GoLoco motif proteins binding to $\mathrm{G\alpha_{i1}}$: insights from molecular simulations

Kamil Khafizov

Abstract Molecular dynamics simulations, computational alanine scanning and sequence analysis were used to investigate the structural properties of the $\mathrm{G\alpha_{i1}/GoLoco}$ peptide complex. Using these methodologies, binding of the GoLoco motif peptide to the $\mathrm{G\alpha_{i1}}$ subunit was found to restrict the relative movement of the helical and catalytic domains in the $\mathrm{G\alpha_{i1}}$ subunit, which is in agreement with a proposed mechanism of GDP dissociation inhibition by GoLoco motif proteins. In addition, the results provide further insights into the role of the “Switch IV” region located within the helical domain of $\mathrm{G\alpha}$, the conformation of which might be important for interactions with various $\mathrm{G\alpha}$ partners.

Keywords MD simulations · G protein · GoLoco motif · Computational alanine scanning

Introduction

Heterotrimeric G proteins play a crucial role in fundamental signal transduction events [1]. In the inactive state, G proteins exist as stable heterotrimers consisting of the α-subunit ($\mathrm{G\alpha}$) in complex with guanine diphosphate (GDP) and a dimer formed by the tightly bound β- and γ-subunits ($\mathrm{G\beta}$ and $\mathrm{G\gamma}$). In humans, more than two dozen different $\mathrm{G\alpha}$ subunits are encoded by 16 genes, 6 $\mathrm{G\beta}$ subunits by 5 genes, and $\mathrm{G\gamma}$ subunits by 12 genes [2, 3]. Based on sequence homology and their differential biological activities, $\mathrm{G\alpha}$s are divided into four classes: $\mathrm{G\alpha_{i/o}}, \mathrm{G\alpha_{s}}, \mathrm{G\alpha_{q}}$ and $\mathrm{G\alpha_{12/13}}$ [4–6].

$\mathrm{G\alpha}$ consists of a catalytic (the Ras-like or GTPase) domain (CD) connected by two flexible linkers (linkers 1 and 2) to the six-helix bundle domain (helical domain, HD), and their interface serves as a GDP binding pocket (Fig. 1). $\mathrm{G\beta}$ is made of an N-terminal α-helix followed by a β-propeller domain, formed by seven so-called WD repeat motifs, each comprised of approximately 43 amino acids. Its overall fold is completed by the interactions of strands from WD1 and WD7. $\mathrm{G\gamma}$, which is significantly smaller than the other two subunits (it normally consists of ~70 residues), is comprised of two helices connected by a loop.

Activation of the G protein-coupled receptor (GPCR) leads to conformational changes resulting in increased affinity of the GPCR for the inactive-state G protein heterotrimer. Binding of the activated GPCR to the G protein trimer causes further changes in the latter; the main structural changes in $\mathrm{G\alpha_{i1}}$ may involve a shift of the entire HD [7] and movement of the $\alpha5$ helix [8]. These rearrangements lead to GDP release, with the formation of an “empty” state, whose experimental structural model has not yet been solved and which was shown to be transient and conformationally dynamic [9]. The active state is then

Electronic supplementary material The online version of this article (doi:10.1007/s00894-009-0516-z) contains supplementary material, which is available to authorized users.

K. Khafizov
Max Planck Institute of Biophysics,
Max-von-Laue-Str. 3,
60438 Frankfurt am Main, Germany
e-mail: kamil.khafizov@mpib-frankfurt.mpg.de
achieved by binding to GTP·Mg$^2+$, upon which, depending on the type of Gα subunit, it either dissociates from Gβγ or a subunit rearrangement takes place [7, 10–15].

Comparison of the structures of the inactive and active states of the Gα subunits for which experimental structural models are available (Gαi1 and Gαo [16–19]) show that activation is associated with conformational changes and a decrease in the flexibility of the so called Switches I–III of Gα (SI–SIII, Fig. 1). An important role for another region—the αB–αC loop [also often referred to as Switch IV (SIV)]—has been suggested [13, 14, 20]. SIV also changes its conformation upon cycling between different states in some Gα subunits [16, 21]. For example, in Gαi1, SIV is less ordered in the inactive state—the αB helix unfolds by approximately one turn and the B-factors in this region are significantly higher [17, 18]. In contrast, in Gαo, this region does not change its conformation and has similar B-factors in both states [16, 21]. Other changes in the Gα subunit in the solid-state are very small; in particular, the angle between the helical and catalytic domains in different states differs by less than 5° in crystal structures of Gαs [19].

GTP-bound Gα then activates or inhibits downstream effectors [22]. These effectors or the so-called regulators of G proteins signalling (RGS) proteins [23, 24], which may also bind to Gα·GTP, catalyse GTP to GDP hydrolysis [25–29]. The GDP-bound Gα subunit has significantly greater affinity for the Gβγ subunits than Gα in the active state, and it readily re-associates with Gβγ, restoring the initial trimeric inactive state [30].

The widely accepted model of GPCR signalling assumes that the lifetime of Gα in its GTP-bound state determines the duration of signalling from both Gα·GTP and the free Gβγ dimer. However, this assumption has been challenged with the discovery of an additional class of Gα-regulatory proteins, which contains the characteristic “GoLoco” motif [31, 32]. The GoLoco motif, which consists of 19 residues ending in a highly conserved D[E]QR triad [33, 34], it is found in several diverse proteins, e.g. mammalian RGS12 and RGS14, Purkinje cell protein-2, Rap1GAP, GSPM2/LGN and others [31, 35]. GoLoco motif proteins bind specifically to a certain-type of Gα subunit in their monomeric inactive (GDP-bound) state, preventing GDP dissociation, and thus serving as GDP dissociation inhibitors—GDI [31, 34, 36–39]. Some GoLoco motif proteins (e.g. AGS3, RGS12, RGS14 and Pins) exhibit activity solely on Gαo subunits, whereas some others (e.g. Pcp2, Rap1GAP, LGN) also bind to and act on Gαi1, Gαs, Gαt subunits, but do not interact with Gαo subunits [31, 34, 36–39]. GoLoco motif containing RGS12 and RGS14 proteins show sub-selectivity within the GoLoco-subunit family, interacting with Gαi1 and Gαb, but not with Gαt [38, 39, 43]. The subunit selectivity of Gα towards GoLoco motif has been shown to correlate strongly with the HD2; replacement of the HD of Gαo with that of Gαi1 results in potent GDI activity towards this chimeric Gα subunit. The reverse chimeric protein, with the HD of Gαi1 substituted by that of Gαo, exhibited decreased GDI activity [32]. A more recent study using chimeric Gαi1 and Gαo subunits identified the αA–αB and αB–αC (SIV) loops within the HD as the key regions involved in GoLoco motif selectivity [43]. Skiba et al. [44] also found that SIV determines Gα selectivity for RGS proteins. Finally, a residue within the HD of Gαi1, N149, was identified experimentally as being crucial for the binding of Gαi1 to GoLoco motif proteins [45].

Two atomic-resolution structures of Gαi1·GDP bound to the GoLoco motif peptide from RGS14 protein [32, 46] indicate that the peptide makes extensive contacts with both the helical and catalytic domains of Gαi1, forming a sort of “bridge” between these domains (Fig. 2). Comparison of the structures of Gαi1 in the trimeric inactive state [18] and in the Gαi1/GoLoco complex [46] clearly shows conformational differences in several regions of Gαi1, restricted mostly to Switches I–IV (Fig. S1), which suggests that structural changes within these important regions of Gα are needed to discriminate between GoLoco motif proteins and

1 The “GoLoco” term arises from “Gαi1-Loco” interaction.
2 HD is the most variable region among Gαs.
3 For a comprehensive analysis of Gαi1/GoLoco motif interactions, the reader is referred to references [31, 45].
Gβγ. These structures also show that Gα·GDP/GoLoco interactions would exclude Gβγ binding, as binding areas on Gα for GoLoco proteins and Gβγ overlap [34, 40]. Thus, formation of a Gα·GDP/GoLoco complex may allow for continued Gβγ-effector signalling in the absence of receptor-catalysed Gα·GTP formation. In addition, there is evidence that the Gαi·GDP/GoLoco complex, rather than Gαi·GTP, may represent the active specie in some cases [47–50], which is consistent with a model of receptor-independent activation of G protein signalling by GoLoco proteins [51]. Also, such a complex might be required for the nucleotide exchange (GEF) activity of RIC8 [47, 49, 52].

A mechanism for GoLoco-mediated GDI activity has been proposed [31, 32]: GPCR activation would change the orientation of the HD with respect to the CD, thus loosening Gα’s grip on the nucleotide and allowing it to dissociate [7]. I would like to remark that, in agreement with previous studies [53, 54], a large-scale motion of the two Gα domains in the inactive trimeric state of Gαi1β1γ2 has been observed recently in molecular dynamics (MD) simulations, while no significant motion in the simulation of the active state of Gαi1 has been found [20]. This suggests that the relative movement of domains might indeed be required for GDP release, while GTP-bound Gα is more conformationally stable [20]. Thus, to inhibit GDP release, the GoLoco peptide may act as a Gα clamp to restrict the movement of the two Gα domains relative to each other in the monomeric GDP-bound state [31]. In addition, the R516 residue within the conserved “D[E]QR” triad of the GoLoco motif makes direct contact with the α- and β-phosphate groups of GDP, thus stabilising the bound nucleotide, which also contributes to GDI activity [45].

In this work, computational alanine scanning, sequence analysis and MD simulations are applied to address several issues related to the binding of GoLoco motif proteins to Gα subunits. A possible rationale for the differential behaviour (subunit dissociation/rearrangement) of various Gαs during activation/deactivation processes is discussed.

Methods

Model structures

The X-ray structure of human Gαi1 bound to the GoLoco motif-containing peptide from the Gα regulator, RGS14 protein, at 2.2 Å resolution (PDB ID: 2OM2 [46]) was used (Fig. 2). Residues from the N- and C-termini (1–29 and 350–354) of Gαi1 are not resolved in the crystal structure and were not included in the simulations. In addition, the minimal effect of the truncation of terminal residues on G protein complex stability has been demonstrated recently in electrostatic calculations [20]. For the GoLoco motif peptide, only the 36 residues present in the X-ray structure (496–531) were used. For the MD simulations of isolated Gαi1 the same X-ray structure [46] was used but the GoLoco motif peptide was removed manually.

Force field and setup for MD simulations

The all-atom Charmm27 force field [55, 56] was used for proteins, the GDP molecule and ions. To neutralise the overall charge of the systems and to keep the salt concentration equal to ~0.1 M, 25 sodium and 17 chloride ions were added for the Gαi1·GDP/GoLoco peptide system using VMD plugin [57], and 25 sodium and 20 chloride ions for the Gαi1·GDP system. The systems were solvated with ~23,000 TIP3P water molecules [58]. The water box dimensions after the equilibration stages were ~86×100×87 Å and ~86×98×89 for the GoLoco-bound and the empty states of Gαi1, respectively.
Residues H57, H188, H322 at Gαi1 and H513 at RGS14 were protonated at their δc atoms, while H195, H213 and H244 at Gαi1 were protonated at their δs atoms based on the pKa calculations performed on the X-ray model with the program MCCE2.0 [59] and on visual inspection of the crystal structure. Based on the same calculations, residues E58 and E245 on Gαi1 were assumed to be neutral.

All the MD calculations were performed using the program NAMD [60]. Periodic boundary conditions were employed. A real-space cutoff of 10 Å was used for both van der Waals and long-range electrostatics, and the distance at which the switching function begins to take effect was 8 Å. The time step was 2 fs. The SHAKE algorithm [61] was used to fix all bond lengths. Constant temperature (300 K) was set with a Langevin thermostat [62], with a coupling coefficient of 0.2 ps⁻¹. A Nosé-Hoover Langevin barostat [63] was used to maintain constant pressure with an oscillation period of 200 fs and the damping time scale set to 50 fs.

Two steepest descent energy minimisation steps were performed: (1) solvent, ions and all hydrogen atoms of the protein and GDP molecules; (2) the whole system. This was followed by (3) 1 ns of restrained MD in which all non-hydrogen atoms of the protein and ligand molecules were constrained to their initial position using springs with force constants 1 kcal mol⁻¹ Å⁻², (4) 1 ns of restrained MD in which all Ca-atoms of protein molecules as well as all non-hydrogen atoms of GDP were constrained using the same force constant as in (3). The systems were then released to 35 ns of unrestrained MD in which coordinates were saved every 1 ps.

Analysis of MD trajectories

MD trajectories were analysed with Gromacs [64, 65], VMD [57] and small scripts. The average values and standard deviations (SD) for the root mean square deviation (RMSD; Table 2), as well as the root mean square fluctuation (RMSF) values, were calculated by excluding the first 10 ns of MD trajectories. RMSFs were calculated separately for each domain of Gαi1. RMSD values were calculated by excluding the first 10 ns of MD trajectories. RMSFs were calculated by excluding the first 10 ns of MD trajectories. RMSD values were calculated by excluding the first 10 ns of MD trajectories. RMSFs were calculated separately for each domain of Gαi1, except for calculations for the SI region (located partially on linker 1) for which the entire Gαi1 was used. The large scale (essential) modes were obtained by diagonalising the Cα atom’s covariance matrix [66, 67] and analysed with the program DynDom [68, 69]. As the RMSD of Gαi1 increased during the first ~10 ns in the simulation where the GoLoco peptide was removed (see Model structures), this time-interval of MD trajectories for the essential dynamics analysis was excluded in both cases.

Computational alanine scanning

Mutations destabilising Gαi1/RGS14 protein interactions were identified by computational alanine scanning using the Robetta server [70, 71]. This procedure allows for a quick (albeit very approximate) estimate of the changes in non-covalent interaction free energies between two proteins upon mutation of residues at the interface to alanines (see [71] for details of the computational alanine scanning procedure and the free energy function used for calculating the effects of the alanine mutation on the binding free energy of a protein–protein complex). Hot spots are identified as those residues at the interface whose mutation to alanine causes a free energy loss greater than 1 kcal mol⁻¹. Calculations were performed on the X-ray structure [46] along with ten snapshots extracted from the MD trajectory at equal (3.5 ns) time-intervals. Only residues for which ΔΔGbind values were larger than 1 kcal mol⁻¹ are reported.

Sequence alignment

The sequences of representative human Gα subunits were aligned using the program T-Coffee [72]. The multiple sequence alignment was visualised with Jalview2.3 [73].

Results and discussion

Computational alanine scanning and sequence analysis

Computational alanine scanning of the Gαi1·GDP/GoLoco peptide complex was performed to identify the residues that are most important for stabilising Gαi1/GoLoco interactions (Table 1). Because of the aforementioned importance of the Gα HD for the specificity for GoLoco motif proteins [32], conservation/substitution of hot-spot residues within the HD is likely to be one of the key factors determining selectivity. Alignment of sequences of Gα subunits (Fig. S2) revealed that all the hot-spot residues within the CD are conserved or conservatively mutated, while the degree of conservation of these residues within the HD is much lower (Table 1; Fig. S2). In the HD, only residue N76 is present in all Gα subunits. Other residues are usually conserved only within the Gαi/o family, except for some positions in Gαo. Residue F108, located near SIV, and which is present in Gα1/2/3 subunits but not in Gαo, might be of particular interest as it may help to rationalise differences in specificities of Gαi and Gαo subunits to some GoLoco motif proteins [32, 40]. However, direct experimental validation is definitely needed before drawing any final conclusion from this observation. Residues within the HD that are not conserved among Gαs and show very
large changes in $\Delta \Delta G_{\text{bind}}$ (i.e. more than 4 kcal mol$^{-1}$)—Q79 and N149—are of special interest as they might be the main determinants of selectivity of GoLoco motifs for specific Gα subunits. Consistently, as mentioned in the Introduction, mutation of N149 to isoleucine did indeed reveal the crucial role played by this residue in selectivity of GoLoco motif proteins towards Gα_5 [45]. Thus, it would be interesting to know how mutation of Q79 would affect binding of GoLoco peptides.

R86 in Gα_{i1} is another interesting residue: in recent MD simulations of the inactive state of the G$\alpha_{i1}/\beta_1 \gamma_2$ trimer, residues E115 and E116 within SIV were attracted by R86 (causing motion of SIV along the α_A helix), while no significant changes were observed in the empty state trimer, despite the same initial conformation of the simulated system [20]. In addition, a very different conformation of this region in the inactive vs active states in Gα_{i1} also accounts for the lower mobility of SIV in the latter [20]. It is also interesting to note that residues R86 and E116 in Gα_{i1} have been identified recently (using Rosetta [74]) as residues whose mutation to F and L residues, respectively, may enhance binding of the GoLoco motif-containing RGS14 protein [46]. The E116L mutation has also been tested experimentally, indeed yielding an increase in the affinity of Gα_{i1} towards RGS14 [46]. The latter result is not surprising because (1) E116 does not seem to form specific interactions with residues of RGS145, and (2) the arginine residues at the position of R86 are also present in some Gαs that do not bind GoLoco motif proteins, e.g. G$\alpha_{q/11/14}$. Thus, differences in sequence, conformation and mobility of SIV in various Gαs might be responsible for differences in the binding to GoLoco motif-containing proteins.

It has already been noted [75] that the N-termini of several Gγ subunits share some sequence similarity with the GoLoco motif; specifically, most of them possess “D[E]Q” residues. Interestingly, the glutamine residue (Q515) in the conserved “D[E]QR” GoLoco triad is the most important one for binding to Gα_{i1} ($\Delta \Delta G_{\text{bind}}=5.6$ kcal mol$^{-1}$; see Table 1). FRET and BRET experiments [7, 13, 14] indicated that the N-terminus of Gγ approaches, and may bind to, the HD of some Gα subunits upon activation. Residues within the HD were also shown to be responsible for different structural changes (subunit rearrangements/dissociations) occurring during the activation of various Gαs [13]. All these factors suggest that residues in the HD, and in particular within SIV, might also be responsible for binding of the N-termini of Gγ subunits, explaining the differential behaviour of various Gαs during the activation process (subunit dissociations/rearrangements) [13–15].

\begin{table}[h]
\centering
\begin{tabular}{llllllll}
\hline
Residue & $\Delta \Delta G_{\text{bind}}$ (kcal/mol), X-ray & $\Delta \Delta G_{\text{bind}}$ (kcal/mol), MD & Conservation & Residue & $\Delta \Delta G_{\text{bind}}$ (kcal/mol), X-ray & $\Delta \Delta G_{\text{bind}}$ (kcal/mol) MD \\
\hline
E43 & 4.2 & 3.1±2.0 & N in Gα_5 & I497 & 0.7 & 1.1±0.2 \\
N76 & 4.1 & 2.6±0.6 & Conserved & L500 & 1.6 & 1.7±0.3 \\
Q79 & 5.5 & 5.2±0.7 & Not conserved & V501 & 1.4 & 1.0±0.2 \\
R86 & 2.8 & 1.1±0.2 & Not conserved & L503 & 1.8 & 1.8±0.4 \\
R105 & 1.9 & 0.8±0.4 & Not conserved & L504 & 2.2 & 2.3±0.1 \\
F108 & 2.8 & 2.5±0.2 & Not conserved & N505 & 3.0 & 2.8±0.9 \\
N149 & 4.4 & 3.8±0.8 & Not conserved & V507 & 1.2 & 1.7±0.1 \\
R178 & 3.4 & 3.0±1.1 & Conserved & Q508 & 1.9 & 3.0±0.5 \\
R208 & 1.4 & 0.5±0.4 & Conserved & S510 & 0.0 & 2.6±2.4 \\
W211 & 3.0 & 3.6±0.5 & Conserved & Q515 & 5.6 & 4.2±0.9 \\
R242 & 0.9 & 2.3±1.2 & 1 in G$\alpha_{12/13}$ & R516 & 3.2 & 3.1±1.3 \\
L249 & 2.1 & 2.0±0.2 & & L518 & 1.2 & 1.6±0.4 \\
\hline
\end{tabular}
\end{table}

\begin{footnotesize}
\footnote{In the X-ray structure [46], the distance between atoms OD1@E116 on Gα_{i1} and N@L519 on RGS14 is ~3.6 Å.}
\end{footnotesize}
this context, it would be very interesting to check experimentally how mutations of R86 and E116, e.g. to alanines, would affect the binding of Ga to GoLoco motif proteins, as well as the conformational changes in the heterotrimeric G protein complex upon activation by GPCR.

MD simulations of Ga11-GDP/GoLoco motif complex

MD simulations of the Ga11-GDP/GoLoco motif peptide in solution were performed to investigate the structural properties of this quaternary complex. The structure of the complex appears to be equilibrated after ~5 ns (Fig. S3). All average RMSD values and SDs are summarised in Table 2. The RMSD of the Ga11-GDP/GoLoco peptide complex is similar to that of the RMSD of Ga1 alone, indicating the stability of the quaternary structure of the complex (Fig. S3). Virtually all important interactions between Ga11 and the GoLoco peptide are retained, as shown by the computational alanine scanning performed on ten snapshot-structures extracted at equal (3.5 ns) time-intervals from the MD trajectory (Table 1). The GoLoco peptide, however, was rather mobile, showing the highest SD among all the structural segments analysed, which is not surprising as its regular secondary structure content is significantly lower than that of Ga11. From Table 2 it is also clear that individual domains of Ga11 are more stable than the whole subunit, leading to the conclusion that there might be a relative domain motion. The GDP molecule was very stable, maintaining most of the interactions with the protein seen in the X-ray structure (Table S1).

To check if there is indeed any significant motion between the domains of Ga11, an essential dynamics analysis [66, 67] was performed on the MD trajectory of Ga11, and two snapshots of Ga1 were extracted that are separated maximally in the direction of the first eigenvector. The program DynDom [68, 69] was used to analyse domain motion in Ga11. Consistent with previous computational studies [20, 54], large-scale motion of Ga11 involves the relative movement of HD and CD: these domains bend around residues 62–64 and 175–177, located very close to linkers 1 and 2, and the bending angle is ~13°.

As already discussed [7, 54], such a motion may play a role in opening the route for GDP release since the HD might be displaced after activation by GPCR.

MD simulations of Ga11-GDP

To test the hypothesis that GoLoco motif proteins may restrict the relative motion of two Ga domains, inhibiting GDP release [31], we performed MD simulations of the Ga11-GDP complex in the absence of the GoLoco peptide (see Methods). A longer simulation time (~10 ns) was needed to get the complex equilibrated, and in this case the RMSD values for all structural segments were higher (Table 2; Fig. S3).

Functionally important regions SII–IV were more mobile here and underwent significant structural changes (Figs. 3, S4). In particular, within SII, the largest difference in RMSF values between two simulations was found for residue Q204. This residue has been shown to be very important both for the intrinsic GTPase activity of Ga [76, 77] and for binding to Gβγ [20]. Another large difference is found for SIV (Figs. 3, S4): the N-terminal part of the αA helix became partially unwound by ~1 turn (residues 111–114) and moved along the αA helix, leading to a conformation similar to that found in previous MD simulations of the Ga11β1γ2 trimer [20]. As in the previous simulation, the GDP molecule was also stable here (Table S1). However, some local changes were observed in the binding pocket due to the removal of the GoLoco peptide. In particular, the side chain of the catalytically important R178 residue lost its interaction with the side chain of residue E43 near the beginning of the simulation and moved towards a region previously occupied by R516 of the GoLoco protein (Fig. S5). This results in a stable interaction of R178 with the phosphate groups of the GDP molecule (Table S1; Fig. S5).

The aim here was also to identify the domain motion of Ga in order to compare the results of the two simulations: a similar large-scale motion was identified for the domains of Ga11, with bending residues being 59–62 and 178–183, which are located on linkers 1 and 2. The bending angle is

Table 2 The average root mean square deviation (RMSD) and standard deviation (SD) values calculated on the MD trajectories of the Ga11/GoLoco complex and those of isolated Ga11. The first 10 ns of the trajectories were excluded from the analysis. CD Catalytic domain

	Ga11/GoLoco complex	Isolated Ga11
Ga11/GoLoco complex	2.2±0.1	–
Ga11	2.2±0.1	3.2±0.2
GoLoco peptide	2.2±0.3	–
CD	1.7±0.1	2.2±0.1
HD	1.8±0.1	2.3±0.3
HD excluding SIV	1.1±0.1	1.6±0.2
HD excluding SIV upon superposition of CD	2.8±0.4	4.8±0.6

© Springer
~21°, larger than in the previous case. This clearly indicates that binding of the GoLoco peptide may indeed restrict the movement of domains in Gαi1, which helps confer a GDI activity.

Conclusions

Sequence analysis, computational alanine scanning and MD simulations of the Gαi1·GDP/GoLoco peptide complex and Gαi1·GDP alone were performed to investigate molecular aspects of GoLoco motif proteins binding to Gαi1. It was found that the GoLoco motif peptide, when bound to Gαi1·GDP, restricts the relative domain motion of Gαi1. Domain motion has been proposed to be required for the release of GDP after binding to activated GPCR [7, 78], our computational results confirm a proposed mechanism of GDI activity of GoLoco-motif-containing proteins via stabilisation of the relative positions of two Gα domains [31]. Clearly, our results do not contradict the notion that GoLoco proteins prevent GDP dissociation also by direct interaction with a bound nucleotide and/or by stabilising the positions of several side chains of Gαi1 that are involved directly in the binding of GDP [32, 45]. Instead, both mechanisms might complement each other, as already pointed out by Kimple et al. [31]. Further computational studies are needed to investigate the effect of removal of the GoLoco peptide on the strength of GDP binding. In addition, upon removal of the GoLoco motif peptide, significant structural changes in functionally important regions (Switches II–IV) were observed. SIV, whose conformation differs in various states only in some Gαs [16–18, 21], and which has been proposed to be responsible for different structural changes in the G protein hetero-trimers (Gα/Gβγ subunit dissociations/rearrangements [13, 14]), was very mobile in the simulation of isolated Gα, while it was restricted in its ability to move when the GoLoco peptide was bound. Since it has already been observed that the N-termini of several Gγ subunits share some homology with the GoLoco motif and the N-termini of Gγ were proposed to bind within the interface between SIV and the α helix [75], it may be concluded that several residues within the HD (Table 1), especially those located close to SIV, which are important for binding of the GoLoco peptide, might also be responsible for the differential conformational changes in the trimer upon activation. The latter, of course, must be verified experimentally.

Acknowledgements The author acknowledges Thomas J. Crisman and Claudio Anselmi for critical reading of the manuscript.
References

1. Neer EJ (1995) Heterotrimeric G-proteins: organizers of transmembrane signals. Cell 80:249–257
2. Downes GB, Gautam N (1999) The G protein subunit gene families. Genomics 62:544–552
3. Landry Y, Niederhoffer N, Sick E et al (2006) Heptahelical and other G-protein-coupled receptors (GPCRs) signaling. Curr Med Chem 13:51–63
4. Simon MI, Strathmann MP, Gautam N (1991) Diversity of G proteins in signal transduction. Science 252:802–808
5. Hamm HE (1998) The many faces of G protein signaling. J Biol Chem 273:669–672
6. Offermanns S (2003) G-proteins as transducers in transmembrane signalling. Prog Biophys Mol Biol 83:101–110
7. Gales C, van Durn J, Schaal S et al (2006) Probing the activation-promoted structural rearrangements in preassembled receptor-G protein complexes. Nat Struct Mol Biol 13:778–786
8. Oldham WM, Van EN, Preininger AM et al (2006) Mechanism of the receptor-catalyzed activation of heterotrimeric G proteins. Nat Struct Mol Biol 13:772–777
9. Abdulaev NG, Ngo T, Ramon E et al (2006) The receptor-bound “empty pocket” state of the heterotrimeric G-protein alpha-subunit is conformationally dynamic. Biochemistry 45:12986–12997
10. Rebois RV, Warner DR, Basi NS (1997) Does subunit dissociation necessarily accompany the activation of all heterotrimeric G proteins? Cell Signal 9:141–151
11. Levitzki A, Klein S (2002) G-protein subunit dissociation is not an integral part of G-protein action. Chembiochem 3:815–818
12. Klein S, Reuveni H, Levitzki A (2000) Signal transduction by a nondissociative heterotrimeric yeast G protein. Proc Natl Acad Sci USA 97:3219–3223
13. Bunemann M, Frank F, Lohse MJ (2003) Gi protein activation in intact cells involves subunit rearrangement rather than dissociation. Proc Natl Acad Sci USA 100:16077–16082
14. Frank M, Thurner L, Lohse MJ et al (2005) G[alpha](i)-specific region. J Biol Chem 280:24584–24590
15. Digby GJ, Lober RM, Sethi PK et al (2006) Some G protein heterotrimers physically dissociate in living cells. Proc Natl Acad Sci USA 103:17789–17794
16. Noel JP, Hamm HE, Sigler PB (1993) The 2.2 A crystal structure of transducin-alpha complexed with GTP gamma S. Nature 366:654–663
17. Coleman DE, Lee E, Mixon MB et al (1994) Crystallization and preliminary crystallographic studies of Gi alpha 1 and mutants of Gi alpha 1 in the GTP and GDP-bound states. J Mol Biol 238:630–634
18. Wall MA, Coleman DE, Lee E et al (1995) The structure of the G protein heterotrimer Gi alpha 1 beta 1 gamma 2. Cell 83:1047–1058
19. Wall MA, Posner BA, Sprang SR (1998) Structural basis of activity and subunit recognition in G protein heterotrimer. Structure 6:1169–1183
20. Khafizov K, Lattanzi G, Carlion P (2008) G protein inactive and active forms investigated by simulation methods. Proteins. 75:919–930, doi:10.1002/pro.22303
21. Lambright DG, Sondek J, Bohm A et al (1996) The 2.0 A crystal structure of a heterotrimeric G protein. Nature 379:311–319
22. Kristiansen K (2004) Molecular mechanisms of ligand binding, signaling, and regulation within the superfamily of G-protein-coupled receptors: molecular modeling and mutagenesis approaches to receptor structure and function. Pharmacol Ther 103:21–80
23. Dohlman HG, Thorne J (1997) RGS proteins and signaling by heterotrimeric G proteins. J Biol Chem 272:3871–3874
24. Ross EM, Wilkie TM (2000) GTPase-activating proteins for heterotrimeric G proteins: regulators of G protein signaling (RGS) and RGS-like proteins. Annu Rev Biochem 69:795–827
25. Arshavsky YV, Bownds MD (1992) Regulation of deactivation of photoreceptor G protein by its target enzyme and cGMP. Nature 357:416–417
26. Berstein G, Blank JL, Jhon DY et al (1992) Phospholipase C-beta 1 is a GTPase-activating protein for Gq/11, its physiologic regulator. Cell 70:411–418
27. Scholich K, Mulliken JB, Wittph C et al (1999) Facilitation of signal onset and termination by adenylyl cyclase. Science 283:1328–1331
28. Tesmer JJ, Sunahara RK, Gilman AG et al (1997) Crystal structure of the catalytic domains of adenylyl cyclase in a complex with Gsalpha.GTPgammaS. Science 278:1907–1916
29. Slepk KC, Kercher MA, He W et al (2001) Structural determinants for regulation of phosphodiesterase by a G protein at 2.0 A. Nature 409:1071–1077
30. Gilman AG (1987) G proteins: transducers of receptor-generated signals. Annu Rev Biochem 56:615–649
31. Kimple RJ, Willard FS, Siderovsky DP (2002) The GoLoco motif: heralding a new tango between G protein signaling and cell division. Mol Interv 2:88–100
32. Kimple RJ, Kimple ME, Betts L et al (2002) Structural determinants for GoLoco-induced inhibition of nucleotide release by Galpha subunits. Nature 416:878–881
33. Siderovsky DP, verse-Pierluissi M, De Vries L M, De Vries L (1999) The GoLoco motif: a Galpha/beta binding motif and potential guanine-nucleotide exchange factor. Trends Biochem Sci 24:340–341
34. Takesono A, Cismowski MJ, Ribas C et al (1999) Receptor-independent activators of heterotrimeric G-protein signaling pathways. J Biol Chem 274:33202–33205
35. Ponting CP (1999) Raf-like Ras/Rap-binding domains in R. J Mol Med 77:695–698
36. Higashijima T, Ferguson KM, Sternweis PC et al (1987) The effect of activating ligands on the intrinsic fluorescence of guanine nucleotide-binding regulatory proteins. J Biol Chem 262:752–756
37. Cerione RA (1994) Fluorescence assays for G-protein interactions. Methods Enzymol 237:409–423
38. De Vries L, Fischer T, Tronchere H et al (2000) Activator of G protein signaling 3 is a guanine dissociation inhibitor for Galpha i subunits. Proc Natl Acad Sci USA 97:14364–14369
39. Kimple RJ, De Vries L, Tronchere H et al (2001) RGS12 and RGS14 GoLoco motifs are G alpha(i) interaction sites with guanine nucleotide dissociation inhibitor Activity. J Biol Chem 276:29275–29281
40. Natochin M, Gasimov KG, Artemyev NO (2001) Inhibition of GDP/GTP exchange on G alpha subunits by proteins containing G-protein regulatory motifs. Biochemistry 40:5322–5328
41. Kimple RJ, Willard FS, Siderovsky DP (2004) Purification and in vitro functional analyses of RGS12 and RGS14 GoLoco motif peptides. Methods Enzymol 390:416–436
42. McCudden CR, Willard FS, Kimple RJ et al (2005) G alpha selectivity and inhibitor function of the multiple GoLoco motif protein GPSM2/LGN. Biochim Biophys Acta 1745:254–264
43. Mittal V, Linder ME (2004) The RGS14 GoLoco domain of Galphat determines specific interaction with regulator of G protein signaling 9. J Biol Chem 279:46772–46778
44. Skiba NP, Yang CS, Huang T et al (1999) The alpha-helical domain of Galphat determines specific interaction with regulator of G protein signaling 9. J Biol Chem 274:8770–8778
45. Willard FS, Zheng Z, Guo J et al (2008) A point mutation to Galphai selectively blocks GoLoco motif binding: direct evidence for Galphai.Goloco complexes in mitotic spindle dynamics. J Biol Chem 283:36698–36710
46. Sammond DW, Eletr ZM, Purbeck C et al (2007) Structure-based protocol for identifying mutations that enhance protein-protein binding affinities. J Mol Biol 371:1392–1404
47. Hess HA, Roper JC, Grill SW et al (2004) RGS-7 completes a receptor-independent heterotrimeric G protein cycle to asymmetrically regulate mitotic spindle positioning in C. elegans. Cell 119:209–218
48. Siderovski DP, Willard FS (2005) The GAPs, GEFs, and GDIs of heterotrimeric G-protein alpha subunits. Int J Biol Sci 1:51–66
49. Wilkie TM, Kinch L (2005) New roles for Galpha and RGS proteins: communication continues despite pulling sisters apart. Curr Biol 15:R843–R854
50. Gonczy P (2008) Mechanisms of asymmetric cell division: flies and worms pave the way. Nat Rev Mol Cell Biol 9:355–366
51. Willard FS, Kimple RJ, Siderovski DP (2004) Return of the GDI: the GoLoco motif in cell division. Annu Rev Biochem 73:925–951
52. Tall GG, Gilman AG (2005) Resistance to inhibitors of cholines- terase 8A catalyzes release of Galphai-GTP and nuclear mitotic apparatus protein (NuMA) from NuMA/LGN/Galphai-GDP complexes. Proc Natl Acad Sci USA 102:16584–16589
53. Mello LV, van Aalten DM, Findlay JB (1998) Dynamic properties of the guanine nucleotide binding protein alpha subunit and comparison of its guanosine triphosphate hydrolase domain with that of ras p21. Biochemistry 37:3137–3142
54. Ceruso MA, Periole X, Weinstein H (2004) Molecular dynamics simulations of transducin: interdomain and front to back communication in activation and nucleotide exchange. J Mol Biol 338:469–481
55. MacKerell AD, Bashford D, Bellott M et al (1998) All-atom empirical potential for molecular modeling and dynamics studies of proteins. J Phys Chem B 102:3586–3616
56. MacKerell AD, Feig M, Brooks CL (2004) Extending the treatment of backbone energetics in protein force fields: Limitations of gas-phase quantum mechanics in reproducing protein conformational distributions in molecular dynamics simulations. J Comput Chem 25:1400–1415
57. Humphrey W, Dalke A, Schulten K (1996) VMD: visual molecular dynamics. J Mol Graph 14:33–38
58. Jorgensen WL, Chandrasekhar J, Madura JD et al (1983) Comparison of simple potential functions for simulating liquid water. J Chem Phys 79:926–935
59. Alexov EG, Gunner MR (1997) Incorporating protein conformational flexibility into the calculation of pH-dependent protein properties. Biophys J 72:2075–2093
60. Phillips JC, Braun R, Wang W et al (2005) Scalable molecular dynamics with NAMD. J Comput Chem 26:1781–1802
61. Ryckaert JP, Ciccotti G, Berendsen HJC (1977) Numerical–Integration of Cartesian Equations of Motion of A System with Constraints - Molecular-Dynamics of N-Alkanes. J Comput Phys 23:327–341
62. Adelman SA, Doll JD (1976) Generalized Langevin equation approach for atom-solid-surface scattering—general formulation for classical scattering off harmonic solids. J Chem Phys 64:2375–2388
63. Feller SE, Zhang YH, Pastor RW et al (1995) Constant-pressure molecular-dynamics simulation—the Langevin piston method. J Chem Phys 103:4613–4621
64. Berendsen HJC, Vanderspoel D, Vandrunen R (1995) Gromacs—a message-passing parallel molecular-dynamics implementation. Comput Phys Commun 91:43–56
65. Lindahl E, Hess B, van der Spoel D (2001) GROMACS 3.0: a package for molecular simulation and trajectory analysis. J Mol Model 7:306–317
66. Garcia AE (1992) Large-amplitude nonlinear Motions in proteins. Phys Rev Lett 68:2696–2699
67. Amadei A, Linsen ABM, Berendsen HJC (1993) Essential dynamics of proteins. Proteins: Struct Funct Genet 17:412–425
68. Hayward S, Berendsen HJ (1998) Systematic analysis of domain motions in proteins from conformational change: new results on citrate synthase and T4 lysozyme. Proteins 30:144–154
69. Hayward S, Lee RA (2002) Improvements in the analysis of domain motions in proteins from conformational change: DynDom version 1.50. J Mol Graph Model 21:181–183
70. Kortemme T, Baker D (2002) A simple physical model for binding energy hot spots in protein–protein complexes. Proc Natl Acad Sci USA 99:14116–14121
71. Kortemme T, Baker D (2004) Computational design of protein–protein interactions. Curr Opin Chem Biol 8:91–97
72. Notredame C, Higgins DG, Heringa J (2000) T-Coffee: a novel method for fast and accurate multiple sequence alignment. J Mol Biol 302:205–217
73. Clamp M, Cuff J, Searle SM et al (2004) The Jalview Java alignment editor. Bioinformatics 20:426–427
74. Rohl CA, Strauss CE, Misura KM et al (2004) Protein structure prediction using Rosetta. Methods Enzymol 383:66
75. Cherfils J, Chabre M (2003) Activation of G-protein Galpha subunits by receptors through Galpha-Gbeta and Galpha-Ggamma interactions. Trends Biochem Sci 28:13–17
76. Kleuss C, Raw AS, Lee E et al (1994) Mechanism of GTP hydrolysis by G-protein alpha subunits. Proc Natl Acad Sci USA 91:9828–9831
77. Thomas CJ, Du X, Li P et al (2004) Uncoupling conformational change from GTP hydrolysis in a heterotrimeric G protein alpha-subunit. Proc Natl Acad Sci USA 101:7560–7565
78. Rondard P, Iiri T, Srinivasan S et al (2001) Mutant G protein alpha subunit activated by Gbeta gamma: a model for receptor activation? Proc Natl Acad Sci USA 98:6150–6155