Risk management of teratogenic medicines: A systematic review

Wejdan A. Shroukh | Douglas T. Steinke | Sarah C. Willis

Division of Pharmacy and Optometry, School of Health Sciences, The University of Manchester, Manchester, UK

Correspondence
Wejdan A. Shroukh, Division of Pharmacy and Optometry, School of Health Sciences, The University of Manchester, Manchester UK.
Email: wejdan.shroukh@postgrad.manchester.ac.uk

Abstract

Aim: To systematically identify studies of implementing risk management measures when prescribing teratogenic medicines for women of childbearing age and studies reporting risk perceptions of teratogenic medications.

Methods: MEDLINE, CINAHL, Scopus, EMBASE, and International Pharmaceutical Abstracts were searched. Studies were included in the risk management section if they reported any of the following risk management measures: teratogenic counseling, contraceptive counseling, pregnancy testing before starting treatment, pregnancy testing during treatment, use of contraception before starting treatment, and use of contraception during treatment. Studies were included in the perceptions section if they reported perceived teratogenic risk as numerical value.

Results: Fifty-five studies were included in the risk management section and seven studies were included in the perceptions sections. Prevalence of risk management measures varied as follows: teratogenic counseling (9.5%–99.3%), contraceptive counseling (6.1%–98%), pregnancy testing before starting treatment (0%–95.1%), pregnancy testing during treatment (12.7%–100%), contraception use before starting treatment (15.7%–94%), and contraception use during treatment (1.7%–100%). A proper estimation of the teratogenic risk was reported for thalidomide (by general practitioners and obstetric/gynecologists), for etretinate (by pregnant women), and for misoprostol (by pregnant and nonpregnant women). An under-estimation was reported for warfarin and retinoids (by general practitioners and obstetric/gynecologists). And over-estimation was reported for thalidomide, valproate, lithium, isotretinoin, phenytoin, warfarin and etretinate by different populations.

Conclusion: Considerable variation in the implementation of risk management measures when prescribing teratogenic medicines to women of childbearing age is reported in the literature. A common tendency to over-estimate the risk of teratogenic medications was evident.

Keywords
contraception, perception, pregnancy prevention, risk management, teratogenic
1 | INTRODUCTION

A teratogen is a substance that can adversely affect the development of an embryo or a foetus if administered under specific conditions of dose, route of administration, gestational age, and genotype (Bánhidy, Lowry, & Czeizel, 2005). A wide range of substances have been recognized as teratogens, including some medications (Holmes, 2011; Twining’s Textbook of Fetal Abnormalities, A. M. Coady & S. Bower, 2014). There is a need to ensure that potential teratogens are used as safely as possible by women of childbearing age, because the use of teratogenic medications is likely to be inevitable in many cases due to the unavailability of equally effective alternative treatment options (Honein, Moore, & Erickson, 2004; E. B. Schwarz, Parisi, Handler, et al., 2012).

To minimize foetal harm when prescribing potential teratogens, risk management programmes have also been developed for certain medications, with the manufacturer of isotretinoin launching the first pregnancy prevention programme aimed at preventing foetal exposure in 1988 (Honein et al., 2004; Mayall & Banerjee, 2014). Subsequently, the use of teratogenic medications has been increasingly controlled through the development of risk minimisation activities and programmes (Mayall & Banerjee, 2014). Elements to ensure safe use of teratogenic medications include certification of prescribers and dispensers, patient counseling regarding contraception use and monitoring patient contraception behaviors through regular pregnancy testing and use of contraception (FDA, n.d.; Mayall & Banerjee, 2014).

The development and implementation of teratogenic risk management programmes should also take into consideration patients’ experience of using a medication (Bwire, Freeman, & Houn, 2011). The value of recognizing patients’ experience of medication-taking as part of ensuring medications are used effectively and deliver intended outcomes is one of the principles of medicines optimisation, a model for informing pharmacy practice based on the aim of improving outcomes of medication use. The four guiding principles of medicines optimisation are: aim to understand the patient experience; evidence-based choice of medicines; ensure medicines use is as safe as possible and make medicines optimisation part of routine practice (Royal Pharmaceutical Society, 2013). Medicines optimisation is a patient-centred approach for achieving optimal use of medications by providing personalized care for each patient (Cutler, Fattah, Shaw, & Cutts, 2011). Conceptualized in terms of medicines optimisation, with the patient at the centre of healthcare, patients’ views, opinions, and perceptions of taking a teratogenic medicine, and understanding of teratogenic risk, are therefore important factors when investigating the effectiveness of any risk management programme (Collins & Bonneh-Barkay, 2016; Widnes & Schjott, 2017). Moreover, because a key actor in ensuring evidence-based choice of medications are healthcare providers, these stakeholders’ perceptions of teratogenic risk will play a part in understanding patients’ experience of using the medication (Bwire et al., 2011). In fact, evidence from the literature suggests that the patient-physician relationship and teratogenic risk communication have a significant impact on patients’ medication utilization (Widnes & Schjott, 2017). In this context, over-estimation of teratogenic risk may result in poor adherence to treatment during pregnancy, anxiety or pregnancy termination, while under-estimation of teratogenic risk can result in foetal exposure to the harmful effects of a teratogenic medication (Gils, Pottegard, Ennis, & Damkier, 2016; Sanz, Gomez-Lopez, & Martinez-Quintas, 2001; E. B. Schwarz, Maselli, Norton, & Gonzales, 2005).

A growing body of literature has investigated the implementation of pregnancy prevention measures while prescribing teratogenic medications to women of childbearing age (Brandenburg et al., 2017; Hayward et al., 2016; Leverenz et al., 2019; Paton et al., 2018; Uuskula et al., 2018). Additionally, research has focused on the perceived risk of teratogenic medications of various populations (Ceulemans et al., 2019; Gils et al., 2016; Petersen, McCrea, Lupattelli, & Nordeng, 2015). Yet to date, what is lacking is a systematic synthesis of data from a medicines optimisation perspective that explores teratogenic medication safety by systematically reviewing publications on the implementation of risk management (pregnancy prevention) measures when prescribing teratogens to women of childbearing age in combination with a review of patients’ experience of using teratogenic medications in terms of reported perceptions of teratogenic risk.

2 | METHODS

The protocol for this systematic review was registered with PROSPERO (International Prospective Register of Systematic Reviews) registration number CRD42019142944 (Shrouk, Steinke, & Willis, 2019). The PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) statement has guided the write-up of this review paper (Moher, Liberati, Tetzlaff, Altman, & Group, 2009).

2.1 | Information sources

Five electronic databases were systematically searched (MEDLINE, Cumulative Index to Nursing and Allied
Health Literature (CINAHL), Scopus, Embase, and International Pharmaceutical Abstracts (IPA)). The search strategy was based on Medical Subject Headings (MeSH) and free text keywords in each database. Search terms included: pregnancy prevent*, risk manag*, teratogen*, risk perception and perceiv*. No limits were applied to publication dates. Papers not written in English and conference abstracts were excluded. Reference lists of included articles were manually screened to identify additional papers for inclusion in the review. The full search strategy is available in Appendix A.

2.2 Inclusion/exclusion criteria

1. Risk management: the review aimed to establish the implementation of risk management for teratogenic medications used by women of childbearing age. Therefore, papers were included in the review if they reported the use of at least one teratogenic medication by females of childbearing age and the implementation of at least one risk minimisation measure consistent with the Food and Drug Administration (FDA) Risk Evaluation and Mitigation Strategies (REMS) drug safety programme designed to address safety concerns. Most of the included medicines were established teratogens. However, some included medicines were considered potential teratogens like deferoxamine and deferiprone, cyclophosphamide, and mood stabilizers. Safety of teratogenic medications use was further monitored against Elements to Assure Safe Use (ETASU), see Table 1 (Arnold, 2019; Dabrowska, 2018).

Papers focused on the following were excluded from the review: pregnancy rates while using a teratogenic medication, pregnancy outcomes after exposure to a teratogenic medication, emergency contraception, contraception due to a medical condition (medical conditions that require contraception regardless of the use of drugs), abortion or pregnancy termination, side effects of contraceptives, venous thromboembolism, teratogenic risk of contraceptives, prescription patterns during pregnancy and need for contraceptive due to HIV infection.

2. Perceptions of teratogenic risk: to address the aim of reviewing publications reporting how teratogenic risk of medications is perceived, papers included in the review were those reporting perceived teratogenic risk as numerical value. Studies reporting the perception of risk of non-teratogenic medications were excluded from the review.

2.3 Study selection

All papers identified through the database search and through manual search of reference lists were checked to remove any duplicates. Following this, study selection was carried out through three phases. First, all titles were screened against the inclusion and exclusion criteria. Second, abstracts from articles selected in the first phase were screened against the same criteria. Third, full texts of articles retrieved from the second phase were reviewed to check for eligibility for inclusion in the review.

2.4 Data extraction

Data were extracted by the three authors and synthesized into summary tables presenting information about study characteristics, methods and outcomes of interest. For the part covering perceptions of teratogenic risk, the authors aimed to examine whether the results of the included studies indicated a true (proper) estimation of the teratogenic risk or not. If not, the perceived estimations of the teratogenic risk were examined to see if they were higher than the true risk (over-estimated) or lower than the true risk (under-estimated). Therefore, the numeric value of the perceived teratogenic risk extracted from the results section of each paper and presented as a percentage was compared to the true value of the teratogenic risk that was extracted either from the methods or the results section. The true value of the teratogenic risk was described in the included studies as the risk of
causing “congenital malformations” or “birth defects” and was also presented as a percentage to allow comparison with the perceived risk. No description of specific outcomes was included and the risk was described in general terms. The values were based on the available literature on the risk of the included medicines. The authors followed the method shown in Figure 1 to assign the perceived teratogenic risk of every medication included in the review into one of three categories: properly-estimated, over-estimated, or under-estimated.

2.5 | Quality assessment

The critical appraisal tool developed by Hawker et al. (Hawker, Payne, Kerr, Hardey, & Powell, 2002) was used to assess the quality of included papers. The tool includes nine questions to assess the abstract and title, introduction and aims, method and data, sampling, data analysis, ethics and bias, results, transferability or generalisability, and implication and usefulness. Each question has four options: good, fair, poor or very poor, scored from 1 (very poor) to 4 (good). This scoring method therefore allows for a total score to be calculated ranging from 9 to 36 for each paper. Based on the total score for each paper, four quality categories were applied to each paper as follows: high quality (score of 30–36), medium quality (score of 24–29), and low quality (score of 9–24).

Results of the quality assessment were not used as inclusion/exclusion criteria.

2.6 | Data analysis

Extracted data were presented in summary tables. In addition, the following analyses were carried out:

1. Risk management: For each risk minimisation measure reported, prevalence of implementing that measure was calculated as the proportion of a study population reported to be using a measure. This was calculated as follows:

 \[
 \text{Prevalence of risk minimisation measure implementation/100 patients} = \frac{\text{total number of patients implementing the measure}}{\text{total number of patients using the teratogenic medication}} \times 100
 \]

2. Perceptions of teratogenic risk: The perceived teratogenic risk for each medication was assigned into one of three categories: properly-estimated, over-estimated, or under-estimated (as shown previously in Figure 1). Categorized results were presented in tabular form.

3 | RESULTS

3.1 | Risk management

A total of 55 studies were included in the review as shown in Figure 2. Characteristics of the included studies are shown in Table 2 and summarized in Appendix B. Table 3 presents a summary of the risk minimisation measures reported by studies of prescribing teratogenic medications for women of child bearing age. No studies reported on all aspects of risk management included in the current review.

Prevalence of teratogenic counseling ranged from 9.5% (Mulryan et al., 2018) to 99.3% (Brandenburg et al., 2017), contraceptive counseling from 6.1% (E. B. Schwarz et al., 2005) to 98% (Brandenburg et al., 2017), pregnancy
testing before starting treatment from 0% (Chave et al., 2001; Mulryan et al., 2018) to 95.1% (Cheetham et al., 2006), pregnancy testing during treatment from 12.7% (Raguideau et al., 2015) to 100% (Hayward et al., 2016), contraception use before starting treatment from 15.7% (Uuskula et al., 2018) to 94% (Brandenburg et al., 2017), and contraception use during treatment from 1.7% (Tsur et al., 2008) to 100% (Ozyurt & Kaptanoglu, 2015).

3.2 Perceptions of teratogenic risk

A total of 6,000 articles were initially screened. Of those, 141 were removed because of duplication, 5,725 were excluded based on title screening, 68 were excluded based on abstract screening, and 59 were excluded based on full text screening leaving a total of seven articles to be included in the review (see Figure 3). Characteristics of the seven included papers are shown in Table 4.

Two studies out of seven (28.6%) included multiple countries (Lupattelli, Picinardi, Einarson, & Nordeng, 2014; Petersen et al., 2015), and the rest were from Denmark (n = 1; 14.3%) (Gils et al., 2016), Norway (n = 1; 14.3%) (Nordeng, Ystrom, & Einarson, 2010), France (n = 1; 14.3%) (Damase-Michel, Pichereau, Pathak, Lacroix, & Montastruc, 2008), Spain (n = 1; 14.3%) (Sanz et al., 2001), and Brazil (n = 1; 14.3%) (Pons Eda, Pizzol Tda, & Knauth, 2014). All studies had a cross sectional design and were published after the year 2000. Four studies out of seven (57.1%) utilized online questionnaires for data collection (Gils et al., 2016; Lupattelli et al., 2014; Nordeng et al., 2010; Petersen et al., 2015), two studies used questionnaires filled during a continuous educational course (Damase-Michel et al., 2008; Sanz et al., 2001), and one study collected data within prenatal services in primary care (Pons Eda et al., 2014). Data were collected using questionnaires in all studies. A numeric scale was used to measure the perception of teratogenic risk in five studies out of seven (71.4%) (Gils et al., 2016; Lupattelli et al., 2014; Nordeng et al., 2010; Petersen et al., 2015; Pons Eda et al., 2014) and a visual analogue scale was used in two studies (28.6%) (Damase-Michel et al., 2008; Sanz et al., 2001). Five studies (71.4%) (Gils et al., 2016; Lupattelli et al., 2014; Nordeng et al., 2010; Petersen et al., 2015; Pons Eda et al., 2014) were of high quality and two (28.6%) were of medium quality (Damase-Michel et al., 2008; Sanz et al., 2001).

A proper estimation of the teratogenic risk was reported for thalidomide (by general practitioners and obstetric/gynecologists) (Gils et al., 2016), for etretinate (by pregnant women) (Sanz et al., 2001), and for
Study	Country: setting	Age	Time	Data source	Teratogenic medication	Risk management programme or pregnancy risk classification system	Quality assessment score
Algoblan, Bakhsh, and Alharithy (2019)	Saudi Arabia: outpatient clinics including private clinics and governmental hospitals	33 to 40	6/2017–11/2017	Patient survey	Isotretinoin	NS	28
Atturu and Odelola (2015)	United Kingdom: Adult Psychiatric service	18 to 45	2005–2012	Medical records	Valproate	Bipolar disorder: The management of bipolar disorder in adults, children and adolescents, in primary and secondary care (NICE) 2006	29
Banas et al. (2014)	Poland: NS	NS	NS	Patient survey	Leflunomide	Services for patients with epilepsy: report of a CSAG Committee chaired by Professor Alison Kitson	26
Bell et al. (2002)	United Kingdom: General practices and outpatient department of hospital consultants (neurologists, pediatricians and pediatric neurologists), in addition to mailed questionnaire	14 to 55	2000	Patient survey	Anti-epileptic drugs	Anti-epileptic drugs (phenobarbital, primidone, phenytoin, fosphenytoin, ethosuximide, carbamazepine, valproate, and topiramate)	28
Bhakta, Bainbridge, and Borgelt (2015)	United States: Outpatient Neurology Clinics in a hospital	15 to 44	7/2011–6/2012	Medical records	Anti-epileptic drugs	NS	25
Bosak, Cyranka, and Slowik (2019)	Poland: A university epilepsy clinic	16 to 49	8/2017–8/2018	Patient survey and medical records	Anti-epileptic drugs	NS	28
Study	Country: setting	Age	Time	Data source	Teratogenic medication	Risk management programme or pregnancy risk classification system	Quality assessment score (out of 36)
-------------------------------	---	---------	--------------------	-------------	------------------------	---	-----------------------------------
Boucher and Beaulac-Baillargeon (2006)	Canada: Telephone interview	≥14	11/2003–7/2004	Patient survey	Isotretinoin	NS	30
Brandenburg et al. (2017)	United States: Mandatory and voluntary surveys of the REMS program	NS	6/2012–6/2013	Patient survey	Thalidomide and lenalidomide	REMS for thalidomide and lenalidomide	29
Brinker, Kornegay, and Nourjah (2005)	United States: A novel pharmacy compliance survey and an ongoing, voluntary survey	15 to 45	10/2002–4/2003	Patient survey	Isotretinoin	System to Manage Accutane-Related Teratogenicity (SMART) program	33
Castaneda et al. (2008)	United States: REMS	females of child bearing potential	12/2005–12/2007	Patient survey	Lenalidomide	RevAssist®	29
Chang et al. (2018)	Uganda: Uganda Heart Institute (UHI)	15 to 59	NS	Patient survey	Warfarin	NS	35
Chave, Finlay, and Knight (2001)	United Kingdom: Dermatologists	NS	36,434	Physician questionnaire	Thalidomide	NS	25
Cheetham et al. (2006)	United States: Kaiser Permanente (a national, nonprofit, managed care organization)	NS	2000–2004	Medical records	Isotretinoin	Kaiser Permanente Southern California isotretinoin risk management program	28
Crijns, van Rein, Gispen-de Wied, Straus, and de Jong-van den Berg (2012)	Netherlands: IADB (a database, containing information of prescribed medication in public pharmacies in the Netherlands)	15 to 49	1999–2006	Medical records	Isotretinoin	NS	27
Entezari-Maleki et al. (2012)	Iran: Institutional community pharmacy service affiliated with the college of pharmacy, Tehran University of Medical Sciences	NS	7/2007–1/2008	Patient survey and medical records	Isotretinoin	NS	33

(Continues)
Study	Country: setting	Age	Time	Data source	Teratogenic medication	Risk management programme or pregnancy risk classification system	Quality assessment score
Ferguson et al. (2016)	United States: Academic and community practices, lupus support groups and conferences, and websites and other forms of publicity	≤45	2003–2010	Patient survey	Azathioprine, mycophenolate, methotrexate, cyclosporine, leflunomide, cyclophosphamide, rituximab, abatacept, or belimumab	NS	31
Force et al. (2012)	United States: Family medicine clinics	18 to 44	NS	Medical records	Angiotensin-converting enzyme inhibitors, angiotensin-receptor blockers or statin	FDA	28
Fritsche, Ables, and Bendyk (2011)	United States: Family medicine clinic	15 to 44	10/2002–11/2008	Medical records	Category D or X* (paroxetine, methotrexate or warfarin; selected longer-term tetracyclines (minocycline or tetracycline); a benzodiazepine (defined as any medication containing either “azepam” or “azolam”) and any statin (defined as any medication containing “astatin”)	FDA	29
Gotlib et al. (2016)	United States: A tertiary medical centre	15 to 49	1/2013–7/2014	Medical records	Valproic acid	American Psychiatry Association, American Congress of Obstetrics and Gynecologists, National Institute for Health and Care Excellence and American Academy of	29
Study	Country: setting	Age	Time	Data source	Teratogenic medication	Risk management programme or pregnancy risk classification system	Quality assessment score (out of 36)
-------------------------------	---	------	-----------------	------------------------------	---	---	--------------------------------------
Goyal et al. (2015)	United States: National Hospital Ambulatory Medical Care Survey (NHAMCS)	14-40	2005–2009	Patient survey	Category D or X^a	FDA	35
Hayward et al. (2016)	United States: Children’s Hospital	12-21	7/2011–6/2015	Medical records	Cyclophosphamide	NS	31
Hogan, Strand, and Lane (1988)	Canada: Dermatology clinic and general practitioner clinic	NS	4/1983–3/1985	Patient survey and medical records	Isotretinoin	NS	24
James, Barnes, Lelliott, Taylor, and Paton (2007)	United Kingdom: A mental health trust	18-45	2006	Medical records	Lithium, carbamazepine or valproate	NS	26
Landis et al. (2012)	United States: The National Ambulatory Medical Care Survey (NAMCS)	12-55	1993–2008	Patient log	Isotretinoin and oral contraceptives	iPledge	31
Langan, Perry, and Oto (2013)	United Kingdom: Secondary care psychiatric contacts	16-50	2002–2005	Medical records	Valproate, carbamazepine, lamotrigine and topiramate	NS	31
Lelubre et al. (2018)	Belgium: Questionnaires delivered online by email	NS	12/2014–10/2015	Patient survey	Isotretinoin	Pregnancy Prevention Program for isotretinoin	29
Leverenz et al. (2019)	United States: Rheumatology Clinic, Dermatology Clinics and an online community of people living with inflammatory arthritis	≤40	2015–2017	Patient survey	Methotrexate, anti-TNF (infliximab, adalimumab, etanercept, golimumab, or certolizumab) and novel medications (abatacept, apremilast, rituximab, tocilizumab, tofacitinib, secukinumab, and ustekinumab)	NS	30
Study	Country: setting	Age	Time	Data source	Teratogenic medication	Risk management programme or pregnancy risk classification system	Quality assessment score (out of 36)
-------------------------------	--	-------	------------------	-------------	--	---	--------------------------------------
Mager et al. (2018)	United States: Life plans completed as part of Toledo-Lucas County Healthy Start	13 to 44	4/2016–10/2016	Reproductive life plan	Category C, D or X^a	FDA	25
Martin, Foreman, Travis, Casson, and Coleman (2008)	United Kingdom: Hypertension Clinic in a University Hospital	16 to 45	1/2004–10/2006	Medical records	Angiotensin converting enzyme (ACE) inhibitors or angiotensin receptor blockers (ARBs)	NS	22
Mitchell, Van Bennekom, and Louik (1995)	United States: Telephone or mailed survey	12 to 59	1/1989–12/1993	Patient survey	Isotretinoin	Pregnancy Prevention Program for isotretinoin	25
Mody et al. (2015)	United States: Family medicine at an academic institution	18 to 45	4/2011–4/2012	Medical records	Category D or X^a	Review of the category D and X medications in 2012 by a counselor for California Teratogen Information Specialists	32
Mody et al. (2015)	United States: An academic outpatient family medicine clinic	18 to 45	4/2012–4/2013	Patient survey and medical records	Category D or X^a	FDA	33
Mulryan, McIntyre, McDonald, Feeney, and Hallahan (2018)	Ireland: Irish mental health service	18 to 49	42,370	Medical records	Valproate	NS	28
Ozyurt and Kaptanoglu (2015)	Turkey: Dermatology clinic in a Hospital	14 to 35	1/2012 for 18 months	Patient survey	Isotretinoin	NS	24
Paton et al. (2018)	United Kingdom: Mental health provider organizations	≤ 50		Medical records	Valproate	NICE guideline for bipolar disorder (NICE 2014)	25
Pinheiro et al. (2013)	United States: IMS Health, Vector One^c: Data Extract Tool (DET)	13 to 45	3/2004–2/2008	Medical records	Isotretinoin	iPledge	28
Study	Country: setting	Age	Time	Data source	Teratogenic medication	Risk management programme or pregnancy risk classification system	Quality assessment score (out of 36)
-------------------------------	--	-----------	-------------------	---------------	------------------------	---	-------------------------------------
Raguideau et al. (2015)	France: The French national health insurance database (SNIIRAM), The complementary Universal Health Insurance (CMUc), and The French hospital discharge database (PMSI)	15 to 49	1/2006–12/2013	Medical records	Acitretin	NS	27
Rao, Glynn, Werler, Van Bennekom, and Mitchell (2000)	United States: Telephone or mailed survey	NS	1990–1993	Patient survey	Isotretinoin	NS	28
Ruiter, Teichert, Straus, Stricker, and Visser (2012)	Netherlands: The Dutch Foundation for Pharmaceutical Statistics (SFK)	15 to 45	1/2005–12/2009	Medical records	Category D or X\(^a\) and coumarin anticoagulants, phenprocoumon and acenocoumarol	Swedish Catalogue of Approved Drugs (FASS), Australian Drug Evaluation Committee (ADEC) and US Food and Drug Administration (FDA)	26
Schwarz et al. (2005)	United States: The National Ambulatory Medical Care Survey (NAMCS), an annual survey of nonfederal employed, office-based physicians	14 to 44	1998–2000	Medical records	Category D or X\(^a\)	FDA	27
Schwarz, Postlethwaite, Hung, and Armstrong (2007)	United States: Kaiser Permanente (a health maintenance organization)	15 to 44	2001	Medical records	Category D or X\(^a\)	FDA	30

(Continues)
Study	Country: setting	Age	Time	Data source	Teratogenic medication	Risk management programme or pregnancy risk classification system	Quality assessment score
Schwarz et al. (2010)	United States: Pharmacy Benefits Management Database (PBM)	18 to 45	10/2006–9/2008	Medical records	Category D or X²	FDA	35
Schwarz et al. (2012)	United States: Academic general internal medicine practice	18 to 50	10/2008–4/2010	Medical records	Potential teratogens	NS	33
Schwarz et al. (2013)	United States: Suburban, community-based family practice and an academic general internal medicine	18 to 50	10/2008–6/2009	Patient survey and medical records	Benzodiazepines, antimicrobials (i.e., doxycycline and fluconazole), angiotensin-converting enzyme inhibitors and angiotensin-receptor blockers, cardiovascular medications (e.g., beta-blockers, spironolactone), psychiatric medications (e.g., lithium and some antidepressants), and statins	NS	32
Schwarz et al. (2013)	United States: The OEF/OIF roster, provided to the VA by the Department of Defense Manpower Data Center’s (DMDC) Contingency Tracking System	≤50	7/2008–10/2011	Patient survey	Angiotensin-converting enzyme inhibitors, angiotensin-receptor blockers, benzodiazepine or statin	FDA	33
Shilalukey et al. (1997)	Canada: Haemoglobinopathy Clinics of a children's hospital and a general hospital	Teenagers	7/1993–7/1994	Patient survey	Deferoxamine and deferiprone	NS	25
Study	Country: setting	Age	Time	Data source	Teratogenic medication	Risk management programme or pregnancy risk classification system	Quality assessment score (out of 36)
-------------------------------	--	-----	---------------	---------------	------------------------	--	----------------------------------
Stancil et al. (2016)	United States: Academic pediatric medical centre	14	1/2008–12/2012	Medical records	Category D or X^a	FDA	30
Steinkellner, Chen, and Denison (2010)	United States: Database from Medco Health Solutions, Inc. (Franklin Lakes, NJ), a pharmacy benefits manager	18	1/2008–6/2009	Medical records	Category X^a	FDA, validated by Micromedex and Clinical Pharmacology ref	28
Teichert et al. (2010)	Netherlands: The Dutch Foundation for Pharmaceutical Statistics (SFK)	15	1/2005–12/2008	Medical records	Isotretinoin	The Dutch pregnancy prevention program	31
Tsur, Kozer, and Berkovitch (2008)	Israel: Drug Consultation Centre	16	7/2005–10/2005	Patient survey	Isotretinoin	NS	31
Uusküla et al. (2018)	Estonia: The Estonian Health Insurance Fund (EHIF)	15	1/2012–10/2016	Medical records	Isotretinoin	NS	31
Valle, Clemons, Hayes, Fallowfield, and Howell (1998)	United Kingdom: Cancer care hospital	NS	Patient survey	Chemotherapy for breast cancer	NS	25	
Werner et al. (2014)	United States: Urban community via flyers displayed on college campuses, at dermatology clinics, and at student health facilities	14	1/2012–9/2012	Patient survey	Isotretinoin	iPledge	32
Wieck, Rao, Sein, and Haddad (2007)	United Kingdom: Psychiatric departments of three teaching hospitals	16	11/2004–10/2005	Medical records	Sodium valproate, semisodium valproate or carbamazepine	National Institute for Health and Clinical Excellence for epilepsy (2004)	24
Yazdany et al. (2011)	United States: Academic rheumatology offices, community	≤45	2008–2009	Patient survey	Methotrexate, mycophenolate mofetil, azathioprine,	NS	33

(Continues)
misoprostol (by pregnant and nonpregnant women) (Pons Eda et al., 2014). An under-estimation of the teratogenic risk was reported for warfarin and retinoids (by general practitioners and obstetric/gynecologists) (Gils et al., 2016). And over-estimation of the teratogenic risk was reported for thalidomide (by pregnant and nonpregnant women, healthcare professionals, and medical students) (Damase-Michel et al., 2008; Lupattelli et al., 2014; Nordeng et al., 2010; Petersen et al., 2015; Sanz et al., 2001), for valproate, lithium, isotretinoin, and warfarin (by healthcare professionals) (Damase-Michel et al., 2008), for phenytoin and warfarin (by pregnant and nonpregnant women, healthcare professionals, and medical students) (Sanz et al., 2001), and for etretinate (by nonpregnant women, healthcare professionals, and medical students) (Sanz et al., 2001). Details are presented in Table 5.

4 | DISCUSSION

Guided by principles of medicines optimisation (Royal Pharmaceutical Society, 2013), to our knowledge this is the first systematic review that synthesizes the available literature on the safe use of teratogenic medications. Additionally, this review extends our understanding of patients’ experience of using teratogenic medications by systematically summarizing published studies that report perceptions of potential teratogens.

4.1 | Risk management

Measures to minimize foetal exposure to potential teratogens investigated in this review were based on components of Risk Evaluation and Mitigation Strategies (REMS) with Elements to Assure Safe Use (ETASU). These measures were: teratogenic counseling, contraceptive counseling, pregnancy testing before or at start of treatment, pregnancy testing while on treatment, use of contraception before or on starting treatment, and use of contraception during treatment. Since 2007, implementation of REMS with ETASU have been required by the FDA for medications with serious safety issues like teratogenic medications to ensure that the benefits of a medication outweigh the risks to patients (Leiderman, 2009).

Isotretinoin was the most commonly prescribed teratogenic medication covered by the studies included in this review (n = 16; 29.1%) (Algoblan, Bakhsh, Alharithy, 2019; Boucher & Beaulac-Baillargeon, 2006; Brinker et al., 2005; Cheetham et al., 2006; Crijns et al., 2012; Entezari-Maleki et al., 2012; Hogan et al., 1988; Lelubre et al., 2018; Mitchell et al., 1995;
Study	Teratogenic counseling	Contraceptive counseling	Pregnancy testing before starting treatment	Pregnancy testing during treatment	Contraceptive use before starting treatment	Contraceptive use during treatment
Algoblan et al. (2019)	×	×	-	×	-	-
Mitchell et al. (1995)	×	×	×	×	-	×
Cheetham et al. (2006)	-	-	×	-	-	-
Rao et al. (2000)	-	-	-	-	-	×
Uusküla et al. (2018)	-	-	-	-	×	×
Pinheiro et al. (2013)	-	-	-	-	-	×
Entezari-Maleki et al. (2012)	-	-	-	-	-	×
Lelubre et al. (2018)	-	x	×	×	-	-
Teichert et al. (2010)	-	-	-	-	-	×
Boucher and Beaulac-Baillargeon (2006)	×	x	x	x	-	×
Crijns et al. (2012)	-	-	-	-	-	×
Ozyurt and Kaptanoglu (2015)	-	-	-	-	-	×
Tsur et al. (2008)	-	-	×	×	x	-
Brinker et al. (2005)	-	-	×	-	-	-
Werner et al. (2014)	-	x	-	-	-	-
Hogan et al. (1988)	-	-	-	-	-	×
Bhakta et al. (2015)	x	x	-	-	-	×
Wieck et al. (2007)	x	x	-	-	-	-
Bell et al. (2002)	x	-	-	-	-	-
Langan et al. (2013)	x	x	-	-	-	-
Bosak et al. (2019)	x	x	-	-	-	x
Leverenz et al. (2019)	-	-	-	-	-	×
Yazdany et al. (2011)	-	x	-	-	-	×
Ferguson et al. (2016)	-	x	-	-	-	-
Banas et al. (2014)	-	-	-	-	-	×
Paton et al. (2018)	x	x	-	-	-	×
Gotlib et al. (2016)	x	-	-	-	-	-
Mulryan et al. (2018)	x	x	x	-	-	-
Atturu and Odelola (2015)	x	x	-	-	-	-
Brandenburg et al. (2017)	x	x	-	-	×	×
Castaneda et al. (2008)	-	-	-	-	-	×
Chave et al. (2001)	-	-	x	-	-	-
Raguideau et al. (2015)	-	-	x	x	-	-
Valle et al. (1998)	-	x	-	-	×	x
Shilalukey et al. (1997)	-	-	-	-	-	×
Hayward et al. (2016)	-	-	x	-	-	-
Landis et al. (2012)	-	-	-	-	-	×
James et al. (2007)	x	x	-	x	-	x
Chang et al. (2018)	x	-	-	-	-	x

(Continues)
Ozyurt & Kaptanoglu, 2015; Pinheiro et al., 2013; Rao et al., 2000; Teichert et al., 2010; Tsur et al., 2008; Uuskula et al., 2018; Werner et al., 2014). This may be because of two reasons. Firstly, isotretinoin is a relatively old medication that has been in the market since 1982–1983, and has been prescribed under a pregnancy prevention programme since 1988 (Crijns, Straus, Gispen-de Wied, & de Jong-van den Berg, 2011). Secondly, it is one of the most cost-effective acne treatments used by patients from different age groups including women of childbearing age (Algoblan et al., 2019; Bérard et al., 2007; Honein et al., 2004).

By contrast, it was observed that there were fewer publications on medications prescribed under more recent risk management programmes such as thalidomide, lenalidomide, and valproic acid (Atturu & Odelola, 2015; Brandenburg et al., 2017; Castaneda et al., 2008; Chave et al., 2001; Gotlib et al., 2016; Mulryan et al., 2018; Paton et al., 2018), indicating a need for further investigation of the safety of these medications in terms of adherence to risk management measures for such medications. Good practice guidance suggests that ensuring safe use of medications can have a number of positive effects on treatment outcomes. For teratogenic medications in particular, this includes reducing the incidents of medication-induced foetal harm and empowering patients to make the most of their treatment (Royal Pharmaceutical Society, 2013).

Of the studies included in the review, 11 publications used the FDA pregnancy labeling categories (A, B, C, D, X) (DiPietro Mager et al., 2018; Fritsche et al., 2011; Goyal et al., 2015; Mody, Farala, Wu, Felix, & Chambers, 2015; Mody, Wu, et al., 2015; Ruiter et al., 2012; E. B. Schwarz et al., 2010; E. B. Schwarz et al., 2005; E. B. Schwarz et al., 2007; Stancil et al., 2016; Steinkellner et al., 2010). However, it is worth mentioning that the FDA requested removal of these categories from the labels of all prescription drugs and biological products in 2015. The pregnancy labeling categories (A, B, C, D, X) were replaced by the Pregnancy and Lactation labeling Rule (PLLR) since 2015 ("Content and format of labeling for human prescription drug and biological products; requirements for pregnancy and lactation labeling. Final rule," FDA, 2014; Pernia & DeMaagd, 2016). Reasons behind this change in labeling included concerns regarding the clarity of the content of the old pregnancy categories labeling, a possibility of misinterpreting the categories, inability to provide significant information about drug exposure during pregnancy, and inability to identify the consequences of stopping the use of needed drugs during pregnancy (Pernia & DeMaagd, 2016).

Study	Teratogenic counseling	Contraceptive counseling	Pregnancy testing before starting treatment	Pregnancy testing during treatment	Contraceptive use before starting treatment	Contraceptive use during treatment
Steinkellner et al. (2010)	-	-	-	-	-	×
Schwarz et al. (2007)	-	×	-	-	-	×
Schwarz et al. (2005)	-	×	-	-	-	-
Goyal et al. (2015)	-	-	×	-	-	-
Stancil et al. (2016)	-	-	-	-	-	×
Mody et al. (2015)	-	-	-	-	×	-
Mody et al. (2015)	×	×	-	-	×	-
Schwarz et al. (2010)	-	-	×	-	-	-
Mager et al. (2018)	-	-	-	-	×	-
Fritsche et al. (2011)	-	×	-	-	-	-
Ruiter et al. (2012)	-	-	-	-	×	-
Schwarz et al. (2012)	-	-	-	-	-	×
Force et al. (2012)	-	-	-	-	-	×
Schwarz et al. (2013)	×	×	-	-	-	-
Schwarz et al. (2013)	×	-	-	-	-	×
Martin et al. (2008)	-	-	-	-	-	×
Results of teratogenic risk management implementation showed a wide variation across studies. Some studies reported surprisingly low rates of implementation. For example, only 9.5% of women of childbearing age using valproate received teratogenic counseling in the study by Mulryan et al. (Mulryan et al., 2018). Additionally, rates of pregnancy testing before starting treatment with valproate or thalidomide were as low as 0% in two studies (Chave et al., 2001; Mulryan et al., 2018), and pregnancy testing during treatment with acitretin was 12.7% in the study by Raguideau et al. (Raguideau et al., 2015). Low rates of contraceptive use were also reported. Uuskula et al. reported that 15.7% of women of childbearing age on isotretinoin treatment in their study used a contraceptive before starting treatment (Uuskula et al., 2018), and Tsur et al. reported that only 1.7% of women in their study group used contraception during treatment with isotretinoin (Tsur et al., 2008).

The wide variation in the results of implementing risk management measures can be discussed in the light of several factors. One factor could be the data sources used by the different studies. Some studies relied on medical records as their source of data (Atturu & Odelola, 2015; Bhakta et al., 2015; Cheetham et al., 2006; Crijns et al., 2012; Force et al., 2012; Fritsche et al., 2011; Gottlib et al., 2016; Hayward et al., 2016; James et al., 2007; Langan et al., 2013; Martin et al., 2008; Mody, Farala, et al., 2015; Mulryan et al., 2018; Paton et al., 2018; Pinheiro et al., 2013; Raguideau et al., 2015; Ruiter et al., 2012; E. B. Schwarz et al., 2010; E. B. Schwarz et al., 2005; E. B. Schwarz, Parisi, Williams, Shevchik, & Hess, 2012; E. B. Schwarz et al., 2007; Stancil et al., 2016; Steinkellner et al., 2010; Teichert et al., 2010; Uuskula et al., 2018; Wieck et al., 2007), while others used patients surveys (Algoblan et al., 2019; Banas et al., 2014; Bell et al., 2002; Boucher & Beaulac-Baillargeon, 2006; Brandenburg et al., 2017; Brinker et al., 2005; Castaneda et al., 2008; Chang et al., 2018; Ferguson et al., 2016; Goyal et al., 2015; Lelubre et al., 2018; Leverenz et al., 1995; Ozyurt & Kaptanoglu, 2015; Rao et al., 2000; E. B. Schwarz, Mattocks, et al., 2013; Shilalukey et al., 1997; Tsur et al., 2008; Valle et al., 1998; Werner et al., 2014; Yazdany et al., 2011), a combination of medical records and patient surveys (Bosak et al., 2019; Entezari-Maleki et al., 2012; Hogan et al., 1988; Mody, Wu, et al., 2015; E. B. Schwarz, Parisi, et al., 2013), or other sources [patient logs (Landis et al., 2012), reproductive life plans (DiPietro Mager et al., 2018), and physician surveys (Chave et al., 2001)]. Having patients as the only source of information can lead to several forms of self-reporting bias (Althubaiti, 2016). Recall bias can lead to an
Table 4 Characteristics of studies reporting perceptions of teratogenic medicines

Study	Country	Setting	Sample	Study design	Data source	Measurement of teratogenicity perception	Quality assessment score (out of 36)
Lupattelli et al. (2014)	18 countries	On-line questionnaire	4,999 pregnant women	Cross-sectional	On-line questionnaire	Numeric scale	33
Gils et al. (2016)	Denmark	On-line questionnaire	143 general practitioners and 138 obstetricians/gynecologists	Cross-sectional	On-line questionnaire	Numeric scale	30
Nordeng et al. (2010)	Norway	On-line questionnaire	1793 eligible women	Cross-sectional	On-line questionnaire	Numeric scale	32
Damase-Michel et al. (2008)	France	A continuous educational course	103 general practitioners and 104 community pharmacists	Cross-sectional	Self-administered questionnaire	Visual analogue scale	26
Sanz et al. (2001)	Spain	A continuous educational course, out-patient obstetrics and gynecology clinic, School of Medicine and participants’ homes	15 general practitioners, 10 gynecologists, 106 preclinical students, 150 students in their clinical training, 81 pregnant women and 63 nonpregnant women	Cross-sectional	Questionnaire	Visual analogue scale	28
Pons et al. (2014)	Brazil	Three prenatal services in the municipal primary care system	287 (144 pregnant and 143 nonpregnant women)	Cross-sectional	Structured interviews to fill a questionnaire	Numeric scale	33
Petersen et al. (2015)	18 countries	On-line questionnaire	9,113 women	Cross-sectional	On-line questionnaire	Numeric scale	30

*Australia, Austria, Canada, Croatia, Finland, France, Iceland, Italy, The Netherlands, Norway, Poland, Russia, Serbia, Slovenia, Sweden, Switzerland, United Kingdom and United States.
TABLE 5 Results of comparing the reported teratogenic risk perception to the true value of teratogenic risk as found in the literature

Study	Medications included	The true value of teratogenic risk (%)	The perceived value of teratogenic risk (%)	The perceived value compared to the true value of teratogenic risk
Lupattelli et al.	thalidomide	10 to 40	Low health literacy: 84.5	Over-estimated
			Medium health literacy: 89.5	Over-estimated
			High health literacy: 94.8	Over-estimated
Gils et al.	thalidomide	20 to 50	GP: 20	Properly-estimated
	warfarin	10 to 20	GP: 3	Properly-estimated
	retinoids	30 to 38	GP: 10	Under-estimated
Nordeng et al.	thalidomide	10 to 40	All included women: 75	Over-estimated
Damase-Michel et al.	valproate	10	All healthcare professionals: 41.8	Over-estimated
	lithium	12	All healthcare professionals: 55.8	Over-estimated
	isotretinoin	25	All healthcare professionals: 89	Over-estimated
	warfarin	30	All healthcare professionals: 58.7	Over-estimated
	thalidomide	50	All healthcare professionals: 91.7	Over-estimated
Sanz et al.	phenytoin	≤ 10	Physicians: 37.9	Over-estimated
			Clinical students: 41.3	Over-estimated
			Preclinical students: 58.9	Over-estimated
			Nonpregnant women: 67.9	Over-estimated
			Pregnant women: 59.5	Over-estimated
	warfarin	6 to 25	Physicians: 53.2	Over-estimated
			Clinical students: 44.6	Over-estimated
			Preclinical students: 63.1	Over-estimated
			Nonpregnant women: 68.4	Over-estimated
			Pregnant women: 42.8	Over-estimated
	etretinate	16 to 30	Physicians: 95.9	Over-estimated
			Clinical students: 55.1	Over-estimated
			Preclinical students: 59.7	Over-estimated
			Nonpregnant women: 45.8	Over-estimated
			Pregnant women: 16.4	Properly-estimated
	thalidomide	11 to 35	Physicians: 81.6	Over-estimated
			Clinical students: 73.4	Over-estimated
			Preclinical students: 79.3	Over-estimated
			Nonpregnant women: 91.1	Over-estimated
			Pregnant women: 82.6	Over-estimated

(Continues)
erroneous estimation of risk management variables if the patient’s recall of information is inaccurate (Schmier & Halpern, 2004). Another form of self-reporting bias associated with the disclosure of sensitive data is the social desirability bias (Althubaiti, 2016). Social desirability bias might have led to an overestimated adherence to risk management and pregnancy prevention measures ("Social Desirability Bias,"). On the other hand, if data were extracted from the medical records, several issues like incomplete records, noncaptured data, and low quality data might have an effect on the research outcomes (Herrett et al., 2015; Zozus et al., 2015). Therefore, it is important to bear in mind the possible types of bias associated with each source of data.

Another well recognized variable leading to variations in the implementation of risk management for the different teratogenic medications is the availability of risk management programmes. For certain medications like thalidomide, linoleamide, and isotretinoin, detailed risk management programmes that aim to prevent foetal exposure to the drug are in place (Honein et al., 2004; Mayall & Banerjee, 2014). However, for other teratogenic medications, managing their risk is limited to the use of product labeling and patient information leaflets rather than rigorous monitoring (Freeman, Bwire, Houn, Sheehan, & Backstrom, 2014). The effectiveness of drug labeling as a risk management tool has been a matter of debate as research suggests a lack of effect on physicians’ prescribing behaviors or patients’ understanding of instructions (Freeman et al., 2014).

Results of the current review can be considered as a compliance assessment of teratogenic risk management (whether through existing risk management programmes or through labeling recommendations) (Freeman et al., 2014). Based on the findings of this review, safety of the utilization of teratogenic medications is sub-optimal, and entails a risk of foetal exposure to the harmful effect of potential teratogens. Consequently, it is recommended that the implementation of the existing teratogenic risk management programmes be monitored more carefully, and the criteria for the optimal management of teratogenic risk for potential teratogens be reviewed and revised based on the available evidence.

Exploring the implementation of risk management for teratogenic medications can help to develop interventions designed to minimize foetal exposure to cytotoxic effects, and thus future research utilizing multiple data sources is needed. Drawing on the strengths of data extracted from medical records and patient reported data, mixed methods research that utilizes quantitative and qualitative methods could yield more rigorous results than research utilizing quantitative or qualitative methods alone (Shorten & Smith, 2017; Tisnado et al., 2006).

Consequently, results of this review raise two important issues. First, the review uncovers deficiencies in the implementation of risk management of teratogenic medications which constitutes a serious public health concern that needs further investigation. Second, it highlights a potential need to reinforce policies and regulations that aim to reduce foetal exposure to the cytotoxic effects of teratogenic medications.

4.2 Perceptions of teratogenic risk

To help patients get the most from their treatment, it is important that their experience of medication use be explored and understood. In recent years, there has been an increasing interest in research on the perception of teratogenic risk (Sanz et al., 2001). This is corroborated by results of the current review, which shows that all papers included were published only in the last two decades. Additionally, the relatively small number of studies included in the review (seven studies) indicates that the study of perceptions of teratogenic risk is an important area for further research.

Two methods were used to measure the perception of teratogenic risk of participants, and those were either a numeric scale (Gils et al., 2016; Lupattelli et al., 2014; Nordeng et al., 2010; Petersen et al., 2015; Pons Eda et al., 2014) or a visual analogue scale (Damase-Michel et al., 2008; Sanz et al., 2001). One major issue regarding the use of a numeric scale to estimate the risk is its dependence on numeracy skills of participants (Peters, Hibbard, Slovic, & Dieckmann, 2007; Pons Eda...
et al., 2014). Evidence from the literature shows that correct estimation and understanding of health related risk information is significantly correlated with an ability to understand numbers and mathematical concepts (Peters et al., 2007; Rothman, Montori, Cherrington, & Pignone, 2008). The second method to measure the perception of teratogenic risk was the use of a visual analogue scale. There is an ongoing debate on the utility of visual analogue scales in measuring risk perception. Some argue that responses of participants to questions including a visual analogue scale tend to cluster around the middle point of the scale and might over-estimate the risk when it is low (Pons, Guimarães, Knauth, & Pizzol, 2014; Sanz et al., 2001), while others suggest that a visual analogue scale can provide a wide range of responses that can be chosen by research participants (Harland, Dawkin, & Martin, 2015). Pons et al. investigated the level of agreement between a visual analogue scale and a numeric scale in estimating the teratogenic risk. In their research, they concluded that there was no agreement between the two methods in estimating teratogenic risk. (Pons et al., 2014). Furthermore, it is recommended that future research exploring perceptions of teratogenic risk needs to utilize qualitative methods in addition to quantitative research. This is one way to overcome the ongoing controversy regarding how to reliably measure perception of teratogenic risk and will provide a deeper understanding of how risk is perceived (Shorten & Smith, 2017).

It is clear from the results of the review that teratogenic risk of medications tends to be over-estimated (Damase-Michel et al., 2008; Lupattelli et al., 2014; Nordeng et al., 2010; Petersen et al., 2015; Sanz et al., 2001), while proper estimation (Gils et al., 2016; Pons Eda et al., 2014) or under-estimation (Gils et al., 2016) occurs less frequently. Yet while there is agreement in the literature about the difficulty of understanding the teratogenic risk of medications due to scientific uncertainty (Polifka, Faustman, & Neil, 1997; Twigg, Lupattelli, & Nordeng, 2016), a realistic perception of teratogenic risk is needed by women in childbearing age to adhere to their therapy (Lennon, 2016).

Over-estimating the teratogenic risk of medications might be due to several factors. For women, pregnancy is viewed as a sensitive phase of their lives which can be easily adversely affected by exposure to a number of teratogens (such as alcohol) and including medications. In addition, pregnancy entails a significant responsibility to the mother to keep her foetus as safe as possible. These attitudes are further emphasized by social norms and cultural beliefs and can affect women’s ideas about medications (Twigg et al., 2016; Widnes & Schjott, 2017; Widnes, Schjott, Eide, & Granas, 2013). On the other hand, for health care professionals and particularly for physicians, exaggerating the teratogenic risk of medications can be a result of inadequate knowledge, which in turn might be the result of insufficient training and education provided for physicians (Damase-Michel et al., 2008), or the lack of relevant resources being utilized when needed (E. B. Schwarz et al., 2009). Furthermore, physicians’ fear of legal liability or possible accusation of malpractice if anything goes wrong while prescribing a potential teratogen might underpin this over estimation of the teratogenic risk of medications (E. B. Schwarz et al., 2009). Subsequently, future research needs to focus on understanding how teratogenic risk is conceptualized and the reasons behind the tendency to exaggerate it.

The strength of this review relies in being the first attempt to shed light on the current status of implementing risk management measures when teratogenic medications are prescribed to women of childbearing age. It utilizes the principles of medicines optimisation, a paradigm that aims to help patients get the best outcomes from using medicines. However, this systematic review has some limitations. First, title and abstract screening were only carried out by one researcher which means that there is a possibility of missing publications. Second, for the section on perceptions of teratogenic risk, the number of included articles was relatively small, which is justified by the limited publications in this area.

5 CONCLUSION

Considerable variation in the implementation of risk management measures when prescribing teratogenic medications to women of childbearing age is reported in the literature. Factors contributing to this variation require further investigation to understand barriers and facilitators of teratogenic medication risk management within a health system. Further studies of risk management of teratogenic medications, which take these factors into account, will need to be undertaken.

Additionally, a common tendency to over-estimate the risk of teratogenic medications was observed. To achieve the best possible therapeutic outcomes of using teratogenic medications, there is a need to explore the reasons behind this over-estimation. Understanding how teratogenic risk is conceptualized can usefully inform medicines optimisation so that patients derive the intended outcomes of a prescribed medication.

DATA AVAILABILITY STATEMENT

Data sharing is not applicable to this article as no new data were created or analyzed in this study.
REFERENCES

Food and Drug Administration. (n.d.). Approved risk evaluation and mitigation strategies (REMS). Retrieved from https://www.accessdata.fda.gov/scripts/cder/crems/index.cfm

Algbobl, S., Bakhsi, S., & Alharithy, R. (2019). Women’s experiences regarding isotretinoin risk reduction counseling in Riyadh. Journal of Dermatology and Dermatologic Surgery, 23(1), 13–15. https://doi.org/10.4103/jdds.jdds_50_18

Althubaiti, A. (2016). Information bias in health research: definition, pitfalls, and adjustment methods. Journal of Multidisciplinary Healthcare, 9, 211–217. https://doi.org/10.2147/JMDH.S104807

Arnold, N. (2019). FDA In Brief: FDA affirms its commitment to efficient-adoption-risk-evaluation-and-mitigation-strategy.

Bhakta, J., Bainbridge, J., & Borgelt, L. (2015). Teratogenic medications and concurrent contraceptive use in women of childbearing ability with epilepsy. Epilepsy Behav, 52(Pt A), 212-217. doi: https://doi.org/10.1016/j.yebeh.2015.08.004

Brandenburg, N. A., Bwire, R., Freeman, J., Houn, F., Sheehan, P., & Zeldis, J. B. (2017). Effectiveness of Risk Evaluation and Mitigation Strategies (REMS) for Lenalidomide and Thalidomide: Patient Comprehension and Knowledge Retention. Drug Safety, 40(4), 333–341. https://doi.org/10.1007/s40264-016-0501-2

Brinker, A., Kornegay, C., & Nourjah, P. (2005). Trends in adherence to a revised risk management program designed to decrease or eliminate isotretinoin-exposed pregnancies: evaluation of the accutane SMART program. Archives of Dermatology, 141(5), 563–569. https://doi.org/10.1001/archderm.141.5.563

Bwiré, R., Freeman, J., & Houn, F. (2011). Managing the teratogenic risk of thalidomide and lenalidomide: an industry perspective. Expert Opinion on Drug Safety, 10(1), 3–8. https://doi.org/10.1517/14740338.2011.527331

Castaneda, C. P., Zeldis, J. B., Freeman, J., Quigley, C., Brandenburg, N. A., & Bwire, R. (2008). RevAssist: a comprehensive risk minimization program for preventing fetal exposure to lenalidomide. Drug Safety, 31(9), 743–752. https://doi.org/10.2165/00002018-200831090-00003

Cleeland, M., Lupattelli, A., Nordeng, H., Orlaviciute, M., Twigg, M., & Foulon, V. (2019). Women’s Beliefs About Medicines and Adherence to Pharmacotherapy in Pregnancy: Opportunities for Community Pharmacists. Current Pharmaceutical Design, 25(5), 469–482. https://doi.org/10.2174/138161282566190321110420

Chang, A. Y., Nabbala, J., Nalubwama, H., Okello, E., Ssinabulya, I., Longenecker, C. T., & Webel, A. R. (2018). Motivations of women in Uganda living with rheumatic heart disease: A mixed methods study of experiences in stigma, childbearing, anticoagulation, and contraception. PLoS One, 13(3), e0194030. https://doi.org/10.1371/journal.pone.0194030

Chave, T. A., Finlay, A. Y., & Knight, A. G. (2001). Thalidomide usage in Wales: the need to follow guidelines. The British Journal of Dermatology, 144(2), 310–315. https://doi.org/10.1046/j.1365-2233.2001.04020.x

Cheetham, T. C., Wagner, R. A., Chiu, G., Day, J. M., Yoshinaga, M. A., & Wong, L. (2006). A risk management program aimed at preventing fetal exposure to isotretinoin: retrospective cohort study. Journal of the American Academy of Dermatology, 55(3), 442–448. https://doi.org/10.1016/j.jaad.2006.05.018

Coady, A. M., & Bower, S. (2014). Twinning’s textbook of fetal abnormalities, London, England: Elsevier Ltd.

Collins, J., & Bonnehe-Barkay, D. (2016). Considerations for Successful Risk Minimisation Strategies in the EU. Pharmaceutical Medicine, 30(5), 257–261. https://doi.org/10.1007/s40290-016-0161-7

FDA. (2014). Content and format of labeling for human prescription drug and biological products; requirements for pregnancy and lactation labeling. Final rule. Federal Register, 79(233), 72063–72103.

Crijns, H. J., Straus, S. M., Gispen-de Wied, C., & de Jong-van den Berg, L. T. (2011). Compliance with pregnancy prevention programmes of isotretinoin in Europe: a systematic review. The British Journal of Dermatology, 164(2), 238–244. https://doi.org/10.1111/j.1365-2133.2010.09976.x

Crijns, H. J., van Rein, N., Gispen-de Wied, C. C., Straus, S. M., & de Jong-van den Berg, L. T. (2012). Prescriptive contraceptive use among isotretinoin users in The Netherlands in comparison with non-users: a drug utilisation study. Pharmacoepidemiology and Drug Safety, 21(10), 1060–1066. https://doi.org/10.1002/pds.3200
Cutler, S., Fattah, L., Shaw, M., & Cutts, C. (2011). What does medicines optimisation mean for pharmacy professionals? *The Pharmaceutical Journal, 287*(7680), 606–607.

Dabrowska, A. (2018). FDA risk evaluation and mitigation strategies (REMS): Description and effect on generic drug development. Retrieved from https://fas.org/sgp/crs/misc/R44810.pdf

Damase-Michel, C., Pichereau, J., Pathak, A., Lacroix, I., & Montastruc, J. L. (2008). Perception of teratogenic and foetotoxic risk by health professionals: a survey in Midi-Pyrenees area. *Pharmacy Practice, 6*(1), 15–19.

DiPietro Mager, N., Mills, C., & Snelling, A. (2018). Utility of reproductive life plans in identification of potentially teratogenic medication use: A pilot study. *Birth, 45*(1), 50–54. https://doi.org/10.1111/birt.12318

Entezari-Maleki, T., Hadjibabaie, M., Dousti, S., Salamzadeh, J., Hayatshahi, A., Javadi, M. R., & Gholami, K. (2012). Evaluation and monitoring of isotretinoin use in Iran. *Arch Iran Med, 15*(7), 409-412. doi:012157/aim.007

Ferguson, S., Trupin, L., Yazdany, J., Yelin, E., Barton, J., & Katz, P. (2016). Who receives contraception counseling when starting new lupus medications? The potential roles of race, ethnicity, disease activity, and quality of communication. *Lupus, 25*(1), 12–17. https://doi.org/10.1177/096123315596079

Force, R. W., Keppel, G. A., Guirguis-Blake, J., Gould, D. A., Vincent, C., Chunchu, K., … Baldwin, L. M. (2012). Contraceptive methods and informed consent among women receiving medications with potential for adverse fetal effects: a Washington, Wyoming, Alaska, Montana, Idaho (WWAMI) region study. *Journal of American Board of Family Medicine, 25*(5), 661–668. https://doi.org/10.3122/jabfm.2012.05.120056

Freeman, J., Bwire, R., Houn, F., Sheehan, P., & Backstrom, J. (2014). Teratogenic Drugs and Risk Management: An Implementation Assessment. *Therapeutic Innovation & Regulatory Science, 48*(4), 420–427. https://doi.org/10.1016/j.tiirs.2013.10.017

Fritsche, M. D., Ables, A. Z., & Bendyk, H. (2011). Opportunities for the safe use of known human teratogens? *The Safe Use of Known Human Teratogens? 17*. https://doi.org/10.1111/bdra.20748

Honein, M. A., Moore, C. A., & Erickson, J. D. (2004). Can We Ensure the Safe Use of Known Human Teratogens? *Drug Safety, 27*(14), 1069–1080. https://doi.org/10.2165/00002018-200427140-00001

James, L., Barnes, T. R., Lelliott, P., Taylor, D., & Paton, C. (2007). Informing patients of the teratogenic potential of mood stabilising drugs: a case note review of the practice of psychiatrists. *Journal of Psychopharmacology, 21*(8), 815–819. https://doi.org/10.1177/0269881107077222

Landis, E. T., Levender, M. M., Davis, S. A., Feneran, A. N., Gerancher, K. R., & Feldman, S. R. (2012). Isotretinoin and oral contraceptive use in female acne patients varies by physician specialty: analysis of data from the National Ambulatory Medical Care Survey. *The Journal of Dermatological Treatment, 23*(4), 272–277. https://doi.org/10.3109/09546634.2012.679108

Langan, J., Perry, A., & Oto, M. (2013). Teratogenic risk and contraceptive counselling in psychiatric practice: analysis of anticonvulsant therapy. *BMJ Psychiatry, 13*, 234. https://doi.org/10.1186/1471-244x-13-234

Leiderman, D. B. (2009). Risk management of drug products and the U.S. Food and Drug Administration: evolution and context. *Drug Alcohol Depend, 105*(Suppl 1), S9–S13. https://doi.org/10.1016/j.drugalcdep.2009.02.007

Lelubre, M., Hamdani, J., Senterre, C., Amighi, K., Peres, M., Schneider, M. P., … De Vries, C. (2018). Evaluation of compliance with isotretinoin PPP recommendations and exploration of reasons for non-compliance: Survey among French-speaking health care professionals and patients in Belgium. *Pharmacoepidemiology and Drug Safety, 27*(6), 668–673. https://doi.org/10.1002/pds.4441

Lennon, S. L. (2016). Risk perception in pregnancy: a concept analysis. *Journal of Advanced Nursing, 72*(9), 2016–2029. https://doi.org/10.1111/jan.13007

Leverenz, D. L., Eudy, A. M., Jayasundara, M., Haroun, T., McDaniel, G., Benjamin Nowell, W., … Cloowe, M. E. B. (2019). Contraception methods used by women with rheumatoid arthritis and psoriatic arthritis. *Clinical Rheumatology, 38*(4), 1207–1212. https://doi.org/10.1007/s10067-018-04420-1

Harland, N. J., Dawkin, M. J., & Martin, D. (2015). Relative utility of a visual analogue scale vs a six-point Likert scale in the measurement of global subject outcome in patients with low back pain receiving physiotherapy. *Physiotherapy, 101*(1), 50–54. https://doi.org/10.1016/j.physio.2014.06.004

Hawker, S., Payne, S., Kerr, C., Hardey, M., & Powell, J. (2002). Appraising the evidence: reviewing disparate data systematically. *Qualitative Health Research, 12*(9), 1284–1299. https://doi.org/10.1177/10497323022238251

Hayward, K., Haaland, W. L., Hrachovec, J., Leu, M., Vora, S., Clifton, H., … Crowell, C. S. (2016). Reliable Pregnancy Testing Before Intravenous Cyclophosphamide: A Quality Improvement Study. *Pediatrics, 138*(6), e20160378. https://doi.org/10.1542/peds.2016-0378

Herrett, E., Gallagher, A. M., Bhaskaran, K., Forbes, H., Mathur, R., van Staa, T., & Smeeth, L. (2015). Data Resource Profile: Clinical Practice Research Datalink (CPRD). *International Journal of Epidemiology, 44*(3), 827–836. https://doi.org/10.1093/ije/dyu098

Hogan, D. J., Strand, L. M., & Lane, P. R. (1988). Isotretinoin therapy for acne: a population-based study. *CMAJ, 138*(1), 47–50.
Schwarz, E. B., Parisi, S. M., Handler, S. M., Koren, G., Cohen, E. D., Shevchik, G. J., & Fischer, G. S. (2013). Counseling about medication-induced birth defects with clinical decision support for reproductive-age women: a cluster-randomized trial. Journal of Internal Medicine, 277(7), 831–838. https://doi.org/10.1111/j.1365-2958.2011.05417.x

Schwarz, E. B., Postlethwaite, D. A., Hung, Y.-Y., & Armstrong, M. A. (2007). Documentation of contraception and pregnancy when prescribing potentially teratogenic medications for reproductive-age women. Annals of Internal Medicine, 147(6), 370–376. https://doi.org/10.7326/0003-4819-147-6-200709180-00006

Schwarz, E. B., Santucci, A., Borrero, S., Akers, A. Y., Nikolajski, C., & Gold, M. A. (2009). Perspectives of primary care clinicians on teratogenic risk counseling. Birth Defects Research. Part A, Clinical and Molecular Teratology, 85(10), 858–863. https://doi.org/10.1002/bdra.20599

Shilalukey, K., Kaufman, M., Bradley, S., Franzome, W. H., Amanykwa, K., Goldberg, E., ... Koren, G. (1997). Counseling sexually active teenagers treated with potential human teratogens. The Journal of Adolescent Health, 21(3), 143–146. https://doi.org/10.1016/s1054-139x(97)00041-4

Shorten, A., & Smith, J. (2017). Mixed methods research: expanding the evidence base. Evidence Based Nursing, 20(3), 74–75. https://doi.org/10.11136/eb-2017-102699

Shroukh WA, Steinkellner A, Chen W, Denison S (2013). Counseling of female veterans about risks of medication-induced birth defects. Journal of General Internal Medicine, 28(Suppl 2), S598–S603. https://doi.org/10.1007/s11606-012-2240-0

Tinsono, D. M., Adams, J. L., Liu, H., Damberg, C. L., Chen, W.-P., Hu, F. A., ... Kahn, K. L. (2006). What Is the Concordance between the Medical Record and Patient Self-Report as Data Sources for Ambulatory Care? Medical Care, 44(2), 132–140.

Tsurs, L., Kozer, E., & Berkovitch, M. (2008). The effect of drug consultation center guidance on contraceptive use among women using isotretinoin: a randomized, controlled study. Journal of Women’s Health (2002), 17(4), 579–584. https://doi.org/10.1089/jwh.2007.0623

Twigg, M. J., Lupattelli, A., & Nordeng, H. (2016). Women’s beliefs about medication use during their pregnancy: a UK perspective. International Journal of Clinical Pharmacy, 38(4), 968–976. https://doi.org/10.1007/s11096-016-0322-5

Uuskula, A., Pisarev, H., Kurvits, K., Laius, O., Laanepere, M., & Uuskula, M. (2018). Compliance with Pregnancy Prevention Recommendations for Isotretinoin in Estonia in 2012-2016. Drugs Real World Outcomes, 5(2), 129–136. https://doi.org/10.1007/s40801-018-0135-z

Valle, J., Clemons, M., Hayes, S., Fallowfield, L., & Howell, A. (1998). Contraceptive use by women receiving chemotherapy for breast cancer. The Breast, 7(3), 143–149. https://doi.org/10.1016/S0960-7977(98)90025-X

Werner, C. A., Papic, M. J., Ferris, L. K., Lee, J. K., Borrero, S., Prevost, N., & Schwarz, E. B. (2014). Women’s experiences with isotretinoin risk reduction counseling. JAMA Dermatology, 150(4), 366–371. https://doi.org/10.1001/jamadermatol.2013.6862

Wieck, A., Rao, S., Sein, K., & Haddad, P. M. (2007). A survey of antiepileptic prescribing to women of childbearing potential in Australia. Archives of Women’s Mental Health, 10(2), 83–85. https://doi.org/10.1007/s00737-007-0175-y

Zayed, J., Trupin, L., Kaiser, R., Schmajuk, G., Gillis, J. Z., Chakravarty, E., & Schwarz, E. B. (2011). Contraceptive counseling and use among women with systemic lupus erythematosus: a gap in health care quality? Arthritis Care Res (Hoboken), 63(3), 358–365. https://doi.org/10.1002/acr.20402

Zozus, M. N., Pieper, C., Johnson, C. M., Johnson, T. R., Tisnado, D. M., Adams, J. L., Liu, H., Damberg, C. L., Chen, W.-P., Hu, F. A., ... Kahn, K. L. (2006). What Is the Concordance between the Medical Record and Patient Self-Report as Data Sources for Ambulatory Care? Medical Care, 44(2), 132–140.

How to cite this article: Shroukh WA, Steinkelner A, Chen W, Denison S. Risk management of teratogenic medicines: A systematic review. Birth Defects Research. 2020;112:1755–1786. https://doi.org/10.1002/bdr.21799
APPENDIX A: Search strategy for the systematic review

Review topic	MEDLINE	CINAHL	Scopus	Embase	IPA
Perception of teratogenic risk	1. exp Perception/ or risk perception.mp.	risk	(TITLE-ABS-KEY (risk AND risk perception mp.) OR (TITLE-ABS-KEY (perception AND risk)) AND (TITLE-ABS-KEY (teratogen*)))	1. exp perception/ or risk perception.mp. or exp risk/	1. risk perception. mp. [mp = title, subject heading word, registry word, abstract, trade name/generic name]
	2. perceiv* risk.mp. [mp = title, abstract, original title, name of substance word, subject heading word, floating sub-heading word, keyword heading word, organism supplementary concept word, protocol supplementary concept word, rare disease supplementary concept word, unique identifier, synonyms]	perceived risk AND teratogen*	2. exp risk/ or exp perception/ or perceiv* risk.mp.	2. exp. 1 or 2 and 3	2. perceiv* risk.mp. [mp = title, subject heading word, registry word, abstract, trade name/generic name]
	3. exp Teratogens/ or teratogen*.mp.	4. 1 or 2	3 and 4	3. exp teratogenicity/ or teratogen*.mp.	3. teratogen*.mp. [mp = title, subject heading word, registry word, abstract, trade name/generic name]
	5. 3 and 4			4. 1 or 2	4. 1 or 2
Date exported to Endnote	February 7, 2019	February 8, 2019	February 14, 2019	February 7, 2019	February 7, 2019
Risk management for teratogenic medicines	1. pregnancy prevent*.mp.	risk manag* OR pregnancy prevent* OR contracep* AND teratogen*	(TITLE-ABS-KEY (risk AND manag*) OR (TITLE-ABS-KEY (pregnancy AND prevent*)) OR (TITLE-ABS-KEY (contracep*)) AND (TITLE-ABS-KEY (teratogen*)) AND (LIMIT-TO (DOCTYPE, "ar")))	1. exp risk management/ or risk manag*.mp.	1. risk management. mp. [mp = title, subject heading word, registry word, abstract, trade name/generic name]
	2. exp Risk Management/ or risk manag*.mp.	Limiters	2. pregnancy prevent*.mp.	2. pregnancy prevent*.mp.	2. pregnancy prevent*.mp. [mp = title, subject heading word, registry word, abstract, trade name/generic name]
	3. exp Contraception Behavior/ or contracep*.mp. or exp Contraception	Full Text	3. exp contraception/ or exp family planning/ or contracep*.mp.	3. exp contraception/ or exp family planning/ or contracep*.mp.	3. exp contraception/ or exp family planning/ or contracep*.mp.
	4. exp Teratogens/ or teratogen*.mp.	Age Groups: All Adul	4. teratogen*.mp. or exp teratogenicity/	4. teratogen*.mp. or exp teratogenicity/	4. teratogen*.mp. or exp teratogenicity/
	5. 1 or 2 or 3		5. 1 or 2 or 3	5. 1 or 2 or 3	5. 1 or 2 or 3
	6. 4 and 5		6. 4 and 5	6. 4 and 5	6. 4 and 5
			Filters Applied	Filters Applied	Filters Applied
			Publication Type: Article	Publication Type: Article	Publication Type: Article
APPENDIX B: Summary of the characteristics of studies of prescribing teratogenic medicines for women of child bearing age

Study characteristic	n (%)	Citations of the studies
Country of origin		
United States	29 (52.7%)	(Bhakta et al., 2015; Brandenburg et al., 2017; Brinker et al., 2005; Castaneda et al., 2008; Cheetham et al., 2006; DiPietro Mager, Mills, & Snelling, 2018; Ferguson et al., 2016; Force et al., 2012; Fritsche et al., 2011; Gotlib et al., 2016; Goyal et al., 2015; Hayward et al., 2016; Landis et al., 2012; Leverenz et al., 2019; Mitchell et al., 1995; Mody, Farala, et al., 2015; Mody, Wu, et al., 2015; Pinheiro et al., 2013; Rao et al., 2000; E. B. Schwarz et al., 2010; E. B. Schwarz et al., 2005; E. B. Schwarz, Mattocks, et al., 2013; E. B. Schwarz, Parisi, Handler, et al., 2012; E. B. Schwarz, Parisi, et al., 2013; E. B. Schwarz et al., 2007; Stancil et al., 2016; Steinkellner et al., 2010; Werner et al., 2014; Yazdany et al., 2011)
United Kingdom	9 (16.4%)	(Atturu & Odelola, 2015; Bell et al., 2002; Chave et al., 2001; James et al., 2007; Langan et al., 2013; Martin et al., 2008; Paton et al., 2018; Valle et al., 1998; Wieck et al., 2007)
Canada	3 (5.5%)	(Boucher & Beaulac-Baillargeon, 2006; Hogan et al., 1988; Shilalukey et al., 1997)
Netherlands	3 (5.5%)	(Crijns et al., 2012; Ruiter et al., 2012; Teichert et al., 2010),
Poland	2 (3.6%)	(Banas et al., 2014; Bosak et al., 2019)
Ireland	1 (1.8%)	(Mulryan et al., 2018)
Belgium	1 (1.8%)	(Lelubre et al., 2018),
Estonia	1 (1.8%)	(Uuskula et al., 2018)
France	1 (1.8%)	(Raguideau et al., 2015)
Iran	1 (1.8%)	(Entezari-Maleki et al., 2012)
Turkey	1 (1.8%)	(Ozyurt & Kaptanoglu, 2015),
Israel	1 (1.8%)	(Tsur et al., 2008),
Uganda	1 (1.8%)	(Chang et al., 2018),
Saudi Arabia	1 (1.8%)	(Algoblan et al., 2019)

(Continues)
Study characteristic	n (%)	Citations of the studies
Medical records	26 (47.3%)	(Atturu & Odelola, 2015; Bhakta et al., 2015; Cheetham et al., 2006; Crijns et al., 2012; Force et al., 2012; Fritsche et al., 2011; Gotlib et al., 2016; Hayward et al., 2016; James et al., 2007; Langan et al., 2013; Martin et al., 2008; Mody, Farala, et al., 2015; Mulryan et al., 2018; Paton et al., 2018; Pinheiro et al., 2013; Raguideau et al., 2015; Ruiter et al., 2012; E. B. Schwarz et al., 2010; E. B. Schwarz et al., 2005; E. B. Schwarz, Parisi, Williams, et al., 2012; E. B. Schwarz et al., 2007; Stancil et al., 2016; Steinkellner et al., 2010; Teichert et al., 2010; Uuskula et al., 2018; Wieck et al., 2007)
Patient surveys	21 (38.2%)	(Algoblan et al., 2019; Banas et al., 2014; Bell et al., 2002; Boucher & Beaulac-Baillargeon, 2006; Brandenburg et al., 2017; Brinker et al., 2005; Castaneda et al., 2008; Chang et al., 2018; Ferguson et al., 2016; Goyal et al., 2015; Lelubre et al., 2018; Leverenz et al., 2019; Mitchell et al., 1995; Ozyurt & Kapitanoglu, 2015; Rao et al., 2000; E. B. Schwarz, Mattocks, et al., 2013; Shilalukey et al., 1997; Tsur et al., 2008; Valle et al., 1998; Werner et al., 2014; Yazdany et al., 2011)
Combination of patient surveys and medical records	5 (9.1%)	(Bosak et al., 2019; Entezari-Maleki et al., 2012; Hogan et al., 1988; Mody, Wu, et al., 2015; E. B. Schwarz, Parisi, et al., 2013)
Patient logs, reproductive life plans, and physician surveys	3 (5.4%)	(Chave et al., 2001; DiPietro Mager et al., 2018; Landis et al., 2012)
Teratogenic medication		
Multiple teratogenic medications	16 (29.1%)	(DiPietro Mager et al., 2018; Force et al., 2012; Fritsche et al., 2011; Goyal et al., 2015; Martin et al., 2008; Mody, Farala, et al., 2015; Mody, Wu, et al., 2015; Ruiter et al., 2012; E. B. Schwarz et al., 2010; E. B. Schwarz et al., 2005; E. B. Schwarz, Mattocks, et al., 2013; E. B. Schwarz, Parisi, et al., 2013; E. B. Schwarz, Parisi, Williams, et al., 2012; E. B. Schwarz et al., 2007; Stancil et al., 2016; Steinkellner et al., 2010)
Isotretinoin	16 (29.1%)	(Algoblan et al., 2019; Boucher & Beaulac-Baillargeon, 2006; Brinker et al., 2005; Cheetham et al., 2006; Crijns et al., 2012; Entezari-Maleki et al., 2012; Hogan et al., 1988; Lelubre et al., 2018; Mitchell et al., 1995; Ozyurt & Kapitanoglu, 2015; Pinheiro et al., 2013; Rao et al., 2000; Teichert et al., 2010; Tsur et al., 2008; Uuskula et al., 2018; Werner et al., 2014)
Antiepileptic or anticonvulsant medications	5 (9.1%)	(Bell et al., 2002; Bhakta et al., 2015; Bosak et al., 2019; Langan et al., 2013; Wieck et al., 2007)
Arthritis or lupus medications	4 (7.3%)	(Banas et al., 2014; Ferguson et al., 2016; Leverenz et al., 2019; Yazdany et al., 2011)
Valproate/valproic acid	4 (7.3%)	(Atturu & Odelola, 2015; Gotlib et al., 2016; Mulryan et al., 2018; Paton et al., 2018)
Thalidomide or lenalidomide	3 (5.5%)	(Brandenburg et al., 2017; Castaneda et al., 2008; Chave et al., 2001)
Acitretin	1 (1.8%)	(Raguideau et al., 2015)
Chemotherapy for breast cancer	1 (1.8%)	(Valle et al., 1998)
Deferoxamine and deferiprone	1 (1.8%)	(Shilalukey et al., 1997)
Cyclophosphamide	1 (1.8%)	(Hayward et al., 2016)
Isotretinoin and oral contraceptives	1 (1.8%)	(Landis et al., 2012)
Mood stabilizers	1 (1.8%)	(James et al., 2007)
Warfarin	1 (1.8%)	(Chang et al., 2018)
Available risk management programme or a pregnancy risk classification system	28 (50.9%)	(Bell et al., 2002; Brandenburg et al., 2017; Brinker et al., 2005; Castaneda et al., 2008; Cheetham et al., 2006; DiPietro Mager et al., 2018; Force et al., 2012; Fritsche et al., 2011; Gotlib et al., 2016;
Study characteristic	n (%)	Citations of the studies
----------------------	-------	--------------------------
Goyal et al., 2015; Landis, et al., 2012; Lelubre et al., 2018; Mitchell et al., 1995; Mody, Farala, et al., 2015; Mody, Wu, et al., 2015; Paton et al., 2018; Pinheiro et al., 2013; Ruiter et al., 2012; E. B. Schwarz et al., 2010; E. B. Schwarz et al., 2005; E. B. Schwarz, Mattocks, et al., 2013; E. B. Schwarz et al., 2007; Stancil et al., 2016; Steinkellner et al., 2010; Teichert et al., 2010; Werner et al., 2014; Wieck et al., 2007)		

Quality assessment

Low quality	1 (1.8%)	(Martin et al., 2008)
Medium quality	31 (56.4%)	(Algoblan et al., 2019; Atturu & Odelola, 2015; Banas et al., 2014; Bell et al., 2002; Bhakta et al., 2015; Bosak et al., 2019; Brandenburg et al., 2017; Castaneda et al., 2008; Chave et al., 2001; Cheetham et al., 2006; Crijns et al., 2012; DiPietro Mager et al., 2018; Force et al., 2012; Fritsche et al., 2011; Gotlib et al., 2016; Hogan et al., 1988; James et al., 2007; Lelubre et al., 2018; Mitchell et al., 1995; Mulryan et al., 2018; Ozyurt & Kaptanoglu, 2015; Paton et al., 2018; Pinheiro et al., 2013; Raguideau et al., 2015; Rao et al., 2000; Ruiter et al., 2012; E. B. Schwarz et al., 2005; Shilalukey et al., 1997; Steinkellner et al., 2010; Valle et al., 1998; Wieck et al., 2007)
High quality	23 (41.8%)	(Boucher & Beaulac-Baillargeon, 2006; Brinker et al., 2005; Chang et al., 2018; Entezari-Maleki et al., 2012; Ferguson et al., 2016; Goyal et al., 2015; Hayward et al., 2016; Landis et al., 2012; Langan et al., 2013; Leverenz et al., 2019; Mody, Farala, et al., 2015; Mody, Wu, et al., 2015; E. B. Schwarz et al., 2010; E. B. Schwarz, Mattocks, et al., 2013; E. B. Schwarz, Parisi, et al., 2013; E. B. Schwarz, Parisi, Williams, et al., 2012; E. B. Schwarz et al., 2007; Stancil et al., 2016; Teichert et al., 2010; Tsur et al., 2008; Uuskula et al., 2018; Werner et al., 2014; Yazdany et al., 2011)
APPENDIX C: Additional methodological information on studies reporting perceptions of teratogenic risk

Study	Recruitment of participants	Consent of participants	Survey method	Measurement of risk perception
Lupattelli et al.	An online questionnaire was open to the public via utilization of banners on one-four websites per country and/or social networks commonly visited by pregnant women. Websites with sufficiently high number of daily users were selected.	Informed consent was given by participants by ticking the answer “yes” to the question “Are you willing to participate in the study?”	An anonymous on-line questionnaire (http://www.questback.com) was utilized for data collection, accessible for a period of 2 months in each participating country between October 1, 2011 and February 29, 2012.	Subjects were provided with a numeric rating scales ranging from 0 (not harmful to the fetus) to 10 (very harmful to the fetus) to indicate the perceived risk of the included medicines.
Gils et al.	An invitation to the study, including a link and a code to the questionnaire, were sent to the study participants by mail. The questionnaire was developed through SurveyXact and was made available at a website for internet surveys (https://www.survey-xact.dk).	This study was a completely anonymous questionnaire not involving person-specific healthcare related information. The Danish law does not require ethical approval or consent to participate in such cases. The study was approved by the Danish Data Protection Agency.	Information was gathered by anonymous self-completed questionnaires.	To evaluate the perception of the teratogenic risk of medicines during pregnancy, the participants were asked to give their best estimate based on their active knowledge. Estimates were to be entered as an integer between 0 and 100%.
Nordeng et al.	An invitation to the study was posted on the following four Web pages for pregnant women and mothers: barnimagen.com (can be translated as “pregnant.com”), dinbaby.com (“yourbaby.com”), babyverden.no (“babyworld.no”) and mammanett.no (“mommynet.no”). These Web sites are edited by a midwife and a staff of health care professionals. The questionnaire was accessible during a period of 5 weeks.	NA	Anonymous self-completed online questionnaire.	Numeric rating scales ranging from 0 (no risk to the foetus) to 10 (foetal malformation following each exposure) were used to evaluate the perception of teratogenic risk of the included medicines.
Damase-Michel et al.	General practitioners (GPs) and community pharmacists (CPs) of Midi-Pyrenees area were interviewed at the beginning of continuous courses, the subjects of which were different from drug and pregnancy.	NA	General practitioners (GPs) and community pharmacists (CPs) were asked to answer individually and spontaneously to the questionnaire. All questionnaires were collected at the end of the session.	For each drug, health professionals were asked to put a mark along the line of a visual analogue scale (VAS) to indicate their estimation of the potential teratogenic risk of the drug. The question was: “a drug may affect formation and...
Study	Recruitment of participants	Consent of participants	Survey method	Measurement of risk perception
---------------	--	-------------------------	---	--------------------------------
Sanz et al.	The General Practitioners (GPs) were attending a continuing educational refresher course in therapeutics. The gynecologists were haphazardly selected in the out-patient clinic of the Obstetrics and Gynecology department of the University Hospital. The questionnaire was also given to preclinical medical students (first to third year) and clinical medical students (fourth to sixth year) who had already taken the course in Obstetrics and Gynecology with the standard subject requirements on malformations and teratogenicity. The students were recruited at the School of Medicine. Pregnant women attending the regular obstetric follow-up in the out-patient clinic of the University Hospital, and nonpregnant women, half of them interviewed in the obstetric and gynecological out-patient clinic of the Hospital, and	NA	GPs: the questionnaire was given before the beginning of the course. Gynecologists: NA Preclinical medical students (first to third year) and clinical medical students (fourth to sixth year): questionnaire given to this group Pregnant and nonpregnant women: interviewed	To evaluate the perception of the teratogenic risk of medication, a Visual Analogue Scale (VAS) was used: a 10 cm horizontal line with a short vertical line at each end, one marked 0% and the other 100%. The participants were asked to mark on the scale what they thought the potential risk for major malformations was for a given drug (between 0% and 100%).

(Continues)
Study	Recruitment of participants	Consent of participants	Survey method	Measurement of risk perception
Pons et al.	Participants from three prenatal care services in the municipal primary care system were recruited in person or by telephone.	All participants received an explanation of the research project and signed a free and informed consent form.	Interviews with participants were conducted by two trained pharmacists.	The quantitative data collection instrument used numerical questions to measure outcomes (perception of teratogenic risk). The instrument measured the perception of teratogenic risk for medicines frequently used during pregnancy.
Petersen et al.	The questionnaire was open to the public via utilization of banners on 1–4 websites, social networks and/or pregnancy forums per country commonly visited by pregnant women. Websites were selected on the basis of the number of daily users.	Informed consent was given by participants by ticking the answer "yes" to the question “Are you willing to participate in the study?”	An anonymous on-line questionnaire (http://www.questback.com) was utilized for data collection, accessible for a period of 2 months in each participating country between October 1, 2011 and February 29, 2012.	Women were asked the following question: “Here below is a list with various medicines. Please indicate how harmful you think they are for the foetus in a scale from 0 to 10, where 0 corresponds to ‘not harmful’ and 10 to ‘very harmful’.”