The Development of a Four Tier-Based Diagnostic Test
Diagnostic Assessment on Science Concept Course

F. Fakhriyah, S. Masfuah
Primary Educational Teacher Department, Faculty of Teacher Training and Education Universitas Muria Kudus
fina.fakhriyah@umk.ac.id; siti.masfuah@umk.ac.id

Abstract. A learning success could be seen from the material mastery and conceptual understanding inculcation obtained by the students. To find out how students’ misconceptions occur, it could be done by developing a diagnostic assessment. This research aims to develop and describe the instrument validity of the four-tier diagnostic test for diagnosing misconceptions by the Primary School Teacher Education program of Universitas Muria Kudus on Science Concept course. This research applies the Research and Development design. It consists of a preliminary study, diagnostic test development, and diagnostic test validation. This article discusses the development and four-tier diagnostic test instrument validation results. The developed instrument consisted of 40 question items. They were Physics and Biology materials. The validation stage involved content and face validities. The expert judgment result showed an average score of 93.09, with very valid criterion. Thus, the four-tier based diagnostic test was valid and could be implemented. The reliability calculation obtained the r-count score = 0.698, while the r-table score = 0.514. The r-count is higher than r-table, then the instrument was reliable. It showed that the instrument was valid and reliable and could be implemented for the students of Primary School Teacher Education. Based on the validation result, the Four-Tier based diagnostic test was valid and reliable to apply for diagnosing the students’ misconceptions in science concept course.

1. Introduction
A learning success could be seen from the material mastery and conceptual understanding inculcation obtained by the students. As educator candidates, conceptual understanding internalization is an important matter to be mastered by the students of Primary School Teacher Education program. Identifying students’ misconceptions are important. It is because they are the primary school teacher candidates and will share their conceptual understanding for the next generations. The science conceptual understanding mastery becomes the success indicator of the science concept of course learning. Based on the observation on the following course, Science Application, the science conceptual understanding masteries of the Primary School Teacher Education program students were still low. Several students had difficulties in applying the science concept into their tasks to make manipulative props for primary school learners. The students had difficulties in explaining and connecting the material concepts and their implementation as the basis of the manipulative prop arrangements. It indicated that most students had difficulties in learning science materials. The researchers assumed there were several students having misconception or even did not understand the concept. Sometimes the students could not provide a correct explanation about the science concept, especially about Biology or Physics. Preliminary research had been done, it was about the conceptual
understanding of the Primary School Teacher Education Program students on Science Application course taught by Project Based Learning [1]. It found the experimental group’s conceptual understanding was better than the control group. The t-test and N-gain test results showed the experimental group behaviours. The experimental group, taught by PjBL during the Science Application course had an N-gain score with a moderate criterion.

On the other hand, the control group, taught by direct learning, had an N- n- gain score with a low criterion. It showed that several students’ conceptual understandings had problems when specific interventions were not applied. It is supported by the findings of Fakhriyah et al [2]. The findings showed that the Primary School Teacher Education students’ scientific literacy skills obtained a percentage of 66.2%, at the nominal level. Meanwhile, on the other hand, 33.8% of students were at the functional level. The data showed the students who had the concept to connect science with other disciplines could write a scientific term. However, it was found the still had misconceptions or incorrect concepts.

On the other hand, 33.8% of students remembered the theory and explained the concept correctly, but they had limited concept and difficulties to connect the concept to their arguments. A lack of conceptual mastery consistently will influence students’ further learning process effectiveness [3]. The students construct concepts gradually. When it is inappropriately constructed; or it deviates from the original concept, then students will have difficulties to construct further concepts. Therefore, it is important to find out their difficulties in understanding the concepts they have already known and understood. Then, it could be continued by analysis and formulating solution. Initial identification of student misconceptions based on cluster analysis shows that 38.1% of students had misconceptions [4].

The occurring misconception was due to a mismatch between the understood explanation and the experts’ agreed concepts. The occurring daily life experience becomes their basis for constructing their concepts based on their rationales. These rationales, actually, need to be ensured. The occurring misconception remains consistently in learners’ mind to interpret a concept into conception or into a fact [5]. Tayubi [6] argues that when the constructed intuition of learning is incorrect, it will be difficult to correct it. It is due to such coincident matter consistently allows the incorrect concept to be the basis for the learner. When such misconception is allowed, it will become a hereditary mistake. It also hinders students from being creative. It is strengthened by Keshavaraz [7]. He argues that misconception is an incorrect individual who understood the concept of expert theories. When misconception is allowed, it hinders the students’ learning achievements. Many factors influence misconception. They are such as the initial concepts of the students, teachers, environment, languages, textbooks, or reading sources [8], [9], [10], [11].

Many applicable ways could be applied to measure students’ misconceptions. One of them is a diagnostic test. A diagnostic test was an alternative to measure the students’ misconceptions on Science Concept course. It was applied at the beginning and the ending of learning. It functioned as a standard measurement worked by the students. It could also provide accurate descriptions about the experienced misconception on certain materials. The students’ mistakes while answering these diagnostic questions would be the basis of their lack of understanding of certain materials. It could also be used as the basis of their mindset in sharing the responses of the incorrect answers [12].

The diagnostic test instrument development had been promoted by other researchers. It consisted of two, three, and four-tier multiple choices. Each level has different strengths and weaknesses. Chandrasegaran et al. [13] applied a two-tier diagnostic test to access or identify the scientific conceptions of Taiwanese learners. On the other hand, Tan et al. [14] applied it to access the conceptual understanding of ionized energy from Singaporean learners. Tsui and Treagust [12] applied it to evaluate the teachers’ arguments dealing with the genetic field. Caleon and Subramaniam [15] developed and applied the three-tier diagnostic test to access the conceptual understanding of wave on Singaporean learners. Cetin-Dindar and Geban [16] also used it to access the concept of acid and base of the senior high school learners. This current research develops a four-tier diagnostic test. The four-tier test is a development of the three-tier diagnostic test. This development adds the students’ levels
of confidence in selecting or writing the reasons. Caileon & Subramaniam [15] state that the developed level of confidence is within a range of one until six. The four-tier test has several better features such as 1) the lecturers could differ the levels of confidence on the learners’ answers; therefore, it could investigate the strength and weakness of the students’ concepts, 2) the lecturers could diagnose the experienced misconception of the students better, 3) the lecturers could determine the required materials to be further discussed, and 4) the lecturers could use it as a suggestion to determine learning that could decrease the students’ misconceptions. The diagnostic test is a test to accurately find out and ensure the weakness and the strength of learners in certain courses [3]. HeretofoR, this misconception condition has been measured by the appropriate instrument. The diagnostic test was developed to identify the weakness and strength of students in understanding conceptual science materials. The test implementation had the purpose of improving the subsequent learning process and motivating them to learn [17], [18]. Therefore, the diagnostic test is expected to be able to describe the students’ skills and to determine in what concepts the students have misconceptions.

Therefore, it needs a diagnostic test development which is capable of measuring the students’ misconceptions on science concept course. This development could provide suggestions to improve and to overcome any students’ misconceptions or incorrect conceptions. By developing a four-tier diagnostic test, the students’ science conceptual understanding would be facilitated and could be measured. This research aims to develop and describe the instrument validity of the four-tier diagnostic test for diagnosing misconceptions by the Primary School Teacher Education program of Universitas Muria Kudus on Science Concept course.

2. Method
This research applies the Research and Development design. It consists of a preliminary study, diagnostic test development, and diagnostic test validation. It is in line with Research and Development design characteristics within an educational context. It functions as a method that works systematically to a problem solution. Then, this problem solution is realized and tested [19]. The preliminary stage consisted of unachieved learning target identification. Then, it was continued by determining the misleading concept sources. From the preliminary study, the researcher determined the main discussion that had misconceptions and incorrect understandings. Then, in the development stage, the question forms were arranged and applied by using a reasoned-multiple choice. It was also complemented by levels of confidence to answer or express the reasons. During providing the reasons, it was entailed by levels of confidence. This matter revealed that the multiple-choice instrument could reveal higher thinking skill levels due to broader mastery level varieties [20]. The type of multiple choice questions is able to get students to answer questions carefully because there are choices where the choices contain distractors [21].

The next step dealt with diagnostic test question rubric arrangements, question writing, and question reviews. The questions were completed by assessment criteria and direction to work on them. It was strengthened by Putri et al. [22]. They found that the test question arrangement required detailed instruction by working on them. The developed diagnostic test consisted of 40 items. They were divided into 20 Biology and 20 Physics content items. All of them were taught in science concept course. These could be seen in Table 1.

Table 1. The diagnostic test question rubrics
Science Context
Biology (Cells (structures and functions of plants and animals))
Biodiversity (Species, population, evolution, genetic variation)
Food chain, energy and material flow
After developing the diagnostic test instrument, its quality, appropriateness, and reliability were analyzed. Therefore, a validation sheet of the instrument was arranged and used for the experts. The used results of validation were content and construct validities. Three experts validated the instrument. They were two Physics experts and a Biology expert. Besides that, in these stages, the question item analysis had purpose to measure the reliability, the discrimination power, and the difficulty level.

3. Finding and Discussion

This test development and arrangement could be applied to measure the experienced misconceptions of the students on the science concept. Of course, once the test had been validated by experts in terms of its reliability with quantitative calculation. The validation results were from three material experts of biology and physics. It is strengthened by Siswanto [23]. He revealed that the applicable criteria for validation required two independent groups or individuals in constructing a test by using the same specifications. Thus, this research results had been in line with the content validity criteria. The applied validation sheet contained information about content clarity and accuracy (based on the given indicators), grammar, relevance, communicative question sentence formulation, and clear instruction to work on them. The experts assess the validity of the contents of the diagnostic test items developed based on the validation sheet. The assessment used is a rating scale where the score is 1 if the question is not suitable and needs improvement overall, a score of 2 if the question is quite appropriate but needs a lot of improvement, a score of 3 if the question is appropriate but needs a little improvement, and a score of 4 if the question is suitable without any improvement can be used for research. After that the data were analyzed descriptively based on the criteria in Table 2

Skor	Kriteria
81 ≤ X ≤ 100	Very Valid
61 ≤ X ≤ 80	Valid
41 ≤ X < 60	Enough Valid
21 ≤ X < 40	Less Valid
0 ≤ X < 20	Very Less Valid

The validation results showed the diagnostic test instrument was valid, as shown in Table 3. Thus, the instrument could be used to measure the experienced misconceptions by the students.
Table 3. The expert validation result recapitulation

No	Code	Score
1	Expert 1	92.95
2	Expert 2	94.82
3	Expert 3	91.50
	Average	93.09

Criteria: Very Valid

The instrument was revised based on the experts’ comments. These revisions for each question were:

a) the scientific naming and writing system for questions with scientific names. These scientific names had to be written based on the *binomial nomenclature* writing system.

b) The length of the presented options in the multiple-choice should have estimated the given time.

c) It was also important to differ each topic of material so the misconception could be clearly measured.

d) The misconception causes should also be found by applying additional data.

e) Need to add a distractor to the answer choices based on material that students do not understand.

The characteristics from the develop test instrument had been valid based on the experts. They were 1) the test questions had been developed based on scientific literacy aspects; 2) the material content scope that became the basis of broader question item arrangements, and 3) the Google form test sheet version had already had test direction to do.

From the experts’ suggestions, the instrument was revised and its question items, dealing with Biology aspects that had not been in line with the principles of the scientific naming system, were adjusted. Indrawan [24] argues that all Biology experts in the world have agreed with the flora or fauna naming standard system. Their names are written in Latin language or scientific names. Thus, all scientific names had to be adjusted. Tsalasatunnisa [25] strengthened that *binomial nomenclature* could mediate students to understand all organisms in the world.

Besides, dealing with multiple-choice options, a multiple-choice question should only have equal phrase lengths of its options. It is to avoid probability for students to merely guess the answers. Thus, it will make them thinking of the answers based on their knowledge and understanding. Alternative parallel answers, same-length answers, logical distractors are practical requirements in compiling multiple choice questions [26]. The quality of a question is also determined by the functioning of the distractors. This distractor contributes to the distinguishing power of questions and also the difficulty level of test because it can distinguish between high-ability students and low-ability students [27], [28], [29]. This distractor can also be useful for exploring student misconceptions [30].

In the developed test instrument, specific diagnostic test measurement of a material topic or discussion had not been made. The reason was to find out the understood material distributions of the students. Thus, any misconception could be noticed. Even so, this test instrument could differ the students’ skills and understanding. It is in line [31]. They found that excellent test items should be able to identify the students who had mastered certain materials to those who had not.

The revised test instruments were shared to a group of students that had already had science concept background knowledge. The validation was continued by reliability analysis. It used the Alpha Cronbach and discrimination power. The discrimination power was measured from the correct and incorrect answer proportion of the students. On the other hand, the question levels of difficulty were analyzed by comparing the correct answers of the students and the obtained total scores. Based on the question item analysis, the questions were reliable, so they could be applied. The complete
analysis is shown in Table 4. The table is about the analysis recapitulation of reliability, discrimination, power, and difficulty level of the test.

Number	Types	Results	Criteria
1.	Reliability	$r_{count} = 0.698$	reliable
		$r_{table} = 0.514$	
2.	Distinguishing	- 4 questions	Remove
	Power	- 18 questions	Revise
		- 12 questions	Accepted
		- 6 questions	Accepted
			excellently
3.	Difficulty	- 20 questions	Difficult
	levels	- 14 questions	Moderate
		- 6 questions	Easy

After carrying out the development stages and ensuring the instrument’s validity and reliability, then this instrument could be used for students to measure their misconceptions. Instrument validation was important to obtain standardized and reliable instruments. It is in line with Siswanto [23]. He stated that question items with content validities could direct students to demonstrate the required skills and competences for the sake of the learning objectives. A good test has a balanced level of test difficulty, as well as the distinguishing power of questions which is very important to use to determine the allocation of students who have high and low abilities [32]. The greater the difficulty or the more difficult the question is, the ability to differentiate between students with high abilities and low abilities [33]. Fariyani et al. [34] argues that evaluative instrument development that could detect misconception is important to be developed. If students had misconceptions and they remained in them, it could hinder the students from studying the subsequent materials.

From the content and construct validities, this instrument had been valid and reliable to use. The developed instrument had met the characteristics demanded by [35], started from 1) test design to detect learners’ difficulties, 2) the test development based on misleading sources or possible difficulties, and 3) the existence of reason provision to avoid guessing habits.

This test development is important to detect students’ misconceptions. This type of four-tier diagnostic test is able to reveal more detailed misconceptions because in each student's choice there is a level of confidence that follows so as to avoid students from speculating. This four-tier diagnostic test can measure misconceptions in more detail [36]. The students who had misconceptions would have troubles to accept new knowledge [37]. Such misconceptions when they were allowed to be instilled longer could mislead them. They would probably assume such concepts were the correct ones. They would tend to apply their prior concepts rather than the latest concepts they obtained. Therefore, it was important to find out whether the students had misconceptions and which parts the students experienced it. Thus, it would allow teachers to follow up and to suppress these misconceptions.

4. Conclusion
The four-tier diagnostic test instrument development was done by promoting a preliminary study, a development stage, and validation. The four-tier diagnostic instrument consisted of four answer levels, confidence levels of the answers, four main options, and confidence levels to choose the reasons. The test instrument had been deemed valid and reliable. It is ready to be applied and to measure the misconceptions for the Primary School Teacher Education students.

Acknowledgement
Thanks to all parties that assisted this research to be promoted well and to develop a qualified and applicable test instrument. Thanks to the DRPM, the Chief of LPPM of Universitas Muria Kudus, the board of Primary School Education Teacher Program Leaders of Teacher Training and Education
Faculty of Universitas Muria Kudus that allowed us to conduct this research. Thanks to the executive team for assistance.

References
[1] Masfuah S and F Fakhriyah 2017 Developing The Understanding of Scientific Concepts Based on The Aspect of Science Literacy For Student of Elementary School Education Program Through The Application of Project-Based Learning Unnes Science Education Journal 6 (3) 1708-1716
[2] Fakhriyah F Masfuah, S., Roysa, M., Rusilowati, A., Rahayu, E. S., 2017 Student’s Science Literacy in The Aspect of Content Science? Jurnal Pendidikan IPA Indonesia 6(1) 81-87
[3] Zaleha, Achmad, S., & Muhammad, G., N 2017 Pengembangan Instrumen Tes Diagnostik VCCL bentuk Four-Tier Test pada Konsep Getaran. Jurnal Pendidikan Fisika dan Keilmuan (JPFK) 3(1) 36-42
[4] Masfuah, S., & Fakhriyah, F. 2019 Misconception Analysis Based on Feedback of Computational Thinking Result of College Students Journal of Physics: Conference Series 1397(1)
[5] Wiyono, F. M., Sugiyanto, S., & Yulianti, E. 2016 Identifikasi hasil analisis miskonsepsi gerak menggunakan instrumen diagnostik three tier pada siswa SMP. Jurnal Penelitian Fisika dan Aplikasinya (JPFA) 6(2) 61-69
[6] Tayubi, Y. R. 2005. Identifikasi Miskonsepsi Pada Konsep-Konsep Fisika Menggunakan Certainty of Response Index (CRI). Mimbar Pendidikan, 24(3): 4-9.
[7] Keshavzarz, E., Aferef, A., & Rana, A 2017 High School Students’ Idea about Concepts Related to Chemistry and Physics: An Exploration of Common Misconception in Science. Journal of Research & Method in Education (IOSR-JRME) 7(5) 71-74
[8] Chrzanowski, M.M., Grajkowski, W., Zuchowski, S, Spalik, K., & Ostrowska, E.,B 2018 Vernacular Misconception in Teaching Science-Types and Causes Journal of Turkish Science Education 15(4) 29-54
[9] Oberoi, M. 2017 Review of Literature on Student’s Misconceptions in Science IJSRE 5(3) 6274-6280
[10] Lin, J. W., Yen, M. H., Liang, J. C., Chiu, M. H., & Guo, C. J 2016 Examining the Factors that Influence Students’ Science Learning Processes and Their Learning Outcomes: 30 Year of Conceptual Change Research Eurasia Journal of Mathematics, Science & Technology Education 12(9) 2617-2646
[11] Smith, P., S., & E., R., Banilower. 2006 Measuring Middle Grades Students’ Understanding of Force and Motion Concepts: Insight Into The Structure of Students Proceeding Paper Presented at The National Association for Research in Science Teaching, Annual Meeting April 3-6 San Francisco, CA, United States
[12] Tsui,C.Y., dan Treagust, D.F. 2010 Evaluating Secondary Student Scientific Reasoning in Genetic Using a Two-Tier Diagnostic Instrument International Journal of Science Education 32(8) 1073-1098
[13] Chandrasegaran, A. L, David F. Treagust, dan Mauro Mocerino 2007 The Development of a Two-Tier Multiple-Choice Diagnostic Instrument For Evaluating Secondary School Students’ Ability to Describe and Explain Chemical Reactions Using Multiple Levels of Representation Chemistry Education Research and Practice 293- 307.
[14] Tan, D. G., Andersson, E., Fisher, M., & Isaksen, L. 2007 Observing-system impact assessment using a data assimilation ensemble technique: application to the ADM–Aeolus wind profiling mission. Quarterly Journal of the Royal Meteorological Society: A journal of the atmospheric sciences, applied meteorology and physical oceanography 133(623) 381-390
[15] Caleon, I. S. & Subramaniam, R. 2010 Do Students Know What They Know and What They Don’t Know? Using a Four-Tier Diagnostic Test to Assess the Nature of Students’ Alternative Conceptions Res Sci Educ 40 313-337
[16] Cetin-Dindar, A., & Geban, O. 2011 Development of a three-tier test to assess high school students’ understanding of acids and bases Procedia-Social and Behavioral Sciences 15 600-604.

[17] E Istiyono 2013 Pengembangan instrumen untuk mengukur kemampuan berpihak tingkat tinggi dalam mata pelajaran fisika di SMA (Laporan Penelitian Disertasi Doktor)

[18] A A Adeleke and E O Joshua 2015 Journal of Education and Practice 6(7) 28-42

[19] Rochmad, R. 2012. Desain Model Pengembangan Perangkat Pembelajaran Matematika. Kreano, Jurnal Matematika Kreatif-Inovatif, 3(1), 59-72.

[20] Azwar, S 2010. Sikap Manusia Teori dan Pengukurannya. Yogyakarta: Pustaka Pelajar

[21] Rachmat, N. A., & Arfiandhani, P 2019 I Use Multiple-Choice Question in Most Assessment I Prepared”; Ef Teachers’ Voice on Summative Assessment. ETERNAL (English, Teaching, Learning, and Research Journal) 5(1) 163

[22] Putri, Z.B., R Sari, Jumadi J 2020 Pengembangan dan Validasi Instrumen untuk Mengukur Keterampilan Menyelesaikan Masalah Peserta Didik SMA pada Pelajaran Fisika. Jurnal Penelitian Pembelajaran Fisika 11(1): 17-25

[23] Siswanto 2008 Validitas Sebagai Alat Penentuan Kehandalan Tes Hasil Belajar. Jurnal Pendidikan Akuntansi Indonesia 6(1) 107-116

[24] Indrawan, Mochamad 2012 Biologi Konservasi Jakarta: Yayasan Pustaka Obor Indonesia

[25] Tsalatsanunisa, G 1, Almaas, N.S2, Sukmawati, D.I3, Izzah, D.N4, Pujiyanti, N.R5, Indriyani, W. 2018 Pengetahuan Mahasiswa Biologi mengenai Binomial Nomenclature Makhluk Hidup di Universitas Tidar NECTAR: Jurnal Pendidikan Biologi 1(1) 13 – 17

[26] Khairudin, K. 2017 Administrasi, Analisis Butir, dan Kaidah Penulisan Tes Jurnal Madaniyah, 1(12) 97–128

[27] Hartati, N., & Yogi, H. P. S. 2019 Item Analysis for a Better Quality Test. English Language in Focus (ELIF) 2(1) 59

[28] Namdeo, S. K., & Rout, S. D 2016 Assessment of Functional and Nonfunctional Distracter in an Item Analysis International Journal of Contemporary Medical Research 3(7) 1891–1893

[29] Gajjar, S., Sharma, R., Kumar, P., & Rana, M. 2014 Item and test analysis to identify quality multiple choice questions (MCQs) from an assessment of medical students of Ahmedabad, Gujarat Indian Journal of Community Medicine 39(1) 17–20

[30] Rodriguez, M. C., Kettler, R. J., & Elliott, S. N. 2014 Distractor functioning in modified items for test accessibility SAGE Open 4(4)

[31] Nugraeni, D., Jamzuri, & Suwanto 2013 Penyusunan Tes Diagnostik Fisika Materi Listrik Dinamis. Jurnal Pendidikan Fisika, 1(2): 12-15.

[32] Kusumawati, M., & Hadi, S 2018 An analysis of multiple choice questions (MCQs): Item and test statistics from mathematics assessments in senior high school Research and Evaluation in Education 4(1) 70–78

[33] D’Sa, J. L., & Visabal-Dionaldo, M. L 2017 Analysis of Multiple Choice Questions: Item Difficulty, Discrimination Index and Distractor Efficiency International Journal of Nursing Education 9(3) 109

[34] Fariyani, Q., Rusilowati, A., Sugianto 2015 Pengembangan Four-Tier Diagnostic Test untuk mengungkap Miskonsepsi Fisika Siswa SMA kelas X. Journal of Innovative Science Education 4(2) 41-49

[35] Departemen Pendidikan Nasional 2007 Tes Diagnostik. Jakarta: Direktorat Jenderal Manajemen Pendidikan Dasar dan Menengah

[36] Gurel, D. K., Eryilmaz, A., & McDermott, L. C 2015 A review and comparison of diagnostic instruments to identify students’ misconceptions in science. Eurasia Journal of Mathematics, Science and Technology Education 11(5) 989–1008

[37] Wilantika, N., Khoiri N., and Saifullah Hidayat 2018 Pengembangan Penyusunan Instrumen Four Tier Diagnostik Test untuk Mengungkapkan Miskonsepsi Materi Sistem Ekskresi di SMA Negeri 1 MAyong Jepara Jurnal Phenomenon 8(2) 200-2014