First inland record of Bull shark *Carcharhinus leucas* (Müller & Henle, 1839) (*Carachariniformes*: *Carcharhinidae*) in Celebes, Indonesia

VERYL HASAN¹,* & IZZUL ISLAM²

¹Universitas Airlangga, Fisheries and Marine Faculty, Fish Health Management and Aquaculture Department, Dr. Ir. H. Soekarno street, Surabaya, East Java 60115, Indonesia.

²Universitas Teknologi Sumbawa, Biotechnology Faculty, Biotechnology Department, Olat Maras Street, Sumbawa, West Nusa Tenggara 84371, Indonesia

*Corresponding author [veryl.hasan@fpk.unair.ac.id]

Received 25 October 2020 | Accepted by V. Pešić: 24 November 2020 | Published online 26 November 2020.

Abstract

A single specimen (c. 86.2 cm) juvenile of Bull shark *Carcharhinus leucas* (Müller & Henle, 1839) was captured and photographed by local fisherman using a casting net on 13 February 2018 in Pangkajene River, about 16 km inland, Pangkajene District, South Celebes, Indonesia. This finding is considered as a first inland record of *C. leucas* in Celebes, and fourth inland records in Indonesia after Papua, Sumatra and Borneo. Monitoring is needed to assess the possibility of Celebes as a migration route and breeding ground of *C. leucas*.

Key words: Biogeography, distribution, elasmobranch, freshwaters, requiem sharks.

Introduction

The Bull shark *Carcharhinus leucas* (Müller & Henle, 1839) is one of the few sharks that are truly euryhaline and is a common species that occurs in marine and coastal riverine environments and is widespread along the continental coast of all tropical and subtropical seas as well as numerous rivers, lakes, and estuaries (Compagno *et al.* 2005; Werry *et al.* 2011; Gausmann 2018). Migrations of *C. leucas* may also be directly related to changes in water conditions, specifically salinity, to decrease energy expended for osmoregulation (Glaus *et al.* 2019; Reilly 2011). Ballantyne & Robinson (2010) mentioned that the high urea requirement of many proteins in marine elasmobranch might be one of the factors. The adaptation to freshwater environments have occurred independently many times in Chondrichthyes evolution (Pillans *et al.* 2005; Evans *et al.* 2004; Lucifora *et al.* 2015). However, the factors affecting the poor penetration of *C. leucas* into inland are currently unknown (Ortega *et al.* 2009; O’Connell *et al.* 2017; Hyatt *et al.* 2018).

Carcharhinus leucas are designated as Near Threatened (NT) by the IUCN Red List due to the close proximity of critical habitats to anthropogenic influences (Simpfendorfer & Burgess 2009). It has been
recorded in the Amazon River, Peru, South America (Myers 1952); Mississippi River, Illinois, North America (Thomerson et al. 1977); Zambezi River, Zimbabwe, South Africa (Bass et al. 1973), Nicaragua Lake, Nicaragua, Central America (Thorson 1971); Tigris River, Iraq, West Asia (Coad 2015); Ganges River, Bangladesh, South Asia (Martin 2005); and Perak River, Serawak Malaysia, Southeast Asia (Boeseman 1964). Although the knowledge about *C. leucas* and its distribution has increased over the past decades, the borders and the full range of it reach in some regions are unclear, especially in the inland waters (Campagno et al. 2002). *Carcharhinus leucas* is a large coastal apex predator that is globally distributed in warm temperate waters, including Indonesian freshwaters, and the only known inland records of this species were found in Sumatra (Tan & Lim 1998; Iqbal et al. 2019a; Hasan & Widodo 2020), Borneo (Iqbal et al. 2019b), and Papua (Boesman 1964; Compagno 1984, Keller 1987, Allen 1991). However, Celebes Island of Indonesia is not included in the distribution map of *C. leucas* in many major shark references (Campagno & Niem, 1998; Fahmi 2010; Last et al. 2010; Ebert et al. 2013). It is more likely that *C. leucas* had not been reported because shark of Celebes has not been explored enough. In this paper, we report the presence of *C. leucas* in the Pangkajene River, Pangkajene District, South Celebes Province, Indonesia.

Material and Methods

We captured a single specimen by local fisherman using a casting net on 13 February 2018 in Pangkajene River, about 16 km inland, Pangkajene District, South Celebes Province (4°46'26"S; 119°38'36"E) (Fig. 1). The fish was documented and photographed, although no voucher specimen was retained because the fish was too large to be stored and we did not have enough space in the laboratory. Diagnostic morphological characters of the single specimen were analyzed following Compagno (1998) and Ebert et al. (2013) method. The water quality parameters were determined directly after capture.

Figure 1. Location of known *C. leucas* collected in inland Indonesia. Green, blue, and yellow shows the previous record from Sumatra, Borneo, and Papua respectively; and red show recent record from Celebes.
Results and Discussions

A single specimen collected from Pangkajene River, South Celebes has features of Carcharhinidae family: short and broad snout; large, elongated, and arched mouth; small eyes on the side of the head; two dorsal fins: the first dorsal fin is moderately large, much shorter than the caudal fin, and its base is located over the interspace between pectoral and ventral fin bases; broad pectoral fins, with narrow pointed tips. This shark is identified as juvenile of *C. leucas* by the first dorsal fin triangular, rearward sloping, originating over or slightly behind pectoral insertion, snout much shorter than width of mouth and bluntly rounded. (Figs. 2 and 3). The coloration of specimen are fitted well to the juvenile *C. leucas*: white belly and greyish back, the black coloration on the tip of the second dorsal, and caudal fins. The characters above are fitted well to the features of juvenile *C. leucas* (Compagno *et al.* 2005; Ebert *et al.* 2013). Morphometric characters of a single specimen are given in Table 1.

Figure 2. The side view of *C. leucas* caught on the Pangkajene River, Pangkajene District, South Celebes Province, Indonesia. Photo Q. A. Mubaraq.

The discovery of *C. leucas* in Pangkajene River, Pangkajene District, South Celebes Province is the first inland record from Celebes, and the fourth inland records beyond its previous records in Indonesia (Papua, Borneo, and Sumatra). Among other biological topics, the new record of near-threatened shark is an important contribution to raise an understanding of species diversity and biogeography (Iqbal *et al.* 2019b; Hasan & Widodo 2020). As reported in this paper, the new record of *C. leucas* has helped to improve the knowledge of the species as it extends the distribution range of the species in Celebes.

The existence of juvenile of *C. leucas* in Celebes indicates that the inland habitat is a migration route for this species in the Wallace area. In the future, data collection using assisted by local fisherman is needed to assess the occurrence of *C. leucas* and evaluate the importance of Celebes as a habitat and distribution range.

Environmental factors may interact to define *C. leucas* movement patterns, including temperature, dissolved oxygen, and salinity (Smoothey *et al.* 2016; Hyatt *et al.* 2018; Galván-Magaña 2019). Water conditions in the Pangkajene River, namely salinity 2.1‰, temperature 28-31°C, dissolved oxygen 4.1-12.3 mg/l, are ideal for *A. leucas* habitat (Drymon *et al.* 2014; Hyatt *et al.* 2017). Besides that, the Pangkajene River is a natural habitat of several estuarine fishes such as mullet and milkfish which are the main food of juvenile *C. leucas* (Pillans *et al.* 2005).
Figure 3. The dorsal view of *C. leucas* caught on the Pangkajene River, Pangkajene District, South Celebes Province, Indonesia. Photo Q. A. Mubaraq.

Carcharhinus leucas is not the main commodity of fisheries in Celebes because the number of individuals entering into Celebes is very rare. There is no official record of how many *C. leucas* are caught because these fish are not a targeted species in Indonesia's commercial fisheries. Although *C. leucas* are not normally targeted but are commonly taken in commercial and recreational fisheries for their meat, oil, and fins (Dulvy *et al.* 2014; Davidson *et al.* 2016). The Indonesian government needs to strictly prohibit the practice of catching sharks, especially *C. leucas* (Booth *et al.* 2018).

Character (cm)	Present study	(Purushottama *et al.* 2013)
Total length	86.2	82
Fork length	71.1	65
Pre anal length	52.4	42.4
Pre pelvic length	41	40.6
Pre pectoral length	15.3	16.1
Pre orbital length	5	4.8
Head length	16.2	18.3
Pre first dorsal length	21.1	23.6
Pre second dorsal length	51.4	51
Pre caudal length	63	61

Acknowledgements

We thank the reviewers and editor for their insightful comments, Generasi Biologi Indonesia foundation, and Mr. Q. A Mubaraq as our guide, and the Ministry of Finance Indonesian for funding our research (no. 20160221035555).
References

Allen, G.R. (1991) *Field guide to the freshwater fishes of New Guinea*. Christensen Research Institute, Papua New Guinea. 268 pp.

Ballantyne, J.S. & Robinson, J. W. (2010) Freshwater elasmobranchs: a review of their physiology and biochemistry. *Journal of Comparative Physiology B*, 180 (4), 475-493.

Bass, A.J., D’Aubrey, J.D., & Kitnasamy, N. (1973) Sharks of the east coast of southern Africa. I. The genus Carcharhinus (Carcharhinidae). *Investigation Report Oceanogr Research Institute*, 33, 1-168.

Boeseman, M. (1964) Notes on the fishes of Western New Guinea III. The freshwater shark of Jamoeo Lake. *Zoologische Mededelingen*, 40 (3), 9-22.

Booth, H. Muttaqin E., Simeon, B., Ichsan, M., Siregar, U., Yulianto, I., Kassem, K. (2018) *Shark and ray conservation and management in Indonesia: Status and strategic priorities 2018-2023*. Wildlife Conservation Society. Bogor, Indonesia. 74 pp.

Coad, B.W. (2015) Review of the Freshwater Sharks of Iran (Family Carcharhinidae). *International Journal of Aquatic Biology*, 3 (4), 218-224.

Compagno, L.J.V., & Cook, S.F. (1995) The exploitation and conservation of freshwater elasmobranchs: status of taxa and prospects for the future. In: Oetinger, M.I., & Zorzi, G.D. (eds): *The biology of freshwater elasmobranchs*. *Journal of agriculture and Aquatic Science*, 62-90.

Compagno, L.J.V. (1998) Sharks. In: K. E. Carpenter, V.H. Niem (Eds), *Species Identification Guide for Fishery Purposes. The living Marine Resources of the Western Central Pacific*. Vol. 2. Cephalopods, Crustaceans, Holothurians, and Sharks. FAO, Rome, pp. 1193-1366.

Compagno, L.J.V. & Niem, V.H. (1998) Carcharhinidae. Requiem sharks. In: Carpenter, K.E. & Niem, V.H. (Eds.), Identification guide for fishery purposes. The living marine resources of the Western Central Pacific) Volume 2. Cephalopods, crustaceans, holothurians and sharks. FAO, Rome, pp. 1312-1360.

Compagno, L., Dando, M. & Fowler, S. (2005) *A Field Guide to the sharks of the world*. Princeton University Press, New Jersey. 368 pp.

Compagno, L.J.V. (2002) Freshwater and estuarine elasmobranch surveys in the Indo-Pacific Region: threats, distribution and speciation. In: Fowler, S.L., Reed, T.M. & Dipper, F.A. (Eds), *Elasmobranch Biodiversity, conservation and management: Proceedings of the International seminar and workshop, Sabah, Malaysia, July 1997*. IUCN SSC Shark Specialist Group, Switzerland and Cambridge, pp. 185-193.

Compagno, L.J.V. (1984) FAO species catalogue. Vol. 4. Sharks of the world: An annotated and illustrated catalogue of shark species known to date. Part 2. Carcharhiniformes. *FAO Fisheries Synopsis*, 125, 4, 251-655.

Drymon, J.M., Ajemian, M.J., & Powers, S.P. (2014). Distribution and Dynamic Habitat Use of Young Bull Sharks Carcharhinus leucas in a Highly Stratified Northern Gulf of Mexico Estuary. *PLoS ONE*, 9 (5), e97124.

Dulvy, N.K., Fowler, S.L., Musick, J.A., Cavanagh, R.D., Kyne, P.M., Harrison, L.R., Carlson, J.K., Davidson, L.N., Fordham, S.V., Francis, M.P., Pollock, C.M., Simpfendorfer, C.A., Burgess, G.H., Carpenter, K.E., Compagno, L.J, Ebert, DA, Gibson C, Heupel MR, Livingstone SR, Sanciangco JC, Stevens JD, Valenti S, White WT. Extinction risk and conservation of the world’s sharks and rays. *Elife*, 3, e00590.

Ebert, D., Fowler, S. & Compagno, L. (2013) *Sharks of the world, a fully illustrated guide*. Wild Nature Press, Plymouth. 528 pp.

Evans, D.H., Piermarini, P.M. & Choe, K.P. (2004) Homeostasis: osmoregualtion, pH regulation, and nitrogen excretion. In: Carrier JC, Musick J, Heithaus MR (eds) *Biology of sharks and their relatives*. CRC Press, Boca Raton, 247-268 pp.

Fahmi (2010) Sharks and rays in Indonesia. *Marine Research in Indonesia*, 35 (1),43-54.

Davidson, L.N.K., Krawchuk, M.A & Dulvy, N.K. 2016. Why have global shark and ray landings declined: Improved management or overfishing? *Fish Fisheries*, 17 (2), 438-458.

Gausmann, P. (2018) Synopsis of global freshwater occurrence of the bull shark (Carcharhinus leucas Valenciennes 1839, Carcharhinidae) with comments on the geographical range. Unpublished report.

Galván-Magaña F, Castillo-Geniz JL, Hoyos-Padilla M, James, K.A., Peter, K., Sergio, R.A., Yassir, E.T.R., & Javier, T.A. (2019) *Shark ecology, the role of the apex predator and current conservation status*. Elsevier, Amsterdam, pp. 62-113.
Glaus, K.B.J., Brunnschweiler, J.M., Piovano, S., Gauthier, M., Franziska, G., Pascal, F. & Ciro, R. (2019) Essential waters: Young bull sharks in Fiji’s largest riverine system. *Ecology and Evolution*, 9, 7574-7585.

Hasan, V. & Widodo, M.S. (2020) Short Communication: The presence of Bull shark Carcharhinus leucas (Elasmobranchii: Carcharhinidae) in the fresh waters of Sumatra, Indonesia. *Biodiversitas*, 21, 4433-4439.

Hyatt, M. W., Anderson, P. A., & O’Donnell, P. M. (2018). Influence of Temperature, Salinity, and Dissolved Oxygen on the Stress Response of Bull (Carcharhinus leucas) and Bonnethead (Sphyraena tiburo) Sharks after Capture and Handling. *Journal of Coastal Research*, 344, 818-827.

Iqbal, M., Nurnawati, E., Setiawan, A., Dahlaz, Z. & Yustian, I. (2019a) First photographic inland records of bull shark Carcharhinus leucas (Carcharhiniformes: Carcharhinidae) in Sumatran waters, Indonesia. *Ecologica Montenegrina*, 22, 171-176

Iqbal, M., Setiawan, M. & Yustian, I. (2019b) First inland record of bull shark Carcharhinus leucas (Carcharhiniformes: Carcharhinidae) in Indonesian Borneo. *Ecologica Montenegrina*, 24, 52–57.

Last, P.R., White, W.T., Cairu, J.N., Dharmadi, Fahmi, Jensen, K., Lim, A.P.K., Manjadi-Matsumoto, B.M., Naylor, G.P., Pogonoski, J.J. Stevens, J.D. & Yearsley, G.K. (2010) Sharks and rays of Borneo. CSIRO, Collingwood. 298 pp.

Lucifora, L. O., Carvalho, M. R. de, Kyne, P. M., & White, W. T. (2015). Freshwater sharks and rays. *Current Biology*, 25 (20), R971-R973.

Keller, J. (1987) *Haie. Biologie und Verhalten, Gefahren durch Haie und Erlebnisse mit Hainen. Ein Überblick*. Jahr Verlag, Hamburg. 239 pp.

Martin, R.A. (2005) Conservation of freshwater and euryhaline elasmobranchs: a review. *Journal of the Marine Biological Association of the United Kingdom*, 85, 1049-1073.

O’Connell, M., Shepherd, T., O’Connell, A., Myers, R. (2007) Long-term declines in two apex predators, bull sharks (*Carcharhinus leucas*) and alligator gar (*Atractosteus spatula*), in Lake Pontchartrain, an oligohaline estuary in southeastern Louisiana. *Estuaries and Coasts*, 30, 567-574.

Ortega, L.A., Heupel, M.R., Beynen, P.V., & Motta, P.J. (2009) Movement patterns and water quality preferences of juvenile bull sharks (*Carcharhinus leucas*) in a Florida estuary. *Environmental Biology of Fishes*, 84 (4): 361-373.

Pillans, R. D., Good, J. P., Anderson, W. G., Hazon, N. & Franklin, C. E. (2005) Freshwater to seawater acclimation of juvenile bull sharks (*Carcharhinus leucas*): plasma osmoregulators and K+/Na+-ATPase activity gill, rectal gland, kidney and intestine. *Journal of Experimental Biology*. 175 (1), 37-44.

Purushottama, G.B., Thakur, S. K., Ramkumar, S., & Tandel, S. (2013) First record of Bull shark, *Carcharhinus leucas* (Valenciennes, 1839) in commercial landings from New Ferry Wharf, Mumbai, Maharashtra. *Marine Fisheries Information Service: Technical & Extension Series*, 218, 12-15.

Reilly, B.D., Cramp, R.L., Wilson, J.M., Campbell, H.A., & Franklin, C.E. (2011) Branchial osmoregulation in the euryhaline bull shark, *Carcharhinus leucas*: a molecular analysis of ion transporters. *Journal Experimental Biology* 214 (17), 2883-2895.

Simpfendorfer, C. & Burgess, G.H. (2009) *Carcharhinus leucas*. The IUCN Red List of Threatened Species 2009: e.T39372A10187195. Downloaded on 29 June 2020.

Smoothe, A.F, Gray C.A., Kennelly, S.J., Masens, O.J., Peddemors, V.M., & Robinon, W.A. (2016) Patterns of Occurrence of Sharks in Sydney Harbour, a Large Urbanised Estuary. *PLoS one*, 11, e0146911.

Tan, H.H. & Lim, K.K.P. (1998) Freshwater elasmobranchs from the Batang Hari basin of Central Sumatra, Indonesia. *Raffles Bulletin of Zoology*, 46, 425-429.

Thomerson, J.E., Thorson, T.B, & Hempel, R.L. (1977) The bull shark, Carcharhinus leucas, from the upper Mississippi River near Alton, Illinois. *Copeia*, 1977, 166-168.

Thorson, T.B. (1971) Movement of bull sharks, Carcharhinus leucas, between Caribbean Sea and Lake Nicaragua demonstrated by tagging. *Copeia*, 1971, 336-338.

Werry, J.M., Lee, S.Y., Otway, N.M., Hu, Y., Sumpton, W. (2011). A multi-faceted approach for quantifying the estuarine-nearshore transition in the life cycle of the bull shark, Carcharhinus leucas. *Marine and Freshwater Research*, 62 (12), 1421-1431.