REVIEW

Advances in understanding itching and scratching: a new era of targeted treatments [version 1; referees: 2 approved]

Kristen M. Sanders¹, Leigh A. Natt kemper¹, Gil Yosipovitch²

¹Department of Dermatology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140, USA
²Department of Dermatology and Itch Center, Miller School of Medicine, University of Miami, Miami, FL, USA

Abstract
Chronic itch is a significant health burden with few effective treatments. As such, itch researchers seek to understand the mechanisms behind itch and to find potential targets for treatment. The field of itch research is dynamic, and many advances have been made so far this decade. In particular, major steps forward include the identification of new peripheral and central itch mediators and modulators, the discovery of greater roles for immune cells and glia in itch transmission, and a focus on the brain processing of itching and scratching. Finally, several new therapeutic interventions for itch have shown success in clinical trials.
Introduction

Itch, or pruritus, affects between 8 and 38% of the general population worldwide and is a common feature of diseases such as atopic eczema, psoriasis, and uremia. Despite the prevalence of itch and its impact on quality of life, there are still many aspects of itch signal transmission that are unexplained, and treatments for chronic itch are lacking. However, the field of pruritus research is constantly changing and growing, and many areas of discovery have taken root in the six years since our previous F1000 report. There have been many exciting new finds in itch research in both humans and animal models that have both given us insight into the mechanisms of itch signaling and informed advances in treatment.

Peripheral mediators of itch

Many recent studies have worked to define the roles of various itch mediators and receptors in the skin. Of these, the identification of an itch-specific population of neurons represents a major advance in the itch field. Mas-related G protein-coupled receptor A3 (MrgrpA3) was previously identified as a receptor for non-histaminergic itch, as it is activated by chloroquine (and not histamine) administration. Building on this research, Han et al. identified an itch-specific population of MrgrpA3-expressing neurons in the dorsal root ganglion (DRG). These neurons exclusively innervate the epidermis, respond to multiple pruritogens, and form synapses with gastrin-releasing peptide receptor-positive (GRPR⁺) neurons in the dorsal horn of the spinal cord. Crucially, ablation of these neurons reduces scratching in response to pruritogen injection without altering pain responses.

Research into other members of the Mrgrp family in animal models has also been fruitful. The pruritogenic peptide SLIGRL (Ser-Leu-Ile-Gly-Arg-Leu) activates MrgrpC11, while β-alanine induces itch through MrgrpD. Both MrgrpA3 and MrgrpD neurons were found to be hyperexcitable in a mouse model of contact dermatitis, suggesting a role for these neurons in chronic itch as well as acute itch. More importantly, some of these results have been validated in human and monkey studies.

Several members of the thermosensitive transient receptor potential (TRP) channel superfamily are expressed in normal human skin and have been implicated in itch. TRP vanilloid 1 (TRPV1) is necessary for histaminergic itch transmission, and TRP ankyrin 1 (TRPA1) was found to be a downstream target of MrgrpA3 and MrgrpC11 necessary for itch signaling through these receptors. Deletion of TRPA1 also abolished scratching in a dry skin mouse model of chronic itch, further cementing its role in non-histaminergic itch transmission.

Another peripheral mediator, endothelin-1 (ET-1), was found to induce both itch and pain behaviors in mice, as distinguished by the cheek injection model. ET-1 iontophoresis also induced itch in human subjects, and ET-1 and its downstream mediators were upregulated in patients with prurigo nodularis and chronic itch.

Voltage-gated sodium channel (Nav) 1.7, previously known to be involved in pain transmission, has also been found to mediate itch. A gain-of-function mutation in SCN9A (the gene encoding NaV 1.7) in three family members was associated with intense paroxysmal itch triggered mainly by warmth and spicy food. Furthermore, a monoclonal antibody targeting Nav 1.7 suppressed inflammatory and neuropathic pain as well as acute and chronic itch in mice, suggesting that this channel may be a target for both pain and itch treatment.

Peripheral crosstalk between neurons and immune cells

Immune cells interact directly with nerve fibers in the skin, and this crosstalk has been shown to have important functions in pathological itch. Several pruritic diseases have been associated with increased levels of Th2 cytokines (for review, see), and interleukin-31 (IL-31) in particular has been identified as an “itchy” cytokine in atopic eczema. Recently, IL-31 was found to be produced by malignant T cells in cutaneous T cell lymphoma (CTCL), and serum levels of IL-31 correlated to CTCL pruritus severity. We examined expression levels of IL-31 and its receptors in the skin and found a correlation between epidermal expression and itch severity. Epidermal expression of IL-31 receptors was also found to be increased in the skin of patients with lichen amyloidosis and pruritus. In mice, both single and repeated intradermal administration of IL-31 caused an increase of scratching behavior, and repeated exposure led to increased expression of IL-31RA in the DRG.

Central itch transmission

Gastrin-releasing peptide (GRP) and its receptor (GRPR) were previously identified as the first itch-specific mediators in the spinal cord, and recent research has expanded on this pathway. Mishra and Hoon reported that mice lacking natriuretic polypeptide b (Nppb), normally expressed in the DRG, showed almost no scratching in response to a range of intradermally injected pruritogens. These mice retained normal responses to touch, pain, and other stimuli, suggesting that Nppb neurons are specific to itch transmission. Intrathecal injection of GRP still induced scratching in Nppb knockout animals, leading the authors to propose a model of itch signaling with Nppb and its receptor NPPRA upstream of GRP-GRPR.

However, this study sparked controversy in the itch field. Following another school of thought, Liu et al. rebutted that Nppb signaling does not occur upstream of the GRP-GRPR pathway. They were unable to replicate immunostaining of Nppb and NPPRA and, in contrast to Mishra and Hoon, were able to detect Grp mRNA in the DRG. Additionally, they reported that blocking GRP-GRPR signaling did not alter Nppb-induced scratching. They argued that the role of Nppb remains to be clarified.

In addition to research into spinal transmission of the itch signal, there has been significant work on the inhibition of itch at the spinal...
level. Mice lacking Bhlhb5+ inhibitory (B5-I) interneurons in the spinal dorsal horn displayed increased scratching and subsequent skin lesions26. Further experiments revealed that this population of B5-I interneurons is activated downstream of certain TRP channels and releases dynorphin, a kappa opioid receptor ligand, to inhibit itch37. Additionally, a population of spinal interneurons expressing neuropeptide Y has been found to gate itch induced by light mechanical stimuli28.

Central interactions between neurons and glia

Previous studies demonstrated the involvement of glial cells in neuropathic pain, and recent work suggests their involvement in modulating itch. Signal transducer and activator of transcription 3-induced astroglialosis in the spinal dorsal horn was observed in mouse models of both contact dermatitis and atopic dermatitis39. This activation was reduced in mice with clipped toenails but was still present in artificially scratched mice, suggesting that scratching plays a crucial role in this kind of reactive astroglialosis. Another study found that Toll-like receptor 4, part of the innate immune system, induced astroglialosis in the spinal dorsal horn of mice with dry skin itch40. This astroglialosis was also dependent on scratching; preventing scratching with an Elizabethan collar also prevented astroglialosis. Of note, microglial activation was mild and transient in this model.

In contrast, an increase in microglial activation within the spinal cord was seen after intradermal injection of either compound 48/80 (a histaminergic pruritogen) or 5'-guanidinonaltrindole (a kappa opioid receptor antagonist) in mice41. In a chronic itch mouse model, spinal microglia were activated after scratching, and suppression of microglia via minocycline treatment in turn reduced the level of scratching42. A similar pattern was observed in a mouse model of atopic dermatitis. These mice displayed increased levels of microglia in the spinal cord, and minocycline treatment reduced scratching and improved dermatitis scores43. Chronic itch features not only spontaneous itch but also the dysesthesias of alloknesis (itch evoked by light, normally non-itchy touch) and hyperkinesia (increased itch in response to a normally itchy stimulus). These sensations are thought to be caused by central sensitization. Although these properties have been long reported in patients with chronic itch and in healthy skin injected with histamine, there was a lack of animal models to study them. Such models are especially important because the mechanisms behind this increased sensitivity appear to be related to, but distinct from, those underlying spontaneous itch. To this end, an elegant mouse model of alloknesis was developed by using von Frey filaments to stimulate mice with a light touch sensation44. Mice displayed scratching in response to light touch after intradermal injection with several different pruritogens, as well as in a dry skin itch model.

Stress and reward in the itch-scratch cycle

Itch is intrinsically linked with scratching, and the pleasure and relief evoked by scratching have been the focus of several recent studies. The intensity of itch (experimentally induced with cowhage) and the pleasure of scratching were found to vary according to the area of the body being scratched, and there was greater itch, itch relief, and pleasure during scratching of the back and ankle in comparison with the forearm45. Functional magnetic resonance imaging using arterial spin labeling demonstrated that scratching an itch led to activation in several brain areas involved in reward and perception, including the striatum, midbrain, primary somatosensory cortex, and insula46. We further found a difference in brain activity during active scratching of an itch by the participant compared with passive scratching by an experimenter47. Several reward-associated areas (ventral tegmental area, nucleus accumbens, caudate nucleus, and ventromedial prefrontal cortex) were activated during active scratching and correlated with pleasure, itch relief, or both.

Greater attention is also being paid to the role of stress in itch and possible psychological and educational interventions. These techniques include habit reversal training, relaxation therapy, and cognitive behavioral therapy48. Such interventions represent a unique approach to breaking the itch-scratch cycle and managing chronic itch. They can be helpful both for chronic itch patients and for caretakers of children with chronic itch.

Novel targets for chronic itch

A revolution in the treatment of chronic pruritus is under way. Recently, much effort in treating has been placed on targeting the immune system in pruritic diseases. Agents that target IL-4 and IL-1349 and IL-3150, as well as a topical phosphodiesterase 4 inhibitor51, have been used in patients with atopic eczema, whereas biologics that target IL-1752 and oral phosphodiesterase 4 inhibitors53 have shown anti-pruritic efficacy in patients with psoriasis.

Agents targeting the nervous system are also showing promise in clinical trials for itch of different types. Nalfurafine, a kappa opioid agonist, has continued to be a successful anti-itch therapy54, and other kappa opioid agonists and combined kappa opioid agonists/mu opioid antagonists are being explored as treatment options55. Neurokinin 1 inhibitors have also shown some success in the treatment of itch56.

Due to the complexity of the different etiologies, cell types, and mediators involved in chronic itch, a combination of topical and systemic therapies addressing peripheral mediators and top-down approaches targeting the brain and spinal cord may be the best strategy of treatment. The mediators identified in current animal and human studies may prove to be effective targets in future therapies.

Competing interests

The authors declare that they have no competing interests.

Grant information

The author(s) declared that no grants were involved in supporting this work.
1. Mollanazar NK, Koch SD, Yosipovitch G: Epidemiology of Chronic Pruritus: Where Have We Been and Where Are We Going? Curr Derm Rep. 2015; 4(1): 20–9.

2. Yosipovitch G: Recent advances in pruritus - what we have learned and where we headed. F1000 Med Rep. 2010; 2: pii: 39.

3. Liu Q, Tang Z, Sundenkova L, et al.: Sensory neuro-specific GPCR MRgps are itch receptors mediating chloroquine-induced pruritus. Cell. 2009; 139(7):1353–65.

4. Han L, Ma C, Liu Q, et al.: A subpopulation of nociceptors specifically linked to itch. Nat Neurosci. 2013; 16(2): 174–82.

5. Liu Q, Weng HJ, Patel KN, et al.: The distinct roles of two GPCRs, MrgrpC11 and PAR2, in itch and hyperalgesia. Sci Signal. 2011; 4(181): ra45.

6. Liu Q, Sikand P, Ma C, et al.: Mechanisms of itch evoked by β-alanine. J Neurosci. 2012; 32(42): 14592–7.

7. Liu Q, Fan N, Ma C, et al.: Enhanced excitability of MRGPR43- and MRGPRD-positive nociceptors in a model of inflammatory itch and pain. Brain. 2013; 139(14): 3457–69.

8. Sikanidze P, Dong X, LaMotte RH: BAM8-22 peptide produces itch and nociceptive sensations in humans independent of histamine release. J Neurosci. 2012; 31(20): 7563–7.

9. Wooten M, Weng HJ, Hartke TV, et al.: Three functionally distinct classes of C-fibre nociceptors in primates. Nat Commun. 2014; 5: 4122.

10. Shim WS, Tak MH, Lee MH, et al.: TRPV1 mediates histamine-induced itching via the activation of phospholipase A2 and lipoxigenase. J Neurosci. 2007; 27(9): 2331–7.

11. Wilson SR, Gerhold KA, Bifofok-Fisher A, et al.: TRPA1 is required for histamine-independent, Mas-related G protein-coupled receptor-mediated itch. J Exp Dermatol. 2013; 22(10): 1295–302.

12. Wilson SR, Nelson AM, Batia L, et al.: Selective excitation of MRGPRD-positive nociceptors in the skin and mouse spinal cord. J Neurosci. 2010; 30(18): 6405–16.

13. Bhlhb5 deletion abrogates sensory neuron specific GPCR Mrgprs are itch receptors mediating chloroquine-induced pruritus. Cell. 2009; 139(7):1353–65.

14. Lee JH, Park CK, Chen G, et al.: A monoclonal antibody that targets a Na+,K+ channel voltage sensor for pain and itch relief. Cell. 2014; 157(6): 1309–20.

15. Lee JH, Park CK, Chen G, et al.: A monoclonal antibody that targets a Na+,K+ channel voltage sensor for pain and itch relief. Cell. 2014; 157(6): 1309–20.

16. Lee JH, Park CK, Chen G, et al.: A monoclonal antibody that targets a Na+,K+ channel voltage sensor for pain and itch relief. Cell. 2014; 157(6): 1309–20.

17. Lee JH, Park CK, Chen G, et al.: A monoclonal antibody that targets a Na+,K+ channel voltage sensor for pain and itch relief. Cell. 2014; 157(6): 1309–20.

18. Singer EM, Shin DB, Natkemper LA, et al.: IL-31 is produced by the malignant T-cell population in cutaneous T-cell lymphoma and correlates with CTCL pruritus. J Invest Dermatol. 2013; 133(12): 2783–5.

19. Natkemper LA, Martinez-Escala ME, Geiman AB, et al.: Cutaneous T-Cell Lymphoma and Pruritus: The Expression of IL-31 and Its Receptors in the Skin. Acta Derm Venerol. 2016.

20. Nettlemaker LA, Martinez-Escala ME, Geiman AB, et al.: Cutaneous T-Cell Lymphoma and Pruritus: The Expression of IL-31 and Its Receptors in the Skin. Acta Derm Venerol. 2016.

21. Arai I, Tsuji M, Yosipovitch G, et al.: Repeated administration of IL-31 upregulates IL-31 receptor A (IL-31RA) in dorsal root ganglia and causes severe itch-associated scratching behaviour in mice. Exp Dermatol. 2015; 24(1): 75–8.

22. Arai I, Tsuji M, Yosipovitch G, et al.: Repeated administration of IL-31 upregulates IL-31 receptor A (IL-31RA) in dorsal root ganglia and causes severe itch-associated scratching behaviour in mice. Exp Dermatol. 2015; 24(1): 75–8.

23. Sun YG, Chen ZF: A gastrin-releasing peptide receptor mediates the itch sensation in the spinal cord. Nature. 2007; 448(7154): 790–3.

24. Mishra SK, Hoon MA: The cells and circuitry for itch responses in mice. Science. 2013; 340(6135): 968–71.

25. Liu YY, Wang L, Huo FQ, et al.: B-type natriuretic peptide is neither itch-specific nor functions upstream of the GRP-GRPR signaling pathway. Mol Pain. 2014; 10: 4.

26. Ross SE, Mardini AR, McCord AE, et al.: Loss of inhibitory interneurons in the dorsal spinal cord and elevated itch in Bhlhb5 mutant mice. Neurosci. 2010; 65(8): 886–98.

27. Kardon AP, Cato AR, McCord AE, et al.: Loss of inhibitory interneurons in the dorsal spinal cord and elevated itch in Bhlhb5 mutant mice. Neurosci. 2010; 65(8): 886–98.

28. Bourane S, Duan B, Koch SC, et al.: Gate control of mechanical itch by a subpopulation of spinal cord interneurons. Science. 2015; 350(6260): 550–4.

29. Shiratori-Hayashi M, Koga K, Tozaki-Saitoh H, et al.: STAT3-dependent reactive astrogliosis in the spinal dorsal horn underlies chronic itch. Nat Med. 2015; 21(8): 927–31.

30. Liu T, Han Q, Chen G, et al.: Toll-like receptor 4 contributes to chronic itch, alopecia, and spinal astrocyte activation in male mice. Pain. 2016; 157(4): 806–17.

31. Zhang Y, Dun SL, Chen YH, et al.: Scratching activates microglia in the mouse spinal cord. J Neurosci. 2015; 35(3): 466–74.

32. Zhang Y, Dun S, Chen YH, et al.: Scratching activates microglia in the mouse spinal cord. J Neurosci. 2015; 35(3): 466–74.

33. Zhang Y, Dun S, Chen YH, et al.: Scratching activates microglia in the mouse spinal cord. J Neurosci. 2015; 35(3): 466–74.

34. O’Gorman SM, McDonald ID, et al.: TRPV1 mediates histamine-induced itching via the activation of phospholipase A2 and lipoxigenase. J Neurosci. 2007; 27(9): 2331–7.

35. Bin S, Rhee H, Qin L, et al.: PAR2, in itch and hyperalgesia. J Neurosci. 2010; 30(18): 6405–16.

36. Bin S, Rhee H, Qin L, et al.: PAR2, in itch and hyperalgesia. J Neurosci. 2010; 30(18): 6405–16.

37. Borrow S, Duan B, Koch SC, et al.: Gate control of mechanical itch by a subpopulation of spinal cord interneurons. Science. 2015; 350(6260): 550–4.

38. Borrow S, Duan B, Koch SC, et al.: Gate control of mechanical itch by a subpopulation of spinal cord interneurons. Science. 2015; 350(6260): 550–4.

39. Borrow S, Duan B, Koch SC, et al.: Gate control of mechanical itch by a subpopulation of spinal cord interneurons. Science. 2015; 350(6260): 550–4.

40. Borrow S, Duan B, Koch SC, et al.: Gate control of mechanical itch by a subpopulation of spinal cord interneurons. Science. 2015; 350(6260): 550–4.

41. Borrow S, Duan B, Koch SC, et al.: Gate control of mechanical itch by a subpopulation of spinal cord interneurons. Science. 2015; 350(6260): 550–4.

42. Borrow S, Duan B, Koch SC, et al.: Gate control of mechanical itch by a subpopulation of spinal cord interneurons. Science. 2015; 350(6260): 550–4.

43. Borrow S, Duan B, Koch SC, et al.: Gate control of mechanical itch by a subpopulation of spinal cord interneurons. Science. 2015; 350(6260): 550–4.

44. Borrow S, Duan B, Koch SC, et al.: Gate control of mechanical itch by a subpopulation of spinal cord interneurons. Science. 2015; 350(6260): 550–4.

45. Borrow S, Duan B, Koch SC, et al.: Gate control of mechanical itch by a subpopulation of spinal cord interneurons. Science. 2015; 350(6260): 550–4.

46. Borrow S, Duan B, Koch SC, et al.: Gate control of mechanical itch by a subpopulation of spinal cord interneurons. Science. 2015; 350(6260): 550–4.

47. Borrow S, Duan B, Koch SC, et al.: Gate control of mechanical itch by a subpopulation of spinal cord interneurons. Science. 2015; 350(6260): 550–4.
41. Jarnagin K, Chanda S, Coronado D, et al.: Crisaborole Topical Ointment, 2%: A Nonsteroidal, Topical, Anti-Inflammatory Phosphodiesterase 4 Inhibitor in Clinical Development for the Treatment of Atopic Dermatitis. J Drugs Dermatol. 2016; 15(4): 390–6. PubMed Abstract

42. Farahnik B, Beroukhim K, Nakamura M, et al.: Anti-IL-17 Agents for Psoriasis: A Review of Phase III Data. J Drugs Dermatol. 2016; 15(3): 311–6. PubMed Abstract | F1000 Recommendation

43. Sobel JM, Foley P, Toth D, et al.: Effects of Apremilast on Pruritus and Skin Discomfort/Pain Correlate With Improvements in Quality of Life in Patients With Moderate to Severe Plaque Psoriasis. Acta Derm Venereol. 2016; 96(4): 514–20. PubMed Abstract | Publisher Full Text

44. Inui S: Nalfurafine hydrochloride to treat pruritus: a review. Clin Cosmet Investig Dermatol. 2015; 8: 249–55. PubMed Abstract | Publisher Full Text | Free Full Text

45. Cowan A, Kehner GB, Inan S: Targeting Itch with Ligands Selective for κ Opioid Receptors. Handb Exp Pharmacol. 2015; 226: 291–314. PubMed Abstract | Publisher Full Text

46. Ständer S, Luger TA: NK-1 Antagonists and Itch. Handb Exp Pharmacol. 2015; 226: 237–55. PubMed Abstract | Publisher Full Text
Open Peer Review

Current Referee Status: ✓ ✓

Editorial Note on the Review Process

F1000 Faculty Reviews are commissioned from members of the prestigious F1000 Faculty and are edited as a service to readers. In order to make these reviews as comprehensive and accessible as possible, the referees provide input before publication and only the final, revised version is published. The referees who approved the final version are listed with their names and affiliations but without their reports on earlier versions (any comments will already have been addressed in the published version).

The referees who approved this article are:

Version 1

1 Earl Carstens, Department of Neurobiology, Physiology and Behavior, University of California Davis, Davis, CA, USA

Competing Interests: No competing interests were disclosed.

2 Xinzhong Dong, 1,2 1 The Solomon H. Snyder Department of Neuroscience, Center for Sensory Biology, Johns Hopkins University, School of Medicine, Baltimore, MD, 21205, USA

2 Howard Hughes Medical Institute, Johns Hopkins University, School of Medicine, Baltimore, MD, 21205, USA

Competing Interests: No competing interests were disclosed.