From resonantly interacting fermions with effective range to neutron matter

Denis Lacroix

Institut de Physique Nucléaire, IN2P3-CNRS, Université Paris-Sud, Université Paris-Saclay, F-91406 Orsay Cedex, France

(Dated: June 19, 2018)

Abstract

A density functional theory is proposed for strongly interacting fermions with arbitrary large negative scattering length. The functional has only two parameters that are directly fixed to reproduce the universal properties of unitary gas: the so-called "Bertsch parameter" ξ_0 and a parameter η_e related to the possible influence of the effective range r_e at infinite scattering length a. Using recent quantum Monte-Carlo (QMC) estimates of these two parameters, it is shown that the functional properly reproduces the experimental measurements of interacting Fermi systems not only at unitarity but also away from this limit over a wide range of $(ak_F)^{-1}$ values. The functional is applied to obtain an expression of the Tan's contact parameter including the effect of r_e. Application is finally made to neutron matter. It is shown that most recent QMC results are well reproduced.

PACS numbers: 67.85.Lm, 21.65.-f

Keywords: strongly interacting fermions, unitary limit, neutron matter

During the last ten years, important progresses have been made to manipulate Fermi gas by tuning the interaction between particles [1, 2]. A special attention has been paid close to the unitarity regime when the s-wave scattering length becomes infinite in dilute systems. In this case, the interacting system properties become universal. The energy of the system is directly proportional to the free Fermi gas energy, and the ratio between these two energies is a universal parameter $\xi_0 \approx 0.37$ [3, 4], the so-called "Bertsch parameter" [5]. The experimental advances in atomic Fermi systems have motivated tremendous theoretical efforts to understand systems at unitarity as well as the transition from BCS to BEC regimes (see for instance the collection of review articles in Ref. [8]). Due to the universal behavior of the energy for unitary gases, it was shown that simple local density functionals directly adjusted on QMC approaches can accurately describe various static or dynamical properties of these systems [9–12]. These functionals however strictly apply for $|a| \to \pm \infty$ in the low density regime and cannot describe unitary gases with possibly non-zero effective range r_e. The description Fermi gas with non-zero effective range and anomalously large a is motivated by (i) the possibility to uncover new effects in a wider class of unitary systems (ii) neutron systems that enters into such class of interacting fermions.

A first step to include effective range influence is made in Refs [13, 14] showing non-trivial effects due to r_e. In this work, a minimal generalization of the previously proposed DFT is made by allowing explicitly the parameters of the functional to vary with r_e. Alternatively, finite-range effects can be investigated at low–density using Effective Field Theory (EFT) and systematic expansion in the Fermi momentum (see for instance [15, 16]). One success of EFT is the improvement of the universal Lee-Yang (LY) formula [17, 18], including r_e effects for low density Fermi systems. The EFT approach however cannot be directly applied to unitary gases unless specific resum-mations of infinite order in-medium loops are made. This has led to the description of systems at or close to unitarity with varying success [19–21]. Here, inspired by the EFT approach with resummation, a new DFT for Fermi systems, that is optimized at unitarity and smoothly behaves away from unitarity, is proposed.

I consider here spin degenerated Fermionic systems with a s-wave interaction characterized by a negative scattering length a and an effective range r_e. These two quantities are defined as usual as the leading and next to leading order of the expansion of the s-wave phase-shift δ in terms relative momentum k of the interacting particles:

$$k \cot \delta = -\frac{1}{a} + \frac{1}{2} r_e k^2 + O(k^4).$$

(1)

The functional proposed below is strongly guided by the resummation technique used in EFT to tackle the problem of unitary gas. In this case, simplified resummed formula have been obtained in [19, 21]. Here, I introduce a resummed formula that account for non-zero r_e and write the energy as a functional of the Fermi momentum k_F as follows:

$$\frac{E}{N} = \frac{\hbar^2 k_F^2}{2m} \left\{ \frac{3}{5} + \frac{(ak_F) A_0}{1 - A_0^{-1} [A_1 + (r_e k_F) A_2] ak_F} \right\}.$$ (2)

(A_0, A_1, A_2) are three constants to be determined. One possibility that has been explored in [21, 22], neglecting possible r_e effects, is to constrain the functional by matching the low density limit with the universal Lee-Yang expansion of the energy [17, 18]. This gives $A_0 = 2/(3\pi)$,

$$A_1 = \frac{4}{35\pi^2} (11 - 2 \ln 2)$$

and $A_2 = \frac{1}{10\pi}$.

The advantages of the formula (2) are that (i) it can be reinterpreted as a density functional theory through the
relation \(k_F = (3\pi^2 n)^{1/3} \) where \(n \) is the density (ii) it can be expanded in powers of \((ak_F)\), \((ak_F)^{-1}\) or \((r_c k_F)\); (iii) it has a definite limit as \(a \to +\infty \). Taking this specific limit, we obtain \(E = \xi(r_c k_F)E_{\text{FG}} \) where \(E_{\text{FG}} \) is the free Fermi gas energy, \(E_{\text{FG}}/N = [3\hbar^2 k_F^2/(10m)] \), and

\[
\xi(r_c k_F) = \left\{ 1 - \frac{5}{3} \frac{A_0^2}{A_1} \right\}.
\]

For unitary gas, with small but non zero effective range, this expression can be expanded as:

\[
\xi(r_c k_F) \simeq \left(1 - \frac{5}{3} \frac{A_0^2}{A_1} \right) + \frac{5}{3} \frac{A_0^2 A_2}{A_1^2} (r_c k_F) - \frac{5}{3} \frac{A_0^2 A_2^2}{A_1^3} (r_c k_F)^2 \equiv \xi_0 + (r_c k_F)\eta_c + (r_c k_F)^2\delta_c.
\]

With values of \(A_i \) parameters deduced from low density constraint, one get \(\xi_0 = 0.326 \), \(\eta_c = 0.19 \) and \(\delta_c = -0.055 \). The two former values have been obtained using a phase-space average in ref. [21]. Not only \(\xi_0 \) is close to the expected value for unitary gas, i.e. \(\xi_0 \simeq 0.37 \), but also, the effective range dependence is not too far from the result obtained with fixed-node QMC calculations of Ref. [13, 14]. More generally the \((r_c k_F)\) dependence deduced from Eq. (3), while not perfect, is globally consistent with elaborated T-matrix estimates [21, 23] (see Fig. 1). The Lee-Yang formula contains solely mean-field and second order perturbation term. The fact that a constraint on LY is close to the observed properties at unitarity indicates that strong cancellations of higher-order effects occur. Attempts have been made to further improve the expression of the energy by resumming higher order effects [19, 21], leading to various results for \(\xi_0 \). However, the values obtained strongly depend on the strategy to select loops in the expansion.

As a intermediate summary, the functional (2) has many interesting features. However, starting from the low density expansion, it only provides a very rough description of Fermi gas at and around unitarity.

For this reason, here I follow a more pragmatic strategy and directly constrain the functional (2) assuming that its Taylor expansion match Eq. (4) up to first order in \((r_c k_F)\). Then, the functional will depend only on the two parameters \(\xi_0 \) and \(\eta_c \). Since (2) has 3 parameters and the Taylor expansion around unitarity only leads to 2 constraints, I again assume that \(A_0 = 2/(3\pi) \) so that the LY formula is also reproduced up to \(k_F^2 \) in dilute systems. The resulting energy then writes:

\[
E \approx \frac{\hbar^2 k_F^2}{2m} \left\{ 3 + \frac{2}{3\pi} - \frac{15}{1 + (1 - \xi(r_c k_F))^2} \right\}, \quad (5)
\]

with:

\[
\xi(r_c k_F) = \left\{ 1 - \frac{(1 - \xi_0)^2}{(1 - \xi_0) + (r_c k_F)\eta_c} \right\}.
\]

These two formulas are the main results of the present letter. In the following, I explore the range of applicability of the novel functional as well as possible applications.

Note that \(\xi_0 \) and \(\eta_c \) are not free parameters in the sense that they are fixed by recent measurements or QMC calculations in unitary gas.

In Fig. 2 an illustration of the energy obtained as a function of \((ak_F)^{-1}\) for different \(\xi_0 \) and \(r_c = 0 \) are shown and compared to experiments. It is interesting to mention that the result obtained using directly the Lee-Yang expansion as a constraint, i.e. using Eq. (5) with \(\xi_0 = 0.326 \), gives already a good approximation especially for \((-ak_F)^{-1} > 1 \). However, around unitarity, the energy is underestimated. With constraints imposed at unitarity, the energy is reasonably reproduced both as \(1/(ak_F) \to 0 \) and for large values of \((ak_F)^{-1}\).

It is worth noticing that, for \(r_c = 0 \), close to unitarity we deduce from Eq. (5):

\[
\frac{E}{N} \simeq \frac{3\hbar^2 k_F^2}{2m} \left\{ \xi_0 + \frac{\zeta}{(ak_F)^2} - \frac{5}{3} \frac{\nu}{(ak_F)^2} \right\} + \cdots \quad (7)
\]

with

\[
\zeta = \frac{9\pi}{10} (1 - \xi_0)^2 \quad \text{and} \quad \nu = \frac{3}{5} \frac{\zeta^2}{(1 - \xi_0)} \quad (8)
\]

For \(\xi_0 = 0.37 \), this gives \(\zeta = 1.12 \) and \(\nu = 1.19 \), while for \(\xi_0 = 0.44 \), we obtain \(\zeta = 0.89 \) and \(\nu = 0.84 \). These values are rather close from those reported in QMC (\(\zeta = 0.9 \))

![FIG. 1: (color online) Illustration of the formula (2) (black dotted curve) giving the effective range dependence of the \(\xi \) parameter for unitary gas. The results are compared to the one of Ref. [22] (blue point) and to the results at low density of [13, 14] (green open squares). Note that in [22], results are given for the Hartree-Fock energy only. The red solid line is obtained using Eq. (6) with the values given in ref. [13, 14]: \(\xi_0 = 0.3897 \) and \(\eta_c = 0.127 \). The short-dashed blue line and long-dashed red line correspond to \(\xi_0 = 0.37 \) and \(\xi_0 = 0.44 \) respectively both with \(\eta_c = 0.127 \). These values are compatible with those reported in ref. [3]. The grey area corresponds to the results given in ref. [21] and reflects the renormalization scale dependence in EFT calculations. The latter case includes resummation of correlation effects.](image-url)
or fixed node diffusion Monte-Carlo ($\zeta = 0.95$)\cite{28}. In Ref. \cite{27}, a direct fit to QMC leads also to $\zeta \simeq \nu \simeq 1$. The range of validity of the expansion \cite{7} is illustrated by the dotted and dot-dashed lines in Fig. 2. We clearly see that it applies only for $1/(ak_F) \ll 1$ while the new functional applies on a wider range of density. Using directly ξ_0 and η_0 to constraint the functional also leads to a better description of the possible effective range dependence. In Fig. 1 I present the quantity $\xi_{r_c k_F}$, given by Eq. \cite{9} using the values $\xi_0 = 0.3897$ and $\eta_0 = 0.127$\cite{13,14}. The QMC result with non-zero effective range are perfectly described while keeping a description at larger $\xi_{r_c k_F}$ consistent with the many-body calculations of Refs. \cite{21,22}.

I now illustrate how the functional can be used, first to reproduce some observables measured in unitary gas and second, to predict their possible effective range dependence. A typical example, that has been the subject of intensive experimental and theoretical works \cite{21,22} is the Tan’s contact parameter \cite{30,32}. Here, I follow closely \cite{21,22}. In the present case of infinite spin saturated system, the contact parameter C can be related to the contact density \mathcal{C} through $C/(N k_F) = (3 \pi^2) \mathcal{C}/k_F^3$, that is itself related to the energy density \mathcal{E} through $\mathcal{E} = 4 \pi m a^2 (d\mathcal{E}/d\alpha)/\hbar^2$. The energy density is given by $\mathcal{E} = k_F^3 \mathcal{E}/(3 \pi^2 N)$. Using the expression \cite{5}, we deduce that the contact parameter expresses as:

$$\frac{C}{N k_F} = \frac{4}{3} \left[1 - \frac{16}{9} \frac{\langle ak_F \rangle^2}{(1 - \xi_{r_c k_F})^2} \right].$$ \tag{9}$$

The resulting contact parameter is shown as a function of $(ak_F)^{-1}$ in figure 3 for the specific case $r_c = 0$. C deduced from the new functional is in good agreement with the experimental observations and within the errorbars of most recent theoretical estimates. We also show for comparison the result of the functional obtained using parameters deduced from the low density Lee-Yang expansion. It is interesting to note that these results are very close to the one obtained by setting the constraint at unitarity. In particular, different curves cannot be distinguished for $(ak_F)^{-1} < -1$. However, around unitarity, differences are noticeable. It should also be mentioned that the comparison between Eq. \cite{9} and the functional is given here only as an illustration since this formula applies to uniform systems while experimental data are performed with finite-size non-uniform atomic clouds. A consistent comparison would require performing calculations accounting for finite-size effects using for example a local density approximation. This development will be considered in the near future.
Focusing now on the unitarity limit, I denote by C_0 the contact parameter as $a \to +\infty$. We then have:

$$
\frac{C_0}{Nk_F} = \frac{27}{25} \pi^2 (1 - \xi(r_e k_F))^2,
$$

(10)

that includes possible effective range dependence. This dependence is illustrated in the inset of Fig. 3. It is predicted that a reduction of C_0 should occur for unitary gas with non-zero effective range. The experimental observation of such reduction would be a stringent test of the present functional theory. In addition, since the contact parameter in the unitary limit has direct connection with many properties [22], number of closed channel, shear viscosity, tail of the momentum distribution, I also anticipate that these properties will be modified as r_e increases while keeping the scattering length infinite. Note however that most connection with the Tan parameter have been obtained using the zero-range model and a more careful study for non-zero r_e is desirable. It is finally interesting to mention that the present functional can be directly combined with the technique proposed in Ref. [33] to obtain the contact parameter for finite systems in a trap by re-interpreting the energy as a functional of the local density $n(r)$.

An realistic example of system that has large but finite negative scattering length and non-zero effective range is the case of neutron matter. In this case, the neutron-neutron scattering length is $a \simeq -18.9$ fm and $r_e \simeq 2.7$ fm. In particular, the ratio $|r_e/a| \simeq 0.14$ is much larger than the one generally obtained in cold atoms (see for instance discussion in Ref. [21]). Consequently, density functional based on EFT techniques together with low density expansion only applies in a very narrow range of densities verifying $|ak_F| \ll 1$ and effective range effect should be included [15] [16]. In Figure 4 the results of the new functional are compared with QMC calculations [37] [39]. For the comparison, I did not adjust the ξ_0 and η_e parameters but directly took the values reported in Refs. [13] [14]. The blue area indicates the possible dependence of the result with the ξ_0 value. The new functional (red solid line) reproduces remarkably well the exact QMC results even if (ak_F) is much greater than 1. Some deviations are observed for $|ak_F| > 5$. This deviation might come from the fact that Eq. 5 is constrained to reproduce the QMC only up to second order in $(r_e k_F)$ and higher order corrections might be needed. It is worth to mention that these deviations can also be reduced either by keeping $\xi_0 = 0.3897$ and reducing η_e slightly to 0.08 or by varying both parameters. An example is given in Fig. 4 with dot-dashed line. The effect of r_e is clearly pointed out by comparing the full results with the result obtained by keeping the same value of ξ_0 and setting artificially η_e to 0. Important differences are observed uncovering the non-negligible effect of the effective range. I note that the result obtained empirically in Ref. [19] is also close to the QMC. However, this result were obtained neglecting the effect of r_e and the agreement is most probably accidental. In Ref. [22], an alternative functional has been proposed and shown to match the equation of state of neutron matter from very low to higher density. In this case, the parameters were adjusted to directly reproduce a set of ab-initio calculations. Restricting the range of density considered, it is shown that the new functional proposed here can reproduce exact QMC results by having as unique parameters the universal parameters deduced independently at unitarity. This clearly open new perspectives to less empirical nuclear density functional theories.

Another important conclusion is that the results obtained using parameters deduced only from low density constraints (gray thin solid line) fail to describe the neutron matter in the density range considered here. This indicates that for nuclear systems with very large scattering length in the s-wave channel and non-zero effective range, the unitary regime seems to be a better starting point than the low density expansion. Interestingly enough this strategy has been recently explored in Ref. [10] where calculations are made for small nuclei setting the unitary limit as the leading order.

In the present work, inspired by the resummed expression obtained in EFT, I propose a new functional for strongly interacting Fermi systems. The functional parameters are directly constrained to reproduce the universal behavior of Fermi gas at unitarity including the
The present work promotes the idea that the unitary regime can be a proper starting point for describing systems with large s-wave scattering length and eventually non-zero effective range. Here, I concentrated on infinite uniform systems. To apply the novel functional to finite systems like atomic clouds and/or nuclei a number of issues should be clarified. The most natural way to extend a functional designed for infinite systems to finite systems is to use a local density approximation. Then, the energy becomes functional of the local density. It is anticipated however, that such a rough approximation will improperly describe non-uniform systems. For instance, the effective mass of nuclear or atomic systems is known to differ from the bare mass. A proper treatment of the effective mass, would require to introduce explicit gradient correction in the functional.

A second important aspect is superfluidity that is crucial in both nuclei and atomic clouds. The energy provided by the functional (5) is describing the total energy of interacting fermionic systems and therefore contains implicitly the effect of superfluidity. For finite system however, it is well known that effects like odd-even staggering requires the explicitly introduction of the anomalous density. The treatment of the pairing field with the new functional needs also to be clarified in the near future to extend the present work to finite systems.

Acknowledgments

I would like to thank M. Grasso and J. Yang for numerous discussions that motivated this work and for their reading of the manuscript. I also thank G. Hupin for discussions at the early stage of this work and A. Gezerlis for his comments on the manuscript.
[31] S. Tan, Ann. Phys. (N.Y.) 323, 2971 (2008).
[32] S. Tan, Ann. Phys. (N.Y.) 323, 2987 (2008).
[33] F. Werner, L. Tarruell and Y. Castin, Eur. Phys. J. B 68, 401 (2009).
[34] R. Haussmann, M. Punk, and W. Zwerger, Phys. Rev. A 80, 063612 (2009).
[35] J. T. Stewart, J. P. Gaebler, T. E. Drake, and D. S. Jin Phys. Rev. Lett. 104, 235301 (2010).
[36] E. D. Kuhnle, H. Hu, X.-J. Liu, P. Dyke, M. Mark, P. D. Drummond, P. Hannaford, and C. J. Vale Phys. Rev. Lett. 105, 070402 (2010).
[37] A. Gezerlis and J. Carlson, Phys. Rev. C 81, 025803 (2010).
[38] J. Carlson, Stefano Gandolfi, Alexandros Gezerlis, Prog. Theor. Exp. Phys. 01A209 (2012).
[39] Stefano Gandolfi, Alexandros Gezerlis, J. Carlson, Annu. Rev. Nucl. Part. Sci. 65, 303 (2015).
[40] Sebastian König, Harald W. Grießhammer, H.-W. Hammer, U. van Kolck, arxiv:nucl-th/1607.04623v1.