SOME REMARKS ON CONES OF PARTIALLY AMPLE DIVISORS

ROBERT LATERVEER

ABSTRACT. We study the cones of q-ample divisors $q\text{Amp}$ on smooth complex varieties. In favourable cases, we identify a part where the closure $\overline{q\text{Amp}}$ and the nef cone have the same boundary. This is especially interesting for Fano (or almost Fano) varieties.

Totaro’s landmark paper [25] has given a new impetus to the study of partially ample divisors. Let X be a smooth projective complex variety of dimension n, and L on X a line bundle. We recall that L is called q-ample if for every coherent sheaf \mathcal{F} there exists an integer m_0 such that

$$H^i(X, \mathcal{F} \otimes L^m) \text{ for all } i > q \text{ and } m > m_0.$$

From Serre’s criterion it follows that 0-amplicity coincides with ampleness. Totaro proves that the q-amplicity of L only depends on the numerical equivalence class of L [25, Theorem 8.3]. The definition can moreover be extended to \mathbb{R}-divisors [25, 8.2], in such a way that q-ample \mathbb{R}-divisors form an open cone $q\text{Amp}(X)$ in $N^1(X)$ (the space of \mathbb{R}-divisors modulo numerical equivalence). We thus get a series of cones

$$\text{Amp}(X) = 0\text{Amp}(X) \subset 1\text{Amp}(X) \subset \cdots \subset n\text{Amp}(X) = N^1(X).$$

While the ample cone $\text{Amp}(X)$ and the cone $(n - 1)\text{Amp}(X)$ are fairly well understood, the intermediate cones $q\text{Amp}(X)$ for $0 < q < n - 1$ are still quite elusive and mysterious (see for instance [25, section 11] for some fundamental open questions).

The modest goal of this paper is to identify a part of these cones $q\text{Amp}$. Indeed, it turns out that in favourable cases, part of the boundary of the closed cone $\overline{q\text{Amp}}$ coincides with the boundary of the nef cone. To start with, let’s restrict attention to the case that is easiest to state, that of the cone of 1-ample divisors 1Amp. Let $\partial \text{Nef}(X)$ denote the boundary of the nef cone, and let $K_X \in N^1X$ denote the class of the canonical divisor. We define

$$\partial \text{Nef}(X)_\text{visible} \subset \partial \text{Nef}(X)$$

to be the part of the boundary that is visible from K_X; cf. Definition 17 for the precise definition. (We note that when K_X is nef, we have $\partial \text{Nef}(X)_\text{visible} = \emptyset$!)

This “K_X–visible part” of the boundary turns out to be closely related to the boundary of $1\text{Amp}(X)$. This is detailed in the following result, where $\text{Mob}(X)$ and $\text{Big}(X)$ denote the cone of mobile divisors resp. big divisors.

Theorem. (=Theorem 19) Let X be a smooth projective complex variety.

Date: September 10, 2017.

1991 Mathematics Subject Classification. 14C20, 14E30, 14J45.

Key words and phrases. partially ample divisors, ample cone, Fano varieties, minimal model program.

1
(i) \[\partial \text{Nef}(X)_{\text{visible}} \cap \text{int}(\text{Mob}(X)) \]
is in the boundary of \(\text{1Amp}(X) \).

(ii) Suppose \(X \) is not the blow–up of a smooth projective variety along a smooth codimension 2 subvariety. Then
\[\partial \text{Nef}(X)_{\text{visible}} \cap \text{Big}(X) \subset \partial \text{1Amp}(X) . \]

(iii) Suppose \(X \) is not a conic bundle over a smooth projective variety, nor a blow–up of a smooth projective variety along a smooth codimension 2 subvariety. Then
\[\partial \text{Nef}(X)_{\text{visible}} \subset \partial \text{1Amp}(X) . \]

That is, with two exceptions (a blow–up and a conic bundle) the ample cone and the 1-ample cone look exactly the same when observed from \(K_X \), and hence the only places where 1Amp can grow larger than Amp are located in the “shadowy part” invisible from \(K_X \). This theorem is proven by exploiting the existence of an MMP for any adjoint divisor, as proven by Birkar–Cascini–Hacon–McKernan [5].

It follows from Theorem 19 that the cone 1Amp(X) is strictly convex for any \(X \) such that \(\partial \text{Nef}(X)_{\text{visible}} \cap \text{int}(\text{Mob}(X)) \neq \emptyset \) (Corollary 24). The following is also an immediate corollary:

Corollary. (=Corollary 23) Let \(X \) be a smooth projective variety, and suppose \(K_X \) is 1-ample. Then
\[\partial \text{Nef}(X)_{\text{visible}} \subset \partial \text{Mob}(X) . \]

That is, if \(K_X \) is 1-ample the nef cone and the closed mobile cone look the same when observed from \(K_X \).

Of course, the above theorem is empty of content when \(K_X \) is nef (for then the \(K_X \)--visible part is empty), while the assertion grows stronger when \(K_X \) grows more negative (for then the \(K_X \)--visible part grows larger, which means that the 1-ample cone looks more and more like the ample cone). The limit case is when \(X \) is a Fano variety: then the whole boundary of \(\text{Nef}(X) \) is \(K_X \)--visible. In fact, we can prove more generally:

Corollary. (=Corollary 25) Let \(X \) be a smooth projective complex variety such that either (1) \(-K_X \) is ample, or (2) \(-K_X \) is \(\neq 0 \) and nef and \(\dim N^1 X \geq 3 \). Then:

(i) \[\partial \text{Nef}(X) \cap \text{int}(\text{Mob}(X)) \]
is in the boundary of \(\text{1Amp}(X) \).

(ii) Suppose \(X \) is not the blow–up of a smooth projective variety \(Y \) along a smooth codimension 2 subvariety. Then
\[\partial \text{Nef}(X) \cap \text{Big}(X) \subset \partial \text{1Amp}(X) . \]

(iii) Suppose \(X \) is not a conic bundle over a smooth projective variety \(Y \), nor a blow–up of a smooth projective variety along a smooth codimension 2 subvariety. Then
\[\text{Amp}(X) = \text{1Amp}(X) . \]
(For Fano varieties, I proved this in [21]).

Here is an application of the above theorem: we can identify a part of the nef cone for which the weak Lefschetz principle holds. Let \(Y \subset X \) be a generic hyperplane section. If the dimension \(n \) of \(X \) is \(\geq 4 \), pull-back induces a natural isomorphism \(N^1X \cong N^1Y \). Thus it makes sense to ask whether the nef cones \(\text{Nef}(X) \) and \(\text{Nef}(Y) \) coincide. The answer is negative in general, as shown by Hassett–Lin–Wang [15]. On the other hand, the answer is positive for certain Fano varieties ([26], [15], [18], [1], [6], [24]). Using the above Theorem, it turns out that the \(K_X \)-visible part cuts out a part where weak Lefschetz holds for the nef cone:

Corollary. (=Corollary 27) Let \(X \) be a smooth projective complex variety of dimension \(n \geq 4 \), and let \(Y \subset X \) be any ample hypersurface. Then

\[
\partial \text{Nef}(X)_{\text{visible}} \cap \text{int}(\text{Mob}(X)) \subset \partial \text{Nef}(Y) \cap \partial \text{Nef}(X).
\]

This is proven using a result of Demailly–Peternell–Schneider [10] (cf. also [20]), which says that a divisor restricting to an ample divisor on \(Y \) is 1-ample on \(X \).

We prove a result similar to Theorem 19 by similar means, for the \(q \)-ample cone (where \(q \) may be > 1). This result is a bit more awkward to state. As a matter of notation, we introduce the cone \(Bq\text{Amp}(X) \); this is defined as the cone of those \(\mathbb{R} \)-divisors which have augmented base locus of dimension \(\leq q \).

Theorem. (=Theorem 31) Let \(X \) be a smooth projective variety of dimension \(n \). For any non-negative integer \(q \), we have

\[
\partial \text{Nef}(X)_{\text{visible}} \cap B(n - 1 - q)\text{Amp}(X) \subset \partial q\text{Amp}(X).
\]

Here is how this paper is organized. The first two sections are of a preliminary nature. The first concerns several cones of divisors related to the \(q \)-ample cones; the second contains some results about contractions that will be needed. Section 3 contains the proof of Theorem 19 and its corollaries. In section 4, we prove Theorem 31.

Helpful conversations with Gianluca Pacienza are gratefully acknowledged.

Convention. In this paper, all varieties will be (quasi-)projective algebraic varieties defined over the complex numbers.

1. Cones

This section contains notation and basic results concerning several cones of divisors related to the \(q \)-ample cones. These cones have been introduced by Küronya [20] and de Fernex–Küronya–Lazarsfeld [13].

Definition 1. Let \(X \) be a projective variety. A line bundle \(L \) on \(X \) is called \(q \)-ample if for every coherent sheaf \(\mathcal{F} \) there exists an integer \(m_0 \) such that

\[
H^i(X, \mathcal{F} \otimes L^m) \text{ for all } i > q \text{ and } m > m_0.
\]

A \(\mathbb{Q} \)-Cartier divisor is called \(q \)-ample if some integral multiple is \(q \)-ample. An \(\mathbb{R} \)-Cartier divisor \(D \) is called \(q \)-ample if it can be written as a sum

\[
D = cL + A,
\]
where $c \in \mathbb{R}_{>0}$, L is a q-ample line bundle and A is an ample \mathbb{R}–Cartier divisor. We will denote
\[
q\text{Amp}(X) \subset N^1(X)
\]
the cone generated by q-ample divisors.

Remark 2. The consistency of the definition for \mathbb{R}–divisors with the one for \mathbb{Q}–divisors is proven by Totaro \([25, \text{Theorem 8.3}]\). The cones $q\text{Amp}(X)$ are open cones \([25, \text{Theorem 8.3}]\).

Theorem 3. \((25, \text{Theorem 9.1})\) Let X be a projective variety of dimension n. The cone $(n-1)\text{Amp}(X)$ is the complement in $N^1 X$ of the negative of the pseudo–effective cone of X.

Definition 4. Let X be a projective variety.

(i) An \mathbb{R}–divisor L on X is called B_q-ample if the augmented base locus $B_+(L)$ has dimension $\leq q$. We will denote
\[
Bq\text{Amp}(X) \subset N^1(X)
\]
the cone generated by B_q-ample divisors.

(ii) Let H_1, \ldots, H_q be very ample divisors on X. An \mathbb{R}–divisor L on X is called (H_1, \ldots, H_q)-ample if the restriction
\[
L|_{h_1 \cap \cdots \cap h_q}
\]
is ample, for $h_i \in |H_i|$ generic. An \mathbb{R}–divisor is said to be H-q-ample if it is (H_1, \ldots, H_q)-ample, for certain very ample H_1, \ldots, H_q. We will denote
\[
Hq\text{Amp}(X) = \bigcup_{(H_1, \ldots, H_q) \text{very ample}} (H_1, \ldots, H_q)\text{Amp}(X) \subset N^1(X)
\]
the cone generated by H_q-ample divisors.

Remark 5. The augmented base locus $B_+(L) \subset X$ is the locus where L fails to be ample; for the definition and properties, cf. \([11]\) and \([12]\).

Remark 6. It is easily seen that
\[
B0\text{Amp}(X) = H0\text{Amp}(X) = \text{Amp}(X),
\]
while $B(n-1)\text{Amp}(X) = \text{Big}(X)$. The cones $Bq\text{Amp}(X)$ are open \([8, \text{Theorem 4.5}]\), and $B(n-2)\text{Amp}(X)$ coincides with the interior of the cone of mobile divisors:
\[
B(n-2)\text{Amp}(X) = \text{Mob}(X) \setminus \partial\text{Mob}(X)
\]
\([9, \text{Lemma 3.1}]\).

Remark 7. The cones $Bq\text{Amp}$ (or rather, their closure) have been studied by Payne \([22]\) and Choi \([8]\). It is established by Choi \([8, \text{Theorem 4.5}]\) that the closure of $Bq\text{Amp}(X)$ can be described in terms of the diminished base locus:
\[
\overline{Bq\text{Amp}(X)} = \{ L \in N^1 X | \dim B_-(L) \leq q \}.
\]

Proposition 8. (Küronya \([20]\)) Let X be a smooth projective variety. For any $0 \leq q \leq n-1$, there are inclusions of cones
\[
Bq\text{Amp}(X) \subset Hq\text{Amp}(X) \subset q\text{Amp}(X).
\]
Proof. For the first inclusion, it is easily seen that actually
\[B_q \text{Amp}(X) \subset \bigcap_{(H_1, \ldots, H_q) \text{very ample}} (H_1, \ldots, H_q) \text{Amp}(X); \]
indeed, suppose \(L \) is such that \(\dim B_+(L) \leq q \). For any \(H_1, \ldots, H_q \) very ample and \(h_1 \in |H_i| \) generic, \(B_+(L) \cap h_1 \cap \cdots h_q \) has dimension \(\leq 0 \). But
\[B_+(L|_{h_1 \cap \cdots \cap h_q}) \subset B_+(L) \cap h_1 \cap \cdots h_q \]
so \(L|_{h_1 \cap \cdots \cap h_q} \) is ample. The second inclusion is a vanishing theorem proven by K"uronya [20, Theorem 1.1]; this was also proven by Demailly–Peternell–Schneider [10, Theorem 3.4].

Remark 9. Both inclusions in Proposition 8 may be strict. For the second inclusion, K"uronya provides an example [20, Example 1.13] where
\[H(n - 1) \text{Amp}(X) \neq (n - 1) \text{Amp}(X). \]
For the first inclusion, let \(X \) be a surface. Then any line bundle \(L \) which is not big and such that \(-L\) is not pseudo-effective is in
\[H1 \text{Amp}(X) \setminus B1 \text{Amp}(X). \]
A more subtle example is [20, Example 1.7], which exhibits a big line bundle \(L \) on a threefold \(X \), satisfying
\[L \in H1 \text{Amp}(X) \setminus B1 \text{Amp}(X). \]

2. MMP

In this section, we collect some results about minimal model theory and contractions.

Definition 10. ([12]) A divisor \(L \) is called stable if \(B_-(L) \) and \(B_+(L) \) coincide.

Proposition 11. ([12, Proposition 1.29]) The stable divisors form an open and dense subset in \(N^1 X \).

Lemma 12. Let \(X \) be a smooth projective variety, and \(L \) on \(X \) an \(\mathbb{R} \)-divisor which is big and stable. Let
\[f : X \leftarrow X_{\min} \]
be an \(L \)-MMP, i.e. \(f_* L \) is nef. Let \(\text{Exc}(f) \subset X \) denote the complement of the maximal open subset over which \(f \) is an isomorphism. Then
\[B_+(L) \supset \text{Exc}(f). \]

Proof. Let \(E \subset \text{Exc}(f) \) be an irreducible component. Then, there is some index \(0 < i < r \), such that \(-(f_i)_* L \) is \(\psi_i \)-ample on the strict transform \(E_i \) of \(E \) in \(X_i \). This implies
\[E_i \subset B_+(f_i)_* L \]
(indeed, \(E_i \) is covered by curves on which \((f_i)_* L \) is negative, and such curves lie in the stable base locus of \((f_i)_* L \)). But then, applying the following proposition to a resolution of indeterminacy of \(f_i \), we see that \(E \) must lie in \(B_+(L) \).
Proposition 13. (Boucksom–Broustet–Pacienza [7, Proposition 1.5]) Let \(\pi: \tilde{X} \to X \) be a birational morphism between normal projective varieties. Let \(F \) be an effective \(\pi \)-exceptional divisor. Then for any big \(\mathbb{R} \)-divisor \(L \) on \(X \), we have
\[
B_+ (\pi^* L + F) = \pi^{-1} (B_+ (L)) \cup \text{Exc}(\pi) .
\]

Remark 14. With some more work, one can in fact prove that equality holds in Lemma 12; we don’t need this in this paper.

Theorem 15. (Wiśniewski [26]) Let \(X \) be a smooth projective variety, and let
\[
\psi: X \to Z
\]
be the contraction of a \(K_X \)-negative extremal ray. Suppose all fibres of \(\psi \) are of dimension \(\leq 1 \). Then \(Z \) is smooth, and \(\psi \) is either the blow–up of \(Z \) along a smooth codimension 2 subvariety, or a conic bundle over \(Z \).

Proof. [26, Theorem 1.2] (cf. also [4, Theorem 4.1].)

Theorem 16. (Wiśniewski [26], Ionescu [17]) Let \(X \) be a smooth projective variety of dimension \(n \), and let \(R \) be a \(K_X \)-negative extremal ray of length
\[
\ell(R) := \min \{-K_X \cdot C | C \text{ rational curve}, C \in R\} .
\]
Let \(\psi \) be the contraction of \(R \), and let \(E \) be an irreducible component of the locus of \(R \). Let \(F \) be an irreducible component of a fiber of the restriction of \(\psi \) to \(E \). Then
\[
\dim E + \dim F \geq n + \ell(R) - 1 .
\]

Proof. [26, Theorem 1.1] or [17, Theorem 0.4].

3. 1-AMPLE

This section is about the cone of 1-ample divisors. Here we prove Theorem 19 stated in the introduction.

Definition 17. Let \(X \) be a projective variety. The \(K_X \)-visible part of \(\partial \text{Nef}(X) \) is defined as
\[
\partial \text{Nef}(X)_{\text{visible}} := \{ D \in \partial \text{Nef}(X) | \overline{K_XD \cap \text{Nef}(X)} = D \} .
\]
Here \(\overline{K_XD} \) denotes the line segment joining \(K_X \) to \(D \).

Remark 18. This notion is considered also in [19, Theorem 1]. The definition is interesting only when \(K_X \notin \text{Nef}(X) \); if \(K_X \) is nef, the line segment \(\overline{K_XD} \) contains more than one point and we have
\[
\partial \text{Nef}(X)_{\text{visible}} = \emptyset .
\]
The other extreme is when \(X \) is Fano; then we have
\[
\partial \text{Nef}(X)_{\text{visible}} = \partial \text{Nef}(X) .
\]

Theorem 19. Let \(X \) be a smooth projective variety.
(i) \[\partial \text{Nef}(X)_{\text{visible}} \cap \text{int} \left(\text{Mob}(X) \right) \subset \partial \overline{\text{Amp}(X)}. \]

(ii) Suppose \(X \) is not the blow–up of a smooth projective variety \(Y \) along a smooth codimension 2 subvariety. Then
\[\partial \text{Nef}(X)_{\text{visible}} \cap \text{Big}(X) \subset \partial \overline{\text{Amp}(X)}. \]

(iii) Suppose \(X \) is not a conic bundle over a smooth projective variety \(Y \), nor a blow–up of a smooth projective variety along a smooth codimension 2 subvariety. Then
\[\partial \text{Nef}(X)_{\text{visible}} \subset \partial \overline{\text{Amp}(X)}. \]

Proof.
(i) We will prove the following:

Proposition 20. Let \(L = K_X + A \), where \(A \) is an ample \(\mathbb{R} \)-divisor. Suppose \(L \) is stable and
\[L \in 1 \text{Amp}(X) \cap \text{int} \left(\text{Mob}(X) \right). \]
Then \(L \) is ample.

This suffices to prove Theorem 19(i). Indeed, suppose there is an element
\[D \in \partial \text{Nef}(X)_{\text{visible}} \cap \text{int} \left(\text{Mob}(X) \right) \]
that is in the interior of \(1 \text{Amp}(X) \) (i.e. \(D \) is 1-ample). Then we can also find
\[D' \in \partial \text{Nef}(X)^{\circ}_{\text{visible}} \cap \text{int} \left(\text{Mob}(X) \right) \]
that is 1-ample. Here \(\partial \text{Nef}(X)^{\circ}_{\text{visible}} \) denotes the relative interior of \(\partial \text{Nef}(X)_{\text{visible}} \). By definition of the \(K_X \)-visible part, \(D' \) is of the form \(D = m(K_X + A) \), for some ample \(\mathbb{R} \)-divisor \(A \) and \(m \in \mathbb{R} \). Now, \(\frac{1}{m} D' = K_X + A \) is also in
\[\partial \text{Nef}(X)_{\text{visible}} \cap \text{int} \left(\text{Mob}(X) \right) \cap 1 \text{Amp}(X). \]

What’s more,
\[D'' = K_X + (1 - \epsilon) A \in \text{int} \left(\text{Mob}(X) \right) \cap 1 \text{Amp}(X) \]
for \(0 < \epsilon \) small enough (since these are open cones). Since stable divisors are open and dense in \(N^1 X \), there exists \(\epsilon > 0 \) such that \(D'' \) is stable. Then Proposition 20 implies that \(D'' \) is ample, and hence \(D' \) is ample: contradiction.

So let’s prove Proposition 20.

Since \(A \) is ample, there exists an effective \(\mathbb{R} \)-divisor \(\Delta \) numerically equivalent to \(A \) and such that \((X, \Delta) \) is klt. According to [5, Theorem 1.2], there is an \(L \)-MMP
\[\phi: X = X_0 \to X_1 \to \cdots \to X_{\min}, \]
where \(\phi_* L \) on \(X_{\min} \) is nef. Each step \(\phi_i: X_i \to X_{i+1} \) in the program is the flip of a morphism
\[\psi_i: X_i \to Z_i, \]
where \(\psi_i \) is the (birational) contraction of an \(L \)-negative extremal ray. Since \(L \) is stable, the exceptional locus of \(\phi \) is contained in \(B_+(L) \) (Lemma [12], hence it is of dimension \(\leq n - 2 \).
(where $n = \dim X$). That is, all the ψ_i in the program must be small contractions. Consider now the first of these small contractions

$$\psi = \psi_0 : X \to Z_0.$$

Since $K_X < L$, ψ is the contraction of a K_X–negative extremal ray. If all fibres of ψ are of dimension ≤ 1, the contraction ψ cannot be small by Theorem 15 so there must exist a fibre with an irreducible component F of dimension $f \geq 2$. Since $-L$ is ψ–ample, we have

$$-L|_F \in \Amp(F) \subset \Big(F\).$$

Using Theorem 3 this implies

$$L|_F \not\in (f - 1)\Amp(F).$$

But this leads to a contradiction: L is 1-ample, so the restriction to any subvariety must be 1-ample as well.

We find that ψ is the identity, so the MMP cannot get started and $X = X_{min}$. That is, L must be nef. Since L is stable, $B_+(L) = B_-(L) = \emptyset$ and L is ample.

(ii) In analogous fashion to the proof of (i), it will suffice to prove:

Proposition 21. Let X be as in Theorem 19(ii), and let $L = K_X + A$, where A is an ample $\mathbb R$–divisor. Suppose L is stable and

$$L \in 1\Amp(X) \cap \Big(X\).$$

Then L is ample.

To prove the proposition, consider again an L–MMP (which exists thanks to [5]). Let

$$\psi : X \to Z$$

be the first contraction of the program. Since L is big, the contraction ψ is birational. Just as above, we find that ψ cannot be small, so ψ must be a divisorial contraction. If all fibres of ψ have dimension ≤ 1, ψ is a blow–up of a smooth projective Y with smooth center of codimension 2 (Theorem 15); this is excluded by hypothesis. So there must be a fibre with an irreducible component F of dimension ≥ 2, which again contradicts the fact that $L|_F$ is 1-ample.

(iii) It will suffice to prove the following statement:

Proposition 22. Let X be as in Theorem 19(iii), and let $L = K_X + A$, where A is an ample $\mathbb R$–divisor. Suppose L is stable and 1-ample. Then L is nef.

We first remark that in case L is big, Proposition 22 follows from Proposition 21. In case L is pseudo–effective, L is a limit of big divisors which are stable and 1-ample, and it follows from Proposition 21 that L is nef. Suppose L is not pseudo–effective. According to [5, Corollary 1.3.2], there exists an L–MMP such that on X_{min} there is a Mori fibre space structure, i.e. a morphism

$$g : X_{min} \to Y$$

such that $-\phi_\ast L$ is g–ample. Just as in case (ii), we find there can be no birational contraction in the program, so we have $X = X_{min}$. If the Mori fibre space has only fibres of dimension 1, it is
Corollary 23. Let X be a smooth projective variety, and suppose K_X is 1-ample. Then
\[\partial \text{Nef}(X)_{\text{visible}} \subset \partial \text{Mob}(X). \]

Proof. It suffices to prove that the relative interior $\partial \text{Nef}(X)_{\text{visible}}^\circ$ is in the boundary of the mobile cone. But if K_X is 1-ample, every L on $\partial \text{Nef}(X)_{\text{visible}}^\circ$ is also 1-ample (since L is a sum of ample plus 1-ample). But then Theorem [19](i) implies that L cannot live in the interior of $\text{Mob}(X)$. □

Corollary 24. Let X be a smooth projective variety, and suppose
\[\partial \text{Nef}(X)_{\text{visible}} \cap \text{int}(\text{Mob}(X)) \neq \emptyset. \]
Then $1\text{Amp}(X)$ is a strictly convex cone.

Proof. The hypothesis implies that the dimension of X is at least 3. In case the Picard number of X is 1, the statement is clear from Theorem [3]. Suppose the Picard number is 2. The cone $1\text{Amp}(X)$ has 2 extremal rays, and by Theorem [19](i) one of them is also an extremal ray of $\text{Nef}(X)$. On the other hand, $1\text{Amp}(X)$ lies outside of $-\text{Amp}(X)$ (Theorem [3]), so $1\text{Amp}(X)$ must be convex.

The argument for Picard number ≥ 3 is similar: in this case, we have
\[\dim \partial \text{Nef}(X)_{\text{visible}} \geq 2, \]
which means that $\partial \text{Nef}(X)_{\text{visible}}$ contains infinitely many rays. Since the visible part is locally rationally polyhedral (this is the cone theorem, stated in this form in [19], Theorem 1), there exists a ray
\[R \in \partial \text{Nef}(X)_{\text{visible}} \]
which lies in the relative interior of a face F of $\text{Nef}(X)$. Let $h \subset N^1_X$ denote the unique hyperplane containing F: the claim is now that $1\text{Amp}(X)$ lies on one side of h. To see this, suppose (by contradiction) there exists a divisor $D \in 1\text{Amp}(X)$ which lies on the “non–ample” side of h. Let $h_2 \subset N^1_X$ denote the 2–plane spanned by R and D. We find that any divisor $L \in R$ can be written
\[L = mD + A, \]
for some $m \in \mathbb{R}_{>0}$ and A ample (this is most easily seen by restricting attention to the 2–plane h_2: by construction, h_2 meets $\text{Amp}(X)$, and D lies outside of $-\text{Amp}(X) \cap h_2$, again by Theorem [3]). But then L is 1–ample, contradicting Theorem [19](i). □

Corollary 25. ("almost Fano") Let X be a smooth projective complex variety, and suppose that either (1) $-K_X$ is ample, or (2) $-K_X$ is $\neq 0$ and nef and $\dim N^1_X \geq 3$. Then:
(i) \(\partial \text{Nef}(X) \cap \text{int}(\text{Mob}(X)) \) is in the boundary of \(\overline{1\text{Amp}(X)} \).

(ii) Suppose \(X \) is not the blow–up of a smooth projective variety \(Y \) along a smooth codimension 2 subvariety. Then
\[
\partial \text{Nef}(X) \cap \text{Big}(X) \subset \partial \overline{1\text{Amp}(X)}.
\]

(iii) Suppose \(X \) is not a conic bundle over a smooth projective variety \(Y \), nor a blow–up of a smooth projective variety along a smooth codimension 2 subvariety. Then
\[
\text{Amp}(X) = 1\text{Amp}(X).
\]

Proof.
(i) If \(-K_X \) is ample, clearly \(\partial \text{Nef}(X)_{\text{visible}} = \partial \text{Nef}(X) \) and we are done. Suppose now
\[
-K_X \in \partial \text{Nef}(X) \setminus \{0\}.
\]
Then we have
\[
\partial \text{Nef}(X)_{\text{visible}} = \partial \text{Nef}(X) \setminus k,
\]
where \(k \) denotes the ray generated by \(-K_X \). Applying Theorem \[19\] i), we find an inclusion
\[
\left(\partial \text{Nef}(X) \setminus k \right) \cap \text{int}(\text{Mob}(X)) \subset \partial \overline{1\text{Amp}(X)}.
\]
Suppose (i) is not true, i.e.
\[
k \subset \text{int}(\text{Mob}(X)) \cap 1\text{Amp}(X).
\]
Then, since \(1\text{Amp} \) is an open cone,
\[
D := -K_X - \epsilon A \in 1\text{Amp}(X)
\]
for any ample \(A \) and \(\epsilon \) sufficiently small. On the other hand, \(D \) lies outside the closed cone \(\text{Nef}(X) \). Let’s pick an ample \(\mathbb{R} \)-divisor \(A' \) close to \(A \), but outside the plane spanned by \(A \) and \(k \) (this is possible if the ample cone has dimension \(\geq 3 \)). Then the line segment connecting \(A' \) to \(D \) crosses
\[
\left(\partial \text{Nef}(X) \setminus k \right) \cap \text{int}(\text{Mob}(X));
\]
let’s call the point of intersection \(B \). The \(\mathbb{R} \)-divisor \(B \) is a sum of ample and 1-ample, hence \(B \) is 1-ample [25, Theorem 8.3]. On the other hand, \(B \) lies in the boundary of \(\overline{1\text{Amp}(X)} \) and the 1-ample cone is open, so \(B \) cannot be 1-ample: contradiction.

(ii) and (iii) Similar. \(\square \)

Remark 26. Suppose \(X \) is Fano, i.e. \(-K_X \) is ample. The pseudo–index of \(X \) is defined as
\[
\tau(X) = \min \{-K_X \cdot C \mid C \subset X \text{ rational curve}\}.
\]
If \(\tau(X) \) is \(\geq 2 \) (respectively \(\geq 3 \)), the hypothesis of Corollary \[25\] ii) (respectively (iii)) is satisfied (this follows from Theorem \[16\]). In this way, we recover [21, Proposition 29] as a special case of Corollary \[25\].
Corollary 27. ("weak Lefschetz") Let X be a smooth projective complex variety of dimension $n \geq 3$, and let $Y \subset X$ be a generic hyperplane section.

(i) \[
\partial \Nef(X)_{\text{visible}} \cap \text{int} \left(\text{Mob}(X) \right) \subset \partial \Nef(Y) \cap \partial \Nef(X) \ .
\]

(ii) Suppose X is not the blow–up of a smooth projective variety Y along a codimension 2 smooth subvariety. Then \[
\partial \Nef(X)_{\text{visible}} \cap \text{Big}(X) \subset \partial \Nef(Y) \cap \partial \Nef(X) \ .
\]

(iii) Suppose X is not a conic bundle over a smooth projective variety, nor a blow–up of a smooth projective variety along a smooth codimension 2 subvariety. Then \[
\partial \Nef(X)_{\text{visible}} \subset \partial \Nef(Y) \cap \partial \Nef(X) \ .
\]

The following is an alternative formulation of Corollary 27(i). The reformulation of points (ii) and (iii) is left to the diligent reader.

Corollary 28. ("ampleness criterion") Let X be a smooth projective variety of dimension $n \geq 3$, and let L on X be a divisor of the form $L = K_X + A$, with A an ample \mathbb{R}-divisor. Suppose $L \in \text{int} \left(\text{Mob}(X) \right)$. Then L is ample if and only if $L | Y$ is ample for some generic hyperplane $Y \subset X$.

Combining Corollaries 25 and 27 we get in particular:

Corollary 29. ("weak Lefschetz for almost Fano") Let X be a smooth projective complex variety of dimension $n \geq 3$. Suppose either (1) $-K_X$ is ample, or (2) $-K_X$ is nef and $\neq 0$ and $\dim N^1 X \geq 3$. Let $Y \subset X$ be a very ample divisor, generic in its linear system.

(i) \[
\partial \Nef(X) \cap \text{int} \left(\text{Mob}(X) \right) \subset \partial \Nef(Y) \cap \partial \Nef(X) \ .
\]

(ii) Suppose X is not the blow–up of a smooth variety along a smooth codimension 2 subvariety. Then \[
\partial \Nef(X) \cap \text{Big}(X) \subset \partial \Nef(Y) \cap \partial \Nef(X) \ .
\]

(iii) Suppose X is not a conic bundle over a smooth projective variety, nor a blow–up of a smooth projective variety along a smooth codimension 2 subvariety. Then \[
\partial \Nef(X) \subset \partial \Nef(Y) \ .
\]

(iv) Let X be as in (iii) and $n \geq 4$. Then restriction induces an isomorphism \[
\Nef(X) \cong \Nef(Y) \ .
\]

Remark 30. The statement of Corollary 29(iv) for X Fano was originally proven by Wiśniewski [26, p. 147 Corollary]. This provided the starting–block for much further work concerning weak Lefschetz for the ample cone ([15], [18], [1], [2], [6], [24]).
4. \(q\)-ample

This section is about the cone of \(q\)-ample divisors. We prove the result stated in the introduction:

Theorem 31. Let \(X\) be a smooth projective variety of dimension \(n\). For any non–negative integer \(q\), we have

\[
\partial \mathrm{Nef}(X) \cap B(n - 1 - q)\mathrm{Amp}(X) \subset \partial q\mathrm{Amp}(X).
\]

We actually prove a more general statement:

Theorem 32. Let \(X\) be a smooth projective variety of dimension \(n\), and define

\[
\tau = \min \{ \ell(R) \mid R \text{ is a } K_X\text{-negative extremal ray} \}.
\]

(i) For any non–negative integer \(q\) such that \(q \geq \tau - 2\), we have

\[
\partial \mathrm{Nef}(X) \cap B(n + \tau - q - 2)\mathrm{Amp}(X) \subset \partial q\mathrm{Amp}(X).
\]

(ii) Suppose \(X\) is not the blow–up of a smooth variety \(Y\) along a smooth subvariety of codimension \(\geq 2\). Then

\[
\partial \mathrm{Nef}(X) \cap \mathrm{Big}(X) \subset \partial(\tau)\mathrm{Amp}(X).
\]

Proof.
(i) As in the proof of Theorem 19, one can restrict attention to the relative interior \(\partial \mathrm{Nef}(X)\) and hence it suffices to prove the following:

Proposition 33. Let \(L\) be a divisor of the form \(L = K_X + A\), with \(A\) an ample \(\mathbb{R}\)-divisor. Suppose \(L\) is stable and \(L \in B(n + \tau - q - 2)\mathrm{Amp}(X) \cap q\mathrm{Amp}(X)\).

Then \(L\) is ample.

To prove the proposition, consider an \(L\)--MMP

\[
\phi: X = X_0 \to X_1 \to \cdots \to X_{\min},
\]

where either \(\phi_0L\) is semi–ample on \(X_{\min}\) (if \(L\) is big), or there exists a Mori fibre space structure on \(X_{\min}\) (if \(L\) is not pseudo–effective). This exists thanks to [5]. Let

\[
\psi: X \to Z
\]

denote the first contraction of the \(L\)--MMP, let \(V \subset X\) denote the exceptional locus of \(\psi\) and let \(F\) be a general fibre of \(\psi|_V\). Note that \(K_X < L\) so that \(\psi\) corresponds to the contraction of a \(K_X\)–negative extremal ray and Wiśniewski’s theorem (Theorem 16) applies. This gives

\[
\dim V + \dim F \geq n + \tau - 1.
\]

Since \(V \subset B_+(L)\) (Lemma 12), its dimension is \(\leq n + \tau - q - 2\). It follows that

\[
\dim F \geq q + 1.
\]
By construction, $-L$ is ψ–ample, hence
\[L|_F \in -\Amp(F). \]
On the other hand the restriction of L to any subvariety is q–ample, so in particular
\[L|_F \in q\Amp(F). \]
But this is not possible if $\dim F \geq q + 1$:
\[q\Amp(F) \subset (\dim F - 1)\Amp(F), \]
and the cone $(\dim F - 1)\Amp(F)$ is the complement of $-\Psef(F)$: contradiction.

Since the L–MMP cannot get started, it is trivial. That is, either L is nef on X, or there exists a contraction of fibre type
\[g: X \to Z \]
which is L–negative and K_X–negative. The second possibility can be excluded, again using Wiśniewski’s theorem: if F is a general fibre of f, we have
\[n + \dim F \geq n + \tau - 1, \]
i.e. there is a fibre F of dimension $\geq \tau - 1$. But supposing there is a fibre type contraction, L is not big which is only possible if $q = \tau - 2$. So L and the restriction $L|_F$ are $(\tau - 2)$–ample, which contradicts the fact that
\[L|_F \in -\Amp(F) \subset -\Big(F). \]

(ii) This follows once we have proven the following:

Proposition 34. Let X be as in Theorem 32(ii), and let L be a divisor of the form $L = K_X + A$, with A an ample \mathbb{R}-divisor. Suppose L is big and τ-ample. Then L is ample.

To prove the proposition, we apply [5,] to get an L–MMP
\[\phi: X = X_0 \to X_1 \to \cdots \to X_{\min}, \]
where $\phi_* L$ on X_{\min} is nef. Consider the first contraction
\[\psi: X \to Z \]
in this L–MMP. As above, let $V \subset X$ denote the exceptional locus of ψ and let F be a general fibre of $\psi|_V$. Note that $K_X < L$ so that ψ corresponds to the contraction of a K_X–negative extremal ray and hence Wiśniewski’s theorem (Theorem [16] applies to ψ. If ψ is a small contraction (i.e. $\dim V \leq n - 2$), Wiśniewski’s theorem gives
\[\dim F \geq \tau + 1, \]
and we get a contradiction with the fact that $L|_F$ is τ-ample. So ψ must be a divisorial contraction, and all fibres of $\psi|_V$ must be of dimension equal to τ (by Wiśniewski’s theorem, each fibre has dimension $\geq \tau$, while the fact that L is τ-ample implies that each fibre has dimension $\leq \tau$). In this case, a result of Andreatta–Occhetta [3, Theorem 5.1] informs us that ψ identifies X with a blow–up of some smooth projective variety Y along a smooth subvariety; this is excluded by hypothesis.
Altogether, we find there can be no contraction and hence $X = X_{\text{min}}$ and L is already nef. It remains to prove ampleness of L. To this end, note that

$$L' = K_X + (1 - \epsilon)A$$

is still big and $(\tau - 1)$-ample for ϵ sufficiently small (since $\text{Big}(X)$ and $(\tau - 1)\text{Amp}(X)$ are open cones). Applying the above reasoning to L', we find that L' is nef. But then

$$L = L' + \epsilon A$$

is ample. □

Corollary 35. ("weak Lefschetz") Let X and τ be as in Theorem 32.

(i) Let $Y \subset X$ be a generic complete intersection of codimension $q \leq n - 2$. Then

$$\partial \text{Nef}(X)_{\text{visible}} \cap B(n + \tau - q - 2)\text{Amp}(X) \subset \partial \text{Nef}(Y) \cap \partial \text{Nef}(X).$$

(ii) Suppose X is not the blow–up of a smooth variety along a smooth subvariety of codimension ≥ 2. Let $Y \subset X$ be a generic complete intersection of codimension τ. Then

$$\partial \text{Nef}(X)_{\text{visible}} \cap \text{Big}(X) \subset \partial \text{Nef}(Y) \cap \partial \text{Nef}(X).$$

Proof. This is immediate from Theorem 31, once one knows that H_q-ample implies q-ample (Proposition 8).

□

REFERENCES

[1] M. Andreatta, C. Novelli and G. Occhetta, Connections between the geometry of a projective variety and of an ample section, Math. Nachr. 279 (2006), 1387—1395,

[2] M. Andreatta and G. Occhetta, Extending extremal contractions from an ample section, Adv. Geom. 2 (2002), 133—146,

[3] M. Andreatta and G. Occhetta, Special rays in the Mori cone of a projective variety, Nagoya Math. J. Vol. 168 (2002), 127—137,

[4] M. Andreatta and J. Wiśniewski, A view on contractions of higher dimensional varieties, in: Algebraic geometry (Santa Cruz 1995), Proc. Symp. Pure Math. 62, Amer. Math. Soc., Providence, 1997,

[5] C. Birkar, P. Cascini, C. Hacon and J. McKernan, Existence of minimal models for varieties of log general type, J. Amer. Math. Soc. 23 (2010), 405—468,

[6] M. C. Beltrametti and P. Ionescu, A view on extending morphisms from ample divisors, in: Interactions of Classical and Numerical Algebraic Geometry (D. J. Bates et alii, eds.), American Math. Society,

[7] S. Boucksom, A. Broustet and G. Pacienza, Uniruledness of stable base loci of adjoint linear systems via Mori theory, Math. Z. 275 (2013), 499—507,

[8] S. Choi, Duality of the cones of divisors and curves, Math. Res. Lett. 19 (2012), 403—416,

[9] S. Choi, On the dual of the mobile cone, Math. Z. 272 (2012), 87—100,

[10] J.-P. Demailly, T. Peternell and M. Schneider, Holomorphic line bundles with partially vanishing cohomology, Proceedings of the Hirzebruch 65 conference on algebraic geometry (Ramat Gan, 1993), Bar-Ilan Univ. (1996),

[11] L. Ein, R. Lazarsfeld, M. Mustată, M. Nakamaye and M. Popa, Restricted volumes and base loci of linear series, Amer. J. Math. 131 (2009), no. 3, 607—651,

[12] L. Ein, R. Lazarsfeld, M. Mustată, M. Nakamaye and M. Popa, Asymptotic invariants of base loci, Annales de l’Institut Fourier, 56, (2006) no.6, 1701—1734,

[13] T. de Fernex, A. Küronya and R. Lazarsfeld, Higher cohomology of divisors on a projective variety, Math. Ann. 337 No 2 (2007), 443—455,

[14] W. Fulton, Intersection theory, Springer–Verlag, Berlin Heidelberg New York 1984,
[15] B. Hassett, H.-W. Lin and C.-L. Wang, The weak Lefschetz principle is false for ample cones, Asian Journal of Mathematics 6 (2002), No. 1, 95—100.

[16] Y. Hu and S. Keel, Mori dream spaces and GIT, Michigan Math. J. 48 (2000), 331—348.

[17] P. Ionescu, Generalized adjunction and applications, Math. Proc. Cambridge Philos. Soc. 99 (1986), 457—472.

[18] S.-Y. Jow, A Lefschetz hyperplane theorem for Mori dream spaces, to appear in Math. Z.,

[19] Y. Kawamata, Remarks on the cone of divisors, in: Classification of algebraic varieties (C. Faber et alii, eds.), European Math. Society, Zürich 2011,

[20] A. Küronya, Positivity on subvarieties and vanishing theorems for higher cohomology, Annales de l’Institut Fourier 63 (2013),

[21] R. Laterveer, The weak Lefschetz principle and cones of divisors, preprint,

[22] S. Payne, Stable base loci, movable curves, and small modifications, for toric varieties, Math. Z. 253 (2006), no. 2, 421—431,

[23] A. Sommese, Submanifolds of abelian varieties, Math. Ann. 233 (1978), 229—256.

[24] B. Szendrői, On the ample cone of an ample hypersurface, Asian Journal of Mathematics 7 (2003), 1—6.

[25] B. Totaro, Line bundles with partially vanishing cohomology, J. Eur. Math. Soc. 15 (2013), 731—754,

[26] J. Wiśniewski, On contractions of extremal rays of Fano manifolds, J. reine angew. Math. 417 (1991), 141—157,

INSTITUT DE RECHERCHE MATHÉMATIQUE AVANCÉE, UNIVERSITÉ DE STRASBOURG, 7 RUE RENÉ DESCARTES, 67084 STRASBOURG CEDEX, FRANCE.

E-mail address: robert.laterveer@math.unistra.fr