Optimization for Welding Parameters of Magnetic Media Box based on Orthogonal Experiment

Zhiyong Wang1a, Xuan Sun1b* and Dehui Sun2

1 School of Mechanical Engineering, University of Jinan, Jinan, China
2 Hanlin school, Shexian, Shandong, China

a97197165@qq.com,bme.sunx@ujn.edu.cn,*Corresponding Author

Abstract. In The magnetic media box of the magnetic separator is used as the research object, because at present the argon arc welding speed and the welding quality of the magnetic media box are relatively low, so the orthogonal test is used to optimize the welding technology of the magnetic media box. According to the characteristics of magnetic media box welding technology, the influence of welding current, arc voltage and welding speed on the tensile strength of magnetic media box is investigated. By experimenting and recording the experimental results, then using the range analysis method to analyze the experimental results to determine the optimal combination of welding process parameters. The reliability of the test results is proved by experiments. Finding the law of welding process parameters affecting the tensile strength of magnetic media boxes. It provides reference for TIG.

1. Introduction
The reasonable setting of welding parameters of TIG has great influence on the welding quality of magnetic media box. In previous productions, the choice of welding process parameters based on experience or inquiries on welding manuals was often too conservative due to safety considerations. The choice of optimum welding process parameters was not achieved, and the welding quality of magnetic media boxes was also reduced, and the production efficiency could not be guaranteed. The optimization of welding process parameters is a key technology to ensure the quality of magnetic media boxes, improve processing efficiency, and reduce production costs.
In this paper, the orthogonal test is used to optimize the parameters, and the calculation is small. At the same time, it can meet the quality requirements of the optimized processing and it is easy to promote in actual production\cite{1}.

2. Selection of experimental indicators and factor levels
In this paper, the parameters of argon arc welding are optimized, and the main requirement of magnetic media box is the connection strength of magnetic rod and magnetic plate. Because when the magnetic separator is working, the magnetic media box is used to sift iron powder from iron ore, and the selected iron powder will be washed out by high-pressure water, thus the screening of iron ore will be realized. In the long-term operation, due to the friction of iron powder, the impact and corrosion of high-pressure water will cause the magnet bar to fall off from the magnetic plate, thereby affecting the beneficiation quality and efficiency. At present, the method of detecting the quality of the weld is to analyze the microstructure, phase composition and mechanical properties of the weld by means of metallographic microscope and X-ray diffractometer. The mechanical properties mainly consider the tensile strength and hardness of the weld. The greatest influence on the overall welding quality of the...
magnetic media box in the detected microstructure characteristics and mechanical properties of the weld is the tensile strength of the weld. Therefore, ensuring the tensile strength at the joint between the magnetic plate and the magnetic bar of the magnetic media box is a key factor to ensure the quality of the magnetic media box. By analyzing the mechanical and technical requirements of the magnetic media box, it must be ensured that the tensile strength of the weld seam of the media box is greater than 240 MPa[2].

The structure of the magnetic media box is shown in Figure 1. Both the magnetic plate and the magnetic bar are nickel-iron alloy. The purpose of this machining is to weld both ends of the magnet to the magnetic plate. The thickness of the magnetic plate is 3 mm and the magnetic bar is 3 mm in diameter. The test of tensile strength is shown in Figure 2.

![Figure 1. Magnetic media box](image1)

![Figure 2. Tensile strength test](image2)

The welding method of magnetic media box adopts argon arc welding, welding process parameters mainly include welding current, welding speed, arc voltage, argon flow, tungsten electrode diameter, welding gun angle, etc[3]. There are many process parameters affecting the welding quality of the media box, and many process parameters have little effect on the welding quality. After reviewing the relevant literature and field tests, this paper selects three influencing factors of welding current, arc voltage, and welding speed[4], and examines its influence on the tensile strength of magnetic media boxes. Consider the actual welding situation, select five levels for each factor to study. The specific level values are shown in Table 1.

Factors	Unit	Levels
Welding current (A)	A	160 180 200 220 240
Welding speed (B)	mm/s	14 16 18 20 22
Arc voltage (C)	V	12 14 16 18 20

Table 2. experimental scheme

Test number	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25
A	1	1	1	1	1	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
B	1	2	3	4	5	1	2	3	4	5	1	2	3	4	5	1	2	3	4	5	1	2	3	4	5
C	1	2	3	4	5	2	3	4	5	1	3	4	5	1	2	4	5	1	3	2	5	1	2	3	4

3. Select orthogonal table

The orthogonal table is a pre-prepared form by mathematicians, which has the outstanding advantages of uniform dispersion and uniformity. The general orthogonal table format is $L_{N}(q')$. In this paper, the
factors of A, B and C are selected, and each factor has five levels, so the degree of freedom is $f_A = f_B = f_C = 5 - 1 = 4$. Therefore, the orthogonal test of this paper is arranged 25 times. According to the above discussion, $L_{25}(5^3)$ orthogonal table is selected in this paper [5].

Table 3. Factor Level Table

Experiment times	Welding current (A)	Welding speed (B)	Arc voltage (C)	Tensile strength (MPa)
1	160	14	12	185
2	160	16	14	220
3	160	18	16	238
4	160	20	18	231
5	160	22	20	203
6	180	14	14	193
7	180	16	16	216
8	180	18	18	223
9	180	20	20	211
10	180	22	12	183
11	200	14	16	210
12	200	16	18	201
13	200	18	20	247
14	200	20	12	218
15	200	22	14	207
16	220	14	18	205
17	220	16	20	217
18	220	18	12	223
19	220	20	16	212
20	220	22	14	207
21	240	14	20	181
22	240	16	12	192
23	240	18	14	214
24	240	20	16	209
25	240	22	18	207

Table 4. Range Analysis

Test number	Column number	1	2	3	Tensile strength (MPa)
1	1	1	1	1	190
2	2	1	2	2	200
3	3	1	3	3	210
4	4	1	4	4	210
5	5	1	5	5	185
6	6	2	1	2	190
7	7	2	2	3	210
8	8	2	3	4	213
9	9	2	4	5	211
10	10	2	5	1	183
11	11	3	1	3	225
12	12	3	2	4	211
13	13	3	3	5	247
14	14	3	4	1	228
15	15	3	5	2	217
16	16	4	1	4	210
17	17	4	2	5	217
18	18	4	3	1	213
19	19	4	4	3	212
20	20	4	5	2	207
21	21	5	1	5	190
22	22	5	2	1	192
23	23	5	3	2	204
24	24	5	4	3	209
25	25	5	5	4	207

K1	995	1005	1006
K2	1007	1030	1018
K3	1128	1087	1066
K4	1059	1070	1051
K5	1002	999	1050
k1	199	201	201.2
k2	201.4	206	203.6
k3	225.6	217.4	213.2
k4	211.8	214	210.2
k5	200.4	199.8	210

Range: 26.6 - 17.6, **12**

Excellent solution: A3 B3 C3

4. Design header of orthogonal test and make experiment plan

The final design of the orthogonal table is shown in Table 2. According to the 25 sets of data proposed in the above table [6], this paper uses a 400A welding power source to weld 25 magnetic media boxes. Measure the magnetic media box tensile strength. The measurement results are recorded in Table 3, and the resulting orthogonal test data is shown in Table 3.

5. Range analysis of Multifactor Orthogonal Experiments

The range analysis method is the most commonly used method for analyzing the results of orthogonal experiments. The excellent level and excellent combination of experimental factors can be obtained through the range analysis of tensile strength. Also, it was found that each factor influences the strength of tensile strength. The range analysis table is calculated as shown in Table 4.
According to the analysis of table 4, the welding current size has the greatest influence on the tensile strength of the magnetic media box, the welding speed is the second and the arc pressure is the smallest. The higher the tensile strength, the higher the quality of the magnetic media box, so the optimal level of the process parameters is welding current 200A, welding speed 18mm/s, and arc voltage 16V.

6. Verify the results of orthogonal experiments

According to the experimental results, new welding process parameters were used to weld 5 magnetic media boxes. Then the tensile strength of the magnetic media box is calculated, as shown in table 5.

Table 5. Magnetic Media Box Experiment Results
Product
tensile strength (MPa)

From the above table, it can be seen that the welding quality of magnetic media boxes has been significantly improved. To achieve the purpose of this experiment.

7. Conclusion

This article orthogonal test is a three-factor five levels. The results show that when the welding current is 200A, the welding speed is 18mm/s, and the arc voltage is 16V, the magnetic media box has the highest tensile strength and satisfies the technical requirements. The optimization objective of this paper is the tensile strength of magnetic dielectric box, and its optimization experiment can be popularized, and its research idea also provides reference for relevant researches.

References

[1] Analysis of influencing factors of mining subsidence in Jinjie coal mine based on orthogonal test [J]. Wang Kai ye, Ceng Xiangzhu, Luan Chun Xue. Coal technology. 2015 (02):56-60
[2] Zhao Yuanbo. Study on welding technology of Tungsten TIG Welding of TC2 Thin Plate[J]. Rural Science Experiment, 2017,(11):110-114
[3] YSuper Audio DC Pulse TIG Welding of TC4 Titanium Alloy[J]. Xu Haiying, Qi Bojin, Zhang Wei, Zhao Haitao. Journal of Aeronautical Materials. 2011(01):48-52
[4] Stainless Steel Conveyor Belt and Bellows TIG Welding[J]. CHEN Su-Bin, GAO Hui-Yang. Welding Technology. 2016(S1):12-17
[5] Zhan Liang, Li Xia, Sun Libin, etal. Design optimization of process parameters of crankshaft die forging based on orthogonal experiment [J]. Forging & Stamping Technology, 2014, 39(7):10-13.
[6] Optimization of crankshaft hot forging process parameters based on orthogonal test[J]. Zhan Liang, Li Xia, Sun Ribin, Wang Yuxiao, Li Lei. Forging and Stamping Technology. 2014,(07):25-30.