Improved hybridization of Fuzzy Analytic Hierarchy Process (FAHP) algorithm with Fuzzy Multiple Attribute Decision Making - Simple Additive Weighting (FMADM-SAW)

B E Zaiwani¹, M Zarlis² and S Efendi³

Department of Information and Technology, Faculty of Computer Science and Information Technology, Universitas Sumatera Utara, Medan, Indonesia.

zaiwani.babyesly@students.usu.ac.id

Abstract. In this research, the improvement of hybridization algorithm of Fuzzy Analytic Hierarchy Process (FAHP) with Fuzzy Technique for Order Preference by Similarity to Ideal Solution (FTOPSIS) in selecting the best bank chief inspector based on several qualitative and quantitative criteria with various priorities. To improve the performance of the above research, FAHP algorithm hybridization with Fuzzy Multiple Attribute Decision Making - Simple Additive Weighting (FMADM-SAW) algorithm was adopted, which applied FAHP algorithm to the weighting process and SAW for the ranking process to determine the promotion of employee at a government institution. The result of improvement of the average value of Efficiency Rate (ER) is 85.24%, which means that this research has succeeded in improving the previous research that is equal to 77.82%. Keywords: Ranking and Selection, Fuzzy AHP, Fuzzy TOPSIS, FMADM-SAW.

1. Introduction

In the research [1] hybridization algorithm of Fuzzy Analytic Hierarchy Process (FAHP) with Fuzzy Technique for Order Preference by Similarity to Ideal Solution (FTOPSIS) was conducted. Hybridization is done by weighting with FAHP algorithm and ranking with FTOPSIS algorithm. The result of this research is the average value of Efficiency Rate (ER) of 77.82% which is still felt too low. The conclusion of this research suggest that in this method developed again by hybridization of FAHP algorithm with Multiple Attribute Decision Making (FMADM).

2. Study of Literature

Decision Support System (DSS) is an interactive computer-based system that helps decision makers utilize data and models to solve a problem. There are several methods including Analytical Hierarchy Process (AHP) and Technique For Order Preference by Similarity to Ideal Solution (TOPSIS) [2]. AHP is a method in a decision-making system that uses several variables with a multilevel analysis process [3]. The analysis is done by giving the priority value of each variable, then do the pairwise comparison of the variables and alternative. TOPSIS is a method based on the concept that the best-chosen alternative not only has the shortest distance from the ideal solution, but also has the longest distance from the ideal solution.

In [1] an integrated approach of Fuzzy Analytical Hierarchical Process (FAHP) and Fuzzy Technique for Fuzzy Technique for Order Preference by Similarity to Ideal Solution (FTOPSIS) is used to calculate...
the weight of criteria and the FTOPSIS method is applied to prioritize the optimal alternative according to the criteria.

3. Findings and Discussions

3.1. Flowchart Research
The Flowchart hybridization algorithm Fuzzy Analytic Hierarchy Process (FAHP) with Fuzzy Multiple-Attribute Decision Making - Simple Additive Weighting (FMADM-SAW) can be seen as in Figure 1.

![Flowchart Research](image)

Figure 1. Flowchart Research

In the flowchart above, the input data in the form of SKP value and the value of Work Behavior taken 2 years. Furthermore, the data is processed by using FAHP, FMADM-SAW and hybridization algorithm is a combination of FAHP-FMADM-SAW algorithm. The result of the process is the Work Performance Value of each algorithm and validation value which is the determination of whether or not an employee is given promotion.

3.2. Data used
The data used comes from Aparatur Sipil Negara (ASN) at Badan Kepegawaian Daerah dan Pengembangan Sumber Daya Manusia of Medan City (BKDPSDM) which is calculated according to the provisions of Badan Kepegawaian Negara as in Table 1.
Table 1. Employee Criteria Assessment Data

Alternative	Name Employee	Value SKP-1	Value SKP-2	Value SKP-3	Value Behavior-1	Value Behavior-2	Value Behavior-3
A1	Agus	65	85	65	75	90	40
A2	Budi	74	80	60	85	96	85
A3	Charli	60	80	60	85	95	80
A4	Deni	85	65	76	90	94	45
A5	Endang	84	74	84	75	94	55
A6	Fajar	90	84	90	75	80	96
A7	Gina	50	56	60	70	70	87
A8	Harry	74	55	50	60	70	75
A9	Indah	75	71	45	62	90	65
A10	Jenny	60	48	60	70	60	85

In Table 1 contains the assessment results of each criterion for each employee scale 100 consisting of criteria SKP Value (Employee Objectives) 1 to 3 and Work Behavior 1 to 3.

3.3. FAHP algorithm

The calculation steps of the FAHP algorithm are as in Table 3.

3.3.1. Structure of hierarchy

The hierarchical structure of the selection problem of promotion can be seen in Figure 2.

![Employee Selection Hierarchy](image)

Figure 2. Structure of Employee Selection Hierarchy

Figure 2 above shows the hierarchical structure of the employee selection problems with selection criteria are SKP-1, SKP-2, SKP-3, Work Behavior-1, Work Behavior-2 and Work Behavior-3. The purpose of this assessment is to obtain the category of Good (B), Enough (C) or Less (K).

3.3.2. Determination of synthesis value

Table 2. Comparison of SKP matrix in pairs of Fuzzy AHP criteria

	K1 = SKP-1	K2 = SKP-2	K3 = SKP-3
B	1	0.33	0.5
C	3	1	0.33
K	1	3	1

Value Table 2 above is obtained from the comparison between 1 element of SKP criteria with other SKP criteria elements.

Table 3. Comparison of Matrix Working Matched Behaviour of Fuzzy AHP criteria

	K1 = Value Behaviour-1	K2 = Value Behaviour-2	K3 = Value Behaviour-3
B	1	0.33	0.55
C	3	1	0.33
K	1	3	1
3.4. FMADM-SAW algorithm
Step I: Evaluate the Fuzzy set of selected alternatives.

a. The linguistic variables that represent the weight of importance for each criterion are T (importance)

\[W = \{SR, R, C, T, ST\} \]

With:
- SR = Very Low
- R = Low
- C = Enough
- T = High
- ST = Very High

Where each is represented by the triangle fuzzy number as follows:
- SR = (0, 0, 0.25)
- R = (0, 0.25, 0.5)
- C = (0.25, 0.5, 0.75)
- T = (0.5, 0.75, 1)
- ST = (0.75, 1, 1)

b. The degree of suitability of alternatives to the decision criteria is:

\[T (match)S = \{SK, K, C, B, SB\} \]

with:
- SK = Very Less
- K = Less
- C = Enough
- B = Good
- SB = Very Good

Where each is represented by the triangle fuzzy number as follows:
- SK = (0, 0, 0.25)
- K = (0, 0.25, 0.5)
- C = (0.25, 0.5, 0.75) B = (0.5, 0.75, 1)

Ratings for each decision criterion can be seen as in Table 4.

Table 4. Rating of interest for each criterion
Criterion

Value SKP-1
Value SKP-2
Value SKP-3
Value Behaviour-1
Value Behaviour-2
Value Behaviour-3
3.5. Implementation of Hybridization Algorithm (FAHP-FMADM-SAW)

Hybridization algorithm is the application of FAHP algorithm on weighting and FMADM-SAW for ranking based on input from FAHP to determine promotion of ASN with the case study of BKDPSDM. Ways of weighting and consistency ratio with FAHP algorithm and ranking with the FMADM-SAW algorithm can be seen as Chapter 3.3 and 3.4 above.

Table 5. Result Weighted FAHP Algorithm	Table 6. Result FMADM-SAW Algorithm					
Criterion	**Weight**	**Percentage**	**No.**	**Alternative**	**End Value**	**Point**
SKP-1	0.028	0.2%	1	Agus	0.366	100
SKP-2	0.085	0.8%	2	Budi	0.342	85
SKP-3	0.14	14.0%	3	Fajar	0.191	70
Behaviour-1	0.20	2.0%	4	Denny	0.121	50
Behaviour-2	0.25	25.0%	5	Charli	0.010	50
Behaviour-3	0.28	28.0%	6	Gina	0.000	0

In Table 5 we can see the weighting results for each criterion (SKP or Work Behavior). In Table 6 shows the ranking for each employee (alternative).

Furthermore, the weight obtained with FAHP algorithm is calculated by the FMADM-SAW algorithm to step rank for determination of promotion in the employee. Flowchart Hybridization algorithm can be seen as in Figure 3.

![Figure 3. Flowchart Hybridization Algorithm](image-url)
4. User interface

4.1. View of example alternative data

In this form look the data input alternative the employee biodata that will be processed ranking for determination promotion.

4.2. View of ranking process

In this form seen the ranking process of each alternative that can be seen the result on the bottom right.

5. Conclusion

There is an improvement of Dooki, A.E., Bolhasani, P. & Fallah, M. (2017) research, where the average value of Efficiency Rate (ER) is only 77.82% which is still too low. In Dooki, Bolhasani and Fallah's research, hybridization of Fuzzy Analytic Hierarchy Process (FAHP) algorithm was adopted by Fuzzy Technique for Order Preference by Similarity to Ideal Solution (FTOPSIS) to select the best bank chief inspector based on several qualitative and quantitative criteria with various priorities. The AHP and TOPSIS Fuzzy Methods are used to determine the criteria and ranking weight of each of the selected inspectors. In this research, we made an improvement of Dooki and Bolhasani and Fallah research by improving the FAHP algorithm with Simple Additive Weighting (SAW), which is done by applying FAHP Algorithm to the weighting process and SAW for the ranking process to determine the promotion of the employee. The result of improvement is the average value of ER is 85.24%, which means that this research has succeeded in improving Dooki and Bolhasani and Fallah research by 7.42%.

References

[1] Dooki AE, Bolhasani P and Fallah M. 2017 An Integrated Fuzzy AHP and Fuzzy TOPSIS Approach for Ranking and Selecting the Chief Inspectors Of Bank: A Case Study J. Appl. Res. Ind. Eng. vol 4 1 8–23.

[2] Supraja S and Kousalya P 2016 A comparative study by AHP and TOPSIS for the selection of all round excellence award Proc. IEEE Int. Conf. Electrical Electron. Optimization Tech.
[3] Xiulin SI and Dawei LI 2014 An improvement analytic hierarchy process and its application in teacher evaluation Proc. Int. Conf. Intell. Syst. Des. Eng. Appl. (Liaoning).

[4] Xie Z, Zhang F, Cheng J and Li L 2013 Fuzzy multi-attribute decision making methods based On improved set pair analysis Int. Symp. Comput. Intell. Des. (Qingdao).

[5] Lv ZY, Liang XN and Liang XZ 2015 A fuzzy multiple attribute decision making method based on possibility degree Int. Conf. Fuzzy Syst. Knowledge Discovery.

[6] Engel MM, Utomo WH and Purnomo HD 2017 Fuzzy Multi Attribute Decision Making–Simple Additive Weighting (MADM-SAW) for Information Retrieval (IR) in e-commerce recommendation Int. J. Comp. Sci. Software Eng. vol 6(6).

[7] Novian, D.2010, Sistem Pendukung Keputusan Mutasi, Enumerasi dan promosi pegawai menggunakan metode AHP (Analytic Hierarchy Process). Jurnal Ilmiah Media Elektrik,Vol 5, No.2, Desember 2010.

[8] Sutikno, Sistem Pendukung Keputusan Metode AHP Untuk Pemilihan Siswa Dalam Mengikuti Olimpiade Sains Di Sekolah Menengah Atas. Program Studi Ilmu Komputer. UNDIP.

[9] Purnomo, E. N. S., Sihwi, S. W. & Anggrainingsih, R. 2013. Analisis Perbandingan Menggunakan Metode AHP, TOPSIS, dan AHP-TOPSIS dalam Studi Kasus Sistem Pendukung Keputusan Penerimaan Siswa Program Akselerasi. Informatika, Fakultas MIPA, Universitas Sebelas Maret Surakarta. Jurnal ITSMART Vol 2. No 1. Juni 2013 ISSN: 2301–7201.