Perturbation study of the conductance through a finite Hubbard chain

Akira Oguri

Department of Material Science, Faculty of Science, Osaka City University, Osaka 558-8585, Japan

Abstract

The dc conductance through a Hubbard chain of size \(N(=1,2,3,\ldots)\) connected to noninteracting leads is studied at \(T=0\) in an electron-hole symmetric case using a perturbation theory in \(U\). The result shows a typical even-odd property corresponding to a Kondo or Mott-Hubbard physics.

Keywords: quantum transport; electron correlation; Fermi liquid; mesoscopic system

Motivated by a current interest in effects of electron correlation on the transport through small systems, we have examined some theoretical approaches [1,2]. In this report, using a perturbation approach, we study the size \((N)\) dependence of the transport through a small interacting chain connected to semi-infinite leads.

We start with the Hamiltonian \(\mathcal{H} = \mathcal{H}_0 + \mathcal{H}_I\),

\[
\mathcal{H}_0 = -\sum_{i=-\infty}^{+\infty} t_i \left(c_{i+1\sigma}^\dagger c_{i\sigma} + c_{i\sigma}^\dagger c_{i+1\sigma} \right) -\mu \sum_{i=-\infty}^{+\infty} n_{i\sigma} + \sum_{j=1}^{N} \left(\epsilon_0 + \frac{U}{2} \right) n_{j\sigma},
\]

\[
\mathcal{H}_I = U \sum_{j=1}^{N} \left[n_{j\uparrow} n_{j\downarrow} - \frac{1}{2} (n_{j\uparrow} + n_{j\downarrow}) \right].
\]

Here \(c_{i\sigma}^\dagger\) is a creation operator for an electron with spin \(\sigma\) at site \(i\), \(n_{i\sigma} = c_{i\sigma}^\dagger c_{i\sigma}\). The hopping matrix element is uniform \(t_i = t\) except at the boundaries between the central region and two leads; \(t_0 = v_L\) and \(t_N = v_R\).

At \(T=0\), the dc conductance \(g_N\) can be written in term of an inter-boundary element of a single-particle Green’s function \(G_{N1}(\omega + i0^+)\), and is determined by the value at the Fermi level \(\omega = 0\) as \(g_N = (2e^2/h) 4 \Gamma_L(0) \Gamma_R(0) |G_{N1}(i0^+)|^2\) [1]. Here \(\Gamma_{\alpha}(0) = \pi D(0) v_\alpha^2\) with \(\alpha = L, R\), and \(D(0) = \sqrt{4t^2 - \mu^2} / (2\pi t^2)\). The assumption made here is the validity of the perturbation theory in \(U\). This seems to be probable for small \(N\). In that case, the self-energy due to \(\mathcal{H}_I\) has a property \(\text{Im} \Sigma_{j\uparrow}(i0^+) = 0\) at \(T = 0\) [3], and \(g_N\) can be obtained through a scattering problem of free quasi-particles [2].

In this report, we consider an electron-hole symmetric case taking the parameters to be \(\mu = 0\) and \(\epsilon_0 + U/2 = 0\). If the system has an additional in-
version symmetry $v_L = v_R$, it can be shown that a perfect transmission occurs $g_N \equiv 2e^2/h$ for odd $N (= 2M + 1)$ independent of the values of U and M [2]. This is caused by the Kondo resonance appearing at the Fermi level for odd N.

On the other hand, for even N, we evaluate the self-energy $\Sigma_{ij}(\omega^\pm)$ within the second order in U at $\omega = 0$, and then obtain $G_{N1}(\omega^\pm)$ solving the Dyson equation in the real space [2]. In Fig. 1, g_N for even $N (= 2M)$ is plotted vs M for several values of $v_L (= v_R)$, where $U/(2\pi t) = 1.0$. The dc conductance decreases with increasing the size $2M$. This behavior can be regarded as a tendency toward a Mott-Hubbard insulator, and it is pronounced for larger U. In Fig. 2, g_N for even $N (= 2, 4, \ldots)\) is plotted vs U. The value of g_{2M} decreases with increasing U. When v_L (or v_R) is smaller than t, the reduction of g_{2M} is proportional to U^2 at $U/(2\pi t) \ll 1$. As it is seen in the plots for $v_L = v_R = 0.7t$ (dashed lines), the peak structure in the U dependence becomes sharp for large M, and in the limit $M \to \infty$ the peak seems to vanish leaving the value at a singular point $U = 0$ unchanged. In contrast, in the case of $v_L = v_R = t$ (solid lines), the reduction of g_{2M} is proportional to U^4 at $U/(2\pi t) \ll 1$, and g_{2M} seems to be finite in the limit of large M. However, in order to verify this behavior for large M, the contributions of the higher-order terms should be examined because the unperturbed Hamiltonian \mathcal{H}_0 has a translational invariance accidentally in this case.

Qualitatively, the even-odd property seems to be understood from that in the unperturbed system, especially from the level structure of the isolated chain. For odd N, there is a semi-occupied one-particle state at the Fermi level $\omega = 0$, and thus a doublet ground state is realized. When the leads are connected, the ground state is replaced by a Kondo singlet state and contributes to the tunneling. On the other hand, for even N, the Fermi level lies between the highest occupied level and the lowest unoccupied level, and thus a finite energy corresponding to the gap is necessary to excite the electrons. Although the levels are broadened by the coupling with the leads, the even-odd property is determined by whether there exists a zero-energy excitation or not. At finite temperatures, a characteristic energy scale of the Kondo or Mott-Hubbard physics will play an important role.

We expect that the model and approach used here can be applied to a series of quantum dots or a quantum wire of nanometer scale.

We thank H. Ishii for valuable discussions.

References

[1] A. Oguri, Phys. Rev. B 56, 13422 (1997); 58 1690(E) (1998).
[2] A. Oguri, Phys. Rev. B 59, 12240 (1999); unpublished.
[3] J. S. Langer and V. Ambegaokar, Phys. Rev. 121, 1090 (1961).