АКУМУЛАЦИЈА УГЉЕНИКА У ДВА ПРИРОДНА ПАШЊАКА ВИСОКОПЛАНИНСКИХ ПРЕДЕЛА СРБИЈЕ

Др Елимира Салников, научни саветник – Институт за земљиште, Београд
Др Сара Лукић, доцент, Универзитет у Београду – Шумарски факултет, (sara.lukic@sfb.bg.ac.rs)
МSc Предраг Миљковић, асистент, Универзитет у Београду – Шумарски факултет
Мр Никола Коковић, стручни саветник, Институт за земљиште, Београд
Др Вељко Перовић, научни сарадник, Институт за биолошка истраживања „Синиша Станковић”,
Универзитет у Београду
Др Арган Чахмак, виши научни сарадник, Институт за биолошка истраживања „Синиша Станковић”,
Универзитет у Београду
Др Снежана Белановић Симић, редовни професор, Универзитет у Београду – Шумарски факултет

Извод: Травњаци играју значајну улогу у глобалном кружењу угљеника, а резерве угљеника у травним екосистемима су под утицајем људских активности и природних поремећаја. Циљ овог проучавања је да се одреде разлике у резервама угљеника у травним екосистемима на два огледна локалитета на подручјима Старе планине и Златара (Србија). Проучавана подручја су под природним планинским травњацима исте заједнице (Agrostietum capillaris Pavl. 1955) и два типа земљишта (Umbric Leptosol (Dystric)) и (Haplic Cambisol (Dystric)), али са различитим интензитетом испаше. Узоркована је надземна и подземна биомаса, а земљиште по фиксним дубинама 0-10, 10-20 и 20-40 cm. Процена резерве угљеника и стопа акумулације одређене су методом Tier 2 IPCC (2003). Потенцијално минерализујући угљеник одређен је применом процедуре секвенцијалне инкубације у лабораторијским условима. Према добијеним резултатима, већа количина падавина на огледном подручју на Старој планини резултирала је већом акумулацијом надземне биомасе, која је била изложен уважој декомпозицији in situ показујући тако мању количину потенцијално минерализујућег угљеника (PMC) in vitro. Такође, количина PMC на оба локалитета указује да је минерализација органске материје у земљишту под већим утицајем фактора везаних за својства земљишта, климатске услове и испашу.

Кључне речи: травњаци, резерва угљеника у биомаси, резерва угљеника у земљишту, минерализација угљеника, потенцијално минерализујући угљеник

УВОД

Највећа размена угљеника дешава се између атмосфере и биљака, према томе, терестрични екосистеми играју кључну улогу у глобалном циклусу кружења угљеника. Начин управљања травним екосистемима у циљу акумулације угљеника и повећања приноса, смањења осетљивости на инпуте азота, цео екосистем чини опорним на климатске промене (Lal, 2009; FAO, 2011).
У биомаси травних система, која је првенствено зељаста акумулирана је мала резерва угљеника (у поређењу са шумом) и стога се доминантна резерва угљеника налази у земљишту (Conant, 2010). Травњаци својим подземним резервама угљеника доприносе у глобалном циклусу кружења угљеника (Scurlock и Hall, 1998). Глобалне процене релативне количине угљеника у различитим типовима вегетације указују да травњаци вероватно доприносе са > 10% укупних резерви у биосфери (Eswaran et al., 1993; Nosberger et al., 2000). Надземна биомаса травних екосистема може да акумулира релативно мало количину угљеника у поређењу са оном у земљишту. Земљиште складиште најмање три пута више угљеника (у органској материји земљишта) у односу како на атмосферу, тако и живе биљке (Fischin et al., 2007).

Резерва угљеника у органској материји земљишта (SOM) која је подложна брзој декомпозицији састоји се и од лаке фракције и/или од фракције честица органске материје (POM), као и од остатка микроорганизама (Jones и Donnelly, 2004) који су веома лабилна резерва органске материје и варијација у резерви лаке органске материје је најбољи индикатор промена у органској материји земљишта условљених начином управљања, што су показала многа истраживања (Jenkinson, 1988; Gregorich et al., 1996; Haynes, 2000, Saljnikov, 2004; Luo и Zhou, 2006; Saljnikov и са., 2015; Funakawa et al., 2010). Пошто је углавном сав лабилни C у травним екосистемима у земљишту, а наше разумевање процеса је слабо, нагласак је стављен на идентификацију укупне резерве угљеника и извора лабилног угљеника преко респирације земљишта и минерализације органске материје.

Респирација земљишта је други највећи флукс угљеника између терестричних екосистема и атмосфере у глобалном циклусу угљеника (Jia и Zhou, 2009; Thomey и са., 2011), и игра важну улогу у регулисању резерве угљеника у земљишту и циклусу кружења угљеника у екосистемима (Cox и са., 2000; Saiz и са., 2006; Wang и са., 2016).

Овај рад представља резултате пилот пројекта у оквиру ког су проценете и упоређене резерве угљеника на два проучавана подручја у високопланинским травним екосистемима Ста-ре планине и Златара у Србији, дефинисане резервама угљеника како у надземној и подземној биомаси тако и у земљишту и то укупне резерве и лабилне форме. Основни циљ истраживања је да се на два проучавана локалитета природних планинских травњака, у сличним климатским и педолошким условима са различитим интензитетом испаше, утврди интензитет утицаја начина коришћења на акумулацију у надземној биомаси и расподелу угљеника, као и параметри земљишта који највише утичу на ове разлике.

МАТЕРИЈАЛ И МЕТОДЕ

Проучавано подручје

Истраживања су вршена у планинским травњацима Златара и Старе планине. Планина Златар се налазе у југозападном делу Србије и припада планинском венцу Динарских планина (Слика 1). Просечна надморска висина проучаваних травних заједница на Златару је 1200-1400 метара. Прелазни тип климе Златара резултат је интеракције континенталних и моритимних ваздушних маса. Средња годишња температура ваздуха је 7,1°C, а годишња сума падавина је 751,5 mm за осматран период 1990-2010. године (РХМЗ, 2010 – ГМС Сјеница). Масив планине Златар углавном је састављен од кречњака, пешчара, шкриљаца и рожнаца (Ćirić и са., 1977) на којима су развијена земљишта која припадају типовима Umbric Leptosol (Dystric) и Haplic Cambisol (Dystric) (WRB, 2006). Вегетација Златара је условљена климом и карактерише присуство климатогених заједница као што су фригорифилне шуме смрче, мезофилне шуме букве и мешовите шуме букве и јеле. Пашњаци се простиру на 24,31%, а ливаде на 15,45% површине Златара (Dragović и са., 2009). Вегетација травњака Златара се карактерише земљиштима као што су фригорифилне шуме смрче, мезофилне шуме букве и јеле, а преовладава 24,3%, а ливаде на 15,45% површине Златара (Dragović и са., 2009). Вегетација травњака Златара се карактерише земљиштима као што су фригорифилне шуме смрче, мезофилне шуме букве и јеле, а преовладава 24,3%, а ливаде на 15,45% површине Златара (Dragović и са., 2009).
АКУМУЛАЦИЈА УГЉЕНИКА У ДВА ПРИРОДНА ПАШЊАКА ВИСОКОПЛАНИНСКИХ ПРЕДЕЛА СРБИЈЕ

са средњом годишњом температуром ваздуха 6,1°C и просечном годишњом сумом падавина 1090 mm (Ristić, 2012). У геолошком погледу Стара планина је састављена од конгломерата, пешчара, аргилошиста и кречњака (Krstić et al., 1970). На Старој планини, за разлику од Златара, изражена висинска зоналност шумске вегетације. Најчешћи тип шуме на надморској висини 1200 до 1550 m нв. је планинска шума букве (Fagetum moesiacae montanum Jov. 1953). Травне заједнице развиле су се у односу на висински градијент — од планинских ливада и пашњака преко планинских и субалпских до алпских пашњака (Mišić et al., 1978). Доминантна травна заједница је Agrostietum capillaris Pavl. 1955.

Узорковање земљишта

Основано је укупно осам огледних поља у високопланинским пашњацима у заједници Agrostietum capillaris на Златару (Z1, Z2, Z3 и Z4) и на Старој планини (SP1, SP2, SP3 и SP4) (Слика 1). Огледна поља су на надморској висини 1296 до 1479 m нв. (Табела 1). Проучавани типови земљишта Umbric Leptosol (Dystric) и Haplic Cambisol (Dystric) (WRB, 2006) формирани су на рожњацима и шкриљцима. Просечна густина проучаваних земљишта је 0,95 g cm⁻³ (Златар) и 0,80 g cm⁻³ (Стара планина). На проучаваним пашњацима планине Златар повремено је присутна умерена слободна испаша коза, док су проучавани пашњаци на Старој планини непоремећени испашом или другим активностима као што је кошење.

Узорковање биомасе и одређивање резерви угљеника

Надземна биомаса (нето примарна продукција NadNPP) одређена је у јулу 2015. према препорукама LULUCF Упутства (IPCC, 2003) при чему деструктивне методе „кошење и меренење” (SOP 2034:1994). На сваком огледном пољу узорковано је по четири квадрата 0,5 m². Надземна биомаса унутар квадрата је посечена до површине земљишта (жив биљак, стојећи биљни остаци и биљни остаци на површини земљишта), затим је живе надземне биомасе одвојена од прошлогодишњих стојећих биљних

Локалитет	Координате	Површина (ha)	Надморска висина (m)	Експозиција
Златар	43°14'20" - 43°14'33" N и 22°51'37" - 22°52'06" E	5,16	1438-1470	E
Стара планина	43°24'17" - 43°24'27" N и 19°48'36" - 19°48'4" E	8,08	1275-1428	W-SW

Слика 1. Просторни распоред травњака у Србији са означеним проучаваним подручјем на Златару и Старој планини
остатака и лежећих остатака, пондерисана и измерена. Посечена биомаса је сушена у сушници на 70 °C до константне масе.

Подземна биомаса (нето примарна продукција PodNPP) је мерена на сваком огледном пољу применом методе узорацовања земљишта у ненарушеном стању (Ravindranath и Ostwald, 2008) узимањем по 2 непоремећена узорац земљишта помоћу цилиндра пречника 10,3 cm у слоју до дубине 30 cm у сваком квадрату. Подземна биомаса (корени, ризоми и др.) садржана у узорацку је одвојена од земљишта уз помоћ воде и 0,3-mm сита. Узорац подземне биомасе су осушени у сушници на 70 °C до константне масе.

Укупан C у надземној и подземној биомаси измерен је на CNS апарату, Vario model EL III (ELEMENTAR Analysen systeme GmbH, Hanau, Germany; Nelson и Sommers, 1996).

Проучавања својстава земљишта

Отворена су по четири профила земљишта на сваком огледном пољу (укупно 8 проfila), а узорацовање је вршено према Протоколу за узорацовање земљишта за сертификовање уређења у минералном земљишту (Stolbovoy et al., 2005). Узорацовање је вршено по фиксним дубинама 0-10 cm, 10-20 cm и 20-40 cm. Основна физичка и хемијска својства одређена су на ваздушно сувим узорацима применом следећих метода: пипет метода је коришћена за анализу гранулометријског састава (ISO 11277:1998); густина земљишта (BD) је мерена сушењем узорац земљишта, узорацованог у ненарушеном стању, на 105°C до константне масе (ISO 11272:1993); специфична густина земљишта је одређена методом (ISO 11508:2002); pH земљишног раствора је одређена електрометријски у дестилованој води (1:5) (ISO 10390:2007); хидролитичка киселинност (cmol kg⁻¹) (екстракција помоћу CH₃COONa, титрација помоћу 0,1M NaOH) је одређена методом по Kappen-у (Kappen, 1929), а укупни капацитет адсорпције кислорода (T) (cmol kg⁻¹) и степен засићености базама (V%) – рачунским путем (Hissink, 1925). Органски угљеник у земљишту (C) измерен је методом по Тјурину (Nelson и Sommers, 1996), а укупни азот (N) методом по Kjeldahl-y (ISO 11261:1995). Лакопрступачни фосфор и калијум одређени су Al₃-метоцом по Egner-Riehm-y (Egner и Riehm, 1958). Да би се осигурали поузданост резултата, све анализе су урађене у два понављања.

Респирација земљишта

Потенцијално минерализујући угљеник одређен је применом секвенцијалне инкубације у лабораторији у условима контролисане влаге и температуре током 2-, 4-, 6-, 8-, 10-недеља (Janzen, 1987). Респирација земљишта је мерена фиксацијом ослобођеног CO₂ помоћу 1M NaOH и титрацијом преосталог NaOH помоћу HCl. Потенцијално минерализујући угљеник C₀ добијен је уклањањем података збирно утврдена угљеника у кинетичком модел првог реда (SPSS Inc., 2007): C_min=C₀*(1-exp(-k*t)), где C_min представља експериментално добијену вредност минерализованог угљеника у датом времену (t), C₀ је количина потенцијално минерализујућег угљеника на почетку циклуса кружења, k је нелинеарна константа стопе минерализације.

Годишњи инпут стеље у земљиште, без ексудација корена и резултата циклуса кружења, могу се одредити као надземна биљна продукција увећана за масу корена. Подземна респирација укључује укупни угљеник ослобођен у разлагању органске материје земљишта и респирације корена (Hungate et al., 1997). Губитак угљеника одређен је на основу респирације мерене у лабораторијским условима инкубацијом током 90 дана.

РЕЗУЛТАТИ

Основна хемијска својства приказана су у табели 2. Проучавана земљишта са оба локалитета имају умерене до веома ниске вредности pH са ниским садржајем база. Реакција земљишног раствора није статистички значајно разликова отац не и од смешених локалитета.

Е. Саљников, С. Лукић, П. Миљковић, Н. Коковић, В. Перовић, Д. Чакмак, С. Белановић Симић
на Златару. Садржаји укупног C и N били су зна-
чно виши на Старој планини него на Златару. Садржај биљкама лакоприступачног фосфора и ка-
лијума статистички се не разликују значајно међу проучаваним локалитетима, садржај фос-
фора је низак, а садржај калијума је средњи на оба локалитета.
Према механичком саставу, земљиште ло-
калитета на Златару има већи садржај фракције глине него земљиште на локалитету на Старој
планини (Табела 2). Просечна порозност у слоју земљишта 0-10 cm на локалитету на Златару из-
носи 64%, а на Старој планини 66%.
Надземна биомаса на локалитету на Злата-
ру је у опсегу од 3,09 (Z3) до 4,11 Mg ha⁻¹ (Z1). Надземна биомаса на локалитету на Старој плани-
ни је у опсегу од 3,93 (SP4) до 5,88 Mg ha⁻¹ (SP1). Мања количина надземне биомасе изме-
рена је на Златару на огледним пољима на ко-
јима се врши испаша (Табела 3).

Табела 2. Основна хемијска својства земљишта на проучаваним локалитетима

Локалитет	Златар	Стара планина				
	0-10 cm	10-20 cm	20-40 cm	0-10 cm	10-20 cm	20-40 cm
прах+глина %	53,05±5,56	55,97±5,16	56,45±7,9	46,17±5,08	47,55±2,22	53,70±6,6
BD (g cm⁻³)	0,88±0,02	0,95±0,10	1,02±0,01	0,72±0,02	0,82±0,10	0,88±0,2
D (g cm⁻³)	2,42±0,05	2,62±0,02	2,45±0,02	2,15±0,02	2,32±0,02	2,32±0,02
pH H₂O	5,28±0,02	5,24±0,02	5,32±0,03	5,20±0,02	5,18±0,02	5,21±0,02
pH CaCl₂	4,39±0,03	4,30±0,02	4,29±0,03	4,49±0,01	4,34±0,02	4,39±0,02
T (cmol kg⁻¹)	36,51±5,9	29,72±4,9	26,09±4,9	48,42±6,1*	41,42±7,4*	35,76±4,9*
V%	37,25±9,2	32,24±9,6	30,45±11,6	37,29±6,5	31,88±6,2	28,31±7,9
хумус%	10,80±3,2	6,02±2,1	3,24±1,5	15,55±4,1	10,94±2,9*	6,86±1,6*
С%	6,27±1,9	3,49±1,2	1,88±0,9	9,02±2,4	6,34±1,7*	3,98±0,9*
N%	0,498±0,19	0,365±0,10	0,192±0,13	0,863±0,10*	0,555±0,13	0,468±0,17*
C/N	13,18±4,0	9,44±1,0	6,40±4,5	10,33±1,5	11,43±1,5	8,84±1,6
P₂O₅ (mg/100 g)	1,24±0,9	0,26±0,2	0,00±0,0	1,86±1,4	0,30±0,3	0,28±0,3
K₂O (mg/100 g)	18,25±14,5	13,72±14,1	7,10±4,0	26,02±11,5	15,06±7,3	9,48±6,6

Табела 3. Надземна и подземна биомаса и фракција угљеника у земљишту у слоју 0-10 cm

Огледно поље	Надземна биомаса Mg ha⁻¹	Подземна биомаса Mg ha⁻¹	СО₂-C (0-20 cm), mg kg⁻¹ ваздушно суво земљиште	укупни C, %	PMС (0-20 cm), mg kg⁻¹ ваздушно суво земљиште	Константа стопе минерализације k
ЗЛАТАР						
1	4,11	23,10	518,45	7,71	12403,15	0,121
2	3,37	42,94	706,46	7,11	19279,04	0,081
3	3,09	12,35	575,33	3,54	15021,21	0,108
4	3,68	33,77	919,91	6,70	31655,30	0,067
Средња вредност	3,56±0,43	28,04±13,24	680,038	6,19	19589,67	0,094
СТАРА ПЛАНИНА						
1	5,88	27,11	656,80	6,58	16795,22	0,094
2	4,46	17,04	888,94	7,62	28285,53	0,075
3	4,44	16,81	1,099,00	10,13	36227,03	0,066
4	3,93	6,18	610,86	8,48	21460,04	0,081
Средња вредност	4,67±0,83*	16,79±8,55	791,368	8,20	25691,95	0,079
Респирација земљишта и количина потенцијално минерализујућег угљеника (PMC) на два локалитета статистички се не разликују. Стопа минерализације органског угљеника виша је на локалитету на Златару у поређењу са локалитетом на Старој планини. Највећа количина PMC на Старој планини измерена је на огледном пољу SP3, а на Златару на огледном пољу Z4, док је највиша стопа минерализације забележена на огледним пољима Z1 и Z3 на Златару и SP1 на Старој планини (Табела 3). Укупна резерва угљеника у биомаси већа је на локалитету на Златару него на локалитету на Старој планини, али се статистички не разликују, док је резерва угљеника у земљишту на ова два локалитета статистички значајно различита, показујући веће резерве у земљишту на Старој планини (Табела 4). Статистички значајно већа укупна резерва угљеника је на локалитету на Старој планини у поређењу са локалитетом на Златару.

ДИСКУСИЈА

Разлика у садржајима лабилног угљеника на локалитетима на Старој планини и на Златару се може приписати различитој количини надземне и подземне биомасе, што је последица различитог састава лаке фракције органске материје. Травњаци имају знатно већу подземну биомасу од надземне, али по правилу, састав надземне биомасе трава чини надземну биомасу значајно расположивим супстратом за микроорганизме када доспе у земљиште и постаје део органске материје земљишта. Земљишта на Старој планини имају генерално већу респирацију у контролисаним условима, што може укупна резерва угљеника у биомаси Земљиште (0-40 cm) Укупна резерва C

Профил	Резерва угљеника у биомаси	Земљиште (0-40 cm)	Укупна резерва C
	Mg ha⁻¹	Mg ha⁻¹	Mg ha⁻¹
ЗLATAR			
1	6,56	96,94	103,50
2	14,89	166,71	181,59
3	5,77	76,33	82,101
4	10,43	157,24	167,66
Ср. вред.	9,41±0,42	124,304±44,5	133,71±48,4
СТАРА ПЛАНИНА			
1	12,74	158,56	171,29
2	7,39	173,98	181,37
3	7,08	191,91	198,99
4	3,68	202,15	205,83
Ср. вред.	7,74±3,74	181,652±19,3	189,37±15,85

Табела 5. Којећиоцијенти корелације између биолошких параметара земљишта

	AGB/ CO₂	AGB/ PMC	BGB/CO₂	BGB / PMC	TC/ PMC	CO₂/ PMC	CO₂/TC
Златар	0,017	-0,053	0,859**	0,649*	0,227	0,947***	0,437*
Стара Планина	-0,180	-0,540	0,135	-0,281	0,898**	0,903**	0,651*

АВГ - надземна биомаса; СО₂ - респирација; ВГВ - подземна биомаса; ТС-укупни угљеник; РМС - потенцијално минерализујући угљеник (лабилни угљеник).
указивати на већу микробиолошку активност ових земљишта. Затим, интензивнија респирацija има за последицу већу количину измереног лабилног угљеника у земљишту Старе планине. Разлагање органске материје у земљишту је биолошки процес, према томе, промене у подземном угљенику или располаживост органске материје као енергетског материјала за земљишне микроорганизме могу изменити састав микробних заједница и њихову активност које, за узрват, мењају брзину декомпозиције и облике органске материје која је разложена (Schmidt et al., 2011). Ову претпоставку, такође, потврђује резерва С у земљишту која је већа на Старој планини, а укупна резерва С у биомаси је већа на Златару (Табела 4). Према томе, могло би се закључити да се у земљишту на Златару процес минерализације органске материје одвија интензивније in situ, тиме и испирање лаке фракције органске материје, што се одразило на лабораторијска мерења инкубације лабилног угљеника, где су забележене ниже величине PMC и виše стопе минерализације.

На Златару, упркос већој количини подземне биомасе, укупни садржај С био је знатно нижа него на Старој планини. Акумулација и декомпозиција органске материје у земљишту првенствено зависе од валге и температуре и хемијских карактеристика органске материје, која је енергетски материјал за земљишне микроорганизме, где се градијент акумулације лабилног угљеника повећава од суве ка влажној и од топле ка хладној клими (Saljnikov et al., 2009). Ово је потврђено подацима са оба проучавана локалитета, где се Златар одликује вишом средњом годишњом температуром ваздуха и нижом годишњом сумом падавина као представник алпијских ливада. Насупрот томе, на Старој планини, где је подземна биомаса, већа количина асимилираног угљеноксиде, као што је на Златару. Према овим резултатима, могу се закључити да је укупна резерва C у земљишту која је већа на Златару (Табела 4). Према томе, укупна резерва угљеника у надземној биомаси буде значајно већа на Златару, а укупна резерва угљеника у земљишту је већа због веће концентрације угљеника у подземној биомаси и помилу у течностима, што је резултат позитивног ефекта умерене испаше на земљишту где се земљиште под већим утицајем фактора који су ближни условима лабораторијске инкубације.

Значајне разлике у великим резервама укупног и лабилног угљеника у земљишту је тешко одредити за кратак период трајања овог истраживања. Мало повећање количине угљеника у земљишту може, међутим, довести до великом повећања респирације и минерализације угљеника, ако је угљеник расподељен у једно или више високих фракција у земљишту (Thompson et al., 1996). Такође, према Hafner et al. (2012) што је већа заступљеност угљеника у земљишту може, међутим, довести до великом повећања респирације у земљишту, што је резултат позитивног ефекта умерене испаше на земљиште. Мало повећање количине угљеника у земљишту може, међутим, довести до великом повећања респирације у земљишту, што је резултат позитивног ефекта умерене испаше на земљиште
ЗАКЉУЧАК

Резерва С у земљишту је већа на Старој планини, а укупна резерва С у биомаси је већа на Златару, што је вероватно резултат тога да се у земљишту на Златару процес минерализације органске материје одвија интензивније in situ, тиме и испирање лаке фракције органске материје. На Златару, упркос већој количини подземне биомасе, укупна резерва С била је знатно нижа него на Старој планини.

Закључак прелиминарних истраживања указује да резерве лабилног угљеника нису статистички значајно различите, иако се извори лабилног угљеника разликују између пробних локалитета. Дистрибуција лабилног угљеника на оба локалитета указује да је минерализација органске материје у земљишту под већим утицајем фактора који су везани за својства земљишта и утицај испаше.

Добијени резултати указују на потребу за спровођењем детаљних истраживања карактеристика и динамике угљеника, као и процесе трансформације његових фракција у циљу бољег разумевања његових промена у природним условима планинских ливадских заједница.

Напомена: Истраживање је спроведено у оквиру пројекта „Резерве угљеника у земљиштима травних екосистема високопланинских региона Србије“ заведеног под бројем 404-02-216/10/2015-15 који је финансиран од стране Министарства пољопривреде и заштите животне средине Републике Србије и пројекта „Истраживање климатских промена и њиховог утицаја на животну средину: пређење утицаја, адаптација и ублажавање – ИИИ 43007“ финансираног од стране Министарства просвећења, науке и технологског развоја.

LITERATURA

Castellano M.J., Mueller K.E., Olk D.C., Sawyer J.E., Six J. (2015): Integrating plant litter quality, soil organic matter stabilization, and the carbon saturation concept. Global Change Biology 21, (3200–3209)

Conant R.T. (2010): Challenges and opportunities for carbon sequestration in grassland systems A technical report on grassland management and climate change mitigation. FAO, Rome

Cox P.M., Betts R.A., Jones C.D., Spall S.A., Totterdell I.J. (2000): Acceleration of global warming due to carbon-cycle feedbacks in a coupled climate model. Nature. 408(6809), (184-7)

Čirić A., Obradović Z., Novković D., Popević A., Karađišić L.J., Jović B., Serdar R. (1977): Geological booklet of Basic Geologic Map 1:100 000 for Prijeponje, Beograd

Dragović R., Filipović I., Nikolić J. (2009): Iskoristivost prirodno-geografskih uslova Zlatibora i Zlata-ra za razvoj ekoturizma i zdravstvenog turizma. Bulletin of the Serbian geographical society 89(1), (115-128)

Enger H., Riehm H. (1958): Die Ammoniumlaktatesigsäure-Methode zur Bestimmung der erleichtlöslichen Phosphorsäure in Karbonat-haltigen Böden (In German). Agrochimicae III (1), (49-65)

Eswaran H., van Den Berg E., Reich P. (1993): Organic Carbon in Soils of the World. Soil Sci. Soc. Am. J. 57, (192-194)

Fan T., Hou X., Shi H., Shi S. (2013): Effects of grazing and fencing on carbon and nitrogen reserves in plants and soils of alpine meadow in the three headwater resource regions. Russian J of Ecology 44(1), (80-88)

FAO (2011): The state of the world’s land and water resources for food and agriculture (SOLAW) - Managing systems at risk. Food and Agriculture Organization of the United Nations, Rome and Earthscan, London.

Fischin A., et al., 2007. Ecosystems, their properties, goods and services, In Climate Change: Impacts, Adaptation and Vulnerability (eds Parry M.L., Canziani O.F., Palutikof J.P. van der Linden P.J., Hanson C.E) 211-272, Cambridge University Press.

Funakawa S., Shinjo H., Kadono A., Kosaki T. (2010): Factors controlling in situ decomposition rate of soil organic matter under various bioclimatic conditions of Eurasia. Pedologist 53, (50-66)

Gregorich E.G., Jansen H.H. (1996): Storage of soil carbon in the light fraction and macro organic matter. In: Carter, M.R. and Stewart B.A. (Eds.) Advances in Soil Science. Structure and
Organic Matter Storage in Agricultural Soils. CRC Lewis Publisher, Boca Raton, (167-190)

Guntiñas M.E., Gil-Sotres F. Leirós M.C., Trasar-Ceperda C. (2013): Sensitivity of soil respiration to moisture and temperature, *Journal of Soil Science and Plant Nutrition*, 13 (2), (445-461)

Hafner S., Unteregelsbacher S., Seeber E., Lena B., Xu X., Li X., Guggenberger G., Miehe G., Kuzyakov Y. (2013): Effect of grazing on carbon stocks and assimilate partitioning in a Tibetan montane pasture revealed by 13CO$_2$ pulse labeling. *Global Biology Change* 18, (528-538)

Haynes R.J. (2000): Labile organic matter as an indicator of organic matter quality in arable and pastoral soils in New Zealand. *Soil Biol. Biochem.* 32, (211-219)

Hissink D.J. (1925): Base exchange in soils. Transactions of the Faraday Society 20, (551-556)

Hungate B.A., Holland E.A., Jackson R.B., Chapin F.S., Mooneyk H.A., Field C.B. (1997): The fate of carbon in grasslands under carbon dioxide enrichment. *Nature* 388, (576-579)

IPCC (2003): Good practice guidance for land use, land-use change and forestry (Penman J, Gytarsky M, Hiraishi T, Krug T, Kruger D, Pipattiti R, Buendia L, Miwa K, Nagara T, Tanabe K, Wagner F eds). IPCC, Institute for Global Environmental Strategies (IGES), Kanagawa, Japan, pp.593

ISO-11261:1995. Soil quality - Determination of total nitrogen, modified Kjeldahl method. International organization for standardization, Geneva, Switzerland, pp. 4.

ISO-11277:1998. Soil quality - Determination of particle size distribution in mineral soil material. Method by sieving and sedimentation. International organization for standardization, Geneva, Switzerland, pp. 34

Iso-11272:1993. Soil quality - Determination of dry bulk density. International organization for standardization, Geneva, Switzerland, pp. 10.

Janzen H.H., (1987): Soil organic matter characteristics after long-term cropping to various spring wheat rotations. *Can. J. Soil Sci.* 67, (845-856)

Jenkinson D.S., (1988): Soil organic matter and its dynamics. In Russels’ Soil Condition and Plant Growth (A. Wild, Ed.), 11th Edn. Longman, New York, (564-607)

Jia B.R., Zhou G.S. (2009): Integrated diurnal soil respiration model during growing season of a typical temperate steppe: Effects of temperature, soil water content and biomass production. *Soil Biology & Biochemistry* 41, (681-686)

Jones M.B., Donnelly A. (2004): Carbon sequestration in temperate grassland ecosystems and the influence of management, climate and elevated CO$_2$. *New Phytologist*. 164(3), (423-439)

Kappen H. (1929): Die Bodenzusatit. Springer Verlag, Berlin, Germany [in German]

Kong A.Y.Y., Six J. (2010): Tracing root vs. residue carbon into soils from conventional and alternative cropping systems. *Soil Sci. Soc. Amer. J.* 74, (1201-1210)

Krsić B., Kalenić M., Divljan M., Maslarević LJ., Djordjević M., Dolić D., Antonijević I. (1970): Geological booklet of Basic Geologic Map 1:100 000

Lal R. (2009): Challenges and opportunities in soil organic matter research. European Journal of Soil Science 60, (159-168)

Luo Y., Zhou X. (2006): Soil Respiration and the Environment. Elsevier Publishing

Mišić V. (ed) (1978): Biljne zajednice i staništa Stare planine [Vegetation communities and habitats of Stara planina Mt.] Serbian Academy of Sciences and Arts Belgrade special edition [in Serbian]

Nelson D.W., Sommers L.E. (1996): Total carbon, organic carbon, and organic matter. In Page A.L., Miller R.H., Keeney D.R. (Eds.) Methods of Soil Analysis, Part 3: Chemical and microbiological properties. SSSA, Madison, WI

Nosberger J., Blum H., Fuhrer J. (2000): Crop ecosystem response to climatic changes: Productive grasslands. In Reddy K.R., Hodges H.F. (eds). Climate Change and Global Crop productivity, Wallingford, UK, New York, NY CABi Publisher (271-291)

Rasse D.P., Rumpel C., Dignac M.F. (2005): Is soil carbon mostly root carbon? Mechanisms for a specific stabilization. *Plant and Soil* 269, (341–356)

Ravindranath N.H., Ostwald M. (2008): Carbon Inventory Methods – Handbook for Greenhouse Gas Inventory, Carbon Mitigation and Roundwood Production Projects. Advances in Global Change Research 29, (149-156)

RHOS (2011): Meterorološki godišnjak [Meteorological annual reports]. Republic Hydrometeoro-
logical Office of Serbia, Belgrade, Serbia. [in Serbian]

Ristić R., Kašanin-Grubin M., Radić B., Nikić Z., Vasiljević N. (2012): Land degradation in ski resort “Stara planina”. Environmental Management 49(3), (580-592)

Saiz G., Byrne K.A., Butterbach-Bahl K., Kiese R., Blujdea V., Farrell E.P. (2006): Stand age-related effects on soil respiration in a first rotation Sitka spruce chronosequence in central Ireland. Global Change Biology 12, (1007–1020)

Saljnikov-Karbozova E., Funakawa Sh., Akhmetov K., Kosaki T. (2004): Soil organic matter status of Chernozem soil in North Kazakhstan: effects of summer fallow. Soil Biology and Biochemistry 36, (1373-1381)

Saljnikov E., Čakmak D., Muhanbet A., Kresović M. (2014): Biological indices of soil organic matter in long term fertilization experiment. Zemljishte i biljka 63 (2), (11-20)

Saljnikov E., Čakmak D., Kostić Lj., Maksimović S. (2009): Labile fractions of soil organic carbon in Mollisol from different climatic regions. Agrochimica, LIII(6), (376-385)

Saljnikov E., Rahimgalieva S., Raymbek A., Tocic S, Mrvic V., Sikiric B., Pachikin K. (2015): Effect of fallowing on soil organic matter characteristics on wheat monoculture in arid steppes of northern Kazakhstan. Zemljishte i Biljka 64(2), (17-26)

Schmidt M.W.I., Torn M.S., Abiven S., Dittmar T., Gugenberger G., Janssens I., Kleber M., Kogel-Knabner I., Lehmann J., Manning D., Nanipieri P., Rasse D., Weiner S., Trumbore S. (2011): Persistence of soil organic matter as an ecosystem property. Nature 478, (49-56)

Scurlock J.M.O., Hall D.O. (1998): The global carbon sink: a grassland perspective. Global Change Biology 4, (229-233)

Standard Operating Procedure 2034:1994: Plant biomass determination. SERAS, (1-5)

SPSS Inc., (2007): SigmaPlot, Programming guide, Chicago, IL

Stolbovoy V., Montanarella L., Filippi N., Selvaradjou S., Gallego J. (2005): Soil Sampling Protocol to Certify the Changes of Organic Carbon Stock in Mineral Soils of European Union, Office for Official Publications of the European Communities, Luxembourg, EUR 21576 EN

Thomey M.L., Collins S.L., Vargas R., Johnson J.E., Brown R.F., Natvig D.O. (2011): Effect of precipitation variability on net primary production and soil respiration in a Chihuahuan Desert grassland. Global Change Biology 17, (1505–1515)

Thompson M. V., Randerson J. T., Malmstro¨m C. M., Field C. B. (1996): Change in net primary production and heterotrophic respiration: how much is necessary to sustain the terrestrial sink? Global Biogeochem. Cycles 10, (711–726)

Wang Z., Ji L., Hou X., Schellenberg M.P., Xiujun W. (2016): Soil Respiration in Semiarid Temperate Grasslands under Various Land Management. PLoS One 11(1): e0147987

WRB - World reference base for soil resources (2006): Food and Agriculture Organization of the United Nations Viale delle Terme di Caracalla 00100 Rome, Italy
SOIL CARBON POOLS IN TWO NATURAL GRASSLANDS OF SERBIAN HIGHLANDS

Dr Elmira Saljnikov, principal research fellow, Soil Science Institute, Belgrade
Dr Sara Lukić, assistant professor, University of Belgrade - Faculty of Forestry (sara.lukic@sfb.bg.ac.rs)
MSc Predrag Miljković, teaching assistant, University of Belgrade - Faculty of Forestry
Mr Nikola Koković, principal technical associate, Soil Science Institute, Belgrade
Dr Veljko Perović, research associate, Institute for Biological Research “Sinisa Stankovic”, University of Belgrade
Dr Dragan Čakmak, senior research associate, Institute for Biological Research “Sinisa Stankovic”, University of Belgrade
Dr Snežana Belanović Simić, full professor, University of Belgrade - Faculty of Forestry

Abstract: Grasslands are a major player in the global carbon cycle, although carbon stocks in grasslands are influenced by human activities and natural disturbances. The aim of this study is to determine differences in carbon stock on two test areas of grassland ecosystem in the highlands of Stara Planina and Zlatar Mountains (Serbia). The investigated sites are natural mountain grasslands of the same vegetation community (*Agrostietum capillaris* Pavl. 1955) and soil type (Umbric Leptosol (Dystric) and Haplic Cambisol (Dystric)), but with different grazing intensity. Aboveground and belowground biomasses were measured in each sample plot, and soil was sampled at fixed depths of 0-10, 10-20 and 20-40 cm. The estimation of C stock and the rate of soil C accumulation were determined by the Tier 2 method IPCC (2003). Carbon mineralization potentials were determined via sequential incubation procedure in the laboratory conditions. According to the obtained results, the greater amount of precipitation on Mt. Stara Planina resulted in a greater accumulation of aboveground biomass, which was subjected to a greater decomposition *in situ*, thus showing a lower amount of PMC *in vitro*. In addition, potentially mineralizable carbon (PMC) among the sample plots from both sites indicates that the mineralization of soil organic matter was more influenced by the factors related to the soil characteristics, climatic conditions and grazing.

Key words: grasslands, biomass carbon stock, soil carbon stock, carbon mineralization, potentially mineralizable carbon

INTRODUCTION

The largest carbon exchange takes place between the atmosphere and plants, therefore the terrestrial ecosystems play a key role in the global carbon cycle. The way of managing grassland ecosystems in order to accumulate carbon and increase the yield, reduction in sensitivity to nitrogen inputs, make the whole ecosystem more resistant to climate change (Lal, 2009; FAO, 2011).

Biomass in grassland systems, being predominantly herbaceous, is a small, transient carbon pool (compared to forest) and hence soils constitute the dominant carbon stock (Conant, 2010). Global estimates of the relative amounts of C in different vegetation types suggest that grasslands probably contribute >10% of the total biosphere storage (Eswaran *et al*., 1993; Nosberger *et al*., 2000). The aboveground biomass of grassland ecosystems can accumulate relatively small carbon stock in comparison to that in the soil. Soils store at least three times as much carbon (in SOM) as is found in either the atmosphere or in living plants (Fischin *et al*., 2007). Grasslands with their belowground carbon storage are a major player in the global carbon cycle, although carbon stocks, productivity and turnover time are subject to considerable uncertainty (Scurlock & Hall, 1998).

An unprotected C pool in SOM consists of both the light fraction and/or the particulate organic matter (POM) fraction, as well as microbial debris (Jones & Donnelly, 2004) that are highly labile organic matter pools and the variation in the light
fraction pool is the best indicator of management-induced changes in SOM as shown by many researchers (Jenkinson, 1988; Gregorich et al., 1996; Haynes, 2000, Saljnikov, 2004; Luo & Zhou, 2006; Saljnikov et al., 2015; Funakawa et al., 2010). Because almost all the labile C in grassland ecosystems is in the soil, and our entire understanding of processes occurring here is still relatively weak, the emphasis was made in identifying the total carbon stock and labile carbon sources via soil respiration and mineralization of organic matter.

Soil respiration is the second largest carbon (C) flux between terrestrial ecosystems and the atmosphere in the global C cycle (Jia & Zhou, 2009; Thomey et al., 2011), and plays an important role in regulating the soil carbon pool and ecosystem C-cycling (Cox et al., 2000; Saiz et al., 2006; Wang et al., 2016).

The paper presents the results of a pilot project intended to estimate and compare carbon stock on two test areas of grassland ecosystem in the highlands of Stara Planina and Zlatar Mountains in Serbia, determined by measuring the aboveground and belowground biomass and carbon stock, total and labile carbon of SOM. The main aim of the research was to find out the influence of land use on carbon storage and carbon allocation in grassland carbon pools, in the two natural mountain grassland sites, under similar climatic and pedological conditions and different grazing intensity, and the soil factors that are responsible for those differences.

MATERIALS AND METHODS

Study area

The study was conducted in highland grasslands of Mt. Zlatar and Mt. Stara planina. Mt. Zlatar is located in southwest Serbia and it belongs to the mountain range of the Dinarides (Fig. 1). The average height of Mt. Zlatar is 1200-1400 m asl. Transitional climate type of Mt. Zlatar results from the interaction, both of maritime and continental air masses. Mean annual air temperature is 7.1°C and total annual precipitation is 751.5 mm based on the observations of the 1990-2010 period (RHOS, 2010 – MMS Sjenica). The massif of Mt. Zlatar mainly consists of limestone, sandstone, shales and flint (Čirić et al., 1977) and Umbric Leptosol (Dystric) and Haplic Cambisol (Dystric) (WRB, 2006). The vegetation of Mt. Zlatar is conditioned by the climate and characterized by the presence of climatogenic vegetation communities such as frigoriphilic spruce and mesophilic beech and beech-fir forest types. Pastures are spread over an area of 24.31% and meadows on 15.45% of the area of Mt. Zlatar (Dragović et al., 2009). Grasslands of Mt. Zlatar are characterized by a high-mountain community of Agrostietum capillaris Pavl. 1955 which alternates with other types of grassland communities in the zone of beech, beech-fir and spruce forests.

Mt. Stara planina is located in southeast Serbia on the border between Serbia and Bulgaria as the extension of the Carpathian mountain range (Fig. 1). The area has a mountain climate with mean annual air temperature of 6.1°C and mean annual

![Figure 1. Spatial distribution of grasslands in Serbia with the marked study area (Mt. Zlatar and Mt. Stara planina)](image-url)
precipitation of 1090 mm (Ristić, 2012). Mt. Stara planina is overlaid with conglomerates, sandstones, argillaceous schist and limestone (Krstić et al., 1970). Unlike Mt. Zlatar, there is altitudinal zonation of forest vegetation in Mt. Stara planina. The most common forest type at altitudes 1200 to 1550 m asl. is Montane beech forest (*Fagetum moesiacae montanum* Jov. 1953). Grassland communities have been developed in accordance with the height gradient - from mountain meadows and pastures over the mountain and sub-alpine to Alpine mountain pastures (Mišić et al., 1978). The dominant grassland community is *Agrostietum capillaris* Pavl. 1955.

Data collection

In total eight sample plots were established in the highland pastures in the community of *Agrostietum capillaris* in Mt. Zlatar (Z1, Z2, Z3 and Z4) and Mt. Stara planina (SP1, SP2, SP3 and SP4) (Figure 1). The altitude of the sample plots varied from 1296 to 1479 m asl. (Table 1). The investigated soil types were Leptosol and Cambisol (WRB, 2006) formed on flint and schists. Average bulk densities of the investigated soils were 0.95 g cm⁻³ (Mt. Zlatar) and 0.80 g cm⁻³ (Mt. Stara planina). In investigated pastures of Mt. Zlatar moderate free grazing by goats has occasionally been present, while investigated pastures on Mt. Stara planina were undisturbed by grazing or other activities such as clipping and mowing.

Biomass and C stock

Aboveground biomass (net primary production ANPP) was determined in July 2015 according to LULUCF Guidelines (IPCC, 2003) applying the destructive “clip and weight” method (SOP2034: 1994). For each site four 0.5 m² quadrates were sampled. Aboveground biomass within the quadrates was harvested to the ground level (living aboveground biomass, standing litter and ground litter), then the living aboveground biomass was separated from the standing litter of the previous year and ground litter, pooled by plot and weighted. Harvested biomass was oven-dried at 70°C to constant weight.

Belowground biomass (net primary production BNPP) was measured in each sample plot using the soil core method (Ravindranath & Ostwald, 2008) by 2 soil cores of 10.3-cm diameter in 10-cm depth layers to 30 cm within each quadrat. Belowground biomass (roots, rhizomes etc.) contained within the excavated soil was separated with water through a 0.3-mm mesh sieve. The samples of belowground biomass were oven dried at 70°C to constant weight.

Aboveground and belowground biomass total C was measured with an elemental CNS analyzer, Vario model EL III (ELEMENTAR Analysensysteme GmbH, Hanau, Germany; Nelson & Sommers, 1996).

Soil properties

Four soil profiles were opened on each sample plot (a total of eight profiles), with soil sampling carried out under the Soil Sampling Protocol to Certify the Changes of Organic Carbon Stock in Mineral Soils (Stolbovoy et al., 2005), at fixed depths of 0-10 cm, 10-20 cm and 20-40 cm. The main physical and chemical soil properties were determined on air-dried samples using the following methods: the pipette method was used for

Site	Coordinates	Area ha	Altitude m a.s.l.	Exposure
Zlatar	43°14′20″ - 43°14′33″ N and 22°51′37″ -22°52′06″ E	5.16	1438-1470	E
Stara planina	43°24′17″ - 43°24′27″ N and 19°48′36″ - 19°48′4″ E	8.08	1275-1428	W-SW
particle size analysis (ISO 11277:1998); bulk density (BD) was measured by drying the cores at 105°C to a constant weight (ISO 11272:1993); particle density (ISO 11508:2002); soil pH was determined using a glass electrode in a 1:5 (volume fraction) suspension of soil in water (pH in H₂O) (ISO 10390:2007); the hydrolytic acidity (cmol kg⁻¹) (extraction by CH₃COONa, titration with 0.1M NaOH) and the sum of exchangeable basis (S)(cmol kg⁻¹) (extraction by 0.1M HCl, titration with 0.1M NaOH) was determined using Kappen’s method (Kappen, 1929), and the total capacity of cation adsorption (T)(cmol kg⁻¹) and degree of base saturation (V%) – were calculated (Hissink, 1925). Soil organic carbon (C) was measured by the Tjurin method (Nelson & Sommers, 1996) and total nitrogen (N) by the Kjeldahl method (ISO 11261:1995). After extraction, the available P and K were determined by the Al-method of Egner-Riehm (Egner & Riehm, 1958). To ensure reliable results all the analyses were performed in 2 replications.

RESULTS

The main soil chemical properties are given in Table 2. The studied soils from both sites showed moderate to very low pH values with low base saturation. Soil acidity in water solution was not statistically different between the studied sites. Generally, cation absorption capacity and content of humus in 0-10 and 10-20 cm soil layer was higher in Stara Planina than in Zlatar. The content of soil total C and N were significantly higher in Stara Planina than in Zlatar. The contents of plant available P and K were not statistically different in two locations, where the content of P was low, and K content is medium in both locations.

By mechanical composition, the soil from Mt. Zlatar showed a higher content of clay fraction than the soil from Mt. Stara Planina (Table 2). Mean particle density in the 0-10 cm soil layer was 64% in the Mt. Zlatar soils, and 66% in the Mt. Stara planina soils.

Soil respiration and the amount of potentially mineralizable carbon (PMC) in the two sites did not statistically differ. The rate of organic carbon mineralization was higher in the Mt. Zlatar soils compared to the Mt. Stara Planina soils. The highest amounts of PMC were recorded in site 3 on Mt. Stara Planina and site 4 on Mt. Zlatar, while the highest rates of mineralization were recorded in sites 1 and 3 on Mt. Zlatar and site 1 on Mt. Stara Planina (Table 3).

The total carbon stock in biomass was higher in the Mt. Zlatar sites than in the Mt. Stara Planina soils, but that was not statistically confirmed, while carbon stock in the soils from the two sites significantly differed, showing higher C reserves in the soils of Mt. Stara Planina (Table 4). This difference determined the overall significantly higher total carbon stock in the Mt. Stara Planina soils than in the Mt. Zlatar soils.
Table 2. The main chemical soil properties of the studied sites

Locality	Mt. Zlatar	Mt. Stara planina				
0-10 cm	10-20 cm	20-40 cm	0-10 cm	10-20 cm	20-40 cm	
Silt+Clay %	53.05±5.56	55.97±5.16	56.45±7.9	46.17±5.08	47.55±2.22	
BD (g cm⁻³)	0.88±0.2	0.95±0.1	1.02±0.1	0.72±0.2	0.82±0.1	0.88±0.2
D (g cm⁻³)	2.42±0.5	2.62±0.2	2.45±0.2	2.15±0.2	2.32±0.2	2.32±0.2
pH H₂O	5.28±0.2	5.24±0.2	5.32±0.3	5.20±0.2	5.18±0.2	5.21±0.2
pH CaCl₂	4.39±0.3	4.30±0.2	4.29±0.3	4.49±0.1	4.34±0.2	4.39±0.2
T (cmol kg⁻¹)	36.51±5.9	29.72±4.9	26.09±4.9	48.42±6.1*	41.42±7.4*	35.76±4.9*
V %	37.25±9.2	32.24±9.6	30.45±11.6	37.29±6.5	31.88±6.2	28.31±7.9
Humus %	10.80±3.2	6.02±2.1	3.24±1.5	15.55±4.1	10.94±2.9	6.86±1.6*
C %	6.27±1.9	3.49±1.2	1.88±0.9	9.02±2.4	6.34±1.7*	3.98±0.9*
N %	0.498±0.19	0.365±0.10	0.192±0.13	0.863±0.10*	0.555±0.13	0.468±0.17*
C/N	13.18±4.0	9.44±1.0	6.40±4.5	10.33±1.5	11.43±1.5	8.84±1.6
P₂O₅ (mg/100 g)	1.24±0.9	0.26±0.2	0.00±0.0	1.86±1.4	0.30±0.3	0.28±0.3
K₂O (mg/100 g)	18.25±14.5	13.72±14.1	7.10±4.0	26.02±11.5	15.06±7.3	9.48±6.6

Table 3. Above and below-ground biomass and soil carbon fractions in the 0-10 cm soil layer

Sample plots	Aboveground biomass Mg·ha⁻¹	Belowground biomass Mg·ha⁻¹	CO₂-C (0-20 cm), mg kg⁻¹ air dry soil	Total C, %	PMC (0-20 cm), mg kg⁻¹ air dry soil	Rate constant k
MT. ZLATAR						
1	4.11	23.10	518.45	7.71	12403.15	0.121
2	3.37	42.94	706.46	7.11	19279.04	0.081
3	3.09	12.35	575.33	3.54	15021.21	0.108
4	3.68	33.77	919.91	6.70	31655.30	0.067
Average	3.56±0.43	28.04±13.24	680.038	6.19	19589.67	0.094
MT. STARA PLANINA						
1	5.88	27.11	656.80	6.58	16795.22	0.094
2	4.46	17.04	888.94	7.62	28285.53	0.075
3	4.44	16.81	1009.00	10.13	36227.03	0.066
4	3.93	6.18	610.86	8.48	21460.04	0.081
Average	4.67±0.83*	16.79±8.55	791.368	8.20	25691.95	0.079
DISCUSSIONS

The differences in the content of labile carbon in the Mt. Stara Planina and Mt. Zlatar soils can be attributed to the differences in the amount of aboveground and belowground biomass, which resulted in the different composition of the light fraction OM. Grasslands contain a much higher belowground biomass than aboveground biomass, but as a rule the composition of the aboveground grass biomass is a much easier source for microbial attack after their deposition into the soil when it becomes a part of soil organic matter. Soils from Mt. Stara Planina showed generally higher respiration under the controlled conditions, which might indicate higher microbial activity in these soils. In addition, more intense respiration resulted in a greater amount of measured labile carbon in the Stara Planina soils. Decomposition of SOM is a biological process. Therefore, changes in belowground carbon or substrate availability may alter microbial community composition and activity that in turn alters the decomposition rate and the type of organic matter that are decomposed (Schmidt et al., 2011). This assumption is also confirmed by the soil C stock that was higher in the Stara Planina soils, and the total biomass C stock that was higher in the Mt. Zlatar soils (Table 4). This indicates that in the Mt. Zlatar soils, the soil organic matter mineralization processes was going on more intensively in situ, thus depleting the light fraction OM, which was reflected in the laboratory incubation measurement of labile C, where lower PMC and a higher mineralization rate constant were recorded.

Despite greater belowground biomass the content of total C was much lower in the Mt. Zlatar soils than in the Mt. Stara Planina soils. The accumulation and decomposition of soil organic matter primarily depend on moisture and temperature.

Table 4. Carbon stock in the two studied sites

Profiles	Carbon stock in biomass	Soil (0-40cm)	Total C stock
	Mg ha⁻¹		
Mt. ZLATAR			
1	6.56	96.94	103.50
2	14.89	166.71	181.59
3	5.77	76.33	82.101
4	10.43	157.24	167.66
Aver.	9.41±0.42	124.30±44.5	133.71±48.4
STARA PLANINA			
1	12.74	158.56	171.29
2	7.39	173.98	181.37
3	7.08	191.91	198.99
4	3.68	202.15	205.83
Aver.	7.74±3.74	181.65±19.3	189.37±15.85

Table 5. Correlation coefficients between the biological soil parameters

	AGB/CO₂	AGB/PMC	BGB/CO₂	BGB/PMC	TC/PMC	CO₂/PMC	CO₂/TC
Zlatar	0.017	-0.053	**0.859**	**0.649**	0.227	**0.947**	**0.437**
Stara Planina	-0.180	-0.540	0.135	-0.281	**0.898**	**0.903**	**0.651**

ABG -aboveground biomass; CO₂ – respiration; BGB – belowground biomass; TC-total carbon; PMC – potentially mineralizable carbon (labile carbon).
and available substrate for soil microorganisms, where the labile carbon accumulation gradient increases from wet to dry and from cold to hot climate. In contrast, the gradient of accumulation of soil organic matter increases from dry to wet climate and from hot to cold climate (Saljnikov et al., 2009). This is confirmed by the data from the two studied sites, of which Mt. Zlatar is characterized by higher temperatures and lower precipitation (7.1°C and 751.5 mm, respectively) compared to Mt. Stara Planina (6.1°C and 1090 mm). The higher amount of precipitation on Mt. Stara Planina resulted in a greater accumulation of aboveground biomass, which was subject to greater decomposition in situ, thus showing a lower amount of PMC in vitro. This is in accordance with the results of Guntiñas et al. (2013), who reported that the sensitivity of soil organic matter to temperature is higher at low soil moisture contents. Kong & Six (2010) and Rasse (2005) also reported that root-originated carbon resist in soil much longer than above-ground biomass and at the same time, root-derived substrate contains much of rhizosphere that actively decomposes the soil organic matter (Schmidt et al., 2011), which might also aid the greater mineralization of SOM of the soils from Mt. Zlatar, when temperature and moisture conditions were favorable under laboratory incubation.

In our research despite the same vegetation and soil type of each site, the distribution of labile carbon, measured as potentially mineralizable carbon (PMC) among the sampled plots from both sites indicate that mineralization of soil organic matter was more influenced by the factors related to soil characteristics and grazing impact.

The correlations between biological soil parameters confirm the hypothesis that different factors influenced the amount of PMC and soil respiration (Table 5). In the Mt. Zlatar soils, where the belowground biomass was significantly higher than in the Mt. Stara Planina soils, significant positive correlations were found between belowground biomass and soil respiration and between belowground biomass and PMC, while in the Mt. Stara Planina soils, there was a correlation recorded between soil total carbon and PMC. This implies that the sources of substrate for microbiological decomposition were different between the sites.

Significant changes in the large pool of total and labile soil carbon are difficult to be detected over the short period of this experiment. Small increases in soil carbon can, however, lead to large increases in soil respiration if the carbon is delivered to one or more highly labile fractions in the soil (Thompson et al., 1996). In addition to that, according to Hafner et al. (2012) the larger belowground C allocation of plant biomass, the larger the amount of recently assimilated C remaining in the soil, which is the result of a positive effect of moderate grazing on soil C stock and C sequestration, which is similar to the Zlatar site. According to Fan et al. (2013) fenced grasslands in order to exclude grazing, affected total carbon in aboveground biomass to be significantly higher than in grazed grasslands, and they also suggest this method as an alternative approach to sequester C to the soil in alpine meadow systems.

CONCLUSION

The soil C stock was higher in the Stara Planina soils, and the total biomass C stock was higher in the Zlatar soils, which could be the result of more intensive processes of organic matter mineralization in the Zlatar soils in situ, thus depleting the light fraction organic matter. In the Zlatar soils, despite greater belowground biomass the content of total C was much lower than in the Stara Planina soils. The main conclusion of the preliminary study implies that the amount of labile carbon stock was not statistically different, while the sources of labile carbon differ between the studied sites. The distribution of labile carbon, measured as potentially mineralizable carbon (PMC) from both sites indicate that the mineralization of soil organic matter was more influenced by the factors related to soil properties and grazing impact.

The obtained results suggest further detailed studies of organic carbon characteristics and dynamics, as well as the processes of transformation of organic carbon fractions for a better understanding of carbon transformations in natural mountain meadow associations.

Acknowledgement: The investigation was conducted through the project “Soil carbon stock in regions of highland grassland ecosystems of Ser-
bia” reference no. 404-02-216/10/2015-15 financially supported by the Ministry of Agriculture and Environmental Protection of the Republic of Serbia and the project “The Climate Change and Its Impact on the Environment - Monitoring, Adaptation and Mitigation” with reference number 043007 financially supported by Ministry of Education and Science of the Republic of Serbia.

REFERENCES

Castellano M.J., Mueller K.E., Olk D.C., Sawyer J.E., Six J. (2015): Integrating plant litter quality, soil organic matter stabilization, and the carbon saturation concept. Global Change Biology 21, (3200–3209)

Conant R.T. (2010): Challenges and opportunities for carbon sequestration in grassland systems A technical report on grassland management and climate change mitigation. FAO, Rome

Cox P.M., Betts R.A., Jones C.D., Spall S.A., Totterdell I.J. (2000): Acceleration of global warming due to carbon-cycle feedbacks in a coupled climate model. Nature. 408(6809), (184-7)

Čirić A., Obradović Z., Novković D., Popević A., Karićić LJ., Jović B., Serdar R. (1977): Geological booklet of Basic Geologic Map 1:100 000 for Prijepolje, Beograd

Dragović R., Filipović I., Nikolić J. (2009): Iskoristivost prirodnogeografskih uslova Zlatibora i Zlatače za razvoj ekoturizma i zdravstvenog turizma. Bulletin of the Serbian geographical society 89(1), (115-128)

Enger H., Riehm H.(1958): Die Ammoniumlaktatesigsäure-Methode zur Bestimmung der elektloslichen Phosphorsäure in Karbonathaltigen Böden (In German). Agrochimicae III (1), (49-65)

Eswaran H., van Den Berg E., Reich P. (1993): Organic Carbon in Soils of the World. Soil Sci. Soc. Am. J. 57, (192-194)

Fan T., Hou X., Shi H., Shi S. (2013): Effects of grazing and fencing on carbon and nitrogen reserves in plants and soils of alpine meadow in the three headwater resource regions. Russian J of Ecology 44(1), (80-88)

FAO (2011): The state of the world’s land and water resources for food and agriculture (SOLAW) - Managing systems at risk. Food and Agricultural Organization of the United Nations, Rome and Earthscan, London.

Fischin A., et al., 2007. Ecosystems, their properties, goods and services, In Climate Change: Impacts, Adaptation and Vulnerability (eds Parry M.L., Canziani O.F., Palutikof J.P. van der Linden P.J., Hanson C.E) 211-272, Cambridge University Press.

Funakawa S., Shinjo H., Kadono A., Kosaki T. (2010): Factors controlling in situ decomposition rate of soil organic matter under various bioclimatic conditions of Eurasia. Pedologist 53, (50-66)

Gregorich E.G., Jansen H.H. (1996): Storage of soil carbon in the light fraction and macro organic matter. In: Carter, M.R. and Stewart B.A. (Eds.) Advances in Soil Science. Structure and Organic Matter Storage in Agricultural Soils. CRC Lewis Publisher, Boca Raton, (167-190)

Gunčišová M.E., Gil-Sotres F. Leirós M.C., Trasar-Cepeda C. (2013): Sensitivity of soil respiration to moisture and temperature, Journal of Soil Science and Plant Nutrition, 13 (2), (445-461)

Hafner S., Unteregelsbacher S., Seeber E., Lena B., Xu X., Li X., Guggenberger G., Miehe G., Kuzyakov Y. (2013): Effect of grazing on carbon stocks and assimilate partitioning in a Tibetan montane pasture revealed by 13CO$_2$ pulse labeling. Global Biology Change 18, (528-538)

Haynes R.J. (2000): Labile organic matter as an indicator of organic matter quality in arable and pastoral soils in New Zealand. Soil Biol. Biochem. 32,(211-219)

Hissink D.J. (1925): Base exchange in soils. Transactions of the Faraday Society 20,(551-556)

Hungate B.A., Holland E.A., Jackson R.B., Chapin F.S., Mooney H.A., Field C.B. (1997): The fate of carbon in grasslands under carbon dioxide enrichment. Nature 388, (576-579)

IPCC (2003): Good practice guidance for land use, land-use change and forestry (Penman J, Gytarsky M, Hiraishi T, Krug T, Kruger D, Pipattti R, Buendia L, Miwa K, Ngara T, Tanabe K, Wagner F eds). IPCC, Institute for Global Environmental Strategies (IGES), Kanagawa, Japan, pp.593

ISO-11261:1995. Soil quality - Determination of total nitrogen, modified Kjeldahl method. International organization for standardization, Geneva, Switzerland, pp. 4.
ISO-11277:1998. Soil quality - Determination of particle size distribution in mineral soil material. Method by sieving and sedimentation. International organization for standardization, Geneva, Switzerland, pp. 34

ISO-11272:1993. Soil quality - Determination of dry bulk density. International organization for standardization, Geneva, Switzerland, pp. 10.

Janzen H.H., (1987): Soil organic matter characteristics after long-term cropping to various spring wheat rotations. Can. J. Soil Sci. 67,(845-856)

Jenkinson D.S., (1988): Soil organic matter and its dynamics. In Russel’s Soil Condition and Plant Growth (A. Wild, Ed.), 11th Edn. Longman, New York, (564-607)

Jia B.R., Zhou G.S.(2009):Integrated diurnal soil respiration model during growing season of a typical temperate steppe: Effects of temperature, soil water content and biomass production. Soil Biology & Biochemistry 41, (681–686)

Jones M.B., Donnelly A. (2004): Carbon sequestration in temperate grassland ecosystems and the influence of management, climate and elevated CO₂. New Phytologist. 164(3),(423–439)

Kappen H.(1929): Die Bodenaziditat. Springer Verlag, Berlin, Germany [in German]

Kong A.Y.Y., SixJ.(2010): Tracing root vs. residue carbon into soils from conventional and alternative cropping systems. Soil Sci. Soc. Amer. J.74,(1201-1210)

Krstić B., Kalenić M., Divljan M., Maslarević LJ., Djordjević M., Dolić D., Antonijević I. (1970): Geological booklet of Basic Geologic Map 1:100 000

Lal R.(2009): Challenges and opportunities in soil organic matter research. European Journal of Soil Science 60, (159-168)

Luo Y., Zhou X. (2006): Soil Respiration and the Environment. Elsevier publishing

Mišić V. (ed) (1978): Biljne zajednice i staništa Stare planine [Vegetation communities and habitats of Stara planina Mt.] Serbian Academy of Sciences and Arts Belgrade special edition [in Serbian]

Nelson D.W., Sommers L.E. (1996): Total carbon, organic carbon, and organic matter. In Page A.L., Miller R.H., Keeney D.R. (Eds.) Methods of Soil Analysis, Part 3: Chemical and microbiological properties. SSSA, Madison, WI

Nosberger J., Blum H., Fuhrer J. (2000): Crop ecosystem response to climatic changes: Productive grasslands. In Reddy K.R., Hodges H.F. (eds). Climate Change and Global Crop productivity, Wallingford, UK, New York, NY CABi Publisher (271-291)

Rasse D.P., Rumpel C., Dignac M.F. (2005): Is soil carbon mostly root carbon? Mechanisms for a specific stabilization. Plant and Soil 269, (341–356)

Ravindranath N.H., Ostwald M.(2008): Carbon Inventory Methods – Handbook for Greenhouse Gas Inventory, Carbon Mitigation and Roundwood Production Projects. Advances in Global Change Research 29, (149-156)

RHOS (2011): Meteorološki godišnjak [Meteorological annual reports]. Republic Hydrometeorological Office of Serbia, Belgrade, Serbia. [in Serbian]

Ristić R., Kašanin-Grubin M., Radić B., Nikić Z., Vasiljević N.(2012): Land degradation in ski resort “Stara planina”. Environmental Management 49(3), (580-592)

Saiz G., Byrne K.A., Butterbach-Bahl K., Kiese R., Blujdea V., Farrell E.P.(2006): Stand age-related effects on soil respiration in a first rotation Sitka spruce chronosequence in central Ireland. Global Change Biology 12, (1007–1020)

Saljnikov-Karbozova E., Funakawa Sh., Akhmetov K., Kosaki T. (2004): Soil organic matter status of Chernozem soil in North Kazakhstan: effects of summer fallow. Soil Biology and Biochemistry 36, (1373-1381)

Saljnikov E., Čakmak D., Muhanbet A., Kresović M. (2014): Biological indices of soil organic matter in long term fertilization experiment. Zemljište i biljka 63 (2), (11-20)

Saljnikov E., Čakmak D., Kostić Lj., Maksimović S. (2009): Labile fractions of soil organic carbon in Mollisol from different climatic regions. Agrochimica, LIII(6),(376-385)

Saljnikov E., Rahimgalieva S., Raymbeak A., Tosic S, Mrvic V., Sikiric B., Pachikin K. (2015): Effect of fallowing on soil organic matter characteristics on wheat monoculture in arid steppes of northern Kazakhstan. Zemljiste i Biljka 64(2), (17-26)

Schmidt M.W.I., Torn M.S., Abiven S., Dittmar T., Gugenberger G., Janssens I., Kleber M., Kogel-Knabber I., Lehmann J., Manning D., Nan-
nipieri P., Rasse D., Weiner S., Trumbore S. (2011): Persistence of soil organic matter as an ecosystem property. Nature 478, (49-56)

Scurlock J.M.O., Hall D.O. (1998): The global carbon sink: a grassland perspective. Global Change Biology 4, (229-233)

Standard Operating Procedure 2034:1994: Plant biomass determination. SERAS, (1-5)

SPSS Inc., (2007): SigmaPlot, Programming guide, Chicago, IL

Stolbovoy V., Montanarella L., Filippi N., Selvaradjou S., Gallego J. (2005): Soil Sampling Protocol to Certify the Changes of Organic Carbon Stock in Mineral Soils of European Union, Office for Official Publications of the European Communities, Luxembourg, EUR 21576 EN

Thomey M.L., Collins S.L., Vargas R., Johnson J.E., Brown R.F., Natvig D.O. (2011): Effect of precipitation variability on net primary production and soil respiration in a Chihuahuan Desert grassland. Global Change Biology 17, (1505–1515)

Thompson M. V., Randerson J. T., Malmstro¨m C. M., Field C. B. (1996): Change in net primary production and heterotrophic respiration: how much is necessary to sustain the terrestrial sink? Global Biogeochem. Cycles 10, (711–726)

Wang Z., Ji L., Hou X., Schellenberg M.P., Xiujun W. (2016): Soil Respiration in Semiarid Temperate Grasslands under Various Land Management. PLoS One 11(1): e0147987

WRB - World reference base for soil resources (2006): Food and Agriculture Organization of the United Nations Viale delle Terme di Caracalla 00100 Rome, Italy