Electronic Supplementary Material (ESI) for RSC Advances.

Supplementary information

In situ Constructed Oxygen-vacancy-rich MoO$_{3-x}$/Porous g-C$_3$N$_4$ Heterojunction for Synergistically Enhanced Photocatalytic H$_2$ Evolution

Yufeng Pan,a,b Bin Xiong,a,b Zha Li,c Yan Wu,a,b Chunjie Yan,a,b Huabin Song*a,b

a Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, Hubei, P. R. China

b Engineering Research Center of Nano-Geomaterials of Ministry of Education, China University of Geosciences, Wuhan 430074, Hubei, P. R. China

c Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, P. R. China

* Corresponding author: Huabin Song
E-mail: songhb@cug.edu.cn
Figure S1 XRD patterns of g-C₃N₄, MoO₃ₓ/g-C₃N₄ (calcination at 280 °C), and MoO₃ₓ/g-C₃N₄ (calcination at 350 °C).
Figure S2 XRD pattern of MoO$_3$ (The Mo (OH)$_6$ precursor was calcined at 400 ºC), the illustration shows the crystal structure of MoO$_3$.
Figure S3 SEM images of pure g-C_3N_4 and MoO$_{3-x}$/g-C_3N_4.
Figure S4 HR-TEM images of MoO$_{3-x}$/g-C$_3$N$_4$.
Figure S5 AFM image of pure g-C_3N_4 nanosheets.
Figure S6 Photocatalytic hydrogen production rates of g-C_3N_4, 5% MoO$_3$/g-C_3N_4 and 5% MoO$_{3-x}$/g-C_3N_4.
Figure S7 UV–vis diffuse reflectance spectra of g-\(\text{C}_3\text{N}_4\) (a) and MoO\(_{3-x}\) (b), the illustrations are their corresponding Tauc’s plot.
Table S1. The N/C ratios of g-C₃N₄ and MoO₃₋ₓ/g-C₃N₄ calculated by XPS.

g-C₃N₄	Atomic %	N/C ratio	MoO₃₋ₓ/g-C₃N₄	Atomic %	N/C ratio
N1s	54.06		N1s	45.40	
O1s	4.92	1.32	O1s	4.47	1.02
C1s	41.02		C1s	44.08	
		Mo 3s	3.44	Na 1s	1.42
		Cl 2p	1.18		
Table S2. The ratios of different O species of MoO$_3$ calculated by XPS.

Species	Peak BE	FWHM eV	Area (P) CPS. eV	Ratio %
Lattice oxygen	530.5	1.34	230460.80	72.02
Defect oxygen	532.2	1.67	69881.18	21.84
Hydroxyl oxygen	533.0	1.37	19636.34	6.14
Table S3. The ratios of different O species of MoO$_{3-x}$/g-C$_3$N$_4$ calculated by XPS.

Species	Peak BE	FWHM eV	Area (P) CPS.eV	Ratio %
Lattice oxygen	531.1	1.55	17656.19	31.67
Defect oxygen	532.2	1.49	27133.34	48.67
Adsorbed water	535.4	3.16	10963.82	19.66
Table S4. Photocatalytic hydrogen production performance of similar photocatalysts reported in recent references.

Photocatalysts	HER performance /μmol h⁻¹ g⁻¹	Co-catalyst	Sacrificial agent	Reference
MoS₂/g-C₃N₄	3570.0	2 wt% Pt	TEOA	Ref. 1
WO₃/g-C₃N₄	982.0	2 wt% Pt	lactic acid	Ref. 2
Cu (OH)₂/g-C₃N₄	48.7	--	CH₃OH	Ref. 3
MoO₃ₓ/g-C₃N₄	4694.3	2 wt% Pt	TEOA	This work
MoO₃ₓ/g-C₃N₄	821.0	2 wt% Pt	lactic acid	This work
References
1. X. Liu, B. F. Wang, M. Liu, S. L. Liu, W. Chen, L. Gao and X. Y. Li, Appl. Surf. Sci., 2021, 554, 149617.
2. J. Fu, Q. Xu, J. Low, C. Jiang and J. Yu, Appl. Catal. B, 2019, 243, 556-565.
3. X. S. Zhou, Z. H. Luo, P. F. Tao, B. Jin, Z. J. Wu and Y. S. Huang, Mater. Chem. Phys., 2014, 143, 1462-1468.