The Epidemiological Pattern and Risk Factor of ESBL (Extended Spectrum B-Lactamase) Producing Enterobacteriaceae in Gut Bacterial Flora of Dairy Cows and People Surrounding in Rural Area, Indonesia

Agusta Reny Soekoyo1, Sulistiawati2, Wahyu Setyorini3, K. Kuntaman3,4,5
1 Master Program of Basic Medical Sciences, Faculty of Medicine, Universitas Airlangga
2 Department of Public Health, Faculty of Medicine, Universitas Airlangga
3 Institute of Tropical Disease, Universitas Airlangga
4 Department of Medical Microbiology, Faculty of Medicine, Universitas Airlangga
5 Dr Soetomo Academic Hospital, Surabaya, Indonesia

Received: 23rd January 2020; Revised: 28th January 2020; Accepted: 6th October 2020

ABSTRACT
Livestock would be a risk factor of resistant bacteria that impact on human health. Rural area with farms as major economic source has become a risk of the spread of the ESBL producing Enterobacteriaceae. The aim of the study was to explore the distribution and risk factor of ESBL (extended-spectrum β-lactamase) producing Enterobacteriaceae in the gut bacterial flora of dairy cows and people surrounding farming area. Total of 204 fecal swab samples were collected, 102 from dairy cows and 102 from farmers. Samples were sub-cultured by streaking on MacConkey agar supplemented with 2 mg/L cefotaxime. The growing colonies were confirmed as the ESBL producer by Modified Double Disk Test (M-DDST) and identification of Enterobacteriaceae by biochemical test. ESBL genes were identified by PCR. ESBL producing bacteria were found 13.7% in dairy cows and 34.3% in farmers. ESBL producing Enterobacteriaceae in dairy cows were 6.9% and in farmers of 33.3%. Statistical analysis showed: Distribution of ESBL producing Enterobacteriaceae strain were insignificant among dairy cows and farmers while blaTEM distribution was significantly different (p= 0,035) and use of antibiotic was identified as a risk factor of colonization of ESBL producing Enterobacteriaceae in farmers (p= 0,007). Farmers had suspected as the source of ESBL producing Enterobacteriaceae based on higher prevalence. Further education of appropriate use of antibiotic need to enhance to control risk factor and prevent the colonization of ESBL producing Enterobacteriaceae.

Keywords: Enterobacteriaceae, ESBL, gut flora, dairy cow, farmer, rural

ABSTRAK
Hewan ternak diduga sebagai faktor risiko kejadian bakteri resisten yang berdampak terhadap kesehatan manusia. Area rural dengan potensi ekonomi di sektor peternakan merupakan area yang berisiko terhadap penyebaran Enterobacteriaceae penghasil ESBL. Penelitian bertujuan mengeksporasi pola distribusi dan faktor risiko Enterobacteriaceae penghasil ESBL pada bakteri flora usus sapi perah dan penduduk sekitarnya. Total 204 sampel swab feses sapi perah dan peternak diterima. Swab feses ditanam pada media MacConkey yang ditambahkan 2 mg/L cefotaxime. Koloni yang tumbuh dikonfirmasi sebagai penghasil ESBL dengan metode Modified Double Disk Test (M-DDST) dan diidentifikasi dengan uji biokimia. Identifikasi gen ESBL menggunakan metode PCR. Prevalensi bakteri penghasil ESBL di sapi perah sebesar 13.7% dan di peternak sebesar 34.3%. Distribusi Enterobacteriaceae penghasil ESBL pada sapi perah 6.9% dan pada peternak 33.3%. Analisis statistik menunjukkan: Tidak ada perbedaan signifikan antara distribusi bakteri Enterobacteriaceae penghasil ESBL pada sapi perah dan peternak, distribusi blaTEM pada sapi perah dan peternak berbeda signifikan (p = 0,035), dan penggunaan antibiotik sebagai faktor risiko kolonisasi Enterobacteriaceae penghasil ESBL pada peternak (p = 0,007). Peternak diduga sebagai sumber Enterobacteriaceae penghasil ESBL. Penyuluhan...
INTRODUCTION

The inappropriate use of antibiotics in human and animal health is a major cause of pathogenic bacterial resistance. Resistant pathogenic bacteria that have increased significantly over the past few decades are ESBL-producing bacteria (extended-spectrum β-lactamase). ESBL mainly distributed among gram-negative bacilli of the Enterobacteriaceae group.

The use of antibiotics as growth promotion and the prevention of disease in veterinary was correlated with the increase of ESBL producing Gram-negative bacteria. It thus, the livestock are identified as a risk factor for ESBL producing Enterobacteriaceae (ESBL-E). In 2018, East Java Province was identified has the highest population of dairy cows in Indonesia, about 283,311 cows. Most of the dairy farms in East Java Province are located in rural areas to empowering the community's economy. Kalipucang Village in District of Pasuruan, East Java was established as the first center of public dairy farming in Indonesia at 2016.

ESBL producing Enterobacteriaceae (ESBL-E) bacteria cause various infections in humans, such as: bacteremia, gastroenteritis, respiratory infections, urinary tract infections, and infections of the central nervous system. In dairy cows, Escherichia coli and Klebsiella spp are identified as an agent that causing inflammation of mammary gland and udder tissue (mastitis) which impact on decreasing quantity and quality of milk production, increasing the rejected prematurely, and death. ESBL-E becomes a serious challenge in therapy for infection includes prolong of diagnosis and expensive, a longer duration of treatment, limited antibiotic choices that impact on higher cost of therapy for an infection, as well as increased morbidity and mortality. Multiple resistance to fluoroquinolones, aminoglycosides, and trimethoprim are commonly found in ESBL-E. It also causes carrier in both humans and livestock.

Since ESBL-E has been identified as one of the causes of mastitis in dairy cows in 2000, dairy farming was suspected to be at risk as a source of ESBL-E transmission. It thus the epidemiological profile of ESBL-E in farm needs to be explored. This study is the first study to analyze the epidemiological patterns of ESBL producing Enterobacteriaceae in livestock and humans in rural areas in Indonesia.

The aim of the study was to identify and analyzed the distribution and risk factor of ESBL producing Enterobacteriaceae in gut bacterial flora of dairy cows and people/farmer who have close contact with dairy cows.

MATERIALS AND METHODS

Design

This study was conducted a cross-sectional design. This study was approved by Research Ethics Committee in Faculty of Medicine of Universitas Airlangga, no: 82/EC/KEPK/FKUA/2019.

Samples Collection

Fecal samples were collected from April until July 2019 from dairy cows and farmers. Samples collected using Amies transport medium (Deltalab, Spanyol). The total dairy farming in the District of Pasuruan, East Java, are 648 clusters, of which as many as 102 were randomly included as the samples in this study, consisting
of 102 samples from dairy cows and 102 from humans that living around and have close contact with dairy cows. These clusters were located in Kalipucang village. The samples transportation were using a cool box and ice pack (4-8˚C). Samples were processed within 24 hours after taken from the sample source.

**Bacterial and ESBL Identification**

The isolation, confirmation, and identification of ESBL-E were conducted in The Clinical Microbiology Laboratory of Dr. Soetomo Hospital, Surabaya. Amies swab was streaked on MacConkey selective medium supplemented by cefotaxime 2 mg/L and incubated for 18-24 h at 37˚C. The growing colonies were ESBL confirmed by Modified Double Disk Synergy Test (M-DDST). Colonies which grow were inoculated in Mueller Hinton medium (0,5 MacFarland) with five (5) antibiotics disk : amoxicillin/ clavulanic (AMC) 30 ug, ceftazidime (CAZ) 30 ug, cefotaxime (CTX) 30 sg, ceftriaxone (CRO) 30 ug, and aztreonam (ATM) 30 ug which placed within 15 mm of distance from edge to edge of AMC disk. Incubated for 18-24 hours at 37˚C. The inhibition zone which show synergy zone between one of cephalosporin disk or aztreonam disk with amoxicillin/clavulanic disk was confirmed as ESBL producer. ESBL positive strain were bacteriologically identified using the biochemical test: Triple Sugar Iron (TSI) test, Indol test, Methyl Red (MR) test, Voges Proskauer (VP) test, Urease test, and Motility test. All bacterial isolates were then stored in deep freeze minus 80˚C.

**Genotypic Examination**

Genotypic examination was held in Institute of Tropical Diseases, Universitas Airlangga, Surabaya.

**DNA Extraction**

DNA extraction was conducted by boiling method. The identified ESBL producing bacteria were re-cultured on Mueller Hinton medium, incubated at 37˚C for 18 – 24 h. Four to five colonies were taken and suspended in sterile distilled water in 1,5 ml Eppendorf tube. The suspension was homogenized with vortex for 15 seconds and immersed in a thermostat at 95˚C for 10 minutes, then centrifuged at 14.000 rpm for 1 minutes. The supernatant was used as DNA template in PCR and stored in -20˚C.

**DNA Amplification**

Three ESBL gene primers are used to amplify and identify the ESBL gene, as follow (Table 1) : [15]

PCR reaction was run in volume of 20 μl: 10 ul of GoTaq Green Master Mix 2x (Promega),1 ul for each of forward and reverse primers, 3 μl nuclease free water, and 5 μl DNA template. PCR was run as follow: for \( \text{bla}_{\text{CTX-M}} \): denaturation on 94ºC for 7 minutes and the following 35 cycles on 94ºC for 50 seconds, annealing on 50ºC for 40 seconds, extension on 72ºC for 1 minute, and final extension on 72ºC for 1 minute; for \( \text{bla}_{\text{SHV}} \): denaturation on 96ºC for 5 minutes and the following 35 cycles on 96ºC for 50 seconds, annealing on 50ºC for 40 seconds, extension on 72ºC for 1 minute, and final extension on 72ºC for 5 minutes; for \( \text{bla}_{\text{TEM}} \): denaturation on 96ºC for 5 minutes and the following 35 cycles on 96ºC for 1 minute, annealing on 60ºC for 1 minute, extension on 72ºC for 1 minute, and final extension on 72ºC.

**Table 1. Primers of ESBL Genes**

| Gen    | Sekuens Primer (5’-3’)                          | Amplicon size (bp/base pair) |
|--------|-------------------------------------------------|------------------------------|
| \( \text{bla}_{\text{CTX-M}} \) | F : 5' ATGTGCAGYACCAGTAAARTG 3’ R : 5' TGGGTRAARTARCTSACCAGA 3’ | 593                          |
| \( \text{bla}_{\text{SHV}} \)    | F : 5' GGTATGCTTATATTTGCC 3’ R : 5' TTAGGTTGCCAGTGCCT 3’ | 867                          |
| \( \text{bla}_{\text{TEM}} \)    | F : 5' ATGAGTATTACACATTTCCG 3’ R : 5' CGACAGTATACACCTGCTA 3’ | 867                          |
for 10 minutes; and for $\text{bla}_{\text{TEM}}$; denaturation on 96ºC for 5 minutes and the following 35 cycles on 96ºC for 1 minute, annealing on 58ºC for 1 minute, extension on 72ºC for 1 minute, and final extension on 72ºC for 10 minutes. PCR amplicon were visualized in 2% gel electrophoresis.

**Questionnaire to Find Risk Factors**

Information about risk factor of ESBL producing *Enterobacteriaceae* in dairy cows and farmers were obtained through interview and questionnaires. *Enterobacteriaceae* strain and genotype distribution among dairy cows and farmers and risk factors were analyzed by Chi Square/Fisher Exact Test on SPSS 22 version program.

**RESULTS**

**Distribution of ESBL Producing Enterobacteriaceae in Dairy Cows and Farmers**

Prevalence of ESBL producing bacteria in dairy cows was 13.7% (14/102) and in farmers 34.3% (35/102). ESBL producing *Enterobacteriaceae* in dairy cows were 6.9% (7/102) and in farmers 33.3% (34/102) (Table 2). The ESBL producing *Enterobacteriaceae* in dairy cows were mostly: *Escherichia coli* 85.7% (6/7) and *Enterobacter spp* 14.3% (1/7), whereas among 34 ESBL-E in human were *Escherichia coli* 82.4% (28/34), *Enterobacter spp* 14.3% (3/34), *Klebsiella pneumoniae* 5.9% (2/34), and *Klebsiella oxytoca* 2.9% (1/34). There were no significant differences in distribution of ESBL producing *Enterobacteriaceae* strain in dairy cows and in farmers (Table 2) and Fig.1.

*Escherichia coli* were identified as dominant strain of ESBL producing *Enterobacteriaceae* in dairy cows and farmers (85.7% vs. 82.4%).

**Distribution of ESBL Gene Among Dairy Cows and Human (Farmers)**

Among seven ESBL producing *Enterobacteriaceae* in dairy cows, six isolates were harbored $\text{bla}_{\text{CTX-M}}$ (85.7%) and one an unidentified gene (14.3%). Among 34 isolates of ESBL producer in farmers, 26 isolates harbored $\text{bla}_{\text{CTX-M}}$ (76.5%), 15 isolates $\text{bla}_{\text{TEM}}$, and three

![Figure 1. The Double Disk Synergy Test (DDST) for identifying ESBL producer bacteria. Note: The increasing of inhibition zone in area between cephalosporin disk and clavulanic acid disk was marked as positive ESBL producer.](image)

| Table 2. Distribution of ESBL producing *Enterobacteriaceae* strain in dairy cows and farmers |
|-----------------------------------------------|
| **ESBL Producer** | **Dairy Cows (n=102)** | **Farmers (n=102)** | **p value** |
| ESBL producing bacteria | 14 (13.7%) | 35 (34.3%) |  |
| Non-*Enterobacteriaceae* | 7 (6.9%) | 1 (0.9%) |  |
| *Enterobacteriaceae* | 7 (6.9%) | 34 (33.3%) |  |
| *Escherichia coli* | 6 (85.7) | 28 (82.4) | $p = 1,000$ |
| *Enterobacter spp* | 1 (14.3) | 3 (8.8) | $p = 0.542$ |
| *Klebsiella pneumoniae* | 0 / 0 | 2 (5.9) | $p = 1,000$ |
| *Klebsiella oxytoca* | 0 / 0 | 1 (2.9) | $p = 1,000$ |

**Note:** ESBL-E: ESBL producing *Enterobacteriaceae*

| Table 3. ESBL genes distribution of ESBL producing *Enterobacteriaceae* in dairy cows and farmers |
|-----------------------------------------------|
| **ESBL Gene** | **Dairy Cows (n=7)** | **Farmers (n=34)** | **p value** |
| $\text{bla}_{\text{CTX-M}}$ | 6 (85.7) | 26 (76.5) | $p = 1,000$ |
| $\text{bla}_{\text{SHV}}$ | 0 (0) | 3 (8.8) | $p = 1,000$ |
| $\text{bla}_{\text{TEM}}$ | 0 (0) | 15 (44.1) | $p = 0,035$ |
| Unidentified gene | 1(14.3) | 0 (0) | $p = 0,171$ |
| $\text{bla}_{\text{CTX-M}}, \text{bla}_{\text{TEM}}$ | 0 (0) | 8 (23.5) | - |
| $\text{bla}_{\text{CTX-M}}, \text{bla}_{\text{SHV}}, \text{bla}_{\text{TEM}}$ | 0 (0) | 1 (2.9) | - |

**Note:** Unidentified gene: gene of ESBL producing *Enterobacteriaceae* which couldn’t detected with specific primer used in this study
isolates bla\textsubscript{SHV} (8.8%), respectively. There was a significant difference of bla\textsubscript{TEM} distribution in dairy cows and in farmers (p = 0.035) (Table 3).

Combination of two and three of ESBL genes were found in \textit{Enterobacteriaceae} producing ESBL isolates in farmers. Eight isolates harbored \textit{bla}\textsubscript{CTX-M} and \textit{bla}\textsubscript{TEM} (23.5%) and one isolate harbored \textit{bla}\textsubscript{CTX-M}, \textit{bla}\textsubscript{SHV}, \textit{bla}\textsubscript{TEM} (2.9%) (Table 3).

**Risk Factor for Colonization of ESBL Producing \textit{Enterobacteriaceae}**

Age, origin of dairy cows, history of illness during the last 3 months, history of drug use, type of drug given last 3 month, and type of feed were not risk factors for colonization of ESBL-producing \textit{Enterobacteriaceae} in dairy cows. Risk factor for ESBL producing \textit{Enterobacteriaceae} colonization in farmers was the use of antibiotics (p = 0.007). Gender, age, education level, household, hygiene sanitation of environment (location of dairy cow shed and type of toilet), personal hygiene sanitation (frequency and how to wash hands), and frequency of going out of the city during the last 3 months were not a risk factor.

**DISCUSSION**

Colonization of ESBL producing \textit{Enterobacteriaceae} in dairy cows by 6.9% in this study is similar with study in healthy ruminant (cows and buffaloes) in rural areas in Cambodia by 7%\textsuperscript{16} and lower than in cattle farm in German by 54.5%.\textsuperscript{6} Colonization of ESBL producing \textit{Enterobacteriaceae} in farmers by 33.33% lower than the colonization of ESBL-producing bacteria in healthy individuals in rural areas in Thailand by 65.7%,\textsuperscript{17} in China by 73.9%,\textsuperscript{18} and workers in cattle farms in Germany: 12.5%.\textsuperscript{6}

Human and animal gut were the natural habitat of many bacterial especially \textit{Enterobacteriaceae} and become a reservoir of various infections.\textsuperscript{12} Non-appropriate and overuse of antibiotic caused selective pressure that supports the growth of resistance bacteria.\textsuperscript{9} Colonization of resistance bacteria in human and animal gut causing transmission of resistance genes in gut flora bacterial through horizontal gene transfer by conjugative plasmid.\textsuperscript{12} ESBL mostly encoded by genes in plasmids.\textsuperscript{19} \textit{Enterobacteriaceae} was identified as having plasmid carrying resistant genes. IncFII plasmid group known as a plasmid group that encoded ESBL genes and it widely distributed in \textit{Enterobacteriaceae}. It called epidemic resistant plasmid group.\textsuperscript{20}

This study identified \textit{Escherichia coli} as the dominant ESBL producing bacteria in dairy cows (85.7%) and farmers (82.4%). Distribution of \textit{Escherichia coli} as an ESBL producer in dairy cows in this study was 85.7%, higher than in cattle farms in Mecklenburg-Western Pomerania, Germany by 54.5%.\textsuperscript{6} At farmers, distribution of ESBL producing \textit{Escherichia coli} by 82.4% is lower than the distribution of \textit{Escherichia coli} in healthy individuals in rural areas in Thailand by 85.4%\textsuperscript{17} and in China 88%,\textsuperscript{18} but higher than workers in cattle farms in Germany: 12.5%.\textsuperscript{6}

\textit{Escherichia coli} is the main organism that produces ESBL in communities\textsuperscript{21} and associated with urinary tract infections (UTI). It is related to their role as gut bacterial flora and are pathogenic to humans and animals.\textsuperscript{12} The resistance of commensal \textit{Escherichia coli} to antimicrobial agents has been found in healthy individuals.\textsuperscript{22} This bacterium also acts as an indicator of 'acquired antibiotic resistance genes' in the community.\textsuperscript{23}

Distribution of \textit{bla}\textsubscript{CTX-M} in the ESBL producing \textit{Enterobacteriaceae} in dairy cows by 85.7% is higher than the distribution of \textit{bla}\textsubscript{CTX-M} in cattle farms in Germany 80%.\textsuperscript{6} At farmers,
distribution of \( \text{bla}_{\text{CTX-M}} \) in the ESBL-producing \textit{Enterobacteriaceae} by 76.5\% higher than in healthy individuals in rural areas in China by 68.1\%\(^{18}\) and in Thailand by 65.7\%\(^{17}\). \( \text{bla}_{\text{CTX-M}} \) that mostly integrated with conjugative plasmid, and conjoint with the other resistant gene, has a higher transferability among bacteria, and impact on higher prevalence epidemiologically.\(^{24}\)

\( \text{bla}_{\text{CTX-M}}, \text{bla}_{\text{SHV}}, \) and \( \text{bla}_{\text{TEM}} \) are dominant ESBL genes in various regions worldwide and found from isolates of humans, animals, and the environment. \( \text{bla}_{\text{TEM}} \) and \( \text{bla}_{\text{SHV}} \) mainly found in \textit{Escherichia coli} and \textit{Klebsiella pneumoniae}.\(^{25}\)

The study identified \( \text{bla}_{\text{TEM}} \) in \textit{Escherichia coli} and \textit{Enterobacter} \textit{spp} isolates and \( \text{bla}_{\text{SHV}} \) in \textit{Klebsiella pneumoniae} and \textit{Escherichia coli} isolates. \( \text{bla}_{\text{CTX-M}} \) is the dominant ESBL gene worldwide, especially in community and has increased in incidence since 2000.\(^{12}\) It were identified in livestock and pets with \textit{Escherichia coli} as the main producing bacteria.\(^{26}\) Our study showed that \( \text{bla}_{\text{CTX-M}} \) was identified in \textit{Escherichia coli}, \textit{Enterobacter} \textit{spp}, and \textit{Klebsiella oxytoca}.

Dissemination of \( \text{bla}_{\text{CTX-M}} \) occurs rapidly, extensive, and significantly. Plasmids are known to carry genes which encode resistance for antibiotic.\(^{27}\) Conjugative plasmids play an important role in facilitating the horizontal dissemination of \( \text{bla}_{\text{CTX-M}} \) among bacteria.\(^{28}\) \( \text{bla}_{\text{CTX-M}} \) was identified in various epidemic resistant plasmid groups, including: groups IncF, IncN, IncI1, IncI/ M, and IncHI2.\(^{24}\) These plasmid group are able to capture and transfer resistant genes among bacteria.\(^{29}\) The IncFII Group is the largest plasmid group encoding \( \text{bla}_{\text{CTX-M}} \) and widely found in \textit{Enterobacteriaceae}\(^{24}\) and isolates from human and animal.\(^{20}\)

\( \text{ISEcp1} \) is the genetic element which associated with all variants of \( \text{bla}_{\text{CTX-M}} \), play a role incoding transposase and inducing \( \text{bla}_{\text{CTX-M}} \) expression. Transposase is an enzyme that mobilizes \( \text{bla}_{\text{CTX-M}} \) in certain plasmids.\(^{28}\) Other types of IS include: \text{ISCR1} plays a role in \( \text{bla}_{\text{CTX-M}} \) group 2 and 9 expression, \text{IS10} in \( \text{bla}_{\text{CTX-M}} \) group 8 expression,\(^{24}\) and \text{IS26} in \( \text{bla}_{\text{CTX-M}} \) group 1 and 9 expression. \( \text{ISEcp1} \) and \text{ISCR1} play a role in the mobilization of class 1 integron that encodes various types of resistant genes (MDR cassettes).\(^{28}\)

Clones of \textit{Escherichia coli} were identified having a significant role in the dissemination of \( \text{bla}_{\text{CTX-M}} \), among others, such as ST131, ST38, ST393, ST405. ST131 serotype 025: H4 phylogenetic group B2 is an extra-intestinal pathogenic \textit{E. coli} strain and was mainly involved in \( \text{bla}_{\text{CTX-M}} \) dissemination especially \( \text{bla}_{\text{CTX-M}-15} \) in worldwide.\(^{24}\) It identified having \text{IncFII} plasmid group and found in isolates originated from the animal, environment, and especially human.\(^{28}\)

Combination of two or three ESBL genes in one bacterial isolate is due to integron and plasmid that carry several resistant genes. \textit{Enterobacteriaceae} would be harboring of 5 to 6 plasmids in one isolate.\(^{30}\) Class 1 integron which related to \( \text{bla}_{\text{CTX-M}} \) were identified encoding several types of resistant genes (MDR cassettes).\(^{28}\) The unidentified gene is thought to be an ESBL gene in addition to \( \text{bla}_{\text{CTX-M}} \) (group 1), \( \text{bla}_{\text{SHV}}, \) and \( \text{bla}_{\text{TEM}} \).

The finding of antibiotic use as risk factor of ESBL producing \textit{Enterobacteriaceae} in farmers in this study (\( p = 0.007 \)) related according to the study of Luvsansharav et al,\(^{17}\) which identified the use of antibiotics in the last 3 months (OR 1,883; 95\% CI 1,221–2,903) as a risk factor for colonization of ESBL producing bacteria in healthy individuals in rural area in Thailand and Zang et al\(^{18}\) that identified antibiotic use in the previous 6 months (OR 1,892; 95\% CI 1,242–2,903; \( p = 0.034 \)) as a risk factor for colonization of ESBL-producing bacteria in healthy individuals in rural area in China.

In dairy cows in this study, there was not any antibiotic use detected based on data on questionnaires. The total of 52\% of dairy cows were given anthelmintic every three months. Risk factors for colonization of ESBL producing \textit{Enterobacteriaceae} in dairy cows was not identified. Dissemination of ESBL producing bacteria occurs from animals to humans or vice versa.\(^{6}\) ESBL producing Gram negative in dairy cows have the potential as a zoonotic risk,\(^{31}\) especially through close contact during daily care.\(^{6}\)
The results of the study showed that the rural community could act as a reservoir of ESBL-producing Enterobacteriaceae. The finding of Escherichia coli and bla\textsubscript{CTX-M} as the dominant strain and ESBL gene epidemiologically indicated alarming sign. E. coli ST131 consider as virulent strain,\textsuperscript{24} multiple resistance, easily colonize and spread between humans, animals and environment isolates.\textsuperscript{27} It contributes to the spread of bla\textsubscript{CTX-M} globally through horizontal gene transfer.\textsuperscript{24} ESBL-producing E. coli and bla\textsubscript{CTX-M} have driven the spread of ESBL gene in the community. Colonization of ESBL-producing Enterobacteriaceae is a risk factor for infection of ESBL-E.\textsuperscript{3} The colonization of ESBL-producing Enterobacteriaceae in community were predicted increasing by about 5% annually.\textsuperscript{24} This certainly becomes a challenge in therapy of infectious disease.

CONCLUSION

Farmers had suspected as the source of ESBL-producing Enterobacteriaceae based on higher prevalence. The use of antibiotic in human, was identified as risk factor for colonization of ESBL-producing Enterobacteriaceae while not identified in dairy cows.

CONFLICT OF INTEREST

There is no conflict of interest of this study.

ACKNOWLEDGEMENT

We thank staff and cadre of Sumberpitu Public Health Centre for assistance of collecting samples, Health Office of District of Pasuruan for the study support. Microbiology Laboratory of Dr. Soetomo and Institute Tropical Diseases, Surabaya for processing samples. Thank you to Tahir professorship grant Universitas Airlangga No. 1149/UN3/2018, that supported this study.

REFERENCES

1. Health Ministry of The Republic of Indonesia. Antimicrobial Resistance Control Becomes World Attention. News Release. 2018. [cited 30 January 2019]. Available from:<http://www.depkes.go.id/article/view/18112900002/pengendalian-resistensi-antimikroba-jadi-perhatian-dunia.html>.
2. Shaikh S, Fatima J, Shakil S, Rizvi SMD, Kamal MA. Antibiotic Resistance And Extended Spectrum β-Lactamase : Types, Epidemiology And Treatment, Saudi J Bio Sci. 2015;22(1):90-101. doi: http://dx.doi.org/10.1016/j.sjbs.2014.08.002
3. Brolund A. Overview of ESBL-producing Enterobacteriaceae From A Nordic Perspective. Review, Infect Ecol Epidemiol, 2014;4: 1-9. doi:https://doi.org/10.3402/iee.v4.24555
4. Madigan MT, Martinko JM, Bender KS, Buckley DH, Stahl DA. Brock Biology of Microorganism, 14th edn, Pearson Education Inc.S; 2015: 820-821.
5. Dandachi I, Chabou S, Daoud Z, and Rolain JM. Prevalence and Emergence OfExtended-Spectrum Cephalosporin, Carbapenem and Colistin-ResistantGram Negative Bacteria Of AnimalOrigin In The Mediterranean Basin. Front Microbiol. Review. 2018;9(2299):1 – 26. doi: https://doi.org/10.3389/fmicb.2018.00550
6. Dahms C, Hubner NO, Kossw A, Mellmann A, Dittmann K, Kramer A. Occurance of ESBL-Producing Escherichia coli in Livestock and Farm Workers in Mecklenburg-Western Pomerania, Germany, Plos One. 2015; 10(11): 1-13 https://doi.org/10.1371/journal.pone.0143326
7. Central Bureau of Statistics of Republic Indonesia. Dairy Cows Population by Province, 2009-2018. Animal husbandry. Dynamic Table. [cited 29 December 2019]. Available from: (https://www.bps.go.id/linkTableDinamis/view/id/1018).
8. Goverment of District of Pasuruan. Official Website of Pasuruan Regency Goverment : Pasuruan Regency has The First County of Dairy Farm Centre In Indonesia, [cited 4 Nopember 2019]. Available from:<https://www.pasuruankab.go.id/>.
9. Carroll KC, Morse SA, Mretzner T, Miller S. Jawetz, Melnick & Adelberg’s Medical Microbiology, 27th edn, Mcgraw Hill Education: Lange Medical Books; 2016, pp.351-360.
10. Nurhayati, IS dan Martindah, E. Pengendalian Mastitis Subklinis Melalui Pemberian Antibiotik Saat Periode Kering Pada Sapi Perah. Wartazoa. 2015; 25(2): 065 – 074. doi:http://dx.doi.org/10.14334/wartazoa.v25i2.1143
11. Amelia A, Nugroho A, and Harijanto PN. Diagnosis and Management of Infections Caused by Enterobacteriaceae Producing Extended-Spectrum β-Lactamase. Acta Med Indones-Indones J Intern Med. 2016; 48(2):156-166.
12. Woerther PL, Burdet C, Chachaty E, and Andremont A. Trends in Human Fecal Carriage of Extended-Spectrum β-Lactamases in The Community : Toward The Globalization of CTX-M. Clin Microbiol Rev. 2013; 26(4): 744–758. doi: http://dx.doi.org/10.1128/CMR.00023-13

13. Schreckenberger P and Rekasius V, 2007. Procedure Double Disk Diffusion Confirmation of ESBL. Layola University Medical Center. pp 1 – 7.

14. Tawfick MM, El-Moghazy AN, Hassan MA. PCR-Based Molecular Detection of ESBLs Encoding Genes blaTEM, blaCTX-M and blaSHV. Among MDR Escherichia coli Isolates From Diarrhoea Stool Cultures In Cairo, Egypt. International Journal of Research Studies In Microbiology and Biotechnology (IJRSMB). 2016; 2(3): 7-14. doi : http://dx.doi.org/10.20431/2454-9428.0203002

15. Ferreira CM, William AF, Almeida NCOdS, Naveca FG, Barbosa MdGV. Extended Spectrum Beta Lactamase Producing Bacteri Isolated From Hematologic Patients In Manaus, State of Amazonas, Brazil. Braz J Microbiol. 2011 Jul-Sep; 42(3): 1076-1084. doi: 10.1590/S1517-83822011000300028.

16. Atterby C, Osbjer K, Tepper V, Rajala E, Hernandez J, Ferreira CM, William AF, Almeida NCOdS, Naveca FG, Barbosa MdGV. Extended Spectrum Beta Lactamase Producing Bacteri Isolated From Hematologic Patients In Manaus, State of Amazonas, Brazil. Braz J Microbiol. 2011 Jul-Sep; 42(3): 1076-1084. doi: 10.1590/S1517-83822011000300028.

17. Luvsansharav UO, Hirai I, Nakata A, Imura K, Yamauci U, and Jarhult JD. Carriage Of Carbapenemase- And Enterobacteriaceae. Journal of Antimicrobial Chemotherapy, Editor’s Choice. 2017 August; 72(8): 2145–2155. doi: https://doi.org/10.1093/jac/dkx146

18. Rossolini GM, D’Andrea MD, and Mugnaioli C. The spread of CTX-M-type extended-spectrum b-lactamases. Journal Compilation 2008 European Society of Clinical Microbiology and Infectious Diseases, CMI. Review. 2008; 14 (Suppl. 1): 33–41. doi: http://dx.doi.org/10.1111/j.1469-0691.2007.01867.x

19. Dubey RC. A Textbook of Biotechnology with Biotechnology Practicals for Class XII. Revised edition. S. Chand & Company PVT. LTD. Ram Nagar. New Delhi; 2014.

20. Bevan ER, Jones AM, and Hawkey PM. Global Epidemiology Of CTX-M-B lactamases: Temporal And Geographical Shifts In Genotype. Journal of Antimicrobial Chemotherapy, Editor’s Choice. 2017 August; 72(8): 2145–2155. doi: https://doi.org/10.1093/jac/dkx146

21. Carattoli A. Plasmids In Gram Negatives : Molecular Typing of Resistance Plasmids. International Journal of Medical Microbiology. Mini Review. Abstract. Elsevier. 2011 December; 301(8): 654–658. doi: https://doi.org/10.1016/j.ijmm.2011.09.003

22. Livermore DM. Bacterial Resistance: Origins, Epidemiology, And Impact. Clinical Infectious Diseases. 2003 Jan; 36(3Supplement_1): S11–S23. doi: https://doi.org/10.1086/344654

23. Olsen RH, Bisgaard M, Lohren U, Robineau B, and Christensen H. Extended – Spectrum Beta-Lactamase-Producing Escherichia coli Isolated From Poultry : A Review of Current Problems, Illustrated With Some Laboratory Findings. Avian Pathology. 2014 Apr; 43(3): 199–208. doi: https://doi.org/10.1080/03079457.2014.907866

Copyright © 2020, IJTID, p-ISSN 2085-1103, e-ISSN 2356-0991