THE POTENTIAL ROLE OF HERBALS AS NEPHROPROTECTIVE – A NOVEL APPROACH

Anitha Kuttiappan, Mohana L Sabapathi, Saravanakumar Kasimedu, Bhavya S Peddamadi, Bhavana R Konduru, Sandhya Pineni, Baby Thota.

Department of Pharmaceutical Sciences, Sree Vidyaniethan College of Pharmacy, A Rangampet, Tirupathi-517102, A.P, India.

INTRODUCTION

Nephrototoxic injury is commonly caused by drugs such as antibiotics, analgesics, and contrast agents. In some cases, such as the aminoglycosides and amphotericin B, the drug itself will damage the kidneys [1]. When the kidneys are exposed to such toxic agent and the duration of exposure, either accidentally or intentionally damage can occur in a number of ways, depending upon the agent. People are using herbal medicines from centuries onwards for safety, efficacy, cultural acceptability and for lesser side effects. Plant and plant products have been utilized with varying success to cure and prevent diseases throughout the world [2]. Therapeutically important drugs can be developed from plant sources which are used in traditional systems of medicines. Indian traditional system of medicine is based on the empirical knowledge of observations and the experience and more than 5000 plants are used by different ethnic communities in India [3].

Nephroprotectives are the substances which possess protective activity against nephrotoxicity. Medicinal plants have curative properties due to the presence of various active principles in them [4]. Ancient literature has illustrated various herbs for the cure of kidney disease [5]. Administration of various medicinal plants possessing nephroprotective activity along with different nephrotoxic agents may attenuate its toxicity [6]. Ancient literature has prescribed various herbs for the cure of kidney disease. The term "Pashanabeda" has been sited in literature to identify a group of plants, which have been extensively used in indigenous system of medicine to dissolve urinary calculi & stones. Eg: Aerva lanata, Crataeva nurvala, Pongamia prinnata etc. Some other plants mentioned in literature include T.terrestris, O.sanctum, Zea mays etc [7]. In the present review an attempt is made to list out the plants that showed nephroprotective activity.
Plants showing potential against Nephrotoxicity

Protective effect of glycyrrhizin on Gentamycin induced acute renal failure in rats

The effects of glycyrrhizin (200 mg/kg/p.o) on renal function in association with the regulation of aquaporin 2 water channel in rats with Gentamycin (100 mg/kg/i.p) induced acute renal failure was investigated. Polyuria in rats with Gentamycin-induced acute renal failure was associated with down-regulation of renal aquaporin 2 in the inner and outer renal medulla, and cortex [8]. Glycyrrhizin administration restored the expression of aquaporin 2 with paralleled changes in urine output. Changes in renal functional parameters, such as creatinine clearance, urinary osmolality and solute-free reabsorption, accompanying acute renal failure were also partially restored after administration of glycyrrhizin. The results suggest that glycyrrhizin treatment could ameliorate renal defects in rats with acute renal failure induced by Gentamycin method.

Effect of Aerva lanata on Gentamycin & Cisplatin models of acute renal failure in rats

The ethanol extract of entire plant of Aerva lanata was studied for its nephroprotective activity in Cisplatin & Gentamycin induced acute renal injury in albino rats of either sex. In the curative regimen, the extract at dose levels of 75, 150 & 300mg/kg showed dose dependant reduction in the elevated blood urea and serum creatinine levels & normalized the histopathological changes induced by Cisplatin model [9]. In the Gentamycin model, the rats in the preventive regimen showed good response to the ethanolic extract at 300mg/kg. The findings suggest that the ethanol extract of Aerva lanata possesses nephroprotective activity with minimum toxicity and offer a promising role in the treatment of acute renal failure caused by nephrotoxins like Cisplatin & Gentamycin.

Salviae radix extract prevents Cisplatin induced acute renal failure in rabbits

The study was carried out to determine that Salviae radix extract (SRE) exerts a beneficial effect against Cisplatin induced renal failure in rabbits [10]. Rabbits were pretreated with Salviae radix extract orally followed by Cisplatin injection (5mg/kg ip). Cisplatin injection caused reduction in glomerular filtration rate, which was accompanied by an increase in serum creatinine levels. The fractional Na⁺ excretion and lipid peroxidation were also increased. All these changes were prevented by SRE pretreatment. Cisplatin treatment invitro in renal cortical slices increased LDH release and lipid peroxidation, which were prevented by Salviae radix extract and its effect may be attributed to its antioxidant action.

Ginkgo biloba extract ameliorates Gentamycin induced nephrotoxicity in rats

The effect of Ginkgo biloba (EGb) extract has been studied in Gentamycin-induced nephrotoxicity in male wistar rats. Ginkgo biloba extract (300 mg/kg BW) was administered orally and concurrently with Gentamycin (80 mg/kg BW). Estimation of urine creatinine, glucose, blood urea, serum creatinine, plasma and kidney tissue was carried out after Gentamycin treatment [11]. Kidneys were examined using histological technique. Blood urea and serum creatinine were increased in Gentamycin treated groups and Creatinine clearance was significantly decreased. Changes in blood urea, serum creatinine and creatinine clearance induced by Gentamycin were significantly prevented by Ginkgo biloba extract. The rise in plasma and kidney tissue with Gentamycin, were significantly reduced to normal with Ginkgo biloba extract. Histomorphology showed necrosis and desquamation of tubular epithelial cells in renal cortex with Gentamycin, while it was normal with Ginkgo biloba extract [12]. These results suggest that supplementation of Ginkgo biloba extract may be helpful to reduce the nephrotoxicity induced by Gentamycin.

Effect of cassia auriculata root extract in Cisplatin & Gentamycin induced renal injury

The ethanol extract of the roots of Cassia auriculata was studied for its nephroprotective activity in Cisplatin- and Gentamycin-induced renal injury in male albino rats. In the Cisplatin model, the extract at doses of 300 and 600 mg/kg body weight reduced elevated blood urea and serum creatinine and normalized the histopathological changes in the curative regimen [13]. In the Gentamycin model, the ethanol extract at a dose of 600 mg/kg reduced blood urea and serum creatinine levels effectively in both the curative and the preventive regimen [14]. The extract was found to have significant nitric oxide free-radical-scavenging effect. These findings suggest that the probable mechanism of nephro-protection by C. auriculata against Cisplatin-and Gentamycin induced renal injury may be due to its antioxidant and free-radical-scavenging activity.

Flavonoid of Drynaria fortunei protects against acute renal failure

The flavonoid fraction (FF) from Drynaria fortunei was to investigate its biological activity expression in acute renal failure animal models i.e.,Guinea pigs & mercuric chloride treated mice. Guinea pigs received 100 mg/kg of Gentamycin & 10 mg/kg of DF. DF treatment prevented the GM induced toxicity, i.e, the increase in creatinine levels [15].
Mice were treated once with 6 mg/kg of mercuric chloride, followed by 10 mg/kg of DF and creatinine levels were found to be significantly higher on the mercuric chloride treatment and is ameliorated by DF treatment. In conclusion, the present study suggests that DF prevents nephrotoxicity, improves kidney function and promotes kidney primary epithelial tubular cell regeneration [16].

Aged garlic extract attenuates Gentamycin induced renal damage and oxidative stress in rats

Aged garlic extract (AGE), an antioxidant, has protective role in these experimental model of male Wistar rats were studied. Aged garlic extract was given at a dose of (1.2 mL/kg/12 hours) followed by GM (70 mg/kg).
Nephrotoxicity was made evident by the following:

1) Increase in blood urea nitrogen and plasma creatinine
2) Decrease in plasma glutathione peroxidase (GPx) activity and the urinary increase in N-acetyl-beta-D-glucosaminidase activity and total protein
3) Necrosis of proximal tubular cells
4) Increase in the renal levels of oxidative stress markers: nitrotyrosine and protein carbonyl groups and the decrease in manganese superoxide dismutase (Mn-SOD), GPx, and glutathione reductase (GR) activities [17].

This alteration were prevented or ameliorated by AGE treatment. Furthermore Aged garlic extract prevented the nephrotoxicity. The protective effect of age was associated with the decrease in the oxidative stress and the preservation of Mn-SOD, GPx, and GR activities in the renal cortex [18]. This data suggest that the Aged garlic extract may be a useful agent for the treatment of nephrotoxicity.

The effects of *nigella sativa* oil in Gentamycin nephrotoxicity in rats

In this work, it was tested that whether the oral treatment of rats with *N. sativa* oil (0.5, 1.0 or 2.0 ml/kg/day) could reduce nephrotoxicity of Gentamycin (80 mg/kg/day IM) concomitantly with the oil.

Plant Name	Family	Chemical constituents
Aerva lanata	Amaranthaceae	Botulin, β-sitosterol, Amyrin, Hentriacantane.
Aerva javanica	Amaranthaceae	Isoquercetin, 5 methylmellein, 2- hydroxy-3-O-β primeveroside naphthalene-1,4-dione [9]
Bauhinia variegata linn	salpiniacea	Stigmasterol, flavone glycosides, lupeol, kaempferol-3-glucoside, β-sitosterol [51]
Cassia auriculata	fabaceae	Tannins, Di-(2-ethyl) hexyl phthalate, Alkaloids, Resins,[39]
Carica papaya	Caricaceae	Flavonoids, Phenols, Alkaloids, Protein, Sterols, Terpenoids,[40]
Ceratonia siliqua	Fabaceae	Flavonoids [36]
Cucurbita pepo	Cucurbitaceae	Flavonoids, Phenols, Alkaloids, Protein, Sterols, Terpenoids, [37]
Dichrostachys cinera	Morosaceae	Flavonoids, Phenols, Alkaloids, Protein, Sterols, Terpenoids, [38]
Ficus religiosa	Moraceae	Amino acids and Tannins [28]
Kigelia Africana	Bignoniaceae	Iridoids, Naphthoquinones, Flavonoids, Terpenes, Tannins, Steroids, Saponins and Caffic acid [29]
Pongamia pinnata	Papilionaceae	Flowers Pongamol, Protien, Alkaloids, Tannins, Sugar, Resin and Fatty oil [10]
Vernonia cinerea	composita	Triterpenoids like α-amyrin, β-amyrin and lupeol [31]
The levels of urea nitrogen and creatinine in serum were decreased in rats treated with ginsenoside-Rd. Decreased urinary levels of glucose, sodium and potassium reflected a protective action against the renal dysfunction caused by Cisplatin [20]. In addition, it was demonstrated that ginsenoside-Rd cultured proximal tubule cells exposed to Cisplatin.

Nephroprotective action of *Tribulus terrestris* and *Crataeva nurvala* in albino rats

Nephrotoxic model was developed in male albino rats by administering GM. The aqueous extract of fruits of *T.terrestris* (65 or 130mg/kg) and *C.nurvala* (70 or 145mg/kg) were administered in injection route. Urine was examined for sugar, albumin, RBC & epithelial cells. Histopathological changes were also observed [21]. The extracts showed a dose dependant nephroprotective action against GM induced toxicity. The results indicate that the two plants extracts ameliorated the toxicity induced by Gentamycin.

Protective effect of *Pongamia pinnata* flowers against Cisplatin & Gentamycin induced nephrotoxicity in rats

When ethanolic extract of flowers of *Pongamia pinnata* (300 &600mg/kg) was administered orally in rats followed by Cisplatin (5mg/kg ip) the toxicity of Cisplatin as measured by loss of body weight, elevated blood urea & serum creatinine were declined significantly. Similarly in Gentamycin (40mg/kg,sc) induced renal injury, the extract 600mg/kg normalized the increased blood levels of urea & serum creatinine levels. Reversal of Cisplatin & Gentamycin renal cell damage was confirmed on histopathological examination. The results suggest that protective effect might be due to antioxidant property of two flavonoids such as kaempferol and 3,5,6,7,8-penta methoxy flavone [22].

Effect of *ocimum sanctum* aqueous leaf extract on gm induced nephrotoxicity in rats

Nephrotoxicity was induced in rats by GM (180mg/kg/day ip) *O.sanctum* aqueous leaf extract(OS) was given orally at a dose of 100 mg/kg/day along with GM. Concurrent administration of OS significantly prevented rise in levels of serum creatinine, blood urea & plasma MDA which are elevated by GM. It also significantly prevented the histological damage caused by GM. The results suggested that OS probably by virtue of its antioxidant property prevented GM induced nephrotoxicity in rats [23].

Renoprotective effect of grape seed extract in ethylene Glycol induced nephrotoxicity in mice

Nephroprotective activity was studied in ethylene glycol (EG) induced nephrotoxicity of Grape seed extract in mice. Mice received grape seed extract 100mg/kg bw, after EG (2ml/kg po) administration. Grape seed extract in mice produced significant reduction of urinary LDH, blood urea, creatinine levels & dilated tubules lined by normal intact epithelium indicating recovery [24]. The results suggest that the renoprotective effect of *Vitis vinifera* seed extract is due to it’s antioxidant activity.
Evaluation of nephroprotective effect of Indian medicinal plants in experimental Gentamicin induced nephrotoxicity

The effect of administration of Indian medicinal plants, Withania somnifera, Emblica officinalis, Glycyrrhiza glabra on BUN, serum creatinine, bodyweight, renal histopathology were evaluated with administration of Gentamicin (150mg/kg/day) in female rats. Concurrent administration of IMPs & alpha lipoic acid prevented the rise in BUN, serum creatinine, kidney to varying degrees [24]. Thus Indian medicinal plants showed as protective agents against experimental nephrotoxicity.

Cytoprotective role of Solanum nigrum against gm induced kidney cell (vero cell) damage in-vitro

The ethanol extract of the whole plant of Solanum nigrum was tested in-vitro for its cytoprotection against Gentamycin-induced toxicity on Vero cells. Cytotoxicity was significantly inhibited by the Trypan blue exclusion assay and mitochondrial dehydrogenase activity assay. The test extracts exhibited significant hydroxyl radical scavenging potential, thus suggesting its probable mechanism of cytoprotection.

The effect of treatment with the medicinal plant Rhazya stricta on Gentamicin induced nephrotoxicity

Crude aqueous extract of Rhazya stricta leaves (0.25, 0.5 and 1g/Kg) was given orally to rats and thereafter, concomitantly with Gentamycin (80mg/Kg/day). Nephrotoxicity were evaluated histopathologically and biochemically by measuring the levels of urea and creatinine, reduced glutathione (GSH), lipid peroxidation and superoxide dismutase (SOD) activity in kidney cortex. The results suggested that a dose-related amelioration in the indices of toxicity was noted when the two higher doses of the plant extract were given. The two higher doses, significantly and dose-dependently increased SOD activity and GSH concentration, and decreased that of lipid peroxides in the cortex of kidney. These results suggest that R. stricta aqueous extract may contain compounds that could potentially ameliorate Gentamycin nephrotoxicity in rats.

CONCLUSION

The present review concludes the potential role of different medicinal herbs possess the protective effect against nephrotoxicity and some of them can be proved by animal models induced by different screening models in this review article.

ACKNOWLEDGEMENT

Authors are thankful for their support and encouragement by Dr. C.K. Ashok Kumar & also thankful to the Chairman of Sree Vidyanikethan College of Pharmacy, Sree Sainath Nagar, A.Rangampet, Tirupati, Andhra Pradesh, India

REFERENCE

1. Al-Qarawi AA, Abdel-Rahman H, Mousa HM, Ali BH, El-Mougy SA. Nephroprotective Action of Phoenix dactylifera. in Gentamicin-Induced Nephrotoxicity. Pharmaceutical Biology 2008;46(4):227-230.
2. Ajith TA, Aswathy MS, Hema U. Protective effect of Zingiber officinale roscoe against anticancer drug doxorubicin-induced acute nephrotoxicity. Food Chem Toxicol 2008;46(9):3178–3181.
3. Ali BH. The effect of treatment with the medicinal plant Rhazya stricta decoe on gentamicin nephrotoxicity in rats. Phytomedicine 2002;9(5):385-389.
4. Ali BH. The effect of Nigella sativa oil on gentamicin nephrotoxicity in rats. Am J Chin Med 2004;32(1):49–55.
5. Annie S, Rajagopalan PL, Malini S. Effect of Cassia auriculata Linn. root extract on Cisplatin and gentamicin-induced renal injury. Phytomedicine 2005;12(8):555-560.
6. Cordeiro MM, Kaliwal BB. Hepatoprotective and Nephroprotective activity of bark extract of Bridelia retusa in CCl4 treated female mice. International Journal of Molecular Biology 2011;2(1):22-30.
7. Ghaisas MM, Naveghare VV, Takawale AR, Zope VS, Phanse MA. Antidiabetic and Nephroprotective effect of Tectonagrandis L in alloxan induced diabetes. Arzpharmacoeutica 2010;51(4):195-206.
8. Hussain T, Gupta R, Sweety K, Eswaran B, Vijayakumar M, Rao C. Nephroprotective activity of Solanum xanthocarpum fruit extract against gentamycin induced nephrotoxicity and renal dysfunction in experimental rodents. Asian Pacific Journal of Tropical medicine 2012;5(9):685-691.
9. Zoobi J, Mohd A. An experimental evaluation on nephroprotective activity of the flowers of Salix caprea (Salicaceae). International Research Journal of Pharmacy. 2012;3(3):139- 142.
10. Jeong JC, Hwanq WM, Yoon CH, Kim YK. Salviae radix extract prevents cisplatin-induced acute renal failure in rabbits. Nephron 2001;88(3):241-246.
11. Shenoy JP, Pai PG, Shoeb A, Gokul P, Kulkarni A, Kotian MS. An evaluation of diuretic activity of Morinda Citrifolia (Linn)
(Noni) fruit juice in normal Rats. Int J Pharm Pharm Sci 2011;3(2):119-121.

12. Kalaiselvan A, Anand T, Soundarajan M. Reno productive activity of Ipomoea digitata in gentamycin induced kidney dysfunction. Journal of Ecobiotechnology 2010;2(2):57-62.

13. Kannappan N, Madhukar A, Mariymmal, Uma SP, Mannavalan R. Evaluation of nephroprotective activity of Orthosiphon stamineus Benth extract using rat model. Int J PharmTech Res 2010;2(1):209-215.

14. Long M, Qiu D, Li F, Johnson F, Luft B. Flavanoid of Drynaria fortunei protects against acute renal failure. Phytother Res 2005;19(5):422-427.

15. Mahgoub MA. Effect of O. Sanctum aqueous leaf extract on gentamycin induced nephrotoxicity in rats. Indian J Pharmacol 2004;36(3):192-203

16. Mahgoub MA. Biochemical Studies on Nephroprotective Effect of Carob (Ceratonia siliqua L.) Growing in Egypt. Nature and Science 2010;8(3):15-23.

17. Ahmed MM, Ali SE. Protective effect of pomegranate peel ethanol extract against ferric nitroltriacetate induced renal oxidative damage in rats. Journal of Cell and Molecular Biology 2010;7(2) & 8(1):35-43.

18. Maldonado PD, Barrera D, Medina-Campos ON, Hernandez-Pando R, Ibarra-Rubio ME, Pedraza-Chaverri J. Aged garlic extract attenuates gentamycin induced renal damage and oxidative stress in rats. Life Sci 2003;73(20):2543-2556.

19. Mohammad NI, Suradkar SS. Ethnobotanical and Ethnomedicinal study of some medicinal plants of Barshitala tahsil, District Akole (MS).India. Bioscience Discovery 2011;2(2):236-239.

20. Murthy R, Nataraj H, Ramachandra S. Nephroprotective activity of Cyanoits fasciculata against Cisplatin induced nephroprotection. Int Res J Pharm 2011;2(9):137-142.

21. Naidu MU, Shifow AA, Kumar KV, Ratnakar KS. Ginkgo biloba extract ameliorates gentamicin-induced nephrotoxicity in rats. Phytomedicine 2000;7(3):191-197.

22. Rocha MJ, Fulgencio SF, Rabetti AC, Nicolau M, Poli A, Simoes CM, et al. Effects of hydroalcoholic extracts of Portulaca pilosa and Achyronie satureoides on urinary sodium and potassium excretion. J Ethnopharmacol 1994;43(3):179-183.

23. Ogeturk M, Kus I, Colakoglu N, Zararsiz I, Ilhan N, Sarsilmaz M. Caffeic acid phenethyl ester protects kidneys against Carbon tetrachloride toxicity in rats. J Ethnopharmacol 2005;97(2):273–280.

24. Okwosa C, Achukwu P, Nwachukwu D, Eze A, Azubuike N. Nephroprotective activity of stem bark extracts of Canarium schwein furthii on acetaminophen induced renal injuries in rats. Journal of College of Medicine 2009;14(1):256-265.

25. Azu OO, Duru FI, Osinubi AA, Noronha CC, Elesha SO, Okanlawon AO. Protective agent, Kigelia africana fruit extract against Cisplatin induced kidney oxidant injury in Sprague dawley rats. Asian J Pharm Clin Res 2010;3(2):84-88.

26. Patil JU, Biradar SD. Folkloric medicinal plants of Hingoli district, Maharashtra. Indian J Nat Prod Resour 2011;2(1):97-101.

27. Porter GA, Bennett WM. Nephrotoxic acute renal failure due to common drugs. Am J Physiol 1981;241(1):F1-F8.

28. Pracheta P, Sharma V, Singh L, Paliwal R, Sharma S, Yadav S, Sharma S. Chemopreventive effect of hydroethanolic extract of Euphorbia neriifolia leaves against DENA-induced renal carcinogenesis in mice. Asian Pacific J Cancer Prev 2011;12(3):677-683.

29. Prachi, Chauhan N, Kumar D, Kasana MS. Medicinal plants of Muzaffarnagar district used in treatment of urinary track and Kidney stones. Indian J Traditional Knowledge 2009;8(2):191-195.

30. Prashanth Kumar V, Shashidhara S, Kumar MM, Srirdha BY. Cytoprotective role of Solanum nigrum against gentamicin-induced kidney cell (Vero cells) damage in vitro. Fitoterapia 2001;72(5):481-486.

31. Ahmad QZ, Jahan N, Ahmad G, Tajuddin. Nephroprotective effect of Kabab chini (Piper cubeba) in gentamycin-induced nephrotoxicity. Saudi J Kidney Dis Transpl 2012;23(4):773-781

32. Rao M, Rao MN, Protective effect of Cystone, a polyherbal ayurvedic Preparation, on cisplatin-induced renal toxicity in rats. J Ethnopharmacol 1998;62(1):1-6.

33. Sudhakar RC, Gopal KP, Raju VS. Phytotherapy at Rural Communities: A Case Study from the Gonds of Warangal District, Andhra Pradesh, India. Res J Bot 2008;3(2):97-102.

34. Sudhakar RC, Reddy KN, Thulsi RK, Pattanaik C. Ethnobotanical Studies on
Medicinal plants used by the Chenchus of Nallamala Forest in Kurnool District, Andhra Pradesh, India. Res J Med Plant 2007;1(4):128-133.

35. Mohanasundari M, Sabesan M, Sethupathy S. Renoprotective effect of grape seeds extract of in ethylene glycol induced nephrotoxic mice. Indian J Exp Biol 2005;43(4):356-359.

36. Varghese R, Mohammed MM, Mohammed SMJ, Dhanapal CK. Nephroprotective effect of ethanolic extract of Strychnos Potatorum Seeds in Rat Models. Res J Pharm Biol Chem Sci 2011;2(3):521-529.

37. Bhusan SH, Ranjan SS, Nandy S, Rakesh S, Amrita B. Nephroprotective activity of ethanolic extract of Elephantopus scaber leaves on albino rats. Int Res J Pharm 2012;3(5):246-250.

38. Pani SR, Mishra S, Sahoo S, Panda PK. Nephroprotective effect of Bauhinia variegata (Linn.) whole stem extract against cisplatin-induced nephropathy in rats. Indian J Pharmacol 2011;43(2):200-202.

39. Sharma PP, Singh NP. Ethnobotany of Dadra Nagar Haveli and Daman, (Union Territories), Botanical Survey of India, Kolkata, India. 2001.

40. Shelkea T, Bhaskar V, Adkara P, Jhaa U, Oswala R. Nephroprotective activity of ethanolic extract of stems bark of Crataeva nurvula. Int J Pharm Sci Res 2011;2(10):2712-2717.

41. Shirwaikar A, Malini S, Kumari SC. Protective effect of Pongamia pinnata flowers against cisplatin and gentamicin induced nephrotoxicity in rats. Indian J Exp Biol 2003;41(1):58-62.

42. Shirwaikar A, Issac D, Malini S. Effect of Aerva lanata on Cisplatin and gentamicin models of acute renal failure. J Ethnopharmacol 2004;90(1):81-86.

43. Sohn EJ, Kang DG, Lee HS. Protective effects of glycyrhrizin on gentamicin-induced acute renal failure in rats. Pharmacol Toxicol 2003;93(3):116-122.

44. Adikay S, Koganti B, Prasad KVS. Effect of alcoholic extract of roots of Dichrostachys cinerea Wight & Arn. against cisplatin-induced nephrotoxicity in rats. Natural Product Radiance 2009;8(1):12-18.

45. Debnath S, Babre N, ManjunathYS, Mallareddy Y, Parameshwar P, Hariprasath K. Nephroprotective evaluation of ethanolic extract of the seeds of papaya and pumpkin fruit in Cisplatin-induced nephrotoxicity. J Pharm Sci Tech 2010;2(6):241-246.

46. Sudhavani V, Chinni KV, Raghu M, Raghavendra H, Ranganayakulu D. Nephroprotective activity of Merremia emarginata B against Cisplatin induced nephrotoxic rats. J Advan Drug Res 2010;1(1):27-34.

47. Taayade SK, Patil DK. Ethnomedical wisdom of tribals of Nandurbar districts, Maharashtra. Natural Product Radiance 2006;5(1):64-69.

48. Vadivukkarasi S, Menon SG. Antioxidant activity and nephroprotective effects of aqueous extract of Pleurotus Eous (BERK.) SACC.: (APK1) pink edible oyster mushroom. Int J Pharm Bio Sci 2011;2(3):92-103.

49. Rathod VS. Ethnopharmacognostical Studies of Thevetia peruviana (Pers) K. Schum: A Potential psychoactive Plant. Bioscience Discovery 2011;2(1):139-142.

50. Vijaya BRA. Use of Various Bio-Fencing Plants in the Control of Human Diseases by the Lambada Tribe Inhabiting Nalgonda District, Andhra Pradesh, India, Ethnobotanical Leaflet 2008;12:520-523.

51. Vijigiri D, Bembrekar SK, Sharma PP. Herbal formulations used in treatment of kidney stone by native folklore of Nizamabad District, Andhra Pradesh, India. Bioscience Discovery 2013;4(2):250-253.

52. Movaliya V, Khamar D, Manjunath SM. Nephro-protective activity of aqueous extract of Aerva Javanica roots in Cisplatin induced renal toxicity in rats. Pharmacologyonline 2011;1:68-74.

53. Wang Y, Yin H, Lv X, Wang Y, Gao H, Wang M. Protection of chronic renal failure by polysaccharide from Cordyceps sinensis. Fitoterapia 2010;81(5):397-402.

54. Welt K, Weiss J, Martin R, Hermendorf T, Drews S, Fitzl G. Ginkgo biloba extract protects rat kidney from diabetic and hypoxic damage. Phytomedicine 2007;14(2-3):196-203.

55. Kim YK, Kim YW, Oh YJ, Back NI, Chung SA, Chung HG et al. Protective effect of the ethanol extract of the roots of Brassica rapa on Cisplatin-induced nephrotoxicity in LLC-PK1 cells and rats. Biol Pharm Bull 2006;29(12):2436-2441.

56. Yogesh CY, Srivastava DN, Vipin S, Sarita S, Seth AK, kumar S, Tejas K etal. Nephroprotective and curative Activity of methanolic extract of Ficus religiosa L. latex.
in Albino Rats Using Cisplatin Induced Nephrotoxicity. Pharmacologyonline 2011;1:132-139.
57. Yogesh CY, Srivastava DN, Seth AK, Vipin S, Kuldeep S, Yadav. Nephropharmacological activity of ethanolic extract *lepidium sativum* l. seeds in albino rats using Cisplatin-induced acute renal failure. Int J Pharm Sci Rev Res 2010;4(3):64-68.
58. Yokozawa T, Liu ZW. The role of ginsenoside –Rd in Cisplatin-induced acute renal failure. Ren Fail 2000;22(2):115-127.

Cite this article as: Kuttiappan A, Sabapathi ML, Kasimedu S, Peddamadi BS, Konduru BR, Pineni S, Thota B. THE POTENTIAL ROLE OF HERBALS AS NEPHROPROTECTIVE – A NOVEL APPROACH. J Compr Phar 2014;2(1):18-26.