Anatomy of the lateral ligaments of the rectum: A controversial point of view

Guo-Jun Wang, Chun-Fang Gao, Dong Wei, Cun Wang, Wen-Jian Meng

Abstract

The existence and composition of the lateral ligaments of the rectum (LLR) are still the subjects of anatomical confusion and surgical misconception up to now. Since Miles proposed abdominoperineal excision as radical surgery for rectal cancer, the identification by “hooking them on the finger” has been accepted by many surgeons with no doubt; clamping, dividing and ligating are considered to be essential procedures during APR. But in cadaveric studies, many anatomists could not find LLR described in the textbooks, and more and more surgeons also failed to find LLR during the proctectomy according to the principle of total mesorectal excision. The anatomy of LLR has diverse descriptions in literatures. According to our clinical observations, the traditional anatomical structures of LLR do exist; LLR are constant dense connective bundles which are located in either lateral side of the lower part of the rectum, run between rectal visceral fascia and pelvic parietal fascia above the levator ani, and covered by superior fascia of pelvic diaphragm. They are pathways of blood vessels and nerve fibers toward the rectum and lymphatic vessels from the lower rectum toward the iliac lymph nodes.

INTRODUCTION

Surgical approaches in the treatment of rectal cancer have undergone great changes over the past decades. Technical aspects have been studied and reviewed extensively in an attempt to reduce local recurrences and to decrease the incidence of urinary and sexual morbidity, but the existence and composition of the lateral ligaments of the rectum (LLR) are still the subjects of anatomical confusion and surgical misconception up to now.

Since Miles proposed abdominoperineal excision (APR) as radical surgery for rectal cancer in 1908, APR has been rapidly accepted as a standard surgical strategy. Since then, most colorectal surgeons accepted that LLR is the pathway of blood vessels and nerve fibers toward the rectum and lymphatic vessels from the lower rectum toward the iliac lymph nodes, and clamping, dividing and ligating LLR are standard and indispensable procedures during APR, which are described in classical surgical textbooks.

Interestingly, based on cadaveric studies, many anatomists have intensively investigated the anatomy of LLR, but they could not find LLR described in the classical surgical textbooks.
surgical textbooks. In 1982, Heald et al. demonstrated that total mesorectal excision (TME) alone could lead to a low rate of recurrence of rectal cancer in the pelvis and a high disease-free survival rate. But Heald and others described the sharp dissection of TME under direct view but did not mention LLR at all. This phenomenon seemingly testified many anatomists’ findings based on cadaveric studies, but many surgeons still remain with confusion and misconception about the anatomy of LLR.

CLINICAL VIEWS ABOUT THE ANATOMY OF LLR

In the past decades, the surgical approach to the treatment of rectal cancer has been greatly refined, and from a gross, blunt, and blind dissection with flush clamping of lateral expansions, it has become a more accurate and less radical procedure. All of these improvements are related to a better understanding and a wider knowledge of the clinical anatomy of the pelvis. But there are different interpretations, and clinical studies about the anatomy of LLR still present quite diverse, and sometimes contradictory descriptions. The existence and composition of LLR are also issues with considerable controversies.

In the history of radical surgery of rectal cancer, APR, proposed by Miles in 1908, was undoubtedly a breakthrough which greatly improved the outcomes of rectal cancer treatment. He had already referred to LLR while explaining his dissection procedure, stating that the dissection is carried downward on either side until the upper surface of the levator ani muscles is reached. LLR, which is recognized as a firm vertical band of fascia, requires dissection with scissors. He described that, LLR consists, on either side, of a broad band of dense connective tissues, which passes outward from the lateral walls of the rectum toward the base of the bladder at the point where the ureters terminate. Afterwards, APR was rapidly accepted as a standard surgical strategy for middle and lower rectal cancer.

Goligher et al. also recognized LLR in a process of dissection around the rectum. LLR appears lateral to the mid-rectum after dissection on the anterior and posterior sides of the rectum is completed. He stressed that the lateral ligament can be clamped between the middle and index fingers of the left hand and then sharply severed. Based on Miles description and many surgeons’ clinical experiences, LLR is considered to be a definitely existing anatomical structure, which is the pathway of blood vessels and nerve fibers toward the rectum and lymphatic vessels from the lower rectum toward the iliac lymph node, and clamping, dividing and ligating are indispensable procedures described in surgical textbooks. In contrast, the mesorectum can be dissected requires clamping; and by “hooking the finger” into the tissue literal to the rectum, it may be that the surgeon encounters mesorectal vessels and creates an artefactual ligament. This obviously raises the concern that such blunt dissection results in mesorectal tissue being left behind and increases the risk of local recurrence and severe autonomic nerve injury.

Interestingly, by reviewing the relative literatures about LLR, and studying fresh cadavers and embalmed pelvis, Nano et al. reported their interpretations of the anatomy of LLR in 2000, and drew the following conclusions: LLR is the extensions of the mesorectum and must be cut at their attachment at the endopelvic fascia; LLR contains fatty tissue in communication with the mesorectal fat and possibly some vessels and nerve filaments that are of little importance; LLR at the endopelvic fascia is inserted under the urogenital bundle; the middle rectal artery runs anteriorly and inferiorly in respect to LLR; LLR can be cut at their insertion on the endopelvic fascia without injuring the urogenital nervous bundle, which, however, should be kept visible during this procedure, because it crosses the middle rectal artery and runs out behind the seminal ves-

CONTROVERSIAL VIEWS OF LLR AMONG ANATOMISTS

With the development of radical surgery of rectal cancer, many anatomists have been engaged in the study of the anatomy of LLR. In contradiction to the classical knowledge of LLR, most anatomists studying cadavers did not find the typical structures of LLR described in traditional surgical textbooks. Their interpretations about the anatomy of LLR are quite different. The controversy focuses on three aspects: uncertainty of the existence, confusion of the composition, and unclear anatomic position in the pelvic cavity.

Jones et al. noticed that, before TME principle was wildly applied in radical surgery of rectal cancer, identification of LLR is “hooking it on the finger” by surgeons during operation, and clamping, dividing and ligating are indispensable procedures described in surgical textbooks. In contrast, the mesorectum can be dissected by either diathermy or sharp dissection alone. In order to clarify the anatomic misconception about LLR, Jones et al. studied the anatomy of LLR according to the TME principle for embalmed pelvis. In 1998, in their study of the anatomy of LLR, they concluded that, LLR does not exist; there is no anatomical argument against sharp dissection in the mesorectal plane and as a rule, there is no vessel that requires clamping; and by “hooking the finger” into the tissue to the rectum, it may be that the surgeon encounters mesorectal vessels and creates an artefactual ligament. This raises the concern that such blunt dissection results in mesorectal tissue being left behind and increases the risk of local recurrence and severe autonomic nerve injury.

Interestingly, by reviewing the relative literatures about LLR, and studying fresh cadavers and embalmed pelvis, Nano et al. reported their interpretations of the anatomy of LLR in 2000, and drew the following conclusions: LLR is the extensions of the mesorectum and must be cut at their attachment at the endopelvic fascia; LLR contains fatty tissue in communication with the mesorectal fat and possibly some vessels and nerve filaments that are of little importance; LLR at the endopelvic fascia is inserted under the urogenital bundle; the middle rectal artery runs anteriorly and inferiorly in respect to LLR; LLR can be cut at their insertion on the endopelvic fascia without injuring the urogenital nervous bundle, which, however, should be kept visible during this procedure, because it crosses the middle rectal artery and runs out behind the seminal vesi-
ileum; the lateral aspect of the rectum receives the lateral pedicle, which consists of the nerve fibers and the middle rectal artery.43

In 2005, through studying the anatomy of human soft cadavers, Pak-art et al46 found that, in 36 hemipelvic specimens, 18 LLRs were found on the right side of the rectum and 18 were found on the left side. The location of LLR was posterolateral to the rectum. The content of LLR consisted of loose connective tissues with cluster of small nerves. No artery was detected in all specimens. The small arterioles and venules were discovered in only four specimens. They concluded that, LLR is located at posterolateral side of the rectum. Its component is loose connective tissues containing multiple small nerves.

Recently, based on dissections of 32 formalin-preserved cadavers, Lin et al47 found that LLR appeared in all 32 cadavers as a bundle of dense connective tissues traversing between rectum and visceral fascia instead of a pelvic sidewall. No substantial tissue strand except pelvic splanchnic nerves was found between visceral fascia and parietal fascia at the same level. The middle rectal artery was observed in only 18 of 64 pelvic-halves. The constant component of LLR was the rectal branches from the pelvic plexus, whereas the middle rectal artery was almost invisible in LLR. They concluded that, during total mesorectal excision, it is impossible to reveal LLR in correct surgical plane. The entire rectum may be mobilized without the need for ligating the middle rectal artery. The clinical significance of LLR is that, during lateral dissection, if LLR is identified, the surgical plane is medial to the visceral fascia, thus the incorrect surgical plane appears.

Obviously, these diverse descriptions and interpretations of the anatomy of LLR by the anatomists inevitably convey confusion and misconception to clinical colorectal surgeons. Meanwhile, their studies undoubtedly contribute to reveal the true nature of the anatomy of LLR.

\section*{OUR PERSPECTIVE OF THE ANATOMY OF LLR}

According to our clinical observations based on hundreds of cases of AR and APR per year, the anatomical structures of LLR described by Miles and Goligher et al\textsuperscript{do exist, which were repeatedly testified by colorectal surgeons who performed traditional APR48-51 (Figure 1). Because their descriptions of the anatomy of LLR were entirely based on clinical experience, and they had no idea about the concept of inter-fasciale at their time, during their blind and blunt surgical procedures, they failed to describe the precise anatomical position of LLR48. In fact, the structures of LLR are entirely covered by endopelvic fascia according to the modern anatomical point of view53-55. In other words, they are outside inter-fasciale, which is a correct surgical plane according to the TME principle. We believe that this is an important reason why LLR is rarely referred to after TME principle was adopted in radical surgery for rectal cancer.

Based on our surgical observation, we found that LLRs are connective bundles; their components include middle rectal arteries from internal iliac arteries, the rectal branches from the pelvic plexus, lymphatic vessels, some soft connective tissues and endopelvic fascia; they run between rectal visceral fascia and pelvic sidewall parietal fascia, covered by superior fascia of pelvic diaphragm above the levator ani, and terminate into the base of the distal part of the rectum laterally. Thus, LLR is a constant anatomical structure, which is the pathway of blood vessels and nerve fibers toward the rectum and lymphatic vessels from the lower rectum toward the ileal lymph nodes. The position of LLR is much lower than the surgeons thought to be. Presently, AR has been accepted as a main surgical therapeutic strategy for rectal cancer, LLR seldom needs to be treated during operation. We believe this is another important reason why LLR is rarely described by modern colorectal surgeons.

According to our clinical observations, the rectal visceral fascia extends along the pelvic cavity in the ventrodorsal direction, forming a continuous “hammock-like” sheath, enveloping the rectum58,59. Inside the inter-fasciale between rectal visceral and pelvic parietal fascia, there is a continuous soft connective tissue layer which is a potential surgical plane containing no real ligation structures (Figure 2). These anatomical observations were testified by the study of Jones et al91. And at the middle part of the rectum, LLR described by Nano et al44 is actually artifacts due to not strictly mobilizing the rectum along inter-fasciale between visceral and parietal fascia. But at the lower part of the rectum near the pelvic floor, either side of the rectum receives the lateral pedicle, which consists of nerve fibers and the middle rectal artery (Figure 3). In fact, what they called the lateral pedicle of the rectum is the real LLR described in classical surgical textbooks. Up to now, most anatomists do not acknowledge that LLR can be hooked by the finger of traditional colorectal surgeons. We believe that the real reason is that, LLR described in classical surgical textbooks is located away from where the anatomists are looking for. When they look for some structures without clear location, they may either see nothing, or mistakenly recognize other things as the structures they have already known.
The lateral ligaments of the rectum

CONCLUSION

The existence and composition of LLRs are still issues with considerable controversies up to now. Based on our surgical observations, we conclude that, LLRs are constant anatomical structures, which are pathways of blood vessels and nerve fibers toward the rectum and lymphatic vessels; their components include middle rectal arteries, the rectal branches from the pelvic plexus, lymphatic vessels, some soft connective tissues and endopelvic fascia; their positions are at lateral to either side of the lower part of the rectum; they run between rectal visceral fascia and pelvic parietal fascia, covered by superior fascia of pelvic diaphragm above the levator ani, and terminate into the base of the distal part of the rectum laterally. From these observations, we deduce that, during total mesorectal excision, it is difficult to reveal LLRs in a correct surgical plane; the entire rectum may be mobilized between visceral and parietal fascia without the need for ligating LLRs; and in the process of AR and APR, we should protect the integrity of rectal visceral fascia and pelvic parietal fascia to avoid the risk of local recurrence and severe autonomic nerve injury.

ACKNOWLEDGMENTS

The authors thank Dr. Si-Qin Ding and Xiao-Gang Shen for their critical reading of the manuscript.

REFERENCES

1. Gaudio E, Riva A, Franchitto A, Carpino G. The fascial structures of the rectum and the "so-called mesorectum": an anatomical or a terminological controversy? Surg Radiol Anat 2010; 32: 189-190
2. Buunen M, Lange MM, Ditzel M, Kleinrensink GJ, van de Velde CJ, Lange JF. Level of arterial ligation in total mesorectal excision (TME): an anatomical study. Int J Colorectal Dis 2009; 24: 1317-1320
3. Koura AN, Giacco GG, Curley SA, Skibber JM, Feig BW, Ellis LM. Carcinoid tumors of the rectum: effect of size, histopathology, and surgical treatment on metastasis free survival. Cancer 1997; 79: 1294-1298
4. Heald RJ, Smethurst K, Kald A, Sexton R, Moran BJ. Abdominopelvic excision of the rectum--an endangered operation. Norman Nigro Lectureship. Dis Colon Rectum 1997; 40: 747-751
5. da Silva AL. Abdominopelvic excision of the rectum and anal canal with perineal colostomy. Eur J Surg 1995; 161: 761-764
6. Glättli A, Barras JP, Metzger U. Is there still a place for abdominopelvic resection of the rectum? Eur J Surg Oncol 1995; 21: 11-15
7. Ayoub SF. Arterial supply to the human rectum. Acta Anat (Basel) 1978; 100: 317-327
8. Canessa CE, Miegge LM, Bado J, Silveri C, Labandera D. Anatomic study of lateral pelvic lymph nodes: implications in the treatment of rectal cancer. Dis Colon Rectum 2004; 47: 297-303
9. Corman ML. Classic articles in colonic and rectal surgery. A method of performing abdominopelvic excision for carcinoma of the rectum and of the terminal portion of the pelvic colon: by W. Ernest Miles, 1869-1947. Dis Colon Rectum 1980; 23: 202-205
10. Biondo S, Ortiz H, Lujan J, Codina-Cazador A, Espin E, Garcia-Granero E, Kreisler E, de Miguel M, Alos R, Echeverria A. Quality of mesorectum after laparoscopic resection for rectal cancer - results of an audited teaching programme in Spain. Colorectal Dis 2010; 12: 24-31
11. Heald RJ, Husband EM, Ryall RD. The mesorectum in rectal cancer surgery—the clue to pelvic recurrence? Br J Surg 1982; 69: 613-616
12. Heald RJ, Ryall R. Recurrent cancer after restorative resection of the rectum. Br Med J (Clin Res Ed) 1982; 284: 826-827
13. Allen DR, Heald RJ. Rectocolectomy with anal conservation in inflammatory colitis. Ann R Coll Surg Engl 1983; 65: 347
14. Hojo K. Anastomotic recurrence after sphincter-saving resection for rectal cancer. Length of distal clearance of the
bowel. Dis Colon Rectum 1986; 29: 11-14
15 Goligher JC. Extended low anterior resection with stapled colorectal or coloanal anastomosis. Ann Chir Gynaecol 1986; 75; 82-88
16 García-Granero E. [Assessment of the quality of bowel cancer surgery: “from the mesorectum to the mesocolon”] Cir Esp 2010; 87: 131-132
17 Quirke P, Durdevy P, Dixon MF, Williams NS. Local recurrence of rectal adenocarcinoma due to inadequate surgical resection. Histopathological study of lateral tumour spread and surgical excision. Lancet 1986; 2: 996-999
18 Malmborg H, Graffner H, Ling L, Olsson SA. Recurrence and survival after anterior resection of the rectum using the end to end anastomotic stapler. Surg Gynecol Obstet 1986; 163: 231-234
19 Heald RJ, Ryall RD. Recurrence and survival after total mesorectal excision for rectal cancer. Lancet 1986; 1: 1479-1482
20 Heald RJ, Allen DR. Stapled ileo-anal anastomosis: a technique to avoid mucosal protecctomy in the ileal pouch operation. Br J Surg 1986; 73: 571-572
21 Pearl RK, Monsen H, Abcarian H. Surgical anatomy of the pelvic autonomic nerves. A practical approach. Am Surg 1986; 52: 236-237
22 Heald RJ. Local recurrence of rectal cancer. Dis Colon Rectum 1987, 30: 572
23 Güvençer M, Dalbayrak S, Tayeci H, Tetik S, Yilmaz M, Erginoğlu U, Baksan O, Gıran S, Naderi S. Surgical anatomy of the presacral area. Surg Radiol Anat 2009; 31: 251-257
24 Fujita S, Yamamoto S, Akatsu T, Moriya Y. Risk factors of lateral pelvic lymph node metastasis in advanced rectal cancer. Int J Colorectal Dis 2009; 24: 1085-1090
25 Schuurman JP, Go PM, Bleys RL. Anatomical branches of the superior rectal artery in the distal rectum. Colorectal Dis 2009; 11: 967-971
26 Simunovic M, Smith AJ, Heald RJ. Rectal cancer surgery and regional lymph nodes. J Surg Oncol 2009; 99: 256-259
27 Lange MM, Buuren M, van de Velde CJ, Lange JF. Level of arterial ligation in rectal cancer surgery: low tie preferred over high tie. A review. Dis Colon Rectum 2008; 51: 1139-1145
28 Lee JF, Maurer VM, Block GE. Anatomical relations of pelvic: autonomic nerves to pelvic operations. Arch Surg 1973; 107: 324-328
29 Boyle KM, Chalmers AG, Finan PJ, Sagar PM, Burke D. Morphology of the mesorectum in patients with primary rectal cancer. Dis Colon Rectum 2009; 52: 1122-1129
30 Nano M, Prunotto M, Ferronato M, Solari M, Galloni M. The mesorectum: hypothesis on its evolution. Tech Coloproctol 2006; 10: 323-328; discussion 327-328
31 Akasu T, Sugihara K, Moriya Y. Urinary and sexual functions after mesorectal excision alone or in combination with extended lateral pelvic lymph node dissection for rectal cancer. Ann Surg Oncol 2009; 16: 2779-2786
32 Takahashi T, Ueno M, Azezuka K, Ohta H. Lateral ligament: its anatomy and clinical importance. Semin Surg Oncol 2000; 19: 386-395
33 Takahashi T, Ueno M, Azezuka K, Ohta H. Lateral node dissection and total mesorectal excision for rectal cancer. Dis Colon Rectum 2000; 43: S59-S68
34 Darzi A, Lewis C, Menzies-Gow N, Guillou PJ, Monson JR. Laparoscopic abdominopерineal excision of the rectum. Surg Endosc 1995; 9: 414-417
35 Goligher JC. Colon, rectum, and anus - surgical. Med Ann 1960; 78: 40-53
36 Colson HP, Hill GL. Extrafascial excision of the rectum for cancer: a technique for the avoidance of the complications of rectal mobilization. Semin Surg Oncol 2000; 18: 207-215
37 Ho YH, Ashour MA. Techniques for colorectal anastomosis. World J Gastroenterol 2010; 16: 1610-1621
38 Bruch HP, Roblick UJ, Schwander O. [Rectum cancer. Optimizing therapy by deep resection or excision] Zentralbl Chir 1999; 124: 422-427
39 Macfarlane JK, Ryall RD, Heald RJ. Mesorectal excision for rectal cancer. Lancet 1993; 341: 457-460
40 O'Rourke NA, Heald RJ. Laparoscopic surgery for colorectal cancer. Br J Surg 1993; 80: 1229-1230
41 Jones OM, Smeeulers N, Wiseman O, Miller R. Lateral ligaments of the stapled rectum: an anatomical study. Br J Surg 1999; 86: 485-489
42 Jones OM, Miller R. The lateral ligaments of the rectum: the emperor’s new clothes? Dis Colon Rectum 2001; 44: 1723-1724
43 Heald RJ. Rectal cancer: the surgical options. Eur J Cancer 1995; 31A: 1189-1192
44 Nano M, Dal Corso HM, Lanfranco G, Ferronato M, Hornung JP. Contribution to the surgical anatomy of the ligaments of the rectum. Dis Colon Rectum 2000; 43: 1592-1597; discussion 1597-1598
45 Nano M, Levi AC, Borghi F, Bellora P, Bogliatto F, Garbosso D, Bronda M, Lanfranco G, Moffa F, Döffl J. Observations on surgical anatomy for rectal cancer surgery. Hepatogastroenterology 1998; 45: 717-726
46 Pak-art R, Tansatit T, Mingmalairaks C, Pattana-arun J, Tansatit T, Vajrabukka T. The location and contents of the lateral ligaments of the rectum: a study in human soft cadavers. Dis Colon Rectum 2005; 48: 1941-1944
47 Lin M, Chen W, Huang L, Ni J, Yin L. The anatomy of lateral ligament of the rectum and its role in total mesorectal excision. World J Surg 2010; 34: 594-598
48 Smedh K, Khani MH, Kraza W, Raab Y, Strand E. Abdomi- no-perineal excision with partial anterior en bloc resection in multimodal management of low rectal cancer: a strategy to reduce local recurrence. Dis Colon Rectum 2006; 49: 833-840
49 Ray S, Mackie C. Positioning the patient for abdomino-perineal excision of the rectum (APEPER). Ann R Coll Surg Engl 2003; 85: 281
50 Boerboom CL, Watson NF, Sivakumar R, Hurst NG, Speake WJ. Biological tissue graft for pelvic floor reconstruction after cylindrical abdomino-perineal excision of the rectum and anal canal. Tech Coloproctol 2009; 13: 257-258
51 Marr R, Birbeck K, Garvican J, Mcklin CP, Tiffin NJ, Parsons WJ, Dixon MF, Mapstone NP, Sebag-Montefiore D, Scott N, Johnston D, Sagar P, Finan P, Quirke P. The modern abdomino-perineal excision: the next challenge after total mesorectal excision. Ann Surg 2005; 242: 74-82
52 Salerno G, Sinnatamy C, Brangan G, Daniels IR, Heald RJ, Moran BJ. Defining the rectum: surgically, radiologically and anatomically. Colorectal Dis 2006; 8 Suppl 3: S-9
53 Wang C, Zhou Z, Wang Z, Zheng Y, Zhao G, Yu Y, Cheng Z, Chen D, Liu W. Patterns of neoplastic foci and lymph node micrometastasis within the mesorectum. Langenbecks Arch Surg 2005; 390: 512-518
54 Havenga K, Grossmann I, deReutier M, Wiggers T. Definition of total mesorectal excision, including the perineal phase: technical considerations. Dig Dis 2007; 25: 44-50
55 Diop M, Parratte B, Tatu L, Vuillier F, Brunelle S, Monnier G. ‘Mesorectum’: the surgical value of an anatomical approach. Surg Radiol Anat 2003; 25: 290-304
56 Heald RJ, Moran BJ, Brown G, Daniels IR. Optimal total mesorectal excision for rectal cancer is by dissection in front of Denovilliers’ fascia. Br J Surg 2004; 91: 121-123
57 Takamaka M, Murakami G, Takashima K, Tato K, Harayama M. Fascial structures and autonomic nerves in the female pelvis: a study using macroscopic slices and their corresponding histology. Anat Sci Int 2003; 78: 228-242
58 Tufano A, Tufano G, Travadini L, Geno G, Rossetti G, Di Stazio C, Grillo M, Del Genio A. Mesorectum, is it an appropriate term? Int J Colorectal Dis 2007; 22: 1127-1128
59 Heald RJ. Total mesorectal excision (TME). Acta Chir Iugosl 2000; 47: 2000-2003
60 Heald RJ. Total mesorectal excision. Acta Chir Iugosl 1998; 45: 37-38
61 Cecil TD, Sexton R, Moran BJ, Heald RJ. Total mesorectal excision results in low local recurrence rates in lymph node-positive rectal cancer. Dis Colon Rectum 2004; 47: 1145-1149; discussion 1149-1150
62 Maurer CA, Z’Graggen K, Rennulli P, Schilling MK, Netzer P, Büchler MW. Total mesorectal excision preserves male genital function compared with conventional rectal cancer surgery. Br J Surg 2001; 88: 1501-1505