Data Article

Data in brief on CO₂ absorption-desorption of aqueous-based amino acid solvents with phase change behaviour

Masood S. Alivand a, b, Omid Mazaheri a, c, Yue Wu a, b, Geoffrey W. Stevens a, b, Colin A. Scholes a, b, Kathryn A. Mumford a, b, *

a Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria, 3010, Australia
b Peter Cook Centre for CCS Research, The University of Melbourne, Parkville, Victoria, 3010, Australia
c School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria, 3010, Australia

A R T I C L E I N F O

Article history:
Received 7 October 2019
Accepted 28 October 2019
Available online 4 November 2019

Keywords:
Amino acid
Phase change solvent
Anti-solvent
CO₂ absorption
Energy-efficiency

A B S T R A C T

The data presented in this paper are related to the published research article "Development of aqueous-based phase change amino acid solvents for energy-efficient CO₂ capture: The role of antisolvent" [1]. The raw and analyzed data include the equilibrium and kinetics of CO₂ absorption, the density and concentration of different CO₂-containing species at upper and lower liquid phases, and particle size distribution of solid particles precipitated during CO₂ absorption of aqueous and aqueous-based amino acid solvents. In addition, the SEM images of solid precipitates at the end of CO₂ absorption are presented. The detailed values of this phase change amino acid solvent are crucial for large-scale implementation of CO₂ capture systems with phase change behavior.

© 2019 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

* Corresponding author. Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria, 3010, Australia.
E-mail address: mumfordk@unimelb.edu.au (K.A. Mumford).

https://doi.org/10.1016/j.dib.2019.104741
2352-3409/© 2019 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

© 2019 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
The data presented in this article are associated with the research article (M.S. Alivand et al., 2019 [1]) which were acquired using CO2 absorption-desorption rigs of the University of Melbourne. Fig. 1 shows the CO2 absorption-desorption rig for measuring dynamic CO2 absorption capacity, monitoring solid particle precipitation and highly-accurate heat transfer calorimetry analysis. Fig. 2a and b shows the effect of potassium hydroxide (KOH)/potassium glycinate (GlyK) ratio on the pH value and dynamic CO2 absorption capacity of aqueous 3 M potassium glycinate solvent at 40°C, respectively. Figs. 3 and 4 demonstrate the number of precipitated solid particles and particle size distribution for different initial GlyK and anti-solvent concentrations during dynamic CO2 absorption. The density, CO2 absorption capacity, carbamate and carbonate/bicarbonate concentration of prepared aqueous and aqueous-based GlyK solvents are presented in Tables 1 and 2. The spontaneous liquid-liquid phase separation of aqueous-based GlyK-70 and GlyK-80 solvents before CO2 absorption is illustrated in Fig. 5. Fig. 6 shows the SEM images of solid precipitated particles at the end of CO2 absorption for aqueous-based GlyK-55, GlyK-60 and GlyK-65 solvents.

1. Data

The data presented in this article are associated with the research article (M.S. Alivand et al., 2019 [1]) which were acquired using CO2 absorption-desorption rigs of the University of Melbourne. Fig. 1 shows the CO2 absorption-desorption rig for measuring dynamic CO2 absorption capacity, monitoring solid particle precipitation and highly-accurate heat transfer calorimetry analysis. Fig. 2a and b shows the effect of potassium hydroxide (KOH)/potassium glycinate (GlyK) ratio on the pH value and dynamic CO2 absorption capacity of aqueous 3 M potassium glycinate solvent at 40°C, respectively. Figs. 3 and 4 demonstrate the number of precipitated solid particles and particle size distribution for different initial GlyK and anti-solvent concentrations during dynamic CO2 absorption. The density, CO2 absorption capacity, carbamate and carbonate/bicarbonate concentration of prepared aqueous and aqueous-based GlyK solvents are presented in Tables 1 and 2. The spontaneous liquid-liquid phase separation of aqueous-based GlyK-70 and GlyK-80 solvents before CO2 absorption is illustrated in Fig. 5. Fig. 6 shows the SEM images of solid precipitated particles at the end of CO2 absorption for aqueous-based GlyK-55, GlyK-60 and GlyK-65 solvents.
2. Experimental design, materials, and methods

2.1. Dynamic CO$_2$ absorption/desorption experiments

The rate of dynamic CO$_2$ absorption in the loaded solution can be computed by the total mass balance of CO$_2$:

$$Q_{CO_2} = n_{in}^{CO_2} - n_{out}^{CO_2}$$

(1)

where Q_{CO_2} is the rate of CO$_2$ absorption; $n_{in}^{CO_2}$ is the CO$_2$ molar flowrate at inlet stream; $n_{out}^{CO_2}$ is the CO$_2$ molar flowrate at outlet stream.

The recorded CO$_2$ concentration at outlet streams can be defined as:

$$x_{out}^{CO_2} = \frac{n_{out}^{CO_2}}{n_{out}^{CO_2} + n_{out}^{N_2}}$$

(2)

where $x_{out}^{CO_2}$ is the volume fraction of CO$_2$ at outlet stream; $n_{out}^{N_2}$ is the N$_2$ flowrate at outlet stream. Equation (2) can be represented by:

![Fig. 1](image1.png)

Fig. 1. Dynamic CO$_2$ absorption-desorption rig equipped with Focused Beam Reflectance Measurement (FBRM) probe for online monitoring solid precipitation and HFCal probe for quantitative heat flow calorimetry analysis.

![Fig. 2](image2.png)

Fig. 2. (a) pH value of potassium glycinate solution at different KOH/Gly molar ratios and (b) dynamic CO$_2$ absorption capacity of aqueous 3 M GlyK-0 solvent at 40 °C.
Fig. 3. Total number of precipitated solid particles and the amount of added DMF to the aqueous solution during CO₂ absorption time.
Using both Equation (1) and Equation (3), the rate of CO₂ absorption is calculated by:

\[Q_{CO₂} = \frac{n_{CO₂}^{in} - \frac{x_{CO₂}^{out}}{1-x_{CO₂}^{out}} n_{CO₂}^{out}}{N_2} \]

(4)

The amount of absorbed CO₂ over a given time, \(t \), is computed by:

\[N_{CO₂} = \int_{0}^{t} Q_{CO₂} \, dt \]

(5)
Similarly, for regeneration, the amount of desorbed CO$_2$ over a given time, t, can be obtained by:

$$N_{CO_2} = \int_0^t \frac{x_{CO_2}^{out}}{1 - x_{CO_2}^{out}} n_{CO_2}^{out} \, dt$$ \hspace{1cm} (6)$$

Solvent	Density (mg/L)	Upper liquid phase	Lower liquid phase
GlyK-0	1.2867	–	–
GlyK-10	1.2868	–	–
GlyK-25	1.2930	–	–
GlyK-40	1.1326	1.3216	
GlyK-50	1.1281	1.3604	
GlyK-55	1.0894	1.4236	
GlyK-60	1.0815	1.4475	
GlyK-65	1.0798	1.4719	

Table 1
The density values of aqueous and aqueous-based GlyK-X solvents after CO$_2$ absorption.

Solvent	CO$_2$ loading	Carbamate	Carbonate/bicarbonate
GlyK-0	0.433	94.60	55.81
GlyK-10	0.435	97.33	53.75
GlyK-25	0.448	123.80	36.16
GlyK-40	0.483	152.72	162.26
GlyK-50	0.513	237.44	167.66
GlyK-55	0.539	340.41	208.81
GlyK-60	0.546	413.25	230.15
GlyK-65	0.551	426.06	223.49

Table 2
The CO$_2$ absorption capacity and CO$_2$-containing species distribution of different aqueous and aqueous-based GlyK-X solvents.

Fig. 5. The picture of aqueous-based (a) GlyK-70 and (b) GlyK-80 solvents before CO$_2$ absorption.
2.2. CO$_2$ vapor-liquid equilibrium (VLE) experiments

The solubility of CO$_2$ in aqueous/aqueous-based solutions was measured by an in-house rig. Initially, inlet valve opened and the CO$_2$ container was pressurized by pure CO$_2$ to a desired pressure. Then, the inlet valve closed and the pressure of container was recorded (P_1). Afterward, the outlet valve was opened for 2–3 sec, while inlet valves were still closed, and pure CO$_2$ was injected into the equilibrium reactor. As a result, the pressure of CO$_2$ container decreased and reached a new pressure (P_2). Total moles of CO$_2$ molecules injected into the equilibrium reactor was calculated by:

$$n_{CO_2} = \frac{V_c}{RT_a} \left(\frac{P_1}{Z_1} - \frac{P_2}{Z_2} \right)$$

(7)
where V_c is the total volume of CO$_2$ container; P_1 and P_2 are the initial and final pressure of CO$_2$ container, respectively; Z_1 and Z_2 are gas compressibility factors associated to the initial (P_1) and final pressure (P_2) of CO$_2$ container; R is the universal gas constant; T_a is ambient temperature.

To calculate the compressibility factors Soave-Redlich-Kwong (SRK) was employed:

$$Z = \frac{a b P^2}{R^2 T^3}$$

(8)

All a, b and m coefficients can be calculated by:

$$a = 0.4274 \frac{R^2 T_c}{P_c} \left(1 + m \left(1 - \sqrt{T_r} \right) \right)^2$$

(9)

$$b = 0.0866 \frac{R T_c}{P_c}$$

(10)

$$m = 0.48 + 1.574 \omega - 0.176 \omega^2$$

(11)

where T_c is the critical temperature; T_r is the reduced temperature; ω is the acentric factor.

The equilibrium pressure of CO$_2$ in reactor is represented as:

$$P_{CO_2} = P_R - P_V$$

(12)

where P_R is the reactor pressure recorded by pressure transmitter and P_V is the vapor pressure of solution.

The total number of CO$_2$ moles in the gaseous part of equilibrium reactor was calculated by:

$$n_{CO_2}^g = \frac{V_g P_{CO_2}}{Z_{CO_2} R T_R}$$

(13)

where V_g is the volume of gaseous part in the equilibrium reactor (total volume of equilibrium reactor minus the volume of loaded solution); T_R is the reactor temperature; Z_{CO_2} is the CO$_2$ compressibility factor at T_R and P_{CO_2}. Thus, the amount of absorbed CO$_2$ in liquid phase was obtained by:
\[n_{CO_2}^l = n_{CO_2} - n_{CO_2}^g \]

The final amount of absorbed CO2 into the loaded solution was computed by:

\[m_{CO_2} = \frac{n_{CO_2}^l}{w_{sol}} \]

where \(w_{sol} \) is the weight of loaded solvent.

2.3. Validation and measurement accuracy

In order to validate the accuracy of VLE rig and calculation procedure (Equations (7)–(15)), the equilibrium CO2 absorption capacity of 5 mol/L (M) MEA solution at 40 °C was compared with the previously reported data [2] and the results are illustrated in Fig. 7. As it can be seen, there is an excellent agreement between experimental data and the reported values which represent the good reliability of CO2 VLE rig.

Acknowledgments

The authors would like to acknowledge the University of Melbourne for the Melbourne Research Scholarship, Particulate Fluids Processing Centre (PFPC) for infrastructural support and Peter Cook Centre for financial resources provided for this project.

Conflict of Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

References

[1] M.S. Alivand, O. Mazaheri, Y. Wu, G.W. Stevens, C.A. Scholes, K.A. Mumford, Development of aqueous-based phase change amino acid solvents for energy-efficient CO2 capture: the role of antisolvent, Appl. Energy 256 (2019) 113911, https://doi.org/10.1016/j.apenergy.2019.113911.

[2] F.Y. Jou, A.E. Mather, F.D. Otto, The solubility of CO2 in a 30 mass percent monoethanolamine solution, Can. J. Chem. Eng. 73 (1995) 140–147.
Minerva Access is the Institutional Repository of The University of Melbourne

Author/s:
Alivand, MS; Mazaheri, O; Wu, Y; Stevens, GW; Scholes, CA; Mumford, KA

Title:
Data in brief on CO2 absorption-desorption of aqueous-based amino acid solvents with phase change behaviour

Date:
2019-12-01

Citation:
Alivand, MS; Mazaheri, O; Wu, Y; Stevens, GW; Scholes, CA; Mumford, KA, Data in brief on CO2 absorption-desorption of aqueous-based amino acid solvents with phase change behaviour, DATA IN BRIEF, 2019, 27

Persistent Link:
http://hdl.handle.net/11343/233413

File Description:
Published version