Efficiently Fuelling a Quantum Engine with Incompatible Measurements

Sreenath K. Manikandan, 1, 2, 3,Cyril Elouard, 1, 4 Kater W. Murch, 5 Alexia Auffèves, 6 and Andrew N. Jordan 7, 2, 1

1 Department of Physics and Astronomy, University of Rochester, Rochester, NY 14627, USA
2 Center for Coherence and Quantum Optics, University of Rochester, Rochester, NY 14627, USA
3 Nordita, KTH Royal Institute of Technology and Stockholm University, Hannes Alfvéns väg 12, SE-106 91 Stockholm, Sweden
4 QUANTIC lab, INRIA Paris, 2 Rue Simone Iff, 75012 Paris, France
5 Department of Physics, Washington University, St. Louis, Missouri 63130
6 Université Grenoble Alpes, CNRS, Grenoble INP, Institut Néel, 38000 Grenoble, France
7 Institute for Quantum Studies, Chapman University, Orange, CA, 92866, USA

(Dated: April 29, 2022)

We propose a quantum harmonic oscillator measurement engine fueled by simultaneous quantum measurements of the non-commuting position and momentum quadratures of the quantum oscillator. The engine extracts work by moving the harmonic trap suddenly, conditioned on the measurement outcomes. We present two protocols for work extraction, respectively based on single-shot and time-continuous quantum measurements. In the single-shot limit, the oscillator is measured in a coherent state basis; the measurement adds an average of one quantum of energy to the oscillator, which is then extracted in the feedback step. In the time-continuous limit, continuous weak quantum measurements of both position and momentum of the quantum oscillator result in a coherent state, whose coordinates diffuse in time. We relate the extractable work to the noise added by quadrature measurements, and present exact results for the work distribution at arbitrary finite time. Both protocols can achieve unit work conversion efficiency in principle.

I. INTRODUCTION

Quantum thermodynamics is concerned with how the exchange of heat and work can be understood and applied when quantum effects such as entanglement and coherences are present [1–4]. The emerging field of “quantum energetics” is applicable to stochastic energy exchanges when there are no thermal baths. As an example, quantum measurement powered engines have been proposed with qubit systems, as well as continuous variable systems [5–16]. This line of research is greatly stimulated by successful demonstrations of quantum measurements and control in a variety of quantum platforms including but not limited to superconducting circuits [17–19], cavities [20–22], trapped ions [23–25], trapped nanoparticles [26], single electron systems [27], and mechanical resonators [28–29].

By making appropriate combination of measurements and feedback operations [30–37], a quantum engine can be used to accelerate an electron to charge a capacitor, or to lift a tiny mass [5]. A quantum refrigerator based on measurements [13], measurement driven single temperature engines that require no feedback [7, 12], interaction-free measurement engines [9], and quantum measurement engines driven by quantum entanglement [16] have also been conceptualized, extending the scope of measurement based thermal-equivalent machines. The prime focus in these models has been on the measurement of a single observable, either the spin along a chosen axis in the case of finite dimensional systems [3, 13, 16, 38], or a given quadrature with continuous variable systems [5, 7, 39].

In this article, we propose a quantum engine fueled by simultaneous weak measurements of two non-commuting observables: the position and momentum of a quantum oscillator. Work is extracted by moving the bottom of the harmonic trap suddenly, conditioned on the measurement outcomes. We show that incompatible measurements have rewarding energetic consequences when compared to similar protocols for a quantum engine fueled by measurement of a single quadrature [5, 39], and when compared to the classical limit which describes a heat engine fueled by measuring the position of a Brownian particle in a harmonic trap [40–41]. With simultaneous quantum measurements, the measurement strengths for each of the incompatible quadratures can be tuned such that the measurement results in a displaced ground state (a coherent state [42, 43]) of the quantum oscillator [44–45]. This allows one to perfectly reset the engine’s
cycle by work extraction, in the same way as conceived in the original version of the Szilard engine, where the

The engine is efficient because the work extraction step precisely brings it back to the equilibrium state. When simultaneous weak measurements of position and momentum are performed on a thermal state, it is also well known that they add an extra quantum of noise in to the oscillator [44–47]. This added noise from measurement allows us to extract work even at zero temperature, beating the previously known classical bounds for a Brownian heat engine (see Appendix A) [40, 41].

II. THE SETUP

A quantum harmonic oscillator is described by the Hamiltonian, \(\hat{\mathcal{H}} = \frac{\hat{p}^2}{2m} + m\omega^2 \hat{x}^2 \), where \(\hat{p} \) and \(\hat{x} \) obey the commutation relation, \([\hat{x}, \hat{p}] = i\hbar \). When the temperature is sufficiently small such that \(k_B T \ll \hbar \omega \), thermal fluctuations are negligible and the quantum harmonic oscillator will be in its ground state \(|0\rangle \). The premise of the measurement engine is that a suitable weak quantum measurement will excite the oscillator. Work can then be extracted by a feedback loop that changes the harmonic trap suddenly. The feedback is most efficient if it resets the quantum engine to its initial quantum state at the end of each cycle, making the engine prepared for the next cycle to begin. For the quantum oscillator, a simultaneous weak quantum measurement of both position and momentum observables is uniquely suited to this task because such a protocol realizes measurements in the coherent state basis [12–15].

We now proceed to describing two protocols for optimal work extraction with incompatible quantum measurements of the quantum oscillator: a single-shot measurement protocol where measurements are described by projection onto the coherent state basis [14], and the time-continuous limit where continuous weak quantum measurements of both position and momentum of the quantum oscillator results in a coherent state whose coordinates diffuse in time [16].

A. Single-shot quantum measurements

The protocol takes place in three steps (see Fig. [1]):

- Step (a): The quantum oscillator thermalizes with the ambient inverse temperature, \(\beta = 1/k_B T \), yielding a thermal state, \(\rho(0) = e^{-\beta \hat{\mathcal{H}}} / Z \), where \(Z = \text{tr}\{e^{-\beta \hat{\mathcal{H}}}\} \).

- Step (b): The quantum oscillator is weakly measured in the coherent state basis \(\{ |\alpha\rangle \} \), yielding result \(\alpha \).

- Step (c) (work extraction): We suddenly shift the quantum harmonic trap, such that the coherent state \(|r\rangle \) is the new quantum ground state. In the process, we extract the amount of work, \(W = \hbar \omega r^2 > 0 \). The system thermalizes to the ambient temperature \(T \), completing the cycle.

In a quantum LC circuit implementation, the work extraction in step (c) would correspond to modifying the offset voltage in the capacitor suddenly. Alternatively, one can also modify the branch flux/current in the circuit, if the free evolution aligns the coherent state along the flux/current axis, or a combination of displacements in both voltage and current by an appropriate choice, \(\tau(\alpha) \). An alternate Binary-valued feedback protocol for the engine is presented in Appendix C.

B. Extractable work

The average amount of work extractable from the quantum harmonic oscillator in steps (a)–(c) is,

\[\langle W \rangle = \hbar \omega \int_0^{2\pi} d\theta \int_0^\infty rdr r^2 P_Q(r, \bar{n}) = \hbar \omega (1 + \bar{n}). \]

Note that the extra quantum added by the measurement process (see Appendix B) is also extracted perfectly in the feedback step. This additional quantum of energy is a purely quantum effect, which exceeds the classical bound on extractable work from the Brownian heat engine at zero temperature (see Appendix A). Addition
of extra noise from simultaneous measurement of non-
commuting observables is required by quantum mecha-
nics \[^{[21]}^{[47]}^{[31]}^{[55]}\], and our measurement engine exploits
the energetic consequence of this added noise by demon-
strating that it can be rectified to produce useful work.

The extracted work is also equal to the sum of the
average energy given by the thermal bath \((Q_T = \hbar \omega \bar{n})\)
and the average energy given by the measurement pro-
cess \((Q_M = \hbar \omega)\). Hence energy is conserved and we
have \(\langle W \rangle = Q_T + Q_M \equiv Q\). In addition, energy \(Q_M\)
is lost by the measuring apparatus such that the latter
has to be re-energized to be compatible with the Wigner-
Araki-Yanase theorem \[^{[56]}^{[59]}\]. The measurement engine
in this case also has unit work conversion efficiency, i.e.,
\(\eta = \langle W \rangle / Q = 1\). Above we have not accounted for
the additional cost to erase the memory of the Maxwell’s de-
mon, which is discussed in Appendix D \[^{[60]}\].

III. CONTINUOUS WEAK QUANTUM
MEASUREMENT PROTOCOL

We now describe a time-continuous operation of our
quantum oscillator measurement engine, where contin-
uous weak quantum measurement of both position and
momentum of the quantum oscillator results in a coher-
ent state whose coordinates diffuse in time. Work is
extracted by moving the bottom of the harmonic trap;
either time-continuously as measurement results are ac-
cumulated, or at the end.

For the engine, we assume that the oscillator is initia-
ized in a Gaussian state, so the first moments together
with the covariance matrix elements \(V_{ij} = \langle 1/2(\hat{q}_i -
q_i, \hat{q}_j - q_j)\rangle\), completely specify the quantum state \[^{[61]}\].
Here \(\hat{q}_1 = \hat{x}, \hat{q}_2 = \hat{p}, \) and \(q_i = \langle \hat{q}_i \rangle, i = 1, 2\). Simultane-
ous weak measurements of both the position and momen-
tum observables of the quantum harmonic oscillator
given the continuous readouts \(r_1(t)\) for position measure-
ment and \(r_2(t)\) for momentum measurement results in
the following stochastic quantum evolution of the quantum
harmonic oscillator state (in dimensionless units where
\(\hat{x} \rightarrow \sqrt{\hbar / \omega} \hat{x}, \hat{p} \rightarrow \hat{p} / \sqrt{\hbar \omega}, t \rightarrow \omega t\) \[^{[45]}\]):

\[
\begin{align*}
\frac{dq_1}{dt} &= q_2 + \frac{q_3}{2r_1}(r_1 - q_1) + \frac{q_4}{2r_2}(r_2 - q_2), \\
\frac{dq_2}{dt} &= -q_1 + \frac{q_4}{2r_1}(r_1 - q_1) + \frac{q_5}{2r_2}(r_2 - q_2), \\
\frac{dq_3}{dt} &= 2q_4 - \frac{q_3^2}{2r_1} - \frac{q_2^2}{2r_2} + \frac{1}{2r_2}, \\
\frac{dq_4}{dt} &= q_5 - q_3 - \frac{q_4q_5}{2r_1} - \frac{q_4q_5}{2r_2}, \\
\frac{dq_5}{dt} &= -2q_4 - \frac{q_4^2}{2r_1} - \frac{q_2^2}{2r_2} + \frac{1}{2r_1}.
\end{align*}
\]

The covariances are labeled by, \(q_3 = 2\langle \hat{x}^2 \rangle - \langle \hat{x} \rangle^2\), \(q_4 = \langle \hat{x}\hat{p} + \hat{p}\hat{x} \rangle - 2\langle \hat{x} \rangle \langle \hat{p} \rangle\), and \(q_5 = 2\langle \hat{p}^2 \rangle - \langle \hat{p} \rangle^2\). The read-
outs are stochastic variables, \(r_i = q_i + \sqrt{\tau_i} \zeta_i\), where
\(\zeta_i\) are a Gaussian white noise (due to quantum fluc-
tuations) satisfying \(\langle \zeta_i(t)\zeta_i(0) \rangle = \delta(t)\) and \(\tau_i\) are
the characteristic measurement times, defined as inverses of
the corresponding measurement rates \[^{[15]}^{[62]}^{[63]}\]. Work
can be extracted in the form of an instantaneous lin-
ear feedback Hamiltonian, \(H_f = f_1(\hat{x})\hat{x} + f_2(\hat{p})\hat{p}\), where
\(f_2(\hat{p}) = -\frac{q_2}{2\tau_1}\langle r_1 - \hat{q}_1 \rangle - \frac{q_4}{2\tau_2}\langle r_2 - \hat{q}_2 \rangle\) and \(f_1(\hat{x}) = \frac{q_3}{2\tau_1}\langle r_1 - \hat{q}_1 \rangle + \frac{q_5}{2\tau_2}\langle r_2 - \hat{q}_2 \rangle\) (see Appendix E). Here
\(\hat{q}_i, i = 1, 2\) are the predicted evolution of \(q_i\) in the absence
of measurements, given by, \(\hat{q}_1(t) = q_1(0) \cos t + q_2(0) \sin t\)
and \(\hat{q}_2(t) = -q_1(0) \sin t + q_2(0) \cos t\). A comparable
measurements and feedback scheme was also used in Ref. \[^{[60]}\]
to stabilize a quantum analogue of flywheel that stores
energy like a battery in its rotational motion.

We restrict to the case when \(\tau_1 = \tau_2 = \tau\) which pro-
duces coherent states of the quantum oscillator as mea-
surement outcomes and maximizes the engine’s efficiency
(see Appendix G). For the covariance matrix initialized
in its normal form, \(V = \text{diag}\{\nu, \nu\}\) with a correspond-
ning mean number of thermal photons \(\bar{n} = \nu - 1/2\), the
quantum measurement induced evolution is such that it
preserves the normal form of the covariance matrix \[^{[15]}\].

The work along an individual trajectory obeys (in the
Stratonovich form),

\[
\frac{d\langle W/\hbar \omega \rangle}{dt} = q_1 \dot{q}_1 + q_2 \dot{q}_2 - q_1 \left[\frac{q_3}{2\sqrt{r_1}} \zeta_1(t) + \frac{q_4}{2\sqrt{r_1}} \zeta_2(t) \right] + q_2 \left[\frac{q_4}{2\sqrt{r_1}} \zeta_1(t) + \frac{q_5}{2\sqrt{r_1}} \zeta_2(t) \right].
\]

The probability distribution of work extracted at arbitrary
finite time is given by,

\[
P\left(W/\hbar \omega, t \right) = \frac{\tau}{\sigma(t)} \exp \left[-\frac{\tau W}{\sigma(t)\hbar \omega} \right],
\]

so the work extracted on an average is given by \(\langle W/\hbar \omega \rangle = \sigma(t)/\tau\). The parameter \(\sigma(t)\) equals \(\nu^2(t)dt\) if work is
extracted after every measurement of duration \(dt\). If
the controller decides to apply feedback only after a du-
ration \(t\), the work distribution corresponds to the case
\(\sigma(t) = \int_0^t dt' \nu^2(t')\) in Eq. \(^{[5]}\). The nonzero average work
results from rectifying the quantum noise in the measure-
ment process, and is nonzero even at zero temperature
(see Appendix F). The average power \(J\) of the quantum
measurement engine is given by,

\[
J(t) = d\langle W/\hbar \omega \rangle / dt = \nu^2(t)/\tau,
\]

which serves as a useful quantity to infer the relation be-
tween rate of information acquisition (the measurement
rate) and work extraction for the continuous measure-
ment engine; work is extracted at a faster rate as the
measurement rate \(\tau^{-1}\) is increased. Further, a larger \(\nu(t)\)
corresponding to a higher thermal quanta in the initial
state also allows higher power.
The dynamical equations which describe the evolution of covariance matrix elements are deterministic, and they achieve the steady state value, \(\lim_{t \to \infty} \nu(t) = 1/2 \). In this limit—which is also the steady state of the quantum measurement engine—the quantum measurement dynamics describes coherent state diffusion. The measurement engine also achieves unit efficiency in its steady state; since the measurement merely displaces the ground state (where \(\nu(t) = 1/2 \)), the feedback resets the engine perfectly, closing the engine’s cycle.

IV. CONCLUSIONS

We have characterized a quantum engine fueled by simultaneous quantum measurements of both position and momentum observables of a simple harmonic oscillator. We discussed two protocols for operation of the engine, respectively powered by single-shot and continuous quantum measurements. In both cases, the measurement produces a displaced ground state of the quantum oscillator, and work is extracted by shifting the bottom of the harmonic trap suddenly. When compared to their classical counterpart, the quantum engines yield non-zero work output even at zero temperature, demonstrating the en-
ergetic consequence of the quantum of noise added when both quadratures are measured simultaneously; at zero temperature the nonzero work output results from the feedback utilizing the quantum of energy inserted by the phase preserving measurement [44, 47, 51–55]. We also derived exact analytical expressions for the probability distributions of extractable work in both transient and steady state of the quantum engine. The availability of exact probability distributions of extractable work may further aid research towards thermodynamically characterizing quantum measurement engines, and derive quantum fluctuation theorems for quantum engines and refrigerators fueled solely by the quantum measurement process [13, 14, 38, 67, 68].

Note added.—Towards the completion of this work, we became aware of a closely related preprint [39] investigating work extraction from thermal resources using phase sensitive measurements, as opposed to the phase preserving measurements discussed in the present article.

V. ACKNOWLEDGEMENTS

This work was supported by the John Templeton Foundation Grant No. 61835. The work of A.A. was supported by the Foundational Questions Institute Fund (Grant No. FQXi-IAF19-05), the Foundational Questions Institute Fund (Grant No. FQXi-IAF19-01) and the ANR Research Collaborative Project “Qu-DICE” (Grant No. ANR-PRC-CES47). The work of S.K.M. was supported in part by the Wallenberg Initiative on Networks and Quantum Information (WINQ). Nordita is partially supported by Nordforsk. We acknowledge fruitful discussions with Tathagata Karmakar, Philippe Lewalle, Masahito Ueda, Benjamin Huard, Rémy Dasonneville, and Léa Bresque.
FIG. 3. Cyclic operation of the classical Brownian heat engine [40, 41]. (a) The Brownian particle in a harmonic trap is initially thermalized to a heat bath at temperature T. (b) The demon measures position of the Brownian particle. (c) Work is extracted by displacing the trap conditioned on the measurement outcome.

Appendix A: The Brownian heat engine

The classical limit of the engine is described by a Brownian particle in a harmonic trap, whose position x is distributed according to the equilibrium distribution $P(x) = \frac{1}{\sqrt{2\pi k_B T}} e^{-\frac{k x^2}{2 k_B T}}$, where k is the spring constant, k_B is Boltzmann’s constant and T is the temperature of the heat bath (see Fig. 3) [40, 41]. A Maxwell’s demon extracts work from the heat bath by measuring the particle’s position x, followed by shifting the bottom of the harmonic trap suddenly to the new position of the particle. If the measurement performed is error free with ideal feedback, it is possible to convert all the available information to extractable work, $W = \frac{k x^2}{2}$ [40]. The demon in this case extracts work on an average, $\langle W \rangle = \frac{k_B T}{2}$ per cycle, which also saturates the achievable upper-bound for extractable work by moving the trap in the classical Brownian engine limit [40].

Appendix B: Energy contributed by measurement

The unconditional state of the quantum oscillator after a coherent state basis measurement (implemented by a simultaneous weak measurement of both position and momentum quadratures, also known as a phase-preserving measurement) can be written as,

$$\rho_A = \int d^2 \alpha Q(\alpha)|\alpha\rangle\langle \alpha|,$$

(B1)

where $Q(\alpha) = \frac{1}{\pi(1+n)} e^{-|\alpha|^2/(1+n)}$, is the Husimi Q distribution [50] of a thermal state (denoted as \mathcal{P}_Q in Eq. (1) of the main text) with average number of thermal quanta \bar{n}. We can now compute the average number of quanta in the unconditional post-measurement state ρ, given by,

$$\langle \hat{N} \rangle_A = \text{tr}\{\rho_A \hat{N}\} = \text{tr}[\rho_A a^\dagger a] = \int d^2 \alpha Q(\alpha)|\alpha|^2 = \bar{n} + 1.$$

(B2)

We find that the measurement, on an average, adds one quantum of energy to the oscillator, which is then perfectly extracted in the feedback step. The additional quantum in $Q(\alpha)$ stems from the fact that the coherent state basis is overcomplete; even measurement of the vacuum state will in general yield a coherent state with finite α.

Note that the addition of single quantum is a generic property of coherent state basis measurements which can be implemented by a simultaneous weak measurement of both position and momentum of the quantum particle [44]. To see this, we can write an arbitrary initial quantum state ρ in the P representation as using the coherent state basis $|\beta\rangle$,

$$\rho = \int d^2 \beta P(\beta)|\beta\rangle\langle \beta|.$$

(B3)

The P representation can be derived from the initial density matrix ρ in different equivalent ways, for instance see Ref. [69], where it is defined as,

$$P(\beta) = \frac{e^{||\beta||^2}}{\pi^2} \int \langle -\gamma | \rho | \gamma \rangle \exp(\gamma^2 + \gamma^* \beta - \beta^* \gamma) d^2 \gamma,$$

(B4)

where $|\gamma\rangle$ are again coherent states. The different equivalent P representations of ρ are constrained to obey the optical equivalence theorem for the density matrix ρ for the expectation value of any normally ordered operator:
\((a^{\dagger}a)^m = \text{tr}[\rho(a^{\dagger}a)^m] = \int d^2\beta P(\beta)(\beta^*)^m \beta^m\). As an example, the average number of quanta in the initial density matrix \(\rho\) may be computed using the P function as, \(\langle \hat{N} \rangle = \langle a^{\dagger}a \rangle = \text{tr}[\rho(a^{\dagger}a)] = \int d^2\beta P(\beta)|\beta|^2 = \bar{n}\). The P function for a coherent state \(|\alpha\rangle\langle\alpha|\) is the delta function, \(P(\beta) = \delta(\beta - \alpha)\) and a P representation for a thermal state with average number of thermal quanta \(\bar{n}\) is, \(P(\beta) = \frac{1}{\pi}\exp(-|\beta|^2/\bar{n})\).

On the other hand, performing a measurement in the coherent state basis produces coherent states \(|\alpha\rangle\) with probability \(Q(\alpha) = \frac{1}{\pi}|\alpha|^2 \rho(\alpha)\), which is known as the Q representation of the density matrix \(\rho\). The unconditional post measurement state \(\rho_A\) can be written as the following ensemble where the probabilities are given by the Q function [50, 70],

\[
\rho_A = \int d^2\alpha Q(\alpha)|\alpha\rangle\langle\alpha|. \tag{B5}
\]

So a method to probe the Q function of a quantum state experimentally is to perform measurements in the coherent state basis. Here we first discuss Landauer erasure in the Binary feedback protocol discussed above. The memory in this example behaves essentially like a logical bit, with states \(L\) or \(R\), indicating if the particle is to the left of \(r_0/2\) or to the right of \(r_0/2\). The minimum energy cost to erase the memory can be accounted for by the Landauer’s bound as [71],

\[
W'_\text{res} = k_B T_D H(p_0). \tag{D1}
\]

The average work extracted in this protocol is,

\[
\langle W' \rangle = \hbar\omega \int_{0}^{2\pi} d\theta \int_{r_0/2}^{\infty} r dr P(r, \bar{n})(2rr_0 - r_0^2)
= \hbar\omega r_0 \sqrt{(1 + \bar{n}) \text{erf} \frac{r_0}{2\sqrt{1 + \bar{n}}}}. \tag{C1}
\]

Here \(\text{erf}(u) = 2\pi^{-1/2} \int_{u}^{\infty} e^{-y^2} dy\). The efficiency is less than that of the continuous feedback scheme, \(\eta' = \frac{\langle W' \rangle}{\epsilon} < 1\), and has a maximum, \(\eta'_{\text{max}} \approx 0.85\) (Fig. I). The classical analogue of this protocol is presented in Ref. [31].

Appendix C: Binary feedback

The engine’s implementation with single shot measurements and a binary-valued feedback is as follows:

- **Step (a)–(b)** are identical to that discussed in the main text.
- **Step (c) (work extraction):** When the amplitude of the measured coherent state is greater than \(r_0/2\), work is extracted by shifting the trap to \(r_0\), and the system is let to thermalize. Otherwise, no action is performed. The work extracted is zero if \(r < r_0/2\) and the work extracted is \(\hbar\omega(2rr_0 - r_0^2)\) for \(r \geq r_0/2\).

The average work extracted in this protocol is,

\[
\langle W' \rangle = \hbar\omega \int_{0}^{2\pi} d\theta \int_{r_0/2}^{\infty} r dr P(r, \bar{n})(2rr_0 - r_0^2)
= \hbar\omega r_0 \sqrt{(1 + \bar{n}) \text{erf} \frac{r_0}{2\sqrt{1 + \bar{n}}}}. \tag{C1}
\]

Here \(\text{erf}(u) = 2\pi^{-1/2} \int_{u}^{\infty} e^{-y^2} dy\). The efficiency is less than that of the continuous feedback scheme, \(\eta' = \frac{\langle W' \rangle}{\epsilon} < 1\), and has a maximum, \(\eta'_{\text{max}} \approx 0.85\) (Fig. I). The classical analogue of this protocol is presented in Ref. [31].

Appendix D: Cost of memory erasure and the efficiency of the engine

Here we first discuss Landauer erasure in the Binary feedback protocol discussed above. The memory in this example behaves essentially like a logical bit, with states \(L\) or \(R\), indicating if the particle is to the left of \(r_0/2\) or to the right of \(r_0/2\). The minimum energy cost to erase the memory can be accounted for by the Landauer’s bound as [71],

\[
W'_\text{res} = k_B T_D H(p_0). \tag{D1}
\]
Here \(H(p_0) = -p_0 \log p_0 - (1 - p_0) \log (1 - p_0) \), where we have defined \(p_0 \) as the concatenated probability of finding the particle to the right of \(r_0/2 \):

\[
p_0 = \int d\theta \int_{r_0/2}^{\infty} r dr \mathcal{P}(r, \bar{n}) = e^{-\frac{r_0^2}{4(\pi + 1)}}. \tag{D2}
\]

The Shannon entropy is indeed bounded from above by \(\log 2 \) as expected for a classical bit memory. The efficiency \(\eta'_T \) of the thermodynamic cycle can now be computed,

\[
\eta'_T = \frac{\langle W' \rangle - W_{\text{res}}'}{Q} = \frac{\langle W' \rangle - k_B T_D H(p_0)}{Q}. \tag{D3}
\]

We now look at continuous measurement examples where at each step both the information stored, and the feedback are continuous-valued. The associated probability density is \(\mathcal{P}(r_1, r_2) \), where \(r_1, r_2 \) are the readout variables. As an extension of the above example, we consider a countable discretization for the probability distribution of the readouts \(\mathcal{P}(r_{1i}, r_{2j}) \) where the sampling is done according to bins around points \(r_{1i}, r_{2j} \) having bin area \(\delta^2 \) such that,

\[
\mathcal{P}(r_{1i}, r_{2j}) \delta^2 = \int_{i\delta}^{(i+1)\delta} \int_{j\delta}^{(j+1)\delta} dr_1 dr_2 \mathcal{P}(r_1, r_2), \tag{D4}
\]

by the mean value theorem \[72\]. Here \(\delta^2 \) can be related to the resolution of the detector. The entropy of this discrete probability distribution is given by,

\[
H(\mathcal{P}) = -\sum_{i,j} \delta^2 \mathcal{P}(r_{1i}, r_{2j}) \log [\mathcal{P}(r_{1i}, r_{2j}) \delta^2] = -\sum_{i,j} \delta^2 \mathcal{P}(r_{1i}, r_{2j}) \log [\mathcal{P}(r_{1i}, r_{2j})] - \sum_{i,j} \delta^2 \mathcal{P}(r_{1i}, r_{2j}) \log \delta^2. \tag{D5}
\]

Assuming \(\mathcal{P}(r_1, r_2) \log \mathcal{P}(r_1, r_2) \) is Riemann integrable, we note that the first term

\[-\sum_{i,j} \delta^2 \mathcal{P}(r_{1i}, r_{2j}) \log [\mathcal{P}(r_{1i}, r_{2j})] \rightarrow -\int dr_1 dr_2 \mathcal{P}(r_1, r_2) \log \mathcal{P}(r_1, r_2) = H(\mathcal{P}) \text{ when } \delta \rightarrow 0. \]

We also note that \(\sum_{i,j} \delta^2 \mathcal{P}(r_{1i}, r_{2j}) = 1 \). Therefore for a discretization into squares of area \(\delta^2 \), the associated Shannon entropy scales approximately as, \(H(\mathcal{P}) = H(\bar{\mathcal{P}}) = \log^2 [\bar{\mathcal{P}}] \). The efficiency of the thermodynamic cycle at each step becomes,

\[
\eta_T = \frac{\langle W \rangle - W_{\text{res}}}{Q} = \frac{\langle W \rangle - k_B T_D H(\bar{\mathcal{P}})}{Q}, \tag{D6}
\]

where \(\langle W \rangle \) is the average work extracted at each step.

Appendix E: Continuous feedback

The work extraction protocol is essentially a linear feedback stabilization protocol for the quantum oscillator. The effect of a linear Hamiltonian \(H_{fb} = f_1 \hat{x} + f_2 \hat{p} \) on the quantum mechanical averages of \(\hat{x} \) and \(\hat{p} \) when measurements are done continuously is,

\[
\frac{dq_1}{dt} = q_2 + \frac{q_3}{2\tau_1} (r_1 - q_1) + \frac{q_4}{2\tau_2} (r_2 - q_2) + f_2, \quad \frac{dq_2}{dt} = -q_1 + \frac{q_4}{2\tau_1} (r_1 - q_1) + \frac{q_5}{2\tau_2} (r_2 - q_2) - f_1, \tag{E1}
\]

where \(q_1 = \langle \hat{x} \rangle \) and \(q_2 = \langle \hat{p} \rangle \). Therefore we can choose the amplitude of the linear feedback Hamiltonian, \(f_2(t) = -\frac{q_2}{\tau_2} [r_1(t) - \bar{q}_1(t)] - \frac{q_5}{\tau_2} [r_2(t) - \bar{q}_2(t)] \) and \(f_1(t) = \frac{q_4}{\tau_1} [r_1(t) - \bar{q}_1(t)] + \frac{q_5}{\tau_2} [r_2(t) - \bar{q}_2(t)] \) such that the unitary evolution resulting from feedback effectively cancels the measurement back-action on the quantum state. Here \(\bar{q}_i, i = 1, 2 \) is the predicted evolution of \(q_i \) in the absence of measurements, given by, \(\bar{q}_1(t) = q_1(0) \cos t + q_2(0) \sin t \) and \(\bar{q}_2(t) = -q_1(0) \sin t + q_2(0) \cos t \), in units where \(t \to \omega t \).

Appendix F: Work extracted on average in the continuous measurement protocol

As discussed in the main text, the work extracted along an individual quantum trajectory in the continuous measurement protocol satisfies the following stochastic equation,

\[
\frac{d(W/\hbar \omega)}{dt} = q_1 \dot{q}_1 + q_2 \dot{q}_2 = q_1 \left[\frac{q_3}{2\sqrt{7}} \zeta_1(t) + \frac{q_4}{2\sqrt{7}} \zeta_2(t) \right] + q_2 \left[\frac{q_4}{2\sqrt{7}} \zeta_1(t) + \frac{q_5}{2\sqrt{7}} \zeta_2(t) \right]. \tag{F1}
\]
We further assume initial conditions $q_1(0) = q_2(0) = 0$ and $q_3(0) = q_5(0)$, $q_4(0) = 0$. As a result, the extractable work at arbitrary time t is the integral, $W(t)/\hbar \omega = \int_0^t dt' \left[q_1(t') \frac{q_3(t')}{2\sqrt{\tau}} \zeta_1(t') + q_2(t') \frac{q_5(t')}{2\sqrt{\tau}} \zeta_2(t') \right]$. The above integral is cast in the Stratonovich form and can be discretized as,

$$\int_0^t dt' \left[q_1(t') \frac{q_3(t')}{2\sqrt{\tau}} \zeta_1(t') + q_2(t') \frac{q_5(t')}{2\sqrt{\tau}} \zeta_2(t') \right] = \frac{dt'}{2\sqrt{\tau}} \sum_{i=1}^{N-1} q_1^{i+1} + \frac{dt'}{2\sqrt{\tau}} \sum_{i=1}^{N-1} q_3^{i+1} + \frac{dt'}{2\sqrt{\tau}} \sum_{i=1}^{N-1} q_5^{i+1} - \frac{dt'}{2\sqrt{\tau}} \sum_{i=1}^{N-1} q_3^{i+1} - \frac{dt'}{2\sqrt{\tau}} \sum_{i=1}^{N-1} q_5^{i+1}. \quad (F2)$$

Here $q_3(t')$, $q_5(t')$ are the quadrature variances which evolve deterministically according to Eq. (3) of the main text. We can now use the relations, $q_1^{i+1} = q_1^i + dt' \left(q_2^i + \frac{q_5^i}{2\sqrt{\tau}} \zeta_1^i \right)$, and $q_2^{i+1} = q_2^i + dt' \left(-q_1^i + \frac{q_3^i}{2\sqrt{\tau}} \zeta_2^i \right)$ (together with the observation that the stochastic averages of terms which are linear in ζ vanish, and $\zeta^2 dt' = 1$ by Ito's rule) in order to compute the stochastic average of extractable work. We have,

$$\langle W/\hbar \omega \rangle = \left\langle \frac{dt'}{2\sqrt{\tau}} \sum_{i=1}^{N-1} 2q_1^i + dt' \left(q_2^i + \frac{q_3^i}{2\sqrt{\tau}} \zeta_1^i \right) q_3^i \zeta_1^i + \frac{dt'}{2\sqrt{\tau}} \sum_{i=1}^{N-1} 2q_2^i + dt' \left(-q_1^i + \frac{q_3^i}{2\sqrt{\tau}} \zeta_2^i \right) q_5^i \zeta_2^i \right\rangle,$$

$$= \frac{dt'}{8\tau} \sum_{i=1}^{N-1} (q_3^i)^2 + (q_5^i)^2 \approx \frac{1}{\tau} \int_0^t dt' \nu(t')^2. \quad (F3)$$

Above we have defined $\nu(t') = q_3(t')/2 = q_5(t')/2$, when $q_3(0) = q_5(0)$, and $q_4(0) = 0$. It follows that work is extracted at a rate, $d\langle W/\hbar \omega \rangle/dt' = \nu^2(t')/\tau$. The above calculation also shows that the extracted work originates from the noise due to quantum fluctuations in the simultaneous quantum measurement process, with each quadrature measurement channel contributing work at a rate $\nu^2(t')/(2\tau)$.

Ito interpretation

The extracted work is given by, $W/\hbar \omega = (q_3^2 + q_5^2)/2 = f(q_1, q_2)$. Using Ito's lemma, we have,

$$df = \frac{\partial f}{\partial t'} dt' + \frac{\partial f}{\partial q_1} dq_1 + \frac{\partial f}{\partial q_2} dq_2 + \frac{1}{2} \frac{\partial^2 f}{\partial q_1^2} dq_1^2 + \frac{1}{2} \frac{\partial^2 f}{\partial q_2^2} dq_2^2 + \frac{\partial^2 f}{\partial q_1 \partial q_2} dq_1 dq_2 + \ldots \quad (F4)$$

Also note that $\frac{\partial f}{\partial t} = 0$, $\frac{\partial f}{\partial q_1} = q_1$, $\frac{\partial f}{\partial q_2} = q_2$, $\frac{\partial^2 f}{\partial q_1^2} = 1$ and $\frac{\partial^2 f}{\partial q_1 \partial q_2} = 0$. We can also use the coordinate equations in the Ito form, given by:

$$dq_1 = q_2 dt' + \frac{q_3}{2\sqrt{\tau}} dW_1 + \frac{q_4}{2\sqrt{\tau}} dW_2,$$

$$dq_2 = -q_1 dt' + \frac{q_4}{2\sqrt{\tau}} dW_1 + \frac{q_5}{2\sqrt{\tau}} dW_2. \quad (F5)$$

Here $W_i, \ i = 1, 2, \ldots$, are the Wiener increments. Substituting in Eq. (F4), we get the following differential,

$$df = q_1 \left(q_2 dt' + \frac{q_3}{2\sqrt{\tau}} dW_1 + \frac{q_4}{2\sqrt{\tau}} dW_2 \right) + q_2 \left(-q_1 dt' + \frac{q_4}{2\sqrt{\tau}} dW_1 + \frac{q_5}{2\sqrt{\tau}} dW_2 \right)$$

$$+ \frac{1}{2} \left[\left(q_2 dt' + \frac{q_3}{2\sqrt{\tau}} dW_1 + \frac{q_4}{2\sqrt{\tau}} dW_2 \right)^2 + \left(-q_1 dt' + \frac{q_4}{2\sqrt{\tau}} dW_1 + \frac{q_5}{2\sqrt{\tau}} dW_2 \right)^2 \right] + \ldots \quad (F6)$$

We are interested in the case when $q_3(0) = q_5(0)$, and $q_4(0) = 0$ [leading to $q_3(t') = q_5(t') = 2\nu(t')$, and $q_4(t') = 0$]. Further we use $dW_i^2 = dt'$ and keep terms of order dt' or less to obtain,

$$df = q_1 \frac{q_3}{2\sqrt{\tau}} dW_1 + q_2 \frac{q_5}{2\sqrt{\tau}} dW_2 + \frac{1}{2} \left(\frac{q_3^2}{4\tau} dt' + \frac{q_5^2}{4\tau} dt' \right) = \frac{\nu(t')^2}{\tau} dt' + \frac{q_1 q_3}{2\sqrt{\tau}} dW_1 + \frac{q_2 q_5}{2\sqrt{\tau}} dW_2. \quad (F7)$$

The drift terms vanish upon stochastic average, demonstrating that the average power J delivered by the engine is $J(t') = \frac{\nu(t')^2}{\tau}$. The unit of energy, $\hbar \omega$, is implicit in the energy (power) definition, J.
FIG. 4. The efficiency of the engine in the binary feedback $\eta' = \langle W' \rangle / Q$, as a function of the average number of thermal photons in the initial state \bar{n} and r_0. The dashed black line indicates the contour line of maximum η': $\eta'_{\text{max}}(\bar{n}, r_0) \approx 0.85$.

Appendix G: Efficiency of the engine with continuous feedback

We define the stochastic energy of the quantum oscillator as $Q/\hbar \omega = H/\hbar \omega - 1/2 = (\langle \hat{p}^2 \rangle + \langle \hat{x}^2 \rangle)/2 = \text{var}(x) + \text{var}(p) + (\langle x \rangle^2 + \langle p \rangle^2)/2 - 1/2 = (q_1^2 + q_2^2)/2 + (q_3 + q_5)/4 - 1/2 = W/\hbar \omega + (q_3 + q_5)/4 - 1/2$. We have identified the energy stored in the displacement as extractable work, W. The subtracted half corresponds to the zero-point energy of the quantum oscillator. When $\tau_1 = \tau_2 = \tau$, $q_3(t) = q_5(t) = 2\nu(t)$, and $q_4(t) = 0$. In this case we obtain,

$$Q/\hbar \omega = W/\hbar \omega + 4\nu(t)/4 - 1/2 \xrightarrow{t \gg \tau} W/\hbar \omega,$$

since in the steady state ($t \gg \tau$) we have $\lim \nu(t) = 1/2$. We thus notice that in the continuous feedback case, when work is extracted after each measurement, the extracted work $W \rightarrow Q$ in the long time limit, demonstrating that the work conversion efficiency of the engine $\eta = W/Q \rightarrow 1$. Here the energy extracted as work differs from the average Hamiltonian change for the quantum oscillator in the transient regime, which includes energy stored in the variances of \hat{x} and \hat{p} that evolve according to Eq. (3). Moving the bottom of the trap—which extracts part of the average Hamiltonian change as work—preserves the variances. Extracted work becomes equal to the average Hamiltonian change in the steady state, when the variances reach their fixed point values. The efficiency of the engine in three cases, $\tau_2 = \tau_1$, $\tau_2 = 0.9\tau_1$, and $\tau_2 = 1.2\tau_1$ are shown in Fig. 5. We note that unit efficiency is reached in the steady state when $\tau_2 = \tau_1$.

[1] Sai Vinjanampathy and Janet Anders, “Quantum thermodynamics,” Contemporary Physics 57, 545–579 (2016), publisher: Taylor & Francis eprint: https://doi.org/10.1080/00107514.2016.1201896.
[2] John Goold, Marcus Huber, Arnau Riera, LÁѐdia del Rio, and Paul Skrzypczyk, “The role of quantum information in thermodynamics—a topical review,” Journal of Physics A: Mathematical and Theoretical 49, 143001 (2016), publisher: IOP Publishing.
[3] Felix Binder, Luis A. Correa, Christian Gogolin, Janet Anders, and Gerardo Adesso, eds., Thermodynamics in the Quantum Regime: Fundamental Aspects and New Directions, 1st ed. (Springer, 2019).
[4] Andrew N. Jordan, Cyril Elouard, and Alexia Auffeves, “Quantum measurement engines and their relevance for quantum interpretations,” Quantum Studies: Mathematics and Foundations 7, 203–215 (2020).
[5] Cyril Elouard and Andrew N. Jordan, “Efficient Quantum Measurement Engines,” Physical Review Letters 120, 260601 (2018), publisher: American Physical Society.
[6] Kurt Jacobs, “Second law of thermodynamics and quantum feedback control: Maxwell’s demon with weak measurements,” Physical Review A 80, 012322 (2009), publisher: American Physical Society.
FIG. 5. The efficiency of the engine in three cases, $\tau_2 = \tau_1$, $\tau_2 = 0.9\tau_1$, and $\tau_2 = 1.2\tau_1$, averaged over 10^4 quantum trajectories. We note that unit efficiency is reached in the steady state when $\tau_2 = \tau_1$.

[7] Xuehao Ding, Juyeon Yi, Yong Woon Kim, and Peter Talkner, “Measurement-driven single temperature engine,” Physical Review E 98, 042122 (2018) publisher: American Physical Society.

[8] Andrea Solfanelli, Lorenzo Buffoni, Alessandro Cuccoli, and Michele Campisi, “Maximal energy extraction via quantum measurement,” Journal of Statistical Mechanics: Theory and Experiment 2019, 094003 (2019) publisher: IOP Publishing.

[9] Cyril Elouard, Mordecai Waegell, Benjamin Huard, and Andrew N. Jordan, “An Interaction-Free Quantum Measurement-Driven Engine,” Foundations of Physics 50, 1294–1314 (2020)

[10] Arpan Das and Sibasish Ghosh, “Measurement Based Quantum Heat Engine with Coupled Working Medium,” Entropy 21, 1131 (2019) number: 11 Publisher: Multidisciplinary Digital Publishing Institute.

[11] Tiago Debarba, Gonzalo Manzano, Yelena Guryanova, Marcus Huber, and Nicolai Friis, “Work estimation and work fluctuations in the presence of non-ideal measurements,” New Journal of Physics 21, 113002 (2019), publisher: IOP Publishing.

[12] Juyeon Yi, Peter Talkner, and Yong Woon Kim, “Single-temperature quantum engine without feedback control,” Physical Review E 96, 022108 (2017) publisher: American Physical Society.

[13] Lorenzo Buffoni, Andrea Solfanelli, Paola Verrucchi, Alessandro Cuccoli, and Michele Campisi, “Quantum Measurement Cooling,” Physical Review Letters 122, 070603 (2019) publisher: American Physical Society.

[14] Cyril Elouard, David Herrera-Marti, Benjamin Huard, and Alexia Auffeves, “Extracting Work from Quantum Measurement in Maxwell’s Demon Engines,” Physical Review Letters 118, 260603 (2017) publisher: American Physical Society.

[15] Stella Seah, Stefan Nimmrichter, and Valerio Scarani, “Maxwell’s Lesser Demon: A Quantum Engine Driven by Pointer Measurements,” Physical Review Letters 124, 100603 (2020) publisher: American Physical Society.

[16] Lea Bresque, Patrice A. Camati, Spencer Rogers, Kater Murch, Andrew N. Jordan, and Alexia Auffeves, “Two-Qubit Engine Fueled by Entanglement and Local Measurements,” Physical Review Letters 126, 120605 (2021) publisher: American Physical Society.

[17] R. Vijay, C. Macklin, D. H. Slichter, S. J. Weber, K. W. Murch, R. Naik, A. N. Korotkov, and I. Siddiqi, “Stabilizing Rabi oscillations in a superconducting qubit using quantum feedback,” Nature 490, 77–80 (2012) number: 7362 Publisher: Nature Publishing Group.

[18] P. Campagne-Ibarcq, E. Flurin, N. Roch, D. Darson, P. Morfin, M. Mirrahimi, M. H. Devoret, F. Mallet, and B. Huard, “Persistent Control of a Superconducting Qubit by Stroboscopic Measurement Feedback,” Physical Review X 3, 021008 (2013) publisher: American Physical Society.

[19] D. Riste, M. Dukalski, C. A. Watson, G. de Lange, M. J. Tiggelman, Ya M. Blanter, K. W. Lehnert, R. N. Schouten, and L. DiCarlo, “Deterministic entanglement of superconducting qubits by parity measurement and feedback,” Nature 502, 350–354 (2013) number: 7471 Publisher: Nature Publishing Group.

[20] Clement Sayrin, Igor Dotsenko, Xingxing Zhou, Bruno Peau de Cercer, Theo Rybarczyk, Sebastien Gleyzes, Pierre Rouochon, Mazyar Mirrahimi, Hadis Amini, Michel Brune, Jean-Michel Raimond, and Serge Haroche, “Real-time quantum feedback prepares and stabilizes photon number states,” Nature 477, 73–77 (2011) number: 7362 Publisher: Nature Publishing Group.

[21] X. Zhou, I. Dotsenko, B. Peau de Cercer, T. Rybarczyk, C. Sayrin, S. Gleyzes, J. M. Raimond, M. Brune, and S. Haroche, “Field Locked to a Fock State by Quantum Feedback with Single Photon Corrections,” Physical Review Letters 108, 243602 (2012) publisher: American Physical Society.

[22] Daniel A. Steck, Kurt Jacobs, Hideo Mabuchi, Tanmoy Bhattacharya, and Salman Habib, “Quantum Feedback Control of Atomic Motion in an Optical Cavity,” Physical Review Letters 92, 223004 (2004) publisher: American Physical Society.

[23] D. Leibfried, R. Blatt, C. Monroe, and D. Wineland, “Quantum dynamics of single trapped ions,” Reviews of Modern Physics 75, 281–324 (2003) publisher: American Physical Society.
[24] Philipp Schindler, Julio T. Barreiro, Thomas Monz, Volckmar Nebendahl, Daniel Nigg, Michael Chwalla, Markus Henrich, and Rainer Blatt, “Experimental Repetitive Quantum Error Correction,” Science 332, 1059–1061 (2011) publisher: American Association for the Advancement of Science Section: Report.

[25] Pavel Bushev, Daniel Rotter, Alex Wilson, FranAAtois Dubin, Christoph Becher, Jurgen Eschner, Rainer Blatt, Viktor Steixner, Peter Rabl, and Peter Zoller, “Feedback Cooling of a Single Trapped Ion,” Physical Review Letters 96, 043003 (2006) publisher: American Physical Society.

[26] Jan Gieseler, Bradley Deutsch, Romain Quidant, and Lukas Novotny, “Subkelvin Parametric Feedback Cooling of a Laser-Trapped Nanoparticle,” Physical Review Letters 109, 103603 (2012) publisher: American Physical Society.

[27] B. D’Urso, B. Odom, and G. Gabrielse, “Feedback Cooling of a One-Electron Oscillator,” Physical Review Letters 90, 043001 (2003) publisher: American Physical Society.

[28] Massimiliano Rossi, David Mason, Junxun Chen, Yeghishe Tsatsuryan, and Albert Schliesser, “Measurement-based quantum control of mechanical motion,” Nature 563, 53–58 (2018) number: 7729 Publisher: Nature Publishing Group.

[29] V. Sudhir, D.J. Wilson, R. Schilling, H. Schütz, S.A. Fedorov, A.H. Ghadimi, A. Nunnenkamp, and T.J. Kippenberg, “Appearance and Disappearance of Quantum Correlations in Measurement-Based Feedback Control of a Mechanical Oscillator,” Physical Review X 7, 011001 (2017) publisher: American Physical Society.

[30] Y. Masuyama, K. Funo, Y. Murashita, A. Noguchi, S. Kono, Y. Tabuchi, R. Yamazaki, M. Ueda, and Y. Nakamura, “Information-to-work conversion by Maxwell’s demon in a superconducting circuit quantum electrodynamical system,” Nature Communications 9, 1291 (2018) number: 1 Publisher: Nature Publishing Group.

[31] Harvey S. Leff and Andrew F. Rex, Maxwell’s Demon: Entropy, Information, Computing (Princeton University Press, 2003) google-Books-ID: fRBBAQAAIAAJ.

[32] Nathanael Cottet, Sebastien Jezouin, Landry Bretheau, Philippe Campagne-Ibarcq, Quentin Ficheux, Janet Anders, Alexia Auffeves, Reni Azouit, Pierre Rouchon, and Benjamin Huard, “Observing a quantum Maxwell demon at work,” Proceedings of the National Academy of Sciences 114, 7561–7564 (2017) publisher: National Academy of Sciences Section: Physical Sciences.

[33] M. Naghili, J. J. Alonso, A. Romito, E. Lutz, and K. W. Murch, “Information Gain and Loss for a Quantum Maxwell’s Demon,” Physical Review Letters 121, 030604 (2018) publisher: American Physical Society.

[34] Patrice A. Camati, John P. S. Peterson, Tiago B. Batalhao, Kaonan Micadei, Alexandre M. Souza, Roberto S. Sarthour, Jonne V. Koski, Ville F. Maisi, Jukka P. Pekola, and Dmitri V. Averin, “Experimental realization of a Szilard engine with a single electron,” Proceedings of the National Academy of Sciences 111, 13786–13789 (2014) publisher: National Academy of Sciences Section: Physical Sciences.

[35] J.V. Koski, A. Kuttvon, I.M. Khaymovich, T. Ala-Nissila, and J.P. Pekola, “On-Chip Maxwell’s Demon as an Information-Powered Refrigerator,” Physical Review Letters 115, 260602 (2015) publisher: American Physical Society.

[36] James Klatzow, Jonas N. Becker, Patrick M. Ledingham, Christian Weinzel, Krzysztof T. Kaczmarek, Dylan J. Saunders, Joshua Nunn, Ian A. Walmsley, Raam Uzdin, and Eilon Poem, “Experimental Demonstration of Quantum Effects in the Operation of Microscopic Heat Engines,” Physical Review Letters 122, 110601 (2019) publisher: American Physical Society.

[37] Cyril Elouard, David A. Herrera-MartÁ, Maxime Clusel, and Alexia Auffeves, “The role of quantum measurement in stochastic thermodynamics,” npj Quantum Information 3, 1–10 (2017), number: 1 Publisher: Nature Publishing Group.

[38] Tomas Opatrný, Avijit Misra, and Gershon Kurizki, “Work Generation from Thermal Noise by Quantum Phase-Sensitive Observation,” arXiv:2106.09653 [quant-ph] (2021), arXiv: 2106.09653.

[39] Yuto Ashida, Ken Funo, Yuto Murashita, and Masahito Ueda, “General achievable bound of extractable work under feedback control,” Physical Review E 90, 052125 (2014) publisher: American Physical Society.

[40] Govind Paneru, Dong Yun Lee, Tsvi Thusty, and Hyuk Kyu Pak, “Lossless Brownian Information Engine,” Physical Review Letters 120, 020601 (2018) publisher: American Physical Society.

[41] E. C. G. Sudarshan, “Equivalence of Semiclassical and Quantum Mechanical Descriptions of Statistical Light Beams,” Physical Review Letters 10, 277–279 (1963) publisher: American Physical Society.

[42] Roy J. Glauber, “Coherent and Incoherent States of the Radiation Field,” Physical Review 131, 2766–2788 (1963) publisher: American Physical Society.

[43] E. Arthurs and J. L. Kelly, “On the Simultaneous Measurement of a Pair of Conjugate Observables,” Bell System Technical Journal 44, 725–729 (1965) _eprint_ https://onlinelibrary.wiley.com/doi/pdf/10.1002/j.1538-7305.1965.tb01684.x.

[44] Tathagata Karmakar, Philippe Lewalle, and Andrew N. Jordan, “Stochastic path-integral analysis of the continuously monitored quantum harmonic oscillator,” PRX Quantum 3, 010327 (2022)

[45] L. Szilard, “über die Entropieverminderung in einem thermodynamischen System bei Eingriffen intelligenter Wesen,” Zeitschrift für Physik 53, 840–856 (1929)

[46] Carlton M. Caves, Joshua Combes, Zhang Jiang, and Shashank Pandey, “Quantum limits on phase-preserving linear amplifiers,” Physical Review A 86, 063802 (2012) publisher: American Physical Society.

[47] K. Kraus, States, Effects, and Operations: Fundamental Notions of Quantum Theory (Springer Berlin Heidelberg, 1983) google-Books-ID: fRBBAQAAIAAJ.

[48] Maicol A. Ochoa, Wolfgang Belzig, and Abraham Nitzan, “Simultaneous weak measurement of non-commuting observables: a generalized Arthurs-Kelly protocol,” Scientific Reports 8, 15781 (2018) number: 1 Publisher: Nature Publishing Group.
[50] KÁ‘di Husimi, “Some Formal Properties of the Density Matrix,” Proceedings of the Physico-Mathematical Society of Japan. 3rd Series 22, 264–314 (1940).

[51] R. Loudon and P. L. Knight, “Squeezed Light,” Journal of Modern Optics 34, 709–759 (1987) publisher: Taylor & Francis, eprint: https://doi.org/10.1080/09500348714550721.

[52] A. A. Clerk, M. H. Devoret, S. M. Girvin, Florian Marquardt, and R. J. Schoelkopf, “Introduction to quantum noise, measurement, and amplification,” Reviews of Modern Physics 82, 1155–1208 (2010) publisher: American Physical Society.

[53] Carlton M. Caves, “Quantum limits on noise in linear amplifiers,” Physical Review D 26, 1817–1839 (1982) publisher: American Physical Society.

[54] N. Bergal, F. Schackert, M. Metcalfe, R. Vijay, V. E. Manucharyan, L. Frunzio, D. E. Prober, R. J. Schoelkopf, S. M. Girvin, and M. H. Devoret, “Phase-preserving amplification near the quantum limit with a Josephson ring modulator,” Nature 465, 64–68 (2010) number: 7294 Publisher: Nature Publishing Group.

[55] H. A. Haus and J. A. Mullen, “Quantum Noise in Linear Amplifiers,” Physical Review 128, 2407–2413 (1962) publisher: American Physical Society.

[56] E. P. Wigner, “Die Messung quantenmechanischer Operatoren,” in Philosophical Reflections and Syntheses: The Collected Works of Eugene Paul Wigner, edited by Jagdish Mehra (Springer, Berlin, Heidelberg, 1995) pp. 147–154.

[57] Huzihiro Araki and Mutsuo M. Yanase, “Measurement of Quantum Mechanical Operators,” Physical Review 120, 622–626 (1960) publisher: American Physical Society.

[58] Carl M. Caves, “Quantum limits on noise in linear amplifiers,” Physical Review D 26, 1817–1839 (1982) publisher: American Physical Society.

[59] Areeya Chantasri and Andrew N. Jordan, “Stochastic path-integral formalism for continuous quantum measurement,” Physical Review A 88, 042110 (2013) publisher: American Physical Society.

[60] Areeya Chantasri and Andrew N. Jordan, “Stochastic path-integral formalism for continuous quantum measurement,” Physical Review A 88, 042110 (2013) publisher: American Physical Society.

[61] Sreenath K. Manikandan, Cyril Elouard, and Andrew N. Jordan, “Fluctuation theorems for continuous quantum measurements and absolute irreversibility,” Physical Review A 99, 022117 (2019) publisher: American Physical Society.

[62] Sreenath K. Manikandan, Cyril Elouard, and Andrew N. Jordan, “Fluctuation theorems for continuous quantum measurements and absolute irreversibility,” Physical Review A 99, 022117 (2019) publisher: American Physical Society.

[63] Maitreyi Jayaseelan, Sreenath K. Manikandan, Andrew N. Jordan, and Nicholas P. Bigelow, “Quantum measurement arrow of time and fluctuation relations for measuring spin of ultracold atoms,” Nature Communications 12, 1847 (2021) number: 1 Publisher: Nature Publishing Group.

[64] C. L. Mehta, “Diagonal Coherent-State Representation of Quantum Operators,” Physical Review Letters 18, 752–754 (1967) publisher: American Physical Society.

[65] C. L. Mehta, “Diagonal Coherent-State Representation of Quantum Operators,” Physical Review Letters 18, 752–754 (1967) publisher: American Physical Society.

[66] Anikam Levy, Lajos Diósı, and Ronnie Kosloff, “Quantum flywheel,” Phys. Rev. A 93, 052119 (2016).

[67] Sreenath K. Manikandan, Cyril Elouard, and Andrew N. Jordan, “Fluctuation theorems for continuous quantum measurements and absolute irreversibility,” Physical Review A 99, 022117 (2019) publisher: American Physical Society.

[68] Sreenath K. Manikandan, Cyril Elouard, and Andrew N. Jordan, “Fluctuation theorems for continuous quantum measurements and absolute irreversibility,” Physical Review A 99, 022117 (2019) publisher: American Physical Society.

[69] Sreenath K. Manikandan, Cyril Elouard, and Andrew N. Jordan, “Fluctuation theorems for continuous quantum measurements and absolute irreversibility,” Physical Review A 99, 022117 (2019) publisher: American Physical Society.

[70] Wolfgang P. Schleich, Quantum Optics in Phase Space (John Wiley & Sons, 2011).

[71] Koji Maruyama, Franco Nori, and Vlatko Vedral, “Colloquium: The physics of Maxwell’s demon and information,” Reviews of Modern Physics 81, 1–23 (2009) publisher: American Physical Society.

[72] Thomas M. Cover and Joy A. Thomas, Elements of Information Theory (John Wiley & Sons, 2012) google-Books-ID: VWq5GG6ycxMC.