Comments on the Riemann conjecture and index theory on Cantorian fractal space-time

Carlos Castro1 and Jorge Mahecha2
1Center for Theoretical Studies of Physical Systems
Clark Atlanta University, Atlanta, Georgia, USA
2Departamento de Física, Universidad de Antioquia, Medellín, Colombia

October 23, 2018

Abstract

An heuristic proof of the Riemann conjecture is proposed. It is based on the old idea of Polya-Hilbert. A discrete/fractal derivative self adjoint operator whose spectrum may contain the nontrivial zeroes of the zeta function is presented. To substantiate this heuristic proposal we show using generalized index-theory arguments, corresponding to the (fractal) spectral dimensions of fractal branes living in Cantorian-fractal space-time, how the required negative traces associated with those derivative operators naturally agree with the zeta function evaluated at the spectral dimensions. The $\zeta(0) = -1/2$ plays a fundamental role. Final remarks on the recent developments in the proof of the Riemann conjecture are made.

1 Introduction

Riemann’s outstanding conjecture that the non-trivial complex zeroes of the zeta function $\zeta(s)$ must be of the form $s = 1/2 \pm iv; \nu > 0$, remains one of the open problems in pure mathematics. Starting from an heuristic study of the index theorem associated with the dynamics of fractal p-branes living in Cantorian-fractal space-time $E^{(\infty)}$ \cite{1} we found some suggestive relations with the Riemann conjecture.

The construction of Cantorian-fractal space-time $E^{(\infty)}$, $E^{(\infty)}$, contains an infinite number of sets $E^{(i)}$, where the index i ranges from $-\infty, +\infty$. Such index labels the topological dimension of the smooth space into which the fractal set is packed densely. For example, the sand on the beach looks two-dimensional on the surface. This is due to a coarse-grain averaging/smoothing of the underlying 3D-grains which comprise it. In a similar vein the Hausdorff dimensions of the fractal sets packed densely inside the smooth manifold of integer dimension can be larger than the actual topological dimension of the space into which is being packed.

The best representative of this is the random backbone Cantor set, $E^{(0)}$, a fractal dust which is packed densely into a set of topological dimension zero (a point), and whose Hausdorff dimension equals to the golden-mean $\phi > 0$, with probability one, according to the Mauldin-Williams theorem \cite{2}. We set the golden mean to be $1/(1 + \phi) = \phi = (\sqrt{5} - 1)/2 = 0.618...$. Notice that
our conventions differ from those by Connes in his book [3]. He chooses for
\(\phi = (\sqrt{5} + 1)/2 \). We hope this will not cause confusion.

Incidentally we noted that

\[\phi^k = (-1)^k F_{k-1} + (-1)^{k+1} F_k \phi, \quad \phi^{-k} = F_{k+1} + F_k \phi, \quad k = 0, \pm 1, \pm 2, \ldots \quad (1) \]

where \(F_k \) are Fibonacci numbers. In this way, ...

The negative values of the topological dimensions signify the degree of “empti-
ness” or voids inside \(E(\infty) \). The simplest analog of this is Dirac’s theory of holes
to explain the negative energy solutions to his equations (positrons/antimatter).
Negative entropies and negative dimensions [5] were of crucial impor-
tance to have a rigorous derivation of why the average dimension of the world (today) is
very close to: \(4 + \phi^3 \approx 4.236 \ldots \)

Negative probabilities and the non-commutative properties of \(E(\infty) \) were
essential to explain the wave-particle duality of an indivisible quantum particle
traversing the Young’s double-slit [8]. To be precise, with the nonlocality of QM
which must not be confused with interference. The non-commutative geometry
of the von Neumann’s type associated with Cantorian-fractal space-time \(E(\infty) \)
is the appropriate geometry to formulate the new relativity theory [9] that has
derived the string uncertainty relations, and the p-branes generalizations, from
first fundamental principles (See [10] and ccCastro). Moreover, such new scale
relativity, an extension of Nottale’s original scale relativity [11], is devoid of
EPR paradoxes [12] and it explains the origins of the holographic principle [13].

The zeta function has relation with the number of prime numbers less than a
given quantity and the zeroes of zeta are deeply connected with the distribution
of primes [14]. The spectral properties of the zeroes are associated with the
random statistical fluctuations of the energy levels (quantum chaos) of a classical
chaotic system [23]. Montgomery [24] has shown that the two-level correlation
function of the distribution of the zeroes is the same expression obtained by
Dyson using Random Matrices techniques corresponding to a Gaussian Unitary
Ensemble.

String theory can be reformulated as a statistical field theory on random
surfaces. For a deep connection between fractal strings, number theory and the
zeroes of zeta see the book [17]. Recently one of the authors [18] has been able
to establish the link among \(p \)-adic stochastic dynamics, supersymmetry and the
Riemann conjecture by constructing the operator that yields the zeroes of the
zeta. The supersymmetric quantum mechanical model (SUSY QM) associated
with the \(p \)-adic stochastic dynamics of a test particle undergoing a Brownian
random walk was constructed [19]. The zig-zagging occurs after collisions with
an infinite array of scattering centers that fluctuate randomly. One can reformu-
late such physical system as the scattering of the test particle about the
infinite location of the prime numbers. Such \(p \)-adic stochastic process has an
underlying hidden Parisi-Sourles supersymmetry and can be modelled by the
scattering of the test particle by a “gas” of \(p \)-adic harmonic oscillators–quanta–
whose fundamental frequencies (imaginary) are given by \(\omega = i \log p \) and whose
harmonics are \(\omega_{p,n} = i \log p^n \). For further details we refer to [3]. Based on this work Pitkänen was able to give new hints for the proof of the Riemann conjecture [20].

Generalizations of the zeta function exist. Weil has formulated zeta function of general algebraic varieties over finite fields [25]. For numerical calculations of the zeroes, A. Odlyzko has computed up to \(10^{22} \) zeroes of zeta [26] in agreement with the Riemann hypothesis.

On a closing note, we honestly feel that theoretical physics in the new century may dwell on the following partial list: The new relativity theory \(\leftrightarrow \) fractal \(p \)-branes in Cantorian space-time \(\leftrightarrow \) irrational conformal field theory \(\leftrightarrow \) number theory \(\leftrightarrow \) non-commutative (non-associative) geometry \(\leftrightarrow \) quantum chaos (quantum computing) \(\leftrightarrow \) quantum groups \(\leftrightarrow \) \(p \)-adic quantum mechanics.

In the first part of section 2 we shall briefly discuss the basic features of Cantorian-fractal space-time and heuristically postulate the existence of trace formula linked to the index of a fractal/discrete derivative operator. A discussion about the distribution of the imaginary parts of the zeroes of the Riemann’s zeta function, illustrated by two figures, is presented. In section 3 we present a rigorous derivation of the index-theoretic results based on the \(\eta \) (See Eq. 31) invariant which is related to the spectral staircase associated with the spectral dimensions of the infinite number of hierarchical sets living inside the fractal strings. Final remarks are made about the recent developments in the proof of the Riemann conjecture.

2 Quantum chaos and index theory in \(E^{(\infty)} \)

Our motivation was sparked originally by the quantum counterpart of the classical chaos linked to the “billiard ball” moving on hyperbolic surfaces (constant negative curvature). As is well known to the experts the Selberg trace formula is essential to count the primitive periodic orbits of classical dynamical systems. The spectrum of (minus) Laplace-Beltrami operator on such hyperbolic surfaces is linked to the zeroes of the Selberg zeta function.

Knowing the energy eigenstates of the Schrödinger equation allows to locate the location of the nontrivial zeroes of the Selberg zeta function. They also have the form of \(s = 1/2 \pm i p_n \), where \(E_n = p_n^2 + 1/4 \).

One of the most important features of the fractal/discrete operator is that it has negative index as we shall intend to show. This is just a result of the negative dimensions/holes/voids of \(E^{(\infty)} \). See [27].

These voids behave like absorption lines in the spectra of the Hamiltonian associated with the fractal operator \(D_f \). Connes already gave a detailed analysis of the necessity for the trace to be negative (absorption lines) to account for the zeroes of the zeta function [13].

The old idea of Polya-Hilbert, is for example, the search for an equation of the type Schrödinger equation on a hyperbolic space (constant negative curvature):

\[
-D_f(D_f-1)\Psi = s(1-s)\Psi = s\bar{s}\Psi = E_n\Psi \Rightarrow s = \frac{1}{2} + i p_n = \frac{1}{2} + i \sqrt{E_n - \frac{1}{4}}. \quad (2)
\]
The zeroes of the zeta function are then linked to the energy eigenvalues E_n in such a way that $\zeta(1/2 \pm ip_n) = 0$ and therefore the zeroes of zeta must lie in the critical line: $\Re(s) = 1/2$ and the Riemann conjecture could be proven, at least heuristically.

Quantum groups emerged as a result of inverse scattering methods. The search is to find now whether such operators can be constructed. If they can, then their spectrum will pick up the imaginary part of the zeroes of the zeta.

The sought-after self-adjoint properties of the fractal derivative, with respect a suitable inner product, are:

\begin{align}
\mathcal{D}_f^+ &= \mathcal{D}_f - 1. \\
(\mathcal{D}_f - 1)^+ &= \mathcal{D}_f. \\
[\mathcal{D}_f(\mathcal{D}_f - 1)]^+ &= (\mathcal{D}_f - 1)^+\mathcal{D}_f^+ = \mathcal{D}_f(\mathcal{D}_f - 1).
\end{align}

(3)

Then the Laplace-Beltrami operator is self-adjoint and $-\mathcal{D}_f(\mathcal{D}_f - 1)$ has a positive definite energy spectrum. If this fractal/discrete derivative operator satisfies the properties above, and the operator is trace-class, then the Riemann conjecture could be proven following the arguments of Polya and Hilbert.

In general the Riemann-Roch theorem corresponding to a Riemann surface of genus g is associated with a family of derivative operators $\nabla_z^{(n)}$. The former is the derivative operator of “conformal” $U(1)$ weight n acting on the family of tensors $T^{(n)}$ with q holomorphic indices and p antiholomorphic indices such that $q - p = n$.

The index of the operator $\nabla_z^{(n)}$ is defined as the (complex) dimension of its kernel minus the (complex) dimension of its cokernel and is equal to $-(n - \frac{3}{2})$ times the Euler number of the Riemann surface of genus g which is given by $2 - 2g$.

In particular, when $n = 0$ then $\nabla_z^{(0)} = \partial_z$ and the index of ∂_z is defined as the (complex) dimension of the kernel of ∂_z minus the (complex) dimension of the cokernel of ∂_z. The Riemann-Roch theorem becomes then for $n = 0$

\begin{equation}
\text{Index}[\partial_z] = \frac{1}{2} \text{Euler number} = \frac{1}{2} (2 - 2g) = 1 - g,
\end{equation}

(4)

the reason is that the complex dimension is 1/2 the real dimension, so the alternating sum of Betti numbers multiplied by an over all factor of 1/2 will select the complex dimension in compliance with the Hirzebruch-Riemann-Roch index theorem. The index in this case depends on the genus of the surface: $g = 0$ corresponds to a sphere, $g = 1$ to a torus and so forth. For details we refer to Nakahara’s book [16].

We are generalizing these results to the case when the Euler number is given by the alternative sums of Betti numbers, alternative sums of all dimensions of the possible cycles. In the case of a two dimensional surface one has three terms, and only three terms, in the sums only: Euler number of a two dimensional Riemann surface = $1 - 2g + 1 = 2 - 2g$.

We will show that the index corresponding to the fractal/discrete derivative operator on the fractal world sheet $\mathcal{E}^{(2)}$, whose fractal dimension is $1 + \phi$, is given by the value of the zeta function evaluated on the spectral dimension of the infinite-cycle intersection E_{∞} which equals $\dim E_{\infty} = (s) = 0$.

3
Spinors on Riemann surfaces are defined in terms of the square roots of the $n = 1$ line bundles: The weight $1/2$ corresponds to positive chirality spinors and the weight $-1/2$ corresponds to negative chirality ones.

In Cantorian fractal space-time we may follow by analogy similar arguments if one takes into account that the intrinsic fractal dimension of a bosonic random walk is $1 + \phi$. This means that dimensions are counted in basic units of the latter dimension. In particular, the intrinsic dimension of a fermionic random walk is $1/2$ the bosonic one: $(1/2)(1 + \phi)$.

The analog of the higher genus Riemann surfaces corresponds to spaces of negative dimensions. In Cantorian-fractal space-time, the totally void set, $\mathcal{E}(-\infty)$, is the one whose fractal dimension is equal to zero and is embedded in a space of $-\infty$ topological dimension. The index associated with the analog of the $n = 0$ derivative operator ∂_z in ordinary Riemann surfaces of genus g, in Cantorian-fractal space-time is no longer an integer!, and is defined in basic units of $1 + \phi$. It is evaluated on the infinite-cycle-intersection E_{∞} space and is given by the analog of the Riemann-Roch theorem:

\[
\text{“Index”} D = \text{“Trace”}[D^{-s}] = -(0 - 1/2)(1 + \phi) \text{ Euler } [E_{\infty}] = \frac{1}{2}(1 + \phi)(-\phi) = -\frac{1}{2} = \zeta(0)
\]

and this agrees exactly with the value of $\zeta(0)$ since the dimension of the infinite-intersection cycle E_{∞} is precisely $(s) = 0$:

\[
dim E_{\infty} = (s) = 1 \cdot \phi \cdot \phi^2 \cdot \phi^3 \cdot ... \cdot \phi^{s-1}
\]

is 0 in the $s = \infty$ limit.

Therefore, using fractal derivatives and/or discrete derivatives like they occur in quantum-groups, q-calculus, and in p-adic QM, and studying the spectrum of fractal strings/branes in $\mathcal{E}^{(2)}$ space-times one may try to use the analog of the Riemann-Roch theorem:

\[
\text{“Index”} [D_{fractal}](E_{(s)}) = \text{“Trace”}[D_{fractal}^{-s}] = \zeta(s) \sim \text{Euler}[E_{(s)}],
\]

where the subspace $E_{(s)}$ (where the index is restricted on) of the world sheet $\mathcal{E}^{(2)}$ is some suitable intersection of a collection of sets, or cycles of $\mathcal{E}^{(\infty)}$ living inside the world sheet $\mathcal{E}^{(2)}$.

\[
\mathcal{E}^1 \wedge \mathcal{E}^0 \wedge \mathcal{E}^{-1} ... \wedge \mathcal{E}^{-s+1},
\]

whose dimension is

\[
dim E_{(s)} = 1 \cdot \phi \cdot \phi^2 \cdot ... \cdot \phi^{s-1} = \phi^{s(s-1)/2},
\]

where $(s) \equiv s(s - 1)/2$ and s counts the number of cycles involved in the intersections, and whose Euler number is given by the usual formulae (alternating
squares of Betti numbers):

\[
\text{Euler}[E(s)] = \sum_{k=-s}^{1} (-1)^{k} \phi^{-k+1} = \frac{-1 + (-1)^s \phi^{s+2}}{1 + \phi} = \frac{-1 + F_{1+s} - \phi F_{2+s}}{1 + \phi}.
\]

(10)

One must not confuse the \(D_{\text{fractal}}\) in the trace operation with the \(D_f\) of eq. (3).

The operator (Dirac) \(D_{\text{fractal}}\) is related to the Laplace operator by \(D_{\text{fractal}}^2 = \text{Laplace}\), used in the construction of the spectrum of fractal strings by Lapidus et. al. \[17\]. These authors have shown a relation among the sequence of frequencies and lengths of a fractal string with the eigenvalues \(\lambda\) of the Laplace operator (zeta function).

The geometric counting function \(Z_L(s)\), the frequency counting function \(Z_F(s)\) and the zeta function \(\zeta(s)\), for \(s = \text{complex dimension}\), are related by

\[
Z_F(s) = \zeta_{\text{gen}}(s)Z_L(s),
\]

where the generalized \(\zeta(s)\) is

\[
\zeta_{\text{gen}}(s) = \sum \lambda^{-s/2},
\]

with \(\lambda\) the eigenvalues of the Laplacian. In the case of Bernoulli string \(\lambda \sim n^2\) so \(\zeta_{\text{gen}}\) coincides with the Riemann zeta. For fractal drums one gets the Epstein zeta function. See reference [17] for details.

Equation (10) is the explicit expression of the generalized Euler number as an alternative sum of the dimensions of the higher-dimensional voids/holes (“genus” of the fractal string). Notice that in the asymptotic limit the alternating series converges exactly to: \(\text{Euler}[E(\infty)] = -\phi < 0\) which is a clear indication that Cantorian-fractal space-time is \textit{left-handed}. This asymmetry between right/left chirality is also very natural in Penrose’s twistor theory.

Higher dimensional (than one) sets: \(\text{dim} = (1 + \phi)^k\) correspond to fractal \(p\)-branes, are those corresponding to the values of \(p = (1 + \phi)^k > 1\). The sets of negative topological dimension are higher-dimensional \textit{holes/voids}: They play the role of the \textit{higher genus} surfaces in Cantorian-fractal space-time. The backbone set \(E^{0}\) will play the role of the discrete/fractal flow of time associated with the fractal string which is represented by an open subset of the normal set \(E^{1}\) whose dimension is equal to 1. Such discrete/fractal temporal evolution of the fractal string has for fractal world-sheet, \(E^{(2)}\) of fractal dimension \(1 + \phi\), given by direct product of the backbone set \(E^{0}\) times \(E^{(1)}\) and whose higher-dimensional voids/holes or higher “genus Riemannian surfaces” are nothing but the rest of the sets of negative topological dimensions.

In (super) strings, the multi-loop scattering amplitudes depend crucially on the suitable integrals over the (super) moduli space of the higher-genus surfaces. The Selberg zeta function plays an essential role in providing proper counting of the number of the primitive closed geodesics that tasselate the hyperbolic space, providing with a single cover of the (super) moduli space. This occurs for genus higher than 1 (the torus).
The parameter k which defines the lower bound of the alternating sum for the Euler number is nothing but the analog of the “genus” of the world-sheet associated with this fractal “string” “living” in \mathcal{E}^∞. A p-brane spans a $p+1$ world volume generated by its motion in time which accounts for the extra dimension: A string spans a 2-dim world-sheet; a membrane a 3-volume and so forth. All this is naturally related to the statistical properties of random matrix models in lower dimensions in the large N limit; irrational conformal field theories; irrational values of the central charges; the monster group, etc.

From an elementary numerical calculation of equation (10), we can see that the Euler number of the multiple cycle-intersection $E_{(s)}$, as a function of the powers of ϕ^k (the genus-analog) oscillates about the golden mean. It is well known that the distribution of primes oscillates abruptly like the spectral-staircase levels in quantum chaos.

In the limit of infinite “genus”, the Euler number, the alternating oscillatory sum will converge to the golden mean with a negative sign, consistent with the nature of the absorption lines linked to the holes/voids/genus of the world sheet of the fractal string. As remarked earlier, Connes emphasized the importance that a negative value of the index theorem in non-commutative geometry must have to understand the location of the zeroes of zeta function as absorption spectral lines.

To sum up what has been said so far: Using fractal/discrete derivatives D_f which are the more appropriate ones for \mathcal{E}^∞ we make contact with the “Riemann zeta” function associated with such Cantorian-fractal space-time. As said previously, discrete derivatives are very natural in the q-calculus used in quantum groups (Jackson’s calculus) and there is a deep relation between p-adic quantum mechanics and quantum groups as well.

The initial reasons why we believe a trace formula may be valid in Cantorian-fractal space-time is the following argument, despite the fact that we don’t get a perfect matching of numbers. But they are close.

Looking at equation (10) for the first entry associated with the triple cycle-intersection of the three sets: $\mathcal{E}^0; \mathcal{E}^1; \mathcal{E}^{-1}$, we find for the Euler number associated with the alternating sum of dimensions:

$$Euler[E_{(3)}] = -1 + \phi - \phi^2 = -1 - 1 + 2\phi = -1 + \phi^3 = \frac{\phi^3}{2} - (1 - \frac{\phi^3}{2}).$$

The fractal dimension of the intersection of these three sets, intersection of three cycles is:

$$\dim E_{(3)} = (1)(\phi)(\phi^2) = \phi^3 = 0.236068.$$

Now evaluate the “index” for this particular case:

$$"Index"[D_{fractal}](E_{(s)}) = "Trace"[D_{fractal}^{-}(s)] = \zeta(s = \phi^3) = -0.790068 \sim Euler[E_{(3)}] = -0.763932 < 0.$$
one can see that the numbers do not differ much. The index of the exterior
derivative operator associated with the de Rham elliptic complex coincides with
the Euler number, for example.

The “trace” in non-commutative geometry as Connes has emphasized many
times:

\[\text{“Trace”} [D_{fractal}^{-}\langle s \rangle] \leftrightarrow \text{volume of the space that has dimension } (s). \]

(16)

One must be very careful not to confuse the label “s” with the label “(s)”, they
are not the same. Only in the special case \(E(3) \).

To justify further this proposal, for example, lets take now a look at the
quadruple intersection (for real dimensions). The quadruple intersection of four
cycles:

\[\text{dim } E(4) = 1 \cdot \phi \cdot \phi^2 \cdot \phi^3 = \phi^6 = \phi^{4(4-1)/2} = 0.0557281. \]

(17)

So evaluating the Euler number from the alternating sum/Betti numbers
from \(k = -2, -1, 0, 1 \):

\[\text{“Index” } [D_{fractal}^{-}\langle E(4) \rangle] = \text{“Trace”} [D_{fractal}^{-}\langle (s) \rangle] = \zeta(\phi^6) = -0.55451 \]

\[\sim \text{ Euler } [E(4)] = 2\phi^3 - 1 = \phi^3 - (1 - \phi^3) = -0.527864 < 0. \]

(18)

Notice once again that the numbers are not so far off!,

\[-0.55451 \sim -0.527864. \]

(19)

If one looks at the asymptotic infinite-dimensional voids/holes (“genus”) limit, to extract non-perturbative information, when the number of intersections of the sets of negative dimensions goes to infinity, the Euler number (for real dimensions) converges to the golden mean. Therefore in the asymptotic limit we have by looking at the last entries of our tables and at the limit of formula (10):

\[\zeta(0) = -\frac{1}{2} \text{ but } \]

\[\text{Euler } [E(\text{infinity})] = -\phi = -0.618033. \]

(20)

In this limit one can see that the space clearly is left/right chiral asymmetric like twistors! The number of self dual modes is not equal to the number of anti-self-dual ones ...

Figure 1 shows a suggestive relation between the zeta function and the golden
mean observed in a fitting of the first 100 zeroes. Figure 2 shows a nice fitting
inspired in the Hamiltonian of arithmetic QFT.

The quantum field theory associated with the geometrical excitations of
Cantorian-fractal space-time is related to a Braided-Hopf-quantum-Clifford al-
gebra: Braided statistics, etc... The Clifford-lines in C-space (Clifford spaces)
are the Clifford-algebra valued (hyper-complex number-valued) lines which are
the extensions of Penrose twistor based on complex numbers.
In this asymptotic limit the departure between the \(\zeta(dim E(\infty)) \) and the Euler number is the greatest.

How do we reconcile the fact that the \(\zeta(0) = -\frac{1}{2} \) differs from the Euler number of \(E_{\infty} \) given by \(-\phi\)? This is where we invoke the analog of the Riemann-Roch theorem associated to the derivative operator \(\partial_z \), where now one has holomorphic/antiholomorphic differentials of fractional weight, in units of the intrinsic fractal dimension of a fractal world-sheet which coincides precisely with the dimensions of a bosonic random walk so that:

\[
\text{Index} = \text{Trace}[D^{-\langle s \rangle}][E_{\infty}] = \zeta(0) = -\frac{1}{2} = -(0 - \frac{1}{2})(1 + \phi)Euler \text{ [} E_{\infty} \text{]} = \frac{1}{2}(1 + \phi)(-\phi) = -\frac{1}{2}. \tag{21}
\]

Roughly speaking, we are taking the infinite cycle intersections in the Grassmanian space that encodes the “Riemann surfaces” of arbitrary “genus”. Each “point” of the ordinary Grassmanian represents a Riemann surface of a given genus. Cantorian-fractals space-time is endowed with a \(p \)-adic topology where every disc is either contained inside another disc or it is disjoint from the latter. Every point inside a disc is a center, meaning that the center of a disc can occupy two different places simultaneously.

Similarly one could define spinors as the square root of the line bundles, \(n = 1 \) in units of \(1 + \phi \) so the spin bundles will be characterized by the following values of conformal weights: \(|\zeta(0)|/\phi = |\zeta(0)|(1 + \phi) = 1/2(1 + \phi) \). As strangely as it may seem, fractional spin and fractal statistics is something which is not so farfetched. For references see [18] and [19]. Fractional charges, for example, are natural ingredients in the quantum Hall effect.

The analog of the Riemann-Roch index theorem applied to this operator would be proportional to the Euler number, in the infinite “genus” case, in the infinite cycle-intersections, if this operator corresponds to the conformal weight \(n = 0 \) derivative operator \(\partial_z \), in units of the intrinsic fractal dimension of a bosonic random walk, \(1 + \phi \):

\[
\text{Index} = \zeta(0) = -(0 - \frac{1}{2})(1 + \phi)(-\phi) = -\frac{1}{2}. \tag{22}
\]

This index theoretic part of the paper is the main result. Besides, something very interesting occurs. The intrinsic dimension of a fractal Brownian walk of a boson is \(1 + \phi \) (and the fractal world-sheet as well). The dimension of a fermion random walk is \(1/2 \) (dimension of a bosonic random walk): \((1 + \phi)/2 \). This is precisely what we get. The extrinsic/embedding fractal dimension of a bosonic random walk is \(2 \). The extrinsic/embedding dimension of the fermionic random walk is \((1/2)(2) = 1 \).

In ordinary Conformal Field Theory, the central charge of a boson is \(1 \) which is equal to the topological dimension of a path. The central charge of a fermion is \(1/2 \).

What about spin statistics when we have fractal spin dimension? The dimension appear in units of \(1 + \phi \). One has then an effective Planck constant \(\hbar \)
(See [6]) that will be then:
\[h_{\text{eff}} = (1 + \phi)\hbar. \] (23)

So a fermion, for example, will have spin = 1/2 in units of \(h_{\text{eff}} \) instead of in units of the usual \(\hbar \).

Notice how crucial is the fact that \(\zeta(0) = -1/2 \) in all these results. So essentially, the index theoretic results only make sense in the critical strip where real part of \(s \) lies between 0 and 1.

We need to examine the validity of the Riemann-Roch theorem for fractal Riemann surfaces and for higher dimensional surfaces as well, etc ... It is all heuristic but it may lead to a plausible clue which may shed some light in proving the Riemann conjecture.

What we shall explore the opposite scenario: What if there are non-trivial zeroes violating the Riemann conjecture?

We get approximate numbers, when the number of cycle intersections is finite, but not exact. This has a simple explanation. The zeta function for real values of \(s \) lying between 0, 1 with \(s = \phi, \phi^2, \phi^3, ... \) is a slowly decreasing function while the Euler number oscillates.

A natural thing is to evaluate the zeta function at complex dimensions and check whether a matching with the Euler numbers (for complex dimensions) occurs; i.e to see if one can extend the analog of the Riemann-Roch theorem. Before we evaluate the Euler numbers for complex dimensions it is important to emphasize that there are no zeroes of zeta (besides the trivial ones \(s = -2N \)) in the region \(\Re(s) < 0 \). The argument goes as follows, the functional equation obeyed by the \(\zeta(s) \) is of the form (See [14]):
\[\pi^{-s/2} \zeta(s)\Gamma\left(\frac{s}{2}\right) = \pi^{-(1-s)/2} \zeta(1-s)\Gamma\left(\frac{1-s}{2}\right). \] (24)

Since the gamma function has trivial poles at \(s = -2N \), the \(\Gamma(s/2) = \Gamma(-N) = \infty \), this implies that \(\zeta(s) \) will have trivial zeroes when \(s = -2N \).

This is due to the fact that the right hand side of the previous equation is well defined as functions of \(1 - s \). When \(s = 0 \), \(\zeta(0) = -1/2 \) and the pole of the \(\Gamma(0) = \infty \) corresponds precisely to the only pole of \(\zeta(1 - 0) = \infty \) in the right hand side of the equation.

Notice that the critical zeroes of the Riemann zeta function, \(s = \frac{1}{2} + i\nu \), lie exactly in the vertical line between the following vertical lines of complex dimensions \(\phi + i\nu \) and \(\phi^2 + i\nu = 1 - \phi + i\nu \):
\[\frac{1}{2} + i\nu = \frac{1}{2}[(\phi + i\nu) + (1 - \phi + i\nu)] = s \equiv \text{critical zeroes}. \] (25)

For plausible violations of the Riemann conjecture, inside the critical strip, it would be interesting to look at the behavior of the following points which are symmetrically distributed about the vertical critical line \(\Re(s) = 1/2 \):
\[\zeta(\phi + i\nu) \text{ and } \zeta(1 - \phi + i\nu) \] (26)
for example, where $\nu = \Im(s)$, imaginary part of the non trivial zeroes of zeta,
$s = 1/2 + i\nu$.

It would be interesting to examine the behavior of the zeta evaluated at these
points for all values of ν, the imaginary parts of the nontrivial zeroes and/or
other values of ν. And to see what is the behavior of such values of zeta for
large ν. How fast they approach or depart from zero, etc...

Let’s start now with complex-valued dimensions and evaluate ζ there:

$$\zeta(\phi + i\nu) \ldots \zeta(\phi^3 + i\nu) \ldots \zeta(\phi^n + i\nu) \ldots \quad (27)$$

Let us foliate this critical strip (between ϕ and ϕ^2) by an infinite family of
horizontal lines passing through each single one of the imaginary parts of the
critical zeroes: The horizontal lines at $\pm i\nu$ will do the job. The critical strip
is comprised of the two vertical lines in the complex-dimension-plane which
are symmetrically distributed with respect the critical line: $\Re(s) = 1/2$. In
reference [17], where Lapidus and Frankenhuysen discuss complex dimensions
like $d = \rho + i\sigma$, ρ is related to “oscillations of the geometry” and σ to “oscillations
in sound”.

The “index” $[D_{fractal}(E_s)]$ is evaluated now for a particular family of
complex dimensions of the spaces given by the triple cycle intersections of
$E^{(1)}, E^{(0)}, E^{(-1)}$:

$$1 \pm i\nu. \phi \pm i\nu. \phi^2 \pm i\nu. \quad (28)$$

Riemann discovered [14] that $\zeta(s)$ has an analytic continuation to the whole
complex plane except for one simple pole at $s = 1$ with residue equal to one.
These properties have immediate consequences on the zero distribution of $\zeta(s)$:
There are no zeros in the half-plane $\Re(s) > 1$, there are the so-called trival
zeros at $s = -2N$ for every positive integer N, but no others zeros in $\Re(s) < 0$.
Therefore, nontrivial zeros can only occur in the critical strip $0 \leq \Re(s) \leq 1$.

Equation (28) furnishes these hypothetic complex dimensions where we could
test the validity of the Riemann-Roch index theorem: Located at the complex
plane points

$$(1 + i\nu)(\phi + i\nu)(\phi^2 + i\nu), \quad \nu > 0, \quad \zeta(1/2 + i\nu) = 0. \quad (29)$$

One must also add the complex conjugates.

This triple product of dimension equals to,

$$(-1 + 2\phi - 2\nu^2) + i(2\phi\nu - \nu^3) \quad (30)$$

Two comments are in order:

- The lowest ν is bigger than 14. Then we encounter that $$(1 + i\nu)(\phi + i\nu)(\phi^2 + i\nu), \quad \nu > 0$$, has a negative real part. Then, ζ cannot have zeroes at $(1 + i\nu)(\phi + i\nu)(\phi^2 + i\nu)$.

- Because the ζ evaluated in the following regions where $\Re(s) < 0$ is large:
 $\zeta[(1+i\nu)(\phi+i\nu)(\phi^2+i\nu)]$ is exponentially very large and the values of the Euler
 numbers corresponding to these complex dimensions are not of that magnitude,
 one cannot longer relate the values of the zeta evaluated at complex dimensions
with the Euler number times the fractal dimension of a bosonic random walk. Hence, the analog of the Riemann-Roch index theorem seems to be valid only in the critical strip: \(0 < \Re(s) < 1 \).

Concluding this section: If, and only if, a fractal/discrete derivative operator \(D_{\text{fractal}} \) is found to obey the properties described in this section then the Riemann conjecture could be proven heuristically.

3 The Atiyah-Patodi-Singer index theorem and fractal strings

So far our arguments have been heuristic. It is desirable to have a more rigorous derivation of these results. The physical picture we are proposing is that of a string (one dimensional object) with a discrete fractal flow of time. The discrete/fractal time is now represented by the random Cantor set \(S^0 \equiv E^{(0)} \) or fractal dust of dimension equal to the golden mean \(\phi \) embedded in a space of topological dimension equal to 0, a “point”. The one dimensional string is represented by the normal set \(S^1 \equiv E^{(1)} \) where its fractal dimension equals 1 and is embedded in space of topological dimension equal to unity as well.

The world-sheet spanned by this fractal string has the topology of \(S^1 \times S^0 \equiv E^{(2)} \) and corresponds to a space of fractal dimension equal to \(1 + \phi \) embedded in a space of topological dimension equal to 2. This is what we referred earlier as the intrinsic/extrinsic dimension of a fractal bosonic random walk respectively.

Since the flow of time is discrete/fractal we can represent the topology of \(S^1 \times S^0 \) as that of an “even” dimensional manifold (since the fractal world sheet is embedded in a two-dimensional space) with boundaries. The boundaries are represented precisely by the discrete/fractal flow of time and the string itself corresponds to the odd dimensional manifold \(S^1 \).

The appropriate index theorem for Dirac operators in compact manifolds with boundaries is the Atiyah-Patodi-Singer index theorem (spectral flow) and the relevant invariant is the so called \(\eta \) invariant given by the spectral asymmetry of the eigenvalues \(\lambda_k \) of the Dirac operator defined in an odd-dimensional manifold. After a suitable regularisation is made the \(\eta \) invariant is:

\[
\eta = \sum_{\lambda_k > 0} 1 - \sum_{\lambda_k < 0} 1 = \sum_{\lambda_k} \, \text{sgn}(\lambda_k)|\lambda_k|^{−2s},
\]

for \(Re(s) > 0 \). The prime means that the zero modes have been omitted.

We will proceed by analogy along similar lines as the definition of the \(\eta \) invariant. The main difference is that we are concerned solely with the spectral dimension distribution of the infinite hierarchy of Cantor sets living inside the fractal string \(E^{(1)} \). These are the infinite hierarchy of sets: \(S^1, S^0, S^{-1}, S^{-2}, \ldots S^{-\infty} \) of fractal dimensions \(1, \phi, \phi^2, \ldots \phi^n, \ldots \) embedded in spaces of topological dimensions \(1, 0, -1, -2, \ldots -n, \ldots -\infty \) respectively.

Therefore we will perform the sums over all topological dimensions less than 1 and use the standard zeta function regularisation (analytic continuation) as-
sociated with the $\sum 1 = \infty$ summation:

$$\eta[\mathcal{E}^{(1)}] = \sum_{\text{dim} > 1} 1 - \sum_{\text{dim} < 1} 1 = - \sum_{\text{dim} < 1} 1 = - \left[1 + \sum_{d = -\infty}^1 1 \right] = -[1 + \zeta(0)] = -1/2 = \zeta(0) \quad (32)$$

This is the analog of the spectral staircase, where we are counting the dimensions from $-\infty$ to 0. This value of $\zeta(0)$ is precisely what corresponds to the index of the fractal derivative operator evaluated on the infinite-intersection-cycle E_{∞}. Such infinite number of cycles are nothing but the infinite hierarchy of Cantor sets living inside $\mathcal{E}^{(1)}$ and whose topological dimension of their corresponding embedding spaces are $1, 0, -1, -2, -\infty$ respectively. The higher-dimensional voids correspond to $-1, -2, -\infty$.

Therefore:

$$\text{Index}(\mathcal{D})[E_{\infty}] = \text{Trace}(\mathcal{D}^{-s}) = \zeta(\text{dim } E_{\infty}) = \zeta(0) = -1/2 = \eta[\mathcal{E}^{(1)}]. \quad (33)$$

Now we can see why the analog of the Riemann-Roch theorem, associated with an operator of $n = 0$ conformal weight ∂_z, in the Cantorian-fractal world-sheet becomes then:

$$\text{Index} = \frac{1}{2} (1 + \phi)(-\phi) = (\text{dim}_C[\mathcal{E}^{(2)}]) \text{Euler } [E_{\infty}] = \eta[\mathcal{E}^{(1)}]. \quad (34)$$

As said previously one must not be alarmed by seeing a non-integer index value! Cantorian-fractal space-time corresponds naturally to irrational numbers (irrational conformal field theory). This result does in fact correspond to the generalized Euler number associated with the infinite-cycle intersection space E_{∞} (living inside the fractal string) and with a complex dimension equal to $1/2$ the real dimension of the fractal world sheet $\mathcal{E}^{(2)}$ given by $1 + \phi$. This is just the intrinsic dimension of a fractal bosonic random walk. The fermionic dimension equals $1/2$ its value.

It is very important to emphasize that despite the fact that the fractal dimension of the infinite-cycle intersection space E_{∞} is 0 this does not mean that such space is made of a point. Cantorian-fractal space-time has no points. It corresponds to a von Neumann non-commutative pointless geometry with a natural p-adic topology: Every point is the center of a disc because the center of a disc can occupy many different places simultaneously. This is the key to understanding the wave-particle duality properties of an indivisible quantum particle in the double-slit Young experiment within the framework of negative probabilities in Cantorian-fractal spaces [3], [27].

Due to the ring structure of the golden mean, $\phi^n = m\phi + n$ where m, n are integers, Cantorian-fractal space-time displays a Grassmanian nature. For a Grassmanian number θ such that $\theta^2 = 0$ any function of θ must be of the form
$a \theta + b$. In a sense Cantorian-fractal space-time encodes “super-symmetry” and why the index formula is linked to a “super-trace”: $n_+ - n_-$. The generalized Euler number of E_{infty} is equal to $0 - \phi = -\phi$ meaning that the Cantorian-fractal world sheet is left/right asymmetric. For example, the Euler number associated with the triple intersection of S^1, S^0, S^{-1} was

$$-1 + \phi - \phi^2 = \frac{\phi^3}{2} - (1 - \frac{\phi^2}{2}) = \phi^3 - 1 = 2\phi - 2, etc.$$ (35)

Let’s imagine that we want to generalize this result to fractal p-branes. Imagine the volume of the p-brane is given by the direct product $E^{(n)} \times E^{(0)}$, where the first term represents the spatial dimensions given by $(1 + \phi)^{n-1}$ and the second one corresponds to the discrete fractal flow of time represented by dimension of $E^{(0)}$ which is the golden mean. The total dimension of the world volume is given by the sum $(1 + \phi)^{n-1} + \phi$. The complex dimension is one half that value. The spectral staircase relation associated with the intersection of the following cycles:

$$E^n \wedge E^{n-1} \ldots \wedge E^{s+1} \ldots,$$ (36)

is

$$\eta[E^{(n)}] = \sum_{\text{dim}>n} 1 - \sum_{\text{dim}<n} 1 = -(n - 1) + \zeta(0) = \frac{1}{2} [(1 + \phi)^{n-1} + \phi] \cdot \frac{(-1)^n \phi^{1-n}}{1 + \phi}. \quad (37)$$

However such relation is not always valid for an arbitrary value of $n!$. In the last equation, the last factor denotes the generalized Euler number of the infinite-intersection cycle. We have seen that for fractal strings, $n = 1$, is valid. Are there other odd values of n obeying such relation? A careful study shows that the only solution is the fractal string case $n = 1$.

Now let’s make a further generalization of the p-branes case. The volume of the p-brane is given by the direct product $E^{(n)} \times E^{(m)}$, where the first term represents the spatial dimensions given by $(1 + \phi)^{n-1}$ and the second one corresponds to the discrete fractal flow of time represented by dimension of $E^{(m)}$ which is $(1 + \phi)^{m-1}$. The total dimension of the world volume is given by the sum $(1 + \phi)^{n-1} + (1 + \phi)^{m-1}$. The complex dimension is one half that value. The spectral staircase relation associated with the intersection of the following cycles:

$$E^{n+m} \wedge E^{n+m-1} \ldots \wedge E^{s+1} \ldots,$$ (38)

is

$$\eta[E^{(n+m)}] = \sum_{\text{dim}>n+m} 1 - \sum_{\text{dim}<n+m} 1 = -(n + m - 1) + \zeta(0)$$

$$= \frac{1}{2} [(1 + \phi)^{n-1} + (1 + \phi)^{m-1}] \cdot \frac{(-1)^{n+m} \phi^{1-n-m}}{1 + \phi}. \quad (39)$$

A careful analysis shows that the only solution, as before, is the fractal string cases ($n = 1, m = 0$) or ($n = 0, m = 1$).
4 Concluding remarks

In section 2 we outlined the steps towards an heuristic proof of the Riemann conjecture. The conjecture could be proven heuristically, if and only if, a fractal/discrete derivative operator is found obeying the requisites outlined. The analog of the Riemann-Roch theorem in Cantorian-fractal space-time was furnished. The index formula for the derivative operator of zero “conformal” $U(1)$ weight, restricted in the infinite-intersection cycle, living inside the fractal world sheet, was found to agree exactly with the $\zeta(0) = -1/2$. The conformal weights were given in units of $1 + \phi$ which is the intrinsic fractal dimension of a bosonic random walk. Fermionic random walks have $1/2$ the dimension of the bosonic ones. The η invariant which is related to the spectral staircase associated with the spectral dimensions of the infinite hierarchy of Cantor sets living inside the (odd dimensional) fractal string, required a zeta function regularisation $\sum 1 = \zeta(0) = -1/2$. The flow of time was discrete and fractal and corresponded to the extra dimension of ϕ yielding a world sheet $E^{(2)}$ of fractal dimension $1 + \phi$.

Next, we entertained the opposite idea. And was found that ζ cannot have zeroes at

$$(1 \pm i\nu)(\phi \pm i\nu)(\phi^2 \pm i\nu), \quad (1 \pm i\nu)(\frac{1}{\phi} \pm i\nu)(\frac{1}{\phi^2} \pm i\nu). \quad \nu = \{\Im(s) | \zeta(s) = 0\}. \quad (40)$$

Nevertheless, it is warranted to check if zeroes at $\phi + i\nu$ and $(1 - \phi) + i\nu$ exist. These points lie inside the critical strip, $0 < \Re(s) < 1$ and are symmetrically distributed with respect to the critical line $Re(s) = 1/2$; i.e. if s is a non-trivial zero then $1 - s$ must be as well as a direct consequence of the functional equation obeyed by the zeta function inside the critical strip (no poles in the gamma function). Since $\phi + \phi^2 = 1$, it is plausible that there could be zeroes of zeta at some values along the vertical lines beginning at those points. which values of the imaginary part? This is the question ... We checked some values but not all of them. Perhaps the imaginary values do not correspond to the imaginary values of $s = 1/2 + i\nu$ but to some other unknown ones ...

Fractal p-adic strings were discussed by one of us in [9]. The scattering of a particle off a p-adic fractal string is another way to look at the p-adic stochastic motion modelled by a SUSY QM system, whose operator yields the imaginary parts of the zeroes of zeta. It was suggested in [9] to establish the correspondence, if any, between the exact location of the poles of the scattering amplitudes of p-adic fractal strings and the zeroes of the zeta.

The scattering amplitudes are given by a generalization of the Veneziano formula in terms of the Euler gamma functions. In the same fashion that the trivial poles of the gamma functions in Eq. 24 yield the trivial zeroes of zeta at $s = -2n, n = 1, 2, 3, ...$, it is sensible to see if a similar correspondence can be established, after an analytical continuation to the critical strip $0 \leq s \leq 1$ is performed. Because one expects complex-dimensions to play a fundamental role [17] the question one may ask is if a one-to-one correspondence between the nontrivial zeroes of zeta and the spectrum (poles in the scattering amplitudes) of
p-adic fractal strings and Regge trajectories in the complex angular momentum plane. In \[9\] we explicitly defined the SUSY QM problem in terms of the two iso-spectral Hamiltonians H_+, H_- (self-adjoint) whose eigenvalues where
\[
\lambda_0 = 0, \quad \lambda_n = \lambda_n^+ = \lambda_n^-,
\]
the imaginary parts of the zeroes of zeta.

The “fused” operator
\[
\mathcal{H} = \frac{1}{2}(H_+ H_- + H_- H_+) + \frac{1}{4}
\]
was self-adjoint whose eigenvalues and eigenfunctions were given by
\[
\mathcal{H}\psi_n = \left(\frac{1}{2} + i\lambda_n\right)\left(\frac{1}{2} - i\lambda_n\right)\psi_n = \left(\frac{1}{4} + \lambda_n^2\right)\psi_n,
\]
with
\[
\psi_n = \mathcal{F}^{-1}[\mathcal{F}(\psi_n^+) * \mathcal{F}(\psi_n^-)].
\]
\mathcal{F} and \mathcal{F}^{-1} are inverse Fourier transform pair. ψ_n is related to the convolution star product of the eigenfunctions ψ_{n-1}^+, ψ_n^- of the H_+, H_- operators (even negative Witten parity) and $n = 1, 2, \ldots\infty$.

It was argued in \[9\] that the $1/4$ coefficient was intrinsically related to the superconformal fusion rules properties of the eigenfunctions ψ_{n-1}^+, ψ_n^- of the H_+, H_- operators. Irreducible unitary highest weight representations of the super-Virasoro algebra could select and fix uniquely the value of the $1/4$ coefficient will be an elegant proof of the Riemann conjecture since this coefficient is due to the $(1/2 + i\lambda_n)(1/2 - i\lambda_n)$ product of the zeroes times their complex conjugates.

Pitkänen \[20\] has argued that non-Hermitean operators of the type $L_0 \pm iV$ could yield the $1/2 + i\lambda_n$ zeroes of the zeta as an eigenvalue problem. L_0 is the zero-mode of the Virasoro generator, or dilatations in the complex plane. The potential V is linked to the λ_n eigenvalues. Superconformal invariance imposes the conditions $x = n/2 = \text{half-integer-weights}$ like those appearing in the Ramond fermionic string. Since $n = 0, 2$ are ruled out by the Hadamard-Vallée de la Poussin theorem \[20\] this leaves $n = 1$ as the only permitted value and hence $x = 1/2$.

If this approach is valid this entails that the propagator of the p-adic fractal strings is nothing but the inverse operator
\[
[(L_0 + iV)(L_0 - iV)]^{-1}.
\]

Hence the poles of the propagator naturally correspond to the zeroes of zeta. All this remains to be verified explicitly. On the other hand we argued \[9\] that the fused operator \mathcal{H} whose eigenvalues were $1/4 + \lambda_n^2$ was quartic in derivatives as they should be. The Schild action for a string is the square of the Poisson brackets with respect to the world sheet variables (σ^0, σ^1). The momentum variable conjugate to the area-variables of the string world sheet is called the area-momentum. The square of such area-momentum is precisely the Schild
The analogy of the on-shell mass condition for a point-like particle \(p^2 + m^2 = 0 \) is
\[
P^2_{\mu\nu} + T^2 = 0, \quad (46)
\]
where \(P_{\mu\nu} \) is the area-momentum of the string world sheet, given by the Poisson bracket
\[
P_{\mu\nu} = \{ X_\mu, X_\nu \}_{\sigma_0, \sigma_1}, \quad (47)
\]
with respect to the variables \(\sigma_0, \sigma_1 \) (world sheet), with \(X_\mu \) the string embedding coordinate in a target spacetime of \(D \) dimensions (\(\mu, \nu = 1, 2, \ldots, D \)). \(T \) is the string tension which has units of energy per unit length.

The propagator is essentially the inverse of the operator
\[
[P^2_{\mu\nu} + T^2]^{-1} \quad (48).
\]
We are not including the center of mass degrees of freedom, which should be incorporated. Hence in this Schild string action model we can understand clearly why there is a quartic-derivative operator and accordingly how the poles of the scattering amplitudes, poles in the propagator, could be related to the zeroes of zeta once we include fractal chaos effects into the picture. The \(p \)-adic fractal string is linked to a \(p \)-adic stochastic dynamics with a Parisi-Sourles supersymmetry. Hence, the SUSY potential \(\Phi \) term must be incorporated into the momentum leaving then \(p \rightarrow p + \Phi \), which is just the usual minimal coupling of a particle to an electromagnetic potential. The inclusion of \(\Phi \) mandated by the SUSY QM model [9] into string theory is the correct way to formulate the scattering amplitudes of the \(p \)-adic fractal strings. Hence, the poles of their scattering amplitudes could be linked to the zeroes of zeta or \(1/4 + \lambda_n^2 \). The inverse operator of the fused quartic derivative Hamiltonian (the propagator) is
\[
\mathcal{H}^{-1} = \left[\frac{1}{2} (H_+ H_- + H_- H_+) + \frac{1}{4} \right]^{-1}, \quad (49)
\]
and will have for poles the values of \(1/4 + \lambda_n^2 \). The \(1/4 \) coefficient can be interpreted as the zero-point energy of the spectrum of the \(p \)-adic fractal string; in the same way that \(1/2 \) is the zero-point energy of the harmonic oscillator. Representation theory and super conformal invariance could fix the value \(1/4 \) uniquely and then we could have a proof of the Riemann conjecture.

Figures 1 and 2 show very suggestive relations of the golden mean and the distribution of the imaginary parts of the zeroes of zeta. This could be related to the multifractal character of the prime numbers distribution (See [29]). Also other relations of the Riemann’s zeta function to fractal string and M theory can be observed (See [30]).

Acknowledgements

We acknowledge Jörn Steuding, Johann Wolfgang Goethe-Universität Frankfurt, for giving us the reference [14]. Also very constructive comments from...
Matthew Watkins, School of Mathematical Sciences University of Exeter, and Andrew Odlyzko’s from ATT labs are gratefully acknowledged. CC is indebted to E. Spallucci for his kind hospitality in Trieste were this work was completed, to A. Granik, J. Gonzalez, L. Reyes and R. Guevara for many discussions. JMG is pleased to acknowledge the support of the present work by Centro de Investigaciones en Ciencias Exactas y Naturales of the Universidad de Antioquia, CIEN and the International Centre for Theoretical Physics, ICTP.
Figure 1: Distribution of the imaginary parts of the zeroes of zeta as a function of the integers $n = 1, 2, 3, \ldots$. This plot displays the fit $y_n = An^{0.5} + B; 1 \leq n \leq 100$. The crosses are data obtained by Odlyzko [26], and the continuous line is the fitting function. For $A = 7.33234$ and $B = 12.1732$ the fit is almost perfect.
Figure 2: Distribution of the imaginary parts of the zeroes of zeta as a function of the integers $n = 1, 2, 3, \ldots$. This plot displays the fit $y_n = (n \log n) A$, $1 \leq n \leq 10^5$. It is based on arithmetic QFT estimates where $y_n \approx (n \log n)^{(1+\phi)/2}$. The Hamiltonian of arithmetic QFT is $H = \sum p \log p$, p = prime. Notice that $(1 + \phi)/2 \approx 0.80399$. The dots are data obtained by Odlyzko [26], and the continuous line is the fitting function.
References

[1] M. S. El Naschie: Journal of Chaos, Solitons and Fractals 10 (2-3) (1999) 567.

[2] D. Mauldin, S. C Williams: Transactions of the American Physical Society 295 (1986) 325.

[3] A. Connes. “Noncommutative geometry”. San Diego CA, Academic Press, 1994.

[4] M. Conrad: Journal of Chaos, Solitons and Fractals 8 (5) (1997); C. Castro, A. Granik, M. S. El Naschie: “Why we live in 3 + 1 dimensions”, hep-th/0004152 v.4.

[5] M.S. El Naschie: Journal of Chaos, Solitons and Fractals 9 (3) (1998) 517; C. Castro: “Noncommutative geometry, negative probabilities and Cantorian-fractal spacetime”, hep-th/0007224, to appear in CSF.

[6] C. Castro: “Hints of a new relativity principle from p-branes quantum mechanics”. Journal of Chaos, Solitons and Fractals 11 (2000) 1721.

[7] C. Castro: “The string uncertainty relations follow from the new relativity principle”. Foundations of Physics 30 (2000) 1301.

[8] C. Castro: “The Status and Programs of the New Relativity Theory”, physics/0011040, to appear in CSF.

[9] C. Castro: “On p-adic stochastic dynamics, supersymmetry and the Riemann conjecture”, physics/0101104.

[10] L. Nottale. “La relativite dans tous ses etats: Hachette literature”, Paris, 1999; Fractal spacetime and microphysics: Towards the theory of scale relativity. World Scientific, 1992.

[11] C. Castro, Alex Granik: “How the new scale relativity resolves some quantum paradoxes”, Journal of Chaos, Solitons and Fractals 11 (2000) 2167.

[12] C. Castro, Alex Granik: “The p-loops harmonic oscillators in C-spaces and the explicit derivation of the black hole entropy”, physics/0008223.

[13] A. Connes: “Trace formula in noncommutative geometry and the zeroes of the Riemann zeta function”. Selecta. Math. (NS) 5 (1999) 29-106.

[14] E. C. Titchmarsh. “The theory of the Riemann zeta-function”. Oxford, Clarendon Press, 1986.

[15] B. Riemann: “On the number of prime numbers less than a given quantity”, Monatsberichte der Berliner Akademie, November, 1859. Translated by D. R. Wilkins, 1998.
[16] M. Nakahara. “Geometry, topology and physics”, chapters 12, 14. Bristol Institute of Physics Publishing, 1990; Orlando Alvarez. “Topological Methods in Field Theory”, Berkeley preprint UCB-PTH-85/43.

[17] M. Lapidus and M. van Frankenhuysen. “Fractal Geometry and Number Theory, Fractal Strings and Zeros of the Zeta Functions”, Birkhauser, 2000.

[18] B. G. Sidharth: “Fractal statistics”, physics/0008063.

[19] W. da Cruz. “Fractal statistics, fractal index and fractons”, hep-th/000822.

[20] M. Pitkänen: “Riemann hypothesis and superconformal invariance”, math.GM/0102031.

[21] M. Berry and J. Keating. SIAM Review 41 No. 2 (1999) 236.

[22] S. J. Patterson. “An introduction to the theory of the Riemann zeta function”. Cambridge, Univ. Press, 1988; A. Ivić. “Lectures on mean values of the Riemann zeta function”. Berlin, Springer-Verlag, 1991; A. A. Karatsuba and S. M. Boronin. “The Riemann zeta function”. Berlin, W. de Gruyter, 1992; I. C. Gradshtein and I. M. Rishik “Tables of Integrals, Sums, Series and Products”. Moscow, Nauka, 1971.

[23] J. Main. Phys. Rep. 316 (1999) 233.

[24] H. Montgomery: “Proc. Int. Congress of Mathematics”. Vancouver (1974), vol. 1, 379.

[25] A. Weil. “Collected Papers”. Berlin, Springer Verlag, 1980, vol. 1, 280.

[26] A. Odlyzko: “Proc. of the Fourth Int. Conference on Supercomputing”. L. P. Kartashev and S. I. Kartshev (eds). Int. Supercomputer Institute (1989), 348.

[27] F. D. Peat, B. Hiley and D. Bohm. “Quantum implications: Essays in honor of David Bohm”. London, Routledge & Kegan, 1987.

[28] M. A. Selvam has shown that the distribution of vortices and eddies in the cloud formation is such that the configuration is a logarithmic spiral with the golden mean winding number, and it bears a deep relation to the distribution of the zeroes of zeta. See http://www.geocities.com/amselvam/pns97-html.

[29] M. Wolf. Physica A 160 (1989) 24.

[30] A. Granik, C. Castro and J. Mahecha: “Duality of fractal strings, SUSY QM and the Riemann’s fundamental relation of the zeta”. In preparation.