Curvature Properties of Bardeen Black Hole Spacetime

A.A. Shaikh*, S.K. Hui, M. Sarkar
Department of Mathematics, University of Burdwan, Golapbag, Burdwan-713104, West Bengal, India
*Corresponding author’s E-mail: aashaikh@math.buruniv.ac.in

Received: 7th of October 2022, Revised: 8th of March 2023
doi: https://doi.org/10.55318/bgjp.2023.50.2.168

Abstract. The Bardeen solution corresponding to Einstein field equations with a cosmological constant is a regular black hole. The main goal of this manuscript is to investigate the geometric structures in terms of curvature conditions admitted by this spacetime. It is found that this spacetime is pseudosymmetric and possesses several kinds of pseudosymmetries. Also, it is a manifold of pseudosymmetric Weyl curvature and the difference tensor $C \cdot R - R \cdot C$ linearly depends on the tensors $Q(g, C)$ and $Q(S, C)$. It is interesting to note that such a spacetime is weakly generalized recurrent manifold and satisfies special recurrent like structure. Further, it is an Einstein manifold of level 2 and Roter type. The energy momentum tensor of this spacetime is pseudosymmetric and finally a worthy comparison between the geometric properties of Bardeen spacetime and Reissner-Nordström spacetime is given.

KEY WORDS: Bardeen black hole metric, pseudosymmetric Weyl conformal curvature tensor, pseudosymmetric type curvature condition, Roter type manifold, Einstein manifold of level 2.

1 Introduction

The geometry of a space is described by the curvature, which plays a crucial role in differential geometry as the symmetry of the space is determined by the restriction on the curvature tensor R. There are several classes of manifolds with specific geometric structures, such as, the locally symmetric manifolds by Cartan [1] defined as $\nabla R = 0$, semisymmetric manifolds again by Cartan [2–5] defined as $R \cdot R = 0$, pseudosymmetric manifolds by Adamow and Deszcz [6]. Many authors have studied locally symmetric manifolds and introduced several generalized notions of manifolds, such as recurrent manifolds by Ruse [7–10], several classes of generalized recurrent manifolds by Shaikh and his coauthors [11–14], weakly symmetric manifolds by Tamássy
Curvature Properties of Bardeen Black Hole Spacetime

and Binh [15, 16], pseudosymmetric manifolds by Chaki [17, 18], curvature 2-forms of recurrent manifolds by Besse [19–23] etc. We note that the notion of pseudosymmetry in the sense of Deszcz is important in pseudo-Riemannian geometry as well as in general relativity because several spacetimes are models of pseudosymmetric manifolds (see e.g. [24–32]). Also, the geometrical and physical significances of different kinds of pseudosymmetries have been studied by Haesen and Verstraelen [33–35]. We mention that pseudosymmetry in the sense of Deszcz and pseudosymmetry in the sense of Chaki are different concepts (see, [36]). The study of geometric structure of a certain spacetime gives us the idea about its geometry and provides knowledge about its physical nature.

It is known that spacetime singularity is a reflection of the incompleteness of general relativity. In 1968, Bardeen [37] obtained a solution of Einstein field equation in spherical symmetry, which describes a singularity free black hole spacetime. In fact, it is the first regular black hole model in general relativity. In spherical coordinates system \((t, \rho, \theta, \phi)\), the metric of Bardeen spacetime is given as follows:

\[
ds^2 = -(1 - \frac{2M\rho^2}{(e^2 + \rho^2)^{3/2}})dt^2 + \left(1 - \frac{2M\rho^2}{(e^2 + \rho^2)^{3/2}}\right)^{-1}d\rho^2 + \rho^2 \left(d\theta^2 + \sin^2 \theta d\phi^2\right),
\]

where \(M\) and \(e\) respectively denote the mass and magnetic charge of the nonlinear self-gravity monopole [37]. If \(e^2 \leq \frac{16}{27} M^2\), then the Bardeen model represents a black hole and a singularity-free structure [38]. When \(e^2 = \frac{16}{27} M^2\), the horizons shrink into a single one that corresponds to an extreme black hole such as the extreme Reissner-Nordström solution. We note that the metric in (1) represents a particular case of the spherically symmetric doubly warped product metric

\[
ds^2 = -b^2(\rho)dt^2 + a^2(t)[f_1^2(\rho)d\rho^2 + f_2^2(\rho)d\Omega_2^2],
\]

which was covariantly characterized by Mantica and Molinari [39], where

\[
d\Omega_2^2 = d\theta^2 + \sin^2 \theta d\phi^2.
\]

Especially, if \(a(t) = 1\), \(b(\rho) = \left[1 - \frac{2M\rho^2}{(e^2 + \rho^2)^{3/2}}\right]^{1/2}\), \(f_1(\rho) = \left[1 - \frac{2M\rho^2}{(e^2 + \rho^2)^{3/2}}\right]^{-1/2}\) and \(f_2(\rho) = \rho\), then the metric (2) turns out to the metric (1). In [40], Borde has studied Bardeen spacetime and proved that topology change is necessary for the existence of regular black holes satisfying the weak energy condition. In [38] Ayón-Beato and García reinterpreted this black hole as a gravitational field of a nonlinear magnetic monopole. However, the curvature properties of Bardeen spacetime are yet to known. Thus the present study is devoted to deduce the geometric structures of Bardeen black hole metric in terms of curvature restrictions.

Deriving the components of various curvature tensors, we investigate the curvature properties admitted by the Bardeen black hole metric (1). It is found
that Bardeen black hole spacetime is not semisymmetric but pseudosymmetric manifold and satisfies various pseudosymmetric type curvature conditions. The difference tensor $C \cdot R - R \cdot C$ is linearly dependent with the tensors $Q(g, C)$ and $Q(S, C)$. It is also a weakly generalized recurrent manifold and satisfies special recurrent like structure. Further, it is Roter type and Einstein manifold of level 2. It is interesting to note that this spacetime has pseudosymmetric energy momentum tensor.

In this context, we mention that recently the curvature properties of interior black hole metric [41] were investigated and it is shown that such a interior black hole metric admits several geometric structures such as pseudosymmetry, Ricci pseudosymmetry and several kinds of pseudosymmetric type curvature conditions.

The present paper is composed in four sections: in Section 2 we review various curvature tensors and geometric structures as preliminaries. Section 3 determines the curvature restricted geometric structures admitted by the Bardeen black hole metric (1). Section 4 deals with some geometric structures of energy momentum tensor. In Section 5, we make a comparison between the geometric properties of Bardeen black hole spacetime and Reissner-Nordström spacetime.

2 Preliminaries

Let M, a smooth and connected manifold of dimension $n \geq 3$, be furnished with the Levi-Civita connection ∇ and also with a semi-Riemannian metric g. Let κ be the scalar curvature, S the Ricci curvature and R the Riemann curvature of M.

Now, for two symmetric $(0, 2)$ tensors λ and τ, the Kulkarni-Nomizu product $\tau \wedge \lambda$ is defined as [42–44]

$$(\tau \wedge \lambda)(\zeta_1, \zeta_2, X, Y) = \tau(\zeta_2, Y)\lambda(\zeta_1, X) - \tau(\zeta_1, Y)\lambda(\zeta_2, X) + \tau(\zeta_1, X)\lambda(\zeta_2, Y) - \tau(\zeta_2, X)\lambda(\zeta_1, Y),$$

where ζ_1, ζ_2, X, Y are smooth vector fields on M and throughout this paper we assume $\zeta_1, \zeta_2, X, Y \in \chi(M)$, $\chi(M)$ being the set of all smooth vector fields of M.

Now, we consider the following endomorphisms on M [45–48]:

$$(\zeta_1 \wedge \tau \zeta_2)X = \tau(\zeta_2, X)\zeta_1 - \tau(\zeta_1, X)\zeta_2,$$

$$\mu_{\nabla} (\zeta_1, \zeta_2)X = \left[\nabla_{\zeta_1}, \nabla_{\zeta_2} \right] - \nabla_{(\zeta_1, \zeta_2)} X,$$

$$\mu_{\mathcal{R}} (\zeta_1, \zeta_2)X = \mu_{\nabla} (\zeta_1, \zeta_2)X - \frac{\kappa}{n(n-1)} (\zeta_1 \wedge_g \zeta_2)X,$$

$$\mu_{\mathcal{Y}} (\zeta_1, \zeta_2)X = \mu_{\nabla} (\zeta_1, \zeta_2)X - \frac{1}{(n-2)} (\zeta_1 \wedge S \mathcal{J} \zeta_2 + \mathcal{J} \zeta_1 \wedge S \zeta_2)X,$$
Curvature Properties of Bardeen Black Hole Spacetime

\[\mu_D(\zeta_1, \zeta_2)X = \mu_D(\zeta_1, \zeta_2)X + \frac{\kappa}{(n-1)(n-2)}(\zeta_1 \wedge g \zeta_2)X \]

\[= \frac{1}{(n-2)}(\zeta_1 \wedge S \zeta_2 + S \zeta_1 \zeta_2)X, \]

\[\mu_D(\zeta_1, \zeta_2)X = \mu_D(\zeta_1, \zeta_2)X - \frac{1}{(n-1)}(\zeta_1 \wedge S \zeta_2)X, \]

where \(S \) is the Ricci operator and is defined by \(g(\zeta_1, S \zeta_2) = S(\zeta_1, \zeta_2). \)

Now, for an endomorphism \(D(\zeta_1, \zeta_2) \), the corresponding \((0, 4)\)-tensor \(D \) is given by

\[D(\zeta_1, \zeta_2, \zeta_3, \zeta_4) = g(D(\zeta_1, \zeta_2)\zeta_3, \zeta_4). \]

(3)

In above relation, replacing \(D \) by \(\mu_D \) one can find the \((0, 4)\)-type Weyl confor-
mal curvature \(C \). Again, replacing \(D \) by \(\mu_D, \mu_P, \mu_W \) and \(\mu_{\lambda_\text{W}} \) one can also
look for \((0, 4)\)-type Riemann curvature \(R \), projective curvature \(P \), concircular curva-
ture \(W \) and conharmonic curvature \(K \) respectively.

Let \(\eta \) be a \((0, l)\)-tensor field on \(M, l \geq 1 \). Now, for a \((0, 4)\)-tensor \(D \), we can
define the \((0, l + 2)\)-tensor \(D \cdot \eta \) \[49–51\] by

\[(D \cdot \eta)(\zeta_1, \zeta_2, \cdots, \zeta_l; X, Y) = (D(X, Y) \cdot \eta)(\zeta_1, \zeta_2, \cdots, \zeta_l) \]

\[= -\eta(D(X, Y)\zeta_1, \zeta_2, \cdots, \zeta_l) - \cdots \eta(\zeta_1, \zeta_2, \cdots, D(X, Y)\zeta_l). \]

In addition, if \(\lambda \) is a symmetric \((0, 2)\)-tensor, then we define the \((0, l + 2)\)-tensor
\(Q(\lambda, \eta) \), called Tachibana tensor \[36, 52, 53\], by

\[Q(\lambda, \eta)(\zeta_1, \zeta_2, \cdots, \eta_2; X, Y) = ((X \wedge \lambda Y) \cdot \eta)(\zeta_1, \zeta_2, \cdots, \zeta_l) \]

\[= -\eta((X \wedge \lambda Y)\zeta_1, \zeta_2, \cdots, \zeta_l) - \cdots \eta(\zeta_1, \zeta_2, \cdots, (X \wedge \lambda Y)\zeta_l) \]

\[= \lambda(\zeta_1, X)\eta(Y, \zeta_2, \cdots, \zeta_l) + \cdots + \lambda(\zeta_1, X)\eta(\zeta_1, \zeta_2, \cdots, Y) \]

\[- \lambda(\zeta_1, Y)\eta(X, \zeta_2, \cdots, \zeta_l) - \cdots - \lambda(\zeta_1, Y)\eta(\zeta_1, \zeta_2, \cdots, X). \]

The local components \((D \cdot \eta)_{i_1i_2\cdots i_\alpha}b\) and \(Q(\lambda, \eta)_{i_1i_2\cdots i_\alpha}b\) of the tensor \(D \cdot \eta \) and the Tachibana tensor \(Q(\lambda, \eta) \) can be written as follows:

\[(D \cdot \eta)_{i_1i_2\cdots i_\alpha}b = -g^{uv}[D_{\alpha\beta i_1}v\eta_{i_2...i_l} + \cdots + D_{\alpha\beta i_1}v\eta_{i_1...i_l}], \]

\[Q(\lambda, \eta)_{i_1i_2\cdots i_\alpha}b = \lambda_{i_1, i}v\eta_{i_2...i_l} + \cdots + \lambda_{i_1, i}v\eta_{i_1...i_l} \]

\[- \lambda_{i_1, i}v\eta_{i_1...i_l} \cdots - \lambda_{i_1, i}v\eta_{i_1...i_l}. \]

Definition 2.1. The linear dependency of the tensor \(D \cdot \eta \) with \(Q(\lambda, \eta) \) def-
ines an \(\eta \)-pseudosymmetric manifold \[6, 51, 54–58\] due to \(D \), i.e., on this
manifold we have \(D \cdot \eta = \varphi_{\eta}Q(\lambda, \eta) \) where \(\varphi_{\eta} \) is a smooth function
on \{ \(x \in M : Q(\lambda, \eta)x \neq 0 \} \). If \(D \cdot \eta = 0 \) holds then the manifold \(M \) is an \(\eta \-
semisymmetric manifold due to \(D \) \[2–5, 59\].
For $D = R$, $\eta = R$ and $\lambda = g$ (resp., S) the manifold is simply called as pseudosymmetric manifold or Deszcz’s pseudosymmetric manifold (resp., Ricci generalized pseudosymmetric manifold). Again a semisymmetric manifold is obtained for $D = R$ and $\eta = R$, i.e., $R \cdot R = 0$. Similarly, several kinds of pseudosymmetric and semisymmetric type curvature conditions can be obtained for other curvature tensors.

If $S = \alpha g$ holds on M, i.e., the Ricci tensor and the metric tensor are linearly dependent, then it is called an Einstein manifold and in this case $\alpha = \frac{\kappa}{n}$. In a quasi-Einstein manifold the Ricci tensor takes the form $S = \beta A \otimes A + \alpha g$ (A being some 1-form). This notion is important in general relativity as a connected Lorentzian manifold of dimension 4 is a spacetime of perfect fluid if it is quasi-Einstein and vice versa. In a quasi-Einstein manifold rank$(S - \alpha g) = 1$, and if rank$(S - \alpha g) = 2$ or 3 then the manifold is called respectively 2 or 3 quasi-Einstein manifold [60–62]. It may be mentioned that Kaigorodov spacetime [32] is Einstein, Robertson Walker spacetime [63–65] is quasi-Einstein, whereas Kantowski-Sachs spacetime [46] and point-like global monopole spacetime [66] are 2-quasi-Einstein. Again, a Ricci simple manifold is a special case of quasi-Einstein manifold for $\alpha = 0$. We note that Morris-Thorne spacetime [67] and Vaidya metric [68] are examples of Ricci simple spacetimes. Another generalization of Einstein manifolds is given below:

Definition 2.2. ([19, 48, 51]) A manifold M satisfying the relation

$$\beta_1 S^4 + \beta_2 S^3 + \beta_3 S^2 + \beta_4 S + \beta_5 g = 0, \quad (\beta_1 \neq 0)$$

is called an Einstein manifold of level 4, where β_i are smooth functions on M. If $\beta_1 = 0$ but $\beta_2 \neq 0$ (resp., $\beta_1 = \beta_2 = 0$ but $\beta_3 \neq 0$), then it turns into an Einstein manifold of level 3 (resp. level 2).

It may be noted that Vaidya-Bonner spacetime [69], Som-Raychaudhuri spacetime [70], Sultana-Dyer spacetime [71], Lifshitz spacetime [72] are $Ein(3)$, whereas Hayward spacetime [73], Melvin magnetic spacetime [30], Robinson-Trautman spacetime [29], point-like global monopole spacetime [66] and the warped product metric appeared in [74] are $Ein(2)$.

Definition 2.3. A manifold M is called a generalized Roter type manifold [48, 75–80] if its Riemann curvature tensor fulfills

$$R = s_{22}(g \wedge g) + (s_{11} S + s_{12} g) \wedge S + (s_{00} S^2 + s_{01} S + s_{02} g) \wedge S^2,$$

s_{ij} being some smooth functions on M. For $s_{00} = s_{01} = s_{02} = 0$, R is linearly dependent on $g \wedge g$, $S \wedge g$ and $S \wedge S$, and in this case M is called a Roter type manifold [76, 81–84].

It is worthy to note that Melvin magnetic spacetime [30] and Robinson-Trautman spacetime [85] are Roter type, whereas Lifshitz spacetime [72] and Lemaître-Tolman-Bondi spacetime [31] are generalized Roter type.
Curvature Properties of Bardeen Black Hole Spacetime

Definition 2.4. A super generalized recurrent manifold M is defined by curvature condition [14]

$$
\nabla R = \Pi \otimes R + A \otimes (g \wedge g) + \bar{A}(S \wedge g) + \bar{\bar{A}}(S \wedge S),
$$

where $A, \bar{A}, \bar{\bar{A}}$ are some 1-forms on M. A weakly generalized recurrent manifold [86, 87] (resp., hyper generalized recurrent manifold [11, 13]) is obtained for $A = \bar{A} = \bar{\bar{A}} = 0$ (resp., $A = \bar{A} = \bar{\bar{A}} = 0$).

Definition 2.5. Tamássy and Binh [15, 16] defined the notion of weak symmetry by

$$
(\nabla_X R)(\zeta_1, \zeta_2, \zeta_3, \zeta_4) = \Pi(\zeta_1) \otimes R(\zeta_2, \zeta_3, \zeta_4) + \bar{B}(\zeta_4) \otimes R(\zeta_1, \zeta_2, \zeta_3, X) + B(\zeta_4) \otimes R(\zeta_1, \zeta_2, X, \zeta_3) + A(\zeta_1) \otimes R(X, \zeta_2, \zeta_3, \zeta_4),
$$

where A, \bar{A}, B, \bar{B} are some 1-forms on M. For $\Pi = A/2 = \bar{A}/2 = B/2 = \bar{B}/2$, it is a Chaki pseudosymmetric manifold [17, 18].

Definition 2.6. [20–23, 88] Let D be a $(0, 4)$-type tensor and λ be a $(0, 2)$-type symmetric tensor on M. Then $\Omega_{(D)\lambda}^{\Pi} [89]$, the curvature 2-forms, are recurrent if

$$
\mathcal{S}_{\zeta_1, \zeta_2, \zeta_3} (\nabla_{\zeta_1} D)(\zeta_2, \zeta_3, X, Y) = \mathcal{S}_{\zeta_1, \zeta_2, \zeta_3} A(\zeta_1) \otimes D(\zeta_2, \zeta_3, X, Y),
$$

\mathcal{S} being the cyclic sum over ζ_1, ζ_2 and ζ_3, holds on M. In addition, the 1-forms $t_{(\lambda, \lambda)} [89]$ are recurrent if

$$
(\nabla_{\zeta_1} \lambda)(\zeta_2, X) - (\nabla_{\zeta_2} \lambda)(\zeta_1, X) = A(\zeta_1) \otimes \lambda(\zeta_2, X) - \bar{A}(\zeta_2) \otimes \lambda(\zeta_1, X)
$$

holds on M, where A, \bar{A} are smooth 1-forms.

Definition 2.7. The Ricci tensor of M is of Codazzi type [90, 91] (resp., cyclic parallel [92–95]) if

$$
(\nabla_{\zeta_1} S)(\zeta_3, \zeta_2) = (\nabla_{\zeta_2} S)(\zeta_3, \zeta_1)
$$

(resp., $\mathcal{S}_{\zeta_1, \zeta_2, \zeta_3} (\nabla_{\zeta_1} S)(\zeta_2, \zeta_3) = 0$) holds on M.

We mention that the Ricci tensor of the $(t - z)$-type plane wave metric is of Codazzi type [96] and the Ricci tensor is cyclic parallel in Gödel spacetime [45].

Definition 2.8. [78, 97–101] The Ricci tensor S of M is called Riemann compatible if the relation

$$
\mathcal{S}_{\zeta_1, \zeta_2, \zeta_3} R(\mathcal{J} \zeta_1, X, \zeta_2, \zeta_3) = 0
$$

holds.
This notion of compatibility can be extended to the curvatures C, P, W and K to define the corresponding curvature compatibility.

Definition 2.9. ([102, 103]) Let D be a symmetric $(0,4)$-type tensor of M. If the 1-forms Θ satisfying the relation

$$S_{\zeta_1, \zeta_2, \zeta_3} \Theta(\zeta_1) \otimes D(\zeta_2, \zeta_3, X, Y) = 0$$

generates a k-dimensional vector space with $k \geq 1$, then M is a D-space by Venzi.

3 Geometric Properties Admitted by Bardeen Black Hole Metric

The components of metric (1) are

$$g_{11} = -\left(1 - \frac{2M\rho^2}{\rho_1^2}\right), \quad g_{22} = \left(1 - \frac{2M\rho^2}{\rho_1^2}\right)^{-1},$$

$$g_{33} = \rho^2, \quad g_{44} = \rho^2 \sin^2 \theta, \quad g_{ij} = 0 \text{ otherwise},$$

where $\rho_1^2 = \rho_1^2 + \rho^2$.

Now, the components of various curvature tensors of Bardeen black hole metric (1) are calculated in a straightforward manner.

The non-zero components of second kind Christoffel symbols Γ^h_{ij} of g are given by

$$\Gamma_1^{21} = -\frac{M\rho(\rho_1^2 - 3\rho^2)(2M\rho^2 - \rho_1^2)}{\rho^8};$$

$$\Gamma_1^{12} = \frac{M\rho(\rho_1^2 - 3\rho^2)}{\rho_1^2(-2M\rho^2 + \rho_1^2)} = -\Gamma_2^{22};$$

$$\Gamma_1^{23} = \frac{1}{\rho} = \Gamma_4^{24};$$

$$\Gamma_2^{33} = -\rho + \frac{2M\rho^3}{\rho_1^3};$$

$$\Gamma_3^{44} = \cot \theta;$$

$$\Gamma_4^{44} = \rho\left[-1 + \frac{2M\rho^2}{\rho_1^4}\right] \sin^2 \theta;$$

$$\Gamma_4^{34} = -\cos \theta \sin \theta.$$

The non-zero components R_{hijkl} and S_{ij} of R and S of the Bardeen metric (1) along with its scalar curvature k are
Curvature Properties of Bardeen Black Hole Spacetime

\[
R_{1212} = \frac{M(15\rho^2 e^2 - 2\rho_1^2)}{\rho_1^2},
\]
\[
R_{1313} = \frac{M\rho^2(\rho_1^2 - 3e^2)(-2M\rho^2 + \rho_1^2)}{\rho_1^2} = \frac{1}{\sin^2 \theta} R_{1414},
\]
\[
R_{2323} = -\frac{M\rho^2(\rho_1^2 - 3e^2)}{\rho_1^2(-2M\rho^2 + \rho_1^2)} = \frac{1}{\sin^2 \theta} R_{2424},
\]
\[
R_{3434} = \frac{2M\rho^4 \sin^2 \theta}{\rho_1^2};
\]
\[
S_{11} = \frac{3M e^2(2\rho_1^2 - 3e^2)(-2M\rho^2 + \rho_1^2)}{\rho_1^4},
\]
\[
S_{22} = \frac{3e^2 M(5\rho_1^2 - 2\rho_1^2)}{\rho_1^2(-2M\rho^2 + \rho_1^2)},
\]
\[
S_{33} = -\frac{6M e^2 \rho_1^2}{\rho_1^2} = \frac{1}{\sin^2 \theta} S_{44}; \text{ and } k = \frac{6M e^2(5\rho_1^2 - 4\rho_1^2)}{\rho_1^2}.
\]

It may be mentioned that in [39] (see eq. (49)), Mantica and Molinari obtained the covariant form of the Ricci tensor of a spherically symmetric doubly warped spacetime. Hence the Ricci tensor of (1) can be inferred when \(a(t) = 1\) (i.e., \(\phi = \xi = 0\) in eq. (49) of [39]).

Let \(L^1 = (g \wedge g)\), \(L^2 = (g \wedge S)\) and \(L^3 = (S \wedge S)\). Then the non-zero components of these Kulkarni-Nomizu products are obtained as follows:

\[
L^1_{1212} = 2, \quad L^1_{1313} = 2(\rho^2 - \frac{2M\rho^4}{\rho_1^4}) = \frac{1}{\sin^2 \theta} L^1_{1414},
\]
\[
L^1_{2323} = \frac{2\rho^2 \rho_1^4}{2M\rho^2 - \rho_1^2} = -\frac{1}{\sin^2 \theta} L^1_{2424}, \quad L^1_{3434} = -2\rho^2 \sin^2 \theta;
\]
\[
L^2_{1212} = 6M e^2(5\rho_1^2 - 2\rho_1^2),
\]
\[
L^2_{1313} = \frac{3M e^2 \rho_1^2(4\rho_1^2 - 5\rho_1^2)(-2M\rho^2 + \rho_1^2)}{\rho_1^2} = \frac{1}{\sin^2 \theta} L^2_{1414},
\]
\[
L^2_{2323} = \frac{3M e^2 \rho_1^2(4\rho_1^2 - 5\rho_1^2)}{\rho_1^2(-2M\rho^2 + \rho_1^2)} = \frac{1}{\sin^2 \theta} L^2_{2424},
\]
\[
L^2_{3434} = \frac{12M e^2 \rho_1^2 \sin^2 \theta}{\rho_1^2}, \quad L^3_{1212} = \frac{18M e^4(2\rho_1^2 - 5\rho_1^2)}{\rho_1^4},
\]
\[
L^3_{1313} = \frac{36M^2 e^4 \rho_1^2 (2\rho_1^2 - 5\rho_1^2)(-2M\rho^2 + \rho_1^2)}{\rho_1^6} = \frac{1}{\sin^2 \theta} L^3_{1414},
\]
\[
L^3_{2323} = \frac{36M^2 e^4 \rho_1^2 (2\rho_1^2 - 5\rho_1^2)}{\rho_1^6(-2M\rho^2 + \rho_1^2)} = \frac{1}{\sin^2 \theta} L^3_{2424},
\]
\[
L^3_{3434} = \frac{72M^2 e^4 \rho_1^2 \sin^2 \theta}{\rho_1^6}.
\]
From (6) we can decompose Riemann tensor explicitly as follows:

\[R = \varrho_1 L^1 + \varrho_2 L^2 + \varrho_3 L^3, \]

where \(\varrho_1 = \frac{M (18 \rho_1^2 - 25 \rho_2^2)}{25 \rho_1^2 \rho_1^2}, \) \(\varrho_2 = \frac{\rho_1^3 (6 \rho_1^2 - 5 \rho_2^2)}{25 \epsilon^2 \rho_1^2} \) and \(\varrho_3 = \frac{(3 \rho_1^2 - 5 \rho_2^2) \rho_1^7}{150 M \epsilon^4 \rho_1^2}. \)

Contracting the relation (7) the following relation is entailed:

\[S^2 + \beta S + \bar{\beta} g = 0, \]

where \(\beta = \frac{3 M \epsilon^2 (4 \rho_1^2 - 5 \rho_2^2)}{\rho_1^2} \) and \(\bar{\beta} = \frac{18 M^2 \epsilon^4 (2 \rho_1^2 - 5 \rho_2^2)}{\rho_1^2}. \)

Proposition 3.1. The Bardeen metric (1) is not Einstein manifold but it is (i) Einstein manifold of level 2 and (ii) fulfills Roter type condition.

Corollary 3.1. Since the Bardeen metric is Roter type, from Theorem 6.7 of [42] we obtain the following geometric structures:

(i) \(R \cdot R = \varrho_R Q(g, R); \)

\[\varrho_R = \frac{1}{2 \varrho_2^2} (2((\varrho_2)^2 - 4 \varrho_3 \varrho_1) - 2 \varrho_1) = -\frac{M (2 \rho_1^2 - 3 \rho_2^2)^{5/2}}{\rho_1^2}; \]

(ii) \(R \cdot C = \varrho_R Q(g, C); \)

(iii) \(C \cdot R = \varrho_C Q(g, R); \)

\[\varrho_C = \varrho_R - \left(\frac{\kappa}{3} + \frac{\varrho_2}{2 \varrho_3} \right) + \frac{1}{4 \varrho_3} = -\frac{M \rho_1^3 (3 \rho_1^2 - 5 \rho_2^2)}{2 \rho_1^2}; \]

(iv) \(C \cdot C = \varrho_C Q(g, C); \)

(v) \(R \cdot R = Q(S, R) + \varrho Q(g, C); \) \(\varrho = \varrho_R + \frac{\varrho_2}{2 \varrho_3} = \frac{2 M (6 \rho_1^2 - 7 \rho_2^2)}{(3 \rho_1^2 - 5 \rho_2^2) \rho_1^2}. \)

The conformal curvature components of the metric (1) are:

\[C_{1212} = \frac{M \rho_1^4 (3 \rho_1^2 - 5 \rho_2^2)}{\rho_1^2} = \frac{1}{\rho^4 \sin^2 \theta} C_{3434}; \]

\[C_{1313} = -\frac{M \rho_1^4 (3 \rho_1^2 - 5 \rho_2^2)(-2 M \rho_1^2 + \rho_1^3)}{2 \rho_1^4} = \frac{1}{\sin^2 \theta} C_{1414}; \]

\[C_{2323} = \frac{M \rho_1^4 (3 \rho_1^2 - 5 \rho_2^2)}{2 \rho_1^4 (-2 M \rho_1^2 + \rho_1^3)} = \frac{1}{\sin^2 \theta} C_{2424}. \]

Let \(N_{abcd,f} = \nabla_f R_{abcd} \) and \(N_{abcd,f}^2 = \nabla_f C_{abcd}. \) Then the non-vanishing components of the covariant derivatives of \(R \) and \(C \) are calculated and presented in below:
Curvature Properties of Bardeen Black Hole Spacetime

\[
\begin{align*}
N^1_{1212,2} &= \frac{3M\rho(12\epsilon^4 - 21\epsilon^2\rho^2 + 2\rho^5)}{\rho^1}\;,
N^1_{1213,3} &= \frac{3M\rho^3(5\rho^2 - 4\rho^1)(-2M\rho^2 + \rho^3)}{\rho^1} = -N^1_{1313,2}
\end{align*}
\]
\[
\begin{align*}
\left\{ \begin{array}{l}
N^1_{1214,4} = \frac{1}{\sin^2\theta} N^1_{1414,2};
N^1_{2332,4} = \frac{3M\rho^3(5\rho^2 - 4\rho^1)^2}{\rho^1(-2M\rho^2 + \rho^3)} = \frac{1}{\sin^2\theta} N^1_{2424,2};
N^1_{2334,4} = \frac{3M\rho^5\sin^2\theta}{\rho^1} = -N^1_{2434,3} = -2N^1_{3434,2};
\end{array} \right.
\end{align*}
\]
\[
\begin{align*}
\left\{ \begin{array}{l}
N^2_{1212,2} = \frac{\rho M(6e^4 - 23e^2\rho^2 + 6\rho^5)}{\rho^1} = \frac{1}{\rho^4\sin^2\theta} N^2_{1442,4};
N^2_{1213,3} = \frac{3M\rho^3(3\rho^2 - 5\rho^2)(-2M\rho^2 + \rho^3)}{2\rho^1} = \frac{1}{\sin^2\theta} N^2_{1214,4};
N^2_{1313,2} = \frac{-M\rho^3(6e^4 - 23e^2\rho^2 + 6\rho^4)(-2M\rho^2 + \rho^3)}{2\rho^1}
\end{array} \right.
\end{align*}
\]
\[
\begin{align*}
\left\{ \begin{array}{l}
N^2_{2332,2} = \frac{\rho^3(6e^4 - 23e^2\rho^2 + 6\rho^4)}{2\rho^1(-2M\rho^2 + \rho^3)} = \frac{1}{\sin^2\theta} N^2_{2424,2};
N^2_{2334,2} = \frac{-3M\rho^5(3\rho^2 - 5\rho^2)^2\sin^2\theta}{2\rho^1} = -N^2_{2334,3}.
\end{array} \right.
\end{align*}
\]
\(F^1, F^2, F^3\) and \(F^4\) are given by (up to symmetry)

\[
B^{1}_{1223,13} = -\frac{3 M^2 \rho^4}{2 \rho_1^2} (2 \rho_1^2 - 3 \rho^2)(3 \rho^2_1 - 5 \rho^2)
\]
\[
= \frac{1}{\sin^2 \theta} B^{1}_{1224,14} = -B^{1}_{1213,23} = \frac{1}{\sin^2 \theta} B^{1}_{1214,24},
\]
\[
B^{1}_{1434,13} = -\frac{3 M^2 \rho^6}{2 \rho_1^1} (2 \rho_1^2 - 3 \rho^2)(3 \rho^2_1 - 5 \rho^2)(-2 M \rho^2 + \rho^3_1) \sin^2 \theta
\]
\[
= -B^{1}_{1334,14},
\]
\[
B^{1}_{2434,23} = \frac{3 M^2 \rho^6 (2 \rho_1^2 - 3 \rho^2)(3 \rho^2_1 - 5 \rho^2)}{2 \rho_1^3 (-2 M \rho^2 + \rho^3_1)} \sin^2 \theta = -B^{1}_{2334,24};
\]

\[
B^{2}_{1223,13} = \frac{3 M^2 \rho^6 (-4 \rho_1^2 + 5 \rho^2)(3 \rho^2_1 - 5 \rho^2)}{2 \rho_1^4}
\]
\[
= -B^{2}_{1213,23} = \frac{1}{\sin^2 \theta} B^{2}_{1224,14} = \frac{1}{\sin^2 \theta} B^{2}_{1214,24},
\]
\[
B^{2}_{1434,13} = \frac{3 M^2 \rho^8}{2 \rho_1^1} (3 \rho^2_1 - 5 \rho^2)(-2 M \rho^2 + \rho^3_1) = -B^{2}_{1334,14},
\]
\[
B^{2}_{2434,23} = \frac{3 M^2 \rho^8 (3 \rho^2_1 - 5 \rho^2)}{2 \rho_1^3 (-2 M \rho^2 + \rho^3_1)} = -B^{2}_{2334,24};
\]

\[
F^{1}_{1223,13} = -\frac{3 M \rho^4}{\rho_1^1} (-4 \rho_1^2 + 5 \rho^2)
\]
\[
= -\frac{1}{\sin^2 \theta} F^{1}_{1214,24} = \frac{1}{\sin^2 \theta} F^{1}_{1224,14} = -F^{1}_{1213,23},
\]
\[
F^{1}_{1434,13} = \frac{3 M \rho^6}{\rho_1^1} (2 M \rho^2 - \rho^3_1) \sin^2 \theta = -F^{1}_{1334,14},
\]
\[
F^{1}_{2434,23} = \frac{3 M \rho^6 \sin^2 \theta}{\rho_1^3 (-2 M \rho^2 + \rho^3_1)} = -F^{1}_{2334,24};
\]

\[
F^{2}_{1223,13} = \frac{3 M^2 \rho^2 \rho^4}{\rho_1^2} (14 \rho_1^2 + 13 \rho^2)
\]
\[
= -F^{2}_{1213,23} = \frac{1}{\sin^2 \theta} F^{2}_{1224,14} = \frac{1}{\sin^2 \theta} F^{2}_{1214,24},
\]
\[
F^{2}_{1434,13} = \frac{12 M^2 \rho^6}{\rho_1^1} (-2 M \rho^2 + \rho^3_1) \sin^2 \theta = -F^{2}_{1334,14},
\]
\[
F^{2}_{2434,23} = \frac{12 M^2 \rho^6 \sin^2 \theta}{\rho_1^3 (-2 M \rho^2 + \rho^3_1)} = -F^{2}_{2334,24};
\]
Curvature Properties of Bardeen Black Hole Spacetime

\[
\begin{align*}
F_{1223,13}^3 &= \frac{3M\rho^4}{2\rho_1^4}(3\rho_1^2 - 5\rho^2) \\
&= -F_{1213,23}^3 = \frac{1}{\sin^2 \theta} F_{1224,14}^3 = -\frac{1}{\sin^2 \theta} F_{1214,24}^3, \\
F_{1434,13}^3 &= \frac{3M\rho^6}{2\rho_1^{10}}(3\rho_1^2 - 5\rho^2)(-2M\rho^2 + \rho_1^3) \sin^2 \theta = -F_{1334,14}^3, \\
F_{2434,23}^3 &= -\frac{3M\rho^6(3\rho_1^2 - 5\rho^2) \sin^2 \theta}{2\rho_1^4(-2M\rho^2 + \rho_1^4)} = -F_{2334,24}^3; \\
F_{1223,13}^4 &= \frac{3M^2e^2\rho^4}{2\rho_1^8}(3\rho_1^2 - 5\rho^2)(6\rho_1^2 - 7\rho^2) \\
&= \frac{1}{\sin^2 \theta} F_{1224,14}^4 = -F_{1213,23}^4 = \frac{1}{\sin^2 \theta} F_{1214,24}^4, \\
F_{1434,13}^4 &= -\frac{3M^2e^2\rho^6}{\rho_1^4}(3\rho_1^2 - 5\rho^2)^2(-2M\rho^2 + \rho_1^4) \sin^2 \theta \\
&= -F_{1334,14}^4, \\
F_{2434,23}^4 &= \frac{3M^2e^2\rho^6(3\rho_1^2 - 5\rho^2)}{\rho_1^4(-2M\rho^2 + \rho_1^4)} = F_{2334,24}^4.
\end{align*}
\]

Proposition 3.3. From (12)–(17) we obtain the following pseudosymmetric type curvature relations for the metric (1):

\[
C \cdot R - R \cdot C = \bar{\varrho}_2 Q(S, R) + \bar{\varrho}_1 Q(g, R),
\]

where

\[
\bar{\varrho}_1 = -\frac{M(3\rho_1^2 - 5\rho^2)(\rho^2(6\rho_1^2 - 7\rho^2) - (2\rho_1^2 - 3\rho^2)^2)}{2(6\rho_1^2 - 7\rho^2)^2\rho_1^4},
\]

\[
\bar{\varrho}_2 = 1 - \frac{3}{14} e^2(\frac{12}{6\rho_1^2 - 7\rho^2} + \frac{5}{\rho_1^4})
\]

and

\[
C \cdot R - R \cdot C = Q(S, C) + \bar{\varrho}_3 Q(g, C),
\]

where

\[
\bar{\varrho}_3 = \frac{2M(4\rho_1^2 - 5\rho^2)}{\rho_1^4} e^2.
\]

Let \(B^3 = W \cdot R\) and \(B^4 = K \cdot R\). Then the non-zero components of the tensors \(W \cdot R\) and \(K \cdot R\) are given by
A.A. Shaikh, S.K. Hui, M. Sarkar

\[
\begin{align*}
B^3_{1223,13} &= \frac{3M^2 \rho^6}{2 \rho_1^6} \left(-4 \rho_1^2 + 5 \rho^2 \right) \left(3 \rho_1^2 - 5 \rho^2 \right) \\
&= -B^3_{1213,23} = \frac{1}{\sin^2 \theta} B^3_{1224,14} = -\frac{1}{\sin^2 \theta} B^3_{1214,24}, \\
B^3_{1434,13} &= \frac{3M^2 \rho^8}{2 \rho_1^8} \left(3 \rho_1^2 - 5 \rho^2 \right) \left(-2M \rho^2 + \rho_1^2 \right) \sin^2 \theta \\
&= -B^3_{1334,14}, \\
B^3_{2434,23} &= -\frac{3M^2 \rho^6 \left(3 \rho_1^2 - 5 \rho^2 \right) \sin^2 \theta}{2 \rho_1^6 \left(-2M \rho^2 + \rho_1^2 \right)} = -B^3_{2334,24};
\end{align*}
\]

\[
\begin{align*}
B^4_{1223,13} &= \frac{3M^2 \rho^4}{2 \rho_1^4} \left(-4 \rho_1^2 + 5 \rho^2 \right) \left(8e^4 - 5e^2 \rho^2 + 2 \rho^4 \right) \\
&= -B^4_{1213,23} = \frac{1}{\sin^2 \theta} B^4_{1224,14} = -\frac{1}{\sin^2 \theta} B^4_{1214,24}, \\
B^4_{1434,13} &= -\frac{3M^2 \rho^6}{2 \rho_1^6} \left(8e^4 - 5e^2 \rho^2 + 2 \rho^4 \right) \left(-2M \rho^2 + \rho_1^2 \right) \sin^2 \theta \\
&= -B^4_{1334,14}, \\
B^4_{2434,23} &= \frac{3M^2 \rho^6 \left(8e^4 - 5e^2 \rho^2 + 2 \rho^4 \right) \sin^2 \theta}{2 \rho_1^6 \left(-2M \rho^2 + \rho_1^2 \right)} = -B^4_{2334,24}.
\end{align*}
\]

From (14), (20) and (21) we get the following:

Proposition 3.4. The Bardeen metric (1) fulfills the curvature conditions

\[
W \cdot R = -\frac{M \rho^2 \left(3 \rho_1^2 - 5 \rho^2 \right)}{2 \rho_1^2} Q(g, R)
\]

and

\[
K \cdot R = \frac{M \left(8e^4 - 5e^2 \rho^2 + 2 \rho^4 \right)}{2 \rho_1^2} Q(g, R).
\]

From propositions 3.1–3.4 and from corollary 3.1 we can conclude about the curvature properties of the Bardeen spacetime metric (1) as follows:

Theorem 3.1. The Bardeen metric (1) admits the following curvature restricted geometric structures:

(i) it is a pseudosymmetric spacetime, and as a result it realizes Ricci pseudosymmetry, conformal pseudosymmetry, concircular pseudosymmetry, conharmonic pseudosymmetry and projective pseudosymmetry,

(ii) it is also pseudosymmetric due to conformal curvature, concircular curvature and conharmonic curvature,

(iii) the difference tensor $C \cdot R - R \cdot C$ is linearly dependent with the tensors $Q(g, R)$ and $Q(S, R)$ as well as it is also linearly dependent with the tensors $Q(g, C)$ and $Q(S, C)$.

180
Curvature Properties of Bardeen Black Hole Spacetime

(iv) the pseudosymmetric type condition

\[R \cdot R - Q(S, R) = \varrho Q(S, C) \]

is possessed by this spacetime, and also, it is equipped with pseudosymmetric Weyl tensor, where \(\varrho \) is a smooth scalar function given in corollary 3.1.

(v) it is a weakly generalized recurrent manifold satisfying special recurrent like structure \(\nabla R = A \otimes (g \wedge S) \),

(vi) its conformal 2 forms are recurrent,

(vii) it is a Roter type spacetime and is an Einstein manifold of level 2,

(viii) Ricci tensor is Weyl compatible as well as Riemann compatible.

Remark 3.1. From the components of various curvatures we conclude that the following geometric structures are not admitted by the Bardeen metric (1):

(i) any semisymmetric type conditions for \(C, P, W, K, S \),
(ii) Ricci generalized pseudosymmetry,
(iii) D-Venzi space for \(E = C, R, P, W, K \),
(iv) Einstein or quasi-Einstein condition,
(v) curvature 2-forms recurrence,
(vi) Codazzi type Ricci tensor or cyclic parallel Ricci tensor,
(vii) Chaki pseudosymmetry,
(viii) Weak symmetry.

4 Energy Momentum Tensor of Bardeen Black Hole Metric

In general theory of relativity, Einstein describes the physics of a spacetime in terms of geometry by the system of equations

\[S - \frac{k}{2}g + \Lambda g = \frac{8\pi G}{c^4} T, \]

where \(k \) is the scalar curvature, \(S \) is the Ricci curvature and \(T \) is the energy momentum tensor of the spacetime. Also \(\Lambda \) represents the cosmological constant, \(G \) is the gravitational constant, \(c \) is the speed of light in vacuum.

Taking \(8\pi G/c^4 = 1 \) the components of Energy momentum tensor are given by

\[T_{11} = -\frac{(-2M \rho^2 + \rho^3)(6Me^2 + \rho^5 \Lambda)}{\rho^4}, \]

\[T_{22} = \frac{6Me^2 + \rho^5 \Lambda}{\rho^4 (-2M \rho^2 + \rho^3)}, \]

\[T_{33} = \frac{\rho^2 (3Me^2 (2\rho^2 - 5\rho^2) + \rho^7 \Lambda)}{\rho^4} = \frac{1}{\sin^2 \theta} T_{44}. \]

181
A.A. Shaikh, S.K. Hui, M. Sarkar

We note that the covariant form of the energy momentum tensor of a spherically symmetric doubly warped spacetime in Einstein gravity was given in [39] (see eq.(55)). Hence the energy momentum tensor of the metric (1) in Einstein gravity can be inferred as the particular case when \(a(t) = 1 \) (i.e., \(\phi = \xi = 0 \) in eq.(55) of [39]). It represents an anisotropic imperfect fluid.

The non-zero components of the tensor \(R \cdot T \) are

\[
(R \cdot T)_{1313} = \frac{15 M^2 e^2 \rho^4}{8 \rho_1^6}(-2\rho_1^2 + 3\rho^2)(-2M\rho^2 + \rho_1^2) = \frac{1}{\sin^2 \theta}(R \cdot T)_{1414},
\]

\[
(R \cdot T)_{2323} = -\frac{15 M^2 e^2 \rho^4(-2\rho_1^2 + 3\rho^2)}{8 \rho_1^6(-2M\rho^2 + \rho_1^2)} = \frac{1}{\sin^2 \theta}(R \cdot T)_{2424}.
\]

The non-zero components of the tensor \(Q(g,T) \) are

\[
Q(g,T)_{1313} = \frac{15 Me^2 \rho^4}{8 \rho_1^{10}}(-2M\rho^2 + \rho_1^2) = \frac{1}{\sin^2 \theta}Q(g,T)_{1414},
\]

\[
Q(g,T)_{2323} = -\frac{15 Me^2 \rho^4}{8 \rho_1^{10}(-2M\rho^2 + \rho_1^2)} = \frac{1}{\sin^2 \theta}Q(g,T)_{2424}.
\]

Also the non-zero components of the tensor \(C \cdot T \) are

\[
(C \cdot T)_{1313} = -\frac{15 M e^2 \rho^6(3\rho_1^2 - 5\rho^2)(-2M\rho^2 + \rho_1^2)}{2 \rho_1^6} = \frac{1}{\sin^2 \theta}(C \cdot T)_{1414},
\]

\[
(C \cdot T)_{2323} = -\frac{15 M e^2 \rho^6(3\rho_1^2 - 5\rho^2)}{2 \rho_1^6(-2M\rho^2 + \rho_1^2)} = \frac{1}{\sin^2 \theta}(C \cdot T)_{2424}.
\]

We can state the following, in view the above components:

Theorem 4.1. The Bardeen spacetime (1) has the energy momentum tensor concurring the following properties:

(i) \(R \cdot T = -\frac{M(2\rho_1^2 - 3\rho^2)}{\rho_1^4}Q(g,T) \) i.e., the energy momentum tensor is pseudosymmetric,

(ii) \(C \cdot T = -\frac{M \rho^2(3\rho_1^2 - 5\rho^2)}{2 \rho_1^4}Q(g,T) \) i.e., the energy momentum tensor is pseudosymmetric due to Weyl tensor,

(iii) the energy momentum tensor is Riemann compatible as well as Weyl compatible.

5 Bardeen Black Hole Metric and Reissner-Nordström Metric

Reissner-Nordström metric [28] is a stationary solution of Einstein-Maxwell field equations with zero cosmological constant. Physically, it represents the
Curvature Properties of Bardeen Black Hole Spacetime

The exterior gravitational field of a charged black hole. In spherical coordinates (t, ρ, θ, ϕ), the Reissner-Nordström metric is given by ([104], see p.361)

$$ds^2 = g_{ij} dx^i dx^j = -\left(1 - \frac{2m}{\rho} + \frac{q^2}{\rho^2}\right) dt^2 + \left(1 - \frac{2m}{\rho} + \frac{q^2}{\rho^2}\right)^{-1} d\rho^2 + \rho^2 d\Omega^2,$$

where t is the time coordinate, ρ is the radial coordinate, the parameters m is the mass of the body and q is the charge of the body. We note that Bardeen spacetime is also a model of a charged black hole. Unlike Reissner-Nordström metric it does not bear curvature singularity. Hence we compare their curvature properties as this comparison compare a charge black hole with curvature singularity free black hole, the Bardeen black hole.

Similarities:

(i) both the black holes are Roter type,
(ii) both spacetimes describe $E_{in}(2)$ manifolds,
(iii) both the black holes are pseudosymmetric,
(iv) conformal curvature 2-forms are recurrent for both,
(v) both the spacetimes have Riemann compatible and Weyl compatible Ricci tensor.

However, they have the following dissimilar properties:
Dissimilarities:

(i) scalar curvature of Reissner-Nordström spacetime vanishes while it doesn’t for the Bardeen spacetime,

(ii) the Bardeen spacetime comes out with a weakly generalized recurrent manifold while Reissner-Nordström spacetime doesn’t,

(iii) also the Bardeen spacetime admits special recurrent like structure $\nabla R = A \otimes (g \wedge S)$ (A being some 1-form) but Reissner-Nordström spacetime does not admit such recurrence.

Acknowledgment

The third author greatly acknowledges to The University Grants Commission, Government of India for the award of Senior Research Fellow. All the algebraic computations of Section 3 and 4 are performed by a program in Wolfram Mathematica developed by the first author (A. A. Shaikh).

Data Availability: No data was used for the research described in the article.

References

[1] É. Cartan (1926) Sur une classe remarquable d’espaces de Riemannian. Bull. Soc. Math. France 54 214-264.
[2] É. Cartan (1946) Leçons sur la géométrie des espaces de Riemann. 2nd Ed., Paris.
[3] Z.I. Szabó (1982) Structure theorems on Riemannian spaces satisfying $R(X,Y) \cdot R = 0$. I. The local version. J. Diff. Geom. 17 531-582.
[4] Z.I. Szabó (1984) Classification and construction of complete hypersurfaces satisfying $R(X,Y) \cdot R = 0$. Acta Sci. Math. 47 321-348.
[5] Z.I. Szabó (1985) Structure theorems on Riemannian spaces satisfying $R(X,Y) \cdot R = 0$. II. The global version. Geom. Dedicata 19 65-108.
[6] A. Adamów, R. Deszcz (1983) On totally umbilical submanifolds of some class of Riemannian manifolds. Demonstratio Math. 16 39-59.
[7] H.S. Ruse (1946) On simply harmonic spaces. J. London Math. Soc. 21 243-247.
[8] H.S. Ruse (1949) On simply harmonic ‘kappa spaces’ of four dimensions. Proc. London Math. Soc. 50 317-329.
[9] H.S. Ruse (1949) Three dimensional spaces of recurrent curvature. Proc. London Math. Soc. 50 438-446.
[10] A.G. Walker (1950) On Ruse’s spaces of recurrent curvature. Proc. London Math. Soc. 52 36-64.
[11] A.A. Shaikh, A. Patra (2010) On a generalized class of recurrent manifolds. Arch. Math. (Brno) 46 71-78.
[12] A.A. Shaikh, I. Roy (2010) On quasi generalized recurrent manifolds. Math. Pannon. 21(2) 251-263.
[13] A.A. Shaikh, I. Roy, H. Kundu (2018) On the existence of a generalized class of recurrent manifolds. Anale. Științ. Univ. Al. I. Cuza Iași. Mat. (N. S.) LXIV(2) 233-251.
Curvature Properties of Bardeen Black Hole Spacetime

[14] A.A. Shaikh, I. Roy, H. Kundu (2017) On some generalized recurrent manifolds. *Bull. Iranian Math. Soc.* 43(5) 1209-1225.
[15] L. Tamásy, T.Q. Binh (1989) On weakly symmetric and weakly projective symmetric Riemannian manifolds. *Colloq. Math. Soc. J. Bolyai* 50 663-670.
[16] L. Tamásy, T.Q. Binh (1993) On weak symmetries of Einstein and Sasakian manifolds. *Tensor (N. S.)* 53 140-148.
[17] M.C. Chaki (1987) On pseudosymmetric manifolds. *Anale. Științ. Univ. AL. I. Cașca Șiși. Mat. (N.S.) Sect. Ia* 33(1) 53-58.
[18] M.C. Chaki (1988) On pseudo Ricci symmetric manifolds. *Bulg. J. Phys.* 15 526-531.
[19] A.L. Besse (1987) *Einstein manifolds*. Springer-Verlag, Berlin, Heidelberg.
[20] D. Lovelock, H. Rund (1989) *Tensors, differential forms and variational principles*, Courier Dover Publications.
[21] C.A. Mantica, Y.J. Suh (2012) The closedness of some generalized curvature 2-forms on a Riemannian manifold I. *Publ. Math. Debrecen*, 81(3-4) 313-326.
[22] C.A. Mantica, Y.J. Suh (2013) The closedness of some generalized curvature 2-forms on a Riemannian manifold II. *Publ. Math. Debrecen* 82(1) 163-182.
[23] C.A. Mantica, Y.J. Suh (2014) Recurrent conformal 2-forms on pseudo-Riemannian manifolds. *Int. J. Geom. Methods Mod. Phys.* 11(6) 1450056.
[24] K. Arslan, R. Deszcz, R. Ezentaş, M. Hotloš, C. Murathan (2014) On generalized Robertson-Walker spacetimes satisfying some curvature condition. *Turkish J. Math.* 38(2) 353-373.
[25] R. Deszcz (2003) On some Akivis-Goldberg type metrics. *Publ. Inst. Math. (Beograd) (N.S.)* 74(88) 71-84.
[26] R. Deszcz, M. Kucharski (1999) On curvature properties of certain generalized Robertson-Walker spacetimes. *Tsukuba J. Math.* 23(1) 113-130.
[27] J.B. Griffiths, J. Podolský (2009) *Exact space-times in Einstein’s general relativity*, Cambridge University Press.
[28] D. Kowalczyk (2006) On the Reissner-Nordström-deSitter type spacetimes. *Tsukuba J. Math.* 30(2) 363-381.
[29] A.A. Shaikh, M. Ali, Z. Ahsan (2018) Curvature properties of Robinson-Trautman metric. *J. Geom.* 109(2) 1-20.
[30] A.A. Shaikh, A. Ali, A.H. Alkhaled, D. Chakraborty (2020) Curvature properties of Melvin magnetic metric. *J. Geom. Phys.* 150 103593.
[31] A.A. Shaikh, A. Ali, A.H. Alkhaled, D. Chakraborty, B.R. Datta (2022) On some curvature properties of Lemaitre–Tolman–Bondi spacetime. *Gen. Relativ. Gravit.* 54(1) 6.
[32] A.A. Shaikh, L. Das, H. Kundu, D. Chakraborty (2019) Curvature properties of Siklos metric. *Diff. Geom.- Dyn. Syst.* 21 167-180.
[33] S. Haesen, L. Verstraelen (2007) Properties of a scalar curvature invariant depending on two planes. *Manuscripta Math.* 122 59-72.
[34] S. Haesen, L. Verstraelen (2007) On the sectional curvature of Deszcz. *Anale. Științ. Univ. AL. I. Cașca Șiși. Mat. (N.S.)* 53 181-190.
[35] S. Haesen, L. Verstraelen (2009) Natural Intrinsic Geometrical Symmetries. *Symmetry, Integrability and Geometry, Methods and Applications - SIGMA* 5 086.
A.A. Shaikh, S.K. Hui, M. Sarkar

[36] A.A. Shaikh, R. Deszcz, M. Hotloś, J. Jelowicki, H. Kundu (2015) On pseudosymmetric manifolds. *Publ. Math. Debrecen* **86**(3-4) 433-456.

[37] J. Bardeen (1968) Non-singular general-relativistic gravitational collapse. In *Proceedings of the International Conference GR5*, Tbilisi, U.S.S.R. 174.

[38] E. Ayón-Beato, A. García (2000) The Bardeen model as a nonlinear magnetic monopole. *Phys. Lett. B* **493** 149-152.

[39] C.A. Mantica, L.G. Molinari (2022) Spherical doubly warped spacetimes for radiating stars and cosmology. *Gen. Relativ. Gravit.* **54** 98.

[40] A. Borde (1997) Regular black holes and topology change. *Phys. Rev. D.* **55** 7615.

[41] A.A. Shaikh, R. Deszcz, H.A. Hasmani, G.V. Khambholja (2020) Curvature properties of Interior black hole metric. *Indian J. Pure Appl. Math.* **51** 1779-1814.

[42] R. Deszcz, M. Głogowska, M. Hotloś, K. Sawicz (2011) A survey on generalized Einstein metric conditions. In: *Advances in Lorentzian Geometry*, S.-T. Yau (series ed.), M. Plaue, A.D. Rendall and M. Scherfner (eds.); *Proceedings of the Lorentzian Geometry Conference in Berlin*, AMS/IP Studies in Advanced Mathematics **49** 27-46.

[43] M. Głogowska (2002) Semi-Riemannian manifolds whose Weyl tensor is a Kulkarni-Nomizu square. *Publ. Inst. Math. (Beograd) (N.S.)* **72**(86) 95-106.

[44] A.A. Shaikh, H. Kundu, Md.S. Ali (2018) On warped product super generalized recurrent manifolds. *Anale. Științ. Univ. Al. I. Cuza Iași. Mat. (N. S.)* **LXIV**(1) 85-99.

[45] R. Deszcz, M. Hotloś, J. Jelowicki, H. Kundu, A.A. Shaikh (2014) Curvature properties of Gödel metric. *Int. J. Geom. Methods Mod. Phys.* **11** 1450025; — (2019) Erratum: Curvature properties of Gödel metric. *Int. J. Geom. Methods Mod. Phys.* **16** 1992002.

[46] A.A. Shaikh, D. Chakraborty (2021) Curvature properties of Kantowski-Sachs metric. *J. Geom. Phys.* **160** 103970.

[47] A.A. Shaikh, H. Kundu (2018) On some curvature restricted geometric structures for projective curvature tensor. *Int. J. Geom. Methods Mod. Phys.* **15** 1850157.

[48] A.A. Shaikh, H. Kundu (2019) On generalized Roter type manifolds. *Kragujevac J. Math.* **43**(3) 471-493.

[49] R. Deszcz, M. Głogowska, M. Hotloś, Z. dSentürk (1998) On certain quasi-Einstein semi-symmetric hypersurfaces. *Ann. Univ. Sci. Budapest Eötvös Sect. Math.* **41** 151-164.

[50] R. Deszcz, M. Hotloś (2003) On hypersurfaces with type number two in spaces of constant curvature. *Ann. Univ. Sci. Budapest Eötvös Sect. Math.* **46** 19-34.

[51] A.A. Shaikh, H. Kundu (2014) On equivalency of various geometric structures. *J. Geom.* **105** 139-165.

[52] R. Deszcz, M. Głogowska, M. Plaue, K. Sawicz, M. Scherfner (2011) On hypersurfaces in space forms satisfying particular curvature conditions of Tachibana type. *Kragujevac J. Math.* **35** 223-247.

[53] S. Tachibana (1974) A theorem on Riemannian manifolds of positive curvature operator. *Proc. Japan Acad.* **50** 301-302.

[54] R. Deszcz (1992) On pseudosymmetric spaces. *Bull. Belg. Math. Soc., Ser. A* **44** 1-34.
Curvature Properties of Bardeen Black Hole Spacetime

[55] R. Deszcz (1993) Curvature properties of a pseudosymmetric manifolds. *Colloq. Math.* **62** 139-147.

[56] R. Deszcz, M. Głogowska, M. Hotloś, G. Zafindratafa (2015) On some curvature conditions of pseudosymmetric type. *Period. Math. Hungarica* **70**(2) 153-170.

[57] R. Deszcz, M. Głogowska, M. Hotloś, G. Zafindratafa (2016) Hypersurfaces in space forms satisfying some curvature conditions. *J. Geom. Phys.* **99** 218-231.

[58] A.A. Shaikh, H. Kundu (2017) On warped product manifolds satisfying some pseudosymmetric type conditions. *Diff. Geom. - Dyn. Syst.* **19** 119-135.

[59] A.A. Shaikh, A. Ali, A.H. Alkhaldi, D. Chakraborty (2020) Curvature properties of Nariai spacetimes. *Int. J. Geom. Methods Mod. Phys.* **17**(03) 2050034.

[60] A.A. Shaikh (2009) On pseudo quasi-Einstein manifolds. *Period. Math. Hungarica* **59**(2) 119-146.

[61] A.A. Shaikh, Y.H. Kim, S.K. Hui (2011) On Lorentzian quasi Einstein manifolds. *J. Korean Math. Soc.* **48**(4) 669-689.

[62] A.A. Shaikh, D.W. Yoon, S.K. Hui (2009) On quasi-Einstein spacetimes. *Tsukuba J. Math.* **33**(2) 305-326.

[63] L.J. Álás, A. Romero, M. Sánchez (1995) Uniqueness of complete spacelike hypersurfaces of constant mean curvature in generalized Robertson-Walker spacetimes. *Gen. Relativ. Gravit.* **27**(1) 71-84.

[64] B. O'Neill (1983) *Semi-Riemannian Geometry with Applications to the Relativity*, Academic Press, New York-London.

[65] H. Stephani, D. Kramer, M. MacCallum, C. Hoenselaers, E. Hertl (2003) *Exact solutions of Einstein’s Field equations*, Cambridge Monographs on Mathematical Physics, Cambridge University Press, Second Edition.

[66] A.A. Shaikh, F. Ahmed, B.R. Datta (2023) Geometrical properties of a point-like global monopole spacetime. arXiv:2301.04897.

[67] S. Eyasmin, D. Chakraborty, M. Sarkar (2022) Curvature properties of Morris-Thorne Wormhole metric. *J. Geom. Phys.* **174** (2) 104457.

[68] A.A. Shaikh, H. Kundu, J. Sen (2019) Curvature properties of Vaidya metric. *Indian J. Math.* **61**(1) 41-59.

[69] A.A. Shaikh, B.R. Datta, D. Chakraborty (2021) On some curvature properties of Vaidya-Bonner metric. *Int. J. Geom. Methods. Phys.* **18**(13) 2150205.

[70] A.A. Shaikh, H. Kundu (2016) On curvature properties of Som-Raychaudhuri spacetime. *J. Geom.* **108**(2) 501-515.

[71] S. Eyasmin, B.R. Datta, M. Sarkar (2023) On Sultana-Dyer spacetime: curvatures and geometric structures. *Int. J. Geom. Methods Mod. Phys* **20**(6) 2350101.

[72] A.A. Shaikh, S.K. Srivastava, D. Chakraborty (2019) Curvature properties of anisotropic scale invariant metrics. *Int. J. Geom. Methods Mod. Phys.* **16** 1950086.

[73] A.A. Shaikh, S.K. Hui, B.R. Datta, M. Sarkar (2023) On curved related geometric properties of Hayward black hole spacetime. arXiv:2303.00932.

[74] A.A. Shaikh, S.K. Hui, M. Sarkar (accepted) Curvature properties of a warped product metric. *Palestine J. Math*.

[75] S. Decu, R. Deszcz, S. Haesen (2021) A classification of Roter type spacetimes. *Int. J. Geom. Methods Mod. Phys* **18**(09) 2150147.
A.A. Shaikh, S.K. Hui, M. Sarkar

[76] R. Deszcz (2003) On Roter type manifolds. In: 5-th Conference on Geometry and Topology of Manifolds, April 27 - May 3, 2003, Krynica, Poland.

[77] R. Deszcz, M. Głogowska, J. Jelowicki, Z. Zafindratafa (2016) Curvature properties of some class of warped product manifolds. *Int. J. Geom. Methods Mod. Phys.* 13 1550135.

[78] R. Deszcz, M. Głogowska, J. Jełowicki, Z. Zafindratafa (2013) On Riemann and Weyl compatible tensors. *Publ. Inst. Math. (Beograd) (N.S.)* 94(108) 111-124.

[79] R. Deszcz, M. Głogowska, M. Petrović-Torgašev, L. Verstraelen (2015) Curvature properties of some class of minimal hypersurfaces in Euclidean spaces. *Filomat* 29 479-492.

[80] A.A. Shaikh, H. Kundu (2016) On warped product generalized Roter type manifolds. *Balkan J. Geom. Appl.* 21(2) 82-95.

[81] R. Deszcz, M. Głogowska (2002) Some examples of nonsemisymmetric Ricci-semisymmetric hypersurfaces. *Colloq. Math.* 94 87-101.

[82] R. Deszcz, M. Głogowska, M., Petrović-Torgašev, L., Verstraelen (2011) On the Roter type of Chen ideal submanifolds. *Results Math.* 59 401-413.

[83] R. Deszcz, M. Plaue, M. Scherfner (2013) On Roter type warped products with 1-dimensional fibres. *J. Geom. Phys.* 69 1-11.

[84] M. Głogowska (2007) On Roter type manifolds. In: F. Dillen, I. Van De Woestyne (eds.) Pure and Applied Differential Geometry - PADGE, pp. 114-122.

[85] A.A. Shaikh, B.R. Datta (2022) Ricci solitons and curvature inheritance on Robinson-Trautman spacetimes. arXiv:2209.03749.

[86] A.A. Shaikh, F.R. Al-Solamy, I. Roy (2013) On the existence of a new class of semi-Riemannian manifolds. *Mathematical Sciences* 7 46.

[87] A.A. Shaikh, I. Roy (2011) On weakly generalized recurrent manifolds. *Ann. Univ. Sci. Budapest, Eötvös Sect. Math.* 54 35-45.

[88] E.M. Patterson (1952) Some theorems on Ricci recurrent spaces. *J. London Math. Soc.* 27 287-295.

[89] Y.J. Suh, J.-H. Kwon, Y.S. Pyo (2003) On semi-Riemanian manifolds satisfying the second Bianchi identity. *J. Korean Math. Soc.* 40(1) 129-167.

[90] D. Ferus (1981) A remark on Codazzi tensors on constant curvature space. *Glob. Diff. Geom. Glob. Ann., Lecture notes* 838, Springer.

[91] U. Simon (1981) Codazzi tensors. *Glob. Diff. Geom. and Glob. Ann.* Lecture notes, 838, Springer-Verlag, pp. 289-296.

[92] A. Gray (1975) Einstein-like manifolds which are not Einstein. *Geom. Dedicta* 7 259-280.

[93] A.A. Shaikh, T.Q. Binh (2008) On some class of Riemanian manifolds. *Bull. Transilv. Univ.* 15(50) 351-362.

[94] A.A. Shaikh, S.K. Jana (2006) On weakly cyclic Ricci symmetric manifolds. *Ann. Pol. Math.* 89(3) 139-146.

[95] A.A. Shaikh, S.K. Jana (2007) On quasi-conformally flat weakly Ricci symmetric manifolds. *Acta Math. Hungar.* 115(3) 197-214.

[96] S. Eyasmin, D. Chakraborty (2021) Curvature properties of (t-z)-type plane wave metric. *J. Geom. Phys.* 160 104004.
Curvature Properties of Bardeen Black Hole Spacetime

[97] F. Defever, R. Deszcz (1991) On semi-Riemannian manifolds satisfying the condition $R \cdot R = Q(S, R)$. In: Geometry and Topology of Submanifolds III, World Sci., River Edge, NJ, pp. 108-130.

[98] C.A. Mantica, L.G. Molinari (2012) Extended Derdzinski-Shen theorem for curvature tensors. Colloq. Math. 128 1-6.

[99] S.A. Mantica, L.G. Molinari (2012) Riemann compatible tensors. Colloq. Math. 128 197-210.

[100] C.A. Mantica, L.G. Molinari (2014) Weyl compatible tensors. Int. J. Geom. Methods Mod. Phys. 11(08) 1450070.

[101] C.A. Mantica, L.G. Molinari (2022) The Jordan algebras of Riemann, Weyl and curvature compatible tensors. Colloq. Math. 167 63-72.

[102] M. Prvanović (1995) On weakly symmetric Riemannian manifolds. Publ. Math. Debrecen 46(1-2) 19-25.

[103] P. Venzi (1985) Una generalizzazione degli spazi ricorrenti. Rev. Roumaine Math. Pures Appl. 30 295-305.

[104] F.D. Felice, C.J.S. Clarke (1995) Relativity on curved manifolds. Cambridge monographs on Mathematical Physics. Cambridge University Press, reprint.