Neuroimmunomodulation in Major Depressive Disorder: Focus on Caspase 1, Inducible Nitric Oxide Synthase, and Interferon-Gamma

Antonio Inserra1,2,3 • Claudio Alberto Mastronardi4,5 • Geraint Rogers6,7 • Julio Licinio8,9 • Ma-Li Wong1,2,9

Received: 29 April 2018 / Accepted: 19 September 2018 / Published online: 10 October 2018
© The Author(s) 2018

Abstract

Major depressive disorder (MDD) is one of the leading causes of disability worldwide, and its incidence is expected to increase. Despite tremendous efforts to understand its underlying biological mechanisms, MDD pathophysiology remains elusive and pharmacotherapy outcomes are still far from ideal. Low-grade chronic inflammation seems to play a key role in mediating the interface between psychological stress, depressive symptomatology, altered intestinal microbiology, and MDD onset. We review the available pre-clinical and clinical evidence of an involvement of pro-inflammatory pathways in the pathogenesis, treatment, and remission of MDD. We focus on caspase 1, inducible nitric oxide synthase, and interferon gamma, three inflammatory systems dysregulated in MDD. Treatment strategies aiming at targeting such pathways alone or in combination with classical therapies could prove valuable in MDD. Further studies are needed to assess the safety and efficacy of immune modulation in MDD and other psychiatric disorders with neuroinflammatory components.

Keywords Major depressive disorder • MDD • Inflammation • Neuroinflammation • Caspase 1 • Inflammasome • T-helper 1 (Th1) • Interleukin 1 • Inducible nitric oxide synthase • Interferon gamma • Gut microbiome

Introduction

Major depressive disorder (MDD) is a psychiatric disorder with significant morbidity, mortality, disability, and economic burden worldwide [1, 2]. In addition to the psychosocial and psychophysical dysfunctions associated with MDD, several conditions are often comorbid, including but not limited to obesity, type-2 diabetes, heart conditions, autoimmune diseases, neurodegenerative disorders, cancer, and intestinal conditions [3–7]. Multiple hypotheses have been formulated attempting to describe the elusive pathophysiology of MDD, including the monoamine hypothesis, the neurotrophic hypothesis, the glutamate hypothesis, the cytokine (or macrophage) hypothesis, and the microbiota-inflammasome hypothesis [8–13]. However, no single hypothesis seems to fully explain the onset, course, and remission of the disease. To complicate matters further, antidepressant drugs present numerous side effects and are effective only in a subset of patients [14–16]. Newer therapeutic strategies involve drugs acting on neuroplasticity-related pathways, gut microbiome modulation, and deep brain stimulation surgery.

1 Mind and Brain Theme, South Australian Health and Medical Research Institute, Adelaide, Australia
2 Department of Psychiatry, College of Medicine and Public Health, Flinders University, Bedford Park, Australia
3 Centre for Neuroscience, Flinders University, Bedford Park, Australia
4 School of Medicine and Health Sciences, Universidad Del Rosario, Bogota, Colombia
5 Neuroscience (NEUROS) Research Group, Universidad del Rosario, Bogota, Colombia
6 Infection and Immunity Theme, South Australia Health and Medical Research Institute, North Terrace, Adelaide, SA, Australia
7 SAHMRI Microbiome Research Laboratory, Flinders University College of Medicine and Public Health, Bedford Park, SA, Australia
8 College of Medicine, State University of New York Upstate Medical University, Syracuse, NY, USA
9 Department of Psychiatry, State University of New York Upstate Medical University, Syracuse, NY, USA
Increasing evidence suggests the existence of a gut-brain-axis, and illness has come to the forefront in psychiatry [52, 53]. Immune pathways underlie depressive symptomatology in that could target the causal biological mechanisms of MDD. The possible involvement of these three systems in MDD is briefly summarized here and will be described in detail throughout this review.

Communication Between the Brain, the Immune System, and the Gut Microbiome

Although the CNS is considered to have its “own” immune system, independent from the peripheral immune system, it is accepted that the two constantly communicate and cooperate, that the CNS is involved in regulating immunity, and that immune responses in the periphery lead to behavioral changes [66, 67]. Stress-mediated upregulation of pro-inflammatory cytokines [such as IL1, IL6, tumor necrosis factor (TNF), and IFNG] leads to endocrine and neurochemical responses, such as sympathetic nervous system (SNS), hypothalamic-pituitary-adrenal (HPA) axis, and microglial activation. SNS stimulation triggers epinephrine and norepinephrine release in the locus coeruleus and adrenal medulla, which result in an upregulation of pro-inflammatory signaling. SNS activation in response to stress pushes the CNS to “steer” immunity towards pro-inflammatory and antiviral responses [23]. At the same time, norepinephrine modulates pro-inflammatory cytokines transcription via beta-adrenergic receptor stimulation [68].

This leads to HPA axis activation by hypothalamus-secreted corticotropin releasing hormone (CRH) and arginine vasopressin (AVP). CRH stimulates adrenocorticotropic hormone (ACTH) release from the pituitary gland, which stimulates glucocorticoids release by the adrenal gland. Glucocorticoids interact with the glucocorticoid receptor (NR3C1) and the mineralocorticoid receptors (NR3C2), activating anti-inflammatory cascades and inhibiting Th1-driven pathways. This upregulates anti-inflammatory gene expression to avoid side effects [69–73]. The gut microbiome modulates HPA axis processes. In fact, germ-free rodents have greater plasma ACTH and corticosterone spikes compared to wild-type in response to stressors, while displaying altered anxiety-like behavior [74]. This exaggerated response can be reversed by early stage (but not later stage) recolonization.
with *Bifidobacterium infantis* [74]. Interestingly, the brain regions presenting the highest concentrations of pro-inflammatory cytokines are the prefrontal cortex, the hypothalamus, and the hippocampus, areas involved in cognition, mood, and antidepressant response [75, 76].

Increased concentrations of brain cytokines trigger the activation of microglia, immune cells inhabiting the brain parenchyma, representing chief innate immune cells in the brain [67, 77]. Depending on the temporal and qualitative cytokine profile, stress-induced microglial activation can either stimulate neuroprotection or neurodegeneration [78]. Not surprisingly, the gut microbiome modulates microglia homeostasis and maturation, while reduced gut microbiome complexity impairs microglia function [79]. Altogether, these stress-induced inflammatory events alter neurotransmitter systems, such as serotonin (5HT) and dopamine (DA), exacerbating depressive symptoms [80, 81]. Interestingly, the gut microbiome is also involved in neurotransmitter modulation, either via producing neurotransmitters, consuming them, or responding to them [82]. This raises the intriguing possibility that by altering gut microbiota composition, it might become possible to modulate neurotransmitter systems in pathological states, including MDD (Reviewed by [82]).

Glucocorticoids have the effect of restoring homeostasis [83]. However, in MDD, the HPA axis can become hyperactive. This phenomenon is underlined by increased cortisol, blunted ACTH response to CRH, glucocorticoid resistance, impairment in gluco- and mineral-corticoid signaling, and enlargement of the pituitary and adrenal glands [84–88]. Antidepressant drugs normalize the HPA axis and enhance the expression and function of corticosteroids [89, 90]. Peripheral cytokines can cross the blood-brain barrier (BBB) via (a) CNS lymphatic vessels, (b) active transport and a leaky or compromised BBB, (c) crossing at circumventricular organs, and (d) binding to receptors in the blood vessels that course through the brain [91–94]. Moreover, cytokines can affect brain function indirectly, through vagal nerve activation or by binding to cell-surface proteins found in brain endothelial cells [91, 93, 95, 96].

Cytokines can be produced in the gut in response to bacterial virulence factors (such as LPS), and in response to bacterial translocation to physiologically sterile enteric compartments (“leaky gut”) [97]. It was proposed that the leaky gut phenomenon contributes to MDD [98]. In fact, stress is known to compromise gut epithelial barrier integrity, allowing gut bacteria to access the enteric nervous system and immune cells [99]. Intestinal inflammation is a major contributor to changes in gut microbiome composition and function that are associated with disease (Reviewed in [100]). IFNG triggers the production of hydrogen peroxide and the epithelial expression of NOS2, which elevates the concentration of NO, in turn favoring the expansion of facultative anaerobic clades and hindering enterocyte proliferation [100, 101]. The resulting inflamed intestine perpetuates the production of pro-inflammatory cytokines and inflammogenic microbial metabolites, which affect brain processes and precipitate MDD onset while increasing the likelihood of comorbid conditions [99, 102]. Lastly, cytokines are produced de novo in the brain in response to stress [103–105].

Psychoneuroimmune Interactions and the Cytokine Hypothesis of Depression

Psychoneuroimmunology studies the reciprocal interactions between behavioral traits and the immune system, mediated by the nervous and endocrine systems [106]. In MDD, increasing evidence suggests that the communication networks existing between the microbiota and the nervous, immune, and endocrine systems lie at the crossroads of psychosocial stress, onset of depressive symptomatology and antidepressant response [107]. Studies suggest anti-inflammatory, endocrine-, and enteroregulatory effects of antidepressants, antidepressant effects of anti-inflammatory medications, and differential responses to antidepressants driven by polymorphisms in inflammation-related genes [108–112]. With regard to the immune players of such communication, cytokines have gained increasing attention over the past 20 years. Cytokines are pleiotropic signaling molecules with immunomodulatory function expressed constitutively and on-demand in the periphery and in the CNS and have been associated in at least a subset of patients with onset, course, and severity of neuropsychiatric disorders, as well as with the response to therapeutic drugs [113–122].

Exposure to psychological stressors primes the immune system towards the creation of a pro-inflammatory environment in the brain, a phenomena called *sterile inflammation*, which prepares the CNS and the body to trigger a potential full-blown immune response [123, 124]. While this program is essential for coping with the stressor and restoring homeostasis, it requires high amounts of energy and has collateral damage potential. In fact, repeated or chronic stress exposure results in a sustained inflammatory milieu in the brain which can lead to the development of MDD and comorbid illnesses [23, 125].

These lines of evidence led to the “cytokine hypothesis” (or “macrophage hypothesis”) of depression, which proposes that cytokines and an out-of-balance brain-immune communication are key MDD milestones [126–130]. This hypothesis is supported by mounting evidence: (a) illnesses characterized by chronic inflammatory responses (e.g., type-1 diabetes and systemic lupus erythematosus) are associated with increased depression rates [4, 6], (b) administration of pro-inflammatory cytokines as a therapeutic strategy (e.g., IFNA administration in cancer and hepatitis-C) induces a dose-response depressive symptomatology and molecular features of MDD [131–135], and (c) pro-inflammatory cytokines administration in vivo induces sickness or depressive-like behavior [22, 136]. Lastly, polymorphisms in inflammation-
related genes associate with increased MDD susceptibility and differential antidepressant response [25]. These layers of evidence suggest that neuroinflammation is involved in MDD, providing fertile ground to investigate diagnostic and therapeutic opportunities in neuro-immuno-psychiatry.

Major Depression and Dysregulated Inflammatory Pathways

Psychoneuroimmunology research has highlighted that at least a subgroup of MDD patients present with a systemic low-grade chronic inflammatory profile underlined by increased T cell, monocytic, microglial, and astrocytic activation [23, 24, 137, 138]. This is characterized by increased Th1 cytokines such as IL1, IL2, IL6, TNF, and IFNG, decreased Th2 cytokines such as IL4 and IL10, and decreased regulatory T cells [128, 139–144]. The resulting skewed inflammatory balance triggers multi-level dysfunctions, such as metabolism, neurotransmission, gut microbiome, and neurogenesis alterations [137, 145, 146]. Accordingly, the neurotrophic hypothesis of depression suggests that MDD patients have inflammation-driven decreased neurogenesis, which leads to atrophy of brain areas such as the hippocampus and the prefrontal cortex [147–150]. Not surprisingly, pro-inflammatory cytokines and increased glucocorticoids production downregulate neurotrophins (such as brain derived- and nerve-growth factor) and neurogenesis during and following stress, while antidepressants reverse such decreases [151, 152]. The gut microbiome is also involved in regulating neuroplasticity and neurogenesis; germ-free mice display altered neurogenesis and BDNF expression in the dentate gyrus, while antibiotic treatment impairs neurogenesis [74, 153, 154] (Fig. 1).

Cytokine Signaling and Nitrosative Stress

Oxidative stress is involved in MDD pathophysiology [155]. Stress exposure leads to ROS upregulation via cytokine-induced NOS2 induction, an event that heightens the overall oxidative stress, activating a feedback loop (co-activation state) that produces more cytokines [138]. Oxidative stress is characterized by the generation of ROS, which contributes to protein and DNA damage, and can result in irreversible brain function changes, leading to neurodegeneration and cognitive impairments [156]. Oxidative processes are gaining attention in psychiatry, since an expanding body of research suggests the involvement of these pathways in MDD [24, 40, 138, 157–159].

The involvement of oxidative and nitrosative stress in MDD is confirmed by the increased oxidative (such as NO, arachidonic acid, malondialdehyde, and 8-hydroxy-2-deoxyguanosine) and nitrosative (such as immunoglobulin (M IgM)- antibodies directed against phosphatidylylithol and nitrobovine serum albumin) stress markers in MDD patients, together with decreased levels of antioxidants (such as vitamins C and E) [160–164]. Interestingly, the concentration of oxidative stress markers correlates with depression severity and chronicity, as well as with antidepressant response [40, 138, 161, 165]. Accordingly, some antioxidant compounds have antidepressant
properties, and antidepressants (such as paroxetine) partially reverse oxidative damage by enhancing the protective antioxidant status following stress [158, 166–168].

Of crucial importance for this work, the NO system is being investigated in MDD, because NO levels are increased in MDD and in animal models of stress, while NO inhibition has antidepressant effects (discussed in detail below) [37, 164, 169–171]. Increased levels of oxidative and nitrosative molecules can easily damage neurons, since they are particularly vulnerable to free radicals [172]. Moreover, the brain presents lower concentrations of antioxidants compared to other organs, making it more susceptible to free radicals [160]. Unsurprisingly, some areas (i.e., the subfields Cornu Ammonis (CA)1 and CA4) of the hippocampus (a brain region involved in mood regulation and adult neurogenesis) are the most sensitive to oxidative damage [24].

The Role of Caspase 1 in MDD

As mentioned above, stress triggers “sterile inflammation,” initiated by endogenous stress signal recognition, termed damage-associated molecular patterns (DAMPs), by glial cells, macrophages, and oligodendrocytes [124, 181, 182]. DAMPs are nuclear, cytosolic, mitochondrial, or extracellular molecules normally hidden from the immune system that upon activation are exposed and released in the extracellular space, where they stimulate an immune activation [124, 183]. In line with this understanding, increased levels of DAMPs have been found in rodent blood and hippocampus following stress exposure [103, 184].

Once released in the extracellular space, DAMPs function as alarm signals, alerting immune cells through pattern recognition receptors, to get ready for a potential full-blown immune response [182, 185, 186]. It has been hypothesized that such processes could represent an adaptive characteristic of the acute stress response; for example, if an animal were running away from a predator and were wounded during the chase, it might have better chances of surviving if its immune system were primed and ready to respond [187]. Another theory, one that places this mechanism in a modern context, suggests that such stress responses are activated when an individual is exposed to social evaluation, rejection, isolation, exclusion or conflict, possibly due to the potentially physically harmful significance of such social situations throughout history [188].

Together, DAMPs activation and release induce the transcriptional upregulation of a number of immune genes, such as IL1B, IL6, and TNF. This results in the creation of a pro-inflammatory milieu in the brain and periphery, and in the activation of the afferent nerves, which in turn leads to de novo production of pro-inflammatory cytokines in the brain and culminates with the onset of depressive-like behavior [22, 136, 189].

Further, DAMP activation results in the assembly of inflammasomes [186, 190] A peculiar role is played by the NLRP3 inflammasome, that consists of the NLRP3 protein, the adaptor apoptosis-associated speck-like protein containing a CARD (ASC), and the cysteine-protease CASP1 [47]. Upon inflammasome assembly, the inactive procaspase 1 zymogen is proteolytically cleaved into the enzymatically active heterodimer [191, 192]. In turn, activated CASP1 cleaves pro-IL1B and pro-IL18 into their mature, releasable, bioactive isoforms [47, 193]. Increased circulating levels of IL1B activate the HPA axis, which increases glucocorticoids production. [72]

CASP1 and NLRP3 transcripts and their protein products are increased in peripheral blood mononuclear cells (PBMC) from MDD patients compared to controls, while antidepressants decrease such hyperactivity [61]. Similarly, IL1B and IL18 are increased in MDD, and their levels correlate with the severity of depression [61] (Table 1). Correspondingly, antidepressants decrease IL1B levels [109].

Clinical evidence	Reference
Increased CASP1 and NLRP3 transcription in PBMC (peripheral blood mononuclear cells) from MDD patients.	[61]
Increased NLRP3 protein levels in PBMC from MDD patients.	
Increased IL1B and IL18 in serum from MDD patients which positively correlate with BDI (Beck Depression Inventory) score.	
Antidepressant treatment decreased NLRP3 and CASP1 transcription in PBMC from MDD patients.	
Antidepressant treatment decreased IL1B and IL18 in serum from MDD patients.	[62, 63]
IL1B is increased in MDD patients.	[61]
IL18 is increased in patients with panic disorder.	[63]
IL18 promoter variants (rs187238 and rs1946518) associate with higher IL18 transcription and increased susceptibility to MDD in patients exposed to stressful events.	[64]
Polymorphisms in the IL33 gene (rs11792633 and rs7044343) moderate the correlation between history of childhood abuse and recurrent depression in women.	[65]
Patients with recurrent depression have higher peripheral IL33	[65]
Casp1−/− mice display decreased depressive- and anxiety-like behaviors, while being protected by the exacerbation of depressive-like behavior following chronic stress [19, 173]. Similarly, minocycline-treated mice display resilience in developing depressive-like behavior following stress, and this effect is accompanied by the expansion of bacterial clades with anti-inflammatory properties, which could help explain minocycline’s antidepressant effects [19] (Table 2).

CASPI−/− mice have the same behavioral and inflammatory responses to systemic lipopolysaccharide (LPS) administration as wild-type (wt) mice, but are resistant to the development of depressive-like behavior and to pro-inflammatory cytokines increase following intracerebroventricular LPS administration [194]. Moreover, CASPI−/− mice are resistant to lethal LPS doses and have decreased levels of inflammation-induced brain and systemic transcription [195–197]. Significantly for this review, CASP1 and the NLRP3 inflammasome are involved in the development of depressive-like behavior in stress models and are increased in MDD [61, 173]. At the same time, pathological shifts in gut microbiota composition and leaky gut trigger an increase in pro-inflammatory signaling, which increases the risk of developing depressive symptomatology and comorbid illnesses [198]. Such evidence has led to the formulation of the microbiota-inflammasome hypothesis of major depression and comorbid systemic illnesses [58]. This hypothesis suggests that pathological gut microbiome shifts upregulate pro-inflammatory pathways exacerbating depressive symptomatology and increasing the likelihood of developing comorbid conditions [58].

Interleukin-1B (IL1B)

IL1B binds to the interleukin-1 receptor (IL1R1), which results in the activation of many acute-phase inflammation genes, such as NOS2, IL6, and cyclooxygenase type 2 [192, 199]. Recently, it was suggested that NLRP3 inflammasome activation mediates IL1B orchestrated inflammation (that results in depressive-like behavior) in the prefrontal cortex following stress, and that fluoxetine reverses such changes [173, 175]. Accordingly, mice lacking the IL1 receptor are resistant to developing depressive-like behavior following chronic stress while being protected against the decrease in neurogenesis observed in wt mice following stress [176, 177].

Interleukin-1A (IL1A)

IL1A shares features with IL1B and is an equally potent pro-inflammatory cytokine [207]. However, IL1A also presents differences to IL1B. For example, unlike the IL1B precursor

Pre-clinical evidence	Reference
Chronic unpredictable mild stress (CUMS) increases PFC (prefrontal cortex) CASP1	[173]
activation and NLRP3 and IL1B transcription and protein level.	
Antidepressant treatment decreases PFC NLRP3 protein level and IL1B transcription	[174]
and protein level.	
LPS-induced depressive-like behavior increases brain CASP1, NLRP3, and ASC	[175]
transcription, and IL1B transcription and protein level.	
Pre-treatment with an NLRP3 inhibitor (Ac-YVAD-CMK) ameliorates depressive-like	
behavior.	
CUMS increases hippocampal and serum Il1b and increases hippocampal CASP1 activity	
and NLRP3 and ASC protein levels.	
Pretreatment with the NLRP3 inflammasome inhibitor VX-765 decreases serum and	
hippocampal IL1B protein levels and decreases depressive-like behavior.	
CASPI−/− mice display decreased depressive- and anxiety-like behaviors, while being	[19]
protected by the exacerbation of depressive-like behavior following chronic stress.	
The CASP1 inhibitor minocycline prevents the exacerbation of depressive-like behavior	
following stress.	
Minocycline triggers the expansion of bacterial populations with anti-inflammatory	
effects. CUMS increase hippocampal IL1B.	[176]
IL1R−/− mice do not display CUMS-induced behavioral or neuroendocrine changes.	
IL1R−/− mice do not display CUMS-induced decreases in neurogenesis.	
IL1B exogenous administration mimics CUMS-induced depressive-like symptoms.	
Stress and Il1b administration suppress hippocampal cell proliferation.	[177]
IL1R1 blockade blocks the antineurogenic effects of stress.	
IL18−/− mice display decreased depressive- and anxiety-like behaviors.	[178]
IL18 is involved in stress-induced microglial activation while contributing	
to dopaminergic degeneration.	
Acute stress increases IL33 expression in the paraventricular nucleus of the	[65]
hypothalamus and in the prefrontal cortex.	
which is not active, both the pro-IL1A and the cleaved IL1A are active ligands of the IL1R1 [208]. Moreover, while IL1B is released, IL1A can be secreted or membrane-bound, although the factors that control such translocation have not been fully elucidated yet [207, 209]. Finally, while IL1B is produced on-demand in immune cells, IL1A is constitutively expressed in a variety of cell types but can be produced by immune cells in response to insults [210]. Interestingly, IL1A-mediated activation of p38-MAPK inhibits NR3C1 function, suggesting that the mechanism conferring glucocorticoid resistance in MDD could be associated with IL1A [211]. To the best of our knowledge, no studies have investigated anxiety- and depressive-like phenotypes in IL1A−/− mice.

Interleukin-18 (IL18)

IL18 is a prototypical Th1 cytokine for its ability to stimulate IFNG activity, and it is expressed in macrophages and dendritic cells [212]. Circulating IL18 increases during stress and in response to HPA axis activation [213]. IL18 binds to the IL18 receptor (IL18R) activating p38-MAPK, c-Jun N-terminal kinase, and NFKB1 cascades, which potentiate antimicrobial and antiviral immunity [214, 215]. Although IL18 is known for its ability to promote both Th1- and Th2-related inflammatory responses, its predominant role in enhancing Th1 activity makes this cytokine a candidate therapeutic target in Th1-related inflammatory and autoimmune diseases, including MDD [212].

IL18 is increased in MDD and in panic disorder [62, 63]. IL18 gene promoter variants (rs187238 and rs1946518) associate with higher IL18 transcription and increased MDD susceptibility in patients exposed to stressful events. IL18−/− mice have decreased IFNG production and impaired natural killer cell activity and abnormal Th1 responses [216]. Moreover, IL18−/− mice display decreased depressive- and anxiety-like behavior, as well as gene expression changes across various brain regions [178, 217]. In addition, immobilization stress in mice induces pro-IL18 via ACTH and a superoxide-activated CASP1 pathway [218]. Given that IL6 is not induced in response to stress in IL18−/− mice, it seems that IL18 mediates stress-induced IL6 upregulation [218]. Lastly, IL18 is involved in stress-induced microglial activation in rodents while contributing to dopaminergic degeneration [179, 180].

Interleukin-33 (IL33)

IL33 has alarmin and transcription factor roles and triggers predominantly Th2 responses (such as the induction of IL4, IL5, IL13, and anti-inflammatory gene expression) [221]. Like other members of the IL1 family, IL33 can be beneficial or detrimental, depending on its spatio-temporal expression. IL33 is constitutively expressed and localized in the cytoplasm. However, if a barrier is breached and IL33 is released from destroyed cells, it acts as an alarmin upon binding the IL33 receptor (ST2) [222]. The signaling cascade in response to ST2 activation modulates hundreds of genes with a pattern that resembles that of IL1R1 activation [223].

Two single nucleotide polymorphisms in the IL33 gene (rs11792633 and rs7044343) moderate the correlation between history of childhood abuse and recurrent depression in women [65]. Moreover, patients with a history of recurrent depression have greater peripheral levels of IL33 and IL1B [65]. Finally, IL33 is expressed in the paraventricular nucleus of the hypothalamus and in the prefrontal cortex of rats exposed to acute stress, suggesting that stress induces IL33 expression in those brain regions [65].

The Role of Inducible Nitric Oxide Synthase in MDD

NO is a small intercellular and intracellular signaling molecule with a very short half-life (3–6 s) that freely diffuses across cell membranes. NO plays important roles in the brain modulating pathways such as neurogenesis, neurotransmission, synaptic plasticity, learning, and pain [224]. NO also regulates emotional and cognitive processes, suggesting that it could be involved in the etiology of MDD and anxiety disorders [225]. Three isoforms of the NOS enzyme produce NO: NOS2, neuronal (NOS1), and endothelial (NOS3), all of which have specific spatio-temporal patterns of regulation. In this review, we will focus on the inducible isoform since it is considered the most relevant to MDD.

Over the past two decades, several lines of evidence have brought NO and specifically the NOS2 isoform to the forefront in psychiatry: (a) the levels of NO and its metabolites are increased in MDD patients and suicide attempters compared to controls [171, 200, 201], (b) NOS2 transcription is increased in the peripheral blood of patients with recurrent depressive disorder [202], (c) a polymorphism (−1026C/A) in the NOS2 promoter associates with recurrent depressive disorder risk [203], (d) IgM against NO adducts are elevated in MDD patients, suggesting that the protein damage created by NO results in the formation of immunogenic peptides, that in turn activate an autoimmune-like response [204, 205], (e) the selective serotonin reuptake inhibitor paroxetine is a NOS2 inhibitor [206, 226], (f) adjuvant NOS2 inhibition enhances the efficacy of antidepressant-like effects in rodents [38, 219, 220] (Tables 3-4).

The architecture of the NOS2 promoter region suggests that this gene has a tight and complex pattern of transcriptional control since it is rich in positive and negative regulatory regions, and it is responsive to many transcription factors, cytokines, and bacterial by-products [29]. NOS2 is synthesized on-demand in macrophages and microglia [227]. In fact, whereas there is no detectable
physiological NOS2 expression in the brain, a profound transcriptional upregulation of the NOS2 gene can be observed in response to traumatic events such as ischemia and systemic inflammation, most likely through activation of the NOS2 promoter by inflammation-related molecules [29, 39, 196, 228, 229]. Following induction, NOS2 produces NO continuously until the proteasome degradation pathway inactivates the enzyme [230]. Several studies have targeted the NO system in pre-clinical MDD research, yielding promising results. For example, NO decreases norepinephrine production, decreases nitrate and nitrite levels in the hippocampus and cerebral cortex, and decreases serotonin turnover in the frontal cortex [231–233]. Moreover, NO inhibits the dopamine transporter, indirectly increasing the availability of inter-synaptic dopamine [234]. Finally, several molecules such as bupropion (a norepinephrine-dopamine reuptake inhibitor), venlafaxine (a serotonin-norepinephrine reuptake inhibitor), mementine (an NMDA receptor antagonist), and berberine (a plant alkaloid), all of which produce antidepressant-like effects, modulate this signaling pathway [235].

It is accepted that anaerobic bacteria in the gut prevent the expansion of facultative anaerobic bacteria, at least partially by limiting the host-mediated production of oxygen and nitrate [236]. Antibiotic-mediated disruption of the gut microbiota increases the production of host nitrate in the gut [237]. This allows an expansion of the facultative anaerobic Enterobacteriaceae, which includes potentially pathogenic gram-negative bacteria, such as Escherichia coli (this effect is likely not to be limited to E. coli, although the latter has been the focus of investigation to date). These bacteria produce the virulence molecule LPS, which triggers depressive-like behavior and increases serotonin degradation in the brain [237, 238]. This alteration is mediated by NOS2; therefore, its inhibition prevents E. coli overgrowth [237]. Therefore, rectifying aberrant NO signaling could have a therapeutic role in altered gut microbiology-induced depressive symptoms [239]. Accordingly, stimulation of colonic epithelial cancer cells by IFNG induces NOS2-mediated NO production, while butyrate (one of the main anti-inflammatory short chain fatty acids (SCFAs)) blunts NO production [237]. This result suggests that a diet rich in substrates for SCFAs production could have antidepressant-like effects via its repercussions on gut microbiome composition and inflammatory processes. Together, these findings suggest that modulation of the NO system could represent a useful approach in treating MDD and in keeping of a healthy gut microbiome.

The Role of Interferon-Gamma in MDD

IFNG is a pleiotropic soluble cytokine which orchestrates cellular programs via transcriptional and translational gene control. IFNG is produced by immune cells such as lymphocytes, cytotoxic lymphocytes, B cells, and antigen-presenting cells [240, 241]. The IFNG receptor (IFNGR) is expressed on almost all cell types, and its activation triggers the janus kinase 1 and 2 (JAK1/2) signal transducer and activator of transcription 1 (STAT1) pathway, as well as additional pathways, such as the
extracellular-signal-regulated-kinase 1/2 (ERK1/2) [242, 243]. Activation of the IFNGR results in the transcription of genes with IFNG-stimulated response elements (ISREs) within their promoter region until STAT1 dissociates following complete dephosphorylation within 1–2 h [244, 245]. The genes transcribed in response to IFNGR activation are at least 200, together with many micro RNAs and long non-coding RNAs [246] (for a database see [247]). At the same time, after IFNGR stimulation, the secondary transcription factors IRF1, IRF2, and interferon consensus sequence binding protein are upregulated. This in turn results in the transcriptional induction of a subset of inflammatory-related genes such as NOS2 (stimulated by IRF1) and guanylate-binding protein. Finally, IFNG can activate and be activated by CASP [248–251].

Ex vivo PBMC from MDD patients display increased IFNG and neopterin production upon stimulation, as well as decreased tryptophan bioavailability [252]. Nevertheless, IFNG transcriptional levels (together with those of TNF) in patients with multiple sclerosis correlate with the severity of the depressive symptomatology during flare-ups [253]. At the same time, most categories of antidepressants suppress the IFNG/IL10 ratio in multiple sclerosis patients [254, 255]. A polymorphism in the IFNG gene (CA repeat, rs3138557) correlates with lower serum tryptophan and higher kyneurine increasing MDD likelihood. The high producer T allele +874(T/A) polymorphism (rs2430561) in the IFNG gene has been associated with increased IDO1 activity and increased MDD likelihood [256].

IFNG involvement in MDD

Clinical evidence

| Ex vivo PBMC from MDD patients display increased IFNG production upon stimulation. |
| Transcriptional levels of IFNG correlate with depressive symptomatology in multiple sclerosis patients. |
| The antidepressants clomipramine, sertraline, and trazodone suppress IFNG production. |
| A polymorphism in the IFNG gene (CA repeat, rs3138557) correlates with lower serum tryptophan and higher kyneurine increasing MDD likelihood. |
| The high producer T allele +874(T/A) polymorphism (rs2430561) in the IFNG gene has been associated with increased IDO1 activity and increased MDD likelihood. |

Reference

[252] [253] [254, 255] [256] [257]

Table 5 Clinical evidence of IFNG involvement in MDD

Table 6 Pre-clinical evidence of IFNG involvement in animal models of MDD

| Pre-clinical evidence |
| IFNG^{−/−} mice display decreased anxiety- and depressive-like behaviors as well as heightened emotionality. |
| IFNG^{−/−} mice display increased serotoninergic and noradrenergic metabolite accumulation. |
| IFNG^{−/−} mice display increased plasma corticosterone levels. |
| IFNG^{−/−} mice display decreased hippocampal neurogenesis. |
| IFNG^{−/−} mice display decreased levels of nerve growth factor in the prefrontal cortex. |
| IFNG^{−/−} mice have attenuated monoamine, corticoid, and cytokine alterations in response to stressors. |

Reference

[264–266] [264, 265] [264, 265] [264, 265] [264, 265] [264]
IFNG signaling promotes leaky gut and bacterial translocation. In fact, in vitro experiments have highlighted that low-dose IFNG dramatically increases the translocation of opportunistic pathogens, and high-doses disrupt tight junctions [267]. Lastly, IFNG levels affect the representation of specific bacterial species while being up- or downregulated by specific commensals [97]. For example, the degradation of tryptophan to the metabolite tryptophol inhibits IFNG production, while IFNG levels dictate the presence and expansion of specific bacterial taxa [97]. Given this evidence for an involvement of IFNG in pathways relevant to depressive symptoms and gut dysbiosis, targeting IFNG and/or its receptor could hold potential in the quest for novel MDD therapies.

Conclusions and Future Directions

Convergent pre-clinical and clinical evidence points towards an involvement of central and peripheral inflammatory pathways and the gut microbiome in the response to psychological stressors and in the onset, treatment, and remission of MDD. Future randomized controlled trials should investigate the safety and efficacy of decreasing CASP1-, NOS2-, and IFNG-mediated pathways in MDD patients. Reduced activity of those pro-inflammatory mediators could be achieved via pharmacological inhibition or gut microbiome manipulation. The latter approach can involve diet, probiotics supplementation, and fecal microbiota transplantation. This could lead to the development of novel antidepressant strategies acting upon the dysregulated inflammatory milieu observed in MDD. Because inhibiting such pathways might hinder physiological immune processes, particular care should be taken when developing immunomodulatory and gut microbiota-directed therapies.

Compliance with Ethical Standards

Conflict of Interest The authors declare that they have no conflicts of interest.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

References

1. Murray CJ, Lopez AD (1997) Alternative projections of mortality and disability by cause 1990-2020: global burden of disease study. Lancet 349(9064):1498–1504. https://doi.org/10.1016/S0140-6736(96)67492-2
2. Maes M, Leonard B, Fernandez A, Kubera M, Nowak G, Veerhuis R, Gardner A, Ruckoanich P et al (2011) (Neuro)inflammation and neuropression as new pathways and drug targets in depression: From antioxidants to kinase inhibitors. Prog Neuro-Psychopharmacol Biol Psychiatry 35(3):659–663. https://doi.org/10.1016/j.pnpbp.2011.02.019
3. Levitan RD, Davis C, Kaplan AS, Arenovich T, Phillips DL, Ravindran AV (2012) Obesity comorbidity in unipolar major depressive disorder: refining the core phenotype. J Clin Psychiatry 73(8):1119–1124. https://doi.org/10.4088/JCP.11m07394
4. Katon WJ (2008) The comorbidity of diabetes mellitus and depression. Am J Med 121(11 Suppl 2):S8–S15. https://doi.org/10.1016/j.amjmed.2008.09.008
5. Halaris A (2009) Comorbidity between depression and cardiovascular disease. Int Angiol 28(2):92–99
6. Kaysen MS, Dalmau J (2011) The emerging link between autoimmune disorders and neuropsychiatric disease. J Neuropsychiatry Clin Neurosci 23(1):90–97. https://doi.org/10.1176/appi.neuropsych.23.1.90
7. Brintzenhofe-Szoc KM, Levin TT, Li Y, Kissane DW, Zabara JR (2009) Mixed anxiety/depression symptoms in a large cancer cohort: prevalence by cancer type. Psychosomatics 50(4):383–391. https://doi.org/10.1016/j.appsy.2009.04.003
8. Myint AM, Kim YK (2003) Cytokine-serotonin interaction through IDO: a neurodegeneration hypothesis of depression. Med Hypotheses 61(5–6):519–525
9. Muller N, Schwarz MJ (2007) The immune-mediated alteration of serotonin and glutamate: towards an integrated view of depression. Mol Psychiatry 12(11):988–1000. https://doi.org/10.1038/mp.2007.146
10. Lesch KP, Beckmann H (1990) The serotonin hypothesis of depression. Fortschr Neurol Psychiatr 58(11):427–438. https://doi.org/10.1055/s-2007-1001206
11. Sanacora G, Treccani G, Popoli M (2012) Towards a glutamate hypothesis of depression: an emerging frontier of neuropsychopharmacology for mood disorders. Neuropharmacology 62(1):63–77. https://doi.org/10.1016/j.neuropharm.2011.07.036
12. Duman RS, Monteggia LM (2006) A neurotrophic model for stress-related mood disorders. Biol Psychiatry 59(12):1116–1127. https://doi.org/10.1016/j.biopsych.2006.02.013
13. Inserra A, Rogers GB, Licinio J, Wong ML (2018) The microbiota-Inflammasome hypothesis of major depression. Bioessays 40(9):e1800027. https://doi.org/10.1002/bies.201800027
14. Rush AJ, Trivedi MH, Wisniewski SR, Stewart JW, Nierenberg AA, Thase ME, Ritz L, Biggs MM et al (2006) Bupropion-SR, sertraline, or venlafaxine-XR after failure of SSRIs for depression. N Engl J Med 354(12):1231–1242. https://doi.org/10.1056/NEJMoa052963
15. Rush AJ, Trivedi MH, Wisniewski SR, Nierenberg AA, Stewart JW, Warden D, Niderhe G, Thase ME et al (2006) Acute and longer-term outcomes in depressed outpatients requiring one or several treatment steps: a STAR*D report. Am J Psychiatry 163(11):1905–1917. https://doi.org/10.1176/appi.ajp.2006.163.11.1905
16. Trivedi MH, Rush AJ, Wisniewski SR, Nierenberg AA, Warden D, Ritz L, Norquist G, Howland RH et al (2006) Evaluation of outcomes with citalopram for depression using measurement-based care in STAR*D: implications for clinical practice. Am J Psychiatry 163(1):28–40. https://doi.org/10.1176/appi.ajp.2006.163.1.28
17. Dandekar MP, Fenoy AJ, Carvalho AF, Soares JC, Quevedo J (2018) Deep brain stimulation for treatment-resistant depression: an integrative review of preclinical and clinical findings and translational implications. Mol Psychiatry 23(5):1094–1112. https://doi.org/10.1038/mp.2018.2
18. Huang YJ, Lane HY, Lin CH (2017) New treatment strategies of depression: based on mechanisms related to neuroplasticity. Neural Plast 2017:4605971. https://doi.org/10.1155/2017/4605971
19. Rogers GB, Keating DJ, Young RL, Wong ML, Licinio J, Wesselingh S (2016) From gut dysbiosis to altered brain function and mental illness: mechanisms and pathways. Mol Psychiatry 21(6):738–748. https://doi.org/10.1038/mp.2016.50
20. Vogelzangs N, Duivis HE, Beekman AT, Kluft C, Neuteboom J, Hoogendijk W, Smit JH, de Jonge P et al (2012) Association of depressive disorders, depression characteristics and antidepressant medication with inflammation. Transl Psychiatry 2:e79. https://doi.org/10.1038/tp.2012.8
21. Maes M (2008) The cytokine hypothesis of depression: inflammation, oxidative & nitrosative stress (IO&NS) and leaky gut as new targets for adjunctive treatments in depression. Neuro Endocrinol Lett 29(3):287–291
22. Dantzer R, O’Connor JC, Freund GG, Johnson RW, Kelley KW (2008) From inflammation to sickness and depression: when the immune system subjugates the brain. Nat Rev Neurosci 9(1):46–56. https://doi.org/10.1038/nrn2297
23. Miller AH, Maletic V, Raison CL (2009) Inflammation and its inducibility by interferon gamma and bacterial lipopolysaccharide. Gene 446(2):157–166. https://doi.org/10.1016/j.gene.2009.11.029
24. Leonard B, Maes M (2012) Mechanistic explanations how cell-mediated immune activation, inflammation and oxidative and nitrosative stress pathways and their sequels and concomitants play a role in the pathophysiology of unipolar depression. Neurosci Biobehav Rev 36(2):764–785. https://doi.org/10.1016/j.neubiorev.2011.12.005
25. Wong ML, Dong C, Maestre-Mesa J, Licinio J (2008) Polymorphisms in inflammation-related genes are associated with susceptibility to major depression and antidepressant response. Mol Psychiatry 13(9):800–812. https://doi.org/10.1038/mp.2008.59
26. Mishra BB, Rathinam VA, Martens GW, Martinot AJ, Kornfeld H, Fitzgerald KA, Sassetti CM (2013) Nitric oxide controls the immunopathology of tuberculosis by inhibiting NLRP3 inflammasome-dependent processing of IL-1beta. Nat Immunol 14(1):52–60. https://doi.org/10.1038/nm.2474
27. Mao K, Chen S, Chen M, Ma Y, Wang Y, Huang B, He Z, Zeng Y et al (2013) Nitric oxide suppresses NLRP3 inflammasome activation and protects against LPS-induced septic shock. Cell Res 23(2):201–212. https://doi.org/10.1093/cr/2013.6
28. Ghayur T, Banerjee S, Hugunin M, Butler D, Herzog L, Carter A, Karihtala P, Soini Y (2007) Reactive oxygen species and antioxidant mechanisms in human tissues and their relation to malignancies. APMIS 115(2):81–103. https://doi.org/10.1111/j.1600-0463.2007.apm.514.x
29. Liu J, Wang X, Shigenaga MK, Yeo HC, Mori A, Ames BN (1996) Immobilization stress causes oxidative damage to lipid, protein, and DNA in the brain of rats. FASEB J 10(13):1532–1538
30. Patki G, Solanki N, Atrooq F, Allam F, Salim S (2013) Depression, anxiety-like behavior and memory impairment are associated with increased oxidative stress and inflammation in a rat model of social stress. Brain Res 1539:73–86. https://doi.org/10.1016/j.brainres.2013.09.033
31. Miyashita T, Yamaguchi T, Motoyama K, Unno K, Nakano Y, Shimos K (2006) Social stress increases biopyrins, oxidative metabolites of bilirubin, in mouse urine. Biochem Biophys Res Commun 349(2):775–780. https://doi.org/10.1016/j.bbrc.2006.08.098
32. Shao Y, Yan G, Xuan Y, Peng H, Huang QJ, Wu R, Xu H (2015) Chronic social isolation decreases glutamate and glutamine levels and induces oxidative stress in the rat hippocampus. Behav Brain Res 282:201–208. https://doi.org/10.1016/j.bbr.2015.01.005
33. Noh SR, Cheong HK, Ha M, Eom SY, Kim H, Choi YH, Paek D (2015) Oxidative stress biomarkers in long-term participants in clean-up work after the Hebei Spirit oil spill. Sci Total Environ 515-516:207–214. https://doi.org/10.1016/j.scitotenv.2015.02.039
34. Olivenza R, Moro MA, Lizasoain I, Lorenzo P, Fernandez AP, Rodrigo J, Bosca L, Leza JC (2000) Chronic stress induces the expression of inducible nitric oxide synthase in rat brain cortex. J Neurochem 74(2):785–791
35. Madrigal JL, Moro MA, Lizasoain I, Lorenzo P, Castrillo A, Bosca L, Leza JC (2001) Inducible nitric oxide synthase expression in brain cortex after acute restraint stress is regulated by nuclear factor kappaB-mediated mechanisms. J Neurochem 76(2):532–538
36. Yoshida T, Waeber C, Huang Z, Moskowitz MA (1995) Induction of nitric oxide synthase activity in rodent brain following middle cerebral artery occlusion. Neurosci Lett 194(3):214–218
37. Chung CP, Schmidt D, Stein CM, Morrow JD, Salomon RM (2013) Increased oxidative stress in patients with depression and its relationship to treatment. Psychiatry Res 206(2–3):213–216. https://doi.org/10.1016/j.psychres.2012.10.018
38. Peng YL, Liu YN, Liu L, Wang X, Jiang CL, Wang YX (2012) Inducible nitric oxide synthase is involved in the modulation of depressive behaviors induced by unpredictable chronic mild stress. J Neuroinflammation 9:75. https://doi.org/10.1186/1742-204X-9-75
39. Mogensen TH (2009) Pathogen recognition and inflammatory signaling in innate immune defenses. Clin Microbiol Rev 22(2):240–273, table of contents. https://doi.org/10.1128/CMR.00046-08
40. Joffre O, Nolte MA, Sporri R, Reis e Sousa C (2009) Inflammatory signals in dendritic cell activation and the induction of adaptive immunity. Immunol Rev 227(1):234–247. https://doi.org/10.1111/j.1600-065X.2008.00718.x
41. Rohleder N (2014) Stimulation of systemic low-grade inflammation by psychosocial stress. Psychosom Med 76(3):181–189. https://doi.org/10.1097/PSY.000000000000049
42. Onat A, Can G (2014) Enhanced proinflammatory state and auto-immune activation: A breakthrough to understanding chronic diseases. Curr Pharm Des 20(4):575–584
43. Lasselin J, Capuron L (2014) Chronic low-grade inflammation in metabolic disorders: relevance for behavioral symptoms. Neuroimmunomodulation 21(2–3):95–101. https://doi.org/10.1159/000356535
44. Franchi L, Eigenbrod T, Munoz-Planillo R, Nunez G (2009) The inflammasome: a caspase-1-activation platform that regulates immune responses and disease pathogenesis. Nat Rev Immunol 9(6):584–592. https://doi.org/10.1038/nri2476
45. Latz E, Xiao TS, Stutz A (2013) Activation and regulation of the inflammasomes. Nat Rev Immunol 13(6):397–411. https://doi.org/10.1038/nri3452
46. Goverman J (2009) Autoimmune T cell responses in the central nervous system. Nat Rev Immunol 9(6):393–407. https://doi.org/10.1038/nri2550
50. Taylor MW, Feng GS (1991) Relationship between interferon-gamma, indoleamine 2,3-dioxygenase, and tryptophan catabolism. FASEB J 5(11):2516–2522

51. Würlitzer B, Neurauter G, Schrocksnadel K, Frick B, Fuchs D (2003) Interferon-gamma-induced conversion of tryptophan: immunologic and neuropsychiatric aspects. Curr Med Chem 10(16):1581–1591

52. Deans E (2016) Microbiome and mental health in the modern environment. J Physiol Anthropol 36(1):1. https://doi.org/10.1186/s40101-016-0101-y

53. Cryan JF, Dinan TG (2012) Mind-altering microorganisms: the impact of the gut microbiota on brain and behaviour. Nat Rev Neurosci 13(10):701–712. https://doi.org/10.1038/nrn3346

54. Grenham S, Clarke G, Cryan JF, Dinan TG (2011) Brain-gut-microbe communication in health and disease. Front Physiol 2:94. https://doi.org/10.3389/fphys.2011.00094

55. Nicholson JK, Holmes E, Kanani S, Burcelin R, Gibson G, Jia W, Pedersen O, Arumugam M, Bertolisi L et al (2012) Host-gut microbiota metabolic interactions. Science 336(6086):1262–1267. https://doi.org/10.1126/science.1223813

56. El Aidy S, Dinan TG, Cryan JF (2014) Immune modulation of the brain-gut-microbe axis. Front Microbiol 5:146. https://doi.org/10.3389/fmicb.2014.00146

57. Forsythe P, Bienenstock J, Kunze WA (2014) Vagal pathways for microbiome-brain-gut axis communication. Adv Exp Med Biol 817:115–133. https://doi.org/10.1007/978-1-4939-0897-4_5

58. Inserra A, Rogers GB, Licinio J, Wong ML (2018) The psychological and metabolic impact of the gut microbiota on brain and behaviour. Nat Rev Neurosci 38(3):145. https://doi.org/10.1038/s41571-017-0006-z

59. Dinan TG, Cryan JF (2013) Melancholic microbes: a link between gut microbiota and depression? Neurogastroenterol Motil 25(9):713–719. https://doi.org/10.1111/mge.12198

60. Ianio G, Bibbo S, Gasbarrini A, Cammarota G (2014) Therapeutic modulation of gut microbiota: current clinical applications and future perspectives. Curr Drug Targets 15(8):762–770

61. Alcocer-Gomez E, de Miguel M, Casas-Barquero N, Nunez-Vasco J, Sanchez-Alcazar JA, Fernandez-Rodriguez A, Cordero MD (2014) NLRP3 inflammasome is activated in mononuclear blood cells from patients with major depressive disorder. Brain Behav Immun 36:111–117. https://doi.org/10.1016/j.bbi.2013.10.017

62. Prossin AR, Koch AE, Campbell PL, McInnis MG, Zalcman SS, Pittman AM, Puigserver P, Justesen J, Nobre AC et al (2016) Microbiome and mental health in the modern environment. J Physiol Anthropol 36(1):1. https://doi.org/10.1186/s40101-016-0101-y

63. Sternberg EM (2006) Neural regulation of innate immunity: a coordinated nonspecific host response to pathogens. Nat Rev Immunol 6(4):318–328. https://doi.org/10.1038/nri1810

64. Taylor MW, Feng GS (1991) Relationship between interferon-gamma, indoleamine 2,3-dioxygenase, and tryptophan catabolism. FASEB J 5(11):2516–2522

65. Würlitzer B, Neurauter G, Schrocksnadel K, Frick B, Fuchs D (2003) Interferon-gamma-induced conversion of tryptophan: immunologic and neuropsychiatric aspects. Curr Med Chem 10(16):1581–1591

66. Deans E (2016) Microbiome and mental health in the modern environment. J Physiol Anthropol 36(1):1. https://doi.org/10.1186/s40101-016-0101-y

67. Cryan JF, Dinan TG (2012) Mind-altering microorganisms: the impact of the gut microbiota on brain and behaviour. Nat Rev Neurosci 13(10):701–712. https://doi.org/10.1038/nrn3346

68. Deans E (2016) Microbiome and mental health in the modern environment. J Physiol Anthropol 36(1):1. https://doi.org/10.1186/s40101-016-0101-y

69. Herbert J, Goodyer IM, Grossman AB, Hastings MH, de Kloet ER, Lightman SL, Lupien SJ, Roozendaal B et al (2006) Do corticosteroids damage the brain? J Neuroendocrinol 18(6):393–411. https://doi.org/10.1111/j.1365-2826.2006.01429.x

70. Hayashi R, Wada H, Ito K, Adcock IM (2004) Effects of glucocorticoids on gene transcription. Eur J Pharmacol 500(1–3):51–62. https://doi.org/10.1016/j.ejphar.2004.07.011

71. Turnbull AV, Rivier C (1995) Regulation of the HPA axis by cytokines. Brain Behav Immun 9(4):253–273. https://doi.org/10.1016/bbi.1995.10.026

72. Dunn AJ (2000) Cytokine activation of the HPA axis. Ann N Y Acad Sci 917:608–617

73. Coutinho AE, Chapman KE (2011) The anti-inflammatory and immunosuppressive effects of glucocorticoids, recent developments and mechanistic insights. Mol Cell Endocrinol 335(1):2–13. https://doi.org/10.1016/j.mce.2010.04.005

74. Sudo N, Chida Y, Aiba Y, Sonoda J, Oyama N, Yu XN, Kubo C, Koga Y (2004) Postnatal microbial colonization programs the hypothalamic-pituitary-adrenal system for stress response in mice. J Physiol 558(Pt 1):263–275. https://doi.org/10.1113/jphysiol.2003.063388

75. Borsini A, Zunszain PA, Thuret S, Pariante CM (2015) The role of inflammatory cytokines as key modulators of neurogenesis. Trends Neurosci 38(3):145–157. https://doi.org/10.1016/j.tins.2014.12.006

76. Felger JC, Lotrich FE (2013) Inflammatory cytokines in depression: neurobiological mechanisms and therapeutic implications. Neuroscience 246:199–229. https://doi.org/10.1016/j.neuroscience.2013.04.060

77. McKim DB, Weber MD, Niraula A, Sawicki CM, Liu X, Jarrett BL, Ramirez-Chan K, Wang Y et al (2017) Microglial recruitment of IL-1beta-producing monocytes to brain endothelium causes stress-induced anxiety. Mol Psychiatry. https://doi.org/10.1038/mp.2017.59

78. Nguyen MD, Julien JP, Rivest S (2002) Innate immunity: the missing link in neuroprotection and neurodegeneration? Nat Rev Neurosci 3(3):216–227. https://doi.org/10.1038/nrn752

79. Emry D, Hrabé de Angelis AL, Laitin D, Wieghofer P, Staszewski O, David E, Keren-Shaul H, Mahlakoiv T et al (2015) Host microbiota constantly control maturation and function of microglia in the CNS. Nat Neurosci 18(7):965–977. https://doi.org/10.1038/nn.4030

80. Kohler S, Cierpinsky K, Kronenberg G, Adli M (2016) The serotonergic system in the neurobiology of depression: relevance for novel antidepressants. J Psychopharmacol 30(1):13–22. https://doi.org/10.1177/0269881115609072

81. Nestler EJ, Carlezon WA Jr (2006) The mesolimbic dopamine neurotransmitter system: neurobiological mechanisms and therapeutic implications. Neuroscience.2013.04.060

82. Strandwitz P (2018) Neurotransmitter modulation by the gut microbiota. Brain Res 1693(Pt B):128. https://doi.org/10.1016/j.brbi.2018.03.015

83. Herman JP, McKlveen JM, Solomon MD, Carvalho-Netto E, Myers B (2012) Neural regulation of the stress response: glucocorticoid feedback mechanisms. Braz J Med Biol Res 45(4):292–299. https://doi.org/10.1590/S1414-431X2012000900007

84. Gold PW, Goodwin FK, Chrousos GP (1988) Clinical and biochemical manifestations of depression. Relation to the neurobiology of stress (1). N Engl J Med 319(6):348–353. https://doi.org/10.1056/NEJM198808113190606

85. Holsboer F, Barden N (1996) Antidepressants and hypothalamic-pituitary-adrenocortical regulation. Endocr Rev 17(2):187–205. https://doi.org/10.1210/edrv-17-2-187
86. Nemeroff CB (1996) The corticotropin-releasing factor (CRF) hypothesis of depression: new findings and new directions. Mol Psychiatry 1(4):336–342
87. Owens MJ, Nemeroff CB (1993) The role of corticotropin-releasing factor in the pathophysiology of affective and anxiety disorders: laboratory and clinical studies. CIBA Found Symp 172:296–308 discussion 308-216
88. Pace TW, Miller AH (2009) Cytokines and glucocorticoid receptor signaling. Relevance to major depression. Ann N Y Acad Sci 1179:86–105. https://doi.org/10.1111/j.1749-6632.2009.04984.x
89. Pariante CM, Miller AH (2001) Glucocorticoid receptors in major depression: Relevance to pathophysiology and treatment. Biol Psychiatry 49(5):391–404
90. Fitzgerald P, O'Brien SM, Scully P, Rijkers K, Scott LV, Dinan TG (2006) Cutaneous glucocorticoid receptor sensitivity and pro-inflammatory cytokine levels in antidepressant-resistant depression. Psychol Med 36(1):37–43. https://doi.org/10.1017/S003329170500632X
91. Blatteis CM (1992) Role of the OVL in the febrile response to circulating pyrogens. Prog Brain Res 91:409–412
92. Banks WA (2005) Blood-brain barrier transport of cytokines: a mechanism for neuropathology. Curr Pharm Des 11(8):973–984
93. Maier SF, Watkins LR (2003) Immune-to-central nervous system communication and its role in modulating pain and cognition: Implications for cancer and cancer treatment. Brain Behav Immun 17(Suppl 1):S125–S131
94. Louveau A, Smirnov I, Keyes TJ, Eccles JD, Rouhani SJ, Peske JD, Derecki NC, Castle D et al (2015) Structural and functional features of central nervous system lymphatic vessels. Nature 523(7560):337–341. https://doi.org/10.1038/nature14432
95. Rivest S (1999) What is the cellular source of prostaglandins in the brain in response to systemic inflammation? Facts and controversies. Mol Psychiatry 4(6):500–507
96. Maier SF, Goehler LE, Fleschner M, Watkins LR (1998) The role of the vagus nerve in cytokine-brain communication. Ann N Y Acad Sci 840:289–300
97. Schimner M, Smeenkens SP, Vlamakis H, Jaeger M, Oosting M, Franzoza EA, Ter Horst R, Jansen T et al (2016) Linking the human gut microbiome to inflammatory cytokine production capacity. Cell 167(4):1125–1136.e28. https://doi.org/10.1016/j.cell.2016.10.020
98. Maes M, Kubera M, Leunis JC, Berk M, Geffard M, Bosmans E (2013) In depression, bacterial translocation may drive inflammatory responses directed against O&NS-damaged neoepitopes. Acta Psychiatr Scand 127(5):344–350. https://doi.org/10.1111/j.1600-0447.2012.01908.x
99. Gareau MG, Silva MA, Perdue MH (2008) Pathophysiological mechanisms of stress-induced intestinal damage. Curr Mol Med 8(4):274–281
100. Baumlner AJ, Sperandio V (2016) Interactions between the microbiota and pathogenic bacteria in the gut. Nature 535(7610):85–93. https://doi.org/10.1038/nature18849
101. Grishin A, Bowling J, Bell B, Wang J, Ford HR (2016) Roles of nitric oxide and intestinal microbiota in the pathogenesis of necrotizing enterocolitis. J Pediatr Surg 51(1):13–17. https://doi.org/10.1016/j.jpedsurg.2015.10.006
102. Drexhage RC, van der Heul-Nieuwenhuijsen L, Padmos RC, van Beveren N, Cohen D, Versnel MA, Nolen WA, Drexhage HA (2010) Inflammatory gene expression in monocytes of patients with schizophrenia: overlap and difference with bipolar disorder. A study in naturally treated patients. Int J Neuropsychopharmacol 13(10):1369–1381. https://doi.org/10.1017/S1461145710000799
103. Weibel MD, Frank MG, Tracey KJ, Watkins LR, Maier SF (2015) Stress induces the danger-associated molecular pattern HMGB-1 in the hippocampus of male Sprague Dawley rats: a priming stimulus of microglia and the NLRP3 inflammasome. J Neurosci 35(1):316–324. https://doi.org/10.1523/JNEUROSCI.3561-14.2015
104. Hanamsagar R, Hanke ML, Kielian T (2012) Toll-like receptor (TLR) and inflammasome actions in the central nervous system. Trends Immunol 33(7):333–342. https://doi.org/10.1016/j.it.2012.03.001
105. Iswata M, Ota KT, Li XY, Sakaue F, Li N, Dutheil S, Banasr M, Duric V et al (2016) Psychological stress activates the Inflammasome via release of adenosine triphosphate and stimulation of the purineergic type 2X7 receptor. Biol Psychiatry 80(1):12–22. https://doi.org/10.1016/j.biopsych.2015.11.026
106. Ziemssen T, Kern S (2007) Psychoneuroimmunology—cross-talk between the immune and nervous systems. J Neuro 254(Suppl 2):II8–111. https://doi.org/10.1007/s00415-007-2003-8
107. Schiepers OJ, Wichers MC, Maes M (2005) Cytokines and major depression. Prog Neuro-Psychopharmacol Biol Psychiatry 29(2):201–217. https://doi.org/10.1016/j.pnpbp.2004.11.003
108. Abbas HI, Hosseini F, Modabbernia A, Ashrafi M, Akhoundzadeh S (2012) Effect of celecoxib add-on treatment on symptoms and serum IL-6 concentrations in patients with major depressive disorder: randomized double-blind placebo-controlled study. J Affect Disord 141(2–3):308–314. https://doi.org/10.1016/j.jad.2012.03.033
109. Hannestad J, Dellagioia N, Bloch M (2011) The effect of antidepressant medication treatment on serum levels of inflammatory cytokines: a meta-analysis. Neuropsychopharmacology 36(12):2452–2459. https://doi.org/10.1038/npp.2011.132
110. Muller N, Schwarz MJ, Dehning S, Douhe A, Cerovecki A, Goldstein-Muller B, Spellmann I, Hetzel G et al (2006) The cyclooxygenase-2 inhibitor celecoxib has therapeutic effects in major depression: results of a double-blind, randomized, placebo controlled, add-on pilot study to reboxetine. Mol Psychiatry 11(7):680–684. https://doi.org/10.1038/mp.4001805
111. Nery FG, Monkul ES, Hatch JP, Fonseca M, Zunta-Soares GB, Frey BN, Bowden CL, Soares JC (2008) Celecoxib as an adjunct in the treatment of depressive or mixed episodes of bipolar disorder: a double-blind, randomized, placebo-controlled study. Hum Psychopharmacol 23(2):87–94. https://doi.org/10.1002/hup.912
112. Foster JA, Rinaman L, Cryan JF (2017) Stress & the gut-brain axis: regulation by the microbiome. Neurobiol Stress 7:124–136. https://doi.org/10.1016/j.jnstr.2017.03.001
113. Hayley S, Poultor MO, Merali Z, Anisman H (2005) The pathogenesis of clinical depression: stressor- and cytokine-induced alterations of neuroplasticity. Neuroscience 135(3):659–678. https://doi.org/10.1016/j.neuroscience.2005.03.081
114. Kim YK, Jung HG, Myint AM, Kim H, Park SH (2007) Imbalance between pro-inflammatory and anti-inflammatory cytokines in bipolar disorder. J Affect Disord 104(1–3):91–95. https://doi.org/10.1016/j.jad.2007.02.018
115. Licinio J, Frost P (2000) The neuroimmune-endocrine axis: pathophysiological implications for the central nervous system cytokines and hypothalamus-pituitary-adrenal hormone dynamics. Braz J Med Biol Res 33(10):1141–1148
116. Licinio J, Wong ML (1999) The role of inflammatory mediators in the biology of major depression: central nervous system cytokines modulate the biological substrate of depressive symptoms, regulate stress-responsive systems, and contribute to neurotoxicity and neuroprotection. Mol Psychiatry 4(4):317–327
117. Drexhage RC, van der Heul-Nieuwenhuijjsen L, Padmos RC, van Beveren N, Cohen D, Versnel MA, Nolen WA, Drexhage HA (2010) Inflammatory gene expression in monocytes of patients with schizophrenia: overlap and difference with bipolar disorder. A study in naturally treated patients. Int J Neuropsychopharmacol 13(10):1369–1381. https://doi.org/10.1017/S1461145710000799
118. Prolo P, Licinio J (1999) Cytokines in affective disorders and schizophrenia: new clinical and genetic findings. Mol Psychiatry 4(4):396
119. Saetre P, Emlisson L, Axelsson E, Kreuger J, Lindholm E, Jazin E (2007) Inflammation-related genes up-regulated in schizophrenia brains. BMC Psychiatry 7:46. https://doi.org/10.1186/1471-244X-7-46

120. Rausch JL (2005) Initial conditions of psychotropic drug response: studies of serotonin transporter long promoter region (5-HTTLPR), serotonin transporter efficiency, cytokine and kinase gene expression relevant to depression and antidepressant outcome. Prog Neuro-Psychopharmacol Biol Psychiatry 29(6):1046–1061. https://doi.org/10.1016/j.pnpbp.2005.03.011

121. Tourjman V, Kouass E, Kow ME, Rocchi M, Fortin-Fournier S, Fussar-Poli P, Poitvin S (2013) Antipsychotics’ effects on blood levels of cytokines in schizophrenia: a meta-analysis. Schizophr Res 151(1–3):43–47. https://doi.org/10.1016/j.schres.2013.10.011

122. Raison CL, Miller AH (2013) Do cytokines really sing the blues? Cerebrum 2013:10

123. Rock KL, Latz E, Ontiveros F, Kono H (2010) The sterile inflammatory response. Cytokine & Chemokine Reviews 21(4):329–337. https://doi.org/10.1016/j.cytokine.2010.07.006

124. Fleshner M (2013) Stress-evoked sterile inflammation, danger associated molecular patterns (DAMPs) and the inflammasome. Brain Behav Immun 27(1):1–7. https://doi.org/10.1016/j.bbi.2012.08.012

125. Gadek-Michalska A, Tadeusz J, Rachwalska P, Bugajski J (2013) Cytokines, prostaglandins and nitric oxide in the regulation of stress-response systems. Pharmacol Rep 65(6):1655–1662

126. Maes M (1995) Evidence for an immune response in major depression: a review and hypothesis. Prog Neuro-Psychopharmacol Biol Psychiatry 19(1):11–38

127. Maes M (1993) A review on the acute phase response in major depression. Rev Neurosci 4(4):407–416

128. King MA, Alesci S, Csako G, Costello R, Luckenbaugh DA, Bonne O, Duncko R, Drevets WC et al (2007) Sustained low-grade pro-inflammatory state in unmedicated, remitted women with major depressive disorder as evidenced by elevated serum levels of the acute phase proteins C-reactive protein and serum amyloid A. Biol Psychiatry 62(4):309–313. https://doi.org/10.1016/j.biopsych.2006.09.033

129. Gardner A, Boles RG (2011) Beyond the serotonin hypothesis: mitochondria, inflammation and neurodegeneration in major depression and affective spectrum disorders. Prog Neuro-Psychopharmacol Biol Psychiatry 35(3):730–743. https://doi.org/10.1016/j.pnpbp.2010.07.030

130. Smith RS (1991) The macrophage theory of depression. Med Hypotheses 35(4):298–306

131. Capuron L, Schroecksnadel S, Feart C, Aubert A, Higueret D, Bonne O, Duncko R, Drevets WC et al (2007) Inflammation-related genes up-regulated in schizophrenia. BMC Psychiatry 7:46. https://doi.org/10.1186/1471-244X-7-46

132. Dieperink E, Willenbring M, Ho SB (2000) Neuropsychiatric symptoms associated with hepatitis C and interferon alpha: a review. Am J Psychiatry 157(6):867–876

133. Dantzer R, Kelley KW (2007) Twenty years of research on cytokine-induced sickness behavior. Brain Behav Immun 21(2):153–160. https://doi.org/10.1016/j.bbi.2006.09.006

134. Bergassola C, Pende A, Musso NR, Ioverno A, Lotti G, Criscuolo D (1990) Effects of interferon-alpha-2a on catecholamines and lymphocyte beta 2 adrenoceptors in healthy humans. Int J Neurosci 51(3–4):211–213

135. Felger JC, Cole SW, Pace TW, Hu F, Woolwine BJ, Doho GH, Raison CL, Miller AH (2012) Molecular signatures of peripheral blood mononuclear cells during chronic interferon-alpha treatment: relationship with depression and fatigue. Psychol Med 42(8):1591–1603. https://doi.org/10.1017/S0033291711002868

136. Konsman JP, Pamet P, Dantzer R (2002) Cytokine-induced sickness behaviour: mechanisms and implications. Trends Neurosci 25(3):154–159

137. Leonard BE (2014) Impact of inflammation on neurotransmitter changes in major depression: an insight into the action of antidepressants. Prog Neuro-Psychopharmacol Biol Psychiatry 48:261–267. https://doi.org/10.1016/j.pnpbp.2013.10.018

138. Rawdin BJ, Mellon SH, Dhabhar FS, Epel ES, Puterman E, Su Y, Burke HM, Reus VI et al (2013) Dysregulated relationship of inflammation and oxidative stress in major depression. Brain Behav Immun 31:143–152. https://doi.org/10.1016/j.bbi.2012.11.011

139. Dowlati Y, Herrmann N, Swaridger F, Liu H, Sham L, Reim EK, Lancot KL (2010) A meta-analysis of cytokines in major depression. Biol Psychiatry 67(5):446–457. https://doi.org/10.1016/j.biopsych.2009.09.033

140. Raison CL, Capuron L, Miller AH (2006) Cytokines and the blues: inflammation and the pathogenesis of depression. Trends Immunol 27(1):24–31. https://doi.org/10.1016/j.it.2005.11.006

141. Maes M, Song C, Lin A, De Jongh R, Van Gastel A, Kenis G, Bomsans E, De Meester I et al (1998) The effects of psychological stress on humans: increased production of pro-inflammatory cytokines and a Th1-like response in stress-induced anxiety. Cytokine 10(4):313–318

142. Myint AM, Leonard BE, Steinbusch HW, Kim YK (2005) Th1, Th2, and Th3 cytokine alterations in major depression. J Affect Disord 88(2):167–173. https://doi.org/10.1016/j.jad.2005.07.008

143. Song C, Halbreich U, Han C, Leonard BE, Luo H (2009) Imbalance between pro- and anti-inflammatory cytokines, and between Th1 and Th2 cytokines in depressed patients: the effect of electroacupuncture or fluoxetine treatment. Pharmacopsychiatry 42(5):182–188. https://doi.org/10.1055/s-0029-1202263

144. Huang TL, Lee CT (2007) T-helper 1/T-helper 2 cytokine imbalance and clinical phenotypes of acute-phase major depression. Psychiatry Clin Neurosci 61(4):415–420. https://doi.org/10.1111/j.1440-1819.2007.01686.x

145. Mahar I, Bambico FR, Mechawar N, Nobrega JN (2014) Stress, serotonin, and hippocampal neurogenesis in relation to depression and antidepressant effects. Neurosci Biobehav Rev 38:173–192. https://doi.org/10.1016/j.neubiorev.2013.11.009

146. Jiang H, Ling Z, Zhang Y, Mao H, Ma Z, Yin Y, Wang W, Tang W et al (2015) Altered fecal microbiota composition in patients with major depressive disorder. Brain Behav Immun 48:184–196. https://doi.org/10.1016/j.bbi.2015.03.016

147. Bremner JD, Narayan M, Anderson EE, Staub LH, Miller HL, Charney DS (2000) Hippocampal volume reduction in major depression. Am J Psychiatry 157(1):115–118. https://doi.org/10.1176/appi.ajp.157.1.115

148. Pannekoek JN, van der Werff SJ, van den Bulk BG, van Lang ND, Bosmans E, De Meester I et al (2015) Altered fecal microbiota composition in patients with major depressive disorder. Brain Behav Immun 48:184–196. https://doi.org/10.1016/j.bbi.2015.03.016

149. Bremner JD, Narayan M, Anderson EE, Staub LH, Miller HL, Charney DS (2000) Hippocampal volume reduction in major depression. Am J Psychiatry 157(1):115–118. https://doi.org/10.1176/appi.ajp.157.1.115

150. Pannekoek JN, van der Werff SJ, van den Bulk BG, van Lang ND, Bosmans E, De Meester I et al (2015) Altered fecal microbiota composition in patients with major depressive disorder. Brain Behav Immun 48:184–196. https://doi.org/10.1016/j.bbi.2015.03.016

151. Dwivedi Y, Cole SW, Pace TW, Hu F, Woolwine BJ, Doho GH, Raison CL, Miller AH (2012) Molecular signatures of peripheral blood mononuclear cells during chronic interferon-alpha treatment: relationship with depression and fatigue. Psychol Med 42(8):1591–1603. https://doi.org/10.1017/S0033291711002868

152. Piccinni A, Marazziti D, Catena M, Domenici L, Del Debbio A, Bianchi C, Mannari C, Martini C et al (2008) Plasma and serum
brain-derived neurotrophic factor (BDNF) in depressed patients during 1 year of antidepressant treatments. J Affect Disord 105(1–3):279–283. https://doi.org/10.1016/j.jad.2007.05.005

153. Mohle L, Mattei D, Heimesaat MM, Bereswill S, Fischer A, Alutis M, French T, Hambardzumyan D et al (2016) Ly6C(hi) monocytes provide a link between antibiotic-induced changes in gut microbiota and adult hippocampal neurogenesis. Cell Rep 15(9):1945–1956. https://doi.org/10.1016/j.celrep.2016.04.074

154. Ogbonnaya ES, Clarke G, Shanahan F, Dinan TG, Cryan JF, O’Leary OF (2015) Adult hippocampal neurogenesis is regulated by the microbiome. Biol Psychiatry 78(4):e7–e9. https://doi.org/10.1016/j.biopsych.2014.12.023

155. Maes M, Galecki P, Chang YS, Berk M (2011) A review on the oxidative and nitrosative stress (O&NS) pathways in major depression and their possible contribution to the (neuro)degenerative processes in that illness. Prog Neuro-Psychopharmacol Biol Psychiatry 35(3):676–692. https://doi.org/10.1016/j.pnpbp.2010.05.004

156. Uttara B, Singh AV, Zamboni P, Mahajan RT (2009) Oxidative stress and neurodegenerative diseases: a review of upstream and downstream antioxidant therapeutic options. Curr Neuropharmaceut 7(1):65–74. https://doi.org/10.2174/1570159077862083

157. Black CN, Bot M, Scheiffer PG, Cuipers P, Penninx BW (2015) Is depression associated with increased oxidative stress? A systematic review and meta-analysis. Psychoneuroendocrinology 51:164–175. https://doi.org/10.1016/j.psyneuen.2014.09.025

158. Khanzode SD, Dakhale GN, Khanzode SS, Saoji A, Palasodkar R (2003) Oxidative damage and major depression: the potential antioxidant action of selective serotonin re-uptake inhibitors. Redox Rep 8(6):365–370. https://doi.org/10.1179/135100003225003393

159. Yager S, Forlenza MJ, Miller GE (2010) Depression and oxidative damage to lipids. Psychoneuroendocrinology 35(9):1356–1362. https://doi.org/10.1016/j.psyneuen.2010.03.010

160. Sarandol A, Sarandol E, Eker SS, Erdinc S, Vatansever E, Kirli S (2007) Major depressive disorder is accompanied with oxidative stress: short-term antidepressant treatment does not alter oxidative-antioxidant systems. Hum Psychopharmacol 22(2):67–73. https://doi.org/10.1002/hup.829

161. Forlenza MJ, Miller GE (2006) Increased serum levels of 8-hydroxy-2-deoxyguanosine in clinical depression. Psychosom Med 68(1):1–7. https://doi.org/10.1017/S003329400672772a

162. Maes M, Mihaylova I, Leunis JC (2007) Increased serum IgM-mediated immune response against Pi is one factor underpinning the comorbidity between major depression and fatigue syndrome (CFS) and major depression: evidence that nitrosative stress is another factor downstream antioxidant therapeutic options. Curr Neuropharmacol 7(1):65–74. https://doi.org/10.2174/1570159077862083

163. Maes M, Mihaylova I, Kubera M, Leunis JC (2008) An IgM-mediated immune response directed against nitro-bovine serum albumin (nitro-BSA) in chronic fatigue syndrome (CFS) and major depression: evidence that an IgM-mediated immune response against Pi is one factor underpinning the comorbidity between major depression and CFS. Neuro Endocrinol Lett 28(6):861–867

164. Maes M, Mihaylova I, Kubera M, Leunis JC (2008) An IgM-mediated immune response directed against nitro-bovine serum albumin (nitro-BSA) in chronic fatigue syndrome (CFS) and major depression: evidence that nitrosative stress is another factor underpinning the comorbidity between major depression and CFS. Neuro Endocrinol Lett 29(3):313–319

165. Kotan VO, Sarandol E, Kirhan E, Ozkaya G, Kirli S (2011) Effects of long-term antidepressant treatment on oxidative status in major depressive disorder: a 24-week follow-up study. Prog Neuro-Psychopharmacol Biol Psychiatry 35(5):1284–1290. https://doi.org/10.1016/j.pnpbp.2011.03.021

166. Tsuoi H, Shimo K, Kinae N, Oguni I, Hori R, Kobayashi F (2004) Depressive symptoms are independently correlated with lipid peroxidation in a female population: comparison with vitamins and carotenoids. J Psychosom Res 56(1):53–58. https://doi.org/10.1016/S0022-3996(03)00567-1

167. Zafir A, Baru N (2007) Antioxidant potential of fluoxetine in comparison to Curcuma longa in restraint-stressed rats. Eur J Pharmacol 572(1):23–31. https://doi.org/10.1016/j.ejphar.2007.05.062

168. Gibson SA, Korade Z, Shelton RC (2012) Oxidative stress and glutathione response in tissue cultures from persons with major depression. J Psychiatr Res 46(10):1326–1332. https://doi.org/10.1016/j.jpsychires.2012.06.008

169. Harkin A, Connor TJ, Burns MP, Kelly JP (2004) Nitric oxide synthase inhibitors augment the effects of serotonin re-uptake inhibitors in the forced swimming test. Eur Neuropsychopharmacol 14(4):274–281. https://doi.org/10.1016/j.euroen.2003.08.010

170. Joca SR, Guimaraes FS (2006) Inhibition of neuronal nitric oxide synthase in the rat hippocampus induces antidepressant-like effects. Psychopharmacology 185(3):298–305. https://doi.org/10.1007/s00213-006-0326-2

171. Lee BH, Lee SW, Yoon D, Lee HJ, Yang JC, Shim SH, Kim DH, Ryu SH et al (2006) Increased plasma nitric oxide metabolites in suicide attempters. Neuropsychobiology 53(3):127–132. https://doi.org/10.1159/0000902542

172. Gandhi S, Abramov AV (2012) Mechanism of oxidative stress in neurodegeneration. Oxidative Med Cell Longev 2012:428010. https://doi.org/10.1155/2012/428010

173. Pan Y, Chen XY, Zhang QY, Kong LD (2014) Microglial NLRP3 inflammasome activation mediates IL-1beta-related inflammation in prefrontal cortex of depressive rats. Brain Behav Immun 41:90–100. https://doi.org/10.1016/j.bbi.2014.04.007

174. Zhang Y, Liu L, Peng YL, Liu YZ, Wu TY, Shen XL, Zhou JR, Sun DY et al (2014) Involvement of inflammasome activation in lipopolysaccharide-induced mice depressive-like behaviors. CNS Neurosci Ther 20(2):119–124. https://doi.org/10.1111/cns.12170

175. Zhang Y, Liu L, Liu YZ, Shen XL, Wu TY, Zhang T, Wang W, Wang YX et al (2015) NLRP3 inflammasome mediates chronic mild stress-induced depression in mice via neuroinflammation Int J Neuropsycopharmacol 18(6). https://doi.org/10.1093/ijnp/pyx006

176. Sugama S, Fujita M, Hashimoto M, Conti B, Bartfai T, Shibasaki T (2007) Stress induced morphological microglial activation in the rodent brain: involvement of interleukin-18. Neuroscience 146(4):1388–1399. https://doi.org/10.1016/j.neuroscience.2007.07.020

177. Koo JW, Duman RS (2008) IL-1beta is an essential mediator of the antineurogenic and anhedonic effects of stress. Proc Natl Acad Sci U S A 105(2):751–756. https://doi.org/10.1073/pnas.0708092105

178. Too LK, Mitchell AJ, Yau B, Ball HJ, McGregor IS, Hunt NH (2014) Interleukin-1 deficiency and its long-term behavioural and cognitive impacts in a murine model of pneumococcal meningitis. Behav Brain Res 263:176–189. https://doi.org/10.1016/j.bbr.2014.01.035

179. Sugama S, Wizir SA, Barr AM, Conti B, Bartfai T, Shibasaki T (2004) Interleukin-18 null mice show diminished microglial activation and reduced dopaminergic neuron loss following acute 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine treatment. Neuroscience 128(2):451–458. https://doi.org/10.1016/j.neuroscience.2004.07.020

180. Sugama S, Fujita M, Hashimoto M, Conti B (2007) Stress induced morphological microglial activation in the rodent brain: involvement of interleukin-18. Neuroscience 146(3):1388–1399. https://doi.org/10.1016/j.neuroscience.2007.02.043

181. Singhal G, Jaehne EJ, Corrigan F, Toben C, Baune BT (2014) Inflammasomes in neuroinflammation and changes in brain function: a focused review. Front Neurosci 8:315. https://doi.org/10.3389/fnins.2014.00315
amygdala related with behavioral change. J Neuroimmunol 229(1–2):129–139. https://doi.org/10.1016/j.jneuroim.2010.07.024

218. Sekiyama A, Ueda H, Kashiwamura S, Sekiyama R, Takeda M, Rokutan K, Okamura H (2005) A stress-induced, superoxide-mediated caspase-1 activation pathway causes plasma IL-18 up-regulation. Immunity 22(6):669–677. https://doi.org/10.1016/j.immuni.2005.04.006

219. Montezuma K, Biojone C, Lisboa SF, Guimaraes FS, Joca SR (2012) Inhibition of iNOS induces antidepressant-like effects in mice: Pharmacological and genetic evidence. Neuropharmacology 62(1):485–491. https://doi.org/10.1016/j.neuropharm.2011.09.004

220. Dhir A, Kulkarni SK (2007) Involvement of nitric oxide (NO) signaling pathway in the antidepressant action of bupropion, a dopamine reuptake inhibitor. Eur J Pharmacol 568(1–3):177–185. https://doi.org/10.1016/j.eiphar.2007.04.028

221. Schmitz J, Owyang A, Oldham E, Song Y, Murphy E, McClanahan TK, Zurawski G, Moshrefi M et al (2005) IL-33, an interleukin-1-like cytokine that signals via the IL-1 receptor-related protein ST2 and induces T helper type 2-associated cytokines. Immunity 23(5):479–490. https://doi.org/10.1016/j.immuni.2005.09.015

222. Haraldsen G, Balogh J, Pollheimer J, Sponhein J, Kuchler AM (2009) Interleukin-33 - cytokine of dual function or novel alarmin? Trends Immunol 30(5):227–233. https://doi.org/10.1016/j.it.2009.03.003

223. Maywald RL, Doerner SK, Pastorelli L, De Salvo C, Benton SM, Green SJ, Scheller LF, Marletta MA, Seguin MC, Klotz FW, McCann SM, Gold PW, Licinio J (1996) Inducible nitric oxide synthase gene expression in the brain during systemic inflammation and immune responses to interferon-gamma. Annu Rev Immunol 15:749–187. https://doi.org/10.1146/annurev.immunol.15.1.704569

224. Klena J, Zhang P, Schwartz O, Hull S, Chen T (2005) The core lipopolysaccharide of Escherichia coli is a ligand for the dendritic-cell-specific intercellular adhesion molecule nonintegrin CD209 receptor. J Bacteriol 187(5):1710–1715. https://doi.org/10.1128/JB.187.5.1710-1715.2005

225. Schroder K, Hertzog PJ, Ravasi T, Hume DA (2004) Interferon-gamma: an overview of signals, mechanisms and functions. J Leukoc Biol 75(2):163–189. https://doi.org/10.1189/jlb.0603252

226. Meyer O (2009) Interferons and autoimmune disorders. Joint Bone Spine 76(5):464–473. https://doi.org/10.1016/j.jbspin.2009.03.012

227. Kim TK, Maniatis T (1996) Regulation of interferon-gamma-activated STAT1 by the ubiquitin-proteasome pathway. Science 273(5282):1717–1719

228. Boehm U, Klamp T, Groot M, Howard JC (1997) Cellular responses to interferon-gamma. Annu Rev Immunol 15:749–795. https://doi.org/10.1146/annurev.immunol.15.1.749

229. Schneider WM, Chevillotte MD, Rice CM (2014) Interferon-stimulated genes: a complex web of host defenses. Annu Rev Immunol 32:513–545. https://doi.org/10.1146/annurev-immunol-032713-120231

230. Samarajiwa SA, Forster S, Aucott KL, Hertzog PJ (2009) INTERFEROME: the database of interferon regulated genes. Nucleic Acids Res 37(Database issue):D852–D857. https://doi.org/10.1093/nar/gkn732

231. Hu X, Ivashkiv LB (2009) Cross-regulation of signaling pathways by interferon-gamma: Implications for immune responses and autoimmune diseases. Immunity 31(4):539–550. https://doi.org/10.1016/j.immuni.2009.09.002

232. Hu X, Chen J, Wang L, Ivashkiv LB (2007) Crosstalk among Jak-STAT, toll-like receptor, and ITAM-dependent pathways in macrophage activation. J Leukoc Biol 82(2):237–243. https://doi.org/10.1189/jlb.1206763

233. Dai C, Krautz SB (1999) Interferon gamma induces upregulation and activation of caspases 1, 3, and 8 to produce apoptosis in human erythroid progenitor cells. Blood 93(10):3309–3316
252. Maes M, Scharpe S, Meltzer HY, Okayli G, Bosmans E, D’Hondt P, Vanden Bossche BV, Cosyns P (1994) Increased neopterin and interferon-gamma secretion and lower availability of L-tryptophan in major depression: further evidence for an immune response. Psychiatry Res 54(2):143–160

253. Kahl KG, Kruse N, Faller H, Weiss H, Rieckmann P (2002) Expression of tumor necrosis factor-alpha and interferon-gamma mRNA in blood cells correlates with depression scores during an acute attack in patients with multiple sclerosis. Psychoneuroendocrinology 27(6):671–681

254. Mohr DC, Goodkin DE, Islar J, Hauser SL, Genain CP (2001) Treatment of depression is associated with suppression of nonspecific and antigen-specific T(H)1 responses in multiple sclerosis. Arch Neurol 58(7):1081–1086

255. Maes M, Song C, Lin AH, Bonaccorso S, Kenis G, De Jongh R, Bosmans E, Scharpe S (1999) Negative immunoregulatory effects of antidepressants: inhibition of interferon-gamma and stimulation of interleukin-10 secretion. Neuropsychopharmacology 20(4):370–379. https://doi.org/10.1016/S0893-133X(98)00088-8

256. Myint AM, Bondy B, Baghai TC, Eser D, Nothdurfter C, Schule C, Zill P, Muller N et al (2013) Tryptophan metabolism and immunogenetics in major depression: a role for interferon-gamma gene. Brain Behav Immun 31:128–133. https://doi.org/10.1016/j.bbi.2013.04.003

257. Raitala A, Pertovaara M, Karjalainen J, Oja SS, Hurme M (2005) Association of interferon-gamma +874(T/a) single nucleotide polymorphism with the rate of tryptophan catabolism in healthy individuals. Scand J Immunol 61(4):387–390. https://doi.org/10.1111/j.1365-3083.2005.01586.x

258. Oxenkrug GF (2011) Interferon-gamma-inducible kynurenines/pteridines inflammation cascade: implications for aging and aging-associated psychiatric and medical disorders. J Neural Transm (Vienna) 118(1):75–85. https://doi.org/10.1007/s00702-010-0475-7

259. O’Connor JC, Andre C, Wang Y, Lawson MA, Szegedi SS, Lestage J, Castanon N, Kelley KW et al (2009) Interferon-gamma and tumor necrosis factor-alpha mediate the upregulation of indoleamine 2,3-dioxygenase and the induction of depressive-like behavior in mice in response to bacillus Calmette-Guerin. J Neurosci 29(13):4200–4209. https://doi.org/10.1523/JNEUROSCI.5032-08.2009

260. Kustova Y, Sei Y, Morse HC Jr, Basile AS (1998) The influence of a targeted deletion of the IFNgamma gene on emotional behaviors. Brain Behav Immun 12(4):308–324. https://doi.org/10.1097/00000000000000546

261. Clark E, Hoare C, Tanianis-Hughes J, Carlson GL, Warhurst G (2005) Interferon gamma induces translocation of commensal Escherichia coli across gut epithelial cells via a lipid raft-mediated process. Gastroenterology 128(5):1258–1267