During the 1980s, it was commonly accepted that congenital heart defects (CHDs) were secondary to multifactorial components. Nora and Nora\(^1\) presented a graph of a Gaussian curve with a vertical bar. Individuals of a general population were under the curve with individuals on the left side of the Gaussian curve carrying the least amount of CHD genetic predisposing factors and individuals on the right side carrying the greatest amount of genetic predisposing factors. The vertical bar symbolized the environment. Among the population, only those who were on the right of the environmental bar had a CHD. The bright side of this presentation was that you could easily explain any case of CHD whether sporadic or familial. The negative side of the concept was that it was depressing for those who envisaged deciphering CHD predisposing factors because the large number of environmental and genetic factors suggested by the graph meant that each of them had a small effect.

Contrary to what this diagram suggested, not all cases of CHD are always secondary to multiple small-effect factors. By focusing on exceptional familial cases in the past decades, it has become possible to identify genetic factors that are strong enough to result in an inheritance close to Mendelian inheritance.\(^2,3\) One conceptual prerequisite to this progress was to admit that a single (strong) genetic factor could result in a variety of CHD types, including an incomplete penetrance.\(^4\) One surprising finding of this study is the fact that among the 15 aortic coarctation patients with an identified CNV, 14 contained a putative binding site for the \(FOXC1\) gene (93%). Altogether, 77% of identified CNVs included at least 1 putative \(FOXC1\)-binding site (20/29 in transposition of the great arteries and 19/25 in tetralogy of Fallot). \(FOXC1\) encodes a transcriptional binding protein and has never been involved in nonsyndromic CHD so far but in Axenfeld–Rieger syndrome, a syndrome with anterior segment dysgenesis of the eye leading to glaucoma. Interestingly though, \(FOXC1\) and \(PITX2\) physically interact, colocalized in a common nuclear subcompartment and \(PITX2A\) (an isoform of \(PITX2\)) can function as a negative regulator of \(FOXC1\) transactivity.\(^5\) \(PITX2\) is involved in many developmental processes, including lateralization. In addition, mice null for the \(Pitx2\) gene have arrested embryonic rotation and right pulmonary isomerism,\(^6,7\) circumstances where CHD are frequently observed.

This study and others screening for de novo CNV\(^8,9\) in addition to studies screening for de novo point mutations\(^10,11\) are unraveling a whole new aspect of genetic predisposing factors. It was actually unexpected that de novo mutations could account for such a substantial percentage of CHD cases. Even in familial CHD cases, de novo mutations were
reported.12 Altogether, de novo CNV and point mutations could account for as much as ≈20% of CHD. This percentage is impressive, but what is even more notable is the fact that these discoveries concern essentially so-called sporadic CHD cases that represent the bottom of the iceberg because familial cases are estimated to account for only 4% to 9% of CHDs.13 These discoveries offer a new perspective to the understanding of CHD. The prevalence of a genetic disease is influenced both by cases corresponding to new mutations and cases in which patients have survived long enough to be able to transmit their mutations to the next generation. The most deleterious mutations are exclusively de novo, such as in progeria or osteogenesis imperfecta, whereas milder mutations are either recessive or less deleterious dominant mutations, such as founder mutations. On this wide spectrum, CHD is probably located toward the side of severe mutations resulting in a highly pejorative effect on reproductive selection—with as a consequence—numerous cases secondary to de novo mutations. On a human scale, the development of the medical and surgical care provided to CHD patients is relatively recent (one generation), and even today, the negative effect of selection imposed to CHD patients is strong either prenatally or postnatally.

Of course, the economic feasibility of the screenings done by Sanchez-Castro et al.1 and Zaidi et al.11 is currently out of reach in clinical practice. However, if a decreased cost of next-generation sequencing becomes possible, it can be envisioned that performing exome sequencing and CNV on trios for sporadic CHD cases becomes economically feasible. The goal of this process would be to counsel parents on the risk of recurrence for future pregnancies with a much more accurate prediction than by using the average recurrence risk. However, the gap between discovering genomic anomalies and inferring their role in the genesis of a cardiac malformation to the point that it can be used in genetic counseling will take much time to fill.

Acknowledgments

This editorial is dedicated to Jean-Louis Febvre and Foundation Renaud Febvre for their longstanding support.

Disclosures

None.

References

1. Nora JJ, Nora AH. The evolution of specific genetic and environmental counseling in congenital heart diseases. *Circulation*. 1978;57:205–213.

2. Gebbia M, Ferrero GB, Pilia G, Bassi MT, Aylsworth A, Pennan-Splitt M, et al. X-linked situs abnormalities result from mutations in ZIC3. *Nat Genet*. 1997;17:305–308. doi: 10.1038/ng1197-305.

3. Garg V, Kathiriya IS, Barnes R, Schluterman MK, King IN, Butler CA, et al. GATA4 mutations cause human congenital heart defects and reveal an interaction with TBX5. *Nature*. 2003;424:443–447. doi: 10.1038/nature01827.

4. Sanchez-Castro M, Eldjouzi H, Charpentier E, Busson P-F, Hauet Q, Lindenbaum P, et al. Search for rare copy-number variants in congenital heart defects identifies novel candidate genes and a potential role for FOXC1 in patients with coarctation of the aorta. *Circ Cardiovasc Genet*. 2016;9:86–94. doi: 10.1161/CIRCULATIONAHA.109.857987.

5. Cox CJ, Espinoza HM, McWilliams B, Chappell K, Morton L, Hjalt TA, et al. Differential regulation of gene expression by PITX2 isoforms. *J Biol Chem*. 2002;277:25001–25010. doi: 10.1074/jbc.M201737200.

6. Lu MF, Pressman C, Dyer R, Johnson RL, Martin JP. Function of Rieger syndrome gene in left-right asymmetry and craniofacial development. *Nature*. 1999;401:276–278. doi: 10.1038/45797.

7. Lin CR, Kioussi C, O’Connell S, Briata P, Szeto D, Liu F, et al. Pitx2 regulates lung asymmetry, cardiac positioning and pituitary and tooth morphogenesis. *Nature*. 1999;401:279–282. doi: 10.1038/45803.

8. Soemedi R, Wilson JJ, Bentham J, Darlay R, Topi A, Zelenika D, et al. Contribution of global rare copy-number variants to the risk of sporadic congenital heart disease. *Am J Hum Genet*. 2012;91:489–501. doi: 10.1016/j.ajhg.2012.08.003.

9. Greenway SC, Pereira AC, Lin JC, DePalma SR, Israel SJ, Mesquita SM, et al. De novo copy number variants identify new genes and loci in isolated sporadic tetralogy of Fallot. *Nat Genet*. 2009;41:931–935. doi: 10.1038/ng.415.

10. Iascone M, Ciccone R, Galletti L, Marchetti D, Seddio F, Lincesso AR, et al. Identification of de novo mutations and rare variants in hypoplastic left heart syndrome. *Clin Genet*. 2012;81:542–554. doi: 10.1111/j.1399-0004.2011.01674.x.

11. Zaidi S, Choi M, Wakimoto H, Ma L, Jiang J, Overton JD, et al. De novo mutations in histone-modifying genes in congenital heart disease. *Nature*. 2013;498:220–223. doi: 10.1038/nature12141.

12. El Malti R, Liu H, Doray B, Thauvin C, Maitre A, Dauphin C, et al. A systematic variant screening in familial cases of congenital heart defects demonstrates the usefulness of molecular genetics in this field. *Eur J Hum Genet*. 2016;24:228–236. doi: 10.1038/ejhg.2015.105.

13. Øyen N, Poulsen G, Boyd HA, Wohlfahrt J, Jensen PK, Melbye M. Recurrence of congenital heart defects in families. *Circulation*. 2009;120:295–301. doi: 10.1161/CIRCULATIONAHA.109.857987.