Communities of the Molinio-Arrhenatheretea class in the Biysk-Chumysh Upland region (Altai Krai)

N.V. Ovcharova*, A.V. Matsyura

Altai State University, pr. Lenina 61, Barnaul, 656049, Russia

*Corresponding author E-mail: ovcharova_n_w@mail.ru, amatsyura@gmail.com

Received: 15.09.2020. Accepted 20.10.2020

The article reveals the study of the syntaxonomic diversity of meadow vegetation in the Biysk-Chumysh Upland region (Altai Krai) based on the analysis of 230 complete geobotanical descriptions. The levels of hydration and use (grazing, idle land) are proved to be the main ecological factors. The variety of the Molinio-Arrhenatheretea class in the Biysk-Chumysh Upland (Altai Krai) is represented by three orders. The Molinetalia order is representative of wet meadows, whose floristic composition is mostly comprised of water resistant species. The Arrhenatheretalia order is representative of well-hydrated meadows. The Galietalia veri encompasses the communities of steppe meadows, the cenoflora of which unites the species of true meadows and meadow steppes.

Keywords: Vegetation; Meadows; Classification; The Biysk-Chumysh Upland

Introduction

The Biysk-Chumysh Upland is divided by a well-developed valley-ravine network and has the characteristics of an undulating plain, the height of which gradually increases from 280-300 m in the north to 350-400 m in the south. The slopes of the ravines have a complex stepped section, indicating several cycles of the erosion network breakthrough (Zyatkova, 1977). The surface of the flat land on the right bank of the Ob river is dissected by the valleys of the rivers that carry water to the Ob from the Biysk-Chumysh Upland. The territory includes the Ob floodplain with tributaries, oxbowx, swampy sandy terraces (Bazilevich, Shavyrgin, 1959). The climate of the Biysk-Chumysh Upland is characterized by continentality. Precipitation amounts to 400-500 mm (165-170 mm out of which account for May - July) (Rozanov, 1959). On the whole, the well-drained territory of the Biysk-Chumysh Upland is the reason for the development of a relatively homogeneous soil cover with very strict and simple interdigitation of soil varieties along the relief elements (zonal soil type on watersheds; hydromorphic types in the valleys; forest soils or eroded variants of zonal soil type along the slopes of erosive forms) (Kravtsova, 1959; Omelyanov, 1973). Most of the territory here is composed of the Lower Quaternary sands, overlaid by a thick blanket of loess loams, except for the ancient terraces of the Ob, where the rocks of the Middle Quaternary age are analogous to the sediments on the Priob plateau. Leached chernozems found on the Biysk-Chumysh Upland and on the right bank of the Chumysh river are especially widespread (Rozanov, 1959).

The information on the vegetation of the Biysk-Chumysh Upland (within the territory of Altai Krai) is scarce and is covered in the works of P. P. Polyakov (1934), V. D. Alexandrova, N. P. Guricheva, L. I. Ivanina (1958), A. V. Ronginskaya (1963), G. G. Sokolova (2002), N. V. Ovcharova, S. M. Yamalov (2013), N. N. Makunina, A. Yu. Korkoluk, T. V. Malteva (2010). According to the geobotanical zoning by A. V. Kuminova, T. A. Vagina, E. I. Lapshina (1963) the flat part of the Ob river right bank belongs to the subprovince of the Right-Bank Priob forest steppe, the Biysk-Chumysh forest steppe district. According to the scheme of the geobotanical zoning of Altai Krai (Aleksandrova, Guricheva, Ivanina, 1958), the territory under study belongs to the subzone of the middle forest steppe on leached chernozems and gray forest soils.

The purpose of this work was to identify the syntaxonomic diversity of vegetation of the Molinio-Arrhenatheretea class on the Biysk-Chumysh Upland (Altai Krai).

Materials and Methods

The work is based on 230 complete geobotanical descriptions made by N. V. Ovcharova, T. A. Teryokhina, N. V. Elesova on the territory of 5 districts within Altai Krai (Kosikhinskii, Troitskii, Zonalniy, Biyskiy, Tselinnyi districts) (Figure 1).

Geobotanical descriptions were made on the 10x10 m² sites. The contribution of species into the vegetation cover was assessed according to the Braun-Blanquet scale (Mirkin, Naumova, Solomeshch, 2001): r – single samples of the species were found on the site; s - the projective cover of the species accounts for up to 1%; 1 – the species has a projective cover of 1 to 5%; 2 – from 5 to 25%; 3 – from 25 to 50%; 4 – from 50 to 75%; 5 – 75% and more. When compiling synoptic tables, the constancy scale was used: r – 0.1-5%; s – 6-10%; 1 – 11-20%; II – 21-40%; III – 41-60%; IV – 61-80%; V – 81-100%.

We created a database of geobotanical descriptions, based on the TURBOVEG program (Hennekens, 1996). The classification was carried out with the application of the ecological-floristic approach (Westhoff, van der Maarel, 1973; Dierschke, 1994) using the JUICE 7.0 software package. (Tichy, 2002). The nomenclature of syntaxonomic units is made in accordance with the Code of phytosociological nomenclature (Weber et al., 2000). To define and describe syntaxons, we used diagnostic species, which include a combination of characteristic differential and constant species (Westhoff, van der Maarel, 1973).

Meadow vegetation of the studied area is used for haymaking and grazing; some meadows represent idle land phytocenoses of various ages. When characterising each syntaxon, the type of use (haying, grazing, idle land) is specifically mentioned.
Figure 1. Location of key sites (red dots) and sites where route studies were performed (yellow dots) on the territory of Altai Krai.

Results
Syntaxonomic analysis of the Molinio-Arrhenatheretea class communities on the territory of the Biysk-Chumysh Upland (Altai Krai) revealed 1 association, 9 rankless communities of 3 orders. The prodromus features the identified units and their position in the system of higher units, according to the prodromus of the Russian vegetation (Ermakov, 2012) (Table 1).

Prodromus of the Molinio-Arrhenatheretea class communities

Class MOLINIO-ARRHENATHERETEA R. Tx. 1937
Order MOLINIETALIA Koch 1926
Potentillion anserinae R. Tx. 1947 alliance
Community Agrostis stolonifera
Order ARRHENATHERETALIA R. Tx. 1931
Festucion pratensis Sipajlova et al. 1985 alliance
Festuco pratensis - Dactyletum glomeratae Dymina in Maltseva et Macunina 2008 association
Community Bromopsis inermis
Community Poa pratensis
Community Agrostis clavata
Community Agrostis tenuis
Order GALIETALIA VERI Mirk. et Naumova 1986
Trifolion montani Naumova 1986 alliance
Community Poa angustifolia
Community Elytrigia repens
Community Nonea pulla-Poa angustifolia
Community Vicia amoena-Poa angustifolia

Table 1. Abridged synoptical table of the Molinio-Arrhenatheretea class communities.

Syntaxon number	1	2	3	4	5	6	7	8	9	10
Number of descriptions	8	21	12	12	23	8	29	26	20	19
Average number of species per 100 m²	22	19	16	20	21	16	18	21	22	19
Use	H	P	P	P	P	P	P	H	IL	P

D.s. of Poa angustifolia community
Poa angustifolia . . II II V²-³ I II r II V³ V²-⁴

D.s. of Agrostis tenuis community
Pimpinella saxifraga . . I
Plantago lanceolata . . + I IV
Trifolium arvense II IV
Lotus ucrainicus

D.s. of Elytrigia repens community
Elytrigia repens I IV II III r V²-³
Festuca pseudovina . . +

D.s. of Agrostis clavata community
Agrostis clavata . . + V²-³ . . .

Ukrainian Journal of Ecology, 10(5), 2020
Species	Column 1	Column 2	Column 3	Column 4	Column 5	Column 6	Column 7	Column 8
Amorbia hybrida	III							
Dactylis glomerata	V							
Nonea pulla			II					
Vicia amoena	II			III				
Filipendula vulgaris				+				
Phlomoides tuberosa								
Fragaria viridis								
Tropaenitica maculata								
Trifolium pratense	IV		III					
Stellaria graminea	IV		III					
Vicia cracca	V		III					
Achillea millefolium				III				
Phleum pratense	IV		III					
Galium mollugo				III				
Leucanthemum vulgare			III					
Plantago media								
Ranunculus polyanthemos								
Agrostis gigantea								
Festuca pratensis								
Lathyrus pratensis								
Carum carvi								
Medicago falcata	III		III					
Centaurea scabiosa								
Galium verum			III					
Onobrychis arenaria	IV		II					
Veronica spicata								
Adonis vernalis								
Dracocephalum thymiflorum								
Crepis tectorum								
Agrimonia pilosa								
Veronica chamaedrys								
Origanum vulgare								
Hypericum perforatum								
Anthemis tinctoria								
Convolvulus arvensis	V	IV	III					
Chenopodium album								
Conyza canadensis								
Matricaria recutita								
Sisymbrium loeselii								
Lathyrus tuberosus								
Pastinaca sylvartis								
Cirsium arvense								
D.s. of *Artemisietea vulgaris* class

Berteroa incana	1	2	3	4	5	6	7	8
Potentilla argentea	1	2	3	4	5	6	7	8
Artemisia sieversiana	1	2	3	4	5	6	7	8
Achillea asiatica	1	2	3	4	5	6	7	8
Linaria vulgaris	1	2	3	4	5	6	7	8
Echium vulgare	1	2	3	4	5	6	7	8
Urtica dioica	1	2	3	4	5	6	7	8

D.s. of *Polygono arenastri-Poetea annae* class

Taraxacum officinale	1	2	3	4	5	6	7	8
Amorpha repens	1	2	3	4	5	6	7	8
Plantago major	1	2	3	4	5	6	7	8

Note. D.s. – diagnostic species, highlighted with colour. Use: IL – idle land, P – pasture, H – hayfield. Syntaxons: 1 – community *Bromopsis inermis*; 2 – community *Agrostis stolonifera*; 3 – community *Poa pratensis*; 4 – community *Poa angustifolia*; 5 – community *Agrostis tenuis*; 6 – community *Elytrigia repens*; 7 – community *Agrostis clava*; 8 – association *Festuco pratensis-Dactyletum glomeratae*; 9 – community *Nonea pulla-Poa angustifolia*; 10 – community *Vicia amoena-Poa angustifolia*.

MOLINIO-ARRHENATHERETEA class

Diagnostic species: *Achillea millefolium, Agrostis gigantea, Bromopsis inermis, Carum carvi, Dactylis glomerata, Elytrigia repens, Festuca pratensis, Geranium pratense, Lathyrus pratensis, Leucanthemum vulgare, Phleum pratense, Plantago media, Poa pratensis, Ranunculus polyanthemos, Stellaria graminea, Trifolium pratense, Vicia cracca*.

The *Molinio-Arrhenatheretalia* class encompasses secondary post-forest meadows of the Eurasian temperate zone on relatively rich non-saline soils. Communities are formed as a result of deforestation (broad-leaved, mixed, coniferous forests) with a subsequent mowing or grazing use of the territory. For this reason, the basis of the grassland is comprised of species adapted to restore phytomass after regular disposal – mowing or grazing.

The range of the class covers the whole of Western, Central and Eastern Europe, most of Russia from the western borders to the Far East (Tüxen, Preising, 1951; Dierschke, 1995, 1997; Schaminee et al., 1996 Ermakov et al., 1999; Matuszkiewicz, 1984; Mucina et al., 1993; Korolyuk, Kipriyanova, 1998; Rodwell et al., 2007; Janišova et al., 2007; Vegetace..., 2007; Korolyuk, Mukunina, 2000, 2001; Makunina, Mal'tseva, 2003; Lashinskij, 2009; Avetinova, 2010; Yamalov, 2011, etc.). The class communities are well represented in the Transbaikal and Yakutia regions. In the south of the Far East, it is replaced by the East Siberian Far Eastern vicariant classes *Calamagrostietea langsdorffii* Mirkin in Akhtyamov et al. 1985 (Akhtyamov, 1995; 2000; Anenkhnov, 2003) and *Arundinello anomalae – Agrostietea trinii* Ermakov et Krestov 2009 (Ermakov, Krestov, 2009).

In the territory under study, the class is represented by three orders: *Molinietalia, Arrhenatheretalia, Galeietalia veri*, which comprise wet, real and steppe meadows respectively.

MOLINIELTALIA Koch 1926 order

Diagnostic species: *Agrostis stolonifera, Potentilla anserina*.

The order comprises wet meadows, which floristic composition is characterised by the dominance of water resistant species. On the gradient of environmental conditions, on one side, they border on the well-hydrated meadows of the *Arrhenatheretalia* order, and on the communities of eutrophic high sedge and grass bogs of the *Magnocaricetalia* order (Phragmiti-Magnocaricetea class) on the other side. Only one community of meadows is assigned to this order in the *Potentillion anserinae* alliance system.

Potentillion anserinae R. Tx. 1947 alliance

It unites the communities of plants resistant to grazing and trampling, growing on waterlogged soils in the conditions of intensive grazing. It is formed in depressions along the banks of ponds, rivers, and streams on annually flooded habitats (Passarge 1964; Eliauser, Mucina, 1993; Vegatace..., 2007; Grigoryev et al., 2002; Chersov et al., 2005).

Agrostis stolonifera community

Diagnostic species: *Agrostis stolonifera*.

It comprises communities with intensive grazing use. They are common for low habitats with moderate soil moistening in the Kosikhinsky district. The projective cover of the grassstand varies from 55 to 75%. Despite the anthropogenic load, the species range of the communities remains rather high and averages 19 species per 100 m². The height of the grassstand is 65 cm on average.
The group of the Molinio-Arrhenatheretalia class meadow species (Dactylis glomerata, Stellaria graminea, Trifolium pratense, Phleum pratense) is encountered with high constancy. The proportion of species of the Festucion pratensis class forest edge and woodland communities (Agrimonia pilosa, Hypericum perforatum, Origánum vulgare, Veronica chamaedrys) is not high. A noticeable part of the grass stand is a group of synanthropic herbaceous species of the Arrhenatheretalia order. A significant role in the floristic composition belongs to species of the Polygono arenstri-Poetea annuiae class that withstand trampling and high pasture load — Amoría repens, Taraxacum officinale. When trampling is reduced or stopped, meadow species of the Molinio-Arrhenatheretalia class insinuate into the community. It differs from other communities in a more mesophytic composition and a higher proportion of meadow species, which indicates the formation of natural vegetation, but pasture load blocks restoration.

ARRHENATHERETALIA order
Diagnostic species of the order = diagnostic species of the class.
The order is characteristic of the well-hydrated meadows in the temperate zone of Eurasia. The grass stand is based on typical mesophytes that participate in the class communities. Habitats are most often characterized by rich soils and moderate moistening. On the gradient of humidification, as the leading differentiating factor of the Molinio-Arrhenatheretalia class meadows, communities of the Arrhenatheretalia order border on the wet meadows of the Molinietalia order on the one side and on the steppe meadows of the Galietalia veri order on the other side. In the classification by dominants traditional for Soviet geobotany, the order corresponds in its volume to the class of "true" meadow formations that were the object for many researchers of meadow vegetation in the USSR (Shennikov, 1923, 1938; Alekhin, 1925; Balandin, 1929; Nitsenko, 1955; Nomokonov, 1959, 1962; Sabardina, 1957, etc.).

Mesophytes that are included in the diagnostic combination of the Molinio-Arrhenatheretalia class – Achillea millefolium, Dactylis glomerata, Elytrigia repens, Phleum pratense, Poa pratensis, Ranunculus polyanthemos, Trifolium pratense, Vicia cracca, etc. – dominate in the floristic composition of the order communities.

The community is closest to the Molinion-Arrhenatheretalia order communities. In the studied area, all the communities of the order are assigned to the central Festucion pratensis alliance.

Festucion pratensis Sipajlova et al. 1985 alliance
Diagnostic species of the alliance = diagnostic species of the order.
The alliance is typical for hayfields or mowing and grazing communities with a low pasture load. The grass stand is dominated by grasses Agrostis gigantea, Alopecurus pratensis, Bromopsis inermis, Dactylis glomerata, Festuca pratensis, Phleum pratense, Poa pratensis. Besides, such herbs as Geranium pratense, Lathyrus pratensis, Leucanthemum vulgare, Vicia cracca actively participate in the composition of the alliance communities. It includes the most typical communities of the Molinio-Arrhenatheretalia class. In the conditions of forest and forest-steppe zones, the communities occupy upland and floodplain habitats. According to the Soviet classification by dominants, tall grass meadows formation group include the following formations: bromegrass, bromegrass-quackgrass meadows, foxtail and red-tailed fescue meadows (Shennikov, 1938). Associations of this alliance, determined by the Braun-Blanquet method, basically coincide in volume with the formations listed.
The alliance was first described in Ukraine (Sipajlova et al., 1985). According to its initial interpretation, it unites meadow communities on rich soils in Eastern Europe and Siberia and is a vicariant of the Arrhenatherion elatioris Luquet 1926 alliance in Western Europe (Balevičienė et al., 1998; Bulokhov, 2001; Kuzyarin, 2008; Bulokhov, Kharin, 2008; Kuzemko, 2009; Averinova, 2010).
The alliance includes 4 communities and one association.

Bromopsis inermis community
Diagnostic species: Bromopsis inermis.
The community encompasses meadows common for upland habitats with moderate soil moistening. They are spread throughout the Biysk-Chumysh Upland (within the territory of Altai Krai). These communities are characterised by a haying mode of use. The projective cover of the grass stand varies from 60 to 100%. The number of species per 100 m² averages 22 (from 19 to 31 species). The height of the grass stand is 65 cm on average. The community is characterized by a constant dominance of Bromopsis inermis and active participation of the Molinio-Arrhenatheretalia class (Dactylis glomerata, Vicia cracca, Festuca pratensis, Stellaria graminea, Trifolium pratense), Festuco-Brometea class (Onobrychis arenaria, Medicago falcata) species. The participation of synanthropic species is not significant: only Potentilla argentea and Convolvulus arvensis are frequently encountered. The Brometum inermis is distinguished from the close communities of the Convulvo arvensis association by a larger range of species, a smaller proportion of synanthropic species and a higher proportion of meadow ones.

Poa pratensis community
Diagnostic species: Poa pratensis.
The community comprises meadows common for upland habitats with moderate soil moistening. They are spread in Kosikhinsky and Zonalny districts. It unites the communities used as pasture, less often as hayfields with irregular mowing mode. The boundaries between the communities of mowing and grazing use are fuzzy. The communities easily transform into each other when the mode of use is changed. The projective cover of the grass stand varies from 60 to 75%. The number of species per 100 m² averages 16. The height of the grass stand is 55 cm on average. A group of meadow species of the Molinio-Arrhenatheretalia class (Phleum pratense, Vicia cracca, Achillea millefolium, Galium boreale, Bromopsis inermis, etc.) is highly constant. A noticeable part of the grass stand is a group of meadow steppe species of the Festuco-Brometea class (Medicago falcata, Poa angustifolia, Onobrychis arenaria). The short grass group is represented by Amoría repens, Taraxacum officinale, Poa pratensis.
The community is closest to the Poa angustifolia one, however differs from it in its floristic composition which is less xerophytic due to less drained habitats.
Agrostis tenuis community

Diagnostic species: *Agrostis tenuis*, *Lotus ucrainicus*, *Pimpinella saxifraga*, *Plantago lanceolata*, *Trifolium arvense*.

The community comprises meadows spread in upland habitats with moderate soil moistening. They are described in Troitsky and Kosikhinsky districts in the more depressed areas and are used as pastures.

The average number of species on the site is 21. The average height of the grass stand is 65 cm. The projective cover of the grass stand varies from 70 to 100%.

A group of meadow species of the *Molinio-Arrhenatheretea* class (*Poa pratensis*, *Pimpinella saxifraga*, *Stellaria graminea*, *Trifolium pratense*, *Vicia cracca*, *Achillea asiatica*, etc.) and pasture species of the *Polygono arenastri-Poetea annuae* class (*Amoria repens*, *Taraxacum officinale*) are highly constant in the floristic composition. The proportion of synanthropic biennial and perennial species of the *Artemisieta vulgaris* class remains significant in the composition of the grass stand (*Echium vulgare*, *Artemisia absinthium*, *Berteroa incana*, *Linaria vulgaris*, etc.).

It differs from other idle land communities in a relatively low proportion of annual and biennial weeds, representing the initial stages of progressive successions after the disturbances of the *Stellarietalia mediae* class as well as an increase in the proportion of meadow species of the *Molinio-Arrhenathereta* class and species of forest edges and woodlands of *Trifolio-Geranieta* (*Hypericum perforatum*, *Veronica chamaedrys*, *Agrimonion pilosa* and others).

Agrostis clavata community

Diagnostic species: *Agrostis clavata*, *Amoria hybrida*.

The community encompasses meadows formed in the conditions of normal and excessive moistening, confined to more acidic soils. They are described in Kosikhinsky district and are used as pastures.

The average number of species on the site is 18. The average height of the grass stand is 60 cm. The projective cover of the grass stand varies from 70 to 90%.

A group of meadow species of the *Molinio-Arrhenatheretea* class (*Dactylis glomerata*, *Stellaria graminea*, *Poa pratensis*, *Bromopsis inermis*, *Galium mollugo*, *Leucanthemum vulgare*, *Phleum pratense*) is highly constant. The synanthropic fraction of cenoflora includes species of the *Artemisieta vulgaris* and *Stellarietalia mediae* classes (*Echium vulgare*, *Potentilla argentea*, *Berteroa incana*, *Convolvulus arvensis*, *Artemisia sieversiana*). Pasture species of the *Polygono arenastri-Poetea annuae* class are encountered with low constancy and abundance.

It differs from other communities by a more mesophytic composition of species of the *Molinio-Arrhenathereta* class, which is associated with the specificity of more hydrated habitats.

Festuco pratensis-Dactyletum glomeratae Dymina in Mal'tseva et Macunina 2008 association

Diagnostic species: *Dactylis glomerata*.

The community comprises dry meadows, spread in the conditions of sufficient moistening in all areas of the Biysk-Chumysh Upland (Altai Territory). They are located on meadow and meadow chernozem soils on smooth slopes. The mode of use is haying.

The projective cover of the grass stand varies from 70 to 100%. The number of species per 100 m² averages 29. The height of the grass stand is 65-70 cm on average.

Besides cocksfoot – *Dactylis glomerata*, other grasses, mainly rootstock loose-bunch grasses (*Poa pratensis*, *Festuca pratensis*, *Phleum pratense*) take a significant part in the formation of the grass cover. A group of meadow species of the *Molinio-Arrhenatheretea* class (*Agrostis tenuis*, *Galium mollugo*, *Phleum pratense*, *Trifolium pratense*, *Leucanthemum vulgare*) is highly constant.

A notable part of the stand is composed of synanthropic species of the *Stellarietalia mediae* class (*Berteroa incana*, *Convolvulus arvensis*, *Echium vulgare*, etc.).

It differs from other studied communities by the predominance of meadow grasses. The association has a wide range in Siberia, its communities are widespread in the subtaiga and forest steppe regions of the Ob-Yenisei interfluve, the subtaiga forest steppe belt of Salair, Kuznetsk Alatau, Western and Eastern Sayan (Dymina, 1989; Makunina, Mal'tseva, 2003).

GALIETALIA VERI Mirk. et Naunova 1986 order

Diagnostic species: *Amoria montana*, *Astragalus danicus*, *Centarea scabiosa*, *Filipendula vulgaris*, *Fragaria viridis*, *Galium verum*, *Medicago falcata*, *Phleum phleoides*, *Phlomoides tuberosa*, *Poa angustifolia*, *Rosa majalis*, *Seseli libanotis*, *Stipa pennata*, *Thalictrum minus*, *Veronica spicata*.

The order unites the communities, cenoflora of which combines species of true meadows and meadow steppes, that is usually called steppe meadows in the literature (Shennikov, 1938). The climate changing, steppe meadows transform into meadow steppes. Thus, steppe meadows are ecotones between true meadows and meadow steppes.

A specific feature of the communities in this order is the simultaneous growth of typically meadow species of the *Molinio-Arrhenatheretea* class and the *Arrhenatheretalia* order (*Achillea millefolium*, *Bromopsis inermis*, *Eltringia repens*, *Festuca pratensis*, *Geranium pratense*, *Lathyrus pratensis*, *Trifolium pratense*, *Vicia cracca*, etc.) together with meadow steppes species of the *Festuco-Brometalia* Br.-Bl. et Tx. 1943 class (*Amoria montana*, *Centarea scabiosa*, *Filipendula vulgaris*, *Festuca pseudovolina*, *Galium verum*, *Poa angustifolia*, *Phleum phleoides*, *Phlomoides tuberosa*, *Medicago falcata*, etc.).

On the humidification gradient, communities of the order border on well-hydrated meadows of the *Arrhenatheretalia* order on one side and on the communities of the *Festuco-Brometalia* class, uniting xerothermic and hemixerothermic steppe communities on the other side. The diagnostic combination of the *Galieta veri* order consists mainly of steppe and meadow steppe species, which are also used to diagnose the *Festuco-Brometalia* class (and its more mesophytic wing – the *Festucetalia valesiaceae* order), which, in this case, act as differentiating species, separating the *Galieta veri* steppe meadows from meadows of the *Arrhenatheretalia* order. Communities of the *Galieta veri* order are distinguished from typical steppe communities of the *Festuco-Brometalia* class by the presence of mesophytic meadow species of the *Molinio-Arrhenathereta* class.

The communities we studied are classified as part of the central *Trifolion montani* alliance.

Trifolion montani Naunova 1986 alliance

Diagnostic species of the alliance – Diagnostic species of the order.

It is the central alliance of the order, comprising its most typical communities.

The alliance includes 4 communities.
Poa angustifolia community

Diagnostic species: *Poa angustifolia*.

The community encompasses steppe meadows, widespread in the conditions of insufficient moistening in all areas of the Biysk-Chumysh Upland (within the territory of Altai Krai). Habitats are located on elevated relief features. They are used as pastures. The projective cover of the grass stand varies from 50 to 90%. The number of species per 100 m² averages 20. The height of the grass stand is 55 cm on average.

The physiognomy of the community is determined by the dominance of the narrow-leaved bluegrass – *Poa angustifolia*. A group of meadow mesophytes of the **Molinio-Arrhenatheretea** class (*Brachypodium pinnatum*, *Achillea asiatica*, *Trifolium pratense*) is highly constant and abundant. A significant proportion of the grass stand is composed of the group of meadow-steppe species of the **Festuco-Brometea** class (*Medicago falcata*, *Galium verum*, *Centaurea scabiosa*, etc.). Synanthropic species of the **Artemisietea vulgaris** class (*Berteroa incana*, *Potentilla argentea*, *Nonea rossica*) are encountered with relatively high constancy (III-V points).

It differs from the close *Poa pratensis* community by a more xerophytic floristic composition due to more drained habitats.

Elityrigia repens community

Diagnostic species: *Elityrigia repens*, *Festuca pseudovolina*.

It encompasses steppe meadows, whose physiognomy is determined by the dominance of the Eurasian species *Elityrigia repens*. They are common for abandoned arable lands, on the edges of fields, along field roads, near villages in Kosikhinsky district. The community use is grazing.

The projective cover of the grass stand varies from 55 to 70%. The number of species per 100 m² averages 16. The height of the grass stand is 45 cm on average.

Meadow species of the **Molinio-Arrhenatheretea** class (*Galium mollugo*, *Trifolium pratense*, *Poa pratensis*, etc.) participate in the composition of the grass stand. A group of ruderal species of the **Artemisietea vulgaris** class (*Achillea asiatica*, *Berteroa incana*, *Potentilla argentea*, *Linaria vulgaris*) is active. Meadow-steppe species of the **Galietalea veri**, **Festuco-Brometea** order (*Medicago falcata*, *Centaurea scabiosa*, *Vicia amoena*) are highly constant. A significant part of the grass stand is composed of synanthropic species of the **Stellarietea mediae** class (*Matricaria recutita*, *Conyza canadensis*, *Convolvulus arvensis*), **Artemisietea vulgaris** class (*Berteroa incana*, *Achillea asiatica*, *ECHium vulgare*, etc.). *Amoria repens* resistant to trampling and grazing is rather frequent. The share of apphophytes is high.

The community is an advanced stage of a progressive succession of vegetation. It is close to associations of idle lands of Western and Eastern **Convolvulo arvensis-Elityrigietum repens** Feilfödy 1943 (Areepi, 2012) and **Pastinaco sylvestris-Elityrigietum repens** Ishbirdin in Ishbirdin et al. 1988. However, the communities that we described differ from them by a higher constancy of meadow species of the **Molinio-Arrhenatheretea** class in the floristic composition, as well as by the presence of *Festuca pseudovolina* in the cenoflora.

Nonea pulla-Poa angustifolia community

Diagnostic species: *Poa angustifolia*, *Nonea pulla*.

The community comprises steppe meadows, common in the conditions of insufficient moistening in Kosikhinsky district.

Communities are not used; in rare cases, limited grazing is observed.

The projective cover of the grass stand varies from 60 to 100%. The number of species per 100 m² averages 22. The height of the grass stand is 50 cm on average.

The core of the floristic composition is composed of steppe species of the **Galietalea veri** order and **Festuco-Brometea** class (*Medicago falcata*, *Scabiosa ochroleuca*, *Phleum phleoides*, *Centaurea scabiosa*, *Galium verum*). Meadow mesophytes of the **Molinio-Arrhenatheretea** class are less represented, only *Poa pratensis* and *Vicia cracca* have constancy class III.

A noticeable part of the grass stand is composed of species of the **Artemisietea vulgaris** and **Stellarietea mediae** classes (*Nonea pulla*, *Berteroa incana*, *Potentilla argentea*, *ECHium vulgare*, *Achillea millefolium*, *Convolvulus arvensis*). They differ from other communities by a more xerophytic composition.

Vicia amoena-Poa angustifolia community

Diagnostic species: *Poa angustifolia*, *Vicia amoena*, *Filipendula vulgaris*, *Fragaria viridis*, *Phlomoides tuberosa*, *Trommsdorfia maculata*.

The community comprises steppe meadows widespread in the conditions of insufficient moisture in Tselinny, Kosikhinsky districts. The territory is not used at all or limited grazing is observed.

The projective cover of the grass stand varies from 70 to 100%. The number of species per 100 m² averages 22. The height of the grass stand is 50 cm on average.

A group of meadow steppe species of the **Festucetalia valesiaceae** order, **Festuco-Brometea** class (*Centaurea scabiosa*, *Medicago falcata*, *Scabiosa ochroleuca*, *Galium verum*, *Phleum phleoides*) is highly constant. Meadow species of the **Molinio-Arrhenatheretea** class (*Rumex acetosa*, *Dactylis glomerata*, *Elityrigia repens*, *Leucanthenum vulgare*, *Plantago media*, etc.) and species of the **Artemisietea vulgaris** class (*Dracocephalum thymiflorum*, *ECHium vulgare*, etc.) take a significant share in the grass stand.

It differs from other communities by the predominance of steppe and meadow steppe species and represents the most advanced stage towards the formation of meadow steppes of the **Festuco-Brometea** class.

Conclusion

The meadow phytoceneses of the **Molinio-Arrhenatheretea** class are represented by three orders (**Molinietalia**, **Arrhenatheretalia**, **Galietalea veri**), which comprise wet, true and steppe meadows, respectively. The syntaxonomic analysis of the studied area revealed 1 association, 9 rankless communities, which are characterized by leading environmental factors (humidification gradient) and the level of use (grazing, haying, idle land).

The **Molinietalia** order encompasses wet meadows, which are mostly formed in the northern part of the Biysk-Chumysh Upland, in the floristic composition of which water-resistant species predominate. Only one community of meadows (the **Agrastis stolonifera** community) is assigned to this order in the **Potentillion anserinae** alliance system. The **Potentillion anserinae** alliance unites the
communities that are resistant to grazing, trampling of plants growing on waterlogged soils in the conditions of intensive grazing. It is encountered in depressions along the banks of ponds, rivers and streams. The Arrhenatheretalia order comprises well-hydrated meadows. The core of the grass stand is composed of typical mesophytes that participate in the communities of the class. Habitats are most often characterized by rich soils and moderate moistening. In the studied area, all the order communities are assigned to the central Festucion pratensis alliance. The alliance unites hayfields, or mowing and grazing communities with a low pasture load. The communities of this alliance occupy the upland and flood plain habitats of the Biysk-Chumysh Upland. The Galietalia veri order encompasses the communities which cenoflora comprises species of true meadows and meadow steppes. A specific feature of this order communities is the simultaneous growth of typically meadow species of the Molinio-Arrhenatheretalia class and the Arrhenatheretalia order and meadow steppe species of the Festuco-Brometea class.

References

Akhtyamov, M.Kh. (1995). Sintaksonomiya lugovoy rastitelnosti basseyna reki Amur. Vladivostok; Khabarovsk. Akhtyamov, M.Kh. (2000).Sintaksonomiya rastitelnosti polmy reki Amur. Vladivostok.

Alekhi, V.V. (1925). Nashi pomynnye luga. Moscow: Nauka.

Alexandrova, V.D., Guricheva, N.P., Ivanina, L.I. (1958). Rastitelny pokrov i prirodnye kormovyye ugodya Altaiskogo kraya. Moscow: Academy of Science of USSR.

Anenkhonov, O.A. (2003). Sintaksonomiya soyuza Caricion appendiculatae Akhtymov et al. 1985 (Calamagrostietea langsdorffii) v Severnom Zabaykalye. Rastitelnost Rossii, 5, 3-18.

Arepeyeva, L.A. (2012). O soobshchestvakh pozdnikh suktysessiyonnykh stadiy ruderalnoy rastitelnosti na urbanizirovannykh territoriyakh Kurskoy oblasti. Rastitelnost Rossii, 21, 13-24.

Averinova, Ye.A. (2010). Travyanaya rastitelnost basseyna reki Seym (v predelakh Kurskoy oblasti). Bryansk.

Balandin, A.A., Balandin, A.Yu., Makunina, N.I., Kipriyanova, Ye.A. (2010). Travyanaya rastitelnost basseyna reki Seym (v pre territoriyakh Kurskoy oblasti)

Balevičiene, J., Kiziene, B., Lazdauskaitė, Ž., Patalauskaite, D., Rašomavičius, V., Sinkevičienė, Z., Tučiena, A., Venckus, Z. Lietuvos Augalija I. Pievos. Rastitelnost Rossii, 5, 3-18.

Balevičiene, J., Shavyrgin, P.I. (1959). Intrazonalnye pochvennye rayony Altaiskikh ravnin. Pochvy Altaiskogo kraya. Moscow: Academy of Science of USSR.

Bulokhov, A.D. (2001). Travyanaya rastitelnost yugo-zapadnogo Nechernozemya Rossii. Bryansk. Bryansk State University.

Bulokhov, A.D., Khain, A.V. (2008). Rastitelny pokrov goroda Bryanskaya i yego prigorodnyy zony. Bryansk. Bryansk State University.

Cherosov, M.M., Sleptsova, N.P., Mironova, S.I., Gogoleva, P.A., Pestyakov, B.N., Gavriljeva, L.D. (2005). Sintaksonomiya sinantropnoy rastitelnosti Yakutii. Yakutsk: Siberian Branch Russian Academy of Science.

Dierschke, H. (1994). Pflanzensociologie. Stuttgart: Ulmer.

Dierschke, H. (1995). Syntaxonomical survey of Molinio-Arrhenatheretalia in Central Europe. Colloques Phytosociologiques, XXIII, Large are vegetation surveys, Berlin, Stuttgart.

Dymina, G.D. (1989). Klassifikatsiya, dinamika i ontogeneza travyanikh fitotsenozov (na primere regionov Sibiri i Dalnego Vostoka). Novosibirsk.

Ellmayer, T., Mucina, L. (1993). Molinio-Arrhenatheretalia. In: Mucina L., Grabherr G., Ellmayer T. (Hrsg.) Die Pflanzengesellschaften Osterreichs. Teil 1. Antropogene Vegetation. Jena-Stuttgart-New-York: Gustav Fischer Verlag, 297-401.

Ermakov, N., Maltseva, T., Macunina, N. (1999). Classification of the meadows of the South Siberian uplands and mountains. Folia geobotanica, 34, 221-242.

Grigoryev, I.N., Solomeshch, A.I., Alimbekova, L.M., Onischchenko, L.I. (2002). Vlazhnye luga Respubliki Bashkortostan: sintaksonomiya i voprosy okhrany. Ufa.

Hennekens, S. M. (1996). TURVO/VEG. Software package for input, processing, and presentation of phytosociological data. User’s guide. Lancaster.

Janišová, M., Hálková, P., Hegedušová, K., Hrnčíř, R., Kliment, J., Micháliková, D., Ružičková, H., Řezníčková, M., Tichý, L., Škodová, I., Uhlarová, T., Ujházy, K., Zaliberová, V. (2007). Travinobylinná vegetácia Slovenska – electronicí expertny system na identifikáciu syntaxónov. Botanický ústav SAV, Bratislava.

Koroljuk, A.Yu., Kipriyanova, L.M. (1998). Prodomus yestestvennye rastitelnosti yugo-vostoka Zapadnoy Sibiri (Altayskiy kray i Novosibirskaya oblast). Botan. issledovaniya Sibiri i Kazakhstana. Sbornik nauchnykh statey herbariya im. V.V.Sapozhnikova. Barnaul, 4, 63-89.

Koroljuk, A.Yu., Makunina, N.I. (2000). Lugovyye stepe Altaye-Sayanskoy gorny oblasti. Obshchaya kharakteristika. Krylovia, 2(1), 26-37.

Koroljuk, A.Yu., Makunina, N.I. (2001). Lugovyye stepe Altaye-Sayanskoy gorny oblasti. Poryadok Stipetalia sibiricae, soyuz Aconito barbate-Poion transbaicalicae. Krylovia, 3(2), 35-49.

Krtvstova, V.I. (1953). Stroyeniye rel'efa i yego znacheniye diya selskogo khozayvstva Altaiskogo kraya. Pochvy Altaiskogo kraya. Moscow. Academy of Science of the USSR.

Kuminova, A.V., Vagina, T.A., Lapshina, Ye.I. (1963). Geobotanicheskiye rayonovoye vostoka Zapadno-Sibirskoy nizmennosti. Rastitelnost stepnogo i lesostepnogo zon Zapadnoy Sibiri. Novosibirsk: Siberian Branch Academy of Science of the USSR.

Kuzemko, A.A. (2009). Luchna roslinnist. Klass Molinio-Arrhenatheretelia. Yu.R. Shelyag-Sosonko (Ed.). Roslinnist Ukraini. Kiev: Fitosotsiotet.

Kuzyarin, A.T. (2008). Poyemnaya rastitelnost basseyna verkhovoy Zapadnogo Buga: ekologo-tenotnescheska struktura, dinamicheskiye tendensii, okhrana. Kiev.

Lashchinskii, N.N. (2009). Rastitelnost Salariskogo kryzha. Novosibirsk: Geo.

Makunina, N.I., Koroljuk, A.Yu., Maltseva, T.V. (2010). Rastitelnost Biysko-Chumyshskoy vozvysshennosti. Rastitelnost Rossii, 16, 40-55.

Makunina, N.I., Maltseva, T.V. (2003). Luga lesnogo popysa vostochnogo makrosklona Kuznetskogo Alatau. Rastitelnost Rossii, SPb., 4, 51-61.

Matuszkiewicz, W. (1984). Przewodnik do oznaczania zbiorowisk roslnych Polski. Warszawa.

Mirkin, B.M., Naumova, L.G., Solomeshch, A.I. (2001). Sovremennaya nauka o rastitelnosti. Moscow. Logos
Communities of the Molinio-Arrhenatheretea class

Mucina, L., Grabherr, G., Ellmauer, T. (1993). Die Pflanzengesellschaften Österreichs. Teil I. Anthropogene vegetation. Jena; Stuttgart; New York: Gustav Fisher Verlag.

Nitsenko, A.A. (1955). Luga Leningradskoy oblasti i mery ikh uluchsheniya. Vestnik LGU. Ser. biol., geogr. i geol., 4, 3-14.

Nomokonov, L.I. (1962). Ponymennye luga vuznikh tenchiena reki Leny. Moscow.

Nomokonov, L.I. (1959). Ponymennye luga Yeniseya. Leningrad. Nauka.

Omelyanov, V.P. (1973). Osobennosti raspredeleniya vlagoznichnosti pochvy raspsakhnykh sklonov yugo-zapadnoy chasti Biye-Chumyshskoy vozvyshennosti. Pochvennaya klimatologiya Sibiri.edt. Slyadnev A.P. Novosibirsk: Nauka, Sibirskoye otdeleniye.

Ovcharova, N.V., Yamalov, S.M. (2013). Sintaksonomicheskiy i ordinationnyy analizy vostanovitel'nykh suktsessiy travyanoy rastitelnosti pravoberezhya reki Obi (Altayskiy kray). Izvestiya Samarskogo nauchnogo tsentra Rossiyskoy akademii nauk. Samara.

Passarge, H. (1964). Pflanzengesellschaften des nordostdeutschen Flachlandes I. Pflanzensoziologie, 13, 1-324.

Polyakov, P.P. (1934). Materialy Kuznetsko-Barnaulskoy pochvennykh ekspeditsii 1931. Botaniko-geograficheskiye ocherki Kuznetskoy kotloviny, Salaira i zapadny Predsalairskoy polosy. Leningrad.

Rodwell, J.S., Morgan, V., Jefferson, R.G., Moss, D. (2007). The European context of British Lowland Grasslands. JNCC Report, 394.

Ronginskaya, A.V. (1963). Stepi yugo-vostoka Zapadno-Sibirskoy nizhennosti. Rastitelnost stepnyy i lesostepnyy zon Zapadno Sibiri. Novosibirsk. Siberina Branch Academy of Science of the USSR.

Rozanov, A.N. (1959). Osnovnye printsipy pochvenno-geograficheskogo rayonirovaniya Altayskogo kraya. Pochvyy Altayskogo kraya. Moscow. Izd-vo Academy of Science of the USSR.

Sabardina, G.S. (1957). Lugovaya rastitelnost Latviyskoy SSR. Riga: Academy of Science of Latvian SSR.

Schamnilee, J.H., Stortelder, A., Weeda, E.J. (1996). De vegetation van Nederland. Deel 3. Plantengemeenschappen van graslanden, zomen en droge heiden. Uppsala: Opulus press.

Shennikov, A.P. (1923). Luga Simbirskoy gubernii. Trudy Bezenchukskoy oblastnoy selskokhozyaystvennoy stantsii (2(103), 69.

Shennikov, A.P. (1938). Lugoynaya rastitelnost USSR. Rastitelnost USSR. V. 1. Moscow. Leningrad.

Sipaylova, L.M., Mirkin, B.M., Shelyag-Sosonko, Yu.R., Solomakha, V.A. (1985). Novyi soyuzy Agrostion vinealis ta Festucion pratensis luchnoi roslinnosti. Ukr. bot. zhurn., 42(4), 13-18.

Sokolova, G.G. (2002). Rastitelnost stepnyy i lesostepnyy zon Altayskogo kraya: monografii. Barnaul: Altai State University.

Tichy, L. (2002). JUICE, software for vegetation classification. J. Veg. Sci., 13, 453.

Tüxen, R., Preising, E. (1951). Erfahrungsgrundlagen fur die pflanzensoziologische Kartierung des westdeutschen Grünlandes. Angewandte Pflanzensoziologie. Stolzenau, Weser, 4, 5-28.

Vegetace České republiky. (2007). 1. Travinná a keřičková vegetace (Vegetation of the Czech Republic. 1. Grassland and heathland vegetation) / Milan Chytry (editor) a kolektiv. Vyd. 1. Praha: Academia.

Weber, H.E., Moravec, J., Theurillat, J. (2000). International Code of Phytosociological Nomenclature. J. Veg. Sci., 11(5), 739–768.

Westhoff, V., van der Maarel, E. (1973). The Braun-Blanquet Approach. Handbook of Vegetation Science. P.S. Ordination and classification of communities. The Hague.

Yamalov, S.M. (2011). Sintaksonomiya i dinamika travyanoy rastitelnosti Yuzhno-Uralskogo regiona. Ufa.

Yermakov, N.B. (2012). Promodum vyshikh yedinit rastitelnosti Rossii. Sovremennoye sostoyaniye osnovnykh kontseptsii nauki o rastitelnosti. Ufa, Gilem.

Yermakov, N.B., Krestov, P.V. (2009). Reviziya vyshikh yedinit lugovoy rastitelnosti yuga Dalnego Vostoka. Rastitelnost Rossii, 14, 37-48.

Zyatkova, L.K. (1977). Biysko-Barnaulskaya vpadina. Strukturnaya geomorfologiya Altaye-Sayanskoy gornoy oblasti. Novosibirsk.

Citation:
Ovcharova, N.V., Matsyura, A.V. (2020). Communities of the Molinio-Arrhenatheretea class in the Biysk-Chumysh Upland region (Altai Krai). Ukrainian Journal of Ecology, 1(5), 177-185.

This work is licensed under a Creative Commons Attribution 4.0. License