Novel Types of AC Motors and Drives for Electrical and Hybrid Vehicles

Andrey Brazhnikov

Department of Fire Safety, Siberian Federal University, Krasnoyarsk, Russia

Email address: andrey-brazhnikov@mail.ru

To cite this article: Andrey Brazhnikov. Novel Types of AC Motors and Drives for Electrical and Hybrid Vehicles. Journal of Electrical and Electronic Engineering. Vol. 5, No. 1, 2017, pp. 13-22. doi: 10.11648/j.jeee.20170501.13

Received: January 18, 2017; Accepted: March 13, 2017; Published: March 15, 2017

Abstract: The study of AC inverter drives in the case when the number of their phases is more than four allows to find out some basic laws of these systems which does not manifest themselves when the phase number is equal to three or four. Two previously unknown laws of energy efficiency invariance are established in the field of multiphase (i.e. having the number of phases more than four) AC inverter drives. These laws ignoring leads necessarily to the decrease of the multiphase drive system energy efficiency.

Keywords: Index Terms-AC Motors Control, Energy Efficiency, Variable Speed Drives

1. Introduction

The study of AC inverter drives (ACID) in the case when the number \(m \) of ACID phases is more than four allows to find out some basic laws of these systems which do not manifest themselves when \(m \) is equal to three or four. A knowledge of these peculiar laws is of not only scientific (i.e. cognitive), but also great practical importance because these laws ignoring leads necessarily to the decrease of the ACID energy efficiency when \(m \geq 5 \).

By present time two previously unknown laws of space-temporal spectral relations have been established by the authors of this paper as a result of the corresponding investigations [1-12, 14, 17-19]. These laws are true for the case when the motor winding set is symmetric and electromagnetic processes in ACID are steady-state. They are essentially the laws of energy efficiency invariance for the field of multiphase (i.e. having the number of phases more than four) AC inverter drives [13, 15, 16].

2. Law of \(m \)-invariance

The first of these two laws links the ACID efficiency \(N \), phase number \(m \geq 5 \) and relative spectra \(U'(c) \) and \(B'(n) \), where \(U'(c) \) is the relative spectrum of the output (phase) voltage \(u(t) \) of inverter that is also the AC motor stator phase voltage, \(c \) is the number of the voltage \(u(t) \) harmonic (i.e. the number of a time harmonic), \(B'(n) \) is the relative spectrum of the function \(b(g) \) which describes the space distribution of the magnetic induction created by each phase winding of the AC motor stator in the machine air gap within the limits of the motor pole pitch, \(n \) is the number of the function \(b(g) \) harmonic (i.e. the number of a space harmonic), \(t \) is a time, and \(g \) is the space coordinate, which is plotting on the space coordinate curved axis \(Og \), that runs along entire length of the AC motor air gap \((g \in [0; 360], \) electrical degrees).

The above-mentioned relative spectra differ from the corresponding absolute (real) spectra in that the amplitude \(A'(x) \) of some relative spectrum harmonic is equal to

\[
A'(x) = A(x)/A(1), \tag{1}
\]

where \(A(x) \) is the amplitude of the corresponding (i.e. of the same name) harmonic of the absolute (real) spectrum and \(x \) is the number of a harmonic \((x \equiv c \) for \(U'(c) \) and \(x \equiv n \) for \(B'(n) \)). \(A(1) \) is the amplitude of one or another above-mentioned absolute (real) spectrum harmonic, number of which \(x = 1 \). It is obviously that the following equation is always fulfilled: \(A'(x) = 1 \).

The values \(U'(c) \) and \(B'(n) \) for all \(c \) and \(n \) are dimensionless. Therefore both their envelope lines may be constructed on the common two-dimensional subspace (plane) \(kOd \) (see Figure 1), where the axis \(Ok \) is horizontal, the axis \(Od \) is vertical, \(k \equiv c \) for \(U'(c) \), and \(k \equiv n \) for \(B'(n) \).
The values \(U^*(c) \) and \(B^*(n) \) are plotting on the axis \(Od \).

The above-mentioned law is given the title “law of ACID efficiency \(N \) invariance to the ACID phase number \(m \)” (or more simply, “law of \(m \)-invariance”). It is stated as follows: if \(b(g) = \text{const} \) when \(m = \text{var} \), then the envelope line of spectrum \(U^*(k) \) must lie not above the envelope line of spectrum \(B^*(k) \) on the plane \(kOd \) to ensure the invariability of the ACID efficiency \(N \) when the ACID phase number \(m \) is changing (see Figure 1, where \(I \) is the area, where the law of \(m \)-invariance is fulfilled, and \(II \) is the area, where the law of \(m \)-invariance is not fulfilled). Besides, the frequency composition of the function \(b(g) \) must be identical (at least) to the frequency composition of the voltage \(u(t) \) or be wider than it.

![Figure 1. Illustration of the law of \(m \)-invariance.](image)

The mathematical notation of the above mentioned law of \(m \)-invariance may have the following form:

\[
\forall m, \ [b(g) = \text{const}] \land [U^*(k) \leq B^*(k)] \Rightarrow [N = \text{const}].
\] (2)

In the case 2 (see Table 1) the ACID efficiency \(N \) decreases at the increase in the phase number \(m \).

The data, which are presented in Table 1, was obtained by the authors as a result of their corresponding researches [1-3]. These data lends support to the validity of the law of \(m \)-invariance.

In the case 2 (see Table 1), when the function \(b(g) \) is sinusoidal and the function \(u(t) \) has form of right-angled meander, the transition from unfulfillment to fulfillment of the law of \(m \)-invariance can be achieved by the corresponding change of the frequency converter control algorithm.

Case	Type of function \(b(g) \)	Type of function \(u(t) \)	Behavior of \(N \) when \(m = \text{var} \)	Fulfillment or unfulfillment of law of \(m \)-invariance
1	Sinusoidal	Sinusoidal	\(N = \text{const} \)	Fulfillment
2	Sinusoidal	Right-angled meander	\(N = \text{var} \)	Unfulfillment
3	Right-angled meander	Sinusoidal	\(N = \text{const} \)	Fulfillment
4	Right-angled meander	Right-angled meander	\(N = \text{const} \)	Fulfillment

3. Law of \(H \)-invariance

The second law concerns the phase-pole controlled multiphase ACID, i.e. when the phase-pole control method (PPM) is used in ACID [4-12, 18]. This law links the ACID efficiency \(N \), relative spectrum \(U^*(c) \) relative spectrum \(B^*(n) \) and integer-valued parameter \(H \) of PPM, where \(H \geq 1 \) (the value \(H = 1 \) corresponds to a traditional control mode, and the value \(H > 1 \) corresponds to PPM).

The essence of the control according to PPM is that in this case the electrical angles between the voltages (or currents) of the nearest phases of inverter increase by a factor of some whole number \(H \) without any change of the inverter voltage (or current) amplitude and frequency. During PPM application process, when the parameter \(H \) changes, the effect adequate to the synchronous change of the ACID phase number and number of motor poles appears.

The above-mentioned second law is given the title “law of ACID efficiency \(N \) invariance to the parameter \(H \) PPM” (or more simply, “law of \(H \)-invariance”). It is stated as follows: if \(u(t) = \text{const} \) when \(H = \text{var} \) then the identity \(B^*(n) = B^*(H \cdot n) \) must be provided to ensure the invariability of the ACID efficiency \(N \) when the parameter \(H \) is changing during PPM application process. Besides, for the mentioned purpose the law of \(m \)-invariance must also be fulfilled to spectra \(U^*(c) \) and \(B^*(n) \) for all values of parameter \(H \) (see Figure 2, where the line 1 is the \(n \)-dependence of...
for $H=1$ the line 2 is the n-dependence of $B^\ast(H \cdot n)$ for $H=2$ and the line 3 is the c-dependence of $U^\ast(c)$).

The mathematical notation of the above mentioned law of H-invariance may have the following form:

$$\forall H, [u(t) = \text{const}] \land [B^\ast(n) = B^\ast(H \cdot n)] \Rightarrow [N = \text{const}].$$

(3)

4. Ignoring Laws of Energy Efficiency Invariance

If the above-mentioned laws of ACID efficiency invariance are not fulfilled, then the ACID efficiency N decreases and when the ACID phase number m increases more than four and when the going from some traditional control mode to PPM is being attained. For example, m-dependence of the ACID efficiency N is presented in Fig. 3 for the case when the function $b(g)$ is sinusoidal and t-dependence of the voltage $u(t)$ has form of right-angled meander [1] (in this case the law of m-invariance is not fulfilled; see case 2 in Table 1).

It follows from Figure 3 that if the law of m-invariance is not fulfilled, the more is the ACID phase number m, the less is the ACID efficiency N (when $U^\ast(c) = \text{const}$ and $B^\ast(n) = \text{const at } m = \text{var}$).

It should be noted the following in addition to the law of m-invariance. The results of the investigations carried out by the authors of this paper [1-3, 19] show that in the case, when the law of m-invariance is not fulfilled (i.e. if $U^\ast(k) > B^\ast(k)$), the more is value Δ, the less is the ACID efficiency N at the given value m, where

$$\Delta = \lim_{k \to \infty} \frac{1}{k} \int_{k=1}^{k} [U^\ast(k) - B^\ast(k)]dk. \quad (4)$$

In support of the H-invariance law the mechanical characteristics (i.e. $w-M$ characteristics) of some multiphase phase-pole controlled induction motor with $m \geq 6$ are presented in Figure 4 for the cases when $H=1$ (see line 1) and $H=2$ (see lines 2 and 3), where the line 2 is the mechanical characteristic if the law of H-invariance is fulfilled, line 3 the mechanical characteristic if the law of H-invariance is not fulfilled, w is the speed of rotation, and M is the motor torque [4-12, 14, 17-19].

5. Design Implementation of Law of H-invariance

The law of H-invariance reduces to the following two conditions, which must be fulfilled to achieve the PPM application opportunity:

Condition 1: The space harmonics having numbers $n=pH$ must be contained in the spectrum of the function $b(g)$ describing the space distribution of the mutual inductances between motor phase windings for all parameter H values which have to be realized in the given drive system.

Condition 2: When $H > 1$, the amplitudes of the above mentioned space harmonics (i.e. having numbers $n=pH$)
must have the values being not less than those at $H=1$.

It is obviously that the fulfillment of these conditions (i.e. the above mentioned law of H-invariance) may be provided only with obtaining the conductive decoupling between the AC motor stator slots, which cannot be achieved if design of the motor and its stator winding set are traditional.

Because of this it is necessary to use some peculiar designs of multiphase AC liner and non-linear motors to ensure fulfillment of the H-invariance law [9, 14, 20].

According to this deduction the following three basic design versions were developed by the author of this paper:

Basic design version 1 (BDV-1). The AC motor stator winding set consists of the individual rods located in stator slots and insulated from stator magnetic circuit [29] (Figures 5, 6, and 7).

Basic design version 2 (BDV-2). The AC motor stator has toroidal-type winding set [26]. The motor rotor envelops the stator both on the outside and on the inside (when the motor is of rotating type) or from above and from below (when the motor is linear or bow-shaped).

Basic design version 3 (BDV-3). The AC motor stator core (i.e. magnetic circuit) consists of two parts magnetically separated from each other by diamagnetic shield.

Figure 5. The section of multiphase induction motor of rotating type worked out according to the basic design version BDV-1, where 1 are rods of the stator winding sets (the stator has not any magnetic circuit), 2 short-circuited ring, 3 is the motor case, 4 are insulators, and 5 is the E-shaped rotor core (magnetic circuit).

Figure 6. The stator of multiphase induction motor of rotating type worked out according to the basic design version BDV-1, where 1 are rods of the stator winding sets (the stator has not any magnetic circuit), and 2 is short-circuited ring.

Figure 7. Connection of m-rod stator winding to an m-phase frequency converter according to BDV-1, where FC is the frequency converter, T is m-phase transformer stepping down voltage, S is stator of an induction motor, R are the rods of stator winding, and NC are neutral conductors.

The application of any one of these design versions allows to achieve the fulfillment of the H-invariance law.

Below above mentioned three basic design versions (BDV-1, BDV-2, and BDV-3) are illustrated by concrete examples.

According to the basic design version BDV-1 the AC motor stator winding set consists of the individual rods located in stator slots and insulated from stator magnetic circuit. The rods can be made from copper, aluminum, etc. Every rod is connected to an individual phase of a frequency converter by one of its ends (Figure 5, 6 and 7). Other rods ends are connected in star having or not having a neutral conductor. The rods of the stator winding are connected to the frequency converter via an m-phase transformer stepping down voltage. In this case m is the number of the rods (i.e. the number of real phases of the drive system). Such winding design is simpler than the traditional ones, but in this case it is necessary to use transformer stepping down voltage, which has large mass-and-overall dimensions. This design version may be used for both linear and non-linear AC motors.

Such design can be used not only in the case when the motor rotor winding set consists of the individual rods, but also in the case when this winding set is of any usual type (for example, winding set of drum type) [30]. In this case such AC motor design version will allow to decrease the magnetic losses in the motor (Figure 8).
The design of multiphase induction motor of rotating type worked out according to the basic design version BDV-2 is shown in section in Figure 9. This motor has toroidal-type stator winding set and E-shaped rotor enveloping the motor stator both on the outside and on the inside. The motor stator has two rows of slots: the first row is located on the inner surface of the stator core (the inner stator slots), and the second row is located on the outer surface of it (the outer stator slots). The slots disposition on the stator surface of the 8-phase induction motor developed according to the basic design version BDV-2 is shown in Figure 10. Every stator phase winding drops in radial direction in two slots – in one inner slot and in one outer slot.

Exterior view of the 24-phase induction motor stator, which is developing according to the drawing shown in Figure 6, is shown in Figure 11.

The various versions of the E-shaped rotor design of such induction motor can be used [20-22]. For example, this rotor can be laminated [28] (Figure 12) or may have solid ferromagnetic body [27] with circular or U-shaped axial-and-radial slots (Figure 13) made on the rotor surface according [21] for the decrease of the electrical losses in the rotor circuit.

The stator of a 6-phase flat type AC linear motor, which is worked out according to the basic design version BDV-3 is presented in Figure 14. In this case every stator phase winding drops in two slots separated from each other by diamagnetic shield DS. The diamagnetic shield DS divides the magnetic field created by the stator winding into two subfields separated in space. The change of magnetic field pole number on space intervals between borders of everyone above mentioned subfield is observed during PPM application process.

Rotation version of this motor is shown in Figure 15.
Figure 12. E-shaped laminated rotor, where 1, 2 are U-shaped axial-and-radial rods, 3 are short-circuited rings, 4 is laminated part of rotor base, 5 solid part of rotor base, 6 are studs.

Figure 13. E-shaped solid rotor, where (a – having U-shaped axial-and-radial slots; b – having circular slots), where 1 is rotor body, 2 U-shaped axial-and-radial rods, 3 is 3 are short-circuited rings, 4 is laminated part of rotor base, 5 solid part of rotor base, 6 are studs.

Figure 14. Design version of the stator of a 6-phase flat type AC linear motor and winding connections, where FC is a 6-phase frequency converter, S is the motor stator, W is phase multiple-turn winding of the motor stator, and DS is diamagnetic shield.
6. Novel Generation of Hybrid AC Drives

At present the hybrid traction drives based on the 3-phase induction motors have found a wide application in the field of vehicles of different types (i.e. ground, marine, air vehicles). Among the grave disadvantages of them is a high energy loss in inverter which energizes the 3-phase induction motor (or motors). The existence of these losses is explained by high switching frequency of inverter transistors.

To eliminate this disadvantage it is necessary to use the radically new principles of hybrid AC traction systems designing. According to these novel principles the above mentioned systems must not contain any power electronic elements operating with high frequency.

The creation of such novel hybrid traction systems is possible on the base of multiphase (i.e. having the number \(m \) of phases more than four) AC generators (for example, Diesel generators) and non-traditional controlled multiphase induction motors [21-25].

The prospects for the use of multiphase asynchronous linear and non-linear drives in the field of vehicles of different types (i.e. ground, marine, air vehicles) were presented and described in a number of papers (for example, [17, 19]).

However the increase of the phase number of asynchronous electric drive system allows not only to improve a number of its technical-and-economic characteristics, but also to create the hybrid traction drives according to scheme “AC Diesel-generator – induction motor(s)” which will differ fundamentally from the existing ones, and have more simple design and control unit and less energy losses (in comparison with analogous existing hybrid drives). These hybrid traction drives of novel type are based on the use of the multiphase AC Diesel generators and non-traditional controlled multiphase induction motors.

The basic principles of design of these hybrid traction drives of novel generation are presented in this paper. These basic design principles are the following:

- the increase of AC Diesel generator and induction motor phase numbers more than four;
- the application of such non-traditional methods of control by multiphase induction motor as the over-synchronous control method (OSM) and the phase-pole one (PPM) which are the kinds of the over-phase control method (OPM) [17, 19];
- the use of a number of novel design versions of multiphase AC induction motor.

PPM-controlled multiphase induction motor is in effect a multi-speed motor having only one winding set that is equal (in its complexity) to the winding set of 3-phase single-speed induction motor. The quantity of discrete values of the motor speed rises if the phase number of PPM-controlled multiphase AC induction motor increases.

Because of this there is no need to use a transistor inverter in such multiphase hybrid traction drive to regulate the induction motor rotor speed. The corresponding thyristor or electromechanical commutator is used in the multiphase hybrid traction drive of novel type instead transistor inverter. The operating frequency of such commutator is much less than the operating frequency of above mentioned inverter IGBTs. Owing to this the energy losses are much less and the motor control process is significantly simpler in the multiphase hybrid traction drive of novel generation (in comparison with the analogous existing hybrid drives).

The combined application of OSM and PPM are necessary for obtaining of the following:

- wide range of the motor speed regulation;
- small spacing (step) of the stepwise regulation of the motor speed.

The functional diagram of the power section of the proposed hybrid traction drive system is presented in Figure 16.

In this hybrid drive system the change of motor speed is reached by the change in the version of connection output terminals of \(m \)-phase AC generator (for example, Diesel generator) \(DG \) to the terminals of the stator phase windings of \(m \)-phase induction motor \(M \). This change is reached by the phase commutator \(PC \) according to the corresponding signals which are derived from the control unit \(CU \) of the proposed hybrid traction drive system.

The mode of operation of the multiphase Diesel generator is optimal constantly.
6.1. The Design of Diesel Generator

The number of phases of the AC Diesel generator is more than four \((m > 4)\). It is its sole constructive difference from traditional 3-phase AC Diesel generator. The winding set of the \(m\)-phase Diesel generator is of traditional drum type. The number \(m\) of phases of this winding set must be equal to the phase number of the AC induction motor.

6.2. The Commutator

Phase shifts between of the nearest phase voltages of the motor must be increased by a factor of some whole number when OPM is used. Because of this the transition from traditional control to OPM is possible by the change in order of the connection between the motor phase windings and motor power supply phases (for example, generator phases) by application of the commutator (without any use of an inverter).

The electronic or mechanical phase commutator \(PC\) (see Figure 16) must connect output terminals of generator to the terminals of the motor stator phase windings according to the following algorithm:

\[
i_{m} = N_{1} - N_{2},
\]

where

\[
N_{1} = H \cdot (i_{n} - 1) + 1,
\]

\[
N_{2} = \begin{cases}
0 & \text{if } H = 1, \\
0 & \text{if } H \geq 2, \\
m \cdot \left(\left(N_{1} - 1\right)/m\right) & \text{if } m > 2
\end{cases}
\]

\(i_{m}\) is the number of a motor stator phase winding, \(i_{n}\) is the number of an Diesel generator phase, and \(\left\lfloor (N_{1} - 1)/m \right\rfloor\) is the integer part of the number \((N_{1} - 1)/m\).

The peculiarities of the phase commutator \(PC\) may be conveniently shown by the example of the following case (see Figure 17):

- \(m = 6\),
- 6-phase inverter has traditional scheme and operates at the sole value of the parameter \(H: H = 1\),
- the change in the parameter \(H\) value is achieved by phase commutator \(PC\),
- the parameter \(H\) may be equal to 1 or 2,
- the logic signal \(h\) depends on the value of the OPM parameter \(H\) (i.e. \(h=1\) if \(H=1\), and \(h=0\) if \(H=2\)),
- and \(TC\) is the electronic or mechanical terminal changer for the phase having number \(j=m+1\), \(i \in [1; m]\), \(j \in [1; m-1]\).

If the drive system is low-powered, the type of electronic terminal changers \(TC\) may be logic. The electronic logic version of the terminal changer \(TC_{j}\) is shown in Figure 18 (for the case of low-power drive system), where the unit “&” is an AND-type logic gate, and the unit “≥1” is an OR-type logic gate. The mechanical switching analogue of the logic scheme shown in Figure 18 is presented in Figure 19.

These schemes carry out the following logic function:

\[
y_{j} = a_{j} \& h \lor b_{j} \& h
\]

6.3. Possibility to Decrease the Step of Speed Changing

The main disadvantage of the proposed hybrid drive system is the stepwise change of the motor speed. However it is possible to obtain some quasi-continuous change of this speed by the decrease in the step of its change. This speed change step decrease can be obtained by the use of the following methods:

- **Method 1.** By the choice of some great value of the parameter \(H\) (not \(H = 1\), but \(H \gg 1\)) as the nominal value of this parameter. For example, the above mentioned speed change step decrease may be characterized by coefficient \(V_{S}/V_{S+1}\), where \(V_{S}\) is the motor movable secondary element motion speed before the change of the parameter \(H\), \(V_{S+1}\) is this speed after the change of the parameter \(H\), and \(S\) is the step of the parameter \(H\) change. The values of the coefficient \(V_{S}/V_{S+1}\) are shown in Table 2 for the case when \(m = 360\) and the parameter \(H\) changes from its least value (i.e. \(H = 1\)) to the greatest one (i.e. \(H = 5\)), where \(H_{0}\) is the value of the parameter \(H\) chosen as the nominal value of this parameter.

Figure 17. Structural diagram of the 6-phase single-motor OPM-controlled system “Diesel generator – induction motor” with phase commutator between Diesel generator and induction motor, where \(S_{i}\) is the source of the signal \(h\), and \(TC\) are the electronic or mechanical terminal changers.

Figure 18. Logic version of the electronic terminal changer \(TC_{j}\).
Figure 19. Mechanical switching analogue of the logic scheme shown in Figure 18.

Table 2. The values of the coefficient V_S/V_{S+1} for the case when $m = 360$ and the parameter H changes from its least value (i.e. $H = 1$) to the greatest one (i.e. $H = 5$).

S	H_{ac}	1	2	3	4
1		2.0	1.5	1.3	1.25
2		1.5	1.3	1.25	–
3		1.3	1.25	–	–
4		1.25	–	–	–

Method 2. By the use of not 1-, but 2-stage (2-level) commutator [31] shown in Figure 20. In this case the 1st commutator stage implements the transition to PPM, and the 2nd commutator stage implements the transition to OSM. The combined operation of both commutator stages will allow to decrease the motor speed change step.

Method 3. By the combined use of the above mentioned two methods (the method 1 and method 2).

The increase of the phase number of asynchronous electric drive system allows not only to improve a number of its technical-and-economic characteristics, but also to create the hybrid traction drives according to scheme “Diesel-generator – AC induction motor (s)” without application of any power electronic elements operating with high frequency, which will differ fundamentally from the existing ones, and have more simple design and control unit and less energy losses (in comparison with analogous existing hybrid drives).

7. Conclusion

The above-mentioned laws of ACID efficiency invariance are particular cases of the fundamental law (or principle), which prevails in the field of multiphase AC drives and may be stated as follows: for the ensuring of maximal energy efficiency of multiphase ACID the laws of space-temporal spectral relations, which acts in the field of these systems, must be necessarily fulfilling during the process of both ACID structural elements design and motor control mode elaboration.

References

[1] Brazhnikov, A. V.: Multiphase Inverter Electric Drive with Different Versions of Induction Motor Rotor. Ph. D. dissertation. – Department of Electrical Machines and Drives, Tomsk Polytechnic Institute, Tomsk, Russia, 1985, 210 p. (in Russian).

[2] Brazhnikov, A. V.; Kochetkov, V. P.: Multiphase Frequency Controlled Inverter Electric Drive with Induction Motor. Collection of papers presented at 6th International Conference on Electrical Machines and Drives ELMA ’90. – Varna, Bulgaria, October 1990, paper No 12, 10 p. (in Russian).

[3] Brazhnikov, A. V.; Kochetkov, V. P.: Multiphase Frequency Controlled Inverter Electric Drive with Induction Motor. Proc. of 6th International Conference on Electrical Machines and Drives ELMA ’90. – Varna, Bulgaria, October 1990, p. 44 (in Russian).

[4] Brazhnikov, A. V.: Additional Resources of Control of Multiphase Inverter Drives. Proc. of 7th International Conference on Electrical Machines and Drives ELMA ’93. – Varna, Bulgaria, October 1993, pp. 325-332.

[5] Brazhnikov, A. V.; Dovzhenco, N. N.: Beyond Routine Control of Multiphase Inverter Drives. Proc. of International Conference on Power Electronics, Motion Control and Association Applications PEMC ’94, vol. 1. – Warsaw, Poland, September 1994, pp. 99-104.

[6] Brazhnikov, A. V.; Dovzhenco, N. N.; Izmaylov, E. B.: Prospects for the Use of Multiphase Electric Drives in Field of Mining Machines. Proc. of 3rd International Symposium on Mine Mechanization and Automation MMA ’95, vol. 1. – Golden, Colorado, USA, June 1995, pp. 13-13-13-23.

[7] Brazhnikov, A. V.; Dovzhenco, N. N.; Gilyov, A. V.; Butkin, V. D.: Improvement of Technical-and-Economic Characteristics of Drilling Rigs Owing to the Use of Multiphase Electric Drives. Proc. of ISDT 16th Annual Technical Conference. – Las Vegas, Nevada, USA, May 1996, 8 p.

[8] Brazhnikov, A. V.; Dovzhenco, N. N.: Advantages of Multiphase Electric Drives – Application in Drilling Rigs. Proc. of 4th International Symposium on Mine Mechanization and Automation MMA ’97, vol. 1. – Brisbane, Queensland, Australia, July 1997, pp. B4-37 - B4-42.
