Talking Genes in Breast and Pancreatic Malignancies

Mary Barbara1, Adrianne Tsen1, Laura Tenner2, Laura Rosenkranz3*

ABSTRACT

Introduction: Both breast and pancreatic cancers have high mortality rates. Breast cancer is the second leading cause of cancer death in females, while pancreatic ductal adenocarcinoma (PDAC) is the fourth most common cause of cancer death. Almost 4-16% of individuals with pancreatic cancer have a family history of the disease. Intra-ductal papillary mucinous neoplasms (IPMNs) are cystic lesions that received more attention lately due to their associations with PDAC and other solid organ tumors, such as breast cancer. Aim: The purpose of this article is to discuss the association of the familiar pancreatic cancer (FPC), sporadic pancreatic cancers, and IPMNs with breast cancer. Results: Mutations in BRCA2, BRCA1, p16 and PALB2 play a major role in the genetic etiologies of familial pancreatic cancer. In familial and sporadic pancreatic cancers, mutations in BRCA2 are associated with a high incidence of PDAC, while mutations in BRCA1 have shown inconsistent results. Data is insufficient to prove an association between IPMNs and breast cancer. Conclusion: The familial clustering of PDAC is not well understood. Further studies are required for greater comprehension of the genetic basis of PDAC and the association between IPMNs and breast cancer.

Key Words: Breast cancer, pancreatic ductal adenocarcinoma (PDAC), IPMNs, BRCA1, BRCA2

1. INTRODUCTION

Both breast and pancreatic cancers have high mortality rates. Breast cancer is the second leading cause of cancer death in females,(1) while PDAC is the fourth most common cause of cancer death.(2) Although the majority of PDAC cases are nonhereditary, approximately 10-15% of PDAC are attributable to genetic causes. (3, 4) The hereditary risk for PDAC presents in two categories. The first one includes inherited cancer syndromes that associate with PDAC, such as: Peutz Jeghers syndrome, hereditary nonpolyposis colorectal cancer, hereditary pancreatic cancer, familial atypical multiple mole melanoma, and hereditary breast /ovarian cancer. The second category is the FPC which is characterized as at least two first degree relatives with PDAC who do not fulfill the criteria of any other inherited cancer syndrome. Although the genetic foundation of the familial aggregation of PDAC remains ambiguous, some remarkable pancreatic cancer genes were identified, such as: BRCA1, BRCA2 and PALB2, (5, 6) which suggests a genetic correlation with breast cancer. Furthermore, pancreatic cystic neoplasms such as intra-ductal papillary mucinous neoplasms (IPMNs) might be associated with breast cancer as well. (7-9)

2. BRCA2

BRCA2 is a tumor suppressor gene located on chromosome 13q whose protein functions in DNA restoration. Mutations in BRCA2 gene are inherited in an autosomal dominant pattern with incomplete penetrance. (10) Although they are uncommon in the general population, they are more prevalent in some racial groups, such as Ashkenazi Jews. The carriers of these mutations may exhibit two distinct cancer phenotypes,(11, 12) The first one exemplifies BRCA2 mutation carriers who have a high prevalence of breast and ovarian malignancies, and might be furthermore distinguished based on the incidence of PDAC. The other one represents BRCA2 mutation carriers who have pancreatic cancer and without history of FPC or breast cancer.

3. BRCA2 AND FPC

BRCA2 mutations are the most common inherited propensity to PDAC. Some studies attempted to investigate the incidence of PDAC
in BRCA2 mutation carriers, others aimed to examine the prevalence of BRCA2 mutations in families with FPC. A large study of 173 breast-ovarian cancer families with BRCA2 mutations from Europe and North America, carriers had 3.5 fold increased incidence of PDAC (95% CI 1.9–6.6) compared to non-carriers. (13) In a retrospective study conducted by Couch et al,(14) BRCA2 mutations accounted for 6% of families meeting the criteria of FPC (>2 first-degree relatives were affected with PDAC). In contrast to these results, Lal et al(15) couldn’t identify any BRCA2 mutations in four PDAC individuals classified as high-risk for FPC or in twelve individuals classified as intermediate risk for FPC. The reason for this contradiction could be due to small sample size in the high-risk population and less strict classification criteria in the intermediate risk population.

Murphy et al (16) investigated the role of the BRCA2 mutations in FPC relatives. BRCA2 mutations were found in 5 of 29 patients (17.2%). Similarly, Hahn et al (17) identified BRCA2 mutations in 12-19% of European families of non-Jewish descent in which at least two first-degree relatives had history of PDAC.

Unlike other hereditary cancers, the onset of hereditary PDAC is late and similar to that seen in sporadic PDAC, which could be related to the fact that the inactivation of BRCA2 in the pancreatic duct lesions is a late event. (18)

4. BRCA2 AND SPORADIC PANCREATIC CANCER

The majority of the BRCA2 mutations that are associated with sporadic pancreatic cancers were reported in Ashkenazi Jewish; the most common one is BRCA2 6174delT which was replicated in multiple studies. In a study conducted by Ozcelik et al, the incidence of germline BRCA2 6174delT mutation in Ashkenazi Jewish with PDAC was higher than its incidence in general Ashkenazi population (10% vs 1.56%, respectively). (19) A decade later, Ferrone et al (20) identified BRCA2 6174delT mutation in 4.1% of Ashkenazi Jewish individuals who underwent surgical resection for PDAC. Other less common BRCA2 germline mutations such as 6174delT and 6158insT were identified in 9.8% of individuals with PDAC. (11) (Table 1)

5. BRCA1 AND FPC

Similar to BRCA2, BRCA1 is a tumor suppressor gene whose protein product functions in DNA repair. (21) However, the risk of PDAC in BRCA1 mutation carriers is not well proved because the results of the BRCA1 mutation studies have been less consistent. The Breast Cancer Linkage Consortium examined 11,847 patients from 699 families segregating a BRCA1 mutation across thirty centers in Europe and North America, and found 2-fold increase risk of PDAC. (22) Brose and colleagues studied 381 females with BRCA1 mutations in 147 families at University of Pennsylvania and University of Michigan and reported 3-fold higher risk of PDAC in BRCA1 mutation carriers compared with the general population. (25)

Other researchers were unable to prove a connection between BRCA1 mutations and PDAC. Axilbund et al analyzed BRCA1 mutation in 66 patients with FDC and none of them were found to have deleterious BRCA1 gene mutation. (24)

6. PALB2

PALB2 is a breast cancer susceptibility gene; its protein is essential for BRCA2 anchorage to nuclear structures. (25) Its association with BRCA2 made it a susceptibility gene to other BRCA2-related cancers such as PDAC. It is reported to be the second most common mutated gene for hereditary PDAC. (6) (New York, N.Y. however the absolute and relative risk for the evolution of PDAC in individuals with PALB2 mutation is unclear. (26) Jones and colleagues studied the PALB2 mutation in 96 FPC patients, and three truncating PALB2 mutations were identified (3.1%). (27) A European study also detected three truncating PALB2 mutations on FPC families, mostly in individuals with concomitant breast cancer. (26)

7. INTRA-DUCTAL PAPILLARY MUCINOUS NEOPLASM AND BREAST CANCER

Intra-ductal papillary mucinous neoplasm (IPMNs) is an intra-ductal tumor described as excessive mucin production, dilation of pancreatic ducts and potential malignancy. (28) They were initially discovered by Ohashi et al in 1982. (29) Multiple studies attempted to determine the association between IPMNs and extra-pancreatic malignancies (EPMs) have showed mixed results. Lucas et al reported that 28.6% of Ashkenazi Jewish individuals who underwent IPMNs resection had BRCA1 or BRCA2 mutations. (8) In a retrospective study conducted in Israel to evaluate the association between IPMNs and EPMs, 4% of all tested individuals (6.7% of the tested Ashkenazi Jewish) carried the BRCA2 mutations. (7) A national population based study, using data from the Surveillance Epidemiology and End Results (SEER), studied the incidence of primary extra pancreatic cancer in patients with invasive IPMNs and sporadic PDAC. Interestingly, breast cancer was the second most common site (19.9%) after the digestive system (24.9%). (9) In the same study, most of the breast cancer cases were diagnosed

Table 1. Comparison Between Studies Evaluating BRCA1 and BRCA2 Mutations in Patients with Familial and Sporadic PDAC

Study	Population/ Number N	BRCA1 Mutations	BRCA2 Mutations	% n=Number
Goggings et al, 1996 (11)	Sporadic N=245		6174delT	9.8% n=4
Ozcelik et al, 1997(19)	Ashkenazi Jews N=41		6174delT	10% n=4
Murphy et al, 2002 (16)	Familial N=29 families	(6 Ashkenazi Jewish descent)	6174delT	17% n=5
Hanhn et al, 2003(17)	Familial N=26 families, 64 patients		4075delGT	19% n=5/26
Ferrone et al, 2009 (20)	Jewish patients N=145	185delAG, 5382insC	6174delT	5.5% n=2 BRCA1,6 BRCA2

Talking Genes in Breast and Pancreatic Malignancies
Talking Genes in Breast and Pancreatic Malignancies

before the diagnosis of IPMN or PDAC.(9) One limitation of the study is that SEER database did not include individuals with noninvasive forms of IPMN or patients who were treated non-operatively.

In a case control study evaluated the prevalence of EPMs in 178 European patients with resected IPMNs, the most frequent localization of EPMs was shown to be breast (30%). The prevalence of breast cancers was twice as high as that of the control population.(30) In a retrospective cohort study conducted to study the frequency of EPMs in patients with IPMN compared with those with PDAC and a general referral population, breast cancer was found in 5% of individuals with IPMN (20 of 471).(31)

In a multicenter observational study performed in Europe to investigate the occurrence of EPMs, breast cancer was reported to be the most common EPMs in female in.(32) The standardized incidence ration (SIR) was 1.76 (95% CI 0.81–3.35,) which is not significantly greater than general population.(32) (Table.2)

Study Design	Ethnicity	IPMN patients(n)	Control group patients(n)	Breast cancer percentage in IPMN patients	Most common EPNs sites
National population-based observational cohort	Western	992	18655 PDAC	19.9%	-colorectal -Breast -Prostate
Case-Control	Western	178	356 GP	29%	-Breast -Prostate -Colorectal
Retrospective	Western	471	471 PDAC	5%	-Skin -Breast -Prostate
Retrospective	Eastern	82	150/PDAC	19%	-Colorectal -Prostate -Breast
Multicenter Cohort study	Western	390	-	15.5%	-Breast -Colorectal -Renal
Multicenter observational study	Western	1340	-	5.9%	-Breast -Colorectal -GYN
Single center study	Western	198	-	6.8%	-Colorectal -Breast -Renal

GP: General population , RC : Referral Control

Table 2. Comparison Between Studies Evaluating Breast Cancer Incidence in Patients with Intra-ductal Papillary Mucinous Neoplasms

8. CONCLUSION

Most of the genetic basis for familial clustering of pancreatic cancer remains unknown. Mutations in BRCA1, BRCA2 and PALB2 genes explain only a small part of it.(24) Large sample studies are required to provide a better understanding of the role of these genes in pancreatic cancer susceptibility.

To date, no studies prove that IPMN patients are at risk of developing breast cancer(37) and the data is insufficient to provide guidelines for surveillance for secondary malignancies in patients with IPMNs. Future prospective studies about the association between IPMNs and breast cancer are warranted.

• Authors contribution: MB and AT gave a substantial contribution to the conception and design of the work. MB gave a substantial contribution to the acquisition, analysis, or interpretation of data for the work. LT had a part in article revised. LR gave substantial contribution to the data and critically revised the article. All authors gave final approval of the version to be published and agreed to be accountable for all aspects of the work in ensuring that questions related to the accuracy or integrity of any part of the work are appropriately investigated and resolved.
REFERENCES

1. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2018. CA: a cancer journal for clinicians. 2018; 68(1): 7–30.

2. Raimondi S, Maisonneuve P, Lowenfels AB. Epidemiology of pancreatic cancer: an overview. Nature reviews Gastroenterology & hepatology. 2009; 6(12): 699-708.

3. Klein AP. Genetic susceptibility to pancreatic cancer. Molecular carcinogenesis. 2012; 51(1): 14-24.

4. Klein AP, Brune KA, Petersen GM, Goggins M, Tersmette AC, Ofnerhaus GJ, et al. Prospective risk of pancreatic cancer in familial pancreatic cancer kindreds. Cancer research. 2004; 64(7): 2634-2638.

5. Mocci E, Milone RL, Mendez-Villamil EY, Hopper JL, John EM, Andrulis IL, et al. Risk of pancreatic cancer in breast cancer families from the breast cancer family registry. Cancer epidemiology, biomarkers & prevention: a publication of the American Association for Cancer Research, cosponsored by the American Society of Preventive Oncology. 2013; 22(5): 803-811.

6. Jones S, Hruban RH, Kiamiyama M, Borges M, Zhang X, Parsons DW, et al. Exomic Sequencing Identifies PALB2 as a Pancreatic Cancer Susceptibility Gene. Science. 2009; 324(5924): 217.

7. Lubetzky N, Ben-Haim M, Lahat G, Marmor S, Solar I, Brazowski E, et al. Intraduodenal papillary mucinous neoplasm of the pancreas: Associated cancers, family history, genetic predisposition? Surgery. 2012; 151(1): 70-75.

8. Lucas AL, Shakya R, Lipsyc MD, Mitchell EB, Kumar S, Hwang C, et al. High Prevalence of BRCA1 and BRCA2 Germline Mutations with Loss of Heterozygosity in a Series of Resected Pancreatic Adenocarcinoma and Other Neoplastic Lesions. Clinical cancer research: an official journal of the American Association for Cancer Research. 2015; 19(13): 3396-3403.

9. Riall TS, Stager VM, Nealon WH, Townsend CM, Kuo Y-f, Goodwin JS, et al. Incidence of Additional Primary Cancers in Patients with Invasive Intraduodenal Papillary Mucinous Neoplasms and Sporadic Pancreatic Adenocarcinomas. Journal of the American College of Surgeons. 2007; 204(5): 803-815.

10. Thull DL, Vogel VG. Recognition and management of hereditary breast cancer syndromes. The oncologist. 2004; 9(1): 13-24.

11. Goggins M, Schutte M, Lu J, Moskaluk CA, Weinstein CL, Petersen GM, et al. Germline BRCA2 gene mutations in patients with apparently sporadic pancreatic cancers. Cancer research. 1996; 56(23): 5360-5364.

12. Phelan CM, Lancaster JM, Tonin P, Gumbs C, Cochran C, Carter R, et al. Mutation analysis of the BRCA2 gene in 49 site-specific breast cancer families. Nat Genet. 1996; 13(1): 120-122.

13. The Breast Cancer Linkage C. Cancer Risks in BRCA2 Mutation Carriers. JNCI: Journal of the National Cancer Institute. 1999; 91(15): 1310-1316.

14. Couch FJ, Johnson MR, Rabe KG, Brune K, de Andrade M, Goggins M, et al. The prevalence of BRCA2 mutations in familial pancreatic cancer. Cancer epidemiology, biomarkers & prevention: a publication of the American Association for Cancer Research, cosponsored by the American Society of Preventive Oncology. 2007; 16(2): 542-546.

15. Lal G, Liu G, Schmocker B, Kaurah P, Ozcelik H, Narod SA, et al. Inherited predisposition to pancreatic adenocarcinoma: role of family history and germ-line p16, BRCA1, and BRCA2 mutations. Cancer research. 2020; 80(2): 409-416.

16. Murphy KM, Brune KA, Griffin C, Sollenberger JE, Petersen GM, Bansal R, et al. Evaluation of candidate genes MAP2K4, MADH4, ACFR118, and BRCA2 in familial pancreatic cancer: deleterious BRCA2 mutations in 17%. Cancer research. 2002; 62(15): 3789-3793.

17. Hahn SA, Greenhalf B, Ellis I, Sina-Frey M, Rieder H, Korte B, et al. BRCA2 germline mutations in familial pancreatic carcinoma. Journal of the National Cancer Institute. 2005; 95(3): 214-217.

18. Goggins M, Hruban RH, Kern SE. BRCA2 is inactivated late in the development of pancreatic intraepithelial neoplasia: evidence and implications. Am J Pathol. 2000; 156(5): 1767-1771.

19. Ozcelik H, Schmocker B, Di Nicola N, Shi XH, Langer B, Moore M, et al. Germline BRCA2 6174delT mutations in Ashkenazi Jewish pancreatic cancer patients. Nat Genet. 1997; 16(1): 17-18.

20. Ferrone CR, Levine DA, Tang LH, Allen PJ, Jarnagin W, Brennan MF, et al. BRCA germline mutations in Jewish patients with pancreatic adenocarcinoma. Journal of clinical oncology: official journal of the American Society of Clinical Oncology. 2009; 27(5): 435-438.

21. Hölter S, Borgida A, Dodd A, Grant R, Semistiuk K, Hedley D, et al. Germline BRCA Mutations in a Large Clinic-Based Cohort of Patients With Pancreatic Adenocarcinoma. Journal of clinical oncology: official journal of the American Society of Clinical Oncology. 2015; 33(28): 3124-3129.

22. Thompson D, Easton DF. Cancer Incidence in BRCA1 mutation carriers. Journal of the National Cancer Institute. 2002; 94(18): 1538-1565.

23. Brose MS, Rebeck TR, Calzone KA, Stopfer JE, Nathanson KL, Weber BL. Cancer risk estimates for BRCA1 mutation carriers identified in a risk evaluation program. Journal of the National Cancer Institute. 2002; 94(18): 1565-1572.

24. Axilbund JE, Argani P, Kiamiyama M, Palmisano E, Raben M, Borges M, et al. Absence of germline BRCA1 mutations in familial pancreatic cancer patients. Cancer biology & therapy. 2009; 8(2): 131-135.

25. Tischkowitz M, Sabbaghian N, Ray AM, Lange EM, Foulkes WD, Cooney KA. Analysis of the gene coding for the BRCA2-interacting protein PALB2 in hereditary prostate cancer. The Prostate. 2008; 68(6): 675-678.

26. Slater EP, Langer P, Niemczyk E, Strauch K, Butler J, Habheb N, et al. PALB2 mutations in European familial pancreatic cancer families. Clinical genetics. 2010; 78(5): 490-494.

27. Jones S, Hruban RH, Kiamiyama M, Borges M, Zhang X, Parsons DW, et al. Exomic sequencing identifies PALB2 as a pancreatic cancer susceptibility gene. Science. 2009; 324(5924): 217.

28. Comlón KC. Intraduodenal papillary mucinous tumors of the pancreas. Journal of clinical oncology: official journal of the American Society of Clinical Oncology. 2005; 23(10): 4518-4523.

29. Pedrazzoli S, Sperti C, Pasquali C, Bissoli S, Chierichetti F. Comparison of International Consensus Guidelines versus 18-FDG PET in detecting malignancy of intraduodenal papillary mucinous neoplasms of the pancreas. Ann Surg. 2011; 254(6): 971-976.

30. Baumgaertner I, Corcos O, Couvelard A, Sauvanet A, Rebourc E, Vul et al. Frequency of extrapancreatic neoplasms in intraduodenal papillary mucinous neoplasms of the pancreas: a case-control study. Am J Gastroenterol. 2008; 103(11): 2878-2882.

31. Reid-Lombardo KM, Mathis KL, Wood CM, Harmsen WS, Sarr MG. Frequency of extrapancreatic neoplasms in intraduodenal papillary mucinous neoplasms of the pancreas: implications for management. Ann Surg. 2010; 251(1): 64-69.

32. Marchegiani G, Malloro G, D’Haese JG, Wenzel P, Keskin M, Pugliese L, et al. Association between pancreatic intraduodenal papillary mucinous neoplasms and extrapancreatic malignancies. Clinical gastroenterology and hepatology : the official clinical practice journal of the American Gastroenterological Association. 2015; 13(6): 1162-1169.

33. Verna EC, Hwang C, Stevens PD, Rotterdam H, Stavropoulos SN, Sy CD, et al. Pancreatic cancer screening in a prospective cohort of high-risk patients: a comprehensive strategy of imaging and genetics. Clinical cancer research: an official journal of the American Association for Cancer Research. 2010; 16(20): 5028-5037.

34. Canto MI, Harinck F, Hruban RH, Offerhaus GJ, Poley JW, Kamel I, et al. International Cancer of the Pancreas Screening (CAPS) Consortium summit on the management of patients with increased risk for familial pancreatic cancer. Gut. 2013; 62(3): 339-347.

35. Brand RE, Lerch MM, Rubinstein WS, Neoptolemos JP, Whitcomb DC, Hruban RH, et al. Advances in counselling and surveillance of patients at risk for pancreatic cancer. Gut. 2007; 56(10): 1469-1469.

36. Lucas AL, Frado LE, Hwang C, Kumar S, Khanna LG, Levinson EJ, et al. Exomic Sequencing Identifies PALB2 as a Pancreatic Cancer Susceptibility Gene. Science. 2009; 324(5924): 217.

37. Pugliese L, Keskin M, Maisonneuve P, D’Haese JG, Marchegiani G, Wenzel P, et al. Increased incidence of extrapancreatic neoplasms in patients with IPMN: Fact or fiction? Pancreatology: official journal of the European Society for Clinical and Biological Research. 2009; 9(2): 131-135.