Impact of titanium dioxide nanoparticles on purification and contamination of nematic liquid crystals

Dmitrii Pavlovich Shcherbinin* and Elena A. Konshina

Abstract
We have investigated the impact of titanium dioxide nanoparticles on the ionic contamination of liquid crystals. Nematic liquid crystals with high and low initial ionic contamination have been examined. It has been shown that titanium dioxide nanoparticles reduced the ion density of liquid crystals with high initial ionic contamination from $134.5 \times 10^{12} \text{ cm}^{-3}$ to $63.2 \times 10^{12} \text{ cm}^{-3}$. In the case of liquid crystals with low initial ionic contamination, the nanoparticles led to an insignificant increase of ion density from $19.8 \times 10^{12} \text{ cm}^{-3}$ to $25.7 \times 10^{12} \text{ cm}^{-3}$.

Findings
Nowadays, liquid crystals (LCs) are widely used in different display and non-display applications. The development of display techniques has led to the construction of high-quality screens including fully transparent [1], flexible screens [2] and dual-view [3] displays in the past years. The area of LCs for non-display applications is also rapidly growing. The application of LCs includes metamaterials [4], photonic crystals [5], plasmonic structures [6], THz devices [7], sensors [8], diffractive optics [9], adaptive lens technologies [10] and vision correction [11], as well as tunable filters [12] and dispersion for imaging [13]. In addition, nanoparticles can induce other new functions in liquid crystals, including improved response time [14,15], surface plasmon resonance [16], and improvements in alignment [17].

The ionic contamination of LCs remains one of the challenges to LC technology. Ionic conductivity negatively affects LC device performance, leading to slow response, a reduction of the voltage holding ratio, and image quality degradation. Despite the negative effect of ionic contamination in display techniques, LCs with high ionic conductivity may be used in non-display applications [18,19]. Although modern LC mixtures are highly purified, uncontrolled contamination during utilization can occur [20]. Physical-chemical methods provide a
desirable level of LC purity during synthesis which cannot be applied during the process of using the LC devices. The search for a new solution to control the ionic contamination induced during LC device utilization is a current research focus in the field of LC display techniques.

Extensive experimental research has shown that nanoparticles (NPs) affect the ionic conductivity of LCs. However, data obtained from different experimental studies are contradictory. The decrease of ionic contamination was observed in LCs doped with carbon nanoparticles [21], semiconductor quantum dots [22], and metal NPs [23]. At the same time, the increase of ionic contamination due to doping with NPs was reported in other papers [24-26]. This contradiction was resolved by the theory developed by Garbovskiy et al. [27-30]. In the framework of this theory it was shown that the same nanoparticles can lead to both contamination and purification of LCs. The theory considers adsorption and desorption of ions on nanoparticle surfaces and takes into account the initial ionic contamination of LCs. The same NP can lead to both purification and contamination of LCs under certain conditions. The aim of this study is the experimental verification of Garbovskiy’s assumption that the same NPs may have a different effect on the LC ionic conductivity depending on the initial LC contamination. We have examined nematic liquid crystals with low (LC1) and high (LC2) ionic contamination and their composites with TiO2 nanoparticles. The impact of TiO2 nanoparticles on purification and contamination in LCs has been experimentally shown.

The plane-parallel cells consisted of two glass substrates covered by indium-tin oxide (ITO) electrodes and rubbed polyimide layers were used for measurements. The thickness of the LC cells was set by spacers and controlled by measurements of empty cell capacitance. The thickness of the cells was 15 ± 1 μm. We used commercial nematic LC (ZhK1282, NIOPIK, Moscow) with low initial ionic contamination (LC1). The ionic surfactant cetyltrimethylammonium bromide (CTABr) was added to the same LC to produce a LC with high (LC2) ionic contamination. The data are shown in Table 1. The spectra were obtained in the range from 20 Hz to 1 kHz. In this spectral range, the dispersion of dielectric permittivity is related to ionic conductivity. Figure 1a represents real and imaginary parts of the dielectric permittivity of initially low-contaminated liquid crystals (LC1) and their composites with TiO2 nanoparticles. The increase of NP concentration led to the enhancement of the real and imaginary parts of the permittivity. We have observed an insignificant change in the spectra shown in Figure 1a. In contrast, the changes in the spectra were significant in the case of the initially high-contaminated LC2 (Figure 1b). Doping LC2 with TiO2 NPs resulted in a reduction of the real and imaginary parts of the dielectric permittivity. This indicates a decrease of the ionic conductivity of LC2.

In this frequency range, the spectra of the dielectric permittivity can be approximated by following equations [24]:

\[
\varepsilon' = \frac{2c_1q^2D^{3/2}}{\varepsilon_0\pi^{1/2}k_B T f^{-3/2}} + \varepsilon_{\infty}
\]

\[
\varepsilon'' = \frac{2c_1q^2D}{\varepsilon_0k_B T f^{-1}}
\]

where \(c_1\) – ion density, \(q\) – elementary charge, \(D\) – average diffusion coefficient, \(\varepsilon_0\) – dielectric constant, \(d\) – thickness of the cell gap, \(k_B\) – Boltzmann factor, \(T\) – temperature, \(f\) – frequency, and \(\varepsilon_{\infty}\) – high-frequency dielectric permittivity.

We have evaluated the ion density and the average diffusion coefficient of LC1, LC2 and their composites. The data are shown in Table 1.

The initial data show that increasing the TiO2 NP concentration up to 1 wt % leads to the rise of the ion density to 30% in the case of initially low-contaminated LC1. In the case of initially high-contaminated LC2, the ion concentration is reduced almost twice by doping with 1 wt % TiO2 NPs. In both cases, the increase of concentration leads to an increasing diffusion coefficient. Moreover, the estimated diffusion coefficient of ions in LC2 was larger.

In the framework of Garbovskiy’s theory, the surface of the NP is considered as a surface with absorbing sites. Because of adsorption/desorption processes on adsorbing sites, the concen-
Figure 1: The low frequency spectra of the real and imaginary parts of the dielectric permittivity for LC1 (a), LC2 (b), and their composites.

Table 1: Ion density and average diffusion coefficient of LC1, LC2 and their composites.

TiO₂ concentration, wt %	LC1	LC2		
	Ion density × 10^{12} cm⁻³	Diffusion coefficient × 10^{−8} cm²/s	Ion density × 10^{12} cm⁻³	Diffusion coefficient × 10^{−8} cm²/s
0	19.8	3.8	134.5	47.5
0.25	23.2	4.2	105.2	52.3
0.5	24.9	5.6	72.7	56.2
1	25.7	6.5	63.2	60.0

In general, the effect of doping LCs with NPs on the ionic conductivity depends on the initial contamination of the LC as well as the surfaces states of the NPs, ion adsorption and desorption rates. Adsorption/desorption rates and contamination of the NP surface define a critical concentration of ions. If the concentration of ions in the LC composites change. Ideal nanoparticles will have a high surface density of adsorbing sites which are completely unoccupied. This ideal NP surface would result in more pure LCs, regardless of the initial ionic contamination. However, the adsorbing sites of real NPs are partially occupied.
The desorption rates of ions for various types of NPs, will be the nature of the adsorption states, the estimation of adsorption and during LC device production and utilization. The study of the used to prevent uncontrolled ionic contamination that occurs. These types of NPs can be contamination of $134.5 \times 10^{3} \text{cm}^{-3}$ reduced the ionic density of LCs by two times with an initial different initial ionic contamination. It has been shown that NPs we have studied the impact of TiO$_2$ NPs on nematic LCs with ions [27].

μm induces the desorption of an electric field higher than 2.5 V/μm. It was shown that NPs with high polarizability such as graphene or ferroelectric NPs. The next factor is a high electric field. It was shown that NPs tend to aggregate in a polarized optical microscope at a concentration of over nematic liquid crystal matrix. We have observed this aggregation in a polarized optical microscope at a concentration of over 0.5 wt %. This imposes restrictions on the concentration of NPs.

Several studies [33-35] considered the local fields near nanoparticles as a trap of ions. Such a consideration is acceptable for NPs with high polarizability such as graphene or ferroelectric NPs. The next factor is a high electric field. It was shown that an electric field higher than 2.5 V/μm induces the desorption of ions [27].

We have studied the impact of TiO$_2$ NPs on nematic LCs with different initial ionic contamination. It has been shown that NPs reduced the ionic density of LCs by two times with an initial contamination of $134.5 \times 10^{3} \text{cm}^{-3}$. These types of NPs can be used to prevent uncontrolled ionic contamination that occurs during LC device production and utilization. The study of the nature of the adsorption states, the estimation of adsorption and desorption rates of ions for various types of NPs, will be the next step in understanding the effect of doping liquid crystals with nanoparticles and the content of ion impurities resulting from this process.

ORCID® iDs

Elena A. Konshina - https://orcid.org/0000-0002-6942-3736

References

1. Hsu, C. W.; Zhen, B.; Qiu, W.; Shapira, O.; DeLacy, B. G.; Joannopoulos, J. D.; Soljačić, M. Nat. Commun. 2014, 5, 3152. doi:10.1038/ncomms4152
2. Lim, Y. J.; Kim, H. J.; Chae, Y. C.; Murali, G.; Lee, J. H.; Mun, B. J.; Gwon, D. Y.; Lee, G.-D.; Lee, S. H. IEEE Trans. Electron Devices 2017, 64, 1083–1087. doi:10.1109/TED.2016.2645209
3. Mather, J.; Jones, L. P.; Gass, P.; Imai, A.; Takatani, T.; Yabuta, K. Appl. Opt. 2014, 53, 769–776. doi:10.1364/AO.53.000769
4. Hokmabadi, M. P.; Tareki, A.; Rivera, E.; Kung, P.; Lindquist, R. G.; Kim, S. M. AIP Adv. 2017, 7, 015102. doi:10.1063/1.4973838
5. Guryakov, V. A.; Krakhalev, M. N.; Zryunov, Y. V.; Shabanov, V. F.; Loiko, V. A. J. Quant. Spectrosc. Radiat. Transfer 2016, 178, 152–157. doi:10.1016/j.jqsrt.2015.11.018
6. Franklin, D.; Chen, Y.; Vazquez-Guardado, A.; Modak, S.; Boroumand, J.; Xu, D.; Wu, S.-T.; Chanda, D. Nat. Commun. 2015, 6, 7337. doi:10.1038/ncomms8337
7. Iačić, G.; Vasić, B.; Zografopoulous, D. C.; Beccherelli, R.; Gajić, R. Phys. Rev. Appl. 2015, 3, 064007. doi:10.1103/PhysRevApplied.3.064007
8. Carlson, R. J.; Hunter, J. T.; Miller, D. S.; Abbasi, R.; Moshenheim, P. C.; Tan, L. N.; Abbott, N. L. Liq. Cryst. Rev. 2013, 1, 29–51. doi:10.1080/21680396.2013.769310
9. Hadjicristov, G. B.; Marinov, Y. G.; Petrov, A. G. Opt. Mater. 2009, 31, 1576–1585. doi:10.1016/j.optmat.2009.03.001
10. Li, G. Prog. Opt. 2010, 55, 199–283. doi:10.1016/B978-0-444-53705-8.00004-7
11. Li, G.; Mathine, D. L.; Valley, P.; Ayras, P.; Joshua, N.; Haddock, J. N.; Giridhar, M. S.; Williby, G.; Schwiegerling, J.; Meredith, G. R.; Kippenel, B.; Honkanen, S.; Peyghambarian, N. Proc. Natl. Acad. Sci. U. S. A. 2006, 103, 6100–6104. doi:10.1073/pnas.0600850103
12. Mann, S. A.; Le-Gall, S.; Dupont, L.; Li, J. G. Mol. Liq. 2016, 220, 161–165. doi:10.1016/j.molliq.2016.04.077
13. Mann, S. A.; Le-Gall, S.; Li, G. Opt. Commun. 2016, 376, 52–55. doi:10.1016/j.optcom.2016.04.073
14. Konshina, E. A.; Galin, I. F.; Shcherbinin, D. P.; Gavrish, E. O. Liq. Cryst. 2014, 41, 1229–1234. doi:10.1080/02678292.2014.912764
15. Nayek, P.; Li, G. Sci. Rep. 2015, 5, 10845. doi:10.1038/srep10845
16. Choudhary, A.; Li, G. Opt. Express 2014, 22, 24348–24357. doi:10.1364/OE.22.024348
17. Hwang, S.-J.; Jeng, S.-C.; Yang, C.-Y.; Kuo, C.-W.; Liao, C.-C. J. Phys. D: Appl. Phys. 2009, 42, 025102. doi:10.1088/0022-3727/42/2/025102
18. Klimushova, G.; Mirmaya, T.; Garbovskiy, Y. Liq. Cryst. Rev. 2015, 3, 28–57. doi:10.1080/21680396.2015.1030461
19. Binnemans, K. Chem. Rev. 2005, 105, 4148–4204. doi:10.1021/cr0400919
20. Hung, H.-Y.; Lu, C.-W.; Lee, C.-Y.; Hsu, C.-S.; Hsieh, Y.-Z. Anal. Methods 2012, 4, 3631–3637. doi:10.1039/c2ay25627d
21. Lee, W.; Wang, C.-Y.; Shih, Y.-C. Appl. Phys. Lett. 2004, 85, 513–515. doi:10.1063/1.1771799
22. Shukla, R. K.; Galyametdinov, Y. G.; Shamilov, R. R.; Haase, W. Liq. Cryst. 2014, 41, 1889–1896. doi:10.1080/02678292.2014.959571
23. Lee, H. M.; Chung, H.-K.; Park, H.-G.; Jeong, H.-C.; Han, J.-J.; Cho, M.-J.; Lee, J.-W.; Seo, D.-S. Liq. Cryst. 2014, 41, 247–251. doi:10.1080/02678292.2013.851291
24. Shcherbinin, D. P.; Konshina, E. A. Liq. Cryst. 2017, 44, 648–655. doi:10.1080/02678292.2016.1227483
25. Urbanski, M.; Lagerwall, J. P. F. J. Mater. Chem. C 2016, 4, 3485–3491. doi:10.1039/C6TC00659K
26. Singh, D. P.; Gupta, S. K.; Manohar, R. Adv. Condens. Matter Phys. 2013, 2013, 250301. doi:10.1155/2013/250301
27. Garbovskiy, Y. Appl. Phys. Lett. 2016, 108, 121104. doi:10.1063/1.4944779
28. Garbovskiy, Y. Liq. Cryst. 2016, 43, 664–670. doi:10.1080/02678292.2015.1133650
29. Garbovskiy, Y. Liq. Cryst. 2016, 43, 648–653. doi:10.1080/02678292.2015.1132764
30. Garbovskiy, Y. Liq. Cryst. 2016, 43, 853–860. doi:10.1080/02678292.2016.1145270
31. Belyaev, B. A.; Drokin, N. A. Phys. Solid State 2015, 57, 181–187. doi:10.1134/S1063783415010060
32. Yadav, S. P.; Manohar, R.; Singh, S. Liq. Cryst. 2015, 42, 1095–1101. doi:10.1080/02678292.2015.1025872
33. Basu, R. Appl. Phys. Lett. 2014, 105, 112905. doi:10.1063/1.4896112
34. Basu, R.; Garvey, A. Appl. Phys. Lett. 2014, 105, 151905. doi:10.1063/1.4898581
35. Infusino, M.; De Luca, M.; Ciuchi, F.; Ionescu, A.; Scaramuzza, N.; Strangi, G. J. Mater. Sci. 2014, 49, 1805–1811. doi:10.1007/s10853-013-7868-6