Progress towards antimicrobial resistance containment and control in Indonesia

A pilot programme to evaluate Indonesia’s antimicrobial resistance containment plan shows that progress is on the right track, but substantial strengthening is needed, say Harry Parathon and colleagues.

In May 2015 member states at the World Health Assembly endorsed the World Health Organization’s global action plan on antimicrobial resistance (GAP-AMR). Through adoption of the GAP-AMR, member states committed to having a national action plan on antimicrobial resistance in place by May 2017. The South East Asia region has moved from having one (10%) country with a national action plan in December 2015 to 10 countries (90%) by May 2017. WHO supported the Indonesian Ministry of Health to develop a national action plan, first by conducting a review of current activities. The review focused on a situation analysis of challenges to tackling AMR. The South East Asia Regional Office (SEARO) of WHO has proposed a stepwise, incremental approach to implementing GAP-AMR, consisting of five phases. Phase 5 is defined as a fully operational AMR containment programme with evidence of a sustained funding mechanism and incorporating a functional monitoring and evaluation system. Here we evaluate Indonesia’s progress towards this goal.

Antimicrobial resistance in Indonesia

With an estimated population of 258 million people, Indonesia is the fourth most populous country in the world and is categorised as a lower middle income country. Despite no formal estimation of its burden, AMR is thought to be high and on the rise. Data on AMR in Indonesia have been patchy, sporadic, and selective, commonly generated by a few laboratories from large universities, which are not connected in a national network.

Epidemiological data on Streptococcus pneumoniae carriage and invasive disease are currently limited in Indonesia. In the mid 1990s studies reported 21% and 36% of penicillin non-susceptible and erythromycin resistant S. pneumoniae, respectively, in Jakarta. In Lombok Island, the prevalence of S. pneumoniae carriage was 48% in healthy children, of which all isolates were susceptible to penicillin and cefotaxime and 12% were non-susceptible to sulfamethoxazole or chloramphenicol.

In 2000-01, the prevalence of tetracycline resistant S. pneumoniae tested at the University of Jakarta’s microbiology laboratory was 46%, compared with 1-5% in studies from northern Europe.

In Semarang, Indonesia, prevalence of S. pneumoniae in 2010 was 43% in children aged 6-60 months and 11% in adults aged 45-75 years, of which isolates 24% were penicillin non-susceptible and 45% were resistant to cotrimoxazole.

In 2001, E. coli from rectal samples showed remarkably high resistance to ampicillin (73%), trimethoprim-sulfamethoxazole (56%) and ciprofloxacin (22%), especially at the time of hospital discharge. Until the late 1990s, extended spectrum β lactamase producing bacteria were mainly isolated in hospitals worldwide; later, resistance increased along with the emergence of genes related to CTX-M in hospitals and the community.

In 2005 a survey in a hospital in Surabaya, Indonesia, found prevalences of extended spectrum β lactamases (including CTX-M) of 20% and 28% among clinical E. coli and Klebsiella pneumoniae, respectively.

Over the past decade the emergence of extended spectrum β lactamase producing bacteria and carbapenem resistant Enterobacteriaceae has become a worldwide threat to public health. From 2001 to 2012, resistance to imipenem rates reached 30% in some epidemic areas of the Middle East, while the top two Asian countries with the highest resistance rates to imipenem were Indonesia (6%) and the Philippines (4%). In 2009 the gene for New Delhi metallo-β-lactamase (blaNDM-1) was found in a sample of K. pneumoniae in Indonesia.

In 2001-02 the nasal carriage of Staphylococcus aureus was surveyed in two cities on Java island (Semarang and Surabaya); low prevalence of meticillin resistant S. aureus (MRSA) (<1%) was found among 263 isolates from healthy people in the community. In 2007-08, 24% of surgical patients were screened for MRSA carriage at discharge in three teaching hospitals in Indonesia. Of these, 24% patients carried S. aureus, 4.3% of whom had MRSA. This was surprising low, as the prevalence of MRSA in some Asian countries, such as Taiwan and mainland China, is among the highest in the world, ranging from 28% to over 70%.

Prevention of spread of MRSA is crucial in Indonesia because of the surprisingly high prevalence of the Pantone-Valentine leukocidin genes (11%) among MRSA in the country, a virulence factor that is associated with skin infections and severe necrotising pneumonia.

The challenges of AMR that Indonesia faces are similar as those of many other low and middle income countries in the region and beyond. Misuse and overuse of antibiotics in humans and in livestock and aquaculture are the key drivers of resistance in the country. With the economy prospering for the past decade and a growing demand for poultry products and the development of aquaculture exports, agricultural use probably exceeds medical use in Indonesia. Despite current policies related to antimicrobial use, common and unnecessary prescription of antibiotics by physicians, high rates of self medication, and over-the-counter purchase of antibiotics are common.

Many contextual factors influencing antibiotic use are known, including weak policy enforcement and poor governance, lack of education, and easy access to cheap antibiotics.
Situational analysis methods

The Indonesian ministry of health agreed to pilot the situation analysis tool developed by SEARO, the objectives of which are to report on the baseline, development, implementation, monitoring, and evaluating progress made by the national AMR prevention and containment programme. The tool has seven focus areas consistent with the strategic objectives of the GAP-AMR: national AMR action plan in line with GAP-AMR; AMR awareness raising; national AMR surveillance; antimicrobial stewardship and surveillance of antimicrobial use and consumption in the community; infection prevention control in healthcare settings; research and innovation to combat AMR; and One Health engagement. Each focus area is composed of a list of indicators that are graded on five levels to show the incremental extent of AMR programme implementation.

The situation analysis process consists of guided discussions between members of the ministry of health’s AMR control committee, senior technical leaders of the national health authorities, the veterinary, agriculture and food sector, and a WHO team. The situation analysis focuses on the level of development of the national AMR containment programme in terms of governance structure, policy, and systems. It is a broad system analysis rather than assessing quality of official documents such as guidelines, regulations, and policies. Details of the definitions and methodology of the situation analysis tool are described elsewhere.

Monitoring Indonesia’s progress

The results of situation analysis are summarised in table 1. The review confirmed that the AMR containment programme is in the early phase of implementation, ranging from programme installation to full operation phases for most of the core activities of the GAP-AMR. Since 2016 the ministry of health has boosted the programme, with substantial funding for the national AMR control committee. The AMR prevention and control programme is on the right track but needs further strengthening.

The Indonesian authorities are committed to supporting AMR containment activities and understand the complexity of AMR and its challenges in Indonesia, particularly multisectoral coordination and policy enforcement issues. This review of the situation was useful in several ways. Firstly, it emphasised amongst multidisciplinary participants that a comprehensive One Health approach—that is, coordination and collaboration between the human, animal, and the environmental

Table 1 | Situation analysis and monitoring of antimicrobial resistance in Indonesia: results summary June 2016

Indicators	Phases	Phase achieved in Indonesia		
1. National AMR action plan				
NAP in line with GAP-AMRGAP	No action plan or no national multisectoral committee or AMR committee established but involving one ministry	Action plan includes operational plan including process to support AMR action plan. Action plan includes operational plan being rolled out and scaled up with defined activities and respective budgets	2+	
2. Awareness raising				
Awareness campaigns to the public	Government not involved in awareness raising activities on antibiotic resistance	Nationwide, government led antibiotic awareness raising campaigns targeting the general public or professionals	Assessing effects of government led awareness campaigns on behaviour changes in public and professionals	3+
Education and training strategies for professionals	No policy or strategy	AMR included in some preservice training or special courses or both OR Continuous professional development and regular audit of learning	AMR included in some preservice training or some special courses or both AND Continuous professional development and regular audit of learning	3+
3. National AMR surveillance system				
National human AMR surveillance	No capacity for AMR laboratory or limited reporting or both, or no surveillance guidelines	Standardised national AMR surveillance in place and representative of country	National AMR surveillance regularly assessed and adjusted, and contributing to GLASS	2–
National laboratory network strengthening	No national network developed	A national network of EQA health laboratories has been developed in most or all surveillance sites	A laboratory network is established, EQA measures are in place, and the reference laboratory has demonstrated capacity for research	1
4. Rational use of antimicrobials and surveillance of use and sale (community based)				
A national AMR containment policy for control of human use of antimicrobials, AMR stewardship (AMS)	No or weak national policy and plans, regulations for antimicrobial use, and availability	AMSP is developed, including tools to implement and monitor AMS progress and impact	A national AMS for control of human use of antimicrobials has been implemented and enforced for more than 2 years	4

No policy or strategy Relevant policies developed but ad hoc training courses in some disciplines AMR included in some preservice training or special courses or both OR Continuous professional development and regular audit of learning AMR included in some preservice training or some special courses or both AND Continuous professional development and regular audit of learning

Guidelines developed but not fully implemented Limited quality data and analysis and not fully representative of country Standardised national AMR surveillance in place and representative of country but limited number of operational sites Surveillance in place and functional to monitor AMR trends accurately and timely but no contributing data to GLASS

A national network of EQA health laboratories has been developed in most or all surveillance sites A laboratory network is established, EQA measures are in place, and the reference laboratory has demonstrated capacity for research

A national AMR containment policy for control of human use of antimicrobials, AMR stewardship (AMS)
Table 1 | Continued

Indicators	Phases	Phase achieved in Indonesia
National Regulatory Authorities (NRA) or Drug Regulatory Authorities (DRA)	1—Exploration and adoption: No official NRA or DRA or those existing have limited capacity	4
	2—Programme installation: NRA or DRA with limited capacity but strategic planning in place for capacity building and appropriate budgeting	
	3—Initial implementation: NRA or DRA system set up for oversight but not fully functional	
	4—Full operation: Tools for quality assurance and registration of antibiotics in place and inspection implemented but limited capacity for enforcement of policies and regulation	
	5—Sustainable operation: Competent and functional NRA or DRA with capacity to ensuring or enforcing antibiotic quality standards, to take measures against substandard products and to inspect pharmacies	

Surveillance of antimicrobial use and sales in humans

- No guidelines for surveillance of use or sales of antimicrobials or both
- National policy and plan on surveillance of use of antimicrobials under development or developed and approved but not implemented (surveillance in individual facilities and national level sales)
- Monitoring sales of antimicrobials at national level not implemented. Monitoring of use is irregular and limited to few facilities that are not representative
- National sales data are collected on a regular basis (every 1-2 years). Data are collected from a small and not representative sample of individual healthcare facilities. No established analysis with national AMR laboratory-based surveillance
- National sales data are collected on a regular basis (every 1-2 years). AMU surveys are conducted in a representative sample of facilities and translated into actions. Links with national AMR surveillance data are analysed and reported

Infection prevention control and AMR stewardship programme

- AMR stewardship programme in healthcare setting: No national AMR stewardship policy or operational plan is available or approved
- A national IPC or AMR policy or operational plan is available but weak. SOPs, guidelines, and protocols not available to all hospitals (limited updates)
- National IPC, AMR aligned IPC, or AMR plans implemented in limited number of healthcare settings
- National IPC, AMR aligned IPC, or AMR plans are implemented in about all healthcare settings
- IPC or AMR measures are widely implemented and regularly evaluated and shared

National HAI and related AMR surveillance

- No policies, limited national plan and guidelines to mandate hospitals for HAI surveillance
- Few public and private facilities have HAI surveillance but data not centralised at national level
- Few public and private facilities have HAI surveillance and share data at national level
- Centralised data on HAI from several hospitals but with limited capacity for data analysis and detection
- Monitoring and response frameworks established to identify critical HAI events, especially related to emergence of AMR indicator bacteria against critical drugs

Research and innovation

- Research and development and innovation on AMR prevention and containment (plus research funding): No policies fostering research environment although capacity exists for research
- Policies planned and existing structure has a plan to foster research and innovation on AMR
- Presence of policies and investments to foster research and innovation on AMR
- Research consortium and dynamic research programme are ongoing led by government agenda
- Government led research outputs related to AMR global research agenda

One Health engagement

- A national AMR containment policy and regulatory framework for control of animal use and their registration for use: No national policy or plan to reduce use of antibiotics
- National policy and plan on use of antimicrobials developed and approved or regulatory framework for control of animal use and their registration for use is developed but not implemented
- Implementation of policy and plan but limited capacity for monitoring use and quality of drugs
- Policy and plan implemented with some capacity for monitoring but limited capacity for enforcement
- Policy and plan implemented with proper capacity for monitoring and increased capacity for enforcement

National surveillance of AMR and use of sales of antimicrobials at national level in the veterinary sector

- No or weak national policy and guidelines
- Limited capacity for surveillance of sales, AMR, or AMU
- Some capacity and data generated from sales, AMR or AMU
- Some comparative analysis of surveillance data between AMR and AMU
- Comprehensive approach of surveillance with coordinated analysis between humans and animals

Infection prevention and control in the animal sector

- No policy and national guidelines developed for biosecurity to reduce infection rates in food and both large and small producers and small holders
- Policies and national guidelines in line with international standards planned including vaccination policy and Codex Alimentarius standards
- Limited implementation, particularly in large producers
- Full implementation
- Fully implemented in multiple areas with a monitoring framework in place

AMR awareness generation and education in the animal sector

- No policies or strategies exist or are only planned
- Policies or strategies developed
- AMR in some pre-service training or special courses or both or Continuous professional development and regular audit of learning
- AMR in some pre-service training or special courses or both or Continuous professional development and regular audit of learning
- Effect of education programme on behaviour changes is assessed

NAP=national action plan; GAP-AMR=global action plan on antimicrobial resistance; AMR=antimicrobial resistance; GLASS=global AMR surveillance system; EQA=external quality assurance; API=active pharmaceutical ingredient; IPC=infection, prevention, and control; SOP=standard operating procedures; HAI=health-associated infection; AMU=antimicrobial use.
health sectors—is non-negotiable to contain AMR in the country. Secondly, by highlighting common challenges it provides a sense of direction when building systems among all people and groups. Finally, we support the definition of what constitutes “sustainable operation” as provided by the tool, which includes funded programme operation bundled with a monitoring and evaluation mechanism for detecting, measuring, and interpreting changes over time.

Much has happened in the country on combating AMR since 2005. As shown, some concrete measures have been taken by the government. The Ministry of health has recently developed the 2015-19 strategic plans for implementing existing regulations and guidelines and rolling out AMR related activities nationwide. These initiatives include piloting hospital and community based strategies to promote rational use of antibiotics. Local public awareness initiatives have also been taken up by non-governmental organisations and medical associations. Nevertheless, we acknowledge the urgent need to develop a comprehensive multisector national action plan, while simultaneously implementing existing evidence based AMR prevention and containment interventions. The immediate way forward is to establish an overarching governance system for AMR that will provide proper oversight of the problem and will implement sustainable strategies and interventions to policy makers. Also the AMR containment programme needs to urgently tackle three priority areas: surveillance of AMR and antimicrobial use in human health and livestock, a comprehensive strategy for raising awareness, and transforming national level policies to community outreach implementation across the country. Operational plans are being developed as part of the national action plan to tackle these priorities.

Our review has some limitations. Firstly, our findings are just a snapshot of the programme’s situation, which is dynamic and can change for better or worse. These findings are as accurate and complete as the quality and diversity of the participants.

This baseline analysis should be seen as the first step in a long process of monitoring the national action plan led by WHO. We support this tool and its approach, which gives people working on the programmes the opportunity to share their perceptions of the challenges and needs and to discuss grading with external partners. This review provides a sense of direction for our national programme.

Secondly, the findings are based on broad review of systems, structures, and organisations rather than a quality analysis of documents or direct observations of performance. A good level of implementation or functionality indicates that the country is taking steps to ensure that the programme is moving towards sustainable operation, in alignment with the GAP-AMR. Moreover, a fully operational programme is not necessarily effective—a step that needs further evaluations as part of the WHO roadmap. Thirdly, some areas were not well covered by the review, such as the sanitation and hygiene programme in the community and further assessment of activities in the livestock sector. Further collaboration between the Food and Agriculture Organisation of the United Nations and WHO is warranted, as is further work on harmonising the present tool with that of WHO’s Joint External Evaluation (JEE) under the International Health Regulations (2005). Lastly, we hope that other countries are encouraged by this transparent and constructive process, where WHO and national participants worked together in interactive sessions to reach a consensus.

Contributors and sources: All authors actively participated in a two day situational analysis meeting conducted in May 2016 in Jakarta, Indonesia. SV wrote the draft and all authors contributed and agreed on the contents and conclusion of the article. SV is the guarantor.

Competing interests: All authors declared no conflict of interest.

Provenance and peer review: Commissioned; externally peer reviewed.

This article is one of a series commissioned by the BMJ based on an idea from the WHO SEARO. The BMJ retained full editorial control over external peer review, editing, and publication.

Harry Parاثorn, head of division of urogynecology reconstruction and chair1
Kuntaman Kuntaman, clinical microbiologist and adviser2
Tri Hesty Widiantoety, director3
Bidyu T Mulawan, director4
Anis Karuniaawati, clinical microbiologist and secretary5
Maryatul Qibiyah, pharmacist and member6
Zulifida Djanun, clinical pharmacologist and member7
Jihanah F Tawilah, representative2
Tjandra Aditama, senior adviser8
Visanu Thamlikitkul, WHO consultant and head of division of infectious diseases9
Sirenda Yong, regional technical lead for antimicrobial resistance10

Faculty of Medicine, Dr Soetomo Hospital, Surabaya, Indonesia
Antimicrobial Resistance Control Committee, Ministry of Health, Jakarta, Indonesia
Directorate of Referral Health Services, Ministry of Health, Jakarta, Indonesia
Directorate of Pharmaceutical Services, Ministry of Health, Jakarta, Indonesia
Medical Faculty Universitas Indonesia, Dr. Cipto Mangunkusumo General Hospital, Jakarta, Indonesia
Medical Faculty Universitas Indonesia, Jakarta, Indonesia

1World Health Organization, Country Office for Indonesia, Jakarta, Indonesia
2World Health Organization, Regional Office of South-East Asia, New Delhi
3Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
4World Health Organization, Regional Office of South-East Asia, New Delhi, India

Correspondence to: S Yong
svong@who.int

1Global Action Plan on Antimicrobial Resistance. World Health Organization. 2015. www.who.int/ antimicrobial-resistance/publications/global-action-plan/en/
2World Health Organization. 68th World Health Assembly Resolutions on antimicrobial resistance. 2015. who.int/mediacentre/news/releases/2015/ wha-25-may-2015/en/
3Kakkar M, Walia K, Yong S, et al. Antibiotic resistance and its containment in India. BMJ 2017;358:j2687.
4World bank data. data.worldbank.org/country/indonesia
5Antimicrobial resistance: Global report on surveillance. World Health Organization 2014. www.who.int/drugresistance/documents/surveillancereport/en/
6Safiri D, Kurniati N, Waska L, et al. Serotype distribution and antibiotic susceptibility of Streptococcus pneumoniae strains carried by children infected with human immunodeficiency virus. Ped One 2014;9:e110526. doi:10.1371/journal.pone.0110526
7Lestari ES, Severin JN. Antimicrobial resistance in Indonesia: Prevalence, determinants and genetic basis. 2009. PhD thesis. repub.eur.nl/pub/17713/
8Srowngip S, Gesser BD, Sultanat A, et al. Streptococcus pneumoniae nasopharyngeal carriage prevalence, serotype distribution, and resistance patterns among children on Lombok Island, Indonesia. Clin Infect Dis 2001;32:1039-43.
9European Centre for Disease Control and Prevention. European Antimicrobial Resistance Surveillance Network (EARS-Net). www.rivm.nl/earss/database
10Fanida H, Severin JN, Gasser PH, et al. Nasopharyngeal carriage of Streptococcus pneumoniae in pneumonia-prone age groups in Semarang, Java Island, Indonesia. Ped One 2014;9:e8743.
11Severin JN, Mertaniasih NM, Kuntaman K, et al. Study Group 'Antimicrobial Resistance in Indonesia: Prevalence and Prevention' (AMRIN). Molecular characterization of extended-spectrum beta-lactamases in clinical Escherichia coli and Klebsiella pneumoniae isolates from Surabaya, Indonesia. J Antimicrob Chemother 2010;65:645-9. doi:10.1093/jac/dkp471
12Bonnet R. Growing group of extended-spectrum beta-lactamases: the CTX-M enzymes. Antimicrob Agents Chemother 2004;48:1-14. doi:10.1128/AAC.48.1.1-14.2004
13Cantón R, Coque TM. The CTX-M beta-lactamase pandemic. Curr Opin Microbiol 2006;9:466-75. doi:10.1016/j.mib.2006.08.011
14Lestari ES, Severin JN, Filius PM, et al. Antimicrobial Resistance in Indonesia: Prevalence and prevention (AMRIN). Antimicrobial resistance among commensal isolates of Escherichia coli and Staphylococcus aureus in the Indonesian population inside and outside hospitals. Eur J Clin Microbiol Infect Dis 2008;27:45-51. doi:10.1007/s10096-007-0396-2
15Yu Y, Gu B, Huang M, et al. Epidemiology of carbapenem resistant Enterobacteriaceae (CRE) during 2000-2012 in Asia. J Thorac Dis 2015;7:376-85.
16Al Dhaheri AS, Al-Nayad M, Al-Dhaheri A, Bastaki SM. Resistance patterns of bacterial isolates to antimicrobials from 3 hospitals in the United Arab Emirates. South Med J 2009;30:618-23.
17Khosravani G, Salehinejad E, Eslami G. Profile of microorganisms and antimicrobial resistance at a tertiary care referral burn centre in Iran: emergence of Ceftazidime resistant as a common microorganism.
AntiMicrobial reSiStAnce in South eAS t A SiA

This an open access article distributed under the terms of the Creative Commons Attribution-non-commercial IGO License (https://creativecommons.org/licenses/by-nc/3.0/igo/), which permits use, distribution, and reproduction for non-commercial purposes in any medium, provided the original work is properly cited. In any reproduction of this article there should not be any suggestion that WHO or this article endorse any specific organisation or products. The use of the WHO logo is not permitted. This notice should be preserved along with the article’s original URL.

Cite this as: BMJ 2017;358:j3808
http://dx.doi.org/10.1136/bmj.j3808