Synaptic effects of ethanol on striatal circuitry: therapeutic implications for dystonia

Paola Imbriani, University of Rome ‘Tor Vergata’
Giuseppe Sciamanna, University of Rome ‘Tor Vergata’
Ilham El Atiallah, University of Rome ‘Tor Vergata’
Silvia Cerri, IRCCS Mondino Foundation
Ellen Hess, Emory University
Antonio Pisani, University of Pavia

Journal Title: FEBS JOURNAL
Volume: Volume 289, Number 19
Publisher: WILEY | 2021-07-16, Pages 5834-5849
Type of Work: Article | Final Publisher PDF
Publisher DOI: 10.1111/febs.16106
Permanent URL: https://pid.emory.edu/ark:/25593/w411d

Final published version: http://dx.doi.org/10.1111/febs.16106

Copyright information:
© 2021 The Authors. The FEBS Journal published by John Wiley & Sons Ltd on behalf of Federation of European Biochemical Societies

This is an Open Access work distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0/rdf).

Accessed November 11, 2023 12:38 PM EST
Alcohol consumption affects motor behavior and motor control. Both acute and chronic alcohol abuse have been extensively investigated; however, the therapeutic efficacy of alcohol on some movement disorders, such as myoclonus-dystonia or essential tremor, still does not have a plausible mechanistic explanation. Yet, there are surprisingly few systematic trials with known GABAergic drugs mimicking the effect of alcohol on neurotransmission. In this brief survey, we aim to summarize the effects of EtOH on striatal function, providing an overview of its cellular and synaptic actions in a ‘circuit-centered’ view. In addition, we will review both experimental and clinical evidence, in the attempt to provide a plausible mechanistic explanation for alcohol-responsive movement disorders, with particular emphasis on dystonia. Different hypotheses emerge, which may provide a rationale for the utilization of drugs that mimic alcohol effects, predicting potential drug repositioning.

Introduction

Alcohol acute administration leads to a variety of events, from initial anxiolytic and euphoric effects to severe intoxication with impairments in cognitive and motor performance, depending on the extent of intake. In contrast to other drugs of abuse, with circumscribed molecular targets (such as opiates), EtOH is a nonspecific drug: it acts on several molecular targets at neuronal and synaptic level in different brain areas. This is easily understandable, considering its ubiquitous distribution in the body and brain within minutes of intake. Indeed, previous studies have reported that alcohol interferes with GABAergic neurotransmission, but also other neurotransmitters, such as serotonin, dopamine, glutamate, cannabinoid, and beta-endorphin, are targets of even low doses of EtOH [1], thus affecting both excitatory and inhibitory synaptic transmission. Further molecular targets include ligand- and voltage-gated channels as well as a variety of synaptic proteins [2].

Abbreviations

ChIs, striatal cholinergic interneurons; D2R, dopamine D2 receptor; DBS, deep brain stimulation; DLL, long-lasting disinhibition; DLS, dorsolateral striatum; DMS, dorsomedial striatum; eCBS, endocannabinoids; EPSCs, excitatory postsynaptic currents; EPSPs, excitatory postsynaptic potentials; FSIs, fast-spiking interneurons; GHB, gamma-hydroxybutyrate; Gpi, globus pallidus pars interna; IPSCs, inhibitory postsynaptic currents; LTD, long-term depression; LTF, long-term facilitation; LTP, long-term potentiation; LTSIs, low-threshold spiking interneurons; MD, myoclonus-dystonia; mGluRs, metabotropic glutamate receptors; MSNs, medium spiny neurons; NAc, nucleus accumbens; SGCE, epsilon-sarcoglycan; SNc, substantia nigra pars compacta; SXB, sodium oxybate; VIM, thalamic ventral intermediate nucleus; VTA, ventral tegmental area.
Empirical evidence shows that EtOH possesses a peculiar ability to improve the clinical manifestations of some hyperkinetic movement disorders; nevertheless, the complexity of its pharmacological characteristics poses significant difficulties to the interpretation of the mechanisms behind its effectiveness. Here, we will provide an overview of cellular and synaptic actions of EtOH in a ‘circuit-centered’ view, focusing on basal ganglia function. Although the contribution of cerebellum in the effects of EtOH is well-established, we will specifically focus on the striatum, the largest input station of the basal ganglia, that is critically involved in motor control and motor learning, decision-making, and reward processing [3], functions that are all impaired during EtOH intoxication. We will analyze the potential role of striatal circuits in EtOH responsiveness, evaluating the rationale for potential clinical trials and drug repositioning for movement disorders, focusing on dystonia. This brief review does not pretend to provide an exhaustive summary of the complex molecular effects behind EtOH mechanisms of action, for which the reader is referred to other recent excellent references [2,4–6].

Effects of ethanol on striatal neuron excitability

The effects of EtOH are mediated by low-affinity interactions with multiple molecular targets, including GABA$_{A,B}$ receptors, nicotinic acetylcholine receptors, ionotropic glutamate receptors, and glycine receptors [2]. Despite the effects of EtOH on specific molecules in different brain areas, the current trend in alcohol research abandons the ‘single-target’ view of EtOH’s actions and instead examines its effects in a ‘circuit-centered’ mode, which can be useful to better comprehend its overall clinical effects.

Pioneering *in vitro* studies, based on the use of brain slice preparations, evaluated the acute effects of EtOH highlighting its high specificity in terms of brain areas and neuronal types, which reflects interactions with different receptors and ion channel subunits, thus justifying the effects on intrinsic excitability [7–9], but also on synaptic transmission and plasticity [10], [11]. Accumulating experimental evidence demonstrates that EtOH can affect striatal circuitry and the flow of information through the basal ganglia to the cortex by acutely affecting striatal projection neuron excitability and plasticity, as well as responses of specific striatal neuronal subtypes (Fig. 1).

In 2011, Blomeley *et al.* performed an elegant electrophysiological study on different interneuron subtypes in the dorsolateral striatum (i.e., fast-spiking interneurons, low-threshold spiking interneurons, cholinergic interneurons), describing how they are modulated by acute exposure to EtOH and how their responses may affect projection neurons [12]. The influence of EtOH on the excitability of striatal GABAergic interneurons can be summarized as follows: low-threshold spiking interneurons (LTSIs) show acute ethanol-induced hyperpolarization, while fast-spiking interneurons (FSIs) exhibit a significant EtOH-induced membrane depolarization (due to suppression of potassium current) followed by spontaneous bursts of action potentials. EtOH also has a strong inhibitory effect on striatal cholinergic interneurons (ChIs) spontaneous activity, as their firing frequency is decreased by potentiation of calcium-activated potassium currents. The cell type-specific effects of EtOH (i.e., inhibition of ChIs and LTSIs and increase of excitability of FSIs) depend on its specific interactions with ion channels of distinct type/subunit composition that are differentially expressed by these interneurons. In medium spiny neurons (MSNs), the large majority of the striatal neuronal population, acute bath application of EtOH causes hyperpolarization accompanied by a decrease in input resistance; however, when EtOH is applied in the presence of TTX (to synthetically isolate MSNs from neighboring neurons), no significant effects were recorded, suggesting an indirect action on MSNs, mediated by surrounding striatal interneurons, and mainly by ChIs. This is not surprising since the decrease in local cholinergic tone leads to MSN hyperpolarization due to reduced tonic activation of postsynaptic M1 muscarinic receptors through a mechanism involving Kir2 channels [12,13]. These effects are accompanied by a downregulation of both glutamate and GABA ionotropic receptors in MSNs (as demonstrated by decreased evoked EPSCs and IPSCs amplitude, respectively). Hence, in this *ex vivo* slice preparation, striatal MSNs become less responsive to both excitatory and inhibitory synaptic stimuli after acute treatment. It should be noted that this response is restricted to striatopallidal MSNs, as striatonigral projection neurons are not depolarized by M1 receptor activation [13].

EtOH also acts on midbrain dopamine neurons, leading to well-known reinforcing effects. Indeed, acute EtOH exposure stimulates the firing activity of midbrain neurons of the ventral tegmental area (VTA), leading to an increase in extracellular dopamine concentrations within the VTA [14]. The increase in dopamine neuron firing is also associated with increased dopamine concentrations in the nucleus accumbens (NAc), as evidenced by both experimental and clinical studies [4,15]. EtOH also enhances firing
of substantia nigra pars compacta (SNC) dopaminergic neurons, which underlies the increase in extracellular dopamine observed in the striatum after EtOH exposure in vivo [5]. However, at higher doses, EtOH decreases the evoked release of dopamine from terminals, probably acting through nicotine acetylcholine receptors (nAChR) in the NAc core, although this may not be the only mechanism involved [16,17]. The same effect has been reported in the caudate-putamen of adult male rats, where bath application of EtOH inhibits dopamine release, but only at high doses [18]. Thus, these apparently conflicting effects on striatal dopamine are indeed dose-dependent: Low EtOH doses increase dopamine, whereas high concentrations dampen dopamine release. Moreover, the stimulation of GABA_A receptors on GABAergic interneurons in the VTA by lower doses of EtOH disinhibits dopaminergic neuronal activity, increasing their firing rate. GABA_A receptors can be found also on dopaminergic cells in the VTA, but GABAergic interneurons in the VTA are more sensitive to GABA_A agonists (and EtOH, too) than dopaminergic cells [19]. This would at least in part explain the dose-dependent effects of EtOH on dopamine release, though further work is
needed to delineate the main actors involved in these events.

Effects on striatal synaptic transmission and plasticity

EtOH affects numerous aspects of synaptic transmission and neuronal connectivity, by affecting both excitatory and inhibitory neurotransmission, as well as the release of different neuromodulators, as mentioned above.

EtOH-dependent potentiation of GABA \(\alpha \) receptors has been extensively investigated. Acute EtOH exposure induces facilitation of GABA transmission and increases synaptic inhibition, contributing to sedation and other aspects of intoxication. An increase of ‘tonic’ GABA \(\alpha \) currents has been demonstrated in several brain regions [20,21]. The complex mechanisms underlying the facilitation of GABA transmission include potentiation of GABA release at the presynaptic level [22], enhancement of interneuron firing [23], and enhanced postsynaptic responses, in terms of increase in both amplitude and duration of GABA \(\alpha \)-mediated inhibitory postsynaptic currents (IPSCs) [24,25]. EtOH potentiates the function of \(\alpha/\beta/\gamma \)-subunit-containing receptors and of those containing \(\alpha/\delta \) along with \(\beta \) and \(\delta \) subunits [26,27]. A critical role for the \(\delta \) subunit in conferring enhanced sensitivity to alcohol on GABA \(\alpha \) receptors has been identified [28]. Moreover, recent studies suggest that EtOH potentiation of GABA \(\alpha \) receptor function depends on the phosphorylation of a serine residue on the \(\gamma \)2 subunit by protein kinase C (PKC) [2,4,29].

Additionally, acute EtOH inhibits all glutamate receptors in different brain areas. The most prominent action of EtOH is exerted on ionotrophic NMDA receptors, which has been hypothesized to contribute to the cognitive impairment produced by EtOH [2]. The NR2B subunit of the NMDA receptor, in particular, is highly regulated by EtOH [10]. The effects of EtOH on glutamate release are controversial, with data reporting presynaptic potentiation and others reporting inhibitory effects [4].

EtOH can also modulate long-term synaptic plasticity. Two major forms of synaptic plasticity, that is, long-term depression (LTD) and long-term potentiation (LTP), represent the synaptic processes contributing to memory and learning. It has been demonstrated that, in the hippocampus, EtOH inhibits LTP, through an inhibitory action on NMDARs [30], and enhances LTD, acting on NMDARs and mGluR type 5 (mGluR5) [31]. Alcohol modulation of long-term synaptic plasticity has also been investigated in the striatum [4,5,32–34], where it leads to disruption of synaptic plasticity. Different electrophysiological studies have been conducted both in the sensorimotor (dorsolateral, DLS) striatum and the associative (dorsomedial, DMS) striatum, evaluating the effects exerted by acute and chronic EtOH exposure, as reported below and summarized in Table 1.

Dorsolateral striatum

Acute application of EtOH to striatal slices has opposite effects on the two regions of the dorsal striatum: in the DLS, it inhibits GABAergic activity by reducing miniature inhibitory postsynaptic currents (mIPSC) frequency. Interestingly, acute EtOH exerts different effects on mice with a previous history of alcohol intake, compared to those exposed for the first time: in fact, acute EtOH no longer inhibits

Table 1. Summary of acute and chronic effects of EtOH on synaptic transmission and plasticity in the dorsal striatum: evidence from electrophysiological studies.

	DLS (EtOH) and synaptic transmission and plasticity in the dorsal striatum
DLS	**DMS**
Acute EtOH ↑	- Depression of GABAergic transmission [35]
	- Induction of FSI-MSN and MSN-MSN EtOH-LTD [37]
	- Lack of eCB-DLL at GABAergic synapses [39]
	- Decreased LFS-LTD at GABAergic synapses [39]
Chronic EtOH ↑	- Depression of GABAergic transmission [35]
	- Lack of eCB-DLL at GABAergic synapses [39]
	- Lack of HFS-LTD at glutamatergic synapses [39,41,42]
	- Decreased fEPSPs [36]
Acute EtOH ↓	- Potentiation of GABAergic transmission [35]
	- Dose-dependent effect: EtOH [10mM] blocks HFS-LTP, EtOH [50mM] promotes HFS-LTD at glutamatergic synapses [43]
	- Induction of NMDA-LTIF [44,45]
	- Facilitation of HFS-LTP at glutamatergic synapses [46]
Chronic EtOH ↑	- Depression of GABAergic transmission [35]
	- Induction of NMDA-LTIF [45]
	- Facilitation of HFS-LTP at glutamatergic synapses [46]
	- MSN-D1 excitation and MSN-D2 inhibition [47,48]
	- Increased fEPSPs [36]

EtOH, ethanol; DLS, dorsolateral striatum; DMS, dorsomedial striatum; FSI, fast-spiking interneuron; MSN, medium spiny neuron; HFS, high-frequency stimulation; LTD, long-term depression; eCB-DLL, endocannabinoids-mediated long-lasting disinhibition; LFS, low-frequency stimulation; LTP, long-term potentiation; LTIF, long-term facilitation; fEPSPs, field excitatory postsynaptic potentials; MSN-D1, MSNs of the direct pathway; MSN-D2, MSNs of the indirect pathway. Up arrow indicates enhanced striatal output, and down arrow indicates decreased striatal output.
mIPSC frequency in EtOH drinking mice [35]. Also, long-term voluntary EtOH consumption exerts opposing effects on synaptic transmission in the two striatal subregions: in the DLS, it induces a depression of field excitatory postsynaptic potentials (fEPSPs) amplitude [36]. In a recent study, Patton and Colleagues demonstrated that, in the DLS, acute EtOH depresses the inhibitory MSN- and FSI-MSN synapses, and the effect persisted for 15 min following the end of EtOH application, suggesting to consider it a form of EtOH-LTD. The FSI-MSN EtOH-LTD occurs through activation of presynaptic delta-opioid receptor and, together with EtOH-LTD at MSN-MSN synapses, may contribute to the increased DLS output following EtOH exposure [37].

It is well-established that striatal LTD is mediated by endocannabinoids (eCBs) by retrograde trans-synaptic signaling at excitatory and/or inhibitory synapses [38]. Of interest, exposure to EtOH did not affect eCB-mediated corticostriatal LTD [39]. However, at GABAergic synapses it prevented eCB-mediated long-lasting disinhibition (DLL) of striatal output and reduced LTD induced by low/moderate frequency stimulation, by modulating eCB-signaling at presynaptic level. Thus, EtOH modulates eCB-mediated striatal plasticity in a synapse-specific manner [39].

Chronic alcohol intake also affects striatal eCB signaling. In striatal slices from EtOH-consuming rats, eCB-DLL is impaired [40]. Moreover, chronic EtOH intake alters striatal LTD at excitatory synapses [40–42] (Fig. 2).

Dorsomedial striatum

As opposed to DLS, acute EtOH potentiates GABAergic activity in the DMS by increasing mIPSC frequency; moreover, a history of EtOH drinking alters the acute alcohol effects on GABAergic transmission, inducing a decrease of mIPSC frequency rather than an increase [35].

Fig. 2. Effects of chronic ethanol exposure on the dorsal striatum. Chronic effects of EtOH on synaptic transmission and plasticity. GABAergic transmission is depressed in both DLS and DMS (orange area, yellow down arrow). In striatal slices from EtOH-consuming rats, eCB-DLL is impaired at inhibitory synapses and LTD is altered at excitatory synapses in the DLS. In the DMS, the repeated systemic administration of alcohol causes facilitation of LTP at glutamatergic synapses. Moreover, repeated cycles of excessive EtOH consumption and withdrawal potentiate glutamatergic transmission (excitation) in MSNs of the direct pathway (expressing dopamine D1 receptor) and potentiate GABAergic transmission (inhibition) in MSNs of the indirect pathway (expressing dopamine D2 receptor). The net effect is an overall disinhibition that contributes to enhanced output from both DLS and DMS (big up arrows). DLS, dorsolateral striatum; DMS, dorsomedial striatum; MSN, medium spiny neuron; LTD, long-term depression; LTP, long-term potentiation; eCB, endocannabinoid; DLL, long-lasting disinhibition.
Long-term voluntary EtOH consumption results in an increase of fEPSPs amplitude; while the decrease in evoked potentials observed in the DLS is short-lasting, the enhanced excitability in the DMS is not restored by abstinence, suggesting a long-lasting effect [36]. A previous study on the effects of acute EtOH on long-term synaptic plasticity at MSNs in the DMS showed that EtOH dose-dependently alters the direction of striatal synaptic plasticity: at 10 mM EtOH, NMDAR-dependent LTP is completely abolished, while higher concentrations (50 mM) promotes LTD. The authors hypothesized that this action cannot be explained by the inhibition of NMDARs alone, but additional targets might be involved (i.e., potentiation of D2-mediated signaling, activation of CB1 receptors) [43].

Acute treatment with EtOH increased tyrosine phosphorylation of the NR2B subunit of the NMDAR, resulting in a decrease in NMDAR-mediated EPSCs; after EtOH washout, the NMDAR EPSCs gradually recovered and then increased above baseline for > 30 min. This long-term enhancement of NMDAR activity after washout was attributable to a postsynaptic mechanism and named long-term facilitation (LTF) [44,45]. The same authors later demonstrated that acute exposure of striatal slices to EtOH facilitates the induction of LTD at glutamatergic striatal synapses and that the repeated systemic administration of alcohol causes an NR2B-NMDAR-dependent facilitation of LTD, through a long-lasting increase expression of the GluR1 and GluR2 subunits of AMPARs at membrane level [46]. Since, as previously reported, Yin et al. [43] showed that LTD in the DMS is inhibited in the presence of EtOH, the authors deduce that this difference may be ascribable to the distinct time points at which LTD is induced: When the HFS protocol is delivered in the presence of EtOH, LTD is inhibited, but when it is delivered after EtOH withdrawal, LTD is facilitated. These mechanisms might underlie aberrant synaptic plasticity of the DMS, as this effect was not observed in the DLS nor in the nucleus accumbens [45].

A more recent study focused on DMS showed that repeated cycles of excessive EtOH consumption and withdrawal induce changes in synaptic strength by selectively potentiating glutamatergic transmission in MSNs of the direct pathway (expressing dopamine D1 receptor) and GABAergic transmission in MSNs of the indirect pathway (expressing dopamine D2 receptor). This excitation of D1-MSNs and inhibition of D2-MSNs may control alcohol-associated behaviors and reinforce alcohol consumption [47]. These results are in line with the observation that chronic alcohol consumption produces a long-lasting increase in synaptic AMPAR function selectively in D1-MSNs of the DMS [48]. Finally, in chronic intermittent binge-like EtOH drinking mice, it was demonstrated that the glutamatergic transmission and the density of dendritic spines of MSNs are unchanged, while the GABAergic transmission is depressed in both DLS and DMS, suggesting an overall disinhibition that would likely contribute to enhanced output from the dorsal striatum [35] (Fig. 2).

Overall, these results suggest that EtOH consumption differently modulates neurotransmission in dorsal striatal subregions, causing an altered balance between DMS and DLS.

Ventral striatum

EtOH also affects synaptic transmission and plasticity in the nucleus accumbens. Acute EtOH inhibits both LTP and LTD, probably acting through inhibition of NMDARs and of group I metabotropic glutamate receptors (mGluRs) as well as altered dopamine release [32]. Chronic EtOH exposure potentiates glutamatergic transmission and impairs LTD in D1-positive MSNs, while D1-negative MSNs show normal LTD [49,50]. Thus, synaptic alterations in the NAc may contribute to behavioral adaptations to chronic EtOH.

Taken together, these studies show that the effects of EtOH exposure and washout on synaptic transmission and synaptic plasticity in the striatum are multifaceted and that alcohol can globally shape the striatal output: specifically, acute EtOH administration inhibits MSNs output from the associative striatum and disinhibits MSNs output from the sensorimotor striatum (Fig. 1, Table 1). The modulation of synaptic plasticity by alcohol in the dorsal striatum may be of relevance for understanding alcohol responsiveness in some movement disorders.

Alcohol and movement disorders

Alcohol is known to exert an effect on motor symptoms in a variety of movement disorders. Essential tremor, myoclonus-dystonia (MD), and other forms of dystonia are included in the spectrum of ethanol-responsive movement disorders [6], although the exact mechanisms remain unclear. This situation is further complicated by the evidence that the ‘beneficial’ effects of alcohol are accompanied by well-known adverse effects, by the tendency to cause rebound involuntary movements when it wears off and, consequently, by alcohol abuse [51]. In contrast, in other conditions such as paroxysmal nonkinesigenic dyskinesias, attacks are even triggered or exacerbated by acute alcohol exposure [52,53], which adds a further level of
complexity. Here, we will specifically discuss MD and mention other alcohol-sensitive dystonias, as the effect of alcohol on essential tremor has been subject of recent surveys [6,52,54,55].

Myoclonus-dystonia and alcohol responsiveness

Clinical features and genetics

MD is a rare, inherited disease, with a prevalence of about 2 per 1,000,000 in Europe [56] and with onset usually occurring in childhood or early adolescence. It is characterized by a combination of myoclonic jerks and dystonia. Myoclonus is the predominant motor sign, consisting of brief ‘shock-like’ jerks, usually affecting upper body and elicited by action, posture, and psychological stress. Mild to moderate dystonia is present in more than half of cases, mainly presenting as torticollis or writer’s cramp, but also as focal dystonia involving the lower extremities, cranial region, and larynx. Patients can also manifest postural tremor of the upper limbs [57,58]. Psychiatric disorders have also been reported, including depression, anxiety, obsessive-compulsive disorder, personality disorders, alcohol abuse, and panic attacks [59,60]. Early reports on alcohol responsiveness in MD [61] were later confirmed by the demonstration of significant improvement of motor symptoms in MD patients after alcohol intake [6,62,63]. The condition is genetically heterogeneous. In most cases, it is related to epsilon-sarcoglycan (*SGCE*) gene mutations with autosomal dominant inheritance and reduced penetrance [64], configuring the SGCE-related-myoclonus-dystonia (or DYT-SGCE). Epsilon-sarcoglycan is a transmembrane glycoprotein widely expressed in human tissues including the brain, where, nevertheless, little is known about its role. In the mouse brain, high expression levels of epsilon-sarcoglycan mRNA have been found in the olfactory bulb mitral cell layer, cerebellar Purkinje cells, and neurons of the substantia nigra, ventral tegmental area, dorsal raphe nucleus, and locus coeruleus [65]. Intriguingly, the two major SGCE isoforms were found to be, respectively, enriched in post- and presynaptic membrane fractions, which suggests their possible roles in synaptic function of the central nervous system [66]. Over the years, novel genes causative of MD phenotypes have been reported, including the *KCTD17* gene, with high expression in the putamen, which is likely to be involved in postsynaptic dopaminergic transmission [67]; *CACNA1B* gene, with N-type calcium channel activity, is thought to be crucial in controlling neurotransmitter release [68]; *RELN* gene encodes reelin, an extracellular matrix glycoprotein which seems closely involved in modulation of synaptic function in adulthood [69]. Actually, patients with mutations in genes other than *SGCE* may display different clinical phenotypes compared to ‘typical’ *SGCE*-related MD. For example, in *KCTD17*-mutated patients, dystonia tends to predominate over myoclonus, the distribution of myoclonus is less pronounced in proximal upper extremities and neck, and, to date, there are no reports of improvement of myoclonus with alcohol intake [70]. Therefore, recently Roze and colleagues have suggested that the term ‘myoclonus-dystonia’ should be limited to patients with a *SGCE*-like phenotype, while the use of the term ‘myoclonic dystonia’ should be preferred for non-*SGCE* patients; moreover, they proposed modified diagnostic criteria for the syndrome of MD, based on the *SGCE*-like phenotype, also including alcohol responsiveness [58]. It should be noted that some clinical studies show heterogeneity of alcohol response both between and within families, and this response does not appear to be specific to the genetic etiology of MD [54]. Indeed, a positive effect of alcohol on motor symptoms has also been reported in patients with a myoclonus-dystonia-like syndrome caused by *CACNA1B* [71] and *RELN* [72] mutations. Alcohol misuse has been reported in phenotype descriptions of MD patients. It is postulated that the increased rate of alcohol abuse in this disease is secondary to the ameliorative effects of alcohol on the motor symptoms, as the result of uncontrolled self-medication, rather than a phenotypic expression of the *SGCE* gene [59,62]. The lack of treatments with similar efficacy also contributes to increase the risk of alcohol dependence. However, further work is needed to understand the relationship between alcohol dependence and MD.

A circuit-centered view

The pathophysiological mechanisms underlying motor symptoms in MD are still not clear, and a crucial debate is whether symptoms are caused by a primary dysfunction of the striato-pallido-thalamo-cortical pathway or of the cerebello-thalamo-cortical pathway, with possible contribution of additional cortical dysfunction [58]. Neurophysiological evidence supports the existence of a subcortical generator underlying motor symptoms [73,74], even though the peculiar phenotype characterized by the co-existence of psychiatric disorders may suggest diffuse brain dysfunction [75]. The electrophysiological pattern of myoclonus, including electromyographic (EMG) bursts with a mean duration of 95 ms, the absence of cortical correlate preceding myoclonus
on jerk-locked back-averaged EEG, and the absence of giant somatosensory evoked potentials, is in favor of its subcortical origin [76]. Moreover, noninvasive brain stimulation techniques, such as transcranial magnetic stimulation, have confirmed the absence of abnormalities of cortical function in SGCE-MD: normal or higher motor cortical excitability, depending on the protocol used; normal or only subtly reduced intracortical inhibition (mediated by GABA_A interneurons) of the motor cortex [74,76–78]. An imaging study of an isolated case of inherited MD also showed abnormal activation in subcortical structures, specifically within the thalamus and the dentate nucleus [79]. Any cortical abnormalities detected in neurophysiological and neuroimaging studies are thought to be the consequence of basal ganglia dysfunction rather than a primary cortical dysfunction [60].

Some evidence supports deficits of cerebellar networks underlying MD pathophysiology, suggesting that SGCE mutations cause Purkinje cell dysfunction with GABAergic deficits, which may be transiently compensated by alcohol administration [63,80]. A potential role of the cerebellum in the pathophysiology of MD is also supported by neuroimaging [73,81] and structural [82] studies, as well as by the evidence of high expression of SGCE gene in the cerebellum [80]. Moreover, a neurophysiological study demonstrated impaired saccadic adaptation in the DYT11 patients, further confirming cerebellar dysfunction [83].

Additionally, a role of the ventral intermediate nucleus (VIM) of the thalamus has been hypothesized as potentially involved in the generation of myoclonus. This is also supported by the evidence that deep brain stimulation (DBS) targeting the VIM is effective in SGCE-MD [84,85].

Nevertheless, there is also significant clinical and experimental evidence supporting the assumption that MD is primary due to dysfunction of the basal ganglia. In clinical studies, MD appears to be correlated to an alteration of MSN excitability with disruption in striato-pallido-thalamo-cortical circuits [86,87].

Studies conducted in parallel with DBS demonstrated that myoclonus severity is associated with abnormal neuronal activity in the internal globus pallidus (GPI) [88]; in line with this, DBS could be effective in reducing myoclonus by restoring the discharge pattern in the GPI and reducing the cortical overactivation [89]. The observation that basal ganglia DBS provides good benefit for symptoms represents a key piece of evidence of the central role of basal ganglia in MD [90,91].

Moreover, in MD patients with pronounced dystonia, EMG-EMG coherence analysis showed abnormal intermuscular 3 to 10 Hz drive, while EEG-EMG coherence analysis showed no significant coherence in the 15 to 25 Hz band, which reflects an altered cortical drive caused by basal ganglia dysfunction leading to abnormal motor activation, in common with other dystonias [92].

Clinical observations are also supported by experimental data. Results from animal models of MD have demonstrated that Sgce deletion impacts striatal function. Sgce heterozygous knock-out (KO) mice exhibit motor deficits, myoclonus, and abnormal nuclear envelopes in striatal MSNs, although striatum-specific Sgce conditional KO mice exhibited only motor deficits, without evidence of abnormal nuclear envelopes or myoclonus [93]. Thus, the authors propose the development of therapies targeting the striatum to compensate for the loss of epsilon-sarcoglycan function in SGCE-MD patients. Moreover, in Sgce KO mice Zhang et al. reported alteration of striatal dopaminergic transmission, as evidenced by a significant decrease of striatal dopamine D2 receptor (D2R) and an increase of dopamine release after amphetamine injection [94], which confirmed the previous observation of higher levels of striatal dopamine and its metabolites [93]. Moreover, recent experimental evidence in a genetic mouse model of SGCE deficiency demonstrated impaired corticostriatal LTD, which can explain the circuit abnormalities thought to underlie MD. This neurophysiological deficit was completely reversed by blockade of the adenosine A2A receptors, which could in turn induce a potentiation of DR2, given the reciprocal A2AR/D2R interaction on MSNs [95].

The evidence that Sgce deletion might affect dopaminergic transmission is also supported by clinical evidence. Patients with MD exhibit reduced striatal D2R availability [96]. Despite clinical benefit, GPI-DBS had no significant effects on D2R binding, but patients who did not undergo this procedure showed a decrease of D2R binding, suggesting that GPI-DBS could exert a stabilizing effect on dopaminergic pathways [97].

Mechanistic hypotheses on alcohol responsiveness in MD

Although the underlying pathophysiology of MD requires further investigation, the direct and considerable connections between the cerebellum and the basal ganglia indicate that MD should be considered as a network disorder, in which the dysfunction in one node influences the activity of others [98]. Consequently, the responsiveness to EtOH observed in MD and in other movement disorders raises the issue of
whether these conditions share common anatomical networks, and indicates that EtOH may temporarily reverse the alterations of these neural circuits. At the system level, it could be hypothesized that alcohol acts on MD and on alcohol-sensitive dystonia by modulating the output from the dorsal striatum and, in turn, motor control. At cellular level, multiple targets should be considered. Dopamine exerts a central role in striatal LTD induction, through D2Rs, and EtOH has been shown to modulate LTD in the dorsal striatum [43]. Thus, EtOH could exert its beneficial effects by acting, either directly or indirectly through the endocannabinoid system, on dopaminergic system. Alternatively, an attractive hypothesis is that the striatal modulation mediated by EtOH could be due to its effects on interneuron excitability and more specifically on the ability to down-regulate the tonic firing frequency of ChIs [12]. The reduced excitability would lower the levels of striatal acetylcholine, which has a well-established role in long-term synaptic plasticity alterations observed in dystonia models [99,100]. Further experimental work is required to clarify these mechanisms. Lastly, the cerebellar hypothesis should also be taken into account. A recent preclinical evidence demonstrated that adult mice with knockdown of Sgce in the cerebellum, but not in the basal ganglia, develop overt motor symptoms, including dystonia, which can be improved by administration of ethanol [101]. Moreover, very recently, Frucht and Riboldi proposed a model to explain the clinical improvement with low doses of EtOH in MD, supporting an abnormal activation of the Purkinje cells and dentate nucleus and a likely mechanism of action of EtOH to normalize abnormal cerebellar output in this disorder, paving the way for future speculation [102].

A better understanding of the mechanism by which alcohol ameliorates symptoms in MD, and in alcohol-sensitive movement disorders in general, may help elucidating the pathophysiology of these conditions.

Other alcohol-sensitive dystonias

The effect of alcohol is not limited to patients with MD, since a wider range of subtypes of dystonia has been reported to have marked alcohol responsiveness.

One of the first reports of an alcohol-sensitive purely dystonic syndrome was that of a patient presenting with a combination of generalized dystonia and myorhythmic movements with onset in early-adulthood and negative family history. Medical treatments (trihexyphenidyl and carbamazepine) were ineffective, but dramatic improvement occurred after alcohol intake [103].

Another recent paper described the case of a 29-year-old male patient with generalized dystonia, for whom some anti-dystonic treatments were ineffective while alcohol induced a dramatic improvement [104].

Cases of alcohol-responsive focal dystonia are reported more frequently than generalized dystonias. These include the following: five patients with spasmodic torticollis who benefited from intravenous infusion of an EtOH solution [105]; spasmodic dysphonia in DYT4 dystonia [106]; a case of primary writer’s cramp that was unexpectedly improved by drinking a small amount of alcohol [107]; a 66-year-old woman with jerky cervical dystonia caused by a mutation in the GCH1 gene (the cause of dopa-responsive dystonia) and with striking alcohol sensitivity [108]. Moreover, a survey in a large population of patients with laryngeal dystonia confirmed what was already observed in case reports, that is a marked improvement of voice symptoms after alcohol ingestion; this responsiveness was not attributed to the presence of voice tremor [109].

A recent study conducted on more than 1200 patients with isolated dystonia reported an improvement of motor symptoms after alcohol consumption in almost a third of them. Alcohol responsiveness was not related to age, sex, or severity of dystonia, but there was a significant association with an earlier age at onset, distribution of dystonic symptoms (i.e., multifocal/generalized forms had higher rates of alcohol responsiveness than segmental ones), subgroups of focal dystonia (i.e., cervical and laryngeal dystonia responded better than cranial and limb forms), presence of tremor and a positive family history (e.g., DYT-TUBB4A and DYT-SGCE). The latter suggests that an underlying genetic contribution may represent a predictor of alcohol responsiveness in patients with dystonia [110]. These results reinforce the concept of an independent effect of alcohol on dystonia and may pave the way for future research focused on the identification of further genes associated with alcohol-responsive dystonia.

New and old drugs for the treatment of myoclonus-dystonia and other alcohol-sensitive dystonia

By looking at pharmacological agents that exert, at least to some extent, a beneficial effect on MD, it would be simplistic to attribute EtOH efficacy solely to its GABAergic action. Indeed, benzodiazepines and other drugs acting via GABAergic pathway have proven only limited efficacy compared to EtOH, and, on the flip side, other agents with different mechanisms of action, like anticholinergics or zonisamide, have shown to significantly improve motor symptoms.
Though EtOH alleviates symptoms of MD, it is not viable as a long-term treatment due to its pharmacokinetic and pharmacodynamic properties (i.e., adverse effects, rebound effect, tendency to abuse/misuse). However, as our understanding of the mechanisms underlying the efficacy of EtOH increases, medications that mimic the effects of EtOH have gradually emerged for the treatment of MD (Table 2).

Benzodiazepines, that reduce neuronal excitability via GABAergic mechanisms, and other GABA modulators, like primidone and zolpidem, provide only mild or no improvement in patients with MD and produce adverse effects that lead to discontinuation [57,60,111–113].

A novel oral drug, developed as a GABAergic agent, and currently marketed for the treatment of cataplexy in narcoleptic patients, is sodium oxybate (SXB), the sodium salt of gamma-hydroxybutyrate (GHB). SXB has been reported to be effective in MD, with a good tolerability and mild dose-dependent sedation [114]. GHB, which is used in the treatment of alcohol withdrawal, was also reported effective in a patient with alcohol-sensitive myoclonic jerks and dystonia [115]. The exact mechanism of SXB’s antimyoclonic activity remains unknown. GHB is supposed to have a low affinity to the metabotropic GABA_B receptor, either directly or via conversion to GABA [114] as well as an action via the GHB receptors that bind to extrasynaptic GABA_A receptors [116]. However, other mechanisms of action may be involved, since other GABA_B agonists, such as baclofen, have minimal effects on myoclonus [102]. A recent study on 531 patients with alcohol-responsive laryngeal dystonia treated with SXB demonstrated an impressive improvement of dystonic symptoms, presumably as a result of the modulation of the abnormal plasticity within the cortical and subcortical circuitry [117]. It is worth noting that what emerges from clinical trials is that the response to small doses of alcohol in SGCE-MD, adductor spasmodic dysphonia (ADSD), and abductor spasmodic dysphonia (ABSD) predicts the response to SXB [102].

Several studies confirmed good responses to anticholinergics in patients with MD who did not respond to other treatments (i.e., clonazepam and levodopa), even if their use can be accompanied by side effects [60,118–122].

The efficacy of some antiepileptics in the treatment of MD patients has been described. Among these, zonisamide has been recently reported to be well-tolerated and effective against action myoclonus and myoclonus-related functional disability, in a way similar to the effects of alcohol, in a cohort of MD patients [123]. Thus, this treatment has been proposed

Drug	GABAergic agents	Antiepileptics	Anti-Aminoergic	Others
SXB	Sodium oxybate	Carbamazepine	Sodium valproate	Anticholinergics
				Sedation
SXB	Sodium oxybate	Carbamazepine	Sodium valproate	Sedation

Table 2. Potential drugs for myoclonus-dystonia and other alcohol-sensitive dystonias as reported by previous case reports and clinical studies.
as the first-line option in mild to moderate patients and in forms not eligible for DBS [58,124]. Valproate has been used to treat myoclonus, but with only modest benefit [121,125,126]. Levetiracetam has also been tried with variable results [127,128]. Improvement with both levodopa [129] and tetrabenazine [130] has been described.

Beyond pharmacological therapies, in patients with severe and medical-refractory forms of MD, DBS can be offered as a long-lasting treatment. There are no controlled trials about DBS effectiveness in MD, but several reports can be found, using bilateral G Pi, thalamic VIM, or a combination of them, as preferred targets [85,87,90,91,97]. Comparison between thalamic versus pallidal targets did not show a significant difference in efficacy of suppressing myoclonus, but G Pi target improved dystonia to a greater extent than thalamic target [131]. So, DBS should be considered in selected cases of MD for its efficacy, both on myoclonus and dystonia, and its good tolerability [131].

Conclusions
Different hyperkinetic movement disorders share the peculiarity of improving after alcohol ingestion. Nevertheless, the underlying mechanisms of these effects remain not completely known.

In this brief review, we propose that the improvement of motor symptoms with EtOH does not simply derive from an effect on GABA transmission. Instead, we propose that EtOH possesses a specific ability to ‘normalize’ the pathophysiologic changes in the entire basal ganglia circuit, a unifying pathophysiological feature in common with MD and other dystonias. A plausible model should explain why alcohol is able to improve the clinical manifestations of etiologically different disorders.

In this regard, a working hypothesis should be testable in animal models with different dystonia subtypes with the aim of exploring how EtOH modulates distinctive forms of striatal synaptic plasticity. Elucidating the mechanisms by which alcohol exerts its effects in MD and other movement disorders will contribute to our understanding of their pathophysiology. Indeed, techniques for cellular and circuit manipulation (DREADD, optogenetics) will provide a platform for elucidating the effects of EtOH on large-scale brain circuitry and alcohol-related behavior. Moreover, understanding the pathophysiology may reveal new therapeutic targets, lead to novel therapeutic approaches, and contribute to the rationale for potential clinical trials. Certainly, alcohol is not a viable option to treat movement disorders, due to its addictive potential and side effects, but exploiting drugs that mimic EtOH effects is a feasible alternative.

Acknowledgements
This project was supported by Italian Ministry of Health (Ricerca Corrente to SC, AP); Italian Ministry of Health under the frame of EJP RD, the European Joint Programme on Rare Diseases (EJP RD-135 2019) to AP; Cure Dystonia Now Foundation; U.S. Department of Defense (PR191874). In addition, this project has received funding from the European Union’s Horizon 2020 research and innovation program under the EJP RD COFUND-EJP No 825575 (EurDyscover) to AP. Open Access Funding provided by Universita degli Studi di Pavia within the CRUI-CARE Agreement. [Correction added on 20 May 2022, after first online publication: CRUI funding statement has been added.]

Conflict of interest
The authors declare no conflict of interest.

Author contributions
PI wrote the manuscript; AP, GS, EJH revised the manuscript; SC, GS prepared tables and figures.

References
1 Volkow ND, Wiers CE, Shokri-Kojori E, Tomasi D, Wang G-J & Baler R (2017) Neurochemical and metabolic effects of acute and chronic alcohol in the human brain: Studies with positron emission tomography. *Neuropsychopharmacology* 122, 175–188.
2 Lovinger DM & Roberto M (2013) Synaptic effects induced by alcohol. *Curr Topics Behav Neurosci* 13, 31–86.
3 Surmeier DJ, Plotkin J & Shen W (2009) Dopamine and synaptic plasticity in dorsal striatal circuits controlling action selection. *Curr Opin Neurobiol* 19, 621–628.
4 Abrahao KP, Salinas AG & Lovinger DM (2017) Alcohol and the brain: neuronal molecular targets, synapses, and circuits. *Neuron* 96, 1223–1238.
5 Lovinger DM & Alvarez VA (2017) Alcohol and basal ganglia circuitry: Animal models. *Neuropsychopharmacology* 122, 46–55.
6 Wu J, Tang H, Chen S & Cao L (2020) Mechanisms and pharmacotherapy for ethanol-responsive movement disorders. *Front Neurol* 11, 892.
7 Siggins GR, Roberto M & Nie Z (2005) The tipsy terminal: presynaptic effects of ethanol. Pharmacol Ther 107, 80–98.
8 Roberto M, Bajo M, Crawford E, Madamba SG & Siggins GR (2006) Chronic ethanol exposure and protracted abstinence alter NMDA receptors in central amygdala. Neuropsychopharmacology 31, 988–996.
9 Kelm MK, Criswell HE & Breese GR (2011) Ethanol-enhanced GABA release: a focus on G protein-coupled receptors. Brain Res Rev 65, 113–123.
10 Pignataro L, Varodayan FP, Tannenholz LE & Harrison NL (2009) The regulation of neuronal gene expression by alcohol. Pharmacol Ther 124, 324–335.
11 Adermark L, Clarke RBC, Söderpalm B & Ericson M (2011) Ethanol-induced modulation of synaptic output from the dorsolateral striatum in rat is regulated by cholinergic interneurons. Neurochem Int 58, 693–699.
12 Blomley CP, Cains S, Smith R & Bracci E (2011) Ethanol affects striatal interneurons directly and projection neurons through a reduction in cholinergic tone. Neuropsychopharmacology 36, 1033–1046.
13 Shen W, Tian X, Day M, Ulrich S, Tkatch T, Nathanson NM & Surmeier DJ (2007) Cholinergic modulation of Kir2 channels selectively elevates dendritic excitability in striatopallidal neurons. Alcohol Alcohol 51, 535–540.
14 Deehan GA, Knight CP, Waeiss RA, Engleman EA, Toalston JE, McBride WJ, Hauser SR & Rodd ZA (2016) Peripheral administration of ethanol results in a correlated increase in dopamine and serotonin within the posterior ventral tegmental area. Alcohol Alcohol 51, 535–540.
15 Aalto S, Ingman K, Alakurtti K, Kaasinen V, Virkkala J, Nägren K, Rinne JO & Scheinin H (2015) Intravenous ethanol increases dopamine release in the ventral striatum in humans: PET study using bolus-infusion administration of [11C]raclopride. J Cereb Blood Flow Metab 35, 424–431.
16 Schilaty ND, Hedges DM, Jang EY, Folsom RJ, Yorgason JT, McIntosh JM & Steffensen SC (2014) Acute ethanol inhibits dopamine release in the nucleus accumbens via α6 nicotinic acetylcholine receptors. J Pharmacol Exp Ther 349, 559–567.
17 Budygin EA, Phillips PE, Wightman RM & Jones SR (2001) Terminal effects of ethanol on dopamine dynamics in rat nucleus accumbens: an in vitro voltammetric study. Synapse 42, 77–79.
18 Budygin EA, Phillips PE, Robinson DL, Kennedy AP, Gainetdinov RR & Wightman RM (2001) Effect of acute ethanol on striatal dopamine neurotransmission in ambulatory rats. J Pharmacol Exp Ther 297, 27–34.
19 Pierce RC & Kumaresan V (2006) The mesolimbic dopamine system: the final common pathway for the reinforcing effect of drugs of abuse? Neurosci Biobehav Rev 30, 215–238.
20 Diaz MR & Valenzuela CF (2016) Sensitivity of GABAergic tonic currents to acute ethanol in cerebellar granule neurons is not age- or δ subunit-dependent in developing rats. Alcohol Clin Exp Res 40, 83–92.
21 Liang J, Zhang N, Cagetti E, Houser CR, Olsen RW & Spigelman I (2006) Chronic intermittent ethanol-induced switch of ethanol actions from extrasynaptic to synaptic hippocampal GABAA receptors. J Neurosci 26, 1749–1758.
22 Airdowola OJ & Weiner JL (2004) Ethanol potentiation of GABAergic synaptic transmission may be self-limiting: role of presynaptic GABA(B) receptors. J Neurosci 24, 10679–10686.
23 Valenzuela CF & Jotty K (2015) Mini-review: effects of ethanol on GABAA receptor-mediated neurotransmission in the cerebellar cortex-recent advances. Cerebrellum 14, 438–446.
24 Sebe JY, Eggers ED & Berger AJ (2003) Differential effects of ethanol on GABA(A) and glycine receptor-mediated synaptic currents in brain stem motoneurons. J Neurophysiol 90, 870–875.
25 Ziskind-Conhaim L, Gao B-X & Hinckley C (2003) Ethanol dual modulatory actions on spontaneous postsynaptic currents in spinal motoneurons. J Neurophysiol 89, 806–813.
26 Olsen RW, Hanchar HJ, Meera P & Wallner M (2007) GABAA receptor subtypes: the “one glass of wine” receptors. Alcohol 41, 201–209.
27 McCool BA, Frye GD, Pulido MD & Botsing SK (2003) Effects of chronic ethanol consumption on rat GABA(A) and strychnine-sensitive glycine receptors expressed by lateral/basolateral amygdala neurons. Brain Res 963, 165–177.
28 Paul SM (2006) Alcohol-sensitive GABA receptors and alcohol antagonists. Proc Natl Acad Sci USA 103, 8307–8308.
29 Qi Z-H, Song M, Wallace MJ, Wang D, Newton PM, McMahon T, Chou W-H, Zhang C, Shokat KM & Messing RO (2007) Protein kinase C epsilon regulates γ-aminobutyrate type A receptor sensitivity to ethanol and benzodiazepines through phosphorylation of gamma2 subunits. J Biol Chem 282, 33052–33063.
30 Izumi Y, Kitabayashi R, Funatsu M, Izumi M, Yuede C, Hartman RE, Wozniak DF & Zorumski CF (2005) A single day of ethanol exposure during development has persistent effects on bidirectional plasticity, N-methyl-D-aspartate receptor function and ethanol sensitivity. Neuroscience 136, 269–279.
31 Izumi Y & Zorumski CF (2012) NMDA receptors, mGluR5, and endocannabinoids are involved in a cascade leading to hippocampal long-term depression. Neuropsychopharmacology 37, 609–617.
Alcohol effects on striatal circuitry in dystonia

P. Imbriani et al.

32 Lovinger DM & Kash TL (2015) Mechanisms of neuroplasticity and ethanol’s effects on plasticity in the striatum and bed nucleus of the stria terminalis. Alcohol Res 37, 109–124.

33 Avchalumov Y, Oliver RJ, Trenew W, Heyer Osorno RE, Sibley BD, Parohit DC, Contet C, Roberto M, Woodward JJ & Mandym CD (2021) Chronic ethanol exposure differentially alters neuronal function in the medial prefrontal cortex and dentate gyrus. Neuropharmacology 185, 108438.

34 Lovinger DM & Abraaho KP (2018) Synaptic plasticity mechanisms common to learning and alcohol use disorder. Learn Mem 25, 425–434.

35 Wilcox MV, Cuzon Carlson VC, Sherazee N, Sprow GM, Bock R, Thiele TE, Lovinger DM & Alvez VA (2014) Repeated binge-like ethanol drinking alters ethanol drinking patterns and depresses striatal GABAergic transmission. Neuropsychopharmacology 39, 579–594.

36 Lagström O, Danielsson K, Söderpalm B, Ericson M & Adermark L (2019) Voluntary ethanol intake produces subregion-specific neuroadaptations in striatal and cortical areas of wistar rats. Alcohol Clin Exp Res 43, 803–811.

37 Patton MH, Roberts BM, Lovinger DM & Mathur BN (2016) Ethanol disinhibits dorsolateral striatal medium spiny neurons through activation of A presynaptic delta opioid receptor. Neuropsychopharmacology 41, 1831–1840.

38 Gerdeman GL, Ronesi J & Lovinger DM (2002) Postsynaptic endocannabinoid release is critical to long-term depression in the striatum. Nat Neurosci 5, 446–451.

39 Clarke RBC & Adermark L (2010) Acute ethanol treatment prevents endocannabinoid-mediated long-lasting disinhibition of striatal output. Neuropharmacology 58, 799–805.

40 Adermark L, Jonsson S, Ericson M & Söderpalm B (2011) Intermittent ethanol consumption depresses endocannabinoid-signaling in the dorsolateral striatum of rat. Neuropharmacology 61, 1160–1165.

41 Cui S, Wang S, Li J, Xie G, Zhou R, Chen L & Yuan X (2011) Alteration of synaptic plasticity in rat dorsal striatum induced by chronic ethanol intake and withdrawal via ERK pathway. Acta Pharmacol Sin 32, 175–181.

42 DePoy L, Daut R, Brigan JL, MacPherson K, Crowley N, Gunduz-Cinar O, Pickens CL, Cinar R, Saksida LM, Kunos G et al. (2013) Chronic alcohol produces neuroadaptations to prime dorsal striatal learning. Proc Natl Acad Sci USA 110, 14783–14788.

43 Yin HH, Park BS, Adermark L & Lovinger DM (2007) Ethanol reverses the direction of long-term synaptic plasticity in the dorsomedial striatum. Eur J Neurosci 25, 3226–3232.

44 Wang J, Carnicella S, Phamluong K, Jeanblanc J, Ronesi JA, Chaudhri N, Janak PH, Lovinger DM & Ron D (2007) Ethanol induces long-term facilitation of NR2B-NMDA receptor activity in the dorsal striatum: implications for alcohol drinking behavior. J Neurosci 27, 3593–3602.

45 Wang J, Lanfranco MF, Gibb SL, Yowell QV, Carnicella S & Ron D (2010) Long-lasting adaptations of the NR2B-containing NMDA receptors in the dorsomedial striatum play a crucial role in alcohol consumption and relapse. J Neurosci 30, 10187–10198.

46 Wang J, Ben Hamida S, Darcq E, Zhu W, Gibb SL, Lanfranco MF, Carnicella S & Ron D (2012) Ethanol-mediated facilitation of AMPA receptor function in the dorsomedial striatum: implications for alcohol drinking behavior. J Neurosci 32, 15124–15132.

47 Cheng Y, Huang CCY, Ma T, Wei X, Wang X, Lu J & J Wang J (2017) Distinct synaptic strengthening of the striatal direct and indirect pathways drives alcohol consumption. Biol Psychiatry 81, 918–929.

48 Wang J, Cheng Y, Wang X, Roltsch Hellard E, Ma T, Gil H, Ben Hamida S & Ron D (2015) Alcohol elicits functional and structural plasticity selectively in dopamine D1-receptor-expressing neurons of the dorsomedial striatum. J Neurosci 35, 11634–11643.

49 Jeanes ZM, Buske TR & Morrisett RA (2014) Cell type-specific synaptic encoding of ethanol exposure in the nucleus accumbens shell. Neuroscience 277, 184–195.

50 Renteria R, Maier EY, Buske TR & Morrisett RA (2017) Selective alterations of NMDAR function and plasticity in D1 and D2 medium spiny neurons in the nucleus accumbens shell following chronic intermittent ethanol exposure. Neuropharmacology 112, 164–171.

51 Deik A, Saunders-Pullman R & Luciano MS (2012) Substance of abuse and movement disorders: complex interactions and comorbidities. Curr Drug Abuse Rev 5, 243–253.

52 Mostile G & Jankovic J (2010) Alcohol in essential tremor and other movement disorders. Mov Disord 25, 2274–2284.

53 Rana AQ, Nadeem A, Yousuf MS & Kachhvi ZM (2013) Late onset of atypical paroxysmal non-kinesigenic dyskinesia with remote history of Graves’ disease. J Neurol Sci Pract 4, 449–450.

54 Hess CW & Saunders-Pullman R (2006) Movement disorders and alcohol misuse. Addict Biol 11, 117–125.

55 Tuleasca C, Régis J & Levivier M (2018) Essential tremor. N Engl J Med 379, 595–596.

56 Asmus F & Gasser T (2010) Dystonia-plus syndromes. Eur J Neurol 17 (Suppl 1), 37–45.

57 Menozzi E, Balint B, Latorre A, Valente EM, Rothwell JC & Bhatia KP (2019) Twenty years on: Myoclonus-dystonia and e-sarcoglycan -
neurodevelopment, channel, and signaling dysfunction. Movement Disorders, 34, 1588–1601.
58 Roze E, Lang AE & Vidailhet M (2018) Myoclonus-dystonia: classification, phenomenology, pathogenesis, and treatment. Curr Opin Neurol, 31, 484–490.
59 Saunders-Pullman R, Shrirberg J, Heiman G, Raymond D, Wendt K, Kramer P, Schilling K, Kurlan R, Klein C, Ozellius LJ et al. (2002) Myoclonus dystonia: possible association with obsessive-compulsive disorder and alcohol dependence. Neurology, 58, 242–245.
60 Kinugawa K, Vidailhet M, Clot F, Apatais E, Grabli D & Roze E (2009) Myoclonus-dystonia: an update. Mov Disord, 24, 479–489.
61 Mahloudji M & Pikielny RT (1967) Hereditary essential myoclonus. Brain, 90, 669–674.
62 Hess CW, Raymond D, de Aguiar PC, Frucht S, Shrirberg J, Heiman GA, Kurlan R, Klein C, Bressman SB, Ozellius LJ et al. (2007) Myoclonus-dystonia, obsessive-compulsive disorder, and alcohol dependence in SGCE mutation carriers. Neurology, 68, 522–524.
63 Weissbach A, Werner E, Bally JF, Tunc S, Löns S, Timmann D, Zeuner KE, Tadic V, Brüggemann N, Lang A et al. (2017) Alcohol improves cerebellar learning deficit in myoclonus-dystonia: a clinical and electrophysiological investigation. Ann Neurol, 82, 543–553.
64 Nardocci N (2011) Myoclonus-dystonia syndrome. Handb Clin Neurol, 100, 563–575.
65 Chan P, Gonzalez-Maeso J, Ruf F, Bishop DF, Hof PR & Sealfon SC (2005) Epsilon-sarcoglycan immunoreactivity and mRNA expression in mouse brain. J Comp Neurol, 482, 50–73.
66 Nishiyama A, Endo T, Takeda S & Imamura M (2004) Identification and characterization of epsilon-sarcoglycans in the central nervous system. Brain Res Mol Brain Res, 125, 1–12.
67 Menegoni NE, Rubio-Agusti I, Zdebik A, Asmus F, Ludtmann MHR, Ryten M, Plagnol V, Hauser A-K, Bandres-Ciga S, Bettencourt C et al. (2015) A missense mutation in KCTD17 causes autosomal dominant myoclonus-dystonia. Am J Hum Genet, 96, 938–947.
68 Phillips PE & Stamford JA (2000) Differential recruitment of N-, P- and Q-type voltage-operated calcium channels in striatal dopamine release evoked by “regular” and “burst” firing. Brain Res, 884, 139–146.
69 Herz J & Chen Y (2006) Reelin, lipoprotein receptors and synaptic plasticity. Nat Rev Neurosci, 7, 850–859.
70 Menegoni NE & Brüggemann N (2019) KCTD17 is a confirmed new gene for dystonia, but is it responsible for SGCE-negative myoclonus-dystonia? Parkinsonism Relat Disorders, 61, 1–3.
71 Groen JL, Andrade A, Ritz K, Jalalzadeh H, Haagmans M, Bradley TEJ, Jongejan A, Verbeek DS, Nürnberg P, Denome S et al. (2015) CACNA1B mutation is linked to unique myoclonus-dystonia syndrome. Hum Mol Genet, 24, 987–993.
72 Groen JL, Ritz K, Jalalzadeh H, van der Salm SMA, Jongejan A, Mook OR, Haagmans MA, Zwingerman AH, Motazacker MM, Hennekam RC et al. (2015) RELN rare variants in myoclonus-dystonia. Mov Disord, 30, 415–419.
73 Carbon M, Raymond D, Ozellius L, Saunders-Pullman R, Frucht S, Dhawan V, Bressman S & Eidelberg D (2013) Metabolic changes in DYT11 myoclonus-dystonia. Neurology, 80, 385–391.
74 Marelli C, Canafoglia L, Zibordi F, Ciarno C, Visani E, Zorzi G, Garavaglia B, Barzaghi C, Albanese A, Soliveri P et al. (2008) A neurophysiological study of myoclonus in patients with DYT11 myoclonus-dystonia syndrome. Mov Disord, 23, 2041–2048.
75 Peal KJ, Dijk JM, Saunders-Pullman R, Dreissen YEM, van Loon I, Cath D, Kurian MA, Owen MJ, Foncke EMJ, Morris HR et al. (2016) Psychiatric disorders, myoclonus dystonia and SGCE: an international study. Ann Clin Transl Neurol, 3, 4–11.
76 Roze E, Apatais E, Clot F, Dorison N, Thobois S, Guyant-Marechal L, Tranchant C, Damier P, Doummar D, Bahi-Buisson N et al. (2008) Myoclonus-dystonia: clinical and electrophysiological pattern related to SGCE mutations. Neurology, 70, 1010–1016.
77 Van der Salm SMA, van Rootselaar AF, Foncke EMJ, Koelman JHTM, Bours LJ, Bhatia KP, Rothwell JC & Tijssen MAJ (2009) Normal cortical excitability in Myoclonus-Dystonia—a TMS study. Exp Neurol, 216, 300–305.
78 Popa T, Milani P, Richard A, Hubsch C, Brochard V, Tranchant C, Sadjicka A, Rothwell J, Vidailhet M, Meunier S et al. (2014) The neurophysiological features of myoclonus-dystonia and differentiation from other dystonias. JAMA Neurol, 71, 612–619.
79 Nitschke MF, Erdmann C, Trillenberg P, Sprenger A, Kock N, Sperner J & Klein C (2006) Functional MRI reveals activation of a subcortical network in a 5-year-old girl with genetically confirmed myoclonus-dystonia. Neuropediatrics, 37, 79–82.
80 Xiao J, Vemula SR, Xue Y, Khan MM, Carlisle FA, Waite AJ, Blake DJ, Dragatsis I, Zhao Y & LeDoux MS (2017) Role of major and brain-specific Sgce isoforms in the pathogenesis of myoclonus-dystonia syndrome. Neurobiology Disease, 100, 52–65.
81 Beukers RJ, Foncke EMJ, van der Meer JN, Veltman DJ & Tijssen MAJ (2011) Functional magnetic resonance imaging evidence of incomplete maternal imprinting in myoclonus-dystonia. Arch Neurol, 68, 802–805.
82 Van der Meer JN, Beukers RJ, van der Salm SMA, Caan MWA, Tijssen MAJ & Nederveen AJ (2012) White matter abnormalities in gene-positive myoclonus-dystonia. Mov Disord, 27, 1666–1672.
94 Zhang L, Yokoi F, Parsons DS, Standaert DG & Li Y (2012) Alteration of striatal dopaminergic neurotransmission in a mouse model of DYT11 myoclonus-dystonia. *PloS One* 7, e33669.

95 Maltese M, Martella G, Imbriani P, Schuurmans J, Billion K, Sciamanna G, Farook F, Ponterio G, Tassone A, Santoro M et al. (2017) Abnormal striatal plasticity in a DYT11/SGCE myoclonus dystonia mouse model is reversed by adenosine A2A receptor inhibition. *Neurobiol Dis* **108**, 128–139.

Beukers RJ, Booj J, Weisscher N, Zijlstra F, van Amelsvoort TAMJ & Tijssen MAJ (2009) Reduced striatal D2 receptor binding in myoclonus-dystonia. *Eur J Nucl Med Mol Imaging* **36**, 269–274.

Beukers RJ, Contarino MF, Speelman JD, Schuurman PR, Booj J & Tijssen MAJ (2012) Deep brain stimulation of the pallidum is effective and might stabilize striatal D(2) receptor binding in myoclonus-dystonia. *Front Neurol* **3**, 22.

Bostan AC & Strick PL (2018) The basal ganglia and the cerebellum: nodes in an integrated network. *Nat Rev Neurosci* **19**, 338–350.

97 Beukers RJ, Contarino MF, Speelman JD, Schuurman PR, Booj J & Tijssen MAJ (2012) Deep brain stimulation of the pallidum is effective and might stabilize striatal D(2) receptor binding in myoclonus-dystonia. *Front Neurol* **3**, 22.

98 Bostan AC & Strick PL (2018) The basal ganglia and the cerebellum: nodes in an integrated network. *Nat Rev Neurosci* **19**, 338–350.

99 Maltese M, Martella M, Gadeo G, Fagiolo I, Tassone A, Ponterio G, Sciamanna G, Burbaud P, Conn PJ, Bonsi P et al. (2014) Anticholinergic drugs rescue synaptic plasticity in DYT1 dystonia: role of M1 muscarinic receptors. *Mov Disord* **29**, 1655–1665.

100 Eskow Jaunarajs KL, Bonsi P, Chesselet MF, Standaert DG & Pisani A (2015) Striatal cholinergic dysfunction as a unifying theme in the pathophysiology of dystonia. *Prog Neurobiol* **127–128**, 91–107.

101 Washburn S, Fremont R, Moreno-Escobar MC, Angueyra C & Khodakhah K. (2019) Acute cerebellar knockdown of Sgce reproduces salient features of myoclonus-dystonia (DYT11) in mice. *elife* **8**, e52101.

102 Frucht SJ & Riboldi GM (2020) Alcohol-responsive hyperkinetic movement disorders—a mechanistic hypothesis. *Tremor Other Hyperkinet Mov (NY)* **10**, 47.

103 Gudin M, Vaamonde J, Rodriguez M & Obeso JA (1993) Alcohol sensitive dystonia. *Mov Disord* **8**, 122–123.

104 Micheli F, Uribe-Roca C & Saenz-Farret M (2017) Alcohol-sensitive generalized dystonia. *Clin Neuropharmacol* **40**, 48–49.

105 Biary N & Koller W (1985) Effect of alcohol on dystonia. *Neurology* **35**, 239–243.

106 Wilcox RA, Winkler S, Lohmann K & Klein C (2011) Whispering dysphonia in an Australian family (DYT4): a clinical and genetic reappraisal. *Mov Disord* **26**, 2404–2408.

107 Lim S-C, Kim J-S, An J-Y & Yoon Kang S (2012) Alcohol-responsive writer’s cramp. *Intern Med* **51**, 99–101.

108 Grantham HJ & Goldsmith P (2015) Adult-onset alcohol suppressible cervical dystonia: a case report. *Mov Disord Clin Pract (Hoboken)* **2**, 102–103.
109 Kirke DN, Frucht SJ & Simonyan K (2015) Alcohol responsiveness in laryngeal dystonia: a survey study. *J Neurol* **262**, 1548–1556.

110 Junker J, Brandt V, Berman BD, Vidailhet M, Roze E, Weissbach A, Comella C, Malaty IA, Jankovic J, LeDoux MS et al. (2018) Predictors of alcohol responsiveness in dystonia. *Neurology* **91**, e2020–e2026.

111 Alves RS, Barbosa ER, Limongi JC & Silva LJ (1994) Hereditary essential myoclonus. Report of a family. *Arq Neuropsiquiatr* **52**, 406–409.

112 Quinn NP (1996) Essential myoclonus and myoclonic dystonia. *Mov Disord* **11**, 119–124.

113 Park I-S, Kim J-S, An J-Y, Kim Y-I & Lee K-S (2000) gamma-hydroxybutyric acid for alcohol-sensitive myoclonus with dystonia. *Mov Disord* **24**, 2172–2173.

114 Frucht SJ, Bordelon Y, Houghton WH & Reardon D (2005) A pilot tolerability and efficacy trial of sodium oxybate in ethanol-responsive movement disorders. *Mov Disord* **20**, 1330–1337.

115 Priori A, Bertolasi L, Pesenti A, Cappellari A & Barbieri S (2000) gamma-hydroxybutyric acid for alcoholsensitive myoclonus with dystonia. *Neurology* **54**, 1706.

116 Absalom N, Eghorn LF, Villansen IS, Karim N, Bay T, Olsen JV, Knudsen GM, Brauner-Osborne H, Froiland B, Clausen RP et al. (2012) α4β8 GABA(A) receptors are high-affinity targets for γ-hydroxybutyric acid (GHB). *Proc Natl Acad Sci USA* **109**, 13404–13409.

117 Simonyan K, Frucht SJ, Blitzer A, Sichani AH & Rumbach AF (2018) A novel therapeutic agent, sodium oxybate, improves dystonic symptoms via reduced network-wide activity. *Sci Rep* **8**, 16111.

118 Bhattacharyya KB, Roy A, Biswas A & Pal A (2016) Sporadic and familial myoclonic dystonia: report of three cases and review of literature. *Ann Indian Acad Neurol* **19**, 258–260.

119 Ghosh D & Indulkar S (2013) Primary myoclonus-dystonia: a diagnosis often missed in children. *J Child Neurol* **28**, 1418–1422.

120 Duvoisin RC (1984) Essential myoclonus: response to anticholinergic therapy. *Clin Neuropharmacol* **7**, 141–147.

121 Pueschel SM, Friedman JH & Shetty T (1992) Myoclonic dystonia. *Childs Nerv Syst* **8**, 61–66.

122 Lee JH, Lyoo CH & Lee MS (2011) A patient with genetically confirmed myoclonus-dystonia responded to anticholinergic treatment and improved spontaneously. *J Clin Neurol* **7**, 231–232.

123 Hainque E, Vidailhet M, Cozic N, Charbonnier-Beaupe F, Thobois S, Tranchant C, Brochard V, Gibert G, Drapier S, Mutez E et al. (2016) A randomized, controlled, double-blind, crossover trial of zonisamide in myoclonus-dystonia. *Neurology* **86**, 1729–1735.

124 Salamon A, Zádori D, Horváth E, Vécsely L & Klívényi P (2019) Zonisamide treatment in myoclonus-dystonia. *Orv Hetil* **160**, 1353–1357.

125 Nygaard TG, Raymond D, Chen C, Nishino I, Greene PE, Jennings D, Heiman GA, Klein C, Saunders-Pullman RJ, Kramer P et al. (1999) Localization of a gene for myoclonus-dystonia to chromosome 7q21-q31. *Ann Neurol* **46**, 794–798.

126 Thimmler S, Giuliano F, Pincemaille O, Saugier-Weber P & Perelman S (2009) Myoclonus in fraternal twin toddlers: a French family with a novel mutation in the SGCE gene. *Eur J Paediatr Neurol* **13**, 559–561.

127 Akarsu EO, Sürmeli R & Yalcin D (2014) Myoclonus-dystonia syndrome: case report. *North Clin Istanb* **1**, 187–190.

128 Lim LL & Ahmed A (2005) Limited efficacy of levetiracetam on myoclonus of different etiologies. *Parkinsonism Relat Disord* **11**, 135–137.

129 Luciano MS, Ozelius L, Sims K, Raymond D, Liu L & Saunders-Pullman R (2009) Responsiveness to levodopa in epsilon-sarcoglycan deletions. *Mov Disord* **24**, 425–428.

130 Luciano AY, Jinnah HA, Pfeiffer RF, Truong DD, Nance MA & LeDoux MS (2014) Treatment of myoclonus-dystonia syndrome with tetrabenazine. *Parkinsonism Relat Disord* **20**, 1423–1426.

131 Rughani AI & Lozano AM (2013) Surgical treatment of myoclonus dystonia syndrome. *Mov Disord* **28**, 282–287.