In vitro anticancer activity of methanolic extract of Granulocystopsis sp., a microalga from an oligotrophic oasis in the Chihuahuan desert

Faviola Tavares-Carreón 1, Susana De la Torre-Zavala 1, Héctor F Arocha-Garza 1, Valeria Souza 2, Luis J Galán-Wong 1, Hamlet Avilés-Arnaut 1

1 Facultad de Ciencias Biológicas, Instituto de Biotecnología, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Nuevo León, México
2 Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México, Coyoacán, Mexico

Corresponding Author: Hamlet Avilés-Arnaut
Email address: hamlet.avilesarn@uanl.edu.mx

With the purpose of discovering new anticancer molecules that might have fewer side effects or reduce resistance to current antitumor drugs, a bioprospecting study of the microalgae of the Cuatro Cienegas Basin (CCB), an oasis in the Chihuahuan desert in Mexico was conducted. A microalgae was identified as Granulocystopsis sp. through sequencing the rbcL gene and reconstruction of a phylogenetic tree, and its anticancer activities were assessed using various in vitro assays and different cell lines of human cancers, including lung, skin melanoma, colorectal, breast, and prostatic cancers, as well as a normal cell line. The values of IC₅₀ of the microalgae methanolic extract using the MTT assay were lower than 20 μg/ml, except that in the lung cancer line and the normal cell line. In vitro, the microalgae extract caused the loss of membrane integrity, monitored by the trypan blue exclusion test and exhibited marked inhibition of adhesion and cell proliferation in cancer cell lines, through the evaluation of the clonogenic assay. Also, typical nuclear changes of apoptotic processes were observed under the microscope, using the dual acridine orange/ethidium bromide (AO/EB) fluorescent staining. Finally, the microalgae extract increased the activity of caspases 3 and 7 in skin melanoma, colon, breast and prostate cancer cells, in the same way as the apoptotic inductor and powerful antitumoral drug, doxorubicin. This study shows the anticancer activity from Granulocystopsis sp., a microalgae isolated from the CCB.
In vitro anticancer activity of methanolic extract of *Granulocystopsis* sp., a microalgae from an oligotrophic oasis in the Chihuahuan desert.

Faviola Tavares-Carreón¹, Susana De la Torre-Zavala¹, Héctor F. Arocha-Garza¹, Valeria Souza², Luis J. Galán-Wong¹, Hamlet Avilés-Arnaut¹*

¹Facultad de Ciencias Biológicas, Instituto de Biotecnología, Universidad Autónoma de Nuevo León, Avenida Universidad S/N, Ciudad Universitaria, CP 66455, San Nicolás de los Garza, NL, México.

²Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México, México City, México

*Corresponding Author:

Hamlet Avilés-Arnaut¹

Av. Universidad s/n, Ciudad Universitaria, San Nicolás de los Garza, Nuevo León, C.P. 66450. México.

Email address: hamlet.avilesarn@uanl.edu.mx
Abstract

With the purpose of discovering new anticancer molecules that might have fewer side effects or reduce resistance to current antitumor drugs, a bioprospecting study of the microalgae of the Cuatro Cienegas Basin (CCB), an oasis in the Chihuahuan desert in Mexico was conducted. A microalgae was identified as *Granulocystopsis* sp. through sequencing the *rbcL* gene and reconstruction of a phylogenetic tree, and its anticancer activities were assessed using various *in vitro* assays and different cell lines of human cancers, including lung, skin melanoma, colorectal, breast, and prostatic cancers, as well as a normal cell line. The values of IC$_{50}$ of the microalgae methanolic extract using the MTT assay were lower than 20 µg/ml, except that in the lung cancer line and the normal cell line. *In vitro*, the microalgae extract caused the loss of membrane integrity, monitored by the trypan blue exclusion test and exhibited marked inhibition of adhesion and cell proliferation in cancer cell lines, through the evaluation of the clonogenic assay. Also, typical nuclear changes of apoptotic processes were observed under the microscope, using the dual acridine orange/ethidium bromide (AO/EB) fluorescent staining. Finally, the microalgae extract increased the activity of caspases 3 and 7 in skin melanoma, colon, breast and prostate cancer cells, in the same way as the apoptotic inductor and powerful antitumoral drug, doxorubicin. This study shows the anticancer activity from *Granulocystopsis* sp., a microalgae isolated from the CCB.

Introduction

Cancer is one of the most important causes of death worldwide and is continuously stimulating the search for new bioactive molecules from natural sources. There is an urgent need of new anticancer drugs because tumor cells are developing resistance against currently available drugs,
like vinca alkaloids and taxanes (Singh et al. 2011) and some anticancer drugs have side effects that can threaten life because they do not discriminate normal and tumoral cells.

During the last decade, microalgae have been extensively used as nutritional or pharmaceutical component to humans and animals. They are considered a potentially new and valuable source of biologically active compounds because they can be easily cultured, have short generation times and several anticancer compounds from algae are in clinical or preclinical trials (Varshney & Singh 2013).

Microalgae are unicellular, simple, photosynthetic organisms that have colonized every type of ecological niche. Their adaptive diversification to a multitude of habitats and extreme conditions make them good candidates for drug discovery because they have developed defense compounds to resist changes in solar radiation, temperature, pH, salinity, etc (Irigoien et al. 2004). One of the most extreme habitats in the north of México is the Cuatro Cienegas Basin (CCB), located in the Chihuahuan desert.

CCB has several hydrological systems which have been listed as a Wetland of International Importance within the international Ramsar Convention (Souza et al. 2012). This area is famous for its remarkable biodiversity (Minckley & Cole 1968; Souza et al. 2006) despite its extremely unbalanced nutrient stoichiometry between nitrogen (N) and phosphorus (P) (Elser et al. 2005; Lopez-Lozano et al. 2012; Souza et al. 2008). These specific conditions created a unique niche that has persisted generating endemic lineages of microbes (Souza et al. 2008; Souza et al. 2018). Nevertheless, this very well characterized environment is now dry and most of its macrobiota, extinct. Before the collapse of the aquifer, the biotechnological potential of microalgae from Churince was evaluated in the search for new alternatives against cancer. Therefore, the aim of the present study was to explore the anticancer potential of the methanolic extract of
Granulocystopsis sp, a microalgae isolated from the Churince intermediate Lagoon in CCB. The antitumor activity was evaluated in breast, colorectal, prostate and skin melanoma, through the evaluation of its cytotoxic activity, morphological analysis, cell adhesive properties and apoptosis induction. This study highlights the importance of conservation of this unique oasis, given its enormous biotechnological potential.

Material and Methods

Sampling and isolation of microalgae strain Chu2

Microalgae specimen was hand collected at the intermediate Lagoon in the Churince hydrological system (2° 50.830’ N 10° 09.335’ W), located in CCB, Coahuila, México during period between February and July 2016 under SEMARNAT scientific permit No. SGPA/DGVS/03121/15. For isolation of microorganisms, the sample (fresh water) was homogenized in sterile water and aliquots were placed on Petri dishes containing agar based media: BG-11 (17.6 mM NaNO₃, 0.23 mM K₂HPO₄, 0.3 mM MgSO₄·7H₂O, 0.24 mM CaCl₂·2H₂O, 0.031 mM Citric Acid·H₂O, 0.021 mM Ferric Ammonium Citrate, 0.0027 mM Na₂EDTA·2H₂O, 0.19 mM Na₂CO₃) supplemented with carbenicillin 50 µg/mL. Purity of strain was resolved by sequential restrikes onto new agar plates and a pure strain named Chu2 (Churince strain n°2) was inoculated in liquid BG-11 medium for culture maintenance and up-scaled growth. Cultures were kept in a climate chamber at 20°C in a 16:8 h light:dark cycle, 70% of relative humidity and 100 µmol photons m⁻² s⁻¹.
Microalgae morphology

The microalgae Chu2 was observed using the light microscope Olympus BX-53 equipped with phase contrast and a Qimaging camera (model Micropublisher 3.3 RTV) and Q-capture pro 7 software. The morphological identification was performed using the keys for the members of the Phylum Chlorophyta (John & Tsarenko 2011).

Molecular identification of Chu2 microalgae.

Genomic DNA was extracted and used to amplify rbcL (rubisco gene) (Table 1). The rbcL gene was chosen because it is encoded by the chloroplast genome and is considered a housekeeping gene, and therefore conserved and appropriate for family and genus level phylogenetics. PCR reactions were exposed to the following profile: 35 cycles of denaturation (94°C for 1 min), primer annealing (55°C for 1 min), and extension (72°C for 2 min). The PCR products were ligated into pCR™4-TOPO® (ThermoFisher Scientific) to generate plasmids that were sequenced by LANBAMA-IPICYT, Mexico (Table 2).

Phylogenetic reconstruction

The rbcL sequences were assembled using CodonCode Aligner 5.1 software (CodonCode Corporation, Dedham, MA). The resulting contigs were aligned in Bioedit to build a consensus sequence. The resulting sequence was aligned in the NCBI database (http://www.ncbi.nlm.nih.gov/) using the Basic Local Alignment Search Tool (BLAST) in order to identify the closest related sequences at genus-level affiliations to the Chu2 microalgae rbcL gene (GenBank MH370163). After BLAST analysis of the sequenced gene, a data set of 37 rbcL genes from the well characterized and validated genus of the Oocystaceae family (Stenclova et
al. 2017) was used to construct the phylogenetic tree. The tree was rooted with *Chlorella vulgaris* (Chlorellaceae family) *rbcL* gene. The *rbcL* sequence from Chu2 and the data set were aligned with Clustal V (Higgins 1994) and trimmed to 796 pb by MEGA 7: Molecular Evolutionary Genetics Analysis version 7.0 for bigger datasets (Kumar et al. 2016). The model selection was performed using statistical and evolutionary analysis of multiple sequence alignments TOPALi v2 (Milne et al. 2009). To construct the phylogenetic tree from the genus of Oocystaceae family, the Maximum-likelihood (ML) method was used with MEGA software v. 7 (Kumar et al. 2016) and the Generalized time-reversible GTR+G parameter as an evolutionary model. The nodes reliability was estimated using the ML bootstrap percentages obtained after 1,000 replications (Felsenstein 1985). Bootstrap values for ML in the range from 0.7 to 1 were marked with black Rhombus.

Preparation of Microalgae Extract

Pure cultures were inoculated in Erlenmeyer flasks with 1L of fresh media (BG-11) and incubated at 25°C, under 16 h day/8 h dark cycle, in a bioclimate chamber for 2-3 weeks. The resulting media was spun down to separate the microalgae biomass from the broth. Biomass was extracted with MeOH 1:1 (m/v) (Sigma-Aldrich) for 5 days. The crude extracts were evaporated under vacuum at 50°C (Yamato RE801) to remove methanol residues. For the cytotoxicity assays, the dried methanol extract was dissolved in dimethylsulfoxide (DMSO) to obtain a final concentration of 100 mg/mL (stock) and diluted in 1x PBS.

Cell lines and cell culture
Cell lines were cultured in RPMI or DMEM with FBS (10% v/v). The cell culture was performed in an incubator at 37°C and 5% CO₂ to ensure growth and viability. The tumor [breast (HTB-22), colorectal (HTB-38), skin melanoma (HTB-72) and prostate (HTB-81)] and Vero normal cell (CCL-81), were purchased from the American Type Culture Collection (ATCC).

Cytotoxicity Assay

Cytotoxicity effects were determined by MTT (3-(4, 5-dimethylthiazolyl-2)-2, 5-diphenyltetrazolium bromide) assays, as previously described by (van Meerloo et al. 2011). After incubation for 24 h, cells were treated with various concentrations of Granulocystopsis sp. extract and incubated for 48h. An MTT solution (5 mg/mL) was added to each well and further incubated for 4h at 37°C. A medium supplemented with DMSO was used as a control. Doxorubicin (10 µg/mL) treated cells and untreated cells were used as positive control and negative control, respectively. IC₅₀ were calculated for each cancer cell line using the equations previously reported, plotting a linear regression curve and using the same in succeeding assays (Eskandani et al. 2014). Each concentration of the algal extract was independently assayed three times with three technical replicates.

Trypan blue exclusion test of cell viability

Different cancer cell lines were grown for 24h. Subsequently, the cells were exposed to the microalgae extract at the concentration corresponding to their IC₅₀ and cell viability was evaluated at 12, 24, 36 and 48 hours. After 48 h of treatment, the medium was replaced with fresh medium (without extract) and the cells were cultured for an additional 12 h and 24 h. Trypan blue test was used for the viability assay (Strober 2015). Human cancer and normal cell
lines were used without treatment, as negative control. Five technical replicates were performed for each of the three independent experiments.

Clonogenic assay of cell in vitro

Culture dishes were seeded with 100-110 cells and incubated for 24 h in order to perform the clonogenic assay as previously described (Rafehi et al. 2011). Subsequently, the cells were exposed to *Granulocystopsis* sp. extract for 48 h. After treatment, a medium without microalgal extract was added, and cells were cultured for two weeks. To determine the number of colonies per plate, the cultures were stained and analyzed using ImageJ software (Collins 2007) and progenitor frequencies expressed as the total number of colonies obtained per 100 cells seeded. Three independent experiments were performed with three technical replicates each.

Cell morphology and adhesion assay in vitro

Cell attachment assay was carried out with some modifications (Xia et al. 2005). Briefly, 5×10^5 cells were treated with *Granulocystopsis* sp. extract for 48 h in a 6-well plate and then were detached and plated back on a new culture plate. After each incubation period of 6 to 24 h, the cell attachment status and morphology were observed, and photographs were captured by camera infinity 1-2, Luminera. As a control, cells were cultivated in the same plate without the microalgae extract.

Dual acridine orange/ethidium bromide (AO/EB) fluorescent staining.

The AO/EB double staining assay was performed as previously described (Cohen 1993). Briefly, melanoma and prostate cancer cells were treated with *Granulocystopsis* sp. extract for 48 h,
trypsinized and stained with AO/EB dye. A Nikon TS100 microscope was used to see and
examine the cell suspensions at 400× magnifications. Results were expressed as means ± SE for
three independent determinations.

Caspase assay

Cells were seeded, treated with Chu2 methanol extract at their respective IC₅₀ values, and
incubated for 48 h. Caspases activity was then determined using Caspase-3/7 Fluorescence
Assay Kit (Cayman cat. no. 10009135) (Martinotti et al. 2018) according to the manufacturer’s
instructions. Three independent experiments were performed with three technical replicates each.

Statistical Data Analysis.

Data from the clonogenic assay, caspase activity and AO/EB staining, were expressed as the
mean ± SEM from three experiments and GraphPad Prism 7 software was used to perform
Students t-Test or one-way analysis of variance (ANOVA) followed by Tukey test for multiple
comparisons. The significance level was set at p <0.05.

Results

Identification of the microalgae strain Chu2

The Chu2 microalgae isolated from in the now extinct Churince hydrological system in CCB,
Coahuila, México, was examined by microscopy and it was found to be a Chlorophyta. The cells
are ellipsoidal with pointed apices, granular appearance, parietal chloroplast with a pyrenoid, 10-
12-micron size, with two cells or multiples of 2 (up to 8) within an expanded lemon-shaped
mother cell wall (Fig. 1). Because these characteristics are present in some of the members of the Oocystaceae family, the Chu2 rbcL gene was amplified with two pairs of primers (Table 1), cloned (Table 2), sequenced and used to construct the phylogenetic tree from the genus of Oocystaceae family in order to identify the closest related homologs in genus-level affiliations to the Chu2 microalgae. Phylogenetic analysis provided the confirmation that the isolate Chu2 belonged to a member of Granulocystopsis genus (Fig. 2), and the isolate was designated as Granulocystopsis sp. (Chlorellales: Oocystaceae).

Cytotoxic activity of Granulocystopsis sp. extract on different human cancer cell lines.

To evaluate the cytotoxic properties of Granulocystopsis sp. methanol crude extract, an MTT assay was performed on five human carcinoma cell cultures: lung, prostate, breast, colorectal and skin melanoma. The cytotoxic activity of the microalgae extracts is shown in Table 3. The Granulocystopsis sp. extract induced strong cytotoxicity in four cancer cell lines (<20 µg/mL), prostate cancer cells showing striking sensitivity to treatment with the microalgae extract (IC$_{50}$, 13.74±2.06 µg/mL; Table 3). Interestingly, the Granulocystopsis sp. extract had no cytotoxic effect on the lung cancer cell line. For that reason, the lung cancer cell line was discarded in the next stage of experiments. The U.S. National Cancer Institute (NCI) has established three groups of crude extracts from natural sources according to their degree of cytotoxicity: inactive (IC$_{50}$ >100 µg/mL), moderately active (IC$_{50}$ 20 to 100 µg/mL) and active (IC$_{50}$<20 µg/mL) (Skehan et al. 1990). The IC$_{50}$ of Granulocystopsis sp. microalgae extract on the 4 cancer lines was less than 20 µg/mL, so the extract is “active” according to the NCI, but also is three times less active in the healthy Vero cell line, showing a slight differential effect between tumor and normal cells.
Viability (time-dependent) in cells exposed to the extract of *Granulocystopsis* sp.

The trypan blue test was performed to determine changes in the viability of each cell line after being exposed to the *Granulocystopsis* sp. extract with respect to the time. The assay was performed during 48 h of treatment and 24 h of recovery time after treatment. Interestingly, the greatest decrease in the viability in prostate cells was observed between 0 and 12 h of treatment, between 12-24 h of treatment in those of breast cancer and between 24 and 36 h of treatment in those of melanoma and colon. Each cell line responds differently to the extract although the viability of all the cell lines decreased in a time-dependent manner during the treatment with the microalgae extract. The melanoma, colorectal, and prostate cancer cells showed 70-90% of viability after 24 h of treatment, but breast cells reached only 55% of viability over the same time. After 48 h of treatment, the melanoma, colorectal, and prostate cancer cells showed decreased viability to below 50%, whereas the viability of Vero cells just decreased to 85% (Fig. 3). When 48 hours of treatment ended, the cells were incubated with fresh media and monitored for 24 h. The cancer cells recovered the viability only 10% after 24 h recovery. In contrast, the Vero cell line had almost 100% recovery after the treatment (Fig. 3). Again, the *Granulocystopsis* sp. extract appears to have a cytotoxic and selective effect against prostate, breast, melanoma and colon cancer cells, but with lesser effects on the viability of normal Vero cells.

Effect of *Granulocystopsis* sp. extract on the proliferation of tumor cell lines.

It was investigated whether the microalgae extract could affect the proliferative activity (the ability to form a colony from a single cell), using the clonogenic assay. In the four cancer cell
lines treated with microalgal extract, a significant proliferation inhibition was observed (Fig. 4 D, F, H, J). The tumor cells treated with the microalgae extract reduced the ability to form colonies by at least 50%, whilst the healthy cell line (Vero) just by 20% (Fig. 4K). According to these results, the *Granulocystopsis* sp. extract has the potential to inhibit the formation of twice tumor colonies *in vitro*, compared to normal cells.

Effect of *Granulocystopsis* sp. extract on cell adhesion and morphology of human cancer cells.

The effect of *Granulocystopsis* sp. extract on cell adhesion and cell morphology was evaluated by detaching the cells treated with the microalgae extract and plating them in a new plate with fresh medium (extract free). Cells that do not attach to the plate are rounded. Figure 5 shows the level of adhesion and cell morphology between prostate, melanoma, colorectal and breast cancer cell lines with or without the microalgae extract in an interval of 24 h. Vero cells were used as a normal cell. Cells without the extract changed their morphology from round to flattened and adhered to the plate 6 hours after incubation (Figs. 5J, 5R and 5HH), reaching almost 100% confluence after 24 h of incubation (Figs. 5B, 5L, 5T and 5BB). However, the cells treated with *Granulocystopsis* sp. extract, kept their round shape or remained in suspension after 6 hours of incubation (especially prostate and breast cells) (Figs. 5N and 5LL), delaying their adhesion to the plaque 12 hours. Some treated colorectal, breast and prostate cells (Figs. 5 FF, 5 NN and 5P) were still unattached 24 h later, hence indicating that the adhesive capability of the treated cells was retarded.

Granulocystopsis sp. extract and apoptosis in human cancer cell lines.
To determine whether the cell adhesion, cytotoxic activity and inhibition of cell proliferation by the microalgae extract were due to the induction of apoptosis, the acridine orange/ethidium bromide (AO/EB) staining was assessed to detect nuclear changes and apoptotic body formation. The proapoptotic activity of *Granulocystopsis* sp. extract was investigated with respect to nuclear condensation of cells by fluorescence microscopy. Fluorescence microscopy images clearly showed nuclear changes such as chromatin condensation, nuclear fragmentation and formation of apoptotic bodies in the skin melanoma and prostate cancer cell lines treated with *Granulocystopsis* sp. extract by 48 h (Figs. 6C-6D). Quantification of the live cells, early and late apoptosis stage and necrotic cell population in the treated (Figs. 6C-6D) and control cells (Figs. 6A-6B) was measured. The skin melanoma and prostate cancer cells increased the early apoptosis stages by 35% and 45% and the late apoptosis stage by 38% and 20%, respectively (Figs. 6G-6H). In addition, the crude extract of the microalgae induced levels of early apoptosis similar to those obtained in cells treated with commercial antitumor compounds, such as Doxorubicin (Figs. 6E-6H). According to results, it was concluded that the *Granulocystopsis* sp. extract can induce *in vitro* apoptotic events in skin melanoma and prostate cancer cell lines.

Caspase-3 and -7 activities in cancer cell lines treated with *Granulocystopsis* sp. extract.

Caspases are members of the aspartate-specific cysteiny1 protease family and are involved in the regulation of apoptosis and inflammation (Kaufmann et al. 1993). Therefore, to corroborate apoptosis induction by *Granulocystopsis* sp. crude extract on the cancer cell lines, caspase-3 and -7 were measured. Figure 7 shows that the activity of caspases 3 and 7 was increased twice in the tumor cells treated with the *Granulocystopsis* sp. extract, compared to untreated cancer cells. On the other hand, in Vero (normal) cells, the positive control treated with doxorubicin showed a
higher activation than Vero cells treated with microalgae extract. No differences in caspase activity were observed between cancer cells treated with doxorubicin and those treated with the microalgae extract. Together, these experiments strongly support the conclusion that *Granulocystopsis* sp. extract has cytotoxic activity induced by apoptotic activation mediated by caspases 3 and/or 7.

Discussion

In the last three decades, more than 50,000 natural products have been discovered from marine microorganisms, many of them with biomedical applications (Newman & Cragg 2012; Wiese et al. 2009). Analysis of molecules produced by aquatic organisms has shown that microalgae synthesize a large number of compounds with different biotechnological applications, including those with anticancer activity. Cyanobacteria, diatoms and chlorophytes are an emerging source for the discovery of new drugs because they are organisms that grow in under-explored extreme environments.

In an attempt to discover new anticancer molecules that may have fewer side effects or reduce resistance to current anticancer drugs, a bioprospecting study of microalgae from CCB, an hyper-diverse oasis in the Chihuahuan desert in Mexico was conducted. A microalgae (strain Chu2) was isolated from the Churince lagoon, and its microscopic morphology coincided with a member of the Oocystaceae family. The molecular identification of the microalgae was carried out using the *rbcL* gene (which encodes RuBisCO, a fundamental enzyme in the process of photosynthesis), according to the recommendation of the Consortium Barcode Of Life (CBOL).
for the identification of photosynthetic organisms (Group 2009). The DNA sequence was analyzed using BLAST, showing 100% coverage and percent identity with the \textit{rbcL} gene previously reported for \textit{Granulocystopsis coronata}. This information was confirmed by a phylogenetic analysis with other members of the Oocystaceae family. \textit{Granulocystopsis} is a genus of freshwater microalgae from the Oocystaceae family with 6 names of species taxonomically accepted: \textit{G. calyptrata}, \textit{G. coronata}, \textit{G. decorata}, \textit{G. elegans}, \textit{G. reticulata} and \textit{G. subcoronata} (John & Tsarenko 2011). However, research papers about this genus are limited to its taxonomy and there are no reports about its biotechnological potential. Although the most abundant photosynthetic aquatic microorganisms reported in CCB are cyanobacteria and diatoms (Pajares et al. 2012; Winsborough et al. 2009), the Churince lagoon used to have several green microalgae, an unexplored group of organisms which, like the Chu2 strain (identified as \textit{Granulocystopsis} sp.), are adapted to live in oligotrophic conditions, possibly by modifying their metabolism and generating molecules with possible cytotoxic activity against fast-growing eukaryotic organisms in order to avoid competition and obtain phosphorous and nitrogen from the lysed cells in their surroundings. This selective cytotoxicity may explain why they target the fast-growing cancer cells in skin melanoma, colorectal, breast, and prostate cancer without damaging normal cells.

Interestingly, in the cell lines evaluated, the IC_{50} value obtained was from 13.74 \(\mu\text{g/mL}\) to 17.44 \(\mu\text{g/mL}\), whereas normal cells treated with the microalgae extract showed an IC_{50} value of 57.02 \(\mu\text{g/mL}\) (three times higher than cancer cells). This result revealed that \textit{Granulocystopsis} sp. extracts have cytotoxic activity which might be helpful in preventing the cancer’s progress, especially when it is compared against the activity of other extracts of isolated microalgae from Mexico, such as, \textit{Chlorella sorokiniana} (IC_{50} 460 \(\mu\text{g/mL}\)) and \textit{Scenedesmus} sp. (IC_{50} 362
against lymphoma cells (Reyna-Martinez et al. 2018), or other microalgal extracts from
\textit{Alexandrium minutum} (IC\textsubscript{50}>50 μg/mL) against melanoma cells (Lauritano et al. 2016),
\textit{Haematococcus pluvialis} (IC\textsubscript{50} 27-72 μg/mL) against colon, breast and hepatocellular carcinoma
(El-Baz et al. 2018), \textit{Dunaliella salina} (IC\textsubscript{50}>400 μg/mL) against neuroblastoma cells (Atasever-
Arslan et al. 2015), \textit{Scenedesmus obliquus} (IC\textsubscript{50} 24-93 μg/mL) against colon, hepatocellular and
breast cancer cells (Marrez et al. 2019) and \textit{Chloromonas reticulata} (IC\textsubscript{50}>50 μg/mL) (Suh et al.
2019) and \textit{Micractinium} sp. (IC\textsubscript{50} 100 μg/mL) against colon cancer cells (Suh et al. 2018).
Additionally, it was corroborated that the microalgae extract has a cytotoxic effect at the level of
membrane integrity, using the trypan blue vital dye, which is excluded by an intact cell
membrane (Strober 2015). When the cancer cell lines were treated for two days in the presence
of microalgae extract, the capability to recover the viability decreased significantly, while the
healthy cell line recovered 100\% viability 12 hours after removal of the extract. These results
suggest that the extract of \textit{Granulocystopsis} sp. affects the viability of cancer cells in a time-
dependent manner and probably could have tumor-specific activity with minor side effects for
normal cells.
The ineffectiveness of currently available treatments is mainly due to the invasive and metastatic
properties of malignant cancer cells (Lee et al. 2011). Proliferation and cell adhesion are crucial
steps that play a significant role in cancer progression and metastasis. The metastatic spread is
determined by the cell-cell interactions of cancer cells with endothelium, due to their ability to
adhere strongly before they can colonize and establish a secondary tumor in a new place
(Chambers et al. 2002). Data obtained from the clonogenic assay, the adhesion and cell
morphology tests, showed that extract of \textit{Granulocystopsis} sp. reduced the ability of cancer cells
to form colonies and decreased the attachment ability compared to untreated cells. These results
suggest a potential antimetastatic activity of *Granulocystopsis* sp. extract, which could be evaluated through migration and cell invasion assays and elucidate possible action mechanisms where some cytoskeleton components were involved. Apoptosis is characterized by a number of characteristic morphological changes in the structure of the cell, together with a number of enzyme-dependent biochemical processes. The result is the clearance of cells from the body, with minimal damage to surrounding tissues and it is the mechanism facilitating the action of many chemotherapeutic drugs. Failure of apoptosis and the resultant accumulation of damaged cells in the body can lead to malignant transformation and result in various forms of cancer (D'Arcy 2019). One technique used to visualize the early and late stages of apoptosis is AO / EB fluorescent staining (Ribble et al. 2005). Our results showed that the microalgal extract activated the apoptosis mechanism in tumor lines. Interestingly, the microalgal extract induced the same level of cells in early and late apoptosis with respect to the anti-cancer compound doxorubicin, suggesting that the extract might contain a more potent compound or a mixture of compounds working in synergy, and therefore, further analyses are required for chromatographic separation and identification of active compounds by NMR, mass spectrometry, etc.

The initiation of apoptosis is dependent on the activation of a series of cysteine-aspartic proteases known as caspases (Shi 2002). Caspases can be divided into caspase-8 and -9 (initiator caspases) and caspase-3 and -7 (executioner caspases). Both initiator caspases can activate the caspase-3 or -7, which are mainly responsible for the final stages of apoptosis, which consist of chromatin segregation, nuclear condensation, and finally DNA fragmentation (Pojaroiva et al. 2007; Yang et al. 2006). Our results showed that apoptosis occurred in melanoma, prostate, colorectal and breast cancer cells treated with microalgal extract, activating caspase-3 and -7,
which were increased manifold over the basal level of untreated cells. Again, the level of activation of caspases was similar among the cancer cells treated with the extract and the compound doxorubicin, which strengthens our proposal for the extract of *Granulocystopsis* sp. as a good candidate as an anti-cancer drug, which can promote apoptosis in cancer cells via the mitochondrial-dependent intrinsic pathways. The intrinsic pathway can be triggered by irradiation, oxidative stress, hypoxia or cytotoxic drugs (Jan & Chaudhry 2019). To discover signal transduction involved in triggering apoptosis mediated extract *Granulocystopsis* sp., detection of intracellular reactive oxygen species (ROS) level, analysis of mitochondrial membrane potential and Western blotting analysis are required to establish the mechanisms of action of the extract and the participation of Bax/Bak (pro-apoptotic protein inserted into mitochondrial membrane), Bcl-2 (inhibits production of cytochrome c), Cytochrome c (released into the cytosol), Caspase-9 (induced by cytochrome c), and other pro-apoptotic proteins from the intrinsic pathway like Smac/Diablo, Apaf-1, among others, leading to the activation of caspase-3. Because there are studies that confirm the participation of polyphenols in the induction of apoptosis in tumor cells (Sharif et al. 2010; Walter et al. 2010), more experiments are required to demonstrate if any phenolic compound present in the *Granulocystopsis* sp. extract could be initiating the transduction signal from the intrinsic pathway.

Based on our results, the microalgal extract may be useful for the future development of anti-metastatic therapeutic agents. The current research aimed at the description of the molecular mechanisms of the anticancer properties of the microalgae extract, as well as the elucidation of the bioactive molecule, is being performed.
Conclusions

The current study represents the first report showing the anticancer activity derived from *Granulocystopsis* sp., an isolated microalga from the Chihuahuan desert. The microalga methanolic extract inhibited cell proliferation, showed time-dependent cytotoxic activity, modified morphology, decreased cell adhesion and induced apoptosis by activating caspases 3/7 in breast, colon, prostate and skin melanoma cancer cell lines, but showed less pronounced effects on normal cells.

Acknowledgments

We would like to thank our colleagues Dr. Mariana Elizondo Zertuche and Álvaro Colín Oviedo for their support with fluorescence microscope (CONACYT-INFRA 2015-251142), at Departamento de Microbiología, Facultad de Medicina, UANL. We thank Alberto Ramos-Silva for technical assistance, Jorge Alberto Balderas-Soriano for the preliminary results and Abigail Mata-Aguilar for keeping the CCB microalga culture collection. We also want to thank “Centro de Bachillerato Tecnológico Agropecuario #22” for providing facilities during the sampling period and we thank SEMARNAT for access to the CCB Natural Protected Area and permission to sample there.

References

Atasever-Arslan B, Yilancioglu K, Bekaroglu MG, Taskin E, Altinoz E, and Cetiner S. 2015. Cytotoxic effect of extract from *Dunaliella salina* against SH-SY5Y neuroblastoma cells. *Gen Physiol Biophys* 34:201-207. 10.4149/gpb_2014034

Chambers AF, Groom AC, and MacDonald IC. 2002. Dissemination and growth of cancer cells in metastatic sites. *Nat Rev Cancer* 2:563-572. 10.1038/nrc865

Cohen JJ. 1993. Apoptosis. *Immunol Today* 14:126-130. 10.1016/0167-5699(93)90214-6

Collins TJ. 2007. ImageJ for microscopy. *Biotechniques* 43:25-30. 10.2144/000112517

D’Arcy MS. 2019. Cell death: a review of the major forms of apoptosis, necrosis and autophagy. *Cell Biol Int* 43:582-592. 10.1002/cbin.11137
El-Baz FK, Hussein RA, Mahmoud K, and Abdo SM. 2018. Cytotoxic activity of carotenoid rich fractions from *Haematococcus pluvialis* and *Dunaliella salina* microalgae and the identification of the phytoconstituents using LC-DAD/ESI-MS. *Phytother Res* 32:298-304. 10.1002/ptr.5976

Elser JJ, Schampel JH, Garcia-Pichel F, Wade BD, Souza V, Eguiarte LE, Escalante AE, and Farmer J. 2005. Effects of phosphorus enrichment and grazing snails on modern stromatolitic microbial communities. *FRESH WATER BIOLOGY* 50:1808-1825. doi:10.1111/j.1365-2427.2005.01451.x

Eskandani M, Hamishehkar H, and Ezzati Nazhad Dolatabadi J. 2014. Cytotoxicity and DNA damage properties of tert-butylhydroquinone (TBHQ) food additive. *Food Chem* 153:315-320. 10.1016/j.foodchem.2013.12.087

Felsenstein J. 1985. Confidence Limits on Phylogenies: An Approach Using the Bootstrap. *Evolution* 39:783-791. 10.1111/j.1558-5646.1985.tb00420.x

Group CPW. 2009. A DNA barcode for land plants. *Proc Natl Acad Sci U S A* 106:12794-12797. 10.1073/pnas.0905845106

Higgins DG. 1994. CLUSTAL V: multiple alignment of DNA and protein sequences. *Methods Mol Biol* 25:307-318. 10.1385/0-89603-276-0:307

Irigoien X, Huismann J, and Harris RP. 2004. Global biodiversity patterns of marine phytoplankton and zooplankton. *Nature* 429:863-867. 10.1038/nature02593

Jan R, and Chaudhry GE. 2019. Understanding Apoptosis and Apoptotic Pathways Targeted Cancer Therapeutics. *Adv Pharm Bull* 9:205-218. 10.15171/apb.2019.024

John DM, and Tsarenko PM. 2011. Phylum Chlorophyta. Order Chlorococcales. In: John DM, Whitton BA, and Brook AJ, eds. *The freshwater algal flora of the british isles*. Second edition ed. Cambridge: Cambridge University Press, 484-485.

Kaufmann SH, Desnoyers S, Ottaviano Y, Davidson NE, and Poirier GG. 1993. Specific proteolytic cleavage of poly(ADP-ribose) polymerase: an early marker of chemotherapy-induced apoptosis. *Cancer Res* 53:3976-3985.

Kumar S, Stecher G, and Tamura K. 2016. MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for Bigger Datasets. *Mol Biol Evol* 33:1870-1874. 10.1093/molbev/msw054

Lauritano C, Andersen JH, Hansen E, Albrigtsen M, Escalera L, Esposito F, Helland K, Hanssen Ø, Romano G, and Janora A. 2016. Bioactivity screening of microalgae for antioxidant, anti-inflammatory, anticancer, anti-diabetes, and antibacterial activities. *Frontiers in Marine Science* 3:68. DOI=10.3389/fmars.2016.00068

Lee SH, Jaganath IB, Wang SM, and Sekaran SD. 2011. Antimetastatic effects of *Phyllanthus* on human lung (A549) and breast (MCF-7) cancer cell lines. *PLoS One* 6:e20994. 10.1371/journal.pone.0020994

Lopez-Lozano NE, Eguiarte LE, Bonilla-Rosso G, Garcia-Oliva F, Martinez-Piedragil C, Rooks C, and Souza V. 2012. Bacterial communities and the nitrogen cycle in the gypsum soils of Cuatro Cienegas Basin, coahuila: a Mars analogue. *Astrobiology* 12:699-709. 10.1089/ast.2012.0840

Marrez DA, Naguib MM, Sultan YY, and Higazy AM. 2019. Antimicrobial and anticancer activities of *Scenedesmus obliquus* metabolites. *Heliyon* 5:e01404. 10.1016/j.heliyon.2019.e01404

Martinotti S, Ranzato E, and Burlando B. 2018. (−)-Epigallocatechin-3-gallate induces GRP78 accumulation in the ER and shifts mesothelioma constitutive UPR into proapoptotic ER stress. *J Cell Physiol* 233:7082-7090. 10.1002/jcp.26631

Milne I, Lindner D, Bayer M, Husmeier D, McGuire G, Marshall DF, and Wright F. 2009. TOPALi v2: a rich graphical interface for evolutionary analyses of multiple alignments on HPC clusters and multicore desktops. *Bioinformatics* 25:126-127. 10.1093/bioinformatics/btn575

Minckley WL, and Cole GA. 1968. Preliminary Limnologic Information on Waters of the Cuatro Cienegas Basin, Coahuila, Mexico. *The Southwestern Naturalist* 13:421-431. DOI: 10.2307/3668909
Newman DJ, and Cragg GM. 2012. Natural products as sources of new drugs over the 30 years from 1981 to 2010. *J Nat Prod* 75:311-335. 10.1021/np200906s

Pajares S, Bonilla-Rosso G, Travisano M, Eguiarte LE, and Souza V. 2012. Mesocosms of aquatic bacterial communities from the Cuatro Cienegas Basin (Mexico): a tool to test bacterial community response to environmental stress. *Microb Ecol* 64:346-358. 10.1007/s00248-012-0045-7

Pojarova M, Kaufmann D, Gastpar R, Nishino T, Reszka P, Bednarski PJ, and von Angerer E. 2007. [(2-Phenylindol-3-yl)methylene]propanedinitriles inhibit the growth of breast cancer cells by cell cycle arrest in G(2)/M phase and apoptosis. *Bioorg Med Chem* 15:7368-7379. 10.1016/j.bmc.2007.07.046

Rafehi H, Orlofski C, Georgiadis GT, Ververis K, El-Osta A, and Karagiannis TC. 2011. Clonogenic assay: adherent cells. *J Vis Exp*. 10.3791/2573

Reyna-Martinez R, Gomez-Flores R, Lopez-Chuken U, Quintanilla-Licea R, Caballero-Hernandez D, Rodriguez-Padilla C, Beltran-Rocha JC, and Tamez-Guerra P. 2018. Antitumor activity of *Chlorella sorokiniana* and *Scenedesmus* sp. microalgae native of Nuevo Leon State, Mexico. *PeerJ* 6:e4358. 10.7717/peerj.4358

Ribble D, Goldstein NB, Norris DA, and Shellman YG. 2005. A simple technique for quantifying apoptosis in 96-well plates. *BMC Biotechnol* 5:12. 10.1186/1472-6750-5-12

Sharif T, Auger C, Alhosin M, Ebel C, Achor M, Etienne-Selloum N, Fuhrmann G, Bronner C, and Schin-Kerth VB. 2010. Red wine polyphenols cause growth inhibition and apoptosis in acute lymphoblastic leukaemia cells by inducing a redox-sensitive up-regulation of p73 and down-regulation of UHRF1. *Eur J Cancer* 46:983-994. 10.1016/j.ejca.2009.12.029

Shi Y. 2002. Mechanisms of caspase activation and inhibition during apoptosis. *Mol Cell* 9:459-470. 10.1016/s1097-2765(02)00482-3

Singh RK, Tiwari SP, Rai AK, and Mohapatra TM. 2011. Cyanobacteria: an emerging source for drug discovery. *J Antimicrob Chemother* 64:401-412. 10.1038/jac.2011.21

Souza V, Siefert JL, Alcaraz LD, Olmedo G, and Eguiarte LE. 2018. The lost world of Cuatro Cienegas Basin, a relictual bacterial niche in a desert oasis. *Elife* 7. 10.7554/eLife.38278

Souza V, Siefert JL, Escalante AE, Elser JJ, and Eguiarte LE. 2012. The Cuatro Cienegas Basin in Coahuila, Mexico: an astrobiological Precambrian Park. *Astrobiology* 12:641-647. 10.1089/ast.2011.0675

Stencerova L, Fucikova K, Kastovsky J, and Pazoutova M. 2017. Molecular and morphological delimitation and generic classification of the family Oocystaceae (Trebouxiophyceae, Chlorophyta). *J Phycol* 53:1263-1282. 10.1111/jpy.12581

Strober W. 2015. Trypan Blue Exclusion Test of Cell Viability. *Curr Protoc Immunol* 111:A3 B 1-A3 B 3. 10.1002/0471142735.ima03bs11

Suh SS, Hong JM, Kim EJ, Jung SW, Chae H, Kim JE, Kim JH, Kim IC, and Kim S. 2019. Antarctic freshwater microalga, *Chloromonas reticulata*, suppresses inflammation and carcinogenesis. *Int J Med Sci* 16:189-197. 10.7150/ijms.30647

Suh SS, Hong JM, Kim EJ, Jung SW, Kim SM, Kim JE, Kim IC, and Kim S. 2018. Anti-inflammation and Anti-Cancer Activity of Ethanol Extract of Antarctic Freshwater Microalga, *Micractinium* sp. *Int J Med Sci* 15:929-936. 10.7150/ijms.26410
van Meerloo J, Kaspers GJ, and Cloos J. 2011. Cell sensitivity assays: the MTT assay. *Methods Mol Biol* 731:237-245. 10.1007/978-1-61779-080-5_20

Varshney A, and Singh V. 2013. Effects algal compounds on cancer cell line. *Journal of Experimental Biology and Agricultural Sciences* 1:337-352.

Walter A, Etienne-Selloum N, Brasse D, Khallouf H, Bronner C, Rio MC, Beretz A, and Schini-Kerth VB. 2010. Intake of grape-derived polyphenols reduces C26 tumor growth by inhibiting angiogenesis and inducing apoptosis. *FASEB J* 24:3360-3369. 10.1096/fj.09-149419

Wiese J, Thiel V, Nagel K, Staufenberger T, and Imhoff JF. 2009. Diversity of antibiotic-active bacteria associated with the brown alga *Laminaria saccharina* from the Baltic Sea. *Mar Biotechnol (NY)* 11:287-300. 10.1007/s10126-008-9143-4

Winsborough BM, Theriot E, and Czarnecki DB. 2009. Diatoms on a continental “island”: Lazarus species, marine disjuncts and other endemic diatoms of the Cuatro Ciénegas basin, Coahuila, México. *Nova Hedwigia, Beiheft* 135:257–274.

Xia SH, Wang J, and Kang JX. 2005. Decreased n-6/n-3 fatty acid ratio reduces the invasive potential of human lung cancer cells by downregulation of cell adhesion/invasion-related genes. *Carcinogenesis* 26:779-784. 10.1093/carcin/bgi019

Yang HL, Chen CS, Chang WH, Lu FJ, Lai YC, Chen CC, Hseu TH, Kuo CT, and Hseu YC. 2006. Growth inhibition and induction of apoptosis in MCF-7 breast cancer cells by *Antrodia camphorata*. *Cancer Lett* 231:215-227. 10.1016/j.canlet.2005.02.004

Figure Legends

Figure 1. Microscopy of *Granulocystopsis* sp. Cells ellipsoidal retained in enlarged parent wall. A-C Bright field. D-F Phase contrast. A and D colonia with 2 cells. B and D colonia with 4 cells. C and F colonia with 8 cells. Scale bar 10 µm.

Figure 2. Phylogenetic tree of Oocystaceae family based on the rbcL gene. Maximum likelihood (ML) method, constructed by the Generalised time-reversible GTR+G parameter as an evolutionary model with 1,000 bootstrap replicates. Bootstrap values for ML in the range from 0.7 to 1 were marked with black rhombus.

Figure 3. Changes in cell viability during 48 hours of treatment with microalgae extract and 24 hours of recovery. Human cancer cells were treated at the corresponding IC₅₀
concentration for each cell line. Cell viability was evaluated by MTT assay. Each data point represents values from three independent experiments (n=5). Error bar indicates mean ± SEM.

Figure 4. Colony forming assay of cancer cells in response to treatment with microalgal extract. Cells of four cancer cell lines were incubated for 10-14 days with microalgal extract at the corresponding IC50 concentration. (A, C, E, G and I) Representative images show the clones formed under the control conditions. (B, D, F, H and J) Representative images show the clones formed under the treatment conditions. (K) The number of clones formed after the treatment was counted and presented as histograms. The results are representative of three independent experiments and the level of significance was determined using Student t-Test with ns representing, p>0.05; ****represents, p<0.0001; **represents, p<0.01; and *represents 1.

Figure 5. Effects of Chu2 microalgae extract on the morphology and cell attachment. Human cancer cells were treated with IC50 corresponding value for each cell line for 48 h and then, the cells were trypsinized and plated on a new culture dish without extract. After a period of 0 h, 6 h, 12 h and 24 h, the images were captured with a phase-contrast microscope. Representative results from three independent experiments are shown. +Ext, treated cells. –Ext, control (untreated) cells.

Figure 6. AO/EB double stain of human cancer cell lines after a treatment with microalgal extract. (A) Prostate (D) and melanoma skin (C) cells were treated with microalgal extract at the corresponding IC50 concentration. Images represent the control (B and A, untreated cells), treated cells with microalgae extract (D and C) and, cell treated with doxorubicin (10 μg/mL) as a
positive control (F and E). Cells were stained with acridine orange and ethidium bromide (AO/EB) after 48 h of treatment. (G and H) Error bar indicates mean ± SEM of three independent experiments. +Ext and +Dox, cells treated with microalgal extract or doxorubicin, respectively. White arrows indicate live (L), early apoptotic (EA), late apoptotic (LA) or necrotic (N) cells. Different letters represent statistically significant differences determined by one way ANOVA (ρ < 0.05) between bars with the same color by cell line.

Figure 7. Caspase-3/7 activity on cancer cell lines treated with *Granulocystopsis* sp. microalgal extract. Quantitative assessment of caspase activity in prostate, melanoma, colorectal and breast cancer cell lines. Vero is a normal cell line. Cells were treated with *Granulocystopsis* sp. extract at the corresponding IC\(_{50}\) concentration for each cell line. Error bar indicates the standard error of the mean of Relative Fluorescence Units (RFU) of three independent experiments. Different letter represents statistically significant differences determined by one way ANOVA (ρ < 0.05) between bars with different color by cell line.
Table 1 (on next page)

Primer sequences used in this study.
Primer name	Sequence (5’-3’)	Product size (pb)
RbcL-192-F	GGTACTTGGGACAAACWGTWTGGAC	500
RbcL-657-R	GAAACGGTCTCKCCARCGCAT	
RbcLZ-F	CAACCAGGTGTTCCASCTGAAG	1100-1200
RbcLZ-R	CTAAAGCTGGCATGTGCCATAC	
Table 2 (on next page)

Strains and plasmid used in this study.
TABLE 2. Strains and plasmid used in this study.

Strain/Plasmid names	Relevant properties	Source or Reference
E.coli DH5α	F−φ80lacZM15 endA recA hsdR(r−m−) supE thi	Laboratory stock
	gyrA relA Δ(lacZYA-argF)U169	
PCR™4-TOPO	Plasmid used for sequencing. Km^R	Invitrogen
pFT4	PCR™4-TOPO, Chu2_RbcLZ	This study
pFT5	PCR™4-TOPO, Chu2_rbcL192/657	This study
Table 3 (on next page)

IC$_{50}$ values (μg/ml) of *Granulocystopsis* sp. methanol crude extract on prostate, breast, colorectal, skin melanoma, and lung cancer cell lines.

Human cancer cell lines were treated with different concentrations of *Granulocystopsis* sp. methanol crude extract in 96-well microculture plates for 48 h. IC$_{50}$ values are expressed as mean ± standard error of mean (S.E.M) of quintuplicate determinations. Different letters represent statistically significant differences determined by one-way ANOVA (p<0.05).
TABLE 3. IC$_{50}$ values (µg/ml) of *Granulocystopsis* sp. methanol crude extract on prostate, breast, colorectal, skin melanoma, and lung cancer cell lines.

Cancer cell lines	(µg/mL) ±SEM
Prostate	13.74±2.06a
Breast	16.70±3.09a
Colorectal	17.20±2.16a
Melanoma	17.44±1.64a
Lung	1738.18 ±1584.30b

Normal cell line

| Vero | 57.02±14.8b |

Human cancer cell lines were treated with different concentrations of *Granulocystopsis* sp. methanol crude extract in 96-well microcultured plates for 48 h. IC$_{50}$ values are expressed as mean ± standard error of mean (S.E.M) of quintuplicate determinations. Different letters represent statistically significant differences determined by one-way ANOVA (p<0.05).
Figure 1

Microscopy of *Granulocystopsis* sp.

Cells ellipsoidal retained in enlarged parent wall. A-C Bright field. D-F Phase contrast. A and D colonia with 2 cells. B and D colonia with 4 cells. C and F colonia with 8 cells. Scale bar 10 µm.
Figure 2

Phylogenetic tree of Oocystaceae family based on the *rbcL* gene

Maximum likelihood (ML) method, constructed by the Generalised time-reversible GTR+G parameter as an evolutionary model with 1,000 bootstrap replicates. Bootstrap values for ML in the range from 0.7 to 1 were marked with black rhombus.
Figure 3

Changes in cell viability during 48 hours of treatment with microalgae extract and 24 hours of recovery.

Human cancer cells were treated at the corresponding IC$_{50}$ concentration for each cell line. Cell viability was evaluated by MTT assay. Each data point represents values from three independent experiments (n=5). Error bar indicates mean ± SEM.
Figure 4

Colony forming assay of cancer cells in response to treatment with microalgal extract.

Cells of four cancer cell lines were incubated for 10-14 days with microalgal extract at the corresponding IC$_{50}$ concentration. (A) Representative images show the clones formed under the treatment condition. (B) The number of clones formed after the treatment was counted and presented as histograms. The results are representative of three independent experiments and the level of significance was determined using Student t-Test with ns representing, p>0.05; ****represents, p<0.0001; **represents, p<0.01; and *represents 1.
Figure 5

Effects of Chu2 microalgae extract on the morphology and cell attachment.

Human cancer cells were treated with IC_{50} corresponding value for each cell line for 48 h and then, the cells were trypsinized and plated on a new culture dish without extract. After a period of 0 h, 6 h, 12 h and 24 h, the images were captured with a phase contrast microscope. Representative results from three independent experiments are shown. +Ext, treated cells. –Ext, control (untreated) cells.
	VERO		Prostate		Melanoma	
0 h	![A](image1.png)	E	![I](image2.png)	M	![Q](image3.png)	U
6 h	![B](image4.png)	F	![J](image5.png)	N	![R](image6.png)	V
12 h	![C](image7.png)	G	![K](image8.png)	O	![S](image9.png)	W
24 h	![D](image10.png)	H	![L](image11.png)	P	![T](image12.png)	X

	Colorectal		Breast	
0 h	![Y](image13.png)	CC	![GG](image14.png)	KK
6 h	![Z](image15.png)	DD	![HH](image16.png)	LL
12 h	![AA](image17.png)	EE	![II](image18.png)	MM
24 h	![BB](image19.png)	FF	![JJ](image20.png)	NN
Figure 6

AO/EB double stain of human cancer cell lines after a treatment with microalgal extract.

(A) Prostate and melanoma skin cells were treated with microalgal extract at the corresponding IC$_{50}$ concentration. Images represent the control (untreated cells), treated cells with microalgae extract and, cell treated with doxorubicin (10 μg/mL) as positive control. Cells were stained with acridine orange and ethidium bromide (AO/EB) after 48 h of treatment. (B) Error bar indicates mean ± SEM of three independent experiments. +Ext and +Dox, cells treated with microalgal extract or doxorubicin, respectively. White arrows indicate live (L), early apoptotic (EA), late apoptotic (LA) or necrotic (N) cells. Different letters represents statistically significant differences determined by one way ANOVA ($\rho < 0.05$) between bars with same color by cell line.
Figure 7

Caspase-3/7 activity on cancer cell lines treated with *Granulocystopsis* sp. microalgal extract.

Quantitative assessment of caspase activity in prostate, melanoma, colorectal and breast cancer cell lines. Vero is a normal cell line. Cells were treated with *Granulocystopsis* sp. extract at the corresponding IC$_{50}$ concentration for each cell line. Error bar indicates the standard error of the mean of Relative Fluorescence Units (RFU) of three independent experiments. Different letter represents statistically significant differences determined by one way ANOVA ($p < 0.05$) between bars with different color by cell line.