Pesticide Residue Monitoring on Agriculture in Indonesia

Pemantauan Residu Pestisida pada Produk Pertanian di Indonesia

Asep Nugraha Ardiwinata 1), Lin Nuriah Ginoga 2), Eman Sulaiman 1) and Elisabeth Srihayu Harsanti 1)

1) Indonesian Agricultural Environment Research Institute, Jalan Raya Jakenan-Kajen Km 5 Pati, Central Java, Indonesia
2) IPB University, Jl. Raya Dramaga, Kampus IPB Dramaga Bogor 16680 West Java, Indonesia
E-mail: asena020361@gmail.com

Diterima 15 Mei 2019, Direview 15 Mei 2019, Disetujui dimuat 23 September 2019, Direview oleh Anicetus Wihardjaka dan Rizatus Shofiyati

Abstract. Most agricultural producers use pesticides to prevent pests and increase yield and quality of the food they grow. Pesticides can damage people’s health, and lead to birth defects (teratogenic in character) and death in humans and animals. Many of these chemical residues, especially derivatives of organochlorine pesticides, demonstrate dangerous bioaccumulation levels in the body and environment. The problems caused by organochlorine residues (lindan, aldrin, dieldrin, endrin, heptachlor and DDT) on agricultural lands that are still found today are generally the consequence of past usage that dates back to the 1960s. Research on pesticide residues in Indonesia was carried out several years ago by various research institutes and universities and some of these results were collected between 1985 and 2017. Data distribution of the results on pesticide residues include in Aceh, North Sumatra, West Sumatra, Jambi, Bengkulu, Lampung, Banten, Jakarta, West Java, Central Java, East Java, Yogyakarta, Bali, South Kalimantan, North Sulawesi, South Sulawesi, Gorontalo, Maluku, and Papua. Most of the pesticide residue research has been conducted on vegetables. Pesticide residues were found in various commodities and matrices such as rice, soybeans, cow’s milk, chicken eggs, fruit ingredients, vegetables, soil, paddy water, river water, lake water, pond water, sea water, water birds, animal feed, fish, frogs, lamb, birds, eggs, tea, and honey. Pesticide residues found were insecticide (organochlorine, organophosphate, carbamate, pyrethroid), and fungicide (dimethomorp, fenobucarb, propineb, benomyl, carbendazim and thiametoxam). Organochlorine insecticides have been banned, but the residues are still found today. This is due to the nature of organochlorines which have high persistence properties. Even though insecticide residues (organophosphate, carbamate, pirethroid) found in food commodities are still below the maximum residual level (MRL), namely SNI 7313: 2008, but some close to MRL. Particularly for organochlorine residues in soil, water and plants insecticides must be monitored because they are persistent, toxic and accumulative. This paper aims to review of pesticide residues in various products including food, and the potential impact of pesticide residues on human health.

Keywords: Distribution / organochlorine / food quality

Abstrak. Sebagian besar produsen pertanian menggunakan pestisida untuk mencegah hama dan meningkatkan hasil dan kualitas makanan yang mereka tanam. Pestisida dapat merusak kesehatan manusia, dan bersifat teratogenik dan mematikan pada manusia dan hewan. Banyak dari residu kimia ini, terutama turunan pestisida organoklorin, menunjukkan tingkat bioakumulasi yang berbahaya dalam tubuh manusia dan lingkungan. Masalah tersebut disebabkan oleh residu organoklorin (lindan, aldrin, dieldrin, endrin, heptachlor dan DDT) yang digunakan sejak tahun 1960-an. Penelitian tentang residu pestisida di Indonesia dilakukan beberapa tahun yang lalu oleh berbagai lembaga penelitian dan universitas yang dikumpulkan antara tahun 1985 dan 2017. Distribusi data hasil residu pestisida tersebut di Aceh, Sumatera Utara, Sumatera Barat, Jambi, Bengkulu, Lampung, Banten, Jakarta, Jawa Barat, Jawa Tengah, Jawa Timur, Yogyakarta, Bali, Kalimantan Selatan, Sulawesi Utara dan Selatan, Gorontalo, Maluku, dan Papua. Penelitian yang telah dilakukan menemukan residu pestisida tidak hanya ditemukan di berbagai komoditas pertanian seperti beras, kedelai, susu sapi, telur ayam, bahan buah, sayuran tetapi juga pada tanah, sawah, air sungai, air danau, air kolam, air laut, burung air, pakan ternak, ikan, katak, domba, telur burung, teh, dan madu. Residu pestisida yang banyak ditemukan di lapangan adalah insektisida (organoklorin, organofosfat, karbazat, pirethroid), dan fungisida (dimethomorp, fenobucarb, propineb, benomyl, carbendazim dan thiametoxam). Insektisida golongan organoklorin telah dilarang penggunaannya, namun residunya masih ditemukan hingga kini. Hal ini dikarenakan sifat organoklorin yang memilik sifat persistensi yang tinggi. Residu insektisida (organofosfat, karbazat, pirethroid) yang ditemukan di dalam komoditas pangan secara umum masih di bawah batas maksimum residu (BMR) yang mengacu pada standar nasional, yaitu SNI 7313: 2008, namun beberapa residu insektisida telah mendekati BMR. Khusus untuk residu insektisida golongan organoklorin di dalam tanah, air dan tanaman harus dipantau karena sifatnya yang persisten, beracun, dan akumulatif. Makalah ini bertujuan untuk mengkaji residu pestisida dalam berbagai produk termasuk makanan, dan dampak potensial residu pestisida pada kesehatan manusia.

Kata kunci: Distribusi / organoklorin / kualitas pangan
INTRODUCTION

For more than three decades agricultural development has paid more attention to food crop production, given the need to produce greater amounts of food due to the world’s rising population. Food crop production increases were achieved through a variety of intensification programs, by introducing high yielding varieties, high input uses of fertilizers and pesticides (Soejitno and Ardiwinata 1999). In 2016, it was estimated that 3,207 formulations of pesticides in Indonesia were registered for pest control on many commodities. When the agriculture industry was still in its development phase, organochlorine and organophosphate pesticides were predominantly used, followed later by carbamate and pyrethroid groups. However, the overuse or misuse of pesticides endangered the health of consumers and generated hazardous outcomes for the environment. Our studies revealed that some pesticide residues were found in rice grain and soybean in Java, in several vegetables in Sumatra, Kalimantan, Sulawesi, West Java, Central Java, East Java, Yogyakarta, Bali, Maluku, Papua, and in the coastal areas of Java. In Java island, our study discovered some residues of organochlorine, organophosphate and carbamate in rice grain, soils, in the irrigation and water.

Tuhumury et al. (2012) reported the presence of organochlorine residues (heptachlor, aldrin, lindan and endosulfan) in fresh vegetable products in Ambon City, situated in the Indonesian province of Maluku. Ohorella et al. (2013) and Purnama et al. (2013) reported lind residues in carrots and tomatoes in traditional markets and modern markets in Makassar. Furthermore, Andina (2015) found residues of endosulfan, endrin, dieldrin, aldrin, pp-DDT and heptachlor in rice varieties of Siam Unus on South Kalimantan. It is worth noting there are types of pesticides which are prohibited because they are toxic and persistent. The type of pesticide examined here is organochlorine insecticide. Some organochlorine insecticides are included in the group of persistent organic pollutants (POPs), these being pollutants which are a problem worldwide because they are chronic, persistent and bioaccumulative.

Implementation of Integrated Pest Management (IPM) is a strategy that will be able to guarantee production optimization by minimizing damage to the environment (Untung 1990). IPM aims to increase production to a high level by maintaining environmental sustainability and benefiting farmers. Furthermore it is now part of government policy to overcome the pest problems besetting agricultural crops in Indonesia. Close cooperation between researchers, extension agents (i.e. officers who work directly with farmers and companies on agriculture-related matters and help them make better decisions to increase production), regional officials, interested private parties and farmers needs to be improved so that the obstacles can be overcome (Oka 1990). In order to accelerate the solving of various agricultural problems thoroughly, interdisciplinary collaboration is needed, if possible inter-subsectoral and even inter-sectoral (Hadiwijaya 1990).

The use of pesticides for agricultural products is increasing, but research on the impact of pesticide residues on developing countries is limited. Building awareness and information for the community about the impact of pesticide residues and how to maintain food security is also lacking. For this reason the paper seeks to build knowledge on the subject by review of pesticide residues in a variety of products including food, and the potential impact of pesticide residues on human health and the environment.

HISTORY OF PESTICIDE USE IN INDONESIA

The use of pesticides in Indonesia began in the 1950s. The most widely used pesticides in Indonesia from the 1950s to the late 1960s were hydrocarbon-chlorinated insecticides, such as dichlor diphenol trichloroethane (DDT), endrin, aldrin, dieldrin, heptachlor and gamma BHC (Tarumingkeng 1992). It is evident that the post-war period was one where pest control efforts relied more on pesticide use. Modern agriculture has strongly emphasized the use of pesticides in an effort to maintain and increase production. Pest control efforts with pesticides often provide amazing results because they are real and occur rapidly, so the use of pesticide quickly spreads due to their popularity (Soejitno 1990). However, pest control through the employment of pesticides without regard to the balance of the agricultural ecosystem has resulted in environmental damage or unwanted side effects. These events serve as a warning about the dangers of using unauthorized pesticides that the community is not
aware of. The publication of Rachel Carson’s famous book *Silent Spring* in 1962, which revealed the facts behind the side effects caused by using DDT, made people realize the dangers of using pesticides (Soejitno 1990).

Based on data and information about the side effects of pesticide use, Prof. Dr. Ida Nyoman Oka and other environmental scientists began to rethink the concept of pest and disease control, which combines pest control with biological control (De Bach 1964). This concept was further developed as a pest population management system that uses suitable and compatible techniques to reduce pest populations to below the economically acceptable level. This concept became known as Integrated Pest Management (IPM) (Soejitno 1990). Prof. Oka is the father of Indonesian IPM and played a prominent role in banning a number of pesticides through Presidential Instruction No. 3 of 1986 (Anonim 2014). Based on information provided by Prof. Oka (personal communication around 1989), agricultural land in Java had been sprayed from airplanes with organochlorine pesticides in the 1960s, principally to control brown plant-hopper attacks. Another person who had witnessed the use of organochlorine pesticides in the 1960s was Mr. Salim from Banjaratma Village, Bulakamba, Brebes, Central Java (personal communication March 14 2018).

SUMMARY OF PESTICIDE RESIDUE IN INDONESIA

Research on pesticide residues in Indonesia was carried out several years ago by various research institutes and universities and results were collected from 1985–2017 (Table 1). Data distribution of research results on pesticide residues was extensive and included the following: Aceh (Banda Aceh; Desa Ujong Baroh, Kecamatan Johan Pahlawan, Kabupaten Aceh Barat), North Sumatra (Berastagi, Kabupaten Karo), West Sumatra (Padang Luar, Kabupaten Agam), Jambi (Danau Kerinci, Kabupaten Kerinci), Bengkulu (Desa Sumber Urip, Kecamatan Rejang Lebong), Lampung (Kecamatan Gisting), Banten (Pandeglang), Jakarta (traditional market), West Java (Desa Cihanjuang, Kecamatan Parongpong, Kabupaten Bandung Barat; Bogor), Central Java (Kabupaten Brebes, Grobogan, Jepara), East Java (Kecamatan Dau, Malang; Desa Sumber Gondo, Kecamatan Glenmore, Kabupaten Banyuwangi), Yogyakarta (Kabupaten Bantul, Kabupaten Kulon Progo), Bali (Danau Buyan Buleleng), South Kalimantan (Pasar Banjarbaru dan Martapura), North Sulawesi (Kecamatan Langowan Barat, Bahu market, Karombasan market, Bersehati market and Rurukan village), South Sulawesi (Makassar), Gorontalo (Tabongo, Kabupaten Gorontalo), Maluku (Ambon), and Papua (Merauke).

Pesticide residue research has mostly been conducted on vegetables. Pesticide residues were found in various commodities such as rice, soybeans, cow’s milk, chicken eggs, fruit ingredients, vegetables, soil, paddy water, river water, lake water, pond water, sea water, water birds, animal feed, fish, frogs, lamb, birds’ eggs, tea, and honey. The pesticide residues which were found originated from the following insecticides: organochlorine: lindane, heptachlor, aldrin, dieldrin, DDT, endrin, endosulfan. Organophosphate: diazinon, fenitrothion, malathion, fenthion, fonofos, quinalphos, profenofos, chlorpyrifos, parathion, ethephon, acephate, dimethoate, monocrotophos, fenvalerate, penthoate, and triazophos. Carbamate: carbofuran, carbosulfan, carbayl, dithiocarbamate, BPMC and MIPC; Pyrethroid: cyhalothrin, deltamethrin, beta cyfluthrin, pyrethrin, cypemethrin and bifenthrin; and fipthyl, fungicide: dimethomorp, fenobucarb, propineb, benomyl, carbendazim and thiametoxam.

Organochlorine residues are still being detected in soil, water and food commodities despite the fact they were banned decades ago. This is because the inheritance residues of the 1960s were persistent and remained in the land, which was then carried away by the flow of water. Pesticide residues found in food commodities in general are still below the maximum residue limits (MRLs) which refer to the national standard SNI 7313: 2008. However, organochlorine pesticide residues in soil and water must still be monitored carefully and diligently because they are persistent, toxic, and accumulative.

Pesticide Residues in Vegetables

Monitoring of vegetables has been carried out throughout Indonesia since the 1980s by the Directorate of Food Crop Protection (Siswomiharjo 1990). Monitoring activities were mainly carried out in the vegetable production centers of North Sumatra (Tahab Karo), West Java (Lembang), Central Java (Wonosobo), East Java (Batu), South Sulawesi (Enrekang), and Bali (Tabanan). Extensive monitoring activities were conducted in 1986, 1988, 1990, 1991 and 1993, and targeted here were commodities such as
Table 1. Summary of pesticide residues on the various agricultural products in Indonesia

Commodity	Residue	References
Rice	Lindane, Aldrin, Endosulfan, Chlorpyrifos, Diazinon, Heptachlor, DDT, Carbaryl	Ardiwinata et al. (1997) Harsanti et al. (1999) Jatmiko et al. (1999) Ardiwinata et al. (1999) Ismaya (1996)
	Endosulfan, Endrin, Dieldrin, Aldrin, pp-DDT, Heptachlor	Andina (2015)
Soybean	Dieldrin, BPMC, MIPC, Chlorpyrifos, Fenticon, Carbofuran, Heptachlor, DDT, Carbaryl, Diazinon	Samudra et al. (1992) Ardiwinata et al. (1997)
Cow’s milk	Lindane, Dieldrin, Endosulfan, DDT	Ijas et al. (1986)
Chicken eggs	DDT, Aldrin, Dieldrin, Lindane, Endrin	Ashari (1986)
Fruits	Cyhalotrin, Deltamethrin, Propinex, Diazinon, Parathion, Ethion, Profenofos, Malathion, Chlorpyrifos and Carbofuran	Arvina (1998) Hartini (2014)
	Acetate, Carbofuran, Carbosulfan, Diazinon, Dimethomorp, Fenobucarb, Profenofos, Pyrethrin	Sumiati and Julianto (2017)
Imported fruit	Diazinon, Dimethoate, Chlorpyrifos, Benomyl, Carbedazim	Syahbirin et al. (2001)
	Organophosphate and Carbamate	Zelila (2016)
Vegetables	DDT, Endosulfan, Lindane, Aldrin, Dieldrin, Diazinon, Fenitrothion, Malathion, Fenthion, Chlorpyrifos	Karindah (1995) Japanto (1992)
	Dithiocarbamate	Mutiatikum (2003)
	Heptachlor, Aldrin, Endosulfan, Lindane, Chlorpyrifos, Profenofos, Diazinon, Monocrotophos, Parathion, Carbofuran, Cypermethrin	Tuhumury et al. (2012)
	Pyrethroid	Buyang and Pasaribu (2014)
	Profenofos	Alen et al. (2015)
	Profenofos	Wariki et al. (2015)
	Thiametoxan	Muslim et al. (2015)
	Profenofos and Chlorpyrifos	Nur et al. (2015)
	Chlorpyrifos	Harsanti et al. (2015)
	Chlorpyrifos	Amilia et al. (2016)
	Chlorpyrifos	Kapoh et al. (2016)
	Diazinon	Prasasti and Perwitasari (2017)
Soil	Lindane, Aldrin, Endosulfan, Carbofuran, MIPC, BPMC	Gunlazuardi et al. (1992) Sulaksono (2001) Ardiwinata (1996) Harsanti et al. (1999) Jatmiko et al. (1999) Ardiwinata et al. (1999) Ohsawa et al. (1985)
	Organochlorine	Oginawati et al. (2009)
	Chlorpyrifos	Harsanti et al. (2015)
cabbage, tomatoes, potatoes, chili peppers, carrots, long beans, celery, cauliflower, shallots, rice and soybeans. These food crops not only contained pesticide residues but also POPs (Persistence Organic Pesticides) such as DDT compounds (Table 2).

In the period 1994-1999, the Directorate of Food Crop Protection and Laksanawati et al. (1994) re-examined several samples of cabbage, potatoes, celery, tomatoes, long beans, onions, carrots and chili peppers. Based on the results of their analysis it was found that endosulfan compounds were potential POPs (Table 3). The research results documented by Ohsawa et al. (1985) in the Yogyakarta area (Pasar Srikedari) revealed the presence of POPs (BHC, aldrin, dieldrin, heptachlor, DDT and DDE) compounds in cabbage, tomato and cucumber samples.

Commodity	Residue	References
Soil	*Lindane, Aldrine, Endosulfan, Carbofuran, MIPC, BPMC*	Gunlaanzardi et al. (1992) Sulaksono (2001) Ardiwinata (1996) Harsanti et al. (1999) Jatmiko et al. (1999) Ardiwinata et al. (1999) Ohsawa et al. (1985)
	Organochlorine	Oginautati et al. (2009)
	Chlorpyrifos	Harsanti et al. (2015)
Rice field water	*Lindane, Aldrin, Endosulfan*	Sulaksono (2001) Ardiwinata (1996) Harsanti et al. (1999) Jatmiko et al. (1999) Ardiwinata et al. (1999) Ohsawa et al. (1985)
River water	*Organochlorine*	Ardiwinata and Djazuli (1992)
	Organochlorine	Oginautati et al. (2009)
	No residue	Putri et al. (2014)
Lake water	*Organophosphate (Dimethoate, Chlorpyrifos, and Profenofos)*	Manuaba (2008)
	Organochlorine, Organophosphate and Carbamate	Haryadi et al. (2010)
Reservoir / pond water	*Lindane, Endosulfan*	Ardiwinata et al. (1999)
Sea water	*Organochlorine*	Ardiwinata and Djazuli (1992)
	Organophosphate (Chlorpyrifos)	Nugroho et al. (2015)
Water bird	*Lindane, Aldrin, Endosulfan, Dieldrin, DDT, Endrin, Chlorpyrifos, Diazinon, Carbofuran*	Ginoga (1999) Nursoleh (1998)
Cattle Feed	*Endosulfan, Chlorpyrifos*	Nuraini (2002)
Fish	*Carbofuran, Diazinon, Quinalphos, Fonophos*	Samudra et al. (1989)
Frog	*Carbofuran*	Winoto (1995)
Lamb	*Endosulfan, Chlorpyrifos, Profenofos, Beta Cyflutrin*	Nuraini (2002)
Bird egg	*Organochlorine*	Ginoga (1999) Indraningsih et al. (1988)
Tea	*Alfa-endosulfan dan Bifentrin*	Yusiasih et al. (2014)
Honey	*(no residue)*	Saeufudin et al. (2017)
Insecticide Residues in Rice

Surveys were carried out in West Java (Karawang, Subang, Indramayu, Cirebon, Kuningan, Ciamis, Tasikmalaya, Garut, Bandung, Cianjur, Sukabumi, Lebak, Pandeglang and Serang) in 1995/1996 indicated that the presence of insecticide residues (organochlorine) on rice, namely lindane, aldrin and heptachlor (Murtado et al. 1996). In 1999, the survey was conducted again in West Java (Subang, Indramayu, Cirebon, Karawang, Cianjur, Sukabumi and Pandeglang) with the result that insecticide residues (organochlorine), specifically lindane, aldrin, and...
endosulfan were found in rice (Table 4). Again in 1999, surveys were conducted in the Central Java region including the Rembang, Grobogan, Sukoharjo, Bantul, Wonosobo and Cilacap areas. They confirmed the detection of lindane, aldrin, and endosulfan compounds in rice (Table 4). A survey was conducted in East Java in 1999, specifically the Bojonegoro, Ngawi, Magetan, Madiun, Malang, Lumajang, Jember, and Banyuwangi areas. It was found that potential insecticide residues (organochlorine) of endosulfan existed in rice (Ardiwinata et al. 1999).

The survey results for several markets in the DKI Jakarta area in 1997 which included Koja Market, Pasar Senen, Jatinegara Market, Pasar Minggu and Grogol Market, confirmed that rice samples contained insecticide residues (organochlorine). These were lindane, heptachlor, endosulfan, aldrin, DDE dieldrin, chlordane, dieldrin, chlortroflos, diazinon, fenthion, fenvalerate, carbophuran and BPMC (Ardiwinata et al. 1997).

Insecticide Residues in Soybeans

The survey conducted in 1992 in several markets in West Java which included the regions of Ciamis, Cianjur, Garut, Kuningan, Majalengka and Sumedang found insecticide residues, namely lindane, dieldrin, BPMC, MIPC, chlorpyrifos and fenthion in soybeans (Table 5). It is interesting to note that imported soybeans were found to contain POPs, these being lindane and dieldrin (Table 5).

Pesticide Residue in Central Java

Based on the data shown in Table 4, it can be seen that Central Java is the region with the highest residual content compared to all other parts of Indonesia. The most widely used type of pesticide is an insecticide (74%), the most popular one being carbamate (28%; see Figure 1). Using the most pesticides is the Brebes area which reported a percentage of 58% (Figure 2). The areas with the highest residual pesticides in rice are Cilacap and Brebes (Figure 3). The highest residual content of pesticides in soil is evident in the Brebes region (Figure 4). Meanwhile the highest residual content of pesticides that has been found in water is the Klaten area (Figure 5). The residual content of organochlorine insecticide in terms of size has the following order: rice> soil> water.

Table 4. Insecticide residues concentration (mg kg\(^{-1}\)) in rice in West Java, Central Java and East Java in 1999

Insecticides	West Java	Central Java	East Java
Chlorpyrifos	0.0002-0.0016	0.0028-0.0970	0.0002-0.0008
Diazinon	-	0.0142-0.0556	0.0002-0.0003
Fenthion	-	0.0246-0.0372	-
Lindane	0.0023-0.00024	0.0024-0.0466	-
Aldrin	-	0.0037-0.0199	-
Endosulfan	0.0002-0.0005	0.0157-0.0357	0.0003-0.0006
Fenvalerate	-	0.0163-0.0212	-
Carbophuran	0.0005-0.0013	-	0.0003-0.0008
BPMC	0.0004-0.0059	-	-

Source: Ardiwinata et al. (1999)

Table 5. Insecticide residues concentration (mg kg\(^{-1}\)) in soybeans from several markets in West Java in 1992.

Location	Insecticides	Lindane*	Dieldrin*	BPMC	MIPC	Chlordane	Chlordane
Ciamis	0.0047	-	-	-	-	0.0557	0.0034
Cianjur	0.0094	-	-	-	-	0.0628	0.0031
Garut	0.0078	0.0049	-	-	-	0.0073	0.0019
Majalengka	0.0115	-	0.0019	-	0.0053	0.0053	
Sumedang	0.0070	-	0.0015	-	0.0089	0.0026	
Import	0.0052	-	-	-	-	0.0103	0.0025

Source: Ardiwinata et al. (1999)
Inpara 2 mempunyai adaptifibilitas yang tinggi di

Source: Ardiwinata et al. (2007)

Figure 1. The use of pesticide in Central Java: a). Type of pesticide and b) Type of insecticide

Gambar 1. Penggunaan pestisida di Jawa Tengah: a) Jenis pestisida dan b) Jenis insektisida

Source: Ardiwinata and Dedi Nursyamsi (2012)

Figure 3. Insecticide residue concentration in rice, in Central Java, 2007.

Gambar 3. Konsentrasi residu insektisida dalam beras, di Jawa Tengah, 2007.
IMPLICATIONS OF POLICIES-RELATED OF PESTICIDE IN INDONESIA

The use of pesticides is a policy mandated by Indonesia’s Ministry of Agriculture, while assessing the impact of pesticides on the environment is the responsibility of the Ministry of Environment and Forestry. Policies or regulations relating to pesticides already exist, including:

1. Government Regulation Number 7 of 1973 concerning Supervision of Circulation, Storage and Use of Pesticides
2. Government Regulation Number 6 of 1995 concerning Plant Protection
3. Government Regulation Number 74 of 2001 concerning Management of Hazardous and Toxic Materials
4. Government Regulation Number 101 of 2014 concerning Management of Hazardous and Toxic Waste
5. Regulation of the Minister of Health Number 472 / Menkes/ PER / XI / 1992 concerning Hazardous Materials
6. Regulation of the Minister of Agriculture Number 107 / Permentan / SR.140 / 9/2014 concerning Supervision of Pesticides; and
7. Minister of Agriculture Regulation Number 39 / permentan / SR.140 / 7 / 2015 concerning registration of pesticides.

Despite these rules and regulations which are in place, their implementation to date has not been thorough. For this reason, strategies must be put in place at the government and local level to improve the use, measurement and management of pollution caused by pesticides. In fact, there needs to be continuous improvement for such laws and regulations to be effective.

CONCLUSIONS

The following conclusions can be made on the use of pesticides to prevent pests and increase yield and quality of produce in Indonesia. Organochlorine pesticides that have been banned from use, have still resulted in their residues being found in soil, water, and foodstuffs, particularly vegetables. Organochlorine residues do exert adverse impacts on human health and also endanger the environment so that water, air and soils are polluted. The residue has the potential to cause bioaccumulation and biomagnification. Proper and detailed management of pesticides will increase our knowledge and improve our practices regarding the use of pesticides. In particular, being diligent about what pesticides can do to people and the environment will curtail the negative effects or dangers posed by them.

ACKNOWLEDGEMENTS

The authors thank ICALRD and IAERI for supporting these paper. The paper was presented at the International Workshop and Seminar on "Innovation of Environmental Friendly Agricultural Technology Supporting Sustainable Food Self-Sufficiency" at Solo on September 18-20, 2018.

REFERENCES

Alen Y, Zulhidayati, Suharti N. 2015. Pemeriksaan residu pestisida profenofos pada selada (Lactuca sativa L.) dengan metode kromatografi gas. Jurnal Sains Farmasi & Klinis 1(2): 140-149.

Amilia E, Joy B, Sunardi. 2016. Residu pestisida pada tanaman hortikultura (studi kasus di desa Cihanjuang Rahayu Kecamatan Parongpong Kabupaten Bandung Barat). Jurnal Agrikultura 27(1): 23-29.

Andina L. 2015. Analisis residu endosulfan, endrin, dieldrin, aldrin, pp-DDT dan heptaklor pada beras varietas Siam Unus di Kalimantan Selatan. Jurnal Pharascience 2(2): 103-108.

Anonim. 2014. Prof. Dr. Ida Nyoman Oka Bapak PHT Indonesia yang memegang teguh nilai kejujuran. Berita Puslitbangtan No. 56. Mei 2014. P 8-10.

Ardiwinata AN, Diazuli M. 1992. Dampak penggunaan insektisida Organoklorin di masa silam di daerah Jawa Barat. Prosiding Simposium Penerapan PHT. Hlm: 313-317.

Ardiwinata AN. 1996. Status Residu Insektisida di Sentra Produksi Padi Jawa Barat. Skripsi. Jurusan Kimia FMIPA-UNB.

Ardiwinata AN, Umar N, Hadayani N. 1997. Residu insektisida organoklorin, organofosfat, dan karbamat dalam beras dan kedelai di beberapa pasar di DKI Jakarta. Prosiding Seminar Nasional PEI Cabang Bogor. Hlm. 346 – 347.

Ardiwinata AN, Jatmiko SY, Harsanti ES. 1999. Monitoring residu insektisida di Jawa Barat. Risalah Seminar Hasil Penelitian Emisi Gas Rumah Kaca dan Peningkatan Produktivitas Padi di Lahan Sawah. Bogor 24 April 1999. Hlm: 91-105.

Ardiwinata AN, Poniman, Sri Wahyuni, Indrati, Asep Kurnia. 2007. Laporan Akhir Penelitian Balai Penelitian Lingkungan Pertanian. 65p

Ardiwinata AN, Dedi Nursyamsi. 2012. Residu pestisida di sentra produksi padi di Jawa Tengah. Pangan 21 (1): 39-58.

Arvina. 1998. Identifikasi Kandungan Residu Pestisida dan Vitamin C Beberapa Buah Impor. Skripsi. Jurusan Gizi Masyarakat dan Sumberdaya Keluarga. Fakultas Pertanian IPB. Hlm: 33-56.

Ashari N. 1986. Analisis Residu Insektisida Klororganik dalam Telur Ayam Kampung. Karya Tulis Sekolah Menengah Analisi Kimia. Hlm: 37-45.

Buyang Y, Pasaribu Y. 2014. Analisis residu pestisida golongan piretroid pada beberapa sayuran di kota Merauke. Agricola 4(1): 41-48.
De Bach P. 1964. Biological Control Of Insect Pests And Weeds. Chapman and Hall, Ltd, London.

Ginoga LN. 1999. Pencemaran Insektisida pada Tiga Species Burung Air di Areal Persawahan Sukamandi, Subang, Jawa Barat. Thesis. Program Pascasarjana IPB.p 38-78.

Gunlazuardi J, Tanabe S. 1992. DDT and HCH residues in the Yogyakarta and Bali Environment: A Monitoring Survey in Soil, Sediment, Water, Vegetable and Fish Samples In: Pesticide Residue in Relation to Crop Production Increment (1986-1988). NODAI Center for International Programs. Tokyo University of Agriculture. JSPS-DGHE Program. p 1-16.

Hadiwijaya T. 1990. Pendidikan tinggi perlindungan tanaman di masa lampau, sekarang dan masa mendatang. Perlindungan tanaman menunjang terwujudnya pertanian masyarakat dan kelestanan lingkungan. PT. Agricon. Hlm: 3-8.

Harsanti ES, Jatmiko SY, Ardwiwinata AN. 1999. Residu insektisida pada ekosistem lahan sawah irigasi di Jawa Timur. Risalah Seminar Hasil Penelitian Emisi Gas Rumah Kaca dan Peningkatan Produktivitas Padi di Lahan Sawah. Pusat Penelitian dan Pengembangan Tanaman Pangan Bogor. p 119-128.

Harsanti ES, Martono E, Sudibyakto HA, Sugiharto T. 2015. Residu insektisida klorpirifos dalam tanah dan produk bawang merah Allium ascalonicum L., di sentra produksi bawang merah di kabupaten Bantul, Yogyakarta. Ecolab 9(1): 01-46.

Hartini E. 2014. Kontaminasi residu pestisida dalam buah melon (Studi kasus pada petani di kecamatan Penawangan). Jurnal kesehatan Masyarakat, KEMAS 10(1): 96-102.

Haryadi J, Taufik I, Johan O. 2010. Kandungan residu pestisida dalam kawasan pengembangan perikanan budidaya danau Kerinci Jambi. Prosiding seminar Nasional Tahunan VII Hasil Penelitian Perikanan dan Kelautan Tahun 2010. Juli Ilid II Manajemen Sumberdaya Perikanan. 6 Hlm.

Iljas JK, Widodo, Pranaya I, Suparno K. 1986. Penelitian kadar residu pestisida dalam susu sapi perah dari daerah Jawa Tengah. Medika. 12: 1097-1100.

Indraningsh R, Mariam, Milton R, Marshall RB. 1988. Organochlorine pesticide residues in bird eggs. Penyakit Hewan. 20 (36): 98-100.

Ismaya IW. 1996.Analisis Residu Insektisida pada Padi (Oryza sativa L.) dan Lingkungannya di Daerah Jawa Barat dengan Kromatografi Gas. Laporan Pengalaman Kerja Lapangan. Sekolah Menengah Analis Kimia Bogor. Hlm: 40-52.

Jafar S, Sumampauw OJ, Akili RH. 2016. Identifikasi residu pestisida endosulfan pada jenis beras putih di Kabupaten Gorontalo, Provinsi Gorontalo. 2016. http://medkeskm.unsrat.ac.id/wp-content/uploads/2016/11/JURNAL-Steflianto-Jafar.pdf. Accessed date 13 November 2018. 8 Hlm.

Jatmiko SY, Harsanti ES, Ardwiwinata AN. 1999. Pencemaran pestisida pada agroekosistem lahan sawah irigasi dan tanah hujan di Jawa Tengah. Risalah Seminar Hasil Penelitian Emisi Gas Rumah Kaca dan Peningkatan Produktivitas Padi di Lahan Sawah. Pusat Penelitian dan Pengembangan Tanaman Pangan Bogor. Hlm: 106-118.

Kapoh BF, Pinontoan O, Akili RH. 2016. Identifikasi residu pestisida golongan organofosfat dengan bahan aktif klorpirifos pada sayuran kol (Brassica Oleracea) dan sawi hijau (Brassica Juncea L) di Pasar Bersehati Kota Manado Tahun 2016. http://medkeskm.unsrat.ac.id/wp-content/uploads/2017/01/Brian-F.-Kapoh-121511079-1.pdf. Accessed date 13 November 2018. 8 Hlm.

Karindah S. 1995. Residu insektisida dalam tanaman dan lingkungannya. Risalah Seminar Regional Resistensi Serangga terhadap Insektisida dan Upaya Penanggulangannya. Perhimpunan Entomologi Indonesia Cabang Malang. Hlm: 44-51.

Laksanawati, Dibyantoro H, Gunawan OS, Rustaman E, Suriaatmadja, Sulastri I, Suparman M. 1994. Deteksi residu pestisida pada wortel dan seledri di beberapa sentra produksi di Jawa Barat dan Jawa Tengah. Bul. Penel. Hort. XXVII No.1.

Manuaba IBP. 2008. Cemaran pestisida fosfat organik di air danau Banyu Buleleng Bali. Jurnal Kimia 2(1): 7-14.

Murtado, Ardwiwinata AN, Nasution I, Samudra IM, Lestina P, Ismiyatun. 1996. Status Residu Pestisida pada Sentra Produksi Padi Sawah. Laporan Hasil Penelitian Balitbio, Bogor, 1996. Hlm: 15.

Muslim YP, Fatimawali, Lolo WA. 2015. Analysis of pesticides Thiametoxam pesticide residu cabbage in vegetables (Brassica oleracea var. Capitata L.). PHARMACON Jurnal Ilmiah Farmasi-UNSRAT. 4(1): 9 p.

Mutiatikum D, Murad J, Endreswari S. 2003. Profil residu pestisida ditikarbamat dalam tomat dan selada pada tingkat konsumen di DKI Jakarta. Media Litbang Kesehatan 13(4): 10-13.

Nugroho BYH, Wulandari SY, Ridlo A. 2015. Analisis residu pestisida organofosfat di perairan Mlonggo Kabupaten Jepara. Jurnal Oceanografi 4(3): 541-544.

Nur NU, Selomo M, Raodhah S. 2015. Pesticide residue analysis of fruit tomato (Lycopersicon commune) and vegetable tomato (Lycopersicon pyriforme) at traditional. Higiene 1(3): 175-182.

Nuraini. 2002. Tingkat Residu Pestisida dalam Hati dan Daging Lemusir (Longishimus dorsi) Domba Ekor Gemuk Lokal Jantan yang Diberi Pakan Daun Bawang Merah (Allium ascalonicum L.). Skripsi. Jurusan Ilmu Nutrisi dan Makanan Ternak. Fakultas Peternakan IPB. Hlm: 25-35.
Nursoleh A. 1998. Bioakumulasi Pestiida pada Burung Kokokan Laut (Butoridnes striatus) Studi Kasus di Lahan Tambak RPH Cangking, BKPH Indramayu, KPH Indramayu, Perum Perhutani Unit III Jawa Barat. Skripsi. Jurusan Konservasi Sumberdaya Hutan, Fakultas Kehutanan IPB. Hlm: 36-53.

Oginawati K, Iryad M, Ardiiwana AN, Poerbandono. 2009. Identifikasi dan Kajian Penyebaran Pencemaran Pesisida Organoklorin di Daerah Aliran Sungai Citarum Hulu Sebagai Indikasi Dampak Persisten Organic Pollutants (POP’s) di Lingkungan. Laporan Akhir Riset. Program Riset KK-ITB 2009. Lembaga Penelitian dan Pengabdian pada Masyarakat. Institut Teknologi Bandung. 285 Hlm.

Ohorella A, Daud A, Anwar. 2013. Identifikasi residu pestisida golongan organoklorin bahan aktif lindan pada wortel kentang di pasard tradisional (Pasar Terong) dan Pasar Moderen (Swalyan Rayamaya M’Tos) Kota Makassar Tahun 2013. https://core.ac.uk/download/pdf/25490895.pdf. Accessed date 13 November 2018. 8 Hlm.

Ohsawa K, Hartati S, Nugrahati S, Sastrohamidjoyo H, Untung K, Arya N, Sumiartika K, Kawatsuka T. 1985. Residue analysis of organochlorine and organophosphorus pesticides in soil, water and vegetables from Central Java and Bali In: Yamamoto and Sosomarsono (Eds.) Ecological Impact of IPM in Indonesia. Tokyo University of Agriculture. Hlm 59-70.

Oka IN. 1990. Integrated pest management in Indonesia, problems and prospects. Perlindungan tanaman menunjang terwujudnya pertanian tangguh dan kelestarian lingkungan. PT. Agricon. Hlm: 77-88.

Prasasti D, Perwitasari DA. 2017. Identifikasi residu pestisida organofosfor pada bawang merah di Kabupaten Kulon Progo. Media Farmasi. 14(2): 128-138.

Purnama AI, Daud A, Birawida AB. 2013. Identifikasi Residu Pestisida Lindane dalam Tomat Buah dan tomat Biasa di Pasar Terong dan Lottemart Kota Makassar. http://repository.unhas.ac.id/bitstream/handle/123456789/4607/A.%20ITA%20PURNAMA_K11109286.pdf?sequence=1. Accessed date 12 November 2018. 9 Hlm.

Putri YS, Moelyaningrum AD, Nering PT. 2014. Implementasi pestisida dan pupuk terhadap residu pestisida dan nitrat pada daerah aliran sungai Porolligo. E-Jurnal Pustaka Kesehatan. http://repository.unes.ac.id/bitstream/handle/123456789/75427/Yuniar%20 Sulistyo%20Putri.pdf?sequen ce=1. Accessed date 13 November 2018. 7 Hlm.

Saefudin R, Badarina I, Nurhayati Y. 2017. Residu pestisida pada madu apis cerana di kawasan hortikultura. Jurnal Sain Peternak Indonesia 12(3): 256-264.

Samudra IM, Surisno, Ardiiwana AN, Djunaedi D. 1989. Analisis residu karbofuran, diazinon, kuinalfos dan fenofos pada air, tanah, jerami, beras dan ikan. Seminar Hasil Penelitian Tanaman Pangan, Pusat Penelitian dan Pengembangan Tanaman Pangan, Bogor. Hlm: 831–841.

Samudra IM, Surisno, Ardiiwana AN. 1992. Residu insektisida dalam biji kedelai di beberapa lokasi di Jawa Barat. Edisi Khusus Balai Penelitian Tanaman Pangan Bogor. 4: 110-113.

Siswomihardjo H. 1990. Pemantauan dan Pengendalian Residu Pestisida di Subsektor Pertanian Tanaman Pangan. In: Perlindungan Tanaman Menuju Terwujudnya Pertanian Tangguh dan Kelestarian lingkungan. PT. Agricon Bogor. Hlm: 763-778.

Soejitno J. 1990. Konsepsi pengendalian hama dan penyakit tanaman pangan. Perlindungan tanaman menunjang terwujudnya pertanian tangguh dan kelestarian lingkungan. PT. Agricon. Hlm: 175-186.

Soejitno J, Ardiiwana AN. 1999. Residu pestisida pada agroekosistem tanaman pangan. Risalah Seminar Menuju Produksi Padi Berwawasan Lingkungan. Bogor, 24 April 1999. Hlm: 72-90.

Susaksono IC. 2001. Kajian Jenis dan Tingkat Residu Insektisida serta Pengaruhnya terhadap Komunitas Akrozobentos di Sentra Produksi Padi Pantai Utara Jawa Barat. Tesis. Program Pascasarjana IPB. Hlm: 41-75.

Sumbiati A, Julianto RP. 2017. Analisis residu pestisida pada jeruk manis di kecamatan Dayu, Malang. Buana Sains. 17(1): 19-24.

Syahbirin G, Purnama H, Prijono D. 2001. Residu pestisida pada tiga jenis buah impor. Buletin Kimia. 1:113-118.

Tarumingkeng RC. 1992. Insektisida: Sifat, Mekanisme Kerja dan Dampak Penggunaannya. Penerbit Utkrida, Jakarta. Hlm: 145-157.

Tuhumury GNC, Leatemia JA, Rumthee RY, Hasinu JV. 2012. Residu pestisida produk sayuran segar di Kota Ambon. Agrologia 1(2): 99-105.

Untung K. 1990. Crop protection supports the realization of solid agriculture and environmental stability. In: Perlindungan tanaman menunjang terwujudnya pertanian tangguh dan kelestarian lingkungan. PT. Agricon. Hlm: 63-74.

Wariki WC, Siahaan R, Rumendorf M. 2015. Analisis kualitatif residu pestisida profenofos pada tanaman tomat di Kecamatan Langowan Barat, Sulawesi Utara. Jurnal Ilmiah Sains. 15(1): 48-51.

Winoto H. 1995. Kandungan Pesisida dalam Jaringan Tubuh Katak Sawah (Rana cancrivora). Skripsi. Jurusan Konservasi Sumberdaya Hutan, Fakultas Kehutanan IPB. Hlm: 29-37.

Yusiasih R, Andreas, Setyarini D, Ridwan YS. 2014. Penetuan kandungan residu pestisida dalam teh komersial di Indonesia menggunakan kromatografi gas dengan detektor penangkap elektron. Jurnal Standarddisasi 17(1): 59-66.

Zelila CZ. 2016. Analisis kandungan residu pestisida pada buah impor pada pasar tradisional (Peunayong) dengan Suzuya Mall Kota Bandar Aceh. Jurnal Kesehatan Ilmiah Nasuawakes 9(2): 261-268.