Kondo Screening in a Magnetically Frustrated Nanostructure: Exact Results on a Stable, Non-Fermi-Liquid Phase

Kevin Ingersent, 1 Andreas W. W. Ludwig, 2 and Ian Affleck 3

1 Department of Physics, University of Florida, Gainesville, FL 32611
2 Department of Physics, University of California, Santa Barbara, CA 93106
3 Department of Physics and Astronomy, University of British Columbia, Vancouver, B.C., Canada, V6T 1Z1

(Dated: 14 July 2005. Last revised: 7 December 2005)

Triangular symmetry stabilizes a novel non-Fermi-liquid phase in the three-impurity Kondo model with frustrating antiferromagnetic interactions between half-integer impurity spins. The phase arises without fine-tuning of couplings, and is stable against magnetic fields and particle-hole symmetry breaking. We find a conformal field theory describing this phase, verify it using the numerical renormalization group, and extract various exact, universal low-energy properties. Signatures predicted in electrical transport may be testable in scanning tunneling microscopy or quantum-dot experiments.

PACS numbers: 75.20.Hr, 71.10.Hf, 75.75.+a, 73.21.La

The same many-body physics that is responsible for the Kondo screening of magnetic impurities in bulk metals 1 produces resonances in tunneling through a quantum dot 2 or an adatom on a metallic surface 3. Greater experimental control over the latter settings allows systematic study of multiple-impurity configurations in which the Kondo effect competes with ordering phenomena; indeed, it has been argued on the basis of weak-coupling RG 11 to describe the low-energy physics of the type-2 Cr trimer in 2. We make predictions for the conductance expected in STM experiments on trimer and in certain quantum-dot devices.

Model.—We start with a Hamiltonian $H_{\text{band}} + H_{\text{int}}$ describing a noninteracting conduction band coupled via

$$H_{\text{int}} = J \sum_{j,\alpha,\beta} \psi_j^{\dagger \alpha} (\vec{r}_j) \frac{1}{2} \vec{S}_{\alpha \beta} \psi_\beta (\vec{r}_j) \cdot \vec{S}_j \quad (J > 0) \quad (1)$$

to spin-S impurities \vec{S}_j ($j = 1, 2, 3$) at the vertices \vec{r}_j of an equilateral triangle; $\psi_\alpha (\vec{r})$ annihilates an electron with spin $\alpha = \pm \frac{1}{2}$ at \vec{r}. We assume that the permutation group S_3 that maps the set $\{\vec{r}_j\}$ onto itself is a subgroup of the lattice symmetry group (as is the case, e.g., in 2). The impurities couple to just six orthonormal combinations of conduction states, annihilated by operators $\psi_{h,\alpha} \propto \sum_j e^{i2\pi jh/3} \psi_\alpha (\vec{r}_j)$, where $h = 0, \pm 1$ is the “helicity”; under a $2\pi/3$-rotation about the center of symmetry, a helicity-h state is multiplied by $e^{i2\pi h/3}$. The combined states of the three impurities can also be constructed to have well-defined helicities, in which case the Hamiltonian conserves total helicity (modulo 3) and is invariant under interchange of all helicity labels 1 and -1. Then, Eq. (1) can be rewritten

$$H_{\text{int}} = \left[J_{00} \hat{s}_{00} + J_{11} (\hat{s}_{11} + \hat{s}_{13}) \right] \cdot \vec{S}_0 + \left[J_{01} (\hat{s}_{01} + \hat{s}_{10}) + J_{11} \hat{s}_{11} \right] \cdot \vec{S}_1 + \left[J_{01} (\hat{s}_{01} + \hat{s}_{03}) + J_{11} \hat{s}_{11} \right] \cdot \vec{S}_1, \quad (2)$$

where $\vec{S}_h = \sum_j e^{i2\pi jh/3} \vec{S}_j$, $\hat{s}_{hh'} = \sum_{\alpha,\beta} \psi_j^{\dagger \alpha} \frac{1}{2} \vec{S}_{\alpha \beta} \psi_{h',\beta}$, and $\vec{S}_h \equiv -1$; $J_{hh'}$ equals J times a non-negative factor that depends on the impurity separation and the conduction-band dispersion, as well as h and h'. For $S = \frac{1}{2}$ the NRG shows 12 that over a large region of the parameter space of Eq. (2), the low-energy physics is governed by a “frustrated” fixed point at which the impurities are locked into the subspace of two doublets of combined spin $S_{\text{imp}} = \frac{1}{2}$, one each of helicity $h = \pm 1$.

References

1. W. Ketterle, Rev. Mod. Phys. 74, 1131 (2002).
2. B. L. Levitov, Phys. Rev. Lett. 71, 1303 (1993).
3. A. W. W. Ludwig and I. Affleck, Phys. Rev. B 60, 1680 (1999).
4. M. Greiter, Nucl. Phys. B 487, 23 (1997).
5. P. W. Brouwer, Phys. Rev. B 56, 954 (1997).
6. C. F. S. Kim, Phys. Rev. Lett. 78, 1499 (1997).
7. J. D. Joannopoulos, Phys. Rev. B 49, 10376 (1994).
8. A. W. W. Ludwig and I. Affleck, Phys. Rev. Lett. 77, 2394 (1996).
9. J. D. Joannopoulos, Phys. Rev. B 50, 6932 (1994).
10. B. L. Levitov, Phys. Rev. Lett. 71, 1303 (1993).
11. Y. Imry, Phys. Rev. Lett. 49, 1473 (1982).
12. M. Greiter, Nucl. Phys. B 487, 23 (1997).
13. P. W. Brouwer, Phys. Rev. B 56, 954 (1997).
14. C. F. S. Kim, Phys. Rev. Lett. 78, 1499 (1997).
Three spins of arbitrary half-integer S, coupled by
an additional Hamiltonian term $K \sum_{i<j} \vec{S}_i \cdot \vec{S}_j$ with $K \gg J$, also
lock into an $S_{\text{imp}} = \frac{1}{2}$, $h = \pm 1$ subspace. Weak-coupling RG analysis \[11\] of this augmented model, which
for $S = \frac{1}{2}$ provides a description of equilateral Cr trimers,
is consistent with flow to the same fixed point; for $S = \frac{3}{2}$,
moreover, the characteristic temperature T_K for this
flow is found to greatly exceed the single-impurity Kondo
scale, in agreement with the Cr-trimer experiments \[3\].

In the frustrated phase, J_{12} in Eq. \[2\] scales to zero,
J_{00} and J_{11} can be neglected, and particle-hole asymmetry
is marginal \[12\]. Thus, we analyze the fixed point in a
restricted $S_{\text{imp}} = \frac{1}{2}$ space, replacing Eq. \[2\] by
\begin{equation}
H_{\text{int}} = -\sqrt{2} J_{01} [\langle \psi^\dagger \frac{1}{2} \sigma \Delta^+ \psi \rangle_{\text{imp}} + \text{H.c.}] \cdot \vec{S}.
\end{equation}

Here, T^\pm and T^z act on the electron helicity in the spin-1
representation of an “orbital-spin” $SU^{(1)}(2)$ \[13\], with
matrix elements $(T^z)_h = h$, $(T^z)_{0,-1} = \sqrt{2}$. The
Pauli matrices $\vec{\sigma}$, $2 \vec{S}_{\text{imp}} = 2 \vec{S}_0$ and \vec{S}_{imp} act, respectively,
on the electron spin, impurity spin, and impurity helicity,
with $(\tau^z_{\text{imp}})_{h,-h} = -h$ for $h = \pm 1$.

It is important to note that setting $J_{11} = 0$ enlarges the
S_3 symmetry of Eq. \[2\] to a $U^{(1)}(1)$ symmetry in Eq. \[3\],
replacing total helicity (conserved only modulo 3) by a
conserved quantity t_z: the eigenvalue of $\psi^\dagger T^z \psi + \frac{1}{2} t_z$.

Now, H_{int} commutes with $SU^{(1)}(2)$ spin, $U^{(1)}(1)$ orbital spin, and
also with $SU^{(1)}(2)$ isospin defined by $I^z = \frac{1}{2} \sum_{h,\alpha} \psi^\dagger h,\alpha,\Delta^+ \psi_{h,\alpha,\Delta}$ + \frac{1}{2} \sum_{h,\alpha,\beta} \epsilon_{\alpha\beta\gamma} \psi^\dagger h,\alpha,\Delta \psi_{h,\alpha,\Delta}$. It is
defined above, P^\dagger commutes with isospin \hat{I}. The
free-fermion FSS can be decomposed into products of
$SU^{(1)}(2) \times SU^{(1)}(2) \times SU^{(1)}(2)$ conformal towers \[18\] as exemplified in Table \[I\] for boundary conditions that
yield a nondegenerate ground state. Here, $SU^{(1)}(2)_k$ is a
level-k Kac-Moody CFT; see \[14\] and references therein.

We first construct a conformal embedding of the free
Dirac fermions $\psi_{h,\alpha}(x)$ in which the holonomies transform
in the spin-1 representation of an $SU^{(1)}(2)$ “pseudospin”
\vec{P}, where $P^+ = T^z$ and P^+ has matrix elements in the
helicity basis $(P^+)_{1,0} = -(P^+)_{1,0}$, $(P^+)_{0,-1} = -(P^+)_{0,-1}$. Unlike \hat{I} defined above, \vec{P} commutes with isospin \hat{I}. The
free-fermion FSS can be decomposed into products of
$SU^{(1)}(2) \times SU^{(1)}(2) \times SU^{(1)}(2)$ conformal towers \[18\] as exemplified in Table \[I\] for boundary conditions that
yield a nondegenerate ground state. Here, $SU^{(1)}(2)_k$ is a
level-k Kac-Moody CFT; see \[14\] and references therein.

Since Eq. \[4\] lowers the $SU^{(1)}(2)$ symmetry of H_{band}
and to $U^{(1)}(1)$, we analyze the frustrated fixed

\begin{table}[h]
\centering
\begin{tabular}{|c|c|c|}
\hline
$(s)_\Delta$ & $(t)_\Delta$ & $(p)_\Delta$ \\
\hline
$(0)_0$ & $(0)_0$ & $(0)_0 + (4)_2$ \\
$(\frac{1}{2})_{3/4}$ & $(\frac{1}{2})_{3/4}$ & $(0)_0 + (4)_2$ \\
$(\frac{1}{2})_{3/20}$ & $(\frac{1}{2})_{3/20}$ & $(1)_{1/5} + (3)_{6/5}$ \\
$(1)_{2/5}$ & $(1)_{2/5}$ & $(1)_{1/5} + (3)_{6/5}$ \\
$(0)_0$ & $(1)_{2/5}$ & $(2)_{3/5}$ \\
$(1)_{2/5}$ & $(0)_0$ & $(2)_{3/5}$ \\
$(\frac{1}{2})_{3/20}$ & $(\frac{1}{2})_{3/20}$ & $(2)_{3/5}$ \\
$(\frac{1}{2})_{3/4}$ & $(\frac{1}{2})_{3/4}$ & $(2)_{3/5}$ \\
\hline
\end{tabular}
\caption{Finite-size spectrum of free fermions decomposed into products of spin, isospin, and pseudospin conformal
towers, labeled by s, i, and p, respectively. The subscript Δ gives
each tower’s contribution to the excitation energy \[13\].}
\end{table}
TABLE II: Finite-size spectrum at the frustrated fixed point.

\begin{tabular}{|c|c|c|c|c|}
\hline
\((s)_{\Delta} \) & \((i)_{\Delta} \) & \((t_{z})_{\Delta} \) & \((p,m)_{\Delta} \) & \(E \) & \(E_{\text{NRG}} \) \\
\hline
(0) & (0) & (0) & (0) & 0 & 0 \\
\hline
(1) & (1) & (1) & (1) & 0.1 & 0.1001 \\
\hline
(2) & (2) & (2) & (2) & 0.2 & 0.2000 \\
\hline
(3) & (3) & (3) & (3) & 0.3 & 0.2996 \\
\hline
(4) & (4) & (4) & (4) & 0.5 & 0.4968 \\
\hline
(5) & (5) & (5) & (5) & 0.5 & 0.5020 \\
\hline
(6) & (6) & (6) & (6) & 0.6 & 0.5971 \\
\hline
(7) & (7) & (7) & (7) & 0.6 & 0.6040 \\
\hline
(8) & (8) & (8) & (8) & 0.6 & 0.6001 \\
\hline
(9) & (9) & (9) & (9) & 0.7 & 0.7004 \\
\hline
(10) & (10) & (10) & (10) & 0.7 & 0.7004 \\
\hline
(11) & (11) & (11) & (11) & 0.7 & 0.7043 \\
\hline
(12) & (12) & (12) & (12) & 0.7 & 0.6982 \\
\hline
(13) & (13) & (13) & (13) & 0.7 & 0.6982 \\
\hline
(14) & (14) & (14) & (14) & 0.8 & 0.8038 \\
\hline
(15) & (15) & (15) & (15) & 0.8 & 0.8045 \\
\hline
(16) & (16) & (16) & (16) & 0.8 & 0.8116 \\
\hline
\end{tabular}

again be decomposed using Eq. (3) into \(U^{(1)}(1)_{s} \times Z_{s} \).

Boundary operators entering the effective low-energy Hamiltonian for the frustrated fixed point must respect the \(SU^{(3)}(2) \times SU^{(3)}(2) \times U^{(1)}(1) \) symmetry of the full Hamiltonian [5]. Such operators appear in the first row of Table III. Only \((s,i,t_{z},Z_{s}) = (0,0,0,(\psi_{1,1}^{0})_{1,5})\) is relevant (in the RG sense). It cannot appear because it is odd under the \(Z_{2} \) subgroup of \(S_{3} \): \(\psi_{s} \rightarrow -\psi_{s} \), \(t_{\text{imp}} \rightarrow t_{\text{imp}}^{-} \), which is representable as a \(\pi \)-rotation about the \(x \)-axis in orbital-spin space [23]. The least-irrelevant operator also respecting this discrete \(Z_{2} \) symmetry of Eq. (6) is the corresponding \(SU^{(5)}(2)_{s} \)-descendant of dimension \(\Delta = 1 + 1/5 \), which yields a correction-to-scaling exponent 1/5 in excellent agreement with the value 0.200 \(\pm 0.002 \) observed in the NRG spectrum.

Physical results.—We now present exact properties that can be deduced from the CFT description. Details, including analysis of the conditions required for observation of these properties, will appear elsewhere [23].

(a) Fixed-point properties.—The frustrated fixed point has an irrational “ground-state degeneracy” [24] \(g = (\sqrt{5} + 5)/4 \). Moreover, in a quantum-dot device of triangular symmetry, where biases \(V_{j} \) in leads \(j = 1,2,3 \) produce in lead \(i \) a current \(I_{i} = \sum G_{ij} V_{j} \), the T = 0 zero-bias conductance is \(G_{0} = 4e^{2}/3h \). By contrast, the “isospin two-channel” regime [13], in which \(J_{11} \) dominates Eq. (4), is unstable against particle-hole asymmetry and at low energy exhibits the Fermi-liquid behavior of the \(SU(4) \) fixed point of [12] a), with \(g = 1 \) and (in the limit of small particle-hole asymmetry) \(G_{0} \sim e^{2}/2h < 4e^{2}/3h \). The other stable fixed point of [13], at which inter-impurity correlations are irrelevant and the standard Kondo effect is recovered, has \(g = 1 \) and \(G_{0i} = 0 \).

(b) Differential conductance.—The leading irrelevant operator of dimension \(\Delta = 1 + 1/5 \) governs many properties near the fixed point. In particular, the differential tunneling conductance into the impurities from a metallic lead (e.g., an STM tip located symmetrically with respect to the impurities) in the regime \(k_{B} T, |eV| \ll k_{B} T_{K} \) (\(V \) being the bias voltage) has the form \(G_{0}^{-1} dI/dV \sim 1 - B(T/T_{K})^{1/5} g[AeV/k_{B}T] \), where \(G_{0} \) is the T = 0 linear-response conductance; \(A \) and \(B \) are constants that can be fitted to experiment. For \(x \rightarrow 0 \), \(g[x] \rightarrow \text{const.} \), so \(G_{0}^{-1} dI/dV \sim 1 - B(T/T_{K})^{1/5} g[0] \); whereas \(g[x] \sim c x^{2/5} \) (with \(c \) a constant) for \(x \rightarrow \infty \), yielding \(G_{0}^{-1} dI/dV \sim 1 - cB(AeV/k_{B}T_{K})^{1/5} \). To lowest (quadratic) order in the tunneling matrix element between the impurities and the lead [20], the universal scaling function \(g[x] \) equals the exact function given in [13] b]. Similar (and in linear response, identical) behavior is expected in transport through triangular quantum-dot devices [23].

(c) Breaking of particle-hole symmetry.—This lowers the isospin \(SU(2) \) symmetry to the \(U(1) \) subgroup that conserves global charge \(2I \), while preserving the discrete \(S_{3} \) symmetry. The spectrum in Table III is reclassified by applying Eq. (4) to \(SU^{(3)}(2)_{3} \supset U^{(1)}(1) \times Z_{s} \). The most-relevant operators that become allowed in the low-energy Hamiltonian are marginal: the charge current operator \(2IF \), which is exactly marginal and corresponds to a simple phase shift [13]; and a degenerate pair \((s,I^{z},Z_{s},t_{z},Z_{s}) = ((0,0),(0,0), (\psi_{1,1}^{0})_{2,5},(0,0), (\psi_{1,1}^{0})_{3,5})\) arising from Table III row 5. The last two operators...
are the boundary limits of the left- and right-moving bulk currents $J_{L,R} = \psi_{L,R}^\dagger(\tau^z)^2 - \frac{2}{3}\psi_{L,R}$ (Table III, row 5) \cite{27}. $J_{L,R}$ generate a $U(1)$ symmetry of the free-fermion bulk theory not preserved by the boundary condition. The boundary limits of such operators are exactly marginal \cite{24}, consistent with NFL results in the presence of particle-hole asymmetry \cite{13}. Like a phase shift, the three exactly marginal deformations of the boundary conditions affect the FSS (and the boundary limits of $J_{L,R}$ affect the $T = 0$ zero-bias conductance), but not the operator spectrum in Table III \cite{23}. Thus, the NFL fixed point and its signatures, including the ground-state degeneracy and power laws in the conductance, persist away from particle-hole symmetry (unlike, e.g., the NFL behavior of the two-impurity Kondo model \cite{26}).

(d) Other symmetry-breaking perturbations.—It can be deduced from Table III that (i) spin-orbit coupling is relevant, with dimension $3/5$ \cite{28}, (ii) breaking of S_θ symmetry (e.g., through distortion of the equilateral triangular impurity geometry) is relevant with dimension $1/5$ \cite{28}, (iii) spin-exchange anisotropy is irrelevant, (iv) a Zeeman field acting only on the impurity spins is exactly marginal, and (v) the coupling J_{11} in Eq. 7 is irrelevant. The implications of these results will be discussed elsewhere \cite{23}.

In summary, we have found the exact low-energy behavior of a non-Fermi-liquid phase arising from the interplay of magnetic frustration and Kondo physics in the three-impurity Kondo model. The phase is stable against particle-hole asymmetry, exchange anisotropy, and magnetic fields. It should be detectable in tunneling into magnetic adatoms on metallic surfaces and in electrical transport through triangular quantum-dot devices.

We are grateful for discussions with M. Fabrizio, D. Seo, and G. Zaránd, and for the hospitality of the Max-Planck-Institut MPIPKS (Dresden) and the KITP (Santa Barbara), where portions of this work were performed. This work was supported in part by NSF Grants No. PHY-990794 (K.I., I.A.), No. DMR-0075064 (A.W.W.L.), and No. DMR-0312939 (K.I.), by NSERC (I.A.), and by the Canadian Institute for Advanced Research (I.A.).

[1] A. C. Hewson, The Kondo Problem to Heavy Fermions (Cambridge University Press, Cambridge, England, 1993).
[2] D. Goldhaber-Gordon et al., Nature (London) 391, 156 (1998); S. M. Cronenwett, T. H. Oosterkamp, and L. P. Kouwenhoven, Science 281, 540 (1998); J. Nygård, D. H. Cobden, and P. E. Lindelof, Nature 408, 342 (2000).
[3] V. Madhavan et al., Science 280, 567 (1998); J. Li, W.-D. Schneider, R. Berndt, and B. Delley, Phys. Rev. Lett. 80, 2893 (1998).
[4] W. Chen, T. Jammeala, V. Madhavan, and M. F. Crommie, Phys. Rev. B 60, R8529 (1999).
[5] T. Jammeala, V. Madhavan, and M. F. Crommie, Phys. Rev. Lett. 87, 256804 (2001).
[6] H. Jeong, A. M. Chang, and M. R. Melloch, Science 293, 2221 (2001); J. C. Chen, A. M. Chang, and M. R. Melloch, Phys. Rev. Lett. 92, 176801 (2004); N. J. Craig et al., Science 304, 565 (2004).
[7] I. Affleck, A. W. W. Ludwig, and B. A. Jones, Phys. Rev. B 52, 9528 (1995).
[8] D. L. Cox and A. Zawadowski, Adv. Phys. 47, 599 (1998).
[9] Yu. B. Kudasov and V. M. Uzdin, Phys. Rev. Lett. 89, 276802 (2002).
[10] V. A. Savkin, A. N. Rubtsov, M. I. Katsnelson, and A. I. Lichtenstein, Phys. Rev. Lett. 94, 026402 (2005).
[11] B. Lazarovits, P. Simon, G. Zaránd, and L. Szunyogh, Phys. Rev. Lett. 95, 077202 (2005).
[12] (a) G. Zaránd, Á. Brataas, and D. Goldhaber-Gordon, Solid. State. Commun. 126, 463 (2003); (b) Y. Avishai, T. Kuzmenko and K. Kikoin, Physica (Amsterdam) 29E, 334 (2005).
[13] B. C. Paul and K. Ingersent, cond-mat/9607190.
[14] B. C. Paul, Ph.D. thesis, University of Florida, 2000.
[15] The explicit form of $J_{\alpha\beta}$ for the special case of an isotropic conduction band appears in \cite{13}.
[16] Each Lie group is labeled with a superscript (s, t, i, p) denoting the subspace in which the group acts.
[17] (a) I. Affleck and A. W. W. Ludwig, Nucl. Phys. B360, 641 (1991); (b) Phys. Rev. B 48, 7207 (1993); (c) A. W. Ludwig and I. Affleck, Nucl. Phys. B428, 545 (1994).
[18] A. B. Zamolodchikov and V. A. Fateev, Sov. J. Nucl. Phys. 43, 657 (1986); Sov. Phys. JETP 62, 215 (1985).
[19] We use $SU(\alpha)^2 \times SU(\alpha)^2 \sim SO(\alpha) \times SO(\alpha)$ and $SO(12) \supset SO(13) \times SO(3)$ to obtain the listed embedding, which appeared in a different context in L. De Leo and M. Fabrizio, Phys. Rev. Lett. 94, 236401 (2005), and was communicated to us prior to publication by M. Fabrizio.
[20] All FSS energies are expressed as multiples of $\pi v_F/l$, where v_F is the Fermi velocity.
[21] In Eq. 11, m and $m \pm k$ are identified, so m (where $j - m \in \mathbb{Z}$) can be chosen such that $-(k - 1)/2 < m < k/2$. Also, operators ψ_{m}^\dagger and $\psi_{-(k/2-m)}^\dagger$ are identified.
[22] For the fusion rules of $SU(2)_k$ see D. Gepner and E. Witten, Nucl. Phys. B278, 493 (1986); for those of Z_k see D. Gepner and Z. Qiu, Nucl. Phys. B285, 423 (1987).
[23] In this case, step (1) outputs the FSS in Table II for both the free-fermion and the interacting FSS, step (1) in effect swaps the boundary conditions yielding degenerate and nondegenerate free-fermion ground states [I. Affleck and A. W. W. Ludwig, Nucl. Phys. B352, 849 (1991)].
[24] K. Ingersent, A. W. W. Ludwig and I. Affleck, in preparation.
[25] I. Affleck and A. W. W. Ludwig, Phys. Rev. Lett. 67, 161 (1991).
[26] Possible Fano interference with direct tunneling from the STM to the substrate will be discussed in \cite{23}.
[27] L. I. Glazman and M. Pustilnik, in New Directions in Mesoscopic Physics, edited by R. Fazio, V. F. Gantmakher, and Y. Imry, (Kluwer, Dordrecht, 2003).
[28] See \cite{16} concerning the operator spectra of the free left-moving field ψ_L and its right-moving counterpart ψ_R.
[29] If isosceles triangular symmetry and particle-hole symmetry are preserved, there is just one relevant operator.