Differential Geometry

Log-concavity of complexity one Hamiltonian torus actions

Log-concavité des actions toriques hamiltoniennes de complexité un

Yunhyung Cho, Min Kyu Kim

1. Introduction

In statistical physics, the relation $S(E) = k \log W(E)$ is called Boltzmann’s principle where W is the number of states with given values of macroscopic parameters E (like energy, temperature, ...), k is the Boltzmann constant, and S is the entropy of the system, which measures the degree of disorder in the system. For the additive values E, it is well known that the entropy is always a concave function. (See [9] for more details.) In a symplectic setting, consider a Hamiltonian G-manifold (M, ω) with the moment map $\mu: M \rightarrow g^*$. The Liouville measure m_L is defined by

$$m_L(U) := \int_U \frac{\omega^n}{n!}$$

for any open set $U \subset M$. Then the push-forward measure $m_{DH} := \mu_* m_L$, called the Duistermaat–Heckman measure, can be regarded as a measure on g^* such that for any Borel subset $B \subset g^*$, $m_{DH}(B) = \int_{\mu^{-1}(B)} \frac{\omega^n}{n!}$ tells us that how many states of our system have momenta in B. By the Duistermaat–Heckman theorem [2], m_{DH} can be expressed in terms of the density function $DH(\xi)$ with respect to the Lebesgue measure on g^*. Therefore the concavity of the entropy of a given periodic Hamiltonian system on (M, ω) can be interpreted as the log-concavity of $DH(\xi)$ on the image of μ. A. Okounkov [10]
proved that the density function of the Duistermaat–Heckman measure is log-concave on the image of the moment map for the maximal torus action, when \((M, \omega)\) is the co-adjoint orbit of some classical Lie groups. In [3], W. Graham showed that the log-concavity of the density function of the Duistermaat–Heckman measure also holds for any Kähler manifold admitting a holomorphic Hamiltonian torus action. V. Ginzberg and A. Knutson conjectured independently that the log-concavity holds for any Hamiltonian G-manifolds, but this turns out to be false in general, shown by Y. Karshon [5]. Further related works can be found in [7] and [1].

As noted in [5] and [3], log-concavity holds for Hamiltonian toric (i.e. complexity zero) actions, and Y. Lin dealt with the log-concavity of complexity two Hamiltonian torus actions in [7]. However, there is no result on the log-concavity of complexity one Hamiltonian torus action. This is why we restrict our interest to complexity one. From now on, we assume that \(M\) is an open \(m\)-face (resp. \((n-m)-face\) of the x-ray, \(\xi\)). Let \(\xi \subseteq M\) be the set of points whose stabilizers are \(T_n\)-actions. By relabeling, we can assume that the \(T_n\)'s are connected and the stabilizer of points in \(M\) is \(T_n\)-dimensional. Our interest is mainly in open dense in its corresponding reduced symplectic form on \(M\).

Now, we define the x-ray of our action. Let \(T_1, \ldots, T_N\) be the subgroups of \(T_n\) which occur as stabilizers of points in \(M\). Let \(M_i\) be the set of points whose stabilizers are \(T_i\). By relabeling, we can assume that the \(M_i\)'s are connected and the stabilizer of points in \(M_i\) is \(T_i\). Then, \(M = M_i\) is a disjoint union of \(M_i\)'s. Also, it is well known that \(M_i\) is open dense in its closure and is just a component of the fixed set \(M\). Let \(M_i\) be the set of \(M_i\)'s. Then, the \(x\)-ray of \((M^{\infty}, \omega, \mu)\) is defined as the set of \(\mu(M_i)\)'s. Here, we recall a basic lemma:

Lemma 2.1. (See [4, Theorem 3.6].) Let \(h\) be the Lie algebra of \(T_i\). Then \(\mu(M_i)\) is locally of the form \(x + h^\perp\) for some \(x \in t^\ast\).

By this lemma, \(\dim_{\mathbb{R}} \mu(M_i) = m\) for \((n-1-m)\)-dimensional \(T_i\). Each image \(\mu(M_i)\) (resp. \(\mu(M_i)\)) is called an \(m\)-face (resp. an open \(m\)-face) of the x-ray if \(M_i\) is \((n-1-m)\)-dimensional. Our interest is mainly in open \((n-2)\)-faces of the x-ray, i.e. codimension one in \(t^\ast\). Fig. 1 is an example of \(x\)-ray with \(n = 3\) where thick lines are \((n-2)\)-faces. Now, we can prove the main theorem.

Proof of Theorem 1.1. When \(n = 2\), we obtain a proof by [6, Lemma 2.19]. So, we assume \(n \geq 3\). Pick arbitrary two points \(x_0, x_1\) in the image of \(\mu\). We should show that

\[
t \log(DH(x_1)) + (1-t) \log(DH(x_0)) \leq \log(DH(tx_1 + (1-t)x_0))
\]

(1)
for each \(t \in [0, 1] \). Put \(x_t = tx_1 + (1 - t)x_0 \).

Let us fix a decomposition \(T = S^1 \times \cdots \times S^1 \). By the decomposition, we identify \(t \) with \(\mathbb{R}^{n-1} \), and \(t \) carries the usual Riemannian metric \(\langle \cdot, \cdot \rangle_0 \) which is a bi-invariant metric. This metric gives the isomorphism

\[
\iota : t \mapsto t^* , \quad X \mapsto \langle X, X \rangle_0.
\]

For a small \(\epsilon > 0 \), pick two regular values \(\xi_1 \) in the ball \(B(x_t, \epsilon) \) for \(i = 0, 1 \) which satisfy the following two conditions:

i. \(\xi_1 - \xi_0 \in t(\mathbb{Q}^{n-1}) \),

ii. the line \(L \) containing \(\xi_0, \xi_1 \) in \(t^* \) meets each open \(m \)-face transversely for \(m = 1, \ldots, n - 2 \).

Transversality guarantees that the line does not meet any open \(m \)-face for \(m \leq n - 3 \). Put

\[
\xi_t = t\xi_1 + (1 - t)\xi_0 \quad \text{and} \quad X = t^{-1}(\xi_1 - \xi_0).
\]

Let \(t \subset t \) be the one-dimensional subalgebra spanned by \(X \). By i., \(t \) becomes a Lie algebra of a circle subgroup of \(T \), call it \(K \). Let \(t' \) be the orthogonal complement of \(t \) in \(t \). Again by i., \(t' \) becomes a Lie subgroup of an \((n - 2)\)-dimensional subtorus of \(T \). Let

\[
p : t^* \to \mathbb{R} = \langle t' \rangle
\]

be the orthogonal projection along \(t^* = \iota(t') \). If we put \(\mu' = p \circ \mu \), then \(\mu' : M \to t^* \) is a moment map of the restricted \(T' \)-action on \(M \). Put \(\xi' = \iota(\xi_t) \) for \(t \in [0, 1] \).

We want to show that \(\xi' \) is a regular value of \(\mu' \). For this, we show that each point \(x \in \mu'^{-1}(\xi') \) is a regular point of \(\mu' \). By ii. and Lemma 2.1, stabilizer \(T_x \) is finite or one-dimensional. If \(T_x \) is finite, then \(x \) is a regular point of \(\mu \) so that it is also a regular point of \(\mu' \). If \(T_x \) is one-dimensional, then \(\mu(x) \) is a point of an open \((n - 2)\)-face \(\mu(M_i) \) such that \(x \in M_i \).

Let \(h \) be the Lie algebra of \(T_i = T_x \). By Lemma 2.1, \(p(\mu(M_i)) = p(h^+) \), and the kernel \(t \) of \(p \) is not contained in \(h^+ \) by transversality. So, \(p(h^+) \) is the whole \(t^* \) because \(\dim h^+ = \dim t^* \), and this means that \(x \) is a regular point of \(\mu' \). Therefore, we have shown that \(\xi' \) is a regular value of \(\mu' \).

Since \(\xi' \) is a regular value, the preimage \(\mu'^{-1}(\xi') \) is a manifold and \(T' \) acts almost freely on it, i.e. stabilizers are finite. So, if we denote by \(M_{\xi'} \) the symplectic reduction \(\mu'^{-1}(\xi')/T' \), then it becomes a symplectic orbifold carrying the induced symplectic \(T'/T' \)-action. We can observe that the image of \(\mu'^{-1}(\xi') \) through \(\mu \) is the thick dashed line in Fig. 1. Since \(K/(K \cap T') \cong T/T' \), we will regard \(K/(K \cap T') \) and \(t \) as \(T/T' \) and its Lie algebra, respectively. The map \(\mu_X := \langle \cdot, X \rangle \) induces a map on \(M_{\xi'} \) by \(T \)-invariance of \(\mu \), call it just \(\mu_X \) where \(\langle \cdot, t \times t' \mapsto \mathbb{R} \) is the evaluation pairing. Then, we can observe that \(\mu_X \) is a Hamiltonian of the \(K/(K \cap T') \)-action on \(M_{\xi'} \), and that \(M_{\xi'} \) is symplectomorphic to the symplectic reduction of \(M_{\xi'} \) at the regular value \(\langle \xi_t, X \rangle \) with respect to \(\mu_X \). If we denote by \(DH_X \) the Duistermaat–Heckman function of \(\mu_X : M_{\xi'} \to \mathbb{R} \), then we have \(DH_X(\xi_t) = DH_X(\langle \xi_t, X \rangle) \) for \(t \in [0, 1] \). Since \(M_{\xi'} \) is a four-dimensional symplectic orbifold with Hamiltonian circle action, \(DH_X \) is log-concave by Lemma 2.2 below. Since \(x_t \) and \(\xi_t \) are sufficiently close and \(DH \) is continuous by [2], we can show (1) by log-concavity of \(DH_X \). \(\square \)

Lemma 2.2. Let \((N, \sigma)\) be a closed four-dimensional Hamiltonian \(S^1 \)-orbifold. Then the density function of the Duistermaat–Heckman measure is log-concave.

Proof. Let \(\phi : N \to \mathbb{R} \) be a moment map. Then the density function \(DH : \text{Im} \phi \to \mathbb{R}_{\geq 0} \) of the Duistermaat–Heckman measure is given by

\[
DH(t) = \int_{N_t} \sigma_t.
\]

for any regular value \(t \in \text{Im} \phi \). Let \((a, b) \subset \text{Im} \phi \) be an open interval consisting of regular values of \(\phi \) and fix \(t_0 \in (a, b) \). By the Duistermaat–Heckman theorem [2], \([\sigma_t] - [\sigma_{t_0}] = -e(t - t_0)\) for any \(t \in (a, b) \), where \(e \) is the Euler class of the \(S^1 \)-fibration \(\phi^{-1}(t_0) \to \phi^{-1}(t_0)/S^1 \). Therefore

\[
DH'(t) = -\int_{N_t} e
\]

and

\[
DH''(t) = 0
\]

for any \(t \in (a, b) \). Note that \(DH(t) \) is log-concave on \((a, b)\) if and only if it satisfies \(DH(t) \cdot DH''(t) - DH'(t)^2 \leq 0 \) for all \(t \in (a, b) \). Hence \(DH(t) \) is log-concave on any open intervals consisting of regular values.
Let \(c \) be any interior critical value of \(\phi \) in \(\text{Im} \phi \). Then it is enough to show that the jump in the derivative of \(\log DH' \) is negative at \(c \). First, we will show that the jump of the value \(DH'(t) = -\int_{\mathcal{N}_t} e \) is negative at \(c \). Choose a small \(\epsilon > 0 \) such that \((c - \epsilon, c + \epsilon) \) does not contain a critical value except for \(c \). Let \(\mathcal{N}_c \) be a symplectic cut of \(\phi^{-1}[c - \epsilon, c + \epsilon] \) along the extremum so that \(\mathcal{N}_c \) becomes a closed Hamiltonian \(S^1 \)-orbifold whose maximum is the reduced space \(M_{c+\epsilon} \) and the minimum is \(M_{c-\epsilon} \). Using the Atiyah–Bott–Berline–Vergne localization formula for orbifolds [8], we have

\[
0 = \int_{\mathcal{N}_c} 1 = \sum_{p \in N^S \cap \phi^{-1}(c)} \frac{1}{d_p} \frac{1}{p_1 p_2 \lambda^2} + \int_{M_{c-\epsilon}} \frac{1}{\lambda + \epsilon} + \int_{M_{c+\epsilon}} \frac{1}{-\lambda - \epsilon},
\]

which is equivalent to

\[
0 = \sum_{p \in N^S \cap \phi^{-1}(c)} \frac{1}{p_1 p_2} = \int_{\mathcal{N}_{c-\epsilon}} e^- - \int_{\mathcal{N}_{c+\epsilon}} e^+,
\]

where \(d_p \) is the order of the local group of \(p \), \(p_1 \) and \(p_2 \) are the weights of the tangential \(S^1 \)-representation on \(T_p N \), and \(e^- (e^+ \text{ respectively}) \) is the Euler class of \(\phi^{-1}(c - \epsilon) (\phi^{-1}(c + \epsilon) \text{ respectively}) \). Since \(c \) is in the interior of \(\text{Im} \phi \), we have \(p_1 p_2 < 0 \) for any \(p \in N^S \cap \phi^{-1}(c) \). Hence the jump of \(DH'(t) = -\int_{\mathcal{N}_t} e \) is negative at \(c \), which implies that the jump of \(\log DH(t)' = \frac{DH(t)}{DH(t)} \) is negative at \(c \) (by continuity of \(DH(t) \)). This finishes the proof. \(\square \)

References

[1] Y. Cho, The log-concavity conjecture on semifree symplectic \(S^1 \)-manifolds with isolated fixed points, arXiv:1103.2998.
[2] J.J. Duistermaat, G.J. Heckman, On the variation in the cohomology of the symplectic form of the reduced phase space, Invent. Math. 69 (1982) 259–268.
[3] W. Graham, Logarithmic convexity of push-forward measures, Invent. Math. 123 (1996) 315–322.
[4] V. Guillemin, S. Sternberg, Convexity property of the moment mapping, Invent. Math. 67 (1982) 491–513.
[5] Y. Karshon, Example of a non-log-concave Duistermaat–Heckman measure, Math. Res. Lett. 3 (1996) 537–540.
[6] Y. Karshon, Periodic Hamiltonian flows on four dimensional manifolds, Mem. Amer. Math. Soc. 141 (672) (1999).
[7] Y. Lin, The log-concavity conjecture for the Duistermaat–Heckman measure revisited, Int. Math. Res. Not. (10) (2008), Art. ID rnn027, 19 pp.
[8] E. Meinrenken, Symplectic surgery and the Spin\(^c\)-Dirac operators, Adv. Math. 134 (1998) 240–277.
[9] A. Okounkov, Why would multiplicities be log-concave?, in: The Orbit Method in Geometry and Physics, Marseille, 2000, in: Progress in Mathematics, vol. 213, Birkhäuser Boston, Boston, MA, 2003, pp. 329–347.
[10] A. Okounkov, Log-concavity of multiplicities with application to characters of \(U(\infty) \), Adv. Math. 127 (1997) 258–282.