Fractional Langevin Equations with Nonlocal Integral Boundary Conditions

Ahmed Salem 1, Faris Alzahrani 1 and Lamya Almaghamsi 1,2,*

1 Department of Mathematics, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia; ahmedsalem74@hotmail.com (A.S.); falzahrani1@kau.edu.sa (F.A.)
2 Department of Mathematics, University of Jeddah, Jeddah 41510, Saudi Arabia
* Correspondence: asaalshreef@kau.edu.sa

Received: 11 March 2019; Accepted: 29 April 2019; Published: 6 May 2019

Abstract: In this paper, we investigate a class of nonlinear Langevin equations involving two fractional orders with nonlocal integral and three-point boundary conditions. Using the Banach contraction principle, Krasnoselskii’s and the nonlinear alternative Leray Schauder theorems, the existence and uniqueness results of solutions are proven. The paper was appended examples which illustrate the applicability of the results.

Keywords: fractional Langevin equations; fixed point theorem; existence and uniqueness; integral boundary condition

MSC: 26A33; 34A08; 34A12; 34B15

1. Introduction

In recent years, the theory of fractional calculus has been developed rapidly. The existence and uniqueness of solutions for boundary value problems of fractional differential equations have been extensively studied [1–8], and an extensive list of references given in that respect. The significance of fractional differential equations comes from its applications in a several fields such as chemistry, physics, biology, aerodynamics, fitting of experimental data, signal and image processing, economics, control theory, biophysics, blood flow phenomena, etc. The Langevin equation (drafted for first by Langevin in 1908) is found to be an effectual tool to describe the progression of physical phenomena in fluctuating environments [9]. Alongside the intensive development of fractional derivative, the fractional Langevin equations have been introduced by Mainardi and Pironi [10], which was followed by many articles interested with the existence and uniqueness of solutions for fractional Langevin equations [11–25] and the references given therein.

There are several contributions focusing on the boundary value problems of fractional differential equations, mainly on the existence and uniqueness of the solutions with integrals boundary conditions [3,6]. As far as we know, few contributions associated with integrals boundary conditions for fractional Langevin equations have been published in [13,14,19,20].

Inspired by the papers mentioned above, in this paper, we study the existence and uniqueness of solutions for the following boundary value problem of the Langevin equation with two different fractional orders:

\[C D^\beta (C D^\alpha + \lambda) u(t) = f(t, u(t)), \quad t \in [0,1] \]

subject to the nonlocal integral boundary condition

\[u(0) = 0, \quad u(1) = 0, \quad C D^\alpha u(0) + C D^\beta u(1) = \mu \int_0^\eta u(s) ds \]
where \(cD^\alpha \) and \(cD^\beta \) are the Caputo’s fractional derivatives of orders \(0 < \alpha < 1 \) and \(1 < \beta \leq 2 \), \(\lambda, \mu \in \mathbb{R}, 0 < \eta < 1 \) and \(f : [0, 1] \times \mathbb{R} \to \mathbb{R} \) is a continuously differentiable function.

In the beginning of the paper, we provide some basic concepts on the fractional integrals and derivatives. Then, we are based on the Banach contraction principle and Krasnoselskii’s fixed point theorem to study the existence and uniqueness solution of the three points boundary problems (1) and (2).

2. Preliminaries and Relevant Lemmas

In this section, we introduce some notations and definitions of fractional calculus and present preliminary results needed in our proofs later. We are indebted to the terminologies used in the books [7,8].

Definition 1. The Riemann-Liouville fractional integral of order \(\alpha > 0 \) for a continuous function \(f : [0, \infty) \to \mathbb{R} \) is defined as

\[
I^\alpha f(t) = \frac{1}{\Gamma(\alpha)} \int_0^t (t-s)^{\alpha-1} f(s)ds
\]

provided that the right-hand-side integral exists, where \(\Gamma(\alpha) \) denotes the Gamma function is the Euler gamma function defined by

\[
\Gamma(\alpha) = \int_0^\infty t^{\alpha-1}e^{-t}dt, \quad \alpha > 0.
\]

Definition 2. Let \(n \in \mathbb{N} \) be a positive integer and \(\alpha \) be a positive real such that \(n - 1 < \alpha \leq n \), then the fractional derivative of a function \(f : [0, \infty) \to \mathbb{R} \) in the Caputo sense is defined as

\[
cD^\alpha f(t) = \frac{1}{\Gamma(n-\alpha)} \int_0^t (t-s)^{n-\alpha-1} f^{(n)}(s)ds
\]

provided that the right-hand-side integral exists and is finite. We notice that the Caputo derivative of a constant is zero.

Lemma 1. Let \(\alpha \) and \(\beta \) be positive and real. If \(u \) is a continuous function, then we have

\[
I^\alpha I^\beta u(t) = I^{\alpha+\beta} u(t)
\]

Lemma 2. Let \(n \in \mathbb{N} \) and \(n - 1 < \alpha \leq n \). If \(u \) is a continuous function, then we have

\[
I^n cD^\alpha u(t) = u(t) + c_0 + c_1t + \cdots + c_{n-1}t^{n-1}
\]

Let us now consider the linear fractional Langevin differential equation

\[
cD^\beta(cD^\alpha + \lambda) u(t) = h(t), \quad t \in [0, 1]
\]

supplemented with the nonlocal integral boundary condition

\[
u(0) = 0, \quad u(1) = 0, \quad cD^\alpha u(0) + cD^\alpha u(1) = \mu \int_0^\eta u(s)ds
\]

where \(0 < \alpha < 1 \) and \(1 < \beta \leq 2 \), \(\lambda, \mu \in \mathbb{R}, 0 < \eta < 1 \) and \(h \in C[0, 1] \).
Lemma 3. If \(h \in C[0,1] \), then the unique solution of the boundary value problem (3) and (4) is given by

\[
u(t) = \frac{1}{\Gamma(\alpha + \beta)} \int_0^t (t-s)^{\alpha+\beta-1} h(s) \, ds - \frac{\Gamma(2t-\alpha-1)}{(1-\alpha)\Gamma(\alpha + \beta)} \int_0^1 (1-s)^{\alpha+\beta-1} h(s) \, ds
\]

\[+ \frac{\lambda t^\alpha (2t-\alpha-1)}{(1-\alpha)\Gamma(\alpha)} \int_0^1 (1-s)^{\alpha-1} u(s) \, ds + \frac{\mu t^\alpha (1-t)}{(1-\alpha)\Gamma(\alpha + 1)} \int_0^\eta u(s) \, ds
\]

\[\cdot \frac{t^\alpha (1-t)}{(1-\alpha)\Gamma(\alpha + 1)\beta} \int_0^1 (1-s)^{\alpha-1} u(s) \, ds - \frac{\lambda}{\Gamma(\alpha)} \int_0^1 (1-s)^{\alpha-1} u(s) \, ds
\]

Proof. From Lemmas 1, 2 and the relevant lemma in [13], it follows that

\[extit{c} D^\alpha u(t) = t^\beta h(t) + a_0 + a_1 t - \lambda u(t)
\]

and

\[
u(t) = t^{\alpha+\beta} h(t) + t^\alpha a_0 + t^\alpha a_1 t - t^\alpha \lambda u(t) + a_2
\]

\[= \frac{1}{\Gamma(\alpha + \beta)} \int_0^t (t-s)^{\alpha+\beta-1} h(s) \, ds + a_0 \frac{t^\alpha}{\Gamma(\alpha + 1)} + a_1 \frac{t^\alpha}{\Gamma(\alpha + 2)} - \frac{\lambda}{\Gamma(\alpha)} \int_0^1 (1-s)^{\alpha-1} u(s) \, ds + a_2
\]

(5)

Using the boundary conditions (4) gives \(a_2 = 0 \),

\[
a_0 = \frac{\Gamma(\alpha + 2)}{1-\alpha} \left(\frac{1}{\Gamma(\alpha + \beta)} \int_0^1 (1-s)^{\alpha+\beta-1} h(s) \, ds - \frac{\lambda}{\Gamma(\alpha)} \int_0^1 (1-s)^{\alpha-1} u(s) \, ds \right)
\]

\[+ \frac{1}{1-\alpha} \left(\mu \int_0^\eta u(s) \, ds - \frac{1}{\Gamma(\beta)} \int_0^1 (1-s)^{\beta-1} h(s) \, ds \right)
\]

and

\[
a_1 = \frac{2\Gamma(\alpha + 2)}{1-\alpha} \left(\frac{1}{\Gamma(\alpha)} \int_0^1 (1-s)^{\alpha-1} u(s) \, ds - \frac{1}{\Gamma(\alpha + \beta)} \int_0^1 (1-s)^{\alpha+\beta-1} h(s) \, ds \right)
\]

\[\cdot \frac{1}{1-\alpha} \left(\mu \int_0^\eta u(s) \, ds - \frac{1}{\Gamma(\beta)} \int_0^1 (1-s)^{\beta-1} h(s) \, ds \right)
\]

Substituting the above values of \(a_0, a_1 \) and \(a_2 \) in (5) to obtain the desired results. \(\square \)

Lemma 4. For all \(\alpha \in (0,1) \), we have

1. \(\max_{t \in [0,1]} |t^\alpha (1-t)| = \frac{\alpha^\alpha}{(1+\alpha)^{1+\alpha}} \)

2. \(\max_{t \in [0,1]} |t^\alpha (2t - \alpha - 1)| = \begin{cases} 1 - \alpha & \text{if } \alpha \leq \frac{1}{2} \\ \left(\frac{\alpha}{2} \right)^\alpha & \text{if } \alpha > \frac{1}{2} \end{cases} \)

Proof. The first statement has been proven by Zhou and Qiao [14]. They also proved that \(\max_{t \in [0,1]} |t^\alpha (2t - \alpha - 1)| = \max\{ \left(\frac{\alpha}{2} \right)^\alpha, 1 - \alpha \} \). Now, assume that

\[
g(\alpha) = \left(\frac{\alpha}{2} \right)^\alpha - (1 - \alpha).
\]
Differentiation gives

\[
g'(\alpha) = \left(\frac{\alpha}{2}\right)^a (\ln \alpha - \ln 2 + 1) + 1
\]

\[
g''(\alpha) = \left(\frac{\alpha}{2}\right)^a \left((\ln \alpha - \ln 2 + 1)^2 + \frac{1}{\alpha} \right) > 0
\]

which means that \(g'(\alpha)\) is increasing on \((0, 1)\). It is easy to see that \(\lim_{\alpha \to 0^+} g'(\alpha) = -\infty\) and \(g'(1/2) = (1/2)(1 - \ln 4) + 1 \approx 0.806853 > 0\) which implies that there exists \(0 < \alpha_0 < 1/2\) such that \(g'(\alpha) < 0\) for all \(\alpha \in (0, \alpha_0)\) and \(g'(\alpha) > 0\) for all \(\alpha \in (\alpha_0, 1]\). It follows that \(g(\alpha)\) is decreasing on \((0, \alpha_0)\) and increasing on \((\alpha_0, 1]\). Since \(\lim_{\alpha \to 0^+} g(\alpha) = 0\), \(g(1/2) = 0\) and \(g(1) = 1/2\), then we obtain the desired results. \(\Box\)

In the proofs of our main existence results for the problem (1) and (2), we will use the Banach contraction mapping principle, the Krasnoselskii fixed point theorem for the sum of two operators and nonlinear alternative Leray-Schauder theorem presented below:

Lemma 5. ([26]) Let \(\Omega\) be a closed convex and nonempty subset of Banach space \(E\). Let \(F_1\) and \(F_2\) be two operators such that:

1. \(F_1x + F_2y \in \Omega\), \(x, y \in \Omega\)
2. \(F_1\) is compact and continuous on \(\Omega\)
3. \(F_2\) is a contraction mapping on \(\Omega\).

Then there exists \(z \in \Omega\) such that \(z = F_1z + F_2z\).

Lemma 6. ([27,28]) Let \(E\) be a Banach space, \(C\) be a closed and convex subset of \(E\), \(U\) be an open subset of \(C\) and \(0 \in U\). Suppose that the operator \(T : \overline{U} \to C\) is a continuous and compact map (that is, \(T(\overline{U})\) is a relatively compact subset of \(C\)). Then either

(i) \(T\) has a fixed point in \(x^* \in \overline{U}\), or

(ii) there is \(x \in \partial U\) (the boundary of \(U\) in \(C\)) and \(\delta > 1\) such that \(\delta x = T(x)\).

3. Main Results

Let \(E = C([0, 1], \mathbb{R})\) be the Banach space of all continuous functions from \([0, 1] \to \mathbb{R}\) endowed the norm defined by

\[
\|u\| = \sup \{|u(t)|, t \in [0, 1]\}.
\]

Before stating and proving the main results, we introduce the following hypotheses. Assume that

\(H_1\) The function \(f : [0, 1] \times \mathbb{R} \to \mathbb{R}\) is a jointly continuous.

\(H_2\) The function \(f\) satisfies

\[
|f(t, u) - f(t, v)| \leq L|u - v|, \quad \forall t \in [0, 1], u, v \in \mathbb{R}
\]

where \(L\) is the Lipschitz constant.

\(H_3\) There exists a nonnegative function \(\psi \in C([0, 1], \mathbb{R}_+)\) such that

\[
|f(t, u)| \leq \psi(t), \quad \forall (t, u) \in ([0, 1], \mathbb{R}).
\]

\(H_4\) There exist two nonnegative functions \(p, q \in L_1([0, 1])\) such that

\[
|f(t, u)| \leq p(t)|u| + q(t), \quad \forall (t, u) \in ([0, 1], \mathbb{R}).
\]
For computational convenience, we set

\[\Lambda = \Lambda_1 + \lambda \Lambda_1 \]

(6)

\[\Lambda = \frac{L \nu}{\Gamma(a + \beta + 1)} + \frac{\lambda \nu}{\Gamma(a + 1)} + A \left(\eta |\mu| + \frac{L}{\Gamma(\beta + 1)} \right) \]

(7)

\[Q = \Lambda_1 + \frac{1 + \nu}{\Gamma(a + \beta)} \int_0^1 (1 - s)^{a+\beta-1} p(s) ds \]

+ \frac{A}{\Gamma(\beta)} \int_0^1 (1 - s)^{\beta-1} p(s) ds

(8)

\[Q_1 = \frac{1 + \nu}{\Gamma(a + \beta)} \int_0^1 (1 - s)^{a+\beta-1} q(s) ds + \frac{A}{\Gamma(\beta)} \int_0^1 (1 - s)^{\beta-1} q(s) ds \]

(9)

where

\[\Lambda_1 = \frac{1 + \nu}{\Gamma(a + \beta + 1)} + \frac{A}{\Gamma(\beta + 1)} \]

(10)

\[\Delta_1 = \frac{|\lambda|(1 + \nu)}{\Gamma(a + 1)} + \eta |\mu| A \]

(11)

and

\[A = \frac{\alpha^\alpha}{(1 + \alpha)^{1+\alpha}(1 - \alpha)\Gamma(a + 1)} \]

\[\nu = \begin{cases} 1 & \text{if } \alpha \leq \frac{1}{2} \\ \frac{1}{1 - \alpha} \left(\frac{\alpha}{2} \right)^{\alpha} & \text{if } \alpha > \frac{1}{2} \end{cases} \]

In view of Lemma 3, we transform problem (1) and (2) as

\[u = T(u) = T_1(u) + T_2(u) \]

(12)

where the operators \(T_i : E \rightarrow E, i = 1, 2 \) are defined by

\[(T_1 u)(t) = \frac{1}{\Gamma(a + \beta)} \int_0^t (t - s)^{a+\beta-1} f(s, u(s)) ds - \frac{\lambda}{\Gamma(a)} \int_0^1 (t - s)^{a-1} u(s) ds \]

(13)

and

\[(T_2 u)(t) = -\frac{t^\alpha(2t - a - 1)}{(1 - \alpha)\Gamma(\alpha + \beta)} \int_0^1 (1 - s)^{a+\beta-1} f(s, u(s)) ds \]

+ \frac{\lambda t^\alpha(2t - a - 1)}{(1 - \alpha)\Gamma(\alpha)} \int_0^1 (1 - s)^{a-1} u(s) ds + \frac{\mu t^\alpha(1 - \lambda)}{(1 - \alpha)\Gamma(\alpha + 1)} \int_0^\eta u(s) ds

- \frac{t^\alpha(1 - t)}{(1 - \alpha)\Gamma(\alpha + 1)\Gamma(\beta)} \int_0^1 (1 - s)^{\beta-1} f(s, u(s)) ds \]

(14)

Theorem 1. Assume that the assumptions \((H_1)\) and \((H_2)\) hold. Then the boundary value problem (1) and (2) has a unique solution if \(\Lambda < 1 \), where \(\Lambda \) is given by (6).

Proof. Define the closed ball \(B_r = \{ u \in E : ||u|| \leq r \} \) with the radius \(r \geq MA_1/(1 - \Lambda) \) where \(A_1 \) is given by (10) and

\[M = \sup_{t \in [0,1]} |f(t, 0)|. \]
Then, for \(u \in B_r \), we have

\[
\|f(t, u(t))\| = \sup_{t\in[0,1]} |f(t, u(t)) - f(t, 0) + f(t, 0)|
\]

\[
\leq \sup_{t\in[0,1]} |f(t, u(t)) - f(t, 0)| + \sup_{t\in[0,1]} |f(t, 0)| \leq L\|u\| + M \leq Lr + M.
\]

From this and Lemma 4, we obtain

\[
\|(Tu)(t)\| = \sup_{t\in[0,1]} \left| \frac{1}{\Gamma(\alpha + \beta)} \int_0^t (t-s)^{\alpha-1} f(s, u(s))ds - \frac{t^\alpha(2t-\alpha-1)}{(1-\alpha)\Gamma(\alpha + 1)} \int_0^1 (1-s)^{\alpha-1} f(s, u(s))ds
\]

\[
+ \frac{\lambda t^\alpha(2t-\alpha-1)}{(1-\alpha)\Gamma(\alpha + 1)} \int_0^1 (1-s)^{\alpha-1} u(s)ds + \frac{\mu t^\alpha(1-t)}{(1-\alpha)\Gamma(\alpha + 1)} \int_0^\eta u(s)ds
\]

\[
- \frac{t^\alpha(1-t)}{(1-\alpha)\Gamma(\alpha + 1)\Gamma(\beta)} \int_0^1 (1-s)^{\alpha-1} u(s)ds \right|
\]

\[
\leq \frac{Lr + M}{\Gamma(\alpha + \beta)} \sup_{t\in[0,1]} \int_0^t (1-s)^{\alpha+\beta-1}ds + \frac{v(Lr + M)}{\Gamma(\alpha + 1)\Gamma(\beta)} \int_0^1 (1-s)^{\alpha+\beta-1}ds
\]

\[
+ \frac{\lambda |\nu|}{\Gamma(\alpha)} \int_0^1 (1-s)^{\alpha-1}ds + A|\nu| \int_0^{\eta} ds + \frac{A(Lr + M)}{\Gamma(\beta)} \int_0^1 (1-s)^{\beta-1}ds
\]

\[
+ \frac{\lambda |\nu|}{\Gamma(\alpha)} \sup_{t\in[0,1]} \int_0^t (t-s)^{\alpha-1}ds
\]

\[
= \frac{(Lr + M)(1 + \nu)}{\Gamma(\alpha + \beta + 1)} + \frac{\lambda |\nu|(1 + \nu)}{\Gamma(\alpha + 1)} + A \left(\eta |\nu| + \frac{Lr + M}{\Gamma(\beta + 1)} \right)
\]

\[
\leq r.
\]

which implies that \(\|Tu\| \leq r \). Let \(u, v \in E \) for each \(t \in [0,1] \), we obtain

\[
\|(Tu)(t) - (Tv)(t)\| \leq \frac{1}{\Gamma(\alpha + \beta)} \sup_{t\in[0,1]} \int_0^t (t-s)^{\alpha+\beta-1} |f(s, u(s)) - f(s, v(s))|ds
\]

\[
+ \frac{v}{\Gamma(\alpha + 1)} \int_0^1 (1-s)^{\alpha+\beta-1} |f(s, u(s)) - f(s, v(s))|ds
\]

\[
+ \frac{|\lambda|\nu}{\Gamma(\alpha)} \int_0^1 (1-s)^{\alpha-1} |u(s) - v(s)|ds + |\mu| \int_0^{\eta} |u(s) - v(s)|ds
\]

\[
+ \frac{A}{\Gamma(\beta)} \int_0^1 (1-s)^{\beta-1} |f(s, u(s)) - f(s, v(s))|ds
\]

\[
+ \frac{\lambda}{\Gamma(\alpha)} \sup_{t\in[0,1]} \int_0^t (t-s)^{\alpha-1} |u(s) - v(s)|ds
\]

\[
\leq \|u - v\| \left\{ \frac{L(1 + \nu)}{\Gamma(\alpha + \beta + 1)} + \frac{|\lambda|(1 + \nu)}{\Gamma(\alpha + 1)} + A \left(\eta |\nu| + \frac{L}{\Gamma(\beta + 1)} \right) \right\}
\]

\[
= \Lambda \|u - v\|.
\]

By virtue of the hypothesis of \(\Lambda < 1 \), then the operator \(T \) is contraction mapping. Therefore, the boundary value problem (1) and (2) has a unique solution. This ends the proof. \(\square \)

Theorem 2. Assume that the assumptions \((H_1),(H_2)\) and \((H_3)\) hold. Then the boundary value problem (1) and (2) has at least one solution if \(\Delta < 1 \) where \(\Delta \) is given by (7).
Proof. Let the two operators T_1 and T_2 be defined as in (13) and (14). Setting $\sup_{t \in [0,1]} |\psi(t)| \leq \|\psi\|$. Let the closed ball $B_r = \{ u \in \mathbb{E} : \|u\| \leq r \}$ be defined for

$$r \geq \Lambda_1 \|\psi\| (1 - \Delta_1)^{-1}$$

where Λ_1 and Δ_1 are given by (10) and (11), respectively. Then, for $u, v \in B_r$, it follows that

$$\|T_1u + T_2v\| \leq \Lambda_1 \|\psi\| + r \Delta_1 \leq r$$

which concludes that $T_1u + T_2v \in B_r$. In view of the assumption (\mathcal{H}_2), it can easily be shown that T_2 is a contraction mapping if $\Delta < 1$. The function f is continuous according to the assumption (\mathcal{H}_1) which implies that T_1 is continuous. Now, for $u \in B_r$, it follows that

$$\|(T_1u)(t)\| = \sup_{t \in [0,1]} \left| \frac{1}{\Gamma(\alpha + \beta)} \int_0^t (t-s)^{\alpha+\beta-1} f(s, u(s))ds - \frac{\lambda}{\Gamma(\alpha)} \int_0^t (t-s)^{\alpha-1} u(s)ds \right|$$

$$\leq \frac{\|\psi\|}{\Gamma(\alpha + \beta)} \sup_{t \in [0,1]} \int_0^t (t-s)^{\alpha+\beta-1} ds + \frac{|\lambda| \|u\|}{\Gamma(\alpha)} \sup_{t \in [0,1]} \int_0^t (t-s)^{\alpha-1} ds$$

$$= \frac{\|\psi\|}{\Gamma(\alpha + \beta + 1)} \sup_{t \in [0,1]} t^{\alpha+\beta} + \frac{|\lambda| r}{\Gamma(\alpha + 1)} \sup_{t \in [0,1]} t^{\alpha}$$

which yields that the operator T_1 is uniformly bounded. Let $0 \leq t_1 < t_2 \leq 1$, then for $u \in B_r$, we have

$$\|(T_1u)(t_2) - (T_1u)(t_1)\| = \left| \frac{1}{\Gamma(\alpha + \beta)} \int_0^{t_1} (t_2-s)^{\alpha+\beta-1} f(s, u(s))ds - \frac{1}{\Gamma(\alpha + \beta)} \int_0^{t_1} (t_1-s)^{\alpha+\beta-1} f(s, u(s))ds \right|$$

$$- \frac{\lambda}{\Gamma(\alpha)} \int_0^{t_1} (t_2-s)^{\alpha-1} u(s)ds + \frac{\lambda}{\Gamma(\alpha)} \int_0^{t_1} (t_1-s)^{\alpha-1} u(s)ds$$

$$= \left| \frac{1}{\Gamma(\alpha + \beta)} \int_0^{t_1} [(t_2-s)^{\alpha+\beta-1} - (t_1-s)^{\alpha+\beta-1}] f(s, u(s))ds \right|$$

$$+ \frac{1}{\Gamma(\alpha + \beta)} \int_{t_1}^{t_2} (t_2-s)^{\alpha+\beta-1} f(s, u(s))ds$$

$$+ \frac{\lambda}{\Gamma(\alpha)} \int_0^{t_1} [(t_1-s)^{\alpha-1} - (t_2-s)^{\alpha-1}] u(s)ds$$

$$- \frac{\lambda}{\Gamma(\alpha)} \int_{t_1}^{t_2} (t_2-s)^{\alpha-1} u(s)ds$$

$$\leq \frac{\|\psi\|}{\Gamma(\alpha + \beta + 1)} \left(t_2^{\alpha+\beta} - t_1^{\alpha+\beta} \right) + \frac{|\lambda| r}{\Gamma(\alpha + 1)} \left(2(t_2 - t_1)^{\alpha} + t_1^2 - t_2^2 \right)$$

which is independent of u and approaches zero when letting $t_2 \to t_1$. Thus, T_1 is relatively compact on B_r. Hence, by the Arzela-Ascoli Theorem, the operator T_1 is completely continuous on B_r. Therefore, according to the Krasnoselskii Theorem that was mentioned in Lemma 5, the boundary value problem (1) and (2) has at least one solution on B_r. This completes the proof. \qed

Theorem 3. Assume that the assumptions (\mathcal{H}_1) and (\mathcal{H}_4) hold. Then the boundary value problem (1) and (2) has at least one solution if $Q < 1$, where Q is given by (8).

Proof. Let $\Omega = \{ u \in \mathbb{E} : \|u\| \leq \ell \}$ be an open subset of the Banach space \mathbb{E} with $\ell = Q_1(1 - Q)^{-1}$ where Q_1 is given by (9). As in Theorem 2, it is easy to see that the operator $T : \Omega \to \mathbb{E}$ given by (12) is
completely continuous, thus the proof is omitted here. Now, assume that \(u \in \partial \Omega \) such that \(\delta u = T(u) \) for \(\delta > 1 \). Then, we have
\[
\delta \ell = \delta \|u(t)\| = \|(Tu)(t)\| = \sup_{t \in [0,1]} |(Tu)(t)| \leq \frac{1}{\Gamma(\alpha + \beta)} \int_0^1 (1-s)^{\alpha+\beta-1} |f(s, u(s))| ds \\
+ \frac{\nu}{\Gamma(\alpha + \beta)} \int_0^1 (1-s)^{\alpha+\beta-1} |f(s, u(s))| ds \\
+ \frac{|\lambda|\nu}{\Gamma(\alpha)} \int_0^1 (1-s)^{\alpha-1} |u(s)| ds + |\mu| A \int_0^\eta |u(s)| ds \\
+ \frac{A}{\Gamma(\beta)} \int_0^1 (1-s)^{\beta-1} |f(s, u(s))| ds \\
+ \frac{|\lambda|}{\Gamma(\alpha)} \int_0^1 (1-s)^{\alpha-1} |u(s)| ds \\
\leq Q \ell + Q_1.
\]

This leads to \(\delta \leq 1 \) which contradicts with the hypothesis \(\delta > 1 \). Therefore, according to the nonlinear alternative Leray-Schauder type (Lemma 6), the boundary value problem (1) and (2) has at least one solution in \([0,1]\]. \(\square \)

4. An Example

We present an example to better illustrate our main results.

Example 1. Consider the following boundary value problem for fractional Langevin equations:

\[
\begin{cases}
\begin{aligned}
\frac{d^2}{dt^2} \left(\frac{d^\frac{3}{2}}{dt^\frac{3}{2}} + \frac{1}{8} \right) u(t) &= f(t, u(t)), \quad 0 < t < 1 \\
u(0) &= 0, \quad u(1) = 0, \quad \frac{d^2}{dt^2} u(0) + \frac{d^\frac{3}{2}}{dt^\frac{3}{2}} u(1) = 2 \int_0^1 u(s) ds
\end{aligned}
\end{cases}
\tag{15}
\]

where \(\alpha = 2/5, \beta = 3/2, \lambda = 1/8, \mu = 2, \eta = 1/10 \) and \(f(t, u(t)) \) will be determined according to the assumptions of theorems.

Using the given data, we find that \(\nu = 1 \) (since \(\alpha = 2/5 < 1/2 \)) and \(A = 0.812907 \). Consequently, \(\Lambda_1 = 1.70599 \) and \(\Delta_1 = 0.444346 \), where \(\Lambda_1 \) and \(\Delta_1 \) are given by (10) and (11), respectively.

Case I: Banach fixed point theorem

In order to illustrate Theorem 1, we take:
\[
f(t, u(t)) = L(1 + t \sin(tu)).
\tag{16}
\]

It is easy to see that the function \(f : [0,1] \times \mathbb{R} \rightarrow \mathbb{R} \) is continuous and satisfies the condition
\[
|f(t, u(t)) - f(t, v(t))| = L|t \sin(tu) - t \sin(tv)| \leq L \int_v^u |\cos ts| ds \leq L|u - v|
\]

where \(L \) is the Lipschitz constant. Observe that the condition \((H_1)\) and \((H_2)\) hold true. To verify the assumption of Theorem 1 \((\Lambda < 1)\) where \(\Lambda \) is given by (6) we have to choose \(L < 0.325707 \). Thus all the assumptions of Theorem 1 are satisfied. So the boundary value problem (1) and (2) has a unique solution on \([0,1]\) if \(L < 0.325707 \).
Case II: Krasnoselskii’s theorem
In order to illustrate Theorem 2, take \(f(t, u(t)) \) as given in (16) and \(\psi(t) = 1 + t \). Clearly the three hypotheses of Theorem 2 are satisfied. From the condition \(\Delta < 1 \) where \(\Delta \) is given by (7), we have to choose \(L < 0.60111 \). Thus the conclusion of Theorem 2 applies to the boundary value problem (1) and (2) if \(L < 0.60111 \).

Case III: Leray-Schauder nonlinear alternative theorem
To illustrate Theorem 3, we take
\[
f(t, u(t)) = (ut^2 + ut^2) + t, \tag{17}
\]
which implies that \(p(t) = t^2, q(t) = \frac{1}{1+t^2} \), and \(Q = 0.777662 < 1 \). Thus all conditions of Theorem 3 are satisfied and consequently, there exists at least one solution for the boundary value problem (1) and (2) with \(f(t, u(t)) \) given by (17) on \([0,1]\).

5. Conclusions
The existence and uniqueness of solutions for nonlocal integral and three-point boundary value problem including the Langevin equation with two fractional orders has been studied. We applied the fractional calculus concepts together with fixed point theorems to prove the existence and uniqueness results. To investigate our problem, we apply the Banach contraction principle, Krasnoselskii’s fixed point theorem and the nonlinear alternative Leray-Schauder theorem. Our approach is simple to apply a variety of real-world issues.

It is worth pointing out that in view of the domain of \(L < 0.325707 \) in Case I and the domain of \(L < 0.60111 \) in Case II, we find that it was extended in the case of investigation of the existence and this is to be expected.

Author Contributions: All authors contributed equally and significantly in writing this paper. All authors read and approved the final manuscript.

Acknowledgments: This project was funded by the Deanship of Scientific Research (DSR), King Abdulaziz University, Jeddah, under grant no. (G: 1702-130-1440). The authors, therefore, acknowledge with thanks DSR technical and financial support.

Conflicts of Interest: The authors declare that they have no competing interests.

References
1. Ahmad, B.; Luca, R. Existence of solutions for sequential fractional integro-differential equations and inclusions with nonlocal boundary conditions. Appl. Math. Comput. 2018, 339, 516–534. [CrossRef]
2. Ahmad, B.; Alsaedi, A.; Aljoudi, S.; Ntouyas, S.K. A six-point nonlocal boundary value problem of nonlinear coupled sequential fractional integro-differential equations and coupled integral boundary conditions. J. Appl. Math. Comput. 2018, 56, 367–389. [CrossRef]
3. Ahmad, B.; Luca, R. Existence of solutions for a sequential fractional integro-differential system with coupled integral boundary conditions. Chaos Solitons Fractals 2017, 104, 378–388. [CrossRef]
4. Jiang, J.; Liu, L. Existence of solutions for a sequential fractional differential system with coupled boundary conditions. Bound. Value Probl. 2016, 2016, 159. [CrossRef]
5. Yukunthorn, W.; Ntouyas, S.K.; Tariboon, J. Nonlinear fractional Caputo Langevin equation with nonlocal Riemann Liouville fractional integral conditions. Adv. Differ. Equ. 2014, 2014, 315. [CrossRef]
6. Chen, Y.; Nieto, J.J.; O’Regan, D. Anti-periodic solutions for evolution equations associated with maximal monotone mappings. Appl Math Lett. 2011, 24, 302–307. [CrossRef]
7. Kilbas, A.A.; Srivastava, H.M.; Trujillo, J.J. Theory And Applications Of Fractional Differential Equations; Elsevier: Amsterdam, The Netherlands, 2006.
8. Podlubny, I. Fractional Differential Equations. In *Mathematics in Science and Engineering*; Academic Press: New York, NY, USA, 1999; Volume 198.

9. Coffey, W.T.; Kalmykov, Y.P.; Waldron, J.T. *The Langevin Equation: With Applications to Stochastic Problems in Physics, Chemistry and Electrical Engineering*; World Scientific: Singapore, 2004.

10. Mainardi, F.; Pironi, P. The fractional Langevin equation: Brownian motion revisited. *Extracta Math.* **1996**, *10*, 140–154.

11. Zhai, C.; Li, P. Nonnegative Solutions of Initial Value Problems for Langevin Equations Involving Two Fractional Orders. *Mediterr. J. Math.* **2018**, *15*, 164. [CrossRef]

12. Baghani, H. Existence and uniqueness of solutions to fractional Langevin equations involving two fractional orders. *J. Fixed Point Theory Appl.* **2018**, *20*, 63. [CrossRef]

13. Fazli, H.; Nieto, J.J. Fractional Langevin equation with anti-periodic boundary conditions. *Chaos Solitons Fractals* **2018**, *114*, 332–337. [CrossRef]

14. Zhou, Z.; Qiao, Y. Solutions for a class of fractional Langevin equations with integral and anti-periodic boundary conditions. *Bound. Value Probl.* **2018**, *2018*, 152. [CrossRef]

15. Zhai, C.; Li, P.; Li, H. Single upper-solution or lower-solution method for Langevin equations with two fractional orders. *Adv. Differ. Equ.* **2018**, *2018*, 360. [CrossRef]

16. Baghani, O. On fractional Langevin equation involving two fractional orders. *Commun. Nonlinear Sci. Numer. Simul.* **2017**, *42*, 675–681. [CrossRef]

17. Muensawat, T.; Ntouyas, S.K.; Tariboon, J. Systems of generalized Sturm-Liouville and Langevin fractional differential equations. *Adv. Differ. Equ.* **2017**, *2017*, 63. [CrossRef]

18. Li, B.; Sun, S.; Sun, Y. Existence of solutions for fractional Langevin equation with infinite-point boundary conditions. *J. Appl. Math. Comput.* **2017**, *53*, 683–692. [CrossRef]

19. Zhou, H.; Alzabut, J.; Yang, L. On fractional Langevin differential equations with anti-periodic boundary conditions. *Eur. Phys. Spec. Top.* **2017**, *226*, 3577–3590. [CrossRef]

20. Kiatarakul, C.; Ntouyas, S.K.; Tariboon, J.; Kijjathanakorn, A. Generalized Sturm-Liouville and Langevin equations via Hadamard fractional derivatives with anti-periodic boundary conditions. *Bound. Value Probl.* **2016**, *2016*, 217. [CrossRef]

21. Yu, T.; Deng, K.; Luo, M. Existence and uniqueness of solutions of initial value problems for nonlinear Langevin equation involving two fractional orders. *Commun. Nonlinear Sci. Numer. Simul.* **2014**, *19*, 1661–1668. [CrossRef]

22. Sudsutad, W.; Tariboon, J. Nonlinear fractional integro-differential Langevin equation involving two fractional orders with three-point multi-term fractional integral boundary conditions. *J. Appl. Math. Comput.* **2013**, *43*, 507–522. [CrossRef]

23. Ahmad, B.; Nieto, J.J.; Alsaeedi, A.; El-Shahed, M. A study of nonlinear Langevin equation involving two fractional orders in different intervals. *Nonlinear Anal. RWA Nonlinear Anal. Real World Appl.* **2012**, *13*, 599–606. [CrossRef]

24. Chen, A.; Chen, Y. Existence of Solutions to Nonlinear Langevin Equation Involving Two Fractional Orders with Boundary Value Conditions. *Bound. Value Probl.* **2011**, *2011*, 516481. [CrossRef]

25. Ahmad, B.; Nieto, J.J. Solvability of Nonlinear Langevin Equation Involving Two Fractional Orders with Dirichlet Boundary Conditions. *Int. J. Differ. Equ.* **2010**, *2010*, 649486. [CrossRef]

26. Krasnoselskii, M.A. Two remarks on the method of successive approximations. *Uspekhi Matematicheskikh Nauk* **1955**, *10*, 123–127.

27. Granas, A.; Dugundji, J. *Fixed Point Theory*; Springer: New York, NY, USA, 2003.

28. Guo, D.; Lakshmikantham, V. *Nonlinear Problems in Abstract Cones*; Academic Press: Orlando, FL, USA, 1988.

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).