Application of Internet of Things and Edge Computing Technology in Sports Tourism Services

Benxia Zheng,¹ Zheng Mei,² Liangyu Hou,³ and Shuoli Qiu

¹Sichuan Vocational College of Finance and Economics, Sichuan, Chengdu 610101, China
²School of Sichuan University, Chengdu, Sichuan 610041, China
³Experimental Primary School Affiliated to University of Electronic Science and Technology, Chengdu, Sichuan 610054, China
⁴The Sports and Physical Education School of Sichuan University, Chengdu, Sichuan 610065, China

Correspondence should be addressed to Shuoli Qiu; windinwind@stu.scu.edu.cn

Received 7 March 2021; Revised 15 April 2021; Accepted 20 April 2021; Published 30 May 2021

Copyright © 2021 Benxia Zheng et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Aiming at the problems of long retrieval time of sports tourism data, high integration error of sports tourism data, and high energy consumption of sports tourism service management in traditional methods, the application of Internet of Things and edge computing technology in sports tourism services is proposed. We established a sports tourism service application model based on Internet technology to realize the functions of sports tourism service internal management control, external collaboration, and information release. We calculated the similarity of sports tourism resources from the two levels of feature words and the environment where the sports tourism resources are located. According to the calculation results, the edge computing method is used to realize the integration of sports tourism service resources to improve the application effect of sports tourism service application models. The experimental results show that the minimum data retrieval time of the proposed method is only 2.35s. The sports tourism data fusion error is low. The management energy consumption is small, which significantly improves the existing problems and fully verifies the practical application value of the method.

1. Introduction

The Internet of Things is another major change in the development of science and technology after computers, the Internet, and mobile communication networks. It combines virtual information and reality to make some behaviors and activities in real life intelligent efficient and convenient. Therefore, when the era of the Internet of Things is approaching, the development of sports tourism services should seize the opportunity of innovation in the application of Internet of Things technology, accelerate the process of upgrading informatization and intelligence, and achieve leapfrog development [1]. Through the collection of related literature, such as books, literature, network, television, and paper media, although the relevant knowledge about the application of Internet technology in sports tourism services is not extensive, it can be seen that the technology is getting more and more attention. Although the content level of research related knowledge is uneven, the common point of all research content is to realize the efficient integration, sharing, and application of sports tourism service resources and data, so as to achieve the improvement of sports tourism service quality [2].

At present, scholars at home and abroad have conducted in-depth research on the application of Internet technology in sports tourism service. Pauline Sheldon has earlier and more comprehensively discussed the application of information system technology in the electronic market and how to combine the supply and demand of tourism. Professor Hannes Wertlmer from the University of Vienna in Austria and Stefan Klein from the University of Münster in Germany explained that sports tourism is essentially an information-intensive industry, pointed out that the information industry will challenge the traditional sports tourism industry, and discussed the information industry. The future ultimately will have a huge impact on the behavioral organization structure of the sports tourism industry, government management methods, and commercial
transactions [3–5]. Compared with the theoretical system of sports tourism informatization research in foreign developed countries, although the domestic theoretical system is not mature enough, certain achievements have been made. Reference [6] puts forward a method of intelligent tourism spatiotemporal database resource integration based on SVM, which uses three-dimensional laser scanning technology, three-dimensional panoramic photography technology, and GPS technology to collect tourism spatial data, respectively, and implements format conversion, unification of data coordinate system, geographic coding, elimination of data acquisition error, and accuracy test on the collected data, so as to complete the integration collection and processing of tourism spatial data. Combining tourism historical time data and collected and processed spatial data, a preliminary integration system of tourism spatiotemporal database resources is constructed based on the six major elements of tourism, and a quantitative expression of the ideal database resource integration scheme is given based on the established system. This article introduces the theory of support vector machines, sets up training data samples, and gives an integrated plan to solve the optimization of tourism resources. The problem is transformed into a quadratic programming problem by Lagrange function, and the optimal integration scheme of smart tourism time-space database resources is obtained by combining the transformation results with the quantitative results of integration scheme. The experimental results show that the resource utilization rate after the integration of this method is high, and the rationality is strong. Reference [7] studies the application of big data in smart tourism management and uses Internet of Things, cloud computing, intelligent data mining, and other technologies in tourism industry development and service management to highly integrate and develop tourism resources and information resources in depth. The example verification shows that this method can realize the high development of tourism resources.

Nowadays, with the rapid development of computer and network technology, most human activities are closely connected with the Internet. With the development of large-scale projects such as Digital Earth and Smart City, Smart Tourism has emerged in this context. In order to realize intelligent tourism, the key is to organize and manage the spatiotemporal data of smart tourism scientifically and effectively. Therefore, the construction and design of spatiotemporal database of smart tourism is the core content of the realization of smart tourism. This involves the problem of sports tourism data retrieval and the problem of data error in the Internet of Things. In addition, we also need to consider the security and communication issues involved.

Although the existing methods have achieved remarkable results in practical applications, from the current application status of the Internet of Things in sports tourism services, several problems can be analyzed. (1) In the sports tourism service of the Internet of Things, there is a problem of long retrieval time of sports tourism data and poor real-time performance. (2) The coordination and integration of the Internet of Things and related functional departments of sports tourism services is insufficient, and some data have errors. (3) The Internet of Things technology consumes huge energy in sports tourism service management. In addition, although related researchers have conducted research on the edge computing of the Internet of Things, they only designed the corresponding fuzzy system and did not conduct in-depth research on the integration of sports tourism resources. Aiming at the problems of existing methods, the Internet of Things technology and edge computing technology are combined to study the application effects of the two in sports tourism services.

Our contribution is threefold.

(1) Considering the shortcomings of traditional methods, this paper proposes an application model of sports tourism service based on Internet of Things Technology, which integrates the Internet of Things and Edge Computing Technology to realize the internal management control, external collaboration, and information release of sports tourism service.

(2) From the perspectives of feature words and the environment of sports tourism resources, this paper uses edge computing method to realize the integration of sports tourism service resources and improve the application effects of sports tourism service application model.

(3) The experimental results show that the proposed method significantly solves the existing problems in sports tourism data and fully verifies the practical application value of the method.

The remainder of this paper is organized as follows. Section 2 introduces the application of Internet of things and edge computing technology in sports tourism services. Section 3 discusses experiment and analysis. Section 4 presents the conclusions of the study.

2. Application of Internet of Things and Edge Computing Technology in Sports Tourism Services

2.1. The Development of Sports Tourism Industry and Establishment of Informatized Tourism Websites

2.1.1. Development of Sports Tourism Service Industry. Sports-related industries have brought great benefits to the social economy. Although, in recent years, the sports tourism service industry is growing stronger and stronger, there are still some deficiencies in driving the economic benefits. In 2019, the ratio of the economic benefits driven by the domestic sports tourism service industry to the total national economic output value is low, which has not reached the global average level, compared with the developed countries. There is a big gap [8], as shown in Figure 1.

According to Figure 1, it can be seen that the proportion of economic benefits generated by the current sports tourism service industry is far lower than the world average, which is far behind the developed countries. Therefore, the sports tourism service industry needs further development to constantly improve its economic benefits. Relying on the
Internet and other technologies can strongly support and help the long-term development of the sports tourism service industry.

Although the proportion of the sports tourism service industry in the gross national product is not high, it has also shown a continuous growth trend in recent years, which is directly related to the increase in the importance of the related departments to the sports tourism service industry in recent years [9]. The added value of the sports industry from 2011 to 2020 is selected for analysis, and the specific trend chart is shown in Figure 2.

According to Figure 2, it can be found that the added value of sports tourism service industry has shown a rapid upward trend since 2011, which also shows that, in recent years, the relevant departments have paid more attention to the sports tourism service industry and began to support the development of sports tourism service industry.

2.1.2. Establishment of Information-Based Tourism Website

With the development of the Internet age, tourism-related industries have built network platforms and links to popular APP software platforms in recent years. Relevant resource information has been obtained from specialized network platforms and related APP software platforms, which has increased the number of tourists and increased income. However, the website and information of relevant tourism companies on the Internet are not yet abundant, and it is difficult to meet the individual needs of consumers [10, 11]. Compared with the state of increasing added value of the sports tourism service industry, the information construction of the sports tourism service industry is relatively lagging. The specific situation is shown in Table 1.

It can be seen from Table 1 that the informatization construction of sports tourism service industry still has a great room for progress. Therefore, with the help of the convenience of the Internet, sports tourism service industry should be combined with the new mode of Internet development to promote the economic development of sports tourism service industry and promote the overall economic growth.

2.2. Construction of Internet-Based Sports Tourism Service Application Model

According to the analysis in Section 2.1, there are certain shortcomings in the development of the sports tourism industry and the establishment of information-based tourism websites. Therefore, a sports tourism service application model is established based on the Internet of Things. Network information is a key factor in the success or failure of the construction of sports tourism service models. In order to gain a competitive advantage, it is necessary to improve the response ability of sports tourism information, because when tourists decide to travel, before traveling, they always try to obtain various sports tourism information. The Internet now allows people to obtain a variety of information and people rely on it for the channels of obtaining information, forming an Internet-based query method [12, 13]. The information can include the natural and cultural environment, tourism resources, tourism facilities, and services of tourist destinations. The schematic diagram of the sports tourism function system is shown in Figure 3.

The key to measuring the success of sports tourism services is to find the difficulty level of information acquisition of tourist destinations and tourist facilities, which is also an important factor of tourist satisfaction [14]. Therefore, information consultation is actually very important to the development of the tourism market in the tourism function, so the collection, processing, transmission, and utilization of tourism information occupy an important position in tourism. Considering this problem, a sports tourism service application model is established to process sports tourism information through a three-tier structure.

The Internet of Things applied in the sports tourism service application model needs to have three layers, perception layer, network layer, and application layer, as shown in Figure 4.

1. Perception layer is the use of sensors, radio frequency identification, and other new generations of information perception technology to sense the identification of the facilities in sports tourism scenic spots and convert them into electrical signals or other required forms of information output, so as to meet the requirements of information transmission, processing, storage, display, recording, and control. It has been applied in this work [15].
f“henetworklayerintegratesvariouscommunication
networks,transmitsinformationasneeded,andcan
usecloudcomputingtechnology,smarttechnology,
andmicroelectronictechnologytoanalyzeand
processalargamountofdatainformation. f“ethe
network layer generally includes the Internet,
wireless communication networks, M2M commu-
ication networks, satellite communication net-
works, and cable television communication
networks. System information can include natural
and cultural environments, tourism resources,
tourism facilities, and services at tourist destina-
tions. f“ethe schematic diagram of the sportstourismfunc-
tionsystem is shown in Figure 3. f“ethe information
system connects users’ electronic equipment, sports
resources, and scattered information and data col-
lected and stored in the information service orga-
nization for multi-party interaction and sharing,
thereby realizing the data transmission of the event
media operation service Internet o f “hings

2.3. Methods of Integration of Sports Tourism Resources.
Inthispaper, the application model of sportstourism service
isestablished by using Internet technology, through which
the functions of information perception and information
storage can be realized. In order to further promote the
service quality of sportstourism service industry, the edge
computing method is applied to sportstourism service, so as
to realize the effective integration of sportstourism
resources.

2.3.1. Similarity Calculation of Sports Tourism Resources.
In the process of calculating sportstourism resources, cal-
culatingthesimilarityofdifferenttypesofresourcescanbe
divided into two parts: one is to calculate the similarity of
feature words, the other is to calculate the similarity between
the environments of sportstourism resources [16].

Among them, the specific steps for calculating the
similarity of feature words are as follows.

Use Sim(\(w\)) to represent the similarity of the feature
words, and use the classification subtree to divide the feature
words. The classification subtree is shown in Figure 5.

According to the classification results of the classification
subtree, assuming there are two sportstourism resource
feature words, \(w_i\) and \(w_j\), calculate the similarity between \(w_i\)
and \(w_j\); the specific formula is as follows:

\[
\text{Sim}(w) = I(w_i + w_j)
\]

\[
= (1 - \theta h)
\]

\[
= I\left(\sum_{i=1}^{n} \eta_i \epsilon_n + \sum_{j=1}^{n} \epsilon \eta_j\right)\] \hspace{1cm} (1)

Among them, \(I\) represents the set of feature words; \(\theta\)
represents the key factor of feature word decomposition; \(h\)
represents the estimated time of execution of feature word
similarity calculation; \(\eta\) represents the similarity coefficient;
\(\eta_i\) represents the sequence of execution of all subtasks; \(\eta_j\)
represents the resources that can be directly corresponded to
through resource allocation.

When calculating the similarity between the environ-
ments of sportstourism resources, the similarity between
the environments of \(w_i\) and \(w_j\) is calculated, and the elements in
the environment set need to be paired, and then the char-
acteristic words similarity is calculated [17]. The calculation
formula is

\[
b_j = \left(1, \sum_{i,j=1}^{n} c_i r_j\right). \hspace{1cm} (2)
\]
Among them, c_i represents a feature word with strong relevance; r_j represents a related word with weak relevance.

2.3.2. Sports Tourism Service Resource Integration Method Based on Edge Computing

Existing Internet of Things technology uses centralized data centers or clouds for data processing, which causes large network delays on the device side, inability to meet the explosive growth of devices, threats to device data security, and large errors in device data integration. In this context, edge computing is proposed and applied. Edge computing technology alleviates these defects of centralized Internet of things, transfers computing tasks to the edge service side, and significantly improves delay and energy consumption, especially for delay and energy-sensitive applications of Internet of things [18]. Based on the calculation results of similarity of sports tourism resources, edge computing technology is used to integrate sports tourism service resources.

An IOT architecture based on edge computing is established to integrate sports tourism service resources. The architecture consists of physical transaction layer, IOT edge device layer, edge gateway layer, and edge service layer. In this architecture, the edge gateway layer is composed of several edge gateways, which is denoted as F_{Ds}.

Set up F_{Ds} private K to form a F_{Ds} set $F_1 = \{F_{Ds_1}, F_{Ds_2}, \ldots, F_{Ds_k}\}$, complete the resource perception and collection through the data source, and transmit the data to the edge service layer through resource preprocessing. The edge service layer is mainly responsible for remote cloud computing connections, providing global service ports for resource integration, controlling and managing E_{Ds} through commands, and realizing the scheduling of sports tourism service resources [19].

Set up N edge servers to form a local edge set $F_2 = \{S_{Ds_1}, S_{Ds_2}, \ldots, S_{Ds_n}\}$. S_{Ds_n} may be a micro-data center, micro-cloud computing, or intelligent router. It has computing capabilities to provide data storage and calculations near E_{Ds}.

Set F_{Ds} local Q to form the local edge gateway layer $F_3 = \{F_{Ds_1}, F_{Ds_2}, \ldots, F_{Ds_q}\}$, and F_{Ds_q} represents the edge gateway.

In the edge gateway of the edge gateway layer, a virtualization controller is embedded to realize the provision of services to the upper edge service layer and the energy consumption and delay, application and task decomposition, and other application processing on the lower edge device layer. The middle part of the virtual controller is resource allocation and scheduling, and the lower layer is resource integration and delay analysis, where task decomposition and application processing are responsible for the effective allocation of resources [20]. The virtualization controller is built into the edge gateway of the edge gateway layer, which can handle most edge tasks, reduce the overall service delay and energy consumption of application requests at the edge device layer, and improve the satisfaction of tourists.

![Figure 4: Sports tourism service application model architecture.](image)

![Figure 5: Classification subtree.](image)
Because the resource transmission in the Internet-based sports tourism service application model requires a certain amount of time and energy, the system’s time delay, energy consumption, and service satisfaction are described. Transfer sports tourism service resources from the transmission equipment layer to the edge gateway layer, or transfer sports tourism service resources to the edge service layer through the edge gateway layer, and set the resource upload rate to \(v_{ij} \). The calculation formula is
\[
v_{ij} = \sum_{i,j=1}^{n} x_i y_j. \tag{3}
\]

Among them, \(x_i \) represents the edge gateway layer resource upload rate; \(y_j \) represents the edge service layer resource upload rate. Since the download service time is relatively short, the time generated by the download service is ignored in resource integration.

Assuming that the overall task of sports tourism service resource integration is \(G \), in order to select a reasonable task allocation channel in resource integration, first obtain the channel allocation candidate solutions of all requested tasks and express them in the form of a matrix:
\[
G = \begin{bmatrix}
g_{11} & g_{12} & \cdots & g_{1n} \\
g_{21} & g_{22} & \cdots & g_{2n} \\
\vdots & \vdots & \ddots & \vdots \\
g_{n1} & g_{n2} & \cdots & g_{nn}
\end{bmatrix}. \tag{4}
\]

Then, the channel allocation rate of all requested tasks is
\[
G_s = \sum_{i,j=1}^{n} \exp \left(\frac{v_{ij} \times \varepsilon L}{h^2} \right). \tag{5}
\]

Among them, \(\varepsilon \) represents the sending rate of the task request; \(L \) represents the channel bandwidth.

When the size of the input data in the resource integration request task is \(d_s \), the processing cycle required to execute the task is \(C_{ij} \), the weight of the virtualization controller is \(\mu_\nu \), and the variance of the parameters of the sports tourism service resource is \(\sigma^2 \). The integration value of the sports tourism service resource is
\[
\varphi_k = S(m,n)S(m + \tau, n + \tau). \tag{6}
\]

Among them, \(\tau \) represents the amount of data transferred.

When \(0 < \varphi_k \leq 1 \), the total mean square error of the integration of sports tourism service resources is
\[
\bar{\sigma}^2 = \varphi_k \times [s(k)|x(k)]ds(k). \tag{7}
\]

Among them, \(s(k) \) represents the time cost of task calculation offloading; \(x(k) \) represents the energy consumption caused by local computing, task offloading, and data transmission.

Combining with the theory of multivariate function seeking extreme value, the minimum value of the total mean square error is calculated as
\[
\sigma_{min} = \min[s(k)|x(k)] - R_d. \tag{8}
\]

Among them, \(R_d \) represents the weighting factor. When \(\sigma_{min} < 0 \), the weighting factor corresponding to the minimum value is
\[
\delta_i = \lim_n \frac{\log N^c_n(\alpha)}{\log \sigma_{min}}. \tag{9}
\]

Among them, \(N^c_n \) represents the approximation coefficient of sports tourism service resources; \(\alpha \) represents the scale function of sports tourism service resources.

Using formula (9) to obtain the minimum value of the weighting factor, on this basis, reconstruct the characteristics of sports tourism service resources, and then obtain the final formula for the integration of sports tourism service resources:
\[
\Gamma_s = \log c_n(G(H_x, H_y)). \tag{10}
\]

Among them, \(c_n \) represents the reconstructed sports tourism service resource; \(H_x \) represents the resource function of the sports tourism service resource in the \(x \) layer; \(H_y \) represents the \(y \)-th detailed resource function of sports tourism service resources. Figure 6 shows the integration process of sports tourism service resources.

In summary, through the combination of the Internet and edge computing methods, the improvement of sports tourism services is realized.

3. Experimental Verification

In order to comprehensively verify the application effects of the Internet of Things and edge computing technology in sports tourism services and conduct experimental verification, this experiment takes the form of simulation experiments.

3.1. Experimental Environment and Parameter Settings

Figure 7 is a schematic diagram of the simulation experiment platform.

The specific experimental software and hardware parameters are shown in Table 2.

In order to ensure the accuracy of the experimental results, the data obtained in the experiment are processed through software such as Excel and Matlab to provide necessary data support for the experimental research.

On the basis of the previously mentioned experimental hardware environment and parameter settings, the methods in [6, 7, 21–23] are selected as the comparison method and compared with the proposed method. The indicators in the experiment are set as sports tourism data retrieval time, sports tourism data fusion error, and sports tourism service management energy consumption.

3.2. Experimental Results and Analysis

3.2.1. Retrieving Time of Sports Tourism Data

Taking sports tourism data retrieval time as an experimental indicator and...
comparing the application effects of different methods, the results are shown in Table 3.

Analyzing the data in Table 3, one can see that, with the increase of the number of experiments, the sports tourism data retrieval time of different methods has shown a continuous increase trend. However, in comparison, the data retrieval time of the proposed method is significantly lower, and the minimum data retrieval time is only 2.35s, which is much lower than that of the methods in [6] and [7]. The methods in [22] and [23] also achieve relatively good performance, but there is still a certain gap compared with the method proposed in this paper. It shows that the proposed method can effectively improve the efficiency of sports tourism data retrieval, provide real-time data for sports tourism services, and improve the quality of services.

3.2.2. Integration Error of Sports Tourism Data. Taking the sports tourism data fusion error as the experimental index, the application effects of different methods are compared, and the results are shown in Figure 8.

Analysis of Figure 8 shows that as the number of iterations increases, the sports tourism data fusion errors of different methods generally show a rapid decline and then a gentle change trend. The sports tourism data fusion error of the proposed method is always lower than that of the traditional method, which shows that the sports tourism data provided by this method has a high reliability.

3.2.3. Energy Consumption of Sports Tourism Service Management. Taking sports tourism service management energy consumption as an experimental indicator, the application effects of different methods are compared, and the results are shown in Table 4.
According to the energy consumption comparison data of sports tourism service management in Table 4, the energy consumption of the proposed method is lower than that of these traditional methods, which proves that the proposed method can improve the quality of sports tourism services. As the number of iterations increases, the energy consumption of most contrast methods gradually increases, but the energy consumption of this method basically remains the same.

4. Conclusion

At present, the development of sports tourism service industry is in the stage of rapid development, but the
development of information technology is still relatively backward. Most of the sports tourism services still stay in the traditional operation mode. Their organization ability is limited, and the overall efficiency of the operation is not high, and the consumption of the resource is huge. These problems seriously restrict the sustainable development of sports tourism service industry. Under the background of the great development of Internet information, it has become a trend that the development of sports tourism service industry depends on information technology. It is inevitable to pay attention to resource integration and the optimization of the whole process of sports tourism service industry management. The Internet of Things plays an important role in the field of sports tourism service industry. This paper chooses the application of Internet of Things technology and edge computing technology in sports tourism service as the research object. The experimental results show that, compared with traditional methods, the proposed method has obvious advantages in the aspects of sports tourism data retrieval time, sports tourism data fusion error, and sports tourism service management energy consumption. The research results are useful for sports tourism service industry Internet of Things technology research and development, application research, and management personnel to provide a certain reference value. The innovation of this paper focuses on the construction of the sports tourism service system, but there is still room for improvement in the similarity calculation method and edge calculation method. In the future work, we will focus on the innovation of the method.

Data Availability

The data used to support the findings of this study are available from the corresponding author upon request.

Conflicts of Interest

The authors declare that there are no conflicts of interest regarding the publication of this paper.

References

[1] G. Solmaz, F. Cirillo, E. Cinillo et al., “Toward understanding crowd mobility in smart cities through the internet of things,” *IEEE Communications Magazine*, vol. 57, no. 4, pp. 40–46, 2019.

[2] N. Saranya, C. K. Geetha, and C. Rajan, “Data replication in mobile edge computing systems to reduce latency in internet of things,” *Wireless Personal Communications*, vol. 112, no. 4, pp. 2643–2662, 2020.

[3] H. Almajed and A. Almogren, “A secure and efficient ECC-based scheme for edge computing and internet of things,” *Sensors*, vol. 20, no. 21, p. 6158, 2020.

[4] M. Noura, M. M. Atiquzzaman, and M. Gaedke, “Interoperability in internet of things: taxonomies and open challenges,” *Mobile Networks and Applications*, vol. 24, no. 3, pp. 796–809, 2019.

[5] Z. B. Celik, P. McDaniel, L. G. Tan, A. S. Babun, and A. S. Uluagac, “Verifying internet of things safety and security in physical spaces,” *IEEE Security & Privacy*, vol. 17, no. 5, pp. 30–37, 2019.

[6] S. Li, L. Qin, H. Guo et al., “A method of improving time integration algorithm accuracy for long-term dynamic simulation,” *International Journal of Structural Stability and Dynamics*, vol. 20, no. 3, Article ID 2050079, 2020.

[7] D. Meng, “Application of big data in smart tourism information system,” *International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems*, vol. 11, 2020.

[8] I. Sítón-Candanedo, O. Alonso, L. Muñoz, S. Muoz, and S. Rodríguez-González, “Edge computing, IoT and social computing in smart energy scenarios,” *Sensors*, vol. 19, no. 15, p. 3353, 2019.

[9] B. S. Awoyemi, A. S. Alfa, and B. T. J. Maharaj, “Resource optimisation in 5G and internet-of-things networking,” *Wireless Personal Communications*, vol. 111, no. 4, pp. 2671–2702, 2020.

[10] F. Azzedine and M. Ghaleb, “Internet-of-Things and information fusion: trust perspective survey,” *Sensors*, vol. 19, no. 8, p. 1929, 2019.

[11] M. Jiménez-García, A. R. I. Peña-Sánchez, J. A. Pea-Sánchez, and J. A. López-Sánchez, “A bibliometric analysis of sports tourism and sustainability (2002–2019),” *Sustainability*, vol. 12, no. 7, p. 2840, 2020.

[12] A. S. M. Azif and J. T. Du, “Understanding collaborative tourism information searching to support online travel planning,” *Online Information Review*, vol. 43, no. 3, pp. 369–386, 2019.

[13] D. Oktaviani, “Analysis of tourism perception using the importance performance analysis method toward Jayagiri hiking trail bandung,” *Solid State Technology*, vol. 63, no. 3, p. 4009, 2021.

[14] M. Dastani and M. M. Sadri, “Webometrics of the Ministry of Sports and Youth and It’s Central Provinces in order to provide free access to information,” *Journal of Sport Management*, vol. 8, no. 3, pp. 33–40, 2019.

[15] J. Skirelis and D. Navakauskas, “Performance analysis of edge computing in IoT,” *Elektronika ir Elektrotechnika*, vol. 26, no. 1, pp. 72–77, 2020.

[16] G. Pau and F. Arena, “When edge computing meets IoT systems: analysis of case studies,” *China Communications*, vol. 17, no. 10, pp. 50–63, 2020.

[17] T. Kono, H. Y. Taito, and H. Hidaka, “Essential roles, challenges and development of embedded MCU micro-systems to innovate edge computing for the IoT/AI age,” *IEICE Transactions on Electronics*, vol. E103.C, no. 4, pp. 132–143, 2020.

[18] B. Shrestha and H. Lin, “Data-centric edge computing to defend power grids against IoT-based attacks,” *Computer*, vol. 53, no. 5, pp. 35–43, 2020.

[19] M. Kermani, A. Kantor, J. Wallerand, A. Granacher, F. Ensinas, and F. Maréchal, “A holistic methodology for optimizing industrial resource efficiency,” *Energies*, vol. 12, no. 7, p. 1315, 2019.

[20] S. Nagel, B. K. Ibsen, J. Scheerder, and T. Schlesinger, “Introduction,” *Functions of Sports Clubs in European Societies*, vol. 37, no. 4, pp. 1–7, 2020.

[21] M. Wang, W. Chai, C. Xu et al., “An edge computing method using a novel mode component for power transmission line fault diagnosis in distribution network,” *Journal of Ambient Intelligence and Humanized Computing*, vol. 6, no. 12020.

[22] A. J. Ferrer, J. M. Marqués, and J. Jorba, “Towards the decentralised cloud,” *ACM Computing Surveys*, vol. 51, no. 6, pp. 1–36, 2019.
[23] M. Mehrabi, D. You, V. Latzko, H. Salah, M. Reisslein, and F. H. P. Fitzek, "Device-enhanced MEC: multi-access edge computing (MEC) aided by end device computation and caching: a survey," IEEE Access, vol. 7, pp. 166079–166108, 2019.