The general pharmacy work explored in The Netherlands

M. P. Mark

Abstract Objective To determine the frequency and nature of general pharmacy work at three Dutch community pharmacies. Methods In a purposive and convenience sample of three Dutch community pharmacies the general work was investigated. Multi-dimensional work sampling (MDWS) was used. The study took six weeks: two weeks at each pharmacy. Main outcome measure The number of care related items emerging in the general work. Results Care related work represented 34% of all pharmacy activities. Conclusion Although care related work was present at all three studied pharmacies, this part of the work still needs serious attention of Dutch pharmacists in order to advance pharmaceutical care. It is suggested that an efficient pharmacy organization in combination with robotization, task specialization, and interior design can expand the care related work at the pharmacy.

Keywords Care related work · Community pharmacy · Pharmacy organization · The Netherlands · Work

Impact of findings on practice

• Care related work was vividly present at Dutch pharmacies, but still needs serious attention.
• A well organized pharmacy has latent possibilities to improve pharmaceutical care.
• Robotization, task specialization, and interior design can facilitate pharmaceutical care.

Introduction

It is quite clear today that the simple dispensing of medicine is not enough for a community pharmacy: it is not regarded as part of pharmaceutical care. Various international studies explain why the main part of the work at the pharmacy is or should be care-related, how it can be done, and what positive effects can be expected [1–14]. In a recent study it was argued that Dutch patients are well protected against many drug-related problems [15]. Dutch patients usually visit the same pharmacy and their pharmacies have developed excellent automated medication surveillance and structured high-quality medication counselling. Therefore the provision of pharmaceutical care would be expected to be well represented in the daily activities of Dutch community pharmacies, although to a different extent [16, 17].

This current article concentrates on the frequencies and nature of care-related work as part of the general work at three Dutch community pharmacies. The study was a small exploratory study aiming to report on current practices and to inform on possibilities for future research and intervention. In advance of the methods and results a literature review was made in order to answer the following question: ‘What relevant data were found in other countries?’ A connected article [18] used data from the same field study and described the frequencies and nature of care-related work as part of the counter work and consultation room work.

Literature

Role of the pharmacy assistant

Few studies have analyzed the role of the pharmacy team: pharmacists and pharmacy assistants. That is remarkable
since there is a central role played by counter assistants in providing advice and in making in-store referrals [19]. However, assistants do not always feel that their role is recognized fully and may feel disenfranchised [20]. While their roles are not necessarily the same as that of pharmacy assistants in the Netherlands, other studies report that advice giving by assistants ranged from 2% to 4% and advice giving by pharmacists ranged from 5% to 79% [21].

Most of the work-related studies seem to concentrate on the work of the pharmacist. In the Dutch situation the role of the pharmacy assistants is of significant importance. In the Netherlands, pharmacists and pharmacy assistants are both allowed to perform the tasks of the dispensing process and work independently apart from checking each other’s dispensing. Therefore this current study has analyzed work at the level of the team, regardless of the professional background of the individual, because it corresponds very well to the Dutch situation.

General work

In the context of general work a notable British study concluded that regardless of staffing and prescription workload, community pharmacists perform the same basic tasks [22]. The work content appeared to be a stable factor. While the findings of other studies may again not be necessarily comparable with the Dutch situation, especially because they mainly focus on the work of pharmacists, they report related results and provide a basis for international comparison [14, 23–34]. The findings showed that professional tasks ranged from 17.6% to 53.8% in New-Zealand and Ireland [23, 29, 32]. Communication ranged from 11.1% to 20.6% in the U.S., Canada, and the U.K. [14, 24, 26, 28]. Patient counselling and health-related communication ranged from 3.8% to 10.1% in the U.S., U.K., Ireland, and Australia [24, 25, 27, 29, 33, 34]. Interactions with patients and counter activities ranged from 5.3% to 24.9% in the U.S., U.K., and New-Zealand [14, 25, 30, 31]. Computer work was 22% in the U.S. [25].

There are many work measurement studies and it is difficult to compare their results because the methods for data collection were as different as the national situation of pharmacy practices. However, the results of three studies do seem to have particular relevance. Firstly, the Dutch category ‘care-related activities’ and the results of an Irish study at 47 community pharmacists which reported 33.1% of professional activities [29]. The Irish definition of professional activities included health-related communication, prescription review, compounding, drug preparation, and drug selection; all being comparable to the Dutch definitions of care-related activities (compare Table 1). Secondly, the Dutch category ‘counter work’ and the results of a British study at six community pharmacists which reported 10.6% of the time spent on counter activities [30]. Finally, the Dutch category ‘computer work’ and a U.S. study at 30 pharmacists in grocery chain stores which reported 22% of the time spent on writing and key boarding [25]. It is presupposed here that the Dutch team work is comparable with the work of pharmacists in an international context. It is therefore concluded that the standards for comparison were 33.1% for care-related activities, 10.6% for counter work, and 22% for computer work.

Methods

The sample of pharmacies was not randomly obtained: the method of recruitment was purposive and convenient. The three Dutch community pharmacies were selected based on their motivation to participate in the study. Two of them coincidently appeared to be best case practices. Pharmacy 1 was a national prize winner for pharmaceutical innovation. Pharmacy 2 was one of the best in a secret shopper

Table 1	Elements comprising general work
Care related work	Advice on medication, medical aids or disease
Counter care	Helping patients at the counter, not being counter care
Counter other	All consultations in this room
Consultation room	All telephone conversations
Telephone	Prescription-related computer work, not at the counter
Computer work	Preparing or making medicine at the pharmacy
Ex tempore preparations	All tasks in relation with the home care
Home care work	
Other work	
Filling work	Collecting the medication
Logistical work	Ordering and handling medical goods
Office work	Changes in stock, claims, expiry dates control, and quality system
Other	All other activities at the community pharmacy
Work measurement techniques

Work measurement comprises seven different techniques [36]. Firstly, subjective evaluation breaks the job down in elemental parts. Participants estimate how much time they have spent performing each task. Secondly, self-reporting invites subjects to document their own use of time continuously in a log or a diary. Some studies propose the use of electronic equipment [23]. Thirdly, productivity data involves the recording of the number of work units completed. For instance, a task series for a single prescription compared with the necessary time for staffing. Fourthly, direct time study is a continuous measurement for a selected time interval. It involves direct observation of specified activities as they are performed. Fifthly, standard time study involves the determination of standard times. This is the average time required for an experienced operator to perform an activity. Sixthly, work sampling technique measures time, the activity of people, machines, or any observable state, condition, or operation. It consists of a large number of observations by trained observers taken at either random [37] or fixed intervals [38]. Seventhly, the multi-dimensional work sampling (MDWS) technique invites participants to record their own activities. They may use either a small portable device if mobile or a console if non-mobile. A bleeper sounds at randomly generated times to remind the participant to record their activities at a given time. MDWS may also be regarded as an objective measurement of the proportion of time spent in work-related tasks by recording a series of instantaneous observations in pre-determined or random intervals [25]. MDWS is a relatively new tool to pharmacy practice research.

The use of MDWS has several advantages [25, 36]. It is a good tool when work activities are central, not the person’s job. It allows professional activities to be more accurately assessed. It is particular useful for recording activities of mobile staff. It also allows a study to be done easily and economically, alleviating the need to pay a trained observer. This property also eliminates outside observer bias and influence. Moreover, it is useful over long time periods and workers usually prefer MDWS. Consequently, MDWS was chosen as the method for data collection.

MDWS

For the general-work measurement with MDWS pocket-size machines were used. These so-called ‘Re-pipip’ machines were especially developed by the Swedish company Spedat in Stockholm. It was used at the national corporation of Swedish pharmacies Apoteket AB and reproduced for this Dutch study. The machines made a sound signal in a randomly produced time interval. When the signal is generated the participants choose one, and only one, item from each dimension [36]. With MDWS the number of sounds or bleeps the device emits can be altered to generate the number of observations required for the study. The number of observations required for accurate and representative data in MDWS has been calculated [23]. A total of 14,400 observations is required to describe an activity with ±5% accuracy. A compromise in accuracy to ±10% allows a decrease to 3,600 observations [39]. In a New Zealand study each participant carried a pocket-sized random reminder which signalled randomly 6.4 samples per hour [31]. The rate per hour was based on research from the provider of the machines [40], and was said to be acceptable for the subjects. Other published sampling rates range from 3.2 per hour [41] to 20 per hour [42]. Most rates seem to have been well worked out scientifically. There is however always a balancing problem between the need for density of the data and the practicability for the staff (and consequently compliance of the studied subjects). In this current study it was chosen to set the sampling rates on 3.8 per hour. Good staff compliance was found more important than possible disadvantages for the representativeness of the studied practices. Moreover, the duration of the measurement period was relatively long at each pharmacy.

Induction for the definitions of work

Various studies have applied related but very different categories of care-related work in the context of community pharmacy practice [14, 19–25, 27, 30–34, 37, 38]. On one hand, it could be argued that these studies would provide a good scientific basis for the Dutch definitions. On the other hand, this argument seems flawed for three reasons. Firstly, there is very little common ground with respect to the advice definition. A review of 42 studies showed that no common definition of advice-giving has emerged [21]. Secondly, the differences between the countries, their national pharmacy practices, and the applied data-collections methods used in the above studies were found to be too large to ignore. Finally, there was a wish to stay as close to Dutch pharmacy practice as possible. Consequently, it was decided to use practice as a basis for definitions. Based on the principle of induction
the studied pharmacists themselves defined the categories. Thereby deviating from the categories and definitions of the above studies. The pharmacists of pharmacy 1 made a proposal for the studied categories. These were refined by the other pharmacists until there was general agreement and finalized by the researcher. This was done on the condition that all categories would be mutually exclusive. Possible differences between the definitions between pharmacies were discussed and one definition was chosen. All pharmacists explained the definitions to their team. They trained their staff both during a discussion of progress and provided feedback at the workplace when necessary.

General work was defined as all the work done at the pharmacy. This definition comprised the sub categories care-related work and other work. Care-related work was defined as the work where at least parts of the work content did relate to pharmacotherapeutic consultation. For instance, a conversation on the medical therapy with the patient or medication surveillance during computer work or home delivery work. With the other work this was never the case. For instance, conversations with the patients about the weather only, keeping the accounts, or the refilling of stock. These two sub categories were again split up in 11 sub sub categories (Table 1).

Results

Table 2 shows that pharmacy 1, 2 and 3 were located in a rural, urban, and sub-urban area, respectively. The number of prescription items dispensed daily was with 501 highest at pharmacy 3. Pharmacies 1 and 2 were lower with 488 and 453 items, respectively. Pharmacy 1 had the highest number of 21 non-prescription customers per day; pharmacy 2 was on the intermediate level with 17 customers, and pharmacy 3 lowest with 13 customers per day. Pharmacy 1 had a relatively high staff complement of 8.9 staff members. Both pharmacies 2 and 3 did have a lower staff complement of 7.6 and of 8.4, respectively. Pharmacy 1 had 7.3 assistants and remaining pharmacy staff employed. It was the highest relative number, and the number of pharmacists was 1.6. Pharmacy 2 had the least number of pharmacists: 1.1 and the number of assistants and other staff was 6.5. Pharmacy 3 had relatively the least number of 6.4 assistants and other staff and the highest number of 1.9 pharmacists. A prescription work load index was created by dividing the number of prescription items dispensed by the staff complement. This index showed relatively high working pressures at pharmacies 2 and 3. At pharmacies 1, 2 and 3 these ratios were 55, 59, and 60, respectively. Pharmacy 1 had the longest opening hours. It had ten opening hours five days a week and three opening hours one day a week. Pharmacies 2 and 3 did have nine opening hours five days a week.

Table 3 combines the results per pharmacy with the total results for all three pharmacies. It presents the cumulative observed frequencies of the items over two weeks, the mean per day, the percentage per item as part of all observed frequencies, and the standard deviation of the mean over two weeks. The table shows that in 34% (3,178) of the observations the pharmacy work was care-related. A total of 66% (6,093) of the observations related to other work activities. Both counter work and computer work are 11% of the work at the pharmacy.

For the purpose of the analysis, at least part of this work has been considered to be care-related. For instance, counter work consists of 4% for ‘care work’ and 7% for ‘other’ counter work. For computer work similar lines of thought can be followed. This work comprises care-related activities, for instance, medication surveillance and medication counselling. But it also includes non care-related activities such as work that is due to the legal requirements for records of dispensing and quality control procedures. On one hand, the table shows consistency in the data set between the three pharmacies. For instance, ‘counter other’ (7–8%) and ‘logistical work’ (5–6%) while ‘ex tempore preparation’ (2–7%) and ‘home delivery work’ (1–8%) show the variation.

Discussion

The results support the idea that the facilitating organisational factors of Dutch pharmacy practice [15] translate into a substantial proportion of care-related work being performed. However, care-related work is not the principal activity in Dutch community pharmacies.
Three standards were used to compare the general work in the Netherlands with the international situation. Firstly, the overall results of the general work comprising 34% care-related activities and 66% other activities in this current study may be regarded as a positive result. The observed 34% of Dutch care-related activities is surprisingly close to the 33.1% of professional activities in Ireland [29]. Secondly, the 11% of the Dutch counter work is comparable with the British 10.6% of counter activities [30]. Finally, the 11% of computer work is relatively low in comparison with the reported 22% of time spent on writing and keyboarding in the U.S. [25]. However, this comparison must be put into perspective because writing and keyboarding is a wider definition than computer work. This may have led to higher frequencies in the U.S. Moreover, the inclusion of pharmacy assistants must have had a downward effect on the observed frequencies of computer work in the Dutch study. In the Netherlands pharmacists spent relatively more time behind the computer than assistants, due to their managerial work, quality control, and legal obligations.

Consequently, the general work at these three Dutch pharmacies was dominated by filling work, logistical work, office work, and other work. The results also support the view that the types of activities that make up pharmacy practice are very diverse. This is not a very surprising observation [45]. Pharmacy work varies from the relatively simple refilling of stock and accouting paperwork, to working at the computer, dispensing the medicine, and high-tech medication counselling. All these tasks must be performed. A positive side effect of this task diversity is that it allows pharmacists to use rotation within the team. Thereby keeping the work interesting and positively influencing the team spirit by sharing the chores. Even though much of the pharmacy work is very often regarded as a sole precondition for the real thing: care-related work. However, this value should not be overestimated. The other activities remain an important facilitator of the quality of the professional work in health care. For instance, legal requirements for records of dispensing and quality control procedures create a great deal of Dutch computer work. These activities are a pre-requisite for the provision of care.

Whether all of these tasks should be performed by highly qualified staff is open to question. If it is assumed that Dutch community pharmacists limit their involvement in activities unrelated to pharmaceutical care and if basic dispensing is not regarded as part of pharmaceutical care [15], then the data should show that pharmaceutical-care related activities comprise the major part of their workload. But it did not. This is surprising because organisational and service factors in Dutch community pharmacy practice would appear to facilitate pharmaceutical care. For instance, concurrent and prospective medication analysis allows the pharmacy staff to discuss and solve detected drug-related problems in the computer with the patient and/ or prescriber [15]. However, the potential of these opportunities is not being realized.

The study was not designed as a simple critique, but to encourage the design of better care practices. So given these potential qualities and their limited use: How can pharmacists improve this situation? An applied Dutch design principle is that an efficient pharmacy

Table 3 General work in the pharmacy measured using MDWS
Cases
Items
Counter care
Counter other
Consultation room
Telephone
Computer work
Ex tempore preparations
Home delivery work
Subtotal care related activities
Filling work
Logistical work
Office work
Other
Subtotal other activities
Total activities
organization creates time for pharmaceutical care. In this line of thought, the 66% of general work not being care-related, could be shifted to less pharmacologically qualified staff members. For instance, with a robot for logistic tasks [46] the re-filling of stock can be safely done by unskilled labour forces. This is then supposed to decrease general staff expenses, to reduce lead times for prescription handling, and consequently creating time for care-related work [46–48]. Moreover, task specialization of pharmacy assistants in pharmacotherapeutic consultation and counter work may also improve their knowledge and skills. A situation which is present in the Netherlands, although to a limited extent. Dutch labour studies have shown that in terms of full-time equivalence (FTE) 20% of the pharmacy assistants are specialized in pharmaceutical care (a mean of 2 FTE out of a total of 10.1 FTE), and 0.9 FTE is lower skilled labour [49]. Whether this profile of pharmacy assistant specialization persists may depend upon the utilization and impact of robots in the dispensary, which may become clearer with new studies and discussions. Other studies have suggested that the interior design may be important to facilitate privacy at the counter, and by doing so, care-related work at the counter because patient and staff feel at ease [50–52].

Limitations

This study has some limitations. Firstly, a non-random sample of three out of 1,695 Dutch community pharmacies [53] is too small to permit generalisations and to reflect the diversity of practice. Nevertheless, these pharmacies were very different as the proportion of counter work at each of the pharmacies illustrates. Secondly, the broad definition of care-related work could have overestimated that category. For example, the category ‘telephone’ consisted of all conversations and at least part of this could well have been administrative, logistical, and private matters. However, these differences and limitations do not reduce the descriptive value of this study.

Conclusion

Although care-related work forms a substantial component of professional practice in Dutch pharmacies, the extent of its contribution could be increased by pharmacists in order to facilitate pharmaceutical care. An efficient pharmacy organisation, including possibly robotization, task specialization, and interior design may have untapped potential; to create space and time for care-related tasks. Systematic experiments could reveal if these types of modifications could expand the proportion of care-related activities in pharmacies.

Acknowledgements I thank the involved staff of all three pharmacies, the board of the Royal Dutch Association for the Advancement of Pharmacy (KNMP), Prof. Dr. C.J. de Blaey and Dr. F.J. van de Vaart of the Scientific Institute for Dutch Pharmacists (WINAp), the unit for application development at the University of Groningen, and the involved referees for their work and valuable support in this project.

Funding I have the KNMP, the WINAp, and the stichting Nicolaas Mulieriusfonds financially supported project.

Conflicts of interest None.

Open Access This article is distributed under the terms of the Creative Commons Attribution Noncommercial License which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.

References

1. Donabedian A. The quality of care, how can it be assessed. J Am Med Assoc 1988;260:1743–48.
2. Kozma CM. Economic, clinical, and humanistic outcomes: a planning model for pharmacoeconomic research. Clin Ther 1993;15:1121–32.
3. Holland RW, Nimmo VM. Transitions part 1, beyond pharmaceutical care. Am J Health Syst Pharm 1999;56:1758–64.
4. Indritz MES, Arzt MB. Value added to health by pharmacists. Soc Sci Med 1999;48:674–70.
5. Reeder CE, Kozma CM, O’Malley C. ASHP survey of ambulatory care responsibilities of pharmacists in integrated health systems. Am J Health Syst Pharm 1998;55:35–48.
6. Knapp KK, Blalock SJ, O’Malley CH. ASHP survey of ambulatory care responsibilities of pharmacists in managed care and integrated health systems. Am J Health Syst Pharm 1999;56:2431–43.
7. Young MD, Stilling WJ, Munger MA. Pharmacy practice acts, a decade of progress. Ann Pharmacother 1999;33:920–6–7.
8. Azzopardi LM. Validation instruments for community pharmacy. New York: Hayworth; 2000. ISBN 0-7890-0900-5.
9. van Mil JWF, Mobach MP, Tromp, ThFJ. The PharmValue project V7. FIP/QIPC;2000 [cited 2007 Apr 04]. Available from: http://www.qipc.pref.nl/index.pl/praktijkmodellen.
10. Scott DM, Wessels MJ. Impact of OBRA 90 on pharmacists’ patient counseling practices. J Am Pharm Assoc 1997;NS37:401–6.
11. Hepler CD, Strand L. Opportunities and responsibilities in pharmaceutical care. Am J Hosp Pharm 1990;47:533–43.
12. Hassell K, Harris J, Rogers A, Noyce P, Wilkinson J. The role and contributions of pharmacy in primary care. Manchester: National Primary Care Research and Development Centre; 1996. ISBN 0 9517452 63.
13. Schulz RM, Brushwood D. The pharmacist’s role in patient care. Hastings Cent Rep 1991;21(1):12–7.
14. Dickson WM, Rodowskas CA. Pharmacist work activities in a community pharmacy setting. J Am Pharm Assoc 1975; NS15:581–7.
15. van Mil JWF. Pharmaceutical care in community pharmacy, practice and research in the Netherlands. Ann Pharmacother 2005;39:1720–5.
16. Mobach MP, van der Werf JJ, Tromp TFJ. APOM-project: managing organizational change to the customer. Pharm World Sci 1999;21:201–9.
17. van Mil JWF, Schulz M, Tromp ThFJ. Pharmaceutical care, European developments in concepts, implementation, teaching, and research: a review. Pharm World Sci 2004;26:303–11.
18. Mobach MP. The counter and consultation room work explored in the Netherlands. Pharm World Sci. doi: 10.1007/s11096-008-9188-5
19. Bissell P, Ward P, Noyce P. Variation within community pharmacy, 2, responding to the presentation of symptoms. J Soc Adm Pharm 1997;14:105–15.
20. Seston E, Nicolson M, Hassel K, Noyce P, Not just someone stood behind the counter, the views and experiences of medicines counter assistants. J Soc Adm Pharm 2001;18:122–8.
21. Tully MP, Hassell K, Noyce P. Advice-giving in community pharmacy practice. J Soc Adm Pharm 1998;15:191–5.
22. Rutter P. Pharmacist work patterns: are they affected by staffing levels and prescription numbers? Int J Pharm Pract 2002;10:R49.
23. Emmerton L, Jefferson K. Work sampling observations of community pharmacists: review. Int J Pharm Pract 1996;4:75–8.
24. Rutter PM, Hunt AJ Darracott R, Jones IF. Validation of a subjective evaluation study using work sampling. J Soc Adm Pharm 1999;16:174–85.
25. Dupclay L, Rupp MR, Bennett RW, Jarnagin TM. Analysis of grocery chain pharmacists’ work-related behaviors. J Am Pharm Assoc 1999;39:74–81.
26. Rodowskas CA Jr, Gagnon JP. Personnel activities in prescription departments of community pharmacies. J Am Pharm Assoc 1972;12:407–11.
27. McKay AB, Sharpe TR, Smith MC, Jackson RA. Changes in traditional community pharmacist work patterns following computerization. Pharm Manage 1979;151:180–4.
28. Boyd R, Parker WA, Yung DK. Characterisation of pharmacy workload and pharmacist activities in a Canadian community pharmacy. Contemp Pharm Pract 1982;5:219–55.
29. Fisher CM, Corrigan OI, Henman MC. Study of community pharmacy practice. J Soc Adm Pharm 1991;8:15–24.
30. Savage I. Time for customer contact in pharmacies with and without a dispensing technician. Int J Pharm Pract 1995;3:193–9.
31. Emmerton L, Becket G, Gilbanks L. Application of electronic work sampling technology in New Zealand community pharmacy. J Soc Adm Pharm 1998;15:191–5.
32. Jefferson KM. Documentation of prescription interventions and professional activities of community pharmacists [Dissertation]. New Zealand: University of Otago, 1994. In: Emmerton L, Becket G, Gilbanks L, editors. Application of electronic work sampling technology in New Zealand community pharmacy. J Soc Adm Pharm 1998;15:191–5.
33. Rutter P, Hunt A, Darracott R, Jones I. Subjective evaluation of how community pharmacists in Great Britain spend their time. J Soc Adm Pharm 1998;15:252–61.