Alcohol intake and renal cell cancer risk: a meta-analysis

DY Song1, S Song2, Y Song3 and JE Lee*,1
1Department of Food and Nutrition, Sookmyung Women’s University, 52 Hyochangwon-gil, Yangsan-gu, Seoul 400-742, Republic of Korea; 2Department of Food and Nutrition, Seoul National University, Seoul 151-742, Republic of Korea; 3School of Human Ecology, Catholic University, Gyeonggi-do 420-743, Republic of Korea

BACKGROUND: An inverse association between alcoholic beverage intake and risk of renal cell cancer has been suggested in recent studies.

METHODS: We examined the association between alcoholic beverages and renal cell cancer risk in a meta-analysis. We identified relevant studies by searching the database of PubMed, EMBASE, and MEDLINE published through August 2011. We combined the study-specific relative risks (RRs) using a random-effects model.

RESULTS: A total of 20 case–control studies, 3 cohort studies, and 1 pooled analysis of cohort studies were included in the meta-analysis. We observed that alcoholic beverage intake was associated with a lower risk of renal cell cancer in combined analysis of case–control and cohort studies; for total alcoholic beverage intake, combined RRs (95% confidence intervals) comparing top with bottom categories were 0.76 (0.68–0.85) in case–control studies, and 0.71 (0.63–0.78) in cohort studies (P for difference by study design = 0.02). The inverse associations were observed for both men and women and for each specific type alcoholic beverage (beer, wine, and liquor). Also, we found that one drink per day of alcoholic beverage conferred the reduction in renal cell cancer risk, but further drinking above that level did not add benefit.

CONCLUSION: The findings from our meta-analysis support the hypothesis that alcoholic beverage intake is inversely associated with a lower risk of renal cell cancer, with moderate consumption conferring the protection and higher consumption conferring no additional benefits.

Keywords: alcohol; renal cell cancer; meta-analysis

Incidence of renal cell cancer, the major type of kidney cancer, has increased worldwide (Mathew et al., 2002; Chow et al., 2010). Although smoking, obesity, and hypertension are known to be well-established risk factors for renal cell cancer (Chow et al., 2010), dietary modifiable risk factors for renal cell cancer have not been well defined. Alcoholic beverage has been widely consumed and its global consumption has been increasing in the last decades (World Health Organization, 2002). Merits and demerits of alcoholic beverage intake have been long explored because of its benefit for cardiovascular disease (Corrao et al., 2000; Fillmore et al., 2007; Ronksley et al., 2011) or carcinogenic effect (Kan et al., 2011). An International Review panel, sponsored by the World Cancer Research Fund (WCRF) and American Institute for Cancer Research, reported that alcoholic beverage intake increased the risk of cancers of the oral cavity, larynx, pharynx, oesophagus, liver, female breast, and colorectum (World Cancer Research Fund & American Institute for Cancer Research, 2011), but there was a limited evidence about the association between alcoholic beverage intake and kidney cancer.

As the WCRF reported the summary, further studies have examined the association between alcoholic beverage intake and kidney cancer (Greveng et al., 2007; Hsu et al., 2007; Lee et al., 2007; Ozasa, 2007; Setiawan et al., 2007; Hu et al., 2008; Pelucchi et al., 2008; Kim et al., 2010; Lew et al., 2011; Allen et al., 2011). A few prospective studies and a pooled analysis of 12 prospective studies found an inverse association for alcoholic beverage intake. However, the associations for men and women were not consistent across studies, partly because of small sample size. Also, there was little evidence whether different types of specific alcoholic beverage including beer, wine, and liquor confer similar effects.

To elucidate the role of alcoholic beverage intake in renal cell cancer, we investigated the association of total alcoholic beverage and specific alcoholic beverage intake in relation to risk of renal cell cancer in a comprehensive meta-analysis of cohort and case–control studies.

MATERIALS AND METHODS

Search strategy

We identified studies examining the association between alcoholic beverage intake and renal cell cancer by searching the database of PubMed, EMBASE, and MEDLINE published through August 2011. We used the following terms for the PubMed search: ((‘alcohol’ or ‘wine’ or ‘beer’ or ‘liquor’ or ‘ethanol’ or ‘spirit’) and (‘renal cell carcinoma’ or ‘kidney cancer’ or ‘renal cell cancer’ or ‘renal adenocarcinoma’ or ‘kidney adenocarcinoma’)). For the EMBASE and MEDLINE, we used the terms of (alcohol OR wine OR beer OR liquor OR ethanol) AND (carcinoma OR kidney cancer OR...
Alcohol intake and renal cell cancer risk
DY Song et al

Selection criteria
Two authors (DY Song and S Song) independently assessed the eligibility criteria as follows: (1) case-control or cohort design, published as full-text manuscripts; (2) the exposure of interest was total alcoholic beverage or specific alcoholic beverage intake; (3) the endpoint of interest was renal cell, kidney cancer, renal, or kidney adenocarcinoma; and (4) relative risk (RR) estimates with 95% confidence intervals (CIs) for every category of alcoholic beverage intake or per unit increase in alcoholic beverage intake were reported. For one study (Wynder et al, 1974) that had not examined RRs and 95% CI, we calculated RRs and 95% CI based on the number of cases and controls. When there were multiple publications from the same study population, we only included the study that combined independent studies, examined alcoholic beverage intake as the main interest of exposure, or the study with the largest number of cases or more follow-up years. We did not include two studies (Ozaa, 2007; Kim et al, 2010) in which kidney cancer mortality was endpoint because mortality reflects both incidence and survival.

Data extraction
We extracted from each article the following information: the first author’s last name, publication year, country in which the study was performed, study design, study period, participants’ age and sex, endpoint, exposure assessment, when available, and the number of cases and controls or person-years for each category of alcoholic beverage intake and covariates for adjustment in the analysis. When several estimates were reported, we used the estimates adjusted for the most number of covariates. The authors were contacted for additional information, when necessary. If studies reported the estimate of only specific type of alcoholic beverage (McLaughlin et al, 1984; Asal et al, 1988), we still included those estimates into our meta-analysis of total alcoholic beverage. For one study that reported different types of beer and wine (Greving et al, 2007), we used the estimate of strong beer and strong wine when we analysed the specific type of alcoholic beverages. The quality of each study was assessed by two independent authors (DY Song and S Song) using the Newcastle–Ottawa Scale (Wells et al, 2011) and then averaged. Discrepancies in >1 score between two authors were resolved by consensus.

Statistical analysis
We summarised the estimates across the studies using a random-effects model (DerSimonian and Laird, 1986). We compute the combined RRs and 95% CIs from the estimates reported in each study. We also examined the non-linearity of the relationship using restricted cubic splines (Durrleman and Simon, 1989; Greenland and Longnecker, 1992; Orsini et al, 2012) for studies that provided the number of participants or person–years and two or greater categories of alcoholic beverage intake or ethanol intake. As a result, we included 10 case-control (Wynder et al, 1974; McLaughlin et al, 1984; Asal et al, 1988; Yuan et al, 1998; Mattioli et al, 2002; Parker et al, 2002; Greving et al, 2007; Hsu et al, 2007; Hu et al, 2008; Pelucchi et al, 2008), 3 cohort (Setiawan et al, 2007; Allen et al, 2011; Lew et al, 2011), and 1 pooled analysis studies (Lee et al, 2007) in the spline analysis. To test for non-linearity, we compared the model fit including only the linear term with the model fit including the linear and cubic spline terms using the likelihood ratio test. We used the midpoint between the upper and lower levels in the categories. If the upper level for the highest category was open-ended, we assumed that the level had the same amplitude as the neighbourhood categories.

For the meta-analysis of specific beverages, we rescaled alcoholic beverage into gram (g) of ethanol per day using the conversion factors: 1 drink = 15 g, 11.3 g of ethanol for a 4-oz (118 ml) glass of wine, 12.8 g for 12-oz (354 ml) one glass, bottle, or can for beer, and 14.0 g for one measure (45 ml) for liquor. We converted servings per day of alcoholic beverage to 15 g per day of ethanol.

A meta-regression analysis was used to investigate whether the association between alcoholic beverage and risk of renal cell cancer differed by study design (case-control and cohort studies), sex, smoking adjustment (yes, no), or hypertension adjustment (yes, no). Heterogeneity among studies was evaluated by using Q and I² (Higgins and Thompson, 2002) statistics. The Egger’s regression asymmetry test was used to assess the publication bias (Egger et al, 1997). All analyses were conducted using Stata, version 10.1 (Stata Corp., College Station, TX, USA) and SAS software version 9.2 (SAS Institute Inc., Cary, NC, USA). P < 0.05 (two-sided) was considered statistically significant.

RESULTS
A total of 252 articles were extracted by querying PubMed, EMBASE, and MEDLINE through August 2011 (Figure 1). In all, 174 articles did not examine the association between alcoholic beverage intake and renal cell cancer, 40 were reviews, and 3 were letter, comment, or editorial. Out of 35 articles that examined the association between alcoholic beverage intake and renal cell cancer, 18 were excluded because of data overlap (n = 15), the absence of RRs (n = 1), assessment of alcoholism as exposure (n = 1), and kidney cancer death (n = 1). Seven additional studies were identified from the references of the retrieved articles. As a result, 20 case-control studies, 3 cohort studies, and 1 pooled analysis of cohort studies were included in this meta-analysis.

Study characteristics such as country, study design, dates, age, alcohol assessment, unit of alcohol, amount of intake in the beverage for top and bottom categories, outcome/endpoint, number of cases or controls or cohort size, and potential confounders controlled are presented (Tables 1 and 2). A total of 13819 incident renal cell cancer cases and 1537 incident kidney cancer cases were included in this meta-analysis. Three of twenty-four studies examined incidence of kidney cancer (Wynder et al, 1974; Hsu et al, 2007; Benedetti et al, 2009) and the others examined incidence of renal cell cancer (McLaughlin et al, 1984; Goodman et al, 1986; Asal et al, 1988; Brownson, 1988; Maclure and Willett, 1990; Benhamou et al, 1993; Kreiger et al, 1993; Hiatt et al, 1994; Muscat et al, 1995; Wolk et al, 1996; Boeing et al, 1997; Yuan et al, 1998; Mattioli et al, 2002; Parker et al, 2002; Greving et al, 2007; Lee et al, 2007; Lee et al, 2007; Setiawan et al, 2007; Hu et al, 2008; Pelucchi et al, 2008; Allen et al, 2011; Lew et al, 2011). All studies were conducted in the North America and Europe. The alcoholic beverage intake of participants in each study was assessed by using food frequency questionnaire (FFQ), interview, or self-administered questionnaire. The estimates for both men and women were reported in 17 studies. Specific alcoholic beverages were examined in 15 studies. A pooled analysis combined the original data from 12 prospective studies (Lee et al, 2007) conducted in the USA, Finland, Canada, the Netherlands, and Sweden and a multi-centre case-control study (Wolk et al, 1996) combined 4 case-control studies conducted in the Australia, Denmark, Sweden, and USA. Out of 24 studies, all studies adjusted for age, and 14 studies further adjusted for obesity. Smoking status was adjusted for 19 studies. Hypertension status was adjusted for seven studies. Nineteen of twenty-two studies that reported the amount of alcoholic beverage or ethanol as an exposure considered
We found a decreased risk of renal cell cancer with alcoholic beverage intake; combined RR (95% CI) comparing top with bottom category was 0.73 (0.67–0.79) for total alcoholic beverage intake (Figure 2). There was no significant heterogeneity across the studies (P for heterogeneity = 0.34). A stronger inverse association was observed in cohort studies compared with case–control studies (P for difference = 0.02); combined RRs (95% CIs) were 0.76 (0.68–0.85) for case–control studies and 0.71 (0.63–0.78) for cohort studies. When we examined the association by study period (before or after 2000), we found a stronger inverse association for recent studies; comparing top with bottom category, RRs were 0.85 (95% CI, 0.72–0.98; P for heterogeneity = 0.32) for earlier studies and 0.70 (95% CI, 0.64–0.76; P for heterogeneity = 0.63) for recent studies.

When we examined specific alcoholic beverages (Table 3), we found that intakes of all three beverage types significantly lowered risk of renal cell cancer. Notably, these inverse associations for each type of alcoholic beverage were observed in both case–control and cohort studies, and the magnitude of the association was similar across three types of alcoholic beverages. There was no evidence of publication bias based on the Egger’s test for beer, wine, or liquor ($P>0.19$).

When we examined whether the associations differed by gender, adjustment for smoking status, or adjustment for hypertension status, the associations did not vary by these factors (Table 4).

When we examined for non-linearity of the association using the regression cubic spline, we observed a significant non-linearity for overall association between ethanol intake and renal cell cancer. The degree of decline in the risk of renal cell cancer appeared to be attenuated above ~15 g per day (P for non-linearity<0.001) (Figure 3A). We also found a significant or suggestive non-linearity for case–control and cohort studies (P-values for non-linearity = 0.03 for case–control studies and 0.10 for cohort studies; Figures 3B and C).

DISCUSSION

We observed that alcoholic beverage intake was inversely associated with risk of renal cell cancer in this comprehensive meta-analysis. The inverse association was stronger for cohort studies compared with case–control studies. The inverse associations were consistent across specific alcoholic beverages, suggesting that ethanol per se is most likely the responsible factor. We also found that alcoholic beverage intake lowered risk of renal cell cancer for both men and women. Notably, our spline analysis showed that ~15 g per day of ethanol intake could pose a decrease in renal cell cancer risk, but additional drinking did not confer further benefit in the prevention of renal cell cancer.

The magnitude of the association was stronger for cohort studies than case–control studies. Recall bias or selection bias in case–control studies may attenuate the association between alcoholic beverage intake and renal cell cancer risk because alcoholic beverage could be overestimated among cases or underestimated among controls. A stronger inverse association for recent studies compared with earlier studies that we observed also could be partly explained by recall or selection bias because all the studies published before 2000 were case–control studies. Also, our meta-analysis of specific type of alcoholic beverage supports the evidence that the benefits associated with alcoholic beverage intake were similar for beer, wine, and liquor.
Table 1: Characteristics of case–control studies included in the meta-analysis of renal cell cancer risk

First author, country (reference)	Study period	Age (years)	Alcohol assessment	Unit of alcohol	Top vs bottom	Outcome/endpoint	No. of controls or cohort size	No. of cases	Study quality	Potential confounders
Wynder, USA (Wynder et al., 1974)	1965–1973	MF: 20–79, range	Interview	Unit per day	Total alcohol M: >7 unit per day vs none-occasional F: >3 unit per day vs none-occasional	Incidence of kidney adenocarcinoma	M: 129 F: 73	M: 256 F: 138	6	Age, sex, race, hospital, time of interview
McLaughlin, USA (McLaughlin et al., 1984)	1974–1979	M: 62, mean F: 66, mean	Interview	Bottles per week	Beers: >20 bottles per week vs never F: >20 bottles per week vs never	Incidence of renal cell carcinoma	M: 307 F: 180	M: 428 F: 268	6	Age, cigarette smoking, BMI, phenacetin use, ethnicity, kidney infection, kidney stones, coffee, tea, beer and meat consumption, exposure to petroleum, tar, and pitch products
Goodman, USA (Goodman et al., 1986)	1977–1983	MF: 20–80, range	Interview	N/A	N/A	Incidence of renal cell carcinoma	M: 182 F: 76	M: 182 F: 76	6.5	Age, smoking, sex
Brownson, USA (Brownson, 1988)	1984–1986	N/A	Interview	N/A	N/A	Incidence of renal cell carcinoma	M: 205 F: 121	M: 615 F: 363	4.5	Age, sex, race, hospital time of interview, weight
Asal, USA (Asal et al., 1988)	1981–1984	MF: ≥50 was >70% in controls	Interview	Wine: glasses per week Liquor: N/A	Wine: M: >4 glasses per week vs never F: >3 glasses per week vs never Liquor: M: use vs none-use	Incidence of renal cell carcinoma	M: 209 F: 106	Hospital M: 208 F: 105 Population M: 195 Population F: 141	6	Age, sex, race, hospital time of interview, weight
Maclure, USA (Maclure and Willett, 1990)	1976–1983	MF: ≥30	Interview	Cups per day	Beer, wine, and liquor MF: high intake (≥2 cups per day) vs low intake (<1 cup per week) Total alcohol M: high vs low F: high vs low	Incidence of renal adenocarcinoma	M: 135 F: 68	M: 401 F: 204	4.5	Age, sex, precinct of residence, smoking, energy
Benhamou, France (Benhamou et al., 1993)	1987–1991	Case C: 61.7, mean Case F: 61.3, mean Control M: 62.8, mean Control F: 62.5, mean	Questionnaire	g per day	Alcohol M: ≥8 g per day vs <8 g per week	Incidence of renal cell carcinoma	M: 138 F: 58	M: 235 F: 112	5	Age, sex, hospital and interviewer
Kreiger, Canada (Kreiger et al., 1993)	1986–1987	MF: 25–69, range	Questionnaire	N/A	Total alcohol M: high vs low F: high vs low	Incidence of renal cell carcinoma	M: 252 F: 167	M: 543 F: 592	5.5	Age, sex, geographic region of residence, active cigarette smoking status, BMI Gender; year of multiphasic health check-up (MHC), age at MHC ± 1 year
Hatt, USA (Hatt et al., 1994)	1964–1989	Case: 50.7, mean	N/A	N/A	Total alcohol M: ever vs never F: ever vs never	Incidence of renal cell carcinoma	M: 165 F: 87	M: 166 F: 88	5	Age, education, and years of smoking, race, year of diagnosis
Muscat, USA (Muscat et al., 1995)	1977–1993	Case C: 58.7, mean Case F: 59.3, mean Control M: 58.2, mean Control F: 59.4, mean	Questionnaire	Oz per day	Beer: M: >7 oz per day vs never/occasionally F: ≥1 oz per day vs never/occasionally Wine: M: >4 oz per day vs never/occasionally F: >4 oz per day vs never/occasionally Liquor: M: >7 oz per day vs never/occasionally F: >1 oz per day vs never/occasionally	Incidence of renal cell carcinoma	M: 543 F: 245	M: 476 F: 244	7	Age, sex, study centre, BMI, smoking, total calories
Wolk, Australia, Denmark, Sweden, and USA (Wolk et al., 1996)	1989–1991	Case M: 62, mean Case F: 63, mean Control M: 62, mean Control F: 63, mean	Intervews	Total alcohol drinks per week Beer, wine, and liquor glasses per week	Total alcohol M: ≥15 drinks per week vs <1 drinks per week F: ≥10 drinks per week vs <1 drinks per week Beer M: >6.3 glasses per week vs none F: >1.3 glasses per week vs none Wine	Incidence of renal cell cancer	M: 698 F: 487	M: 915 F: 611	6	Age, sex, study centre, BMI, smoking, total calories
First author, country (reference)	Study period	Age (years)	Alcohol assessment	Unit of alcohol	Top vs bottom	Outcome/endpoint	No. of controls or cohort size	Study quality*	Potential confounders	
----------------------------------	--------------	-------------	--------------------	-----------------	---------------	-----------------	-------------------------------	----------------	------------------------	
Boeing, Germany (Boeing et al, 1997)	1989–1991	N/A	Interview	N/A	M: > 1.3 glasses per week vs none	Incidence of renal cell carcinoma	M: 185 F: 92	M: 192 F: 94	7	Age, gender, educational status, tobacco smoking
Yuan, USA (Yuan et al, 1997)	1986–1994	MF: 25–74, range	Questionnaire	Drinks per week	Total alcohol, beer, wine, and liquor: MF: highest vs none	Incidence of renal cell carcinoma	MF: 1203	MF: 1201	6	Sex, date of birth (within 5 years), ethnicity, neighbourhood of residence, education and BMI, history of hypertension, number of cigarettes per day, current smoking status, total grams of analgesics consumed over lifetime, regular use of amphetamines
Parker, USA (Parker et al, 2002)	1986–1989	Case: 68, mean FFQ Control: 64, mean	Total alcohol: g per week Beer: 12-ounce can per week Wine: 8-ounce glass per week Liquor: 1-ounce shot per week	Total alcohol: M: > 35 g per week vs none F: > 35 g per week vs none Beer: M: > 1 vs non-drinker of beer F: > 1 vs non-drinker of beer Wine: M: > 0.5 vs non-drinker of wine F: > 0.5 vs non-drinker of wine Liquor: M: > 1 vs non-drinker of liquor F: > 1 vs non-drinker of liquor	Incidence of renal cell carcinoma	M: 261 F: 145	M: 1598 F: 831	6	Age, pack-years of smoking, history of hypertension, history of bladder infection, family history of kidney cancer, exercise, consumption of red meat, consumption of fruit (men) Age, pack-years of smoking, history of hypertension, BMI, family history of kidney cancer, consumption of red meat, fruit and vegetables (women)	
Mattioli, Italy (Mattioli et al, 2002)	1987–1994	All	Questionnaire	g per day	Total alcohol: M: > 48 g per day vs 0 g per day F: > 12 g per day vs 0 g per day	Incidence of renal cell cancer	M: 165 F: 52	M: 165 F: 52	7	Age, gender, birthplace, residence, BMI, smoking, consumption of coffee, phenacetin and/or of diuretics, and meat
Hsu, Russia, Romania, Poland, and Czech Republic (Hsu et al, 2007)	1999–2003	MF: 20–79, range	FFQ	g per week	Total alcohol: M: > 137.5 g per week vs none Beer: M: > 49.0 g per week vs none Wine: M: > 23.0 g per week vs none Liquor: M: > 157.0 g per week vs none	Incidence of kidney cancer	M: 622 F: 443	M: 973 F: 536	7	Age, country, gender, tobacco pack-years of smoking, education, BMI, hypertension medication use, and tertiles of total vegetable, total white meat, and red meat consumption
Greving, Sweden (Greving et al, 2007)	1996–1998	MF: 20–79, range Case: 64.3, mean Control: 64.4, mean	Questionnaire	Total alcohol: g per month Beer, wine, and liquor: glasses per month	Total alcohol: M: > 620 g per month vs non-users alcohol Strong beer: M: > 8 gimes per month vs non-user strong beer Strong wine: M: > 2 glasses per month vs non-user strong wine Liquor: M: > 9 glasses per month vs non-user liquor	Incidence of renal cell cancer	MF: 855 MF: 1204	6	Age, sex, BMI, cigarette smoking, the other six beverages	
Alcohol intake and renal cell cancer risk

DY Song et al

Table 1 (Continued)

First author, country (reference)	Study period	Age (years)	Alcohol assessment	Unit of alcohol	Top vs bottom	Outcome/endpoint	No. of cases	No. of controls or cohort size	Study qualitya	Potential confounders
Pelucchi, Italia (Pelucchi et al. 2008)	1985–2004	MF: 22–79, range	Interview	Total alcohol, and wine; drinks per day; Beer, and liquor; N/A	Total alcohol; M: >8 drinks per day vs non-drinkers; Beer: M: drinkers vs non-drinkers; Wine: M: >8 drinks per day vs non-drinkers; Liquor: M: drinkers vs non-drinkers	Incidence of renal cell cancer	M: 730	F: 385	7	Age, sex, study centre, education, smoking habits, BMI, family history of renal cancer
Hu, Canada (Hu et al., 2008)	1994–1997	MF: 20–76, range	FFQ	g per day	Total alcohol; M: >30 g per day vs non-drinkers; F: >20 g per day vs non-drinkers; Beer: M: wine, and liquor; M: >10.68 g per day vs non-drinkers; F: >6 g per day vs non-drinkers; Total alcohol	Incidence of renal cell carcinoma	M: 617	F: 521	5	Age, province, education, BMI, total consumption meat, total consumption of vegetables and fruit, pack-years of smoking
Benedetti, Canada (Benedetti et al., 2009)	Early 1980s	Case: 58.3 mean age	Interview	Drinks per week	Total alcohol; M: >7 drinks per week vs never drinkers	Incidence of kidney cancer	M: 156	F: 507	6.5	Age, smoking status, cigarette-year, respondent status, ethnicity, census tract income, years of schooling, and time since quitting

Abbreviations: BMI = body mass index; F = women; FFQ = food frequency questionnaire; M = men; MF = men and women; N/A: not available. *Study quality was judged based on the Newcastle–Ottawa Scale (range, 1–9 stars). **Multiple studies included.

Table 2

Characteristics of cohort and pooled analysis studies included in meta-analysis of renal cell cancer

First author, country (reference)	Study period	Age (years)	Alcohol assessment	Unit of alcohol	Top vs bottom	Outcome/endpoint	No. of cases	No. of controls or cohort size	Study qualitya	Potential confounders
Lee, Finland, USA, Canada, The Netherlands, and Sweden (Lee et al., 2007)*	1980–2004	MF: 15–107, range	FFQ	g per day	Total alcohol; M: >15.0 g per day vs non-drinker; F: >15.0 g per day vs non-drinker; Beer, wine, and liquor; M: >5.0 g per day vs non-drinker	Incidence of renal cell cancer	M: 711	F: 719	8	Age, history of hypertension, BMI, pack-years of smoking, combination of parity and age at first birth, total energy intake
Setiawan, USA (Setiawan et al., 2007)*	1993–2002	M: 59.3 mean F: 58.8 mean	Questionnaire	g per day	Total alcohol; M: >10.9 g per day vs none; F: >3.3 g per day vs none	Incidence of renal cell cancer	M: 220	F: 127	8	Age, ethnicity, smoking, hypertension, physical activity
Lew, USA (Lew et al., 2011)	1995–2006	MF: 50–71, range	FFQ	g per day	Total alcohol; M: >30 g per day vs 0 g per day; F: >30 g per day vs 0 g per day; Beer, wine, and liquor; M: >15 g per day vs 0 g per day; F: >5 g per day vs 0 g per day	Incidence of renal cell cancer	M: 1348	F: 466	8	Age, race, BMI, marital status, education, vigorous physical activity, smoking, history of hypertension, intakes of protein and total energy excluding energy from alcohol, Age, socioeconomic status, BMI, smoking, use of menopausal hormone therapy, treatment for high blood pressure
Allen, UK (Allen et al., 2011)	1996–2007	F: 59 mean	FFQ	Drinks per day	Total alcohol; F: >2 drinks per day vs 0 or 1 drinks per day	Incidence of F588 renal cell carcinoma	M: 779	F: 369	8	Age, socioeconomic status, BMI, smoking, use of menopausal hormone therapy, treatment for high blood pressure

Abbreviations: BMI = body mass index; F = women; FFQ = food frequency questionnaire; M = men; MF = men and women; N/A: not available. *Study quality was judged based on the Newcastle–Ottawa Scale (range, 1–9 stars). **Multiple studies included.

The possible mechanism by which alcoholic beverage intake reduces the risk of renal cell cancer could be beneficial changes in insulin sensitivity or vasculature. Light to moderate alcohol consumption has been associated with improved insulin sensitivity (Facchini et al., 1994; Davies et al., 2002; Joosten et al., 2008). Increased risk of renal cell cancer among diabetic (Lindblad et al., 1999; Joh et al.,...
Table 3 Combined RR of (95% CI) renal cell cancer for specific alcoholic beverages, comparing top with bottom category

Beverages (no. of study)	Bottom	Top	P for heterogeneity
Total alcohol	RR	RR (95% CI)	
Case–control study (n = 12)			
Beer	1.00	0.81 (0.70–0.91)	0.26
Wine	1.00	0.75 (0.59–0.91)	<0.001
Liquor	1.00	0.76 (0.66–0.87)	0.12
Cohort study (n = 2)			
Beer	1.00	0.75 (0.55–0.95)	0.16
Wine	1.00	0.81 (0.65–0.97)	0.17
Liquor	1.00	0.87 (0.77–0.97)	0.99

Abbreviations: CI = confidence interval; RR = relative risk.

© 2012 Cancer Research UK

Epidemiology
observed at heavy alcoholic beverage intake in our spline analysis warrants further studies because of the limited number of renal cell cancer cases for heavy drinking.

In conclusion, we found that alcoholic beverage intake lowered the risk of renal cell cancer with the greatest reduction at the moderate level, but suggesting the evidence that drinking >15 g per day of ethanol does not confer additional benefit for prevention in renal cell cancer risk. Also, reduction of risk was not restricted to any specific type of alcoholic beverages. Moderate alcohol drinking may confer health benefits in the overall survival

Table 4 Combined RR (95% CI) of renal cell cancer for the associations by gender, study design, and smoking status

Variable (no. of study)	Bottom RR	Bottom RR (95% CI)	P for difference	Top RR	Top RR (95% CI)	P for difference
Case–control study (*n* = 18)						
Gender (*n* = 12)						
Men	1.00	0.83 (0.70–0.96)	0.35			
Women	1.00	0.61 (0.46–0.76)				
Adjustment for smoking status						
No (*n* = 5)	1.00	0.76 (0.54–0.98)	0.52			
Yes (*n* = 13)	1.00	0.77 (0.67–0.87)				
Adjustment for hypertension status						
No (*n* = 15)	1.00	0.75 (0.66–0.85)	0.85			
Yes (*n* = 3)	1.00	0.78 (0.52–1.04)				
Cohort study (*n* = 4)						
Gender						
Men (*n* = 3)	1.00	0.71 (0.61–0.80)	0.78			
Women (*n* = 4)	1.00	0.70 (0.56–0.84)				
Adjustment for smoking status						
Yes (*n* = 4)	1.00	0.71 (0.61–0.80)				
Adjustment for hypertension status						
Yes (*n* = 4)	1.00	0.71 (0.61–0.80)				

Abbreviations: CI = confidence interval; RR = relative risk. *All cohort studies considered adjustment for smoking and hypertension status.*

Figure 3 (A) Combined RR (95% CI) of renal cell cancer and test for the non-linearity of the association using the regression cubic spline. (B) Combined RR (95% CI) of renal cell cancer and test for the non-linearity of the association using the regression cubic spline in case–control studies. (C) Combined RR (95% CI) of renal cell cancer and test for the non-linearity of the association using the regression cubic spline in cohort studies.
(Di Castelnuovo et al, 2006), cardiovascular disease (Rimm et al, 1996), and overall health status among elderly (Sun et al, 2011). However, drinking guidelines for men and women from various countries generally limit alcohol drinking to 1–2 standard units of drink (ICAP, 2009) because excessive drinking is associated with increased risk of birth defects, injury, hypertension, stroke, type 2 diabetes, cancers of oral cavity and pharynx, oesophagus and larynx, stomach, colon and rectum, liver, breast, and ovary (Bagnardi et al, 2001; Reynolds et al, 2003; Bagnanis et al, 2009; Taylor et al, 2009; Rehm et al, 2010). Along with the potential for health benefit and risks associated with alcohol consumption, our finding provides the evidence that light to moderate alcohol drinking is enough to reduce renal cell cancer risk without additional benefit above the level of one drink.

ACKNOWLEDGEMENTS

This work was supported by the Sookmyung Women’s University Research Grant (2010) and the Brain Korea 21 (BK 21) Project from the Ministry of Education and Human Resources Development, Republic of Korea. We thank Dr Setiawan for the data provision.

REFERENCES

Adams KF, Leitzmann MF, Albanes D, Kipnis V, Moore SC, Schatzkin A, Chow WH (2008) Body size and renal cell cancer incidence in a large US cohort study. Am J Epidemiol 168: 268–277

Allen NE, Balkwill A, Beral V, Green J, Reeves G (2011) Fluid intake and incidence of renal cell carcinoma in UK women. Br J Cancer 104: 1487–1492

Asal MR, Risser DR, Kadamani S, Geyer JR, Lee ET, Cherin N (1988) Risk factors in renal cell carcinoma: I. Methodology, demographics, tobacco, beverage use, and obesity. Cancer Detect Prev 11: 359–377

Bagnardi V, Blangiardo M, La Vecchia C, Corrao G (2001) A meta-analysis of alcohol drinking and cancer risk. Br J Cancer 85: 1700–1705

Baliunas DO, Taylor BJ, Irving H, Roerecke M, Patra J, Mohapatra S, Rehm J (2009) Alcohol as a risk factor for type 2 diabetes: A systematic review and meta-analysis. Diabetes Care 32: 2123–2132

Benedetti A, Parent ME, Siemiatycki J (2009) Lifetime consumption of alcoholic beverages and risk of 13 types of cancer in men: results from a case-control study in Montreal. Cancer Detect Prev 32: 352–362

Benhamou S, Orsini N, Boffetta P, Flamant R (1993) Risk factors for renal-cell carcinoma in a French case-control study. Int J Cancer 55: 32–36

Boeing H, Schlehofer B, Wahrendorf J (1997) Diet, obesity and risk for renal cell carcinoma: results from a case-control study in Germany. Z Ernährungswiss 36: 3–11

Boosy FM, Pan W, Greenet HE, Parks DA, Darley-Usmar VM, Bradford KM, Tabengwa EM (2007) Mechanism by which alcohol and wine polyphenols affect coronary heart disease risk. Ann Epidemiol 17: S24–S31

Brownson RC (1988) A case-control study of renal cell carcinoma in relation to occupation, smoking, and alcohol consumption. Arch Environ Health 43: 238–241

Chow WH, Dong LM, Devesa SS (2010) Epidemiology and risk factors for kidney cancer. Nat Rev Urol 7: 245–257

Chow WH, Gridley G, Fraumeni Jr JR, Jarvholm B (2000) Obesity, hypertension, and the risk of kidney cancer in men. N Engl J Med 343: 1305–1311

Corrao G, Rubbiati L, Bagnardi V, Zambon A, Poikolainen K (2000) Alcohol and coronary heart disease: a meta-analysis. Addiction 95: 1505–1523

Davies MJ, Bailer DJ, Judd JT, Brown ED, Campbell WS, Taylor PR (2002) Effects of moderate alcohol intake on fasting insulin and glucose concentrations and insulin sensitivity in postmenopausal women: a randomized controlled trial. JAMA 287: 2559–2562

DerSimonian R, Laird N (1986) Meta-analysis in clinical trials. Control Clin Trials 7: 177–188

Di Castelnuovo A, Costanzo S, Bagnardi V, Donati MB, Iacoviello L, de Gaetano G (2006) Alcohol dosing and total mortality in men and women: an updated meta-analysis of 34 prospective studies. Arch Intern Med 166: 2437–2445

Durrleman S, Simon R (1989) Flexible regression models with cubic splines. Stat Med 8: 551–561

Egger M, Davey Smith G, Schneider M, Minder C (1997) Bias in meta-analysis detected by a simple, graphical test. BMJ 315: 629–634

Facchini F, Chen YD, Reaven GM (1994) Light-to-moderate alcohol intake is associated with enhanced insulin sensitivity. Diabetes Care 17: 115–119

Fillmore KM, Stockwell T, Chikritzhs T, Bostrom A, Kerr W (2007) Moderate alcohol use and reduced mortality risk: systematic error in prospective studies and new hypotheses. Ann Epidemiol 17: S16–S23

Greenland S, Longnecker MP (1992) Methods for trend estimation from summarized dose-response data, with applications to meta-analysis. Am J Epidemiol 135: 1301–1309

Greving JP, Lee JE, Wolk A, Lukkien C, Lindblad P, Bergstrom A (2007) Alcoholic beverages and risk of renal cell cancer. Br J Cancer 97: 429–433

Hiatt RA, Tolan K, Quesenberry Jr CP (1994) Renal cell carcinoma and thiazide use: a historical, case-control study (California, USA). Cancer Causes Control 5: 319–325

Higgins JP, Thompson SG (2002) Quantifying heterogeneity in a meta-analysis. Stat Med 21: 1593–1598

Hsu CC, Chow WH, Boffetta P, Moore L, Zaridze D, Anuskh M, Janout V, Kollarova H, Bencko V, Navratilova M, Szeszenia-Dabrowska N,-Mates D, Brennan P (2007) Dietary risk factors for kidney cancer in eastern and central Europe. Am J Epidemiol 166: 62–70

Hu J, Chen Y, Mao Y, Desmeules M, Mery L (2008) Alcohol drinking and renal cell carcinoma in Canadian men and women. Cancer Detect Prev 32: 7–14

ICAP (2009) Blue Book. International Center on Alcohol Policies. http://www.icap.org/LinkClick.aspx?fileticket=iS8Bbvi81IN963d&tabid=179 (accessed 12 March 2012), Washington, DC.

Joh HK, Willett WC, Cho E (2011) Type 2 diabetes and the risk of renal cell cancer. Am J Epidemiol 173: 1539–1558

Kan HP, Huang YQ, Tan YF, Zhou J (2011) Meta-analysis of alcohol consumption and risk of extrarenal bile duct system cancer. Hepatol Res 41: 746–753

Kim MK, Ko MJ, Han JT (2010) Alcohol consumption and mortality from all-cause and cancers among 1.34 million Koreans: the results from the Korea national health insurance corporation’s health examinee cohort in 2000. Cancer Causes Control 21: 2295–2302

Kreiger N, Marrett LD, Dodds L, Hilditch S, Darlinga GA (1993) Risk factors for renal cell carcinoma: results of a population-based case-control study. Cancer Causes Control 4: 101–110

Lee JE, Hunter DJ, Spiegelman D, Adami HO, Albanes D, Bernstein L, van den Brandt PA, Buring JE, Cho E, Folsom AR, Freudenberg JI, Giovannucci E, Graham S, Horn-Ross PL, Leitzmann MF, McCullah ML, Miller AB, Parker AS, Rodriguez C, Rohan TE, Schatzkin A, Schouten LJ, Virtanen M, Willett WC, Wolk A, Zhang SM, Smith-Warner SA (2007) Alcohol intake and renal cell cancer in a pooled analysis of 12 prospective studies. J Natl Cancer Inst 99: 801–810

Lew JQ, Chow WH, Hollenbeck AR, Schatzkin A, Park Y (2011) Alcohol consumption and risk of renal cell cancer: the NIH-AARP diet and health study. Br J Cancer 104: 537–541

Lindblad P, Chow WH, Chan J, Bergstrom A, Wolk A, Gridley G, McLaughlin JK, Nyren O, Adami HO (1999) The role of diabetes mellitus in the aetiology of renal cell cancer. Diabetologia 42: 107–112

Maclure M, Willett W (1990) A case-control study of diet and risk of renal cell cancer. Br J Cancer 62: S16–S23

McLaughlin JK, Nyren O, Adami HO (1999) The role of diabetes mellitus and thiazide use: a historical, case-control study (California, USA). Cancer Causes Control 5: 319–325

Mates D, Brennan P (2007) Dietary risk factors for kidney cancer in eastern and central Europe. Am J Epidemiol 166: 62–70

Mathew A, Devesa SS, Fraumeni Jr JE, Chow WH (2002) Global increases in kidney cancer incidence, 1973-1992. Eur J Cancer Prev 11: 171–178

© 2012 Cancer Research UK

British Journal of Cancer (2012) 106(11), 1881 – 1890

Epidemiology
This work is published under the standard license to publish agreement. After 12 months the work will become freely available and the license terms will switch to a Creative Commons Attribution-NonCommercial-Share Alike 3.0 Unported License.