External ocular surface bacterial isolates and their antimicrobial susceptibility patterns among pre-operative cataract patients at Mulago National Hospital in Kampala, Uganda

Barnabas Mshangila1,2, Musana Paddy1, Henry Kajumbula3, Charles Ateenyi-Agaba1, Binta Kahwa1 and Jeremiah Seni3,4*

Abstract

Background: Endophthalmitis is a severe complication of cataract surgery which leads to high ocular morbidity and visual loss even with antibiotic treatment. Bacterial ocular floras are the implicated causative agents. This study was undertaken to evaluate the external ocular surface bacterial isolates and their antimicrobial susceptibility patterns among pre-operative cataract patients at Mulago National Hospital.

Methods: This cross sectional study enrolled consecutively 131 patients scheduled for routine cataract surgery in the Department of Ophthalmology at Mulago National Hospital in Kampala, Uganda. Eyelid margin and conjunctival swabs were collected and processed using standard microbiological procedures to identify bacterial isolates and their respective antimicrobial susceptibility patterns.

Results: Of 131 patients involved (mean age 63.3 ± 14.5 years), 54.2% (71/131) were females. The eyelid margin and conjunctival samples were culture positive in 59.5% (78/138) and 45.8% (60/138) respectively. The most common organisms identified were Coagulase-negative Staphylococci (CoNS) [65.9% (91/138)] and Staphylococcus aureus [21.0% (29/138)]. CoNS showed the highest resistance to tetracycline (58.2%, 53/91) and erythromycin (38.5%, 35/91), whereas in S. aureus the resistance to tetracycline and erythromycin were 55.2% (16/29) and 31.0% (9/29) respectively. Methicillin resistant CoNS (MRS) and Methicillin resistance S. aureus (MRSA) were 31.9% (29/91) and 27.6% (8/29) respectively. There were low resistance rates for CoNS, S. aureus and other bacterial isolates to ciprofloxacin (11.1%-24.2%), gentamicin (5.6-31.0%), tobramycin (17.2% -25.3%) and vancomycin (0.0%).

Conclusion: CoNS and S. aureus are the most common bacterial isolates found on the external ocular surface of the pre-operative cataract patients. Ciprofloxacin, gentamicin, tobramycin and vancomycin showed the lowest resistance rates to all bacterial isolates, therefore may be used to reduce bacteria load in the conjunctiva sac among cataract patients prior to surgery.

Keywords: Antimicrobial susceptibility, Cataract patients, Uganda

*Correspondence: senijj80@gmail.com
1Department of Medical Microbiology, Makerere University College of Health Sciences, P.O. Box 7072, Kampala, Uganda
2Department of Microbiology and Immunology, Catholic University of Health and Allied Sciences Bugando, P.O. Box 1464, Mwanza, Tanzania
Full list of author information is available at the end of the article

© 2013 Mshangila et al; licensee BioMed Central Ltd. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Background
Endophthalmitis is an inflammatory condition of the eye often caused by bacterial infection [1,2]. It is a rare but dreaded complication of cataract surgery, as it leads to high ocular morbidity and visual loss even with antibiotic treatment [3].

Most bacteria responsible for postoperative ocular infection are part of the normal microbial flora of the conjunctiva and eyelids of the patients [4,5]. Gram-positive pathogens are responsible for 60% to 80% of acute infections, of which Coagulase-negative Staphylococci (CoNS) are the most frequently isolated pathogens, followed by Staphylococcus aureus and Streptococcus spp [3,5-7]. Gram-negative organisms are responsible for up to 15% of the infections [7,8]. These bacteria are carried into the eye as surface fluid refluxes through the wound during surgery [4,9]. Also, instruments or intraocular lenses may become contaminated if they touch the ocular surface [9,10].

Use of prophylactic antibiotics in cataract surgery reduces the number of organisms in the conjunctiva and eyelids and thus, reduces the risk of postoperative infection [11-13]. Trends of bacterial resistance have been shown to increase among commonly used antibiotics such as penicillins, erythromycin, and tetracycline [14], however the trend is variable to topical fluoroquinolones, a group of broad-spectrum bactericidal agents most frequently used as pre- and postoperative prophylaxis for ocular surgeries. In some areas the resistance trend is increasing [15-17], whereas in other settings only less than 15% of S. aureus, CoNS, Streptococcus spp and Gram negative bacteria were resistance to quinolones [7,8,14,18]. Low resistance to vancomycin, cefuroxime and newer quinolones such as ofloxacin, or gatifloxacin has been shown among CoNS, S. aureus and Streptococcus spp [6,8,13,18,19]. The underlying causes on the increase in antimicrobial resistance are complex and mostly related to interconnected factors related to inherent pathogens’ factors, arbitrary and prolonged use of the drugs and the common practice of self-medication [1,20].

The incidence of postoperative endophthalmitis following cataract surgery in Mulago National Hospital recorded in the year 2010 [2.9% (12/412)] was higher than the findings from studies in different countries where the rates were less than 0.1% [2,13,21-24]. In spite of this relatively higher rate there is no standard evidence based protocol for the choice of antimicrobial agent to prevent post-operative infections in this setting.

Therefore, this study aimed at assessing the external ocular surface bacterial isolates from pre-operative cataract patients’ eyelids and conjunctival samples and their antimicrobial susceptibility patterns at Mulago National Hospital.

Methods
Study design and sampling process
This was a hospital based cross-sectional study conducted from September 2011 to March 2012 in the Department of Ophthalmology at Mulago National Hospital. The study involved 131 pre-operative patients who were scheduled for cataract surgery during the study period. Patients with nasolacrimal duct obstruction, prior use of systemic or local antibiotics and/or steroids in the past week, current contact lens wearer and children who required general anesthesia were excluded from the study.

Data collection and laboratory procedures
The entry point for recruiting patients to participate in this study was during biometry session, whereby, patients who met the inclusion criteria were invited to participate. A thorough explanation on the purpose of the research was provided to all study participants prior to seek for a written informed consent.

External ocular examination using a slit lamp biomicroscope to rule out any focus of infection or inflammation was done thoroughly in all patients and then, demographic data were collected using structured questionnaire.

Ocular swabs were aseptically collected by the principal investigator from patients in the morning on the day of surgery before the application of topical anesthetic, mydriatics, antibiotic or povidone-iodine. Lid margin specimens were collected first followed by conjuntival specimens from the same eye. The patient was asked to look up, and then the lower eyelid margin was swabbed with a sterile cotton swab (Biolab, HUNGARY®) moistened with sterile saline, employing a continuous stroke from the nasal to temporal side and then a second stroke from temporal to nasal side. The inferior conjunctival fornix was swabbed by another sterile cotton swab (Biolab, HUNGARY®), employing the same direction and strokes as for the lid margin without touching eyelid or lashes. The swabs were then inoculated into Brain-heart infusion broth (Biolab®, HUNGARY) and processed in the Clinical Microbiology Laboratory of Makerere University College of Health Sciences using standard operating procedures as follows:

Culture and identification
Samples incubated in Brain-heart infusion broth over-night were sub-cultured into blood agar, chocolate agar and MacConkey (Biolab®, HUNGARY) agar and incubated at 35-36°C for 24–48 hours. Identification of bacteria was based on conventional microbiological methods. These included Gram stain, hemolytic activity on sheep blood agar, catalase reaction, coagulase reaction, optochin disk test, bacitracin disk test, hippurate hydrolysis and CAMP tests for Gram positive bacteria. For Gram negative bacteria identification was based on colony morphology on blood
agar and MacConkey agar and reactions on triple sugar iron, hydrogen sulphide production, indole, motility, citrate, urease and oxidase tests [25].

Drug susceptibility tests
A standard disc diffusion technique for drug susceptibility test (DST) was performed among all identified isolates as recommended by Clinical and Laboratory Standard Institute (CLSI) [26] on Mueller-Hinton agar (Biolab®, HUNGARY). The following antibiotics which are currently available on the market and are in routine ophthalmic use were tested: Chloramphenicol (30 μg), Gentamycin (10 μg), Tobramycin (10 μg), Oxacillin (1 μg), Polymyxin-B, Erythromycin (15 μg), Vancomycin (30 μg), Tetracycline (30 μg), Ciprofloxacin (5 μg), and Streptomycin (10 μg) (Biolab®, HUNGARY). Multidrug resistance (MDR) bacteria were defined as isolates which are resistance to three or more classes of drugs [27].

Apart from conventional methods, isolates confirmation and drug susceptibility testing were also done using the Phoenix Automated instrument (Becton-Dickson, Sparks Maryland) as per manufacturer’s instruction.

Data analysis
Data collected was entered into the computer software (EpiData 3.1), cleaned and analyzed using SPSS 17.1 software according to the study objectives. Continuous variables were described as mean (± standard deviation). Categorical variables were described as proportion and were analyzed to compare the significance of difference in distribution by using Chi square test or Fischer’s exact test where appropriate. The difference in distribution was considered significant if p-value was less than 0.05.

Quality control
Aseptic techniques were strictly observed during sample collection, transportation and processing. The standard positive and negative reference control strains used were Staphylococcus aureus ATCC 25923, Staphylococcus aureus ATCC 43300, Staphylococcus epidermidis ATCC 12228 and Escherichia coli ATCC 25922.

Study clearance and ethical considerations
Permission to conduct this study was obtained from the Institutional Review Board (IRB) of Makerere University College of Health Sciences and Mulago Hospital Research Committee. A written informed consent was obtained from all study participants. Confidentiality was ensured by giving anonymous codes to the study participants. All protocols and procedures in this study complied with the Declaration of Helsinki.

Results
A total of 131 pre-operative cataract surgery patients were recruited in the study. The mean age was 63.3 ± 14.5 years (range 23 to 98 years). Of these, 54.2% (71/131) were females. Majority (84.0%, 110/131) of the participants were living in the Central region, followed by Eastern region (11.5%, 15/131), western region (3.8%, 5/131) and only 0.76%, (1/131) were from Northern region. The general educational level of the study population was found to be low with only 23.7% (31/131) having had formal education beyond primary level. More than half of the participants (57.3%, 75/131) had outdoor occupation.

Eyelid and conjunctival bacterial isolates
Culture was positive in 59.5% (78/131) of the eyelid margin samples and in 45.8% (60/131) of the conjunctival samples. The most common bacterial isolates from the eyelid margin were Coagulase-negative staphylococci 66.7% (52/78) followed by Staphylococcus aureus 20.5% (16/78), whereas the respective bacteria accounted for 65% (39/60) and (21.7% (13/60) from conjunctival specimens. Of all the CoNS isolates, Staphylococcus epidermidis [76.9% (70/91)] and Staphylococcus saprophyticus [18.7% (17/91)] were common. Gram negative bacteria accounted for 10.1% (14/138) from both eyelid and conjuctival swabs (Table 1).

CoNS showed the highest resistance to tetracycline (58.2%, 53/91), followed by erythromycin (38.5%, 35/91), whereas in S. aureus the resistance to tetracycline and erythromycin were 55.2% (16/29), 31.0% (9/29) respectively. There were low resistance rates for CoNS, S. aureus and other bacterial isolates to ciprofloxacin (11.1%-24.2%), gentamicin (5.6-31.0%), and tobramycin (17.2% - 25.3%). Methicillin resistant CoNS (MRS) and Methicillin resistance S. aureus (MRSA) were 31.9% (29/91) and 27.6 (8/29) respectively. All Gram positive bacterial isolates were sensitive to vancomycin (Table 2).

MDR isolates among CoNS, S. aureus and other isolates were found to be 39.6% (36/91), 27.6% (8/29) and 16.7% (3/18) respectively. Bacteria isolates (irrespective

Organisms	Eyelid	Conjunctiva	Total
Staphylococcus epidermidis	40 (57.1%)	30 (42.9%)	70 (100.0%)
Staphylococcus aureus	16 (55.2%)	13 (44.8%)	29 (100.0%)
Staphylococcus saprophyticus	8 (47.1%)	9 (52.9%)	17 (100.0%)
Streptococcus pneumonia	1 (25.0%)	3 (75.0%)	4 (100.0%)
Other CoNS*	4 (100.0%)	0 (0.0%)	4 (100.0%)
Gram negative rods**	9 (64.3%)	5 (35.7%)	14 (100.0%)
Total	78 (56.5%)	60 (43.5%)	138 (100.0%)

* Staphylococcus caprae (2), Staphylococcus hominis (1) and Staphylococcus hemolyticus (1).
** Enterobacter cloacae (8), Proteus mirabilis (3) and Acinetobacter spp (3).
and Vancomycin were tested in [30]. Similar to other related studies [8,14,28,29,31,32], the findings of this study, more than three quarter were above 50 years.

This study found high rates of resistance to erythromycin and tetracycline among CoNS and S. aureus, the findings which are similar to other studies [28,31]. These can be due to readily availability of these antibiotics, thus liable to indiscriminate use as well as the common practice of self-medication found in Uganda. Resistance to chloramphenicol among CoNS, S. aureus and other isolates were high ranging from 27.6% to 44.4% and there were low resistance rates to ciprofloxacin, gentamicin and tobramycin. Furthermore, the in vitro-susceptibility results of gentamicin compared to tobramycin are promising in this setting as gentamicin is readily available and less expensive than tobramycin. These findings have also been shown in other similar studies [8,28]. The proportion of MRS (31.9%) and MRSA (27.6%) among CoNS and S. aureus respectively are relatively similar to another study [29] but higher than the rate reported from another study [8], the difference may be attributable to colonization status.

Bacterial isolates	Oxa¹	Chlr²	Erth³	Gent⁴	Tetra⁵	Cipro⁶	Vanco⁷	Strep⁸	Poly⁹	Tobra¹⁰
CoNS, n (%)	S				38	69	91	61	63	68
N = 91	R	29	27	35	19	53	22	0	30	28
S. aureus, n (%)	S	21	21	20	20	13	21	29	28	24
N = 29	R	8	8	9	9	16	8	0	1	5
Others*, n (%)	S	1	10	1	17	15	16	4	15	14
N = 18	R	3	8	3	1	3	2	0	3	4

CoNS = Coagulase-negative Staphylococcus, *Gram negative rods and S. pneumonia, N = number of isolates tested, S = Sensitive, R = Resistant, ¹Oxacillin, ²Chloramphenicol, ³Erythromycin, ⁴Gentamycin, ⁵Tetracycline, ⁶Ciprofloxacin, ⁷Vancomycin, ⁸Streptomycin, ⁹Polymyxin B, ¹⁰Tobramycin. Others*: Erythromycin and Vancomycin were tested in S. pneumonia isolate only.

Table 3 Comparison of resistance profiles of eyelid and conjunctival bacterial isolates

Drugs	Eyelid isolates, n (%)	Conjunctival isolates, n (%)	Chi-2	p-value
	(N = 78)	(N = 60)		
Oxacillin	22 (31.9)	19 (34.6)	0.0979	0.754
Chloramphenicol	27 (34.6)	16 (26.7)	0.9989	0.318
Erythromycin	31 (66.0)	16 (34.0)	3.2611	0.071
Gentamicin	17 (21.8)	12 (20.0)	0.0658	0.798
Tetracycline	41 (52.6)	31 (51.7)	0.0109	0.917
Ciprofloxacin	16 (20.5)	16 (26.7)	0.7210	0.396
Vancomycin	0 (0.0)	0 (0.0)	-	-
Streptomycin	22 (28.2)	12 (20.0)	1.2297	0.267
Polymyxin	22 (28.2)	11 (18.3)	1.8164	0.178
Tobramycin	18 (23.1)	14 (23.3)	0.0013	0.972

N = 69 and N = 55 (antimicrobial tests involved Gram positive bacteria only).
of the study population in the respective settings. The iso-
lolation of MRS and MRSA signify that these patients can-
not benefit from β-lactamase inhibitors such as penicillins,
cephalosporins, monobactams and carbapenems as pre-
operative prophylactic agents. All Gram positive bacterial
isolates in this study were susceptible to vancomycin.
Other similar studies also have showed profoundly low res-
istance rates among bacteria to vancomycin [8,14,28,31].
The MDR isolates among CoNS (39.6%), S. aureus (27.6%)
and other isolates (16.7%) in the present study and
another study in the same setting [33] are relatively
higher than from other studies [8,28,31], showing a grow-
ning problem of MDR and thus, emphasizing the need for
ongoing antimicrobial resistance surveillance to influence
infection control and prevention in this setting. Similar
to another study [29], there was no difference in antimicro-
bial resistance profiles among bacteria isolates from eyelid
and conjunctiva samples. This raising trend in bacteria
resistance at Mulago National Hospital and in other re-
geons [15,29,34] can be limited by judicious prophylactic
use of antibiotics, drug susceptibility test guided therapy
and ensuring continuous antimicrobial resistance sur-
veilance [17,34].

Conclusion
The most common bacteria found on the external ocular
surface of the pre-operative cataract patients at Mulago
National Hospital are CoNS and Staphylococcus aureus,
majority of these showed high resistances to tetracycline
and erythromycin. All bacterial isolates showed the high-
est susceptibility rates to ciprofloxacin, gentamicin, tobra-
mycin and vancomycin, and therefore these antibiotics
may be used to reduce bacteria load in the conjunctiva sac
among cataract patients prior to surgery and thus prevent
postoperative endophthalmitis.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
Conceived and designed the study: BM, MP, BK and JS. Specimens’
collection: BM. Supervised the study: MP, HK, CA and BK. Analyzed the data:
BM and JS. Wrote the manuscript: BM, MP, HK, AT, BK and JS. All authors
have read and approved the final manuscript.

Acknowledgements
The authors are thankful to patients in the Ophthalmology ward for their
willingness to participate in the study; Waishwa Muwazulu, Hannington
Baluku and Andrew Akamurua for excellent technical assistance; and all
staff in the Department of Ophthalmology and Department Medical
Microbiology for their support. This work was funded by Ministry of Health
and Social Welfare, Tanzania to BM.

Author details
1Department of Ophthalmology, Makerere University College of Health
Sciences, P.O. Box 7072, Kampala, Uganda. 2Mbeya Referral Hospital, P.O. Box
419, Mbeya, Tanzania. 3Department of Medical Microbiology, Makerere
University College of Health Sciences, P.O. Box 7072, Kampala, Uganda.
4Department of Microbiology and Immunology, Catholic University of Health
and Allied Sciences Bugando, P.O. Box 1464, Mwanza, Tanzania.

Received: 5 June 2013 Accepted: 12 November 2013
Published: 15 November 2013

References
1. Mandell GL, Bennett JE, Dolin R (Eds): Principles and Practice of Infectious
Diseases. 6th edition. Philadelphia, Pa, USA: Churchill Livingstone; 2005.
2. Jambulingam M, Parameswaran SK, Lysa S, Selvaraj M, Madhavan HN: A
study on the incidence, microbiological analysis and investigations on the
source of infection of postoperative infectious endophthalmitis in a
tertiary care ophthalmic hospital: an 8-year study. Indian J Ophthalmol
2010, 58(4):297–302.
3. Callegan MC, Engelbert M, Parke DW 2nd, Jett BD, Gilmore MS: Bacterial
endophthalmitis: epidemiology, therapeutics, and bacterium-host interac-
tions. Clin Microbiol Rev 2002, 15(1):111–124.
4. Speaker MG, Milch FA, Shah MK, Eister W, Keiswieth BN: Role of external
bacterial flora in the pathogenesis of acute postoperative
endophthalmitis. Ophthalmol 1991, 98(5):639–649. discussion 650.
5. Bannerman TL, Rhoden DL, McMullin SF, Miller JM, Wilson LA: The source
of coagulase-negative staphylococci in the Endophthalmitis Vitrectomy
Study. A comparison of eyelid and intraocular isolates using pulsed-field
gel electrophoresis. Arch Ophthalmol 1991, 113(5):357–361.
6. Morrissey I, Bunnell R, Wijaya J, Robbins M: Surveillance of the
susceptibility of ocular bacterial pathogens to the fluoroquinolone
gatifloxin and other antibiotics in Europe in 2001/2002. J Infect
2004, 49(2):109–114.
7. Benz MS, Scott IU, Flynn HW Jr, Uronius N, Miller D: Endophthalmitis
isolates and antibiotic sensitivities: a 6-year review of culture-proven
cases. J Ophthalmol 2004, 137(1):38–42.
8. Kantse TE, Cavalcanti PF, Diriz Mde F, Severo MS, Lins Neto J, Castro CM:
 Conjunctival bacterial flora and antibiotic resistance pattern in patients
undergoing cataract surgery. Arq Bras Oftalmol 2006, 69(1):33–36.
9. Shewood DR, Rich WJ, Jacob JS, Hart RJ, Fairchild YL: Bacterial
contamination of intraocular and extracocular fluids during extracapsular
cataract extraction. Eye (Lond) 1993, 8 Pt 3:308–312.
10. Doyle A, Berg B, Early A, Blake A, Fustag P, Hone R: Adherence of bacteria
to intraocular lenses: a prospective study. Br J Ophthalmol 1995, 79(4):347–349.
11. Colleaux KM, Hamilton WK: Effect of prophylactic antibiotics and incision
type on the incidence of endophthalmitis after cataract surgery. Can J
Ophthalmol 2000, 35(7):373–378.
12. Montan PG, Wejde G, Karanyi G, Rylander M: Prophylactic intracameral
ceftazidime, Efficacy in preventing endophthalmitis after cataract
surgery. J Cataract Refract Surg 2002, 28(6):977–981.
13. Wood M, Bowman R, Daya SM Prophylactic ceftazidime and endophthalmitis
in Tanzania, East Africa. J Cataract Refract Surg 2008, 34(19):10.
14. Ta CN, Chang RT, Singh K, Eggert PR, Shiver EM, Blumenkranz MS, Minu de
Kaspar H: Antibiotic resistance patterns of ocular bacterial flora: a
prospective study of patients undergoing anterior segment surgery.
Ophthalmology 2003, 110(10):1946–1951.
15. Alexandrakis G, Alfonso EC, Miller D: Shifting trends in bacterial keratitis in
south Florida and emerging resistance to fluoroquinolones.
Ophthalmology 2000, 107(8):1497–1502.
16. Graves A, Henry M, O’Brien TP, Hwang DQ, Van Bokuik RJ, Trousdale MD: In
vitro susceptibilities of bacterial ocular isolates to fluoroquinolones.
Comer 2001, 20(3):301–305.
17. Kovalski RP, Karenchak LM, Romanowski EG. Infectious disease: changing
antibiotic susceptibility. Ophthalmol Clin North Am 2003, 16(1):1–9.
18. Chaitta MR, Hoffing-Lima AC, Panahos A Jr, Schor P, Bertoll R Jr: Shifting
trends in in vitro antibiotic susceptibilities for common ocular isolates
during a period of 15 years. Am J Ophthalmol 2004, 137(1):3–5.
19. ESCRS: Prophylaxis of postoperative endophthalmitis following cataract
surgery: results of the ESCRS multicenter study and identification of risk
factors. J Cataract Refract Surg 2007, 33:978–988.
20. Buchman TG, Dushoff J, Effron MB, Ethrich PR, Fitzpatrick S, Laxminarayan R:
Antibiotic overuse: the influence of social norms, McDonnell Norms
Group: J Am Coll Surg 2007, 205(2):265–275.
21. Pot MC: Stilma JS: [Low complication rate with cataract operations
carried out by registrars in ophthalmology]. Ned Tidschr Geneesk 2008,
152(10):563–568.
22. Oduyoe OO, Odugbemi TD, Isedau A, Adefule-Ostelu A, Ainbu IE, Ogunre E,
Incidence of postoperative eye infections in a private eye hospital in
Lagos, Nigeria. Nig Q J Hosp Med 2010, 20(3):138–143.
23. Lin M, Zhang W, Liu Y, Wang L, Ding Y, Wu X, Shi Y, Sun L, Li Y: Nosocomial acute-onset postoperative endophthalmitis at a university teaching hospital in China. J Hosp Infect 2011, 79(4):323–327.

24. de Luz RA, Padoveze MC, Cvintal T: Epidemiologic surveillance of postoperative endophthalmitis in a specialized ophthalmologic center in Sao Paulo, Brazil. Am J Infect Control 2012, 40(1):e1–e3.

25. Koneman EW, Allen SD, Janda WM, Schreckenberger PC: Color Atlas and Textbook of Diagnostic Microbiology. 5th edition. Philadelphia, PA: Lippincott, Williams & Wilkins Publishers; 1997.

26. CLSI: Performance Standards for Antimicrobial Susceptibility Testing; Twenty First Information Supplement. Vol. CLSI Document M100-S21. Wayne, PA: Clinical and Laboratory Standards Institute; 2011.

27. D’Agata EM: Rapidly rising prevalence of nosocomial multidrug-resistant, Gram-negative bacilli: a 9-year surveillance study. Infect Control Hosp Epidemiol 2004, 25(10):842–846.

28. Aghadoost D, Khoshidi A: Antibiotic Resistance Patterns of Ocular Surface Bacterial Flora. J Infect Dis Antimicrob Agents 2005, 22:53–57.

29. Olson R, Donnenfeld E, Bucci FA Jr, Price FW Jr, Raizman M, Solomon K, Devgan U, Trattler W, Dell S, Wallace RB, et al: Methicillin resistance of Staphylococcus species among health care and nonhealth care workers undergoing cataract surgery. Clin Ophthalmol 2010, 4:1505–1514.

30. Pepose JS, Holland GN, Wilhelmsen KR (Eds): Ocular Infection and Immunity. St. Louis: Mosby; 1996.

31. de Kaspar MH, Koss MU, He L, Blumenkrantz MS, Ta CN: Antibiotic susceptibility of preoperative normal conjunctival bacteria. Am J Ophthalmol 2005, 139(4):730–733.

32. Rongrungruang Y, Tantaterdthum J, Tuntiwattanapibul Y, Sripalakij S, Danchaivijitr S: Bacterial flora – A potential source of endophthalmitis after cataract surgery. J Med Assoc Thai 2005, 88(Suppl):S49–S53.

33. Seni J, Najuka CF, Karitee DP, Makobore P, Molaika ML, Kajambula H, Kapesa A, Bwanga F: Antimicrobial resistance in hospitalized surgical patients: a silently emerging public health concern in Uganda. BMC Res Notes 2013, 6:298.

34. Liesegang TJ: Use of antimicrobials to prevent postoperative infection in patients with cataracts. Curr Opin Ophthalmol 2001, 12(1):68–74.