Performance Modelling and Analysis of IoT Based Edge Computing Policies

Archana Shirke1 · M. M. Chandane1

Accepted: 28 August 2021 / Published online: 22 September 2021
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021

Abstract
In today’s era, the acceptance of IoT-based edge devices is growing exponentially, which creates challenges of data acquisition, processing, and communication. In the edge computing paradigm, intelligence is shifted from the center to the edge by performing specific processing and prediction locally. Existing methods are not well computed with timely manner and it reduces the security level by overfitting problem. A strategy based on reducing communication resources between sensors and edge devices is the prime focus of this investigation. It uses a predictive model-based policy at edge devices for the reconstruction of not delivered context vector. A new hybrid Averaged Exponential Smoothening policy proposed is based on the current context vectors as well as a smoothing vector to reduce reconstruction error and improve the percentage of communication. It is observed that if we send data only when there is a marginal change in data then we can reduce communication overhead as well as keep reconstruction error low. This policy would be suitable for IoT-based edge computing applications for the smart city such as Smart Home, Healthcare, and Intelligent traffic to delivers the power of AI.

Keywords Distributed architecture · Internet of Thing · Edge computing · Resource management

1 Introduction
IoT is the heart of the digital business and a combination of operational as well as information technology necessary to create a business advantage. Gartner predicts that the high volume of significant business procedures and protocols will have some or other components of the IoT [1]. Data Analytics is fundamental to the accomplishment of IoT frameworks as they are the primary mainstay of the necessary decision making process. Real-time data and data analytics plays a crucial role in making a revolution. IoT produces a big quantity of statistics that desires to be processed and analyzed so it may be used. Edge
computing services are closer to the user or the source of the records, which includes an IoT tool. This permits the IoT facts to be accumulated and processed at the edge where the tool is positioned, instead of sending the statistics lower back to a datacenter or cloud to assist identify styles that provoke moves faster like anomaly detection for predictive renovation. The ability of IoT devices to make use of compute energy is turning into an increasing number of treasured as a way to rapidly examine statistics in actual-time.

There are different computing architectures available at the application layer. It mainly includes Cloud computing, Fog Computing, and Edge computing [2–4]. The new Architecture, like Edge Computing, addresses data management problems by leveraging analytics at the different layers from the sensor to the edge of the network. There are a network of sensors and actuator within an enterprise which generate, manage, and analyze such big data which has massive challenges. In an edge computing model, sensors and Actuators transmit or receive data to a close-by edge gateway like a switch that checks or analyzes the data instead of forwarding it to the cloud. By moving insight from a center incorporated cloud to an edge of an enterprise can be made nearer to where they have happened. Edge computing can help to illuminate latency challenges and empower organizations to open doors utilizing a distributed computing architecture [5–8]. A smart IoT network incorporates policies to push information preparation and management of application data to the edge of the net.

This new architecture is used to perform advanced analytics at the point where the data generate or most actionable. With a smart deployment strategy, decision-makers get visual and easily-understood insights of data in near real time. In Edge computing, advanced analytics deploys on the end device (Sensor and Actuating Devices), on the gateway (Edge Devices), and in the cloud, giving secure and instant insight into the time and place it most needed. Here the DS1 and DS2 is modeled and security improvement makes the better analysis state. Case 1 determines the predicted value of sensor data and the case 2 shows the context vector approach with different policy assessments. Security issue and large data processing with overfitting issues are the major problem of this work. This research contributes to increase the application availability of various fields of IoT and cloud environment. Data processing with secure model increases the performance to contribute the reliability for the user.

A variety of IoT-based edge architecture models can be explored in the literature. Here three-layered edge computing model consisting of the core, edge, and sensor layers is used, as shown in Fig. 1. As we move from the sensor layer to the core layer the latency goes on increasing. So it is better to do time-sensitive analytics in the edge or sensor layer instead of pushing it to the core layer.

Figure 1 shows the IoT system architecture of edge computing based model. In this three different layers are processed. Those are sensor layer, edge layer and core layer. In this the sensor layer is the input source to get the activated sensor data from the IoT SAN. The edge layer is performed on the IoT gate way model such as wifi, wireless communication, cloud model, Bluetooth, mobile, internet, etc. The core layer constructed the IoT cloud infrastructure with high latency. Depends on the utility from sensor layer, the core layer is activated to perform the model. The system designed with deep analysis based on the user requirement. For example, the core layer has the application of medical data handling, the major concern is about security, reliability and large scale data process. This may cause overfitting problem.

• **Sensor Computing**—The sensor layer consists of IoT sensors, which include motion, light, temperature, humidity, and many more. It consists of smart wireless sensors and
actuators, which are having limited computing capabilities. Sensors monitor the surrounding environment and asset state.

- **Edge Computing**—It includes sensor data aggregation systems using gateway devices. The edge layer consists of gateway devices that receive the data and aggregates it and transfer it to the core computational layer. This layer acts as an intermediary layer that aggregates from lower layers and forwards it to the core layer for further processing.

- **Core Computing**—It uses to manage, store, analyze, and build a programming model of data. The core computational layer consists of high-end machines for storing, computing, and analyzing the sensor data to generate actionable information. This information transmits to the user via the IoT gateway.

Section 2 briefs about related work, architecture, edge computing models, and parameters for analysis. In part III, the main focus is on the proposed policy. Section 4 shows the experimental study and result from analysis, whereas Sect. 5 depicts a summary and open research challenges in edge computing.

2 Literature Review

There are many research papers available that attention problems on different IoT scenarios and explored cutting edge technologies. Many paper [9–14] gives observations of IoT, different empowering innovations, advantages of its utilization, different applications, and significant investigation issues. An enormous number of IoT empowering techniques including design, detecting, and innovative technologies are examined in [15–19]. Paper [20–22] presents a survey of IoT research challenges applications and technologies. Many researchers [23–28] discussed heterogeneous inter-operability of different devices and
information, self-variation, security, and energy enhancement strategies. The application rundown of the vast majority of the study papers is for the most part identified with controlling and observing in the modern, cultural, and ecological areas [29–33]. Registering, correspondence and ID innovation, security, protection, trust, conveyed engineering, and their difficulties examine in de-tail [34–40]. These papers [41–44] clarifies in detail the study, applications, advances, finished ventures, issues, and challenges.

2.1 Background

In the traditional IoT system, the sensing node senses the environmental parameters and sends it to the centralized system to process it further to analyze the situation. It performs analytics tasks only on back end devices and not on Sensor or Actuation Device(SAD) or network gateway Edge Device(ED) [45]. Nowadays, these devices are increasing with computing capacity, which can perform some processing of data at SAD or/and ED of the network. This processing eventually can reduce the energy required for transmitting data to the centralized system, bandwidth requirement, high latency, and the prolonged lifetime of the sensor network, which encourages edge analytics. Edge Computing architecture either pushes intelligence to ED for analytics or to SAD, where both collaboratively support edge analytics, as shown in Fig. 2. The terminology and respective notations are given in Table 1 and Dataset description is given in Table 2.

All SADs coordinates with ED, who is responsible for keeping track of data generated and energy consumption on communication between SAD and ED, as well as local computation on ED. It is considered that cost of handling and investigation at ED is nontrivial, and one should consider the balance between intra edge-network communication and local computation. The prediction capability results in the SADi ready to conclude whether to send or not generated vectors xt to EDj. SADi relies on a threshold of error-based delivery decision rule based on a couple of cases as follows:

- **Case 1:** If the difference between model based predicated value x^t, and the sensed context vector xt, is more than a threshold of error, i.e., et > θ, then the SADi send the original context vector xt to the EDj.
- **Case 2:** if et ≤ 0, then SADi won’t send xt to the EDj so EDj is responsible for the reconstruction of context vector for further processing. This reconstruction of the con-

Table 1 Terminology and notation	SAD_i	Sensor or Actuation Device i
ED_j		Edge Device j
x_t		original context vector is data generated at the sensor device
x^t		predicted context vector at the sensor device
ut		reconstructed context vector at Edge device
et		error is the difference between the originally predicted context vector at the se
y^t		predicted or forecast context vector
θ		threshold for error(e) at time (t)
α		smoothing parameter of prediction
s_t		smoothing vector at the edge device
text vector at EDj is achieving with various ways or policies, as shown in the next section.

2.2 Edge Computing Model

Many edge computing-based data models are available in the literature, which analyzes time-series data coming from sensors by keeping simplicity and complexity in mind. The various policies based on edge computing models for selective data forwarding [45] are as follows:

Name	Instances	Attributes	Type of Sensor
Air quality	9357	12	CO PT08.S1 (tin oxide) Non Metallic HydroCarbons Benzene PT08.S2 (titania)
			PT08.S3 (tungsten oxide) NO2 PT08.S4
			PT08.S5 (indium oxide) Temperature Relative humidity Absolute humidity
Sensor data	1441	3	Temperature Relative humidity CO

Fig. 2 Edge network with sensor actuator devices and edge devices
• Random walk Model—This is the simplest and easiest model used for time-series forecasting. In this case, the reconstruction of data depends on the previous observation.

\[\hat{y}_T + h | T = y_T \]

where \(\hat{y}_T \) denotes forecast data after \(h \) interval.

• Simple average Model—In this model, the reconstruction of data depends on an average of sliding window-based stream data.

\[\hat{y}_T + h | T = \frac{1}{T} \sum_{i=1}^{T} y_i \]

where data \(y_1 \ldots y_T \) denotes historical data.

• Simple Exponential Smoothing (SES) model—This is the most widely and successfully used forecasting model. In this model, the reconstruction of data depends on weighted averages of previous data of \(N \) observations based window. This weightage depends more on recent data than older data. This scheme applies to data with no clear trend and seasonal pattern.

\[\hat{y}_T + 1 | T = \alpha y_t + (1 - \alpha)y_{t-1} \ldots \]

Where \(\alpha \) it is a smoothing parameter.

3 Proposed Edge Computing Policy

The proposed policy takes advantage of the Exponential Smoothing Model and averaged Model to come up with a scheme of Averaged Exponential Smoothing (AES) Policy as given in Fig. 3, where the context vector reconstructed at EDj with the combination of averaged and exponential smoothing models. There are two possibilities in the reconstruction of context vector using sliding window maintained at EDj. In the first case, the EDj directly inserts the received context vector in the sliding window and removes the oldest one, and finds value based on the recent received vector and previous vector. In the second case, EDj reconstructs the value with the average of smoothed context vector and most recently received context vector, and removes the oldest value.

\[\hat{y}_T + 1 | T = \frac{u_{r-1} + s'_{r-1}}{2} \]

where \(s' \) t-1 smoothing vector constructed at edge device, which can be different than the smoothing vector at the sensor device.

Figure 3 shows the AES policy. Here the AES policy is modelled with sliding window based data and the results are evaluated by context vector model. This forecast the average context value of reconstructed vector. Since this policy combines two different models, it removes the bottleneck of both the systems and improves the performance and reduces reconstruction error significantly. The next section demonstrates an experimental study based on edge computing models, parameters, and analysis of experimental results.
Experimental Results

In the previous section, an examination of different edge computing models from a theoretical point of view is discussed. Their performance on a benchmark dataset and the experimental dataset is available for empirical evaluation.

4.1 Parameters for Analysis

Various measures used for the evaluation of different models are listed below. The precision of each model is essential from the evaluation point of view.

- Communication efficiency—It refers to the efficiency of communication resources to reduce delays.
 \[C(t) \sum_{i=1}^{T} \sum_{j=1}^{n} I_{i,j} \]
 where \(I_{i,t} = 1 \) if SAD\textsubscript{i} sends its sensed value to the ED otherwise \(I_{i,t} = 0 \).
- Root Mean Square Error (RMSE)—It is the square error between the actual context vector and reconstructed one calculated as follows:
 \[RMSE = \sqrt{mean(e_t^2)} \]
Mean Absolute Error (MAE)—It is an absolute error between actual context vector and reconstructed one calculated as follows:

$$MAE = mean(|e_t|)$$

Mean Absolute Percentage Error (MAPE)—It is an absolute percentage error between actual context vector and reconstructed one calculated as follows:

$$MAPE = mean(|p_t|)$$

The next section shows the proposed edge computing policy and its performance based on evaluation parameters.

In the experiment, the real-time use of two datasets to assess the evaluation of the proposed policy. The first dataset is available on the University of California Irvine (UCI) repository [46]. These data are collected every hour and refer to $T = 9357$ 12-dimensional measurements with $n = 12$ SADs and one ED. This dataset has missing values that are replaced by the mean of that attribute. The second datasets have collected from an experimental setup in the lab for collecting data from a different sensor like temperature, humidity, and Carbon Monoxide (CO). These data are collected every 5 min and refer to $T = 1441$ 3-dimensional measurements with $n = 3$ SADs and one ED.

All three existing policies and proposed policy implemented using the r platform, and the results were analysed for prediction error, reconstruction error, and percentage of communication.

- Policy 1: This random walk model-based policy reconstructs the data based on the recently acquired context vector. The reconstructed data pushed to the sliding window and the previous data from the window removed (see Figs. 4 and 5).
- Policy 2: This averaged model-based policy reconstructs the data not delivered context vector at ED as the average of data available for consideration in the window at ED, i.e., this reconstructed data is pushed to the window discarding the earliest one (see Figs. 6 and 7).
- Policy 3: This SES model-based policy reconstructs the undelivered context vector at the ED in two ways. ED either fills in the given context vector into the window and

![Policy 1 based Reconstructed data at S](image)

Fig. 4 Policy 1 based Reconstructed data for DS1
removes the earliest context vector and recalculates the smoothing parameter based on the delivered context vector or it reconstructs the new smoothed context vector and removes the previous context vector from the window (see Figs. 8 and 9).

- Policy 4 (AES): This proposed policy applies an average of the exponential smoothing vector and previously received context vector for reconstructing the not delivered context vector in the ED. ED either fills in the given context vector into the window and removes the earliest context vector and recalculates the smoothing parameter based on delivered context vector Or it reconstructs the context vector with the average of recent smoothing parameter and previously received context vector and removes the earliest data from the sliding window (see Figs. 10 and 11).

- The comparison of all policies as shown in Figs. 12 and 13 for DS1 and DS2, respectively.
All Policies based reconstructed data of DS1 and DS2 is constructed. This analyze the better performance of prediction error, reconstruction error and percentage of communication achieved with 95 at 4th policy of AES, 97 of policy3, 23 of policy2 and 96.66 of AES policy 1. Both DS1 and DS2 obtains the result for 4 policy AES. It is clear from Tables 3 and 4 that AES policy is performing better than other policies for both data set in terms of reconstruction error, and the percentage of communication because it is based on the current context vector as well as smoothing vector.
5 Conclusion

The usage of IoT devices has been growing exponentially with time. The traditional policies are not sufficient to address the issues of IoT devices such as data acquisition, processing, communication, privacy security. Considering these limitations of centralized processing in the growing era of IoT devices, a distributed policy was needed. Therefore, in this paper, a distributed and lightweight AES model is proposed. The proposed model design to reduce communication overhead and, in-turn to minimize the energy of processing requirements. It compares with existing policies, which shows that the AES model performs better than existing models regarding the percentage of communication. Future work includes the investigation of intelligent techniques for minimization of prediction and reconstruction error by offloading computing to the next level. In future, the work may be extended with the medical application specific model and it triggers the value of edge computing model.
Fig. 11 Policy 4 based Reconstructed data for DS2

Fig. 12 All Policies based Reconstructed data for DS1
Fig. 13 All policies based reconstructed data for DS2

Table 3 Analysis of all policies for Ds1

Policy name	Prediction error	Reconstruction error	Percentage of communication
Policy 1	5.639810	160.074095	96.66
Policy 2	298.368985	4.880959	23.66
Policy 3	1.667822	478.698995	97.00
Policy 4(AES)	4.627129	364.224430	95.00

Table 4 Analysis of all policies for Ds2

Policy name	Prediction error	Reconstruction error	Percentage of communication
Policy 1	0.241479	0.398363	7.177852
Policy 2	0.447277	0.605774	15.159423
Policy 3	0.082573	1.727653	10.385850
Policy 4(AES)	0.117307	0.558918	5.873716
for increasing the reliability. Security improvement in real life data ma modelled for better outcomes.

Author’s contribution There is no author’s contribution.

Funding There is no funding information.

Availability of data and material There is no availability of data and material.

Code availability There is no code availability.

Declarations

Conflict of interest There is no conflict of interest.

References

1. Shirke, A., & Chandane, M. M. (2018). Iot data based predictive modelling for energy usage of appliances in smart home. International Journal of Engineering and Technology (UAE), 7, 931–934.
2. Alturki, B., Reiff-Marganiec, S., & Perera, C. (2017). A hybrid approach for data analytics for internet of things. In Proceedings of the seventh international conference on the internet of things (p. 7). ACM.
3. Mahdavinejad, M. S., Rezvan, M., Barekatain, M., Adibi, P., Barnaghi, P., & Sheth, A. P. (2017). Machine learning for internet of things data analysis: A survey. Digital Communications and Networks.
4. Wei, M., Hong, S. H., & Alam, M. (2016). An iot-based energymanagement platform for industrial facilities. Applied Energy, 164, 607–619.
5. Ray, P. P. (2018). A survey on internet of things architectures. Journal of King Saud University-Computer and Information Sciences, 30(3), 291–319.
6. Lindsay, G., Woods, B., & Corman, J. (2016). Smart homes and the internet of things. Atlantic Council.
7. Zehnder, M., Wache, H., Witschel, H.-F., Zanatta, D., & Rodriguez, M. (2015). Energy saving in smart homes based on consumer behavior: A case study. In Smart cities conference (ISC2), 2015 IEEE first international (pp. 1–6). IEEE.
8. Mohammadi, M., Al-Fuqaha, A., Sorour, S., & Guizani, M. (2018). Deep learning for iot big data and streaming analytics: A survey. IEEE Communications Surveys & Tutorials.
9. Ramparan, F., Thalgott, M., Bolle, S., Martin, S. (2016). Exploiting data analytics for home automation services. In 2016 IEEE 4th International conference on future internet of things and cloud (FiCloud) (pp. 228–234). IEEE.
10. Valerio, L., Passarella, A., & Conti, M. (2016). Accuracy vs. traffic trade-off of learning iot data patterns at the edge with hypothesis transfer learning. In Research and technologies for society and industry leveraging a better tomorrow (RTSI), 2016 IEEE 2nd international forum on (pp. 1–6). IEEE.
11. Molanes, R. F., Amarasinghe, K., Rodriguez-Andina, J., & Manic, M. (2018). Deep learning and reconfigurable platforms in the internet of things: Challenges and opportunities in algorithms and hardware. IEEE Industrial Electronics Magazine, 12(2), 36–49.
12. Sanchez, V. G., Pfleiffer, C. F., & Skeie, N.-O. (2017). A review of smart house analysis methods for assisting older adults. Journal of Sensor and Actuator Networks, 6(3), 11.
13. Khan, R., Khan, S. U., Zaheer, R., & Khan, S. (2012). Future internet: the internet of things architecture, possible applications and key challenges. In Frontiers of information technology (FIT), 2012 10th international conference on (pp. 257–260). IEEE.
14. Gubbi, J., Buyya, R., Marusic, S., & Palaniswami, M. (2013). Internet of things (IoT): A vision, architectural elements, and future directions. Future Generation Computer Systems, 29(7), 1645–1660.
15. Marjani, M., Nasaruddin, F., Gani, A., Karim, A., Hashem, I. A. T., Siddiqua, A., & Yaqoob, I. (2017). Big iot data analytics: Architecture, opportunities, and open research challenges. IEEE Access, 5, 5247–5261.
16. Gartner Report. (2018). Online: http://www.gartner.com/technology/research/internetof-things august 2016.
17. Tsai, C.-W., Lai, C.-F., Chiang, M.-C., Yang, L.-T., et al. (2014). Data mining for internet of things: A survey. *IEEE Communications Surveys and Tutorials*, 16(1), 77–97.
18. Cai, H., Xu, B., Jiang, L., & Vasilakos, A. V. (2017). IoT-based big data storage systems in cloud computing: Perspectives and challenges. *IEEE Internet of Things Journal*, 4(1), 75–87.
19. Chen, S., Xu, H., Liu, D., Hu, B., & Wang, H. (2014). A vision of iot: Applications, challenges, and opportunities with china perspective. *IEEE Internet of Things Journal*, 1(4), 349–359.
20. Alkar, A. Z., & Buhur, U. (2005). An internet based wireless home automation system for multifunctional devices. *IEEE Transactions on Consumer Electronics*, 51(4), 1169–1174.
21. Botta, A., De Donato, W., Persico, Y., & Pescap’e, A. (2016). Integration of cloud computing and internet of things: A survey. *Future Generation Computer Systems*, 56, 684–700.
22. D’iaz, M., Mart’ in, C., Rubio, B. (2016). State-of-the-art, challenges, and open issues in the integration of internet of things and cloud computing. *Journal of Network and Computer Applications*, 67, 99–117.
23. Al-Fuqaha, A., Guizani, M., Mohammadi, M., Aledhari, M., & Ayyash, M. (2015). Internet of things: A survey on enabling technologies, protocols, and applications. *IEEE Communications Surveys & Tutorials*, 17(4), 2347–2376.
24. Ma, H., Liu, L., Zhou, A., & Zhao, D. (2016). On networking of internet of things: Explorations and challenges. *IEEE Internet of Things Journal*, 3(4), 441–452.
25. Verma, S., Kawamoto, Y., Fadlullah, Z., Nishiyama, H., & Kato, N. (2017). A survey on network methodologies for real-time analytics of massive iot data and open research issues. *IEEE Communications Surveys & Tutorials*, 19(3), 1457–1477.
26. Akbar, A., Khan, A., Carrez, F., & Moessner, K. (2017). Predictive analytics for complex iot data streams. *IEEE Internet of Things Journal*, 4(5), 1571–1582.
27. Akbar, A., Carrez, F., Moessner, K., Zoha, A. (2015). Predicting complex events for pro-active iot applications. In *Internet of things (WF-IoT), 2015 IEEE 2nd World Forum on* (pp. 327–332). IEEE.
28. Jakhon, K. S., Guo, H., & Cho, K. (2020). Agent grouping recommendation method in edge computing. *Journal of Ambient Intelligence and Humanized Computing*, 1–11.
29. Ta-Shma, P., Akbar, A., Gerson-Golan, G., Hadash, G., Carrez, F., & Moessner, K. (2018). An ingestion and analytics architecture for iot applied to smart city use cases. *IEEE Internet of Things Journal*, 5(2), 765–774.
30. Candanedo, L. M., Feldheim, V., & Deramaix, D. (2017). Data driven prediction models of energy use of appliances in a low energy house. *Energy and Buildings*, 140, 81–97.
31. Kecskemeti, G., Casale, G., Jha, D. N., Lyon, J., & Ranjan, R. (2017). Modelling and simulation challenges in internet of things. *IEEE Cloud Computing*, 4(1), 62–69.
32. Asuncion, A., & Newman, D. (2007). Uci machine learning repository.
33. Friedman, J., Hastie, T., Tibshirani, R., et al. (2000). Additive logistic regression: A statistical view of boosting (with discussion and a rejoinder by the authors). *The Annals of Statistics*, 28(2), 337–407.
34. Friedman, J. H. (2001). Greedy function approximation: A gradient boosting machine. *Annals of Statistics*, 1189–1232.
35. Appliances energy prediction Data Set Luis Candanedo. (2017). Online: http://archive.ics.uci.edu/ml/datasets/Applications+energy+prediction,april 2017.
36. Why Edge Computing Is Crucial for the IoT Chris Raphael. (2015). Online:https://www.ritsinsights.com/why-edge-computing-and-analytics-is-crucial-for-the-iot/.
37. 5 Myths of IoT analytics Jennifer Sewell. (2016). Online:http://mnubo.com/5-myths-iot-analytics.
38. The 4 stages of an IoT architecture. (2017). Online: https://techbeacon.com/4-stages-iot-architectu re.
39. Michael, E. (2015). Raynor Mark Cotteleer Inside the Internet of Things Jonathan Holdowsky, Monika Mahto. Online:https://dupress.deloitte.com/dup-us-en/focus/internet-of-things/iot-primer-iot-technologies-applications.html.
40. Gupta, B. B., Agrawal, D. P., & Yamaguchi, S. (2018). Deep learning models for human centered computing in fog and mobile edge networks. *Journal of Ambient Intelligence and Humanized Computing*.
41. Kirsch, D. (2015). The value of bringing analytics to the edge. *Hurwitz & Associates*.
42. Zhong, C.-L., Zhu, Z., & Huang, R.-G. (2015.) Study on the iot architecture and gateway technology. In *Distributed computing and applications for business engineering and science (DCABES), 2015 14th international symposium on* (pp. 196–199). IEEE.
43. Patel, P., Ali, M. I., & Sheth, A. (2017). On using the intelligent edge for iot analytics. *IEEE Intelligent Systems*, 32(5), 64–69.
44. Muñoz, R., Vilalta, R., Yoshihane, N., Casellas, R., Martínez, R., Tsuritani, T., & Morita, I. (2018). Integration of iot, transport sdn, and edge/cloud computing for dynamic distribution
of iot analytics and efficient use of network resources. *Journal of Lightwave Technology*, 36(7), 1420–1428.

45. Harth, N., Anagnostopoulos, C., & Pezaros, D. (2018). Predictive intelligence to the edge: Impact on edge analytics. *Evolving Systems*, 9, 95–118.

46. De Vito, S., Massera, E., Piga, M., Martinotto, L., & Di Francia, G. (2008). On field calibration of an electronic nose for benzene estimation in an urban pollution monitoring scenario. *Sensors and Actuators B: Chemical*, 129(2), 750–757.

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Archana Shirke has received her B. Tech from government college, DBATU, Lonere, and M.Tech from VJTI, Mumbai. She is currently pursuing her Ph.D. in Computer Engineering at VJTI. She is working as an Assistant Professor at Fr. C.R.I.T. (Fr. Agnel)Vashi, Navi Mumbai. She has more than 20 years of teaching and research experience in the field of Computer engineering and Information Technology. Her area of interest includes Data Structure, Data Mining, Big Data Analytics, Machine learning, and Artificial Intelligence along with research projects from TIFR. She has received grants from the Government of India as well as a minor research grant from the University of Mumbai. She has 37 publications in National/International journals and conferences. She was actively involved in organizing International Conferences at the institute and a member of CSI and ISTE. She is appointed as Chairperson/Member of various course syllabus setting committees at the University.

M. M. Chandane has received his M.E. and Ph.D. degrees in Computer Engineering at VeermataJijabai Technological Institute (VJTI), University of Mumbai. He is working as an Associate Professor in the Department of Computer Enggat VeermataJijabai Technological Institute (VJTI), Mumbai. He has more than 22 years of teaching and research experience in the field of Computer networks, Adhoc and Wireless networks and Mobile computing. He received various grants from Government including a Research Proposal on “Design and Deployment of Energy Efficient Techniques for WSN” was sanctioned by AICTE with a grant of Rs. 18L. He has more than 30 publications in International journals and conferences. He is also a member of IET, IEEE and life member of CSI and IIE. In this academics field, he is responsible for execution of several key projects in VJTI like GIAN and TEQIP-II. Global Initiative of Academic Networks (GIAN) is aimed to increase the footfalls of reputed international faculty in Indian education institutes of Higher Education in India, in order to strengthen the country’s existing academic resources, adopt new pedagogic methods in emerging topics of national and international interest. At the institute level he is handling IT Infrastructure and is the member of the Department Academic Committee and the unfair means committee. He has organized various Short term training programs in the institute. In the period 2002 – 2004, he worked as a consultant to ONGC and Byculla Police Station. He has worked as member of expert and scrutiny committees of AICTE from 2010 to 2016, and DTE committee for Inspection of institutes and gradation. He also worked as session chair in at various International Conferences. Currently 2 students are pursuing Ph.D. under his guidance at VJTI.