Nano-Kelvin thermometry and temperature control: beyond the thermal noise limit

Wenle Weng,1,4 James D. Anstie,2,1 Thomas M. Stace,3 Geoff Campbell,4 Fred N. Baynes,1 and Andre N. Luiten2,1

1School of Physics, University of Western Australia, WA 6009, Australia
2Institute for Photonics and Advanced Sensing and School of Chemistry and Physics, University of Adelaide, SA 5005, Australia
3School of Mathematics and Physics, University of Queensland, Brisbane, Queensland 4072, Australia
4Department of Quantum Science, Australian National University, ACT 0200, Australia

(Dated: April 1, 2014)

We demonstrate thermometry with a resolution of 80 nK/√Hz using an isotropic crystalline whispering-gallery mode resonator based on a dichroic dual-mode technique. We simultaneously excite two modes that have a mode frequency ratio very close to two (∓0.3 ppm). The wavelength- and temperature-dependence of the refractive index means that the frequency difference between these modes is an ultra-sensitive proxy of the resonator temperature. This approach to temperature sensing automatically suppresses sensitivity to thermal expansion and vibrationally induced changes of the resonator. We also demonstrate active suppression of temperature fluctuations in the resonator by controlling the intensity of the driving laser. The residual temperature fluctuations are shown to be below the limits set by fundamental thermodynamic fluctuations of the resonator material.

PACS numbers: 07.20.Dt, 42.60.Da, 42.62.Fi

The high-resolution measurement of energy has long fascinated humans with its culmination seen in ultra-high sensitivity calorimeters1, 2 and bolometers3, 4. These, and related ideas have found a broad range of applications including bolometric superconducting phonon-counters for quantum communication5, 6, ultra-sensitive radio astronomy5, 6. The record for absolute thermometric sensitivity has been realised at cryogenic temperatures, achieving better than 100pK/√Hz7.

In this letter we develop a new method to measure temperature based on excitation of a millimetre-scale Whispering-Gallery (WG) optical resonator with two widely frequency spaced modes. These compact resonators have exceptionally high Q-factors and offer the potential to provide high-stability microwave and optical signals8–12. Recently they have been applied to high-sensitivity label-free sensors for molecules and viruses13, 14 and for optical comb generation15. Nonetheless, an issue that afflicts all these applications is the high temperature sensitivity of WG resonators12, 16, particularly when compared to conventional vacuum-spaced Fabry-Perot resonators17–21. In this letter we turn this problem to our advantage by using the WG resonator as an ultra-sensitive thermometer.

To suppress unwanted temperature fluctuations in WG resonators several groups have demonstrated in situ thermometry by measuring the frequency difference between two orthogonally polarised modes. The best of these techniques have demonstrated a resolution of ∼100nK/√Hz2, 22, and subsequent temperature stabilisation based on this sensing has resulted in improvement to the long term frequency stability23, 24. In contrast, we present a two-colour approach to measure the resonator temperature with high resolution. In comparison to the birefringent dual-mode technique, our approach can be used in both anisotropic and isotropic resonators, which expands the range of material candidates.

Isotropic materials have shown the highest Q-factors to date25, which offers potentially higher temperature resolution. On the other hand, a combination of the dual-colour and dual-polarisation approaches in an anisotropic material (e.g. MgF2) can further enhance the temperature sensitivity. Furthermore, our dual-colour technique strongly rejects noise from thermal expansion fluctuations and vibrations, giving us the ability to measure the mode-averaged temperature with a resolution below that of the fundamental thermal temperature fluctuations12, 26, 27.

The frequency of a WG mode depends on temperature through: (a) the temperature dependence of the refractive index (thermo-optic effect) as well as (b) the thermal expansion of the resonator. The first dependence leads to sensitivity to the temperature solely within the the optical mode, while in the latter the the mode frequency depends on the temperature distribution throughout the entire resonator volume. For simplicity, we assume a steady-state temperature distribution, \(T_P(r) \), when the resonator is excited by some input optical power, \(P \), that is solely dependent on the radial co-ordinate, \(r \). This approximation reflects the typical triple cylindrical symmetry exhibited by the (i) resonator geometry, (ii) optical power distribution and (iii) thermal coupling to the external environment. When the power-induced temperature changes from ambient are small (i.e. \(\Delta T_P(r) = T_P(r) - T_0(r) \ll T_0(r) \)), we can express the frequency, \(f_m \), of the \(m^{\text{th}} \) mode as:

\[
\frac{f_m}{f_{m,0}} = 1 - 2\alpha \int_0^R \frac{\Delta T_P(r) \, rdr}{R^2} - \frac{\beta(f_m)}{n(f_m)} \Delta T_R - \gamma_m \tag{1}
\]

where \(f_{m,0} \) is the frequency of the \(m^{\text{th}} \) mode in the absence of excitation power, \(\alpha \) is the linear thermal expansion coefficient, and \(\beta(f_m) \) and \(n(f_m) \) are the thermo-optic coefficient and refractive index of the resonator ma-
terial, respectively, \(\bar{R} \) is the radius at the mode intensity maximum, and \(\gamma_m = \frac{2Q_0}{Q_0 + Q_e} n_{\text{Kerr}} \frac{\mathcal{F}}{n(m)} \pi \gamma_m \) characterises the refractive index dependence upon the optical intensity, which depends on the Kerr coefficient \(n_{\text{Kerr}} \), and finesse \(\mathcal{F} \) [28]. \(Q_0 \) and \(Q_e \) are the intrinsic Q-factor and coupling Q-factor respectively. We define an effective mode area \(A_m = \frac{|E_{m1}|^2 dA}{|E_{m1}|^2 + |E_{m2}|^2} \), where \(E_m \) is the amplitude of the \(m \)th mode in the transverse plane and \(E_{\text{tot}} \) is the field amplitude of the resonant energy (which allows for more than 1 mode to be excited simultaneously).

The basis of our thermometer is to simultaneously lock two optical signals to two WG modes that have frequencies \(f_1 \) and \(f_2 \) with \(f_2 \approx 2f_1 \). These modes are chosen to be within the same transverse mode family (i.e. identical polar and radial field maxima numbers [29]) to maximise their spatial overlap. For simplicity the two optical signals are derived from a single laser with frequency \(f_L \).

The direct output of the laser is locked using the Pound-Drever-Hall (PDH) technique [30] to the lower frequency WG mode, i.e. \(f_L = f_1 \). We frequency double this laser signal and shift it into resonance with the second WG mode using an Acousto-Optic Modulator (AOM), so that \(2f_L + f_{\text{AOM}} = f_2 \). From Eq. (1) it follows that

\[
f_{\text{AOM}} \approx 2f_L \left(\frac{\beta(f_1)}{n(f_1)} - \frac{\beta(f_2)}{n(f_2)} \right) \Delta T_P(R) + C + \Gamma + N \tag{2}
\]

where \(C = f_{2,0} - 2f_{1,0}, \Gamma = 2f_L(\gamma_1 - \gamma_2) \) is the relative non-linear Kerr shift, and \(N = \delta f_2 - 2\delta f_1 \) which accounts for residual errors in the laser locking systems, i.e. \(\delta f_1 = f_L - f_1 \) and \(\delta f_2 = 2f_L + f_{\text{AOM}} - f_2 \). Importantly, the high degree of spatial overlap between the two modes gives rise to nearly identical frequency dependence on thermal expansion, so that the distributed thermal expansion term appearing in Eq. (1) is strongly suppressed in Eq. (2) we estimate its fractional contribution to be less than 1 part in \(10^6 \) and so we ignore it in what follows.

The first term on right hand side in Eq. (2) indicates that the AOM frequency provides a high-quality read-out of the resonator temperature if the thermo-optic coefficient at \(f_1 \) and \(f_2 \) is sufficiently different to dominate over the noise terms, \(\Gamma + N \). We show that this is the case for this resonator with sensing in the nK regime [31].

The experimental setup is shown in Fig. 1. A 5 mm radius CaF\(_2\) WGM resonator is mounted on a piezo-actuated translation stage within an acoustic and thermal shield. The laser light was coupled into the resonator using a high index prism. A conventional thermometer/heater pair was used to pre-stabilize the temperature of the system at ±0.1 K level. Light from a Nd:YAG laser at 1064 nm, together with its second harmonic at 532 nm (generated in a single-pass nonlinear crystal), was transferred into the shielded volume using single-mode optical fibres. The 532 nm light was double-passed through an AOM to enable independent frequency tuning of this beam. The 1064 nm light was also double-passed through a second AOM for reasons explained below. The two AOMs were driven with independent oscillators with nominal frequency around 80 MHz and were set to shift the frequency upwards. Both beams were recombined inside the shielded volume using a dichroic filter before being coupled into the resonator. The transmitted beams were separated using a second dichroic filter and then registered by two photodetectors. The laser was frequency modulated at 1.638 MHz and the two detected signals were synchronously demodulated using the traditional PDH technique to generate independent error signals appropriate to lock the laser signals onto their respective modes. The error signal generated from the 1064 nm mode was integrated and sent directly back to the laser controller to maintain the frequency lock. The second harmonic light was frequency locked by controlling the frequency of the synthesiser that drove the AOM.

As the evanescent field has different scale lengths for the two modes [29], it was necessary to over-couple the 1064 nm mode in order to achieve adequate coupling for the 532 nm mode. Thus, the loaded Q for the modes was \(2.6 \times 10^8 \) and \(3.6 \times 10^8 \) for the 1064 nm and 532 nm modes respectively. This situation may be overcome by designing an appropriate coupling scheme [32].

The fast fluctuations of the WG-resonator thermometer were monitored by observing the frequency fluctuations of \(f_{\text{AOM}} \) with a spectrum analyser, while slower fluctuations were monitored by a frequency counter. In addition, we measured the frequency of the lower frequency mode (\(f_1 \)) with a stabilised frequency comb (\(\Delta f/f < 10^{-13} \) for time scales > 1 s). For these experiments, the excitation power was deliberately kept at low levels (50 \(\mu \)W for 532 nm and 70 \(\mu \)W for 1064 nm) so that photo-thermal [16, 32] and Kerr noise were both at least 10 dB below the measured \(f_{\text{AOM}} \) spectrum at all
The mode-frequency to temperature relation is combined with the observed relation to the AOM frequency to give a thermometer calibration of \(\frac{df_{AOM}}{dT} = -97.42 \) MHz/K. In what follows, we examine the fluctuations of \(f_{AOM} \) in more detail, but first we explain the means for temperature control of the resonator.

The resonator temperature can be controlled with a high bandwidth by actively controlling the input optical power. For these experiments we increased the 1064 nm power to \(\sim 2 \) mW to increase the range of the temperature control system. By directly measuring the transfer function between \(f_{AOM} \) and the 1064 nm power, we find the control bandwidth is \(> 1 \) kHz. The control actuator is indicated on Fig. 3 a as the dotted line in which the drive power of the 1064 nm AOM is actively controlled to maintain the frequency of the AOM at a fixed value, which locks the resonator temperature. With this thermal control, the average mode temperature can be stabilised at the 100 nK level for more than an hour as seen on Fig. 3 a. A residual drift of \(\sim 2.5 \) MHz/hr in the mode frequency arises because it depends upon the entire temperature distribution, which is uncontrolled. The ripples with a \(\sim 300 \) s period are associated with room temperature modulation from the air-conditioning. Fig. 3 b shows a time-domain representation of the temperature fluctuations of the controlled and uncontrolled resonator using the Allan deviation \(\beta \). We see that the control system suppresses the long-term temperature fluctuations by more than 4 orders of magnitude to the 30 nK level. The long term temperature stability appears flat as a result of the interaction of the free running fluctuations and the transfer function of our control loop: a more sophisticated control system could result in further suppression. In Fig. 3c, we show the Allan deviation of the locked 1064 nm mode frequency when the temperature is stabilised. The performance is substantially worse than one would expect if the mode frequency only depended upon the temperature in the mode (\(\sim 5 \times 10^{-13} \) at 1 second averaging time). Nonetheless, the temperature control technique suppressed the mode frequency fluctuations by nearly 1 order of magnitude.

Fig. 4 shows the power spectral density (PSD) of \(f_{AOM} \) when it is free-running, and when it is actively controlled. We also display the fundamental temperature fluctuations calculated using the method in Ref. 10. We assume that the two optical modes have large spatial overlap, which is reasonable given that the thermal wavelength of even the highest frequency thermal noise (\(\sim 1 \) kHz) considered here is much larger than the transverse extent of the optical modes, or their separation 10. The stabilised mode temperature fluctuation exceeds the calculated fundamental thermal fluctuations by a factor of 10 at low frequencies because the resonator is also subject to fluctuations in ambient temperature and input-power.

Fig. 4 also shows the noise floor of the temperature sensor (i.e. \(N + \Gamma \) in Eq. 2), which arises from the residual frequency noise in the two optical frequency stabilisation loops as well as the effect of Kerr fluctuations induced by the input intensity control. Residual frequency noise in the stabilisation loops was independently estimated by measuring the noise in the frequency locking systems when the lasers were detuned from resonance: in these circumstances, we measure the sum of any electronic, shot-noise, residual amplitude modulation (RAM) and residual intensity noise (RIN) that limit the frequency stabilization loops. The RIN in the environs of the PDH modulation frequency was seen to be the dominant contributor to this noise limit and sets a resulting 80 nK/\(\sqrt{\text{Hz}} \) temperature sensitivity that is reasonably frequency-independent. It can be seen that this sensitivity is below the fundamental thermal noise of the resonator for thermal frequencies below 3 Hz.

Finally, Fig. 4 shows the residual temperature fluct-
FIG. 4. PSD of f_{AOM} and its projected mode temperature. f_{AOM} is an in-loop signal that contains the lock instability noise, so below the lock instability noise floor (dark blue trace) the stabilised f_{AOM} PSD (light blue trace) does not project the real temperature PSD.

modes. This type of noise floor could be minimised by modulating the power of both excited modes together in a judiciously chosen ratio that results in the same effective Kerr shift in the two modes. We have not undertaken this procedure here since it was not the limiting factor in the performance of the temperature sensor. This induced noise floor is also shown on Fig. 4 and was determined by measuring the spectrum of the intensity modulation required to keep the temperature stabilised. The transfer coefficient between intensity and the resulting Kerr frequency shift was measured by applying an intentionally large intensity modulation. The resulting Kerr sensitivity was in broad agreement with the theoretical shifts expected from the relatively large mode volumes ($\sim 100\mu m \times 2\mu m \times 2$ cm).

This experiment demonstrates the potential of the technique. There are several routes to further improve the sensitivity and resolution: (a) Reduce the residual noise in the frequency locking system by increasing the Q-factor of the modes. To this end, a more sophisticated coupling would reduce the current difference in evanescent coupling strengths, thereby improving the Q-factor [32]. (b) Increase the difference between the thermo-optic coefficients for the fundamental and second harmonic by moving to fundamental wavelength of 800-900 nm. This difference can be ~ 4 times larger than that of the two wavelengths used here [37]. (c) Combine the wavelength- and polarisation-dependent thermal-sensing techniques in a material such as MgF$_2$. Combining these approaches, we estimate that it is feasible to obtain a sensitivity below 10 nK/\sqrt{Hz} with the same detection noise.

To conclude, we report a dichroic mode temperature sensing and thermal stabilisation scheme in a WGM resonator. The experiment achieves tens of nano-Kelvin temperature stability by suppressing thermal fluctuations below the fundamental thermal noise level. This
technique opens the possibility for the WG mode resonator as an ultra-sensitive thermometer.

Acknowledgements The authors gratefully acknowledge financial support from the Australian Research Council under grants DP0877938, FT0991631, LE110100054 and LE100100009 that enabled this work. The authors also wish to acknowledge the South Australian Government who have provided generous financial support through the Premier’s Science and Research Fund. The authors thank Ping Koy Lam for developing the facility for shaping the resonator and Frank Van Kann for useful discussions. W. Weng gratefully acknowledges financial support from China Scholarship Council and University of Western Australia.

wlweng@physics.uwa.edu.au

[1] L. D. Hansen and R. M. Hart, Thermochim. Acta 417, 257 (2004).
[2] I. Wadso, Thermochim. Acta 394, 305 (2002).
[3] P. Richards, J. Appl. Phys. 76, 1 (1994).
[4] H. Takesue, S. W. Nam, Q. Zhang, R. H. Hadfield, T. Honjo, K. Tamaki, and Y. Yamamoto, Nature photonics 1, 343 (2007).
[5] M. Piat, J.-M. Lamarre, J. Meissonnier, J.-P. Torre, P. Camus, A. Benoit, J.-P. Crussaire, P. A. Ade, J. J. Bock, A. E. Lange, et al., in Astronomical Telescopes and Instrumentation (International Society for Optics and Photonics, 2003) pp. 740–748.
[6] S. I. Woods, S. M. Carr, T. M. Jung, A. C. Carter, and R. U. Datla, Journal of Applied Physics 108, 024505 (2010).
[7] D. A. Sergatskov, P. K. Day, A. V. Babkin, R. C. Nelson, T. D. McCarson, S. T. P. Boyd, and R. V. Duncan, AIP Conference Proceedings 684, 1009 (2003).
[8] A. G. Mann, C. Sheng, and A. N. Luiten, IEEE Trans. Instrum. Meas. 50, 519 (2001).
[9] M. E. Tobar, E. N. Ivanov, C. R. Locke, P. L. Stanwix, J. G. Hartnett, A. N. Luiten, R. B. Warrington, P. T. Fisk, M. A. Lawn, M. J. Wouters, et al., IEEE Trans. Ultrason., Ferroelectr. Freq. Control 53, 2386 (2006).
[10] B. Sprenger, H. Schwegel, Z. Lu, S. Svitlov, and L. Wang, Opt. Lett. 35, 2870 (2010).
[11] W. Liang, V. Ilchenko, A. Savchenkov, A. Matsko, D. Seidel, and L. Maleki, Opt. Lett. 35, 2822 (2010).
[12] J. Alnis, A. Schliesser, C. Y. Wang, J. Hofer, T. J. Kippenberg, and T. H. Hänsch, Phys. Rev. A 84, 011804 (2011).
[13] A. M. Armani, R. P. Kulkarni, S. E. Fraser, R. C. Flagan, and K. J. Vahala, Science 317, 783 (2007).
[14] F. Vollmer, S. Arnold, and D. Keng, Proc. Natl. Acad. Sci. USA 105, 20701 (2008).
[15] T. Kippenberg, R. Holzwarth, and S. Diddams, Science 332, 555 (2011).
[16] A. B. Matsko, A. A. Savchenkov, N. Yu, and L. Maleki, J. Opt. Soc. Am. B 24, 1324 (2007).
[17] T. Kessler, C. Hagemann, C. Grebing, T. Legero, U. Sterr, F. Riehle, M. Martin, L. Chen, and J. Ye, Nat. Photonics 6, 687 (2012).
[18] S. Amairi, T. Legero, T. Kessler, U. Sterr, J. B. Wübben, O. Mandel, and P. O. Schmidt, Appl. Phys. B 1 (2012).
[19] K. Numata, A. Kemery, and J. Camp, Phys. Rev. Lett. 93, 250602 (2004).
[20] S. A. Webster, M. Oxborrow, S. Puglia, J. Millo, and P. Gill, Phys. Rev. A 77, 033847 (2008).
[21] J. Millo, D. V. Magalhaes, C. Mandache, Y. Le Coq, E. M. L. English, P. G. Westergaard, J. Lodewyck, S. Bize, P. Lemonde, and G. Santarelli, Phys. Rev. A 79, 053829 (2009).
[22] D. V. Strekalov, R. J. Thompson, L. M. Baumgartel, I. S. Grudinin, and N. Yu, Opt. Express 19, 14495 (2011).
[23] I. Fescenko, J. Alnis, A. Schliesser, C. Wang, T. Kippenberg, and T. Hänsch, Opt. Express 20, 19185 (2012).
[24] L. M. Baumgartel, R. J. Thompson, and N. Yu, Opt. Express 20, 29798 (2012).
[25] A. A. Savchenkov, A. B. Matsko, V. S. Ilchenko, and L. Maleki, Opt. Express 15, 6768 (2007).
[26] V. Braginsky, M. Gorodetsky, and S. Vyatchanin, Phys. Lett. A 264, 1 (1999).
[27] M. L. Gorodetsky and I. S. Grudinin, J. Opt. Soc. Am. B 21, 097 (2004).
[28] A. Schliesser, *Cavity Optomechanics and Optical Frequency Comb Generation with Silica Whispering-Gallery-Mode Microresonators*, Ph.D. thesis, Ludwig Maximilian University of Munich (2009).
[29] B. E. Little, J.-P. Laine, and H. A. Haus, J. Lightwave Technol. 17, 704 (1999).
[30] R. Drever, J. L. Hall, F. Kowalski, J. Hough, G. Ford, A. Munley, and H. Ward, Appl. Phys. B 31, 97 (1983).
[31] We note that suppressing mode-averaged temperature fluctuations using this technique does not significantly improve the absolute frequency stability of the WGM resonator. Eq. 1 shows that the mode frequency depends on the temperature distribution throughout the resonator, which is not fixed by mode-averaged temperature control.
[32] M. Ghulinyan, F. Ramiro-Manzano, N. Prtljaga, R. Guider, I. Carusotto, A. Pitanti, G. Pucker, and L. Pavesi, Phys. Rev. Lett. 110, 163901 (2013).
[33] K. Goda, K. McKenzie, E. E. Mikhailov, P. K. Lam, D. E. McClelland, and N. Mavalvala, Phys. Rev. A 72, 043819 (2005).
[34] A. A. Savchenkov, A. B. Matsko, V. S. Ilchenko, and L. Maleki, J. Opt. Soc. Am. B 24, 2988 (2007).
[35] A. Feldman, D. Horowitz, R. M. Waker, and M. J. Dodge, *Optical Materials Characterization*, Final Technical Report February 1, 1978-September 30, 1978, Technical Report (DTIC Document, 1979).
[36] D. W. Allan, Proc. IEEE 54, 221 (1966).
[37] G. Ghosh, *Handbook of Optical Constants of Solids: Handbook of Thermo-Optic Coefficients of Optical Materials with Applications* (Academic Press, 1998).