THE FIRST DIRECT DISTANCE DETERMINATION TO A DETACHED ECLIPSING BINARY IN M33

A. Z. Bonanos, K. Z. Stanek, R. P. Kudritzki, L. M. Macri, D. D. Sasselov, J. Kaluzny, P. B. Stetson, D. Bessers, F. Bresolin, T. Matheson, B. J. Mochejska, N. Przybilla, A. H. Szentgyorgyi, J. Tonry, and G. Torres

Received 2006 June 11; accepted 2006 July 26

ABSTRACT

We present the first direct distance determination to a detached eclipsing binary in M33, which was found by the DIRECT Project. Located in the OB 66 association at coordinates (α, δ) = (01h33m46.17, +30°44′39.9″) for J2000.0, it was one of the most suitable detached eclipsing binaries found by DIRECT for distance determination, given its apparent magnitude and orbital period. We obtained follow-up BV time-series photometry, JHK_s photometry, and optical spectroscopy from which we determined the parameters of the system. It contains two O7 main-sequence stars, with masses of 33.4 ± 3.5 and 30.0 ± 3.3 M_\odot, and radii of 12.3 ± 0.4 and 8.8 ± 0.3 R_\odot, respectively. We derive temperatures of 37,000 ± 1500 and 35,600 ± 1500 K. Using $BVRJHK_s$ photometry for the flux calibration, we obtain a distance modulus of 24.92 ± 0.12 mag (964 ± 54 kpc), which is ~0.3 mag longer than the Key Project distance to M33. We discuss the implications of our result and the importance of establishing M33 as an independent rung on the cosmological distance ladder.

Subject headings: binaries: eclipsing — binaries: spectroscopic — distance scale — galaxies: individual (M33) — stars: fundamental parameters

Online material: color figures, machine-readable tables

1. INTRODUCTION

Starting in 1996 we undertook a long-term project, DIRECT (i.e., “direct distances”), to obtain the distances to two important galaxies in the cosmological distance ladder, M31 and M33. These direct distances are obtained by measuring the absolute distance to detached eclipsing binaries (DEBs).

M31 and M33 are the nearest and most suitable Local Group galaxies for calibrating the extragalactic distance scale. However, they present a much greater observational challenge than the current anchor of the distance scale, the Large Magellanic Cloud (LMC). Their greater distance makes the brightest stars in them appear ~6 mag fainter than the brightest LMC stars, thus pushing the limit of current spectroscopic capabilities. In addition, crowding and blending become more significant with increasing distance (Mochejska et al. 2000, 2001c). Unfortunately, distances are now known to no better than 10%–15%, as there are discrepancies of 0.2–0.3 mag between various distance indicators (e.g., Benedict et al. 2002; Fig. 8). These uncertainties limit the calibration of stellar luminosities and population synthesis models for early galaxy formation and evolution.

DEBs have the potential to establish distances to M31 and M33 with an unprecedented accuracy of 5% (for reviews and history of the method, see Andersen 1991; Hilditch 1996; Paczynski 1997; Kruszewski & Semeniuk 1999). They offer a single-step distance determination to nearby galaxies and may therefore provide an accurate zero-point calibration of various distance indicators—a major step toward very accurate and independent determination of the Hubble constant. In the last few years, eclipsing binaries have been used to obtain accurate distance estimates to the LMC (e.g., Guinan et al. 1998; Fitzpatrick et al. 2003), the Small Magellanic Cloud (Harries et al. 2003; Hilditch et al. 2005), and most recently to a semidetached system in M31 (Ribas et al. 2005). Distances to individual eclipsing binaries in the Magellanic Clouds are claimed to be accurate to better than 5%.

Detached eclipsing binaries have yet to be used as distance indicators to M31 and M33. The DIRECT project has initiated a search for DEBs and new Cepheids in the M31 and M33 galaxies. We have analyzed five 11′ × 11′ fields in M31, A–D and F (Kaluzny et al. 1998, 1999; Stanek et al. 1998, 1999; Mochejska et al. 1999), and one 22′ × 22′ field, Y (Bonanos et al. 2003). A total of 674 variables, mostly new, were found: 89 eclipsing binaries, 332 Cepheids, and 253 other periodic, possible long-period variables. Follow-up observations of fields M33A and M33B produced 280 and 612 new variables, respectively (Mochejska et al. 2001a, hereafter Paper VII; Mochejska et al. 2001b), including 101 new eclipsing binaries. Variables from two more DIRECT fields, one in M31 and the other in M33, remain to be reported.
Of the 237 eclipsing binaries found by DIRECT, only four are bright enough \((V_{\text{max}} < 20 \text{ mag})\) for distance determination with currently available telescopes. An additional criterion for selection is that they contain deep eclipses, which removes degeneracies in the modeling. D33 J013346.2+304439.9 is the brightest of these, discovered in field M33A (Paper VI), and this paper presents the distance we obtained to it with subsequent observations. In § 2 we describe the observations and the data reduction; in § 3 we present the light-curve and radial velocity curve analysis, in § 4 the distance determination, and in § 5 the discussion.

2. OBSERVATIONS

The DIRECT Project discovered the detached eclipsing binary D33 J013346.2+304439.9 \((\alpha = 01^h33^m46^s17, \delta = +30^\circ44’39’’9; \ J2000.0)\) in field M33A (Paper VI), using the F. L. Whipple Observatory 1.2 m telescope between 1996 September and 1997 October.

2.1. Follow-up \(V\) and \(B\)-Band Photometry

In 1999 and 2001 we obtained follow-up photometry with the Tektronix 2048 x 2048 CCD (T2KA camera) at the Kitt Peak National Observatory (KPNO) 2.1 m telescope, with a pixel scale of 0.305 pixel\(^{-1}\). The 1999 observations are described in Paper VII. In addition we obtained 94 x 600 s exposures in the \(V\) band and 19 x 600 s in \(B\) band in 2001 October. Tables 1 and 2 present the \(BV\) light curves. The images were processed with standard IRAF routines.\(^{12}\) The nonlinearity of the CCD was corrected with the method outlined in Paper VII.

The photometry for the variable stars was extracted using the ISIS image subtraction package (Alard & Lupton 1998; Alard 2000) from the \(V\) - and \(B\)-band data. We followed the ISIS reduction procedure described in detail in Paper VII. DAOPHOT/ALLSTAR PSF photometry was performed on the \(B\) and \(V\) reference image separately, and aperture corrections were applied before converting the flux light curves to instrumental magnitudes. In addition, we performed DAOPHOT PSF photometry on all frames to verify that the shapes of the light curves were correctly measured with ISIS.

Observations of the DEB were also obtained with the Mini-Mosaic CCD camera on the WIYN\(^{13}\) 3.5 m telescope at KPNO, with a pixel scale of 0.28 pixel\(^{-1}\). On 1999 October 3, we obtained a 300 s exposure in each of the \(V\) and \(B\) bands at air mass 1.28 and 1.25, respectively, and at phase 0.73. Conditions were photometric, and three Landolt standard fields were observed, covering a range in air mass from 1.17 to 1.40. These data were used for calibrating the \(BV\) light curves to standard photometric bands (Landolt 1992).

2.2. Photometric Calibration

The aperture photometry of the stars in the Landolt (1992) fields was derived with DAOGROW (Stetson 1990). The photometric solutions were very robust \((r_{\text{ms}} \sim 0.03 \text{ mag})\). Instrumental magnitudes were derived with DAOPHOT/ALLSTAR and aperture corrections with DAOGROW after subtraction of all but PSF stars. As for standards the largest aperture was set to 24 pixels. The WIYN calibration yielded \(V = 19.51 \pm 0.01\) and \(B - V = -0.20 \pm 0.01\) mag for the DEB.

Other surveys of M33 have measured photometry for the DEB: Massey et al. (1996; star UIT 196) and Ivanov et al. (1993; star 929); however, the quality of the data is inferior. The Local Group Survey (Massey et al. 2006) has obtained high-quality photometry of the DEB, using the KPNO 4 m telescope. They measured out of eclipse magnitudes of \(V = 19.52 \pm 0.01\), \(B - V = -0.20 \pm 0.01\), \(U - B = -1.14 \pm 0.01\), \(V - R = -0.12 \pm 0.01\), and \(R - I = -0.18 \pm 0.01\), in excellent agreement with our \(BV\) values. Henceforth, we use the average of these values: \(B = 19.32 \pm 0.01\) and \(V = 19.52 \pm 0.01\).

2.3. Near-Infrared Photometry

We carried out near-infrared observations of the DEB using the Gemini North telescope and NIRI (Hodapp et al. 2003), as queue program GN-2005B-DD-4. We observed the system in the \(J\), \(H\), and \(K_s\) bandpasses on 2006 January 3 (UT) between phases 0.39–0.40. Conditions were photometric and the range of air masses was between 1.05 and 1.25. The typical PSF FWHM was 0.39, or 2.5 pixels at the f/6 plate scale of NIRI. Total on-source exposure times were 11 minutes in \(J\), 35 minutes in \(H\), and 32 minutes in \(K_s\), with individual exposures of 30 s in \(J\) and \(H\) and 60 s in \(K_s\).

We reduced the images (bad pixel masking, dark current correction, sky subtraction, and flat fielding) using the IRAF Gemini NIRI package (ver. 1.8). We performed PSF photometry using DAOPHOT and ALLSTAR (Stetson 1987) on each individual image, because the PSF exhibited significant variations in ellipticity from image to image. We defined the PSF out to a radius of 8 pixels (0.94), which included essentially all of the stellar flux. Aperture corrections were derived using DAOGROW (Stetson 1990) and amounted to \(\leq 0.02\) mag.

\(^{12}\) IRAF is distributed by the National Optical Astronomy Observatory, which is operated by the Association of Universities for Research in Astronomy (AURA), Inc., under cooperative agreement with the National Science Foundation (NSF).

\(^{13}\) The WIYN Observatory is a joint facility of the University of Wisconsin-Madison, Indiana University, Yale University, and the National Optical Astronomy Observatory.
We calibrated the photometry using several 2MASS stars in the field of view that were determined to be isolated from our higher resolution Gemini images. In some cases, we added the flux of faint neighboring stars to that of the bright comparison star, since they appear unresolved in the 2MASS images. We determined effective zero points for this Gemini NIRI data set (at air mass \sim1.1 and $J - K_s \sim 1$) of 23.82, 23.75, and 23.23 \pm 0.05 mag for J, H, and K_s, respectively (corresponding to the 2MASS magnitude of a star that would yield 1 ADU s$^{-1}$). By following this calibration path, we found mean out-of-eclipse magnitudes for the DEB of $J = 20.02 \pm 0.05$, $H = 20.05 \pm 0.06$, and $K_s = 20.13 \pm 0.06$ mag.

Figure 1 is a K_s-band finder chart of the field, indicating the location of the DEB and the photometric calibration reference stars in both the Gemini/NIRI and 2MASS images.

2.4. Spectroscopic Observations

We obtained spectra of the DEB over seven epochs, six half and one full night (2004 October 11 UT), in the fall of 2002, 2003, and 2004 with the Echellette Spectrograph and Imager (ESI; Sheinis et al. 2002) on the 10 m Keck II telescope on Mauna Kea. In the fall of 2004, we also obtained four sets of 5×2700 s spectra at quadrature with the B1200 line mm$^{-1}$ grating of the Gemini Multi-Object Spectrograph (GMOS; Hook et al. 2003) on the Gemini-North 8 m telescope on Mauna Kea. Table 3 summarizes the exposure times and dates of observations, which total four nights on Keck and 19 hr on Gemini. The ESI spectra range from 3950–10000 Å, have a reciprocal dispersion of 11 km s$^{-1}$ pixel$^{-1}$, and with a 1″ slit we achieved a velocity resolution of 74 km s$^{-1}$. The GMOS spectra range from 3770–5227 Å, have a 0.23 Å pixel$^{-1}$ dispersion, and with a 0′′75 slit we achieved a resolution of 120 km s$^{-1}$. The signal-to-noise ratio (S/N) of the spectra ranges from 15 to 40. Observations were taken at low air mass and the slit was rotated 75° east from the north to minimize contamination from nearby H α regions.

Standard CCD processing was done with IRAF. We used the algorithm of Pych (2004) for cosmic-ray rejection from each two-dimensional image. We then optimally extracted the spectra and calibrated them in wavelength with IRAF routines. Three copper-argon calibration spectra were interspersed between the five sets of GMOS spectra. In 2002, we found ESI to be stable to a fraction of a pixel; thus, in subsequent runs we only took several CuAr and HgNeXe lamps at the beginning and end of the night (or half night) that we averaged together and used to establish the wavelength solution, with low-order polynomial fits to the lamps. The small spatial extent of the ESI slit made background subtraction difficult at the Balmer lines. Such contamination does not affect the lines used for radial velocity determination, however. Spectra of standard stars were obtained at each epoch with ESI and were used to calibrate the DEB in flux and to remove telluric lines with our IDL routines (Wade & Horne 1988; Matheson et al. 2000).

We used the IRAF Gemini package (ver. 1.7) to reduce the GMOS data. We wavelength-calibrated the three extensions/chips of each exposure separately with copper-argon lamps for a more accurate wavelength calibration and merged the extensions at the end. The gaps between chips correspond to the regions 4244–4255 and 4731–4747 Å in the spectrum. For the flux calibration we used standard star spectra that were observed nearest in time to the DEB. The observations from each night were averaged together, weighting by the exposure times. Finally, we normalized the combined spectra, dividing them by a spline function, which we fit interactively to points in the continuum region.

Absorption lines from both stars are clearly resolved in the spectrum. We were not able to avoid emission from nearby H α regions, and thus our spectra contain strong nebular emission in the hydrogen lines and weaker emission in some of the helium lines, as well as forbidden oxygen lines [O iii] $\lambda\lambda$4959, 5007. The GMOS spectra show broad Ca ii λ3933.7 absorption and a narrow absorption line at $\lambda\lambda$4433.3, possibly due to an interstellar band.

3. LIGHT-CURVE AND RADIAL VELOCITY CURVE ANALYSIS

Initially, we used the multiharmonic analysis of variance technique (Schwarzenberg-Czerny 1989, 1996) to search the light curves for periodicity. We merged the B and V light curves, scaled to V, and searched for the best period by fitting a Gaussian to the peak of the periodogram generated by this method, finding a period $P = 4.8935$ days, which serves as the initial guess for

UT Observation Date	Telescope	Instrument	Number of Exposures	Total Exposure Time (hr)	Exposure Midpoint (HJD)
20021031.............	Keck II	ESI	4	1.53	2,452,578.8611
20021101.............	Keck II	ESI	2	0.575	2,452,579.8873
20030903.............	Keck II	ESI	5	2.92	2,452,866.0960
20030904.............	Keck II	ESI	4	3.25	2,452,887.0532
20030905.............	Keck II	ESI	4	3.20	2,452,888.0598
20040816.............	Gemini	GMOS-N	5	3.75	2,453,234.0229
20040818.............	Gemini	GMOS-N	5	3.75	2,453,236.0637
20040912.............	Gemini	GMOS-N	5	3.75	2,453,261.0327
20041009.............	Gemini	GMOS-N	5	3.75	2,453,287.9396
20041011.............	Keck II	ESI	7	5.25	2,453,289.9871
20041112.............	Keck II	ESI	3	4.50	2,453,321.8224
the modeling. In this paper we define the primary star (star 1) photometrically, as the hotter star producing the deeper eclipse at phase zero. In the analysis below we show the primary to be the larger and more massive star also.

3.1. Initial Light-Curve Parameter Estimation

We first estimated the parameters of the V-band light curve with the EBOP code (Nelson & Davis 1972; Popper & Etzel 1981). We computed fits for several periods and found the fit with a period of $P = 4.8938$ days to have the smallest residuals. Bootstrap analysis (Press et al. 1992) yielded very small values for the errors, ~2%, which are smaller than errors from the radial velocity curves discussed later on.

EBOP’s biaxial ellipsoidal approximation holds for values of oblateness e less than 0.04 and fractional radii less than 0.2. We find $e = 0.02$ but a fractional radius for the primary slightly larger than 0.2, and thus we proceed to a more detailed treatment. Using the EBOP parameters as starting values, we fit the 83 B-band points and the 278 V-band points in the light curve simultaneously with the 2003 April version of the Wilson-Devinney (WD) program (Wilson & Devinney 1971; Wilson 1979, 1990; van Hamme & Wilson 2003) in the detached mode (MODE=2). We found the following best-fit parameters: eccentricity $e = 0.17$, inclination $i = 86.9$, light ratio $L_2/L_1 = 0.4912$ in V and 0.4923 in B, and flux ratio $F_1/F_2 = 1.039$ in V and 1.036 in B, in agreement with the definition of the primary being the hotter star. These preliminary values were refined later (see §3.3) in a simultaneous fit of both light curves and radial velocity curves.

In eccentric binaries, there is a degeneracy in determining the radius and luminosity ratio from the light curves alone. We found that reversing the radii so that the primary is smaller and less luminous also produced a good light-curve fit. We resolve this by using the spectroscopic light ratio in §3.4.

3.2. TODCOR Analysis of Spectra

We used the method of two-dimensional cross-correlation or TODCOR, developed by Zucker & Mazeh (1994), to measure radial velocities of the stars in the DEB. TODCOR can distinguish small velocity separations even more accurately than one-dimensional cross-correlation. Initially, we calculated a grid of template spectra over a range of temperatures around 30,000 K using the LTE ATLAS9 models and opacities developed by Kurucz (1993). We ran TODCOR with ATLAS9 template spectra and found preliminary values for the semi-amplitudes and mass ratio, and thus the semimajor axis. We thus obtained estimates for $\log (g)$ and the masses from which we computed a grid of nonlocal thermodynamic equilibrium (NLTE) spectra with FASTWIND (Santolaya-Rey et al. 1997; Puls et al. 2005). This hydrodynamic NLTE code includes stellar winds, spherical extension, and metal-line blanketing of millions of lines in (approximate) NLTE. We found the best-fit spectra to have effective temperatures $T_{\text{eff1}} = 37,000 \pm 1500$ K and $T_{\text{eff2}} = 35,600 \pm 1500$ K. A detailed description of the temperature determination follows in §3.4.

The NLTE spectra were used to derive the final radial velocities of the stars. We prepared them for TODCOR by applying rotational broadening of 120 km s$^{-1}$, which was determined from the spectral fits. We also applied instrumental broadening to match the resolution of the observations by convolving the models with a Gaussian of appropriate FWHM for ESI and GMOS. The IRAF rvsao.xcsao (Tony & Davis 1979; Kurtz et al. 1992) task was used to compute the one-dimensional cross-correlation function, required by TODCOR, for each observed spectrum with the appropriate model. We used the range 3975–6000 Å for ESI spectra and 3950–5227 Å for GMOS spectra, excluding the Balmer lines and [O iii] emission lines. We ran TODCOR with model spectra containing only hydrogen and helium lines, masking out the broad hydrogen lines and assuming a luminosity ratio $L_2/L_1 = 0.49$ found from the light-curve analysis. Table 4 presents the measured velocities for each spectrum. The spectrum of 20021101 at phase 0.595 produced a spurious velocity for the secondary star. We excluded it from further analysis because this spectrum has the lowest S/N (~15), and the secondary contributes only half the amount of light to the spectrum, which makes it even harder to measure. The velocities measured are robust and accurate to 30 km s$^{-1}$. As a final test we ran TODCOR using ATLAS9 models [37,000, 36,000 K with $\log (g) = 4$] and TLUSTY (Lanz & Hubeny 2003) models including metals [37,500 K for both stars and $\log (g) = 3.75$ and 4.00]. Both runs produced radial velocities and semi-amplitudes in agreement within errors.

From the radial velocity curve analysis alone, we found a mass ratio $g = M_2/M_1 = 0.90 \pm 0.06$, velocity semi-amplitudes of $K_1 = 240 \pm 11$ and $K_2 = 268 \pm 11$ km s$^{-1}$, systemic velocity $\gamma = -214.1 \pm 6.8$ km s$^{-1}$, and semimajor axis $a \sin i = 48.3 \pm 1.6 R_\odot$ and minimum masses of $M_1 \sin^3 i = 33.3 \pm 3.5$ and $M_2 \sin^3 i = 29.9 \pm 3.3 M_\odot$, fixing e and ω from the preliminary light-curve analysis described above.

Measuring radial velocities of early-type stars is complex for several reasons: they have very few lines, and the strongest of these, mainly the Balmer lines, are broadened due to rotation and the Stark effect. The standard one-dimensional cross-correlation method has been shown to produce systematically smaller semi-amplitudes when blended lines are included. Hilditch (2001) estimates the effect to be ~50% for hydrogen lines and ~10%
for helium lines, for velocity differences between components of less than 200 km s\(^{-1}\). However, with TODCOR systematic errors due to blending are avoided. Finally, the rotational velocity used in the synthetic spectrum is also a source of systematic error if it deviates from the true value. The value of \(v \sin i\) fit to the spectra is accurate to \(\sim 20\) km s\(^{-1}\).

We attempted to use the spectral disentangling technique (Simon & Sturm 1994), which has been shown to be superior to standard one-dimensional cross-correlation by Harmanec et al. (1997) in yielding more accurate velocities. We used the public code FDBinary (Iljinic et al. 2001, 2004) but found significantly different semi-amplitudes than those from the TODCOR analysis, with unrealistically small errors, and concluded that higher signal-to-noise spectra (S/N \(\geq 40\)) at each epochs are required for this method to give meaningful results. The presence of nebular emission lines, even though masked out, may also have hindered this method.

3.3. Combined Analysis of LC and RV Curves

With the radial velocity measurements in hand, we proceeded to perform a simultaneous fit of the \(B'V\) light curves and the radial velocity curves with WD in the detached mode (MODE 2) for 13 parameters: the inclination \(i\), eccentricity \(e\), the argument of periapsis \(\omega_0\), the semimajor axis \(a\), system center of mass radial velocity \(\gamma\), the surface potential for each star \(\Omega_1\) and \(\Omega_2\), mass ratio \(q = M_2/M_1\), \(T_{\text{eff}}\), period \(P\), time of primary eclipse \(T_0\), and bandpass luminosity \(L_1\) in each band.

Following the advice of van Hamme (1993) we used the square-root limb darkening law, which gives better results for hot stars in the optical. Theoretical bolometric and passband-specific limb-darkening coefficients were taken from theoretical values from Claret (2000) for a LTE ATLAS9 stellar atmosphere model with \(T_{\text{eff}} = 37,000\) K, \(\log (g) = 4.0\) (cgs), turbulent velocity of 4 km s\(^{-1}\), and solar metallicity. We fixed gravity brightening exponents to unity and albedos to 0.5 from theoretical values (Hilditch 2001) for stars at such temperatures. For reflection, we used a MREF value of 1 for simple treatment of reflection with the inverse square law. In addition, we allowed for non-Keplerian effects on the radial velocity curve. All data points were weighted equally.

We defined convergence to be reached after three consecutive iterations for which the corrections for all adjusted parameters were smaller than their respective standard or statistical errors (e.g., Kallrath & Milone 1999). The results of the fit and 1\(\sigma\) errors are given in Table 5, and the derived physical parameters in Table 6. The rms residuals were 0.01 for both \(B\) and \(V\) light curves. Figures 2 and 3 show the \(V\)- and \(B\)-band light-curve model fits for the DEB. Note that the deviation of the secondary eclipse from phase 0.5 is due to the eccentricity of the system. The radial velocity curve is presented in Figure 4. The rms residuals are 26.0 km s\(^{-1}\) for the primary and 28.0 km s\(^{-1}\) for the secondary star. The ephemeris is

\[
T(\text{HJD}) = 2,451,451.4040(5) + 4.89380(3) \times E, \tag{1}
\]

The stars are nearly spherical; the radius of the primary varies by 2\% depending on the direction (toward the pole, inner Lagrangian point, side, back), while the variation in the secondary is less than 1\%. We used the volume radius to compute the surface area of the stars for our distance calculation. The WD values yield masses \(M_1 = 33.4 \pm 3.5\) and \(M_2 = 30.0 \pm 3.3\) \(M_\odot\), radii

Parameter	Value
Period, \(P\) (days)	4.89380 \(\pm 0.00003\)
Time of primary eclipse, HJD \(T_0\)	2,451,451.4040 (5)
Inclination, \(i\) (deg)	87.2 \(\pm 0.5\)
Eccentricity, \(e\)	0.18 \(\pm 0.02\)
Longitude of periastron, \(\omega\) (deg)	252.4 \(\pm 1.0\)
Surface potential, \(\Omega_1\)	5.09 \(\pm 0.03\)
Surface potential, \(\Omega_2\)	6.29 \(\pm 0.06\)
Light ratio in \(V\), \(L_1/L_2\)	0.402 \(\pm 0.005\)
Light ratio in \(B\), \(L_1/L_2\)	0.493 \(\pm 0.005\)
Mass ratio, \(q\)	0.91 \(\pm 0.07\)
Systemic velocity, \(\gamma\) (km s\(^{-1}\))	\(-214 \pm 7\)
Semi-major axis, \(a\)	48.4 \(\pm 1.6\)
Semi-amplitude, \(K_1\) (km s\(^{-1}\))	242 \(\pm 11\)
Semi-amplitude, \(K_2\) (km s\(^{-1}\))	266 \(\pm 11\)

Radius:

- \(r_1\) pole: 0.248 \(\pm 0.002\)
- \(r_1\) back: 0.267 \(\pm 0.002\)
- \(r_1\) side: 0.252 \(\pm 0.002\)
- \(r_2\) back: 0.261 \(\pm 0.002\)
- \(r_2\) pole: 0.254 \(\pm 0.002\)
- \(r_2\) point: 0.254 \(\pm 0.002\)
- \(r_2\) side: 0.254 \(\pm 0.002\)
- \(r_2\) back: 0.254 \(\pm 0.002\)

\(a\) Volume radius.

\[T(\text{HJD}) = 2,451,451.4040(5) + 4.89380(3) \times E. \]
$R_1 = 12.3 \pm 0.4$ and $R_2 = 8.8 \pm 0.3 R_\odot$, and values for log ($g$) of 3.78 for the primary and 4.03 for the secondary. The flux ratio derived from the luminosity and radius ratio is $F_1/F_2 = 1.040$ in V band and $F_1/F_2 = 1.047$ in B band. This implies a temperature difference of 1000–1500 K in the temperature range considered and at the gravities of the two objects.

We initially allowed the third light to be a free parameter; however, after converging to negative values, we set it to zero. Since the residuals did not reveal any significant trend from the 2 year baseline of our photometry.

The presence of deep eclipses also gives us confidence that there is no significant blending/crowding effect present. We fixed $d\omega/dt$ to zero, since the residuals did not reveal any significant trend.

3.4. Determination of Effective Temperatures

The effective temperatures of the stars were determined by fitting the observed spectra with FASTWIND spectra. We adopted solar metallicity in the models appropriate for a deprojected galactocentric radius of 460 pc for the DEB, according to Zaritsky et al. (1989) and Urbania et al. (2005). The value of log (g) and the flux ratio were both fixed to the values found from the analysis of the light and radial velocity curves (see § 3.3). We used $\mu_{\text{mbt}} = 0$ as appropriate (see Repolust et al. 2004) and $N(\text{He})/N(\text{H}) = 0.1$, the measured $v \sin i$ of 120 km s$^{-1}$, and adopted values for the mass-loss rates of $M = 6.7 \times 10^{-7} M_\odot$ yr$^{-1}$ for the primary and $1.7 \times 10^{-7} M_\odot$ yr$^{-1}$ for the cooler secondary. This choice of mass-loss rates is justified by the fit of the mass-loss-dependent He λ4686 (see Repolust et al. 2005; Massey et al. 2004, 2005), shown in Figure 8. It also agrees with the average values found by Repolust et al. (2005) for stars of similar parameters.

The terminal velocities of the stellar wind are correlated with the photospheric escape velocities. Following Kudritzki & Puls (2000), we adopted for the former 2200 and 2600 km s$^{-1}$.

We combined spectra near quadratures (phases 0.26 and 0.68) with similar radial velocities, degrading the ESI spectra to match GMOS resolution and dispersion where appropriate. The difference in the velocities is between 0 and 60 km s$^{-1}$, which corresponds to a maximum shift of 0.9 Å in our wavelength range and does not affect the temperature determination. We fit composite model spectra to all the helium lines in our wavelength range except He i λ4713, which was too noisy to use quantitatively. However, the fits were in agreement with this line as well. The composite spectra were calculated as follows:

$$ F_\lambda = w_1 F_{1,\lambda}(T_1) + w_2 F_{2,\lambda}(T_2) $$

where

$$ w_1 = \frac{1}{1 + (R_2/R_1)^2 F_2/F_1} \quad \text{and} \quad w_2 = 1 - w_1 $$

and where F_1 and F_2 are the normalized spectra for the primary and the secondary, respectively. The ratio of the radii and fluxes were fixed to the values derived in the previous section, therefore the only free parameter was T_1. The He ii λ4542/He i λ4471 ratio measured from the spectra indicated a spectral type of O7 for both
stars. In this regime the helium line strengths are quite sensitive to temperature. The Heii line equivalent widths increase with increasing effective temperature, whereas the Hei widths decrease. Figure 5 illustrates this dependence for several lines. Finally, we resolved the degeneracy in the radii from the information in the spectra by determining that the slightly hotter primary contributes twice as much light, thus forcing it to be the larger star. The temperature of the primary was derived from a simultaneous fit to the following seven lines: Hei \(\lambda \lambda 4026, 4388, 4471, 4921 \) and Heii \(\lambda \lambda 4200, 4542, 4686 \). Figures 6, 7, and 8 show fits to the helium lines at each quadrature. The fits to the Balmer lines shown in Figures 9 and 10 demonstrate that the model atmospheres reproduce the spectra correctly with the gravities derived from the light- and radial velocity curve analysis. The strong emission lines in the center of the hydrogen and some of the helium lines originate in nearby Hii regions. The effective temperature of the secondary follows from the flux ratio and is consistent with the spectral fit of the lines from the secondary as displayed in the figures. We found the best-fit temperature for all the helium lines to be \(T_{\text{eff,1}} = 37,000 \pm 1500 \) and consequently \(T_{\text{eff,2}} = 35,600 \pm 1500 \) K.

4. DISTANCE DETERMINATION

The flux \(f_\lambda \) measured at Earth at a certain wavelength \(\lambda \) from a binary at distance \(d \) is given by

\[
f_\lambda = \frac{1}{d^2} \left(R_1^2 F_{1,\lambda} + R_2^2 F_{2,\lambda} \right) \times 10^{-0.4 A(\lambda)},
\]

(4)

where \(R_1 \) and \(R_2 \) are the radii of the two stars, and \(F_{1,\lambda} \) and \(F_{2,\lambda} \) the surface fluxes. The total extinction \(A(\lambda) \) is a function of the reddening \(E(B-V) \), the normalized extinction curve \(k(\lambda - V) \equiv E(\lambda - V)/E(B-V) \), and the ratio of total to selective extinction in the \(V \) band \(R \equiv A(V)/E(B-V) \):

\[
A(\lambda) = E(B-V)[k(\lambda - V) + R].
\]

(5)

Having measured the temperatures of the stars from the spectra, we computed fluxes and fit to the observed magnitudes, using equation (4) and FASTWIND model atmospheres with
The best-fit values of distance modulus to the DEB and thus M33 of 24 based photometry. Overplotted is the T isophotal wavelengths, thus yielding infrared Schlegel et al. (1998) and simultaneously fit the optical and near-law parameterization of Cardelli et al. (1989) as prescribed in magnitudes. We reddened the model spectrum using the reddening-Appendix A) and from Cohen et al. (2003) to convert the fluxes to flux in a passband. We used zero points from Bessell et al. (1998; Johnson-Cousins optical filter functions as defined by Bessell (1990) and calibrated by Landolt (1992) and the 2MASS filter lengths (see Tokunaga & Vacca 2005), which best represent the set. Monochromatic fluxes were measured at the isophotal wave-lengths (see Tokunaga & Vacca 2005), which best represent the intrinsic \((B-V)_{0} = -0.29\) from the model atmospheres at the isophotal wavelengths, thus yielding \(E(B - V) = 0.09 \pm 0.01\). The best fit that minimized the photometric error over the six photometric bands was given by \(R_V = 3.5 \pm 0.5\). The resulting distance modulus to the DEB and thus M33 is 24.92 \pm 0.12 mag (964 \pm 54 kpc). The fit of the reddened model spectrum to the photometry is shown in Figure 11, and the residuals in Figure 12. The U- and I-values from Massey et al. (2006) are shown but not used in the fit because there are inherent problems with U-band photometry (see discussion in Massey 2002) and the I band often suffers from fringing effects. The BVR photometry alone, assuming \(R_V = 3.1\) and \(E(B - V) = 0.09\), yields a distance modulus of 24.95 mag, demonstrating the consistency of the near-infrared with the optical photometry.

The uncertainty in the distance was computed by adding in quadrature the individual conservative errors: 4% in the radii, which translates to 0.085 mag in the distance modulus, 4% in \(T_{eff,1}\) which corresponds to 0.06 mag, 0.04 mag from the SED fit, assuming \(R_V = 3.5 \pm 0.5\) and \(E(B - V) = 0.09 \pm 0.01\), and 0.03 mag in the flux. The error in the flux results from adding in quadrature the statistical 0.01 mag uncertainty from the fit to BVRHK, and the 0.03 mag uncertainty in the zero points. The total uncertainty is thus 0.12 mag. We did not attempt a full statistical treatment, since the error is dominated by the uncertainty in the radii. Note, that at these high temperatures the \(B - V\) color of stars saturates, giving a weak dependence of the distance modulus on \(T_{eff}\).

As an independent check on our reddening and extinction determination we used CHORIZOS (Maiz-Apellániz 2004). We first generated a grid of TLUSTY models (Lanz & Hubeny 2003) at solar metallicity in the temperature and gravity regime of interest and fixed the effective temperature to 37,000 K and \(\log (g) = 3.80\). The \(\chi^2\) minimization fit to the BVRHK, photometry resulted in \(R_{g,s} = 3.7 \pm 0.5\) and \(E(4405 - 5495) = 0.07 \pm 0.01\), in agreement with the FASTWIND analysis. Note, that we computed these values at the isophotal wavelengths, which are bluer. We adopted these errors in the error analysis above.

5. DISCUSSION

We present the first distance to a detached eclipsing binary in M33, establishing it as an independent rung on the cosmological distance ladder. This distance determination is a significant step toward replacing the current anchor galaxy of the extragalactic distance scale, the LMC, with galaxies more similar to those in the HST Key Project (Freedman et al. 2001), such as M33 and M31. We have chosen a detached eclipsing binary to simplify the modeling and derived a distance modulus of 24.92 \pm 0.12 mag.

D33 J013346.2+304439.9 is located in the rich OB 66 association (Humphreys & Sandage 1980), which contains a relatively high massive star population (Massey et al. 1995). The presence of one of the best-candidate detached eclipsing binaries
for distance determination in this association is not surprising. In
addition to the DEB, OB 66 contains several other eclipsing bi-
naries (see Paper VI), which suggests a high binary star formation
rate for massive stars. Our adopted color excess value \(E(B - V) = 0.09 \pm 0.01 \) is smaller than estimations from Massey et al. (1995)
for OB 66. Using the “method” and UBV photometry of 36 stars,
they derive \(E(B - V) = 0.15 \pm 0.02 \), and their spectroscopic sam-
ple yields \(E(B - V) = 0.13 \pm 0.01 \). However, our multiband
photometry combined with the spectroscopy determines the
reddening accurately; thus, it is unlikely our distance estimation
suffers from systematic errors due to reddening.

There are several avenues for improving the distance to M33
and M31 using eclipsing binaries. Wyithe & Wilson (2002)
propose the use of semidetached eclipsing binaries to be just as
good or better distance indicators as detached eclipsing binaries,
which have been traditionally considered to be ideal. The use
of new improved stellar atmosphere models to derive surface bright-
nesses versus calibrations based on interferometry removes the
restriction to DEBs for distance determination. In addition, Wyithe
& Wilson (2002) outline other benefits for using semidetached
binaries: their orbits are tidally circularized and their Roche lobe–
filling configurations provide an extra constraint in the parameter
space, especially for complete eclipses (\(\iota \sim 90^\circ \)). Bright semi-
detached binaries in M33 or M31 are not as rare as DEBs and are
easier to follow up spectroscopically, as demonstrated by Ribas
et al. (2005) in M31. Thus, for the determination of the distances
to M33 and M31 to better than 5%, we suggest both determining
distances to other bright DEBs and to semidetached systems
found by DIRECT and other variability surveys. Additional spec-
troscopy of the DEB would also improve the current distance deter-
mination to M33, since the errors are dominated by the uncertainty
in the radius or velocity semiampitude.

How does our M33 distance compare to previous determina-
tions? Table 7 presents a compilation of 13 recent distance deter-
minations to M33, ranging from 24.32 to 24.92 mag, including
the reddening values used. Our measurement, although com-
pletely independent, yields the largest distance with a small 6% error
and thus is not consistent with some of the previous deter-
rminations. This possibly indicates unaccounted sources of sys-
tematic error in the calibration of certain distance indicators.

The implications of our result on the extragalactic distance scale
are significant, especially when comparing to the HST Key
Project (Freedman et al. 2001) distance to M33. They derive a
metallicity-corrected Cepheid distance of 24.62 ± 0.15 mag,
using a high reddening value of \(E(V - I) = 0.27 \) and an
assumed LMC distance modulus of 18.50 ± 0.10 mag. If we cal-
culate the LMC distance that our result would imply, we derive
18.80 ± 0.16 mag, which is not consistent with the eclipsing
binary determinations. The error is obtained by adding in quad-
rature the individual errors in the two distance measurements.
Taking this one step further, our LMC distance would imply a
15% decrease in the Hubble constant to \(H_0 = 61 \) km s\(^{-1}\) Mpc\(^{-1}\).
This improbable result brings into question the Key Project
metallicity corrections and reddening values not only for M33
but also for the other galaxies in the Key Project. We thus
demonstrate the importance of accurately calibrating the distance
calibration and determining \(H_0 \), which are both vital for constraining
the dark-energy equation of state (Hu 2005) and complementing the
cosmic microwave background measurements from the
Wilkinson Microwave Anisotropy Probe (WMAP; Spergel et al. 2006).

We are very grateful to Bohdan Paczyński for motivating us
to undertake this project almost a decade ago. We thank Phil
Massey for sending us his photometry of the DEB from his Local
Group Survey before publication. We would like to thank
the staff of the Mount Hopkins Observatory for their support
during extensive observing campaigns and the anonymous referee for
comments that improved the manuscript. A. Z. B. and K. Z. S.
were partially supported by HST grant HST-GO-09810.06-A.
A. Z. B. acknowledges research and travel support from the
Carnegie Institution of Washington through a Vera Rubin Fel-
nership. Support for L. M. M. was provided by NASA through
Hubble Fellowship grant HST-HF-01153 from the Space Tele-
scope Science Institute and by the NSF through a Goldberg
Fellowship from the National Optical Astronomy Observatory.
J. K. was supported by MNiF grant 1P03D00128. B. J. M. was
supported by the Polish KBN grant 1P03D01230. G. T. ac-
knowledges partial support from NSF grant AST 04-06183.

Some of the data presented herein were obtained at the W. M.
Keck Observatory, which is operated as a scientific partnership
among the California Institute of Technology, the University of
California, and the National Aeronautics and Space Adminis-
tration (NASA). The Observatory was made possible by the
generous financial support of the W. M. Keck Foundation. The
authors wish to recognize and acknowledge the very significant
cultural role and reverence that the summit of Mauna Kea has

TABLE 7

Study	Method	Distance Modulus	Reddening
This work	DEB	24.92 ± 0.12	\(E(B - V) = 0.09 \pm 0.01 \)
Sarajedini et al. (2006)	RR Lyrae	24.67 ± 0.08	\(\sigma_{E(V-I)} = 0.30 \)
Brunthaler et al. (2005)	Water masers	24.32 ± 0.45	...
Ciardullo et al. (2004)	PNe	24.86 ± 0.07	\(E(B - V) = 0.04 \)
Galleti et al. (2004)	TRGB	24.64 ± 0.15	\(E(B - V) = 0.04 \)
McConnell et al. (2004)	TRGB	24.50 ± 0.06	\(E(B - V) = 0.042 \)
Tiede et al. (2004)	TRGB	24.69 ± 0.07	\(E(B - V) = 0.06 \pm 0.02 \)
Kim et al. (2002)	RC	24.80 ± 0.04(s)	\(E(B - V) = 0.04 \)
Lee et al. (2002)	Cepheids	24.52 ± 0.14(r)	\(E(B - V) = 0.20 \pm 0.04 \)
Freedman et al. (2001)	Cepheids	24.62 ± 0.16	\(E(V - I) = 0.27 \)
Pierce et al. (2000)	LPVs	24.85 ± 0.13	\(E(B - V) = 0.10 \)
Sarajedini et al. (2000)	HB	24.84 ± 0.16	\((E(V - I)) = 0.06 \pm 0.02 \)

\(^a \) DEB: detached eclipsing binary; TRGB: tip of the red giant branch; PNe: planetary nebulae; RC: the red clump; LPVs: long-period variables; HB: horizontal-branch stars.
always had within the indigenous Hawaiian community. We are most fortunate to have the opportunity to conduct observations from this mountain. This paper is also based on observations obtained under Program ID GN-2004B-Q-25 and GN-2005B-DD-4 at the Gemini Observatory, which is operated by the Association of Universities for Research in Astronomy, Inc., under a cooperative agreement with the NSF on behalf of the Gemini partnership: the NSF (United States), the Particle Physics and Astronomy Research Council (United Kingdom), the National Research Council (Canada), CONICYT (Chile), the Australian Research Council (Australia), CNPq (Brazil) and CONICET (Argentina). This publication makes use of data products from the Two Micron All Sky Survey, which is a joint project of the University of Massachusetts and the Infrared Processing and Analysis Center, California Institute of Technology, funded by NASA and the NSF.

REFERENCES

Alard, C. 2000, A&AS, 144, 363
Alard, C., & Lupton, R. H. 1998, ApJ, 503, 325
Andersen, J. 1991, A&A Rev., 3, 91
Benedict, G. F., et al. 2002, AJ, 123, 473
Bessell, M. S. 1990, PASP, 102, 1181
Bessell, M. S., Castelli, F., & Plez, B. 1998, A&A, 333, 231
Bonanos, A. Z., et al. 2003, AJ, 126, 175
Brunthaler, A., et al. 2005, Science, 307, 1440
Cardelli, J. A., Clayton, G. C., & Mathis, J. S. 1989, ApJ, 345, 245
Ciardullo, R., et al. 2004, ApJ, 614, 167
Claret, A. 2000, A&A, 363, 1081
Cohen, M., Wheaton, A. W., & Megeath, S. T. 2003, AJ, 126, 1090
Freedman, W. L., et al. 2001, ApJ, 553, 47
Galleti, S., Bellazzini, M., & Ferraro, F. R. 2004, A&A, 423, 925
Guinan, E. F., et al. 1998, ApJ, 509, L21
Harmanec, P., et al. 1997, A&A, 319, 867
Hilditch, R. W. 1996, in ASP Conf. Ser. 90, The Origins, Evolution, and
Destinies of Binary Stars in Clusters, ed. E. F. Milone & J.-C. Mermilliod
(San Francisco: ASP), 207
Hilditch, R. W., & Howarth, I. D. 2003, MNRAS, 339, 157
Hilditch, R. W. 1996, in ASP Conf. Ser. 90, The Origins, Evolution, and
Destinies of Binary Stars in Clusters, ed. E. F. Milone & J.-C. Mermilliod
(San Francisco: ASP), 207
Hodapp, K. W., et al. 2003, PASP, 115, 1388
Hook, I., et al. 2003, Proc. SPIE, 4841, 1645
Hu, W. 2005, in ASP Conf. Ser. 339, Observing Dark Energy, S. C. Wolff & T. R.
Lauer (San Francisco: ASP), 215
Ilijic, S., Hensberge, H., & Pavlovski, K. 2001, Fizika B, 10, 357
Ilijic, S., et al. 2004, in ASP Conf. Ser. 318, Spectroscopically and Spatially
Resolving the Components of the Close Binary Stars, ed. R. W. Hilditch, H.
Hensberge, & K. Pavlovski (San Francisco: ASP), 111
Ivanov, G. R., Freedman, W. L., & Madore, B. F. 1993, ApJS, 89, 85
Kalirai, J., & Milone, E. F. 1999, Eclipsing Binary Stars: Modeling and
Analysis (New York: Springer)
Kaluzny, J., et al. 1998, AJ, 115, 1016
Kim, M., et al. 2002, AJ, 123, 244
Kruszewski, A., & Semeniuk, I. 1999, Acta Astron., 49, 561
Kudritzki, R., & Puls, J. 2000, ARA&A, 38, 613
Kurtz, M. J., et al. 1992, in ASP Conf. Ser. 25, Astronomical Data Analysis
Software and Systems I, ed. D. M. Worrall, C. Biemesderfer, & J. Barnes
(San Francisco: ASP), 432
Kurucz, R. 1993, CD-ROM 13, ATLAS9 Stellar Atmosphere Programs and
2 km/s Grid (Cambridge: Smithsonian Astrophys. Obs.), 13
Landolt, A. U. 1992, AJ, 104, 340
Lantz, T., & Hubeny, I. 2003, ApJS, 146, 417
Lee, M. G., et al. 2002, ApJ, 565, 959
Maerz, L. M., et al. 2001, AJ, 121, 870 (Paper VI)
Maiz-Apellániz, J. 2004, PASP, 116, 859
Massey, P. 2002, ApJS, 141, 81
Massey, P., et al. 1995, AJ, 110, 2715
———. 2004, ApJ, 608, 1001
———. 2005, ApJ, 627, 477
———. 2006, AJ, 131, 2478
Matheson, T., et al. 2000, AJ, 120, 1499
McConnachie, A. W., et al. 2004, MNRAS, 350, 243
Moczewska, B. J., et al. 1999, AJ, 118, 2211
———. 2000, AJ, 120, 810
———. 2001a, AJ, 121, 2302 (Paper VII)
———. 2001b, AJ, 122, 2477
———. 2001c, preprint (astro-ph/0103440)
Nelson, B., & Davis, W. D. 1972, ApJ, 174, 617
Paczynski, B. 1997, in The Extragalactic Distance Scale, ed. M. Livio, M.
Donahue, & N. Panagia (Cambridge: Cambridge Univ. Press), 273
Pierce, M. J., Jurcevic, J. S., & Crabtree, D. 2000, MNRAS, 313, 271
Popper, D. M., & Etzel, P. B. 1981, AJ, 86, 102
Press, W. H., et al. 1992, Numerical Recipes in FORTRAN. The Art of Sci-
cientific Computing (2nd ed.; Cambridge: Cambridge University Press)
Pych, W. 2004, PASP, 116, 148
Repolust, T., Puls, J., & Herrero, A. 2004, A&A, 415, 349
Repolust, T., et al. 2005, A&A, 440, 261
Ribas, I., et al. 2005, ApJ, 635, L37
Santolaya-Rey, A. E., Puls, J., & Herrero, A. 1997, A&A, 323, 488
Sarajedini, A., et al. 2000, AJ, 120, 2437
———. 2006, AJ, 132, 1361
Schlegel, D. J., Finkbeiner, D. P., & Davis, M. 1998, ApJ, 500, 525
Schwarzenberg-Czerny, A. 1989, MNRAS, 241, 153
———. 1996, ApJ, 460, L107
Sheinis, A. I., et al. 2002, PASP, 114, 851
Simon, K. P., & Sturm, E. 1994, A&A, 281, 273
Spergel, D. N., et al. 2006, ApJ, submitted (astro-ph/0603449)
Stetson, P. B. 1987, PASP, 99, 191
———. 2000, AJ, 117, 2810
———. 2005, ApJ, 627, 477
van Hamme, W. 1993, AJ, 106, 2096
Urbaneja, M.-A., et al. 2005, ApJ, 635, 311
van Hamme, W., & Wilson, R. E. 2003, in ASP Conf. Ser. 298, GAIA Spec-
troscopy: Science and Technology, ed. U. Munari (Cambridge: Cambridge
Univ. Press), 323
Wade, R. A., & Horne, K. 1988, ApJ, 324, 411
Wilson, R. E. 1979, AJ, 84, 1511
———. 2006, AJ, 131, 1207
Wilson, R. E., & Devinney, E. J. 1971, ApJ, 166, 605
Wyithe, J. S. B., & Wilson, R. E. 2002, ApJ, 571, 293
Zaritsky, D., Elston, R., & Hill, J. M. 1989, AJ, 97, 97
Zucker, S., & Mazeh, T. 1994, ApJ, 420, 806