Abstract

We present ComSum, a data set of 7 million commit messages for text summarization. When documenting commits, software code changes, both a message and its summary are posted. We gather and filter those to curate developers’ work summarization data set. Along with its growing size, practicality and challenging language domain, the data set benefits from the living field of empirical software engineering. As commits follow a typology, we propose to not only evaluate outputs by Rouge, but by their meaning preservation.

1 Introduction

The amount of code written in the world is ever-growing. When code is created by large groups of developers, documentation becomes essential and consequentially is a part of code quality. The need to communicate is especially important in distributed development, where shouting over the hallway cannot compensate for improper documentation.

Code development nowadays is usually supported by version control systems that track the source code modification, most commonly, Git. In Git, each modification is called a commit. A commit lists the changes in the code and a description by the developer. The description contains a one-line subject and a longer descriptive message. Git and GitHub treat the subject line as a summary, further incentivizing developers to do the same. Hence, to build a text summarization data set, we use the subject as the summary and the rest of the commit message as the source.

In Section §3, we describe the process of querying and filtering commits to curate ComSum, a commit summarization data set. The data set is large, abstractive and introduces a new domain for summarization (Dataset description in Section §4). We consider several baseline results on the data set (see Section §5). The baselines include both neural summarization baselines and baselines based on relations between the subject and the message. Those shed light on the state of the art on the data set and the data set characteristics. Since commits are used to describe code changes, the taxonomy of changes is an important part of their meaning. That enables us to evaluate a summary model by how well it preserves the meaning rather than by word overlap with a reference. We explain and provide an initial analysis in Section §6.
Table 1: ComSum is more abstractive, as seen in low coverage and density.

Dataset	# Docs.	Coverage	Density	Comp. Ratio
Arxiv/PubMed [Cohan et al., 2018]	346,187	0.87	3.94	31.17
BigPatent [Sharma et al., 2019]	1,341,306	0.86	2.38	36.84
CNN/DM [Nallapati et al., 2016]	311,971	0.85	3.47	14.89
Newsroom [Grusky et al., 2018]	1,212,739	0.83	9.51	43.64
XSum [Narayan et al., 2018]	226,677	0.66	1.09	19.25
BOOKSUM Paragraph [Kryscinski et al., 2021]	142,753	0.5	0.92	6.47
ComSum	7,540,026	0.27	0.89	8.1

2 Related Work

Textual Summarization has become a central task in Natural Language Processing, attracting pre-trained models [Zhang et al., 2020, Qi et al., 2020] and specialized models [Dou et al., 2021]. With this came also a need for larger, more diverse and more challenging data sets.

News is the most common domain for summarization data sets [Over et al., 2007, Nallapati et al., 2016]. Some news data sets [Grusky et al., 2018] emphasize size and abstractive over extractive summarization, not favoring copying the source [Narayan et al., 2018]. While news is advocated for its general domain, we find the vocabulary, which should demonstrate it, is rather low. The vocabulary of the commits is over 2M in the validation set alone (to be fair in terms of size) and 19M overall (top reported is 1.4M NYTimes dataset [Narayan et al., 2018, Sandhaus, 2008]). Similarly, the vocabulary of the summaries is 0.5M and 3.9M (NYTimes 0.3M).

Kryscinski et al. [2021] also called for more challenging and diverse abstractive data sets. We compare (Table 1) the abstractness as measured by low density and coverage [Grusky et al., 2018] finding our dataset excels in that regard. Others concurred, offering large datasets of different domains 4M crawled TL;DR from Reddit [Völske et al., 2017] and 1.3M patents [Sharma et al., 2019].

Our work follows all those desirable traits. It is more abstractive, it introduces a new natural summarization domain, it is even larger than current data sets and will keep growing in size substantially.

In addition to the data set, we propose (see Section §6) an evaluation procedure specific to the domain at hand that emphasizes the overall meaning of the summary rather than its similarity to a reference as commonly assessed by summarization evaluation.

Apart from summarization, this work also contributes to the growing field of NLP for aiding programming. This emerging field includes tasks such as code generation [Hayati et al., 2018], search [Gu et al., 2018], automatic documentation [Miceli Barone and Sennrich, 2017] and updating documentation by code changes Panthapackel et al. [2020] and also has a dedicated workshop [Lachmy et al., 2021].

Evaluation of summarization mainly focuses on general quality of summarizations [Bhandari et al., 2020, Zhang et al., 2019], with some exceptions [Wilber et al., 2021, Xu and Durrett, 2021]. Some work showed hallucinations are a problem [Kryscinski et al., 2020] and focused on evaluation of factual consistency [Gabriel et al., 2020, Honovich et al., 2021, Pagnoni et al., 2021]. Other fields of text generation provide additional ways to extract informative measures [Ribeiro et al., 2020]. Measures that tell about certain characteristics of the output, rather than bottom-line scores. Such methods include evaluation on minimal changes to the input [Warstadt et al., 2020], challenge sets [Macketanz et al., 2018, Choshen and Abend, 2019], metrics dedicated to specific characteristics such as grammaticality [Vadlapudi and Katragadda, 2010] or meaning preservation [Choshen and Abend, 2018c], manual evaluation [Graham et al., 2015], evaluation dependent on the domain data [Choshen and Abend, 2018a], understanding the inner workings of networks [Tenney et al., 2019, Slobodkin et al., 2021, Voita et al., 2020] and more.

Several data sets and tasks share similarities with summarization. Those include simplification [Alva-Manchego et al., 2020], sentence compression [Filippova and Altun, 2013], web-page snippet generation by query [Chen et al., 2020] and single sentence summarization [Rush et al., 2015].

First two authors contributed equally.
3 Data Set Creation

In this section, we describe the creation of the proposed data set, ComSum. Specifically, we describe how we acquire and filter projects and commits to extract reliable summarizations.

Open source code is shared in large amounts on different platforms. GitHub, owned by Microsoft, is a large hosting service for projects using the Git version control system. In 2018 GitHub announced that they hosted 100 million projects [Warner, 2018].

We base our data set on the BigQuery GitHub schema [GitHub, 2019]. The schema allows querying commits pushed to GitHub by various metadata attributes. The BigQuery GitHub schema contains about 3.4 million public projects prior to 2021, but the vast majority are not appropriate for studies of software engineering, being small, non-recent, or not even code.

3.1 Projects selection

Software is written in projects or repositories, sharing a general goal. While some projects consist of a few files shared, others are constantly updating. We focus on the latter, aiming to filter the first to avoid commits where clear communication is neither crucial nor enforced.

Therefore, the main effort in the data set construction is to identify projects of interest and filter irrelevant ones. We base our filtering on the methodology developed by Amit and Feitelson [2021] to study software code quality. First, we choose only large enough and up to date projects by requiring at least 50 commits during 2020\[^4\]. Note that this is less than one commit per week, a rather low bound filtering tiny projects. However, this step alone was enough to reduce the number of relevant projects to 32,562, 0.96% of the prior step.

The next step is the removal of redundant projects. Github enables ‘forking’: copying a project, sometimes for investigation and sometimes for modifying without altering the main project. We identified forks using the GitHub API and removed them from our data set. We also removed projects that shared too many commits with a more popular project, having more stars, in order to use ‘Spark’ of the ‘Apache Software Foundation’ and not a hobbyist project built upon it. This step ended with 25,535 projects, 78% of the prior step.

We filtered projects not likely to be software projects, identified by the lack of bugs. A project without commits fixing bugs was identified by a negative Corrective Commit Probability (CCP) [Amit and Feitelson, 2021]. Projects with negative CCP are less likely to be software projects, externally validated by programming languages identification and imply no use of the pull request development mechanism. After filtering projects with invalid CCP we were left with 22,820 projects, 89% of the previous step. Out of these, 19,720 projects had commits fitting the conditions described next, 86% of the previous step and 0.57% of overall projects.

3.2 Commits Selection

When constructing a data set, the intended use is of high importance. In our case, many future uses are possible. One might want to remove single-person projects since they do not represent communication. Others might be interested only in single-person projects since they represent documentation for a future self. We choose not to add needless filtering here in order to allow future flexibility.

We used only two constraints. We require that the message will be at least 100 characters longer than the subject. While the value of 100 is arbitrary, a significant gap in the length is required in order to have a meaningful summarization.

We considered only commits earlier than 2021 to help future reproducibility. Note that this condition is not enough to guarantee the stability of the data set since existing projects might be deleted and their content will be removed from the index. In order to cope with that, we release a static version of the data set together with the code to extract it.

\[^4\]Projects requiring more or updated data should keep the requirement of 50 commits per year. Instead, they can choose a set of years instead of just 2020, and use projects that were active in at least one of those. They can also reduce other filters (e.g., the 100 characters difference).
Overall, the data set has 7,540,026 commits. A commit might appear in a few repositories, having the same subject, message and content. Since we are interested in text summarization, those are considered duplicates and we remove those 16% of the data that was repetitive. This step is especially important to prevent training data from leaking to the test set.

A message or a subject might appear more than once. For example, the most common subject is “Updating submodules”, appearing 6612 times. However, 96% of the subjects are unique. Also, a message and its summary never repeat. We left the recurring message since this represents software development, researchers looking for uniqueness can remove those. We provide appearance distribution and common messages in our released code repository (App. §A).

0.8% of the subjects appeared in the rest of the message. Manually analysing the common ones suggest those are generic subjects. The leading ones are ‘WebCore:’ (1554 times), ‘Updated Spanish translation.’ (809 times) and ‘Updated Norwegian bokmål translation.’ (347 times). Again, to ensure maximal future flexibility we left them.

Another question of interest is to what extent, the subject represents a summary of the message. The user interface aim to such usage but the developers are free to choose the any content. Both authors independently manually labeled 100 samples (See labeling protocol App. §C). The labeling agreement was 82%, and after discussion and tuning of the protocol it reached 99%. In essence, we require a proper summary to add details or reason and to contain the gist. We also labeled whether the summary was generic or specific to the commit. 80% of the subjects were a proper summary. Out of the rest: 35% had administrative message (e.g., just the developer detail). 20% had a subject that indicates a merge (e.g., merge branch 3.4) and the message as the content. In 15% the subject was by reference (e.g., fixed #123) and in 5% subject was generic. The rest of the 25% are diverse and harder to identify and handle. We next discuss filtering those cases.

We provide a list of 429K merge commits identified by Git as having more than one commit parent. Note that some do have an informative subject. We also provide a heuristic for identifying administrative messages. We identify them by the distance of administrative terms (e.g., ‘Signed-off-by:’, ‘Change-Id:’, the full list is found in the supplementary materials) from the beginning of the message. Manual labeling (See App. §D) shows those to have 98.9% precision and 75% recall. Filtering both cases leads to about 90% of the subjects serving as summaries on our labeled sample. Nonetheless, we provide the entire data set, to maximize future uses and provide code for filtering.

To reassess, we labeled 200 unfiltered commits, only 26 (87%) were not strictly summaries. The performance results described later are based on the filtered data set.

4 Data Set Description

Following these procedures, we create ComSum, a data set of commit messages and their summarization. ComSum contains 7,540,026 commits from 19,720 projects, written by 317,423 authors.

In addition to the summarization objective, we publish metadata on each commit. Each record also has the commit hash, a unique identifier that can be used for future work. Last, we provide the name of the repository from which the commit was taken. We note that a commit might be included in several repositories (projects), but we choose only one (see Section §3).

Our guideline when constructing ComSum was to ease consistent use. Hence, each record contains the subject, the message without the subject and the entire commit message combining the two. While it almost doubles the storage, it prevents future noise due to different implementations.

The average subject has 53 characters, the average message has 494 characters. The average compression rate, the commit message length divided by its subject length is 11.08.

We separate ComSum into train, validation and test to compare future results consistently. We provide a main split by the repository and a minor split by the commit. The separation is based on hash functions so it is both pseudo-random and reproducible. The test set and the validation set have about 472K examples each.

Note in table 2 that there are differences between the performance on the test and train sets. In general, we observe that the test set is slightly harder. Note both Zero-Shot Bart and Random Message Sentence have RougeL on the test set that is lower in about 3 points than on the train set. Since both of them do not require any training, it is due to the difference between the data sets.
As the goal in this split by the repositories was to prevent data leakage. Hence, the repositories in each splits are of different domains, community size, etc. and therefore some dissimilarity is acceptable. Indeed, comparing their metrics we note test is more abstractive with a coverage of 0.25 for test compared to 0.31 and test density of 0.86 compared to 0.99.

Overall, 97% (89% without the optional filtering) of test set subject lines never appear in the training set. Other lines are common and appear repeatedly in the train set (e.g., Merge branch 2.7 into 2.8). However, manual inspection suggests their corresponding commit messages share little resemblance. As the model should learn when to recall more generic summaries as well as to generate specific ones well, we leave those in the test set and do not separate train and test by subjects. We also create subsets of meaning-preserving commits, explained in Section §6.

5 Baselines

We inspect the behavior of neural models and baselines. Those provide insight on the characteristics of the data set, set a baseline for future work and allow for unique evaluation motivated by domain knowledge (see Section §6). In all experiments, we compute Rouge 1, 2 and L scores [Lin 2004].

For a neural model, we used BART [Lewis et al., 2020]. We consider two variations, untrained for zero-shot performance and fine-tuned on the train data set (See hyperparameters in App. §E). BART was originally trained in the domains of Wikipedia and Books and it was not exposed to the non-formal and technical language found in commit messages. However, BART, pre-trained that way, showed impressive results even on domains such as malware detection [Oak et al., 2019]. Regardless, BART results are high (Table 2) and it surpasses Zero-shot results by a large margin, suggesting the data set is large enough to overcome the domain shift at least partially. BART [Lewis et al., 2020] achieved RougeL of 44.2 on the CNN and Daily Mail data sets [Hermann et al., 2015] and 27.2 on the XSum data set [Narayan et al., 2018], suggesting ComSum is still challenging.

Following previous work [Krysciński et al., 2021], we provide heuristic summarization techniques for analysis. Results were computed on 10k samples and presented in Table 2. These heuristic summarizing techniques do not learn and therefore the train and test splits are irrelevant to them.

As a first, Subject and Message do not summarize at all and include both the subject and the message, acquiring a 29.5 RougeL. This demonstrates the need for compression. Note that this method cannot be used for prediction since it uses the summary.

Model	Data set	RougeL	Rouge1	Rouge2
Bart	Train	33.2	35.3	19.2
Subject and Message	Train	29.5	29.5	26.7
Bart	Test	27.2	29.0	15.4
Zero-Shot Bart	Train	17.6	19.7	7.8
Related Fix	Train	15.5	15.6	11.9
Zero-Shot Bart	Test	14.9	16.8	6.5
Related Commit	Train	14.6	14.9	10.4
Random Message Sentence	Train	13.6	15.3	6.4
Message without Subject	Train	12.0	13.9	6.1
Random Message Sentence	Test	10.1	11.4	4.5

Table 2: Baselines results on different data sets. Training on the data set provides a significant boost. Repeating the commit message or a related subject is not enough for a high score.

We perform another such test using the Message without Subject as the summarization. This method reached a RougeL score of 12.0 which is relatively low. This implies that while there is information in the commit message, repeating it is far from enough to achieve a good summarization score in ComSum.

Similarly, we define a Random Message Sentence baseline. We split the message into sentences and randomly pick a single non-empty sentence as the summarization, which achieves a RougeL of 13.6. This comes to see how well a reasonably sized extraction of the input would do (on average, messages are 11.08 times longer than subject). As expected, it is worse than the whole message and shows sentence extraction is unlikely to be considered a good commit summarization.
Another test case is Related Commit. We extract pairs of commits by the same author, in the same project, within a week’s range of each other. We consider the subject of one commit as the summary of its pair. Simulating summaries of the same person on the same topic, regardless of the specific message. We expect high scores from such a measure if summaries are general and quite similar or even repetitive upon related commits. The related commit subject benchmark reached a score of 14.6, suggesting this is not the case. Where we require both commits to be a bug fix, a setting we term Related Fix the results are higher. Results are also somewhat higher than those achieved by extracting a Random Message Sentence from the commit. This shows that the topic and style conserve some of the meaning needed for the summary, but they are far from satisfactory surrogates of a summary. Please note that in the text summarizing we treat each commit on its own and compare the commit message and subject.

Calculating the measures on a random sample, we confirm the difference stems from the split of different repositories to train and test data. Bart, which is a trained model drops in 6 points on the test split by repositories. It is common to have over-fitting due to memorization [Feldman 2020], [Arpit et al. 2017]. However, when we compared the results of BART on the split by commits the drop was of only one point, so overfit is at most small.

Surprisingly, BART achieves similar results to that of the message and subject, which is a summarization that includes all needed summary (the actual reference) and a lot of unneeded text.

Manually inspecting the outputs of BART shows mixed results. On the one hand, a reasonable percentage of sentences resemble the reference and in general convey the right action done in the commit. On the other hand, many errors are found. Even well-structured sentences fail in terms of factual consistency. The network hallucinates terms, names and numbers. For example, “Merge pull request #14 instead of #1110, ”Bump flake8-isort from 2.9.0 to 2.8.1” instead of to 2.9.1 and other more complex cases. The high Rouge score co-existing with common mistakes calls for evaluation procedures to differentiate allowed sentence variants from outputs of wrong meaning.

6 Meaning Preserving Summarization

Meaning preserving is part of the definition of the text summarization problem [Gupta and Lehal 2010], [Chopra et al. 2016], [Gupta and Lehal 2010] suggested an elegant mathematical definition

\[
\text{model summary} = \arg\max_x p(\text{message} | x)
\]

While attractive, this definition suffers from several drawbacks. The choice of the probability model is subjective. The computation of the most likely summary might not be feasible. Last, it is not clear if the writer intends and is capable of summarising the message that way, meaning that the samples that we use do not fit the concept aimed to learn.

Testing summarization quality by word overlap alone might be unreliable [Choshen and Abend, 2018b] and human annotation is costly. Fine-grained factual consistency is less specific to this domain and is an active field of study [Gabriel et al. 2020], [Honovich et al. 2021]. We hence, provide specialized test approaches, asserting that the output summaries preserve the meaning.

There are many aspects of meaning that one might choose to preserve. For example, the sentiment of the author, the register of the language, etc. A good property to preserve should satisfy few conditions.

First, there should be an agreement that this meaning should be preserved. Given a model that does not preserve sentiment, one might claim that this is desirable, leading to a more concise summary removing irrelevant information.

The second property should be that the aspect can be estimated using a computable function, a requirement for automation on a large scale. The aspect should be as objective as possible, (e.g., as measured by agreement between human annotators), in order to avoid a model that has a different subjective “point of view”.

Our data set enables the use of the commit type, having these properties. We use the classical commit taxonomy of Swanson, suggested in 1976, classifying commits as: corrective (aka bug fix), adaptive (adding new features) and perfective (refactoring and documentation improvements) [Swanson 1976]. This taxonomy is very common among developers and software engineering
researchers [Mockus and Votta, 2000]. Therefore we used a model for corrective, adaptive and refactor, a subset of perfective. We chose to focus on the latter as refactor changes are related to the source code and are therefore more important to communicate. The classification captures the essence of the work done in the commit, hence, its meaning should be preserved.

A commit might be tangled and serve several goals, for example, both fix a bug and refactor the fixed code [Herzig and Zeller, 2013, Herbold et al., 2020]. Other than being less common, being a bug does not influence being a refactor and both meanings should be preserved.

Human annotators reach an agreement of 95% on the classification of a commit as a bug [Amit and Feitelson, 2021]. We use the classifiers of [Amit and Feitelson, 2019, 2021], reaching accuracy of 93% for corrective and refactoring, very close to the human level, and the adaptive classifier of accuracy 65%. Hence we are capable of estimating the classification at scale accurately.

One could use the classification of commits as the meaning to preserve. However, a naive model identifying a list of core terms reaches an accuracy of 88% classifying the corrective concept. Since these words are common in commit messages, a model ignorant of the meaning might still use them as a summary. Therefore, we suggest more challenging cases for meaning preserving analysis. We compute for all the discussed concepts the precision-like meaning-preservation metric, \(P(\text{concept}(\text{model}(\text{message}))) | P(\text{concept}(\text{message})) \). BART’s highest precision for any of the concepts we tested on was 75%. This emphasizes how common and severe non-preserving summaries are and it calls for further investigation. However, an alternative claim is that omitting the concept from the summarization is fine since it is not important.

In order to cope with this claim, we construct cases in which the classification as the concept is added and not omitted. We use the term ‘core term’ for terms whose appearance is indicative of the concept, like ‘bug’, ‘bugfix’, ‘error’, ‘fail’, and ‘fix’. The lift of being classified as corrective given the appearance of a corrective core term is 99%, for adaptive the lift is 60%, and for refactor 238%. A naive model will fail on sentences having a core term yet not classified as the concept. Examples are “Added error handling”, “Used fixed point arithmetic”, “This is not a bug fix but a new requirement”, etc. We built a suitable data set, we selecting messages that contain a core term, yet are still classified as negative by the concept’s classifier. I.e., they contain a core term that usually suggests they belong to one concept, but they do not.

Hence, in order to preserve the meaning, the summary should match the message in concept. In that case, the system output should be of the negative class too and preferably contain the core term.

Before evaluating meaning preservation, we present the Rouge score on the meaning preserving data sets. Comparing the results in Table 2 and Table 3 shows similar performance trends.

Model	Data set	RougeL	Rouge1	Rouge2
Bart	Adaptive	26.6	28.6	14.5
Bart	Refactor	26.9	28.8	14.1
Bart	Corrective	26.2	28.3	13.6
Zero-Shot Bart	Adaptive	14.3	16.3	5.7
Zero-Shot Bart	Refactor	16.0	17.7	6.5
Zero-Shot Bart	Corrective	15.9	18.1	6.8
Random Message Sentence	Adaptive	9.9	11.0	4.2
Random Message Sentence	Refactor	10.1	11.5	4.4
Random Message Sentence	Corrective	9.6	10.9	3.5

Table 3: Rouge scores on typed test sets. Trends are similar to those on the general test set.

However, the meaning-preserving property allows us to extend our analysis beyond this bottom line. Table 4 presents the classification of the summaries of the meaning-preserving messages that have a core term of a concept yet are not part of the concept’s class. The message “Added error handling” is not classified as a bug fix despite the appearance of the core term “error”. When a message contains a core term but is still classified as having a concept, it indicates that the concept is indeed not the core’s one, as the prior on matching concept and core term is very high. We build such data sets for corrective, refactor and adaptive concepts in order to demonstrate it is not a property of a specific concept.
Table 4: Meaning Preserving on summaries containing a distractor core term (e.g., "bug") not fitting their concept type (e.g., corrective). Models should preserve meaning and though the distraction. Indeed, those cases are confusing for the model.

Model	Data set	Not Preserved	Core and Concept	Not and Concept	Core and Not Concept	Not Core and Concept
Bart	Corrective	0.10	0.07	0.03	0.10	0.79
Bart	Refactor	0.16	0.10	0.06	0.09	0.75
Bart	Adaptive	0.35	0.30	0.05	0.13	0.51

Next, we observe the summaries generated by Bart. When the summaries include a core term, yet are not classified as discussing a concept, the meaning is correct, matching the message. This is the best case where the summary matches both the concept and the core term. Optimally, all summaries would fall under this case.

When there is no core term and the summary is not classified as a (wrong) concept, it might be a good summary in terms of meaning, not stating the nonexistent concept. On the other hand, these cases might be a result of hallucinations, as they do not mention the core term.

However, when there is a core term and the summary is classified as the concept, then the meaning was changed. Last, when there is no core term and the message is classified as discussing the concept, not only the meaning is changed, the core term disappears and the summary might be a result of hallucinations too. Not Preserved in the table represents the cases where the meaning was changed. It is the sum of Core and Concept and Not Core and Concept. We find that 10-35% of sentences checked, change their meaning. These meaning-preserving probabilities serve as quality metrics for the summary. Future work may integrate them into the loss function, forcing the model to both produce the right words and keep the meaning.

It is worth reiterating that the commit classifiers are not perfect. While they were trained on thousands of messages, the meaning preserving messages are different in nature and the distracting core term makes them harder to classify. We manually labeled 20 messages for each concept, in order to estimate how many of the messages in the sub data sets indeed have the desired properties. For the adaptive labels, all had the core term and 60% were not adaptive, fitting for meaning preserving. For refactoring, only 35% of the labels fit the meaning preserving data set, and in the corrective 75%.

We use the same classifiers for the message and the summary, mitigating the accuracy importance. However, when comparing results between data sets, the classifier accuracy should be taken into account. Assuming independence, estimating mistakes with \(P(\text{Not Preserving}) \times (1 - \text{Accuracy}) \), which is much higher in corrective and adaptive compared to refactor.

The fact that meaning is often not preserved is likely to be general. We used off-the-shelf pre-trained models. Moreover, we did not train the model directly to preserve the meaning, rather we trained it to generate the summary token by token. Thus, the models are trained in a rather general way one that is not specific to summarizing commits or to preserving meaning. The only change is that the models were trained on data which meaning could be evaluated on. Thus, we rely on the distinctions known in software engineering research to evaluate the behavior of current models expecting it to be relevant to other summarization domains as well.

7 Limitations and Threats to Validity

We discuss in this section the limitations of our works. We also discuss the ethical concerns at App. §F

The data set is based on active open source projects. These projects will keep advancing and in the future will have more commits that will enable building larger data sets. We extract the current commits and freeze them to enable reproducibility. We also provide the extraction code and limit the commits to commits earlier than 2021. However, the current data set might not represent future development activity. A data set that will be generated in the future might not match the frozen data sets since projects that will be deleted will not be included.
For the meaning preserving analysis, we use commit classification models. Each model has different biases and prediction performance. We believe that further improving current models and using more models will reduce the influence of current models weaknesses. In turn, this makes the model exact details part of the reporting and reproducibility.

As an external validity concern, it is not clear how much the projects in the data set represent open source development. While we control our project selection, we could not find documentation explaining how projects are selected into the BigQuery schema that we rely on. Some well-known projects are not included (e.g. The Apache Software Foundation’s Mahout and ActiveMQ). An absence that is even harder to explain is that of Microsoft’s VSCode, an extremely popular editor with more than 100K stars. It existed and was later removed, though the project is still publicly developed. On the other hand, our data set contains 19,720 projects, more than the usual amounts used in research on the GitHub schema: 7,557 [Amit and Feitelson 2021], 1,531 [Amit and Feitelson 2019], and 677 [Amit et al. 2021].

Git enables developers to create commits in a dedicated ‘branch’ and then ‘squash’ them into a single ‘merge’ commit. The default message of the squashed commit is the concatenated messages of all the branch commits. While all the commits in a branch are related, the cohesion is lower than in a regular commit and the messages are longer. These cases can be identified, either by filtering merge commits or simply long messages. We want to allow future researchers maximal flexibility and therefore we just alert on this issue instead of enforcing a specific filter.

Our data set is specific to software development. Hence, improvement on Comsum might not generalize to other domains. Clearly, bugs and refactoring will not appear in other domains. Other than this obvious difference, a high percentage of software developers are males [Terrell et al. 2017], raising another external validity threat.

Our choice to set a minimal difference of 100 characters between subject and message is not the only option. 48 million commits, 94% of all of the commits in our projects, have a message longer than their corresponding subject. Our choice led to an average ratio of \(\frac{\text{len(message)}}{\text{len(subject)}} = 11.08 \), requiring significant compression. In this case, we did not provide the messages with a smaller difference since that will require much higher storage of less interesting or even misleading messages. The code that we provide enables others to generate similar data sets to their taste.

Training models is costly. Therefore we could not repeat the training on many samples in order to provide error bars for the benchmarks. However, we evaluate the performance on large test sets. Table 2 shows that both Bart, Zero-Shot Bart and ‘Random Message Sentence’ get very close results on the train and test which is another reason to believe results are robust.

8 Future Work

The commit data set has the important property of task type meaning-preserving. This property enables requiring and evaluating beyond lexical similarity. It will be interesting to identify such properties in general texts. For example, forbidding a change from a positive sentiment to a negative one (e.g., in dropping the ‘not’ in ‘not bad’) might be a general property. Negation, modals, and idioms seem to be a suitable area to find such properties. Text topics, like security or performance in commit messages, might be suitable for meaning preserving too.

Our data set is also useful as a testbed for active learning. In active learning, there is a large amount of unlabeled data and the goal is to find a small group of informative samples that can be labeled in a feasible cost [Settles 2010]. One can use labeling functions [Ratner et al. 2016, Amit et al. 2017], computational functions that are weak learners [Schapire 1990]. For example, commits not classified as corrective, perfective or adaptive, are assured to be a false negative of one of the classifiers. The method was used to boost the corrective commit classifier model [Amit and Feitelson 2021].

One can use the 19,720 projects for topic detection, a data set that is expected to be challenging since all the projects deal with software and hence the topic difference is more delicate. Another possible use is to enhance the data set with author identifier, and use pairing [Amit et al. 2019] in order to learn author writing style.
9 Conclusions

We present a text summarization data set, ComSum, of significant size, and a methodology to extract larger such data sets in the future. ComSum is not only of a large size, it provides new challenges such as summarizing in a new domain, where a lot of terms appear and constantly change.

We present benchmarks based on related messages, allowing us to assign meaning to a model performance evaluation. We also identify meaning-preserving properties that enable training and evaluating models on goals beyond lexical similarity.

References

Fernando Alva-Manchego, Louis Martin, Antoine Bordes, Carolina Scarton, Benoît Sagot, and Lucia Specia. ASSET: A dataset for tuning and evaluation of sentence simplification models with multiple rewriting transformations. In Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pages 4668–4679, Online, July 2020. Association for Computational Linguistics. doi: 10.18653/v1/2020.acl-main.424. URL https://www.aclweb.org/anthology/2020.acl-main.424.

Idan Amit. Analysis utilities. Aug 2021a. doi: 10.5281/zenodo.5179861.

Idan Amit. Natural language processing for software engineering. Aug 2021b. doi: 10.5281/zenodo.5179812.

Idan Amit. General infrastructure for github data analysis over bigquery. Aug 2021c. doi: 10.5281/zenodo.5179783.

Idan Amit and Dror G. Feitelson. Which refactoring reduces bug rate? In Proceedings of the Fifteenth International Conference on Predictive Models and Data Analytics in Software Engineering, PROMISE’19, page 12–15, New York, NY, USA, 2019. Association for Computing Machinery. ISBN 9781450372336. doi: 10.1145/3345629.3345631. URL https://doi.org/10.1145/3345629.3345631.

Idan Amit and Dror G. Feitelson. Corrective commit probability: a measure of the effort invested in bug fixing. Software Quality Journal, pages 1–45, Aug 2021. ISSN 1573-1367. doi: 10.1007/s11219-021-09564-z. URL https://doi.org/10.1007/s11219-021-09564-z.

Idan Amit, Eyal Firstenberg, and Yinnon Meshi. Framework for semi-supervised learning when no labeled data is given. U.S. patent application #US20190164086A1, 2017. URL https://patents.google.com/patent/US20190164086A1/.

Idan Amit, John Matherly, William Hewlett, Zhi Xu, Yinnon Meshi, and Yigal Weinberger. Machine learning in cyber-security - problems, challenges and data sets. arXiv preprint arXiv:1812.07858, 2019.

Idan Amit, Nili Ben Ezra, and Dror G. Feitelson. Follow your nose – which code smells are worth chasing? arXiv preprint arXiv:2103.01861, 2021.

Devansh Arpit, Stanisław Jastrzębski, Nicolas Ballas, David Krueger, Emmanuel Bengio, Maxinder S Kanwal, Tegan Maharaj, Asja Fischer, Aaron Courville, Yoshua Bengio, et al. A closer look at memorization in deep networks. arXiv preprint arXiv:1706.05394, 2017.

Manik Bhandari, Pranav Narayan Gour, Atabak Ashfaq, Pengfei Liu, and Graham Neubig. Re-evaluating evaluation in text summarization. In Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pages 9347–9359, Online, November 2020. Association for Computational Linguistics. doi: 10.18653/v1/2020.emnlp-main.751. URL https://www.aclweb.org/anthology/2020.emnlp-main.751.

Wei-Fan Chen, Shahbaz Syed, Benno Stein, Matthias Hagen, and Martin Potthast. Abstractive Snippet Generation. In Yennung Huang, Irwin King, Tie-Yan Liu, and Maarten van Steen, editors, Web Conference (WWW 2020), pages 1309–1319. ACM, April 2020. ISBN 978-1-4503-7023-3. doi: 10.1145/3366423.3380206. URL https://dl.acm.org/doi/abs/10.1145/3366423.3380206.
Sumit Chopra, Michael Auli, and Alexander M Rush. Abstractive sentence summarization with attentive recurrent neural networks. In Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pages 93–98, 2016.

Leshem Choshen and Omri Abend. Automatic metric validation for grammatical error correction. In ACL, 2018a.

Leshem Choshen and Omri Abend. Inherent biases in reference-based evaluation for grammatical error correction and text simplification. In Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 632–642, Melbourne, Australia, July 2018b. Association for Computational Linguistics. doi: 10.18653/v1/P18-1059. URL https://www.aclweb.org/anthology/P18-1059.

Leshem Choshen and Omri Abend. Reference-less measure of faithfulness for grammatical error correction. In Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 2 (Short Papers), pages 124–129, New Orleans, Louisiana, June 2018c. Association for Computational Linguistics. doi: 10.18653/v1/N18-2020. URL https://www.aclweb.org/anthology/N18-2020.

Leshem Choshen and Omri Abend. Automatically extracting challenge sets for non-local phenomena in neural machine translation. In Proceedings of the 23rd Conference on Computational Natural Language Learning (CoNLL), pages 291–303, Hong Kong, China, November 2019. Association for Computational Linguistics. doi: 10.18653/v1/K19-1028. URL https://www.aclweb.org/anthology/K19-1028.

Leshem Choshen and Idan Amit. Comsum: Commit messages summarization and meaning preservation data set, 2021a. URL https://figshare.com/articles/dataset/CumSum_data_set/14711370.

Leshem Choshen and Idan Amit. Comsum: Commit messages summarization and meaning preservation source code. Jul 2021b. doi: 10.5281/zenodo.5090706.

Arman Cohan, Franck Dernoncourt, Doo Soon Kim, Trung Bui, Seokhwan Kim, Walter Chang, and Nazli Goharian. A discourse-aware attention model for abstractive summarization of long documents. arXiv preprint arXiv:1804.05685, 2018.

Zi-Yi Dou, Pengfei Liu, Hiroaki Hayashi, Zhengbao Jiang, and Graham Neubig. GSum: A general framework for guided neural abstractive summarization. In Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pages 4830–4842, Online, June 2021. Association for Computational Linguistics. URL https://www.aclweb.org/anthology/2021.naacl-main.384.

Vitaly Feldman. Does learning require memorization? a short tale about a long tail. In Proceedings of the 52nd Annual ACM SIGACT Symposium on Theory of Computing, pages 954–959, 2020.

Katja Filippova and Yasemin Altun. Overcoming the lack of parallel data in sentence compression. In Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing, pages 1481–1491, Seattle, Washington, USA, October 2013. Association for Computational Linguistics. URL https://www.aclweb.org/anthology/D13-1155.

Saadia Gabriel, Asli Celikyilmaz, Rahul Jha, Yejin Choi, and Jianfeng Gao. Go figure! a meta evaluation of factuality in summarization. arXiv preprint arXiv:2010.12834, 2020.

GitHub. Github activity data, September 2019. URL https://console.cloud.google.com/marketplace/product/github/github-repos.

Yvette Graham, Timothy Baldwin, and Nitika Mathur. Accurate evaluation of segment-level machine translation metrics. In Proceedings of the 2015 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pages 1183–1191, Denver, Colorado, May–June 2015. Association for Computational Linguistics. doi: 10.3115/v1/N15-1124. URL https://www.aclweb.org/anthology/N15-1124.
Max Grusky, Mor Naaman, and Yoav Artzi. Newsroom: A dataset of 1.3 million summaries with diverse extractive strategies. In Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers), pages 708–719, New Orleans, Louisiana, June 2018. Association for Computational Linguistics. doi: 10.18653/v1/N18-1065. URL https://www.aclweb.org/anthology/N18-1065.

Xiaodong Gu, Hongyu Zhang, and Sunghun Kim. Deep code search. In 2018 IEEE/ACM 40th International Conference on Software Engineering (ICSE), pages 933–944. IEEE, 2018.

Vishal Gupta and Gurpreet Singh Lehal. A survey of text summarization extractive techniques. Journal of emerging technologies in web intelligence, 2(3):258–268, 2010.

Shirley Anugrah Hayati, Raphael Olivier, Pravalika Avvaru, Pengcheng Yin, Anthony Tomasic, and Graham Neubig. Retrieval-based neural code generation. In Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, pages 925–930, Brussels, Belgium, October-November 2018. Association for Computational Linguistics. doi: 10.18653/v1/D18-1111. URL https://www.aclweb.org/anthology/D18-1111.

Steffen Herbold, Alexander Trautsch, Benjamin Ledel, Alireza Aghamohammadi, Taher Ahmed Ghaleb, Kuljit Kaur Chahal, Tim Bossenmaier, Bhaveet Nagaria, Philip Makedonski, Matin Nili Ahmadabadi, Kristof Szabados, Helge Spieker, Matej Madeja, Nathaniel Hoy, Valentina Lenarduzzi, Shangwen Wang, Gema Rodriguez-Pérez, Ricardo Colomo-Palacios, Roberto Verdecchia, Paramvir Singh, Yihao Qin, Debasish Chakraborti, Willard Davis, Vijay Walunj, Hongjun Wu, Diego Marcilio, Omar Alam, Abdullah Aldaeej, Idan Amit, Burak Turhan, Simon Eismann, Anna-Katharina Wickert, Ivano Malavolta, Matus Sulir, Fatemeh Fard, Austin Z. Henley, Stratos Kourtzanidis, Eray Tuzun, Christoph Treude, Simin Maleki Shamsabi, Ivan Pashchenko, Marvin Wyrich, James Davis, Alexander Serebrenik, Ella Albrecht, Ethem Utku Aktas, Daniel Strüber, and Johannes Erbel. Large-scale manual validation of bug fixing commits: A fine-grained analysis of tangling. arXiv preprint arXiv:2011.06244, 2020.

Karl Moritz Hermann, Tomas Kocisky, Edward Grefenstette, Lasse Espeholt, Will Kay, Mustafa Suleyman, and Phil Blunsom. Teaching machines to read and comprehend. In NIPS, 2015.

K. Herzig and A. Zeller. The impact of tangled code changes. In 2013 10th Working Conference on Mining Software Repositories (MSR), pages 121–130, 2013. doi: 10.1109/MSR.2013.6624018.

Or Honovich, Leshem Choshen, Roeee Aharoni, Ella Neeman, Idan Szpektor, and Omri Abend. Q2: Evaluating factual consistency in knowledge-grounded dialogues via question generation and question answering. arXiv preprint arXiv:2104.08202, 2021.

Wojciech Kryscinski, Bryan McCann, Caiming Xiong, and Richard Socher. Evaluating the factual consistency of abstractive text summarization. In Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pages 9332–9346, Online, November 2020. Association for Computational Linguistics. doi: 10.18653/v1/2020.emnlp-main.750. URL https://www.aclweb.org/anthology/2020.emnlp-main.750.

Wojciech Kryścinski, Nazneen Rajani, Divyansh Agarwal, Caiming Xiong, and Dragomir Radev. Booksum: A collection of datasets for long-form narrative summarization. arXiv preprint arXiv:2105.08209, 2021.

Roiy Lachmy, Ziyu Yao, Greg Durrett, Milos Gligoric, Junyi Jessy Li, Ray Mooney, Graham Neubig, Yu Su, Huan Sun, and Reut Tsarfaty. The first workshop on natural language processing for programming, August 2021. URL https://nlp4prog.github.io/2021/cfp/.

Mike Lewis, Yinhan Liu, Naman Goyal, Marjan Ghazvininejad, Abdelrahman Mohamed, Omer Levy, Veselin Stoyanov, and Luke Zettlemoyer. BART: Denoising sequence-to-sequence pre-training for natural language generation, translation, and comprehension. In Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pages 7871–7880, Online, July 2020. Association for Computational Linguistics. doi: 10.18653/v1/2020.acl-main.703. URL https://www.aclweb.org/anthology/2020.acl-main.703.
Chin-Yew Lin. ROUGE: A package for automatic evaluation of summaries. In *Text Summarization Branches Out*, pages 74–81, Barcelona, Spain, July 2004. Association for Computational Linguistics. URL https://www.aclweb.org/anthology/W04-1013.

Vivien Macketanz, Eleftherios Avramidis, Aljoscha Burchardt, and Hans Uszkoreit. Fine-grained evaluation of German-English machine translation based on a test suite. In *Proceedings of the Third Conference on Machine Translation: Shared Task Papers*, pages 578–587, Belgium, Brussels, October 2018. Association for Computational Linguistics. doi: 10.18653/v1/W18-6436. URL https://www.aclweb.org/anthology/W18-6436.

Antonio Valerio Miceli Barone and Rico Sennrich. A parallel corpus of python functions and documentation strings for automated code documentation and code generation. In *Proceedings of the Eighth International Joint Conference on Natural Language Processing (Volume 2: Short Papers)*, pages 314–319, Taipei, Taiwan, November 2017. Asian Federation of Natural Language Processing. URL https://www.aclweb.org/anthology/I17-2053.

Audris Mockus and Lawrence G Votta. Identifying reasons for software changes using historic databases. In *icsm*, pages 120–130, 2000.

Ramesh Nallapati, Bowen Zhou, C. D. Santos, Çağlar Gülçehre, and Bing Xiang. Abstractive text summarization using sequence-to-sequence rnns and beyond. In *CoNLL*, 2016.

Shashi Narayan, Shay B. Cohen, and Mirella Lapata. Don’t give me the details, just the summary! topic-aware convolutional neural networks for extreme summarization. In *Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing*, pages 1797–1807, Brussels, Belgium, October-November 2018. Association for Computational Linguistics. doi: 10.18653/v1/D18-1206. URL https://www.aclweb.org/anthology/D18-1206.

Rajvardhan Oak, Min Du, David Yan, Harshvardhan Takawale, and Idan Amit. Malware detection on highly imbalanced data through sequence modeling. In *Proceedings of the 12th ACM Workshop on Artificial Intelligence and Security*, pages 37–48, 2019.

Paul Over, Hoa Dang, and Donna Harman. Duc in context. *Information Processing & Management*, 43(6):1506–1520, 2007.

Artidoro Pagnoni, Vidhisha Balachandran, and Yulia Tsvetkov. Understanding factuality in abstractive summarization with FRANK: A benchmark for factuality metrics. In *Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies*, pages 4812–4829, Online, June 2021. Association for Computational Linguistics. URL https://www.aclweb.org/anthology/2021.naacl-main.383.

Sheena Panthaplackel, Pengyu Nie, Milos Gigoric, Junyi Jessy Li, and Raymond Mooney. Learning to update natural language comments based on code changes. In *Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics*, pages 1853–1868. Online, July 2020. Association for Computational Linguistics. doi: 10.18653/v1/2020.acl-main.168. URL https://www.aclweb.org/anthology/2020.acl-main.168.

Weizhen Qi, Yu Yan, Yeyun Gong, Dayiheng Liu, Nan Duan, Jiusheng Chen, Ruofei Zhang, and Ming Zhou. ProphetNet: Predicting future n-gram for sequence-to-SequencePre-training. In *Findings of the Association for Computational Linguistics: EMNLP 2020*, pages 2401–2410. Online, November 2020. Association for Computational Linguistics. doi: 10.18653/v1/2020.findings-emnlp.217. URL https://www.aclweb.org/anthology/2020.findings-emnlp.217.

Alexander J Ratner, Christopher M De Sa, Sen Wu, Daniel Selsam, and Christopher Ré. Data programming: Creating large training sets, quickly. In D. D. Lee, M. Sugiyama, U. V. Luxburg, I. Guyon, and R. Garnett, editors, *Advances in Neural Information Processing Systems 29*, pages 3567–3575. Curran Associates, Inc., 2016. URL http://papers.nips.cc/paper/6523-data-programming-creating-large-training-sets-quickly.pdf.

Marco Tulio Ribeiro, Tongshuang Wu, Carlos Guestrin, and Sameer Singh. Beyond accuracy: Behavioral testing of NLP models with CheckList. In *Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics*, pages 4902–4912. Online, July 2020. Association for Computational Linguistics. doi: 10.18653/v1/2020.acl-main.442. URL https://www.aclweb.org/anthology/2020.acl-main.442.
Alexander M. Rush, Sumit Chopra, and Jason Weston. A neural attention model for abstractive sentence summarization. In Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing, pages 379–389, Lisbon, Portugal, September 2015. Association for Computational Linguistics. doi: 10.18653/v1/D15-1044. URL https://www.aclweb.org/anthology/D15-1044.

Evan Sandhaus. The new york times annotated corpus. Linguistic Data Consortium, Philadelphia, 6(12):e26752, 2008.

Eddie Antonio Santos and Abram Hindle. Judging a commit by its cover. In Proceedings of the 13th International Workshop on Mining Software Repositories-MSR, volume 16, pages 504–507, 2016.

Robert E Schapire. The strength of weak learnability. Machine learning, 5(2):197–227, 1990.

Burr Settles. Active learning literature survey. Technical report, University of Wisconsin–Madison, 2010.

Eva Sharma, Chen Li, and Lu Wang. Bigpatent: A large-scale dataset for abstractive and coherent summarization. arXiv preprint arXiv:1906.03741, 2019.

Aviv Slobodkin, Leshem Choshen, and Omri Abend. Mediators in determining what processing BERT performs first. In Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pages 86–93, Online, June 2021. Association for Computational Linguistics. URL https://www.aclweb.org/anthology/2021.naacl-main.8.

E Burton Swanson. The dimensions of maintenance. In Proceedings of the 2nd international conference on Software engineering, pages 492–497, 1976.

Ian Tenney, Dipanjan Das, and Ellie Pavlick. BERT rediscovers the classical NLP pipeline. In Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pages 4593–4601, Florence, Italy, July 2019. Association for Computational Linguistics. doi: 10.18653/v1/P19-1452. URL https://www.aclweb.org/anthology/P19-1452.

Josh Terrell, Andrew Kofink, Justin Middleton, Clarissa Rainear, Emerson Murphy-Hill, Chris Parnin, and Jon Stallings. Gender differences and bias in open source: Pull request acceptance of women versus men. PeerJ Computer Science, 3:e111, 2017.

Ravikiran Vadlapudi and Rahul Katragadda. On automated evaluation of readability of summaries: Capturing grammaticality, focus, structure and coherence. In Proceedings of the NAACL HLT 2010 Student Research Workshop, pages 7–12, Los Angeles, CA, June 2010. Association for Computational Linguistics. URL https://www.aclweb.org/anthology/N10-3002.

Elena Voita, Rico Sennrich, and Ivan Titov. Analyzing the source and target contributions to predictions in neural machine translation. arXiv preprint arXiv:2010.10907, 2020.

Michael Völske, Martin Potthast, Shahbaz Syed, and Benno Stein. TL;DR: Mining Reddit to learn automatic summarization. In Proceedings of the Workshop on New Frontiers in Summarization, pages 59–63, Copenhagen, Denmark, September 2017. Association for Computational Linguistics. doi: 10.18653/v1/W17-4508. URL https://www.aclweb.org/anthology/W17-4508.

Jason Warner. Thank you for 100 million repositories. The GitHub Blog, November 2018. URL https://github.blog/2018-11-08-100m-repos/.

Alex Warstadt, Alicia Parrish, Haokun Liu, Anhad Mohananey, Wei Peng, Sheng-Fu Wang, and Samuel R. Bowman. BLiMP: The benchmark of linguistic minimal pairs for English. Transactions of the Association for Computational Linguistics, 8:377–392, 2020. doi: 10.1162/tacl_a_00321. URL https://www.aclweb.org/anthology/2020.tacl-1.25.

Matthew Wilber, William Timkey, and Marten van Schijndel. To point or not to point: Understanding how abstractive summarizers paraphrase text. 2021.
Jiacheng Xu and Greg Durrett. Dissecting generation modes for abstractive summarization models via ablation and attribution. 2021.

Jingqing Zhang, Yao Zhao, Mohammad Saleh, and Peter Liu. Pegasus: Pre-training with extracted gap-sentences for abstractive summarization. In International Conference on Machine Learning, pages 11328–11339. PMLR, 2020.

Tianyi Zhang, Varsha Kishore, Felix Wu, Kilian Q Weinberger, and Yoav Artzi. Bertscore: Evaluating text generation with bert. In International Conference on Learning Representations, 2019.

A Supplementary Materials

Source code and documentation are available at Choshen and Amit [2021b] and https://github.com/evidencebp/comsum. Data is available at Choshen and Amit [2021a]. Analysis used the infrastructure for GitHub Amit [2021c], natural language processing for software engineering Amit [2021b], and analysis utilities Amit [2021a].

B Summary

Git describes the one line as a summary, or sometimes as a subject or header (similar to news where titles are considered summarization). We bring the git Graphical User interface as an example of it in Fig.[1] we bring further examples in https://github.com/evidencebp/comsum/tree/main/data/images.

C Labeling protocol

Summary labeling protocol

We label for two concept - Is_summary and Is_Generic Specific cases

1. Summary
 1. We consider only English messages (99% of the commits). The message must be in English to be considered a summary.
 2. A summary should reflect information in the message, not to add new information.
 3. In a summary, the subject should capture the essence of the message.
 4. Specific cases:
 1. If the subject appears in the rest of the message (as in extractive summarization), this is a summary.

Figure 1: Git’s Graphical User Interface where they leave a place for the developer to fill a message and a summary.
2. Change/detail, the subject describes a change and the message describes its details, it is a summary.
3. If the commit classification of the subject is different from the message, this is not a summary.
4. Goal/mean relation (e.g. “prevent crash” & “check amount is not zero before computing average price”), is considered as a summary.
5. Change/reason (e.g., “added caller information” & “..to ease debug”) is considered to be a summary.
6. Administrative message, if all the changed content is in the subject (e.g., the message contains only administrative information like ticket number and annotator name), is not a summary.
7. Merge subject (“Merge branch ‘15.3’”) and a message that describes the content is not a summary. That is since the content could fit branch ‘16.3’ just as well.
8. Content announcing subject (“Declaration of”) and a message that describes the content is not a summary. That is since different contents could fit ‘Declaration of’ just as well.
9. Subject content by reference (e.g., just referring to a ticket number) is not a summary. While the content exists, it is not self contained.
10. If the message content is only by reference (e.g., hash of the reverted commit), it is not self-contained and cannot be summarized. Hence, this is not a summary.

2. Generic
 1. If the subject can be applied to many other commits it is generic.
 2. Specific cases:
 1. Subject: “WIP” (work in progress) is generic and not a summary.
 2. If the subject can be applied to many other commits, yet fully describe the change (e.g., ‘Updated Spanish translation’), it is generic and summary.
 3. Merge subject (“Merge branch ‘15.3’”) is generic.
 4. Content announcing subject (“Declaration of”) is generic.

D Labeling for the administrative heuristic

Commit message can be viewed as containing content describing the code change (e.g., ‘extracted method’) and administrative content (e.g., ‘Signed-off-by: Alan Turing’).

The administrative content usually uses few specific terms that can be identified. Our heuristic looks for these terms in the message and classify it as administrative if an administrative term appears in the first 20 characters. The intuition of the heuristic is that 20 characters do not leave space for code change description. We labeled all 265 hits in 5,000 commits samples. 2 samples were summaries with a change/details relation. 1 sample was a merge. 98.9% of the matches needed removing. 46 samples, with distance closer to 20 were reference commits (e.g., fixed bug #123). These are also not suitable for summary and should be removed. The hit rate is 5.3% compared to a 7% positive rate in the random sample, indicating a recall of about 75%. All administrative commits in the random samples were identified.

E BART hyperparameters

For finetuning BART we used max target length of 128 and source length of 512, learning rate of $1e^{-4}$ and 256 batch size. Other parameters including the zero-shot’s are the defaults by the HuggingFace library. The model was trained for a week on 4 Nvidia M60 GPUs.

F Ethical Considerations

The messages contained in the data set were written by 317,423 developers contributing to open source projects. We could not get their direct approval to use the messages in the data set. However, open-source projects allow not only access to the commit messages but even to the source code. Developers are aware of that and agree to it as it is a part of the development project of all public
open source projects. We validated in GitHub and all the projects included in ComSum have an OSI-approved open source license.

While we do not store developers’ personal information, each commit is identified by a hash. Given the hash, a lookup in the project metadata retrieves the developer’s profile. Since it is required from the development process, the developers accept that and we do not ease lookup or provide new information about the developer. In any case, the developer controls the data published on them and not us. Moreover, they can remove or alter it in any way that does not violate GitHub’s terms. We consider this concern as addressed too.

7K commits were identified using classifiers from [Amit and Feitelson 2021], to contain swearing and 325k commits were identified to contain negative sentiment. The true numbers might be higher due to the classifiers’ false negatives. As this data is already open we did not filter those, but warn users to filter profanity if their needs so require.

G Hosting, Licensing, and Maintenance plan

We release the data with the license Creative Commons version 4.0 (aka, CC-4), allowing copy, redistribution and other common uses without the need of permission but with proper credit. We do not plan to change it.

We host the commit data set in figshare.

As for the maintenance plan, we provide all the code used to generate the data set.

The code will enable any researcher to maintain the data set and keep extending it. This includes adding data from future work in the projects, using different selection conditions, enhancement with more features, etc.