BROADBAND X-RAY SPECTRA OF GX 339–4 AND THE GEOMETRY OF ACCRETING BLACK HOLES IN THE HARD STATE

JOHN A. TOMSICK,1 EMRAH KALEMCİ,2 PHILIP KAARET,3 SERA MARKOFF,4 STEPHANE CORBEL,5 SIMONE MIGLIARI,6 ROB FENDER,7 CHARLES D. BAILYN,8 AND MICHELLE M. BUXTON8

Received 2007 November 5; accepted 2008 February 15

ABSTRACT

A major question in the study of black hole binaries involves our understanding of the accretion geometry when the sources are in the “hard” state, with an X-ray energy spectrum dominated by a hard power-law component and radio emission coming from a steady “compact” jet. Although the common hard state picture is that the accretion disk is truncated, perhaps at hundreds of gravitational radii (R_g) from the black hole, recent results for the recurrent transient GX 339–4 by Miller and coworkers show evidence for disk material very close to the black hole’s innermost stable circular orbit. That work studied GX 339–4 at a luminosity of ~5% of the Eddington limit (L_{Edd}) and used parameters from a relativistic reflection model and the presence of a thermal component as diagnostics. Here we use similar diagnostics but extend the study to lower luminosities (2.3% and 0.8% L_{Edd}) using Swift and RXTE observations of GX 339–4. We detect a thermal component with an inner disk temperature of ~0.2 keV at 2.3% L_{Edd}. At both luminosities, we detect broad features due to iron Kα that are likely related to reflection of hard X-rays off disk material. If these features are broadened by relativistic effects, they indicate that the material resides within 10R_g, and the measurements are consistent with the disk’s inner radius remaining at ~4R_g down to 0.8% L_{Edd}. However, we also discuss an alternative model for the broadening, and we note that the evolution of the thermal component is not entirely consistent with the constant inner radius interpretation.

Subject headings: accretion, accretion disks — black hole physics — stars: individual (GX 339–4) — X-rays: general — X-rays: stars

1. INTRODUCTION

Over the past several years, progress has been made in constraining the geometry of black hole accretion disks. Most binaries with stellar mass black holes are X-ray transients, and X-ray observations made when the sources are bright ($L_X \sim 10^{37}–10^{39}$ erg s$^{-1}$) have uncovered iron Kα emission lines with broad and redshifted profiles thought to be produced via fluorescence when hard X-rays reflect off optically thick disk material (Reynolds & Nowak 2003). Fitting the energy spectra with relativistic reflection models yields inner disk radii close to the innermost stable circular orbit (ISCO) of the black hole (Miller et al. 2002). Another constraint comes from the high-frequency (100–500 Hz) quasi-periodic oscillations (QPOs) that are present for a number of black hole systems (Remillard et al. 2002). Although the origin of these QPOs is still unclear, if they are related to Keplerian orbital frequencies for matter in an optically thick (e.g., Shakura & Sunyaev 1973) accretion disk, they correspond to timescales very close to the ISCO, implying that the disk must extend near the black hole. Furthermore, these constraints on the inner radius of the accretion disk (R_{in}) occurred at times when the X-ray energy spectrum included a strong thermal component that is consistent with the Shakura & Sunyaev (1973) model with an inner disk temperature of ~1 keV and an inner radius close to or at the ISCO.

As black hole outbursts evolve, they enter different spectral states, and one definition for the various states was recently described in McClintock & Remillard (2006). While the iron lines, QPOs, and thermal components discussed above have provided a determination of R_{in} in the “thermal dominant” and “steep power law” (SPL) spectral states, in this work, we focus on the hard state, where the accretion disk geometry is still unclear. The hard state is most often observed at the beginning and end of the outburst and is characterized by a hard energy spectrum and a high level of X-ray timing noise. At the ends of outbursts, the hard state is most often seen when sources reach Eddington-scaled luminosities below $L/L_{\text{Edd}} = 0.01–0.04$ (Maccarone 2003), but the hard state also can occur at higher luminosities, especially when outbursts commence. Radio observations have made it clear that a steady outflow in the form of a “compact” jet is characteristic of the hard state (Fender 2001), and, at least in some systems, the jet power is inferred to be more than 20% of the X-ray luminosity (Fender et al. 2001). Thus, one reason that it is important to understand the disk geometry and other physical processes that occur in the hard state is that this is the one state that is linked to the production of a steady and powerful jet.

The common picture for the hard state accretion disk has been that its inner edge recedes (i.e., R_{in} increases), leaving a hot flow, such as an advection-dominated accretion flow (ADAF) or a spherical corona, where most of the X-ray emission is produced via Comptonization (Narayan et al. 1996; Esin et al. 1997). Indeed, it has been shown that evaporation of the accretion disk can lead to a truncated disk at low mass accretion rates (Meyer et al. 2000). From an observational standpoint, several measurements are suggestive of a truncated disk, but no one method provides a direct measurement of R_{in}. Examples of measurements that support an
increase in R_{in} include a rapid drop in the temperature and flux of the thermal component (often to nondetection in the >3 keV band) as the source enters the hard state as well as a drop in the characteristic frequencies seen in the power spectra (Poutanen et al. 1997; Dove et al. 1997; Tomsk et al. 2002; Revnivtsev et al. 2001; Kalemci et al. 2004; Tomsk et al. 2004). In addition, a gradual drop in the strength of the reflection component can be explained if the disk is truncated and there is overlap between the disk and corona (Zdziarski et al. 1999, 2003).

While these measurements can be explained within the truncated disk picture, other explanations have also been suggested. Much of the evidence for the disappearance of the thermal component come from Rossi X-ray Timing Explorer (RXTE) spectra that lack soft X-ray coverage, allowing for the possibility that the thermal component simply shifts out of the instrumental bandwidth. An increase in the ionization state of the inner disk could also cause a drop in the strength of the reflection component. In addition, some recent X-ray observations of black holes in their hard state cast doubt on whether the truncated disk picture is correct. The black hole system GX 339−4 was observed in the hard state with XMM-Newton and RXTE, and a fit with reflection and iron line emission components accounting for relativistic smearing effects is consistent with an inner disk radius very close to the ISCO (Miller et al. 2006b). The ISCO is at $6R_g$ (where $R_g = GM/c^2$, G and c are constants, and M is the black hole mass) for a nonrotating black hole and at $1.23R_g$ for a black hole rotating at the limiting spin rate of $a_* = 0.9982$ (Thorne 1974), where a_* is the mass-normalized angular momentum parameter. Miller et al. (2006b) obtained a value of $R_{in}/R_g = 4.0 \pm 0.5$ from the GX 339−4 hard state X-ray spectra. As this value is only slightly larger than the value of $2R_g−3R_g$ that Miller et al. (2004) obtained for GX 339−4 in the SPL state, it suggests that there is very little change in R_{in} between the two states. However, we must keep in mind that the interpretation of the relativistic smearing parameters depends on the model being physically correct, and other explanations have been advanced for iron line broadening (e.g., Laurent & Titarchuk 2007).

For the thermal component from an optically thick disk, one expects the emission to fall outside the X-ray regime if R_{in} increases dramatically (e.g., to hundreds of R_g or more) as predicted by ADAF models (McClintock et al. 2003). However, there are numerous examples of black hole systems, including well-known systems such as Cygnus X-1 and GX 339−4, that exhibit thermal X-ray emission with temperatures $0.1−0.4$ keV when they are in the hard state (Ebisawa et al. 1996; Zdziarski et al. 1998). While this implies that very large values of R_{in} are not required for black holes to enter the hard state, the thermal components have been found mostly only when the systems are in the brightest phases of their hard states. For example, the XMM-Newton/RXTE observation of GX 339−4 in the hard state described above occurred at the start of an outburst at $L/L_{Edd} = 0.05$, and spectral fits yielded a thermal component with a temperature of ~ 0.4 keV. X-ray observations of other black hole systems at lower X-ray luminosities have provided relatively high quality X-ray spectra, and in some cases, soft components have been detected (e.g., Miller et al. 2006a), while in other cases, they have not (e.g., McClintock et al. 2001; Tomsk et al. 2004).

For this paper, we have obtained broadband Swift (Gehrels et al. 2004) and RXTE (Bradt et al. 1993) observations of the recurrent transient GX 339−4 in the hard state to constrain the accretion disk geometry in this state. The observations were made at the end of the most recent outburst that began in 2007 January (Miller et al. 2007) after the transition to the hard state that occurred in 2007 May (Kalemci et al. 2007). The luminosities of the observations we use in this work are well below $L/L_{Edd} = 0.05$, and our goal is to use the spectra along with reflection models that account for relativistic effects to constrain the accretion geometry at these low luminosities.

2. OBSERVATIONS

2.1. RXTE Monitoring Observations

We obtained daily pointed RXTE monitoring observations of GX 339−4 starting on 2007 April 20 (MJD 54,210) when the flux dropped below 4×10^{-9} ergs cm$^{-2}$ s$^{-1}$ as measured in the 1.5−12 keV band by the RXTE All-Sky Monitor. Observations were made under our program (proposal 92704) until 2007 July 18 (MJD 54,299), and the RXTE Proportional Counter Array (PCA; Jahoda et al. 2006) 3−25 keV light curve during this 89 day period is shown in Figure 1. The exposure times were typically 1−3 ks for these monitoring observations, although some longer RXTE observations were also obtained as described below. We reported an increase in timing noise and a hardening of the GX 339−4 energy spectrum that indicates a change to the hard-intermediate state (see Homan & Belloni 2005) occurred on 2007 May 12 (Kalemci et al. 2007), and this is marked in Figure 1 with a vertical dotted line at MJD 54,232. By 2007 May 22 (marked in Fig. 1 by the vertical dashed line at MJD 54,242), the source had reached the hard state with an energy spectrum dominated by a power law with a photon index of $\Gamma = 1.6$. Further evidence that the source reached the hard state by this time includes an increase in the optical and infrared flux (Buxton & Bailyn 2007) as well as core radio flux (S. Corbel, private communication), which is an indication for the presence of a compact jet.

2.2. Swift and RXTE Observations

The main focus of this work is the study of the broadband $\sim 1−200$ keV energy spectra from GX 339−4 at two times after the source made a transition to the hard state. As indicated in Figure 1, the first Swift observation occurred on 2007 May 25 (MJD 54,245), a few days after the transition to the hard state. The average Swift X-ray Telescope (XRT; Burrows et al. 2005).
count rate during the 6150 s observation was 10.41 ± 0.04 counts s$^{-1}$ (0.8–8 keV). As indicated in Table 1, we obtained RXTE observations that were simultaneous with much of the Swift observation. The average PCA count rate was 44.1 ± 0.1 counts s$^{-1}$ (3.6–25 keV) for Proportional Counter Unit 2 (PCU 2), and the average High-Energy X-ray Timing Experiment (HEXTE; Rothschild et al. 1998) count rate was 10.4 ± 0.2 counts s$^{-1}$ (17–240 keV) for HEXTE cluster B. As described below, spectrum 1 consists of the spectra from XRT, PCA, and HEXTE from these observations.

We used the same three instruments for spectrum 2, but the observations were made 2–3 weeks later during the time period 2007 June 10–14. Table 1 shows that there were three Swift and five RXTE observations made during this time frame. Although the Swift and RXTE observations were mostly not strictly simultaneous, the source did not show large changes in count rate or spectral hardness over the 5 day period. The 3.6–25 keV PCA count rates for each of the five observations listed in Table 1 were 16.4 ± 0.1, 16.2 ± 0.1, 15.7 ± 0.2, 15.1 ± 0.1, and 14.2 ± 0.1 counts s$^{-1}$, showing a gradual but not dramatic decline. As shown in Figure 1, this period is close to the minimum flux that GX 339–4 obtained before its flux began increasing again. The average Swift XRT count rate was 2.86 ± 0.02 counts s$^{-1}$ (0.8–8 keV), while the average PCA 2 and HEXTE-B count rates were 15.6 ± 0.1 counts s$^{-1}$ (3.6–25 keV) and 3.8 ± 0.2 counts s$^{-1}$ (17–240 keV), respectively. Thus, when compared to spectrum 1, the XRT count rate is lower by a factor of 3.6, while the count rates for the RXTE instruments are lower by a factor of ~ 2.8.

3. Spectral Analysis

We performed spectral analysis using XRT, PCA, and HEXTE data from the observations described above. To extract the spectra, we used the Swift and RXTE tools provided in the HEASOFT version 6.3.1 software package. The XRT instrument consists of a CCD imager at the focus of a grazing incidence X-ray telescope. Although the instrument is capable of two-dimensional imaging for faint sources, our target was bright enough to require the use of Windowed Timing mode, which provides one-dimensional imaging. For the GX 339–4 energy spectra, we determined the one-dimensional centroid of the target and extracted the photons within 47° of the centroid. We also extracted background spectra that include photons from regions between 77° and 171° from the GX 339–4 centroid. We used version 9 of the XRT response matrix and kept events with grades in the range 0–2 (swxwt0-20010101v009.rmf). In addition, we produced an ancillary response file (ARF) with the HEASOFT tool xrtmkarf (ver. 0.5.3). In making the ARF file, we used an exposure map produced with the tool xrtexponmap (ver. 0.2.2).

For the PCA spectra, we used the SkyVLE background model that was most recently updated 2005 November 28, and we used the HEASOFT tool pcarsp (ver. 10.1) to produce the response matrix. Although the PCA has five PCUs, it is typical that only two or three PCUs will be turned on for a given observation. In our case, only PCUs 0 and 2 were turned on for all of our RXTE observations. Due to the loss of the PCU 0 propane layer, this PCU’s response is not as well known as for the other PCUs (Jahoda et al. 2006). In addition, for all the PCUs, the response for the top anode layer (where most of the counts are detected) is better modeled than the bottom layers. Thus, for this study, we only used the top anode layer of PCU 2 when extracting spectra. To check on the level of systematic error, we extracted the PCU 2 spectrum for the Crab Nebula using ObsID 92802-01-22-00, which is an observation from 2007 May 14. Fitting the spectrum with an absorbed power law, we find that 1% systematic errors are required to reach a reduced χ^2 near 1.0, and we use 1% systematics for the GX 339–4 spectra as well. For the HEXTE spectra, we used only HEXTE-B because HEXTE-A no longer obtains background measurements.

We performed preliminary spectral fits to spectrum 1 to check on the agreement between the calibrations of the different instruments. For these preliminary fits, we used XRT, PCA, and HEXTE data in the 0.3–10, 2.75–25, and 17–240 keV energy bands, respectively. We used XSPEC version 12 and fitted the spectra with an absorbed power-law model. We also included a multiplicative constant in the model to allow for differences in the overall normalizations between instruments. The fact that we obtain a poor fit ($\chi^2/\nu = 1282/269$) is partially due to the fact that the power-law model is too simple as well as being due to instrument calibrations. For example, it is known that the XRT calibration is complicated by features due to the SiO$_2$ layer in the CCD detectors at low energies (Osborne et al. 2005). In fact, we see a sharp dip in the XRT residuals near 0.5–0.6 keV that is likely instrumental.

Table 1: Observations of GX 339–4

Satellite	Observation ID	Date	Start Time (UT hr)	Stop Time (UT hr)	Exposure (s)
Spectrum 1					
Swift	00030943001	2007 May 25	17.10	23.80	6150
RXTE	92704-04-02-00	2007 May 25	17.99	20.13	4976
	92704-04-02-02	2007 May 25	21.14	21.69	1808
Spectrum 2					
Swift	00030943002	2007 Jun 10	16.70	21.70	4685
RXTE	92704-03-28-00	2007 Jun 10	4.43	5.63	2320
	92704-03-29-00	2007 Jun 11	8.44	9.51	3392
	94704-03-29-01	2007 Jun 12	3.27	3.64	1056
	94704-03-30-00	2007 Jun 13	6.08	6.64	1952
	94704-03-31-00	2007 Jun 14	15.29	16.28	2112
Furthermore, we see that the XRT calibration does not agree with the PCA calibration above 8 keV, and these issues lead us to use the XRT in the 0.8–8 keV energy range for the fits described below. In addition, the PCA calibration does not agree with XRT at the very bottom of the PCA range as there are strong positive residuals in the PCA spectrum below 3.6 keV. Thus, in the following, we use the 3.6–25 keV PCA spectrum. PCA and HEXTE match well in the region where they overlap, and we use the full 17–240 keV HEXTE bandpass. In addition, we note that there is good agreement (within 5%) between the overall normalizations of the three instruments.

For PCA, spectra 1 and 2 have high statistical quality (hundreds or thousands of counts per energy bin) across the bandpass, but some rebinning was required for XRT and HEXTE. For XRT, we rebinned from 719 to 148 channels, leaving averages of 432 and 719 counts bin$^{-1}$ for spectra 1 and 2, respectively. We rebinned the HEXTE spectra from 210 to 22 channels.

4. RESULTS

4.1. Fits with Basic Models: Is a Thermal Disk Component Present?

We fitted the spectra with an absorbed power-law model. To account for absorption, we use the photoelectric absorption cross sections from Balucinska-Church & McCammon (1992) and elemental abundances from Wilms et al. (2000) which correspond to the estimated abundances for the interstellar medium. A power-law model does not provide a good fit to either spectrum, with χ^2 equal to 651.8 and 321.6 for spectra 1 and 2, respectively (for 213 degrees of freedom in both cases). Figures 2 and 3 show the spectra and the residuals in the form of a data-to-model ratio. In both cases, the strongest feature in the residuals occurs in the region near the iron Kα region. Positive residuals are present close to the 6–7 keV range where an emission line might be expected to be present, and negative residuals are seen from 7 keV to beyond 10 keV. The positive residuals that are present in the 20–40 keV range, especially in spectrum 1, may be due to a reflection component. Finally, the curvature in the residuals at the lower end of spectrum 1 may indicate the presence of a thermal component from an optically thick accretion disk. The fit parameters are given in Table 2, and it is notable that column density of $N_H = (3.1 \pm 0.1) \times 10^{21}$ cm$^{-2}$ obtained for the power-law fit to spectrum 1 is somewhat lower than the value inferred from the work of Hynes et al. (2004). From optical observations, Hynes et al. (2004) prefer a value of $E(B-V) \approx 0.85$, which corresponds to $N_H \approx 4.7 \times 10^{21}$ cm$^{-2}$ using conversions given in Predehl & Schmitt (1995). Thus, the lower column density could also be an indication that a thermal component is present.

To test whether a thermal component is present in the spectra, we performed the fits detailed in Table 2. For spectrum 1, when we add a disk-blackbody (Mitsuda et al. 1984) component to the power law, the quality of the fit shows a large improvement to $\chi^2/\nu = 532.0/211$. This, in addition to the fact that the N_H increases to a level which is consistent with the lower limit from optical extinction measurements, is an indication for the presence of a thermal component. However, even with the disk-blackbody component, the fit is poor due to the iron features in the spectrum, so we refitted spectrum 1 with a model that takes these features into account. Although we use a more physical model for the iron line and reflection below, here we add a smeared iron edge (Ebisawa et al. 1994) to the model because it is a simple addition that significantly improves the fit. When the disk-blackbody component is added to a model with a power law and a smeared edge, the fit shows a large improvement from $\chi^2/\nu = 444.7/211$ to 338.3/209.

We carried out the same series of fits for spectrum 2, and while they also provide evidence for the presence of a thermal component, the evidence is considerably weaker than for spectrum 1. For the models without the smeared edge (see Table 2), adding the disk-blackbody component gives a relatively large improvement in the fit from $\chi^2/\nu = 321.6/213$ to 280.1/211. However, with the smeared edge, the change from $\chi^2/\nu = 210.6/211$ to 200.2/209 is rather small.

To further test the significance of the thermal component in the spectra and to determine if there is any evolution in the thermal component between spectra 1 and 2, we produced error contours for the disk-blackbody temperature (kT_{in}) and normalization (N_{DBB}). In Figure 4, the outermost contour for each spectrum corresponds
to 90% confidence for two parameters of interest ($\Delta \chi^2 = 4.61$). The error region for spectrum 1 shows that N_{DBB} is significantly different from zero, consistent with the presence of a thermal component in spectrum 1. The error region for spectrum 2 is well separated from that of spectrum 1, showing a clear change in the thermal component between the two spectra. The results indicate a drop in kT_{in}, N_{DBB}, or both parameters. To estimate the significance of the thermal component in spectrum 2, we adjusted $\Delta \chi^2$ until the confidence contour reached a N_{DBB} value of zero. The 99% confidence contour ($\Delta \chi^2 = 9.21$) does not reach zero, but zero is reached with a slightly larger contour ($\Delta \chi^2 = 10$), which is consistent with a $\sim 1\%$ chance that this component is spurious.

Table 2

Model	N_{H} (10^{22} cm$^{-2}$)	Γ	N_{Fe}	kT_{in} (keV)	N_{DBB}	χ^2/ν	
Spectrum 1							
PL.................	3.1 ± 0.1	1.66 ± 0.01	0.113 ± 0.002	651.8/213	
PL + DBB.............	8.5 ± 0.7	1.69 ± 0.01	0.125 ± 0.003	0.178 ± 0.007	76000 ± 39000	35000	532.0/211
SM × PL..............	2.6 ± 0.1	1.58 ± 0.01	0.104 ± 0.002	0.178 ± 0.007	76000 ± 39000	35000	444.7/211
SM × (PL + DBB).......	7.2 ± 0.7	1.59 ± 0.02	0.109 ± 0.003	0.203 ± 0.012	23000 ± 15000	5900 ± 4000	338.3/209
Spectrum 2							
PL.................	4.9 ± 0.2	1.61 ± 0.02	0.0329 ± 0.0008	321.6/213	
PL + DBB.............	9.0 ± 1.1	1.64 ± 0.02	0.0367 ± 0.0013	0.157 ± 0.011	35000 ± 30000	35000	280.1/211
SM × PL..............	4.2 ± 0.2	1.50 ± 0.02	0.0294 ± 0.0008	210.6/211	
SM × (PL + DBB).......	7.0 ± 1.4	1.52 ± 0.03	0.0315 ± 0.0015	0.184 ± 0.021	5900 ± 37000	4000	200.2/209

* PL is a power-law model. DBB is the Mitsuda et al. (1984) disk-blackbody model. SM is the smeared iron edge model from Ebisawa et al. (1994). For these fits, we fixed the width of the smeared iron edge to 10 keV.

4.2. Iron Line and Reflection Modeling

We refitted the spectra in an attempt to improve our modeling of the iron line and reflection. Initially, we removed the smeared edge and fitted the spectra with a model consisting of a disk blackbody, a power law, and a Gaussian emission line. Although the Gaussian greatly improves the fit in both cases, the energy is well below the 6.4–7.1 keV iron range with values of $E_{\text{line}} = 3.8^{+0.6}_{-0.8}$ and $4.0^{+0.8}_{-1.0}$ keV for spectra 1 and 2, respectively. As suggested by the residuals in Figures 2 and 3, the Gaussians are also very broad with widths of $\sigma \sim 2.0$ keV in both cases. This suggests that we may be seeing relativistically smeared iron lines.

The Laor emission line model (Laor 1991) is appropriate for reflection from an accretion disk around a rotating black hole, and if the iron line is due to reflection, then one expects to see evidence for excess emission from reflection at higher energies (~ 20–40 keV) as well. In fact, the positive residuals for spectrum 1 (and to some extent for spectrum 2) in this energy range suggest that there is indeed a reflection component. Thus, we refitted the spectra with a model consisting of a disk blackbody, an iron emission line, and a pexriv reflection component (Magdziarz & Zdziarski 1995), which includes both direct emission from a power law as well as emission reflected off an accretion disk with neutral or partially ionized material. While the pexriv model includes the ionization effects, which are likely important for the hot accretion disks around X-ray binaries, it does not include relativistic smearing.

Thus, in our model, we convolved the pexriv model with the Laor model shape using the XSPEC convolution model kdblur. We set up the XSPEC model so that kdblur convolves the sum of a narrow iron line and the pexriv model. The kdblur parameters include R_{in} (the inner radius of the disk), R_{out} (the outer radius of the disk), i (the binary inclination), and q (the power-law index for the radial emissivity profile).

The results of these fits are given in Table 3, and the fitted spectra are shown in Figures 5 and 6. The power-law and disk-blackbody parameters have similar values to those that we found with the basic models (Table 2), and the quality of the fits is better than what we obtained with the basic models. For both spectra, the presence of the pexriv reflection component is required at high confidence as indicated by the fact that the reflection covering fraction ($\Omega/2\pi$) is significantly different from zero. The exact value of $\Omega/2\pi$ depends strongly on the binary inclination, which

![Fig. 4.—Confidence contours for the thermal (disk blackbody) components for spectrum 1 (solid contours) and spectrum 2 (dashed contours). In each case, the innermost contour encircles the 68% confidence ($\Delta \chi^2 = 2.30$) error region for the two parameters and the outermost contour corresponds to 90% confidence ($\Delta \chi^2 = 4.61$).]
spectra have given a value of C_0 is not known for GX 339

blackbody component, a power law, a reflection component, and an iron emission

flux units. The various model components are shown and include a thermal disk-

ionization parameter, $C_0/C_10/C_14$ and we adopt a value of 20

disk that is at least partially ionized.

5.—Spectrum 1 fitted with the model detailed in Table 3 and plotted in

Fig. 5.—Spectrum 1 fitted with the model detailed in Table 3 and plotted in

flux units. The various model components are shown and include a thermal disk-

blackbody component, a power law, a reflection component, and an iron emission

line (the last two include relativistic effects).

is not known for GX 339–4. Previous fits to higher quality X-ray

spectra have given a value of $i = 20^\circ \pm 15^\circ$ deg (Miller et al. 2006b),

and we adopt a value of 20° to facilitate comparisons to the pre-

vious work. With this inclination, we obtain values of $\Omega/2\pi = 0.22^{+0.06}_{-0.05}$ and $0.24^{+0.11}_{-0.07}$ for spectra 1 and 2, respectively. The

pevrx ionization parameter, C_0, is not very well constrained, but

it is significantly greater than zero for both spectra, indicating a

disk that is at least partially ionized.

While the reflection component is statistically significant in

both spectra 1 and 2, an additional iron line in the 6.4–7.1 keV

range (see E_{line} in Table 3) is required for spectrum 1 but is re-

quired at only slightly more than 90% confidence for spectrum 2

as shown by the values of the emission line normalization (N_{line})
given in Table 3. This is not due to the lack of iron features in

spectrum 2 but because, with the relativistic broadening, the re-

fection component contains a bump related to the iron absorption

TABLE 3

Parameter	Spectrum 1	Spectrum 2	2004 Spectrumb
N_{H} (10^{21} cm$^{-2}$)	$7.1^{+0.9}_{-0.8}$	$7.3^{+1.5}_{-1.3}$	3.7 ± 0.4
Γ	$1.68^{+0.03}_{-0.02}$	$1.63^{+0.04}_{-0.03}$	1.41 ± 0.03
N_{H}	$0.118^{+0.006}_{-0.006}$	$0.035^{+0.004}_{-0.003}$	0.32 ± 0.03
kT_{m} (keV)	0.193 ± 0.012	$0.161^{+0.017}_{-0.016}$	0.39 ± 0.04
N_{DB}	29000^{+27000}_{-14000}	14000^{+30000}_{-5000}	700 ± 200
i (deg)	20.0	20.0	20^{+5}_{-6}
$\Omega/2\pi$ (pevrx)c	$0.22^{+0.06}_{-0.06}$	$0.24^{+0.08}_{-0.07}$	0.22 ± 0.06
ξ (pevrx)c (ergs cm$^{-1}$ s$^{-1}$)	10000^{+5000}_{-3000}	7000^{+4000}_{-2000}	1000
E_{line} (keV)	$6.9^{+0.5}_{-0.5}$	$6.7^{+0.4}_{-0.3}$	6.8 ± 0.1
N_{line} (photons cm$^{-2}$ s$^{-1}$)	$(7.4 \pm 4.4) \times 10^{-4}$	$(2.4^{+3.2}_{-2.5}) \times 10^{-4}$	$(3.5 \pm 0.3) \times 10^{-3}$
$R_{\text{w}}/R_{\text{D}}$ (keV)	$3.6^{+1.0}_{-0.5}$	$2.9^{+0.9}_{-0.7}$	4.0 ± 0.5
q (kevblur)f	$3.2^{+0.5}_{-0.5}$	3.1 ± 0.4	3.0
χ^2/ν	$324.7/205$	$191.3/205$	$2120.5/1160$
Absorbed fluxg (ergs cm$^{-2}$ s$^{-1}$)	2.1×10^{-9}	7.4×10^{-10}	5.4×10^{-9}
Unabsorbed fluxh (ergs cm$^{-2}$ s$^{-1}$)	2.2×10^{-9}	7.7×10^{-10}	5.5×10^{-9}
Luminosityi (ergs s$^{-1}$)	1.7×10^{37}	5.9×10^{36}	4.2×10^{37}
Luminosity (L$_{\text{edd}}$)j	0.023	0.008	0.056
Iron line equivalent width (eV)	140 ± 90	140^{+250}_{-120}	~ 160

a Errors on all parameter values are 90% confidence ($\Delta \chi^2 = 2.7$).

b These are the parameters obtained by Miller et al. (2006b) for the 2004 XMM-Newton and RXTE observations of GX 339–4.

c Units are photons cm$^{-2}$ s$^{-1}$ keV$^{-1}$ at 1 keV.

d Reflection covering factor.

e Ionization parameter.

f The power-law index for the radial emissivity profile.

g Absorbed flux in the 1–100 keV band.

h Unabsorbed flux in the 1–100 keV band.

i 1–100 keV luminosity assuming a distance of 8 kpc.

j 1–100 keV luminosity in Eddington units assuming a distance of 8 kpc and a black hole mass of 5.8 M_\odot.

FIG. 6.—Spectrum 2 fitted with the model detailed in Table 3 and plotted in

flux units. The various model components are shown and include a thermal disk-

blackbody component, a power law, a reflection component, and an iron emission

line (the last two include relativistic effects).
edge that can mimic a broad iron emission line (see Figs. 5 and 6). However, even though the emission line is not clearly detected in spectrum 2, the parameters that account for the relativistic smearing are still well constrained for both spectra because both the line and the reflection (pepx1v) components are smeared.

While there are four relativistic smearing parameters, only two of the parameters are left as free parameters in our fits. As mentioned above, we fixed the binary inclination to 20°, and we fixed the outer disk radius to \(R_{\text{out}} = 400R_g \) (\(=GM/c^2 \), where \(G \) and \(c \) are constants and \(M \) is the black hole mass). One of the free parameters is the inner disk radius, and we find that \(R_n = 3.6^{+1.4}_{-0.7}R_g \) for spectra 1 and 2, respectively, implying that the reflecting material is very close to the black hole. The other free parameter is the power-law index for the radial emissivity profile, and we obtain values consistent with \(q = 3 \) for both spectra.

5. DISCUSSION

5.1. Constraints from the Reflection Model

Our results on the iron line and reflection component of GX 339–4 join a relatively small number of observations where reflection models that account for the relativistic effects near black holes have been fitted to broadband X-ray spectra of black holes in the hard state. Our findings are most directly comparable to the results of Miller et al. (2006b), where both GX 339–4 and Cygnus X-1 showed evidence for a broad iron Kα emission line and a smeared reflection component while they were in the hard state. Table 3 compares the parameters for GX 339–4 from the fits to the 2004 XMM-Newton/RXTE spectrum reported in Miller et al. (2006b) to the parameters we obtain by fitting the same model to our Swift/RXTE spectra. Independent of assumptions about the distance to the source, spectra 1 and 2 were taken when the GX 339–4 luminosity (1–100 keV, unabsorbed) was, respectively, 2.4 and 7.0 times lower than the 2004 spectrum. Adopting a source distance of 8 kpc (Hynes et al. 2004) and a black hole mass of 5.8 \(M_\odot \) (Hynes et al. 2003), which are the same values used by Miller et al. (2006b), we estimate that the Eddington-scaled luminosities during our observations are \(L/L_{\text{Edd}} = 0.023 \) and 0.008.

The two most significant reflection parameters for answering the question of the accretion geometry for GX 339–4 in the hard state are the covering fraction \(\Omega/2\pi \) and the inner radius of the optically thick disk \((r_n = R_n/R_g) \). The covering fraction of \(-0.23\) that we obtain (assuming \(i = 20° \)) is consistent with the value of 0.22 ± 0.06 obtained by Miller et al. (2006b), and this may indicate little change in the system geometry even though we are observing at a lower flux. However, these values of \(\Omega/2\pi \) are much less than the values of unity or even larger that have been seen for GX 339–4 as well as other black hole systems in the SPL state (Zdziarski et al. 2003; Miller et al. 2004). Although we are including relativistic effects that were not included in earlier work by Zdziarski et al. (2003), our covering fraction and power-law index (\(\Gamma \)) values are very similar to the values Zdziarski et al. (2003) used to demonstrate a systematic drop in the covering fraction as the source hardens. Thus, these results are consistent with a significant change in geometry between the SPL and the hard state, but not in the hard state between 0.056\(L_{\text{Edd}} \) and 0.008\(L_{\text{Edd}} \). In addition, we note that geometry is not necessarily the only change that occurs between the SPL and the hard state.

The inner disk radii implied by the reflection model parameters also suggest little or no change in \(r_n \) down to 0.008\(L_{\text{Edd}} \). While Miller et al. (2006b) obtain \(r_n = 4.0 \pm 0.5 \), our reflection fits indicate maximum (90% confidence) \(r_n \) values of 5.0 for spectra 1 and 2, and the spectra are consistent with little change from \(r_n \sim 4 \) over the 0.008\(L_{\text{Edd}} \)–0.056\(L_{\text{Edd}} \) luminosity range. However, for spectrum 2, since the iron line is not required at high statistical confidence, we refitted the spectrum without the emission line, allowing only the blurred reflection component to constrain \(r_n \). In this case, we obtain \(r_n = 4.1^{+5.3}_{-1.4} \) so that we should not rule out the possibility that the inner disk radius increases to \(\sim 10R_g \) at the lowest luminosity that we are sampling.

Of course, these radius constraints are only valid if the blurring that is clearly present is caused by the Doppler boosting due to the motions of the material around the black hole and the gravitational redshift, and it is worthwhile to consider whether other physical effects could cause similar blurring. Probably the best developed competing model attributes the reflection component to Compton downscattering of the source’s X-ray emission in a large-scale and powerful wind (Titarchuk & Shrader 2005). The model requires hard X-ray emission with a power-law photon index of \(\Gamma < 2 \), and the model has been shown to be able to reproduce the shape of the \(\sim 20–200 \) keV hard state spectra from GX 339–4 (Titarchuk & Shrader 2005). More recently, it was shown that this Comptonization model can produce blurred and redshifted iron lines due to fluorescence of the wind material (Laurent & Titarchuk 2007). Although this full model is not currently available for fitting our GX 339–4 spectra, in the future, it would be interesting to see if it can explain all the spectral features we observe.

5.2. The Thermal Component in the Hard State

Further evidence for an optically thick disk in the hard state that is not highly truncated comes from the presence of a thermal component that has now been seen in the hard state spectra of several black hole systems. In our case, spectrum 1 has a significant thermal component, while the thermal component may be present in spectrum 2 but is not required at very high significance. Thus, we focus on comparing our spectrum 1 parameters to the disk-blackbody parameters found by Miller et al. (2006b). As shown in Table 3, the inner disk temperature of 0.193 ± 0.012 keV for spectrum 1 is significantly lower than the value of \(kT_n = 0.39 \pm 0.04 \) keV measured when the 3–100 keV flux of the source was 2.4 times brighter. While a drop in temperature does not necessarily signal a change in accretion geometry, the disk-blackbody normalization is related to the disk inner radius according to \(N_{\text{DBB}} \propto R_n^{-1} \), so the fact that \(N_{\text{DBB}} \) is significantly larger for spectrum 1 (see Table 3) could indicate an increase in \(R_n \).

To further investigate the difference between the values of \(N_{\text{DBB}} \) in the two spectra, we note that for these low temperatures, the disk component is strongly impacted by interstellar absorption, and the value of \(N_{\text{HI}} \) that we obtain is somewhat higher than the value derived by Miller et al. (2006b). Thus, we refitted spectrum 1 after fixing the column density to the (Miller et al. 2006b) value. We obtain only a slightly higher temperature of \(kT_n = 0.220 \pm 0.013 \) keV and \(N_{\text{DBB}} = 6100^{+2800}_{-1500} \). Thus, \(N_{\text{DBB}} \) is still nearly an order of magnitude higher for spectrum 1 compared to the value of \(\sim 700 \) obtained by Miller et al. (2006b). Another (not independent) way to examine the question of whether \(R_n \) changes is to determine whether the disk-blackbody flux \((F_{\text{disk}}) \) is proportional to \(kT_n^{1/4} \) as would be expected for constant \(R_n \) (Mitsuda et al. 1984). Based on the parameters with \(N_{\text{HI}} \) fixed, the bolometric disk-blackbody flux for spectrum 1 is \(3.2 \times 10^{-10} \) ergs cm\(^{-2} \) s\(^{-1} \), while the flux from the Miller et al. (2006b) parameters is \(3.4 \times 10^{-10} \) ergs cm\(^{-2} \) s\(^{-1} \). While the fact that these fluxes are nearly the same despite a drop in \(kT_n \) from 0.39 to 0.22 keV could be explained by a change in \(R_n \), other physical effects could also be important such as possible changes in the “color correction factor” (Shimura & Takahara 1995) or changes in the temperature profile in the disk. It is also worth noting that the observations were made with different soft X-ray instruments (XMM-Newton vs. Swift) and differences in...
calibration could be important. However, despite these other possibilities, if the correct explanation is a change in the inner radius, R_{in} would need to change by a factor of ~ 3.

Our results for the evolution of the disk-blackbody parameters appear to be in contrast to results obtained recently by Rykoff et al. (2007) for another accreting black hole (XTE J1817–330) in the hard state. Using ~ 20 Swift observations covering inner disk temperatures from 0.2 to 0.8 keV, Rykoff et al. (2007) found a relationship close to $F_{disk} \propto kT_{in}^4$ (they actually found an index of 3.3 ± 0.1 or 4.3 ± 0.1 depending on the model they used for the nonthermal component). Although XTE J1817–330 does show some deviations from the trend for individual data points (see Fig. 3 from Rykoff et al. 2007), none of the deviations from the $F_{disk} \propto kT_{in}^4$ trend are as large as we see for GX 339–4, suggesting that we may be seeing a different evolution for GX 339–4.

5.3. Implications for the Hard State Geometry

Our spectra of GX 339–4 provide evidence for an optically thick accretion disk in the hard state. At $L/L_{Edd} = 0.023$, the evidence comes from both blurred reflection and iron line features as well as a significant thermal component. At $L/L_{Edd} = 0.008$, the evidence primarily comes from the blurred reflection component. The most constraining measurement of r_{in} comes from the reflection component, and these measurements require $r_{in} < 5$ at $0.023L_{Edd}$ and $r_{in} < 10$ at $0.008L_{Edd}$. If the value of $r_{in} = 2$–3 measured in the SPL state represents the location of the ISCO, then our hard state measurements imply a change of no more than a factor of 2.5 and 5 (for the two luminosities, respectively) greater than the radius of the ISCO (although see caveats discussed above).

Recent theoretical work suggests a possible geometry that may be consistent with these observations. It is found that two physical processes can play important roles in causing material to condense out of an ADAF, leaving an inner optically thick disk. First, as an ADAF is forming, the material close to the ADAF/disk boundary will be significantly cooled via conductive cooling, and will cause ADAF material to recondense back into the disk (Meyer et al. 2007). Second, the soft photons from the optically thick disk can Compton-cool the ADAF, which also leads to condensation (Liu et al. 2007). For a relatively large range of mass accretion rates and viscosity parameters, these effects lead to inner and outer optically thick disks with an ADAF filling the gap in between. As discussed in Liu et al. (2007) such a model would apply for the brighter portion of the hard state and could explain the small inner radii inferred from reflection fits in the hard state and the $0.2–0.3$ keV thermal components. This geometry is also at least qualitatively consistent with the observed $\Omega/2\pi$ values.

Although such condensation can occur for relatively bright portions of the hard state, the calculations of Liu et al. (2007) still indicate that below $L/L_{Edd} \sim 0.001$, the inner disk will evaporate, leaving only ADAF inside some truncation radius. Thus, it is notable that our observations of GX 339–4 as well as most, if not all, of the cases where small inner disk radii have been inferred for the hard state via reflection modeling or the presence of soft components have occurred above this level (Miller et al. 2006a; Rykoff et al. 2007). At lower luminosity, there have been observations that do not necessarily require soft components in the X-ray band. For example, for the black hole system XTE J1118+480, McClintock et al. (2001) find evidence for a soft component at the very low temperature of ~ 24 eV when the system was near 0.001L_{Edd} (assuming a distance of 1.8 kpc and a black hole mass of $7 M_{\odot}$). In addition, Tomsick et al. (2004) observed XTE J1650–500 at levels of 10^{-6}L$_{Edd}$ (assuming a distance of 4 kpc and a black hole mass of $10 M_{\odot}$) and did not detect a soft component or iron features. Finally, very high quality spectra have been obtained for several systems in quiescence $L/L_{Edd} \sim 10^{-6}$ or lower without evidence for a thermal component or iron features (e.g., Bradley et al. 2007; Corbel et al. 2006).

5.4. Implications for the Compact Jet

The possibility of an inner optically thick disk in the hard state has very interesting implications for the production of compact jets in the hard state. For GX 339–4, we detect the compact jet in the radio band contemporaneously with the times that we obtained spectra 1 and 2, and Miller et al. (2006b) also report the presence of a compact jet during their hard state observation. Cygnus X-1 provides another example of a bright hard state black hole with a compact jet. These examples imply that a compact jet can be produced when the inner optically thick disk is present. Furthermore, it is notable that fitting mult wavelength spectral energy distributions from radio-to-X-ray observations of GX 339–4, Cygnus X-1, and another black hole system, GRO J1655–40, with a compact jet model gives values of $3.5R_g \ln(10/3)R_g$ for the radius of the jet at its base (Markoff et al. 2005; Migliari et al. 2007). These small radii are consistent with the jet being launched at or within the inner edge of the disk and may imply that the production of the compact jet is closely linked to the inner disk.

However, at the same time, radio observations show that compact jets can also be produced at very low luminosities by quiescent black holes (Gallo et al. 2005, 2006). This brings the role of the inner disk in jet production into question since it is unclear whether the inner disk persists to these low luminosities. As discussed above, the conductive and Compton cooling mechanisms considered by Liu et al. (2007) indicate that the disk should evaporate below 0.001L_{Edd}. However, it may still be worth considering whether other cooling mechanisms can maintain the inner disk to lower levels. For example, Meier (2005) has explored the possibility of magnetically dominated accretion flows (MDAFs), and there are indications for an inner disk region in the hard state where magnetic cooling is important. Clearly, more theoretical studies as well as observations at these very low luminosities are important for a full understanding of conditions that are required for compact jet production.

J. A. T. would like to thank Sergio Campana for information about the Swift XRT calibration and Tomaso Belloni, Jon Miller, and Jeroen Homan for useful discussions. We would like to thank Neil Gehrels for approving the second set of Swift observations. We appreciate comments from the anonymous referee that helped to improve this paper. J. A. T. acknowledges partial support from NASA RXTE Guest Observer grants NNG06GA81G and NNX06AG83G. E. K. is supported by TUBITAK Career Development Award 106TS70 and by a Turkish National Academy of Sciences Young and Successful Scientist Award.

REFERENCES

Balucinska-Church, M., & McCammon, D. 1992, ApJ, 400, 699
Bradley, C. K., Hynes, R. I., Kong, A. K. H., Haswell, C. A., Casares, J., & Gallo, E. 2007, ApJ, 667, 427
Bradt, H. V., Rothschild, R. E., & Swank, J. H. 1993, A&AS, 97, 355
Burrows, D. N., et al. 2005, Space Sci. Rev., 120, 165
Buxton, M., & Bailyn, C. 2007, ApJ, 1109
Corbel, S., Tomsick, J. A., & Kaaret, P. 2006, ApJ, 636, 971
Dove, J. B., Wilms, J., Maisack, M., & Begelman, M. C. 1997, ApJ, 487, 759
Ebisawa, K., Ueda, Y., Inoue, H., Tanaka, Y., & White, N. E. 1996, ApJ, 467, 419
