Boosting room-temperature magneto-ionics in a non-magnetic oxide semiconductor

Julius de Rojas, Alberto Quintana, Aitor Lopeandía, Joaquín Salguero, José L. Costa-Krämer, Llibertat Abad, Maciej O. Liedke, Maik Butterling, Andreas Wagner, Lowie Henderick, Jolien Dendooven, Christophe Detavernier, Jordi Sort*, Enric Menéndez*

Dr. Julius de Rojas, Dr. A. Lopeandía, Prof. J. Sort, Dr. E. Menéndez
Departament de Física, Universitat Autònoma de Barcelona, E-08193 Cerdanyola del Vallès, Spain
E-mail: jordi.sort@uab.cat; enric.menendez@uab.cat

Dr. A. Quintana
Department of Physics, Georgetown University, Washington, D.C. 20057, United States

J. Salguero, Dr. J. L. Costa-Krämer
IMN-Instituto de Micro y Nanotecnología (CNM-CSIC), Isaac Newton 8, PTM, 28760 Tres Cantos, Madrid, Spain

Dr. Ll. Abad
Institut de Microelectrònica de Barcelona, IMB-CNMCNM-CSIC, Campus UAB, E-08193 Bellaterra, Spain

Dr. M. O. Liedke, Dr. M. Butterling, Dr. A. Wagner
Institute of Radiation Physics, Helmholtz-Center Dresden-Rossendorf, Dresden 01328, Germany

L. Henderick, Prof. J. Dendooven, Prof. C. Detavernier
Department of Solid State Sciences, CoCooN, Ghent University, Krijgslaan 281/S1, 9000 Ghent, Belgium

Prof. J. Sort
Institució Catalana de Recerca i Estudis Avançats (ICREA), Pg. Lluís Companys 23, E-08010 Barcelona, Spain

Keywords: magnetoelectric effects, magneto-ionics, transistor, capacitor, low-power spintronics
Voltage control of magnetism through electric field-induced oxygen motion (magneto-ionics) could represent a significant breakthrough in the pursuit for new strategies to enhance energy efficiency in magnetically-actuated devices. Boosting the induced changes in magnetization, magneto-ionic rates and cyclability continue to be key challenges to turn magneto-ionics into real applications. Here it is demonstrated that room-temperature magneto-ionic effects in electrolyte-gated paramagnetic Co$_3$O$_4$ films can be largely increased both in terms of generated magnetization (6 times larger) and speed (35 times faster) if the electric field is applied using an electrochemical capacitor configuration (utilizing an underlying conducting buffer layer) instead of placing the electric contacts at the side of the semiconductor (electric-double-layer transistor-like configuration). This is due to a greater uniformity and strength of the electric field in the capacitor design. These results are appealing to widen the use of ion migration in technological applications such as neuromorphic computing or iontronics in general.

1. Introduction

Current computers rely on Von Neumann’s structural design in which the central processing unit and memory constitute different sub-devices bridged by the communication bus. This is not only detrimental to data processing speed but also to energy efficiency, making the search for new computing architectures central for future information technologies.[1–6]

Neuromorphic computing relies on the use of devices that emulate the electrical behavior of the biological synapse, which is the memory and learning element of the brain, and has emerged as an alternative, which could render low-power information storage/processing.[2–4,6] Intense research is currently being carried out in the use of electronic[2,3] and spintronic-based[4,5] approaches to mimic synapse’s activity. However, so far, these strategies are ultimately based on the use of electric currents (to generate magnetic fields through
electromagnetic induction or spin-polarized electric currents via spin-transfer torque), involving a significant energy loss by heat dissipation through Joule effect. The same problem of power consumption is, in fact, encountered in conventional magnetic storage systems (hard disks, magnetic random-access memories), where a large fraction of the incoming electric power (up to 40%) can be wasted in the form of heat dissipation.

Voltage control of magnetism (VCM), wherein magnetism is controlled via an applied electric field in place of an electric current, could potentially represent a significant breakthrough, envisaging ultra-low power emulation of the biological synapse. VCM has been also proposed as a suitable strategy to develop new types of high-density, low-power data storage devices, such as magneto-electric random-access memories. Besides its potential use in memories and computation, magnetoelectric materials have also shown potential, in recent years, to be used in magnetic micro-electro-mechanical systems, such as biomagnetic sensors, where effects induced at moderate rates (e.g., 1 s) are appealing to boost energy efficiency.

VCM has conventionally branched into three broad approaches, including (i) single-phase, multiferroic materials, (ii) inverse magnetostriction effects in piezoelectric/ferromagnetic heterostructures, and (iii) surface charge accumulation in ferromagnetic metals (i.e., direct electric field effect). Each of the aforementioned VCM mechanisms has some drawbacks: multiferroics are limited in number, particularly at room-temperature; strain-mediated heterostructures suffer from mechanical fatigue; and, in metals and alloys, electronic charging is only observed in ultra-thin or highly porous ferromagnetic films.

Electric field-induced oxygen motion in magnetic materials (magneto-ionics) has recently revolutionized VCM since this mechanism may allow for a voltage-driven modulation of magnetic properties, such as coercivity, exchange bias field or magnetic anisotropy, to a level never reached by any other magnetoelectric means (i.e., approaches (i), (ii) and (iii) above). Magneto-ionics, with magnetoelectric coupling efficiencies of the order of 10^3
fJ/(V·m), might render energies per writing event as low as \(\sim 10^{-3} \) fJ = 1 aJ.\(^{[22,28]} \) This represents energies two and five orders of magnitude lower than that required in complementary metal oxide semiconductor (CMOS) technology (\(\sim 10^{-1} \) fJ/bit) and magnetic-based devices like magneto-resistive random access memories or hard disk drives (\(\sim 10^{3} \) fJ/bit), respectively.\(^{[28]} \)

Typically, magneto-ionic systems consist of layered heterostructures in which ferromagnetic metals, such as Co\(^{[22]} \) or Fe,\(^{[28]} \) are grown adjacent to GdO\(_x\) or HfO\(_2\) layers, which act as ion reservoirs and, thereby, accepting or donating oxygen ions depending on the voltage polarity. Room-temperature ionic motion of oxygen is slow, involving times between \(10^{2} - 10^{3} \) s (\(10^{2} - 10^{3} \) Hz in frequency rate) to switch the magnetic state, such as the magnetic anisotropy easy axis from out-of-plane to in-plane and \textit{vice versa} in ultra-thin Co layers by voltage-driven oxygen migration from a GdO\(_x\) reservoir.\(^{[22]} \) By heterostructure miniaturization (from 55 nm down to 18 nm in thickness, \textit{i.e.}, around 3 times reduction), times \(\sim 10 \) s have been achieved.\(^{[22]} \) Therefore, alongside the applied voltage, these solid electrolytes usually require of high temperatures since ion migration is a thermally activated process.\(^{[22-24,29,30]} \) In these magneto-ionic systems, the pristine ferromagnetic layer suffers from pronounced structural and compositional changes, leading to irreversibility\(^{[23]} \) and, thus, poor cyclability.\(^{[22]} \)

Recently, via a proton-based approach, excellent endurance and \(10^{-1} \) s (10 Hz) room-temperature operation has been shown feasible in spite of certain instability since hydrogen retention is limited.\(^{[29]} \) Moreover, voltage-induced changes of magnetization have also been achieved by the insertion/removal of ions other than oxygen, such as Li\(^{[35,36]} \) or F.\(^{[37]} \)

An alternative approach is the use of structural oxygen (self-contained in the magnetic material of interest), hence avoiding the need of external oxygen sources.\(^{[26]} \) This has been shown in electrolyte-gated paramagnetic Co\(_3\)O\(_4\) films, in which room-temperature voltage-controlled on-off ferromagnetism has been achieved by electric switching of the oxidation
state of cobalt (i.e., voltage-driven reduction/oxidation), taking advantage of the defect-assisted voltage-driven migration of structural oxygen. Even though this route still yields slow room-temperature magneto-ionic motion, it shows outstanding stability and promising cyclability since the target is already oxidized.

Herein, we demonstrate that, without degrading cyclability, room-temperature magneto-ionic motion in electrolyte-gated, paramagnetic and fairly thick Co$_3$O$_4$ films (thicknesses above 100 nm) can be enhanced in terms of both generated magnetization (6 times larger) and speed (35 times faster) by using an electrochemical capacitor configuration (i.e., with a suitable conducting buffer layer grown underneath the oxide film) rather than just making the contacts on top or at the sides of the semiconducting layer (configuration analogous to an electric-double-layer transistor, without an underlying metallic seed layer), as in some previous works from the literature. The presence of this underlying conducting metallic layer in the capacitor configuration largely enhances the uniformity and strength of the electric field generated across the oxide film when voltage is applied. Our results, showing the importance of properly optimizing device design to apply electric field, could extend the use of oxygen magneto-ionics in new types of MEMS devices, energy storage systems (batteries), iontronics and, specifically, in brain-inspired computing, which demand endurance and moderate speed of operation.

2. Results

Figure 1a and 1b show the two types of film structures (Co$_3$O$_4$ (130 nm)/SiO$_2$ (20 nm)/(100)-oriented Si substrate –transistor-like configuration– and Co$_3$O$_4$ (130 nm)/TiN (170 nm)/(100)-oriented Si substrate –capacitor configuration--) investigated in this work, aimed at unraveling the role of the design of electric field actuation to apply electric field in the magneto-ionic response of Co$_3$O$_4$. In contrast to SiO$_2$, the TiN buffer layer is conducting.
Electrolyte-gating is used to generate the electric field while performing in-plane vibrating sample magnetometry (VSM) –*i.e.*, magnetoelectric measurements–. A Pt wire is used as counter electrode/gate electrode (see Experimental Section for further details). The as-prepared Co$_3$O$_4$ sample in the transistor-like configuration shows residual ferromagnetic behavior (< 2 emu cm$^{-3}$), whereas the as-prepared Co$_3$O$_4$ film in the electrochemical capacitor configuration exhibits some traces of ferromagnetic signal < 10 emu cm$^{-3}$ (Figure 1c, 1d and 1e, and Figure S1). This mild ferromagnetism could be ascribed to local deviations of Co$_3$O$_4$ stoichiometry, in particular at the TiN-Co$_3$O$_4$ interface since the deposition of Co$_3$O$_4$ is carried out at 200 °C and the thermal stability of TiN is lower than that of SiO$_2$. Anyhow, this pristine ferromagnetism of the Co$_3$O$_4$ film in capacitor configuration is minor, especially when compared to the amount of magnetic moment generated upon voltage treatment. The as-prepared state of the films is ruled by an overall paramagnetic behavior at room-temperature.$^{[26]}$

To investigate magneto-ionics in each configuration, the samples were subjected to −50 V for several hours and magnetic hysteresis loops of 25 min of duration were continuously recorded. After subjecting each sample to −50 V for 25 min (*i.e.*, upon the first hysteresis loop is recorded), the measurements show a clear hysteretic behavior, evidencing the emergence of ferromagnetism. The capacitor configuration shows a remarkable increase in magnetization upon sweeping the first quadrant of the first hysteresis cycle, which doubles once the measurement reaches the fourth quadrant of the first loop. A much more gradual increase of the magnetization is observed in the transistor-like configuration (see Figure S2 to observe the evolution of the magnetization with time for the first hysteresis loop of both configurations). Figure 1e shows the saturation magnetization (M_S) as a function of time (see Figure S3 for information on M_S quantification). The magnetic moment scales monotonically with time for each configuration, but with a 6-fold larger increase between the transistor-like and capacitor configurations in the total magnetization (118.5 to 699.2 emu cm$^{-3}$, respectively) reached after
magneto-ionic motion has stabilized. Furthermore, the time scale for ferromagnetism generation (“on” state) in the capacitor configuration is significantly faster than in the transistor-like structure. To compare properly the rate of “on” switching, this magnetization increase is determined by a linear fit of the M_S vs. t plot evaluated during the first minutes of voltage application (wherein M_S in the capacitor configuration fully saturates). The rates are 33.1 and 1170.8 emu cm$^{-3}$ h$^{-1}$, showing that the use of a conducting buffer (capacitor) layer enhances ion migration by a factor 35 with respect to the insulating buffer layer (transistor-like).

Looking at the M (magnetization)-H (applied magnetic field) loops (Figure 1c and 1d), there are also marked shape differences. The capacitor configuration exhibits more square-shaped cycles (i.e., it has a more “easy axis” character) than the transistor-like configuration. To examine the shape of the M-H loops, the squareness, defined as the ratio between the remnant magnetization (M_R) and M_S (M_R/M_S), and the slope of the hysteresis loop at the coercive field (H_C) normalized to M_S ($dM/dH \big|_{H=H_C} M_S^{-1}$) have been calculated for both the descending and ascending branches of the measured hysteresis loops (Figure 1f). The capacitor configuration exhibits higher M_R/M_S ratios and slopes at H_C (narrower distribution of coercive fields) throughout the time the voltage was applied, in concordance with more square-shaped.$^{[46]}$

To further examine the nature of the electric field experienced by the Co$_3$O$_4$ samples, COMSOL simulations were performed to model the initial voltage distributions for each configuration upon electrolyte-gating (see Experimental Section for further simulation details). In Figure 1g and 1h, electric contact to the working electrodes (Co$_3$O$_4$ and TiN for the transistor-like and capacitor configurations, respectively) is made at the top of the left plane which represents the samples, whereas the right plane corresponds to the counter electrode (i.e., Pt wire).
Clear differences can be seen in the equipotential lines for the transistor-like (Figure 1g) and capacitor (Figure 1h) configurations. In the transistor-like structure, the dielectric nature of SiO$_2$ and limited electric conductivity of Co$_3$O$_4$[47] manifest in a macroscopic, non-homogeneous voltage distribution along the vertical extent of the Co$_3$O$_4$ film, showing a weaker and less uniform applied electric field as the distance from the electric contact is increased. Conversely, in the capacitor configuration, the conducing nature of TiN results in a nearly uniform voltage distribution along the vertical cross-section of the sample, which gives rise to a larger and better-defined electric field along the direction perpendicular to the Co$_3$O$_4$ film plane. In contrast to the transistor-like configuration, the whole Co$_3$O$_4$ film is straightaway activated here for magneto-ionic motion (Figure S4).
Figure 1. Sample configurations: a) Co_3O_4 on SiO_2 (electric-double-layer transistor-like configuration) and b) Co_3O_4 on TiN (capacitor configuration). c) and d) consecutive hysteresis loops under -50 V gating for the transistor-like and capacitor configurations, respectively, taken by in-plane vibrating sample magnetometry. e) Time evolution of the saturation magnetization (M_S vs. t) and f) squareness (M_R/M_S) & slope of hysteresis loop at H_C normalized to M_S for each configuration. g) and h) show the COMSOL simulations of the initial voltage distribution at the moment in which the transistor-like and the capacitor configurations, respectively, are electrolyte-gated (equipotential lines are drawn).
To assess the degree of structural and compositional change that Co$_3$O$_4$ undergoes with voltage for the two investigated configurations, cross-section lamellae of the pristine and treated Co$_3$O$_4$ films were prepared and characterized by high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) and electron energy loss spectroscopy (EELS), respectively (Figure 2).

The morphology of the pristine sample grown on TiN (Figure 2a) shows regular, columnar-shaped grains as it happens in Co$_3$O$_4$ deposited by atomic layer deposition on SiO$_2$.[26] This morphology remains rather unaltered after treating the Co$_3$O$_4$ film deposited on SiO$_2$ with -50 V for 80 min (Figure 2e). On the contrary, the Co$_3$O$_4$ morphology in the capacitor configuration treated at -50 V for 80 min shows no columnar grains consistent with a more nanostructured Co$_3$O$_4$ phase (Figure 2c and Figure S5).
To locally quantify the Co/O distribution, Co and O EELS mappings were conducted for the as-grown films and the samples treated at −50 V for 80 min for both transistor-like and capacitor configurations (Figure 2). Co (red) and O (blue) are homogeneously distributed in the as-grown sample with capacitor configuration (Figure 2d) and nearly homogeneously distributed in the treated sample with the transistor-like configuration (Figure 2e), which sharply contrasts with the sample treated under −50 V in the capacitor configuration (Figure 2f). The corresponding Co (red) and O (blue) EELS mappings reveal the presence of Co-rich and O-rich areas due to voltage-driven ion migration. In contrast to the sample grown on SiO₂, electrolyte-gating of the Co₃O₄ sample grown on TiN results in bubbling, evidencing that, on top of oxygen redistribution within the film,[26] oxygen might be also released into the liquid medium, acting as an oxygen sink. Upon negative biases, oxygen ions, negatively charged, effectively move towards the positively charged counter electrode/gate electrode. Upon traversing the liquid electrolyte and reaching the counter electrode, oxygen ions may form O₂, causing bubbling, which can be visible to the eye.

As can be seen in Figure 2, a thin layer (a few nm in thickness) is present at the TiN/Co₃O₄ interface, likely caused by interface reaction while growing the Co₃O₄ at 200 °C on TiN. By HAADF-STEM, this layer appears darker evidencing its lighter nature compared to the contiguous phases, thus compatible with a TiO₂-based phase which is the lightest among the possible phases that might form at the TiN/Co₃O₄: TiO₂+CoN+Co₂N, as predicted using the Materials API (MAPI software).[48]

Further structural characterization was carried out by θ/2θ X-ray diffraction (XRD), high resolution transmission electron microscopy (HRTEM) and variable energy positron annihilation spectroscopy (VEPAS). The XRD patterns of the as-prepared samples are consistent with a textured Co₃O₄ phase along (1 1 1), (2 2 2) and (3 1 1) planes. Upon electrolyte-gating at −50 V for 80 min, the intensity of the (1 1 1) and (2 2 2) planes strongly decreases while that of the (3 1 1) planes reduces only slightly. For the Co₃O₄ sample grown
on TiN, the peak corresponding to (1 1 1) planes fully vanishes after the application of this negative voltage (Figure 3a). Furthermore, as seen in the detailed XRD view of Figure 3b, the capacitor configuration shows the emergence of a new peak after gating at \(-200 \text{ V}\) for 80 min, which is consistent with the diffraction from (0 0 2) planes of hexagonal close-packed Co (HCP-Co).

Moreover, high resolution transmission electron microscopy (HRTEM) was performed in the cross-section of a Co$_3$O$_4$ film grown on TiN and treated at \(-50 \text{ V}\) (Figure 3c). The inset shows the fast Fourier transform of the area marked with a red rectangle, which results in three well-defined spots highlighted in red circles and numbered 1, 2 and 3. The corresponding interplanar distances are 1.991, 1.920 and 2.535 Å, respectively. The interplanar distance of 1.920 Å is unambiguously ascribed to (1 0 1) HCP-Co (ICDD JCPDF 00-005-0727), whereas 1.991 Å could be associated with either (0 0 2) HCP-Co or (4 0 0) Co$_3$O$_4$ (ICDD JCPDF 00-009-0418). However, since the as-prepared Co$_3$O$_4$ films do not exhibit traces of (4 0 0) planes and (0 0 2) HCP-Co is observed by XRD, the interplanar distance of 1.991 Å is likely to belong to HCP-Co. Finally, 2.535 Å is consistent with an O-deficient (3 1 1) Co$_3$O$_4$ (ICDD JCPDF 00-009-0418) phase.[26]

To examine the microstructure of the as-prepared films at atomic level, variable energy positron annihilation spectroscopy (VEPAS) was performed (Figure 3d). Both low and high electron momentum fraction (\(S\) and \(W\), respectively) as a function of positron implantation energy, \(E_p\), virtually overlap up to the first 50 nm in depth. The differences at further depths of the film are essentially due to the different chemical nature of the buffer layer. This indicates that the as-prepared films grown on both substrates have similar amount and type of defects, independently of the substrate they are grown on.
Figure 3. Structural characterization by θ/2θ X-ray diffraction (XRD), high resolution transmission electron microscopy (HRTEM) and variable energy positron annihilation spectroscopy (VEPAS). a) θ/2θ XRD diffraction patterns of the as-prepared and treated samples at −50 V, and at −200 V for the Co$_3$O$_4$ grown on TiN. b) Detailed view of the XRD patterns corresponding to the Co$_3$O$_4$ grown on TiN. c) HRTEM image of the cross-section of a Co$_3$O$_4$ film grown on TiN and treated at −50 V. The inset shows the fast Fourier transform of the area marked with a red rectangle. d) Low and high electron momentum fraction (S and W, respectively) as a function of positron implantation energy, E_p, for the as-prepared samples. “d_{mean}” stands for average depth.

The onset voltage for magneto-ionic motion and cyclability has also been investigated for both configurations (Figure 4). To determine the onset voltage, the gating was monotonically decreased in steps of −2 V to observe when the system started to display ferromagnetic behavior. In contrast to the measurements presented in Figure 1 in which consecutive hysteresis loops are acquired while gating the sample, now the film is subjected to a constant
applied magnetic field (specifically, 5 kOe, which is above the anisotropy field of the induced ferromagnetic phase) and the magnetization continuously measured while varying the applied voltage. Afterwards, the voltage polarity was reversed to test the cyclability of the magneto-ionic effect. The Co$_3$O$_4$ film grown on TiN exhibits an onset voltage of -4 V and requires of $+50$ V to fully recover the pristine paramagnetic state. Conversely, the transistor-like configuration shows an onset voltage of -10 V and requires of $+10$ V to recover the initial state, in agreement with previously reported results on the same configuration but with a thicker SiO$_2$ buffer layer.$^{[26]}$
Figure 4. a) and b) onset/recovery behavior of the transistor-like and capacitor configurations, respectively. c) Cyclability for both sample configurations (–20 V/+40 V and –20 V/+200 V pulses for the transistor-like and capacitor configurations, respectively). The data are shifted in ∆M-axis to make them distinguishable among configurations. Cyclability was carried out under the application of 5 kOe to ensure being above the anisotropy field and, thus, in saturation.
While the onset/recovery process is repeatable, to perform cyclability tests the applied biases were increased in order to enhance the magneto-ionic signal-to-noise ratio and, thus, better observe endurance. 30 cycles were performed using voltage pulses of $-20 \, \text{V}/+40 \, \text{V}$ and $-20 \, \text{V}/+200 \, \text{V}$ for the transistor-like and capacitor configurations, respectively (Figure 4c). The change in magnetization relative to the background magnetization is observed to be repeatable in time scale and magnetization quality, suggesting suitable reproducibility for long term use.

The magneto-electric-voltage coefficient according to reference 26, which is given by $\alpha_{c,V} = \frac{\Delta M}{\Delta V}$, has been calculated for both configurations upon inducing magneto-ionics under the conditions of Figure 4c and using an interval of time defined by the base-to-peak time of the cycling of the Co_3O_4 film in capacitor configuration, resulting in coefficients of around 0.01 and 0.11 emu cm$^{-3}$ V$^{-1}$ for the Co_3O_4 films in transistor-like and capacitor configurations, respectively.

3. Discussion

The role of the electric field configuration used during magneto-electric actuation (electric double layer transistor-like vs. capacitor–condenser-like) in the magneto-ionic behavior of Co_3O_4 thin films has been investigated. As seen in Figure 1, upon electrolyte-gating at $-50 \, \text{V}$, the use of an underlying conducting (capacitor) rather than an insulating (transistor-like) buffer layer boosts magneto-ionics in terms of both long-term generated magnetization (6-fold relative increase) and initial magneto-ionic motion (35 times faster). The achieved room temperature magneto-ionic rate for the capacitor configuration ($\sim 10^3$ emu cm$^{-3}$ h$^{-1}$) is of the same order of magnitude than, for instance, that one reached in Li-ion intercalation-based magneto-ionics exhibited by particulate composites gated using a liquid electrolyte,$^{[35]}$ and it is faster than F-ion (de)intercalation in an all-solid-state system based on $\text{La}_{2-2x}\text{Sr}_{1+2x}\text{Mn}_2\text{O}_7$.$^{[37]}$ Furthermore, the times involved for cyclability are of the same order of
magnitude than those corresponding to layered heterostructures containing solid state electrolytes for voltage-driven oxygen motion.\cite{22}

The different behaviors of film configuration are already revealed by the $M-H$ hysteresis loops which show pronounced differences in shape. The capacitor configuration results in more square-shaped loops with larger squareness, narrower distribution of coercive fields and higher slopes at H_C, evidencing a more “easy-axis” nature than the transistor-like configuration. This is consistent with the generation of more uniform ferromagnetic regions in the Co$_3$O$_4$ film (with better defined shape anisotropy) when a conducting buffer layer is grown, in agreement with the COMSOL simulations of Figure 1g and 1h. In the transistor-like configuration, the interplay between the dielectric nature of SiO$_2$ and the limited electric conductivity of Co$_3$O$_4$ manifests in a non-homogeneous voltage distribution along the Co$_3$O$_4$ film, resulting in a non-uniform electric field which decreases as the distance from the electric contact increases. Conversely, in the capacitor configuration, the conducting nature of TiN results in a nearly uniform electric field along the vertical cross-section of the sample, which gives rise to a larger and better-defined electric field along the direction perpendicular to the Co$_3$O$_4$ film plane. In contrast to the transistor-like configuration, the Co$_3$O$_4$ film on TiN is fully and homogeneously activated alongside its complete vertical extent. This results in a well-defined path with a nearly full perpendicular electric field component for magneto-ionic motion in the conducting configuration. On the contrary, in the transistor-like configuration, the strength and speed of magneto-ionic motion is hindered due to the limited electric conductivity of Co$_3$O$_4$. This is in concordance with a broader size distribution of ferromagnetic regions in the electrolyte-gated Co$_3$O$_4$ film on SiO$_2$, in agreement with the magnetometry results which indicate lower squareness values and a broader distribution of coercive fields. This is also evidenced by the evolution of coercivity with time for the consecutive loops taken while electrolyte-gating both configurations at -50 V (Figure S6). Whereas the transistor-like configuration results in a monotonic increase of H_C with time, the
electrochemical capacitor configuration shows a maximum at the very beginning. This maximal behavior resembles the typical dependence of coercivity with particle size in magnetic systems, consistent with a scenario in which a more homogeneous generation of ferromagnetic regions occurs, uniformly evolving in size, likely starting from a superparamagnetic behavior, followed by a single domain state (maximum of H_C) and ending with a multi-domain state.[46]

The effect of electric field configuration on the compositional and structural properties of Co_3O_4 is clearly observed in Figure 2. The morphology of the pristine samples shows regular, columnar-shaped grains (Figure 2a and Figure S5) and homogeneous composition (Figure 2d). This largely remains upon treating the Co_3O_4 film deposited on SiO_2 with -50 V for 80 min (Figure 2b and 2e). Conversely, the morphology of the film in the capacitor configuration treated at -50 V for 80 min shows almost no columnar grains and a highly nanostructured Co_3O_4 phase (Figure 2c and Figure S5) with Co and O segregation (Figure 2f). This indicates that this configuration can electrically modulate ion migration at much higher strengths. This is further confirmed by XRD and HRTEM which show traces of metallic Co only for the capacitor configuration (Figure 3). As can be seen in Figure 3a, for the Co_3O_4 film in capacitor configuration upon voltage treatment, the intensities of (1 1 1) and (2 2 2) XRD peaks of Co_3O_4 do not decrease proportionally (the (1 1 1) peak vanishes, while the (2 2 2) peak is still present). This could be consistent with the appearance of other phases, such as Co_2O_3 (ICDD JCPDF 00-002-0770) or some other amounts of non-stoichiometric Co oxide phases, that could result in a peak around 38.4 degrees. Moreover, the intensity of the (3 1 1) peak slightly decreases only. This strongly suggests that, on top of texture changes, phase transformations may also occur, giving rise to peaks overlapping the pristine peaks of Co_3O_4 and, thus, altering the initial relative intensities. This is in concordance with the presence of rock salt CoO (ICDD JCPDF 00-001-1025) as a product of Co_3O_4 reduction: specifically, the (1 1 1) peak of CoO which should be present at around 36.7 degrees, overlapping the (3 1 1)
peak of Co$_3$O$_4$, which is located at 36.5 degrees. Even though the as-prepared Co$_3$O$_4$ films show similar crystallographic features regardless of the buffer layer, further structural characterization to examine the local microstructure of the as-prepared samples was carried out by VEPAS. As seen in Figure 3d, both low and high electron momentum fraction (S and W, respectively) as a function of positron implantation energy, E_p, virtually overlap, indicating that Co$_3$O$_4$ grown on either SiO$_2$ or TiN exhibits analogous defect environment, ruling out minor microstructure differences in Co$_3$O$_4$ as the origin of the observed magneto-ionic effects.

As seen in Figure 4, the minimum voltage bias required to perform an onset/recovery cycle is asymmetric for the Co$_3$O$_4$ film grown on TiN (-4 V/+50 V), while it is symmetric for the Co$_3$O$_4$ film grown on SiO$_2$ (-10 V/+10 V). The onset bias is significantly larger for the transistor-like configuration (-4 V (conducting TiN) vs. -10 V (insulating SiO$_2$)). In contrast to the transistor-like configuration, the use of a conducting buffer layer activates the whole Co$_3$O$_4$ sample, resulting in a more intense and better defined perpendicular electric field and, thus, in enhanced magneto-ionic effect and motion. Bubbling is noticeably observable only in the electrochemical capacitor configuration, evidencing that, on top of oxygen redistribution,$^{[26]}$ oxygen may be released into the liquid electrolyte, which might act as an oxygen sink, and as an oxygen reservoir due to the oxygen solubility in propylene carbonate.$^{[47]}$ The voltage asymmetry in the capacitor configuration can be linked to O$_2$ bubbling since propylene carbonate reaches O supersaturation and the oxygen forming bubbles cannot be recovered. Moreover, partial degradation of propylene carbonate cannot be ruled out as an additional origin of bubbling since it may result among others in propylene gas.$^{[49]}$

Cycling (Figure 4) further corroborates the faster magneto-ionic rates of the electrochemical capacitor configuration, particularly during the generation of the “on” states. Time span in the transistor-like configuration has been enlarged to reach a suitable signal-to-noise ratio, as a
consequence of the slower magneto-ionic kinetics. For the capacitor configuration, cyclability is lost when lower voltages (higher in absolute value but negatively biased) are applied (e.g.,–50 V) due to strong irreversible bubbling.

4. Conclusion
The role of the electric field configuration (determined by the electrical properties of the substrate/buffer layer) in the magneto-ionic behavior of Co₃O₄ thin films has been investigated. Polycrystalline 130 nm-thick Co₃O₄ films have been grown by atomic layer deposition on either insulating SiO₂ or conducting TiN buffer layers. The use of an electrochemical capacitor configuration rather than contacting the semiconducting layer using a transistor-like configuration boosts magneto-ionics in terms of both generated magnetization (6-fold increase: from 118.5 (Co₃O₄/SiO₂) to 699.2 emu cm⁻³ (Co₃O₄/TiN)) and magneto-ionic rates (35 times faster: from 33.1 (Co₃O₄/SiO₂) to 1170.8 emu cm⁻³ h⁻¹ (Co₃O₄/TiN)).

The room temperature magneto-ionic motion for the capacitor configuration is comparable to the speeds achieved, for example, in Li-ion intercalation-based magneto-ionics shown by particulate systems gated using a liquid electrolyte,[35] and in oxygen magneto-ionics of layered heterostructures containing solid state electrolytes.[22] Remarkably, even though the voltage required is larger for our system, our results are promising in terms of speed since this work deals with both relatively thick films (rather than nanoparticles[35] which exhibit a much higher surface-to-volume ratio or ultra-thin ferromagnetic films)[22] and the use of oxygen ions (larger than Li ions).[35] Actually, the magneto-ionic speed of our system could be strongly increased by miniaturization and/or by a local magneto-ionic actuation to modulate, for instance, the magnetic properties, such as magnetic domains, at the nanoscale rather than the whole magnetization of a thin film.[50] Upon gating, transmission electron microscopy and electron energy loss spectroscopy show the emergence of Co-rich areas at a greater intensity for the Co₃O₄ grown on an electrically conducting substrate. Magnetization measurements
also show a marked increase in the squareness ratio and a decrease in the switching field
distribution of the hysteresis loops from Co$_3$O$_4$ deposited in the capacitor configuration,
evidencing the generation of more uniform ferromagnetic regions. This dissimilar behavior
between the use of either an insulating or a conducting substrate arises from the intensity and
uniformity of the electric field, which are maximized when using a conducting substrate while
preserving stability and endurance. These results demonstrate the importance of the specific
device design in order to optimize the strength and speed of the magneto-ionic effect. Our
results prompt the way to make oxygen magneto-ionics feasible for practical applications in
fields like neuromorphic and stochastic computing or magnetic MEMS, where high
frequencies are not necessarily required for device engineering.$^{[39]}$

5. Experimental Section

Sample preparation: 130 nm thick Co$_3$O$_4$ films were grown on two substrates: i) thermally
oxidized non-doped Si wafers (SiO$_2$ (20 nm)/(1 0 0)-oriented Si (0.5 mm)), and ii) non-doped
Si wafers coated with a TiN buffer layer (TiN (170 nm)/(1 0 0)-oriented Si (0.5 mm)). The
deposition of Co$_3$O$_4$ was carried out by plasma enhanced atomic layer deposition as described
in references 26, 51 and 52. The TiN buffer layer was grown by reactive sputtering using the
conditions reported in reference 37. TiN was selected because of its conductivity and thermal
stability allows proper growth of the Co$_3$O$_4$ film which is carried out at 200 °C by plasma
enhanced atomic layer deposition.

Magnetolectric characterization: Magnetic measurements under electrolyte gating (i.e.,
magnetolectric characterization) were carried out at room-temperature in a vibrating sample
magnetometer from Micro Sense (LOT-Quantum Design), with a maximum applied magnetic
field of 2 T. Two different configurations were implemented, an electrochemical capacitor
one and an electric double layer transistor-like design, where electric contacts are just made
on top and at the sides of the semiconducting layer. The sample was mounted in a homemade electrolytic cell filled with anhydrous propylene carbonate with Na$^+$ solvated species (5 - 25 ppm), and the magnetic properties were measured along the film plane after applying different voltages, using an external Agilent B2902A power supply, between the sample and the counter-electrode in a similar fashion of that presented in references 16, 26 and 34. The Na$^+$ solvated species in the electrolyte are aimed at reacting with any traces of water.$^{[16]}$ The magnetic signal was normalized to the area of the sample exposed to the electrolyte during the voltage application process. All hysteresis loops were background-corrected and the correction was carried out at high fields (i.e., fields always far above saturation fields) to eliminate linear contributions (paramagnetic and diamagnetic signals).

Structural and compositional measurements: θ20 X-ray diffraction (XRD) patterns were recorded on a Philips X’Pert Powder diffractometer with a PIXcel1D detector using Cu Kα radiation.

High resolution transmission electron microscopy (HRTEM), high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) and electron energy loss spectroscopy (EELS) were performed on a TECNAI F20 HRTEM / STEM microscope operated at 200 kV. Cross sectional lamellae were prepared by focused ion beam and placed onto a Cu transmission electron microscopy grid.

Variable energy positron annihilation spectroscopy (VEPAS)$^{[53,54]}$ was used to investigate depth-resolved open volume defects at the Slow-Positron System of Rossendorf (SPONSOR) beamline, which provides monoenergetic but variable energy positron beam.

Modelling: A simulation of the charge distribution in each of the two systems was performed using COMSOL finite element analysis software. Estimation of the charge distribution considered charge conservation ($\nabla J = 0$), Ohm’s law ($J = \sigma E$), and Gauss’ law ($E = -\nabla \Phi$). The geometry of the system was modeled in 2D to minimize computation needs. The
geometry includes the silicon substrate (0.5 mm), the sample film (Co$_3$O$_4$ and buffer layer: either SiO$_2$ or TiN), contact layer (In solder onto Cu wire), a platinum counter electrode, all set in an electrochemical chamber filled with propylene carbonate. The sample film has been unified to enable a tetragonal adaptive mesh within the computer memory resources. The effective electric conductivity (\(i.e.,\) electric conductance) has been modeled by weighing the different sub-layer constituting within the sample stack and normalizing relative to the thicknesses of each layer in the model. In the transistor-like configuration the silicon substrate is considered coated with a SiO$_2$ layer, electrically isolated from the sample. The sample essentially consists of a 130 nm Co$_3$O$_4$ layer on top the substrate. A value of electrical conductivity of 20 S/m for Co$_3$O$_4$ has been measured via a 4-probe van der Pauw measurement, in agreement with values from the literature.$^{[51]}$

The electrical conductivity for TiN was taken from literature, 3.3×10^5 S/m.$^{[45]}$ In the capacitor configuration, the 170 nm of TiN and the 130 nm of Co$_3$O$_4$ are taken in combination. The large electrical conductivity of the TiN dominates the effective electrical conductivity of the sample section. Simulations shown are calculated for the system under –50 V gating voltage. The propylene carbonate has been modeled as an insulator with a conductivity of 4.6×10^{-4} S/m and a relative dielectric permittivity of 65$^{[55]}$ with the aim to properly model the charge densities and the voltage at the surface of the Co$_3$O$_4$ film.

Supporting Information

Supporting Information is available from the Wiley Online Library or from the author.

Acknowledgements

Financial support by the European Research Council (SPIN-PORICS 2014-Consolidator Grant, Agreement Nº 648454), the Spanish Government (MAT2017-86357-C3-1-R), the Generalitat de Catalunya (2017-SGR-292 and 2018-LLAV-00032) and the European Regional Development Fund (MAT2017-86357-C3-1-R and 2018-LLAV-00032) is acknowledged. This work was partially supported by the Impulse-und Net-working fund of the Helmholtz Association (FKZ VH-VI-442 Memriox), and the Helmholtz Energy Materials Characterization Platform (03ET7015). The PALS measurements were carried out at ELBE at the Helmholtz-Zentrum Dresden-Rossendorf e. V., a member of the Helmholtz Association.
The authors would like to thank Ahmed G. Attallah and Eric Hirschmann for assistance during the VEPAS measurements.

Received: ((will be filled in by the editorial staff))
Revised: ((will be filled in by the editorial staff))
Published online: ((will be filled in by the editorial staff))

References

[1] D. A. Patterson, J. L. Hennessy, *Computer Organization and Design: The Hardware/Software Interface*, 5th edition, Elsevier Inc., Amsterdam 2014.

[2] H. An, K. Bai, Y. Yi, *Advances in Memristor Neural Networks - Modeling and Applications* (Ed: C. Ciufudean), IntechOpen, 2018, 25–44 (The roadmap to realize memristive three-dimensional neuromorphic computing system).

[3] Q. Xia, J. J. Yang, *Nat. Mater.* 2019, 18, 309.

[4] J. Torrejon, M. Riou, F. A. Araujo, S. Tsunegi, G. Khalsa, D. Querlioz, P. Bortolotti, V. Cros, K. Yakushiji, A. Fukushima, H. Kubota, S. Yuasa, M. D. Stiles, J. Grollier, *Nature* 2017, 547, 428.

[5] S. Manipatruni, D. E. Nikonov, I. A. Young, *Nat. Phys.* 2018, 14, 338.

[6] R. Mishra, D. Kumar, H. Yang, *Phys. Rev. Appl.* 2019, 11, 054065.

[7] Y. Shiota, T. Nozaki, F. Bonell, S. Murakami, T. Shinjo, Y. Suzuki, *Nat. Mater.* 2012, 11, 39.

[8] C. Song, B. Cui, F. Li, X. Zhou, F. Pan, *Prog. Mater. Sci.* 2017, 87, 33.

[9] M. Bibes, A. Barthélémy, *Nat. Mater.* 2008, 7, 425.

[10] S. Marauska, R. Jahns, H. Greve, E. Quandt, R. Knöchel, B. Wagner, *J. Micromech. Microeng.* 2012, 22, 065024.
[11] W. Eerenstein, N. D. Mathur, J. F. Scott, *Nature* **2006**, *442*, 759.

[12] Y. Wang, J. Hu, Y. Lin, C.-W. Nan, *NPG Asia Mater.* **2010**, *2*, 61.

[13] P. Li, Y. Zhao, S. Zhang, A. Chen, D. Li, J. Ma, Y. Liu, D. T. Pierce, J. Unguris, H.-G. Piao, H. Zhang, M. Zhu, X. Zhang, X. Han, M. Pan, C.-W. Nan, *ACS Appl. Mater. Interfaces* **2017**, *9*, 2642.

[14] M. Weisheit, S. Fähler, A. Marty, Y. Souche, C. Poinsignon, D. Givord, *Science* **2007**, *315*, 349.

[15] M. Zhernenkov, M. R. Fitzsimmons, J. Chlistunoff, J. Majewski, I. Tusoda, E. E. Fullerton, *Phys. Rev. B* **2010**, *82*, 024420.

[16] A. Quintana, J. Zhang, E. Isarain-Chávez, E. Menéndez, R. Cuadrado, R. Robles, M. D. Baró, M. Guerrero, S. Pané, B. J. Nelson, C. M. Müller, P. Ordejón, J. Nogués, E. Pellicer, J. Sort, *Adv. Funct. Mater.* **2017**, *27*, 1701904.

[17] A. K. Mishra, C. Bansal, M. Ghafari, R. Kruk, H. Hahn, *Phys. Rev. B* **2010**, *81*, 155452.

[18] S. Ghosh, *J. Magn. Magn. Mater.* **2011**, *323*, 552.

[19] S. Ghosh, C. Lemier, J. Weissmüller, *IEEE Trans. Magn.* **2006**, *42*, 3617.

[20] A. K. Mishra, A. J. Darbandi, P. M. Leufke, R. Kruk, H. Hahn, *J. Appl. Phys.* **2013**, *113*, 033913.

[21] K. Duschek, M. Uhlemann, H. Schlörb, K. Nielsch, K. Leistner, *Electrochem. Commun.* **2016**, *72*, 153.

[22] U. Bauer, L. Yao, A. J. Tan, P. Agrawal, S. Emori, H. L. Tuller, S. van Dijken, G. S. D. Beach, *Nat. Mater.* **2015**, *14*, 174.

[23] D. A. Gilbert, A. J. Grutter, E. Arenholz, K. Liu, B. J. Kirby, J. A. Borchers, B. B. Maranville, *Nat. Commun.* **2016**, *7*, 12264.
[24] D. A. Gilbert, J. Olamit, R. K. Dumas, B. J. Kirby, A. J. Grutter, B. B. Maranville, E. Arenholz, J. A. Borchers, K. Liu, *Nat. Commun.* **2016**, *7*, 11050.

[25] L. Baldrati, A. J. Tan, M. Mann, R. Bertacco, G. S. D. Beach, *Appl. Phys. Lett.* **2017**, *110*, 012404.

[26] A. Quintana, E. Menéndez, M. O. Liedke, M. Butterling, A. Wagner, V. Sireus, P. Torruella, S. Estradé, F. Peiró, J. Dendooven, C. Detavernier, P. D. Murray, D. A. Gilbert, K. Liu, E. Pellicer, J. Nogues, J. Sort, *ACS Nano* **2018**, *12*, 10291.

[27] C. Navarro-Senent, J. Fornell, E. Isarain-Chávez, A. Quintana, E. Menéndez, M. Foerster, L. Aballe, E. Weschke, J. Nogués, E. Pellicer, J. Sort, *ACS Appl. Mater. Interfaces* **2018**, *10*, 44897.

[28] F. Ibrahim, A. Hallal, B. Dieny, M. Chshiev, *Phys. Rev. B* **2018**, *98*, 214441.

[29] A. J. Tan, M. Huang, C. O. Avci, F. Büttner, M. Mann, W. Hu, C. Mazzoli, S. Wilkins, H. L. Tuller, G. S. D. Beach, *Nat. Mater.* **2019**, *18*, 35.

[30] A. J. Tan, M. Huang, S. Sheffels, F. Büttner, S. Kim, A. H. Hunt, I. Waluyo, H. L. Tuller, G. S. D. Beach, *Phys. Rev. Mater.* **2019**, *3*, 064408.

[31] A. Molinari, H. Hahn, R. Kruk, *Adv. Mater.* **2019**, *31*, 1806662.

[32] S. Robbennolt, A. Nicolenco, P. M. Fernandez, S. Auffret, V. Batz, E. Pellicer, E. Menéndez, J. Sort, *ACS Appl. Mater. Interfaces* **2019**, *11*, 37338.

[33] S. Robbennolt, E. Menéndez, A. Quintana, A. Gómez, S. Auffret, V. Batz, E. Pellicer, J. Sort, *Sci. Rep.* **2019**, *9*, 10804.

[34] C. Navarro-Senent, A. Quintana, E. Menéndez, E. Pellicer, J. Sort, *APL Mater.* **2019**, *7*, 030701.

[35] S. Dasgupta, B. Das, M. Knapp, R. A. Brand, H. Ehrenberg, R. Kruk, H. Hahn, *Adv. Mater.* **2014**, *26*, 4639.
[36] S. Dasgupta, B. Das, Q. Li, D. Wang, T. T. Baby, S. Indris, M. Knapp, H. Ehrenberg, K. Fink, R. Kruk, H. Hahn, Adv. Funct. Mater. 2016, 26, 7507.

[37] S. Vasala, A. Jakob, K. Wissel, A. I. Waidha, L. Alff, O. Clemens, Adv. Electron. Mater. 2020, 6, 1900974.

[38] T. Fujimotoa, K. Awaga, Phys. Chem. Chem. Phys. 2013, 15, 8983.

[39] C. Leighton, Nat. Mater. 2019, 18, 13.

[40] Y. Yamada, K. Ueno, T. Fukumura, H. T. Yuan, H. Shimotani, Y. Iwasa, L. Gu, S. Tsukimoto, Y. Ikuhara, M. Kawasaki, Science 2011, 332, 1065.

[41] J. Walter, T. Charlton, H. Ambaye, M. R. Fitzsimmons, P. P. Orth, R. M. Fernandes, C. Leighton, Phys. Rev. Mater. 2018, 2, 111406(R).

[42] J. G. Checkelsky, J. Ye, Y. Onose, Y. Iwasa, Y. Tokura, Nat. Phys. 8, 729–733 (2012).

[43] S. Z. Bisri, S. Shimizu, M. Nakano, Y. Iwasa, Adv. Mater. 2017, 29, 1607054.

[44] J. J. Harris, R. Jolivet, D. Attwell, Neuron 2012, 75, 762.

[45] K. Kawabata, T. Muto, Electrocomp. Sci. Technol. 1981, 8, 249.

[46] D. L. Leslie-Pelecky, R. D. Rieke, Chem. Mater. 1996, 8, 1770.

[47] W. R. Baird, R. T. Foley, J. Chem. Eng. Data 1972, 17, 355.

[48] https://materialsproject.org/open, accessed: November, 2019.

[49] G. Eichinger, J. Electroanal. Chem. Interfacial Electrochem. 1976, 74, 183.

[50] X. Zhu, J. Zhou, L. Chen, S. Guo, G. Liu, R.-W. Li, W. D. Lu, Adv. Mater. 2016, 28, 7658.

[51] M. E. Donders, H. C. M. Knoops, M. C. M. van de Sanden, W. M. M. Kessels, P. H. L. Notten, J. Electrochem. Soc. 2011, 158, G92.
[52] J. Dendooven, D. Deduystsche, J. Musschoot, R. L. Vanmeirhaeghe, C. Detavernier. *Electrochem. Soc.* **2010**, *157*, G111–G116.

[53] W. Anwand, G. Brauer, M. Butterling, H. R. Kissener, A. Wagner. *Defect Diffus. Forum*. **2012**, *331*, 25.

[54] R. Krause-Rehberg, H. Leipner, *Positron Annihilation in Semiconductors*, Springer, Berlin 1999.

[55] S. Xiao, J. F. Kolb, M. A. Malik, X. Lu, M. Laroussi, R. P. Joshi, E. Schamiloglu, K. H. Schoenbach. *IEEE Trans. Plasma Sci.* **2006**, *34*, 1653.
Electric field-induced oxygen motion (magneto-ionics) could represent a significant breakthrough in low-power magnetically-actuated devices. By applying the electric field using an electrochemical capacitor instead of a transistor-like configuration, room-temperature magneto-ionic effects in electrolyte-gated paramagnetic Co$_3$O$_4$ films can be largely increased in terms of generated magnetization and speed. This might widen the use of magneto-ionics in technological applications such as neuromorphic computing or iontronics.

Magneto-ionics

Julius de Rojas, Alberto Quintana, Aitor Lopeandía, Joaquín Salguero, José L. Costa-Krämer, Llibertat Abad, Maciej O. Liedke, Maik Butterling, Andreas Wagner, Lowie Henderick, Jolien Dendooven, Christophe Detavernier, Jordi Sort*, Enric Menéndez*

Boosting room-temperature magneto-ionics in a non-magnetic oxide semiconductor

ToC figure

Copyright WILEY-VCH Verlag GmbH & Co. KGaA, 69469 Weinheim, Germany, 2018.
Supporting Information

Boosting room-temperature magneto-ionics in a non-magnetic oxide semiconductor

Julius de Rojas, Alberto Quintana, Aitor Lopeandía, Joaquín Salguero, José L. Costa-Krämer, Llibertat Abad, Maciej O. Liedke, Maik Butterling, Andreas Wagner, Lowie Henderick, Jolien Dendooven, Christophe Detavernier, Jordi Sort*, Enric Menéndez*

Figure S1. a) and b) are the hysteresis loops of as-prepared Co$_3$O$_4$ films grown on SiO$_2$ (transistor-like configuration) and TiN (capacitor configuration), respectively, taken by in-plane vibrating sample magnetometry.
Figure S2. Time evolution of the magnetization (M) for the first hysteresis loop taken upon gating at -50 V for both capacitor (TiN) and transistor-like (SiO$_2$) configurations.
Figure S3. Saturation magnetization (M_S) from evolving hysteresis loops. The cartoon is based on the first hysteresis loop of the Co$_3$O$_4$ film grown on TiN (capacitor configuration) upon electrolyte-gating at −50 V. The loops are first slope-corrected for linear background contributions. For each branch (i.e., descending and ascending) of the loop, M_S is calculated in the negative and positive field regions above the anisotropy field: between 5 and 10 kOe in the positive field range, and −10 and −5 kOe in the negative field range (highlighted with arrows). An average of the points is found as the effective M_S (indicated with yellow dots): M_1, M_2, M_3 and M_4, and associated with a time during the measurement of the loop. The time involved in this averaging region is half a minute.
Figure S4. Voltage distribution (upon electrolyte-gating at −50 V) at the surface of the Co₃O₄ layer along the length of the sample for both configurations: Co₃O₄ on either SiO₂ (transistor-like configuration) or TiN (capacitor).
Figure S5. a) and b) are transmission electron microscopy (TEM) images of the cross-section of an as-prepared Co$_3$O$_4$ film grown on TiN, and c) and d) are TEM images corresponding to the same sample but treated at -50 V for 80 min.
Figure S6. Coercive field (H_C) evolution with time for Co$_3$O$_4$ films grown on either SiO$_2$ (transistor-like configuration) or TiN (capacitor) subjected to a voltage of −50 V for several hours.