Pair Correlations in Scale-Free Networks

Huang Zhuang-Xiong, Wang Xin-Ran and Zhu Han

Department of Physics, Nanjing University, Nanjing 210093, China

(October 6, 2018)

Correlation between nodes is found to be a common and important property in many complex networks. Here we investigate degree correlations of the Barabasi-Albert (BA) Scale-Free model with both analytical results and simulations, and find two neighboring regions, a disassortative one for low degrees and a neutral one for high degrees. The average degree of the neighbors of a randomly picked node is expected to diverge in the limit of infinite network size. As an generalization of the concept of correlation, we also study the correlations of other scalar properties, including age and clustering coefficient. Finally we propose a correlation measurement in bipartite networks.

Keywords: networks, stochastic processes, complex systems, statistical mechanics

PACC: 0250, 0520

Complex networks, described by a set of nodes and links between them, play an important role in the understanding of many natural systems. They take various forms in different fields, including Internet [1,2], social networks [3], ecological networks [4], etc. (See Ref. [5,6] for review.) Yet due to technical difficulties of information acquisition and analysis, the prosperity of research in this area did not come until only several years ago, mainly after the finding that complex networks in reality usually do not conform to the long assumed theory of random network proposed by Erdos and Renyi [7].

Among the models aimed at explaining the observed nontrivial structures, the Barabasi and Albert (BA) Scale-Free model [8] is well known for describing systems where geographical distance is not so important. It introduces two mechanisms that are believed to be common in reality: network growth (adding one node at each time step and connecting it to m existing nodes) and preferential attachment (well-connected nodes tend to receive more new links, with the probability proportional to the number of the links they already have). It has explained the power-law degree distribution widely observed in reality (degree of a node is defined as the number of its nearest neighbors). Based on it some new mechanisms have been further introduced to describe other observations such as aging effect [9], high clustering, and hierarchical structure [10], etc.

An important property of networks, and the topic of the present article, is the pair correlation (or mixing pattern) [1,2,11–14]. "Whether gregarious people are more likely to contact with gregarious people?" or "Whether an old web site is more likely to connect to old ones?" These questions often have fundamental importance in reality. The topology and many properties such as resilience and percolation of a network are all susceptible to the answers. Very recently, a particular kind of it, the pair degree correlation, has received much attention. Newman has put forward a direct measurement [12,13], making it a quantified property, and has applied this measurement to various real networks. The data available reveal an interesting feature: in social networks, high degree nodes often tend to be connected to other high degree nodes (assortative mixing), while in technological and biological networks high degree nodes often tend to connect to low degree nodes (disassortative mixing). At the same time there are some systems reported to show no significant biases (neutral mixing). This assortative (disassortative, or neutral) pattern has a profound effect on the structure of evolving networks. For example, it may tend to break a network into separate communities and affect its error-and-attack tolerance, etc.

As a leading model in this field of complex networks, the BA model [8] has been developed and studied extensively in the past few years (see Ref. [5,15,16] and references therein). Yet as to correlation, theoretical investigation of the BA model is still inadequate, which we believe is fundamental to understand the correlation properties of real networks, since many of them are shown to be scale free. In this sense, the present work on the pair-correlation properties of the BA model may provide a basis for theoretical explanations of the observations in reality. Especially, this model is likely to be a good starting point for finding the origin of the emergence of mixing patterns.

In this article, we focus on the correlation properties within the framework of the BA networks. We provide analytical calculation of the average degree of a node’s nearest neighbors, indicating that the BA networks are neutral in the limit of large connectivity, otherwise they are disassortative. The comparison of analytical result and simulation shows that the absolute value of the average connectivity of neighboring nodes also depends on the size of the network and diverges as this size tends to infinity. We then extend the investigation to the correlation of age and clustering
coefficient, i.e. the ratio of edges among the nearest neighbors of a selected node and the maximal number of edges among them. The measurements of these two properties have not been carried out as far as our knowledge goes. In the final part, we propose a way to measure mixing patterns in bipartite networks.

In the following we call a node with k degrees a $D - k$ node, a node with age a an $A - a$ node, a node born at time t a $T - t$ node, and a node with clustering coefficient c a $C - c$ node.

Degree Correlation: The best way to completely describe degree correlation is to obtain the matrix, $P(k, k_{nn})$, i.e. the probability that a nearest neighbor of a $D - k$ node is $D - k_{nn}$. However due to technical problems this measurement is often unfeasible in practice [1, 2]. Instead Pastor-Satorras et al. have suggested measurement of $(k_{nn})_k$ [2], i.e., the average degree of a nearest neighbor of the $D - k$ nodes. Here our work about the BA model is along this line.

In Ref. [15], Krapivsky and Render has obtained in the BA model a useful characterization of correlation, $N_{kl}(t)$, the number of $D - k$ nodes that attach to a $D - l$ ancestor. Asymptotically, $N_{kl}(t) \rightarrow t n_{kl}$, where

$$n_{kl} = \frac{4(l-1)}{k(k+1)(k+l)(k+l+1)(k+l+2)} + \frac{12(l-1)}{k(k+l-1)(k+l)(k+l+1)(k+l+2)}.$$

(1)

With this result Krapivsky and Render concluded that the BA networks have an assortative mixing pattern [15], i.e., nodes with similar degrees are more likely to be connected. Their calculation has considered the direction of links between nodes, which makes the measurement a rather complex task in practice. Here, as in almost all measurements carried out so far, we consider undirected links. Similarly we study $N_{kl}' = N_{kl} + N_{lk}$, the number of connected pairs of nodes with k degrees and l degrees respectively. Asymptotically

$$N_{kl}/t \rightarrow n_{kl}' = n_{kl} + n_{lk}.$$

The probability that a nearest neighbor of a $D - k$ node is $D - k_{nn}$ is

$$(N_{k,k_{nn}} + N_{k_{nn},k}) / \sum_{k_{nn}} (N_{k,k_{nn}} + N_{k_{nn},k})$$

(2)

and the average degree of a nearest neighbor of a $D - k$ node is

$$\langle k_{nn} \rangle_k = \frac{\sum_{k_{nn}} k_{nn} (N_{k,k_{nn}} + N_{k_{nn},k})}{\sum_{k_{nn}} (N_{k,k_{nn}} + N_{k_{nn},k})} \rightarrow \frac{\sum_{k_{nn}} k_{nn} (n_{k,k_{nn}} + n_{k_{nn},k})}{\sum_{k_{nn}} (n_{k,k_{nn}} + n_{k_{nn},k})}.$$

(3)

This is a useful result characterizing the degree correlation of the BA networks. We show it approximately in Fig. 1(a) by taking the summation of l to 1.5×10^5 and 2×10^6 (with normalization satisfied) respectively, in comparison with simulation results at $N = 100, 1000$ and 10000. (The simulation results reported here are all obtained by taking average of up to 5000 independent runs). It reveals that nodes with large k show no obvious biases in their associations, as has been reported in previous studies. However, when k is relatively small, $(k_{nn})_k$ falls significantly as k increases, and this is a sign of disassortative mixing. (This region has not been noticed previously and, actually, nodes falling in this region often take up a significant part in real networks that have been measured so far.) In Fig. 1(b) we show two characteristic distributions of the probability that a nearest neighbor of a $D - k$ node is $D - k_{nn}$. Both simulation and theoretical results show that this probability declines as approximately k_{nn}^{-2} for large k_{nn}, which is a sign of neutral mixing since the probability of finding a $D - k_{nn}$ node in the network is approximately k_{nn}^{-3} [8]. It also leads to the conclusion that (k_{nn}) will diverge for infinite network size N as $\ln N$ (since the largest possible value of $k \sim N^{1/2}$, see Eq. (5) below), and this trend is observed in Fig. 1(a). The deviation from this power law is evident when k_{nn} is small. On the other hand, as can be noticed, the simulation and theoretical result agree better for larger k. Here the finite size effect mainly results from the fact that, when a network has a finite size, the nodes with degrees out of a certain range will be absent. Finally, Fig. 1(c) shows the simulation result of the probability matrix, $P(k, k_{nn})$. While for each value of k the probability has similar distribution for large k_{nn} (k_{nn}^{-2}), the difference is obvious for relatively small values of k_{nn}.

Age Correlation: As an extension of the degree correlation, we define age correlation in a similar way, i.e. consider the probability that an $A - a$ node is linked with an $A - a_{nn}$ node. (Here age a of a node is defined as $t_F - t$, where t_F is the age of the network and t denotes the time when the node is born.) If this conditional probability $P(a, a_{nn})$ is independent of a, we are in a topology without any age correlation. We may also study the quantity $(a_{nn})_a$, i.e., the average age of a nearest neighbor of the $A - a$ nodes. For convenience, in the following we shall calculate $(t_{nn})_t$ instead of $(a_{nn})_a$.

In a BA network, at each time step, a newly born node is connected to m existing nodes, while the rate at which a node receives new links is proportional to its current degree. Using continuous approach [8], we have

2
\[\frac{dk_s(t)}{dt} = \frac{mk_s(t)}{2nt} = \frac{k_s(t)}{2t}, \]

where \(k_s(t) \) denotes the degree of a node born at time \(s \). Solving this equation we can get

\[k_s(t) = m \left(\frac{t}{t_s} \right)^{1/2}. \]

Consider two nodes born at time \(t_i \) and \(t_j \) respectively. Assume \(t_i < t_j \), and the probability that they are connected

\[p(t_i, t_j) = \frac{mk_{t_i}(t_j)}{2mt_j} = \frac{m}{2\sqrt{t_it_j}}. \]

where \(k_{t_i}(t_j) \) is the degree of the \(T - t_i \) node at time \(t_j \). This result is also valid if \(t_i > t_j \). Then

\[\langle t_{nn} \rangle_{t_i} = \frac{\sum_{t_j=1}^{t_F} t_j p(t_i, t_j)}{\sum_{t_j=1}^{t_F} p(t_i, t_j)} \]

Replace the summation with integration, and we have

\[\langle t_{nn} \rangle_{t_i} \approx \frac{\int_{t_i}^{t_F} \frac{\sqrt{t_j/t_i}}{t_j} dt_j}{\int_{t_i}^{t_F} \left(1/\sqrt{t_it_j}\right) dt_j} = \frac{1}{3} t_i^{3/2} - 1 \]

which is independent of \(t_i \). To support the above analysis, we show simulation results in Fig 2. \(\langle t_{nn} \rangle \) as a function of \(t \) is shown in Fig. 2(a), and is found to be fluctuating around \(t_F/3 \), as predicted by Eq. (8). In Fig. 2(a), the nearest-neighbor age distributions of three characteristic nodes all show an power law, \(t_{nn}^{-\gamma} \), with the exponent \(\gamma \approx 0.5 \), in accordance with Eq. (6). Fig. 2(c) shows the matrix \(P(t, t_{nn}) \), i.e. the probability that a nearest neighbor of a \(T - t \) node is \(T - t_{nn} \). We can see clearly from this graph that the distribution is largely independent of \(t \), which indicates a neutral pattern in this age correlation.

Clustering Correlation: As another extension of this concept, we also investigate pair correlation of the clustering coefficient, using the same method as that in the preceding parts. Different from a node’s degree, clustering coefficient is a continuous parameter between 0 and 1. In order to define the correlation, discretization is necessary. Here we evenly divide the region \([0, 1]\) into 250 subregions and each subregion is represented by the median value. In this way, the correlation of clustering can be defined in the way similar as before, i.e., consider the probability that a node with its clustering coefficient in the \(c \)-subregion (for convenience we call it a \(C - c \) node) is linked with an \(C - c_{nn} \) node. If this conditional probability \(P(c, c_{nn}) \) is independent of \(c \), we are in a topology without any correlation.

In our simulation, the clustering coefficients are mainly limited in a relatively small region \([0, 0.14]\) (we can see from Fig. 3(b)), and we have poor statistics concerning the nodes out of this region. Our simulation result (Fig. 3(a)) shows that the average clustering coefficient of the nearest neighbors of a \(C - c \) node, \(\langle c_{nn} \rangle_c \), generally shows a trend to ascend as \(c \) increases. This is a sign of assortative mixing in the sense of clustering, which may be because that clustering is a collective behavior. If a node with large \(c \) belongs to a cluster, it is likely that its neighbors also belong to that cluster and hence also have large \(c \). At the same time, we find that, interestingly, there is a notable peak in the curve of \(\langle c_{nn} \rangle_c \). We may call it a central mixing pattern, in order to develope the ideas of Newman \[12,13\]. The value of this peak agrees with that of the clustering coefficient distribution of the network. This coincidence suggests that the observed peak may result from the fact that, in the network, the nodes that have their clustering coefficients around this value take up a significant part of the system. Fig. 3(b) shows the \(P(c, c_{nn}) \) distributions with three typical values of \(c \). Three curves all show a peak at approximately the above-mentioned position—a coincidence again. Fig. 3(c) shows the non-trivial part of the matrix \(P(c, c_{nn}) \).

Before conclusion we briefly discuss the correlation measurement in bipartite networks \[6,17\], which are formed by two (or more) classes \(A \) and \(B \) of nodes with links running between only different kinds. They may describe various systems, e.g. books and readers in a library, or directors and boards in the business world \[6\]. Here a new kind of correlation may be of major interest, the correlation between the properties of an \(A \) node and the same properties of the \(B \) nodes it is linked with. And this may answer such questions as whether a much-reading reader borrows books that are also liked by other people.

To conclude, as is now widely accepted, correlation is an important index of and significantly influences network structure and function, in that it reveals the relationship between a node and its neighborhood. This article concerns theoretically with the correlation of the BA model. Most of the previous studies focus on the degree correlation, and here we generalize the concept to various properties. We analytically treat the degree correlation (disassortative plus
neutral) and the age correlation (neutral) of the BA network, and provide simulation results about the clustering
coefficient correlation (assortative plus central). The mixing patterns of these scalar properties and their origins are
presented and explained. Considering the wide applicability and theoretical importance of the BA model, the results
reported here may serve as a useful reference for further studies, especially for the investigation in the variants of the
BA model that incorporate, for example, nonlinear preferential attachment [18], aging effect [9], etc.

Presently the observed assortative (disassortative) patterns in reality have stimulated efforts to study their influence
on network structure and function, mainly with models that are created by adding correlation effect to random
networks [11–13]. However, it is well known that real networks have robust organization principles (for example, the
preferential attachment, as characterized by the BA model). What is the relationship between correlation and these
principles? What is the origin of the correlation pattern in the process of network growth? These questions are far
from being completely answered. Recent efforts [19] have partly shown how they can be related to some features
added to the BA model, such as fitness and some growing restraints.

We appreciate helpful discussions with A.-L. Barabasi and K. Klemm. This work was partially supported by the
National Science Fund for Distinguished Young Scholars of China under Grant No. 60225014.

[1] Vazquez A, Pastor-Satorras R and Vespignani A 2002 Phys. Rev. E 65 066130
[2] Pastor-Satorras R, Vazquez A and Vespignani A 2001 Phys. Rev. Lett. 87 258701
[3] Jin E M, Girvan M, and Newman M E J 2001 Phys. Rev. E 64 046132
[4] Lassig M, Bastolla U, Manrubia S C, and Valleriani A 2001 Phys. Rev. Lett. 86 4418-4421
[5] Albert R and Barabasi A L 2002 Rev. Mod. Phys. 74 47-97
[6] Strogatz S H 2001 Nature 410 268 - 276
[7] Erdos P and Renyi A 1960 Publ. Math. Inst. Hung. Acad.Sci. 5 17
[8] Barabasi A L and Albert R 1999 Science 286 509
[9] Amaral et al. 2000 Proc. Nat. Acad. Sci. USA 97 11149
[10] Ravasz E and Barabasi A -L 2003 Phys. Rev. E 67 026112
[11] Berg J and Lassig M 2002 Phys. Rev. Lett. 89(22) 228701
[12] Newman M E J 2002 Phys. Rev. Lett. 89 208701
[13] Newman M E J 2003 Phys. Rev. E 67 026126
[14] Goh K -I, Oh E, Kahng B, and Kim D 2003 Phys. Rev. E 67 017101
[15] Krapivsky P L and Render S 2001 Phys. Rev. E 63 066123
[16] Dorogovtsev S N, Mendes J F F and Samukhin A N 2000 Phys. Rev. Lett. 85 4633
[17] Holme P, Liljeros F, Edling C R, and Kim B J 2003 cond-mat/0302296
[18] Krapivsky P L, Redner S and Leyvraz F 2000 Phys. Rev. Lett. 85 4629
[19] Park J, Newman M E J 2003 cond-mat/0303327

Caption of figures

Fig. 1. Simulation results of degree correlation of a network with $m = 3$. (a) Average degree $\langle k_{nn} \rangle$ of the neighboring
nodes of the $D - k$ nodes as a function of k. Squares, circles and upward triangles represent the simulation results,
with system size $N = 100$, 1000 and 10000 respectively. Downward triangles and diamonds represent the theoretical
result with l up to 1.5×10^5 and 2×10^6 respectively. (b) Degree distributions of the nearest neighbors of $D - 3$ nodes
(squares) and $D - 20$ nodes (circles) respectively. The dashed lines are the corresponding theoretical results. The
solid line with slope -2 serves as a guide to the eye. (c) The probability matrix $P(k, k_{nn})$.

Fig. 2. Simulation results of age correlation of a network with size $N = 10^4$, $t_F = 500$ and $m = 3$. (a) Average
introduction time of the nearest neighbors of a $T - t$ node as a function of t. (b) Introduction time distributions of
the neighbors of the $T - 1$ (squares), $T - 100$ (circles) and $T - 200$ (upward triangles) node. The solid line has the
slope -0.5. (c) The matrix $P(t, t_{nn})$.

Fig. 3. Simulation results of clustering coefficient correlation of a network with size $N = 2500$ and $m = 25$. (a)
Average clustering coefficient of the neighbors of $C - c$ nodes as a function of c. (b) Clustering coefficient distributions
of the nearest neighbors of the $C - 0.034$ (squares), $C - 0.054$ (circles) and $C - 0.074$ (upward triangles) nodes. The
distribution of clustering coefficient of the network (multiplied by 1.68 for convenience) is shown as stars. (c) The
matrix $P (e, e_{nn})$.
