Characterization of the mitochondrial genome of the pathogenic fungus *Scytalidium auriculariicola* (Leotiomycetes) and insights into its phylogenetics

Cheng Chen¹,²,₆, Qiang Li³,₆, Rongtao Fu¹, Jian Wang³, Chuan Xiong⁴, Zhonghan Fan¹, Rongping Hu¹, Hong Zhang¹ & Daihua Lu¹,⁵*

*Scytalidium auriculariicola* is the causative pathogen of slippery scar disease in the cultivated cloud ear fungus, *Auricularia polytricha*. In the present study, the mitogenome of *S. auriculariicola* was sequenced and assembled by next-generation sequencing technology. The circular mitogenome is 96,857 bp long and contains 56 protein-coding genes, 2 ribosomal RNA genes, and 30 transfer RNA genes (tRNAs). The high frequency of A and T used in codons contributed to the high AT content (73.70%) of the *S. auriculariicola* mitogenome. Comparative analysis indicated that the base composition and the number of introns and protein-coding genes in the *S. auriculariicola* mitogenome varied from that of other Leotiomycetes mitogenomes, including a uniquely positive AT skew. Five distinct groups were found in the gene arrangements of Leotiomycetes. Phylogenetic analyses based on combined gene datasets (15 protein-coding genes) yielded well-supported (BPP = 1) topologies. A single-gene phylogenetic tree indicated that the *nad4* gene may be useful as a molecular marker to analyze the phylogenetic relationships of Leotiomycetes species. This study is the first report on the mitochondrial genome of the genus *Scytalidium*, and it will contribute to our understanding of the population genetics and evolution of *S. auriculariicola* and related species.

*Scytalidium auriculariicola* is the causative pathogen of slippery scar disease on the cloud ear fungus *Auricularia polytricha* (Mont.) Sacc.¹ The pathogen only infects the mycelia of *A. polytricha* and not the fruiting body.² Slippery scar first appeared in cultivated *A. polytricha* in Sichuan Province in the 1990s, with the infection rate being over 40%². The identity of the pathogen of slippery scar has been controversial and has undergone a process of re-identification and re-establishment. Sun et al.² initially identified the pathogen as the Ascomycete *S. lignicola* according to Koch’s postulates, morphological observations, rDNA-internal transcribed spacer (ITS), and 18S sequence analysis. Peng et al.¹ further investigated the causative pathogen of this disease by morphological observations, *in vivo* pathogenicity tests, and molecular evidence from rRNA ITS and RNA polymerase II subunit (RPB2) sequences. Their results showed that the pathogen is a new species in the *Scytalidium* genus differing from *S. lignicola*, which they named *S. auriculariicola*.¹ Peng et al.¹ also pointed out that *S. auriculariicola* strains from diseased *A. polytricha* mycelium in China consist of two clonal groups. Previously, ITS rDNA sequences, 18S rDNA sequences, RPB2 genes, and ribosomal large subunit (LSU) genes have been used as molecular markers to determine species relationships between *Scytalidium* and other species within the Leotiomycetes.¹,³⁻⁵ However, limited genetic information has prevented a comprehensive understanding of phylogenetic relationships between

---

¹Institute of plant protection, Sichuan Academy of Agricultural Sciences, Chengdu, 610066, Sichuan, P.R. China. ²Key Laboratory of Integrated Pest Management on Crops in Southwest, Ministry of Agriculture, Chengdu, 610066, Sichuan, P.R. China. ³College of Pharmacy and Biological Engineering, Chengdu University, Chengdu, 610106, Sichuan, P.R. China. ⁴Biotechnology and Nuclear Technology Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, 610061, Sichuan, P.R. China. ⁵Present address: Sichuan Academy of Agricultural Sciences, 20 # Jingjusi Rd, Chengdu, 610066, Sichuan, P.R. China. ⁶These authors contributed equally: Cheng Chen and Qiang Li. *email: daihualu@126.com*
Scytalidium and its related species. Thus, more available molecular markers are needed to assess the relationships between Scytalidium and other taxa within the Leotiomycetes, especially between the important S. auriculariicola and its related species.

Mitochondria are organelles necessary for the life of eukaryotic cells, and their dysfunction is associated with disease, the aging process, development, and various biological traits. Mitochondria are thought to originate from symbiotic bacteria and supply most of the energy for eukaryotes. Mitochondrial genomes are independent from nuclear genomes and have maternal inheritance, a high copy number, larger sequence length than the rRNA gene, which has made them widely used as a tool for studying evolution, phylogenetics, population genetics, and comparative or evolutionary genomics. Mitochondrial gene rearrangements and the secondary structure of tRNAs are also widely used for deep-level phylogenetic studies in eukaryotes. However, the mitochondrial genomes of fungi are not as well studied as those of animals and plants. The limited available studies have shown that most fungal mitochondrial genomes are circular, with the exception of very few species with linear mitochondrial genomes.

The size of fungal mitogenomes varies greatly, ranging from 18.84 kb (Hanseniaspora uvarum) to 235.85 kb. Fungal mitochondrial DNA usually contains 14 conserved protein-coding genes (atp6, atp8, atp9, cob, cox1, cox2, cox3, nad1, nad2, nad3, nad4, nad4L, nad5, and nad6), 1 ribosomal protein S3 gene (rps3), 2 ribosomal RNA genes (rnl and rns), and a relatively constant set of tRNA genes. Fungal mitogenomes sometimes include homing endonuclease genes, plasmid-derived genes, genes transferred from the nuclear genome, and genes of unknown function. The number and variation of mitochondrial genes, genome rearrangement, and the presence or absence of large intronic and intergenic sequences all contribute to the considerable variation in gene content, structure, and size of fungal mitogenomes. To date, no mitochondrial genomes are available in the Scytalidium, and only 16 species from the Leotiomycetes class, including Cairneyella variabilis, Marssonina brunnea, Phialocephala subalpina, 2 Glarea lozoyensis subspecies, 4 Pseudogymnoascus species, 4 Rhynchosporium species, 2 Sclerotinia species, and Botrytis cinerea (teleomorph Botryotinia fuckeliana), have been sequenced (https://www.ncbi.nlm.nih.gov/genome/browse#!/organelles/Leotiomycetes). More mitogenomes are needed, especially from the Scytalidium genus, which contains multiple pathogens, to reveal species and genus-level phylogenetic relationships in Leotiomycetes.

In the present study, the pathogen S. auriculariicola was isolated, identified, and sequenced. We assembled and annotated the complete mitochondrial genome of S. auriculariicola and assessed its gene content, RNA structure, and genome organization. The mitochondrial genome size, base composition, number of protein-coding genes, tRNA genes, and gene arrangement of S. auriculariicola and previously sequenced species within Leotiomycetes were compared. We then analyzed the phylogenetic relationships among various Leotiomycetes species based on mitochondrial genomes. The mitochondrial genome of S. auriculariicola will allow further investigations into the taxonomy, phylogenetics, conservation genetics, and evolutionary biology of this important genus as well as other closely related species.

Results

Protein coding genes, rRNA genes, tRNA genes, intergenic regions, and codon analyses. The mitogenome of S. auriculariicola is composed of a circular DNA molecule of 96,857 bp (Fig. 1). The GC content of the S. auriculariicola mitogenome is 26.30%. The AT skew and GC skew were both positive in the S. auriculariicola mitogenome (Table 1). A total of 56 protein-coding genes were identified in the mitogenome of S. auriculariicola, including 15 core mitochondrial genes (atp6, atp8, atp9, cob, cox1, cox2, cox3, nad1, nad2, nad3, nad4, nad4L, nad5, nad6, and rps3) and 41 ORFs (Table S1). Among these ORFs, we found 32 ORFs located in introns and the remaining 9 ORFs were regarded as free-standing. Twenty-one out of the 32 intronic ORFs were predicted to encode proteins that exhibit similarities to the homing endonucleases from the LAGLIDADG family. Eight ORFs are similar to homing endonucleases in the family GIY-YIG, and 3 ORFs were predicted to encode hypothetical proteins. We also found seven free-standing ORFs that were predicted to encode proteins that exhibit similarities to homing endonucleases in the LAGLIDADG (four ORFs) and GIY-YIG (three ORFs) families. In addition, two free-standing ORFs were predicted to encode hypothetical proteins (Table S1). All of the 56 detected mitochondrial genes were located on the sense strand.

The mitogenome of S. auriculariicola contains two tRNA genes, a large subunit ribosomal RNA gene (rnl), and a small subunit ribosomal RNA gene (rns). A total of 30 tRNA genes were detected. The length of individual tRNAs ranges from 71 to 86 bp, mainly due to the different sizes of the extra arms (Fig. 2). The main cluster of tRNA genes (16 tRNAs) is located around the nad6 and atp9 genes, respectively. In addition, there are two other tRNA genes located between the nad4L and cox2 genes (Fig. 1). There are mispairings of bases in 27 out of the 30 tRNAs, with a total of 45 base mispairings, all of which are G-U mispairings (Table S2). The S. auriculariicola mitogenome contains two tRNAs that code for asparagine with the same anticodons, three tRNAs coding for methionine with the same anticodons, and three tRNAs that code for histidine with the same anticodons. In addition, there are four amino acids that have more than one anticodon coding for them (Table S3).

The mitogenome of S. auriculariicola contains three pairs of overlapping genes: orf1/96/orf11/88 overlap by 23 nucleotides, nad4L/nad5 and nad2/orf4/47 overlap by 1 bp. In addition, the S. auriculariicola mitogenome contains 55 intergenic regions with lengths ranging from 5 to 1986 bp, with a total length of 20,334 bp (Table S1). Intergenic nucleotides account for 21.20% of the mitogenome.

All of the 15 conserved protein-coding genes start with the canonical translation initiation codon ATG except for cox1 and nad4, which start with TTG (Table S4). Five genes (atp9, cox3, nad3, cox2, and rps3) use TAG as the stop codon while the others use TAA. Codon usage analysis indicated that the most frequently used codons in the S. auriculariicola mitogenome are AAA (6.53%, for lysine; Lys), TTA (6.23%, leucine; Leu), ATA (5.68%, for isoleucine; Ile), AAT (5.34%, for asparagine; Asn), TTT (5.31%, for phenylalanine; Phe), and TAT (5.02%, for
tyrosine; Tyr) (Fig. 3; Table S5). The high frequency of A and T use in codons contributes to the high AT content (73.70%) of the *S. auriculariicola* mitochondrial genome.

**Repetitive elements analysis.** There are 33 repeat regions that were identified by a BLASTn search of the *S. auriculariicola* mitogenome against itself. The size of the repeats ranges from 39 to 610 bp; 19 repeat regions are over 100 bp, and 10 are over 200 bp. The similarities of these repeated sequences are between 74.81% and 100%. The longest repeat regions are located in the intergenic region between *nad2* and *orf173*. The repeat sequences account for 5.65% of the entire *S. auriculariicola* mitogenome (Table S6).

We detected 26 tandem repeats in the mitogenome of *S. auriculariicola*. The length of the tandem repeats ranges from 6 to 77 bp. Copy numbers of each tandem repeat were between 2.0 and 16.5. The longest tandem sequence occurs with two copies. The tandem sequences account for 1.58% of the entire mitogenome (Table S7).

We identified 47 forward, 1 palindromic, and 2 reverse repeats in the mitogenome of *S. auriculariicola*, accounting for 3.70% of the entire mitogenome (Table S8).

**Comparative genome analysis.** The size of *S. auriculariicola* mitogenome is the third largest genome among the 16 mitogenomes in the Leotiomycetes (Table 1), being only smaller than those of *Sclerotinia borealis* and *Sclerotinia sclerotiorum*, which belong to the family Sclerotiniaceae, order Helotiales. The GC content of the *S. auriculariicola* mitogenome is very low (26.30%) and is only higher than that of *C. variabilis* (26.27%). Both the AT skew and GC skew of the *S. auriculariicola* mitogenome are positive, while the AT skew is negative and GC skew positive in the other mitogenomes from the Leotiomycetes. The number of protein-coding genes and introns is closely related to the size of mitogenomes. The *S. borealis* with the largest mitogenome has 95 protein-coding...
genes and 61 introns, while the P. pannorum with the smallest mitogenome has only 15 protein-coding genes and one intron. The number of tRNA genes in the mitogenomes of Leotiomycetes varies from 27 to 35 (Table 1).

The composition of Leotiomycetes mitogenomes is shown in Table 2. The size of RNA genes and conserved protein-coding genes is relatively conservative between different species. The size of introns and intergenic regions is found closely related to the size variations of mitogenomes. Free-standing ORFs also contribute to the size variation of Leotiomycetes mitogenomes, which varies greatly between different species. The mitogenome of S. sclerotiorum contained the largest size of free-standing ORFs, followed by S. borealis, R. orthosporum and P. subalpina. The mitogenome of S. borealis contains the largest repeated sequences (exceeding 20 kb), while C. variabilis mitogenome contains the smallest (only 30 bp).

Gene rearrangements. Five different groups of gene arrangement were detected in the 16 Leotiomycetes mitogenomes (Fig. 4). The results indicated that Leotiomycetes have undergone large-scale gene rearrangements in their mitogenomes over the course of evolution. The gene order of the S. auriculariicola mitogenome is identical to that of C. variabilis, which belongs to the Helotiaceae, order Helotiales. However, large-scale gene rearrangements were observed in the G. lozoyensis mitogenome, another species of the Helotiaceae. The mitochondrial gene order of four Rhynchosporium species, R. agropyri, R. commune, R. orthosporum, and R. secalis, is the same as that of S. auriculariicola. However, the atp9 genes of Rhynchosporium sp. are likely dysfunctional due to a premature stop codon in a conserved domain. The mitochondrial gene order of S. auriculariicola is

| Item                                | Accession number | Genome size (bp) | GC content (%) | AT skew | GC skew | conserved PCGs | free-standing ORFs | No. of introns | Intronic ORFs | No. of tRNAs | Item                                |
|-------------------------------------|------------------|------------------|----------------|---------|---------|---------------|-------------------|---------------|---------------|---------------|-------------------------------------|
| Scytalidium auriculariicola        | MK111108         | 96,857           | 26.30          | 0.030   | 0.127   | 14            | 9                 | 27            | 32            | 30            | Sclerotinia borealis               |
| Cairneyella variabilis             | NC_029759        | 27,186           | 26.27          | 0.043   | 0.133   | 14            | 1                 | 1             | 1             | 29            | Sclerotinia sclerotiorum           |
| Glarea lozoyensis                  | NC_031375        | 45,501           | 29.76          | 0.041   | 0.081   | 14            | 4                 | 5             | 2             | 30            | Marssonina brunnea                |
| Pseudogymnoascus destructans       | NC_033907        | 32,181           | 28.53          | 0.048   | 0.116   | 13            | 3                 | 2             | 2             | 28            | Pseudogymnoascus pannorum          |
| Pseudogymnoascus pannorum          | NC_027422        | 26,918           | 28.10          | 0.063   | 0.113   | 13            | 1                 | 1             | 1             | 27            | Pseudogymnoascus_sp._04NY16        |
| Pseudogymnoascus_sp._BL308         | CM0004376        | 32,146           | 28.66          | 0.050   | 0.118   | 13            | 4                 | 2             | 2             | 28            | Pseudogymnoascus_sp._BL308         |
| Rhynchosporium agropyri            | NC_023125        | 68,904           | 29.36          | 0.006   | 0.066   | 14            | 9                 | 19            | 25            | 29            | Rhynchosporium commune             |
| Rhynchosporium commune             | NC_023126        | 69,581           | 29.40          | 0.006   | 0.068   | 14            | 9                 | 18            | 25            | 29            | Rhynchosporium orthosporum         |
| Rhynchosporium orthosporum         | NC_023127        | 49,539           | 28.80          | 0.028   | 0.086   | 14            | 9                 | 3             | 2             | 32            | Rhynchosporium secalis             |
| Rhynchosporium secalis             | NC_023128        | 68,729           | 29.33          | 0.007   | 0.069   | 14            | 8                 | 18            | 25            | 29            | Sclerotinia borealis               |
| Sclerotinia borealis               | NC_025200        | 203,051          | 32.01          | 0.001   | 0.084   | 15            | 15                | 18            | 61            | 31            | Sclerotinia sclerotiorum           |
| Botrytis cinerea                   | Broad Institute  | 82,212           | 29.90          | 0.008   | 0.100   | 14            | 7                 | 22            | 20            | 33            |                                      |

Table 1. Comparison of Leotiomycetes mitogenomes.

Figure 2. Codon usage in the Scytalidium auriculariicola mitochondrial genome. Codon families are plotted on the X axis and represented by different color patches. Frequency of codon usage is plotted on the Y axis.
also similar to those of *M. brunnea* and *P. subalpine*, with the position of the *rps3* gene in their mitogenomes differing. In the *Pseudogymnoascus* genus, we observed an identical mitochondrial gene order between the four *Pseudogymnoascus* species, *P. destructans*, *P. pannorum*, *P. sp.04NY16*, and *P. sp.BL308*. In the Sclerotiniaceae family, the order of mitochondrial genes of three Sclerotiniaceae species, *S. sclerotiorum*, *S. borealia*, and *B. cinerea*, is identical, except for minor differences (the location of *atp9*) in the *S. borealia* mitogenome due to replication events of *atp9* genes. In addition, large-scale gene rearrangements were observed between the mitogenomes of *S. auriculariicola*, the Sclerotiniaceae, and *Pseudogymnoascus*.

Compared with the arrangement of *rps3* genes in type 1, the *rps3* genes in the gene arrangement type 2 become free-standing ORFs, and are transferred to the downstream of the *cox2* gene. The gene arrangement type 3 is characterized by the loss of *atp9* gene, and the relocation of *nad4*, *cox2*, *atp8*, *nad4L*, *nad5*, *cob*, and *nad1* genes. For

---

**Figure 3.** Putative secondary structures of the 30 tRNA genes from *Scytalidium auriculariicola* mitochondrial genome. The tRNAs are labeled with the abbreviations of their corresponding amino acids. The tRNA arms are illustrated as for trnM3. The map of tRNA structures was drawn using the mitos software. 
### Table 2. The size of different mitochondrial regions and their proportion to the whole mitogenome. Species information in this table can be found in Supplementary Table S9.

| ID  | Mitogenome size (bp) | RNA genes size (bp) | Proportion | Introns size (bp) | Proportion | Conserved PCGs size (bp) | Proportion | Free-standing ORFs size (bp) | Proportion | Intergenic regions size (bp) | Proportion | Repeated sequences size (bp) | Proportion |
|-----|----------------------|---------------------|------------|------------------|------------|--------------------------|------------|----------------------------|------------|----------------------------|------------|----------------------------|------------|
| Sbo | 203051               | 7000                | 3.45       | 125696           | 61.90      | 13935                    | 6.86       | 10461                      | 5.15       | 45959                      | 22.63      | 23122                     | 11.39      |
| Sac | 128852               | 7010                | 5.45       | 53723            | 41.69      | 12757                    | 9.90       | 12690                      | 9.85       | 42666                      | 33.11      | 12321                     | 9.56       |
| Sau | 96857                | 6685                | 7.09       | 48702            | 50.28      | 13668                    | 14.11      | 7113                       | 7.34       | 20509                      | 21.17      | 5470                      | 5.65       |
| Bci | 82212                | 7343                | 8.93       | 31793            | 38.67      | 13242                    | 16.11      | 6351                       | 7.73       | 23483                      | 28.56      | 4723                      | 5.74       |
| Mbr | 70379                | 6916                | 9.83       | 19289            | 27.41      | 15098                    | 21.45      | 6246                       | 8.87       | 22830                      | 32.44      | 6402                      | 9.10       |
| Rco | 69581                | 7073                | 10.17      | 27385            | 39.36      | 14118                    | 20.29      | 6633                       | 9.53       | 14372                      | 20.66      | 3551                      | 5.10       |
| Rag | 68904                | 7000                | 10.27      | 28435            | 41.27      | 13529                    | 19.63      | 6024                       | 8.74       | 13842                      | 20.09      | 2694                      | 3.91       |
| Rse | 68729                | 7073                | 10.29      | 27835            | 39.84      | 15099                    | 21.97      | 6255                       | 9.10       | 12917                      | 18.79      | 3466                      | 5.04       |
| Ror | 49539                | 7310                | 14.76      | 4016             | 8.11       | 13419                    | 27.09      | 9177                       | 18.52      | 15617                      | 31.52      | 7363                      | 14.86      |
| Glo | 45501                | 7432                | 16.33      | 5525             | 12.14      | 15456                    | 33.97      | 2886                       | 6.34       | 14202                      | 31.21      | 5276                      | 12.58      |
| PSU | 43742                | 7411                | 16.94      | 0.00             | 0.00       | 13938                    | 31.86      | 8217                       | 18.79      | 14176                      | 32.41      | 2838                      | 6.49       |
| Pde | 32181                | 6495                | 20.18      | 3334             | 10.36      | 12681                    | 39.41      | 3429                       | 10.66      | 6242                       | 19.40      | 1144                      | 3.55       |
| Psp1| 32148                | 6564                | 20.42      | 3332             | 10.36      | 12488                    | 38.85      | 2967                       | 9.23       | 6797                       | 21.14      | 1112                      | 3.46       |
| Psp2| 32146                | 6493                | 20.20      | 3332             | 10.37      | 12359                    | 38.45      | 2925                       | 9.10       | 7037                       | 21.89      | 1218                      | 3.79       |
| Cva | 27186                | 7147                | 26.29      | 1905             | 7.01       | 13176                    | 48.47      | 753                        | 2.77       | 4205                       | 15.47      | 30                        | 0.11       |
| Ppa | 26918                | 6407                | 23.80      | 1999             | 7.43       | 12621                    | 46.89      | 363                        | 1.35       | 5528                       | 20.54      | 742                       | 2.76       |

**Figure 4.** Comparison of gene order across 16 Leotiomycetes mitogenomes. Cva, Cairneyella variabilis (NC_029759); Glo, Glarea lozoyensis (NC_031375); Mbr, Marssonina birenea f. sp. Multigermtubi (NC_015991); Psu, Phialocephala subalpina (NC_015789); Pde, Pseudogymnoascus destructans (NC_033907); Ppa, Pseudogymnoascus pannorum (NC_027422); Psp1, Pseudogymnoascus_sp_04NY16 (CM004376); Psp2, Pseudogymnoascus_sp_BL308 (CM004375); Rag, Rhynchosporium agropyri (NC_023125); Rco, Rhynchosporium commune (NC_023126); Rse, Rhynchosporium secalis (NC_023128); Sbo, Sclerotinia borealis (NC_025200); Ssc, Sclerotinia sclerotiorum 1980 UF-70 (NC_035155); Bci, Botrytis cinerea (Broad Institute); Sau, Scutellulidium auricularicola (MK111108). The # symbol indicates the rps3 gene is located in the intron of the rnl gene.
the gene arrangement type 4, the rns, nad6, cob, cob genes are transferred to the downstream of nad5 gene; nad4 and cob genes are transferred to the upstream of the atp9 gene. The type5 involves multiple gene repositionings, including atp9, cobx3, nad1, nad2, nad3, and nad4 genes.

Synteny analysis indicated that the six Leotiomycetes mitogenomes can be divided into fifteen homologous regions, where the sizes and relative positions of these regions are highly variable (Fig. 5). Nine of the fifteen homologous regions were detected in all six mitogenomes. The R. orthosporum mitogenome has all 15 homologous regions while the other mitogenomes lack one to three homologous regions. M. brunnea lacks the homologous region 'A', S. borealia lacks the homologous regions 'N' and 'O', and S. auricularicola lacks the homologous regions 'D', 'E', and 'O'.

Phylogenetic analysis. We used the Bayesian inference method to establish the phylogenetic relationships of 16 species within Leotiomycetes, 8 species from Dothideomycetes, and 11 species from Eurotiomycetes based on the combined mitochondrial gene set (15 typical protein-coding genes) using three Acremonium species, A. chrysogenum, A. fuci, and A. implicatum, as outgroups. The best-fit evolutionary model for the phylogenetic analysis is “GTR + I + G”. We obtained a stable evolutionary tree topology (Fig. 6) with all of the recovered clades well-supported (Bayesian posterior probability (BPP) = 1). Based on the phylogenetic analysis, the 38 Pezizomycotina species could be divided into four major clades corresponding to the classes Sordariomycetes, Eurotiomycetes, Dothideomycetes, and Leotiomycetes. The 16 Leotiomycetes species were divided into three clades in the phylogenetic tree. The genus Pseudogymnoascus containing four species, P. pannorum, P. destructans, P. sp.04NY16, and P. sp.BL308, is the first clade. S. auricularicola is the second single clade. The third clade contains 11 fungal species within the order Helotiales. In the order Helotiales, the relationships of the three families were consistently recovered as (Sclerotiniaceae + (Helotiales + (Cladosporiaceae))).

Single-gene tree topologies varied (Fig. S1), which indicates incongruent phylogenetic signals among different genes. However, the BI phylogenies based on the nad4 gene were consistent with the all-protein-coding genes phylogeny. Therefore, the nad4 gene may be a useful barcode sequence for species identification and phylogenetic analysis within the Leotiomycetes.

The phylogenetic analysis of nuclear multi-locus polygenes yielded evolutionary trees different from that of mitochondrial genes (Fig. S2). The BPP value of the nuclear multi-locus phylogenetic tree is between 0.43 and 1. Pseudocercospora mori, belonging to the Dothideomycetes class, is incorrectly clustered into the Eurotiomycetes class. Exophiala dermattitidis and Cladophialaphora bantiana, both belonging to the Eurotiomycetes class, are also incorrectly clustered into the Dothideomycetes class. In addition, M. brunnea, belonging to the order of Helotiales, forms an independent clade separated from other Helotiales species. The results further prove that mitochondrial genes are suitable as reliable tools for analyzing phylogenetic relationships of Leotiomycetes species.

Discussion

Mitochondrial markers have been successfully applied in phylogenetic taxonomy and evolutionary biology due to the advantage of their faster evolution. The advent of next-generation sequencing technology has promoted the sequencing of fungal mitochondrial genomes. However, the mitogenomes of fungi are still less well-understood than those of animals and plants. As of July 2019, only 612 mitogenomes of fungi have been reported in the NCBI database, 488 of which belong to the Ascomycetes. However, most species from the Ascomycetes belong to the Saccharomycetes and Sordariomycetes, which account for more than 78%, while the Leotiomycetes account for less than 4%. More mitogenomes belonging to Leotiomycetes are needed to facilitate our understanding of the mitochondrial characteristics and evolution of this group. In the present study, we first sequenced and analyzed the S. auricularicola mitogenome, which is the first reported sequencing of a mitogenome of the Scytalidium genus.
The mitogenome size of *S. auriculariicola* is larger than that of other Leotiomycetes, with the exception of *S. borealis* and *S. sclerotiorum*20. Variability in the length of mitogenomes has been frequently observed in the Leotiomycetes class, which is consistent with the variable mitogenomes in many eukaryotes25,26. The largest mitogenome in Leotiomycetes fungi is 203.05 kb20, while *P. panormum* contains the smallest mitogenome at 26.92 kb (Table 1). The *S. borealis* mitogenome has the largest number of introns (61) in the Leotiomycetes, while only one intron was detected in the *P. panormum* mitogenome. Another species, *C. variabilis*, which contained a mitogenome of less than 30 kb, also had only one intron. Therefore, the number of introns was considered one of the main factors contributing to the mitogenome size variation27,28. Interestingly, the intron-free species, *P. subalpina*, has a mitogenome size of 43.74 kb, higher than that of *P. destructans*, *P. sp.04NY16*, and *P. sp.BL308*, which each have two introns each. Similarly, the number of introns in the *R. orthosporum* mitogenome is less than that of *G. lozoyensis*, which contains a much smaller mitogenome. Previous studies have shown that the size of fungal mitogenomes is related to the number of introns, intergenic regions, repetitive elements, plasmid-derived regions, and gene transfer events29,30. In the present study, we found that the number of free-standing ORFs of the *P. subalpina* mitogenome is higher than that of *P. destructans*, *Pseudogymnoascus* sp.04NY16, and *Pseudogymnoascus* sp.BL308. Furthermore, the number of free-standing ORFs of the *R. orthosporum* mitogenome is more than that of *G. lozoyensis*. The size of free-standing ORFs in *P. subalpina* and *R. orthosporum* mitogenomes accounts for 18.79% and 18.52% of their total mitogenomes, respectively (Table 2). The results reveal that free-standing ORFs are also an important factor affecting the mitogenome sizes of the Leotiomycetes.

Mitogenomes have an independent evolutionary origin relative to nuclear genomes31 and are widely believed to originate from endosymbiotic bacteria9. In the course of evolution, most mitochondrial genes of eukaryotes have been transferred to the nuclear genome32,33, a process that has been frequent, sporadic, and episodic32. The transfer of nucleic acids from the mitochondrion to the nucleus is an ongoing process in most eukaryotes, resulting in the transfer of functional genes32,34. The presence of genes in mitochondria has its advantages, such as the production of hydrophobic proteins in mitochondria to avoid long-distance transport from the nucleus, and the maintenance of mitochondrial structure35,36. The mitogenome of *S. auriculariicola* retains all 15 typical protein-coding genes (atp6, atp8, atp9, cob, cox1, cox2, cox3, nad1, nad2, nad3, nad4, nad4L, nad5, nad6, and rps3) for energy metabolism and transcriptional regulation. However, four species of *Pseudogymnoascus* have lost the mitochondrial *atp9* gene. In addition, the *S. auriculariicola* mitogenome has 31 intronic ORFs and 10

Figure 6. The phylogenetic tree was calculated from the multiple sequence alignment of the combined mitochondrial gene set (15 PCGs) of 38 fungal species. Topology was inferred using Bayesian method. Species analysed are shown in Table S9. The phylogenetic tree was drawn using the Figtree v1.4.3 software (https://mac.softpedia.com/get/Graphics/FigTree.shtml).
independent ORFs. Most of these ORFs are homing endonuclease genes (25 LAGLIDADG, 11 GIY-YIG), but there are five ORFs with unknown functions. ORFs have been widely found in fungal mitogenomes, though their origin and function have not been elucidated. More studies on the mitogenomes of *S. auriculariicola* and related species are needed to recover the exact functions of these ORF genes.

tRNA genes are important nexus molecules between mRNAs and protein, and are essential for translation. The *S. auriculariicola* mitogenome contains 30 tRNAs, most of which are clustered around *rnl*, *nad6*, and *atp9*. This is similar to *S. borealis*, *P. subalpina*, and *G. lozoyensis*, which also belong to the Leotiomycetes. The number of mitochondrial tRNAs of Leotiomycetes ranges from 27 to 35, which is higher than that of most fungi with 22–26 tRNAs. These tRNA genes can adequately satisfy the need to decode and predict all of the codons in mitochondrial ORFs, thus reducing the need for tRNAs to enter mitochondria from the cytoplasm. All of the tRNAs in the mitogenome of *S. auriculariicola* have distinctive primary and secondary structures, of which 27 have base mutations and mismatches, with all of them being G-U mismatches. In addition to G-U mismatches, C-U and A-C mismatches also exist in other eukaryotic mitogenomes. Mitochondrial tRNA mutations have been demonstrated to be associated with metabolism and various diseases. However, little research has been done on tRNA mutations in fungal mitogenomes. Further studies are needed to investigate the effects of mitochondrial tRNA mutations on the growth and pathogenicity of pathogenic fungi.

The GC content of mitogenomes varies among organisms and is thought to be influenced by mutation bias, selection, and reconstruction-related DNA repair bias. The GC content of the *S. auriculariicola* mitogenome is lower than that of all of the Leotiomycetes except *C. variabilis*, suggesting that the *S. auriculariicola* mitogenome has undergone a large number of variations during its evolution. In addition, the *S. auriculariicola* mitogenome has a uniquely positive AT skew, while the AT skews are negative in the mitogenomes of other Leotiomycetes. According to the second parity rule, as long as there is no mutation or selection bias, each base in the complementary DNA strand exists at approximately equal frequencies. The presence of AT or GC skews on the same DNA strand from different species indicated that mitogenomes of different species underwent different mutations or environmental selection. Compared with other Leotiomycetes, the *S. auriculariicola* mitogenome has a unique A-over-T situation, indicating that it had undergone a unique genetic mutations or evolutionary selection.

Because all of the mitochondria originate from common ancestors, mitochondrial gene rearrangements have been widely used to study the origin and evolution of eukaryotes. Plant and animal mitogenomes have been extensively studied with regard to gene rearrangement, and several models have been established to explain its causes. In recent years, there have been many studies on mitochondrial gene rearrangement in fungi, which exists even within the same genus. Andrey *et al.* compared the mitochondrial gene recombination of seven fungi in the Helotiales order and found that the mitochondrial genes can be divided into two main groups. In the present study, we analyzed the mitochondrial gene rearrangement in 16 Leotiomycetes fungi, including *S. auriculariicola*, and divided them into 5 distinct groups. Further, large-scale rearrangements of mitochondrial genes in the Leotiomycetes were confirmed by synteny analysis, indicating that the mitochondrial genes of Leotiomycetes have undergone different evolutionary patterns.

Mitochondrial genomes are widely used in fungal phylogenetic analysis due to their useful and informative markers. Because many fungi are very similar in morphology and difficult to distinguish, fungal classification is easily confused. Phylogenetic and taxonomic analyses of fungi therefore need to be combined with molecular markers, and those of the mitochondrial genome could be a good complement. In the present study, we constructed phylogenetic trees with 15 protein-coding genes. The high support rate indicated that these mitochondrial gene data can be used as reliable molecular markers. However, most single-gene phylogenetic trees exhibited different branches of evolution, and some even failed to distinguish fungi of different classes. This is due to insufficient evolutionary signals provided by individual genes. However, the single-gene evolutionary tree of the *nad4* gene is consistent with that of combined mitochondrial gene set, suggesting that the *nad4* gene can be used as a potential molecular marker for evaluating the taxonomy of Leotiomycetes fungi. The *nad4* gene had relatively conserved gene length (ranging from 1464 bp to 1485 bp) and intron number (zero or one) between different Leotiomycetes species. In addition, the *nad4* gene may be subjected to low oxidative stress in mitochondria compared with other mitochondrial genes, which leads to different selective pressures on *nad4* gene. All of these promote *nad4* to become a potential molecular marker to analyze phylogenetic relationships of Leotiomycete species.

In conclusion, this study enriches the mitochondrial database of Leotiomycetes fungi and fills in a gap for the mitogenomes of the *Scythalidium* genus. The gene content, structure, gene rearrangement, and phylogenetic analysis of the *S. auriculariicola* mitogenome will provide a basis for population genetics, taxonomy, and evolutionary biology of the Leotiomycetes and related groups.

Materials and Methods

**Sampling and DNA extraction.** The symptomatic mycelium of the pathogen of slippery scar from *A. polytricha* was collected from Jintang, Sichuan Province, China. The isolation of the causative pathogen was conducted according to Peng *et al.* Suspected fungi were first cultured on PDA medium for 3 days, and then inoculated into cultivation bags with healthy *A. polytricha* mycelia. The inoculated cultivation bags were cultured at 25°C for 20 days. Then the pathogenic fungi were re-isolated from the cultivation bags with infected *A. polytricha*, which showed the symptoms of slippery scar. The strain was identified as *S. auriculariicola* based on the Koch’s postulates, morphology, and ITS sequences. The mycelium of *S. auriculariicola* was cultured in liquid potato dextrose medium for 4 days and then collected for DNA extraction. Total DNA was extracted from the mycelia using the fungal DNA Kit D3390-00 (Omega Bio-Tek, Norcross, GA, USA) according to the manufacturer’s instructions. The quality of extracted DNA was checked by electrophoresis, and DNA was stored at −20°C until sequencing. The *S. auriculariicola* strain was stored in Sichuan Academy of Agricultural Sciences (No. SAAS_Sau), and is available from Cheng Chen and Daihua Lu of the Sichuan Academy of Agricultural Sciences, China.
Sequencing, assembly, and annotation of the mitochondrial genome. Purified DNA was used to construct sequencing libraries following the instructions of the NEBNext Ultra II DNA Library Prep Kit (NEB, Beijing, China). Whole genome shotgun sequencing was performed using an Illumina HiSeq 2500 Platform (Illumina, San Diego, CA, USA). We performed quality control and de novo assembly of the mitogenome according to Bi19. SPAdes 3.9.0 software20 was used for de novo assembly of the mitogenome, and the MITObim V1.9 program54 was used to fill in the gaps between contigs.

MFannot (http://megasun.bch.umontreal.ca/cgi-bin/mfannot/mfannotInterface.pl) and MITOS55 tools were used for mitogenome annotation of S. auriculariicola, both of which are based on Genetic Code 4. Uncertain results were adjusted manually by sequence alignments with orthologous genes without intron from the closely related species. The initially annotated protein-coding genes, rRNA, or tRNA genes of S. auriculariicola were also modified by alignment with previously published Leotiomycetes mitogenomes. ORFs were functionally annotated by InterProScan software56. The tRNAscan-SE 2.0 program was used to predict tRNA genes57. Finally, we used the OrganellarGenomeDraw (OGDRAW) tool58 to draw a map of the S. auriculariicola complete mitogenome.

Analysis of the mitogenomic organization. We used the Lasergene v7.1 (DNASTAR, http://www.dnastar.com/) tool with default settings to analyze the base composition of the mitogenome of S. auriculariicola. Strand asymmetry of the mitogenome was assessed using the following formulas: AT skew = [A − T]/[A + T], and GC skew = [G − C]/[G + C]59. We calculated the codon usage using Sequence Manipulation Suite software60 based on genetic code 4. We compared the arrangement of genes in S. auriculariicola with those of other published Leotiomycetes species. Genomic synteny analysis of mitogenomes from six representative species within the Leotiomycetes was conducted with Mauve v2.4.061.

Repetitive elements analysis. We searched the entire mitogenome of S. auriculariicola by BLASTn searches against itself using Circoletto62 (http://tools.bat.infspire.org/circoletto/) with an E-value of < 10−10, aiming to identify large intragenomic replications of sequences and interspersed repeats. The Tandem Repeats Finder63 (http://tandem.bu.edu/trf/trf.advanced.sub-mit.html) with default settings was used to analyze the tandem repeats. We searched for repeated sequences including forward, reverse, complementary, and reverse complementary sequences in S. auriculariicola using the REPuter64 tool with E-values < 10−5.

Phylogenetic analysis. For the phylogenetic analysis, we constructed a phylogenetic tree based on 15 common mitochondrial genes from S. auriculariicola and other 15 species in Leotiomycetes, 8 species in Dothideomycetes, 11 species in Eurotiomycetes, and 3 species in Sordariomycetes (outgroup). The MAFFT algorithm within the TranslatorX online platform65 was used to align the 15 conserved protein-coding genes. The Sequence Matrix 1.7.8 program66 was used to combine the individual genes into a combined matrix. We used the Modelgenerator v85167 tool to determine the best-fit evolutionary model for the phylogenetic analysis.

The Bayesian inference (BI) method was used for phylogenetic analysis based on the combined gene dataset with the MrBayes 3.2.668 program. Two independent runs were performed for 2 × 106 generations sampling per 100 generations. Each run was sampled every 100 generations. Stationary was assumed to have been reached when the estimated sample size (ESS) was > 100, and the potential scale reduction factor (PSRF) approached 1.0. After the analysis was stable, the first 25% of the yielded trees were discarded as burn-in, and a 50% majority-rule consensus tree with posterior probability (PP) values was generated from the remaining trees. In order to compare mitochondrial phylogeny with nuclear multi-locus phylogeny, we downloaded internal transcribed spacer (ITS1, ITS2, ITS4), β-tubulin (β-TUB), the large subunit ribosomal RNA gene of the fungi (LSU), rRNA, and EF1-α. We performed multiple alignment using the Lasergene v7.1 (DNASTAR; http://www.dnastar.com/) tool with default settings. The Tandem Repeats Finder63 (http://tandem.bu.edu/trf/trf.advanced.sub-mit.html) was used to identify tandem repeated sequences in the Leotiomycetes species. We searched the entire mitogenome of S. auriculariicola by BLASTn searches against itself using Circoletto62 (http://tools.bat.infspire.org/circoletto/) with an E-value of < 10−10, aiming to identify large intragenomic replications of sequences and interspersed repeats. The Tandem Repeats Finder63 (http://tandem.bu.edu/trf/trf.advanced.sub-mit.html) with default settings was used to analyze the tandem repeats. We searched for repeated sequences including forward, reverse, complementary, and reverse complementary sequences in S. auriculariicola using the REPuter64 tool with E-values < 10−5.

Data availability The newly sequenced S. auriculariicola mitogenome was deposited to the GenBank database as accession number MK111108.

Received: 19 July 2019; Accepted: 17 October 2019;
Published online: 25 November 2019

References
1. Peng, W. et al. A new species of Scytalidium causing slippery scar on cultivated Auricularia polytricha in China. Fems Microbiology Letters 359, 72–80 (2015).
2. Jie, S. & Yinbing, B. Slippery Scar: A New Mushroom Disease in Auricularia polytricha. Mycobiology 40, 129–133 (2012).
3. Machouart, M. et al. Polymorphisms and intronic structures in the 18S subunit ribosomal RNA gene of the fungi Scytalidium dimidiatum and Scytalidium hyalinum. Evidence of an IC1 intron with an His-Cys endonuclease gene. Fems Microbiology Letters 238, 455–467 (2004).
4. Crous, P. W. et al. Phylogenetic lineages in the Botryosphaeriaceae. Studies in Mycology 55, 235–253 (2006).
5. Pavlov, I. Y. et al. Scytalidium candidum 3C is a new name for the Geotrichum candidum Link 3C strain. Journal of Basic Microbiology, 1–9 (2018).
6. Li, Q. et al. Characterization and comparative mitogenomic analysis of six newly sequenced mitochondrial genomes from ectomycorrhizal fungi (Russulales) and phylogenetic analysis of the Agaricomycetes. International Journal of Biological Macromolecules 119, 792–802 (2018).
7. Mcfarland, R., Taylor, R. W. & Turnbull, D. M. Mitochondrial Disease-Its Impact, Etiology, and Pathology. Current Topics in Developmental Biology 77, 113–155 (2007).
8. Kim, J. H. et al. Mitochondrial DNA heteroplasmy and mitophagy in human disease. Nature Reviews Disease Primers 2, 1–14 (2016).
8. Yamato, K. T. Heteroplasmy and homoplasy for maize mitochondrial mutants: a rare homoplasmic nad4 deletion mutant plant. *Journal of Heredity* 90, 369–373 (1999).

9. Muñozgómez, S. A., Widenman, J. G., Roger, A. J. & Slamovits, C. H. The origin of mitochondrial cristae from alphaproteobacteria. *Molecular Biology Evolution* 34, 943–956 (2017).

10. Zhang, Y. J., Zhang, H. Y., Liu, X. Z. & Zhang, S. Mitochondrial genome of the nematode endoparasitic fungus *Hirsutella vernicula* reveals a high level of synteny in the family Ophiocordycipitaceae. *International Journal of Biological Macromolecules* 101, 3295–3304 (2017).

11. Li, Q. et al. Characterization and comparative analysis of six complete mitochondrial genomes from ectomycorrhizal fungi of the *Lactarius* genus and phylogenetic analysis of the Agaricomycetes. *International Journal of Biological Macromolecules* 121, 249–260 (2019).

12. Matsumoto, N. et al. Inheritance and recombination of mitochondrial genomes in plants, fungi and animals. *New Phytologist* 168, 39–50 (2010).

13. Brankovics, B. et al. Mitochondrial genomes reveal recombination in the presumed asexual *Fusarium oxysporum* species complex. *Bmc Genomics* 18, 735 (2017).

14. Liu, H. et al. Novel insights into mitochondrial gene rearrangement in thrips (Insecta: Thysanoptera) from the grass thrips, *Anaphthorhina obscura*. *Scientific Reports* 7, 4284 (2017).

15. Chatre, L. & Ricchetti, M. Are mitochondria the Achilles’ heel of the Kingdom Fungi? *Current Opinion in Microbiology* 20, 49–54 (2014).

16. Forget, L., Ustínova, J., Zhang, W. R., Huss, V. A. & Lang, B. F. Hyaloplasticid *curvatum*: A Linear Mitochondrial Genome, tRNA Editing, and an Evolutionary Link to Lower Fungi. *Molecular Biology. Evolution* 19, 310–319 (2002).

17. Peter, K., Matus, V., Lubomir, T., Wolfe, K. H. & Itoz, N. Complete DNA sequences of the mitochondrial genomes of the pathogenic yeasts *Candida orthopsilosis* and *Candida metapsilosis*: insight into the evolution of linear DNA genomes from mitochondrial telomere mutants. *Nucleic Acids research* 34, 2472–2481 (2006).

18. Liliana, L. et al. Mobile elements and mitochondrial genome expansion in the soil fungus and potato pathogen *Rhizoctonia solani* AG-3. *Fems Microbiology Letters* 352, 165–173 (2014).

19. Kang, X., Hu, L., Shen, P., Li, R. & Liu, D. SMRT Sequencing Revealed Mitogenome Characteristics and Mitogenome-Wide DNA Modification Pattern in *Ophiocordycipitaceae*. *Frontiers in Microbiology* 8, 1422 (2017).

20. Mardanov, A. V., Beletsky, A. V., Kadinikov, V. V., Ignatov, A. N. & Ravin, N. V. The 203 kbp Mitochondrial Genome of the Phytopathogenic Fungus *Sclerotinia borealis* Reveals Multiple Inversions of Intons and Genomic Duplications. *Plos One* 9, e107536 (2014).

21. Torrini, S. F. F. et al. Comparative analysis of mitochondrial genomes from closely related *Rhynchosporium* species reveals extensive intron invasion. *Fungal Genetics and Biology* 62, 34–42 (2014).

22. Liu, J., Yu, J., Zhou, M. & Yang, J. Complete mitochondrial genome of *Japalura flaviceps*: Deep insights into the phylogeny and gene rearrangements of Agamidae species. *International Journal of Biological Macromolecules* 125, 423–431 (2019).

23. Vanhove, M. P. M., Briscoe, A. G., Jorissen, M. W. P., Littlewood, D. T. J. & Huyse, T. The first next-generation sequencing approach to the mitochondrial phylogeny of African monogenine parasites (*Platyhelminthes*: *Gyrodactylidae* and *Dactylogyridae*). *Bmc Genomics* 19, 520 (2018).

24. Qiang, L. et al. The first complete mitochondrial genome from the family *Hygrophaeaceae* (*Hygrophorus russula*) by next-generation sequencing and phylogenetic implications. *International Journal of Biological Macromolecules* 122, 1313–1320 (2019).

25. Sandor, S., Zhang, Y. & Xu, J. Fungal mitochondrial genomes and genetic polymorphisms. *Applied Microbiology Biotechnology* 102, 9433–9448 (2018).

26. Zhang, S., Hao, A., Zhao, Y., Zhang, X. & Zhang, Y. Comparative mitochondrial genomics toward exploring molecular markers in the medicinal fungus *Cordyceps militaris*. *Scientific Reports* 7, 40219 (2017).

27. Zhang, Y. et al. The complete mitochondrial genome of the Chan-hua fungus *Isaria cicadae*: a tale of intron evolution in *Cordycepipitaceae*. *Fungal Genet. Biol.* 77, 95–107 (2015).

28. Lang, B. F., Laforest, M. J. & Burger, G. Mitochondrial introns: a critical view. *Trends in Genetics* 23, 119–125 (2007).

29. Kajsa, H., Ake, O., Mikael, B. M. D., Magnus, K. & Jan, S. Intronic and plasmid-derived regions contribute to the large mitochondrial genome sizes of *Agaricomycetes*. *Current Genetics* 60, 303–13 (2014).

30. Li, Q. et al. Characterization and phylogenetic analysis of the complete mitochondrial genome of the medicinal fungus *Laetiporus sulphureus*. *Scientific Reports* 8, 9104 (2018).

31. Thielisch, A., Knell, A., Mohammadyari, A., Petrussek, A. & Schwenk, K. Divergent clades or cryptic species? *Mito-nuclear discordance in a Daphnia species complex.* *Bmc Evolutionary Biology* 17, 227 (2017).

32. Adkins, K. L. & Palmer, J. D. Evolution of mitochondrial gene content: gene loss and transfer to the nucleus. *Molecular Phylogenetics. Evolution* 29, 380–395 (2003).

33. Petersen, G. et al. Mitochondrial genome evolution in *Alismataceae*: Size reduction and extensive loss of ribosomal protein genes. *Plos One* 12, e0177606 (2017).

34. Kubo, N., Takano, M., Nishiguchi, M. & Kadowaki, K. Mitochondrial sequence migrated downstream to a nuclear V-ATPase B gene is transcribed but non-functional. *Gene* 271, 193–201 (2001).

35. Allen, J. F. Why chloroplasts and mitochondria retain their own genomes and genetic systems: Colocation for redox regulation of gene expression. *Proc Natl Acad Sci USA* 112, 10231–10238 (2015).

36. Björkholm, P., Harish, A., Hagström, E., Ernst, A. M. & Andersson, S. G. E. Mitochondrial genomes are retained by selective constraints on protein targeting. *Proceedings of the National Academy of Sciences* 112, 10154–10161 (2015).

37. Dub, A., Burgmann, R., Zoller, S., Bernt, M. & Grüning, C. R. Mitochondrial genome evolution in species belonging to the *Phialocephala fortinii* s.l. - *Acephala aplanata* species complex. *Bmc Genomics* 13, 166 (2012).

38. Lant, J. T. et al. Visualizing tRNA-dependent mistranslation in human cells. *Rwz Biology* 15, 567–575 (2017).

39. Qiang, L. et al. Characterization of the mitochondrial genomes of three species in the ectomycorrhizal genus *Cantharellus* and phylogeny of *Agaricomycetes*. *International Journal of Biological Macromolecules* 118, 756–769 (2018).

40. Li, Q. et al. Characterization and comparison of the mitochondrial genomes from two *Lysophyllum* fungal species and insights into phylogeny of *Agaricomycetes*. *International Journal of Biological Macromolecules* 121, 364–372 (2019).

41. Kolesnikova, O. A. et al. Suppression of mutations in mitochondrial DNA by tRNAs imported from the cytoplasm. *Science* 289, 1931–1933 (2000).

42. Yang, M. et al. Complete mitochondrial genome of the soybean leafhopper, *Omiodes indicata* (Lepidoptera: *Crambidae*), and phylogenetic analysis for *Pyraloidea*. *International Journal of Biological Macromolecules* 115, 53–60 (2018).

43. Blakely, E. L. et al. Pathogenic mitochondrial tRNA point mutations: nine novel mutations affirm their importance as a cause of mitochondrial disease. *Human Mutation* 34, 1260–1268 (2013).

44. Fakruddin, M. et al. Defective mitochondrial tRNA Taurine Modification Activates Global Proteostress and Leads to Mitochondrial Disease. *Cell Reports* 22, 482–496 (2018).

45. Quan, L., Wang, X., Chen, X. & Han, B. Complete mitochondrial genome of the tea looper caterpillar, *Ectropis obliqua* (Lepidoptera: *Geometridae*) with a phylogenetic analysis of *Geometridae*. *International Journal of Biological Macromolecules* 114, 491–496 (2018).

46. Chen, H., Sun, S., Norenbarg, J. L. & Sundberg, P. Mutation and Selection Cause Codon Usage and Bias in Mitochondrial Genomes of *Ribbon Worms* (*Nemertea*). *Plos One* 9, e85631 (2014).

47. Boore, J. L. Animal mitochondrial genomes. *Nucleic Acids Research* 27, 1767–1780 (1999).
48. Perese, M. et al. Evolution of mitochondrial gene orders in echinoderms. Molecular Phylogenetics 47, 855–864 (2008).
49. Bogoda, C. S., Keepers, K. G., Lendemer, J. C., Kane, N. C. & Tripp, E. A. Reductions in Complexity of Mitochondrial Genomes in Lichen-Forming Fungi Shed Light on Genome Architecture of Obligate Symbioses. Molecular Ecology 27, 1155–1169 (2018).
50. Liang, X. et al. Comparative analysis of the mitochondrial genomes of Colletotrichum gloeosporioides sensu lato: insights into the evolution of a fungal species complex interacting with diverse plants. Bmc Genomics 18, 171 (2017).
51. Wang, J. et al. Comparative mitogenomic analysis of mirid bugs (Hemiptera: Miridae) and evaluation of potential DNA barcoding markers. PeerJ 5, e3661 (2017).
52. Bi, G. The complete mitochondrial genome of northern grasshopper mouse (Onychomys leucogaster). 2, 393–394 (2017).
53. Bankevich, A. et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. Journal of Computational Biology 19, 455–477 (2012).
54. Christoph, H., Lutz, B. & Bastien, C. Reconstructing mitochondrial genomes directly from genomic next-generation sequencing reads—a baiting and iterative mapping approach. Nucleic Acids Res 41, e129–e129 (2013).
55. Bernt, M. et al. MITOS: improved de novo metazoan mitochondrial genome annotation. Molecular Phylogenetics & Evolution 69, 313–319 (2013).
56. Philip, I. et al. InterProScan 5: genome-scale protein function classification. Bioinformatics 30, 1236–40 (2014).
57. Lowe, T. M. & Chan, P. P. tRNAscan-SE On-line: integrating search and context for analysis of transfer RNA genes. Nucleic Acids Res 44, W54–W57 (2016).
58. Marc, L., Oliver, D., Sabine, K. & Ralph, B. OrganellarGenomeDRAW—a suite of tools for generating physical maps of plastid and mitochondrial genomes and visualizing expression data sets. Nucleic Acids Res 41, W575–W581 (2013).
59. Liu, Q. N. et al. The complete mitochondrial genome of fall armyworm Spodoptera frugiperda (Lepidoptera:Noctuidae). Genes & Genomics 38, 205–216 (2016).
60. Stothard, P. The sequence manipulation suite: JavaScript programs for analyzing and formatting protein and DNA sequences. Biotechniques 28(1102), 1104 (2000).
61. Darling, A. C. E., Mau, B., Blattner, F. R. & Perna, N. T. Mauve: Multiple Alignment of Conserved Genomic Sequence With Rearrangements. Genome Research 14, 1394–1403 (2004).
62. Darzentas, N. Circos: visualizing sequence similarity with Circos. Bioinformatics 26, 2620–2621 (2010).
63. Benson, G. Tandem repeats finder: a program to analyze DNA sequences. Nucleic Acids Research 27, 573–580 (1999).
64. Kurtz, S. et al. REPuter: the manifold applications of repeat analysis on a genomic scale. Nucleic Acids Res 29, 4633–42 (2001).
65. Abascal, F., Zardoya, R. & Telford, M. J. TranslatorX: multiple alignment of nucleotide sequences guided by amino acid translations. Nucleic Acids Res 38, W7–13 (2010).
66. Lanfear, R., Frandsen, P. B., Wright, A. M., Senfeld, T. & Calcott, B. PartitionFinder 2: New Methods for Selecting Partitioned Models of Evolution for Molecular and Morphological Phylogenetic Analyses. Molecular Biology & Evolution 34, 772–773 (2017).
67. Keane, T. M., Creevey, C. J., Pentony, M. M., Naughton, T. J. & Mclnerney, J. O. Assessment of methods for amino acid matrix selection and their use on empirical data shows that ad hoc assumptions for choice of matrix are not justified. BMC Evol Biol 6, 29 (2006).
68. Ronquist, F. et al. MrBayes 3.2: Efficient Bayesian Phylogenetic Inference and Model Choice Across a Large Model Space. Systematic Biology 61, 539–542 (2012).
69. Bernt, M. et al. MITOS: Improved de novo metazoan mitochondrial genome annotation. Molecular Phylogenetics. Evolution 69, 313–319 (2013).

Acknowledgements
We thank LetPub (www.letpub.com) for its linguistic assistance during the preparation of this manuscript. This research was funded by the Foundation Program of the Financial & Innovative Capacity Building Project of Sichuan (2019LWJY-007&2016GYSH-014) and Traction project of Chengdu industrial upgrading (2015-NY02-00063-NC).

Author contributions
Conceived and designed experiments: C.C., Q.L. and D.H.L. Performed the experiments: C.C., Q.L., J.W. and R.T.F. Analyzed the data: C.C., Q.L., C.X., and D.H.L. Contributed reagents/materials/analysis tools: C.C., Q.L., C.X., Z.H.F., H.Z., R.P.H. and D.H.L. Wrote the paper: C.C.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information is available for this paper at https://doi.org/10.1038/s41598-019-53941-5.

Correspondence and requests for materials should be addressed to D.L.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2019