Fermionic Monte Carlo algorithms for lattice QCD

Ph. de Forcrand
Swiss Center for Scientific Computing,
ETH Zentrum, CH-8092 Zürich, Switzerland

The increase with time of computer resources devoted to simulations of full QCD is spectacular. Yet the reduction of systematic errors is comparatively slow. This is due to the algorithmic complexity of the problem. I review, in elementary terms, the origin of this complexity, and estimate it for 3 exact fermion algorithms.

There is a qualitative difference between quenched QCD, which considers the dynamics of (bosonic) gauge fields, and full QCD, which includes the dynamics of (fermionic) quarks, and thereby the physical effects of virtual quark pair creation. The former has only short-range interactions; the latter has long-range interactions among the gauge fields \(\{U\} \). How can this happen, since fermionic fields \(\psi \) interact with each other locally, with action density \(\bar{\psi}(\mathcal{D}(\{U\}) + m)\psi \)? The reason is simple. Fermions anti-commute \(\psi(x)\psi(y) = -\psi(y)\psi(x) \), so that they cannot be simulated directly. The standard procedure consists in integrating them out of the partition function

\[
\int \mathcal{D}\bar{\psi}\mathcal{D}\psi e^{-\sum_{x,y} \bar{\psi}(x)(\mathcal{D}U + m)\psi(y)}
\]

The exponential can be expanded in a power series. Because of anti-commutation, the only surviving terms will be \(\int d\bar{\psi}d\psi \psi(x)\psi(x) = 1 \), and the result of the integration will be \(\det(\mathcal{D}(\{U\}) + m) \) for each quark flavor, or \(\det^{n_f}(\mathcal{D}(\{U\}) + m) \) for \(n_f \) flavors degenerate in mass. This determinant cannot be factorized into local pieces, hence the long-range interactions induced on the gauge fields.

1 Scaling limit

In the presence of fermions, QCD possesses 2 mass (or length) scales: the string tension \(\sqrt{\sigma} \sim 440\text{MeV} \) of the pure gauge theory, and the quark mass \(m_q \). Both should be much smaller than the inverse lattice spacing \(a^{-1} \), to ensure small discretization errors. In addition the physical box \((La)^4 \) represented by the lattice should be large enough to contain the interesting physics. Naively, these requirements would translate into

\[
\begin{align*}
 a\sqrt{\sigma} & \ll 1 \ll La\sqrt{\sigma} & (a) \\
 am_q & \ll 1 \ll Lam_q & (b)
\end{align*}
\]
However because quarks are confined, the largest-size object to be contained in the box is not a free quark, but a $q\bar{q}$ meson. For heavy quarks, its mass is indeed $\propto m_q$. But for light quarks, the pion mass obeys the PCAC relation

$$m^2_{\pi} = Bm_q$$ \hspace{1cm} (2)

So confinement helps us here, by replacing (b) by

$$am_q \ll 1 \ll La\sqrt{B/m_q}$$ \hspace{1cm} (3)

Therefore, one needs to distinguish 2 cases:

- heavy quarks ($m_q \gg \sqrt{\sigma}$): constraints (3) can be summarized by
 $$am_q \ll 1 \ll La\sqrt{\sigma}$$ \hspace{1cm} (4)

- light quarks ($m_q \ll \sqrt{\sigma}$): then (4) is equivalent to
 $$a\sqrt{\sigma} \ll 1 \ll La\sqrt{B/m_q}$$ \hspace{1cm} (5)

We are ultimately interested in simulating the light quark case, which corresponds to the real world, so we will try to estimate the complexity of various fermion algorithms in that regime. Note however that present-day simulations of full QCD are only probing the heavy-quark domain: the crossover to light quarks, which corresponds roughly to the strange quark mass, to the opening of $\rho \to \pi\pi$ decay, and to dominant sea-quark effects, has not been reached yet.

In any case, the strategy for a light-quark simulation should be:
1. choose the lattice spacing so that the left-hand side of inequality (5) is satisfied;
2. as the quark mass is decreased, increase $L \propto m^{-1/2}_q$ to preserve the right-hand side of the inequality.

I will now compare the behavior of 3 exact algorithms as $m_q \to 0$.

2 The simplest algorithm: link-by-link Metropolis

Consider a local change in the gauge field (say one link only). This will induce a local change Δ in the \mathcal{D} part of the Dirac matrix $D \equiv \mathcal{D} + m$. The elements of matrix Δ are all zero, save for, say, $\Delta_{x_0, x_0 + \hat{\mu}}$ and $\Delta_{x_0 + \hat{\mu}, x_0}$, keeping only spatial indices for clarity. Consider then a Metropolis update. The acceptance probability will be

$$P_{\text{acc}} = \min(1, \left(\frac{\det(D + \Delta)}{\det D} \right)^{n/2})$$ \hspace{1cm} (6)
So what is needed is

\[
\det(1 + \Delta D^{-1}) = \det \left(\begin{array}{cc}
1 + \Delta x_0, x_0 + \hat{\mu} D^{-1}_{x_0, x_0 + \hat{\mu}, x_0} & \Delta x_0, x_0 + \hat{\mu} D^{-1}_{x_0, x_0 + \hat{\mu}, x_0 + \hat{\mu}} \\
\Delta x_0 + \hat{\mu}, x_0 D^{-1}_{x_0 + \hat{\mu}, x_0} & 1 + \Delta x_0 + \hat{\mu}, x_0 D^{-1}_{x_0, x_0 + \hat{\mu}}
\end{array} \right)
\]

(7)

Thus only 4 elements of the inverse matrix \(D^{-1} \) are needed. A straightforward way to compute them is to solve the linear systems

\[
D \tilde{z}_{1,2} = \tilde{b}_{1,2}
\]

(8)

where \(b_{1,2}(x) = \delta_{x,x_0} \) and \(\delta_{x,x_0 + \hat{\mu}} \) respectively, using an iterative solver, to sufficient accuracy. The solution vector \(\tilde{z} \) represents a whole column of \(D^{-1} \), from which the useful elements can be extracted.

2.1 Cost analysis

Using this algorithm, what is the cost of generating an independent configuration?

I make the plausible assumption that, as the quark mass goes to zero, the number of iterations needed to solve (8) grows as \(1/m_q \). This assumption certainly holds for staggered fermions, and appears to hold also for Wilson fermions (see e.g., [3]).

The work required per link update is then proportional to \(V m_q^{-1} \), or \(V^2 m_q^{-1} \) per sweep. Since the relevant correlation length as discussed in [9] is \(m_q^{-1} \sim m_q^{-1/2} B^{-1/2} \), the number of sweeps necessary to decorrelate the gauge field will be \((m_q^{-1/2} B^{-1/2})^z \), or \(\sim m_q^{-1} \), since \(z \approx 2 \) for a Metropolis algorithm. Altogether, the work per independent configuration is

\[
V^2 m_q^{-2}
\]

(9)

or, since the lattice size \(L \) must scale as \(m_q^{-1/2} \) (see eq.[3])

\[
L^{12}
\]

(10)

or \(a^{-12} \). The prefactor can be considerably reduced in clever variants of this method. But the algorithmic complexity remains daunting. It is even possible that (10) actually underestimates it. The statement that the number of sweeps per independent configuration grows as \(m_q^{-1} \) relies on the assumption that the

\[a\]For a non-confining theory in \(d \) dimensions, the correlation length would become \(m_q^{-1} \), giving a cost per independent configuration \(V^2 m_q^{-2} \); the lattice size would scale as \(m_q^{-1} \), giving a complexity \(L^{2d+3} \).
change in each link update is not limited by further constraints. On the other hand a naive inspection of the determinant (7) indicates that Δ might scale as m_q^{-1}, to compensate the m_q^{-1} divergence of D^{-1}. If the step size is $\sim m_q$, the number of steps needed to explore the whole gauge group and obtain a decorrelated configuration would be $\sim m_q^{-2}$, instead of m_q^{-1} as stated above. In that case the complexity would be

$$V^2 m_q^{-3} \text{ or } L^{14} \quad (11)$$

Whether in practice the step size goes like $\sqrt{m_q}$ or m_q, it is interesting that this algorithm, which in principle admits Monte Carlo steps of any size, automatically restricts them as the quark mass decreases. This restriction creates further problems, of ergodicity and of slowing-down, in the presence of an energy barrier like a zero-mode of the Dirac matrix separating successive topological sectors. These problems are entirely neglected here: a comparative study of fermionic algorithms with regard to exploring topological sectors is still awaiting.

3 Hybrid Monte Carlo

The magic of Hybrid Monte Carlo (HMC) consists in updating all links simultaneously by a very small step, which allows a simplifying linearization of the problem. The error caused by the finiteness of the step size is periodically corrected by a Metropolis test. HMC is the standard fermionic algorithm. It has been reviewed several times, and its complexity conjectured and studied numerically.

HMC first introduces one species of auxiliary bosonic fields ϕ, through the Gaussian integral

$$\det(\mathcal{D} + m) = \text{constant} \int \mathcal{D}\phi e^{-\phi^{[\mathcal{D}+m]}\phi^{[\mathcal{D}+m]^{-1}} \phi} \quad (12)$$

The squaring of $(\mathcal{D} + m)$ guarantees the convergence of the Gaussian integral (since it may happen, for small quark masses, that the lattice Dirac operator develop eigenvalues with a negative real part). It also makes it very cheap to update the field ϕ by a heatbath: $\phi \leftarrow (\mathcal{D} + m)^{\dagger} \eta$, where η is a complex Gaussian vector.

Heatbath updates of ϕ will alternate with updates of the gauge links. This is accomplished by introducing fictitious momenta $p_{x,\mu}$ conjugate to the gauge fields $A_{x,\mu}$ ($U_{x,\mu} = \exp(iA_{x,\mu})$), and a fictitious Hamiltonian
\[H = \sum_{x,\mu} \frac{p_{x,\mu}^2}{2} + S_G + \phi^\dagger [\mathcal{D} + m] \mathcal{D}^{-1} \phi \]

where \(S_G \) is the gauge action. The last 2 terms form the potential energy \(V \) of the gauge fields. After a heatbath update of \(\phi \), the momenta \(p_{x,\mu} \) are initialized, also by heatbath \(p_\mu \leftarrow \eta \). Then a discrete integration of Hamiltonian evolution is pursued along a “trajectory” of length \(\mathcal{O}(1) \) in fictitious time, using generally the leapfrog integrator:

\[
A(t + \frac{\delta \tau}{2}) = A(t) + \frac{\delta \tau}{2} p \\
p(t + \delta \tau) = p(t) - \delta \tau \nabla V \\
A(t + \delta \tau) = A(t + \frac{\delta \tau}{2}) + \frac{\delta \tau}{2} p
\]

The algorithm, at this point, is exact up to integration errors, which cause in particular violations \(\Delta E \) of the conservation of the total Hamiltonian energy. These deviations are compensated for by a Metropolis test at the end of the trajectory, with acceptance \(P_{\text{acc}} = \min(1, e^{-\Delta E}) \). Thus HMC can be viewed as an elaborate Metropolis scheme, where the candidate configuration \(\{U_{\text{new}}\} \) is obtained from \(\{U_{\text{old}}\} \) not by a random step, but by a carefully guided step. Detailed balance is satisfied because the leapfrog integrator is symplectic and reversible, guaranteeing the “evenness” of the distribution of proposed changes.

3.1 Cost analysis

- The optimal step size is the result of a compromise between fast Hamiltonian integration and high Metropolis acceptance. Very briefly, the RMS energy violation per step is \(\delta E \sim \sqrt{V m_q^{-3} \delta \tau^3} \). The \(\sqrt{V} \) comes from the uncorrelated contributions over a large volume. The \(m_q^{-3} \delta \tau^3 \) comes from the leading error in a reversible (second-order) integrator. Over a trajectory of \(1/\delta \tau \) steps, the RMS energy violation is then \(\Delta E \sim \sqrt{V m_q^{-3} \delta \tau^2} \), which must be kept constant to preserve a constant acceptance. Hence \(\delta \tau \sim V^{-1/4} m_q^{3/2} \).
- The cost per step comes overwhelmingly from the calculation of the fermionic force, requiring \(\mathcal{O}(m_q^{-1}) \) iterations of a linear solver.

The total cost per trajectory of length 1 is thus \(\sim V^{5/4} m_q^{-5/2} \).

Different scenarios have been proposed as to the number of trajectories necessary for decorrelation.
(a) Trajectories of length $O(1)$ are sufficient to guarantee a dynamical critical exponent $z = 1$. The correlation length is $\sim m_q^{-1/2}$, so that the total cost is

$$V^{5/4}m_q^{-3} \text{ or } L^{11}$$

since $m_q^{-1/2} \propto L$.

(b) If one increases the trajectory length like the correlation length, then $z = 0$.8

The step size becomes $\delta \tau \sim V^{-1/4}m_q^{1/4}$, and the cost is

$$V^{5/4}m_q^{-13/4} \text{ or } L^{11.5}$$

(c) With trajectory of length $O(1)$, the critical exponent z is 2. Then the cost is

$$V^{5/4}m_q^{-7/2} \text{ or } L^{12}$$

In my opinion, scenario (a) is too optimistic, (a similar scenario for the quenched theory has been numerically proven wrong). I favor (c).

HMC is straightforward to program, even with improved, less local gauge or fermionic actions. It directly benefits from recent progress in linear solvers. It can be further accelerated, by trading the Dirac matrix D for another one of the same determinant, but giving a smaller force. The replacement of D by an LDU combination allows a large ($O(5)$) increase of the step size.

One potential problem with HMC on large lattices comes from round-off errors. The Metropolis acceptance depends on the energy difference ΔE, which is a small $O(1)$ difference of 2 large numbers $O(V)$. Special care must be taken to calculate ΔE accurately enough that violations of reversibility remain negligible. The next algorithm circumvents this problem.

4 The multiboson approach

This approach, originally proposed by Lüscher, can be summarized as follows (see for a detailed presentation):

• Choose a Chebyshev-like polynomial $P_n(x)$ approximating $1/x$ in a domain of the complex plane which includes the eigenvalue spectrum of the Dirac operator D. P_n can be factorized as

$$P_n(x) = constant \prod_{k=1}^{n}(x - z_k)$$

(20)

• It follows, by going to an eigenbasis of D, that

$$detD \approx constant \prod_{k=1}^{n}det^{-1}(D - z_k1)$$

(21)
or

\[
|\det D|^2 \approx \text{constant} \prod_{k=1}^n \det^{-1}(D - z_k 1) \dagger (D - z_k 1) \tag{22}
\]

Each factor in the right-hand side can be replaced by a Gaussian integral over an auxiliary field \(\phi_k \). The effective action is then

\[
S_{\text{eff}} = \beta S_G + \sum_{k=1}^n \phi_k \dagger (D - z_k 1) \dagger (D - z_k 1) \phi_k \tag{23}
\]

- Update the \(U \)'s and the \(\phi_k \)'s by a local MC algorithm (typically a mixture of over-relaxation and heatbath) for a reversible sequence of steps ("trajectory").

- Correct the error \(|\det DP_n(D)|^2\) in the measure by a cheap Metropolis test at the end of each trajectory.

In addition to avoiding the accuracy problems of HMC, this method relies on manifestly finite update steps, so there is hope that it will be more efficient in overcoming energy barriers. Moreover, it generalizes readily to other functions of \(\det D \), as needed for simulations of odd numbers of flavors or SUSY theories.\(^{16,17}\) The price to pay for these potential advantages is a large increase in memory (the number of auxiliary fields needed is about the same as the number of iterations of the linear solver in HMC), and a programming complexity which increases very rapidly with the range of the operator \(D \).

4.1 Cost analysis

- The work per step grows like \(n \), the number of bosonic fields.

- During a link update, the bosonic fields are kept frozen. They limit the size of the update step to \(\propto n^{-1/2} \), so that the autocorrelation time of the \(U \)'s grows linearly with \(n \).\(^{18}\)

- The optimal choice for \(n \) is therefore a compromise between fast evolution and low Metropolis acceptance. The approximation error \(|\lambda P_n(\lambda) - 1|\) for the Chebyshev-like polynomials considered decreases exponentially with \(n \), so that it will be bounded by \(O(e^{-cnm^a}) \) for some constant \(c \). To keep the Metropolis acceptance constant, one must preserve \(\log(|\lambda P_n(\lambda)|) \sim V e^{-cnm^a} \). Therefore, \(n \propto m_q^{-1} \log V \).

- One expects additional slowing down \(m_q^{-z} \) from the local MC dynamics of fields \(\phi_k \).
Altogether these factors yield a cost per independent configuration $V(\log V)^2 m_q^{-2-z}$. Since the ϕ_k dynamics are local, one can expect at best $z = 1$, which is consistent with numerical observations. A more conservative scenario would be $z = 2$. Clearly, a cluster algorithm with $z < 1$ would make this algorithm very competitive. In any case the cost is, for $z = 1$

$$V(\log V)^2 m_q^{-3} \text{ or } L^{10}(\log L)^2$$

or, for $z = 2$

$$V(\log V)^2 m_q^{-4} \text{ or } L^{12}(\log L)^2$$

5 Summary

Table 1 summarizes our analysis. It is remarkable that all algorithms ultimately give an L^{12} dependence as the quark mass approaches 0. The reason for this probably is that all 3 algorithms are equally incapable of accelerating the evolution of the relevant approximate zero-modes of the Dirac operator. The implementation of the Cornell program (Fourier acceleration of MC dynamics, after Fourier-accelerated gauge-fixing) could improve this picture. On the other hand, the relevant dynamics as $m_q \to 0$ is most likely the motion through topological sectors, which our analysis ignores.

Topological sectors are separated by narrow but high energy barriers. The dynamics of barrier-crossing is likely to be sensitive to the size of an elementary update step, which is listed in Table 2. Lack of ergodicity appears especially dangerous with HMC, as noted some time ago.

Table 1: Complexity of fermionic algorithms - conservative scenario.

	Link-by-link	HMC	Multiboson
m_q fixed	$V^2 m_q^{-2}$	$V^{5/4} m_q^{-7/2}$	$V(\log V)^2 m_q^{-4}$
$L \propto m_q^{-1/2}$	L^{12}	L^{12}	L^{12}

Table 2: Size of an elementary update step.

	Link-by-link	HMC	Multiboson
m_q fixed	$m_q^{1/2}$	$V^{-1/4} m_q^{3/2}$	$(\log V)^{-1/2} m_q^{1/2}$
$L \propto m_q^{-1/2}$	L^{-1}	L^{-2}	$L^{-1} (\log V)^{-1/2}$
For current simulations, with not-so-light quarks in not-so-large volumes, the first line of Table 1, which separates the complexity in volume and in quark mass, may be the more relevant. The 3 algorithms reviewed, presented in chronological order, progressively trade an increased dependence on the quark mass for a decreased dependence on the volume. This represents progress for fixed quark mass and large volumes (meaning $m_{\pi} L a \gg 1$): in that case, the multiboson method should be the most efficient.

This has in fact been verified in the current study of 1-flavor QCD thermodynamics, with heavy dynamical quarks. The dynamics of the Polyakov loop were ~ 10 times faster with the multiboson method than with HMC. On the other hand, for very light quarks (in a small volume), HMC and the multiboson methods perform equivalently.

Finally, I stress that these are costs per independent configuration. The number of independent configurations required to preserve the statistical signal-to-noise ratio may increase as m_q decreases, depending on the observable.

6 Conclusion

Lattice QCD simulations started in 1980, at the initiative of one of this meeting’s participants. Progress in algorithms has since been as impressive as in hardware.

On one hand, lattice QCD is a homogeneous problem on a regular grid: it belongs to the class of “embarrassingly parallel” problems, for which the simplest, cheapest SIMD parallel computer is sufficient. Current simulation projects call for $\mathcal{O}(1 \text{ Gigaword})$ of data, $\mathcal{O}(\text{a few months})$ of computer time on $\mathcal{O}(\text{a few } 100) \text{ GFlops}$ machine. The resources involved justify continued research on algorithms.

On the other hand, the current situation is quite different in the quenched and the full QCD cases. Quenched QCD is a “mature” field: algorithms are stagnant; a continuum extrapolation of MC results, in large volumes, is reliable at the 10% level. Full QCD still is at an early stage: algorithms are still being explored and improved; 8 years elapsed before a practical exact algorithm (HMC) was devised; 8 more years passed by before a competitive alternative (multiboson) was found; more progress will undoubtedly come. The cost of current algorithms is still so high that simulations are generally squeezed in a dilemma: either the lattice is too coarse, or the physical volume is too small. The interesting regime of light dynamical quarks is barely starting to be explored. This slower progress is a consequence of the tremendous complexity $\sim L^{12}$ of full QCD (a similar analysis for quenched QCD yields a complexity $\sim L^6$ “only”).
The relevance of the complexity analysis presented in this review is limited. Table 1 only shows asymptotic behaviors (large volume, small quark mass). In any case, prefactors must be determined through numerical experiment. But one outcome should be clear: an improved action, which would reduce discretization errors such that the lattice spacing can be doubled, offers a potential savings of $2^{12} \sim 4000$ in computer time.

Acknowledgments

I am grateful to ZiF and to the Physics Dept. of the University of Bielefeld for their kind hospitality while this paper was finally written. I thank Atsushi Nakamura for comments.

References

1. Ph. de Forcrand et al., Phys. Rev. Lett. 58, 2011 (1987).
2. A. Nakamura et al., Comp. Phys. Comm. 51, 301 (1988).
3. Ph. de Forcrand, Nucl. Phys. B(Proc. Suppl.) 47, 228 (1996).
4. S. Duane et al., Phys. Lett. B 195, 216 (1987).
5. M. Creutz, Phys. Rev. D 38, 1228 (1988).
6. R. Gupta et al., Phys. Rev. D 40, 2072 (1989).
7. S. Gupta et al., Phys. Lett. B 242, 437 (1990).
8. S. Duane and J.B. Kogut, Nucl. Phys. B 275, 398 (1986), quoted in 4.
9. QCD-TARO collaboration, Phys. Lett. B 328, 407 (1994).
10. Ph. de Forcrand and T. Takaishi, hep-lat/9608093, to appear in Nucl. Phys. B(LAT96 Proceedings).
11. SESAM collaboration, Nucl. Phys. B(Proc. Suppl.) 47, 386 (1996).
12. R.G. Edwards, I. Horvath and A.D. Kennedy, hep-lat/9606004.
13. M. L"uscher, Nucl. Phys. B 418, 637 (1994).
14. A. Borrelli et al., Nucl. Phys. B 477, 809 (1996).
15. K.M. Bitar et al., Phys. Rev. D 44, 2090 (1991).
16. C. Alexandrou et al., hep-lat/9609034, to appear in Nucl. Phys. B(LAT96 Proceedings).
17. I. Montvay, Nucl. Phys. B 466, 259 (1996).
18. M. Peardon, Nucl. Phys. B(Proc. Suppl.) 42, 891 (1995).
19. K. Jansen, hep-lat/9607051, to appear in Nucl. Phys. B(LAT96 Proceedings).
20. M. Creutz, Phys. Rev. D 21, 2308 (1980).
21. G.G. Batrouni et al., Phys. Rev. D 32, 2736 (1985).
22. K. Jansen, these proceedings.