Momentum space 3N Faddeev calculations of hadronic and electromagnetic reactions with proton-proton Coulomb and three-nucleon forces included

H. Witała1,a, R. Skibiński1, J. Golak1, and W. Glöckle2

1 M. Smoluchowski Institute of Physics, Jagiellonian University, PL-30059 Kraków, Poland
2 Institut für theoretische Physik II, Ruhr-Universität Bochum, D-44780 Bochum, Germany

Received: 15 December 2010 / Revised: 24 January 2011
Published online: 2 March 2011
© The Author(s) 2011. This article is published with open access at Springerlink.com
Communicated by M.C. Birse

Abstract. We extend our approach to incorporate the proton-proton (pp) Coulomb force into the three-nucleon (3N) momentum space Faddeev calculations of elastic proton-deuteron (pd) scattering and breakup to the case when also a three-nucleon force (3NF) is acting. In addition, we formulate that approach in the application to electron- and γ-induced reactions on 3He. The main new ingredient is a 3-dimensional screened pp Coulomb t-matrix obtained by a numerical solution of a 3-dimensional Lippmann-Schwinger equation (LSE). The resulting equations have the same structure as the Faddeev equations which describe pd scattering without 3NF acting. That shows the practical feasibility of both presented formulations.

1 Introduction

The long-range nature of the Coulomb force prevents the application of the standard techniques developed for short-range interactions in the analysis of nuclear reactions involving two protons. One proposal to avoid the difficulties including the Coulomb force is to use a screened Coulomb interaction and to reach the pure Coulomb limit through application of a renormalisation procedure [1-4].

Elastic pd scattering first calculations, with modern nuclear forces and the exact Coulomb force in coordinate representation included, have been achieved in a variational hyperspherical harmonic approach [5]. Recently, the inclusion of the Coulomb force was undertaken also for the pd breakup reaction using a screened pp Coulomb force in momentum space and in a partial-wave basis [6]. To get the final predictions which can be compared to the data, the limit to the unscreened situation has been performed numerically applying a renormalization to the resulting 3N on-shell amplitudes [6,7].

One main concern in such type of calculations is the application of a partial-wave decomposition to the long-ranged Coulomb force. Even when screening is applied, it seems reasonable to treat from the beginning the screened pp Coulomb t-matrix without partial-wave decomposition because the required limit of vanishing screening leads necessarily to a drastic increase of the number of partial-wave states involved [8]. In consequence, this leads to an explosion of the number of 3N partial waves required for convergence. The very successful approach to include the pp Coulomb force into the 3N Faddeev calculations of refs. [6] and [7] revealed a fast convergence in the screening radius using a two-nucleon partial-wave basis of large size. It appears that an independent calculational scheme should be carried through where the treatment of the Coulomb part totally avoids a partial-wave decomposition and thus providing an independent check of the results obtained in [6,7].

Therefore, we developed in [9,10] a novel approach to include the pp Coulomb force into the momentum space 3N Faddeev calculations. It is based on a standard formulation for short-range forces and relies on the screening of the long-range Coulomb interaction. In order to avoid all uncertainties connected with the application of the partial-wave expansion, inadequate when working with long-range forces, we used directly the 3-dimensional pp screened Coulomb t-matrix. We demonstrated in [9, 10] the feasibility of that approach in the case of elastic pd scattering and breakup using a simple dynamical model for the nuclear part of the interaction. In this first study, we applied the most simple exponential screening of the Coulomb force with power $n = 1$ for which the 3-dimensional momentum space matrix element can be obtained analytically. Approximating the 3-dimensional pp screened Coulomb t-matrix by the potential allowed us to avoid the time-consuming, many-dimensional interpo-
lutions when solving the Faddeev equations. In addition, when calculating the observables, we neglected in the transition amplitude the last term of eq. (62) of ref. [9]. However, in future applications to data analysis and particularly when the comparison to the approach of ref. [7] will be performed, both these approximations must be removed.

In the present paper we extend that approach to include a 3NF into that formulation. Also, we show how that formulation can be applied to electromagnetic processes induced by electrons or γ’s on \(^3\)He.

In sect. 2, for the convenience of the reader, we shortly describe the main points of the formalism outlined in detail in [9,10] for the case of 3N Faddeev calculations with pairwise forces only and extend the corresponding equations to the case when a 3NF is also acting. In sect. 3 we apply that formulation to electromagnetic reactions on \(^3\)He. The summary is given in sect. 4.

2 Faddeev equations with screened pp Coulomb force

When only pairwise forces are acting we use the Faddeev equation in the form [11,12]

\[
T|\Phi\rangle = tP|\Phi\rangle + tPG_0T|\Phi\rangle, \tag{1}
\]

where the permutation operator \(P\) is defined in terms of transposition operators \(P_{ij}\) of nucleons \(i\) and \(j\), \(P = P_{12}P_{23} + P_{13}P_{23}\), \(G_0\) is the free 3N propagator, and \(|\Phi\rangle\) is the initial state composed of a deuteron state and a momentum eigenstate of the proton. Knowing \(T|\Phi\rangle\) the breakup as well as the elastic pd scattering amplitudes can be gained in the standard manner [11]. The physical content of eq. (1) is revealed after iterating it. The resulting multiple-scattering series contains all possible rescattering contributions induced by interactions of three nucleons and free propagation in between.

We use our standard momentum space partial-wave basis \(|pq\alpha\rangle\)

\[
|pq\alpha\rangle \equiv pq(l)s \left(\frac{1}{2}\right) I(j)J\left(\frac{1}{2}\right) T \tag{2}
\]

and distinguish between the partial-wave states \(|pq\alpha\rangle\) and \(|pqβ\rangle\). The \(|pq\alpha\rangle\) are states with total 2N angular momentum \(j\) below some value \(j_{\text{max}}\): \(j \leq j_{\text{max}}\), in which the nuclear, \(V_N\), as well as the pp screened Coulomb interaction, \(V_c^R\) (in isospin \(t = 1\) states only), are acting. In the states \(|pq\beta\rangle\) with \(j > j_{\text{max}}\), only \(V_c^R\) is acting in the pp subsystem. The states \(|pq\alpha\rangle\) and \(|pq\beta\rangle\) form a complete set of states

\[
\int p^2 dp^2 dq \sum_\alpha |pq\alpha\rangle \langle pq\alpha| = \\
\int p^2 dp^2 dq \left(\sum_\alpha |pq\alpha\rangle \langle pq\alpha| + \sum_\beta |pq\beta\rangle \langle pq\beta| \right) = 1. \tag{3}
\]

Projecting eq. (1) for \(T|\Phi\rangle\) on the \(|pq\alpha\rangle\) and \(|pq\beta\rangle\) states one gets the following system of coupled integral equations:

\[
\langle pq\alpha|T|\Phi\rangle = \langle pq\alpha|t_{N+c}^R P|\Phi\rangle \\
\quad + \langle pq\alpha|t_{N+c}^R PG_0 \sum_\alpha' \int p^2 dp^2 dq \langle p'q'\alpha'| \langle p'q'\alpha'|T|\Phi\rangle \tag{4}
\]

\[
\langle pq\beta|T|\Phi\rangle = \langle pq\beta|t_{N+c}^R P|\Phi\rangle \\
\quad + \langle pq\beta|t_{N+c}^R PG_0 \sum_\beta' \int p^2 dp^2 dq \langle p'q'\beta'| \langle p'q'\beta'|T|\Phi\rangle, \tag{5}
\]

where \(t_{N+c}^R\) and \(t_{pp+c}^R\) are \(t\)-matrices generated through a LSE by the interactions \(V_N + V_c^R\) and \(V_{pp}^R\), respectively. Namely, for states \(|\alpha\rangle\) with a two-nucleon subsystem total isospin \(t = 1\) the corresponding \(t\)-matrix element \(\langle pq|t_{N+c}^R (E - \frac{N}{4m} \vec{\nabla}^2)|pq'\alpha'\rangle\) is a linear combination of the \(pp\), \(t_{pp+c}^R\), and the neutron-proton (np), \(t_{np}\), \(t = 1\) \(t\)-matrices, which are generated by the interactions \(V_{pp}^{\text{strong}} + V_c^R\) and \(V_{np}^{\text{strong}}\), respectively. The coefficients of that combination depend on the total 3N isospin \(T\) and \(T'\) of the states \(|\alpha\rangle\) and \(|\alpha'\rangle\) [9,13]:

\[
\langle t = 1T = \frac{1}{2} |t_{N+c}^R + t_{np} + \frac{2}{3} t_{pp+c}^R; T' = \frac{1}{2}\rangle = \frac{1}{3} t_{np} + \frac{2}{3} t_{pp+c}^R \\
\langle t = 1T = \frac{3}{2} |t_{N+c}^R + t_{np} + \frac{1}{3} t_{pp+c}^R; T' = \frac{1}{2}\rangle = \frac{2}{3} t_{np} + \frac{1}{3} t_{pp+c}^R \\
\langle t = 1T = \frac{1}{2} |t_{N+c}^R + t_{np} + \frac{2}{3} t_{pp+c}^R; T' = \frac{3}{2}\rangle = \frac{\sqrt{2}}{3} t_{np} + t_{pp+c}^R \\
\langle t = 1T = \frac{3}{2} |t_{N+c}^R + t_{np} + \frac{1}{3} t_{pp+c}^R; T' = \frac{5}{2}\rangle = \frac{\sqrt{2}}{3} t_{np} + t_{pp+c}^R. \tag{6}
\]

For the isospin \(t = 0\), in which case \(T = T' = \frac{1}{2}\)

\[
\langle t = 0T = \frac{1}{2} |t_{N+c}^R + t_{np} + \frac{2}{3} t_{pp+c}^R; T' = \frac{1}{2}\rangle = t_{np}. \tag{7}
\]

In the case of \(t_{pp+c}^R\) only the screened pp Coulomb force \(V_c^R\) is acting.

The third term on the right-hand side of (5) is proportional to \(\langle pq\beta|t_{N+c}^R PG_0 |p'q'\alpha'\rangle \langle p'q'\alpha'|t_{pp+c}^R|\Phi\rangle\). A direct calculation of its isospin part shows that independently of the value of the total isospin \(T\) it vanishes [9].

Inserting \(\langle pq\beta|T|\Phi\rangle\) from (5) into (4) one gets

\[
\langle pq\alpha|T|\Phi\rangle = \langle pq\alpha|t_{N+c}^R P|\Phi\rangle + \langle pq\alpha|t_{N+c}^R PG_0 t_{pp+c}^R P|\Phi\rangle \\
- \langle pq\alpha|t_{N+c}^R PG_0 \sum_\alpha' \int p^2 dp^2 dq \langle p'q'\alpha'| \langle p'q'\alpha'|t_{pp+c}^R P|\Phi\rangle \tag{8}
\]
The completeness relation (3) one gets:

\[\langle \mathbf{p}_1 \mathbf{q}_1 \alpha \mathbf{p}_2 \mathbf{q}_2 \alpha' \mid T \mid \mathbf{p}_3 \mathbf{q}_3 \alpha'' \rangle \]

This is a coupled set of integral equations in the space of the states \(|\alpha\rangle \), which incorporates the contributions of the pp Coulomb interaction from all partial-wave states up to infinity. It can be solved by iteration and Pade summation [9, 11].

When compared to our standard treatment without screened Coulomb force [11] there are two new leading terms: \(\langle \mathbf{p}_1 \mathbf{q}_1 \alpha \mathbf{p}_2 \mathbf{q}_2 \alpha' \mid t_{PP} \mid \mathbf{p}_3 \mathbf{q}_3 \alpha'' \rangle \) and \(\langle \mathbf{p}_1 \mathbf{q}_1 \alpha \mathbf{p}_2 \mathbf{q}_2 \alpha' \mid t_{PP} \alpha'' \rangle \times \langle \alpha' \mid t_{PP} \mid \alpha'' \rangle \). The first term must be calculated using directly the 3-dimensional screened Coulomb t-matrix \(t_{PP} \), while the second term requires only the partial-wave-projected screened Coulomb t-matrix elements in the \(|\alpha\rangle \) channels. The kernel also contains two new terms: the term \(\langle \mathbf{p}_1 \mathbf{q}_1 \alpha \mathbf{p}_2 \mathbf{q}_2 \alpha' \mid t_{PP} \alpha'' \rangle \alpha'' | T \rangle \) must again be calculated with a 3-dimensional screened Coulomb t-matrix \(t_{PP} \), while the second one, \(\langle \mathbf{p}_1 \mathbf{q}_1 \alpha \mathbf{p}_2 \mathbf{q}_2 \alpha' \rangle \times \langle \alpha' \mid t_{PP} \mathcal{P} \langle \alpha'' | T \rangle \), involves only the partial-wave-projected screened Coulomb t-matrix elements in the \(|\alpha\rangle \) channels. The calculation of those new terms with the partial-wave-projected Coulomb t-matrices follows our standard procedure [11]. Namely, the two sub-kernels \(t_{PP} \) and \(t_{PP} \) are applied consecutively to the corresponding state. The detailed expressions how to calculate the new terms with the 3-dimensional screened Coulomb t-matrix are given in appendix A of ref. [9].

The transition amplitude for breakup, \(\langle \Phi_0 | U_0 \mid \Phi \rangle \), is given in terms of \(T \mid \Phi \rangle \) by [11, 12]

\[\langle \Phi_0 | U_0 \mid \Phi \rangle = \langle \Phi_0 | (1 + P) | T \mid \Phi \rangle, \]

where \(\langle \Phi_0 \rangle \equiv \langle \mathbf{p}_1 \mathbf{q}_1 m_1 m_2 \mathbf{p}_2 \mathbf{q}_2 \rangle \) is the free state and the Jacobi momenta \(\mathbf{p} \) and \(\mathbf{q} \) specify completely a particular exclusive breakup configuration of three outgoing nucleons. The permutations acting in momentum, spin-\(i \), and isospin-spaces can be applied to the bra-state \(\langle \Phi_0 \rangle \) changing the sequence of nucleonic spin and isospin magnetic quantum numbers \(m_i \) and \(\alpha_i \) and leading to well-known linear combinations of the Jacobi momenta \(\mathbf{p} \) and \(\mathbf{q} \). Thus evaluating (9), it is sufficient to regard the general amplitudes \(\langle \mathbf{p}_1 \mathbf{q}_1 m_1 m_2 \mathbf{p}_2 \mathbf{q}_2 \mid T \mid \Phi \rangle \equiv \langle \mathbf{p}_1 \mathbf{q}_1 \mid T \rangle \). Using eq. (5) and the completeness relation (3) one gets:

\[\langle \mathbf{p}_1 \mathbf{q}_1 \mid T \rangle = \langle \mathbf{p}_1 \mathbf{q}_1 \sum_{\alpha} \int p^2 dp' q^2 dq' \langle \mathbf{p}' \mathbf{q}' \alpha' \mid T \rangle \]

\[- \langle \mathbf{p}_1 \mathbf{q}_1 \sum_{\alpha} \int p^2 dp' q^2 dq' \langle \mathbf{p}' \mathbf{q}' \alpha' \mid t_{PP} \mid \alpha'' \rangle \langle \alpha'' | T \rangle \]
is always possible and in the case of the π-π exchange
3NF corresponds to the three possible choices of the
nucleon undergoing off-shell πN scattering. Equation (12)
contains two terms: one leading term and one in
the kernel. They reflect additional contributions to the
multiple-scattering series caused by the 3NF.
Performing analogous steps as for (1) and starting with
the projection of (12) on the $|pq\alpha\rangle$ and $|pq\beta\rangle$ states one gets
\[
(pq\alpha|T\rangle = (pq\alpha|t_{N+c}^{R} P|\Phi
\]
\[
+ (pq\alpha|1 + t_{N+c}^{R} G_{0})V_{4}^{(1)}(1 + P)|\Phi
\]
\[
+ (pq\alpha|t_{N+c}^{R} P G_{0}\alpha')\langle\alpha'|T|\Phi
\]
\[
+ (pq\alpha|t_{N+c}^{R} P G_{0}\beta')\langle\beta'|T|\Phi
\]
\[
+ (pq\alpha|1 + t_{N+c}^{R} G_{0})V_{4}^{(1)}(1 + P)G_{0}\alpha')\langle\alpha'|T|\Phi
\]
\[
+ (pq\alpha|1 + t_{N+c}^{R} G_{0})V_{4}^{(1)}(1 + P)G_{0}\beta')\langle\beta'|T|\Phi
\] (14)
and
\[
(pq\beta|T\rangle = (pq\beta|t_{c}^{R} P|\Phi
\]
\[
+ (pq\beta|1 + t_{c}^{R} G_{0})V_{4}^{(1)}(1 + P)|\Phi
\]
\[
+ (pq\beta|t_{c}^{R} P G_{0}\alpha')\langle\alpha'|T|\Phi
\]
\[
+ (pq\beta|t_{c}^{R} P G_{0}\beta')\langle\beta'|T|\Phi
\]
\[
+ (pq\beta|1 + t_{c}^{R} G_{0})V_{4}^{(1)}(1 + P)G_{0}\alpha')\langle\alpha'|T|\Phi
\]
\[
+ (pq\beta|1 + t_{c}^{R} G_{0})V_{4}^{(1)}(1 + P)G_{0}\beta')\langle\beta'|T|\Phi
\] (15)
Here and in the following we shortened our notation by ne­
glecting the summation sign over intermediate states $|\alpha'$
($|\beta'$) and the integration sign over the corresponding Jacobi
momenta p' and q'. Therefore whenever a projection
operator $|\alpha'\rangle\langle\alpha'|$ appears in intermediate states means
that the following summation and integrations must be per­
formed:
\[
|\alpha'\rangle\langle\alpha'| = \sum_{\alpha} \int d^{2}p' d^{2}q' dq'[p'q'\alpha'\langle p'q'\alpha'|].
\] (16)
Since a 3NF is short-ranged its matrix elements con­
taining $|\beta\rangle$ channels vanish:
\[
|\alpha|V_{4}^{(1)}(1 + P)|\beta\rangle = |\beta|V_{4}^{(1)}(1 + P)|\alpha\rangle = |\beta|V_{4}^{(1)}(1 + P)|\beta\rangle = 0.
\] (17)
Thus in the $|\beta\rangle$ channels only the pp Coulomb force is ac­
tering and therefore (15) reduces to
\[
(pq\beta|T\rangle = (pq\beta|t_{c}^{R} P|\Phi
\]
\[
+ (pq\beta|t_{c}^{R} P G_{0}\alpha')\langle\alpha'|T|\Phi
\]
\[
+ (pq\beta|t_{c}^{R} P G_{0}\beta')\langle\beta'|T|\Phi
\]
\[
+ (pq\beta|1 + t_{c}^{R} G_{0})V_{4}^{(1)}(1 + P)G_{0}\alpha')\langle\alpha'|T|\Phi
\]
\[
+ (pq\beta|1 + t_{c}^{R} G_{0})V_{4}^{(1)}(1 + P)G_{0}\beta')\langle\beta'|T|\Phi
\] (18)
Again we have used the fact that the third term in (18)
vanesishes (see also the remark after (7)). Also note that
β_{c}^{R} is diagonal in the high partial waves and conse­
quently $V_{4}^{(1)}$ does not contribute.
Inserting (18) into (14) one gets
\[
(pq\alpha|T\rangle = (pq\alpha|t_{N+c}^{R} P|\Phi
\]
\[
+ (pq\alpha|1 + t_{N+c}^{R} G_{0})V_{4}^{(1)}(1 + P)|\Phi
\]
\[
+ (pq\alpha|t_{N+c}^{R} P G_{0}\alpha')\langle\alpha'|T|\Phi
\]
\[
+ (pq\alpha|t_{N+c}^{R} P G_{0}\beta')\langle\beta'|T|\Phi
\]
\[
+ (pq\alpha|1 + t_{N+c}^{R} G_{0})V_{4}^{(1)}(1 + P)G_{0}\alpha')\langle\alpha'|T|\Phi
\]
\[
+ (pq\alpha|1 + t_{N+c}^{R} G_{0})V_{4}^{(1)}(1 + P)G_{0}\beta')\langle\beta'|T|\Phi
\]
\[
\times \langle\beta'|t_{c}^{R} P|\Phi
\]
\[
+ \langle\beta'|t_{c}^{R} P G_{0}\alpha')\langle\alpha'|T|\Phi
\]
\[
+ \langle\beta'|t_{c}^{R} P G_{0}\beta')\langle\beta'|T|\Phi
\]
\[
\times \langle\beta'|t_{c}^{R} P G_{0}\alpha')\langle\alpha'|T|\Phi
\]
\[
+ \langle\beta'|t_{c}^{R} P G_{0}\beta')\langle\beta'|T|\Phi
\].
(19)

Thus,
\[
(pq\alpha|T\rangle = (pq\alpha|t_{N+c}^{R} P|\Phi
\]
\[
+ (pq\alpha|1 + t_{N+c}^{R} G_{0})V_{4}^{(1)}(1 + P)|\Phi
\]
\[
+ (pq\alpha|t_{N+c}^{R} P G_{0}\alpha')\langle\alpha'|T|\Phi
\]
\[
+ (pq\alpha|t_{N+c}^{R} P G_{0}\beta')\langle\beta'|T|\Phi
\]
\[
+ (pq\alpha|1 + t_{N+c}^{R} G_{0})V_{4}^{(1)}(1 + P)G_{0}\alpha')\langle\alpha'|T|\Phi
\]
\[
+ (pq\alpha|1 + t_{N+c}^{R} G_{0})V_{4}^{(1)}(1 + P)G_{0}\beta')\langle\beta'|T|\Phi
\]
\[
\times \langle\beta'|t_{c}^{R} P|\Phi
\]
\[
+ \langle\beta'|t_{c}^{R} P G_{0}\alpha')\langle\alpha'|T|\Phi
\]
\[
+ \langle\beta'|t_{c}^{R} P G_{0}\beta')\langle\beta'|T|\Phi
\]
\[
\times \langle\beta'|t_{c}^{R} P G_{0}\alpha')\langle\alpha'|T|\Phi
\]
\[
+ \langle\beta'|t_{c}^{R} P G_{0}\beta')\langle\beta'|T|\Phi
\].
(20)
Due to (17) the term in the fourth line of (20) and the
last term of (20) can be dropped. Using the completenes
relation (3) for the $|\alpha\rangle$ and $|\beta\rangle$ states one finally is left
with the coupled set of integral equations in the space of
$|\alpha\rangle$ channels only:
\[
(pq\alpha|T\rangle = (pq\alpha|t_{N+c}^{R} P|\Phi
\]
\[
+ (pq\alpha|1 + t_{N+c}^{R} G_{0})V_{4}^{(1)}(1 + P)|\Phi
\]
\[
+ (pq\alpha|t_{N+c}^{R} P G_{0}\alpha')\langle\alpha'|T|\Phi
\]
\[
+ (pq\alpha|t_{N+c}^{R} P G_{0}\beta')\langle\beta'|T|\Phi
\]
\[
- (pq\alpha|t_{N+c}^{R} P G_{0}\alpha')\langle\alpha'|T|\Phi
\]
\[
+ (pq\alpha|1 + t_{N+c}^{R} G_{0})V_{4}^{(1)}(1 + P)G_{0}\alpha')\langle\alpha'|T|\Phi
\]
\[
+ (pq\alpha|1 + t_{N+c}^{R} G_{0})V_{4}^{(1)}(1 + P)G_{0}\beta')\langle\beta'|T|\Phi
\] (21)
Comparing it to eq. (8) with 2-body forces only, there
is one additional contribution in the leading term,
$pq\alpha|t_{N+c}^{R} G_{0})V_{4}^{(1)}(1 + P)|\Phi$, and one in the kernel,
$pq\alpha|1 + t_{N+c}^{R} G_{0})V_{4}^{(1)}(1 + P)G_{0}\alpha')\langle\alpha'|T|\Phi$, both con­
taining $V_{4}^{(1)}(1 + P)$.

The transition amplitude for breakup is again given by
(9) and for elastic scattering two new terms driven by
$V_{4}^{(1)}(1 + P)$ appear [15]:
\[
\langle\Phi'|U|\Phi\rangle = \langle\Phi'|PG_{0}^{-1} + PT + V_{4}^{(1)}(1 + P)
\]
\[
+ V_{4}^{(1)}(1 + P)G_{0}|T|\Phi\rangle.
\] (22)
Since the structure of the set (21) is analogous to the
structure of the set (8) describing pd scattering when only
pairwise forces are acting, it follows that the inclusion of the 3NF into the Faddeev calculations of pd elastic scattering and breakup reaction requires no new matrix elements and numerical tools beyond those used in [9, 10] and [15].

3 The electromagnetic reactions on 3He

It was shown in [16] that the basic equations describing reactions on 3He induced by photons or electrons have the same structure as the 3N continuum Faddeev equations (1) and (12). The new physical ingredient is the photon absorption operator, let's call it O [16]. For a complete breakup of 3He induced by photons the nuclear matrix element N, from which all observables can be determined, is given by an auxiliary state $|U\rangle$ which fulfills the Faddeev-type equation:

$$|U\rangle = \left[tG_0 + \frac{1}{2}(P + 1)V_N^{(1)}G_0(1 + tG_0) \right] (1 + P)O|\Psi_i\rangle + \left[tG_0 P + \frac{1}{2}(P + 1)V_N^{(1)}G_0(1 + tG_0)P \right]|U\rangle. \quad (23)$$

Then,

$$N = \langle \Phi_0 | (1 + tG_0)(1 + P)O|\Psi_i\rangle + \langle \Phi_0 | (1 + tG_0)P|U\rangle. \quad (24)$$

Here $|\Psi_i\rangle$ is the initial 3He bound state and $|\Phi_0\rangle$ is the fully antisymmetrized free state of three outgoing nucleons, given in terms of their Jacobi momenta and spin and isospin quantum numbers.

For the pd breakup of 3He the nuclear matrix element is given [16] by

$$N_{pd} = \langle \Phi_0 | (1 + P)O|\Psi_i\rangle + \langle \Phi_0 | (1 + tG_0)P|U\rangle, \quad (25)$$

where the final state is determined by the proton-deuteron relative momentum eigenstate $|\eta\rangle$ and the deuteron wave function $|\phi_d\rangle$:

$$\langle \Phi_0 | = \langle \phi_d| |\eta\rangle. \quad (26)$$

Let us consider first the case without 3NFs:

$$|U\rangle = tG_0(1 + P)O|\Psi_i\rangle + tG_0 P|U\rangle. \quad (27)$$

Projecting eq. (27) on states $|\alpha\rangle$ and $|\beta\rangle$ (in the $|\beta\rangle$ states only the screened Coulomb force V^c_N is acting) one gets

$$\langle \eta | O\ U\rangle = \langle \eta | tG_0(1 + P)O|\Psi_i\rangle + \langle \eta | tG_0 P|U\rangle \quad \text{and} \quad (28)$$

$$\langle \eta | O\ B\ U\rangle = \langle \eta | tG_0(1 + P)O|\Psi_i\rangle + \langle \eta | tG_0 P|\alpha\rangle \langle \alpha | U\rangle + \langle \eta | tG_0 P|\beta\rangle \langle \beta | U\rangle. \quad (29)$$

Since in above equations the photon absorption operator O comes always with 3He bound state therefore $\langle \beta | O|\Psi_i\rangle = \langle \beta | PO|\Psi_i\rangle = 0$. Consequently the first term in (29) vanishes. The last term is proportional to $\langle \eta | tG_0 P|\alpha\rangle \langle \alpha | U\rangle$ and the direct calculation of its isospin part gives zero. Thus eq. (29) reduces to:

$$\langle \eta | O\ B\ U\rangle = \langle \eta | tG_0 P|\alpha\rangle \langle \alpha | U\rangle. \quad (30)$$

Inserting (30) into (28) one gets:

$$\langle \eta | O\ U\rangle = \langle \eta | tG_0(1 + P)O|\Psi_i\rangle + \langle \eta | tG_0 P|\alpha\rangle \langle \alpha | U\rangle + \langle \eta | tG_0 P|\beta\rangle \langle \beta | U\rangle = \langle \eta | tG_0(1 + P)O|\Psi_i\rangle + \langle \eta | tG_0 P|\alpha\rangle \langle \alpha | U\rangle + \langle \eta | tG_0 P|\beta\rangle \langle \beta | U\rangle. \quad (31)$$

Using the completeness relation for the $|\alpha\rangle$ and $|\beta\rangle$ states gives:

$$\langle \eta | O\ U\rangle = \langle \eta | tG_0(1 + P)O|\Psi_i\rangle + \langle \eta | tG_0 P|\alpha\rangle \langle \alpha | U\rangle + \langle \eta | tG_0 P|\beta\rangle \langle \beta | U\rangle. \quad (32)$$

When compared with the set resulting from (27) for a neutron-neutron-proton system there are two new terms in the kernel: $\langle \eta | tG_0(1 + P)O|\Psi_i\rangle$ and $\langle \eta | tG_0 P|\alpha\rangle \langle \alpha | U\rangle$ and $\langle \eta | tG_0 P|\beta\rangle \langle \beta | U\rangle$. They are identical to those in (8) for the 3N continuum and consequently also their evaluation is the same as for pd scattering. The vanishing of $|\beta\rangle$-components of the $O|\Psi_i\rangle$-state caused that, instead of three leading terms as in (8), only one leading term appears, which can be calculated in a standard way [16].

Starting from (23) and performing analogous steps when the 3NF is included gives

$$\langle \eta | O\ U\rangle = \langle \eta | tG_0(1 + P)O|\Psi_i\rangle + \langle \eta | tG_0 P|\alpha\rangle \langle \alpha | U\rangle + \langle \eta | tG_0 P|\beta\rangle \langle \beta | U\rangle = \langle \eta | tG_0(1 + P)O|\Psi_i\rangle + \langle \eta | tG_0 P|\alpha\rangle \langle \alpha | U\rangle + \langle \eta | tG_0 P|\beta\rangle \langle \beta | U\rangle. \quad (33)$$

Thus, adding a 3NF results in one additional leading term, $\langle \eta | tG_0(1 + P)O|\Psi_i\rangle$, and one additional kernel term, $\langle \eta | tG_0 P|\alpha\rangle \langle \alpha | U\rangle$, and

The matrix elements $\langle \eta | O\ U\rangle$ provide transition amplitudes for the two- and three-body breakup of 3He. Namely, for the two-body breakup of 3He the second term in (25) can be calculated using (30) and the completeness of the $|\alpha\rangle$ and $|\beta\rangle$ states, resulting in:

$$\langle \Phi_0 | P\ U\rangle = \langle \Phi_0 | P|\alpha\rangle \langle \alpha | U\rangle + \langle \Phi_0 | P|\beta\rangle \langle \beta | U\rangle = \langle \Phi_0 | P|\alpha\rangle \langle \alpha | U\rangle + \langle \Phi_0 | P|\beta\rangle \langle \beta | U\rangle - \langle \Phi_0 | P|\alpha\rangle \langle \alpha | U\rangle \langle \alpha | U\rangle \langle \beta | U\rangle. \quad (34)$$
The first and third terms can be obtained from the $|\alpha\rangle$ partial-wave–projected matrix elements using (B.2) of ref. [9]. The second term must be calculated using directly the 3-dimensional screened Coulomb t-matrix $t^R_{\alpha\alpha}$ according to (D.9) of ref. [9].

For the three-body breakup of 3He the second term in (24) can be calculated in a similar way and is given by

$$
\langle \Phi_0| (1 + t^{G_0}) P| U \rangle = \langle \Phi_0| P| \alpha\rangle \langle \alpha| U \rangle \\
+ \langle \Phi_0| P| \beta\rangle \langle \beta| t^{G_0} P| \alpha'\rangle \langle \alpha'| U \rangle \\
+ \langle \Phi_0| \alpha\rangle \langle \alpha| t_R^{G_0} G_0 P| U \rangle + \langle \Phi_0| \beta\rangle \langle \beta| t^{G_0} P| U \rangle = \\
\langle \Phi_0| P| \alpha\rangle \langle \alpha| U \rangle + \langle \Phi_0| P| \alpha'\rangle \langle \alpha'| U \rangle \\
- \langle \Phi_0| P| \alpha\rangle \langle \alpha| t^{G_0} P| \alpha'\rangle \langle \alpha'| U \rangle \\
+ \langle \Phi_0| \alpha\rangle \langle \alpha| t_R^{G_0} G_0 P| \alpha'\rangle \langle \alpha'| U \rangle \\
+ \langle \Phi_0| \alpha\rangle \langle \alpha| t^{G_0} P| \alpha'\rangle \langle \alpha'| U \rangle \\
- \langle \Phi_0| \alpha\rangle \langle \alpha| t_R^{G_0} G_0 P| \alpha'\rangle \langle \alpha'| U \rangle + \langle \Phi_0| \alpha\rangle \langle \alpha| t^{G_0} P| \alpha'\rangle \langle \alpha'| U \rangle. \tag{35}
$$

Here again, the second, fifth and seventh term must be calculated using directly the 3-dimensional screened Coulomb t-matrix $t^R_{\alpha\alpha}$. For the second, $\langle \Phi_0| P|G_0 P| \alpha\rangle \times \langle \alpha| U \rangle$, and seventh, $\langle \Phi_0| t^{G_0} P| \alpha\rangle \langle \alpha| U \rangle$, term the calculation follows expressions (D.6), (D.7) and (D.8) of ref. [9]. For the fifth matrix element, $\langle \Phi_0| P| \alpha\rangle \times \langle \alpha| t^{G_0} P| \alpha'\rangle \langle \alpha'| U \rangle$, the corresponding expressions of ref. [9] are (A.19) and (B.1). The calculation of the remaining, $|\alpha\rangle$ partial-wave–projected matrix elements in (35) follows (B.1) of ref. [9].

4 Summary

We extended our approach to include the pp Coulomb force into the momentum space 3N Faddeev calculations, presented in refs. [9, 10] for elastic pd scattering and breakup in case when only pairwise forces are acting, to include also a 3NF and to treat reactions induced by interaction of electromagnetic probes with the 3He nucleus. It is based on a standard formulation for short-range forces and relies on the screening of the long-range Coulomb interaction. In order to avoid all uncertainties connected with the application of the partial-wave expansion, unsuitable when working with long-range forces, we apply directly the 3-dimensional pp screened Coulomb t-matrix.

For each reaction considered in the present study: elastic pd scattering and breakup, two- and three-body decay of the 3He nucleus induced by real or virtual photons, the resulting coupled set of integral equations in the finite space of $|\alpha\rangle$ channels only, incorporates the contributions of the pp Coulomb interaction from all partial-wave states up to infinity. Adding a 3NF results in a set of Faddeev-type equations with the same structure as in the case when only 2N interactions and pp Coulomb force are acting. On top of that for each reaction one new contribution in the leading term and in the kernel appears. These two additional terms have the same form independent if the pp Coulomb force is acting or not.

Solutions of the resulting Faddeev equations in the form of partial-wave–projected matrix elements, together with the additional matrix elements calculated directly with the 3-dimensional screened Coulomb t-matrix, provide transition amplitudes from which numerous observables can be calculated.

Since in [9, 10] the practical feasibility of our formulation has been documented in case of pd elastic scattering and breakup, the presented extension of similar structure will also be feasible and will allow to apply that approach with the complete nuclear Hamiltonian to analyses of numerous data from 3N hadronic and electromagnetic reactions.

This work was supported by the Polish 2008-2011 science funds as a research project No. N N202 077435. It was also partially supported by the Helmholtz Association through funds provided to the virtual institute “Spin and strong QCD” (VH-VI-231).

Open Access This article is distributed under the terms of the Creative Commons Attribution Noncommercial License which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.

References

1. E.O. Alt, W. Sandhas, H. Ziegelmann, Phys. Rev. C 17, 1981 (1978).
2. E.O. Alt, W. Sandhas, in *Coulomb Interactions in Nuclear and Atomic Few-Body Collisions*, edited by F.S. Levin, D. Micha (Plenum, New York, 1996) p. 1.
3. E.O. Alt, M. Rauh, Phys. Rev. C 49, R2285 (1994).
4. E.O. Alt, A.M. Mukhamedzhanov, M.M. Nishonov, A.I. Sattarov, Phys. Rev. C 65, 064613 (2002).
5. A. Kievsky, M. Viviani, S. Rosati, Phys. Rev. C 52, R15 (1995).
6. A. Deltuva, A.C. Fonseca, P.U. Sauer, Phys. Rev. C 72, 054004 (2005).
7. A. Deltuva, A.C. Fonseca, P.U. Sauer, Phys. Rev. C 71, 054005 (2005).
8. R. Skibiński, J. Golak, H. Witała, Acta Phys. Pol. B 41, 385 (2010).
9. H. Witała, R. Skibiński, J. Golak, W. Glöckle, Eur. Phys. J. A 41, 369 (2009).
10. H. Witała, R. Skibiński, J. Golak, W. Glöckle, Eur. Phys. J. A 41, 385 (2009).
11. W. Glöckle, H. Witała, D. Hüber, H. Kamada, J. Golak, Phys. Rep. 274, 107 (1996).
12. W. Glöckle, *The Quantum Mechanical Few-Body Problem* (Springer Verlag, 1983).
13. H. Witała, W. Glöckle, H. Kamada, Phys. Rev. C 43, 1619 (1991).
14. A. Deltuva, Phys. Rev. C 80, 064002 (2009).
15. D. Hüber, H. Kamada, H. Witała, W. Glöckle, Acta Phys. Pol. B 28, 1677 (1997).
16. J. Golak, R. Skibiński, H. Witała, W. Glöckle, A. Nagga, H. Kamada, Phys. Rep. 415, 89 (2005).