AN ISOMORPHISM THEOREM FOR DEGENERATE CYCLOTOMIC
YOKONUMA-HECKE ALGEBRAS AND APPLICATIONS

WEIDENG CUI

Abstract. Inspired by the work [PA], we establish an explicit algebra isomorphism between the degenerate cyclotomic Yokonuma-Hecke algebra \(Y_{d,r,n}(q) \) and a direct sum of matrix algebras over tensor products of degenerate cyclotomic Hecke algebras of type \(A \). We then develop several applications of this result, including a new proof of the modular representation theory of \(Y_{d,r,n}(q) \), a semisimplicity criterion for it and cellularity of it. Moreover, we prove that \(Y_{d,r,n}(q) \) is a symmetric algebra and determine the associated Schur elements by using the isomorphism theorem for it.

1. Introduction

1.1. Yokonuma-Hecke algebras were introduced by Yokonuma [Yo] as a centralizer algebra associated to the permutation representation of a finite Chevalley group \(G \) with respect to a maximal unipotent subgroup of \(G \). The Yokonuma-Hecke algebra \(Y_{r,n}(q) \) (of type \(A \)) is a quotient of the group algebra of the modular framed braid group \((\mathbb{Z}/r\mathbb{Z}) \wr B_n \), where \(B_n \) is the braid group on \(n \) strands (of type \(A \)). By the presentation given by Juyumaya and Kannan [Ju1, Ju2, JuK], the Yokonuma-Hecke algebra \(Y_{r,n}(q) \) can also be regraded as a deformation of the group algebra of the complex reflection group \(G(r,1,n) \), which is isomorphic to the wreath product \((\mathbb{Z}/r\mathbb{Z}) \wr S_n \). It is well-known that there exists another deformation of the group algebra of \(G(r,1,n) \), namely the Ariki-Koike algebra [AK]. The Yokonuma-Hecke algebra \(Y_{r,n}(q) \) is quite different from the Ariki-Koike algebra. For example, the Iwahori-Hecke algebra of type \(A \) is canonically a subalgebra of \(Y_{r,n}(q) \), whereas it is an obvious quotient of \(Y_{r,n}(q) \), but not an obvious subalgebra of it.

Recently, by generalizing the approach of Okounkov-Vershik [OV] on the representation theory of the symmetric group \(\mathfrak{S}_n \), Chlouveraki and Poulain d’Andecy [ChPA1] introduced the notion of affine Yokonuma-Hecke algebra \(\tilde{Y}_{r,n}(q) \) and gave explicit formulas for all irreducible representations of \(Y_{r,n}(q) \) over \(\mathbb{C}(q) \), and obtained a semisimplicity criterion for it. In their subsequent paper [ChPA2], they studied the representation theory of the affine Yokonuma-Hecke algebra \(\tilde{Y}_{r,n}(q) \) and the cyclotomic Yokonuma-Hecke algebra \(Y_{d,r,n}(q) \). In particular, they gave the classification of irreducible representations of \(Y_{r,n}(q) \)-modules as well as the classification of the simple modules of the cyclotomic Yokonuma-Hecke algebras over an algebraically closed field \(K \) of characteristic \(p \) such that \(p \) does not divide \(r \). Rostam [Ro] proved that the cyclotomic Yokonuma-Hecke algebra is a particular case of cyclotomic quiver Hecke algebras. In the past several years, the
study of affine and cyclotomic Yokonuma-Hecke algebras has made substantial progress; see [ChPA1, ChPA2, ChS, C1, C2, CW, ER, JaPA, Lu, PA, Ro].

1.2. Schur elements play a powerful role in the representation theory of symmetric algebras (see, e.g., [GP, Chapter 7]). Malle and Mathas [MM] showed that the cyclotomic Hecke algebra (Ariki-Koike algebra) is a symmetric algebra. Formulae for the Schur elements of the cyclotomic Hecke algebra have been obtained independently, first by Geck, Iancu and Malle [GIM], and later by Mathas [M]; see also [ChJa].

In the case of the degenerate cyclotomic Hecke algebra, Brundan and Kleshchev [BK1] proved that it is a symmetric algebra for all parameters. Later on, Zhao [Z1-2] gave an explicit combinatorial formula for the Schur element of the degenerate cyclotomic Hecke algebra. Thus, we can use the Schur elements to determine when Specht modules are projective irreducible and whether the cyclotomic and degenerate cyclotomic Hecke algebra are semisimple.

1.3. Largely inspired by the work [PA], we establish an explicit algebra isomorphism between the degenerate cyclotomic Yokonuma-Hecke algebra $Y_{r,n}^d(q)$ and a direct sum of matrix algebras over tensor products of degenerate cyclotomic Hecke algebras of type A. We then develop several applications of this result, including a new proof of the modular representation theory of $Y_{r,n}^d(q)$, a semisimplicity criterion for it and cellularity of it. Moreover, we prove that $Y_{r,n}^d(q)$ is a symmetric algebra and determine the associated Schur elements by using the isomorphism theorem for it.

This paper is organized as follows. In Section 2, we recall some necessary results and prove that the degenerate cyclotomic Yokonuma-Hecke algebra is a symmetric algebra following [BK1, Appendix A]. In Section 3, we establish an explicit algebra isomorphism between the degenerate affine (resp. cyclotomic) Yokonuma-Hecke algebra $\hat{Y}_{r,n}(q)$ (resp. $Y_{r,n}^d(q)$) and a direct sum of matrix algebras over tensor products of degenerate affine (resp. cyclotomic) Hecke algebras of type A following the approach of Poulain d’Andecy. In Section 4, we develop several applications of the algebra isomorphism.

2. D Eg enerate cyclotomic Yokonuma-Hecke algebras are symmetric

In this section, we first recall the definition of the degenerate cyclotomic Yokonuma-Hecke algebra $Y_{r,n}^d$, and then prove that it is a symmetric algebra following the approach in [BK1, Appendix A].

2.1. Degenerate cyclotomic Hecke algebras. Let $n, d \in \mathbb{Z}_{\geq 1}$ and let \mathbb{K} be an algebraically closed field of characteristic $p \geq 0$ which contains some elements v_1, \ldots, v_d. The degenerate affine Hecke algebra \hat{H}_n is the associative \mathbb{K}-algebra generated by the elements $\bar{x}_1, \ldots, \bar{x}_n$ and $\bar{s}_1, \ldots, \bar{s}_{n-1}$ subject to the following relations:

\begin{align}
\bar{s}_r^2 &= 1; \\
\bar{s}_r \bar{s}_{r+1} \bar{s}_r &= \bar{s}_{r+1} \bar{s}_r \bar{s}_{r+1}, \quad \bar{s}_r \bar{s}_t &= \bar{s}_t \bar{s}_r \quad \text{if } |r-t| > 1; \\
\bar{x}_r \bar{x}_t &= \bar{x}_t \bar{x}_r; \\
\bar{s}_r \bar{x}_{r+1} &= \bar{x}_r \bar{s}_r + 1, \quad \bar{s}_r \bar{x}_t &= \bar{x}_t \bar{s}_r \quad \text{if } t \neq r, r+1. \tag{2.4}
\end{align}
By [K, Theorem 3.2.2], \hat{H}_n is a free K-module with basis
$$\{\bar{x}_1^{\alpha_1} \cdots \bar{x}_n^{\alpha_n} \bar{w} | \alpha_1, \ldots, \alpha_n \geq 0, w \in S_n\}. \tag{2.5}$$

The degenerate cyclotomic Hecke algebra H_n^d is defined to be the quotient:
$$H_n^d = \hat{H}_n / \langle (\bar{x}_1 - v_1) \cdots (\bar{x}_1 - v_d) \rangle. \tag{2.6}$$

By [K, Theorem 7.5.6], H_n^d is a free K-module with basis
$$\{\bar{x}_1^{\bar{i}_1} \cdots \bar{x}_n^{\bar{i}_n} \bar{w} | 0 \leq \bar{i}_1, \ldots, \bar{i}_n < d, w \in S_n\}. \tag{2.6}$$

Let $\tau_n : H_n^d \to K$ be the K-linear map defined by
$$\tau_n(\bar{x}_1^{\bar{i}_1} \cdots \bar{x}_n^{\bar{i}_n} \bar{w}) = \begin{cases} 1 & \text{if } i_1 = \cdots = i_n = d - 1 \text{ and } w = 1, \\ 0 & \text{otherwise}. \end{cases} \tag{2.7}$$

By [BK1, Appendix], τ_n is a non-degenerate trace on H_n^d for all parameters v_1, \ldots, v_d in K, that is, H_n^d is a symmetric algebra for all parameters.

2.2. Degenerate cyclotomic Yokonuma-Hecke algebras.

In the rest of this paper, we shall assume that p does not divide r for some $r \in \mathbb{Z}_{\geq 1}$. The degenerate affine Yokonuma-Hecke algebra, denoted by $\hat{Y}_{r,n}$, is an associative K-algebra generated by the elements $t_1, \ldots, t_n, f_1, \ldots, f_{n-1}, x_1, \ldots, x_n$ in which the generators $t_1, \ldots, t_n, f_1, \ldots, f_{n-1}$ satisfy the following relations:

1. $f_i f_j = f_j f_i$ for all $i, j = 1, \ldots, n - 1$ such that $|i - j| \geq 2$; \tag{2.8}
2. $f_i f_{i+1} f_i = f_{i+1} f_i f_{i+1}$ for all $i = 1, \ldots, n - 2$; \tag{2.9}
3. $t_i t_j = t_j t_i$ for all $i, j = 1, \ldots, n$; \tag{2.10}
4. $f_i t_j = t_{s_i(j)} f_i$ for all $i = 1, \ldots, n - 1$ and $j = 1, \ldots, n$; \tag{2.11}
5. $t_i^r = 1$ for all $i = 1, \ldots, n$; \tag{2.12}
6. $f_i^2 = 1$ for all $i = 1, \ldots, n - 1$, \tag{2.13}

and for each $1 \leq i \leq n - 1$,

$$e_i := \frac{1}{r} \sum_{s=0}^{r-1} t_i^s t_{i+1}^{-s}. \tag{2.18}$$

Remark 2.1. The degenerate affine Yokonuma-Hecke algebra $\hat{Y}_{r,n}$ is in fact a special case of the wreath Hecke algebra $H_n(G)$ defined in [WW, Definition 2.4] when $G = C_r$ is the cyclic group of order r; see also [RS].
By [WW, Theorem 2.8], \(\hat{Y}_{r,n} \) has a \(\mathbb{K} \)-basis
\[
\{ t^\beta_1 \cdots t^\beta_n x_1^{\alpha_1} \cdots x_n^{\alpha_n} f_w \mid 0 \leq \beta_1, \ldots, \beta_n \leq r-1, \alpha_1, \ldots, \alpha_n \geq 0, w \in \mathcal{S}_n \}. \tag{2.18}
\]

We define the degenerate cyclotomic Yokonuma-Hecke algebra \(Y^d_{r,n} \) to be the quotient:
\[
Y^d_{r,n} = \hat{Y}_{r,n}/((x_1 - v_1) \cdots (x_1 - v_d)).
\]

By [WW, Proposition 5.5] (see also [Ro, Proposition 5.2]), \(Y^d_{r,n} \) has a \(\mathbb{K} \)-basis
\[
\{ t^{i_1} \cdots t^{i_n} x_1^{i_1} \cdots x_n^{i_n} f_w \mid 0 \leq i_1, \ldots, i_n \leq d-1, 0 \leq j_1, \ldots, j_n \leq r-1, w \in \mathcal{S}_n \}. \tag{2.19}
\]

2.3. Symmetric algebras. Let \(\mathbb{K}_d[x_1, \ldots, x_n] \) be the level \(d \) truncated polynomial algebra, that is, the quotient of the polynomial algebra \(\mathbb{K}[x_1, \ldots, x_n] \) by the two-sided ideal generated by \(x_1^d, \ldots, x_n^d \). Define a filtration \(F_0 Y^d_{r,n} \subseteq F_1 Y^d_{r,n} \subseteq \cdots \) by declaring that \(F_k Y^d_{r,n} \) is the span of all \(t^{i_1} \cdots t^{i_n} x_1^{i_1} \cdots x_n^{i_n} f_w \) for \(0 \leq j_1, \ldots, j_n \leq r-1, i_1, \ldots, i_n \geq 0 \) and \(w \in \mathcal{S}_n \) with \(i_1 + \cdots + i_n \leq k \).

Let \(W_{r,n} = (\mathbb{Z}/r\mathbb{Z}) \ast \mathcal{S}_n \) and \(\mathbb{K} W_{r,n} \) be its group algebra, which has a set of generators \(t_1, \ldots, t_n, s_1, \ldots, s_{n-1} \). Consider the twisted tensor algebra \(\mathbb{K}_d[x_1, \ldots, x_n] \otimes \mathbb{K} W_{r,n} \) and define a grading on it by declaring that each \(x_i \) is of degree 1 and each \(y \in W_{r,n} \) is of degree 0. Then we can easily get the following lemma.

Lemma 2.2. The map \(\zeta_{r,d} : \mathbb{K}_d[x_1, \ldots, x_n] \otimes \mathbb{K} W_{r,n} \to \mathbb{gr} Y^d_{r,n} \), which is given by \(x_i \mapsto \text{gr}_1 x_i \) for each \(1 \leq i \leq n \), \(t_i \mapsto \text{gr}_0 t_i \) for each \(1 \leq i \leq n \) and \(s_j \mapsto \text{gr}_0 f_j \) for each \(1 \leq j \leq n-1 \), is an isomorphism of graded algebras.

Recall that a finite dimensional algebra \(A \) is symmetric if it possesses a symmetrizing form, i.e. a linear form \(\tau : A \to \mathbb{K} \) such that \(\tau(ab) = \tau(ba) \) for all \(a, b \in A \) and whose kernel contains no non-zero left or right ideal of \(A \). The following lemma can be regarded as a generalization of [BK1, Lemma A.1].

Lemma 2.3. Let \(\rho : \mathbb{K}_d[x_1, \ldots, x_n] \otimes \mathbb{K} W_{r,n} \to \mathbb{K} \) be the linear map sending the monomial \(t^{s_1} \cdots t^{s_n} x_1^{r_1} \cdots x_n^{r_n} w \) to 1 if \(r_1 = \cdots = r_n = d-1 \), \(s_1 \equiv \cdots \equiv s_n \equiv 0 \) (mod \(r \)) and \(w = 1 \), and to 0 otherwise. Then \(\rho \) is a symmetrizing form, hence \(\mathbb{K}_d[x_1, \ldots, x_n] \otimes \mathbb{K} W_{r,n} \) is a symmetric algebra.

Now let \(t = (d-1)^n \). Recall from Lemma 2.2 that \(Y^d_{r,n} \) is a filtered algebra with a filtration
\[
\mathbb{K} W_{r,n} = F_0 Y^d_{r,n} \subseteq F_1 Y^d_{r,n} \subseteq \cdots \subseteq F_t Y^d_{r,n} = Y^d_{r,n},
\]
and the associated graded algebra \(\text{gr} Y^d_{r,n} \) is identified with the twisted tensor product \(\mathbb{K}_d[x_1, \ldots, x_n] \otimes \mathbb{K} W_{r,n} \). For any \(0 \leq s \leq t \), let \(\text{gr}_s : F_s Y^d_{r,n} \to \mathbb{K}_d[x_1, \ldots, x_n] \otimes \mathbb{K} W_{r,n} \) be the map sending an element to its degree \(s \) graded component.

Theorem 2.4. Let \(\hat{\rho} : Y^d_{r,n} \to \mathbb{K} \) be the linear map sending \(t^{s_1} \cdots t^{s_n} x_1^{r_1} \cdots x_n^{r_n} f_w \) to 1 if \(r_1 = \cdots = r_n = d-1 \), \(s_1 \equiv \cdots \equiv s_n \equiv 0 \) (mod \(r \)) and \(w = 1 \), and to 0 otherwise. Then \(\hat{\rho} \) is a symmetrizing form, hence \(Y^d_{r,n} \) is a symmetric algebra.

Proof. It follows from the key observation that \(\hat{\rho} = \rho \circ \text{gr}_t \). \(\square \)
3. An isomorphism theorem for degenerate cyclotomic Yokonuma-Hecke algebras

Largely inspired by [PA, Section 3], we establish an explicit algebra isomorphism between the degenerate affine (resp. cyclotomic) Yokonuma-Hecke algebra $\hat{Y}_{r,n}$ (resp. $Y_{r,n}^d$) and a direct sum of matrix algebras over tensor products of degenerate affine (resp. cyclotomic) Hecke algebras of type A in this section.

3.1. Preliminaries. We first recall some constructions presented in [PA, Section 2]. Let $S_{r,n}$ be the commutative subalgebra of $\hat{Y}_{r,n}$ generated by t_1, \ldots, t_n which is isomorphic to the group algebra of $(\mathbb{Z}/r\mathbb{Z})^n$ and let $\{\zeta_1, \ldots, \zeta_r\}$ be the set of all r-th roots of unity. A character χ of $S_{r,n}$ over K is characterized by the choice of $\chi(t_j) \in \{\zeta_1, \ldots, \zeta_r\}$ for each $j = 1, \ldots, n$. We denote by $\text{Irr}(S_{r,n})$ the set of characters of $S_{r,n}$ over K, which is endowed with an action of S_n by $w(\chi)(t_i) = \chi(t_{w^{-1}(i)})$.

For each $\chi \in \text{Irr}(S_{r,n})$, let E_χ be the primitive idempotent of $S_{r,n}$ associated to χ, which can be explicitly written in terms of the generators as follows:

$$E_\chi = \prod_{1 \leq i \leq n} \left(\frac{1}{r} \sum_{0 \leq s \leq r-1} \chi(t_i)^s t_i^{-s} \right). \quad (3.1)$$

For $\alpha = (\alpha_1, \ldots, \alpha_n) \in \mathbb{Z}_{\geq 0}^n$, we set $\bar{x}^\alpha = \bar{x}_1^{\alpha_1} \cdots \bar{x}_n^{\alpha_n}$ and $x^\alpha = \bar{x}_1^{\alpha_1} \cdots \bar{x}_n^{\alpha_n}$ for brevity. From (2.18), we obtain another K-basis of $\hat{Y}_{r,n}$:

$$\left\{ E_\chi x^\alpha f_w \mid \chi \in \text{Irr}(S_{r,n}), \alpha = (\alpha_1, \ldots, \alpha_n) \in \mathbb{Z}_{\geq 0}^n, w \in S_n \right\}; \quad (3.2)$$

and from (2.19), we obtain another K-basis of $Y_{r,n}^d$:

$$\left\{ E_\chi x^\beta f_w \mid \chi \in \text{Irr}(S_{r,n}), \beta = (\beta_1, \ldots, \beta_n) \text{ with each } 0 \leq \beta_i \leq d - 1, w \in S_n \right\}. \quad (3.3)$$

An r-tuple $\mu = (\mu_1, \ldots, \mu_n) \in \mathbb{Z}_{\geq 0}^n$ such that $\Sigma_{1 \leq a \leq r} \mu_a = n$ is called an r-composition of n, which is denoted by $\mu \models n$. Let $C_{r,n}$ be the set of r-compositions of n. Assume that $\chi \in \text{Irr}(S_{r,n})$. For $a \in \{1, \ldots, r\}$, let μ_a be the number of elements $j \in \{1, \ldots, n\}$ such that $\chi(t_j) = \zeta_a$. Then the sequence $(\mu_1, \ldots, \mu_r) \in C_{r,n}$, and we denote it by $\text{Comp}(\chi)$.

For each $\mu \models n$, we define a particular character $\chi_\mu^0 \in \text{Irr}(S_{r,n})$ by

\[
\begin{align*}
\chi_\mu^0(t_1) &= \cdots = \chi_\mu^0(t_{\mu_1}) = \zeta_1, \\
\chi_\mu^0(t_{\mu_1+1}) &= \cdots = \chi_\mu^0(t_{\mu_1+\mu_2}) = \zeta_2, \\
& \vdots \vdots \vdots \vdots \vdots \vdots \vdots \\
\chi_\mu^0(t_{\mu_1+\ldots+\mu_{r-1}+1}) &= \cdots = \chi_\mu^0(t_n) = \zeta_r.
\end{align*}
\quad (3.4)
\]

Notice that $\text{Comp}(\chi_\mu^0) = \mu$. From (3.4), we see that the stabilizer of χ_μ^0 under the action of S_n is the Young subgroup S_{μ}, which is defined to be $S_{\mu_1} \times \cdots \times S_{\mu_r}$. Notice that there is a unique representative of minimal length in each left coset in S_n/S_{μ}. Thus, for any $\chi \in \text{Irr}(S_{r,n})$ such that $\text{Comp}(\chi) = \mu$, we define a permutation $\pi_\chi \in S_n$ by requiring that π_χ is the distinguished left coset representative such that

$$\pi_\chi(\chi_\mu^0) = \chi. \quad (3.5)$$
3.2. Isomorphism theorem for degenerate affine and cyclotomic Yokonuma-Hecke algebras. For each $\mu \models n$, we denote by \hat{H}^μ the algebra $\hat{H}_{\mu_1} \otimes \cdots \otimes \hat{H}_{\mu_r}$, which is a free \mathbb{K}-module with basis $\{ x^\alpha \bar{w} \mid \alpha \in \mathbb{Z}_{\geq 0}^n, w \in \mathcal{S}^\mu \}$, and we set m_μ to be the index of the Young subgroup \mathcal{S}^μ in \mathcal{S}_n, that is, $m_\mu = m!/\mu_1! \cdots \mu_r!$.

For each $\mu \models n$, let $\text{Mat}_{m_\mu}(\hat{H}^\mu)$ be the algebra of matrices of size m_μ with coefficients in \hat{H}^μ. It is easy to see that m_μ is also the number of characters $\chi \in \text{Irr}(\mathcal{T}_{r,n})$ such that $\text{Comp}(\chi) = \mu$. Thus, we can label the rows and columns of a matrix in $\text{Mat}_{m_\mu}(\hat{H}^\mu)$ by such characters. Moreover, for two characters χ, χ' such that $\text{Comp}(\chi) = \text{Comp}(\chi') = \mu$, we denote by $1_{\chi,\chi'}$ the matrix in $\text{Mat}_{m_\mu}(\hat{H}^\mu)$ with 1 in line χ and column χ', and 0 elsewhere.

For each $\mu \models n$, we set

$$E_\mu := \sum_{\text{Comp}(\chi) = \mu} E_\chi.$$

Then the set $\{ E_\mu \mid \mu \in \mathcal{C}_{r,n} \}$ forms a complete set of pairwise orthogonal central idempotents in $\hat{Y}_{r,n}$. In particular, we have the following decomposition of $\hat{Y}_{r,n}$ into a direct sum of two-sided ideals:

$$\hat{Y}_{r,n} = \bigoplus_{\text{Comp}(\chi) = \mu} E_\mu \hat{Y}_{r,n}. \quad (3.6)$$

Let $\mu \models n$. We define a linear map

$$\Phi_\mu : E_\mu \hat{Y}_{r,n} \rightarrow \text{Mat}_{m_\mu}(\hat{H}^\mu)$$

by

$$\Phi_\mu(E_\chi x^\alpha f_w) = 1_{\chi,w^{-1}(\chi)} x^{\pi_\chi^{-1}(\alpha)} \bar{w}^{\pi_\chi^{-1}(\chi)} \quad (3.7)$$

for $\chi \in \text{Irr}(\mathcal{T}_{r,n})$ such that $\text{Comp}(\chi) = \mu$, $\alpha \in \mathbb{Z}_{\geq 0}^n$ and $w \in \mathcal{S}_n$.

We also define a linear map

$$\Psi_\mu : \text{Mat}_{m_\mu}(\hat{H}^\mu) \rightarrow E_\mu \hat{Y}_{r,n}$$

by

$$\Psi_\mu(1_{\chi,\chi'} x^\alpha \bar{w}) = E_\chi x^{\pi_\chi(\alpha)} f_{\pi_\chi \pi_\chi^{-1}(\chi')} \quad (3.8)$$

for $\chi, \chi' \in \text{Irr}(\mathcal{T}_{r,n})$ such that $\text{Comp}(\chi) = \text{Comp}(\chi') = \mu$, $\alpha \in \mathbb{Z}_{\geq 0}^n$ and $w \in \mathcal{S}^\mu$.

We define the linear maps $\Phi_{r,n} := \bigoplus_{\mu \in \mathcal{C}_{r,n}} \Phi_\mu$ and $\Psi_{r,n} := \bigoplus_{\mu \in \mathcal{C}_{r,n}} \Psi_\mu$. The following theorem can be proved in exactly the same way as in [PA, Theorem 3.1] (much easier).

Theorem 3.1. Let $\mu \models n$. The linear map Φ_μ is an isomorphism of algebras with the inverse map Ψ_μ. Accordingly, $\Phi_{r,n}$ defines an isomorphism between the degenerate affine Yokonuma-Hecke algebra $\hat{Y}_{r,n}$ and $\bigoplus_{\mu \in \mathcal{C}_{r,n}} \text{Mat}_{m_\mu}(\hat{H}^\mu)$ with the inverse map $\Psi_{r,n}$.

Proof. It is easy to check that $\Phi_\mu \circ \Psi_\mu = \text{Id}$ and $\Psi_\mu \circ \Phi_\mu = \text{Id}$. To check that Ψ_μ is an algebra homomorphism, we need the following crucial equality:

$$E_\chi x^{\pi_\chi(\alpha)} f_{\pi_\chi} = E_\chi f_{\pi_\chi} x^\alpha \quad \text{for any } \text{Comp}(\chi) = \mu \quad (3.9)$$

and the next lemma. We omit the details. \qed
Lemma 3.2. Let $\mu \models n$. There exists an algebra isomorphism
\[\phi_{\mu} : \hat{H}_{\mu} \rightarrow E_{\chi_0} Y_{r,n} E_{\chi_0}, \]
which is defined by $\phi_{\mu}(\bar{x}^\alpha w) = E_{\chi_0} x^\alpha f_w$ for $\alpha \in \mathbb{Z}_{\geq 0}^n$ and $w \in \mathfrak{S}^\mu$.

Remark 3.3. The equality (3.9) can be regarded as a degenerate case of the next one
\[E_{\chi} X^{\pi_\chi} g_{\pi_\chi} = E_{\chi} g_{\pi_\chi} X^{\pi_\chi} \text{ for any } \text{Comp}(\chi) = \mu, \]
which plays an important role in the proof of [PA, Theorem 3.1].

For $\mu \models n$, we set $H^\mu := H_{\mu_1}^d \otimes \cdots \otimes H_{\mu_r}^d$. By definition, H^μ is the quotient of the algebra $\hat{H^\mu}$ by the two-sided ideal generated by the elements
\[(\bar{x}_{\mu_1} + \cdots + \bar{x}_{a-1} + 1 - v_1) \cdots (\bar{x}_{\mu_1} + \cdots + \bar{x}_{a-1} + 1 - v_d), \quad a = 1, \ldots, r. \]
The following theorem can be proved in exactly the same way as in [PA, Corollary 3.2].

Theorem 3.4. There exists an algebra isomorphism between the degenerate cyclotomic Yokonuma-Hecke algebra $Y_{r,n}$ and the direct sum $\bigoplus_{\mu \in \mathfrak{C}_{r,n}} \text{Mat}_{m_\mu}(H^\mu)$.

Remark 3.5. Rostam [Ro, Theorem 5.15] has established an isomorphism between the degenerate cyclotomic Yokonuma-Hecke algebra and some cyclotomic quiver Hecke algebra associated to a quiver given by disjoint copies of cyclic quivers. In [Ro, Theorem 6.30], he has proved a general isomorphism theorem on cyclotomic quiver Hecke algebras, where the associated quiver is provided by a disjoint union of full subquivers. Combined with the isomorphism between the degenerate cyclotomic Hecke algebra and the cyclotomic quiver Hecke algebra associated to a cyclic quiver established by Brundan and Kleshchev [BK2, Theorem 1.1], it concludes that we also obtain an isomorphism between the degenerate cyclotomic Yokonuma-Hecke algebra and a direct sum of matrix algebras over degenerate cyclotomic Hecke algebras.

By an argument analogous to the proof of [Ro, Theorem 6.34], we see that the isomorphism obtained above coincides with the one in Theorem 3.4. That is, in our situation, the analogues of [Ro, Theorems 6.34 and 6.35] also hold.

4. Applications

In this section we present several applications of the isomorphism theorems established in the preceding section.

4.1. Simple modules. By [La, Theorem 17.20], an algebra S and a matrix algebra $R = M_n(S)$ over S (for any fixed $n \geq 1$) are Morita equivalent. For a finite dimensional linear space V, we denote by $V^{(n)}$ the space of n-tuples (v_1, \ldots, v_n) with each $v_i \in V$ ($1 \leq i \leq n$).

Thus, by Theorem 3.1 any simple $\hat{Y}_{r,n}$-module is of the form
\[(M_1 \otimes \cdots \otimes M_r)^{(m_\mu)}, \]
where $\mu = (\mu_1, \ldots, \mu_r) \in \mathfrak{C}_{r,n}$ and each M_k is a simple \hat{H}_{μ_k}-module for $1 \leq k \leq r$. Therefore, we recover the modular representation theory of $\hat{Y}_{r,n}$ established in [WW, Theorem 4.4].
Similarly, by Theorem 3.4, any simple \(Y_{r,n}^d \)-module is of the form
\[
(\mathcal{M}_1 \otimes \cdots \otimes \mathcal{M}_r)^{(m_\mu)},
\]
where \(\mu = (\mu_1, \ldots, \mu_r) \in \mathcal{C}_{r,n} \) and each \(\mathcal{M}_k \) is a simple \(H_{\mu_k}^d \)-module for \(1 \leq k \leq r \). Therefore, we recover the modular representation theory of \(Y_{r,n}^d \) established in [WW, Theorem 5.12].

By Theorem 3.4, \(Y_{r,n}^d \) is split semisimple if and only if for all \(\mu \in \mathcal{C}_{r,n} \), the algebra \(H^\mu \) is split semisimple. By [AMR, Theorem 6.11], this happens if and only if
\[
n! \prod_{1 \leq i < j \leq d - n < l \leq cn} (l + v_i - v_j) \neq 0. \tag{4.1}
\]

Since the tensor product of two cellular algebras is still a cellular algebra and the degenerate cyclotomic Hecke algebra \(H_n^d \) is cellular by [AMR, Theorem 6.3], we get that \(Y_{r,n}^d \) is a cellular algebra by Theorem 3.4.

4.2. Schur elements. In this subsection, we assume that \(Y_{r,n}^d \) is split semisimple, that is, \((4.1) \) is satisfied. We identify \(H^\mu \) with \(H_{\mu_1}^d \otimes \cdots \otimes H_{\mu_r}^d \). Recall the symmetrizing form defined in (2.7), which we can use to define a symmetrizing form \(\tau^\mu \) on \(H^\mu \) by
\[
\tau^\mu(x_1^{i_1} \cdots x_{\mu_1}^{i_{\mu_1}} w_1 \otimes \cdots \otimes x_{\mu_1+\cdots+\mu_{r-1}+1}^{i_{\mu_1+\cdots+\mu_{r-1}+1}} \cdots x_n^{i_n} w_r) = \tau_{\mu_1}(x_1^{i_1} \cdots x_{\mu_1}^{i_{\mu_1}} w_1) \cdots \tau_{\mu_r}(x_{\mu_1+\cdots+\mu_{r-1}+1}^{i_{\mu_1+\cdots+\mu_{r-1}+1}} \cdots x_n^{i_n} w_r). \tag{4.2}
\]

For any \(n \geq 1 \), \(\lambda = (\lambda_1, \ldots, \lambda_k) \) is called a partition of \(n \) if it is a finite sequence of non-increasing nonnegative integers whose sum is \(n \). We write \(\lambda \vdash n \) if \(\lambda \) is a partition of \(n \), and we define \(|\lambda| := n \). A \(d \)-partition of \(n \) is an ordered \(d \)-tuple \(\lambda = (\lambda^{(1)}, \lambda^{(2)}, \ldots, \lambda^{(d)}) \) of partitions \(\lambda^{(k)} \) such that \(|\lambda| := \sum_{k=1}^{d} |\lambda^{(k)}| = n \).

It is known that the simple modules of the split semisimple algebra \(H_n^d \) are labelled by \(d \)-partitions of \(n \). For \(\lambda \) a \(d \)-partition of \(n \), let \(\mathcal{M}_\lambda \) be the corresponding simple module of \(H_n^d \). We denote by \(s_\lambda := s_{\mathcal{M}_\lambda} \) the Schur element of \(\mathcal{M}_\lambda \) associated to \(\tau_n \), which has been explicitly calculated in \([Z1, \text{Theorem 4.2 and 22, \text{Theorem 5.5}}] \).

Let \(\mu \in \mathcal{C}_{r,n} \) and let \(\underline{\lambda} = (\lambda^1, \ldots, \lambda^r) \) be an \(r \)-tuple of \(d \)-partitions such that \(\mu = (|\lambda^1|, \ldots, |\lambda^r|) \). Set \(\mathcal{M}_{\underline{\lambda}} := \mathcal{M}_{\lambda^1} \otimes \cdots \otimes \mathcal{M}_{\lambda^r} \). We see that \(\mathcal{M}_{\underline{\lambda}} \) is a simple \(H^\mu \)-module. Moreover, by (4.2), the Schur element \(s_{\underline{\lambda}} \) of \(\mathcal{M}_{\underline{\lambda}} \) associated to \(\tau^\mu \) is given by
\[
s_{\underline{\lambda}} = s_{\lambda^1} \cdots s_{\lambda^r}. \tag{4.3}
\]

Now let us consider the algebra \(\bigoplus_{\mu \in \mathcal{C}_{r,n}} \text{Mat}_{m_\mu}(H^\mu) \). By [JaPA, Lemma 4.4(i)], we obtain a symmetrizing form on it, which is given by \(\bigoplus_{\mu \in \mathcal{C}_{r,n}} \tau^\mu \circ \text{Tr}_{\text{Mat}_{m_\mu}} \). Moreover, by [JaPA, Lemma 4.4(ii)], the associated Schur element of the simple module, which is indexed by an \(r \)-tuple of \(d \)-partitions of \(n \), is given by the formula (4.3).

Finally, let us consider the split semisimple degenerate cyclotomic Yokonuma-Hecke algebra \(Y_{r,n}^d \). By the discussion in Subsection 4.1, we see that the simple \(Y_{r,n}^d \)-modules are indexed by the set of \(r \)-tuples of \(d \)-partitions of \(n \). Assume that \(\underline{\lambda} = (\lambda^1, \ldots, \lambda^r) \) is
an r-tuple of d-partitions of n. By Theorem 3.4 and the preceding discussion, we obtain naturally a symmetrizing form on $Y^d_{r,n}$, which is given by
\[
\rho_n := \bigoplus_{\mu \in \mathcal{C}_{r,n}} \tau^\mu \circ \text{Tr}_{\text{Mat}_m} \circ \Phi_\mu, \tag{4.4}
\]
where Φ_μ is the induced linear map on $E_\mu Y^d_{r,n}$ by Φ_μ defined in (3.7). And moreover, the associated Schur element of the simple $Y^d_{r,n}$-module, which is indexed by λ, is given by the formula (4.3).

4.3. Alternative formula for ρ_n. We consider the following linear form $\hat{\rho}_n : Y^d_{r,n} \to \mathbb{K}$ on $Y^d_{r,n}$:
\[
\hat{\rho}_n(t_1^{s_1} \cdots t_n^{s_n} x_1^{r_1} \cdots x_n^{r_n} f_w) = \begin{cases} \tau^n & \text{if } r_1 = \cdots = r_n = d - 1, s_1 \equiv \cdots \equiv s_n \equiv 0 \pmod{r} \text{ and } w = 1, \\ 0 & \text{otherwise}. \end{cases} \tag{4.5}
\]
It turns out that $\hat{\rho}_n$ actually coincides with the natural symmetrizing from ρ_n.

Proposition 4.1. The form $\hat{\rho}_n$ coincides with the symmetrizing from ρ_n on $Y^d_{r,n}$.

Proof. It suffices to show that the two forms take the same value on the basis given in (3.3). Fix $\mu \in \mathcal{C}_{r,n}$ and some χ such that $\text{Comp}(\chi) = \mu$, $\beta = (\beta_1, \ldots, \beta_n)$ with each $0 \leq \beta_i \leq d - 1$ and $w \in S_n$. We use (3.1) to get that
\[
\hat{\rho}_n(E_\chi x^\beta f_w) = \hat{\rho}_n \left(\prod_{1 \leq i \leq n} \frac{1}{r} \sum_{0 \leq s \leq r-1} \chi(t_i)^s t_i^{-s} x_1^{\beta_1} \cdots x_n^{\beta_n} f_w \right)
\]
\[
= \hat{\rho}_n \left(\prod_{1 \leq i \leq n} \frac{1}{r} x_1^{\beta_1} \cdots x_n^{\beta_n} f_w \right)
\]
\[
= \begin{cases} 1 & \text{if } \beta_1 = \cdots = \beta_n = d - 1 \text{ and } w = 1, \\ 0 & \text{otherwise}. \end{cases}
\]
On the other hand, by (4.4) we have
\[
\rho_n(E_\chi x^\beta f_w) = \tau^\mu \circ \text{Tr}_{\text{Mat}_m} \circ \Phi_\mu(E_\chi x^\beta f_w)
\]
\[
= \tau^\mu \circ \text{Tr}_{\text{Mat}_m} \left(1_{X,w^{-1}(\chi)} \bar{x}_{\pi^{-1}(\beta)} \bar{x}_{\pi^{-1}(1)} w \pi w^{-1}(\chi) \right).
\]
We have $w^{-1}(\chi) = \chi$ if and only if $\pi_x^{-1} w \pi_x \in \mathcal{G}_\mu$. By the equality above, (4.2) and the fact that $\pi_x^{-1} w \pi_x = 1$ if and only if $w = 1$, we have
\[
\rho_n(E_\chi x^\beta f_w) = \tau^\mu \left(\bar{x}_{\pi^{-1}(\beta)} \bar{x}_{\pi^{-1}(1)} \pi_x^{-1} w \pi_x \right)
\]
\[
= \begin{cases} 1 & \text{if } \beta_1 = \cdots = \beta_n = d - 1 \text{ and } w = 1, \\ 0 & \text{otherwise}. \end{cases}
\]
We have proved this proposition. \hfill \Box

Remark 4.2. Proposition 4.1 immediately implies that $\hat{\rho}_n$ is a non-degenerate trace on $Y^d_{r,n}$. Thus, we have given another proof of Theorem 2.4.
Acknowledgements. The author is deeply indebted to Dr. S. Rostam for pointing out the fact that Theorem 3.4 can be deduced from the results in the latest version of [Ro]. Many ideas of this paper originate from the reference [PA].

References

[AK] S. Ariki and K. Koike, A Hecke algebra of (\mathbb{Z}/r\mathbb{Z})\wr S_n and construction of its irreducible representations, Adv. Math. 106 (1994) 216-243.

[AMR] S. Ariki, A. Mathas and H. Rui, Cyclotomic Nazarov-Wenzl algebras, Nagoya Math. J. 182 (2006) 47-134.

[BK1] J. Brundan and A. Kleshchev, Schur-Weyl duality for higher levels, Selecta Math. (N.S) 14 (2008) 1-57.

[BK2] J. Brundan and A. Kleshchev, Blocks of cyclotomic Hecke algebras and Khovanov-Lauda algebras, Invent. Math. 178 (2009) 451-484.

[ChJa] M. Chlouveraki and N. Jacon, Schur elements for the Ariki-Koike algebra and applications, J. Algebraic Combin. 35 (2012) 291-311.

[ChPA1] M. Chlouveraki and L. Poulain d’Andecy, Representation theory of the Yokonuma-Hecke algebra, Adv. Math. 259 (2014) 134-172.

[ChPA2] M. Chlouveraki and L. Poulain d’Andecy, Markov traces on affine and cyclotomic Yokonuma-Hecke algebras, Int. Math. Res. Not. (2015) rnv257, 62 pp.

[ChS] M. Chlouveraki and V. Sécherre, The affine Yokonuma-Hecke algebra and the pro-p-Iwahori-Hecke algebra, Math. Res. Lett., to appear, arXiv: 1504.04557.

[C1] W. Cui, Affine cellularity of affine Yokonuma-Hecke algebras, arXiv: 1510.02647.

[C2] W. Cui, A categorical equivalence between affine Yokonuma-Hecke algebras and some quiver Hecke algebras, arXiv: 1405.6705.

[CW] W. Cui and J. Wan, Modular representations and branching rules for affine and cyclotomic Yokonuma-Hecke algebras, submitted, arXiv: 1506.06570.

[ER] J. Espinoza and S. Ryom-Hansen, Cell structures for the Yokonuma-Hecke algebra and the algebra of braids and ties, arXiv: 1506.00715.

[GIM] M. Geck, L. Iancu and G. Malle, Weights of Markov traces and generic degrees, Indag. Math. 11 (2000) 379-397.

[GP] M. Geck and G. Pfeiffer, Characters of finite Coxeter groups and Iwahori-Hecke algebras, London Mathematical Society Monographs, Vol. 21, Oxford University Press, New York, 2000.

[JaPA] N. Jacon and L. Poulain d’Andecy, An isomorphism theorem for Yokonuma-Hecke algebras and applications to link invariants, Math. Z. 283 (2016) 301-338.

[Ju1] J. Juyumaya, Sur les nouveaux générateurs de l’algèbre de Hecke \mathfrak{H}(G, U, 1). (French) On new generators of the Hecke algebra \mathfrak{H}(G, U, 1), J. Algebra 204 (1998) 49-68.

[Ju2] J. Juyumaya, Markov trace on the Yokonuma-Hecke algebra, J. Knot Theory Ramifications 13 (2004) 25-39.

[JuK] J. Juyumaya and S. Kannan, Braid relations in the Yokonuma-Hecke algebra, J. Algebra 239 (2001) 272-297.

[K] A. Kleshchev, Linear and projective representations of symmetric groups. Cambridge Tracts in Mathematics, 163. Cambridge University Press, Cambridge, 2005. xiv + 277 pp.

[La] T. Lam, Lectures on modules and rings, vol. 189, Springer, Berlin (1999).

[Lu] G. Lusztig, Character sheaves on disconnected groups. VII, Represent. Theory (electronic) 9 (2005) 209-266.

[M] A. Mathas, Matrix units and generic degrees for the Ariki-Koike algebras, J. Algebra 281 (2004) 695-730.

[MM] G. Malle and A. Mathas, Symmetric cyclotomic Hecke algebras, J. Algebra 205 (1998) 275-293.

[OV] A. Okounkov and A. Vershik, A new approach to representation theory of symmetric groups, Selecta Math. (N.S) 2 (1996) 581-605.

[PA] L. Poulain d’Andecy, Invariants for links from classical and affine Yokonuma-Hecke algebras, arXiv:1602.05129.
[Ro] S. Rostam, *Cyclotomic Yokonuma-Hecke algebras are cyclotomic quiver Hecke algebras*, 45 pages (2016), arXiv:1603.03901v2.

[RS] A. Ram and A. Shepler, Classification of graded Hecke algebras for complex reflection groups, Comment. Math. Helv. 78 (2003) 308-334.

[WW] J. Wan and W. Wang, *Modular representations and branching rules for wreath Hecke algebras*, Int. Math. Res. Not. (2008) Art. ID rnn 128, 31 pp.

[Yo] T. Yokonuma, *Sur la structure des anneaux de Hecke d’un groupe de Chevalley fini*, C. R. Acad. Sci. Paris Ser. A-B 264 (1967) 344-347.

[Z1] D. Zhao, The symbolical and cancellation-free formulae for Schur elements, Monatsh. Math. 173 (2014) 441-453.

[Z2] D. Zhao, Schur elements of degenerate cyclotomic Hecke algebras, Israel J. Math. 205 (2015) 485-507.

School of Mathematics, Shandong University, Jinan, Shandong 250100, P.R. China.

E-mail address: cwdeng@amss.ac.cn