Post-traumatic stress disorder, anxiety, depression and related factors among COVID-19 patients during the fourth wave of the pandemic in Vietnam

Hoang Bac Nguyen, Thi Hong Minh Nguyen, Thi Hong Nhan Vo, Thi Cam Nhung Vo, Duc Nguyen Quynh Nguyen, Huu-Thinh Nguyen, Tuan-Ngán Tang, Thi-Hiep Nguyen, Van Trang Do and Quang Binh Truong

Background: This study investigated post-traumatic stress disorder (PTSD), anxiety, depression and their related factors among coronavirus disease 2019 (COVID-19) patients during the fourth wave of the pandemic in Vietnam.

Methods: Vietnamese-fluent confirmed COVID-19 patients for at least 3 d were recruited in this online cross-sectional study to answer a three-part questionnaire including participants’ sociodemographic characteristics, PTSD (Impact of Event Scale-Revised) and anxiety and depression (Hospital Anxiety and Depression Scale). Associated factors were determined using multivariable binary logistic regression models.

Results: Of 1544 responses, the majority were female (53.0%), ages 18–39 y (74.8%) and were isolated and treated at field hospitals (72.2%). Family or friends were the greatest sources of mental support (68.2%), followed by healthcare providers (51.1%). The overall prevalence rates of PTSD, anxiety and depression among COVID-19 patients were 22.9%, 11.2% and 17.4%, respectively. Risk factors included older age, higher education, getting infected from the public, knowing someone who died from COVID-19 and high perception of life threat. Meanwhile, mental assistance from family or friends, a greater number of supporters, living with someone not vulnerable and higher salaries were significantly protective factors.

Conclusions: The psychological responses associated with some sociodemographic details. Family or friends should be the first line of mental interventions for COVID-19 patients.

Keywords: anxiety, COVID-19, depression, mental health, post-traumatic stress disorder, psychological impact.

Introduction

The coronavirus disease 2019 (COVID-19) pandemic has created public health, economic and social crises, severely affecting the lives, health and work of people around the world.1 Facing waves of the pandemic, while communities were experiencing economic hardship due to job loss or fears of infection,2 coronavirus-infected individuals, besides physical problems, were more likely to suffer from mental health disorders such as anxiety, depression and post-traumatic stress disorder (PTSD).3-6 This might come from their exceptional fear of unstable clinical conditions after infection, isolation from family and friends, discrimination, death and possible stigma.3

In a meta-analysis of 13 studies among COVID-19 survivors, the pooled proportion of PTSD was 16% (95% confidence interval [CI] 9 to 23).7 A previous study found that 18.66% (95% CI
Higher similar prevalences of PTSD among COVID-19 pa-
tients, healthcare workers and the general population were also
reported in other systematic reviews.9,10 Besides the high rate of
PTSD, COVID-19 patients presented a considerable proportion of
depression, anxiety, distress and sleep disturbances.11,12 In an-
other systematic review including 46 studies, while the overall
prevalence of depression was 26% (95% CI 20 to 33), people di-
agnosed with COVID-19 were at the greatest risk for this disorder
compared with healthcare workers or the general population.13
Also in this work, the anxiety rate was highest in the COVID-19 pa-
tient group, followed by the public and healthcare providers. Sim-
lar trends in the prevalence rates of sleep disturbances and other
stress symptoms were also observed. Moreover, gender, age, oxy-
gen saturation, having an infected family member, having more
than two physical symptoms or low social support were found to
be associated with anxiety among COVID-19 patients.14,15

Since the first confirmed case on 23 January 2020, Vietnam
has experienced four waves of COVID-19, with increasing levels
of destruction and severity.16,17 During the first nationwide lock-
down to curtail the spread of COVID-19, negative experiences in
work, life and health were reported by healthcare workers.13,18–25
The Vietnamese government and Ministry of Health implemented
many policies and directives to control COVID-19,17 changing the
habits, culture and lifestyles of the country, partly affecting
mental health. The changes in the living environment, the re-
ceived information and social relationships, along with the strict
isolation policy when infected with COVID-19 may also disrupt
the patient’s mental state or exacerbate their psychiatric symp-
toms.4,26,27 This evidence further confirms the considerable im-
pact of the pandemic on the mental health of COVID-19 patients.
If these conditions are not treated in time, the recovery of COVID-
19 patient may be deficient. More seriously, they may be at in-
creased risk of prolonged disabling mental disorders.6 However,
health professionals and researchers in Vietnam seemed to fo-
cus only on psychological disorders during the pandemic in the
general population, not directly on COVID-19-infected individu-
als.28,29 Surveys on such conditions in Vietnamese COVID-19 pa-
tients are lacking and no studies on this topic have been found.
Understanding the psychological responses of this most vulner-
able population, as well as related factors, will allow authori-
ties to provide suitable measures to support psychological treat-
ment and restore the community’s quality of life,30,31 ensuring and
maintaining national labour resources in the new post-crisis
period. Therefore this study was conducted to measure the preva-
ience rates of mental problems, including PTSD, anxiety, depres-
sion and related factors, among COVID-19 patients in Vietnam.

Methods

Design, participants and procedure

A cross-sectional study was conducted when the worst wave of
COVID-19 took place from July to October 2021, with a national
mortality rate at 2.1%.32 Individuals ≥18 y of age, diagnosed
with COVID-19 for ≥3 d and fluent in Vietnamese were eligible
to participate. Patients having physical or mental health issues
who were unable to complete the survey (e.g. unconsciousness,
cognitive impairment, psychotic disorders etc.), did not use a mo-
bile device or declined to participate were not included. Based on
the formula for prevalence estimation,53 with a type I error value
of 5%, an assumed prevalence of 42% obtained from another
study33 and precision of 3%, the sample size was estimated to
be 1040. Due to the nature of the study, a dropout rate of 10%
was predicted, resulting in a required sample size of at least 1144
participants.

Due to strict social distancing regulations, questionnaires were
distributed online to possible participants through the most user-
friendly social media channels in Vietnam (Zalo, Facebook, Skype,
Viber) from the researchers’ network. To maximize the coverage
of the study sample to broadly represent the general population,
a message was attached at the end of the questionnaire encour-
caging participants to send the link to all of their contacts.

Study instrument

To collect data, a three-part anonymous questionnaire was de-
volved. Typical demographic characteristics were surveyed in
part 1. This included information related to their COVID-19 in-
fecation, such as the source of infection, infection duration, place
of treatment, mental support, knowing someone who died from
COVID-19 and perception of life threat to broadly examine the re-
lationship of this process to outcome variables. To measure PTSD
during active COVID-19 infection, part 2 used the validated Im-
pact of Event Scale-Revised (IES-R), which was first developed
by Horowitz34–36 and has been widely used in previous stud-
ies.6,28,29,37,38 and has good internal consistency. The internal con-
sistency of the Vietnamese version of the IES-R has been reported
0.96 (with Cronbach’s α).38 The cumulative total score of 22 ques-
tions with a 5-point Likert scale from 0 (not at all) to 4 (extremely)
was classified nominally as normal (≤23), clinical concern (24–
32), moderate (33–36) and severe symptoms (≥37).36,39,41 The
result was also presented under three subscales as continuous
measures: intrusion (8 items), avoidance (8 items) and hyper-
 arousal (6 items). A patient was considered to have PTSD when
their symptoms were at a moderate or severe level.

In part 3, the Hospital Anxiety and Depression Scale
(HADS)42 which has also been extensively used in previous stud-
ies,14,37,38,42–44 was employed to investigate anxiety and depres-
sive symptoms in COVID-19 patients. The scale was interpreted
with two dimensions: including anxiety as HADS-A (7 items) and
including depression as HADS-D (7 items). The scale was trans-
lated and used for the Vietnamese population with Cronbach’s α
for the HADS-A of 0.85 and for the HADS-D of 0.80.42 With
four response values (0–3) for each item, thresholds of 8, 11
and 15 points were selected to distinguish between normal (≤7),
mild (8–10), moderate (11–14) and extreme anxiety or depres-
sion (≥15).42,43,45–50 Anxiety or depression as a primary outcome
was considered as moderate or extreme symptoms.

Data analysis

Statistical descriptors were used to summarize the results,
including mean and standard deviation (SD) for normally dis-
tributed continuous variables, median and interquartile range
(IQR) for non-normally distributed ones and frequency and
proportion for categorical variables. Three multivariable binary
logistic regression analyses with odds ratios (ORs) and 95% confidence intervals (95% CIs) were run separately to determine the factors associated with PTSD, anxiety and depression and their strength of association. The raw data were refined in Excel 2016 (Microsoft, Redmond, WA, USA) before being imported into SPSS Statistics for Windows version 26.0 (IBM, Armonk, NY, USA) for all the statistical operations. A p-value < 0.05 was considered statistically significant.

Ethical approval

The study was submitted to the Medical Ethics Committee of University Medical Center, Ho Chi Minh City, Vietnam for ethical approval (approval 87/GCN-HDDD-UMC, 31/8/2021). The respondents’ voluntary participation was shown by answering a question in the introductory section of the questionnaire. They were also informed that no personal information was gathered and the data were only for research purposes.

Results

Sociodemographic characteristics

Table 1 presents the sociodemographic details of the participants. Of 1740 individuals taking the survey, 1544 fully responded, with more than four-fifths of the subjects from the public (84.0%). Overall, the majority were 18–39 y of age (74.8%), were less educated (high school or below; 58.9%) and had low monthly incomes of around 5–10 million Vietnamese dong (VND) (44.0%). The number of subjects living with clinically vulnerable people (n=628/1544) was relatively equal to those living with others (n=645/1544). Those treated at field hospitals accounted for 72.2% of the sample and the mean treatment duration was 5 d (IQR 3–10). While 30.4% and 21.0% reported they were infected by community or friends and colleagues, respectively, 370/1544 (24.0%) were blind to their infection’s origin. Their family or friends were their greatest sources of mental support during treatment (68.2%), followed by healthcare providers (51.1%). Additionally the participants’ perception of life-threatening severity was 1.10 (SD 1.04, range 0–4), in which 34.3% rated the life-threatening level due to COVID-19 acquisition as a little bit and 33.7% rated it as threat-free.

Prevalence of PTSD, anxiety and depression in COVID-19 patients

The participants’ mental health during COVID-19 is presented in Table 2. The overall mean score of IES-R parameters was 20.67 (SD 15.17). Although the majority (62.2%) was considered normal, more than one-fifth reported psychological stress with moderate (5.5%) or severe symptoms (17.4%). Concerning three specific dimensions of this scale, the mean scores of both intrusion and avoidance symptoms were > 7 (range 0–32) whereas hyperarousal symptoms scored 5.25 (SD 4.67, range 0–24).

With regard to the HADS, the overall prevalence of anxiety and depression was 11.2% and 17.4%, respectively. In terms of anxiety, 71.8% of respondents reported no symptoms, 17.1% were mild, 6.7% were moderate and 4.5% were severe. For the depression evaluation, nearly 15% of the subjects rated mild intensity, slightly more than 10% experienced moderate depression and 6.3% were extremely depressed.

Factors related to PTSD, anxiety and depression in COVID-19 patients

The results for factors associated with psychological impairment are displayed in Table 3. Regarding PTSD as measured by the IES-R, the multivariable logistic regression found that the age groups 40–59 y and > 60 y, education backgrounds of vocational school/college and university and infection acquisition from the public were positively correlated with more serious distress symptoms (all p-values < 0.05). For factors related to anxiety, the risk of more anxiety was higher among those infected from the public (OR 2.04 [95% CI 1.15 to 3.62]) and lower in those with an income of 5–10 million VND/month (OR 0.61 [95% CI 0.40 to 0.91]) as well as those with more mental support (OR 0.97 [95% CI 0.94 to 0.99]). In terms of the depression dimension, those living with an invulnerable spouse, earning 5–10 million VND/month, receiving support from family or friends and having more mental support sources were less likely to have depression. In contrast, belonging to the 40–50 y age strata and getting mental counselling increased the odds of depression (p < 0.05). Additionally, knowing someone who died from COVID-19 and perceptions of a more serious life threat during infection were associated with higher probabilities of PTSD, anxiety and depression (p < 0.05) among COVID-19 patients.

Discussion

Although mental health issues in different population groups have attracted much attention from scholars, studies on patients suffering from COVID-19 are still lacking, especially in the Vietnamese. This study was the first visible snapshot of a psychological crisis, including stress, anxiety and depression, among COVID-19 patients in Vietnam.

Our study included a sample of Vietnamese COVID-19 patients, with an age distribution consistent with other studies in Vietnam as well as the first confirmed cases during the pandemic. Similar gender ratios were also observed in studies by Long et al. and Nguyen et al.

While this study recruited patients from all treatment locations in Vietnam, with the highest percentage from field hospitals (72.2%), Long et al.’s study included only 13.2% of such patients and no confirmed patients who were isolated at home. In response to the pandemic, field hospitals were the main locations responsible for quarantine and treatment in Vietnam. However, given that the COVID-19 pandemic was at its worst when this study was conducted, there was a serious shortage of facilities and healthcare personnel. Therefore, intending to ease the overload at hospitals, the Vietnamese Ministry of Health prioritized cases requiring close medical treatment and monitoring and allowed asymptomatic COVID-19 patients with low cycle thresholds to self-quarantine and self-treat at home under close supervision.

This research revealed that 22.9% of the subjects had PTSD during their COVID-19 infection. This was higher than in previous...
Table 1. Sociodemographic and background characteristics of COVID-19 patients (N=1544)

Characteristics	Values
Age (years), mean (SD) [range]	33.96 (11.26) [18–80]
18–39	1155 (74.8)
40–59	335 (21.7)
≥60	54 (3.5)
Gender, n (%)	
Male	725 (47.0)
Female	819 (53.0)
Education level, n (%)	
≤High school	910 (58.9)
Vocational school/college	298 (19.3)
University	270 (17.5)
≥Post-graduate	66 (4.3)
Living status, n (%)	
Alone	271 (17.6)
With clinically vulnerable people	628 (40.7)
With others	645 (41.8)
Monthly income (million VND), n (%)	
<5	524 (33.9)
5–10	679 (44.0)
10–15	201 (13.0)
15–20	89 (5.8)
>20	51 (3.3)
Subject, n (%)	
Public	1297 (84.0)
Healthcare worker	247 (16.0)
Infection duration (days), median (IQR)	11 (7–15)
Place of quarantine and treatment, n (%)	
At home	196 (12.7)
Field hospital	1114 (72.2)
COVID-19 hospital	184 (11.9)
COVID-19 resuscitation centre	50 (3.2)
Source of infection, n (%)	
Family	230 (14.9)
Friends, colleagues, acquaintances	324 (21.0)
Public	469 (30.4)
Care or treatment for F0	84 (5.4)
Other COVID-19 prevention performance	45 (2.9)
Others	22 (1.4)
Unknown	370 (24.0)
Know someone who died from COVID-19, n (%)	
No	1233 (79.9)
Yes	311 (20.1)
Source of mental support during infection, n (%)	
Family, friends, acquaintances	
Healthcare providers	1053 (68.2)
Psychotherapist	789 (51.1)
Others	28 (1.8)
None	100 (6.5)
122 (7.9)	
Number of people mentally supporting during infection, median (IQR)	5 (3–10)
Table 1. Continued.

Characteristics	Values
Perceived life-threat level during infection, median (SD) [range], n (%)	1.10 (1.04) [0–4]
Not at all	521 (33.7)
A little bit	530 (34.3)
Moderately	351 (22.7)
Quite a bit	96 (6.2)
Extremely	46 (3.0)

Table 2. Prevalence of PTSD, anxiety and depression among COVID-19 patients (N=1544)

Item	n (%)	Mean (SD)
IES-R		
Normal	961 (62.2)	7.63 (6.01)
Clinical concern	230 (14.9)	7.79 (6.16)
Moderate	85 (5.5)	5.25 (4.67)
Severe	268 (17.4)	
Intrusion symptoms		
Avoidance symptoms		
Hyperarousal symptoms		
HADS Anxiety		
Normal	1108 (71.8)	
Mild	264 (17.1)	
Moderate	103 (6.7)	
Extreme	69 (4.5)	
Depression		
Normal	1047 (67.8)	
Mild	229 (14.8)	
Moderate	171 (11.1)	
Extreme	97 (6.3)	

studies, with 11.7% and 10.7% suffering psychological effects during the pandemic, using the same IES-R instrument. Since the referred studies were conducted on the general population before the worst fourth wave of the pandemic in Vietnam, the severity of psychological influence on this community seemed to be attributable to their uncertainty and concerns or fears about issues such as job loss, economic burden (evidenced by Le et al.,) or the restrictions of unprecedented prevention policies. In contrast, in the current study, the participants were actually battling with the virus in their bodies. The psychological disturbances they faced were not only limited to common concerns, but also fears of death, serious complications or even transmission to their loved ones, which explained their significantly high rates of psychological distress compared with other studies on the general population related to COVID-19.

For anxiety and depression, our work presented significantly higher rates compared with Le et al.’s study, in which 4.9% and 7% of participants suffered from moderate to severe symptoms of anxiety and depression, respectively, based on the 21-item Depression Anxiety Stress Scale. Despite different scales, the significant difference in outcomes between these two studies demonstrates the severity of disorders in the mental health of COVID-19 patients compared with the general population related to this pandemic. Nevertheless, the findings in this work were lower than those among hospitalized COVID-19 patients in the study by Kong et al., using the same HADS checklist. While this study considered those who presented moderate or extreme symptoms of anxiety or depression, the variables of anxiety and depression also included the mild level. In a more detailed breakdown with the same grouping method, despite a lower prevalence of anxiety, our study found a greater prevalence of depression compared with 14.59% in Kong et al. As a result, during the COVID-19 pandemic, the threat of the virus and the implementation of shielding programs confounded the daily life of the community and affected their mental health. Compared with the general population, COVID-19 sufferers seemed to experience worrisome mental health disorders that needed more attention. While strict quarantine patterns at home or in field hospitals made infected people feel lonely, facing an unprecedented devastating physical health threat put them in even greater fear.

Regarding factors associated with psychological stress disorders in COVID-19 patients, this study found that older age was associated with a higher probability of PTSD and depression. This key result was consistent with findings in Chinese hospitalized COVID-19 patients and the general Vietnamese population. During previous severe acute respiratory syndrome and Middle East respiratory syndrome epidemics, older age was confirmed as a factor for a risk of death among several demographic characteristics of patients. Given that the immune system of middle-aged and elderly persons gradually becomes weaker due to the nature of aging, accompanied by underlying chronic illness, individuals in this population are at a higher risk of negative outcomes. Current evidence shows that COVID-19 infection is more likely to pose an increased probability of critical illness and fatality in the elderly, inducing their higher death anxiety. This partially explains the reason why older subjects experienced a greater fear during infection compared with younger groups.

Considering the education background, those holding diplomas or bachelor’s degrees had higher odds of PTSD related to COVID-19 infection than those with an education level of high school or below. Understandably, less-educated persons might...
Table 3. Factors related to PTSD, anxiety and depression among COVID-19 patients (N=1544)

Characteristics	IES-R OR (95% CI)	p-Value	HADS-Anxiety OR (95% CI)	p-Value	HADS-Depression OR (95% CI)	p-Value
Age (years)						
18–39	1		1		1	
40–59	1.52 (1.08 to 2.12)	0.015a	1.21 (0.80 to 1.82)	0.377	1.42 (1.02 to 1.98)	0.040a
≥ 60	3.13 (1.51 to 6.48)	0.002a	1.01 (0.40 to 2.58)	0.983	1.55 (0.75 to 3.19)	0.235
Gender						
Male	1		1		1	
Female	1.04 (0.78 to 1.39)		1.13 (0.79 to 1.61)	0.521	0.91 (0.69 to 1.22)	0.536
Education level						
≤ High school	1		1		1	
Vocational school/college	1.57 (1.07 to 2.30)	0.021a	0.69 (0.40 to 1.17)	0.166	0.88 (0.52 to 1.32)	0.530
University	1.88 (1.21 to 2.93)	0.005a	1.41 (0.81 to 2.45)	0.221	1.06 (0.66 to 1.71)	0.809
≥ Post-graduate	1.24 (0.58 to 2.63)		0.96 (0.36 to 2.56)	0.941	1.46 (0.70 to 3.03)	0.312
Living status						
Alone	1		1		1	
With clinically vulnerable people	1.14 (0.74 to 1.77)		0.90 (0.53 to 1.52)	0.692	0.71 (0.48 to 1.07)	0.102
With others	1.34 (0.88 to 2.05)		0.81 (0.49 to 1.35)	0.422	0.56 (0.38 to 0.84)	0.005a
Monthly income (million VND)						
< 5	1		1		1	
5–10	1.20 (0.86 to 1.68)		0.61 (0.40 to 0.91)	0.016a	0.60 (0.43 to 0.83)	0.002a
10–15	0.99 (0.61 to 1.61)		0.60 (0.33 to 1.12)	0.107	0.61 (0.37 to 1.01)	0.057
15–20	1.45 (0.76 to 2.75)		0.54 (0.23 to 1.24)	0.147	0.55 (0.27 to 1.15)	0.111
> 20	1.01 (0.44 to 2.32)		0.41 (0.14 to 1.27)	0.123	0.50 (0.20 to 1.24)	0.134
Subject						
Public	1		1		1	
Healthcare worker	1.08 (0.68 to 1.73)		2.07 (1.18 to 3.63)	0.012a	1.12 (0.68 to 1.84)	0.667
Infection duration	1.01 (0.99 to 1.02)		1.01 (0.99 to 1.03)	0.400	1.00 (0.99 to 1.02)	0.727
Place of quarantine and treatment						
At home	1		1		1	
Field hospital	0.99 (0.62 to 1.56)		0.88 (0.50 to 1.55)	0.649	0.97 (0.59 to 1.59)	0.895
COVID-19 hospital	0.92 (0.50 to 1.69)		0.73 (0.34 to 1.58)	0.430	0.89 (0.47 to 1.67)	0.710
COVID-19 resuscitation centre	0.41 (0.16 to 1.05)		0.89 (0.31 to 2.58)	0.825	1.40 (0.60 to 3.26)	0.436
Source of infection						
Family	1		1		1	
Friends, colleagues, acquaintances	1.20 (0.72 to 2.00)		1.12 (0.62 to 2.23)	0.618	0.74 (0.44 to 1.24)	0.247
Public	1.80 (1.12 to 2.89)		2.04 (1.15 to 3.62)	0.015a	1.56 (0.99 to 2.44)	0.053
Care or treatment for F0	1.60 (0.77 to 3.34)		0.66 (0.25 to 1.74)	0.395	0.91 (0.42 to 2.00)	0.815
Other COVID-19 prevention	1.07 (0.40 to 2.90)		1.05 (0.32 to 3.38)	0.941	0.38 (0.10 to 1.39)	0.145
performance	0.28 (0.05 to 1.41)		0.35 (0.04 to 3.11)	0.347	1.11 (0.33 to 3.69)	0.865
Others	1.47 (0.90 to 2.34)		0.76 (0.40 to 1.44)	0.405	0.85 (0.52 to 1.38)	0.504
Unknown						
Know someone who died from COVID-19						
No	1		1		1	
Yes	1.45 (1.03 to 2.06)	0.036a	1.72 (1.12 to 2.64)	0.012a	1.76 (1.23 to 2.52)	0.002a

have negative psychological reactions towards COVID-19 as a result of lacking knowledge. However, in this less-educated group, they might also have less chance to access a wide range of information sources and channels, and often passively approach only available channels from the government, television or radio, which might benefit them with only approved and reliable news. In contrast, knowledgeable and highly educated people seemed to be easily bewildered by the abundant information from both reliable and unreliable sources, which might contribute to their higher levels of PTSD and also other negative responses. This also highlighted the role of the government and related authorities in broadcasting credible information. Additionally, the
In addition, while the chain of infection could usually come with uncertain sources of disease acquisition. This situation may drive people to be concerned about the possibility of disease transmission. Moreover, community transmission usually comes with uncertain sources of disease acquisition. This situation may drive people to be concerned about the safety of their surroundings, thereby exacerbating psychological responses.

This study found that knowing someone who died as a consequence of COVID-19 infection was an important risk factor associated with all COVID-19-induced psychological problems in this study, with a range of ORs from 1.45 to 1.76 (p<0.05). During the psychological crisis caused by COVID-19, especially in the early stages of the pandemic, fear of death was an observable consequence in most communities, including uninfected ones. More death anxiety in people who were directly carrying the virus in their body is understandable. By witnessing more deaths of people with similar infections, it is not surprising that COVID-19 patients expressed more negative psychological conditions, including a fear of death. And as a predictable result, negative awareness related to death from COVID-19 caused anxiety or powerful fear. These people were prone to serious perceptions about their life threat levels. This increased the probability of all events of stress, anxiety and depression, with all ORs >1 (p<0.05). In addition, the pain of losing a loved one to COVID-19 during their time fighting the disease also contributed to their psychological experience.

No statistically significant association was observed between isolation and treatment sites for the three main psychological outcomes in this study. While a previous study using HADS found that depression in the at-home COVID-19 patients (69.7%) was significantly higher than in the in-hospital group (32.6%), in some other reports, symptoms of anxiety and depression were more noticeable in infected individuals hospitalized for COVID-19 treatment. It is believed that the strict procedures and the change of environment in the isolation wards in the field or COVID-19 hospitals could directly alter the psychological reactions of the patients. In contrast, given the lack of immediate

Table 3. Continued.

Characteristics	IES-R: OR (95% CI)	p-Value	HADS-Anxiety: OR (95% CI)	p-Value	HADS-Depression: OR (95% CI)	p-Value
Source of mental support during infection						
Family, friends	0.98 (0.68 to 1.42)	0.927	0.65 (0.41 to 1.03)	0.067	0.51 (0.35 to 0.74)	0.055
Healthcare providers	1.32 (0.95 to 1.83)	0.097	0.96 (0.63 to 1.46)	0.851	0.71 (0.50 to 1.01)	0.004a
Psychotherapist	0.63 (0.22 to 1.81)	0.392	0.83 (0.22 to 3.12)	0.779	3.90 (1.55 to 9.81)	0.976
Others	1.11 (0.64 to 1.90)	0.714	1.74 (0.94 to 3.22)	0.076	0.99 (0.57 to 1.72)	0.055
None	1.35 (0.69 to 2.61)	0.380	0.91 (0.42 to 1.98)	0.819	0.53 (0.28 to 1.01)	
Number of people mentally supporting during infection	0.99 (0.98 to 1.00)	0.120	0.97 (0.94 to 0.99)	0.013a	0.98 (0.97 to 0.99)	0.038a
Perceived life-threat level during infection						
Not at all	1					
A little bit	2.72 (1.71 to 4.30)	<0.001a	3.49 (1.87 to 6.50)	<0.001a	2.25 (1.53 to 3.33)	<0.001a
Moderately	13.91 (8.86 to 21.82)	<0.001a	8.02 (4.33 to 14.85)	<0.001a	2.59 (1.71 to 3.91)	<0.001a
Quite a bit	27.26 (15.03 to 49.64)	<0.001a	14.05 (6.63 to 29.78)	<0.001a	3.65 (2.03 to 6.54)	<0.001a
Extremely	23.49 (11.25 to 49.03)	<0.001a	26.62 (11.22 to 63.18)	<0.001a	6.60 (3.22 to 13.52)	<0.001a

Significant at p<0.05.

IES-R: moderate and extreme stress (score ≥33); HADS-A and HADS-D: moderate and severe anxiety or depression (score ≥11).

An economic downturn following the pandemic has been serious. This study pointed out the negative impact of higher academic background on mental health among people during the nationwide lockdown due to COVID-19. This finding agrees with a previous study among quarantined COVID-19 patients where those with a better education expressed a higher likelihood of distress.

One study pointed out the negative impact of higher academic background on mental health among people during the nationwide lockdown due to COVID-19. This finding agrees with a previous study among quarantined COVID-19 patients where those with a better education expressed a higher likelihood of distress.
medical response or on-site interventions performed by healthcare professionals, unsurprisingly, people treated at home exhibited more depression. However, the Vietnamese government and healthcare authorities have evenly distributed medical management and caring to all confirmed COVID-19 patients, regardless of their different treatment sites, with constant medical teleconsultation, monitoring and supportive packages equipped with free medication bags delivered for at-home isolated patients. These policies partly explained why there was no difference or correlation between psychological symptoms and place of treatment in the current study.

Additionally, while family and friends were reported as a significant source of healing for depression in patients with COVID-19 (OR 0.51 [95% CI 0.35 to 0.74], p<0.001), those receiving assistance from psychologists experienced a higher likelihood of depression (OR 3.90 [95% CI 1.55 to 9.81], p=0.004). Several previous studies emphasized the role and psychological healing ability of relatives and families in patients’ recovery. For COVID-19 patients, during their process of strict isolation, their psychological support needs might be even higher, especially from family and loved ones. Because of the special relationship between family members and the patients, these psychological influences were considered a particularly useful therapeutic source to patients. These relatives, besides fully understanding the patients’ personal circumstances, were special potential spiritual resources to provide unlimited support that other sources from outside assistance could not replace. These people had a strong and intense love for each other that can become powerful spiritual support to highly motivate and strengthen the mental condition of patients. This was also consistent with our study result that more sources of emotional support lowered the depression and anxiety outcomes of COVID-19 patients.

Psychological counseling provided by psychologists is yet to be common in Vietnam. Furthermore, in the context of this health emergency, vital medical interventions took precedence over other aspects of supportive care. Once psychological intervention was indicated for a patient, their mental health might have already become serious. Given that psychotherapeutic services are not yet popular in developing countries like Vietnam, it is unusual for patients to access or rely on a psychologist unless their conditions are indeed serious or they are unable to overcome it with other available healing resources. These people are likely to suffer pre-existing psychological problems with COVID-19, explaining why this group’s OR for depression was significantly high. This again suggested that psychological interventions should be initiated at the onset of a suspected or confirmed COVID-19-positive diagnosis. The closest available psychological support resources should be prioritized to achieve the fastest and most effective results.

Strengths

One of several strengths in this study was the large sample size. Moreover, the COVID-19 patients’ psychological responses in this study were collected during their active infection, which eliminated recall bias. In addition, by conducting the study during the most serious wave of COVID-19, the participants’ responses were real experiences influenced by wide variety of factors. Different from previous works in Vietnam, which only focused on the general population in the COVID-19 pandemic, this study could be considered the first report on the psychiatric problems of Vietnamese COVID-19 sufferers. Furthermore, our work combined two well-validated international instruments that have been proven to have high applicability in both clinical and scientific fields.

Limitations

Given the nature of the self-completed online questionnaire, some information bias was unavoidable. Furthermore, by using a web-based platform to disseminate the survey, certain groups of the population were unable to be approached, including those unconnected to the internet or digital devices. Since this was an online survey delivered to patients, we could not access their health records to obtain information related to the severity of COVID-19, which contributed to another limitation. Finally, this indirect sampling method somewhat precluded face-to-face interpretation for potential participants about the questionnaire. However, these people were offered the opportunity to contact the researchers for more information.

Conclusions

In conclusion, COVID-19 patients experienced mental problems of PTSD, anxiety and depression of varying degrees. In reference to other population groups, the prevalence rates of these disorders in the population diagnosed with COVID-19 appeared to be high. Associated factors found to exacerbate these problems included older age, high educational background, community transmission, knowing someone who died of COVID-19 or perceived high levels of life threat. As more sources providing emotional support can reduce the risk of psychological disorders for COVID-19 patients, mental interventions should be implemented as soon as a suspected or confirmed diagnosis is given. It was suggested that besides intensive medical monitoring and interventions provided in organized quarantine facilities, comprehensive supporting programs for at-home COVID-19 patients should also receive adequate attention to ensure the patients’ safety and reassure them during self-treatment. Interventions to holistically heal the COVID-19 patients’ physical and mental health should be scaled up accordingly. Furthermore, psychological intervention programs should prioritize the inclusion of loved ones to facilitate the intervention effects.

Authors’ contributions: All the authors contributed equally in conducting this study.

Acknowledgements: The authors sincerely thank all participants for their assistance in completing this study and for dissemination to other potential participants.

Funding: None.

Competing interests: None declared.
Ethical approval: The study was submitted to the Medical Ethics Committee of University Medical Center, Ho Chi Minh City, Vietnam for ethical approval (87/GCN-HDDD-UHC, 31 August 2021).

Data availability: The supporting data are available within the article.

References

1. Ataguba JE. COVID-19 pandemic, a war to be won: understanding its economic implications for Africa. Appl Health Econ Health Policy. 2020;18:325–8.
2. Bhattacharjee B, Acharya T. The COVID-19 pandemic and its effect on mental health in USA—a review with some coping strategies. Psychiatr Q. 2020;91(4):1135–45.
3. Ghebreyesus TAJWP. Addressing mental health needs: an integral part of COVID-19 response. World Psychiatry 2020;19(2):129–30.
4. Fiorillo A, Gorwood P. The consequences of the COVID-19 pandemic on mental health and implications for clinical practice. Eur Psychiatry. 2020;63(1):e32.
5. Fan Y, Zhao K, Shi Z-L, et al. Bat coronaviruses in China. Viruses. 2019;11(3):210.
6. Højure M, Dibaba B, Shemsu S, et al. Psychological distress among health care workers in health facilities of Mettu Town during COVID-19 outbreak, south west Ethiopia. 2020. Front Psychiatry. 2021;12:574671.
7. Nagarajan R, Krishnamoorthy Y, Basavarachar V, et al. Prevalence of post-traumatic stress disorder among survivors of severe COVID-19 infections: a systematic review and meta-analysis. J Affect Disord 2022;299:52–9.
8. Yuan Y, Liu Z-H, Zhao Y-J, et al. Prevalence of post-traumatic stress symptoms and its associations with quality of life, demographic and clinical characteristics in COVID-19 survivors during the post-COVID-19 era. Front Psychiatry. 2021;12:665507.
9. Yunitri N, Chu H, Kang XL, et al. Global prevalence and associated risk factors of posttraumatic stress disorder during COVID-19 pandemic: a meta-analysis. Int J Nurs Stud. 2022;126:104136.
10. Qiu D, Li Y, Li L, et al. Prevalence of post-traumatic stress symptoms among people influenced by COVID-19 outbreak: a meta-analysis. Eur Psychiatry. 2021;64:e30.
11. Khraisat B, Toubasi A, Alzoubi L, et al. Meta-analysis of prevalence: the psychological sequelae among COVID-19 survivors. Int J Psychiatry Clin Pract. 2021;doi: 10.1080/13651501.2021.1993924.
12. Veazie S, Lafavor B, Vela K, et al. Mental health outcomes of adults hospitalized for COVID-19: a systematic review. J Affect Disord Rep. 2022;8:100312.
13. Krishnamoorthy Y, Nagarajan R, Saya GK, et al. Prevalence of psychologic morbidities among general population, healthcare workers and COVID-19 patients amidst the COVID-19 pandemic: a systematic review and meta-analysis. Psychiatry Res. 2020;293:113382.
14. Kong X, Zheng K, Tang M, et al. Prevalence and factors associated with depression and anxiety of hospitalized patients with COVID-19. medRxiv. 2020; https://doi.org/10.1101/2020.03.24.20043075.
15. Dai L-L, Wang X, Jiang T-C, et al. Anxiety and depressive symptoms among COVID-19 patients in Jianghan Fangcang Shelter Hospital in Wuhan, China. PLoS One. 2020;15(8):e0238416.
16. Hoang TD, Colebunders R, Fodjo JNS, et al. Well-being of healthcare workers and the general public during the COVID-19 pandemic in Vietnam: an online survey. Int J Environ Res Public Health. 2021;18(9):4737.
36 Weiss DS. The impact of event scale: revised. In: Cross-cultural assessment of psychological trauma and PTSD. New York: Springer; 2007:219–38.

37 Wu KK, Chan SK, Ma TM. Posttraumatic stress after SARS. Emerg Infect Dis. 2005;11(8):1297–300.

38 Wu KK, Chan SK, Ma TM. Posttraumatic stress, anxiety, and depression in survivors of severe acute respiratory syndrome (SARS). J Trauma Stress. 2005;18(1):39–42.

39 Creamer M, Bell R, Faillo S. Psychometric properties of the impact of event scale–revised. Behav Res Ther. 2003;41(12):1489–96.

40 Do TTH, Correa-Velez I, Dunne MP. Trauma exposure and mental health problems among adults in central Vietnam: a randomized cross-sectional survey. Front Psychiatry. 2019;10:31.

41 Chen C-S, Wu H-Y, Yang P, et al. Psychological distress of nurses in Taiwan who worked during the outbreak of SARS. Psychiatr Serv. 2005;56(1):76–9.

42 Zigmond AS, Snaith RP. The Hospital Anxiety and Depression Scale. Acta Psychiatr Scand. 1983;67(6):361–70.

43 Van TC, Truc QT, Trong HN, et al. Anxiety and depression according to the Hospital Anxiety Depression Scale in patients with acne vulgaris at the Ho Chi Minh City Hospital of Dermato-Venereology, Vietnam. Syst Rev Pharm. 2020;11(2):14–21.

44 Truong DV, Bui QT, Nguyen DT, et al. Anxiety among inpatients with cancer: findings from a hospital-based cross-sectional study in Vietnam. Cancer Control. 2019;26(1):1073274819864641.

45 Smarr KL, Keefer AL. Measures of depression and depressive symptoms: beck Depression Inventory–II (BDI–II), Center for Epidemiologic Studies Depression Scale (CES-D), Geriatric Depression Scale (GDS), Hospital Anxiety and Depression Scale (HADS), and Patient Health Questionnaire–9 (PHQ–9). Arthritis Care Res. 2011;63(Suppl 11):S454–66.

46 Smith RM, Zigmond AS. The Hospital Anxiety and Depression Scale manual. Windsor, UK: NFER-Nelson; 1994.

47 Bjelland I, Dahl AA, Haug TT, et al. The validity of the Hospital Anxiety and Depression Scale: an updated literature review. J Psychosom Res. 2002;52(2):69–77.

48 Hansson M, Chatai J, Nordstöm A, et al. Comparison of two self-rating scales to detect depression: HADS and PHQ-9. Br J Gen Pract. 2009;59(566):e283–8.

49 Olsson I, Mykletun A, Dahl AA. The Hospital Anxiety and Depression Rating Scale: a cross-sectional study of psychometrics and case finding abilities in general practice. BMC Psychiatry. 2005;5:46.

50 Stern AF. The hospital anxiety and depression scale. Occup Med (Lond). 2014;64(5):393–4.

51 Nguyen TT, Pham TN, Van TD, et al. Genetic diversity of SARS-CoV-2 and clinical, epidemiological characteristics of COVID-19 patients in Hanoi, Vietnam. PLoS One. 2020;15(11):e0242537.

52 Long KQ, Hạnh HH, Hạnh TT, et al. Treatment for COVID-19 patients in Vietnam: analysis of time-to-recovery. Asian Pac J Trop Med. 2020;13(9):397–401.

53 Nguyen TH, Vu DC. Summary of the COVID-19 outbreak in Vietnam – lessons and suggestions. Travel Med Infect Dis. 2020;37:101651.

54 Thai PQ, Raboa MA, Luong DH, et al. The first 100 days of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) control in Vietnam. Clin Infect Dis 2021;72(9):e334–42.

55 Nhan Dan Online. Field hospital put into operation in response to COVID-19 outbreak in Ho Chi Minh City. Available from: https://en.nhandan.vn/society/item/10326502-field-hospital-put-into-operation-in-response-to-covid-19-outbreak-in-ho-chi-minh-city.html [accessed 28 May 2022]

56 VnExpress International. Over 35,000 Covid patients treated at home in HCMC. Available from: https://en.vnexpress.net/news/news/over-35-000-covid-patients-treated-at-home-in-hcmc-4361919.html [accessed 28 May 2022].
74 Aldersey HM, Whitley R. Family influence in recovery from severe mental illness. Community Ment Health J. 2015;51(4):467–76.

75 Freeman E. Coma arousal therapy. Clin Rehabil. 1991;5(3):241–9.

76 Leclerc T, Donat N, Donat A, et al. Prioritisation of ICU treatments for critically ill patients in a COVID-19 pandemic with scarce resources. Anaesth Crit Care Pain Med. 2020;39(3):333–9.

77 Peng M, Qian Z, Zhang L. Care for critical Ill patients with COVID-19: establishment of a temporary intensive care unit in an isolated hospital. Front Med (Lausanne). 2020;7:519.

78 Niemi M, Thanh HT, Tuan T, Falkenberg T. Mental health priorities in Vietnam: a mixed-methods analysis. BMC Health Serv Res. 2010;10:257.

79 Vuong DA, Van Ginneken E, Morris J, et al. Mental health in Vietnam: burden of disease and availability of services. Asian J Psychiatry. 2011;4(1):65–70.

80 Weiss B, Dang H-M, Ngo V, et al. Development of clinical psychology and mental health resources in Vietnam. Psychol Stud (Mysore). 2011;56(2):185–91.

81 Gabriele A. Social services policies in a developing market economy oriented towards socialism: the case of health system reforms in Vietnam. Rev Int Polit Econ. 2006;13(2):258–89.