Genome-wide association study of 1,5-anhydroglucitol identifies novel genetic loci linked to glucose metabolism

Supplementary Materials

Man Li1,2, Nisa M. Maruthur1,3,4, Stephanie Loomis1, Maik Pietzner11,12, Kari E. North5, Hao Mei6, Alanna C. Morrison7, Nele Friedrich11,12, James S. Pankow8, Matthias Nauck11,12, Eric Boerwinkle7,9, Alexander Teumer12,13, Elizabeth Selvin1,3,4, Anna Köttgen*1,10

1 Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
2 Division of Nephrology, Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, Utah
3 Department of Medicine, Division of General Internal Medicine, The Johns Hopkins University School of Medicine, Baltimore, Maryland
4 The Welch Center for Prevention, Epidemiology, and Clinical Research, The Johns Hopkins University, Baltimore, Maryland
5 Department of Epidemiology, University of North Carolina, Chapel Hill, North Carolina
6 Department of Data Science, School of Population Health, University of Mississippi Medical Center, Jackson, Mississippi
7 Human Genetics Center, School of Public Health, University of Texas Health Science Center at Houston, Houston, Texas
8 Division of Epidemiology and Community Health, School of Public Health, University of Minnesota, Minneapolis, Minnesota
9 Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas
10 Institute of Genetic Epidemiology, Faculty of Medicine and Medical Center – University of Freiburg, Freiburg, Germany
11 Institute of Clinical Chemistry and Laboratory Medicine, University Medicine Greifswald, Germany
12 DZHK (German Centre for Cardiovascular Research), partner site Greifswald, Greifswald, Germany
13 Institute for Community Medicine, University Medicine Greifswald, Germany

Corresponding Author:
Anna Köttgen, MD MPH
Division of Genetic Epidemiology
Medical Center – University of Freiburg, Faculty of Medicine
Hugstetter Str. 49, 79106 Freiburg, Germany
Johns Hopkins Bloomberg School of Public Health, Baltimore, MD
anna.koettgen@uniklinik-freiburg.de
Figure S1. Quantile-Quantile plot of observed versus expected $-\log_{10}(P)$ of the GWAS of 1,5-anhydroglucitol. Shown are p-values for all single nucleotide variants with imputation quality >0.3 and minor allele frequency ≥ 0.01. Left panel: European ancestry participants ($\lambda=1.02$); right panel: African American participants ($\lambda=0.99$).
Figure S2. Manhattan plot of the results of the GWAS of 1,5-anhydroglucitol in African American participants from the ARIC study. The y-axis represents the $-\log_{10}$(association p-values) and the x-axis the genomic position (GRCh build37). The red dotted line indicates the genome-wide significance threshold ($P<5\times10^{-8}$), the blue dotted line the suggestive significance threshold ($P<1\times10^{-6}$).
Figure S3. Histograms of 1,5-AG concentration in European ancestry individuals (left) and African American individuals (right) in the ARIC study.

European ancestry (n=7,550)

- Mean: 18.89
- Median: 18.90

African Americans (n=2,030)

- Mean: 17.32
- Median: 17.40
Figure S4. Flow chart showing the overall study design.

European ancestry
- Discovery Phase (n=7550)
 - Statistical significance: $p<5 \times 10^{-8}$

Replication
- Statistical significance: $p<0.017$ and consistent effect direction in a study

Meta-analysis
- Combined association estimates

Additional Analyses in 7 loci
- Stratified analyses by diabetes status
 - Statistical significance for differences: $p>0.05$
- Look up in African Americans (n=2030)
 - Statistical significance $p<1.19 \times 10^{-5}$ (correction for independent variants across loci)
- Association with FG and A1c
 - Statistical significance: $p<8.33 \times 10^{-3}$ ($0.05/6$)

Conditional analyses in 6 loci
- 1 additional locus with $p<5 \times 10^{-8}$

Association of known FG/HbA1c loci with 1,5-AG
- Statistical significance: $p<0.002$ (FG) and <0.004 (HbA1c)

Metabolite GWAS (n=7824)

SHIP (n=966)
- 6 of 7 loci were successfully replicated
Figure S5. Regional association plots of the 6 loci containing genome-wide significant association signals in EA participants. Shown are the -log_{10}(association p-values) versus genomic position (on GRCh build37) in the GWAS analysis before (“unconditional” left panel: A1-F1) and after conditioning on the identified index variants (“conditional” right panels: A2-F2). The index variant is highlighted in purple.
Figure S6. Regional association plots of the 6 loci that reached genome-wide significance in the EA population in AA participants. Only independent SNPs in the 500kb flanking region of the index SNP in EA were considered for association among AA participants. The r^2 information was extracted from the 1000 Genomes Project Phase 3 in African (AFR) population. The annotated SNP is the variant identified among the EA population.
Table S1. Annotation for novel loci identified in genome-wide association analysis for 1,5-AG in European ancestry participants in the ARIC study. Annotation information was obtained from GeneCards.

Gene Name	Gene Description
EFNA1	EFNA1 encodes a member of the ephrin (EPH) family. Diseases associated with EFNA1 include arteriovenous malformation. Previous GWAS studies have found variants in EFNA1 are associated with liver enzyme levels, prostate cancer, and obesity related traits.
MCM6	MCM6 encodes one of the highly conserved mini-chromosome maintenance proteins (MCM) that are essential for the initiation of eukaryotic genome replication. Previous studies have found variants in MCM6 are associated with lactate intolerant in early adulthood.
SI	SI encodes a sucrose-isomaltase enzyme that is expressed in the intestinal brush border. Mutations in this gene are the cause of congenital sucrose-isomaltase deficiency.
SLC50A1	SLC50A1 is a protein coding gene. GO annotations related to this gene include glucoside transmembrane transporter activity.
MGAM	MGAM encodes maltase-glucoamylase that plays a role in the final steps of digestion of starch. Previous GWAS studies found variants in this gene are associated with blood metabolite levels, bitter taste response/reception, and anorexia nervosa.
MGAM2	MGAM2 is an important paralog of MGAM. It has been associated with carbohydrate binding and glucan 1,4-alpha-glucosidase activity.
SLC5A1	SLC5A1 encodes a integral membrane protein that is the primary mediator of dietary glucose and galactose uptake from the intestinal lumen. Mutations in this gene have been associated with glucose-galactose malabsorption.
SLC5A10	This gene is a member of the sodium/glucose transporter family. The protein encoded by this gene has the highest affinity for mannose and has been reported to be most highly expressed in the kidney. This protein may function as a kidney-specific, sodium-dependent mannose and fructose co-transporter. Alternative splicing results in multiple transcript variants that encode different protein isoforms.
LCT	LCT encodes glycosyl hydrolase 1 family of proteins. Mutations in this gene are associated with congenital lactase deficiency. Polymorphisms in this gene are associated with lactase persistence.
Table S2. Association between 1,5-AG concentrations and the index SNPs identified in the European ancestry participants stratified by fasting glucose status.

Variant ID	Chr	Position	A1/A2	Fasting glucose<126 mg/dl (N=7133)	Fasting glucose≥126 mg/dl (N=417)	P-difference between strata				
				Effect, ug/mL	SE	P	Effect, ug/mL	SE	P	
rs9330264	1	155095750	T/C	0.65	0.10	6.83x10^{-11}	0.08	0.59	0.89	0.25
rs182549	2	136616754	T/C	-1.20	0.10	7.39x10^{-33}	-0.98	0.60	0.11	0.37
rs9825346	3	164807679	G/A	-0.62	0.09	2.99x10^{-11}	0.21	0.55	0.71	0.13
rs11976181	7	141797564	T/C	1.13	0.12	7.03x10^{-20}	1.02	0.70	0.15	0.39
rs13229622	7	141844510	C/G	-0.65	0.11	1.10x10^{-8}	-1.04	0.60	0.08	0.32
rs117355297	17	18923681	T/C	-2.22	0.26	1.78x10^{-17}	-0.97	1.56	0.53	0.29
rs117086479	22	32389342	G/A	-1.12	0.20	1.75x10^{-8}	-0.58	1.08	0.59	0.35

A1 is the effect allele, i.e. the allele for which effect estimates are provided.
Abbreviations: Chr = chromosome; SE = standard error.
Table S3. Association of 1,5-AG-associated SNPs with HbA1c in published GWAS data from the MAGIC consortium

Locus b	Variant ID	A1/A2	AF	Effect (SE), ug/mL	P	Expl Var (%)	Proxy SNP	R² with index SNP c (D’)	Effect (SE), %	P
EFNA1/SLC50A1	rs9330264	T/C	0.36	0.64 (0.10)	2.96x10⁻¹⁰	0.51	rs11264319	0.53 (0.96)	-0.0059 (0.0034)	0.08
MCM6/LCT	rs182549	C/T	0.33	-1.19 (0.10)	6.54x10⁻¹²	1.91	rs4988235	1 (1)	0.0037 (0.0037)	0.31
SI	rs9825346	G/A	0.41	-0.54 (0.10)	1.28x10⁻⁸	0.42	rs9825346	1	0.0016 (0.0035)	0.64
MGAM/MGAM2	rs11976181	T/C	0.17	1.11 (0.12)	2.62x10⁻¹⁹	1.03	rs3800993	1 (1)	0.0087 (0.0048)	0.07
MGAM2	rs13229622	C/G	0.22	-0.73 (0.11)	8.64x10⁻¹¹	0.54	Not investigated due to lack of conditional estimates			
SLC5A10	rs117355297	T/C	0.04	-2.13 (0.26)	3.83x10⁻¹⁶	0.39	rs1621499	0.28 (0.97)	0.0044 (0.0054)	0.42
SLC5A1	rs117086479	G/A	0.06	-1.09 (0.20)	4.05x10⁻⁸	0.87	rs4821013	1(1)	-0.0017 (0.0068)	0.80

a The association result with fasting glucose was extracted from the published MAGIC Consortium GWAS result¹.

b The gene closest to the variant and other candidate genes are listed (index gene).

c R² information was calculated from the 1000 Genomes Project Phase 3 in European (EUR) population.

d rs13229622 is an independent SNP with genome-wide significant association with 1,5-AG found through conditional analysis. A1 is the effect allele, i.e. the allele for which effect estimates are provided. Abbreviations: Chr = chromosome; AF = effect allele frequency; SE = standard error; SNV = single nucleotide variation; Expl Var = proportion of 1,5-AG variance explained.
Table S4. The association with 1,5-AG for 26 known fasting glucose-associated SNPs and 13 known hemoglobin A1c-associated SNPs in the EA ARIC participants without diagnosed diabetes.

SNPs	Trait	Reported Gene	Chr:position	A1/A2	AF	Effect, ug/mL	SE	P
rs340874	FG	PROX1	1:214159256	T/C	0.45	-0.061	0.09	0.52
rs1371614	FG	DPYSL5	2:27152874	T/C	0.25	-0.011	0.11	0.92
rs780094	FG	GCKR	2:27741237	T/C	0.40	-0.061	0.09	0.52
rs3736594	FG	MRPL33	2:27995781	A/C	0.26	-0.013	0.11	0.90
rs11708067	FG	ADCY5	3:123065778	G/A	0.23	0.056	0.11	0.62
rs11920090	FG	SLC2A2	3:170717521	A/T	0.13	-0.005	0.14	0.97
rs13179048	FG	PCSK1	5:95542726	A/C	0.31	-0.007	0.10	0.95
rs2191349	FG	TMEM195, DGKB	7:15064309	G/T	0.47	0.019	0.09	0.84
rs4607517	FG	GCK	7:44235668	A/G	0.17	-0.052	0.13	0.68
rs4841132	FG	PPP1R3B	8:9183596	A/G	0.09	0.289	0.17	0.08
rs2722425	FG	ZMAT4	8:40484239	T/C	0.12	-0.094	0.14	0.51
rs11558471	FG	SLC30A8	8:118185733	G/A	0.32	0.055	0.10	0.59
rs7034200	FG	GLIS3	9:4289050	A/C	0.49	0.061	0.09	0.51
rs10885122	FG	ADRA2A	10:113042093	T/G	0.12	0.157	0.14	0.27
rs4506565	FG	TCF7L2	10:114756041	T/A	0.31	-0.252	0.10	0.01
rs11605924	FG	CRY2	11:45873091	A/C	0.47	-0.037	0.09	0.69
rs7944584	FG	MADD	11:47336320	T/A	0.27	-0.146	0.11	0.17
rs1483121	FG	OR4S1	11:48333360	A/G	0.13	-0.168	0.16	0.29
rs174550	FG	FADS1	11:61571478	C/T	0.34	-0.022	0.10	0.82
rs11603334	FG	ARAP1	11:72432985	A/G	0.16	0.102	0.13	0.42
rs10830963	FG	MTNR1B	11:92708710	G/C	0.28	-0.034	0.11	0.75
rs35767	FG	IGF1	12:102875569	A/G	0.15	-0.129	0.13	0.33
rs2293941	FG	PDX1	13:28491198	A/G	0.22	-0.219	0.11	0.05
rs11071657	FG	C2CD4B	15:62433962	G/A	0.38	0.001	0.10	0.99
rs6048205	FG	FOXA2	20:22559601	G/A	0.05	0.248	0.22	0.25
----------	---------	---------	-------------	-----	------	-------	------	------
rs2779116	HbA1c	SPTA1	1:158585415	T/C	0.26	-0.109	0.10	0.30
rs1402837	HbA1c	G6PC2	2:169757354	T/C	0.22	-0.065	0.11	0.56
rs1800562	HbA1c	HFE	6:26093141	A/G	0.06	0.224	0.19	0.25
rs7304797	HbA1c	GCK	7:44223721	A/G	0.17	-0.052	0.13	0.68
rs6474359	HbA1c	ANKI	8:41549194	C/T	0.03	0.041	0.28	0.88
rs4737009	HbA1c	ANKI	8:41630405	A/G	0.24	0.167	0.11	0.12
rs16926246	HbA1c	HK1	10:71093392	T/C	0.12	-0.047	0.15	0.75
rs7072268	HbA1c	HK1	10:71099913	T/C	0.49	-0.139	0.09	0.14
rs1387153	HbA1c	MTNR1B	11:92673828	T/C	0.29	-0.051	0.11	0.63
rs7998202	HbA1c	ATP11A, TUBGCP3	13:113331868	G/A	0.12	-0.249	0.15	0.10
rs1046896	HbA1c	FN3K	17:80685533	T/C	0.31	0.079	0.10	0.43
rs855791	HbA1c	TMRPS6	22:37462936	A/G	0.43	0.003	0.10	0.97
rs560887	HbA1c, FG	G6PC2	2:169763148	T/C	0.30	-0.064	0.10	0.53

A1 is the effect allele, i.e. the allele for which effect estimates are provided.
Abbreviations: FG = fasting glucose; Chr = chromosome; AF = effect allele frequency; SE = standard error.
References

1 Soranzo, N. et al. Common variants at 10 genomic loci influence hemoglobin A(1)(C) levels via glycemic and nonglycemic pathways. *Diabetes* **59**, 3229-3239, doi:10.2337/db10-0502 (2010).