Synthesis, microstructure, and properties of high purity Mo2TiAlC2 ceramics fabricated by spark plasma sintering

Yunhui NIU
State Key Laboratory of Environment-Friendly Energy Materials, Southwest University of Science and Technology, Mianyang 621010, China

Shuai FU
Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China

Kuibao ZHANG
State Key Laboratory of Environment-Friendly Energy Materials, Southwest University of Science and Technology, Mianyang 621010, China

Bo DAI
State Key Laboratory of Environment-Friendly Energy Materials, Southwest University of Science and Technology, Mianyang 621010, China

Haibin ZHANG
Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang 621900, China

See next page for additional authors
Follow this and additional works at: https://dc.tsinghuajournals.com/journal-of-advanced-ceramics

Recommended Citation
Yunhui NIU, Shuai FU, Kuibao ZHANG et al. Synthesis, microstructure, and properties of high purity Mo2TiAlC2 ceramics fabricated by spark plasma sintering. Journal of Advanced Ceramics 2020, 9(6): 759-768.

This Research Article is brought to you for free and open access by Tsinghua University Press: Journals Publishing. It has been accepted for inclusion in Journal of Advanced Ceramics by an authorized editor of Tsinghua University Press: Journals Publishing.
Synthesis, microstructure, and properties of high purity Mo2TiAlC2 ceramics fabricated by spark plasma sintering

Authors
Yunhui NIU, Shuai FU, Kuibao ZHANG, Bo DAI, Haibin ZHANG, Salvatore GRASSO, and Chunfeng HU

This research article is available in Journal of Advanced Ceramics: https://dc.tsinghuajournals.com/journal-of-advanced-ceramics/vol9/iss6/10
Synthesis, microstructure, and properties of high purity Mo₂TiAlC₂ ceramics fabricated by spark plasma sintering

Yunhui NIU⁹,†, Shuai FUᵇ,†, Kuibao ZHANGᵃ, Bo DAIᵃ, Haibin ZHANGᶜ, Salvatore GRASSOᵇ, Chunfeng HUᵇ,*

ᵃState Key Laboratory of Environment-Friendly Energy Materials, Southwest University of Science and Technology, Mianyang 621010, China
ᵇKey Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
ᶜInstitute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang 621900, China

Received: May 12, 2020; Revised: August 13, 2020; Accepted: August 14, 2020
© The Author(s) 2020.

Abstract: The synthesis, microstructure, and properties of high purity dense bulk Mo₂TiAlC₂ ceramics were studied. High purity Mo₂TiAlC₂ powder was synthesized at 1873 K starting from Mo, Ti, Al, and graphite powders with a molar ratio of 2:1:1.25:2. The synthesis mechanism of Mo₂TiAlC₂ was explored by analyzing the compositions of samples sintered at different temperatures. It was found that the Mo₂TiAlC₂ phase was formed from the reaction among Mo₃Al₂C, Mo₂C, TiC, and C. Dense Mo₂TiAlC₂ bulk sample was prepared by spark plasma sintering (SPS) at 1673 K under a pressure of 40 MPa. The relative density of the dense sample was 98.3%. The mean grain size was 3.5 μm in length and 1.5 μm in width. The typical layered structure could be clearly observed. The electrical conductivity of Mo₂TiAlC₂ ceramic measured at the temperature range of 2–300 K decreased from 0.95 × 10⁶ to 0.77 × 10⁶ Ω⁻¹·m⁻¹. Thermal conductivity measured at the temperature range of 300–1273 K decreased from 8.0 to 6.4 W·(m·K)⁻¹. The thermal expansion coefficient (TEC) of Mo₂TiAlC₂ measured at the temperature of 350–1100 K was calculated as 9.0 × 10⁻⁶ K⁻¹. Additionally, the layered structure and fine grain size benefited for excellent mechanical properties of low intrinsic Vickers hardness of 5.2 GPa, high flexural strength of 407.9 MPa, high fracture toughness of 6.5 MPa·m¹/２, and high compressive strength of 1079 MPa. Even at the indentation load of 300 N, the residual flexural strength could hold 84% of the value of undamaged one, indicating remarkable damage tolerance. Furthermore, it was confirmed that Mo₂TiAlC₂ ceramic had a good oxidation resistance below 1200 K in the air.

Keywords: MAX phase; Mo₂TiAlC₂; synthesis; microstructure; properties

1 Introduction

In recent years, MAX phases of ternary layered comp-
ounds have attracted much attention from material scientists in the world owing to their excellent combining properties of ceramics and metals. The formula of MAX phases could be presented as Mₙ₊₁AXₙ, where M is a transition metal, A is an A group element, X is carbon or nitrogen, and n = 1–6 [1–15]. The research results have shown that the MAX phases possess good
electrical and thermal conductivities, low hardness, normal thermal expansion coefficient (TEC), high damage tolerance, and thermal shock resistance, being the candidates applied in the industrial and aerospace fields [16–31].

In the MAX phase family, there is one kind of solid solutions of \((M',M'')_{n+1}AX_n \) where the M site is composed of two elements, and they have the possible multiple properties of \(M'_{n+1}AX_n \) and \(M''_{n+1}AX_n \), triggering the interests of researchers. By controlling the solid solute elements, new MAX phases-compounds could also be synthesized. For example, Sun et al. [32–36] successfully prepared \((V_{0.5}Cr_{0.5})_5AlC_4 \), \((V_{0.5}Cr_{0.5})_4AlC_3 \), and \((V_{0.5}Cr_{0.5})_3AlC_2 \) MAX phases by using \textit{in situ} reaction method and found that these phases had the good high-temperature stiffness of V-based MAX phase and the good hot corrosion resistance of Cr-based MAX phase. Zheng et al. [37] synthesized \(Ti_6(Al,Nb)_3C_4 \) compound which is the first layered 514 phase, therefore improving the discovery of more new MAX phases. In recent years, Anasori et al. [38,39] identified two new solid solution MAX phases of \(Mo_2TiAlC_2 \) and \(Mo_2Ti_2AlC_3 \) and determined the order arrangement of Mo atom layer and Ti atom layer in the crystal structure. Also, Fu et al. [40] synthesized high purity dense \(Mo_2Ti_2AlC_3 \) sample with a relative density of 99.3% by the hot pressing method and systematically characterized its physical and mechanical properties. Fu et al. [40] confirmed that \(Mo_2Ti_2AlC_3 \) ceramic has the lowest thermal conductivity of 6.82 W·(m·K)\(^{-1}\) in the known MAX phases. Whereas, until 2020, except for Refs. [38,39], the experimental researches on the basic physical and mechanical properties of \(Mo_2TiAlC_2 \) were quiet rare.

Additionally, in order to fabricate the dense \(Mo_2TiAlC_2 \) ceramics with fine grains, spark plasma sintering (SPS) was adopted based on the merits of on-off DC pulse current to generate discharge plasma, releasing point impact pressure and Joule heat, and accelerating electric field diffusion [41–44]. In previous studies, SPS method has been well utilized to successfully prepare MAX phases of \(Ti_3AlC_2 \) [45], \(Ti_2AlN \) [46], \(Ta_6AlC_3 \) [47], \(Ti_2SnC \) [48], and \(Cr_2AlC_3 \) [49]. The good characteristics of fast heating, shortening annealing time, and high production efficiency have been well proved. Especially, under the condition of short annealing time and high pressure, it is convenient to achieve fine grains in the dense bulks, benefiting for the good mechanical properties.

In this paper, high purity \(Mo_2TiAlC_2 \) powders were synthesized firstly and its reaction mechanism was systematically investigated. Dense \(Mo_2TiAlC_2 \) ceramics were consolidated by SPS and their physical and mechanical properties, as well as oxidation resistance, were studied.

2 Experimental

The preparation of high purity dense \(Mo_2TiAlC_2 \) ceramics was divided into two steps: One step was to explore the reaction mechanisms to synthesize high purity \(Mo_2TiAlC_2 \) powders, and the second step was to consolidate the dense bulks by SPS. For the synthesis of high purity powders, commercial powders of Mo (300 mesh, 99% purity), Ti (200 mesh, 99.5% purity), Al (300 mesh, 99% purity), and graphite (1500 mesh, 99% purity) were used as initial materials. The designed molar ratio of \(Mo:Ti:Al:C \) was 2:1:1.25:2. The adding excessive aluminum was to compensate for the evaporation of Al during high-temperature treatment. The raw powders were weighed in an electric balance with an accuracy of 10\(^{-2}\) g and drily mixed in a resin bottle at 50 rpm in a rotary milling machine for 20 h. After sieving, the mixture was filled in an alumina crucible and sintered in the tube furnace (BR-17MT, Brother Co., Ltd., China) at the aimed temperature in a flowing argon atmosphere (99.9% purity). The heating and cooling rate was 5 K/min and the holding time was 4 h. In order to synthesize pure \(Mo_2TiAlC_2 \) powders, the reaction mechanisms of \(Mo_2TiAlC_2 \) ceramic were systematically investigated at the temperatures of 300, 973, 1273, 1573, and 1873 K, respectively. After sintering, the powders were drilled from the specimens and sieved using a 200 mesh sieve. The compositions of obtained fine powders were examined by a D8 Bruker X-ray diffractometer (XRD) (PA, Almelo, the Netherlands) with Cu K\(\alpha \) (\(\lambda = 1.54178 \) Å). Finally, it was confirmed that the pure \(Mo_2TiAlC_2 \) powder could be successfully prepared at 1873 K.

For fabricating the dense \(Mo_2TiAlC_2 \) ceramics, the high purity powders with the particle size of 200 mesh were put into a graphite mold with a diameter of 20 mm and consolidated at 1673 K in a SPS furnace (SPS-20T-10, Chenhua Co., Ltd., China) in a vacuum (1 Pa) under a pressure of 40 MPa and then the samples were cooled down to the ambient temperature naturally. The heating rate was 20 K/min and the
holding time was 10 min. Finally, the dense samples were ground to remove the surface contaminations by a diamond grinding wheel. Phase constituents of the sample were examined by XRD, and the density of the sample was measured by the Archimedes’ method. After etching the polished surface of Mo₂TiAlC₂ ceramics using the acid solution consisting of HNO₃, HF, and H₂O with the volume ratio of 1:1:1, the grains were carefully checked by a scanning electron microscope (FEI, Hillsboro Co., USA) equipped with an energy-dispersive X-ray spectroscopy (EDS). At least 50 grains were measured in length and width.

The electrical conductivity was measured by physical property measurement system (PPMS DynaCool 9, Quantum Design Co., USA) at the temperature range of 2–300 K. The sample size used was 3 mm × 3 mm × 15 mm. The thermal conductivity was measured by a hot disk method (TPS2500, Hot Disk Co., Sweden) at the temperatures of 300, 473, 673, 873, 1073, and 1273 K, respectively. The sample used for testing thermal conductivity was a cylinder with a 20 mm diameter and 5 mm height. The TEC was measured using a thermal expansion analyzer (DIL402C, Netzsch Co., Germany) at the temperature range of 350–1100 K in flowing argon. The heating rate was set at 1.5 K/min, and the dimension of the sample was 3 mm × 4 mm × 4 mm.

The Vickers hardness was tested in a micro-hardness tester (HVS-50, Wheng Co., China), and the loads were selected as 1, 2, 3, 5, 10, 50, and 100 N, respectively. An universal testing machine (YC-100KN, Yice Co., China) was used to determine the mechanical properties, including fracture toughness (crosshead speed, 0.05 mm/min), flexural strength (crosshead speed, 0.5 mm/min), and compressive strength (crosshead speed, 0.5 mm/min). The specimens were machined into bars with the dimensions of 2 mm × 4 mm × 18 mm, 1.5 mm × 2 mm × 18 mm, and 2 mm × 2 mm × 4 mm respectively by an electrical-discharged method and then polished down to 1.0 μm diamond grits. The notch of the samples for the fracture toughness test was 2 mm in length and 0.2 mm in width. The testing span of three-point bending strength and the fracture toughness was 16 mm. Three samples were used for each test. The damage tolerance of Mo₂TiAlC₂ ceramics was characterized by the indentation load dependence of flexural strength, and the indentation loads selected were 0, 10, 50, 100, 200, and 300 N, respectively. The fracture surface was observed by scanning electron microscope (SEM).

In addition, in order to determine the oxidation resistance of Mo₂TiAlC₂ ceramics, the DSC–TG curve was evaluated by a TG–DSC facility (STA 449F3, Netzsch Corp., Germany) at the temperature range of 313–1473 K. The heating rate was 20 K/min and the flowing rate of air was 20 ml/min. Furthermore, the dense Mo₂TiAlC₂ sample with the dimension of 1.5 mm × 2 mm × 5 mm was heat-treated in the tube furnace in the air from room temperature to 1473 K at the heating rate of 10 K/min. The oxidized surface was examined by XRD and SEM.

3 Results and discussion

3.1 Synthesis and microstructure characterization

In order to explore the reaction mechanisms of Mo₂TiAlC₂ and synthesize pure Mo₂TiAlC₂ powder, the sintering was processed at different temperatures. The XRD results of the obtained phases are shown in Fig. 1. The compositions in the prepared samples were listed in Table 1. The temperatures corresponding to Figs. 1(a)–1(e) are 300, 973, 1273, 1573, and 1873 K, respectively. In comparison with the initial compositions of mixture powder at 300 K (Fig. 1(a)), no reaction occurred at 973 K, and only element powders could be examined (Fig. 1(b)). When raising the temperature to 1273 K, a large amount of Al and Mo reacted and generated the main phase of AlMo₃ (Fig. 1(c)). In addition, a small amount of AlTi₃ and Mo₂C were detected. The chemical reaction equations could be expressed as

\[\text{Al} + 3\text{Mo} = \text{AlMo}_3 \]
\[\text{Al} + 3\text{Ti} = \text{AlTi}_3 \]
\[2\text{Mo} + \text{C} = \text{Mo}_2\text{C} \]

As the temperature reached 1573 K, the diffraction peak intensity of AlMo₃ decreased a lot and the AlTi₃ phase disappeared, whereas the diffraction peak intensity of Mo₂C continued to increase to be the main phase, indicating the continuous reaction between Mo and C (Fig. 1(d)). Additionally, plenty of Mo₃Al₂C, a small amount of TiC, and a few Mo₂TiAlC₂ were examined. At the same time, graphite was also reacted. It is suspected that the consumption of AlMo₃, AlTi₃, and C probably contributed to the formation of Mo₃Al₂C and TiC. When further increasing the temperature to be 1873 K, all phases of C, AlMo₃, Mo₂C, Mo₃Al₂C, and
Fig. 1 XRD patterns of synthesized specimens sintered at different temperatures: (a) 300, (b) 973, (c) 1273, (d) 1573, and (e) 1873 K.

Table 1 Phase compositions of samples sintered at different temperature

Temperature (K)	Phase composition
300	Mo, Ti, Al, C
973	Mo, Ti, Al, C
1273	Mo, C, AlMo3, MoC, AlTi3
1573	C, AlMo1, Mo2C, Mo3Al2C, TiC, Mo2TiAlC2
1873	Mo2TiAlC2

TiC disappeared and only Mo2TiAlC2 could be examined (Fig. 1(e)). So, the newly formed phases of Mo3Al2C and TiC possibly reacted with Mo2C to form Mo2TiAlC2. Therefore, the chemical reaction equations could be expressed as

\[8\text{AlMo}_3 + 4\text{AlTi}_3 + 21\text{C} = 6\text{Mo}_7\text{Al}_2\text{C} + 12\text{TiC} + 3\text{Mo}_2\text{C} \]
\[2\text{Mo}_2\text{Al}_2\text{C} + 4\text{TiC} + \text{Mo}_2\text{C} + \text{C} = 4\text{Mo}_2\text{TiAlC}_2 \]

As a result, it could be determined that high purity Mo2TiAlC2 powder could be successfully synthesized at 1873 K with the molar ratio of Mo:Ti:Al:C of 2:1:1.25:2.

Figure 2 shows the XRD patterns of the dense Mo2TiAlC2 bulks and pure Mo2TiAlC2 powder. It is detected that after consolidation by SPS, the obtained dense Mo2TiAlC2 ceramics still kept high purity with almost no impurity. The diffraction peaks of (002), (004), (006), and (008) became stronger in the dense specimens in comparison with those of initial fine Mo2TiAlC2 particles. It is concluded that during the sintering process, the growth of Mo2TiAlC2 grains showed the preferential direction with the c-axis of grains parallel to the loading direction under high pressures. A similar result has been previously reported on Ti2AlN ceramic densified by SPS, which was ascribed to the mechanical oriented deformation [50].

The microstructure characterization of dense Mo2TiAlC2 ceramics was shown in Fig. 3. In the etched surface of Mo2TiAlC2 ceramics, plate-like grains with random orientation could be clearly observed (Fig. 3(a)). By measuring the length and width of at least 50 grains, the mean grain size was calculated to be 3.5 μm in length and 1.0 μm in width, which is finer than those of Mo2Ti2AlC3 (5 μm in length and 1.3 μm in width) [40]. The smaller grain size is probably ascribed to the SPS sintering method which supplies a high heating rate and short annealing time to effectively inhibit the rapid grain growth. Figure 3(b) shows the fracture surface of Mo2TiAlC2 ceramics. It is seen that the sample is very dense and the porosity is extremely rare. The relative density of Mo2TiAlC2 ceramics measured by the Archimedes’ method was 98.3%, matching well...
with the micrograph. Transgranular fracture and intergranular fracture are the main damage modes. Like other MAX phases, the layered structure of grains could be easily observed, indicating the excellent mechanical properties.

3.2 Physical and mechanical property evaluation

In order to analyze and describe the properties of Mo2TiAlC2 ceramics systematically, the physical and mechanical properties of dense Mo2TiAlC2 ceramics were compared to those of Ti3AlC2 and Mo2Ti2AlC3. In comparison with the property of Ti3AlC2, it is easier to investigate the property variation law of the 312 phase whereas the M position atom was partially replaced, which provides a possibility to prepare a new MAX phase according to the intention. The comparison between Mo2TiAlC2 and Mo2Ti2AlC3 could enrich us with the understanding of the properties of the Mo–Ti–Al–C system MAX phases. Table 2 summarizes the property comparison of Mo2Ti2AlC3 and Ti3AlC2, including physical properties and mechanical properties [40,51]. Also, the properties of reported Mo2TiAlC2 ceramic were added to compare the difference of properties affected by the microstructure [38].

Figure 4 displays the electrical conductivity and electrical resistivity of Mo2TiAlC2 at the temperature range of 2–300 K. The electrical conductivity of Mo2TiAlC2 measured at room temperature was $0.77 \times 10^6 \ \Omega^{-1}\cdot m^{-1}$, which is higher than that of Mo2Ti2AlC3 ($0.41 \times 10^6 \ \Omega^{-1}\cdot m^{-1}$) [40], but lower than that of Ti3AlC2 ($3.48 \times 10^6 \ \Omega^{-1}\cdot m^{-1}$) [51]. In addition, the electrical conductivity of Mo2TiAlC2 measured by Anasori et al. [38] at 10 K was $0.67 \times 10^6 \ \Omega^{-1}\cdot m^{-1}$, lower than the present $0.95 \times 10^6 \ \Omega^{-1}\cdot m^{-1}$, which is because of the difference of relative density and content of impurities. The decreasing trend of electrical conductivity from 0.95×10^6 to $0.77 \times 10^6 \ \Omega^{-1}\cdot m^{-1}$ can be seen at the temperature range of 2–300 K and indicates a metal-like conductivity from 50 to 300 K with a linear change. Correspondingly, the electrical resistivity increases with the temperature at the range of 2–300 K, similar to other MAX phases. The temperature dependence of electrical (ρ) resistivity can be expressed by

$$\rho (\mu\Omega \cdot m) = \rho_0 (1-\beta \Delta T) = 1.27 [1 - 0.000717(273.15–T)]$$

where ρ_0 is the electrical resistivity value at 273.15 K ($\mu\Omega \cdot m$), T is the absolute temperature, and β is the temperature coefficient of resistivity (K$^{-1}$). The value of β is $0.717 \times 10^3 \ \text{K}^{-1}$, which is higher than that of Mo2Ti2AlC3 ($0.324 \times 10^3 \ \text{K}^{-1}$) [40], but lower than that of Ti3AlC2 ($3.10 \times 10^3 \ \text{K}^{-1}$) [51].

Table 2 Comparative analysis of physical and mechanical properties of Mo2TiAlC2, Mo2Ti2AlC3, and Ti3AlC2 ceramics

Property	Mo2TiAlC2 (this study)	Mo2TiAlC2 [38]	Mo2Ti2AlC3 [40]	Ti3AlC2 [51]
Molecular weight (g/mol)	290.75	290.75	350.63	194.61
Density (g/cm³)	6.46	5.32	6.15	4.21
Relative density (%)	98.3	81	99.3	99.1
Grain size (μm)	3.5 μm (L), 1.0 μm (W)	—	5.0 μm (L), 1.3 μm (W)	—20 μm (L), ~10 μm (W)
Electrical conductivity (10⁶ Ω⁻¹ m⁻¹, 300 K)	0.77	0.48	0.41	3.48
Temperature coefficient of resistivity (10³ K⁻¹)	0.717	—	0.324	3.50
Thermal conductivity (W·(m·K)⁻¹, 300 K)	8.0	—	6.82	40
TEC (10⁻⁶ K⁻¹)	9.0 ± 1.5	—	11.3	9.0
Vickers hardness (GPa)	5.20 ± 0.10 (10 N load)	—	4.81 ± 0.15 (10 N load)	2.7 (10 N load)
Flexural strength (MPa)	407.9 ± 29.0	—	452 ± 17	340
Fracture toughness (MPa·m¹/²)	6.5 ± 0.4	—	8.4 ± 0.4	7.2
Compressive strength (MPa)	1079 ± 17	—	1145 ± 57	764

L: length; W: width.
Fig. 4 Electrical conductivity and resistivity of dense Mo$_2$TiAlC$_2$ ceramics as a function of temperature.

The thermal conductivity measured at a temperature range of 300–1273 K is shown in Fig. 5. It is seen that the thermal conductivity changes linearly with the increment of temperature, decreasing from 8.0 to 6.4 W·(m·K)$^{-1}$. The thermal conductivity at room temperature is 8.0 W·(m·K)$^{-1}$, which is slightly higher than that of Mo$_2$Ti$_2$AlC$_3$ (6.82 W·(m·K)$^{-1}$) [40], and greatly lower than that of Ti$_3$AlC$_2$ (40 W·(m·K)$^{-1}$) [51]. A least-square fitting of the temperature dependent thermal conductivity (λ) for Mo$_2$TiAlC$_2$ ceramics is described as

$$\lambda = 8.4 - 0.00154T \quad (7)$$

where the coefficient of determination r^2 is 0.99. The trend is similar to those of Mo$_2$Ti$_2$AlC$_3$ and Ti$_3$AlC$_2$, whose thermal conductivities decrease with the increment of temperature. In addition, the total thermal conductivity can be divided into electronic contribution and phonon contribution, and the relation can be expressed as $\lambda_{\text{total}} = \lambda_{\text{electron}} + \lambda_{\text{phonon}}$. Based on the Wiedmann–Franz Law, the value of $\lambda_{\text{electron}}$ can be calculated by the formula of $\lambda_{\text{electron}} = L_0\sigma T$, where σ is the electrical conductivity at temperature T, and $L_0 = 2.45 \times 10^{-8}$ W·(m·K)$^{-1}$ [52]. The calculated result of $\lambda_{\text{electron}}$ at 300 K is 5.7 W·(m·K)$^{-1}$. Therefore, the contribution of phonon is 2.3 W·(m·K)$^{-1}$ at 300 K.

The TEC of Mo$_2$TiAlC$_2$ ceramic measured in the temperature of 350–1100 K is shown in Fig. 6. The simulated line is very fitting to the measured thermal expansion curve. The mean TEC in the temperature range of 350–1100 K was 9.0×10^{-6} K$^{-1}$, which is the same as that of Ti$_3$AlC$_2$ ceramic (9.0×10^{-6} K$^{-1}$) [51]. Whereas, in comparison with that of the similar Mo$_2$Ti$_2$AlC$_3$ ceramic (11.3×10^{-6} K$^{-1}$) [40], the TEC of Mo$_2$TiAlC$_2$ exhibits a lower value, which is probably associated with the stronger bonds in the Mo$_2$TiAlC$_2$ crystal structure [38,53].

Fig. 5 Thermal conductivity of dense Mo$_2$TiAlC$_2$ ceramic as a function of temperature.

Fig. 6 TEC of dense Mo$_2$TiAlC$_2$ ceramic versus temperature.

The Vickers hardness of Mo$_2$TiAlC$_2$ ceramics at the load of 10 N was measured as 5.2 ± 0.1 GPa, higher than both Mo$_2$Ti$_2$AlC$_3$ of 4.81 GPa [40] and Ti$_3$AlC$_2$ of 2.7 GPa [51]. The higher Vickers hardness could be probably ascribed to the SPS method. Fast sintering speed and short holding time contributed to the achievement of small grain size of Mo$_2$TiAlC$_2$ ceramics, resulting in the high Vickers hardness. In addition, the Vickers hardness of Mo$_2$TiAlC$_2$ as a function of indentation load is displayed in Fig. 7. It is shown that the hardness decreases with increasing load and gradually approaches 5.2 GPa. This phenomenon is well matching the indentation size effect (ISE) of higher hardness at lower loads consisting of the larger elastic recovery [54]. Therefore, the intrinsic hardness value of Mo$_2$TiAlC$_2$ ceramic is close to 5.2 GPa. An SEM image of a Vickers indent under a load of 10 N is shown in the inset of Fig. 7. No cracks propagated at the indent diagonals, and similar to other MAX phases, grains crushing, delamination, transgranular, and intergranular fractures were observed around the indent region. The mechanical energy could be effectively

www.springer.com/journal/40145
absorbed by these damage modes to prevent stress concentration. As a result, the damage induced by load could be retained in a limited region to keep the integrity of the bulk sample to remain the high strength.

The fracture toughness of Mo$_2$TiAlC$_2$ ceramic was tested to be 6.5 ± 0.4 MPa·m$^{1/2}$, lower than both Mo$_2$Ti$_2$AlC$_3$ of 8.4 MPa·m$^{1/2}$ [40] and Ti$_3$AlC$_2$ of 7.2 MPa·m$^{1/2}$ [51]. Also, Mo$_2$TiAlC$_2$ has a high compressive strength up to 1079 ± 17 MPa, a little lower than Mo$_2$Ti$_2$AlC$_3$ of 1145 MPa [40], but much higher than Ti$_3$AlC$_2$ of 764 MPa [51]. The high compressive strength was contributed by the fine grain size which provides great mechanical properties, including flexural strength. The flexural strength of Mo$_2$TiAlC$_2$ is 407.9 ± 29 MPa, higher than that of Ti$_3$AlC$_2$ (340 MPa) [51], and a little lower than that of Mo$_2$Ti$_2$AlC$_3$ (452 MPa) [40]. In addition, the damage tolerance of Mo$_2$TiAlC$_2$ reflected by the indentation load dependence of residual flexural strength is displayed in Fig. 8. At the indentation loads below 200 N, Mo$_2$TiAlC$_2$ ceramic can still hold high flexural strength. No obvious strength degradation was observed. When the indentation load was up to 300 N, the residual flexural strength of 343.9 MPa is still about 84% of the strength of undamaged samples. Mo$_2$TiAlC$_2$ ceramic possesses a good damage tolerance like Ti$_3$AlC$_2$ [55].

3.3 Oxidation resistance evaluation

Furthermore, to examine the possible application field of Mo$_2$TiAlC$_2$ ceramic at high temperatures, the dynamic oxidation process of Mo$_2$TiAlC$_2$ ceramics was characterized, as shown in Fig. 9. Figure 9 presents the TG and DSC results of Mo$_2$TiAlC$_2$ ceramic measured at the temperature range of 313–1473 K inflowing air. Based on the TG results, it is obviously seen that the mass gain starts at 1070 K and continues to increase until 1200 K, indicating that the sample began to be oxidized. The DSC curve also coincides with this result with an endothermic peak appearing from 1070 K and reaching an extreme value at 1200 K. After 1200 K, the TG curve begins to decrease and the DSC curve begins to turn the direction of heat release. The weight loss is probably associated with the evaporation of MoO$_3$ because its boiling point is only 1423 K.

To further investigate the oxidation resistance of Mo$_2$TiAlC$_2$ ceramics, the bulk sample was oxidized in the tube furnace in the air. The XRD analysis of the sample surface after the oxidizing test from room temperature to 1473 K is shown in Fig. 10. It can be seen that the surface phases are α-Al$_2$O$_3$ and R-TiO$_2$, and no molybdenum oxide MoO$_3$ peaks were detected. The result is matching the test of TG–DSC well that the MoO$_3$ phase has completely volatilized at high temperatures. Figure 11 shows the micrograph of the...
Fig. 10 XRD pattern of oxidized surface of dense Mo$_2$TiAlC$_2$ ceramic heat treated in the tube furnace from room temperature to 1473 K in the air.

Fig. 11 SEM micrographs of (a) the oxidized surface of dense Mo$_2$TiAlC$_2$ ceramic when oxidized from room temperature to 1473 K in the air and (b) the magnified image of the square region in Fig. 11(a).

surface after oxidation. The surface was covered by a loose layer consisting of Al$_2$O$_3$ and TiO$_2$ (Fig. 11(a)). In the magnified image, the hexagonal Al$_2$O$_3$ plates and TiO$_2$ rods could be clearly distinguished (Fig. 11(b)). It seems that different from the oxidized surface of Ti$_3$AlC$_2$, no dense oxide layer could be formed on the surface of Mo$_2$TiAlC$_2$ ceramic during the oxidation process [28], which presents the poor oxidation resistance above 1473 K. Therefore, it is determined that dense Mo$_2$TiAlC$_2$ ceramic could at least endure the high temperature up to 1200 K in the air.

4 Conclusions

In this study, high purity Mo$_2$TiAlC$_2$ powder was successfully synthesized by in situ reaction and the reaction mechanisms were carefully investigated. Dense bulk Mo$_2$TiAlC$_2$ ceramics were consolidated by SPS, and the physical and mechanical properties, as well as oxidation resistance, were systematically studied. The conclusions are listed as follows:

1) High purity Mo$_2$TiAlC$_2$ powder could be prepared at 1873 K using Mo, Ti, Al, and C element powders with the molar ratio of 2:1:1.25:2 in the flowing argon. The formation mechanism of Mo$_2$TiAlC$_2$ was ascribed to the reaction among Mo$_2$Al$_2$C, Mo$_2$C, TiC, and C.

2) The SPSed dense Mo$_2$TiAlC$_2$ ceramics with a high relative density of 98.3% had the fine grain size of 3.5 μm in length and 1.0 μm in width. The electrical conductivity measured at room temperature was 0.77 × 106 Ω$^{-1}$·m$^{-1}$, and it tended to increase with the decreasing temperature. When the temperature reached 2 K, the electrical conductivity increased to be 0.95 × 106 Ω$^{-1}$·m$^{-1}$. The thermal conductivity measured in the temperature of 300–1273 K decreased from 8.0 to 6.4 W·(m·K)$^{-1}$, and TEC measured in the temperature of 350–1100 K was 9.0 × 10$^{-6}$ K$^{-1}$.

3) Dense Mo$_2$TiAlC$_2$ ceramic had the low intrinsic Vickers hardness of 5.2 GPa, high fracture toughness of 6.5 MPa·m$^{1/2}$, high compressive strength of 1079 MPa, and high flexural strength of 407.9 MPa. When the indent load was up to 300 N, the residual flexural strength could still hold 84% of the value of the undamaged sample, presenting excellent damage tolerance.

4) The oxidation resistance of dense Mo$_2$TiAlC$_2$ ceramics could retain up to 1200 K in the air, presenting the potential application in the high-temperature fields.

Acknowledgements

This study was supported by the Thousand Talents Program of Sichuan Province, the Open Project of State Key Laboratory Cultivation Base for Nonmetal Composites and Functional Materials (17kfik01), the Outstanding Young Scientific and Technical Talents in Sichuan Province (2019DJQ0009), and the National Natural Science Foundation of China (Nos. 51741208 and 52072311).

References

[1] Li X, Liang BY, Li ZX. Combustion synthesis of Ti$_2$SC. Int J Mater Res 2013, 104: 1038–1040.

[2] Tunca BS, Lapauw T, Karakulina OM, et al. Synthesis of MAX phases in the Zr–Ti–Al–C system. Inorg Chem 2017, 56: 3489–3498.

[3] Mockute A, Dahlqvist M, Emmerlich J, et al. Synthesis and ab initio calculations of nanolaminated (Cr,Mn)$_3$AlC compounds. Phys Rev B 2013, 87: 094113.

[4] Lapauw T, Lambrinou K, Cabioc’H T, et al. Synthesis of the new MAX phase Zr$_2$AlC. J Eur Ceram Soc 2016, 36: 1847–1853.
[5] Lapauw T, Halim J, Lu J, et al. Synthesis of the novel Zr2AlC2 MAX phase. J Eur Ceram Soc 2016, 36: 943–947.

[6] Gauthier-Brunet V, Cabioc'h T, Chartier P, et al. Reaction synthesis of layered ternary Ti2AlC ceramic. J Eur Ceram Soc 2009, 29: 187–194.

[7] Dubois S, Bei GP, Thomas C, et al. Synthesis, microstructure, and mechanical properties of Ti5Sn1−xAlxC2 MAX phase solid solutions. Int J Appl Ceram 2010, 7: 719–729.

[8] Opeka M, Zaykoski J, Talmy I, et al. Synthesis and characterization of Zr2SC ceramics. Mat Sci E A-Struct 2011, 528: 1994–2001.

[9] Farouq HI, Abderrahim FZ, Esling C. First principle calculations of MAX ceramics Cr2GeC, V2GeC and their substitutional solid solutions. Comput Mater Sci 2013, 74: 40–49.

[10] Wang Q, Hu CF, Cai S, et al. Synthesis of high purity Ti5SiC2 by microwave sintering. Int J Appl Ceram Tec 2014, 11: 911–918.

[11] Saeed MA, Deorsola FA, Rashad RM. Optimization of the Ti5SiC2 MAX phase synthesis. J Int Refract Met H 2012, 35: 127–131.

[12] Li SB, Zhai HX. Synthesis and reaction mechanism of Ti5SiC2 by mechanical alloying of elemental Ti, Si, and C powders. J Am Ceram Soc 2005, 88: 2092–2098.

[13] Yan M, Chen YL, Mei BC, et al. Synthesis of high-purity Ti2AlN ceramic by hot pressing. T Nonferr Metal Soc 2008, 18: 82–85.

[14] Liu Y, Zhang LL, Xiao WW, et al. Rapid synthesis of Ti2AlN ceramic via thermal explosion. Mater Lett 2015, 149: 5–7.

[15] Zhu JF, Gao JQ, Yang JF, et al. Synthesis and microstructure of layered-ternary Ti2AlC ceramic by high energy milling and hot pressing. Mater Sci Eng: A 2008, 490: 62–65.

[16] Hu CF, Zhou YC, Bao YW. Material removal and surface damage in EDM of Ti5SiC2 ceramic. Ceram Int 2008, 34: 537–541.

[17] Rawn C, Barsoum M, El-Raghy T, et al. Structure of Ti2AlN1+x—A layered M6+n/3Xn nitride. Mater Res Bull 2000, 35: 1785–1796.

[18] Zhou YC, Sun ZM. Microstructure and mechanism of damage tolerance for Ti5SiC2 bulk ceramics. Mater Res Innov 1999, 2: 360–363.

[19] Barsoum MW, Yoo HI, Polushina IK, et al. Electrical conductivity, thermopower, and Hall effect of Ti5AlC2, Ti2AlN1+x and Ti5SiC2. Phys Rev B 2000, 62: 10194.

[20] El-Raghy T, Zavaliangos A, Barsoum MW, et al. Damage mechanisms around hardness indentations in Ti5SiC2. J Am Ceram Soc 2005, 88: 513–516.

[21] Lai CC, Petruhins A, Lu J, et al. Thermally induced substitutional reaction of Fe into Mo2GaC thin films. Mater Res Lett 2017, 5: 533–539.

[22] Amini S, Zhou AG, Gupta S, et al. Synthesis and elastic and mechanical properties of Cr2GeC. J Mater Res 2008, 23: 2157–2165.

[23] Lin ZJ, Zhou YC, Li MS. Synthesis, microstructure, and property of Cr2AlC. J Mater Sci Tech 2007, 13: 721–746.

[24] Li XC, Zheng LL, Qian YH, et al. Breakaway oxidation of Ti5AlC2 during long-term exposure in air at 1100 °C. Corros Sci 2016, 104: 112–122.

[25] Wang XH, Zhou YC. Oxidation behavior of Ti5AlC2 at 1000–1400 °C in air. Corros Sci 2003, 45: 891–907.

[26] Qian XK, He XD, Li YB, et al. Cyclic oxidation of Ti5AlC2 at 1000–1300 °C in air. Corros Sci 2011, 53: 290–295.

[27] Tallman DJ, Anasori B, Barsoum MW. A critical review of the oxidation of Ti5AlC2, Ti5AlC2, and Cr2AlC in air. Mater Res Lett 2013, 1: 115–125.

[28] Wang XH, Zhou YC. Layered machinable and electrically conductive Ti2AlC and Ti5SiC2 ceramics: A review. J Mater Sci Technol 2010, 26: 385–416.

[29] Amini S, Barsoum MW, El-Raghy T. Synthesis and mechanical properties of fully dense Ti5SiC2. J Am Ceram Soc 2007, 90: 3953–3958.

[30] Hu CF, He LF, Zhang J, et al. Microstructure and properties of bulk Ta2AlC ceramic synthesized by an in situ reaction/hot pressing method. J Eur Ceram Soc 2008, 28: 1679–1685.

[31] Hu CF, He LF, Liu MY, et al. In situ reaction synthesis and mechanical properties of V2AlC. J Am Ceram Soc 2008, 91: 4029–4035.

[32] Sun ZM, Music D, Ahuja R, et al. Electronic origin of shearing in M2AC (M = Ti, V, Cr, A = Al, Ga). J Phys: Condens Matter 2005, 17: 7169–7176.

[33] Music D, Schneider JM. The correlation between the electronic structure and elastic properties of nanolaminates. JOM 2007, 59: 60–64.

[34] Lin ZJ, Zhou YC, Li MS, et al. In-situ hot pressing/solid–liquid reaction synthesis of bulk Cr2AlC. Zeitschrift Für Met 2005, 96: 291–296.

[35] Wang J, Zhou Y. Dependence of elastic stiffness on electronic band structure of nanolaminate M2A1C (M = Ti, V, Nb, and Cr) ceramics. Phys Rev B 2004, 69: 214111.

[36] Zhou YC, Meng FL, Zhang J. New MAX-phase compounds in the V–Cr–Al–C system. J Am Ceram Soc 2008, 91: 1357–1360.

[37] Zheng LY, Wang JM, Lu XP, et al. (Ti0.5Nb0.5)5AlC4: A new layered compound belonging to MAX phases. J Am Ceram Soc 2010, 93: 3068–3071.

[38] Anasori B, Dahlqvist M, Halim J, et al. Experimental and theoretical characterization of ordered MAX phases Mo2Ti2AlC3 and Mo2Ti2AlC3. J Appl Phys 2015, 118: 094304.

[39] Anasori B, Halim J, Lu J, et al. Mo2Ti2AlC3: A new ordered layered ternary carbide. Scripta Mater 2015, 101: 5–7.

[40] Fu S, Liu YL, Zhang HW, et al. Synthesis and characterization of high purity Mo2Ti2AlC3 ceramic. J Alloys Compd 2020, 815: 152485.

[41] Omori M. Sintering, consolidation, reaction and crystal growth by the spark plasma system (SPS). Mater Sci Eng: A 2000, 287: 183–188.

[42] Mamedov V. Spark plasma sintering as advanced PM
sintering method. Powder Metall 2002, 45: 322–328.

[43] Wang YC, Fu ZY. Study of temperature field in spark plasma sintering. Mater Sci Eng: B 2002, 90: 34–37.

[44] Tokita M. Trends in advanced SPS Spark Plasma Sintering systems and FGM technology. J S Power Tech 1993, 30: 790–804.

[45] Parrikar PN, Gao HL, Radovic M, et al. Static and dynamic thermo-mechanical behavior of Ti2AlC MAX phase and fiber reinforced Ti2AlC composites. In Dynamic Behavior of Materials. Song B, Casem D, Kimberley J, Eds. Cham: Springer International Publishing, 2015, 1: 9–14.

[46] Choi ES, Sung J, Wang QM, et al. Material properties and machining performance of hybrid Ti2AlN bulk material for micro electrical discharge machining. Trans Nonferrous Met Soc China 2012, 22: 781–786.

[47] Griseri M, Tunca BS, Lapauw T, et al. Synthesis, properties and thermal decomposition of the Ta4AlC3 MAX phase. J Eur Ceram Soc 2019, 39: 2973–2981.

[48] Lapauw T, Vanmeensel K, Lambrinou K, et al. Rapid synthesis and elastic properties of fine-grained Ti2SnC produced by spark plasma sintering. J Alloys Compd 2015, 631: 72–76.

[49] Duan XM, Shen L, Jia DC, et al. Synthesis of high-purity, isotropic or textured Cr2AlC bulk ceramics by spark plasma sintering of pressure-less sintered powders. J Eur Ceram Soc 2015, 35: 1393–1400.

[50] Liu Y, Li YX, Li F, et al. Highly textured Ti3AlN ceramic prepared via thermal explosion followed by edge-free spark plasma sintering. Scripta Mater 2017, 136: 55–58.

[51] Wang X, Zhou Y. Microstructure and properties of Ti3AlC2 prepared by the solid–liquid reaction synthesis and simultaneous in-situ hot pressing process. Acta Mater 2002, 50: 3143–3151.

[52] Barsoum MW, Rawn CJ, El-Raghy T, et al. Thermal properties of Ti4AlN3. J Appl Phys 2000, 87: 8407–8414.

[53] Li YF, Xiao B, Sun L, et al. Phonon spectrum, IR and Raman modes, thermal expansion tensor and thermal physical properties of M2TiAlC2 (M = Cr, Mo, W). Comput Mater Sci 2017, 134: 67–83.

[54] Hu CF, Lin ZJ, He LF, et al. Physical and mechanical properties of bulk Ta4AlC3 ceramic prepared by an in situ reaction synthesis/hot-pressing method. J Am Ceram Soc 2007, 90: 2542–2548.

[55] Gong YM, Tian WB, Zhang PG, et al. Slip casting and pressureless sintering of Ti3AlC2. J Adv Ceram 2019, 8: 367–376.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.

The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.