Prevalence of metabolic syndrome in the Gulf Cooperation Council countries: meta-analysis of cross-sectional studies

Seungmin Shin¹, Haemi Jee²*

¹Physical Education Department, King Fahd University of Petroleum & Minerals, Dhahran, Saudi Arabia
²Department of Physical Therapy, Namseoul University, Cheonan, Korea

Metabolic syndrome is a collection of health-related conditions that lead to serious health condition. An individual with metabolic syndrome may acquire greater risk for adult-onset complications such as cardiovascular or neurological disorders. The aim of this study was to review and provide the prevalence of metabolic syndrome in Gulf Cooperation Council countries (GCC). Literature searches were performed on PubMed, Google scholar, and Web of Science Core Collection for English-language articles along with national studies. The following search terms were used during search: “prevalence of metabolic syndrome in GCC,” “prevalence of metabolic syndrome in middle east,” “prevalence of metabolic syndrome in Arab,” and “prevalence of metabolic syndrome name of country.” Thirty-seven studies were selected for final review out of 132 studies. The weighted pooled prevalence of metabolic syndrome was 27.3% with high heterogeneity \((I^2 = 98.94\% \text{; Cochran Q-test } P < 0.01)\). The results showed comparatively high and rising rate of metabolic syndrome in the GCC area. Preventative strategy should be considered to reduce the risk of morbidity or mortality related to metabolic syndrome.

Keywords: Metabolic syndrome, Prevalence, Gulf Cooperation Council, Meta-analysis

INTRODUCTION

The metabolic syndrome has been known to acquire by sedentary lifestyle and calorie rich eating habit. Various metabolic factors may lead to development of life strengthening diseases such as cardiovascular disease, type 2 diabetes, dyslipidemia, and hypertension (Ranasinghe et al., 2017). Although adult-onset diseases may solely occur without the metabolic factors, the risk for the co-occurrence has been known to increase by several folds with the existing metabolic factors (Mente et al., 2010). The most common definitions used to define metabolic syndrome were reported by the World Health Organization (WHO), European Group for Study of Insulin Resistance, National Cholesterol Education Program Adult Treatment Panel III (NCEP ATP III), International Diabetes Federation (IDF), and Joint Interim Societies (JIS). The metabolic syndrome was defined by basically similar components that included terms. For example, WHO used components such as impaired fasting glucose, impaired glucose tolerance, homeostatic model assessment for insulin resistance, obesity, dyslipidemia, hypertension, waist circumference, and blood pressure as criteria. The NCEP ATP III used components such as fasting triglyceride, fasting high-density lipoprotein, fasting blood glucose as criteria for prevalence of metabolic syndrome (Huang, 2009).

The member states of the Gulf Cooperation Council (GCC) include Bahrain, Kuwait, Oman, Qatar, Saudi Arabia, and the United Arab Emirates. Recently, the prevalence of the type II diabetes mellitus and related adult-onset disorders have reported to be high in the GCC countries. Several publications reported that four out of six countries of the GCC countries are among the top 10 countries with the greatest prevalence rate for adult-onset type 2 dia-

*Corresponding author: Haemi Jee
https://orcid.org/0000-0002-9066-1472
Department of Physical Therapy, Namseoul University, 91 Daehak-ro, Seobuk-gu, Cheonan 31020, Korea
E-mail: wlgpal9@gmail.com
Received: December 31, 2019 / Accepted: February 5, 2020

This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (https://creativecommons.org/licenses/by-nc/4.0/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Metabolic syndrome in Gulf Cooperation Council countries

Shin S and Jee H

The rapidly increasing rate of the adult-onset chronic complications such as type 2 diabetes and cardiovascular diseases have been related to the changes in the environment and lifestyle that lead to sedentary lifestyle and consumption of food high in calorie (Malik and Razig, 2008). Despite various studies on the prevalence of metabolic syndrome in the GCC countries, the overall report on the metabolic syndrome in the GCC countries is scarce. Therefore, this report was conducted to provide the evidence-based prevalence rate of metabolic syndrome in the GCC area through meta-analysis. Providing evidence-based prevalence rate of the metabolic syndrome in the GCC area could contribute fundamental foundation for developing scientifically supportive evidence for the metabolic syndrome prevention campaign.

MATERIALS AND METHODS

This study is a systemic review prepared by the meta-analysis based on the guidelines provided by the PRISMA (Preferred Reporting Items for Systematic Review and Meta-Analysis protocol) (Moher et al., 2010; Shamseer et al., 2015).

Data sources and search phrases

In order to obtain evidence-based study results on the prevalence rate for the metabolic syndrome, electronic literature searches were conducted on the web-based database sites such as the PubMed database, Google Scholar, and Web of Science collection. Only the English-language research articles with the nation-wide or population-based subjects were gathered for this study. The initial data collection was conducted without filtering for time. Specific search terms or phrases were used to find the articles. The search phrases included “prevalence of metabolic syndrome in middle east,” “prevalence of metabolic syndrome in Arab,” “prevalence of metabolic syndrome,” “name of country,” and “metabolic syndrome.”

Article selection procedure

After the initial gathering procedure, the selected articles were considered for inclusion based on the following inclusion and exclusion criteria. This study used broad inclusion criteria to provide comprehensive systemic reviews of the topic.

First, the articles were considered for inclusion if the articles were original research studies and reported on the prevalence rate for the metabolic syndrome. There were no restrictions on the study type unless the articles are review articles. Cohort and cross-sectional studies were also included. Geographic regions

![Diagram](https://example.com/prisma-diagram.png)

Fig. 1. PRISMA (Preferred Reporting Items for Systematic Review and Meta-Analysis protocol) diagram for the systematic review of the metabolic syndrome prevalence rates in the Gulf Cooperation Council countries population.
such as urban or rural regions were not excluding criteria. The studies on specific clinical complications such as diabetes, acute coronary syndrome, ovary syndrome, or hypertension were excluded from the study. In addition, the studies that did not deal with the prevalence of metabolic syndrome as the major factor were also not included in this study. In the initial selection phase, the studies were selected based on the key terms and phrases. During the second phase, the studies were reviewed for the title and abstract for exclusion. Finally, initially selected articles were screen and reviewed based on the full text for the final exclusion and inclusion process.

Data extraction

Information on the authors, year of publication, country of origin, sample size, gender and age of the subjects, and study design (case-control, cross-sectional or prospective cohort), metabolic syndrome identification criteria, prevalence of metabolic syndrome, and adjustment variables were obtained from the selected articles. Regarding the considerable factors and expected heterogeneity. The random-effect model was applied for the analysis of data to obtain the expected heterogeneity and the considerable factors. The Cochran Q-test was utilized to estimate the heterogeneity between the selected studies.

Data synthesis and statistical analysis

The management and edition of data, estimation of standard error, and pooled mean effect size were estimated using Comprehensive Meta-Analysis Software (CMA) ver. 2.0 (Biostat, Englewood, NJ, USA). The pooled estimate of the prevalence rates was determined by the definitions on the metabolic syndrome provided by the ATP III, IDF, WHO, and JIS. Finally, the weighted average prevalence rates with 95% confidence interval (CI) for the selected studies were obtained by calculating the fixed effects and random effects of the meta-analysis.

Table 1. Characteristics of the reviewed studies

Country	Study	Type of study	Published year	Sample size (person)	Metdefinition	Meta prevalence rate (%)	Adjustments	
Oman	Al-Lawati et al.	Cross-sectional	2003	1,419	ATP III	17.0 (crude)	21.0 (adjust)	Age
Al-Shafaei et al.	Cross-sectional	2008	281	ATP III	45.9	Age		
El-Aby et al.	Cross-sectional	2014	3,137	IDF	23.6	Age		
Al-barwani et al.	Cross-sectional	2008	392	ATP III	21.0		(Continued to the next page)	
Table 1. Continued

Country	Study	Type of study	Published year	Sample size (person)	Metsdefinition	Mets prevalence rate (%)	Adjustments
UAE	Khthir and Espina	Cross-sectional	2014	575	ATP III	22.0	
	Hajat and Shather	Cross-sectional	2012	760	IDF	48.7	ATP III
	Malik and Razig	Cross-sectional	2008	4,097	IDF	40.5	ATP III
Saudi	Al-Sarraj et al.	Cross-sectional	2008	309	ATP III	25.2	Age
	Al-Sarraj et al.	Cross-sectional	2010	227	ATP III	40.4	Age
	Haroun et al.	Cross-sectional	2018	591	IDF	4.9	
	Rouzi and Ardawi	Cross-sectional	2009	580	ATP III	33.4	
	Bahjiri et al.	Cross-sectional	2013	233	IDF	18.9	
	Al-Qahtani and Imtiaz	Cross-sectional	2005	1,079	ATP III	20.0	Age
	Al-Johani	Cross-sectional	2014	4,406	IDF	28.3	
	Al-Nozha et al.	Cross-sectional	2005	17,293	ATP III	41.4	crude
	Al-Qahtani et al.	Cross-sectional	2006	2,577	IDF	39.3	adjust
	Barrimah et al.	Cross-sectional	2011	560	ATP III	31.4	Age
	Taha et al.	Cross-sectional	2009	37	ATP III	29.7	Age
	Atazharni et al.	Cross-sectional	2012	600	ATP III	21.0	
	Al-Agha et al.	Cross-sectional	2012	387	ATP III	14.3	
	Al-Dagheri et al.	Cross-sectional	2013	185	IDF	39.0	
	Abu-Gazalalah and Al-Rashidi	Cross-sectional	2016	250	ATP III	36.0	
	Alsawat et al.	Cross-sectional	2016	313	IDF	38.4	
	Aljabri et al.	Cross-sectional	2018a	1,526	IDF	69.5	
	Al-Rubeaan et al.	Cross-sectional	2018	12,126	ATP III/IDF	39.8	
	Aljabri et al.	Cross-sectional	2018b	2,810	IDF	64.6	
	Saeed	Cross-sectional	2019	1,354a	IDF	12.0	
Kuwait	Badr et al.	Cross-sectional	2007	434	ATP III	18.0	
	Al-Isa et al.	Cross-sectional	2010	431	IDF	14.8	
	Al-Zenki et al.	Cross-sectional	2012	1,830	IDF/ATP III	36.1	(WC > 102/85 cm)
	Al-Isa	Cross-sectional	2013	303	IDF	11.7	
	Roshdy	Cross-sectional	2011	153	JIS	28.1	
	Al-Rashdan and Al-Nesef	Cross-sectional	2010	2,280	ATP III	24.8	
	Boosaidi et al.	Cross-sectional	2014	80	ATP III	30.0	
Qatar	Bener et al.	Cross-sectional	2009	1,024	ATP II	26.5	

ATP III, Adult Treatment Panel III; IDF, International Diabetes Foundation; WHO, World Health Organization; JIS, Joint Interim Societies; WC, waist circumference.
Fig. 2. Forest plot for the metabolic syndrome prevalence rate of Gulf Cooperation Council countries.
rates of 0.28 (95% CI, 0.24–0.32) and 0.27 (95% CI, 0.23–0.32), respectively.

Twenty-nine studies used the ATP III definition and the prevalence rate in the random pooled estimate was 0.25 (95% CI, 0.22–0.28). Ninety studies used the IDF definition and prevalence rate in the random pooled estimate was 0.28 (95% CI, 0.21–0.36). Three studies used both the ATP III and IDF and their prevalence rate in the random pooled estimate was 0.38 (95% CI, 0.35–0.40). One study used the JIS definition and its prevalence rate in the random pooled estimate was 0.28 (95% CI, 0.33–0.34). Finally, the last one study used the WHO definition and the prevalence rate in the random pooled estimate was 0.39 (95% CI, 0.34–0.45).

Regarding the effects of the adjustment on the random pooled estimates, six adjusted studies showed pooled for prevalence rate by the random effect of 0.28 (95% CI, 0.16–0.32). Forty-seven nonadjusted studies showed pooled prevalence by the random effect of 0.28 (95% CI, 0.25–0.31).

DISCUSSION

This study was conducted to observe the prevalence rate of metabolic syndrome in the GCC countries. In this meta-analysis review, 54 studies and 99,599 subjects were analyzed for the prevalence of metabolic syndrome. Overall, the pooled estimate of the metabolic syndrome prevalence rate in GCC was 0.28 (95% CI, 0.25–0.31). Such metabolic syndrome prevalence rate in the GCC region was greater than that of the other regions such as Latin American, Europe, Africa, and Asia. That is, the observed prevalence rate of the metabolic syndrome in the GCC countries such as was observably higher than other countries worldwide. For example, a systematic review of the countries in the Latin America region showed the metabolic syndrome prevalence rate of 24.9% with the ATP III’s metabolic syndrome definition (Márquez-Sandoval et al., 2011). A combined prospective cohort study on the prevalence rate of the metabolic syndrome reported of 15.0% in Europe with the WHO’s metabolic syndrome definition (Hu et
The prevalence rates of metabolic syndrome in the Sub-Saharan African regions range from 0% to 7.3% (Fezeu et al., 2007). A systematic review that reported the prevalence rates in the Asia-Pacific region was 11.9% and 49.0% according to the definitions by ATP III and modified ATP III, respectively (Ranasinghe et al., 2017). On the other hand, the prevalence rates reported by the national survey in the United States were 35% and 39% according to the definitions by the ATP III and IDF, respectively (Ford, 2005). Therefore, the prevalence rate for the metabolic syndrome was high in comparison to some of the regions such as Africa or Asia while still lower than the regions such as the United States.

Over the past few decades, many of the GCC countries have experienced rapid wealth and corresponding urbanization. Such changes have led to a sedentary lifestyle by the general population due to rapid increase in the usage of motored vehicles for commuting. In addition, the working environment and facilities have changed to promote reduction in physical activity. The dietary patterns also changed in association with the environmental changes to promote inactivity and corresponding adult-onset diseases (Alzeidan et al., 2018). Conditions such as the infrastructure of the urban areas with scarce sidewalks or parks, hot arid climate, and conservative social culture restrict physical activity in the Gulf region (Alzeidan et al., 2018).

Although a vast amount of databases and articles were reviewed with detailed inclusion and exclusion criteria for the final selection limitations exist. Since a significant amount of regional reports were prepared in the native language, non-English articles could not be included in this study. The local studies that represent the regional information may provide more detailed input on the prevalence rate.

However, this is the first meta-analysis report on the prevalence rate of the metabolic syndrome in the GCC countries to our knowledge. This report may provide supportive information to prepare for the measures to intervene to prevent and control the onset of metabolic syndrome in the GCC region. It may assist to manage the morbidity and mortality rate related to adult-onset complications.

CONFLICT OF INTEREST

No potential conflict of interest relevant to this article was reported.

REFERENCES

AboGazalah FN, AlReshidi FS. The prevalence of metabolic syndrome among chronic disease patients in Alwazarat health center at Prince Sultan Military Medical City, Riyadh, Saudi Arabia, 2014. Int J Med Sci Public Health 2016;5:125-134.

Al-Agha A, Ocheltree A, Shata N. Prevalence of hyperinsulinism, type 2 diabetes mellitus and metabolic syndrome among Saudi overweight and obese pediatric patients. Minerva Pediatr 2012;64:623-631.

Al-barwani SA, Bayoumi RA, Jaju D, Al-Yahyae SA, Al-Hadabi S, Lopez-Alvarenga JC, Comuzzie AG, Hassan MO. Differing definition-based prevalence of metabolic syndrome in the women of Oman family study: a function of multiparity. Metab Syndr Relat Disord 2008;6:197-202.

Al-Daghrir NM, Khan N, Alkharfy KM, Al-Attas OS, Alokail MS, Alfawaz HA, Alothman A, Vanhoutte PM. Selected dietary nutrients and the prevalence of metabolic syndrome in adult males and females in Saudi Arabia: a pilot study. Nutrients 2013;5:4387-4604.

Al-Isa A. Prevalence of metabolic syndrome (MetS) among male Kuwaiti adolescents aged 10-19 years. Health 2013;5:938-942.

Al-Isa A, Akanji AO, Thalib L. Prevalence of the metabolic syndrome among female Kuwaiti adolescents using two different criteria. Br J Nutr 2010;103:77-81.

Al-Lawati JA, Mabry R, Mohammed AJ. Addressing the threat of chronic diseases in Oman. Prev Chronic Dis 2008;5:A99.

Al-Lawati JA, Mohammed AJ, Al-Hinai HQ, Joussilahti P. Prevalence of the metabolic syndrome among Omani adults. Diabetes Care 2003;26:1781-1785.

Al-Nozha M, Al-Khadra A, Arafah MR, Al-Maatoouq MA, Khalil MZ, Khan NB, Al-Mazrou YY, Al-Marzouki K, Al-Harbi SS, Abdullah M, Al-Shahid MS, Al-Mobiteek HK, Noun MS. Metabolic syndrome in Saudi Arabia. Saudi Med J 2005;26:1918-1925.

Al-Qahtani DA, Imtiaz ML. Prevalence of metabolic syndrome in Saudi adult soldiers. Saudi Med J 2005;26:1360-1366.

Al-Qahtani DA, Imtiaz ML, Saad OS, Hussein NM. A comparison of the prevalence of metabolic syndrome in saudi adult females using two definitions. Metab Syndr Relat Disord 2006;4:204-214.

Al Rashdan I, Al Nefey Y. Prevalence of overweight, obesity, and metabolic syndrome among adult Kuwaitis: results from community-based national survey. Angiology 2010;61:42-48.

Al-Rubeaan K, Bawazeer N, Al Farsi Y, Youssef AM, Al-Yahya AA, AlQumaidhi H, Al-Malki BM, Naji KA, Al-Shehri K, Al Rumaihl FI. Prevalence of metabolic syndrome in Saudi Arabia - a cross sectional study. BMC Endor Disord 2018;18:16.

Al-Sarraj T, Saadi H, Volek JS, Fernandez ML. Prevalence of the metabolic syndrome in Gulf Cooperation Council countries. BMC Public Health 2016;16(Suppl 3):S17.
syndrome in the United Arab Emirates. FASEB J 2008;22:1083-1110.

Al-Sarraj T, Saad H, Volek JS, Fernandez ML. Metabolic syndrome prevalence, dietary intake, and cardiovascular risk profile among overweight and obese adults 18–50 years old from the United Arab Emirates. Metab Syndr Relat Disord 2010;8:39-46.

Al-Shafaei MA, Ganguly SS, Bhargava K, Duttagupta KK. Prevalence of metabolic syndrome among prediabetic Omani adults: a preliminary study. Metab Syndr Relat Disord 2008;6:275-279.

Al-Thani MH, Al-Thani AA, Cheema S, Sheikh J, Mamtani R, Longenfels AB, Al-Chetachi WF, Almalki BA, Hassan Khalifa SA, Haj Bakri AO, Maisonneuve P. Prevalence and determinants of metabolic syndrome in Qatar: results from a National Health Survey. BMJ Open 2016;6: e009514.

Al Zenki S, Al Omirah H, Al Hooti S, Al Hamad N, Jackson RT, Rao A, Al Jahmah N, Al Obaid I, Al Ghanim J, Al Somaie M, Zaghoul S, Al Othman A. High prevalence of metabolic syndrome among Kuwaiti adults—a wake-up call for public health intervention. Int J Environ Res Public Health 2012;9:1984-1996.

Aljabri KS, Bokhari SA, Alshareef MA, Khan PM. Prevalence of the metabolic syndrome in the Saudi population. Arch Diabetes Obes 2018a;1:45-53.

Aljabri KS, Bokhari SA, Alshareef MA, Khan PM, Aljabri BK. Prevalence of metabolic syndrome in obese Saudi population. Interv Obes Diabetes Obes 2018b;2:1-7.

Aljohani NJ. Metabolic syndrome: risk factors among adults in Kingdom of Saudi Arabia. J Family Community Med 2014;21:170-175.

Alsawat MK, Alnemar AK, Alghamdi I, Al-thomali B, Mahfouz T, Althobaiti SM, Alshehri AA. Prevalence of metabolic syndrome in hospitalized patients with psychiatric illness in Taif city, Saudi Arabia. Endocr Pract 2016;22:118-119.

Alzahrani AM, Karawagh AM, Alshahrani FM, Naser TA, Ahmed AA, Alsharef EH. Prevalence and predictors of metabolic syndrome among healthy Saudi Adults. Br J Diabetes Vasc Dis 2012;12:78-80.

Alzeidan RA, Rabiee F, Mandil AA, Hersi AS, Ullah AA. Changes in dietary habits, physical activity and status of metabolic syndrome among expatriates in Saudi Arabia. East Mediterr Health J 2018;24:836-844.

Badr HE, Al Orifan F, Amasha M, Khadadah KE, Younis HH, Se’adah M. Prevalence of metabolic syndrome among healthy Kuwaiti adults: Primary health care centers based study. Middle East J Family Med 2007;5:30-36.

Bahjiri SM, Al Raddadi RM, Jambi H, Alaama MNA, Ferra SJ. The prevalence of metabolic syndrome in an apparently healthy, normotensive and non-diabetic population in Saudi Arabia by two definitions: implications for local practice. Open J Endocrinol Metab Dis 2013;3:18-24.

Barrimah I, Al Muhaimeed AR, Shobaily HA, Midhet F. Prevalence of metabolic syndrome among Qassim University personnel in Saudi Arabia. Int J Health Sci (Qassim) 2011;3(2 Suppl 1):49-50.

Bener A, Darwish S, Al-Hamaq AO, Youssafzai MT, Nasralla EA. The potential impact of family history of metabolic syndrome and risk of type 2 diabetes mellitus: In a highly endogamous population. Indian J Endocrinol Metab 2014;18:202-209.

Bener A, Zirie M, Musallam M, Khader YS, Al-Hamaq AO. Prevalence of metabolic syndrome according to Adult Treatment Panel III and International Diabetes Federation criteria: a population-based study. Metab Syndr Relat Disord 2009;7:221-229.

Boodai SA, Cherry LM, Sattar NA, Reilly JJ. Prevalence of cardiometabolic risk factors and metabolic syndrome in obese Kuwaiti adolescents. Diabetes Metab Syndr Obes 2014;7:505-511.

El-Aty MA, Mabry R, Morsi M, Al-Lawati J, Al-Riyami A, El-Sayed M. Metabolic syndrome and its components: secondary analysis of the World Health Survey, Oman. Sultan Qaboos Univ Med J 2014;14:e160-e167.

Fezeu L, Balkau B, Kengne AP, Sobngwi E, Mbanya JC. Metabolic syndrome in a sub-Saharan African setting: central obesity may be the key determinant. Atherosclerosis 2007;193:70-76.

Ford ES. Prevalence of the metabolic syndrome defined by the International Diabetes Federation among adults in the U.S. Diabetes Care 2005;28:2745-2749.

Hajat C, Shather Z. Prevalence of metabolic syndrome and prediction of diabetes using IDF versus ATP III criteria in a Middle East population. Diabetes Res Clin Pract 2012;98:481-486.

Hammoudeh S, Ghuloum S, Mahfoud Z, Yehya A, Abdulhakam A, Al-Mujall Al-Zirie M, Abdel Rahman MO, Godwin A, Younes N, Hani Y, Mook-Kanamori D, Mook-Kanamori M, El Sherbiny R, Al-Amin H. The prevalence of metabolic syndrome in patients receiving antipsychotics in Qatar: a cross sectional comparative study. BMC Psychiatry 2018;18:81.

Haroun D, Mechli R, Sahuri R, AlKhatib S, Obeid O, El Mallah C, Wood L, AlSuwaidi K. Metabolic syndrome among adolescents in Dubai, United Arab Emirates, is attributable to the high prevalence of low HDL levels: a cross-sectional study. BMC Public Health 2018;18:1284.

Hu G, Qiao Q, Tuomilehto J, Balkau B, Borch-Johnsen K, Pyorala K; DECODE Study Group. Prevalence of the metabolic syndrome and its relation to all-cause and cardiovascular mortality in nondiabetic European men and women. Arch Intern Med 2004;164:1066-1076.

Huang PL. A comprehensive definition for metabolic syndrome. Dis Model Mech 2009;2:231-237.

Kamran S, Bener AB, Deleu D, Khoja W, Jumma M, Al Shubali A, Inshashi Jahmah N, Al Obaid I, Al Ghanim J, Al Somaie M, Zaghloul S, Al Othman A. High prevalence of metabolic syndrome among Kuwaiti adults—a wake-up call for public health intervention. Int J Environ Res Public Health 2012;9:1984-1996.

Maisonneuve P. Prevalence and determinants of metabolic syndrome among obese patients with psychiatric illness in Taif city, Saudi Arabia. Endocr Pract 2016;22:118-119.

Mujalli A, Al-Zirie M, Abdel Rahman MO, Godwin A, Younes N, Hani Y, Mook-Kanamori D, Mook-Kanamori M, El Sherbiny R, Al-Amin H. The prevalence of metabolic syndrome in patients receiving antipsychotics in Qatar: a cross sectional comparative study. BMC Psychiatry 2018;18:81.
Cooperation Council stroke awareness study. Neuroepidemiology 2007;292:235-242.

Khthir R, Espina FL. The metabolic syndrome in rural UAE: the effect of gender, ethnicity and the environment in its prevalence. J Metab Syndr 2014;3:159.

Malik M, Razig SA. The prevalence of the metabolic syndrome among the multiethnic population of the United Arab Emirates: a report of a national survey. Metab Syndr Relat Disord 2008;6:177-186.

Márquez-Sandoval F, Macedo-Ojeda G, Viramontes-Hörner D, Fernández Ballart JD, Salas Salvador J, Vizmanos B. The prevalence of metabolic syndrome in Latin America: a systematic review. Public Health Nutr 2011;14:1702-1713.

Mente A, Yusuf S, Islam S, McQueen MJ, Tanomsup S, Onen CL, Rangarajan S, Gerstein HC, Anand SS; INTERHEART Investigators. Metabolic syndrome and risk of acute myocardial infarction a case-control study of 26,903 subjects from 52 countries. J Am Coll Cardiol 2010;55:2390-2398.

Moher D, Liberati A, Tetzlaff J, Altman DG; PRISMA Group. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. Int J Surg 2010;8:336-341.

Ranasinghe P, Mathangasinghe Y, Jayawardena R, Hills AP, Misra A. Prevalence and trends of metabolic syndrome among adults in the asia-pacific region: a systematic review. BMC Public Health 2017;17:101.

Roshdy R. Prevalence of metabolic syndrome in patients with schizophrenia. Middle East Curr Psychiatry 2011;18:109-117.

Rouzi A, Ardawi M. Prevalence of the metabolic syndrome in Saudi women and its components with polycystic ovary syndrome. Maturitas 2009;63(Supplement 1):S132.

Saeed AA. Prevalence of metabolic syndrome and its components among Saudi young adults 18-30 years of age. Open J Endocr Metab Dis 2019;9:49-59.

Shamseer L, Moher D, Clarke M, Ghersi D, Liberati A, Petticrew M, Shekelle P, Stewart LA; PRISMA-P Group. Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015: elaboration and explanation. BMJ 2015;350:g7647.

Taha D, Ahmed O, bin Sadiq B. The prevalence of metabolic syndrome and cardiovascular risk factors in a group of obese Saudi children and adolescents: a hospital-based study. Ann Saudi Med 2009;29:357-360.