THE PRIME IDEALS IN EVERY CLASS CONTAIN ARBITRARY LARGE TRUNCATED CLASSES

CHUNLEI LIU

ABSTRACT. We prove that the prime ideals in every class contain arbitrary large truncated classes.

1. Introduction

Green-tao [GT1] proved the following epoch-making theorem.

Theorem 1.1 (Green-Tao’s PAP theorem). The primes contains arbitrary long arithmetic progressions.

We shall prove a generalization of Green-Tao’s PAP theorem to number fields.

Let \(K \) be any number field. We embed it into its Minkowski space

\[K_\infty = \prod_{\sigma \mid \infty} K_\sigma, \]

where \(K_\sigma \) is the completion of \(K \) at the archimedean place \(\sigma \). The metric on \(K_\infty \) is given by the formula

\[\| (x_\sigma) \|_{\text{Min}}^2 = \sum_{\sigma \mid \infty} [K_\sigma : \mathbb{R}] \cdot \| x_\sigma \|^2. \]

So the balls

\[B_r = \{ a \in K \mid \| a \|_{\text{Min}} < r \}, \quad r > 0 \]

form a fundamental system of neighborhoods of 0.

We view an arithmetic progression as a truncated residue class in \(\mathbb{Z} \). The ideal-theoretic generalization of the notion of residue classes in \(\mathbb{Z} \) to number fields is the notion of equivalence classes of ideals. Let \(O_K \) be the ring of integers in \(K \).

Definition 1.2. Let \(m, a, b \) be nonzero ideals of \(O_K \). If there is a nonzero number \(\xi \in 1 + ma^{-1} \) such that

\[b = (\xi)a, \]

then \(b \) is said to be equivalent to \(a \) modulo \(m \).

Definition 1.3. Let \(m \) and \(b \) be nonzero fractional ideals of \(O_K \) such that \(m \subseteq b \). Let \(a \in b \) and \(r > 0 \). We call

\[\{ \xi \in b \mid \xi \equiv a (\text{mod} m), \| \xi - a \|_{\text{Min}} < r \} \]
a truncated residue class of b modulo m. We call it a truncated principal residue class of b if m is principal.

Definition 1.4. Let m, b be nonzero fractional ideals of O_K such that $m \subseteq b$, and let A be a truncated residue class of b modulo m. We call

$$\{\xi b^{-1} \mid \xi \in A\}$$

a truncated generalized class.

We shall prove the following generalization of Green-tao’s PAP theorem.

Theorem 1.5. The prime ideals in every class contain arbitrary large truncated generalized classes.

The proof of Theorem 1.5 is a generalization of the arguments of Green-Tao in [GT1]. A positive density version of the above theorem can be proved similarly.

2. Pseudo-random measures on inverse systems

In this section we establish the relationship between two kinds of measures on inverse systems.

Let b a fixed nonzero fractional ideal of K. For the sake of convenience, we take b to be the inverse of a nonzero integral ideal. Let k be a fixed positive integer, and I the set of positive integers which are prime to every nonzero number in $O_K \cap B_{2k}$. Then $\{(b/(N_b))_{N \in I}\}$ is an inverse system of finite groups. For each $j \in O_K \cap B_k$, we write $e_j = (O_K \cap B_k) \setminus \{j\}$. Then $(O_K \cap B_k, \{e_j\}_{j \in O_K \cap B_k})$ is a hyper-graph. To each hyper-edge e_j, we associate the inverse system $\{(b/(N_b))^{e_j}\}_{N \in I}$. Thus the system $\{(b/(N_b))^{e_j}\}_{N \in I, j \in O_K \cap B_k}$ maybe regarded as an inverse system on the hyper-graph $(O_K \cap B_k, \{e_j\}_{j \in O_K \cap B_k})$.

For each $j \in O_K \cap B_k$, and for each $N \in I$, let $\vartheta_{N,j}$ be a nonnegative function on $(b/(N_b))^{e_j}$.

Definition 2.1. The system $\{\vartheta_{N,j}\}_{N \in I, j \in O_K \cap B_k}$ is called a pseudo-random system of measures on the system $\{(b/(N_b))\}_{N \in I, j \in O_K \cap B_k}$ if the following conditions are satisfied.

1. For all $j \in O_K \cap B_k$, and for all $\Omega_j \subseteq \{0, 1\}^{e_j} \setminus \{0\}$, one has

$$\frac{1}{N^{[e_j]/[K:Q]}} \sum_{x^{(1)} \in (b/(N_b))^{e_j}} \prod_{\omega \in \Omega_j} \vartheta_{N,j}(x^{(\omega)}) = O(1),$$

uniformly for all $x^{(0)} \in (b/(N_b))^{e_j}$.

2. Given any choice $\Omega_j \subseteq \{0, 1\}^{e_j}$ for each $j \in O_K \cap B_k$, one has

$$\frac{1}{N^{2[O_K \cap B_k]/[K:Q]}} \sum_{x^{(0)}, x^{(1)} \in (b/(N_b))^{O_K \cap B_k}} \prod_{j \in O_K \cap B_k} \prod_{\omega \in \Omega_j} \vartheta_{N,j}(x^{(\omega)}) = 1 + o(1),$$

as $N \to \infty$ in I.
Definition 2.2. The system on the inverse system s

Definition 2.4. If $\nu \in I$, let $\tilde{\nu}_N$ be a nonnegative function on $b/(Nb)$.

Definition 2.3. The system $\{\tilde{\nu}_N\}$ is said to satisfy the k-auto-correlation condition if, given any positive integers $s \leq |O_K \cap B_k|_1$, and for all mutually independent linear forms ψ_1, \ldots, ψ_s in m variables whose coefficients are numbers in $O_K \cap B_2$, we have

$$
\frac{1}{N^{2(|c|)}} \sum_{x \in (b/Nb)^s \cap \Omega_j} \prod_{\omega \in \Omega_j} \tilde{\nu}_{N,j}(x^{(\omega)}) = O(1).
$$

For each positive integer $N \in I$, let $\tilde{\nu}_N$ be a nonnegative function on $b/(Nb)$.

For all $j \in O_K \cap B_k$, for all $i \in \varepsilon_j$, and for all $\Omega_j \subseteq \{0,1\}^e$, and for all $M \in \mathbb{N}$, we have

$$
\frac{1}{N^{2(|\varepsilon|)}} \sum_{x^{(0)},x^{(1)} \in (b/Nb)^s} \left(\frac{1}{N^{2(|\varepsilon|)}} \sum_{x^{(0)},x^{(1)} \in b/Nb} \prod_{\omega \in \Omega_j} \tilde{\nu}_{N,j}(x^{(\omega)}) \right)^M = O(1).
$$

For all $j \in O_K \cap B_k$, for all $i \in \varepsilon_j$, and for all $\Omega_j \subseteq \{0,1\}^e$, and for all $M \in \mathbb{N}$, we have

$$
\frac{1}{N^{2(|\varepsilon|)}} \sum_{x^{(0)},x^{(1)} \in (b/Nb)^s} \left(\frac{1}{N^{2(|\varepsilon|)}} \sum_{x^{(0)},x^{(1)} \in b/Nb} \prod_{\omega \in \Omega_j} \tilde{\nu}_{N,j}(x^{(\omega)}) \right)^M = O(1).
$$

For each positive integer $N \in I$, let $\tilde{\nu}_N$ be a nonnegative function on $b/(Nb)$.

Definition 2.3. The system $\{\tilde{\nu}_N\}$ is said to satisfy the k-auto-correlation condition if, given any positive integers $s \leq |O_K \cap B_k|_1$, and for all mutually independent linear forms ψ_1, \ldots, ψ_s in m variables whose coefficients are numbers in $O_K \cap B_2$, we have

$$
\frac{1}{N^{2(|\varepsilon|)}} \sum_{x \in (b/Nb)^s \cap \Omega_j} \prod_{\omega \in \Omega_j} \tilde{\nu}_{N,j}(x^{(\omega)}) = O(1), \quad N \to \infty
$$

uniformly for all $b_1, \ldots, b_s \in b/(Nb)$.

Definition 2.4. The system $\{\tilde{\nu}_N\}$ is called a k-pseudo-random system of measure on the inverse system $\{b/(Nb)\}$ if it satisfies the k-correlation condition and the k-auto-correlation condition.

From now on we assume that

$$
\tilde{\nu}_{N,j}(x) := \tilde{\nu}_N \left(\sum_{i \in \varepsilon_j} (i - j)x_i \right).
$$

Theorem 2.5. If $\{\tilde{\nu}_N\}$ is k-pseudo-random, then $\{\tilde{\nu}_{N,j}\}$ is pseudo-random.

Proof First, we show that, for all $j \in O_K \cap B_k$, and for all $\Omega_j \subseteq \{0,1\}^e \setminus \{0\}$,

$$
\frac{1}{N^{2(|\varepsilon|)}} \sum_{x^{(1)} \in (b/Nb)^s \cap \Omega_j} \prod_{\omega \in \Omega_j} \tilde{\nu}_{N,j}(x^{(\omega)}) = O(1),
$$

uniformly for all $x^{(0)} \in (b/Nb)^s$. For each $\omega \in \Omega_j$, set

$$
\psi_\omega(x^{(1)}) = \sum_{i \in \varepsilon_j, \omega_i = 1} (i - j)x_i^{(1)},
$$

and

$$
b_\omega = \sum_{i \in \varepsilon_j, \omega_i = 0} (i - j)x_i^{(0)}.$$

Then
\[
\frac{1}{N^{|e_j|}[K:\mathbb{Q}]^2} \sum_{x^{(1)} \in (b/Nb)^{e_j}} \prod_{\omega \in \Omega_j} \tilde{\nu}_{N,j}(x^{(\omega)}) = \frac{1}{N^{|e_j|}[K:\mathbb{Q}]^2} \sum_{x^{(1)} \in (b/Nb)^{e_j}} \prod_{\omega \in \Omega_j} \tilde{\nu}_{N,j}(\psi_{\omega}(x^{(1)}) + b_\omega) = O(1).
\]

Secondly, we show that, given any choice \(\Omega_j \subseteq \{0,1\}^{e_j}\) for each \(j \in O_K \cap B_k\),
\[
\frac{1}{N^2[O_K \cap B_k][K:\mathbb{Q}]^2} \sum_{x^{(0)},x^{(1)} \in (b/Nb)^{O_K \cap B_k}} \prod_{j \in O_K \cap B_k} \prod_{\omega \in \Omega_j} \tilde{\nu}_{N,j}(x^{(\omega)}) = 1 + o(1),
\]
as \(N \to \infty\) in \(I\). For each pair \((j, \omega)\) with \(j \in O_K \cap B_k\) and \(\omega \in \Omega_j\), set
\[
\psi_{(j,\omega)}(x) = \sum_{i \in O_K \cap B_k, \omega_i = \delta} (i - j)x_i^{(\delta)}.
\]
Then
\[
\frac{1}{N^2[O_K \cap B_k][K:\mathbb{Q}]^2} \sum_{x^{(0)},x^{(1)} \in (b/Nb)^{O_K \cap B_k}} \prod_{j \in O_K \cap B_k} \prod_{\omega \in \Omega_j} \tilde{\nu}_{N,j}(\psi_{(j,\omega)}(x)) = 1 + o(1),
\]
as \(N \to \infty\) in \(I\).

Finally we show that, for all \(j \in O_K \cap B_k\), for all \(i \in e_j\), for all \(\Omega_j \subseteq \{0,1\}^{e_j}\), and for all \(M \in \mathbb{N}\),
\[
\frac{1}{N^{2(|e_j|-1)[K:\mathbb{Q}]^2}} \sum_{x^{(0)},x^{(1)} \in (b/Nb)^{e_j} \setminus \{i\}} \left(\frac{1}{N^2[K:\mathbb{Q}]} \sum_{x^{(0)},x^{(1)} \in (b/Nb)} \prod_{\omega \in \Omega_j} \tilde{\nu}_{N,j}(x^{(\omega)}) \right)^M = O(1).
\]
By Cauchy-Schwartz it suffices to show that, for \(a = 0,1\),
\[
\frac{1}{N^{2(|e_j|-1)[K:\mathbb{Q}]^2}} \sum_{x^{(0)},x^{(1)} \in (b/Nb)^{e_j} \setminus \{i\}} \left(\frac{1}{N^2[K:\mathbb{Q}]} \sum_{x^{(0)} \in (b/Nb)} \prod_{\omega \in \Omega_j, \omega_i = a} \tilde{\nu}_{N,j}(x^{(\omega)}) \right)^2M = O(1).
\]
For each \(\omega \in \Omega_j\) with \(\omega_i = a\), set
\[
\psi_{\omega}(x) = \sum_{l \in e_j \setminus \{i\}} (l - j)x_l^{(\omega_l)}.
\]
Then
\[
\frac{1}{N^{2(|e_j|-1)[K:\mathbb{Q}]^2}} \sum_{x^{(0)},x^{(1)} \in (b/Nb)^{e_j} \setminus \{i\}} \left(\frac{1}{N^2[K:\mathbb{Q}]} \sum_{x^{(a)} \in (b/Nb) \setminus \{x_i^{(a)}\}} \prod_{\omega \in \Omega_j, \omega_i = a} \tilde{\nu}_{N,j}(x^{(\omega)}) \right)^2M \leq \frac{1}{N^{2(|e_j|-1)[K:\mathbb{Q}]^2}} \sum_{x^{(0)},x^{(1)} \in (b/Nb)^{e_j} \setminus \{i\}} \sum_{\omega' \in \Omega_j, \omega_i = \omega'_i = a} \tilde{\nu}_{N,j}^{2M}(\psi_{\omega}(x) - \psi_{\omega'}(x)) \leq \frac{1}{N^{[K:\mathbb{Q}]}} \sum_{x \in b/(Nb)} x^{2M}(x) = O(1).
\]
In this section we establish the relationship between measures on inverse systems and measures on nonzero fractional ideals.

Let A be a positive constant. For $N \in I$, let $\nu_N \ll \log^4 N$ be a nonnegative function on b.

Definition 3.1. The system $\{\nu_N\}$ is said to satisfy the k-cross-correlation condition if, given any parallelootope I in K_∞, given any positive integers $s \leq |O_K \cap B_k|2^{2|O_K \cap B_k|}$, given any $N \log^{-2sA} N \leq \lambda < N$, and given any mutually independent linear forms ψ_1, \cdots, ψ_s in m variables whose coefficients are numbers in $O_K \cap B_{2k}$, we have

$$\frac{1}{|b \cap (\lambda I)|} \sum_{x_i \in b \cap (\lambda I)} \prod_{j=1}^s \nu_N(\psi_j(x) + b_j) = 1 + o(1), \quad N \to \infty$$

uniformly for all numbers $b_1, \cdots, b_s \in b$.

Definition 3.2. The system $\{\nu_N\}$ is said to satisfy the k-auto-correlation condition if given any positive integers $s \leq |O_K \cap B_k|2^{2|O_K \cap B_k|}$, there exists a system $\{\tau_N\}$ of nonnegative functions on b such that, given any parallelootope I in K_∞,

$$\frac{1}{|(NI) \cap b|} \sum_{x \in (NI) \cap b} \tau_N^M(x) = O_M(1), \quad \forall M \in \mathbb{N}$$

and

$$\frac{1}{|(NI) \cap b|} \sum_{x \in (NI) \cap b} \prod_{i=1}^s \nu_N(x + y_i) \leq \sum_{1 \leq i < j \leq s} \tau_N(y_i - y_j).$$

Definition 3.3. The system $\{\nu_N\}$ is k-pseudo-random if it satisfies the k-cross-correlation condition and the k-auto-correlation condition.

Let η_1, \cdots, η_n be a \mathbb{Z}-basis of b, and set

$$G = \sum_{j=1}^n (-1/2, 1/2] \eta_j \subseteq K_\infty.$$

Let $\varepsilon > 0$ be a sufficiently small constant depending only on k and b. From on on we assume that

$$\tilde{\nu}_N(x) = \begin{cases} \nu_N(\hat{x}), & x = \hat{x} + N\mathbb{b}, \hat{x} \in \varepsilon NG, \\ 1, & \text{otherwise}. \end{cases}$$

We now prove the following.

Theorem 3.4. If the system $\{\nu_N\}_{N \in I}$ is k-pseudo-random, then the system $\{\tilde{\nu}_N\}_{N \in I}$ is also k-pseudo-random.

Proof First we show that, given any positive integers $s \leq |O_K \cap B_k|2^{2|O_K \cap B_k|}$, $m \leq 2|O_K \cap B_k|$, and given any mutually independent linear forms ψ_1, \cdots, ψ_s in m
variables whose coefficients are numbers in $O_K \cap B_{2\kappa}$,

$$
\frac{1}{N^{m|K:Q|}} \sum_{s_1, \ldots, s_m} \prod_{j=1}^s \nu_N(\psi_j(x) + b_j) = 1 + o(1), \quad N \to \infty
$$

uniformly for all $b_1, \ldots, b_s \in b/(Nb)$. It suffices to show that for any $S' \subset \{1, \ldots, s\}$,

$$
\frac{1}{N^{m|K:Q|}} \sum_{s_1, \ldots, s_m} \prod_{j \in S'} (\nu_N(\psi_j(x) + b_j) - 1) = o(1), \quad N \to \infty
$$

uniformly for all $b_1, \ldots, b_s \in b$. Regard ψ as an \mathbb{R}-linear map from K_∞^m to K_∞^s. There is a positive constant c such that for any $x \in K_\infty^s$, the number of translations of G by vectors in $x + b^s$ needed to cover $\psi(G^m)$ is $\leq c$. Hence the number of translations of NG^s by vectors in $-b + Nb^s$ needed to cover $\psi(NG^m)$ is $O(1)$. Therefore it suffices to show that, for any $\beta \in b^S$,

$$
\frac{1}{N^{mn}} \sum_{x \in (NG\cap b)^m} \sum_{s \in S'} (\nu_N(\psi_j(x) + b_j) - 1) = o(1).
$$

Let $Q = \log^{2A} N$. We analyze the contributions to the left-hand side from the translates of $(\frac{1}{N} G)^m$ by vectors in $(NG \cap b)^m$. The translations whose images under ψ do not intersect with $-b + N\beta + \varepsilon NG^S$ apparently make no contribution. The total contributions from translations whose images under ψ are contained in $-b + N\beta + \varepsilon NG^S$ is equal to

$$
\frac{1}{N^{mn}} \sum_{\psi(x_0 + (\frac{1}{N} G)^m) \subseteq -b + N\beta + \varepsilon NG^S} \sum_{x \in x_0 + (\frac{1}{N} G)^m} \prod_{s \in S'} (\nu_N(\psi_j(x) + b_j - N\beta) - 1),
$$

which is $o(1)$ by the pseudo-randomness of $\{\nu_N\}$. It remains to consider the contribution from translations whose images under ψ intersect with the boundary of $-b + N\beta + \varepsilon NG^S$. The total number of such translations is bounded by $O(Q^{mn-1})$. As each such a translation contributes at most $Q^{-mn} \log^s A N$. The total contribution given by such translations is bounded by $O(\frac{\log^{2A} N}{Q})$.

Secondly we show that, given any positive integers $s \leq |O_K \cap B_{\kappa}|2^{O_K \cap B_{\kappa}}$,

$$
\frac{1}{N^{|K:Q|}} \sum_{x \in b/(Nb)} \prod_{i=1}^s \nu_N(x + y_i) \ll \sum_{1 \leq i < j \leq s} \tilde{\tau}(y_i - y_j),
$$

where

$$
\tilde{\tau}(x) = \tau(x), \quad x \in NG.
$$

Set

$$
g_N(x) = \begin{cases}
\nu_N(\hat{x}), & x = \hat{x} + Nb, \hat{x} \in \varepsilon NG, \\
0, & \text{otherwise}.
\end{cases}
$$

Then

$$
\frac{1}{N^{|K:Q|}} \sum_{x \in b/(Nb)} \prod_{i=1}^s \nu_N(x + y_i)
$$
We may assume that

\[\text{For each } \]

In this section we prove the relative Szemerédi theorem for number fields.

Theorem 4.2. The relative Szemerédi theorem for number fields follows from a theorem of Tao in [Tao].

The following version of the relative Szemerédi theorem for number fields follows from a theorem of Tao in [Tao].

Theorem 4.2. If the system \(\hat{\nu}_N \) is pseudo-random, and \(\hat{\nu}_N \) has positive upper density relative to \(\hat{\nu}_N \), then there is a subset \(\hat{A}_N \) and a truncated residue class of \(b \) of size \(|O_K \cap B_k| \) such that

\[A(\mod N b) \subseteq \hat{A}_N. \]
Theorem 4.3. If the system \(\tilde{\nu}_N \) is \(k \)-pseudo-random, and \(\tilde{A}_N \) has positive upper density relative to \(\tilde{\nu}_N \), then there is a subset \(\tilde{A}_N \) and a truncated residue class of \(b \) of size \(|O_K \cap B_k| \) such that

\[
A \pmod{Nb} \subseteq \tilde{A}_N.
\]

Definition 4.4. For \(N \in I \), let \(A_N \) be a subset of \(b \cap B_N \). The upper density of \(\{A_N\} \) relative to \(\{\nu_r\} \) is defined to be

\[
\limsup_{N \to \infty} \frac{\sum_{x \in A_N} \nu_N(g)}{\sum_{x \in b \cap B_N} \nu_N(x)}.
\]

We now prove the following.

Theorem 4.5. If \(\{\nu_N\} \) is \(k \)-pseudo-random, and \(\{A_N \cap B_{\varepsilon N}\} \) has positive upper density relative to \(\{\nu_N\} \), then there is a subset \(A_N \) that contains a truncated principal residue class of \(b \) of size \(|O_K \cap B_k| \).

Proof We have

\[
\frac{\sum_{x \in A_N \cap B_{\varepsilon N}} \tilde{\nu}_N(x)}{\sum_{x \in b \cap (Nb)} \nu_N(x)} = \frac{1}{N[K:Q]} \sum_{x \in A_N \cap B_{\varepsilon N}} \tilde{\nu}_N(x) + o(1) = \frac{1}{N[K:Q]} \sum_{x \in A_N \cap B_{\varepsilon N}} \nu_N(x) + o(1) = \sum_{x \in A_N \cap B_{\varepsilon N}} \nu_N(x) + o(1).
\]

So \(\{A_N \cap B_{\varepsilon N}(\pmod{Nb})\} \) has positive upper density relative to \(\{\tilde{\nu}_N\} \). By Theorem 4.3, there is a subset \(A_N \cap B_{\varepsilon N}(\pmod{Nb}) \), a truncated residue class of \(b \) of size \(|O_K \cap B_k| \) such that

\[
A \pmod{Nb} \subseteq A_N \cap B_{\varepsilon N}(\pmod{Nb}).
\]

As \(A \) is bounded, and \(\varepsilon \) is sufficiently small, we conclude that

\[
A \subseteq A_N \cap B_{\varepsilon N}.
\]

The theorem follows. \(\blacksquare \)

5. The cross-correlation of the truncated von Mangoldt function

In this section we shall establish the cross-correlation of the truncated von Mangoldt function.

The truncated von Mangoldt function for the rational number field was introduced by Heath-Brown [HB]. The truncated von Mangoldt function for the Gaussian number field was introduced by Tao [Tao]. The cross-correlation of the truncated von Mangoldt function for the rational number field were studied by Goldston-Yıldırım in [GY1, GY2, GY3], and by Green-Tao in [GT1, GT2].

Let \(\varphi : \mathbb{R} \to \mathbb{R}^+ \) be a smooth bump function supported on \([-1, 1]\) which equals 1 at 0, and let \(R > 1 \) be a parameter. We now define the truncated von Mangoldt function for the number field \(K \).
The prime ideals contain arbitrary large truncated classes

Definition 5.1. We define the truncated von Mangoldt function \(\Lambda_{K,R} \) of \(K \) by the formula

\[
\Lambda_{K,R}(n) := \sum_{d \mid n} \mu_K(d) \varphi\left(\frac{\log N(d)}{\log R} \right),
\]

where \(\mu_K \) is the Möbius function of \(K \) defined by the formula

\[
\mu_K(n) = \begin{cases}
(-1)^k, & n \text{ is a product of } k \text{ distinct prime ideals,} \\
0, & \text{otherwise.}
\end{cases}
\]

Note that \(\Lambda_{K,R}(n) = 1 \) if \(n \) is a prime ideal with norm \(\geq R \).

Let \(\zeta_K(z) \) be the zeta function of \(K \), \(\phi_K(W) := |O_K/(W)^\times| \),

\[
\hat{\varphi}(x) = \int_{-\infty}^{\infty} e^{itx} d_t,
\]

and

\[
c_\varphi := \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} \frac{(1+iy)(1+iy')}{(2+iy+iy')} \hat{\varphi}(y)\hat{\varphi}(y') dy dy'.
\]

From now on, for each \(N \in I \), let

\[
\nu_N(x) = \frac{\phi_K(W) \log R \cdot \text{Res}_{z=1} \zeta_K(z)}{c_\varphi W^{|K:2|}} \Lambda_{K,R}^2((W x + \alpha)b^{-1}).
\]

Here

\[
\log R = \frac{\log N}{8|O_K \cap B_k|2|O_K \cap B_k|},
\]

\(W \) is the product of prime numbers \(\leq w := \log \log N \), and \(\alpha \) a number prime to \(W \).

We now prove the following.

Theorem 5.2. The system \(\{\nu_N\} \) satisfies the k-cross-correlation condition.

Proof Given any parallelootope \(I \) in \(K_\infty \), given any positive integers \(s \leq |O_K \cap B_k|2|O_K \cap B_k|, m \leq 2|O_K \cap B_k| \), given any \(N \log^{-2sA} N < \lambda < N \), and given any mutually independent linear forms \(\psi_1, \cdots, \psi_s \) in \(m \) variables whose coefficients are numbers in \(O_K \cap B_{2k} \), we show that

\[
\frac{1}{|b \cap (\lambda I)|^s} \sum_{x_i \in b \cap (\lambda I)} \prod_{j=1}^{s} \nu_N(\psi_j(x) + b_j) = 1 + o(1), \; N \to \infty
\]

uniformly for all numbers \(b_1, \cdots, b_s \in b \).

We define

\[
\mathcal{G} = \sum_{d, d'} \omega(d_1 \cap d'_1 \leq \cdots \leq d_s) \prod_{i=1}^{s} \mu_K(d_i) \mu_K(d'_i) \varphi\left(\frac{\log N d_i}{\log R} \right) \varphi\left(\frac{\log N d'_i}{\log R} \right),
\]

where \(d \) and \(d' \) run over \(s \)-tuples of ideals of \(O_K \), and

\[
\omega(d_1 \leq \cdots \leq d_s) = \left\{|x \in (b/(\cap_{i=1}^{s} d_i))^m : d_i ((W \psi_i(x) + b_i')b^{-1}, \forall i = 1, \cdots, s\right\}
\]

with \(b'_i = W b_i + \alpha \).
Let \(\{ \gamma_j \} \) \((j = 1, \cdots, [K : \mathbb{Q}]) \) be a \(\mathbb{Z} \)-basis of \(b \) such that \(\{ \lambda_j \gamma_j \} \) is a \(\mathbb{Z} \)-basis of \(b \cdot \cap_{i=1}^s d_i \), where each \(\lambda_i \) is a positive integer. Set

\[
I_0 = \{ x \in K_\infty : x_i \in \sum_{j=1}^{[K : \mathbb{Q}]} (0, 1] \lambda_j \gamma_j \}.
\]

Then

\[
\omega((d_i)_{1 \leq i \leq s}) = \frac{|\{ x \in (I_0 \cap b)^m : d_i | (W \psi_i(x) + b'_i)b^{-1}, \forall i = 1, \cdots, s \}|}{(N \cap_{i=1}^s d_i)^m}.
\]

The number of translates of \(I_0^m \) by vectors in \((b \cdot \cap_{i=1}^s d_i)^m \) which intersect the boundary of \(\lambda I^m \) is bounded by \(O(\lambda^{m[K : \mathbb{Q}]-1}/(\prod_{j=1}^{[K : \mathbb{Q}]})^m) \). So the number of translates of \(I_0^m \) by vectors in \((b \cdot \cap_{i=1}^s d_i)^m \) which lie in the interior of \(\lambda I^m \) is

\[
\frac{\text{Vol}(I)^m}{\text{Vol}(I_0)^m}\lambda^{m[K : \mathbb{Q}]} + O(\lambda^{m[K : \mathbb{Q}]-1}N(\cap_{i=1}^s d_i)/(\prod_{j=1}^{[K : \mathbb{Q}]})^m).
\]

It follows that

\[
\frac{|\{ x \in (\lambda I \cap b)^m : d_i | (W \psi_i(x) + b'_i)b^{-1}, \forall i = 1, \cdots, s \}|}{\lambda^{m[K : \mathbb{Q}]}\text{Vol}(I)^m/(\sqrt{|d_K|N(b)^{K[\mathbb{Q}]} \text{Vol}(I)^m}) = \omega((d_1)_{1 \leq i \leq s}) + O\left(\frac{N(\cap_{i=1}^s d_i)}{\lambda}\right),
\]

where \(d_K \) is the discriminant of \(K \). From that estimate one can infer

\[
\left(\frac{|d_K|N(b)}{\lambda^{m[K : \mathbb{Q}]}}\right)^m \sum_{x \in (\lambda I / \cap_{i=1}^s d_i)^m} \prod_{i=1}^s \Lambda'^2 R((W \psi_i(x) + b'_i)b^{-1}) = \mathcal{G} + O\left(\frac{R^{4s}}{\lambda}\right).
\]

Therefore we are is reduced to the following.

\[
\mathcal{G} = (1 + o(1))\frac{c_p W^{[K : \mathbb{Q}]}}{\phi_K(W) \log R \cdot \text{Res}_{z=1} \zeta_K(z)^s}.
\]

We define

\[
F(t, t') = \sum_{\delta, \delta'} \omega((\delta_j \cap \delta'_j)_{1 \leq j \leq s}) \prod_{j=1}^s \frac{\mu_K(\delta_j) \mu_K(\delta'_j)}{N(\delta_j)^{1/\log R} N(\delta'_j)^{1/\log R}} \cdot t, t' \in \mathbb{R}^s,
\]

where \(\delta \) and \(\delta' \) run over \(s \)-tuples of ideals of \(O_K \).

It is easy to see that, for all \(B > 0 \),

\[
e^x \varphi(x) = \int_{-\sqrt{\log R}}^{\sqrt{\log R}} \hat{\varphi}(t)e^{-ixt} dt + O((\log R)^{-B}).
\]

It follows that for all \(B > 0 \),

\[
\mathcal{G} = \int_{[-\sqrt{\log R}, \sqrt{\log R}]^s} \int_{[-\sqrt{\log R}, \sqrt{\log R}]^s} F(t, t') \hat{\varphi}(t) \hat{\varphi}(t') dt dt' + O((\log R)^{-B} \cdot \sum_{\delta, \delta'} \omega((\delta_j \cap \delta'_j)_{1 \leq j \leq s}) \prod_{i=1}^s \frac{|\mu_K(\delta_j) \mu_K(\delta'_j)|}{N(\delta_j)^{1/\log R} N(\delta'_j)^{1/\log R}}).
\]

Hence we are reduced to prove the following.

\[
\sum_{\delta, \delta'} \omega((\delta_j \cap \delta'_j)_{1 \leq j \leq s}) \prod_{j=1}^s \frac{|\mu_K(\delta_j) \mu_K(\delta'_j)|}{N(\delta_j)^{1/\log R} N(\delta'_j)^{1/\log R}} \ll \log^{O(1)} R,
\]
and, for \(t, t' \in [-\sqrt{\log R}, \sqrt{\log R}] \),

\[
F(t, t') = (1 + o(1))\left(\frac{W^{[K:Q]}}{\phi_K(W) \log R \cdot \text{Res}_{z=1} \zeta_K(z)} \right)^s \prod_{j=1}^s \frac{(1 + it_j)(1 + it'_j)}{(2 + it_j + it'_j)}.
\]

We prove the equality first. Applying the Chinese remainder theorem, one can show that

\[
\omega((d_j)_{1 \leq j \leq s}) = \prod_{\wp} \omega((d_j, \wp)_{1 \leq j \leq s}),
\]

where \(\wp \) runs over nonzero prime ideals of \(\mathcal{O}_K \). One can also show that

\[
\omega(((d_j, \wp))_{1 \leq j \leq s}) = \begin{cases} 1, & \prod_{j=1}^s (d_j, \wp) = (1), \\ 0, & \prod_{j=1}^s (d_j, \wp) \neq (1), \wp | W. \end{cases}
\]

And, if \(\wp \nmid W \) and \(W \) is sufficiently large, then one can show that

\[
\omega(((d_j, \wp))_{1 \leq j \leq s}) = \begin{cases} 1/N\wp, & \prod_{j=1}^s (d_j, \wp) = \wp \leq 1/N\wp^2, \\ \wp^2 & \prod_{j=1}^s (d_j, \wp). \end{cases}
\]

It follows that

\[
F(t, t') = \prod_{\wp} \sum_{d_j, d'_j | \wp, j=1,\ldots,s} \omega((d_j \cap d'_j)_{1 \leq j \leq s}) \prod_{j=1}^s \frac{\mu_K(d_j)\mu_K(d'_j)}{N_{d_j}^{1+it_j} N_{d'_j}^{1+it'_j}}
\]

\[
= \prod_{\wp | W} (1 + \sum_{j=1}^s -N\wp^{-1-\frac{1+it_j}{\log R}} - N\wp^{-1-\frac{1+it'_j}{\log R}} + N\wp^{-\frac{2+it_j+it'_j}{\log R}} + O_s(\frac{1}{N\wp^2}))
\]

\[
= \prod_{\wp | W} (1 + O_s(\frac{1}{p^e})) \prod_{j=1}^s \prod_{\wp | W} \left(1 - N\wp^{-1-\frac{1+it_j}{\log R}} \right) \frac{\zeta_K(1 + \frac{2+it_j+it'_j}{\log R})}{\zeta_K(1 + \frac{1+it_j}{\log R})}\frac{\zeta_K(1 + \frac{1+it'_j}{\log R})}{\zeta_K(1 + \frac{1+it_j+it'_j}{\log R})} \prod_{\wp | W} \left(1 - N\wp^{-1-\frac{2+it_j+it'_j}{\log R}} \right)
\]

From the estimate

\[
\zeta_K(z) = \frac{\text{Res}_{z=1} \zeta_K(z)}{z-1} + O(1), \quad z \to 1,
\]

and the estimate

\[
e^z = 1 + O(z), \quad z \to 0,
\]

we infer that

\[
F(t, t') = (1 + O(\frac{1}{\log R})) \cdot \prod_{\wp | W} (1 + O(\frac{\log N\wp}{N\wp \log^{1/2} R})).
\]

\[
(\frac{W^{[K:Q]}}{\phi_K(W) \log R \cdot \text{Res}_{z=1} \zeta_K(z)})^s \prod_{j=1}^s \frac{(1 + it_j)(1 + it'_j)}{(2 + it_j + it'_j)}.
\]

Applying the estimate

\[
\prod_{\wp | W} (1 + \frac{\log N\wp}{N\wp}) = O(e^{\log^2 w}),
\]
we arrive at
\[F(t, t') = (1 + o(1)) \left(\frac{W^{[K:Q]}}{\phi_K(W) \log R \cdot \text{Res}_{z=1} \zeta_K(z)} \right)^s \prod_{j=1}^s \frac{(1 + it_j)(1 + it_j')}{(2 + it_j + it_j')} \]
as required.

We now turn to prove the estimate
\[
\sum_{d, d'} \omega((d_j \cap d'_j)_{1 \leq j \leq s}) \prod_{j=1}^s \frac{|\mu_K(d_j)\mu_K(d'_j)|}{N(d_j)^{1/\log R}N(d'_j)^{1/\log R}} \ll \log^{O(1)} R.
\]
We have
\[
\begin{align*}
&\sum_{d, d'} \omega((d_j \cap d'_j)_{1 \leq j \leq s}) \prod_{j=1}^s \frac{|\mu_K(d_j)\mu_K(d'_j)|}{N(d_j)^{1/\log R}N(d'_j)^{1/\log R}} \\
&= \prod_{W} \sum_{d_j, d'_j : y_j = 1, \ldots, s} \omega((d_j \cap d'_j)_{1 \leq j \leq s}) \prod_{j=1}^s \frac{1}{N(d_j)^{1/\log R}N(d'_j)^{1/\log R}} \\
&= \prod_{W} (1 + N^{-1} \log R)^{O(1)} = \zeta(1 + \frac{1}{\log R})^{O(1)} \ll \log^{O(1)} R.
\end{align*}
\]
This completes the proof of the theorem.

6. The auto-correlation of the truncated von Mangolt function

In this section we shall establish the auto-correlation of the truncated von Mangolt function.

The auto-correlation of the truncated von Mangolt function for the rational number field was studied by Goldston-Yıldırım in [GY1, GY2, GY3], and by Green-Tao in [GT1, GT2].

We now prove the following.

Theorem 6.1. The system \(\{\nu_N\} \) satisfies the \(k \)-auto-correlation condition.

The above theorem follows from the following lemma.

Lemma 6.2. Let \(I \) be any parallelootope in \(K_\infty \). Then
\[
\frac{1}{\|(NI) \cap b\|} \sum_{x \in (NI) \cap b} \prod_{i=1}^s \nu_N(x + y_i) \ll \prod_{1 \leq i < j \leq s} (1 + O_N(\frac{1}{N^\theta}))
\]
uniformly for all \(s \)-tuples \(y \in b^s \) with distinct coordinates.
Proof We define

$$\mathcal{G}_2 = \sum_{0, s} \omega_2((d_0 \cap d'_1 \cdots d'_s) \cap \lambda I) \prod_{i=1}^{s} \mu_{K}(d_i) \mu_{K}(d'_i) \phi(\frac{\log N \delta_i}{\log R}) \phi(\frac{\log N \delta'_i}{\log R}),$$

where d and d' run over s-tuples of ideals of O_K, and

$$\omega_2((d_i)_{1 \leq i \leq s}) = \frac{|\{x \in b/(\cap_{i=1}^{s} d_i) : d_i[(Wx + h_i)b^{-1}, \forall i = 1, \cdots, s]\}|}{(N \cap_{i=1}^{s} d_i)},$$

where $h_i = W b(y) + W y_i + \alpha$.

Let $\{\gamma_j\} (j = 1, \cdots, [K : \mathbb{Q}])$ be a \mathbb{Z}-basis of b such that $\{\lambda_i \gamma_j\}$ is a \mathbb{Z}-basis of $b \cap \cap_{i=1}^{s} d_i$, where each λ_i is a positive integer. Set

$$I_0 = \{x \in K : x_i = \sum_{j=1}^{[K : \mathbb{Q}]} (0, 1) \lambda_j \gamma_j\}.$$

Then

$$\omega_2((d_i)_{1 \leq i \leq s}) = \frac{|\{x \in I_0 \cap b : d_i[(Wx + h_i)b^{-1}, \forall i = 1, \cdots, s]\}|}{(N \cap_{i=1}^{s} d_i)}.$$

The number of translates of I_0 by vectors in $b \cap \cap_{i=1}^{s} d_i$ which intersect the boundary of λI is bounded by $O(\lambda [K : \mathbb{Q}]^{-1})$. So the number of translates of I_0 by vectors in $b \cap \cap_{i=1}^{s} d_i$ which lie in the interior of λI is

$$\frac{\text{Vol}(I)}{\text{Vol}(I_0)} \lambda^{[K : \mathbb{Q}]} + O(\lambda [K : \mathbb{Q}]^{-1}/N(\cap_{i=1}^{s} d_i)^{[K : \mathbb{Q}]^{-1}}).$$

It follows that

$$\frac{N \alpha \sqrt{d_K} |\{x \in \lambda I \cap b : d_i[(Wx + h_i)b^{-1}, \forall i = 1, \cdots, s]\}|}{\lambda^{[K : \mathbb{Q}]} \text{Vol}(I)} = \frac{\text{Vol}(I)}{\text{Vol}(I_0)} \lambda^{[K : \mathbb{Q}]} + O\left(\frac{N}{\lambda} \frac{\cap_{i=1}^{s} d_i}{\Delta}\right).$$

From that estimate one can infer

$$\left(\frac{W^{[K : \mathbb{Q}]} \alpha}{\phi_K(W) \log R}\right)^{s} \frac{1}{|\cap_{i=1}^{s} d_i|} \prod_{x \in (N \cap b)} \mu_N(x + y_i) = \mathcal{G}_2 + O\left(\frac{R^{is}}{\lambda}\right).$$

So we are reduced to proving that

$$\mathcal{G}_2 \ll \left(\frac{W^{[K : \mathbb{Q}]} \alpha}{\phi_K(W) \log R}\right) \prod_{\nu|\Delta} (1 + O\left(\frac{1}{N^\nu}\right)), $$

whenever

$$\Delta := \prod_{i \neq j} (y_i - y_j) \neq 0.$$

We define

$$F_2(t, t') = \sum_{d, d'} \omega_2((d_0 \cap d'_1 \cdots d'_s) \cap \lambda I) \prod_{j=1}^{s} \frac{\mu_{K}(d_j) \mu_{K}(d'_j)}{N(d_j)^{1 + \frac{1}{\log R}} N(d'_j)^{1 + \frac{1}{\log R}}}, \; t, t' \in \mathbb{R}^s,$$

where d and d' run over s-tuples of ideals of O_K.
For all $B > 0$, we have

$$
\mathfrak{S}_2 = \int_{-\sqrt{\log R}, \sqrt{\log R}} \cdots \int_{-\sqrt{\log R}, \sqrt{\log R}} F_2(t, t') \psi(t) \psi(t') dt dt'
$$

$$
+ O_B((\log R)^{-B}) \cdot \sum_{d, d'} \omega_2((d_i \cap d'_j)_{1 \leq i \leq s}) \prod_{j=1}^s \frac{\mu_K(d_j) \mu_K(d'_j)}{N(d_j)^{1/\log R} N(d'_j)^{1/\log R}}
$$

Hence we are reduced to prove the following.

$$
\sum_{d, d'} \omega_2((d_i \cap d'_j)_{1 \leq i \leq s}) \prod_{j=1}^s \frac{\mu_K(d_j) \mu_K(d'_j)}{N(d_j)^{1/\log R} N(d'_j)^{1/\log R}} \ll \log^{O_s(1)} R,
$$

and, for $t, t' \in [-\sqrt{\log R}, \sqrt{\log R}]^s$,

$$
F_2(t, t') \ll \left(\frac{W^{[K:Q]}}{\phi_K(W) \log R} \right)^s \prod_{\nu \mid \Delta, \nu \mid W} \left(1 + O_s \left(\frac{1}{N^{W}} \right) \right) \prod_{j=1}^s \frac{1 + |t_j| (1 + |t'_j|)}{2 + |t_j| + |t'_j|}.
$$

We prove the second inequality but omit the proof of first one. Applying the Chinese remainder theorem, one can show that

$$
\omega_2((d_i)_{1 \leq i \leq s}) = \prod_{\nu} \omega_2((d_i, \nu)_{1 \leq i \leq s}).
$$

One can also show that

$$
\omega_2((d_i, \nu)_{1 \leq i \leq s}) = \begin{cases} 1, & \prod_{i=1}^s (d_i, \nu) = (1), \\
0, & \prod_{i=1}^s (d_i, \nu) \neq (1), \nu \mid W.
\end{cases}
$$

And, if $\nu \nmid W$ and w is sufficiently large, then one can show that

$$
\omega_2((d_i, \nu)_{1 \leq i \leq s}) \begin{cases} = 1/N^{w}, & \prod_{i=1}^s (d_i, \nu) = \nu \\
= 0, & \nu^2 \mid \prod_{i=1}^s (d_i, \nu), \nu \nmid \Delta, \\
\leq 1/N^{w}, & \nu^2 \mid \prod_{i=1}^s (d_i, \nu), \nu \mid \Delta.
\end{cases}
$$

It follows that

$$
F_2(t, t') = \prod_{\nu} \sum_{d_i, \nu \mid W, \nu \mid = 1, \cdots, s} \omega_2((d_i \cap d'_j)_{1 \leq i \leq s}) \prod_{j=1}^s \frac{\mu_K(d_j) \mu_K(d'_j)}{N(d_j)^{1/\log R} N(d'_j)^{1/\log R}}
$$

$$
= \prod_{\nu \mid \Delta, \nu \mid W} \left(1 + \sum_{j=1}^s -N^{\nu^{-1} - \frac{1+i t_j}{e\log R}} - N^{\nu^{-1} - \frac{1+i t'_j}{e\log R}} + N^{\nu^{-1} - \frac{2+i t_j + i t'_j}{e\log R}} \right) \prod_{\nu \mid W \setminus \nu \mid} \left(1 + O_s \left(\frac{1}{N^{W}} \right) \right)
$$

$$
\ll \left(\frac{W^{[K:Q]}}{\phi_K(W) \log R} \right)^s \prod_{\nu \mid \Delta, \nu \mid W} \left(1 + O_s \left(\frac{1}{N^{W}} \right) \right) \prod_{j=1}^s \frac{\zeta_K(1 + 1 + \frac{1 + i t_j + i t'_j}{e\log R})}{\zeta_K(1 + 1 + \frac{1 + i t_j}{e\log R})} \zeta_K(1 + 1 + \frac{1 + i t'_j}{e\log R})
$$

This completes the proof of the lemma.
7. Proof of the main theorem

In this section we prove Theorem 1.5.

For each $N \in I$, and for each $\alpha \in b$ with $(\alpha, Wb) = b$, set

$$A_{N,\alpha} = \{ x \in b \cap B_N \mid (Wx + \alpha)b \text{ is prime } \}.$$

By Theorem 4.5, Theorem 1.5 follows from the following theorem.

Theorem 7.1. For each $N \in I$, there is a number $\alpha_N \in (WG) \cap b$ with $(\alpha_N, Wb) = b$ such that the system $|\{ A_{N,\alpha} \cap B_{\varepsilon N} \}$ has positive upper density relative to $\{ \nu_N \}$.

Proof Let $S_{K,\infty}$ the set of infinite places of K. One can prove that there is a positive constant c_K such that every principal fractional ideal of K has a generator ξ satisfying

$$|\sigma(\xi)| \leq c_K(N(\xi))^{1/[K:Q]} \quad \forall \sigma \in S_{K,\infty}.$$

It follows that, for each $N \in I$, and for any prime ideal $\wp \in [b^{-1}]$ satisfying $(\wp, W) = 1$ and $N\wp \leq c_K^{-1}N^{-1} \cdot (NW\varepsilon/2)^{[K:Q]}$, there is a number $\alpha \in b \cap (WG)$ with $(\alpha, Wb) = b$, and a number $x \in A_{N,\alpha} \cap B_{\varepsilon N}$ such that $\wp = (Wx + \alpha)b^{-1}$. So

$$\sum_{\substack{(\alpha, Wb) = b \\ \alpha \in b \cap (WG)}} \sum_{x \in A_{N,\alpha} \cap B_{\varepsilon N}} \Lambda^2_{K,R}((Wx + \alpha)b^{-1}) \geq \sum_{\wp \in [b^{-1}], (\wp, W) = 1 \atop c/2 < N\wp < (NW)^{[K:Q]} / c} \Lambda^2_{K,R}(\wp) \gg (NW)^{[K:Q]} / \log N,$$

where $c = c_K^{-1}N^{-1} \cdot (\varepsilon/2)^{[K:Q]}$. The theorem now follows by the pigeonhole principle.

References

[GY1] D. Goldston and C.Y. Yildirim, *Higher correlations of divisor sums related to primes, I: Triple correlations*, Integers 3 (2003) A5, 66pp.
[GY2] D. Goldston and C.Y. Yildirim, *Higher correlations of divisor sums related to primes, III: k-correlations*, preprint (available at AIM preprints)
[GY3] D. Goldston and C.Y. Yildirim, *Small gaps between primes, I*, preprint.
[GT1] B. Green, T. Tao, *The primes contain arbitrarily long arithmetic progressions*, Ann. Math. 167 (2008), 481-547.
[GT2] B. Green, T. Tao, *Linear equations in primes*, Ann. Math. 171 (2010), 1753-1850.
[HB] D. R. Heath-Brown, *The ternary Goldbach problem*, Rev. Mat. Iberoamericana, 1 (1985), 45-59.
[Tao] T. Tao, *The Gaussian primes contain arbitrary shaped constellations*, J. d. Analyse Mathematique 99 (2006), 109-176.

Department of Mathematics, Shanghai Jiao Tong University, Shanghai 200240

E-mail address: clliu@sjtu.edu.cn