A Compound Fault Labeling and Diagnosis Method Based on Flight Data and BIT Record of UAV

Ke Zheng 1, Guozhu Jia 1,*, Linchao Yang 1 and Jiaqing Wang 2

1 School of Economics and Management, Beihang University, Beijing 100191, China; zhengke@buaa.edu.cn (K.Z.); yanglinchao@buaa.edu.cn (L.Y.)
2 School of Business, Stevens Institute of Technology, Hoboken, NJ 07030, USA; jwang198@stevens.edu
* Correspondence: jiaguozhu@buaa.edu.cn

Abstract: In the process of Unmanned Aerial Vehicle (UAV) flight testing, plenty of compound faults exist, which could be composed of concurrent single faults or over-limit states alarmed by Built-In-Test (BIT) equipment. At present, there still lacks a suitable automatic labeling approach for UAV flight data, effectively utilizing the information of the BIT record. The performance of the originally employed flight data-driven fault diagnosis models based on machine learning needs to be improved as well. A compound fault labeling and diagnosis method based on actual flight data and the BIT record of the UAV during flight test phase is proposed, through labeling the flight data with compound fault modes corresponding to concurrent single faults recorded by the BIT system, and upgrading the original diagnosis model based on Gradient Boosting Decision Tree (GBDT) and Fully Convolutional Network (FCNN), to eXtreme Gradient Boosting (XGBoost), Light Gradient Boosting Machine (LightGBM) and modified Convolutional Neural Network (CNN). The experimental results based on actual test flight data show that the proposed method could effectively label the flight data and obtain a significant improvement in diagnostic performance, appearing to be practical in the UAV test flight process.

Keywords: fault diagnosis; data labeling; UAV; flight data and BIT record; machine learning

1. Introduction

The Unmanned Aerial Vehicle (UAV), as a typical complex electromechanical system, has been used in military and commercial fields widely, but is also accompanied with a high fault rate. Improving the competence of fault diagnosis and ground maintenance, so as to improve the functionality and reliability of UAV, which is as important as exploring the modern UAV control methods such as using a brain–computer interface [1], has currently become the subject of further research emphasis [2–4]. With the continuous development of Prognostics Health Management (PHM) technology, a great quantity of sensors are employed in the new generation of large fixed-wing UAV, bringing the explosive growth of flight data scale [5]. The data-driven methods, thanks to the growth of the data scale, are gradually replacing the traditional Physics of Failure (PoF) methods [6], becoming the mainstream for fault diagnosis.

Most of the common faults of current UAVs could be detected and alarmed in real time by the advanced Built-In-Test (BIT) system [7], but single faults or over-limit states of one component are reflected poorly. In actual test flight activity of UAVs, there are multiple BIT alarms showing at the same time frequently, to the extent that no such “normal” state would appear during a test flight procedure, at the extreme. These BIT records with concurrent alarms are laborious for the ground team to directly use in fault diagnosis and maintenance efficiently in the test flight phase, thus it is worthy to explore utilizing BIT records properly.

In recent years, with a rapid development of artificial intelligence technology, fault diagnosis based on machine learning models has achieved considerable progress. The fault
diagnosis process could be abstracted as a classification task in machine learning, including supervised learning classification and unsupervised learning classification. This article mainly discusses the fault diagnosis method based on supervised learning classification. The traditional machine learning methods, Decision Tree [8], Support Vector Machine [9], k-Nearest Neighbor [10], Artificial Neural Network [11], etc., have been successfully applied in the field of fault diagnosis. These models with simple structure also have the following deficiencies: annoying data preprocessing, insufficient ability to deal with high-dimensional and imbalanced data, maladaptation in multi-class classification and noticeable overfitting.

To a certain extent, applying advanced attractive ensemble learning and deep learning methods in fault diagnosis might avoid these deficiencies. On the premise of the identical meta classifier, the ensemble learning algorithm could improve the performance of classification through bagging or boosting. A Random Forests fault diagnosis model was proposed in rolling bearings [12]. By negotiation and voting mechanism, the results of multiple multi-layer perceptrons were integrated to construct an ensemble learning model for bearing faults diagnosis of an induction motor [13]. To boost the performance of the models trained by small-dataset thyroid nodule ultra-sound images, a multi-view ensemble learning method was given based on voting mechanism [14].

More suitable for processing large-scale data, the deep learning algorithm based on a neural network adopts a deep hierarchy structure to represent abstract features and learns useful features in high-dimensional input automatically, with the powerful ability of multi-layer nonlinear feature learning. Including three stacking AE, a rolling bearing and gear diagnosis, tasks were realized by automatically separating useless health information [15]. A bearing fault diagnosis method with RNN in the form of an autoencoder was proposed through the multiple vibration value of the rolling bearings in [16]. To diagnose faults in the aircraft fuel system, a combination of classical Deep Belief Network (DBN) and Quantum-inspired Neural Network was proposed in [17]. Not requiring any signal transformation or postprocessing, a Recurrent Slice Network (RSNet) based on CNN was presented in the fault diagnosis of a high-speed train bogie [18].

However, most of the current studies discussed diagnosis methods with clear and definite fault modes, whereas concurrent compound faults are difficult to accurately classify because of the feature combination [19]. A concurrent fault diagnosis method for a centrifugal multi-level impeller blower with six states was proposed based on Bayesian discriminating [20]. Using the symplectic geometry mode decomposition method, a compound fault detection was performed [21]. For gearboxes, wavelet transform combined with a multi-label convolutional neural network was used in compound fault diagnosis [22]. These studies were still focused on the equipment with simple fault mechanisms, based on the accurate fault label.

Due to the heavy workload of manual data labeling, some automatic methods were tried in practice, effectively with audio signal [23], still relying on data preprocessing and correction by expert intervention. Utilizing the BIT record to label the flight data might be a feasible approach for UAV compound fault diagnosis in the flight test stage, and would be beneficial. Establishing a compound fault diagnosis model of UAV, facing possible real-time update and online diagnosis requirements in the future, is also a development direction.

To assist the sound and fast ground maintenance, this paper discusses a compound fault labeling and diagnosis method based on machine learning classification. The contributions of this paper are as follows: (1) According to the actual flight data and BIT records of a UAV in test flight, we recombined multiple single-fault alarms at the same time stamp in BIT records into a complicated state. By referring to Failure Mode, Effects and Criticality Analysis (FMECA) and ground maintenance experience, it is possible to correspond these complicated states to compound fault modes after analysis, improving the efficiency and accuracy of flight data labeling. Then, we labeled the flight data with compound fault mode names. (2) Using the labeled flight data, which inherited the original data-driven diagnosis framework (GBDT and FCNN), we proposed an improved compound fault
diagnosis method package with an XGBoost-based model, LightGBM-based model and CNN-based model, that achieved a significant performance.

The rest of this article is structured as follows. Section 2 provides a detailed description of flight data and BIT records of UAV with a practical data assembling and labeling approach, and two ensemble learning-based diagnosis methods (XGBoost, LightGBM) and a deep learning-based diagnosis method (CNN). The application and experiments of the proposed compound fault diagnosis methods are described in Section 3. Section 4 presents the comparison of methods applied to the actual UAV test flight data and the discussion. Finally, the conclusions are given in Section 5.

2. Materials and Methods

A flowchart of the proposed compound fault labeling and diagnosis method based on actual flight data and the BIT record of a UAV is presented (Figure 1). We exported the raw UAV flight data and BIT records and grabbed the information, to collect the existing complicated states. Referenced to the compound fault dictionary, the compound fault labels were set to label the organized flight data. Then, we used the labeled flight data, and proposed an improved compound fault diagnosis method package, with an XGBoost-based model, LightGBM-based model and CNN-based model, to obtain the diagnosis result.

![Flowchart of the proposed compound fault labeling and diagnosis method based on actual flight data and BIT records of an UAV](image)

Figure 1. Flowchart of the proposed compound fault labeling and diagnosis method based on actual flight data and Built-In-Test (BIT) records of an Unmanned Aerial Vehicle (UAV).

2.1. Flight Data and BIT Records of a UAV

2.1.1. Flight Data

The flight data of the UAV are a collection of time series data points from self-check before takeoff to landing and shutdown. The numerous sensors for devices are carried in the new generation of UAVs, while recording signals as flight data from these sensors frequently, which describe the health status in detail.

The characteristics of flight data are as follows:

- Large-scale. A single flight may record tens of thousands of data instances, that provide an ideal foundation for the data-driven fault diagnosis methods, also bringing a lack of computing memory.
- High-dimensional. Attained from the numerous sensors, the actual flight data of a UAV has hundreds of attributes, which may lead to the “Curse of Dimensionality”.
- Multi-class. As a typical complex system, a UAV has many types of fault modes, requiring effective multi-class classification technology.
- Imbalanced. The amount of flight data in different classes would have such inevitable disparities in the actual operation that the diagnosis model training should pay attention to both the majority and minority classes.
- Noisy. The mission conditions of UAV are too complicated, such as the interruption of transmission or electromagnetic interference caused by temperature, to bring serious noise interference. Null and error values are found abundantly in the flight data; as a result of this heterogeneity, data might be missing and corrupt in processing, duplicating, format conversing and secondary storage.
2.1.2. BIT Records

The new generation BIT system of UAVs, based on expert systems, the PoF model and fuzzy logic, etc., could automatically monitor most of the sensor signals or signal combinations that may cause fault, to detect early fault characteristics in a timely manner for effectively reducing the risk of flight, by alarming or even interrupting operation instruction once the signals exceed the preset limit. In actuality, due to the complicated conditions and external interference, combined with the fact that the vast majority of UAV faults are accidental and sudden (especially in avionics system), BIT has the problem of a low fault detection rate but abundant false alarms. In addition, BIT can only detect individual single faults with known features, not the unknown compound faults in the flight test phase. It is still not feasible to rely on the BIT records entirely to guide the ground maintenance team in quick fault diagnosis and troubleshooting today. Therefore, utilizing the BIT records effectively to assist data-driven fault diagnosis is critical in UAV test flight.

2.2. Data Assembling and Labeling

The data-driven fault diagnosis model based on UAV flight data is still a solid choice, considering BIT records with low fault detection rate and abundant false alarms can not diagnose faults properly, at present. The combination sets of concurrent single faults from BIT records might be unknown complicated states for the ground maintenance team in the flight test, so there is a need to determine the specific fault mechanism and effects after the fault analysis program. In most cases, flight data of a new aircraft are labeled manually, which is obviously inefficient. In addition, it is tough to precisely locate the specific time stamp of a fault feature shown by manual labeling, that would affect the performance of the trained diagnosis model. It is necessary to label the flight data efficiently and precisely before improving the diagnosis model.

A data assembling and labeling method based on flight data and BIT records is proposed here, shown in Figure 2, which could automatically label the flight data, and assist the ground maintenance team to reduce the unnecessary waste of time and human resources.

The implementation steps are as follows:

- Export raw UAV flight data with \(n \) variables from different devices, and organize the data as \(m \) instances by the standard time stamp series \(t = [t_1, t_2, \ldots, t_m] \). On the time stamp \(t_i \), the \(n \)-dimensional feature vector representing UAV operation status is expressed as \(x_i = [x_{i,1}, x_{i,2}, \ldots, x_{i,n}] \);
- Export raw UAV BIT records, taking the start time \(t_{\text{start}} \) and end time \(t_{\text{end}} \) of a recorded single fault \(s \) with alarm-level sign \(k \) corresponding to standard time stamp \(t \). On the time stamp \(t_i \), \(p \) single faults are recorded in BIT, expressing the BIT information as \(s_i = [s_{i,1}^k, s_{i,2}^k, \ldots, s_{i,p}^k] \), where \(s_{i,p}^k \) represents the \(p \)-th single fault recorded with alarm-level sign \(k \). The combination of concurrent single faults \(s_i \) is named as the complicated state of UAV at time \(t_i \). When exporting, the \(s_{i,p}^k \) will be expressed as a definite description of fault (or over-limit state) by the BIT system;
- Grab the information in \(s_i \), and construct a long string \(l_i \) containing all the mentioned definite descriptions. With reference to FMECA and the ground maintenance experience, establish a compound fault dictionary \(c_{f_j} = [s_1^j, s_2^j, \ldots, s_p^j] \). Map the long string \(l_i \) into the compound fault mode \(c_{f_j} \) by matching search, when \(s_i = c_{f_j} \);
- Convert the long string \(l_i \) back to the name of the corresponding compound fault mode \(c_{f_j} \), represented as \(y_i \) on time stamp \(t_i \);
- Label the organized flight data with \(y = [y_1, y_2, \ldots, y_m] \) according to the standard time stamp series \(t \).
Figure 2. Data assembling and labeling method of flight data and BIT record.

2.3. Diagnosis Model Based on XGBoost

XGBoost (eXtreme Gradient Boosting), proposed by [24], is a highly efficient, flexible and portable distributed ensemble learning algorithm under the Gradient Boosting framework. As an improvement of GBDT (Gradient Boosting Decision Tree), XGBoost has demonstrated its advantages in large-scale data processing; time efficiency in particular. These years, a large number of Kaggle competitors choose XGBoost, ending up with outstanding achievement. In fault diagnosis, XGBoost could be used in discriminating the working states of a sucker rod pump [25], predicting seam tensile strength for Al–Li alloy in laser welding [26] and indicating the health conditions of planetary gearboxes [27].
XGBoost is an excellent diagnosis method in the real world due to its excellent ability to handle overfitting and missing values. The objective function of the XGBoost-based diagnosis model is:

$$Obj^{(t)} = \sum_{i=1}^{n} l(\hat{y}_i, y_i) + \sum_{i=1}^{n} f_t(x_i) + \Omega(f_t) + \xi$$

(1)

where l is the convex loss function that measures the difference between the prediction \hat{y}_i and the target y_i for instance x_i; Ω penalizes the complexity of the model; $\gamma(l-1)$ is the prediction of the i-th instance at the l-th iteration; f_t is needed to minimize the objective; and ξ is a constant.

Different from GBDT, XGBoost uses the Taylor Expansion to the loss function to optimize the objective quickly, and controls the complexity by adding a regularization term to cost function, ignoring the constant:

$$Obj^{(t)} \simeq \sum_{j=1}^{T} \left[\left(\sum_{i \in I_j} g_i \right) \omega_j + \frac{1}{2} \left(\sum_{i \in I_j} h_i + \lambda \right) \omega_j^2 \right] + \gamma T$$

(2)

where $g_i = \partial\gamma(l-1)l(y_i, \hat{y}(l-1))$, $h_i = \partial^2\gamma(l-1)l(y_i, \hat{y}(l-1))$ are the first and second order gradient statistics of the loss function; T is the number of leaves; ω_j is the weight of leaf j; and I_j is the instance set of leaf j.

Assuming I_L and I_R are the instance sets of nodes after the split, $I = I_L \cup I_R$, we could choose the best split point by splitting the gain of leaf nodes as:

$$Gain = \frac{1}{2} \left[\left(\sum_{i \in I_L} g_i \right)^2 \sum_{i \in I_L} h_i + \lambda + \left(\sum_{i \in I_R} g_i \right)^2 \sum_{i \in I_R} h_i + \lambda - \left(\sum_{i \in I} g_i \right)^2 \sum_{i \in I} h_i + \lambda \right] - \gamma$$

(3)

There are two split methods in building trees that could be selected: a basic exact greedy algorithm with high accuracy, and a quick approximate method with a histogram algorithm (supported afterwards). In our fault diagnosis model, the exact greedy algorithm was chosen to scan all possible splitting points, finding the optimal splitter point with the largest gain. The grid search approach was employed in our model to tune the hyper-parameters of XGBoost.

2.4. Diagnosis Model Based on LightGBM

A fact that cannot be ignored is that the recorder on UAV can generally store more than 20 flight data points per second, which brought us to paying more attention to the performance of the diagnostic model in processing large-scale data. When handling extremely large data dimensions, XGBoost is required to calculate the information gain of each split based on all data to consider all possibilities, but this is highly time consuming. Microsoft proposed LightGBM (Light Gradient Boosting Machine), an exceedingly fast gradient boosting framework, to improve the model training speed in processing large-scale data [28]. Applied in image recognition recently, as an example, LightGBM has been validated as an effective method for distinguishing COVID-19 from bacterial pneumonia [29]. In fault diagnosis, LightGBM was used in diagnosing shipboard medium-voltage DC power system faults [30], and rotating machinery faults [31].

As another improved method of GBDT, LightGBM employs gradient-based one-side sampling (GOSS) to select data instances according to the weights in determining split values. To reduce the dimension of features, Exclusive Feature Bundling (EFB) technology binds some mutually exclusive features into an exclusive feature bundle, shrinking the original feature matrix as a dense matrix. A histogram-based algorithm, with efficient
sparse optimization solutions (GOSS and EFB), is chosen in LightGBM to reduce the cost of calculating the gain, to speed up training and to occupy memory usage less. Furthermore, in order to obtain better accuracy, a level-wise [32] strategy is used in LightGBM, which chooses the leaf with max delta loss to grow, and limits maximum depth for prevention of overfitting.

The purpose of our use of LightGBM is to train the diagnosis model much faster, so as to adapt to the possible real-time updating requirement of the UAV fault diagnosis model in mission, and for online raw diagnosis. The grid search approach was employed in our model to tune the hyper-parameters of LightGBM.

2.5. Diagnosis Model Based on Modified CNN

As a well-known deep learning method, CNN (Convolutional Neural Network) has been widely utilized in various pattern recognition areas such as medical image analysis [33], crop mapping [34], text classification [35], fraud identification [36], voice recognition [37], and so on. CNN has already been used for the sensor faults diagnosis of UAV [38], rotating machinery [19] and the multi-operation forging process [39]. A typical CNN structure in classification, as presented in Figure 3, generally includes a feature extractor with one input layer and multiple convolutional and pooling layers, along with a classifier with several fully connected layers [40].

![Figure 3. The basic structure of the Convolutional Neural Network (CNN) model.](image)

Because the number of variables of the flight data of UAV input may not be decomposable directly, a variables preselection mechanism needs to be added. We used F-value in ANOVA (analysis of variance) as the standard, to eliminate the least important variables, and minimize the loss of data information in preselection.

After preselection, five convolution layers were employed in our modified CNN-based model. The convolution layers, as the key to extract features, use the convolution operator to convert input data into a new feature map (output). For an input X, the feature map p of layer l in CNN can be calculated as

$$X_{p,l} = F\left(\sum_{q=1}^{Q} X_{q,l-1}^* \omega_{p,q,l} + B_{p,l}\right)$$

(4)

where $X_{q,l-1}$ is the feature map q of layer $(l-1)$; operator $*$ is the convolution operation; $\omega_{p,q,l}$ is the weights of layer l; $B_{p,l}$ is the bias of layer l; and F is a non-linear activation function. Sigmoid, ELU, ReLU, Maxout and tanh are the commonly used activation functions in the CNN model. We chose the tanh function as the activation function in our diagnosis method after the consideration of the actual data, and having ReLU failure.

Pooling layers, which are usually added after the convolutional layer to further fuse the features as a crucial role, were abandoned in our modified CNN model owing to neither the max-pooling or average-pooling producing significant results. Pooling may lead to the
increase in error rate, meaning that pooling can be replaced by a higher strides setting and
a flatten layer in CNN [41]. We set the strides of the convolution kernel as two, in the third
of five convolution layers, to replace the acceleration effort of the pooling layer.

A batch normalization layer was employed before fully connected layers to improve
the robustness and accelerate model training, which could be calculated by:

\[
 Y_{m, p, t} = \gamma_{p, t} \cdot \frac{X_{m, p, t-1} - \mu_\delta}{\sqrt{\sigma_\delta^2 + c}} + \delta_{p, t}
\]

(5)

where \(Y_{m, p, t} \) and \(X_{m, p, t-1} \) are the output and input of the batch normalization layer; \(\mu_\delta \) and
\(\sigma_\delta \) are the mean and variance of \(X_{m, p, t-1} \); \(\gamma_{p, t} \) and \(\delta_{p, t} \) are the parameters to be learned; and
\(c \) is a constant. A flatten layer was also employed there to make the high-dimensional
output from the batch normalization layer into a one-dimensional input of the fully con-
nected layer.

Then, in the classifier, three fully connected layers were used to execute the diagnosis
process here. The Softmax function and the Cross Entropy were used as an activation
function and loss function in fully connected layers, respectively, to deal with the multi-
class classification of mutually exclusive compound faults after labeling.

Using a modified CNN-based fault diagnosis model would solve the obvious defects
of FCNN properly, such as the information loss of large-scale data, the difficulty of high-
dimensional data training and overfitting, having shown a great performance improvement
in actual experiments.

3. Application and Experiments

3.1. Application Description

The flight data and BIT records we focused on were from the TYW-001, a fixed-wing
UAV of BHUAS, that had multiple test flights between 2018 and 2019. The endurance of
TYW-001 is over 40 h with a ceiling of 8000 m, take-off weight of 1500 kg and external
payload of 370 kg. All flight tests have been successfully completed so far. Apart from the
fire control system and redundant backups, the flight data of the TYW-001 has a total of
457 variables, including sensor monitoring and operation input. A total of 219 single faults
or over-limit states could be detected in BIT, of this amount: 58 navigation and flight control
system alarms, 112 electromechanical actuator alarms, 34 aeroengine alarms, 7 equipment
condition monitoring system alarms, 7 from transponder alarms and 1 stall warning.

Through the analysis of the BIT records in the early stage, it could be found that there
are often multiple concurrent alarms of single faults (or over-limit state) showing during
the actual flight test. These faults, mostly, would be directly diagnosed by BIT, although
considerable false alarms and omissions would still exist due to external interference, etc.
However, BIT cannot diagnose the unknown complicated states found during the flight
test, especially the states of concurrent multiple single faults. To deal with the problem, the
previous approach was that the ground maintenance team checked all the single faults on
record after the test flight, then carried out fault analysis to determine the fault modes for
manual labeling of flight data. The original fault diagnosis models based on GBDT and
FCNN were trained with these labeled flight data after that, which have been successfully
used in the officially verified aircraft. It is tough to label the flight data manually due to
the difficulty of locating the precise time stamp of the fault symptoms and huge labeling
workload for the UAV in the flight test stage. The demand exists for using more accurately
labeled data to improve the fault diagnosis model.

Our experiments selected three flight data sets and BIT record sets, No.18100223
(59,946 instances), No.19012332 (75,724 instances) and No.19012433 (149,447 instances),
from the test flight phase of TYW-001 for analysis.
3.2. Experiments Setup

First, we used the method in Section 2.2 to assemble and label the flight data sets and BIT records from test flight No.18100223, No.19012332 and No.19012433. We randomly sampled 200 instances from the labeled flight data of each test flight, and labeled them manually to verify the accuracy of the labels.

Secondly, in order to indicate the performance of the diagnosis models in all compound fault modes (serious imbalanced), we used the StratifiedShuffleSplit() to set 80% of the labeled data as the training set and 20% as the test set, by stratified sampling. Moreover, the NULL values in data were replaced by the value of the next sample point.

Then, we compared the classification performance of the proposed ensemble learning models, XGBoost (num_leaves = 15, max_depth = 5, subsample = 0.9, random_state = 42) and LightGBM (num_leaves = 15, max_depth = 5, subsample = 0.9, random_state = 42), with the original GBDT model (min_samples_leaf = 20, max_features = ‘sqrt’, subsample = 0.9, random_state = 42). The classification performance of the proposed five-layer modified CNN model (tanh as the activation function of convolution layers, Softmax as the activation function of fully connected layers, Adam as the optimizer, categorical_crossentropy as the loss function, learning_rate = 0.001, iterations = 15) which selected 450 features by Analysis of Variance (ANOVA), was compared with the original three-layer FCNN model (ReLU as the activation function between layers, Sigmoid as the activation function of output layer, Adam as the optimizer, categorical_crossentropy as the loss function, learning_rate = 0.001, iterations = 15). The structure diagrams of modified CNN and FCNN models are shown in Figure 4a,b, respectively.

![Figure 4](image-url)

Figure 4. (a) Original diagnosis model based on Fully Convolutional Network (FCNN); (b) Proposed diagnosis model based on modified CNN. All the experiments were performed on an Intel Core i7-10700F 2.90 GHz machine with 16 GB RAM. The codes of methods were implemented in R 4.0.3 and Python 3.7, with Keras 2.3.1, Scikit-learn 0.22.2.post1, Tensorflow 2.1.0, Lightgbm 2.3.1 and Xgboost 1.0.2. The hyper-parameters related to the model were optimized by Grid Search and manual adjustment. All models were evaluated in the test data set.
Finally, the model training speeds of all the classifiers were compared to consider the feasibility of real-time model updating in future.

4. Results and Discussion

The combination modes of concurrent single fault alarms from BIT records were sorted out by us, and mapped to a variety of complicated states. After data assembling and labeling with the method proposed in Section 2.2, the total data set had 285,117 instances, including 457 parameters and one label including 98 classes. With reference to the ground maintenance experience and FMECA, we analyzed all the 98 classes of states to ultimately set 49 new compound fault classes including 284,393 cases, through merging some classes corresponding to the same fault mode and deleting a few abnormal instances caused by transmission and storage, etc.

In Table 1, the count of accurate automatic labeling from manual labeling is shown, randomly sampled from 200 instances from each test flight data set. In general, it shows that our approach achieved considerable success in accurate labeling.

No.	Labeling accuracy
No.18100223	200/200
No.19012332	200/200
No.19012433	200/200

Figure 5 shows the improvement in proposed ensemble learning methods and neural network methods on main performance metrics, respectively. For precision, recall and F1 score, compared with the original GBDT model, the proposed ensemble learning methods, XGBoost in particular, had a significant performance improvement. LightGBM and modified CNN also gained obvious advantages over the original GBDT and FCNN in all metrics. In brief, the proposed methods effectively complement the shortcomings of the original models.

![Figure 5](image-url)
The details of each metric of the diagnosis models’ performance are shown in Table 2. In terms of the accuracy, precision, recall and F1 score, all the proposed methods could reach the level above 0.82 on the test set, XGBoost even reaching a marvelous level above 0.99, that greatly improves the diagnosis availability of the model.

Table 2. Accuracy, precision, recall, F1 score, MCC, AUC and training time for every classifier on the actual UAV data.

Classifier	Accuracy	Precision	Recall	F1-Score	MCC	AUC	Training Time (s)
GBDT	0.928426	0.671069	0.697482	0.646786	0.920334	0.894421	196.0811
XGBoost	0.99862	0.99915	0.997506	0.998322	0.998462	0.999703	678.4637
LightGBM	0.975294	0.934304	0.897989	0.903669	0.950676	0.941844	15.67894
FCNN	0.956385	0.830573	0.780124	0.785024	0.951467	0.992229	78.77981
modified CNN	0.966116	0.863868	0.826289	0.832124	0.962253	0.996464	342.3715

Due to the serious imbalance of flight data, it is urged to pay more attention to the MCC (Matthews Correlation Coefficient) and AUC (Area Under the ROC Curve), reflecting the possibility of the model bias toward majority classes. It can be seen that every proposed method could achieve above 0.95 on MCC, with a preferable capability to previous methods. Likewise, the result of AUC explains the friendliness of proposed models to imbalanced data, which can be visualized from ROC (Receiver Operating Characteristic) curves in Figure 6.

Figure 6. Receiver Operating Characteristic (ROC) curves of every classifier on the actual UAV flight data.

According to Table 2, considering that the data in training exceeded 220,000 samples, the slowest model completed training within 12 min, which is an acceptable result in processing large-scale UAV flight data. With the improvement in fault diagnosis ability, the training time of the model is also significantly increased, except for the LightGBM model. As a lightweight tool, LightGBM demonstrated its extraordinary speed in model training, shown in Figure 7, while ensuring a decent diagnostic performance. It could be concluded that the LightGBM-based model would play an essential role in the future when facing the demand of real-time model updating and online diagnosis.

Comparing the three proposed methods, the confusion matrices of XGBoost, LightGBM and modified CNN are shown in Figures 8–10, respectively. It can be intuitively found that the XGBoost and modified CNN are more reliable in the diagnosis of the test set, while LightGBM has a systematic misdiagnosis for multiple frequent fault modes.
Figure 7. Training time of every classifier on the actual data.

Figure 8. Confusion matrix of XGBoost.
Figure 9. Confusion matrix of LightGBM.
It can be concluded that, compared with the original diagnosis package, the proposed three methods have a significant comprehensive improvement. The most time-consuming XGBoost-based model with outstanding performance, the lightning LightGBM-based model and the balanced modified CNN-based model are reasonably suitable to combine together as a diagnosis package in practice, to handle the UAV compound fault diagnosis mission.

5. Conclusions

In the process of UAV flight testing, plenty of compound faults exist, which could be composed of concurrent single faults or over-limit states alarmed by a BIT system. At present, there still lacks a suitable automatic labeling approach for UAV flight data, effectively utilizing the information of the BIT record. The performance of the originally
employed flight data-driven fault diagnosis models based on machine learning needs to be improved as well. In response to this requirement, this paper proposed a compound fault labeling and diagnosis method based on actual flight data and BIT records of a UAV during the flight test phase. With reference to FMECA and ground maintenance experience, we labeled the flight data with compound fault modes corresponding to concurrent single faults and over-limit states, and presented a novel fault diagnosis package based on XGBoost, LightGBM and modified CNN, upgraded from the original ensemble learning and deep learning models. The experimental results based on three instances of test flight data show that the proposed method could effectively label the flight data and obtain a significant improvement in diagnostic performance.

The following conclusions were drawn:

1. Validated by manual sampling inspection, the proposed automatic labeling method is accurate and effective on actual UAV test flight data;
2. When processing imbalanced large-scale flight data, compared with the original ensemble learning and neural network method, the performance of the proposed methods has a comprehensive improvement, which has better support for the following ground maintenance.
3. It could be concluded that the superfast LightGBM-based model would play an essential role when facing the demand of real-time model updating and online diagnosis in the on-board early warning system.

This work would be practical in the actual UAV test flight process, and also profitable for the fault diagnosis of other large complex equipment (such as high-speed trains and manned aircrafts). It is feasible to focus on the real-time updating and online diagnosis of the model based on the data stream in the future. For the faults that may cause critical damage, the cost-sensitive learning method can be introduced in future, to reduce the total cost of misdiagnosis. Through thermal imaging or other methods to analyze the damage of the UAV structure, it could further improve the comprehensive fault diagnosis and prediction of UAV, to promote the capability of health management in the future.

Author Contributions: Conceptualization, K.Z.; Data curation, K.Z.; Formal analysis, K.Z. and J.W.; Funding acquisition, G.J.; Investigation, K.Z. and L.Y.; Methodology, K.Z. and L.Y.; Project administration, G.J.; Resources, G.J.; Software, K.Z. and J.W.; Supervision, G.J.; Validation, K.Z. and L.Y.; Visualization, L.Y.; Writing—original draft, K.Z.; Writing—review and editing, K.Z. All authors will be informed about each step of manuscript processing including submission, revision, revision reminder, etc., via emails from our system or assigned Assistant Editor. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the Technical Research Foundation of China (Grant No. JSZL2016601A004) and National Natural Science Foundation of China (Grant No. 71772010).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Restrictions apply to the availability of these data. The data in this research came from BHUAS Technology Co., Ltd. Please contact Ke Zheng (zhengke@buaa.edu.cn) for information about the data availability.

Acknowledgments: The work is sponsored by the Technical Research Foundation of China (Grant No. JSZL2016601A004) and Natural Science Foundation of China (Grant No. 71772010).

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Paszkiel, S.; Sikora, M. The use of brain-computer interface to control unmanned aerial vehicle. In Proceedings of the Automation; Springer: Cham, Germany, 2019; pp. 583–598.
2. Liu, W.S.; Chen, Z.; Zheng, M.H. An Audio-Based Fault Diagnosis Method for Quadrotors Using Convolutional Neural Network and Transfer Learning. In Proceedings of the 2020 American Control Conference; Proceedings of the American Control Conference, Denver, CO, USA, 1–3 July 2020; IEEE: New York, NY, USA, 2020; pp. 1367–1372.
3. Fu, J.M.; Che, G.F. Fusion Fault Diagnosis Model for Six-Rotor UAVs Based on Conformal Fourier Transform and Improved Self-Organizing Feature Map. IEEE Access 2021, 9, 14422–14436. [CrossRef]

4. Zuo, L.F.; Yao, L.N.; Kang, Y.F. U10 Based Sensor Fault Diagnosis and Compensation for Quadrotor UAV. In Proceedings of the Chinese Control and Decision Conference, Proceedings of the 32nd 2020 Chinese Control and Decision Conference, Hefei. China, 22–24 August 2020; IEEE: New York, NY, USA, 2020; pp. 4052–4057.

5. Wang, J.X.; Wang, Z.W.; Ma, X.Z.; Smith, A.; Gu, F.S.; Zhang, C.; Ball, A. Locating Sensors in Large-Scale Engineering Systems for Fault Isolation Based on Fault Feature Reduction. J. Franklin. Inst. Appl. Eng. 2020, 357, 8181–8202. [CrossRef]

6. Huang, Y.L.; Luo, Y.F.; Xiao, F.; Liu, B.L.; Tang, X. Physics of failure of die-attach joints in IGBs under accelerated aging: Evolution of micro-defects in lead-free solder alloys. Microelectron. Reliab. 2020, 109. [CrossRef]

7. Shi, J.Y.; He, Q.J.; Wang, Z.L. Integrated Stateflow-based simulation modelling and testability evaluation for electronic built-in-test (BIT) systems. Relaib. Eng. Syst. Saf. 2020, 202. [CrossRef]

8. Zheng, Y.J.; Li, Y.F.; Gao, W.K.; Han, X.B.; Feng, X.N.; Ouyang, M.G. Micro-Short-Circuit Cell Fault Identification Method for Lithium-Ion Battery Packs Based on Mutual Information. IEEE Trans. Ind. Electron. 2021, 68, 4373–4381. [CrossRef]

9. Shao, K.X.; Fu, W.L.; Tan, J.W.; Wang, K. Coordinated approach fusing time-shift multiscale dispersion entropy and vibration Harris hawks optimization-based SVM for fault diagnosis of rolling bearing. Measurement 2021, 173. [CrossRef]

10. Pandaram, K.; Rathnapriya, S.; Manikanadan, V. Fault Diagnosis of Linear Analog Electronic Circuit Based on Natural Response Specification using K-NN Algorithm. J. Electron. Test. 2021. [CrossRef]

11. Glowacz, A. Fault diagnosis of electric impact drills using thermal imaging. Measurement 2021, 171. [CrossRef]

12. Wang, Z.W.; Zhang, Q.H.; Xiong, J.B.; Xiao, M.; Sun, G.X.; He, J. Fault Diagnosis of a Rolling Bearing Using Wavelet Packet Denoising and Random Forests. IEEE Sens. J. 2017, 17, 5581–5588. [CrossRef]

13. Razavi-Far, R.; Farajzadeh-Zanjani, M.; Saif, M.; Palade, V. A hybrid ensemble scheme for diagnosing new class defects under non-stationary and class imbalance conditions. In Proceedings of the 2017 International Conference on Sensing, Diagnostics, Prognostics and Control (SDPC), Shanghai, China, 16 August 2017; pp. 355–360.

14. Chen, Y.F.; Li, D.D.; Zhang, X.; Jin, J.; Shen, Y. Computer aided diagnosis of thyroid nodules based on the devised small-datasets multi-view ensemble learning. Med. Image Anal. 2021, 67. [CrossRef]

15. Jia, F.; Lei, Y.G.; Lin, J.; Zhou, X.; Lu, N. Deep neural networks: A promising tool for fault characteristic mining and intelligent diagnosis of rotating machinery with massive data. Mech. Syst. Signal Process. 2016, 72, 303–315. [CrossRef]

16. Liu, H.; Zhou, J.Z.; Zheng, Y.; Jiang, W.; Zhang, Y.C. Fault diagnosis of rolling bearings with recurrent neural network based autoencoders. ISA Trans. 2018, 77, 167–178. [CrossRef]

17. Gao, Z.H.; Ma, C.B.; Song, D.; Liu, Y. Deep quantum inspired neural network with application to aircraft fuel system fault diagnosis. Neurocomputing 2017, 238, 13–23. [CrossRef]

18. Su, L.Y.; Ma, L.; Qin, N.; Huang, D.Q.; Kemp, A.H. Fault Diagnosis of High-Speed Train Bogie by Residual-Squeeze Net. IEEE Trans. Ind. Inform. 2019, 15, 3858–3863. [CrossRef]

19. Dibaj, A.; Eftefaghi, M.M.; Hassannejad, R.; Eghaghi, M.B. A hybrid fine-tuned VMD and CNN scheme for untrained compound fault diagnosis of rotating machinery with unequal-severity faults. Expert Syst. Appl. 2021, 167. [CrossRef]

20. Qin, A.S.; Hu, Q.; Lv, Y.R.; Zhang, Q.H. Concurrent Fault Diagnosis Based on Bayesian Discriminating Analysis and Time Series Analysis With Dimensionless Parameters. IEEE Sens. J. 2019, 19, 2254–2265. [CrossRef]

21. Pan, H.Y.; Yang, Y.; Li, X.; Zheng, J.D.; Cheng, J.S. Symplectic geometry mode decomposition and its application to rotating machinery compound fault diagnosis. Mech. Syst. Signal Process. 2019, 114, 189–211. [CrossRef]

22. Liang, P.F.; Deng, C.; Wu, J.; Yang, Z.X.; Zhu, J.X.; Zhang, Z.H. Compound Fault Diagnosis of Gearboxes via Multi-label Convolutional Neural Network and Wavelet Transform. Comput. Ind. 2019, 113. [CrossRef]

23. Sarr, J.M.A.; Brochier, T.; Brehmer, P.; Perrot, Y.; Bah, A.; Sarre, A.; Jeyid, M.A.; Sidibehe, M.; El Ayoubi, S. Complex data labeling with deep learning methods: Lessons from fisheries acoustics. ISA Trans. 2021, 109, 113–125. [CrossRef]

24. Chen, T.Q.; Guetstrin, C.; Assoc Comp. M. Xgboost: A scalable tree boosting system. In Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 24–27 August 2016; pp. 785–794.

25. Chen, L.; Gao, X.W.; Li, X.Y. Using the motor power and XGBoost to diagnose working states of a sucker rod pump. J. Pet. Sci. Eng. 2021, 199. [CrossRef]

26. Zhang, Z.F.; Huang, Y.M.; Qin, R.; Ren, W.J.; Wen, G.R. XGBoost-based on-line prediction of seam tensile strength for Al-Li alloy in laser welding: Experiment study and modelling. J. Manuf. Process. 2021, 64, 30–44. [CrossRef]

27. Zhang, M.; Cui, H.; Li, Q.; Liu, J.; Wang, K.S.; Wang, Y.S. An improved sideband energy ratio for fault diagnosis of planetary gearboxes. J. Sound Vib. 2021, 491. [CrossRef]

28. Ke, G.L.; Meng, Q.; Finley, T.; Wang, T.F.; Chen, W.; Ma, W.D.; Ye, Q.W.; Liu, T.Y. LightGBM: A Highly Efficient Gradient Boosting Decision Tree. In Proceedings of the Advances in Neural Information Processing Systems 30, Long Beach, CA, USA, 4–9 December 2017; Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R., Eds.; Advances in Neural Information Processing Systems; NIPS: La Jolla, CA, USA, 2017; Volume 30.

29. Feng, J.B.; Guo, Y.; Wang, S.K.; Shi, F.; Wei, Y.; He, Y.C.; Zeng, P.; Liu, J.; Wang, W.J.; Lin, L.P.; et al. Differentiation between COVID-19 and bacterial pneumonia using radiomics of chest computed tomography and clinical features. Int. J. Imaging Syst. Technol. 2021, 31, 47–58. [CrossRef]
30. Liu, S.; Sun, Y.; Zhang, L.Y.; Su, P. Fault diagnosis of shipboard medium-voltage DC power system based on machine learning. *Int. J. Electr. Power Energy Syst.* 2021, 124. [CrossRef]

31. Zhang, C.H.; Kong, L.; Xu, Q.; Zhou, K.B.; Pan, H. Fault diagnosis of key components in the rotating machinery based on Fourier transform multi-filter decomposition and optimized LightGBM. *Meas. Sci. Technol.* 2021, 32. [CrossRef]

32. Shi, H. Best-first Decision Tree Learning. Master’s Thesis, University of Waikato, Hamilton, New Zealand, 2007.

33. Sekaran, K.; Chandana, P.; Krishna, N.M.; Kadry, S. Deep learning convolutional neural network (CNN) With Gaussian mixture model for predicting pancreatic cancer. *Multimed. Tools Appl.* 2020, 79, 10233–10247. [CrossRef]

34. Li, Z.T.; Zhou, G.; Song, Q. A temporal group attention approach for multitemporal multisensor crop classification. *Infrared Phys. Technol.* 2020, 105. [CrossRef]

35. Deng, J.F.; Cheng, L.L.; Wang, Z.W. Attention-based BiLSTM fused CNN with gating mechanism model for Chinese long text classification. *Comput. Speech Lang.* 2021, 68. [CrossRef]

36. Tu, B.; He, D.B.; Shang, Y.H.; Zhou, C.L.; Li, W.J. Deep feature representation for anti-fraud system. *J. Vis. Commun. Image Represent.* 2019, 59, 253–256. [CrossRef]

37. Shafik, A.; Sedik, A.; Abd El-Rahiem, B.; El-Rabaie, E.S.M.; El Banby, G.M.; Abd El-Samie, F.E.; Khalaf, A.A.M.; Song, O.Y.; Iliyasu, A.M. Speaker identification based on Radon transform and CNNs in the presence of different types of interference for Robotic Applications. *Appl. Acoust.* 2021, 177. [CrossRef]

38. Guo, D.F.; Zhong, M.Y.; Ji, H.Q.; Liu, Y.; Yang, R. A hybrid feature model and deep learning based fault diagnosis for unmanned aerial vehicle sensors. *Neurocomputing* 2018, 319, 155–163. [CrossRef]

39. Guo, Y.M.; Zhou, Y.F.; Zhang, Z.S. Fault diagnosis of multi-channel data by the CNN with the multilinear principal component analysis. *Measurement* 2021, 171. [CrossRef]

40. Shao, H.D.; Xia, M.; Han, G.J.; Zhang, Y.; Wan, J.F. Intelligent Fault Diagnosis of Rotor-Bearing System Under Varying Working Conditions with Modified Transfer Convolutional Neural Network and Thermal Images. *IEEE Trans. Ind. Inform.* 2021, 17, 3488–3496. [CrossRef]

41. Azulay, A.; Weiss, Y. Why do deep convolutional networks generalize so poorly to small image transformations? *J. Mach. Learn. Res.* 2019, 20, 1–25.