1 The Non-Euclidean Plane

In case the work of Bolyai \cite{Bo} and Lobatschevsky \cite{Lo} left any doubts about the existence of non-Euclidean geometry these doubts were removed by the work \cite{Be} of Beltrami. With a modification made possible by hindsight one can state the following result.

Theorem 1.1. Given a simply connected region \(D \subset \mathbb{R}^2 (D \neq \mathbb{R}^2) \) there exists a Riemannian metric \(g \) on \(D \) which is invariant under all conformal transformations of \(D \). Also \(g \) is unique up to a constant factor.

Because of the Riemann mapping theorem we can assume \(D \) to be the unit disk. Given \(a \in D \) the mapping \(\varphi : z \to \frac{a - z}{1 - \bar{a}z} \) is conformal and \(\varphi(a) = 0 \). The invariance of \(g \) requires

\[
g_a(u, u) = g_0(d\varphi(u), d\varphi(u)) \tag{1.1}
\]

for each \(u \in D_a \) (the tangent space to \(D \) at \(a \)). Since \(g_0 \) is invariant under rotations around 0,

\[
g_0(z, z) = c|z|^2, \tag{1.2}
\]

where \(c \) is a constant. Here \(D_0 \) is identified with \(\mathbb{C} \). Let \(t \to z(t) \) be a curve with \(z(0) = a, z'(0) = u \in \mathbb{C} \). Then \(d\varphi(u) \) is the tangent vector

\[
\left\{ \frac{d}{dt} \varphi(z(t)) \right\}_{t=0} = \left(\frac{d\varphi}{dz} \right)_a \left(\frac{dz}{dt} \right)_0 = \left\{ \frac{1 - |a|^2}{(1 - \bar{a}z)^2} \right\}_{z=a} u
\]

so by (1.1), (1.2)

\[
g_a(u, u) = c \frac{1}{(1 - |a|^2)^2} |u|^2.
\]
Thus g is the Riemannian structure

$$ds^2 = c \frac{dx^2 + dy^2}{(1 - x^2 - y^2)^2}$$

(1.3)

and the proof shows that it is indeed invariant.

We shall now take D as the unit disk $|z| < 1$ with $g = ds^2$ given by (1.3) with $c = 1$. In our analysis on D we are mainly interested in the geodesics in D (the arcs orthogonal to the boundary $B = \{ z \in \mathbb{C} : |z| = 1 \}$) and the horocycles in D which are the circles inside D tangential to B. Note that a horocycle tangential to B at b is orthogonal to all the geodesics in D which end at b.

2 The Non-Euclidean Fourier Transform

We first recall some of the principal results from Fourier analysis on \mathbb{R}^n. The Fourier transform $f \rightarrow \tilde{f}$ or R^n is defined by

$$\tilde{f}(u) = \int_{R^n} f(x)e^{-i(x,u)} \, dx$$

(2.1)

where $(,)$ denotes the scalar product and dx the Lebesgue measure. In polar coordinates $u = \lambda w \lambda \in R$, $w \in SS^{n-1}$ we can write

$$\tilde{f}(\lambda w) = \int_{R^n} f(x)e^{-i\lambda(x,w)} \, dx.$$

(2.2)

It is then inverted by

$$f(x) = (2\pi)^{-n} \int_{R^+ \times SS^{n-1}} \tilde{f}(\lambda w)e^{i\lambda(x,w)}\lambda^{n-1} \, d\lambda \, dw$$

(2.3)

say for $f \in \mathcal{D}(R^n) = C^\infty_0(R^n)$, dw denoting the surface element on the sphere SS^{n-1}. The Plancherel formula

$$\int_{R^n} |f(x)|^2 \, dx = (2\pi)^{-n} \int_{R^+ \times SS^{n-1}} |\tilde{f}(\lambda, w)|^2 \lambda^{n-1} \, d\lambda \, dw$$

(2.4)

expresses that $f \rightarrow \tilde{f}$ is an isometry of $L^2(R^2)$ onto $L^2(R^+ \times SS^{n-1}, (2\pi)^{-n}\lambda^{n-1} \, d\lambda \, dw)$.

The range of the mapping $f(x) \rightarrow \tilde{f}(\lambda w)$ as f runs through $\mathcal{D}(R^n)$ is expressed in the following theorem [He7]. A vector $a = (a_1, \ldots, a_n) \in \mathbb{C}^n$ is said to be isotropic if $(a, a) = a_1^2 + \cdots + a_n^2 = 0$.

2
Theorem 2.1. The Fourier transform $f(x) \rightarrow \hat{f}(\lambda w)$ maps $\mathcal{D}(\mathbb{R}^n)$ onto the set of functions $\hat{f}(\lambda w) = \varphi(\lambda, w) \in \mathcal{C}^\infty(\mathbb{R} \times SS^{n-1})$ satisfying:

(i) There exists a constant $A > 0$ such that for each $w \in SS^{n-1}$ the function $\lambda \rightarrow \varphi(\lambda, w)$ extends to a holomorphic function on \mathbb{C} with the property

$$
\sup_{\lambda \in \mathbb{C}, w \in SS^{n-1}} |\varphi(\lambda, w)|(1 + |\lambda|)^N e^{-A|\text{Im} \lambda|} < \infty \quad (2.5)
$$

for each $N \in \mathbb{Z}$. ($\text{Im} \lambda = \text{imaginary part of} \lambda$).

(ii) For each $k \in \mathbb{Z}^+$ and each isotropic vector $a \in \mathbb{C}^n$ the function

$$
\lambda \rightarrow \lambda^{-k} \int_{SS^{n-1}} \varphi(\lambda, w)(a, w)^k \, dw \quad (2.6)
$$

is even and holomorphic in \mathbb{C}.

Condition (2.5) expresses that the function $\lambda \rightarrow \varphi(\lambda, w)$ is of uniform exponential type: The classical Paley–Wiener theorem states that $\mathcal{D}(\mathbb{R}^n)^\sim$ consists of entire functions of exponential type in n variables whereas in the description above only λ enters.

Formula (2.2) motivates a Fourier transform definition on \mathcal{D}. The inner product (x, ω) equals the (signed) distance from 0 to the hyperplane through x with normal ω. A horocycle in \mathcal{D} through b is perpendicular to the (parallel) family of geodesics ending at b so is an analog of a hyperplane in \mathbb{R}^n. Thus if $z \in \mathcal{D}$, $b \in B$ we define $\langle z, b \rangle$ as the (signed) distance from 0 to the horocycle through z and b. The Fourier transform $f \rightarrow \hat{f}$ on \mathcal{D} is thus defined by

$$
\hat{f}(\lambda, b) = \int_{\mathcal{D}} f(z) e^{-i\lambda \langle z, b \rangle} \, dz \quad (2.7)
$$

for all $b \in B$ and $\lambda \in \mathbb{C}$ for which integral converges. Here dz is the invariant surface element on \mathcal{D}

$$
dz = (1 - x^2 - y^2)^{-2} \, dx \, dy. \quad (2.8)
$$

The $+1$ term in (2.7) is included for later technical convenience.

The Fourier transform (2.7) is a special case of the Fourier transform on a symmetric space $X = G/K$ of the non-compact type, introduced in [He3]. Here G is a semisimple connected Lie group with finite center.
and K is a maximal compact subgroup. In discussing the properties of $f \rightarrow \tilde{f}$ below we stick to the case $X = D$ for notational simplicity but shall indicate (with references) the appropriate generalizations to arbitrary X. Some of the results require a rank restriction on X.

Theorem 2.2. The transform $f \rightarrow \tilde{f}$ in (2.7) is inverted by

$$f(z) = \frac{1}{4\pi} \int \int_{\mathbb{R} \times B} \tilde{f}(\lambda, b) e^{i(\lambda+1)(z,b)} \lambda \frac{\pi \lambda}{2} d\lambda db, \quad f \in D(D). \quad (2.9)$$

Also the map $f \rightarrow \tilde{f}$ extends to an isometry of $L^2(D)$ onto $L^2(\mathbb{R}^+ \times B, \mu)$ where μ is the measure

$$\mu = \frac{\lambda}{2\pi} \frac{\pi \lambda}{2} d\lambda db \quad (2.10)$$

and db is normalized by $\int db = 1$.

This result is valid for arbitrary $X = G/K$ ([He3] [He4]), suitably formulated in terms of the fine structure of G. While this result resembles (2.3)—(2.4) closely the range theorem for D takes a rather different form.

Theorem 2.3. The range $\mathcal{D}(D)^\sim$ consists of the functions $\varphi(\lambda, b)$ which (in λ) are holomorphic of uniform exponential type and satisfy the functional equation

$$\int_B \varphi(\lambda, b) e^{i(\lambda+1)(z,b)} db = \int_B \varphi(-\lambda, b) e^{-i(\lambda+1)(z,b)} db. \quad (2.11)$$

One can prove that condition (2.11) is equivalent to the following conditions (2.12) for the Fourier coefficients $\varphi_k(\lambda)$ of φ

$$\varphi_k(\lambda) = \frac{1}{2\pi} \int_0^{2\pi} \varphi(\lambda, e^{i\theta}) e^{-ik\theta} d\theta$$

$$\varphi_k(-\lambda)p_k(-i\lambda) = \varphi_k(\lambda)p_k(i\lambda), \quad k \in \mathbb{Z}, \quad (2.12)$$

where $p_k(x)$ is the polynomial

$$p_k(x) = \frac{\Gamma\left(\frac{1}{2}(x+1) + |k|\right)}{\Gamma\left(\frac{1}{2}(x+1)\right)}.$$
The Paley–Wiener type theorems can be extended to the Schwartz spaces $S^p(D)$ ($0 < p \leq 2$). Roughly speaking, f belongs to $S^p(D)$ if each invariant derivative Df belongs to $L^p(D)$, more precisely, it is rapidly decreasing in the distance from 0 even after multiplication by the pth root of the volume element. Let S_p denote the strip $|\text{Im } \lambda| < \frac{2}{p} - 1$ in \mathbb{C} and $S(S_p \times B)$ the space of smooth functions on $S(S_p \times B)$ holomorphic (in λ) in S_p and rapidly decreasing (uniformly for $b \in B$) on each line $\lambda = \xi + i\eta$ ($|\eta| < \frac{2}{p} - 1$). Then we have

Theorem 2.4. The Fourier transform $f \rightarrow \hat{f}$ on D is a bijection of $S^p(D)$ onto the set of $\varphi \in S(S_p \times B)$ satisfying (2.11).

The theorem holds for all $X = G/K$ (Eguchi [Eg]). The proof is complicated. For the case of K-invariant functions (done for $p = 2$ by Harish–Chandra [H] and Trombi–Varadarajan [TV] for general p) a substantial simplification was done by Anker [A]. A further range theorem for the space of functions for which each invariant derivative has arbitrary exponential decay was proved by Oshima, Saburi and Wakayama [OSW]. See also Barker [Bar] (p. 27) for the operator Fourier transform of the intersection of all the Schwartz spaces on $SL(2\mathbb{R})$.

In classical Fourier analysis on \mathbb{R}^n the Riemann–Lebesgue lemma states that for $f \in L^1(\mathbb{R})$, \hat{f} tends to 0 at ∞. For D the situation is a bit different.

Theorem 2.5. Let $f \in L^1(D)$. Then there exists a null set N in B such that if $b \in B - N$, $\lambda \rightarrow \hat{f}(\lambda, b)$ is holomorphic in the strip $|\text{Im } \lambda| < 1$ and

$$\lim_{\xi \rightarrow \infty} \hat{f}(\xi + i\eta, b) = 0$$

(2.13)

uniformly for $|\eta| \leq 1$.

The proof [HRSS] is valid even for symmetric spaces $X = G/K$ of arbitrary rank. Moreover

$$\|\hat{f}(\lambda, \cdot)\|_1 \rightarrow 0 \text{ as } \lambda \rightarrow \infty,$$

(2.14)

uniformly in the strip $|\text{Im } \lambda| \leq 1$, and this extends to $f \in L^p$ ($1 \leq p < 2$) this time in the strip $|\text{Im } \lambda| < \frac{2}{p} - 1$ ([SS]). In particular, if $f \in L^p(D)$ then there is a null set N in B such that $\hat{f}(\lambda, b)$ exists for $b \notin N$ and all λ in the strip $|\text{Im } \lambda| < \frac{2}{p} - 1$.

The classical inversion formula for the Fourier transform on \mathbb{R}^n now extends to $f \in L^p(D)$ ($1 \leq p < 2$) as follows.
Theorem 2.6. Let \(f \in L^p(D) \) and assume \(\tilde{f} \in L^1(\mathbb{R} \times B, \mu) \) (with \(\mu \) as in (2.10)). Then the inversion formula (2.9) holds for almost all \(z \in D \) (the Lebesgue set for \(f \)).

Again this holds for all \(X = G/K \). A result of this type was proved by Stanton and Thomas [ST] without invoking \(\tilde{f} \) explicitly (since the existence had not been established). The version in Theorem 2.6 is from [SS].

In Schwartz’s theory of mean–periodic functions [Sc] it is proved that any closed translation–invariant subspace of \(\mathcal{C}^\infty(\mathbb{R}) \) contains an exponential \(e^{ix} \). The analogous question here would be:

Does an arbitrary closed invariant subspace of \(\mathcal{C}^\infty(D) \) contain an exponential

\[
e^{\mu,b}(z) = e^{\mu(z,b)} \tag{2.15}
\]

for some \(\mu \in \mathbb{C} \) and some \(b \in B \)?

Here the topology of \(\mathcal{C}^\infty(D) \) is the usual Fréchet space topology and “invariant” refers to the action of the group \(G = SU(1,1) \) on \(D \). The answer is yes.

Theorem 2.7. Each closed invariant subspace \(E \) of \(\mathcal{C}^\infty(D) \) contains an exponential \(e^{\mu,b} \).

This was proved in [HS] for all symmetric \(X = G/K \) of rank one. Here is a sketch of the proof. By a result of Bagchi and Sitaram [BS] \(E \) contains a spherical function

\[
\varphi_\lambda(z) = \int_B e^{i\lambda(z,b)} \, db, \quad \varphi_\lambda = \varphi_{-\lambda}. \tag{2.16}
\]

For either \(\lambda \) or \(-\lambda \) it is true ([He9], Lemma 2.3, Ch. III) that the Poisson transform \(P_\lambda : F \to f \) where

\[
f(z) = \int_B e^{i\lambda+1(z,b)} F(b) \, db, \tag{2.17}
\]

maps \(L^2(B) \) into the closed invariant subspace of \(E \) generated by \(\varphi_\lambda \). On the other hand it is proved in [He9] (Ex. B1 in Ch. III) that \(e^{i\lambda+1,b} \) is a series of terms \(P_\lambda(F_n) \) where \(F_n \in L^2(B) \) and the series converges in the topology of \(\mathcal{C}^\infty(D) \). Thus \(e^{i\lambda+1,b} \in E \) as desired.

The following result for the Fourier transform on \(\mathbb{R}^n \) is closely related to the Wiener Tauberian theorem.
Let $f \in L^1(\mathbb{R}^n)$ be such that $\tilde{f}(u) \neq 0$ for all $u \in \mathbb{R}^n$. Then the translates of f span a dense subspace of $L^1(\mathbb{R}^n)$.

There has been considerable activity in establishing analogs of this theorem for semisimple Lie groups and symmetric spaces. See e.g. [EM], [Sa], [Si1], [Si2]. The neatest version for D seems to me to be the following result from [SS] which remains valid for $X = G/K$ of rank one.

Let $d(z, w)$ denote the distance in D and if $\epsilon > 0$, let $L_\epsilon(D)$ denote the space of measurable functions f on D such that $\int_D |f(z)|e^{\epsilon d(0, z)} \, dz < \infty$. Let T_ϵ denote the strip $|\text{Im} \lambda| \leq 1 + \epsilon$.

Theorem 2.8. Let $f \in L_\epsilon(X)$ and assume f is not almost everywhere equal to any real analytic function. Let

$$Z = \{\lambda \in T_\epsilon : \tilde{f}(\lambda, \cdot) \equiv 0\}.$$

If $Z = \emptyset$ then the translates of f span a dense subspace of $L^1(D)$.

A theorem of Hardy’s on Fourier transforms on \mathbb{R}^n asserts in a precise fashion that f and its Fourier transform cannot both vanish too fast at infinity. More precisely ([Ha]):

Assume

$$|f(x)| \leq Ae^{-\alpha|x|^2}, \quad |\tilde{f}(u)| \leq Be^{-\beta|u|^2},$$

where A, B, α and β are positive constants and $\alpha \beta > \frac{1}{4}$. Then $f \equiv 0$.

Variations of this theorem for L^p spaces have been proved by Morgan [M] and Cowling–Price [CP].

For the Fourier transform on D the following result holds.

Theorem 2.9. Let f be a measurable function on D satisfying

$$|f(x)| \leq Ce^{-\alpha d(0, x)^2}, \quad |\tilde{f}(\lambda, b)| \leq Ce^{-\beta |\lambda|^2}$$

where C, α, β are positive constants. If $\alpha \beta > 16$ then $f \equiv 0$.

This is contained in Sitaram and Sundari [SiSu] §5 where an extension to certain symmetric spaces $X = G/K$ is also proved. The theorem for all such X was obtained by Sengupta [Se], together with refinements in terms of $L^p(X)$.

Many such completions of Hardy’s theorem have been given, see [RS], [CSS], [NR], [Shi].
3 Eigenfunctions of the Laplacian

Consider first the plane \mathbb{R}^2 and the Laplacian

$$L^0 = \frac{\partial^2}{\partial x_1^2} + \frac{\partial^2}{\partial x_2^2}. $$

Given a unit vector $\omega \in \mathbb{R}^2$ and $\lambda \in \mathbb{C}$ the function $x \to e^{i\lambda(x,\omega)}$ is an eigenfunction

$$L_0 e^{i\lambda(x,\omega)} = -\lambda^2 e^{i\lambda(x,\omega)}. \quad (3.1)$$

Because of (2.3) one might expect all eigenfunctions of L to be a “decomposition” into such eigenfunctions with fixed λ but variable ω.

Note that the function $\omega \to e^{i\lambda(x,\omega)}$ is the restriction to SS^1 of the holomorphic function

$$z \to \exp \left[\frac{i}{2}(i\lambda)x_1(z + z^{-1}) + \frac{1}{2}i\lambda x_2(z - z^{-1}) \right] \quad z \in \mathbb{C} - (0),$$

which satisfies a condition

$$\sup_z \left(|f(z)|e^{-a|z|^{-b}|z|^{-1}} \right) < \infty, \quad (3.2)$$

with $a, b \geq 0$. Let $E_{a,b}$ denote the Banach space of holomorphic functions satisfying (3.2), the norm being the expression in (3.2). We let E denote the union of the spaces $E_{a,b}$ and give it the induced topology. We identify the elements of E with their restrictions to SS^1 and call the members of the dual space E^\prime entire functionals.

Theorem 3.1. ([He6]) The eigenfunctions of L^0 on \mathbb{R}^2 are precisely the harmonic functions and the functions

$$f(x) = \int_{SS^1} e^{i\lambda(x,\omega)} dT(\omega) \quad (3.3)$$

where $\lambda \in \mathbb{C} - (0)$ and T is an entire functional on SS^1.

For the non-Euclidean metric (1.3) (with $c = 1$) the Laplacian is given by

$$L = (1 - x^2 - y^2)^2 \left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} \right) \quad (3.4)$$

and the exponential function $e_{\mu,b}(z) = e^\mu(z,b)$ is an eigenfunction:

$$L z e^{i(\lambda+1)(z,b)} = -(\lambda^2 + 1)e^{i(\lambda+1)(z,b)}. \quad (3.5)$$
In particular, the function \(z \rightarrow e^{2(z,b)} \) is a harmonic function and in fact coincides with the classical Poisson kernel from potential theory:

\[
e^{2(z,b)} = \frac{1 - |z|^2}{|z - b|^2}.
\]

(3.6)

Again the eigenfunctions of \(L \) are obtained from the functions \(e_{\mu,b} \) by superposition. To describe this precisely consider the space \(\mathcal{A}(B) \) of analytic functions on \(B \). Each \(F \in \mathcal{A}(B) \) extends to a holomorphic function on a belt \(B_\epsilon : 1 - \epsilon < |z| < 1 + \epsilon \) around \(B \). The space \(\mathcal{H}(B_\epsilon) \) of holomorphic functions on \(B_\epsilon \) is topologized by uniform convergence on compact subsets. We can view \(\mathcal{A}(B) \) as the union \(\bigcup_{n=1}^{\infty} \mathcal{H}(B_{1/n}) \) and give it the inductive limit topology. The dual space \(\mathcal{A}'(B) \) then consists of the analytic functionals on \(B \) (or hyperfunctions in \(B \)).

Theorem 3.2. ([He4], IV, §1). The eigenfunctions of \(L \) are precisely the functions

\[
u(z) = \int_B e^{\mu(z,b)} \, dT(b),
\]

(3.7)

where \(\mu \in \mathbb{C} \) and \(T \in \mathcal{A}'(B) \).

Lewis in [L] has proved (under minor restriction on \(\mu \)) that \(T \) in (3.7) is a distribution if and only if \(u \) has at most an exponential growth (in \(d(0, z) \)). On the other hand, Ban and Schlichtkrull proved in [BaS] that

\[
T \in \mathcal{C}_c(B) \iff \text{all the invariant derivatives of } u \text{ have the same exponential growth.}
\]

We consider now the natural group representations on the eigenspaces. The group \(\mathbf{M}(2) \) of isometries of \(\mathbb{R}^2 \) acts transitively on \(\mathbb{R}^2 \) and leaves the Laplacian \(L^0 \) invariant: \(L^0(f \circ \tau) = (L^0f) \circ \tau \) for each \(\tau \in \mathbf{M}(2) \). If \(\lambda \in \mathbb{C} \) the eigenspace

\[
\mathcal{E}_\lambda = \{ f \in \mathcal{C}_c(\mathbb{R}^2) : L^0f = -\lambda^2f \}
\]

is invariant under the action \(f \rightarrow f \circ \tau^{-1} \) so we have a representation \(T_\lambda \) of \(\mathbf{M}(2) \) on \(\mathcal{E}_\lambda \) given by \(T_\lambda(\tau)(f) = f \circ \tau^{-1} \), the eigenspace representation.

Theorem 3.3. ([He6]) The representation \(T_\lambda \) is irreducible if and only if \(\lambda \neq 0 \).

Similarly the group \(G = \text{SU}(1,1) \) of conformal transformations

\[
z \rightarrow \frac{az + b}{bz + a} \quad (|a|^2 - |b|^2 = 1)
\]

9
leaves \mathfrak{L} and the operator L in \mathfrak{R} invariant. Thus we get again an eigenspace representation τ_λ of G on each eigenspace

$$E_\lambda = \{ f \in C^\infty(D) : Lf = -(\lambda^2 + 1)f \} .$$

Theorem 3.4. ([He4]) The representation τ_λ is irreducible if and only if $i\lambda + 1 / 2 \notin \mathbb{Z}$.

Again all these results extend to Euclidean spaces of higher dimensions and suitably formulated, to all symmetric spaces G/K of the noncompact type.

4 The Radon Transform

A. The Euclidean Case.

Let d be a fixed integer, $0 < d < n$ and let $G(d, n)$ denote the space of d-dimensional planes in \mathbb{R}^n. To a function f on \mathbb{R}^n we associate a function \hat{f} on $G(d, n)$ by

$$\hat{f}(\xi) = \int f(x) \, dm(x), \quad \xi \in G(d, n),$$

where dm is the Euclidean measure on ξ. The transform $f \to \hat{f}$ is called the d-plane transform. For $d = 1, n = 2$ it is the classical Radon transform. The parity of d turns out to be important.

The inversion of the transform $f \to \hat{f}$ is well known (case $d = n - 1$ in [R], [J], [GS], general d in [F], [He1], [He2]). We shall give another group-theoretic method here, resulting in alternative inversion formulas.

The group $G = M(n)$ acts transitively both on \mathbb{R}^n and on $G(d, n)$. In particular, $\mathbb{R}^n = G/K$ where $K = O(n)$. Let $p > 0$. Consider a pair $x \in \mathbb{R}^n, \xi \in G(d, n)$ at distance $p = d(x, \xi)$. Let $g \in G$ be such that $g \cdot 0 = x$. Then the family $kg^{-1} \cdot \xi$ constitutes the set of elements in $G(d, n)$ at distance p from 0. Along with the transform $f \to \hat{f}$ we consider the dual transform $\varphi \to \check{\varphi}$ given by

$$\check{\varphi}(x) = \int_{\xi \ni x} \varphi(\xi) \, d\mu(\xi),$$

the average of φ over the set of d-planes passing through x. More generally we put

$$\check{\varphi}_p(x) = \int_{d(\xi, x) = p} \varphi(\xi) \, d\mu(\xi),$$
the average of \(\varphi \) over the set of \(d \)-planes at distance \(p \) from \(x \). Since \(K \) acts transitively on the set of \(d \)-planes through 0 we see by the above that
\[
\hat{\varphi}_p(g \cdot 0) = \int_K \varphi(gkg^{-1} \cdot \xi) \, dk, \tag{4.4}
\]
d\(k \) being the normalized Haar measure on \(K \). Let \((M^r f)(x) \) denote the mean-value of \(f \) over the sphere \(S_r(x) \) of radius \(r \) with center \(x \). If \(z \in \mathbb{R}^n \) has distance \(r \) from 0 we then have
\[
(M^r f)(g \cdot 0) = \int_K f(gk \cdot z) \, dk. \tag{4.5}
\]
We thus see that since \(d(0, g^{-1} \cdot y) = d(x, y) \),
\[
(\hat{f})_p^\vee(x) = \int_K \hat{f}(gkg^{-1} \cdot \xi) \, dk = \int_K \int_{\xi} f(gkg^{-1} \cdot y) \, dm(y) \, dk
= \int_{\xi} dm(y) \int_K f(gkg^{-1} \cdot y) \, dk = \int_{\xi} (M^{d(x, y)} f)(x) \, dm(y).
\]
Let \(x_0 \) be the point in \(\xi \) at minimum distance \(p \) from \(x \). The integrand \((M^{d(x, y)} f)(x) \) is constant in \(y \) on each sphere in \(\xi \) with center \(x_0 \). It follows that
\[
(\hat{f})_p^\vee(x) = \Omega_d \int_0^{\infty} (M^q f)(x) r^{d-1} \, dr, \tag{4.6}
\]
where \(r = d(x_0, y), \, q = d(x, y), \, \Omega_d \) denoting the area of the unit sphere in \(\mathbb{R}^d \). We have \(q^2 = p^2 + r^2 \) so putting \(F(q) = (M^q f)(x), \hat{F}(p) = (\hat{f})_p^\vee(x) \) we have
\[
\hat{F}(p) = \Omega_d \int_{p}^{\infty} F(q)(q^2 - p^2)^{d/2 - 1} \, dq. \tag{4.7}
\]
This Abel-type integral equation has an inversion
\[
F(r) = c(d) \left(\frac{d}{d(r^2)} \right)^d \int_{r}^{\infty} p(p^2 - r^2)^{d/2 - 1} \hat{F}(p) \, dp, \tag{4.8}
\]
where \(c(d) \) is a constant, depending only on \(d \). Putting \(r = 0 \) we obtain the inversion formula
\[
(f(x) = c(d) \left[\left(\frac{d}{d(r^2)} \right)^d \int_{r}^{\infty} p(p^2 - r^2)^{d/2 - 1} (\hat{f})_p^\vee(x) \, dp \right]_{r=0}. \tag{4.9}
\]
Note that in (4.8)
\[p(p^2 - r^2)^{d/2-1} = \frac{d}{dp}(p^2 - r^2)^{(d/2)} \cdot \frac{1}{d} \]
so in (4.8) we can use integration by parts and the integral becomes
\[C \int_{r}^{\infty} (p^2 - r^2)^{d/2} \hat{F}'(p) \, dp . \]

Applying \(\frac{d}{d(r^2)} = \frac{1}{2r} \frac{d}{dr} \) to this integral reduces the exponent \(d/2 \) by 1. For \(d \) odd we continue the differentiation \(\frac{d^{d+1}}{2} \) times until the exponent is \(-\frac{1}{2} \). For \(d \) even we continue until the exponent is 0 and then replace \(\int_{r}^{\infty} \hat{F}'(p) \, dp \) by \(-\hat{F}(r)\). This \(\hat{F}(r) \) is an even function so taking \((d/d(r^2))^{d/2} \) at \(r = 0 \) amounts to taking a constant multiple of \((d/dr)^d \) at \(r = 0 \). We thus get the following refinement of (4.9) where we recall that \((\hat{f})_{\nu}^{-\nu}(x) \) is the average of the integrals of \(f \) over the \(d \)-planes tangent to \(S_r(x) \).

Theorem 4.1. The \(d \)-plane transform is inverted as follows:

(i) If \(d \) is even then
\[f(x) = C_1 \left[\frac{d}{dr} \right]^d (\hat{f})_{\nu}^{-\nu}(x) \bigg|_{r=0} . \tag{4.10} \]

(ii) If \(d \) is odd then
\[f(x) = C_2 \left[\frac{d}{d(r^2)} \right]^{(d-1)/2} \int_{r}^{\infty} (p^2 - r^2)^{-1/2} \frac{d}{dp} (\hat{f})_{\nu}^{-\nu}(x) \, dp \bigg|_{r=0} . \tag{4.11} \]

(iii) If \(d = 1 \) then
\[f(x) = -\frac{1}{\pi} \int_{0}^{\infty} \frac{d}{dp} (\hat{f})_{\nu}^{-\nu}(x) \, dp . \tag{4.12} \]

For \(n = 2 \) formula (4.12) is proved in Radon’s original paper [R]. Note that the constant \(-1/\pi\) is the same for all \(n \). In the case \(d = n - 1 \) the formula in (i) coincides with formula (21) in Rouvière [Ro].
Another inversion formula ([He1], [He2]) valid for all \(d \) and \(n \) is
\[
f = c(-L)^{d/2}((\hat{f})^\vee)
\] (4.13)
where
\[
c = \frac{\Gamma \left(\frac{n-d}{2} \right)}{(4\pi)^{d/2} \Gamma \left(\frac{d}{2} \right)}.
\]
Here the fractional power of \(L \) is defined in the usual way by the Fourier transform. The parity of \(d \) shows up in the same way as in Theorem 4.1.

For range questions for the transform \(f \to \hat{f} \) see an account in [He10] and references there.

B. The Hyperbolic Case.

The hyperbolic space \(H^n \) is the higher-dimensional version of (1.3) and its Riemannian structure is given by
\[
ds^2 = 4 \frac{dx_1^2 + \cdots + dx_n^2}{(1 - x_1^2 - \cdots - x_n^2)^2}
\] (4.14)
in the unit ball \(|x| < 1 \). The constant 4 is chosen such that the curvature is now \(-1\). The \(d \)-dimensional totally geodesic submanifolds are spherical caps perpendicular to the boundary \(B : |x| = 1 \). They are natural analogs of the \(d \)-planes in \(R^n \). We have accordingly a Radon transform \(f \to \hat{f} \), where
\[
\hat{f}(\xi) = \int_\xi f(x) \, dm(x) \quad \xi \in \Xi,
\] (4.15)
where \(\Xi \) is the space of \(d \)-dimensional totally geodesic submanifolds of \(H^n \).

The group \(G \) of isometries of \(H^n \) acts transitively on \(\Xi \) as well. As in (4.2)—(4.3) we consider the dual transform
\[
\check{\varphi}(x) = \int_{\xi \ni x} \varphi(\xi) \, d\mu(\xi)
\] (4.16)
and more generally for \(p \geq 0 \),
\[
\check{\varphi}_p(x) = \int_{d(\xi,x)=p} \varphi(\xi) \, d\mu(\xi),
\] (4.17)
the mean value of φ over the set of $\xi \in \Xi$ at distance p from x. The formula

$$\left(\hat{f} \right)^\vee_p(x) = \int_\xi (M^{d(x,y)} f)(x) \, dm(y) \quad (4.18)$$

is proved just as before. Let x_0 be the point in ξ at minimum distance p from x and put $r = d(x_0, y), q = d(x, y)$. Since the geodesic triangle (xx_0y) is right angled at x_0 we have by the cosine rule

$$\cosh q = \cosh p \cosh r. \quad (4.19)$$

Also note that since ξ is totally geodesic, distances between two points in ξ are the same as in \textbf{H}^n. In particular $(M^{d(x,y)} f)(x)$ is constant as y varies on a sphere in ξ with center x_0. Therefore (4.18) implies

$$\left(\hat{f} \right)^\vee_p(x) = \Omega_d \int_0^\infty (M^q f)(x) \sinh^{d-1} r \, dr. \quad (4.20)$$

For x fixed we put

$$F(\cosh q) = (M^q f)(x), \quad \hat{F}(\cosh p) = (\hat{f})^\vee_p(x),$$

substitute in (4.20) and use (4.19). Writing $t = \cosh p, s = \cosh r$ we obtain the integral equation

$$\hat{F}(t) = \Omega_d \int_1^\infty F(ts)(s^2 - 1)^{d/2 - 1} \, ds. \quad (4.21)$$

Putting here $u = ts, \, ds = t^{-1} du$ we get the Abel–type integral equation

$$t^{d-1} \hat{F}(t) = \Omega_d \int_t^\infty u^{-1} F(u)(u^2 - t^2)^{d/2 - 1} \, du,$$

which by (4.8) is inverted by

$$r^{-1} F(r) = c(d) \left(\frac{d}{d(r^2)} \right)^d \int_r^\infty \frac{t(t^2 - r^2)^{d/2 - 1} \, t^{d-1}}{r} \hat{F}(t) \, dt. \quad (4.22)$$

Here we put $r = 1$ and $s(p) = \cosh^{-1} p$. We then obtain the following variation of Theorem 3.12, Ch. I in [He9]:

14
Theorem 4.2. The transform \(f \to \tilde{f} \) is inverted by

\[
f(x) = C \left[\frac{d}{d(r^2)} \int_r^\infty (t^2 - r^2)^{d/2-1} t^d (\hat{f})^{\vee}_{\nu(t)} (x) \, dt \right]_{r=1}. \tag{4.23}
\]

As in the proof of Theorem 4.1 we can obtain the following improvement.

Theorem 4.3. (i) If \(d \) is even the inversion can be written

\[
f(x) = C \left[\frac{d}{d(r^2)} \right]^{d/2} (r^d-1) (\hat{f})^{\vee}_{\nu(r)} (x) \right]_{r=1}. \tag{4.24}
\]

(ii) If \(d = 1 \) then

\[
f(x) = -\frac{1}{2} \int_0^\infty \frac{d}{\sinh p \, dp} \left((\hat{f})^{\vee}_{p} (x) \right) \, dp. \tag{4.25}
\]

Proof: Part (i) is proved as (4.10) except that we no longer can equate \((d/d(r^2))^{d/2} \) with \((d/dr)^d\) at \(r = 1 \).

For (ii) we deduce from (4.22) since \(t(t^2 - r^2)^{-1/2} = \frac{d}{dt}(t^2 - r^2)^{1/2} \) that

\[
F(1) = -\frac{c(1)}{2} \left[\frac{d}{dr} \int_r^\infty (t^2 - r^2)^{1/2} \frac{d}{dt} \hat{F}(t) \, dt \right]_{r=1}
= \frac{c(1)}{2} \int_1^\infty (t^2 - 1)^{-1/2} \frac{d}{dt} \hat{F}(t) \, dt.
\]

Putting again \(t = \cosh p, \, dt = \sinh p \, dp \) our expression becomes

\[
\frac{c(1)}{2} \int_0^\infty \frac{1}{\sinh p} \frac{d}{dp}((\hat{f})^{\vee}_{p})(x) \, dp.
\]

Remark For \(n = 2, \, d = 1 \) formula (4.25) is stated in Radon [R], Part C. The proof (which is only indicated) is very elegant but would not work for \(n > 2 \).
For d even (4.24) can be written in a simpler form ([He1]) namely

$$f = c \, Q_d(L)((\hat{f})^\lor),$$

(4.26)

where $c = \frac{\Gamma\left(\frac{n-d}{2}\right)}{(-4\pi)^{d/2}\Gamma\left(\frac{d}{2}\right)}$ and Q_d is the polynomial

$$Q_d(x) = (x + (d-1)(n-d)) \cdots (x + (n+1)(n+2)).$$

The case $d = 1, n = 2$ is that of the X-ray transform on the non-Euclidean disk (4.15) for $n = 2$. Here are two further alternatives to the inversion formula (4.25). Let S denote the integral operator

$$(Sf)(x) = \int_D (\coth d(x, y) - 1)f(y) \, dy.$$

(4.27)

Then

$$LS(\hat{f})^\lor = -4\pi^2 f, \quad f \in \mathcal{D}(X).$$

(4.28)

This is proved by Berenstein–Casadio [BC]; see [He10] for a minor simplification. By invariance it suffices to prove (4.28) for f radial and then it is verified by taking the spherical transform on both sides. Less explicit versions of (4.28) are obtained in [BC] for any dimension n and d.

One more inversion formula was obtained by Lissiano and Ponomarev [LP] using (4.23) for $d = 1, n = 2$ as a starting point. By parameterizing the geodesics γ by the two points of intersection of γ with B they prove a hyperbolic analog of the Euclidean formula:

$$f(x) = \int_{S^1} \left\{ \mathcal{H}_p \frac{d}{dp} \hat{f}(\omega, p) \right\}_{p=(\omega, x)} d\omega,$$

(4.29)

which is an alternative to (4.12). Here \mathcal{H}_p is a normalized Hilbert transform in the variable p and $\hat{f}(\omega, p)$ is $\hat{f}(\xi)$ for the line $(x, \omega) = p$, where $|\omega| = 1$.

In the theorems in this section we have not discussed smoothness and decay at infinity of the functions. Here we refer to [Je], [Ru1], [Ru2], [BeR1] and [BeR2] as examples.

Additional inversion formulas for the transform $f \to \hat{f}$ can be found in [Sm], [Ru3] and [K]. The range problem for the transform $f \to \hat{f}$ is treated in [BCK] and [I].
Added in Proof:

I have since this was written proved an inversion formula for the X-ray transform on a noncompact symmetric space of rank \(l > 1 \). It is similar to (4.12) except that in (4.17) one restricts the averaging to the set of geodesics each of which lies in a flat \(l \)-dimensional totally geodesic submanifold through \(x \) and at distance \(p \) from \(x \). On the other hand, Rouvière had proved earlier that the inversion formula (4.25) holds almost unchanged for the X-ray transform on a noncompact symmetric space of rank 1.

References

[A] J. Anker, The spherical Fourier transform of rapidly decreasing functions—a simple proof of a characterization due to Harish-Chandra, Helgason, Trombi and Varadarajan. J. Funct. Anal. 96 (1991), 331–349.

[BS] S.C. Bagchi and A. Sitaram, Spherical mean–periodic functions on semisimple Lie groups. Pac. J. Math. 84 (1979), 241–250.

[BaS] Ban, van den, E.P. and H. Schlichtkrull, Asymptotic expansions and boundary values of eigenfunctions on a Riemannian symmetric space. J. Reine Angew. Math. 380 (1987), 108–165.

[Bar] W.H. Barker, \(L^p \) harmonic analysis on \(SL(2, \mathbb{R}) \). Memoir of Amer. Math. Soc. 393 Providence, R.I. 1988.

[Be] E. Beltrami, Saggio di interpretazione della geometria non euclidea. Giornale di Matematica, 1868.

[BeR1] C.A. Berenstein and B. Rubin, Radon transform of \(L^p \)-functions on the Lobachevsky space and hyperbolic wavelet transforms. Forum. Math. 11 (1999), 567–590.

[BeR2] C.A. Berenstein and B. Rubin, Totally geodesic Radon transform of \(L^p \)-functions on real hyperbolic space. (Preprint).

[BC] C.A. Berenstein and E. Casadio Tarabusi, Inversion formulas for the \(k \)-dimensional Radon transform in real hyperbolic spaces. Duke Math. J. 62 (1991), 613–631.

[BCK] C.A. Berenstein, A. Kuruša and E. Casadio Tarabusi, Radon transform on spaces of constant curvature. Proc. Amer. Math. Soc. 125 (1997), 455–461.

[Bo] J. Bolyai, The Science Absolute of Space, 1831.
[CP] M. Cowling and J. Price, Generalizations of Heisenberg’s inequality. Lecture Notes No. 992, Springer–Verlag, 1983.

[CSS] M. Cowling, A. Sitaram and M. Sundari, Hardy’s uncertainty principle on semisimple Lie groups. Pac. J. Math. 192 (2000), 293–296.

[Eg] M. Eguchi, Asymptotic Expansions of Eisenstein Integrals and Fourier Transform on Symmetric Spaces. J. Funct. Anal. 34 (1979), 167–216.

[EM] L. Ehrenpreis and F. Mautner, Some properties of the Fourier transform on semisimple Lie groups I. Ann. of Math. 61 (1955), 406–439.

[F] B. Fuglede, An integral formula. Math. Scand. 6 (1958), 207–212.

[GS] I.M. Gelfand and G.E. Shilov, Generalized Functions, I, Academic Press, New York, 1964.

[H] Harish-Chandra, Spherical functions on a semisimple Lie group II. Amer. J. Math. 80 (1958), 553–613.

[Ha] G.H. Hardy, A theorem concerning Fourier transforms. J. London Math. Soc. 8 (1933), 227–231.

[He1] S. Helgason, Differential operators on homogeneous spaces. Acta Math. 102 (1959), 239–299.

[He2] S. Helgason, The Radon transform on Euclidean spaces, two–point homogeneous spaces and Grassmann manifolds. Acta Math. 113 (1965), 153–180.

[He3] S. Helgason, Radon–Fourier transforms on symmetric spaces and related group representations. Bull. Amer. Math. Soc. 71 (1965), 757–763.

[He4] S. Helgason, A duality for symmetric spaces with applications to group representations. Advan. Math. 5 (1970), 1–154.

[He5] S. Helgason, The surjectivity of invariant differential operators on symmetric spaces. Ann. of Math. 98 (1973), 451–480.

[He6] S. Helgason, Eigenspaces of the Laplacian; integral representations and irreducibility. J. Functional Anal. 17 (1974), 328–353.

[He7] S. Helgason, A duality for symmetric spaces with applications to group representations II. Differential equations and eigenspace representations. Advan. Math. 22 (1976), 187–219.
[He8] S. Helgason, *Groups and Geometric Analysis*. Acad. Press, 1984, Amer. Math. Soc., 2000.

[He9] S. Helgason, *Geometric Analysis on Symmetric Spaces*. Math Surveys and Monographs No. 39, AMS, Providence, R.I. 1994.

[He10] S. Helgason, *The Radon Transform*. Birkhäuser, Boston, 1999.

[HRSS] S. Helgason, R. Rawat, J. Sengupta and A. Sitaram, Some remarks on the Fourier transform on a symmetric space. Tech. Report, Ind. Stat. Inst. Bangalore 1998.

[HS] S. Helgason and J. Sengupta, Preprint 1997.

[I] S. Ishikawa, The range characterization of the totally geodesic Radon transform on the real hyperbolic space. Duke Math. J. 90 (1997), 149–203.

[J] F. John, *Plane Waves and Spherical Means*. Wiley, New York, 1955.

[Je] S.R. Jensen, Sufficient conditions for the inversion formula for the k-plane transform in \mathbb{R}^n. (Preprint).

[K] A. Kurusa, The Radon transform on hyperbolic space. Geom. Dedicata 40 (1991), 325–339.

[L] J. Lewis, Eigenfunctions on symmetric spaces with distribution-valued boundary forms. J. Funct. Anal. 29 (1978), 287–307.

[LP] S. Lissianoi and I. Ponomarev, On the inversion of the geodesic Radon transform on the hyperbolic plane. Inverse Problems 13 (1997), 1053–1062.

[Lo] N. Lobatchevski, Geometrical Researches on the Theory of Parallels, Kasan, 1826.

[M] G.W. Morgan, A note on Fourier transforms. J. London Math. Soc. 9 (1934), 187–192.

[MRSS] P. Mohanty, S.K. Ray, R.P. Sarkar and A. Sitaram, Helgason Fourier Transform for Symmetric Spaces II (to appear).

[NR] E.K. Narayanan and S.K. Ray, L^p version of Hardy’s theorem on semisimple Lie groups. Proc. Amer. Math. Soc. 130 (2002), 1859–1866.

[OSW] T. Oshima, Y. Saburi and M. Wakayama, Paley–Wiener theorems on a symmetric space and their application. Diff. Geom. and Appl. (191), 247–278.
[R] J. Radon, Über die Bestimmung von Funktionen durch ihre Integralwerte längs gewisser Mannigfaltigkeiten. Ber. Verth. Sächs. Akad. Wiss. Leipzig. Math. Nat. kl. 69 (1917), 262–277.

[RS] S.K. Ray and R.P. Sarkar, Cowling–Price theorem and characterization of heat kernel of symmetric spaces. (Preprint).

[Ro] F. Rouvière, Inverting Radon transforms; the group–theoretic approach. Enseign. Math. 47 (2001), 205–252.

[Ru1] B. Rubin, Reconstruction of functions from their integrals over k-planes. (Preprint).

[Ru2] B. Rubin, Helgason–Marchand inversion formulas for Radon transforms. Proc. Amer. Math. Soc. 130 (2002), 3017–3023.

[Ru3] B. Rubin, Radon, Cosine and Sine transforms on real hyperbolic spaces. Advan. Math. 170 (2002), 206–233.

[SS] R. Sarkar and A. Sitaram, The Helgason Fourier Transform for Symmetric Spaces. C.S. Seshadri Festschrift Volume (to appear.)

[Sa] R.P. Sarkar, Wiener Tauberian theorem for rank one symmetric spaces. Pacific J. of Math. 186 (1998), 349–358.

[Sc] L. Schwartz, Théorie generale des fonctions moyenne–périodiques. Ann. of Math. 48 (1947), 857–929.

[Se] J. Sengupta, The Uncertainty Principle on Riemannian symmetric spaces of the noncompact type. Proc. Amer. Math. Soc. 128 (2000), 2493–2499.

[Sm] V.I. Semyanisty, Homogeneous functions and some problems of integral geometry in spaces of constant curvature. Soviet Math. Dokl. 2 (1961), 59–62.

[Shi] N. Shimeno, An analog of Hardy’s theorem for the Harish–Chandra transform. Hiroshima Math. J. 31 (2001), 383–390.

[Si1] A. Sitaram, An analog of the Wiener Tauberian theorem for spherical transforms on semisimple Lie groups. Pac. J. Math. 89 (1980), 439–445.

[Si2] A. Sitaram, On an analog of the Wiener Tauberian theorem for symmetric spaces of the noncompact type. Pac. J. Math. 133 (1988), 197–208.

[SiSu] A. Sitaram and M. Sundari, An analog of Hardy’s theorem for very rapidly decreasing functions on semisimple Lie groups. Pac. J. Math. 177 (1997), 187–200.
[ST] R.J. Stanton and P.A. Thomas, Pointwise inversion of the spherical transform on $L^p(G/K)$ (1 ≤ p < 2). Proc. Amer. Math. Soc. 73 (1979), 398–404.

[TV] P. Trombi and V.S. Varadarajan, Spherical transforms on a semisimple Lie group. Ann. of Math. 94 (1971), 246–303.