Resistance Inheritance of *Plutella xylostella* Population to Residual of Emamectin Benzoate

Udi Tarwotjo, Rully Rahadian

DOI: 10.15294/biosaintifika.v9i1.8048

Department of Biology, Faculty of Sciences and Mathematics, Diponegoro University, Indonesia

Abstract

Excessive use of insecticides drives the increasing ability of pests to become resistant. The objectives of this research were to study the susceptibility and the resistance inheritance of the eleven population of *P. xylostella* to emamectin benzoate. The leaf-dip bioassay was applied to determine the sensitivity of *P. xylostella* to emamectin benzoate. The offspring of backcrossed F2 were tested whether the resistance was controlled by monogenic. The results showed that the LC50 of the Selo population was 53.42 ppb, and the Puasan population was 212.13 ppb. The genetic analysis showed that the backcrossed degree of dominance (D) was less than 1. It was indicated that the *P. xylostella* resistance to emamectin benzoate was recessive. The value of LC50 of the backcrossed F1♀ x ♀S (177.99 ppb) and its reciprocals x ♂R (F1) (201.69 ppb) were not significantly different with the value of LC50 resistance population. This suggests that the nature of *P. xylostella* resistance to emamectin benzoate was controlled by monogenic. The result of the study would be beneficial for developing strategy to maintain susceptible population using refugee plant during lack of their host.

How to Cite

Tarwotjo, U., & Rahadian, R. (2017). Resistance Inheritance of *Plutella xylostella* Population to Residual of Emamectin Benzoate. *Biosaintifika: Journal of Biology & Biology Education*, 9(1), 19-25.

© 2017 Universitas Negeri Semarang

History Article

Received 27 November 2016
Approved 25 January 2017
Published 1 April 2017

Keywords

resistance; *Plutella xylostella*; emamectin benzoate; recessive; monogenic
INTRODUCTION

Larvae of *Plutella xylostella* (L) and *Crocidolomia binotatus* (Zell) (Lepidoptera: Pyralidae) are two types of highly destructive pests of cabbage plants, especially during the dry season (Winarto, & Nazir, 2004). Cabbage yield loss in Indonesia by *P. xylostella* together with *C. binotatus* (Zell) in dry season reached 100% when did not apply insecticides. Meanwhile, the loss in the cabbage harvest in Malaysia because of the *P. xylostella* reached 87.5% without insecticide application. The average loss of crop harvest in Segunung was 58% (Bynum & Archer, 2000; Setiawaty, 2000).

Cabbage pest control in Indonesia is still heavily dependent on the use of insecticides. The use of insecticides in cabbage crop especially in highland area is very intensive, whether using high-dose and spraying a very short interval (Abate et al., 2000; Nuryanti, 2001). This situation cause many serious problems, including developing insecticides resistance, reduced toxicity values, changes in toxicological properties, and changes in population genetics characters (Shelton et al., 2000).

Excessive use of insecticides could increase the ability of pests to become resistant to a particular chemical insecticide. It is because individuals of pests which are susceptible will be eliminated by insecticides (Matsumura & Boethel, 2000). Insect resistance to insecticides is the development of the ability of a population of insects to tolerate doses of toxicant which previously has been shown to turn off most of the individuals from the normal population of the same species (Zhao et al., 2000; Marcon et al., 2000). Naturally, individual insects do not grow and develop into resistant individuals, but the offspring become susceptible individuals. Individual susceptible allele frequency in nature is greater than individual resistant allele frequencies. Individuals resistant allele frequency (RR) range from 10^{-2} until 10^{-13} (Georghiou & Taylor, 1986; Groeters & Tabashnik et al, 1992).

Attique et al. (2006) stated that the use of insecticide lambda-cyhalothrin in New Zealand affected resistance of *P. xylostella* population significantly, up to 885 fold, while the spinosad and indoxacarb affected light resistance or even no resistance at all. Moreover, Attique et al. 2006 also showed that resistance properties was reduced to methamidophos. Bailey (2001) showed that the differences of susceptibility within populations of *Heliothis virescens* against Dipel and endotoxin were 3.6 and 8 fold, respectively. The level of resistance of *Pseudoplusia includens* population in the United States against emamectin benzoate vary between 1 to 6.21 fold (Moulton et al., 2002). Susceptibility of *P. xylostella* populations in California against emamectin benzoate were 1-13 fold (Shelton et al., 2000). Wearing et. al. (2000) showed that the resistance of *Platynotriti xocoi* against tebufenozida increased 269 fold compared to the susceptible strain. According Moulton et al. (2002), the LC$_{50}$ of meto克斯enozida on field strain of *Spodoptera exigua* was higher than the laboratory strain (Harwanto, 2014).

Resistance occur not only to conventional insecticides, but also to 3rd generation insecticides i.e. Insect Growth Regulators (IGRs) such as ecdison agonists, juvenile hormone (JH). Juvenile hormone that already applied to control insects in the United States are metropin, kinoprin, and hidroprin, while chitin inhibitors insecticides is diflubenzuron (Ware, 2004).

The pattern of inheritance of insect resistance to insecticides can be determined by doing a cross between individuals that are resistant and susceptible individuals. If the resistance trait is controlled by two alleles at one locus, the R allele for resistance properties and the S allele to the natural susceptible, then in the population there are three possible genotypes of insects, namely RR, RS and SS. A cross between a homozygous resistant (RR) is recessive with homozygous susceptible (SS) which will predominantly produce offspring (F$_1$) heterozigot (RS) that is susceptible. When F$_1$ is allowed to do cross each other there will be segregation in the F$_2$ phenotype ratio of 3:1 (Cummings & Klugs, 1997). Characteristic patterns of inheritance include the influence of the female parent (maternal genetic effect) linkage resistance properties of a specific gender (sex linkage), the dominance of inheritance, and the number of genes controlling (Tabashnik, 1992).

Inheritance of resistance can be controlled by one or a few genes. The estimation of the number of loci involved in inheritance of resistance needs is important to determine whether the resistance is controlled by a single gene (monogenic) or by many genes (polygenic). Estimation of the involvement of a single gene or multiple genes in the inheritance of resistance is important to know how heredity may influence the rate of change in the nature of the population (Sato et al., 2004).

Inheritance of insect resistance to insecticides can be either dominant or recessive and monogenic or polygenic controlled. In general, allele controlling insect resistance properties are recessive, inherited in an autosomal, and controlled monogenic. It is important to know the cha-
characteristics of resistance properties as the base of resistance management strategies which are developed to anticipate and to slow the development of resistance (Moekasen, 2004).

Tabashnik et al. (2002) showed that the resistance of *Leptinotarsa decemlineata* against *B. thuringiensis* was dominant, while Listyaningrum et al. (2003) reported that the resistance of *P. xylostella* on deltametrin was recessive. Hence, the resistance characteristics on particular insect may vary different depend on their insecticide. The objectives of this research were to study the susceptibility and the resistance insects at a jar, and 20 pupae in another jar of susceptible insects. The top of the jar was covered using strimin cloth. Cotton that has been oiled using 10% solution of honey was put on the cloth surface. Imago which emerged from either resistant or susceptible insects were observed to determine their gender. Males imago have abdominal smaller than the female imago (Pérez et al., 2000; Carriere et al., 2001).

Resistance characteristics properties test was reciprocally performed by mating the male population of susceptible (S) *P. xylostella* to the female population of resistant (R). The purpose of crossing is to know the effect of reciprocal maternal and domination resistance properties. Relationship with the concentration of F₁, hybrid larval mortality is used to determine the presence of maternal effects. Bioassay was conducted using leaf immersion method (Nuryanti & Trisyono, 2002; Listyaningrum et al., 2003). Concentration of emamectin benzoate which were used to test the F₁ hybrid females of susceptible offspring (S♀) and male resistant (R♂) were used for testing the concentration of resistant populations. The same concentration was also used to test the F₁ hybrid females marriages resistant (R♀) and males are vulnerable (S♂). To determine dominance (D) resistance to emamectin benzoate in F₁ used the formula of Listyaningrum, et al. 2003; Huang & McGaughey (1999), as followed:

\[D = \frac{2Xb - Xa - Xc}{Xa - Xc} \]

D = the level of dominance. Xa = log₁₀ \[LC_{50}\] resistant population. Xb = log₁₀ \[LC_{50}\] heterozygote population, and Xc = log₁₀ \[LC_{50}\] vulnerable populations. If the value of D = +1 resistance is recessive, the value of D = 0 resistance is intermediate and D = +1 resistance is dominant. LC₅₀ value is calculated using probit analysis (Busvine, 2002). Abbott formulation (1925) was used to correct mortality control. Two LC₅₀ values are not significantly different if the 95% confidence interval was overlap (Trisyono, 2002).

To determine whether the resistance is controlled by single or multiple genes, it was applied backcross between F₁, hybrid with one of the parents (Tabashnik et al., 1992; Tabashnik et al., 2002). The determination of elders was conducted after inheriting resistance properties of F₁ hybrid was knew. Resistance properties was controlled by monogenic when the value χ² calculation \(<χ²tables. χ² value was calculated using the following formula:

\[χ² = \frac{(o - c)^2}{o} \]

Note: o is the number of dead insects on backcross observations on the concentration x, and c is the expected number of dead insects.

The calculation of expected F₁ mortality (backcrossed offspring) was \(F₁ = \) (percentage of F₁ larval expected mortality on concentration + percentage of expected vulnerable mortality on the concentration c) x 0.5 (Tabashnik et al., 2002; Siegfried et al., 2000). If the value χ² calculated<value χ² table then the nature of resistance is controlled by a single gene (monogenic) (Tabashnik et al., 2002; Brewer & Trumble, 1991).

RESULTS AND DISCUSSION

The susceptibility test of *P. xylostella* to emamectin benzoate showed that the LC₅₀ values of the eleven tested population ranged from 53.42 up to 212.13 ppb.

Selo (Cepogo) Population had the lowest LC₅₀ values and showed significant difference to the Kejajar, Plalar (Getasan), Babrik (Ngablak), Kaponan (Ferns), Kertek (Kertek), Keteb (Sawan-gan), and Puasan (Ngablak) population, where
their lower and upper limit value of 95% confidence interval were not overlap. The susceptibility level of Selo population was not significantly different to Gondosuli (Tawangmangu), Kenteng (Sumowono), and Gedongsongo (Bandungan) population (Table 1).

Figure 1. Adult Diamondback moth, *Plutella xylostella*.

The results showed that Selo population has the lowest LC₅₀ value, which is equal to 53.42 ppb, and is the most susceptible population among the population being tested. The Selo homozygote population can be obtained from the testing of the seventh generation of Selo population (F₇) against emamectin benzoate with a concentration of 3.97 to 1000 ppb, to obtain the LC₅₀ values of 46.63 ppb. Remaining F₇ larvae was used as a parent (P) of the susceptible population. Based on the resistance test, Puasan population had the highest of LC₅₀ values, which was amounted to 212.13 ppb. To get the homozygote Puasan population, the selection was applied using emamectin benzoate in the second to fifth generation (F₂-F₅) with a concentration of 7.81 to 2000 ppb, which was obtained the LC₅₀ values of 218.91 ppb. Parent of Puasan population was chosen from the rest of fifth generation of larvae selection (Table 2). Since the LC₅₀ value of F₁ reciprocal crosses were not significantly different compare to the former LC₅₀, the F₁ offspring was combined (pooled) for the next test.

The results of genetic analysis showed that the degree of dominance (D) from crosses between ♂R x ♀S (F₁) was 0.77 and ♂S x ♀R (F₁) was 0.93. When the degree of dominance (D) = -1, it indicates that the nature of *P. xylostella* resistance against emamectin benzoate was recessive. Due to the resistance is recessive, then F₁ hybrid was backcrossed with sensitive elders, otherwise when F₁ hybridisbackcrossed with resistant elders, then the resistance is dominant (Tabashnik et al. 2002). Because of the nature of resistance was recessive, then crossing between F₁♀ x ♂S was applied with LC₅₀ values was 177.99 ppb and crossing between ♂F₁ x ♀S with LC₅₀ values was 158.09 ppb. LC₅₀ value of the backcrossed between ♂F₁ x ♀S (177.99 ppb) and its reciprocal ♂S x ♀R (F₁) (201.69 ppb) was not significantly different compared to the value of crossed LC₅₀ between ♂R x ♀S (218.9 ppb). This suggests that the nature of resistance of *P. xylostella* against emamectin benzoate was controlled by monogenic.

Larval mortality caused by emamectin benzoate from the crossing of ♂S x ♀R (F₁) was not significantly different compared to crossing ♂R x ♀S (F₁). This showed that there was no effect of maternal on inheritance of *P. xylostella* resistance against emamectin benzoate. The absence of ma-

![Image](image_url)

Table 1. Susceptibility of *P. xylostella* populations originating from eleven Central Java province population against emamectin benzoate

Population	Sub Distric	N	Control Mortality	Slope (SE₁)	LC₅₀ (SK 95%) ppb	RF	χ²
Puasan	Ngablak	270	2.27	0.893 ± 0.125	212.13(128.15-351.16) b	3.97	16.61
Keteb	Sawangan	270	2.27	0.791 ± 0.122	153.44 (87.87-267.89) b	2.87	22.19
Babrik	Ngablak 2	270	2.27	0.741 ± 0.135	152.13 (96.30-242.83) b	2.85	13.29
Kaponan	Pakis	270	2.27	0.794 ± 0.121	149.77 (86.74-258.58) b	2.80	14.18
Plalar	Getasan	270	2.27	1.127 ± 0.135	144.44 (88.96-199.71) b	2.70	1.12
Kertek	Kertek	270	4.65	0.734 ± 0.124	137.85 (75.11-252.99) b	2.58	19.65
Kejar	Kejar	270	9.09	0.834 ± 0.114	82.81 (70.70 – 96.99) c	1.55	6.94
Kenteng	Sumowono	270	0.00	0.798 ± 0.118	78.32 (45.86-123.75) a	1.47	14.04
Gondosuli	Tawangmangu	270	4.65	0.846 ± 0.124	78.16 (45.71-121.83) a	1.46	1.94
Gdongsongo	Bandungan	270	2.27	0.844 ± 0.122	75.46 (63.45 – 89.14) a	1.41	6.01
Selo	Cepogo	270	2.27	0.667 ± 0.111	53.42 (44.95 – 63.84) a	1.00	5.85

Note: The larvae used were the third instar larvae; LC₅₀ followed by the same letter are not significantly different; RF = resistance factor; Value χ² table (α = 0.05) = 7.81.
ternal effects could be seen in Figure 2.

Figure 2 indicates, that the larval mortality arising from the cross \(\mathcal{S} \times \mathcal{R} (F_1)\) (\(LC_{50} = 201.69\) ppb) with the results of a cross \(\mathcal{R} \times \mathcal{S} (F_1)\) (\(LC_{50} = 180.51\) ppb) did not significantly different and equally high chart position. \(LC_{50}\) value emamectin benzoate in backcross and its reciprocal test were not significantly different for the population \(F_1\) pooled \(LC_{50}\) and \(LC_{50}\) cross \(\mathcal{R} \times \mathcal{S}\). This means that resistance is inherited monogenic trait. According to Tabashnik (2002) when the \(LC_{50}\) value of the backcrossing test were not significantly different to \(LC_{50}\) of the resistant population, then it is controlled by monogenic resistance, but when there is a significant difference, it is controlled by polygenic resistance. These results can be tested using chi-square analysis (Table 3).

Chi-square analysis showed that the mortality of larvae was greater compared with each tested concentration. Chi-square analysis of monogenic models show that the 2 count each con-

Table 2. LC\(_{50}\) value of crossbred third instar larvae of \(P.\ xylostella\) three-FI hybrid result of reciprocal cross breeding and backcross result.

Crossbreeding	Larva number (n)	Slope (SE)	\(LC_{50}\) (95% confidence interval) (ppb)
\(\mathcal{S} \times \mathcal{S}\)	45	0.68 (0.11)	46.63 (25.70 - 84.61) \(^a\)
\(\mathcal{R} \times \mathcal{R}\)	45	0.89 (0.13)	218.91 (131.39 – 364.72) \(^b\)
\(\mathcal{R} \times \mathcal{S} (F_1)\)	45	0.72 (0.11)	180.51 (96.10 – 339.07) \(^b\)
\(\mathcal{S} \times \mathcal{R} (F_1)\)	45	0.73 (0.12)	201.69 (108.84 – 373.79) \(^b\)
\(F_1\) pooled	45	0.77 (0.11)	196.52 (113.38 – 340.59) \(^b\)
\(F_1 \mathcal{R} \times \mathcal{S}\)	45	1.28 (012)	177.99 (120.23 – 263.03) \(^b\)
\(F_1 \mathcal{R} \times \mathcal{S}\)	45	1.13 (013)	158.09 (107.55 – 232.38) \(^b\)

Note: \(LC_{50}\) Values followed by the same letter are not significantly different because of the overlapping value of the lower and upper 95% confidence interval.

Table 3. Chi-square analysis of crossbacked \(P.\ xylostella\) mortality of \(F_1 \mathcal{F} \times \mathcal{S}\) against emamectin benzoate of monogenic model.

Concentration (ppb)	Mortality (%)	\(\chi^2\) calculated	\(\chi^2\) table	
2000	94.10	92/85	0.02	3.8
500	43.39	44.18	0.01	3.8
125	39.26	41.86	0.17	3.8
31.25	29.04	31.78	0.26	38
7.81	15.53	16.71	0.09	3.8

When the \(LC_{50}\) value of the backcrossing test were not significantly different to \(LC_{50}\) of the resistant population, then it is controlled by monogenic resistance, but when there is a significant difference, it is controlled by polygenic resistance. These results can be tested using chi-square analysis (Table 3).
centration smaller than \(\tau^2 \) tables at \(P = 0.05 \) and \(df = 1 \) (\(\tau^2 \) tables = 3.84). This proves that the inheritance of resistance of \(P. xylostella \) was controlled by a single gene (monogenic). According to Sato et al. (2004), inherited monogenic resistance was likely to be spread in the population than polygenic.

The information about resistance inheritance is important as fundamental strategy for resistance management strategy. The hypothesis about the involvement of single gene or multiple genes in resistance inheritance is important because it could affect the rate of resistance change within population. The resistance inheritance comprehension is important as basic strategy for resistance management. The hypothesis of single gene or multiple genes involvement in resistance inheritance was important due to their role in affecting the rate of resistance characteristic on population. Due to the resistance of \(P. xylostella \) to emamectin benzoate was recessive and being controlled by single gene, it is recommended that the strategy for its management could be using refugee plant as media for susceptible insects was developed. Plant refugee should be chosen from the same family with cabbage crop which were preferred by insects. The availability of refugee was expected to be useful for susceptible population to develop and occur mating with resistance population, thus at the end it will produce susceptible population.

CONCLUSION

The Selo population was the most sensitive population compared to other populations. While the nature of \(P. xylostella \) resistance against emamectin benzoate was recessive and controlled by a single gene (monogenic).

REFERENCES

Abate, T., van Huis, A., & Ampofo, J. K. O. (2000). Pest management strategies in traditional agriculture: an African perspective. *Annual review of entomology*, 45(1), 631-659.

Abbott, W. S. (1925). A method of computing the effectiveness of an insecticide. *J. Econ. Entomol.*, 18(2), 265-267.

Attique, M. N. R., Khaliq, A., & Sayyed, A. H. (2006). Pest resistance to insecticides in *Plutella xylostella* (L., Lepidoptera) be overcome by insecticide mixtures? *Journal of Applied Entomology*, 130(2), 122-127.

Bailey, W. D., Brownie, C., Bacherel, J. S., Gould, F., Kennedy, G. G., Sorenson, C. E., & Roe, R. M. (2001). Species diagnosis and *Bacillus thuringiensis* resistance monitoring of *Heliothis virescens* and *Helicoverpa zea* (Lepidoptera: Noctuidae) field strains from the southern United States using feeding disruption bioassays. *Journal of Economic Entomology*, 94(1), 76-85.

Brewer, M. J., & Trumble, J. T. (1991). Inheritance and fitness consequences of resistance to fenvalerate in *Spodoptera exigua* (Lepidoptera: Noctuidae). *Journal of Economic Entomology*, 84(6), 1638-1644.

Busvine, J. R. (2002). A Critical Review of the Techniques for Testing Insecticides. London: Commonwealth Agriculture Bureaux.

Bynum, E. D., & Archer, T. L. (2000). Identifying insecticide-resistant greenbugs (Homoptera: Aphididae) with diagnostic assay tests. *Journal of Economic Entomology*, 93(4), 1286-1292.

Carrière, Y., Ellers-Kirk, C., Liu, Y. B., Sims, M. A., Patin, A. L., Dennehy, T. J., & Tabashnik, B. E. (2001). Fitness costs and maternal effects associated with resistance to transgenic cotton in the pink bollworm (*Lepidoptera: Gelechiidae*). *Journal of Economic Entomology*, 94(6), 1571-1576.

Cummings, M. R., & Klugs, W. S. (1997). *Concepts of Genetics*. New Jersey: Prentice Hall Inc.

Georghiou, G. P., & Taylor, C. E. (1986). Factors Influencing the Evolution of Resistance, pp. Pest Population (eds), Pesticides Resistance: Strategies and Tactics for Management. National Academy Press Washington, D.C.

Groeters, F. R., & Tabashnik, B. E. (2000). Roles of selection intensity, major genes, and minor genes in evolution of insecticide resistance. *Journal of Economic Entomology*, 93(6), 1580-1587.

Harwanto. (2014). Pengaruh Ekstrak Limbah Daun Tembakau Madura terhadap Aktivitas Makan Larva *Spodoptera exigua*. *Biosaintifika: Journal of Biology & Biology Education*, 4(1), 1-4.

Hillocks, R. J. (2012). Farming with fewer pesticides: EU pesticide review and resulting challenges for UK agriculture. *Crop Protection*, 31(1), 85-93.

Huang, F., & McGaughey, W. H. (1999). Inheritance of resistance to *Bacillus thuringiensis* toxin (Dipel ES) in the European corn borer. *Science*, 284(5416), 965-967.

Khodijah. (2014). Kelimpahan Serangga Predator kutu daun *Aphis gossypii* di Sentra Tanaman Sayuran di Sumatera Selatan. *Biosaintifika: Journal of Biology & Biology Education*, 6(2), 52-53.

Listyaningrum, W., Trisyono, Y. A., & Aziz, P. (2003). Pewanarisan Sifat resistensi terhadap deltamethrin pada *Plutella xylostella*. *J. Perlin. Tan. Indon.*, 9(1), 135-140.

MarCon, P. C. R. G., Siegfried, B. D., Spencer, T., & Hutchison, W. D. (2000). Development of diagnostic concentrations for monitoring *Bacillus thuringiensis* resistance in European corn borer (*Lepidoptera: Crambidae*). *Journal of Economic Entomology*, 93(3), 925-930.

Mascarenhas, R. N., & Boethel, D. J. (2000). Development of diagnostic concentrations for insecti-
icide resistance monitoring in soybean looper (Lepidoptera: Noctuidae) larvae using an artificial diet overlay bioassay. *Journal of Economic Entomology*, 93(3), 897-904.

Moekasan. (2004). Percampuran Spodoptera Nuclear Polyhidrosis Virus dengan Insektisida Kimia untuk Mortalitas Larva Spodoptera exigua Hubn. Di Laboratorium. *J. Hort*. 14(3), 178-187.

Moulton, J. K., Pepper, D. A., Jansson, R. K., & Dennehy, T. J. (2002). Pro-active management of beet armyworm (Lepidoptera: Noctuidae) resistance to tebufenozide and methoxyfenozide: baseline monitoring, risk assessment, and isolation of resistance. *Journal of Economic Entomology*, 95(2), 414-424.

Nuryanti, N. S. P. (2001). Sensitivity Some Plutella xylostella populations in Central Java and Yogyakarta to deltamethrin. Thesis. Yogyakarta: Graduate School, Faculty of Agriculture, University of Gadjah Mada.

Pérez, C. J., Alvarado, P., Narváez, C., Miranda, F., Hernández, L., Vanegas, H., Hruska, A., & Shelton, A. M. (2000). Assessment of Insecticide Resistance in Five Insect Pests Attacking Field and Vegetable Crops in Nicaragua. *Journal of Economic Entomology*, 93(6), 1779-1787.

Setiawati, W. (2000). Pengendalian hama kubis Plutella xylostella L. dan Crocidolomia binotalis Zell. dengan Spinosad 25 SC serta pengaruhnya terhadap parasitoid Diadegma semiclausum Hellen. *J. Hort*, 10(1), 30-39.

Shelton, A. M., Sances, F. V., Hawley, J., Tang, J. D., Bouné, M., Jungers, D., Collins, H. L., & Farias, J. (2000). Assessment of Insecticide Resistance. After the Outbreak of Diamondback Moth (Lepidoptera: Plutellidae) in California in 1997. *Journal of Economic Entomology*, 93(3), 931-936.

Siegfried, B. D., Spencer, T., & Nearman, J. (2000). Baseline susceptibility of the corn earworm (Lepidoptera: Noctuidae) to the Cry1Ab toxin from *Bacillus thuringiensis*. *Journal of Economic Entomology*, 93(4), 1265-1268.

Tabashnik, B. E., Schwartz, J. M., Finson, N., & Johnson, M. W. (1992). Inheritance of resistance to *Bacillus thuringiensis* in diamondback moth (Lepidoptera: Plutellidae). *Journal of Economic Entomology*, 85(4), 1046-1055.

Tabashnik, B. E., Liu, Y. B., Dennehy, T. J., Sims, M. A., Sisterson, M. S., Biggs, R. W., & Carrière, Y. (2002). Inheritance of resistance to Bt toxin Cry1Ac in a field-derived strain of pink bollworm (Lepidoptera: Gelechiidae). *Journal of Economic Entomology*, 95(5), 1018-1026.

Trisyono. (2002). Ecydyon Agonists New Insecticides with Novel Mode of Action. *J. Perlind. Tan. Indon*. 8, 75-85.

Ware, G. W. (2004). *Fundamental of Pesticide*. 2nd Edition. Thomson Publication Fresno

Wearing, C. H., Lo, P., & Walker, J. T. S. (2000). Concern about Managing Organophosphat-Resistant Populations of Leafrollers in New Zealand with Tebufenozide. *Pestic. Sci*. 9, 8-9.

Winarto, L., & Nazir. (2004). Teknologi Pengendalian Hama Plutella xylostella dengan Insektisida dan Agensia Hayati pada Kubis di Kabupaten Karo. *Jurnal Pengkajian dan Pengembangan Teknologi Pertanian*, 7(1), 27-33.

Woodford, J., Moll, A. J., Palalo, K., & Suparta, L. (2015). *The Use of Agrochemicals on Tomato and Cabbage Crops in West Java*. Bandung: Balittan Lembang.

Zhao, J. Z., Bishop, B. A., & Grafius, E. J. (2000). Inheritance and synergism of resistance to imidacloprid in the Colorado potato beetle (Coleoptera: Chrysomelidae). *Journal of Economic Entomology*, 93(5), 1508-1514.