Ruotsalainen, Ilona; Gorbach, Tetiana; Perkola, Jaana; Renvall, Ville; Syväoja, Heidi J.; Tammelin, Tuija H.; Karvanen, Juha; Parviainen, Tiina

Physical activity, aerobic fitness, and brain white matter

Published in:
DEVELOPMENTAL COGNITIVE NEUROSCIENCE

DOI:
10.1016/j.dcn.2020.100765

Published: 01/04/2020

Document Version
Publisher's PDF, also known as Version of record

Please cite the original version:
Ruotsalainen, I., Gorbach, T., Perkola, J., Renvall, V., Syväoja, H. J., Tammelin, T. H., ... Parviainen, T. (2020). Physical activity, aerobic fitness, and brain white matter: Their role for executive functions in adolescence. DEVELOPMENTAL COGNITIVE NEUROSCIENCE, 42, [100765]. https://doi.org/10.1016/j.dcn.2020.100765

This material is protected by copyright and other intellectual property rights, and duplication or sale of all or part of any of the repository collections is not permitted, except that material may be duplicated by you for your research use or educational purposes in electronic or print form. You must obtain permission for any other use. Electronic or print copies may not be offered, whether for sale or otherwise to anyone who is not an authorised user.
Physical activity, aerobic fitness, and brain white matter: Their role for executive functions in adolescence

Ilona Ruotsalainen a, *, Tetiana Gorbach b, c, Jaana Perkola d, Ville Renvall e, f, Heidi J. Syväoja g, Tuija H. Tammelin g, Juha Karvanen c, Tiina Parviainen a

a Department of Psychology, Centre for Interdisciplinary Brain Research, University of Jyväskylä, Jyväskylä, Finland
b Umed School of Business, Economics and Statistics, Umed University, Umed, Sweden
c Department of Mathematics and Statistics, University of Jyväskylä, Jyväskylä, Finland
d Clinical Neurophysiology, University of Helsinki and Helsinki University Hospital, Finland
e Department of Neuroscience and Biomedical Engineering, Aalto University, Espoo, Finland
f AMI Centre, Aalto Neuroimaging, School of Science, Aalto University, Espoo, Finland
g LIKEs Research Centre for Physical Activity and Health, Jyväskylä, Finland

A R T I C L E  I N F O

Keywords:
- Diffusion tensor imaging
- Executive functions
- Fitness
- Fractional anisotropy
- Physical activity
- White matter

A B S T R A C T

Physical activity and exercise beneficially link to brain properties and cognitive functions in older adults, but the findings concerning adolescents remain tentative. During adolescence, the brain undergoes significant changes, which are especially pronounced in white matter. Studies provide contradictory evidence regarding the influence of physical activity or aerobic-exercise on executive functions in youth. Little is also known about the link between both fitness and physical activity with the brain’s white matter during puberty. We investigated the connection between aerobic fitness and physical activity with the white matter in 59 adolescents. We further determined whether white matter interacts with the connection of fitness or physical activity with core executive functions. Our results show that only the level of aerobic fitness, but not of physical activity relates to white matter. Furthermore, the white matter of the corpus callosum and the right superior corona radiata moderates the links of aerobic fitness and physical activity with working memory. Our results suggest that aerobic fitness and physical activity have an unequal contribution to the white matter properties in adolescents. We propose that the differences in white matter properties could underlie the variations in the relationship between either physical activity or aerobic fitness with working memory.

1. Introduction

Physical activity and high aerobic fitness beneficially link to many structural brain properties, such as gray matter volume and white matter microstructure (Chaddock-Heyman et al., 2018; Erickson et al., 2011; Schaeffer et al., 2014; Whitman et al., 2016). Due to its significance for many cognitive functions (Baum et al., 2017; Engvig et al., 2012; Nagy et al., 2004; Treit et al., 2014), the brain’s white matter has been of interest also in association with physical performance. It is particularly important to examine the relation of physical activity on white matter in adolescents, as the physical activity levels decrease with age (Van Hecke et al., 2016) and adolescents worldwide fail to meet physical activity recommendations (Hallal et al., 2012). Moreover, white matter is still developing in adolescents and its properties have been shown to be crucial for cognition, such as executive functions (Baum et al., 2017; Treit et al., 2014) and for behaviour, such as risk-taking at this age (Jacobus et al., 2013). While earlier studies on other age groups suggest a link between physical activity level and white matter microstructure (Chaddock-Heyman et al., 2018; Oberlin et al., 2016; Strömmers et al., 2018; Tian et al., 2015), this association remains unclear for adolescents.

During puberty (10–17 years old), the body and brain undergo notable changes (Lebel et al., 2008; Spear, 2013) and physical training may influence the brain differently depending on the childhood or

Abbreviations: AD, axial diffusivity; CANTAB, Cambridge Neuropsychological Automated Test Battery; DWI, diffusion-weighted imaging; FA, fractional anisotropy; MD, mean diffusivity; MRI, magnetic resonance imaging; MVPA, moderate-to-vigorous intensity physical activity; RD, radial diffusivity; RVP, rapid visual information processing; SWM, partial working memory; TBSS, Tract-Based Spatial Statistics; TFCE, threshold-free cluster enhancement.

* Corresponding author at: Department of Psychology, University of Jyväskylä, Kärki, Mattilanniemi 6, FI-40014, Finland.

E-mail address: Ilona.p.ruotsalainen@jyu.fi (I. Ruotsalainen).

https://doi.org/10.1016/j.dcn.2020.100765
Received 1 July 2019; Received in revised form 29 January 2020; Accepted 29 January 2020
Available online 4 February 2020

1878-9293/© 2020 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license
adolescent phase. Indeed, the onset of puberty (mean age 11 for females and 12 for males) has been proposed to affect neural development and plasticity (Piekarski et al., 2017). Furthermore, the white matter growth of specific tracks is different in middle adolescence when compared to both childhood and late adolescence (Simmonds et al., 2014). Thus, the influence of physical activity on the white matter might vary depending on the developmental phase (childhood, middle adolescence or late adolescence).

The earlier studies concerning youth have focused on either childhood or late adolescence and the results from these studies are contradictory. While there was no relation between white matter fractional anisotropy (FA) and either aerobic fitness or self-reported physical activity in 15–18-year-old male adolescents (Hering et al., 2014), these relationships have been found in preadolescent children. In an exploratory study, Chaddock-Heyman et al. (2014) found that 9 to 10-year-old children with a higher fitness demonstrated a greater FA in the body of the corpus callosum, superior corona radiata, and superior longitudinal fasciculus. Two intervention studies suggested that physical activity intervention increased FA of the genu of the corpus callosum in normal weight preadolescent children (Chaddock-Heyman et al., 2018) and of the uncinate fasciculus in overweight ones (Schaef er et al., 2014) but not the FA of the superior longitudinal fasciculus (Kraft et al., 2014a). Despite inconsistencies in findings, these studies suggest that besides the adult population, aerobic fitness and physical activity may be associated with white matter properties in young participants as well. However, due to small number of studies involving child and adolescent participants, conclusive interpretation of these early findings is premature.

While physical activity and high aerobic fitness are beneficial for brain health, some studies further suggest exercise-related improved cognitive skills. Especially relevant in this context is the suggested relationship of both physical activity and aerobic fitness with executive functions. However, it is currently unknown whether white matter moderates the relationship between either physical activity or aerobic fitness and executive functions. We hypothesised that the relationship between either aerobic fitness or physical activity with core executive functions is different for individuals with low or high brain white matter FA.

2. Methods

2.1. Participants

Participants (12.7–16.2 years old) were recruited from a larger follow-up study (see Joensuu et al. (2018)). Sixty-one right-handed subjects participated in the brain magnetic resonance imaging (MRI) experiments, of which two participants did not complete the diffusion-weighted imaging protocol. A total of 59 subjects (39 female) were included in the analysis concerning physical activity, aerobic fitness, working memory, rapid visual information processing, and white matter measures. From the 59 subjects, 58 were analysed for response inhibition (one participant did not complete the test). Participants were screened for exclusion criteria comprising MRI contraindications; neurological disorders; medication influencing the central nervous system; any major medical condition; and left-handedness, which was assessed by the Edinburgh Handedness Inventory during the first research visit. Furthermore, to evaluate pubertal development, participants self-reported their stage of puberty by using the Tanner scale (Marshall and Tanner, 1970, 1969). The study was conducted according to the ethical principles stated in the Declaration of Helsinki, and prior to the participation, each participant and his or her legal guardian provided written informed consent. The Central Finland Healthcare District Ethical Committee accepted the study. The participants were compensated with a 30-euro gift card for participating in the brain scans.

2.2. Physical activity and aerobic fitness

The physical activity was objectively measured using the triaxial ActiGraph GT3X + and wGT3X + accelerometers (Pensacola, FL, USA; for full details, see Joensuu et al. (2018)). ActiGraph accelerometers were chosen, because ActiGraph is the most frequently used brand by physical activity researchers during the last decade (Wijndaele et al., 2015), and this offers an opportunity to compare the physical activity results to other studies as well. In addition, ActiGraph is easy and comfortable to use. The participants were instructed to wear these devices on their right hip during waking hours for seven consecutive days (except during bathing and swimming). A valid measurement day consisted of at least 10 h of data. Subjects who had at least two valid weekdays and one valid weekend day were included in the analysis. For those subjects who did not meet these criteria, a multiple imputation method (explained in more detail below) was employed to compensate for the missing data. Activity counts were collected in 15-s epochs. When there was a period of at least 30 min of consecutive zero counts, it was considered as a non-wear period. Data were collected at a sampling frequency of 60 Hz and standardly filtered. A customised Visual Basic macro for Excel was used for data reduction. Cut points from Evenson et al.’s study were utilised in the analysis (Evenson et al., 2008; Trost et al., 2011). The moderate-to-vigorous intensity physical activity (MVPA) was converted into a weighted-mean value of MVPA per day (average MVPA min/day of weekdays × 5 + average MVPA min/day of weekend × 2) / 7.

The maximal 20-m shuttle run test was employed to assess the aerobic fitness of the participants. The test was performed as described by Nupponen et al. (1999) and specified in detail for the present data.
collection in Joensu et al. (2018). Each participant ran between two lines, 20 m apart, at an accelerating pace, which was indicated with an audio signal. The duration that the participants ran until they failed to reach the end lines within two consecutive tones indicated their level of aerobic fitness. The speed in the first and second levels were 8.0 and 9.0 km/h, respectively. After the second level, the speed sequentially increased with 0.5 km/h per level. The duration of each level was one minute. The participants were verbally encouraged to keep running throughout the test.

In addition to the aerobic fitness test, the participants also completed a set of tests measuring muscular fitness (push-ups and curl-ups), flexibility and fundamental movement skills (a 5-learn test and a throwing-catching combination test). This paper focuses on aerobic fitness and physical activity, and the results concerning other fitness tests will be reported elsewhere.

3. Cognitive assessment

Wide scale of cognitive functions were measured with a test battery including four tests from the Cambridge Neuropsychological Test Automated Battery (CANTAB) (CANTABecleps version 6) and a modified flanker task (Eriksen and Eriksen, 1974). In the current study, we focused on core executive functions associated with physical activity and fitness in previous studies focusing on different age groups. The core executive functions are also shown to be important for several aspects of life, such as academic achievement (Best et al., 2011), health (Allan et al., 2016) and behavioural control (Denson et al., 2011). Furthermore, earlier studies show that maturation of inhibition, attention, and working memory still takes place during adolescence. For the current study analyses, we therefore included three different tests measuring core executive functions. Two of these tests were from the CANTAB, including the Rapid Visual Information Processing (RVP) and Spatial Working Memory (SWM) tests (CANTAB eclipse version 6). The third test was a modified Eriksen Flanker task that measures response inhibition (Eriksen and Eriksen, 1974). Trained research assistants instructed the participants to perform the tablet-based tests according to the standard protocol in a silent environment.

For the RVP task of sustained attention, an array of numbers from 2 to 9 was presented in a pseudo-random order (100 digits/min). The participant’s task is to recognise three specific digit sequences (2-4-6, 3-5-7 and 4-6-8) and to press a response button when they detect the specific target sequence.

The SWM task assesses the participant’s ability to retain and manipulate visuospatial information. Participants are asked to find a blue token hidden under a box, which is done by touching boxes on the screen. Once a blue token has been located, the same set of boxes is shown to find the next token. The participants are also told that once a token has been found under a particular box that the same box would not hide any other tokens anymore. The difficulty of the task increases from four to ten boxes.

CANTAB tests produce several variables for each test. The principal component analysis was conducted to reduce the number of variables and was performed separately for individual tests according to Rovio et al. (2016). Component represents cognitive performance related to the particular domain. Components were normalized based on the rank order normalization procedure, resulting in variables, each with a mean value of 0 and a standard deviation of 1.

A modified Eriksen Flanker task was used to measure response inhibition. For this task, an array of five flanking fishes is shown to the participants, and they are asked to react as quickly and accurately as possible to the middle fish. We used four different conditions for this task: compatible congruent (AC), compatible incongruent (AI), incompatible congruent (BC) and incompatible incongruent (BI). The first part of the test was compatible (congruent and incongruent), in which participants were asked to press the button at the side the fish was facing. For the congruent condition, all the other fishes in the array were swimming in the same direction as the middle fish, and for the incongruent condition, the other fishes were swimming in the opposite direction. The second part of the test was incompatible (congruent and incongruent), in which participants were asked to press the button on the opposite side of where the fish is facing. The average reaction time of the correct answers was used as an outcome measure. Flanker response accuracy was not included as an outcome measure due to ceiling effects observed in some of the variables describing accuracy.

3.1. Multiple imputation of the missing data

Multiple imputation was used to handle missing data. The proportion of missing values was 10 % for the pubertal stage, 15 % for the 20-m shuttle run and 22 % for the MVPA. The reasons for missing values for most individuals included the absence from school during the measurement (e.g. due to sickness) and the insufficient number of valid measurement days (i.e. two weekdays and one weekend day) for physical activity. The incomplete data for several variables were imputed using the multiple imputation under a fully conditional specification (chains equations) (Van Buuren et al., 2006). The analysis was performed under the assumption of data missing at random as the crucial predictors – such as preceding measures (measured approximately six months before the current study) of pubertal stage, shuttle run tests (correlation with preceding 20-m shuttle run test = 0.57) and weekday measures of physical activity (correlation with the total MVPA [also weekend days included] = 0.95) – were available. As advised (Van Buuren, 2012 chapter 2.3.3), 50 imputed datasets were constructed and analysed. Each data set was constructed using 50 iterations of the multiple imputation by a chained equation algorithm to ensure the convergence of the iterative imputation process. The calculations were performed in R 3.4.0 (R Core Team, 2016) using the mice 2.3 package (Van Buuren and Groothuis-Oudshoorn, 2011). The model parameters and their standard errors were estimated for each imputed dataset and combined using Rubin’s rules (Van Buuren, 2012 p. 37–38) to obtain the final estimates of parameters and their standard errors. In addition, the differences between the multiple imputation results and complete case analysis results were small. A full description of how the multiple imputation was done in the current study has been described previously (Ruotsalainen et al., 2019).

3.2. MRI acquisition

Imaging data were acquired on a 3 T whole-body MRI scanner (MAGNETOM Skrya, Siemens Healthcare, Erlangen, Germany) using a 32-channel head coil at the Aalto Neuroimaging unit, Aalto University, Espoo, Finland. The total scanning time was approximately 45 min for the structural, diffusion-weighted, functional, field map and perfusion imaging. All scans, except perfusion MRI, were acquired using ‘Auto Align’ to minimise the variation in slice positioning (van der Kouwe et al., 2005). Prior to imaging, the participants were familiarised with the measurement protocol. All participants were instructed to keep their head still during the scanning, and pads were used to minimise head motion. In addition, the participants wore earplugs to reduce the high noise caused by the MRI scanner.

For the diffusion-weighted imaging (DWI), we used a spin-echo based single-shot echo-planar (EPI) sequence with fat saturation. Prior to the DWI, high-order shimming was applied to reduce the inhomogeneities of the main magnetic field. The axial slices were tilted in the anterior–posterior commissure line to avoid aliasing artefacts and artefacts caused by eye motion on the imaging slices. Seventy slices without gap were collected in 30 different diffusion gradient orientations. Two sets of images with b = 1000s/mm2 and ten T2-weighted EPI images (b = 0 images) were acquired with two opposite phase encoding directions (anterio to posterior and posterior to anterior). The acquisition parameters were as follows: repetition time (TR) = 11,100 ms, echo time (TE) =78 ms, field of view (FOV) = 212 mm, matrix size =
106, voxel size = 2 × 2 × 2 mm3, GRAPPA acceleration = 2 and phase partial Fourier = 6/8. The scanning time for each DWI series was 7 min 47 s.

3.3. Image analysis

Diffusion-weighted images were processed using the FMRIB Software Library (FSL 5.0.11, www.fmrib.ox.ac.uk/fsl). The magnetic susceptibility distortions were corrected using the topup tool (Andersson et al., 2003). Eddy current-induced distortions and subject movements were corrected using the eddy tool (eddy_cuda), including the slice-to-volume motion model and the outlier replacement (Andersson et al., 2017, 2016; Andersson and Sotiropoulos, 2016). This was followed by the removal of non-brain tissue using the Brain Extraction Tool (BET). Then, DTIFIT was used to fit the diffusion tensor model, and obtain voxel-wise maps of the FA, mean diffusivity (MD), radial diffusivity (RD) and axial diffusivity (AD).

Voxel-wise statistical analysis of the FA, MD, RD, and AD data was carried out using Tract-Based Spatial Statistics (TBSS) – for methodological details, see Smith et al. (2006). First, every FA image was aligned to every other image to identify the ‘most representative’ image, which was used as a target image. Then, this target image was affine aligned into a Montreal Neurological Institute (MNI)152 standard space, and all subject’s FA data were transformed into MN152 space by combining the nonlinear transform of the target FA image with the affine transform from that same target to the MN152 space. Next, the mean FA image was created and thinned to create a mean FA skeleton that represents the centres of all tracts. Each subject’s aligned FA data were then projected onto this skeleton, and the resulting data fed into the voxel-wise cross-subject statistics. The skeleton was thresholded at an FA value of 0.2.

To test the relationship of both physical activity and aerobic fitness with white matter tract measures (FA, MD, RD, and AD), we used FSL’s randomise tool with 10,000 permutations (Winkler et al., 2014). The age, pubertal stage, and sex were used as covariates. The T-value difference in the voxel clusters was considered significant when the values passed – after the threshold-free cluster enhancement (TFCE) and family-wise error correction – a threshold of p < 0.05. The anatomical location of significant clusters was labelled using the JHU ICBM-DTI-81 atlas. For the TBSS analysis, we used the average values of the imputed datasets (for the physical activity, aerobic fitness, and pubertal stage). All the images were visually inspected for excessive motion and one subject was excluded based on this manual inspection. Further, a mean head motion was calculated using eddy_restricted_movement_rms -files, and an additional TBSS analysis was conducted using the head motion (eddy_restricted_movement_rms) as a covariate; however, this had negligible effects on the results. The analysis pipeline is available at Open Science Framework (https://osf.io/rg6zf/).

3.4. Regression and moderation analyses

Aerobic fitness, physical activity, and executive functions: Multiple linear regression, taking into account all 50 imputed datasets, was used to analyse the associations between core executive functions, physical activity, and aerobic fitness. The following multiple regression model was used:

\[ EF_i = \beta_0 + \beta_1 X_{i1} + \beta_2 Age_i + \beta_3 Sex_i + \beta_4 Puberty_i + \epsilon_i \]

In the model, \( EF_i \) is the score of the executive function test of each test for a subject \( i \), \( X_{i1} \) is the physical activity or aerobic fitness, \( Age_i \), \( Sex_i \) and \( Puberty_i \) are the age, sex and pubertal stage, respectively and \( \epsilon_i \) is the error term. The error variables were independent and identically distributed normal random variables with zero mean and the same standard deviation. All predictors were entered simultaneously into the model. The residual plots and Q-Q plots were used to check the assumptions of linearity as well as the normality and homoscedasticity of the residuals. In addition, homoscedasticity was tested using the Breusch–Pagan test (bptest) from the R package lmtest (Breusch and Pagan, 1979; R Core Team, 2018; Zeileis and Hothorn, 2002). The means of the residuals in all models were close to zero. The highest pairwise correlation was found between the pubertal stage and an age r of 0.59, indicating that the multicollinearity was not a factor of concern. All variance inflation factors were < 2. We used the false discovery rate (FDR) to adjust for the multiple comparisons, and the results with an alpha level smaller than 0.05 after the FDR adjustment were considered noteworthy (Benjamini and Hochberg, 1995).

Aerobic fitness, physical activity, FA and executive functions: A moderation analysis was applied to examine whether white matter FA in predetermined tracts changed the association of either aerobic fitness or physical activity with core executive functions. Here moderation was studied (instead of mediation) to define the conditions (the level of FA) under which the relationship between either physical activity or aerobic fitness and core executive functions occur. Based on previous literature investigating the relationship between either aerobic fitness or physical activity with white matter FA in young participants, we used the following white matter tracts as regions of interest: the body and genu of corpus callosum, the bilateral superior corona radiata, the bilateral superior longitudinal fasciculus and the bilateral uncinate fasciculus (Chaddock-Heyman et al., 2018, 2014; Schaeffer et al., 2014). We focused our moderation analysis only to concern FA and not the other white matter measures since it is the most studied white matter measure in relation to physical activity, aerobic fitness and core executive functions in adolescents. Moreover, the earlier evidence concerning the relationship between white matter and physical activity/aerobic fitness was strongest for FA. These regions were masked from the white matter skeleton using the JHU ICBM-DTI-81 atlas, and the mean FA value was extracted for each region of interest. For the moderation analysis, we used the same model as for assessing the associations between core executive functions and either aerobic fitness or physical activity; however, the main effect of FA and an interaction term (FA*aerobic fitness) was added to the model. The variables involved with the interaction term were mean centred. For significant interaction effects, we conducted a simple slopes analysis to assess the relationships at high (+1 SD) or low (−1 SD) levels of the moderator. All statistical analyses were performed using the R 3.5.1 software (R Core Team, 2018) with the moderation analysis; the mitml 0.3–7 package was utilised (Grund et al., 2019). The results with an alpha level < 0.05 were considered noteworthy.

4. Results

4.1. Participant demographics

Table 1 describes the participant demographics (59 participants; 58 for the Flanker task). Body mass index (BMI) distribution of the participants is presented in Supplementary Fig. 1.

4.2. Associations between white matter, aerobic fitness, and physical activity

The TBSS analysis showed that aerobic fitness was positively associated with FA in several white matter tracts (Fig. 1 and Table 2). Aerobic fitness was associated with eight FA clusters of which the centres of mass localised to the left and right superior corona radiata and the body of the corpus callosum. Besides FA, higher aerobic fitness was associated with a lower MD, RD, and AD in several white matter areas, such as corpus callosum and the bilateral superior corona radiata, although the associations were more widespread than those for FA. A complete list of clusters with MNI coordinates and overlapping anatomical tracts is given in Table 2. There were no associations between physical activity and FA, MD, RD, or AD. All statistical maps can be found in our Neurovault collection (https://neurovault.org/collections/5206/)
slopes were negative with high FA values and positive with low FA nature of the interaction (Fig. 2). These results revealed that the simple slope for the 20-m shuttle run was positively related to working memory (low FA in the body of corpus callosum, physical activity or exercise). In the current study, aerobic fitness was related to spatial working memory and working memory was moderated by FA in specific white matter tracts.

### 4.4. White matter FA as a moderator of links between either aerobic fitness or physical activity with core executive functions

To study whether white matter FA moderates the relationship between either physical activity or aerobic fitness with the core executive functions, we conducted an exploratory moderation analysis. We found that white matter FA in the body of the corpus callosum and in the right superior corona radiata moderated the relationship between the 20-m shuttle run performance and spatial working memory. The interaction effect for FA of the body of corpus callosum*20-m shuttle run was \( \beta = -5.56, t = -2.64, p = 0.012, 95\% \text{ confidence interval (CI)} = -9.82, -1.30. \) For the FA of the right superior corona radiata*20-m shuttle run, this was \( \beta = 5.25, t = -2.14, p = 0.038, 95\% \text{ CI} = -10.19, -0.31. \) In addition, white matter FA in the body of the corpus callosum and in the genu of corpus callosum moderated the association between the MVPa and spatial working memory. The interaction effect for FA of the body of corpus callosum*MVPa was \( \beta = -0.81, t = -2.52, p = 0.016, 95\% \text{ CI} = -1.47, -0.16. \) For the FA of the genu of corpus callosum, this was \( \text{MVPa} \beta = -0.65, t = -2.30, p = 0.026, 95\% \text{ CI} = -1.23, -0.08. \)

A follow-up simple slopes analysis was performed to examine the nature of the interaction (Fig. 2). These results revealed that the simple slopes were negative with high FA values and positive with low FA values. More specifically, with high FA values in the body of the corpus callosum, the aerobic fitness was negatively associated with working memory (\( \beta = -0.21, t = -2.19, p = 0.034, 95\% \text{ CI} = -0.41, -0.02. \)) Nevertheless, with low FA values, there were no significant associations between aerobic fitness and working memory. Aerobic fitness did not significantly associate with working memory, neither with high or low FA values in the right superior corona radiata. Regarding the relationship between physical activity and working memory, we found that with low FA values in the body and genu of corpus callosum, physical activity was positively related to working memory (low FA in the body of corpus callosum: \( \beta = 0.03, t = 2.38, p = 0.023, 95\% \text{ CI} = 0.01, 0.06 \) and low FA in the genu of corpus callosum: \( \beta = 0.02, t = 2.20, p = 0.034, 95\% \text{ CI} = 0.00, 0.05). Whereas with high FA values, physical activity did not associate with working memory. Furthermore, we did not find evidence of white matter moderation on the link between other core executive functions and either physical activity or aerobic fitness.

### 5. Discussion

The purpose of the current study was to determine 1) whether physical activity and aerobic fitness are related to white matter properties in adolescents and 2) whether white matter FA moderates the relationship of physical activity and aerobic fitness with core executive functions. We found that aerobic fitness (tested by a 20-m shuttle run test) is associated with white matter properties (FA, MD, RD, and AD) of several white matter tracts in adolescents. On the contrary, we did not find evidence for a relationship between physical activity (MVPa) and white matter. Our exploratory analysis suggests that the relationship between either aerobic fitness or physical activity with working memory was moderated by FA in specific white matter tracts.

The whole-brain analysis revealed that the association between aerobic fitness and white matter FA was apparent in many white matter tracts, most robustly in the corpus callosum and the bilateral superior corona radiata. The negative associations between aerobic fitness and white matter MD, RD, and AD were even more widespread (Fig. 1, Table 2). Our findings are consistent with the study conducted by Chaddock-Heyman et al. (2014) who investigated preadolescent children and demonstrated that a higher aerobic fitness was related to a greater FA in the body of the corpus callosum, the superior corona radiata and the superior longitudinal fasciculus in children. The current results, however, differ from Herting et al. (2014) as they did not find evidence for a relationship between aerobic fitness and FA in whole-brain analyses of 15 – 18-year-old male participants. This discrepancy between the results might be explained by subject-related and methodological differences between the studies, such as age and sex of the participants. In addition, the method to evaluate aerobic fitness levels of participants differed between the studies.

In addition to the studies of the connection between aerobic fitness and white matter FA, a few additional studies have investigated the link between physical activity and white matter in children or adolescents. Our findings that show no association between physical activity and FA are in line with a study concerning older male adolescents (Herting et al., 2014) and a study investigating the effect of exercise intervention (exercise group vs. controls) on white matter in overweight preadolescent children (Krafft et al., 2014a). In contrast to our study and the one of (Herting et al., 2014; Chaddock-Heyman et al., 2018) reported an increase in FA in the genu of the corpus callosum after an exercise intervention that did not affect aerobic fitness. However, they did not show associations between exercise and any of the other white matter tracts studied. In line with some earlier studies (Chaddock-Heyman et al., 2018, 2014; Herting et al., 2014), we did not find support for a link between physical activity and FA of the uncinate fasciculus, which was reported by Schaeffer et al. (2014).

Our differential findings for aerobic fitness and physical activity might be driven by genetic factors which, presumably, are at least partly different for fitness and physical activity. Indeed, aerobic fitness and physical activity are different concepts: while physical activity indicates the movement that is produced by skeletal muscles, aerobic fitness can be interpreted as a capacity that an individual has to perform physical activity or exercise. In the current study, aerobic fitness was related to white matter FA most robustly in the corpus callosum and the superior corona radiata. These tracts connect with motor regions and have an important role in motor functions (Fabri et al., 2014; Kim and Pope, 2005; Wahl et al., 2007). They also develop relatively early and FA of these structures stays at the same level during adolescence (Lebel et al., 2008; Simmonds et al., 2014). Perhaps the fact that only aerobic fitness (and not physical activity) was associated with FA in the corpus callosum and superior corona radiata reflects the relatively strong
emphasis of genetic factors both in fitness level and in the structuring of these tracts (Chiang et al., 2011) during development. While it has been also shown that the trainability of aerobic fitness and exercise responses are partly predicted by genetic factors (Bouchard et al., 2011; Ross et al., 2019), supporting a possible common genetic pathway underlying fitness and white matter FA. To summarize, the state of the body (aerobic fitness), but not physical behaviour (physical activity) is important in relation to white matter in adolescents.

Even though we found an association between aerobic fitness and white matter properties, we did not find a clear association between either aerobic fitness or physical activity with core executive functions. The earlier results of these relationships are inconsistent. For instance,
factors in the brain. Indeed, white matter properties have been sug-
disparity in earlier findings may reflect underlying neurobiological
Chaddock et al., 2010b; Huang et al., 2015; Westfall et al., 2018), but
in the body and genu of the corpus callosum. At high levels of FA, no
aerobic fitness with working memory, our results suggest that the
physiological effects of exercise. Our results indicate that it is relevant to
moderation effect on working memory but not on the other tested
corpus callosum, higher aerobic fitness was related to a poorer working memory
because of physical activity or aerobic fitness on spatial working mem-
memory as such is not surprising. Corpus callosum has an important role
improvement in working memory. This means that after reaching a certain level of FA, fitness
does not positively correlate with working memory and on the other
hand when FA is low enough physical activity is positively correlated with working memory. Thus, the FA of the corpus callosum seems to
have an important role in altering the direction of the relationship be-
working memory and both aerobic fitness and physical activity.
What could explain the positive relationship between physical ac-
tivity and working memory with low FA values and on the contrary the
negative relationship between aerobic fitness and working memory with high FA values? The link between physical activity, FA and working
memory such as it is not surprising. Corpus callosum has an important role
in interhemispheric communication and synchrony (Ellis et al., 2016;
Engel et al., 1991). Indeed, white matter microstructural properties,
measured by means of DWI, have been shown to affect brain synchrony
(Bells et al., 2017) which in turn has been shown to be critical for working
memory (Miller et al., 2018). As even small changes in white matter
microstructure can affect brain synchrony (Pajevic et al., 2014), it is
possible that synchrony related mechanisms might be behind the
moderation results. These results suggest that when examining the
influence of physical activity or aerobic fitness on spatial working mem-
ory, the level of white matter specifically in corpus callosum could affect
the improvements in working memory.

The result of a negative association between fitness and working
memory at high levels of FA is more puzzling. Higher fitness predicted
higher FA values, independent of age, but at high FA values, higher
aerobic fitness has been associated with executive functions (e.g.
Chaddock et al., 2010b; Huang et al., 2015; Westfall et al., 2018), but
not all studies have shown this association (e.g. de Greeff et al., 2016;
Stroth et al., 2009). So, even though a meta-analysis in children and
adolescents (Alvarez-Bueno et al., 2017) suggests a minimal positive
effect of physical activity intervention on working memory (Cohen
¼ 0.26), the matter still remains debatable (Diamond and

\[ Y = \frac{X}{Z} \]

| Measure | Cluster | Cluster size (voxels) | Anatomica location of clusters (center of mass) | t     | p-value | MNI coordinates |
|---------|---------|----------------------|-----------------------------------------------|-------|---------|-----------------|
|         |         |                      |                                               |       |         | X   | Y  | Z  |
| FA      | 1       | 801                  | Superior corona radiata L                  | 2.39  | 0.025  | -25.4| -12.1| 26.5 |
| FA      | 2       | 563                  | Superior corona radiata R                  | 2.34  | 0.037  | 27.6 | -17.2| 32.2 |
| FA      | 3       | 431                  | Body of corpus callosum                    | 2.36  | 0.039  | -1.5 | 14.9 | 20.4 |
| FA      | 4       | 319                  | Body of corpus callosum                    | 2.34  | 0.044  | -4.15| -24  | 26.7 |
| FA      | 5       | 83                   | Superior corona radiata R                  | 2.51  | 0.047  | 24.3 | 11.2 | 30.6 |
| FA      | 6       | 25                   | Unclassified                                | 2.09  | 0.05   | 30.5 | 6.84 | 25.6 |
| FA      | 7       | 2                    | Superior corona radiata R                  | 2.29  | 0.05   | 22.5 | -14.5| 35.5 |
| FA      | 8       | 1                    | Superior corona radiata R                  | 2.43  | 0.05   | 21   | -13  | 35   |
| MD      | 1       | 15494                | Body of corpus callosum                    | 1.99  | 0.03   | 1.92 | -4.17| 28.4 |
| RD      | 1       | 7674                 | Unclassified                                | 2.02  | 0.032  | 9.33 | -15.6| 25.6 |
| AD      | 1       | 2117                 | Anterior limb of internal capsule R         | 1.85  | 0.026  | 21.9 | 20.3 | 10.1 |
|        | 2       | 980                  | Body of corpus callosum                    | 1.85  | 0.031  | -17.8| 5.9  | 22.5 |
|        | 3       | 67                   | Unclassified                                | 3.02  | 0.046  | 33.9 | 21.6 | 19.3 |
|        | 4       | 34                   | Unclassified                                | 3.14  | 0.047  | 16.6 | 21.1 | 38.9 |

The MNI coordinates indicate the anatomical location of the centre of mass for each cluster. The p-values were derived from the clusters and were revealed by the threshold-free cluster enhancement (TFCE) and controlled for the family-wise error rate (FWER). JHU ICBM-DTI-81 atlas does not encompass all the white matter voxels, for this reason, some voxels are labelled as ‘unclassified’.

The footnotes list all the tracts that each cluster overlaps with according to the JHU ICBM-DTI-81 atlas and indicates the proportion of voxels that overlap with that particular tract in each cluster.

JHU ICBM-DTI-81 tracts (% of voxels) FA: Fractional anisotropy, MD: Mean diffusivity, RD: Radial diffusivity, AD: axial diffusivity, L: left, R: right, ACR: Anterior corona radiata, ALIC: Anterior limb of internal capsule, CC: Corpus callosum, PCR: Posterior corona radiata, PLIC: Posterior limb of internal capsule, PTR: Posterior thalamic radiation, RLIC: Retrolenticular part of internal capsule, SCR: Superior corona radiata, SFOF: Superior fronto-occipital fasciculus, SLF: Superior longitudinal fasciculus.

The table lists all the tracts that each cluster overlaps with according to the JHU ICBM-DTI-81 atlas and indicates the proportion of voxels that overlap with that particular tract in each cluster.

JHU ICBM-DTI-81 tracts (% of voxels) FA: Fractional anisotropy, MD: Mean diffusivity, RD: Radial diffusivity, AD: axial diffusivity, L: left, R: right, ACR: Anterior corona radiata, ALIC: Anterior limb of internal capsule, CC: Corpus callosum, PCR: Posterior corona radiata, PLIC: Posterior limb of internal capsule, PTR: Posterior thalamic radiation, RLIC: Retrolenticular part of internal capsule, SCR: Superior corona radiata, SFOF: Superior fronto-occipital fasciculus, SLF: Superior longitudinal fasciculus.

The table lists all the tracts that each cluster overlaps with according to the JHU ICBM-DTI-81 atlas and indicates the proportion of voxels that overlap with that particular tract in each cluster.

JHU ICBM-DTI-81 tracts (% of voxels) FA: Fractional anisotropy, MD: Mean diffusivity, RD: Radial diffusivity, AD: axial diffusivity, L: left, R: right, ACR: Anterior corona radiata, ALIC: Anterior limb of internal capsule, CC: Corpus callosum, PCR: Posterior corona radiata, PLIC: Posterior limb of internal capsule, PTR: Posterior thalamic radiation, RLIC: Retrolenticular part of internal capsule, SCR: Superior corona radiata, SFOF: Superior fronto-occipital fasciculus, SLF: Superior longitudinal fasciculus.
fitness did not associate with better working memory (in fact, on the contrary). Furthermore, at low FA values, physical activity relates with better working memory performance. The degree of FA is thought to be influenced by myelin (Chang et al., 2017). While animal studies suggest that myelination constrains the brain plasticity, experience-related increases in myelination may both stabilize the connections and suppress plasticity (McGee et al., 2005). Thus, high FA values may indicate a state of suppressed plasticity. In this scenario, at high FA levels, no relationship would be expected between fitness and working memory; the slight negative association in our data needs to be explored in further studies.

Few limitations are present in the current study. Firstly, the sample size ($n = 59/58$) may not be large enough to detect weak associations, and the limited age group 12.7–16.2-year-old may not allow large generalisations. Secondly, even though accelerometers are widely used and provide an objective measure of physical activity, the same amount of physical activity may produce different physiological responses for each individual. Further, the application of different cut-points may yield different estimates of MVPA, limiting the comparability between studies. Thirdly, due to computational restrictions, the averages of the imputed values were used in TBSS analysis. Even though a relatively large amount of data for some variables were imputed, we could utilize data from the earlier measurements and good proxies for the variables with missing observations, which improves the precision of the imputations (for details see Ruotsalainen et al., 2019). Fourthly, we assessed the level of aerobic fitness with a 20-m shuttle run test, which is not a direct measure of cardiorespiratory fitness, however, it is considered to have good validity for estimating maximal oxygen uptake. Another possible limitation is that the BMI is not included as a predictor in the analyses. While BMI is related to performance in the 20-m shuttle run task, it appears to have a minimal effect on the correlation between shuttle run task performance and maximal oxygen consumption (Mahar et al., 2018). Further, the relationship between white matter microstructure and BMI seems to be contradictory in adolescents (Alosco et al., 2014; Carbine et al., 2019). Lastly, excluding the only obese participant in the current study, did not affect the results. Finally, our cross-sectional data do not allow causal interpretations and the exploratory moderation analysis results need to be interpreted cautiously.

6. Conclusions

We found that aerobic fitness and physical activity have an unequal contribution to brain white matter properties in adolescents. Aerobic fitness – assessed with a 20-m shuttle run test – positively associated with FA and negatively with MD and RD in several white matter tracts. However, we did not find these associations when studying physical activity. This result might be driven by genetic factors, which underlie fitness more strongly than those of the physical activity measures. It is also possible that only physical activity sufficient to increase aerobic fitness is needed to influence white matter. Overall, our findings concerning the exploratory moderation analysis further suggest that the level of white matter FA of specific white matter tracts may influence the relationships between either aerobic fitness or physical activity with the spatial working memory. Future studies should compare adolescents to other age groups to identify unique aspects of the relationship between physical activity, aerobic fitness and white matter as well as the moderator effect.

Declaration of Competing Interest

The authors have no conflicts of interest to report.

Acknowledgements

This work was supported by the Academy of Finland [grant numbers 273971, 274086 and 311877], the Alfred Kordelin Foundation and the Emil Aaltonen Foundation. We thank Marita Kattelus, Riikka Pasanen.
and Jenni Silvo for their valuable help in the data collection. We also would like to thank Dr. Toni Auranen and Prof. Veikko Jousmaä for providing the research infrastructure for this work.

Appendix A. Supplementary data

Supplementary material related to this article can be found, in the online version, at doi:10.1016/j.dcn.2020.100765.

References

Allan, J.L., McMinn, D., Daly, M., 2016. A bidirectional relationship between Executive Function and Health: Evidence, Implications, and Future Directions. Front. Neurosci. 10, 386. https://doi.org/10.3389/fnins.2016.00386.

Alonso, M.L., Stanek, M.K., Galateau, R., Korgaonkar, M.S., Grieve, S.M., Brickman, A.M., Spitznagel, M.B., Gumstad, J., 2014. Body mass index and brain structure in healthy children and adolescents. Int. J. Neurosci. 124, 49–55. https://doi.org/10.1080/00207454.2013.814708.

Álvarez-Bueno, C., Pesce, C., Caverro-Redondo, I., Sánchez-López, M., Martínez-Hortelano, J.A., Martínez-Vizcaíno, V., 2017. The Effect of Physical Activity Interventions on Children’s Cognition and Metacognition: A Systematic Review and Meta-Analysis. J. Am. Acad. Child Adolesc. Psychiatry 56, 729–738. https://doi.org/10.1016/J.JAAC.2017.06.012.

Anderson, J.L.R., Sotiropoulos, S.N., 2016. An integrated approach to correction for off-resonance effects on subject movement in diffusion MR imaging. NeuroImage 125, 1063–1078. https://doi.org/10.1016/J.NEURIMAGE.2015.10.019.

Anderson, J.L.R., Skare, S., Ashburner, J., 2003. How to correct susceptibility distortions in spin-echo echo-planar images: application to diffusion tensor imaging. NeuroImage 18, 888–895. https://doi.org/10.1016/S1053-8119(03)00336-7.

Anderson, J.L.R., Graham, M.S., Zsollo, E., Sotiropoulos, S.N., 2016. Incorporating outlier detection and replacement into a non-parametric framework for movement and distortion correction of diffusion MR images. NeuroImage 141, 556–572. https://doi.org/10.1016/j.neuroimage.2016.06.058.

Anderson, J.L.R., Graham, M.S., Drobnjak, I., Zhang, H., Filippini, N., Bastiani, M., 2017. Towards a comprehensive framework for movement and distortion correction of diffusion MR images: Within volume movement. NeuroImage 152, 450–466. https://doi.org/10.1016/j.neuroimage.2017.02.085.

Barba, C.K., Galea, I.A., Nagamatsu, L.S., Erickson, K.I., Liu-Ambrose, T., 2017. Alzheimer’s Disease and exercise: the evidence for and against. Sports Med. 47, 1097–1106. https://doi.org/10.1007/s40279-016-0606-1.

Best, J.R., Miller, P.H., Naglieri, J.A., 2011. Relations between executive function and achievement from ages 5 to 17 in a large, representative national sample. Learn. Individ. Differ. 21, 327–335. https://doi.org/10.1016/J.LINDIF.2011.01.007.

Bouchard, C., Sarzynski, M.A., Rice, T.K., Kraus, W.E., Church, T.S., Sung, Y.J., Rao, D.C., 1995. Exercise and heart rate variability across 50 years of age: a meta-analysis of longitudinal studies. Psychol. Bull. 115, 84–109. https://doi.org/10.1037/0033-2909.115.1.84.

Benjamini, Y., Hochberg, Y., 1995. Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing. J. R. Stat. Soc. Ser. B. https://doi.org/10.1002/bip.23759.

Bii, S., Lefebvre, J., Prescott, S.A., Dockstader, C., Bouffet, E., Skocic, J., Laughlin, S., 2016. Outlier detection and replacement into a non-parametric framework for movement and distortion correction of diffusion MR images. NeuroImage 141, 556–572. https://doi.org/10.1016/j.neuroimage.2016.06.058.

Bouchaud, C., Sarzynski, M.A., Rice, T.K., Kraus, W.E., Church, T.S., Sung, Y.J., Rao, D.C., 1995. Exercise and heart rate variability across 50 years of age: a meta-analysis of longitudinal studies. Psychol. Bull. 115, 84–109. https://doi.org/10.1037/0033-2909.115.1.84.

Bouffet, E., Skocic, J., Laughlin, S., 2016. Outlier detection and replacement into a non-parametric framework for movement and distortion correction of diffusion MR images. NeuroImage 141, 556–572. https://doi.org/10.1016/j.neuroimage.2016.06.058.

Bouchaud, C., Sarzynski, M.A., Rice, T.K., Kraus, W.E., Church, T.S., Sung, Y.J., Rao, D.C., 1995. Exercise and heart rate variability across 50 years of age: a meta-analysis of longitudinal studies. Psychol. Bull. 115, 84–109. https://doi.org/10.1037/0033-2909.115.1.84.

Bouchaud, C., Sarzynski, M.A., Rice, T.K., Kraus, W.E., Church, T.S., Sung, Y.J., Rao, D.C., 1995. Exercise and heart rate variability across 50 years of age: a meta-analysis of longitudinal studies. Psychol. Bull. 115, 84–109. https://doi.org/10.1037/0033-2909.115.1.84.

Bouchaud, C., Sarzynski, M.A., Rice, T.K., Kraus, W.E., Church, T.S., Sung, Y.J., Rao, D.C., 1995. Exercise and heart rate variability across 50 years of age: a meta-analysis of longitudinal studies. Psychol. Bull. 115, 84–109. https://doi.org/10.1037/0033-2909.115.1.84.

Bouchaud, C., Sarzynski, M.A., Rice, T.K., Kraus, W.E., Church, T.S., Sung, Y.J., Rao, D.C., 1995. Exercise and heart rate variability across 50 years of age: a meta-analysis of longitudinal studies. Psychol. Bull. 115, 84–109. https://doi.org/10.1037/0033-2909.115.1.84.

Bouchaud, C., Sarzynski, M.A., Rice, T.K., Kraus, W.E., Church, T.S., Sung, Y.J., Rao, D.C., 1995. Exercise and heart rate variability across 50 years of age: a meta-analysis of longitudinal studies. Psychol. Bull. 115, 84–109. https://doi.org/10.1037/0033-2909.115.1.84.

Bouchaud, C., Sarzynski, M.A., Rice, T.K., Kraus, W.E., Church, T.S., Sung, Y.J., Rao, D.C., 1995. Exercise and heart rate variability across 50 years of age: a meta-analysis of longitudinal studies. Psychol. Bull. 115, 84–109. https://doi.org/10.1037/0033-2909.115.1.84.

Bouchaud, C., Sarzynski, M.A., Rice, T.K., Kraus, W.E., Church, T.S., Sung, Y.J., Rao, D.C., 1995. Exercise and heart rate variability across 50 years of age: a meta-analysis of longitudinal studies. Psychol. Bull. 115, 84–109. https://doi.org/10.1037/0033-2909.115.1.84.

Bouchaud, C., Sarzynski, M.A., Rice, T.K., Kraus, W.E., Church, T.S., Sung, Y.J., Rao, D.C., 1995. Exercise and heart rate variability across 50 years of age: a meta-analysis of longitudinal studies. Psychol. Bull. 115, 84–109. https://doi.org/10.1037/0033-2909.115.1.84.

Bouchaud, C., Sarzynski, M.A., Rice, T.K., Kraus, W.E., Church, T.S., Sung, Y.J., Rao, D.C., 1995. Exercise and heart rate variability across 50 years of age: a meta-analysis of longitudinal studies. Psychol. Bull. 115, 84–109. https://doi.org/10.1037/0033-2909.115.1.84.
Herting, M.M., Colby, J.B., Sowell, E.R., Nagel, B.J., 2014. White matter connectivity and
Huang, T., Tarp, J., Domazet, S.L., Thorsen, A.K., Froberg, K., Andersen, L.B., Bugge, A.,
Mabbott, D.J., Noseworthy, M., Bouffet, E., Laughlin, S., Rockel, C., 2006. White matter
Mora-Gonzalez, J., Esteban-Cornejo, I., Cadenas-Sanchez, C., Migueles, J.H.,
Treit, S., Chen, Z., Rasmussen, C., Beaulieu, C., 2014. White matter correlates of
Tian, Q., Glynn, N.W., Erickson, K.I., Aizenstein, H.J., Simonsick, E.M., Yaffe, K.,
Morgan, C., Clark-Taylor, M., Gunn, R., Kuck, D., Kiefer, M., 2009. Physical
Schaeffer, D.J., Krafft, C.E., Schwarz, N.F., Chi, L., Weinerberger, A.L., Pierce, J.E.,
Pajevic, S., Basser, P.J., Fields, R.D., 2014. Role of myelin plasticity in oscillations and
cognitive inhibition during development: a diffusion tensor imaging study.
Brain Res. 284, 51
Nan, Y., Shao, X., Zheng, M., Li, H., Shi, L., Sun, L., Zhang, Z., Bai, Y., Deng, S.,
Kuo, S., Ren, X., Sun, L., Wang, Y., He, W., Li, L., Guo, W., Wang, X.,
Treit, S., Chen, Z., Rasmussen, C., Beaulieu, C., 2014. White matter correlates of
Pajevic, S., Bassier, P.J., Fields, R.D., 2014. Role of myelin plasticity in oscillations and
synchrony of neuronal activity. Neuroscience 276, 135–147.
https://doi.org/10.1016/j.neuroimage.2013.11.003.
Hillman, C.H., Pontifex, M.B., Castelli, D.M., Khan, N.A., Raine, L.B., Scudder, M.R.,
Drotleff, E.S., Moore, R.D., Wu, C.T., Kamijo, K., 2014. Effects of the FITKids
randomized controlled trial on executive control and brain function. Pediatrics 134,
e1063–e1071. https://doi.org/10.1542/peds.2013-2219.
Hillman, C.H., McAuley, E., Erickson, K.J., Li, Liu-Ambrose, T., Kramer, A.F., 2018. On
motor and mineral physical activity and executive function: a response to
Diamond and Ling (2016). Dev. Cogn. Neurosci. 100529. https://doi.org/10.1016/
J.DCN.2018.01.006.
Huang, T., Tarp, J., Domazet, S.L., Thorsen, A.K., Froberg, K., Andersen, L.B., Bugge, A.,
2015. Associations of adiposity and aerobic fitness with executive function and
match performance in Danish adolescents. J. Pediatr. 167, 810–815. https://doi.org/
10.1542/iaa5709.5.
Johansen-Berg, H., Smith, S.M., Jenkinson, M., Johansen-Berg, H., Rueckert, D.,
Nichols, T.E., Mackay, C.E., 2013. White matter microstructure
white matter microstructure: reasoning training alters structural connectivity. Front.
Neuroanat. 6, 32. https://doi.org/10.3389/fnana.2012.00032.
Kavanagh-Williamson, T., Kwasniewska, M., McMinn, A., Norman, K., Penrose, J.,
Fisher, H., Goulding, A., Grewal, A., Hale, G., Hilton, A., Johnson, F., Johnston, P.,
Amery, G., Amunts, L., Barcroft, A., Castle, A., Dias, C., Dowrick, J., Fair, M.,
Campbell, K., Campbell, K.L., 2018. Physical activity

---

Tian, Q., Glynn, N.W., Erickson, K.J., Aizenstein, H.J., Simonsick, E.M., Yaffe, K.,
Harris, T.B., Kretchkow, C.M., Tsiang, S.Y., Flood, V.M., Newcomb, A.B., Lopez, O.E.,
Saxton, J., Rosano, C., Health ABC Study, 2015. Objective measures of physical
activity, white matter integrity and cognitive status in adults over age 80. Behav.
Brain Res. 284, 51–57. https://doi.org/10.1016/j.bbr.2015.01.045.
Tritter, S., Chen, Z., Zinovitz, C., Beaulieu, C., 2014. White matter correlates of
cognitive inhibition during development: a diffusion tensor imaging study.
Neuroscience 276, 87–97. https://doi.org/10.1016/j.neuroscience.2013.12.019.
Trout, A., Loprinzi, P.D., Moore, R., Pfeiffer, K.A., Trout, A., Loprinzi, P.D., Moore, R.,
Pfeiffer, K.A., 2011. Comparison of accelerometer cut points for predicting activity
intensity in youth. Med. Sci. Sport. Exerc 43, 1360–1368. https://doi.org/10.1249/MSS.0b013e318206476c.

Van Buuren, S., 2012. Flexible Imputation of Missing Data. CRC Press.

Van Buuren, S., Groothuis-Oudshoon, K., 2011. Mice: multivariate imputation by chained equations in R. J. Bull. South Ural. State Univ. Ser. ’computational Math. Softw. Eng. 45, 1–67. https://doi.org/10.18637/jss.v045.i05.

Van Buuren, S., Brand, J.P.L., Groothuis-Oudshoon, C.G.M., Rubin, D.B., 2006. Fully conditional specification in multivariate imputation. J. Stat. Comput. Simul. 76, 1049–1064. https://doi.org/10.1080/10629360600810434.

van der Kouwe, A.J.W., Benner, T., Fischl, B., Schmitt, F., Salat, D.H., Harder, M., Sorensen, A.G., Dale, A.M., 2005. On-line automatic slice positioning for brain MR imaging. Neuroimage 27, 222–230. https://doi.org/10.1016/J.NEUROIMAGE.2005.03.035.

Van Hecke, L., Loyen, A., Verloigne, M., van der Ploeg, H.P., Lakerveld, J., Brug, J., De Bourdeaudhuij, I., Ekelund, U., Donnelly, A., Hendriksen, I., Deforche, B., 2016. Variation in population levels of physical activity in European children and adolescents according to cross-European studies: a systematic literature review within DEDIPAC. Int. J. Behav. Nutr. Phys. Act. 13, 70. https://doi.org/10.1186/s12966-016-0396-4.

Wahl, M., Lauterbach-Soon, B., Hatttingen, E., Jung, P., Singer, O., Volz, S., Klein, J.C., Steinmetz, H., Ziemann, U., 2007. Human motor corpus callosum: topography, somatotopy, and link between microstructure and function. J. Neurosci. 27, 12132–12138. https://doi.org/10.1523/JNEUROSCI.2328-07.2007.

Westfall, D.R., Gejl, A.K., Tarp, J., Wedderkopp, N., Kramer, A.F., Hillman, C.H., Bugge, A., 2018. Associations between aerobic fitness and cognitive control in adolescents. Front. Psychol. 9, 1298. https://doi.org/10.3389/fpsyg.2018.01298.

Whiteman, A.S., Young, D.E., Hudson, A.E., Stern, C.E., Schon, K., 2016. Entorhinal volume, aerobic fitness, and recognition memory in healthy young adults: a voxel-based morphometry study. Neuroimage 126, 229–238. https://doi.org/10.1016/J.NEUROIMAGE.2015.11.049.

Wijndaele, K., Westgate, K., Stephens, S.K., Blair, S.N., Bull, F.C., Chatin, S.F.M., Dunstan, D.W., Ekelund, U., Ediger, D.W., Freedson, P.S., Granat, M.H., Matthews, C.E., Owen, N., Rowlands, A.V., Sherar, L.B., Tremblay, M.S., Troiano, R.P., Brage, S., Healy, G.N., 2015. Utilization and harmonization of adult accelerometry data: review and expert consensus. Med. Sci. Sports Exerc. https://doi.org/10.1249/MSS.0000000000000661.

Winkler, A.M., Ridgway, G.R., Webster, M.A., Smith, S.M., Nichols, T.E., 2014. Permutation inference for the general linear model. Neuroimage 92, 381–397. https://doi.org/10.1016/J.NEUROIMAGE.2014.01.060.

Zeileis, A., Hothorn, T., 2002. Diagnostic checking in regression relationships. R News 2, 7–10.