ARTICLES

Mechanisms of copy number variation and hybrid gene formation in the KIR immune gene complex
J.A. Traherne, M. Martin, R. Ward, M. Ohashi, F. Pellett, D. Gladman, D. Middleton, M. Carrington, and J. Trowsdale 737

The artificial gene Jazz, a transcriptional regulator of utrophin, corrects the dystrophic pathology in mdx mice
M.G. Di Certo, N. Corbi, G. Strimpakos, A. Onori, S. Luvisetto, C. Severini, A. Guglielmotti, E.M. Batassa, C. Pisani, A. Floridi, B. Benassi, M. Fanciulli, A. Magrelli, E. Mattei, and C. Passananti 752

Population-genetic nature of copy number variations in the human genome
M. Kato, T. Kawaguchi, S. Ishikawa, T. Umeda, R. Nakamichi, M.H. Shapero, K.W. Jones, Y. Nakamura, H. Aburatani, and T. Tsunoda 761

Prdm16 is required for normal palatogenesis in mice
B.C. Bjork, A. Turbe-Doan, M. Prysak, B.J. Herron, and D.R. Beier 774

Duplication of Glu37 in the switch I region of HRAS impairs effector/GAP binding and underlies Costello syndrome by promoting enhanced growth factor-dependent MAPK and AKT activation
L. Gremer, A. De Luca, T. Merbitz-Zahradnik, B. Dallapiccola, S. Morlot, M. Tartaglia, K. Kutsche, M.R. Ahmadian, and G. Rosenberger 790

Analysis of the IGF2/H19 imprinting control region uncovers new genetic defects, including mutations of OCT-binding sequences, in patients with 11p15 fetal growth disorders
J. Demars, M.E. Shmela, S. Rossignol, J. Okabe, I. Netchine, S. Azzi, S. Cabrol, C. Le Caignec, A. David, Y. Le Bouc, A. El-Osta, and C. Gicquel 803

Dismutase-competent SOD1 mutant accumulation in myelinating Schwann cells is not detrimental to normal or transgenic ALS model mice
B.J. Turner, S. Ackerley, K.E. Davies, and K. Talbot 815

Effects of dyskeratosis congenita mutations in dyskerin, NHP2 and NOP10 on assembly of H/ACA pre-RNPs
C. Trahan, C. Martel, and F. Dragon 825

Conditional Niemann-Pick C mice demonstrate cell autonomous Purkinje cell neurodegeneration
M.J. Elrick, C.D. Pacheco, T. Yu, N. Dadgar, V.G. Shakkottai, C. Ware, H.L. Paulson, and A.P. Lieberman 837

A cis-regulatory site downregulates PTHLH in translocation t(8;12)(q13;p11.2) and leads to Brachydactyly Type E
P.G. Maass, J. Wirth, A. Aydin, A. Rump, S. Stricker, S. Tischert, M. Otero, K. Tschimochi, M.B. Goldring, F.C. Luft, and S. Bähring 848

Genetic modifiers of abnormal organelle biogenesis in a Drosophila model of BLOC-1 deficiency
V.T. Cheli, R.W. Daniels, R. Godoy, D.J. Hoyle, V. Kandachar, M. Starcevic, J.A. Martinez-Agosto, S. Poole, A. DiAntonio, V.K. Lloyd, H.C. Chang, D.E. Krantz, and E.C. Dell’Angelica 861

FANCC suppresses short telomere-initiated telomere sister chromatid exchange
D.B. Rhee, Y. Wang, M. Mizesko, F. Zhou, L. Haneline, and Y. Liu 879

Relative tissue expression of homologous torsinB correlates with the neuronal specific importance of DYT1 dystonia-associated torsinA
M. Jungwirth, M.L. Dear, P. Brown, K. Holbrook, and R. Goodchild 888
Loss of IGF2 imprinting is associated with abrogation of long-range intrachromosomal interactions in human cancer cells

T.H. Vu, A.H. Nguyen, and A.R. Hoffman 901

Comparative gene expression analysis of avian embryonic facial structures reveals new candidates for human craniofacial disorders

S.A. Brugmann, K.E. Powder, N.M. Young, L.H. Goodnough, S.M. Hahn, A.W. James, J.A. Helms, and M. Lovett 920

Interaction between Sdo1p and Btn1p in the Saccharomyces cerevisiae model for Batten disease

S.P. Vitiello, J.W. Benedict, S. Padilla-Lopez, and D.A. Pearce 931

ASSOCIATION STUDIES ARTICLES

Allele-specific CDH1 downregulation and hereditary diffuse gastric cancer

H. Pinheiro, R. Bordeira-Carriço, S. Seixas, J. Carvalho, J. Senz, P. Oliveira, P. Inácio, L. Gusmão, J. Rocha, D. Huntsman, R. Seruca, and C. Oliveira 943

Comprehensive follow-up of the first genome-wide association study of multiple sclerosis identifies KIF21B and TMEM39A as susceptibility loci

The International Multiple Sclerosis Genetics Consortium (IMSGC) 953

Cover: The cover image shows Graphical representation of main genes differentially expressed between Jazz-positive mdx and Jazz-negative mdx skeletal muscle. Molecular role and functional signaling were organised in interactive relationships derived from Ingenuity Pathways Analysis. Network analysis shows alterations in inflammatory response and cellular metabolism. Signals are shown and colour-coded green for up-regulated genes in Jazz-positive mdx versus Jazz-negative mdx mice, while down-regulated genes are coloured in red; genes whose expression was not modified are shown in gray. These data show that expression of the artificial transcription factor Jazz in mdx mouse muscle adjusts the global gene expression profile and it ameliorates the pathophysiology in mdx mice. See Di Certo et al., pp. 752–760.