Bacterial translocation and microgap formation at a novel conical indexed implant abutment system for single crowns

Peter Gehrke1,2 · Simon Burg3 · Ulrike Peters4 · Thomas Beikler4 · Carsten Fischer5 · Frank Rupp6 · Ernst Schweizer6 · Paul Weigl1 · Robert Sader7 · Ralf Smeets3,8 · Sogand Schäfer3

Received: 14 June 2021 / Accepted: 27 July 2021 / Published online: 16 August 2021 © The Author(s) 2021

Abstract

Objectives A conometric concept was recently introduced in which conical implant abutments hold the matching crown copings by friction alone, eliminating the need for cement or screws. The aim of this in vitro study was to assess the presence of micro-gap formation and bacterial leakage at the Acuris conometric restorative interface of three different implant abutment systems.

Material and methods A total of 75 Acuris samples of three implant-abutment systems (Ankylos, Astra Tech EV, Xive) were subjected to microbiological (n = 60) and scanning electron microscopic (SEM) investigation (n = 15). Bacterial migration into and out of the conical coupling system were analyzed in an anaerobic workstation for 48, 96, 144, and 192 h. Bacterial DNA quantification using qrt-PCR was performed at each time point. The precision of the conometric coupling and internal fit of cemented CAD/CAM crowns on corresponding Acuris TiN copings were determined by means of SEM.

Results qrt-PCR results failed to demonstrate microbial leakage from or into the Acuris system. SEM analysis revealed minute punctate microgaps at the apical aspect of the conometric junction (2.04 to 2.64 µm), while mean cement gaps of 12 to 145 µm were observed at the crown-coping interface.

Conclusions The prosthetic morse taper connection of all systems examined does not allow bacterial passage. Marginal integrity and internal luting gap between the ceramic crown and the coping remained within the clinically acceptable limits.

Clinical relevance Conometrically seated single crowns provide sufficient sealing efficiency, relocating potential misfits from the crown-abutment interface to the crown-coping interface.

Keywords Acuris · Conometric connection · Bacterial leakage · Microgap · Cement gap · Marginal integrity · CAD/CAM crown

Introduction

Anchorage of the prosthetic connection for implant-supported fixed dental prostheses (FDPs) is commonly achieved by means of luting cement or screws. To ensure firm retention between multiple implants and the respective superstructure, the use of a conometric concept has been proposed alternatively [1, 2]. In this approach, conical abutments retain matching crown copings solely by surface friction, thus eliminating the need for either cement or screws. Recently, a novel conical indexed abutment (Acuris, Dentsply Sirona Implants, Mölndal, Sweden) with anti-rotation features has been introduced to avoid the undesirable impact of rotational forces in single implant restorations [3, 4]. A modification of this restorative concept from previously published conometric approaches involves extraoral adhesive luting between a titanium nitride-coated (TiN) stock coping (Acuris Cap, Dentsply Sirona Implants, Mölndal, Sweden) and an all-ceramic crown in the dental laboratory, shifting the potential misfits from the crown-abutment interface to the crown-coping interface (Fig. 1). The final crown-coping complex is fixed intraorally to the anti-rotation connection of the conical abutment with an axially directed load of a calibrated striker (Acuris Abutment, Conometric Fixation Tool, both Dentsply Sirona Implants, Mölndal, Sweden). This ensures a correct alignment and secure coupling of the crown. The conometric joint is therefore a fixed reten-

© The Author(s) 2021

Clinical Oral Investigations (2022) 26:1375–1389

https://doi.org/10.1007/s00784-021-04112-2

Extended author information available on the last page of the article

Extended author information available on the last page of the article

Springer
The aim of the present in vitro trial was therefore to evaluate the bacterial leak proofing along the conometric junction of 3 different implant-abutment systems for single crown restorations. A secondary objective of the study was to assess the conometric fit as well as the marginal adaptation of computer-assisted design and computer-assisted (CAD/CAM) fabricated all-ceramic crowns on the Acuris TiN copings using scanning electron microscopy (SEM). The hypothesis tested was that the cone-in-cone coupling exhibits no detectable microgap and does not allow bacterial translocation, irrespective of the implant-abutment system. Furthermore, it was hypothesized that no difference would be observed between the 3 test groups in terms of internal fit and marginal integrity of the crown-coping interface.

Materials and methods

General study setup

A dual study approach was designed to evaluate bacterial leakage along the Acuris morse taper junction and to determine its conometric fit as well as the internal and marginal integrity between the Acuris TiN coping and all-ceramic crown. The principal scheme of the test setup is shown in Fig. 2. A total of 75 conometric samples of three different implant-abutment systems (Ankylos C/X A11 implant, D 3.5/ L 11; Astra Tech EV implant, D 3.6/ L 11, and Xive S plus implant; D 3.8/ L 11, all Dentsply Sirona Implants, Mölndal, Sweden) were subjected to microbiological (n = 60) and microscopic investigation (n = 15). The examined specimens had distinct system-inherent morse taper (Ankylos C/X and Astra Tech EV) or internal hex (Xive S plus) implant-abutment junctions (IAJ) (Fig. 3).

Analysis of bacterial translocation

To examine bacterial migration into and out of the restorative conometric coupling system, separate microbiological tests were conducted. First, ten conometric abutments (Acuris, A0, GH 1 to 1.5 mm, Dentsply Sirona implants, Mölndal, Sweden) of each system were connected to the corresponding screw implants (subtotal n = 30). This involved the unpacking of the sterile implants and connecting the Acuris abutments to the implants using a new titanium abutment screw and tightening it to the manufacturer’s recommended insertion torque using a pre-calibrated manual torque wrench for each system. Titanium nitride-coated (TiN) stock copings (Acuris Cap, Dentsply Sirona implants, Mölndal, Sweden) were attached manually to the anti-rotation portion of the abutments. The friction fit was obtained by exerting an axially directed load using a dedicated fixation tool with a calibrated striker (Conometric fixation tool;
of Microorganisms and Cell Cultures GmbH, Leibnitz, Germany), *Fusobacterium nucleatum* (DSM 15,643, German Collection of Microorganisms and Cell Cultures GmbH, Leibnitz, Germany), and late colonizing *Porphyromonas gingivalis* (DSM 20,709, German Collection of Microorganisms and Cell Cultures GmbH, Leibnitz, Germany) species was prepared. The bacteria varied by size with a size ranging from 0.5 to 1–2 µm [11]. The optical density (OD) of the mixed culture was 0.1.

To assess bacterial outgrowth, the occlusal openings of ten Acuris abutments in each of the three different systems were filled with 4 µl of a mixed bacterial culture of anaerobes. The matching TiN caps were seated on the abutments and fixed as previously described. All assembled specimens were then disinfected with 70% aqueous ethanol (EtOH) and transferred to sterile 1.5 ml Eppendorf tubes containing 1 ml bacterial culture medium (CDC) to provide an optimal environment for bacterial colonization. While 4 µl of mixed bacterial culture was filled directly into an Eppendorf tube as a positive control, 4 µl of pure culture medium (CDC) in one of the Acuris abutments served as a negative control. Incubation was maintained at 37 °C for 48, 96, 144, and 192 h. At each specified time interval, a sample of 50 µl was taken from each Eppendorf tube for the analysis of total bacterial count. Each sample underwent DNA preparation (innuPREP DNA Isolation Kit, Analytik Jena AG, Jena, Germany). The respective DNA was quantified by qrt-PCR (quantitative real-time polymerase chain reaction).

Fig. 2 Study design of qrt-PCR microbiological analyses and microscopic examination by means of SEM

Fig. 3 Assembled specimens of the tested implant-abutment systems (from left to right): Ankylos C/X, Astra Tech EV, Xive S plus

Dentsply Sirona Implants, Mölndal, Sweden). Similar to a clinical setting, final fixation of the TiN copings was verified visually and by manual, non-calibrated pull-off tests. All specimens were finally autoclaved (Autoclave Systec V-40, Systec GmBH, Linden, Germany) and transferred to a Whitley A35 workstation (Whitley A35 Workstation Don Whitley Scientific, Bingley, UK) under anaerobic conditions at 37 °C. For screening of bidirectional bacterial translocation, a mixed bacterial culture suspension consisting of anaerobic early colonizing *Streptococcus mutans* (DSM 20,523, German Collection of Microorganisms and Cell Cultures GmbH, Leibnitz, Germany), moderate colonizing *Actinomyces naeslundii* (DSM 17,233, German Collection
real-time polymerase chain reaction, CFX96 Touch Real-Time PCR Detection System, Bio-Rad Laboratories, Berkeley, California (USA) employing a universal eubacterial 16S rRNA primer (HDA1 GACTCTACGAGAGCACGT, E1115R AGGTTGCGTCTGTGGCCG). Universal primer results were specified with appropriate primers for each bacterial strain as listed in Table 1 [10, 12–14].

To cross-check the findings concerning bacterial translocation out of the conometric components, samples were also tested for bacterial leakage into the conometric system. An additional ten Acuris abutments (subtotal n = 30) of the respective systems (Ankylos C/X, Astra Tech EV, Xive S plus) were occlusally filled with 4 µl of culture medium to ensure an optimal environment for bacterial colonization and connected to the Acuris TiN copings. The specimens were transferred to a reaction tube containing 30 ml bacterial mixed culture solution. As a positive control, 4 µl of bacterial mixed culture was filled directly into an Eppendorf tube. Four µl of culture medium (CDC) served as a negative control and replaced the bacterial mixed culture. Over a period of 7 days, a sample of 20 ml of mixed culture solution was taken from the original reaction tube at 48, 96, 144, and 192 h, respectively, and replaced with fresh bacterial culture medium. Simultaneously, at each point of time, two implants were removed from the reaction tube, washed with phosphate buffered saline (PBS), and disinfected with 70% aqueous ethanol (EtOH), followed by removal of the TiN caps from the abutments. The contained solution was processed with a deoxyribonucleic acid (DNA) Isolation Kit (innuPREP DNA Isolation Kit, Analytik Jena AG, Jena, Germany). In accordance to outgrowth testing, the DNA was quantified with qrt-PCR using universal and specific primers for the examined bacterial strains [10, 12–14] (Table 1).

SEM analysis of conometric connection and luting interface of coping and crown

Specimen fabrication

In addition to bacterial leak testing, a total of 15 Acuris abutments for single crown restorations of the three different systems were subjected to scanning electron microscopy, five per system (Ankylos C/X, Astra Tech EV, Xive S plus). Despite different IAJ, the restorative abutment configuration and prosthodontic diameter (D 4.5 mm) were identical for all abutments. Thus, the same Acuris TiN copings could be used for all three implant systems. The master cast of a clinical case where the right mandibular first molar had been replaced by a single implant restoration served as origin of the virtual crown design (DentalCAD, Exocad GmbH, Darmstadt, Germany). A temporary implant-supported single crown had been used to precondition the emergence profile of the peri-implant mucosa. Due to the same restorative abutment configuration of all investigated systems, 15 identical monolithic CAD/CAM zirconia crowns were fabricated (Katana, Super Translucent Multi Layered, Kuraray Noritake Dental, Tokyo, Japan). A list of materials and manufacturers is shown in Table 2. Strict adherence to the manufacturer’s recommendations was ensured for the bonding process of the all-ceramic crowns. The inner bonding surface of each crown was conditioned with a ceramic primer (Clearfil Ceramic Primer Plus, Kuraray Noritake Dental, Tokyo, Japan) for 5 s prior to bonding the crowns to the TiN copings with a Bis-GMA/TEGDMA-based cement (Panavia V5, Kuraray Noritake Dental, Tokyo, Japan). The excess of the resin composite cement was removed after the setting process was initiated by a 3-s light polymerization. To prevent an oxygen inhibition layer, the margins were covered with inhibitor gel (Panavia F 2.0 Oxyguard II, Kuraray Noritake Dental) before the curing process was completed by 15 s of light polymerization. Finally, the adhesive joint of each crown-cap unit was carefully polished with silicone polishers. After fabrication of the extraorally cemented crown-coping complexes, the Acuris abutments were connected to the implants as previously described and screwed in place with a dedicated torque wrench. The crown-coping units were then mounted on the anti-rotational part of the abutments and friction-fixed with the calibrated striker tool.

SEM assessment

All samples were processed for scanning electron microscopy (SEM) analysis of polished micrographs. The

Organism	Primer	Primer sequence	Reference of primer applicability
Porphyromonas gingivalis	CA-PG-F/R	AGGCAGCTGGCCATACTGCG	Carrouel F. et al., 2016 [12]
Streptococcus mutans	MKD-FV/R	ACTGTTAGCAACTACGATGT	Hoshino T. et al., 2004 [13]
Actinomyces species	ACT-174-F	GGCACACAACATTGGGGAAGTCAG GGAATGGCGCT	Bizhang M. et al., 2011 [14]
Fusobacterium nucleatum	ACT-281-R	AAGTCACAACAGG	Carrouel F. et al., 2016 [12]

Table 1 Specific primer sequences for qrt-PCR and references of their applicability [10]
specimens were embedded in a polyurethane-based model resin (Sherapolan 2:1, Shera Werkstofftechnologie) using UNICLIP specimen holders (Wirtz/Buehler) in a standardized process. Horizontal alignment and cutting to the required specimen sizes were performed automatically with an Accutom-50 precision grinding and cutting machine (Struers). After adjustment to the required parameters (accuracy, ±5 μm, cut-off wheel width, 0.6 mm), polished thin sections were prepared under water cooling and continuous examination of macro- and microscopic integrity (10× magnification, photomacroscope, Wild). Subsequent to final inspection, samples were sputtered with Au–Pd for SEM evaluation. Microgaps along the conometric connection and between the luting interface of the TiN coping and all-ceramic crown were measured for the 15 specimens by means of SEM (LEO 1430, Zeiss). In total, 150 SEM measurements, including 90 readings of the conical coupling and 60 recordings of the micro-cement-gap of the restoration, were taken. Distance measurements were evaluated by the same examiner (E.S.) and were made once for each predefined distance. Conical and marginal discrepancies were evaluated at 200× and 1000× magnification.

SEM readings of conometric connection

Potential microgaps between the TiN coping and titanium Acuris abutment were determined at four prespecified landmarks (L1 to L4) according to distinctive construction

Table 2 List of materials, compositions, manufacturers, respective reference no. and quantity used

Material	Composition	Manufacturer	Ref. No	Quantity
Ankylos C/X A11 Implant (D 3.5/ L11)	Titanium grade 2	Dentsply Sirona	3101 0410	5
Astra Tech EV Implant (D 3.6/ L 11)	Titanium grade 2	Dentsply Sirona	25,224	5
Xive S plus Implant (D 3.8/ L 11)	Titanium grade 2	Dentsply Sirona	26 2442	5
Ankylos Conometric Abutment C/ 1.5/0°/Ø4.5/I	Titanium grade 2	Dentsply Sirona	3102 3450	5
Astra Tech EV Conometric Abutment EV/Ø3.6/1.0/Ø4.5/I	Titanium grade 2	Dentsply Sirona	26,121	5
Xive S plus Conometric Abutment/Ø3.8/1.0/Ø4.5/I	Titanium grade 2	Dentsply Sirona	32,264,101	5
Ankylos C/X, Astra Tech EV, XiVE S plus Conometric Final Cap, Ø4.5	Titanium Nitride	Dentsply Sirona	31,072,303	15
Ankylos C/X, Astra Tech EV, XiVE S plus Conometric Lab Analogs Ø4.5	Surgical stainless steal	Dentsply Sirona	3107 2020	15
Ankylos C/X, Astra Tech EV, XiVE S plus Conometric Lab Cap Ø4.5	Ti6Al4V-ELI	Dentsply Sirona	3107 2123	15
Fixation Tool Acuris	Surgical stainless steel	Dentsply Sirona	31072,911	1
Katana CAD/CAM Zirconia Crown	ZrO2 + Y2O3: >98.0 (wt%); pigments < =2.0 (wt%)	Kuraray Noritake Dental	A3 125-3182EU	15
Panavia V5	Monomer matrix: hydrophobic aromatic dimethacrylate, hydrophilic aliphatic dimethacrylate, Bis-GMA, TEGDMA; inorganic fillers: silanated barium glass, silanated fluoroaluminoisilicate glass, colloidal silica, silanated aluminum oxide (particle size between 0.01 μm and 12 μm, total volume content of inorganic fillers approximately 38 vol%); initiators; accelerators; camphorquinone; pigments	Kuraray Noritake Dental	350008/680,008 as manufact recomm	
Monobond Plus	Ethanol, silane, methacrylate phosphoric ester	Ivoclar Vivadent	X28859	as needed
Liquid Strip	Glycerin gel	Ivoclar Vivadent	X09458	as needed
Clearfil Ceramic Primer Plus	Ethanol, 3-methacyloxypropyl trimethoxy silane, 10—methacryloyloxydecyl dihydrogen phosphate	Kuraray Noritake Dental	580035	as needed
Panavia F 2.0 Oxyguard II	Glycerin, polyethylene glycol, katalysators, initiators, pigments	Kuraray Noritake Dental	4R0003/6J0064	as needed
characteristics of the conometric connection (Fig. 4). A gap has been defined as the perpendicular distance from the surface of the axial wall of the abutment to the internal surface of the TiN coping. In the clinical situation, landmarks L1 and L4 are located directly within the peri-implant sulcus with potential contact to the surrounding tissues of the oral cavity and were thus grouped as “external gaps.” The remaining landmarks L2 and L3 comprised the mid vertical taper of the Acuris abutment and were consequently recorded as “internal gaps” for SEM analysis. Whereas the external microgaps determine the long-term performance in terms of bacterial leakage entrance, the internal gaps represent the extension of the morse taper junction and are additionally responsible for the mechanical and dimensional properties of the conometric coupling.

SEM readings of crown-coping unit

The size of the luting gap and the marginal integrity of the CAD/CAM ceramic crowns on the extraorally cemented Acuris TiN copings were evaluated in the same way at 6 defined reference points (K0 to K5) according to the respective design properties of the prefabricated copings (Fig. 4). While the landmarks K0 and K5 determined the discrepancy of the crown margin and the coping after cementation, the landmarks K1 to K4 represented the vertical and horizontal luting gaps inside the crown.

Statistical analysis

Statistical analysis was conducted using SAS 7.4 (SAS Institute Inc., Cary, North Carolina, USA) and BiAS 11.10 (Epsilon Publishing, Frankfurt, Germany). Mean bacterial counts from the qrt-PCR measurement were compared with an exponential-linear model that included implant type and experimental time as fixed effects. The graphical representation is based on the marginal means estimated from the statistical model. Since the data of the SEM measurements were not normally distributed, Wilcoxon-Mann–Whitney tests were performed for pairwise comparison of restorations. Kruskal–Wallis (H) and Chi-square tests (Chi²) were used for the comparison of two or more independent groups. The level of significance was set at 5% ($p < 0.05$) for all applied statistical tests.

Results

Bacterial outgrowth

The qrt-PCR results for all Acuris test samples revealed values approaching the negative control for bacterial leakage out of the conometric system. Statistical analysis demonstrated a significant difference for qrt-PCR readings of positive control and all test specimens ($p < 0.0001$) (Table 3, Fig. 5), whereas no difference was found between negative control and test specimens. Comparison of
the different test days yielded a significant difference ($p < 0.0001$), although not of clinical relevance (Table 4).

Bacterial ingrowth

Also, the qrt-PCR results for potential bacterial entry into the conometric system remained negative for all specific primers tested on all three implant systems and were significantly different from the positive control ($p < 0.0001$) (Fig. 6).

SEM readings of microgap dimensions of conometric connection

Despite the planar contact along the cone-in-cone interface, miniscule punctate microgaps could be recorded in SEM analysis at the predefined reference sites L1 to L4 of the conometric connection. The mean external microgap for all abutment specimens averaged $2.04 \pm 1.67 \mu m$ (min. $0.83 \mu m$/max. $7.43 \mu m$) at the landmarks L1 and $2.64 \pm 3.1 \mu m$ (min. $0.72 \mu m$/max. $11.8 \mu m$) at the contralateral reference sites.

Group	Group	Estimation	Standard Error	DF	t-Wert	Pr >	t	Alpha	Lower	Upper
Anklyos C/X	Astra Tech EV	0.1207	0.1080	140	1.12	0.2653	0.05	-0.09269	0.3342	
Anklyos C/X	Negative Control	0.07961	0.1986	140	0.40	0.6891	0.05	-0.3130	0.4722	
Anklyos C/X	Xive S plus	-0.1330	0.1080	140	-1.23	0.2200	0.05	-0.3464	0.08043	
Anklyos C/X	Positive Control	-4.3264	0.1347	140	-32.13	<.0001	0.05	-4.5927	-4.0602	
Astra Tech EV	Negative Control	-0.04114	0.1986	140	-0.21	0.8361	0.05	-0.4337	0.3514	
Astra Tech EV	Xive S plus	-0.2538	0.1080	140	-2.35	0.0201	0.05	-0.4672	-0.04032	
Astra Tech EV	Positive Control	-4.4472	0.1347	140	-33.02	<.0001	0.05	-4.7134	-4.1809	
Negative Control	Xive S plus	-0.2126	0.1986	140	-1.07	0.2861	0.05	-0.6052	0.1799	
Negative Control	Positive Control	-4.4060	0.2137	140	-20.61	<.0001	0.05	-4.8286	-3.9834	
Xive S plus	Positive Control	-4.1934	0.1347	140	-31.14	<.0001	0.05	-4.4597	-3.9272	

Fig. 5: Graphical illustration of statistical results for total bacterial exit. A significant difference of qrt-PCR results between positive control and all three test groups could be demonstrated ($p < 0.0001$). No difference between negative control and all three test groups could be shown.

Table 4 Comparison of test and control group had a significant effect on the results of bacterial growth ($p < 0.001$). A significant difference for mean bacterial count on different test days was observed.

Effect	No. DF	Den DF	F-value	Pr > F
Type	4	140	332.65	<.0001
Day	1	140	40.72	<.0001
L4 (Table 5). The internal mid-vertical microgaps L2 and L3 reached a mean value of \(2.64 \pm 2.22\) µm (min. 0.74/ max. 7.67) and \(3.67 \pm 2.28\) µm (min. 0.81/ max. 7.67), respectively. When comparing the three systems, there was no significant difference in the microgap size of the respective landmark investigated (Kruskal–Wallis \(p > 0.05\)). Table 6 and Fig. 7 list the mean microgap dimensions of all conometric connections at four reference sites for each system individually and collectively. Figure 8 shows exemplary SEM images at landmarks L1 to L4 of the three systems examined at 1000× magnification.

SEM readings of cement gap dimensions of crown-coping complex

The mean marginal opening of the all-ceramic crowns at the reference points K0 and K5 measured \(11.7 \pm 5.93\) µm (min. 5.25/ max. 22.8) for all samples, while the internal cement gap widths amounted to \(135 \pm 14.6\) µm (min. 96.8/ max. 156) for landmarks K1 and K4 and \(145 \pm 84.5\) µm (min. 83.3/ max. 423) for K2 and K3, respectively (Table 7). Despite the evident differences between the mean external (K0 and K5) and internal microgaps (K1 to K4) (Chi² = 24.1; \(p < 0.001\)), none of the implant systems showed systematically higher or lower values than the other groups (Fig. 9). The measured cement gap dimensions of all 15 specimens at six reference points for each individual system are shown in Table 8. A comparison among the respective crown coping landmarks K0 to K5 of the three implant abutment systems showed no statistically significant difference with respect to the mean cement gap (Kruskal–Wallis \(p > 0.05\)). Figure 10 shows exemplary SEM images of cement gap measurements and marginal integrity of the ceramic crowns on the cemented Acuris copings at 200× magnification.

Discussion

In an effort to minimize inflammatory responses and thereby maximize bone stability around the implant platform, numerous in vivo and in vitro studies have demonstrated

Table 5 Overall mean values of gap dimensions at the conometric reference sites (L1–L4) for all specimens tested (total \(n = 15\)), standard deviation, median, minimum, and maximum

Location	Mean	SD	Median	Min	Max
Microgap L1	2.04	1.67	1.52	0.826	7.43
Microgap L2	2.64	2.22	1.98	0.744	7.67
Microgap L3	3.67	2.28	3.35	0.805	7.67
Microgap L4	2.64	3.1	1.48	0.716	11.8
Mean all L	2.75	1.44	2.24	0.918	5.84

Table 6 Mean microgap dimensions, standard deviation, and statistical significance of all conometric connections at four reference sites (L1–L4) for each system individually and collectively

Location	Test	Ankylos C/X \((n=5)\)	Astra Tech EV \((n=5)\)	Xive S plus \((n=5)\)	Mean ± SD	Mean ± SD	Mean ± SD	\(p\) value
Microgap L1		2.09 ± 0.92	1.50 ± 0.638	2.54 ± 2.79	0.619			
Microgap L2		3.56 ± 1.99	1.12 ± 0.294	3.24 ± 2.96	0.065			
Microgap L3		3.89 ± 3.25	3.80 ± 1.81	3.33 ± 2.02	0.932			
Microgap L4		1.55 ± 0.58	4.99 ± 4.74	1.38 ± 0.69	0.310			
Mean all L		2.77 ± 1.23	2.85 ± 1.42	2.62 ± 1.93	0.827			
the influence of the implant-abutment (I-A) microgap on marginal leakage [15–24]. This is in contrast to the limited data available on the fit and potential for microbial leakage at conometric prosthetic connections [7, 10]. Clinical evidence of bacterial sealing of the taper coupling at the restorative level is lacking to date. Marginal and internal fit at the abutment-prosthesis interface are critical determinants as they are directly related to bio-integrity, microbial sealing, and maintenance of peri-implant tissue health [25]. As a consequence, the current in vitro study investigated the presence of microgap formation and bacterial translocation at the cone-in-cone interface of three different implant abutment systems for single crown restoration. In addition, the internal fit and marginal integrity of all-ceramic crowns on the matching tapered copings were determined.

The qrt-PCR results of the microbiological tests indicate that the Acuris conometric interface of all three implant systems investigated does not allow for bacterial translocation under unloaded conditions. None of the systems studied (Ankylos C/X, Astra Tech EV, Xive S plus) exhibited any significant bacterial leakage into or out of the conometric junction. Thus, the hypothesis that the Acuris coupling precludes bacterial translocation irrespective of the implant system type can be regarded as accepted. In terms

![Microgap Dimensions](image)

Fig. 7 Bar graph of the recorded mean conometric microgap dimensions at landmarks L1-L4 for each individual system and total value

![Exemplary SEM Images](image)

Fig. 8 Exemplary SEM images of the three systems examined at 1000× magnification, showing the punctuate microgaps of the conometric connection at landmarks L1 to L4. Reference points L1 and L4 refer to the apically located areas of the coping margin (external gaps). Landmarks L2 and L3 represent the mid-vertical taper of the Acuris abutment (internal gaps).
of methodology, the application of qrt-PCR has been previously proven to be an accurate screening tool with a high diagnostic sensitivity for the determination of microbial migration in a pilot study by the authors [10]. Providing consistent positive and negative controls through both directions of the assay setup rendered reliable results. The testing period for bidirectional bacterial translocation was 7 days. Longer observation periods are discouraged due to an increase in false negative findings [26]. The four most common representatives of the oral microbiome (Streptococcus mutans, Actinomyces naeslundii, Fusobacterium nucleatum, Porphyromonas gingivalis) were included in the tested bacterial mixed cultures. These bacteria are facultative pathogens and are associated with caries, mucositis, periodontitis, and peri-implantitis [27]. Setting parameters of the cultures were guided by the German Collection of Microorganisms and Cell Cultures (Leibniz Institute DSMZ, Braunschweig, Germany). The culture medium was renewed every 48 h to ensure optimal conditions for bacterial growth as described in previous studies [12]. Adequate bacterial growth environment was confirmed by positive qrt-PCR results for each positive control at all time points. Given the results of the bacterial assays, the principal acceptance that sealing and retention of morse taper connections are achieved by wedge action [17, 23] may also be applied to the sealing efficiency of conometrically seated prosthetic components at the abutment-coping interface. In this context, it is important to note that the friction-based tapered coupling requires a fully seated matrix on the abutment. Incorrectly mounted conometric components will cause poor sealing and may present a risk for bacterial leakage. Within a clinical setting, incomplete retention of the crown-coping-unit would induce occlusal disturbances, a friction deficit, and instantaneous dislocation of the crown. Causes for clinically inferior crown fit and insufficient retention may include tight proximal contacts or a pronounced emergence profile design of the soft tissues.

A secondary objective of the study was to optically determine the fit of the conometric coupling as well as the internal fit and marginal integrity of cemented CAD/CAM crowns on the matching Acuris TiN copings by means of SEM. Despite the fact that the comprehensive microbiological examination in a double verification setup failed to demonstrate microbial leakage from or into the Acuris abutment system, SEM analysis was able to detect minute punctate microgaps at predefined reference sites of the conometric connection. The mean outer microgap for all abutment specimens clinically positioned just within the peri-implant sulcus was 2.04 and 2.64 µm, respectively. The inner mid-vertical microgaps reached a mean value of 2.64 and 3.67 µm, depending on the measuring point. When comparing the respective measuring points, no significant difference in the microgap dimensions between the systems could be detected. The first part of the null hypothesis, which stated that the conometric interface exhibits no detectable microgap microscopically, could thus

Table 7	Overall mean values of cement gap sizes (K0-K5) for all specimens tested (total n=15), standard deviation, median, minimum, and maximum				
Location	Mean	SD	Median	Min	Max
Microgap K0	11.4	6.66	11	3.91	24.1
Microgap K1	134	25.6	137	56.5	167
Microgap K2	148	75.4	127	37.8	293
Microgap K3	142	119	118	84	570
Microgap K4	136	13.3	134	114	161
Microgap K5	12.1	5.69	10.3	5.3	21.6
Mean K0 & K5	11.7	5.93	10.7	5.25	22.8
Mean K1 & K4	135	14.6	135	96.8	156
Mean K2 & K3	145	84.5	122	83.3	423
Mean all K	97.2	29.7	87.5	76.1	191

Table 8	Comparison of the three implant-abutment systems in terms of mean cement gap widths, standard deviation and statistical significance at all six measuring landmarks (K0 to K5) for each system tested			
Location	Ankylos C/X (n=5)	Astra Tech EV (n=5)	Xive $+$ (n=5)	Test
Gap K0	14.7 ± 7.33	12.5 ± 7.45	6.99 ± 2.68	0.174
Gap K1	150 ± 14.6	119 ± 35.9	132 ± 13.2	0.141
Gap K2	167 ± 113	131 ± 18.4	146 ± 77.1	0.961
Gap K3	109 ± 21.8	111 ± 13.4	206 ± 204	0.619
Gap K4	133 ± 14.9	134 ± 7.41	142 ± 16.9	0.651
Gap K5	14.2 ± 6.48	12.8 ± 6.01	9.24 ± 4.38	0.392

![Fig. 9 Bar graph of the mean external (K0/K5) and internal crown-coping cement gaps (K1–K4) of the three groups of implant-abutment systems](image)
be considered rejected. In contrast to the minimal punctual gaps of the conometric joint, considerably larger cement gaps were observed at the restorative interface between the crown and the Acuris TiN coping. Whereas the marginal opening of the CAD/CAM ceramic crowns averaged 12 µm for all specimens, the mean value for the internal cement gap was as high as 145 µm. The present results confirm the findings of 3D evaluations demonstrating enlarged internal spaces at the angles of milled restorations. This phenomenon may be related to constraints in milling precision caused by the size of the milling burs [28, 29].

Fig. 10 Exemplary SEM images showing the measurements for cement gap and marginal integrity of the ceramic crowns on cemented Acuris copings at reference points K0 to K5. Landmarks K0 and K5 determine the marginal discrepancy of the crown and the coping after cementation at 1000× magnification. Landmarks K1 to K4 represent the vertical and horizontal luting gaps inside the crown at 200× magnification.
none of the tested implant systems exhibited a significant difference with respect to the mean cement gap. Thus, the second part of the null hypothesis, which postulated no difference in internal fit and marginal integrity between the tested systems, could not be rejected.

While the importance of internal crown fit and, in particular, its marginal integrity is generally agreed upon in terms of clinical survival and restoration quality, views on the clinical relevance of the magnitude of marginal discrepancies are controversial. The marginal fit of conventionally fabricated all-ceramic crowns was found to range from 30 to 160 μm [30–32]. Substantial marginal discrepancy in cemented restorations increases the layer thickness of the luting material exposed to oral fluids, which in turn may result in cement dissolution and marginal leakage. The difficulty of removing excess cement when the marginal gap exceeds 100 μm has been pointed out in some studies [33]. Wolfart et al. reported a significant increase in the median marginal deviation of pressed lithium disilicate crowns from 96 to 130 μm due to cementation [34]. Inadequate marginal adaptation increases plaque accumulation and alters the distribution of microbiota, leading to inflammation of periodontal tissues around teeth and peri-implant infections around implants [25, 35, 36]. Bone loss and ultimate breakdown of osseointegration may occur and be responsible for clinical failure of fixed implant restorations [37]. The precision of fit of a restoration also affects the long-term stability of all-ceramic crowns [38, 39]. A causal relationship between increased cement thickness and reduced bending strength of ceramics has been documented [40, 41]. Restorations manufactured by computer-aided design/computer-assisted manufacturing (CAD/CAM) techniques displayed marginal discrepancies less than 100 μm [42, 43] and improved marginal integrity [30, 44]. These findings are in agreement with the results of the current study for internal fit of the crown and its marginal discrepancies. However, for a comparison, the different implant systems could not be rejected.

Within the limitations of the present bidirectional in vitro study, no bacterial leakage from or into the Acuris abutment of 3 different implant systems could be detected upon microbiological examination. SEM analysis revealed tiny punctate microgaps at the most apical point of the conometric connection with an average width of 2 to 3 μm for all systems tested. Considerably larger cement gaps were observed at the restorative interface between the all-ceramic crown and the matching Acuris TiN coping. The marginal discrepancies of the CAD/CAM crowns averaged 12 μm across all specimens, while the mean value for the internal cement gap amounted for up to 145 μm.

Conclusions

Within the limitations of the present bidirectional in vitro study, no bacterial leakage from or into the Acuris abutment of 3 different implant systems could be detected upon microbiological examination. SEM analysis revealed tiny punctate microgaps at the most apical point of the conometric connection with an average width of 2 to 3 μm for all systems tested. Considerably larger cement gaps were observed at the restorative interface between the all-ceramic crown and the matching Acuris TiN coping. The marginal discrepancies of the CAD/CAM crowns averaged 12 μm across all specimens, while the mean value for the internal cement gap amounted for up to 145 μm.
Acknowledgements The authors gratefully acknowledge Jürgen Geis-Gerstorfer for his valuable input to the microscopic test concept. We thank Frank Fischer for his technical assistance, Alexander Georgitis, and Steffen Greßbach for their assistance in data collection and Wolfgang Reimers for his contribution to data analysis and statistical support. The authors thank DENTSPLY Sirona Implants, Mölndal, Sweden, for providing the test samples for the experimental investigation.

Author contributions Gehreke P: Idea; concept; design; data collection; data analysis; interpretation; drafted the manuscript.
Burg S: Bacterial analysis; data collection; interpretation; drafted the manuscript.
Peters U: Data collection, data analysis/interpretation.
Beikler T: Critical revision and approval of the article.
Fischer C: Fabrication of specimens for SEM analysis.
Rupp F: Critical revision and approval of the article.
Schweizer E: SEM analysis and data collection.
Weigl P: Interpretation and critical revision.
Sader R: Critical revision and approval of the article.
Smeets R: Interpretation and critical revision.
Schafer S: Bacterial analysis; data collection; interpretation; drafted the manuscript.

Funding Open Access funding enabled and organized by Projekt DEAL.

Declarations

Ethics approval This article does not contain any studies with human participants or animals performed by any of the authors.

Informed consent For this type of study, formal consent is not required.

Conflict of interest The authors declare that they have no conflict of interest. Dentsply Sirona Implants, Mölndal, Sweden, provided the specimens for the experimental investigation. The design, documentation, and analyses of this study were completed entirely independent of Dentsply Sirona Implants.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Bressan E, Sbricoli L, Guazzo R, Bam side M, Lops D, Tomasi C (2019) Five-year prospective study on conomertic retention for complete fixed prostheses. Int J Oral Implantol (Berl) 12:105–113
2. Degidi M, Nardi D, Gianluca S, Piattelli A (2018) The conometric concept: a 5-year follow-up of fixed partial monolithic zirconia restorations supported by cone-in-cone abutments. Int J Periodontics Restorative Dent 38:363–371. https://doi.org/10.11607/prd.3130
3. Degidi M, Nardi D, Sighinolfi G, Degidi D (2020) The conometric concept for the definitive rehabilitation of a single posterior implant by using a conical indexed abutment: A technique. J Prosthodont 123:576–579. https://doi.org/10.1016/j.prosdent.2019.02.020
4. Albiero AM, Benato R, Momic S, Degidi M (2021) Computer-aided crown design using digital scanning technology for immediate postextraction single-implant restorations supported by conical indexed abutments. Int J Periodontics Restorative Dent 41:135–140. https://doi.org/10.11607/prd.4955
5. Degidi M, Nardi D, Sighinolfi G, Degidi D, Piattelli A (2019) The conometric concept: a two-year follow-up of fixed partial CEREC restorations supported by cone-in-cone abutments. J Prosthodont 28:e780–e787. https://doi.org/10.1111/jpro.12962
6. Degidi M, Nardi D, Sighinolfi G, Piattelli A (2018) The conometric concept: definitive fixed lithium disilicate restorations supported by conical abutments. J Prosthodont 27:605–610. https://doi.org/10.1111/jpro.12548
7. Bressan E, Stocchero M, Jimbo R, Rosati C, Fanti E, Tomasi C, Lops D (2017) Microbial leakage at morse taper conometric connection: an in vitro investigation. Implant Dent 26:756–761. https://doi.org/10.1097/ID.0000000000000657
8. Kotsakis GA, Olmedo DG (2021) Peri-implantitis is not periodontitis: Scientific discoveries shed light on microbiome-biomaterial interactions that may determine disease phenotype. Periodontol 2000 86:231–240. https://doi.org/10.1111/prd.12372
9. Carinci F, Romanos GE, Scapoli L (2019) Molecular tools for preventing and improving diagnosis of peri-implant diseases. Periodontol 2000 81:41–47. https://doi.org/10.1111/prd.12281
10. Gehreke P, Hartjen P, Smeets R, Gosau M, Peters U, Beikler T, Fischer C, Stolzer C, Geis-Gerstorfer J, Weigl P, Schafer S (2021) Marginal adaptation and microbial leakage at conometric prosthetic connections for implant-supported single crowns: an in vitro investigation. Int J Mol Sci 22. https://doi.org/10.3390/ijms22020881
11. Murray PR, Pfaller MA (2020) Bacteriology, Section 4. Book title, 9th edn. Elsevier/Saunders, Philadelphia
12. Carrouel F, Viennot S, Santamaria J, Veber P, Bourgeois D (2016) Quantitative molecular detection of 19 major pathogens in the interdental biofilm of periodontally healthy young adults. Front Microbiol 7:840. https://doi.org/10.3389/fmicb.2016.00840
13. Hoshino T, Kawaguchi M, Shimizu N, Hoshino N, Ooshima T, Fujiwara T (2004) PCR detection and identification of oral streptococci in saliva samples using gtf genes. Diagn Microbiol Infect Dis 48:195–199. https://doi.org/10.1016/j.diagmicrobio.2003.10.002
14. Bizhang M, Ellerbrook B, Preza D, Raab W, Singh P, Beikler T, Henrich B, Zimmer S (2011) Detection of nine microorganisms from the initial carious root lesions using a TaqMan-based realtime PCR. Oral Dis 17:642–652. https://doi.org/10.1111/j.1601-0825.2011.01815.x
15. Alves DCC, de Carvalho PSP, Elias CN, Vedovatto E, Martinez EF (2016) In vitro analysis of the microbiological sealing of tapered implants after mechanical cycling. Clin Oral Investig 20:2437–2445. https://doi.org/10.1007/s00784-016-1744-0
16. Smith NA, Turkylizmaz I (2014) Evaluation of the sealing capability of implants to titanium and zirconia abutments against Porphyromonas gingivalis, Prevotella intermedia, and Fusobacterium nucleatum under different screw torque values. J Prosthodont 112:561–567. https://doi.org/10.1016/j.prosdent.2013.11.010
17. Canullo L, Penarrocha-Oliva D, Soldini C, Mazzocco F, Penarrocha M, Covani U (2015) Microbiological assessment of the implant-abutment interface in different connections: cross-sectional study after 5 years of functional loading. Clin Oral Implants Res 26:426–434. https://doi.org/10.1111/clr.12383

 Springer
18. Zipprich H, Miatke S, Hmaidouch R, Lauer HC (2016) A new experimental design for bacterial microleakage investigation at the implant-abutment interface: an in vitro study. Int J Oral Maxillofac Implants 31:37–44. https://doi.org/10.11607/jomi.3713

19. Koutouzis T, Wallet S, Calderon N, Lundgren T (2011) Bacterial colonization of the implant-abutment interface using an in vitro dynamic loading model. J Periodontol 82:613–618. https://doi.org/10.1902/jop.2010.100415

20. Lopes de Chaves EMDEC, Sperandio M, Napimoga MH (2018) Association between implant-abutment microgap and implant circularity to bacterial leakage: an in vitro study using tapered connection implants. Int J Oral Maxillofac Implants 33:505–511. https://doi.org/10.11607/jomi.5836

21. Ozdiler A, Bakir-Topcuoglu N, Kulecki G, Isik-Ozkol G (2018) Effects of taper angle and sealant agents on bacterial leakage along the implant-abutment interface: an in vitro study under loaded conditions. Int J Oral Maxillofac Implants 33:1071–1077. https://doi.org/10.11607/jomi.6257

22. Assenza B, Tripodi D, Scarnano A, Perrotti V, Piattelli A, Lezzi G, D’Ercole S (2012) Bacterial leakage in implants with different implant-abutment connections: an in vitro study. J Periodontol 83:491–497. https://doi.org/10.1902/jop.2011.110320

23. Lauritano D, Moreo G, Lucchese A, Viganoni C, Limongelli L, Carinci F (2020) The impact of implant-abutment connection on clinical outcomes and microbial colonization: a narrative review. Materials (Basel) 13. https://doi.org/10.3390/ma13051131

24. Tripodi D, D’Ercole S, Iaculli F, Piattelli A, Perrotti V, Lezzi G (2015) Degree of bacterial microleakage at the implant-abutment junction in cone morse tapered implants under loaded and unloaded conditions. J Appl Biomater Funct Mater 13:e367–e371. https://doi.org/10.5301/jabfm.5000247

25. Canullo L, Penarrocha M, Monje A, Catena A, Wang HL, Penarrocha D (2017) Association between clinical and microbiologic cluster profiles and peri-implantitis. Int J Oral Maxillofac Implants 32:1054–1064. https://doi.org/10.11607/jomi.6043

26. da Silva-Neto JP, Nobilo MA, Penatti MP, Simamoto PC Jr, das Neves FD, (2012) Influence of methodologic aspects on the results of implant-abutment interface microleakage tests: a critical review of in vitro studies. Int J Oral Maxillofac Implants 27:793–800

27. Sampao-Maia B, Caldas IM, Pereira ML, Perez-Mongiov D, Araujo R (2016) The Oral microbiome in health and its implication in oral and systemic diseases. Adv Appl Microbiol 97:171–210. https://doi.org/10.1016/bs.aambs.2016.08.002

28. Alfaro DP, Ruse ND, Carvalho RM, Wyatt CC (2015) Assessment of the internal fit of lithium disilicate crowns using micro-CT. J Prosthodont 24:381–386. https://doi.org/10.1016/j.jpor.12274

29. Kim JH, Jeong JH, Lee JH, Cho HW (2016) Fit of lithium disilicate crowns fabricated from conventional and digital impressions assessed with micro-CT. J Prostheth Dent 116:551–557. https://doi.org/10.1016/j.prosdent.2016.03.028

30. Bindl A, Mormann WH (2005) Marginal and internal fit of all-ceramic CAD/CAM crown-copings on chamfer preparations. J Oral Rehabil 32:441–447. https://doi.org/10.1111/j.1365-2842.2005.01466.x

31. Sulaiman F, Chai J, Jameson LM, Wozniak WT (1997) A comparison of the marginal fit of In-Ceram, IPS Empress, and Procera crowns. Int J Prosthodont 10:478–484

32. Halici SE, Hekimoglu C, Ersoy O (2018) Marginal fit of all-ceramic crowns before and after cementation: an in vitro study. Int J Periodontics Restorative Dent 38:e41–e48. https://doi.org/10.11607/prd.3169

33. Kramer N, Lohbauer U, Frankenberger R (2000) Adhesive luting of indirect restorations. Am J Dent 13:60–67

34. Wolfart S, Wegner SM, Al-Halabi A, Kern M (2003) Clinical evaluation of marginal fit of a new experimental all-ceramic system before and after cementation. Int J Prosthodont 16:587–592

35. Canullo L, Tallarico M, Radovanovic S, Delibasic B, Covani U, Rakic M (2016) Distinguishing predictive profiles for patient-based risk assessment and diagnostics of plaque induced, surgically and prosthetically triggered peri-implantitis. Clin Oral Implants Res 27:1243–1250. https://doi.org/10.1111/crj.12738

36. Dalago HR, Schuldt Filho G, Rodrigues MA, Renvert S, Bianchini MA (2017) Risk indicators for peri-implantitis. a cross-sectional study with 916 implants. Clin Oral Implants Res 28:144–150. https://doi.org/10.1111/crj.12772

37. Sailer I, Balmer M, Husler J, Hammerle CHF, Kanel S, Thoma DS (2018) 10-year randomized trial (RCT) of zirconia-ceramic and metal-ceramic fixed dental prostheses. J Dent 76:32–39. https://doi.org/10.1016/j.jdent.2018.05.015

38. Wettstein F, Sailer I, Roos M, Hammerle CH (2008) Clinical study of the internal gaps of zirconia and metal frameworks for fixed partial dentures. Eur J Oral Sci 116:272–279. https://doi.org/10.1111/j.1600-0722.2008.00527.x

39. Federlin M, Kriňa S, Herpich M, Hiller KA, Schmalz G (2007) Partial ceramic crowns: influence of ceramic thickness, preparation design and luting material on fracture resistance and marginal integrity in vitro. Oper Dent 32:251–260. https://doi.org/10.2341/06-70

40. Anusavice KJ, Jadaan OM, Esquivel-Upshaw JF (2013) Time-dependent fracture probability of bilayer, lithium-disilicate-based, glass-ceramic, molar crowns as a function of core/veneer thickness ratio and load orientation. Dent Mater 29:1132–1138. https://doi.org/10.1016/j.dental.2013.08.206

41. Thompson VP, Rekow DE (2004) Dental ceramics and the molar crown testing ground. J Appl Oral Sci 12:26–36. https://doi.org/10.1590/s1678-77572004000000004

42. Nakamura T, Dei N, Koijima T, Wakabayashi K (2003) Marginal and internal fit of Cerec 3 CAD/CAM all-ceramic crowns. Int J Prosthodont 16:244–248

43. Piwowarczyk A, Otth P, Lauer HC, Kuretzky T (2005) A clinical report and overview of scientific studies and clinical procedures conducted on the 3M ESPE Lava All-Ceramic System. J Prosthodont 14:39–45. https://doi.org/10.1111/j.1532-849X.2005.00003.x

44. Ural C, Burgaz Y, Sarac D (2010) In vitro evaluation of marginal adaptation in five ceramic restoration fabricating techniques. Quintessence Int 41:585–590

45. Bindl A, Mormann WH (2007) Fit of all-ceramic posterior fixed partial denture frameworks in vitro. Int J Periodontics Restorative Dent 27:567–575

46. Asavapanumas C, Leevailoj C (2013) The influence of finish line curvature on the marginal gap width of ceramic copings. J Prostheth Dent 109:227–233. https://doi.org/10.1016/S0022-3913(13)60049-9

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Authors and Affiliations

Peter Gehrke¹,² · Simon Burg³ · Ulrike Peters⁴ · Thomas Beikler⁴ · Carsten Fischer⁵ · Frank Rupp⁶ · Ernst Schweizer⁶ · Paul Weigl¹ · Robert Sader⁷ · Ralf Smeets³,⁸ · Sogand Schäfer³

1 Department of Postgraduate Education, Center for Dentistry and Oral Medicine (Carolinum), University Hospital, Goethe University Frankfurt, 60528 Frankfurt am Main, Germany
2 Private Practice for Oral Surgery and Implant Dentistry, Bismarckstraße 27, 67059 Ludwigshafen, Germany
3 Department of Oral and Maxillofacial Surgery, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
4 Department of Periodontics, Preventive and Restorative Dentistry, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
5 Dental Laboratory, Sirius Ceramics, 60528 Frankfurt am Main, Germany
6 Section Medical Materials Science and Technology, University Hospital Tuebingen, 72076 Tuebingen, Germany
7 Department for Oral, Cranio-Maxillofacial and Facial Plastic Surgery, Medical Center, University Hospital, Goethe University Frankfurt, 60528 Frankfurt am Main, Germany
8 Department of Oral and Maxillofacial Surgery, Division of Regenerative Orofacial Medicine, University Hospital Hamburg-Eppendorf, 20251 Hamburg, Germany

Simon Burg
s.burg@uke.de
Ulrike Peters
u.peters@uke.de
Thomas Beikler
t.beikler@uke.de
Carsten Fischer
fischer@sirius-ceramics.com
Frank Rupp
frank.rupp@med.uni-tuebingen.de
Ernst Schweizer
ernst.schweizer@med.uni-tuebingen.de
Paul Weigl
weigl@em.uni-frankfurt.de
Robert Sader
r.sader@em.uni-frankfurt.de
Ralf Smeets
r.smeets@uke.de
Sogand Schäfer
sog.schaefer@uke.de