AN INTEGRAL FORMULA FOR THE Q'-PRIME CURVATURE IN 3-DIMENSIONAL CR GEOMETRY

JEFFREY S. CASE, JIH-HSIN CHENG, AND PAUL YANG

Abstract. We give an integral formula for the total Q'-curvature of a three-dimensional CR manifold with positive CR Yamabe constant and nonnegative Paneitz operator. Our derivation includes a relationship between the Green’s functions of the CR Laplacian and the P'-operator.

1. Introduction

The Q'-curvature, introduced to three-dimensional CR manifolds by the first- and third-named authors [2] and to higher-dimensional CR manifolds by Hirachi [9], has recently emerged as the natural CR counterpart to Branson’s Q-curvature in conformal geometry. The analogies are especially strong in dimension three, where it is known that the total Q'-curvature is a biholomorphic invariant — indeed, it is a multiple of the Burns–Epstein invariant [2, 3] — and gives rise to a CR invariant characterization of the standard CR three-sphere.

The above discussion is complicated by the fact that the Q'-curvature is most naturally defined only for pseudo-Einstein contact forms. A pseudohermitian manifold (M^3, J, θ) is pseudo-Einstein if the curvature \mathcal{R} and torsion A_{11} of the Tanaka–Webster connection satisfy $R_1 = iA_{11,1}$. It is known [8] that if θ is a pseudo-Einstein contact form, then $\hat{\theta} := e^{\Upsilon} \theta$ is pseudo-Einstein if and only if Υ is a CR pluriharmonic function. Moreover, if M^3 is embedded in \mathbb{C}^2, then pseudo-Einstein contact forms arise from solutions of Fefferman’s Monge–Ampère equation [5]. For a pseudo-Einstein manifold (M^3, J, θ), the Q'-curvature is defined by

$$Q' := -2\Delta R + R^2 - 4|A_{11}|^2.$$

The behavior of Q' under the conformal transformation of θ to $\hat{\theta}$ is controlled by the P'-prime operator P' and the Paneitz operator P, which have the local expressions

$$P'(u) := 4\Delta^2 u - 8 \text{Im}(A_{11}u_1)\overline{1} - 4 \text{Re}(Ru_1)\overline{1},$$

$$P(u) := \Delta^2 u + T^2 u - 4 \text{Im}(A_{11}u_1)\overline{1}.$$
More precisely, if $\hat{\theta} = e^Y \theta$ and θ are both pseudo-Einstein, then
\begin{equation}
\tag{1}
e^{2Y} \hat{Q}' = Q' + P'(Y) + \frac{1}{2} P(Y^2).
\end{equation}

From this formula, it is clear that the total Q'-curvature is independent of the choice of pseudo-Einstein contact form. A direct computation also shows that if the holomorphic tangent bundle of M is trivial, then the total Q'-curvature is a multiple of the Burns–Epstein invariant [3].

The CR Yamabe constant of a CR manifold (M^3, J) is the infimum of the total (Tanaka–Webster) scalar curvature over all contact forms of volume one. For CR manifolds (M^3, J) with positive CR Yamabe constant and nonnegative Paneitz operator, the first- and third-named authors [2] showed that $\int Q' \leq 16\pi^2$ with equality if and only if (M^3, J) is CR equivalent to the standard CR three-sphere. The main goal of this note is to refine this statement by giving an integral formula for the total Q'-curvature in terms of the Green’s function of the CR Laplacian:

Theorem 1. Let $(M^3, J, \hat{\theta})$ be a pseudo-Einstein manifold with positive CR Yamabe constant and nonnegative Paneitz operator. Given any $p \in M$, it holds that
\begin{equation}
\tag{2}
\int_M Q' = 16\pi^2 - 4 \int_M G_L^2 |A_{11}|^2 \hat{\theta} - 12 \int_M 3 \log(G_L) P_A \log(G_L)
\end{equation}

where G_L is the Green’s function for the CR Laplacian with pole p and $\hat{\theta} = G_L^2 \theta$. In particular,
$$\int_M Q' \leq 16\pi^2$$

with equality if and only if (M^3, J) is CR equivalent to the standard CR three sphere.

Theorem 1 is motivated by similar work in conformal geometry: Gursky [6] used the total Q-curvature to characterize the standard four-sphere among all Riemannian manifolds with positive Yamabe constant and Hang–Yang [7] rederived this result by giving an integral formula for the total Q-curvature in terms of the Green’s function for the conformal Laplacian.

The key technical difficulty in the proof of Theorem 1 comes from the potential need to consider the Q'-curvature of a contact form which is not pseudo-Einstein. On the one hand, $\log G_L$ need not be CR pluri-harmonic, and hence $G_L^2 \theta$ need not be pseudo-Einstein; this problem is overcome by adapting ideas from [2]. On the other hand, estimates for $\log G_L$ are usually derived in CR normal coordinates (cf. [10]), but CR normal coordinates need not be specified in terms of a pseudo-Einstein contact form. We overcome the latter issue by using Moser’s contact form, which is necessarily pseudo-Einstein, as a replacement for CR normal coordinates.
Ignoring these technical difficulties, the idea of the proof of Theorem 1 is to observe that \(\hat{\theta} := G_L^2 \theta \) has vanishing scalar curvature away from the pole, and hence \(\hat{Q} \) has a particularly simple expression. Equation (1) relates \(Q \) and \(\hat{Q} \) in terms of \(P'(\log G_L) \) and \(P((\log G_L)^2) \). Using normal coordinates, we can compute these latter functions near the pole \(p \), at which point (2) follows from (1) by integration. As an upshot of this approach, we relate \(\log G_L \) and the Green’s function for \(P' \); we expect this relation to be useful for future studies of the \(Q' \)-curvature.

This note is organized as follows: In Section 2, we recall necessary facts about Moser’s contact form and use it to relate \(Q' \) and \(\hat{Q}' \). In Section 3, we integrate this relation to prove Theorem 1.

2. Moser’s contact form and normal coordinates

Moser’s normal form for a real hypersurface in \(\mathbb{C}^2 \) (see, e.g., [4]) reads
\[
v = |z|^2 - E(u, z, \bar{z})
\]
where \((z, w) \in C^2, w = u + iv \), and
\[
E(u, z, \bar{z}) = -c_{42}(u)z^4\bar{z}^2 - c_{24}(u)z^2\bar{z}^4
- c_{33}(u)z^3\bar{z}^3 + O(7).
\]
Hereafter we use \(O(k) \) to denote \(O(\rho^k) \) where \(\rho := (|z|^4 + u^2)^{1/4} \).

Associated to the defining function
\[
r = \frac{1}{2i}(w - \bar{w}) - |z|^2 + E(u, z, \bar{z}),
\]
we have Moser’s contact form
\[
\theta = i\partial r = \frac{1}{2}dw - i\bar{z}dz + i(E_z dz + E_u \frac{1}{2}dw)
\]
in which we have used \(E_w = E_{u \frac{1}{2}} \) and \(E_z := \partial E/\partial z, E_u := \partial E/\partial u, \) etc.

We call coordinates \((z, u) \) for real hypersurface \(\{ r = 0 \} \) Moser’s normal coordinates. We are going to compute pseudohermitian quantities with respect to Moser’s contact form in Moser’s normal coordinates.

Compute
\[
d\theta = ig_{1\bar{1}}dz \wedge d\bar{z} + \theta \wedge \phi
\]
where
\[
g_{1\bar{1}} = 1 - E_{zz} - \lambda E_{u\bar{z}} - \bar{\lambda} E_{uz} - |\lambda|^2E_{uu},
\]
\[
\phi = a_1 dz + a_{\bar{1}} d\bar{z}
\]
in which
\[
\lambda = \frac{\bar{z} - E_z}{-i + E_u} = i\bar{z} - iE_z + \bar{z}E_u + O(6)
\]
\[
a_1 = \frac{-E_{uz} - \lambda E_{uu}}{i + E_u}, a_{\bar{1}} = (a_1).
\]
The order counting follows the rule that \(z, \bar{z}\) are of order 1 and \(u\) is of order 2. Here we have also used the relation between \(dw\) and \(\theta\):
\[
dw = \frac{2}{1 + iE_u}(\theta + i(\bar{z} - E_z)dz).
\]

Take a pseudohermitian coframe
\[
\tag{6}
\theta^1 := dz - ia^1\theta,
\]
\[
a^1 := g^{1\bar{1}}a_{\bar{1}}
\]
where \(g^{1\bar{1}} := (g_{1\bar{1}})^{-1}\), such that
\[
\tag{7}
d\theta = ig_{1\bar{1}}\theta^1 \wedge \theta^\bar{1}.
\]
The dual frame \(Z_1\) (such that \(\theta(Z_1) = 0, \theta^1(Z_1) = 1,\) and \(\theta^\bar{1}(Z_1) = 0\)) reads
\[
\tag{8}
Z_1 = \frac{\partial}{\partial z} + \lambda \frac{\partial}{\partial u} = \hat{Z}_1 + O(5) \frac{\partial}{\partial u}
\]
where \(\hat{Z}_1 := \partial_z + i\bar{z}\partial_u\).

Differentiating \(\theta^1\) from (6) gives
\[
\tag{9}
d\theta^1 = \theta^1 \wedge \tilde{\omega}_1^1 + iZ_1(a^1)\theta \wedge \theta^\bar{1}
\]
by (7), where
\[
\tag{10}
\tilde{\omega}_1^1 = a_1\theta^\bar{1} - iZ_1(a^1)\theta.
\]
Differentiating (7) gives no \(\theta\) component of
\[
dg_{1\bar{1}} - g_{1\bar{1}}\tilde{\omega}_1^1 - g_{1\bar{1}}\tilde{\omega}_1^\bar{1}
\]
\[
= [Z_1g_{1\bar{1}} - g_{1\bar{1}}a_1]\theta^1 + \text{conjugate}
\]
where \(\tilde{\omega}_1^\bar{1}\) is the complex conjugate of \(\tilde{\omega}_1^1\). It follows that the pseudohermitian connection form \(\omega_1^1\) reads
\[
\tag{11}
\omega_1^1 = \tilde{\omega}_1^1 + (g^{1\bar{1}}Z_1g_{1\bar{1}} - a_1)\theta^1.
\]
We also reads from (9) that
\[
\tag{12}
A_1^1 = iZ_1(a^1).
\]

Substituting (11) into the structure equation \(d\omega_1^1 = Rg_{1\bar{1}}\theta^1 \wedge \theta^\bar{1}\) mod \(\theta\), we obtain the Tanaka-Webster (scalar) curvature
\[
\tag{13}
R = Z_1^\prime a_1 + Z_1a_1^1 + Z_1^1a_1 - Z_1^\prime Z_1^\prime g_{1\bar{1}} + a_1(Z_1^\prime g_{1\bar{1}} - a_1^1) - a_1^1 a_1
\]
where we have used \(g^{1\bar{1}}\) to raise the indices, e.g., \(Z_1 := g^{1\bar{1}}Z_1 = (g^{1\bar{1}}Z_1) = (Z_1^\dagger), a_1^1 := g^{1\bar{1}}a_1^1\). We then compute the lowest order terms of \(Z_1^\prime a_1^1\),
By (14) and alike formulas, we can compute
\[Z^1 g_{1\bar{1}} = -E_{uu} - iE_{uz} - zE_{uuu} + \bar{z}E_{uu\bar{z}} - i|z|^2 E_{uuu} + O(3), \]
\[Z^1 g_{1\bar{1}} = -E_{zz}^1 - 2i\bar{z}E_{z\bar{z}} + izE_{zzu} + \bar{z}^2 E_{uuu} - iE_{uz} \]
\[-2|z|^2 E_{uuu} - \bar{z}E_{uu} - i\bar{z}|z|^2 E_{uuu} + O(4). \]

Here we have counted \(z, \bar{z} \) of order 1, \(u \) of order 2, and used \(g^{1\bar{1}} = 1 + O(4), \lambda = i\bar{z} - iE_z + \bar{z}E_u + \text{h.o.t.}, a_1 = iE_{uz} - \bar{z}E_{uu} + \text{h.o.t.} \), \(Z_1 = \partial_z + i\bar{z}\partial_u + \text{h.o.t.} \). From (12) we compute
\[(15) \quad A^1_1 = E_{uu\bar{z}} - 2izE_{uu\bar{z}} + z^2 E_{uuuu} + O(3). \]

By (14) and alike formulas, we can compute \(R \) through (13):
\[(16) \quad R = -2E_{uu} + E_{uuuu} - 2i\bar{z}E_{z\bar{z}u} - 2i\bar{z}E_{z\bar{z}\bar{z}u} \]
\[+ 4|z|^2 E_{z\bar{z}uu} - z^2 E_{uuzz} - \bar{z}^2 E_{uuuu} + 2i\bar{z}|z|^2 E_{uuuu} \]
\[-2i|z|^2 E_{uuuu} + |z|^4 E_{uuuu} + O(3) \]

We can then compute \(R_{1,1} = Z_1 R, A^1_{1,1}, \) and obtain the pseudo-Einstein tensor as follows:
\[(17) \quad R_{1,1} - iA^1_{1,1} = E_{zzzz} - 4izE_{uu} + 3i\bar{z}E_{z\bar{z}uu} \]
\[-3iE_{zz\bar{z}u} - 2izE_{zzz\bar{z}u} + 6|z|^2 E_{zz\bar{z}uu} \]
\[-3\bar{z}^2 E_{z\bar{z}uu} + 6izE_{z\bar{z}z\bar{z}u} + 6i|z|^2 E_{zz\bar{z}uu} \]
\[-3izE_{zzzz} - z^2 E_{uuzzzz} - 3iz|z|^2 E_{uuuu} \]
\[-i\bar{z}^3 E_{uuuu} + iz^2 E_{uumu} - 2\bar{z}^2 |z|^2 E_{uuumu} \]
\[-6iz|z|^2 E_{uumu} + 3|z|^4 E_{uumuu} + \bar{z}|z|^2 E_{uumu} \]
\[+ i\bar{z}|z|^4 E_{uumuu} + O(2). \]

From (17) along the \(u \)-curve (a chain) where \(z = 0 \), we conclude that \(R_{1,1} - iA^1_{1,1} = 0 \) (terms in \(O(2) \) all vanish because of special structure of Moser’s normal form) and does not vanish identically in general. The reason is that the coefficient of \(z \) in \(E_{zzzz} \) is \(c_{42}(u) \) which is proportional to the Cartan tensor.

In general a pseudo-Einstein contact form may not be a “normalized” contact form that gives CR normal coordinates. So we take the contact form associated to the solution \(\psi \) to the complex Monge–Ampère equation:
\[(18) \quad J[\psi] := \det \begin{bmatrix} \psi & \psi_\bar{z} & \psi_{\bar{w}} \\ \psi_z & \psi_{zz} & \psi_{z\bar{w}} \\ \psi_w & \psi_{w\bar{z}} & \psi_{ww} \end{bmatrix} = 1 \]
in \(\Omega \) and \(\psi = 0 \) on \(\partial\Omega \). The contact form \(\theta := i\partial\bar{\psi} \) is pseudo-Einstein. We want to compute \(\Delta_b, P, P \) w.r.t. this \(\theta \), but in Moser’s normal
coordinates \((z, u)\). For \(r\) having a form of \((3)\) multiplied by \(4^{1/3}\), we have

\[
J[r] = 1 + O(\rho^4) \tag{19}
\]

Lee-Melrose’s asymptotic expansion reads

\[
\psi \sim r \sum_{k \geq 0} \eta_k (r^3 \log r)^k \quad \text{near } \partial \Omega = \{ r = 0 \} \subset C^2
\]

with \(\eta_k \in C^\infty(\bar{\Omega})\). This means that for large \(N\), \(\psi - r \sum_{k=0}^{N} \eta_k (r^3 \log r)^k\) has many continuous derivatives on \(\bar{\Omega}\) and vanishes to high order at \(\partial \Omega\). It follows from \((18), (19),\) and \((20)\) that

\[
J[r \eta_0] = 1 + O(\rho^4) \quad \text{and} \quad \eta_0 = 1 + O(\rho^4).
\]

So we have

\[
\psi \sim r \eta_0 + \eta_1 r^4 \log r + h.o.t. \\
\sim r + O(\rho^6).
\]

Similar argument as for \(r\) before works for \(\psi\). Therefore, with respect to the pseudo-Einstein contact form defined by \(\psi\), we still have

\[
\theta = (1 + O(\rho^4)) \hat{\theta} + O(\rho^5) dz + O(\rho^5) d\bar{z},
\]

\[
\theta^1 = O(\rho^3) \hat{\theta} + (1 + O(\rho^8)) dz + O(\rho^8) d\bar{z},
\]

\[
Z_1 = \hat{Z}_1 + O(\rho^5) \frac{\partial}{\partial u},
\]

\[
\omega_1^1 = O(\rho^2) \hat{\theta} + O(\rho^3) dz + O(\rho^7) d\bar{z},
\]

\[
A_1^1 = O(\rho^2), \quad R = O(\rho^2),
\]

\[
g_{11} = 1 + O(\rho^4), \quad g_{1\bar{1}} = 1 + O(\rho^4)
\]

in view of \((3), (5), (10), (11), (15), (16),\) and \((4)\). Now let \(L\) denote the \(CR\) Laplacian:

\[
L := -4 \triangle_b + R
\]

where \(\triangle_b\) is the (positive) sublaplacian given by

\[
\triangle_b = \hat{Z}^1 \hat{Z}_1 - \omega_1^1 (\hat{Z}^1) \hat{Z}_1 + \text{conjugate}. \tag{22}
\]

Let \(G_L\) denote the Green’s function of \(L\), i.e.,

\[
LG_L = -4 \triangle_b G_L + RG_L = 16 \delta_p. \tag{23}
\]

Let \(\hat{P}' := 4 \hat{\triangle}_b^2, \hat{L} := -4 \hat{\triangle}_b\) denote the \(P'\) operator, the \(CR\) Laplacian for the Heisenberg group \(\mathbb{H}^1\), respectively. Observe that (cf. \([1]\))

\[
P'(\log G_L) = \hat{P}'(\log \frac{1}{2\pi \rho^2}) = 8\pi^2 S_p
\]

where \(S_p = S(p, \cdot)\) for \(S(p, \cdot)\) the kernel of the orthogonal projection \(\pi: L^2(\mathbb{H}^1) \to \mathcal{P}(\mathbb{H}^1)\) onto the space of \(CR\) pluriharmonic functions.
where we have used $G_L = \frac{1}{2\pi \rho^2}$. From (21) and (22) we obtain

$$\Delta_b = (1 + O(\rho^4))\hat{\Delta}_b + O(\rho^{10})\frac{\partial^2}{\partial u^2} + O(\rho^4)\frac{\partial}{\partial u}$$

$$+ O(\rho^5)\frac{\partial}{\partial u} + O(\rho^7)\hat{Z}_1$$

$$+ O(\rho^5)\frac{\partial}{\partial u} + O(\rho^7)\hat{Z}_1.$$

Write

$$G_L = \frac{1}{2\pi \rho^2} + \omega.$$

From (23), (24), and (21) we obtain $L\omega = a$ bounded function near p.

Therefore from subelliptic regularity theory of L, we see that ω is in the Folland–Stein space $S^{2,q}$ for any $q > 1$, and hence $w \in C^{1,\gamma}$. In fact, ω is C^∞ smooth. Recall that

$$P' = 4\Delta_b - 8Im\nabla^1(A_1^\dagger \nabla_1) - 4Re\nabla^1(R\nabla_1)$$

$$\hat{P}' + 4(\Delta_b - \hat{\Delta}_b)$$

$$- 8Im\nabla^1(A_1^\dagger \nabla_1) - 4Re\nabla^1(R\nabla_1).$$

Write

$$\log G_L = \log(\frac{1}{2\pi \rho^2} + \omega)$$

$$= \log(\frac{1}{2\pi \rho^2}) + \log(1 + 2\pi \rho^2 \omega).$$

We can now compute

$$P'(\log G_L) = \hat{P}'(\log(\frac{1}{2\pi \rho^2})) + (P' - \hat{P}')(\log(\frac{1}{2\pi \rho^2}))$$

$$+ P'(\log(1 + 2\pi \rho^2 \omega))$$

$$= 8\pi^2 S_p + \{4(\Delta_b - \hat{\Delta}_b) - 8Im\nabla^1(A_1^\dagger \nabla_1)$$

$$- 4Re\nabla^1(R\nabla_1)\}(\log(\frac{1}{2\pi \rho^2}))$$

$$+ P'(\log(1 + 2\pi \rho^2 \omega)).$$

Since ω is C^∞ smooth, the third term is a bounded function near p. The second term is also bounded near p in view of (21) and (24). So we conclude that

$$P'(\log G_L) = 8\pi^2 S_p + a$$

Similarly we can show

$$P((\log G_L)^2) = 8\pi^2 (\delta_p - S_p) + a.$$
On the other hand, we reduce computing the most singular term in $P_3(\log G_L)$ to computing $P_3(\log(\frac{1}{2\pi\rho^2}))$ by (21). In view of (21) we find that the most singular term in $P_3(\log(\frac{1}{2\pi\rho^2}))$ is a constant multiple of $\hat{P}_3(\log \rho)$ where $\hat{P}_3 = \hat{Z}_1\hat{Z}_1\hat{Z}_1$ is the P_3-operator w.r.t. the Heisenberg group H_1. Observe that $|z|^2 - iu$ is a CR function on H_1, i.e.,

$$\hat{Z}_1(|z|^2 - iu) = (\partial_z - iz\partial_u)(|z|^2 - iu) = 0.$$

It follows that the real part of $\log(|z|^2 - iu)$ is CR pluriharmonic. By (21) we have

$$\hat{P}_3 ((\log ||z|^2 - iu|) = \hat{Z}_1\hat{Z}_1\hat{Z}_1 (\log ||z|^2 - iu|) = 0.$$

Since $\log ||z|^2 - iu| = 2\log \rho$, we conclude that

$$\hat{P}_3(\log \rho) = 0.$$

It follows that

\begin{align*}
(29) \quad P_3(\log G_L) &= \hat{P}_3(\log(\frac{1}{2\pi\rho^2})) \\
&+ (P_3 - \hat{P}_3)(\log(\frac{1}{2\pi\rho^2})) \\
&+ P_3(\log(1 + 2\pi\rho^2\omega)) \\
&= 0 + (P_3 - \hat{P}_3)(\log(\frac{1}{2\pi\rho^2})) \\
&+ P_3(\log(1 + 2\pi\rho^2\omega)) \\
&= O(\rho).
\end{align*}

by (21). So $(\log G_L)P(\log G_L)$ has blow-up rate as $\log \rho$ near the pole p. Hence it is integrable with respect to the volume $\theta \wedge d\theta$ which has vanishing order ρ^3 near p.

3. A FORMULA FOR THE INTEGRAL OF Q' CURVATURE

Let θ be a pseudo-Einstein contact form on (M^3, J). By [2] Proposition 6.1], for any $\Upsilon \in C^\infty(M)$, it holds that $\hat{\theta} := e^{\Upsilon} \theta$ satisfies

\begin{align*}
(30) \quad e^{2\Upsilon} \hat{Q}' &= Q^{\Upsilon} + P'(\Upsilon) + \frac{1}{2}P(\Upsilon^2) \\
&- \Upsilon P(\Upsilon) - 16Re(\nabla^1\Upsilon)(P_3\Upsilon)_1
\end{align*}

where P_3 is the operator characterizing CR pluriharmonics. Recall that $P(\Upsilon) = 4\nabla^1(P_3\Upsilon)_1$.

Let G_L be the Green’s function of the CR Laplacian (we assume $\Upsilon(J) > 0$). Set $\hat{\theta} = G_L^2 \theta$. Then $\hat{\theta}$ has vanishing scalar curvature away from the pole p. In particular, we have

$$\hat{Q}' = -4|\hat{A}_{11}|_\hat{\theta}^2.$$
away from the pole \(p \). Plugging this into (30), we see that away from \(p \),

\[
-4G_L^4|\hat{A}_{11}|_\theta^2 = Q' + 2P'(\log G_L) + 2P((\log G_L)^2) - 4(\log G_L)P(\log G_L) - 64Re(\nabla^1 \log G_L)(P_3(\log G_L))_1.
\]

Now assume \((M^3, J)\) is embedded in \(\mathbb{C}^2 \). Take \(\theta \) to be the pseudo-Einstein contact form associated to the solution to complex Monge–Ampère equation (18). We look at the order of \(G_L^4|\hat{A}_{11}|_\theta^2 \) near \(p \). The transformation law of torsion reads

\[
\hat{A}_{11} = G_L^{-2}(A_{11} + 2i(\log G_L)_{,11} - 4i(\log G_L)_{,1}(\log G_L),_1
\]

(see [11, p. 421]). Recall \(\dot{Z}_1 := \partial_z + iz\partial_u \). Observe that

\[
\dot{Z}_1 \log \rho^4 = \frac{2\bar{z}}{|z|^2 - iu},
\]

\[
\dot{Z}_1 \bar{Z}_1 \log \rho^4 = \frac{-4\bar{z}^2}{(|z|^2 - iu)^2} = -(\dot{Z}_1 \log \rho^4)^2.
\]

Therefore we have

\[
\dot{Z}_1 \bar{Z}_1 \log \frac{1}{2\pi \rho^2} - 2(\dot{Z}_1 \log \frac{1}{2\pi \rho^2})^2 = 0
\]

It follows from (21) and (33) that

\[
A_{11} = O(\rho^2)
\]

\[
2i(\log G_L)_{,11} - 4i(\log G_L)_{,1}(\log G_L),_1 = O(\rho^2)
\]

near \(p \). So from (32) and (34), we learn that

\[
G_L^4|\hat{A}_{11}|_\theta^2 = O(\rho^4)
\]

near \(p \). By (29), we obtain that the last two terms in (31) are \(L^1 \) and bounded near \(p \), respectively. In view of (27), (28), (35), and (31), we then have

\[
2P'(\log G_L) + 2P((\log G_L)^2)
\]

\[
= 16\pi^2 \delta_p - Q' - 4G_L^4|\hat{A}_{11}|_\theta^2
\]

\[
+ 4(\log G_L)P(\log G_L) + 64Re(\nabla^1 \log G_L)(P_3(\log G_L))_1.
\]

in the distribution sense. Integrating the last term in (36) gives

\[
-16 \int (\log G_L)P(\log G_L) + 64Re \int_{\text{around } p} (\log G_L)P_3(\log G_L)i\theta \wedge \theta^1.
\]

Here we have omitted the lower index “1” for the \(P_3 \) term. The boundary term in (37) vanishes by (29) and that \(\theta \wedge \theta^1 \) has vanishing order
of ρ^3 near p. Applying (36) to the constant function 1 yields

$$0 = 16\pi^2 - \int Q' - 4 \int G_L^4|\hat{A}_{11}|^2 - 12 \int (\log G_L) P(\log G_L)$$

by (37). Here notice that in the distribution sense,

$$2P'(\log G_L)(1) = 2 \int (\log G_L) P'(1) = 0$$

since $P'(1) = 0$. Similarly we get $2P((\log G_L)^2)(1) = 0$ since $P(1) = 0$. Assuming $P \geq 0$, we get that

$$\int Q' = 16\pi^2 - 4 \int G_L^4|\hat{A}_{11}|^2 - 12 \int (\log G_L) P(\log G_L)$$

$$\leq 16\pi^2.$$

Moreover, equality holds if and only if $\hat{A}_{11} \equiv 0$ and $\log G_L$ is pluriharmonic. Since also $\hat{R} \equiv 0$, we conclude that $(M \setminus \{p\}, \hat{\theta})$ is isometric to the Heisenberg group \mathbb{H}^1. Indeed, the developing map identifies the universal cover of $M \setminus \{p\}$ with \mathbb{H}^1, while the fact that a neighborhood of p (equivalently, a neighborhood of infinity in $(M \setminus \{p\}, \hat{\theta})$) is simply connected implies that the covering map is trivial. By adding back the point p, we conclude that (M, J) is CR equivalent to the standard CR three-sphere.

References

[1] Branson, T. P., Fontana, L., and Morpurgo, C., Moser–Trudinger and Beckner–Onofri’s inequalities on the CR sphere, Ann. of Math. (2), 177(1):1–52, 2013.
[2] Case, J. S. and Yang, P., A Paneitz-type operator for CR pluriharmonic functions, Bull. Inst. Math. Acad. Sin. (N.S.), 8(3):285–322, 2013.
[3] Cheng, J.-H. and Lee, J. M., The Burns-Epstein invariant and deformation of CR structures, Duke Math. J., 60(1):221–254, 1990.
[4] Chern, S.-S. and Moser, J. K., Real hypersurfaces in complex manifolds, Acta Math., 133:219–271, 1974.
[5] Fefferman, C. and Hirachi K., Ambient metric construction of Q- curvature in conformal and CR geometries, Math. Res. Lett., 10(5-6):819–831, 2003.
[6] Gursky, M., The principal eigenvalue of a conformally invariant differential operator, with an application to semilinear elliptic PDE, Comm. Math. Phys., 207(1):131–143, 1999.
[7] Hang, F. and Yang, P., Sign of Green’s function of Paneitz operators and the Q curvature, Int. Math. Res. Not. IMRN, (19):9775–9791, 2015.
[8] Hirachi, K., Scalar pseudo-Hermitian invariants and the Szegő kernel on three-dimensional CR manifolds, in Complex geometry (Osaka, 1990), volume 143 of Lecture Notes in Pure and Appl. Math., pages 67–76. Dekker, New York, 1993.
[9] Hirachi, K., Q-prime curvature on CR manifolds, Differential Geom. Appl., 33(suppl.):213–245, 2014.
[10] Hsiao, C.-Y. and Yung, P., Solving Kohn Laplacian on asymptotically flat CR manifolds of dimension 3, Adv. in Math., 281:734–822, 2015.
[11] Lee, John M., The Fefferman metric and pseudohermitian invariants, Trans. A.M.S., 296(1):411–429, 1986.
Department of Mathematics, Pennsylvania State University, University Park, PA 16802, U.S.A.
E-mail address: jqc5026@psu.edu

Institute of Mathematics, Academia Sinica, Taipei and National Center for Theoretical Sciences, Taipei Office, Taiwan, R.O.C.
E-mail address: cheng@math.sinica.edu.tw

Department of Mathematics, Princeton University, Princeton, NJ 08544, U.S.A.
E-mail address: yang@Math.Princeton.EDU