This is a repository copy of *Differential regulation of elastic fiber formation by fibulin-4 and-5*.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/164605/

Version: Published Version

Article:
Choudhury, R., McGovern, A., Ridley, C. et al. (10 more authors) (2009) Differential regulation of elastic fiber formation by fibulin-4 and-5. Journal of Biological Chemistry, 284 (36). pp. 24553-24567.

https://doi.org/10.1074/jbc.M109.019364

© 2009 by The American Society for Biochemistry and Molecular Biology, Inc. Article available under the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0/).

Reuse
This article is distributed under the terms of the Creative Commons Attribution-NonCommercial (CC BY-NC) licence. This licence allows you to remix, tweak, and build upon this work non-commercially, and any new works must also acknowledge the authors and be non-commercial. You don't have to license any derivative works on the same terms. More information and the full terms of the licence here:
https://creativecommons.org/licenses/

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.
Differential Regulation of Elastic Fiber Formation by Fibulin-4 and -5

Fibulins are a family of extracellular glycoproteins containing contiguous calcium-binding epidermal growth factor-like domains (cbEGFs) and a characteristic C-terminal fibulin (FC) domain (1–3). Recent studies have revealed that fibulin-4 and -5 are both essential for elastic fiber formation (4–7). Fibulin-4 is widely expressed from early embryogenesis and is necessary for normal vascular, lung, and skin development, since mice that lack fibulin-4 do not form elastic fibers and die perinatally (5). Furthermore, mice with reduced fibulin-4 expression develop aneurysms (8). Fibulin-5 is abundant in the aorta and large arteries during embryogenesis and following vascular injury (9, 10). Lack of fibulin-5 causes a less severe phenotype, with viable homozygous mice, but the elastic fibers in skin, lungs, and aorta are irregular and fragmented (6, 7), and there is altered vascular remodeling (11). These mice models also highlight that fibulin-4 and -5 have non-compensatory roles in elastic fiber formation. Mutations in both molecules can cause cutis laxa, a heritable disorder associated with elastic fiber degeneration leading to sagging skin, vascular tortuosity, and emphysematous lungs (12–15). A third isoform, fibulin-3, may play a minor role in elastic fiber formation, since its deficiency disrupts elastic fibers in Bruch’s membrane of the eye (16) and vaginal tissues (17).

Elastic fiber formation is a complex multistep process (18–20). Initial pericellular microassembly of tropoelastin, which may involve the 67-kDa elastin-binding protein receptor, generates elastin globules that are stabilized by desmosine cross-links catalyzed mainly by lysyl oxidase (LOX) but also by LOXL1 (LOX-like 1). These globules are deposited on a fibrillin microfibril template, where they coalesce and undergo further cross-linking to form the elastin core of mature fibers. The ability of fibulin-4 and -5 to bind tropoelastin and fibrillin-1, the major structural component of microfibrils, supports a model in which these fibrulins direct elastin deposition on microfibrils (4–7, 21–25). This model does not delineate the unique molecular contributions of fibulin-4 and -5 to elastic fiber formation, but some molecular differences have emerged. Tropoelastin was bound more strongly by fibulin-5 than by fibulin-4, whereas fibulin-5 was at the microfibril-elastin interface, but perichondrial fibulin-4 localized mainly to microfibrils (4).

Fibulin-4 null mice offer tantalizing clues to how fibulin-4 contributes to elastic fiber formation (5). They had dramatically reduced (94%) desmosine cross-links despite no change in elastin or LOX expression levels, and electron-dense rodlike structures were prominent within elastin aggregates. Morphologically similar structures seen after chemically inhibiting LOX were previously identified as glycosaminoglycans, which can bind charged free e-amino groups on lysines in tropoelastin (26). However, fibulin-4+/− mice showed ~20% increase in desmosine (5). LOX-null mice have phenotypic features similar to those of fibulin-4 null mice, dying perinatally with 60% reduced desmosine cross-links and major abnormalities in vascular and other elastic tissues (27, 28). In contrast, LOXL1-null mice are viable but have reduced desmosine (29), whereas fibulin-5 null mice have a 16% reduction in desmosine cross-links and survive well into adulthood (7). Detection of the LOXL1 pro-domain in fibulin-5 null mice skin but not wild-type skin implicates fibulin-5 in activation of LOXL1 (30).

We and others have shown that fibrillin-1 and the microfibrillar protein MAGP-1 can both directly bind tropoelastin...
(31–34). However, the fibulin-null mice show that the fibulin-1 interaction with tropoelastin is insufficient to support elastic fiber formation in vivo. Fibulin-5 has been reported to facilitate tropoelastin binding to the N-terminal half of fibulin-1 (21). A study of elastin polypeptide self-assembly through coacervation and maturation phases showed that, although the N-terminal half of fibulin-1 increased maturation velocity and droplet clustering, fibulin-4 and -5 both slowed maturation and limited globule growth (35). These studies imply that fibulins and fibillin-1 act together to regulate elastin accretion on microfibrils.

To gain further insights into the contributions of fibulin-4 and -5 to elastic fiber formation, we have delineated how they interact with tropoelastin, LOX, and fibrillin-1. Novel findings are that fibulin-4 directly binds LOX, and this interaction enhances fibulin-4 binding to tropoelastin, thus forming a ternary complex that may be critical for elastin cross-linking. Fibulin-5 can concurrently bind fibulin-4 and tropoelastin, but the interaction of both fibulins with fibillin-1 strongly inhibits their binding to tropoelastin. These interactions indicate the molecular basis of how fibulins act as chaperones for deposition of elastin onto microfibrils. Our study thus provides a molecular account of the differential roles of fibulins-4 and -5 in elastic fiber formation.

EXPERIMENTAL PROCEDURES

Expression and Purification of Recombinant Proteins—All human elastic fiber proteins were expressed with an N-terminal His6 tag, using the mammalian expression vector pCEP-His and 293-EBNA cells, and purified using nickel affinity chromatography as described (22, 33, 36–41) (Fig. 1 and supplemental Fig. S1).

Full-length human fibulin-4 (residues 26–418) was designated F4 (Fig. 1A). A truncated version of full-length fibulin-4 (designated tF4) was expressed by one culture of transfected cells; analysis by mass spectrometry revealed the absence of the C-terminal sequence (53 residues, comprising the FC domain and 6 residues of the preceding linker region) (supplemental Fig. S2A). We also expressed the N-terminal four domains of fibulin-4 (residues 26–217; designated nF4) and the central cbEGFs 2–6 (residues 98–303; designated eF4). The C-terminal four domains did not express efficiently.

Full-length human fibulin-5 (residues 42–448) was designated F5 (Fig. 1A). Full-length fibulin-5 incorporating two cutis laxa mutations, C217R and S227P (F5C217R and F5S227P) (13), were expressed together with five overlapping domain pairs of fibulin-5 (residues 42–167 (F5-E1), 127–206 (F5-E2), 207–287 (F5-E4), and 288–448 (F5-E6FC)) (Fig. 1A). A sixth domain pair (F5-E3) did not express efficiently.

Human fibillin-1 fragments generated for this study were PF1, PF2, PF3, PF4, PF5, PF7, PF8, PF9, PF11, PF12, and PF13 (33, 37–41) (Fig. 1B). We also generated PF1 variants with the Marfan mutation R62C, T101A, or S115C. In addition, we used our panel of N-terminal deletion mutants: PF1 encoded by exons 1–11 (residues 31–489), Ex1–11 encoded by residues 45–489, Ex3–11 encoded by exons 3–11 (residues 81–489), Ex4–11 encoded by exons 4–11 (residues 115–489), Ex5–11 encoded by exons 5–11 (residues 147–489), Ex6–11 encoded by exons 6–11 (residues 179–489), Ex7–11 encoded by exons 7–11 (residues 246–489), and a three-domain fragment Ex5–7 encoded by exons 5–7 (residues 147–287) (39). Cells transfected with full-length fibillin-1 expressed a large fragment comprising the N-terminal two-thirds of the molecule (250 kDa; designated tFib-1) (Fig. 1B and supplemental Fig. S1B); mass spectrometry indicated that the cleavage site was after the domain encoded by exon 43 (supplemental Fig. S2B). Human full-length LOX (Fig. 1C) was expressed and purified, as outlined above (supplemental Fig. S1C). Recombinant human tropoelastin lacking domain 26A was a generous gift from Dr. A. S. Weiss (Sydney, Australia) (42, 43).

Purification and Biophysical Characterization of Recombinant Proteins—After nickel affinity chromatography, monomeric recombinant proteins were isolated by Superdex S200 10/300 GL size fractionation (GE Healthcare) in 10 mM Hepes-buffered saline, pH 7.4, containing 150 mM NaCl (HBS), using an AKTA purifier system. cDNA sequencing, SDS-PAGE, Western blotting with anti-His antibody (Sigma), and mass spectrometry confirmed the correct products (Fig. 1 and supplemental Figs. S1 and S2; data not shown). All molecules with NX(S/T) motifs were N-glycosylated, as determined by treatment with peptide:N-glycosidase F (New England Biolabs). In all cases, the monomer fractions from S200 chromatography were equilibrated in HBS containing 0.5 mM CaCl2 (HBS+Ca) for subsequent binding assays.

Monomers of fibulin-4 (F4, nF4, and tF4) and fibulin-5 (F5, F5S227P, and domain pairs F5-E1, F5-E2, F5-E4, F5-E5, and F5-E6FC) that had been isolated by Superdex 200 gel filtration in HBS, were analyzed by multilocule laser light scattering (MALLS) in HBS or HBS+Ca. Samples eluting from the column passed through a Wyatt EOS 18-angled light scattering detector fitted with a 688-nm laser and an Optipal r-EX refractometer. The solute molecular mass was determined using in-line MALLS attached to quasielastic light scattering (Wyatt Technology Corp.) (Table 1 and supplemental Fig. S3). The monomers had molecular masses that corresponded well with SDS-PAGE analysis (see supplemental Fig. S1).

LOX monomers were isolated on a Superdex 200 gel filtration column in 10 mM Tris, pH 7.4, with 150 mM NaCl containing 1 mM CaCl2 (TBS+Ca). MALLS analysis revealed that LOX was monomeric with a molecular mass of 47.5 kDa, compared with 50 kDa by SDS-PAGE (supplemental Fig. S1). Analysis of LOX by circular dichroism revealed 5% a-helix, 31% B-strand, and 13% B-turn. Analysis of LOX by analytical ultracentrifugation revealed a molecular mass of 48.9 kDa, measured S20,w of 2.2, calculated hydrodynamic radius of 5.41, and frictional ratio of 2.25.

Single Particle Averaging of Fibulin-4—Purified F4 monomers in 10 mM Tris, pH 7.4, containing 500 mM NaCl (TBS) were adsorbed onto glow-discharged carbon-coated 400-mesh copper grids, negatively stained with 2% uranyl acetate, and analyzed by single particle averaging, as described (Fig. 2) (37). Briefly, samples were observed at ×52,000 magnification using an FEI Tecnai 12 transmission electron microscope operating at 120 kV with a LaB6 filament, and images were recorded by a
CCD camera (TVIPS Tem Cam, 2048 × 2048 resolution) using low dose (<10e−/Å²) at defocus values of 2 μm. The pixel size was 1.9 Å. Images were analyzed using electron microscopy analysis (EMAN) (44) for all data processing. The data set contained 3538 particles, which were aligned and classified by reference-free methods. A preliminary three-dimensional structure was calculated by averaging classes that represented distinct views of the sample. Fourier common lines were applied to determine the relative orientation of these classes. The preliminary structure was subsequently refined by iterative (eight times) projection matching. Each refinement was examined by the convergence of the Fouriers shell correlation coefficient. Final resolution of the F4 reconstruction was ~20 Å using the Fouriers shell correlation = 0.5 criterion.

BIAcore Analysis of Interactions with Tropoelastin and LOX—

For kinetic binding studies by surface plasmon resonance, a BIAcore biosensor was used (BIAcore 3000; GE Healthcare). Tropoelastin or LOX was immobilized onto CM5 sensor chips by amine coupling using 1-ethyl-3(3-dimethylaminopropyl)-carbodiimide hydrochloride, N-hydroxysuccinimide, and ethanolamine-HCl, as described (33, 39). All binding experiments were performed in HBS+Ca. LOX, fibulin-4, or fibulin-5 was injected at concentration ranges of 2–10 μg/ml for F4 or 0.4–10 μg/ml for F5 or LOX for 3–5 min at a flow rate of 30 μl/min. Curves were fitted using a 1:1 Langmuir association/dissociation model (BIAevaluation 4.1; GE Healthcare). This model was found to fit the tropoelastin-fibulin-5 and LOX-fibulin-4 data, with low χ² values. χ² values are a standard statistical measure of the closeness of fit (mean square of the signal noise). Each binding interaction was performed at least twice, with one concentration in duplicate each time. Some BIAcore experiments investigated potential inhibitory effects of a given elastic fiber protein on binding of a second protein to immobilized tropoelastin or LOX. Kinetic analysis was performed using ligand protein (F5 at 100 nM; F4 at 200 nM; LOX at 200 nM) preincubated with a 0.01 μM to 3 μM concentration of the potential inhibitor protein or with a non-binding control fibrillin-1 fragment PF12, in HBS+Ca, as described (38). Inhibition curves were plotted using the response value of each normalized curve at the end of the association period.

Solid Phase Binding and Inhibition Assays—Because fibrillin-1 and the two fibulins when immobilized to BIAcore CM5 chips do not interact sufficiently with other proteins and to investigate further the interactions between LOX and tropoelastin and between fibrillin-1 and LOX, solid phase assays were utilized, as described (22, 33, 39). Soluble ligands were biotinylated using sulfo-NHS-SS-biotin (Pierce). Flat-bottomed microtiter plates were coated with tropoelastin, LOX, fibulin-4 or -5, or N-terminal fibrillin-1 fragments, at 100 nM in 10 mM Tris, pH 7.4, containing 150 mM NaCl and 1 mM CaCl₂ (TBS+Ca) buffer, overnight at 4 °C. Nonspecific binding sites were blocked with TBS+Ca containing 5% bovine serum albumin at room temperature for at least 2 h. The plates were washed three times with TBS+Ca, 0.1% bovine serum albumin and incubated with 100 nM biotinylated ligand. Control wells with only soluble biotinylated ligand were included in all experiments. After a further three washes, plates were incubated with a 1:500 dilution of extravidin peroxidase conjugate at room temperature for 20 min. Bound protein was quantified after four more washes by a colorimetric assay using 40 mM 2,2’-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid) solution (Sigma) for 10–20 min at room temperature. Plates were read at a wavelength of 405 nm. Wells were washed four times, and the color was developed. Any nonspecific binding was detected by blocking wells before incubation with bovine serum albumin only. All experiments were performed in triplicate, and all assays were repeated at least twice. In some experiments, the effects of inhibition by other elastic fiber molecules or by heparin (3 kDa; Sigma) were conducted with increasing concentrations of potential inhibitors preincubated with soluble ligand. For kinetic and statistical analysis, GraphPad Prism was used to obtain dissociation constants (Kᵣ) (33, 40), and unpaired t tests were used to calculate significance. Results were statistically significant when the p value is <0.05 (*, p < 0.05; **, p < 0.01; ***, p < 0.001).

Knockdown and Induced Expression of Elastic Fiber Proteins—

Reverse transcription-PCR analysis of the expression of fibulin-4 and -5 was conducted on ARPE-19 cells (supplemental Fig. S5A). Validated siRNAs (pools of three target-specific siRNAs; Santa Cruz Biotechnology, Inc. (Santa Cruz, CA); sc-75017 and sc-43121) were used to knock down human fibrillin-4 in the ARPE-19 retinal pigmented epithelial cell line, with scrambled siRNA and no-siRNA controls. Cells (5 × 10⁵ cells) were transfected with 200 nM siRNAs for fibulin-4 or with scrambled siRNAs (200 nM) by electroporation using cell-specific Nucleofector reagent (Amaxa). Parallel siRNA experiments were conducted on ARPE-19 cells that had been transduced with the pQCXIP retroviral vector (Clontech) for constitutive expression of human tropoelastin (supplemental Fig. S5B) and on transduced control ARPE-19 cells. Control and siRNA-transfected cells were plated at confluence and cultured for up to 7 days in Dulbecco’s minimum essential medium supplemented with 10% fetal calf serum, penicillin, and streptomycin. Knockdown efficacy was confirmed to be 70% at the mRNA level by quantitative PCR (supplemental Fig. S5A) and was also reduced at the protein level by Western blotting, using an anti-fibulin-4-specific polyclonal antiserum raised to nF4 (1:1000 dilution). Anti-fibulin-5 antibody (1 μg/ml monoclonal antibody 3095; R&D Systems) was also used (not shown). Using the pSuper.retro.neo+gfp (pSR) vector (Oligoengine), stable knockdown of fibulin-5 was achieved in RFL-6 rat fetal lung fibroblasts (13) and confirmed at mRNA (supplemental Fig. S5C) and protein levels (not shown).

Light and Electron Microscopy of Cell Layers—Cell layers from fibulin-5 shRNA and control cultures were imaged by light microscopy after Miller’s staining. Cells (8 × 10⁴ cells/coverslip in 24-well plates) were cultured for 8–12 days before being fixed with 4% paraformaldehyde for 20 min. Coverslips were washed in phosphate-buffered saline before being oxidized with acidified potassium permanganate. Samples were washed in distilled H₂O, decolorized with 1% oxalic acid, washed in 95% ethanol and H₂O, and stained with Miller’s stain (GCC Diagnostics) for 3 h. Samples were washed in 95% etha-
nol and distilled H₂O before being counterstained with Van Gieson stain (GCC Diagnostics). Prior to mounting, samples were washed in 95% ethanol and distilled H₂O.

Cells grown on Aclar film were fixed with 2.5% glutaraldehyde in 0.1 M cacodylate buffer, postfixed with 1% osmium tetroxide for 1 h, and treated with 1% tannic acid for 1 h and 1% uranyl acetate for 1 h. They were dehydrated with alcohol series and embedded in TAAB LV resin. Ultrathin en face sections were cut at a Reichert Ultracut S Ultramicrotome and contrasted with lead citrate. Sections were observed with an FEI Tecnai Biotwin 12 microscope at 100 kV accelerating velocity.

Desmosine Cross-link Assay—Experiments were conducted to analyze desmosine cross-link formation, using ARPE-19 cells. We used untreated control ARPE-19 cells, ARPE-19 cells stably expressing transfected tropoelastin (supplemental Fig. S5), and ARPE-19 cells cultured in the presence of supplemented exogenous human tropoelastin (10 μg/ml) (45). Cells were subjected to siRNA knockdown of fibulin-4, and after culture for up to 7 days, cell layers were scraped into tubes in 100 μl of distilled H₂O. ARPE-19 cell layers were kindly analyzed for elastin desmosine cross-links by Dr. Barry Starcher.

RESULTS

We generated and characterized recombinant human fibulin-4 and -5, fibrillin-1, and LOX (Fig. 1, Table 1, and supplemental Figs. S1–S3). These molecules were used to analyze the interactions of both fibrulins with tropoelastin, LOX, and fibrillin-1 and to determine how fibulin-4 and -5 differentially regulate elastin cross-linking and deposition.

After nickel chromatography, monomers of full-length human fibulin-4 (F4), the N-terminal half of fibulin-4 (nF4), and the five central cbEGFs (eF4) are shown, with a key of the domains and N-glycosylation sites. Also shown are the domain structures of full-length fibulin-5 (F5) with the sites of the two cutis laxa mutations (F5_217R and F5_227P) and domain pair fragments. Details of the domains are given (see key). For SDS-PAGE analysis of recombinant fibrulins, see supplemental Fig. S1A. B, recombinant human fibulin-1. Domain structures of full-length fibrillin-1, a C-terminally truncated two-third fragment of fibrillin-1 (tFib-1), overlapping fragments, and N-terminal deletion fragments are shown, with a key of the domains and N-glycosylation sites. All fragments have been described (39, 55) except for tFib-1 (for mass spectrometry of tFib-1, see supplemental Fig. S2B). Details of the domains are given (see key), and the colors indicate overlapping recombinant fragments. For SDS-PAGE analysis of recombinant tFib-1, see supplemental Fig. S1B. C, recombinant human LOX. The molecular arrangement of full-length human LOX is shown. BMP-1, position of the bone morphogenetic protein-1 cleavage site. For SDS-PAGE analysis of recombinant LOX, see supplemental Fig. S1C. EGF, epidermal growth factor.

![FIGURE 1. A, recombinant human fibulin-4 and -5. Domain structures of full-length fibulin-4 (F4), C-terminally truncated fibulin-4 (tF4), the N-terminal half of fibulin-4 (nF4), and the five central cbEGFs (eF4) are shown, with a key of the domains and N-glycosylation sites. Also shown are the domain structures of full-length fibulin-5 (F5) with the sites of the two cutis laxa mutations (F5_217R and F5_227P) and domain pair fragments. Details of the domains are given (see key). For SDS-PAGE analysis of recombinant fibrulins, see supplemental Fig. S1A. B, recombinant human fibulin-1. Domain structures of full-length fibrillin-1, a C-terminally truncated two-third fragment of fibrillin-1 (tFib-1), overlapping fragments, and N-terminal deletion fragments are shown, with a key of the domains and N-glycosylation sites. All fragments have been described (39, 55) except for tFib-1 (for mass spectrometry of tFib-1, see supplemental Fig. S2B). Details of the domains are given (see key), and the colors indicate overlapping recombinant fragments. For SDS-PAGE analysis of recombinant tFib-1, see supplemental Fig. S1B. C, recombinant human LOX. The molecular arrangement of full-length human LOX is shown. BMP-1, position of the bone morphogenetic protein-1 cleavage site. For SDS-PAGE analysis of recombinant LOX, see supplemental Fig. S1C. EGF, epidermal growth factor.](http://www.jbc.org/)
revealed that F4 has an elongated shape (13–14-nm length) with 6–7-nm diameter and a small globular end (Fig. 2).

After nickel chromatography, monomers of full-length fibulin-5 (F5) had a molecular mass of 53 kDa by SDS-PAGE (supplemental Fig. S1A). MALLS analysis in HBS indicated a solution molecular mass for F5 of 51 kDa and for the mutant F5S227P of 52 kDa (Table 1 and supplemental Fig. S3). Solution molecular masses for each monomeric fibulin-5 domain pair fragment in HBS by MALLS range from 13 to 24 kDa (Table 1). Recombinant fibulin-5 had a similar structure to fibulin-4 by single particle averaging.4

Defining Molecular Interactions of Fibulin-4 and -5

Monomeric molecules and fragments were equilibrated in HBS + Ca for interaction studies.

Tropoelastin Binds Fibulin-5 More Strongly than Fibulin-4—Tropoelastin was reported to bind to murine fibulin-4, using solid phase binding and co-immunoprecipitation (5). Here, BLAcore analysis confirmed that F4 bound tropoelastin (Fig. 3A). The F4 interaction with tropoelastin indicated more rapid dissociation kinetics than F5 (see below), but binding affinities could not be determined using the 1:1 Langmuir association/dissociation model (BLAevaluation version 4.1; GE Healthcare). Solid phase binding assays indicated that soluble F4 bound immobilized tropoelastin with a K_D of 131 ± 8 nM but showed virtually no binding to the fibulin-4 fragments nF4, eF4, or tF4 (Fig. 3B) (data not shown). Thus, fibulin-4 binds tropoelastin with moderate affinity, with the binding site at or adjacent to the fibulin-4 FC domain.

Tropoelastin was reported to bind fibulin-5 in N- and C-terminal regions (24, 25). Here, BLAcore analysis revealed that F5 bound tropoelastin strongly (K_D = 64 ± 40 nM) (Table 2 and Fig. 3A). Full-length cutis laxa mutants F5C217R and F5S227P (mutations in cbEGF4) both showed markedly reduced binding affinities for tropoelastin, with rapid dissociation kinetics (Table 2 and Fig. 3A). In solid phase binding assays, soluble fibulin-5 domain pair fragments (F5-E1+2, F5-E4+5, and F5-E6FC) bound immobilized tropoelastin, with the strongest binding by F5-E6FC (Fig. 3C; for binding curves, see supple-
Fibulin-4 and -5 Regulate Elastic Fiber Assembly

A

(i) F4

Response difference vs. Time (s)

(ii) F5

Response difference vs. Time (s)

(iii) F5_{C217R}

Response difference vs. Time (s)

(iv) F5_{S227P}

Response difference vs. Time (s)

B

Absorbance, 405 nm vs. Soluble F4 or nF4 (nM)

C

Absorbance (405 nm) vs. Soluble F5 fragments (100 nM)

Immobilized tropoelastin (100 nM)
Supplemental Fig. S4

TABLE 2

BIAcore surface plasmon resonance analysis of fibulin-4 interactions with LOX and fibulin-5 interactions with tropoelastin

Surface plasmon resonance binding was carried out as described under "Experimental Procedures." The kinetics of the evaluation of the interactions was performed according to a 1:1 binding model. Values are mean ± S.E. of at least two separate experiments.

	k_a	k_d	K_D	X^2
Tropoelastin-F5	44 ± 20	13.2 ± 0.1	64 ± 40	14.8 ± 9.2
Tropoelastin-F5-Exc7	8.4 ± 2.7	4.6 ± 0.4	865 ± 492	3.3 ± 1.2
Tropoelastin-F5-Exc7P	20 ± 13	9.3 ± 2.3	3423 ± 1439	22.4 ± 13.6
LOX-F4	21.0 ± 0.7	0.7 ± 0.1	33 ± 3	4.6 ± 0.9
LOX-nF4	24.5 ± 8.5	0.4 ± 0.2	14 ± 6	1.1 ± 0.1

Molecular interactions of tropoelastin with fibulin-4 and -5.

FIGURE 3. Molecular interactions of tropoelastin with fibulin-4 and -5. A, BIAcore analysis of interactions of immobilized tropoelastin with full-length fibulin-4 (F4) (i) or fibulin-5 (F5, F5-Exc7 or F5-Exc7P) (ii-iv). These soluble ligands were injected over tropoelastin immobilized on a CM5 chip (see Table 2). Each sensorgram shows analyte concentrations ranging from 2 to 10 μg/ml (for F4) or from 0.4 to 10 μg/ml (for F5), with duplicate concentrations included in every run. One representative experiment is shown. Response difference is shown. The difference between experimental and control flow cells, in response units. Time is shown in seconds. F4, F5-Exc7, and F5-Exc7P showed faster dissociation than F5 from tropoelastin. B, solid phase binding curves showing that soluble biotinylated F4 bound strongly to immobilized tropoelastin but nF4 binding was very weak. One representative experiment is shown. Data are shown with the negative (biotinylated F5 fragments only) control subtracted. Results are shown as the mean ± S.E. of triplicate values. C, solid phase binding assays localizing tropoelastin binding sites on biotinylated fibulin-5. Three of the domain pair fragments, F5-E1+2, F5-E4+5, and F5-E6FC, bound well to immobilized tropoelastin (K_D values of 332, 452, and 965 nM, respectively; binding curves are shown in supplemental Fig. S4A), but fragments F5-E2+3 and F5-E5+6 interacted only very weakly. One representative experiment is shown. Data are shown with the negative (biotinylated F5 fragments only) control subtracted. Results are shown as the mean ± S.E. of triplicate values.

Fibulin-4 and -5 Regulate Elastic Fiber Assembly

N-terminal Fibrillin-1 Binds Differentially to Fibulin-4 and -5—We and others have reported that the N-terminal half of fibrillin-1 binds to fibulin-4 and -5 (21, 22), and the third EGF-like domain and first hybrid domain of fibrillin-1 are implicated (21). Here, solid phase and BIAcore binding assays provided detailed analysis of the binding specificities of fibulin-4 and -5 to a panel of fibrillin-1 fragments (39). Our data show that these fibrulins differentially interact with N-terminal fibrillin-1.

BIAcore analysis showed that soluble PF1 bound strongly to immobilized F4 with steady-state affinity of 74 ± 5 nm (Fig. 4A), but virtually no binding to overlapping PF2 was detected. However, using solid phase assays, soluble F4 bound strongly to the N-terminal fibrillin-1 fragment PF1 ($K_D = 134 ± 17$ nm) and to PF2 ($K_D = 194 ± 26$ nm), which does not contain the first hybrid motif (Fig. 5A); both fragments contain the first TB module, proline-rich region, and following EGF-like domain (see Fig. 1B) (39). F4 also bound strongly to three PF1 deletion fragments (Ex1–11, Ex3–11, and Ex5–11) and moderately to Ex6–11 (Fig. 5A). However, there was only low F4 binding to fibrillin-1 fragment PF3, which contains the first hybrid motif, and virtually no binding to fibrillin-1 fragment Ex5–7, which comprises the first hybrid motif and flanking domains, or to fibrillin-1 fragment Ex7–11, which comprises five domains downstream of the first hybrid motif (Fig. 5A). Since fibrulin-4 can bind PF2, the first hybrid motif is probably not essential for binding to N-terminal fibrillin-1 (Fig. 5C), although this motif probably influences N-terminal fibrillin-1 conformation. Both F4 and nF4 bound PF1 with similar kinetics, implicating the N-terminal half of fibrulin-4 in binding fibrillin-1 (Fig. 5A).

Solid phase binding assays showed that the soluble fibrillin-1 N-terminal fragment PF1 bound strongly to F5 ($K_D = 63 ± 14$ nm), and soluble F5 also bound strongly to PF4 and Ex1–11 (Fig. 5B). There was also F5 binding to the deletion fragments Ex3–11, Ex4–11, Ex5–11, Ex6–11, and Ex7–11 but virtually no F5 binding to Ex7–11 or PF2, neither of which contains the first hybrid motif (Fig. 5B). Thus, F5 binds to N-terminal fragments that contain this hybrid motif (Fig. 5C), and there may be a second binding site N-terminal to Ex5–7. In terms of PF1 binding site(s) on fibrulin-5, four of the fibrulin-5 domain pairs (F5-E1+2, F5-E4+5, F5-E5+6, and F5-E6FC) bind PF1, with the strongest binding by F5-E6FC and F5-E1+2 (K_D values of 187 ± 31 and 344 ± 54 nm, respectively) (supplemental Fig. S4B). The interaction with F5-E6FC was partially calcium-dependent (data not shown). Thus, both fibrulin-5 N- and C-terminal regions bind N-terminal fibrillin-1. Marfan mutations (R62C, T101A, and S115C) in the N-terminal region of PF1 significantly reduced binding to F5-E1+2 and F5-E6FC (Fig. 5D), possibly due to long range conformation effects.
Fibulin-4 and -5 Regulate Elastic Fiber Assembly

A

(i) Response difference vs. Time (s)

(ii) Response difference vs. Time (s)

(iii) Response difference vs. Time (s)

B

Absorbance vs. Soluble LOX (nM), Immobilized F5 (100 nM)

C

(i) Absorbance vs. Soluble F4 (nM), Immobilized F5 (100 nM)

(ii) Absorbance vs. Soluble F4 or nF4 (100 nM), Immobilized F5 (100 nM)
LOX Interacts Strongly with N-terminal Fibrillin-1 and with Tropoelastin—Using BIAcore, no binding was detected between immobilized LOX and soluble N-terminal fibrillin-1 (PF1 ligand). However, solid phase assays detected a strong interaction between soluble LOX and immobilized PF1, with a K_D of 26 ± 11 nM, and at reduced levels to N-terminal deletion fragments Ex1–11 and Ex3–11 (Fig. 6A). However, LOX did not bind strongly to any other fibrillin-1 fragments. Thus, we have demonstrated that LOX interacts strongly and specifically with N-terminal fibrillin-1, although this interaction is ablated by LOX immobilization on BIAcore chips.

Using BIAcore, there was no detectable interaction between soluble LOX and immobilized tropoelastin. However, solid phase assays detected a strong interaction between LOX and immobilized tropoelastin, with a K_D of 49 ± 11 nM (Fig. 6B). Thus, LOX binds tropoelastin strongly, although this interaction is ablated by immobilization of tropoelastin on BIAcore chips.

Defining Fibulin Complexes Using Competitive Inhibition Binding Assays

Having defined binding interactions of fibulin-4 and -5 with tropoelastin, LOX, and fibrillin-1 and identified novel interactions between fibulin-4 and -5 and between LOX and N-terminal fibrillin-1, we investigated competition between these interactions in order to gain insights into how these complexes contribute to elastic fiber formation (for a model, see Fig. 9).

Fibulin-4 Forms a Ternary Complex with LOX and Tropoelastin—Since the N-terminal half of fibulin-4 binds LOX strongly (see Table 2 and Fig. 4A), we investigated whether this interaction regulates binding of fibulin-4 to tropoelastin (Fig. 7, A and B).

Using BIAcore (see above), F4 bound immobilized tropoelastin with relatively rapid dissociation kinetics, but LOX did not bind immobilized tropoelastin (Fig. 3A) (data not shown). Here, BIAcore experiments revealed that F4 binding to immobilized tropoelastin was markedly enhanced when preincubated with LOX (equimolar at 200 nM), although binding was partially inhibited when 200 nM fibulin-4 was preincubated with 1000 nM LOX (Fig. 7A). Nf4 did not bind tropoelastin (see Fig. 3B) even in the presence of LOX (which binds nF4; see Fig. 4A), so the enhanced binding to tropoelastin in the presence of equimolar LOX was not directly LOX-mediated. Fibulin-4 may, by binding LOX, act as a template for tropoelastin, thereby facilitating its cross-linking by LOX.

Fibulin-5 Does Not Inhibit Fibulin-4 Binding to Tropoelastin—Although fibulin-4 binds fibulin-5 with moderate affinity (see Fig. 4C), preincubation of F4 with F5 (both at 100 nM) did not significantly affect F4 binding to immobilized tropoelastin (not shown). However, preincubation of F4 with LOX (both at 100 nM) partially inhibited binding of F4 to immobilized F5 (Fig. 7B), so F4-LOX complexes limit association of F4 with immobilized F5. F4-F5 complexes may contribute to elastic fiber formation after elastin cross-linking.

Fibrillin-1 Inhibits Fibulin-4 Binding to LOX and Tropoelastin—Fibrillin-4 (F4 and nF4) binds N-terminal fibrillin-1 (PF1) with moderate affinity (see Fig. 5A). In BIAcore experiments, preincubation of F4 (200 nM) with PF1 (0–3000 nM) inhibited the binding of F4 to immobilized LOX (EC_{50} 365 nM) and to immobilized tropoelastin (EC_{50} 115 nM) (Fig. 7C). A downstream fibrillin-1 fragment (PF12) that does not bind F4 did not inhibit binding of LOX or tropoelastin to F4 (not shown). In solid phase assays, preincubation of LOX with PF1 (both at 100 nM; these ligands bind each other strongly; see Fig. 6A) strongly inhibited LOX binding to immobilized F4, nF4, or tF4 (Fig. 7C). Similarly, solid phase and BIAcore assays showed that preincubation of F4 and fibrillin-1 (PF1, PF4, or tFib-1, the C-terminally truncated two-thirds fibrillin-1 fragment) (all at 100 nM) strongly inhibited F4 binding to tropoelastin (Fig. 7C and supplemental Fig. S4D).

Thus, fibrillin-1 disrupts formation of fibulin-4 interactions with LOX and with tropoelastin. This competition may enhance deposition of cross-linked elastin globules on microfibrils.

Fibrillin-1 Inhibits Fibulin-5 Binding to Tropoelastin—As shown in binding assays (see Figs. 3A, 4 (B and C), and 5B), F5 strongly binds to tropoelastin and to N-terminal fibrillin-1 (PF1) and moderately binds to F4 but binds weakly to LOX. Here, BIAcore experiments showed that preincubation of F5 with LOX or F4 did not affect the interaction between F5 and immobilized tropoelastin (Fig. 7D). However, preincubation of F5 with PF1 or tFib-1 inhibited F5 binding to tropoelastin (Fig. 7D).

Although PF1 does not bind tropoelastin, we previously reported two downstream sites within the N-terminal half of fibrillin-1 and a third C-terminal fibrillin-1 region that all bind tropoelastin strongly (see Fig. 5C) (33, 39). El-Hallous et al. (21) reported that the N-terminal half of fibrillin-1 did not bind tropoelastin but that fibrillin-5 (more than fibrillin-4) facilitated tropoelastin binding to this region of fibrillin-1. Here, we confirmed by BIAcore and solid phase assays that a C-terminally truncated two-thirds fibrillin-1 fragment (tFib-1) binds immobilized tropoelastin (supplemental Fig. S4C) (not shown) and...
Fibulin-4 and -5 Regulate Elastic Fiber Assembly

A

![Graphs showing binding curves for soluble biotinylated F4 and nF4 binding to immobilized fibrillin-1 fragments.](image)

B

![Graphs showing binding curves for soluble F4, F5, and F4 or F5 binding to immobilized fibrillin-1 fragments.](image)

C

![Diagram showing molecular interactions of fibrillin-1 with fibulin-4 and -5.](image)

FIGURE 5. Molecular interactions of fibrillin-1 with fibulin-4 and -5. A, solid phase binding assays showing soluble biotinylated F4 binding to immobilized overlapping fragments encompassing full-length fibrillin-1 (i) and to N-terminal (PF1) deletion and short fragments (ii), F4 bound well to N-terminal fragments PF1 and PF2 and to several N-terminal deletion fragments but very weakly to PF4, Ex5–7, and Ex7–11. In iii, binding curves show that soluble biotinylated F4 bound to immobilized PF1 and PF2. In iv, binding curves are shown for soluble biotinylated F4 and n4 binding to immobilized PF1, indicating that the N-terminal half of fibrillin-4 binds N-terminal fibrillin-1. One representative experiment is shown in each case. Data are shown with the negative (biotinylated F4 or nF4 only) control subtracted. Results are shown as the mean ± S.E. of triplicate values. B, solid phase binding assays show soluble biotinylated fibrillin-1 (PF1 fragment) binding to immobilized F5 (i) and soluble biotinylated F5 binding to immobilized N-terminal fibrillin-1 fragments (ii), F5 bound well to the N-terminal fragments PF1 and PF4 and to several N-terminal deletion fragments but weakly to PF2 and Ex7–11. One representative experiment is shown. Data are shown with the negative (biotinylated F5 only) control subtracted. Results are shown as the mean ± S.E. of triplicate values. C, domain diagram of fibrillin-1 (see Fig. 1 for key), highlighting potential binding sites for F4 and F5, as well as reported binding sites for fibulin-5. Fibulin-5 fragments F5-E1–2 (i) and F5-E6FC (iii) bind to immobilized PF1 or to different fibrillin-1 mutants, especially PF1S115C. Data are shown with the negative (biotinylated fibrillin-1 only) control subtracted. Results are shown as the mean ± S.E. of triplicate values. Significant differences in binding of each fibrillin-5 fragment to PF1 or to the PF1 mutants are shown as follows: ***, p < 0.001 (unpaired t test). In each case, a representative experiment is shown.

Fibulin-4 and -5 Regulate Elastic Fiber Assembly

found that fibulin-5 neither inhibited nor stimulated tropoelastin binding to this large fibrillin-1 fragment (not shown).

Hence, fibulin-5 can either bind tropoelastin or fibrillin-1, probably at the same or an overlapping site. This competition may facilitate fibulin-5 targeting of tropoelastin onto microfibrils.

Investigating the Contribution of Fibulin-4 to Elastin Cross-linking

Recently, Nonaka et al. (45) showed that ARPE-19 cultures supplemented with tropoelastin form desmosine cross-links, confirming LOX activity in these cultures and that transfection with fibulin-5 enhanced cross-links. Here, this culture model was used, with fibulin-4 siRNA knockdown, to investigate contributions of fibulin-4 to elastin cross-linking.

First, we showed that control ARPE-19 cells expressed moderate levels of fibulin-4 but only low levels of fibulin-5 and that siRNA of fibulin-4 achieved 70% knockdown (supplemental Fig. S5A), but fibulin-5 levels remained low (not shown). We ensured the presence of tropoelastin by transfecting cells with tropoelastin (supplemental Fig. S5B). Biological duplicate experiments showed that scrambled tropoelastin-transfected ARPE-19 cells contained 12.5 ± 3.8 pmol of desmosine/mg of protein, whereas tropoelastin-transfected fibulin-4 siRNA knockdown ARPE-19 cells had 15.4 ± 4.3 pmol of desmosine/mg of protein. Increased desmosine was also found in the knockdown cultures supplemented with 10 μg/ml exogenous human tropoelastin. These data are consistent with increased desmosine in fibulin-4+/− mice (5).

Defining the Contribution of Fibulin-5 to Ordered Elastin Deposition

The rat fetal lung fibroblast line, RFL6, expresses abundant elastin and deposits elastic fibers (13). In RFL6 cells with fibulin-5 stably knocked down by shRNA (supplemental Fig. S5C) but expressing fibulin-4, numerous thick elastin-containing arrays were clearly apparent by light microscopy using Miller’s elastin stain (Fig. 8). Transmission electron microscopy revealed the presence of large elastin globules and of numerous small, relatively uniform sized elastin globules with limited association with microfibrils; these images show similarities with data reported by Choi et al. (46).
et al. (30). Hence, fibulin-5 is necessary for deposition of uniform elastin globules on microfibrils.

Investigating Whether Heparin Influences Fibulin-mediated Elastic Fiber Formation

Heparan sulfate is abundant at the cell surface as a component of syndecan and glypican receptors, and heparan sulfate interacts with tropoelastin and enhances its coacervation (47–50). Preincubation of tropoelastin with heparin (10 and 100 nM) caused significant but limited reduction in binding of fibulin-4 and -5 to tropoelastin (supplemental Fig. S6A). Preincubation of fibulin-5 domain pair fragments F5-E1+2, F5-E4+5, and F5-E6FC (which bind tropoelastin; see Fig. 3C; supplemental Fig. 4A) with heparin also significantly inhibited their ability to interact with tropoelastin (supplemental Fig. S6B). Heparin also partially inhibited F5-E6FC binding to PF1 but enhanced the interaction of F5-E1+2 with PF1 (not shown). Thus, cell surface heparan sulfate subtly influences fibulin-mediated elastic fiber interactions.

DISCUSSION

Elastic fiber formation is a complex multistage process that proceeds through the formation of cross-linked elastin globules and their deposition on microfibrils, where they coalesce to...
Fibulin-4 and -5 Regulate Elastic Fiber Assembly

FIGURE 7. Molecular interactions and competition assays. A, analysis of the effect of LOX on soluble F4 interacting with immobilized tropoelastin. In BIAcore experiments (i and ii), F4 was a soluble ligand, alone or preincubated with increasing concentrations of PF1 (Log10 Conc PF1). F4 binding to LOX (ii) and to tropoelastin (i) was inhibited by PF1, with EC50 values of 365 and 115 nM, respectively. In each case, one representative experiment is shown. Response difference is the difference between experimental and control flow cells, in response units. B, solid phase binding assay showing that preincubation of solubilized LOX (100 nM) with F4 or F4+LOX strongly inhibited all of these interactions. Significant differences in binding of LOX preincubated with F4 to F4, nF4, or tF4 were shown as follows: ***, p < 0.001 (unpaired t test). In each case, one representative experiment is shown. Data are shown with the negative (biotinylated protein only) control subtracted. Results are shown as the mean ± S.E. of triplicate values. C, analysis of the effect of PF1 on soluble F4 interacting with immobilized LOX or tropoelastin. In BIAcore experiments (i and ii), F4 was a soluble ligand, alone or preincubated with increasing concentrations of PF1 (Log10 Conc PF1). F4 binding to LOX (i) and to tropoelastin (ii) was inhibited by PF1, with EC50 values of 365 and 115 nM, respectively. In each case, one representative experiment is shown. Response difference is the difference between experimental and control flow cells, in response units. iii, solid phase binding assays confirmed both that soluble biotinylated LOX (100 nM) interacted with immobilized F4 and nF4 but more weakly with tF4 and that preincubation of LOX with PF1 (100 nM) strongly inhibited all of these interactions. Significant differences in binding of LOX preincubated with PF1 to F4, nF4, or tF4 were shown as follows: ***, p < 0.001 (unpaired t test). iv, solid phase binding assays confirmed both that soluble biotinylated F4 (100 nM) interacted with immobilized tropoelastin and that preincubation of soluble F4 with PF1 or PF4 (all at 100 nM) strongly inhibited this interaction. Significant differences in binding of F4 or F4 preincubated with PF1 to tropoelastin were shown as follows: ***, p < 0.001 (unpaired t test). In each case, one representative experiment is shown. Data are shown with the negative (biotinylated protein only) control subtracted. Results are shown as the mean ± S.E. of triplicate values. BIAcore analysis of soluble F4 interacting with immobilized tropoelastin confirmed that preincubation of F4 with tFib-1 (a C-terminally truncated two-thirds fragment of fibrillin-1) markedly inhibits F4 binding to tropoelastin (see supplemental Fig. S4D). D, BIAcore analysis of soluble F5 interacting with immobilized tropoelastin. In i, F5 was soluble ligand alone or preincubated with either LOX or F4 or with the fibrillin-1 fragments PF1 or tFib-1 (all at 200 nM). The ability of F5 to bind tropoelastin was unaffected by preincubation with LOX or F4 but was inhibited by PF1 (which does not contain tropoelastin binding sites) and inhibited more strongly by tFib-1 (which contains tropoelastin binding sites; see Fig. 4D). ii, increasing concentrations of soluble PF1 (Log10 Conc PF1) inhibited binding of F5 to tropoelastin. In each case, one representative experiment is shown. Response difference is the difference between experimental and control flow cells, in response units.

Form fibers (19, 20). Knock-out mice revealed that fibrulin-4 and -5 have essential non-compensatory roles in this process (5–7), but their roles in this process remain unresolved. To gain insights into their distinct contributions, we delineated how they interact with major elastic fiber molecules (with tropoelastin; with LOX, which cross-links tropoelastin; and with fibrillin-1, which forms the microfibril template) and have identified novel fibrulin-fibulin interactions and fibulin interactions with LOX and fibrillin-1. The first stage of elastin deposition is envisioned to involve the pericellular assembly of elastin into globules and their stabilization through cross-linking by LOX; our data show that fibulin-4 strongly binds LOX, and this interaction enhances formation of a ternary complex that can regulate elastin cross-linking (Fig. 9). The second stage of elastin deposition encompasses deposition of elastin globules on microfibrils and their accretion to form a fiber; our data show that fibulin-5 can interact with tropoelastin or with fibrillin-1, implying a chaperone role for fibulin-5 in directing elastin onto microfibrils (Fig. 9).

MALLS analysis of fibulin-4 revealed that it can form dimers in the presence of calcium. This property may reside within the N-terminal half of the molecule, since an N-terminal fragment (nF4) also underwent calcium-dependent dimerization, which suggests parallel dimers. Within the extracellular matrix, fibulin-4 is exposed to low millimolar calcium and may be dimeric; all binding assays were therefore conducted in the presence of calcium. The analysis of fibulin-4 by rotary shadowing electron microscopy has indicated a short rodlike structure with a globular end-domain (4, 51). Here, single-particle averaging electron microscopy of negatively stained fibulin-4, which provides enhanced molecular details, reveals a bent rodlike struc-
Fibulin-4 and -5 Regulate Elastic Fiber Assembly

The absence of fibulin-4 causes a much more severe perinatal-lethal elastic fiber phenotype than loss of fibulin-5, and the drastic reduction in desmosine and concomitant appearance of rodlike structures likely to contain glycosaminoglycans (26) indicates a critical regulatory role in elastin cross-linking (5). We have identified a high affinity LOX binding site within the N-terminal half of fibulin-4 and shown that fibulin-4 binding to LOX enhances tropoelastin binding and ternary complex formation. Reduction of fibulin-4 on a background of low fibulin-5 enhanced LOX-mediated elastin cross-linking, which is similar to that in fibulin-4−/− mice, which showed ~20% increase in desmosine (5). The fibulin-4/fibulin-5 ratio may be critical, since Nonaka et al. (45), using the same cell system, showed increased desmosines when cells were transfected with fibulin-5. The novel interaction between fibulin-4 and -5 that we have described here may contribute after initial elastin cross-linking but is unlikely to be essential for cross-linking, since LOX partially inhibited this interaction, whereas mice with no fibulin-5 have only 16% reduction in desmosine cross-links (7). With low levels of fibulin-4 and -5, elastin probably forms larger globules that may be rapidly cross-linked. Overall, these data confirm that fibulin-4 plays a central regulatory role in cross-linking, probably by acting as a template to control LOX activation and to juxtapose it with tropoelastin. Consequent lysine-derived cross-link formation will displace glycosaminoglycans and allow normal elastin assembly. Although LOX and tropoelastin can both bind fibrillin-1, microfibrils are insufficient to support elastin cross-linking in fibulin-4 null mice. Depletion of fibulin-4 may enhance free LOX, which could alter cell behavior by oxidizing cell surface proteins, such as platelet-derived growth factor receptors, (52).

We and others have reported that fibulin-4 and -5 bind N-terminal fibrillin-1 (21, 22, 53) and microfibrils (22). Here, we show exquisite differential features to the binding of both fibrulins to fibrillin-1, since fibulin-4 can bind fibrillin-1 in the presence or absence of the first hybrid motif, whereas fibulin-5 binds fragments that contain this motif. These Marfan mutations in N-terminal...
Fibulin-4 and -5 Regulate Elastic Fiber Assembly

FIGURE 9. Modeling elastic fiber interactions of fibulin-4 and -5. A, schematic diagram showing the elastic fiber interactions of fibulin-4 and -5. Thick black lines represent strong interactions, and thinner black lines show weaker interactions. Red lines indicate how fibrillin-1 binding to fibulins inhibits their interactions with LOX and tropoelastin. The blue oval highlights the ternary complex between fibulin-4, LOX, and tropoelastin, and the yellow oval highlights the complex between fibulin-5 and tropoelastin. TE, tropoelastin; Fib-1, fibrillin-1; F4, fibulin-4; F5, fibulin-5. B, schematic model indicating how fibulin interactions may contribute to elastic fiber assembly. Our binding data indicate that fibulin-4-LOX interactions facilitate formation of ternary complexes with tropoelastin; these complexes may regulate LOX activation and elastin cross-linking. Following fibulin-5 depletion, elastin appears aggregated and distinct from microfibrils, so fibulin-5 must normally regulate elastin globules and direct their interaction with microfibrils, either by first associating with elastin globules and then attracting elastin globules to bind microfibrils or by first associating with elastin globules and then facilitating their deposition on microfibrils. Our data support the latter model. Once localized at microfibrils, elastin probably interacts directly with fibrillin-1, since these interactions can be high affinity (39), and fibulin-5 interactions with fibrillin-1 and tropoelastin are mutually inhibitory. Active LOX may remain associated with and cross-link coalescing elastin globules on microfibrils. Fibulin-4 and -5 may remain associated with microfibrils or may "recycle" for further elastin deposition.

bound to the C-terminal half of tropoelastin by ligand blot overlay assay (46). Here, using BlAcore, repeated attempts failed to detect any direct binding of LOX to immobilized tropoelastin or of fibrillin-1 to immobilized LOX. However, using solid phase assays, strong interactions were detected between LOX and immobilized tropoelastin and between LOX and immobilized fibrillin-1. Clearly, immobilization of tropoelastin and LOX onto CM5 chips impedes these interactions. Molecules are generally covalently coupled to these chips via amines (often lysyl), as well as thiol, aldehyde, or carboxyl groups. It is thus important to confirm BlAcore data by solid phase assays.

Elastic fiber formation may proceed by the deposition and ordered accretion of elastin globules on microfibrils (18–20). Here, depletion of fibulin-5 caused the appearance of elastin-rich thick fibrous structures, as seen by light microscopy, and of numerous small elastin globules accreted into large aggregates adjacent to microfibril bundles, as seen by electron microscopy. Thus, fibulin-5 must normally facilitate deposition of uniform elastin globules onto microfibrils and prevent uncontrolled aggregation. These findings are consistent with a study of fibulin-5 null mice dermis in which elastin globules were adjacent to but not integrated within microfibril arrays (30). Although fibulin-4 and LOX can both bind fibrillin-1, they do not efficiently target elastin onto microfibrils or prevent aberrant elastin aggregation when fibulin-5 is depleted. Our data showing that fibrillin-1 and tropoelastin compete to bind fibulin-5 are consistent with fibulin-5 chaperoning cross-linked elastin globules onto microfibrils, where they may then be stabilized by elastin interactions with fibrillin-1 (Fig. 9). It seems unlikely that fibulin-5 facilitates deposition of individual tropoelastin monomers onto microfibrils, since oxidation by LOX precedes elastin deposition on microfibrils (20), whereas we have shown that fibrillin-1 inhibits the ternary complexes of fibulin-4, LOX, and tropoelastin that may facilitate cross-linking. In summary, our study provides molecular explanations for the non-overlapping essential roles of fibulin-4 and -5 in elastic fiber formation.

fibrillin-1 that reduce binding to F5-E1+2 and F5-E6FC imply long range conformation effects. Fibrillin-1 competes with LOX and tropoelastin to bind fibulin-4, perhaps competing for the same site on fibulin-4, so the fibulin-4-LOX-tropoelastin complex may be important before elastin deposition on microfibrils. Although N-terminal fibrillin-1 is known to be a "sticky" sequence, its specific interactions shown here with LOX, fibulin-5, and tropoelastin highlight its central role in regulating elastin deposition on microfibrils.

Tissue-purified LOX was reported to cross-link recombinant tropoelastin in the absence of other molecules (54) and
Acknowledgments—We thank L. Ward and D. Ng for assistance in preparing lysyl oxidase (LOX) and acknowledge the support of Dr. T. Jowitt and colleagues in the Faculty Biomolecules Core Facility and Electron Microscopy Facility.

REFERENCES

1. Chu, M. L., and Tsuda, T. (2004) Birth Defects Res. C Embryo Today 72, 25–36
2. de Vega, S., Iwamoto, T., and Yamada, Y. (2009) Cell Mol. Life Sci. 66, 1890–1902
3. Timpl, R., Sasaki, T., Kostka, G., and Chu, M. L. (2003) Nat. Rev. Mol. Cell Biol. 4, 479–489
4. Kobayashi, N., Kostka, G., Garbe, J. H., Keene, D. R., Bächinger, H. P., Hanisch, F. G., Markova, D., Tsuda, T., Timpl, R., Chu, M. L., and Sasaki, T. (2005) Proc. Biol. Chem. 282, 11805–11816
5. McLaughlin, P. J., Chen, Q., Horiguchi, M., Starck, B. C., Stanton, J. B., Broeckelmann, T. J., Marmorstein, A. D., McKay, B., Mecham, R., Nakanura, T., and Marmorstein, L. Y. (2006) Mol. Cell Biol. 26, 1700–1709
6. Nakamura, T., Lozano, P. R., Ikeda, Y., Iwana, Y., Hinek, A., Hanisch, F. G., Markova, D., Tsuda, T., Sasaki, T., Kostka, G., and Chu, M. L., and Sakai, L. Y. (2009)
7. Nature 451, 171–175
8. Yanagisawa, H., Davis, E. C., Starck, B. C., Ouchi, T., Yanagisawa, M., Richardson, J. A., and Olson, E. N. (2002) Nature 415, 168–171
9. Hanada, K., Vermeij, M., Garinis, G. A., de Ward, M. C., Kuen, M. G., Myers, L., Maas, A., Duncher, D. J., Meijers, C., Dietz, H. C., Kanaar, R., and Essers, J. (2007) Circ. Res. 100, 738–746
10. Kowal, R. C., Richardson, J. A., Miano, J. M., and Olson, E. N. (1999) Circ. Res. 84, 1166–1176
11. Spencer, J. A., Hacker, S. L., Davis, E. C., Mecham, R. P., Knutsen, R. H., Li, D. Y., Gerard, R. D., Richardson, J. A., Olson, E. N., and Yanagisawa, H. (2005) Proc. Natl. Acad. Sci. U.S.A. 102, 2946–2951
12. Dasouki, M., Markova, D., Garola, R., Sasaki, T., Charbonneau, N. L., Sakai, L. Y., and Chu, M. L. (2007) Am. J. Hum. Genet. A 143A, 2635–2641
13. Hu, Q., Loeyes, B. L., Coucke, P. J., De Paepe, A., Mecham, R. P., Choi, J., Davis, E. C., and Urban, Z. (2006) Hum. Mol. Genet. 15, 3379–3386
14. Hu, Q., Reymond, J. L., Pinel, N., Zabot, M. T., and Urban, Z. (2006) J. Invest. Dermatol. 126, 283–290
15. Huchthagowder, V., Saurgusner, N., Kim, K. H., Angle, B., Marmorstein, L. Y., and Urban, Z. (2006) Am. J. Hum. Genet. 78, 1075–1080
16. Fu, L., Garland, D., Yang, Z., Shulka, D., Rajendran, A., Pearson, E., Stone, E. M., Zhang, K., and Pierce, E. A. (2007) Hum. Mol. Genet. 16, 2411–2422
17. Rahn, D. D., Acevedo, J. F., Roshanravan, S., Keller, P. W., Davis, E. C., Marmorstein, L. Y., and Word, R. A. (2009) Am. J. Pathol. 174, 206–215
18. Kiely, C. M. (2006) Expert Rev. Mol. Med. 8, 1–23
19. Wagensell, I. E., and Mecham, R. P. (2007) Birth Defects Res. C Embryo Today 81, 229–240
20. Sato, F., Wachi, H., Ichida, M., Nonaka, R., Onoue, S., Urban, Z., Starck, B. C., and Saya, Y. (2007) J. Mol. Biol. 369, 841–851
21. El-Hallous, E., Sasaki, T., Hubmacher, D., Getie, M., Tiedemann, K., Brinckmann, J., Bätge, B., Davis, E. C., and Reinhardt, D. P. (2007) J. Biol. Chem. 282, 8935–8946
22. Freeman, L. J., Lomas, A., Hudson, N., Sherrat, M. J., Mellody, K. T., Weiss, A. S., Shuttleworth, A., and Kielty, C. M. (2005) Biochim. J. 388, 1–5
23. Hirai, M., Ohbayashi, T., Horiguchi, M., Okawa, K., Hagiwara, A., Chien, K. R., Kita, T., and Nakamura, T. (2007) J. Cell Biol. 176, 1061–1071
24. Wachi, H., Nonaka, R., Sato, F., Shibata-Sato, K., Ichida, M., Iketani, S., Maeda, I., Okamoto, K., Urban, Z., Onoue, S., and Saya, Y. (2008) J. Biol. Chem. 243, 633–639
25. Zheng, Q., Davis, E. C., Richardson, J. A., Starck, B. C., Li, T., Gerard, R. D., and Yanagisawa, H. (2007) Mol. Cell Biol. 27, 1083–1095
26. Fornieri, C., Baccarani-Contri, M., Quaglino, D., Jr., and Pasquali...
Differential Regulation of Elastic Fiber Formation by Fibulin-4 and -5
Rawshan Choudhury, Amanda McGovern, Caroline Ridley, Stuart A. Cain, Andrew Baldwin, Ming-Chuan Wang, Chun Guo, Aleksandr Mironov, Jr, Zoe Drymoussi, Dorothy Trump, Adrian Shuttleworth, Clair Baldock and Cay M. Kielty

J. Biol. Chem. 2009, 284:24553-24567.
doi: 10.1074/jbc.M109.019364 originally published online July 1, 2009

Access the most updated version of this article at doi: 10.1074/jbc.M109.019364

Alerts:
• When this article is cited
• When a correction for this article is posted

Click here to choose from all of JBC's e-mail alerts

Supplemental material:
http://www.jbc.org/content/suppl/2009/06/30/M109.019364.DC1

This article cites 55 references, 28 of which can be accessed free at http://www.jbc.org/content/284/36/24553.full.html#ref-list-1
SUPPLEMENTARY INFORMATION

Differential regulation of elastic fiber formation by fibulins -4 and -5

Rawshan Choudhury¹#, Amanda McGovern¹#, Caroline Ridley²#, Stuart A. Cain¹, Andrew Baldwin¹, Ming-Chuan Wang¹, Chun Guo¹, Aleksandr Mironov Jnr.¹, Zoe Drymoussi¹, Dorothy Trump², Adrian Shuttleworth³, Clair Baldock¹ and Cay M. Kiely¹*

¹Joint first authors

¹Wellcome Trust Centre for Cell-Matrix Research, Faculty of Life Sciences, and ²Faculty of Medical and Human Sciences, University of Manchester, UK.

LEGENDS TO SUPPLEMENTARY FIGURES

FIGURE S1
SDS-PAGE analysis of recombinant fibulins -4 and -5, fibrillin-1 and LOX

The following proteins were expressed and analyzed by SDS-PAGE in the presence or absence of 10 mM dithiothreitol (R or NR, respectively), by Coomassie blue staining: full-length fibulin-4 (F4), C-terminally truncated fibulin-4 (tF4), the N-terminal half of fibulin-4 (nF4) and the five central cbEGFs (eF4); full-length fibulin-5 (F5) without or with two cutis laxa mutations (F5C217R and F5S227P), and domain pair fragments; fibrillin-1 fragments have previously been reported (not shown) (1-8) apart from a two-thirds fragment (tFib-1) which is shown by western blotting as a 250 kDa fragment using several anti-fibrillin-1 antibodies including (shown) fibrillin-1-specific RGD antibody (9); full-length lysyl oxidase (LOX). Treatment of F4 and tF4 with N-glycosidase F (PNGase F; indicated by arrows) resulted in slightly faster electrophoretic migration, indicating that both are N-glycosylated. Treatment of F5 and mutants, F5-E4+5, F5-E5+6 and F5-E6FC with N-glycosidase F also confirmed that they were N-glycosylated (not shown) (1,3). Fibrillin-1 fragments have been confirmed to be N-glycosylated.

FIGURE S2
Mass spectrometry of truncated fibulin-4 and fibrillin-1

(A) The peptide sequence coverage (shown in red text), as determined by mass spectrometry, of F4 and tF4. Truncated fibulin-4 tF4 lacks the FC domain and 6 preceding amino acid residues (for domain organization, see Fig. 1A).

(B) The peptide sequence coverage (shown in red text), as determined by mass spectrometry, of the two-thirds truncated fibrillin-1 fragment (tFib-1) (for domain organization, see Fig. 1B).

FIGURE S3
Multi-angle laser light scattering of human fibulins -4 and -5

Monomers of (i) fibulin-4 (F4) and (ii,iii) fibulin-5 (F5 and F5S227P) that had been isolated by Superdex 200 gel filtration in HBS, were analyzed by MALSS in HBS. Samples eluting from the column passed through a Wyatt EOS 18-angle light scattering detector fitted with a 688 nm laser and an Optilab r-EX refractometer (see Table 1). F4 was monomeric in the absence of calcium, but formed dimers in the presence of calcium. Similarly, F5 and F5 mutant F5S227P were
monomeric in the absence of calcium, but dimeric in the presence of calcium (not shown; Jones et al., in preparation).

FIGURE S4
Molecular interactions of fibulin-5, fibrillin-1 and tropoelastin
(A) Solid-phase assays of biotinylated fibulin-5 fragments binding to immobilized tropoelastin. Three of the domain pair fragments, F5-E1+2, F5-E4+5 and F5-E6FC bound well to immobilized tropoelastin (KDs 332 nM, 452 nM and 965 nM, respectively). One representative experiment is shown. Data are shown with the negative (biotinylated F5 fragments only) control subtracted. Results are shown as the mean ± S.E. of triplicate values.
(B) Solid-phase curves showing soluble biotinylated fibulin-5 domain-pair fragments (F5-E1+2 or F5-E6FC) binding to immobilized PF1. These fibulin-5 fragments only bound N-terminal fibrillin-1. One representative experiment is shown. Data are shown with the negative (biotinylated F5 fragments only) control subtracted. Results are shown as the mean ± S.E. of triplicate values.
(C) BIACore analysis of soluble tFib-1 (200 nM) (C-terminally truncated two-thirds fragment of fibrillin-1; see Figure S1)) binding to immobilized tropoelastin. Response difference is the difference between experimental and control flow cells, in response units (RU). Pre-incubation of F5 with tFib-1 neither inhibited nor stimulated the binding of fibrillin-1 to tropoelastin (not shown).
(D) Fibrillin-1 (tFib-1) inhibits soluble F4 interacting with immobilized tropoelastin. BIACore analysis of the interaction of soluble F4 with immobilized tropoelastin, showing that pre-incubation of F4 with tFib-1 (C-terminally truncated two-thirds fragment of fibrillin-1; see Figure S1) inhibits F4 binding to tropoelastin.

FIGURE S5
Elastic fiber molecules expressed by dermal fibroblasts, ARPE-19 cells and RFL6 cells
(A) (i) RT-PCR analysis of the expression of fibulins -4 and -5 by ARPE-19 cells. Fibulin-4 was expressed at moderate levels, but fibulin-5 expression was very low. (ii) Fibulin-4 was knocked down in ARPE-19 cells using siRNA. Quantitative PCR (qPCR) and immunoblot analysis (not shown) showed 70% knockdown of fibulin-4.
(B) The expression of N-terminally V5-tagged human elastin (E) by ARPE-19 cells, after retroviral induction, was detected on blots by anti-V5 antibody (Abcam) and by immunofluorescence microscopy (red) using a polyclonal anti-elastin antibody (PR398, Elastin Products Inc.), with DAPI (blue) staining of cell nuclei.
(C) Fibulin-5 was stably knocked down in RFL6 cells by retroviral shRNA. (i) RT-PCR and (ii, iii) qPCR, respectively, showed that fibulin-5 is depleted in the knockdown cells, compared to the scrambled control cells. qPCR also revealed that fibulin-4 is not altered in the fibulin-5 shRNA knockdown cells (not shown).

FIGURE S6
Effects of heparin on tropoelastin binding by fibulins -4 and -5
Heparin binds tropoelastin and influences its coacervation (Tu and Weiss, 2008). We examined whether heparin altered interactions of fibulins -4 and -5 with tropoelastin, by solid phase assays.
(A) (i) Pre-incubation of fibulins -4 or -5 with 10 nM or 100 nM heparin resulted in small but significant reductions in each fibulin binding to tropoelastin. A significant difference in binding of F4 or F5 to tropoelastin in the presence or absence of heparin was shown as *** \(p < 0.001 \) (unpaired t test). (ii) Increasing concentrations of heparin inhibited fibulin-4 binding to tropoelastin, but concentration-dependent heparin effects on fibulin-5 binding were less clear. In each case, one representative experiment is shown. Data are shown with the negative (biotinylated F4 or F5 only) control subtracted. Results are shown as the mean ± S.E. of triplicate values.

(B) Pre-incubation of three fibulin-5 domain pair fragments that bind tropoelastin (see Fig. 2C) with heparin (both at 100 nM) resulted in significant reductions in fibulin binding to tropoelastin. Significant differences in binding of fibulin-5 domain pair fragments to tropoelastin in the presence or absence of heparin were shown as *, \(p < 0.01 \); **, \(p < 0.05 \); ***, \(p < 0.001 \) (unpaired t test). In each case, one representative experiment is shown. Data are shown with the negative (biotinylated F5 fragments only) control subtracted. Results are shown as the mean ± S.E. of triplicate values.

References

1. Freeman, L. J., Lomas, A., Hodson, N., Sherratt, M. J., Mellody, K. T., Weiss, A. S., Shuttleworth, A., and Kielty, C. M. (2005) Biochem. J. 388, 1-5
2. Rock, M. J., Cain, S. A., Freeman, L. J., Morgan, A., Mellody, K., Marson, A., Shuttleworth, C. A., Weiss, A. S., and Kielty, C. M. (2004) J. Biol. Chem. 279, 23748-23758
3. Lomas, A. C., Mellody, K. T., Freeman, L. J., Bax, D. V., Shuttleworth, C. A., and Kielty, C. M. (2007) Biochem. J. 405, 417-428
4. Baldock, C., Siegler, V., Bax, D. V., Cain, S. A., Mellody, K. T., Marson, A., Haston, J. L., Berry, R., Wang, M. C., Grossmann, J. G., Roessle, M., Kielty, C. M., and Wess, T. J. (2006) Proc. Natl. Acad. Sci. U. S. A 103, 11922-11927
5. Cain, S. A., Baldock, C., Gallagher, J., Morgan, A., Bax, D. V., Weiss, A. S., Shuttleworth, C. A., and Kielty, C. M. (2005) J. Biol. Chem. 280, 30526-30537
6. Cain, S. A., Baldwin, A. K., Mahalingam, Y., Raynal, B., Jowitt, T. A., Shuttleworth, C. A., Couchman, J. R., and Kielty, C. M. (2008) J. Biol. Chem. 283, 27017-27027
7. Marson, A., Rock, M. J., Cain, S. A., Freeman, L. J., Morgan, A., Mellody, K., Shuttleworth, C. A., Baldock, C., and Kielty, C. M. (2005) J. Biol. Chem. 280, 5013-5021
8. Mellody, K. T., Freeman, L. J., Baldock, C., Jowitt, T. A., Siegler, V., Raynal, B. D., Cain, S. A., Wess, T. J., Shuttleworth, C. A., and Kielty, C. M. (2006) J. Biol. Chem. 281, 31854-31862
9. Lee, S. S., Knott, V., Jovanovic, J., Harlos, K., Grimes, J. M., Choulier, L., Mardon, H. J., Stuart, D. I., and Handford, P. A. (2004) Structure (Camb) 12, 717-729
Supplementary Figure 1

A

FIBULIN-4

	PNGaseF	PNGaseF
NR	R	R
R	R	R
NR	R	R
R	R	R

FIBULIN-5

		FIBULIN-5
	F5	F5_C217R
	F5	F5_S227P

PNGaseF

NR R NR R NR R

FIBULIN-4

nF4	eF4

FIBULIN-5

F5_E1+2	F5_E2+3

FIBULIN-4

F4	tf4

FIBULIN-5

F5	F5_E4+5
	F5_E5+6
	F5_E6FC
Supplementary Figure 1

B

FIBRILLIN-1

RGD

tFib-1

C

LOX

catalytic domain

BMP-1

Quinone

Cu²⁺
Supplementary Figure 2

A

Full-length Fibulin-4 (F4)

```
mlpcasclpg sllllwalllll llgsaspqds eepdsyctc dgyewdpdsq
hcrDVNECLT IPEACKGEMK CINHYGGYLC LPRsaavind lhgegpvvppv
ppaqhpnnpcp pgyepddqds cvdvedecaqa lhdcrpsqdc hnlpgsyqt
cpdgyrKIGP ECVDIDECRY RycqhrCVNL PGSFRcqcemp gfqlgppnrS
CVDVNECDMG APCEQRFNS YGTFLCRCHQ GYELHRDGFS CSDIDECYS
SYLCQYRCIN EPGFRSCHCP QGYQLLATRL1 cqdidecesg ahqcseaqtc
vnfhggyrCV DTNRCVEPYI QVSENRCCLCP ASNPLCREQP SSIVHRYMTI
TSERSVPADV FQIQATSVYp GAYNAFQIRA GNSQGDFYIR QINNVSAMLV
LARPVTGPRE YVLDELMVTM NSLMSYRass virltvfvgayt
```

Truncated Fibulin-4 (tF4)

```
mlpcasclpg sllllwalllll llgsaspqds eepdsyctc dgyewdpdsq
hcrDVNECLT IPEACKGEMK CINHYGGYLC LPRsaavind lhgegpvvppv
ppaqhpnnpcp pgyepddqds cvdvedecaqa lhdcrpsqdc hnlpgsyqt
cpdgyrKIGP ECVDIDECRY RycqhrCVNL PGSFRcqcemp gfqlgppnrS
CVDVNECDMG APCEQRFNS YGTFLCRCHQ GYELHRDGFS CSDIDECYS
SYLCQYRcin epgFSCHCP QGYQLLATRL1 cqdidecesg ahqcseaqtc
vnfhggyrCV DTNRCVEPYI QVSENRCCLCP ASNPLCREqpp ssivhrYMTI
TSERSVPADV FQIQATSVYp GAYNAFQIRA GNSQGDFYIR QINNVSAMLV
larpvtgpre yvldlemvtm nslmsyrass virltvfvgayt
```
Truncated fibrillin-1 (tFib-1)

mrgrlleiag tshgdanle agnvketras rakrrGGGHH DALKGPVGCG SRYNAYCCPG WKTLPGGNQC
IVFIRCRRSGC DGFCRRPNC TCPPQIAFSS CGSRSigvchnc rcmGNCGSGC DDHCLCQGGY IGTGHCGPGV ESGCLNNGG-
vapnrCACY GTGPQCEQED yrTGFPFTVWI SNMQCQGQLS GIVCTqllc atvgrAWGHG CEMCPAQPHP CRQGFIPNIR
tgaqdvdceq qaipglcqgg nciintvgse cekspaghkln evsqqcedid estigpcie ggecntnvys yfcckCPFGFY
TSPDTRCID VRPGYCTTAL TNGRSCNQLP QGITMKQCC DAGRCWSPGV TVAPEMCPIR atedfnklcs vmvpvqgpe
ypplplgip pvlpsvppgpf pgpqipvprp pveylypsre ppvrpvpvnt dyqvlvrylc nnqrciptpg sycrcencngf
qlldrgedcid vdeceknvca gqecinnqqs ytcqcrAGYQ STLTrtecB IDECLQNGR cnngrcintd gqsfvcvnaq
fhtvGDNKC EDTMDECRs mnmcognc dgsfkCICKPF GQFLASDGRy cdkDINCEPFT GICMNGRCVNT TGGYSRCECF
PGAVLGLQ GVRVTHERBst cygyykroQC IKPLFGAVT K secscastey afgepcqgcpc sagnseyqal cssqqgmntsas
gsdineald pidpcnqnci nlrtygkCIC NGSYEVDSSTG KNVCVIDNECV LNSLCDSNQQ CRntpgsvf cwpkpgFIYPK
DLKtexcidie cesaeqngv cAkRSPGFSIC ECSESIDLDP TKTcieticct GTQWTQVIDG ACEINATLG KSQCCSSLG
AAGSPFCTLC QVDPIGCGgy sriqtcqseed idecevfpvg ckMGLCVNTR gqsfkCQCPGSP MTLDATGRIC LDIRLTECFL
RYEDEECLTP IAGhrmdac ccsygaavsg eeccecmprN TPEYEELCPR pgpatakEIT NGKPGFKEDcin ekMIPSCLT
HNGKcntgig tkrcDQSGFA LDSEERNctd idecrispld cgrGQCVNTPF GDFECKdeg yeqsfmmkn CMDIDEQGRD
PLLCgqvctc ntegscyrecq pghqlapnpi sacidineece lsahlcpcngv cnvligkYQC ACPNGHYSTP DLrCfcvdve
csaimqqct gctnaaygesc cscogffam pdrqrcstcid ecenednicpd gqgtqnpie yrcLFCYDFGM ASDMkncv
tvnecdlpn ciagctcntk qsiffchcdmg ysqkkgkTGC TDINECEIGA HNCkgkavct ntqsfkFSCC SPGWIDGDIK
ctdledcang thmcogchdci nsmtmcyrg ckegtgdfq ccttldccse nlnogncqg 1npagyrcCE CDMGFVPSPAD
GKACEDDELC SLPNCYVPGHT CMMILGMFLRC ECLGITYLDR sgnqctvnd cldptcctig ncnsqpgy cdcpgdfpdel
ptrvgcvdtr SGNCYLDIRP Rqndngdtacs neiyvyvskA SCCCSLGGKaw gtpcemmpav nteyilkicpg gqfegfprni
tvilediedeq qelplgcqcg AKINTFGPSQG CECVPFGFYNK DlIIVcled tccngqvcrq cncietycvi cnrctkpgy
vngnnmcmdm rrsclryynn adntqcdgol lfnntkmcnc csnyngraw kpeqcgqips tdesfatlgcs gqfvgvidiy
tlvgdprddq infpgvncng ccvnmvnagft CECVPFGFYNNK DlIIVced diecvngqvcrq cncietycvi cnrctkpgy
ftstsgqnd prqeqipnic shqscidtvf sfylcchftg ktnndqtmcl dineeracar gntcrtqit sncrcnqngf
llshnndicd vdecasnnng lrcnnqcntg vgsfscqngyv gyevapdgrd cvidncielc prkcapqctg ndlgysyrcic
ppgysiqmecn cedecced evicalgctsc ntsegfskiclg pefgsslssg rcrrcdsmrs cyafkcgfgkc aqspcrshsk
qecccalkgc qwgdpcelpep tepdapefro cqygqsligv pdassvdmdc ekcepdkvqg qcintdsgyrc cscpgfytla
gcnevdtdec svngspqngnt kcnvvtingf cteeqgfpenn mmtcedineaq qnpllfvae crvntzyocc kcpgvyvicr
dmrcmdxed egscckhcde kgmecmnycpg yqcrpgdevcnc denetskqcl tngcecntd cctyycztc
qftasngpd clcnregycf ttevlqucmqci gssnsnpykv secoccdqgrg wqghceicpft qtqsvfkkclc phqrgfntng
adiidcckh dvcrngecvn dsgyshcicct tgyiptdigt sncdvcncmq apkkncf cngytnsgac psckyigledq
rsckdideca tkhqucngf ctniigfctcc cpppygftqh tlnsdnctecl dinloqsgki cnqntpgsfct ecqrgfdlsd
qgsedevdve ceghgrocqcg cvqnnmgclg qncqcvmdvne clshacgga cshntlgys cymcppaqgfe
qfsgqgqdein egcsaqapc gycsntegggy lccqcppggyf lgghcvcvm gmgqngnepp vsesmdndl specyeckl
nyspgkrkzr stntedas liedseteac vslsawduke tafalflshf vsnkvrelale lpatltth nedrylengs
dgff Klingke iasyihfktk kpxvagtyslg iststpykkk elqnolededy kydlzgelg nlkmiqivll h
Supplementary Figure 3

(i) F4 (in HBS)

(ii) F5 (in HBS)

(iii) F5_{S227P} (in HBS)
Supplementary Figure 4

A

(i) Absorbance (405 nm)

- Soluble F5-E1+2 (nM)
- Immobilized tropoelastin (100 nM)

(ii) Absorbance (405 nm)

- Soluble F5-E4+5 (nM)
- Immobilized tropoelastin (100 nM)

(iii) Absorbance (405 nm)

- Soluble F5-E6FC (nM)
- Immobilized tropoelastin (100 nM)

B

(i) Absorbance (405 nm)

- Soluble F5-E1+2 (nM)
- Immobilized fibrillin-1 (PF1) (100 nM)

(ii) Absorbance (405 nm)

- Soluble F5-E6FC (nM)
- Immobilized fibrillin-1 (PF1) (100 nM)
Supplementary Figure 4

C

D
Supplementary Figure 5

A

(i)

GAPDH Fib-4 Fib-5

250 bp

(ii)

0 20 40 60 80 100 120

Fibulin-4 expression (%)

Scrambled Fibulin-4 siRNA

ARPE-19 cells

B

Scr. control Elastin

CL M

75

(Anti-V5 antibody)

Control ARPE-19 day 16 Elastin knock-in ARPE-19, day 16

C

(i)

GAPDH F5

Scrambled F5 shRNA

(ii)

0 20 40 60 80 100 120

Fibulin-5 expression (%)

Scrambled Fibulin-5 shRNA

RFL6 cells
Supplementary Figure 6

A

(i) Immobilized tropoelastin (TE)
Soluble F4 or F5 (100 nM)
± heparin (10nM or 100 nM)

(ii) Immobilized tropoelastin (TE)
Soluble F4 or F5 (100 nM)
± heparin (10nM or 100 nM)

B

(i) F5-E1+2
± hep

(ii) F5-E4+5
± hep

(iii) F5-E6FC
± hep