Characterization of the genomic sequence data around common cutworm resistance genes in soybean (*Glycine max*) using short- and long-read sequencing methods

Eri Ogiso-Tanakaa,*,b, Nobuhiko Okib, Tsuyoshi Tanakaa, Takehiko Shimizua, Masao Ishimotoa, Makita Hajikaa, Akito Kagaa,*

aInstitute of Crop Science, National Agriculture and Food Research Organization (NARO), 2-1-2 Kannondai, Tsukuba, Ibaraki 305-8518, Japan
bKyushu Okinawa Agricultural Research Center, NARO, 2421 Suya, Koushi, Kumamoto 861-1192, Japan

\textbf{Article history:}
Received 22 September 2020
Revised 19 November 2020
Accepted 19 November 2020
Available online 9 December 2020

\textbf{Keywords:}
Glycine max, Soybean
Resistance to the common cutworm
QTL region
Whole genome resequencing
Targeted amplicon sequencing
HiSeq
Oxford Nanopore MinION

\textbf{Abstract}

The common cutworm (CCW, *Spodoptera litura* Fabricius) is one of the pests that most severely infect soybean (*Glycine max* L. Merr.). In a previous report, quantitative trait loci (QTL) analysis of CCW resistance using a recombinant inbred line derived from a cross between a susceptible cultivar ‘Fukuyutaka’ and a resistant cultivar ‘Himeshirazu’, identified two antixenosis resistance QTLs, CCW-1 and CCW-2. To reveal sequence variation between the aforementioned two cultivars, whole genome resequencing was performed using Illumina HiSeq2000 (75,632,747 and 91,540,849 reads). The generated datasets can be used for fine mapping and gene isolation of CCW-1 and CCW-2 as well as for revealing more detailed genetic differences between ‘Fukuyutaka’ and ‘Himeshirazu’.

© 2020 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/)

* Corresponding authors.
E-mail addresses: demeter298@gmail.com (E. Ogiso-Tanaka), kaga@affrc.go.jp (A. Kaga).
Social media: Twitter (E. Ogiso-Tanaka)

https://doi.org/10.1016/j.dib.2020.106577
2352-3409 © 2020 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/)
Specification Table

Subject	Plant science
Specific subject area	Agricultural and Biological Sciences, Genomics of soybean (Glycine max)
Type of data	Figure and fastq/fasta files
How data were acquired	Whole genomes of soybean cultivars ‘Fukuyutaka’ and ‘Himeshirazu’ were sequenced using the ILLUMINA HiSeq2000 short-read sequencer. The sequence of the unique genomic region in CCW2 was amplified by genomic polymerase chain reaction (PCR) and sequenced using MinION nanopore long-read sequencer (type R8.4, Oxford Nanopore Technologies Ltd., UK [ONT]).
Data format	Raw sequencing reads (fastq), Binary Alignment Map (BAM) and analyzed files (fasta)
Parameters for data collection	The common cutworm susceptible soybean cultivar ‘Fukuyutaka’ and resistant cultivar ‘Himeshirazu’ were used in this work. Their seeds are available from Genebank in NARO (https://www.gene.affrc.go.jp/databases_en.php). Genomic DNA for the sequencing was prepared from new leaves of one individual.
Description of data	HiSeq: Sequencing libraries were prepared with 1 μg DNA input, using the TruSeq DNA PCR-Free Library Preparation Kit (Illumina). Library pools were quantified by qPCR, loaded on the HiSeq2000 patterned flow cells and clustered on an Illumina cBot in accordance with the manufacturer’s protocol. Flow cells were sequenced on the Illumina HiSeq2000 with 2 × 100 bp reads. Demultiplexing of sequencing data was performed with bcl2fastq2. MinION: Amplicons were obtained by amplification from the genomic DNA of ‘Himeshirazu’. A total of 1 μg amplicon was end-repaired and used for library construction. The MinION sequencing was run using MinKNOW (version 1.7.3). The resulting FASTQ files were converted to FASTQ files using the Albacore basecaller (version 1.1.0, ONT). The raw reads were assembled using Canu (version 1.6) [1].
Data source location	Institute of Crop Science, National Agriculture and Food Research Organization (NARO), Tsukuba, Japan
Data accessibility	The sequence data have been deposited in the DNA Data Bank of Japan Sequence Read Archive, under submission ID DRA010742, DRA010747, DRA010652: http://trace.ddbj.nig.ac.jp/DRASearch/ (BioSample accessions: PRJDB10367, PRJDB10313). The sequence has been placed in fasta format on FigShare, https://figshare.com/search?q=10.6084%2Fm9.figshare.13220792

Value of the Data

- The genomic data of the susceptible and resistant soybean cultivars of common cutworm can be used for the development of a molecular marker for detecting quantitative trait loci and isolating genes.
- The sequence data for insert genomic region of ‘Himeshirazu’ in the CCW2 region can be used for fine-mapping of a candidate gene.
- These data can be used for development of DNA markers and can contribute to marker-assisted selection in soybean breeding.

1. **Data Description**

The common cutworm (CCW, Spodoptera litura Fabricius) is one of the most serious pests of soybean (Glycine max (L.) Merr.). Komatsu et al (2004) reported on the antibiotic effects of soybean cultivars ‘Fukuyutaka’ and ‘Himeshirazu’ on CCW. ‘Fukuyutaka’ is a leading cultivar in southwestern Japan but is susceptible to CCW. ‘Himeshirazu’ is a forage cultivar but has strong CCW resistance [2]. Quantitative trait loci (QTL) analysis of CCW resistance using a recombinant inbred line derived from a cross between ‘Fukuyutaka’ and ‘Himeshirazu’, identified two antibiotic resistance QTLs, CCW-1 and CCW-2 [3–4], and two antixenosis resistant QTLs, qRsIx1 and qRsIx2.
The QTLs, CCW-1 and CCW-2, regions of 'Himeshirazu' were verified by using near isogenic lines [6]. To detect the polymorphic sites of CCW-1 and CCW-2 genomic regions, we performed whole genome resequencing and variant detection.

HiSeq: We present the whole genome sequence data of 'Fukuyutaka' and 'Himeshirazu'. We sequenced paired-end libraries using the Illumina HiSeq2000 and generated 75,632,747 and 91,540,849 reads. These were compared to the reference genome version 2.0 (Gmax275: http://genome.jgi.doe.gov/pages/dynamicOrganismDownload.jsp?organism=Phytozome#, downloaded on May 15, 2015) [7], and 1,599,492 and 1,846,338 polymorphic sites were detected in 'Fukuyutaka' and 'Himeshirazu', respectively (Table 1). Among them, the number of polymorphic sites in the CCW1 region (Chr7:10,655,942-15,394,281 corresponding to the genomic interval of SSR markers, Sat_258-Satt175) was 2,489 for 'Fukuyutaka' and 4,873 for 'Himeshirazu', and 9,553 and 10,627 polymorphisms were detected in the CCW2 region (Chr7:4,559,713-8,283,465 to Satt567-Satt463) for 'Fukuyutaka' and 'Himeshirazu', respectively (Table 1). The number of polymorphic sites between 'Fukuyutaka' and 'Himeshirazu' was 2,899 (SNP: 2,483, InDel: 416) in the CCW1 region and 10,547 (SNP: 8,632, InDel: 1,915) in the CCW2 region, (Table 2, S1-2). These data will be useful to develop SNP/InDel markers for genetic mapping and identify the responsible genes and comparative functional genomics. In addition, we found partially unaligned reads in 'Himeshirazu' around Chr7:4,588,573-4,588,578 (Fig. 1) from the read alignment. We successfully amplified a 18 kb bp fragment of 'Himeshirazu' using primers flanking this unaligned region based on the Gmax275 reference genome (Chr07:4,585,885-4,597,201, 11,316bp in reference genome), and characterized the sequence in-depth (Fig. 2).

MinION: We determined the inserted sequences in the CCW2 region observed in 'Himeshirazu'. The amplified fragment, whose length was about 18 kbp estimated from PCR analysis, was sequenced using the Oxford Nanopore MinION platform (Oxford Nanopore Technologies Ltd., Oxford, UK). We obtained 28,725 raw reads. Only 18 reads were remained after the trimming and quality controls by Canu. The length distribution of 18 reads was bipolarized between 18,023 bp to 41,188 bp (Table 3). From the estimated size of the regions, we considered the longer reads would be artifacts. To confirm the possibility, we conducted homology search among 18 reads by BLASTN. While 14 shorter reads had one homologous region with each other, four longer reads (No. 15–18) whose lengths were 34,355 bp, 33,401 bp, 36,324 bp and 41,188 bp, respectively, had two homologous regions to short reads. We confirmed tandem duplication of a shorter read on a long read by mummer-4.0.0beta2 [8]. We also conducted a homology search of 18 reads against Gmax275 genome sequences and found the homology on Chr07 with gaps (7.2–7.5 Kbp) (Table 3). Therefore, we concluded that the longer reads were chimeric reads and excluded from the assembly. Finally, we constructed a consensus sequence from 14 reads. We also confirmed that the consensus sequence contained a target insertion observed in 'Himeshirazu' compared

Table 1	Number of polymorphic sites. Differences from the reference genome (cultivar: Williams 82).	
Whole genome	Fukuyutaka	Himeshirazu
CCW1 region (Sat_258-Satt175)	1599492	1846338
CCW2 region (Satt567-Satt463)	2489	4873
	9553	10627

Table 2	Number of polymorphic sites. Differences between ‘Himeshirazu’ and ‘Fukuyutaka’ cultivars.	
CCW1 region (Sat_258-Satt175)	CCW2 region (Satt567-Satt463)	
SNP	2483	8632
InDel	416	1915
Total	2899	10547
with the regions on Chr07 of the Gmax275 reference genome sequence with a long gap (Fig. 3). These data will be useful to perform fine mapping of CCW-2 and identify the responsible gene.

2. Experimental Design, Materials and Methods

2.1. Sample collection and DNA extraction

Samples for HiSeq: Soybean cultivars ‘Fukuyutaka’ and ‘Himeshirazu’ were cultivated in a greenhouse at the National Agriculture and Food Research Organization (NARO) in Tsukuba, Ibaraki, Japan, and treated in dark condition for one-week to reduce organelle before DNA extraction. Leaves were collected from about five seedlings of ‘Fukuyutaka’ and ‘Himeshirazu’
(seeds from a single individual), and DNA was extracted from bulked leaves using a protocol from Peterson et al. [9] with some modification.

Samples for MinION: ‘Himeshirazu’ was cultivated in an artificial climate chamber at NARO. Genomic DNA was extracted from the newest fresh leaves of ‘Himeshirazu’ using the CTAB method with the following modifications: Leaves were homogenized in liquid nitrogen and the tissues were transferred to preheated 2 x CTAB DNA extraction buffer (2% CTAB, 0.1 M Tris-HCl pH 8.0, 1.4 M NaCl, 1% PVP, 20 mM EDTA) and 80 μg/ml proteinase K. Then, they were incubated in a water bath at 55 °C for 15 min, and mixed occasionally by gentle inversion of the tubes. After they were removed from the water bath and the same volume of chloroform–isoamylalcohol (24:1) was added, they were mixed by inversion. They were spun down at 3000 rpm and the supernatant was transferred to the new tube. Equal volume of supernatant was added to isopropanol. They were mixed by inversion and centrifuged at 14000 rpm for 5 min (MX-201, TOMY Seiko Co., Ltd, Tokyo, Japan). The pellets were washed with 70% ethanol twice and dried at room temperature. The DNA pellet was air-dried and dissolved in 50 μl of low TE buffer (10 mM Tris-HCl, 0.1 mM EDTA pH 8.0). The DNA concentration was measured by nanodrop (Thermo Fisher Scientific Inc., USA) and Qubit (Thermo Fisher Scientific Inc.).

2.2. Library preparation, illumina and nanopore sequencing

HiSeq: A total of 75632747 and 91540849 paired reads from ‘Fukuyutaka’ and ‘Himeshirazu’ of a 350-bp insert-size library by TruSeq DNA PCR Free kit (Illumina Inc., San Diego, CA, USA) were generated from the Illumina HiSeq2000. The reads derived from the HiSeq2000 sequencing data were processed to remove adapter sequences and low-quality bases by trimmomatic-0.30 using the option “ILLUMINACLIP:adapter.fa:2:30:10 LEADING:15 TRAILING:15 SLIDINGWINDOW:4:15 MINLEN:32” [10]. The FASTQ files after quality control were deposited in the Sequence Read Archive (SRA) (biosample accession number: SAMD00238602 and SAMD00238603) under the bioproject accession number DRA010742 (Fukuyutaka) and DRA010747 (Himeshirazu).

MinION: 10 ng DNA from ‘Himeshirazu’ were used in the PCR reaction with primers CCW2-2_F (5’-TGACTGATCCCTGCTGTGAGAATGTT-3’) [Chr07:4559602-4559619] and CCW2-8_R (5’-TGTAACGTAGGAAAATGACAACACTACATC-3’) [Chr07:4602994-4602971] for the amplification of approximately an 11-kb region in the reference Gmax275 genome. PCR was performed using the GeneAmp PCR System 9700 (Thermo Fisher Scientific Inc.) using PrimeSTAR GXL DNA Polymerase (Takara Bio Inc., Shiga, Japan). The PCR conditions were as follows: initial denaturation at 94 °C for 1 min, 30 cycles of denaturation at 98 °C for 10 s, and annealing and extension at 68 °C for 10 min. The PCR products were electrophoresed on 0.8% agarose gel using the HindIII DNA ladder (Takara Bio Inc., Shiga, Japan) and stained with ethidium bromide. The amplicon size from ‘Himeshirazu’ was approximately 18 kb (between 9416 bp and 23130 bp fragment of
Table 3
Summary of blastn results. The 18 “pass” reads aligned to target the sequence of the reference genome (Gmax275).

No.	Query length (bp)	Subject	Identity	Query start	Query end	Subject start	Subject end	Estimated Gap length(bp)
1	18023	Chr07	96.384	17	8350	4597201	4588579	
2	18100	Chr07	95.64	15619	18002	4588582	4586108	7270
3	18118	Chr07	94.353	15739	18097	4588582	4586106	7373
4	18149	Chr07	95.799	15797	18118	4588582	4586192	7488
5	18150	Chr07	96.384	15691	18117	4588582	4586100	7332
6	18163	Chr07	96.677	11	8387	4597201	4588573	
7	18172	Chr07	96.582	3	8330	4597166	4588573	
8	18185	Chr07	96.802	15769	18163	4588582	4586113	7383
9	18212	Chr07	97.029	15754	18184	4588582	4586093	7371
10	18216	Chr07	96.466	15811	18212	4588582	4586100	7442
11	18217	Chr07	96.879	15766	18211	4588582	4586090	7431
12	18222	Chr07	97.068	10	8370	4597201	4588613	
13	18269	Chr07	95.858	15811	18212	4588582	4586100	7442
14	18272	Chr07	96.612	15876	18268	4588582	4586111	7481
15	34355	Chr07	97.065	15848	18110	4588582	4586269	7448
16	33401	Chr07	96.295	15876	18268	4588582	4586269	7448
17	36324	Chr07	96.922	10076	18488	4588573	4597202	7468
18	41188	Chr07	96.384	15691	18117	4588582	4586100	7332

No: Number of queries (“pass” reads determined using MinION)
Identity: Percentage of identity (identical site/denominator).
Query start - Query end: query range covered by alignment
Subject start - Subject end: subject range covered by alignment.
Estimated Gap length (bp): The subject length and physical position on

HindIII marker). The amplicon (1 μg) was end-repaired and dA-tailed using the NEBNext End-Repair and NEBNext dA-Tailing modules (New England Biolabs, MA, USA) according to the manufacturer’s instructions. Then, the sequencing adapter was ligated to the dA-tailed DNA using the Blunt/TA Ligase Master Mix (New England Biolabs, MA, USA) according to the manufacturer’s instructions using the 1D Amplicon Sequencing SQK-LSK108, R9 version (Oxford Nanopore Tech-
Fig. 3. Genome alignment between consensus sequence of amplicons (y-axis) and the genomic sequence from 4.58 to 4.6 Mbp on Chr7 of Gmax275 reference genome (x-axis). The insertion breakpoint junction was on Chr07:4588576-4588579 (TGGA).

2.3. Variant call and coverage analysis using HiSeq short-read sequence data

After trimmed paired reads were mapped on the soybean genome reference (Gmax275: http://genome.jgi.doe.gov/pages/dynamicOrganismDownload.jsf?organism=Phytozome#, downloaded on May 15, 2015) [7] using BWA-MEM [11]. We obtained mapping rates of 99.4% and 99.2% with 94.2% and 95.8% coverage of the reference (with x13.5 and x13.3 coverage of the covered regions) from ‘Fukuyutaka’ and ‘Himeshirazu’. Reads were then preprocessed using samtools v.1.3.1 [12] to convert SAM into BAM, which was sorted by coordinate order. Duplicate reads were marked using Picard MarkDuplicates (v.2.7.1) with the option “ASSUME_SORTED=true REMOVE_DUPLICATES=true” (http://broadinstitute.github.io/picard/). For local realignment and base quality score recalculation of the mapped reads, the tools RealignerTargetCreator, IndelRealigner, and BaseRecalibrator from GATK (Genome Analysis Toolkit) v.3.7.0 [13] were applied. All tools were used with the recommended standard settings [14,15]. This workflow design is in accordance with the best practices from the Broad Institute. Variants were called using the tool HaplotypeCaller with the option “--emitRefConfidence GVCF -variant_index_type LINEAR -variant_index_parameter 128000.” They were filtered with the filtering option “DP>100 || DP<5
2.4. Identification of the unique genomic sequence in the CCW-2 region of ‘Himeshirazu’ using MinION long-read sequence data

The 28,725 reads derived from the MinION sequencing platform were input to canu-1.6 with the options (-p asm -d gmax_amplicon genomeSize=15000 correctedErrorRate=0.5 -nanopore-raw all.fastq gnuplotTested=true useGrid=false). After quality control and trimming, only 18 long reads were remained. The homologies of the 18 reads to CCW-2 regions were analyzed by blastn in the BLAST+ [16] and detected an insertion region of 7.2–7.5kb that did not hit the reference sequence (Table 3). Four of 18 reads showed tandem repeat sequence, and the length of the read was about twice the size of the PCR product, suggesting that the four reads are a chimera. Then, by using 14 MinION reads, a consensus sequence was generated. From the consensus sequence, 7.7kb insertion (breakpoint junction on Chr07:4588576-4588579 [TGGA]) was detected by comparing with Gmax275 reference genome (Fig. 3).

Declaration of Competing Interest

The authors declare that they have no competing financial interests or personal relationships that can influence the work reported in this paper.

Acknowledgments

This work was supported by a grant from the Ministry of Agriculture, Forestry and Fisheries of Japan [Genomics-based Technology for Agricultural Improvement (SFC1001)] and the Special Scheme Project on Advanced Research and Development for Next-Generation Technology from the Ministry of Agriculture, Forestry and Fisheries of Japan (Grant ID in e-Rad: 16781507).

Supplementary Materials

Supplementary material associated with this article can be found in the online version at doi:10.1016/j.dib.2020.106577.

References

[1] S Koren, BP Walenz, K Berlin, JR Miller, NH Bergman, AM Phillippy, Canu: scalable and accurate long-read assembly via adaptive k-mer weighting and repeat separation, Genome Res. Adv. Publication (2017), doi:10.1101/gr.215087.116.
[2] K. Komatsu, S. Okuda, M Takahashi, R. Matsunaga, Anti-biotic effect of insect-resistant soybean on common cutworm (Spodoptera littura) and its inheritance, Breed. Sci. 54 (2004) 27–32.
[3] K. Komatsu, S. Okuda, M. Takahashi, R. Matsunaga, Y. Nakazawa, QTL mapping of antibiotic resistance to common cutworm (Spodoptera littura Fabricius) in soybean, Crop Sci. 45 (2005) 2044–2048.
[4] K. Komatsu, S. Okuda, M. Takahashi, R. Matsunaga, Y. Nakazawa, Quantitative trait loci mapping of pubescence density and flowering time of insect-resistant soybean (Glycine max L. Merr.), Genet. Mol. Biol. 30 (2007) 635–639.
[5] N Oki, K Komatsu, T Sayama, M Ishimoto, M Takahashi, M Takahashi, Genetic analysis of antixenosis resistance to the common cutworm (Spodoptera litura Fabricius) and its relationship with pubescence characteristics in soybean (Glycine max (L.) Merr.), Breeding Sci. 61 (2012) 608–617.

[6] K. Komatsu, M. Takahashi, Y. Nakazawa, Antibiosis resistance of QTL introgressive soybean lines to common cutworm (Spodoptera litura Fabricius), Crop Sci. 48 (2008) 527–532.

[7] J.S. Schmutz, B. Cannon, J. Schlueter, J. Ma, T. Mitros, W. Nelson, D.L Hyten, et al., Genome sequence of the palaeopolyploid soybean, Nature 463 (2010) 178–183.

[8] G Marçais, AL Delcher, AM Phillippy, R Coston, SL Salzberg, A Zimin, MUMmer4: A fast and versatile genome alignment system, PLoS Comput. Biol. 14 (1) (2018) e1005944.

[9] D.G. Peterson, J.P. Tomkins, D.A. Frisch, R.A. Wing, A.H. Paterson, “Construction of plant bacterial artificial chromosome (BAC) libraries: an illustrated guide, J. Agricultural Genomics 5 (2000) 1–100.

[10] M.Lohse Bolger, B. Usadel, Trimmomatic: a flexible trimmer for Illumina sequence data, Bioinformatics 30 (2014) 2114–2120.

[11] H. Li, R. Durbin, Fast and accurate short read alignment with Burrows-Wheeler Transform, Bioinformatics 25 (2009) 1754–1760.

[12] H. Li, B. Handsaker, A. Wysoker, T. Fennell, J. Ruan, N. Homer, G. Marth, G. Abecasis, R. Durbin, 1000 Genome Project Data Processing Subgroup, The Sequence alignment/map (SAM) format and SAMtools, Bioinformatics 25 (2009) 2078–2079.

[13] A McKenna, M Hanna, E Banks, A Sivachenko, K Cibulskis, A Kernytsky, The Genome analysis toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data, Genome Res. 20 (2010) 1297–1303.

[14] MA DePristo, E Banks, R Poplin, KV Garimella, JR Maguire, C Hartl, et al., A framework for variation discovery and genotyping using next generation DNA sequencing data, Nat Genet. 43 (2011) 491–498.

[15] GA Van der Auwera, MO Carneiro, C Hartl, R Poplin, G Del Angel, A Levy-Moonshine, et al., From FastQ data to high confidence variant calls: the genome analysis toolkit best practices pipeline, Curr. Protoc. Bioinform. 11 (2013) 11.10.1–11.10.33.

[16] C. Camacho, G. Coulouris, V. Avagyan, N. Ma, J. Papadopoulos, K. Bealer, T.L. Madden, “BLAST+: architecture and applications”, BMC Bioinformatics 10 (2008) 421.