Bimodality of [α/Fe] -[Fe/H] distributions in Milky Way-type galaxies with thick and thin discs

Sergey Khoperskov1*, Misha Haywood2,3, Owain Snaith2, Paola Di Matteo2,3, Matthew Lehnert3, Evgenii Vasiliev4,5,6, Sergey Naroenkov5, Peter Berczik7,8

1Max-Planck-Institut für extraterrestrische Physik, Gießenbachstrasse 1, 85748 Garching, Germany
2GEPI, Observatoire de Paris, PSL Université, CNRS, 5 Place Jules Janssen, 92190 Meudon, France
3Sorbonne Université, CNRS UMR 7095, Institut d’Astrophysique de Paris, 98bis bd Arago, 75014 Paris, France,
4Southern Federal University, Rostov on Don 344090, Russia
5Institute of Astronomy, Russian Academy of Sciences, Pyatnitskaya st., 48, 119017 Moscow, Russia
6Lebedev Physical Institute, Russian Academy of Sciences, 53 Leninsky Ave., 119991, Moscow, Russia
7National Astronomical Observatories and Key Laboratory of Computational Astrophysics, CAS, 20A Datun Rd., Chaoyang District, Beijing 100101, China
8Astronomisches Rechen-Institut am Zentrum fuer Astronomie der Universitaet Heidelberg, Monchhofstrasse 12-14, 69120 Heidelberg, Germany

19 June 2020

ABSTRACT
We present a set of self-consistent chemo-dynamical simulations of Milky Way-type galaxies formation and evolution to study the origin of the bimodality of α-elements in stellar populations. We explore how the bimodality is related to the geometrically and kinematically defined stellar discs, gas accretion and stellar radial migration. We find that the two α-sequences are formed in quite different physical environments. The high-α sequence is formed early from a burst of star formation in a turbulent, compact gaseous disc which forms a thick disc. The low-α stellar populations is the result of quiescent star formation supported by the slow accretion of enriched gas onto a radially extended thin disc. Our simulations suggest that stellar feedback-driven outflows during the formation of the thick disc are responsible for the enrichment of the surrounding gaseous halo, which subsequently feeds the disc on a longer time-scale. During the thin disc phase, chemical evolution reaches an equilibrium metallicity and abundance, where the stars pile-up. This equilibrium metallicity decreases towards the outer disc, generating the ridge line that forms the low-α sequence. We identify a second mechanism capable of creating a low-α sequence in one of our simulations. A rapid shutdown of the star formation, provoked by the feedback at the end of the thick disc phase, suppresses the chemical enrichment of the halo gas, which, once accreted onto the star-forming disc, dilutes the ISM at the beginning of the thin disc formation. Both mechanisms can operate in a galaxy, but the former is expected to occur when star formation efficiency ceases to be dominated by the formation of the thick disc, while the latter can occur in the inner regions. Being the result of the presence of low and high gas density environments in a galaxy, the bimodality is independent of any particular merger history, suggesting that it could be much more widespread than has been claimed. We also find that radial migration has a negligible effect on the [α/Fe] -[Fe/H] distribution over time, suggesting that α-bimodality results purely from the presence of different star formation regimes over the galaxy’s formation.

Keywords: galaxies: formation – galaxies: evolution – Galaxy: formation – Galaxy: evolution – Galaxy: abundances – Galaxy: disc

1 INTRODUCTION
The Milky Way is a typical disc galaxy composed of thin and thick stellar discs, a central pseudo-bulge and an old stellar halo. The latter seems to be dominated by a single major merger at early epoch (Belokurov et al. 2018; Haywood et al. 2018; Helmi et al. 2018). For a long time the bulge has been seen as an old classical spheroid, but models and observations now show that most of the mass is concentrated in a boxy-peanut pseudo bulge made of disc(s) stars which passed through the phase of secular evolution driven by the buckling instability of the bar (Shen et al. 2010; Bekki & Tsujimoto 2011; Di Matteo et al. 2015; Athanassoula et al. 2017; Debattista et al. 2017; Fragkoudi et al. 2018; Di Matteo et al. 2019a).

The Milky Way stellar disc is a complex structure containing

* E-mail: sergey.khoperskov@gmail.com
© 0000 The Authors
thick and thin components, a bar and spiral arms. The thick disc has been recognized as a component of the Milky Way distinct from the thin disc by Gilmore & Reid (1983). Thick disc stars are significantly older than those of the thin disc, which means that they contain a fossil record of the formation processes of the early phases of the Milky Way evolution. However, parsing of thick/thin disc stars is quite problematic because they intersect much in phase space due to several dynamical effects, such as radial migration (Sellwood & Binney 2002), the presence of spiral arms and the bar evolution (Dehnen 2000; Quillen & Minchev 2005; Antoja et al. 2009; Minchev et al. 2011) and gravitational interactions with the environment (Weinberg & Blitz 2006; D’Onghia et al. 2010; Purcell et al. 2011; Gómez et al. 2013, 2017). In such a context, the dissection of thin/thick discs by chemical composition is the preferred tool. Moreover, the chemical composition of its stars is related to the star formation history of a galaxy (Snaithe et al. 2015), and therefore to the evolution of the gas content during galactic evolution.

One of the most striking chemical patterns discovered in the Milky Way disc is the two sequences visible in the abundance ratios of alpha elements as a function of metallicity for stars in the solar vicinity (Gratton et al. 1996; Fuhrmann 1998, 2004; Reddy et al. 2006; Adibekyan et al. 2011; Bensby et al. 2014; Adibekyan et al. 2012; Hayden et al. 2020). In the last years a number of studies exposed the clear separation of α-abundance for a given metallicity on larger spatial scales (Anders et al. 2014; Hayden et al. 2015; Queiroz et al. 2019), together with the prevalence of the high-α sequence in the inner Galaxy (R<6 kpc) and of the low-α sequence in the outer disc (R>10 kpc). The existence of a distinct [α/Fe]-bimodality across the Milky Way disc suggests two different formation paths for high- and low-α sequences but the mechanism by which this bimodal distribution appeared remains debated. Since it is traditionally accepted that high- and low-α sequences correspond to the thick and thin Galactic disc (see, e.g., Fuhrmann 1998; Haywood et al. 2013), respectively, the problem of understanding the global chemical abundance patterns is ultimately linked to the understanding of the formation scenarios of the Milky Way disc components.

Before going further the ambiguity between two types of bimodality in the [Fe/H]-[α/Fe] distribution must be clarified. Bimodality (1), whose origin is addressed here, is the presence of two clearly defined [α/Fe] sequences in this plane, and it is visible at all [Fe/H] of disc stars. This bimodality is evident even when not taking into account the density of stars along the two sequences. Bimodality (2) reveals itself only in the inner disc, with a bimodal distribution of [α/Fe] abundances. This second bimodality (2) comes from the quenching phase that occurred between the formation of the thick disc and the inner thin disc (see Haywood et al. 2016). The two bimodalities are generated by different processes: the first bimodality (the existence of two [α/Fe] sequences), cannot be generated by a simple gap in the star formation history.

Several studies have tried to reproduce the observed [α/Fe]-bimodality (1), proposing radically different solutions. For instance, Grisoni et al. (2017) have tried to reproduce the bimodality as it is observed in the solar vicinity with a hiatus in the chemical track in the α-metallicity plane generated by a gap between two sequential gas infalls (see also Chiappini et al. 1997; Chiappini 2009). Haywood et al. (2013) advocated that the inner and outer disc, dominant in the high and low-α sequences respectively, both present at the solar vicinity, cannot be represented by the same evolution, and for this reason they were described by two different models in Snaithe et al. (2015). It was also claimed by these authors that sustained star formation activity must have formed the thick disc, as was confirmed by the measurement of the star formation history in Snaithe et al. (2014), the chemical homogeneity of this population at all ages implying a high level of turbulence in the gas (see also Haywood et al. 2015). This picture was completed more recently in Haywood et al. (2019), where it is suggested that while the high-α sequence is a temporal sequence, the low-α sequence is made of parallel evolutions occurring at different radii, starting at R ≳ 6 kpc.

Recent simulations emphasized the possible importance of external processes in the formation of the dichotomy in the [α/Fe] distribution. By using AURIGA cosmological simulations Grand et al. (2018) found only one galaxy with a clear [α/Fe]-bimodality in the outer disc, produced when the gaseous disc shrinks after the high-[α/Fe] sequence forms, causing a decrease in SFR while the gas transitions to a low-[α/Fe] state. Subsequent low-metallicity gas accretion grows the low-[α/Fe] sequence in an inside-out fashion at lower metallicities compare to the end of the high-[α/Fe] sequence. By analysing 133 simulated EAGLE Milky Way-mass galaxies, Mackereeth et al. (2018) found that a prominent disc bimodality is rare. They indeed deduce from their analysis that a bimodality establishes only when an early, first, rapid phase of gas accretion is followed by a slower, usually later, second phase, where the gas is mainly acquired from a galaxy merger. In an alternative approach both high- and low-α sequences can be formed in parallel (or simultaneously). Clarke et al. (2019) presented a galaxy formation simulation where gas clumps self-enrich in α-elements due to their high star formation rate density and produce the high-α sequence while the low-α sequence is produced contemporaneously by the star formation in a smooth surrounding disc, implying a temporal overlap in the formation of the two α-sequences. The most recent chemodynamical study of the [α/Fe] bimodality in simulated galaxies by Buck (2020) who made an in-depth analysis of chemical patterns in Milky Way-type galaxies from the NINGO-UHD project. In the four simulation analyzed in their paper, Buck (2020) finds that the high-α sequence is formed first, and the low-α sequence is a generic consequence of a gas-rich merger at some time in the galaxyâ€™s evolution.

In this paper, we present a set of idealized galaxy formation models via cooling of gas within an evolving galactic dark matter halo. Our work aims to explore some basic chemodynamical processes that can lead to the formation of the [α/Fe]-bimodality in...
simulated Milky Way-type disc galaxies. We analyze isolated galaxy formation simulations where the gas is able to feed the disc, driving the evolution of chemical abundances of the different galactic components. The choice to study, in particular, galaxies that evolve in isolation is dictated by the desire to understand if and under what conditions a α/Fe bimodality can be generated in a disc galaxy, even in the absence of mergers. The paper is structured as follows. In Section 2, we present our numerical methods, models setup and briefly summarise the global evolution of simulated galaxies. In Section 3 we explore the enrichment of the multi-phase gaseous component feeding the galaxies over time. In Section 4 we explore the pathways to the α/Fe bimodality as well as the spatial, kinematical and age structure of the stellar populations. In Section 5 we describe the impact of stellar radial migration on the observed chemical abundance patterns across both thin and thick discs. Finally, the results are discussed and summarized in Sections 6 and 7, respectively.

2 SIMULATION SET UP

This section provides an overview of the simulations and their subgrid physics routines.

2.1 Models setup

Our models consist of a disc galaxy forming inside a hot corona of pressure-supported gas embedded in a dark matter halo, an approach that has been used extensively for studying disc galaxy formation and evolution (see, e.g., Cole et al. 2014; Aumer et al. 2016; Clarke et al. 2019). We believe that this approach may also be relevant specifically to the Milky Way formation/evolution which did not experience any significant mergers over the last ≈ 9 Gyr (Haywood et al. 2018; Helmi et al. 2018; Di Matteo et al. 2019b; Kruijssen et al. 2020) implying that the Milky Way stellar mass has grown mostly by gas accretion and in-situ star formation (Snaith et al. 2015; Haywood et al. 2019).

In this paper we consider four models where the initial gaseous halo has different scale length, different initial mass and different λ spin parameters. These parameters are listed in Table 1. Due to the large uncertainties in the actual gas metallicity at high redshift, we rely on the assumption of a primordial chemical composition of the gas, with a 24% mass fraction of helium, and the rest of the mass in hydrogen. No star particles are present at the beginning of the simulations since all stars form out of gas that cools and reaches conditions to trigger star formation (see below). The initial state for the rotating gaseous halo embedded into the live DM halo has been generated using the iterative method described in Rodionov et al. (2009). The dark matter halo is set up using a population of 10^6 collisionless particles following a Plummer distribution with a scale

Figure 2. Face-on and edge-on density maps (M_\odot pc$^{-2}$ in log-scale) of the stellar (top frames) and gaseous (bottom frames) components for the four simulated galaxies after 10 Gyr of evolution.
of 10 kpc. We truncate the dark matter halo at 160 kpc. The particle mass is $2.57 \times 10^5 \, M_\odot$, and the gravitational softening length is set for DM to 250 pc.

The simulations were evolved with the N-body+Total Variation Diminishing hydrodynamical code (Khoperskov et al. 2014). For the N-body system integration and gas self-gravity, we used our parallel version of the TREE-GRAPE code (Fukushige et al. 2005) with multithread usage under the SSE and AVX instructions. In recent years we already used and extensively tested our hardware-accelerator-based gravity calculation routine in several galaxy dynamics studies where we obtained accurate results with a good performance (Polyachenko et al. 2016; Saburova et al. 2017; Moetazedian et al. 2017; Khoperskov et al. 2018a,b; Saburova et al. 2018; Khoperskov et al. 2019b). For the time integration, we used a leapfrog integrator with a fixed step size of 0.1 Myr. In the simulation we adopted the standard opening angle $\theta = 0.7$ and a gravitational softening parameter equal to 50 pc. The number of stellar particles at the end of simulations for different models vary in the range of $\sim (3 - 5) \times 10^6$ which makes our galaxies more detailed compare to similar studies based on cosmological simulations (e.g., Mackereth et al. 2018). Dynamics of the ISM is simulated on a Cartesian grid with static mesh refinement and a minimum cell size of 50 pc close to the galactic disc plane. Hydrodynamical part also includes radiative cooling and heating terms, advection of several passive scalars (element abundances) and idealized magnetic field treatment with constrained transport approach (Khoperskov et al. 2014).

2.2 Subgrid physics

In our simulations a gaseous cell undergoes star formation if: (i) the gas mass is $> 2 \times 10^5 \, M_\odot$, (ii) the temperature T is lower than 100 K and (iii) is part of a converging flow. The efficiency of star formation is set to 0.05, i.e. 5% of the gas eligible to form a new star particle per dynamical time. There is no direct dependency of the star formation efficiency on the gas metallicity. Newborn stellar particles inherit the velocity and elemental abundances of their parent gas cells.

The mass of stellar particles varies in the range of 10^4–$10^6 \, M_\odot$, so each can be considered as a simple stellar population. We assume the initial distribution of stellar masses (IMF) to be described by the parameters from Kroupa (2001), normalized between 0.1 and $100 \, M_\odot$. At each time step, we calculate the amount of gas returned, the mass of the various species of metals, the number of SNII or SNIa for a given initial mass and metallicity, the cumulative yield of various chemical elements (O, Mg, Si, Fe, H), the total metallicity, and the total gas released. Following the chemical evolution models by Snaith et al. (2015), at each time step, the mass and metals released from evolving stellar populations are transferred from stellar...
particles to their neighbours, with weights calculated using the initial, rather than current, mass of the particle. Feedback associated with the evolution of massive stars is implemented as an injection of thermal energy in a nearby gas cell proportional to the number of SNII, SNIa, and AGB stars. Outflows develop without the need to specify an initial gas velocity and do not require that radiative cooling or hydrodynamic forces to be temporarily disabled.

In the energy equation for hydrodynamics, we take into account cooling processes using the tabulated non-equilibrium cooling curves which depend on the metallicity of the gas (see Fig. 1). The full description of our method of cooling rate calculations and the references to the atomic data can be found in Vasiliev (2011, 2013).

Briefly, the non-equilibrium calculation includes the ionization kinetics of all ionization states for the following chemical elements: H, He, C, N, O, Ne, Mg, Si, Fe as well as molecular hydrogen kinetics at $T < 10^4$ K. We take into account the following major processes in a collisional gas: collisional ionization, radiative and dielectronic recombination as well as charge transfer in collisions with hydrogen and helium atoms and ions. In a low-temperature ($T \leq 10^3$ K) gas the above-listed ionization states of the elements are supplemented by a standard set of species: H$^+$, H$_2$, H$_2^+$, D, D$^+$, D$_2^+$, HD, needed to model the H$_2$/HD gas-phase kinetics (Abel et al. 1997; Galli & Palla 1998). Note that the H$_2$/HD cooling is efficient in low metallicity gas, $Z/[H] < -3$.

The cooling rates are obtained for a gas cooled down isochorically from 10^9 down to 10 K. We calculate a grid of cooling rates covering the metallicity range from $Z/[H] = -4$ to $+0.3$. The grid is constructed so that the difference of cooling rate between neighbouring values of metallicity is smaller than a factor of two for any temperature.

2.3 Overview of the star formation histories of simulated galaxies

As we described before, in this work we present the analysis of four Milky Way-type disc galaxies with stellar masses in the range of $(3.4 - 8.2) \times 10^{10}$ M$_\odot$. Two galaxies have bars with boxy/peanut pseudo-bulges (models 1 and 2) and the other two models present a spiral structure (model 3 with a weak pattern and model 4 with a more prominent one) at the end of the simulation (see Fig. 2). This set of simulations, although being limited, allows us to follow the main paths of chemodynamical evolution of Milky Way-type disc galaxies. At the beginning of the simulations, the primordial gaseous haloes rapidly settle into thick-disc-like structures. The high mass of the gaseous disc leads to its rapid fragmentation and to the formation of clumpy discs with an enhanced SFR. The chains of massive clumps $(10^8 - 10^9$ M$_\odot$) dominate the structure of the galaxies, similarly to some previous simulations (Noguchi 1999; Bournaud et al. 2014; Inoue et al. 2016; Bournaud et al. 2007; Clarke et al. 2019, see Fig. 3). We observe that after the fragmentation phase, some clumps fall to the centre, but some of them are dissolved, preventing the formation of massive bulges. Our galaxies pass through a stage of a rapid collapse of gas and intense star formation activity in a thick turbulent disc, where a high level of turbulence is driven by the stellar feedback, leading to an efficient mixing of metals in the disc. Despite a short time scale, this phase contributes significantly to the buildup of the stellar component. As can be seen in Fig. 3 the star formation rate density is sufficiently high to generate possible outflows (Lehnert et al. 2014) that may have contributed to polluting the surrounding extended gaseous halo (see, e.g., Davé et al. 2011; Christensen et al. 2016; Gutcke et al. 2017). At later epochs, the evolution is more quiescent, and settles to structures similar to those observed in nearby disc galaxies and in the Milky Way (see Fig. 2).

To understand the origin of the diversity of chemical patterns, and of the α-bimodality in particular, we need to explore the star formation, stellar feedback and the gas infall rates as a function of time. These are shown for the four simulations in Fig. 4. Similar to Nuza et al. (2019) we compute the gas accretion rates in units of solar masses per year by multiplying gas fluxes by their corresponding surface areas where the surface is defined by two parallel planes ± 1 kpc from the disc plane. Of course the choice of the surface is arbitrary, but our selection provides a global view of the gas infall rate evolution. According to Fig. 4, during a short initial phase $(3.5 - 3$ Gyr, depending on the model) primordial gas is rapidly accreted, giving rise to the formation of a significant fraction of the disc component. This episode is followed by a less intense ($0.5 - 5$ M$_\odot$ yr$^{-1}$) new phase of gas accretion on much longer time-scales, resulting in the formation of a younger disc component. The star formation history (see Fig. 4) shows a similar temporal evolution to the gas accretion rate, which suggests that in our simulations the star formation rate is supported by the gas accretion rate (or re-accretion, see, e.g., Fraternali & Binney 2008; Marinacci et al. 2010). It seems to happen in two more or less distinct phases, namely, an early, initial intense period of star formation followed by a subsequent, lower star formation intensity phase. The SFH is also very much spatially segregated: the initial intense phase of star formation is limited to a few central kpcs, the early SFR intensity at 10 kpc being often less than 10% its value in the inner regions of the discs. As we shall see in section 4, these spatial and temporal dychotomies, which are defined by the accretion history and distribution, are the origin of the large-scale bimodality of the $[\alpha/Fe]$-[Fe/H] distribution.

3 CHEMICAL ENRICHMENT OF THE MULTI-PHASE ISM

In chemical evolution models, the chemical evolution history is determined by both the star formation history, which determines the amount of metals that are rejected in the ISM as a function of time, and the ISM itself, with fixes the dilution of these elements. Both are controlled by the gas infall rate. As we have seen, the star formation history of our galaxies is critically determined by their infall history. However, in our simulations, the physics of the gas, described by a multi-phase ISM, introduces a more complex chemical cycle which is studied here.

In our simulations the source of the accreted gas is a pre-existing extended, initially hot ($T \sim 10^6$ K), gaseous halo. The most intense phase of mass and metals exchange between the disc ISM and this surrounding circumgalactic medium (CGM) is the thick disc formation at early epoch ($\approx 8 - 10$ Gyr ago), see Fig. 3. During this phase and afterwards, the gas is heated through supernovae explosions, ejected in the halo through outflows, mixed by the induced turbulence in the disc. Figure 5 illustrates the resulting complexity of the multi-phase structure of the ISM in $[\alpha/Fe] - [Fe/H]$ plane at different times. To avoid some peculiarities in the chemical abundance evolution of individual elements we define $[\alpha/H] = ([Si/H] + [Mg/H] + [O/H])/3$. Already at very early stages ($\approx 0.5 - 1$ Gyr) we find the presence of gas with solar abundances, however, it is characterized by a very high temperature ($> 10^5 - 10^6$ K). This gas was likely released in several episodes of SN explosions in massive star-forming regions. It was then ejected from the galaxy by stellar feedback in the form of filaments flowing out of the stellar disc (see Fig. 3), carrying metals
into the surrounding gaseous halo which can then be mixed with the pre-existing gas. However, due to the low density of the gaseous halo, the dilution of metals is limited, and the resulting CGM abundances can be very large compared to the newly formed stars. An important implication is that the high-metallicity gas cannot take part in subsequent star formation for considerable time. This means that there is a time delay between stars releasing metals and those metals returning to the ISM. On a longer time scale, this mixture of pristine and recycled material with large angular momentum is then accreted by the existing stellar component, contributing to the formation of a thin disc. In particular in models with a high early star formation rate (models 1, 2, 3) stellar feedback is strong enough to remove low angular momentum gas from the disc and make it available in the halo to be efficiently captured by the rotating gas, similar to the process noticed in a number of galaxy formation studies (see, e.g., Oppenheimer & Davé 2008; Oppenheimer et al. 2010; Übler et al. 2014; Kretschmer et al. 2020). Then, after being mixed with surrounding CGM gas, the ejected gas falls back onto the disc, bringing more gas for further star formation during the thin disc formation epoch (Fraternali & Binney 2008; Binney et al. 2009; Marinacci et al. 2010). Thereby the gas accreted by the disc is enriched, not pristine, which appears to confirm various observations in the Milky Way (see, e.g., Miller & Bregman 2015; Fox et al. 2016; Stern et al. 2016) and in external galaxies (see, e.g., Tumlinson et al. 2011a,b). This overall cycle is also very similar to the one described in Huescher et al. (2020), who analysed EAGLE simulations of Milky Way-like galaxies, in particular for what concerns the early metal enrichment of the hot CGM by outflows, and the fact that most of the gas accretion during the thin disc phase is already recycled gas.

A notable feature in Fig. 5 is the two distinct areas of cold gas, that correspond to the formation of the thick disc, at high-α and to the thin disc, at low-α. The high-α sequence is present as early as the first Gyr, as can be seen in the first row, while the low-α sequence appears later, at higher metallicity, indicating that the cold ISM has been gradually enriched in metals. Another notable feature is the absence of high-α abundances in the ISM after the thick disc formation (the two lower rows) which is likely caused by the mixing of metals in the CGM and the near galactic disc.

Fig. 6 illustrates the range of chemical abundances of the ISM that exist at any given time in the simulation, due to the presence of gas at very different temperatures. It shows the chemical abundance evolution of newly formed stars (yellow curves) and the ISM (colour density maps) in model 1 in four 1 kpc-width circular annuli, while the other models are presented in the Appendix A (see Fig. A2). As mentioned earlier, in all models the ISM abundances ([Fe/H] and [α/H]) can rapidly reach very high values, with a (moderate) fraction reaching solar metallicities already at $t < 1$ Gyr. Meanwhile, stellar populations do not gain such a high metallicity before the firsts ≈ 2 Gyr, even in the galactic centre. At large galactocentric radii, the difference between stellar and ISM abundances is even more evident, most of the ISM being more enriched than the population of locally formed stars.

The large spread of ISM abundances at all radii clearly demonstrates that the assumption of instantaneous mixing (Spitoni et al. 2009; Matteucci 2014) used in chemical evolution models is a crude approximation because it assumes that all metals are available and well mixed in the gas that forms stars at all times. From Fig. 6 it can be seen however that stars can form in an ISM which is substantially less (at large radii) or more (at small radii) metal-rich than the majority of the gas. Hence, in chemical evolution models, this will lead to chemical evolutions that are either faster or slower, depending on the location, than what the evolutions really is in more elaborate models. In the inner and outer galaxy in particular, star formation occurs neither in the most enriched gas nor in the most widespread (in terms of the gas mass abundances). Such behaviour is explained by the complex multi-phase structure of the ISM. Having illustrated the complex circulation of metals in the gas phase, we now turn to the emergence of the chemical patterns in stars.
Bimodality of $[\alpha/Fe]$-$[Fe/H]$ distributions in Milky Way-type galaxies

4 CHEMICAL ABUNDANCE PATTERNS

We begin by examining the global chemical abundance patterns in the simulated galaxies, in particular we focus on the $[\alpha/Fe]$-$[Fe/H]$ distribution at the final snapshot $t = 10$ Gyr. In Fig. 7 we show $[\alpha/Fe]$-$[Fe/H]$ relation for all the stars in the four models. The relation for each model is shown in a restricted range of metallicities ($[Fe/H]$ >-2.5 and, $[\alpha/Fe]<1$, large frames) and for a larger range of abundances ($[Fe/H]>-5$, $[\alpha/Fe]<1.2$) where the most metal-poor first generations of stars, being minor in terms of the total disc mass, are clearly visible. This figure shows that three (models 1,2,3) among the four simulations produce clear low and high $[\alpha/Fe]$ sequences in the $[\alpha/Fe]$-$[Fe/H]$ plane, qualitatively similar to those observed in the Milky Way (see, e.g., Hayden et al. 2015; Queiroz et al. 2019). To further understand our results, we separate high- and low-α sequences (see black lines in Fig. 7) by a different, arbitrary chosen, lines for different models, except for model 4 which shows a single pattern similar to the high-α sequences of other models but shows no obvious low-α sequence.

4.1 Low and high-$[\alpha/Fe]$ sequences: relation to structures (thin and thick discs)

Discrimination between low- and high-α sequences allows us to connect the observed bimodality with structure and kinematics of these chemically defined stellar components of simulated galaxies. In particular, we look at spatial distributions of these populations and global differences in their kinematics. In Table 1 we summarize the main properties of simulated galaxies where we also compare some main parameters for stars belonging to low- and high-α sequences. Across different models the mass of the high-α population
Figure 6. Chemical evolution of stellar populations and the ISM enrichment history at different radii in model 1. From left to right: the average evolution of $[\text{Fe}/\text{H}]$, $[\alpha/\text{H}]$, $[\alpha/\text{Fe}]$ and total star formation rate in 1 kpc-width circular annuli: 0, 4, 8, 12 kpc (different rows). Chemical abundance evolution of new born stars (age<10 Myr) is shown by yellow lines. Background colormaps represent a mass fraction (normalized at each snapshot) of the gas according to the colour-bar plotted in the top left frame.

is rather similar $(3.4-3.8)\times 10^{10} \, M_\odot$, which correspond to 45–60% of the entire galaxy stellar mass. Note that these numbers are somewhat arbitrary and depend on the definition of the low- and high-\text{\textalpha} sequences. However, in all cases, our models show a significant high-\text{\textalpha} disc mass, which is in quantitative agreement with the estimate of Snaith et al. (2015) who found that 47% of the stellar mass belongs to the high-\text{\textalpha} sequence in the Milky Way. In all three galaxies with bimodality, the high-\text{\textalpha} components exhibit shorter radial extend compared to low-\text{\textalpha} stars, and is also vertically thicker and dynamically hotter in both radial and vertical directions (see Table 1, note that the velocity dispersion components (σ_R, σ_z) are measured for stars across the entire galaxy). Our simulations imply that, similarly to the Milky Way, the high-\text{\textalpha} sequence in models 1, 2 and 3 correspond to chemically defined compact thick discs, while the low-\text{\textalpha} stars form chemically defined extended thin discs (see, e.g., Bovy et al. 2012; Hayden et al. 2015; Feuillet et al. 2019). It is also worth mention, that, in our models we find in-situ formed stars with chemical abundances typical of the low-\text{\textalpha} sequence discussed in the observational data and usually interpreted as made of accreted stars (Nissen & Schuster 2010; Haywood et al. 2018; Helmi et al. 2018; Di Matteo et al. 2019b). In other words, our simulations suggest that in-situ stellar populations of the Milky Way could contribute to the low \text{\textalpha}–populations at metallicities below $\lesssim 0.5$.

4.2 Low- and high-[\text{\textalpha}/\text{Fe}] sequences: relation to age

The first question we want to address is related to the age differences between the two \text{\textalpha}-sequences. In Fig. 8 we show the $[\alpha/\text{Fe}] - [\text{Fe}/\text{H}]$ distribution for all stars in the simulated galaxies colour-coded by the mean age of stars. The age structure of our galaxies is similar to the one observed in the solar vicinity (Haywood et al. 2013). In particular, all models (1, 2, 3) with bimodality have a high-\text{\textalpha} sequence mainly formed during the first 2 – 3 Gyr of evolution, implying that the thick discs in our simulations are made of old stars. Moreover, it can be seen that the high-[\text{\textalpha}/\text{Fe}] sequence is clearly an age sequence, in the sense that age decreases along the sequence. This is particularly true for model 3, where the sequence is tight. This is also illustrated in Fig. 11.

Thin discs (or low-\text{\textalpha} stars) contain stellar populations with a wider range of ages ($\lesssim 6 – 8$ Gyr) suggesting their formation on a longer time scale after the thick disc formation. The sharp age transition is in favour of a rapid change of the star formation regime leading to different enrichment efficiencies during the formation of high- and low-\text{\textalpha} sequences. A rapid transition between thick and thin discs formation phases also implies that in our simulations, both \text{\textalpha}-sequences are not formed contemporaneously as it has been suggested in Clarke et al. (2019). On the contrary, in our models, the thick and thin disc evolutions are sequential. In the outer disk however, where the thick disc does not exist, the star formation ignition will depend on the gas density, which will depend on a range of related processes, such as the accretion history at large radii, outflows from the inner disc, and/or the possible occurrence of a gas-rich merger.

Another feature related to the star formation history is the width of the high-\text{\textalpha} sequence. This sequence is tightest for the model with the most intence SFR during the thick disc phase (model 3), due to
Bimodality of $[\alpha/\text{Fe}] - [\text{Fe}/\text{H}]$ distributions in Milky Way-type galaxies

Figure 7. $[\alpha/\text{Fe}] - [\text{Fe}/\text{H}]$ maps of simulated galaxies at 10 Gyr colour-coded by the stellar mass. Large frames correspond to a restricted chemical abundance range while smaller subframes depict the distribution on a larger metallicity scale to show where the oldest very metal-poor stars ($[\text{Fe}/\text{H}] \lesssim -5...-4$) can be found. Black lines separate low- and high-α sequences in three models except model 4 (bottom right) where we do not find a prominent bimodality.

4.3 Low- and high-$[\alpha/\text{Fe}]$ sequences: relation to radius

Next we look at the radial distribution of stars of both α-sequences. In Fig. 9 we show $[\alpha/\text{Fe}] - [\text{Fe}/\text{H}]$ distributions but now colour-coded by the mean galactocentric distances for stars at the end of the simulation. Across all models, during the formation of high-α sequences, the chemical evolution is fast but slightly different at different radii due to the radial decrease of the star formation efficiency (see, e.g., Nidever et al. 2014). In particular, we observe parallel tracks reaching the same values of the $[\text{Fe}/\text{H}]$ delay in time at a larger radius, stars forming more rapidly in the inner disc. This process is seen prominently in models 1, 2 and 4, where star formation intensity follows the decreasing gas density (and hence increasing distance to the Galactic centre), inducing a chemical evolution which depends on radius. In model 3, the high star formation drives turbulent ISM conditions that contribute to a more uniform chemical abundance evolution across a range of radii. This leads to a tighter high-α sequence, but we still can distinguish parallel chemical evolution tracks (see Fig. 11).

Meanwhile, thin discs show (except for model 4) a negative radial metallicity gradient which is most prominent in models 1 and 2, the metallicity decreasing towards the outer disc as is apparent along the low-α sequence (see Fig. 9). In these models, the formation of the disc is clearly inside-out, in the sense that the peak of star formation occurs at earlier times and is more intense in the inner disc. This is illustrated for model 1 in Fig.6 which shows the star formation history at different radii, and for model 2 in the Appendix. Hence thick discs (high-α) form initially in the inner galaxy, and thin stellar discs assemble later on a larger spatial scale. This is confirmed by Fig. 10, which shows the $[\text{Fe}/\text{H}] - [\alpha/\text{Fe}]$ distribution in different radial and vertical ranges. The figure clearly illustrates that the ridge line defining the high-α sequence is confined to the inner disc, while the full extent of the low-α sequence is visible only at larger radii, being restricted to high metallicities in the inner Galaxy. This behaviour is very similar to what is found in the Milky Way with the APOGEE data (Hayden et al. 2015; Queiroz et al. 2019).
Figure 8. Mean stellar age maps of $[\alpha/Fe] - [Fe/H]$ relation in simulated galaxies at 10 Gyr. Black lines separate low- and high-α sequences, as in Fig. 7. The distributions show that high-α sequence stars formed at early epochs of the galaxy evolution while low-α is the result of later evolution.

4.4 Fine structures

Another interesting feature during the formation of the high-α sequence in model 2 is the horizontally-aligned “spikes”. These brief, low-amplitude $[Fe/H]$ dilution episodes (see also in Fig. 7 as horizontal ridges) are likely associated with bursts of star formation during the thick disc formation phase (< 2 Gyr, see Fig. 4 left). Note that similar patterns can be found when gas-rich mergers (Snaith et al. 2016; Buck 2020) stimulate the star formation in the low-$[Fe/H]$ gas accreted during the merger.

After the formation of the high-α sequences in models with bimodality (1, 2, 3) we observe a rapid decrease and subsequent slow increase of the metallicity creating a “loop” similar to one predicted by the chemical evolution models by Grisoni et al. (2017). In our simulations, the $[\alpha/Fe] - [Fe/H]$ loop is the result of the star formation quenching being induced by the sharp change of the gas infall rate into the galaxy controlled by the stellar feedback (winds). In Fig. 4, we can see that the star formation quenching is the most rapid (≈ 1 Gyr) in model 3, being slower in model 1 (≈ 2 Gyr) and model 2 (≈ 3 Gyr). Thereby, different quenching “speed” (and likely the star formation ratio before and after the quenching) is clearly imprinted in the diversity of the loop shape across the models. In particular, in model 1, with a slow decrease of the star formation rate, the loop amplitude is small corresponding to the $[Fe/H]$ dilution of ≈ 0.1 dex while in model 2 the loop is very evident, especially in the inner galaxy where $[Fe/H]$ dilution is ≈ 0.2 dex. Finally, in model 3, we found the $[Fe/H]$ dilution of $0.25 - 0.3$ dex due to the fastest transition between the intense star formation during the thick disc phase and quiescent thin disc formation phase. Note also that the amplitude of the $[Fe/H]$ dilution in our simulations is significantly smaller compare to 1.2 dex in Grisoni et al. (2017) who assumed primordial chemical composition of the infalling gas. In our simulations chemical composition of the infalling gas during thick disc formation phase is not primordial because the gaseous halo has been significantly polluted during thick disc formation, providing a tight connection between chemical abundance patterns in thick and thin discs.

4.5 Origin of the bimodal sequence

Although all models present a variety of chemical patterns, the first three have conspicuous bimodal sequences, and it is possibly embryonic in model 4 (slightly visible on Fig. 2). The high-α sequence is a temporal sequence because metallicity increases and alpha abundance decreases monotonically with time during this phase (see Fig. 8 and Fig. 11). The low-$[\alpha/Fe]$ sequence is a bit more complex and is resulting from the combination of two different effects: the first is the accumulation of stars younger than $6-7$ Gyr at the end of each chemical track. This is seen in Fig. 11, which shows the chemical evolution in different parts of the simulated galaxies. We measure the chemical evolution tracks as the evolution of the chemical abun-
Bimodality of [α/Fe] -[Fe/H] distributions in Milky Way-type galaxies

Table 1. Initial and final (at 10 Gyr) parameters of simulated galaxies: gaseous halo mass ($M_{\text{g}}(0)$), gaseous halo scale length (R_{g}), initial gaseous halo spin (λ), total stellar mass (M_{stars}), total number of star particles (N_{stars}), I is the radial disc scale, h is the vertical disc scale, σ_R and σ_z are the mean radial and vertical velocity dispersions respectively. Upper indexes (1), (2) correspond to low- and high-α sequences respectively relative to the cuts shown in Fig. 7. Note that the velocity dispersion components are measured for stars across the entire galaxy and the values are not suitable for the direct comparison with the numbers in the Solar vicinity.

Model	Initial parameters	Final (at 10 Gyr) parameters									
	$M_{\text{g}}(0)$	R_{g}	λ	M_{stars}	N_{stars}	$I^{(1)}/I^{(2)}$	$h^{(1)}/h^{(2)}$	$\sigma_R^{(1)}/\sigma_R^{(2)}$	$\sigma_z^{(1)}/\sigma_z^{(2)}$		
	$10^{10}M_{\odot}$	kpc		$10^{10}M_{\odot}$	10^{6}	kpc	kpc	km s$^{-1}$	km s$^{-1}$		
Model 1	6	3	0.0436	barred	5.8	4.6	2.33/3.46	7.3/5.5	0.29/0.48	54/67	32/34
Model 2	9	5	0.0465	barred	8.2	4.7	4.77/3.42	4.3/3.2	0.35/0.59	73/87	27/37
Model 3	9	3	0.049	spirals	8.4	4.1	4.57/3.82	5.3/9	0.22/0.38	69/104	30/49
Model 4	6	5	0.0347	spirals	3.4	2.4	-/3.4	-/3.3	-/0.24	-/51	-/27

Our simulated galaxy sample includes galaxies with different morphologies (see Fig. 2), thus providing us with an opportunity to test how much radial migration is experienced by stars due to the different asymmetries and how they affect chemical patterns. In this section we first take a brief look on the efficiency of radial migration in our simulations. First, we measure the amplitude of the radial displacement of stars in different models. In Fig. 12 we show the relation between the change of the galactocentric distance (R_{g}) as a function of the initial galactocentric distance ($R_{\text{g},i}$). For this and the following figures, we define ($R_{\text{g},f}$) as the mean galactocentric radius of stellar particles, averaged over a time interval of 500 Myr (50 snapshots) since their formation; in a similar way, ($R_{\text{g},i}$) is the mean galactocentric radius of stellar particles, averaged over the last 500 Myr, before the end of simulation. This approach allows us to estimate the churning of stars in kpc independent of the angular momentum calculation which can also experience periodic variations with zero net change, especially in the non-axisymmetric potential of the barred galaxies (see, e.g., Ceverino & Klypin 2007). In Fig. 12 we see that half of the stars migrate only up to ≈ 2 kpc from their birthplaces, about 40% can be churned up to $\approx 4 - 5$ kpc while the most extreme migrators ($|R_{\text{g},f} - R_{\text{g},i}| > 5$ kpc) represent only $\approx 10\%$ of the total disc mass (see a similar behaviour in Minchev et al. 2013). A notable feature is that radial migration is substantially more efficient in models with bars (model 1 and 2) where stars can migrate by more than 5 kpc. Model 3, without a prominent spiral structure, shows the less efficient overall churning, while in model 4, with spiral arms, migration is more efficient in the outer disc ($>8 - 10$ kpc) where the resonance of slowly rotating spirals is located. In our simulations, bar formation causes considerable more angular momentum changes, especially in the inner disc, than those of spiral patterns.

5 ROLE OF THE RADIAL MIGRATION

Although it is widely accepted that radial migration plays a role in reshaping the structure of galaxies over time (see, e.g., Roskar et al. 2008; Schönrich & Binney 2009a; Loebman et al. 2011; Minchev et al. 2012; Roskar et al. 2012; Kubryk et al. 2013; Di Matteo et al. 2013; Daniel et al. 2019), some studies suggest that, at least in the Milky Way, the global characteristics of the stellar disc do not seem to require significant migration, if only to explain the few percent of metal-rich and metal-poor stars on circular orbits at the solar vicinity (Haywood et al. 2013; Halle et al. 2015, 2018; Haywood et al. 2019; Khoperskov et al. 2019a). Very limited radial migration seems also to be found in models where the coupled effects of bar and spiral arms is taken into account (see Monari et al. 2016, their Fig 11). Also recent works based on the analysis of GES data seem to suggest that migration is limited, with for example, only 2% of stars in the solar vicinity being bona fide candidate migrants from the inner disc, these stars having both high metallicity ([Fe/H] > 0.1) and circular orbits (Hayden et al. 2018).
churning of thin disc stars. This figure shows that churning effects in the thin disc (as defined by stars belonging to the low-\(\alpha \) sequence), is minimal, and affects a small number of stars. Finally, although we observe both inward and outward radial migration for both thick and thin disc stars, outward migration is slightly more significant in all our models due to negative radial density gradient (see also Fig. 12).

5.2 Effect of radial migration on the chemical patterns

We now test how much chemical abundance patterns in the [\(\alpha/Fe \)]–[Fe/H] plane and metallicity distributions are affected by radial migration. Figure 14 (top two rows) shows [\(\alpha/Fe \)] – [Fe/H] distributions for stars at their time of formation (top row) and at the end of the simulations (middle row) in the middle disc region (5 < \(R \) < 10 kpc) near the galactic plane (\(|Z| < 0.5 \) kpc). Generally speaking in Fig. 14, radial migration only slightly smooths the [\(\alpha/Fe \)] – [Fe/H] distribution – mostly by bringing some stars from the inner and outer disc regions – but the distributions are only very marginally affected by migration, in all simulations, and whatever the structure dominating the asymmetries (bar or spiral arms).

The typical radial excursion due to blurring (epicyclic oscillation) is of the order of 2 kpc for an old high-\(\alpha \) star. If radial mixing is due essentially to blurring, then chemical patterns sampled on a 2 kpc radius range will be unchanged. If churning has a significant effect, chemical patterns will be substantially modified due to contamination by stars churned to a certain disk region. Fig. 15 shows the same plots as the previous figure, sampled on a smaller radius range, going from 7.5 to 8 kpc. The comparison of the top and middle rows illustrate that churning has no significant impact. Similar to the Solar vicinity region in the Milky Way however, Fig. 14 or Fig. 15 show that the most evident manifestation of the outward radial migration, visible in all models, is the presence of high-metallicity stars, likely formed in the innermost regions (see, e.g., Grenon 1972; Hayden et al. 2015; Kordopatis et al. 2015; Hayden et al. 2018). To highlight this effect the bottom rows of the two figures show the metallicity distributions of stars at their initial (dashed lines) and final radius (solid lines) for high- and low-\(\alpha \) sequences separately. Apart from this small shift in metallicity, the impact of radial migration is barely visible when comparing [Fe/H] distributions of stars where they are formed and at the end of the simulation. The contribution of these metal-rich stars does not exceed 1 – 2% of the total mass of both disc components, it is similar to the findings of other recent studies (Haywood et al. 2019; Khoperskov et al. 2019a).

These figures show why, in galaxies with a tight high-\(\alpha \) sequence, such as in model 3, but also as in the Milky Way, the effect of radial migration on chemical patterns is limited. The high-\(\alpha \) se-
Bimodality of $[\alpha/\text{Fe}] - [\text{Fe}/\text{H}]$ distributions in Milky Way-type galaxies

6 DISCUSSION

In this section, we first start by summarizing our results, then discuss the consequences of our findings.

6.1 Our results

The existence of a high-alpha sequence with a clearly visible ridge line (Fig. 7) is related to the presence of a dense and massive disc of gas. Models 2, 3 and 4, which all have this feature, have their high-alpha sequence associated with a disc of a scale length of 3.2 to 3.9 kpc, significantly smaller than the scale length of model 1, which is 5.5 kpc, nearly twice times larger. The scatter of high-alpha sequence is more prominent in model 1, where the initial gas distribution is radially extended, thus leading to a progressive decline of the star formation efficiency with radius (see also Nidever et al. 2014) within the thick disc.

The evolution of the low-alpha sequence follows two possible paths. Firstly, the low-alpha sequence is made of the ends of the chemical tracks that start at high-alpha and low metallicity and go to low-alpha and high metallicities (see Fig. 9). In the last 7 – 9 Gyr, change in metallicity and alpha is limited, reaching an “equilibrium” value, allowing stars to pile up at more or less the same position in the $[\text{Fe}/\text{H}] - [\alpha/\text{Fe}]$ plane. A negative gradient of the gas density drives a slower evolution towards the outer disc, the ends of the chemical tracks at larger R reaching lower values of metallicities. As a consequence of these two effects, the terminal metallicity at which the stars pile up gradually moves to lower values towards the outer disc, building the low-alpha sequence. Secondly, the low-alpha sequence may also result from a loop in the $[\text{Fe}/\text{H}] - [\alpha/\text{Fe}]$ plane, when the disc ISM metallicity decreases at the end of the thick disc phase. This dilution results from the abrupt quenching of the star formation activity, as best illustrated by model 3. The quenching induces a drop in the amount of metals ejected to the halo. Then this gas rains back onto the disc with a lower metallicity, inducing a dilution. From Fig. A2, it can be seen that the extension of the loop (and therefore of the low-alpha sequence) to low metallicity seems to be a direct function of the speed of the drop in the star formation activity. The drop in
metallicity is about -0.5 dex when the drop in the star formation rate is almost instantaneous, as is the case in the radius range centred on $R = 8$ kpc.

When the formation of the low-α sequence results from the first path, the presence of these two sequences in a single galaxy is due to two different modes of star formation, mainly driven by the gas density. The formation of a tight high-α sequence, is due to the high star formation intensity reached in massive discs, and depends on the early accretion of a large quantity of gas. The formation of a low-α sequence (as described by the first process) is expected to occur as soon as star formation proceeds at lower gas densities, outside the compact gaseous disc that formed the thick disc. The formation of a radially extended disc is expected in most cases independently of the particular merger history of the galaxy. Stars will then form at a rate which depends on the radius, and the mixing (mostly blurring) of stars in the disc will then generate a low-α sequence by blending together stars that are formed at different radii (hence at different metallicities).

Although we emphasize that nothing prevents the two sequences to be formed contemporaneously, stars will form first where the cold ISM reach the necessary density, which occurs faster in the inner disc. This is visible looking at the star formation histories at different radii in the first 3 models (see Fig. A2). In these models, the formation of the outer disc is delayed by a couple of Gyr. On the other hand, we do not confirm the parallel formation of both α-sequences demonstrated in Clarke et al. (2019), which could possibly occur in our simulations if the multi-phase structure of the ISM was not taken into account. In particular, allowing star formation in a warm ISM ($T \sim 10^4$), we would obtain a similar result (see Fig. 5 where the low-α sequence appears to be filled by enriched hot gas at early times). However, our results suggest that chemical evolution models should include multi-phase ISM evolution to correctly take into account the delayed metal enrichment of the star-forming gas (see, e.g., Rybizki et al. 2017, and Snaith et al. in prep).

What our simulations demonstrate is that the bimodality is a natural outcome in massive galactic discs. If early gas accretion has been sufficiently important in central regions of discs, and we argue below that this is probably the case for most Milky Way-like galaxies (guaranteeing the formation of a high-α sequence), then bimodality is assured, because low-gas density is always present in the outskirts of exponential discs. We emphasize that bimodality is conspicuous even when the global SFH of a galaxy shows no obvious separation, or distinct phases (see for example model 2). This is because the two regimes of high and low star formation intensity are spatially separated, the high-α building up in the inner disc, while the low-α builds up mostly outside the inner disc.

6.2 How do these results help understanding the evolution of the Milky Way?

How do the simulations presented here help us to understand the evolution of the Milky Way? The Milky Way differs from all models in various ways, but some of its characteristics can be found in each model. For example, the tight high-α sequence observed in model

Figure 11. Chemical evolution tracks in $[\alpha/\text{Fe}] - [\text{Fe/H}]$ plane in 1 kpc width circular annuli at different galactocentric distances built from newly born (age < 10 Myr) stars as a function of time. Grey background depicts the entire $[\alpha/\text{Fe}] - [\text{Fe/H}]$ relation for all the stars at the end of the simulation. Each galaxy formation model is shown in a separate column. Models with a clear bimodality (1, 2 and 3) have endured a rapid (and moderate) dilution of $[\text{Fe/H}]$ during the decrease of the star formation rate (see Fig. 4). This episode is imprinted as a non-monotonic stretch of the chemical evolution track, or even a loop (see also Grisoni et al. 2017) being the most prominent in models 2 and 3.
Bimodality of $[\alpha/\text{Fe}]$-[Fe/H] distributions in Milky Way-type galaxies

Figure 12. Distributions of the mean change of the galactocentric distance $\langle R_{\text{ini}} \rangle - \langle R_{\text{fin}} \rangle$ as a function of $\langle R_{\text{ini}} \rangle$ for different models: top row corresponds to all stars while the middle to high- and low-α sequences respectively. Initial galactocentric position of star particles ($\langle R_{\text{ini}} \rangle$) is measured as the mean position during the first 500 Myr after a star particle formation. Final galactocentric position of star particles ($\langle R_{\text{fin}} \rangle$) is measured as the mean position during the last 500 Myr before the end of simulation (10 Gyr). Maps are shown in the same scale and colour-coded according to the mass fraction relative the maximum value. Three white contours in each frame correspond to 90%, 70% and 50% of the enclosed mass. Across models, stellar radial migration is limited to $4 - 5$ kpc for 90% of the stars suggesting that only 10% of stars are extreme migrators.

Figure 12, with weak deviations of the chemical evolution during high-α sequence formation observed at different radii, is very similar to the one we have in our Galaxy. In the MW, the small dispersion in $[\alpha/\text{Fe}]$ at a given age is in favour of a thick disc formation in a well-mixed turbulent ISM (Haywood et al. 2013, 2015; Feuillet et al. 2019). This is also consistent with the fact that galaxies at high redshifts are known to be gas-rich, and to have high gas mass surface densities (Daddi et al. 2010; Aravena et al. 2010; Genzel et al. 2015; Papovich et al. 2016) and intense star formation (Lehnert et al. 2009, 2013; Swinbank et al. 2011).

On the other hand, the low-α sequence of the MW looks more like those seen in models 1 and 2, which in both cases are built through the first path described above: they are a composite of chemical tracks resulting from the evolution at each radius. This is the scenario described in Haywood et al. (2019) and confirmed by the simulations presented here. Haywood et al. (2019) claimed that while the high-α sequence is a temporal sequence, in the sense that age varies monotonically with metallicity and α-abundance (see also Haywood et al. 2013), the low-α sequence is a spatial sequence, in the sense that, at a given age, metallicity varies with radius along the ridge line of the sequence. This corresponds to the way the low-α sequence is built in model 1 and 2: it is a composite of evolutions that proceeded almost independently at each radius. Then radial wandering of stars effectively built a sequence visible where this mixing is sufficiently effective (for example at the solar radius).

The formation of the two distinct sequences may be strengthened by internal dynamical effects. Hence, in Halle et al. (2015), we showed that the outer Lindblad resonance of the bar creates a separation between the inner and outer discs, thereby diminishing gas and star exchanges, fostering different evolution of the inner and outer discs. In simulations, stars form even at very low metallicities and very old ages in the outer disc, as illustrated by the chemical tracks of young stars shown in Fig. 11, and provide the metals for the younger generations that dominate the low-α sequence, at ages less than 7 – 8 Gyr. In the case of our Galaxy, there is yet no compelling evidence as to from where the oldest stars in the outer disk obtained their...
chemical abundances. Apart from the gas outflows expected during the thick disc formation (Lehnert et al. 2014), another possible source is the gas deposited by an early merger (possibly Sausage-Gaia-Enceladus).

6.3 Comparison with other studies

There is another example of chemodynamical simulations that clearly show two sequences in the distribution of stars in the [Fe/H] - [α/Fe] space (oxygen in this case) are the MAGICC simulations in Snaith et al. (2016). In this study, the authors study the effect of various feedback prescriptions on the evolution of disc galaxies and in particular on the chemical patterns, starting the evolution with the same initial conditions. The galaxy evolved with the strongest early feedback prescription shows chemical patterns that look very similar to what we have in the Milky Way, with a high-α sequence that dominate their inner simulated galaxy, and a low-α sequence which is dominated by the thin disc at ages younger than 6-7 Gyr. Finally, the low-α is clearly radially dependent, as illustrated in their Fig. 6.

More recently, Grand et al. (2018) explored the Auriga cosmological zoom simulations for a number of Milky Way mass galaxies, but the bimodalities that are described by these authors in the inner or outer discs bear more resemblance to the second type of bimodality described in the introduction. That is, the bimodality is generated by two distinct phases of star formation, the gap in the star formation activity in the outer disc being induced and maintained by a contraction of the gaseous disc. The resulting general patterns are much less evocative of a high- and low-α sequence as can be seen, for example, in Snaith et al. (2016). In particular, the low-α sequence is not a ridge line that builds up progressively inside-out as the result of the accumulation of stars at an equilibrium metallicity, as is observed in Snaith et al. (2016), or in this study.

In our simulations, we showed that the low-α sequence forms when star formation efficiency ceases to be dominated by the formation of the thick disc, specifically in the radially extended thin disc. It de facto produces separate evolutions, even though the outflows generated by the thick disc may contribute to the metal enrichment of the outer disc. It is also the conclusion reached by Mackereth et al. (2018) that the pathways producing the two sequences in galaxies from EAGLE simulations are distinct. The formation of the two sequences, however, differs in several aspects from our work. For example in our simulations, and in the MW, the high-α sequence can be subdivided into two segments: the first corresponds to the formation of the thick disc, the second to the formation of the inner thin disc at high metallicities. In Mackereth et al. (2018), this second segment does not exist, and the evolution in the inner disc seems to halt after a few Gyr, and explains the relatively small extension of the high-α sequence in the simulations presented by these authors.

In the Milky Way, the highest metallicity stars are found in the inner disc (R<6 kpc) and are the endpoint of a two-stage evolution, the first stage being the thick disc formation. This is also the case in our simulations, when such high-metallicity stars exist (model 1 and 2). The pathway to the formation of high-metallicity stars in Mackereth et al. (2018) is different: they are the typical end product of a low-α evolution that occurs in the outer regions of these simulated discs. Finally, the formation of two distinct sequences in Mackereth et al. (2018) seems to hinge on two circumstantial conditions: the high-α sequence on an early and rapid accretion of gas, which seems to be a rare event in the their simulations of MW-type galaxies, and the later accretion of gas due to the merger of a gas-rich galaxy. The consequence is that the authors conclude the formation of both sequences to be a rare event. We shall see in the next section that, on the contrary, we find that it must be relatively widespread.

Buck (2020) analysed the NIHAO-UHD cosmological zoom simulations, with results that are similar to ours. In particular, the low- and high-α sequences show clear bimodality, and the ridge defining the low-α sequence varies towards decreasing metallicity as a function of radius. Buck (2020) reached the same conclusion as Mackereth et al. (2018) by saying that the formation of low-α sequence is linked to gas-rich mergers. The link is obvious in some simulated galaxies, for instance the galaxy quoted $g2.79e12$, which shows a spread in metallicity after the merger, but much less in some others. Another example, $6.96e11$, apparently suffers the greatest number of mergers, with no obvious bimodality. The most massive galaxy ($2.79e12$) presents patterns very similar to those of our model 1. It is difficult to think that the two merger events linked to this galaxy (see Fig. 7 in Buck (2020)), at times ~ 3.5 and 10 Gyr, are directly linked to the low-alpha sequence, which stars start to form at 7 Gyr, even if the gas provided by the mergers probably fuels the star formation activity in the disc. Ultimately, these results raise the question of the origin of the gas that settles to form the low-α sequence. Although the aforementioned studies emphasize the role of gas-rich mergers we suggest that a gradual (re)-accretion of gas.

![Figure 13. Distribution of the difference between the mean final (R_{fin}) and the mean initial (R_{ini}) galactocentric distance for high-α (blue) and low-α (red) stars in simulated galaxies.](image-url)
Bimodality of $[\alpha/\text{Fe}]$-[Fe/H] distributions in Milky Way-type galaxies

Figure 14. Top row: $[\alpha/\text{Fe}]$ – [Fe/H] distribution of stars formed in the middle part of the disc ($5 < R_{\text{ini}} < 10$ kpc) near the galactic plane ($|Z_{\text{ini}}| < 0.5$ kpc). Middle row: $[\alpha/\text{Fe}]$ – [Fe/H] relation for stars located at the end of simulation in the middle part of the disc ($5 < R_{\text{fin}} < 10$ kpc) near the galactic plane ($|Z_{\text{fin}}| < 0.5$ kpc). Bottom row: metallicity distribution for both high- and low-α sequences for stars formed and located at the end in the same region. Black lines in the first two rows separate high- and low-α sequences. Comparison of two first rows demonstrates that stellar radial migration leads to a weak blurring of the $[\alpha/\text{Fe}]$–[Fe/H] relation. However, the global structure of high- and low-α sequences does not depend on radial migration. Migration of stars from the innermost region leads to a slight shift of the [Fe/H] distributions towards higher values for both thick and thin discs, but the fraction of these metal-rich stars does not exceed $1-2\%$, being comparable to the estimates for the Milky Way.

6.4 How common are these patterns?

In our simulations, a high-α sequence is always present at [Fe/H] > -1 and is generated as a consequence of the intense star formation that occurs in the first Gyrs, reaching values of the order or higher than $\sim 10 \text{ M}_\odot \text{ yr}^{-1}$ for a few Gyrs. How widespread these high-α sequences will of course depend on the fraction of galaxies that start their evolution with a substantial amount of gas in their inner parts. Mackereth et al. (2018) advocate that this number is probably small, because galaxies with only a low-alpha sequence are much more typical in MW-like galaxies. This, however, is a potential problem, because MW-type galaxies are known to have a rapid mass growth, building about 50% of their stellar mass before $z \sim 1.5$ (see, e.g., van Dokkum et al. 2013; Papovich et al. 2015; Morishita et al. 2015), implying typical SFR of about $10 \text{ M}_\odot \text{ yr}^{-1}$ for a few Gyrs. Hence, unlike what was found by Mackereth et al. (2018), we would expect high-α sequences to be a common feature of MW-like galaxies. This is also supported by the widespread of thick discs in the local universe (Yoachim & Dalcanton 2006; Comerón et al. 2011). A possible solution to this apparent contradiction is the criterion adopted by Mackereth et al. (2018) to classify the stars in low and high-α stars, which is illustrated on their Fig. 5. The limit they choose to separate the two groups is relatively high in the [Fe/H]-$[\alpha/\text{Fe}]$ plane and seems to be a very conservative definition of the high-α stars, leading them to classify stars as “low-α” even when they have $[\alpha/\text{Fe}]$ above 0.4 or 0.5. Another equally valid definition of high-α stars could be that $[\alpha/\text{Fe}] > 0.4$, which would include much more objects, and probably lead to different conclusions. Another possible explanation comes from the rather atypical SFHs of the EAGLE Milky Way-like galaxies, illustrated by the figure 5 in Mackereth et al. (2018), and which barely reach intensities above $10 \text{ M}_\odot \text{ yr}^{-1}$, and for a limited amount of time (much less than a Gyr in the galaxy labelled ‘B’). This is not what is inferred from either observations (van Dokkum et al. 2013; Papovich et al. 2015; Morishita et al. 2015) or other simulations (Buck 2020).

According to Grand et al. (2018), Mackereth et al. (2018) and Buck (2020), the presence of bimodality is related to separate episodes of gas accretion, a significant part of the gas fueling the low-α sequence being related to gas-rich mergers. However, we expect that the building of discs with exponential profiles in dark matter halos will generically give rise to low-star formation efficiency, independently of any particular gas accretion history. A low-star formation efficiency is observed in outer regions of discs (see, e.g., from the halo generically give rise to a low-α sequence of a thin disk.

MNRAS 000, 000–000 (0000)
Bigiel et al. 2010). These discs will give rise to the prolonged star formation history of gradually decreasing intensity outwards, driven by the decreasing gas density. Therefore, we should expect bimodality to be a ubiquitous feature in Milky Way-like galaxies. In some cases, however, the stage of prolonged star formation is never reached, most of the gas being consumed before the galaxy forms a substantial amount of stars on the low-\(\alpha\) sequence. This is illustrated by the model 4, which may resemble what is expected from S0 galaxies.

6.5 Radial migration

Radial migration is believed to be responsible for a number of observed chemical abundance patterns in the Milky Way (Schönrich & Binney 2009b) and in the nearby galaxies (see, e.g., Sánchez-Menguiano et al. 2016). However, as we discussed in Section 5 the current structure of the Milky Way makes a spiral arms-driven migration possible only beyond the Solar radius because of its slow pattern speed and the corotation location in the outer disc. Alternatively, if we assume that spiral arms rotated much faster at the early epochs when most of the thin disc stars were not formed yet, spiral arms-induced churning could have had more impact on thick disc stars. However, once the thick disc stars formed as a dynamically hot structure, its stars were unlikely to be trapped by the spiral arm corotation due to the low fraction of stars on nearly circular orbits. Alternatively, the Milky Way spirals can be corotating structures making possible radial migration everywhere along them (Grand et al. 2012b,a). Nevertheless, this assumption is not yet supported by the maser sources kinematics, which is in favour of a rigid rotation of the spiral structure (Reid et al. 2009, 2014), and a similar result was obtained using Gaia DR 2 data (Khoperskov et al. 2020; Eilers et al. 2020). Recent Gaia DR 2 analysis also suggests that the Milky Way bar can cause radial migration during its gradual slowdown (Chiba et al. 2019), but even in this case the amount stars migrating outwards is rather modest and most of the stars (90\%) do not churn out more than \(2 - 4\) kpc over the last \(\approx 8\) Gyr, in agreement with some independent estimates (Frankel et al. 2018; Minchev et al. 2018). Note, however, that both mechanisms of radial migration (spiral arms scattering or bar-slowdown) are sufficient to explain the presence of high-metallicity stars ([Fe/H] > 0.2) in the Solar vicinity migrated from the innermost galaxy (Kubryk et al. 2013; Minchev et al. 2013; Khoperskov et al. 2019a).

7 SUMMARY

In this paper we present a set of self-consistent chemodynamical Milky Way-type galaxy formation simulations without mergers. The simulations show two-phases star formation histories that are not an input of the model but are driven by the two regimes of the gas infall that naturally arise from the pre-existing extended hot halo. The first infall is the result of a rapid collapse of the primordial gas which is halted (in \(1 - 3\) Gyr) by the intense stellar feedback leading to substantial removal of the gas from the galactic disc. Most of the released gas roughly conserves its angular momentum, but part of the ejected material to large radii gains significant angular momen-
Bimodality of $[\alpha/\text{Fe}] - [\text{Fe}/\text{H}]$ distributions in Milky Way-type galaxies

1. The $[\alpha/\text{Fe}] - [\text{Fe}/\text{H}]$ bimodality is observed in galaxies with two different regimes of star formation. In our simulations, this takes place as an initial burst $(10-30 \, M_\odot \, \text{yr}^{-1})$ of star formation followed by a subsequent quiescent star formation phase $(3-6 \, M_\odot \, \text{yr}^{-1})$. The high-$\alpha$ sequence is formed early on a short time scale $(2-4 \, \text{Gyr})$ in a thick turbulent gaseous disc, and it is represented by a compact and kinematically hot thick stellar disc. The low-α sequence corresponds to the stars formed in the radially extended thin stellar disc, and is made of stars formed on a longer time scale $(6-7 \, \text{Gyr})$ and which evolve at a given radius pile-up at a terminal (equilibrium) metallicity and α abundance. The sequence itself arises because the equilibrium metallicity and abundance vary gradually with radius, due to the decrease of the star formation efficiency with the gas density. Thereby, we demonstrate that different physical conditions are necessary for the formation of thick and thin galactic discs. In our simulations, the two components are formed one after the other, implying no significant overlap of ages of thick and thin disc stars, but this needs not to be always the case and must depend on how rapidly the gas density necessary for star formation is reached in the extended disc. Stars in the thick disc are older, have enhanced α-element abundances and lower metallicity as well as hotter kinematic features. Note that similar to the Milky Way, in our models with α-bimodality, thick discs represent a substantial fraction of the total stellar mass of simulated galaxies $(\approx 40-60\%)$. Contrary to the recent studies however, we do not expect that bimodality is dependent on any particular accretion history. Bimodality is related to the massive and early accretion of gas that must be prevalent in Milky Way-like galaxies to the high-α sequence, and to the presence of lower star formation efficiency regions that are expected in the outer regions of all stellar discs. We therefore expect this to be a common feature in Milky Way-like galaxies. We also find in-situ formed stars with chemical abundances typical of the low-α sequence and usually interpreted as made of accreted stars. Therefore, our simulations suggest that in-situ stellar populations of the Milky Way could contribute to the low α-populations at metallicities below $\lesssim 0.5$.

2. The thick disc formation phase plays a significant role in the enrichment of the CGM surrounding Milky Way-type disc galaxies. The thin disc forms from a mixture of enriched material expelled from the thick disc and accreted gas low metallicity. When a sharp transition between thick and thin disc formation phases occurs, it is imprinted in the chemical abundances in a form of a loop (see Fig. 11) in the chemical evolution tracks in the $[\alpha/\text{Fe}] - [\text{Fe}/\text{H}]$ plane. A sharper and efficient star formation quenching leads to a stronger dilution of $[\text{Fe}/\text{H}]$ and more prominent loop. The effect of this non-monotonic chemical evolution can somehow mimic the impact of stellar radial migration towards in the inner parts of the disc by producing thin disc stars of lower metallicity than the youngest thick disc objects.

3. Although radial migration plays a role in mixing stellar populations, in our simulations we do not find a significant impact on the global structure of the observed chemical abundance patterns. In particular, we found very little difference in the $[\alpha/\text{Fe}] - [\text{Fe}/\text{H}]$ distribution over time in the solar-like radius $(5-10 \, \text{kpc})$ or $7.5-8 \, \text{kpc}$, see Fig. 14 and Fig. 15) confirming that $[\alpha/\text{Fe}] - [\text{Fe}/\text{H}]$ bimodality in the Milky Way is the outcome of the thin and thick disc formation process and is not produced by secular evolution. Nevertheless, the high-$[\text{Fe}/\text{H}]$ tail of the metallicity distribution, representing a few percent of the stars in the simulations, is explained by radial migration, has it is for stars in the solar vicinity. Outward churning dominates in all our simulations due to the negative density gradient of the discs. Models with a bar show a more substantial redistribution of stellar orbits in the inner disc (see models 1, 2 in Fig. 12) while spiral arms induced more prominent migration in the outer disc where the corotation radius is located (see Model 4 in Fig. 12).

ACKNOWLEDGEMENTS

PDM and MH thank the ANR (Agence Nationale de la Recherche) for its financial support through the MÔDÔgaia project (ANR-15CE31-0007. PI: P. Di Matteo). This work was granted access to the HPC resources of CINES under the allocation 2017-040507 (PI: P. Di Matteo) made by GENCI. Numerical simulations were carried by using the equipment of the shared research facilities of HPC computing resources at Lomonosov Moscow State University supported by the project RFFMIF062117X0011. SN and EV acknowledge support from Russian Science Foundation (project no. 19-72-20089). ONS acknowledges DIM ACAV+ funding. The reported study was funded by RFBR and DFG according to the research project 20-52-12009. PB acknowledges support by the Chinese Academy of Sciences through the Silk Road Project at NAOC, the Presidentâ€™s International Fellowship (PIF) for Visiting Scientists program of CAS, the National Science Foundation of China under grant No. 11673032. This work was supported by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) â€” Project-ID 138713538 â€” Aâ€Š SF â€Š881 (â€Šâ€ŠThe Milky Way Systemâ€Šâ€Š), by the Volkswagen Foundation under the Trilateral Partnerships grants No. 90411 and 97778. The work of PB was also partially supported under the special program of the NAS of Ukraine â€” Support for the development of priority fields of scientific researchâ€Šâ€Š (CPCEL 6541230).

REFERENCES

Abel T., Anninos P., Zhang Y., Norman M. L., 1997, New Astronomy, 2, 181
Adibekyan V. Z., Santos N. C., Sousa S. G., Israelian G., 2011, A&A, 535, L11
Adibekyan V. Z., Sousa S. G., Santos N. C., Delgado Mena E., González Hernández J. I., Israelian G., Mayor M., Khachatryan G., 2012, A&A, 545, A32
Anders F., et al., 2014, A&A, 564, A115
Antoja T., Valenzuela O., Pichardo B., Moreno E., Figueras F., Fernández D., 2009, ApJ, 700, L78
Aravena M., et al., 2010, ApJ, 718, 177
Athanasoula E., Rodionov S. A., Prantzos N., 2017, MNRAS, 467, L47
Aumer M., Bunney J., Schönrich R., 2016, MNRAS, 459, 3326
Bekki K., Tsujimoto T., 2011, MNRAS, 416, L60
Belokurov V., Erkal D., Evans N. W., Koposov S. E., Deason A. J., 2018, MNRAS, 478, 611
Bensby T., Feltzing S., Oey M. S., 2014, A&A, 562, A71
Bimodality of $[\alpha/\text{Fe}] - [\text{Fe}/\text{H}]$ distributions in Milky Way-type galaxies

Nidever D. L., et al., 2014, ApJ, 796, 38
Nissen P. E., Schuster W. J., 2010, A&A, 511, L10
Noguchi M., 1999, ApJ, 514, 77
Nuza S. E., Scannapieco C., Chiappini C., Junqueira T. C., Minchev I., Martig M., 2019, MNRAS, 482, 3089
Oppenheimer B. D., Davé R., 2008, MNRAS, 387, 577
Oppenheimer B. D., Davé R., Kereš D., Fardal M., Katz N., Kollmeier J. A., Weinberg D. H., 2010, MNRAS, 406, 2325
Papovich C., et al., 2015, ApJ, 803, 26
Papovich C., et al., 2016, Nature Astronomy, 1, 0003
Polyachenko E. V., Berczik P., Just A., 2016, MNRAS, 462, 3727
Purcell C. W., Bullock J. S., Tollerud E. J., Rocha M., Chakrabarti S., 2011, Nature, 477, 301
Queiroz A. B. A., et al., 2019, arXiv e-prints, p. arXiv:1912.09778
Quillen A. C., Minchev I., 2005, AJ, 130, 576
Reddy B. E., Lambert D. L., Allende Prieto C., 2006, MNRAS, 367, 1329
Reid M. J., et al., 2009, ApJ, 700, 137
Reid M. J., et al., 2014, ApJ, 783, 130
Rodionov S. A., Athanassoula E., Sotnikova N. Y., 2009, MNRAS, 392, 904
Roskar R., Debattista V. P., Stinson G. S., Quinn T. R., Kauffmann T., Wadsley J., 2008, ApJ, 675, L65
Roskar R., Debattista V. P., Quinn T. R., Wadsley J., 2012, MNRAS, 426, 2089
Rybizki J., Just A., Rix H.-W., 2017, A&A, 605, A59
Saburova A. S., Katkov I. Y., Khoperskov S. A., Zasov A. V., Uklein R. I., 2017, MNRAS, 470, 20
Saburova A. S., Chilingarian I. V., Katkov I. Y., Egorov O. V., Kasparova A. V., Khoperskov S. A., Uklein R. I., Vozyakova O. V., 2018, MNRAS, 481, 3534
Sánchez-Menguiano L., et al., 2016, ApJ, 830, L40
Schönrich R., Binney J., 2009a, MNRAS, 396, 203
Schönrich R., Binney J., 2009b, MNRAS, 399, 1145
Sellwood J. A., Binney J. J., 2002, MNRAS, 336, 785
Shen J., Rich R. M., Kormendy J., Howard C. D., De Propris R., Kunder A., 2010, ApJ, 720, L72
Snaith O. N., Haywood M., Di Matteo P., Lehnert M. D., Combes F., Katz D., Gómez A., 2014, ApJ, 781, L31
Snaith O., Haywood M., Di Matteo P., Lehnert M. D., Combes F., Katz D., Gómez A., 2015, A&A, 578, A87
Snaith O. N., Bailin J., Gibson B. K., Bell E. F., Stinson G., Valluri M., Wadsley J., Couchman H., 2016, MNRAS, 456, 3119
Solway M., Sellwood J. A., Schönrich R., 2012, MNRAS, 422, 1363
Sptoni E., Matteucci F., Recchi S., Cescutti G., Pipino A., 2009, A&A, 504, 87
Stern J., Hennawi J. F., Prochaska J. X., Werk J. K., 2016, ApJ, 830, 87
Swinbank A. M., et al., 2011, ApJ, 742, 11
Tumlinson J., et al., 2014a, Science, 343, 948
Tumlinson J., et al., 2014b, ApJ, 733, 111
Übler H., Naab T., Oser L., Aumer M., Sales L. V., White S. D. M., 2014, MNRAS, 443, 2092
Vasiliev E. O., 2011, MNRAS, 414, 3145
Vasiliev E. O., 2013, MNRAS, 431, 638
Weinberg M. D., Blitz L., 2006, ApJ, 641, L33
Yoachim P., Dalcanton J. J., 2006, AJ, 131, 226
van Dokkum P. G., et al., 2013, ApJ, 771, L35

APPENDIX A: EXTRA PLOTS

In this section we provide the chemical abundance patterns ($[\alpha/\text{Fe}] - [\text{Fe}/\text{H}]$) at the end of simulation in models 2, 3 and 4, similar to the Fig. 10 for model 1. In Fig. A2 we show the evolution of $[\text{Fe}/\text{H}]$, $[\alpha/\text{H}]$, $[\alpha/\text{Fe}]$ and the local star formation rate as a function of time in models 2, 3, 4, similar to Fig. 6 for model 1.

This paper has been typeset from a TeX/LaTeX file prepared by the author.
Figure A1. Same as in Fig. 10 but for Models 2, 3 and 4.
Figure A2. Same as in Fig. 6 but for Models 2, 3 and 4.