On the Validity of Minimum Magnetizability Principle in Chemical Reactions

Hiteshi Tandon, 1,* Tanmoy Chakraborty 2,* and Vandana Suhag 3

1 Department of Chemistry, Manipal University Jaipur, Jaipur 303007, India
2 Department of Chemistry and Biochemistry, School of Basic Sciences and Research, Sharda University, Greater Noida 201310, India
3 Department of Applied Sciences, BML Munjal University, Gurugram 122413, India

* Corresponding author: E-mail: tanmoychem@gmail.com, tanmoy.chakraborty@sharda.ac.in (T. Chakraborty)
hiteshtandon@yahoo.co.in (H. Tandon)

Received: 10-23-2020

Abstract

A new principle known as Minimum Magnetizability Principle has recently been introduced in the context of Density Functional Theory. In order to validate this principle, changes in the magnetizability ($\Delta \xi$) and its cube-root ($\Delta \xi^{1/3}$) are computed at B3LYP/LanL2DZ level of theory for some elementary chemical reactions. The principle is found to be valid for 77% of reactions under study. It is observed that the molecules with the lowest sum of ξ or $\xi^{1/3}$ are generally the most stable. The principle fails to work in the presence of hard species. A comparative study is also made with change in hardness ($\Delta \eta$), electrophilicity index ($\Delta \omega$), polarizability ($\Delta \alpha$) and their cube-roots ($\Delta \eta^{1/3}$, $\Delta \omega^{1/3}$, $\Delta \alpha^{1/3}$). It is observed that the Minimum Magnetizability Principle is nearly as reliable as Minimum Electrophilicity Principle. It appears that this principle could be helpful in predicting the direction of diverse reactions as well as stable geometrical arrangements.

Keywords: Density Functional Calculations; Magnetic Properties; Maximum Hardness Principle (MHP); Minimum Electrophilicity Principle (MEP); Minimum Polarizability Principle (MPP)

1. Introduction

Theoretical Chemistry aims at unearthing novel concepts and principles to explain a broad range of chemical reactions. The most common questions that arise for any kind of reaction are about the pace and extent of the reaction. It is logical that thermodynamic data is required for providing an answer to the latter. Constructively, numerous reactivity descriptors have been established within the context of Conceptual Density Functional Theory (CDFT).1 These descriptors play a significant role in studying the changes taking place in a reacting system. This ultimately helps in understanding the reactivity and stability patterns of the reactants and products in a chemical reaction. Some of these descriptors are hardness (η),2 electrophilicity index (ω),3-6 and polarizability (α)7 whose definitions are given as follows:

$$\eta = \left(\frac{\partial^2 E}{\partial N^2}\right)_v(r) = \left(\frac{E_L - E_H}{2}\right)$$ \hspace{1cm} (1)

$$\omega = \frac{\mu^2}{2\eta} = \left(\frac{(E_{L+}+E_{H-})/2)^2}{(E_{L-}-E_{H+}/2}\right)$$ \hspace{1cm} (2)

$$\alpha = -\left(\frac{\partial^2 E(\phi)}{\partial \phi^2}\right)_{(\phi=0)}$$ \hspace{1cm} (3)

Here E refers to the system's energy with respect to the number of electrons N at fixed external potential $v(r)$. E_L and E_H stand for the frontier orbital energies while μ is the chemical potential. E represents the external electric field. Another reactivity descriptor is magnetizability (ξ) which is defined as the linear response of an atom, molecule or ion's electron cloud towards an external magnetic field.8 It is expressed as:

$$\xi = -\left(\frac{\partial^2 E(\theta)}{\partial B^2}\right)_{(B=0)}$$ \hspace{1cm} (4)

where B signifies the external magnetic field. It is an important descriptor to study chemical reactivity, stability and aromaticity of different atoms and molecules.9-14 Dynamics of reactions have also been studied for molecules in
confinement using magnetizability. This property is of multidisciplinary interest and has extensive applications in the realm of physical, biological, engineering and materials science such as organic electronics, magnetically labelled cells, drugs and therapeutic agents, magnetic flux concentrators, magnetizable elastomers, bionanocomposites, magnetic immunoadsorbents, magnetic nanoparticles/nanofibres and so on besides its use in general chemical science. Looking at the widespread relevance of this property, it is believed that further exploration on its behaviour and characteristics will assist in strengthening the fundamentals of the concept, thereby supporting its efficient and appropriate use in various applications.

Based on above mentioned concepts and descriptors, some principles have been formulated in the framework of Density Functional Theory (DFT). The Maximum Hardness Principle (MHP) states that "there seems to be a rule of nature that molecules arrange themselves so as to be as hard as possible". Another principle known as Minimum Polarizability Principle (MPP) proposes that "the natural direction of evolution of any system is toward a state of minimum electrophilicity". A Minimum Electrophilicity Principle (MEP) was also suggested according to which "the natural direction of a chemical reaction is toward a state of minimum polarizability". A Minimum Electrophilicity Principle (MEP) was also suggested according to which "the natural direction of a chemical reaction is toward a state of minimum polarizability". Numerous efforts have been made to verify the reliability of these principles in diverse reactions/species. However, a breakdown of these principles was also observed in many cases.

Recently, one more principle, known as the Minimum Magnetizability Principle (MMP), has been introduced in the context of DFT based on the descriptor magnetizability. According to this principle, "a stable configuration/conformation of a molecule or a favourable chemical process is associated with a minimum value of the magnetizability". In case of MMP, unlike other principles, no study has been performed yet to test the validity of this principle for chemical reactions. As understandable, operational efficiency of a principle can only be determined through performing a validation procedure. Accordingly, in order to employ MMP for practical purposes, it is necessary to carry out its verification based on some criteria. Thus, in the present study we have tried to assess the potential and accuracy of this principle for the first time with respect to some chemical reactions.

2. Method of Computation

In order to verify the validity of Minimum Magnetizability Principle along with comparing it to the other principles, viz. MHP, MPP and MEP, 30 elementary reactions are selected. Geometry optimizations for each of the reactant and product molecules have been performed at B3LYP/LanL2DZ level of theory. This is a very common and powerful method employed in computations and incorporates the correlation effects. Hence, the energy values of the HOMO (Highest Occupied Molecular Orbital) \(E_H\) and the LUMO (Lowest Unoccupied Molecular Orbital) \(E_L\) as well as molecular polarizability are obtained for the molecules. The canonical molecular orbitals differ from Kohn-Sham orbitals, nevertheless their values for orbital energy are found to be comparable. As a result, the operational forms of hardness and electrophilicity presented in Eq. (1) and Eq. (2) are used to calculate the value for hardness and electrophilicity. Further, magnetizabilities are computed using the Keith and Bader’s method at the same level of theory. All computations have been performed on the computational software Gaussian 03.

Next, in view of the MMP, the reaction is favoured only when the products to be formed are of lower magnetizability than the reactants. Thus, for a chemical reaction \(A_i \rightarrow B_j\), represented as \(\sum a_i A_i = 0\) in a condensed form, where \(a_i\) corresponds to the stoichiometry of the \(i^{th}\) atom/molecule, the corresponding deviation in a parameter \(X\) through the reaction can be clearly expressed as:

\[
\Delta X = \sum_j a_j X_j
\]

In Eq. (5), \(X_j\) refers to the value of \(X\) for the \(j^{th}\) atom/molecule in the given chemical reaction. It follows that the direction in which the chemical reaction will progress may be indicated by the sign of \(\Delta X\). Thus in accordance with MMP, it appears that the sign of \(\Delta X\) provides an evidence of the direction in which any reaction proceeds. Hence, we have calculated the change in parameter \(X\), viz. hardness \((\Delta \eta)\), electrophilicity \((\Delta \omega)\), polarizability \((\Delta \alpha)\), and magnetizability \((\Delta \xi)\), for the selected reactions using Eq. (5). Change in the cube-roots of hardness \((\Delta \eta^{1/3})\), electrophilicity \((\Delta \omega^{1/3})\), polarizability \((\Delta \alpha^{1/3})\) and magnetizability \((\Delta \xi^{1/3})\) have also been calculated. Enthalpy change \((\Delta H^\circ)\) for each molecule is also calculated using the atomization energy data from reference [35].

3. Results and Discussion

The study presents validity of Minimum Magnetizability Principle using chosen 30 elementary reactions. A comparison of the results is also presented with respect to the other principles, viz. MHP, MPP and MEP. It must be noted that several of the chosen reactions are hypothetical. All the reactions are exothermic signifying that the products are thermodynamically stable. Also, the variation of chosen parameters is not considered along the reaction path, but merely the overall change in these parameters in the chemical reaction is evaluated, which can be simply computed as long the geometry can be. Further, it should be noted that the reactants in reaction 14 are the same as in reaction 19, however the type of products formed in both are different.

The computed values for hardness \((\eta)\), electrophilicity index \((\omega)\), polarizability \((\alpha)\), magnetizability \((\xi)\) and...
HOMO (E_H) and LUMO (E_L) energy, along with magnetizability (ξ) data from the literature,36 for all the reactants and products of the selected reactions are presented in Table 1. A comparison of computed magnetizabilities (ξ) with tabulated magnetizabilities36 (ξ_T) reveals a good similarity between the two datasets ($R^2 = 0.997$) indicating the efficacy of our computed data. The changes in enthalpy (Δf^0_H) and in parameter values with their reaction are provided in Table 2. As mentioned above, the formation of products is only favoured when the magnetizability of reactant is more than that of the products to be formed according to the MMP. Moreover the sign of $\Delta \xi$ gives an idea of the direction in which any reaction proceeds. A close look at Table 2 reveals that Minimum Magnetizability Principle is valid for chemical reactions since $\Delta \xi < 0$ for various reactions. Further, $\Delta \xi$ is negative in numerous cases which undoubtedly demonstrates that $\Delta \xi$ provides a sign for the most stable species. Thus, the favoured direction of a chemical reaction is towards less magnetizability. When the stability of products is more than the reactants, change in enthalpy is less than zero ($\Delta f^0_H < 0$). This condition is also clearly met by the reactions in the study. However, MMP is not valid always. It is reliable for approximately 77% of the selected reactions and fails in case of the remaining reactions. It is further noted that MEP is as convincing as MMP and proves to be valid for 77% of the reactions tested. MPP performs slightly better than MHP; however it is less suitable than MEP and MMP. MPP works for 50% of the reactions while MHP is applicable for 47% of the considered reactions. It is observed that the minimum magnetizability

S. No.	Molecules	E_H	E_L	η	ω	α	ξ	ξ_T[a]
1	H$_2$	–0.429	0.116	0.272	0.045	2.013	–0.588	–1.145
2	O$_2$	–0.281	–0.212	0.034	0.887	5.834	719.683	718.631
3	H$_2$O$_2$	–0.266	–0.030	0.118	0.093	9.738	–2.523	–3.641
4	CO	–0.382	–0.059	0.161	0.151	9.890	–1.030	–2.062
5	CO$_2$	–0.298	–0.071	0.113	0.149	17.215	–0.120	–4.419
6	H$_2$O	–0.300	0.061	0.179	0.040	4.698	–1.911	–2.755
7	CH$_4$	–0.177	–0.037	0.070	0.081	14.634	–3.408	–3.662
8	Cl$_2$	–0.331	–0.199	0.066	0.529	13.712	–6.890	–8.502
9	HCl	–0.331	0.003	0.167	0.080	4.751	–3.794	–4.756
10	H$_2$S	–0.420	–0.053	0.183	0.153	8.363	–3.636	–4.252
11	N$_2$	–0.227	0.098	0.179	0.040	4.698	–2.755	–3.662
12	NH$_3$	–0.331	–0.199	0.066	0.529	13.712	–6.890	–8.502
13	NO	–0.246	–0.139	0.054	0.344	7.342	299.490	307.443
14	HCN	–0.373	–0.007	0.138	0.107	23.007	–1.859	–4.671
15	NO$_2$	–0.312	–0.136	0.088	0.285	13.776	22.419	31.565
16	N$_2$O$_4$	–0.351	–0.139	0.106	0.283	32.779	–4.207	–4.839
17	OH	–0.339	0.058	0.198	0.050	3.329	10.493	–
18	CH$_3$H$_6$	–0.339	0.126	0.232	0.025	22.136	–5.338	–5.639
19	CH$_3$H$_8$	–0.323	–0.125	0.099	0.254	32.538	–4.428	–8.122
20	C$_2$H$_4$O	–0.249	0.081	0.165	0.021	25.055	–3.821	–7.070
21	(CH$_3$)$_2$S	–0.219	0.038	0.129	0.032	36.373	–5.720	–9.448
22	C$_2$H$_4$	–0.273	–0.001	0.136	0.069	19.380	–1.850	–3.956
23	C$_2$H$_2$	–0.212	0.111	0.161	0.008	18.424	–2.029	–4.377
24	C$_2$H$_5$Cl	–0.291	0.007	0.149	0.067	28.433	–5.145	–
25	Cl$_2$CCH$_2$	–0.279	–0.032	0.123	0.098	34.821	–8.833	–10.353
26	C$_2$H$_5$CN	–0.332	0.020	0.176	0.069	33.637	–5.485	–
27	(CH$_3$OH)$_2$	–0.218	0.069	0.143	0.019	19.665	–4.571	–8.164
28	CH$_3$F	–0.343	0.060	0.201	0.050	11.571	–1.695	–3.745
29	CHF$_3$	–0.423	0.066	0.244	0.065	12.669	–3.148	–
30	CF$_4$	–0.406	–0.195	0.106	0.427	17.824	–3.656	–
31	N$_2$H$_4$	–0.135	0.097	0.116	0.002	12.053	–3.145	–42.297
32	CH$_3$CHO	–0.262	–0.044	0.109	0.107	23.007	–1.859	–4.671
33	C$_2$H$_6$	–0.253	–0.009	0.122	0.070	54.838	–6.692	–11.531
34	CH$_3$OH	–0.269	0.065	0.167	0.031	14.780	–2.643	–4.503
35	C$_3$H$_7$OH	–0.189	–0.110	0.039	0.283	62.282	–5.527	–12.752
36	C$_2$H$_4$N$_2$H$_2$	–0.113	–0.006	0.053	0.033	79.933	–5.147	–13.131

[a] Data obtained from reference [36] and converted into atomic units (au). 1 au of $\xi = e^2a_0^2/m_e = 4.75209$ cgs–ppm.37
principle is almost as valuable as minimum electrophilicity principle in predicting the direction of a reaction. The sign of Δξ can be used to provide an indication for higher stability of products thermodynamically.

In order to understand the significance of the results, a brief statistical analysis is performed for each parameter with respect to Δf^0P. Our study is based on the stability criterion, i.e. minimum energy condition, thus it is important to validate the correlation of Δf^0P with these descriptors. Regression analysis has been performed for this purpose. An attempt to explore the relationship of Δα with Δf^0P is futile (R^2 = 0.4871, R = +0.70, p = 0.001), although Δχ is found to follow a satisfactory linear relation with Δf^0P (R^2 = 0.6266, R = −0.79, p = 0.001). Lower values of R^2 denote inferior correlation of Δα and Δη with Δf^0P whereas p-values indicate that the result is significant. It can be inferred that MPP and MHP may not always follow the minimum energy criterion and may become invalid in several cases. An analysis of Δξ and Δω with Δf^0P presents an excellent relationship. For Δξ and Δf^0P, R^2 = 0.9792, R = +0.99 and p = 0.001 while R^2 = 0.9679, R = +0.98 and p = 0.001 for Δω and Δf^0P. Such high values of R^2 clearly signify the outstanding correlation between the parameters. Further, a perfect positive correlation is presented for Δξ and Δf^0P. Significance of the correlation is highlighted by the p-values. It is concluded that MMP as well as MEP are highly related to Δf^0P and thus follow the minimum energy and high stability condition. As the validity of minimum energy principle increases, MMP and MEP become valid as well.

The cube-roots of exact polarizability Δα^{1/3} = Σ α_i^{1/3} have been proved to be more useful in comparison to Δα to predict the direction of a chemical reaction. Hence, following the above notion, we have determined the cube-roots for hardness, electrophilicity index, polarizability as well as magnetizability and these are presented in Table 3. It is apparent from the outcomes that the validity of MHP as well as MMP increases when their cube-roots are considered. In fact, the soundness of MHP increases drastically as compared to MMP. As expected, these results indicate efficiency of cube-roots of hardness and polarizability in predicting the path followed by a reaction. Although in

S. No.	Reaction	Δf^0P[a]	Δη	+/−	Δω	+/−	Δα	+/−	Δξ	+/−
1	CO_2 + H_2O → 2H_2O + CH_4	−148	−0.774	−	−0.168	+	1.237	−	−4.756	+
2	Cl_2 + H_2 → 2HCl	−185	−0.004	−	−0.414	+	6.223	−	−0.111	+
3	3H_2 + N_2 → 2NH_3	−71	−0.675	−	−0.262	+	0.303	−	−0.199	+
4	2NO → O_2 + N_2	−180	0.110	+	0.352	−	−0.487	+	118.256	−
5	NO + H_2 → N_2 + H_2O	−647	−0.111	−	−0.545	+	−0.951	+	−604.072	+
6	CH_4 + 2O_2 → CO_2 + 2H_2O	−786	0.333	+	−1.625	+	−0.308	−	−1439.901	+
7	CO + 3H_2 + CH_4 + H_2O	−198	−0.729	−	−0.164	+	3.403	−	−2.523	+
8	2NO_2 → N_2O_4	−47	−0.070	−	−0.287	+	−5.228	−	−49.046	+
9	2C_2H_2 + 5O_2 → 4CO_2 + 2H_2O	−2503	0.318	+	−0.377	+	−12.235	−	−3598.660	+
10	2OH → H_2O_2	−213	−0.279	−	−0.006	+	−3.080	−	−23.509	+
11	H_2O → O_2 + H_2O_2	−98.5	0.078	+	0.390	−	2.123	−	360.454	−
12	H_2O + Cl_2 → O_2 + 2HCl	−50	0.185	+	0.424	−	−8.114	+	721.507	+
13	4NH_3 + 5O_2 → 4NO + 6H_2O	−899	0.469	+	−2.868	+	−0.187	−	−2403.099	+
14	C_2H_2 + O_2 → (CH_2)O_2	−108.5	−0.084	−	−0.446	+	−0.001	+	−358.325	+
15	C_2H_2 + 2H_2 → C_2H_4	−304	−0.473	−	−0.074	+	0.314	−	−2.132	+
16	C_2H_2 + HCl → C_2HCl	−72	−0.154	−	−0.082	+	4.302	−	0.499	+
17	C_2H_2 + Cl_2 → ClC_2H_2	−230	−0.104	−	−0.440	+	−2.685	+	0.085	+
18	HCN + C_2HCl → C_2H_4CN + HCl	−64	0.011	+	−0.017	−	1.963	−	2.533	+
19	C_2H_4 + O_2 → (CH_2)O_2	−312	−0.123	−	−0.892	+	8.306	−	718.916	+
20	C_2H_4 + SO_2 → 3CO_2 + 4H_2O	−2015	0.787	+	−4.078	+	8.727	−	3601.992	+
21	CH_3F + CHF_2 → CH_2 + CF_4	−88	−0.270	−	0.394	−	−8.218	+	−2.221	+
22	N_2H_4 + O_2 → N_2 + 2H_2O	−652	0.391	+	−0.655	+	0.128	−	−722.808	+
23	(CH_3)H_2O + Cl→ (CH_3)H_2O	−73	−0.003	−	0.002	−	4.484	−	0.325	+
24	2CH_2OH + 3O_2 → 2CO_2 + 4H_2O	−1321	0.507	+	−2.262	+	6.158	−	2161.648	+
25	C_2H_5OH + 3O_2 → 2CO_2 + 3H_2O	−1306	0.496	+	−2.262	−	5.966	+	2161.202	+
26	C_2H_5OH + Cl_2 → CH_2CHO + 2HCl	−53	0.212	+	−0.283	−	6.258	+	1.263	+
27	CH_3CHO → CH_2 + CO	−135	0.122	+	0.125	−	1.517	−	−2.579	+
28	C_2H_5OH + H_2 → C_2H_4 + H_2O	−234	−0.011	−	−0.218	+	4.760	−	−2.487	+
29	2C_2H_4 + 15O_2 → 12CO_2 + 6H_2O	−6309	1.679	+	−11.406	+	−37.574	−	−10794.771	+
30	C_6H_6NH_2 + H_2 → C_6H_6 + NH_3	−86	−0.041	−	0.005	−	20.058	−	−3.162	+

[a] Computed by taking energies of atomization from reference [35].
4. Conclusion

We have tried to validate Minimum Magnetizability Principle employing 30 elementary chemical reactions. Change in the magnetizability ($\Delta \xi$) and its cube-root ($\Delta \xi^{1/3}$) is computed in order to check the applicability of the principle in determining the direction of the reaction as well as stability of the products. We have also calculated change in hardness ($\Delta \eta$), electrophilicity index ($\Delta \omega$), polarizability ($\Delta \alpha$) and their cube-roots ($\Delta \eta^{1/3}$, $\Delta \omega^{1/3}$, $\Delta \alpha^{1/3}$) in order to make a comparative study. It is observed that the Minimum Magnetizability Principle is valid for chemical reactions however with some limitations. The principle fails to work in the presence of hard species. Minimum Electrophilicity Principle and Minimum Magnetizability Principle are found to have comparable reliability followed by Minimum Polarizability Principle, however Maximum Hardness Principle appears to be less valid for the chosen reactions. In conclusion, Minimum Magnetizability Principle is found to be fairly valid for reactions and can be successfully employed solely or in

Table 3. Computed changes in the enthalpy (ΔH^0) (at 298K in kJ mol$^{-1}$), cube–root of hardness ($\Delta \eta^{1/3}$) (in au), cube–root of electrophilicity index ($\Delta \omega^{1/3}$) (in au), cube–root of polarizability ($\Delta \alpha^{1/3}$) (in au) and cube–root of magnetizability ($\Delta \xi^{1/3}$) (in au) along with MHP, MEP, MPP and MMP validity (+) or invalidity (−) for selected reactions

S. No.	Reaction	ΔH^0[a]	$\Delta \eta^{1/3}$	$\Delta \omega^{1/3}$	$\Delta \alpha^{1/3}$	$\Delta \xi^{1/3}$
1	CO$_2$ + 4H$_2$ → 2H$_2$O + CH$_4$	−148	−1.537	−0.836	+1.837	+0.142
2	Cl$_2$ + H$_2$ → 2HCl	−185	0.049	+0.302	−0.294	−0.379
3	3H$_2$ + N$_2$ → 2NH$_3$	−71	−1.421	−1.133	+1.983	+1.258
4	2NO → O$_2$ + N$_2$	−180	0.137	+0.094	−0.057	+5.767
5	2NO + 2H$_2$ → N$_2$ + 2H$_2$O	−647	−0.356	−0.894	+1.033	−15.535
6	CH$_4$ + 2O$_2$ → CO + 2H$_2$O	−786	0.550	+1.139	−0.115	−19.393
7	CO + 3H$_2$ → CH$_4$ + H$_2$O	−198	−1.513	−0.824	−1.814	0.778
8	2NO$_2$ → N$_2$O$_3$	−47	−0.417	−0.659	−1.594	−7.254
9	2CH$_3$ + 5O$_2$ → 4CO + 2H$_2$O	−2503	0.352	+2.393	−0.606	−46.730
10	2OH + H$_2$O	−213	−0.676	−0.282	−0.851	+5.740
11	H$_2$O$_2$ → O$_2$ + H$_2$O	−98.5	0.236	+0.369	−0.439	4.601
12	H$_2$O$_2$ + Cl$_2$ → O$_2$ + 2HCl	−50	0.532	+0.561	−0.633	−9.106
13	4NH$_3$ + 5O$_2$ → 4NO + 6H$_2$O	−899	1.087	+0.885	+1.152	−20.284
14	C$_2$H$_6$ + O$_2$ → (CH$_2$)$_2$O	−108.5	−0.229	−0.493	−0.782	−4.296
15	C$_2$H$_6$ + 2H$_2$ → C$_2$H$_4$	−304	−1.226	−0.620	−2.359	+1.194
16	C$_2$H$_5$ + HCl → C$_2$H$_4$Cl	−72	−0.535	−0.434	−1.315	+1.061
17	C$_2$H$_5$ + Cl$_2$ → C$_2$CCL$_2$	−230	−0.451	−0.547	−1.769	+1.102
18	HCN + C$_2$H$_5$Cl → C$_2$H$_4$CN + HCl	−64	0.013	+0.028	−0.427	+0.427
19	C$_2$H$_4$ + HCl → C$_2$H$_4$Cl	−312	−0.416	−0.983	−2.583	−8.873
20	C$_2$H$_4$ + SO$_2$ → 3CO$_2$ + 4H$_2$O	−2015	1.622	+2.475	+2.252	−49.609
21	CH$_3$F + CHF$_3$ → CH$_4$ + CF$_4$	−88	−0.327	−0.416	0.465	−0.387
22	N$_2$H$_4$ + O$_2$ → N$_2$ + 2H$_2$O	−652	0.883	+0.144	−1.286	−11.326
23	(CH$_3$)$_2$O + H$_2$S → (CH$_3$)$_2$S + H$_2$O	−73	−0.006	−0.016	−0.197	+0.139
24	2CH$_2$OH + 3O$_2$ → 2CO$_2$ + 4H$_2$O	−1321	1.148	−1.080	+1.555	−30.069
25	2CH$_2$OH + 3O$_2$ → 2CO$_2$ + 3H$_2$O	−1306	1.137	−1.072	+1.862	−30.030
26	CH$_3$OH + Cl$_2$ → CH$_3$CHO + 2HCl	−53	0.627	+0.251	−0.887	−0.883
27	CH$_3$CHO → CH$_4$ + CO	−135	0.478	+0.490	−1.748	−1.285
28	C$_6$H$_5$OH + H$_2$ → C$_6$H$_4$ + H$_2$O	−234	0.071	−0.257	+0.248	−0.519
29	2C$_6$H$_5$ + 15O$_2$ → 12CO$_2$ + 6H$_2$O	−6309	3.330	+6.815	+6.432	−144.017
30	C$_6$H$_6$NH$_2$ + H$_2$ → C$_6$H$_4$ + NH$_3$	−86	0.018	−0.030	+0.146	−0.622

[a] Computed by taking energies of atomization from reference [35].
conjunction with other principles for theoretical as well as practical applications.

Author Contributions

Hiteshi Tandon: Conceptualization, Methodology, Software, Resources, Formal analysis, Validation, Investigation, Writing – Original Draft, Visualization. Tanmoy Chakraborty: Conceptualization, Supervision, Writing – Review & Editing. Vandana Suhag: Supervision, Writing – Review & Editing.

Conflicts Of Interest

The authors declare no conflicts of interest.

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Acknowledgements

Dr. Tanmoy Chakraborty is thankful to Sharda University and Dr. Hiteshi Tandon is thankful to Manipal University Jaipur for providing computational resources and research facility.

5. References

1. P. Geerlings, F. De Proft, W. Langenaeker, Chem. Rev. 2003, 103, 1793–1874. DOI:10.1021/cr990029p
2. R. G. Parr, R. G. Pearson, J. Am. Chem. Soc. 1983, 105, 7512–7516. DOI:10.1021/ja00364a005
3. R. G. Parr, L. von Szentpaly, S. Liu, J. Am. Chem. Soc. 1999, 121, 1922–1924. DOI:10.1021/ja983494x
4. H. Tandon, T. Chakraborty, V. Suhag, J. Struct. Chem. 2019, 60, 1725–1734. DOI:10.1134/S00222476619110040
5. H. Tandon, T. Chakraborty, V. Suhag, J. Math. Chem. 2020, 58, 2188–2196. DOI:10.1007/s10810-020-01176-5
6. P. Yadav, H. Tandon, B. Malik, T. Chakraborty, J. Chem. Res. 2020. DOI:10.1177/1747519820937272
7. H. Tandon, T. Chakraborty, V. Suhag, J. Math. Chem. 2019, 57, 2142–2153. DOI:10.1007/s10910-019-01055-8
8. P. Dahle, K. Ruud, T. Helgaker, P. R. Taylor, in: Z. B. Maksid, W. J. Orville-Thomas (Eds.): Theoretical and Computational Chemistry, Vol. 6, Elsevier, Amsterdam, 1999, pp. 147–188. DOI:10.1016/S1380-7323(99)80008-9
9. P. K. Chattaraj, S. Giri, J. Phys. Chem. A. 2007, 111, 11116–11121. DOI:10.1021/jp0706758
10. P. F. Provasi, G. I. Pagola, M. B. Ferraro, S. Pelloni, P. Lazzeretti, J. Phys. Chem. A 2014, 118, 6333–6342. DOI:10.1021/jp408969k
11. C. Foroutan-Nejad, Theor. Chem. Acc. 2015, 134, 8. DOI:10.1007/s00214-015-1617-7
12. N. Zarycz, P. F. Provasi, G. I. Pagola, M. B. Ferraro, S. Pelloni, P. Lazzeretti, J. Comput. Chem. 2016, 37, 1552–1558. DOI:10.1002/jcc.24369
13. S. Pelloni, P. F. Provasi, G. I. Pagola, M. B. Ferraro, P. Lazzeretti, J. Phys. Chem. A 2017, 121, 9369–9376. DOI:10.1021/acs.jpca.7b09104
14. T. Janda, C. Foroutan-Nejad, ChemPhysChem 2018, 19, 2357–2363. DOI:10.1002/cphc.201800364
15. M. Khatua, U. Sarkar, P. K. Chattaraj, Int. J. Quantum Chem. 2015, 115, 144–157. DOI:10.1002/qua.24801
16. R. Das, A. Chakraborty, S. Pan, P. K. Chattaraj, Curr. Org. Chem. 2013, 17, 2831–2844. DOI:10.2174/1385272811379900129
17. B. J. Tefft, S. Uthamaraj, J. J. Harburn, O. Hlinomaz, A. Lerman, D. Dragoimir-Daescu, G. S. Sandhu, J. Magn. Magn. Mater. 2017, 427, 100–104. DOI:10.1016/j.jmmm.2016.11.007
18. C. Carretero, I. Lope, J. Acero, IEEE J. Emerg. Sel. Topics Power Electron. 2019. DOI:10.1109/JESTPE.2019.2935226
19. D. I. Merkulov, A. V. Muravlev, E. D. Martynova, D. A. Pelevina, V. A. Turkov, V. A. Naletova, J. Magn. Magn. Mater. 2019, 470, 81–84. DOI:10.1016/j.jmmm.2018.02.038
20. M. A. Alheetty, A. Raoof, S. A. Al-Jbori, A. Karadag, A. I. Khaleel, H. Akbaş, O. Uzun, Mater. Chem. Phys. 2019, 231, 292–300. DOI:10.1016/j.matchemphys.2019.04.040
21. C. Gholve, S. Banerjee, S. Kulkarni, J. Radioanal. Nucl. Chem. 2020, 323, 1041–1046. DOI:10.1007/s10967-020-07023-w
22. R. G. Pearson, J. Chem. Educ. 1987, 64, 561–567. DOI:10.1021/ed064p561
23. P. K. Chattaraj, S. Sengupta, J. Phys. Chem. 1996, 100, 16126–16130. DOI:10.1021/jp961096f
24. S. Noorizadeh, Chin. J. Chem., 2007, 25, 1439–1444. DOI:10.1002/cjoc.200790266
25. P. K. Chattaraj, P. Fuentealba, B. Gomez, R. Contreras, J. Am. Chem. Soc. 2000, 122, 348–351. DOI:10.1021/ja992337a
26. F. A. Pasha, H. K. Srivastava, P. P. Singh, Int. J. Quantum Chem. 2005, 104, 87–100. DOI:10.1002/qua.20569
27. Y. L. Zhang, Z. Z. Yang, Int. J. Quantum Chem. 2006, 106, 1723–1735. DOI:10.1002/qua.20952
28. P. Selvarengan, P. Kolandaivel, J. Mol. Struct. (Theochem) 2004, 671, 77–86. DOI:10.1016/j.theochem.2003.10.021
29. K. Anandan, P. Kolandaivel, R. Kumaresan, Int. J. Quantum Chem. 2005, 104, 286–298. DOI:10.1002/qua.20559
30. S. Noorizadeh, J. Mol. Struct. (Theochem) 2005, 713, 27–32. DOI:10.1016/j.theochem.2004.09.029
31. A. Tanwar, S. Pal, D. R. Roy, P. K. Chattaraj, J. Chem. Phys. 2006, 125, 056101. DOI:10.1063/1.2227381
32. J. F. Janak, Phys. Rev. B 1978, 18, 7165–7168. DOI:10.1103/PhysRevB.18.7165
33. T. A. Keith, R. F. W. Bader, Chem. Phys. Lett. 1993, 210, 223–231. DOI:10.1016/0009-2614(93)89127-4
34. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery, Jr., T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, ...
R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez, J. A. Pople, Gaussian 03, Revision C.01. Gaussian, Inc., Wallingford CT, 2004.

35. U. Hohm, J. Phys. Chem. A 2000, 104, 8418–8423. DOI:10.1021/jp0014061
36. W. M. Haynes (Ed.), CRC Handbook of Chemistry and Physics, Vol. 97, CRC Press, Boca Raton, FL, 2017.
37. E. Steiner, P. W. Fowler, in: B. Grimm, R. J. Porra, W. Rüdiger, H. Scheer (Eds.): Chlorophylls and Bacteriochlorophylls: Biochemistry, Biophysics, Functions and Applications, Springer, Netherlands, 2006, pp. 337–347.

Povzetek

Novo načelo, znano kot načelo minimalne magnetizabilnosti, je bilo nedavno predstavljeno v okviru teorije gostotnega funkcionala (DFT). Da bi potrdili to načelo, smo na ravni teorije B3LYP/LanL2DZ izračunali spremembe v magnetizabilnosti (Δξ) in tretjem korenju iz Δξ (Δξ1/3) za nekatere osnovne kemijske reakcije. Ugotovili smo, da načelo velja za 77% preučevanih reakcij. Opazili smo, da so molekule z najnižjo vsoto ξ ali ξ1/3 na splošno najbolj stabilne. Načelo ne deluje v prisotnosti trdih zvrsti. Izvedli smo tudi primerjalno študijo s spreminjanjem trdote (Δη), indeksa electrofilnosti (Δω), polarizabilnosti (Δα) in njihovih tretjih korenov (Δη1/3, Δω1/3, Δα1/3). Opazili smo, da je načelo minimalne magnetizabilnosti skoraj tako zanesljivo kot načelo minimalne electrofilnosti. Zdi se, da bi to načelo lahko pomagalo pri napovedovanju smeri različnih reakcij in stabilnih geometrijskih ureditev.