Study of Nitrogen Release Potential of *Entisol* and *Vertisol* as Influenced by Various Sources of Nitrogenous Fertilizers

N.B. More, S.S. Sadafule*, V.R. Gaikwad, B.D. Tamboli and G.D. Patil

Division of Soil Science and Agriculture Chemistry, College of Agriculture, Pune, Maharashtra, India

A Corresponding author

The experiment was conducted to study the nitrogen release potential of *Entisol* and *Vertisol* as influenced by the treatments of neem coated urea (NCU), DAP, NPK briquette, NP briquette, urea briquette and crotonylidene diurea (CDU). The application of all the sources of nitrogenous fertilizers increased the N release potential by 336.78 % to 411.49 % over the control in *Entisol* and by 342.59 % to 470.98 % over the control in *Vertisol*. The application of NCU in *Entisol* (7.16 mg kg⁻¹ day⁻¹) and the application of NPK briquette in *Vertisol* (7.63 mg kg⁻¹ day⁻¹) showed the highest N release potential. The NPK briquette and NP briquette are identified as the best slow nitrogen releasing fertilizers followed by the neem coated urea and urea briquette.

Keywords
Nitrogen release potential, *Entisol*, *Vertisol*, Nitrogenous fertilizers

Introduction

The improved understanding of N mineralization and N immobilization, along with their continuous changing dynamics may improve our ability to manage N cycling and increase nitrogen use efficiency (NUE) by minimizing N losses whatever the form (Cabrera *et al.*, 2005). The use of slow N releasing fertilizers having higher nitrogen release potential is new development in this direction of improving NUE of fertilizers. To minimize nutrient losses and increase the use efficiency of N fertilizer, the placement of fertilizer or spot application of fertilizer, use of slow release fertilizer and nitrification inhibitors are recommended. The use of urea super granules, urea briquette and urea DAP briquette are another development in this direction (Daftardar and Savant, 1995). Placement of NPK briquette at 10 cm deep maintained higher level of NH₄⁺-N and NO₃⁻-N in soil (More, 1999). However, the information regarding a comparative performance of neem coated urea, DAP, NPK briquette, NP briquette, urea briquette and crotonylidene diurea with respect to nitrogen release pattern and availability of NH₄⁺-N and NO₃⁻-N from these sources is limited. Therefore, the present study was undertaken...
to study the nitrogen release potential of *Entisol* and *Vertisol* as affected by these various sources of nitrogenous fertilizers.

Materials and Methods

The present laboratory experiment was conducted at Division of Soil Science and Agricultural Chemistry, College of Agriculture, Pune, Maharashtra during 2017-18 to study the release pattern of nitrogen in *Entisol* and *Vertisol* due to effect of various inorganic nitrogenous fertilizers at field capacity moisture regime (0.33 bar). The various physico-chemical properties of soils are analyzed by using various standard methods, the soil properties are given in given in table 1.

There were fourteen treatments in experiment viz. combination of six nitrogenous fertilizers viz. F_1-neem coated urea (NCU), F_2-DAP, F_3-NPK briquette, F_4-NP briquette, F_5-urea briquette and F_6-Crotonylidene diurea (CDU) and F_0-control with two soils viz. *Entisol*(S_1) and *Vertisol*(S_2). For maintaining moisture at field capacity level, double distilled water was used throughout the experiment. The amount of N fertilizers to be added is calculated on the basis of recommended dose of rice crop i.e. 100 kg N per hectare. As 1 ha of soil weight is 2.24×10^6 kg so further calculations were made to determine the quantity of N fertilizers for 1 kg of soil and 200 mg of N was added per kg of soil (Table 2).

Incubation study for 0, 15, 30, 45, 60, 75 and 90 days of incubation (DOI) after addition of nitrogenous fertilizers into soils was carried out at ambient condition. The NH_4^+-N and NO_3^--N in *Entisol* and *Vertisol* are evaluated by method described by Kenney and Nelson (1982). It is determined immediately after sampling at each interval day by taking 5 gm of soil from each incubated bowl. At the same time same weight of soil sample was kept for determining the moisture content for further calculations.

Results and Discussion

Nitrogen release potential of *Entisol*

Among the different nitrogenous fertilizers, the highest amount of cumulative NH_4^+-N (153.03 mg kg$^{-1}$) found in DAP whereas the highest amount of NO_3^--N (596.59 mg kg$^{-1}$) found in NPK briquette fertilizer (Table 3). In case of N release potential, the highest nitrogen release rate was observed in case of fertilizer F_1 (NCU) @ 7.16 mg kg$^{-1}$ day$^{-1}$ followed by fertilizer F_3 (NPK briquette) @ 6.98 mg kg$^{-1}$ day$^{-1}$ and fertilizer F_4 @ 6.94 mg kg$^{-1}$ day$^{-1}$ in *Entisol*. Similarly Suganya et al., (2009) observed that the lowest nitrate nitrogen content was under NCU products which show the higher N release potential with respect to time. Thus, use of neem coated urea products prolonged the nitrogen availability for the crop growth thereby minimized the losses of nitrogen and improved the nitrogen use efficiency.

The lowest nitrogen release rate found to be in control fertilizer @ 1.74 mg kg$^{-1}$ day$^{-1}$. It is observed that nitrogen release potential was highest in all fertilizer soils than control. Further it was also found that at the end of incubation period NO_3^--N was at higher levels than NH_4^+-N in all treatments which might be due to activities of nitrifying microbes which oxidize the NH_4^+-N to NO_3^--N. Similar results were observed by Singh (2017) while studying mineralization kinetics of organic manures (Table 4 and 5).

During study the application of all the sources of nitrogenous fertilizers increased the N release potential by 336.78 % to 411.49 % over the control. The nitrogen release potential in *Entisol* was in order; NCU >NPK briquette >NP briquette >DAP >UB >CDU >Control.
Nitrogen release potential of Vertisol

Among the different nitrogenous fertilizers, the highest amount of cumulative NH$_4^+$-N (154.10 mg kg$^{-1}$) found in DAP whereas the highest amount of NO$_3^-$-N (643.83 mg kg$^{-1}$) found in NPK briquette fertilizer.

The highest quantity of nitrogen release potential was observed in NPK briquette @ 7.63 mg kg$^{-1}$ day$^{-1}$ followed by NP briquette @ 7.57 mg kg$^{-1}$ day$^{-1}$ and Urea briquette @ 7.31 mg kg$^{-1}$ day$^{-1}$ throughout the incubation study. As that of Entisol, the quantity of NO$_3^-$-N found to be very high than that of NH$_4^+$-N at the end of incubation study.

The order of nitrogen release potential was found to be; NPK briquette > NP briquette > UB > DAP > NCU > CDU > Control. Also in Vertisol, CDU showed the lowest nitrogen release potential as that of Entisol. From the results, it is revealed that neem coated urea (F$_1$) in Entisol while NPK briquette (F$_3$) in Vertisol performed better nitrogen release potential than other fertilizers in same soils. This proves the superiority of briquette fertilizers as reported by More and Shinde (2001), Durgude et al., (2008) and Singh (2012). The application of all the sources of nitrogenous fertilizers increased the N release potential by 342.59 per cent to 470.98 per cent over the control in Vertisol (Table 6–8).

Table 1 Physico-chemical properties of Entisol and Vertisol

Sr. No.	Soil properties	Entisol	Vertisol
A.	Physical properties		
1.	Sand (%)	52.50	20.35
2.	Silt (%)	31.75	28.05
3.	Clay (%)	15.75	51.60
4.	Textural class	Sandy loam	Clay
5.	Bulk density (g cm$^{-3}$)	1.45	1.27
6.	Field capacity (%)	29.02	37.60
7.	Permanent wilting point (%)	15.54	20.60
B.	Chemical properties		
8.	pH (1:2.5; soil:water)	7.31	8.14
9.	EC (dSm$^{-1}$)	0.12	0.23
10.	Organic carbon (%)	0.28	0.54
11.	CaCO$_3$ equivalent (%)	1.75	8.01
12.	Available nitrogen (kg ha$^{-1}$)	213.24	288.51
13.	Available phosphorous (kg ha$^{-1}$)	34.50	24.38
14.	Available potassium (kg ha$^{-1}$)	329.28	499.52
15.	Ammonical nitrogen (mg kg$^{-1}$)	13.05	19.60
16.	Nitrate nitrogen (mg kg$^{-1}$)	22.60	31.20
17.	Exchangeable cations (meq. 100 g$^{-1}$)		
	Ca$^{2+}$	26.29	61.30
	Mg$^{2+}$	13.80	26.10
	Na$^+$	21.35	29.84
	k$^+$	23.40	21.09
Table 2 Quantity of nitrogenous fertilizers used for incubation studies

Sources of N fertilizers	Estimated Total N content (%)	Amount of N fertilizers (mg) added to maintain 200 mg N kg\(^{-1}\) soil
Neem coated urea	43.05	193.80
DAP	16.10	496.00
NPK briquette	25.66	327.60
NP briquette	32.66	256.00
Urea briquette	42.00	193.80
Crotonylidene diurea	32.50	226.00 (micro ml)

Table 3 Effect of nitrogenous fertilizers on cumulative NH\(_4^+\)-N content of Entisol (mg kg\(^{-1}\))

Nitrogenous fertilizers	Incubation periods (Days)	Cumulative total						
	0	15	30	45	60	75	90	
NCU	30.80	26.73	25.50	11.19	7.94	7.30	5.15	114.60
DAP	75.00	24.10	22.73	11.55	8.31	7.22	4.12	153.03
NPK briquette	31.03	20.80	11.80	10.97	8.40	8.67	7.30	98.97
NP briquette	33.83	24.30	12.15	11.35	9.48	8.62	7.03	106.76
UB	29.13	25.20	13.03	9.59	7.04	7.18	3.99	95.16
CDU	44.87	25.50	20.74	12.16	6.14	6.33	5.29	121.04
Control	14.97	13.30	12.98	8.59	7.23	6.95	3.20	67.22

Table 4 Effect of nitrogenous fertilizers on cumulative NO\(_3^-\)-N content of Entisol (mg kg\(^{-1}\))

Nitrogenous fertilizers	Incubation periods (Days)	Cumulative total						
	0	15	30	45	60	75	90	
NCU	14.57	39.51	85.80	86.26	97.42	125.45	126.0	575.01
DAP	15.63	42.86	73.21	76.62	84.67	114.44	115.00	522.43
NPK briquette	36.00	55.87	57.93	76.55	94.97	136.50	138.77	596.59
NP briquette	30.76	53.50	55.73	75.50	94.33	135.10	137.33	582.26
UB	23.33	52.89	53.92	72.83	88.33	129.83	120.77	541.91
CDU	13.47	42.12	55.19	62.17	81.40	106.22	104.53	465.09
Control	8.30	14.52	20.59	18.60	17.34	16.87	16.67	112.89
Table 5: Nitrogen release potential of Entisol due to effect of nitrogenous fertilizers

Nitrogenous fertilizers	Incubation periods (Days)	Cumulative total						
	0	15	30	45	60	75	90	
NCU	29.43	25.88	23.72	10.85	6.84	6.69	5.88	109.29
DAP	78.43	26.47	21.55	9.05	7.37	5.96	5.27	154.10
NPK briquette	31.64	23.93	15.03	15.03	9.60	8.72	7.83	111.79
NP briquette	32.00	27.08	15.58	13.74	8.23	7.60	7.60	111.83
UB	31.13	26.99	18.82	12.50	7.23	6.64	5.94	109.25
CDU	32.80	22.00	19.65	11.66	6.13	5.83	6.02	104.10
Control	14.77	13.39	10.31	8.29	6.30	6.55	3.98	63.58

Table 6: Effect of nitrogenous fertilizers on cumulative NH$_4^+$-N content of Vertisol (mg kg$^{-1}$)

Nitrogenous fertilizers	Mineral N at 0 days	Mineral N after 90 days	N Mineralization Potential mg kg$^{-1}$ day$^{-1}$			
	NH$_4^+$-N (mg kg$^{-1}$)	NO$_3^-$-N (mg kg$^{-1}$)	f=(c-a)+(d-b)			
	(a)	(b)	e= (c-a)+(d-b)			
NCU	30.80	14.57	114.60	575.01	644.24	7.16
DAP	75.00	15.63	153.03	522.43	584.82	6.50
NPK briquette	31.03	36.00	98.97	596.59	628.53	6.98
NP briquette	33.83	30.76	106.76	582.26	624.43	6.94
UB	29.13	23.33	95.16	541.91	584.60	6.50
CDU	44.87	13.47	121.04	465.09	527.79	5.86
Control	14.97	8.30	67.22	112.89	156.84	1.74

Table 7: Effect of nitrogenous fertilizers on cumulative NO$_3^-$-N content of Vertisol (mg kg$^{-1}$)

Nitrogenous fertilizers (F)	Incubation periods (Days)	Cumulative total						
	0	15	30	45	60	75	90	
NCU	12.55	35.38	77.16	78.04	87.04	121.68	122.88	534.74
DAP	15.40	70.83	78.48	82.10	94.31	117.92	116.90	575.94
NPK briquette	37.67	62.25	81.63	92.89	95.55	137.01	136.83	643.83
NP briquette	36.96	61.30	80.03	92.33	94.47	136.83	136.57	638.49
UB	25.03	58.56	79.25	81.14	91.88	135.73	132.83	604.43
CDU	12.13	35.92	61.41	61.67	74.64	96.73	97.73	440.24
Control	7.39	13.07	17.88	18.00	17.62	15.10	15.01	104.07

2954
Table 8: Nitrogen release potential of Vertisol due to effect of nitrogenous fertilizers

Nitrogenous Fertilizers	Mineral N at 0 days (mg kg⁻¹)	Mineral N at 90 days (mg kg⁻¹)	N Mineralization Potential mg kg⁻¹ day⁻¹	N Mineralization Potential mg kg⁻¹ day⁻¹		
	NH₄⁺-N (a)	NO₃⁻-N (b)	(c-a)+(d-b)	f=e/90		
NCU	29.43	12.55	109.29	534.74	602.04	6.69
DAP	78.43	15.40	154.10	575.94	636.21	7.07
NPK Briquette	31.64	37.67	111.79	643.83	686.31	7.63
NP Briquette	32.00	36.96	111.83	638.49	681.36	7.57
UB	31.13	25.03	109.25	604.43	657.52	7.31
CDU	32.80	12.13	104.10	440.24	499.40	5.55
Control	14.77	7.39	63.58	104.07	145.50	1.62

In conclusion in case of Entisol the highest N release potential is observed through application of neem coated urea and followed by NPK briquette whereas in case of Vertisol the highest N release potential is observed through application of NPK briquette and followed by NP briquette. The application of all the sources of nitrogenous fertilizers increased the N release potential by 336.78 % to 411.49 % over the control in Entisol and by 342.59 % to 470.98 % over the control in Vertisol.

References

Cabrera, M. L., Kissel, D. E. and Vigil, M. F. 2005. Nitrogen mineralization from organic residues. Journal of Environmental Quality, 34: 75-79.

Daftardar, S.V. and Savant, N.K. (1995) Evaluation of environmental friendly fertilizer management for rainfed Low land rice on tribal farmer’s field in India. Paper presented at IRRC, 13-17 Feb., 1995. Los Banos, Laguna, Philippines.

Durgude A.G., Y.J. Patil, A.V. Bulbule and V.S. Patil (2008) Effect of fertilizer management through urea - DAP briquettes on low land rice. Asian Journal of Soil Science, 3: 1-3.

Keeney, D. R. and Nelson, D.W. (1982). Nitrogen-Inorganic forms. In “Methods of Soil Analysis, Part Chemical and Microbiological Properties”, Page A. L. (Ed), II edition, American Society of Agronomy, Inc. and Soil Science Society of America, Inc. Madison, Wisconsin, USA, 643-693.

More N. B. 1999. Use of NPK briquette in Sugarcane. Ph.D. thesis submitted to M.P.K.V., Rahuri.

More N.B. and B.N. Shinde (2001) Effect of NPK briquette on Availability and Uptake of Nutrients by Sugarcane. Journal of Maharashtra Agricultural Universities, 27: 121-123.

Singh K. K. (2012) Use of NPK briquette for wheat, M.sc. (Agri) thesis submitted to M.P.K.V., Rahuri.

SinghSubhash (2017) Kinetics of nitrogen mineralization in Inceptisol by the use of organic manures, M.Sc. agri thesis submitted to MPKV, Rahuri.

Suganya S., K. Appavu and A. Vadivel (2009) Mineralization pattern of neem coated urea products in different soils. Research Paper. International Journal of Agricultural Science, 5: 175-179.

How to cite this article:

More, N.B., S.S. Sadafule, V.R. Gaikwad, B.D. Tamboli and Patil, G.D. 2019. Study of Nitrogen Release Potential of Entisol and Vertisol as Influenced by Various Sources of Nitrogenous Fertilizers. Int.J.Curr.Microbiol.App.Sci. 8(01): 2950-2955. doi: https://doi.org/10.20546/ijcmas.2019.801.313