Evaluating Indoor Positioning Systems in a Shopping Mall: The Lessons Learned from the IPIN 2018 Competition

Valerie Renaudin¹, Miguel Ortiz¹, Johan Perul¹, Joaquín Torres-Sospedra², Antonio Ramón Jimenez³, Antoni Pérez-Navarro⁴, Germán Martín Mendoza-Silva⁵, Fernando Seco⁶, Yael Landau⁷, Revital Marbel⁸, Boaz Ben-Moshe⁹, Xingyu Zheng⁹, Feng Ye⁹, Jian Kuang⁹, Yu Li⁹, Xiaoji Niu⁹, Vlad Landa³, Shlomi Hacohen³, Nir Shvalb⁹, Chuanhua Lu¹⁰, Hideaki Uchiyama¹¹, Diego Thomas¹², Atsushi Shimada¹², Rin-ichiro Taniguchi¹¹, Zhenxing Ding¹³, Feng Xu¹³, Nikolai Kronenwett¹⁴, Blagovest Vladimirov¹⁵, Soyeon Lee¹⁵, Eunyoung Cho¹⁵, Sungwoo Jun¹⁵, Changeun Lee¹⁵, Sangjoon Park¹⁵, Yonghyun Lee¹⁶, Jehyeok Rew¹⁶, Changjun Park¹⁶, Hyeongyo Jeong¹⁶, Jaeseung Han¹⁶, Keumreyol Lee¹⁶, Wenchao Zhang¹⁷, Xianghong Li¹⁷, Dongyan Wei¹⁷, Ying Zhang¹⁸, So Young Park¹⁹, Chan Gook Park¹⁹, Stefan Knauth²⁰, Georgios Pipelidis²¹, Nikolaos Tsimiotros²¹, Tomás Lungenstrass²², Juan Pablo Morales²², Jens Trogh²³, David Plets²³, Miroslav Opiela²⁴, Shih-Hau Fang²⁵,²⁶, Yu Tsoa²⁷, Ying-Ren Chien²⁸, Shi-Shen Yang²⁸, Shih-Jyun Ye²⁵,²⁶, Muhammad Usman Ali²⁹, Soojung Hur²⁹, and Yongwan Park²⁹

¹The French Institute of Science and Technology for Transport, Development and Networks, AME department, GEOLOC Laboratory, Nantes, France
²Universitat Jaume I de Castello, Institute of New Imaging Technologies, Spain
³Centre for Automation and Robotics (CSIC-UPM), 28500, Arganda del Rey, Spain
⁴Faculty of Computer Sciences, Multimedia and Telecommunication, Internet Interdisciplinary Institute (IN3), Universitat Oberta de Catalunya, Spain
⁵Department of Computer Science, Ariel University, Israel
⁶Department of Information Engineering, National Taiwan University, Taipei, Taiwan
⁷Departamento Ingeniería de Sistemas y Comunicaciones, P. J. Šafárik University (UPJS), Košice, Slovakia
⁸Department of Mechanical Engineering, Ariel University, Israel
⁹Department of Information Engineering, National Taiwan University, Taipei, Taiwan
¹⁰Graduate School of Information Science and Electrical Engineering, Kyushu University, Fukuoka 819-0395, Japan
¹¹Library, Kyushu University, Fukuoka 819-0395, Japan
¹²Faculty of Information Science and Electrical Engineering, Kyushu University, Fukuoka 819-0395, Japan
¹³State Information Center, Beijing, China
¹⁴Institute of Systems Optimization, Karlsruhe Institute of Technology, Karlsruhe, Germany
¹⁵Electronics and Telecommunications Research Institute, Korea
¹⁶HANA MICRON, Korea
¹⁷University of Chinese Academy of Sciences, Beijing, China
¹⁸Google Inc., 1600 Amphitheater Parkway, Mountain View, CA 94043, USA
¹⁹Seoul National University, Korea
²⁰Faculty of Geomatics, Computer Science and Mathematics, Hochschule für Technik Stuttgart, Stuttgart, Germany
²¹Department of Computer Sciences, Multimedia and Telecommunication, Internet Interdisciplinary Institute (IN3), Universitat Oberta de Catalunya, Spain
²²Faculty for Geomatics, Computer Science and Mathematics, Hochschule für Technik Stuttgart, Stuttgart, Germany
²³Department of Electrical Engineering, National Taiwan University, Taipei, Taiwan
²⁴Research Center for Information Technology Innovation, Academia Sinica, Taipei 11529, Taiwan
²⁵Department of Electrical Engineering, National University of Kaohsiung, Kaohsiung, Taiwan
²⁶Department of Electrical Engineering, National Taiwan University, Taipei, Taiwan
²⁷Institutes of Information, Taiwan, China
²⁸Department of Electrical and Computer Engineering, Yuan Ze University, Zhongli 32003, Taiwan
²⁹Department of Information and Communication Engineering, Yeungnam University, Gyeongsan, Gyeongbuk, Republic of Korea

Corresponding author: V. Renaudin (e-mail: valerie.renaudin@ifsttar.fr); J. Torres-Sospedra (e-mail: jtorres@uji.es); A. R. Jimenez (e-mail: antonio.jimenez@csic.es); A. Perez-Navarro (e-mail: aperezn@uoc.edu); B. Ben-Moshe (e-mail: bbenmo@g.ariel.ac.il); F. Ye (e-mail: yefeng92@whu.edu.cn); Y. Li (e-mail: yulinav@whu.edu.cn); H. Uchiyama (e-mail: uchiyama@limu.ait.kyushu-u.ac.jp); Z. Ding (e-mail: cw0216@sina.com); N. Kronenwett (e-mail: nicolai.kronenwett@kit.edu); S. Lee (e-mail: sylee@etri.re.kr); D. Wei (e-mail: weidongyan@aeo.ac.cn); Y. Zhang (e-mail: yingzhang@google.com); S. Knauth (e-mail: stefan.knauth@hft-stuttgart.de); G. Pipelidis (e-mail: georgios.pipelidis@tum.de); T. Lungenstrass (e-mail: tomas@ararads.com); J. Trogh (e-mail: jens.trogh@ugent.be); M. Opiela (e-mail: miroslav opiela@upjs.sk); S.-H. Fang (e-mail: shfang@saturn.yzu.edu.tw); Y.-R. Chien (e-mail: yrchien@niu.edu.tw); Y. Park (e-mail: ywpark@yu.ac.kr);
ABSTRACT The Indoor Positioning and Indoor Navigation (IPIN) conference holds an annual competition in which indoor localization systems from different research groups worldwide are evaluated empirically. The objective of this competition is to establish a systematic evaluation methodology with rigorous metrics both for real-time (on-site) and post-processing (off-site) situations, in a realistic environment unfamiliar to the prototype developers. For the IPIN 2018 conference, this competition was held on September 22nd, 2018, in Atlantis, a large shopping mall in Nantes (France). Four competition tracks (two on-site and two off-site) were designed. They consisted of several 1 km routes traversing several floors of the mall. Along these paths, 180 points were topographically surveyed with a 10 cm accuracy, to serve as ground truth landmarks, combining theodolite measurements, differential global navigation satellite system (GNSS) and 3D scanner systems. 34 teams effectively competed. The accuracy score corresponds to the third quartile (75th percentile) of an error metric that combines the horizontal positioning error and the floor detection. The best results for the on-site tracks showed an accuracy score of 11.70 m (Track 1) and 5.50 m (Track 2), while the best results for the off-site tracks showed an accuracy score of 0.90 m (Track 3) and 1.30 m (Track 4). These results showed that it is possible to obtain high accuracy indoor positioning solutions in large, realistic environments using wearable light-weight sensors without deploying any beacon. This paper describes the organization work of the tracks, analyzes the methodology used to quantify the results, reviews the lessons learned from the competition and discusses its future.

INDEX TERMS IPIN, Competition, Indoor Positioning, smartphone

I. INTRODUCTION

THE international conference on Indoor Positioning Indoor Navigation (IPIN) brings together every year around 400 experts from the industrial and academic world to discuss the uses of indoor geolocation, discover the best technologies in indoor positioning and indoor navigation and share the latest innovations. The 9th edition took place in Nantes from 24 to 27 September 2018 and reunited more than 40 nationalities. A competition took place in parallel to the congress and allowed teams to compete against each other on pedestrian tracks in a very challenging realistic scenario: a shopping mall.

Several previous indoor competition editions were held within the EvaAL framework [1], [2] in the past. Although the IPIN Conference runs competitions in parallel to the conference using the EvaAL framework since 2014, this approach was formally adopted by the IPIN Competition in 2016 [3]. Other competitions, such as the Microsoft Indoor Localization Competition at the International Conference on Information Processing in Sensor Networks [4]–[6] or the GEO-IOT world [7], targeted similar on-site competitions. The main goal of the on-site competitions is not only to assess the performance of the competing systems but also to evaluate the ability of the teams to configure and test them in their own way for calibration purposes, off-site competition organizers provide all the required data to calibrate and evaluate the indoor positioning technologies. Thus, since IPIN 2015, the indoor competition includes an off-site track. At first, it was based on a Wi-Fi fingerprinting database collected at three different buildings in a university campus [10]. Since 2016, the Smartphone-based off-site track provides all data that can be captured in real-time with a smartphone [11]–[13]. Using data sets for the competition has enabled the inclusion of new buildings, which in turn added diversity to the evaluation areas.

However, these past competitions did not include complex realistic indoor spaces such as public populated environments, which provide an extra challenge and are of high relevance for any real-life indoor application. Although the conference venues were populated, some restrictions applied to the on-site competitions to avoid disturbing the conference regular activities. Therefore, in 2018, we decided to target this issue and organized the IPIN competition in a shopping mall, Atlantis. Thus, calibration, site surveying and evaluation were performed under realistic conditions during commercial opening hours, including rush hours with crowded corridors. To better reflect the challenges introduced by this new scenario, as well as the latest innovations in indoor positioning technologies, a total of four different competition tracks, two on-site and two off-site, were organized in the shopping mall. This paper aims at presenting the methodology adopted to organize this competition and discussing the results achieved by the competitors before drawing general conclusions.

The paper is structured as follows. Sections II and III describe the preparatory work: design of the pedestrian routes, geo-positioning of the reference points in the building and creation of data sets for the off-site tracks. Section IV focuses
on the different approaches deployed by the competitors. Section VI draws the lessons learned from the competition at the levels of the organization and the participants.

II. PREPARATION OF IPIN 2018 COMPETITION TRACKS AND DATASETS

This section describes the preparation of the IPIN 2018 competition tracks, which has been carried in partnership with the French High School of Surveyors and Topographers (ESGT), under the supervision of the GEOLOC laboratory of the French Institute of Science and Technology for Transport, Development and Networks (IFSTTAR). The competition was also prepared in collaboration with the Institute of New Imaging Technologies (INIT) from Universitat Jaume I and other institutions.

The IPIN competition basically consists of two main parts: an on-site and off-site competition, although every part can have one or more tracks in the competition:

- The on-site challenges occur at the competition location, i.e. the conference venue or, as in this case, a shopping mall. The teams deploy their own Indoor Positioning System (IPS), respecting and obeying the restrictions set by organizers, and estimate in real-time the coordinates of the target points as they are reached by the person carrying the location system and following a track previously arranged by the organizers. Competitors are allowed to access the venue the day before the competition for calibration and site survey.

- The off-site challenges allow competitors to calculate traces from data provided to them before the competition. Data are of various nature: Wi-Fi, magnetic field, inertial signals, Bluetooth Low Energy (BLE), etc. They comprise two parts provided to competitors: The first part of the dataset is recorded on a geolocated path (or paths) where the geographical coordinates of the reference points and the corresponding data are provided; this path is used for calibration; the second part of the dataset are raw data from the same location where previous data were taken, and their coordinates must be estimated by the competitors. To ensure fair competition, an additional site survey is not allowed to competitors.

In both cases, a common evaluation framework is applied. The individual positioning error corresponds to the 2D positioning error plus a penalty term in the case of incorrect floor detection. The final score is either calculated in meters at the third quartile or extracted from the function of cumulative error distribution at the third quartile. This information corresponds to the highest error for the 75% of the estimates. Several recommendations of the ISO/IEC standard 18305:2016 [14] have been taken into account to define the IPIN 2018 competition performance metrics.

A. TWO ON-SITE CHALLENGES

On-site challenges involve competitors who compute the coordinates of the waypoints on which they walk, in real-time and using their technology. Computation was not limited to the embedded or hand-held devices, but competitors had to provide the estimated locations of the evaluation waypoints immediately after reaching the end of the evaluation path. i.e., post-processing was not allowed. All estimated coordinates must be reported by the competitors to the organizers when the end of the route is reached. On-site competition comprised two challenges, which only allowed hardware worn on the upper body part, prohibiting Lidar technology and infrastructure deployment in the environment. Indeed, Lidar mobile mapping systems are generally for accurate indoor mapping. They are considered as reference solutions rather than personal navigation systems to be tested. As described in the next section, a Lidar system was used to compute the 10 cm accurate coordinates of all the waypoints. There were two on-site competition tracks: camera-based and non-camera-based.

1) Track 1: Camera-based positioning challenge

The 1st on-site challenge allowed the use of camera enabling vision-based localization. All vision-based technologies were accepted except laser-based technology, like Lidar, that was excluded from the competition. Competitors were allowed to visit the shopping mall during normal opening hours the day before the competition for calibration and surveying purposes, but they were not allowed to install any kind of hardware that could help their device to estimate the location (e.g., BLE beacons, Wi-Fi routers or UWB tags). This prohibition was also in compliance with the Infrastructure-Free requirement placed by the shopping mall regulation. The track organizers provided the coordinates and heading of the starting point on the competition day. During the competition, competitors were asked to perform some specific actions, classically done by pedestrians indoors. Fig. 1 illustrates some of these actions: sitting on a bench, going upstairs and standing on a conveyor belt.

2) Track 2: Non-camera-based positioning challenge

The 2nd on-site challenge followed the same rules and requirements as Track 1, but the use of cameras was forbidden. All equipment had to be carried on the upper part of the human body, including trouser pockets. This restriction was added to the track to explicitly exclude foot-mounted Pedestrian Dead Reckoning (PDR) techniques, addressed in Track 4. Competitors were asked to perform similar actions as in Track 1.

B. TWO OFF-SITE CHALLENGES

Following a pre-study and the experience of previous IPIN competitions, two off-site tracks were defined for the off-site challenges, namely the Smartphone-based positioning challenge and Foot-mounted IMU and GNSS based positioning challenge.
1) Track 3: Smartphone-based positioning challenge

The first off-site challenge aimed at testing the location technologies solely based on smartphone measurements recorded by a person who had walked through the mall. This track matched the off-site tracks organized in the 2016 [12] and 2017 [11] IPIN competitions.

To determine the parts of the shopping mall that were usable for the off-site smartphone-based positioning, several data acquisitions were carried out with the “GetSensorData” Android application version 2.0 [13]. This application records all data acquired with most of the sensors embedded in a smartphone (WiFi RSS, Inertial measurements, Bluetooth low energy RSS, GNSS location, pressure, light and sound intensity,...), and stores it in a log file. We divided the shopping mall area into five parts and performed a loop in each part to collect the data. These data were analyzed to identify the areas that could not be used for the competition: without Wi-Fi or BLE coverage or white coverage areas. The analysis showed that all regions were sufficiently covered, except for some parts of the car parking areas where the Wi-Fi signal was particularly weak. Data provided to the competitors for this challenge were registered with the same “GetSensorData” Android application in three phases: training, validation and evaluation.

For the training and validation phases, some short trajectories were defined in the evaluation area to record the required data. Training data is usually used for calibrating the IPS, whereas validation data can be used by the teams to estimate the accuracy of the developed solution. However, competitors can use both datasets at their own discretion. Each short trajectory was collected multiple times in both walking directions. A total of 22 training and 15 validation log files were provided to the competitors.

A 1 km path was recorded with the application for the evaluation phase, generating a blind evaluation log file without reference waypoints. This dataset provided to the competitors for track 3 [15] (raw signals and reference points coordinates) can be downloaded for further bench-marking. Fig. 2 (left part) shows the data acquisition for Track 3.

2) Track 4: Foot-mounted IMU and GNSS based challenge

The second off-site track was dedicated to foot-mounted inertial and GNSS navigation. The data were collected with the unit PERSY (Personal Reference SYstem, Fig. 2 right part) developed by GEOLOC at IFSTTAR. It comprises a 9 degrees of freedom inertial unit and a GNSS receiver and antenna [16], [17]. Two datasets were prepared. The first one was used for sensor calibration and the second one for the calculation of the coordinates of the waypoints. The usage of maps was completely forbidden in this track.

First, the magnetometer calibration dataset was recorded in an undisturbed geomagnetic environment by performing rotations around the different sensor axes. It is a standard procedure for ellipsoid fitting based magnetometer calibration algorithms [18]. It was complemented with data for conducting an Allan variance analysis [19], [20] of signals recorded during several hours in a static location to determine noise and measurement bias of inertial sensors. These data were provided to the participants to enable them to calibrate the device with their algorithms.

Finally, a dataset was recorded over 1 km of walking distance on three floors and provided to the competitors for the computation of the coordinates of the waypoint. The purpose of this challenge was to compare pedestrian navigation algorithms based on inertial, GNSS and magnetic measurements on similar data. The dataset provided to the competitors for Track 4 [21] (raw signals and reference points coordinates) can be downloaded for further bench-marking.
This section describes all the steps carried out to accurately map all the tracks, in the form of a sequence of ground-truth points whose coordinates were determined with 10 cm accuracy to enable the competitors’ IPS performance assessment.

A. DEFINITION OF THE EVALUATION TRACKS
The first task consisted in defining the evaluation tracks in the shopping mall for the four challenges proposed in the IPIN 2018 Competition. To avoid that competitors in one Track could get information from other tracks, different paths were used for every single challenge. On the other hand, it is important to note that it was the first time that, to make it more realistic, the competition took place in a very large, real-life public environment, which complicated the challenge. The shopping center Atlantis has 151 stores and 31 restaurants on a 14 000 m² area spread over 3 levels.

The four paths were sketched on the floor maps. We considered the positioning technologies involved in the challenge when designing the evaluation track and included some challenging parts such as stair climbing, passages by elevator or on a treadmill, breaks on benches, and other real-life activities in the shopping mall to resemble realistic walking trips. Table 1 shows the description of the four paths.

Path Name	Length	Floors	Breaks	Challenges
Track 1: Camera based	870 m	3	3	Use of travellator Parking area
Track 2: Non-Camera based	840 m	3	2	Use of travellator Use of stairs Outdoor area Parking area

III. ACCURATE MAPPING OF THE TRACKS

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

A total of 180 waypoints were identified on the map. All the waypoints were later surveyed and mapped into WGS84, serving as ground truth. Although some waypoints are shared among the four tracks, their sequencing and the actual pedestrian route needed to reach them is different. Evaluation tracks with a large number of evaluation waypoints are necessary to conduct relevant statistical analysis of the positioning errors.

B. MATERIALIZATION OF THE TRACKS
The different paths were mapped in Autocad using the building’s floorplan, after a stage of clean-up and adaptation to our purposes. The organizers used small and discreet self-adhesive pads (Fig. 3) to mark the waypoints located on the ground surface. The solution had to be easily and quickly positioned on-site (due to their large number), not very visible (so as not to disturb the shopping mall staff and attract the attention of customers) and should be able to last for the surveying over several days. We placed the 180 stickers throughout the gallery, using the Autocad plans previously made. For each sticker, we had prepared an identification card with the serial number, sketches, photos and explanatory notes. These cards were used on the competition day to reposition all the waypoints.

FIGURE 3. Marking the ground points to map the 180 waypoints constituting the pedestrian tracks during the shopping mall survey (left part) and during the on-site competition day (right part).

C. SETTING UP A NETWORK OF REFERENCE SURVEY POINTS

Given the international nature of the competition, the geographical coordinates used in the competition were expressed in the standard system WGS84 instead of using a local or regional projection system. The coordinates of the waypoints were therefore provided in WGS84. Other geographical systems were used to post-process the measurements recorded by two dynamic scanners. The French RGF93 CC-47 projection system was adopted and the deformations due to linear distortion were compensated in the estimation of the coordinates.

As no reference points were marked in the various plans provided by the building’s architect, RGF93 reference points were surveyed. Two GNSS receivers Leica System 500 were used using the free pivot method. Five reference points were materialized and accurately surveyed outdoors. Several GNSS points, previously surveyed on the roof (Fig. 4), were used to ensure a good distribution throughout the shopping mall. The network of reference points is shown in Fig. 5.

Thanks to these reference points, it was possible to compute the coordinates of two stations located in front of the shopping mall entrances. Indoor stations were determined by theodolite measurements and served as reference points for the 3D scanner indoor mobile mapping. All indoor surveyed coordinates were transformed from RGF93 into WGS84 using the EUREF Permanent Network website considering that RGF93 corresponds to ETRF2000 and that ITRF2014 version 2017.91 is homogeneous with WGS84 within 10 cen-
V. Renaudin et al.: Evaluating Indoor Positioning Systems in a Shopping Mall: The Lessons Learned from the IPIN 2018 Competition

D. MOBILE MAPPING OF THE SHOPPING MALL

A total area of 9000 m² was dedicated to the competition and surveyed by two mobile scanners deployed by the Viametris company [22]. The bMS3D is carried in a backpack whereas the iMS3D is a mobile robot scanner. Both systems are shown in Fig. 6.

The iMS3D was used in the galleries on the ground floor and the bMS3D was used for the paths on different floors, stairs and pedestrian parts in the car park area. The survey lasted two hours and did not include GNSS data. The bMS3D scanner surveys points up to a maximum distance of 30 meters with minimized noise but can theoretically aim for further distances. The iMS3D scanner surveys points up to 30 meters, but it is programmed to 10 m to 15 m for the same reasons. The iMS3D includes three profiling lasers and a panoramic camera to colorize the point cloud. Unlike the fixed laser scanner, which measures all around it thanks to a rotation of its laser, the profiling laser propagates only in lateral and horizontal planes. It is the movement of the operator that allows the acquisition of a complete point cloud. Its characteristics are a precision of 2 cm to 3 cm for a resolution of 80,000 points/s. It has a 10 cm per 100 m deviation in the horizontal plane. Coordinates were estimated by Simultaneous Localization And Mapping (SLAM) processing. [23], [24] give tutorials on SLAM. The bBMS3D comprises four cameras and two scanners. The cameras take pictures every second to colorize the cloud. An inertial unit estimates roll and pitch angles and provides the horizontal plane reference. Its characteristics are 50 cm per 100 m 3D deviation and 1 per 1000 deviation for the X and Y components. 50 cm up to 1 m deviations were observed in the dataset.

Known coordinates on the corners of walls at the ends of the gallery were needed for the global point clouds adjustment in a post-processing mode with PIMMS software [25]. They were surveyed with a theodolite and used to georeference the SLAM acquisition. The backpack survey started on a known reference point allowing connecting with iMS3D point cloud. A 5 per 1000 deviation was observed on the global adjustment due to dynamic obstacles (movements of persons) and due to the reflections on the mirrors and the windows of shops through the gallery. The start and end positions of the acquisition were identical to close the loop and bond the drifting errors. Finally, the point clouds were colorized using the photos to produce more realistic restitution of the scenes. Fig. 7 shows mobile mapping outputs and [26] is a video of the results. It was found that even the tile joints and the writings on the ground stickers could be seen in the final point clouds. The targets' coordinates were then extracted by hand from the georeferenced points clouds by analyzing the images. A 2 cm to 10 cm standard deviation on the 3D positioning error was obtained for all 180 reference points used to define the competition tracks and assess the performances of the competitors’ systems. Maps were provided to the competitors –except to the teams participating in Track 4– as supplementary materials.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.
IV. INDOOR POSITIONING SOLUTIONS PROVIDED BY COMPETITORS

This section gives a short description of every technique deployed by the competitors in every track. The presentation of solutions is done according to the team name alphabetical order.

A. TRACK 1: CAMERA BASED POSITIONING CHALLENGE

1) ARIEL1 Team

a: Visual Indoor Positioning

Team Ariel 1 considers a navigation system that includes a visual sensor (camera) and an orientation sensor. The process of extracting visual landmarks consists of the following two steps: Image processing and Extraction:

Image Processing: the ceiling lights are considered as landmarks, and a simple threshold filter can be used for their extraction as depicted in Fig. 8. That results in a binary image \(I_b \) from which the center mass, \(\mathbf{c} \), is extracted of each visual landmark. The process is performed in two main steps: first extracting the contour \(\gamma \) of each landmark that appears in \(I_b \); and second, average through all points \(g \in \gamma \). Fig. 9 shows the general concept of using lights for indoor navigation. Few additional geometric properties of each light-source are analyzed, including center, radius and a compact representation of its perimeter (contour).

Extraction: For each spotted visual landmark center \(c \), represented as a two-dimensional vector \(\mathbf{c} = (c_x, c_y) \), the relative world vector connecting the visual sensor and the landmark (in world coordinates) is pursued. The first step is to calculate the Intrinsic matrix \(K_{3 \times 3} \) of the visual sensor which is known as "Camera Calibration". The relative vector is then:

\[
\vec{v} = \mathbf{w} \cdot \mathbf{(c, 1)^T} \cdot K^{-1}
\]

where \(\mathbf{w} \) is a scale factor of mapping \(\mathbb{R}^2 \) to \(\mathbb{R}^3 \) which is unknown. Hence, \(\vec{v} \in \mathbb{R}^3 \) can be calculated up to a scale. Finally, the acquired vector \(\vec{v} \) is rotated by the device self-orientation to align it with the world coordinate system.

b: Put It All Together

The system used implements pedometry (i.e step-counter, optical flow), that is used as a rough position estimation to define a region-of-interest. The fusion problem is addressed with a modified particle filter. Commonly a particle filter is used with the initial area of the filter covering all the evaluation map (and converging to the most likely Probability Density Function). Instead, in the proposed system the search is confined to the Region Of Interest (ROI). Once the ROI is reported the relevant particle’s weight is increased. This way, the true position is likely to be inside the predefined area. To fuse detected visual landmarks, each particle’s weight should be modified. Weights are modified according to some weight function that compares the particle state with the true state. Some particles are periodically spread outside the ROI to overcome the ‘kidnap robot’ situation. The generic particle filter algorithm is presented below:

\begin{algorithm}
\caption{The generic particle filter algorithm.}
\begin{algorithmic}
\State Data: ROI-point, ROI-radius, Particles, Landmarks
\State Result: Location.
\For{\text{\textbf{p :\vphantom{p} Particles} and\text{ vs :\vphantom{vs} Landmarks}}}
\State state(p) ← action(pedometry,p);
\State increase p weight if \(p \in \text{area(ROI,ROI-radius)} \);
\State \(w \leftarrow \text{weight-function}(p,vs) \);
\State weight(p) ← weight(p) \cdot w;
\EndFor
\State Location ← weighted-sum(Particles);
\end{algorithmic}
\end{algorithm}
A real-world localization scenario often includes complex sensory data: outliers, inaccurate and partial sensory information. Moreover, human factors can influence the sensor measurements and therefore contradict the pure Bayesian inference filter, see [27] for details regarding the ways to overcome those challenges.

c: Visual Landmarks Mapping

The process of visual landmark mapping follows the following steps: 1) preprocess the visual measured data and extract the visual landmark vectors v_i^n that correspond to each landmark (Section IV-A1a); 2) the visual landmarks are then registered (mapped) in real-world coordinates relative to the environmental map (note that the task of mapping a complex building such as a shopping mall that may have hundreds of light sources might be challenging and time-consuming); and 3), a light source is spotted and tracked along a path, the position of the light source is then estimated as the weighted average of all the intersections of the 3D vectors to that source.

d: Field Experiment and Result in a shopping mall

Few large scale experiments were performed in crowded shopping malls. Each experiment was divided into two steps: 1) Mapping; and 2) Localization and accuracy evaluation. Mapping an average size shopping mall can be done within a few hours including testing the map and validating it. The level of accuracy varied between high accuracy (0.5-2 meters) and low accuracy (5-20 meters) when the visual sensor was blocked.

2) ARIEL2 Team

Team ARIEL 2 presents a smartphone indoor positioning system (IPS) based on recent Augmented and Mix Reality (AR and MR) tools such as Google’s ARCore or Apple’s ARKit. The AR tools are used as visual pedometry (scaled optical flow) sensor, which is then fused with an advanced version of a localization particle filter to produce both accurate and robust solutions for various indoor positioning applications. The presented method allows a simple and efficient mapping solution that, combined with the localization particle filter, allows 1-2 meter positioning accuracy in most standard indoor scenarios.

a: The basis of Indoor Position

The user global position can be retrieved from existing geolocation services (e.g., Google Maps Geolocation API). Such user location is commonly approximated using radiofrequency (RF) signals (4G-3G, WLAN, BLE) and even weak global navigation satellite system (GNSS). The accuracy of such methods is considered to be “building level” (10 m to 50 m) or “room level” (5 m to 10 m). The user’s relative position is often computed using a pedometer. The smartphone-based pedometer is composed of two major virtual-sensors: 1) “Step-counter”: which detects discrete step-events; and 2), Orientation sensor, which approximates the user’s global/relative direction. Combining the two parts allows a step-based relative path computation. Naturally, such a method tends to drift in time (and steps). Many modern IPSs combine the above two positioning methods to achieve an accurate and global localization (with no drift).

b: Particle Filter for Localization

A particle filter method represents the posterior distribution of a set of particles P $\{P_i\} = n$ on a given map, the result of such algorithm is a new set of particles $P’$ with a (slightly) different distribution (see Algorithm 2).

```
Input: Black and white 2D map of each floor in the navigation region.
Init: generate a set $P$ of $n$ particles. For every $x \in P$ a random location $< x, y, z >$ in uniform distribution over the map.
Result: Estimated 3D-Position: $l = < x, y, z, >$
while True do
  1) Estimated the current movement $\Delta x, \Delta y, \Delta z >$.
  2) Apply an action-function on all particles in $P$.
  3) Evaluate the weight of each particle according to its new position on the map.
  4) Re-sample the particles $\rightarrow P’$
  5) Report the current best-position.
end
```

Algorithm 2: Generic particle filter localization algorithm

In order to implement the above generic algorithm the following functions should be well-defined.

- **Movement estimation**: computes the 3D movement vector according to the scaled optical-flow algorithm.
- **Action function**: Translate each particle according to the movement vector (in 3D). To prevent the convergence of the particles from happening too fast (and by that risk missing the true location), a small random noise is added to each particle.
- **Evaluate**: compute the updated weight of each particle according to the map constraints.
- **Re-sampling**: The process of choosing a new set of particles $P’$ from P according to the particles’ weights.

c: Advanced Algorithm: Augmented Reality

The advanced algorithm improves the location accuracy thanks to improved mapping and sense functionality, both applicable using the new AR smartphones’ technology. The field of AR has evolved dramatically in recent years. Major companies released powerful SDKs (e.g., Google’s ARCore and Apple’s ARKit), allowing developers to harness AR abilities for geolocation applications. AR platforms have the following features: 1. Feature points detection and tracking, 2. Visual-based optical-flow, 3. Plane recognition and tracking. The first two allow estimating the user 3D-movement and orientation in real-time. This information can be used as an improved alternative for a IMU-based pedometer. The third feature is exploited to improve the mapping and
the particle filter sense function. It is detailed in the two following subsections.

d: Advanced Algorithm: Mapping
The advanced particle filter relies on the existence of a pre-made map (of the region of interest) divided into the following “colors”, shown in Fig. 10. A: Accessible area (white), B: Unaccessible area, such as walls and fixed barriers (black or brown), C: Accessible area, in fixed width, tied to the B regions (pink), D: Area near floor-changing, such as stairs and elevators (yellow). The generated map is the foundation of the particle filter algorithm and further used to determine the particles’ weights.

![Figure 10. Evolution of the particles in the localization Filter. In white: accessible zones (A) and in black and brown: inaccessible ones (B). At the init. state, the particles are uniformly distributed (left map). Using the short motion vector, the particles get organized in few clusters (middle map). Then the particles converged to a single position cluster (right map).](image)

3) ETRI/HANA MICRON Team
ETRI/HANA MICRON team (ETRI team), as a part of an Indoor Navigation project, investigate vision-based localization approaches. They are interested in monocular visual SLAM applications in public buildings like airports, train and subway stations, shopping malls, etc. A common problem in such dynamic environments is the presence of moving people and objects in the input images which degrade the accuracy of the localization results.

To deal with this, ETRI Team focused on the use of semantic information to process detected sparse features according to their reliability for localization purposes. A monocular SLAM is developed, following a common approach [28] using sparse feature-based visual odometry in combination with semantic segmentation filters on the input images.

In parallel to this approach, which requires continuous streaming of images from the phone camera to the PC based implementation, single image-based localization approaches with much lighter communication load were also investigated. More specifically, PoseNet [29] (based on the PyTorch implementation [30]) for relocalization was experimented, planning to replace it later with the map-based relocalization provided by visual SLAM.

The main implementation was not completed in time for the IPIN2018 competition and was ended up using the PoseNet based relocalization with a filter over the estimated positions. The implementation ran on a notebook computer receiving images from a smartphone at about 5 frames per second. On the day before the competition, images were collected from reference points (spaced about three meters apart) along a set of likely trajectories in the mall. The dataset preparation and model training were performed using cloud servers.

Looking back at the results, the relocalization approach performance was affected by the sparseness of the collected dataset and the limited time for model training/tuning. For example, several sections of the testing trajectory were outside of the areas covered by the dataset. Collecting only once along a trajectory resulted in the inclusion of a bright red service vehicle (used in light fixtures repair) that was gone by the time of the test run. In cases like this, when sufficient variance in the scene could not be captured, the ability to use additional semantic information would have been helpful.

4) GOOGLE Team
a: AR Motion Tracking
Recent developments on ARCore [31] for Android devices (based on the previous Project Tango) and ARKit [32] for iOS made it possible to accurately track motion using visual-inertial odometry (VIO) [33] in smartphones. The types of phones with ARCore enabled include Google Pixel, as well as various Samsung, LG, and Asus phones. However, the tracking is estimated with respect to the initial camera pose, not in a global coordinate frame. The Google Team proposed a method to automatically align a local trajectory with global coordinates, using either a few accurate landmarks or reference positions, such as visual markers on the map, and/or many noisy landmarks, such as the ones from the Android Fused Location Provider (FLP) [34].

b: Rigid Trajectory Alignment
The solution proposed is a least-square minimization between global locations (λ, φ) where λ and φ stand for longitude and latitude in radians, and (x, y) are the local coordinates with respect to the initial pose of the camera, subject to the rigid 2D transformation: (x_0, y_0, α). Timestamped local trajectories are recorded with corresponding global anchor locations, then perform point-wise least-square error minimization is performed:

\[
\min_{x_0, y_0, \alpha} \sum w[(x_b - x_i)^2 + (y_b - y_i)^2]
\]

with \(w\) a weight for the position. Anchor \((x_b, y_b)\) corresponds to the locations from global latitude / longitude:

\[
x_b = (\lambda - \lambda_0) \cdot \cos(\phi_0) \cdot R
\]

\[
y_b = (\phi - \phi_0) \cdot R
\]

VOLUME 4, 2016
where \(R \) is the radius of the Earth (6 378 137 m) and \((\lambda_0, \phi_0)\) indicates the start location of the camera, \((x_t, y_t)\) are the local trajectory coordinates obtained by motion tracking:

\[
\begin{align*}
 x_t &= x_0 + \cos(\alpha) \cdot x + \sin(\alpha) \cdot y \\
 y_t &= y_0 - \sin(\alpha) \cdot x + \cos(\alpha) \cdot y
\end{align*}
\]

(4)

For FLP locations, \(u \) was set to \(1/d^2 \) where \(d \) is the reported accuracy in meters. For user-provided accurate landmarks, \(d \) was small, e.g. 0.1 m, which results in large \(u \). Given the 2D transformation \((x_0, y_0, \alpha)\) computed from Eq. (2), and any coordinates from the location trajectory \((x_t, y_t)\), the locations in the global coordinate system are obtained:

\[
\begin{align*}
 \hat{\lambda} &= \lambda_0 + (x_t/(R \cdot \cos(\phi_0))) \\
 \hat{\phi} &= \phi_0 + (y_t/R)
\end{align*}
\]

(5)

The optimization is performed at a 0.1 Hz fixed sampling rate in real-time.

c: Landmarks from Initial Location and Direction

For the 2018 IPIN competition, the initial location \((\lambda_0, \phi_0)\) and direction \((\theta_0)\) were given and used as accurate global markers. The initial location \((\lambda_0, \phi_0)\) is a landmark by definition. The initial direction was used to compute the second landmark, by \(\lambda_1 = \lambda_0 + L \cos(\theta_0) \), \(\phi_1 = \phi_0 + L \sin(\theta_0) \), where \(L \) is the length along the initial direction.

d: Floor Detection

The accuracy of ARCore is around 2 cm in the horizontal plane, but it is noisy vertically. Vertical changes obtained from ARCore for indicating the vertical movement only, and the barometer sensor was used to obtain the actual height changes. It was assumed that all floors were the same height. The system worked well in most buildings, but failed in Atlantis Mall in testing, as the height of the second floor was significantly lower than the first.

e: Multi-segment Alignment

Although ARCore is accurate locally, it may jump in distance or direction from time to time. It is mandatory to detect those jumps and perform global alignment to each segment. All segments except the first are used as FLP global anchors, as no interaction with the map can be performed during the test.

B. TRACK 2: NON-CAMERA BASED POSITIONING CHALLENGE

1) ETRI/SNU/HANA MICRON Team

This technical description presents the indoor positioning technology that was implemented on a smartphone for the Track 2 of IPIN 2018 competition by ETRI team.

Most smartphone-based indoor positioning applications implement a hybrid approach based on multiple resources such as Wi-Fi, BLE signals and inertial sensors. Since the proposed ongoing project targets commercially available product, ETRI Team focused on pure smartphone-based PDR and image-based localization, from the perspective of maintainability and sustainability. For Track 2 competition, PDR was applied as one single source of positioning. Since the competition venue of IPIN2018 was a large commercial mall, it was quite challenging for smartphone PDR to maintain the required level of accuracy during the course of the competition. To deal with this situation, an intrinsic PDR algorithm was tried to be enhanced.

PDR system consists of three basic steps: step detection, step length and heading estimation. To detect a step, peak detection using accelerometer magnitude is widely used in PDR. However, simple peak detection method only compares current and previous accelerometer values, which degrades detection accuracy. In order to eliminate unwanted steps, the detected timestamps between steps and threshold value are considered. Once a step is detected, then the relative distance between current and previous steps is estimated. One of the powerful factors to estimate step length is to use linear relationship between step frequency and step length; the faster a user walks, the longer the step length is [35]. Another feature that is correlated with step length is the vertical acceleration. These two features are linearly combined for the stable step length estimation. Besides that, step length values are adjusted for certain walk patterns, such as corner walk, staircase walk, etc. Heading accuracy is closely related to the overall performance of PDR. Even though step detection and step length estimation are accurately done, the position accuracy is severely and gradually degraded when the device is not pointing along the walking direction. The direction of the device was then estimated using built-in gyroscope and accelerometer filtered in an attitude reference system (ARS). ARS exploits attitude calculated by gyroscope and accelerometer. Accelerometer output gives the roll and pitch angles under stationary condition. In order to combine the attitudes from gyroscope and accelerometer, Extended Kalman Filter (EKF) is applied to estimate the error states: attitude errors and gyro bias. Gyroscope bias is continuously updated and the acceleration vector is used as a measurement when stationary condition is detected.

In parallel, the use of semantic information was devised to assist heading drift, which causes a critical error in localization. Here, semantic information includes map information such as nearby angle values, floor change zone, etc. Dynamic heading adjustment was applied using the semantic information, and it was proven reasonable performance in the ETRI team site.

Looking back at the result, the performance of the approach was affected by the limited time for exploring the competition site and data verification. We found to main reasons of unsatisfactory performance at the time of competition. One is misaligned map information, and the other is delayed logging of estimates for waypoints. Although the error compensation using external information worked well, it was challenging to endure such a long path without any other positioning aid.
2) KYUSHU Team

This technical description presents the indoor positioning technology that was implemented based on PDR and Map Matching for the Track 2 of IPIN 2018 competition by Kyushu team.

Since the chest has fewest unexpected movements in the upper body while walking compared with a hand or a head, it was selected as a novel IMU installation position. As well as other PDR frameworks, a step is first detected, and then a step length and direction are computed from the temporal sequence of accelerations and angular velocities. To adapt the PDR system to the chest-mounted IMU, novel regression model is proposed based on step length and direction estimation. In addition, an efficient map matching algorithm based on particle filter with barometric pressure was integrated. This largely suppresses the error accumulation on the position and heading of the pedestrian in the building when the step estimation causes some error. For the development, NGIMU\(^1\) was used. It can be wirelessly connected to a laptop so that the computation was performed on the laptop. The detailed description has already been published [36], and the source code is available online\(^2\).

a: Step estimation

To separate the sequential data into the steps, an approach based on filtering and thresholding for the norm of the acceleration was used. This process is the same as that in other PDR systems. The norm of the 3D acceleration in the sequence is first computed, and a low pass filter is applied to it. Finally, the peeks are extracted because they correspond to the moments when the foot hits the ground. In other words, one step is defined as the interval from a peek to the next one.

The next process is to compute the step length and direction. Fig. 11 illustrates the conceptual figure on the velocity changes at foot and chest.

The conceptual figure on velocity changes at foot and chest.

\[
D = K \cdot \int \int a(t) \, dt \, dt
\]

where \(a(t)\) is the 3D acceleration at time \(t\), the range of the integral is the duration of one step, and \(K\) is a scalar parameter that needs to be calibrated for each user. In particular, \(K\) is always negative because the chest is first decelerated, and then accelerated in one step. Since the orientation of the IMU is updated by using the Madgwick method [37] all the time, the acceleration here is described in the world frame where \(z\) axis is parallel to the gravity direction. This means that the integral of the accelerations with \(K\) in \(x\) axis and \(y\)

\(1\) http://x-io.co.uk/ngimu/

\(2\) https://github.com/rairyuu/PDR-with-Map-Matching

b: Map matching

A particle filtering based map matching algorithm was used with a back tracking test [38]. The following components for multi-floor PDR were selected to constraint the movement on the map:

- \(\text{line}\) is used for the wall that can not be crossed.
- \(\text{zone_no_particle}\) represents the region where pedestrians cannot come into, and therefore the existing particles will be deleted, and new particles can not be generated.
- \(\text{zone_update_altitude}\) represents the region where the altitude can be changed such as stairs, escalators, and elevators so that the altitude will be updated according to the movement.
- \(\text{arrow}\) is used for explicitly describing the direction of the possible movement at \(\text{zone_update_altitude}\) such that \(\text{arrow_up}\) connects to the upper floor, \(\text{arrow_down}\) connects to the lower floor, and \(\text{arrow_both}\) connects to both floors.

A map editor was also implemented, whose input was the map images, and output was a set of files which contains the multi-floor building information. The users simply input points and connect them to create the map.

3) TUM Team

The high level architecture of TUM team system consists of seven components: 1) User’s Context Extraction; 2) Map, which is responsible for mining the corresponding Open
Street Maps Model: 3) Pedometer, that is responsible for detecting steps; 4) Initial Direction; 5) the Direction estimation; 6) Particle Filter, responsible for the fusion of the aforementioned components; and 7), the Visualize Location, that is responsible to visualize the estimated location (see Fig. 12).

Map is responsible for parsing the map and for identifying elements that belong to walkable areas, such as stairs, corridors or pathways. Grammars enhance map elements using established standards, like based on standards regarding the minimum width of corridors. Particle Generation generates a set of randomly positioned particles \(S_k^i = (x_k^i, w_j^k) \), where \(x_k^i \) is the \(i \)th particle at time \(k \) and \(w_j^k \) is the normalized weight of the particle, with uniform prior distribution, as described by the Monte Carlo simulation.

Particle Filter. The proposed filter is used to model the probability density of the state vector \(X_k = [x_k, y_k, \theta_k]^T \) at step \(k \) by \(N_p \) particles. According to [39]–[41] and assuming a first-order hidden Markov model, the posterior filtered density \(p(x_{k|0:k}) \) is approximated by:

\[
p(x_{k|0:k}) \approx \sum_{i=1}^{N_p} w_{i}^{k} \delta(x_k - x_{k|0:k}^{(i)})
\]

where \(z_{0:k} \) defines the measurement vector for the time steps 0, \ldots, \(k \), \(\delta(\cdot) \) stands for the Dirac distribution, \(x_{k|0:k}^{(i)} \) denotes particle state and \(w_{i}^{k} \) denotes the normalized weight. The conditional probability is \(P(S_k|z_t, S_{k-1}) = P(z_t|S_k, S_{k-1}) \) where \(S_k \) and \(S_{k-1} \) are the current and previous state vectors respectively. \(z_t \) is the observation, which in the proposed case is \(z_t = min(S_{map} - S_t) \), where \(S_{map} \) is a vector of all points in the map.

Motion Prediction is an implementation of the dead reckoning process where the motions are modeled by:

\[
\begin{align*}
x_{k+1} & = x_k + \rho \cdot \cos(\theta_k) \\
y_{k+1} & = y_k + \rho \cdot \sin(\theta_k) \\
\theta_{k+1} & = \theta_k + \phi
\end{align*}
\]

where \(x_k, y_k \) and \(\theta_k \) are the coordinates and direction at time \(k \). \(x_{k-1} \) and \(y_{k-1} \) are the previous coordinates. \(\rho \) is the traveled distance and \(\theta_k \) is the followed direction.

In the Update phase, each particle’s weight is computed based on the assigned probabilities, a model that describes a set of restrictions and a motion predicted mechanism. Hence the weight of the \(i^{th} \) particle at time \(k \), \(w_{k}^{i} \) is defined by:

\[
w_{k}^{i} = w_{k-1}^{i} p(X_{k}^{(i)}|\theta_{k}^{i}) p(X_{k}^{(i)}|\alpha_{k}^{i})
\]

where \(p(X_{k}^{(i)}|\theta_{k}^{i}) \) describes the conditional probability of the \(i^{th} \) particle being at location \(X \) at time \(k \) given the nearest \(\delta \) to the nearest corridor. \(p(X_{k}^{(i)}|\alpha_{k}^{i}) \) describes the conditional probability of the particle being at location \(X \), given its current heading direction \(\theta \). Finally, \(p(X_{k}^{(i)}|\alpha_{k}^{i}) \) is the conditional probability of the particle being at location \(X \) at time \(k \) given the current activity \(\alpha \).

Resample. For proper resample, two additive Gaussian noise models are used on top of the motion prediction mechanism, in order to compensate direction and step length uncertainty. Initial Direction. In order to extract an initial direction, the phone’s accelerometer and magnetometer are used to calculate the phone’s pose and later the rotation matrix (roll, pitch and yaw angles).

Direction Estimation For the direction estimation, a low pass filter is first applied to remove human motion noise and then the angular velocity is computed. Positive or negative sign to the values is assigned to indicate whether there is a right or left turn respectively.

Step Detection. In the step detection module a peak detection module is applied, which detects peaks caused by the action when the heel strikes the ground.

Visualize Location. After calculating the new positions of the particles using the dead reckoning algorithm, weighted through a fusion with the map and the user context, the weighted average of the particles position is displayed as the final position to the user.

Context Extraction. This module is responsible for collecting data, filtering noise, segmenting sensor values, extracting features and for the classification of these values in a series of activities.

4) UPJS Team

The UPJS team approach focuses on indoor positioning using low-cost smartphones with built-in sensors. Floor plans are assumed to be available and no additional building infrastructure is required. A relative position is determined using...
Pedestrian Dead Reckoning (PDR). Bayesian filtering is introduced to deal with the uncertainty from the noisy sensor measurements. A step is detected from acceleration data, which triggers a computation of a new position estimation. The step heading is obtained from filtered values of the device orientation information. The positioning is performed on a single floor. If a floor change is detected using barometer measurements, the system is reset. In this case, a new initial estimation is set to the predefined location from a set of all possible transition platforms (e.g., elevators, stairs) in the building and previous location estimates.

Our main research focus is on the Bayesian filtering especially on grid-based methods [42]. Prediction and update are two stages of the filtering, where the prediction spread the probability density function according to the transition model and update stage decreases the uncertainty using measurements and observations. The grid-based filter approximates a continuous state space by a grid of regularly distributed isolated points. Values of conditional probability density function are computed only at these grid points. The method has high computational demands making it suitable for real-time indoor positioning only by assuming a low-dimensional system state. In this approach, every state is defined by a position in 2D space. The state transition is performed using the PDR with a fixed step length and the obtained step heading in addition with the noise model. The transition between two states represented by grid points is accomplished using a convolution with pre-computed convolution masks for various possible step lengths and directions. The update stage resets the belief value to zero for all grid points denoting inaccessible positions and movements, e.g., locations at obstacles, outside the map, motions through walls.

Walls and convex polygons composing accessible positions in the building are manually labeled in the floor plans. The map model is automatically generated and the floor plan is tessellated into a regular grid, where a point represents an area of 33 × 33 cm² denoting a single grid cell with the belief value. The grid-based filtering approach is elaborated and the positioning error introduced by discretization of the map is reduced using a centroidal grid approach. The same formulation of this idea is the use of a random walk on a graph of the venue, in which transition probabilities at a given epoch depend on the measurements at the same neighboring nodes. This effectively turns the positioning problem into a classification one, in which the prediction is a functional one-to-one relation between the distance and the signal’s intensity.

The system also relies on the discretization of the indoor space. In practice, this means that a graph is built from the map of a venue, in which nodes are possible locations where the tracked device can be found and edges connect accessible positions. This effectively turns the positioning problem into a classification one, in which the prediction is one of the finitely many possible locations. It has the further advantage of ruling out inaccessible locations (e.g., walls) and thus avoiding complicating the prediction task.

The final part of our system enriches the information available in the prediction module by including the measurements’ history, exploiting the fact that measurements closely related in time will be strongly correlated. Thus, it is expected the prediction to narrow in on the true position with a greater confidence as time goes by. The mathematical formulation of this idea is the use of a random walk on the graph of the venue, in which transition probabilities at a given epoch depend on the measurements at the same epoch. This dependence is made precise by the underlying measurement and node transition probabilistic models, which in the proposed system authors choose not to disclose.

1) ARARADS Team
AraraIPS is Arara’s proprietary indoor positioning technology. Arara is engaged in developing advanced knowledge solutions and producing high-quality technology to address modern business and industry challenges. AraraIPS has been one of the central issues in Arara agenda for the last two years. It is a functional indoor positioning system on its way to become a commercial solution in the next months.

AraraDS team approach to indoor positioning has four distinctive characteristics: 1) it is based on a cartographic paradigm (fingerprinting); 2) it uses a discretization of the predicted floor/building, 3) it is measurement-agnostic (i.e. its abstract formulation is not specific to any kind of signal or measurement such as WiFi, magnetic field, BLE, etc.); and 4) it exploits measurement history. In the following paragraph it will be shown how AraraIPS works.

Fingerprinting has become a popular technique for indoor positioning. Traditional positioning methods are generally based on principles such as trilateration or triangulation, in which sufficient geometric information (with respect to reference landmarks) is used to compute the position of the object to be located. These methods are based on strong hypotheses that usually do not hold in the dynamic, cluttered context of indoor spaces, like the need of a clear line of sight between the object and the reference landmark to establish a functional one-to-one relation between the distance and the signal’s intensity.

The system also relies on the discretization of the indoor space. In practice, this means that a graph is built from the map of a venue, in which nodes are possible locations where the tracked device can be found and edges connect neighboring nodes. This effectively turns the positioning problem into a classification one, in which the prediction is one of the finitely many possible locations. It has the further advantage of ruling out inaccessible locations (e.g., walls) and thus avoiding complicating the prediction task.

The final part of our system enriches the information available in the prediction module by including the measurements’ history, exploiting the fact that measurements closely related in time will be strongly correlated. Thus, it is expected the prediction to narrow in on the true position with a greater confidence as time goes by. The mathematical formulation of this idea is the use of a random walk on the graph of the venue, in which transition probabilities at a given epoch depend on the measurements at the same epoch. This dependence is made precise by the underlying measurement and node transition probabilistic models, which in the proposed system authors choose not to disclose.

2) mCLIPS Team
Team ‘mCLIPS’ adopted an empirical approach, only based on WiFi, for indoor positioning. In this approach, some important features of the received signal strength indicator (RSSI) vector are selected to exploit the similarity measure and index order of the access points (APs) in the RSSI list of a WiFi device [43]. The basic principle of the proposed

C. TRACK 3: SMARTPHONE BASED POSITIONING CHALLENGE

VOLUME 4, 2016

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.
approach is the following: instead of relying only on the RSS similarity measure, the system takes into account other features available in the RSSI list and their efficiency weight to identify candidate positions with high precision and robustness. The selected features have several dimensions. The K value and the kRMSE parameter calculation are selected to control the diversity effects of WiFi environments [44]. To exploit the spatial distribution of candidate reference points around the ground truth, another parameter called centroid distance is used [45]. To control the effect of the diversity of different mobile devices, the entropy parameter is adopted from ranked based approach [46]. In addition, these features are combined to compensate complementary weaknesses. As a result, the algorithm of the proposed fingerprint matching approach is more efficient and robust than algorithms already available in the literature for fingerprinting purposes. To find the best match among multiple candidate fingerprint locations with a minimum error distance, the proposed algorithm along with conventional RSSI similarity calculation in fingerprint matching process also calculates the order difference of the APs in RSSI list with respect to the signal strength at a particular reference point (RP). The following sections describe the steps of the proposed technique.

- The first step is the selection of K. K selection applies to the WiFi infrastructure present in the environment and is directly proportional to the good APs in the environment. According to the Good AP definition in [47], APs with consistency in presence at particular reference points are of great importance compared to others that disappear in consecutive scans. Eq. 10 and Eq. 11 describe the selection of K.

$$K_{RP_i} = \frac{G_{RP_i}}{T_{RP_i}}$$ \hspace{1cm} (10)

$$K = K_{RSSI_{List}} \cdot (\text{Mean}(K_{RP_1}, K_{RP_2}, ..., K_{RP_N}) + C)$$ \hspace{1cm} (11)

G_{RP_i} and T_{RP_i} are Good AP count and Total AP count to each cell of the fingerprinting DB, respectively. $K_{RSSI_{List}}$ is the total AP count in a particular RSSV. The variable C is the standard deviation.

- From an empirical point of view, it has been observed that the existence of RP corresponding to the ground truth is high among the RP candidates having a high number of AP matches. Therefore, the maximum match count (MMC) of APs relative to the number of neighbors is an important measure used to avoid outliers that have a high correlation but a lower value for the number of neighbors.

- The root means square error (RMSE) is one of the important parameters that plays a key role in the similarity calculation of fingerprints. Experimentation shows that in indoor radio environments, some areas lead to the selection of outliers with low RMSE values due to a strong correlation between some access points with low RSSI values. Therefore, to prioritize the candidate locations having a higher number of AP mappings, a kRMSE of candidate location is calculated that includes an additional division with the number of APs compared (i.e. MMC) to RMSE calculation.

- Another important parameter for filtering the estimated positions is the distance from the center of gravity [48]. After computing kRMSE of each candidate, the average location of the top ordered N RPs relative to the minimum kRMSE value is selected as centroid point. In the proposed algorithm, the position of the centroid is calculated by taking an average of the coordinate values (X, Y) of each selected candidate position. The Euclidean distance of a candidate RP from the calculated centroid is called the centroid distance. This distance from the centroid is used to define the RP priorities that are closer to the centroid point.

- Next, the entropy error is another important measure after kRMSE to estimate the similarities of each candidate location RSSI list in the database against the RSSI list received online. The proposed algorithm calculates $\Delta_{V_{ji}}$ for each corresponding AP in both RSSI lists, first by sorting the two RSSI lists relative to the RSSI level, then measuring the difference of AP index in both lists (Eq. 12). In addition, the order difference of an AP with a stronger RSSI is minimized by multiplying it by the RSSI level ($RSSI_{V_{ji}}$) divided by -100. Empirical results show that the position accuracy performance of the proposed entropy parameter outperforms the ranked based approach [46]. Therefore, entropy helps in lim-

![Sample graph on the competition scenario, each blue dot represents a graph node](image-url)
iting the strong candidates around the ground truth by calculating the order difference of each AP with respect to its signal strength.

\[
\Delta_{Vji} = \left(I_{Vji} - I_{Cji} \right) \cdot \frac{RSSI_{Vji}}{-100}
\]

(12)

\[
\text{Entropy} = \frac{\sum_{k} \Delta_{Vji}}{k^2} \quad \text{where} \quad k \leq K
\]

(13)

where \(I_{Vji} \) and \(I_{Cji} \) are indices of matched APs in online and candidate RSSI list from DB, respectively.

- Finally, the FACT calculation is performed to select the final candidate location. FACT calculation begins with the normalization of the parameter values of each selected candidate. Then the FACT is calculated as a product of \(kRMSE \) with the sum of \(Entropy \) and \(D_{cntr} \), as detailed in Eq. 14. The candidate RP with the least value of FACT is selected as the final position estimated by the proposed algorithm.

\[
\text{FACT} = kRMSE \cdot (Entropy + D_{cntr})
\]

(14)

3) EGEC Team

The algorithm used by EGEC Team is based on PDR and map matching. WiFi RSSI information and magnetic field strength information are also used to build the fingerprint databases, to provide the initial position and improve the algorithm’s precision and stability. The sensor information used in this algorithm includes the inertial measurements (accelerometer and gyroscope), WiFi RSSI, magnetic field strength and air pressure. In particular, the map information provided by the competition organizers is fully utilized in the map matching algorithm to correct the pedestrian’s position and direction. Figure 14 shows the technical route of the algorithm.

FIGURE 14. The technical route of the algorithm.

- a: Pedestrian Dead Reckoning (PDR)
 The PDR algorithm (Fig. 15) mainly uses mobile phone sensors like accelerometers, gyroscopes and magnetometers to estimate pedestrian’s step number, step length and direction, and then calculates the pedestrian walking trajectory and position. The initial position used in the PDR algorithm is given by WiFi RSSI fingerprint. The air pressure is also used for the floor switching.
 The PDR algorithm contains a step detection, a step length estimation and a direction estimation algorithms. Compared to traditional PDR algorithms, it uses an optimized physiological model of pedestrian gait, which is more adaptable and stable for pedestrian step detection and step length estimation.

- b: Map Matching
 PDR algorithm is affected by cumulative errors, which may result in locating the pedestrian outside of the indoor road network with large calculation errors. In that case, a map matching algorithm is used to match the current pedestrian location with the indoor GIS maps provided by the competition’s organizers.
 The map matching algorithm used in this manuscript is the optimized ST-matching algorithm, that fuses the indoor road network location, direction and pedestrian speed. It fully utilizes the map information and is more suitable for the indoor positioning and navigation.

- c: Fingerprint Matching Algorithm
 The algorithm uses also WiFi RSSI, magnetic field strength to build WiFi and magnetic fingerprints. They are used to provide the initial position and correct the pedestrian’s direction and position estimation errors. The WiFi fingerprint matching algorithm is the cosine similarity algorithm. The geomagnetic fingerprint matching algorithm is the contour matching algorithm. These matching algorithms can significantly improve the accuracy and reliability of the solution.

- d: The fusion filter
 A Kalman filter combines the different algorithms’ estimates and provides real-time, accurate and stable indoor positioning results, as shown in Fig. 16.

4) HFTS Team

The HFTS algorithm used in the 2018 competition is based on WiFi and pedestrian dead reckoning (PDR), and a particle filter (PF) (Fig. 17). It is an evolution of the algorithm deployed at the 2016 competition [49] and the 2017 Competition [50].

For the dead reckoning, heading estimation is performed using compass and gyroscope data. The gyroscope is able to
I. THE INDOOR LOCALIZATION ALGORITHM BASED ON PDR AND MAP MATCHING

This section describes the technical route of the algorithm.

1. Pedestrian Dead Reckoning (PDR)

The PDR algorithm contains step detection, step length estimation, and floor recognition. The initial position used in the PDR algorithm is the position of an existing particle, but with a randomized step length and heading offset value. The filter is updated each time a step is detected. All particles are moved according to the estimated heading, individually modified by the particle-specific offsets. Resampling is performed as follows: particles who collide with, for example, a wall, are replaced by new ones. For collision detection, the provided floor plans are used. New particles are seeded at the position of an existing particle, but with randomized step length and heading offset value. The global heading and step length are recalculated by averaging the heading values and step length of all particles. The reported PDR position is the averaged position of all particles. Depending on the building layout (e.g., open spaces, corridors, room sizes, etc.), the PF results alone may not be sufficient for absolute position determination. Therefore, the step length and heading are also adjusted by the obtained WiFi position from phase 1: After each step the longitudinal- and the lateral displacement between WiFi and PF position are evaluated and a configurable fraction of the displacement is added to the movement vector.

It is planned to further improve the algorithm by also considering magnetic fingerprinting.

2. Fingerprint Matching Algorithm

The fingerprint matching algorithm is used to match the current pedestrian location with the indoor GIS maps provided by the competition organizers. These data are enriched with true ground positions and RSS readings. Therefore, obtained RSS vectors can be related to a position. As the true ground readings occur only rarely, the actual reference position between two reference points is interpolated by PDR.

The actual positioning process comprises 2 phases. In the first phase RSS positioning is performed with the radio map. RSS readings are obtained at a rate of one reading every 4 seconds. For each reading a position is estimated. The floor is also estimated by RSS. If the actor is moving, the position will change considerably within the 4 seconds between two RSS readings. Therefore, the position between the two readings is interpolated using PDR. The heading offset and the actual step length are not known at this stage. However, since the RSS position estimates exist for the start- and the endpoint of the 4 second period, the step length and heading offset are adjusted such that the track connects the two points.

In the second phase, positioning is performed employing PDR and a particle filter. Step length estimation and heading error- and drift compensation are performed by the particle filter using the information of floor plans to detect the most likely path (see also [52], [53]). The particle filter contains a constant number of particles. Besides the position, a particle state also comprises individual step length and heading offset values. The filter is updated each time a step is detected. All particles are moved according to the estimated heading, individually modified by the particle-specific offsets. Resampling is performed as follows: particles who collide with, for example, a wall, are replaced by new ones. For collision detection, the provided floor plans are used. New particles are seeded at the position of an existing particle, but with randomized step length and heading offset value. The global heading and step length are recalculated by averaging the heading values and step length of all particles. The reported PDR position is the averaged position of all particles.

Depending on the building layout (e.g., open spaces, corridors, room sizes, etc.), the PF results alone may not be sufficient for absolute position determination. Therefore, the step length and heading are also adjusted by the obtained WiFi position from phase 1: After each step the longitudinal- and the lateral displacement between WiFi and PF position are evaluated and a configurable fraction of the displacement is added to the movement vector.

It is planned to further improve the algorithm by also considering magnetic fingerprinting.

5) TUM Team

The system proposed by TUM team, Ariadn, can be divided into two main modules. The first module is responsible for the localization and its functionality is embedded in a smartphone; and the second module is responsible for detecting and localizing landmarks and keeping up-to-date a classifier that enables “on the fly” localization.

a: The Localization Module

The localization module is responsible for localizing the user following a modified particle filter approach. The main components of this module, presented in Fig. 18, are now
described.

FIGURE 18. Localization Module Architecture.

OSM Model. Existing information from Open Street Maps is imported to enable the generation of particles.

Grammars. They are heuristics following standards that help to create a finer geometry. They are necessary due to the OSM limited information and they are inspired by [54].

Particle Generation. In this module, the newly constructed map is restructured as a set of randomly generated particles, with uniform prior distribution, which follows the Monte Carlo simulation description.

Initial Direction. The initial direction is estimated following an opportunistic approach, based on the users context (i.e. “user transit indoors”, “user is ascending stairs”, etc.). When this is not possible, the direction is extracted from the compass after the phone pose (i.e. on hand, in pocket etc.) has been extracted.

Step Counter. In the step counter module, the current number of steps is estimated based on the repetitive pattern caused in the accelerometer from the human bipedal movement.

Localization. Ariadne provides horizontal and vertical localization, where the horizontal localization is based on Dead Reckoning, while the vertical is based on the barometric formula.

Quantify Confidence. In every unit of time new particles are generated, weighted based on the probability of being the target’s true location. Their weights are quantified based on map restrictions or model predictions.

Visualize Location. Finally, the particle with the highest probability is visualized as the real location.

b: The Landmark Selection Module

The Landmark Selection module (Fig. 19) is responsible for extracting landmarks from raw sensor data that have been extracted while the user was localized from the localization module and for localizing the user once a model is available. Its components are:

Classification. In this module sensed values from WiFi, geomagnetic and GSM sensors are imported to a support vector machine classifier responsible for predicting the location of the client.

Raw Data. The raw streamed sensor values are then labeled based on their spatial coordinates, estimated from the localization module, and are stored in a database.

Cluster Analysis. A cluster analysis is performed on the collected data and the optimum number of clusters is been estimated.

Fusion. Once the number of clusters has been identified, weights are assigned to the clustered values and the data are aggregated based on their proximity.

Clustering. Once the data are aggregated, they are clustered based on their characteristics, forming rectangular shapes whose edges are tangent to the walls in the map.

Labeling. The new created clusters are now labeled based on coordinates of the rectangular that they include. The size of the rectangular, in the localization phase, will indicate the localization confidence.

Clustered. The clustered and labeled data are now stored in a database.

Training. Once there are enough data and with a regular interval, a classifier is trained on them and more precise localization is enabled.

6) UGENT Team

The core of UGENT team location tracking system is a route mapping filter [55] that is based on a motion model and the Viterbi principle, a technique related to Hidden Markov Models and backward belief propagation. The physical layout of a building is used to construct the most likely path instead of a sequence of independent, instantaneous estimates. This post-processing filter ensures physically realistic trajectories and has been shown by independent researchers to outperform traditional approaches such as smoothing particle filters [56]. During the initialization, the route mapping filter starts with N paths (e.g., 1000 starting points) that are located in a
circle around the best first estimation given the first WiFi measurements and a fingerprint map based on the training data [55]. These N paths are updated each time new WiFi measurements become available. The next candidate positions, starting from the current last points of the paths in memory, are determined based on a maximum walking speed (derived from a step counting algorithm using the available accelerometer data), and the walls and obstacles of the building (people cannot move through walls). Each path consists of a chain of grid points and a cost that indicates the probability of this path at this time step. The path with the lowest cost after processing all sensor data is the most likely trajectory. The cost of a path is the sum of costs based on various sensor measurements: WiFi RSS measurements, barometer, accelerometer and gyroscope data:

WiFi. The RSS values are compared to the corresponding reference values in a fingerprint map and are weighed based on the estimated distance to the WiFi access points. The fingerprint map itself is based on all training data, grouped per BSSID and per grid point. Missing grid points in the fingerprint map are filled in based on interpolation of neighboring grid points (that do have measurements), with a certain upper limit, e.g., 5m.

Barometer. The differences between the average pressure over a short (5 seconds) and a long window (30 seconds) are used to detect up or down floor changes when the difference exceeds a certain threshold based on the training data. Furthermore, a cooling-off period is implemented to avoid changing floors multiple times within a short time span. Paths that do no change their current floor in the right direction (by taking the escalator or elevator) get an additional cost assigned. By default, this additional cost is set to the floor height or floor penalty (15 m).

Accelerometer, gyroscope, and mobile phone 3D orientation. These data are fused together and used to detect the step count, stride length and orientation between two locations updates; combination of these three gives the traveled distance and direction. The difference between this traveled distance and direction, and the distance and direction between a grid point and its parent grid point (i.e., the previous grid point of the path) are used as an additional cost. This penalizes paths that move when the accelerometer and gyroscope estimate that the user is standing still; and also paths that remain static when the user is moving; or paths that take a turn in the opposite direction.

The physical layout of the building is modeled by a shapefile, constructed with QGIS, the PDF maps with geo-referenced points, and a plugin to reference the raster to the projected coordinate system by creating a GeoTIFF file. Each floor is represented by a polygon with the floor id as a feature value and likewise, the escalator and elevator are represented by a polygon with the start and end floor as a feature value (Fig. 20(b)). The route mapping filter uses this shapefile as input to construct a grid database with a certain grid size, e.g., 1 m, and a reachable database, consisting of the reachable grid points, for each grid point (Fig. 20(a)). The reachable grid points are the neighboring grid points that do not cross walls or obstacles, and the above or below grid points if they are located within the polygon of an escalator or elevator (and correct floor level). This grid and reachable database are used to select the next candidate positions in the route mapping filter, given the current last points of the paths in memory and the time that has passed since the last location update.

![FIGURE 20. Floor plan modeled as polygon with details of the grid.](image)

7) WHU Team

The method used by Wuhan University team utilizes data of many sensors available in a smartphone. The main method combines PDR, Wi-Fi fingerprinting and magnetic matching. The PDR algorithm processes accelerometer, compass, gyroscope and barometer data. Similarly to PDR algorithm, compass and gyroscope signals are used to estimate heading and accelerometer signal is used for step detection. In contrast to traditional PDR, barometer data is used as an important source for the altitude estimation to detect much more precisely the floor.

Since the competition organizers have provided a training set, the team took full advantage of the WiFi signals to construct a fingerprinting database. WiFi fingerprinting method is an attractive indoor positioning method but the training data was limited. That is the reason why magnetic information was fully used. It is important to note that the geomagnetic sequence and fluctuations are often similar when people pass through the same path. These anomalies are, therefore, highly reliable. The position of the reference was used to control the position drift error of the inertial navigation system.

8) YAI Team

YAI team fingerprinting method first leverages the three-axis accelerometer to build trusted known points associated with APP time. Next, the team uses WiFi received signal to reconstruct the WiFi fingerprints. Finally, the system compares both, the Euclidean distance and the similarity of the received WiFi behavior metrics to compute the final localization results.

a: Step detection

The training dataset gives the coordinates (longitude and latitude) of some known points, i.e., POSI, but these POSI points are sparse in the space domain. To build a WiFi fingerprint, coordinates of many other points than the known POSI points have to be estimated. Therefore, first, the system assumes that the walking path between two consecutive POSI
points follows a straight line. Then, the sensed data of the three-axis accelerometer is used to estimate the number of steps between two known POSI positions. This can be done by finding the local maximum points of the magnitude of the output of a three-axis accelerometer between two POSI points. The magnitude can be expressed as:

$$M_i = M_i - E \{ M_i \}$$ \hspace{1cm} (15)

where $M_i = \sqrt{x_i^2 + y_i^2 + z_i^2}$; x_i, y_i, and z_i are the values of a three-axis accelerometer at epoch i. The symbol $E \{ \}$ denotes the averaged operation. Lastly, we use inter- and interpolation to estimate the locations of the interpolated points between two POSI points. At this stage, we have a table which lists 4-tuple for each record: (APP Time, Longitude, Latitude, Floor Number).

b: Generation of the fingerprinting table

Next, the received RSS values from each access point (AP) are associated with the 4-tuple table. Note that the APP time of receiving the RSS values is not synchronized to the 4-tuple table. However, over short time duration, the location of a walking man should be pretty similar. Thus, the location with the closest APP time is chosen to generate the fingerprinting table.

c: Positioning Method

The positioning method simply consists in comparing a N-tuple received RSS values with the WiFi fingerprinting table. In addition, a metric called “Similarity of the WiFi receiving behavior (S value)” is defined. It is used to measure the distance of the N-tuple received RSS values with the records in the WiFi fingerprinting table. Since the received RSS values with each AP are not stable, it is better not to compare all the entries of the fingerprinting table with the N-tuple received RSS values. Instead, the entries of the fingerprinting table, which have the highest S value, are compared with the N-tuple received RSS values. The two proposed “similarity of the WiFi receiving behavior metrics”, S_1 and S_2, are:

$$S_1 := \sum_j \text{sgn}(x_j) \cdot \text{sgn}(y_{ij})$$ \hspace{1cm} (16)

$$S_2 := \sum_j I(\text{sgn}(x_j), \text{sgn}(y_{ij}))$$ \hspace{1cm} (17)

where x_j denotes the j-th entry of the received N-tuple; y_{ij} denotes the j-th entry of the i-th record in the fingerprinting table. $\text{sgn}(\cdot)$ is a sign function defined as follows:

$$\text{sgn}(x) := \begin{cases} 0 & \text{if } x \geq 0 \\ 1 & \text{otherwise} \end{cases}$$ \hspace{1cm} (18)

and $I(\cdot, \cdot)$ is an indication function defined as follows:

$$I(x, y) := \begin{cases} 1 & \text{if } x = y \\ 0 & \text{otherwise} \end{cases}$$ \hspace{1cm} (19)

Finally, the Euclidean distance is calculated between the N-tuple and the records in the fingerprinting table which has the largest first two S values and the location of the N-tuple with the smallest Euclidean distance is obtained. It is important to note that, in general, S_1 is used as the similarity of the WiFi receiving behavior metric. However, when the sparsity of the N-tuple is high, S_2 is adopted as the similarity of the WiFi receiving behavior metric instead.

D. TRACK 4: FOOT-MOUNTED IMU AND GNSS BASED CHALLENGE

1) AOE Team

The system proposed by AOE team is a human foot-mounted PDR. Fig. 21 gives an overview of the solution comprising three different modules.

The bottom module is an IMU device with four sensors: an accelerometer for measuring acceleration a_{t+1}^i, a gyroscope for measuring angular rate ω_{t+1}^b, a magnetometer for measuring magnetic field of the Earth b_{t+1}^i, and a barometer for measuring barometric pressure of the Earth, with which the person’s altitude, h_{t+1}, can be calculated.

The middle module includes five components: the Stance & Still Phase Detection, the HDR, the ZUPT, the ZARU, and the Earth Magnetic Yaw. Meanwhile, the Stance & Still Phase Detection includes two components. The GLRT detector algorithm is used under slow and normal pedestrian gait speed condition and the HMM detector algorithm is used under high dynamic and fast pedestrian gait speed condition, such as fast walking. When the Stance & Still Phase Detection detects the stance and swing phases of human foot gait from IMU’s data, the HDR, the ZUPT, the ZARU, and the Earth Magnetic Yaw utilize these data to estimate the error vector $m_{t+1}(\delta\psi_{t+1}, \delta\omega_{t+1}^b, \delta v_{t+1})$ (Fig. 21), where $\delta\psi_{t+1}$, $\delta\omega_{t+1}^b$, and δv_{t+1} denote the bias error of yaw, the bias error of angular rate and the bias error of velocity at time $t+1$, respectively.

The top module includes an INS and an EKF. The INS system alone can’t cope with the IMU drift. The EKF, along with a properly constructed sensor fusion scheme, can however estimate the IMU biases. Therefore, it can help the INS in reducing the IMU drift. To mitigate possible gross errors in the measurements, a fault detection method based on the innovation vector is adopted. It can effectively detect and remove the gross errors to ensure that only accurate measurements are fused.

a: Experimental evaluation

In this section, the proposed algorithm is implemented in the indoor experiment, in order to evaluate the accuracy of the position estimation of the foot-mounted PDR system. One of the experimental data result is shown in Fig. 22. The errors
in the horizontal plane for the three groups of test data are
detailed in Table 2.

![FIGURE 21. The Scheme of IMU/EKF+HMM+ZUPT+ZARU+HDR+Compass algorithm.](image)

![FIGURE 22. Route line Plane projection.](image)

Point No.	Point 2	Point 5	Point 6	Point 9	Point 10	Point 13	Closed error	Error length
Plane error 1 (m)	0.160	0.348	0.452	0.483	0.576	0.616	0.672	0.217%
Plane error 2 (m)	0.301	0.410	0.603	0.688	0.797	0.759	1.084	0.350%
Plane error 3 (m)	0.182	0.205	0.324	0.342	0.451	0.502	0.643	0.207%

TABLE 2. Route line plane error assessment results

AOE algorithm has been tested in the real indoor environment. The experiment shows that the algorithm can effectively eliminate the error accumulation of the IMU device, with a high accuracy.

2) KIT Team

In Fig. 23 an overview of KIT team tightly-coupled INS/GNSS sensor data fusion approach is illustrated. The current position, velocity and attitude are propagated with a strapdown-algorithm considering the specific force and gyroscope measurements. The measured inertial signals are corrected with estimated sensor bias values. Zero-Velocity-Updates (ZUPTs) are generated in the detected midstance phases of the foot by a finite state machine based gait phase classifier [57]–[59]. In contrast, horizontal ZUPTs and delta ZUPTs are applied during stance phases using an elevator. Absolute velocity measurements are generated during stance phases on an escalator [60]. If GNSS pseudo-range and Doppler measurements are available, the kind of aiding depends on the current classified motion state. To enable accurate position estimation in urban scenarios, an integrity check of the received GNSS data is essential [61]. Based on the described measurements, corrections of the navigation solution and the bias values of the inertial sensors are calculated by the Error-State-Stochastic-Kloning-Kalman-Filter.

a: Gait Phase Classifier

The proposed finite state machine based motion classifier method is founded on biomechanical knowledge and medical research findings of the human gait. Because the foot module is solely mounted on one foot, it is appropriate to model four basic motion states for forward motion, as shown in Fig. 24 and described in detail in [58]. The transitions and states
signals are checked. The good knowledge of the system navigation solution. In addition, the integrity of the GNSS state if Doppler measurements improve the accuracy of the unique is the decision depending on the classified motion measurements for absolute position and heading estimation. INS is fused with GNSS pseudo-range and Doppler pedestrian navigation system. The precise relative positioning inertial system is used to detect and exclude GNSS measurements with high multipath errors. This is essential for robust pedestrian localization in dense urban environments with outdoor-indoor transitions.

3) WHU Team
In the last several years, WHU team has been working on developing an accurate and reliable pedestrian navigation system (PNS), which will significantly increase the safety of military personnel and first responders.

The data sources used in WHU solution are IMU data and GNSS raw data. Magnetometer is not included due to its vulnerability to disturbance (especially indoors). The basic navigation algorithm adopted is quite simple and commonly consists of INS mechanization, zero-velocity detector, and a complementary Kalman filter (KF), as shown in Fig. 25.

The Foot-Mounted INS signals are integrated with GNSS signals in a loosely-coupled manner. To get rid of gross error as much as possible, satellites with small elevation should be discarded. Some measurements with poor quality based on the magnitude and covariance of the innovation vector can also be rejected. Even though the heading is not observable when a GNSS signal is not available, heuristic methods like zero integrated heading rate are adopted because it is not reliable and accurate enough for a statistical grade or better IMU.

The height precision should be sufficient to distinguish between different floors. Some constraints, employed effectively, mitigate the error drift along the vertical channel in the absence of barometer. When walking up and down stairs, the slope can be seen as constant in most cases. So the system is able to define a slope from every footstep, as shown in Fig. 26. In this way, the slopes that are already in the buffer can be updated. The slopes that are already in the buffer can be used to constraint the current slope, as well as updating the slope buffer with this newest slope.

Another extreme case is the escalator. Normally escalator moves with constant speed, which means that nearly all the acceleration input comes from local gravity when users stay relatively static on the escalator. The gravity information can be fused in a tightly coupled manner, the measurement equation can be defined in error form as:

\[\partial F^w = [g^w \times] \phi + w \]
(20)
By using this gravity information, the drifting error part can be controlled even when moving on the escalator. The only thing that needs to be done, is to compare the magnitude of the specific force with the one of the local gravity before proceeding with the update to determine the availability of the measurement. Thanks to this approach, the tricky issue of escalator recognition can be circumvented and still obtain a good position’s estimate on escalator.

4) YAI Team
The system proposed by YAI team is shown in Fig. 27. The positioning algorithm includes three steps: step detection, stride and walking-direction estimation.

The first two steps utilize accelerometers and the last two steps exploit the data from the horizontal-axis component of the accelerometers and the magnetometers. In addition, outlier samples observed in the accelerometers are ensure a smooth and stable walking-step estimation. Multivariable linear regression techniques were used to estimate the stride for each step. The detailed operation of the proposed moving trajectory estimation algorithm is now described

a: Acceleration Decomposition
By averaging the accelerometer values, an averaged g-vector can be obtained over the past few seconds, which can be expressed by:

$$g_0 = \frac{1}{N} \left(\sum_{i=t-N+1}^{t} g_{i,x}, \sum_{i=t-N+1}^{t} g_{i,y}, \sum_{i=t-N+1}^{t} g_{i,z} \right)$$

(21)

where g_0 represents a unit vector along the vertical direction. g_i is the i-th reading of the g-sensor; N is the number of readings in the window. This can be generalized by the concept of low pass filtering. The vertical component of the g-vector can be formulated as follows:

$$g_i^\perp = (g_i \cdot g_0) g_0$$

(22)

Also, the vertical component of g_i can be expressed by

$$g_i^\parallel = (g_i \cdot g_0)$$

(23)

The horizontal component of the g-vector becomes

$$g_i^\perp = g_i - g_i^\parallel$$

(24)

Note that g_i^\perp is distributed in a 2D space.

b: Stride Module
Next, we calculate the step’s distance using multi-variable linear regression equation for each step with:

$$D(\Delta A, X_1) = C_0 + C_1 \Delta A + C_2 X_1$$

(25)

where $\Delta A = \Delta A_1 + \Delta A_2$; ΔA_1 and ΔA_2 are the difference between the left peak-valley pair and right peak-valley pair, respectively; C_0, C_1 and C_2 are parameter; X_1 is the first component of DFT of g_i^\parallel in the period.

c: Walking Direction Calculation
Finally, the orientation of the STIM300 and HMC5983 are used to calculate the horizontal component of m-vector, which can be expressed as follows:

$$m_i^\perp = m_i - (m_i \cdot g_0) g_0$$

(26)

where m_i represents the i-th reading of the m-sensor. By calculating the horizontal component of $e_z = (0, 0, 1)$, we obtain:

$$e_i^\perp = e_z - (e_z \cdot g_0) g_0$$

(27)

The angle between the smartphone orientation and the north is obtained by combining m_i^\perp and e_i^\perp as follows:

$$\cos^{-1} \left(\frac{m_i^\perp \cdot e_i^\perp}{\|m_i^\perp\| \|e_i^\perp\|} \right)$$

(28)

If $(m_i^\perp \times e_i^\perp) \cdot g_0 \leq 0$, walking direction is toward east, otherwise, toward west. The holding angle is figured out by using horizontal acceleration vectors. The horizontal acceleration is composed of forward vector, backward vector and lateral vector. Walking causes great acceleration in forward and backward directions, and small acceleration in lateral. By accumulating the horizontal acceleration vectors, the lateral vectors can be compensated and remains only the forward and backward vectors.
V. COMPETITION RESULTS

This section presents the practical course of the competition for the four tracks and an analysis of results achieved by the teams who participated in the competition.

A. PRACTICAL COURSE OF THE COMPETITION

For the on-site tracks, the teams were allowed to survey the evaluation area during the calibration day (Friday, September 21st, 2018) in the regular opening hours of the shopping mall with the restriction of not disturbing the daily life of shopkeepers and customers. Accessing the shops was explicitly forbidden since the evaluation only covered the common areas, like corridors or car park area. The competition organizers were present at three different times on that day to provide important information like the initial waypoint (lat, long, heading) for each on-site Track (Tracks 1 and 2), act as the main interface with Atlantis shopping mall and to answer those questions from the competitors, if possible. It is important to highlight that the organizers did not disturb or help in the calibration of the indoor positioning solutions.

The evaluation of the Track 1 teams was performed on Saturday, September 22nd in the morning, whereas the evaluation of the Track 2 teams was performed the same day, in the afternoon after lunch. All teams were requested to be present in a briefing meeting to inform them about the evaluation features and randomly assign the evaluation slot for each team. Each team had to be in the meeting room five minutes before the assigned time slot. Two people from the organizing team, the evaluators, accompanied the competitors to the initial point and ensured they arrived on-time for evaluation. Moreover, there were more people from the organizing team spread in the shopping center to ensure that the elevator, stairs and sitting places were available for all the competitors. The two main evaluators were in close contact with the teams during the evaluation. One of the evaluators acted as path discoverer, and she/he was a little ahead of the competitors during the evaluation. The main objective was to open the path in the presence of crowds in the shopping mall and visually indicate the next evaluation waypoint. The other evaluator remained close to the competitor. She/he gave indications about the next evaluation waypoint and checked that the competitor was acting according to the rules. Before starting, the competitors had a few seconds to initialize their system. Once the end of the evaluation path was reached, the competitor had to go directly to the meeting room with the two organizers and provide the position estimates. After the first round of evaluations, the teams were informed that they had a second chance to evaluate their solution. If a team decided to run the course a second time, only this second course would be evaluated.

For the off-site tracks, Track 3 and Track 4, competitors had to provide the position estimates the latest on September 14th, several days before the conference and competition. The evaluation trajectory was recorded by the track chairs in advance following a similar approach than the one reported for the on-site tracks. i.e., the competition organizers surveyed the area and collected the required data for the system calibration under realistic conditions (similar than the ones for the on-site tracks) and, after that, they recorded the data for positioning algorithms on the evaluation path simulating a real-time on-site evaluation.

The same format was expected for all the competition tracks. For each trial, the teams had to submit a CSV file, where each row represented a single estimated position. Each estimation had to include the timestamp in ms, the WGS84 longitude and latitude in decimal degrees with at least 9 decimal digit resolution, the floor number as an integer value (0 : Ground Floor, -1, 1, 2), the waypoint index in integer (waypoint number from 1 to N. 0 represents no landmark. Each specific integer represents the specific waypoint). The comma (‘,’) was used as data delimiter and headers were not allowed in the CSV file. In Track 3, the timestamps for the waypoints were not provided to the competitors to avoid giving them many clues about the evaluation strategy. In that track, the competitors had to provide position estimates at a 2Hz frequency, synchronized with the beginning of the evaluation trajectory according to the timestamp provided in the evaluation log file.

B. ACCURACY SCORE ESTIMATION

The “accuracy score” was computed for each team by comparing the estimated coordinates with the reference coordinates of the waypoints marked on the ground and they were marching on during the competition. This metric combines the floor detection accuracy and the horizontal positioning error.

\[
\varepsilon = \|P_R - P_E\| + p \cdot |f_R - f_E|
\]

(29)

where

- \(P_R\) are the ground truth horizontal coordinates
- \(P_E\) are the horizontal coordinates estimated by the competitors
- \(\|P_R - P_E\|\) is the horizontal error and it is computed as the Euclidean distance between the ground truth and the estimated position provided by the competitor in the 2D space.
- \(p\) is used to penalize errors in estimating the floor and is set to 15 m.
- \(|f_R - f_E|\) is the absolute difference between actual floor number and the predicted one.

The positioning error, \(\varepsilon\), is computed for all way-points marked on the ground that define the path of a specific challenge. The “accuracy score” \(s\) is given by the third quartile error, in meters, of a cumulative error distribution function for all \(\varepsilon\) by:

\[
s = 3^{rd} quartile \{\varepsilon\}
\]

(30)

The team with the lowest score won the challenge. Table 3 shows the scores for all the four challenges. Additional metrics included in the ISO 18305 Standard are also reported in the table.
TABLE 3. Competition results for the four challenges based on the 75th percentile (the competition main metric) and other well-known metrics of the positioning error as defined in eq. 29

Track	Rank	Team Name	Mean	RMS	Median	75th P.	90th P.
1st	1st	ARIEL-2	9.80	14.40	7.20	11.70	20.10
	2nd	ARIEL-1	11.70	14.00	10.40	15.20	23.30
	3rd	ETRI	16.20	19.30	14.60	18.90	28.40
2nd	1st	SONY	5.90	4.60	3.50	5.50	7.10
	2nd	KYUSHU	5.20	7.20	3.60	5.70	15.50
	3rd	SNU	4.50	5.20	4.40	6.80	8.50
	4th	CLE	13.10	25.10	5.50	7.60	45.00
	5th	ETRI	8.70	11.50	5.10	12.40	22.70
	6th	TUM	12.80	14.70	12.00	15.00	20.60
	7th	UPJS	30.30	38.70	25.40	37.50	62.60

In Track 2, the accuracy score ranges from 0.90 to 12.30 meters whereas it ranges from 1.30 to 90.80 meters for Track 4. Although the accuracy for the Track 3 (based on smartphone data) was generally better than for the Track 4 (based on PDR), the competitors of Track 4 had a huge advantage in form of many geo-referenced training data inside the shopping mall to, for instance, generate the WiFi radio maps. In contrast, the Track 4 competitors did not have such kind of training and validation data.

The most popular technology for Track 3 was WiFi fingerprinting, which has been the core technology of most proposals. The competitors have improved the fingerprinting approach by refining the position estimates with the data provided by the other available technologies, this additional information mostly came from inertial sensors and the magnetometer. In fact, the most accurate systems combined data from multiple sources, including magnetometer.

For Track 4, only IMU, magnetometer records and GNSS signals were used. The competitors processed the several hours MEMS data-logs collected in static conditions to identify and calibrate the sensors’ noises. The most popular mechanization was the "strap-down" one completed by complementary filters and stochastic cloning Kalman filter. To mitigate the impact of sensors drift in inertial signals, competitors applied machine learning techniques based on mobility patterns and generalized likelihood ratio tests to identify specific walking gait periods and correct the positioning error. Remarkably, precise results have been obtained for conveyor belt and stairway passages.

E. LESSONS LEARNED

The most important lesson learned is that moving the competition site to a shopping mall has attracted many teams from academy and industry to participate in the proposed challenges. A total of 15 teams participated in the on-site tracks, with only one not able to provide the position estimates. The number of submissions for the on-site tracks was a success compared to previous editions were only 3
teams (2015) [62], 11 teams (2016) [63], [64] and 6 teams (2017) [11], [65] successfully provided the estimates on the evaluation path. Providing an evaluation schedule with tight slots was an additional motivation for competitors to ensure they had a robust solution. Moreover, 19 teams participated in the off-site tracks. The participation in the off-site tracks has also been notably higher than in previous editions, which demonstrates that selecting a shopping mall was a good choice.

Organizing a two-day competition is not trivial and it involves some additional workload for the conference organizers. The most important steps are detailed below:

- **Agreeing to a set of rules for the competition with the venue authorities and adhering to them.** A detailed agreement with the competition venue, the shopping mall, in this case, is required to organize the competition. This agreement must contain all the competition features and requirements should be detailed and had to be formalized many months beforehand. Thus, every aspect has to be well-documented and agreed with the shopping mall managers with little margin for any unexpected events or special requirements. Hopefully, some key information about the on-site and off-site competitions was collected more than one year before the competition and the most critical aspects were clarified by the organizers of the previous competitions in Sapporo (2017), Alcalá (2016) and Banff (2015). Attending the competition in Sapporo, September 2017, was crucial to understand the dynamics of the competition and draft the desired outputs for 2018. Thus, the final agreement did not only cover the competition days but also all the key aspects to organize the competition such as the venue mapping (see Section III) and the off-site data collection. Although the shopping mall managers were open to host the competition, they imposed the tight constraint of not disturbing the regular activities and daily-life in the shopping mall.

- **Planning in advance.** The competition challenges and routes must be closed before signing the agreement. In particular, the organizers defined all the competition challenges and scheduled the data collection for the off-site tracks in November 2017. In December 2017, all the waypoints and the final evaluation routes were also defined. Therefore, the evaluation paths were already known by the competition organizers at the end of 2017. As it has been said, there was little margin to, for instance, add a new competition track or extend an existing one after signing the agreement with the shopping mall.

- **Careful site surveying and mapping.** The accurate mapping of the competition venue is needed to provide the ground truth references within the ISO 18305 parameters. This procedure lasted 3 months, including on-site surveying and off-site post-processing. The venue and all the waypoints involved in the evaluation of the four tracks were accurately mapped. Lidar measurements were done the third week of January 2018 and the georeferenced waypoints were provided to Track chairs the first week of April 2018.

- **Thorough checking of competition data.** The data sets for the off-site tracks were provided to competitors in the last week of April 2018. The data sets release included the technical documentation and supplementary files in terms of georeferenced maps. Although the raw data sets were collected and cross-checked in January 2018, it took two weeks to generate the definitive anonymized geo-referenced data sets and the supporting maps. It is of importance to remark that data sets cross-checking has been of paramount importance in the competition. An error in one of the reference files or the evaluation trajectory might be enough for withdrawing a competition track. For the data sets collection, two people manually logged the key sequence of waypoints for all the log files separately. In case of inconsistency between the two logs, the wrong manual log was fixed if possible or, otherwise, the log file was removed. For the process of dataset anonymization and georeferenciation, also two people checked that the resulting logfiles with anonymized WiFi data and georeferenced landmarks were coherent with the manual logs and the raw log files collected in January.

- **Screening of contestants by previous analysis of their methodological approach to indoor positioning.** The deadline to send the technical descriptions was set to the second week of July. All proposals were evaluated by two independent track chairs, who analyzed the proposal feasibility. Although 34 teams participated in the competition, we reviewed more than 40 proposals.

- **Commitment to the competing teams.** During the Setup day, three chairs were in the shopping mall to act as the main interface with the shopping mall and to give some clarifications to the competitors about the competition rules. During the competition day, the local organizing team (10 people) plus 2 external people were engaged in the competition organization since 6 AM. They covered multiple roles in the competition, which also include the installation of ground stickers that defined the competition courses early in the morning of the competition day. Thanks to them, the competition ran smoothly.

Regarding the on-site tracks, one team complained that the Non-camera based positioning challenge (Track 2), should have been split into two different challenges. They claim that Smartphone-based solutions had fewer opportunities to win and, therefore, they should have been evaluated independently. The organizing team defined the four challenges many months before receiving the description of the competition teams. Although one of the off-site challenges dealt with Smartphone-based positioning, the organizing team decided not to forbid that kind of system in the Non-camera based
positioning challenge. This concern was reported to the organizers of the competition in 2019, who finally included an on-site smartphone-based positioning challenge. Although all scenarios cannot be covered in the same competition edition, they can be considered if the event is run annually like this one.

One of the competitors claimed that the competition score only reflected the positioning accuracy without balancing it with the resources required. Previous editions of the EvAAL competition indeed considered the accuracy, installation complexity, user’s acceptance, availability and integrability into AAL systems in the evaluation criteria [1]. However, any criteria will be subject to criticism due to the subjective selection of individual assessment criteria or their weighting in the final score. Therefore, the organizers selected an objective metric, the positioning error, as the main evaluation criterion having in mind that the competition is about indoor positioning and navigation. A solution to the issue raised by the competitors would be to organize many multiple tracks covering all the different aspects of the indoor positioning systems, but this approach was not possible due to limited resources that prevented the organizers to organize more than two on-site competition tracks. It is important to highlight, that the results of the competition and this document, which contains the description of some competing systems, are publicly available. Therefore, the competitors can argue and discuss their solutions considering additional parameters like complexity.

Some teams reported that this event allowed them to establish new collaborations with other participants. Some collaborations have been materialized into research visits, possible joint participation in the next editions and detailed discussions about the different strategies followed in the competition. Although the spirit of a competition is to compete, the organizing team considers that its main aim is to bring together the best research groups and encourage them to discuss their proposals. This is a very practical and less formal scenario to exchange knowledge and, above all, learn from the experience.

Some off-site competitors realized that the teams reporting the best results in Track 3 used data from the magnetometer. It seems that the magnetic data can be really useful to refine the estimations provided by, for instance, Wi-Fi fingerprinting. Most of the teams that used Wi-Fi and inertial data are considering to add this additional source of information to improve their systems. Thus, some teams gained some empirical experience because of participating in the competition and they will use this expertise to improve their approaches for the next editions.

To sum up, organizing a competition in a real-life environment: a shopping mall has been a challenging task. It supposed an additional workload that involved more than 12 people, including the organizing research team and collaborators from other universities and research centers, to cover all aspects: accurately mapping the shopping mall, preparing four independent challenges, recording data for the off-site tracks, organizing a two-day event in a shopping mall without disturbing the customers. The on-site competitors had a challenging scenario to survey, in just one day, during the regular opening hours of the shopping mall without deploying any infrastructure to support localization, whereas the off-site competitors had to deal with some pre-collected data to provide the estimated positions of the blind evaluation path. The evaluation in the shopping mall, either on-site or off-site, also supposed an additional workload to the teams that participated in the competition. Although the workload was huge on both sides, it deserved any invested minute on the organization. All the competitors thanked the organization team for arranging the competition in such a challenging environment. The proposed evaluation was valuable to demonstrate that their solutions can work in a real-life scenario, which in turn is what the market is demanding.

VI. CONCLUSION

For the first time, the IPIN 2018 international indoor positioning competition took place in a real-life challenging space: the Atlantis shopping mall in Nantes (France). Four challenges (2 in real-time, 2 in post-processing mode) were prepared for the 49 registered worldwide competition teams. A survey combining differential GNSS, theodolite and mobile mapping 2D scanners enabled to map 9,000 m² and to compute the coordinates of 180 ground points spread over the 3 levels of the commercial center, with a 3D accuracy better than 10 cm. On September 22, 2018, all stickers, marking the way-points and used to define the paths to be followed by the competitors, were re-positioned on the ground thanks to the surveying and logging strategy followed.

This paper summarizes the main contributions presented in the competition and the details of the full results for comparison purposes. The ambition of this paper is also to draw lessons learned by the organizing committee but also by the competitors to improve the organization of future indoor positioning and indoor navigation competitions.

The most important conclusion is that the IPIN competition is not just an event where the participants compete. The main added value of the competition is the post-evaluation discussion. The informal talks about indoor positioning between the competitors are an excellent way to exchange knowledge. On-site competitors witnessed many different novel approaches and technologies for indoor positioning running in a challenging scenario. Off-site competitors learned the benefit of processing magnetic data for smartphone-based applications. While many indoor location technologies rely on an infrastructure of beacons deployed in buildings, the competition results have shown that it is possible to achieve high accuracy positioning with self-contained technologies. Finally, the competition has enabled some collaborations between different research teams, which was one of the main objectives of the competition. In general, the competition was not just a two-day event to compete for a prize, but a forum to discuss, establish new collaborations and learn.
ACKNOWLEDGMENT

- The organization of IPIN2018 international competition was partially supported by the French Pays de la Loire Regional Council under the grant "Etoiles Montantes" 2017-10671 and Atlantis shopping mall.
- The organizers of Track 3 gratefully thank the financial support received from project REPININ Plus (TEC2017-90808-REDT).
- ETRI Team (Track 1 & 2): This work was supported by the ICT R&D program of MSIT/IITP, Republic of Korea (2017-0-000543, Development of Precise Positioning Technology for the Enhancement of Pedestrian Position, Spatial Cognition and Sports Competition Analysis).
- Kyushu Team (Track 2): Part of this work is supported by JSPS KAKENHI grant number JP18H04125.
- UPJS Team (Track 2): The method development was partially supported by the Slovak Grant Agency of the Ministry of Education and Academy of Science of the Slovak Republic under grant no. 1/0056/18 and by the Slovak Research and Development Agency under the contract no. APVV-15-0091.
- HFTS Team (Track 3): The HFTS team work was funded in the frame of the German federal Ministry of Education and Research programme “FH-Impuls 2016”under contract 13FH190111A (Project i_city).
- YAI Team (Tracks 3 and 4): This work was supported in part by the Ministry of Science and Technology (MOST) of Taiwan under Grant MOST 108-2634-F-155-001.
- The IPIN 2018 competition organizers want to thank Viametris, the engineering school Ecole Supérieure des Géomètres et Topographes, the Région Pays de Loire and all the members of the GEOLOC laboratory and IFSTTAR as well as the people from the Atlantis shopping mall who participated in the organization of the competition.

AUTHOR CONTRIBUTIONS

The IPIN 2018 Competition local organizing team is composed by Valerie Renaudin, Miguel Ortiz and Johan Perul who lead the organization of the competition and the writing of this paper.

The Smartphone-based challenge (off-site) organizing team is composed by Joaquín Torres-Sospedra and Antonio Ramón Jimenez, who also lead the writing of this paper. Antoni Pérez-Navarro, Germán Martín Mendoza-Silva, Fernando Seco also contributed to this paper by organizing the Track 3 and reviewing this paper.

All teams represented in this paper have contributed with the description of their system and their invaluable feedback about their experiences in the competition:

- ARIEL-1 Team (Track 1) is composed by Vlad Landa, Shlomi Hacohen, Nir Shvalb and Boaz Ben-Moshe
- ARIEL-2 Team (Track 1) is composed by Yael Landau, Revital Marbel, and Boaz Ben-Moshe
- ETRI/HANA MICRON Team (Track 1) is composed by Blagovest Vladimirov, Soyeon Lee, Eunyoung Cho, Sungwoo Jun, Changsun Alex, Sangjoon Park, Yonghyun Lee, Jeheeok Rew, Changjun Park, Hyeongyo Jeong, Jaeseung Han and Keumryeol Lee
- Google Team (Track 1) is composed by Ying Zhang
- ETRI/SNU/HANA MICRON Team (Track 2) is composed by Soyeon Lee, Blagovest Vladimirov, Eunyoung Cho, Sungwoo Jun, Changsun Alex, Sangjoon Park, So Young Park, Chan Gook Park, Yonghyun Lee, Jeheeok Rew, Changjun Park Hyeongyo Jeong, Jaeseung Han and Keumryeol Lee
- Kyushu Team (Track 2) is composed by Chuanhua Lu, Hideaki Uchiyama, Diego Thomas, Atsushi Shimada and Rin-ichiro Taniguchi
- TUM Team (Track 2) is composed by Georgios Pipelidis and Nikolaos Tsiamitros
- UPJS Team (Track 2) is composed by Miroslav Opiela
- ARARADS Team (Track 3) is composed by Tomás Lungenstrass and Juan Pablo Morales
- EGEC Team (Track 3) is composed by Zhenxing Ding and Feng Xu
- Five-WHU Team (Track 3) is composed by Xingyu Zheng, Feng Ye and Jian Kuang
- HFTS Team (Track 3) is composed by Stefan Knauth
- mCLIPS Team (Track 3) is composed by Muhammad Usman Ali, Soojung Hur and Yongwan Park
- UGENT Team (Track 3) is composed by Jens Trogh and David Plets
- TUM Team (Track 3) is composed by Georgios Pipelidis and Nikolaos Tsiamitros
- YAI Team (Track 3) is composed by Shih-Hau Fang, Yu Tsao, Ying-Ren Chien, Shi-Shen Yang and Shih-Jyun Ye
- KIT Team (Track 4) is composed by Nikolai Kronenwett
- AOE Team (Track 4) is composed by Wenchao Zhang, Xianghong Li and Dongyan Wei
- WHU Team (Track 4) is composed by Yu Li, Xiaoji Niu and Jian Kuang.
- YAI Team (Track 4) is composed by Shih-Hau Fang, Yu Tsao, Ying-Ren Chien, Shi-Shen Yang and Shih-Jyun Ye

REFERENCES

[1] D. Salvi, P. Barsocchi, M. T. Arredondo, and J. P. L. Ramos, “Evaal, evaluating aal systems through competitive benchmarking, the experience of the 1st competition,” in Evaluating AAL Systems Through Competitive Benchmarking. Indoor Localization and Tracking, S. Chessa and Pipelidis and Nikolaos Tsiamitros, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012, pp. 14–25.
[2] F. Potortì, A. Crivello, and F. Palumbo, “Chapter 11 - The EvaAL Evaluation Framework and the IPIN Competitions,” in Geographical and Fingerprinting Data to Create Systems for Indoor Positioning and Indoor/Outdoor Navigation, ser. Intelligent Data-Centric Systems, J. Conesa, A. Pérez-Navarro, J. Torres-Sospedra, and R. Montoliu, Eds. Academic Press, 2019, pp. 209 – 224.
[3] F. Potortì, S. Park, A. R. J. Ruiz, P. Barsocchi, M. Girolami, A. Crivello, S. Y. Lee, J. H. Lim, J. Torres-Sospedra, F. Seco, R. Montoliu, G. M.
[47] A. Aksu and P. Krishnamurthy, “Sub-area localization: A simple calibration free approach,” in Proceedings of the 13th ACM international conference on Modeling, analysis, and simulation of wireless and mobile systems. ACM, 2010, pp. 63–72.

[48] Z. Liu and J. Chen, “A new sequence-based iterative localization in wireless sensor networks,” in Information Engineering and Computer Science, 2009. ICIICS 2009. International Conference on. IEEE, 2009, pp. 1–4.

[49] S. Knauth and A. Koukofikis, “Smartphone positioning in large environments by sensor data fusion, particle filter and fwc,” in 2016 International Conference on Indoor Positioning and Indoor Navigation (IPIN), Oct 2016, pp. 1–5.

[50] S. Knauth, “Smartphone pdr positioning in large environments employing wifi, particle filter, and backward optimization,” in 2017 International Conference on Indoor Positioning and Indoor Navigation (IPIN), Sept 2017, pp. 1–6.

[51] S. Knauth, M. Storz, H. Dastageeri, A. Koukofikis, and N. A. Mühsam-Hipp, “Fingerprint calibrated centroid and scalar product correlation rssi positioning in large environments,” in Indoor Positioning and Indoor Navigation (IPIN), 2015 International Conference on, Oct 2015, pp. 1–6.

[52] W. Kang and Y. Han, “Smartpdr: Smartphone-based pedestrian dead reckoning for indoor localization,” IEEE Sensors Journal, vol. 15, no. 5, pp. 2906–2916, May 2015.

[53] T. Willemsen, F. Keller, and H. Sternberg, “A topological approach with mems in smartphones based on routing-graph,” in Indoor Positioning and Indoor Navigation (IPIN), 2015 International Conference on, Oct 2015, pp. 1–6.

[54] D. Philipp, P. Baier, C. Dibak, F. Durr, K. Rothermel, S. Becker, M. Peter, and D. Fritsch, “Magpennge: Grammar-enhanced indoor map construction from crowd-sourced data,” in Pervasive Computing and Communications (PerCom), 2014 IEEE International Conference on. IEEE, 2014, pp. 139–147.

[55] J. Trogh, D. Plets, L. Martens, and W. Joseph, “Advanced real-time indoor tracking based on the viterbi algorithm and semantic data,” International Journal of Distributed Sensor Networks, vol. 501, p. 271818, 2015.

[56] K. Zoubert-Ousseni, C. Villien, and F. Le Gland, “Comparison of post-processing algorithms for indoor navigation trajectories,” in 2016 International Conference on Indoor Positioning and Indoor Navigation (IPIN). IEEE, 2016, pp. 1–6.

[57] J. Ruppelt, N. Kronenwett, and G. F. Trommer, “A novel finite state machine based step detection technique for pedestrian navigation systems,” in 2015 International Conference on Indoor Positioning and Indoor Navigation (IPIN). Oct 2015, pp. 1–7.

[58] J. Ruppelt, N. Kronenwett, G. Scholz, and G. F. Trommer, “High-precision and robust indoor localization based on foot-mounted inertial sensors,” in 2016 IEEE/ION Position, Location and Navigation Symposium (PLANS), April 2016, pp. 67–75.

[59] N. Kronenwett, J. Ruppelt, and G. F. Trommer, “Motion monitoring based on a finite state machine for precise indoor localization,” Gyroscopy and Navigation, vol. 8, no. 3, pp. 190–199, Jul 2017.

[60] N. Kronenwett, S. Qian, K. Mueller, and G. F. Trommer, “Elevator and escalator classification for precise indoor localization,” in 2018 International Conference on Indoor Positioning and Indoor Navigation (IPIN). IEEE, sep 2018.

[61] N. Kronenwett, M. Kohler, J. Ruppelt, and G. F. Trommer, “Personal localization of task force members in urban environments,” in 2017 Sensor Data Fusion: Trends, Solutions, Applications (SDF), Oct 2017, pp. 1–6.

[62] “EvAAL-ETRI on-site and off-site Indoor Localization Competition,” http://www.ucalgary.ca/ipin2015/call-papers/call-competition.

[63] J. Torres-Sospedra, A. R. Jiménez, S. Knauth, A. Moreira, Y. Beer, T. Tetzer, V.-C. Ta, R. Montoliu, F. Seco, G. M. Mendoza-Silva et al., “The smartphone-based offline indoor location competition at ipin 2016: Analysis and future work,” Sensors, vol. 17, no. 3, p. 557, 2017.

[64] “IPIN 2016 Indoor Localization Competition,” http://www3.uah.es/ipin2016/cfc.php.

[65] “IPIN 2017 Indoor Localization Competition,” http://www.ipin2017.org/callforcompetition.html.

V. Renaudin et al.: Evaluating Indoor Positioning Systems in a Shopping Mall: The Lessons Learned from the IPIN 2018 Competition

VALERIE RENAUDIN is a Research Director (eq. Full Professor) at IFSTTAR (The French Institute of Science and Technology devoted to Transport, Planning and Networks). She received the M.Sc. degree in geomatics engineering I from ESIGT in 1999, and the Ph.D. degree in computer, communication, and information sciences from the EPFL in 2009. She was a Technical Director at Swisssat Company, Samstagern, Switzerland, developing real-time geopositioning solutions based on a permanent global navigation satellite system (GNSS) network, and a Senior Research Associate with the PLAN Group, University of Calgary, Canada. She is currently leading the Geopositioning Laboratory (GEOLOC) at IFSTTAR, France where she built a team specializing in positioning and navigation for travelers in multimodal transport. Her research interests include outdoor/indoor navigation using GNSS, and inertial and magnetic data, particularly for pedestrians to improve sustainable personal mobility. She is a member of the IEEE society since 2013 and of the steering committee of the international conference on “Indoor Positioning and Indoor Navigation”. Dr. Renaudin is the recipient of the European Marie Curie Career Integration Grant for her project smartWALK.

MIGUEL ORTIZ is a research engineer at GEOLOC Laboratory at IFSTTAR. He received his M.Sc. degree in Mechanics, automation and engineering in 2001 from Ecole Nationale Supérieure d’Arts et Métier. He joined the lab after 6 years spent in a company where he managed systems architecture for automotive applications. Expert in embedded electronic systems, his scientific interests focus on software and hardware developments for both ITS (Intelligent Transport Systems) and pedestrian navigation research field. Since 2017 he is the convener of CEN/CENELEC TCS-WG1 named «Navigation and positioning receivers for road applications»

JOHAN PERUL received his engineering degree in topography from the Ecole Superieure des Geometres et Topographes, Le Mans, France. After working for a year in Parallèle 45 company as 3D engineer, he begins his PhD "Autonomous localization by learning displacement dynamics in multimodal transport" in 2017 at Geoloc laboratory at IFSTTAR Nantes, France.

JOAQUÍN TORRES-SOSPEDRA was born in Castellón, Spain, in 1979. He has a PhD since 2011 about Ensembles of Neural Networks and Machine Learning from Universitat Jaume I. Since April 2013 he holds a research position at the Institute of New Imaging Technologies, where he leads Smartphone-based Indoor Positioning projects. He has authored more than 100 articles in journals and conference proceedings. His current research interests include indoor positioning solutions based on Wi-Fi & BLE, Machine Learning and Evaluation. Dr. Torres-Sospedra is the chair of the Smartphone-based competition track since 2015. He is also the chair of the IPIN International Standards Committee since 2018.
ANTONIO RAMÓN JIMÉNEZ was born in Santander, Spain, in 1968. He received the Degree in Physics and Computer Science and the Ph.D. degree in Physics from the Universidad Complutense de Madrid, Madrid, Spain, in 1991 and 1998, respectively. Since 1993, he has been with the Center de Automation y Robotics, Spanish Council for Scientific Research, Madrid, where he holds a research position. He has authored more than 100 articles in journals and conference proceedings. His current research interests include local positioning solutions for indoor/GPS-denied localization and navigation of persons and robots, signal processing, Bayesian estimation, and inertial-ultrasonic-RFID sensor fusion. Dr. Ruiz is a Reviewer for many international journals and projects in the field.

DR. ANTONI PÉREZ-NAVARRO has a PhD in Physics for the Universitat Autònoma de Barcelona(UAB) since 2000. He got his bachelor in Physics, also from UAB, in 1995. He currently is the director of the Technological Observatory of the EIMT department, the director of the technical collection of books of editorial Eduoc, the deputy Director of Research at eLearn Center at Universitat Oberta de Catalunya (UOC) and lecturer in the Computer Science, Multimedia and Telecommunication department (EIMT department). He also works at Escola Universitària Salesiana de Sarrià (EUS) where he gives classes in Industrial Engineering grades. His main research interests are indoor positioning and prevention of diseases via smartphones. He has published several papers in international journals in all these topics and acts as reviewer of several journals. He is part of the Technical Program Committee of IPIN and is one of the organizers of the Symposium “Challenges of Fingerprinting in Indoor Positioning and Navigation” that was held in Barcelona in 2015.

GERMÁN MARTÍN MENDOZA-SILVA has a Bachelor in Computer Science from the University of Oriente, Cuba in 2005 and a Msc. in Geospatial Technologies from WWU (Germany), UNL (Portugal) and UJI (Spain) in 2015. Currently, he is a Ph.D. student in the Institute of New Imaging Technologies at UJI, Spain, focused on WLAN-based indoor positioning, indoor navigation, machine learning and GIS applications.

REYI LANDAU received the B.S. degree in Computer Science from Ariel University, Ariel, Israel, in 2017. She is currently pursuing the M.S. degree in Computer Science from Ariel University, Ariel, Israel. In the years 2017 she is a research assistant at the Kinematics and Computational Geometry Laboratory, Ariel University. Her research involves developing optical navigation and network optimization algorithms for mobile devices and nano-satellite laser communication. Revital’s master thesis involved developing star-tracking algorithms for mobile devices.

PROF. BOAZ BEN-MOSHE earned his Ph.D. in computer science at Ben Gurion University in 2004. He was a postdoc in SFU (Vancouver) during 2004-2005, and since 2005 he is a faculty member in department of Computer Science - Ariel University. In 2008, he founded, with Prof. Nir Shvalb, the Kinematics and Computational Geometry Laboratory, which includes several research groups in the fields of micro-robotics, wireless optimization, navigation, and medical devices. His main research areas are computational geometry, Navigation, Mapping, Autonomous and Bio-inspired Robotics. Boaz is the head of the Aerospace and Nano Satellite research center (founded in 2015). Since 2018 Boaz is the chair of the Computer Science Department in Ariel University.
FENG YE received the M.S. degree in Optical Engineering from Huazhong University of Science and Technology, Hubei, China in 2017 and the B.S. degree in Automation from Huazhong University of Science and Technology, Hubei, China in 2014. Since 2017, he has been pursuing the Ph.D. degree in the Geodesy and Survey Engineering, Wuhan University, Wuhan, Hubei, China. His research interests include indoor positioning, ubiquitous computing, machine learning and Internet of Things.

JIAN KUANG received his B.Eng. and M.S. degree in Geodesy and Survey Engineering from Wuhan University, Wuhan, China, in 2013 and 2016, respectively. He is currently a Ph.D. student of GNSS Research Center, Wuhan University. His research interests focus on indoor positioning and pedestrian dead reckoning.

YU LI was born in Changzhi City, China, in 1995. He received his B.Eng. degree (with honors) in Geomatics Engineering from China University of Mining and Technology, Xuzhou, China, in 2016. He has been a master candidate in GNSS/INS Group, GNSS Research Center, Wuhan University since 2016. His research focus is on aided inertial navigation and pedestrian navigation.

XIAOJI NIU was born in Xian City, China, in 1973. He received his B.Eng. (with honors) and Ph.D. degrees in mechanical and electrical engineering from Tsinghua University, Beijing, China, in 1997 and 2002 respectively. His research interests focus on INS and GNSS/INS integration for land vehicle navigation and pedestrian navigation. From 2003 to 2007, he was a postdoctoral fellow with the Mobile Multi-Sensor Systems Research Group, Department of Geomatics Engineering, University of Calgary, Calgary, AB, Canada. He was a Senior Scientist with SiRF Technology, Inc. from 2007 to 2009. Since 2010, he has been a professor of GNSS Research Center, Wuhan University and the head of GNSS/INS group.

VLAD LANDA received the B.S. degree in Computer Science from Ariel University, Ariel, Israel, in 2016 and the M.S. degree in Computer Science from Ariel University, Ariel, Israel, in 2018. He is currently pursuing the Ph.D. degree in Computer Science (deep learning) at Ariel University, Ariel, Israel with collaboration of Ariel’s University Physics and Eastern R&D Center, to forecast space weather and its phenomenon. In the years 2014 he is a research assistant at the Kinematics and Computational Geometry Laboratory, Ariel University. During M.S his main research interest was in developing Indoor Positioning System for commercial of the shelf devices.

SHLOMI HACOHEN (Phd) is lecturer in Mechanical Engineering and the Department of Industrial Engineering & Management. His expertise is in the field of robotics and control. Specifically, his expertise is related to decision making under uncertainty conditions applied for robot’s motion planning and for pedestrian behavior modeling. Shlomi is engaged in the research of multi agents control under uncertain conditions.

NIR SHVALB (PhD) is an associate professor at the Faculty of Engineering at Ariel University, Israel. He heads the Robotics & Kinematics Laboratory and his main interests are medical robotics global path planning and theoretical foundations of robotics. Nir wrote a robotics textbook, published more than 60 scientific papers and patents. Nir is the founder of several startup companies including MeMic medical robotics, Innoging medical imaging and IndoorGo.

CHUANHUA LU received the B.E. degree from University of Science and Technology of China in 2016. He pursued the M.E. degree with the Laboratory for Image and Media Understanding, Kyushu University in 2018. His research interests include indoor navigation, 3D modeling, and neural networks.

HIDEAKI UCHIYAMA received the B.E., M.E., and D.E degrees from Keio University in 2006, 2007, and 2010, respectively. Since 2018, he has been a Associate Professor with the Library, Kyushu University. His research interests include indoor navigation, computer vision and augmented reality.
DIEGO THOMAS received his master’s degree in Informatics and Applied Mathematics from the Ecole Nationale Superieure d’Informatique et de Mathematiques Appliquees de Grenoble (EN-SIMAG), France in 2008. He received his Ph.D. from the Graduate University for Advanced Studies (SOKENDAI), Japan in 2012. He was a post-doc researcher at the National Institute of Informatics (Tokyo, Japan) from April 2012 to March 2015. From April 2015 to March 2017, he was a JSPS post-doc researcher at the University of Kyushu (Fukuoka, Japan). His research interests are 3D images registration, 3D reconstruction and photometric analysis. From April 2017, he is assistant professor of Graduate School of Information Science and Electrical Engineering (ISEE), Kyushu University.

ATSUSHI SHIMADA received the M.E. and D.E. degrees from Kyushu University in 2004 and 2007, respectively. Since 2017, he has been an Associate Professor with the Graduate School of Information Science and Electrical Engineering, Kyushu University. His research interests include image processing, pattern recognition, and neural networks.

RIN-ICHIRO TANIGUCHI received the B.E., M.E., and D.E. degrees from Kyushu University in 1978, 1980, and 1986, respectively. Since 1996, he has been a Professor with the Graduate School of Information Science and Electrical Engineering, Kyushu University, where he directs several projects including multiview image analysis and software architecture for cooperative distributed vision systems. His current research interests include computer vision, image processing, and parallel and distributed computation of vision-related applications.

ZHENXING DING is an engineer of China State Information Center. He received his Ph.D. degree in School of Instrument Science and Optoelectronics Engineering from Beihang University, Beijing, in 2016. His research interests include artificial intelligence, advanced filtering techniques, MEMS-based pedestrian dead reckoning, smartphone-based indoor navigation and Visual/INS integration, among other related topics.

FENG XU is a senior engineer of China State Information Center. His main research areas are information engineering consultation, the geographic information system (GIS), the indoor and outdoor location navigation services, and the geographic information standardization, among other related topics.

NIKOLAI KRONENWETT received the M.Sc. degree in electrical engineering and information technology from the Karlsruhe Institute of Technology (KIT), Germany, in 2015. He started to work as a research engineer at the Institute of Systems Optimization at KIT in September 2015. His research interests include pedestrian navigation, vehicle localization and multi sensor data fusion of complementary navigation systems.

BLAGOVEST VLADIMIROV received his B.S. degree in Industrial Automation from the Technical University of Sofia, Bulgaria and obtained M.E. and Ph.D. degrees in Systems Engineering from the Nagoya Institute of Technology, Japan. Since 2010 he is a researcher at the Electronics and Telecommunications Research Institute(ETRI) in Korea. His research interests are in machine learning, cognitive systems, and their practical applications.

SOYEON LEE received the B.S. degree in Statistics from Ewha Womans University, in 1992, the M.S. degree in Statistics of Computation from Seoul National University in 1994, and the Ph.D. degree in Computer and Information Science from Korea University in 2015. Since 1994, she is a principal researcher at the Electronics and Telecommunications Research Institute(ETRI) in Korea. From 2009 to 2012, she was an associate rapporteur of Question 27/WP2 of ITU-T SG16. Also, from 2017 to 2018, she served as a standardization director of Korean Society of Automotive Engineers. Her current research interests are in indoor positioning using pedestrian dead reckoning and Bayesian filtering, human interaction in AR/VR and their military training applications.
EUNYOUNG CHO graduated from Ewha Womans University, South Korea, in 1986. She received the M.S. degrees from Korea Advanced Institute of Science and Technology (KAIST) in 1997. She also earned MSE from Carnegie Mellon University-KAIST collaboration program in 2006 and 2007 respectively. In 1986, she joined Electronics and Telecommunications Research Institute (ETRI). Her research interests encompass database systems, software engineering, wired/wireless communications, location-based service (LBS), and Internet of Things (IoT).

SUNGWOO JUN received the M.S. degree in Computer Science from Chungbuk National University. Since 2011, he is a senior researcher at the Electronics and Telecommunications Research Institute(ETRI) in Korea. His research interests are pose recognition, indoor positioning, deep learning, omni-directional treadmill based immersive virtual training systems and their practical applications.

CHANGEUN LEE received the B.S. and M.S. degrees in electronics engineering from Hanyang University, Seoul, Rep. of Korea, in 1996 and 1998, respectively. He is received Ph.D. degree in Information and communication engineering at Chungnam National University, Daejeon, Rep. of Korea. From 1998 to 2000, he was a researcher at LG Industry System, Seoul, Rep. of Korea, where he worked on intelligent building automation systems. Since 2001, he has been with the Electronics and Telecommunications Research Institute(ETRI), Daejeon, Rep. of Korea, where he has researched in the fields of intelligent robot control systems and home network systems. His research interests are artificial intelligence, SLAM, robot software frameworks, and distributed and cooperative robot control.

SANGJOON PARK received his B.S., M.S. degrees in Electronics engineering from the Kyung-Pook National University in 1988, and 1990 respectively. He received his Ph.D. degree in computer science from the North Carolina State University in 2006. Since 2006, he is the director of the positioning and navigation technology in Electronics and Telecommunications Research Institute (ETRI), Korea. His current research interests are in positioning, wireless sensor network, next generation embedded sensor network, multi sensor data fusion and target tracking. He also worked as a senior researcher in Agency for Defense Development (ADD) from 1990 to 2001.

YONGHYUN LEE was born in Seoul, Korea in 1974. He received a B.S. in computer engineering from the Sookchunhyang University of Korea in 1999. He developed H/W drivers for eBook devices from 2000 to 2002. From 2002 to 2011, he was a researcher at Communications Research Institute of Motorola Korea Inc. Currently, he is a researcher at the HANA Micron as a development team leader. His current research interests include Indoor Positioning System and GIS on the mobile services.

JEHYEOK REW received the B.S. degrees in electronics and radio engineering from KyungHee University, Korea, in 2012. From 2017 to 2018, he was a senior researcher at the HANA Micron, Korea. Currently, he is a doctoral student at the School of Electronic Engineering, Korea University, Seoul, South Korea. His current research interests include machine learning, image processing, bio-informatics, and information retrieval.

CHANGJUN PARK received the B.S. degree in computer education from Silla University, Korea, in 2015; and his M.S. degrees in Electronics and Computer Engineering from Pusan National University, Korea in 2017. Currently, he is a researcher at the HANA Micron, Korea. His current research interests include machine learning, image processing, IoT, and cloud computing.

HYEONGYO JEONG received the B.S degree in computer engineering from Chungbuk National University, Korea, in 2014. From 2017 to 2019, he was a researcher at the HANA Micron, Korea. Currently, he is a manager at the Hyundai Merchant Marine. His current research interests include cloud computing, EDI, IOT and blockchain.

JAESEUNG HAN received the B.S and M.S degrees in robotics from KwangWoon University, Seoul, Korea, in 2015 and 2017, respectively; Currently, he is a researcher at the HANA Micron, Korea. His current research interests include image processing, robot design, and indoor positioning.
KEUMRYEOL LEE was born in Mokpo, Korea in 1980. He received the M.S. and Ph.D. degrees in Human Computer Interaction from Hanyang University, in 2010. From 2010 to 2014, he was a principle Researcher with the Korea telecom group. Currently, he is a Platform Business Group Director at the HANA MICRON, Korea. His current research interests include Artificial Intelligence, machine learning, open platform, Business Intelligence, IoT and Mixed Reality.

WENCHAO ZHANG received the B.S. degree in Surveying Engineering from China University of Mining and Technology (CUMT), in 2013 and the M.S. degree in Surveying Engineering from Information Engineering University (IEU) in 2016. At present, he is the Ph.D. candidate in Signal and Information Processing of University of Chinese Academy of Sciences (UCAS). He currently belongs to Aero Information Research (AIR) institute, CAS (Chinese Academy of Science). His research interests include multi-information fusion method, integrated navigation algorithm, pedestrian autonomous positioning algorithm based on MEMS sensors and pedestrian indoor positioning method based on inertial sensors.

XIANGHONG LI was born in Weiyuan, Sichuan, China in 1987. She received the B.S. and M.S. degrees in School of Automation Science and Electrical Engineering from Beihang University in 2014. She is currently pursuing the Ph.D. degree in Signal and Information Processing at the Chinese Academy of Sciences, Beijing, P.R. China. From 2014 to now, she is a Engineer with the Academy of OPTO-Electronics, Chinese Academy of Sciences, Beijing, P.R. China. Her research interest includes position indoor, pedestrian dead reckoning (PDR), integrated navigation and information fusion. Dr. Li was a recipient of the China Satellite Navigation Conference Best Paper Award in 2016.

DONGYAN WEI received his B.S. degree in communication engineering from University of Electronic Science and Technology of China (UESTC) in 2006 and the Ph.D. degree in signal and information processing from Beijing University of Post and Telecommunication (BUPT) in 2011. He is currently a research fellow of Aero Information Research (AIR) institute, CAS (Chinese Academy of Science). He is the author of one book, more than 30 articles, and more than 20 inventions. His research interest includes indoor position, multi-sensor fusion and positioning in wireless network. Dr. Wei is the TPC member of IPIN 2019 and the deputy chair of IPIN 2020.

KEUMRYEOL LEE was born in Mokpo, Korea in 1980. He received the M.S. and Ph.D. degrees in Human Computer Interaction from Hanyang University, in 2010. From 2010 to 2014, he was a principle Researcher with the Korea telecom group. Currently, he is a Platform Business Group Director at the HANA MICRON, Korea. His current research interests include Artificial Intelligence, machine learning, open platform, Business Intelligence, IoT and Mixed Reality.

YING ZHANG is a software engineer at Google Inc., Mountain View, California. She received her Ph.D. in computer science (specialized in artificial intelligence and robotics) from the University of British Columbia, Vancouver, Canada, in 1994. Before joining Google in 2012, she worked at Xerox Palo Alto Research Center (PARC), and was a technical leader and principal investigator for various projects on distributed robotics, sensor networks, communication of mobile systems, and intelligence in social networks, funded by the Defense Advanced Research Projects Agency (DARPA). In addition, she has led programs in localization, tracking and indoor mapping, sponsored by PARC and other industry partners. Ying has published more than 80 papers and holds about 20 patents in these areas. She was the information director for ACM Transaction on Sensor Networks from 2004 to 2012, an NSF panelist for research fundings, and has served in technical program committees for more than 20 conferences. She has cofounded the workshop on Mobile Entity Localization and Tracking (MELT), which was co-located with major ACM/IEEE conferences. She is a senior member of ACM and IEEE. Ying’s current interest focuses on indoor semantic locations and efficient indoor mapping.

SO YOUNG PARK received the B.S. degree from the School of Mechanical and Electrical Control Engineering, Handong Global University, in 2013. She is currently pursuing the Ph.D. degree with the School of Mechanical and Aerospace Engineering, Seoul National University, Seoul, South Korea. Her research interests are pedestrian dead reckoning, smartphone-based indoor navigation, context awareness, and AHRS.

CHAN GOOK PARK received the B.S., M.S., and Ph.D. degrees in control and instrumentation engineering from Seoul National University, South Korea, in 1985, 1987, and 1993, respectively. He has worked with Prof. J. L. Speyer on peak seeking control for formation flight with the University of California (UCLA), Los Angeles, CA, USA, as a Postdoctoral Fellow, in 1998. From 1994 to 2003, he was with Kwangwoon University, Seoul, South Korea, as an Associate Professor. In 2003, he joined the faculty of the School of Mechanical and Aerospace Engineering, Seoul National University, South Korea, where he is currently a Professor. From 2009 to 2010, he was a Visiting Scholar with the Department of Aerospace Engineering, Georgia Institute of Technology, Atlanta, GA, USA. His current research topics include advanced filtering techniques, high precision INS, GPS/INS integration, MEMS-based pedestrian dead reckoning, and visual inertial navigation. He has served as the Chair of the IEEE AES Korea Chapter, until 2009.
STEFAN KNAUTH received a Diploma in physics from Goethe-Universität, Frankfurt, Germany, in 1996 and a Ph.D. in solid state physics from Leipzig University, Leipzig, Germany, in 2001. Since 2008 he is full professor for computer science at Stuttgart University of Applied Sciences - HFT Stuttgart, Germany. His research interests include indoor positioning, IoT, low resource embedded systems, building automation and mobile applications. From 2005 to 2008, he was a Senior Research Assistant and Deputy Head of the CEEASAR centre (now iHome-Lab) at Lucerne University of Applied Sciences, Lucerne, Switzerland. His research was focused around ambient assisted living and smart energy. Earlier stations include 3GPP system engineer for Siemens ICM/ICN, and system engineer for ISS research payloads in cooperation with ESA and Kayser-Threde (now OHB System AG).

GEORGIOS PIPELIDIS received his M.S. from Johannes Kepler University, Linz, Austria in the field of Pervasive Computing, in 2015, and B.S. from the Technical Educational Institute of Western Macedonia, Kozani, Greece. Georgios is an active member of the indoor positioning and indoor mapping community, with over twelve publications in the field and two patents. He has work experience at ILF consulting engineers in the field of 3D modeling for indoor areas and flow dynamic simulation for particle propagation, for which he received an excellence award. He is currently working on his Ph.D. at the Technical University of Munich, Munich, Germany, where he is focusing on precise localization on and Machine Learning for information fusion. Georgios is the co-founder of www.AriandeMaps.com, which is focusing on precise localization indoors.

NIKOLAOS TSIAMITROS received his B.S. from the National Technical University of Athens and M.S. degrees in software engineering from the Technical University of Munich, Munich, Germany, in 2018. He is currently pursuing his Ph.D. degree in indoor localization and information fusion from the Technical University of Munich, Munich, Germany. Since 2017 to this day, he has published four papers in the field of indoor localization, and he holds one patent in the area. He has worked at Siemens and Amazon in the field of indoor localization and mapping. Nikolaos is the co-founder of www.AriandeMaps.com, which is focusing on precise localization indoors.

TOMÁS LUNGENSTRASS Tomás Lungenstrass Poulsen received the B.S. degree in mathematical engineering from Pontificia Universidad Católica de Chile and the Ingénieur Polytechnicien (M.S. level) from École Polytechnique de Paris on 2015, as well as M.S. and Ph.D. degrees in mathematics from Pontificia Universidad Católica de Chile. Since 2016 he has been Data Scientist at Arara in Santiago, Chile, where he has focused in indoor positioning technologies and mathematical and computational tools for the digitalization of physical environments. Tomás Lungenstrass Poulsen received the B.S. degree in mathematical engineering from Pontificia Universidad Católica de Chile and the Ingénieur Polytechnicien (M.S. level) from École Polytechnique de Paris on 2015, as well as M.S. and Ph.D. degrees in mathematics from Pontificia Universidad Católica de Chile. Since 2016 he has been Lead Data Scientist at Arara in Santiago, Chile, where he has focused in indoor positioning technologies and mathematical and computational tools for the digitalization of physical environments.

JUAN PABLO MORALES Juan Pablo Morales Fernández received the Ingénieur Polytechnicien (M.S. level) degree from École Polytechnique on 2011, specializing in pure mathematics, as well as an M.S. degree in entrepreneurship from HEC Paris. He founded Arara in 2013 a company that focuses on venue analytics through WIFI and computer vision. Juan Pablo Morales Fernández received the Ingénieur Polytechnicien (M.S. level) degree from École Polytechnique on 2011, specializing in pure mathematics, as well as an M.S. degree in entrepreneurship from HEC Paris. He founded Arara in 2013 a company that focuses on venue analytics through WIFI and computer vision.

JENS TROGH received his M.S. degree in electrical engineering from Ghent University in 2014. He has been a member of the imec-WAVES group (Department of Information Technology - INTEC, Ghent University) since 2014. His research interests include location tracking in indoor and outdoor environments.

DAVID PLETS (M’16) has been a member of the imec-WAVES group (Department of Information Technology - INTEC, Ghent University) since 2006. His main research interests include optimization of wireless communication and broadcast networks, with a focus on coverage, exposure, and interference. He is also strongly involved in research on localization techniques and IoT, for both industry- and health-related applications. Since 2016, he has been an assistant professor with the department INTEC-Ghent University.
MIROSLAV OPIELA was born in Prešov, Slovakia, in 1991. He received the B.S. and the M.S. degree in computer science from P. J. Šafárik University (UPS), Košice, Slovakia where he is currently pursuing his Ph.D. degree. His research interests include smartphone-based indoor positioning and bayesian filtering.

SHI-SHEN YANG received the B.S. in electronic engineering from the Minghsin University of Science and Technology, Hsinchu, Taiwan, in 2016 and the M.S. degree in the Department of Electrical Engineering from National Ilan University in 2019. His research interests include indoor positioning, machine learning, and signal processing.

SHIH-HAU FANG is a Full Professor in the Department of Electrical Engineering, Yuan Ze University (YZU), and MOST Joint Research Center for AI Technology and All Vista Healthcare, Taiwan. Prof. Fang has received several awards for his research work, including the Young Scholar Research Award (YZU, 2012), Project for Excellent Junior Research Investigators (MOST, 2013). Outstanding Young Electrical Engineer Award (the Chinese Institute of Electrical Engineering, 2017), Outstanding Young Electrical Engineer Award (YZU, 2018), Best Synergy Award (Far Eastern Group, 2018), and YZ Outstanding Professor (Y.Z. Hsu Science and Technology Memorial Foundation, 2019). He is currently technical advisor to HyXen and PTCom Technology Company Ltd., an Associate Editor for IEICE Trans. on Information and Systems, and serves as YZU President’s Special Assistant. Prof. Fang’s research interests include artificial intelligence, mobile computing, machine learning, and signal processing. He is a senior member of IEEE.

YU TSAO received the B.S. and M.S. degrees in electrical engineering from National Taiwan University, Taipei, Taiwan, in 1999 and 2001, respectively, and the Ph.D. degree in electrical and computer engineering from the Georgia Institute of Technology, Atlanta, GA, USA, in 2008. From 2009 to 2011, he was a Researcher with the National Institute of Information and Communications Technology, Tokyo, Japan, where he was involved in research and product development of automatic speech recognition for multilingual speech-to-speech translation. He is currently an Associate Research Fellow with the Research Center for Information Technology Innovation, Academia Sinica, Taipei. His research interests include speech and speaker recognition, acoustic and language modeling, audio-coding, and biosignal processing. He was a recipient of the Academia Sinica Career Development Award, in 2017, and the National Innovation Award, in 2018.

SHIH-JYUN YE received a B.S. in the Department of Electrical Engineering from Yuan Ze University in 2017. Currently, he is pursuing his M.S. degree in the Department of Electrical Engineering, Yuan Ze University, Taiwan and serves as assistant in MOST Joint Research Center for AI Technology and All Vista Healthcare, Taiwan. His research interests include speech processing, big data, and indoor localization.

MUHAMMAD USMAN ALI received his MS degree in Computer Network Engineering from University of Engineering and Technology Taxila, Pakistan in 2008. He received his Ph.D. degree in Information and Communication Engineering from Yeungnam University, South Korea in 2019. Since 2011, He is serving as an Assistant Professor in Department of Computer Science at University of Gujrat, Pakistan. His current research interests include multisensor fusion based indoor positioning systems, Wi-Fi fingerprinting, indoor navigation and mapping, and computer vision technologies.

YING-REN CHIEN received the B.S. degree in electronic engineering from the National Yunlin University of Science and Technology, Douliu, Taiwan, in 1999, and the M.S. degree in electrical engineering and the Ph.D. degree in communication engineering from National Taiwan University, Taipei, Taiwan, in 2001 and 2009, respectively. Since 2012, he has been with the Department of Electrical Engineering, National Ilan University, Yilan, Taiwan, where he is currently a Full Professor. His research interests include adaptive signal processing theory, machine learning, Internet of Things, and interference cancellation.

DR. SOOJUNG HUR received her B.S degree from Daeug University, Gyeongbuk, Korea in 2001. She finished M.S course in Electrical Engineering from the San Diego State University of San Diego in 2004. And she received M.S and Ph.D. degree in Information and Communication Engineering from Yeungnam University, Korea in 2007 and 2012 respectively. She is working as a research professor at the Mobile Communication Laboratory, Yeungnam University. Her current research interests include performance of mobile communication, indoor/outdoor location and unmanned vehicle.
PROFESSOR YONGWAN PARK received the BE and ME degrees in Electrical Engineering from Kyungpook University, Daegu Korea, in 1982 and 1984, respectively, and his MS and Ph.D. degrees in Electrical Engineering from State University of New York at Buffalo, the USA in 1989 and 1992, respectively. He worked at California Institute of Technology as a research fellow from 1992 to 1993. From 1994 to 1996, he served as a chief researcher for developing IMT-2000 system at SK Telecom, Korea. Since 1996, he has been a professor of information and communication engineering at Yeungnam University, Korea. From January to February of 2000, he was an invited professor at NTT DoCoMo Wireless Lab., Japan. He was also a visiting professor at UC Irvine, the USA in 2003. From 2008 to 2009 he served as a director of Technology Innovation Center for wireless multimedia by the Korean government. From 2009 to March 2017, he also served as the president of GITC (Gyeongbuk Institute of IT Convergence Industry Technology), Korea. He is also serving as the chairman of 5G Forum Convergence Service Committee in Korea. His current research areas of interest include 5G systems in communication, OFDM, PAPR reduction, indoor location-based services in wireless communication and smart sensors (LIDAR) for the smart car.