Abstract

Real-time object detection is a recent trend in image processing that plays a very important role in detection of objects and identifying them. Also there are various tools for image processing to identify objects. There are also frameworks which uses end to end network and shows very good results in object detection. However, compared to more accurate but time-consuming frameworks, detection accuracy of existing real-time networks are still left far behind. In this survey paper we have studied different object identification techniques.

In this paper various frameworks like HyperNet, novel CAD YOLO Voxnet are studied. Various methods for object detection and identification like region generation, scale invariant detection, non maximum weighted, Sparse matrix distribution, Background modeling, Speed Up Robust Feature(SURF), Single Shot Detection(SSD) are also studied. R-CNN, Edge detection algorithms and Approach based studies are learned.

References
1. Tao Kong, Anbang Yao, Yurong Chen and Fuchung Sun. “HyperNet: Towards Accurate Region Proposal Generation and Joint Object Detection”. in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition 2016.
2. Rahul and Binoy B Nair. "Camera-based Object Detection, Identification and Distance Estimation". International Conference on Micro-Electronics and Telecommunication Engineering 2018.
3. Chia-Hung Yeh, Chih-Yang Lin, Kahlil Muchtar, Hsiang-Erh Lai and Ming-Ting Sun. "Three-Pronged Compensation and Hysteresis Thresholding for Moving Object.
4. Joseph Redmon, Santosh Divvala, Ross Girshick and Ali Farhadi. “You Only Look Once: Unified, Real-Time Object Detection”. in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition 2016.
5. Huajun Zhou, Zechao Li, Chengcheng Ning and Jinhui Tang. "CAD: Scale Invariant Framework for Real-Time Object Detection". ICCV 2017
6. Bichen Wu, Peter H. Jin, Kurt Keutzer and "SqueezeDet: Unified, Small, Low Power Fully Convolutional Neural Networks for Real-Time Object Detection for Autonomous Driving". in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017.
7. Daniel Maturana and Sebastian Scherer. "VoxNet: A 3D Convolutional Neural Network for Real-Time Object Recognition". 2015.
8. Guanbin Li, Yukang Gan, Hejun Wu, Nong Xiao and Liang Lin. "Cross-Modal Attentional Context Learning for RGB-D Object Detection". in proceedings of IEEE Transaction on Image Processing 2018.
9. Yunhang Shen, Rongrong Ji, Changhu Wang, Xi Li, and Xuelong Li. “Weakly Supervised Object Detection via Object-Specific Pixel Gradient” in proceedings of IEEE Transaction On Neural Network And Learning system 2018.
10. Z. Shi, T. M. Hospedales, and T. Xiang, “Bayesian joint modelling for object localisation in weakly labelled images,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 37, no. 10, pp. 1959–1972, 2015.
11. Y. Li, L. Liu, C. Shen, and A. van den Hengel, “Image co-localization by mimicking a good detectors confidence score distribution,” in Proceedings of the European Conference on Computer Vision. Springer, 2016, pp. 19–34.
12. D. Li, J.-B. Huang, Y. Li, S. Wang, and M.-H. Yang, “Weakly supervised object localization with progressive domain adaptation,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016, pp. 3512–3520.
13. M. Cho, S. Kwak, C. Schmid, and J. Ponce, “Unsupervised object discovery and localization in the wild: Part-based matching with bottomup region proposals,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2015, pp. 1201–1210.
14. K. Tang, A. Joulin, L.-J. Li, and L. Fei-Fei, “Co-localization in realworld images,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2014, pp. 1464–1471.
15. R. Gokberk Cinbis, J. Verbeek, and C. Schmid, “Multi-fold mil training for weakly supervised object localization,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2014, pp. 2409–2416.
16. Javeria Farooq. "Object Detection and Identification using SURF and BoW Mode". 978-1-5090-1252-7/16/$31.00 2016 IEEE.
17. K. He, X. Zhang, S. Ren, and J. Sun. Spatial pyramid pooling in deep convolutional
networks for visual recognition. IEEE Trans. Pattern Anal. Mach. Intell.,37:1904–1916, 2014.
18. S. Ren, K. He, R. B. Girshick, and J. Sun. Faster r-cnn: Towards real-time object
detection with region proposal networks. In NIPS, 2015.
19. S. Bell, C. L. Zitnick, K. Bala, and R. B. Girshick. Insideoutside net: Detecting objects in
context with skip pooling and recurrent neural networks. 2016 IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), pages 2874–2883, 2016.
20. R. Girshick. Fast r-cnn. In ICCV, 2015.

Index Terms

Computer Science

Information Sciences

Keywords

CNN, deep learning, object detection, object tracking, object identification, edge detection.