Disease scoring in Maize (Zea mays L.) - Soybean (Glycine max L.) Sequence Cropping Under Conservation Agriculture Principles and Practices

Sangh Ravikiran1* and S. S. Angadi2
1Ph.D. Scholar, 2Professor of Agronomy, Department of Agronomy, College of Agriculture, University of Agricultural Sciences, Dharwad – 580 005, Karnataka, India
*Corresponding Author E-mail: rksangh28@gmail.com
Received: 8.01.2021 | Revised: 13.02.2021 | Accepted: 18.02.2021

ABSTRACT

Experiment were conducted in Maize (Zea mays L.) – Soybean (Glycine max L.) during 2012-13 and 2013-14 at Dharwad under split split plot design with irrigation levels in main plots and fertilizer levels and its application in sub plots. Alternatively alternate furrow irrigation, fertilizer levels of 250:100:125 kg N:P2O5:K2O ha⁻¹ (2.5:1:1.25), application as 33 per cent each (1/3rd) of N, P2O5 and K2O as basal, 33 per cent each of N, P2O5 and K2O at 30 DAS and 33 per cent each of N, P2O5 and K2O at 50 DAS and its interaction recorded significantly higher occurrence of Turcicum leaf blight diseases in Maize. Besides, residual effect of alternatively alternate furrow irrigation, fertilizer levels of 225:100:100 kg N:P2O5:K2O ha⁻¹ (2.25:1:1), fertilizer applications as 25 per cent (1/4th) of N, K2O and 50 per cent of P2O5 as basal, 50 per cent of N, P2O5and K2O at 30 DAS and 25 per cent of N and K2O at 50 DAS and its interaction documented significantly higher rust diseases in Soybean.

Keywords: Alternatively alternate furrow irrigation, Fertilizer levels, Application of fertilizers and Residual effect.

INTRODUCTION

Maize an important staple food crop affected by number of diseases during its growth stages, besides, turcicum leaf blight (Exserohilum turcicum) is one of the most important diseases with 98 per cent losses in Karnataka. Soybean rust incited by Phakopsora pachyrhizi is one of the most serious disease inflicting quantitative as well as qualitative losses. The disease is more severe under assured rainfall and irrigated conditions with moderate temperatures and extended leaf wetness. With the introduction of high yielding genotypes, extensive use of fertilizer, traditional irrigation management practices and continuous cropping system, there has been a phenomenal increase in incidence of diseases in various cropping system.

Cite this article: Ravikiran, S., & Angadi, S. S. (2021). Disease Scoring in Maize (Zea mays L.) - Soybean (Glycine max L.) Sequence Cropping Under Conservation Agriculture Principles and Practices, Ind. J. Pure App. Biosci. 9(1), 183-187. doi: http://dx.doi.org/10.18782/2582-2845.8550
Besides, conservation agriculture principles and practices *i.e.* minimum and zero tillage, use of preceding crop residues to protect soil and water in succeeding crops and cropping system *i.e.* Cereal – Legume sequence cropping lead to further variation in diseases. Hence, present study was conducted to know the occurrence of diseases under the prevailing conditions.

MATERIALS AND METHODS

Investigations were carried out in Maize (*Zea mays* L.) – Soybean (*Glycine max* L.) at Main Agricultural Research Station, Dharwad on clayey soil. Initial soil sampling of experimental plot recorded pH (7.4), EC (0.23 dS/m), organic carbon (0.55), available N (250 kg ha\(^{-1}\)), available P\(_2\)O\(_5\) (33 kg ha\(^{-1}\)), available K\(_2\)O (290 kg ha\(^{-1}\)), exchangeable Ca (28 cmol (p+) kg\(^{-1}\)), exchangeable Mg (7 cmol (p+) kg\(^{-1}\)) and available S (21 kg ha\(^{-1}\)). Maize were evaluated with irrigation and fertilizer management practices under minimum tillage during summer (2012-13 and 2013-14), followed by Soybean as residual crop under zero tillage in *Kharif* season (2013-14 and 2014-15). Experiment was laid out in split split plot design with irrigation levels in main plots, fertilizer levels and its application rate in sub plots with three replications. Irrigation levels were deficit irrigation at growth stages (I\(_1\)), I\(_1\) + hydrogel with 2.5 kg ha\(^{-1}\) (I\(_2\)) and alternatively alternate furrow irrigation at 50 per cent depletion of soil moisture (I\(_3\)). Fertilizer levels were as F\(_1\) - 200:75:75 kg N:P\(_2\)O\(_5\):K\(_2\)O ha\(^{-1}\) (2.67:1:1), F\(_2\) - 225:100:100 kg N:P\(_2\)O\(_5\):K\(_2\)O ha\(^{-1}\) (2.25:1:1) and F\(_3\) - 250:100:125 kg N:P\(_2\)O\(_5\):K\(_2\)O ha\(^{-1}\) (2.5:1:1.25). Fertilizer applications were T\(_1\) - 25 per cent (1/4\(^{th}\)) of N, K\(_2\)O and 50 per cent of P\(_2\)O\(_5\) as basal, 50 per cent of N, P\(_2\)O\(_5\)and K\(_2\)O at 30 DAS and 25 per cent of N and K\(_2\)O at 50 DAS and T\(_2\) - 33 per cent each (1/3\(^{rd}\)) of N, P\(_2\)O\(_5\) and K\(_2\)O as basal, 33 per cent each of N, P\(_2\)O\(_5\) and K\(_2\)O at 30 DAS and 33 per cent each of N, P\(_2\)O\(_5\) and K\(_2\)O at 50 DAS in sub plots. Besides, control outside the design *i.e.*, Conventional furrow irrigation and fertilizer levels of 150:75:37.5 kg N:P\(_2\)O\(_5\):K\(_2\)O ha\(^{-1}\) (4:2:1) and its applications as 15 kg N plus full dose of P\(_2\)O\(_5\) and K\(_2\)O as basal, 30 kg N at 20 DAS, 45 kg N each at 35 and 50 DAS and 15 kg N at 65 DAS, MgSO\(_4\) (10 kg ha\(^{-1}\)) and gypsum (250 kg ha\(^{-1}\)) were amended for all treatments, except control and data were analyzed as per Gomez and Gomez (1984). Five Maize plants were randomly selected for recording the diseases severity based on 1 to 5 rating scale (Laxminarayan and Shankarlingam, 1983). Further, Per cent Disease Index was calculated as per Payak and Sharma (1983) and transformed to reduced the variation. Besides, the trifoliate soybean leaves from middle portion of the plants were randomly collected and assessed for rust severity using 0 to 9 scales of Mayee and Datar (1986) and Per cent Disease Index was calculated by using the formula of Wheeler (1969), further data was transformed for analysis.

RESULTS AND DISCUSSION

Turcicum leaf blight in Maize

Effect of irrigation and fertilizer management practices differed significantly at 60 and 90 days after sowing on turcicum leaf blight (Table 1). Alternatively alternate furrow irrigation, fertilizer levels of 250:100:125 kg N:P\(_2\)O\(_5\):K\(_2\)O ha\(^{-1}\) (2.5:1:1.25), scheduling of fertilizers as 33 per cent each (1/3\(^{rd}\)) of N, P\(_2\)O\(_5\) and K\(_2\)O as basal, 33 per cent each of N, P\(_2\)O\(_5\) and K\(_2\)O at 30 DAS and 33 per cent each of N, P\(_2\)O\(_5\) and K\(_2\)O at 50 DAS and its interaction recorded higher severity of diseases (27.91, 27.55, 27.77 and 30.57 per cent, respectively) at 90 days after sowing when compared to other treatment combinations. Similar trend were recorded at 60 days after sowing. Scheduling alternatively with higher depth of irrigation and higher nutrients with staggered application during crop growth period changed micro climate of maize crop in lower layers, higher temperature during summer, higher relative humidity, along with occasionally higher rainfall favored higher incidence and multiplication of diseases from lower leaves to upper leaves. Besides control recorded diseases severity of 26.58 per cent at 60 and 90 days after sowing. Similar research findings
Ravikiran and Angadi. *Ind. J. Pure App. Biosci.* (2021) 9(1), 183-187 ISSN: 2582 – 2845

were also recorded by Chandrashekara et al. (2014), Dalavai and Kalappanavar (2017), and Patil and Motagi (2020).

Leaf rust in Soybean

Residual effect of irrigation and fertilizer management practices on leaf rust differed significantly at 45 days after sowing and harvest (Table 1). Residual effect of alternatively alternate furrow irrigation, fertilizer levels of 225:100:100 kg N:P₂O₅:K₂O ha⁻¹ (2.25:1:1), fertilizer applications as 25 per cent (1/4) of N, K₂O and 50 per cent of P₂O₅ as basal, 50 per cent of N, P₂O₅and K₂O at 30 DAS and 25 per cent of N and K₂O at 50 DAS and its interaction observed significantly higher severity of diseases (3.25, 2.26, 3.17 and 9.26 per cent, respectively) at harvest when compared to other treatments. Similar results were recorded at 45 days after sowing. Delayed sowing, high weed intensity under zero tillage, left over maize residues, fallow knock down weeds after maize, high relative humidity, optimum temperature and intermittent rainfall in early stage favoreduredospore germination. Whereas, low humidity, high temperature and high rainfall in later stage of crop favored higher multiplication of rust. Further, control plot there was no disease incidences. Similar research findings were also recorded by Sarnobat et al. (2019), Shamarao Jahagirdar (2019) and Sharadha et al. (2020).

Table 1: *Turchicum leaf blight of Maize and Soybean rust* (pooled data) at different growth stages as influenced by irrigation and fertilizer management practices

Diseases	60 DAS	90 DAS	45 DAS	Harvest
	T₁ × F	T₂ × F	T₁ × F	T₂ × F
	T₁ × F	T₂ × F	T₁ × F	T₂ × F
	T₁ × F	T₂ × F	T₁ × F	T₂ × F
	T₁ × F	T₂ × F	T₁ × F	T₂ × F

Copyright © Jan.-Feb., 2021; JPAB

185
CONCLUSION

Higher depth of irrigation and fertilizer levels with its staggered applications favored higher diseases severity in Maize and Soybean sequence cropping under conservation agriculture.

REFERENCES

Chandrashekar, C., Jha, S. K., Arunkumar, R., & Agrawal, P. K. (2014). Identification of new sources of resistance to Turcicum leaf blight and Maydis leaf blight in Maize (Zea mays L.). SABRAO J. Breed. Genet., 46(1), pp. 44-55.

Dalavai, P. A., & Kalappanavar, I. K. (2017). Investigations of Turcicum leaf blight and common Rust of Maize in Northern Karnataka. J. Farm Sci., 30(3), pp. 431-434.

Gomez, K. A., & Gomez A. A. (1984). Statistical Procedure for Agricultural Research. John Wiley and Sons, New York, pp. 130-271.

Laxminarayan, C., & Shankarlingam, S. (1983). Turcicum leaf blight of Maize: Techniques of scoring for resistance to important diseases of Maize (Zea mays L.). Paper presented In: Proceedings of All Indian Coordinated Maize Improvement Project, Monograph, ICAR (New Delhi), pp. 16-21.

Mayee, C. D., & Datar, V. V. (1986). Phytopathometry. Tech Bull.-1 (Special Bulletin-3), Marathwada Agric. Univ., Parbhani, p. 95.

Patil, M. S., & Motagi, B. N. (2020). Evaluation of Maize (Zea mays L.) hybrids for drought tolerance, disease (Turcicum leaf blight and Maydis leaf blight) resistance and productivity traits in northern dry tract of Karnataka. J. Farm Sci., 33(1), pp. 25-29.

Payak, M. M., & Sharma, R. C. (1983) Disease rating scale of Maize in India. In: Techniques of scoring for resistance to important diseases of Maize (Zea mays L.). All India Coordinated Maize Improvement Project, IARI (New Delhi), pp. 1-4.

Sarobat, D. H., Waghmare, S. J., Thosar, R. U., & Gagare, K. C. (2019). Effect of sowing dates on incidence of Rust and yield of Soybean. Progressive Res. - An Int. J., 14(1), pp. 81-82.

Jahagirdar, S. (2019). Present status and future research dimensions of Soybean diseases for sustainable productivity of Soybean in India. Indian Phytopathology. 72, pp. 3-14.
Sharadha, H., Shamarao, J., & Basavaraja, G. T. (2020). Integrated management of Asian Soybean Rust caused by *Phakopsora pachyrhizi* Syd. & Syd. through fungicide and nutrients in India. *J. Eco friendly Agric.*, 15(2), pp. 160-164.

Wheeler, B. E. J. (1969). *An Introduction to Plant Diseases*. John Wiley and Sons Ltd., London, p. 301.