Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
Dynamic RNA Modifications in Posttranscriptional Regulation

Xiao Wang1 and Chuan He1,*
1Department of Chemistry and Institute for Biophysical Dynamics, Howard Hughes Medical Institute, The University of Chicago, Chicago, IL 60637, USA
*Correspondence: chuanhe@uchicago.edu
http://dx.doi.org/10.1016/j.molcel.2014.09.001

Cellular RNAs can be chemically modified over a hundred different ways. These modifications were once thought to be static, discrete, and utilized to fine-tune RNA structure and function. However, recent studies have revealed that some modifications, like mRNA methylation, can be reversed, and these reversible modifications may play active roles in regulating diverse biological processes. In this perspective, we summarize examples of dynamic RNA modifications that affect biological functions. We further propose that reversible modifications might occur on tRNA, rRNA, and other noncoding RNAs to regulate gene expression analogous to the reversible mRNA methylation.

Proteins related to RNA metabolism account for ~3%–11% coding capacity of the genome in all three domains of life, and RNA modifying enzymes are among the most conserved ones along with proteins involving transcription and translation (Anantharaman et al., 2002). RNA modifications require significant energy from the cell. For example, RNA methylation, a common modification, uses S-adenosylmethionine (SAM) as the methyl donor, and to produce one SAM molecule requires the energy equal to hydrolyzing 12 to 13 ATP molecules (Bakin et al., 1994). Given the significant cellular investment in RNA-modifying processes, RNA modifications are likely to be very important.

There are three main categories of RNA modifications: (1) modifications that enforce certain RNA structures and tune RNA biogenesis, such as modifications on rRNA and small nuclear RNA (snRNA) (Dickmanns and Ficner, 2005); (2) modifications that expand the RNA vocabulary and refine molecular recognition, such as modifications at the decoding region in tRNA; and (3) modifications that code dynamic regulatory information on top of the primary sequence, such as modifications on mRNA. We will briefly summarize the first two categories and then focus primarily on the last category, because the idea that dynamic RNA modifications play active roles in gene regulation has been intensively studied in recent years. Finally, we will extend our discussion to future directions and techniques developments in RNA modification research.

Ribosomal RNA Modifications
rRNA modifications are concentrated in functional regions such as peptidyl transferase center (PTC) (Decatur and Fournier, 2002). In human ribosomal RNA, there are 91 pseudouridines (Ψ, Figure 1A), 105 2′-O-methylations on backbone sugars (Figure 1B), and ten methylated bases (Piekna-Przybylska et al., 2008). The biological effects of these modifications on rRNA have remained long-term puzzles. The prevailing hypothesis is that they fine-tune the structure and function of ribosome and perhaps play roles during ribosome biogenesis. Modified nucleotides possess distinctive chemical properties that could alter molecular interactions and conformations. For instance, 2′-O-methyl prevents hydrolysis of the phosphate backbone and causes the ribose sugar to favor the 3′ endo conformation (Kawai et al., 1992), and Ψ promotes base stacking (Davis, 1995). Both modifications enhance the rigidity and stability of certain RNA secondary structures. While individual rRNA modifications seem to be dispensable, these modifications are vital when considered collectively (Decatur and Fournier, 2002). For example, yeast strains with deficiency in rRNA modifications at PTC showed changes in tRNA selection, altered peptidyl transfer rates, reduced translation fidelity, and sensitivity to translation inhibitors (Baxter-Roshek et al., 2007). Therefore, rRNA modifications around PTC are critical for translation accuracy and efficiency of the ribosome, but the exact structural and functional roles still require further investigation.

Transfer RNA Modifications
tRNAs are the most heavily modified types of RNA. Approximately 15%–25% of all nucleosides in eukaryotic tRNA contain modifications (El-Yacoubi et al., 2012). These modifications have been proposed to serve various purposes (Hopper, 2013): (1) tRNA discrimination (e.g., initiator tRNAMet is distinguished from elongator tRNAMet through ribosylation at A34) (Shin et al., 2011) (Figure 1C); (2) translation fidelity, where absence of inosine (I, resulting from deamination of A, Figure 1D) at wobble position 34 causes decoding errors because A only pairs with U while I extends codon-anticodon interaction capability through base pairing with U, A, and C (Gerber and Keller, 1999); and (3) tRNA stability (e.g., m7A58 of tRNAMet is required for tRNA stability) (Anderson et al., 1998) (Figure 1E).

Recent studies in yeast revealed that certain tRNA modifications can be quite dynamic and adaptive to environmental changes. With a highly accurate mass spectroscopic method, it was shown that the spectrum of tRNA modification has signature shift upon exposure to different toxins (Chan et al., 2010). In response to oxidative stress induced by hydrogen peroxide, the C34 at the wobble position (the first residue in the anticodon region) of yeast tRNALeuCAA is modified by tRNA methyltransferase 4 (Tm4). The m5C-modified tRNALeuCAA
enhances the translation of UUG-rich transcripts (Chan et al., 2012) (Figure 1F). The m⁵C level on tRNAHis (also catalyzed by Trm4) rises in response to nutrient depletion and other growth arrest conditions (Preston et al., 2013). Another yeast tRNA methyltransferase, Trm9, completes the formation of mcm⁵U and mcm⁵s²U (Figure 1G) at the wobble U₁₄ of tRNAArg_UUC and tRNA_Glu_UUC; this methylation prevents cell death by promoting translation of DNA damage response genes that are enriched with arginine and glutamic acid codons (Begley et al., 2007). Besides methylation, a tRNA isopentenyltransferase enzyme Mod5 catalyzes the formation of N6-isopentenyladenosine (i⁶A₃⁷) at A₃⁷ using dimethylallyl pyrophosphate. This i⁶A modification is required for tRNA-mediated nonsense suppression (recognition of a premature stop codon by mutant tRNA_Tyr to suppress protein truncation). In parallel, Erg20 utilizes the same substrate, dimethylallyl pyrophosphate, to produce an essential precursor of sterols, farnesyl pyrophosphate. Therefore, Mod5 and Erg20 compete for their common substrate. Overexpression of Erg20 elevates the influx of the common substrate to sterol pathway, reducing formation of i⁶A in tRNA_Tyr, thereby changing translation due to altered nonsense suppression (Benko et al., 2000). The coupling of tRNA modification and sterol biogenesis was further strengthened by the discovery that Mod5 can regulate sterol metabolic pathway via a prion state (Suzuki et al., 2012). Besides enzymatic function, some tRNA modifying enzymes, such as tRNA pseudouridylases TruB, can also function as tRNA chaperone to facilitate maturation of tRNA (Gutgsell et al., 2000).

A mammalian DNA methyltransferase (DNMT), DNMT2, has been shown to actually work on tRNA cytosine methylation (Goll et al., 2006). Several studies on the Drosophila homolog of DNMT2 showed that the DNMT2-mediated methylation protects tRNA against stress-induced fragmentation, which is beneficial because tRNA fragments can inhibit the activity of the small RNA processing enzyme Dicer-2 and cause dysfunction of RNA interference (Schaefer et al., 2010; Đurđević et al., 2013). Dynamic tRNA modifications could directly impact codon selection and the outcome of translation. This is a rich and vibrant research field that should continue to generate surprising discoveries.

mRNA Modifications
mRNA plays a central role in the transduction of biological information from DNA to protein. Because mRNAs encode genetic information, most mRNA modifications need to be nonmutagenic and should not interfere with translation machinery. Therefore, most nucleoside modifications on mRNA are methylations, which minimally perturb the mRNA. There are four primary sites of methylation: N⁷-methylguanine (m⁷G at the 5’ cap), N⁶-methyladenosine (m⁶A), 5-methylcytosine (m⁵C), and 2’⁰-0-methylation of ribose (Figure 1). The cap structure has diverse functions; it promotes splicing, regulates mRNA nuclear export, and prevents 5’-3’ degradation, and it is crucial during translation initiation, where it is recognized by cap-binding proteins (Cougot et al., 2004; Topisirovic et al., 2011) and also suppresses aberrant translation (Mitchell et al., 2010). While the cap is clearly important, we will focus our discussions on internal (non-cap) mRNA modifications.

Reversible m⁶A Methylation
The m⁶A methylation is the most prevalent internal modification on eukaryotic mRNA. It was initially discovered in 1974, together with 5’ cap methylation (Desrosiers et al., 1974; Desrosiers et al.,...
However, progress on m^6^A research lagged far behind that of the cap, probably because of the low abundance of mRNA and difficulties in detection. Early studies showed that on average every mammalian mRNA contains three to five m^6^A within a G(m^6^A)C (70%) or A(m^6^A)C (30%) consensus sequence (Wei et al., 1976; Wei and Moss, 1977), but the methylation percentage at each site varies substantially (Kane and Beemon, 1985; Carroll et al., 1990). m^6^A is posttranscriptionally installed by an m^6^A methyltransferase complex (Tuck, 1992; Bokar et al., 1994). The identification of a SAM-binding subunit (METTL3) of the complex (Bokar et al., 1997) allowed scientists to examine m^6^A in model organisms. The resulting work showed that m^6^A is crucial for yeast meiosis (Shah and Clancy, 1992; Clancy et al., 2002; Schwartz et al., 2013), and for fruit fly (Honggay and Orr-Weaver, 2011) and plant development (Zhong et al., 2008). The m^6^A methylation also appears to be essential for mammalian cells (Bokar, 2005).

In the last 4 years, the field has witnessed a major revival focusing on functional roles of m^6^A in eukaryotic mRNA (Fu et al., 2014), initiated by (1) a conceptual conjecture that reversible RNA modification might serve regulatory roles analogous to DNA and histone epigenetic modifications (He, 2010; Yi and Pan, 2011), followed by the subsequent discovery of the first mRNA demethylase FTO (fat mass and obesity-associated protein) that reverses m^6^A modification (Jia et al., 2011); (2) the development of an antibody-based high-throughput m^6^A profiling method, m^6^A-seq (Dominissini et al., 2012) or MeIP-seq (Meyer et al., 2012; Meyer and Jaffrey, 2014); and (3) the discovery and characterization of selective m^6^A-binding proteins that impact the stability of mRNA (Dominissini et al., 2012; Wang et al., 2014a). As a reversible mark analogous to methylations on DNA and histone tails, m^6^A on mRNA is installed, erased, and recognized by m^6^A methyltransferase, demethylase, and m^6^A-specific binding proteins. We have recently shown that METTL3 forms a stable heterodimer with METTL14 as the enzymatic core of the m^6^A methyltransferase complex and biochemically reconstituted their methylation activity (Liu et al., 2014; Wang et al., 2014b). In addition, the heterodimer also interacts with a splicing regulator, WTAP, which affects the m^6^A level inside cells (Liu et al., 2014; Ping et al., 2014). The interaction between WTAP and m^6^A methyltransferase is also conserved in yeast (Agarwala et al., 2012) and plants (Zhong et al., 2008). Early studies indicated that a large protein complex (200 kDa + 800 kDa) mediates this methylation (Tuck, 1992; Bokar et al., 1994), hence other important protein factors surrounding the enzymatic core remain to be identified. Only a fraction of the all consensus sequences in mammalian mRNA are methylated. The methylation selectivity and its response to various cellular signals and stimuli remain to be elucidated in the future.

Functional understanding of m^6^A has lagged in part because of limited research on potential reader proteins that can selectively bind the methylated transcripts and mediate biological functions. Potential candidate proteins have been reported in RNA-affinity pull-down experiments using methylated RNA probes (Dominissini et al., 2012). Three members of human YTH domain family proteins (YTHDF1–3) exhibit 5- to 20-fold higher binding affinity for methylated RNAs compared to unmethylated RNA (Wang et al., 2014a). In particular, YTHDF2 has been shown to affect the stability of m^6^A-containing RNA and localize the methylated mRNA from translatable pool to mRNA decay sites, such as processing bodies in parallel or at a later stage of deadenylation (Wang et al., 2014a). Interestingly, m^6^A-containing transcripts are enriched with regulatory genes (transcription factors, etc.) and inherently possess shorter half-life than nonmethylated species (Fu et al., 2014), suggesting that the m^6^A-dependent mRNA turnover serves as a mechanism to dynamically affect expression of these genes (Wang and He, 2014). The m^6^A methylation has been shown to affect stability of transcriptional regulators in mouse embryonic stem cells (Wang et al., 2014b), and two recent studies on yeast further support the notion that one main function of m^6^A is likely to affect transcript stability. Mmi1 in fission yeast is homologous to human YTH domain-containing proteins and is responsible for selectively eliminating meiotic mRNA transcripts during vegetative growth (Harigaya et al., 2006; Hiriart et al., 2012). Ydr374c (Pho92 or MRB1), the YTH domain homolog in budding yeast, binds the m^6^A-containing RNA and seems to regulate the transcript stability of a key gene involved in phosphate signal transduction pathway in response to changing phosphate levels by interacting with the Pop2-Ccr4-Not deadenylation complex (Kang et al., 2014).

The two recently discovered m^6^A demethylases (FTO and AlkbH5) have distinct physiological functions: FTO is associated with body weight and human diseases (Dina et al., 2007; Frayling et al., 2007; Do et al., 2008; Ho et al., 2010; Keller et al., 2011), while the Alkbh5 knockout mice have impaired fertility (Zheng et al., 2013), demonstrating functional impacts of the removal of m^6^A and importance of a delicate balance of the m^6^A methylation/demethylation activities in mammals. As the functional roles of m^6^A become defined, the mechanisms of the demethylation-based regulation will likely follow.

The abundant m^6^A methylation represents a different regulatory mechanism on top of the primary transcript sequence (Figure 2). The discovery and functional elucidation of the writers, erasers, and readers of m^6^A will continue to reveal functional significance of this methylation. The writer proteins selectively install and set the code of the entire transcriptome at the upstream of information processing. Demethylases balance the methylation stoichiometry of specific mRNAs, perhaps in a pathway- and cell-type-specific manner. The m^6^A “reader” proteins are at the end of information processing, executing the biological functions of m^6^A on specific transcripts through rapid and localized reading of the m^6^A mark. Protein of all three stages can couple with signal transduction pathways via protein-protein interaction or posttranslational modifications, which provide a dynamic and rapid response to cellular signals, environmental stimuli, or programmed biological transformations.

m^5^C

5-Methylcytosine is a well-known epigenetic modification in eukaryotic genomic DNA and is known to exist in rRNA and tRNA; however, recent transcriptome-wide mapping of m^5^C in human RNA has uncovered over ten thousand candidate m^5^C sites in mRNA and other noncoding RNAs (Squires et al., 2012). In mRNA, these sites are enriched in untranslated regions and around Argonaute binding sites. By using both bisulfite sequencing and immunoprecipitation with anti-m^5^C antibody followed by sequencing, 14 m^5^C sites were verified in archaeal.
Succinate as the product.

A methylation.

METTL14 with S pathways, responses to environmental stimuli, or programmed biological procedures. The m6A reader proteins (e.g., YTHDF family proteins) recognize the m6A code and execute biological functions. YTHDF2 is the enzymatic core of the m6A writer complex, while WTAP and other factors exhibit catalytic functions. YTHDF2 promotes the decay of the m6A-containing RNA while other reader proteins could potentially affect the translation, storage, or nuclear export of methylated RNA. All these proteins could couple their functions with cellular signaling pathways, responses to environmental stimuli, or programmed biological transformations. S-adenosyl methionine (SAM) is the cofactor of METTL3-METTL14 with S-adenosyl homocysteine (SAH) as the product after the succinate as the product.

(S. solfataricus) mRNA with a consensus motif of AU(m5C) GANGU, similar to the m5C sites on S. solfataricus rRNA, suggesting a shared m5C methyltransferase in the deposition of m5C (Edelheit et al., 2013). Several genes bearing m5C are enzymes involved in energy and lipid metabolism, possibly indicating a regulatory role of m5C in metabolic processes. Several m5C methyltransferases that were thought to work on rRNA and tRNA have binding sites on mRNA, suggesting additional roles that impact mRNA (Zhang et al., 2012; Khoddami and Cairns, 2013; Hussain et al., 2013).

2'-O-Methylation

2'-O-methylation is involved in discrimination of self and nonself mRNA (Daffis et al., 2010). Human and mouse coronavirus mutants lacking 2'-O-methyltransferase activity triggered higher level of type I interferon via the recognition of Mda5, a cytoplasmic protein that senses double-stranded RNA (Züst et al., 2011). Hence, it is not surprising that 2'-O-methylation has been widely incorporated into small interference RNA (siRNA) to optimize the stability and immunogenic properties of siRNA (Judge et al., 2006). Plant microRNAs (miRNA) bear naturally occurring 2'-O-methylation installed by a methyltransferase HEN1 (Yu et al., 2005). The function of such a modification is suggested to protect the 3' end of miRNA against polyuridylation, thus preventing miRNA from poly(U)-mediated degradation (Li et al., 2005).

Pseudouridine

Pseudouridine, “the fifth base,” was the first known modification, discovered over 60 years ago (Davis and Allen, 1957) (Figure 1A). Pseudouridine modification provides an additional hydrogen-bonding donor that can significantly affect the secondary structure of RNA. Its presence on mRNA could impact translation by affecting the secondary structures of mRNA or recruiting potential reader proteins. A recent inspiring work showed that replacing the first uridine of the stop codon to pseudouridine can convert nonsense (stop) codon to sense codon, thus raising the possibility of expanding the genetic codon or re-coding transcripts by introducing RNA modifications on mRNA (Karijolich and Yu, 2011). More recently, transcriptome-wide mapping has uncovered hundreds of naturally occurring pseudouridine sites in yeast and human mRNA. These pseudouridine sites are responsive to nutrition starvation and heat shock (Carlile et al., 2014; Schwartz et al., 2014), suggesting mRNA pseudouridylation as a potential mechanism to rapidly adapt the translation landscape to environmental stress.

Modifications of Other Noncoding RNAs

Long noncoding RNAs (lncRNAs) are known to have diverse roles in chromatin remodeling, transcription, and mRNA processing (Mercer et al., 2009; Flinn and Chang, 2012; Lee and Bartolomei, 2013). It has been shown that some lncRNAs, such as MALAT1, TUG1, and NEAT1, contain multiple m6A sites (Domingini et al., 2012; Meyer et al., 2012; Liu et al., 2013). The roles and potential reversibility of these m6A sites on lncRNAs are still unclear. Another major class of noncoding RNAs are the U snRNAs as the well-established RNA components of the spliceosome (U1, U2, U4, U5, and U6, etc.). The 5'-terminal capping is essential to the exportation of U snRNAs to cytoplasm from nucleus (Dickmanns and Ficner, 2005). snRNAs also contain internal modifications such as Ψ, 2'-O-methylation, and m5A. It is unclear if these modifications are dynamic, and their functional roles remain to be fully elucidated.

Prospects

We propose several emerging themes in the rapidly developing field of RNA modifications.

Identifying and Characterizing RNA Modifying/Demodifying Enzymes and Binding Proteins

The discovery of the first mRNA demethylase FTO stimulated the study of reversible RNA modifications. Much needs to be done to understand factors like FTO and others that have already been identified. Indeed, important questions remain. For example, how does the writer complex achieve selectivity? And how does the function of the writer complex relate to transcription and splicing?

Beyond the known factors, it is likely other writer, eraser, and reader proteins for the RNA m6A methylation exist. Identifying...
and characterizing these proteins, present in either the cytoplasm or nucleus, will be critical for understanding and expanding the biological roles of m^6A. We know that m^6A affects mRNA stability through the YTHDF2-mediated decay pathway (Wang et al., 2014a; Wang and He, 2014), but other proteins might read m^6A differently, leading to effects on RNA transport, storage, and translation in response to signals and cellular stress.

Other RNA modifications might be written and erased like m^6A. If they are, the SAM-binding methyltransferases and AlkBH5 belong to) are promising groups of methyltransferases and demethylases worth studying. The methyl group of m^6A can be further oxidized to N^6-hydroxymethyladenosine (hm^6A) and N^6-formyladenosine (f^6A) in vitro and in vivo (Fu et al., 2013), and future work should establish the functional importance of these changes.

Reversible Modifications on tRNA, rRNA, and Other Noncoding RNAs

In 2010, when we proposed reversible RNA modification, or “RNA epigenetics,” as a means to effect genetic information akin to DNA and histone modifications. Reversible methylation, as recently discovered, may not be restricted to mRNA. tRNA, rRNA, and other noncoding RNAs could also be targets for methylation and demethylation (Figure 3). Indeed, pri-microRNAs and lncRNA are known to contain m^6A (Dominissini et al., 2012; Liu et al., 2013), which might be reversible and affect their cellular localization and functions.

tRNA and rRNA are enriched with diverse chemical modifications, including various methylations. Reversible modifications on rRNA could affect biogenesis of rRNA and functions of ribosome. On tRNA, reversible modifications could rapidly and broadly impact cellular protein production. We know that tRNA methylation can be quite dynamic in mammalian cells (Chan et al., 2010; Saikia et al., 2010; Fu et al., 2010). It will be hard to believe the simple reversible methylation chemistry, already known to occur on mRNA, is not harnessed by nature via evolution to directly affect translation through tRNA and/or rRNA. Additional discoveries and future research in these directions could reveal new mechanisms of biological regulation.

Detection Techniques

The lack of accurate and sensitive detection methods has limited the study of RNA modifications in low abundance RNA species (e.g., mRNA). Traditional techniques involve isotope labeling and lipid or thin-plate chromatography, which are tedious, semiquantitative, low-throughput, and require a large
amount of starting materials. The recent developments in highly sensitive technologies have revolutionized research on RNA modifications, in particular on low-abundance RNA species. These developments include (1) liquid chromatography-tandem mass spectroscopy followed by mass fingerprinting (LC-MS/MS), which enables accurate quantification of modified nucleosides with unambiguous chemical identity with fmol (10^{-15}) sensitivity, and (2) next-generation sequencing coupled with modification-specific antibodies, which enables transcriptome-wide profiling of RNA modification sites. While LC-MS/MS provides quantification for a population of RNA and sequencing qualitatively locates candidate modification sites, there has been a lack of a high-throughput method available to determine precise modification sites and the stoichiometry for each modification at those sites.

The study of mC in DNA/RNA has greatly benefited from bisulfite sequencing capable of determining methylation percentage at each site. However, similar chemistry is not always available for other base modifications. For example, the dynamic mA methylation is nonstoichiometric on mRNA, and the balance of methyltransferase/demethylase activities indeed has physiological consequences. So far, SCARLET (site-specific cleavage and radioactive labeling followed by ligation-assisted extraction and thin-layer chromatography) is the only reported method to directly determine the presence and fraction of mA at single-nucleotide resolution (Liu et al., 2013), but it is low-throughput. The use of mA-sensitive reverse transcription enzymes to detect the kinetic delay or stall at the mA site (Vilfan et al., 2013; Harcourt et al., 2013) and the protein-modified nanopore sequencing (Laszlo et al., 2013; Schreiber et al., 2013) might be promising, but they are still not ready to be used in real applications. A method that could detect modifications with limited input materials (e.g., RNA isolated from a single cell) is also lacking. The dynamics in each individual cell and effects on early developmental events of RNA modifications can be learned with new technologies. Since every RNA modification has its own unique biochemical/chemical property, the solution to efficiently detect and distinguish each of them remains challenging for chemists, biochemist, and biologists.

The development of in situ detection methods of RNA modification is another challenge. Fluorescence in situ hybridization is a main method used to visualize mRNA within cell or tissue specimen. For nonstoichiometric RNA modifications, RNA modification could impact spatial localization information among a heterogeneous population of target RNA. In order to fully reveal the biological functions of RNA modifications, it would be valuable to directly visualize and report the modification status on specific transcripts.

In summary, with modern technologies available, RNA modifications can be studied in a more quantitative manner. We propose that reversible RNA modifications occur in different RNA species and broadly influence gene expression as a previously unappreciated layer of posttranscriptional regulation.

ACKNOWLEDGMENTS

C.H. is an investigator of the Howard Hughes Medical Institute. We thank Ms. T. Shpidel for editing the manuscript.

REFERENCES

Agarwala, S.D., Blitzblau, H.G., Hochwagen, A., and Fink, G.R. (2012). RNA methylation by the MIS complex regulates a cell fate decision in yeast. PLoS Genet. 8, e1002732.

Anantharaman, V., Koonin, E.V., and Aravind, L. (2002). Comparative genomics and evolution of proteins involved in RNA metabolism. Nucleic Acids Res. 30, 1427–1464.

Anderson, J., Phan, L., Cuesta, R., Carlson, B.A., Pak, M., Asano, K., Björk, G.R., Tamame, M., and Hinnenbusch, A.G. (1998). The essential Gcd10p-Gcd14p nuclear complex is required for 1-methyladenosine modification and maturation of initiator methionyl-tRNA. Genes Dev. 12, 3650–3662.

Bakin, A., Lane, B.G., and Ofengand, J. (1994). Clustering of pseudouridine residues around the peptidyltransferase center of yeast cytoplasmic and mitochondrial ribosomes. Biochemistry 33, 13475–13483.

Baxter-Roshek, J.L., Petrov, A.N., and Dinman, J.D. (2007). Optimization of ribosome structure and function by rRNA base modification. PLoS ONE 2, e174.

Begley, U., Dyavaiah, M., Patil, A., Rooney, J.P., DiRienzo, D., Young, C.M., Conklin, D.S., Zitomer, R.S., and Begley, T.J. (2007). Trm9-catalyzed tRNA modifications link translation to the DNA damage response. Mol. Cell 28, 860–870.

Benko, A.L., Vaduva, G., Martin, N.C., and Hopper, A.K. (2000). Competition between a sterol biosynthetic enzyme and tRNA modification in addition to changes in the protein synthesis machinery caused altered nonsense suppression. Proc. Natl. Acad. Sci. USA 97, 61–66.

Bokar, J.A. (2005). The biosynthesis and functional roles of methylated nucleosides in eukaryotic mRNA. In Fine-Tuning of RNA Functions by Modification and Editing, H. Grosjean, ed. (New York: Springer), pp. 141–177.

Bokar, J.A., Rath-Shambaugh, M.E., Ludwickzak, R., Narayan, P., and Rottman, F.M. (1994). Characterization and partial purification of mRNA N6-adenosine-methyltransferase from HeLa cell nuclei. Internal mRNA methylation requires a multisubunit complex. J. Biol. Chem. 269, 17697–17704.

Bokar, J.A., Shambaugh, M.E., Polayes, D., Matera, A.G., and Rottman, F.M. (1997). Purification and cDNA cloning of the AdoMet-binding subunit of the human mRNA (N6-adenosine)-methyltransferase. RNA 3, 1233–1247.

Carlile, T.M., Rojas-Duran, M.F., Zinshteyn, B., Shin, H., Bartoli, K.M., and Gilbert, W.V. (2014). Pseudouridine profiling reveals regulated mRNA pseudouridylation in yeast and human cells. Nature. Published online September 5, 2014. http://dx.doi.org/10.1038/nature13802.

Carroll, S.M., Narayan, P., and Rottman, F.M. (1990). N6-methyladenosine residues in an intron-specific region of prolactin pre-mRNA. Mol. Cell. Biol. 10, 4456–4465.

Chan, C.T., Dyavaiah, M., DeMott, M.S., Taghizadeh, K., Dedon, P.C., and Begley, T.J. (2010). A quantitative systems approach reveals dynamic control of tRNA modifications during cellular stress. PLoS Genet. 6, e1001247.

Chan, C.T., Pang, Y.L., Deng, W., Babu, I.R., Dyavaiah, M., Begley, T.J., and Dedon, P.C. (2012). Reprogramming of tRNA modifications controls the oxidative stress response by codon-biased translation of proteins. Nat. Commun. 3, 937.

Clancy, M.J., Shambaugh, M.E., Timpte, C.S., and Bokar, J.A. (2002). Induction of sporation in Saccharomyces cerevisiae leads to the formation of N6-methyladenosine in mRNA: a potential mechanism for the activity of the IME4 gene. Nucleic Acids Res. 30, 4509–4518.

Cougot, N., van Dijk, E., Babajko, S., and Sérafin, B. (2004). ‘Cap-tabolism’. Trends Biochem. Sci. 29, 436–444.

Daffis, S., Szetetter, K.J., Schriewer, J., Li, J., Youn, S., Errett, J., Lin, T.Y., Schneller, S., Zust, R., Dong, H., et al. (2010). Z-O methylation of the viral mRNA cap evades host restriction by IFIT family members. Nature 468, 452–456.

Davis, D.R. (1995). Stabilization of RNA stacking by pseudouridine. Nucleic Acids Res. 23, 5020–5026.
Wild-type cells. RNA 6 blocks formation of pseudouridine 55 in tRNA in vivo, does not affect exponential growth, but confers a strong selective disadvantage in competition with wild-type cells. RNA 6, 1870–1881.

Harcourt, E.M., Ehrenschwender, T., Batista, P.J., Chang, H.Y., and Kool, E.T. (2013). Identification of a selective polymerase enables detection of N(8)-methyladenosine in RNA. J. Am. Chem. Soc. 135, 19079–19082.

Harigaya, Y., Tanaka, H., Yamanaka, S., Tanaka, K., Watanabe, Y., Tsutsumi, C., Chikashige, Y., Hiraoka, Y., Yamashita, A., and Yamamoto, M. (2006). Selective elimination of messenger RNA prevents an incidence of untimely meiosis. Nature 442, 45–50.

He, C. (2010). Grand challenge commentary: RNA epigenetics? Nat. Chem. Biol. 6, 863–865.

Hirai, E., Vavasseur, A., Touat-Todeschini, L., Yamashita, A., Gilquin, B., Lambert, E., Perot, J., Shichino, Y., Nazaret, N., Boyault, C., et al. (2012). Mni1 RNA surveillance machinery directs RNAi complex RITS to specific meliotic genes in fission yeast. EMBO J. 31, 2296–2308.

Ho, A.J., Stein, J.L., Hua, X., Lee, S., Hibar, D.P., Leow, A.D., Dinov, I.D., Toga, A.W., Saykin, A.J., Shen, L., et al.; Alzheimer’s Disease Neuroimaging Initiative (2010). A commonly carried allele of the obesity-related FTO gene is associated with reduced brain volume in the healthy elderly. Proc. Natl. Acad. Sci. USA 107, 8404–8409.

Hongay, C.F., and Orr-Weaver, T.L. (2011). Drosophila Inducer of MElosis 4 (IME4) is required for Notch signaling during oogenesis. Proc. Natl. Acad. Sci. USA 108, 14855–14860.

Hopper, A.K. (2013). Transfer RNA post-transcriptional processing, turnover, and subcellular dynamics in the yeast Saccharomyces cerevisiae. Genetics 194, 43–67.

Hussain, S., Sajini, A.A., Bianco, S., Dietmann, S., Lombard, P., Sugimoto, Y., Paramor, M., Gleson, J.G., Odom, D.T., Ule, J., and Frye, M. (2013). NSun2-mediated cytosine-5 methylation of vault noncoding RNA determines its processing into regulatory small RNAs. Cell Rep. 4, 255–261.

Jia, G., Fu, Y., Zhao, X., Dai, Q., Zheng, G., Yang, Y., Yi, C., Lindahl, T., Pan, T., Yang, Y.G., and He, C. (2011). N6-methyladenosine in nuclear RNA is a major substrate of the obesity-associated FTO. Nat. Chem. Biol. 7, 885–887.

Judge, A.D., Bola, G., Lee, A.C., and MacLachlan, I. (2006). Design of non-inflammatory synthetic siRNA mediating potent gene silencing in vivo. Mol. Ther. 13, 494–505.

Kane, S.E., and Beemon, K. (1985). Precise localization of m6A in Rous sarcoma virus RNA reveals clustering of methylation sites: implications for RNA processing. Mol. Cell. Biol. 5, 2298–2306.

Kang, H.J., Jeong, S.J., Kim, K.N., Baek, I.J., Chang, M., Kang, C.M., Park, Y.S., and Yun, C.W. (2014). A novel protein, Pho92, has a conserved YTH domain and regulates phosphate metabolism by decreasing the RNA stability of PHO4 in Saccharomyces cerevisiae. Biochem. J. 457, 391–400.

Karjolich, J., and Yu, Y.T. (2011). Converting nonsense codons into sense codons by targeted pseudouridylation. Nature 474, 395–398.

Kawai, G., Yamamoto, Y., Kamimura, T., Masugi, T., Sekine, M., Hata, T., limori, T., Watanabe, M., Miyazawa, T., and Yokoyama, S. (1992). Conformational rigidity of specific pyrimidine residues in tRNA arises from posttranscriptional modifications that enhance steric interaction between the base and the 2'-hydroxy group. Biochemistry 31, 1040–1046.

Keller, L., Xu, W.L., Wang, H.X., Winblad, B., Fratiglioni, L., and Graff, C. (2011). The obesity related gene, FTO, interacts with APOE, and is associated with Alzheimer’s disease risk: a prospective cohort study. J. Alzheimer’s Dis. 23, 461–469.

Khodadei, V., and Cairns, B.R. (2013). Identification of direct targets and modified bases of RNA cytosine methyltransferases. Nat. Biotechnol. 31, 458–464.

Laszlo, A.H., Derrington, I.M., Brinkerhoff, H., Langford, K.W., Nova, I.C., Samson, J.M., Bartlett, J.J., Pavlenok, M., and Gundlach, H.J. (2013). Detection and mapping of 5-methylcytosine and 5-hydroxymethylcytosine with nanopore MspA. Proc. Natl. Acad. Sci. USA 110, 18904–18909.

Lee, J.T., and Bartolomei, M.S. (2013). X-inactivation, imprinting, and long noncoding RNAs in health and disease. Cell 152, 1308–1323.
Li, J., Yang, Z., Yu, B., Liu, J., and Chen, X. (2005). Methylation protects miRNAs and siRNAs from a 3′-end uridylation activity in Arabidopsis. Curr. Biol. 15, 1501–1507.

Liu, N., Parisen, M., Dai, Q., Zheng, G.Q., He, C., and Pan, T. (2013). Probing N6-methyladenosine RNA modification status at single nucleotide resolution in mRNA and long noncoding RNA. RNA 19, 1848–1856.

Liu, J., Yue, Y., Han, D., Wang, X., Fu, Y., Zhang, L., Jia, G., Yu, M., Lu, Z., Deng, X., et al. (2014). A METTL3-METTL14 complex mediates mammalian nuclear RNA N6-adenosine methylation. Nat. Chem. Biol. 10, 93–95.

Meyer, K.D., and Jaffrey, S.R. (2012). Comprehensive analysis of mRNA methylation reveals enrichment in 3′ UTRs and near stop codons. Cell 149, 1635–1646.

Mitchell, S.F., Walker, S.E., Aligre, M.A., Park, E.H., Hinnebusch, A.G., and Lorsch, J.R. (2010). The 5′-7-methylguanosine cap on eukaryotic mRNAs serves both to stimulate canonical translation initiation and to block an alternative pathway. Mol. Cell 39, 950–962.

Piekna-Przybylska, D., Decatur, W.A., and Fournier, M.J. (2008). The 3D rRNA modification maps database: with interactive tools for ribosome analysis. Nucleic Acids Res. 36 (Database Issue), D178–D183.

Ping, X.L., Sun, B.F., Wang, L., Xiao, W., Yang, X., Wang, W.J., Adhikari, S., Shi, Y., Lv, Y., Chen, Y.S., et al. (2014). Mammalian WTAP is a regulatory subunit of the RNA N6-methyladenosine methyltransferase. Cell Res. 24, 177–189.

Preston, M.A., D’Silva, S., Kon, Y., and Phizicky, E.M. (2013). TRNAHs 5′-methylcytidine levels increase in response to several growth arrest conditions in Saccharomyces cerevisiae. RNA 19, 243–256.

Rinn, J.L., and Chang, H.Y. (2012). Genome regulation by long noncoding RNAs. Annu. Rev. Biochem. 81, 145–166.

Saikia, M., Fu, Y., Pavan-Eternod, M., He, C., and Pan, T. (2010). Genome-wide analysis of N1-methyl-adenosine modification in human mRNAs. RNA 16, 1317–1327.

Schaefer, M., Pollex, T., Hanna, K., Tuorto, F., Meusburger, M., Helm, M., and Lyko, F. (2010). RNA methylation by Dnmt2 protects transfer RNAs against stress-induced cleavage. Genes Dev. 24, 1590–1595.

Schreiber, J., Wescoe, Z.L., Abu-Shumays, R., Vivian, J.T., Baatar, B., Karplus, K., and Akesson, M. (2013). Error rates for nanopore discrimination among cytosine, methylcytosine, and hydroxymethylcytosine along individual DNA strands. Proc. Natl. Acad. Sci. USA 110, 18910–18915.

Schwartz, S., Agarwala, S.D., Mumbach, M.R., Jovanovic, M., Mertins, P., Shishkin, A., Tabach, Y., Mikkelsen, T.S., Satija, R., Ruvkun, G., et al. (2013). High-resolution mapping reveals a conserved, widespread, dynamic mRNA methylation program in yeast meiosis. Cell 155, 1409–1421.

Schwartz, S., Bernstein, D.A., Mumbach, M.R., Jovanovic, M., Herbst, R.H., Leon-Ricardo, B.X., Engreitz, J.M., et al. (2014). Transcriptome-wide mapping reveals widespread dynamic-regulated pseudouridylation of ncRNA and mRNA. Cell. Published online September 10, 2014, http://dx.doi.org/10.1016/j.cell.2014.08.028.

Shah, J.C., and Clancy, M.J. (1992). IME4, a gene that mediates MAT and nutritional control of meiosis in Saccharomyces cerevisiae. Mol. Cell. Biol. 12, 1078–1086.

Shin, B.S., Kim, J.R., Walker, S.E., Dong, J., Lorsch, J.R., and Dever, T.E. (2011). Initiation factor eIF2γ promotes eIF2-GTP-ribNA(Met) ternary complex binding to the 4OS ribosome. Nat. Struct. Mol. Biol. 18, 1227–1234.

Squires, J.E., Patel, H.R., Noush, M., Sibbitt, T., Humphreys, D.T., Parker, B.J., Suter, C.M., and Preiss, T. (2012). Widespread occurrence of 5-methylcytosine in human coding and non-coding RNA. Nucleic Acids Res. 40, 5023–5033.

Suzuki, G., Shimazu, N., and Tanaka, M. (2012). A yeast prion, Mod5, promotes acquired drug resistance and cell survival under environmental stress. Science 336, 355–359.

Tadros, W., and Lipshitz, H.D. (2009). The maternal-to-zygotic transition: a play in two acts. Development 136, 3033–3042.

Topisirovic, I., Svtkin, Y.V., Sonenberg, N., and Shatkin, A.J. (2011). Cap and cap-binding proteins in the control of gene expression. Wiley Interdiscip. Rev. RNA 2, 277–298.

Tuck, M.T. (1992). Partial purification of a 6-methyladenine mRNA methyltransferase which modifies internal adenine residues. Biochem. J. 288, 233–240.

Vilfan, I.D., Tsai, T.A., Clark, T.A., Wegener, J., Dai, Q., Yi, C.Q., Pan, T., Turner, S.W., and Korlach, J. (2013). Analysis of RNA base modification and structural rearrangement by single-molecule real-time detection of reverse transcription. J. Nanobiotechnology 11, 8.

Wang, X., and He, C. (2014). Reading RNA methylation codes through methyl-specific binding proteins. RNA Biol. 11, 669–672.

Xing, J., Yi, C., and Pan, T. (2011). Cellular dynamics of RNA modification. Acc. Chem. Res. 44, 1380–1388.

Yu, B., Yang, Z., Li, J., Minakhina, S., Yang, M., Padgett, R.W., Steward, R., and Chen, X. (2005). Methylation as a crucial step in plant microRNA biogenesis. Science 307, 932–935.

Zhang, X., Xiao, W., Yang, X., Wang, W.J., Adhikari, S., Shi, Y., Lv, Y., Chen, Y.S., et al. (2014a). N6-methyladenosine-dependent regulation of messenger RNA stability. Nature 505, 117–120.

Zhang, Y., Li, Y., Toth, J.I., Petroski, M.D., Zhang, Z., and Zhao, J.C. (2014b). N6-methyladenosine modification destabilizes developmental regulators in embryonic stem cells. Nat. Cell Biol. 16, 191–198.

Wei, C.M., and Moss, B. (1977). Nucleotide sequences at the N6-methyladenosine sites of HeLa cell messenger ribonucleic acid. Biochemistry 16, 1672–1676.

Wei, C.M., Gershovitz, A., and Moss, B. (1976). 5′-Terminal and internal methylated nucleotide sequences in HeLa cell mRNA. Biochemistry 5, 397–401.

Yi, C., and Pan, T. (2011). Cellular dynamics of RNA modification. Acc. Chem. Res. 44, 1380–1388.

Yu, B., Yang, Z., Li, J., Minakhina, S., Yang, M., Padgett, R.W., Steward, R., and Chen, X. (2005). Methylation as a crucial step in plant microRNA biogenesis. Science 307, 932–935.

Zhang, X., Xiao, W., Yang, X., Wang, W.J., Adhikari, S., Shi, Y., Lv, Y., Chen, Y.S., et al. (2014a). N6-methyladenosine-dependent regulation of messenger RNA stability. Nature 505, 117–120.

Zhang, Y., Li, Y., Toth, J.I., Petroski, M.D., Zhang, Z., and Zhao, J.C. (2014b). N6-methyladenosine modification destabilizes developmental regulators in embryonic stem cells. Nat. Cell Biol. 16, 191–198.

Wei, C.M., Gershovitz, A., and Moss, B. (1976). 5′-Terminal and internal methylated nucleotide sequences in HeLa cell mRNA. Biochemistry 5, 397–401.

Yi, C., and Pan, T. (2011). Cellular dynamics of RNA modification. Acc. Chem. Res. 44, 1380–1388.

Yu, B., Yang, Z., Li, J., Minakhina, S., Yang, M., Padgett, R.W., Steward, R., and Chen, X. (2005). Methylation as a crucial step in plant microRNA biogenesis. Science 307, 932–935.

Zhong, S., Li, H., Bodi, Z., Button, J., Vespa, L., Herzog, M., and Fray, R.G. (2008). MTA is an Arabidopsis messenger RNA adenosine methylase and interacts with a homolog of a sex-specific splicing factor. Plant Cell 20, 1278–1288.

Züst, R., Cervantes-Barragan, L., Habjan, M., Maier, R., Neuman, B.W., Zeebuh, J., Stretter, K.J., Baker, S.C., Barchet, W., Diamond, M.S., et al. (2011). Ribose 2′-O-methylation provides a molecular signature for the distinction of self and non-self mRNA dependent on the RNA sensor Mda5. Nat. Immunol. 12, 137–143.