Energy and SLA aware VM Scheduling

Radheshyam Nanduri Dharmesh Kakadia
Vasudeva Varma
Search and Information Extraction Lab,
International Institute of Information Technology, Gachibowli, Hyderabad, India.

Abstract
With the advancement of Cloud Computing over the past few years, there has been a massive shift from traditional data centers to cloud enabled data centers. The enterprises with cloud data centers are focusing their attention on energy savings through effective utilization of resources. In this work, we propose algorithms which try to minimize the energy consumption in the data center duly maintaining the SLA guarantees. The algorithms try to utilize least number of physical machines in the data center by dynamically rebalancing the physical machines based on their resource utilization. The algorithms also perform an optimal consolidation of virtual machines on a physical machine, minimizing SLA violations. In extensive simulation, our algorithms achieve savings of about 21% in terms of energy consumption and in terms of maintaining the SLAs, it performs 60% better than Single Threshold algorithm.

1 Introduction
Virtualization is the technology which enables cloud computing by providing intelligent abstraction that hides the complexities of underlying software and hardware. Using this technology, multiple operating system instances called Virtual Machines (VMs) [18] can be executed on a single physical machine without interfering each other. Each virtual machine is installed with its own operating system and acts as an independent machine running its own applications. The abstraction provided by this technology takes care of security, isolation of computation and data across the virtual machines without the knowledge of the user. This gave rise to cloud computing which commercializes the benefits of consolidation of virtual machines by exposing them as utility [4]. The rise of cloud computing has relieved many of the enterprises from a massive effort of managing their own data centers by renting computation resources on-demand from any of the cloud providers. There are many Infrastructure as a Service (IaaS) providers like Amazon, Rackspace, GoGrid etc., who provide computing power in pay-as-you-go model. These providers provide a simple interface for managing virtual machine instances on the cloud through web services. Hence we see more applications being deployed on the cloud framework each day.

The cloud providers consolidate the resource requirements of various customers on to virtual machines across the data center. This inherently does not mean that these data centers are energy efficient due to consolidation. The cloud data center administrators have to follow required policies and scheduling algorithms so as to make their data centers energy efficient. The focus on Green Cloud Computing has been increasing day by day due to shortage of energy resources. The U.S. Environmental Protection Agency (EPA) data center report [7] mentions that the energy consumed by data centers has doubled in the period of 2000 and 2006 and estimates another two fold increase over the next few years if the servers are not used in an improved operational scenario. The Server and Energy Efficiency Report [1] states that more than 15% of the servers are run without being used actively on a daily basis. The Green Peace International survey [8]...
reports that the amount of electricity used by Cloud data centers (Figure 1) could be more than the total electricity consumed by a big country like India, in the year 2007. This shows that there is a need to utilize the resources very effectively and in turn save energy.

Figure 1: Electricity consumption statistics of various countries in the year 2007. Source: Green Peace International [8].

In this paper, we focus on conserving the energy by effective scheduling and provisioning of virtual machines without compromising on Service-Level Agreement (SLA) guarantees. We present scale-up and scale-down algorithms, which try to consolidate the virtual machines intelligently and reduce the overall energy usage of the data center.

1.1 Contributions of this work

Major contributions of this work are as follows:

- Consolidate the virtual machines effectively based on the resource usage of the virtual machines.
- Utilize the physical machines to the maximum extent and put low utilized physical machines to standby mode, by intelligently migrating the load on to other physical machines.
- Maintaining the SLA guarantees while effectively saving the power consumed by the data center.

The remainder of the paper is structured as follows. Section 2 details about the related work in this area. In Section 3, we discuss our allocation, scale-up and scale-down algorithms. Section 4 presents the results of our scheduling algorithms obtained through rigorous simulation and Section 5 concludes the paper with few future directions of this work.

2 Related Work

Scheduling has always been a challenging research problem in the field of computer science. Many scheduling algorithms have been proposed each having its own pros and cons.
2.1 Round Robin, Greedy and Power Save

Eucalyptus is one of the leading and widely used open source software packages to set up private cloud infrastructure. Round Robin, Greedy and Power Save algorithms are the virtual machine scheduling algorithms provided along with it. Round Robin algorithm follows the basic mechanism of allocating the incoming virtual machine requests on to physical machines in a circular fashion. It is simple and starvation-free scheduling algorithm which is used in most of the private cloud infrastructures. The Greedy algorithm will allocate the virtual machine to the first physical machine which has enough resources to satisfy the resources requested by it. In Power Save algorithm, physical machines are put to sleep when they are not running any virtual machines and are re-awakened when new resources are requested. First, the algorithm tries to allocate virtual machines on the physical machines that are running, followed by machines that are asleep.

These algorithms have limited or no support for making scheduling decisions based on the resource usage statistics. Moreover these algorithms do not take into account of SLA violations, energy consumed etc., which are very important factors in real cloud environments.

2.2 Dynamic Round Robin

Ching-Chi Lin et. al in [13] presented an improved version of Round Robin algorithm used in Eucalyptus. According to Dynamic Round Robin algorithm, if a virtual machine has finished its execution and there are still other virtual machines running on the same physical machine, this physical machine will not accept any new virtual machine requests. Such physical machines are referred to as being in ‘retirement’ state, meaning that after the execution of the remaining virtual machines, this physical machine could be shutdown. And if a physical machine is in the ‘retirement’ state for a sufficiently long period of time, the currently running virtual machines are forced to migrate on to other physical machines and shutdown after the migration operation is finished. This waiting time threshold is denoted as ‘retirement threshold’. So, a physical machine which is in the retirement state beyond this threshold will be forced to migrate its virtual machines and shutdown.

Even this algorithm has limited support for making scheduling decisions based on the resource usage statistics and does not take into account of SLA violations, energy consumed etc.

2.3 Single Threshold

In [3], the authors propose Single Threshold algorithm which sorts all the VMs in decreasing order of their current utilization and allocates each VM to a physical machine that provides the least increase of power consumption due to this allocation. The algorithm does optimization of the current allocation of VMs by choosing the VMs to migrate based on CPU utilization threshold of a particular physical machine called ‘Single Threshold’. The idea is to place VMs while keeping the total utilization of CPU of the physical machine below this threshold. The reason for limiting CPU usage below the threshold is to avoid SLA violation under a circumstance where there is a sudden increase in CPU utilization of a VM, which could be compensated with the reserve. Single Threshold algorithm works better in terms of energy conservation when compared to Dynamic Round Robin Algorithm discussed in 2.2. This algorithm is fairly improved one which takes into consideration of power consumption and CPU usage of physical machines.

2.4 Dynamic Voltage Scaling

Dynamic Voltage Scaling (DVS) is a power management technique where under-volting (decreasing the voltage) is done to conserve power and over-volting (increasing the voltage) is done to
increase computing performance. This technique of DVS has been employed in [11,12] to design
design power-aware scheduling algorithms that minimize the power consumption. Hsu et al. [9] apply
a variation of DVS called Dynamic Voltage Frequency Scaling (DVFS) by operating servers at
various CPU voltage and frequency levels to reduce overall power consumption.

2.5 Dynamic Cluster Reconfiguration

In [6,14,17], the authors proposed systems that dynamically turn cluster nodes on - to be able
to handle the load on the system efficiently and off - to save power under lower load. The key
component of these algorithms is that the algorithm dynamically takes intelligent re-configuration
decisions of the cluster based on the load imposed on the system. Our work is mainly inspired
by these algorithms which scale the cluster up and down as per the requirement and save power.
We tried to employ the same kind of principle in a virtualized data center environment.

In [15], Pérez et al. try to achieve a dynamic reconfiguration using a mathematical formalism,
with the use of storage groups for data-based clusters. A considerable amount of research has been
done in the fields of load balancing and cluster reconfiguration, with prime focus on harvesting
the cycles of idle machines [5,10,16]. Our work is based on load balancing and VM migration
decisions with prime focus on reducing the total number of running physical machines.

3 Proposed Algorithm

Data centers are known to be expensive to operate and they consume huge amounts of electric
power [4]. Google’s server utilization and energy consumption study [2] reports that the energy
efficiency peaks at full utilization and significantly drops as the utilization level decreases (Figure
2). Hence, the power consumption at zero utilization is still considerably high (around 50%).
Essentially, even an idle server consumes about half its maximum power. Our algorithms try
to maintain high utilization of physical machines in the data center so as to utilize energy and
resources optimally. In this section, our approach to handle the scheduling decisions of VMs in
the data center is presented.

Initially, we assume that all the physical machines in the data center are put to standby mode
except for few. We start with only one physical machine that is up and running and only awaken
the physical machines as and when required, as directed by our algorithms discussed ahead.
When a new request to allocate a VM is received by the data center, the request is directed to
Allocation Algorithm. The Allocation Algorithm takes the decision of allocating the VM on a
particular physical machine.

3.1 Allocation Algorithm

The Allocation Algorithm presented in the Figure 3 accepts the VM request and tries to fit
on to one of the currently running physical machines. The algorithm tries to fit the virtual
machine based on the resource usage of the target physical machine. The resource usage of the
target physical machine is represented by its Resource Vector. Firstly, we discuss Resource Vector
which forms the base for our algorithms.

3.1.1 Resource Vector

A virtual machine uses the computing resources based on the applications running on it. Based
on the resource usage, a virtual machine can be broadly categorized as CPU-intensive if it uses
high CPU, or memory-intensive if it accounts for more of memory IO and similarly disk-intensive
or network-intensive. But, just identifying this information about a virtual machine does not
give its exact resource usage pattern. To calculate a better resource usage pattern of a virtual
machine, we need to take into account of all the resources used by it, at once. So, we define the
resource usage pattern of a virtual machine as a vector with four components each denoting CPU,
memory, disk and network resources.

$$\text{ResourceVector} (RV) = \langle E_{cpu}, E_{mem}, E_{disk}, E_{bw} \rangle$$ \hspace{1cm} (1)

where $E_x$ (x is cpu, mem, disk, bw) represents the percentage of corresponding resource used
i.e. percentage of total CPU, memory, disk and network resources used respectively on that
physical machine. Since we denote $E_x$ as percentage of resource used on the physical machine,
we represent its value from 0 to 1.

Example: Resource Vector (RV)
Resource Vector 1 = $\langle 0.70, 0.10, 0.05, 0.05 \rangle$ denotes a CPU-intensive vector.
Resource Vector 2 = $\langle 0.70, 0.50, 0.05, 0.05 \rangle$ denotes a CPU and memory intensive vector.

3.1.2 Construction of Resource Vector
The resources used by a virtual machine are logged at regular intervals at the hypervisor level.
Resource Vector (RV) of virtual machine is represented as $RV_{vm}$. $E_x$ in $RV_{vm}$ of the virtual
machine is calculated by averaging its corresponding resource usage (say $E_{cpu}$) over a period of
time $\Delta$ (previous $\Delta$ time units in the history). For example, $E_{cpu}$ at any time $\tau$ is the average
percentage utilization of CPU by the virtual machine between $\tau - \Delta$ and $\tau$.

Handling Resource Vector in Heterogeneous Environment: Resource Vector of a VM
($RV_{vm}$) is the vector representation of percentage of resources utilized by the VM on a physical

Figure 2: Server power usage and energy efficiency at varying utilization levels, from idle to peak
performance. Even an energy-efficient server still consumes about half its full power when doing
virtually no work. Source: [2].
machine. But since the data center could be heterogeneous, this RV$_{vm}$ may not be uniform across different physical machines because of diverse resource capacities. To handle such heterogeneous data center environments, the resource vector could be modified as RV$_{vm}(PM)$, denoting resource vector of a VM on a particular PM.

**Example RV in heterogeneous environment:** Resource Vector RV of a VM on a physical machine $PM_1$ is given as follows:

$$RV_{vm}(PM_1) = \langle E_{cpu}, E_{mem}, E_{disk}, E_{bw} \rangle$$

similar to Equation 1 where

$$E_{cpu} = \frac{CPU \text{ used by VM}}{\text{max CPU capacity of } PM_1}$$

Similarly, the rest of the components of $RV_{vm}(PM_1)$, which are $E_{mem}$, $E_{disk}$, $E_{bw}$ can be calculated.

So, given the resource vector of a VM on a physical machine say, $PM_1$ i.e., $RV_{vm}(PM_1)$, we can calculate its resource vector corresponding to another physical machine say, $PM_2$ denoted by $RV_{vm}(PM_2)$. The calculation is straightforward as the information about resource capacities of both the physical machines is available to the system.

Next, the Allocation algorithm tries to allocate the new VM request on to the physical machine on which it fits the best. To check whether a VM perfectly fits on a running physical machine, we follow *Cosine Similarity model*.

### 3.1.3 Cosine Similarity Model

Cosine similarity gives the measure of the angle between two vectors. If the angle between two vectors is small, then they are said to possess similar alignment. The cosine of two vectors lies between -1 and 1. If the vectors point in the same direction, the cosine between them is 1 and the value decreases and falls to -1 with an increase in angle between them.

Using Euclidean dot product, the cosine of two vectors is defined as

$$\mathbf{a} \cdot \mathbf{b} = \|\mathbf{a}\| \|\mathbf{b}\| \cos \theta$$

And the similarity is shown as follows,

$$\text{similarity} = \frac{\mathbf{A} \cdot \mathbf{B}}{\|\mathbf{A}\| \|\mathbf{B}\|} = \frac{\sum_{i=1}^{n} A_i \times B_i}{\sqrt{\sum_{i=1}^{n} (A_i)^2} \times \sqrt{\sum_{i=1}^{n} (B_i)^2}}$$

The Allocation Algorithm uses this similarity model and tries to allocate the incoming virtual machine request on to a physical machine based on the similarity measure between $RV_{vm}(PM)$ of incoming VM and RV of physical machine (denoted by $RV_{PM}$ which will be discussed later).

This idea of similarity is used to allocate dissimilar VMs on a physical machine. By similar/dissimilar VMs, we are referring to the similarity/dissimilarity in resource usage patterns of the VMs. For example, if VM1 is CPU-intensive, we would not want VM2 which is also CPU-intensive, to be allocated on same physical machine since there may be a race condition for CPU resource. By allocating dissimilar VMs on the physical machine, following benefits could be achieved.

1. Race condition for the resources between the VMs could be minimized.
2. The physical machine would be trying to use all the resources, increasing its overall utilization.

**Reason for choosing Cosine Similarity model:** The reason for choosing Cosine Similarity model over the other similarity models is that, it is simpler and takes into consideration of similarity measure of each component of the vector. And this perfectly suits our requirement of comparing usage patterns of different resources at a time.

Before moving forward, we shall discuss about Resource Vector of a physical machine, $RV_{PM}$. $RV_{PM}$ is the percentage of resources used on the physical machine. It is similar to $RV_{vm}(PM)$ denoting the percentage of resources used on the physical machine i.e., the usage accounted due to sum of the resources consumed by all the virtual machines running on that particular physical machine. $RV_{PM}$ can be shown as follows,

$$RV_{PM} = <E_{cpu\_used}, E_{mem\_used}, E_{disk\_used}, E_{bw\_used}>$$

(6)

where $E_{x\_used}$ (x is cpu, mem, disk, bw) represents the percentage of corresponding resource used i.e. percentage of total CPU, memory, disk and network resources used respectively on the physical machine. Similarly, $PM_{free}$ is resource vector which represents the free resources available on physical machine.

### 3.1.4 Calculation of Similarity

As discussed, Allocation Algorithm uses the cosine similarity measure to find a physical machine that is most suitable for the incoming VM request. To use the cosine similarity model, we need to know the RV of the incoming VM. But, since the incoming VM’s resource usage may not be known ahead of it’s allocation, we make an initial assumption to take a default $RV_{vm}(PM)$. The default $RV_{vm}(PM)$ is assumed to be $<0.25, 0.25, 0.25, 0.25>$. Once the VM is allocated and run for a time period of $\Delta$, its exact $RV_{vm}(PM)$ could be found by the mechanism discussed in [3.1.2].

To avoid race condition for resources between the VMs, we need to allocate VMs of dissimilar nature. We propose two different methods of calculating similarity measure which are based on Cosine Similarity.

**Method 1 - Based on dissimilarity:** In this method, we calculate the cosine similarity between RV of the incoming VM and $RV_{PM}$. And, we select a running physical machine which gives least cosine similarity measure with the incoming VM. The least cosine similarity value implies that the incoming VM is mostly dissimilar to the physical machine in terms of resource usage patterns.

By equation 5 we arrive at following formula,

$$\text{similarity} = \frac{RV_{vm}(PM) \cdot RV_{PM}}{\|RV_{vm}(PM)\| \|RV_{PM}\|}$$

(7)

**Method 2 - Based on similarity:** In this method, we calculate the cosine similarity between RV of the incoming VM and $PM_{free}$.

$$\text{similarity} = \frac{RV_{vm}(PM) \cdot PM_{free}}{\|RV_{vm}(PM)\| \|PM_{free}\|}$$

(8)
We select a running physical machine which gives maximum cosine similarity measure with the incoming VM. The maximum cosine similarity value implies that the incoming VM’s resource requirements are most compatible with the free resources of physical machine.

The similarity value lies between 0 and 1 since we are not dealing with negative physical resource values.

**Difference between Method 1 and 2:** The similarity methods discussed above help in consolidating VMs on a physical machine without a race condition for resources. There is a subtle difference between the proposed methods. Method 1 tries to allocate VMs which are dissimilar in resource usage patterns. This method helps in achieving the consolidation of VMs with diverse resource usage patterns. While, Method 2 tries to allocate a VM which could properly consume the underutilized resources of the physical machine. This method inherently makes sure that race condition for resources is avoided and at the same time improves the utilization of the physical machine.

Before discussing further algorithms, we present the utilization model for a physical machine upon which the following algorithms are based on.

### 3.1.5 Utilization model

Our work considers multiple resources viz. CPU, memory, disk and network of a physical machine. It is difficult to incorporate utilizations of each of the resources individually into the algorithms. Hence, we come up with a unified model that tries to represent the utilization of all these resources into a single measure, $U$. The unified utilization measure, $U$ is considered to be a weighted linear combination of utilizations of individual resources. It is given as follows,

$$ U = \alpha \times E_{cpu} + \beta \times E_{mem} + \gamma \times E_{disk} + \delta \times E_{bw} \quad (9) $$

where, $\alpha, \beta, \gamma, \delta \in [0, 1]$ can be weighed accordingly by the the administrator as per the requirements. And,

$$ \alpha + \beta + \gamma + \delta = 1 \quad (10) $$

So we try to measure the utilization of any physical machine or virtual machine through a single parameter, $U$. This unified single parameter, $U$ is introduced for simplicity reasons which reduces the difficulty in taking into consideration of multiple parameters into our algorithms.

The Allocation Algorithm not only tries to consolidate dissimilar VMs but also makes sure that the physical machine is not overloaded after the allocation of VM. Hence, first the similarity measure between the VM and the physical machine is calculated. If the algorithm finds that the similarity measure is good enough to accommodate the VM on the physical machine we proceed to next step. In the next step, the algorithm calculates the estimated $U$ after the VM allocation on the target physical machine (the machine which is suggested by similarity measure) ahead of its actual allocation. And the VM allocation is considered only if $U$ after allocation, i.e., the estimated utilization of the physical machine after the allocation of VM on it, is less than the value ($U_{up} - buffer$).

If $U$ after allocation, is greater than the value ($U_{up} - buffer$), we do not consider that physical machine as the allocation may overload it. Instead we take the physical machine which is next best in terms of similarity measure and find its $U$ after allocation. The physical machine is accepted if $U$ after allocation is less than the value ($U_{up} - buffer$), else we repeat the same procedure by taking the physical machine with next best similarity measure. The details of this value ($U_{up} - buffer$) is discussed clearly later.
1: Allocation Algorithm (VMs to be allocated)
   {’VMs to be allocated’ is the argument passed to this algorithm}
2: for each VM ∈ VMs to be allocated do
3:   for each PM ∈ Running PMs do
4:     physical machine is represented as PM
5:     similarity_{PM} = calculateSimilarity(RV_{vm}(PM), RV_{PM})
   {similarity is calculated using any of the two methods discussed}
6:     add similarity_{PM} to queue
7:   end for
8:   sort queue in ascending values of similarity_{PM} {if Method 1 is used} or
   sort queue in descending values of similarity_{PM} {if Method 2 is used}
9: for each similarity_{PM} in queue do
10:     target_{PM} = PM corresponding to similarity_{PM}
11:     if U after allocation on target PM < (U_{up} – buffer) then
12:        allocate(VM, target PM)
13:          {VM is allocated on target PM}
14:        return SUCCESS
15:     end if
16: end for
17: return FAILURE {VM can’t be allocated on any of the running machines}

Figure 3: Allocation Algorithm. The VMs are consolidated on physical machines based on similarity measure.

If the algorithm fails to find any running physical machine which satisfies both the above conditions, then it awakens one of the standby physical machines and allocates the VM on it. The calculation of estimated U after allocation is straight-forward since we have enough information about the resource vectors of VMs and physical machines.

After the allocation, the resource usage of each physical machines is monitored at regular intervals. And if the utilization of a physical machine reaches an administrator specified threshold (Scale-up Threshold, U_{up}), we follow the following Scale-up Algorithm.

3.2 Scale-up Algorithm

If the utilization, U of any physical machine is observed to be greater than U_{up} for a consistent time period T, the Scale-up Algorithm is triggered. The Scale-up Algorithm presented in Figure 4, then tries to bring down U of the physical machine by migrating the VM with highest utilization on that particular physical machine to another physical machine. Firstly, the Scale-up algorithm hands over the VM with high utilization on that overloaded physical machine to Allocation Algorithm for suitable migration. Then, the Allocation Algorithm tries to consolidate that particular VM on any of the other already running physical machines, duly taking into consideration that the migration does not overload the target physical machine as well. If the Allocation Algorithm succeeds in finding a physical machine to allocate the VM, the migration of the VM is instantiated on to the target physical machine. But, if the Allocation Algorithm fails to find a suitable physical machine, then one of the standby physical machines is awakened and migration
of the VM is instantiated on to it. By doing this we bring down the $U$ of the physical machine below $U_{up}$.

Addition of standby physical machines to the running physical machines happens only when required, to handle the rise in resource requirement. This makes sure that the physical machines are used very optimally, conserving a lot of energy.

1: **Scale up Algorithm**()
2: if $U > U_{up}$ then
   3: if $U$ of a PM is greater than $U_{up}$
   4: VM = VM with max $U$ on that PM
   5: Allocation Algorithm(VM)
   6: end if
3: if Allocation Algorithm fails to allocate VM then
4: target PM = add a standby machine to running machine
5: allocate(VM, target PM)
6: end if

Figure 4: Scale-up Algorithm. Upon reaching the scale-up trigger condition, the above algorithm is executed.

Similarly, if the utilization of a physical machine goes down below an administrator specified threshold ($Scale-down Threshold, U_{down}$), we follow the following Scale-down Algorithm.

3.3 Scale-down Algorithm

If the utilization, $U$ of any physical machine is observed to be lower than $U_{down}$ for a consistent time period $T$, the Scale-down Algorithm is triggered. This suggests that the physical machine is under-utilized. So, the Scale-down Algorithm presented in Figure 5, tries to migrate VMs on that particular under-utilized physical machine to other running physical machines and put it to on standby mode. The VMs on the physical machine are handed over to Allocation Algorithm one after the other for allocation on any other running physical machines, duly taking into consideration that the target physical machines are not overloaded. If the Allocation Algorithm succeeds in finding suitable physical machine where it can consolidate these VMs, the migration of such VMs is initiated on to the target physical machine. The physical machine is then put in standby mode after all the migration operations are performed. But, if the Allocation Algorithm fails to find a suitable physical machine, the VMs are allowed to run on the same physical machine.

1: **Scale down Algorithm**()
2: if $U < U_{down}$ then
   3: if $U$ of a PM is less than $U_{down}$
   4: Allocation Algorithm(VMs on PM)
   5: end if

Figure 5: Scale-down Algorithm. Upon reaching the scale-down trigger condition, the above algorithm is executed.

**Reason for using Threshold:** Scale-up and Scale-down algorithms are triggered when it is observed that $U$ of a physical machine is above or below $U_{up}, U_{down}$ thresholds for a consistent period of time respectively. These thresholds make sure that the physical machines are neither over-loaded nor under-utilized. Preventing the utilization of physical machine above $U_{up}$ helps in
reserving sufficient resources for any sudden surge in utilizations of any of the VMs. This reserve compute resources greatly helps in avoiding any SLA violations. Similarly, usage of $U_{down}$ helps in conserving energy by putting an under-utilized machine to standby mode. To trigger these algorithms, it is a necessary condition that the utilization activity on physical machine should persist consistently for a certain period of time. Sometimes there could be a sudden surge in utilization of a VM and may just persist for small duration. By imposing this condition we could avoid unnecessary migration of VMs during such conditions.

Since these thresholds are percentage utilizations of physical machines, the algorithms work unchanged for heterogeneous data centers.

**Reason for using buffer:** Before a VM is allocated on a physical machine using Allocation Algorithm, its utilization $U$ after the VM’s allocation is calculated upfront. And the allocation of that VM is considered only if $U$ after the allocation is less than ($U_{up}$ - buffer). This buffer value is considered to make sure that the utilization does not reach $U_{up}$ immediately after allocation, which avoids scale-up operation.

**Selection of standby physical machines while scaling up:** During the scale-up operation, a standby physical machine may be re-awakened to accommodate VMs. The machine which is least recently used is picked up while selecting a standby physical machine. This makes sure that all the machines in the data center are uniformly used and avoids hot-spots.

**Difference between Scale-up and Scale-down Threshold:** $U_{up}$ and $U_{down}$ are set by the administrator of the data center as per the requirements. Difference in these values should be made sufficiently large so that the data center does not experience a jitter effect of scaling up and down very frequently.

### 4 Evaluation and Results

The cloud data center architecture is simulated and the results are generated over it. The simulator is written in Java.

#### 4.1 Simulation Model

Our simulator simulates the cloud data center from a granularity level of physical machines, virtual machines running on it, to applications running on each virtual machine. Each physical machine could be designed with its own resource specification. Each virtual machine could be assigned to any physical machine dynamically with requested amount of resources. One or many applications could be run on each virtual machine with its own resource requirement dynamics. The simulator has the provision to incorporate scheduling algorithms which guide the allocation of resources in the data center. The simulator takes care of the amount of energy consumed using the model discussed in Google’s server utilization and energy consumption study [2]. The simulator is designed with the following SLA model.

**SLA Model:** An SLA violation is considered at the process scheduling level of hypervisor, whenever any requested resource could not be met to any virtual machine. In simpler terms, during the scheduling of VMs on a physical machine by the hypervisor (scheduling the VMs is a kind of process scheduling in the operating system), a violation of SLA is considered, whenever requested resources such as the amount of CPU, memory, disk or network could not be supplied to any virtual machine.
| Parameter                      | Value          |
|-------------------------------|----------------|
| Scale-up Threshold, $U_{up}$  | [0.25, 1.0]    |
| Scale-down Threshold, $U_{down}$ | [0.0 to 0.4] |
| buffer                        | [0.05 to 0.5]  |
| Similarity Threshold          | [0, 1]         |
| Similarity Method             | Method 1 or 2  |
| Number of physical machines   | 100            |
| Specifications of physical machines | Heterogeneous |
| Time period for which resource usage of VM is logged for exact $RV_{vm}$ calculation, $\Delta$ | 5 minutes |

### 4.2 Experimental Set-up and Dataset

The simulation is performed on a machine with Intel core 2 Duo, 2.4 GHz processor with 2 GB of memory and 500 GB of hard disk which runs Ubuntu 10.04 LTS (Lucid Lynx).

Rigorous simulation is carried out with various distinctive workloads, based on the real life data center usage, as the input dataset to the simulator. The simulator and algorithm parameters are specified in Table 1. To verify the efficacy of our algorithms, we compared them to Single Threshold algorithm and the results are recorded as follows.

### 4.3 Energy Savings

#### 4.3.1 Effect of Scale up Threshold

Experiments are carried out on our algorithms to find out the effect on energy consumption for various values of $U_{up}$ and the output is plotted in Figure 6. The curve shows a dip when $U_{up}$ is around 0.70 to 0.80 indicating a sudden drop in the energy consumed.

The curve says that the $U_{up}$ should not be too high or too low and its optimal value is around 0.70 to 0.80. If $U_{up}$ is low, Scale-up algorithm tries to run more physical machines to accommodate VMs. And when $U_{up}$ is too high, we see more number of VMs getting consolidated in the machine and few surges in the usage of VMs could lead to running new physical machines. Hence, we see a gradual increase in the energy consumption after 0.80.

#### 4.3.2 Effect of scaling down

Figure 7 demonstrates the use of having a threshold to put machines to sleep and its effect on energy conservation.
Figure 6: The graph demonstrates the effect of Scale up Threshold on energy consumption (in kWh). We see a sudden drop of energy consumption when $U_{up}$ is around 0.70 to 0.80.

Figure 7: The graph demonstrates the effect of Scale down Threshold on energy consumption (in kWh). Algorithm with scale down procedure enabled, performs better in terms of energy conservation.
The graph shows that the energy consumed by our algorithms with scale down algorithm enabled, is much lower than the algorithm without scale down procedure. Scaling down of machines when there is not enough load on them could directly save up to 50% of energy as demonstrated in the figure. Higher the value of $U_{down}$, more the physical machines that are scaled down. At the same time, $U_{down}$ should not be too high, which could result in a jitter effect of scaling up and down, due to a low difference between $U_{up}$ and $U_{down}$, which was discussed earlier.

4.4 SLA violations

4.4.1 Effect of Similarity Threshold

In Figure 8 we try to compare our results with Method 1 and Method 2 similarity measures. The similarity value lies between 0 and 1 since we are not dealing with negative resource values. Method 1 works well with zero violations for lower values of Similarity Threshold as expected, i.e. for values less than 0.6, since dissimilar VMs are perfectly consolidated with lower threshold values. We observe that Method 2 works even better in terms of SLA violations which shows no SLA violations for any Similarity Threshold. This is because Method 2 takes into consideration of available resources in the first place, even before performing consolidation. This proves as an advantage in case of Method 2 and hence Method 2 is better than Method 1 in terms of consolidation.

4.4.2 Effect of Scale up Threshold

In Figure 8 we try to compare the effect of $U_{up}$ on the number of SLA violations. A very highly stochastic workload is imposed to the simulator to test this experiment. We see that the SLAs are not violated for lower $U_{up}$ values. But as $U_{up}$ increases, more VMs get consolidated on a single physical machine. And when there is a sudden surge in usage of few of the VMs on this machine, there is not enough free resources to handle the immediate requirement, which leads to SLA violations.
Figure 9: The graph demonstrates the effect of Scale up Threshold on number of SLA violations. No violations occur for lower values of Scale up Threshold.

4.5 Effect of buffer

An additional padding called as buffer is provided to Allocation Algorithm shown in Figure 3 to avoid SLA violations. The Figure 10 shows the advantage of having buffer on SLA violations. We see in the curve that as buffer increases, the number of SLA violations drop to zero, which is as expected. The buffer value has to be used very economically in conjunction with $U_{up}$ and optimal value is around 0.2. Increase in buffer creates more hindrance to consolidation, causing a steady increase in energy consumption which is shown in Figure 11.

Figure 10: The graph demonstrates the effect of buffer on SLA violations. The number of SLA violations drop to zero with a buffer value of more than or equal to 0.2.
Figure 11: The graph demonstrates the effect of buffer on energy consumption (in kWh). We see a sudden drop of energy consumption when buffer is around 0.20, but steadily increases beyond it.

4.6 Effectiveness of our algorithm against Single Threshold Algorithm

We have conducted several experiments with various workloads on both Single Threshold and our algorithm. We have chosen the best configuration for our algorithm, i.e., with $U_{up} = 0.75$, $U_{down} = 0.15$, $buffer = 0.15$, Method 2, Similarity Threshold = 0.6. And for Single Threshold algorithm a threshold of 0.75 is used. In Figure 12, we see a considerable amount of energy savings with our algorithm, saving up to 21% of energy. While in terms of number of SLA violations, our algorithm performs very well maintaining up to 60% more SLA guarantees.

Figure 12: The graph demonstrates the effectiveness of our algorithm against Single Threshold algorithm in terms of both energy consumption (in kWh) and also number of SLA violations.
5 Conclusion and Future Work

In this paper, we proposed algorithms that try to conserve energy in cloud data centers. We discussed the Allocation Algorithm which tries to consolidate the virtual machines on physical machines taking into consideration of resource usage characteristics. The similarity model that is discussed tries to avoid SLA violations and allocates virtual machines accordingly. The Scale-up and Scale-down algorithms keep track of resource usage of each physical machine and dynamically rebalance the data center based on the utilization. We have successfully evaluated our algorithms against Single Threshold algorithm and they show a considerable amount of energy savings.

Future directions to this work include predicting the resource usage patterns of virtual machines and take dynamic rebalancing decisions ahead of threshold condition. We would like to analyze the efficacy of Machine Learning algorithms in training of scheduling and rebalancing decisions of the data center.

In our algorithms, we have put the physical machines to a standby mode when they are not in use. We would also want to analyze the effect of our algorithms if the machines which are not used are switched off. Switching off the machines would have a significant improvement in energy savings. But at the same time, there is a need to analyze the effect of time delay in switching on the machines, which the scheduler has to anticipate during its scheduling decision.

References

[1] 1E. Server Energy and Efficiency Report. Technical report, 1E, 2009.

[2] L. Barroso and U. Holzle. The case for energy-proportional computing. Computer, 40(12):33–37, dec. 2007.

[3] A. Beloglazov and R. Buyya. Energy efficient allocation of virtual machines in cloud data centers. In Proceedings of the 2010 10th IEEE/ACM International Conference on Cluster, Cloud and Grid Computing, CCGRID '10, pages 577–578, Washington, DC, USA, 2010. IEEE Computer Society.

[4] R. Buyya, C. S. Yeo, S. Venugopal, J. Broberg, and I. Brandic. Cloud computing and emerging it platforms: Vision, hype, and reality for delivering computing as the 5th utility. Future Gener. Comput. Syst., 25(6):599–616, June 2009.

[5] F. Doulgiiis and J. Ousterhout. Transparent process migration: Design alternatives and the sprite implementation. Software - Practice and Experience, 21:757–785, 1991.

[6] E. Pinheiro, R. Bianchini, E. V. Carrera and T. Heath. Dynamic cluster reconfiguration for power and performance. In Power and energy management for server systems. IEEE Computer Society, November 2004.

[7] EPA. EPA Report to Congress on Server and Data Center Energy Efficiency. Technical report, U.S. Environmental Protection Agency, 2007.

[8] Gary Cook, Jodie Van Horn. How dirty is your data? A Look at the Energy Choices That Power Cloud Computing. Technical report, Green Peace International, April 20, 2011.

[9] C. Hsu and W. Feng. A power-aware run-time system for high-performance computing. In SC '05: Proceedings of the 2005 ACM/IEEE conference on Supercomputing, page 1, Washington, DC, USA, 2005. IEEE Computer Society.
[10] Y. A. Khalidi, J. M. Bernabeu, V. Matena, K. Shirriff, and M. Thadani. Solaris mc: a multi
computer os. In Proceedings of the 1996 annual conference on USENIX Annual Technical
Conference, pages 16–16, Berkeley, CA, USA, 1996. USENIX Association.

[11] K. H. Kim, R. Buyya, and J. Kim. Power aware scheduling of bag-of-tasks applications
with deadline constraints on dvs-enabled clusters. In Proceedings of the Seventh IEEE In-
ternational Symposium on Cluster Computing and the Grid, CCGRID ’07, pages 541–548,
Washington, DC, USA, 2007. IEEE Computer Society.

[12] Y. C. Lee and A. Y. Zomaya. Minimizing energy consumption for precedence-constrained
applications using dynamic voltage scaling. In Proceedings of the 2009 9th IEEE/ACM
International Symposium on Cluster Computing and the Grid, CCGRID ’09, pages 92–99,
Washington, DC, USA, 2009. IEEE Computer Society.

[13] C.-C. Lin, P. Liu, and J.-J. Wu. Energy-aware virtual machine dynamic provision and
scheduling for cloud computing. In Cloud Computing (CLOUD), 2011 IEEE International
Conference on, pages 736–737, july 2011.

[14] N. Maheshwari, R. Nanduri, and V. Varma. Dynamic energy efficient data placement and
cluster reconfiguration algorithm for mapreduce framework. Future Generation Comp. Syst.,
28(1):119–127, 2012.

[15] M. S. P´erez, A. S´anchez, J. M. Pena, and V. Robles. A new formalism for dynamic re-
configuration of data servers in a cluster. Journal of Parallel and Distributed Computing,
65(10):1134 – 1145, 2005. Design and Performance of Networks for Super-, Cluster-, and
Grid-Computing Part I.

[16] D. Petrou, S. H. Rodrigues, A. Vahdat, and T. E. Anderson. Glunix: A global layer unix for
a network of workstations. Softw., Pract. Exper., 28(9):929–961, 1998.

[17] E. Pinheiro, R. Bianchini, E. V. Carrera, and T. Heath. Load balancing and unbalancing
for power and performance in cluster-based systems. In In Workshop on Compilers and
Operating Systems for Low Power, 2001.

[18] J. E. Smith and R. Nair. The architecture of virtual machines. Computer, 38:32–38, May
2005.