphenols serve as a powerful approach for the prevention
and therapy tool of novel coronavirus disease 2019 (COVID-19)?
Am J Physiol Endocrinol Metab. 2020;319(4):E689-
E708. doi:10.1152/ajpendo.00298.2020
43. Pandey P, Khan F, Rana AK, et al. A drug repurposing approach
towards elucidating the potential of flavonoids as COVID-19
spike protein inhibitor. Biointerface Res Appl Chem. 2021;
11(1):8482-8501. doi:10.33263/BRIAC11.84828501
44. Xian Y, Zhang J, Bian Z, et al. Bioactive natural compounds
against human coronaviruses: a review and perspective. Acta
Pharm Sinica B. 2020;10(7):1163-1174. doi: 10.1016/j.apsb.2020.
06.002
45. Ngwa W, Kumar R, Thompson D, et al. Potential of
flavonoid-inspired phyto medicines against COVID-19. Molecules.
2020;25(11):2707. doi:10.3390/molecules25112707
46. Mehany T, Khalifa I, Barakat H, Alhwbab SA, Alharbi YM,
El-Sohaimy S. Polyphenols as promising biologically active
substances for preventing SARS-CoV-2: a review with research
evidence and underlying mechanisms. Food Biotech. 2021;40:10089.
doi:10.1016/j.fbio.2021.100891
47. El-Missiry MA, Fekri A, Kesar LA, Othman AM. Polyphenols are
potential nutritional adjuvants for targeting COVID-19. Phytother
Res. 2021;35(6):2879-2889. doi:10.1002/ptr.6992
48. de la Lasra JM P, Andrés-Juan C, Plou FJ, Pérez-Lebeña E.
Impact of zinc, glutathione, and polyphenols as antioxidants in
the immune response against SARS-CoV-2. Processes. 2021;
9(3):506. doi:10.3390/ pr9030506
49. Chojnacka K, Witek-Krowiak A, Skrzypczak D, Mikula K,
Mlynarz P. Phytochemicals containing biologically active poly-
phenols as an effective agent against covid-19-inducing coronavi-
rus. J Funct Foods. 2020;73:104146. doi:10.1016/j.jff.2020.104146
50. Giovinazzo G, Gerardi C, Uberti-Foppa C, Lopalco L. Can
natural polyphenols help in reducing cytokine storm in
COVID-19 patients? Molecules 2020;25:5888. doi:10.3390/
molecules25245888
51. Jo S, Kim S, Kim DY, Kim MS, Shin DH. Flavonoids with
inhibitory activity against SARS-CoV-2 3CLpro. J Enzyme Inhib
Med Chem. 2020;35(1):1539-1544. doi: 10.1080/14756366.2020.
1801672
52. Gour A, Manhas D, Bag S, Gorain B, Nandi U. Flavonoids as
potential phytotherapeutics to combat cytokine storm in
SARS-CoV-2. Phytother Res. 2021;1-26. doi: 10.1002/ptr.7092
53. Huang F, Li Y, Leung ELH, et al. A review of therapeutic agents
and Chinese herbal medicines against SARS-CoV-2 (COVID-19). Pharmaco Res. 2020;158:104929. doi: 10.1016/j.
phrs.2020.104929
54. Antonio AS, Wiedemann LSM, Viegas-Junior VF. Natural products’
role against COVID-19. R Soc Adv. 2020;10:23379-23393.
doi:10.1039/d0ra03774c
55. Chakravarti R, Singh R, Ghosh A, et al. A review on potential
of natural products in the management of COVID-19. R Soc Adv.
2021;11:16711-16735. 2021 doi: 10.1039/d1ra00644d
56. Annunziata G, Zamparelli MS, Santoro C, et al. May polyphenols
have a role against coronavirus infection? An overview of in vitro
evidence. Front. Med. 2020;7:240. doi: 10.3389/fmed.2020.00240
57. Omrani M, Keshavarz M, Nejad Ebrahimi S, et al. Potential
natural products against respiratory viruses: a perspective to
develop anti-COVID-19 medicines. Front. Phys.
2021;11:586993. doi: 10.3389/fphar.2020.586993
58. Savant S, Srinivasan S, Kruthiventi AK. Potential nutraceuticals
for COVID-19. Nutrition and Diet Suppl. 2021;13:25-51. doi: 10.
2147/NDS.S294231
59. Pastor N, Collado MC, Manzoni P. Phytoneutrient and nutracu-
tical action against COVID-19: current review of characteristics
and benefits. Nutrients. 2021;13(2):464. doi: 10.3390/nut13020464
60. Boretti A. Quercetin supplementation and COVID-19. Nat Prod
Commun. 2021;9(3):506. doi: 10.3390/pr9030506
61. Mhatre S, Srivastava T, Naik S, Patravale V. Antiviral activity of
green tea and black tea polyphenols in prophylaxis and treatment
of COVID-19. 2021;85:153286. doi: 10.1016/j.phymed.2020.153286
62. Bhownik D, Nandi R, Prakash A, Kumar D. Evaluation of flav-
onoids as 2019-nCoV cell entry inhibitor through molecular
docking and pharmacological analysis. Heliyon. 2021;7(3):
e06515. Doi: 10.1016/j.heliyon.2021.e06515
63. Khalil A, Tazeddinova D. The upshot of polyphenolic compounds
on immunity amid COVID-19 pandemic and other emerging com-
municable diseases: an appraisal. Front. Physiol. 2020;11:583387.
doi:10.3389/fphys.2020.583387
64. Mandal A, Jha AK, Hazra B. Plant products as inhibitors of coro-
navirus 3CL protease. Front. Pharmacol. 2021;12:583387. doi:
10.3389/fphar.2021.583387
65. Remali J, Aizat WM. A review on plant bioactive compounds and
their modes of action against coronavirus infection. Front. Pharmacol. 2021;11:589044. doi: 10.3389/fphar.2020.589044
66. Júnior MPP, Júnior LAR, Evaluation of peppermint leaf
cell clearing systems as SARS-CoV-2 spike receptor-binding domain
attachment inhibitors to the human ACE2 receptor: a molecular docking
study. Preprints. 2021. arXiv:2102.12651 [q-bio.BM
67. Gogoi N, Chowdhury P, Goswami AK, Das A, Chetta D, Gogoi
B. Computational guided identification of a citrus flavonoid as
potential inhibitor of SARS-CoV-2 main protease. *Mol Divers.*, 2021;25(3):1745-1759. doi: 10.1007/s11030-020-10150-x

68. Utoro R, Ikawati M, Miyamoto E. Revealing the potency of citrus and galangal constituents to halt SARS-CoV-2 infection. *Preprints*. 2020 Mar 12. doi: 10.20944/preprints202003.0214v1

69. Erdisman JW, Balentine D, Arab I, et al. Flavonoids and heart health: Proceedings of the ILSI North America Flavonoids Workshop, May 31–June 1, 2005, Washington, DC. *J Nutr.*, 2007;137(3 Suppl 1):718S-737S.

70. Kawai S, Tomono Y, Katase E, Ogawa K. Yano M: quantitation of flavonoid constituents in citrus fruits. *J Agric Food Chem.*, 1999;47(9):3565-3571. doi: 10.1021/jf990153+

71. Ghidoli M, Colombo F, Sangiorgio S, et al. Food containing bioactive flavonoids and other phenolic or sulfur phytochemicals with antiviral effect: do we can design a promising diet against COVID-19? *Front Nutr.*, 2021;8:661331. doi: 10.3389/fnut.2021.661331

72. Den Hartogh DJ, Tsiani E. Polyphenols in human health and disease. *Antioxidants & Redox Signaling*, 2011;15:813-833. doi: 10.1089/ars.2010.3676.

73. Jalili A, Mousavi M, Yeganeh B, et al. Hepatoprotective effects of naringin on arsenic-induced liver injury in rats. *Int J Pharmaceut.*, 2014;464(1-2):10-24. doi: 10.1016/j.ijpharm.2014.05.068.

74. Chen J, Li J, Yang X, et al. The therapeutic potential of naringin in treating type 2 diabetes in mice. *Pharmazie*, 2019;74(4):257-263. doi: 10.1680/jphar.1800276.

75. Jin L, Liang W, Zhang F, et al. Naringin enhances the anti-tumor effect of doxorubicin by inducing apoptosis in breast cancer cells. *J Pharmacol Exp Ther.*, 2017;364(2):261-271. doi: 10.1124/jpet.116.250925.

76. Xu Y, Chen J, Li J, et al. Naringin protects against hepatic fibrosis in rats by activating the AMPK/mTOR pathway. *J Tradit Chin Med.*, 2019;39(5):952-958. doi: 10.1016/j.jtcm.2019.03.010.

77. Salehi B, Fokou PVT, Sharifi-Rad M, et al. The therapeutic potential of naringin: a review of clinical trials. *Pharmacuticals (Basel)*, 2019;12(1):11. doi: 10.3390/ph12010011

78. Yoshida H, Takamura N, Shuto T, et al. The citrus flavonoid hesperetin and naringin block the lipolytic actions of TNF-alpha in mouse adipocytes. *Biochem Biophys Res Commun.*, 2010;394(3):728-732. doi: 10.1016/j.bbrc.2010.03.060

79. Alam MA, Subhan N, Rahman MM, Uddin SJ, Reza HM, Sarker SD. Effect of citrus flavonoids, naringin and naringenin, on metabolic syndrome and their mechanisms of action. *Adv Nutr.*, 2014;5(4):404-417. doi: 10.3945/an.113.050503

80. Hernández-Aquino E, Muriel P. Beneficial effects of naringenin in liver diseases: molecular mechanisms. *World J Gastroenterol.*, 2018;24(16):1679-1707. doi: 10.3748/wjg.v24.i16.1679.

81. Al-Harbi MS. Hepatoprotective effect and antioxidant capacity of naringenin on arsenic-induced liver injury in rats. *Int J Pharm Sci.*, 2016;8(4):103-108. https://innovareacademics.in/journals/index.php/ijps/article/view/10618

82. Song HM, Park GH, Eo HJ, et al. Anti-proliferative effect of naringenin through p38-dependent downregulation of cyclin D1 in human colorectal cancer cells. *Biomed Ther (Seoul)*, 2015;23(4):339-344. doi: 10.4062/biomother.2015.02.

83. Krishnakumar N, Sulikkarali N, Rajendra Prasad N, Kirthikeyan S. Enhanced anticancer activity of naringenin loaded nanoparticles in human cervical (HeLa) cancer cells. *Biomed & Preventive Nutr.*, 2011;1(4):223-231. doi: 10.1016/j.bionut.2011.09.003

84. Hämäläinen M, Nieminen R, Vuorela P, Heinonen M, Moilanen E. Anti-inflammatory effects of flavonoids: genistein, kaempferol, quercetin, and daidzein inhibit STAT-1 and NF-kappaB activations, whereas flavone, isorhamnetin, naringenin, and pelargonidin inhibit only NF-kappaB activation along with their inhibitory effects. *Mediators Inflamm.*, 2007:45673. doi: 10.1155/2007/45673

85. Priscilla DH, Jayakumar M, Thirumurugan K. Flavanone naringenin: an effective antihyperglycemic and antihyperlipidemic nutraceutical agent on high fat diet fed streptozotocin induced type 2 diabetic rats. *J Funct Foods.*, 2015;14:363-373. doi: 10.1016/j.jff.2015.02.005

86. Manchope MF, Casagrande R, Verti WA Jr. Naringenin: an anti-inflammatory agent with cancer chemopreventive potential. *Pharmaceuticals*, 2019;6(1):10. doi: 10.3390/ph9110690.

87. Jakimiuk K, Gesek J, Atanasov AG, Tomczyk M. Flavonoids as natural inhibitors of human neutrophil elastase. *Bioresour Technol.*, 2017;230:108. doi: 10.1016/j.biortech.2016.11.019

88. Priscilla DH, Jayakumar M, Thirumurugan K. Flavanone naringenin: an effective antihyperglycemic and antihyperlipidemic nutraceutical agent on high fat diet fed streptozotocin induced type 2 diabetic rats. *J Funct Foods.*, 2015;14:363-373. doi: 10.1016/j.jff.2015.02.005

89. Pandey RP, Gurung RB, Sohng JK. Dietary sources, bioavailability and biological activities of naringenin and its derivatives. In *Apigenin and naringenin: Natural sources, pharmacology and role in cancer prevention*. 2015;151-172. Nova Science Publishers.

90. Nouri Z, Fakhriz S, El-Senduny FF, et al. On the neuroprotective effects of naringenin: pharmacological targets, signaling pathways, molecular mechanisms, and clinical perspective. *Biomolecules*, 2019;9(11):690. doi: 10.3390/biom9110690

91. Wang B, Shen J, Zhou Q, et al. Effects of naringenin on the pharmacokinetics of tofacitinib in rats. *Pharm Biol.*, 2020;58(1):225-230. doi: 10.1080/13880209.2020.1738504

92. Mahmoud AM, Hernández Bautista RJ, Sandhu MA, Hussein OE. Beneficial effects of citrus flavonoids on cardiovascular and metabolic health. *Oxid Med Cell Longev.*, 2019; Mar 10;2019:5484138. doi: 10.1155/2019/5484138
96. Murugesan N, Woodard K, Ramaraju R, et al. Naringenin increases insulin sensitivity and metabolic rate: a case study. *J Med Food*. 2020;23(3):343-348. doi: 10.1089/jmf.2019.0216

97. Kaur J, Vyas M, Singh J, et al. Therapeutic applications of naringenin, a flavonoid enriched in citrus fruits, for disorders beyond diabetes. *Phyton (B Aires)*. 2020;89(4):795-803. doi: 10.32604/phyton.2020.09420

98. Mulvihill EE, Burke AC, Huff MW. Citrus *NF-*7312*NF-*7314 and inflammation. *Mol Nutr Food Res* 2018;79(2):352-362. doi: 10.1002/mnfr.201701071

99. Shi Y, Dai J, Liu H, et al. Naringenin inhibits allergen-induced inflammation. *Mol Nutr Food Res* 2018;79(2):352-362. doi: 10.1002/mnfr.201701071

100. Oguido APMT, Hohmann MSN, Pinho-Ribeiro FA, et al. Protective effect of naringenin on metabolic diseases and its potential sources for high yield-production. *Trends Food Sci Technol*. 2012;60(1):51-54. doi: 10.1012/j/tf0203259h

101. Jayaraman J, Jesudoss VA, Menon VP, Namasivayam N. Anti-inflammatory role of naringenin in rats with ethanol induced liver injury. *Toxicol Mech Methods*. 2012;117(2):158-167. doi: 10.1053/j/toxmech.2012.06.012

102. Liu X, Wang N, Fan S, et al. The citrus flavonoid naringenin confers protection in a murine endotoxaemia model through AMPK-ATF3-dependent negative regulation of the TLR4 signalling pathway. *Sci Rep*. 2016;6:39735. doi: 10.1038/srep39735

103. Karim N, Jia Z, Zheng X, Cui S, Chen W. A recent review of flavonoids as regulators of lipoprotein metabolism and atherosclerosis. *Annu Rev Nutr*. 2016;36:275-299. doi: 10.1146/annurev-nutr-071515-050718

104. Oguido APMT, Hohmann MSN, Pinho-Ribeiro FA, et al. Protective effect of naringenin on metabolic diseases and its potential sources for high yield-production. *Trends Food Sci Technol*. 2012;60(1):51-54. doi: 10.1012/j/tf0203259h

105. Chen S, Ding Y, Tao W, Zhang W, Liang T, Liu C. Naringenin inhibits TNFα induction of HO-1. *Food Chem Toxicol*. 2012;50(9):3025-3031. doi: 10.1016/j.fct.2012.06.006

106. Alberca RW, Teixeira FME, Beserra DR, et al. Perspective: the potential effects of naringenin in COVID-19. *Front Immunol*. 2020; Sep 25;11:570919. doi: 10.3389/fimmu.2020.570919

107. Zhao M, Li C, Shen F, Wang M, Jia N, Wang C. Naringenin ameliorates LPS-induced acute lung injury through its anti-oxidative and anti-inflammatory activity and by inhibition of the PI3K/AKT pathway. *Exp Lung Res*. 2017;14(3):2228-2234. doi: 10.3892/elm.2017.4772

108. Fouad AA, Alhuali WH, Jresat I. Protective effect of naringenin against lipopolysaccharide-induced acute lung injury in rats. *Pharmacology*. 2016;97(5-6):224-232. doi: 10.1159/000444262

109. Shi Y, Dai J, Liu H, et al. Naringenin inhibits allergen-induced airway inflammation and airway responsiveness and inhibits NF-κB activity in a murine model of asthma. *Can J Physiol Pharmacol*. 2009;87(9):729-735. doi: 10.1139/y09-065

110. Yilmaz AN, Singh SR, Morici L, Dennis VA. Flavonoid naringenin: a potential immunomodulator for Chlamydia trachomatis infection. *Mol Nutr Food Res*. 2013;57(2):288-292. doi: 10.1002/mnfr.201200257

111. Bodet C, La FD, Epifano F, Grenier D. Naringenin has anti-inflammatory properties in macrophage and ex vivo human whole-blood models. *J Periodontal Res*. 2008;43(4):400-407. doi: 10.1111/j.1600-0765.2007.01055.x

112. Iwamura C, Shinoda K, Yoshimura M, Watanabe Y, Ohta A, Nakayama T. Naringenin chalcone suppresses allergic asthma by inhibiting the type-2 function of CD4 T cells. *Allergol Int*. 2010;59(1):67-73. doi: 10.2332/allergoint.09-0A-118

113. Guibua X, Shuyin L, Jinliang G, Wang S. Naringin protects ovalbumin induced airway inflammation in a mouse model of asthma. *Inflammation*. 2016;39(2):891-899. doi: 10.1007/s10753-016-0321-7

114. Dou W, Zhang J, Sun A, et al. Protective effect of naringenin against experimental colitis via suppression of toll-like receptor 4/NF-κB signalling. *Br J Nutr*. 2013;110(4):599-608. doi: 10.1017/S0007114512005594

115. Jain A, Yadav A, Bozhkov AI, Padalko VI, Flora SJS. Therapeutic efficacy of silmyarin and naringenin in reducing arsenic-induced hepatic damage in young rats. *Exotoxicol Environ Saf*. 2017;4(4):607-614. doi: 10.1016/j.ecoenv.2010.08.002

116. Assini JM, Mulvihill EE, Burke AC, et al. Naringenin prevents obesity, hepatic steatosis, and glucose intolerance in male mice independent of fibroblast growth factor 21. *Endocrinology*. 2015;156(6):2087-2102. doi: 10.1210/en.2014-2003

117. Qin L, Jin L, Lu L, et al. Naringenin reduces lung metastasis in a breast cancer resection model. *Protein Cell*. 2011;2(6):507-516. doi: 10.1007/s13238-011-1056-8

118. Zhang Y, Geng X, Tan Y, et al. New understanding of the damage of SARS-CoV-2 infection outside the respiratory system. *Biomed Pharmacother*. 2020;127:110195. doi: 10.1016/j.biopha.2020.110195

119. Smith AM, Rahman FZ, Hayee B, et al. Disordered macrophage cytokine secretion underlies impaired acute inflammation and bacterial clearance in crohn’s disease. *J Exp Med*. 2009;206(6):1883-1897. doi: 10.1084/jem.20091233

120. Zeng W, Jin L, Zhang F, Zhang C, Liang W. Naringenin as a potential immunomodulator in therapeutics. *Pharmacol Res*. 2018;135:122. doi: 10.1016/j.pr.2018.08.002

121. Jose RJ, Manuel A. COVID-19 cytokine storm: the interplay between inflammation and coagulation. *Lancet Respir Med*. 2020;8:e46-e47. doi: 10.1016/S2213-2600(20)30216-2

122. Zandi K, Teoh BT, Sam SS, Wong PF, Mustafa MR, Abubakar S. In vitro antiviral activity of fisetin, rutin and naringenin against dengue virus type-2. *J Med Plant Res*. 2011;5(6):5534-5539. doi: 10.5897/JMPR11.1046

123. Frabasile S, Koishi AC, Kuczera D, et al. The citrus *NF-*7312*NF-*7314 and inflammation. *Mol Nutr Food Res*. 2018;79(2):352-362. doi: 10.1002/mnfr.201701071
125. Nahmias Y, Goldwasser J, Casali M, et al. Apolipoprotein B-dependent hepatitis C virus secretion is inhibited by the grapefruit flavonoid naringenin. *Hepatology*. 2008;47(5):1437-1445. doi: 10.1002/hep.22197

126. Khachatourian R, Arumugaswami V, Raychaudhuri S, et al. Divergent antiviral effects of bioflavonoids on the hepatitis C virus life cycle. *J Virol*. 2012;86(2):346-355. doi: 10.1128/jvi.02089-11

127. Mirza MU, Ghori NU, Ikram N, Adil AR, Manzoor S. Cataneo AHD, Kuczera D, Koishi AC, et al. The citrus flavonoid naringenin inhibits the hepatitis C virus nonstructural protein 5B inhibitors. *Drug Des. Dev. Ther*. 2015;9:1825-1841. doi: 10.2147/DDDT.S75886

128. Ninfári P, Antonelli A, Magnani M, Scarpa ES. Antiviral properties of flavonoids and delivery strategies. *Nutrients*. 2020;12(9):2534. doi: 10.3390/nu12092534

129. Cataneto AH, Kuczea D, Koishi AC, et al. The citrus flavonoid naringenin impairs the in vitro infection of human cells by zika virus. *Sci Rep*. 2019;9(1):16348. doi: 10.1038/s41598-019-52626-3

130. Ahmadi A, Hassandarvish P, Lani R, et al. Inhibition of chikungunya virus replication by hesperetin and naringenin. *Sci Rep*. 2017;7(1):5121. doi: 10.1038/s41598-017-04974-1

131. Pohjala L, Utt A, Varjak M, et al. Inhibitors of alphavirus entry and replication identified with a stable chikungunya replicon cell line and virus-based assays. *PLoS One*. 2011;6:e28923. doi: 10.1371/journal.pone.0028923

132. Lyu SY, Rhim JY, Park WB. Antitherapeutic activities of flavonoids against herpes simplex virus type 1 (HSV-1) and type 2 (HSV-2) in vitro. *Arch Pharm Res*. 2005;28(11):1293-1301. doi: 10.1007/BF02978215

133. Paredes A, Alzuru M, Mendez J, et al. Anti-Sindbis activity of flavonones hesperetin and naringenin. *Biochim. Biophys. Acta*. 2003;1669:69421-69430. doi: 10.1016/j.bjbaa.2016.10.029

134. Bae EA, Han MJ, Lee M, et al. In vitro inhibitory effect of some flavonoids on rotavirus infectivity. *Biochim. Biophys. Acta*. 2000;2005;28(11):1293-1301. doi: 10.1007/BF02978215

135. Castrillo M, Córdova T, Cabrera G, Rodríguez-Ortega M. Effect of naringenin, hesperetin and their glycosides forms on the replication of the 17D strain of yellow fever virus (efecto de la nar- ingenina, hesperetina y sus formas glicosidadas sobre la rep- licación de la cepa 17D del virus de la fiebre amarilla). *Avances en Biomed*. 2015;3:69-78.

136. Lin YM, Anderson H, Flavin MT, et al. In vitro anti-HIV activity of biflavonoids isolated from *Rhus succedanea* and *Garcinia multiflora*. *J Nat Prod*. 1997;60(9):884-888. doi: 10.1021/np9700275

137. da Silva CCF, Salatino A, da Motta LB, Negri G, Salatino MLF. Chemical characterization, antioxidant and anti-HIV activities of a Brazilian propolis from ceara state. *Braz J Pharmacogn*. 2019;29(3):309-318. doi: 10.1590/1673-7611.2019.04.001

138. Gonzáles D, Lima C, Ferreira P, et al. Orange juice as dietary source of antioxidants for patients with hepatitis C under antiviral therapy. *Food Nutr Res*. 2017;61(1):1296675. doi: 10.1080/16546628.2017.1296675

139. Lutu MR, Nzuza S, Mato PEM, et al. DNA polymerase-γ hypothesis in nucleoside reverse transcriptase-induced mitochondrial toxicity revisited: a potentially protective role for citrus fruit-derived naringenin? *Eur J Pharmocol*. 2019;852(5):159-166. doi: 10.1016/j.ejphar.2019.03.017

140. Sadati SM, Gheibi N, Ranjbar S, Hashemzadeh MS. Docking study of flavonoid derivatives as potent inhibitors of influenza H1N1 virus neuraminidase. *BioMed Rep*. 2019;10(1):33-38. doi: 10.3892/br.2018.1173

141. Benkertou D, Minicozzi V, Gradogna A, et al. A perspective on the modulation of plant and animal two pore channels (TPCs) by the flavonoid naringenin. *Biophys Chem*. 2019;254:106246. doi: 10.1016/j.bpc.2019.106246

142. Pafumi I, Festa M, Papacci F, et al. Naringenin impairs two-pore channel 2 activity and inhibits VEGF-induced angiogenesis. *Sci Rep*. 2017;7(1):5121. doi: 10.1038/s41598-017-04974-1

143. Tsai Y-J, Tsai T-H. Mesenteric lymphatic absorption and the pharmacokinetics of naringin and naringenin in the rat. *J Agric Food Chem*. 2012;60(51):12435-12442. doi: 10.1021/jf3031962g

144. Ou X, Liu Y, Li X, et al. Characterization of spike glycoprotein of SARS-CoV-2 on virus entry and its immune cross-reactivity with SARS-CoV. *Nature Commun*. 2020;11(1):1620. doi: 10.1038/s41467-020-15562-9

145. Kang Y-L, Chou Y-Y, Rothlauf PW, et al. Inhibition of PI3fyve kinase prevents infection by EBOV and SARS-CoV-2. *bioRxiv*. 2020;2020.04.21.053058. doi: 10.1101/2020.04.21.053058

146. Sakurai Y, Koloñkošov AA, Chen C-C, et al. Ebola virus. Two-pore channels control *Ebola* virus host cell entry and are drug targets for disease treatment. *Science*. 2015;347(6225):995-998. doi: 10.1126/science.1258758

147. Khan N, Halcerow PW, Lakpa KL, et al. Two-pore channels regulate Tat endolysosome escape and Tat-mediated HIV-1 LTR transactivation. *FASEB J*. 2020;34(3):4147-4162. doi: 10.1096/fj.201902534R

148. Raha S, Yunnam S, Hong GE, et al. Naringin induces autophagy-mediated growth inhibition by downregulating the PI3K/Akt/mTOR cascade via activation of MAPK pathways in AGS cancer cells. *Int J Oncol*. 2015;47(3):1061-1069. doi: 10.3892/ijo.2015.3095

149. Cheng H, Jiang X, Zhang Q, et al. Naringin inhibits colorectal cancer cell growth by repressing the PI3K/AKT/mTOR signaling pathway. *Exp Ther Med*. 2020;19(6):3798-3804. doi: 10.3892/etm.2020.8649

150. Kumar V, Verma A, Bhatt PC. Dual inhibitory effects of novel naringenin analogue in tobacco-carcinogen induced lung cancer via inhibition of PI3K/Akt/mTOR pathway. *Annals of Oncol*. 2017;28:Supplement 2:ii12031-020-01630-8

151. Cao W, Feng S-J, Kan M-C. Naringin targets NFKB1 to alleviate oxygen-glucose deprivation/reoxygenation-induced injury in PC12 cells via modulating HIF-1α/ AKT/mTOR-signaling pathway. *J Mol Neurosci*. 2020;71(1):101–111. doi: 10.1007/s12031-020-01630-8

152. Ahsan AU, Sharma VI, Wani A, Chopra M. Naringenin upregulates AMPK-mediated autophagy to rescue neuronal cells from oxygen-glucose deprivation/reoxygenation-induced injury in PC12 cells via modulating HIF-1α/ AKT/mTOR-signaling pathway. *J Mol Neurosci*. 2020;71(1):101–111. doi: 10.1007/s12031-020-01630-8
β-amyloid (1–42) evoked neurotoxicity. *Mol Neurobiol*. 2020;57:(8):3589-3602. doi: 10.1007/s12055-020-01969-4

153. Clementi N, Scagnolari C, D’Amore A, et al. Naringenin is a powerful inhibitor of SARS-CoV-2 infection in vitro. *Pharmaceutical Research*. 2021;163:105255. doi: 10.1007/j.phrs.2020

154. Tabari MAK, Irahanpanah A, Bahramisoltani R, Rahimi R. Flavonoids as promising antiviral agents against SARS-CoV-2 infection: a mechanistic review. *Molecules*. 2021;26:3900. doi: 10.3390/molecules26133900

155. Tutunchi H, Nacini F, Ostadrahimi A, Attar MJ. Naringenin, a flavanone with antiviral and antiinflammatory effects: a promising treatment strategy against COVID-19. *Phytother Res*. 2020;34:(12):3137-3147. doi: 10.1002/ptr.6781. Epub 2020 Jul 2

156. Nile SH, Nile A, Jalde S, Kai G. Recent advances in potential drug therapies combating COVID-19 and related coronaviruses-A perspective. *Food Chem Toxicol*. 2021;154:112333. doi: 10.1016/j.fct.2021.112333

157. Khan N, Chen X, Geiger JD. Possible therapeutic use of natural compounds against COVID-19. *J Cell Signal*. 2021;2(1):63-79.

158. Maarouf H. The spike protein S1 subunit of SARS-CoV-2 contains an LxxKxK-like motif that is known to recruit the host PP2A-B56 phosphatase. *bioRxiv*. 2020:020941. doi: 10.1101/2020.04.01.020941

159. Kumar V, Dhanjal JK, Bhargava P, et al. Withanone and withaferin-A are predicted to interact with transmembrane protease serine 2 (TMPRSS2) and block entry of SARS-CoV-2 into cells. *J Biomed Struct Dyn*. 2020;1:13. doi: 10.1080/07391102.2020.1775704

160. Jegouic SM, Loureiro S, Thom M, Paliwal D, Jones IM. Recombinant SARS-CoV-2 spike proteins for sero-surveillance and epitope mapping. *bioRxiv*. 2020:109298. doi: 10.1101/2020.05.21.109298

161. Liskova A, Samec M, Kokeslova I, et al. Flavonoids against the SARS-CoV-2 induced inflammatory storm. *Biomed Pharmacother*. 2021;138:114430. doi: 10.1016/j.biopharm.2021.114430

162. Zhang JJ, Dong X, Cao YY, et al. Clinical characteristics of 140 patients infected with SARS-CoV-2 in Wuhan, China. *Agriculture*. 2020;75(7):1730-1741. doi: 10.1111/all.14238

163. Chen G, Wu D, Guo W, et al. Clinical and immunologic features in severe and moderate forms of coronavirus disease 2019. *medRxiv* [Preprint]. 2020. doi: 10.1101/2020.02.16.20023903

164. Mu L, Hu G, Liu J, Chen Y, Cui W, Qiao L. Protective effects of naringenin in a rat model of sepsis-triggered acute kidney injury via activation of antioxidant enzymes and reduction in urinary angiotensinogen. *Mol Sci Monit*. 2019;25:5986-5991. doi: 10.12659/MSM.916400

165. Yan R, Zhang Y, Li Y, Xia I, Guo Y, Zhou Q. Structural bases for the recognition of the SARS-CoV-2 by full-length human ACE2. *Science*. 2020;367(6485):1444-1448. doi: 10.1126/science.abb2762

166. Ubani A, Agwom F, Morenikeji OR, et al. Molecular docking analysis of some phytochemicals on two SARS-COV-2 targets. *BioRxiv*. 2020; preprint doi: 10.1101/2020.03.31.017657

167. Maurya VK, Kumar S, Prasad AK, Bhatt MLB, Saxena SK. Structure-based drug designing for potential antiviral activity of selected natural products from ayurveda against SARS-CoV-2 spike glycoprotein and its cellular receptor. *Virology*. 2020;31(2):179-193. doi: 10.1007/s13337-020-00598-8

168. Vijayakumar BG, Ramesh D, Joji A, et al. In silico pharmacokinetic and molecular docking studies of natural flavonoids and synthetic indole chalcones against essential proteins of SARS-CoV-2. *Eur J Pharmacol*. 2020;866:173448. doi: 10.1016/j.ejphar.2020.173448

169. Hoffmann M, Kleine-Weber H, Schroeder S, et al. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. *Cell*. 2020;181(2):271-280. doi: 10.1016/j.cell.2020.02.052

170. Walls AC, Park YJ, Tortorici MA, Wall A, McGuire AT, Veesler D. Structure, function, and antigenicity of the SARS-CoV-2 spike glycoprotein. *Cell*. 2020;181:281-292. doi: 10.1016/j.cell.2020.02.0586e

171. Istifli ES, Netz PA, Tepe AS, et al. In silico analysis of the interactions of certain flavonoids with the receptor-binding domain of 2019 novel coronavirus and cellular proteases and their pharmacokinetic properties. *J Biomol Struct Dyn*. 2020;1:15. doi: 10.1080/07391102.2020.1840444

172. Muchtaridi M, Fauzi M, Ikram NKK, Gazzali AM, Wahab HA. Natural flavonoids as potential angiotensin-converting enzyme 2 inhibitors for anti-SARS-CoV-2. *Molecules*. 2020;25(17):3980. doi: 10.3390/molecules25173980

173. Chen H, Du Q. Potential natural compounds for preventing SARS-CoV2 (2019-nCoV) infection. *Preprints*. 2020. doi: 10.20944/preprints202001.0358.v3 100

174. Wang Z, Wang S, Zhao J, et al. Naringenin ameliorates renovascular hypertensive renal damage by normalizing the balance of reninangiotensin system components in rats. *Int J Med Sci*. 2019;16(5):644-653. doi: 10.7150/ijms.31075

175. Imai Y, Kuba K, Rao S, et al. Angiotensin-converting enzyme 2 protects from severe acute lung failure. *Nature*. 2005;436:112-116. doi: 10.1038/nature03712

176. Diaz JH. Hypothesis: angiotensin-converting enzyme inhibitors and angiotensin receptor blockers may increase the risk of severe COVID-19. *J Travel Med*. 2020;27:1-2. doi: 10.1093/jtm/taaa041

177. Gupta SC, Tyagi AK, Deshmukh-Taskar P, Hinojosa M, Prasad S, Aggarwal BB. Downregulation of tumor necrosis factor and other proinflammatory biomarkers by polyphenols. *Arch Biochem Biophys*. 2014;559:91-99. doi: 10.1016/j.abb.2014.06.006

178. Barbosa-Filho JM, Martins VKM, Rahelo LA, et al. Natural products inhibitors of the angiotensin converting enzyme (ACE). A review between 1980 – 2000 *Rev Bras Farmacogn*. 2006;16(3):421-446

179. Cheng L, Zheng W, Li M, et al. Citrus fruits are rich in flavonoids for immunoregulation and potential targeting ACE2. *Preprints*. 2020;2020020313.

180. Shin D, Mukherjee R, Grewe D, et al. Papain-like protease regulates SARS-CoV-2 viral spread and innate immunity. *Nature*. 2020;587:657-662. doi: 10.1038/s41586-020-2601-5

181. Ma C, Sacco MD, Xia Z, et al. Discovery of SARS-CoV-2 papain-like protease inhibitors through a combination of high-
throughput screening and a FlipGFP-based reporter assay. *ACS Cent Sci.* 2021 Jul 28;7(7):1245-1260. doi: 10.1021/acscente.1c00519

182. Cho J, Curtis-Long M, Lee K, et al. Geranylflavonoids displaying SARS-CoV papain-like protease inhibition from the fruits of *Paulownia tomentosa*. *Biorganic Med. Chem.* 2013;21(1):3051-3057. doi: 10.1016/j.bmc.2013.03.027

183. Llisisaca-Contreras SA, Naranjo-Morán J, Pino-Acosta A, et al. Plants and natural products with activity against various types of coronaviruses: a review with focus on SARS-CoV-2. *Molecules*. 2021;26:4099. https://doi.org/10.3390/molecules26134099

184. Cui W, Yang K, Yang H. Recent progress in the drug development targeting SARS-CoV-2 main protease as treatment for COVID-19. *Front. Mol. Biol.* 2020;7:616341. doi: 10.3389/fmolb.2020.616341

185. Ulrich S, Nitsche C. The SARS-CoV-2 main protease as drug target. *Bioorg Med Chem Lett.* 2020;30(17):127377. doi: 10.1016/j.bml.2020.127377

186. Vuong W, Khan MB, Fischer C, et al. Feline coronavirus drug inhibits the main protease of SARS-CoV-2 and blocks virus replication. *Nat Commun.* 2020;11:4282. doi: 10.1038/s41467-020-18096-2

187. Sacco MD, Ma C, Lagarias P, et al. Structure and inhibition of the SARS-CoV-2 main protease reveal strategy for developing dual inhibitors against M^\text{pro}^* and cathepsin L. *Sci Adv.* 2020 Dec 9;6(50):eabc0751. doi: 10.1126/sciadv.eabc0751

188. Fu L, Ye F, Feng Y, et al. Both boceprevir and GC376 efficaciously inhibit SARS-CoV-2 by targeting its main protease. *Nat Commun.* 2020;11:4417. doi: 10.1038/s41467-020-18233-x

189. Ma C, Sacco MD, Hurst B, et al. Boceprevir, GC-376, and calpain inhibitors II, XII inhibit SARS-CoV-2 viral replication by targeting the viral main protease. *Cell Res.* 2020;30:678-692. doi: 10.1038/s41422-020-0356-z

190. Das S, Sarmah S, Lyndem S, Roy AS. An investigation into the identification of potential inhibitors of SARS-CoV-2 main protease using molecular docking study. *J Biomed Struct Dyn.* 2021;39(9):3347-3357. doi: 10.1080/07391102.2020.1763201

191. Khaerunnisa S, Kurniawan H, Awaluddin R, et al. Potential inhibitor of COVID-19 main protease (M pro) from several medicinal plant compounds by molecular docking study. *Preprints*. 2020. doi: 10.20944/preprints202003.0226.v1

192. Abdallah HM, El-Halawany AM, Sirwi A, et al. Repurposing of some natural product isolates as SARS-COV-2 main protease inhibitors via in vitro cell free and cell-based antiviral assessments and molecular modeling approaches. *Pharmaceuticals*. 2021;14(3):213. doi: 10.3390/ph14030213

193. Prasetyo W, Kusumaninght S, Firdaus M. Nature as a treasure trove for anti-COVID-19: luteolin and naringenin from Indonesian traditional herbal medicine reveal potential SARS-CoV-2 mpro inhibitors insight from in silico studies. *ChemRxiv: Cambridge Open Engage*. 2020. doi: 10.26434/chemrxiv.13356842.v1

194. Nguyen TTH, Jung JH, Kim MK, et al. The inhibitory effects of plant derivate polyphenols on the main protease of SARS coronavirus 2 and their structure–activity relationship. *Molecules*. 2021;26:1924. doi: 10.3390/molecules26071924

195. Saric B, Tomic N, Kalajdzic A, Pojskic N, Pojskic L. In silico analysis of selected components of grapefruit seed extract against SARS-CoV-2 main protease. *The EuroBiotech J.* 2021;5(1):5-12. https://doi.org/10.2478/etbi-2021-0015. DOI:

196. Allam AE, Assaf HK, Hassan HA, Shimizu K, Elshaier YAAM. *An in silico perception for newly isolated flavonoids from peach fruit as privileged avenue for a countermeasure outbreak of COVID-19*. *RSC Adv.* 2020;10(50):29983-29998. doi: 10.1039/D0RA05265E

197. Oostra M, te Lintelo EG, Dejjs M, et al. Localization and membrane topology of coronavirus nonstructural protein 4: involvement of the early secretory pathway in replication. *J Virol.* 2007;81(22):12323-12336. doi: 10.1128/JVI.01506-07

198. Filippini A, D’Amore A, Palombi F, Carpaneto A. Could the inhibition of endo-lysosomal two-pore channels (TPCs) by the natural flavonoid naringenin represent an option to fight SARS-CoV-2 infection? *Front Microbiol.* 2020;11:970. doi: 10.3389/fmicb.2020.00970

199. Grimm C, Tang R. Could an endo-lysosomal ion channel be the achilles heel of SARS-CoV2? *Cell Calcium*. 2020;88:02212. doi:10.1016/j.ceca.2020.102212

200. Petersen OH, Gerasimenko OV, Gerasimenko JV. Endocytic uptake of SARS-CoV-2: the critical roles of pH, Ca2+ and NAADP. *Function*. 2020;1:zqua003. doi:10.1093/function/zqua003

201. Vassileva K, Marsh M, Patel S. Two-pore channels as master regulators of membrane trafficking and endocytic well-being. *Curr Opin Physiol.* 2021;17:163-168. doi: 10.1016/j.cophys.2020.08.002

202. Shen D, Wang X, Xu H. Pairing phosphoinositides with calcium ions in endolysosomal dynamics: phosphoinositides control the direction and specificity of membrane trafficking by regulating the activity of calcium channels in the endolysosomes. *BioEssays*. 2011;33(6):448-457. doi: 10.1002/bies.201000152

203. Recourt K, van Brussel AA, Driessen AJ, Lugtenberg BJ. Accumulation of a nod gene inducer, the flavonoid naringenin, in the cytoplasmic membrane of *Rhizobium leguminosarum* biovar viciae is caused by the pH-dependent hydrophobicity of naringenin. *J Bacteriol.* 1989;171(8):4370–4337. doi: 10.1128/jb.171.8.4370-4377.1989

204. Cvetnic Z, Vladimir-Knezevic S. Antimicrobial activity of grapefruit seed and puerarin ethanolic extract. *Acta Pharm.* 2004;54(3):243-250.

205. Shahnawaz A, Rattanpal HS, Singh G. Diversity assessment of grapefruit (*Citrus × paradisi*) and tangelo (*Citrus × tangelo*) under Indian conditions using physico-chemical parameters and SSR markers. *App Ecol Environ Res.* 2018;16(5):5343-5358.

206. Notice to the US Food and Drug Administration that the use of Vancitrix™, a glycerin Citrus Extract, is Generally Recognized as Safe. [Cited 2021 Feb 27]. Available from: https://www.fda.gov/media/99981/download.

207. Candellina JH. Grapefruit seed extract laboratory guidance document. *American Botanical Council*. 2017. http://cms.herbalgram.
| Abbreviation | Definition |
|--------------|------------|
| ACE | Angiotensin-converting enzyme |
| ARDS | Acute respiratory distress syndrome |
| AST | Aspartate aminotransferase |
| 3CLpro | 3-chymotrypsin-like main protease |
| COVID-19 | Coronavirus Disease 2019 |
| HBs | Hydrogen bonds |
| MERS-CoV | Middle East Respiratory Syndrome Coronavirus |
| Mpro | Main protease |
| NSP | Non-structural protein |
| PLpro | Papain-like protease |
| PD | Peptidase domain |
| SARS | Severe Acute Respiratory Syndrome |
| RBD | Receptor binding domain |
| S protein | Spike protein |
| RdRp | RNA-dependent RNA polymerase |
| SARS-CoV-2 | Severe Acute Respiratory Syndrome Coronavirus 2 |
| TMPRSS2 | Transmembrane protease serine 2. |