Radiolabeled cyclic RGD peptides as radiotracers for tumor imaging

Jiyun Shi¹², Fan Wang¹², Shuang Liu³

¹ Interdisciplinary Laboratory, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
² Medical Isotopes Research Center, Peking University, Beijing 100191, China
³ School of Health Sciences, Purdue University, West Lafayette, IN 47907, USA

Received: 5 November 2015 / Accepted: 1 March 2016 / Published online: 12 April 2016

Abstract The integrin family comprises 24 transmembrane receptors, each a heterodimeric combination of one of 18α and one of 8β subunits. Their main function is to integrate the cell adhesion and interaction with the extracellular microenvironment with the intracellular signaling and cytoskeletal rearrangement through transmitting signals across the cell membrane upon ligand binding. Integrin αvβ3 is a receptor for the extracellular matrix proteins containing arginine–glycine–aspartic (RGD) tripeptide sequence. The αvβ3 is generally expressed in low levels on the epithelial cells and mature endothelial cells, but it is highly expressed in many solid tumors. The αvβ3 levels correlate well with the potential for tumor metastasis and aggressiveness, which make it an important biological target for development of antiangiogenic drugs, and molecular imaging probes for early tumor diagnosis. Over the last decade, many radiolabeled cyclic RGD peptides have been evaluated as radiotracers for imaging tumors by SPECT or PET. Even though they are called “αvβ3-targeted” radiotracers, the radiolabeled cyclic RGD peptides are also able to bind α5β1, α6β4, α4β1, and αvβ6 integrins, which may help enhance their tumor uptake due to the “increased receptor population.” This article will use the multimeric cyclic RGD peptides as examples to illustrate basic principles for development of integrin-targeted radiotracers and focus on different approaches to maximize their tumor uptake and T/B ratios. It will also discuss important assays for pre-clinical evaluations of the integrin-targeted radiotracers, and their potential applications as molecular imaging tools for noninvasive monitoring of tumor metastasis and early detection of the tumor response to antiangiogenic therapy.

Keywords Integrin αvβ3, PET and SPECT radiotracers, Tumor imaging

INTRODUCTION

Cancer is the second leading cause of death worldwide (Siegel et al. 2015). Most patients will survive if the cancer can be detected at the early stage. Accurate and rapid detection of rapidly growing and metastatic tumors is of great importance before they become widely spread. There are several imaging modalities available for the diagnosis of cancer, including X-ray computed tomography (CT), ultrasound (US), nuclear magnetic resonance imaging (MRI), and nuclear medicine procedures. While CT, US and MRI are better suited for anatomic analysis of solid tumors, molecular imaging with positron emission tomography (PET) and single-photon emission computed tomography (SPECT) offers significant advantages with respect to sensitivity and specificity because they are able to provide the detailed information related to biochemical changes in tumor tissues at the cellular and molecular levels.
Radiotracer design

Integrin-targeted radiotracer

Figure 1 shows the schematic construction of an integrin-targeted radiotracer (Liu 2006, 2009). The cyclic RGD peptide serves as a "vehicle" to carry the isotope to integrins expressed on both tumor cells and activated endothelial cells of tumor neovasculature. BFC is a bifunctional coupling agent to attach the appropriate radionuclide to a cyclic RGD peptide (Liu and Edwards 2001; Liu 2004, 2008). For a new radiotracer to be successful in clinics, it must show clinical indications for several of high-incidence tumor types (namely breast, lung, and prostate cancers). Renal excretion is necessary in order to maximize the tumor-to-background (T/B) ratios. The main objective of tumor imaging is to achieve the following goals: (1) to detect the presence of tumor at early stage, (2) to distinguish between benign and malignant tumors, (3) to follow the tumor growth and tumor response to a specific therapy (chemotherapy, radiation therapy, or combination thereof), (4) to predict success or failure of a specific therapeutic regimen, and (5) to access the prognosis of a particular tumor.

Radionuclide

The choice of radionuclide depends largely on the modality for tumor imaging. More than 80% of radiotracers for SPECT in nuclear medicine departments are \(99m\text{Tc}\) compounds due to optimal nuclear properties of \(99m\text{Tc}\) and its easy availability at low cost (Liu and Edwards 2001; Liu 2004, 2008; Liu and Chakraborty 2011). The 6-h half-life is long enough to allow radiopharmacists to carry out radiosynthesis and for physicians to collect clinically useful images. At the same
time, it is short enough to permit administration of 20–30 mCi of 99mTc without imposing a significant radiation dose to the patients. 18F is a cyclotron-produced isotope suitable for PET. It has a half-life of 110 min. Despite its short half-life, the availability of preparative modules makes 18F radiotracers more accessible to clinicians (Anderson et al. 2003). 64Cu is another PET isotope to develop target-specific radiotracers. It has a half-life of 12.7 h and a β+ emission (18%, $E_{max} = 0.655$ MeV). Despite poor nuclear properties, 64Cu is a viable alternative to 18F for research programs that wish to incorporate high sensitivity and spatial resolution of PET, but cannot afford to maintain the expensive isotope production infrastructure (Anderson et al. 2003). 68Ga is generator-produced PET isotope with the half-life of 68 min. The 68Ge-68Ga generator can be used for more than a year. 68Ga could become as useful for PET as 99mTc for SPECT (Maecke et al. 2005). The 68Ga-labeled somatostatin analogs have been studied for PET imaging of somatostatin-positive tumors in both pre-clinical animal models and cancer patients (Henze et al. 2005; Koukouraki et al. 2006a, b). Gallium chemistry and related nuclear medicine applications have been reviewed recently (Maecke et al. 2005).

Bifunctional coupling agent (BFC)

The choice of BFC depends on the radionuclide (Liu 2004, 2008; Liu and Chakraborty 2011). Among various BFCs for 99mTc-labeling, 6-hydrazinonicotinic acid (Fig. 2: HYNIC) is of great interest due to its high efficiency (rapid radiolabeling and high radiolabeling yield), the high solution stability of its 99mTc complexes, and the easy use of co-ligands for modification of biodistribution properties of 99mTc radiotracers (Liu 2004, 2005, 2008; Liu and Chakraborty 2011). In contrast, DOTA (1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid), NOTA (1,4,7-triazacyclononane-1,4,7-triacetic acid), and their derivatives (Fig. 2) have been widely used for 68Ga/64Cu-labeling of biomolecules due to the high hydrophilicity and in vivo stability of its 68Ga/64Cu chelates (Anderson et al. 2003; Maecke et al. 2005; Shokeen and Anderson 2009). Organic prosthetic groups (Fig. 2: 4-FB, 4-FBz, 2-FP, and 2-FDG) are often needed for 18F-labeling (Dolle 2005; Li et al. 2007, 2008a; Glaser et al. 2008; Hausner et al. 2008; Hohne et al. 2008; Mu et al. 2008; Becaud et al. 2009; Namavari et al. 2009; Vaidyanathan et al. 2009; Jacobson and Chen 2010; Liu et al. 2010; Wabler et al. 2010; Jacobson et al. 2011; Schirrmacher et al. 2013). However, recent results indicate that the Al(NOTA) chelates is more efficient for routine radiosynthesis of 18F radiotracers using the kit formulation (McBride et al. 2009, 2010, 2012; D’Souza et al. 2011; Lang et al. 2011; Liu et al. 2011; Laverman et al. 2010, 2012a).

Integrins as molecular targets for tumor imaging

Angiogenesis is a requirement for tumor growth and metastasis (Hwang and Varner 2004; Weigelt et al. 2005). The angiogenic process depends on the vascular endothelial cell migration and invasion, and is regulated by cell adhesion receptors. Integrins are such a family of receptors that facilitate the cellular adhesion to and the migration on extracellular matrix proteins, and regulate the cellular entry and withdraw from the cell cycle (Albelda et al. 1990; Falcioni et al. 1994; Carreira et al. 1996; Bello et al. 2001; Sengupta et al. 2001; Cooper et al. 2002; Zitzmann et al. 2002; Hwang and Varner 2004; Jin and Varner 2004; Weigelt et al. 2005; Sloan et al. 2006; Zhao et al. 2007; Hodiivala-Dilke 2008; Barczyk et al. 2010; Taherian et al. 2011; Gupta et al. 2012; Sheldrake and Patterson 2014). The integrin family comprises 24 transmembrane receptors (Table 1) (Sheldrake and Patterson 2014). Their main function is to integrate the cell adhesion and interaction with the extracellular microenvironment with the intracellular signaling and cytoskeletal rearrangement through transmitting signals across the cell membrane on ligand binding. Many integrins are crucial to the tumor initiation, progression, and metastasis. Among the 24 members, the $\alpha_v\beta_3$ is studied most extensively for its role in tumor angiogenesis and metastasis (Albelda et al. 1990; Falcioni et al. 1994; Carreira et al. 1996; Bello et al. 2001; Sengupta et al. 2001; Cooper et al. 2002; Zitzmann et al. 2002; Hwang and Varner 2004; Jin and Varner 2004; Weigelt et al. 2005; Sloan et al. 2006; Zhao et al. 2007; Hodiivala-Dilke 2008; Barczyk et al. 2010; Taherian et al. 2011; Gupta et al. 2012). It is not surprising that radiolabeled cyclic RGD peptides are often called "$\alpha_v\beta_3$–targeted" radiotracers in majority of the literature (D’Andrea et al. 2006; Liu 2006; Meyer et al. 2006; Beer and Schwaiger 2008; Cai and Chen 2008; Liu et al. 2008b; Liu 2009; Stollman et al. 2009; Beer and Chen 2010; Chakraborty and Liu 2010; Dijkgraaf and Boerman 2010; Haubner et al. 2010; Beer et al. 2011; Michalski and Chen 2011; Zhou et al. 2011; Danher et al. 2012; Tateishi et al. 2012).

The changes in the $\alpha_v\beta_3$ expression levels and activation state have been well documented during tumor growth and metastasis (Hwang and Varner 2004; Weigelt et al. 2005; Sloan et al. 2006; Zhao et al. 2007; Hodiivala-Dilke 2008; Barczyk et al. 2010; Gupta et al. 2012). The $\alpha_v\beta_3$ is expressed in low levels on epithelial cells and mature endothelial cells, but it is highly
expressed in many solid tumors, which include osteosarcomas, glioblastoma, melanomas, and carcinomas of lung and breast (Albelda et al. 1990; Falcioni et al. 1994; Carreiras et al. 1996; Bello et al. 2001; Sengupta et al. 2001; Cooper et al. 2002; Zitzmann et al. 2002; Hwang and Varner 2004; Jin and Varner 2004; Weigelt et al. 2005; Sloan et al. 2006; Zhao et al. 2007; Hodivala-Dilke 2008; Lorger et al. 2009; Omar et al. 2010). It has been shown that the $\alpha_v\beta_3$ expression levels correlate with the potential for metastasis and aggressiveness of tumors, including glioma, melanoma, and carcinomas of the breast and lungs (Zhao et al. 2007; Hodivala-Dilke 2008). The $\alpha_v\beta_3$ is considered as an important biological target to develop antiangiogenic drugs (Gottschalk and Kessler 2002; Kumar 2003; Jin and Varner 2004; D’Andrea et al. 2006) and molecular agents.

Table 1 Natural integrin ligands and their corresponding recognition peptide sequences

Integrins	Recognition sequence	Natural ligands
$\alpha_v\beta_1$, $\alpha_v\beta_3$, $\alpha_v\beta_5$, $\alpha_v\beta_6$, $\alpha_v\beta_8$, $\alpha_v\beta_1$, $\alpha_v\beta_5$, $\alpha_v\beta_3$	RGD	Vitronec, fibronectin, osteopontin, fibrinogen
$\alpha_4\beta_1$, $\alpha_4\beta_7$, $\alpha_5\beta_2$, $\alpha_5\beta_3$, $\alpha_5\beta_2$, $\alpha_5\beta_2$	LDV and related sequences	Fibronectin, vascular cell adhesion molecule 1, mucosal addressin cell adhesion molecule 1, intercellular cell adhesion molecule 1
$\alpha_5\beta_1$, $\alpha_5\beta_1$, $\alpha_10\beta_1$, $\alpha_{11}\beta_1$	GFOGER	Collagen, laminin
$\alpha_8\beta_1$, $\alpha_8\beta_1$, $\alpha_11\beta_4$	Other	Laminin

Table were adapted from Sheldrake and Patterson (2014)
Cyclic RGD peptides as targeting biomolecules

The α₂β₃ is a receptor for the extracellular matrix proteins with the exposed RGD tripeptide sequence. Theoretically, both linear and cyclic RGD peptides can be used as targeting biomolecules. A major drawback of linear RGD peptides are their low binding affinity (IC₅₀ > 100 nmol/L), lack of specificity (α₃β₃ vs. α₅β₁), and rapid degradation by proteases in serum. Cyclization of RGD peptides via the linkers, such as S-S disulfide, thioether, and rigid aromatic rings, leads to the increased receptor binding affinity and selectivity (Aumailley et al. 1991; Gurrath et al. 1992; Müller et al. 1992; Haubner et al. 1996). It seems that the α₅β₁ is less sensitive to variations in the RGD peptide backbone and can accommodate a larger distance or spacer than α₅β₁ and α₅β₅ (Pfaff et al. 1994). Incorporation of the RGD sequence into a cyclic pentapeptide framework (Fig. 3: c(RGDfK) and EMD121974) could significantly increase the binding affinity and selectivity of α₃β₃/α₃β₅ over α₅β₁ (Aumailley et al. 1991; Gurrath et al. 1992; Müller et al. 1992; Pfaff et al. 1994; Haubner et al. 1996). The addition of a rigid aromatic ring into the cyclic hexapeptide structure (Fig. 3: DMP728 and DMP757) enhances the binding affinity of α₅β₁ (Liu et al. 2010; Jacobson et al. 2011; Danhier et al. 2012). The structure–activity studies indicated that the amino acid residue in position 5 has little impact on α₃β₃/α₃β₅ binding affinity (Aumailley et al. 1991; Gurrath et al. 1992; Müller et al. 1992; Haubner et al. 1996). The valine (V) residue in c(RGDfK) can be replaced by lysine (K) or glutamic acid (E) to afford c(RGDfK) and c(RGDfE), respectively, without changing their α₃β₃/α₃β₅ binding affinity.

Figure 4 shows several examples of monomeric cyclic RGD peptides that have high affinity for α₃β₃ and α₃β₅. Among the radiotracers evaluated in pre-clinical tumor-bearing models, [¹⁸F]Galacto-RGD (Fig. 4: 2-[¹⁸F]fluoropropionamide c(RGDfK(SAA); SAA = 7-aminolev-glyero-L-galacto-2,6-anhydro-7-deoxyheptanamide) was the first one under clinical investigation for visualization of α₃β₃ expression in cancer patients (Beer et al. 2005; 2007, 2008; Haubner et al. 2005). The results from imaging studies in cancer patients showed that there was sufficient α₃β₃ for PET imaging. The tumor uptake of [¹⁸F]Galacto-RGD correlates with the α₃β₃ levels in cancer patients (Haubner et al. 2005; Beer et al. 2007, 2008). However, the radiotracers derived from monomeric cyclic RGD peptides all had low tumor uptake with T/B ratios because of their relatively low α₃β₃ binding affinity.

It must be noted that cyclic RGD peptides bind not only α₃β₃ but also other integrins. While the α₃β₃ plays a pivotal role in the tumor growth and progression, α₅β₅ is critical for the platelet aggregation during thrombosis formation. The interaction between α₃β₃ and α₅β₅ facilitates the adhesion of tumor cells to the vasculature and often leads to metastasis (Feeding-Habermann et al. 1996; Bakewell et al. 2003). The α₅β₅ is very similar to α₃β₃ in the ligand binding site region and has a similar expression pattern and function to those of α₃β₃. Both α₅β₅ and α₅β₃ are highly expressed on the activated endothelial cells and have similar roles in angiogenesis, promoting angiogenic response to different growth factors (Bakewell et al. 2003; Goodman et al. 2012). The α₅β₅ has been shown to overexpress on a wide range of tumor types (Goodman et al. 2012; Boger et al. 2014). A number of tumors co-express α₅β₃ and α₅β₅ (Sung et al. 1998; Erdreich-Epstein et al. 2000; Graf et al. 2003; Humphries et al. 2006; Monferran et al. 2008; Bianchi-Smiraglia et al. 2013; Roth et al. 2013; Vogtsseder et al. 2013; Boger et al. 2014; Navarro-Gonzalez et al. 2015), because both engage the same ECM ligands and activate complementary cell signaling pathways in order to promote tumor progression (Sung et al. 1998; Bianchi-Smiraglia et al. 2013). It was also reported that the tumor cell expression of α₅β₃, α₅β₅, α₅β₁, α₅β₄, α₅β₁, and α₅β₆ is correlated with the progression of various tumors (Vogtsseder et al. 2013; Boger et al. 2014). The structures of other RGD-binding integrins (α₅β₁, α₅β₅, α₅β₁, and α₅β₁) have not yet been studied in details (Sheidrake and Patterson 2014).

MAXIMIZING BINDING AFFINITY VIA MULTIMERIZATION

The multivalent concept has been used to develop radiotracers with the increased tumor-targeting capability. For example, E[c(RGDfK)]₂ (RGD₂) was the first cyclic RGD dimer for development of diagnostic (⁹⁹mTc) and therapeutic (⁶⁸Ga and ⁶⁷Cu) radiotracers (Liu et al. 2001a; b; 2005, 2006, 2007, 2008a, 2015; Jia et al. 2006, 2008). RGD tetramers RGD₄ was also used to develop SPECT and PET radiotracers (Wu et al. 2005; Liu et al. 2007, 2008a). Both the in vitro assays and biodistribution data showed that the radiolabeled
Fig. 3 Examples of monomeric cyclic RGD peptides as targeting biomolecules for the development of \(\alpha_\beta_3\)-targeted radiotracers. EMD121974 has been under clinical investigations as an "orphan drug" for treatment of glioblastoma either stand-alone or in combination with radiation therapy. DMP728 and DMP757 were originally developed as anti-thrombotic agents.

Fig. 4 Examples of the radiolabeled monomeric cyclic RGD peptides as radiotracers.
(99mTc, 18F, and 64Cu) multimeric cyclic RGD peptides have higher α_v\,β_3 binding affinity and better tumor uptake than their monomeric analogs (Liu et al. 2008b; Liu 2009). It is important to note that multimeric RGD peptides are not necessarily multivalent (Liu et al. 2008b; Chakraborty et al. 2010). Two factors (Fig. 5: **A** The distance between two RGD motifs is not long enough for simultaneous integrin α_v\,β_3 binding. However, the RGD concentration is "locally enriched" in the vicinity of neighboring integrin α_v\,β_3 once the first RGD motif is bound. **B** The distance between two RGD motifs is long due to the presence of two linkers (L). As a result, the cyclic RGD dimer is able to bind integrin α_v\,β_3 in a "bivalent" fashion. In both cases, the end-result would be higher integrin α_v\,β_3 binding affinity for the multimeric cyclic RGD peptides. **Bottom:** Selected cyclic RGD peptide dimers and tetramers use for development of α_v\,β_3-targeted radiotracers. The D$_2$, G$_3$, PEG$_4$, and sugar linkers are used to increase the distance between two RGD motifs and to improve radiotracer excretion kinetics from non-cancerous organs.
bivalency and enhanced local RGD concentration) contribute to the high $\alpha_v\beta_3$ binding affinity of cyclic RGD peptides (Liu et al. 2008b; Chakraborty et al. 2010). The concentration factor exists in all multimeric RGD peptides regardless of the linker length. Given the short distance (6 bonds excluding side-arms of K-residues) between two RGD motifs in $E[c(RGDfK)]_2$ and $E[c(RGDyK)]_2$, it is unlikely that they would bind to two adjacent $\alpha_v\beta_3$ sites simultaneously. However, the binding of one RGD motif to $\alpha_v\beta_3$ will increase the "local concentration" of second RGD motif in the vicinity of $\alpha_v\beta_3$ sites (Fig. 5B). The concentration factor may explain the higher tumor uptake of radiolabeled (^{99m}Tc, ^{111}In, ^{90}Y, ^{18}F, and ^{64}Cu) $E[c(RGDfK)]_2$ and $E[c(RGDyK)]_2$ than their monomeric derivatives (Beer and Chen 2010; Chakraborty and Liu 2010; Dijkstra and Boerman 2010; Beer et al. 2011; Michalski and Chen 2011; Zhou et al. 2011a). The key for bivalency is the distance between two cyclic RGD motifs. For example, this distance is 38 bonds in PEG$_4$-E[c(RGDfK(PEG$_4$))]$_2$ (3P-RGD$_2$: PEG$_4$ = 15-amino-4,7,10,13-tetraoxapenta decanoic acid), and 26 bonds G$_3$-E[c(RGDfK(G$_3$))]$_2$ (3G-RGD$_2$: G$_3$ = Gly-Gly-Gly), which are long enough for them to achieve the bivalency. As a result, HYNIC-3P-RGD$_2$ (IC$_{50}$ = 60 ± 3 nmol/L) and HYNIC-3G-RGD$_2$ (IC$_{50}$ = 59 ± 3 nmol/L) have much higher $\alpha_v\beta_3$ binding affinity than HYNIC-P-RGD$_2$ (P-RGD$_2$ = PEG$_4$-E[c(RGDfK)]$_2$: (IC$_{50}$ = 89 ± 7 nmol/L)) (Shi et al. 2008; Wang et al. 2008b). ^{99m}Tc-3P-RGD$_2$ and ^{99m}Tc-3G-RGD$_2$ had higher breast tumor uptake than ^{99m}Tc-P-RGD$_2$ (Fig. 6) (Shi et al. 2008; Wang et al. 2008b). Since the tumor uptake of ^{99m}Tc-3P-RGD$_2$ and ^{99m}Tc-3P-RGD$_2$ is comparable to that of ^{99m}Tc-RGD$_4$ suggests that the contribution from "concentration factor" may not be as significant as that from the "bivalency."

MAXIMIZING RADIOTRACER UPTAKE BY TARGETING MULTIPLE RECEPTORS

Two most important factors affecting the radiotracer tumor uptake are receptor binding affinity and receptor population. The receptor binding affinity is critically important for selective tumor localization and tumor uptake of radiolabeled cyclic RGD peptides (Liu et al. 2008b). The receptor population is equally important for the receptor-based molecular imaging. It will not be possible to image the tumor if it has very limited or no receptor expression even if the receptor ligand has high receptor binding affinity. There are two approaches to maximize the target population. The first approach (Fig. 7A) involves the use of the same cyclic RGD peptide to target two or more integrins (such as $\alpha_v\beta_3$, $\alpha_v\beta_5$, $\alpha_5\beta_1$, $\alpha_6\beta_4$, $\alpha_4\beta_1$, and $\alpha_9\beta_6$). Another approach (Fig. 7B) involves the use of a bifunctional peptide that is able to target two different receptors, such as $\alpha_v\beta_3$ and bombesin (BBN) receptor. By targeting two different receptors, the radiotracer will have more opportunities to localize in the tumor due to the larger populations of two receptors than that of a single receptor. The so-called "bivalent heterodimers" (Fig. 7) has been used to target the $\alpha_v\beta_3$ and BBN receptors (Li et al. 2008c; Liu et al. 2009c, d). The xenografted PC-3 and MDA-MB-435 tumor-bearing models were used to evaluate their tumor-targeting capability and biodistribution properties. It is well-established that the xenografted PC-3 tumors have low $\alpha_v\beta_3$ expression (Zhou et al. 2011b; Ji et al. 2013c). It was also shown that the xenografted MDA-MB-435 tumor has little BBN receptor expression (Liu et al. 2009c, d). Therefore, both PC-3 and MDA-MB-435 tumor-bearing models are not appropriate to
prove the concept of "bivalent heterodimers." For the bifunctional radiotracers to achieve the bivalency, the $\alpha_v\beta_3$ and BBN receptors must be co-localized and the distance between them must be short. Otherwise, it would not be advantageous even if they might be able to target both individual receptors. Unfortunately, there is lack of concrete experimental data to demonstrate if the c(RGDfK)-BBN(7–14) and c(RGDyK)-BBN(7–14) conjugates are "bivalent" for tumor targeting, and whether there is indeed a "synergistic effect" between the cyclic RGD and BBN(7–14) peptides. Another challenge associated with the "bifunctional heterodimer concept" is which binding unit actually contributes to the radiotracer tumor uptake.
INTEGRIN AND RGD SPECIFICITY

Integrin specificity

Blocking experiment (Fig. 8A) has been used to demonstrate the $\alpha_v\beta_3$ specificity of radiolabeled RGD peptides with a known $\alpha_v\beta_3$ antagonist (e.g., c(RGDfK) or RGD$_2$) as the blocking agent. This experiment is often performed by biodistribution or imaging (PET or SPECT). The blocking agent is pre- or co-injected with the radiotracer. Co-injection or pre-injection of excess blocking agents (such as RGD$_2$) will result in partial or complete blockage of the radiotracer tumor uptake (Fig. 8B). It is important to note that there is also a significant reduction in radiotracer uptake in the $\alpha_v\beta_3$-positive organs (e.g., eyes, intestine, kidneys, lungs, liver, muscle, and spleen). The normal organ uptake is consistent with the β_3 and CD31 staining data for the liver, kidneys, and lungs from the tumor-bearing athymic nude mice.

RGD specificity

There are several ways to determine the RGD specificity of radiolabeled cyclic RGD peptides, including: (1) the in vitro binding assay using 125I-echistatin as the integrin-specific radioligand (Zhang et al. 2006; Wu et al. 2007; Wang et al. 2008b; Shi et al. 2009c), (2) the in vitro tissue or cellular immunohistochemical (IHC) staining assay using fluorescent probes (Zheng et al. 2014), (3) the in vivo imaging experiment (PET or SPECT) (Zhang et al. 2006; Wu et al. 2007; Wang et al. 2008b; Shi et al. 2009c), and (4) the biodistribution study (Shi et al. 2009a, 2011a, b; Chakraborty et al. 2010). In all cases, a nonsense peptide with the “scrambled sequence” will be used to prepare the corresponding radiotracer or fluorescent probe. For example, 3P-RGK$_2$ is the nonsense peptide with the composition identical to that of 3P-RGD$_2$. The $\alpha_v\beta_3$ binding affinity of DOTA-3P-RGK$_2$ (IC$_{50}$ = 596 ± 48 nmol/L) was >20× lower than that of DOTA-3P-RGD$_2$ (IC$_{50}$ = 29 ± 4 nmol/L). Similar results were also seen with FITC-3P-RGK$_2$ (IC$_{50}$ = 589 ± 73 nmol/L) and FITC-3P-RGD$_2$ (IC$_{50}$ = 32 ± 7 nmol/L). Because of the low $\alpha_v\beta_3$ affinity of DOTA-3P-RGK$_2$ (Chakraborty et al. 2010; Shi et al. 2011a, b), 111In(DOTA-3P-RGK$_2$) had significantly lower ($p < 0.01$) uptake than 111In(DOTA-3P-RGD$_2$) in the xenografted breast tumors and the $\alpha_v\beta_3$-positive normal organs, such as eyes, intestine, liver, lungs, and spleen (Fig. 8B) (Shi et al. 2011a). These results clearly show that the uptake of radiolabeled cyclic RGD peptides in tumors and some normal organs is indeed $\alpha_v\beta_3$-specific.

LINEAR RELATIONSHIP BETWEEN RADIOTRACER TUMOR UPTAKE AND $\alpha_v\beta_3$ EXPRESSION

It has been shown that the radiolabeled cyclic RGD peptides are useful for non-invasive imaging of tumors in cancer patients (Beer et al. 2005, 2007, 2008; Haubner et al. 2005). It is the total $\alpha_v\beta_3$ level that will contribute the tumor uptake of a $\alpha_v\beta_3$-targeted radiotracer. The capability to visualize the $\alpha_v\beta_3$ expression provides new opportunities to characterize the tumor angiogenesis noninvasively, to select appropriate patients for antiangiogenic treatment, and to monitor the tumor response to antiangiogenic drugs. However,
there were only a few reports on the correlation between the \(\alpha_v \beta_3 \) expression levels and radiotracer tumor uptake (Beer et al. 2005, 2007, 2008; Haubner et al. 2005; Zhang et al. 2006).

\(^{99m} \text{Tc-3P-RGD}_2 \) was studied for its capability to monitor the \(\alpha_v \beta_3 \) expression in five different tumor-bearing animal models (U87MG, MDA-MB-435, A549, HT29, and PC-3). IHC staining was performed to determine the \(\alpha_v \beta_3 \) and CD31 (a biomarker for tumor vasculature) expression levels in xenografted U87MG, MDA-MB-435, A549, HT29, and PC-3 tumor tissues (Zhou et al. 2011b). It was found that the total \(\alpha_v \beta_3 \) expression levels on the tumor cells and tumor neo-vasculature follow the general ranking trend: U87MG > MDA-MB-435 = A549 = HT29 > PC-3. In contrast, the CD31 expression levels follow the general ranking order of U87MG = HT29 > MDA-MB-435 = A549 > PC-3 (Fig. 9). More importantly, there is an excellent relationship between the tumor uptake and the \(\alpha_v \beta_3 \) expression levels (Zhou et al. 2011b). The linear relationship between the tumor uptake (%ID/g) and \(\alpha_v \beta_3 \) density suggests that \(^{99m} \text{Tc-3P-RGD}_2 \) is useful for non-invasive monitoring of the \(\alpha_v \beta_3 \) expression levels in cancer patients.

MONITORING TUMOR RESPONSE TO ANTIANGIOGENIC THERAPY

\(^{99m} \text{Tc-3P-RGD}_2 \) has been used to monitor the tumor response to antiangiogenesis treatment with linifanib (ABT-869) (Ji et al. 2013b, d), a multi-targeted receptor tyrosine kinase inhibitor targeting vascular endothelial growth factor (VEGF) and platelet-derived growth factor (PDGF) receptors (Albert et al. 2006; Shankar et al. 2007; Wong et al. 2009; Zhou et al. 2009; Hernandez-Davies et al. 2011; Jiang et al. 2011; Tannir et al. 2011; Luo et al. 2012). We found that there was a significant decrease in tumor uptake (%ID/cm³) and \(T/M \) ratios of \(^{99m} \text{Tc-3P-RGD}_2 \) in the xenografted U87MG model, while no significant changes in tumor uptake of \(^{99m} \text{Tc-3P-RGD}_2 \) were seen in the PC-3 model after linifanib treatment (Ji et al. 2013d). The uptake changes in MDA-MB-435 tumors were between those observed in the U87MG and PC-3 models (Ji et al. 2013b). This is consistent with the tumor \(\alpha_v \beta_3 \) expression levels (Zhou et al. 2011b). Highly vascularized tumors (e.g., U87MG) with higher level of \(\alpha_v \beta_3 \) and CD31 have better tumor response to linifanib therapy than poorly vascularized tumors (e.g., PC-3) with low levels of \(\alpha_v \beta_3 \) and CD31 (Fig. 10). Thus, \(^{99m} \text{Tc-3P-RGD}_2 \) might be a screening tool to select appropriate patients who will benefit most from antiangiogenic treatment. If the tumor has a high \(\alpha_v \beta_3 \) expression, as indicated by high tumor uptake of \(^{99m} \text{Tc-3P-RGD}_2 \) at the time of diagnosis, antiangiogenic therapy would more likely be effective. If the tumor has little \(\alpha_v \beta_3 \) expression (low uptake of \(^{99m} \text{Tc-3P-RGD}_2 \)), antiangiogenic therapy would not be effective regardless the amount of antiangiogenic drug administered into the patient.

MONITORING TUMOR METASTASIS

\(^{99m} \text{Tc-3P-RGD}_2 \) SPECT/CT has been used as a non-invasive imaging tool to monitor the tumor growth and progression of breast cancer lung metastasis (Albert et al. 2006; Ji et al. 2013d). Figure 11 shows the SPECT/CT images of athymic nude mice (\(n = 8 \)) with breast cancer lung metastasis. As expected, the SPECT/CT images showed no detectable metastatic breast tumor lesions in the lungs at week 4.
By week 6, small breast cancer lesions started to appear in the mediastinum and lungs. At week 8, SPECT/CT images revealed many metastatic cancer lesions in both lungs (Albert et al. 2006). Figure 11 (bottom) compares the %ID (left) and %ID/cm³ (right) uptake values of 99mTc-3P-RGD₂ in the lungs. Even though the lung uptake of 99mTc-3P-RGD₂ (0.41 ± 0.05 %ID) at week 4 seemed to be higher than that in the control animals (0.36 ± 0.06 %ID), this difference was not significant (p > 0.05) within the experimental errors. At week 6, the tumor burden in the lungs became significant. The lung uptake of 99mTc-3P-RGD₂ was much higher (0.89 ± 0.12 %ID, p < 0.01) than that in the control group. By week 8, the uptake of 99mTc-3P-RGD₂ in the lungs was increased to 1.40 ± 0.42 %ID. In all cases, the lung size remained relatively unchanged (1.21–1.32 cm³) during the 8-week study period.

Fig. 10 Linear relationship between the %ID/cm³ tumor uptake change at days 1 (top), 4 (middle) and 11 (bottom) after linifanib therapy and the expression levels of the αvβ₃ (left) and CD31 (right) in three tumor-bearing animal models. The %ID/cm³ tumor uptake values of 99mTc-3P-RGD₂ were calculated from SPECT/CT quantification and reported as the mean plus/minus standard error of the mean based on results from five animals (n = 5). The %ID/cm³ tumor uptake change was calculated by deducting the %ID/cm³ tumor uptake of 99mTc-3P-RGD₂ on days 1, 4, and 11 from its original value on –1 day (before linifanib therapy) in the same animal. The average %ID/cm³ tumor uptake change is used as the indicator of tumor response to linifanib treatment. The experimental data were adapted from Zheng et al. (2014)
CLINICAL EXPERIENCES WITH 99mTc-3P-RGD$_2$

The excellent in vivo tumor-targeting efficacy of 99mTc-3P-RGD$_2$ in animal models guaranteed its further clinical application. In a first-in-human study, 99mTc-3P-RGD$_2$ was investigated for its capability to noninvasively differentiate solitary pulmonary nodules (SPNs) (Ma et al. 2011). Among the 21 patients with SPNs, 15 (71%) were diagnosed as malignant while 6 (29%) were benign. The sensitivities for CT interpretation and 99mTc-3P-RGD$_2$ SPECT visual were 80% and 100%, respectively. All SPNs classified as indeterminate via CT can be sensitively diagnosed by 99mTc-3P-RGD$_2$ scintigraphy. 99mTc-3P-RGD$_2$ uptake in the malignant and benign nodules was well confirmed by ex vivo IHC staining of $\alpha_v\beta_3$. These results demonstrated the feasibility of using 99mTc-3P-RGD$_2$ scintigraphy in differentiating SPNs (Ma et al. 2011). A multicenter study was performed in 70 patients with suspected lung lesions (Zhu et al. 2012). The results clearly demonstrated that 99mTc-3P-RGD$_2$ SPECT effectively detects lung malignancies, but with relatively low specificity. Whole-body planar scanning and chest SPECT are complementary for the evaluation of primary tumor and metastasis (Zhu et al. 2012). In a recently study, the potential of 99mTc-3P-RGD$_2$ SPECT in the detection of RAIR DTC lesions was conducted (Zhao et al. 2012). 99mTc-3P-RGD$_2$ SPECT identified all the target RAIR metastatic lesions, and there was a significant correlation between the mean tumor-to-background ratios and mean growth rates of target lesions. It is concluded that 99mTc-3P-RGD$_2$ imaging can be used for the localization and growth evaluation of RAIR lesions, thus providing a promising imaging strategy to monitor the efficacy of antiangiogenic therapy (Zhao et al. 2012). 99mTc-3P-RGD$_2$ SPECT was also evaluated and compared to 99mTc-MIBI for the capability to assess the breast cancer lesions (Ma et al. 2014). It was found that the mean T/NT
ratio of 99mTc-3P-RGD$_2$ in malignant lesions was significantly higher than that in benign lesions $(3.54 \pm 1.51$ vs. 1.83 ± 0.98, $p < 0.001$). The sensitivity, specificity, and accuracy of 99mTc-3P-RGD$_2$ SMM were 89.3%, 90.9%, and 89.7%, respectively, with a T/NT cut-off value of 1.45. The mean T/NT ratio of 99mTc-MIBI in malignant lesions was also significantly higher than that in benign lesions $(2.86 \pm 0.99$ vs. 1.51 ± 0.61, $p < 0.001$). The sensitivity, specificity, and accuracy of 99mTc-MIBI SMM were 87.5%, 72.7%, and 82.1%, respectively, with a T/NT cut-off value of 1.45.

According to the ROC analysis, the area under the curve for 99mTc-3P-RGD$_2$ SMM (area $= 0.851$) was higher than that for 99mTc-MIBI SMM (area $= 0.781$), but the statistical difference was not significant.

CLINICAL EXPERIENCES WITH 18F-ALFATIDE AND 18F-ALFATIDE II

18F-labeled RGD compounds suffer from multistep and time-consuming synthetic procedures, which will limit their clinic availability. To overcome this shortcoming, the Al(NOTA) chelate has been used for 18F-labeling of P-RGD$_2$ (Lang et al. 2011). The application of NOTA-AlF chelation chemistry and kit formulation allows one-step 18F-labeling. Under the optimal conditions, the radio-tracer $[^{18}$F$]$AlF(NOTA-P-RGD$_2$) (denoted as 18F-Alfatide) was prepared in relatively high yield (42.1 ± 0.02) with more than 95% radiochemical purity. The whole radiosynthesis including post-labeling chromatographic purification was accomplished within 20 min. Nine patients with a primary diagnosis of lung cancer were examined by both static and dynamic PET imaging with 18F-Alfatide, and one tuberculosis patient was investigated using both 18F-Alfatide and 18F-FDG imaging. It was found that 18F-Alfatide PET identified all tumors, with mean standardized uptake values of 2.90 ± 0.10. Tumor-to-muscle and tumor-to-blood ratios were 5.87 ± 2.02 and 2.71 ± 0.92, respectively. It was concluded that PET scanning with 18F-Alfatide allows specific imaging of avb3 expression with good contrast in lung cancer patients.

CONCLUSIONS

Over the last several years, many multimeric cyclic RGD peptides have been used to increase the radiotracers tumor-targeting capability. The fact that radiolabeled (18F, 99mTc, 111In, 64Cu, and 68Ga) cyclic RGD peptides to target multiple integrins ($\alpha_3\beta_3$, $\alpha_5\beta_3$, $\alpha_6\beta_4$, $\alpha_4\beta_1$, and α_β_5) will help to improve their tumor uptake due to the “increased receptor population.” In order to achieve bivalency, the distance between two cyclic RGD motifs must be long enough so that they will be able to bind the two adjacent α_β_3 sites simultaneously. Multimerization increases the uptake of radiolabeled multimeric cyclic RGD peptides in both the tumor and normal organs, and also their tumor retention times. Among the radiotracers evaluated in tumor-bearing models, the radiolabeled cyclic RGD dimers (e.g., 2P-RGD$_2$, 3P-RGD$_2$, 2G-RGD$_2$, 3G-RGD$_2$, and Galacto-RGD$_2$) show the most promising results with respect to their tumor uptake and T/B ratios. 99mTc-3P-RGD$_2$, 18F-Alfatide, and 18F-Alfatide II are currently under clinical investigation for tumor imaging by SPECT or PET. 99mTc-3P-RGD$_2$ offers significant advantages over both 18F-Alfatide and 18F-Alfatide II because it could be routinely prepared in high yield and radiochemical purity (>95%) without post-labeling chromatographic purification and clinical availability of 99Mo-99mTc generators. However, SPECT has limitations in quantification of radiotracer uptake, the speed of dynamic imaging, spatial resolution, and tissue attenuation.

Abbreviations

General terms

DCE-MRI Dynamic contrast-enhanced magnetic resonance imaging
FITC Fluorescein isothiocyanate isomer I
18F-FDG 2-Deoxy-2-(18F)fluoro-D-glucose
IHC Immunohistochemistry
MRI Magnetic resonance imaging
PET Positron emission tomography
PDGFR Platelet-derived growth factor receptors
SPECT Single-photon emission computed tomography
VEGFR Vascular endothelial growth factor receptors

Chelators

DOTA 1,4,7,10-Tetraazacyclododecane-1,4,7,10-tetracetic acid
HYNIC 6-Hydrazinonicotinic acid
NOTA 1,4,7-triazacyclonane-1,4,7-triacetic acid

Cyclic peptides

Galacto-RGD$_2$ Glu[cyclo[Arg-Gly-Asp-ν-Phe-Lys(SAA-PGD$_2$)-(1,2,3-triazole)-1-yl-4-methylamide]]$_2$ (SAA = 7-amino-1-glycero-1-galacto-2,6-anhydro-7-deoxyheptanamide, and PEG$_2$ = 3,6-dioxoaacetic acid)

P-RGD PEG$_2$-(RGKfD) = cyclo(Arg-Gly-Asp-ν-Phe-Lys(PEG$_4$)) (PEG$_4$ = 15-amino-4,7,10,13-tetraoxapentadecanoic acid)
RGD2: $E[c(RGDfK)]_2 = \text{Glu}[\text{cyclo(Arg-Gly-Asp-d-Phe-Lys)}]]_2$

P-RGD2: $\text{PEG}_4 \cdot E[c(RGDfK)]_2 = \text{PEG}_4^-$

Glu[cyclo[Arg-Gly-Asp-d-Phe-Lys)]_2

2G-RGD2: $E[G_3 \cdot c(RGDfK)]_2 = \text{Glu}[\text{cyclo[Arg-Gly-Asp-d-Phe-Lys(G3)]]}_2$ (G3 = Gly-Gly-Cly)

2P-RGD2: $E[\text{PEG}_4 \cdot c(RGDfK)]_2 = \text{Glu}[\text{cyclo[Arg-Gly-Asp-d-Phe-Lys(PEG4)]]}_2$

3G-RGD2: $E[G_3 \cdot E[G_3 \cdot c(RGDfK)]_2] = \text{Glu}[\text{cyclo[Arg-Gly-Asp-d-Phe-Lys}(SAA-PEG_2-(1,2,3-triazole)-1-yl-4-methylamide))]_2$

3P-RGD2: $E[\text{PEG}_4 \cdot E[\text{PEG}_4 \cdot c(RGDfK)]_2] = \text{Glu}[\text{cyclo[Arg-Gly-Asp-d-Phe-Lys(PEG4)]]}_2$

3P-RGK2: $E[\text{PEG}_4 \cdot E[\text{PEG}_4 \cdot c(RGDfK)]_2] = \text{Glu}[\text{cyclo[Arg-Gly-Lys(PEG4)-D-Phe-Asp]})]_2$

RGD4: $E[c(RGDfK)]_2 = \text{Glu}[\text{cyclo[Arg-Gly-Asp-d-Phe-Lys)}]]_2$

6G-RGD4: $E[G_3 \cdot E[G_3 \cdot c(RGDfK)]_2] = \text{Glu}[\text{cyclo[Arg-Gly-Asp-d-Phe-Lys(G3)]]}_2$

6P-RGD4: $E[\text{PEG}_4 \cdot E[\text{PEG}_4 \cdot c(RGDfK)]_2] = \text{Glu}[\text{cyclo[Arg-Gly-Asp-d-Phe-Lys(PEG4)]]}_2$

Bioconjugates of cyclic peptides

DOTA-RGD: DOTA-c(RGDfK)

DOTA-P-RGD: DOTA-PEG_4-c(RGDfK)

DOTA-RGD2: DOTA-E[c(RGDfK)]_2

DOTA-P-RGD2: DOTA-PEG_4-E[c(RGDfK)]_2

DOTA-2G-RGD2: DOTA-E[G_3-c(RGDfK)]_2

DOTA-2P-RGD2: DOTA-E[PEG_4-c(RGDfK)]_2

DOTA-3G-RGD2: DOTA-E[G_3-c(RGDfK)]_2

DOTA-3P-RGD2: DOTA-E[PEG_4-c(RGDfK)]_2

DOTA-Galacto-RGD2: DOTA-Glu[cyclo[Arg-Gly-Asp-d-Phe-Lys(SAA-PEG_2-(1,2,3-triazole)-1-yl-4-methylamide))]_2

99mTc-Galacto-RGD2: [99mTc(HYNIC-Galacto-RGD2)(tricine)(TPPTS)]

99mTc-RGD2: [99mTc(HYNIC-RGD2)(tricine)(TPPTS)]

99mTc-2G-RGD2: [99mTc(HYNIC-2G-RGD2)(tricine)(TPPTS)]

99mTc-2P-RGD2: [99mTc(HYNIC-2P-RGD2)(tricine)(TPPTS)]

99mTc-3G-RGD2: [99mTc(HYNIC-3G-RGD2)(tricine)(TPPTS)]

99mTc-3P-RGD2: [99mTc(HYNIC-3P-RGD2)(tricine)(TPPTS)]

99mTc-RGD4: [99mTc(HYNIC-RGD4)(tricine)(TPPTS)]

Radiolabeled cyclic RGD peptides

18F-Alfatide: [18F]AlF(DOTA-P-RGD2)

18F-Alfatide II: [18F]AlF(DOTA-2P-RGD2)

18F-Galacto-RGD: [18F]AlF(DOTA-Galacto-RGD2)

64Cu-P-RGD2: 64Cu(DOTA-P-RGD2)

64Cu-2G-RGD2: 64Cu(DOTA-2G-RGD2)

64Cu-2P-RGD2: 64Cu(DOTA-2P-RGD2)

64Cu-3G-RGD2: 64Cu(DOTA-3G-RGD2)

64Cu-3P-RGD2: 64Cu(DOTA-3P-RGD2)

68Ga-3G-RGD2: 68Ga(DOTA-3G-RGD2)

68Ga-3P-RGD2: 68Ga(DOTA-3P-RGD2)

99mTc-P-RGD2: [99mTc(HYNIC-P-RGD2)(tricine)(TPPTS)]

99mTc-2G-RGD2: [99mTc(HYNIC-2G-RGD2)(tricine)(TPPTS)]

99mTc-2P-RGD2: [99mTc(HYNIC-2P-RGD2)(tricine)(TPPTS)]

99mTc-3G-RGD2: [99mTc(HYNIC-3G-RGD2)(tricine)(TPPTS)]

99mTc-3P-RGD2: [99mTc(HYNIC-3P-RGD2)(tricine)(TPPTS)]

99mTc-RGD4: [99mTc(HYNIC-RGD4)(tricine)(TPPTS)]

99mTc-6G-RGD4: [99mTc(HYNIC-6G-RGD4)(tricine)(TPPTS)]

99mTc-6P-RGD4: [99mTc(HYNIC-6P-RGD4)(tricine)(TPPTS)]

99mTc-RGD2: [99mTc(HYNIC-RGD2)(tricine)(TPPTS)]

99mTc-2G-RGD2: [99mTc(HYNIC-2G-RGD2)(tricine)(TPPTS)]

99mTc-2P-RGD2: [99mTc(HYNIC-2P-RGD2)(tricine)(TPPTS)]

99mTc-3G-RGD2: [99mTc(HYNIC-3G-RGD2)(tricine)(TPPTS)]

99mTc-3P-RGD2: [99mTc(HYNIC-3P-RGD2)(tricine)(TPPTS)]

99mTc-RGD4: [99mTc(HYNIC-RGD4)(tricine)(TPPTS)]

99mTc-6G-RGD4: [99mTc(HYNIC-6G-RGD4)(tricine)(TPPTS)]

99mTc-6P-RGD4: [99mTc(HYNIC-6P-RGD4)(tricine)(TPPTS)]
Acknowledgments This work was supported, in part, by Purdue University and R21 EB017237-01 (S. L.) from the National Institute of Biomedical Imaging and Bioengineering (NIBIB).

Compliance with Ethical Standards
Conflict of Interest Jiyun Shi, Fan Wang, and Shuang Liu declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent This article does not contain any studies with human or animal subjects performed by any of the authors.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

References
Albelda SM, Mette SA, Elder DE, Stewart R, Damjanovich L, Herlyn M, Buck CA (1990) Integrin distribution in malignant melanoma: association of the β3 subunit with tumor progression. Cancer Res 50:6757–6764
Albert DH, Tapang P, Magoc TJ, Pease LJ, Reuter DR, Wei RQ, Li J, Guo J, Bousquet PF, Ghereishi-Haack NS, Wang B, Bukofzer GT, Wang YC, Stavropoulos JA, Hartandi K, Niquette AL, Soni N, Johnson EF, McCall JO, Bouska JJ et al (2006) Preclinical activity of ABT-869, a multitargeted receptor tyrosine kinase inhibitor. Mol Cancer Ther 5:995–1006
Alves S, Correia JD, Gano L, Rold TL, Prasanphanich A, Haubner R, Rupprich M, Albert D, Decristoforo C, Santos I, Smith CJ (2011) Integrin β3-selective tracer 18F-galacto-RGD in cancer patients. J Nucl Med 49:1333–1341
Beer AJ, Grosu AL, Carlsen J, Kolk A, Sarbia M, Stanger I, Watzlowik P, Wester HJ, Haubner R, Schwaiger M (2007) 18F-galacto-RGD positron emission tomography for imaging of αvβ3 expression on the neovascularure in patients with squamous cell carcinoma of the head and neck. Clin Cancer Res 13:6610–6616
Beer AJ, Niemeyer M, Carlsen J, Sarbia M, Nahirg J, Watzlowik P, Wester HJ, Harbeck N, Schwaiger M (2008) Patterns of αvβ3 expression in primary and metastatic human breast cancer as shown by 18F-Galacto-RGD PET. J Nucl Med 49:255–259
Beer AJ, Kessler H, Wester HJ, Schwaiger M (2011) PET imaging of integrin αvβ3 expression. Theranostics 1:48–57
Bello L, Franchin M, Martyn P, Zhang J, Carroll RS, Nikas DC, Strasser JP, Villani R, Chereshe DA, Black PM (2001) αvβ3 and αvβ5 integrin expression in glioma periphery. Neurosurgery 49:380–389 (discussion 390)
Bianchi-Smiraglia A, Paesante S, Bakin AV (2013) Integrin β3 contributes to the tumorigenic potential of breast cancer cells through the Src-FAK and MEK-ERK signaling pathways. Oncogene 32:3049–3058
Bogner C, Kalhoff H, Goodman SL, Behrens HM, Rocken C (2014) Integrins and their ligands are expressed in non-small cell lung cancer but not correlated with parameters of disease progression. Virchows Archiv 464:69–78
Cai W, Chen X (2008) Multimodality molecular imaging of tumor angiogenesis. J Nucl Med 49(Suppl 2):113S–128S
Carreiras F, Denoux Y, Staedel C, Lehmann M, Sicel F, Gauduchon P (1996) Expression and localization of αv integrins and their ligand vitronectin in normal ovarian epithelium and in ovarian carcinoma. Gynecol Oncol 62:260–267
Chakraborty S, Liu S (2010) (99m)Tc and (111)In-labeling of small biomolecules: bifunctional chelators and related coordination chemistry. Curr Top Med Chem 10:1113–1134
Chakraborty S, Shi J, Kim YS, Zhou Y, Jia B, Wang F, Liu S (2010) Evaluation of 111In-labeled cyclic RGD peptides: tetrameric not tetravalent. Bioconjug Chem 21:969–978
Cooper CR, Chay CH, Pienta KJ (2002) The role of αvβ3 in prostate cancer progression. Neoplasia 4:191–194
Correia JDG, Paulo A, Raposinho PD, Santos I (2011) Radiomethyllated peptides for molecular imaging and targeted therapy. Dalton Trans 40:6144–6167
D’Andrea LD, Del Gatto A, Pedone C, Benedetti E (2006) Peptide-based molecules in angiogenesis. Chem Biol Drug Des 67:115–126
Danhier F, Le Breton A, Preat V (2012) RGD-based strategies to target αvβ3 integrin in cancer therapy and diagnosis. Mol Pharm 9:2961–2973
Dijkstra I, Boerman OC (2010) Molecular imaging of angiogenesis with SPECT. Eur J Nucl Med Mol Imaging 37(Suppl 1):S104–S113
Dijkstra I, Kruijtzers JA, Liu S, Soede AC, Oyen WJ, Corstens FH, Lisikamp RM, Boerman OC (2007a) Improved targeting of the αvβ3 integrin by multimerisation of RGD peptides. Eur J Nucl Med Mol Imaging 34:267–273
Dijkstra I, Liu S, Kruijtzer JA, Soede AC, Oyen WJ, Lisikamp RM, Corstens FH, Boerman OC (2007b) Effects of linker variation on the in vitro and in vivo characteristics of an 111In-labeled RGD peptide. Nucl Med Biol 34:29–35
Dittmar T, Heyder C, Gloria-Maercker E, Hatzmann W, Zanker KS (2005) Fluorine-18-labelled fluoropyridines: advances in radiopharmaceutical design. Curr Pharm Des 11:3221–3235
Radiolabeled cyclic RGD peptides as radiotracers

D'Souza CA, McBride WJ, Sharkey RM, Todaro LJ, Goldenberg DM (2011) High-yielding aqueous 18F-labeling of peptides via 18F-chelation. Bioconjug Chem 22:1793–1803

Dumont RA, Deininger F, Haubner R, Maceke HR, Weber WA, Fani M (2011) Novel 64Cu- and 68Ga-labeled RGD conjugates show improved PET imaging of $\alpha_\text{v}\beta_3$ integrin expression and facile radiosynthesis. J Nucl Med 52:1276–1284

Erdreich-Epstein A, Shimada H, Grosven S, Liu M, Metelitsa LS, Kim KS, Stins MF, Seeger RC, Durden DL (2000) Integrins $\alpha_\text{v}\beta_3$ and $\alpha_\text{v}\beta_5$ are expressed by endothelium of high-risk neuroblastoma and their inhibition is associated with increased endogenous ceramide. Cancer Res 60:712–721

Falcioni R, Cimino L, Gentileschi MP, D'Agnano I, Zupi G, Kennel SJ, Sacchi A (1994) Expression of β_1, β_2, β_3, and β_5 integrins by human lung carcinoma cells of different histotypes. Exp Cell Res 210:113–122

Fani M, McBride HR (2012) Radiopharmaceutical development of radiolabelled peptides. Eur J Nucl Med Mol Imaging 39:31–39

Fani M, McBride HR, Okarvi SM (2012) Radiolabeled peptides: valuable tools for the detection and treatment of cancer. Theranostics 2:481–501

Felding-Haberernan B, Habermann R, Saldivar E, Ruggeri ZM (1996) Role of β_3 integrins in melanoma cell adhesion to activated platelets under flow. J Biol Chem 271:S982–S980

Gaertner FC, Kessler H, Wester HJ, Schweiger M, Beer AJ (2012) Radiolabeled RGD peptides for imaging and therapy. Eur J Nucl Med Mol Imaging 39(Suppl 1):S316–S338

Glaser M, Morrison M, Solbakken M, Brinkman K, Albrecht J, Wigen U, Champion S, Kindberg GM, Cathbertson A (2009) Radiosynthesis and biodistribution of cyclic RGD peptides conjugated with novel 18F-fluorinated aldehyde-containing prosthetic groups. Bioconjug Chem 19:951–957

Goodman SL, Grote HJ, Wilm C (2012) Matched rabbit monoclonal antibodies against α_v-series integrins reveal a novel $\alpha_\text{v}\beta_3$-LIBS epitope, and permit routine staining of archival paraffin samples of human tumors. Biol Open 1:329–340

Gottschalk KE, Kessler H (2002) The structures of integrins and integrin-ligand complexes: implications for drug design and signal transduction. Angew Chem 41:3767–3774

Hodivala-Dilke K (2008) $\alpha_\text{v}\beta_3$ integrin and angiogenesis: a moody integrin in a changing environment. Curr Opin Cell Biol 20:514–519

Hohne A, Mu L, Honer M, Schugberger PA, Ametamey SM, Graham K, Stellfeld T, Borkowski S, Berndorff D, Klar U, Voigtmann U, Cyri J, Friebe M, Dinkelborg L, Srinivasan A (2008) Synthesis, 18F-labeling, and in vitro and in vivo studies of bombesin peptides modified with silicon-based building blocks. Bioconjug Chem 19:1871–1879

Humphries JD, Byron A, Humphries MJ (2006) Integrin ligands at a glance. J Cell Sci 119:3901–3903

Hwang R, Varner J (2004) The role of integrins in tumor angiogenesis. Hematol/Oncol Clin N Am 18:991–1006

Jacobson O, Chen X (2010) PET designated fluoride-18 production and chemistry. Curr Top Med Chem 10:1048–1059

Jacobson O, Zhu L, Ma Y, Weiss ID, Sun X, Niu G, Kiesewetter DO, Chen X (2011) Rapid and simple one-step F-18 labeling of peptides. Bioconjug Chem 22:422–428

Jamous M, Haberkorn U, Mier W (2013) Synthesis of peptide radiopharmaceuticals for the therapy and diagnosis of tumor diseases. Molecules 18:3379–3409

Ji S, Czerwinski A, Zhou Y, Zhao G, Valenzuela F, Sowinski P, Chauhan S, Pennington M, Liu S (2013a) 99mTc-Galacto-RGD2: a novel 99mTc-labeled cyclic RGD peptide dimer useful for tumor imaging. Mol Pharm 10:3304–3314

Ji S, Zheng Y, Shao G, Zhou Y, Liu S (2013b) Integrin $\alpha_\text{v}\beta_3$-targeted radiotracer 99mTc-3P-RGD(2) useful for noninvasive monitoring of breast tumor response to antiangiogenic linifanib therapy but not anti-integrin $\alpha_\text{v}\beta_3$ RGD(2) therapy. Theranostics 3:816–830

Ji S, Zhou Y, Shao G, Liu S (2013c) Evaluation of K(HYNIC)(2) as a bifunctional chelator for 99mTc-labeling of small biomolecules. Bioconjug Chem 24:701–711

Ji S, Zhou Y, Voorbach MJ, Shao G, Zhang Y, Fox GB, Albert DH, Luo Y, Liu S, Mudd SR (2013d) Monitoring tumor response to integrin targeted radiotracer 99mTc-3P-RGD2. J Pharmacol Exp Ther 346:251–258

Jia B, Shi J, Yang Z, Xu B, Liu Z, Zhao H, Liu S, Wang F (2006) 99mTc-labeled cyclic RGDfK dimer: initial evaluation for SPECT imaging of glioma integrin $\alpha_\text{v}\beta_3$ expression. Bioconjug Chem 17:1069–1076

Jia B, Liu Z, Shi J, Yu Z, Yang Z, Zhao H, He Z, Liu S, Wang F (2008) Linker effects on biological properties of 111In-labeled DTPA conjugates of a cyclic RGDfK dimer. Bioconjug Chem 19:201–210

Jia B, Liu Z, Zhu Z, Shi J, Jin X, Zhao H, Li F, Liu S, Wang F (2011) Blood clearance kinetics, biodistribution, and radiation dosimetry of a kit-formulated integrin $\alpha_\text{v}\beta_3$-selective radiotracer 99mTc-3P-RGD 2 in non-human primates. Mol Imaging Biol 13:730–736
Liu S (2008) Bipolar function coupling agents for radiolabeling of biomolecules and target-specific delivery of metallic radionuclides. Adv Drug Deliv Rev 60:1347–1370

Liu S (2009) Radiolabeled cyclic RGD peptides as integrin v3b3-targeted radiotracers: maximizing binding affinity via bivalency. Bioconjug Chem 20:2199–2213

Liu S, Chakraborty S (2011) 99mTc-centered one-pot synthesis for preparation of 99mTc radiotracers. Dalton Trans 40:6077–6086

Liu S, Edwards DS (2001) Bifunctional chelators for therapeutic lanthanide radiopharmaceuticals. Bioconjug Chem 12:7–34

Liu S, Cheung E, Ziegler MC, Rajopadhye M, Edwards DS (2001a) (90)Y and (177)Lu labeling of a DOTA-conjugated vitronectin receptor antagonist useful for tumor therapy. Bioconjug Chem 12:559–568

Liu S, Edwards DS, Ziegler MC, Harris AR, Hemingway SJ, Barrett JA (2001b) 99mTc-labeling of a hydrazinonicotinamide-conjugated vitronectin receptor antagonist useful for imaging tumors. Bioconjug Chem 12:624–629

Liu S, Hsieh WY, Kim YS, Mohammed SI (2005) Effect of coligands on biodistribution characteristics of ternary ligand 99mTc complexes of a HYNIC-conjugated cyclic RGDK dimer. Bioconjug Chem 16:1580–1588

Liu S, He Z, Hsieh WY, Kim YS, Jiang Y (2006) Impact of PKM linkers on biodistribution characteristics of the 99mTc-labeled cyclic RGDK dimer. Bioconjug Chem 17:1499–1507

Liu S, Hsieh WY, Jiang Y, Kim YS, Sreerama SG, Chen X, Jia B, Wang F (2007) Evaluation of a (99m)Tc-labeled cyclic RGD tetramer for noninvasive imaging integrin v3b3-positive breast cancer. Bioconjug Chem 18:439–446

Liu S, Kim YS, Hsieh WY, Gupta Sreerama S (2008a) Coligand effects on the solution stability, biodistribution and metabolism of the 99mTc-labeled cyclic RGDK tetramer. Nucl Med Biol 35:111–121

Liu Z, Wang F, Chen X (2008b) Integrin v3b3-targeted cancer therapy. Drug Dev Res 69:329–339

Liu Z, Liu S, Wang F, Liu S, Chen X (2009a) Noninvasive imaging of tumor integrin expression using 18F-labeled RGD dimer peptide with PEG (4) linkers. Eur J Nucl Med Mol Imaging 36:1296–1307

Liu Z, Niu G, Shi J, Liu S, Wang F, Liu S, Chen X (2009b) 68Ga-labeled cyclic RGD dimers with Gly3 and PEG4 linkers: promising agents for tumor integrin v3b3 PET imaging. Eur J Nucl Med Mol Imaging 36:947–957

Liu Z, Yan Y, Chin FT, Wang F, Chen X (2009c) Dual integrin and gastrin-releasing peptide receptor targeted tumor imaging using 18F-labeled EPGyalted RGD-bombesin heterodimer 18F-FB-PEG3-Glu-RGD-BBN. J Med Chem 52:425–432

Liu Z, Yang Y, Liu S, Wang F, Chen X (2009d) 18F, 64Cu, and 68Ga labeled RGD-bombesin heterodimeric peptides for PET imaging of breast cancer. Bioconjug Chem 20:1016–1025

Liu S, Liu S, Chen K, Yan Y, Watzlowik P, Wester HJ, Chin FT, Chen X (2010) 18F-labeled galacto and PEGylated RGD dimers for PET imaging of integrin v3b3 expression. Mol Imaging Biol 12:530–538

Liu S, Liu H, Jiang H, Xu Y, Zhang H, Cheng Z (2011) One-step radiosynthesis of 18F-AIF-NOTA-RGD(2) for tumor angiogenesis PET imaging. Eur J Nucl Med Mol Imaging 38:1732–1741

Liu SH, Lin TH, Cheng DC, Wang JJ (2015) Assessment of stroke volume from brachial blood pressure using arterial characteristics. IEEE Trans Bio-med Eng 62:2151–2157

Lorger M, Krueger JS, O’Neal M, Staflin K, Felding-Habermann B (2009) Activation of tumor cell integrin v3b3 controls angiogenesis and metastatic growth in the brain. Proc Natl Acad Sci USA 106:10666–10671

Luo Y, Jiang F, Cole TB, Hradil VP, Reuter D, Chakravarty A, Albert DH, Davidsen SK, Cox BF, McKeegan EM, Fox GB (2012) A
novel multi-targeted tyrosine kinase inhibitor, linifanib (ABT-869), produces functional and structural changes in tumor vasculature in an orthotopic rat glioma model. Cancer Chemother Pharmacol 69:911–921

Ma Q, Ji B, Jia B, Gao S, Ji T, Wang X, Han Z, Zhao G (2011) Differential diagnosis of solitary pulmonary nodules using 99mTc-3P4(RGD2) scintigraphy. Eur J Nucl Med Mol Imaging 38:2145–2152

Ma Q, Chen B, Gao S, Ji T, Wen Q, Song Y, Zhu L, Xu Z, Liu L (2014) 99mTc-3P4-RGD2 scintimammography in the assessment of breast lesions: comparative study with 99mTc-MIBI. PLoS One 9:e108349

Maecke HR, Hofmann M, Haberkorn U (2005) 68Ga-labeled cyclic RGD peptides as radiotracers. Mol Pharm 11:505–515

Meyer A, Auernheimer J, Modlinger A, Kessler H (2006) Targeting of integrin a5b3 to support tumor cell arrest under dynamic flow conditions. J Biol Chem 281:21930–21938

Namavari M, Cheng Z, Zhang R, De A, Levi J, Hoerner JK, Yaghoubi O157:H7 in wild boars (Sus scrofa) and Iberian ibex (Capra pyrenaica) sharing pastures with free-ranging livestock in a natural environment in Spain. Vet Quart 35:102–106

Nwe K, Kim YS, Milenic DE, Baidoo KE, Brechbiel MW (2012) 111In- and 203Pb-labeled cyclic RGD peptide conjugate as an a5b3 integrin-binding radiotracer. J Labelled Compd Radiopharm 55:423–426

Omar O, Lenneras M, Svensson S, Suska F, Emanuelsson L, Hall J, Nannmark U, Thomsen P (2010) Integrin and chemokine receptor gene expression in implant-adoherent cells during early osseointegration. J Matr Sci Mater Med 21:969–980

Paff M, Tangemann K, Muller B, Gurrath M, Muller G, Kessler H, Timpl R, Engel J (1994) Selective recognition of cyclic RGD peptides of NMR defined conformation by a5b3, a5b1, and a5b1 integrins. J Biol Chem 269:20233–20238

Pilch J, Habermann R, Felding-Habermann B (2002) Unique ability of integrin a5b3 to support tumor cell arrest under dynamic flow conditions. J Biol Chem 277:21930–21938

Pohle K, Notni J, Bussmener J, Kessler H, Schwager M, Beer AJ (2012) 68Ga-NODAGA-RGD is a suitable substitute for 18F-Galacto-RGD and can be produced with high specific activity in a cGMP/GRP compliant automated process. Nucl Med Biol 39:777–784

Roth P, Silginer M, Goodman SL, Hasenberg K, Thies S, Maurer G, Schraml P, Tabatabai G, Moch H, Tritschler I, Weller M (2013) Integrin control of the transforming growth factor-b pathway in glioblastoma. Brain 136:564–576

Shirrmacher R, Bernard-Gauthier V, Reader A, Soucy JP, Shirrmacher E, Wagner B, Wangler C (2013) Design of brain imaging agents for positron emission tomography: do large bioconjugates provide an opportunity for in vivo brain imaging? J Nucl Med 5:1621–1634

Sengupta S, Chattopadhyay N, Mitra A, Ray S, Dasgupta S, Chatterjee A (2001) Role of a5b3 integrin receptors in breast tumor. J Exp Clin Cancer Res 20:585–590

Shankar DB, Bouska JJ, Osterling DJ, Guo J, Marcotte PA, Johnson EF, Soni N, Hartandi K, Miahleides MR, Davidsen SK, Priceman SJ, Chang JC, Rhodes K et al (2007) ABT-869, a multitargeted receptor tyrosine kinase inhibitor: inhibition of FLT3 phosphorylation and signaling in acute myeloid leukemia. Blood 109:3400–3408

Sheldrake HM, Patterson LH (2014) Strategies to inhibit tumor associated integrin receptors: rationale for dual and multi-antagonists. J Med Chem 57:6301–6315

Shi J, Wang L, Kim YS, Zhai S, Liu Z, Chen X, Liu S (2008) Improving tumor uptake and excretion kinetics of 99mTc-labeled cyclic arginine-glycine-aspartic (RGD) dimers with tritylglycine linkers. J Med Chem 51:7980–7990

Shi J, Zhai S, Chakraborty S, Jia B, Wang F, Liu S (2009a) 2-Mercaptoacetyl(glycylglycyl) (MAG2) as a bifunctional chelator for 99mTc-labeled of cyclic RGD dimers: effect of techiomet chelation on tumor uptake and pharmacokinetics. Bioconjug Chem 20:1559–1568

Shi J, Kim YS, Zhai S, Liu Z, Chen X, Liu S (2009b) Improving tumor uptake and pharmacokinetics of 64Cu-labeled cyclic RGD peptide dimers with Gly(3) and PEG(4) linkers. Bioconjug Chem 20:750–759

Shi J, Wang L, Kim YS, Zhai S, Jia B, Wang F, Liu S (2009c) 99mTc0(MAG2-3G3-dimer): a new integrin a5b3-targeted SPECT radiotracer with high tumor uptake and favorable pharmacokinetics. Eur J Nucl Med Mol Imaging 36:1874–1884

Shi J, Kim YS, Chakraborty S, Zhou Y, Wang F, Liu S (2011a) Impact of bifunctional chelators on biological properties of 111In-labeled cyclic peptide RGD dimers. Amino Acids 41:1059–1070

Shi J, Zhou Y, Chakraborty S, Kim YS, Jia B, Wang F, Liu S (2011b) Evaluation of in-labeled cyclic RGD peptides: effects of peptide and linker multiplicity on their tumor uptake,
excretion kinetics and metabolic stability. Theranostics 1:322–340
Shokeen M, Anderson CJ (2009) Molecular imaging of cancer with copper-64 radiopharmaceuticals and positron emission tomography (PET). Acc Chem Res 42:832–841
Siegel RL, Miller KD, Jemal A (2015) Cancer statistics, 2015. CA Cancer J Clin 65:5–29
Simecek J, Hermann P, Havlickova J, Herdtweck E, Kapp TG, Engelbogen N, Kessler H, Wester HJ, Notni J (2013) A cyclen-based tetrathiapentaine chelator for the preparation of radiolabeled tetrameric bioconjugates. Chemistry 19:7748–7757
Sloan EK, Anderson RL (2002) Genes involved in breast cancer metastasis to bone. Cell Mol Life Sci 59:1491–1502
Sloan EK, Poulion N, Stanley KL, Chia J, Moseley JM, Hards DK, Anderson RL (2006) Tumor-specific expression of αvβ3 integrin promotes spontaneous metastasis of breast cancer to bone. Breast Cancer Res 8:R20
Stollman TH, Ruers TJ, Oyen WJ, Boerman OC (2009) New targeted probes for radioimaging of angiogenesis. Methods 48:188–192
Sung Y, Stubbs JT III, Fisher L, Aaron AD, Thompson EW (1998) Bone sialoprotein supports breast cancer cell adhesion proliferation and migration through differential usage of the αvβ3 and αvβ5 integrins. J Cell Physiol 176:482–494
Taherian A, Li X, Liu Y, Haas TA (2011) Differences in integrin expression and signaling within human breast cancer cells. BMC Cancer 11:293
Tannir NM, Wong YN, Kollmannsberger CK, Ernstoff MS, Perry DJ, Englebogen N, Kessler H, Wester HJ, Notni J (2013) A cyclen-based tetrathiapentaine chelator for the preparation of radiolabeled tetrameric bioconjugates. Chemistry 19:7748–7757
Sloan EK, Anderson RL (2002) Genes involved in breast cancer metastasis to bone. Cell Mol Life Sci 59:1491–1502
Sloan EK, Poulion N, Stanley KL, Chia J, Moseley JM, Hards DK, Anderson RL (2006) Tumor-specific expression of αvβ3 integrin promotes spontaneous metastasis of breast cancer to bone. Breast Cancer Res 8:R20
Stollman TH, Ruers TJ, Oyen WJ, Boerman OC (2009) New targeted probes for radioimaging of angiogenesis. Methods 48:188–192
Sung Y, Stubbs JT III, Fisher L, Aaron AD, Thompson EW (1998) Bone sialoprotein supports breast cancer cell adhesion proliferation and migration through differential usage of the αvβ3 and αvβ5 integrins. J Cell Physiol 176:482–494
Taherian A, Li X, Liu Y, Haas TA (2011) Differences in integrin expression and signaling within human breast cancer cells. BMC Cancer 11:293
Tannir NM, Wong YN, Kollmannsberger CK, Ernstoff MS, Perry DJ, Applemale L, Posadas EM, Cho D, Choueiri TK, Coates A, Choueiri TK, Coates A, Choueiri TK, Coates A, Choueiri TK, Coates A (2009) Molecular imaging of cancer with propargyl 4-[F]fluorophosphinate chelator for the preparation of radiolabeled tetrameric bioconjugates. Chemistry 19:7748–7757
Tweedle MF (2009) Peptide-targeted diagnostics and radiotherapeutics. Acc Chem Res 42:958–968
Vaidyanathan G, White BJ, Zalutsky MR (2009) Propargyl 4-[F]fluorophosphinate chelator for the preparation of radiolabeled tetrameric bioconjugates. Chemistry 19:7748–7757
Vaidyanathan G, White BJ, Zalutsky MR (2009) Propargyl 4-[F]fluorophosphinate chelator for the preparation of radiolabeled tetrameric bioconjugates. Chemistry 19:7748–7757
Wang J, Kim YS, Liu S (2008a) Cyclic RGD dimers with enhanced tumor-targeting capability and pharmacokinetics of 99mTc-labeled cyclic RGD dimers with PEG4 linkers. Mol Pharm 6:231–245
Wangler C, Schirmacher R, Bartenstein P, Wangler B (2010) Click-chemistry reactions in radiopharmaceutical chemistry: fast and easy introduction of radiolabels into biomolecules for in vivo imaging. Curr Med Chem 17:1092–1116
Weigelt B, Petere J, van’t Veer LJ (2005) Breast cancer metastasis: markers and models. Nat Rev Cancer 5:591–602
Wong CI, Koh TS, Soro O, Hartono S, Thng CH, McKeegan E, Yong WP, Chen CS, Lee SC, Wong J, Lim R, Sukri N, Lim SE, Ong AB, Steinberg J, Gupta N, Pradhan R, Humestichouse K, Roh BC (2009) Phase I and biomarker study of ABT-869, a multiple receptor tyrosine kinase inhibitor, in patients with refractory solid malignancies. J Clin Oncol 27:4718–4726
Wu Y, Zhang X, Xiong Z, Cheng Z, Fisher DR, Liu S, Gambhir SS, Chen X (2005) microPET imaging of glioma integrin αvβ3 expression using 64Cu-labeled tetrameric RGD peptide. J Nucl Med 46:1707–1718
Wu Z, Li BZ, Chen K, Cai W, He L, Chiu ET, Li F, Chen Y (2007) MicroPET of tumor integrin αvβ3 expression using [18F]-labeled PEGylated tetrameric RGD peptide ([18F]-FPRGD4). J Nucl Med 48:1536–1544
Yang Y, Ji S, Liu S (2014) Impact of multiple negative charges on blood clearance and biodistribution characteristics of 99mTc-labeled dimeric cyclic RGD peptides. Bioconjug Chem 25:1720–1729
Zhang X, Xiong Z, Wu Y, Cai W, Tseng JR, Gambhir SS, Chen X (2006) Quantitative PET imaging of tumor integrin αvβ3 expression with [18F]-FPRGD2. J Nucl Med 47:113–121
Zhao Y, Bachelet R, Treilleux I, Pujuguet P, Peyrucound H, Baron R, Clement-Lacroix P, Clezardin P (2007) Tumor αvβ3 integrin is a therapeutic target for breast cancer bone metastases. Cancer Res 67:5821–5830
Zhao D, Jin X, Li F, Liang J, Lin Y (2012) Integrin αvβ3 imaging of radioactive iodine-refractory thyroid cancer using 99mTc-3PRGD2. J Nucl Med 53:1872–1877
Zheng Y, Ji S, Czerwinski A, Valenzuela F, Pennington M, Liu S (2014) FITC-conjugated cyclic RGD peptides as fluorescent probes for staining integrin αvβ3/αvβ5 in tumor tissues. Bioconjug Chem 25:1925–1941
Zheng Y, Ji S, Tomaselli E, Yang Y, Liu S (2015) Comparison of biological properties of 111In-labeled dimeric cyclic RGD peptides. Nucl Med Biol 42:137–145
Zhou J, Goh BC, Albert DH, Chen CS (2009) ABT-869, a promising multi-targeted tyrosine kinase inhibitor: from bench to bedside. J Hematol Oncol 2:33
Zhou Y, Chakraborty S, Liu S (2011a) Radiolabeled cyclic RGD peptides as radiotracers for imaging tumors and thrombosis by SPECT. Theranostics 1:58–82
Zhou Y, Kim YS, Chakraborty S, Shi J, Gao H, Liu S (2011b) 99mTc-labeled cyclic RGD peptides for noninvasive monitoring of tumor integrin αvβ3 expression. Mol Imaging 10:386–397
Zhou Y, Kim YS, Lu X, Liu S (2012) Evaluation of 99mTc-labeled cyclic RGD dimers: impact of cyclic RGD peptides and 99mTc chelates on biological properties. Bioconjug Chem 23:586–595
Zhu Z, Miao W, Li Q, Dai H, Ma Q, Wang F, Yang A, Jia B, Jing X, Liu S, Shi J, Liu Z, Zhao Z, Wang F, Li F (2012) 99mTc-3PRGD2 for integrin receptor imaging of lung cancer: a multicenter study. J Nucl Med 53:716–722
Zitzmann S, Ehemann V, Schwab M (2002) Arginine-glycine-aspartic acid (RGD)-peptide binds to both tumor and tumor-endothelial cells in vivo. Cancer Res 62:5139–5143