Seroprevalence of *Helicobacter pylori* in Korea: A multicenter, nationwide study conducted in 2015 and 2016

Jeong Hoon Lee1 | Kee Don Choi1 | Hwoon-Yong Jung1 | Gwang Ho Baik2 | Jong Kyu Park3 | Sung Soo Kim4 | Byung-Wook Kim5 | Su Jin Hong6 | Hyun Lim7 | Cheol Min Shin8 | Si Hyung Lee9 | Seong Woo Jeon10 | Ji Hyun Kim11 | Cheol Woong Choi12 | Hye-Kyung Jung13 | Jie-Hyun Kim14 | Suck Chei Choi15 | Jin Woong Cho16 | Wan Sik Lee17 | Soo-Young Na18 | Jae Kyu Sung19 | Kyung Ho Song20 | Jun-Won Chung21 | Sung-Cheol Yun22 | Korean College of Helicobacter and Upper Gastrointestinal Research

1Department of Gastroenterology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
2Department of Internal Medicine, Hallym University College of Medicine, Chuncheon, Korea
3Department of Internal Medicine, Gangneung Asan Hospital, University of Ulsan College of Medicine, Gangneung, Korea
4Department of Internal Medicine, Uijeongbu St. Mary's Hospital, The Catholic University of Korea, Uijeongbu, Korea
5Department of Internal Medicine, Incheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Incheon, Korea
6Department of Internal Medicine, Soonchunhyang University College of Medicine, Bucheon, Korea
7Department of Internal Medicine, Hallym University College of Medicine, Anyang, Korea
8Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
9Department of Internal Medicine, Yeungnam University College of Medicine, Daegu, Korea
10Department of Internal Medicine, School of Medicine, Kyungpook National University, Daegu, Korea
11Department of Internal Medicine, Inje University College of Medicine, Busan, Korea
12Department of Internal Medicine, Pusan National University Yangsan Hospital, Yangsan, Korea
13Department of Internal Medicine, College of Medicine, Ewha Womans University, Seoul, Korea
14Department of Internal Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
15Department of Internal Medicine and Digestive Disease Research Institute, Wonkwang University School of Medicine, Iksan, Korea
16Department of Internal Medicine, Presbyterian Medical Center, Jeonju, Korea
17Department of Internal Medicine, Chonnam National University Medical School, Gwangju, Korea
18Department of Internal Medicine, Jeju National University School of Medicine, Jeju, Korea
19Department of Internal Medicine, Chungnam National University School of Medicine, Daejeon, Korea
20Department of Internal Medicine, Konyang University College of Medicine, Daejeon, Korea
21Department of Internal Medicine, Gachon Graduated School of Medicine, Gil Medical Center, Incheon, Korea
22Department of Clinical Epidemiology and Biostatistics, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea

Correspondence
Hwoon-Yong Jung, Department of Gastroenterology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea.
Email: hyjung@amc.seoul.kr

Abstract

Background: The Korean College of *Helicobacter* and Upper Gastrointestinal Research has studied *Helicobacter pylori* (*H. pylori*) prevalence since 1998 and found a dynamic change in its prevalence in Korea. The aim of this study was to determine the recent
INTRODUCTION

Helicobacter pylori has infected more than half of the world's population and is an important cause of gastric cancer, mucosal-associated lymphoid tissue lymphoma, and peptic ulcer disease. Chronic infection with *H. pylori* is strongly associated with gastric cancer, the highest incidence of which is observed in Korea, Mongolia, Japan, and China. Eradication of *H. pylori* has thus been attempted in China and Japan to reduce gastric cancer levels. Accordingly, determination of the *H. pylori* prevalence of normal asymptomatic participants is crucial for the establishment of national health policies in these Eastern Asia countries. Nationwide studies of *H. pylori* prevalence were performed in Korea in 1998, 2005, and 2011. Although these studies obtained data from a large number of participants, they had several notable limitations, such as inconsistencies in test methods, uneven study populations, and lack of socioeconomic information. Accordingly, the Korean College of *Helicobacter* and Upper Gastrointestinal Research has newly performed a nationwide *H. pylori* prevalence study and compared its results with those of previous studies to compensate for their defects.

METHODS

2.1 Study population

Study participants were prospectively enrolled from 21 centers in South Korea from January 2015 to December 2016. These centers are based on seven geographic areas: Seoul (3 centers), Gyeonggi (6 centers), Gangwon (2 centers), Chungcheong (2 centers), Kyungsang (4 centers), Cholla (3 centers), and Jeju province (1 center). All participants were asymptomatic Koreans older than 16 years. Patients with gastrointestinal symptoms such as dyspepsia, regurgitation, and pain or who had history of *H. pylori* eradication, abdominal surgery, or peptic ulcer were excluded. Informed consent was obtained, and a questionnaire on socioeconomic variables was administered by a physician or nurse. The questionnaire included family history of gastric cancer, family income, education status, and habitation pattern in preschool, school, and posthigh school periods. Family history of gastric cancer was confined to parents, siblings, and children. Family income was divided into low (<US $3000 per month), medium (US $3000-10,000 per month), and high (>US $10,000 per month). Education status was divided into low (middle school graduate or less), medium (high school graduate or university dropout), and high (university graduate or more). We investigated two aspects of habitation status, geographic area, and type of residence in terms of city or noncity during each life period.

2.2 Serologic evaluation

All collected serum was centrally analyzed by a single company (Seegene Medical Foundation, Seoul, Korea). The Immulite 2000® *H. pylori* IgG system (Diagnostic Product Corporation, Los Angeles, CA, USA) was used to measure anti-*H. pylori* IgG. This test consists of a solid-phase, two-step chemiluminescent enzyme immunoassay. The sensitivity, specificity, positive predictive value, and negative predictive value of this test are reported as 91%, 100%, 100%, and...
71%, respectively. We used only positive (≥1.10 U/mL) or negative (<0.9 U/mL) results, and equivocal results (0.9-1.09 U/mL) were excluded from the analysis.

2.3 | Statistics

A sample size of 4920 was calculated to obtain a two-sided 95% confidence interval with a width equal to 0.028, assuming a H. pylori infection rate of 55% based on a previous study. We distributed participants into seven geographic areas according to the 2013 population census. Categorical variables were analyzed by the chi-square test. Multivariable logistic regression was used for the investigation of risk factors for H. pylori seropositivity. We used the Cochran-Armitage trend test for the comparison of H. pylori seropositivity among the data published in 1998, 2005, 2011, and this study. We only analyzed the results of asymptomatic participants from previous studies. A significance level of P < .05 was applied to all analyses except for multiple comparisons. We used the Bonferroni correction to calculate the P values for multiple comparisons.

3 | RESULTS

3.1 | Seropositivity of participants and comparison with the results from 1998, 2005, and 2011

We enrolled 4963 asymptomatic participants from 21 centers, and 4917 samples were found to be suitable for the H. pylori IgG test (Figure 1). Among these, 183 samples showed equivocal results. Thus, we acquired 4734 seropositive or seronegative results (Table 1). We found that 51.0% (2414/4734) of the study participants were seropositive.

FIGURE 1 Study flowchart

We compared the H. pylori seropositivity of asymptomatic participants among the 1998, 2005, and 2011 studies and in this study. The overall seropositivity of 51.0% (95% CI: 49.6-52.4%) in this study represented a significant decrease from 66.9% (95% CI: 65.4-68.6%) in 1998, 59.6% (95% CI: 58.5-60.7%) in 2005, and 54.4% (95% CI: 53.5-55.4%) in 2011 (P < .001) (Figure 2). There was thus a significant decline in seropositivity between each successive study. The arithmetical decrease rates per year were 0.81%, 0.87%, and 0.85% during 1998-2005, 2005-2011, and 2011-2015, respectively.

3.2 | Risk factors for H. pylori seropositivity

Age, body mass index (BMI), geographic area, and education level were significantly associated with H. pylori seropositivity (Table 2). Individuals aged 20-29 years showed the lowest H. pylori seropositivity (24.2%) and this increased up to 64.3% in those aged 50-59 years (OR 4.67, 95% CI: 3.71-5.86). A similar trend was observed according to geographic area (Figure 3). The peak prevalence group was distributed among age groups 40-49 (Seoul), 50-59 (Gyeonggi, Chungcheong, and Kyungsang), and 60-69 (Gangwon, Cholla, and Jeju). Although H. pylori seropositivity was 32.1% (511/1594) in participants younger than 40 years, it was 60.6% (1903/3140) in those 40 or older.

Participants with a high BMI (≥25.0 kg/m²) showed higher H. pylori seropositivity than those with a relatively normal BMI (18.5-23.0 kg/m²) (OR 1.17, 95% CI: 1.00-1.37). Chungcheong, Kyungsang, and Cholla, all located in the southern part of South Korea, showed higher H. pylori seropositivity than Seoul (Figure 4). H. pylori seropositivity rates were below 50% in Seoul and the adjacent provinces (Gyeonggi and Gangwon).

Participants who had a medium education level showed a 23% increase in H. pylori seropositivity compared with those with a high education level (OR 1.23, 95% CI: 1.06-1.42). Sex, household income, and family history of gastric cancer had no influence on H. pylori seropositivity in multivariable logistic regression analysis.

3.3 | Impact of habitation according to life period on H. pylori seropositivity

We investigated H. pylori seropositivity according to habitation type (city vs noncity) and life period (Table 3). Participants
who lived in non-city–city–city circumstances according to life period showed higher *H. pylori* seropositivity than those who lived in city–city–city circumstances (58.4% vs 46.6%, *P* < .001).

Additionally, participants who lived in city circumstances throughout life showed lower *H. pylori* seropositivity than those who lived in noncity circumstances throughout life (46.6% vs 62.8%, *P* < .001) and showed lower *H. pylori* seropositivity than those with non-city–non-city–city circumstances throughout life (46.6% vs 56.9%, *P* < .001).
DISCUSSION

The *H. pylori* seropositivity of Korea in 2015 and 2016 was 51.0%, and we confirmed a decrease in *H. pylori* seropositivity compared with previous studies (from 66.9% in 1998 to 51.0% in 2015). In general, *H. pylori* is more prevalent in developing countries and less prevalent in developed countries. Our result agrees with the development status of Korea, whose gross domestic products per capita were $12,000 in 2000 and $27,000 in 2015.11

We found decreased *H. pylori* seropositivity, particularly in those aged 30-39 years, compared with the three previous Korean nationwide studies. Previous studies reported seropositivity rates in those aged 30-39 years of 74%, 49%, and 42% in 1998, 2005, and 2011, respectively. Considering that prevalence in less developed regions may reach 70% or higher, compared with 40% or less in more developed regions,12 our result (38.1%) is the first to be below 40% in those aged 30-39 years. In addition, there was a large increase in seropositivity from those aged 30-39 years to those aged 40-49 years in our present study series. However, the biggest increase was shown from those aged 20-29 years to those aged 30-39 years in previous Korean studies.

Helicobacter pylori infection and gastric cancer are endemic to Japan and China, as well as Korea.1,13 Japan has shown a decrease in *H. pylori* prevalence, similar to Korea. In several birth cohort studies from Japan, Japanese individuals born before 1950 showed a *H. pylori* prevalence rate of 80%-90%, but those born during the 1980s showed a *H. pylori* prevalence of 10%-20%.14,15 Recent Japanese studies reported that the *H. pylori* seropositivity in junior high school students was only 3%-5%.16,17 Although we did not analyze the birth cohort effect, our lowest seroprevalence rate was 24% in those aged between 20 and 29 years. Also, the highest prevalence rate was observed in those aged between 50 and 59 years. These trends were shown across all seven geographic areas in South Korea. *H. pylori* seroprevalence data from China have also shown a decrease, from 60% in 1983 to 45% in 2010.18-20 Korea might show lower prevalence in the future with improved general hygiene, economic development, and a sustained decrease in prevalence among generations.

Although Korea is a small and high internal migration country, we anticipated a geographic difference in *H. pylori* seropositivity. For the first time among studies of this nature, we distributed the study population among seven geographic areas to adapt to the population census result for *H. pylori* prevalence in Korea. We found that the capital region (Seoul and Gyeonggi) showed lower *H. pylori* seropositivity than other areas. This trend was also reported in a previous Korean study in 2011.9 Interestingly, as the distance from the capital region increased, so did the odds ratio of *H. pylori* prevalence. This may be due to urbanization levels, and we indirectly analyzed this effect according to life period. After the exclusion of groups with a small sample size listed in Table 3, participants who lived in a city throughout their life showed the lowest *H. pylori* seropositivity. Consistently, a recent Chinese study reported that urban populations had lower rates of *H. pylori* infection than rural populations.20

In our study, we observed that subjects with higher education level tended to show lower *H. pylori* prevalence. Considering the increasing proportion of city residence after high school (63.9%, 86.7%, and
96.2% in low, medium, and high education level, respectively) as seen in our study population, this result may be explained by the effect of urbanization.

Helicobacter pylori was more prevalent in obese patients (BMI ≥25.0 kg/m²) than in those with a normal BMI range (OR 1.17, 95% CI: 1.00-1.37). However, other BMI groups showed no difference compared with the normal BMI group. And the association between obesity and H. pylori infection is controversial, and the causality of these associations has not been proven.2122 We also investigated the correlation between BMI and residence style after high school (city vs noncity) but observed no significant correlation between the two (data not shown).

We found no sex differences in the prevalence of H. pylori (OR 1.00, 95% CI: 0.88-1.15), but a recent meta-analysis of 169 studies reported that male sex was associated with a higher prevalence of H. pylori (OR 1.12, 95% CI: 1.09-1.15).23 Our current study was not designed to determine sex differences and several confounding factors were not assessed (such as smoking history, urinary tract infection history in women, and sex hormones).

Our study had some limitations of note. First, there may have been a selection bias. We enrolled asymptomatic participants from tertiary hospitals or their health screening centers. Thus, we may have enrolled more participants with a higher socioeconomic status. Second, there could have been a recall bias. We considered the habitation status of our study patients but this is a relatively subjective parameter and might be recalled incorrectly. Third, although this was a prospective study, the enrollment period was relatively long. However, most participants (91%) were enrolled in 2015.

In conclusion, our current multicenter, nationwide study found a decrease in H. pylori seroprevalence in South Korea and a difference in the seroprevalence rate according to geographic area and habitation type. Our findings could be useful as future baseline data or to inform H. pylori-related policies in Korea.

ACKNOWLEDGEMENTS

This work was supported by the Korean College of Helicobacter and Upper Gastrointestinal Research Foundation Grant.

DISCLOSURES OF INTERESTS

All authors declare no conflicts of interest.

ORCID

Jeong Hoon Lee http://orcid.org/0000-0002-0778-7585

Kee Don Choi http://orcid.org/0000-0002-2517-4109

REFERENCES

1. Hooi JKY, Lai WY, Ng WK, et al. Global prevalence of Helicobacter pylori infection: systematic review and meta-analysis. Gastroenterology. 2017;153:420-429.
2. Malfertheiner P, Megraud F, O’Morain CA, et al. Management of Helicobacter pylori infection—the Maastricht V/Florence consensus report. Gut. 2017;66:6-30.
3. Plummer M, Franceschi S, Vignat J, Forman D, de Martel C. Global burden of gastric cancer attributable to Helicobacter pylori. Int J Cancer. 2015;136:487-490.
4. Torre LA, Bray F, Siegel RL, Ferlay J, Lortet-Tieulent J, Jemal A. Global cancer statistics, 2012. CA Cancer J Clin. 2015;65:87-108.
5. Pan KF, Zhang L, Gerhard M, et al. A large randomised controlled intervention trial to prevent gastric cancer by eradication of Helicobacter pylori in Linqu County, China: baseline results and factors affecting the eradication. Gut. 2016;65:9-18.
6. Asaka M, Mabe K, Matsushima R, Tsuda M. Helicobacter pylori eradication to eliminate gastric cancer: the Japanese strategy. Gastroenterol Clin North Am. 2015;44:639-648.
7. Kim JH, Kim HY, Kim NY, et al. Seroepidemiological study of Helicobacter pylori infection in asymptomatic people in South Korea. J Gastroenterol Hepatol. 2001;16:969-975.
8. Yim JY, Kim N, Choi SH, et al. Seroprevalence of Helicobacter pylori in South Korea. Helicobacter. 2007;12:333-340.
9. Lim SH, Kwon JW, Kim N, et al. Prevalence and risk factors of Helicobacter pylori infection in Korea: nationwide multicenter study over 13 years. BMC Gastroenterol. 2013;13:104.
10. van Der Ende A, van Der Hulst RW, Roorda P, Tytgat GN, Dankert J. Evaluation of three commercial serological tests with different methodologies to assess Helicobacter pylori infection. J Clin Microbiol. 1999;37:4150-4152.
11. GDP per capita (current US$) from The World Bank: Data. http://data.worldbank.org/indicator/NY.GDP.PCAP.CD. Accessed August 7, 2017.

Group	Preschool	School-age	After high school	N	%
1a	City	City	City	1381/2946	46.6
2a	Noncity	City	City	283/485	58.4
3a	Noncity	Noncity	City	428/752	56.9
4a	Noncity	Noncity	Noncity	290/462	62.8
5	City	City	Noncity	16/30	53.3
6	City	Noncity	City	5/16	31.3
7	Noncity	City	Noncity	4/6	66.7
8	City	Noncity	Noncity	3/5	60.0

We compared groups 1-4 by considering the relatively large participant number. A P value less than .008 was considered significant due to multiple comparisons.

Group 1 vs 2, P < .001; group 1 vs 3, P < .001; group 1 vs 4, P = .018; group 2 vs 3, P < .001; group 2 vs 4, P = 0.164; group 3 vs 4, P = .044.

TABLE 3 Helicobacter pylori seropositivity according to habitation type and life period

Group	Preschool	School-age	After high school	N	%
1a	City	City	City	1381/2946	46.6
2a	Noncity	City	City	283/485	58.4
3a	Noncity	Noncity	City	428/752	56.9
4a	Noncity	Noncity	Noncity	290/462	62.8
5	City	City	Noncity	16/30	53.3
6	City	Noncity	City	5/16	31.3
7	Noncity	City	Noncity	4/6	66.7
8	City	Noncity	Noncity	3/5	60.0

Group	Preschool	School-age	After high school	N	%
1a	City	City	City	1381/2946	46.6
2a	Noncity	City	City	283/485	58.4
3a	Noncity	Noncity	City	428/752	56.9
4a	Noncity	Noncity	Noncity	290/462	62.8
5	City	City	Noncity	16/30	53.3
6	City	Noncity	City	5/16	31.3
7	Noncity	City	Noncity	4/6	66.7
8	City	Noncity	Noncity	3/5	60.0
12. Inoue M. Changing epidemiology of Helicobacter pylori in Japan. Gastric Cancer. 2017;20:3-7.
13. Ferlay J, Soerjomataram I, Dikshit R, et al. Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer. 2015;136:E359-E386.
14. Asaka M, Kimura T, Kudo M, et al. Relationship of Helicobacter pylori to serum pepsinogens in an asymptomatic Japanese population. Gastroenterology. 1992;102:760-766.
15. Watanabe M, Ito H, Hosono S, et al. Declining trends in prevalence of Helicobacter pylori infection by birth-year in a Japanese population. Cancer Sci. 2015;106:1738-1743.
16. Kusano C, Iwasaki M, Kaltenbach T, Conlin A, Oda I, Gotoda T. Should elderly patients undergo additional surgery after non-curative endoscopic resection for early gastric cancer? Long-term comparative outcomes Am J Gastroenterol. 2011;106:1064-1069.
17. Nakayama Y, Lin Y, Hongo M, Hidaka H, Kikuchi S. Helicobacter pylori infection and its related factors in junior high school students in Nagano Prefecture, Japan. Helicobacter. 2017;22:e12363.
18. Forman D, Sitas F, Newell DG, et al. Geographic association of Helicobacter pylori antibody prevalence and gastric cancer mortality in rural China. Int J Cancer. 1990;46:608-611.
19. Hu D, Shao J, Wang L, et al. Prevalence and risk factors of Helicobacter pylori infection in Chinese maritime workers. Ann Hum Biol. 2013;40:472-476.
20. Nagy P, Johansson S, Molloy-Bland M. Systematic review of time trends in the prevalence of Helicobacter pylori infection in China and the USA. Gut Pathog. 2016;8:8.
21. Lane JA, Murray LJ, Harvey IM, Donovan JL, Nair P, Harvey RF. Randomised clinical trial: Helicobacter pylori eradication is associated with a significantly increased body mass index in a placebo-controlled study. Aliment Pharmacol Ther. 2011;33:922-929.
22. Xu MY, Liu L, Yuan BS, Yin J, Lu QB. Association of obesity with Helicobacter pylori infection: a retrospective study. World J Gastroenterol. 2017;23:2750-2756.
23. Ibrahim A, Morais S, Ferro A, Lunet N, Peleteiro B. Sex-differences in the prevalence of Helicobacter pylori infection in pediatric and adult populations: systematic review and meta-analysis of 244 studies. Dig Liver Dis. 2017;49:742-749.

How to cite this article: Lee JH, Choi KD, Jung H-Y, et al. Seroprevalence of Helicobacter pylori in Korea: A multicenter, nationwide study conducted in 2015 and 2016. Helicobacter. 2018;23:e12463. https://doi.org/10.1111/hel.12463