Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
Review

Stem cell therapy in coronavirus disease 2019: current evidence and future potential

Rohit Shetty1, Ponnalagu Murugeswari2, Koushik Chakrabarty3, Chaitra Jayadev4, Himanshu Matalia1, Arkasubhra Ghosh3, Debashish Das2,*

1 Department of Cornea and Refractive Surgery, Narayana Nethralaya Eye Institute, Bangalore, India
2 Stem Cell Research Laboratory, GROW Laboratory, Narayana Nethralaya Foundation, Bangalore, India
3 GROW Laboratory, Narayana Nethralaya Foundation, Bangalore, India
4 Department of Vitreo-Retinal Surgery, Narayana Nethralaya Eye Institute, Bangalore, India

ABSTRACT

The end of 2019 saw the beginning of the coronavirus disease 2019 (COVID-19) pandemic that soared in 2020, affecting 215 countries worldwide, with no signs of abating. In an effort to contain the spread of the disease and treat the infected, researchers are racing against several odds to find an effective solution. The unavailability of timely and affordable or definitive treatment has caused significant morbidity and mortality. Acute respiratory distress syndrome (ARDS) caused by an unregulated host inflammatory response toward the viral infection, followed by multi-organ dysfunction or failure, is one of the primary causes of death in severe cases of COVID-19 infection. Currently, empirical management of respiratory and hematological manifestations along with anti-viral agents is being used to treat the infection. The quest is on for both a vaccine and a more definitive management protocol to curtail the spread. Researchers and clinicians are also exploring the possibility of using cell therapy for severe cases of COVID-19 with ARDS. Mesenchymal stromal cells are known to have immunomodulatory properties and have previously been used to treat viral infections. This review explores the potential of mesenchymal stromal cells as cell therapy for ARDS.

© 2020 International Society for Cell & Gene Therapy. Published by Elsevier Inc. All rights reserved.

Introduction

The latter half of 2019 saw a sudden rise in pneumonia or severe respiratory infection in Wuhan, Hubei Province, China, secondary to a novel coronavirus—severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) [1]. The infectivity of SARS-COV-2 surpassed the pace of finding an effective treatment or preventive option, and as of October 27, 2020, there are 43,341,451 confirmed positive cases, with a mortality rate of 2.6% and a recovery rate of 73% (www.WHO.int). A pathogen’s basic reproduction number (R0) denotes the average number of people who can be infected by an infected individual. Though the R0 of coronavirus disease 2019 (COVID-19) differs between countries, it is higher than 1, suggesting an exponential infectivity potential of the virus, which has led to this pandemic [2,3]. The R0 of COVID-19 (2–3) and that of Spanish influenza is similar but higher than that of H1N1 influenza (1.46–1.52) and Middle East respiratory syndrome (0.3–0.8) [4–6].

Although a majority of patients with COVID-19 infection are asymptomatic, symptoms can range from mild to severe [7–9]. Pneumonia, respiratory distress, multi-organ dysfunction, sepsis, septic shock, loss of speech and movement are signs of severity [10]. The elderly and immune-compromised and those with comorbidities have a higher risk of developing severe symptoms with a fatal outcome [11,12]. The virus-induced cytokine storm results in COVID-specific acute respiratory distress syndrome (ARDS), multi-organ dysfunction syndrome and eventual death [13].

Currently, severely affected patients are being treated with anti-viral and anti-inflammatory drugs, besides supportive measures such as invasive and non-invasive mechanical ventilation [14]. Acute progressive renal injury, an early marker of multi-organ dysfunction syndrome, requires renal replacement therapy in advanced disease [15]. Horby et al. [16] found that dexamethasone reduced mortality in patients receiving invasive ventilation but not in those without any respiratory support. Although treatment with several anti-virals did not lead to any improvement [17,18], patients receiving remdesivir, an RNA polymerase inhibitor, demonstrated significant clinical improvement [19]. Over 50 clinical trials have been registered at ClinicalTrials.gov for investigating the safety and efficacy of the anti-viral favipiravir for COVID-19 treatment.
The usage of chloroquine and hydroxychloroquine for COVID-19 treatment remains inconclusive [20, 21]. Anakinra, an IL-1 receptor antagonist, has shown beneficial effects in moderate to severe COVID-19 infections [22, 23]. Tocilizumab and sarilumab, both IL-6 receptor antagonists, used in small cohorts, have alleviated clinical symptoms without oxygen supplementation [24]. Ongoing trials will clear ambiguity on tocilizumab dosage and mortality post-treatment. Janus kinase signal inducer pathway inhibitors ruxolitinib and baricitinib are also being investigated [25, 26]. Convalescent plasma therapy also has potential, but safety and efficacy have to be established with larger studies [27–29].

With an increasing number of infections worldwide, there is a pressing need to find a method of prevention and treatment for COVID-19. Vaccines are being developed, with one from Oxford University in collaboration with AstraZeneca in a phase 3 trial [30, 31]. Although 300 clinical trials for investigating anti-viral drugs and 163 for anti-inflammatory drugs are ongoing, it is imperative to look for newer and alternate modalities to treat COVID-19 patients. Researchers have explored the role of stem cells in suppressing ARDS during the cytokine storm since mesenchymal stromal cells are known to play an immunomodulatory role [1, 32].

SARS-CoV-2 belongs to the Coronaviridae family, has a 5% genetic association with the SARS virus [33] and was given the nomenclature of COVID-19 by the Director General of the World Health Organization on January 30, 2020 [34]. The spike protein on the virus recognizes the spike protein present on angiotensin-converting enzyme 2 (ACE-2), making it the port of entry into the host cells [35]. The ACE-2 receptor is present ubiquitously and predominantly in the alveolar cells, making the lungs the most vulnerable to infection [36]. ACE-2 receptors have not been detected in bone marrow, lymph nodes, thymus, spleen, lymphocytes or macrophages [37]. Transmembrane protease serine 2 also plays a decisive role in viral entry into the host cells [38].

The overdrive that occurs in the host immune system in response to the virus also adversely affects the host cells [39]. Pro-inflammatory cytokines such as IL-7, IL-6, II-2, tumor necrosis factor (TNF), MIP1A, interferon gamma-induced protein 10 and granulocyte colony-stimulating factor and chemokines such as CCL2, CCL3, CCL5, CXCL8, CXCL9 and CXCL10 are released during the infection [40, 41]. The inflammatory response of the host can cause dysfunctional air exchange, pulmonary edema, cardiac injury and ARDS, eventually leading to death. Such an effect is called a cytokine storm and is reported in graft-versus-host disease during graft failure as well as in advanced stages of COVID-19 infection [42]. It has been reported to occur with a short median time of 8 days from the appearance of the first symptom to ARDS [43]. Hence, trials of multiple treatment modalities and strategies are being used, including anti-viral therapy, hydroxychloroquine, neutralizing antibodies, convalescent plasma therapy, repurposed anti-viral medications and blockers of ACE-2 receptor with antibodies [44, 45].

Mesenchymal stromal cells as a potential therapeutic strategy

Mesenchymal stromal cells (MSCs) are multi-potent adult stem cells with immunomodulatory properties [46]. They are found in bone marrow, adipose tissue, dental pulp, umbilical cord, placenta, Wharton’s jelly, amniotic fluid, skin, foreskin, salivary gland and cord blood (Figure 1) [47]. The versatility of the differentiation potential of MSCs is based on the tissue-specific source of the cells [46]. According to the International Society for Cell & Gene Therapy, MSCs are characterized by their ability to adhere to plastic surfaces as well as their expression of surface markers, including CD73, CD90, and CD105. They do not express hematopoietic markers such as CD34, CD45, and HLA-DR. MSCs have the ability to secrete cytokines and growth factors that modulate the immune response, making them attractive candidates for therapeutic intervention in various diseases, including chronic inflammation, autoimmune disorders, and wound healing.

Fig. 1. Sources of MSCs and mode of MSC infusion in clinical trials. The diverse sources of MSCs and their application in ARDS recovery are shown. iPSCs, induced pluripotent stem cells. (Color version of figure is available online).
of CD105, CD73 and CD90 and lack of CD45, CD34, CD14, CD11b, CD79, CD 19 and HLA-DR [48,49]. The multi-potency of MSCs is validated by their ability to differentiate into adipocytes, chondroblasts and osteoblasts [49]. They have been widely used to aid in the regeneration of damaged neurons or muscle fibers and to suppress immune reactions via anti-inflammatory macrophages and regulatory T cells [50]. MSCs express low levels of major histocompatibility complex class I but lack major histocompatibility class II on their surface [44]. They exert an anti-microbial role by dynamically balancing pro- and anti-inflammatory responses, secreting anti-inflammatory molecules and mRNAs such as indoleamine 2,3-dioxygenase and IL-17, in addition to their autocrine and paracrine functions [51,52].

Bone marrow-derived MSCs (BM-MSCs) have been widely used, followed by umbilical cord-derived MSCs (UC-MSCs) and adipose-derived MSCs (AD-MSCs), for cytokine storm rescue. Apart from stromal vascular fraction cells and adipose-derived stromal cells (ADSCs), the stromal vascular fraction obtained after lipoaspirate contains endothelial cells, macrophages and pericytes, fulfilling the MSC definition described by the International Society for Cell & Gene Therapy [53,54]. ADSCs have high immunomodulatory, anti-inflammatory, proliferation, differentiation and regenerative potential compared with BM-MSCs [55]. They express fatty acid translocase marker CD36 but lack cell adhesion marker CD106 compared with BM-MSCs [56]. The paracrine effects of hepatocyte growth factor (HGF), vascular endothelial growth factor (VEGF), platelet-derived growth factor (PDGF) and fibroblast growth factor 2 (FGF2) released by ADSCs aid in resolving the lung injury caused by COVID-19 infection by promoting type 2 alveolar cell regeneration and angiogenesis [57]. The immunomodulatory effects of ADSCs are driven primarily by anti-inflammatory cytokine IL-10 and conversion of inflammatory macrophage M1 to the anti-inflammatory and wound healing M2 type [58]. The extracellular matrix is maintained by ADSCs by regulating the levels of matrix metalloproteinase and tissue inhibitor matrix metalloproteinase. Ease of harvest, along with higher yield, longer life span and shorter doubling time, makes ADSCs a more preferred source of MSCs compared with BM-MSCs and UC-MSCs.

MSCs in viral infections

MSCs have been widely used in the management of both infectious and non-infectious etiologies owing to their immunomodulatory and regenerative potential.

Human immunodeficiency virus

Despite highly active anti-retroviral therapy and reduction in viral load, some HIV patients are vulnerable to opportunistic infections. These patients are categorized as non-immune responders (NIRs) [58]. In a pilot open-label clinical trial, Zhang et al. [59] administered three doses of UC-MSCs to seven NIR patients, and six NIRs served as controls. The results revealed an increase in circulating naive and central memory CD4 T-cell counts along with HIV-1-specific interferon γ and IL-2 generation. However, MSCs have been shown to reactivate latent HIV in macrophages and T-helper lymphocytes through PI3 kinase and nuclear factor kappa light chain enhancer of activated B-cell pathways using in vitro models [60]. Clinical trials with AD-MSCs (NCT02290041) and UC-MSCs (NCT01213186) are ongoing to evaluate the safety, efficacy and optimal dosage for reconstituting CD4 T cells. It has been shown that MSCs obtained from HIV patients harbor defective differentiation potential, thereby limiting the usage of autologous MSC transplantation [61]. Further studies are needed to determine the role of MSCs in immune restoration in NIR as well as HIV patients and whether MSCs can be administered as monotherapy or in combination with anti-viral therapy.

Hepatitis B virus

Liver disease is a major complication of chronic hepatitis B virus (HBV) infection, and orthotopic liver transplantation remains the only therapeutic strategy in end-stage disease, with artificial liver support systems serving as a temporary measure [62]. Although Xie et al. [63] found BM-MSCs to be resistant to HIV infection, Ma et al. [64] showed that BM-MSCs of HBV patients can be a virus reservoir. A single dose of autologous BM-MSCs in 53 patients with liver failure caused by HBV has been shown to be well tolerated, but the improvement is short-lived [65]. Zhong et al. [66] found that BM-MSCs of HBV patients had deranged proliferative capacity. A comparative study to investigate the differentiation ability and resistance to HBV was conducted by Wang et al. [67] in BM-MSCs and AD-MSCs. Both differentiated well into hepatocytes; however, only AD-MSCs were resistant to HBV. Phase 2 clinical trials by Ling et al. (NCT01223664) and Bingliang et al. (NCT01221454) are comparing the safety and efficacy of autologous BM-MSC transplantation in liver failure induced by chronic hepatitis in comparison to conventional treatment. In addition, Bingliang et al. are studying the effect of three different dosages of BM-MSCs (2 × 10^6 cells/kg, 1 × 10^6 cells/kg and 5 × 10^5 cells/kg) and UC-MSCs and plasma exchange therapy for acute-on-chronic liver failure (NCT01724398) and investigating the short- and long-term outcomes of autologous BM-MSC transplantation in liver failure patients (NCT00956891). Jasirwan et al. (NCT04357600) and Fan et al. (NCT03826433) are evaluating the safety and efficacy of UC-MSCs in patients with liver failure due to chronic HBV infection. Multi-centric clinical trials with MSCs from different sources and long-term follow-up will help to obtain clarity on the safety and efficacy of MSCs in liver failure secondary to chronic HBV infection.

Clinical trials for cell therapy in COVID-19 management

The initial reports of stem cells as a therapeutic strategy for COVID-19 came from China, with the injection of human UC-MSCs into a 65-year-old woman on ventilation. After the second injection of 50 million MSCs, the patient showed improvement and received three infusions of MSCs 3 days apart. Serum bilirubin, liver function enzymes and C-reactive protein levels decreased, and CD3+ T cells, CD4+ T cells and CD8+ T cells increased over a week post-injection. Regulatory dendritic cells CD14+CD11c+CD11b and IL-10 increased in the MSC plus natural killer cells decreased over a week post-injection. Regulatory dendritic cells CD14+CD11c+CD11b and IL-10 increased in the MSC-injected group. The study also revealed that MSCs did not express ACE-2 or transmembrane protease serine 2. The plausible mechanism by which the MSCs might have worked was by reducing the molecules that induce inflammation and triggering those that dampen inflammation.

The US Food and Drug Administration has allowed the use of MSCs as an investigational drug [70–72]. Over 50 clinical trials using MSCs or their products for COVID-19 are registered at ClinicalTrials.gov. The highest number of ongoing clinical trials are in the USA (18), followed by China (nine). Intravenous injection of MSCs ranging from 0.5 × 10^6 cells/kg to 750 × 10^6 cells/kg is being used in these clinical trials. Three trials have employed MSC-derived exosome vesicles, of which two used aerosols. Most trials are using MSCs derived from allogeneic umbilical cord (twenty one), followed by bone marrow (ten), adipose (ten), Wharton’s jelly (six), dental pulp (two), olfactory mucosa (one) and unknown (six). Mount Sinai Hospital injected MSCs obtained from Mesoblast Ltd, an Australian biotech company,
in 12 ventilator-dependent ARDS patients, with encouraging results. This prompted a randomized, double-blind, placebo-controlled trial with 300 patients [73,74] using an intravenous infusion of BM-MSCs 2 × 10^6 cells/kg (NCT04371393). Mesoblast is extending the use of MSCs to children from 2 months to 15 years of age [75]. The ongoing clinical trials are listed in Table 1.

Intramuscular injection of placenta-derived mesenchymal-like cells cured six severely ill COVID-19 patients in a trial conducted by Pluristem Therapeutics Inc, an Israel-based biotech firm [76]. A randomized, double-blind, placebo-controlled, multi-center (USA and Israel), parallel assignment phase 2 trial with 140 patients is being conducted by Pluristem Therapeutics Inc, comparing high and multiple doses of intramuscular injections of MSCs (300 × 10^6 cells) with placebo treatment (NCT04389450). Novellus, Inc, and Citius Pharmaceuticals, Inc, propose to use MSCs derived from reprogrammed messenger RNA induced pluripotent stem cells generated from fibroblasts of a single individual (NoveCite MSCs). A randomized, placebo-controlled, dose-inducing study followed by a dose level expansion to assess the safety and efficacy of NoveCite MSCs in subjects with ARDS due to COVID-19 is in the pipeline [77]. An induced pluripotent stem cell bank would help overcome the scarcity or unavailability of MSCs.

Athersys, Inc, completed a phase 1/2 clinical trial of intravenous injection of their innovative product MultiStem in COVID-19 patients [78]. Phase 1, with a small initial dose, confirmed the safety, and phase 2, with a larger dosage, was a double-blind, placebo-controlled, randomized trial. A total of 36 patients were included in the study wherein six patients were treated with a small dose of MultiStem cells, 20 were intravenously injected with 900 × 10^6 MultiStem cells and 10 were treated with a placebo. The treatment group had lower mortality and lesser intensive care unit days, without any adverse reactions [79]. The group is now conducting a phase 2/3 clinical trial to investigate the safety and efficacy of MultiStem in COVID-19 patients with ARDS (NCT04367077) by recruiting 400 patients. The START study will have two arms: experimental and placebo.

Cynata Therapeutics has initiated an open-label, randomized controlled clinical trial to evaluate the safety and efficacy of their Cymerus MSCs. These MSCs are derived from mesenchymal angioblasts. Using their proprietary technology, induced pluripotent stem cells are generated using transgene-, viral- and feeder-free techniques by de-differentiation of donated blood. These stem cells are further differentiated to mesenchymal angioblasts for the derivation of MSCs used in the infusion (NCT02923375). Of the 24 intensive care unit patients recruited, 12 random patients will be infused with Cymerus MSCs in addition to standard of care, and the other 12 receiving standard of care would serve as controls. The endpoint would be improvement in hypoxia at day 7 and safety/tolerability in 28 days [80].

Sanchez-Guijo et al. [81] treated 13 COVID-19 patients with AD-MSCs post anti-viral and anti-inflammatory treatment. Two patients received a single dose, 10 received double the dose and another received a single dose of 0.98 cells/kg body weight. The clinical analysis revealed improvement in the beneficial immune cell profile, with no adverse effects of the infusion (NCT04348461). Hope Biosciences is conducting three clinical trials using AD-MSCs in an attempt to address the dose-scaling effect of MSC infusion, starting with 50 × 10^6 cells/kg and going up to 200 × 10^6 cells/kg over 4–5 intravenous infusions, and to evaluate safety and efficacy in a phase 2 trial (NCT04362189, NCT04349631, NCT0438435). The START study (STEM cells for ARDS Treatment) recently published a phase 2 safety administration trial with a single dose of intravenous MSCs [82]. Bari et al. [83] and Sanan et al. [84] advocate the use of MSC secretome as a cell-free treatment modality for COVID-19 patients with ARDS.

Protective mechanisms of MSCs in ARDS

Migration of MSCs is stimulated by the pro-inflammatory marker TNFα [85] and by the binding of ligands CD106 and CD62E with integrin α4β1 (CD49β/CD29) and CD44 receptors, respectively [86,87]. Trophic factors such as epithelial growth factor, transforming growth factors α and β, basic FGF2, HGF, insulin-like growth factor 1, VEGF, stem cell factor and stem cell-derived factor 1 and immunomodulatory factors such as prostaglandin E2, inducible nitric oxide synthase, indoleamine 2,3-dioxygenase, CCL2, IL-10 and IL-6 are some of the molecules released by MSCs [88,89]. The cytokine secretion profile of dendritic cells and macrophages is modulated by MSCs [90]. The anti-proliferative properties of MSCs play a role in limiting the proliferation of T lymphocytes, B cells, natural killer cells and microgial cells [91]. MSCs have been successfully transplanted in graft-versus-host disease and in multiple system atrophy [92,93]. MSCs have immunomodulatory functions, direct cell-to-cell interactions and secrete growth factors and extracellular vesicles. During inflammation, impaired barrier properties of epithelial cells are associated with an increase in the permeability of endothelial cells in the lungs [94]. It has been shown that intratracheal MSC administration in lipopolysaccharide-induced inflammatory conditions in mouse models leads to a reduction in inflammation [95]. This study also demonstrated that through the paracrine process MSCs can induce IL-10 via prostaglandin E2 and other secretory factors, such as granulocyte-macrophage colony-stimulating factor and granulocyte colony-stimulating factor, which help to recover the barrier properties of the lungs. Additionally, MSCs secrete anti-inflammatory factors IL-10 and IL-4 and suppress the activation of lymphocytes and inflammatory cytokines IL-1-α, IL-1-β, IL-6, IL-17, TNFα, TNFβ and interferon γ [96]. It has also been described that MSCs reduce the excessive secretion of neutrophil extracellular traps at the site of infection, thereby preventing further damage to lung tissues [97]. MSCs have the ability to reduce the excessive production of neutrophils that causes tissue damage and increase neutrophil-mediated phagocytosis in bacterial infections [98]. MSCs play a role in differentiating macrophages into M1 and M2 phenotypes. M1 activates phagocytosis, which hampers inflammatory function and aids in bacterial clearance, and M2 supports tissue repair by resolving inflammation at the infection site [99,100]. MSCs also suppress the proliferation of effector T cells and promote regulatory T cells, thereby reducing the immune response and resolving lung damage in ARDS [101].

In a sepsis mouse model, MSCs were shown to have transcriptional responses via the downregulation of Toll-like-receptor-mediated nuclear factor kappa light chain enhancer of activated B cells and along with a simultaneous upregulation of the nuclear factor of activated T cells, calcium and calcineurin gene families regulating the transcription of cytokine genes [102]. In a lipopolysaccharide-induced acute lung injury mouse model, BM-MSCs established cell-to-cell contact with connexin 43 gap junction channels. The attached MSCs released mitochondria-containing microvesicles into alveolar epithelial cells. The mitochondrial transfer increased adenosine triphosphate concentrations in epithelial cells, thereby repairing alveolar epithelial and endothelial barriers in acute lung injury [103]. In addition, an *Escherichia coli* pneumonia model demonstrated that mitochondrial transfer from MSCs to macrophages partially occurs through tunneling nanotube-like structures [104]. The mitochondrial transfer enhances phagocytic activity, which establishes a mechanism for anti-microbial effect through cell-to-cell contact. MSCs also play a paracrine role by secreting soluble molecules.

In a rat ventilator-induced lung injury model, the MSC secretome (MSC-conditioned medium) reversed the lung injury via keratinocyte growth factor (KGF). KGF repairs epithelial cells by enhancing Na-K-ATPase, anti-inflammatory cytokine (IL-1α, matrix metalloprotease 9) and macrophage activity via granulocyte-macrophage colony-stimulating factor [105,106]. Overexpression of certain MSC factors, such as PDGFβ, VEGF, basic FGF, angiogenin 1 and PDGF, induces cell proliferation and brings about lung repair [107]. In various studies, the overexpression of angiogenin 1, KGF, ACE-2, CXCR4 and HGF has reduced endotoxin-induced lung injury, edema formation, collagen...
Sl. No.	Clinical trial no.	Number of patients	Study Source of biological material
1	NCT04276987	30	Conventional plus aerosol inhalation of MSC-derived exosomes
			Intervventional I, Single group treatment, Treatment, Spain, Allogeneic AD-MSC exosomes
2	NCT04400032	9	Experimental with escalating dose (25 × 10^6 cells/kg, 50 × 10^6 cells/kg, 90 × 10^6 cells/kg) and three infusions
			Intervventional I, Single group treatment, Dose-escalating safety, Canada, BM-MSCs
3	NCT4341610	40	Experimental: 100 × 10^6 cells/kg
			Control: normal saline
			Intervential I–II, Double-blind, randomized, placebo-controlled, Treatment, Denmark, Allogeneic AD-MSCs
4	NCT04445220	24	Experimental: 1, low dose, 250 × 10^6 cells/kg, 2, high dose, 750 × 10^6 cells/kg
			Control: sham
			Intervential I–II, Randomized, multi-center, double-blind, sham-controlled, Safety, treatment and tolerability, USA, Allogeneic MSC
5	NCT04466098	30	Experimental: 300 × 10^6 cells/kg, three times
	Control: placebo		Intervential II, Randomized, multi-center, placebo-controlled, Treatment, USA, Allogeneic MSC
6	NCT04299152	20	Experimental: stem cell educator therapy
	Control: conventional therapy		
	Control: patient blood separated by apheresis, and patient immune cells co-cultured with cord blood stem cells, followed by putting the educator immune cells back in patients		
			Intervential II, Partially masked and single center, Safety, feasibility and efficacy, USA, Human multipotent UC-MSCs
7	NCT04333368	40	Experimental: 1, 10^6 cells/kg, three times
	Control: normal saline		
			Intervential I–II, Randomized parallel assignment, Treatment, France, UC Wharton’s jelly
8	NCT04491240	90	Experimental: 1, exosome inhalation (first type)
	2, exosome inhalation (second type)		
	Control: placebo inhalation		
			Intervential I–II, Randomized parallel assignment, Safety and treatment, Russia, AD-MSCs
9	NCT04447833	9	Experimental: 1, MSC infusion 1 × 10^6 cells/kg
	2, MSC infusion 2 × 10^6 cells/kg		
			Intervential I, Open-label dose escalation study of advanced therapy investigational medicinal product, Safety, Sweden, Allogeneic BM-MSCs
10	NCT04437823	20	Experimental: MSC infusion 5 × 10^6 cells/kg, three times
	Control: standard of care		
			Intervential II, Randomized open-label, Treatment, Pakistan, UC
11	NCT04269525	16	Experimental: 3.3 × 10^7 cells/kg
			Intervential II, Single group assessment, Prevention and treatment, China, UC, Placental mesenchymal-like adherent stromal cells
12	NCT04384950	140	Experimental: high dose (once and twice) and low dose (once) MSC infusion
	Control: placebo infusion (once and twice)		
			Intervential II, Randomized, multi-center, double-blind, Treatment, Israel, UC
13	NCT04324143	18 (phase 1) and 60 (phase 2)	
	Experimental: 1, CD362-enriched MSCs, 100 × 10^6 cells/kg, 200 × 10^6 cells/kg, 400 × 10^6 cells/kg, 2, highest dose of experimental arm 1		
	Control: placebo		
			Intervential I–II, Open-label dose escalation pilot study, Phase 1 double blind, randomized, placebo controlled, Phase 2 clinical trial, Treatment, UK, UC
14	NCT04361942	24	Experimental: 1 × 10^6 cells/kg
	Control: placebo		Intervential II, Double-blind, randomized, placebo-controlled, Treatment, Spain, Allogeneic MSC
15	NCT0438303	70	Experimental: 1, MSC infusion 1 × 10^6 cells/kg
	plus conventional treatment		
	Control: conventional treatment plus placebo		
			Intervential I–II, Randomized, placebo-controlled, Safety and treatment, USA, Allogeneic human UC-MSCs
16	NCT04467047	10	Experimental: MSC infusion 1 × 10^6 cells/kg
			Intervential I, Open-label, single group assignment, Safety and feasibility, Brazil, BM-MSCs

(continued on next page)
Sl. No.	Clinical trial no.	Number of patients	Study Source of biological material
17	NCT04392778	30	Turkey
18	NCT04390139	30	Spain
19	NCT04492501	600	Pakistan
20	NCT04345601	30	USA
21	NCT4377334	40	Germany
22	NCT04397796	45	USA
23	NCT04494386	60	USA
24	NCT04371393	300	USA
25	NCT04452097	9	USA
26	NCT04390152	40	USA
27	NCT04362189	100	USA
28	NCT04348461	100	Spain
29	NCT04371601	60	China
30	NCT04461925	30	Ukraine
31	NCT04355728	24	USA

(continued on next page)
Sl. No.	Clinical trial no.	Number of patients	Arms	Type	Phase	Design	Purpose	Country	Source of biological material
32	NCT04490486	21	Experimental: MSC infusion 100 × 10^6 cells/kg (twice) Control: placebo	Interventional	I	Randomized, double-blind, placebo-controlled	Safety and treatment	USA	UC
33	NCT04302519	24	Experimental: MSC infusion 1 × 10^6 cells/kg (dose scaling)	Interventional	I	Open-label, single center, single arm	Safety and treatment	China	Dental pulp
34	NCT04352803	20	Experimental: MSC infusion 5 × 10^5 cells/kg plus standard of care Control: standard of care	Interventional	I	Non-randomized, open-label, sequential assignment, unmatched control	Safety and treatment	USA	Adipose tissue
35	NCT04457609	40	Experimental: MSC infusion 1 × 10^6 cells/kg plus standard of treatment Control: standard of treatment	Interventional	I	Randomized, double-blind, parallel assignment, controlled trial	Safety and treatment	Indonesia	UC
36	NCT04349631	56	Experimental: MSC infusion (five times)	Interventional	II	Open-label, single center clinical trial	Safety and treatment	USA	Adipose tissue
37	NCT04428801	200	Experimental: MSC infusion 200 × 10^6 cells/kg (three times) Control: placebo	Interventional	II	Randomized, double-blind, multi-center, placebo-controlled	Treatment	USA	Adipose tissue
38	NCT04339660	30	Experimental: MSC infusion 1 × 10^6 cells/kg (twice) 2, MSC infusion 100 × 10^6 cells/kg (twice) plus exosome vesicles (two infusions) Control: placebo	Interventional	II–III	Randomized, parallel assignment	Safety and treatment	China	UC
39	NCT04366063	60	Experimental: 1, MSC infusion 100 × 10^6 cells/kg (twice) 2, MSC infusion 100 × 10^6 cells/kg (five times) 3, MSC infusion 50 × 10^6 cells/kg (five times) Control: placebo (five infusions)	Interventional	II	Randomized, parallel assignment	Safety and treatment	Iran	NA
40	NCT04348435	100	Experimental: 1, MSC infusion 200 × 10^6 cells/kg (five times) 2, MSC infusion 100 × 10^6 cells/kg (five times) 3, MSC infusion 50 × 10^6 cells/kg (five times) Control: placebo (five infusions)	Interventional	I–II	Randomized, double-blind, placebo-controlled	Safety and treatment	USA	Adipose tissue
41	NCT04382547	40	Experimental: MSC infusion plus standard of treatment Control: standard of treatment	Interventional	II	Non-randomized, parallel assignment, open-label	Safety and treatment	Belarus	Olfactory mucosa
42	NCT04273646	48	Experimental: MSC infusion 0.5 × 10^6 cells/kg (four times) plus standard of treatment Control: placebo plus standard of treatment	Interventional	I–II	Randomized, parallel assignment, open-label	Safety and treatment	China	UC
43	NCT04288102	100	Experimental: MSC infusion 4 × 10^6 cells/kg (three times) plus standard of treatment Control: placebo plus standard of treatment	Interventional	II	Randomized, multi-center, double-blind, placebo-control	Safety and treatment	China	UC
44	NCT04346368	20	Experimental: MSC infusion 1 × 10^6 cells/kg plus standard of treatment Control: placebo plus standard of treatment	Interventional	I–II	Randomized, parallel assignment, open-label	Safety and treatment	China	BM
45	NCT04336254	20	Experimental: MSC infusion 3 × 10^6 cells/kg (three times) plus standard of treatment Control: saline plus standard of treatment	Interventional	I–II	Randomized, parallel assignment, open-label	Safety and treatment	China	Dental pulp
46	NCT04313322	5	Experimental: MSC infusion	Interventional	I	Open-label, direct study	Safety and treatment	Jordan	Wharton's jelly
47	NCT04252118	20	Experimental: MSC infusion 3 × 10^7 cells/kg plus standard of treatment Control: standard of treatment	Interventional	I	Non-randomized, parallel assignment, open-label	Safety and treatment	China	NA
48	NCT04363271	106	Experimental: MSC infusion Control: standard of treatment	Interventional	I–II	Randomized, multi-center, parallel assignment, open-label	Treatment	Spain	UC
49	NCT04366323	26	Experimental: MSC infusion 80 × 10^6 cells/kg (twice) Control: no intervention	Interventional	I–II	Randomized, multi-center, parallel assignment, open-label	Safety and treatment	Spain	Adipose tissue
Table 1 (Continued)

Sl. No.	Clinical trial no.	Number of patients	Type	Source of biological material	Study Design	Arms	Source of biological material	Treatment	Safety and treatment	Details of clinical trials as listed on ClinicalTrials.gov as of July 25, 2020.
47	NCT04458966	2	Interv	Open-label, randomized, parallel assignment, blinded, single group	Treatment	Experimental: MSC infusion 1	2 × 10^6 cells/kg plus standard of treatment	Brazil	NA	Phase I: Study of the safety and efficacy of UC-MSCs in the treatment of COVID-19 pneumonia in patients with acute respiratory distress syndrome (ARDS). Phase II: Study of the safety and efficacy of UC-MSCs in the treatment of COVID-19 pneumonia in patients with acute respiratory distress syndrome (ARDS). Phase III: Study of the safety and efficacy of UC-MSCs in the treatment of COVID-19 pneumonia in patients with acute respiratory distress syndrome (ARDS).
48	NCT04442763	2	Interv	Open-label, randomized, parallel assignment, blinded, single group	Treatment	Control: placebo plus standard of treatment	1 × 10^6 cells/kg	USA	NA	Phase II: Study of the safety and efficacy of UC-MSCs in the treatment of COVID-19 pneumonia in patients with acute respiratory distress syndrome (ARDS). Phase III: Study of the safety and efficacy of UC-MSCs in the treatment of COVID-19 pneumonia in patients with acute respiratory distress syndrome (ARDS).
49	NCT04441613	10	Interv	Open-label, randomized, parallel assignment, blinded, single group	Treatment	Control: placebo plus standard of treatment	1 × 10^6 cells/kg	Mexico	NA	Phase II: Study of the safety and efficacy of UC-MSCs in the treatment of COVID-19 pneumonia in patients with acute respiratory distress syndrome (ARDS). Phase III: Study of the safety and efficacy of UC-MSCs in the treatment of COVID-19 pneumonia in patients with acute respiratory distress syndrome (ARDS).
50	NCT04415987	90	Interv	Open-label, randomized, parallel assignment, blinded, single group	Treatment	Control: placebo (four infusions)	107 cells/kg	Mexico	NA	Phase II: Study of the safety and efficacy of UC-MSCs in the treatment of COVID-19 pneumonia in patients with acute respiratory distress syndrome (ARDS). Phase III: Study of the safety and efficacy of UC-MSCs in the treatment of COVID-19 pneumonia in patients with acute respiratory distress syndrome (ARDS).
51	NCT04315987	9	Interv	Open-label, randomized, parallel assignment, blinded, single group	Treatment	Control: placebo (four infusions)	107 cells/kg	Mexico	NA	Phase II: Study of the safety and efficacy of UC-MSCs in the treatment of COVID-19 pneumonia in patients with acute respiratory distress syndrome (ARDS). Phase III: Study of the safety and efficacy of UC-MSCs in the treatment of COVID-19 pneumonia in patients with acute respiratory distress syndrome (ARDS).
52	NCT04448271	30	Interv	Open-label, randomized, parallel assignment, blinded, single group	Treatment	Control: placebo (four infusions)	107 cells/kg	USA	NA	Phase II: Study of the safety and efficacy of UC-MSCs in the treatment of COVID-19 pneumonia in patients with acute respiratory distress syndrome (ARDS). Phase III: Study of the safety and efficacy of UC-MSCs in the treatment of COVID-19 pneumonia in patients with acute respiratory distress syndrome (ARDS).
53	NCT04441613	10	Interv	Open-label, randomized, parallel assignment, blinded, single group	Treatment	Control: placebo plus standard of treatment	1 × 10^6 cells/kg	Pakistan	BM	Phase II: Study of the safety and efficacy of UC-MSCs in the treatment of COVID-19 pneumonia in patients with acute respiratory distress syndrome (ARDS). Phase III: Study of the safety and efficacy of UC-MSCs in the treatment of COVID-19 pneumonia in patients with acute respiratory distress syndrome (ARDS).
54	NCT04442763	20	Interv	Open-label, randomized, parallel assignment, blinded, single group	Treatment	Control: placebo plus saline plus standard of treatment	106 cells/kg	Mexico	NA	Phase II: Study of the safety and efficacy of UC-MSCs in the treatment of COVID-19 pneumonia in patients with acute respiratory distress syndrome (ARDS). Phase III: Study of the safety and efficacy of UC-MSCs in the treatment of COVID-19 pneumonia in patients with acute respiratory distress syndrome (ARDS).

Table 1 (Continued)

Sl. No.	Clinical trial no.	Number of patients	Type	Source of biological material	Study Design	Arms	Source of biological material	Treatment	Safety and treatment	Details of clinical trials as listed on ClinicalTrials.gov as of July 25, 2020.
55	NCT04441613	2	Interv	Open-label, randomized, parallel assignment, blinded, single group	Treatment	Control: placebo plus standard of treatment	1 × 10^6 cells/kg	Mexico	NA	Phase II: Study of the safety and efficacy of UC-MSCs in the treatment of COVID-19 pneumonia in patients with acute respiratory distress syndrome (ARDS). Phase III: Study of the safety and efficacy of UC-MSCs in the treatment of COVID-19 pneumonia in patients with acute respiratory distress syndrome (ARDS).

Discussion

The emergence of the COVID-19 pandemic and its sequelae have prompted clinicians and researchers to explore all possible preventive and treatment modalities since existing strategies target symptoms, rather than the underlying pathology. Anti-virals, pulmonary and renal support systems and immunomodulators are being used to treat the cytokine storm, which causes respiratory depression and multi-organ dysfunction. Until effective vaccines and specific treatment options are available, the high infectivity rate of COVID-19 makes limiting disease progression a challenge. MSCs serve as a potential therapeutic candidate for combating the cytokine storm owing to their primordial cell lineage and multi-phenotypic functions, such as immunomodulation and anti-inflammatory activity, and their ability to secrete various growth factors and soluble vesicles. Encouraging results from ongoing trials would expand the clinical applicability of MSCs and provide hope for patients suffering with ARDS due to COVID-19 infection.

Clarity is lacking regarding the best source of MSCs, the method of application or mode of infusion of the cells to the patient, the stage of development, and the potential benefits of overexpression of ACE-2 receptors by MSCs in relation to COVID-19 need further exploration. The details regarding the underlying mechanisms involved in resolving COVID-19 in patients with infusion of MSCs are still unknown. The authors have schematically represented the plausible mechanism by which MSCs resolve ARDS is depicted schematically in Figure 2.
Fig. 2. Schematic representation of ARDS in non-viral and viral conditions. (A) In non-viral-induced ARDS, macrophages and effector T cells are activated and cytokines induced, which in turn activates neutrophils and causes secretion of further inflammatory cytokines and chemokines. (B) In viral-induced ARDS, additional cytokines are produced, leading to a cytokine storm. The released proteases and inflammatory cytokines damage the epithelial and endothelial layers of the alveoli, causing increased epithelial/endothelial permeability, fibrosis, edema formation and vasodilation. ANG, angiogenin; IP, interferon gamma-induced protein; MCP, monocyte chemoattractant protein; NF-κB, nuclear factor kappa light chain enhancer of activated B cells; PMNs, polymorphonuclear cells; RBC, red blood cell; ROS, reactive oxygen species; TLR, Toll-like receptor. (Color version of figure is available online).

Fig. 3. Schematic representation of the mechanism of action of MSCs in ARDS. Potential therapeutic mechanisms of MSCs in non-viral and viral ARDS recovery are shown. MSCs promote differentiation of macrophages from type M1 to M2 to induce anti-inflammatory cytokines and M1 macrophages with phagocytic activity. MSCs reduce the infiltration of neutrophils by secreting anti-inflammatory cytokines and regulating effector T cells. These anti-inflammatory cytokines and other secreted factors reduce the epithelial/endothelial permeability and influx of alveolar fluid. (A) MSCs are known to directly transfer mitochondria through tunneling nanotubules and microvesicles to transfer RNA and proteins for tissue repair. In viral ARDS, few mechanisms are understood, suggesting that intrinsically expressed genes and proteins may have anti-viral effects. (B) For SARS-CoV-2 virus infection, cell-based therapy with MSCs is being explored. ANG, angiogenin; EV, extracellular vesicle; MHC, major histocompatibility complex; PGE2, prostaglandin E2; PMAIP1, phorbol-12-myristate-13-acetate-induced protein 1; PMNs, polymorphonuclear cells; RBC, red blood cell; ROS, reactive oxygen species; SAT, spermidine/spermine N1-acetyltransferase. (Color version of figure is available online).
disease at which MSCs would work with the highest efficiency, the timeline of results expected post injection, the age group of patients, etc. A combination treatment approach with MSCs and supportive drugs might work synergistically to restrict the infectivity of the virus, in addition to preventing the progression of the infection to a severe form. Another approach may be administration of anti-viral drugs carrying nanoparticles loaded on stem cells with an affinity for ACE-2 receptor-harboring alveolar cells. The means to generate high-clinical-grade MSCs is the need of the hour. Apart from cell-based therapy, exosome vesicles as well as the culture secretome of MSC might be explored as an alternative.

Future research toward a better understanding of MSCs resident in lung tissue could pave the way for developing the means to activate host-specific resident stem cells to resolve site-specific ARDS. This would eliminate the need for infusion of allogeneic cell therapy. The results of ongoing clinical trials would help provide guidelines for cell monotherapy or combination therapy with non-cell-based treatment, enabling clinicians worldwide to better manage severely infected COVID-19 patients. With the fear of a second wave of infection looming large, it is a race against time for researchers worldwide to fight the challenge posed by COVID-19.

Funding

No funding was received.

Declaration of Competing Interest

The authors have no commercial, proprietary or financial interest in the products or companies described in this article.

Author Contributions

Conception and design of the study: RS and DD. Acquisition of data: MP, KC, CJ and DD. Analysis and interpretation of data: MP, KC, CJ and DD. Drafting or revising the manuscript: RS, DD, KC, HM, CJ and AG. All authors have approved the final article.

Acknowledgments

The authors thank Dr K Bhujang Shetty and Dr P Narendra for providing the necessary logistics for this review. The authors also thank the Narayana Nethralaya Foundation for its support. Finally, the authors thank the multimedia team, Narayana Nethralaya Eye Institute, for their help in making the schematic diagrams.

References

[1] Metcalfe SM. Mesenchymal stem cells and management of COVID-19 pneumonia. Medicine in drug discovery 2020;5:100019.
[2] Majumder M, Mandl K. Early Transmissibility Assessment of a Novel Coronavirus in Wuhan, China. EB RN Electronic Journal 2020.
[3] Sanchez S, Lin YT, Xu C, Romero-Severson E, Hengartner N, Ke R. High Contagiousness and Rapid Spread of Severe Acute Respiratory Syndrome Coronavirus 2. Emerg Infect Dis 2020;26(7):1470–7.
[4] Bauch CT, Lloyd-Smith JO, Coffee MP, Galvani AP. Dynamically modeling SARS-CoV-2: a preliminary report of a phase 1/2, single-blind, randomised controlled trial. Safety and immunogenicity of the ChAdOx1 nCoV-19 vaccine against SARS-CoV-2 infection: preliminary safety results of a randomized, double-blind, phase Ib clinical trial (Cov19-Study). medRxiv 2020.
[5] Kollerby ME, Biggs HM, Midgley CM, Gerber SJ, Watson JT. Middle East Respiratory Syndrome Coronavirus Transmission. Emerg Infect Dis 2020;26(2):191–8.
[6] Lovato A, de Filippis C. Clinical Presentation of COVID-19: A Systematic Review Focusing on Upper Airways Symptoms. Ear, nose, & throat journal 2020.
[7] Nkikah RI, Baneshi MR, Bahrampour A, Hosseinnataj A. Comparison of methods to estimate Basic Reproduction Number (R 0) of infectious diseases at which MSCs would work with the highest efficiency. Clin Immunol 2020;215:108427.
[8] Shetty RK, Ghosh A, Honavar SG, Khamar P, Sethur S. Therapeutic opportunities to manage COVID-19: SARS-CoV-2 infection: Present and future. Indian journal of ophthalmology 2020;68(5):693–702.
[9] Yuki K, Fujioji M, Koutsougianakis S. COVID-19 pathophysiology: a review. Clinical immunology 2020;215:471–482.
[10] Zaim S, Chong JH, Sankaranarayanan V, Harky A. COVID-19 and Multigran Reaction. Current problems in cardiology 2020;45(8):100618.
[11] Hussain A, Bhownik B, do Vale Moreira NC. COVID-19 and diabetes: Knowledge in progress. Diabetes research and clinical practice 2020;162:103142.
[12] Shang Z, Kalayavanita R, McCafferty R, Kepko D, Ramgobin D, Patel R, Aggarwal CS, Vunnan R, Sahu N, Bhatt D, Jones K, Golamani R, Jain R. COVID-19 and Older Adults: What We Know. Journal of the American Geriatrics Society 2020;68(5):926–9.
[13] Gattinoni L, Coppola S, Cressoni M, Busana M, Rossi S, Chiumento D. COVID-19 Does Not Lead to a Typical Acute Respiratory Distress Syndrome. American journal of respiratory and critical care medicine 2020;201(10):1299–300.
[14] McIntyre T, Gough C, Geddis RW. Clinical support outside the intensive care unit. The Lancet. Respiratory medicine 2020;8(6):538–9.
[15] Ronco C, Reis T, Husain-Syed F. Management of acute kidney injury in patients with COVID-19. The Lancet. Respiratory medicine 2020;8(7):738–42.
[16] Huang D, Wang W, Li X, Ren R, Zhao J, Hu Y, Zeng H, Song L, Wang N, Xie X, Ren Y, Zhao J, Liu Y, Shi N, Lu G, Zhao X, Liu K, et al. Clinical features of individuals infected with COVID-19 in Wuhan, China. The Lancet. Infectious diseases 2020;20(5):588–99.
YZ. A new coronavirus associated with human respiratory disease in China. Nature 2020;579(7798):265–9.

Cucinotta D, Vanelli M. WHO Declares COVID-19 a pandemic. Acta bio-medica: Atenei Parmenisoni 2020;91(1):157–60.

Baghaei K, Hashemi SM, Tokhanbigli S, Asadi Rad A, Assadzadeh-Aghdaei H, Shabanzadeh J, Rezaei M. Molecular immune pathogenesis and diagnosis of COVID-19. The Journal of pathology 2020;251(3):263–88.

Magneone T, Magrone M, Jirillo E. Focus on Receptors for Coronaviruses with Special Reference to Angiotensin-converting Enzyme 2 (ACE2). SARS-CoV-2 and the pathophysiology of coronavirus disease 2019 (COVID-19). The Journal of pathology 2020;251(3):263–88.

Newman RE, Yoo D, LeRoux MA, Danilkovitch-Miagkova A. Treatment of inflammatory syndromes with mesenchymal stem cells (MSC). Cell communication and signalling: CCS 2011;9:12.

Li X, Geng M, Peng Y, Meng L, Lu S. Molecular immune pathogenesis and diagnosis of COVID-19. The Journal of infection 2020;80(6):607–13.

Mitra P, Misra S, Sharma P. COVID-19 Pandemic in India: What Lies Ahead. Indian journal of clinical biochemistry: ICB 2020;35(3):380–1.

Li X, Geng M, Peng Y, Meng L, Lu S. Molecular immune pathogenesis and diagnosis of COVID-19. Journal of pharmaceutical analysis 2020;10(2):102–8.

Coperchini F, Chiavoti L, Croce L, Magri F, Rotondi M. The cytokine storm in COVID-19: An overview of the involvement of the chemokine/chemokine receptor system. Cytokine & growth factor reviews 2020;51:25–32.

Singhal T. A Review of Coronavirus Disease-2019 (COVID-19). Indian journal of pediatrics 2020;87(4):281–6.

Alluri S, Manchakti L, Hirsch JA. Expanded Umbilical Cord Mesenchymal Stem Cells (UC-MSCs) as a Therapeutic Strategy in Managing Critically Ill COVID-19 Patients: The Case for Compassionate Use. Pain physician 2020;23(2):E67–131.

Baden LR, Rubin EJ. Covid-19. The Lancet 2020;20(7):249–50.

Li J, Braun SE, Mondal D. Mesenchymal stem cells are attracted to latent Angiotensin-converting enzyme 2 (ACE2), SARS-CoV-2 and the pathophysiology of coronavirus disease 2019 (COVID-19). The Journal of infection 2020;80(6):607–13.

Mitra P, Misra S, Sharma P. COVID-19 Pandemic in India: What Lies Ahead. Indian journal of clinical biochemistry: ICB 2020;35(3):380–1.

Li X, Geng M, Peng Y, Meng L, Lu S. Molecular immune pathogenesis and diagnosis of COVID-19. Journal of pharmaceutical analysis 2020;10(2):102–8.

Coperchini F, Chiavoti L, Croce L, Magri F, Rotondi M. The cytokine storm in COVID-19: An overview of the involvement of the chemokine/chemokine receptor system. Cytokine & growth factor reviews 2020;51:25–32.

Singhal T. A Review of Coronavirus Disease-2019 (COVID-19). Indian journal of pediatrics 2020;87(4):281–6.

Alluri S, Manchakti L, Hirsch JA. Expanded Umbilical Cord Mesenchymal Stem Cells (UC-MSCs) as a Therapeutic Strategy in Managing Critically Ill COVID-19 Patients: The Case for Compassionate Use. Pain physician 2020;23(2):E67–131.

Baden LR, Rubin EJ. Covid-19—The Search for Effective Therapy. The New England journal of medicine 2020;382(19):1851–2.

Ullah I, Sobaib A, Rehman G. Human mesenchymal stem cells—current trends and future prospective. Bioscience reports 2020;40(1):606.

Hass R, Kasper C, Bohm S, Jacobs R. Diverse populations and sources of human mesenchymal stem cells (MSC): A comparison of adult and neonatal tissue derived MSC. Cell communication and signalling: CCS 2011;9:12.

Baghaei K, Hashemi SM, Tokhanbigli S, Asadi Rad A, Assadzadeh-Aghdaei H, Shabanzadeh J, Rezaei M. Molecular immune pathogenesis and diagnosis of COVID-19. The Journal of pathology 2020;251(3):263–88.

Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marin F, Krause D, Deans R, Keating A, Prokop C, Horwitz E. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 2006;8(4):315–7.

Newman RE, Yoo D, LeRoux MA, Danilkovitch-Miagkova A. Treatment of inflammatory diseases with mesenchymal stem cells. Inflammation & allergy drug targets 2009;8(2):110–9.

Alcayada-Miranda F, Cueva J, Khoury M. Antimicrobial Activity of Mesenchymal Stem Cells: Current Status and New Perspectives of Antimicrobial Peptide-Based Therapies. Frontiers in immunology 2017;8:339.

Hu Z, Shen X, Wang Y, Zhang L, Liu Z, Hu Y, Zhang L, Fan Y, Gu J, Chen Z, Yu T, Xia J, Wei Y, Wu W, Xie Y, Yin W, Li H, Liu M, Xiao Y, Gao H, Guo X, Lin J, Wang G, Jiang R, Gao Z, Qin J, Wang J, Cao B. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 2020;395(10233):497–506.

Genovese F, Sterodimas A, Adipose-derived stem cells (ASCs) as a new regenerative immuno therapy targeting epithelial coronavirus (COVID-19)-infected pneumonia. Expert opinion on biological therapy 2020;20(7):711–6.

Genito A, Sterodimas A, Pizziacanna J, Dionisi D, De Fazio D, Calabrese C, Garvich S. Systematic Review: Allogeneic Use of Stromal Vascular Fraction (SVF) and Decellularized Extracellular Matrices (ECM) as Advanced Therapy Medicinal Products (ATMP) in Tissue Regeneration. Int J Mol Sci 2020;21(4):14982.

Genito A, Sterodimas A, Pizziacanna J, Calabrese C, Garvich S. Research protocol of a Phase II randomised controlled trial of mesenchymal stem cells (MSCs) for the treatment of chronic hepatitis B viral infections and cirrhosis of the liver. Dig Dis Sci 2020;65(11):3063–76.

Genito A, Sterodimas A, Calabrese C, Garvich S. Adipose-derived stem cells (ASCs) as a new regenerative immune therapy targeting epithelial coronavirus (COVID-19)-infected pneumonia. Expert opinion on biological therapy 2020;20(7):711–6.

Genito A, Sterodimas A, Pizziacanna J, Dionisi D, De Fazio D, Calabrese C, Garvich S. Systematic Review: Allogeneic Use of Stromal Vascular Fraction (SVF) and Decellularized Extracellular Matrices (ECM) as Advanced Therapy Medicinal Products (ATMP) in Tissue Regeneration. Int J Mol Sci 2020;21(4):14982.

Genito A, Sterodimas A, Pizziacanna J, Calabrese C, Garvich S. Research protocol of a Phase II randomised controlled trial of mesenchymal stem cells (MSCs) for the treatment of chronic hepatitis B viral infections and cirrhosis of the liver. Dig Dis Sci 2020;65(11):3063–76.

Genito A, Sterodimas A, Calabrese C, Garvich S. Adipose-derived stem cells (ASCs) as a new regenerative immuno therapy targeting epithelial coronavirus (COVID-19)-infected pneumonia. Expert opinion on biological therapy 2020;20(7):711–6.

Genito A, Sterodimas A, Pizziacanna J, Dionisi D, De Fazio D, Calabrese C, Garvich S. Systematic Review: Allogeneic Use of Stromal Vascular Fraction (SVF) and Decellularized Extracellular Matrices (ECM) as Advanced Therapy Medicinal Products (ATMP) in Tissue Regeneration. Int J Mol Sci 2020;21(4):14982.

Genito A, Sterodimas A, Pizziacanna J, Calabrese C, Garvich S. Research protocol of a Phase II randomised controlled trial of mesenchymal stem cells (MSCs) for the treatment of chronic hepatitis B viral infections and cirrhosis of the liver. Dig Dis Sci 2020;65(11):3063–76.

Genito A, Sterodimas A, Calabrese C, Garvich S. Adipose-derived stem cells (ASCs) as a new regenerative immuno therapy targeting epithelial coronavirus (COVID-19)-infected pneumonia. Expert opinion on biological therapy 2020;20(7):711–6.
requiring mechanical ventilation. A proof of concept study. EClinicalMedicine 2020:25:100454.

[82] Matthay MA, Calfee CS, Zhuo H, Thompson BT, Wilson JC, Levitt JE, Rogers AJ, Matthay MA. Kissingenning A, O’Kane CM. T rasmedkabnugs AD. Mitochondrial Transfer via Tunneling Nanotubes is an Important Mechanism by Which Mesenchymal Stem Cells Enhance Macrophage Phagocytosis in the In Vitro and In Vivo Models of ARDS. Stem cells 2016;34(8):2210–23.

[83] Brey RP, Mason CM, Fung M, Vain B, Beauchaire G, Summer WR, Nelson S. Keratinocyte growth factor increases transalveolar sodium reabsorption in normal and injured rat lungs. American journal of respiratory and critical care medicine 1997;155(3):1777–84.

[84] Shyamamurali M, McAuley DF, Ingram BJ, Gibson DS, O’Kane D, McKewon ST, Edwards A, Taggart C, Elborn JS, Calfee CS, Matthay MA, O’Kane CM. Keratinocyte growth factor promotes epithelial survival and resolution in a human model of lung injury. American journal of respiratory and critical care medicine 2014;189(12):1520–9.

[85] Wang S, Mo M, Wang J, Sadia S, Shi B, Fu X, Yu L, Tredget EE, Wu Y. Platelet-derived growth factor receptor beta identifies mesenchymal stem cells with enhanced engraftment to tissue injury and pro-angiogenic property. Cellular and molecular life sciences. 2013;70(3):473–51.

[86] Mei SH, McCarter SD, Deng Y, Parker CH, Liles WC, Stewart DJ. Prevention of LPS-induced acute lung injury in mice by mesenchymal stem cell overexpressing angiotensin I. PLoS medicine 2007;4(9):e269.

[87] He L, Liu L, Chen Q, Liu A, Cai S, Yang Y, Lu X, Qi H. Mesenchymal Stem Cells Overexpressing Angiotensin-Converting Enzyme 2 Rescue Lippopolysaccharide-Induced Lung Injury. Cell transplantation 2015;24(9):1699–715.

[88] Yang JC, Zhang N, Wang HW, Gao P, Yang QF, Wen QP. CCRX4 receptor overexpression in mesenchymal stem cells facilitates treatment of acute lung injury in rats. The journal of biological chemistry 2015;290(4):1994–2006.

[89] Wang H, Yang YF, Zhao L, Xiao FJ, Zhang QW, Wen ML, Wu CT, Peng RY, Wang LS. Hepatocyte growth factor gene-modified mesenchymal stem cells reduce radiata-induced lung injury. Human gene therapy 2013;24(3):343–53.

[90] Loy H, Kuo DK, Hui KPY, Dumblett B, Hui KPY, Choi MHL, Yuen W, Nicholls JM, Peiris JSM, Chan YTH. Therapeutic Implications of Human Umbilical Cord Mesenchymal Stromal Cells in Attenuating Influenza A(H5N1) Virus-Associated Acute Lung Injury. The journal of infectious diseases 2019;219(2):186–92.

[91] Wu X, Dao Thi VL, Huang Y, Billerbeck ER, Saha D, Hoffmann HL, Wang Y, Silva LAV, Sarabanes S, Sun T, Andrus I, Ly Y, Qurik C, Li M, MacDonald MR, Schneider WM, An X, Rosenberg BR, Rice CM. Intrinsinc Immunity Shapes Viral Resistance of Stem Cells. Cell 2018;172(3):423–438 e25.

[92] Huang IC, Bailey CC, Weyler JY, Radostitsky SR, Becker MM, Chiang JJ, Brass AL, Ahmed AA, Chi X, Dong L, Longobardi LE, Boltz D, Kuhn JH, Elledge SJ, Bavari S, Brennan MB, Choe H, Farzan M. Distinct patterns of IFI19-mediated restriction of influenza viruses. SARS, coronavirus, and influenza virus A. PLoS pathogens 2017;13(1):e1001258.

[93] Bailey CC, Zhong G, Huang IC, Farzan M. IFI19-Family Proteins: The Cell’s First Line of Antiviral Defense. Annual review of virology 2014;1:261–83.

[94] Ziegler CG, Alton Y, Nypunkt S, Mbanon M, Miao VN, Tsouanas CN, Cene Y, You- sif AS, Bals J, Hauser BM, Feldman J, Mucu C, Wadhwa 2nd MH, Kazer SW, Hughes TK, Doran B, Catter G, Vukovic M, Talladoro F, Meade G, Guo Z, Wang JP, Enk DA, Flaisant M, Ansari M, Angelides I, Adler H, Sauer JMS, Taylor CJ, Liu B, Waghary A, Mitsialis V, Dwyer DF, Buchheit KM, Joyce JA, Barrett NA, Laidlaw TM, Carroll SL, Colonna L, Tkachev V, Petrovsky CW, Yu A, Zheng HB, Gideon HP, Wincell CG, Lin PL, Bingle CD, Snapper SB, Kropinski JA, Theis JF, Schiller HB, Zarago- gasi LE, Barbery P, Leslie A, Kheur S. Mesenchymal Stem Cells in the Treatment of Severe Acute Graft-versus-Host Disease with Third Party Haploidentical Stem Cell Transplantation. Bone marrow. 2012;181(5):1681–90.

[95] Zhong JC, Huang DY, Yang YM, Li YF, Songsong H, Xu B, Hu XL, Yang Z, Guo FM, Huang YZ, Qi H. MSCs modified with ACE2 restore endothelial function following LPS challenge by inhibiting the activation of RAS. Journal of cellular physiology 2015;230(3):691–701.

[96] Liu X, Molina-Molina M, Abdul-Hafez A, Uhl V, Aubeit A, Uhl BD. Angiotensin converting enzyme-2 is protective but downregulated in human and experimental lung fibrosis. American journal of physiology. Lung cellular and molecu- lar physiology 2008;295(1):1178–85.

[97] He HL, Liu L, Chen QH, Cai SX, Han JB, Hu SL, Chun P, Yang Y, Guo FM, Huang YZ, Qi H. MSCs modified with ACE2 restore endothelial function following LPS challenge by inhibiting the activation of RAS. Journal of cellular physiology 2015;230(3):691–701.

[98] Niu MJ, Yang JX, Lin SS, Ji XJ, Guo LM. Loss of angiotensin-converting enzyme 2 leads to impaired glucose homeostasis in mice. Endocrinology 2008;149(3):536–61.

[99] Roberts MA, Velloskis I, Levinrl FL, Burrell LM. Angiotensin-converting enzyme 2 activity in patients with chronic kidney disease. Nephrology, dialysis, transplantation: official publication of the European Dialysis and Transplant Association - European Renal Association 2013;28(9):2287–94.

[100] Zhong JG, Huang DY, Yang YM, Li YF, Li SF, Song SX, Hu DK. Uregulation of angiotensin-converting enzyme-2 by all-trans retinoic acid in spontaneously hypertensive rats. Hypertension 2004;44(6):907–12.