Comparing carbon isotope composition of bulk wood and holocellulose from *Quercus cerris*, *Fraxinus ornus* and *Pinus radiata* tree rings

D’Alessandro CM*, Guerrieri MR, Saracino A

Tree-ring δ13C is widely employed in ecophysiological studies, because it represents an integrated proxy of the ratio between photosynthesis (A) and stomatal conductance (g), which expresses the intrinsic water use efficiency (iWUE), strongly affected by the environmental conditions experienced by the plant during its life span. Tree-ring δ13C also reflects long term variations of atmospheric CO2 concentration and of its carbon isotope composition, partly due to increasing anthropogenic emissions. Carbon isotope abundances in tree rings can be assessed on bulk wood as well as on wood biochemical components, which show different δ13C values because of secondary discrimination during biosynthesis. We present the results of a comparison between δ13C values of bulk wood and holocellulose samples obtained from the last three (1999, 2000 and 2001) annual growth rings of two hardwood (*Quercus cerris* L. and *Fraxinus ornus* L.) and one conifer (*Pinus radiata* D. Don., species. We found that δ13C values differed significantly among tree species, both in the case of holocellulose and bulk wood, but in the case of *P. radiata* bulk wood samples tended to provide more negative δ13C values than holocellulose, as reported in the literature. We suggest that, at least for the two hardwood species studied, bulk wood is a suitable material to work with for δ13C assessment, whilst in *P. radiata* holocellulose could provide a more stable and reliable index, when studying plant ecophysiological responses to changing environmental conditions.

Introduction

Tree-ring carbon stable isotope ratio (δ13C/12C) depends on discrimination against the heavier carbon isotope, 12C, during photosynthesis (CO2 diffusion through the stomata and carbon fixation in the chloroplast) and during secondary biochemical reactions (translocation and differentiation of photosynthates).

According to the model by Farquhar et al. (1982), in C3 plants carbon isotope discrimination strongly depends on CO2 concentration in leaf intercellular spaces (c), which is further regulated by stomatal conductance (g) and by photosynthetic efficiency (A). Several environmental factors affect stomatal conductance and, therefore, plant carbon stable isotope composition.

Tree-ring δ13C is widely employed in ecophysiological studies, because it represents an integrated proxy of the ratio between photosynthesis (A) and stomatal conductance (g), which expresses the intrinsic water use efficiency (iWUE) strongly affected by the environmental conditions experienced by the plant during time. Tree-ring δ13C also reflects long term variations of atmospheric CO2 concentration and of its carbon isotope composition, partly due to increasing anthropogenic emissions (Stuir & Brazunas 1987, Feng & Epstein 1995).

Carbon stable isotope composition in tree rings can be assessed on bulk wood as well as on wood biochemical components, such as lignin, holocellulose and α-cellulose. Different wood components show different δ13C values: for instance, cellulose is 13C enriched by 1-2 ‰ relative to whole wood, while lignin is depleted by 2-6 ‰ relative to whole wood and by 4-7 ‰ relative to cellulose (Bennet et al. 1987, Brugnoli & Farquhar 1999). Depletion observed for secondary plant products, especially lignins, aromatic compounds, flavonoids originating from the pathway of shikimic acid, is due to the kinetic isotope effect of the pyruvate dehydrogenase reaction (Melzer & Schmidt 1987, Gleiexner et al. 1993).

For assessing tree ring δ13C, analysis of cellulose extracts could theoretically be preferred because δ13C cellulose does not migrate from the tree ring in which it was formed and less reactions (and fractionations) occur during its synthesis from photosynthates, in comparison with biosynthesis of lignin and other wood compounds. Bulk wood analyses may lead to δ13C values more affected by lignin, resins and highly mobile carbon reserves, such as carbohydrates, which tend to migrate between adjacent tree rings and whose amount may vary widely between sapwood and heartwood (Tans et al. 1978, Leavitt & Danzer 1993, Shiu & Chiu 1995). Furthermore, the ratio of lignin and cellulose concentrations is quite variable in bulk wood, thus, when measuring its δ13C, it would represent the mixing ratio of lignin and cellulose and not the water use efficiency of the plant studied (Wilson & Grinsted 1977). On the other hand, cellulose extraction is a time-consuming process, requiring the employment of several reagents and may represent a bottle-neck when trying to analyse long-time tree ring series.

Borella et al. (1998) provided an in-depth analysis of the uncertainties arising when measuring tree ring δ13C and, in particular, tried answering the question if cellulose extraction is needed for δ13C assessment; they showed good correlations (r2 > 0.8) between δ13C of α-cellulose and bulk wood for hardwood species (oak and beech), concluding that “wood δ13C is as good climate proxy as cellulose”. On the other hand, they warned that extractives should at least be removed from conifer wood, as it can have variable and high resin content.

In this paper we present the results of a comparison between δ13C values of bulk wood and holocellulose obtained from the last three (1999, 2000 and 2001) annual growth rings of two hardwood (*Quercus cerris* L., *Fraxinus ornus* L.) and one conifer (*Pinus radiata* D. Don.) species, growing in the same forest.

In the literature many methods for cellulose extraction have been described (see among others Seifert 1960, Green 1963, Tans & Mooy 1980, Breminkmeijer 1983, Pereira 1988, Loader et al. 1997, McFarlane et al. 1999, Brendel et al. 2000), but the “Jasmine-Wise” method (Green 1963) and its subsequent modifications (Leavitt & Danzer 1993, Shiu & Chiu 1995, Livingstone & Spittlehouse 1996) are used in most cases.

The main goal of the present paper is to test for differences between δ13C values of bulk wood and holocellulose, in order to assess which one can be a more suitable proxy of water use efficiency of trees and, therefore, of short term changing environmental conditions.

Materials and Methods

Plant material was collected in December 2001, on *Q. cerris* (n = 44), *P. radiata* (n = 14) and *F. ornus* (n = 6) trees growing in the Sito forest (Southern Italy, province of Salerno, 40°18’32” N, 15°15’07” E, 700 m a.s.l.), at an altitude of about 700 m a.s.l. Climate is Mediterranean, humid type; mean temperature is 13°C and annual precipitation...
1200 mm.

The studied forest is a 22-24 year old _P. radiata_ D. Don plantation which extends over 106 ha. Within the forest two stands have been selected, homogeneous according to all environmental conditions but for light regime. The stands have been identified as follows: lightly thinned stand (one over three rows of trees) with natural regeneration of _Q. cerris_ (n = 16 in S2); strongly thinned stand (one over two rows of trees) with natural regeneration of _Q. cerris_ (n = 15 in S3) and _F. ornus_ (n = 14 in S3). As a control a coppice of native _Quercus_ species (n = 13 in S1) has been selected too, growing in the same area.

In the case of hardwoods, trees were cut at their base and a 3 cm thick wood disc was sawn off from the lowermost stem portion; in the case of pine, a wood core was extracted by means of an increment borer from the NW facing side of the stem at breast height. _Q. cerris_ and _F. ornus_ were 6-7 years old saplings, while _P. radiata_ 22-24 years old trees. Tree-ring width was quite regular in each studied species for all the rings sampled.

Taken soon to the laboratory, samples were oven dried at 60 °C for 24 hours. Afterwards, thin shavings were obtained with a razor blade from each of the last three (1999, 2000 and 2001) annual growth rings (whole ring for hardwoods and NW facing section of the ring for the conifer); material was further reduced to 0.2 mm particles using a micro-gear miller and a ceramic mortar. Of each wood sample: i) one half underwent direct analysis of carbon isotope abundances into a Finnigan Delta Plus (Finnigan, Bremen, Germany) mass spectrometer (bulk wood samples, _WS_); ii) the other half underwent holocellulose (hereafter indicated as cellulose) extraction according to the Jaime-Wise method (Green 1963), modified by Leavitt & Danzer (1993); afterwards, holocellulose was analysed into the same Finnigan Delta Plus mass spectrometer (cel- lulose samples, _CS_). Cellulose extraction was carried out in two steps: i) removal of sugars and lipids by means of a soxhlet apparatus, keeping the samples 48 hours in a 2:1 solution of toluene and ethanol and 48 hours in pure ethanol, ii) removal of lignin, keeping the samples 4 days in a solution of sodium chlorite (NaClO₂) and glacial acetic acid (CH₃COOH) at 70 °C (bleaching). Before bleaching, samples were taken out from the soxhlet to dry and boiled in a beaker with deionised water for 6 hours to remove hydro-soluble sugars. The level of the solution during bleaching was kept constant refilling the beaker when needed; at the beginning of each day of bleaching samples were accurately rinsed in deionised water and the solution was replaced by a newly prepared one.

All statistics were carried out using the SPSS statistical package (SPSS Inc. 1989-1999).

Results and discussion

According to one-way ANOVA, tree-ring carbon isotope composition (δ¹³C) did not differ among annual growth rings in any of the studied tree species, as well as holocellulose (CS) or bulk wood samples (WS) were considered (Tab. 1).

In the present case of study site climatic conditions did not show significant differences among years (data not shown): mean annual temperature was slightly above the average value and water was not a limiting factor since precipitation amounts were larger than the average value. Also, light environment in each stand did not change significantly during the short study period. Therefore, the absence of significant variations in δ¹³C among years could be attributed to steady climatic and environmental conditions experienced by the trees during the different years, as showed also by ring widths (data not shown). In fact, yearly tree ring δ¹³C values did not differ among them both in the case of BW and _CS_ (Fig. 1). δ¹³C values of adjacent tree rings from the same plant may thus be averaged in case of short term physiological studies, according to previous findings (Borella et al. 1998), for reducing the effect of lignin migration and of translo- cation of previous year photosynthates during earlywood construction.

Values of δ¹³C differed significantly among tree species, both in the case of _CS_ and _WS_. In particular, _Q. cerris_ showed the lowest (more negative) isotopic composition (Fig. 2); carbon isotope discrimination is considered a good proxy of water-use ef- ficiency (Ehleringer 1991) and the observed differences in isotopic composition could likely be attributed to contrasting eco-physiological characteristics between the studied species (Tans et al. 1978, D’Alessandro et al. 2004) as well as to varying lignin to cellulose ratios among years and species. In fact, the two species show different stomatal behaviours as discussed in the literature: _Q. cerris_ exhibits a lower stomatal control than _F. ornus_ (Tretilachi 1993) when experiencing water stress (Nardini et al. 1999).

At least in part, the δ¹³C values in _Q. cer- ris_ and _F. ornus_ saplings may also be af- fected by a “juvenile effect” (Francey & Far- quhar 1982, Bert et al. 1997), which consists of low and/or steadily increasing values of wood and cellulose δ¹³C during the early stages of tree growth. This “juvenile effect” has been attributed to a different microenviron- ment during the phase of seedling establish- ment, to uptake of ¹³C depleted respired CO₂ from the canopy floor and from the soil, or to age-related physiological factors (Frey- er 1979, Francey 1981, Marshall & Mon- serud 1996, Bert et al. 1997).

In both _Q. cerris_ and _F. ornus_ no significant difference in δ¹³C was found between _CS_ and _WS_ (according to paired-samples t-test), despite holocellulose was found to be depleted in ¹³C by 0.04 #permil# in oak and by 0.09 #permil# in ash, relative to bulk wood (Fig. 3). Holocellulose δ¹³C could have been affected by hemicellulose, whose content is greater in juvenile wood (Rowell et al. 2000)and which is depleted in ¹³C with re- spect to cellulose (Bemner et al. 1987, Mc- Farlane et al. 1999). On the other hand, in _P. radiata_ δ¹³C values were significantly more negative in _WS_ than in _CS_.

Indeed, looking at the relationships between individual δ¹³C values in _CS_ and _WS_ samples, it can be observed that in _Q. cerris_ and _F. ornus_ data points are rather well scattered around the one-to-one line, with no apparent systematic deviation (Fig. 4A and B), whilst in the case of _P. radiata_ _WS_ tends to provide more negative δ¹³C val- ues (Fig. 4C). Besides, the large range of
We have found a lower correlation coefficient between δ¹³C of CS and WS, due to larger scatter in our data, but a closer agreement to the one-to-one relationship. The slope of regression between holocellulose and bulk wood is always smaller than 1, showing that the isotopic variations in CS are larger than the variations in WS. This result could indicate that some interesting climatic or environmental signal may be preserved in δ¹³C of holocellulose while it can be partially lost or masked in δ¹³C of bulk wood. This can be due to the fact that, unlike wood lipids and other compounds, holocellulose derives directly from the primary photosynthesates (Gleixner et al. 1993); thus, its carbon isotope composition could better reflect the climatic and environmental conditions which affected the photosynthetic pathway.

On the other hand, it is worth noting that regression residuals are unevenly distributed, i.e. irregularly scattered, around the zero value (Fig. 5), thus suggesting caution in the use of a linear regression model.

We may conclude that in *Q. cerris* and *F. ornus*, wood carbon isotopic composition is mainly affected by cellulose δ¹³C and bulk wood seems a suitable material to work with when studying plant ecophysiological response to changing environmental conditions. Only under conditions which may favour rapid polysaccharides degradation, as may occur with wood material suitable for paleoclimatic studies, extraction of lignin may be recommended (Schleser et al. 1999). As for *P. radiata*, our results suggest that δ¹³C of bulk wood could deviate significantly from δ¹³C of holocellulose, possibly as an effect of secondary compounds, such as oleoresins, whose amount can vary from year to year and lignin, which tend to migrate among as well as within tree rings. In this case, cellulose δ¹³C could represent a more stable and reliable index compared to bulk wood.

Acknowledgements

Research work supported by the Italian National Project COFIN-2003 “Interventi selvicolturali e basi ecofisiologiche della rinegrandizzazione e di rimboschimenti”, entitled to A.S. (Project leader O. Ciancio) and by funds from “Dottorato di ricerca in arborecoltura da legno”, University of Basilicata. We thank Marco Borghetti and one anonymous reviewer for helpful comments on the manuscript.

References

Benner R, Fogel ML, Sprague EK, Hodson RE (1987). Depletion of δ¹³C in lignin and its implication for stable carbon isotope studies. Nature 329: 708-710.

Bert D, Leavitt SW, Dupouey JL (1997). Variations of wood δ¹³C and water-use efficiency of *Abies alba* during the last century. Ecology 78 (5): 1588-1596.

Borella S, Leuenberger M, Saurer M, Siegwolf R (1998). Reducing uncertainties in δ¹³C analysis of tree rings: pooling, milling and cellulose extraction. Journal of Geophysical Research 103 D16: 19519-19526.

Brendel O, Iannetta PPM, Steward D (2000). A rapid and simple method to isolate pure α-cellulose. Phytochemical Analysis 11: 7-10.

Bremminkemeyer CAM (1983). Deuterium, oxygen-18 and carbon-13 in tree rings and peat deposits in relation to climate, Ph.D. Thesis, Rijksuniv. Groningen, Groningen, Netherlands.

Brugnoli E, Farquhar GD (1999). Photosynthetic fractionation of carbon isotopes. In: Photosynthesis: Physiology and Metabolism (Leegood RC, Sharkey TD, von Caemmerer S eds.), Kluver Academic Publisher, Boston, pp. 399-434.

D’Alessandro CM, Saracino A, Borghetti M (2004). Comparison of tree-ring bulk wood and cellulose δ¹³C efficiency in the study of the eco-

Fig. 2 - Comparison between species; δ¹³C values (mean ± SD) of bulk wood and cellulose of *Q. cerris* (left column), *F. ornus* (central column) and *P. radiata* (right column). Different capital (bulk wood) and lower case (holocellulose) letters indicate significant differences (P < 0.05) among species according to S-N-K multiple comparison test; δ¹³C values from different growth rings in the same plant have been considered as replicates.

Fig. 3 - Comparison between methods; δ¹³C values (mean ± SD) of bulk wood (left column) and holocellulose (right column) of *Q. cerris*, *F. ornus* and *P. radiata*. n.s. means not significant whilst * indicates significant differences, according to paired sample t-test; δ¹³C values from different growth rings in the same plant have been considered as replicates.
Fig. 4 - Relationship between $\delta^{13}C$ values of bulk wood and holocellulose in *Quercus cerris* (A), *Fagus ornus* (B) and *Pinus radiata* (C); the line represents the 1:1 relationship.

(A) $\delta^{13}C_{bw} = -10.31 + 0.63 \delta^{13}C_{hc}$
$R = 0.72$

(B) $\delta^{13}C_{bw} = -8.79 + 0.67 \delta^{13}C_{hc}$
$R = 0.57$

(C) $\delta^{13}C_{bw} = -11.56 + 0.58 \delta^{13}C_{hc}$
$R = 0.84$

Fig. 5 - Scatter of bulk wood $\delta^{13}C$ residuals vs. holocellulose $\delta^{13}C$ relative to the zero value.

\uparrow *Quercus cerris*
\bigcirc *Fagus ornus*
\times *Pinus radiata*
Comparing carbon isotope composition of bulk wood and holocellulose from Quercus cerris, Fraxinus ornus and Pinus radiata tree rings

physics of the natural regeneration of hardwood species (Quercus cerris L. and Fraxinus ornus L.) experiencing different light regimes in Pinus radiata D. Don plantations. In preparation

Ehleringer JR (1991). 13C/12C fractionation and its utility in terrestrial plant studies. In: Carbon Iso-
topic Techniques (Coleman DC, Fry B eds.), Academic Press, New York, pp. 187-200.

Farquhar GD, O_Leary MH, Berry JA (1982). On the relationship between carbon isotope discrimi-
nation and the intercellular carbon dioxide concentration in leaves. Australian Journal of Plant

Physiology 9: 121-137.

Feng X, Epstein S (1995). Carbon isotopes of trees from arid environments and implications for re-
constructing atmospheric CO2 concentration. Geochimica et Cosmochimica Acta 59 (12): 2599-2608.

Francey RJ (1981). Tasmanian tree rings belie suggested anthropogenic 13C/12C trends. Nature 290: 232-235.

Francey RJ, Farquhar GD (1982). An explanation of 13C/12C variations in tree rings. Nature 297: 28-31.

Freyer HD (1979). On the 13C record in tree rings. Part I. 13C variations in northern hemispheric
trees during the last 150 years. Tellus 31: 124-137.

Gleixner G, Danier HG, Werner AR, Schmidt HL (1993). Correlation between the 13C content of primary and secondary products in different cell compartments and that in decomposing basidi-
omyctes. Plant Physiology 102: 1287-1290.

Green JW (1963). Wood cellulose. In: Methods in carbohydrate chemistry (Whistler RL ed), Acad-
demic Press, New York, pp. 9-21.

Leavitt SW, Danzer SB (1993). Method for batch processing small wood samples to holocellulose for stable carbon isotope analysis. Analytical Chemistry 65: 87-89.

Livingstone NJ, Spittlehouse DL (1996). Carbon isotope fractionation in tree ring early and late
wood in relation to intra-growing season water balance. Plant Cell and Environment 19: 768-
774.

Loader NJ, Robertson I, Barker AC, Switsur VR, Waterhouse JS (1997). An improved technique for batch processing of small whole wood samples to α-cellulose. Chemical Geology 136: 313-317.

Marshall JD, Monserud RA (1996). Homeostatic gas-exchange parameters inferred from 13C/12C in

tree rings of conifers. Oecologia 105: 13-21.

Melzer E, Schmidt HL (1987). Carbon isotope effects on the pyruvate dehydrogenase reaction and

their importance for relative carbon-13 depletion in lipids. Journal of Biological Chemistry 262: 8159-8164.

McFarlane C, Warren RC, White DA, Adams MA (1999). A rapid and simple method for process-
ing wood to crude cellulose for analysis of stable carbon isotopes in tree rings. Tree Physiol-
ology 19: 831-835.

Nardini A, Lo Gullo MA, Salles S (1999). Competitive strategies for water availability in two Medi-
terranean Quercus species. Plant, Cell and Environment 22: 109-116.

Pereira H (1988). Variability in the chemical com-
position of plantation eucalyptus (Eucalyptus globulus Labill.). Wood Fibre Science 20: 82-90.

Rowell RW, Han JS, Rowell JS (2000). Charac-
terization and factors affecting fiber properties. In: Natural Polymers and Agrofibers Composites
(Frollini E, Leilo AL, Mattoso LHC eds), IQSC/USP, UNESCO and Embrapa Instrumentação Agropecuária. São Carlos - Brazil, pp. 115-134.

Schleser GH, Frielingsdorf J, Blair A (1999). Car-
bon isotope behaviour in wood and cellulose during artificial aging. Chemical Geology 158: 121-
130.

Seifert K (1960). Zur Frage der Cellulose-Schnell-
bestimmung nach der Acetylacetone-Methode. Das Papier 14: 104-106.

Sheu DD, Chiu CH (1995). Evaluation of cellu-
lose extraction procedure for stable carbon iso-
tope measurements in tree ring research. Interna-
tional Journal of Environmental Analytical Chemistry 59: 59-67.

Stuiver M, Braziunas TF (1987). Tree cellulose

13C/12C isotope ratios and climatic change. Nature 328:58-60.

Tans PP, Mook WG (1980). Past atmospheric CO2 levels and the 13C/12C ratios in tree rings. Tellus

32:268-283.

Tans PP, de Jong AFM, Mook WG (1978). Chem-
ical pre-treatment and radial flow of 13C in tree rings. Nature 271: 234-235.

Treisch M (1993). Photosynthesis and transpira-
tion of evergreen Mediterranean and deciduous trees in an ecotone during a growing season.
Acta Oecologica 14: 341-360.

Wilson AT, Grimsted MJ (1977). 13C/12C in cellu-
lose and lignin as palaeothermometers. Nature 265: 133-135.