Natural Killer Cell Response to Chemotherapy-Stressed Cancer Cells: Role in Tumor Immunosurveillance

Alessandra Zingoni1*, Cinzia Fionda1, Cristiana Borrelli1,2, Marco Cippitelli1, Angela Santoni1,3 and Alessandra Soriani1*

1Department of Molecular Medicine, Sapienza University of Rome, Laboratory Affiliated to Istituto Pasteur Italia – Fondazione Cenci Bolognetti, Rome, Italy, 2Center for Life Nano Science@Sapienza, Istituto Italiano di Tecnologia, Rome, Italy, 3Neuromed I.R.C.C.S. – Istituto Neurologico Mediterraneo, Pozzilli, Italy

Natural killer (NK) cells are innate cytotoxic lymphoid cells that actively prevent neoplastic development, growth, and metastatic dissemination in a process called cancer immunosurveillance. An equilibrium between immune control and tumor growth is maintained as long as cancer cells evade immnosurveillance. Therapies designed to kill cancer cells and to simultaneously sustain host antitumor immunity are an appealing strategy to control tumor growth. Several chemotherapeutic agents, depending on which drugs and doses are used, give rise to DNA damage and cancer cell death by means of apoptosis, immunogenic cell death, or other forms of non-apoptotic death (i.e., mitotic catastrophe, senescence, and autophagy). However, it is becoming increasingly clear that they can trigger additional stress responses. Indeed, relevant immunostimulating effects of different therapeutic programs include also the activation of pathways able to promote their recognition by immune effector cells. Among stress-inducible immunostimulating proteins, changes in the expression levels of NK cell-activating and inhibitory ligands, as well as of death receptors on tumor cells, play a critical role in their detection and elimination by innate immune effectors, including NK cells. Here, we will review recent advances in chemotherapy-mediated cellular stress pathways able to stimulate NK cell effector functions. In particular, we will address how these cytotoxic lymphocytes sense and respond to different types of drug-induced stresses contributing to anticancer activity.

Keywords: natural killer cells, immunochemotherapy, cancer, stress, natural killer cell activating ligands, damage-associated molecular patterns, death receptors, PDL-1

INTRODUCTION

Natural killer (NK) cells represent a crucial component of antitumor innate immune response displaying cytotoxic functions and secreting several cytokines/chemokines (1, 2).

Natural killer cell cytotoxic activity regulation depends on an integrated interplay between inhibitory receptors and numerous activating receptors acting in concert to efficiently eliminate tumor cells.

Relevant activating receptors for tumor cell recognition are NKG2D that recognizes MICA/B and ULBP proteins, orthologs of the mouse RAE1 molecules, DNAM-1 that binds two ligands named poliovirus receptor (PVR/CD155) and Nectin-2 (CD112), and the receptors Nkp30, Nkp44, and
NKp46 belonging to the natural cytotoxicity receptors and shown to interact with a broad spectrum of ligands (3).

Natural killer cells also express inhibitory receptors for molecules of the major histocompatibility complex (MHC) class I, which are Ly49 receptors in mice, killer cell immunoglobulin-like receptors (KIRs) that bind to HLA-A, -B, and -C molecules in humans, and the CD94-NKG2A heterodimer in both species (4). In addition, NK cells express two inhibitory receptors for PVR, called TACTILE (CD96) and TIGIT, that counterbalance the DNAM-1-mediated activation of NK cells (5).

The activation of NK cells leads to the release of cytotoxic granules containing perforin and various granzymes and to cytokine production, most prominently interferon-γ (IFN-γ) (6–8). In addition, the expression at the cell surface of death-inducing ligands belonging to the tumor necrosis factor (TNF) family, such as Fas ligand (FasL) and TNF-related apoptosis-inducing ligand (TRAIL), also drives the activation of the caspase enzymatic cascade through the binding to the death receptors (DRs), namely, Fas, DR4 (TRAIL-R1), and DR5 (TRAIL-R1I), on target cells (9, 10).

More recently, immunological checkpoint molecules commonly associated with T cells, such as CTLA-4 and PD-1, have been described on NK cells as negative regulators of their immune function (11–13).

Conventional chemotherapies were initially designed to produce antiproliferative or cytotoxic effects on dividing tumor cells. However, as result of numerous demonstrations indicating that an endogenous antitumor immunity is essential for complete remission during tumor therapy (14–16) several antineoplastic drugs, even at low doses, have been reconsidered also as potential immunomodulatory agents (17).

In this context, it has becoming always more evident that drying or stressed cells release or expose stress molecules, called damage-associated molecular patterns (DAMPs) that can alert the immune system (18). Moreover, many chemotherapy-mediated stress pathways modulate the expression of NK cell activating and inhibitory ligands, rendering tumor cells more immunogenic.

In this review, we will summarize the effects of different chemotherapeutic agents on the activity of NK cells, emphasizing the immunomodulatory effects of both conventional and low concentrations of drugs at the interface between stressed or dying cancer cells and the immune system, in the attempt of exploiting them for therapeutic purposes.

REGULATION OF NK CELL-ACTIVATING AND -INHIBITORY LIGAND expression BY CHEMOTHERAPEUTIC DRUGS

A number of evidence indicate that chemotherapy-induced sensitization of tumor cells to immune effectors plays an important role in anticancer therapy. Indeed, different types of drug-induced stresses can modulate the expression of NK cell-activating/or -inhibitory ligands on cancer cells thus affecting their recognition and elimination by NK cells (Table 1). Besides genotoxic drugs or radiotherapy, many other pharmacological compounds already approved for the treatment of different malignancies or entered in clinical trials have been described to increase NK cell-activating ligand expression (19–27). Moreover, most of these drugs are also able to downregulate NK cell-inhibitory ligand expression, so that different and multiple mechanisms concur to make tumor cells more susceptible to NK cell-mediated lysis (28–32).

In the case of genotoxic drugs or DNA replication inhibitors, the mechanisms regulating the Nkp30 ligand B7-H6 expression on human cancer cells remain largely unknown (23), while much evidence indicate a major role for the DNA damage response (DDR) pathway in the upregulation of the stimulatory ligands for the NKG2D and DNAM-1 immunoreceptors. In addition, ionizing radiations represent classical stimuli to induce NKG2D ligand upregulation, through the induction of the DDR (33). The activation of the kinases ATM/ATR and the production of reactive oxygen species converge on the E2F1 factor able to activate MICA, MICB, and PVR transcription on multiple myeloma (MM) cells by doxorubicin and melphalan (34). On the other hand, a different pathway governing NKG2D ligands expression by chemicals known to induce genotoxic stress has been characterized in murine lymphoma cells: DDR drives to the presence of cytosolic DNA and to STING/TBK1-dependent activation of the transcription factor IRF3, responsible for the upregulation of RAE1 expression (35). Interestingly, in murine leukemia cells, concomitantly to NKG2D ligand upregulation, DDR-activating therapeutic agents cause a loss of the inhibitory NK cell ligand Cdr-b, thus enhancing the cytotoxicity mediated by NKR1P1B+ NK cells (36).

Non-lethal heat shock mimicking hyperthermia therapy can promote NKG2DL expression both in human and murine cancer cells but with different mechanisms. MICA and MICB upregulation occurs at the transcriptional level via HSF1 activation (37) and, with a similar mechanism, MICA and MICB expression on MM cells is enhanced by HSP90 chaperone inhibitors that activate this transcription factor (21). In a different way, increased surface expression of the mouse NKG2D ligand Mult1 depends on the inhibition of protein ubiquitination and lysosomal degradation (38).

Treatment of different tumor cell types with epigenetic drugs, like histone deacetylase inhibitors (HDACi) and DNA-methyltransferase inhibitors (DNMTi) (25–27, 39–43), leads to the upregulation of NKG2DLs and PVR surface levels, although it downregulates B7-H6 expression (44). For DNMTi the molecular mechanisms underlying NKG2DLs upregulation are still unclear, while different pathways cooperate in the regulation of these molecules in response to HDACi, and this might depend on the type of tumor and the dose of the drug used. In particular, valproic acid (VPA) has been reported to upregulate MICA/B with a mechanism dependent on PI3K/Akt pathway in pancreatic cancer cells (40), while the involvement of ERK in MICA/B and ULBP2 upregulation in response to VPA has been shown in MM cells (45). Moreover, Yang and colleagues proposed that the capability of the HDACi suberoylanilide-hydroxamic acid (SAHA) to increase MICA expression in hepatoma cancer cells is dependent on miR-17-92 cluster (46).

In MM cells, the bromodomain and extra terminal domain inhibitors (BETi) and immunomodulatory drugs (IMiDs) can block the repressive activity of the transcription factors IRF4 and IKZF1/3 on MICA and PVR promoters (19, 47). In addition,
TABLE 1 Chemotherapy-induced pathways and molecular targets able to modulate natural killer (NK) cell activating ligands and PDL-1 on cancer cells.

Class of chemotherapeutic agent	Pathway/molecular target	Ligand	NK cell cytotoxicity	Cancer cell type	Reference
PROTEASOME INHIBITOR					
Bortezomib	DNA damage response (DDR)	MICA	nd	Multiple myeloma (MM)	(24)
Low doses: 0.75–10 nM					
nd	MICA/B, PVR, Nec-2	+	MM		(52)
nd	MICA/B ULBP1–3, PVR, Nec-2	nd	MM		(22)
nd	MICA/B	+	Hepatocellular carcinoma		(114)
HISTONE DEACETYLASE INHIBITORS					
Low dose: valproic acid (1 mM)					
nd	MICA/B	+	Hepatocellular carcinoma		(41)
ERK	MICA/B, ULBP2	+	MM		(45)
PI3K/Akt	MICA/B	+	Pancreatic cancer		(40)
Trichostatin A	HDAC1/MICA promoter	MICA/B	+	Leukemia	(42)
Suberoylanilide-hydroxamic acid	miR-17-92	MICA	+	Hepatocellular carcinoma	(46)
GENOTOXIC AGENTS					
Low doses: doxorubicin (0.05–3.5 µM); melphalan (1.5–22 µM)	Reactive oxygen species-dependent DDR	MICA/B, ULBP1–3, PVR, Nec-2	+	MM	(22, 34)
Cisplatin	B7-H6	+	Tumor cell lines		(23)
Ara-C, aphidicolin	STING/TBK/IRF3	RAE1	nd	B cell lymphoma	(35)
GSK INHIBITORS					
Low doses: LiCl (10 mM), BIO (1.5 µM), SB21 (5 µM)	STAT3 inhibition	MICA	+	MM	(20)
BET INHIBITORS					
Low dose: JQ1 (0.5 µM)	IRF4	MICA	+	MM	(19)
	BRD4	PDL-1	nd	Lymphoma	(28)
HSP90 inhibitors					
Low doses: radicicol (2 µM), 17-AAG (1 µM)	HSR	MICA/B	+	MM	(21)
MICROTUBULE ASSEMBLY INHIBITORS					
Low dose: vincristine (0.05 µg/ml)	p38 MAPK	PVR, MICA, ULBP1	+	MM	(50)
Cytochalasin D	DDR	MICA, ULBP1–3, PVR, Nec-2, B7-H6	+	Tumor cell lines	(51)
Nocodazole	Endoplasmic reticulum stress response	MICA, ULBP1–3, PVR, Nec-2, B7-H6	+	Tumor cell lines	(51)
Docetaxel					
IMMUNOMODULATORY DRUGS					
Low dose: lenalidomide (10 µM)	iKZF1/3, IRF4	MICA, PVR	+	MM	(47)

Effects on an increased NK cell recognition and killing of drug-treated tumor cells are also reported (+). Low doses of drugs that do not affect cell vitality are indicated. nd, not done.

Both these therapeutic agents can downregulate the expression of PD-L1 on cancer cells (28, 29, 31, 32). Indeed, BETi interrupt the activity of the epigenetic reader protein BRD4 on PD-L1 promoter region, by significantly reducing both the constitutive and IFN-γ inducible expression of this ligand. In this regard, the downstream mediators of IFN-γ signaling, JAK kinases, can be pharmacologically blocked to negatively regulate PD-L1 expression in cancer cells (48). Furthermore, drugs disrupting RAF/MEK/ERK signaling pathway, such as Sorafenib and the TLR3 agonists poly-IC, can synergistically reduce the percentage of tumor cells expressing PD-L1 and enhance NK and T cell activation in a mouse model of hepatocarcinoma (49).

Regarding drugs that disrupt the microtubule assembly, sub-lethal doses of Vincristine can activate p38 MAPK and regulate NKG2DL expression both at transcriptional and post-transcriptional level in MM cells (50). Moreover, Cytochalasin D, nocodazole, and docetaxel can enhance NKG2D, DNAM-1, and NKp30 ligands on tumor cell surface, with MICA upregulation being dependent on both DNA damage and endoplasmic reticulum (ER) stress response (51).

Different studies have been done by using proteasome inhibitors in MM cells. In this regard, low doses of bortezomib can induce the upregulation of both NKG2D and DNAM-1 ligands (22, 52, 53), and in accordance with these data, Jinushi
and colleagues reported a DDR-ATM-dependent upregulation of MICA surface levels (24). On the other hand, no significant change in NKG2DL expression was observed upon bortezomib treatment by Shi and colleagues (30). Interestingly, the latter study described the capability of bortezomib to downregulate HLA class I surface expression by sensitizing MM cells to NK cell-mediated lysis (30).

Chemotherapeutic agents can also contribute to the post-translational regulation of NK activating ligand expression by promoting the release of soluble NKG2DLs through the modulation of the expression and activity of metalloproteinases (MMP) and ADAM enzymes on cancer cells (54). Although an increased stimulation of the shedding process in response to genotoxic agents has been reported (55), some studies using different drugs describe an inhibitory effect. Indeed, gemcitabine treatment impaired ULBP2 shedding through downregulation of ADAM10 in pancreatic cancer (56). Likewise, the hypomethylating agents, azacitidine and decitabine, reduced MICA, MICB, and ULBP2 release in AML by increasing TIMP3 expression, a potent inhibitor of MMP family (57).

Thus, antitumor therapeutics can work also as activators of different “stress pathways” that enhance tumor sensitivity to NK cell cytolysis by modulating the expression of the activating and inhibitory ligands on tumor cells.

MODULATION OF DRs BY CANCER THERAPEUTIC AGENTS

Many cancer therapeutic drugs can induce DR expression and redistribution (58) (Table 2). Several studies described a role for different types of HDACi in the upregulation of TRAIL receptors on various malignant tumor cells (59–63). In this context, SAHA and trichostatin A (TSA) were shown to increase cell-surface expression of DR4 and DR5 in human MM cell lines (64). A study from Insinga et al. showed that different DR and their ligands (i.e., TRAIL, DR5, FasL, and Fas) are upregulated by HDACi on leukemic cells, but not in the normal counterpart of hematopoietic progenitors, promoting tumor apoptosis through the activation of the DR pathway (65).

A number of studies showed that bortezomib upregulated surface expression of TRAIL receptors on a variety of human tumor cell lines, enhancing their susceptibility to NK cell lysis with a mechanism mainly dependent on TRAIL (66). In another model, a bortezomib-treated murine renal carcinoma cell line is more susceptible to both NK-cell perforin/granzyme and recombinant TRAIL-mediated apoptosis, resulting in enhanced caspase-8 activity (67). Indeed, in human non-small cell lung cancer cells this drug has been shown to trigger TRAIL-induced apoptosis via DR5 upregulation (68). Several pieces of evidence reported that another proteasome inhibitor, namely, MG132, increases DR5 expression cooperating in establishing apoptosis in several cancer cells (69–71).

DR4 and DR5 were demonstrated to be DNA damaging-inducible and p53-regulated genes (72–76). Accordingly, many DNA damaging chemotherapeutic agents can regulate DR expression, rendering cancer cells more sensitive to DR-elicited apoptosis (74, 75, 77–81).

Altogether, these results suggest that the extrinsic apoptotic pathway has an important role in chemotherapy-induced apoptosis through the promotion of DRs-mediated recognition by cytotoxic lymphocytes. In addition, chemotherapies can promote

TABLE 2 | Chemotherapy-induced pathways and molecular targets able to modulate death receptors (DRs) on cancer cells.

Class of chemotherapeutic agent	Pathway/molecular target	DR	Cancer cell type	Reference
PROTEASOME INHIBITORS				
Low doses: bortezomib (5–20 nM)	DNA damage response	DR5	Tumor cell lines, renal carcinoma	(66, 67)
MG132	CHOP	DR5	Prostate cancer	(71)
HISTONE DEACETYLASE INHIBITORS				
Sodium butyrate	Sp1	DR5	Colorectal carcinoma	(59)
Trichostatin A (TSA), suberoylanilide-hydroxamic acid (SAHA) Sodium butyrate	p53-independent mechanism	DR4, DR5	Tumor cell lines	(64)
Low doses: SAHA (600 nM), TSA (50 nM)	p21, p27, E2F	DR5	Multiple myeloma	(64)
VPA	nd	DR5, FAS	Leukemia	(65)
GENOTOXIC AGENTS				
Cisplatin, mitomycin, doxorubicin, methotrexate, etoposide	p53-dependent mechanism	FAS, DR5, DR4	Tumor cell lines	(72–74, 77)
Etoposide	NF-κB	DR5	Tumor cell lines	(76)
Doxorubicin, Ara-C, etoposide	p53-independent mechanism	DR5	Leukemia cell lines	(81)

Low doses of drugs that do not affect cell vitality are indicated. nd, not done.
the cell death by regulating the balance between pro- and antia-
poptotic proteins toward apoptosis. Many evidence show that
drugs may control the cell intrinsic apoptosis by altering Bax and
Bcl-2 expression in different tumor cells (82–86).

CHEMOTHERAPY-INDUCED DAMPs
ALERTING NK CELLS

Many anticancer chemotherapies increase the immunogenic
potential of cancer cells mainly through the establishment of
immunogenic cell death, or other forms of non-apoptotic death,
including autophagy, and the release of the so-called DAMPs,
such as high-mobility group box 1 proteins (HMGB1), ATP, heat
shock proteins (HSPs), and the ER chaperone calreticulin (87).

Damage-associated molecular patterns are intracellularly
sequestered in normal physiological conditions, but they can be
actively secreted or aberrantly exposed on the cell surface under
conditions of cellular stress.

Engagement of various target receptors present on immune
cells by DAMPs leads to the elicitation of a potent antitumor
immunity. Mostly, DAMPs have been proposed to activate local
innate immune cells, including NK cells, have impaired ability to
reach the tumor tissue in response to DNA alkylating agent treat-
ments (92). In addition, HMGB1 can be released by NK cells and
stimulate NK cell migration and cytotoxic activity (108). In
addition, we have recently demonstrated that HSP70 on the sur-
face of MM-derived exosomes triggers NK cell-mediated IFN-
γ production through a mechanism dependent on TLR2 (110).

DIRECT EFFECTS OF CHEMOTHERAPY
ON NK CELL-MEDIATED FUNCTIONS

Alterations of NK cell activities upon administration of chemo-
therapeutic drugs can be different in terms of cytotoxicity and
immunoregulatory activity; indeed, standard chemotherapeutic
protocols used in the treatment of cancer patients mainly suppress
NK cell-mediated killing against cancer cells and their cytokine
production. However, several studies aimed at analyzing the
NK cell behavior in patients undergoing cytotoxic chemotherapy
have demonstrated different and variable effects depending on
both the type and the dose of the drug used.

In this regard, by producing IFN-γ, NK cells induce CD8+
T cells to become CTLs, and also help to differentiate CD4+
T cells toward a Th1 response. Moreover, NK cell-derived
cytokines might also regulate antitumor antibody production
by B cells. Thus, therapeutic strategies able to preserve NK func-
tions in cancer patients are of pivotal importance, particularly
those eligible for monoclonal antibody-based treatments. In
this context, metronomic low cyclophosphamide (CTX) regi-
men was shown to potently stimulate NK functions in terms of
cytokine production and antitumor immunity (18). A number of
drugs, including bortezomib, genotoxic agents, and epigenetic
drugs, exert immunosuppressive effects at high concentrations,
whereas at sub-lethal doses, they can render tumor cells more
immunogenic without affecting the immune cell activity (113).
As an example, low doses of bortezomib capable of stimulating
NK cell activating ligand expression on MM (22, 52), do not alter
NK cell degranulation against sensitive targets (52). In another
study, low concentrations of bortezomib reduced IFN-γ produc-
tion without affecting NK cell cytotoxicity (114). Moreover, a
combination of bortezomib with exogenous cytokine treatment
enhanced the cytotoxic effects of NK cells against cancer cells in

radio and chemotherapy have been shown to produce an aug-
mentation of HSP70 cell-surface expression on tumor cells (101,
102). Several studies have shown that membrane-bound HSP70
directly promotes NK cell mediated cytotoxicity in vitro (103,
104) and in vivo (105) thus, there is an increasing interest in
the therapeutic potential of targeting HSP70. Interestingly, Elsner
and colleagues have shown a synergistic potentiating effect of
two stress-inducible immunological danger signals HSP70 and
NKG2D ligands on cytotoxicity of human (106) and mouse
NK cells (107), suggesting that the drug-mediated upregulation
of activating ligands and HSP70 on the cancer cell surface might
be an encouraging strategy aimed at promoting the antitumor
NK cell responses. Moreover, several pieces of evidence demon-
strate that extracellular-located HSPs can be associated to extra-
cellular vesicles (108–112), and a number of chemotherapeutic
agents, including etoposide (109), melphalan (110), cisplatin, and
5-fluorouracil (112), have been shown to stimulate an enhanced
secretion of exosomes from different types of cancer cells.
Notably, colon carcinoma-derived HSP70 associated to exosomes
can stimulate NK cell migration and cytotoxic activity (108). In
addition, we have recently demonstrated that HSP70 on the sur-
face of MM-derived exosomes triggers NK cell-mediated IFN-γ
production through a mechanism dependent on TLR2 (110).
two different models (115, 116). The treatment of NK cells with sub-lethal doses of doxorubicin, able to upregulate NKG2D and DNAM-1 ligands on MM cells, does not change the capacity of NK cell to degranulate in response to target cells, as well as the ability to produce IFN-γ (34). Although the wide range of HDACi, structurally different from each other, can have both stimulatory and inhibitory effects on immune cell function, the most of them (i.e., romidepsin, vorinostat, TSA, and VPA) have been shown to suppress NK cell activity at therapeutically relevant concentrations (117–119). However, some reports describe a beneficial effect on NK cells as for the narrow-spectrum HDACi entinostat that can increase NKG2D expression on NK cells without affecting their cytotoxic activity (120). Furthermore, a recent study demonstrates that the HDACi panobinostat has the capability to potentiate the antitumor effects of trastuzumab by stimulating the antibody-dependent cell-mediated cytotoxicity (ADCC) mediated by NK cells (121). Regarding the DNTMi decitabine and 5-azacytidine, treatment of NK cells leads to increased reactivity toward different tumor cells (122, 123), while another study describes that 5-azacytidine exposure compromises their activity in AML and MDS patients (124).

Immunomodulatory drugs (lenalidomide, pomalidomide, and thalidomide) exert strong immunomodulatory effects involving both innate and adaptive immunity. In particular, these compounds activate both NK and T cells by inducing their proliferation, cytokine production, and cytotoxic activity (125) and promising clinical trials have been reported their use for the treatment of hematological malignancies, such as myeloma, lymphoma, and leukemia, as well as of solid tumors (126–128). Interestingly, Lagrue and colleagues demonstrated that lenalidomide enhances NK cell response (IFN-γ production and cytotoxicity) by augmenting actin remodeling, thus rendering them able to respond to lower densities of activating ligands on tumor cells (126). Furthermore, lenalidomide has synergistic effects on NK cell functions when used in combination with monoclonal antibodies able to promote ADCC that are already approved in therapeutic protocols, such as rituximab or elotuzumab (129, 130); indeed, novel strategies in the treatment of MM combines the use of lenalidomide and the anti-inhibitory KIR antibody (IPH2101) (131, 132).

CONCLUSION

The modulation of the expression and/or the release of stress molecules has emerged as a new paradigm of the therapeutic possibilities associated with the use of chemotherapy (Figure 1). In this context, the characterization of novel drugs and regulatory pathways activated by cellular stress modifiers able to affect tumor growth and, at the same time, to improve the activities mediated by cytotoxic lymphocytes such as NK cells, will importantly contribute to the developing field of chemo-immunotherapy.

AUTHOR CONTRIBUTIONS

AZ, CF, CB, MC, ASantoni, and ASoriani contributed equally to writing and critically revised the paper.

ACKNOWLEDGMENTS

This work was supported by Italian Association for Cancer Research (AIRC Investigator Grant cod. 16014 and AIRC 5x1000 cod. 9962) and grants by the “Sapienza” University of Rome (RM116154C8F24748).
53. Soriani A, Fionda C, Ricci B, Iannitto ML, Cippitelli M, Santoni A.
51. Acebes-Huerta A, Lorenzo-Herrero S, Folgueras AR, Huergo-Zapico L, Lopez-Gonzalez CR.
50. Soriani A, Borrelli C, Ricci B, Molfetta R, Zingoni A, Fionda C, et al.
48. Bellucci R, Martin A, Bommarito D, Wang K, Hansen SH, Freeman GJ, et al.
47. Fionda C, Abruzzese MP, Zingoni A, Cecere F, Vulpis E, Peruzzi G, et al.
46. Yang H, Lan P, Hou Z, Guan Y, Zhang J, Xu W, et al.
45. Armeanu S, Bitzer M, Lauer UM, Venturelli S, Pathil A, Krusch M, et al.
44. Shi P, Yin T, Zhou F, Cui P, Gou S, Wang C.
43. Valproic acid sensitizes pancreatic cancer cells to natural killer cell-mediated lysis by upregulating MICA and MICB via the PI3K/Akt signaling pathway. BMC Cancer (2014) 14:370.
42. Armeanu S, Bitzer M, Lauer UM, Venturelli S, Pathil A, Krusch M, et al.
41. Niu C, Jin H, Li M, Zhu S, Zhou L, Jin F, et al.
40. Shi P, Yin T, Zhou F, Cui P, Gou S, Wang C.
49. Armeanu S, Bitzer M, Lauer UM, Venturelli S, Pathil A, Krusch M, et al.
48. Bellucci R, Martin A, Bommarito D, Wang K, Hansen SH, Freeman GJ, et al.
47. Fionda C, Abruzzese MP, Zingoni A, Cecere F, Vulpis E, Peruzzi G, et al.
46. Yang H, Lan P, Hou Z, Guan Y, Zhang J, Xu W, et al.
45. Armeanu S, Bitzer M, Lauer UM, Venturelli S, Pathil A, Krusch M, et al.
44. Shi P, Yin T, Zhou F, Cui P, Gou S, Wang C.
43. Valproic acid sensitizes pancreatic cancer cells to natural killer cell-mediated lysis by upregulating MICA and MICB via the PI3K/Akt signaling pathway. BMC Cancer (2014) 14:370.
42. Armeanu S, Bitzer M, Lauer UM, Venturelli S, Pathil A, Krusch M, et al.
41. Niu C, Jin H, Li M, Zhu S, Zhou L, Jin F, et al.
40. Shi P, Yin T, Zhou F, Cui P, Gou S, Wang C.
49. Armeanu S, Bitzer M, Lauer UM, Venturelli S, Pathil A, Krusch M, et al.
48. Bellucci R, Martin A, Bommarito D, Wang K, Hansen SH, Freeman GJ, et al.
47. Fionda C, Abruzzese MP, Zingoni A, Cecere F, Vulpis E, Peruzzi G, et al.
46. Yang H, Lan P, Hou Z, Guan Y, Zhang J, Xu W, et al.
45. Armeanu S, Bitzer M, Lauer UM, Venturelli S, Pathil A, Krusch M, et al.
44. Shi P, Yin T, Zhou F, Cui P, Gou S, Wang C.
43. Valproic acid sensitizes pancreatic cancer cells to natural killer cell-mediated lysis by upregulating MICA and MICB via the PI3K/Akt signaling pathway. BMC Cancer (2014) 14:370.
42. Armeanu S, Bitzer M, Lauer UM, Venturelli S, Pathil A, Krusch M, et al.
41. Niu C, Jin H, Li M, Zhu S, Zhou L, Jin F, et al.
40. Shi P, Yin T, Zhou F, Cui P, Gou S, Wang C.
49. Armeanu S, Bitzer M, Lauer UM, Venturelli S, Pathil A, Krusch M, et al.
48. Bellucci R, Martin A, Bommarito D, Wang K, Hansen SH, Freeman GJ, et al.
47. Fionda C, Abruzzese MP, Zingoni A, Cecere F, Vulpis E, Peruzzi G, et al.
46. Yang H, Lan P, Hou Z, Guan Y, Zhang J, Xu W, et al.
45. Armeanu S, Bitzer M, Lauer UM, Venturelli S, Pathil A, Krusch M, et al.
44. Shi P, Yin T, Zhou F, Cui P, Gou S, Wang C.
43. Valproic acid sensitizes pancreatic cancer cells to natural killer cell-mediated lysis by upregulating MICA and MICB via the PI3K/Akt signaling pathway. BMC Cancer (2014) 14:370.
42. Armeanu S, Bitzer M, Lauer UM, Venturelli S, Pathil A, Krusch M, et al.
41. Niu C, Jin H, Li M, Zhu S, Zhou L, Jin F, et al.
40. Shi P, Yin T, Zhou F, Cui P, Gou S, Wang C.
49. Armeanu S, Bitzer M, Lauer UM, Venturelli S, Pathil A, Krusch M, et al.
48. Bellucci R, Martin A, Bommarito D, Wang K, Hansen SH, Freeman GJ, et al.
47. Fionda C, Abruzzese MP, Zingoni A, Cecere F, Vulpis E, Peruzzi G, et al.
46. Yang H, Lan P, Hou Z, Guan Y, Zhang J, Xu W, et al.
45. Armeanu S, Bitzer M, Lauer UM, Venturelli S, Pathil A, Krusch M, et al.
44. Shi P, Yin T, Zhou F, Cui P, Gou S, Wang C.
43. Valproic acid sensitizes pancreatic cancer cells to natural killer cell-mediated lysis by upregulating MICA and MICB via the PI3K/Akt signaling pathway. BMC Cancer (2014) 14:370.
42. Armeanu S, Bitzer M, Lauer UM, Venturelli S, Pathil A, Krusch M, et al.
41. Niu C, Jin H, Li M, Zhu S, Zhou L, Jin F, et al.
40. Shi P, Yin T, Zhou F, Cui P, Gou S, Wang C.
49. Armeanu S, Bitzer M, Lauer UM, Venturelli S, Pathil A, Krusch M, et al.
48. Bellucci R, Martin A, Bommarito D, Wang K, Hansen SH, Freeman GJ, et al.
47. Fionda C, Abruzzese MP, Zingoni A, Cecere F, Vulpis E, Peruzzi G, et al.
46. Yang H, Lan P, Hou Z, Guan Y, Zhang J, Xu W, et al.
45. Armeanu S, Bitzer M, Lauer UM, Venturelli S, Pathil A, Krusch M, et al.
44. Shi P, Yin T, Zhou F, Cui P, Gou S, Wang C.
43. Valproic acid sensitizes pancreatic cancer cells to natural killer cell-mediated lysis by upregulating MICA and MICB via the PI3K/Akt signaling pathway. BMC Cancer (2014) 14:370.
42. Armeanu S, Bitzer M, Lauer UM, Venturelli S, Pathil A, Krusch M, et al.
41. Niu C, Jin H, Li M, Zhu S, Zhou L, Jin F, et al.
40. Shi P, Yin T, Zhou F, Cui P, Gou S, Wang C.
49. Armeanu S, Bitzer M, Lauer UM, Venturelli S, Pathil A, Krusch M, et al.
48. Bellucci R, Martin A, Bommarito D, Wang K, Hansen SH, Freeman GJ, et al.
47. Fionda C, Abruzzese MP, Zingoni A, Cecere F, Vulpis E, Peruzzi G, et al.
46. Yang H, Lan P, Hou Z, Guan Y, Zhang J, Xu W, et al.
45. Armeanu S, Bitzer M, Lauer UM, Venturelli S, Pathil A, Krusch M, et al.
44. Shi P, Yin T, Zhou F, Cui P, Gou S, Wang C.
43. Valproic acid sensitizes pancreatic cancer cells to natural killer cell-mediated lysis by upregulating MICA and MICB via the PI3K/Akt signaling pathway. BMC Cancer (2014) 14:370.
72. Wu GS, Burns TF, McDonald ER III, Jiang W, Meng R, Krantz ID, et al. KILLER/DR5 is a DNA damage-inducible p53-regulated death receptor gene. Nat Genet (1995) 9(2):141–7. doi:10.1038/979147
73. Takimoto R, El-Deiry WS. Wild-type p53 transactivates the KILLER/DR5 gene through an intronic sequence-specific DNA-binding site. Oncogene (2000) 19(14):1735–43. doi:10.1086/3203489
74. Guan B, Yue P, Huang Y, Wu GS, Amundson S, Brooks KS, et al. Evidence that the death receptor DR4 is a DNA damage-inducible, p53-regulated gene. J Cell Physiol (2001) 188(1):98–105. doi:10.1002/jcp.1101
75. Liu X, Yue P, Khuri FR, Sun SY. p53 upregulates death receptor 4 expression through an intronic p53 binding site. Cancer Res (2004) 64(15):5078–83. doi:10.1158/0008-5472.CAN-04-1195
76. Shetty S, Graham BA, Brown JG, Hu X, Vegh-Yaremca N, Harding G, et al. Transcription factor NF-kappaB differentially regulates death receptor 5 expression involving histone deacetylase 1. Mol Cell Biol (2005) 25(13):5404–16. doi:10.1128/MCB.25.13.5404-5416.2005
77. Muller M, Wilder S, Bannasch D, Israeli D, Lehlbach K, Li-Weber M, et al. p53 activates the CD95 (APO-1/Fas) gene in response to DNA damage by anticancer drugs. J Exp Med (1998) 188(1):2033–45. doi:10.1084/jem.188.11.2033
78. Sheikh MS, Burns TF, Huang Y, Wu GS, Amundson S, Brooks KS, et al. el-Deiry WS: p53-dependent and -independent regulation of the death receptor KILLER/DR5 gene expression in response to genotoxic stress and tumor necrosis factor alpha. Cancer Res (1998) 58(8):1593–8.
79. Gibbons SB, Oyer R, Spalding AC, Anderson SM, Johnson GL. Increased expression of death receptors 4 and 5 synergizes the apoptosis response to combined treatment with etoposide and TRAIL. Mol Cell Biol (2000) 20(1):205–12. doi:10.1128/MCB.20.1.205-212.2000
80. Nagane M, Pan G, Weddle JJ, Dixit VM, Cavenek WW, Huang H. Increased death receptor 5 expression by chemotherapeutic agents in human gliomas causes synergistic cytotoxicity with tumor necrosis factor-related apoptosis-inducing ligand in vitro and in vivo. Cancer Res (2000) 60(4):847–53.
81. Wen J, Ramadevi N, Nguyen D, Perkins C, Worthington E, Bhalla K. Anti-cancer drugs. Endogenous HMGB1 regulates autophagy. J Cell Biol (2010) 190(5):881–92. doi:10.1083/jcb.200911078
82. Valdiv A, Macian F. Apoptrophy and the immune response. Pharmacol Res (2012) 66(1):475–83. doi:10.1016/j.phrs.2010.10.003
83. Mullhoff G, Botzler C, Wiesnet M, Muller E, Meier T, Wilmanns W. A stress-inducing 72-kDa heat-shock protein (HSP72) is expressed on the surface of human tumor cells, but not on normal cells. Int J Cancer (1995) 61(2):272–9. doi:10.1002/ijc.2910610222
84. Gehrmann M, Pfister K, Heider T, Hiddemann W, Multhoff G. Membrane-bound heat shock protein 70 (Hsp70) in acute myeloid leukaemia: a tumor specific recognition structure for the cytolytic activity of autologous NK cells. Haematologica (2003) 88(4):474–6.
85. Pfister K, Radons J, Busch R, Tiidball JG, Pfeifer M, Freitag L, et al. Patient survival by Hsp70 membrane phenotype: association with different routes of metastasis. Cancer (2007) 110(4):926–35. doi:10.1002/cncr.22864
86. Kleinjung T, Arndt O, Feldmann HJ, Bockmuhl U, Gehrmann M, Zilch T, et al. Heat shock protein 70 (Hsp70) membrane expression on head-and-neck cancer biopsy—a target for natural killer (NK) cells. Int J Radiat Oncol Biol Phys (2003) 57(3):820–6. doi:10.1016/S0306-301X(03)00629-1
87. Gehrmann M, Pfister K, Hutzler P, Gastpar IT, Margulis B, Mulhoff G. Effects of antineoplastic agents on cytoplasmic and membrane-bound heat shock protein 70 (Hsp70) levels. Biol Chem (2002) 383(11):1715–25. doi:10.1515/BCH.2002.192
88. Gehrmann M, Schönberger J, Zilch T, Rossbacher L, Thonnig G, Elsner L, et al. Retinoids- and sodium-butyrate-induced decrease in heat shock protein 70 membrane-positive tumor cells is associated with reduced sensitivity to natural killer cell lysis, growth delay, and altered growth morphology. Cell Stress Chaperones (2005) 10(2):136–46. doi:10.1007/s10525-004-9024-5
89. Gross C, Holzer E, Stangl S, Dickinson A, Pockley AG, Asea AA, et al. An Hsp70 peptide initiates NK cell killing of leukemic blasts after stem cell transplantation. Leuk Res (2008) 32(4):527–34. doi:10.1016/j.leukres.2007.03.027
90. Multhoff G, Pfister K, Botzler C, Jordan A, Scholz R, Schmetzer H, et al. Adoptive transfer of human natural killer cells in mice with severe combined immunodeficiency inhibits growth of Hsp70-expressing tumors. J Immunol (2000) 165(5):2917–25. doi:10.4049/jimmunol.165.5.2917
91. Elsner L, Flugge PF, Lozano J, Muppala V, Eiz-Vesper B, Demiroglu SY, et al. The endogenous danger signals HSP70 and MICA cooperate in the activation of cytotoxic effector functions of NK cells. J Cell Mol Med (2010) 14(4):992–1002. doi:10.1111/j.1671-4022.2009.00677.x
92. Elsner L, Muppala V, Gehrmann M, Lozano J, Malzahn D, Bickeboller H, et al. The heat shock protein HSP70 promotes mouse NK cell activity against tumors that express inducible NGK2D ligands. J Immunol (2007) 179(6):3523–33. doi:10.4049/jimmunol.179.8.3523
93. Gastpar R, Gehrmann M, Bausser MA, Asea A, Gross C, Schroeder JA, et al. Heat shock protein 70 surface-positive tumor exosomes stimulate migratory and cytolytic activity of natural killer cells. Cancer Res (2005) 65(12):5238–47. doi:10.1185/0008-5472.JCN-04-3804
109. Lv LH, Wan YL, Lin Y, Zhang W, Yang M, Li GL, et al. Anticancer drugs cause release of exosomes with heat shock proteins from human hepatocellular carcinoma cells that elicit effective natural killer cell antitumor responses in vitro. J Biol Chem (2012) 287(19):15874–85. doi:10.1074/jbc.M112.340588

110. Vulpis E, Cecere F, Molfetta R, Soriani A, Fionda C, Peruzzi G, et al. Genotoxic stress modulates the release of exosomes from multiple myeloma cells capable of activating NK cell cytokine production: role of HSP70/TLR2/ NF-κB axis. Oncoimmunology (2017) 6(3):e1279372. doi:10.1080/2162402X.2017.1279372

111. Lancaster GI, Febrario MA. Exosome-dependent trafficking of HSP70: a novel secretory pathway for cellular stress proteins. J Biol Chem (2005) 280(24):23349–55. doi:10.1074/jbc.M502172200

112. Gobbo J, Marcion G, Cordonnier M, Dias AMM, Pernet N, Hammann A, et al. Restoring anticancer immune response by targeting tumor-derived exosomes with a HSP70 peptide aptamer. J Natl Cancer Inst (2016) 108(3):djv330. doi:10.1093/jnci/djv330

113. Pellom ST Jr, Dudimah DF, Thounaojam MC, Sayers TJ, Shanker A. Modulation of NKG2D expression on tumor cells by HSP70/MTT1 exosomes: implications in cancer immunotherapy. J Immunother (2015) 38(3):177–85. doi:10.1097/CIM.0000000000000199

114. Khan T, Stauffer JK, Williams R, Hixon JA, Li GL, et al. Proteasome inhibition to maximize the apoptotic potential of cytokine therapeutics to produce synergetic anti-multiple myeloma effects with reduced toxicity to normal cells. Front Immunol (2017) 8:581. doi:10.3389/febiol.2017.00581

115. Wang X, Feng X, Wang J, Shao N, Ji C, Ma D, et al. Bortezomib and IL-12 augments the tumor cell-specific killing of MHC class I-restricted peptides-pulsed DCs by NK cells. Mediators Inflamm (2017) 2017:4254064. doi:10.1155/2017/4254064

116. Gormley NJ, Ko CW, Deisseroth A, Nie L, Kaminskas E, Kormanik N, et al. FDA drug approval: elotuzumab in combination with lenalidomide and dexamethasone for the treatment of relapsed or refractory multiple myeloma. Clin Cancer Res (2017). doi:10.1158/1078-0432.CCR-16-2870

117. Benson DM Jr, Cohen AD, Jagannath S, Munshi NC, Spitzer G, Hofmeister CC, et al. Daratumumab-mediated lysis of primary multiple myeloma cells is enhanced in combination with the human anti-KIR antibody IPH2102 and lenalidomide cells. Blood Cancer J (2013) 3:e136. doi:10.1038/bcj.2013.35

118. Nijhof IS, Lammerts van Bueren JJ, van Kessel B, Andre P, Morel Y, Lokhorst HM, et al. Lenalidomide induces actin remodeling and lowers NK-cell activation thresholds. J Immunother (2015) 38(3):282–8. doi:10.1097/CIM.0000000000000548

119. Azacytidine impairs NK-cell reactivity while decitabine augments NK-cell responsiveness toward stimulation. Int J Cancer (2011) 128(12):2911–22. doi:10.1002/ijc.25635

120. Malmberg KJ. Imprint of 5-azacytidine on the natural killer cell repertoire during systemic treatment for high-risk myelodysplastic syndrome. Oncotarget (2015) 6(33):34178–90. doi:10.18632/oncotarget.6213

121. Sehgal K, Das R, Zhang L, Verma R, Deng Y, Kocoglu M, et al. Clinical and pharmacodynamic analysis of pomalidomide dosing strategies in myeloma: impact of immune activation and cereblon targets. Blood (2015) 125(26):4042–51. doi:10.1182/blood-2014-11-61426

122. Schonefeldt C, Sockel K, Wehner R, Sopper S, Wolf D, Wermke M, et al. Azacytidine impairs NK cell activity in AML and MDS patients undergoing MRD-based pre-emptive treatment after allogeneic stem cell transplantation. Blood Cancer J (2013) 3:e136. doi:10.1038/bcj.2013.35

123. Shortt J, Hsu AK, Johnstone RW. Thalidomide analogue biology: immunological, molecular and epigenetic targets in cancer therapy. Oncogene (2013) 32(36):4191–202. doi:10.1038/onc.2012.599

124. Sidway P. Haematological cancer: rituximab enhances responses to lenalidomide. Nat Rev Clin Oncol (2017) 14(2):70. doi:10.1038/nrclinonc.2016.209

125. Benson DM Jr, Cohen AD, Jagannath S, Munshi NC, Spitzer G, Hofmeister CC, et al. Phase I trial of the anti-KIR antibody IPH2102 and lenalidomide in patients with relapsed/refractory multiple myeloma. Clin Cancer Res (2015) 21(18):4055–61. doi:10.1158/1078-0432.CCR-15-0304

126. Copyright © 2017 Zingoni, Fionda, Borrelli, Cippitelli, Santoni and Soriani. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.