Efeitos do treinamento resistido sobre as respostas metabólicas e cardiovasculares ao teste de esforço cardiopulmonar máximo na doença de Parkinson

Effects of resistance training on metabolic and cardiovascular responses to a maximal cardiopulmonary exercise test in Parkinson`s disease

Hélcio Kanegusuku¹, Tiago Peçanha², Carla Silva-Batista², Roberto Sanches Miyasato², Natan Daniel da Silva Júnior², Marco Túlio de Mello², Maria Elisa Pimentel Piemonte², Carlos Ugrinowitsch², Cláudia Lúcia de Moraes Forjaz²

¹Hospital Israelita Albert Einstein, São Paulo, SP, Brasil.
²Universidade de São Paulo, São Paulo, SP, Brasil.
³Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brasil.

DOI: 10.31744/einstein_journal/2021A05940

RESUMO

Objetivo: Avaliar os efeitos do treinamento resistido nas respostas metabólicas e cardiovasculares ao teste de esforço cardiopulmonar máximo em pacientes com doença de Parkinson. Métodos: Vinte e quatro pacientes com doença de Parkinson (estágios 2 a 3 de Hoehn e Yahr modificado) foram aleatoriamente randomizados em dois grupos: Controle e Treinamento Resistido. O Grupo Treinamento Resistido realizou, duas vezes por semana, cinco exercícios resistidos, duas a quatro séries, seis a 12 repetições máximas por série. O Grupo Controle manteve seu estilo de vida. No início e após 12 semanas, consumo de oxigênio, pressão arterial sistólica e frequência cardíaca foram avaliados em repouso e durante um teste de esforço cardiopulmonar máximo realizado em um cicloergômetro. As avaliações durante o exercício foram realizadas nas intensidades submáximas (a inclinação da regressão linear entre as variáveis fisiológicas e as cargas absolutas), nas intensidades submáximas relativas (limiar anaeróbico e ponto de compensação respiratória) e na intensidade máxima (pico do exercício). Adicionalmente, foi avaliada a força muscular. Resultados: Comparado com o início, o consumo de oxigênio pico aumentou, de forma semelhante, em ambos os grupos após 12 semanas. A frequência cardíaca e a pressão arterial sistólica não se modificaram em nenhum dos grupos. Finalmente, diferente do Grupo Controle, a força muscular aumentou no Grupo Treinamento Resistido após 12 semanas. Conclusão: Em pacientes com doença de Parkinson sem comorbidades cardiovasculares, o treinamento resistido aumenta a força muscular, mas não modifica as respostas metabólicas e cardiovasculares ao teste de esforço cardiopulmonar máximo.

Descritores: Transtornos parkinsonianos; Anormalidades cardiovasculares; Consumo de oxigênio; Teste de esforço; Treinamento de resistência

Registro Brasileiro de Ensaios Clínicos: RBR-5YC53K.

ABSTRACT

Objective: To evaluate the effects of resistance training on metabolic and cardiovascular responses during maximal cardiopulmonary exercise testing in patients with Parkinson’s disease. Methods:
O TR melhora o consumo máximo de oxigênio (VO_2max) em pacientes que padecem de outras condições, como limitações cognitivas, hemiparesia e outras.\(^{(15,16)}\) Entretanto, nos pacientes com DP em particular, o TR não induziu alterações do VO_2max\(^{(17,18)}\) e os efeitos do TR carecem de confirmação. Entretanto, a avaliação das respostas induzidas pelo exercício submáximo, isto é, respostas obtidas com cargas de trabalho absolutas submáximas e em limites ventilatórios, é ainda mais relevante nesses pacientes, visto que tais respostas espe- rhiam a intensidade de esforço envolvida nas atividades diárias.\(^{(19)}\) Melhoras das respostas ao exercício submáximo foram relatadas por Fernández-Lezaun et al., em idosos sem DP após o TR.\(^{(20)}\) A melhora das respostas cardiovasculares relacionadas ao TR submáximo pode contribuir para a qualidade de vida desses pacientes.\(^{(21)}\) Apesar da relevância do assunto, até onde se sabe, os efeitos do TR sobre as respostas ao exercício submáximo ainda não foram investigados em pacientes com DP.

Este estudo foi idealizado para testar a hipótese de que o TR melhora as respostas submáximas durante o teste de esforço cardiopulmonar máximo em pacientes com DP, sem alterar parâmetros metabólicos (VO_2) e cardiovasculares (frequência cardíaca – FC e pressão arterial sistólica – PAS) máximos.
Efeitos do treinamento resistido sobre as respostas metabólicas e cardiovasculares

Ensaio Clínico (RBR-5YC53K). Todos os pacientes leram e assinaram um termo de consentimento informado antes da inclusão. Os achados da análise dos efeitos de TR sobre condições de repouso foram publicados. Este artigo aborda especificamente as respostas durante o exercício.

Desenho experimental

Este estudo prospectivo randomizado controlado com desenho paralelo foi realizado na Faculdade de Educação Física e Esporte da Universidade de São Paulo entre fevereiro de 2012 e março de 2015. Os pacientes com DP foram alocados aleatoriamente para um de dois grupos: Grupo Controle (GC) ou Grupo Treinamento Resistido (GTR), conforme descrição prévia.

As respostas fisiológicas durante teste de esforço cardiopulmonar máximo foram avaliadas no início do estudo e após 12 semanas. No Grupo TR, as avaliações pós-intervenção foram realizadas passadas pelo menos 48 horas da última sessão de treinamento. Os pacientes foram avaliados sob efeito da medicação (on state).

Procedimentos experimentais

Os procedimentos envolvidos no teste de esforço cardiopulmonar máximo foram detalhados em outra publicação. Os testes foram realizados em um cicloergômetro (Lode, Corival, Países Baixos), por um médico com larga experiência (mais de 10 anos) em teste de exercício máximo. Os pacientes foram familiarizados com o cicloergômetro exercitando-se a uma intensidade confortável por 2 a 3 minutos, 15 a 20 minutos antes do teste, descansando até a normalização dos parâmetros cardiovasculares, e foram testados em seguida. Protocolos individualizados com inclinação foram selecionados para induzir a fadiga entre 8 e 12 minutos após o início do teste. Os protocolos envolveram incrementos de 3 a 15 watts por minuto, de acordo com a gravidade da DP e o nível de condicionamento físico. A frequência de pedalagem variou de 50 a 60rpm. Os testes eram interrompidos sempre que os participantes se mostravam incapazes de manter a frequência de pedalagem. Os mesmos incrementos de inclinação foram empregados na avaliação inicial e na avaliação na 12ª semana.

A FC foi registrada a intervalos de 30 segundos, por meio de ecocardiograma de 12 derivações (CardioPerfect®, ST 2001, Países Baixos). A pressão arterial auscultatória foi mensurada a cada 2 minutos, por meio de um esfigmomanômetro de mercúrio, por um técnico que desconhecia a alocação dos grupos. A troca de gases respiratórios foi mensurada por meio de análise respiração a respiração, empregando-se um analisador metabólico (Medical Graphics Corporation, CPX/D, Estados Unidos) e calculando-se a média dos dados coletados a intervalos de 30 segundos.

Frequência cardíaca, PAS e VO2max máximos foram definidos como os valores mais altos obtidos durante a fase de exercício do teste e representaram as respostas máximas obtidas no teste. As respostas a intensidades submáximas foram avaliadas usando os parâmetros fisiológicos (valores de VO2, FC e PAS) registrados no início do estudo e após 12 semanas de treinamento. (A regressão foi baseada nos valores mensurados durante o exercício. As inclinações (INCL) das linhas de regressão individuais foram empregadas na análise.

Intervenções

O programa de TR consistiu em duas sessões de exercício por semana, com período de repouso de 3 a 4 dias entre ambas. As sessões de treinamento foram supervisionadas por um treinador experiente. O programa de TR incluiu exercícios resistidos para membro inferior (leg press horizontal, agachamento e panturrilha na máquina superior (puxada costas-peito/lat pulldown e supino vertical convergente). A carga de treinamento aumentou progressivamente de duas para quatro séries de seis a 12 repetições máximas (RM), conforme descrição prévia. Foram empregados os seguintes incrementos: primeira e segunda semanas, duas séries de 10-12 RM; terceira e quarta semanas, três séries de 10-12 RM; quinta e sexta semanas, três séries de 8-10 RM; sétima à décima semana, quatro séries de 8-10 RM; 11ª e 12ª semanas, quatro séries de 6-8 RM. O período de descanso entre os exercícios e séries foi de 2 minutos. A carga de trabalho aumentou progressivamente ao longo do período de intervenção. Os incrementos de carga eram introduzidos sempre que os pacientes conseguiam executar duas sessões consecutivas com a mesma carga.

Os pacientes do GC foram orientados a manter o estilo de vida usual durante o período experimental, tendo sido avaliados somente no início do estudo e na 12ª semana.

Força muscular

A eficácia do TR foi estimada com base na força muscular. Após duas sessões de familiarização com intervalo de 48 horas, a força muscular foi avaliada por meio do teste de uma RM no leg press, conforme o protocolo de Brown et al., e descrição prévia. A força muscular foi reavaliada após 12 semanas.
Análise estatística
A normalidade e a homogeneidade dos dados foram testadas empregando-se os testes de Shapiro-Wilk e Levene, respectivamente. Os dados foram submetidos à transformação logarítmica conforme necessário (isto é, FC_{max}, FC_{incl} e VO_{2incl}). As características dos pacientes foram comparadas entre os grupos por meio do teste t ou do teste do χ^2. A análise de variância (ANOVA) de duas vias com desenho misto, adotando-se grupo (GC ou GTR) como fator de variação “entre grupos” e o tempo (início e 12 semanas) como fator de variação “intragrupos” foi realizada para avaliar os efeitos do TR. Nos casos em que os valores F foram significantes, o teste post-hoc de Newman-Keuls foi empregado para comparações múltiplas. A PAS que diferiu entre os grupos na análise inicial foi submetida à análise de covariância (ANCOVA), adotando-os valores iniciais como covariables. O tamanho do efeito (TE) foi calculado para cada desfecho empregando-se o d de Cohen. A TE foi classificado como pequeno ($TE\leq0,49$), médio (TE 0,50 a 0,79) ou grande ($TE\geq0,80$). O nível de significância adotado foi de $p<0,05$. Os dados foram expressos como médias±desvio-padrão.

I RESULTADOS
Assinaram o termo de consentimento informado 44 pacientes com DP. Destes, 30 foram alocados aleatoriamente para o GTR (n=15) ou o GC (n=15). Quatro pacientes do GC e dois do GTR se desligaram do estudo durante o período de intervenção. Ao todo, 24 pacientes completaram o estudo (11 e 13 pacientes do GC e GTR, respectivamente) e tiveram seus dados analisados (Figura 1).

As características dos pacientes não diferiram entre os grupos no início do estudo (Tabela 1). Os pacientes do GTR completaram mais de 90% das sessões de treinamento. A força muscular dos membros inferiores se manteve inalterada no GC (90 ± 26kg versus 82 ± 26kg), mas aumentou de forma significante no GTR (90 ± 24kg versus 108 ± 29kg) após 12 semanas de TR. A força muscular diferiu de forma significante entre os grupos após 12 semanas ($F[1,22]=83,159$; $p<0,01$).

Os valores iniciais de consumo de oxigênio não diferiram entre os grupos. Entretanto, ambos os grupos apresentaram aumento significante semelhante de VO_{2max} após a intervenção ($F[1,22]=0,0338$; $p=0,86$ e $p<0,01$, efeito da interação e efeito do tempo, respectivamente) (Tabela 2). O VO_{2}, o LA e o PCR de repouso também foram semelhantes entre os grupos no início do estudo e se mantiveram inalterados ao longo do tempo. Analogamente, o aumento do VO_{2} de acordo com o incremento da carga de trabalho (inclinção da linha de regressão entre VO_{2} e carga de trabalho), foi semelhante entre os grupos no início do estudo e se manteve inalterado ao longo do tempo.

A FC mensurada durante o repouso, no LA, no PCR e na intensidade máxima de exercício não diferiu entre os grupos e se manteve inalterada após 12 semanas, assim como o incremento da inclinação da linha de FC por watt durante o teste. Da mesma forma, a PAS mensurada durante o repouso, no LA, no PCR e na intensidade máxima de exercício, não diferiu entre os grupos e se manteve inalterada após 12 semanas, assim como o incremento da inclinação da linha de PAS por watt durante o teste.

![Fluxograma dos participantes](https://via.placeholder.com/150)

Figura 1. Fluxograma dos participantes

| Tabela 1. Características dos pacientes com doença de Parkinson alocados para Grupo Controle ou Grupo Treinamento Resistido |
|---|---|---|
| | Grupo Controle (n=11) | Grupo Treinamento Resistido (n=13) | Valor de p |
| Características físicas | | | |
| Sexo masculino/feminino | 8/3 | 11/2 | 0,48 |
| Idade, anos | 62±9 | 67±8 | 0,12 |
| Índice de massa corporal, kg/m² | 27,1±3,4 | 25,9±3,6 | 0,43 |
| Características da DP | | | |
| Duração da doença, anos | 5±2/4 | 6/2/5 | 0,98 |
| Hoehn e Yahr modificado, Estágio 2/2.5/3 | 0,94 |
| Uso de medicações, n | | | |
| Levodopa/carbidopa | 11 | 11 | 0,18 |
| Agonista da dopamina | 6 | 5 | 0,43 |
| Amantadina | 4 | 6 | 0,63 |
| Selegilina | 2 | 3 | 0,77 |

*Resultados expressos por n ou média±desvio-padrão.
*DP: doença de Parkinson.
DISCUSSÃO

O principal achado deste estudo foi que o TR aumentou a força muscular nos membros inferiores, mas não afetou as respostas metabólicas e cardiovasculares obtidas em intensidades máximas ou submáximas relativas e absolutas durante o teste de esforço cardipulmonar máximo em pacientes com DP.

O aumento da força muscular nos membros inferiores no GTR em relação ao GC denota a eficácia do protocolo de treinamento empregado neste estudo. Achados semelhantes foram relatados em estudos anteriores no GTR em relação ao GC, e a Tabela 2 revelou aumento significante do VO2max entre o início do estudo e após 12 semanas em pacientes com doença de Parkinson alocados para o Grupo Treinamento Resistido ou Grupo Controle.

A ausência de efeito do TR sobre o VO2max reflete os resultados de outros estudos que também não encontraram alterações do VO2max em resposta ao TR em pacientes com DP(17,18). Esses achados coincidem com os de um estudo prévio realizado por este grupo de pesquisa, no qual o VO2max se manteve inalterado em idosos saudáveis após 16 semanas de TR e de potência. Em contrapartida, estudos realizados com outras populações de pacientes adultos com comprometimento neurológico ou condições neurológicas crônicas (limitações cognitivas ou hemiparesia crônica) relataram aumento do VO2max após o TR. Essa discrepância pode refletir diferenças de alterações patofisiológicas entre doenças neurológicas distintas e o respectivo impacto sobre a resposta dos pacientes ao TR. Portanto, seria cabível dizer que, pelo menos em pacientes com DP leve a moderada, o TR não afeta o VO2max.

Um diferencial deste estudo foi a investigação de parâmetros de exercício submáximo menos influenciados pelas incapacidades motoras associadas à DP. Para que isso fosse possível, os pacientes foram avaliados nas intensidades máximas e submáximas de exercício. As respostas à intensidade submáxima absoluta foram avaliadas com base nas alterações metabólicas e cardiovasculares induzidas pelos incrementos de carga de trabalho, enquanto as respostas referentes à intensidade submáxima relativa foram avaliadas no LA e no PCR. Contrariando a hipótese, o TR não teve influência sobre o VO2, a FC ou a PAS nas intensidades submáximas absoluta e relativa. Esse achado reflete os de estudo anterior que avaliou respostas ao TR de intensidade submáxima absoluta e relativa.

| Tabela 2. Respostas metabólicas e cardiovasculares avaliadas em repouso e nas intensidades submáxima e máxima durante o teste de esforço cardipulmonar realizado no início do estudo e após 12 semanas em pacientes com doença de Parkinson alocados para o Grupo Treinamento Resistido ou Grupo Controle |
|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| | Inicial | 12 semanas | | | |
| **Grupdo Controle** | | | | | |
| Carga máxima de trabalho, watts | 107±54 | 107±58 | 0,01 | 93±37 | 96±38 | 0,09 |
| VO2 incl, mL.kg⁻¹.min⁻¹ | -1,03±0,38 | -0,86±0,14 | 0,75 | -0,50±0,21 | -0,88±0,12 | 0,05 |
| VO2 absoluto, mL.kg⁻¹.min⁻¹ | 9,7±2,1 | 9,7±2,2 | 0,00 | 10,3±2,3 | 10,3±2,8 | 0,02 |
| VO2PCR absoluto, mL.kg⁻¹.min⁻¹ | 14,4±3,5 | 13,8±3,6 | 0,03 | 14,6±2,4 | 15,7±3,0 | 0,40 |
| VO2max absoluto, mL.kg⁻¹.min⁻¹ | 17,8±5,5 | 18,6±5,8* | 0,14 | 18,0±4,2 | 18,8±4,4* | 0,20 |
| FCmax, bpm | 76±8 | 76±11 | 0,06 | 73±8 | 72±10 | 0,16 |
| FCmax bpm * watt | -0,28±0,19 | -0,24±0,29 | 0,18 | -0,38±0,17 | -0,47±0,26 | 0,44 |
| FCIPmax, bpm | 110±13 | 108±12 | 0,17 | 98±17 | 99±17 | 0,07 |
| FCIPmax * watt | 126±14 | 124±15 | 0,13 | 114±22 | 118±22 | 0,19 |
| FCMmax, bpm | 2,16±0,06 | 2,15±0,06 | 0,24 | 2,10±0,09 | 2,10±0,10 | 0,03 |
| FCMmax * watt† | 113±13 | 107±12 | 0,47 | 122±18* | 119±14* | 0,16 |
| PASmax, mmHg | 139±17 | 132±15 | 0,41 | 137±16 | 144±19 | 0,43 |
| PASmax * watt | 156±22 | 148±18 | 0,29 | 149±15 | 158±18 | 0,58 |
| PASmax, mmHg | 171±23 | 170±25 | 0,10 | 160±20 | 167±20 | 0,37 |

Resultados expressos por média±desvio padrão.

* diferença significante em relação ao valor inicial (p<0,05); † logaritmo; ‡ diferença significante em relação ao Grupo Controle (p<0,05).

TE: tamanho do efeito; VO2: consumo de oxigênio; INCL: inclinação; LA: limiar anaeróbico; PCR: ponto de compensação respiratória; FC: frequência cardíaca; PAS: pressão arterial sistólica.
dade submáxima absoluta e relativa em indivíduos sem DP.(25) Portanto, apesar da seleção de parâmetros que sofrem menos influência das limitações relacionadas à doença, este estudo não demonstrou impactos significativos do TR sobre as respostas obtidas durante o teste progressivo de exercício.

Respostas metabólicas e cardiovasculares superiores durante o teste de esforço cardiopulmonar máximo se traduzem em melhor qualidade de vida em pacientes com DP. Tais respostas foram obtidas com treinamento aeróbico nessa população.(18,34) Ainda assim, o TR pode melhorar a força muscular, a funcionalidade (capacidade de andar, por exemplo) e a qualidade de vida em pacientes com DP.(17,18,26,28,29,33,35) Os achados deste estudo corroboram a recomendação de programas de treinamento que agregam exercícios aeróbicos e de força para pacientes com DP leve a moderada.

Limitações do estudo
Este estudo tem algumas limitações. A exclusão de pacientes com diagnóstico de hipertensão ou doença cardiovascular limitou o tamanho da amostra. Entretanto, a exclusão foi considerada necessária para separar os efeitos do TR das alterações metabólicas e cardiovasculares inerentes à DP. Além disso, uma vez que a seleção se limitou aos pacientes nos estágios 2 ou 3 da escala modificada de Hoehn e Yahr, os achados podem não se aplicar a pacientes em estágios diferentes da DP.

CONCLUSÃO
A prática do treinamento resistido por 12 semanas melhora a força muscular nos membros inferiores, mas não afeta as respostas metabólicas e cardiovasculares obtidas em intensidades máxima ou submáxima durante o teste de esforço cardiopulmonar máximo em pacientes com doença de Parkinson sem comorbidades cardiовasculares.

AGRADECIMENTOS
Os autores são muito gratos aos voluntários, à Associação Brasil Parkinson e ao Centro de Estudos em Psicobiologia e Exercício. Cláudia Lúcia de Moraes Forjaz teve apoio do Conselho Nacional de Desenvolvimento Científico e Tecnológico (processo 304436/2018-6). Hélio Kanegusuku teve apoio do Conselho Nacional de Desenvolvimento Científico e Tecnológico (processo número 142017/2012-4) e da Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (processo 99999.010276/2014-09).
17. Demonceau M, Maquet D, Jidovtseff B, Donneau AF, Bury T, Croisier JL, et al. Effects of twelve weeks of aerobic or strength training in addition to standard care in Parkinson’s disease: a controlled study. Eur J Phys Rehabil Med. 2017;53(2):184-200.

18. Shulman LM, Katzel LI, Ivry FM, Sorkin JD, Favors K, Anderson KE, et al. Randomized clinical trial of 3 types of physical exercise for patients with Parkinson disease. JAMA Neurol. 2013;70(2):183-90.

19. Spruit MA, Wouters EF, Eterman RM, Meijer K, Wagers SS, Stakenborg KH, et al. Task-related oxygen uptake and symptoms during activities of daily life in CHF patients and healthy subjects. Eur J Appl Physiol. 2011;111(8):1679-86.

20. Fernández-Lezaun E, Schumann M, Mäkinen T, Kyröläinen H, Walker S. Effects of resistance training frequency on cardiorespiratory fitness in older men and women during intervention and follow-up. Exp Gerontol. 2017;95:44-53.

21. Herrero F, Balmer J, San Juan AF, Foster C, Fleck SJ, Pérez M, et al. Is cardiorespiratory fitness related to quality of life in survivors of breast cancer? J Strength Cond Res. 2006;20(3):535-40.

22. Goetz CG, Poewe W, Rascol O, Sampaio C, Stebbins GT, Counsell C, Gladi N, Holloway RG, Moore CG, Wenning GK, Yahr MD, Seidl L; Movement Disorder Society Task Force on Rating Scales for Parkinson’s Disease. Movement Disorder Society Task Force report on the Hoehn and Yahr staging scale: status and recommendations. Mov Disord. 2004;19(9):1020-8.

23. Skinner JS, McLellan TM. The transition from aerobic to anaerobic metabolism. Res Q Exerc Sport. 1980;51(1):234-48. Erratum in: Res Q Exerc Sport. 2013;84(2):273.

24. Wasserman K, Hansen JE, Sue DY, Whipp BJ. Principles of exercise testing and interpretation. 2nd ed. Philadelphia (PA): Lea & Febiger; 1994. p. 112-31.

25. Kanegusuku H, Queiroz AC, Chehuen MR, Costa LA, Wallerstein LF, Mello MT, et al. Strength and power training did not modify cardiovascular responses to aerobic exercise in elderly subjects. Braz J Med Biol Res. 2011;44(9):864-70.

26. Brown LE, Weir JP. ASEP procedures recommendation 1: accurate assessment of muscular strength and power. J Exerc Physiol Online. 2001;4(3):1-21.

27. Cohen J. Statistical power analysis for the behavioral sciences. New York: Routledge. 1988. p. 29-35.

28. Silva-Batista C, Mattos EC, Corcos DM, Wilson JM, Heckman CJ, Kanegusuku H, et al. Resistance training with instability is more effective than resistance training in improving spinal inhibitory mechanisms in Parkinson’s disease. J Appl Physiol. 2017;122(1):1-10.

29. Helgerud J, Thomsen SN, Hoff J, Strandbråten A, Leivseth G, Unhjem R, et al. Maximal strength training in patients with Parkinson’s disease: impact on efferent neural drive, force-generating capacity, and functional performance. J Appl Physiol (1985). 2020;129(4):683-90.

30. David FJ, Rafferty MR, Robichaud JA, Prodoehl J, Kohrt WM, Vaillancourt DE, et al. Progressive resistance exercise and Parkinson’s disease: a review of potential mechanisms. Parkinsons Dis. 2012;2012:124527. Review.

31. Gray WK, Hildreth A, Bilclough JA, Wood BH, Baker K, Walker RW. Physical assessment as a predictor of mortality in people with Parkinson’s disease: a study over 7 years. Mov Disord. 2009;24(13):1934-40.

32. Katzel LI, Sorkin JD, Macko RF, Smith B, Ivry FM, Shulman LM. Repeatability of aerobic capacity measurements in Parkinson disease. Med Sci Sports Exerc. 2011;43(12):2381-7.

33. Stanley RK, Protas EJ, Jankovic J. Exercise performance in those having Parkinson’s disease and healthy normals. Med Sci Sports Exerc. 1999;31(6):761-6.

34. Uc EY, Doerschug KC, Magnotta V, Dawson JD, Thomsen TR, Kline JN, et al. Phase II/III randomized trial of aerobic exercise in Parkinson disease in a community setting. Neurology. 2014;83(5):413-25.

35. Kelly NA, Ford MP, Standaert DG, Watts RL, Bickel CS, Moellerling DR, et al. Novel, high-intensity exercise prescription improves muscle mass, mitochondrial function, and physical capacity in individuals with Parkinson’s disease. J Appl Physiol (1985). 2014;116(5):582-92.