Design and fabrication of a transmission mechanism arm for rotational molding

H N Thi 1*, N V Dang 2 and Ha Thai Thi Thu 3

1,2 Faculty of Engineering, Van Lang University, Ho Chi Minh City, Vietnam
3 Faculty of Mechanical Engineering, Ho Chi Minh City University of Technology (HCMUT) Ho Chi Minh City, Vietnam

*hoa.ngo@vlu.edu.vn

Abstract: Compared with blow molding and thermoforming technology, rotary die technology has many advantages for manufacturing hollow plastic products. The purpose of this paper is to compute and design the transmission crank mechanism of the rotary die machine. The authors chose a reasonable solution to design the experimental model to produce flower pots with dimensions of 1000 x 400 x 400 mm. The principle diagram and the dynamic diagram of the machine are presented. Computation and design of main clusters and hand fabrication of the rotary die machine are investigated. The model of the transmission crank mechanism is fabricated to verify the validity of the proposed model.

Key words: Transmission crank, thermal forming, Additive interactions; Antioxidants; Rotational Molding.

1. Introduction
Rotational molding, also known as rotocasting or rotomolding, is a method of fabricating hollow plastic products with low pressure, high temperature. Many centuries ago, it was known the method of coating a layer of material inside a rotating mold to create products, but it was not until the 1940s of the twentieth century that it was recognized as french rotary molds for plastic products. Since then, scientists have embarked on the research and design process of the first rotary die machine models. In particular, some countries have developed quite strongly in this field such as: Italy (Rotomachinery Group), Brazil (Rotoline company), India (Naroto firm), etc.

Rotational molding is a highly competitive method compared to methods such as blow molding and injection molding in the production of hollow plastic products. Rotational molding network offers more economic value when plastic products require no residual stress, wide size range, uniform thickness, complex shape and high detail.

Currently in Vietnam, there are not many studies on the topic "Research and design of rotary molding machine". This is a relatively new research direction in Vietnam, opening up an overview of Rotational molding. Since then, proposing the manufacturing process to meet the needs of the market, bringing new development directions for businesses, replacing imported products, this is also the urgency of the topic.
2. Analysis and selection of plan

2.1 The Process
During the molding process, the plastic powder is heated and melted in the mold cavity, and the shape, size, and surface of the product are copied from the inner surface of the mold. During heating and cooling, the mold rotates in two axes perpendicular to each other. The most common heating is done in a heating furnace, convection with a stream of hot air, and the plastic melts, covering the entire inner surface of the mold, followed by cooling (with air, mist or water), lower the temperature to allow the resin to solidify. Finally, remove the mold and take the product (Figure 1).

![Figure 1. Principle of rotational molding.](image)

2.2 Analysis and selection of plans
Rotating Mold Technology products have a very wide range of volumes from 0.05 liters to over 10,000 liters, so the rotary die systems are very diverse. The basic common feature of this process is that molds need to be rotated, heated, and cooled. Depending on product size, productivity, allowable area, heating and cooling characteristics, there are different rotary die systems, which are commonly used today as shown in Figure 2.

![Figure 2. Types of Rotational Molding Machines, courtesy of Polivinil, Italy- The Queen’s University, Belfast](image)
After learning about the product to be manufactured, the product’s size parameters, materials, Rotational molding as well as the principle, operation method, scope of use of the machines used in mold technology turned. We choose the independent rotary arm molding machine to design the machine for making flower pots products.

3. Design calculation of mold driving system
After analyzing the product, the principle of the rotational mold technology, the design team evaluates and chooses a suitable plan for the flower pot product. The following is the drive diagram of the designed rotary die system (Figure 3).

![Drive diagram of rotary die system](image)

Figure 3. Drive diagram of rotary die system

3.1. Calculation of the drive on the auxiliary shaft
The drive on the auxiliary shaft is shown on Figure 4 below.

![Drive diagram of auxiliary shaft](image)

Figure 4. Drive diagram of auxiliary shaft

3.1.1. Select the engine and distribute the gear ratio
Based on the DRS catalog, the design team chose the K67 modular single-phase motor with the following parameters: $P_{dc} = 1.1 \text{ kW}; n_{dc} = 20 \text{ rpm}$.
Table 1. Engine size K67 DRS 80M4.

CODE	AC	AD	ADS	L	LS	LB	LBS
DR80M	156	128	139	530	611	261	342

Based on the table 1, we calculate the number of revolutions, power and torque on the axes (Table 2):

Table 2. Auxiliary shaft characteristics.

Parameter	Axes	1	2	3	
Power P (kW)	geared motor	0.64	0.49	0.44	0.41
Transmission ratio u		2	1	1	
Revolutions n (rpm)		20	10	10	10
Torque T (Nmm)		305600	467950	420200	391550

3.1.2. Calculate the drive on the auxiliary shaft

Axis 1

Material selection: Improved 45 steel with $\sigma_b = 600\text{MPa}$; $\tau = 20\text{ MPa}$

Diameter of shaft determined by torque:

$$d \geq \left(\frac{T}{0.2[\tau]} \right)^{1/3} = \left(\frac{467950}{0.2 \times 20} \right)^{1/3} = 48.9\text{mm} \quad (1)$$

Analysis of force and torque on the shaft determines the dangerous section at B. Shaft diameter at B:

$$d \geq \left(\frac{M_{\text{tot}}}{0.2[\sigma]} \right)^{1/3} = \left(\frac{700619}{0.1 \times 85} \right)^{1/3} = 43.52\text{mm} \quad (2)$$

According to the diameter standard at the sections: $d_A = d_D = 42\text{ mm}$; $d_B = d_C = 45\text{ mm}$.

Axis 2

Material Selection: Improved 45 steel with $\sigma_b = 600\text{MPa}$; $\tau = 20\text{ MPa}$.

The shaft diameter is determined by the torque:

$$d \geq \left(\frac{T}{0.2[\tau]} \right)^{1/3} = \left(\frac{420200}{0.2 \times 20} \right)^{1/3} = 47.2\text{mm} \quad (3)$$

Figure 5. Force exerted on axis 1.
Analysis of force and torque on the shaft determines the dangerous section at F. The shaft diameter at F
\[d \geq \left(\frac{M_{ed}}{0.1[\sigma]} \right)^{1/3} = \left(\frac{1137330}{0.1 \times 85} \right)^{1/3} = 49.6 \text{ mm} \quad (4) \]

According to the diameter standard at the sections: \(d_F = d_G = 50 \) mm; \(d_E = d_H = 45 \) mm.

Axis 3
Material Selection: improved 45 steel with \(b \sigma_b = 600 \text{MPa}; \tau = 20 \text{ MPa}.\]

Calculating similar to the above two axes, the design team determined the diameter of axis 3 at the sections: \(d_I = d_K = d_L = 50 \) mm; \(d_M = 45 \) mm

3.2. *Calculate the drive on the main shaft* (Figure 8)
3.2.1. Select the engine and distribute the gear ratio
Based on the DRS catalog, we chose the K67 modular single-phase motor with the following parameters:
\[P_{dc} = 1.5 \text{ kW}; n_{dc} = 16 \text{ rpm}. \]

CODE	AC	AD	ADS	L	LS	LB	LBS
DR90M	179	140	150	532	611	261	342

Based on the table 3, we calculate the number of revolutions, power and torque on the axes (table 4):

Parameter	Axes	geared motor	4
Power P (kW)	1	0.96	
Transmission ratio u	2		
Revolutions n (rpm)	16	8	
Torque T (Nmm)	596875	1146000	

3.2.2. Calculation of cylindrical gear transmission
Based on the calculation results and look up the table, we chose the gear transmission, chain with the following basic parameters (Table 5)

Parameters	value
Spindle distance aw	150 mm
Module	m = 2 mm
The width of the rim b₇ and b₈	b₇ = 60 mm; b₈ = 50 mm
Ratio	u = 2
Number of teeth Z₇ and Z₈	Z₇ = 50; Z₈ = 100
Shift coefficient X₇ and X₈	X₇ = 0; X₈ = 0
Diameter of divider d₇	d₇ = 100 mm; d₈ = 200 m

3.2.3. Design calculation of main shaft
Material Selection: Improved 45 steel with \(\sigma_b = 600 \text{ MPa}; \tau = 20 \text{ MPa}. \)

The shaft diameter is determined by the torque:

\[
d \geq \left(\frac{7}{0.2[\tau]} \right)^{1/3} = \left(\frac{1146000}{0.2 \times 20} \right)^{1/3} = 66 \text{ mm} \quad (5)
\]

Analysis of force and torque on the shaft determines the dangerous section at P. Shaft diameter at P:

\[
d \geq \left(\frac{M_{td}}{0.1[\sigma]} \right)^{1/3} = \left(\frac{3028730}{0.1 \times 85} \right)^{1/3} = 77.5 \text{ mm} \quad (6)
\]

According to the diameter standard at the sections: \(d_P = d_Q = 100 \text{ mm}; d_O = 110 \text{ mm}; d_N = 115 \text{ mm} \)

3.3. Durability and displacement test of some important details
Critical parts, susceptible to destructive deformation, should be simulated to check for the following properties: Ensure the deformation is within the allowable range, thereby ensuring the working requirements of the parts. Ensure that the stress generated by the force exerted on the part does not exceed the strength limit of steel \(\sigma_b < 598 \text{ MPa} \) (TCVN 8301).
3.3.1. Large shaft details (Figure 10)
Input parameters: m = 40.68 kg; steel C45, V = 0.0051772 m3, F = 2452 N

4. Results
The meshing and simulation results are shown on Figure 11.

![Figure 9. Force exerted on axis 4.](image)

![Figure 10. Placing of mounting and force on part.](image)

![Figure 11. Results of stress analysis (a) and strain (b) product on large shaft](image)

Stress	Deformation	The analytical results show
Min : 4.2618 $\times 10^9$ N/mm2	Min: 0 mm	Part displacement is relatively small 0.02 mm
Max : 12.86 N/mm2	Max: 0.0286 mm	Ensure the surface of the part 12.85 MPa $<$ 598 Mpa
The horizontal part is shown on Figure 12.

Input parameters: \(m = 46.37 \text{ kg}; \) steel C45; \(V = 0.00590125 \text{ m}^3; \) \(F = 1776 \text{ N} \)

![Figure 12. Placing mount and force on part](image)

The meshing and simulation results of the part is shown on Figure 13.

![Figure 13. Results of stress (a) and deformation (b) analysis on the details](image)

Stress	Deformation	The analytical results show
Min : 9.10462 \(\times 10^{-5} \text{ N/mm}^2 \)	Min: 0 mm	Part displacement is relatively small 0.019 mm
Max : 5.264 N/mm\(^2\)	Max: 0.0194604 mm	Ensure the surface of the part 12.85 MPa <598 MPa

The design team calculated, designed and manufactured the rotary die machine with the following main technical parameters (Table 8).

Parameters	Result
Spindle rotation speed	8 rpm
Auxiliary shaft rotation speed	10 rpm
Productivity	26 products / 8 hours
Product size	1000 x 400 x 400 mm
Figure 14. Photos of the actual fabricated machine.

5. Conclusion
Rotational molding is a highly competitive method compared to methods such as blow molding and injection molding in the production of hollow plastic products. The authors studied the set-up of the drive diagram of the rotary die system. In addition, the analysis and calculation of the force acting on the drive axes are also presented in this study. We designed and manufactured the rotary die machine a rotating mold for flower pots products with dimensions 1000x400x400 mm. The machine can change its two-axis speed, with a productivity of 26 products / 8 hours. However, it is necessary to continue with in-depth studies such as the effects of technological parameters on product quality in terms of size and sample strength on different materials, and researches to improve accuracy of product.

References
[1] Jachowicz T, Janusz W, Sikora J 2013 Investigation of the influence of mold rotational speed on the cast wall thickness in the rotational molding process Advances in Science and Technology Research Journal 7.
[2] Crawford R J, Throne J L 2002 Rotational molding technology Plastics Design Library / William Andrew Publishing.
[3] Crawford R J and Kearns M P 2003 Practical Guide to Rotational Moulding. Rapra Technology Limited.
[4] Sharifi P, Henwood N, Liauw C, Lees G and Quarantino A 2012 Studies of degradation effects during rotational molding Journal of Thermoplastic Composite Materials.
[5] Costa L, Cramez M C, Pontes A J 2013 A Study on Shrinkage and Warpage of Rotational Moulded Polyethylene Materials Science Forum 730-732 p 957-962.
[6] Monzón M D, Ortega Z, Benítez A Z, Ortega F, Díaz N, Marrero M D 2012 Development Towards a More Sustainable Rotational Moulding Process. In Proceedings of ECCM15 – 15th European Conference on Composite Materials, Venice, Italy, (24-28 June 2012).
[7] Jachowicz T, Krasinskiy V 2017 Influence of Rotational Moulding Process Parameters on Accuracy of Polymer Casts Acta Mechanica Slovaca 21(1) p 40-46.
[8] Ogila K O, Shao M, Yang W, Tan J 2017 Rotational molding: A review of the models and materials. https://doi.org/10.3144/expresspolymlett.
[9] Joshi M G, Bhatt P B, Chaniyara P N 2014 Review on Automation of Independent Four Arm Bi Axial Machine in Rotational Moulding Industry International Journal of Engineering Development and Research.
[10] Mongaraj S, Mahajan E, Gupta S, Sanap K, Patil S K 2017 Review on Fabrication of Rotomoulding Machine International Journal for Research Trends and Innovation.
[11] Bergamo L, Spa P 2013 Measurement and Control of Processure Inside Rotacional Moulds. www.rotoworldmag.com.

[12] Perot E, Lamnawar K, Maazouz A 2008 Optimization and modelling of rotational molding process International Journal of Material Forming.

[13] Barhoumi N, Lamnawar K, Maazouz A 2008 A reactive rotational molding process of PP/PA6 bilayer systems: experimental investigations International Journal of Material Forming.

[14] Ogila K O, Shao M, Yang W, Tan J 2017 Rotational molding: A review of the models and materials. https://doi.org/10.3144/expresspolymlett.2017.75.