Virulent and multidrug-resistant *Klebsiella pneumoniae* from clinical samples in Balochistan

Sareeen Fatima | Faiza Liaqat | Ali Akbar | Muhammad Sahfee | Abdul Samad | Muhammad Anwar | Shazia Iqbal | Shabir Ahmad Khan | Haleema Sadia | Gul Makai | Anila Bahadur | Wajeeha Naeem | Adnan Khan

1Department of Microbiology, Faculty of Life Sciences, University of Balochistan, Quetta, Pakistan
2CASVAB, Faculty of Life Sciences, University of Balochistan, Quetta, Pakistan
3Institute of Biochemistry, Faculty of Life Sciences, University of Balochistan, Quetta, Pakistan
4Department of Chemistry, Balochistan University of Information Technology Engineering and Management Sciences, Quetta, Pakistan
5Department of Microbiology, Balochistan University of Information Technology Engineering and Management Sciences, Quetta, Pakistan
6Department of Environmental Science, Sardar Bahadur Khan Women University, Quetta, Pakistan
7Department of Microbiology, University of Karachi, Sindh, Pakistan

Correspondence
Dr. Ali Akbar, Department of Microbiology, Faculty of Life Sciences, University of Balochistan, Quetta, 87300, Pakistan.
Email: aliakbar.uob@gmail.com

Abstract

Klebsiella pneumoniae is an important pathogen causing hospital-acquired infections in human beings. Samples from suspected patients of *K pneumoniae* associated with respiratory and urinary tract infections were collected at Bolan Medical Complex, Quetta, Balochistan. Clinical samples (n = 107) of urine and sputum were collected and processed for *K pneumoniae* isolation using selective culture media. Initially, 30 of 107 isolates resembling *Klebsiella* spp. were processed for biochemical profiling and molecular detection using gyrase A (*gyrA*) gene for confirmation. The *K pneumoniae* isolates were analysed for the presence of drug resistance and virulence genes in their genomes. The 21 of 107 (19.6%) isolates were finally confirmed as *K pneumoniae* pathogens. An antibiogram study conducted against 17 different antibiotics showed that a majority of the isolates are multidrug resistant. All the isolates (100%) were resistant to amoxicillin, cefixime, amoxicillin-clavulanic acid, cefotaxime, and ceftriaxone followed by tetracycline (95.2%), ciprofloxacin and gentamicin (76.2%), sulphamethoxazol (66.7%), nalidixic acid (61.9%), norfloxacine (42.9%), piperacillin-tazobactam (23.8%), cefoperazone-sulbactam (19%), and cefotaxime-clavulanic acid (33.3%), whereas all the isolates showed sensitivity to amikacin, chloramphenicol, and imipenem. The presence of tetracycline, sulphamethoxazol-resistant genes, and extended-spectrum beta-lactamase was reconfirmed using different specific genes. The presence of virulence genes *fimH1* and *EntB* responsible for adherence and enterobactin production was confirmed in the isolates. The high virulence and drug resistance potential of these *Klebsiella* isolates are of high public health concern. Multidrug resistance and virulence potential in *K. pneumoniae* are converting these nosocomial pathogens into superbugs and making its management harder.

Sareeen Fatima and Faiza Liaqat contributed equally to the scientific work.
1 | INTRODUCTION

The genus *Klebsiella* falls under Enterobacteriaceae family, a Gram-negative bacteria with rod shape, lysine decarboxylase but not ornithine decarboxylase producers, and Voges-Proskauer positive.\(^1\) *Klebsiella* species are ubiquitous in nature and can be frequently found in different environments such as water, soil,\(^2\) and dirt. This bacteria can colonise in nasopharynx and gastrointestinal tract,\(^3\) which makes them able to act as an opportunistic pathogen in human being.\(^4\) This bacteria has also been reported in insects\(^5\) and mammals.\(^6\) Gastrointestinal colonisation is likely a common and significant reservoir among body sites in terms of risk of transmission and infection.\(^7\)

Klebsiella pneumoniae is a clinically important member of the genus *Klebsiella*, reportedly being responsible for around 86% of human infections due to *Klebsiella*,\(^8\) which makes it the most significant pathogen of this genus. However, species of *Klebsiella oxytoca* are reported as the second most widespread species, responsible for about 26% of infections.\(^1,9\) *Klebsiella* spp. are considered as an important member of hospital-acquired pathogens, which are not only responsible for numerous infections of respiratory and urinary tract, but can also cause the infection of soft tissues, wounds, sepsis, and septicemia.\(^9,10\) The presence of virulence factor and drug resistance enhances the colonisation of *Klebsiella*, particularly in the case of nosocomial infections. The most common pathogenicity factors in this species are iron acquisition capability, possession of fimbriae, lipopolysaccharide, and so on.\(^11\) Types 1 and 3 fimbriae present in *Klebsiella* enhanced the urinary tract infections.\(^12\) Virulence genes enterobactin synthase component B (*entB*), aerobactin siderophore receptor (*iutA*), putative salicylate synthetase (*ybtS*), iron regulatory protein 1 and 2 (*irp-1*, *irp-2*), and ferric yersiniabactin uptake receptor (*fyuA*) responsible for siderophores production, which are present in this species, can make them able to acquire iron from human host.\(^13\) The lipopolysaccharide and capsule increase its pathogenicity and help them avoiding phagocytosis, resulting sepsis and septic shock.\(^14\)

Drug resistance to multiple antibiotics in pathogens is the increasing cause of morbidity and mortality.\(^15\) *K pneumoniae* has been reported with resistance to fluoroquinolones, aminoglycosides, and beta-lactam antibiotics. The production of beta-lactamase enzyme by *Klebsiella* species is making them resistant to a wide group of antibiotics.\(^16\) In a majority of *K pneumoniae* isolates, the β-lactamase is encoded by chromosomal-encoded SHV-1 gene.\(^6\) Pathogens with increased pathogenicity factors and multidrug resistance act as a superbug and are a growing public health threat to the developing and developed countries. A study was designed to record the prevalence of *K pneumoniae* in urinary tract infection (UTI) and respiratory tract infections (RTI), and to determine their multidrug resistance and virulence potential of Balochistan patients in Quetta City.

2 | MATERIALS AND METHODS

2.1 | Sampling

A total of 107 samples, of which 72 were urine and 35 sputum, were collected from different patients suffering UTI and RTI in Bolan Medical Complex, Quetta. All the samples were collected aseptically in sterile sampling bottles, following safety protocols and procedures, with the patient inform consent and according to the will and satisfaction of patients. The samples’ inclusion criteria were strictly limited to UTI and RTI patients. Samples were carried to the laboratory in the University of Balochistan and processed within 1 to 2 hours of collection, not later than 6 hours.

2.2 | Isolation of the target pathogen

The collected samples were aseptically inoculated to pre-prepared sterile MacConkey agar (Oxoid, UK) media and incubated at 37°C for 24 hours. Mucoid, circular, and
lactose-fermenting colonies were subculture to Eosin Methylene Blue agar (EMB) (Oxoid, UK) for conformation and differentiation with *Escherichia coli*.

2.3 Biochemical characterisation

Presumptively selected isolates were Gram stained and biochemically characterised using biochemical tests, such as catalase, oxidase, urease, sulphur, indole, motility, methyl red, Vogues-Proskauer, and citrate utilisation.

2.4 Molecular conformation of the isolates

The preliminary conformed *Klebsiella* isolates were confirmed with the help of genotyping using *Klebsiella*-specific gene gyrA (F-CCGTACTTACGCCAT GAACGTA and R-ACCGTTGATCACTTCGGTCAGG) following standard protocol for DNA extraction. Polymerase chain reaction (PCR) (25 μL) was prepared by mixing 12.5 μL master mix with 1 μL of each forward and reverse primers, 7.5 μL nuclease-free PCR water and DNA sample (3 μL). The mixture was processed at 94°C denaturing for 4 minutes. 94°C for 30 seconds, 55°C for 40 seconds, 72°C for 60 seconds, and 30 cycle. Final extension was performed at 72°C for 10 minutes and at a final temperature of 4°C.

2.5 Antibiogram studies

The antibiogram studies of the conformed *K pneumoniae* were conducted by using the Kirby-Bauer technique of disc diffusion with Mueller-Hinton agar (MHA) (Oxide, UK). The target bacteria were spread over the surface of sterile MHA plates using sterile cotton swab. Antibiotics discs amoxicillin (AML 10 μg), cefixime (CFM 5 μg), sulphamethoxazol (SXT 25 μg), tetracycline (TE 30 μg), nalidixic acid (NA10 μg), ciprofloxacin (CIP 5 μg), norfloxacin (NOR 10 μg), imipenem (IMP 10 μg), amikacin (Ak 20 μg), gentamycin (CN 10 μg), chloramphenicol (C30 μg), cefotaxime (CTX 30 μg), amoxicillin-clavulanic acid (AMC 30 μg), piperacillin-tazobactam (TZP 110 μg), cefoperazone-sulbactam (SCF 105 μg), ceftriaxone (CRO 30 μg), and cefotaxime-clavulanic acid (CTX + CLA 30/10 μg) were placed over the surface of the bacterial lawn and incubated at 37°C for 16 to 24 hours. The zone of inhibitions of each antibiotic was recorded in millimetre (mm) and it corresponds to the CLSI standard values of respective antibiotics.

2.6 Extended-spectrum beta-lactamase production

The extended-spectrum beta-lactamase (ESBL) production test was performed by double discs ceftriaxone (CRO 30 μg) and cefotaxime-clavulanic acid 30/10 μg (BD).

2.7 Molecular conformation of drug resistance genes in the isolates

The phenotypically evaluated resistance in *Klebsiella* isolates was confirmed against specific genes corresponding resistance to selected antibiotics through PCR. Tetracycline resistance was confirmed by gene tetB using primers F-CCTTATCAT GCCAGTCT TGC, R-ACCGTTGATCACTTCGGTCAGG and *Sul1* gene using primer F-CCGTACTTACCTCGGTGCCGT (B D) .

2.8 Molecular detection of virulence factors

The virulence factors associated with *K pneumoniae* were determined by targeting specific gene fimH encoding for type 1 fimbriae, the main virulence factor of the bacteria, using primer F-ATTTGTCGCTTCTCTTTACT CGC, R-GCTGAACGCTATCCCCTGC, and *EntB* gene responsible for enterobactin production using primer F-ATTTCC TCAACTTCTGGGC, R-AGCATCGGTGGCGGT GGTC.

3 RESULTS

Thirty isolates were preliminary identified as *K pneumoniae* out of the total (107) samples based on initial screening. Of which 21 of 107 isolates were biochemically and molecularly confirmed as *K pneumoniae* with the help of Gyrase A (gyrA) gene (Figure 1), making 19.6% prevalence of the pathogens in the patients. All the isolates were collected from the urine (72) and sputum (35) samples of the patient suspected with *K pneumoniae* associated RTI and UTI. The *K pneumoniae* isolates of 20.8% (15/72) were from urine and of 17.1% (6/35) from sputum.

All the gyrase A gene-positive *K pneumonia* isolates (21) were processed for antibiogram studies against...
The antibiogram studies revealed that all the isolates were multidrug resistant to the tested antibiotics (Figure 2). The antibiogram of the isolates showed 100% (21/21) resistance to CFM, AML, CTX, CRO, and AMC, whereas TET 95.2% (20/21), CIP and CN 76.2% (16/21), and SXT 66.7% (14/21). Resistance against NA were found to be 61.9% (13/21), while 42.9% (9/21), 33.33% (7/21), and 23.8% (5/21) against NOR, CTX+C, and TZP, respectively. The lowest percentage of resistance was found against SCF 19% (4/21), AK 4.8% (1/21), C, and IMP 0% (0/21). It was found that out of 21 isolates only 7 (33.3%) were positive for ESBL production. All of the isolates showed resistant to third-generation cephalosporin.

In this study, imipenem and chloramphenicol were found to be highly active (100%) antibiotics against the \textit{K pneumoniae} isolates, whereas only one (4.8%) isolate showed resistance to the drug amikacin. It was noted that out of 21 isolates, two isolates showed multidrug resistance to 14 and 13 antibiotics used in the study, while six isolates showed resistance to 11 antibiotics and four to 10 antibiotics used. Two isolates showed resistance to 12 and five isolates to 9 antibiotics, respectively. One isolate was found resistant to 8 antibiotics and the other to 6 antibiotics used. This study confirms the extensive multidrug resistance potential of the \textit{K pneumoniae} clinical isolates.

The SXT, TET, and ESBL resistances were genotypically (\textit{Sul1}, \textit{tetB}, and \textit{SHV}) reconfirmed using specific primers (Figure 3A-C). The \textit{tetB} gene was confirmed in all the isolates showing 100% resistance of the isolates against tetracycline, whereas \textit{Sul1} gene corresponding to sulphamethoxazol resistance was present in 14/21 (66.7%) isolates and SHV in 7/21 showing that 33.3% were positive for ESBL production. Pathogenicity of pathogens is dependent on the presence of virulence factors,
which are directly proportional to the higher pathogenicity, resulting in more complicated infection.

In this study, we evaluated the presence of common and selected virulence factors associated with *K. pneumoniae* clinical isolates. The virulence factors are important to show the clinical and nosocomial importance of the isolates. The 21 confirmed *K. pneumoniae* isolates were analysed for the presence of *fimH* gene responsible for improved adherence properties and *entB* gene of enterobactin production. All the isolates found bearing the targeted genes, with 100% presence of type 1 fimbriae and enterobactin production (Figure 4A,B), showed the high pathogenicity potential of these isolates (Table 1).

4 | DISCUSSION

K. pneumoniae is an important member of ESKAPE (Enterococcus faecium, Staphylococcus aureus, *K. pneumoniae*, Acinetobacter baumannii, Pseudomonas...
In this study, we found that 19.6% samples from suspected UTI and RTI infections are positive for \textit{K. pneumoniae} pathogen, which can lead the patients to complicated infections in case of drug resistance. In a similar study, Younis29 reported 73.3% \textit{K. pneumoniae} prevalence in clinically diseased chicken, which is higher than our study, whereas Martin et al30 and Zhang et al31 reported 23% and 73.9%, respectively, prevalence of \textit{K. pneumoniae} in clinical samples. Fatima et al32 and Chakraborty et al33 reported 17% and 24% prevalence of \textit{K. pneumoniae} in Pakistan and Bangladesh, respectively, from clinical samples. The antibiogram studies revealed that a number of isolates are multidrug resistant to commonly used antibiotics. Increasing drug resistance in pathogenic bacteria is a great human health concern. Our studies showed that 33.3% \textit{K. pneumoniae} is ESBL positive. Taneja et al34 reported 70.7% ESBL prevalence in \textit{K. pneumoniae} isolates from Dehli. Hayat et al35 detected ESBL gene in 56.5% of \textit{K. pneumoniae} isolates from clinical samples in Pakistan, while Chakraborty et al33 reported 45% ESBL prevalence in \textit{K. pneumoniae} in

\textbf{TABLE 1} \ Percentage and number of genes detected among \textit{K. pneumoniae} clinical isolates

Gene	Urine isolates	Sputum isolates	Total
\textit{fimH1}	15/15 (100%)	6/6 (100%)	21/21 (100%)
\textit{EntB}	15/15 (100%)	6/6 (100%)	21/21 (100%)
\textit{tetB}	15/15 (100%)	6/6 (100%)	21/21 (100%)
\textit{Sul1}	9/15 (60%)	5/6 (83.3%)	14/21 (66.67%)
\textit{SHV}	3/15 (20%)	4/6 (66.67%)	7/21 (33.33%)
\textit{gyrA}	15/15 (100%)	6/6 (100%)	21/21 (100%)

Abbreviations: \textit{EntB}, Enterobactin synthase component B; \textit{fimH1}, type 1 fimbrial adhesin; \textit{gyrA}, gyrase A; \textit{SHV}, sulphydryl variable β-lactamas; \textit{Sul1}, sulphamethoxazol; \textit{tetB}, tetracycline.

\textit{aeruginosa}, and \textit{Enterobacter} spp.) and potential threat as a nosocomial infection.28 In this study, we found that 19.6% samples from suspected UTI and RTI infections are positive for \textit{K. pneumoniae} pathogen, which can lead the patients to complicated infections in case of drug resistance. In a similar study, Younis29 reported 73.3% \textit{K. pneumoniae} prevalence in clinically diseased chicken, which is higher than our study, whereas Martin et al30 and Zhang et al31 reported 23% and 73.9%, respectively, prevalence of \textit{K. pneumoniae} in clinical samples. Fatima et al32 and Chakraborty et al33 reported 17% and 24% prevalence of \textit{K. pneumoniae} in Pakistan and Bangladesh, respectively, from clinical samples. The antibiogram studies revealed that a number of isolates are multidrug resistance to commonly used antibiotics. Increasing drug resistance in pathogenic bacteria is a great human health concern. Our studies showed that 33.3% \textit{K. pneumoniae} is ESBL positive. Taneja et al34 reported 70.7% ESBL prevalence in \textit{K. pneumoniae} isolates from Dehli. Hayat et al35 detected ESBL gene in 56.5% of \textit{K. pneumoniae} isolates from clinical samples in Pakistan, while Chakraborty et al33 reported 45% ESBL prevalence in \textit{K. pneumoniae} in

\textbf{FIGURE 4} A, Polymerase chain reaction assay result for virulence gene \textit{EntB} (371 bp); lines 1 and 13 = DNA size ladder 100 bp (GeneDireX); Line 2 = reference strain for \textit{EntB} gene positive; line 3 = negative control; lines 4–12 = positive samples. B, PCR results for \textit{fimH-1} (688 bp) virulence gene; lines 1 and 12 = DNA size ladder 100 bp (GeneDireX), line 2 = reference strain for \textit{fimH-1} gene positive; line 3 = negative control; lines 4–11 = positive samples
a similar study in Bangladesh. In our study, we found a higher resistance of the clinical isolates towards antibiotics AMC, CFM, AML, CTX, and CRO. Significant resistance has been reported against cefalosporin by Nijssen et al.36 Khamesipour and Tajbakhsh37 claimed 87.8, 43.3, and 32.2% resistance to AMC, TET, and AK while 34.4% and 26.7% of CFM and CN, respectively. Compared to his study, resistance to these four antibiotics is higher in our study. Chakraborty et al33 reported 56% multidrug resistance _K. pneumoniae_ in clinical isolates from Malaysia, where they showed 100% resistance to ampicillin; 90% to amoxicillin; 45% to ceftriaxone; 40% to ciprofloxacin; 45% to co-trimoxazole; and 25%, 50%, and 35% to gentamicin, nalidixic acid, and tetracycline respectively.

In our study, we found that all the isolates were multidrug resistance to minimum and maximum 14 antibiotics out of 17 used in the study. Lina et al38 reported resistance in ceftazidime (36%), CN (27%), TET (27%), and CIP (45%) to _K. pneumoniae_. It was found in a similar study that 61.2% of _K. pneumoniae_ are drug resistant, wherein 20.4% of the isolates showed 100% resistance to all cefalosporins (CFM, CRO, ceftazidime, and cefotaxime), and 98% to carbenicillin, 55% to piperacillin, 32% to CTX, and 31% to ceftazidime with zero resistant to IMP.39 These results are in agreement with our result where 100% resistance was found against cefalosporins and 0% against imipenem. In our study, the resistance rate against tetracycline, aminoglycosides, and fluoroquinolones was higher in comparison with ESBL-producing isolates, similar results have been reported by Hashemi et al.40 Similar to our study, Taitt et al41 reported 100% resistance to tetracycline conformed with tetB and 60% _Sul1_ resistance genes in their study in Kenya. Ghaliopou et al42 detected _SHV_ genes responsible for ESBL production on 7.5% _K. pneumoniae_ isolates, which is less than that of our study (33.3%). The higher pattern of drug resistance in _K. pneumoniae_ isolates in our study can be linked to over the counter sale and extensive uses of antibiotics in animal farming.20 Banning over the counter sale and abuse of antibiotics for animal farming is the possible solution to control the drug resistance in Pakistan.

The virulence factor such as enterobactin production helps the pathogens in biofilm formation and infection development.43 Studies revealed that enterobactin biosynthesis is iron-uptake proteins produced by _Klebsiella_44 because of the presence of _entB_ gene in its genome.45 We found the presence of _entB_ gene in 100% _K. pneumoniae_ isolates, which are in compliance with Aljanaby and Alhasani44 study. El Fertas-Aissani et al47 also reported 100% detection of _entB_ gene in _K. pneumoniae_ isolates in their study. Possessing fimbriae can increase the pathogenicity of pathogens.46 _fimH1_ gene responsible for type 1 fimbriae can enhance the biofilm formation capability of _Klebsiella_ to colonise in urinary and respiratory tract resulting in complicated infection.44 In our study, we find 100% presence of _fimH1_ gene, and these results are supported by Xiao et al45 study where they reported the high frequency of _fimH1_ gene identification in _K. pneumoniae_. It was also reported that the presence of fimbriae can enhance the drug resistance of the pathogen.48

5 | CONCLUSIONS

It was concluded in this study that the increased and unnecessary uses of antibiotics produce superbugs within the common nosocomial pathogens such as _K. pneumoniae_, posing a serious threat to global public health. The emergence of multidrug resistance in common virulent species of pathogens will have a great impact over the health system and economy of developing countries. The _K. pneumoniae_ isolates were found harbouring virulent drug-resistant genes and were showing resistance to several common antibiotics, which are of great concern. Alternative management procedures and novel drug hunting along with wise uses of antibiotics are the possible solutions to fight the multidrug resistant pathogens.

CONFLICT OF INTEREST

The authors declare no conflict of interest.

DATA AVAILABILITY STATEMENT

Data will be available on request.

ORCID

Ali Akbar @ https://orcid.org/0000-0002-0376-1425

REFERENCES

1. Martin R, Bachman M. Colonization, infection, and the accessory genome of _Klebsiella pneumoniae_. Front Cell Infect Microbiol. 2018;8(4):2018.
2. Rock C, Thom KA, Masnick M, Johnson JK, Harris AD, Morgan DJ. Frequency of _Klebsiella pneumoniae_ Carbapenemase (KPC)–producing and non-KPC-producing _Klebsiella_ species contamination of healthcare workers and the environment. Infect Contr Hosp Epidemiol. 2014;35(4):426–429.
3. Dao TT, Liebenthal D, Tran TK, et al. _Klebsiella pneumoniae_ oropharyngeal carriage in rural and urban Vietnam and the effect of alcohol consumption. PLoS One. 2014;9(3):e91999.
4. Podschun R, Ullmann U. _Klebsiella_ spp. as nosocomial pathogens: epidemiology, taxonomy, typing methods, and pathogenicity factors. Clin Microbiol Rev. 1998;11(4):589-603.
5. Dillon R, Vennard C, Charnley A. A note: gut bacteria produce components of a locust cohesion pheromone. J Appl Microbiol. 2002;92(4):759-763.
6. Liaqat F, Naeem W, Shafee M, et al. Virulence factors and drug resistance in *Klebsiella pneumoniae*, an emerging superbug. *Pure Appl Biol*. 2019;8(2):1314-1337.

7. Dormán MJ, Short FL. Genome watch: *Klebsiella pneumoniae*: when a colonizer turns bad. *Nature*. 2017;15(7):384.

8. Sen P, Demirdal T. Evaluation of mortality risk factors in diabetic foot infections. *Int Wound J*. 2020;17:880-889.

9. Magill SS, Edwards JR, Fridkin SK. Survey of health care-associated infections. *New Engl J Med*. 2014;370(26):2542-2543.

10. Bengoechea JA, Sa Pessoa J. *Klebsiella pneumoniae* infection biology: living to counteract host defences. *FEMS Microbiol Rev*. 2019;43(2):123-144.

11. Fasciana T, Gentile B, Aquilina M, et al. Co-existence of virulence factors and antibiotic resistance in new *Klebsiella pneumoniae* clones emerging in south of Italy. *BMC Infect Dis*. 2019;19(1):928.

12. Rosen DA, Hilliard JK, Tiemann KM, Todd EM, Morley SC, Hunstad DA. *Klebsiella pneumoniae* FirMK promotes virulence in murine pneumonia. *J Infect Dis*. 2016;213(4):649-658.

13. Russo TA, Olson R, MacDonald U, et al. Aerobactin mediates virulence and accounts for increased siderophore production under iron-limiting conditions by hypervirulent (hypermucoviscous) *Klebsiella pneumoniae*. * Infect Immun*. 2014;82(6):2356-2367.

14. Tsereteli M, Sidamondzhe K, Tsereteli D, Malania L, Vashakidze E. Epidemiology of carbapenem-resistant *Klebsiella pneumoniae* in intensive care units of multiprofile hospitals in Tbilisi, Georgia. *Georgian Med News*. 2018;2018(280-281):164-168.

15. Naeem W, Liaqat F, Shafee M, Khan GI, Akbar A. 2. Multidrug resistance in pathogenic *Escherichia coli*: a public health concern. *Pure Appl Biol*. 2019;8(3):2104-2118.

16. Navon-Venezia S, Konratyeva K, Carattoli A. *Klebsiella pneumoniae*: a major worldwide source and shuttle for antibiotic resistance. *FEMS Microbiol Rev*. 2017;41(3):252-275.

17. Akbar A, Anal AK. Occurrence of *Staphylococcus aureus* and evaluation of anti-staphylococcal activity of *Lactococcus lactis* subsp. lactis in ready-to-eat poultry meat. *Annals Microbiol*. 2014;64(1):131-138.

18. Brisse S, Verhoef J. Phylogeographic diversity of *Klebsiella pneumoniae* and *Klebsiella oxytoca* clinical isolates revealed by randomly amplified polymorphic DNA, gyrA and parC genes sequencing and automated ribotyping. *Int J Syst Evol Microbiol*. 2001;51(3):915-924.

19. Shu Y, Wan-Ting J, Ya-Ning Y, Yu-Han F. An optimized CTAB method for genomic DNA extraction from freshly-picked pinnae of *Pern Adiantum capillas-veneris* L. *Bio Protocol*. 2018;8(13):1-6.

20. Samad A, Abbas F, Ahmed Z, et al. Prevalence, antimicrobial susceptibility, and virulence of *Campylobacter jejuni* isolated from chicken meat. *J Food Safety*. 2019;39(2):e12600.

21. CLSI, ed. *Performance Standards for Antimicrobial Susceptibility Testing*. 30th ed. CLSI approved standard M100-S23 Wayne, PA: Clinical and Laboratory Standards Institute; 2013.

22. Sarojamma V, Ramakrishna V. Prevalence of ESBL-producing *Klebsiella pneumoniae* isolates in tertiary care hospital. *ISRN Microbiol*. 2011;2011:1-5.

23. Maynard C, Bekal S, Sanschagrin F, et al. Heterogeneity among virulence and antimicrobial resistance gene profiles of extraintestinal *Escherichia coli* isolates of animal and human origin. *J Clin Microbiol*. 2004;42(12):5444-5452.

24. Gündoğdu A, Long YB, Vollmerhausen TL, Katouli M. Anti-microbial resistance and distribution of sul genes and integron-associated intI genes among uropathogenic *Escherichia coli* in Queensland, Australia. *J Med Microbiol*. 2011;60(11):1633-1642.

25. Jemima S, Verghese S. Multiplex PCR for blaCTX-M & blaSHV in the extended spectrum beta lactamase (ESBL) producing gram-negative isolates. *Indian J Med Res*. 2008;128(3):313.

26. Carneiro V, Lessa D, Guttmann P, et al. Virulence, resistance, and genetic relatedness of *Escherichia coli* and *Klebsiella* sp. isolated from mule foals. *Arquivo Brasileiro de Medicina Veterinaria e Zootecnia*. 2017;69(5):1073-1082.

27. El Fertas-Aissani R, Messai Y, Alouache S, Bakour R. Virulence profiles and antibiotic susceptibility patterns of *Klebsiella pneumoniae* strains isolated from different clinical specimens. *Pathologie Biologie*. 2013;61(5):209-216.

28. da Rosa TF, Coelho SS, Foleto VS, et al. Alternatives for the treatment of infections caused by ESKAPE pathogens. *J Clin Pharm Therapeut*. 2020;45:863-873.

29. Younis G, Awad A, El-Gamal A, Hosni S. Virulence properties and antimicrobial susceptibility profiles of *Klebsiella pneumoniae* species recovered from clinically diseased broiler chicken. *Adv Anim Vet Sci*. 2016;4(10):536-542.

30. Martin RM, Cao J, Brisse S, et al. Molecular epidemiology of colonizing and infecting isolates of *Klebsiella pneumoniae*. *MSphere*. 2016;1(5):e00261-e00216.

31. Zhang Y, Wang Q, Yin Y, et al. Epidemiology of carbapenem-resistant Enterobacteriaceae infections: report from the China CRE network. *Antimicrobial Agents Chemother*. 2018;62(2):e01882-e01817.

32. Fatima S, Muhammad IN, Khan MN, Jamil S. Phenotypic expression and prevalence of multi drug resistant extended spectrum beta-lactamase producing *Escherichia coli* and *Klebsiella pneumoniae* in Karachi. *Pakistan Pak J Pharm Sci*. 2018;31(4):1379-1384.

33. Chakraborty S, Mohsina K, Sarker PK, Alam M, Karim M, Sayem S. Prevalence, antibiotic susceptibility profiles and ESBL production in *Klebsiella pneumoniae* and *Klebsiella oxytoca* among hospitalized patients. *Periodicum Biologorum*. 2016;118(1):53-58.

34. Taneja J, Mishra B, Thakur A, Dogra V, Loomba P. Nosocomial blood-stream infections from extended-spectrum-beta-lactamase-producing *Escherichia coli* and *Klebsiella pneumoniae* from GB Pant Hospital, New Delhi. *J Infect Dev Countr*. 2010;4(8):517-520.

35. Hayat S, Siddique MH, Aslam B, et al. Extended-spectrum-β-lactamase producing multidrug resistant *Klebsiella pneumoniae* isolates from pediatrics. *Pak J Zool*. 2019;51(4):1251-1257.

36. Nijssen S, Florijn A, Bonten M, Schmitz F, Verhoef J, Fluit A. Beta-lactam susceptibilities and prevalence of ESBL-producing isolates among more than 5000 European Enterobacteriaceae isolates. *Int J Antimicrobial Agents*. 2004;24(6):585-591.

37. Khamesipour F, Tajbaksh E. Analyzed the genotypic and phenotypic antibiotic resistance patterns of Klebsiella pneumoniae isolated from clinical samples in Iran. *Biomedical Research*. 2016;27(4):1017-1026.
38. Lina TT, Rahman SR, Gomes DJ. Multiple-antibiotic resistance mediated by plasmids and integrons in uropathogenic Escherichia coli and Klebsiella pneumoniae. Bangladesh J Microbiol. 2007;24(1):19-23.

39. Leisy-Azar S, Ebadi A. Examining the pattern of susceptibility and antibiotic resistance in Klebsiella pneumoniae strains isolated from urine samples of children with urinary tract infections from the children’s hospital of Tabriz in 2015. Br Biomed Bull. 2017;5(307):10.21767.

40. Hashemi SH, Esna AF, Tavakoli S, Mamani M. The prevalence of antibiotic resistance of Enterobacteriaceae strains isolated in community-and hospital-acquired infections in teaching hospitals of Hamadan, west of Iran. J Res Health Sci. 2013;13(1):75-80.

41. Taitt CR, Leski TA, Erwin DP, et al. Antimicrobial resistance of Klebsiella pneumoniae stool isolates circulating in Kenya. PLoS One. 2017;12(6):e0178880.

42. Gholipour A, Soleimani N, Shokri D, Mobasherizadeh S, Kardi M, Baradaran A. Phenotypic and molecular characterization of extended-spectrum β-lactamase produced by Escherichia coli, and Klebsiella pneumoniae isolates in an educational hospital. Jundishapur J Microbiol. 2014;7(10):1-6.

43. Kang D, Kirienko NV. Interdependence between iron acquisition and biofilm formation in Pseudomonas aeruginosa. J Microbiol. 2018;56(7):449-457.

44. Aljanaby AAJ, Alhasani AHA. Virulence factors and antibiotic susceptibility patterns of multidrug resistance Klebsiella pneumoniae isolated from different clinical infections. Afr J Microbiol Res. 2016;10(22):829-843.

45. May T, Okabe S. Enterobactin is required for biofilm development in reduced-genome Escherichia coli. Environ Microbiol. 2011;13(12):3149-3162.

46. Huynh DTN, Kim A-Y, Kim Y-R. Identification of pathogenic factors in Klebsiella pneumoniae using impedimetric sensor equipped with biomimetic surfaces. Sensors. 2017;17(6):1406.

47. Xiao X, Yao B, Zhou Q, Zhang J. Microbiological characteristics of hypermucoviscous Klebsiella pneumoniae isolates from different body fluids. J Infect Dev Countr. 2017;11(09):672-678.

48. Vizcarra IA, Hosseini V, Kollmannsberger P, et al. How type 1 fimbriae help Escherichia coli to evade extracellular antibiotics. Sci Rep. 2016;6(1):1-13.

How to cite this article: Fatima S, Liaqat F, Akbar A, et al. Virulent and multidrug-resistant Klebsiella pneumoniae from clinical samples in Balochistan. Int Wound J. 2021;18:510–518. https://doi.org/10.1111/iwj.13550