No associations between aromatase gene polymorphisms and breast cancer risk in Saudi patients

Mohammed Alanazi1
Huda A Alabdulkarim2
Jilani P Shaik1
Abdulrahman Al Naeem3
Mohammad Elroobh1
Abdullah Al Amri1
Fatimah Basil al-Mukaynizi1
Abdelhabib Semlali1
Arjumand Warsy1
Narasimha Reddy Parine1

1Department of Biochemistry, College of Science, King Saud University, 2Comprehensive Cancer Center at King Fahad Medical City, 3Department of Women’s Imaging, King Fahad Medical City, Riyadh, Kingdom of Saudi Arabia

Background: Cytochrome P450 (CYP)19A1 encodes aromatase, the enzyme responsible for the conversion of androgens to estrogens, and may play a role in variation in outcomes among women with breast cancer. The aim of this study was to analyze the genetic association of rs4646 (A>C) and rs700518 (Val>Val) in the CYP19A1 gene with the risk of breast cancer.

Methods: These two single nucleotide polymorphisms (SNPs) were analyzed in a primary study group of breast cancer patients and healthy control subjects. Genotypes were determined by the TaqMan SNP analysis technique. The study data were analyzed using the chi-square or t-test and logistic regression analysis by Statistical Package for the Social Sciences version 16 software.

Results: rs4646 and rs700518 had no association with susceptibility to breast cancer. There was no significant association for either of these SNPs overall in breast cancer samples when compared with healthy control samples. Our data do not support a relationship between the CYP19A1 rs4646 and rs700518 SNPs and risk of breast cancer. It may be that there are ethnic differences with regard to this relationship.

Conclusion: This study demonstrated that CYP19A1 rs4646 and rs700518 SNPs may not be involved in the etiology of breast cancer in the Saudi population. Confirmation of our findings in larger populations of other ethnicities could provide evidence for the role of the CYP19A1 gene in breast carcinomas.

Keywords: CYP19A1, rs4646, rs700518, breast cancer, genetic polymorphisms

Introduction

Breast cancer is one of the most common types of malignancy and is a leading cause of death worldwide, accounting for nearly one million new cases diagnosed and half a million deaths annually.1 Incidence rates vary widely according to region, being high in developed countries and lower in developing countries.2 This type of cancer is obviously a significant public health problem in Saudi Arabia.

Cytochrome P450 (CYP)19A1 encodes the enzyme aromatase, which catalyzes the conversion of the C19 androgens, androstenedione and testosterone, to estrone and estradiol, respectively.3,4 Specific single nucleotide polymorphisms (SNPs) in the intronic regions of CYP19A1 have been shown to play a role in altering regulation of transcription and/or splicing of CYP19A1, producing different enzyme products with variable enzymatic activity when compared with the normal gene product.5,6 Studies have identified SNPs in CYP19A1 that are associated with an increased risk of cancer, primarily in European American, North Indian, and Chinese populations.7,8 Several studies have been done on polymorphisms in the CYP19 gene in an attempt to identify...
an association between genetic variations and breast cancer risk, but few studies have found such an association. One report suggested that a tetra-nucleotide repeat polymorphism in intron 4 (TTTA)n was strongly associated with the risk of breast cancer.9 However, studies of other genetic variations have not shown a clear association with risk of breast cancer, thus generating a situation of inconsistent results.10–13 Hence, in the present population-based, case–control study, we investigated the genotype distribution of rs4646 and rs700518 SNPs in patients with breast cancer.

Materials and methods

Study population
The study population comprised 148 females (median age 48 years) suffering from breast cancer and attending the outpatient clinics of the clinical co-investigators at King Fahad Medical City Hospital, Riyadh, Saudi Arabia, and 154 age-matched normal healthy controls also attending King Fahad Medical City Hospital for minor illnesses and recruited following physical examinations after exclusion of a breast cancer diagnosis and history of cancer or cancer-related diseases. The patients and controls were of Saudi Arabian ethnicity. Demographic data, age at diagnosis, tumor grade, and immunohistochemical determination of estrogen receptor (ER), progesterone receptor (PR), and HER2 receptor status were recorded. The study was approved by the institutional review board of King Khalid University Hospital. Written informed consent was obtained from all participants.

Genotyping
Genomic DNA was extracted from blood samples taken from breast cancer cases and controls using a QIAmp DNA blood mini kit (Qiagen, Valencia, CA, USA) following the manufacturer’s instructions. The rs1130409 SNP in the APE1 gene was genotyped using the TaqMan allelic discrimination assay as described previously.14 Ten percent of the samples were subjected to repeated analysis for verification of the genotyping procedures.15

Statistical analysis
Genotype and allelic frequencies were compared using Fisher’s Exact test (two-tailed) as described by Alanazi et al15 to describe the χ² test and odds ratios, and 95% confidence intervals to know the variation between cancer cases and controls. The statistical analysis was performed using Statistical Package for the Social Sciences version 21.0 (SPSS Inc, Chicago, IL).16

Results
One hundred and forty-eight breast cancer cases and 154 healthy controls were included in this study. The clinical characteristics of the breast cancer cases and the healthy controls are given in Table 1. Of 148 confirmed cases of breast cancer, 67 were ER-positive, 78 were ER-negative, 89 were PR-positive, 59 were PR-negative, 57 were HER2-positive, and 89 were HER2-negative.

All the genotypic distributions were consistent with that expected in the Hardy–Weinberg model. The homozygous wild-type allele was used as a reference to calculate the odds of acquiring breast cancer in comparison with the other two genotypes. The genotype frequencies of the analyzed SNPs along with the resulting odds ratio and significance levels are shown in Table 1. We did not find any significant association between the two SNPs and risk of breast cancer.

In the present study, we found no association with CYP19A1 rs4646 and rs700518 genotypes between breast cancer cases and matched healthy controls. The frequencies of rs4646 (A > C) genotypes in breast cancer cases were 8 (0.05), 46 (0.31), and 94 (0.64), respectively, whereas in

SNP	Variant	Cases	Controls	OR	CI	χ² value	P-value
rs4646	AA	8 (0.05)	8 (0.05)	Ref			
	AC	46 (0.31)	47 (0.31)	0.979	0.339–2.828	0.002	0.96831
	CC	94 (0.64)	99 (0.64)	0.949	0.350–2.625	0.01	0.93490
	AC + CC	140 (0.95)	146 (0.95)	0.959	0.350–2.625	0.01	0.93490
	A	62 (0.20)	63 (0.20)	Ref			
	C	234 (0.80)	245 (0.80)	0.971	0.655–1.439	0.02	0.88154
rs700518	AA	60 (0.41)	55 (0.36)	Ref			
Val > Val	AG	66 (0.45)	71 (0.46)	0.852	0.519–1.400	0.40	0.52715
	GG	22 (0.15)	28 (0.18)	0.720	0.369–1.404	0.93	0.33451
	AG + GG	88 (0.59)	99 (0.64)	0.815	0.512–1.297	0.75	0.38789
	A	186 (0.63)	181 (0.59)	Ref			
	G	110 (0.37)	127 (0.41)	0.843	0.608–1.169	1.05	0.30561

Abbreviations: CI, confidence interval; OR, odds ratio; Ref, reference; SNP, single nuclear polymorphism.
Breast cancer and aromatase polymorphism

healthy controls the frequencies were 8 (0.05), 47 (0.30), and 99 (0.65), respectively. Breast cancer patients did not show any risk when compared with healthy individuals (Table 1). As shown in Table 1, the frequency of the rs700518, (A > G) A/A, A/G, and G/G genotypes were 60 (0.41), 66 (0.45), and 22 (0.15), respectively, in breast cancer patients and 55 (0.36), 71 (0.46), and 28 (0.18), respectively, in controls. Breast cancer patients did not show any risk when compared with healthy individuals (Table 1).

The correlation between CYP19A1 rs4646 and rs700518 SNP status and clinicopathological characteristics was also analyzed, but interestingly none of these parameters showed an association with breast cancer in this Saudi population. Breast cancer patients did not show any association between age and ER-positive, ER-negative, PR-positive, HER2-positive, and HER2-negative status (Tables 2–5).

We also generated a regional linkage disequilibrium (LD) plot using SNAP (SNP Annotation and Proxy Search, http://www.broadinstitute.org/mpg/snap/ldplot.php) for CYP19A1 rs4646 and rs700518. The LD plot indicated that there are multiple loci near rs4646 and rs700518 with high LD (r^2>0.8), which suggests that fine mapping is necessary to evaluate the genetic effect of CYP19A1 on cancer as well as functional studies (Figures 1 and 2).

Discussion

Numerous genetic variations of CYP19A1 have been reported, even though the possible functional significance of most of these polymorphisms is still undefined. Various studies conducted in specific breast cancer populations have analyzed a few common CYP19A1 polymorphisms and generated inconsistent results with regard to their possible association with cancer risk, sex hormone levels, HER2 status, and survival.9,17–20 In the present study, our data do not support any appreciable association between CYP19A1 rs4646 and rs700518 genotypes and breast cancer risk in the Saudi population (Table 1). We analyzed the association of both these SNPs with various clinical parameters and found no evidence of heterogeneity for either rs4646 or rs700518 in Saudi breast cancer patients, and found no association except with rs4646 in PR-negative patients (Tables 2–5).

Table 2 Genotype frequencies of Aromatase gene polymorphism in breast cancer cases (above 48 years old versus below 48 years old)

SNP	Variant	Cases	Controls	OR	CI	χ^2 value	P-value
rs4646							
	Above 48						
	AA	4 (0.06)	1 (0.01)	Ref			
	AC	21 (0.30)	20 (0.29)	0.263	0.027–2.554	1.49	0.22256
	CC	45 (0.64)	47 (0.69)	0.239	0.026–2.224	1.83	0.17573
	AC + CC	66 (0.94)	67 (0.99)	0.246	0.027–2.262	1.78	0.18228
	AA	29 (0.21)	22 (0.16)	Ref			
	CC	111 (0.79)	114 (0.84)	0.739	0.400–1.363	0.94	0.33150
rs4646	Below 48						
	AA	4 (0.49)	7 (0.08)	Ref			
	AC	25 (0.44)	27 (0.31)	1.620	0.423–6.210	0.50	0.47887
	CC	49 (0.07)	52 (0.60)	1.649	0.454–5.984	0.59	0.44337
	AC + CC	74 (0.51)	79 (0.92)	1.639	0.461–5.830	0.58	0.44136
	AA	33 (0.71)	41 (0.24)	Ref			
	CC	123 (0.29)	131 (0.76)	1.167	0.693–1.963	0.34	0.56148
rs700518							
	Above 48						
	AA	34 (0.33)	24 (0.35)	Ref			
	AG	31 (0.45)	36 (0.53)	0.608	0.299–1.236	1.90	0.16804
	GG	5 (0.22)	8 (0.12)	0.441	0.129–1.515	1.74	0.18673
	AG + GG	36 (0.67)	44 (0.65)	0.578	0.292–1.144	2.50	0.11416
	AA	99 (0.56)	84 (0.62)	Ref			
	GG	41 (0.44)	52 (0.38)	0.669	0.405–1.105	2.47	0.11581
rs700518							
	Below 48						
	AA	26 (0.0)	31 (0.36)	Ref			
	AG	35 (0.0)	39 (0.45)	1.070	0.535–2.139	0.04	0.84815
	GG	17 (0.0)	16 (0.19)	1.267	0.537–2.990	0.29	0.58913
	AG + GG	52 (0.0)	55 (0.64)	1.127	0.592–2.148	0.13	0.71557
	AA	87 (0.0)	101 (0.59)	Ref			
	GG	69 (0.0)	71 (0.41)	1.128	0.728–1.749	0.29	0.58937

Abbreviations: CI, confidence interval; OR, odds ratio; Ref, reference; SNP, single nuclear polymorphism.
Table 3: Genotype frequencies of Aromatase gene polymorphism in breast cancer cases (ER-positive versus ER-negative)

SNP	Variant	Cases	Controls	OR	CI	χ^2 value	P-value	
rs4646	ER-positive							
	AA	2 (0.03)	8 (0.05)	Ref				
	AC	18 (0.27)	47 (0.31)	1.532	0.297–7.913	0.26	0.60859	
	CC	47 (0.70)	99 (0.64)	1.899	0.388–9.293	0.65	0.42165	
	AC + CC	65 (0.97)	146 (0.95)	1.781	0.368–8.618	0.53	0.46758	
	AA	22 (0.16)	63 (0.20)	Ref				
	CC	112 (0.84)	245 (0.80)	1.309	0.767–2.234	0.98	0.32231	
	ER-negative							
	AA	6 (0.08)	8 (0.05)	Ref				
	AC	26 (0.33)	47 (0.31)	0.738	0.231–2.357	0.26	0.60680	
	CC	46 (0.59)	99 (0.64)	0.620	0.203–1.889	0.72	0.39647	
	AC + CC	72 (0.92)	146 (0.95)	0.658	0.220–1.966	0.57	0.45044	
	AA	38 (0.24)	63 (0.20)	Ref				
	CC	118 (0.76)	245 (0.80)	0.798	0.505–1.263	0.93	0.33564	
rs700518	ER-positive							
	Val > Val	AA	30 (0.45)	55 (0.36)	Ref			
		AG	32 (0.48)	71 (0.46)	0.775	0.418–1.435	0.66	0.41646
		GG	5 (0.07)	28 (0.18)	0.458	0.179–1.173	2.72	0.09915
		AG + GG	37 (0.55)	99 (0.64)	0.685	0.382–1.228	1.62	0.20312
	Val > Val	AA	92 (0.69)	181 (0.59)	Ref			
		GG	42 (0.31)	127 (0.41)	0.697	0.455–1.067	2.78	0.09567

Table 4: Genotype frequencies of Aromatase gene polymorphism in breast cancer cases (PR-positive versus PR-negative)

SNP	Variant	Cases	Controls	OR	CI	χ^2 value	P-value	
rs4646	PR-positive							
	AA	5 (0.06)	8 (0.05)	Ref				
	AC	28 (0.31)	47 (0.31)	0.953	0.284–3.201	0.01	0.93817	
	CC	56 (0.63)	99 (0.64)	0.905	0.282–2.900	0.03	0.86660	
	AC + CC	84 (0.94)	146 (0.95)	0.921	0.292–2.905	0.02	0.88768	
	AA	38 (0.21)	63 (0.20)	Ref				
	CC	140 (0.79)	245 (0.80)	0.947	0.602–1.490	0.05	0.81502	
	PR-negative							
	AA	3 (0.05)	8 (0.05)	Ref				
	AC	18 (0.31)	47 (0.31)	1.021	0.243–4.284	0.0001	0.97704	
	CC	38 (0.64)	99 (0.64)	1.024	0.258–4.063	0.0012	0.97358	
	AC + CC	56 (0.95)	146 (0.95)	1.023	0.262–3.994	0.001	0.97409	
	AA	24 (0.20)	63 (0.20)	Ref				
	CC	94 (0.80)	245 (0.80)	1.007	0.595–1.706	0.001	0.97888	
rs700518	PR-positive							
	Val > Val	AA	39 (0.44)	55 (0.36)	Ref			
		AG	38 (0.43)	71 (0.46)	0.755	0.427–1.333	0.94	0.33189
		GG	12 (0.13)	28 (0.18)	0.604	0.274–1.333	1.57	0.21003
		AG + GG	50 (0.66)	99 (0.64)	0.712	0.418–1.214	1.56	0.21131
		AA	116 (0.65)	181 (0.59)	Ref			
		GG	62 (0.35)	127 (0.41)	0.762	0.519–1.117	1.95	0.16306
rs700518	PR-negative							
	Val > Val	AA	21 (0.36)	55 (0.36)	Ref			
		AG	28 (0.47)	71 (0.46)	1.033	0.530–2.011	0.01	0.92423
		GG	10 (0.17)	28 (0.18)	0.935	0.388–2.255	0.02	0.88168
		AG + GG	38 (0.64)	99 (0.64)	1.005	0.537–1.881	0.0012	0.98683
		AA	70 (0.59)	181 (0.59)	Ref			
		GG	48 (0.41)	127 (0.41)	0.977	0.635–1.505	0.01	0.91689

Abbreviations: CI, confidence interval; PR, progesterone receptor; OR, odds ratio; Ref, reference; SNP, single nuclear polymorphism.
Table 5 Genotype frequencies of Aromatase gene polymorphism in breast cancer cases (HER2-positive versus HER2-negative)

SNP	Variant	Case	Control	OR	CI	χ^2 value	P-value
rs4646	HER2-positive	3 (0.05)	8 (0.05)	Ref			
	AA	21 (0.37)	47 (0.31)	1.191	0.287–4.945	0.06	0.80916
	CC	33 (0.58)	99 (0.64)	0.889	0.223–3.548	0.03	0.86748
	AC + CC	54 (0.95)	146 (0.95)	0.986	0.252–3.855	0.0001	0.98418
	AA	27 (0.24)	63 (0.20)	Ref			
	CC	87 (0.76)	245 (0.80)	0.829	0.496–1.384	0.52	0.47202
	rs4646	HER2-negative	4 (0.04)	8 (0.05)	Ref		
	AA	25 (0.28)	47 (0.31)	1.064	0.292–3.882	0.01	0.92536
	CC	60 (0.67)	99 (0.64)	1.212	0.350–4.198	0.09	0.76122
	AC + CC	85 (0.96)	146 (0.95)	1.164	0.340–3.982	0.06	0.80817
	AA	33 (0.19)	63 (0.20)	Ref			
	CC	145 (0.81)	245 (0.80)	1.130	0.707–1.805	0.26	0.60941
	rs700518	HER2-positive	24 (0.42)	55 (0.36)	Ref		
	AA	25 (0.44)	71 (0.46)	0.807	0.416–1.564	0.40	0.52475
	GG	8 (0.14)	28 (0.18)	0.655	0.261–1.644	0.82	0.36534
	AG + GG	33 (0.58)	99 (0.64)	0.764	0.411–1.421	0.73	0.39436
	AA	73 (0.64)	181 (0.59)	Ref			
	GG	41 (0.36)	127 (0.41)	0.800	0.513–1.249	0.96	0.32619
	rs700518	HER2-negative	35 (0.39)	55 (0.36)	Ref		
	AA	41 (0.46)	71 (0.46)	0.907	0.512–1.608	0.11	0.73934
	GG	13 (0.15)	28 (0.18)	0.730	0.334–1.596	0.63	0.42891
	AG + GG	54 (0.61)	99 (0.64)	0.857	0.500–1.468	0.32	0.57434
	AA	111 (0.62)	181 (0.59)	Ref			
	GG	67 (0.38)	127 (0.41)	0.860	0.589–1.256	0.61	0.43580

Abbreviations: CI, confidence interval; OR, odds ratio; Ref, reference; SNP, single nuclear polymorphism.

Figure 1 Regional linkage disequilibrium plot for the single nuclear polymorphism rs4646.
Some strengths and limitations of our study should be noted. Its strengths include the population-based and prospective study design in the central region of Saudi Arabia, thereby minimizing selection bias, and the detailed review of the cancer diagnosis, thereby minimizing disease misclassification. However, our nested case–control sample was relatively small in size, which hampered our ability to evaluate specific gene-disease association. Confirmation of our findings in larger populations of women of different ethnicities could provide evidence for the role of the CYP19A1 gene in breast carcinoma.

Acknowledgment
The authors extend their appreciation to the Deanship of Scientific Research at King Saud University for funding this work through research group project RGPVPP-081.

Disclosure
The authors declare that they have no competing interests in this work.

References
1. Ferlay J, Shin HR, Bray F, Forman D, Mathers C, Parkin DM. GLOBOCAN 2008 v2.0, Cancer Incidence and Mortality Worldwide: IARC Cancer Base No. 10 Internet. Lyon, France: International Agency for Research on Cancer; 2010. Available from: http://globocan.iarc.fr. Accessed July 22, 2013.
2. Center MM, Jemal A, Smith RA, Ward E. Worldwide variations in colorectal cancer. CA Cancer J Clin. 2009;59(6):366–378.
3. Simpson ER, Clyne C, Rubin G, Boon WC, Robertson K, et al. Aromatase—a brief overview. Annu Rev Physiol. 2002;64:93–127.
4. Olson SH, Bandera EV, Orlow I. Variants in estrogen biosynthesis genes, sex steroid hormone levels, and endometrial cancer: a HuGE review. Am J Epidemiol. 2007;165:235–245.
5. Millar DS, Horan M, Chuzhanova NA, Cooper DN. Characterisation of a functional intronic polymorphism in the human growth hormone (GH1) gene. Hum Genomics. 2010;4:289–301.
6. Cooper DN. Functional intronic polymorphisms: buried treasure awaiting discovery within our genes. Hum Genomics. 2010;4:284–288.
7. Cai Q, Kataoka N, Li C, et al. Haplotype analyses of CYP19A1 gene variants and breast cancer risk: results from the Shanghai Breast Cancer Study. Cancer Epidemiol Biomarkers Prev. 2008;17:27–32.
8. Chattopadhyay S, Siddiqui S, Akhtar MS, et al. Genetic polymorphisms of ESR1, ESR2, CYP17A1, and CYP19A1 and the risk of breast cancer: a case control study from North India. Tumour Biol. 2014;35:4517–4527.
9. Fasching PA, Loehberg CR, Strissel PL, et al. Single nucleotide polymorphisms of the aromatase gene (CYP19A1), HER2/neu status, and prognosis in breast cancer patients. Breast Cancer Res Treat. 2008;112:89–98.
10. Kristensen VN, Harada N, Yoshimura N, et al. Genetic variants of CYP19 (aromatase) and breast cancer risk. Oncogene. 2000;19:1329–1333.
11. Haiman CA, Hankinson SE, Spiegelman D, Brown M, Hunter DJ. No association between a single nucleotide polymorphism in CYP19 and breast cancer risk. Cancer Epidemiol Biomarkers Prev. 2002;11:215–216.
12. Ralph DA, Zhao LP, Aston CE, et al. Age specific association of steroid hormone pathway gene polymorphisms with breast cancer risk. Cancer. 2007;109:1940–1948.
13. Zhang L, Gu L, Qian B, et al. Association of genetic polymorphisms of ER-alpha and the estradiol-synthesizing enzyme genes CYP17 and CYP19 with breast cancer risk in Chinese women. Breast Cancer Res Treat. 2009;114:327–338.
14. Livak KJ. Allelic discrimination using fluorogenic probes and the 5′ nuclease assay. Genet Anal. 1999;14:143–149.
15. Alanazi M, Pathan AA, Ajaj SA, et al. DNA repair genes XRCC1, XRCC3, XPD, and OGG1 polymorphisms among the central region population of Saudi Arabia. Biol Res. 2013;46:161–167.
16. Alanazi M, Pathan AA, Abduljalied Z, et al. Association between PARP-1 V762A polymorphism and breast cancer susceptibility in Saudi population. PLoS One. 2013;8:e85541.

Figure 2 Regional linkage disequilibrium plot for the rs700518 single nuclear polymorphism.
17. Dunning AM, Dowsett M, Healey CS, et al. Polymorphisms associated with circulating sex hormone levels in postmenopausal women. *J Natl Cancer Inst*. 2004;96:936–945.
18. Kristensen VN, Andersen TI, Lindblom A, Erikstein B, Magnus P, Borresen-Dale AL. A rare CYP19 (aromatase) variant may increase the risk of breast cancer. *Pharmacogenetics*. 1998;8:43–48.
19. Probst-Hensch NM, Ingles SA, Diep AT, et al. Aromatase and breast cancer susceptibility. *Endocr Relat Cancer*. 1999;6:165–173.
20. Long JR, Kataoka N, Shu XO, et al. Genetic polymorphisms of the CYP19A1 gene and breast cancer survival. *Cancer Epidemiol Biomarkers Prev*. 2006;15:2115–2122.