A novel inhibitor of active protein kinase G attenuates chronic inflammatory and osteoarthritic pain

Ying-Ju Sung, Nelson Sofoluke, Mary Nkamany, Shixian Deng, Yuli Xie, Jeremy Greenwood, Ramy Farid, Donald W. Landry, Richard T. Ambros

Abstract
Activating PKG-1α induces a long-term hyperexcitability (LTH) in nociceptive neurons. Since the LTH correlates directly with chronic pain in many animal models, we tested the hypothesis that inhibiting PKG-1α would attenuate LTH-mediated pain. We first synthesized and characterized compound N46 (N-((3R,4R)-4-(4-(2-fluoro-3-methoxy-6-propoxybenzoyl)benzamido)pyrrolidin-3-yl)-1H-indazole-5-carboxamide). N46 inhibits PKG-1α with an IC₅₀ of 7.5 nmol, was highly selective when tested against a panel of 274 kinases, and tissue distribution studies indicate that it does not enter the CNS. To evaluate its antinociceptive potential, we used 2 animal models in which the pain involves both activated PKG-1α and LTH. Injecting complete Freund’s adjuvant (CFA) into the rat hind paw causes a thermal hyperalgesia that was significantly attenuated 24 hours after a single intravenous injection of N46. Next, we used a rat model of osteoarthritic knee joint pain and found that a single intra-articular injection of N46 alleviated the pain 14 days after the pain was established and the relief lasted for 7 days. Thermal hyperalgesia and osteoarthritic pain are also associated with the activation of the capsaicin-activated transient receptor protein vanilloid-1 (TRPV1) channel. We show that capsaicin activates PKG-1α in nerves and that a subsequent delivery of N46 attenuated the mechanical and thermal hypersensitivity elicited by exposure to capsaicin. Thus, PKG-1α appears to be downstream of the transient receptor protein vanilloid-1. Our studies provide proof of concept in animal models that a PKG-1α antagonist has a powerful antinociceptive effect on persistent, already existing inflammatory pain. They further suggest that N46 is a valid chemotype for the further development of such antagonists.

Key words: Protein kinase G, Inflammatory pain, TRPV1, CFA, Osteoarthritic pain, Long-term hyperexcitability, Chronic pain

1. Introduction
Chronic pain afflicts millions in the United States and is especially serious because the most effective treatments contain opiates, which are serious because the most effective treatments contain opiates that can lead to addiction. There is strong evidence that many types of chronic pain, including that from neuritis, osteoarthritis (OA), colitis, cystitis, ischemia, and metastatic bone cancer are sustained by a long-term hyperexcitability (LTH) in the cell bodies of first-order neurons in the nociceptive pathway. The LTH, which initially appears in response to an injury or inflammation, results in persistent inputs to the CNS that are manifest as allodynia and hyperalgesia. The induction of the LTH depends on the activation of protein kinase G (PKG-1α) in nociceptive neurons, whose cell bodies reside in peripheral sensory ganglia and, since the LTH is an alteration in the phenotype, it can theoretically last indefinitely. Protein kinase G-1α is not present in motor neurons or glia, and studies of PKG null mice indicate that it is not involved in acute pain. The importance of PKG-1α in mediating persistent pain has been well documented by studies of hyperalgesia and allodynia in rodents. In particular, a direct link between PKG-1α and LTH was demonstrated using a nerve constriction model in the rat. The constriction induced LTH in dorsal root ganglion (DRG) neurons and thermal hyperalgesia 1 day later. Notable was that both the LTH and the hyperalgesia were blocked by the PKG-1 inhibitor Rp-8-pCPT-cGMPS (RPG). Furthermore, Liu et al. showed that RPG effectively reduced the hyperexcitability and significantly suppressed the hyperalgesia and allodynia that accompanies bone cancer in a rat model.

These findings strongly support the idea that an inhibitor of PKG-1α can alleviate pain associated with the LTH. In addition, since the neurons that contain the PKG-1α are in peripheral ganglia, the inhibitor need not enter the CNS. At present, there is no effective inhibitor of PKG-1α for drug development. Rp-8-pCPT-cGMPS and a similarly acting compound, KT5823, do not have high potency (Kᵢ = 0.5 μM and Kᵢ = 0.234 μM, respectively).
respectively), are accompanied by nonspecific effects, and have very poor pharmacokinetic profiles. The oligopeptide inhibitor DT-2 and its D version (D)-DT2 are highly specific PKG inhibitors and show that systemic and local delivery N46 alleviates 2 types of LTH-PKG-1α-mediated pain in rat models: inflammation-induced thermal hyperalgesia and knee joint pain from OA.

2. Materials and methods

2.1. Animals

Adult male Sprague-Dawley rats (250-300 g), obtained from Harlan Laboratories (Indianapolis, IN), were used for all experiments. Animals were housed 3 per cage and given water and food ad libitum. The room was kept at a constant temperature with a 12 hours alternating light/dark cycle. All animal handling and experimental procedures were approved by Institutional Animal Care And Use Committees of Geisinger Commonwealth School of Medicine and Columbia University.

2.2. Pain models

Inflammatory pain was induced by injecting 100 μL of complete Freund’s adjuvant (CFA) (Sigma-Aldrich, St. Louis, MO) into the plantar surface of the hind paw to induce acute and persistent (chronic) inflammatory pain. Osteoarthritic pain was induced by injecting 50 μL of saline containing 3 mg MIA (Sigma-Aldrich) into the joint cavity as described. Capsaicin-associated pain was induced by intraplantar injection of 10 μg capsaicin.

2.3. Compound administration

Rp-8-pCPT-cGMPS was obtained from EMD Chemicals Inc (Gibbstown, NJ) and suspended in saline for injection. N46, at >95% purity, was synthesized at Columbia University and by Schering-Plough Corp (Kenilworth, NJ).

For intrathecal administration, the compounds were suspended in a 1% DMSO/saline mix and injected in a volume of 15 μL at the L4/L5 levels using a disposable 30-gauge needle mated to a Hamilton microliter syringe (Hamilton, Reno, NV) followed by a saline flush. The injections were performed under isoflurane anesthesia and a tail flick indicated that the tip of the needle was inserted into the subarachnoid space. In other applications, N46 was dissolved in a quarter normal saline solution and used 1 mL for intravenous (iv), 20 μL for subcutaneous, and 50 μL for intra-articular injections.

2.4. Behavioral analysis

All data were collected using a double-blind protocol. To quantitatively assess the thermal sensitivity of the hind paw, rats were placed on the glass surface of a plantar testing apparatus (Hargreaves test, model 336; IITC Inc/Life Science Instruments, Woodland Hills, CA). The rats were allowed to acclimate for 30 minutes before testing. The temperature of the glass surface was maintained constant at 30°C. A mobile radiant heat source located under the glass was then focused onto the hind paw of each rat. The apparatus was adjusted at the beginning of the study, so that the baseline paw withdrawal latency in normal rats was approximately 10 seconds. This beam intensity was then kept unchanged throughout the study. A cutoff of 20 seconds was used to prevent potential tissue damage.

Mechanical sensitivity was tested by placing animals in plexiglass cages with a wire grid bottom and then stimulating their hind paws with a series of von Frey hairs of logarithmically increasing stiffness (0.4-15 g; Stoelting, Wood Dale, IL); each hair was presented perpendicularly to the plantar surface for approximately 6 seconds in either ascending or descending strength. Each trial started with a von Frey force of 2 g. If there was no withdrawal response, the next higher force was delivered. If there was a response, the next lower force was delivered. Based on the response pattern and the force of the final filament, the 50% paw withdrawal threshold was calculated according to a method described by Chaplan et al.

An incapacitance tester (Harvard Apparatus, MA) was used to assess changes in weight distribution between the hind paws as a behavior measurement of osteoarthritic pain. Each animal was restrained in the testing chamber and each hind paw rested on a force plate. The force exerted by each paw was averaged over a 5-second period and each data point represents 3 trials. Results are presented as the percent difference between weight of treated hind limb and weight of vehicle-treated limb.

Following injection of small compounds, and prior to behavioral testing, all animals were weighed as a general measure of health and observed for abnormalities or deficits, such as reduced motion and sedation that might be caused by nonspecific drug effects.

2.4.1. In vitro kinase assays

Protein kinase G assays were performed in Tris buffer by quantifying the incorporation of 32P from [γ-32P] ATP. The reaction mixture (100 μL) contained 100 ng of purified bovine PKG-1α (Promega, Madison, WI), 5 μg of BPDE peptides, 25 mM Tris–HCl (pH 7.5), 5 mM glycerol phosphate, 2 mM DTT, 100 μM Na3VO4, 10 mM MgCl2, and the tested compound at the indicated concentrations. The reaction, initiated by 10 μM [32P]-ATP, was incubated at 37°C for 20 minutes and terminated with 50 mM EDTA. The labeled peptides were captured on cellulose phosphatase filters and quantified by counting in a β scintillation counter. For cAMP-dependent kinase (PKA) assays, the recombinant catalytic domain of human PKA and substrate kemptide were used. The reported IC50S and percentage inhibitions are single determinations in duplicates. All IC50S were determined by testing the compounds at 10 different concentrations ranging from 1 nM to 100 μM in duplicate.

2.5. Kinase panel screening

N46 was examined at 10 μM for their ability to inhibit 274 kinases using the kinaseProfiler enzyme profiling service (Millipore, Billerica, MA). Each kinase was assayed at its optimal ATP concentration according to the manufacturer’s standard protocol.

2.6. Molecular modeling

A homology model of PKG-1α was prepared using Prime (Prime, version 1.6; Schrödinger, Inc, New York, NY, 2007) on the crystal structure of PKA (PDB code: 1BX6) using default settings. The virtual screen was performed using Glide (Glide, version 4.5; Schrödinger, Inc, New York, NY, 2007).

2.7. Analysis of plasma and tissue concentrations of N46

Concentrations of N46 were determined by liquid chromatography coupled with mass spectrometry (LC/MS) (2100A; Shimadzu...
Scientific Instruments, Kyoto, Japan). A C₁₈ column (2.1 × 50 mm; SymmetryShield, Waters, Milford, MA) was used. The mobile phase composition was a gradient from acetonitrile-water (0:100, vol/vol) to acetonitrile-water (100:0, vol/vol) in 20 minutes. An aliquot of 10 μL was injected into the high-performance liquid chromatography (HPLC) system; N46 was eluted at 10.99-minute and detected at the wavelength of 220 nm.

The concentration of N46 in plasma after iv injection was determined by adding 150 μL of acetonitrile to 50 μL of plasma. After centrifugation, the supernatant was used for injection onto the LC/MS system. Tissues were homogenized in 0.1N sodium carbonate (2 mL), followed by addition of methanol (6 mL). The mixture was mixed and centrifuged, and the supernatant was collected for LC/MS analysis. All results were corrected for % recovery using standard curves obtained by adding acetonitrile to extracts containing increasing amounts of N46.

2.8. Statistical analyses

Data were expressed as means ± SEM. A 2-tailed unpaired t test was used with a significance level set at 0.05 to compare 2 groups. A 1-way ANOVA was used to assess multiple changes between groups followed by Dunnett’s post hoc test. A 2-way ANOVA was used with a significance level set at 0.05 to compare 2 groups. ANOVA followed by Bonferroni posttest was used to assess the differences between groups followed by Dunnett’s post hoc test. A 2-way ANOVA followed by Bonferroni posttest was used to assess the effect of N46 over time in the mechanical sensitivity test.

3. Results

3.1. Rp-8-pCPT-cGMPS inhibits inflammatory thermal hyperalgesia

To determine a contribution for PKG-1α in thermal hyperalgesia, we injected CFA into the plantar surface of the hind paw in rats. Complete Freund’s adjuvant causes intense and persistent pain in humans,¹⁵ and this well-defined protocol results in a thermal hyperalgesia that is easily quantified by measuring a paw withdrawal latency (PWL) in response to heat.³¹ The next day all of the injected rats exhibited swelling and redness associated with inflammation and the thermal test showed profound thermal hyperalgesia. The rats were then given a single injection of either vehicle or 100, 125, or 250 nmol RPG into the intrathecal space adjacent to the L4/L5 DRG that house the cell bodies of the neurons that innervate the paw (Fig. 1). Using a double-blind protocol, we measured the PWL the following day and found that the thermal hyperalgesia had been alleviated significantly by the 250 nmol RPG compared to the vehicle control (Fig. 1A). There were no significant changes in the thermal threshold on the contralateral noninflamed paw (Fig. 1B). These results are consistent with the idea that PKG-1α is a significant component of an inflammation-induced thermal hyperalgesia. As reported previously,³⁹,⁴⁰ there were no differences between the rats injected with RPG and the controls with regard to eating, drinking, digestion or control of motor movements and exploring.

3.2. Synthesis of a novel, selective, and stable protein kinase G-1α inhibitor

To firmly establish a role for PKG-1α in chronic pain required the development of a potent and selective inhibitor of this kinase. What follows is a brief description of how this was accomplished. The details of the chemical syntheses have been submitted elsewhere.

Protein kinase G is a member of the Ser/Thr AGC family of kinases and (−)-balanol (Fig. 2A), a product of the fungus Verticillium balanoides, is a highly potent, but nonselective inhibitor of these kinases²³ with a very short half-life in serum due to the presence of ester linkages. Balanol acts by binding to the ATP site and a comparison of amino acid sequences at the ATP site and a comparison of amino acid sequences at the ATP site and the ATP domain of several kinases showed that the sequence in the α and β type-1 PKG isoforms is the same, but that it differs from that in PKA, PKB, and PKC. We therefore compared the crystal structure of balanol bound to the ATP pocket in PKA (PDB code: 1BXG) to a homology model of balanol bound to PKG-1α (Fig. 2A). Significantly, several of the amino acids juxtaposed to balanol in PKG-1α were different in PKA (see legend to Fig. 2A) and these differences are conserved in PKB-β, PKC-theta, and many other kinases.

![Figure 1](image-url)
Guided by these observations, we systematically modified balanol and each derivative was assayed against recombinant active PKG-1\(\alpha\) and PKA. We used PKA in the initial assays as a convenient surrogate for the other Ser/Thr kinases. In parallel, we performed a virtual screen of a library consisting of 1.3 million commercially available, drug-like compounds. After many rounds of structural activity relationship studies (detailed data to be published elsewhere), we synthesized a lead compound, N46 (Fig. 2B), which is a hybrid of a balanol and a small compound that was discovered from the virtual screen. Comparing Figures 2A and B, the phenol in balanol was replaced with an indazole group and the ester linkages between the rings in balanol were replaced by amides to protect the compound from degradation by serum esterases (see below). Additionally, Ile406 in PKG-1\(\alpha\) is replaced by a polar residue (Thr88) in PKA and, based on our docking models, this group should have favorable hydrophobic interactions with Ile406 in PKG-1\(\alpha\) and unfavorable interactions with Thr88 in PKA. We therefore added a propoxy group to the 6-position of the external phenyl ring of the benzophenone moiety (Ring d, Fig. 2B) to improve potency and selectivity. Thus, compound N46 has an IC\(_{50}\) for PKG-1\(\alpha\) and PKA of 7 nM and 5 \(\mu\)M, respectively, a 714-fold difference. Kinetic studies showed that N46 is a noncompetitive inhibitor of PKG-1\(\alpha\) (data not shown).

To further assess its selectivity, N46 was tested at 10 \(\mu\)M against a panel of 274 kinases that included representatives of all of the kinome branches. Each kinase was assayed at its optimal ATP concentration (Supplementary Table 1, available online at http://links.lww.com/PAIN/A379). The \(\alpha\) and \(\beta\) isoforms of PKG-1 have the same sequence at their ATP binding site and N46 was equally effective against both. Protein kinase G-1\(\beta\) is not present in nerves.42 In contrast, N46 was ineffective against the vast majority of the other kinases. We then extended these studies by assaying at 4 lower concentrations the human kinase isoforms most affected by N46 (Table 1). As predicted from the models, the Ser/Thr kinases PKB and PKC were not inhibited to anywhere near the extent as PKG-1\(\alpha\). In addition, at a concentration of 750 nM, where PKG-1\(\alpha\) activity is completely blocked, only 12 kinases were inhibited more than 50% by N46 (Table 1) and only one, AMPK, has been linked to nociception (see discussion). Replacing the ester linkages in balanol with amides in N46 had the anticipated effect in that N46 is stable in plasma for at least 7 hours (Table 2).

3.3. N46 blocks inflammatory thermal hyperalgesia

To assess the effectiveness of N46 in alleviating inflammation-induced thermal hyperalgesia, we repeated the CFA experiment described above. Intrathecal injection of 0.25 nmol N46 resulted in a marked reduction in the inflammation-induced thermal hyperalgesia compared to the vehicle (Fig. 3A). There were no significant changes in the thermal threshold on the contralateral noninflamed paw (Fig. 3B). In addition, N46 was effective at a much lower
 dosage than the RPG (Fig. 1), which correlates directly with their ability to inhibit PKG-1α. Since intrathecal injection is not a preferred method of drug delivery, we tested the efficacy of N46 following intravenous injection. The day after CFA injection, when PWL measurements indicated the presence of thermal hyperalgesia, we injected either 1 nmol N46 or vehicle into the tail vein. Twenty-four hours later, the N46 had significantly increased the PWL, but the vehicle did not (Fig. 3B). Significantly, a single injection of N46 provided relief for at least 24 hours, whereas many analogs that have been tested in this model are short lasting²⁸,³¹.

3.5. Distribution of N46 in vivo

N46 did not affect the contralateral leg in these experiments and there was nothing to indicate problems with digestion or bladder function and no evidence of sedation. Nevertheless, the isoforms of PKG are present in many tissues. To begin to determine the fate of N46 in vivo, we injected N46 into the tail vein of rats and then collected tissue samples for analysis (Table 3). Most of the N46 was rapidly excreted and by 20 hours the initial amount in the major organs was markedly reduced. Very important was the finding of stable levels of N46 in the DRG because they contain the neuronal cell bodies that exhibit the LTH and the activated sensory neurons of the contralateral hind paw (Fig. 3B and D). Significantly, a single injection of N46 provided relief for at least 24 hours, whereas many analogs that have been tested in this model are short lasting²⁸,³¹.

3.6. N46 alleviates pain elicited by capsaicin

There is evidence that OA pain and the inflammation-induced thermal hyperalgesia involve the activation of the cation channel transient receptor protein vanilloid-1 (TRPV1).²¹ Since N46 blocks these pairs, there might be a connection between PKG-1α and the TRPV1. A selective activator of the TRPV1, capsaicin, significantly attenuated the allodynia, as indicated by the increased mechanical threshold measured 5, 10, 30, and 60 minutes later relative to capsaicin alone (Fig. 6A). In contrast, injection of N46 and capsaicin significantly attenuated the allodynia, as indicated by the increased mechanical threshold measured 5, 10, 30, and 60 minutes later relative to capsaicin alone (Fig. 6A). Additionally, co-injecting N46 effectively reduced the capsaicin induced thermal sensitivity, as shown by the increase of withdrawal latency to heat at 5-minute post-injection compared to capsaicin alone (Fig. 6B).

We wanted to see whether the activation of the TRPV1 by capsaicin also activates PKG-1α, but could not do this directly.

Table 1: Kinases inhibited by N46.
0.05 μM N46
AMPKα1(h)
AMPKα2(h)
CDK5/p25(h)
MRCKα1(h)
MRCKβ1(h)
MuSK(h)
PkH(h)
PRK2(h)
PKBα1(h)
PKCα1(h)
PKG1α(h)
Ret(h)
ROCK-I(h)
Ras1α(h)
SGK1(h)
SGK2(h)

The human form (h) kinases inhibited to the greatest extent by N46 at 10 μM (Supplementary Table, http://links.lww.com/PAIN/A379) were evaluated at 4 concentrations of the compound. Values indicate the percent kinase activity at indicated concentration of N46.

Table 2: Stability of N46 in plasma in vitro.
Time, h
0
0.5
1.5
3
5
7

Values represent the mean of 2 independent experiments. One milliliter of rat plasma containing 1 μM N46 was incubated at 37°C. At each indicated time, a 50-μL sample was removed and centrifuged to obtain plasma. The sample was then extracted with acetonitrile, and after centrifugation, the supernatant was collected and analyzed by LC/MS to determine the concentration of N46.
because the nerves in the hind paw are minor constituents among heterogeneous tissues. Instead, we took advantage of studies showing that receptors for agents that elicit inflammatory pain at terminals are functional in axons. We injected capsaicin (0.1 mM) directly under the perineurium of the sciatic nerve and an equal volume of vehicle into the contra-lateral nerve as a control. Thirty minutes later the 1 cm nerve segment containing the injection site from each nerve was collected, homogenized, and samples containing an equal amount of protein were assayed for PKG-1α activity. We found that 40.615% of the PKG-1α in the nerve segment injected with capsaicin was active vs only 1.3 ± 0.5% in the control (Fig. 7). The minimal PKG-1α activation in the control indicated that there was little or no damage to axons by the injection procedure. Since PKG-1α is not present in glial cells or motor axons, these data indicate that capsaicin binding to TRPV1 in axons activates PKG-1α.

4. Discussion

4.1. Protein kinase G-1α is an important target for chronic pain

Most efforts to alleviate chronic pain have focused on the long-term potentiation (LTP) that appears at the synapse between the first and second order neurons. However, the LTP is maintained by action potentials from the site of the lesion and typically diminishes within a day or 2 as the lesion heals. Consequently, LTP appears to mediate acute rather than chronic pain. In contrast, long lasting pain arises in response to lesions that activate molecular signals. These signals alter the phenotype of the affected neurons to promote repair and maintain an awareness of the injured site during the long recuperation. Among these is the nociceptive signal PKG-1α. Protein kinase G-1α has low basal activity in axons, but when activated at the site of an injury or inflammation is transported retrogradely to the cell bodies of the neurons where it initiates changes in gene expression that result in LTH. Because the LTH arises from a phenotypic change in the electrophysiological properties of the neurons, it can persist for a very long time. The finding that the PKG-1α inhibitor, RPG, effectively attenuated radicular pain, bone cancer pain, and inflammatory thermal hyperalgesia (Fig. 1) indicates that a clinically relevant inhibitor of PKG-1α would be beneficial in alleviating the many types of persistent pain associated with LTH. Moreover, since PKG-1α is located in ganglia in the periphery, the inhibitor need not enter the CNS and thereby avoids potential side effects such as drug tolerance and sedation.
N46 (5 nmol) or vehicle control (quarter saline) was then administrated into the intra-articular space of the MIA-injected joints (orange arrow). Subsequent evaluation showed that the N46 significantly reversed the MIA-induced shift in weight bearing both 1 day (day 15) and 7 days (day 21) after N46 injection (n = 15) compared to corresponding vehicle treatment (n = 6), P = 0.022 and 0.038, respectively. Data represent mean ± SEM.

4.2. Synthesis of N46, a potent and selective inhibitor of Protein kinase G-1

N46 represents a new class of PKG inhibitors that was obtained by modifying (−)-balanol, a potent, but non-selective inhibitor of Ser/Thr kinases. The ATP pocket in PKG differs from that of other members of this kinase family and our computer-based models allowed us to design derivatives of (−)-balanol that would fit into the ATP site of PKG, but not that of other kinases. N46, differs from (−)-balanol in being much more selective and more stable in serum (Tables 1 and 2). Selectivity is a significant issue because kinases have essential roles in many cell types. We therefore evaluated the selectivity of N46, first against a panel of 274 kinases (Supplemental Table 1, available online at http://links.lww.com/PAIN/A379), and then by examining in greater detail the 16 human kinases that were most affected by N46 (Table 1). Only 12 of the latter, which included isoforms, were inhibited by more than 50% at a dose of N46 where PKG-1 was inhibited 100%. An off-target hit rate of 4.4% (12 out of 274) makes N46 a highly selective PKG-1 inhibitor.

The finding that N46 was effective against AMPK was interesting because this kinase contributes to nociception and the development of hyperexcitability after nerve injury.23 However, the response to nerve injury is far more global than that to inflammation, due to the need to promote repair. Whether AMPK is also activated by an inflammation warrants investigation. As to why N46 recognizes AMPK, our homology models show that N46 selectivity for PKG-1 can be attributed to the hydrophobicity around the terminal phenone distal to the hinge region and it turns out that AMPK has very similar residues in that region. There is, however, an alanine in the hinge region in PKG-1 that is not present in AMPK and it should be possible to take advantage of this difference to design a derivative of N46 that will discriminate between the two kinases.

N46 is an effective analgesic for inflammatory pain associated with activated PKG-1α and the presence of LTH.

Both N46 and RPG alleviated the thermal hyperalgesia that appears after injecting CFA into the hind paw (Figs. 1 and 3A), thereby validating a connection between PKG-1α and thermal hyperalgesia. However, N46 was effective when delivered via injection into the intrathecal space or the tail vein and also blocked pain that was already present for 2 days, indicating that it was acting on the mechanism responsible for persistent pain. We also showed that N46 was effective in attenuating the pain associated with OA. Osteoarthritis was selected because of its association with LTH.30 An intra-articular injection of monosodium iodoacetate in rats produces joint pathology that resembles human OA, including ulceration, fibrillation, loss of proteoglycan in cartilage tissue, exposure of subchondral bone17,22 as well as a persistent pain that lasts for weeks.24,47 Fourteen days after confirming a significant shift of weight bearing from the monosodium iodoacetate-injected limb to the contralateral limb, we injected 5 nmol N46 into the intra-articular space. One day later, there was a significant improvement in weight bearing asymmetry and the effect lasted for 7 days (Fig. 4). These results are promising because they show that a single dose of N46 not only attenuated the pain, but it did so well after the pain was established and that a single injection was effective for 7 days.

N46 was effective in both models, but we do not know in either whether PKG-1α was chronically active in response to the lesion, or whether it was being continuously activated due to the persistent presence of inflammatory agents.42–44 Regardless, N46 will be effective in either circumstance because it both blocks the activation of PKG-1α and inhibits the already activated kinase.

4.3. Studies in vivo

N46 did not affect the contralateral leg in our experiments (Fig. 3C and D), indicating that its effects are not global, nor did it affect motor control, which is consistent with the fact that PKG-1α is absent from motor neurons.42 To get an idea of how N46 is distributed among the tissues in the rat, N46 was injected and tissues were removed and assayed at 10 minutes and 20 hours later (Table 3). N46 is widely distributed by 10 minutes, but is largely excreted and its level in most tissues has declined by 20

Table 3

Tissue	Amount*	0 min	16-20 h
Tissue	10 min	16-20 h	
Plasma	0.47	5.38	
Urine	26.30	0.05	
Heart	6.55	BDL†	
Liver	28.05	9.09	
Lung	13.25	3.15	
Kidney	82.80	0.97	
DRG	13.75	9.00	
Brain	BDL	BDL	
Spinal cord	BDL	BDL	
Cerebellum	0.95	BDL	

N46 (509 µg = 1 µmol, in 1% DMSO/normal saline) was injected into the tail vein of 2 rats. Tissue samples from each rat were collected at the times indicated, combined, homogenized on ice, and the amount of N46 was determined by LCMS. Baseline values, determined from the control, were subtracted (see Methods). * Plasma and urine values are µg/mL, tissues are µg/g. † Below Detection Limit (BDL).
hours (Table 3). N46 was not detected in the CNS, which would explain the absence of sedation in the rats injected with N46, but was present in the DRG in our experiments. The latter is significant because the DRG house the neuronal cell bodies that contain the activated PKG-1α and exhibit the LTH. The finding that N46 was present in the heart within 10 minutes prompted us to follow a recent recommendation to evaluate potential heart problems early, rather than later in drug development. Consequently, we tested several parameters of heart function from the time of N46 injection and continuously for 30 minutes and found no evidence of short-term affects. These findings are encouraging, but preliminary and more extensive and longer-term assessments will be necessary as the development of N46 as an antinociceptive agent progresses.

4.4. Protein kinase G and the transient receptor protein vanilloid-1 channel

Studies of OA in humans showed an increase in TRPV1 immunoreactivity in synovium21 and studies in rats indicated that TRPV1 antagonists can reduce the pain of OA.10,19 Unfortunately, these antagonists have limited use because they induce hyperthermia.5,28 It is significant, therefore, that several lines of evidence support the idea that the activation of
the TRPV1 is mediated by PKG-1α: First, both the TRPV1 and PKG-1α are co-localized in lightly myelinated C-type nociceptive neurons.42 Second, the levels of TRPV1 protein increase in bone cancer,33 as does the activity and level of PKG-1α. Third, capsaicin binds selectively to the TRPV1 and we found, consistent with work by others,14,29 that injecting capsaicin into the hind paw elicits an acute allodynia (Fig. 6A) and a transient thermal hypersensitivity (Fig. 6B) that are both effectively attenuated by N46 (Fig. 6). Fourth, capsaicin stimulates cyclic GMP (cGMP) production via nitric oxide (NO) in DRG neurons,3 which is the cascade that activates PKG-1α. Lastly, when we injected capsaicin under the perineurium of the sciatic nerve, there was a significant activation of PKG-1α relative to controls (Fig. 7). Consequently, the ability of N46 to alleviate capsaicin-induced mechanical and thermal hypersensitivities suggests that inhibiting PKG-1α could extend beyond pain associated with LTH and might alleviate inflammatory pain that arises in response to the TRPV1.

5. Conclusion

We have demonstrated that N46 is an effective antinociceptive agent in rat models of inflammatory chronic pain. Two of the results are particularly promising: N46 attenuated pain that was already well established, and, as shown in the OA model, a single dose of N46 could alleviate pain for a long period, suggesting that long-term exposure to N46 might not be necessary. Therefore, we have provided proof of principle that a clinically acceptable form of N46 has the potential to be an important treatment for some types of chronic inflammatory pain.

Conflict of interest statement

The authors have no conflict of interests to declare.

Acknowledgements

The authors would like to thank Drs. Zhengxiang Zhu, Serge Cremers, and Tiffany Thomas for their help in acquiring the LC/MS/MS data for Tables 2 and 3. Y.-J. Sung, S. Deng, Y. Xie, J. Greenwood, R. Farid, D. W. Landry, and R. T. Ambon are listed as coinventors on a patent, US8846742B, assigned to The Trustees of Columbia University in the City of New York. The patent is not licensed and the authors have no conflict of interests to declare.
[42] Sung YJ, Chiu DT, Ambron RT. Activation and retrograde transport of protein kinase G in rat nociceptive neurons after nerve injury and inflammation. Neuroscience 2006;141:697–709.

[43] Sung YJ, Walters ET, Ambron RT. A neuronal isoform of protein kinase G couples mitogen-activated protein kinase nuclear import to axotomy-induced long-term hyperexcitability in Aplysia sensory neurons. J Neurosci 2004;24:7383–95.

[44] Sung YJ, Wu F, Schacher S, Ambron RT. Synaptogenesis regulates axotomy-induced activation of c-Jun-activator protein-1 transcription. J Neurosci 2006;26:6439–49.

[45] Tao YX, Johns RA. Activation of cGMP-dependent protein kinase Ialpha is required for N-methyl-D-aspartate- or nitric oxide-produced spinal thermal hyperalgesia. Eur J Pharmacol 2000;392:141–5.

[46] Tegeeder I, Del Turco D, Schmidtke A, Sausbier M, Feil R, Hofmann F, Deller T, Ruth P, Geisslinger G. Reduced inflammatory hyperalgesia with preservation of acute thermal nociception in mice lacking cGMP-dependent protein kinase I. Proc Natl Acad Sci U S A 2004;101:3253–7.

[47] Wu C, Gavva NR, Brennan TJ. Effect of AMG0347, a transient receptor potential type V1 receptor antagonist, and morphine on pain behavior after plantar incision. Anesthesiology 2008;108:1100–8.

[48] Zelenka M, Schafers M, Sommer C. Intraneural injection of interleukin-1beta and tumor necrosis factor-alpha into rat sciatic nerve at physiological doses induces signs of neuropathic pain. PAIN 2005;116:257–63.

[49] Zhang HM, Zhou LJ, Hu XD, Hu NW, Zhang T, Liu XG. Acute nerve injury induces long-term potentiation of C-fiber evoked field potentials in spinal dorsal horn of intact rat. Sheng Li Xue Bao 2004;56:591–6.

[50] Zhang X, Wu J, Fang L, Willis WD. The effects of protein phosphatase inhibitors on the duration of central sensitization of rat dorsal horn neurons following injection of capsaicin. Mol Pain 2006;2:23.