Benchmarking Flexible Electric Loads Scheduling Algorithms under Market Price Uncertainty

Algorithms for optimal trading in day-ahead and reserve markets, and scheduling flexible energy demand

Koos van der Linden Natalia Romero Germán Morales-España
Mathijs de Weerdt

Delft University of Technology, The Netherlands

June 10, 2020
Benchmarking Flexible Electric Loads Scheduling Algorithms under Market Price Uncertainty

- Motivation and problem introduction
 - Flexible Electric Loads scheduling
 - Electricity Markets and Uncertainty
- Solutions
 - Solution methods and algorithms
- Evaluation
 - Benchmarking
- Conclusion
Challenge: Maintain balance between power supply and demand.

Changes in the power system

- renewable energy is
 - intermittent
 - uncertain
 - uncontrollable
- new loads such as heat pumps, airconditioning, and electric vehicles are
 - significantly larger than other household demand, and
 - more flexible (and therefore also less predictable)
Objective of planning algorithms

- Schedule **flexibility** efficiently (e.g. electric vehicles, greenhouses, traders)
- Reduce operational **costs**
- Help **balancing** the grid

AEMO Energy Live. Managing frequency in the power system.
http://energylive.aemo.com.au/Energy-Explained/Managing-frequency-in-the-power-system
Motivation: Grid imbalance regulation with electric vehicles

Case study: The Netherlands

- Average imbalance per PTU: ~50-150MWh
- EVs required to restore the balance: ~60000 (0.8%)
- Actual number EVs: ~26000 BEVs, ~98000 PHEVs

AEMO Energy Live. Managing frequency in the power system. http://energylive.aemo.com.au/Energy-Explained/Managing-frequency-in-the-power-system

TenneT (Apr. 2011). Imbalance Management TenneT Analysis report.

Netherlands Enterprise Agency (2018). Statistics Electric Vehicles in the Netherlands.
Benchmarking Flexible Electric Loads Scheduling Algorithms under Market Price Uncertainty

- Motivation and problem introduction
 - Flexible Electric Loads scheduling
 - Electricity Markets and Uncertainty
- Solutions
 - Solution methods and algorithms
- Evaluation
 - Benchmarking
- Conclusion
Flexibility is valorized in different energy markets

KU Leuven Energy Institute: The current electricity market design in Europe. https://set.kuleuven.be/ei/images/EI_factsheet8_eng.pdf/
Uncertainty in energy prices and markets

Figure: Imbalance price in the Dutch market

[TenneT Market Information](http://www.tennet.org/bedrijfsvoering/ExporteerData.aspx)
Market design differences across Europe

Key:
- Missing data
- N/A
- No minimum bid size
- \(x \leq 1 \text{MW} \)
- \(1 \text{MW} < x \leq 5 \text{MW} \)
- \(5 \text{MW} < x \leq 10 \text{MW} \)
- \(x > 10 \text{MW} \)

ENTSO-E WGAS. Survey on ancillary services procurement, balancing market design 2017. https://docstore.entsoe.eu/Documents/Publications/Market%20Committee%20publications/ENTSO-E_AS_survey_2017.pdf
Market design differences across Europe

Key:

- Missing data
- N/A
- Hour (or blocks)
- 30 minutes
- 15 minutes

ENTSO-E WGAS. Survey on ancillary services procurement, balancing market design 2017. https://docstore.entsoe.eu/Documents/Publications/Market%20Committee%20publications/ENTSO-E_AS_survey_2017.pdf
Reserves and uncertainty

Reserves in the Dutch market (TenneT)

- **Primary Reserves**: Frequency Containment Reserves (FCR)
- **Secondary Reserves**: Automated Frequency Restoration Reserves (aFRR)
 - Contracted
 - Voluntary
- **Tertiary Reserves**: Manual Frequency Restoration Reserves (mFRR)
Benchmarking Flexible Electric Loads Scheduling Algorithms under Market Price Uncertainty

- Motivation and problem introduction
 - Flexible Electric Loads scheduling
 - Electricity Markets and Uncertainty
- Solutions
 - Solution methods and algorithms
- Evaluation
 - Benchmarking
- Conclusion
Solution methods

Trivial solutions and solutions from the literature

Code	Description
DI	Direct charging
OP	Charging based on the optimal expected price
QO	Quantity-only reserve bidding
DT	Deterministic price bidding based on probability of acceptance
MR	MaxReg heuristic

New solutions

Code	Description
SO1	One stage stochastic optimization
SO2	Two stage stochastic optimization

E. Sortomme and M. A. El-Sharkawi (2011). “Optimal charging strategies for unidirectional vehicle-to-grid”. *IEEE Transactions on Smart Grid* 2.1, pp. 131–138

M. R. Sarker, Y. Dvorkin, and M. A. Ortega-Vazquez (Sept. 2016). “Optimal Participation of an Electric Vehicle Aggregator in Day-Ahead Energy and Reserve Markets”. *IEEE Transactions on Power Systems* 31.5, pp. 3506–3515
QO - Quantity-only reserve bidding

TenneT. Market Information. http://www.tennet.org/bedrijfsvoering/ExporteerData.aspx
DT - Bidding based on probability of acceptance

M. R. Sarker, Y. Dvorkin, and M. A. Ortega-Vazquez (Sept. 2016). “Optimal Participation of an Electric Vehicle Aggregator in Day-Ahead Energy and Reserve Markets”. In: IEEE Transactions on Power Systems 31.5, pp. 3506–3515
The heuristic determines a preferred operating point (POP)

When charging more/less is available, reserves are committed

The MaxReg heuristic chooses a POP that maximizes reserves utilization

E. Sortomme and M. A. El-Sharkawi (2011). “Optimal charging strategies for unidirectional vehicle-to-grid”. In:
SO1&2- Stochastic optimization

SO1 - One stage stochastic optimization

- Similarly as DT, based on probability of acceptance, but with optimizing expected value over multiple scenario’s

SO2 - Two stage stochastic optimization

- Probability of acceptance modelled directly
- Binary variables model whether a reserve bid is accepted or not
Benchmarking Flexible Electric Loads Scheduling Algorithms under Market Price Uncertainty

- Motivation and problem introduction
 - Flexible Electric Loads scheduling
 - Electricity Markets and Uncertainty
- Solutions
 - Solution methods and algorithms
- Evaluation
 - Benchmarking
- Conclusion
Benchmarking

Objectives
- Quantitative analysis
- Online analysis
- Performance under uncertainty and multiple scenario’s

Benchmarking Electric Flexible Load Scheduling Algorithms
- **Compare** solution methods
e.g. Probabilistic, Deterministic, Stochastic
- **Change** market configuration
e.g. Capacity payments, Minimum reserve bid size
- **Online** comparison under **Uncertainty**
by means of a scenario generator (e.g. ARIMA)
Scenario generation and online evaluation

- Train an ARIMA model M based on historic data
- Use M to generate a ’real’ scenario s
- For every time step t in the online simulation:
 - Use M to generate n scenario’s S from s starting at t
 - Let the algorithm update its decisions based on S at point t
- Evaluate the algorithm based on the ’real’ scenario s
Scenario generation and online evaluation

- Train an ARIMA model \(M \) based on historic data
- Use \(M \) to generate a 'real' scenario \(s \)
- For every time step \(t \) in the online simulation:
 - Use \(M \) to generate \(qn \) scenario’s \(S \) from \(s \) starting at \(t \)
 - Choose the \(n \) scenario’s from \(S \) most similar to \(s \)
 - Let the algorithm update its decisions based on \(S \) at point \(t \)
- Evaluate the algorithm based on the 'real' scenario \(s \)
Test setup

Test objectives

- Measure operation costs
- Measure risk (unmet demand and exceeding the battery capacity)

Test parameters

- Dutch market setup (95 historic scenario’s from 2016 used to generate 950 test scenario’s)
- One EV with a battery capacity of 30kWh, initial SOC of 1kWh, required SOC of 27kWh, a charging speed of 7kW and a charging efficiency of 90%
- DT’s desired acceptance probability is set to 50%, SO1’s to 80%
- SO1 and SO2 optimize based on 20 scenario’s
Benchmarking results - solution distribution

- PI shows the perfect information solution
- Differences are small but statistically significant (as small as 2% of the standard deviation)
- High variance shows importance of dealing with uncertainty
- Distance to PI shows difficulty to find optimal solutions
The best 25 scenarios are chosen from the $25q$ generated scenario’s.

Solution quality increases when updating decisions over time.

Data quality influences the algorithm’s (relative) performance.
Results table

Results for the Dutch case study. The values shown are the mean ± the standard deviation of the results.

	Costs + penalty (€)	Unmet demand (%)	Exceeded capacity (%)	Run time (s)	
q	1	2	1	1	
DI	0.47±0.51	0.0	0.0	1e–3±2e–3	
OP	0.39±0.44	0.0	0.0	1e–3±1e–3	
MR	0.27±0.46	0.0	0.0	1e-3±6e-3	
QO	0.28±0.50	0.19 (-0.09)	0.08±0.68	0.22±0.80	0.59±0.10
DT	0.21±0.54	0.16 (-0.06)	1.63±2.84	0.33±1.51	0.58±0.08
SO1	0.27±0.48	0.19 (-0.08)	0.11±0.69	0.02±0.21	0.66±0.10
SO2	0.19±0.58	0.12 (-0.07)	0.24±1.14	0.17±1.03	73.8±41.2
PI	-0.25±0.78	0.0	0.0		
Benchmarking Flexible Electric Loads Scheduling Algorithms under Market Price Uncertainty

- Motivation and problem introduction
 - Flexible Electric Loads scheduling
 - Electricity Markets and Uncertainty
- Solutions
 - Solution methods and algorithms
- Evaluation
 - Benchmarking
- Conclusion
Conclusions

- A simple expected value based analysis does not suffice
- Online decision making is important to deal with uncertainty
- The algorithm’s performance is measured with regards to the quality of the provided data
- Stochastic programming helps in finding good solutions that balance operation costs and risk

More info

- Koos van der Linden and Natalia Romero and Mathijs M. de Weerdt (2020). Benchmarking Flexible Electric Loads Scheduling Algorithms under Market Price Uncertainty, arXiv 2002.01246.
- https://github.com/AlgTUDelft/B-FELSA/
Acknowledgements

The work presented is funded by the Netherlands Organization for Scientific Research (NWO), as part of the Uncertainty Reduction in Smart Energy Systems program.