Abstract—Optimal resource allocation elegantly kaizens band-
width utilization in present-day communications systems carrying
distinctive traffic types with specific quality of service (QoS)
requirements, whose fulfillment may elevate users’ quality of
Experience (QoE). This paper investigates the QoE of users
running real-life real-time and delay-tolerant applications by
implementing an Internet-connected real-world mobile network
which hosts a node with a centralized convex resource allocation
optimization algorithm to calculate and enforce an optimal
bandwidth distribution. The experiments show that leveraging
the rate assignment approach escalates the real-life network
traffic QoE through a fine-grained temporal resource allocation
pattern which plummet the total bandwidth consumption and
the cost of employing the services.

Index Terms—Real-World Implementation, Utility Functions,
Convex Optimization, Optimal Resource Allocation, QoE, QoS.

I. INTRODUCTION

The dramatic upsurge in network broadband services user
quantity leads to a perpetually increasing demand for radio
resources due of the subscriber number escalation and its
traffic growth. Furthermore, extending single-service offerings
(e.g. Internet access) to a multiple-service framework (e.g.
multimedia telephony and mobile TV) allows users to run
several applications on their mobile devices concurrently.

The emergence and widespread prevalence of such usage patterns
from distinct applications ranging in nature from delay-tolerant
to real-time ones with varied performance requirements arise
a need for a variety of bit rates and acceptable delays which
motivate incorporating a service differentiation to network
resource allocation methods. Moreover, it is rational to assign
application rates based on their temporal usage percentage. In
addition, leveraging service providers subscription-based QoS
differentiation [1], which provides users requesting identical
services with distinctive bandwidth assignment treatments for
corporate vs. private, post-paid vs. pre-paid, privileged vs.
roaming subscribers, and so forth [2], can fine-tune distributing
the spectrum. Hence, a resource allocation algorithm can better
accommodate diverse needs of present-day communication
systems by accounting for the aforementioned concerns.

While resource allocation studies have received a paramount
attention recently and numerous research works develop con-
voluted methods and investigate theories thereof, such pro-
posals are often concomitant with pragmatic difficulties and
have rarely been applied to real-world scenarios. Here we
leverage a novel utility proportional fairness convex resource
allocation maximization that we have newly developed in [3]
based on applications utility function modeling and apply it
to real-life applications running on physical user equipments
(UEs) in a real-world large-scale wireless network connected
to the Internet. Once we create the aforementioned real-
world network, we show that the devised modus operandi,
outfitted with the subscriber, application status, and service
differentiations, shapes the real-world traffic such that not only
do the applications consume less overall resources, but also its
temporal fine-grained rate assignment pattern provides real-
time applications with enough resources to efficiently meet
their QoS by elongating the delay-tolerant applications in time
without hurting their operation. In particular, we show that
under the resource scarcity streaming video applications will
not undergo any buffering in spite of consuming less resources,
thereby users QoE drastically elevates. In contrast, the absence
of the proposed resource allocation scheme entails multiple
buffering periods over which the users video watching experi-
ence is adversely affected even though applications will take
up more bandwidth. Besides, we illustrate that the resource
allocation method prioritizes certain applications in specific
intervals by allotting them more resources so as to step up the
QoE over the network without disrupting the QoS for delay-
tolerant applications. Noticeably, conserving the bandwidth
slashes the operational expenditure (OPEX) down as less to-
be-paid resources deliver the mission. Next, we survey the
topical resource allocation literature.

A. Related Work

Network rate allocation has been the focus of numerous
modern studies in the context of communication systems. In
[4], the authors presented a distributed rate allocation for
Internet services through concave and sigmoidal utilities to
represent applications, approximated global optimal rates, and
could drop users to maximize the system utility. As such, a
minimal QoS was not warranted. The authors in [2], [5], [6]
developed a utility proportional convex resource assignment
using application utilities which rendered priority to the real-
time applications. Neither did they consider temporal application usage nor any user differentiation was included in the models. In [17], the author approximated an aggregation of elastic and inelastic utilities to their nearest concave utility through a minimum mean squared error measure, and solved an allocation problem with an approximate utility objective function through a modified conventional rate allocation method in [8] so that the rates estimated optimal ones with no attention to user and application priorities. The authors of [9], [10] leveraged a non-convex utility maximization for concave/sigmoidal utilities and deployed a distributed algorithm to obtain rates for a zero duality gap. However, the algorithm did not converge for a positive duality gap. Similarly, [11] presented a max-min utility proportionally fair optimization, for the high signal-to-interference-plus-noise ratio networks, contrasted it against the traditional proportional fairness algorithms [12], and presented a closed form solution to eschew from network oscillations. Neither preceding methods cared for any traffic or user priorities in assigning the spectrum. In [13], the authors developed a centralized utility proportional fairness resource allocation algorithm developed theoretically in [14]. Analogously, the authors in [15] organized a utility proportional fairness optimization to obtain optimal sector rates in a cellular infrastructure spectrally coexistent with radars. But, they did not consider UEs with simultaneously running applications. Finally, in [3], the authors developed a centralized utility proportional fairness resource allocation approach for sigmoidal and logarithmic utilities by considering application usages and user priorities.

B. Contributions

Our contributions in this paper are summarized below.

- We implement a real-world large-scale network with real-time and delay-tolerant applications on mobile devices connected to Internet by the network’s Wifi wireless access point (WAP), and we apply the proportional fairness resource allocation algorithm developed theoretically in [3] to real-life applications in a real-world network.
- We present traffic shaping results for the real-world network, and show that the algorithm provides a fine-grained resource allocation which not only fulfills applications QoS but it also elevates users’ QoE. In parallel, we also apply the algorithm to utility functions approximating the real-life applications used in the physical network as well.
- We depict that, in spite of a higher QoE, the applications consume less resources when we apply the algorithm; thereby, the OPEX decreases.

The remainder of this paper proceeds as follows. Section III provides the background information to understand the resource allocation optimization proposed in section IV. Section V implements a real-world network properly equipped with the research allocation method and investigates network traffic shaping effects, section VI gives the upcoming direction for the current research, and section VII concludes the paper.

II. Background

Real-time and delay-tolerant applications can mathematically be modelled as respectively sigmoidal and logarithmic utility functions $U(r)$ like equation (1), which imply an application’s QoS percentile fulfillment vs. its allocated rate. Here, $c = \frac{1}{1+e^{acr}}$, $d = \frac{1}{1+e^{br}}$, r_{max} is a 100% utility-achieving rate, and k is the utility increase with enlarging the rate r. For the utility functions, we have [16]: 1) $U(0) = 0$ and $U(r)$ is an increasing function of r, which indicate utilities are non-negative (which is logical as they represent QoS satisfaction percentage) and the higher assigned rate, the more QoS fulfillment. 2) $U(r)$ is twice differentiable in r and upper-bounded, which imply continuity of the utilities.

\[
U(r) = \begin{cases}
\alpha \left(\frac{1}{1+e^{-ar-\theta}} - d \right) & \text{Sigmoidal} \\
\log(1+kr) & \text{Logarithmic}
\end{cases}
\]

Furthermore, for equation (1), it can be verified: 1) For the logarithmic utility, $U(r_{max}) = 1$ and $r = r_{inj} = 0$ is the inflection point. 2) For the sigmoidal utility, $U(xc) = 1$ and $r = r_{inj} = b$ is inflection point. Rates less/more than r_{inj} fulfills the QoS at 0%/almost 100%. Next, section III presents the theoretic rate allocation optimization and its solving algorithm.

III. System Model

The system model (Figure 1) subsumes UEs Wifi-connected to the Internet through a network with a resource broker (RB) unit, installed on a router which shapes the traffic based on RB-assigned application rates.

For M UEs running delay-tolerant (real-time) applications modeled by logarithmic (sigmoidal) utilities, we can write the application rate allocation optimization as equation (2) [3]. Here, for the i^{th} UE ($i \in \{1, ..., M\}$) with N_i applications, U_{ij} is the j^{th} application utility whose rate is r_{ij}, α_{ij} is the j^{th} application instantaneous usage percentage so that $\sum_{j=1}^{N_i} \alpha_{ij} = 1$ and $r_i = \sum_{j=1}^{N_i} r_{ij}$ is the total bandwidth.
consumption, $r = [r_1, r_2, ..., r_M]$ is the UE rate vector, and R is the maximum available resources.

$$\max_r \prod_{i=1}^{M} \left(\prod_{j=1}^{N_i} U_{ij}^{r_{ij}}(r_{ij}) \right)$$

subject to

$$\sum_{i=1}^{M} \sum_{j=1}^{N_i} r_{ij} \leq R,$$

$$r_{ij} \geq 0, \quad i = 1, 2, ..., M, \quad j = 1, 2, ..., N_i$$

In [3], we presented an in depth mathematical treatment of the formulation above, proved its convexity, and solved it through the dual Lagrangian [14] by the Algorithms 1 and 2 that we derived in [3]. The algorithms are coded into the RB unit in the system model presented in Figure 1 and theoretically assign application rates based on the utilities. Figure 2 brushes up on the execution of the Algorithms 1 and 2 where each UE transmits its utility parameters to the RB, which allocates application rates optimally. More theoretical details and proofs can be found in [3].

Algorithm 1 i^{th} UE Algorithm where $i \in \{1, \ldots, M\}$. [3]

loop
Send RB the utility parameters $\{a_{ij}, b_{ij}, \alpha_{ij}, k_{ij}, r_{ij}^{\max}\}$.
Receive rates $r_{ij}^{\text{opt}} = \{r_{ij1}^{\text{opt}}, r_{ij2}^{\text{opt}}, ..., r_{ijN_i}^{\text{opt}}\}$ from the RB.
Allocate rate r_{ij}^{opt} internally to j^{th} Application.
end loop

Algorithm 2 RB Algorithm. [3]

loop
Receive UE utility parameters $\{a_{ij}, b_{ij}, \alpha_{ij}, k_{ij}, r_{ij}^{\max}\}$.
Solve $r = \arg\max_r \sum_{i=1}^{M} \beta_i \sum_{j=1}^{N_i} \alpha_{ij} \log U_{ij}(r_{ij}) - p(\sum_{i=1}^{M} \sum_{j=1}^{N_i} r_{ij} - R), \quad \{r = \{r_1, r_2, ..., r_M\} \text{ and } r_i = \{r_{i1}, r_{i2}, ..., r_{iN_i}\}\}$
Send $r_i = \{r_{i1}, r_{i2}, ..., r_{iN_i}\}$ to the i^{th} UE.
end loop

Even though, we have evaluated the QoS performance of the resource allocation in equation (2) theoretically through utilities in [3], such measurements do not reflect the ultimate QoE perception for users. As such, we create a real-world network with actual mobile devices running real-time and delay-tolerant applications to catapult the application QoS-minedness of the proposed modus operandi to a user QoE-minded framework revealed within a physical network. For the sake of comparison, we perform parallel simulations with utilities estimating the real-life applications of the created physical network so that we can have both event-driven and real-world validations of the resource allocation.

IV. EXPERIMENTS

We first create a real-world network of smartphones with real-time and delay-tolerant applications to which the resource allocation Algorithms 1 and 2 are applied (section IV-A). Then, we apply the algorithms to utilities approximating the aforementioned real-world applications in section IV-B.

A. Real-world Network

We configure a network on a single computer in a distributed manner in order to decrease the computer processing load through the virtual machine (VM) architecture in Figure 3. A single-socket rack IBM x3250 M4 server with two physical and two PCI-enabled ports creates a dedicated file server VM and two three-interfaced VMs, between which one hosted the resource allocation code (referred to as “RB”) and the other formed a router including an enforcement engine which manages rate assignments using an onboard Linux router traffic control. The two VMs (not the file server one) are depicted as “Guest 1” and “Guest 2” in Figure 3 where the RB/router sits on the latter/former VM. Besides, we create three virtual switches for the phone network, another for office-Internet-connected external devices, and one for network maintenance/operation on issues. The test-bed phones and therefore their wireless access point (WAP) are on their own private network (192.168.2.1 Ethernet network), router gateway settings [17] enable connections to the office network and Internet, and smartphones running Youtube and Hyper Text Transfer Protocol (HTTP) download applications are deployed. The traffic generated by the real-time/delay-tolerant Youtube/HTTP applications is inelastic/elastic, and we apply the resource allocation procedure of section III to obtain application rates (throughput) and germane subjective QoE, reflected by buffering occurrences and download completion or lack of them, for the traffic.

A concerning object about the test platform in Figure 3 lies in the small number of phones working in a high throughput Wifi network, too ideal of a data transfer environment to be able to illustrate the benefits that may emerge from an RB-induced traffic shaping, i.e. from the resource allocation method in section III. To see the traffic shaping effects, we should impose a higher load on the network. This is simply done by restricting the overall network bandwidth to 1
Mega bits per second (Mbps). In order to make a comparison between the scenarios with and without the resource allocation algorithm, we first applied the rate assignment scheme to the network in Figure 3 under no constraints; then, we introduced an overall network constraint with no traffic shaping, and ultimately contrasted non-shaped throughput and QoE observation to a situation where the RB operates under a 1 Mbps network constraint. The applications throughput under neither network constraints nor algorithm application is shown in Table I where a low/high rate YouTube application "YouTube 1"/"YouTube 2" and a small/large file download application "HTTP 1"/"HTTP 2" (from content providers of the VM-created file server) run on three UEs in the network whose speed under the absence of applications is measured at 32 Mbps. For instance, the 1st scenario in Table I indicates that two phones run YouTube 1 and the average bandwidth consumption is $R_{avg} = 3.492$ Mbps, while the single-UE 3rd scenario incurs a much lower bandwidth $R_{avg} = 0.951$ Mbps due to the low rate YouTube 1 application alone. This is significantly increased to $R_{avg} = 2.11$ Mbps due to the single-UE high rate YouTube 2 application, and a similar rate rise is apparent in the transition from the 5th scenario to the 6th one where the high rate HTTP 2 replaces the low rate HTTP 1 at the 2nd phone. The last scenario is concomitant with a lower rate $R_{avg} = 13.747$ Mbps as opposed to the 6th scenario ($R_{avg} = 24.866$ Mbps) in spite of augmenting a YouTube 1 application to phone 3 in the latter case. This can be explained by the need to transfer more bits which happen over a longer time interval, thereby the throughput decreases relative to the 6th configuration.

To see the the resource allocation effect, we throttle the network bandwidth to $R = 1$ Mbps. We focus on using 2 phones in the Figure 3 network with Internet Protocol (IP) addresses and a YouTube 1 and HTTP 1 application in Table IV-A. Running the experiment with no resource allocation applied, we observe that Youtube 1 incurred multiple buffering periods indicating a poor QoE from its user’s perspective, the overall average bandwidth usage was 0.963 Mbps, and HTTP 1 download completed in 1200 seconds (s) (II). Using Wireshark [18], we obtain the traces in Figure 4 where both applications sharing the total 1 Mbps bandwidth annotated on the black curve alternate in bursty transmission intervals. In particular, at certain times, the HTTP 1 application (the red curve) utilizes the entire available bandwidth, shown by the red curve reaching the black curve, which simultaneously zeros the Youtube 1 throughput illustrated by the green curve lowering to the abscissa (time axis). This behavior adversely affects the UE 1 QoE.

![Fig. 3. Real-World Network Architecture: Two VMs "Guest 1" and "Guest 2" respectively host the router and resource allocation code in RB unit. Furthermore, an office-Internet virtual switch for external devices, three phone-network virtual switches, and a network management virtual switch are created on a two physical two PCI ported IBM server. The Phones and Wifi WAP have their private network.](image)

![Fig. 4. Wireshark Throughput Analysis without Algorithm: For Figure 3 network with Table IV-A parameters under an overall bandwidth $R = 1$ Mbps and no traffic shaping, black/green/red curve shows the network/Youtube 1/HTTP 1 throughput. HTTP 1 downloaded in 1200 s with Youtube 1 multiple buffering, adversely affecting its QoE by HTTP 1 (red curve) using the entire capacity (hits the black curve).](image)

Scenario	Phone 1	Phone 2	Phone 3	R_{avg} Mbps
1	Youtube 1	Youtube 2	-	3.492
2	Youtube 1	HTTP 1	-	4.050
3	Youtube 1	-	-	0.951
4	Youtube 2	-	-	2.11
5	HTTP 1	HTTP 1	-	4.262
6	HTTP 1	HTTP 2	-	24.866
7	HTTP 1	HTTP 1	Youtube 1	13.747

Network Speed with neither Application nor Rate Constraints: 32 Mbps

Phone	IP	Traffic Type	Application
UE 1	192.168.2.57	Inelastic	YouTube 1
UE 2	192.168.2.98	Elastic	HTTP 1

![Table I](image)
1 are respectively 731 and 267 kbps, the convergence time for
the algorithm is measure at 528 ms, and the overall throughput
becomes 0.758 Mbps, less than the maximum 1 Mbps avail-
able capacity due to periods over which no YouTube traffic
load is present on the network. Using Wireshark, the rates
of the YouTube 1 and HTTP applications when the resource
allocation is leveraged in the network under \(R = 1 \) Mbps
constraint are depicted in Figure 5.

Here, the black curve indicates the overall bandwidth con-
sumed and ordinate (throughput axis) shows that the net-
work bandwidth is confined to 1 Mbps. As we can see,
YouTube 1 (green curve) uses more resources per the rate
allocation enforcement interval than the HTTP 1 download,
which expectedly takes longer to be completed at 2650 s (II).
Interestingly, there are intervals where YouTube 1 rate grows
0, over which HTTP 1 obtains more bandwidth; this zero-
grounding behavior is analogously observed for the HTTP
1 download. In this experiment, we observe no YouTube
buffering occurrences, thereby it provisions a better video
watching experience for the user as opposed to the unshaped
traffic scenario depicted in Figure 4. This speaks directly to
watching experience for the user as opposed to the unshaped
traffic.

As we observed in this real-world implementation of the
resource allocation Algorithms 1 and 2, the user QoE is
improved despite the fact that less resources are consumed.
This directly applies to the carriers’ goal to reducing the OPEX
and customer churn. For example, the algorithm-induced
traffic shaping decreased the bandwidth usage from 0.963
Mbps to 0.758 Mbps, thereby 0.205 Mbps monetary saving
was obtained without degrading users’ QoE; this implied an
QoE remedy compared to the unshaped situation where the
resource allocation scheme was not employed. For the sake of
comparison and completeness, we consider the effects of the
resource allocation scheme’s traffic shaping on utility functions
approximating YouTube 1 and HTTP 1 applications in section
IV-B below.

B. Utility-Modeled Applications

We consider a 2-UE system hosting a delay-tolerant HTTP
1 and real-time YouTube 1 applications per device. In order to
approximate the utility function parameters for the aforemen-
tioned applications, we realized that under an \(R = 200, 5700 \)
kbps real-network network bandwidth constraints, YouTube
buffering occurred 90%, 10% of the implementation time, im-
plying a 10%, 90% utility satisfaction respectively. Therefore,
based on [16], the sigmoidal utility parameters \(b = 0.5 \times
(740+200) = 470 \) and \(a = (90–10)/(740–200) = 0.148 \) and
for the logarithmic one \(k = 17 \) respectively are conducive to
modeling YouTube 1 and HTTP 1 applications whose plots are
depicted in Figure 6 which shows that the real-time YouTube 1
requires a minimum inflection point bandwidth to meet its QoS
whilst the delay-tolerant HTTP 1 fulfills certain QoS level at
even very low rates. Furthermore, they are strictly increasing,
zero-rate zero-valued, and continuous functions in compliance
with the properties in section IV-

![Fig. 5. Wireshark Throughput Analysis with Algorithm: For Figure 3 with Table IV-A parameters under bandwidth \(R = 1 \) Mbps and shaping, black/green/red curve shows the network/YouTube 1/HTTP 1 throughput.](image)

![Fig. 6. Application Utility Function: Delay-tolerant HTTP 1 and real-time YouTube 1 applications modeled respectively with approximate logarithmic (\(k = 17 \)) and sigmoidal (\(a = 67.5, b = 470 \)) utilities, \((U_{ij}(r_{ij}))|i \in \{1,2\} \wedge j \in \{1\}, \) each run on one UE whose rate is \([r_{ij}]|i \in \{1,2\} \wedge j \in \{1\} \). YouTube 1 meets its QoS only after inflection point rate \(r = b = 470, \) but HTTP 1 gets some QoS for small rates.](image)

Table II: Bandwidth Consumption and Download Time.
Performance
HTTP 1 Download
Total Bandwidth

Analogously to the resource-confined traffic-shaped real-
world network in section IV-A we apply the resource allo-
cation optimization Algorithms 1 and 2 with a termination
threshold \(\delta = 10^{-4} \) to the Figure 6 utility functions when
total available bandwidth is set to \(R = 1 \) Mbps, and we obtain
application rates as in Figure 7. It is noteworthy that
UE usage percentages is set to unity, i.e. \(\alpha_{ij} \) in the equation
2 since each of the two UEs run only one application. Figure
7 showing the application rates \([r_{ij}]|i \in \{1,2\} \wedge j \in \{1\} \),
reveals that more bandwidth is allocated to real-time YouTube
1 (green curve) having more stringent QoS requirements solely
met upon reaching its utility’s inflection point. The black curve
exhibits the total bandwidth consumption of the network
and the red curve illustrates the HTTP 1 allocated rate.
at the gateway router, eliminated any Youtube buffering at the users QoE was adversely undermined.

users perceive when the procedure is implemented in practice. solution of the algorithm was proved in our previous work, devices in a physical network that we created.

real-time and delay-tolerant applications running on mobile instances of the real-time Youtube application, thereby the running the resource allocation routine and enforcing the rates, HTTP applications connecting through their W AP and a router, the network caused multiple buffering to the Internet. We realized that the absence of the resource allocation algorithm, the applications consumed less resources as opposed to the QoE-hurting algorithm-absent scenario. Consequently, the bandwidth conservation yields in a lower OPEX for the network as less to-be-paid resources are consumed.

V. FUTURE WORK

Despite throttling the network, YouTube 1 and HTTP 1 cannot alone represent large networks traffic. We can create dynamic application usages through repeatable tests by automated Android scripts [19].

VI. CONCLUSION

In this paper, we used a novel one-stage centralized algorithm of a utility proportional fairness convex optimization, theoretically providing resources for delay-tolerant and real-time applications modeled as respectively logarithmic and sigmoidal utility functions, to assign bandwidth to real-world real-time and delay-tolerant applications running on mobile devices in a physical network that we created.

While the convexity, minimum transmission overhead, and solution of the algorithm was proved in our previous work, it was not applied to a real network to evaluate the QoE users perceive when the procedure is implemented in practice. The large-scale network configuration included Youtube and HTTP applications connecting through their WAP and a router, running the resource allocation routine and enforcing the rates, to the Internet. We realized that the absence of the resource allocation algorithm in the network caused multiple buffering instances of the real-time Youtube application, thereby the users QoE was adversely undermined.

On the other hand, the presence of the algorithm, through which the rates were assigned to the applications and enforced at the gateway router, eliminated any Youtube buffering at the expense of lengthening the duration of delay-tolerant downloading applications. Therefore, applying the resource allocation method significantly escalated the users QoE without hurting QoS requirements of applications.

Finally, we realized that despite the dearth of Youtube buffering under the presence of the resource allocation algorithm, the applications consumed less resources as opposed to the QoE-hurting algorithm-absent scenario. Consequently, the bandwidth conservation yields in a lower OPEX for the network as less to-be-paid resources are consumed.

REFERENCES

[1] H. Ekstrom, “Qos control in the 3gpp evolved packet system,” IEEE Communications Magazine, 2009.
[2] A. Abdelhadi, C. Clancy, and J. Mitola, “A resource allocation algorithm for users with multiple applications in 4g-lte,” in Proceedings of the 1st ACM Workshop on Cognitive Radio Architectures for Broadband, 2013.
[3] A. Abdelhadi, M. Ghorbanzadeh, and C. Clancy, “Traffic analysis of centralized and distributed resource allocation in cellular networks,” in Under Submission.
[4] J. Lee, R. Mazumdar, and N. Shroff, “Non-convex optimization and rate control for multi-class services in the internet,” IEEE/ACM Transactions on Networking, 2005.
[5] A. Abdelhadi and C. Clancy, “A Utility Proportional Fairness Approach for Resource Allocation in 4G-LTE,” in IEEE International Conference on Computing, Networking, and Communications (ICNC), 2014.
[6] A. Abdelhadi and C. Clancy, “A Robust Optimal Rate Allocation Algorithm and Pricing Policy for Hybrid Traffic in 4G-LTE,” in IEEE International Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC), 2013.
[7] R. Kurrle, “Resource allocation for smart phones in 4g lte advanced carrier aggregation,” Master Thesis, Virginia Tech, 2012.
[8] F. Kelly, A. Maulloo, and D. Tan, “Rate control in communication networks: Shadow prices, proportional fairness and stability,” in Journal of the Operational Research Society, 1998.
[9] G. Tychogiorgos, A. Gkelias, and K. Leung, “A new distributed optimization framework for hybrid adhoc networks,” in GLOBECOM Workshops, 2011.
[10] G. Tychogiorgos, A. Gkelias, and K. Leung, “Towards a fair non-convex resource allocation in wireless networks,” in IEEE International Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC), 2011.
[11] G. Tychogiorgos, A. Gkelias, and K. Leung, “Utility proportional fairness in wireless networks,” IEEE International Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC), 2012.
[12] T. Nandagopal, T. Kim, X. Gao, and V. Bharghavan, “Achieving mac layer fairness in wireless packet networks,” in Proceedings of the 6th annual International Conference on Mobile Computing and Networking (Mobicom), 2000.
[13] M. Ghorbanzadeh, A. Abdelhadi, and C. Clancy, “A utility proportional fairness bandwidth allocation in radar-coexistent cellular networks,” in Under Submission.
[14] S. Boyd and L. Vandenberghe, Cisco IP Routing: Packet Forwarding and Intra-domain Routing Protocols. Course Reader, 2001.
[15] M. Ghorbanzadeh, A. Abdelhadi, and C. Clancy, “A utility proportional fairness approach for resource block allocation in cellular networks,” in Under Submission.
[16] J. Lee, R. Mazumdar, and N. Shroff, “Downlink power allocation for multi-class wireless systems,” IEEE/ACM Transactions in Networking, 2005.
[17] A. Zinin, Introduction to convex optimization with engineering applications. Addison-Wesley Professional, 2001.
[18] L. Chappell and G. Combs, “Wireshark network analysis: The official guide,” Course Reader, 2001.
[19] M. Ghorbanzadeh, Y. Chen, K. Mu, C. Clancy, and R. McGwier, “A neural network approach to category validation of android applications,” in IEEE Conference on Computing, Networking, and Communications (ICNC), 2013.