An application of input-output analysis in analyzing the impacts of final demands changes on the total outputs of Japanese energy sectors: A further study

Ubaidillah Zuhdi
Department of Industrial Administration, Tokyo University of Science, Noda 278-8510, Japan
School of Business and Management, Institut Teknologi Bandung, Bandung 40132, Indonesia
ubaidillah.zuhdi@gmail.com

Abstract. The purpose of this study is to continue the previous study which discussed the impacts of final demands changes on the total outputs of Japanese energy sectors. More specifically, this study aims to conduct a deeper analysis regarding these impacts. This study employs a demand-pull Input-Output (IO) quantity model, one of the calculation instruments in IO analysis, as a tool of analysis. This study focuses on two sectors, namely (1) petroleum refinery products, and (2) non-ferrous metals. Two conditions are considered in the analysis part, namely (1) “whole sector change”, and (2) “pure change”. The results show that in both conditions, both discussed sectors have similar patterns. The results also explain that, in both conditions, the biggest positive impact for the sector of petroleum refinery products is given by scenario 4, the modification of consumption expenditures of private.

1. Introduction
In this day and age, human dependence on energy can be easily observed. The simplest evidence is human needs energy when he or she does the activities. This dependency can also be seen in broader aspects. For example, the government usually considers the availability of energy sources when new economic policies must be made. Besides, countries also consider this availability before executing the economic activities such as an international trade. Therefore, based on these facts, one can argue that energy is also economically important.

Many previous studies discussed the energy topic. For example, [1] described the connections between the prices of oil and Euro area’s inflation. [2] investigated the effect of oil price shocks on the economic growth of some Middle East and North Africa (MENA) countries. [3] analyzed the relationship between the changes of price of oil and real Gross Domestic Product (GDP) which the focus was the economy of US. Besides, [4] analyzed the ways to increase the total outputs of Japanese energy sectors in the future. He used Input-Output (IO) analysis and some scenarios of final demands change in his study.

The study analyzes the impacts of final demands changes on the total outputs of energy sectors of specific country, viewed from above previous studies, however, is still thin. This analysis is important because it will describe the characteristics of these sectors when the changes of national economy condition happen. Further, it can give the understanding regarding the improvements needed for enhancing the sectors. This study is conducted in order to fulfill the gap.

The purpose of this study is to continue the previous study which discussed the impacts of final demands changes on the total outputs of Japanese energy sectors. More specifically, this study aims to conduct a deeper analysis regarding these impacts. This study employs IO approach as a tool of analysis.
2. Methodology

The methodology of this study is similar with the one used in a previous study, the study conducted by [4], and described as follows. The first step is to explain the data used. This study uses an aggregated IO table of Japan for 2005. This table consists of 89 industrial sectors. These industries are described in Appendix.

The second step is to describe Japanese energy sectors used. Table 1 shows these sectors. As with a previous study, this study also focuses on two sectors. These sectors are (1) petroleum refinery products, and (2) non-ferrous metals.

The third step is to conduct the calculation in order to know the impacts of final demand changes on the total outputs of analyzed sectors. A demand-pull IO quantity model, one of the calculation instruments in IO analysis, is used in this calculation. [5] explained that following equation is a representation of this model:

\[x^1 = L^0 f^1 \]

where \(x \), \(L \), and \(f \) are matrices of total outputs of sectors, Leontief inverse, and final demands of sectors, respectively. \(0 \) and \(1 \) describe initial and future periods, respectively. An initial period in this study is 2005. Table 2 explains the scenarios of final demands modification used. These scenarios, compared with previous ones, are slightly different. The difference can be seen on the existence of scenario 4, the change of consumption expenditures of private. Simultaneously, the deeper understanding regarding the impacts is obtained through this extension.

The conditions of “whole sector change” and “pure change” are considered in above calculation. The former situation explains the condition which the changes of final demands are addressed to all Japanese industrial sectors while the latter one only focuses on the discussed sectors. In this study, the former one will be called “condition A” while the term of “condition B” is used to explain the latter condition. The analysis regarding above impacts is discussed on the next step. Conclusions of this study and suggestions for further researches are described on the final step.

No.	Sector Number	Sector Name
1	6	Metallic ores
2	7	Non-metallic ores
3	8	Coal mining, crude petroleum and natural gas
4	26	Final chemical products, n.e.c.\(^a\)
5	27	Petroleum refinery products
6	28	Coal products
7	36	Pig iron and crude steel
8	37	Steel products
9	38	Steel castings and forgings, and other steel products
10	39	Non-ferrous metals
11	40	Non-ferrous metal products
12	41	Metal products for construction and architecture
13	42	Other metal products

\(^a\)Not elsewhere classified.

(Source: [6] with slight modifications)
Table 2. The scenarios of final demands modification used in this study.

Component of Final Demand	Scenario 1	Scenario 2	Scenario 3	Scenario 4
	Exports Modification	Imports Modification	The Modification of Consumption Expenditures of Outside Households	The Modification of Consumption Expenditures of Private
Exports	Increase 30%	Constant	Constant	Constant
Imports	Constant	Increase 30%	Constant	Constant
Consumption expenditures of outside households	Constant	Constant	Increase 30%	Constant
Consumption expenditures of private	Constant	Constant	Constant	Increase 30%

3. Results and analysis

Table 3 describes the total outputs of discussed sectors for each scenario on condition A. Figures 1 and 2 explain in more details the dynamics happen on these total outputs on this condition. Based on these results, one can argue that, on this condition, the biggest positive impact on the total output of petroleum refinery products sector is given by scenario 4, the modification of consumption expenditures of private. Meanwhile, scenario 1, the exports modification, has the biggest positive effect on the total output of non-ferrous metals sector. On the contrary, the negative impact is given by scenario 2, the change of imports.

On the other hand, Table 4 describes the total outputs of analyzed sectors for each scenario on condition B. Figures 3 and 4 explain in more details the dynamics happen on these total outputs on this condition. Based on these results, one can say that, on this condition, the biggest positive impact on the total output of petroleum refinery products sector is given by scenario 4, the modification of consumption expenditures of private. Meanwhile, scenario 1, the change of exports, has the biggest positive effect on the total output of non-ferrous metals sector. On the contrary, the negative impact is given by scenario 2, the imports change.

Above phenomena show that, in both conditions, both discussed sectors have similar patterns, namely these industries receive the positive impacts from scenarios 1, 3, and 4 while the opposite impact is obtained from scenario 2. This negative impact also appeared in the previous study. Above phenomena also explain that, in both conditions, the biggest positive impact for the sector of petroleum refinery products is given by scenario 4, the modification of consumption expenditures of private. This is a new finding compared with a previous study. Based on these results, one can argue that the effective ways to increase the total output of this sector in the future are to open greater opportunities for private sectors in processing products of this industry, and to restrict import activities regarding these products.

Table 3. Total outputs of discussed sectors for each scenario on condition A (100 million Yen).

Sector Number	Sector Name	\(X_t \)	\(X_{t+1} \), Scenario 1	\(X_{t+1} \), Scenario 2	\(X_{t+1} \), Scenario 3	\(X_{t+1} \), Scenario 4
27	Petroleum refinery products	156,740.17	170,203.33	138,594.26	158,126.05	193,243.18
39	Non-ferrous metals	21,527.12	29,139.76	11,014.71	21,820.99	24,959.84
Figure 1. The dynamics happen on the total output of petroleum refinery products sector (condition A).

Figure 2. The dynamics happen on the total output of non-ferrous metals sector (condition A).
Table 4. Total outputs of discussed sectors for each scenario on condition B (100 million Yen).

Sector Number	Sector Name	\(X_t \)	\(X_{t+1} \), Scenario 1	\(X_{t+1} \), Scenario 2	\(X_{t+1} \), Scenario 3	\(X_{t+1} \), Scenario 4
27	Petroleum refinery products	156,740.17	159,467.79	148,055.30	156,843.72	175,229.98
39	Non-ferrous metals	21,527.12	22,943.73	14,992.47	21,527.36	21,896.06

Figure 3. The dynamics happen on the total output of petroleum refinery products sector (condition B).

Figure 4. The dynamics happen on the total output of non-ferrous metals sector (condition B).
4. Conclusions and further researches

This study, as a continuation of a previous study, conducted the deeper analysis regarding the impacts of final demands changes on the total outputs of Japanese energy sectors. This study employed a demand-pull IO quantity model, one of the calculation instruments in IO analysis, as a tool of analysis. This study focused on two sectors, namely (1) petroleum refinery products, and (2) non-ferrous metals. Two conditions were considered in the analysis part, namely (1) “whole sector change”, and (2) “pure change”. An initial period in this study was 2005. The difference between current and previous studies could be seen on the existence of scenario 4, the change of consumption expenditures of private.

The results showed that in both conditions, both discussed sectors had similar patterns, namely these industries obtained the positive impacts from scenarios 1, 3, and 4 while the opposite impact was received from scenario 2. This negative impact also appeared in the previous study. The results also explained that, in both conditions, the biggest positive impact for the sector of petroleum refinery products was given by scenario 4, the modification of consumption expenditures of private. This was a new finding in this topic. Based on these results, the suggestions from this study regarding the effective ways to increase the total output of this sector in the future were to open greater chances for private sectors in processing products of this industry, and to limit import activities regarding these products.

The deeper understanding regarding the impacts of final demands changes on the total outputs of Japanese energy sectors was obtained from this study. However, this study only analyzed specific energy sectors of Japan. In other words, the comprehensive view regarding the impacts on the national economy of Japan did not appear in this study. This view is needed in order to make comprehensive policies for enhancing the economic condition of Japan in the future. Therefore, as a further research, this study proposes the same analysis for other Japanese industrial sectors.

The other suggested further research from this study is to conduct the international comparison on the current topic. This comparison will describe the characteristics of industries of analyzed countries when the final demands changes happen. A good example is to compare developed and developing countries.

References

[1] Jacquinot P, Kuismannen M, Mestre R and Spitzer M 2009 An assessment of the inflationary impact of oil shocks in the euro area The Energy Journal 30 49–84
[2] Berument H, Ceylan N B and Dogan N 2010 The impact of oil price shocks on the economic growth of selected MENA countries The Energy Journal 31 149–176
[3] Jimenez-Rodriguez R 2009 Oil price shocks and real GDP growth: testing for non-linearity The Energy Journal 30 1–24
[4] Zuhdi U 2014 An input-output approach to analyze the ways to increase total output of energy sectors: The case of Japan IOP Conference Series: Earth and Environmental Science 19 012015
[5] Miller R E and Blair P D 2009 Input-Output Analysis: Foundations and Extensions (Cambridge: University Press)
[6] Zuhdi U and Mori S 2012 Analyzing the gross output change of energy sector industry in Indonesia between 1990 and 2005 by decomposition analysis Proc. The 3rd Int. Associaton for Energy Economics Asian Conf. (Kyoto, Japan, 20 – 22 February 2012) p 110
[7] Zuhdi U 2014 Analyzing the role of creative industries in national economy of Japan: 1995-2005 Open Journal of Applied Sciences 4 197–211
Appendix. Japanese Industrial Sectors (89 Sectors)

No.	Sector Name
1	Crop cultivation
2	Livestock
3	Agricultural services
4	Forestry
5	Fisheries
6	Metallic ores
7	Non-metallic ores
8	Coal mining, crude petroleum and natural gas
9	Foods
10	Beverage
11	Feeds and organic fertilizer, n.e.c.
12	Tobacco
13	Textile products
14	Wearing apparel and other textile products
15	Timber and wooden products
16	Furniture and fixtures
17	Pulp, paper, paperboard, building paper
18	Paper products
19	Printing, plate making and book binding
20	Chemical fertilizer
21	Industrial inorganic chemicals
22	Petrochemical basic products and intermediate chemical products
23	Synthetic resins
24	Synthetic fibers
25	Medicaments
26	Final chemical products, n.e.c.
27	Petroleum refinery products
28	Coal products
29	Plastic products
30	Rubber products
31	Leather, fur skins and miscellaneous leather products
32	Glass and glass products
33	Cement and cement products
34	Pottery, china and earthenware
35	Other ceramic, stone and clay products
36	Pig iron and crude steel
37	Steel products
38	Steel castings and forgings, and other steel products
39	Non-ferrous metals
40	Non-ferrous metal products
41 Metal products for construction and architecture	
42 Other metal products	
43 General industrial machinery	
44 Special industrial machinery	
45 Other general machines	
46 Machinery for office and service industry	
47 Electrical appliance	
48 Motor vehicles	
49 Ships and repair of ships	
50 Other transportation equipment and repair of transportation equipment	
51 Precision instruments	
52 Miscellaneous manufacturing products	
53 Building construction	
54 Repair of construction	
55 Civil engineering	
56 Electricity	
57 Gas and heat supply	
58 Water supply	
59 Waste management service	
60 Commerce	
61 Finance and insurance	
62 Real estate agencies and rental services	
63 House rent	
64 Railway transport	
65 Road transport (except transport by private cars)	
66 Self-transport by private cars	
67 Water transport	
68 Air transport	
69 Freight forwarding	
70 Storage facility service	
71 Services relating to transport	
72 Communication	
73 Broadcasting and information services	
74 Public administration	
75 Education	
76 Research	
77 Medical service and health	
78 Social security	
79 Other public services	
80 Advertising, survey and information services	
81 Goods rental and leasing services	
82 Repair of motor vehicles and machine	
83 Other business services	
84 Amusement and recreational services	
85 Eating and drinking places	
	Category
---	--
86	Accommodations
87	Other personal services
88	Office supplies
89	Activities not elsewhere classified

(Source: [7] with slight modifications)