Liquid droplets on a free-standing glassy membrane: Deformation through the glass transition

Adam Fortais1, Rafael D. Schulman1, and Kari Dalnoki-Veress1,2,a

1 Department of Physics \& Astronomy, McMaster University, Hamilton, ON, Canada
2 Laboratoire de Physico-Chimie Théorique, UMR CNRS Gulliver 7083, ESPCI Paris, PSL Research University, 75005 Paris, France

Received 6 April 2017 and Received in final form 22 June 2017 – c © EDP Sciences / Società Italiana di Fisica / Springer-Verlag 2017

Abstract. In this study, micro-droplets are placed on thin, glassy, free-standing films where the Laplace pressure of the droplet deforms the free-standing film, creating a bulge. The film’s tension is modulated by changing temperature continuously from well below the glass transition into the melt state of the film. The contact angle of the liquid droplet with the planar film as well as the angle of the bulge with the film are measured and found to be consistent with the contact angles predicted by a force balance at the contact line.

1 Introduction

Elastocapillarity, the interplay between surface tension and elasticity, is of fundamental importance in many areas of research including microfluidics \cite{1}, self-assembly \cite{2–6}, substrate patterning \cite{7–9}, wetting of fibers \cite{10–14}, and biological systems \cite{15–17}. One of the simplest geometries—the contact angle a liquid drop makes with a soft solid—has garnered a great deal of interest \cite{7,18–28}. In contrast to a droplet on a soft solid, the cases of partial wetting of a liquid on a hard solid or a liquid on a liquid are well understood \cite{29}. A liquid droplet supported by an undeformable solid substrate will exhibit a contact angle, θ_y, which can be calculated by performing a horizontal surface tension balance. This expression, known as Young’s equation, is given by:

$$\gamma \cos \theta_y = \gamma_{sv} - \gamma_{sl}$$

where γ is the surface tension of the liquid, γ_{sv} is the solid/vapor interfacial tension, and γ_{sl} is the solid/liquid interfacial tension \cite{29,30}. On a liquid substrate, the Laplace pressure of the droplet is able to deform the underlying liquid; for small droplets, where capillarity dominates gravity, a liquid lens is formed where the product of the curvature and the interfacial tension of both interfaces are equal (i.e., a Laplace pressure balance). Furthermore, at the contact line, the construction of a Neumann triangle in which the vertical and horizontal components of the surface tensions are simultaneously balanced allows one to determine the angles between the three interfaces \cite{29}. In the intermediate case in which substrates are soft, the droplet deforms the substrate at the contact line into a cusp with a length scale comparable to the elastocapillary length for bulk deformation γ/E, where E is the elastic modulus \cite{7,19,22–24,31}. Microscopically, the contact angle between the drop and the substrate cusp satisfy a Neumann construction balancing the surface tension of the liquid and surface stresses between solid-liquid and solid-vapor interfaces. Macroscopically, the contact angle a drop larger than γ/E makes with the planar, undeformed film satisfies Young’s equation \cite{18,20,21,28}. However, for drops smaller than γ/E, these contact angles deviate from Young’s equation \cite{21,22}.

In order to observe micrometer-scale elastocapillary deformations in the substrate, experiments are limited to soft materials with E in the kPa range such that the elastocapillary lengths are on the order of a few μm. An alternate approach is to utilize stiff materials in a compliant geometry, such as a thin free-standing film. In this geometry, bending of the thin membrane is of negligible cost in comparison to stretching, which permits macroscopic deformation of the film, while maintaining a sub-nanometer bulk elastocapillary length \cite{6,25–27,32}.

In this paper we consider the contact angles between liquid drops on thin, glassy free-standing films ($E \sim \text{GPa}$) as a function of film tension. The tension is modulated by the thickness and temperature of the films, and the contact angles are measured continuously from well below the glass transition (T_g) of the film, into the melt state. We find that a Neumann construction accurately predicts the contact angle made between drops and the film.

2 Experiment

Polystyrene (PS) with number averaged molecular weight, $M_n = 451000 \text{kg/mol}$, and polydispersity index of 1.10
(Polymer Source Inc.), was dissolved in toluene (Fisher Scientific, Optima grade) and spin cast onto freshly cleaved mica sheets (Ted Pella Inc.). The resulting films ranged in thickness, h, from 45 nm to 110 nm and were vacuum annealed for a minimum of 12 hours at 130 °C to remove residual solvent and relax the polymer chains. After cooling to room temperature, films were cut with a scalpel blade into several smaller films and floated onto the surface of an ultra-pure water bath (18.2 MΩ cm). The floating films were subsequently transferred to 1 cm × 1 cm steel washers with a 3 mm diameter circular hole resulting in free-standing films. Additionally, one film from each sample was transferred to a silicon wafer for thickness measurements using ellipsometry (Accurion, EP3).

The samples were placed in the experimental set-up shown schematically in fig. 1(a) and pre-annealed above the glass transition at 102 °C for 2 minutes. This procedure relaxes any mechanical tension in the film, removes wrinkles which may have formed from transferring the film onto the washer, and ensures adhesion between the film and the steel washer. After the temperature increases above the glass transition temperature, the film can flow to relax any pre-stress. Thus, at this point, wrinkles quickly relax and the film becomes a flat, stress-free liquid film. The temperature of the hot plate was increased in 5 °C increments up to 95 °C at a rate of 90 °C/min, remaining at each temperature for 5 minutes to allow the drops to reach an equilibrium contact angle before images were captured with a camera (QIMAGE QICAM Fast1394) attached to a horizontally mounted microscope objective. The sample is illuminated from behind. Since the sample is not in direct contact with the hot plates, a thermocouple (OMEGA HH506RA) was used to determine the actual temperature at the location of the sample. For measurements above 95 °C, the temperature was increased directly to the desired temperature at a rate of 90 °C/min, at which point images were captured at 15 second intervals, and contact angles were reported once they reached a constant value.

The contact radius (r_c) was measured directly from the microscope images, and the profiles were fit to spherical caps. Examples are shown in fig. 1(b). From these fits, the radius of curvature of the drop and bulge (R_d and R_b) were determined. The contact angle subtended by the spherical caps and the undeformed film away from the droplet (θ_d, θ_b) could be determined through the relation

$$\sin(\theta_{d,b}) = \frac{r_c}{R_{d,b}}$$

where the subscript d or b refers to either the droplet or bulge.

3 Results and discussion

3.1 Determining tension

It has been shown previously that the tension in the film can be determined by constructing a Neumann triangle at the contact line which includes both interfacial tensions and the mechanical tension within the film [25–27, 34]. Figure 1(c) is a schematic of the tensions acting at the contact line. By balancing these tensions in the vertical direction, an expression relating θ_d and θ_b to the tension in the film can be found:

$$\frac{\sin \theta_d}{\sin \theta_b} = \frac{I_{\text{mech}} + \gamma_{sv} + \gamma_{sl}}{\gamma},$$

where I_{mech} is the mechanical tension within the film. Recently, there has been significant interest in the difference between surface tension and surface stresses in soft
solids [35–38]. Specifically, if the surface energy of the solid is strain dependent, the surface stress is not equal to the surface energy. Since the strain dependence of the surface energy of polymeric glasses has not yet been characterized, we make the simplifying assumption that the surface stresses equal the surface energies. In practice, it is not an important assumption because the mechanical tensions in the film are the dominant contribution to the total film tension. In addition, since our films are subject to very small strains (<1%), the surface energies are not expected to deviate significantly from the unstrained values.

We note that rather than using the macroscopic contact angles, one can equivalently state that equilibrium requires that the Laplace pressure of the drop must balance that of the bulge:

\[
\frac{\gamma}{R_b} = \frac{\Gamma_{\text{mech}} + \gamma_{\text{sv}} + \gamma_{\text{sl}}}{R_b}.
\]

By using the relation \(\sin \theta_d \sin \theta_b = \frac{r_c}{R_{d,b}}\) and the Laplace pressure balance one recovers eq. (1).

Equations (1) and (2) show that by measuring the drop and bulge contact angles, or their radii of curvature, the total tension in the film (mechanical and interfacial) normalized by the surface tension of the liquid can be determined. This treatment relies on the assumption that the pretension of the membrane is unchanged by the addition of droplets when the deformation of the membrane induced by the droplet is a perturbation to the total area of the film. Additionally, because the drop is not pinned at the contact line, we assume the mechanical tension is uniform across the contact line.

The assumption that the presence of small droplets results in a perturbative change to the tension of the membrane is in congruence with our observation that the measured tension does not change as additional droplets are placed on the film. Furthermore, because the bulge takes on the shape of a spherical cap we can assume that the tension throughout the film below the drop is uniform. The accuracy of this technique has been confirmed elsewhere by comparison with micropipette deflection techniques [27].

By measuring the tension in films of various thicknesses at different temperatures, we can compare the measured values of the tension to that predicted by using the material thermal expansion. In addition, we can further understand our relationship between the droplet and bulge contact angles and the tension in the film.

Guided by eq. (1) we plot the experimental observable quantity \(\sin \theta_d / \sin \theta_b\) as a function of temperature for various film thicknesses in fig. 2. We recognize this ratio as being equivalent to the normalized tension of the membrane in contact with the droplet which includes the mechanical tension of the membrane and the relevant interfacial tensions (eq. (1)). As seen in fig. 2, the normalized tension decreases with increasing temperature and increases as the film thickness increases. These trends are explained next.

The decrease in the normalized tension is due in part to a small change in the interfacial tensions with temperature, but it is dominated by a reduction in the mechanical tension of the membrane with increasing temperature. The changes in the mechanical tension as a function of temperature are caused by the difference in the thermal expansion of the PS films and the steel washer to which the film is affixed. The change in mechanical tension can be understood as follows. First, the film is taken above the glass transition temperature into the melt state to equilibrate. The tension in the film is then only due to the surface tension of the two free interfaces. As the film is cooled below the glass transition, both the glassy PS and the steel washer contract, however, since the expansion coefficient of PS is greater than that of stainless steel, the cooling results in a uniform strain \(\epsilon\) which increases with decreasing temperature. The strain is given by \(\epsilon = (c_{PS} - c_{SS})\Delta T\), where \(c_{PS} = 70 \cdot 10^{-6}\) K\(^{-1}\) is the linear expansion coefficient of PS and \(c_{SS}\) is the linear expansion coefficient of stainless steel and depends on the alloy composition but is typically within the range \((14 \pm 3) \cdot 10^{-6}\) K\(^{-1}\) [39, 40]. Lastly, the dependence on the film thickness in fig. 2 is easily understood from the fact that the mechanical tension in the membrane is proportional to the film thickness: while the strain due to differential thermal expansion is independent of the film thickness, the tension depends on the product of the strain and film thickness.

In order to fully probe the mechanical tension, \(\Gamma_{\text{mech}}\), as a function of temperature, we can also take into account the variations in the interfacial tensions with temperature, \(\gamma\); \(\gamma_{\text{sv}}\); and \(\gamma_{\text{sl}}\); in addition to the dominant dependence of the film tension on thickness and the differential thermal expansion discussed above. While \(\gamma(T)\) and \(\gamma_{\text{sv}}(T)\) can be found in the literature, the interfacial tension for PS and glycerol can be found though Young’s equation, \(\gamma_{d} = \gamma_{\text{sv}} - \gamma \cos \theta_y\). Using eq. (1) and Young’s equation, we can write the mechanical tension in terms of accessible quantities as

\[
\Gamma_{\text{mech}} = \frac{\sin \theta_d}{\sin \theta_b} \gamma - 2\gamma_{\text{sv}} + \gamma \cos \theta_y,
\]
where we stress that all quantities are dependent on temperature. The surface tension of glycerol is \(\gamma = 63 - 0.0598(T - 20^\circ\text{C}) \text{mN/m} \) [41] and for PS, \(\gamma_{\text{PS}} = 40.7 - 0.072(T - 20^\circ\text{C}) \text{mN/m} \) [42]. We have measured the temperature dependence of Young's angle \(\theta_y \) for glycerol atop a non-compliant film of PS supported on a rigid substrate (Si) as shown in fig. 3. The data for \(\theta_y(T) \) are well described by the linear approximation \(\cos \theta_y = aT + b \), where \(a = (0.27 \pm 0.04) \times 10^{-2} \text{C}^{-1} \) and \(b = (17 \pm 5) \times 10^{-2} \). Thus, we can write the mechanical tension as

\[
\Gamma_{\text{mech}}(T) = \gamma(T) \left(\frac{\sin \theta_d}{\sin \theta_b} \right)_T + aT + b - 2\gamma_{\text{PS}}(T), \tag{4}
\]

where all temperature dependences are explicitly indicated.

For an elastic membrane subjected to a radial strain, the mechanical tension is equal to \(\Gamma_{\text{mech}} = \sigma h = \varepsilon E/(1 - \nu) \), where \(\sigma \) is the uniform stress within the film and \(\nu \) is the Poisson ratio (\(\nu = 0.33 \) for PS [39]). Normalizing \(\Gamma_{\text{mech}} \) by film thickness should thus collapse our data to a single line. By using eq. (4), the data from fig. 2 can be plotted as \(\Gamma_{\text{mech}}/h \) as a function of temperature, and the data for various film thicknesses are shown to collapse to one line as shown in fig. 4 consistent with the theory. As explained above, the mechanical tension vanishes in the melt state; thus, we fit a straight line to the data below 97°C constrained to pass through the point \(\Gamma_{\text{mech}}/h = 0 \) at \(T = T_g = 97^\circ\text{C} \), which is the glass transition of PS [39]. The equation of this fit line is given by \(\Gamma_{\text{mech}}/h = (97^\circ\text{C} - T)(2.8 \pm 0.1) \times 10^6 \text{N m}^{-1} \text{m}^{-2} \). Comparing the fit line in fig. 4 to \(\Gamma_{\text{mech}} = \sigma h / (1 - \nu) \) we can solve for \(E \) using the values for \(E_{\text{PS}}, \varepsilon_{\text{SS}}, \) and \(\nu \) given above, along with the single fitting parameter from fig. 4 to determine the modulus of PS. We determine \(E \) for our PS film to be \(3.4 \pm 0.4 \text{GPa} \), which is in agreement with literature values [39].

As an aside, we note that in a recent study, taut freestanding films of glassy poly (\(n \)-butyl methacrylate) films were prepared in a similar way and the tension was thereafter determined roughly 15°C below its \(T_g \) using the same technique [27]. For films with \(h \sim 100 \text{nm} \), it was found that \(\Gamma_{\text{in}}/\gamma \sim 3 \) using glycerol as the test liquid. Using the arguments developed here, along with values for Young’s modulus, Poisson ratio, and thermal expansion coefficient of poly (\(n \)-butyl methacrylate), we expect \(\Gamma_{\text{mech}}/\gamma \sim 3 \)—consistent with the former study [43,44].

Above, \(T_g \), the mechanical tension vanishes and the only contribution to the tension stems from interfacial tensions, which change slowly with temperature in comparison to \(\Gamma_{\text{mech}} \). These considerations are in complete agreement with the data above \(T_g \) in figs. 2 and 4.

3.2 Contact angle and tension

Considering the Neumann construction in fig. 1(c), we can group the tensions acting in parallel directions at the contact line: in contact with the droplet, inwards, we have \(\Gamma_{\text{in}} = \Gamma_{\text{mech}} + \gamma_{\text{PS}} + \gamma_{\text{SS}} \) and away from the droplet in the plane of the film, \(\Gamma_{\text{out}} = \Gamma_{\text{mech}} + 2\gamma_{\text{SS}} \) [27]. Using the cosine law to perform the tension balance at the contact line, we obtain the expression for both \(\theta_d \) and \(\theta_b \):

\[
\cos \theta_d = \frac{(\Gamma_{\text{out}}/\gamma)^2 + 1 - (\Gamma_{\text{in}}/\gamma)^2}{2\Gamma_{\text{out}}/\gamma}, \tag{5a}
\]

\[
\cos \theta_b = \frac{(\Gamma_{\text{out}}/\gamma)^2 - 1 + (\Gamma_{\text{in}}/\gamma)^2}{2\Gamma_{\text{out}}\Gamma_{\text{in}}/\gamma^2}. \tag{5b}
\]

With Young’s equation one can show that \(\Gamma_{\text{out}} = \Gamma_{\text{in}} + \gamma\cos \theta_y \). Substituting this expression into eqs. (5a) and (5b), with the known dependence of \(\cos \theta_y \) on temperature (fig. 3) and the known relationship between temperature and \(\Gamma_{\text{in}}/\gamma \) for a given film thickness (fig. 2), we can predict \(\theta_d \) and \(\theta_b \) as a function of \(\Gamma_{\text{in}}/\gamma \) obtained

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{fig3.png}
\caption{Cosine of experimentally determined Young’s angle of glycerol droplets on a PS substrate as a function of temperature. The solid black line, \(\cos \theta_y = aT + b \), is a best fit to the data. Parameters \(a \) and \(b \) are given in the text.}
\end{figure}

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{fig4.png}
\caption{Mechanical tension within the film normalized by \(h \). A straight line with an \(x \)-intercept of 97°C is a fit to the data.}
\end{figure}
we observe θ and doing so obtain a value of temperature using γ. As the film is raised above the glass transition, we validate the measurements and theory. Furthermore, we found that the contact angle of the droplet and bulge was found to be in excellent agreement with the literature Young’s modulus of PS could be obtained. The modulus and by comparing our data to theoretical considerations, thickness. We are able to predict the measured tensions, which can be predicted as a function of temperature and film tension was varied by tuning film thickness and temperature. Through a Neumann construction at the contact line, it is determined from fig. 3. 7. R.W. Style, Y. Che, S.J. Park, B.M. Weon, J.H. Je, C. Py, P. Reverdy, L. Doppler, J. Bico, B. Roman, C.N. Baroud, Phys. Rev. Lett. 98, 156103 (2007). 8. J.D. Paulsen, V. Dmery, C.D. Santangelo, T.P. Russell, B. Davidovitch, N. Menon, Nat. Mater. 14, 1206 (2015). 9. N. Patra, B. Wang, P. Krl, Nano Lett. 9, 3766 (2009). 10. J. Huang, M. Juszkiewicz, W.H. de Jeu, E. Cerda, T. Emrick, N. Menon, T.P. Russell, Science 317, 650 (2007). 11. S. Protiere, C. Duprat, A.Y. Beebe, H.A. Stone, Nature Rev. Lett. 110, 12541 (2013). 12. H. Elettro, S. Neukirch, A. Antkowiak, Proc. Natl. Acad. Sci. U.S.A. 110, 12541 (2013). 13. H. Elettro, S. Neukirch, A. Antkowiak, Phys. Rev. Lett. 110, 12541 (2013). 14. A. Fargette, S. Neukirch, A. Antkowiak, Proc. Natl. Acad. Sci. U.S.A. 111, 6143 (2014). 15. A.L. Hazel, M. Heil, Proc. R. Soc. A 461, 1847 (2005). 16. J.B. Grotberg, O.E. Jensen, Annu. Rev. Fluid Mech. 36, 121 (2004). 17. O. Camps, T. Mamamoto, S. Hasso, R.A. Sperling, D. O’Connell, A.G. Bischof, R. Maas, D.A. Weitz, L. Madhavan, D.E. Ingber, Nat. Methods 11, 183 (2013). 18. A. Marchand, S. Das, J.H. Sneeijer, B. Andreotti, Phys. Rev. Lett. 109, 236101 (2012). 19. C.Y. Hui, A. Jagota, Proc. R. Soc. A 470, 20140085 (2014). 20. R.W. Style, E.R. Dufresne, Soft Matter 8, 7177 (2012). 21. R.W. Style, R. Boltyanskiy, Y. Che, J.S. Wettlaufer, L.A. Wilen, E.R. Dufresne, Phys. Rev. Lett. 110, 066103 (2013).
22. J.B. Bostwick, M. Shearer, K.E. Daniels, Soft Matter 10, 7361 (2014).
23. R. Pericet-Cámara, A. Best, H.J. Butt, E. Bonaccurso, Langmuir 24, 10565 (2008).
24. E.R. Jerison, Y. Xu, L.A. Wilen, E.R. Dufresne, Phys. Rev. Lett. 106, 186103 (2011).
25. N. Nadermann, C.Y. Hui, A. Jagota, Proc. Natl. Acad. Sci. U.S.A. 110, 10541 (2013).
26. C.Y. Hui, A. Jagota, N. Nadermann, X. Xu, Proc. IUTAM 12, 116 (2015).
27. R.D. Schulman, K. Dalnoki-Veress, Phys. Rev. Lett. 115, 206101 (2015).
28. S.J. Park, B.M. Weon, J.S. Lee, J. Lee, J. Kim, J.H. Je, Nat. Commun. 5, 4369 (2014).
29. P.G. de Gennes, F. Brochard-Wyart, D. Quéré, Capillarity and Wetting Phenomena: Drops, Bubbles, Pearls, Waves (Springer-Verlag, New York, 2008).
30. T. Young, Philos. Trans. R. Soc. 95, 65 (1805).
31. G.R. Lester, J. Colloid Interface Sci. 16, 315 (1961).
32. R.D. Schroll, M. Adda-Bedia, E. Cerda, J. Huang, N. Menon, T.P. Russell, K.B. Toga, D. Vella, B. Davidovitch, Phys. Rev. Lett. 111, 014301 (2013).
33. Z. Fakhraai, J.A. Forrest, Phys. Rev. Lett. 95, 025701 (2005).
34. C.Y. Hui, A. Jagota, Soft Matter 11, 8960 (2015).
35. B. Andreotti, J.H. Snoeijer, EPL 113, 66001 (2016).
36. J.B. Bostwick, M. Shearer, K.E. Daniels, Soft Matter 10, 7361 (2014).
37. B. Andreotti, O. Bumchen, F. Boulogne, K.E. Daniels, E.R. Dufresne, H. Perrin, T. Salez, J.H. Snoeijer, R.W. Style, Soft Matter 12, 2993 (2016).
38. R.W. Style, A. Jagota, C.Y. Hui, E.R. Dufresne, Annu. Rev. Condens. Matter Phys. 8, 118 (2017).
39. J. Brandrup, E.H. Immergut, E.A. Gruulke (Editors), Polymer Handbook, 4th edition (Wiley-Blackwell, 1999).
40. W.F. Gale, T.C. Totemeier, Smithells Metals Reference Book (Butterworth-Heinemann, 2003).
41. D.R. Lide, CRC Handbook of Chemistry and Physics (CRC Press, 2006).
42. S. Wu, J. Phys. Chem. 74, 632 (1970).
43. B. Cappella, S.K. Kaliappan, H. Sturm, Macromolecules 38, 1874 (2005).
44. A.A. Askadskii, Computational Materials Science of Polymers (Cambridge International Science Publishing, 2003).