PTPN22 polymorphisms may indicate a role for this gene in atopic dermatitis in West Highland white terriers

Joana Barros Roque1, Caroline A O’Leary2*, Myat Kyaw-Tanner1, David L Duffy3, Puya Gharahkhani1, Linda Vogelnest4, Kenneth Mason5 and Michael Shipstone6

Abstract

Background: Canine atopic dermatitis is an allergic inflammatory skin disease common in West Highland white terriers. A genome-wide association study for atopic dermatitis in a population of West Highland white terriers identified a 1.3 Mb area of association on CFA17 containing canine protein tyrosine phosphatase non-receptor type 22 (lymphoid) *PTPN22*. This gene is a potential candidate gene for canine atopic dermatitis as it encodes a lymphoid-specific signalling mediator that regulates T-cell and possibly B-cell activity.

Findings: Sequencing of *PTPN22* in three atopic and three non-atopic West Highland white terriers identified 18 polymorphisms, including five genetic variants with a bioinformatically predicted functional effect. An intronic polymorphic repeat sequence variant was excluded as the cause of the genome-wide association study peak signal, by large-scale genotyping in 72 West Highland white terriers (gene-dropping simulation method, \(P = 0.01 \)).

Conclusions: This study identified 18 genetic variants in *PTPN22* that might be associated with atopic dermatitis in West Highland white terriers. This preliminary data may direct further study on the role of *PTPN22* in this disease. Large scale genotyping and complementary genomic and proteomic assays would be required to assess this possibility.

Findings

Canine atopic dermatitis (AD) is an allergic inflammatory skin disease that is common in West Highland white terriers (WHWTs) [1]. Following a genome-wide association (GWAS) in a group of related WHWTs, we found a 1.3 Mb area on CFA 17 which was significantly associated with the disease [2]. Based on its biological functions, expression patterns and proximity to this area of association, *PTPN22* was selected as a candidate gene for AD in this population. This gene encodes a lymphoid tyrosine phosphatase (PTPN22), a signalling mediator that regulates generic and specialised immune functions in mammals [3]. Activation of T and B lymphocytes is a key event in the pathogenesis of atopic disease [4], and the disruption of these pathways could cause hyper-reactive pathogenic T-cell responses, as well as affect B-cell selection, maturation and function [5,6]. In humans and dogs, genetic variants in the gene *PTPN22* have been associated with auto-immune diseases [7-9]. In humans, these include psoriasis, a chronic immune-mediated inflammatory skin disease that shares susceptibility loci with human AD [10,11]. To date, no association has been found between *PTPN22* variants and atopic disease in humans [12].

The University of Queensland Animal and Human Ethics Committees, and the University of Sydney Animal Ethics Committee approved this study. Written consent was obtained from all participating dog owners.

Criteria used to classify dogs in the present study are described elsewhere [1]. Fourteen set of primers were designed with primer3 [13], to sequence a total of 12.6 Kb of *PTPN22* in 14 PCR products (Table 1). Amplification reactions used the HotStar HiFidelity PCR Kit (QIAGEN Pty Ltd, Doncaster, Vic, Australia) and 0.5 \(\mu \text{M} \) (PCR products 5 and 12), 1.5 \(\mu \text{M} \) (6 and 14) or 1 \(\mu \text{M} \) (remaining PCR products) of primers; at 55°C (PCR
Table 1 Primer sequences used to amplify and sequence 12.6 Kb of canine PTPN22 in three atopic and three non-atopic WHWTs

PCR product	Forward amplification primer	Reverse amplification primer	Internal forward sequencing primer	Internal reverse sequencing primer	Predicted gene region	Product size
1	CCTCATCGGTGCTCTTGTT	GGTGTTGGGCTCGTCCTGCGT	TGAAGTGGAAGGATCTCAAGGCG	AGAAAGCACAAGGCAGGT	5'UTR, exon 1	1041
2	GCCTCTGCTCGAATGGAGGAG	TCTGCGCTTACCAAGGACACT	-	-	Exons 2,3	858
3	CAAATAGAGTGGGGGGTGA	CTACTGGGAAAAATGGGGAAT	AGAAAGGGAAGGGAAGGAGCA	TCTGTCCCTCTCCCTCCCTTCC	Exons 4,5	863
4	ACCACATGGTGACCTTGGGATAA	AGATGGAAGGACATCAATGTC	-	-	Exons 6,7	1182
5	CGTTGACCTGACCTCAAGCAAGC	ACCACGCCTTCCACACCAG	-	-	Exons 8	1172
6	TGCTCCTGGAGAGTGGGATG	CAAGGCAAGGCAAGCATAGGAA	AATCCACCCACACCAAAAAACCT	AGCCCGTATTCTCCACTCC	Exons 9,10	1267
7	CCGAAATGAGGTAGGCTAAACC	GCCCTGTACCTCCACCTTAT	-	-	Exons 11	483
8	TGGAAACTCCACCTCTTGTAA	TCTTGGAGGAAGGAAAGGAAAGAGA	CAGAGTGAGGAGCACCAAAAAACCA	CCAGCTCCCTGGTGTCTCCT	Exons 12,13	1296
9	GAAGCGAGCAAAACCTCTACA	ACCCCACATCCCTCTACGCA	GATCCACATTTGCTGTGCC	TGGGCCCATTCTTACAGGT	Exons 14,15	889
10	GGGTAAAGGGATGCGTTTCA	TGGGAAGCTATTAGGGGAAAC	-	-	Exons 16	332
11	TGGAGCTCCAGTTTATGGTTCA	CAGTCTGTTGTCCTCAATCGTCTCGT	AAGTGGGACCTAAATGGAAAAAG	CCTTTTCATTTAGGTGCCACT	Exons 17,18	747
12	GAGATGGAAGAAAAATAGAGCAAGG	TTCTGATACAAAGACCCATAGCA	-	-	Exon 19	410
13	TCTCCCTTACTGTGTTGCTTT	TGGCTTTTGCTGCTAGCAT	-	-	Exon 20	92
14	GCGTGAATCCAAAGGGTTGT	TCCACAAATCCACTCGCTAGGG	TCGCAAAATTCTGACCTGTG	TGGAGATGGAAGGAAATTT	Exon 21, 3'UTR	550
Table 2 PTPN22 sequence variants identified by sequencing genomic DNA from three atopic and three non-atopic WHWTs.

Sequence variant identity	Position on CFA17 (bp)a,b	Predicted location in gene	Nucleotide in reference databaseb	Sequence of variant	Reference SNP identity	Predicted functional effectc	Variant risk scorec	Atopic dogs	Non-atopic dogs	Cross-species conservation of variant nucleotide sequenceb.d
1	54759173 UTR C T	rs22597162	Transcription regulatory (score 86.5)	1-3 C/C C/T C/C C/C C/C	Conserved in 10/10					
2	54759006 UTR A del	New variant (dbSNP ss 315790492)	Transcription regulatory (score 87.7)	1-3 del/del del/A del/A T/A del/A A/A	Conserved in 9/10					
3	54742593 Intrinsic A G	rs22597162	NA	0-2 G/G G/A G/G G/G G/G G/G Not conserved						
4	54742027 Intrinsic A T	rs22559551	NA	0-2 T/T T/A T/A A/A T/A A/A Conserved in 6/10						
5	54739568 Intrinsic T C	rs22559538	NA	No risk T/T C/T C/T C/C C/C Not conserved						
6	54739315 Intrinsic A G	New variant (dbSNP ss 315790493)	NA	0-2 G/G G/G G/G A/A A/G A/A Not conserved						
7	54738923 Intrinsic G del	New variant (dbSNP ss 15790494)	NA	No risk del/del del/del del/del del/del del/del del/ del NA						
8	54738927 Intrinsic - A	New variant (dbSNP ss 315790495)	NA	No risk A/A A/A A/A A/A A/A NA						
9	54734456 Intrinsic T C	rs22559532	NA	0-2 C/C C/T C/T C/C C/C C/C Not conserved						
10	54734415 Intrinsic A G	rs22559522	NA	No risk A/A A/G A/G G/G G/G G/G Conserved in 10/10						
11	54717953 Exonic G A	New variant (dbSNP ss 315790496)	Synonymous Splicing regulatory (score 85.4)	1-4 G/G G/G G/G A/A A/A A/A Conserved in 7/10						
12	54715779 Intrinsic T C	rs22578128	NA	0-2 C/C C/T C/T T/T T/T T/T Conserved in 2/10						
13	54709793 Intrinsic (spice site) 17-T repeat (wild) 22-T repeat (variant)	New variant (dbSNP ss 315790497)	Alternative splicing regulatory (score 3.39)	3-4 variant/variant variant/wild variant/wild variant/wild variant/wild Conserved in 10/10						
14	54699432 UTR C T	New variant (dbSNP ss 315790498)	NA	0-2 C/C C/C C/C T/T T/T T/T Not conserved						
15	54698793 UTR G T	New variant (dbSNP ss 315790499)	NA	1-3 T/T T/T T/T T/T T/T NA						
16	54698788 UTR C T	New variant (dbSNP ss 315790500)	Transcription regulatory (score 85.4)	1-3 T/T T/T T/T C/C C/C C/C Conserved in 7/10						
Table 2 **PTPN22** sequence variants identified by sequencing genomic DNA from three atopic and three non-atopic WHWTs. (Continued)

	S4698729	UTR	T	C	New variant (dbSNP ss315790501)	NA	1-3	C/C	C/C	C/C	C/C	C/C	C/C	NA
17														
18														

Sequence variants with a predicted medium to high disease-associated functional effect, with strongly conserved sequence across 10 mammals (dog, human, pig, horse, mouse, rat, cattle, chimpanzee, gorilla and orangutan) and differential distribution between atopic and non-atopic dogs are underlined (Sequence variant identities 1, 2, 11, 13 and 16).

*reverse strand; *based on the 1.5× poodle genome (version 1) and the boxer 7.6× whole-genome sequences (CanFam2.0), accessed in March 2010 from http://www.ncbi.nlm.nih.gov and http://genome.ucsc.edu; *as predicted by FASTSNP [5]; disease-risk possibilities are 0 (no potential functional risk), 1 (very low risk), 2 (low risk), 3 (medium), 4 (high risk) and 5 (very high risk); FASTSNP provides a “risk score” for each SNP based on its putative biological function; *analyzed following genomic alignment of flanking regions containing the genetic variants in 10 possible species (dog, human, pig, horse, mouse, rat, cattle, chimpanzee, gorilla and orangutan); UTR: untranslated region (DNA); NA: not accessed; del: nucleotide deletion.
product 8), 57°C (3 and 14), 58°C (7, 10 and 13), 64°C (5) or 60°C (remaining products) annealing temperatures. PCR products were purified with MinElute PCR Purification Kit (QIAGEN Pty Ltd, Doncaster, Vic, Australia), and bi-directionally sequenced at the Australian Equine Genetics Research Centre using 0.5 μM (PCR product 3, 4, 5, 12, 14) or 1 μM (remaining PCR products) of forward and reverse amplification primers and 0.5 μM of internal sequencing primers (Table 1), and BigDye Terminator v3.1 Cycle Sequencing Kit (Applied Biosystems, Foster City, CA, USA). Primers were supplied by GeneWorks (Hindmarsh, SA, Australia).

Sequencing protocol was as recommended by the manufacturer, except annealing temperatures for PCR products 3, 9 and 11 were 50°C and 60°C for PCR products 4 and 5.

Sequence data were analyzed with ChromasPro v1.5 (Technylisium, Tewantin, Qld, Australia) and compared with the 1.5× poodle (version 1) and the boxer 7.6× whole-genome sequences (CanFam2.0). Among 18 variants identified [14], five variants showed a medium to high disease-associated risk as predicted by FASTSNP [15] and Mutation Taster [16]; three single-nucleotide polymorphisms (SNPs) in a predicted regulatory region of the gene, one synonymous SNP, and a variable sequence repeat in a predicted splice site (Table 2). These variants formed five different haplotypes (Table 3).

There were no recombinant events within this 12.6 Kb interval.

Variant sequence repeat c.2137-20 T(17_22) (Figure 1) has not been previously reported in dogs or other species and was bioinformatically predicted to have indirect structural effects on PTPN22. Comparable intronic repeat variations might interfere with normal gene expression [17-19] and have been associated with alternative splicing and disease in humans [20-23]. Thus, fluorescently labelled, amplified-fragment length genotyping of this variant was performed in 72 WHWTs, including 54 dogs from the GWAS. Primers and PCR conditions for amplification of PCR product 11 were used. Genotyping was performed on a 3130xl Genetic Analyzer (Applied Biosystems, Foster City, CA, USA) and analyzed using Genemapper (Applied Biosystems, Foster City, CA, USA). SIB-PAIR [24] showed no significant evidence for allelic association between this variant and the trait (gene-dropping simulation method, \(P = 0.01 \)). Large scale genotyping and complementary genomic and proteomic assays would be required to assess any potential effect of the remaining genetic variants in PTPN22.

Availability of supporting data

The data set supporting the results of this article is available in the National Center for Biotechnology Information Reference Assembly dbSNP repository, http://www.ncbi.nlm.nih.gov/SNP/snp_viewTable.cgi?handle=O_LEARY_ATOPY.

Table 3 Haplotypes constructed using 18 genetic variants of PTPN22

Haplotype	Number of chromosomes		
	Atopic dogs	Non-atopic dogs	
A	C-del-G-T-T-del-A-C-A-C-C-variant\(^{5,7,11}\)-C-T-T-C-T	4/6	0/6
B	T-A-A-C-C-G-del-A-T-G-C-T-wild\(^{12,14}\)-C-T-T-C-T	2/6	0/6
C	C-A-G-C-C-A-del-A-C-G-T-wild\(^{15}\)-T-T-C-C-T	0/6	4/6
D	C-A-G-C-C-A-del-A-C-G-T-wild\(^{15}\)-T-T-C-C-G	0/6	1/6
E	C-del-G-T-T-G-del-A-C-A-C-T-variant\(^{5,7,11}\)-T-C-C-T	0/6	1/6

*maximum-likelihood (Log likelihood = - 108.87) haplotype assignment for the dogs as predicted by Superlink [7]; \(^{5}\)22-T repeat allele; \(^{1}\)17-T repeat allele; del: nucleotide deletion

Figure 1 Relative location of the variant sequence repeat c.2137-20 T(17_22) in canine PTPN22. Exons in the gene are marked in yellow, variants annotated in web-based databases are in green and the new intronic variant identified by sequencing in three atopic and three non-atopic WHWTs is highlighted in pink. Line numbering is relative to coordinate system.
Acknowledgements

This study was supported by the Centre for Companion Animal Health, the Australian Companion Animal Health Foundation, and the John & Mary Kibble Trust to CAO. The authors also thank the owners of WHWTs, especially Lyndell Sequil Bristow.

Author details
1 School of Veterinary Science, The University of Queensland, Gatton, Queensland, 4343, Australia. 2 Centre for Companion Animal Health, School of Veterinary Science, The University of Queensland, St Lucia, Queensland, 4067, Australia. 3 Genetic Epidemiology Laboratory, Queensland Institute of Medical Research, Herston, Queensland, 4029, Australia. 4 The University of Sydney, University Veterinary Teaching Hospital, Camden, New South Wales, 2570, Australia. 5 Dermcare, Springwood, Queensland, 4127, Australia. 6 Dermatology for Animals, Stafford Heights, Queensland, 4053, Australia.

Authors’ contributions
JBR was responsible for all experimental procedures, analysis and interpretation of data, manuscript writing and editing; CAO conceived and coordinated the study, contributed to the experimental design and to manuscript editing; PG contributed to experimental procedures and analysis of data; LV, KM and MS were responsible for the diagnosis and recruitment of dogs. All authors contributed to the critical revision and approved the final manuscript.

Competing interests
The authors declare that they have no competing interests.

Received: 14 October 2011 Accepted: 30 December 2011 Published: 30 December 2011

References
1. Jaeger K, Linek M, Power HT, Bettenay SV, Zabel S, Rosychuk RAW, Mueller RS: Breed and site predispositions of dogs with atopic dermatitis: a comparison of five locations in three continents. Vet Dermatol 2010, 21:118-122.
2. Roque JB, O’Leary CA, Kyaw-Tanner M, Garahkhani P, Latter M, Mason K, Shipstone M, Vogelstein L, Duffy DL: Atopic dermatitis in West Highland white terriers is associated with 1.3 Mb region on CFA 17. Immunogenetics 2008, 60:25-59.
3. Vang T, Miltic LV, Arumus Y, Tautz L, Rickett RC, Mustelin T: Protein tyrosine phosphatases in autoimmunity. Ann Rev Immunol 2008, 26:29-55.
4. Hill PB, Olivry T (2001) The ACVD task force on canine atopic dermatitis (V): Immunogenetics.
5. Arechiga AF, Arimura Y, Tautz L, Rickert RC, Mustelin T: Genetic variation in PTNPN22 corresponds to altered function of T and B lymphocytes. J Immunol 2007, 179:4704-4710.
6. Arechiga AF, Habib T, He Y, Zhang X, Zhang Z-Y, Funk A, Buckner JH: Cutting Edge: The PTNPN22 Allelic Variant Associated with Autoimmunity Impairs B Cell Signalling. J Immunol 2009, 182:3343-3347.
7. Chung SA, Creswell LA: PTNPN22: Its role in SLE and autoimmunity. Autoimmunity 2007, 40:582-590.
8. Short AD, Catchpole B, Kennedy LJ, Barnes A, Frentzel N, Jones C, Thomson W, Ollier WE: Analysis of candidate susceptibility genes in canine diabetes. J Hered 2007, 98:518-525.
9. Roycroft M, Fichna M, McDonald D, Owen K, Zurauek M, Gryczynska M, Januszewicz-Lewandowska D, Fichna P, Cordell H, Donaldson P, Nowak J, Pearce S: The tryptophan 620 allele of the lymphoid tyrosine phosphatase PTNPN22 gene predisposes to autoimmune Addison’s disease. Clin Endocrinol 2009, 70:358-362.
10. Giardina E, Sinibaldi C, Chini L, Moschese V, Marulli G, Provini A, Rossi P, Paradisi M, Chimenti S, Galli E, Brunetti E, Girolomoni G, Novelli G: Co-localization of susceptibility loci for psoriasis (PSORS4) and atopic dermatitis (ATOD2) on human chromosome 1q21. Hum Hered 2006, 61:229-236.
11. Li Y, Liao W, Chang M, Schodi SJ, Bui N, Catanese JJ, Poon A, Matsunami N, Callis-Duffin KP, Leppert MF, Bowcock AM, Kwok PY, Krueger GG, Regovch AB: Further genetic evidence for three psoriasis-risk genes ADAM33, CDKAL1, and PTNPN22. J Invest Dermatol 2009, 129:629-634.
12. Sterne LC, Rennings KS, Bjarnvold M, Undlien DE, Joner G: An inverse association between history of childhood eczema and subsequent risk of type 1 diabetes that is not likely to be explained by HLA-DQ, PTNPN22, or CTLA4 polymorphisms. Pediatr Diabetes 2011, 12:386-393.
13. Rozen S, Skatesky HJ: Primer3 on the WWW for general users and for biologists programmers. In Bioinformatics methods and protocols: Methods in molecular biology. Edited by: Krawetz S, Misseren S. New Jersey: Humana Press, 2000:365-386.
14. The National Center for Biotechnology Information Reference Assembly dbSNP repository. [http://www.ncbi.nlm.nih.gov/SNP/SNP_viewTable.cgi? handle=O_LEARY_ATOPY].
15. Yuan H-Y, Chou J-J, Tseng W-H, Liu C-H, Liu C-K, Lin Y-J, Wang H-H, Yao A, Chen Y-T, Hsu C-N: FASTSNP: an always up-to-date and extendable service for SNP function analysis and prioritization. Nucleic Acids Res 2006, 34:635-644.
16. Schwartz J, Rodelsperger C, Schuelike M, Seelow D: MutationTaster evaluates disease-causing potential of sequence alterations. Nat Methods 2010, 7:575-576.
17. Felsenstein M, Geiger D: Optimizing exact genetic linkage computations. J Comput Biol 2003, 11:263-275.
18. Hedjazi F, Yeakley JM, Hu H, Hynes RO, Rosenfeld MG: Control of alternative pre-mRNA splicing by distributed pentameric repeats. PNAS 1997, 94:12343-12347.
19. Meloni R, Albanèse V, Ravassard P, Treihouf F, Mallet J: A tetranucleotide polymorphic microsatellite, located in the first intron of the tyrosine hydroxylase gene, acts as a transcription regulatory element in vitro. Hum Mol Genet 1998, 7:423-428.
20. Roche R: Role of the intron 13 polyphymid tract in soluble Flt-1 expression. PhD thesis Virginia Polytechnic Institute and State University, Department of Biomedical Sciences and Pathobiology, 2002.
21. Viel M, Leroy C, Des Georges M, Claustrès M, Benvenu T: Novel length variant of the polyphymid tract within the splice acceptor site in intron 8 of the C1FR gene: consequences for genetic testing using standard assays. Eur J Hum Genet 2004, 12:136-138.
22. Meili D, Kralovcova J, Zagalak J, Bonafé L, Fiori L, Blau N, Thony B, Vorechovsky: Disease-causing mutations improving the branch site and polyphymid tract: Pseudoxexon activation of LINE-2 and antisense Alu lacking the poly(T)-tail. Hum Mutat 2009, 30:823-831.
23. David A, Mirak-Moud F, Shaw NJ, Savage MO, Clark AJL, Metherell LA: Identification and characterization of a novel GHR defect disrupting the polyphymid tract and resulting in GH insensitivity. Eur J Endocrinol 2010, 162:37-42.
24. Duffy D: SIB-PAIR[http://www.qmr.gov.au/davidD].

doi:10.1186/1756-0500-4-571
Cite this article as: Roque et al.: PTNPN22 polymorphisms may indicate a role for this gene in atopic dermatitis in West Highland white terriers. BMC Research Notes 2011 4:571.

Submit your next manuscript to BioMed Central and take full advantage of:
• Convenient online submission
• Thorough peer review
• No space constraints or color figure charges
• Immediate publication on acceptance
• Inclusion in PubMed, CAS, Scopus and Google Scholar
• Research which is freely available for redistribution

Submit your manuscript at www.biomedcentral.com/submit