The maximum matching extendability and factor-criticality of 1-planar graphs

Jiangyue Zhang, Yan Wu, Heping Zhang

School of Mathematics and Statistics, Lanzhou University, Lanzhou, Gansu 730000, P. R. China

Abstract: A graph is 1-planar if it can be drawn in the plane so that each edge is crossed by at most one other edge. Moreover, a 1-planar graph G is optimal if it satisfies $|E(G)| = 4|V(G)| - 8$. J. Fujisawa et al. [3] first considered matching extension of optimal 1-planar graphs, obtained that each optimal 1-planar graph of even order is 1-extendable and characterized 2-extendable optimal 1-planar graphs and 3-matchings extendable to perfect matchings as well. In this short paper, we prove that no optimal 1-planar graph is 3-extendable. Further we mainly obtain that no 1-planar graph is 5-extendable by the discharge method and also construct a 4-extendable 1-planar graph. Finally we get that no 1-planar graph is 7-factor-critical and no optimal 1-planar graph is 6-factor-critical.

Keywords: n-extendable graph; k-factor-critical graph; 1-planar graph; optimal 1-planar graph

AMS subject classification: 05C70, 05C10

1 Introduction

All graphs considered here are finite, simple and undirected. We use $V(G)$ and $E(G)$ to denote the vertex set and the edge set of a graph G respectively. The order of a graph refers to the number of vertices. For a vertex v in G, let $d_G(v)$ denote the degree of a vertex v in G, the number of edges incident with v. Let $\delta(G)$ denote the minimum degree in G. A matching M of a graph G is a subset of $E(G)$ such that any two edges of M have no end-vertices in common. A matching of k edges is called a k-matching. A perfect matching of a graph is a matching covering all vertices of the graph.

In 1980 M.D. Plummer [4] introduced the concept of n-extendable graphs. For an integer $n \geq 0$, a connected graph G with at least $2n + 2$ vertices is said to be n-extendable if it admits an n-matching and each n-matching can be a subset of a perfect matching of G. Matching extendability of graphs was widely investigated; see two surveys [7, 8] and a

1The corresponding author.

E-mail addresses: jyzhang20@lzu.edu.cn(J. Zhang), wuyan20@lzu.edu.cn(Y. Wu), zhanghp@lzu.edu.cn(H. Zhang).
book [13]. Plummer proved that every n-extendable graph is $(n-1)$-extendable whenever $n \geq 1$ and the following basic result.

Lemma 1.1 ([4]). If G is n-extendable, then G is $(n+1)$-connected.

Plummer studied the matching extendability of planar graphs and obtained

Theorem 1.2 ([5]). No planar graph is 3-extendable.

Theorem 1.3 ([6]). Every 5-connected planar graph of even order is 2-extendable.

For any surface Σ, Plummer [9] also posed the problem of determining the least integer $\mu(\Sigma)$ such that no graph G embedded in Σ is $\mu(\Sigma)$-extendable. $\mu(\Sigma)$ is called the matching extendability of the surface Σ. So by Theorems 1.2 and 1.3, $\mu(S_0) = 3$ for the sphere S_0. Later, N. Dean [10] completely solved this problem by obtaining the following result:

Theorem 1.4 ([10]). If Σ is any surface (orientable or non-orientable) other than the sphere, then $\mu(\Sigma) = 2 + \lfloor \sqrt{4 - 2\chi(\Sigma)} \rfloor$, where $\chi(\Sigma)$ is the Euler characteristic of the surface Σ.

A graph is 1-planar if it can be drawn in the plane so that each edge is crossed by at most one other edge. Unless otherwise stated, we consider that a given 1-planar graph is already drawn on the plane (or sphere). The notion of a 1-planar graph was first introduced by G. Ringel [1]. To now most researches on 1-planar graphs have focused on graph coloring and some structures. For structure of 1-planar graphs, I. Fabrici and T. Madras [2] showed that every 1-planar graph G has at most $4|V(G)| - 8$ edges. A 1-planar graph G is called an optimal 1-planar graph if it satisfies $|E(G)| = 4|V(G)| - 8$. They also got

Lemma 1.5 ([2]). Every 1-planar graph contains a vertex of degree at most 7.

Motivated by Plummer’s work it is natural to consider matching extension of 1-planar graphs. However J. Fujisawa et al. [3] pointed out that an obstacle for such a research is the fact that the operation of edge contraction does not preserve the 1-planarity in general. In 2018 they eliminated this difficulty for optimal 1-planar graphs, and got a series of results on the matching extendability of optimal 1-planar graphs like the case of planar graphs.

In order to state such results, we need the following notations. An edge in a 1-planar graph G is called crossing if it crosses with another edge, and non-crossing otherwise. A cycle C in a connected graph G is said to be separating if $G - V(C)$ is disconnected. A
separating cycle C of a 1-planar graph is called a barrier cycle if each edge of C is non-crossing, $G - V(C)$ consists of two odd components which lie in the interior and exterior of C respectively.

Theorem 1.6 ([3]). *Every optimal 1-planar graph G of even order is 1-extendable.*

Theorem 1.7 ([3]). *An optimal 1-planar graph G of even order is 2-extendable unless G contains a barrier cycle of length 4.*

Theorem 1.8 ([3]). *Let G be a 5-connected optimal 1-planar graph of even order and M be a matching of G with $|M| = 3$. Then M is extendable unless G contains a barrier cycle C of length 6 such that $V(M) = V(C)$.*

Theorem 1.7 implies that a 5-connected optimal 1-planar graph G of even order is 2-extendable since it cannot contain a barrier cycle of length 4. In this paper, we get the following result for any optimal 1-planar graphs.

Theorem 1.9. *No optimal 1-planar graph is 3-extendable.*

By Theorems 1.8 and 1.9, we can obtain the following corollary.

Corollary 1.10. *Any 5-connected optimal 1-planar graph G of even order contains a barrier cycle C of length 6.*

Next we mainly consider the maximum matching extendability of 1-planar graphs. Since n-extendable graphs are $(n + 1)$-connected, Lemma 1.5 implies that no 1-planar graph is 7-extendable. However we prove that no 1-planar graph is 5-extendable by combining the discharge method and Dean’s lemma as follows. We construct a 4-extendable 1-planar graph (see Fig. 5), which shows that such result is best possible.

Theorem 1.11. *No 1-planar graph is 5-extendable.*

The remaining sections of this paper are organized as follows. In Section 2, we give the proof of Theorem 1.9 via Suzuki’s relation between optimal 1-planar graphs and quadrangulations on the sphere. In Section 3 we use Dean’s lemma and discharging method to prove Theorem 1.11. At the end of this section, we give a 4-extendable 1-planar graph. In Section 4, as remarks we show that no 1-planar graph is 7-factor-critical and no optimal 1-planar graph is 6-factor-critical. Some examples show such results are best possible.
2 Proof of Theorem 1.9

A quadrangulation of the sphere is a simple graph embedded on the sphere with no crossing point such that each of its faces is bounded by a cycle of length 4. If we remove all the crossing edges of an optimal 1-planar graph G, then the resulting graph is denoted by $Q(G)$. To prove Theorem 1.9, we first give a clear relationship between optimal 1-planar graphs and quadrangulations on the sphere as follows (see Theorem 11 in [14]).

Theorem 2.1 ([14]). Let H be a simple quadrangulation on the sphere. Then there exists a simple optimal 1-planar graph G such that $H = Q(G)$ if and only if H is 3-connected.

From Theorem 2.1, adding two diagonal edges within every face of a 3-connected quadrangulation on the sphere results in an optimal 1-planar graph. As an immediate consequence we have the following result.

Lemma 2.2. Let G be an optimal 1-planar graph. Then for any $v \in V(G)$, all edges incident with v in G are alternately crossing and non-crossing edges in clockwise way. So the degree of each vertex in G is even.

Proof of Theorem 1.9 Suppose to the contrary that there exists a 3-extendable optimal 1-planar graph G. By Lemma 1.1 G is 4-connected. So G has a vertex v such that $4 \leq d_G(v) \leq 7$ by Lemma 1.5.

By Lemma 2.2 $d_G(v)$ is even, so $d_G(v) = 4$ or 6. If $d_G(v) = 4$, then by Lemma 2.2, v has exactly two neighbors v_1 and v_3 in $Q(G)$ so that G has one diagonal edge between v_1 and v_3 in each 4-face on two sides of 3-path v_1v_3. Two edges joining v_1 and v_3 clearly would become multiple edges, contradicting that G is simple.

If $d_G(v) = 6$, let vv_i, $1 \leq i \leq 6$, be the consecutive edges incident with v in counterclockwise order. Then by Lemma 2.2, without loss of generality suppose that vv_1, vv_3 and vv_5 are non-crossing edges, and vv_2, vv_4 and vv_6 are crossing edges (see Fig 1). Further, v is incident with exactly three 4-faces of $Q(G)$ so that their face cycles are $vv_1v_2v_3v$ and $vv_3v_4v_5v$, and $vv_5v_6v_1v$, which implies that $Q(G)$ has a 6-cycle $v_1v_2v_3v_4v_5v_6v_1$. Hence G has a 3-matching $\{v_1v_2, v_3v_4, v_5v_6\}$ covering all neighbors of v, which is not extendable to a perfect matching of G, contradicting Lemma 3.1 or the definition of 3-extendable graphs. Therefore, no optimal 1-planar graph is 3-extendable.

\square
3 Proof of Theorem 1.11

To obtain our main result in this section we first give some preliminaries. The following lemma due to N. Dean [10] will play a crucial role in the proof of Theorem 1.11. For a graph G, we use $N(v)$ to denote the neighborhood of a vertex v and $G[N(v)]$ for the induced subgraph of G by $N(v)$.

Lemma 3.1 ([10]). Let v be a vertex of degree $n+t$ in an n-extendable graph G. Then $G[N(v)]$ does not contain a matching of size t.

We now describe some terminologies and notations of a graph G. A vertex is a t-vertex (resp., t^+-vertex, t^--vertex) if $d_G(v) = t$ (resp., $d_G(v) \geq t$, $d_G(v) \leq t$). For a face f of a connected plane graph G, the face degree of f, denoted by $d_G(f)$, is the length of the closed walk along the boundary of f. Such closed walk is called a face walk, and a face cycle whenever it is cycle. Similarly a t-face (resp., t^+-face, and t^--face) refers to a face with degree t (resp., at least t, and at most t).

The associated plane graph G^x of a 1-planar graph G is the plane graph that is obtained from G by turning all crossings of G into new vertices of degree four. These new vertices in G^x are called false vertices, and the vertices of G are called true vertices. A face in G^x is false if it is incident with at least one false vertex; otherwise, it is true.

Next we give a lemma which is used in proof of Theorem 1.11. This lemma shows that there exists a 1-matching in $G[N(v)]$ if a true vertex v of the associated plane graph G^x of a 1-planar graph G is incident with three consecutive false 3-faces.

Lemma 3.2. Let G^x be the associated plane graph of a 1-planar graph G. If a true vertex v is incident with three consecutive false 3-faces in G^x, then $G[N(v)]$ contains an edge of G.

Proof. If a true vertex v is incident with a false 3-face, then v is adjacent to one true vertex and one false vertex on the false 3-face by 1-planarity of G. If v is incident with
three consecutive false 3-faces in \(G^x\), let \(vv_i, 1 \leq i \leq 4\), denote four consecutive edges in \(G^x\) so that the \(vv_i v_{i+1}v\) are false 3-faces for each \(i = 1, 2, 3\). Then \(v_1, v_2, v_3\) and \(v_4\) are false and true vertices in an alternative way. If \(v_1\) is a false vertex, then \(v_3\) is a false vertex, \(v_2\) and \(v_4\) are true vertices and \(v_2v_4\) is an edge of \(G\) passing through \(v_3\). Similarly, If \(v_1\) is a true vertex, then \(v_3\) is a true vertex and \(v_1v_3\) is an edge of \(G\) passing through \(v_2\). Hence either \(v_1v_3\) or \(v_2v_4\) is an edge of \(G\) (see Fig. 2). That is, \(G[N(v)]\) contains an edge.

Fig. 2. A true vertex \(v\) in \(G^x\) which is incident with three consecutive false 3-faces.

Proof of Theorem 1.11 Suppose to the contrary that there is a 5-extendable 1-planar graph \(G\). By Lemma 1.1, \(G\) is 6-connected and \(\delta(G) \geq 6\). In the following, we will apply the discharging method on the associated plane graph \(G^x\).

By Euler’s formula and degree-sum formulas:

\[
|V(G^x)| - |E(G^x)| + |F(G^x)| = 2 \quad (3.1)
\]

\[
\sum_{v \in V(G^x)} d_{G^x}(v) = 2|E(G^x)|, \text{ and} \quad (3.2)
\]

\[
\sum_{f \in F(G^x)} d_{G^x}(f) = 2|E(G^x)|, \quad (3.3)
\]

we have

\[
\sum_{v \in V(G^x)} (3d_{G^x}(v) - 10) + \sum_{f \in F(G^x)} (2d_{G^x}(f) - 10) = -20 \quad (3.4)
\]

First, we give an initial charge function:

- \(w(v) = 3d_{G^x}(v) - 10\), for each \(v \in V(G^x)\), and
- \(w(f) = 2d_{G^x}(f) - 10\), for each \(f \in F(G^x)\).
Next, we will design some discharging rules. Let w' be the new charge after the discharging process. It suffices to show that $w'(x) \geq 0$ for each $x \in V(G^x) \cup F(G^x)$, which leads to a contradiction with Eq. (3.4).

To get the target we now present four claims as follows.

Claim 1. Every 6-vertex v in G^x is not incident with a true 3-face, and is incident with at most four false 3-faces.

Proof. If v is incident with a true 3-face vv_1v_2, then v_1 and v_2 are both true vertices and v_1v_2 is an edge of G. Here v_1v_2 is a 1-matching in $G[N(v)]$, contradicting Lemma 3.1. Thus every 6-vertex v in G^x is not incident with a true 3-face.

If v is incident with at least five false 3-faces, then these five false 3-faces are consecutive. By Lemma 3.2, we can find a 1-matching in $G[N(v)]$, contradicting Lemma 3.1. Hence every 6-vertex v in G^x is incident with at most four false 3-faces.

Claim 2. Every 7-vertex v in G^x is incident with at most six false 3-faces. Moreover, if v is incident with exactly six false 3-faces, then the other face incident with v is a 4$^+$-face.

Proof. If v is incident with seven false 3-faces, let vv_i, $1 \leq i \leq 7$, denote the seven consecutive edges in G^x. By the proof of Lemma 3.2 we have that false vertices and true vertices alternate in the cyclic ordering $v_1, v_2, v_3, v_4, v_5, v_6, v_7, v_1$, which is obviously impossible. Hence every 7-vertex v in G^x is incident with at most six false 3-faces.

If v is incident with exactly six false 3-faces, let $vv_1v_2, vv_2v_3, vv_3v_4, vv_4v_5, vv_5v_6, vv_6v_7$ denote these six consecutive false 3-faces. Then $v_1, v_2, v_3, v_4, v_5, v_6, v_7$ are all true vertices and v_2, v_4 and v_6 are all false vertices. So v_1v_3 is an edge of G passing through v_2, and v_5v_7 is an edge of G passing through v_6. Then we find a 2-matching \{ v_1v_3, v_5v_7 \} in $G[N(v)]$, contradicting Lemma 3.1. Thus v_1 and v_7 are both false vertices, and v_2 and v_6 are true vertices (see Fig. 3(b)). By the 1-planarity the edges with endvertices v_2 and v_6 in G passing through v_1 and v_7 respectively are different. The other endvertices (may be the same) of them and vertices v, v_1 and v_7 all lie on the last one face incident with v, which must be a false 4$^+$-face.

Claim 3. Every 7-vertex v in G^x is incident with at most two true 3-faces. Moreover, if v is incident with two true 3-faces, then such two true 3-faces are adjacent.

Proof. Obviously each true 3-face incident with v has an edge $G[N(v)]$. If v is incident with two nonconsecutive true 3-faces, then we can find a 2-matching in $G[N(v)]$ consisting of one edge in each such true 3-face, contradicting Lemma 3.1. Hence the assertion holds.
Claim 4. Let v be a 7-vertex of G^\times. Then the following two statements hold.

(i) if v is incident with one true 3-face, then v is incident with at most four false 3-faces;

(ii) if v is incident with two true 3-faces, then v is incident with at most three false 3-faces.

Proof. (i) Suppose that v is incident with one true 3-face, say $f = vv_1v_2$. Suppose to the contrary that v is incident with at least five false 3-faces.

If v is incident with three consecutive false 3-faces such that they have no common edges with the true 3-face vv_1v_2. By Lemma 3.2, we can find an edge of $G[N(v)]$ among such three false 3-faces, which together with edge v_1v_2 form a 2-matching in $G[N(v)]$, contradicting Lemma 3.1.

Otherwise, there are three consecutive false 3-faces, say $vv_2v_4, vv_4v_6, vv_6v_7$, incident with v having a common edge vv_2 with vv_1v_2 and the other two consecutive false 3-faces, say vv_1v_3 and vv_3v_5, having a common edge vv_1 with vv_1v_2 (see Fig. 4(a)). Since v_1 and v_2 are true vertices, v_5 and v_6 are both true vertices, and v_1v_5 is an edge of G passing through v_3 and v_2v_6 is an edge of G passing through v_4. Now \(\{v_1v_5, v_2v_6\}\) is a 2-matching in $G[N(v)]$, contradicting Lemma 3.1. This shows that Statement (i) holds.

(ii) Suppose that v is incident with two true 3-faces. Then such two true 3-faces are consecutive by Claim 3, which are denoted by vv_1v_2 and vv_2v_3. Suppose to the contrary that v is incident with at least four false 3-faces.

If there are three consecutive false 3-faces incident with v, then they have no common edges with at least one of the two true 3-face vv_1v_2 and vv_2v_3. Similar to (i) we can find a 2-matching in $G[N(v)]$, contradicting Lemma 3.1.

Otherwise, there are two consecutive false 3-faces, say vv_1v_4 and vv_4v_6, that has one common edge vv_1 with the true 3-face vv_1v_2, and the other two consecutive false 3-faces,

![Fig. 3. 7-vertex v in G^\times which is incident with exactly six false 3-faces.](image)
say \(vv_3v_5 \) and \(vv_5v_7 \), that has one common edge \(vv_3 \) with the true 3-face \(vv_2v_3 \) (see Fig. 4(b)). Since \(v_1 \) and \(v_3 \) are true vertices, \(v_6 \) and \(v_7 \) are both true vertices, and \(v_1v_6 \) is an edge of \(G \) passing through \(v_4 \) and \(v_3v_7 \) is an edge of \(G \) passing through \(v_5 \). Now \(\{v_1v_6, v_3v_7\} \) is a 2-matching in \(G[N(v)] \), contradicting Lemma 3.1. So Statement (ii) holds.

\[\square \]

Fig. 4. 7-vertex \(v \) in \(G^x \) which is incident with at least one true 3-face.

The following are the discharging rules.

R1 Every false vertex in \(G^x \) gives \(\frac{1}{2} \) to each incident 4\(^-\)-face.

R2 Every \(6^+\)-vertex in \(G^x \) gives \(\frac{4}{3} \) to each incident true 3-face, and gives \(\frac{7}{4} \) to each incident false 3-face, and gives \(\frac{1}{2} \) to each incident 4-face.

Next we verify that the new charge of each member in \(V(G^x) \cup F(G^x) \) is nonnegative. Firstly we consider any face \(f \in F(G^x) \). There are three cases according to the degree of a face.

Case 1. \(d_{G^x}(f) = 3 \). If \(f \) is a true 3-face, then all vertices incident with \(f \) are \(6^+\)-vertices since \(\delta(G) \geq 6 \). By R2, \(w'(f) = 2d_{G^x}(f) - 10 + \frac{1}{2} \times 3 = 2 \times 3 - 10 + 4 = 0 \). If \(f \) is a false 3-face, then all vertices incident with \(f \) are one false vertex and two \(6^+\)-vertices because \(\delta(G) \geq 6 \) and \(G \) is a 1-planar graph. By R1 and R2, \(w'(f) = 2d_{G^x}(f) - 10 + \frac{1}{2} + \frac{7}{4} \times 2 = 2 \times 3 - 10 + \frac{1}{2} + \frac{7}{2} = 0 \).

Case 2. \(d_{G^x}(f) = 4 \). Whether \(f \) is a true 4-face or a false 4-face, by R1 and R2, \(w'(f) = 2d_{G^x}(f) - 10 + \frac{1}{2} \times 4 = 2 \times 4 - 10 + 2 = 0 \).

Case 3. \(d_{G^x}(f) \geq 5 \). By R1 and R2, \(f \) has neither lost charge nor gained charge, so \(w'(f) = 2d_{G^x}(f) - 10 \geq 0 \).

Now we consider any vertex \(v \in V(G^x) \). There are four cases according to the degree of a vertex.

Case 4. \(d_{G^x}(v) = 4 \). Because \(v \) is incident with at most four 4\(^-\)-faces, \(w'(v) \geq 3d_{G^x}(v) - 10 - \frac{1}{2} \times 4 = 3 \times 4 - 10 - 2 = 0 \) by R1.
Case 5. $d_{G^x}(v) = 6$. By Claim 1 and R2, $w'(v) \geq 3d_{G^x}(v) - 10 - \frac{7}{4} \times 4 - \frac{1}{2} \times 2 = 3 \times 6 - 10 - 7 - 1 = 0$.

Case 6. $d_{G^x}(v) = 7$. If v is not incident with a true 3-face, then by Claim 2 and R2, $w'(v) \geq 3d_{G^x}(v) - 10 - \frac{7}{4} \times 6 - \frac{1}{2} \times 1 = 3 \times 7 - 10 - \frac{21}{2} - \frac{1}{2} = 0$; Otherwise, v is incident with one or two true 3-faces by Claim 3. Further, by Claim 4 and R2, $w'(v) \geq 3d_{G^x}(v) - 10 - \frac{7}{4} \times 4 - \frac{4}{3} \times 1 - \frac{1}{2} \times 2 = 3 \times 7 - 10 - 7 - \frac{4}{3} - 1 = \frac{5}{3} > 0$.

Case 7. $d_{G^x}(v) \geq 8$. By R2, $w'(v) \geq 3d_{G^x}(v) - 10 - \frac{7}{4} d_{G^x}(v) = \frac{5}{4} d_{G^x}(v) - 10 \geq 0$.

In summary we get that for each $x \in V(G^x) \cup F(G^x)$, $w'(x) \geq 0$, which is a contradiction. This completes the proof of Theorem 1.11.

We remark that the non-5-extendability of 1-planar graphs in Theorem 1.11 is best possible by presenting a 4-extendable 1-planar graph drawn in Fig. 5. We use a computer program to check the validation of the example: we find that the 1-planar graph has exactly 967469 4-matchings and each 4-matching can be contained in a perfect matching. Further, the graph has 1116948 perfect matchings and a 5-matching (see bold edges in Fig 5) not extendable to a perfect matching.

![Fig. 5. A 4-extendable 1-planar graph.](image)

4 Remarks on factor-criticality of 1-planar graphs

We conclude with some remarks on the maximum factor-criticality of (optimal) 1-planar graphs. Yu [12] and Favaron [11] independently formulated the definition of a k-factor-critical graph. A graph of order n is k-factor-critical, where k is an integer with $0 \leq k < n$ and $n + k$ is even, if $G - S$ admits a perfect matching for every set S of
k vertices of G. Favaron in [11] obtained following basic properties of k-factor-critical graphs.

Theorem 4.1 ([11]). For $k \geq 2$, any k-factor-critical graph of order $n > k$ is $(k - 2)$-factor-critical.

Theorem 4.2 ([11]). For $k \geq 1$, any k-factor-critical graph of order $n > k$ is k-connected and $(k + 1)$-edge-connected.

Theorem 4.3. No 1-planar graph is 7-factor-critical.

Proof. Suppose to the contrary that there exists a 7-factor-critical 1-planar graph G. Then by Theorem 4.2, G is 8-edge-connected. Then $\delta(G) \geq 8$, contradicting Lemma 1.5.

![Fig. 6. A 6-factor-critical 1-planar graph.](image)

![Fig. 7. A 5-factor-critical 1-planar graph.](image)

In other word, each 1-planar graph is not 7-factor-critical. The non-7-factor-criticality of 1-planar graphs is best possible by providing a 6-factor-critical 1-planar graph in Fig. 6 that is a 7-regular 1-planar graph taken from [2] and a 5-factor-critical 1-planar graph of
odd order in Fig. 7. We also present a computer check to the validation of both examples: we find that the former has exactly 340361 perfect matchings and the removal of any 6 vertices results in a graph with a perfect matching, and the removal of any 5 vertices of the latter results in a graph with a perfect matching.

Next we turn to factor-criticality of optimal 1-planar graphs. The following theorem can be obtained from Theorem 1.9. Here we give a direct proof.

Theorem 4.4. No optimal 1-planar graph is 6-factor-critical.

Proof., Suppose to the contrary that there exists a 6-factor-critical optimal 1-planar graph G. Then by Theorem 4.2, G is 7-edge-connected and $\delta(G) \geq 7$. From Lemma 2.2, each vertex of G has even degree, so $\delta(G) \geq 8$, contradicting Lemma 1.5.

Here the non-6-factor-criticality of optimal 1-planar graphs is best possible by presenting 4- and 5-factor-critical optimal 1-planar graphs shown in Fig. 8 (a) and (b) respectively. Their validation has also been confirmed by a computer program.

![Fig. 8. 4- and 5-factor-critical optimal 1-planar graphs.](image)

References

[1] G. Ringel, Ein sechsfarbenproblem auf der Kugel (in German), Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg 29 (1-2)(1965) 107-117.

[2] I. Fabrici, T. Madaras, The structure of 1-planar graphs, Discrete Math. 307 (2007) 854-865.
[3] J. Fujisawa, K. Segawa, Y. Suzuki, The matching extendability of optimal 1-planar graphs, Graphs Comb. 34 (2018) 1089-1099.
[4] M. D. Plummer, On n-extendable graphs, Discrete Math. 31 (1980) 201-210.
[5] M. D. Plummer, A theorem on matchings in the plane, Discrete Math. 41 (1989) 347-354.
[6] M. D. Plummer, Extending matchings in planar graphs IV, Discrete Math. 109 (1992) 207-219.
[7] M. D. Plummer, Extending matchings in graphs: an update. Surveys in graph theory (San Francisco, CA, 1995), Congr. Numer. 116 (1996) 3-32.
[8] M. D. Plummer, Recent progress in matching extension. Building bridges, Bolyai Soc. Math. Stu., vol. 19, pp. 427-454, Springer, Berlin, 2008.
[9] M. D. Plummer, Matching extension and the genus of a graph, J. Combin. Theory Ser.B 44 (1988) 329-337.
[10] N. Dean, The matching extendability of surfaces, J. Comb. Theory Ser. B 54 (1992) 133-141.
[11] O. Favaron, On k-factor-critical graphs, Discuss. Math. Graph Theory 16 (1996) 41-51.
[12] Q. Yu, Characterizations of various matching extensions in graphs, Australas. J. Combin. 7 (1993) 55-64.
[13] Q. R. Yu, G. Z. Liu, Graph Factors and Matching Extensions, Higher Education Press, Beijing, China, 2009.
[14] Y. Suzuki, Re-embedding of maximum 1-planar graphs, SIAM. J. Discrete Math. 24 (2010) 1527-1540.