RESEARCH ARTICLE

Inhibition of Ga_s/cAMP Signaling Decreases TCR-Stimulated IL-2 transcription in CD4+ T Helper Cells

Thomas R. Hynes*, Evan A. Yost*, Stacy M. Yost*, Cassandra M. Hartle*, Braden J. Ott* and Catherine H. Berlot*

Background: The role of cAMP in regulating T cell activation and function has been controversial. cAMP is generally known as an immunosuppressant, but it is also required for generating optimal immune responses. As the effect of cAMP is likely to depend on its cellular context, the current study investigated whether the mechanism of activation of Ga_s and adenyl cyclase influences their effect on T cell receptor (TCR)-stimulated interleukin-2 (IL-2) mRNA levels.

Methods: The effect of blocking G_s-coupled receptor (G_sPCR)-mediated G_s activation on TCR-stimulated IL-2 mRNA levels in CD4+ T cells was compared with that of knocking down G_s expression or inhibiting adenyl cyclase activity. The effect of knocking down G_s expression on TCR-stimulated cAMP accumulation was compared with that of blocking G_sPCR signaling.

Results: ZM-241385, an antagonist to the G_s-coupled A2A adenosine receptor (A2A_R), enhanced TCR-stimulated IL-2 mRNA levels in primary human CD4+ T helper cells and in Jurkat T cells. A dominant negative G_s construct, G_sDN3, also enhanced TCR-stimulated IL-2 mRNA levels. Similar to G_sPCR antagonists, G_sDN3 blocked G_sPCR-dependent activation of both G_s and G_sBγ. In contrast, G_s siRNA and 2',5'-dideoxyadenosine (ddA), an adenyl cyclase inhibitor, decreased TCR-stimulated IL-2 mRNA levels. G_s siRNA, but not G_sDN3, decreased TCR-stimulated cAMP synthesis. Potentiation of IL-2 mRNA levels by ZM-241385 required at least two days of TCR stimulation, and addition of ddA after three days of TCR stimulation enhanced IL-2 mRNA levels.

Conclusions: G_sPCRs play an inhibitory role in the regulation of TCR-stimulated IL-2 mRNA levels whereas G_s and cAMP can play a stimulatory one. Additionally, TCR-dependent activation of G_s does not appear to involve G_sPCRs. These results suggest that the context of G_s/cAMP activation and the stage of T cell activation and differentiation determine the effect on TCR-stimulated IL-2 mRNA levels.

Keywords: cAMP; T helper cells; heterotrimeric G-protein; G_s; G-protein-coupled receptor; IL-2

Introduction

The cellular effects of the second messenger cAMP are often dependent on the context of concentration changes. For instance, cAMP stimulates proliferation in certain cell types whereas it inhibits proliferation in others [1, 2], which can be determined by the expression of other signaling components [3, 4]. A-kinase anchoring proteins (AKAPs) [5] and cAMP-degrading phosphodiesterases (PDEs) [6] can determine the physiological effects of cAMP by regulating the spatial and temporal organization of cAMP pathway components. Differential effects of cAMP can result from the selective involvement of protein kinase A (PKA) or exchange protein directly activated by cAMP (Epac) [7, 8], which in turn can be determined by the intensity and localization of upstream signals [9]. Given this complexity of cAMP regulation and effects, it is not surprising that the role of cAMP in regulating T cell activation and function has been controversial. cAMP is generally known as an immunosuppressant, but it is also required for generating optimal immune responses.

On one hand, studies utilizing agonists and antagonists of G_sPCRs, cAMP analogs, and cholera toxin have demonstrated an inhibitory role of cAMP on T cells. For instance, numerous studies of G_sPCRs such as the A2A_R [10–13], PGE2 receptors [14, 15], and vasoactive intestinal peptide (VIP) receptors [16, 17] have demonstrated inhibition of TCR-stimulated production of IL-2, a growth factor for effector and regulatory T cells that has been used...
to augment immune responses to treat cancer [18] and persistent viral infections [19], and, at lower doses, to suppress immune responses in chronic graft-versus-host disease [20] and hepatitis C virus-induced vasculitis [21].

Moreover, treatment of cultures of human T lymphocytes and monocytes with forskolin to activate adenylyl cyclase, cAMP phosphodiesterase (PDE) inhibitors, or a cell-permeable cAMP analog inhibited phytohemagglutinin (PHA)-stimulated IL-2 production [22]. Additionally, treatment of proliferating T lymphocytes with cAMP analogs inhibited cell replication [23] and led to phosphorylation and activation of Csk, the most proximal PKA substrate [24].

Overexpression of Csk resulted in decreased levels of IL-2 in Jurkat T cells activated by anti-CD3 antibodies and phorbol 12-myristate 13-acetate (PMA) [24]. Furthermore, treatment of Jurkat cells with cholera toxin, which constitutively activates G\(\alpha_s\), inhibited TCR-stimulated increases in inositol trisphosphate (IP\(_3\)) and Ca\(^{2+}\) [25].

On the other hand, there is precedent for cAMP playing a positive role in T cell function. Mice that lacked G\(\alpha_s\) had reduced cAMP levels, decreased Ca\(^{2+}\) influx, and impaired TH1 and TH17 differentiation [26], and T cells from mice that lacked the AC7 isoform of adenyl cyclase were defective in T cell help and memory function [27].

Moreover, the EP\(_1\) and EP\(_4\) receptors for PGE\(_2\) facilitated TH17 expansion by means of the cAMP/PKA pathway [28], and G\(\alpha_s\) activation by cholera toxin induced TH17 cells and protected against inhalation anthrax [29].

Additionally, treatment of mouse spleen cell cultures with low concentrations of dibutyryl cAMP increased humoral immune responses and enhanced PMA/ionomycin-stimulated lymphoproliferation, whereas incubation of the cells with ddA decreased both of these responses in parallel with decreasing basal levels of cAMP [30].

Furthermore, transient adhesion-dependent cAMP increases were stimulatory to TCR signaling, although sustained increases in response to forskolin were inhibitory [31]. The amplitude and duration of cAMP increases may also determine the effect on TCR-stimulated IL-2 synthesis. For instance, antigen stimulation of a murine T cell line produced a transient rise in cAMP that correlated with T cell proliferation and IL-2 production [32]. Moreover, a study in Jurkat T cells suggested that sustained increases in cAMP were required to inhibit PHA-stimulated IL-2 production whereas smaller and transient cAMP increases were not sufficient for inhibition and sometimes even caused increases in IL-2 [33].

Prior studies suggest that the context in which cAMP levels are increased can determine the effect on T cell function. For instance, VIP receptors can inhibit production of IL-2 in T cells stimulated by the TCR or ConA, but not by PMA and the Ca\(^{2+}\) ionophore, A23187 [16, 17]. Similarly, although forskolin and a cAMP analog inhibited IL-2 production by T cells stimulated by PMA/A23187, the EC\(_{50}\) was about 10-fold higher than that in T cells activated by PHA [22]. Additionally, dibutyryl cAMP augmented synergistic stimulation of DNA synthesis in guinea pig lymphocytes by diacylglycerol and low concentrations of A23187 while having an inhibitory effect in the presence of higher concentrations of the ionophore [34].

Given the complexities of the effects of cAMP on immune function in general and IL-2 production in particular, cAMP levels and effects are likely to be controlled by multiple inputs that are integrated according to the cellular context. As a step towards elucidating how the nature of the upstream activation of G\(\alpha_s\) and adenylyl cyclase might influence their effect on TCR-stimulated IL-2 mRNA levels, the purpose of the current study was to compare the effects of blocking G, P, CR-mediated G, activation versus inhibiting cAMP synthesis at the level of G\(\alpha_s\) or adenylyl cyclase. We found that the former resulted in increased TCR-stimulated IL-2 mRNA levels in contrast to the latter, which caused decreases. Moreover, cAMP increases stimulated by the TCR were inhibited by G\(\alpha_s\) siRNA, but not by a dominant negative G, construct, G, DN3, consistent with the conclusion that the TCR stimulates cAMP synthesis via G\(\alpha_s\), but not a G, PCR. Taken together, these results suggest that the source and context of activated G\(\alpha_s\) and cAMP determine whether they increase or decrease levels of TCR-stimulated IL-2 mRNA.

Methods

Plasmids

G\(\alpha_s\)DN3 was produced as described [35], where it was referred to as \(\alpha_s(\alpha_3)\beta_5/G226A/A366S\). G\(\alpha_s\)DN3-CFP was produced by subcloning an EcoRI fragment from G\(\alpha_s\)DN3 containing the \(\alpha_3\beta_5\), G226A, and A366S mutations in place of the corresponding fragment in G\(\alpha_s\)-CFP [36]. G\(\alpha_s\)-YFP was produced as described for G\(\alpha_s\)-CFP using enhanced YFP containing a substitution of Met for Gln-69 instead of enhanced CFP. All G\(\alpha_s\) subunit constructs contain mutations that encode the EE epitope as described [37]. YFP-G, and YFP-C, were produced as described [38].

The human HA-tagged \(\beta AR\) cDNA was kindly provided by Brian Kobilka (Stanford University, Stanford, CA). \(\beta AR\)-GFP was produced as described [38], mRFP-Mem was produced as described [39]. For luciferase reporter assays, a 1 kb sequence encoding the human IL-2 promoter from -950 to +48 bp from Panomics/Affymetrix was subcloned into pGL3 (Promega). pRL-TK Renilla (Promega) was used to normalize luciferase activities. Subcloning and mutagenesis procedures were verified by restriction enzyme analysis and DNA sequencing.

Ethics statement and study population

This study was reviewed and approved by the Geisinger Health System Internal Review Board, and all study participants signed informed consent. Peripheral blood was obtained from 20 healthy women 18 to 70 years old who did not have any autoimmune, infectious, or atopic diseases, clinical suspicion of anemia, or treatment with greater than 10 mg of prednisone within 12 hour of the blood draw.

Isolation and culture of human CD4\(^+\) T cells and Jurkat T cells

Peripheral blood mononuclear cells (PBMCs) were isolated using Ficoll-Paque density gradient centrifugation. CD4\(^+\) T cells were isolated by depletion of non-CD4\(^+\) T cells using a CD4\(^+\) T Cell Isolation Kit II (Miltenyi Biotec). The
cells were then separated into naïve and memory CD4+ T cells using a Naïve CD4+ T cell Isolation Kit (Miltenyi Biotec). Purification of the cells was confirmed by labeling samples before and after purification with fluorescently labeled antibodies to either CD4 and CD45RA (to label naïve cells) or CD4 and CD45RO (to label memory cells) and analysis using flow cytometry. 93.5% of the cells in the naïve T cell preparations were CD4+ (SE = 0.8%, ranging from 83.9% to 98.2%) and 84.3% were CD45RA+ (SE = 1.6%, ranging from 68.1% to 94.2%). 94.8% of the cells in the memory T cell preparations were CD4+ (SE = 0.4%, ranging from 89.7% to 97.4%) and 74.1% were CD45RO+ (SE = 2.2%, ranging from 55.0% to 87.3%). Cells were plated at a density of 2–9 × 10^6 cells/ml (depending on yield) in 24-well dishes coated with 2.5 μg/ml anti-CD3 antibody (Miltenyi) in RPMI containing 10% fetal bovine serum, 2.5 μg/ml anti-CD28 antibody (Miltenyi) and IL-2 (2 ng/ml) (R&D Systems). For TH1 differentiation, the media also included 20 ng/ml IL-12 and 1 μg/ml anti-IL-4 antibody (R&D Systems). For TH2 differentiation, the media also included 20 ng/ml IL-4 and 2 μg/ml anti-IL-12 antibody (R&D Systems). Cells were harvested after 3 days.

Jurkat T cells (Clone E6-1) were obtained from ATCC and cultured in RPMI containing 10% fetal bovine serum. For TCR activation, the cells were grown in wells coated with anti-CD3 (2.5 μg/ml) in the presence of soluble anti-CD28 (2.5 μg/ml).

ZM-241385, ddA, siRNA, and plasmid treatments

10 μM ZM-241385 and 150 μM ddA were added when the T cells were placed in activating/differentiating media. siRNAs were produced by Dharnacon. The sequence of Gαs, siRNA, CGAUGUGACUGCCAUCAUC, was from [40]. The non-targeting (NT) siRNA used was ON-TARGETplus Non-targeting Pool (Dharmacon, D-001810-10-20). 4 × 10^6 Jurkat cells were nucleofected with 10 μM siRNA in 100 μl of Cell Line Nucleofector Kit V using Program X-005. After two days, the cells were nucleofected again with siRNA in the same manner and then stimulated or not with plate-bound anti-CD3 and soluble anti-CD28 for 3 days.

4 × 10^6 Jurkat cells were nucleofected with 3.5 μg of αDN3 or empty vector (pcDNA1/Amp) and then stimulated with plate-bound anti-CD3 and soluble anti-CD28 for 3 days.

Quantitative PCR (qPCR)

RNA was prepared using RNeasy Plus Mini Kits (Qiagen). cDNA was prepared using Quantitect Reverse Transcription kits (Qiagen). qPCR was performed using TaqMan Gene Expression Assays (Applied Biosystems) and an Applied Biosystems qPCR machine. mRNA expression levels were determined by comparing the Ct value of the mRNA of interest to that of the house-keeping gene GAPDH in the same preparation.

Imaging of fluorescent fusion proteins

HEK-293 cells (ATCC, CRL-1573) were plated at a density of 10^6 cells per well on Lab-Tek II, 4 well chambered coverslips and transiently transfected using 0.25 μl of LipofectAMINE 2000 Reagent. Cells were imaged 2 days after transfection at 63 × using a Zeiss Axiovert 200 fluorescence microscope under the control of IPLab software as described [38]. Using the motorized x-y-z stage, time course images of cells located at 5–6 positions in the well were collected simultaneously as described [36]. Images for each color channel and DIC were collected at each position in the well every 60 seconds. Following the second time point, cells were stimulated with 10 μM isoproterenol (final concentration) and images were collected for 30 minutes. For each experimental condition, cells were imaged from plates transfected on 3 different days.

Image Analysis

Time course images were analyzed using IPLab software. Changes in the plasma membrane intensity of labeled proteins were measured in cells co-expressing a membrane marker (mRFP-Mem) that was used to segment membrane pixels and correct for intensity changes due to changes in cell shape as described [36]. Briefly, a segment of pixels covering a length of the plasma membrane was identified using the image of the membrane marker. The average intensities of these pixels in the background- and bleach-corrected images of the labeled protein and membrane marker were determined. The membrane marker intensity values were normalized to a starting value of one and the labeled protein intensity values were divided by the normalized membrane marker values. The corrected labeled protein intensities were normalized to a starting value of one and averaged with values from multiple cells.

Immunoblots

Using Jurkat cell membranes prepared as described [41], a polyclonal antibody directed at Gαs residues 28–42 [42], prepared in the laboratory of Henry Bourne (University of California, San Francisco), was used to detect expression of Gαs, and Gβ1 (XAB-00301-1-G) and Gβ2 (XAB-00401-1-G) antibodies from CytoSignal, LLC were used to detect expression of Gβ1 and Gβ2, respectively. Membrane proteins were resolved on NuPAGE 4–12% Bis-Tris gels and transferred to Invitrolon PVDF membranes (Life Technologies). The antigen-antibody complexes were detected using SuperSignal West Pico Chemiluminescent Substrate (Pierce Biotechnology, Inc.). Chemiluminescence was imaged using a Fuji LAS-4000 Luminescent Image Analyzer. Bands in the images were quantified using ImageJ software. For quantification of Gαs, both the long and short forms of Gαs [43] were measured together.

Actinomycin D assay

Jurkat cells were stimulated with plate-bound anti-CD3 and soluble anti-CD28 for three days in the presence or absence of 150 μM ddA and then treated with 10 μg/ml of Actinomycin D to inhibit transcription. After incubation with Actinomycin D for 0, 10, 20, 30, or 60 minutes, the cells were removed from the wells, RNA was prepared, and IL-2 mRNA levels were determined by qPCR.
Luciferase Assay
Jurkat cells were nucleofected with 3.5 μg α DN3 or pcDNA1/Amp and then labeled with 40 μCi of [3H]-adenine for 24 hours, or nucleofected twice with siRNAs as described above and then labeled with 40 μCi of [3H]-adenine for 24 hours before the assay. On the day of the assay, the cells were pelleted, washed once, and then resuspended in HEPES-buffered RPMI without bicarbonate with 10% fetal bovine serum, and 1 x 10^6 cells in 0.5 mL were plated per well in triplicate in 24-well plates. For TCR activation, the wells were pre-coated with 2.5 μg/ml anti-CD3 and 2.5 μg/ml soluble anti-CD28 was added to the media. For stimulation of the A_sR, 300 μM CGS-21680 was added to the media. The media also contained 1 mM 1-methyl-3-isobutylxanthine, a phosphodiesterase inhibitor. Cells were incubated for 40 minutes at 37°C. Reactions were terminated by adding an equal volume of TCA stop buffer (10% TCA, 2 mM ATP, and 2 mM CAMP). Nucleotides were separated on ion exchange columns [44].

CAMP accumulation assay
4 x 10^5 Jurkat cells were nucleofected with 3.5 μg α DN3 or pcDNA1/Amp and then labeled with 40 μCi of [3H]-adenine for 24 hours, or nucleofected twice with siRNAs as described above and then labeled with 40 μCi of [3H]-adenine for 24 hours before the assay. On the day of the assay, the cells were pelleted, washed once, and then resuspended in HEPES-buffered RPMI without bicarbonate with 10% fetal bovine serum, and 1 x 10^6 cells in 0.5 mL were plated per well in triplicate in 24-well plates. For TCR activation, the wells were pre-coated with 2.5 μg/ml anti-CD3 and 2.5 μg/ml soluble anti-CD28 was added to the media. For stimulation of the A_sR, 300 μM CGS-21680 was added to the media. The media also contained 1 mM 1-methyl-3-isobutylxanthine, a phosphodiesterase inhibitor. Cells were incubated for 40 minutes at 37°C. Reactions were terminated by adding an equal volume of TCA stop buffer (10% TCA, 2 mM ATP, and 2 mM CAMP). Nucleotides were separated on ion exchange columns [44].

cAMP accumulation was determined as 1000 X [3H][cAMP]/([3H][ATP] + [3H][cAMP]). Relative CAMP levels in stimulated cells were expressed as the ratio of the value in stimulated cells to the basal value.

Statistics
The significance of effects of on primary CD4+ T cells was determined using the Wilcoxon signed rank test (paired, non-parametric). The significance of effects on Jurkat T cells was determined using the paired T test. Values of p < 0.05 were considered significant (*, p < 0.05; **, p < 0.01; ***, p < 0.001; ****, p < 0.0001).

Results
Inhibiting the A_sR in primary human CD4+ T helper cells and Jurkat cells enhances TCR-stimulated IL-2 mRNA increases
As prior reports suggested that the effect of CAMP increases on TCR-stimulated IL-2 synthesis might depend on the nature and context of these increases [16, 17, 22, 32, 33], we directly compared the effects of inhibiting different upstream activators of CAMP synthesis in CD4+ T helper cells co-stimulated by antibodies to CD3, which associates with the TCR and links it to downstream signaling molecules [45], and CD28, which provides an additional signal that is needed for complete T cell activation and regulation of IL-2 production [46]. The cells were stimulated for three days, an interval during which primary CD4+ T cells proliferate and differentiate into polarized phenotypes [47-49].

First, we studied the effect of antagonizing the A_sR, which is known to have anti-inflammatory effects mediated by Gαs [50] and can decrease TCR-stimulated IL-2 [10]. ATP released from necrotic and apoptotic cells, regulatory T cells, and effector T cells is converted to adenosine by extracellular ectonucleotidases, or cell surface ectonucleotidases in the case of regulatory T cells, resulting in suppression of T cell function by autocrine or paracrine signaling loops [51]. We tested the effect of ZM-241385 [52], an antagonist to the A_sR, on TCR-stimulated IL-2 mRNA increases in primary human CD4+ T cells grown in conditions that promote either TH1 or TH2 differentiation and in the Jurkat human CD4+ T cell leukemia line, a well-established model system for studying T cell receptor signaling [53] (Fig. 1). We measured IL-2 mRNA by qPCR, as levels of IL-2 are primarily regulated at the level of transcriptional induction of the IL-2 gene and stability of IL-2 mRNA [54, 55], and because our own comparisons of qPCR-determined IL-2 mRNA levels and secreted IL-2 [56] and those of others [57] demonstrated a strong correlation between mRNA and protein levels. There was more IL-2 mRNA in TH1 cells than in TH2 cells and in naïve compared to memory cells, as previously reported [56], but ZM-241385 significantly enhanced mean TCR-stimulated IL-2 mRNA levels in each of the primary cell lineages tested, by 1.9 to 3.5-fold, depending on the T cell subset (Fig. 1A), and by 1.8-fold in Jurkat cells (Fig. 1B).

A dominant negative Gα construct, Gα DN3, which blocks signaling from G coupled receptors, enhances TCR-stimulated IL-2 mRNA increases
To determine whether the results of antagonizing the A_sR with ZM-241385 could be generalized to other G-coupled receptors under our TCR-activating conditions, we tested the effect of a dominant negative Gα construct, Gα(α3β5/G226A/A366S), referred to here as Gα DN3, which inhibits receptor affinity and blocks stimulation of CAMP synthesis by GPCRs [35, 58]. Gα DN3 potentiates the TCR-stimulated increase in IL-2 mRNA by 1.31-fold (Fig. 2). The increased effectiveness of ZM-241385 compared to Gα DN3 is most likely due to the less than 100% efficiency of plasmid expression in nucleofected Jurkat cells.

Gα DN3 blocks signaling of both Gα and Gβγ
We observed previously that Gα DN3 inhibited stimulation of CAMP production by GPCRs [35], a Gα-mediated function, but we didn’t determine whether Gβγ function was also inhibited. This was relevant because we determined previously that inhibition of Gβγ by either Gβγ siRNA, which inhibits both Gβγ and Gα signaling downstream from G protein-coupled receptors (GPCRs), and by gallein, which specifically blocks Gβγ-effector interactions downstream of GPCR-G protein interactions [59], potentiated rather than inhibited TCR-stimulated increases in IL-2 transcription in CD4+ T helper cells [56]. Thus, the enhancing effects of both ZM-241385 and Gα DN3 on TCR-stimulated IL-2 mRNA levels might be the result of inhibiting both Gβγ and Gα, together, or Gβγ alone, rather than Gα.

Gα DN3 contains three sets of mutations in Gα, substitutions of Gα homologs for Gα residues in the α3β5
Hynes et al: Inhibition of Gαs/cAMP Signaling Decreases TCR-Stimulated IL-2 transcription in CD4+ T Helper Cells

Figure 1: Antagonism of the A2AR enhances TCR-stimulated IL-2 mRNA increases in primary human CD4+ T cells and Jurkat T cells. (A) Box plots (top) and difference plots (bottom) show data from naïve and memory CD4+ T cells isolated from the peripheral blood of 20 healthy donors, stimulated with plate-bound anti-CD3 and soluble anti-CD28, and grown in conditions promoting TH1 or TH2 differentiation for three days in the presence or absence of ZM-241385 (ZM). IL-2 mRNA levels were determined by qPCR. In the box plots (top), the height of the box plots equals the interquartile range (IQR) and the horizontal line within the box indicates the median value. The whiskers extend to the lowest and highest data points within 1.5 X IQR and the open circles indicate the outliers, which lie above or below the whiskers. In the difference plots (bottom), open circles show pairwise differences in IL-2 mRNA for each sample when treated with ZM-241385 (ZM) or not (Con). To the right of the open circles are the median values (closed circles) and 95% confidence intervals. (B) Jurkat cells were stimulated with plate-bound anti-CD3 and soluble anti-CD28 for 3 days. IL-2 mRNA levels were determined by qPCR and normalized to the amount produced by the TCR-stimulated control. Data represent the mean ± SE from 8 experiments. *, p < 0.05.

Figure 2: A dominant negative Gαs construct, GαsDN3, which blocks signaling from Gs-coupled receptors, enhances TCR-stimulated IL-2 mRNA increases. Jurkat cells were nucleofected with GαsDN3 or empty vector (pcDNA1/Amp) and then stimulated with plate-bound anti-CD3 and soluble anti-CD28 for 3 days. IL-2 mRNA levels were determined by qPCR and normalized to the amount produced by the TCR-stimulated control. Data represent the mean ± SE from 8 experiments. *, p < 0.05.

The affinity of the βAR for the agonist isoproterenol that occurs in the absence of bound guanine nucleotide [60, 61]. The G226A mutation prevents an activating conformational change in Gαs [62, 63], and A366S elevates basal GDP release, causing Gαs to be constitutively activated and to spend more time in the empty state [63].

We hypothesized that the combined effects of the α3β5 loop mutations, G226A, and A366S in GαsDN3 might prevent activation of both Gαs and Gβγ derived from Gs, by causing the formation of a stable receptor-Gs complex that does not dissociate upon agonist binding. To investigate this possibility, we imaged the basal and agonist-stimulated localization patterns of the Gs subunits and the β2AR in the presence and absence of GαsDN3 in live HEK-293 cells expressing fluorescent fusion proteins. We focused on the β2AR because we determined previously that activation of the β2AR resulted in internalization from the plasma membrane of both Gαs and Gβγ, as well as the β2AR itself, allowing us to use internalization as a readout for signaling of each of these components [36].

Previous studies showed that the A2AAR does not internalize upon prolonged agonist stimulation [64]. Gαs and GαsDN3 were visualized using fusion proteins in which CFP or YFP was inserted into an internal loop of Gαs [36]. Gβ1 and Gγ7 were imaged exclusively in the form of Gβ1γ7 complexes using the strategy of bimolecular fluorescence complementation [65, 66], which involves the production of a fluorescent signal by two nonfluorescent fragments of YFP or CFP when they are brought together by interactions between proteins fused to each fragment. When expressed together, fusion proteins consisting of
an amino-terminal YFP fragment (residues 1–158) fused to Gβγ, YFP-N-Gβγ, and a carboxy-terminal YFP fragment (residues 159–238) fused to GγYFP-C-GγYFP produce a fluorescent signal in the plasma membrane that is not obtained with either subunit alone [38]. The βAR was visualized using a fusion of GFP to the carboxy terminus of the βAR [36].

We tested for effects of GαγDN3 on basal localization and agonist-dependent internalization of the βAR in HEK-293 cells co-expressing βAR-GFP, GαγDN3-CFP, and unlabeled Gβγ. In cells co-expressing βAR-GFP, Gαγ-CFP, and unlabeled Gβγ, both βAR-GFP (Fig. 3A, open circles, Fig. 4A) and Gαγ-CFP (Fig. 3A, open squares, Fig. 4A) internalized upon stimulation of the cells with the β-adrenergic agonist, isoproterenol. As reported previously [36], the βAR and the Gγ subunits internalized with different kinetics (Fig. 3A) and did not co-localize during internalization (Fig. 4A). Expression of GαγDN3-CFP did not affect the average intensity of the βAR-GFP signal or the degree to which it associated with the plasma membrane. However, upon stimulation with isoproterenol, neither βAR-GFP (Fig. 3A, filled circles, Fig. 4B) nor GαγDN3-CFP (Fig. 3A, filled squares, Fig. 4B) internalized.

In the presence of GαγDN3-CFP, internalization of both the Gαγ and Gβγ subunits of Gγ was also blocked. In cells co-expressing Gαγ-YFP, GαγDN3-CFP, and unlabeled βAR and Gβγ, neither Gαγ-YFP (Fig. 3B, filled circles, Fig. 4D), nor GαγDN3-CFP (Fig. 3B, filled squares, Fig. 4D) internalized upon stimulation, in contrast to the internalization responses of both Gαγ-YFP (Fig. 3B, open circles, Fig. 4C) and Gαγ-CFP (Fig. 3B, open squares, Fig. 4C) that occurred upon stimulation of cells expressing these constructs. Similarly, in cells co-expressing YFP-N-Gβγ, YFP-C-GγYFP, GαγDN3-CFP, and unlabeled βAR, neither YFP-N-Gβγ/ YFP-C-GγYFP (Fig. 3C, filled circles, Fig. 4F), nor GαγDN3- CFP (Fig. 3C, filled squares, Fig. 4F) internalized upon stimulation, in contrast to the internalization responses of both YFP-N-Gβγ/YFP-C-GγYFP (Fig. 3C, open circles, Fig. 4E) and Gαγ-CFP (Fig. 3C, open squares, Fig. 4E) that occurred upon stimulation of cells expressing these constructs. These results suggest that, similar to the effect of ZM-241385 on AγR signaling, GαγDN3 blocks GPCR-stimulated Gαγ and Gβγ signaling, consistent with the formation of a stable GPCR-Gγ complex that does not dissociate upon binding of agonist.

Gαγ siRNA and ddA, an adenylyl cyclase inhibitor, decrease TCR-stimulated IL-2 mRNA levels

The results described above demonstrate an inhibitory role of GPCR/Gγ signaling on TCR-stimulated IL-2 mRNA production, in agreement with numerous previous studies of GPCRs such as the AγR [10–13], PGE receptors [14, 15], and VIP receptors [16, 17]. If the observed potentiating effects of ZM-241385 and GαγDN3 on basal localization and TCR-stimulated IL-2 mRNA production were simply the result of blocking adenylyl cyclase stimulation by activated Gγ, then Gαγ siRNA and ddA, an adenylyl cyclase inhibitor, would be expected to have similar potentiating effects.

Expression of Gαγ siRNA in Jurkat cells decreased Gαγ mRNA to 30% (Fig. 5A) and Gαγ protein to 26% (Fig. 5B) of the levels in cells expressing NT siRNA. Gβγ, and Gβγ mRNA account for >99% of Gβγ mRNA in Jurkat cells [56] and Gαγ siRNA caused slight decreases in Gβγ, and Gβγ protein expression, but these decreases were not statistically significant (Fig. 5B). Larger and significant decreases in Gβγ, and Gβγ protein expression increased or had no effect, respectively, on TCR-stimulated IL-2 mRNA levels [56]. Surprisingly, in contrast to the potentiating effects of ZM-241385 and GαγDN3 on TCR-stimulated IL-2 mRNA levels, Gαγ siRNA decreased TCR-stimulated IL-2 mRNA to 39% of the value obtained with NT siRNA (Fig. 5C), and ddA decreased TCR-stimulated IL-2 mRNA to 41% of the control value (Fig. 5D).

Inhibiting adenylyl cyclase decreases TCR-stimulated activity of the IL-2 promoter

Inhibiting adenylyl cyclase activity could decrease TCR-stimulated increases in IL-2 mRNA levels by decreasing IL-2 transcription and/ or IL-2 mRNA stability. To determine whether inhibition of adenylyl cyclase decreased IL-2 mRNA stability, we measured the half-life of IL-2 mRNA in Jurkat cells stimulated with plate-bound anti-CD3 antibodies and soluble anti-CD28 antibodies for three days and then treated with Actinomycin D to inhibit transcription. ddA did not decrease the stability of IL-2 mRNA (Fig. 6A). The t1/2 of IL-2 mRNA from cells treated with ddA (27.30 min, SE = 1.95, N = 4) was the same as that from untreated cells (25.16, SE = 1.87, N = 4).

To test whether inhibiting adenylyl cyclase activity decreased IL-2 transcription, the effect of ddA on IL-2 promoter activity was determined using a luciferase reporter plasmid containing a 1 kb sequence encoding the human IL-2 promoter from -950 to +48 bp. Three days of TCR stimulation increased luciferase activity in the IL-2 reporter plasmid (IL2/pGL3), but not the empty vector (pGL3) (Fig. 6B). ddA reduced the stimulated value of IL2/pGL3 to 55% of the control value (Fig. 6, B and C).

Gαγ siRNA, but not GαγDN3, decreases TCR-stimulated cAMP

The above results demonstrated an important difference between the effects of ZM-241385 and GαγDN3, on the one hand, and Gαγ siRNA and ddA, on the other. Namely, the former enhanced TCR-stimulated IL-2 mRNA levels whereas the latter had the opposite effect. Additionally, ZM-241385 and GαγDN3 inhibited signaling of both the Gαγ and Gβγ subunits of Gγ, whereas the latter specifically inhibited Gαγ/cAMP signaling. As both GPCRs and the TCR [32, 67, 68] can stimulate cAMP increases, these results raised the possibility that the source and context of Gγ activation can determine whether TCR-stimulated IL-2 production is enhanced or inhibited. As a first step in investigating this possibility, we tested whether TCR-mediated stimulation of cAMP production is mediated by GγPCRs.

Consistent with previous reports of cAMP elevation in response to TCR activation [32, 67, 68], TCR stimulation increased cAMP accumulation in Jurkat cells (Fig. 7, A and B).
Figure 3: Quantification of the inhibitory effects of GαsDN3 on internalization of the β2AR, Gαs, and Gβ1γ7 from the plasma membrane. Fluorescent fusion protein internalization responses were measured in HEK-293 cells stimulated with 10 μM isoproterenol following the second time point. Values represent means ± SE. The number of cells analyzed in each case is indicated in parentheses. (A) GαsDN3-CFP blocks isoproterenol-mediated internalization of β2AR-GFP. 10⁵ cells were transfected with the following plasmids: GαsDN3-CFP or Gαs-CFP, 0.15 μg; Gβ, and Gγ 0.075 μg each; β2AR-GFP, 0.05 μg; mRFP-Mem, 0.0025 μg. Plasma membrane intensity values for β2AR-GFP in the presence of Gαs-CFP (open circles, 30 cells) and in the presence of GαsDN3-CFP (filled circles, 37 cells), for Gαs-CFP (open squares, 30 cells), and for GαsDN3-CFP (filled squares, 37 cells) were determined as described in Methods. (B) GαsDN3-CFP blocks isoproterenol-mediated internalization of Gαs-YFP. 10⁵ cells were transfected with the following plasmids: GαsDN3-CFP or Gαs-CFP, 0.075 μg; Gαs-YFP, 0.075 μg; Gβ, and Gγ 0.075 μg each; β2AR, 0.05 μg; mRFP-Mem, 0.0025 μg. Plasma membrane intensity values are indicated as follows: Gαs-YFP in the presence of Gαs-CFP (open circles, 29 cells) and in the presence of GαsDN3-CFP (filled circles, 37 cells), Gαs-CFP (open squares, 29 cells), and GαsDN3-CFP (filled squares, 37 cells). (C) Gαs-DN3-CFP blocks isoproterenol-mediated internalization of YFP-N-Gβ1/YFP-C-Gγ7. 10⁵ cells were transfected with the following plasmids: GαsDN3-CFP or Gαs-CFP, 0.15 μg; YFP-N-Gβ, and YFP-C-Gγ 0.075 μg each; β2AR, 0.05 μg; mRFP-Mem, 0.0025 μg. Plasma membrane intensity values are indicated as follows: YFP-N-Gβ/YFP-C-Gγ in the presence of Gαs-CFP (open circles, 25 cells) and in the presence of GαsDN3-CFP (filled circles, 35 cells), Gαs-CFP (open squares, 25 cells), and GαsDN3-CFP (filled squares, 35 cells).
The inhibition of TCR-stimulated cAMP increases by inhibitory Go_s antibodies [68]. However, Go_s DN3 did not inhibit the TCR-stimulated cAMP increase (Fig. 7B), although it did inhibit A2bR-stimulated cAMP increases (Fig. 7C). These results suggest that the TCR stimulates the Go_s/cAMP pathway via a mechanism that does not involve a GPCR, which is consistent with a previous study showing that maximal cAMP increases in response to the TCR and to PGE_2 were additive [67]. These two apparently independent mechanisms of stimulating the Go_s/cAMP pathway in T cells could produce differences in the kinetics, amplitude, and/or localization of cAMP increases, which would have implications for the resulting effect on TCR-stimulated IL-2 increases.

Evidence for an inhibitory effect of cAMP on TCR-stimulated IL-2 mRNA levels after at least 2 days of TCR stimulation

As GPCR such as the A2bR function to terminate TCR responses [50], we hypothesized that the duration of TCR-stimulation might influence whether cAMP had an enhancing or inhibiting effect on TCR-stimulated levels of IL-2 mRNA. Ligation of the TCR and CD28 prompts CD4+CD8+ T Helper Cells
Hynes et al: Inhibition of Gαs/cAMP Signaling Decreases TCR-Stimulated IL-2 transcription in CD4+ T Helper Cells

Figure 6: Inhibiting cAMP production decreases activity of the IL-2 promoter without affecting IL-2 mRNA stability. (A) ddA does not decrease stability of IL-2 mRNA. After 3 days of TCR stimulation with plate-bound anti-CD3 and soluble anti-CD28 in the presence or absence of ddA, Jurkat cells were incubated for the indicated times with Actinomycin D to inhibit transcription, and the rate of IL-2 mRNA degradation was measured. In both cases, the rates of IL-2 mRNA degradation fit a single exponential. Data represent means ± SD from triplicate determinations from a single experiment representative of 4 experiments. (B) ddA decreases IL-2 promoter activity in a luciferase reporter assay. Jurkat cells were stimulated with plate-bound anti-CD3 and soluble anti-CD28 in the presence or absence of ddA for 3 days following nucleofection with the indicated plasmids. (B) Data represent means ± SD from triplicate determinations from a single assay representative of 6 assays. (C) Data represent the means ± SE of values from stimulated cells expressing IL2/pGL3 from the 6 assays. **, p < 0.01.

Figure 7: Gαs siRNA, but not GαDN3, decreases TCR-stimulated cAMP. Jurkat cells were nucleofected with the indicated siRNA or plasmids and then assayed for cAMP accumulation as described in Methods. The TCR was stimulated with 2.5 μg/ml plate-bound anti-CD3 and 2.5 μg/ml soluble anti-CD28 (A and B), and the A2aR was stimulated with 300 μM CGS-21680 (C). Data in (A) represent the mean ± SE from 3 experiments and data in (B and C) represent the mean ± SE from 9 experiments. *, p < 0.05.

T cells to secrete IL-2 rapidly, which further enhances their proliferation and survival [69]. However, the levels of IL-2 decrease as the cells start to differentiate [55, 70]. Accordingly, we observed an initial peak of IL-2 mRNA within 24 hours of TCR stimulation of Jurkat cells with plate-bound anti-CD3 antibodies and soluble anti-CD28 antibodies that decreased upon further stimulation [56] (Fig. 8A). The enhancing effect of the A2aR antagonist, ZM-241385, was only observed after this initial peak, occurring after at least two days of TCR stimulation (Fig. 8A).
may be explained in part by our observation that during the course of a 3-day stimulation of the TCR, expression of A_2aR mRNA increased ~4-fold (data not shown), consistent with a previous report that the A_2aR exhibited increased NFAT-dependent expression upon TCR engagement and that CGS-21680-stimulated cAMP levels were higher in cells that had been stimulated previously with anti-CD3 antibodies [10]. Thus, TCR-stimulated increases in GPCR activity may function as a built-in negative feedback mechanism.

The delayed potentiating effect of ZM-241385 on TCR-stimulated IL-2 mRNA levels might indicate merely that A_2aR expression was initially limiting. Alternatively, cAMP inhibition might only have an enhancing effect if it occurred after prolonged TCR stimulation. To distinguish between these possibilities, we stimulated the TCR in Jurkat cells for three days and added ddA one hour before harvesting them (Fig. 8B). In contrast to the inhibitory effect of ddA when added from the initiation of TCR stimulation (Fig. 5D), when ddA was added one hour before the cells were harvested and IL-2 mRNA levels were determined, TCR-stimulated IL-2 mRNA levels were enhanced, consistent with an inhibitory effect of cAMP at this stage of TCR-stimulation (Fig. 8B). These results suggest that TCR-stimulated changes in the T cell (see Discussion) influence whether cAMP plays an enhancing or inhibitory role in regulation of IL-2 mRNA levels.

Discussion

The effect of cAMP on IL-2 production in T cells has generally been thought to be inhibitory [10–17, 22, 24], although there is also some evidence to the contrary [32, 33]. The results presented here demonstrate that the effect of inhibiting cAMP increases on IL-2 mRNA levels in TCR-stimulated CD4+ T cells depends on the means by which this is accomplished. These results support both an inhibitory role for GPCRs and a stimulatory one for Gα_3 and cAMP in the regulation of TCR-stimulated IL-2 mRNA levels (Fig. 9). The source of the activated Gα_3 that plays a positive role has not been identified, but the TCR is one possibility, as it appears to stimulate cAMP synthesis via a non-canonical mechanism that involves activation of Gα_3, but not GPCRs, and as discussed below, the cAMP increases stimulated by the TCR compared to GPCRs are likely to be more modest and transient, characteristics associated with an enhancing effect on TCR-stimulated IL-2 [32, 33].

Based on prior results [16, 17, 22] and those presented here, the context of Gα_3/cAMP signaling appears to be an important determinant of its effect on IL-2 production by activated T cells. The presence or absence of uninhibited Gβγ signaling is one important contextual difference between TCR-stimulated T cells in which GPCRs versus Gα_3 or adenylyl cyclase are blocked. Whereas knocking down Gα_3 expression and inhibiting adenylyl cyclase activity each decreased levels of TCR-stimulated IL-2 mRNA, potentiation of these mRNA levels was obtained when both Gα_3 and Gβγ signaling were blocked, which is important in light of our previous observation that inhibition of Gβγ alone with the small molecule inhibitor, gallein, enhanced TCR-stimulated IL-2 transcription [56]. This could indicate that inhibition of both the Gα_3 and Gβγ components of G is necessary to obtain a stimulatory effect, and that simultaneous Gβγ signaling determines the effect of Gα_3/cAMP signaling on TCR-stimulated IL-2.
Figure 9: Model of how the source and context of activated Gαs and cAMP may determine whether they enhance or inhibit TCR-stimulated IL-2 transcription. Interactions between the TCR and peptide-major histocompatibility complex (MHC) lead to recruitment of CD4 and its associated kinase, p56-Lck, which phosphorylates tyrosine residues in the cytoplasmic tails of the TCR subunits, leading to recruitment and phosphorylation of the tyrosine kinase, ZAP-70. CD28 co-stimulation provides an additional signal that is needed for complete T cell activation and regulation of IL-2 production [46]. ZAP-70 and p56-Lck then phosphorylate and activate numerous downstream target proteins, including PLC-γ, leading to Ca2+ increases and activation of a variety of downstream pathways including translocation of NFAT to the nucleus and activation of IL-2 transcription [77] (black and white pathway). Gαs stimulated by a mechanism that does not involve GsPCRs, but which could potentially involve the TCR, enhances TCR-stimulated IL-2 transcription by a mechanism that may involve binding of pCREB to the CRE site of the IL-2 promoter [68, 78-80] during the initial stages of TCR stimulation (green pathway, Stimulatory Step 1). In contrast GαsPCRs decrease TCR-stimulated IL-2 transcription, potentially by utilizing both Gαs and Gβγ signaling in cells that have been exposed to at least two days of TCR stimulation (red pathway, Inhibitory Step 2). The inhibitory GPCR/Gαs/cAMP pathway may involve binding of CREM, which gradually replaces pCREB, to the CRE site of the IL-2 promoter [79] or the formation of NFAT/ICER complexes on NFAT/AP-1 composite sites in the IL-2 promoter [81], leading to repression of transcription (Inhibitory Step 2). Previous studies suggest that cAMP increases stimulated by the TCR are smaller and more transient than those stimulated by GsPCRs, as depicted by the relative sizes of the cAMP symbols, and this may contribute to the opposite effects on IL-2 transcription. Simultaneously, Gβγ may inhibit TCR-stimulated IL-2 transcription [56] by decreasing TCR-stimulated Ca2+ increases through CaV1 channels (Inhibitory Step 2), which are activated by the TCR by an unknown mechanism [72]. Ca2+-calmodulin-activated calcineurin dephosphorylates NFAT, exposing a nuclear localization sequence (NLS) and leading to nuclear translocation.
mRNA levels in a manner analogous to B-Raf, which is a cell type-specific molecular switch that determines whether cAMP has a stimulatory or inhibitory effect on MAPK activity in central nervous system parenchymal cells [4]. Alternatively, inhibiting the Gβγ component of Gα alone may be sufficient to potentiate TCR-stimulated IL-2 transcription, even without a decrease in Gα activity and cAMP levels. As gallein blocks the interactions of Gβγ with downstream effectors rather than exclusively inhibiting Gβγ derived from a particular G protein heterotrimer such as Gα [59, 71], it is currently not possible to distinguish between these two possibilities.

One potential mechanism by which simultaneous Gβγ activation could influence the effect of Gα/cAMP signaling on TCR-stimulated IL-2 transcription is via inhibition of TCR-stimulated increases in intracellular Ca2+ levels (Fig. 9). We determined previously that inhibiting Gβγ led to increased levels of intracellular Ca2+ in TCR-stimulated CD4+ T cells [56]. The mechanism for this effect of Gβγ inhibition remains to be determined, but may involve L-type voltage-dependent Ca2+ (Ca2+1) channels, which are expressed in primary human T cells and Jurkat cells, are activated by the TCR by an unknown mechanism, rather than by T cell depolarization [72], and are important for Ca2+-mediated NFAT translocation to the nucleus and IL-2 production [72, 73] (Fig. 9). Gβγ can block activation of Ca2+1 channels [74–76] and gallein can prevent this effect of Gβγ [76]. TCR-stimulated signaling involves increases in intracellular Ca2+ in response to IP3 generated by activated PLC-γ, resulting in activation of a variety of downstream pathways including translocation of NFAT to the nucleus and activation of IL-2 transcription [77] (Fig. 9). Whereas GPCRs stimulated Gβγ might simultaneously increase cAMP via Gα and decrease Ca2+ via Gβγ (Fig. 9), activation of Gα/cAMP signaling alone might potentiate TCR-stimulated Ca2+ increases, as has been demonstrated for transient adhesion-dependent cAMP increases [31].

Most of our experiments involved antagonizing or blocking GPCRs signaling, knocking down Gα expression, or inhibiting adenylyl cyclase activity from the initial onset of a 3-day interval of TCR stimulation. The observed negative effects of blocking Gα/cAMP signaling are consistent with the decreased T cell functioning seen in knockout animals for Gα [26] and for the AC7 isoform of adenylyl cyclase [27], in which cAMP signaling is blocked before the initiation of TCR stimulation. In contrast, our data showing that potentiation of IL-2 mRNA levels by 2M-241385 required at least two days of TCR stimulation and that addition of ddA after three days of TCR stimulation enhanced IL-2 mRNA levels (Fig. 8) suggest that the inhibitory effects of cAMP on IL-2 transcription occur only after the initiation of TCR stimulation. Of note, the potentiating effect of Gβγ inhibition on IL-2 transcription required continuous Gβγ inhibition for at least two days of TCR stimulation [56], implicating a delayed effect of both the Gα and Gβγ components of GPCRs relative to initiation of TCR stimulation. Previous reports suggest a possible mechanism for differential effects of cAMP on TCR-stimulated IL-2 depending on the duration of TCR stimulation. TCR-stimulation initially leads to phosphorylation of CRE-binding protein (CREB), which then recruits p300 and CREB-binding protein (CBP) and binds to the IL-2 promoter to activate transcription [68, 78–80] (Activating Step 1 in Fig. 9). Later it is replaced by cAMP response element (CRE) modulator (CREM), which exerts an inhibitory effect on IL-2 transcription that occurs after the initial increase in TCR-stimulated IL-2 levels [79] (Inhibitory Step 2 in Fig. 9). cAMP also inhibits IL-2 transcription via inducible cAMP early repressor (ICER), a cAMP inducible CREM family member that can form NFAT/ICER complexes on several NFAT/AP-1 composite sites in the IL-2 promoter leading to repression of transcription [81] (Inhibitory Step 2 in Fig. 9). ICER mRNA [82] and protein [81] were not detected until after three hours of exposure of human medullary thymocytes to forskolin treatment. Furthermore, a study of the kinetics of inhibition of IL-2 transcription by forskolin demonstrated a delay in inhibition of IL-2 mRNA accumulation that correlated with a delay in inhibition of NF-kB activity [83]. Therefore, our results, taken together with these previous reports, are consistent with a stimulatory role for cAMP during the early stages of T cell activation that would be blocked by Gα siRNA and ddA.

Based on the ability of TCR stimulation to elevate cAMP by a mechanism that is inhibited by Gα siRNA, but not by GαDN3, Gα activation by the TCR appears to involve a non-canonical mechanism that does not involve a GPCR. There is precedent for non-GPCR-dependent G protein activation and such a mechanism may operate in T cells [84]. For instance, the TCR signals to integrins [85], integrins can activate Gαs leading to translocation of phosphorylated CREB to the nucleus [86], and transient adhesion-dependent cAMP increases are stimulatory to TCR signaling [31]. Additionally, Ric-8B [87] and Cysteine String Protein (CSP) [88] can catalyze nucleotide exchange on free Gαs-GDP.

Our results showing that TCR-stimulated cAMP increases do not appear to involve GPCRs, which inhibit TCR-stimulated IL-2 production, raise the possibility that TCR-stimulated cAMP plays a positive role in IL-2 transcription. One relevant characteristic that distinguishes the cAMP responses stimulated by the TCR versus GPCRs is the differences in amplitudes of the cAMP increases. Reported increases in cAMP in response to TCR stimulation were ~2-fold [89] or 4–6-fold [67] rather than the ~13-fold increase induced by PGE2 [90]. The levels of cAMP that we measured after 40 minutes of stimulation of either the TCR (Fig. 7, A and B) or the A2B (Fig. 7C) were similar. However, increases in the expression of A2B mRNA in response to TCR stimulation (unpublished) [10] suggest that levels of A2B-stimulated cAMP are likely to be greater after several days of TCR stimulation. In contrast, expression of the TCR on the cell surface, as determined by flow cytometry, was ~4-fold lower after a 3-day TCR stimulation than in unstimulated cells (data not shown), similar to a previous report in which co-stimulation of naive T cells with antigen and anti-CD28 for 10 hours resulted in down-regulation of ~90% of the TCRs [47]. Taken together, these results suggest that by three days of TCR stimulation cAMP increases...
in response to A2aR stimulation would be greater than those due to TCR stimulation.

Another variable that might determine the directionality of the effect of Gαs/cAMP signaling on TCR-stimulated IL-2 mRNA levels is the kinetics of the cAMP response. Recently it has become possible to monitor cAMP increases in real time in single cells using a FRET-based cAMP sensor, AKAR2, which detects conformational changes induced by PKA phosphorylation [91]. Use of this probe in T cells showed that adhesion-dependent cAMP increases peaked in less than 2 minutes and returned to baseline within 10 minutes [31]. Whereas these transient cAMP increases were stimulatory to TCR signaling, sustained increases in response to forskolin were inhibitory [31]. Anti-CD3-stimulated cAMP increases with similar transient kinetics have been reported in T cell populations. Stimulation of Jurkat cells with anti-CD3 produced a cAMP increase that peaked at 1 minute [67], and antibody-mediated cross-linking of anti-CD3 antibodies on primary human T lymphocytes produced peak cAMP levels within 2 minutes [89]. In contrast, the kinetics of GPCR-stimulated cAMP increases appears to be somewhat slower. For instance, PGE2-stimulated cAMP increases peaked at 5 minutes [90]. Taken together with previous reports demonstrating a positive correlation between small and transient cAMP increases and IL-2 production [32, 33], these observations are consistent with a positive effect on TCR-stimulated IL-2 production of modest and transient cAMP increases in response to a non-canonical Gαs activator such as the TCR itself in contrast to the negative effect of GPCR stimulation (Fig. 9).

Conclusions

Inhibition of GPCR signaling in TCR-stimulated CD4+ T helper cells enhanced TCR-stimulated increases in IL-2 mRNA, but knocking down Gαs expression, or inhibiting adenylyl cyclase activity had the opposite effect. As inhibiting GPRs blocks both the Gαs and Gβγ components of Gs, and inhibiting Gβγ alone enhances TCR-stimulated increases in IL-2 mRNA, the presence of simultaneously activated Gβγ may determine the effect of activating the Gαs/cAMP pathway. Additionally, the TCR appears to stimulate cAMP synthesis via a non-canonical mechanism that involves activation of Gαs, but not GPRs. As prior reports showed that TCR-stimulated cAMP increases are smaller and more transient than those induced by GPRs, and modest and transient cAMP increases have been associated with enhancement of T cell function, the TCR may be a source of Gαs/cAMP signaling that plays a positive role in IL-2 transcription. Finally, as potentiation of IL-2 mRNA levels by upon A2aR antagonism required at least two days of TCR stimulation, and inhibition of adenylyl cyclase after three days of TCR stimulation enhanced IL-2 mRNA levels, the stage of T cell activation and differentiation appears to determine the effect of Gαs/cAMP signaling on TCR-stimulated IL-2 mRNA levels.

Competing Interests

The authors declare that they have no competing interests.

Acknowledgements

We thank Brian Kobilka for the human HA-tagged β2AR cDNA. This work was supported by National Institutes of Health Grant GM050369.

References

1. Pastan, IH, Johnson, GS and Anderson, WB. Role of cyclic nucleotides in growth control. Annual review of biochemistry. 1975; 44: 491–522. Epub 1975/01/01. DOI: http://dx.doi.org/10.1146/annurev.bi.44.070175.002423. PubMed PMID: 166606.

2. Dumont, JE, Jauniaux, JC and Roger, PP. The cAMP-mediated stimulation of cell proliferation. Trends Biochem Sci. 1989; 14(2): 67–71. Epub 1989/02/01. PubMed PMID: 2539663.

3. Faure, M and Bourne, HR. Differential effects on cAMP on the MAP kinase cascade: evidence for a cAMP-insensitive step that can bypass Raf-1. Mol Biol Cell. 1995; 6(8): 1025–35. Epub 1995/08/01. PubMed PMID: 7579705; PubMed Central PMCID: PMC301260.

4. Dugan, LL, Kim, JS, Zhang, Y, Bart, RD, Sun, Y, Holtzman, DM, et al. Differential effects of cAMP in neurons and astrocytes. Role of B-raf. J Biol Chem. 1999; 274(36): 25842–8. Epub 1999/08/28. PubMed PMID: 10464325.

5. Scott, JD, Dessauer, CW and Tasken, K. Creating order from chaos: cellular regulation by kinase anchoring. Annu Rev Pharmacol Toxicol. 2013; 53: 187–210. Epub 2012/10/10. DOI: http://dx.doi.org/10.1146/annurev-pharmtox-011112-140204. PubMed PMID: 23043438; PubMed Central PMCID: PMC3540170.

6. Houslay, MD. Underpinning compartmentalised cAMP signalling through targeted cAMP breakdown. Trends Biochem Sci. 2010; 35(2): 91–100. Epub 2009/10/30. DOI: http://dx.doi.org/10.1016/j.tibs.2009.09.007. PubMed PMID: 19864144.

7. Mei, FC, Qiao, J, Tsygankova, OM, Meinkoth, JL, Quilliam, LA and Cheng, X. Differential signaling of cyclic AMP: opposing effects of exchange protein directly activated by cyclic AMP and cAMP-dependent protein kinase on protein kinase B activation. J Biol Chem. 2002; 277(13): 11497–504. PubMed PMID: 11801596.

8. Bacallao, K and Monje, PV. Opposing roles of PKA and EPAC in the cAMP-dependent regulation of schwann cell proliferation and differentiation [corrected]. PLoS One. 2013; 8(12): e82354. Epub 2013/12/19. DOI: http://dx.doi.org/10.1371/journal.pone.0082354. PubMed PMID: 24349260; PubMed Central PMCID: PMC3859537.

9. Bruzzone, A, Sauliere, A, Finana, F, Senard, JM, Luthy, I and Gales, C. Dosage-dependent regulation of cell proliferation and adhesion through dual beta2-adrenergic receptor/cAMP signals. Faseb J. 2014; 28(3): 1342–54. Epub 2013/12/07. DOI: http://dx.doi.org/10.1096/fj.13-239285. PubMed PMID: 24308976.

10. Zarek, PE, Huang, CT, Lutz, ER, Kowalski, J, Horton, MR, Linden, J, et al. A2A receptor signaling...
promotes peripheral tolerance by inducing T-cell anergy and the generation of adaptive regulatory T cells. Blood. 2008; 111(1): 251–9. PubMed PMID: 17909080.

11. Erdmann, AA, Gao, ZG, Jung, U, Foley, J, Borenstein, T, Jacobson, KA, et al. Activation of Th1 and Tc1 cell adenosine A2A receptors directly inhibits IL-2 secretion in vitro and IL-2-driven expansion in vivo. Blood. 2005; 105(12): 4707–14. PubMed PMID: 15786085.

12. Csoka, B, Himer, L, Selmecey, Z, Vizi, ES, Pacher, P, Ledent, C, et al. Adenosine A2A receptor activation inhibits T helper 1 and T helper 2 cell development and effector function. Faseb J. 2008; 22(10): 3491–9. PubMed PMID: 18625677.

13. Ohta, A, Ohta, A, Madosu, M, Kini, R, Subramanian, M, Goel, N, et al. A2A adenosine receptor may allow expansion of T cells lacking effector functions in extracellular adenosine-rich microenvironments. J Immunol. 2009; 183(9): 5487–93. Epub 2009/10/22. DOI: http://dx.doi.org/10.4049/jimmunol.0901247. PubMed PMID: 19483394.

14. Minakuchi, R, Wacholtz, MC, Davis, LS and Lipsky, PE. Delineation of the mechanism of inhibition of human T cell activation by PGE2. J Immunol. 1990; 145(8): 2616–25. Epub 1990/10/15. PubMed PMID: 1976669.

15. Anastassiou, ED, Paliogianni, F, Balow, JP, Yamada, H and Boumpas, DT. Prostaglandin E2 and other cyclic AMP-elevating agents modulate IL-2 and IL-2R alpha gene expression at multiple levels. J Immunol. 1992; 148(9): 2845–52. Epub 1992/05/01. PubMed PMID: 13741402.

16. Xin, Z, Jiang, X, Wang, HY, Denny, TN, Dittel, BN and Ganea, D. Effect of vasoactive intestinal peptide (VIP) on cytokine production and expression of VIP receptors in thymocyte subsets. Regulatory peptides. 1997; 72(1): 41–54. Epub 1997/12/24. PubMed PMID: 9404731.

17. Wang, HY, Jiang, X, Gozes, I, Fridkin, M, Brenneman, DE and Ganea, D. Vasoactive intestinal peptide inhibits cytokine production in T lymphocytes through cAMP-dependent and cAMP-independent mechanisms. Regulatory peptides. 1999; 84(1–3): 55–67. Epub 1999/10/27. PubMed PMID: 10535409.

18. Harada, K, Miyake, H, Kurahashi, T and Fujisawa, M. Long-term complete response to very-low-dose interleukin-2 therapy in patients with metastatic renal cell carcinoma: report of two cases. Clinical and experimental nephrology. 2011; 15(6): 966–9. Epub 2011/08/19. DOI: http://dx.doi.org/10.1007/s10157-011-0518-x. PubMed PMID: 21847521.

19. Molloy, MJ, Zhang, W and Usherwood, EJ. Cutting edge: IL-2 immune complexes as a therapy for persistent virus infection. J Immunol. 2009; 182(8): 4512–5. Epub 2009/04/04. DOI: http://dx.doi.org/10.4049/jimmunol.0804175. PubMed PMID: 19342623; PubMed Central PMCID: PMC2682335.

20. Matsuoka, K, Koreth, J, Kim, HT, Bascug, G, McDonough, S, Kawano, Y, et al. Low-dose interleukin-2 therapy restores regulatory T cell homeostasis in patients with chronic graff-ver-sus-host disease. Science translational medicine. 2013; 5(179): 179ra43. Epub 2013/04/05. DOI: http://dx.doi.org/10.1126/scitranslmed.3005265. PubMed PMID: 23552371.

21. Saadoun, D, Rosenzwaig, M, Joly, F, Six, A, Carrat, F, Thibault, V, et al. Regulatory T-cell responses to low-dose interleukin-2 in HCV-induced vasculitis. N Engl J Med. 2011; 365(22): 2067–77. Epub 2011/12/02. DOI: http://dx.doi.org/10.1056/NEJMoa1105143. PubMed PMID: 22129253.

22. Averill, LE, Stein, RL and Kammer, GM. Control of human T-lymphocyte interleukin-2 production by a cAMP-dependent pathway. Cell Immunol. 1988; 115(1): 88–99. Epub 1988/08/01. PubMed PMID: 2841027.

23. Skalhegg, BS, Landmark, BF, Doskeland, SO, Hansson, V, Lea, T and Jahnson, T. Cyclic AMP-dependent protein kinase type I mediates the inhibitory effects of 3’,5’-cyclic adenosine monophosphate on cell replication in human T lymphocytes. J Biol Chem. 1992; 267(22): 15707–14. Epub 1992/08/05. PubMed PMID: 1379235.

24. Vang, T, Torgersen, KM, Sundvold, V, Saxena, M, Levy, FO, Skalhegg, BS, et al. Activation of the COOH-terminal Src kinase (Sck) by cAMP-dependent protein kinase inhibits signaling through the T cell receptor. J Exp Med. 2001; 193(4): 497–507. PubMed PMID: 11181701.

25. Imboden, JB, Shoback, DM, Pattison, G and Stobo, JD. Cholera toxin inhibits the T-cell antigen receptor-mediated increases in inositol trisphosphate and cytoplasmic free calcium. Proc Natl Acad Sci USA. 1986; 83: 5673-7.

26. Li, X, Murray, F, Koide, N, Goldstone, J, Dann, SM, Chen, J, et al. Divergent requirement for Galphas and cAMP in the differentiation and inflammatory profile of distinct mouse Th subsets. J Clin Invest. 2012; 122(3): 963–73. Epub 2012/02/14. DOI: http://dx.doi.org/10.1172/JCI59097. PubMed PMID: 22326954; PubMed Central PMCID: PMC32877220.

27. Duan, B, Davis, R, Sadat, EL, Collins, J, Sternweiss, PC, Yuan, D, et al. Distinct roles of adenyl cyclase VII in regulating the immune responses in mice. J Immunol. 2010; 185(1): 335–44. Epub 2010/05/28. DOI: http://dx.doi.org/10.4049/jimmunol.0903474. PubMed PMID: 20505140; PubMed Central PMCID: PMC3040980.

28. Yao, C, Sakata, D, Esaki, Y, Li, Y, Matsuoka, T, Kuroiwa, K, et al. Prostaglandin E2-EP4 signaling promotes immune inflammation through Th1 cell differentiation and Th17 cell expansion. Nat...
29. Datta, SK, Sabet, M, Nguyen, KP, Valdez, PA, Gonzalez-Navarajas, JM, Islam, S, et al. Mucosal adjuvant activity of cholera toxin requires Th17 cells and protects against inhalation anthrax. Proc Natl Acad Sci U S A. 2010; 107(23): 10638–43. Epub 2010/05/19. DOI: http://dx.doi.org/10.1073/pnas.1002348107. PubMed PMID: 20479237; PubMed Central PMCID: PMC2890829.

30. Koh, WS, Yang, KH and Kaminski, NE. Cyclic AMP is an essential factor in immune responses. Biochem Biophys Res Commun. 1995; 206(2): 703–9. Epub 1995/01/17. DOI: http://dx.doi.org/10.1006/bbrc.1995.1099. PubMed PMID: 7826390.

31. Conche, C, Boulla, G, Trautmann, A and Randriamampita, C. T cell adhesion primes antigen receptor-induced calcium responses through a transient rise in adenosine 3′,5′-cyclic monophosphate. Immunity. 2009; 30(1): 33–43. PubMed PMID: 19144315.

32. Oksenberg, D, Oksenberg, JR, Sakai, K, Peroutka, SJ and Steinman, L. Cyclic adenosine 3′,5′-monophosphate metabolism in activated T-cell clones. Immunology. 1989; 67(4): 484–8. Epub 1989/08/01. PubMed PMID: 2475434; PubMed Central PMCID: PMC1385318.

33. Wacholtz, MC, Minakuchi, R and Lipsky, PE. Characterization of the 3′,5′-cyclic adenosine monophosphate-mediated regulation of IL2 production by T cells and Jurkat cells. Cell Immunol. 1991; 135(2): 285–98. Epub 1991/07/01. PubMed PMID: 1709824.

34. Otani, S, Matsui-Yuasa, I and Morisawa, S. Biphasic effects of dibutylylcyclic adenosine 3′,5′-monophosphate on synergistic stimulation of DNA synthesis by diacylglycerol, and the ionophore A23187 in guinea pig lymphocytes. Life Sci. 1987; 40(25): 2409–14. Epub 1987/06/22. PubMed PMID: 3035313.

35. Berlot, CH. A Highly Effective Dominant Negative alpha s Construct Containing Mutations That Affect Distinct Functions Inhibits Multiple Gs-coupled Receptor Signaling Pathways. J Biol Chem. 2002; 277(23): 21080–5.

36. Hynes, TR, Mervine, SM, Yost, EA, Sabo, JL and Berlot, CH. Live cell imaging of Go and the beta 2-adrenergic receptor demonstrates that both alpha s and beta 1gamma 7 internalize upon stimulation and exhibit similar trafficking patterns that differ from that of the beta 2-adrenergic receptor. J Biol Chem. 2004; 279: 44101-12. PubMed PMID: 15297467.

37. Grishina, G and Berlot, CH. Identification of common and distinct residues involved in the interaction of alpha2 and alphas with adenyl cyclase. J Biol Chem. 1997; 272(33): 20619–26. PubMed PMID: 9252377.

38. Hynes, TR, Tang, L, Mervine, SM, Sabo, JL, Yost, EA, Devreotes, PN, et al. Visualization of G protein betagamma dimers using bimolecular fluorescence complementation demonstrates roles for both beta and gamma in subcellular targeting. J Biol Chem. 2004; 279(29): 30279–86. PubMed PMID: 15136579.

39. Mervine, SM, Yost, EA, Sabo, JL, Hynes, TR and Berlot, CH. Analysis of G Protein betagamma Dimer Formation in Live Cells Using Multicolor Bimolecular Fluorescence Complementation Demonstrates Preferences of beta1 for Particular (gamma) Subunits. Mol Pharmacol. 2006; 70(1): 194–205. PubMed PMID: 16641313.

40. Krumins, AM and Gilman, AG. Targeted Knockdown of G Protein Subunits Selectively Prevents Receptor-mediated Modulation of Effectors and Reveals Complex Changes in Non-targeted Signaling Proteins. J Biol Chem. 2006; 281(15): 10250–62. PubMed PMID: 16443635.

41. Medina, R, Grishina, G, Meloni, EG, Muth, TR and Berlot, CH. Localization of the effector-specifying regions of Go1α and Go0α. J Biol Chem. 1996; 271: 24720-7.

42. Levis, MJ and Bourne, HR. Activation of the a subunit of G in intact cells alters its abundance, rate of degradation, and membrane avidity. J Cell Biol. 1992; 119(5): 1297–307.

43. Robishaw, JD, Smigel, MD and Gilman, AG. Molecular basis for two forms of the G protein that stimulates adenylate cyclase. J Biol Chem. 1986; 261: 9587-90.

44. Salomon, Y, Londos, C and Rodbell, M. A highly sensitive adenylate cyclase assay. Anal Biochem. 1974; 58: 541–8.

45. Exley, M, Terhorst, C and Wileman, T. Structure, assembly and intracellular transport of the T cell receptor for antigen. Semin Immunol. 1991; 3(5): 283–97. Epub 1991/09/01. PubMed PMID: 1686832.

46. Boomer, JS and Green, JM. An enigmatic tail of CD28 signaling. Cold Spring Harbor perspectives in biology. 2010; 2(8): a002436. Epub 2010/06/11. DOI: http://dx.doi.org/10.1101/cshperspect.a002436. PubMed PMID: 20534709; PubMed Central PMCID: PMC2908766.

47. Iezzi, G, Karjalainen, K and Lanzavecchia, A. The duration of antigenic stimulation determines the fate of naive and effector T cells. Immunity. 1998; 8(1): 89–95. Epub 1998/02/14. PubMed PMID: 9462514.

48. Iezzi, G, Scotet, E, Scheidegger, D and Lanzavecchia, A. The interplay between the duration of TCR and cytokine signaling determines T cell polarization. Eur J Immunol. 1999; 29(12): 4092–101. Epub 1999/12/22. DOI: http://dx.doi.org/10.1002/1521-4141(199912)29:12<4092::AID-IMMU4092>3.0.CO;2-A. PubMed PMID: 10602020.
49. Jelley-Gibbs, DM, Lepak, NM, Yen, M and Swain, SL. Two distinct stages in the transition from naive CD4+ T cells to effectors, early antigen-dependent and late cytokine-driven expansion and differentiation. J Immunol. 2000; 165(9): 5017–26. Epub 2000/10/25. PubMed PMID: 11046030.

50. Sitkovsky, MV and Ohta, A. The ‘danger’ sensors that STOP the immune response: the A2 adenosine receptors? Trends Immunol. 2005; 26(6): 299–304. PubMed PMID: 15922945.

51. Jungar, WG. Immune cell regulation by autocrine purinergic signalling. Nat Rev Immunol. 11(3): 201–12. PubMed PMID: 21331080.

52. Poucher, SM, Keddie, JR, Singh, P, Stoggall, SM, Caulkett, PW, Jones, G, et al. The in vitro pharmacology of ZM 241385, a potent, non-xanthine A2a selective adenosine receptor antagonist. Br J Pharmacol. 1995; 115(6): 1096–102. Epub 1995/07/01. PubMed PMID: 7582508; PubMed Central PMCID: PMC1909020.

53. Abraham, RT and Weiss, A. Jurkat T cells and development of the T-cell receptor signalling paradigm. Nat Rev Immunol. 2004; 4(4): 301–8. PubMed PMID: 15057788.

54. Bunting, K, Wang, J and Shannon, MF. Control of interleukin-2 gene transcription: a paradigm for inducible, tissue-specific gene expression. Vitamins and hormones. 2006; 74: 105-45. Epub 2006/10/10. DOI: http://dx.doi.org/10.1016/S0083-1174(06)74005-5. PubMed PMID: 17027513.

55. Shaw, J, Meerovitch, K, Bleackley, RC and Paetkau, V. Mechanisms regulating the level of IL-2 mRNA in T lymphocytes. J Immunol. 1988; 140(7): 2243–8. Epub 1988/04/01. PubMed PMID: 3258332.

56. Yost, EA, Hynes, TR, Hartle, CM, Ott, BJ and Berlot, CH. Inhibition of G-Protein beta-gamma signaling Enhances T Cell Receptor-Stimulated Interleukin 2 Transcription in CD4+ T Helper Cells. PLoS One. 2015; 10(1): e0116575. Epub 2015/01/30. DOI: http://dx.doi.org/10.1371/journal.pone.0116575. PubMed PMID: 25629163.

57. Schulze-Koops, H, Lipsky, PE, Kavarauna, AF and Davis, LS. Elevated Th1- or Th0-like cytokine mRNA in peripheral circulation of patients with rheumatoid arthritis. Modulation by treatment with anti-ICAM-1 correlates with clinical benefit. J Immunol. 1995; 155(10): 5029–37. Epub 1995/11/15. PubMed PMID: 7594511.

58. Grishina, G and Berlot, CH. A surface-exposed region of G(salpha) in which substitutions decrease receptor-mediated activation and increase receptor affinity. Mol Pharmacol. 2000; 57(6): 1081–92. PubMed PMID: 10825378.

59. Bonacci, TM, Mathews, JL, Yuan, C, Lehmann, DM, Malik, S, Wu, D, et al. Differential targeting of Gbetagamma-subunit signaling with small molecules. Science. 2006; 312(5772): 443–6. PubMed PMID: 16627746.

60. De Lean, A, Stadel, JM and Lefkowitz, RJ. A ternary complex model explains the agonist-specific binding properties of the adenylate cyclase-coupled beta-adrenergic receptor. J Biol Chem. 1980; 255(15): 7108–17. PubMed PMID: 6248546.

61. Bourne, HR, Kaslow, D, Kaslow, HR, Salomon, MR and Licko, V. Hormone-sensitive adenylate cyclase: Mutant phenotype with normally regulated b-adrenergic receptors uncoupled from catalytic adenylate cyclase. Mol Pharmacol. 1981; 20: 435-41.

62. Miller, RT, Masters, SB, Sullivan, KA, Beideman, B and Bourne, HR. A mutation that prevents GTP-dependent activation of the alpha chain of Gs. Nature. 1988; 334(6184): 712–5. Epub 1988/08/25. DOI: http://dx.doi.org/10.1038/334712a0. PubMed PMID: 3137475.

63. Lee, E, Taussig, R and Gilman, AG. The G226A mutant of Gs, highlights the requirement for dissociation of G protein subunits. J Biol Chem. 1992; 267: 1212-8.

64. Charalambous, C, Gsandtner, I, Keuerleber, S, Milan-Lobo, I, Kudlacek, O, Freissmuth, M, et al. Restricted collision coupling of the A2A receptor revisited: evidence for physical separation of two signaling cascades. J Biol Chem. 2008; 283(14): 9276–88. PubMed PMID: 18218631.

65. Hu, CD, Chinenov, Y and Kerppola, TK. Visualization of interactions among bZIP and Rel family proteins in living cells using bimolecular fluorescence complementation. Mol Cell. 2002; 9(4): 789–98. PubMed PMID: 11983170.

66. Kerppola, TK. Visualization of molecular interactions by fluorescence complementation. Nat Rev Mol Cell Biol. 2006; 7(6): 449–56. PubMed PMID: 16625152.

67. Ledbetter, JA, Parsons, M, Martin, PJ, Hansen, JA, Rabinovitch, PS and June, CH. Antibody binding to CD5 (Tp67) and Tp44 T cell surface molecules: effects on cyclic nucleotides, cytoplasmic free calcium, and cAMP-mediated suppression. J Immunol. 1986; 137(10): 3299–305. PubMed PMID: 3021852.

68. Abrahamsen, H, Baillie, G, Ngai, J, Vang, T, Nika, K, Ruppelt, A, et al. TCR- and CD28-mediated recruitment of phosphodiesterase 4 to lipid rafts potentiates TCR signaling. J Immunol. 2004; 173(8): 4847–58. PubMed PMID: 15470025.

69. Schwartz, RH. Costimulation of T lymphocytes: the role of CD28, CTLA-4, and B7/BB1 in interleukin-2 production and immunotherapy. Cell. 1992; 71(7): 1065–8. Epub 1992/12/24. PubMed PMID: 1335362.

70. Jain, J, Loh, C and Rao, A. Transcriptional regulation of the IL-2 gene. Curr Opin Immunol. 1995; 7(3): 333–42. Epub 1995/06/01. PubMed PMID: 7546397.

71. Lehmann, DM, Seneviratne, AM and Smrcka, AV. Small molecule disruption of G protein beta gamma subunit signaling inhibits neutrophil chemotaxis and inflammation. Mol Pharmacol. 2008; 73(2): 410–8. PubMed PMID: 18006643.
72. Badou, A, Jha, MK, Matza, D and Flavell, RA. Emerging roles of L-type voltage-gated and other calcium channels in T lymphocytes. Frontiers in immunology. 2013; 4: 243. Epub 2013/09/07. DOI: http://dx.doi.org/10.3389/fimmu.2013.00243. PubMed PMID: 24009608; PubMed Central PMCID: PMC3757574.

73. Kotturi, MF, Carlow, DA, Lee, JC, Ziltener, HJ and Jefferies, WA. Identification and functional characterization of voltage-dependent calcium channels in T lymphocytes. J Biol Chem. 2003; 278(47): 46949–60. Epub 2003/09/05. DOI: http://dx.doi.org/10.1074/jbc.M309268200. PubMed PMID: 12954628.

74. Weiss, N, Legrand, C, Pourreau, S, Bichraoui, H, Allard, B, Zamponi, GW, et al. In vivo expression of G-protein beta1gamma2 dimer in adult mouse skeletal muscle alters L-type calcium current and excitation-contraction coupling. J Physiol. 2010; 588(Pt 15): 2945–60. Epub 2010/06/16. DOI: http://dx.doi.org/10.1113/jphysiol.2010.191593. PubMed PMID: 20546769; PubMed Central PMCID: PMC2956909.

75. Ivanina, T, Blumenstein, Y, Shistik, E, Barzilai, R and Dascal, N. Modulation of L-type Ca2+ channels by gbeta gamma and calmodulin via interactions with N and C termini of alpha 1C. J Biol Chem. 2000; 275(51): 39846–54. Epub 2000/09/21. DOI: http://dx.doi.org/10.1074/jbc.M005881200. PubMed PMID: 10995757.

76. Zhang, CH, Lifshitz, LM, Uy, KF, Ikebe, M, Fogarty, KE and ZhuGe, R. What turns CREB on? Cell Signal. 2004; 16(11): 1211–27. Epub 2004/09/01. DOI: http://dx.doi.org/10.1016/j.cellsig.2004.05.001. PubMed PMID: 15337520.

77. Johannesssen, M, Delghandi, MP and Moens, U. What turns CREB on? Cell Signal. 2004; 16(11): 1211–27. Epub 2004/09/01. DOI: http://dx.doi.org/10.1016/j.cellsig.2004.05.001. PubMed PMID: 15337521.

78. Tenbrock, K, Juang, YT, Tolnay, M and Tsokos, GC. The cyclic adenosine 5’-monophosphate response element modulator suppresses IL-2 production in stimulated T cells by a chromatin-dependent mechanism. J Immunol. 2003; 170(6): 2971–6. Epub 2003/03/11. PubMed PMID: 12626549.

80. Mayr, B and Montminy, M. Transcriptional regulation by the phosphorylation-dependent factor CREB. Nat Rev Mol Cell Biol. 2001; 2(8): 599–609. Epub 2001/08/03. DOI: http://dx.doi.org/10.1038/35085068. PubMed PMID: 11483993.

81. Bodor, J and Habener, JF. Role of transcriptional repressor ICER in cyclic AMP-mediated attenuation of cytokine gene expression in human thymocytes. J Biol Chem. 1998; 273(16): 9544–51. Epub 1998/05/23. PubMed PMID: 9545284.

82. Bodor, J, Spetz, AL, Strominger, JL and Habener, JF. cAMP inducibility of transcriptional repressor ICER in developing and mature human T lymphocytes. Proc Natl Acad Sci U S A. 1996; 93(8): 3536–41. Epub 1996/04/16. PubMed PMID: 8622971; PubMed Central PMCID: PMC39645.

83. Chen, D and Rothenberg, EV. Interleukin 2 transcription factors as molecular targets of cAMP inhibition: delayed inhibition kinetics and combinatorial transcription roles. J Exp Med. 1994; 179(3): 931–42. Epub 1994/03/01. PubMed PMID: 8113685; PubMed Central PMCID: PMC2191402.

84. Boullar, C and Kehrl, JH. Implications of non-canonical G-protein signaling for the immune system. Cell Signal. 2014; 26(6): 1269–82. Epub 2014/03/04. DOI: http://dx.doi.org/10.1016/j.cellsig.2014.02.010. PubMed PMID: 24583286.

85. Peterson, EJ, Woods, ML, Dmowski, SA, Derimanov, G, Jordan, MS, Wu, JN, et al. Coupling of the TCR to integrin activation by Slap130/Fyb. Science. 2001; 293(5538): 2263–5. Epub 2001/09/22. DOI: http://dx.doi.org/10.1126/science.1063486. PubMed PMID: 11567141.

86. Alenghat, FJ, Tytell, JD, Thodeti, CK, Derrien, A and Ingeb, DE. Mechanical control of CAMP signaling through integrins is mediated by the heterotrimeric Galphalpha protein. J Cell Biochem. 2009; 106(4): 529–38. Epub 2009/01/27. DOI: http://dx.doi.org/10.1002/jcb.22001. PubMed PMID: 19170051; PubMed Central PMCID: PMC2739599.

87. Chan, P, Gabay, M, Wright, FA and Tall, GG. Rict-8B is a GTP-dependent G protein alpha guanine nucleotide exchange factor. J Biol Chem. 2011; 286(22): 19932–42. Epub 2011/04/07. DOI: http://dx.doi.org/10.1074/jbc.M110.163675. PubMed PMID: 21467038; PubMed Central PMCID: PMC3103368.

88. Natochin, M, Campbell, TN, Barren, B, Miller, LC, Jefferies, WA. CAT303335. J Biol Chem. 1998; 273(16): 9544–51. Epub 1998/05/23. PubMed PMID: 9545284.

89. Kammer, GM, Boehm, CA, Rudolph, SA and Schultz, LA. Mobility of the human T lymphocyte surface molecules CD3, CD4, and CD8: regulation by a cAMP dependent pathway. Proc Natl Acad Sci U S A. 1988; 85(3): 792–6. PubMed PMID: 2829202.

90. Goodwin, JS, Bromberg, S and Messner, RP. Studies on the cyclic AMP response to prostaglandin in human lymphocytes. Cell Immunol. 1981; 60(2): 298–307. Epub 1981/05/15. PubMed PMID: 6263502.

91. Zhang, J, Ma, Y, Taylor, SS and Tsien, RY. Genetically encoded reporters of protein kinase A activity reveal impact of substrate tethering. Proc Natl Acad Sci U S A. 2001; 98(26): 14997–5002. PubMed PMID: 11752448.
