Results on Jet Spectra and Structure from ALICE

Andreas Morsch
CERN
for the ALICE Collaboration

Quark Matter 2012
Washington DC, 08/14/2012
Outline

- **Jet reconstruction** in ALICE
- **Jet spectra** pp at $\sqrt{s} = 2.76$ TeV
 - Reference for Pb-Pb
- **Charged jet yield suppression** in Pb-Pb at $\sqrt{s_{\text{NN}}} = 2.76$ TeV
 - $R_{\text{AA}}(p_T^\text{Jet})$ using Pythia reference
 - Resolution parameters R dependence
- **Hadron-Jet correlations**
 - Modification of conditional yields and their R dependence
- **Isolated γ-hadron correlations**
- **Conclusions**
Jet Reconstruction in ALICE

Energy and direction of neutral particles

EMCal: Pb-scintillator sampling calorimeter which covers:

\[|\eta| < 0.7, \ 80^\circ < \phi < 180^\circ\]

- 11520 towers with each covers
 \[\Delta\eta \times \Delta\phi \sim 0.014 \times 0.014\]

4-momenta of charged particles

Tracking: \(|\eta| < 0.9, \ 0 < \phi < 360^\circ\)

TPC: gas detector

ITS: silicon detector

Charged constituents

Neutral constituents

Andreas Morsch, QM 2012, Washington DC, August 14, 2012
Jet Finder and Inputs

- **Anti-k_T Algorithm from FastJet** package
 - Resolution parameter $R = 0.2, 0.3, 0.4$
 - Area cut $A > 0.1$-0.4 avoids extremes
 - Jet vector from boost invariant p_T recombination scheme

- **Charged Jets**
 - Input: tracks with $p_T > 150$ MeV/c
 - Advantage: full azimuth (ϕ) coverage

- **Fully reconstructed jets**
 - Input
 - Tracks with $p_T > 150$ MeV/c
 - EMCAL clusters $E_T^{\text{clus}} > 150$ MeV after correction for energy from charged particles
 - Jet required to be fully contained in EMCAL acceptance
 - Advantages: trigger capability, higher $p_{T,\text{Jet}}$ reach, unbiased fragmentation

* distances are computed with

\[
D_{ij} = \min \left(p_{T,i}^2, p_{T,j}^2 \right) \frac{\Delta R_{ij}^2}{R^2};
\]

\[
D_i = p_{T,i}^2
\]

\[
k_T(\text{anti } k_T): p = 1 (-1)
\]

Compute all $D_{ij}, D_i, d = \min (D_{ij}, D_i)$

if $d = D_{ij}$: combine i with j
if $d = D_i$: i is final state jet
Jet Reconstruction
Corrections

- **Jet-by-Jet**
 - Charged particle energy correction for EMCAL clusters
 \[E_{\text{clus}}^{\text{corr}} = E_{\text{clus}}^{\text{raw}} - \sum p^{\text{matched}}, \quad E_{\text{clus}}^{\text{corr}} > 0 \]
 - Pb-Pb: Underlying event (UE) energy correction
 \[p_{T,\text{Jet}} = p_{T}^{\text{rec}} - p_{T}^{\text{UE}} \]

- **Jet spectrum corrections: bin-by bin or unfolding**
 - Corrections for unmeasured neutral energy (n, K\(_{L}^0\)) and related fluctuations of the jet energy scale (JES)
 - Tracking inefficiency and corresponding fluctuations
 - Pb-Pb: Smearing due to UE energy fluctuations
Jets in pp at $\sqrt{s} = 2.76$ TeV

- **JES uncertainty:** 4%
 - Missing neutral energy
 - Tracking efficiency
 - Energy double counting (charged particle correction)
- **Jet p_T resolution 20%**
 - Event-by-event fluctuations of JES
 - Track $\Delta p_T / p_T = 40$ GeV/c: 4%
 - EMCAL resolution at $E = 40$ GeV: 3%
- **Effects of efficiency and resolution on jet spectrum are corrected bin by bin.**

- Good agreement with NLO pQCD + hadronization and Pythia8
- Important reference for Pb-Pb analysis
Jets in pp at $\sqrt{s} = 2.76$ TeV:
Jet shape information by varying R

anti $k_T : R = 0.4$

$d^2\sigma/dp_T d\eta$ (mb c/GeV)

Good agreement with NLO pQCD and Pythia8
Increase of $\sigma(R=0.2)/\sigma(R=0.4)$: Higher p_T jets are more collimated
Jets in Pb-Pb at $\sqrt{s_{NN}} = 2.76$ TeV

Background from UE

- Corrections required due to UE Energy
 - Event-by-event subtraction of the background energy: $A_{\text{Jet}} \rho$
 \[
 \rho = \text{median} \left(\frac{p_{\text{Jet}}^T}{A_{\text{Jet}}} \right) k_T - \text{Algorithm}
 \]
 - Raw spectrum smeared by background energy fluctuations
 - Need to unfold using resolution matrix
 - Jets from background combinatorics (fake jets) at low p_T^{Jet}.
 - Efficiently removed by requiring a $p_T > 5$ GeV/c leading hadron inside jet

In jet with $R=0.4$: $\rho A = 130$ GeV
Background Fluctuations

- In Pb-Pb jet energy resolution limited by background fluctuation within jet area.

- Fluctuations characterized by distribution of
 \[\delta p_T = (p_T^{\text{rec}} - \rho A_{\text{Jet}}) - p_T^{\text{true}} \]

- Distribution obtained by embedding particles into min. bias event or by placing random cones with areas close to the ones of reconstructed jets.
 - For anti-\(k_T\): \(A \approx \pi R^2 \)
Charged Jet Spectra in Pb-Pb

Normalized yield shows suppression increasing with centrality.

Systematic uncertainties:
- Regularization: 4%
- JES correction: 4-10%

Andreas Morsch, QM 2012, Washington DC, August 14, 2012
Charged Jet R_{AA} wrt Pythia Reference

- Strong jet suppression: $R_{AA}^{Jet} = 0.2-0.35$ rising with p_T^{Jet}
- Low R_{AA}^{Jet} reproduced by JEWEL MC

K. Zapp et al, Eur.Phys.J. **C69** (2009) 617
Jet suppression similar to inclusive hadron suppression at comparable parton p_T

Possible scenario:

- Radiated energy mainly outside jet cone
- Leading particle p_T shifted in proportion to its contribution to the jet energy

\[
\Delta E_{\text{leading}} = z_L \Delta E_{\text{part}}
\]
Possible Redistribution of Energy Between $R=0.2$ and 0.3

- No redistribution of energy within experimental uncertainties
- Ratios consistent with
 - Results from more peripheral collisions
 - Pythia (vacuum fragmentation) and
 - JEWEL MC model calculations

Andreas Morsch, QM 2012, Washington DC, August 14, 2012
Jets Tagged by High-p_T Hadron

Requirement of high p_T hadron reduces contribution from combinatorial (fake jets)
Improved stability of unfolding allows to assess lower $p_{T,Jet}^{ch}$
No change of fragmentation within uncertainties except for lowest $p_{T,Jet}^{ch}$ bin.
More details ...

Rosi Reed, Parallel Session 2B
Poster by Marta Verweij
Poster by RongRong Ma
Hadron-Jet Correlations

- Can surface bias of leading hadrons be used to increase jet suppressions and structure modification?
 - **Idea:** Study conditional jet yield requiring a trigger hadron back-to-back with respect to jets
 - If surface bias present the parton producing the jet is biased towards higher in-medium path length
 - **Additional advantages:**
 - Requiring correlated high-p_T hadron tags hard scatterings suppressing the combinatorial (fake jet background)
 - No fragmentation bias on the recoiling jet

See Talk Leticia Cunqueiro, Parallel Session 3B
Hadron-Charged Jet Correlation Analysis

Uncorrected yield per trigger particle

$\Delta \phi (\text{hadron}, \text{jet}) > \pi - 0.6$

Low $p_{T,\text{Jet}}$ dominated by fake jets and uncorrelated BG

High $p_{T,\text{Jet}}$

Clear correlation with trigger p_T

Dominated by high Q^2 events

How to remove uncorrelated component?

Study difference between signal recoil spectrum and a reference:

$\Delta_{\text{recoil}}(p_{T,\text{Jet}}^{\text{ch}}) = \frac{1}{N_{\text{trig}}} \frac{d N}{d p_{T,\text{Jet}}^{\text{ch}}} \bigg|_{p_{T,\text{ref}}^{\text{min}}, p_{T,\text{ref}}^{\text{max}}} - \frac{1}{N_{\text{trig}, \text{ref}}} \frac{d N}{d p_{T,\text{Jet}}^{\text{ch}}} \bigg|_{p_{T,\text{ref}}^{\text{min}}, p_{T,\text{ref}}^{\text{max}}}$

$\Delta_{\text{recoil}} = p_{T,\text{Jet}}^{\text{ch}} - \rho A_{\text{Jet}}^{\text{rec}}$ [GeV/c]

Andreas Morsch, QM 2012, Washington DC, August 14, 2012
Difference Recoil Spectra

Difference of semi-inclusive recoil jet yields

\[\Delta I_{AA}(p_{T,\text{Jet}}^{\text{ch}}) = \frac{\Delta \text{Pb-Pb} - \Delta \text{Pb-Pb}}{\Delta \text{pp}} \]

Correlated uncertainties:
- Flow bias on background induced by hadron trigger
- Tracking efficiency uncertainty
- Reference distribution scaling factor

Shape uncertainty (from unfolding):
- \(p_T^{\text{min}} \) cut variations, feed in/out
- Regularization: \(\beta \) variations and difference to Bayesian result

Andreas Morsch, QM 2012, Washington DC, August 14, 2012
ΔI_{AA} using Pythia Reference

Ratio of conditional yield close to unity: $\Delta I_{AA} = 0.75$

Strong h-Jet pair suppression $R_{AA}^{h} \Delta I_{AA} \approx 0.25 \times 0.75 = 0.2$

However, two competing effects are possible:

Recoil jet suppression: ΔI_{AA} decreases

Trigger parton energy loss: ΔI_{AA} increases since at the same p_{T}^{trig} : $Q_{\text{Pb-Pb}}^{2} > Q_{pp}^{2}$
Comparison to Di-Hadron Correlations

Qualitatively and quantitatively similar behavior in di-hadron correlations at lower Q^2.

PhysRevLett.108.092301
arXiv:1110.0121v2 [nucl-ex]

Andreas Morsch, QM 2012, Washington DC, August 14, 2012
Model Comparisons

YaJEM [T. Renk, Phys. Rev. C 80 (2009) 044904]

JEWEL [K. Zapp et al Eur.Phys.J.C69 (2009) 617]

Preliminary: unexplored systematics
Isolated Photon Hadron Correlations in pp at $\sqrt{s} = 7$ TeV

γ Quark Fragmentation

Isolated photon

$x_E = -\frac{p_T^h}{p_T^\gamma} \cos \Delta \Phi$

$p_T^\gamma \approx p_T^{\text{parton}}$

$x_E \approx z = \frac{p_T^h}{p_T^{\text{parton}}}$

Isolation criterion:
No particle with $p_T > 0.5$ GeV in cone $R=0.4$
$x_E = -\frac{p_T^h}{p_T^\gamma} \cos \Delta \Phi$

Isolated π^0

```
pp, $\sqrt{s} = 7$ TeV

- 8 GeV/c < $p_T^{\pi^0}$ < 12 GeV/c
- 12 GeV/c < $p_T^{\pi^0}$ < 16 GeV/c ($\times 10^3$)
- 16 GeV/c < $p_T^{\pi^0}$ < 25 GeV/c ($\times 10^2$)
```

Isolated γ

```
pp, $\sqrt{s} = 7$ TeV

- 8 GeV/c < $p_T^{\gamma}$ < 25 GeV/c
```

Inverse slope : 7.8 +/- 0.9

Andreas Morsch, QM 2012, Washington DC, August 14, 2012
Conclusions

- We observe a strong suppression of the inclusive charged jet yield in central Pb-Pb collisions at $\sqrt{s_{\text{NN}}} = 2.76$ TeV
 - $R_{\text{AA}}^{\text{charged Jet}} = 0.2-0.35$ in the $30 < p_{\text{T, Jet}}^{\text{ch}} < 100$ GeV/c
 - Lower than inclusive hadron R_{AA} at similar parton p_{T}

- No indication of energy redistribution observed from ratios of jet yields $\sigma(R=0.2)/\sigma(R=0.3)$ within exp. uncertainties.

- Conditional hadron-jet yield suppressed by factor of 0.75 with respect to Pythia reference.
 - Similar to conditional away-side hadron-hadron yields at lower Q^2.

- Yield and conditional yield suppression patterns qualitatively and to some extent quantitatively similar for single hadrons and jets.
 - Consistent with interpretation as consequence of energy loss through radiation outside jet cone.

- γ-hadron measurements (x_E) in pp at $\sqrt{s_{\text{NN}}} = 7$ TeV
 - Important step towards Pb-Pb measurement.
Additional Posters

- Measurements of charged particle jet properties in pp collisions at $\sqrt{s} = 7$ TeV (Sidharth Kumar Prasad)
- Jet measurements in proton-proton collisions (Michal Vajzer)
- Jet-Hadron Azimuthal Correlation Measurements in p+p Collisions at $\sqrt{s} = 2.76$TeV and 7TeV (Dosatsu Sakata)
Backup
Jets in pp
Trigger Efficiency

- EMCal Level-0 trigger
 - Used in data-taking to extend the kinematic reach of jet spectrum.
- Bias on the jet population
 - Estimated in simulation via incorporating the EMCal cluster turn-on curves and local inefficiency of the trigger system extracted from data.
Jets in pp
Bin by Bin Corrections

\[
C_{MC}(p_T^{low}, p_T^{high}) = \frac{\int_{p_T^{low}}^{p_T^{high}} d p_T \frac{d F_{\text{measure}}^{\text{unorr}}}{d p_T} \frac{d \sigma_{\text{Particle}}_{MC}^{\text{Detector}}}{d p_T}}{\int_{p_T^{low}}^{p_T^{high}} d p_T \frac{d F_{\text{measure}}^{\text{unorr}}}{d p_T}}
\]
Jets in pp
Underlying Event

Effects of underlying event subtraction on jet spectrum

ALICE pp @ \(\sqrt{s} = 2.76 \text{ TeV} \)
anti-\(k_t\) \(R=0.4 \)

Statistical error only

ALICE
PERFORMANCE
2012-07-20
Event-by-Event Background Subtraction

\[\rho = \text{median} \left(\frac{p_T^{\text{jet},i}}{A_i^{\text{jet}}} \right) \]

JHEP, vol 1203, p 053 2012
Charged Jets in PbPb Raw Spectra

$\frac{1}{N_{\text{coll}}} \frac{1}{N_{\text{evts}}} \frac{dN}{dp_T}$ (GeV/c)$^{-1}$

- Inclusive
- Leading track $p_T > 5$ GeV/c
- Leading track $p_T > 10$ GeV/c

Pb-Pb $\sqrt{s_{NN}} = 2.76$ TeV
Centrality: 0-10%

Charged Jets
Anti-k_t $R = 0.2$
$p_{T,\text{track}} > 0.15$ GeV/c
Jets in Pb-Pb
Unfolding

\[\chi^2 = \sum_{\text{refolded}} \left(\frac{y_{\text{refolded}} - y_{\text{measured}}}{\sigma_{\text{measured}}} \right)^2 + \beta \sum_{\text{unfolded}} \left(\frac{d^2 \log y_{\text{unfolded}}}{d \log p_T^2} \right)^2 \]

\(\chi^2\)-term

Regularization/penalty
Pb-Pb: Unfolding

- Choice of p_T ranges in unfolding and systematic uncertainties
 - Measured spectrum: Suppression of background jets by $p_{T,\text{meas}} > 5\sigma(\delta p_T)$.
 - Feed in from low p_T. Unfolded spectrum starts at $p_T = 0$ GeV/c
 - Regularization strength: systematic uncertainty on extracted jet yield 10% for central events and 4% for peripheral events
 - Jet energy scale correction from detector effects: ~10%
Charged Jets

Anti-k_T, $R = 0.2$

$\mathbf{R = 0.2}$

$\mathbf{R = 0.3}$

$\mathbf{p_{T,track} > 0.15 GeV/c}$
Flow bias: high p_T hadron correlated to event and participant plane.
- Background density per unit area below jet is larger.
- Magnitude of bias on inclusive jet spectra depends on p_T of trigger.
- Hadron triggered jet spectra are corrected for the flow bias.
Jet and leading particle energy loss

\[E_{\text{jet}} \rightarrow E_{\text{jet}} - \Delta E \]

\[p_{T, \text{leading}} \rightarrow p_{T, \text{leading}} - z_{\text{leading}} \Delta E \]

\[\frac{p_{T, \text{leading}} - z_{\text{leading}} \Delta E}{E_{\text{jet}} - \Delta E} = \frac{z_{\text{leading}} E_{\text{jet}} - z_{\text{leading}} \Delta E}{E_{\text{jet}} - \Delta E} = z_{\text{leading}} \]