Abstract
With a view to application to micro-macro decoupled multiscale simulations, a method of isogeometric homogenization analysis (IGHA) is proposed to characterize the in-plane macroscopic material behavior of dry woven fabrics in consideration of microscopic frictional-contact between fiber bundles. The microstructure of dry woven fabrics having periodicity only in in-plane directions, which is identified with the representative volume element to realize in-plane macroscopic deformations, is referred to as an in-plane unit cell in this study and is regarded as a virtual specimen in numerical plate testing (NPT). NURBS basis functions are utilized for discretization to accurately solve micro-scale frictional contact problems of fiber bundles and the knot-to-surface (KTS) and mortar-based KTS algorithms are employed to evaluate the contact- and friction-related variables. The initial state of an in-plane unit cells, which is supposed to be obtained by a weaving process, is determined as a solution of the bending problem of two fiber bundles contacting with each other and is in reality subjected to in-plane tension. Several numerical examples are presented to demonstrate the performance and capability of the proposed IGHA for conducting NPT of dry woven fabrics involving with micro-scale frictional-contact to characterize the geometrical-nonlinearity-induced material nonlinearity especially in response to macroscopic shear deformations.

Keywords: Isogeometric analysis, Frictional-contact, Homogenization, Dry woven fabric, Composite material

1. はじめに
繊維強化プラスチックに代表される複合材料は軽量でありながら優れた性能を有していることから、航空機や自動車に広く用いられている。介在物である繊維とプラスチックなどの母材に用いる材料の物性や分布形態、混合比率に応じて巨視的（マクロ）材料特性を発現することから、近年では微視的（ミクロ）構造を制御することによりマクロ特性を設計するといった計算機支援工学（CAE）の概念も導入されるようになっている（寺田, 2006）。ミクロ構造とマクロ特性を結びつけるための研究も歴史が長く、その方法論も多岐にわたり、CAE の枠組みで非線形性まで考慮した評価を考えると均質化理論（寺田・菊池, 2003）に基づく数値解析的手法の確立は明確である（寺田, 2005）。実際、90年代以降の計算力学分野におけるその発展は目覚ましいものがあり、なかでも
Terada and Kikuchi (1995, 2001) の提案したミクロ・マクロ連成型マルチスケール解析手法は、マクロ材料構成則を必要としないため、多様な非線形問題に対して適用可能であり、今日でも盛んに研究が行われている (Matouš et al., 2017)。さらに Terada ら (2013) は、このミクロ・マクロ連成型と同等の精度の結果を得ることができるだけでなく、非常に低い計算コストによってマルチスケール解析を実現可能としたミクロ・マクロ分離型マルチスケール解析手法を提案し、汎用化にも成功している (寺田, 2007; 寺田他, 2008a, 2008b, 2009; Cybernet Systems Co. Ltd., 2017)。この手法は、均質化理論に則ったミクロ構造に対する数値解析を「数値材料試験」(NMT) と称してマクロ材料挙動を算出し、仮定したマクロ（均質化）材料構成則のパラメータを同定することでマクロ解析を可能とするとともに、マクロ構造内の任意の点でのマクロ変形履歴を用いて対応するミクロ構造の挙動を再現可能とするものである。

本研究は、このミクロ・マクロ分離型マルチスケール解析における数値材料試験にアイソジェオメトリック解析手法（IGA 法）を適用するものである。IGA 法は、CAD モデルと FE モデルの形状誤差を軽減させる解析手法として Hughes ら (2005) が提案した離散化解析手法であり、離散化における基底関数に CAD モデルで採用されている NURBS などのスプライン関数を用いるため、CAD モデルから直接解析モデルが生成できるという利点を有する。また、モデリング誤差が軽減されるだけでなく、解析領域内の任意点で高次連続性を保つことができ、局所的なメッシュ細分化や高次化が容易であるなどの多くの利点があるため、構造問題はもちろんのこと電磁波解析 (Buffa et al., 2010) や損傷 (Verhoosel et al., 2011)、構造最適化問題 (Seo et al., 2010; Dedè et al., 2012) など多くの分野で適用が試みられていた。特に、連続性に関する利点は接触・摩擦問題を扱う上で有利であるため、多くの適用例が報告されている (Lu, 2011; Temizer et al., 2011, 2012; Lorenzis et al., 2011, 2014)。実際、標準的な FEM では要素境界は C0 連続であるため、要素境界を滑るような現象に対して法線ベクトルが不連続に変化し、収束計算の収束が悪化すること知られているのに対して、IGA 法ではこのような表面の連続性を保証できるため収束性の改善が期待できる。さらに、IGA 法には多くの利点があるにも関わらず、筆者の知る限り均質化法に基づくマルチスケール解析への適用は非常に少ない。IGA 法を用いたミクロ構造の数値材料試験や複合板の面内周期構造に対する数値平板試験を行った論文としては、松原ら (2016) や Matsubara ら (2017) の報告を挙げることができるが、モデル生成やそれに伴う境界条件処理を論じるに至っており、必ずしも上述したような IGA 法の利点に着目した研究とはいえない。

そこで本研究では、ドライファブリックの単位周期構造を対象として、繊維束間の接触・摩擦を考慮した IGA 法による数値材料試験方法を提案し、数値解析例を通じてその性能や精度、計算効率等について検討する。特にドライファブリックの面内せん断挙動は、繊維束間の接触と摩擦特性に大きく依存するとともに、プレ・テンションに依存するなど複雑な挙動を示すことが知られており (Launay et al., 2008; Tapie et al., 2017)、IGA 法の利点が活かされる好例である。接触・摩擦問題の取り扱いにはベナルティ法を用い、接触表面の変数の離散化によっては Node-To-Surface 法 (NTS 法) を IGA 法に拡張した Knot-To-Surface 法 (KTS 法) (Temizer et al., 2011, 2012; Lorenzis et al., 2011) を採用する。さらに、ベナルティ法による接触の制約が適切になっても、これをある程度緩和する効果を有するモルタル法を採用する。数値解析例として、面内引張やせん断などの面内特性を得ための数値平板試験を行い、解の収束性や得られたマクロ応力の応答について考察する。また、マクロせん断応答についてはプレ・テンションの影響についても議論する。なお、均質化解析については、Terada ら (2013) の分離型マルチスケール手法をベースとするが、ドライファブリックは面内にのみ周期性を有する板（あるいは膜）状構造物であるため、同じく面内周期性を対象とした数値平板試験の手法 (Terada et al., 2016; Matsubara et al., 2017) に準拠する。また、本研究ではマクロ材料構成則の同定や物性の算出およびマクロ解析を行わない。

2. 面内周期構造のためのマルチスケールモデリング

本節では、Terada ら (2016) の提案した超弾性材料モデルを用いた有限変形理論における分離型マルチスケール解析手法に従って、非均質性を有するミクロ構造の均質化マクロ特性を得るために設定されるマルチスケール境界値問題と、マクロ特性を算定するための数値平板試験の方法について説明する。ドライファブリックなどのような面内周期性を有するミクロ構造（以下、面内ユニットセル）に対する数値材料試験については、Terada ら (2016) が提案した厚板モデルを対象にした数値平板試験を参考にするが、本研究では曲げやねじりなどのモード
2.1 ミクロ・マクロ境界値問題

図1のような面内ユニットセルのミクロ初期配置をY_0の座標値Yとミクロ現在配置をYの座標値yを設定すると、各座標値はミクロ変位wを用いてy=Y+wのように関連付けられる。このとき、面内ユニットセルの変形通用は次式のようになる。

\[F = \nabla_Y w(X,Y) + 1 = \mathbf{H}(X) + \nabla_Y u^*(X,Y) + 1 \]

(1)

ここで、\(\mathbf{H}(X) \)はマクロ現在配置の座標値Xにのみ依存するマクロ変位勾配。1は2階の恒等テンソルである。また、\(u^* \)はミクロ擾乱変位であり、次式のような面内周期性の条件が課せられる。

\[u^*|_{\partial Y_0^J} = u^*|_{\partial Y_1^J} (J = 1,2) \]

(2)

ここで \(\partial Y_0^J \)と \(\partial Y_1^J \)は、それぞれ面内ユニットセルを立方体として扱ったときに互いに水平な位置関係にある境界面を指しており、Jは面内方向である図1上のY_1とY_2の2方向を表している。

また、ミクロ第1Piola-Kirchhoff応力（以下、ミクロPK1応力）\(\mathbf{P} \)が、任意の構成則を介してミクロ変形勾配\(\mathbf{F} \)より得られるものを想定すると、面内ユニットセルのつり合い方程式は次式のようになる。

\[\nabla_Y \cdot \mathbf{P} = 0 \]

(3)

Teradaら（2016）の方法に従うと、面内周期性の仮定を有する場合のミクロ変数\(\mathbf{F} \), \(\mathbf{P} \)とミクロ変形勾配\(\mathbf{F} \)とマクロPK1応力\(\mathbf{P} \)は、それぞれ次式のような平均化により関連付けられる。

\[\tilde{\mathbf{F}} = \int_{h/2}^{h/2} \frac{1}{h} \mathbf{F} dY_1 dY_2 dY_3 = \mathbf{H} + 1 \]

(4)

\[\tilde{\mathbf{P}} = \int_{h/2}^{h/2} \frac{1}{h} \mathbf{P} dY_1 dY_2 dY_3 \]

(5)

上式の\(l_1, l_2, h \)は、それぞれ図1に示されるような面内ユニットセルのY_1, Y_2, Y_3方向の法である。

2.2 数値平板試験

ミクロ変位wは、面内周期性による並進変位を無視すると、式(1)から次式のように表される。

\[w(X,Y) = \mathbf{H}(X) \cdot Y + u^*(X,Y) \]

(6)

ここで、\(u^* \)のY_3方向成分にゼロを仮定し、面内の周期拘束条件(2)を考慮すると、ミクロ変位wは次の条件を満たさねばならない。

\[\mathcal{G}(w^{[J]},w^{[-J]}) = w^{[J]} - w^{[-J]} = \mathbf{H} \cdot \mathbf{L}^{[J]} \]

(7)
ここで、$w^{[J]}$ は境界面 J 上の変位であり、

$$L^{[J]} = Y^{[J]}_{0|Y^{[J]}_{0}|} - Y^{[J]}_{0|Y^{[J]}_{0}}$$ (8)

と定義した。さらに、この拘束条件だけでは剛体運動の拘束が不足しており解が不定になるため、ある 1 点を 3 方向に完全拘束するなどの条件を与える必要がある。ただし、特に独立した複数の物体間の接触問題では、この拘束と接触条件等との干渉により不適切な解が得られることがあるため、拘束点の選定は各物体の位置関係をよく吟味したうえで慎重に行う必要がある。

条件式 (7) は、H を入力データとして与えることで、境界面上の変位に関する多点拘束条件とみなされる。例えば、面内の一軸変形とせん断変形のみに着目するならば、次式のような 3 モードのマクロ変位勾配を用意すればよい。

$$\text{Mode1 : } \hat{H}_1 = \begin{bmatrix} H & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}, \quad \text{Mode2 : } \hat{H}_2 = \begin{bmatrix} -0 & 0 & 0 \\ 0 & H & 0 \\ 0 & 0 & 0 \end{bmatrix}, \quad \text{Mode3 : } \hat{H}_3 = \begin{bmatrix} 0 & H & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$ (9)

ここで、\hat{H} は与える変形量データであり、"-" は拘束しないことを指している。また、Terada ら (2013) を参照して、式 (7) の $H \cdot L^{[J]}$ を仮想的な物質点の自由度に割り当てると、$\partial Y^{[J]}_0$ 上のマクロ Piola 表面力 $T^{[J]}$ はこの物質点の反力 $R^{[J]}$ をその境界面の面積 $|\partial Y^{[J]}_0| = hl$ で除したベクトルとなり、同断面におけるマクロ PK1 合応力ベクトル $N^{[J]}$ は次式のようになる。

$$N^{[J]} = hT^{[J]} = \frac{1}{ly} \int_{\partial Y^{[J]}_0} T^{[J]} dY = \frac{1}{ly} R^{[J]}$$ (10)

ここで、l_y は Y_1 面では l_2、Y_2 面では l_1 である。

数値平板試験とは、式 (1) とおり合式 (3) に材料構成則を加えた支配方程式を、条件式 (7) の下でミクロ PK1 応力、ミクロ変形勾配 F, ミクロ変位 w について解くことで、式 (10) のマクロ PK1 合応力を算出する均質化解析のことを指す。ここで得られる関係は、平面応力条件下のマクロ材料挙動とみなすこともできるが、数値平板試験 (Terada et al., 2016) ではマクロ一般化ひずみとマクロ応力の関係であることに注意されたい。したがって、分離型マルチスケール解析 (Terada et al., 2013) を行うには、佐藤ら (2017) の方法のように、中間層を介してマクロ材料構成則とそのパラメータを同定したうえでマクロ解析につなぐ必要がある。ただし、本研究では数値平板試験の方法とその検証にとどめ、マクロ材料パラメーターの同定ならびにマクロ解析については次報に譲ることとする。

3. 接触・摩擦理論

本節では、ベナルディー法に基づく有限変形・接触・摩擦問題の取り扱いについて概説する。なお、詳細については文献 (Wriggers, 2006) を参照されたい。

3.1 接触・摩擦条件

図 2 に示すように 2 つの物体 $B^r (r = 1, 2)$ 間の接触を考える。図中の上部の物体を "slave"、下部を "master" と名付け、その現在配置での各物体表面上の座標値をそれぞれ x^r, x^m とする。このとき、垂直方向の距離 g_N はギャップ変位と呼ばれ、次式の関係式を満たす。

$$g_N := (x^r - x^m) \cdot \hat{n} \geq 0$$ (11)

ここで、$x^m := x^m(\xi)$ は、slave の境界面上の Gauss 積分点 x に対する相対距離 $d(\xi) := |x^r - x^m(\xi)|$ が最小となる master の境界面上の点の座標値を表しており、$\hat{n} = \text{null}(\xi)$ はその点上の外向き法線ベクトルである。また、ξ は後述する IGA 法の形状表現において導入される 2 次元自然座標であり、パラメトリック写像により実座標 $x(\xi)$ と対応付けられている。したがって、式 (11) における x^m を確定するには、次式を解いて自然座標系内での相応する点
対象

\[\dot{\xi} = (\xi^1, \xi^2) \] を求める必要がある。

\[d_a(\dot{\xi}) = \frac{d}{d\xi}d(\dot{\xi}) = 0 \Rightarrow (x^m - \hat{x}^m) \cdot \hat{a}_a = 0 \quad (\alpha = 1, 2) \] (12)

ここで、\(\hat{a}_a = x^m_a(\dot{\xi}) = dx^m/m^\xi(\dot{\xi}) \) は master の境界上での座標値 \(x^m \) の \(m^\xi \) に関する 1 次勾配であり、この面上の接線を表す。また、後述する NURBS 基底関数を用いる形状表現では、パラメトリック写像 \(x(\xi) \) が \(\xi \) に関する高次の非線形関数となるため Newton-Raphson 法を用いて求めることになる。ある点のギャップ変位 \(g_N \) に対応する接触圧力は \(p_N \leq 0 \) を満たすため、接触の有無は次の Karush-Kuhn-Tucker (KKT) 条件で規定される。

\[g_N \geq 0, \quad p_n \leq 0, \quad g_n p_n = 0 \] (13)

一方、接触状態にあるとき、すなわち \(p_N \leq 0 \) が満たされるときのすべり条件は次の Coulomb 摩擦則を採用する。

\[f_s = || t_T - \mu p_N || \leq 0 \] (14)

ここで、\(\mu \) は摩擦係数、\(t_T \) は接線方向の応力ベクトルである。また、この際の接線方向のすべり速度ベクトルは次の流れ則を満たす。

\[\dot{g}_T^\text{slip} = \frac{\hat{\gamma} t_T}{|| t_T ||} \] (15)

ここで、\(\hat{\gamma} \geq 0 \) はすべり速度の大きさであり、すべり条件式 \(f_s \) とともに次の KKT 条件を満たす。

\[\hat{\gamma} \geq 0, \quad f_s \leq 0, \quad \hat{\gamma} f_s = 0 \] (16)

3.2 ペナルティ法を用いた接触・摩擦問題の定式化

2 つの物体が接触している状態を考える。この物体の内部領域と表面領域をそれぞれ \(\Omega^p \) と \(\Gamma^p \) とすると、接触・摩擦を考慮した上での変形は次式のようになる。

\[
\sum_{\gamma} \left\{ \int_{\Omega^p} \delta F : P dV - \int_{\Gamma^p} \delta \mathbf{w} \cdot \hat{I} dA \right\} = C_c = 0
\] (17)

ここで、\(\hat{I} \) は初期配置の Neumann 境界 \(\Gamma^p \) 上の外力として与えられる表面力であり、物体力は無視している。また、\(\delta \mathbf{w} \) は変位関数であり、\(\delta F \) はこれに対応する変形勾配テンソルの変分である。さらに、これらの 2 つの物体間に作用する接触・摩擦に起因する項 \(C_c \) は、次式のように定義されている。

\[
C_c = \int_{\Gamma^c} (\delta g_N p_N + \delta g_T \cdot \mathbf{t}_T) dA
\] (18)
ここで，\(\Gamma_0 \)は現在配置の接触領域 \(\Gamma_c \)（\(\delta N \leq 0 \)を満たす領域）を初期配置にブルーパックした領域である。また，\(\delta N \)の変分 \(\delta \delta N \)は次式のように表される。

\[
\delta N = (\delta \omega^b - \delta \omega^m) \cdot \bar{n}
\]

ここで，\(x^b - x^m = \delta \delta N \bar{n} \)であることがから得られる関係式（\(x^b - x^m \cdot \delta \bar{n} = \delta \delta N \bar{n} \cdot \delta \bar{n} = 0 \)が反映されていることに注意されるべきである。

式（18）の第一項は法線方向の接触に関する項であり，本研究ではペナルティ法を採用して接触圧力 \(p_N \)をペナルティ係数 \(e_N \)を用いて次式のように表す。

\[
p_N = e_N \delta N, \quad \delta N = \begin{cases} \delta N \text{ if } \delta N < 0 \\ 0 \text{ otherwise} \end{cases}
\]

一方，式（18）の第二項は接線方向の接触に関する項であり，接線方向の応力 \(t_T \)はペナルティ係数 \(e_T \)を用いて次式のように表す。

\[
t_T = e_T \left(g_T - g_T^{\text{slip}} \right)
\]

ここで，\(g_T^{\text{slip}} \)はすべきに関する条件式（14）が \(f_s = 0 \)を満たしたときに生じるすべき変位であり，その時間変化率は式（15）の流れ則に従う。また，\(g_T \)は接線方向の変位であり，その時間変化率（速度）と変分はそれぞれ次式のように与えられる。

\[
\begin{align*}
\delta g_T &= \delta \xi^a a^a \\
\delta g_T &= \delta \xi^a a^a
\end{align*}
\]

ここで，\(\xi^a \)の変分 \(\delta \xi^a \)は関係式（12）の変分をとることにより導出することができ，次式のように表される。

\[
\delta \xi^a = \mathcal{H}^{ab} \left[\left(\delta \omega^a - \delta \omega^m \right) \cdot a_a + g_N \bar{n} \cdot \delta \omega^m \right]
\]

本式中の \(\mathcal{H}^{ab} \)は次式に示す行列 \(\mathcal{H}_{\alpha \beta} \)の逆行行列である。

\[
\mathcal{H}_{\alpha \beta} = \ddot{a}_{\alpha \beta} + g \bar{n} \cdot \mathbf{a}_m
\]

ここで，共変計量行列を \(\ddot{a}_{\alpha \beta} = a_{\alpha \beta} a_{\rho \beta} \)と \(\mathbf{x}^m \cdot \xi^a \)に関する2階微分を \(\mathbf{x}^{m\beta} := \partial^2 \mathbf{x}^m / \partial \xi^a \partial \xi^\beta \)と定義した。

Newton-Raphson法により式（17）のつり合い方程式を求める際に必要な接線剛性行列については文献（Wriggers, 2006）を参照するが，その反復計算中の上記の接線方向の変数については以下で述べるアルゴリズムにより算定することにする。なお，以下の説明において，\(\delta \bar{n} \)などの速度に関する変数は各時刻分法を用いて \(\delta \bar{n} = \left(\xi_{n+1}^a - \xi_n^a \right) \)をもとに近似することにする。ここで，\(\Delta t \)は時間増分であり，変数に付ける添字の \(n+1 \)はそれぞれ荷重増分ステップと前荷重増分ステップを表している。

まず，\(\ddot{a}_a \)の反変ベクトル \(\ddot{a}_a \)を用いて接線方向の応力ベクトルを \(t_T = t_{T,0} \ddot{a}_a \)と表すと，弱形式は式（23）を用い次式のように変式される。

\[
C_{\alpha} = \int_{\Gamma_0} \left[(\delta g_N p_N + \delta \xi^a t_{T,a}) \right] dA
\]

現荷重増分ステップで \(n+1 \)における \(t_{T,a} \)の予測値は，前荷重増分ステップ \(n \)を起点として次式のように求める。

\[
t_{T,a,n+1} = t_{T,a,n} + e_T \ddot{a}_{\alpha \beta} \left(\xi_{n+1}^\beta - \xi_n^\beta \right)
\]

このとき，すべき条件式は \(f_{\text{trial}}^n = \left\| f_{\text{trial}}^n \right\| - \mu |p_N| \)となり，\(f_{\text{trial}}^n > 0 \)のとき接線方向の応力は式（15）より次式のように変わる。

\[
t_{T,a,n+1} = t_{T,a,n} - e_T \Delta g_{T,a}^{\text{slip}} = t_{T,a,n+1} - e_T \Delta t \frac{f_{\text{trial}}^n - \frac{f_{\text{trial}}^n}{\left\| f_{\text{trial}}^n \right\|}}{f_{\text{trial}}^n}
\]

[DOI: 10.1299/transjsme.17-00554] © 2018 The Japan Society of Mechanical Engineers
ここで、\(\Delta \varepsilon^{\text{slip}}_{T_{n+1}} \) はすべり速度ベクトル (15) の増分量であり、\(\Delta Y = \gamma \Delta \varepsilon \) はすべり増分量である。この式の両辺に \(f_{T_{n+1}}^{\text{trial}}/\|f_{T_{n+1}}^{\text{trial}}\| \) を乘じて得られる応力のノルム \(\|f_{T_{n+1}}^{\text{trial}}\| = \|f_{T_{n+1}}^{\text{trial}}\| - \varepsilon_{T} \Delta Y \) を用いて、\(f_{s,n+1} = 0 \) を満たすような \(\Delta Y \) を求めるとき次式になるようになる。

\[
\Delta Y = \frac{1}{\varepsilon_{T}} \left(\|f_{T_{n+1}}^{\text{trial}}\| - \mu \|p_{N,n+1}\| \right)
\] (29)

以上より、\(f_{T_{n}} \) は以下のように算定することができる。

\[
f_{T_{n}} = \begin{cases} f_{T_{n+1}}^{\text{trial}} & \text{if } f_{s,n+1}^{\text{trial}} \leq 0 \\ -\mu \|p_{N,n+1}\|/\|f_{T_{n+1}}^{\text{trial}}\| & \text{otherwise.} \end{cases}
\] (30)

ここで、\(f_{s,n+1}^{\text{trial}} > 0 \) のときの応力は、式 (29) を式 (28) に代入することで得られている。

4. アイソメトリック解析手法

本節では、Hughes ら (2005) が提案した、基底関数に NURBS 関数を用いるアイソメトリック解析手法 (IGA 法) について説明する。IGA 法と一般的な FEM の違いは変数の補間方法にあり、他の他都難化方法についてほとんど差異はない。そのため、以下では基底関数の特徴と IGA 法における補間方法を概説するに止める。

4.1 NURBS 基底関数を用いた形状表現方法

まず、NURBS 関数の基礎となる B-スプライン関数について述べる。B-スプラインを用いて表現される曲線上の位置ベクトル \(C(\xi) \) は、自然座標系 \(\xi \) で定義される基底関数 \(N_{i,p}(\xi) \) と実座標系 \(x \) における \(n_{c} \) 個の制御点を用いて次式のように表される。

\[
C(\xi) = \sum_{i=1}^{n_{c}} N_{i,p}(\xi) B_{i}
\] (31)

ここで、\(B_{i} \) は制御点 \(i \) 上の座標値であり、\(p \) は基底関数の次数である。この制御点は FEM でいうところの節点に相当するものであるが、制御点は節点とは異なり必ずしも曲線上に存在しないという特徴を有する。B-スプラインの基底関数 \(N_{i,p}(\xi) \) は自然座標系で定義され、\(p = 0 \) のときは、

\[
N_{i,0}(\xi) = \begin{cases} 1 & \text{if } \xi_{i} \leq \xi \leq \xi_{i+1} \\ 0 & \text{otherwise.} \end{cases}
\] (32)

のようになる。一方、\(p \geq 1 \) のときは Cox-de Boor の再帰公式により次式のようにになる。

\[
N_{i,p}(\xi) = \frac{\xi - \xi_{i}}{\xi_{i+p} - \xi_{i}} N_{i,p-1}(\xi) + \frac{\xi_{i+p} - \xi}{\xi_{i+p+1} - \xi_{i+1}} N_{i+1,p-1}(\xi)
\] (33)

この基底関数 \(N_{i,p}(\xi) \) は、次の knot ベクトルによって制御される。

\[
\Xi = (\xi_{1}, \xi_{2}, \cdots, \xi_{n+p+1})
\] (34)

ここに、knot ベクトルの各成分 \(\xi_{i} \) は式 (32)、式 (33) の指標 \(i \) に対応しており、これらの値を左から順に代入することで基底関数を定義することができる。また、knot ベクトルの各成分の値はパラメトリック空間における要素境界上の値を表しており、knot ベクトルの設定によって要素分割数が指定されることになる。さらに、knot ベクトルの間接する成分が同じ値で繰り返される場合、その重複度に応じて要素境界における B スプライン関数の次数が低下する。すなわち、\(m \) 回同じ値が繰り返されたとするとその要素境界上の次数は \(p - m \) 次となる。特に、knot ベクトルの最初と最後の値が \(p + 1 \) 回繰り返される場合、その knot ベクトルはオープン knot ベクトルと呼ばれ、対応する制御点上で \(C^{-1} \) 連続性が実現される。CAD ソフトウェアならびに IGA ではこのオープン knot ベクトル
要詳細な形状表現を実現するための基底関数として、Non-Uniformed Rational B-Spline (NURBS) 関数があり、制御点上に重み w_i を用いて次式で定義される。

\[R_i(\xi) = \frac{N_{i,p}(\xi)w_i}{W(\xi)} \]

ここで、W(\xi) は次式で定義されている。

\[W(\xi) = \sum_{i=1}^{n_c} N_{i,p}(\xi)w_i \]

これを用いて 3 次元空間に拡張する場合の NURBS 基底関数は、3 つの knot ベクトル ξ_i, ξ_j, ξ_k で生成される B-スプラインの基底関数 N^1(ξ_i), N^2(ξ_j), N^3(ξ_k) を用いて次式のように定義される。

\[R_{i,j,k}(\xi^1, \xi^2, \xi^3) = \frac{N^1_{i,p}(\xi^1)N^2_{j,q}(\xi^2)N^3_{k,r}(\xi^3)w_{i,j,k}}{W(\xi^1, \xi^2, \xi^3)} \]

ここで、

\[W(\xi^1, \xi^2, \xi^3) = \sum_{i=1}^{n_c} \sum_{j=1}^{m_c} \sum_{k=1}^{l_c} N^1_{i,p}(\xi^1)N^2_{j,q}(\xi^2)N^3_{k,r}(\xi^3)w_{i,j,k} \]

である。最終的に、NURBS 関数を用いた 3 次元空間内の形状を表現する点の位置ベクトルは、制御点の座標値 B_{i,j,k} を介して次式のように表される。

\[S(\xi^1, \xi^2, \xi^3) = \sum_{i=1}^{n_c} \sum_{j=1}^{m_c} \sum_{k=1}^{l_c} R_{i,j,k}(\xi^1, \xi^2, \xi^3)B_{i,j,k} \]

IGA 法では、変位などの変数の補間近似にも、形状表現の式 (39) に用いた基底関数 R_{i,j,k}(\xi^1, \xi^2, \xi^3) を用いる。すなわち、3 次元空間内の変位 w^h は、制御点での変位値 d_{i,j,k} を用いて

\[w^h(\xi^1, \xi^2, \xi^3) = \sum_{i=1}^{n_c} \sum_{j=1}^{m_c} \sum_{k=1}^{l_c} R_{i,j,k}(\xi^1, \xi^2, \xi^3)d_{i,j,k} \]

のように表される。このように形状表現と離散近似の間に用いられる基底関数の特徴を、以下に挙げておく。

- 単位分解特性を有する
- p 次の NURBS を用いた場合は要素境界を含み領域全体で p = 1 基底関数の可能性である
- 領域内の任意点で正値をとる

これら 2, 3 番目の特徴は FEM との相違点であり、本研究で行うような接触・摩擦問題などで有利となる。

4.2 接触変数の離散化

接触面上の離散化を行う場合は、次式のように式 (37) でその面に対応する knot ベクトルの値を固定して（例えばξ^3 = ξ^3_{k}, k = k_0 として）計算すればよい。

\[S(\xi^1, \xi^2) = \sum_{i=1}^{n_c} \sum_{j=1}^{m_c} R_{i,j,k_0}(\xi^1, \xi^2)B_{i,j,k_0} \]

以下では、表記の簡単のために i, j, k_0 に対応する制御点番号を I と置き、式 (41) を S = \sum_{i=1}^{n_c} R_i^1 B^1 のように表すことにする。また、slave と master の境界上の基底関数を区別するために、それぞれ R_i^1, R_m^1 と表記すると、例
えば各物体上の座標値は \[x^i = \sum_{j=1}^{n_c} R^{-1} \tilde{x}^j \cdot \hat{n} \] と表される。ここで、変数の上は制御点上の値であることを示している。これらの表記を用いて式 (11)，式 (19)，式 (24) を離散化すると次式のようになる。

\[g_N = \left(\sum_{i=1}^{n_c} R^{-1} \tilde{x}^i \cdot \hat{n} \right) \cdot \hat{n} \] \hspace{1cm} (42)

\[\delta g_N = \left(\sum_{i=1}^{n_c} R^{-1} \tilde{\omega}^i \cdot \hat{n} \right) \cdot \hat{n} \] \hspace{1cm} (43)

\[\delta \xi^a = 2R^{11} \left(\sum_{i=1}^{n_c} R^{-1} \tilde{\omega}^i \cdot \hat{n} \right) \cdot \hat{n} + g_N \hat{n} \cdot \sum_{i=1}^{n_c} R^{-1} \tilde{\omega}^i \cdot \hat{n} \right) \cdot \hat{n} \] \hspace{1cm} (44)

上述の離散化をそのまま適用すると、ベナルティ係数をある程度大きな値に設定した場合に過度に強い制約が与えられることにより接触圧力が振動するなどの不具合が報告されている（Temizer et al., 2011）。本研究ではこれを避けるために、Temizer ら（2011, 2012）や Lorenzis ら（2011）が提案したモルタル法に基づく定式化を採用する。この方法の狙いは、標準的なベナルティ法において Gauss 点ごとに扱われていた非貫入問題を、各制御点に関連する要素に含まれる全 Gauss 点での値の平均値について行うことで、接触に関する制約を緩和させることである。具体的には、ある Gauss 点上の変数 \(x \) について、\(\langle \ast \rangle = \int_{B_{\ast}} \ast dA \) のような積分操作を定義し、ギャップ変位や水平変位をそれぞれ次のように制御点上の値として再定義する。

\[g_N^{1} = \left(\frac{g_{N}R^{1}}{R^{1}} \right) \] \hspace{1cm} (45)

\[\xi_{n+1}^{a} = \left(\frac{\xi_{n+1}R^{1}}{R^{1}} \right) \] \hspace{1cm} (46)

そして、接触の有無をこの値で判定し、次式のような制御点上の接触圧力を算定する。

\[p_{N}^{1} = \epsilon_N g_N^{1} \cdot g_N^{1} = \begin{cases} g_N^{1} & \text{if } g_N^{1} \leq 0 \\ 0 & \text{otherwise.} \end{cases} \] \hspace{1cm} (47)

また、試行接触応力は次のように計算する。

\[\hat{t}_{n+1}^{1} = \hat{t}_{n+1}^{1} + \epsilon_{N} \sum_{j=1}^{N_{c}} d_{a\beta}^{11} \left(\beta_{a}^{1} - \beta_{a}^{1} \right) \] \hspace{1cm} (48)

ここで、\(N_{c} \) は \(g_{N}^{1} \leq 0 \) を満たす制御点の総数である。また、\(d_{a\beta}^{11} \) は

\[d_{a\beta}^{11} = \left(\frac{R_{a\beta}^{11}R^{11}}{R^{11}} \right) \] \hspace{1cm} (49)

と定義した。そして、この試行接触応力を用いて同様にすべり判定を行い、接触圧力を式 (30) と同様にして次式で算定する。

\[\hat{t}_{n+1}^{1} = \hat{t}_{n+1}^{1} + \epsilon_{N} \sum_{j=1}^{N_{c}} d_{a\beta}^{11} \left(\beta_{a}^{1} - \beta_{a}^{1} \right) \] \hspace{1cm} (50)

これらを用いると、弱形式における接触に関する項 (26) は次式のようになる。

\[C_{e} = \sum_{i=1}^{N_{c}} \left(\delta g_N^{1} p_N^{1} + \delta \xi_{n+1}^{a} \right) \left(R^{1} \right) \] \hspace{1cm} (51)

なお本研究では、ここで紹介したモルタル法に対比して、Gauss 点ごとに離散化する従来の方法を非モルタル法と呼称することにする。
Fig. 3 The in-plane shear characteristics of dry woven fabric. The in-plane shear deformation involves large slip along the surface of two fiber bundles with frictional resistance, which depends on the amount of pre-tension. Also, if the large in-plane shear deformation is imposed, interlocking of fiber bundles in vertical and horizontal directions is observed, which causes drastic increase of the resultant in-plane shear stress.

5. 数 值 解 析 例

本節では、ドライファブリックのミクロ構造（面内ユニットセル）に対して、本研究で定式化した IGA 法による数値平板試験を行い、その性能や精度、計算効率等について検討する。まず、本提案手法の適用対象として採用したドライファブリックの典型的な力学応答について概説する。次に、面内ユニットセルの 4 分の 1 を解析領域として採用する面内サブユニットセルについて述べ、式 (7) に代わって課すべき境界条件式を示す。数値平板試験に先立って、ドライファブリックの面内サブユニットセルの初期状態が繰込み後の自然な初期形態と初期応力を保持するように、曲がっていない無変形の繊維束の解析モデルに対して適切な境界条件を与えた予備解析を行う。得られた面内サブユニットセルに対して行う数値平板試験は、面内引張、せん断変形に関する検討を行う。なお、ここでの数値解析は IGA 法の利点などについての検証を行うことを目的としその解析結果について、5.1 節で述べるドライファブリックの典型的な力学応答を参照しながらの定性的な妥当性の評価に止める。特に、本来は繊維束には横等方性の材料モデルを採用するのが適切であるが、本研究では簡単のため等方性の圧縮性 Neo-Hookean モデルを用いることにする。なお、その Young 率は炭素繊維のそれと同オーダーの 100 GPa と設定し、Poisson 比には 0.3 を用いる。また、摩擦係数は 0.3 に設定し、ベナルティ係数 は 100 の値を用いた。

5.1 ドライファブリックの力学特性

ドライファブリックは繊維束間の接触面の変化や摩擦特性に依存して、特徴的なせん断特性を有することが知られている（Launay et al., 2008）。具体的には、ドライファブリックにせん断変形が与えられると、図 3 の上図に模式的に示すように、編み込まれた 2 本の繊維束の接触境界面では相対的な回転に伴う滑りが発生する。この繊維束間の滑りは摩擦による抵抗を発揮し、その値は接触圧力に比例して増加するため、図 3 のグラフのようにプリ・テンション量に応じてせん断応力も増加する。また、繊維束の回転量が一定以上に達すると、同模式図に示すように同じ方向を向く繊維束が側面で接触し、せん断変形に対して非常に大きな抵抗が生じるロックイン現象が発現する。これらの挙動を反映して、繊維束の回転とせん断変形の関係は複雑な非線形性を示すことになる。本節の以下の数値解析例では、このような特徴的な力学挙動の再現を試み、提案手法の性能や妥当性について定性的な評価に基づく検証を行う。

5.2 平繊ファブリックの面内ユニットセルとサブユニットセル

一般に、面内ユニットセルの取り方は均質化解析の結果に影響を与えないため、計算コストの点から最小単位の周期構造を探すことが望ましい。対象とする平繊ファブリックは図 4(a) に示すような面内周期構造を有
ここで，$\mathbf{w}^{[J]} = (w_1^{[J]}, w_2^{[J]}, w_3^{[J]})$ は，$\mathbf{w}^{[J]}$ の点とその点が含まれる Y_1Y_3 平面上の中心点について対称性点の変位であり（図 5 参照），これらには面内に周期性の拘束条件，面外（縦方向）には反周期性の条件が課せられる。

また，剛体運動を防ぐ拘束条件として，繊維束の中心について位置を固定する制御点が面内方向にずれない拘束 $w_{1|gs} = w_{1|gs}$，$w_{2|gs} = w_{2|gs}$ を用することにする。

このようなモデルを採用すると，図 6(a) に示すように図中中の色の隣い部分と薄い部分の接触・摩擦が考慮できないという不都合が生じる。そのため，図 6(b) に示すように面内サブユニットセルの周りに全 8 つの非解析領域を設定して，解析領域との関連付けを行う。すなわち，面内ユニットセルの周期性と等価になるように，これら 8
Fig. 6 Relationship between analysis domain with non-analysis domain.

Fig. 7 Initial IGA model of an in-plane sub-unit cell for weaving analysis of dry woven fabrics. For point symmetric pair of control points, periodicity conditions are imposed in the Y_1 and Y_2 directions and forced displacements are imposed in the Y_3 direction respectively.

The equation for the relationship between analysis and non-analysis domains is given by:

$$
\begin{align*}
G(w|_{\text{NAD1}-\text{AD}}) &= -\tilde{H} \cdot L^{[1]} + \tilde{H} \cdot L^{[2]} \\
G(w|_{\text{NAD2}-\text{AD}}) &= -\tilde{H} \cdot L^{[1]} \\
G(w|_{\text{NAD3}-\text{AD}}) &= -\tilde{H} \cdot L^{[1]} - \tilde{H} \cdot L^{[2]} \\
G(w|_{\text{NAD4}-\text{AD}}) &= \tilde{H} \cdot L^{[2]} \\
G(w|_{\text{NAD5}-\text{AD}}) &= -\tilde{H} \cdot L^{[2]} \\
G(w|_{\text{NAD6}-\text{AD}}) &= \tilde{H} \cdot L^{[1]} + \tilde{H} \cdot L^{[2]} \\
G(w|_{\text{NAD7}-\text{AD}}) &= \tilde{H} \cdot L^{[1]} \\
G(w|_{\text{NAD8}-\text{AD}}) &= \tilde{H} \cdot L^{[1]} - \tilde{H} \cdot L^{[2]}
\end{align*}
$$

(53)
5.3 面内サブユニットセルの初期状態の設定

数値平板試験用の面内サブユニットセルの解析モデルは図7のように二本の無変形の繊維束を用意し、それらの境界上で制御点（図7中の赤い点）のY_1座標が、対応する反対面のそれと一致するように制御変位を与える解析を行うことで作成する。このとき、面内方向の変位（$w_1^{(1)}$, $w_2^{(1)}$）については、式（52）に参照する周期境界条件を与える。なお、面内ユニットセル作成のための解析に限り$\mathbf{w}^{(1)}$はその点が含まされる繊維束のY_2方向の断面の中心点について点対称な点の変位とする。境界面のY_3座標を一致させた後で全方向に関して周期境界条件式（52）を与えつり合い方程式（3）をとることで、拘束を与えることなく自然なドライファブリックの面内サブユニットセルの初期状態を設定する。このような編み込み過程に相当する予備解析を行うことで、自然な初期形状と初期応力を保持した面内サブユニットセルを生成することができる。この予備解析により得られた面内サブユニットセルと非解析領域を含む全体構造のそれぞれの変形状態とともに、変位とvon-Mises応力の分布の様子を図8に示す。編み込み過程における繊維束の曲げ変形による応力も生ずるが、繊維束が接触している領域により高い応力が生じていることが確認できる。なお、Misesの最大応力値が少々過大に評価されているが、これはミクロ繊維束材料に等方性材料を採用したことにより、繊維直交方向の変形にも大きく抵抗したことが原因として考えられる。

5.4 数値平板試験

5.4.1 収束性に関する検討

ここでは、2次元のNURBS基底関数を用いたIGA法の特徴の一つである表面上の連続性がNewton-Raphson法の収束性に与える影響を検討する。解析では、前項で求めた初期状態の面内サブユニットセルに対してマクロ面内せん断変形に対応する変位勾配の成分の値0.5を100ステップで与え、摩擦の影響を考慮せず数値平板試験を行う。なお、この際の面内せん断2方向の変形はゼロで拘束する。比較対象として、要素数が同じで要素境界上がC^0連続となるようなモデルを別途使用する。また、繊維束の断面の高さの小さいもの（高さ：1.2 mm）と大きいものの（高さ：1.6 mm）の2つのモデルを用意し、繊維束間の接触による変形の大きさによる影響を調べることにする。なお、すべての解析ケースについて、収束判定には相対残差で10^{-7}以下に設定する。

解析結果として、収束に要した反復回数を5荷重ステップごとの平均を取り、解析の進行に対するその値の推移を図9に示す。どちらの厚さのモデルも、要素境界がC^0連続のモデルの方が相対的に収束性が悪い傾向がみえてとれる。また、繊維束が厚く表面の変形が大きく接触点数の変化の大きいモデルの方が収束性の悪化がより顕著であることが確認できる。ここでの結果は、純粋なFEMとの比較によるものではないが、要素境界にC^1以上の
の連続性を保証できる IG A 法では収束性（すなわち、計算効率）の改善を実現できることを例証するものである。

5.5 非モルタル法とモルタル法の比較

マクロ一軸引張と面内せん断変形を与える 2 ケースの数値平板試験を行い、その結果の考察とともに非モルタル
法による結果との比較を行う。

まず 1 ケース目として、Y_1 方向の引張に対応する変形モードを与える解析について検討する。得られた変形図
とその変位、ミクロ von-Mises 応力の分布を図 10 に示す。引張が働く Y_1 方向の繊維束の Mises 応力の分布が高く
なっていること、およびその分布がほぼ一様になっていることが確認できる。また、非モルタル法とモルタル法
により得られた結果の比較として、マクロ PK1 合応力とマクロ変位の関係を図 11 に示すが、ほぼ線形の関係
が得られていることが分かる。接触・摩擦の影響が大きいほどモルタル法による解析結果の違い
が顕著になるはずであるが、このケースでは応力分布を示す図 10 からも分かるように、繊維束に対する引張変形
の影響の方が支配的であり、両者の曲線に大きな差違は見られない。

次に、マクロ面内せん断変形に対応する数値平板試験の結果について、変形の様子と変位および von-Mises 応
力分布を図 12 に、マクロ PK1 合応力とマクロ変位の関係を図 13 に示す。ここで、マクロ面内せん断変形を
与える際の面内垂直 2 方向の変形はゼロで拘束する。0.01 以下の変位変化ではすべり条件を満たさない Gauss
点が多く、比較的大きな抵抗力が発生するため、マクロ PK1 合応力の立ち上がりが見られる。しかし、それ以上に
なると、すべり条件を満たす Gauss 点（非モルタル法）あるいは制御点（モルタル法）が増加して緩やかな曲線
を描く挙動が現れている。ただし、せん断変形に対して大きな抵抗力は発現せず、最大 Mises 応力値は編み込み
過程により得られた Mises 応力値からの大きな変化は見られない。また、マクロ変位とマクロ PK1 合応力の
関係は非線形であり、過去の実験研究の結果を基準にした図 3 と同様の傾向であることがある。しかし、ロッシングの影響が現れるような大きな変形量の解析については、数値的不安定性により求解できていないため、今後の課題としたい。一方、Y_1 方向引張の結果と異なり接触・摩擦の影響が大きくため、非モルタル法とモ
ルタル法のアルゴリズムの違いが解析結果にも表れていることが分かる。具体的には、図 13 においてモルタル法
の方が低いマクロ PK1 合応力値を算出している。実際、モルタル法と非モルタル法の方が理論解より剛な解
を報告されており（Temizer et al., 2011; Lorenzis et al., 2011），既往研究と同様の傾向が得られたという意味で本
研究で実装した I GA の妥当性が確認できたといえる。

【DOI: 10.1299/transjsme.17-00554】 © 2018 The Japan Society of Mechanical Engineers 14
Fig. 10 結果的な板実験の結果を示す。上側の図は変位分布と全体構造に対する变形配置を示し、下側の図は応力分布と全体構造に対する变形配置を示す。各繊維束がY_1方向に実際の単一方向応力状態を示す。

Fig. 11 マクロおよび非マクロ方法に対する応力および変位曲線の関係を示す。曲線はほぼ線形であり、マイクロスケールの摩擦はマクロスケールの応答にほとんど影響を及ぼさない。

5.6 プレ・テンション作用後のマクロせん断挙動

最後に、実際のドーピング過程を想定して、初期変位の面内サブユニットセルに対してマクロ面内引張（以下、プレ・テンション）が作用した後にマクロせん断変形が生じるような数値実験を行い、その影響について考察する。具体的には、面内サブユニットセルに対してプレ・テンションに対応する変位勾配を与えることで予負荷状態を生成し、この変位を用いたままマクロ面内せん断変形に関する数値実験を行う。これに対するプレ・テンションの変位勾配の大きさは10%と20%の2ケースを設定し、これに対するプレ・テンションを与えないケースを加えた合わせて3ケースについて解析する。

得られたマクロPK1合成力-変位勾配曲線を図14に示す。プレ・テンション量が増加するにつれて、マクロPK1合成力の初期の立ち上がり方が急になり、その後の増加率も大きくなることが確認できる。初期の立ち上がりは、マイクロスケールでの接触・摩擦が関与することから、3ケースそれぞれについてマクロ面内せん断変形を与える直前の接触点とそのでの接触圧力の分布を図15に示す。この図から、プレ・テンション量が大きいほど繊維束間の接触点数が多く、また、マクロせん断変形に対してすべり量が大きくなる領域（図の矢印の領域）では、プレ・テ
Fig. 12 Results of numerical plate testing with macroscopically shear loading in the Y_1Y_2 plane. Upper figures show the deformed configurations with displacement distributions and lower figures show the deformed configurations with stress distributions.

Fig. 13 Relationships between macroscopic generalized 1st PK resultant stresses and displacement gradients in response to macroscopically shear loading in the Y_1Y_2 plane. Different two curves are obtained by the mortar and non-mortar methods. But, both of the curves exhibit steep rises at the beginning of the deformation, and then become gentle after certain values of macroscopic displacement gradients as almost all the Gaussian quadrature points in contact achieve the Coulomb slip criterion and slip with friction. The threshold values differentiate the results of the mortar and non-mortar methods. The value for the mortar-based method and the corresponding macroscopic in-plane resultant stress are smaller than those of the non-mortar method due to its relaxation effect.
Fig. 14 マクロスケールの1st PK結果応力と変位勾配の関係について、マクロスケールのせん断荷重が異なる3つの場合に対する。i) せん断荷重なし、ii) せん断荷重10%、iii) せん断荷重20%の3つの場合を実験し、せん断荷重の影響を検討した。せん断荷重量が増えるほど、マクロスケールの内圧応力が増加する。

Fig. 15 接触面の接触圧力に応じて、せん断荷重が増えるとき、摩擦抵抗は増加する。結果として、せん断荷重が増えると、図14で示したマクロスケールの内圧応力が増加する。

Buffa, A., Sangalli, G. and Vázquez, R., Isogeometric analysis in electromagnetics: B-splines approximation. Computer Methods in Applied Mechanics and Engineering, Vol.199 (2010), pp.1143-1152.
Cybernet Systems Co. Ltd., Multiscale.Sim® (online), available from <http://www.cybernet.co.jp/ansys/product/lineup/multiscale/> , (参照日 2017 年 11 月 29 日).

Dedè, L., Borden, M. J. and Hughes, T. J. R., Isogeometric analysis for topology optimization with a phase field model, Archives of Computational Methods in Engineering, Vol.19 (2012), pp.427-465.

Hughes, T. J. R., Cottrell, J. A. and Bazilevs, Y., Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement, Computer Methods in Applied Mechanics and Engineering, Vol.194 (2005), pp.4135-4195.

Launay, J., Hivet, G., Duong, A. V. and Boisse, P., Experimental analysis of the influence of tensions on in plane shear behaviour of woven composite reinforcements, Composites Science and Technology, Vol.68 (2008), pp.506-515.

Lorenzis, L. D., Temizer, I., Wriggers, P. and Zavarise, G., A large deformation frictional contact formulation using NURBS-based isogeometric analysis, International Journal for Numerical Methods in Engineering, Vol.87 (2011), pp.1278-1300.

Lu, J., Isogeometric contact analysis: Geometric basis and formulation for frictionless contact, Computer Methods in Applied Mechanics and Engineering, Vol.200 (2011), pp.726-741.

Matouš, K., Geers, M. G. D., Kouznetsova, V. G. and Gillman, A., A review of predictive nonlinear theories for multiscale modeling of heterogeneous materials, Computational Physics, Vol. 330 (2017), pp.192-220.

松原昌志朗, 寺田賢二郎, 藤井文夫, 非均質周期ミクロ構造に対するisogeometric解析手法, 日本計算工学会論文集, No.20160010 (2016).

Matsubara, S., Nishi, S. and Terada, K., On the treatment of heterogeneities and periodic boundary conditions for isogeometric homogenization analysis, International Journal for Numerical Methods in Engineering, Vol. 109 (2017), pp.1523-1548.

Matsuda, T., Nimiya, Y., Ohno, N. and Tokuda, M., Elastic-viscoplastic behavior of plain-woven GFRP laminates: Homogenization using a reduced domain of analysis, Composite Structure, Vol.79 (2007), pp.493-500.

佐藤雅美, 村松翼由, 松原昌志朗, 西総之介, 寺田賢二郎, 八代光司, 川田達也, 板状デバイスの非線形マルチスケール解析に対する数値平板試験, 土木学会論文集 A2（応用力学）, Vol.73, No.2 (2017), pp.283-294.

Seo, Y. D., Kim, H. J. and Youn, S. K., Isogeometric topology optimization using trimmed spline surfaces, Computer Methods in Applied Mechanics and Engineering, Vol.199 (2010), pp.3270-3296.

Tapie, E., Tan, E. S. L., Guo, Y. B. and Shim, V. P. W., Effects of pre-tension and impact angle on penetration resistance of woven fabric, International Journal of Impact Engineering, Vol.106 (2017), pp.171-190.

Temizer, I., Wriggers, P. and Hughes, T. J. R., Contact treatment in isogeometric analysis with NURBS, Computer Methods in Applied Mechanics and Engineering, Vol.200 (2011), pp.1100-1112.

Temizer, I., Wriggers, P. and Hughes, T. J. R., Three-dimensional mortar-based frictional contact treatment in isogeometric analysis with NURBS, Computer Methods in Applied Mechanics and Engineering, Vol.209-212 (2012), pp.115-128.

寺田賢二郎, 菊池昇, 均質化法入門, 丸善 (2003).

寺田賢二郎, 均質化法とその工学的応用—ミクロとマクロの CAEツールとして—, 特集「力学と工学, 科学をつなぐマルチスケールモデリング」, 日本機械学会誌, Vol.108, No. 1043 (2005), pp. 802-804.

寺田賢二郎, マルチスケール CAE ～数値材料試験のススメ～, CAE のあるものづくり, サイバネットシステム, Vol.5 (2006), pp. 9-10.

寺田賢二郎, 複合材料の数値材料実験のススメ その 2 ～数材料実験の理論と実際: 線形弾性体編～, 強化プラスチックス, Vol.53, No.5 (2007), pp. 246-253.

寺田賢二郎, 犬飼壮典, 平山紀夫, 非線形マルチスケール材料解析における数値材料実験, 日本機械学会論文集 A 編, Vol.74, No.744 (2008a), pp. 1084-1094.

寺田賢二郎, 犬飼壮典, 演名康彦, 見寄明男, 平山紀夫, 数値材料試験による異方向性超弾性体のパラメータ同定, 日本計算工学会論文集, Vol.20080024 (2008b).

寺田賢二郎, 演名康彦, 平山紀夫, 織維の粘弾性マルチスケール解析手法, 日本機械学会論文集 A 編, Vol.75, No.760 (2009), pp. 1674-1683.

Terada, K. and Kikuchi, N., Nonlinear homogenization method for practical applications, in: Ghosh, S., Ostoja-Starzewski, M., (Eds.), Computational Methods in Micromechanics, AMSE AMD, Vol.212 (1995), pp. 1-16.

[DOI: 10.1299/transjsme.17-00554] © 2018 The Japan Society of Mechanical Engineers
Terada, K. and Kikuchi, N., A class of general algorithms for multi-scale analyses of heterogeneous media, Computer Methods in Applied Mechanics and Engineering, Vol.190 (2001), pp. 5427-5464.

Terada, K., Kato, J., Hirayama, N., Inugui, T. and Yamamoto, K., A method of two-scale analysis with micro-macro decoupling scheme: application to hyperelastic composite materials, Computational Mechanics, Vol.52 (2013), pp. 1199-1219.

Terada, K., Hirayama, N., Yamamoto, K., Muramatsu, M., Matsubara, S. and Nishi, S., Numerical plate testing for linear two scale analyses of composite plates with in-plane periodicity, International Journal for Numerical Methods in Engineering, Vol.105 (2016), pp.111-137.

Verhoosel, C. V., Scott, M. A., Hughes, T. J. R. and Borst, R., An isogeometric analysis approach to gradient damage models, International Journal for Numerical Methods in Engineering, Vol.86 (2011), pp.115-134.

Wriggers, P., Computational Contact Mechanics, Springer: Berlin Heidelberg New York (2006).

References

Buffa, A., Sangalli, G. and Vázquez, R., Isogeometric analysis in electromagnetics: B-splines approximation, Computer Methods in Applied Mechanics and Engineering, Vol.199 (2010), pp.1143-1152.

Cybernet Systems Co. Ltd., Multiscale.Sim® (online), available from <http://www.cybernet.co.jp/ansys/product/lineup/multiscale/> , (accessed on 29 November, 2017).

Dedè, L., Borden, M. J. and Hughes, T. J. R., Isogeometric analysis for topology optimization with a phase field model, Archives of Computational Methods in Engineering, Vol.19 (2012), pp.427-465.

Hughes, T. J. R., Cottrell, J. A. and Bazilevs, Y., Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement, Computer Methods in Applied Mechanics and Engineering, Vol.194 (2005), pp.4135-4195.

Launay, J., Hivet, G., Duong, A. V. and Boisse, P., Experimental analysis of the influence of tensions on in plane shear behaviour of woven composite reinforcements, Composites Science and Technology, Vol.68 (2008), pp.506-515.

Lorenzis, L. D., Temizer, İ., Wriggers, P. and Zavarise, G., A large deformation frictional contact formulation using NURBS-based isogeometric analysis, International Journal for Numerical Methods in Engineering, Vol.87 (2011), pp.1278-1300.

Lu, J., Isogeometric contact analysis: Geometric basis and formulation for frictionless contact, Computer Methods in Applied Mechanics and Engineering, Vol.200 (2011), pp.726-741.

Matouš, K., Geers, M. G. D., Kouznetsova, V. G. and Gillman, A., A review of predictive nonlinear theories for multiscale modeling of heterogeneous materials, Computational Physics, Vol. 330 (2017), pp.192-220.

Matsubara, S., Terada, K. and Fujii, F., Isogeometric analysis method for heterogeneous periodic microstructures, Transactions of Japan Society for Computational Engineering and Science, No.20160010 (2016) (in Japanese).

Matsubara, S., Nishi, S. and Terada, K., On the treatment of heterogeneities and periodic boundary conditions for isogeometric homogenization analysis, International Journal for Numerical Methods in Engineering, Vol. 109 (2017), pp.1523-1548.

Matsuda, T., Nimiya, Y., Ohno, N. and Tokuda, M., Elastic-viscoplastic behavior of plain-woven GFRP laminates: Homogenization using a reduced domain of analysis, Composite Structure, Vol.79 (2007), pp.493-500.

Sato, M., Muramatsu, M., Matsubara, S., Nishi, S., Terada, K., Yashiro, K. and Kawada, T., Numerical plate testing for non-linear multi-scale analysis of plate-shaped device, Journal of Japan Society of Civil Engineers, Ser. A2 (Applied Mechanics (AM)), Vol.73, No.2 (2017), pp.283-294 (in Japanese).

Seo, Y. D., Kim, H. J. and Youn, S. K., Isogeometric topology optimization using trimmed spline surfaces, Computer Methods in Applied Mechanics and Engineering, Vol.199 (2010), pp.3270-3296.

Tapie, E., Tan, E. S. L., Guo, Y. B. and Shim, V. P. W., Effects of pre-tension and impact angle on penetration resistance of woven fabric , International Journal of Impact Engineering, Vol.106 (2017), pp.171-190.

Temizer, İ., Wriggers, P. and Hughes, T. J. R., Contact treatment in isogeometric analysis with NURBS, Computer Methods in Applied Mechanics and Engineering, Vol.200 (2011), pp.1100-1112.
Terada, K., Inugai, T. and Hirayama, N., A method of numerical material testing in nonlinear multiscale material analyses, Transactions of the Japan Society of Mechanical Engineers, Series A, Vol.74, No.744 (2008a), pp.1084-1094 (in Japanese).

Terada, K., Inugai, T., Hamana, H., Miyori, A. and Hirayama, N., Parameter identification for anisotropic hyperelastic materials by numerical material testing, Transactions of Japan Society for Computational Engineering and Science, No.20080024 (2008b) (in Japanese).

Terada, K., Hamana, H. and Hirayama, N., A method of viscoelastic two-scale analyses for FRP, Transactions of the Japan Society of Mechanical Engineers, Series A, Vol.75, No.760 (2009), pp.1674-1683 (in Japanese).

Terada, K. and Kikuchi, N., Nonlinear homogenization method for practical applications, in: Ghosh, S., Ostoja-Starzewski, M., (Eds.), Computational Methods in Micromechanics, AMSE AMD, Vol.212 (1995), pp. 1-16.

Terada, K. and Kikuchi, N., A class of general algorithms for multi-scale analyses of heterogeneous media, Computer Methods in Applied Mechanics and Engineering, Vol.190 (2001), pp. 5427-5464.

Terada, K., Kato, J., Hirayama, N., Inugai, T. and Yamamoto, K., A method of two-scale analysis with micro-macro decoupling scheme: application to hyperelastic composite materials, Computational Mechanics, Vol.52 (2013), pp. 1199-1219.

Terada, K., Hirayama, N., Yamamoto, K., Muramatsu, M., Matsubara, S. and Nishi, S., Numerical plate testing for linear two scale analyses of composite plates with in-plane periodicity, International Journal for Numerical Methods in Engineering, Vol.105 (2016), pp.111-137.

Verhoosel, C. V., Scott, M. A., Hughes, T. J. R. and Borst, R., An isogeometric analysis approach to gradient damage models, International Journal for Numerical Methods in Engineering, Vol.86 (2011), pp.115-134.

Wriggers, P., Computational Contact Mechanics, Springer: Berlin Heidelberg New York (2006).