Dimensional variations of left-sided double-lumen endobronchial tubes: an observational study

CURRENT STATUS: POSTED

Niels Hegland
Spital Thurgau AG

Sebastian Schnitzler
Spital Thurgau AG

Jan Ellensohn
Spital Thurgau AG

Marc P Steurer
University of California San Francisco

Markus Weiss
University Children`s Hospital Zurich

Alexander Dullenkopf
Kantonsspital Frauenfeld

alexander.dullenkopf@stgag.ch Corresponding Author
ORCiD: https://orcid.org/0000-0002-1456-6457

DOI:
10.21203/rs.2.252/v1

SUBJECT AREAS
Internal Medicine Specialties

KEYWORDS
Airway management, double-lumen endobronchial tubes
Abstract

Background: Tube size selection is critical in ventilating patient`s lungs using double-lumen endobronchial tubes. Little information about relevant parameters is readily available from manufacturers.

Methods: In this observational study in a benchmark in-vitro setup, several dimensional parameters of four sizes of left-sided double-lumen endobronchial tubes from six different manufacturers were assessed, such as distances and diameters of tube shaft, cuff lengths and diameters as well the angle at the tip.

Results: Endobronchial tubes of ostensibly the same size revealed wide variation in measured parameters between brands from different manufacturers. In some parameters, there was an overlap between different sizes from the same manufacturer, i.e. diameters and distances did not increase with increasing nominal endobronchial tube size. The information about dimensions of endobronchial tubes provided by manufacturers’ leaflets is insufficient.

Conclusions: Endobronchial tube size selection is complicated because clinically relevant parameters are unknown and vary considerably between different manufacturers.

Keywords: Airway management, double-lumen endobronchial tubes

Background
One-lung ventilation for thoracic surgery and occasionally also in critical care medicine represents one of the most challenging airway and ventilation management tasks for anesthesiologists and/or intensivists.\(^1\)\(^2\) The use of bronchial blockers and double-lumen endobronchial tubes (DLT) are the two main techniques for isolation of the lungs and one-lung ventilation, with the DLT used more frequently.\(^3\)\(^4\)\(^5\) Irrespective of the decision to use a left-sided or right-sided DLT, choosing the appropriate size is critical. The consequences of inserting / using an inappropriately sized DLT can result in significant clinical problems, such as difficulty in ventilating the lungs, the need for tube exchange with reintubation, severe injuries to the airway, impaired surgical conditions, or even inability to perform the planned surgical procedure.\(^2\)\(^6\)\(^7\)\(^8\)\(^9\)

Strategies for the actual sizing vary from the "one size fits almost all" approach to selection of a DLT
that most closely matches the patient’s airway anatomy with deflated cuffs.2 Currently, there are two main approaches to the selection of the correctly sized DLT for a given patient when considering patient anatomical conditions. First, reference tables are used that indicate the DLT size based on a patient’s height and gender.2; 9; 10 Second, there are methods incorporating actual patient information from radiological imaging.2; 11; 12; 13; 14; 15; 16 The latter has become more relevant in recent years, as the majority of patients planned for thoracic surgery with one-lung ventilation have usually undergone preoperative computed tomography (CT) imaging of their lungs and tracheobronchial tree.

However, the size selection of the outer diameter and length of a DLT remains challenging even with the availability of precise CT-based knowledge of individual anatomical dimensions. This is further complicated by the fact that the effective outer diameter of a DLT is indicated as circumference on the packaging as “French” (\(1 \text{ French (Fr)} = 1 \text{ Charriere (Ch)} = 1/3 \text{ mm}\)) and moreover varies throughout the length of the tube. For the proper choice of a DLT, further dimensions such as the outer diameter of its endobronchial portion and various section lengths are important. However, they are not indicated in the manufacturers’ leaflets.11; 17; 18

It is the aim of this work to present a point of reference for the relevant dimensions of conventionally available DLTs.

Methods

Left-sided DLTs of the sizes 35Fr, 37Fr, 39Fr, and 41Fr from six different manufacturers were included in this in-vitro study (Table 1).

One brand new DLT of each type and size was measured twice by two investigators (NH, SS), i.e. four measurements of each dimensional parameter were taken. Dimensions of the tube (diameter and length), cuff (diameter and length), and the angle of the endobronchial tube portion were determined (Figure 1). All measurements were performed with the intubation stylet removed from the DLT. For all measurements, a commercially available ruler (measurement accuracy 1 mm), a sliding caliper (measurement accuracy of 0.1 mm), an orthopedic protractor, 10-ml syringes (B. Braun,
Melsungen, Germany) for inflating the cuffs, and a manual cuff pressure manometer (Rüesch Endotest®; Teleflex, Athlone, Ireland) to adjust cuff pressure were used.

The following dimensional parameters of the DLT were measured or calculated (Figure 1):

Outer tube diameter (OD, always both: lateral and anterior-posterior)

\[\text{OD}_{\text{MIDDLE}} = \text{diameter in the center (B) between the beginning of the shaft of the tube (A) and the proximal edge of the tracheal cuff (C)} \]

\[\text{OD}_{\text{PTC}} = \text{diameter directly at the proximal edge of the tracheal cuff (C)} \]

\[\text{OD}_{\text{DTC}} = \text{diameter directly at the distal edge of the tracheal cuff (D)} \]

\[\text{OD}_{\text{PBC}} = \text{diameter directly at the proximal edge of the bronchial cuff (E)} \]

\[\text{OD}_{\text{DBC}} = \text{diameter directly at the distal edge of the bronchial cuff (F)} \]

Internal tube diameter (ID)

The tracheal and endobronchial lumen of all investigated DLTs were assessed for passability of a fiber-optic bronchoscope (Karl Storz, Germany) with diameter 5.5 mm and 4.0 mm, respectively.

Lengths

Length A-C = distance from beginning of DLT shaft (A) to the proximal edge of the tracheal cuff (C)

Length C-D = length of the tracheal cuff

Length D-E = distance from the distal edge of the tracheal cuff (D) to the proximal edge of the bronchial cuffs (E)

Length E-F = length of the bronchial cuff

Length F-G = distance from the distal edge of the bronchial cuffs (F) to the tip of the tube (G)

Length A-G = tube length from bifurcation (A) to the tip of the tube (G)

Outer cuff diameters

For the measurement of the tracheal and bronchial cuff diameters, the respective cuff inflation line was connected via a three-way stopcock to the manual cuff pressure gauge and inflated with air to the target pressure of 20 H₂O using a 10 ml syringe. Upon reaching the target pressure, the three-way stopcock was closed so that no air could escape.
Angle

Angle H-I = mediastinal angle between a virtual longitudinal line through the middle of the tube shaft and the bronchial tube section

Since DLTs rarely present with a truly round cross-sectional area but are rather elliptically shaped, the cross-sectional area (CSA) was calculated at the points indicated below, utilizing the measured width and height of the tube according to the formula \(\text{CSA} = \pi \times \text{width}/2 \) (lateral) \(\times \text{height}/2 \) (anterior-posterior).

\(\text{CSA}_{\text{MIDDLE}} \) = cross-sectional area of the endobronchial tube in the middle (B) between the beginning of the tube shaft (A) and the proximal edge of the tracheal cuff (C)

\(\text{CSA}_{\text{PTC}} \) = cross-sectional area of the endobronchial tube directly at the proximal edge of the tracheal cuff (C)

\(\text{CSA}_{\text{DTC}} \) = cross-sectional area of the endobronchial tube directly at the distal edge of the tracheal cuff (D)

\(\text{CSA}_{\text{PBC}} \) = cross-sectional area of the endobronchial tube directly at the proximal edge of the bronchial cuff (E)

\(\text{CSA}_{\text{DBC}} \) = cross-sectional area of the endobronchial tube directly at the distal edge of the bronchial cuff (F)

For all DLTs investigated, it was noted whether the package insert provides information on the above-mentioned parameters besides the nominal tube size given in French (1/3 mm).

Calculations and statistics

Descriptive statistics were used to compare measured data. All data are presented as median (minimum - maximum). The analysis was performed using Microsoft Excel 2010 (Microsoft, Redmond, USA).

Results

A total of 456 measured or calculated values were obtained from the 24 different DLTs.

Outer diameters measured and cross-sectional areas calculated are expressed in Tables 2 and 3. One
DLT (VIVASIGHT-DL®) in all sizes demonstrated the largest cross-sectional area proximal to the tracheal cuff, while another one (Portex Blue Line® Endobronchial Tube) did so distal to the tracheal cuff. In all other DLTs the largest CSA varied with DLT size. The largest variations in CSA were found close to the tube tip; that is, for the CSA_{DBC} in 37Fr-sized endobronchial tubes: there the smallest CSA was 83% of the largest.

For the majority of the DLT types and sizes examined, the respective CSA increased appropriately with increasing size of the DLT. But remarkably, in 4 constellations the CSA of the next smaller DLT from the same manufacturer was larger than in its next larger size.

All tracheal lumen were easily passable by a fiber-optic bronchoscope with an ID of 5.5 mm, as were all endobronchial lumen with an ID 4.0 mm fiber-optic bronchoscope.

The length measurements varied more among the various manufacturers and DLT sizes than did the CSAs (Table 4). Surprisingly, in no DLT model were all the distances of the next larger DLT size longer than the ones of the corresponding next smaller DLT model. The shortest distance from the DLT bifurcation to the proximal edge of the tracheal cuff (A-C) was 66% of the longest distance (35 Fr). The shortest tracheal cuff was 73% of the longest (35 Fr). The bronchial cuff length differed by as much as 51% (shortest to longest; 41 Fr). The most inconsistent measurement was the distance from the distal end of the bronchial cuff to the tube tip (F-G; 28% shortest to longest; 35 Fr). Overall (A-G), the shortest DLT was only 72% of the longest (35 Fr).

Tracheal cuff dimensions revealed the largest variations in OD for a given DLT size of 72% (smallest to largest) for tracheal cuffs and 54% for bronchial cuffs (41 Fr) (Table 5).

The most impressive and surprising variation was that of the measured angle between the DLT shaft and the bronchial portion, with the largest angle being more than three times that of the smallest for a given DLT size (35 Fr).

The package insert for the Portex Blue Line® DLT was the only one that included additional information regarding the DLT’s dimensions (tracheal and bronchial cuff diameter in the uninflated state).

Discussion
This study investigated the dimensional design of left-sided double-lumen endobronchial tubes in frequently used DLT sizes produced by six different manufacturers, including the recently introduced VIVASIGHT® DLT.

The most important finding was that there is considerable variability in the majority of all measured parameters among similarly sized DLT brands.

In this study, five commonly used conventional left-sided DLTs as well as the new VIVASIGHT® DLT were examined. The VIVASIGHT® includes an integrated video camera and illuminating system that provides assistance with tube placement and continuous visual surveillance during the procedure.\(^1\)

The integrated camera is placed just below the tracheal cuff. As a result, the VIVASIGHT® has a larger cross-sectional area (CSA) down to that point. Apart from that finding and from the Portex Blue Line® DLTs demonstrating the largest cross-sectional areas proximal to the tracheal cuff, it is not possible to give a synthesis in what brands of DLTs are consistently larger or smaller than the majority, because of the intra-brand variation.

The parts of the airway most relevant for the tube size selection are the larynx and the main bronchi, with the trachea presenting less of a problem with regard to tube diameters.\(^2;\, 11;\, 14;\, 15;\, 17;\, 18;\, 19\) The more distal parts of the patients’ airways quickly become anatomically narrower and shorter, making the corresponding (more distal; patient end) portions of the respective DLT critical for proper airway management.\(^1\) As such, the distance from tracheal to bronchial cuff, the length of the bronchial cuff, and the tube diameter in the bronchial segment can be regarded as particularly important.\(^18\) The length of DLT parameters in relation to the patient’s height is important for tube size selection, as is the angle of the bronchial lumen for insertion of a left sided DLT. Our results confirm the measurements of Watterson et al.\(^17\) and Russell et al.\(^18\) Over 20 years ago those researchers observed considerable differences between similarly sized DLTs delivered by different manufacturers with regard to the length of the endobronchial segments of DLTs. In addition to the measurements conducted by Russel et al.\(^18\), we used calculated CSAs in accordance with the formula for elliptical shapes rather than the circular formula, because both the tracheal and bronchial segments of a DLT
do not represent circles.

In contrast to conventional tracheal tubes, whose nominal size is defined by the internal diameter (with possibly varying outer diameters), the nominal size of endobronchial tubes, according to the International Organization for Standardization (ISO 16628), is defined by the outer diameter of the (tracheal) tube shaft. However, for anesthetists, it is not common knowledge where exactly on the tube shaft the diameter is taken.

In clinical practice, anesthetists or intensivists have learnt to live with these limitations for years. Nevertheless, there is little to no access to the critical DLT dimensions (i.e. by package insert), despite the call for such detail to be more readily available, which was issued over 20 years ago. Most clinicians probably assume that the various DLT products are highly comparable and standardized in size with relevant dimensions becoming proportionally larger with increasing DLT formal size. However, this is not always the case, as shown in our study by the overlap of certain dimensions among different DLT sizes from the same manufacturer. This was similarly demonstrated by Russell et al. before, and has unfortunately not changed since then. So, despite the fact that more information about a given patient’s anatomy is readily available (CT scans) nowadays, correctly matching it is still almost impossible because of the lack of knowledge about a given DLT’s dimensions. Without knowledge of tube proportions, approaches based solely on the anatomy and dimensions of the tracheal and/or the left main bronchus, such as those described by Brodsky et al., will still involve a great deal of inaccuracy and uncertainty.

A limitation of our investigation is the fact that we only measured one copy of each DLT size and manufacturer/model. Russel et al. showed in a similar study in 2003 that even nominally identical DLTs of the same manufacturer and size, can reveal considerable variation in their dimensions, especially in the bronchial segment. Further, it is not clear, what degree of variation really presents a clinical problem, because, other than in children, there are no data on the anatomic parameters in adults that would predispose them for given DLT sizes.

Conclusions
Significant and likewise impactful dimensional differences among similarly sized DLTs from different manufacturers are present. Inconsistent proportionalities with increasing DLT size and incomplete declaration of relevant dimensions for individual DLTs can limit the proper selection of a suitable DLT for one-lung ventilation and should be made more easily available. The new DLT model VIVASIGHT® with integrated camera has a considerably larger cross-sectional area compared to similarly sized DLT brands.

Abbreviations
CSA = cross sectional area
CT = computed tomography
DLT = double-lumen endobronchial tube
Fr = French (1/3 mm)
ID = internal diameter
OD = outer diameter

Declarations
Competing interests
MW is medical consultant for Medicoplast GmbH (Illingen, Germany).

Ethics approval and consent to participate
Not applicable

Consent to publish
Not applicable

Availability of data and materials
All data on which the conclusions of the manuscript rely are presented in the main paper.

Funding
This work was funded by departmental resources only.

Author’s contributions

NH and SS did the data acquisition and helped drafting the manuscript

JE and MPS critically revised the manuscript and made substantial contributions to interpreting the data

MW and AD initiated the data acquisition, did the data analysis and drafted the manuscript

All authors read and approved the final manuscript.

Acknowledgments

All measured double-lumen endobronchial tubes were provided free of charge by the corresponding Swiss distributor companies.

The work was solely funded by resources of the submitting author`s institution.

Authors’ Information

None

References

1. Meggiolaro KM, Wulf H, Feldmann C, et al.: [Airway management for lung separation in thoracic surgery: An update]. Anaesthesist 67:555-567, 2018

2. Pedoto A: How to choose the double-lumen tube size and side: the eternal debate. Anesthesiol Clin 30:671-681, 2012

3. Mourisse J, Liesveld J, Verhagen A, et al.: Efficiency, efficacy, and safety of EZ-blocker compared with left-sided double-lumen tube for one-lung ventilation. Anesthesiology 118:550-561, 2013

4. Dumans-Nizard V, Liu N, Laloe PA, et al.: A comparison of the deflecting-tip bronchial blocker with a wire-guided blocker or left-sided double-lumen tube. J Cardiothorac
Vasc Anesth 23:501-505, 2009

5. Defosse J, Schieren M, Bohmer A, et al.: [A Germany-wide survey on anaesthesia in thoracic surgery]. Anaesthesist 65:449-457, 2016

6. Cohen E, Neustein SM, Goldofsky S, et al.: Incidence of malposition of polyvinylchloride and red rubber left-sided double-lumen tubes and clinical sequelae. J Cardiothorac Vasc Anesth 9:122-127, 1995

7. Ambrosio C, Leykin Y, Pellis T, et al.: Endotracheal kinking of a double-lumen tube: a potential complication of inappropriate size tube selection. Eur J Anaesth 28:607-608, 2011

8. Clayton-Smith A, Bennett K, Alston RP, et al.: A Comparison of the Efficacy and Adverse Effects of Double-Lumen Endobronchial Tubes and Bronchial Blockers in Thoracic Surgery: A Systematic Review and Meta-analysis of Randomized Controlled Trials. J Cardiothorac Vasc Anesth 29:955-966, 2015

9. Slinger P: Choosing the appropriate double-lumen tube: a glimmer of science comes to a dark art. J Cardiothorac Vascular Anesth 9:117-118, 1995

10. Slinger P: A view of and through double-lumen tubes. J Cardiothorac Vasc Anesth 17:287-288, 2003

11. Brodsky JB, Malott K, Angst M, et al.: The relationship between tracheal width and left bronchial width: Implications for left-sided double-lumen tube selection. J Cardiothorac Vasc Anesth 15:216-217, 2001

12. Eberle B, Weiler N, Vogel N, et al.: Computed tomography-based tracheobronchial image reconstruction allows selection of the individually appropriate double-lumen tube size. J Cardiothorac Vasc Anesth 13:532-537, 1999

13. Hannallah M, Benumof JL, Silverman PM, et al.: Evaluation of an approach to choosing a left double-lumen tube size based on chest computed tomographic scan
measurement of left mainstem bronchial diameter. J Cardiothorac Vasc Anesth 11:168-171, 1997

14. Kim D, Son JS, Ko S, et al.: Measurements of the length and diameter of main bronchi on three-dimensional images in Asian adult patients in comparison with the height of patients. J Cardiothorac Vasc Anesth 28:890-895, 2014

15. Brodsky JB, Lemmens HJ: Tracheal width and left double-lumen tube size: a formula to estimate left-bronchial width. J Clin Anesth 17:267-270, 2005

16. Sustic A, Miletic D, Protic A, et al.: Can ultrasound be useful for predicting the size of a left double-lumen bronchial tube? Tracheal width as measured by ultrasonography versus computed tomography. J Clin Anesth 20:247-252, 2008

17. Watterson LM, Harrison GA: A comparison of the endobronchial segment of modern left-sided double-lumen tubes in anesthesia for bilateral sequential lung transplantation. J Cardiothorac Vasc Anesth 10:583-585, 1996

18. Russell WJ, Strong TS: Dimensions of double-lumen tracheobronchial tubes. Anaesth Intensiv Care 31:50-53, 2003

19. Seymour AH: The relationship between the diameters of the adult cricoid ring and main tracheobronchial tree: a cadaver study to investigate the basis for double-lumen tube selection. J Cardiothorac Vasc Anesth 17:299-301, 2003

20. Dave MH, Schmid K, Weiss M: Airway dimensions from fetal life to adolescence-A literature overview. Pediatr Pulmonol, 2018

Tables

Table 1

Brand	Manufacturer
Hudson RCI® Sheridan® SHER-I-BRONCH® Endobronchial Tube	Teleflex, Athlone, Ireland
Mallinkrodt® Endobronchial Tube	Covidien, Tullamore, Ireland
Portex Blue Line® Endobronchial Tube	Smiths Medical, Hythe, UK
Rusch Bronchopart®	Teleflex, Athlone, Ireland
VIVASIGHT-DL®	ETVIEW MEDICAL, Misgav, Israel
Well Lead® Endobronchial Tube	Well Lead Medical, Panyu, China

Investigated left-sided double-lumen endobronchial tubes, sizes 35F, 37F, 39F and 41F.
Parameter	Size (Fr)	Axis	Sheridan DLT	Mallinckrodt DLT	Portex DLT
OD_{MIDDLE}	35	lat	13.0 (13.0-13.3)	12.7 (12.7-12.7)	12.4 (12.4-12.7;*94%)
			11.3 (11.0-11.5)	11.7 (11.7-11.8)	10.9 (10.8-11.0;*93%)
	37	lat	13.0 (12.5-13.6;*94%)	13.3 (13.3-13.5)	13.3 (13.0-13.5)
			11.2 (10.1-11.5;*85%)	12.7 (12.6-12.7)	11.4 (11.2-11.5)
	39	lat	14.4 (14.3-14.6)	14.4 (14.4-14.5)	13.7 (13.5-14.0)
			12.0 (11.9-12.2)	13.5 (13.0-14.0)	11.8 (11.8-11.9;*87%)
	41	lat	14.5 (14.2-14.7)	14.8 (14.7-14.9)	14.5 (14.3-14.7;*96%)
			12.8 (12.7-12.8)	13.8 (13.6-13.9)	12.5 (12.3-12.6;*89%)
OD_{PTC}	35	lat	13.7 (13.5-13.9)	12.8 (12.7-12.8)	12.8 (12.2-13.3)
			11.8 (11.7-11.9)	12.1 (12.1-12.1)	11.6 (11.6-11.9;*93%)
	37	lat	13.9 (13.5-14.3)	13.4 (13.3-13.6;*91%)	14.0 (13.6-14.0)
			12.0 (11.9-12.2;*87%)	13.2 (13.1-13.2)	12.0 (12.0-12.1;*87%)
	39	lat	14.7 (14.4-15.0)	14.2 (14.1-14.3)	14.2 (13.9-14.7)
			12.7 (12.7-12.8;*89%)	13.4 (13.4-13.5)	12.7 (12.5-12.8;*89%)
	41	lat	14.8 (14.5-15.0)	14.9 (14.8-14.9)	15.2 (15.0-15.5)
			13.5 (13.4-13.6)	14.0 (14.0-14.1)	13.3 (13.3-13.4;*91)
OD_{DTC}	35	lat	14.6 (14.2-14.9)	12.9 (12.8-13.0;*88%)	13.1 (12.8-13.2)
			11.8 (11.8-12.0)	12.1 (12.1-12.2)	11.6 (11.6-12.1;*89%)
	37	lat	13.6 (13.6-14.2;*93%)	13.6 (13.6-13.8;*93%)	13.6 (13.6-14.0;*93%)
			12.2 (12.1-12.3)	13.2 (13.2-13.2)	12.0 (11.9-12.2)
	39	lat	14.8 (14.7-14.9)	14.5 (14.4-14.6)	14.3 (14.0-14.4;*97%)
			12.8 (12.8-12.9)	13.4 (13.3-13.5)	12.6 (12.6-12.7;*90%)
	41	lat	15.3 (15.0-15.4)	14.9 (14.8-15.0)	15.1 (15.0-15.2)
			13.6 (13.5-13.7)	14.0 (14.0-14.1)	13.2 (13.1-13.6;*90%)
OD_{DBC}	35	lat	8.8 (8.3-9.0)	9.0 (8.9-9.1)	7.8 (7.5-8.1;*85%)
			10.8 (10.7-10.8)	9.5 (9.4-9.7;*88%)	10.7 (10.6-10.9)
	37	lat	8.8 (8.5-9.1)	10.0 (9.5-10.0)	7.8 (7.7-8.0;*78%)
			11.1 (10.8-11.2)	10.8 (10.7-11.0)	10.9 (10.7-11.0)
	39	lat	8.7 (8.5-9.0)	10.4 (10.3-10.8)	8.1 (7.8-8.4;*78%)
			11.3 (11.1-11.5)	10.9 (10.8-11.1)	11.7 (11.2-11.8)
	41	lat	8.9 (8.8-9.4)	10.2 (10.1-10.4)	8.8 (8.7-9.5;*82%)
			12.5 (12.2-12.7)	11.2 (11.0-11.5)	12.3 (12.2-12.4;*90%)
OD_{PBC}	35	lat	9.0 (8.5-9.3)	9.1 (9.1-9.2)	8.4 (8.0-8.6;*89%)
			11.2 (10.9-11.3)	10.2 (10.1-10.3)	9.9 (9.6-10.0;*88%)
	37	lat	9.8 (9.7-10.0)	10.0 (10.0-10.0)	8.6 (8.5-8.7;*86%)
			11.4 (11.4-11.9)	11.1 (11.0-11.3)	10.0 (10.0-10.1;*84%)
	39	lat	8.9 (8.7-9.0;*83%)	10.5 (10.0-10.5)	9.6 (9.2-9.7)
			11.7 (11.7-11.8)	11.5 (11.0-11.6)	11.4 (11.3-11.5)
	41	lat	8.9 (8.7-9.2;*84%)	10.6 (10.5-10.7)	10.0 (9.9-10.0)
			12.8 (12.5-12.9)	11.5 (11.4-11.7)	11.3 (11.0-11.5;*88%)
Outer diameter (OD), presented as lateral diameter (lat) and antero-posterior diameter (ap) of investigated left-sided double-lumen endobronchial tubes (DLT).

\[\text{OD}_{\text{MIDDLE}} = \text{Outer diameter in the middle (B) between the beginning of the DLT shaft (A) and the proximal edge of the tracheal cuff (C)}, \]

\[\text{OD}_{\text{PTC}} = \text{outer diameter at the proximal edge of the tracheal cuff (C)}, \]

\[\text{OD}_{\text{DTC}} = \text{outer diameter at the distal edge of the tracheal cuff (D)}, \]

\[\text{OD}_{\text{PBC}} = \text{outer diameter at the proximal edge of the bronchial cuff (E)}, \]

\[\text{OD}_{\text{DBC}} = \text{outer diameter at the distal edge of the bronchial cuff (F)} \] (see also Figure 1).

DLT sizes are in French (= 1/3mm). Data is displayed as median (minimum-maximum) and dimension is millimeter (mm). The largest diameter of a respective DLT size is shaded in gray (100%), the smallest diameter marked with an Asterix (*) (proportion of largest OD).

Parameter	Size (Fr)	Sheridan DLT	Mallinckrodt DLT	Portex DLT
CSA_{\text{MIDDLE}}	35	114.9 (114.3-116.4)	116.9 (116.6-117.1)	105.4 (105.1-109.2;*87%)
37	114.7 (98.6-121.7;*81%)	112.6 (112.1-112.6)	118.0 (114.9-121.4)	
39	135.9 (133.6-138.3)	122.3 (117.0-158.8)	126.9 (124.5-130.8;*83%)	
41	144.4 (142.1-147.7)	160.1 (158.0-160.4)	140.8 (139.8-143.3;*85%)	
CSA_{\text{PTC}}	35	126.7 (123.5-129.3)	121.1 (120.6-121.6)	118.0 (111.1-121.2)
37	130.7 (125.6-137.0)	138.1 (136.3-140.4)	131.7 (128.6-131.9)	
39	147.1 (143.0-149.5)	148.8 (148.3-151.0)	140.8 (137.4-146.6;*85%)	
41	156.5 (154.2-157.8;*87%)	163.5 (163.2-163.8)	158.7 (156.1-163.0)	
CSA_{\text{DTC}}	35	135.8 (133.8-137.4)	122.6 (121.1-124.0)	120.0 (116.6-124.0)
37	130.5 (128.2-136.6)	141.2 (139.9-142.5)	128.4 (127.0-130.8;*79%)	
39	148.8 (146.6-150.4)	152.0 (149.8-154.2)	141.2 (138.0-143.6;*87%)	
41	162.2 (158.4-165.0)	164.1 (162.7-164.9)	156.5 (154.3-161.1)	
CSA_{\text{PBC}}	35	74.0 (69.4-76.3)	67.1 (66.8-67.4)	65.8 (63.3-68.0;*85%)
37	76.3 (73.3-78.9)	84.2 (81.3-86.0)	66.3 (65.5-68.6;*78%)	
39	76.7 (74.1-80.8)	89.8 (86.9-92.8)	73.9 (69.6-77.8;*78%)	
41	86.7 (83.5-93.3)	90.0 (87.2-92.3)	85.3 (83.5-90.5)	
CSA_{\text{DBC}}	35	78.3 (74.6-81.0)	72.5 (71.4-73.6)	64.3 (60.9-67.5;*80%)
37	88.6 (86.4-90.7)	87.3 (86.4-88.3)	67.6 (66.3-68.3;*73%)	
39	81.6 (79.1-82.7;*86%)	94.4 (86.4-95.6)	85.7 (82.2-86.4)	
41	88.6 (86.4-92.3)	95.0 (93.5-97.8)	87.7 (85.5-89.9;*86%)	

Calculated cross-sectional areas (CSA) of investigated left-sided double-lumen endobronchial tubes (DLT) based on measurements expressed in Table 2.

\[\text{CSA}_{\text{MIDDLE}} = \text{cross-sectional area in the middle (B) between the beginning of the DLT shaft (A) and the proximal edge of the tracheal cuff (C)}, \]

\[\text{CSA}_{\text{PTC}} = \text{cross-sectional area at the proximal edge of the tracheal cuff (C)}, \]

\[\text{CSA}_{\text{DTC}} = \text{cross-sectional area at the distal edge of the tracheal cuff (D)}, \]

\[\text{CSA}_{\text{PBC}} = \text{cross-sectional area at the proximal edge of the bronchial cuff (E)}, \]

\[\text{CSA}_{\text{DBC}} = \text{cross-sectional area at the distal edge of the bronchial cuff (F)} \] (Table 3).
cross-sectional area at the proximal edge of the bronchial cuff (E), CSA\textsubscript{DBC} = cross-sectional area at the distal edge of the bronchial cuff (F) (see also Figure 1).

DLT sizes are in French (= 1/3mm). Data is displayed as median (minimum-maximum) given as millimeter2. The largest CSA of a respective DLT size is shaded in gray (100%), the smallest diameter marked with an Asterix (*) (proportion of largest OD).

Table 4

Parameter	Size (Fr)	Sheridan DLT	Mallinckrodt DLT	Portex DLT
A-C	35	260.0 (254.0-261.0)	253.0 (252.0-254.0)	318.5 (315.0-322.0)
	37	258.0 (256.0-261.0)	250.5 (249.0-252.0)	317.5 (316.0-319.0)
	39	263.0 (262.0-263.0)	248.0 (247.0-248.5)	307.5 (304.0-308.0)
	41	264.5 (264.0-265.0)	249.5 (247.0-251.0)	304.5 (301.0-308.0)
C-D	35	37.3 (36.0-40.0)	40.0 (40.0-40.0)	32.0 (32.0-32.8;*73%)
	37	36.8 (35.5-38.0;*86%)	43.0 (42.0-43.5)	38.1 (37.0-39.0)
	39	38.3 (38.0-39.0)	43.0 (42.0-44.0)	39.0 (37.0-42.0)
	41	38.0 (37.0-40.0;*86%)	39.0 (38.0-39.1)	42.9 (41.0-44.0)
D-E	35	38.0 (36.0-40.0)	35.0 (35.0-35.0)	40.0 (39.0-41.0)
	37	43.5 (42.0-45.0)	34.3 (34.0-35.0;*79%)	39.5 (37.0-42.0)
	39	48.0 (45.0-51.0)	40.0 (38.5-42.0)	38.5 (35.0-41.0;*80%)
	41	42.0 (38.0-45.0)	47.0 (44.0-49.0)	39.0 (36.0-42.0;*76%)
E-F	35	23.0 (23.0-23.5)	16.8 (16.5-17.0)	24.5 (23.0-25.3)
	37	22.5 (22.0-23.0)	19.5 (19.0-20.0)	25.4 (24.8-27.0)
	39	18.0 (18.0-18.3)	18.5 (17.5-19.0)	30.0 (30.0-30.3)
	41	21.5 (21.0-22.0)	17.1 (17.0-18.0)	30.8 (30.0-31.0)
F-G	35	8.1 (7.0-9.5)	11.1 (10.9-11.3)	4.6 (4.0-5.7;*28%)
	37	8.0 (7.3-8.1)	12.0 (11.5-12.1)	4.8 (4.5-4.8;*32%)
	39	10.0 (9.5-10.0)	11.7 (11.1-11.9)	6.6 (6.3-6.8)
	41	8.6 (8.0-9.0)	14.2 (14.0-14.4)	7.0 (6.8-7.5;*48%)
A-G	35	366.4 (356.0-374.0)	355.9 (354.4-357.3)	419.6 (413.0-426.7)
	37	368.8 (362.8-375.1)	359.3 (355.2-362.6)	425.3 (419.3-431.8)
	39	377.3 (372.5-381.3)	361.2 (356.1-365.4)	421.6 (412.3-428.0)
	41	374.6 (368.0-381.0)	366.8 (360.0-371.5)	424.1 (414.8-432.5)

Measured length of investigated left-sided double-lumen endobronchial tubes (DLT).

A-C = distance from bifurcation (beginning of DLT shaft, A) to the proximal edge of the tracheal cuff (C), C-D = length of the tracheal cuff, D-E = distance between distal edge of the tracheal cuff (D) to the proximal edge of the bronchial Cuffs (E), E-F = length of the bronchial cuff, F-G = distance between the distal edge of the bronchial Cuffs (F) to the tip of the tube (G), A-G = tube length from bifurcation (A) to the tip of the tube (G) (see also Figure 1).

DLT sizes are in French (= 1/3mm). Data is displayed as median (minimum-maximum) given as millimeter (mm). The greatest length of a respective DLT size is shaded in gray (100%), the smallest diameter marked with an Asterix (*) (proportion of largest OD).
Table 5

Parameter	Size (Fr)	Sheridan DLT	Mallinckrodt DLT	Portex DLT
Tracheal Cuff	35	23.4 (23.3-23.7;*78%)	24.3 (24.3-24.3)	28.5 (28.3-29.2)
	37	25.9 (25.7-26.3)	25.0 (24.1-26.4;*78%)	32.1 (31.7-32.7)
	39	24.9 (24.4-25.0;*77%)	26.3 (26.2-26.5)	32.2 (31.9-33.0)
	41	24.7 (24.5-24.9;*72%)	25.6 (25.0-26.0)	34.2 (33.3-34.4)
Bronchial Cuff	35	19.3 (19.0-19.8)	20.6 (20.4-20.8)	19.6 (19.3-20.2)
	37	19.1 (18.9-20.1)	20.3 (19.5-21.0)	20.2 (19.5-20.7)
	39	19.9 (19.8-20.1)	19.4 (19.0-20.0)	24.6 (24.0-26.0)
	41	18.2 (17.8-18.6)	20.3 (20.0-20.9)	26.0 (25.0-27.0)

Tracheal and bronchial outer cuff diameters of the investigated left-sided double-lumen endobronchial tubes (DLT) measured at a cuff pressure of 20 cmH₂O.

DLT sizes are in French (= 1/3mm). Data is displayed as median (minimum-maximum) given as millimeter (mm). The largest cuff diameter of a respective DLT size is shaded in gray (100%), the smallest diameter marked with an Asterix (*) (proportion of largest OD).

Table 6

Parameter	Size (Fr)	Sheridan DLT	Mallinckrodt DLT	Portex DLT
Angle	35	39 (35-40)	12 (12-12)	40 (37-46)
	37	28 (26-32)	20 (18-22)	39 (34-42)
	39	26 (22-29)	18 (18-20)	39 (36-43)
	41	31 (29-34)	27 (25-28)	37 (36-38)

Measured angles of the investigated left-sided double-lumen endobronchial tubes (DLT) between a virtual longitudinal line through the middle of the tracheal tube shaft and bronchial tube (see also Figure 1).

DLT sizes are in French (= 1/3mm). Data is displayed as median (minimum-maximum) and dimension is degrees (°).

Figures
Figure 1

Schematic of localization of measured parameters. A = beginning of the DLT shaft B = midpoint between the beginning of the shaft of the tube (A) and the proximal edge of the tracheal cuff (C); C = proximal edge of the tracheal cuff; D = distal edge of the tracheal cuff; E = proximal edge of the bronchial cuff; F = distal edge of the bronchial cuff; H - virtual extrapolated longitudinal line through the middle of the tracheal tube shaft I = virtual extrapolated longitudinal line through bronchial tube shaft