Nine new species of Muricidae Rafinesque, 1815 (Mollusca, Gastropoda) from the French Antilles

Bernard GARRIGUES
Chemin de Ronde, F-47260 Castelmoron-sur-Lot (France)
bernardgarrigues@yahoo.fr

Didier MERLE
Sorbonne Universités, CR2P, MNHN, CNRS, UPMC – Paris 6,
Muséum national d’Histoire naturelle, Département Histoire de la Terre,
case postale 38, 57 rue Cuvier, F-75231 Paris cedex 05 (France)
dmerle@mnhn.fr
(corresponding author)

Garrigues B. & Merle D. 2014. — Nine new species of Muricidae Rafinesque, 1815 (Mollusca, Gastropoda) from the French Antilles. Zoosystema 36 (4): 841-864. http://dx.doi.org/10.5252/z2014n4a7

ABSTRACT
Nine new species of Muricidae from Guadeloupe, mainly collected during the 2012 KARUBENTHOS expedition, are described. Typhinellus lamyi n. sp. is compared with the similar species T. labiatus (Cristofori & Jan, 1832) from the Mediterranean Sea and T. occlusus (Garrard, 1963) from the Philippines. Dermomurex (Triatella) pruvosti n. sp., D. (T) boucheti n. sp., D. (T) fajouensis n. sp. and D. (T) taresensis n. sp. are compared with D. abyssicola (Crosse, 1865) occurring in the same area and with D. (T) oxum Petuch, 1979 which ranges from Panama to Brazil. Pygmaepterys pointieri n. sp. and P. karukerensis n. sp. are compared with P. germainae Vokes & D’Attilio, 1980 and P. alicaeae (Petuch, 1987). Muricopsis guadalupensis n. sp. is compared with M. caribbaea (Bartsch & Rehder, 1939) occurring throughout the Tropical West Atlantic and to M. marcus Vokes, 1994 from Brazil. Lindapterys domlamyi n. sp. is compared with L. sanderi Petuch, 1987 from Barbados and Brazil and to the type species of the genus, L. vokesae Petuch, 1987 from the Early Miocene of Florida (USA). The name Murex hexagonus Lamarck, 1816, usually considered to be a primary homonym of Murex hexagonus (Gmelin, 1791), is rehabilitated (article 23.9.5, ICZN 1999). A lectotype of this species, is designated from the two syntypes housed in the MNHNG. Murex hexagonus is compared with other related Murexuls from the Caribbean area including M. ozytatus (Smith, 1938), M. zylmanae (Petuch, 1993), M. huberti (Radwin & D’Attilio, 1976), M. chesleri Houart, 2006, M. sunderlandi (Petuch, 1987), M. warreni (Petuch, 1993) and M. jabami Merle & Garrigues, 2011.

KEY WORDS
Mollusca, Gastropoda, Muricidae, Caribbean, lectotypification, new species.
INTRODUCTION

The Lesser Antilles is an area of the Caribbean displaying a very rich muricid fauna, with 84 presently known species (Lamy & Pointier, in press). Since the year 2000, five new species have been described from this region (Merle et al. 2001; Houart 2006; Merle & Garrigues 2011). Recent marine malacological research carried out in Guadeloupe (Fig. 1) has led to the discovery of ten additional muricid species described here as new and belonging to the genera *Typhinellus* Jousseaume, 1880, *Dermomurex* Monterosato, 1890, *Pygmaepterys* Vokes, 1978, *Muricopsis* Bucquoy & Dautzenberg, 1882, *Murexsul* Iredale, 1915 and *Lindapterys* Petuch, 1987. The majority of these species were discovered in May 2012, during the KARUBENTHOS expedition (Principal Investigator: Philippe Bouchet), organized jointly by the National Park of Guadeloupe, MNHN, UAG, and UPMC. This paper follows other papers updating the biodiversity of this area thanks to the KARUBENTHOS expedition (Ortea et al. 2012; Espinosa & Ortea 2013; Pelorce & Faber 2013).

MATERIAL AND METHODS

ABBREVIATIONS

The descriptive methodology used here follows that of Merle (1999, 2001, 2005) and Merle et al. (2011) and the text conventions used to describe the spiral sculpture and the internal denticles of the outer lip are given below.

Morphology

ABP	abapical siphonal primary cord;
abis	abapical infrasutural secondary cord;
abs	abapical siphonal secondary cord;
ADP	adapical siphonal primary cord;
Nine new muricid species from the French Antilles

Repository

- **ANSP** | Academy of Natural Sciences of Philadelphia, Pennsylvania;
- **CMNH** | Carnegie Museum of Natural History, Pittsburgh, Pennsylvania;
- **MNHN** | Muséum national d’Histoire naturelle (sector: Recent molluscs), Paris;
- **MHNG** | Muséum d’Histoire naturelle, Geneva;
- **SDNHM** | San Diego Natural History Museum, California;

Abbreviations

- **adis** | adapical infrasutural secondary cord;
- **ads** | adapical siphonal secondary cord;
- **EAB1** | extreme abapical siphonal primary cord;
- **D1-D6** | abapical apertural denticles;
- **ID** | infrasutural apertural denticle;
- **IP** | infrasutural primary cord;
- **MP** | median siphonal primary cord;
- **ms** | median siphonal secondary cord;
- **P** | primary cord (cord appearing in first order); shoulder cord;
- **P1** | primary cords of the convex part of the teleoconch whorl;
- **s** | secondary cord (cord appearing in second order);
- **s1-s6** | secondary cords of the convex part of the teleoconch whorl;
- **t** | tertiary cord (cord appearing in third order);
- **D** | diameter;
- **H** | height.

Fig. 1. — Geographical map of the Guadeloupe with the stations KARUNBENTHOS (GB, GD, GM and GS, see also the website of the MNHN [http://expeditions.mnhn.fr/campaign/karubenthos2012] for more details concerning the stations), the other stations (eF: East of Fajou in 80-90 m deep and Ma: Malendure at 10 m) and the localization of the new species. **A**, *Typhinellus lamyi* n. sp.; **B**, *Dermomurex* (*Trialatella*) *pruvosti* n. sp.; **C**, *D. (T) boucheti* n. sp.; **D**, *D. (T) fajouensis* n. sp.; **E**, *D. (T) tararensis* n. sp.; **F**, *Pygmaepterys pointieri* n. sp.; **G**, *P. karukerensis* n. sp.; **H**, *Muricopsis guadalupensis* n. sp.; **I**, *Lindapterys domlamyi* n. sp.
Apical angle of 85°. Suture impressed crossed by a laminar extension connecting the shoulder spine to the preceding teleoconch whorl. Spiral sculpture: IP on the sutural ramp, P1 corresponding to anal tube, P2, P3, P4 and P5 on convex part of the whorl, P6, ADP, MP on siphonal canal. Primary cords slightly marked near the varices. P1 and P2 appearing since the first whorl. Primary cord spines on IP; P2, P3, P4 and P5. On the last whorl, broad varical flange up to the extremity of siphonal canal. Four ventrally sealed anal tubes (P1 spine), abapically and dorsally recurved, forming an angle of 30° with the axis of the shell. Last tube intact, others cut down. Axial sculpture: four varices since the first whorl. Aperture rounded. Columellar lip smooth, erected. No anal sulcus. Outer lip erected and smooth within. Siphonal canal winding, ventrally sealed, dorsally curved, up to 40.4% of the total length. Microsculpture of growing grooves. Shell chocolate, beige and white. Anal tubes (P1), siphonal canal and aperture whitish. Several dark blotches on the ventral part of the siphonal canal (3 blotches) and the outer lip (4 blotches). Operculum and radula unknown.

Comparison
Because of its moderately high shape and its developed cords spines, Typhinellus lamyi n. sp. should be compared with T. occlusus (Garrard, 1963) recorded from the Philippines and New Caledonia (80-200 m deep) and with T. labiatus (Cristofori & Jan, 1832). Specimens of T. occlusus can resemble T. lamyi n. sp. in bearing three dark blotches on the siphonal canal (Fig. 2I and Hardy 2014); however, T. occlusus (Fig. 2I) differs mainly by a smaller aperture, a longer siphonal canal (45.6% of the total length) and a larger size up to 25-35 mm (instead 9.5-13 mm). On the biogeographical point of view, T. labiatus is closer to T. lamyi n. sp., both species living in the Atlantic Ocean. The shape of T. labiatus is rather similar to that of T. lamyi n. sp. and as for T. occlusus, several specimens of T. labiatus can resemble T. lamyi n. sp. in bearing three dark blotches on the siphonal canal (Hardy 2014). T. labiatus (Fig. 2G, H) differs by its spiral sculpture; it displays secondary cords spines s2 and s4 missing in T. lamyi n. sp. (Fig. 11A).
Nine new muricid species from the French Antilles

Fig. 2. — **A-F**, *Typhinellus lamyi* n. sp.: **A-C**, ventral, profil and dorsal views holotype MNHN-IM-2013-7776, Port Louis (stn GD35) at 66 m deep; **D, E**, ventral and dorsal views paratype, coll. DL, East of Fajou Island, in 80-90 m deep; **F**, dorsal view paratype MNHN-IM-2013-20576, Fajou Island, at 85 m deep; **G, H**, ventral and dorsal views *T. labiatus* (Cristofori & Jan, 1832), coll. BG, Kerkennah (Tunisia), at 1 m deep; **I**, (ventral view) *T. occlusus* (Garrard, 1963), coll. BG, Balut Island (Philippines), in 80-150 m deep. Scale bars: 10 mm.
Subfamily Muricinae Rafinesque, 1815
Incertae sedis

Genus Dermomurex Monterosato, 1890

Type species. — *Murex scalarinus* Bivona-Bernardi, 1832 (by original designation) junior synonym of *Murex scalaroides* Blainville, 1829. Pliocene: Mediterranean Sea; Recent, Mediterranean Sea and Senegal (see Merle *et al.* 2011).

Remarks
In their muricid phylogeny based on molecular data, Barco *et al.* (2010) strongly suggested the polyphyly of the Muricinae sensu Vokes (1996), but, as the relationships with the clade Muricinae (s.s.) are not resolved, we cannot be totally sure of the lack of relationships between the *Dermomurex* subclade and the *Attiliosa*-Muricopsinae subclade and the clade Muricinae (s.s.). Considering these results, Merle *et al.* (2011) assigned *Dermomurex* to an informal Aspelloid group, for which the status among the clade of the Muricinae (s.s.) remains uncertain or needs to be verified.

Subgenus *Trialatella* Berry, 1964

Type species. — *Trialatella cunninghamae* Berry, 1964 by original designation. Recent: west coast of Central America from Gulf of California, Mexico to Panama.

Dermomurex (Trialatella) pruvosti n. sp.
(Figs 3A-D; 4B; 11C)

Type material. — Holotype (MNHN IM-2000-27726); one paratype (MNHN ÎM-2000-27727) KARUBENTHOS 2012: stn GN01, 16°22.4′N, 61°35.6′W, at 80 m deep, Fajou Island; one paratype (coll. DL), East of Fajou Island, in 80-90 m deep.

Type locality. — Guadeloupe, Fajou Island, 16°22.4′N, 61°35.6′W (stn GN01), at 80 m deep.

Etymology. — Named in honour of Laurent Pruvost.

Description of the holotype
Protoconch of 1.25 whorls. Teleoconch biconic, H 10.2 mm, D 5.7 mm. High spire of five whorls. Last whorl rounded, 73% of the total length of teleoconch. Apical angle of 55°. Spiral sculpture consisting in marked primary cords. Appearance of P1 and P2 since the third whorl. IP on the sutural ramp. Convex part of the whorl: P1, P2, P4 well developed, P5 smaller, P3 atrophied. Siphonal canal: P6, ADP and MP. On four first whorls: six protovarices. On fourth whorl: gradual appearance of three varices and three intervarical ribs (intercalated between two varices). On last whorl: four varices and three intervarical ribs (intercalated between two varices). Aperture ovate. Columellar lip smooth and slightly erected anteriorly. Outer lip crenulated and flared. Internal denticles D1, D2, D3, D4 and D5 simple. Siphonal canal open, dorsally recurved and up to 23% of total length of teleoconch. Microsculpture: thin spiral threads on the whole surface of the shell. Intritacalx cancellate. Shell brown under a creamy intritacalx. Aperture brown with darker denticles. Operculum and radula unknown.

Comparison (see also Table 1)
In comparison with *Dermomurex (Trialatella) abyssicola* (Crosse, 1865) (Fig. 3I, J), a species ranging from Bahamas to Brazil between 0.5 m and 20 m deep, *D. (T.) pruvosti* n. sp. differs by a nodulose sculpture formed by small protuberances at the intersection between the varices and the primary cords. *Dermomurex (T.) pruvosti* n. sp. is also distinguishing from *D. (T.) abyssicola* by developed wing-like varices and by an atrophied P3 on the convex part of the whorl. *D. (T.) pruvosti* n. sp. is brown, instead yellow-whitish in *D. (T.) abyssicola."

Dermomurex (Trialatella) boucheti n. sp.
(Figs 3N-P; 4C; 11D)

Type material. — Holotype (MNHN-IM-2013-8857), DNA sequenced (GenBank no. KJ591660), KARUBENTHOS 2012, stn GD60, 16°12.05′N – 61°03.9′W, at 95 m deep.

Type locality. — East of Petite Terre Island, Guadeloupe, 16°12.05′N – 61°03.9′W (GD60), at 95 m deep.

Etymology. — Named in honour of Philippe Bouchet.
Fig. 3. — **A-D**, *Dermomurex (Trialestella)* provosti n. sp.: **A-C**, ventral, profil and dorsal views, holotype MNHN IM-2000-27726, Fajou Island, at 80 m deep; **D**, ventral view, paratype, coll. DL, East of Fajou Island, in 80-90 m deep; **E-H**, *D. (T.) fajouensis* n. sp.; **E, F**, ventral and dorsal views, holotype MNHN IM-2000-27733, East of Fajou Island, at 80 m deep; **G, H**, ventral and dorsal views, paratype MNHN IM-2000-27734, East of Fajou Island, at 80 m deep; **I, J**, ventral and dorsal views, *D. (T.) abyssicola* (Crosse, 1865), coll. DL, South Rocroy, Guadeloupe, at 7 m deep; **K, L**, ventral and dorsal views, *D. (T.) tararensis* n. sp., holotype MNHN IM-2000-27728, Anse Tarare, at 60 m deep; **M**, ventral view, *D. (T.) oxum* Petuch, 1979, holotype USNM 780648, Abrolhos Archipelago, Bahia State, Brazil, at 25 m deep, photo courtesy of E. Strong (USNM); **N-P**, ventral, profil and dorsal views *D. (T.) boucheti* n. sp., holotype MNHN-IM-2013-8857, East of Petite Terre Island, at 95 m deep. Scale bars: 5 mm.
Garrigues B. & Merle D.

Dermomurex (Trialatella) fajouensis n. sp.
(Figs 3E-H; 4D; 11E)

Type material. — Holotype (MNHN IM-2000-27733), one paratype (MNHN IM-2000-27734), one paratype (coll. DL) East of Fajou Island, in 80-90 m deep, one paratype (coll. BG), East of Fajou Island, in 80-90 m deep.

Type locality. — East of Fajou Island, Guadeloupe, in 80-90 m deep.

Etymology. — From Fajou Island, Guadeloupe.

Description of the holotype
Protoconch of 1.25 whorls. Teleoconch ovate, H 15.4 mm, D 7.7 mm. Spire moderately high of five subcarinate whorls. Last whorl rounded, of 73% of the total length of teleoconch. Apical angle of 70°. Spiral sculpture consisting in primary cords slightly more marked on the varices than on the intervarical space. Wing-like varices flattened with a varical extension along the siphonal canal. Appearance of P1 and P2 cords since the third whorl. IP on the sutural ramp. On the convex part of the whorl: P1, P2, P3 and P4 well developed, P5 smaller. On the siphonal canal: P6 and ADP.

On the first whorl: six protovarices; on the second whorl: seven protovarices; on the third and fourth whorl: three varices and three intervarical ribs (intercalated between two varices); on the last whorl: three varices and five small of intervarical ribs (intercalated between two varices). Aperture ovate. Columellar lip smooth and adherent. Outer lip erected and lacking denticles within. Siphonal canal open, dorsally recurved and up to 23% of the total length of teleoconch. Microsculpture: thin spiral threads on the whole surface of the shell, when the intritacalx is removed. Intritacalx marked by a latticework of axial and spiral lines. Shell colour unknown under a creamy intritacalx. Aperture orange. Operculum and radula unknown.

Comparison (see also Table 1)
Dermomurex (Trialatella) boucheti n. sp. should be compared with D. (T.) abyssicola, to D. (T.) oxum Petuch, 1979 (Fig. 3M) from Panama to Brazil between 25 and 52 m deep and to the type species. Dermomurex (T.) boucheti n. sp differs from D. (T.) abyssicola by a shorter spire, a broader shell and by more developed varical extensions. In addition, the axial sculpture of D. (T.) boucheti n. sp. bears five small intervarical ribs (intercalated between two varices) on the last whorl, whereas that of D. (T.) abyssicola bears only a single intervarical rib (intercalated between two varices). D. (T.) boucheti n. sp. is distinguished from D. (T.) oxum by lacking intervarical rib. Moreover, its shape is ovate instead biconical. The outer lip of D. (T.) boucheti n. sp. is smooth, whereas it bears five denticles (D1 to D5) in D. (T.) cunninghamae (Merle et al. 2011, fig. 76A).
etymology. — From “Anse Tarare”, Guadeloupe.

DESCRIPTION OF THE HOLOTYPE
Protoconch of 1.25 whorls. Teleoconch biconic, H 7.6 mm, D 4.3 mm. Spire low of four whorls. Last whorl rounded, 75% of the total length of teleoconch. Apical angle of 62°. Spiral sculpture consisting in primary cords, more marked near the varix. On the last whorl: sutural ramp, IP; the convex part of the whorl, P1, P2, P4 well developed, P5 smaller than P4 and P3 atrophied; siphonal canal, P6 and ADP. Axial sculpture with seven varices from the first to the third whorl. Last whorl: six varices and one intervarical rib (between two varices). Aperture ovate. Columellar

Dermomurex (Trialatella) tararensis n. sp.
(Figs 3K, L; 4E; 11F)

Type material. — Holotype (MNHN IM-2000-27728), KARUBENTHOS 2012, stn GD69, 16°16.0’N, 61°10.2’W, at 60 m deep.

Type locality. — Anse Tarare, Grande Terre, Guadeloupe, 16°16.0’N, 61°10.2’W (GD69), at 60 m deep.
Subfamily MURICOPSISAE
Radwin & D’Attilio, 1971

Genus Pygmaepterys Vokes, 1978

Type species. — *Murix alfredensis* Bartsch, 1915 by original designation. Recent: South Africa.

Pygmaepterys pointieri n. sp.
(Figs 5A-F; 12A)

Comparison (see also Table 1)

Dermomurex (Triatalletta) abyssicola (Crosse, 1865); *D. (T.) oxum* Petuch, 1979; *C. D. (T.) pruvosti* n. sp.; *D. D. (T.) boucleti* n. sp.; *E. D. (T.) fajouensis* n. sp. and *F. D. (T.) tararensis* n. sp.

	A	B	C	D	E	F
Number of protoconch whorls	1	1.25	1.25	1.25	1.25	1.5
Number of teleoconch whorls	5	5	5	5	4	4
Number of protovarices	6	6	6	6-7	6	7
Number of varices on the last whorl	3	3	3	3	6	7
Number of intervarical ribs on the last whorl	3	3	3	5	0	0
Atrophy of P3	No	Yes	Yes	No	No	Yes
Adult size (H)	9-13.7 mm	9.5-13.1 mm	8-11 mm	15.4 mm	7.5 mm	7.6 mm
Internal denticles of the outer lip	Present	Present	Present	Absent	Absent	Present
Intritacalx	Thin spiral threads	Spiral threads	Minutely cancellate	Thin spiral threads	Rough drawing the Thin spiral threads	

Table 1. — Comparative table of the morphological characters for A, *Dermomurex (Triatalletta) abyssicola* (Crosse, 1865); B, *D. (T.) oxum* Petuch, 1979; C, *D. (T.) pruvosti* n. sp.; D, *D. (T.) boucleti* n. sp.; E, *D. (T.) fajouensis* n. sp. and F, *D. (T.) tararensis* n. sp.

Lip smooth, slightly erected anteriorly. Flaring outer lip with five denticles (D1 to D5). Siphonal canal open, dorsally recurved and up to 27% of the total length of teleoconch. Intritacalx of fine spiral threads. Shell yellow white under a creamy intritacalx. Yellow aperture with orange denticles. Operculum and radula unknown.

Type material. — Holotype (MNHN-IM-2013-8488), DNA sequenced (GenBank no. KJ591662), KARUBENTHOS 2012, stn GB01, 16°11.8’N, 61°29.66’W, at 6 m deep; paratype A (MNHN-IM-2013-7767), DNA sequenced (GenBank no. KJ591664), KARUBENTHOS 2012, stn GB01; paratype B (MNHN-IM-2013-7985), DNA sequenced (GenBank no. KJ591661), KARUBENTHOS 2012, stn GB01; paratype C (MNHN-IM-2013-8433), DNA sequenced (GenBank no. KJ591663), KARUBENTHOS 2012, stn GB01; paratype D (MNHN IM-2000-27729), KARUBENTHOS 2012, stn GS39, 16°09.5’N, 61°10.5’W, at 16 m deep; one paratype (coll. BG), Gosier Island, 16°11.8’N, 61°29.66’W (stn GB01), at 6 m deep.

Type locality. — Gosier Island, Guadeloupe, 16°11.8’N, 61°29.66’W (stn GB01), at 6 m deep.
Fig. 5. — A-F, Pygmaepterys pointieri n. sp.: A, B, ventral and dorsal views, holotype MNHN-IM-2013-8488, Gosier Island, at 6 m deep; C, ventral view, paratype A, MNHN-IM-2013-7767, Gosier Island, at 6 m deep; D, E, ventral and dorsal views, paratype D, Petite Terre, 15 m deep; F, dorsal view, paratype B, MNHN-IM-2013-7985, Gosier Island, at 6 m deep; G, H, ventral and dorsal views, P. karukerensis n. sp., holotype MNHN IM-2000-27730, Pigeon Island, at 50 m deep; I, ventral view, P. aliceae (Petuch, 1987), holotype USNM 859846, Southern coast of Bonaire Island, Netherlands Antilles, at 2 m deep; photo courtesy of E. Strong (USNM); J-M, P. germainae Vokes & D’Attilio, 1980; J, ventral view, holotype USNM 783319, off Pta. Higüero, northwestern Puerto Rico in 12-90 m deep; photo courtesy of E. Strong (USNM); K-M, ventral, dorsal views and protoconch, coll. DL, Fajou Island, Guadeloupe, 80-90 m deep. Scale bars: A-L, 5 mm; M, 0.5 mm.
Etymology. — Named in honour of Jean-Pierre Pointier.

Description of Holotype
Protoconch 1.5 whorls. Teleoconch biconic, H 9 mm, D 5 mm. Spire high of five whorls. Last whorl rounded, 73% of the total length of teleoconch. Apical angle of 50°. Spiral sculpture consisting in marked primary cords. First whorl: appearance of P1, P2 and IP on the suture; convex part of the whorl, P1, P2, P3, P4 and P5 well developed; siphonal canal, P6 placed on the top, ADP and MP present. Axial sculpture with eight lamellose varices since the first whorl. Aperture ovate. Columellar lip smooth, slightly erected anteriorly. Outer lip erected and undulated. Internal denticles ID, D1, D2, D3, D4 and D5. Siphonal canal open and dorsally recurved, of 23% of the total length of teleoconch. Squamous microsculpture with erecting growing lamellae. Shell creamy with brown bands in P3 and between P5 and P6. Aperture creamy. Operculum and radula unknown.

Comparison
Pygmaepterys pointieri n. sp. differs from *P. germainae* Vokes & D’Attilio, 1980 (Fig. 5J-M) by a higher spire, a narrower shape, the lack of columellar folds and a brown notch near the suture. The holotype of *P. aliceae* (Petuch, 1987) is an eroded shell with a somewhat eroded ornamentation (Fig. 5I). However, *P. pointieri* n. sp. is distinguishing from *P. aliceae* by a more shouldered shell with a P1 spine which is adapically turned. The brown bands of *P. pointieri* n. sp. are lacking in *P. aliceae* which is entirely white.

Pygmaepterys karukerensis n. sp.
(Figs 5G, H; 12B)

Type Material. — Holotype (MNHN IM-2000-27730), KARUBENTHOS: stn GS13, 16°02.4'N, 61°45.6'W, at 50 m.

Type Locality. — Pigeon Island, Guadeloupe, 16°02.4'N, 61°45.6'W (stn GS13), at 50 m deep.
Nine new muricid species from the French Antilles

Fig. 6. — **A-C.** Muricopsis guadalupensis n. sp.: **A, B**, ventral and dorsal views, holotype, MNHN IM-2000-27731, Malendure, at 10 m deep; **C**, ventral view, paratype DL. **D-F.** *M. marcusii* Vokes, 1994: **D, E**, ventral and dorsal views), coll. BG, Guarapari Channel, Espirito Santo State, Brazil, on rocks at low tide; **F**, ventral view, coll. BG, Guarapari Channel, Espirito Santo State, Brazil, scuba under rocks in 8-12 m deep; **G, H.** *M. caribbaea* (Bartsch & Rehder, 1939): **G**, ventral view, holotype USNM 472617, Old Providence Island, Colombia, photo courtesy of E. Strong (USNM); **H**, ventral view, coll. BG, St Anne, Guadeloupe, on reef. Scale bar: 10 mm.
Muricopsis guadalupensis n. sp.
(Figs 6A-C; 12D)

Type material. — Holotype (MNHN IM-2000-27731), Malendure, Guadeloupe, at 10 m deep, one paratype (coll. DL), same locality, one paratype (coll. BG), same locality.

Type locality. — Malendure, Guadeloupe, at 10 m deep.

Etymology. — From Guadalupa (Latin name of Guadeloupe).

Description of holotype
Protoconch unknown. Teleoconch biconic, H 16.1 mm, D 7.7 mm. Six teleoconch whors. Spire acute of 4.5 whors. Last whor of 71% of the total length of teleoconch. Apical angle of 45°. Spiral sculpture consisting in marked primary cords. First whor: appearance of IP and P1. Second whor: IP, P1 and P2. Last whor: sutural ramp, IP and the secondary cord abis; convex part of the whor: P1, P2, P3, P4, P5 well developed and the secondary cords s1, s2, s3, s4, s5; siphonal canal, P6 atrophied, ADP, MP and the secondary cord s6. Axial sculpture: twelve varices on the first whor, eleven varices from the second to the fourth whor, nine varices on the fifth whor and seven varices on the last whor. Aperture ovate. Columellar lip adherent, with two anterior folds. Outer lip strongly crenulated with denticles ID, D2, D3, D4 and D5.

D1 missing, D2 hypertrophied. Siphonal canal open, of 21% of the total length of teleoconch, dorsally and the left turned. Microsculpture with small punctae at the intersection between the spiral cords and the growing lamellae. Shell red brown, darker patches when the primary cords cross the varices. Aperture beige. Operculum and radula unknown.

Comparison (see also Table 2)
Muricopsis guadalupensis n. sp. is compared with *M. caribbaea* (Bartsch & Redher, 1939) (Fig. 6G, H) occurring from Florida to the north coast of South America and to *M. marcusi* Vokes, 1994 (Fig. 6D-F) from the Northern Brazil. The last whor of *M. caribbaea* is more rounded. It displays broader primary cords, white P2 and P4 and orange IP, P1, P3, P5, P6 and ADP, whereas *M. guadalupensis* n. sp. is monochromatic. *Muricopsis marcusi* possesses eight varices on the four first whors, instead eleven to twelve in *M. guadalupensis* n. sp. Primary cord spines are present on the last whors of *M. marcusi*, whereas they are missing in *M. guadalupensis* n. sp.

Genus Murexsul Iredale, 1915

Type species. — *Murexsul octogonus* (Quoy & Gaimard, 1833) by original designation. Recent: New Zealand.
Fig. 7. — A-F, Murexsul hexagonus (Lamarck, 1816): A, B, ventral and dorsal views, lectotype (MHNG 1099/41/1); C, ventral view, paralectotype (MHNG 1099/41/2); D, ventral view, coll. BG, Cuba; E, ventral view, coll. DL, Saint-Barthélemy Island, 30-40 m deep; F, ventral view, coll. BG, Bimini, Bahama, 90 m deep. G, H, M. oxytatus (Smith, 1938): G, ventral view, paratype UF no. 5946, Caloosahatchee Formation, Plio-Pleistocene, Hendry County, Florida, photo courtesy of John Slapcinsky (UF); H, ventral view, coll. BG, Rosalind Bank, Honduras, on coral reef at 20 m deep. I, ventral view, M. zylmanae (Petuch, 1993), holotype CMNH no. 47379, Great Isaacs Cay, Bahama, photo courtesy of M. Paustian (CMNH). J, ventral view, M. huberti (Radwin & D’Attilio, 1976), holotype SDNHM, no. 63078, west side of Grenada, West Indies, at 4.5 m deep, photo courtesy of Carole Hertz, Jim Berrian, Michael Wall and Paul Tuskes (SDNHM). K, ventral view, M. chesleri Houart, 2006, paratype MNHN no. 7008, Roatan Island, Honduras, on dead coral at 2 m deep. L, ventral view, M. sunderlandi (Petuch, 1987), holotype, USNM 859848, Cay Sal, Cay Sal Bank, Bahamas, under coral rubble at 10 m deep, photo courtesy of E. Strong (USNM). M, ventral view, M. warreni (Petuch, 1993), holotype CMNH, Montego Bay, Jamaica, Greater Antilles, 20-30 m deep, photo courtesy of M. Paustian (CMNH). N, ventral view, M. jahami Merle & Garrigues, 2011, holotype MNHN.IM.24630, Peninsula Caravelle, Eastern Martinique. Scale bars: 10 mm.
Table 3. — Comparative table of the morphological characters for Murexsul hexagonus (Lamarck, 1816), M. oxytatus (Smith, 1938), M. zylmanae (Petuch, 1993), M. huberti (Radwin & D’Attilio, 1976) and M. chesleri Houart, 2006.

M. hexagonus	M. oxytatus	M. zylmanae	M. huberti	M. chesleri
Number of protoconch whorls	1.5	(probably paucispiral)	1.25	1.75
Number of teleoconch whorls	7	7	6-7	6-7
Number of varices on the last whorl	6	6	7	6
Primary cord spines on the last whorl	P1 longer, P2 atrophied, P3, P4, P5	P1, P2 atrophied, P3, P4, P5	P1, P2 atrophied, P3, P4, P5	P1, P2 atrophied, P3, P4, P5
Apical angle	44°	43°	39°	54°
Relative length of siphonal canal	28% of the total length	24% of the total length	33% of the total length	20% of the total length
Internal denticles of the outer lip	D1 simple, D2 simple, D3 split, D4 and D5 simple	D1 simple, D1 missing or fused with D2, D2 to D5 simple	D1 simple, D1 to D5 simple	D1 simple, D1 to D5 simple
Columellar folds	Absent	Present	Absent	Present
Shell colour	Cream with tan varices and spines	Pink	Rosy pink with white revolving bands	White with tan spiral bands
Internal denticles of the outer lip	ID simple, D1 simple, D2 simple, D3 split, D4 and D5 simple	ID simple, D1 missing or fused with D2, D2 to D5 simple	ID simple, D1 missing, D2 simple, D3 split, D4 and D5 simple	ID simple, D1 missing, D2 simple, D3 split, D4 and D5 simple
Columellar folds	Absent	Present	Absent	Present
Shell colour	Cream with tan varices and spines	Pink	Rosy pink with white revolving bands	White with tan spiral bands
Type locality. — “Antilles”. The locality Antilles is given on the label of the type material (Y. Finet MHNG, written communication).				
Nine new muricid species from the French Antilles

ZOOSYSTEMA • 2014 • 36 (4)

H: 14.7 mm; 1 spm, coll. JP, Rocher Créole, Saint Martin Island, at 6 m deep, H: 30.4 mm.

GEOGRAPHIC RANGE. — Bahamas, Florida, Cuba, Puerto Rico, Turks and Caicos, Lesser Antilles, Dominican Republic, Saint Barthélemy and Saint Martin, from 3 to 90 m deep. See Fig. 8 for a comparison with the geographic range of *M. oxytatus* (Smith, 1938).

DESCRIPTION OF THE LECTOTYPE
Protoconch unknown. Teleoconch biconic, H 43.4 mm, D 24 mm. Spire acute of seven carinate whorls. Last whorl of 70% of the total height. Apical angle of 42°. Spiral sculpture consisting in marked primary and secondary cords. First whorl: appearance of IP and P1. Second whorl to penultimate whorl: IP, P1, P2 and P3. Last whorl: sutural ramp, adis, IP and abis; convex part of the whorl, P1, P3, P4 and P5 well developed and P2 atrophied; siphonal canal, P6 atrophied, ADP, MP and ABP well developed. Secondary cords s1 to s5 (on convex part of the whorl). Longest shoulder spines (P1) distally acute. Axial sculpture with six varices. Aperture oval, Columellar lip smooth, slightly erected anteriorly and lacking columellar fold. Outer lip crenulated, with denticles ID simple, D1 + D2 (fused denticles), D3, D4 and D5 simple. Siphonal canal open, of 29% of the total length, dorsally and left turned. Microsculpture with growing lamellae. Shell cream, varices and spines tan, primary cords P1, P3, P4 and P5 white. Aperture white. Operculum and radula unknown.

ADDITIONAL DESCRIPTION BASED ON OTHER MATERIAL
Protoconch 1.5 whorls. H: between 18.9 mm and 43.4 mm for adult specimens. In large specimens: D1 and D2 not fused, D3 and D4 splitted. Microsculpture squamous or cancellate in juveniles. Sometimes, a darker spiral band between P3 and P4. Operculum with apical nucleus.

REMARKS
Lamarck (1816) figured *Murex hexagonus* Lamarck, 1816 among shells coming from the Antilles and gave a description in 1822. Unfortunately, this name had previously been proposed by Gmelin (1791) and is usually unaccepted, because it is considered to be a junior primary homonym. However, the article 23.9.5 of the ICZN (1999) stipulates that: “When an author discovers that a species-group name in use is a junior primary homonym [Art. 53.3] of another species-group name also in use, but the names apply to taxa not considered congeneric after

Fig. 8. — Map showing the geographic range of *Murex sul hexagonus* (Lamarck, 1816) and *Murex sul oxytatus* (Smith, 1938). Symbols: •, *M. hexagonus*; ○, *M. oxytatus*.

857
In conclusion, the name *Murex hexagonus* Lamarck, 1816 should be rehabilitated. Later, Smith (1938) described a subspecies *Murex hexagonus oxytatus* from a Plio-Pleistocene fossil (Caloosahatchee Formation, Florida, USA) and since Abbott (1958), *M. oxytatus* is usually used for Recent material (Abbott 1974, Fair 1976, Radwin & d’Atrilio 1976, Abbott & Dance 1982, Vokes 1994, Houart 2006 see above the synonymic list). However, the case of *M. hexagonus* Lamarck, 1816 was not reconsidered and Vokes (1994) discussing *M. zylmanae* (Petuch, 1993) suggested that the figure of *Murex hexagonus* Lamarck, 1816 displays more similarities with *M. zylma-

In conclusion, the name *Murex hexagonus* Lamarck, 1816 should be rehabilitated.

Later, Smith (1938) described a subspecies *Murex hexagonus oxytatus* from a Plio-Pleistocene fossil (Caloosahatchee Formation, Florida, USA) and since Abbott (1958), *M. oxytatus* is usually used for Recent material (Abbott 1974, Fair 1976, Radwin & d’Atrilio 1976, Abbott & Dance 1982, Vokes 1994, Houart 2006 see above the synonymic list). However, the case of *M. hexagonus* Lamarck, 1816 was not reconsidered and Vokes (1994) discussing *M. zylmanae* (Petuch, 1993) suggested that the figure of *Murex hexagonus* Lamarck, 1816 displays more similarities with *M. zylma-

Fig. 9. — Scatterplot showing the relationship between the length of the siphonal canal (×2) and the total shell length in *Murexul hexagonus* and in *Murexul oxytatus* (Smith, 1938). Symbols: ♦, *Murexul oxytatus*; ■, *Murexul hexagonus* Lamarck, 1816; --, Linéaire (*Murexul oxytatus*; ---, Linéaire (*Murexul hexagonus*).
Fig. 10. — **A, B**, ventral and dorsal views, *Lindapterys domlamyi* n. sp., holotype MNHN IM-2000-27732; **C, F, G**, *L. sanderi* Petuch, 1987; **C**, ventral view, coll. BG, Camocin, Ceara, Brazil, at 25-35 m deep; **F, G**, ventral and dorsal views, holotype USNM 859838, Barbados, 300 m deep, photo courtesy of E. Strong (USNM); **D, E**, ventral and dorsal views, *L. vokesae* Petuch, 1987, holotype USNM 647012, Chipola Formation, Early Miocene, Florida, photo courtesy of J. F. Lesport. Scale bars: 5 mm.
Fig. 11. — Morphology of spiral cords and denticles: A, *Typhinellus lamyi* n. sp., paratype, coll. DL, East of Fajou Island, in 80-90 m deep; B, *Dermomurex* (*Trialatella*) *abyssicola* (Crosse, 1865), MNHN, Fortune Island, at 1 m deep, KARUBENTHOS 2012, stn GM06, 16° 09'N, 61° 33.67 W; C, *D. (T.) pruvosti* n. sp., holotype MNHN IM-2000-27726, Fajou Island, at 80 m deep; D, *D. (T.) boucheti* n. sp., holotype MNHN-IM-2013-8857, East of Petite Terre Island, at 95 m deep; E, *D. (T.) fajouensis* n. sp., holotype IM-2000-27733, East of Fajou Island, at 80 m deep; F, *D. (T.) tararensis* n. sp., holotype MNHN IM-2000-27728, Anse Tarare, at 60 m deep. Abbreviations: see Material and methods. Scale bars: 5 mm.
Fig. 12. — Morphology of spiral cords and denticles: A, *Pygmaepterys pointieri* n. sp., holotype MNHN-IM-2013-8488, Gosier Island, at 6 m deep; B, *P. karukerensis* n. sp., holotype MNHN IM-2000-27730, Pigeon Island, at 50 m deep; C, *Lindapterys domlamyi* n. sp., holotype MNHN IM-2000-27732; D, *Muricopsis guadalupensis* n. sp., holotype MNHN IM-2000-27731, Malendure, Guadeloupe, at 10 m deep; E, *Murexsul hexagonus* (Lamarck, 1816), lectotype (MHNG 1099/41/1). Abbreviations: see Material and methods. Scale bars: 5 mm.
nae than with *M. oxytatus*. Thus, the question of the identity of *M. hexagonus* Lamarck, 1816 was open. The study of numerous specimens of *Murex* collected in the Caribbean area allows to identify seven local species: *Murex oxytatus* (Smith, 1938), *M. huberti* (Radwin & D’Attilio, 1976), *M. zylmanae* and *M. chesleri* Houart, 2006, *M. sunderlandi* (Petuch, 1987), *M. warreni* (Petuch, 1993), *M. jahami* Merle & Garrigues, 2011 and to distinguish an eighth species. Thanks to the collaboration of Y. Finet (MHNG), we received photos of the two syntypes of *Murex hexagonus*. These photos correspond to the species that we identified as the eighth species.

Comparison (see also Table 3)

Murex *oxytatus* (Fig. 7G, H) is distinguished from *M. hexagonus* by columellar folds and by a shorter siphonal canal. In *M. oxytatus*, the length of siphonal canal is 24% of the total length of the teleoconch (average on 11 spm), instead of 28% for *M. hexagonus* (average on 14 spm), see also Fig. 9. In addition, the cord spines P1 of *M. hexagonus* are longer than those of *M. oxytatus*. *Murex* *zylmanae* (Fig. 7I) differs from *M. hexagonus* by hypertrophied cord spines P1, P3 and P5, an atrophied P4, a longer siphonal canal and a more acute spine. *Murex* *huberti* (Fig. 7J) has a lower spire than *M. hexagonus* with an apical angle of 54° instead of 44°. It displays seven varices on last whorl instead six. The protoconch is also shorter with 1.25 whors instead 1.5 whors. *Murex* *chesleri* (Fig. 7K) exhibits a shorter siphonal canal, a broader infrasutural ramp. In *M. chesleri*, the cord spine P3 is longer than the P1 cord spine whereas in *M. hexagonus*, the P1 cord spine is longer than the P3 cord spine. *Murex* *sunderlandi* (Petuch, 1987) has a more globose shell with a lower spire and a peculiar red colour with white spiral bands. In comparison with *M. warreni* (Petuch, 1993), *M. hexagonus* displays a narrower shape, a higher spire and a longer siphonal canal. *Murex* *warreni* bears a white color white with black spots. *Murex* *jahami* Merle & Garrigues, 2011, differs from *M. hexagonus* by an inflated last whorl, a P5 less developed, a more expanded columellar lip and a very scabrous surface.

Genus Lindapterys Petuch, 1987

Type species. — *Lindapterys vokesae* Petuch, 1987 by original designation. Early Miocene, Chipola Formation, Florida, USA.

Lindapterys domlamyi n. sp.

(Figs 10A, B; 12C)

Type material. — Guadeloupe, holotype (MNHN IM-2000-27732).

Type locality. — East of Fajou Island, Guadeloupe, in 80 and 90 m deep.

Etymology. — Named in honour of Dominique Lamy.

Description of holotype

Protoconch unknown. Teleoconch oval, H 7.9 mm, up to 3.8 mm in width. Spire high of four rounded whorls. Last whorl of 76% of the total length of teleoconch. Apical angle of 53°. Spiral sculpture consisting in equally primary and secondary cords. On last whorl: convex part of the whorl, P1 to P5; siphonal canal, P6, ADP, MP and ABP. Axial sculpture: first whorls, eight to nine protovarices; from third to fourth whorl, appearance of two lateral varices giving to the shell a bivaricate shape, Between two varices five intervarical ribs. Aperture oval, with a adherent columellar lip. Anal canal open, tubular and formed by P1 cord spine. Outer lip flaring, slightly erected with denticles from D1 than with *M. oxytatus*. Thus, the question of the identity of *M. hexagonus* Lamarck, 1816 was open. The study of numerous specimens of *Murex* collected in the Caribbean area allows to identify seven local species: *Murex oxytatus* (Smith, 1938), *M. huberti* (Radwin & D’Attilio, 1976), *M. zylmanae* and *M. chesleri* Houart, 2006, *M. sunderlandi* (Petuch, 1987), *M. warreni* (Petuch, 1993), *M. jahami* Merle & Garrigues, 2011 and to distinguish an eighth species. Thanks to the collaboration of Y. Finet (MHNG), we received photos of the two syntypes of *Murex hexagonus*. These photos correspond to the species that we identified as the eighth species.

Comparison (see also Table 3)

Murex *oxytatus* (Fig. 7G, H) is distinguished from *M. hexagonus* by columellar folds and by a shorter siphonal canal. In *M. oxytatus*, the length of siphonal canal is 24% of the total length of the teleoconch (average on 11 spm), instead of 28% for *M. hexagonus* (average on 14 spm), see also Fig. 9. In addition, the cord spines P1 of *M. hexagonus* are longer than those of *M. oxytatus*. *Murex* *zylmanae* (Fig. 7I) differs from *M. hexagonus* by hypertrophied cord spines P1, P3 and P5, an atrophied P4, a longer siphonal canal and a more acute spine. *Murex* *huberti* (Fig. 7J) has a lower spire than *M. hexagonus* with an apical angle of 54° instead of 44°. It displays seven varices on last whorl instead six. The protoconch is also shorter with 1.25 whors instead 1.5 whors. *Murex* *chesleri* (Fig. 7K) exhibits a shorter siphonal canal, a broader infrasutural ramp. In *M. chesleri*, the cord spine P3 is longer than the P1 cord spine whereas in *M. hexagonus*, the P1 cord spine is longer than the P3 cord spine. *Murex* *sunderlandi* (Petuch, 1987) has a more globose shell with a lower spire and a peculiar red colour with white spiral bands. In comparison with *M. warreni* (Petuch, 1993), *M. hexagonus* displays a narrower shape, a higher spire and a longer siphonal canal. *Murex* *warreni* bears a white color white with black spots. *Murex* *jahami* Merle & Garrigues, 2011, differs from *M. hexagonus* by an inflated last whorl, a P5 less developed, a more expanded columellar lip and a very scabrous surface.
to D5 (instead four in \textit{L. domlamyi} n. sp.) and by a larger adult size (17.2 mm instead 7.9 mm in \textit{L. domlamyi} n. sp.). \textit{Lindapterys vokesae} has twelve to thirteen protovarices on the first whorls and the lateral varices appear earlier since the second whorl.

Acknowledgements
We are grateful to Philippe Bouchet who provided us the opportunity to study the material collected in Guadeloupe in May 2012 during the KARU-BENTHOS expedition (Principal Investigator: Philippe Bouchet), organized jointly by the National Park of Guadeloupe, Muséum national d’Histoire naturelle (MNHN), Université des Antilles et de la Guyane (UAG), and Université Pierre et Marie Curie (UPMC), with funding from Fonds Européens de Développement Régional (FEDER) and Port Autonome de la Guadeloupe. We thank Dominique Lamy and Jean-Pierre Pointier for their help and Laurent Pruvost who takes risks in collecting material. We thank also Yves Finet (MHNG), Ellen Strong (USNM), Paul Callomon (ANSP), John Slapcinsky (UF), Megane Paustian (CMNH), Carole Hertz, Jim Berrian, Michael Wall and Paul Tuskes (SDNMH) and Jean-François Lesport for the photographs of the type specimens. The molecular sequences were obtained by Marco Oliverio (Sapienza University of Roma) and we also thank Nicolas Puillandré (MNHN) for the submission of the DNA sequences in Genbank. Our thanks go to Malcolm Sanders who read the English. They go also to the reviewers A. G. Beu (GNS Science, New Zealand) and Jerry Harasewych (USNM) for their careful comments improving the original manuscript.

REFERENCES

Abbott R. T. 1958. — The marine molluscs of Grand Cayman Island, British West Indies. Monographs of the Academy of natural Sciences of Philadelphia 11: 1-138.

Abbott R. T. 1974. — American seashells, the marine \textit{Mollusca} of the Atlantic and Pacific coasts of North America. Van Nostrand Reinhold Company Regional Office, New-York, 663 p.

Abbott R. T. & Dance S. P. 1982. — Compendium of Seashells. A Color Guide to more than 4200 of the world’s marine shells. E. P. Dutton, New York, 411 p.

Barco A., Claremont M., Reid D. G., Houart R., Bouchet P., Williams S. T., Cruaud C., Couloux A. & Oliverio M. 2010. — A molecular phylogenetic framework for the Muricidae, a diverse family of carnivorous gastropods, \textit{Molecular Phylogenetics and Evolution} 56 (3): 1025-1039.

Bruguière J.-G. 1792. — Encyclopédie Méthodique. Histoire naturelle des Vers. Tome 1, deuxième partie, Panckoucke, Paris: 345-757.

Espinoza J. & Ortea J. 2013. — Nuevas especies de los géneros Dentimargo Cossmann, 1899 y Eranoides Weinkauff, 1879, y nuevo género de Marginélido de la isla de la Guadeloupe, Antillas Menores, mar caribe (Mollusca: Neogastropoda: Marginellidae). \textit{Revisita de la Academia Canaria de Ciencias} 25: 111-127.

Fair R. H. 1976. — \textit{The Murex book}, an illustrated catalogue of the recent Muricidae (Murenicinae, Murecospinae, Ocinebrinae). Sturgis Printing Co., Honolulu, 138 p.

Gmelin J. F. 1791. — \textit{Caroli a Linné systema naturae per regna tria naturae}. Edition 13, volume 1 (6 pars), Beer, Leipsig, p. 3021-3910.

Hardy E. 2014. — \textit{Internet Guide to marine Gastropods}. http://www.gastropods.com. Last consultation 15 July 2014.

Harzhauser M., Hoşgor I. & Pcaaud J.-M., 2013. — Thanetian gastropods from the Mesopotamian high folded zone in northern Iraq. \textit{Paläontologische Zeitschrift} 87 (2): 179-199.

Houart R. 2006. — Description of two new species of Muricidae from Martinique and Honduras and re-evaluation of \textit{Muricopsis} s.s. in the western Atlantic. \textit{Novapex} 7 (2-3): 47-53.

I.C.Z.N. 1999. — \textit{International Code of Zoological Nomenclature}. Fourth edition. International Trust for Zoological Nomenclature, London, i-xxix + 306 p.

Lamarck J.-B. 1816. — \textit{Tableau Encyclopédique et Méthodique des trois règles de la nature, 23ème partie, mollusques et polypes divers}. Agasse, Paris, 16 p.

Lamarck J.-B. 1822. — \textit{Histoire naturelle des Animaux sans Vertèbres présentant les caractères généraux et particuliers de ces animaux, leur distribution, leurs classes, leurs familles, leurs genres, et la citation des principales espèces qui s’y rapportent; précédée d’une introduction offrant la détermination des caractères essentiels de l’animal, sa distinction du végétal et des autres corps naturels; enfin, l’exposition des principes fondamentaux de la zoologie}. Volume 7, Déterville, Paris, 711 p.

Lamy D. & Pointier J.-P. (in press 2015). — Mollusques marins et dulçaquicoles des Antilles françaises. PLB éditions, Gosier, 850 p.

Landau B., Houart R. & Marques da Silva C., 2007. — \textit{The Early Pliocene Gastropoda} (Mollusca)
of Estepona, Southern Spain. Part. 7 – Muricidae.
Palaeontos 11: 1-87.

MERLE D. 1999. — La radiation des Muricidae (Gastropoda: Neogastropoda) au Paléogène: approche phylogénétique et évolutive. Thèse de doctorat, Muséum national d'Histoire naturelle, Paris, 499 p.

MERLE D. 2001. — The spiral cords and the internal denticles of the outer lip of the Muricidae: terminology and methodological comments. Novapex 2 (3): 69-91.

MERLE D. 2005. — The spiral cords of the Muricidae (Mollusca: Gastropoda): importance of ontogenetic and topological correspondences for delineating structural homologies. Lethaia 38: 367-379.

MERLE D. & HOUART R. 2003. — Ontogenetic changes of the spiral cords as keys of innovation of the muricid sculptural patterns: the example of the *Muricopsis- Murexsul* lineages (Gastropoda: Muricidae: Murexinae). Comptes Rendus Palevol 2 (6-7): 547-556.

MERLE D. & GARRIGUES B. 2011. — Description of four new species of Muricidae (Mollusca, Gastropoda) from the Philippines and the Caribbean area. Zoosystema 33 (4): 557-575. http://dx.doi.org/10.5252/z2011n4a7

MERLE D., GARRIGUES B. & POINTIER J.-P. 2001. — An analysis of the sculptural pattern of the shell in Caribbean members of *Chicoreus (Siratus)* Jousseaume, 1880 (Gastropoda, Muricidae), with description of a new species. Zoosystema 23 (3): 417-431.

MERLE D., GARRIGUES B. & POINTIER, J.-P. 2011. — Fossil and Recent Muricidae of thew World. Part Muricinae. Conchbooks, Hackenheim, 649 p.

ORTEA J., ESPINOSA J., CABALLER M., & BUSKE Y. 2012. — Initial inventory of the Sea slugs (Opisthobranchia and Sacoglossa) from the expedition Karubenthos, held in May 2012 in Guadeloupe (Lesser Antilles, Caribbean Sea). Revista de la Academia Canaria de Ciencias 24: 153-182.

PELORCE J. & FABER M. J. 2013. — A new species of Columbellidae (Gastropoda: Neogastropoda) from Guadeloupe and other Caribbean Islands. Miscellanea Malacologica 6 (1): 5-8.

RADWIN G. E. & D’ATTILIO A. 1976. — *Murex Shells of the World: an illustrated guide to the Muricidae*. Stanford University Press, Standford, 284 p.

SMITH M. 1938. — Further notes upon Tertiary and Recent mollusks from Florida, with descriptions of new species. *Nautilus* 51 (3): 88-89.

SMITH M. 1939. — An Illustrated Catalog of the Recent Species of the Rocks Shells. Tropical Laboratory, Lantana, Florida, 83 p.

VOKES E. H. 1994. — Cenozoic Muricidae of the Western Atlantic region, Part X – The subfamily Muricopsinae. *Tulane Studies in Geology and Paleontology* 26 (2-4): 49-160.

VOKES, E. H. 1996 — One last look at the Muricidae. *American Conchologist* 24 (2): 4-6.

Submitted on 21 February 2014; accepted on 4 September 2014; published on 26 December 2014.