GENERALIZED PRIMITIVE ELEMENTS
OF A FREE GROUP

Vladimir Shpilrain

ABSTRACT. We study endomorphisms of a free group of finite rank by means of their action on specific sets of elements. In particular, we prove that every endomorphism of the free group of rank 2 which preserves an automorphic orbit (i.e., acts “like an automorphism” on one particular orbit), is itself an automorphism. Then, we consider elements of a different nature, defined by means of homological properties of the corresponding one-relator group. These elements (“generalized primitive elements”), interesting in their own right, can also be used for distinguishing automorphisms among arbitrary endomorphisms.

1. Introduction

Let $F = F_n$ be the free group of a finite rank $n \geq 2$ with a set $X = \{x_i\}, 1 \leq i \leq n$, of free generators. An element $g \in F$ is called primitive if it is a member of some free basis of F. Or, equivalently: there is an automorphism $\phi \in \text{Aut} F$ that takes g to x_1.

We start here by recalling Problem 2 from [12]. It is clear that the group F is a disjoint union of different orbits under the action of the group $\text{Aut} F$. Denote an orbit $\{\phi(u), \phi \in \text{Aut} F\}$ by $O_{\text{Aut} F}(u)$. It seems plausible to assume (see [12] for a general set-up) that if an endomorphism preserves some orbit $O_{\text{Aut} F}(u)$, i.e., if it acts “like an automorphism” on one particular orbit, then it acts like an automorphism everywhere, i.e., is itself an automorphism.

This general conjecture appears to be quite difficult to prove; even the case of the “simplest” orbit (the one consisting of primitive elements) is still unsettled. Here we are able to settle the conjecture in the case when F has rank 2:

Theorem 1.1. If an endomorphism ϕ of the group F_2 preserves an orbit $O_{\text{Aut} F_2}(u)$, then ϕ is actually an automorphism.

Our proof of this theorem uses the following interesting fact: there are elements of the group F_2 that cannot be subwords of any cyclically reduced primitive element of F_2; we call those elements primitivity-blocking words. More formally:

Definition. An element $g \in F$ is called a primitivity-blocking word if there is no cyclically reduced primitive element $w \in F$ such that $w = gh$ for some $h \in F$ (assuming, of course, there is no cancellation between g and h).

In the group F_2, primitivity-blocking words are easy to find: for example, $[x_1, x_2]$ and $x_1^k x_2^l$ with $k, l \geq 2$, are primitivity-blocking words - this follows from a result of

1991 Mathematics Subject Classification: Primary 20E05, secondary 20F28, 16S34.
(see also [1]). On the other hand, in a free group of bigger rank, the situation becomes really intriguing. We ask:

Problem. Are there primitivity-blocking words in a free group F_n if $n \geq 3$?

The attempts to extend the result of Theorem 1.1 have led me to the following generalization of the primitivity concept:

Definition. Let J be a right ideal of the free group ring ZF. An element $u \in F$ is called J–primitive if Fox derivatives [8] of the element u generate J as a right ideal of ZF.

Now “usual” primitive elements are the same as ZF-primitive ones - this non-trivial fact follows from a matrix characterization of primitive elements given by Umirbaev [16] (cf. also [6], Corollary IV.5.3).

Another motivation for this definition comes from commutative algebra. We recall some facts here very briefly. A vector $(p_1, ..., p_m)$ of (Laurent) polynomials is called unimodular if $p_1, ..., p_m$ generate the whole (Laurent) polynomial algebra P as an ideal. Then, a vector $(p_1, ..., p_m)$ of Laurent polynomials is called Δ–modular (see [1]) if $p_1, ..., p_m$ generate the augmentation ideal Δ as an ideal of the whole algebra. Suslin [14] and Artamonov [1] have proved that the group $GL_m(P)$, $m \geq 3$, acts transitively on the set of all unimodular and all Δ-modular vectors, respectively. See [1] for new interesting applications of these results to the study of metabelian groups.

Now the above cited result of Umirbaev can be considered a free group analog of Suslin’s result: it says that the group $AutF$ acts transitively on the set of all ZF-primitive elements (i.e., those with unimodular vector of Fox derivatives).

The desire to get a free group analog of Artamonov’s result draws our attention to Δ-primitive elements. First we note that one can give an equivalent definition of Δ-primitivity using a different language: an element $u \in F$ is Δ-primitive if and only if the cohomology group $H^2(G, ZF)$ is infinite cyclic, where G is one-relator group $\langle F \mid u \rangle$.

If the group F has even rank $n = 2m$, then the element $u_n = [x_1, x_2][x_3, x_4]...[x_{n-1}, x_n]$ is Δ-primitive (and hence so is every element from $O_{AutF}(u_n)$) - see Example 3.1. On the other hand, free group of an odd rank has no Δ-primitive elements whatsoever - see Corollary 1.5 below. R.Bieri has pointed out to me that a combination of results of [3], [5] and [8] yields the following

Theorem 1.2. In a group F_{2m}, $m \geq 1$, any Δ-primitive element is an automorphic image of $u_{2m} = [x_1, x_2][x_3, x_4]...[x_{2m-1}, x_{2m}]$.

This, together with Corollary 1.5 below, gives a free group analog of Artamonov’s result:

- in a free group F of finite rank, the group $AutF$ acts transitively on the set of all Δ-primitive elements.
In the case of F_2, Theorem 1.2 yields an explicit combinatorial description of Δ-primitive elements since every automorphic image of $[x_1, x_2]$ in the group F_2 has the form $[x_1, x_2]^g$ or $[x_2, x_1]^g$ for some $g \in F_2$. Note that there is also an explicit combinatorial description of ZF_2-primitive elements due to [4] (see also [11]).

There is a nice matrix characterization of Δ-primitive elements; based on that, we can use Δ-primitive elements for recognizing automorphisms:

Proposition 1.3.
(i) An element $u \in F'_n$ is Δ-primitive if and only if the matrix $D_u = (d'_j(d_i(u)))_{1 \leq i,j \leq n}$ is invertible over the ring ZF_n.
(ii) If ϕ takes a Δ-primitive element of the group F_n to another Δ-primitive element, then ϕ is an automorphism.

The matrix D_u (the “double Jacobian” matrix) has been introduced in [13]. Here d'_j denotes right Fox derivation whereas d_i is the “usual”, left Fox derivation - see Section 2.

We also treat here the case of a free metabelian group $M_n = F_n/F''_n$. (In the definition of a Δ-primitive element in M_n, we consider abelianized Fox derivatives):

Theorem 1.4.
(i) The group $AutM_2$ acts transitively on the set of all Δ-primitive elements of M_2. In other words, every Δ-primitive element of M_2 is an automorphic image of the element $[x_1, x_2]$ and therefore has the form $[x_1, x_2]^g$ or $[x_2, x_1]^g$ for some $g \in M_2$;
(ii) There are no Δ-primitive elements in the group M_n if n is odd.

Part (i) of this theorem answers a question from [3] in rank 2 case.

Corollary 1.5. There are no Δ-primitive elements in the free group F_n if n is odd.

Talking about general case of J-primitive elements for an arbitrary right ideal J of the group ring ZF, we note first of all that J-primitive elements do not always exist. For example, if J cannot be generated by less than $(n+1)$ elements, then there are obviously no J-primitive elements in the group F_n. In fact, if g is a J-primitive element, and the ideal J is k-generated, then g has outer rank k in the sense defined in [12] (the minimal number of free generators on which an automorphic image of g can depend). This follows from a result of Umirbaev [7].

Deciding for which (right) ideals J of the group ring ZF the group $AutF$ acts transitively on the set of all J-primitive elements of F, seems to be a difficult problem. Actually, it makes sense only for characteristic ideals, i.e., those invariant under free group automorphisms. Note that if an element $g \in F$ is J-primitive for a characteristic right ideal J, then every automorphic image of g is J-primitive, too - this follows from the equality (1) in the next section.

Also, it is easy to show that for any m-generator right ideal J of ZF, the group $GL_m(ZF)$ acts transitively on the set of all m-tuples of elements generating J (Lemma 2.4).
Of particular interest are \(J \)-primitive elements of maximal outer rank \(n = \text{rank} F \) in the case when \(J \) is the right ideal generated by Fox derivatives of a group element:

Proposition 1.6. Let \(g \in F_n \) be an element of outer rank \(n \), and let \(J \) be the right ideal of \(ZF_n \) generated by Fox derivatives of \(g \). If a monomorphism (i.e., injective endomorphism) \(\phi \) of the group \(F_n \) takes \(g \) to another \(J \)-primitive element, then \(\phi \) is actually an automorphism.

In particular:

Corollary 1.7. (cf. [15]). Let \(g \in F_n \) be an element of outer rank \(n \). If \(\phi(g) = g \) for some monomorphism \(\phi \) of the group \(F_n \), then \(\phi \) is actually an automorphism.

2. Preliminaries

Let \(ZF\) be the integral group ring of the group \(F\) and \(\Delta \) its augmentation ideal, that is, the kernel of the natural homomorphism \(\varepsilon : ZF \to Z\). More generally, when \(R \subseteq F \) is a normal subgroup of \(F \), we denote by \(\Delta_R \) the ideal of \(ZF \) generated by all elements of the form \((r-1), r \in R\). It is the kernel of the natural homomorphism \(\varepsilon_R : ZF \to Z(F/R)\).

The ideal \(\Delta \) is a free left \(ZF \)-module with a free basis \(\{(x_i - 1)\}, 1 \leq i \leq n \), and left Fox derivations \(d_i \) are projections to the corresponding free cyclic direct summands. Thus any element \(u \in \Delta \) can be uniquely written in the form \(u = \sum_{i=1}^{n} d_i(u)(x_i - 1) \).

Since the ideal \(\Delta \) is a free right \(ZF \)-module as well, one can define right Fox derivatives \(d'_i(u) \) accordingly, so that \(u = \sum_{i=1}^{n} (x_i - 1)d'_i(u) \).

One can extend these derivations linearly to the whole \(ZF\) by setting \(d'_i(1) = d_i(1) = 0 \).

The next lemma is an immediate consequence of the definitions.

Lemma 2.1. Let \(J \) be an arbitrary left (right) ideal of \(ZF \) and let \(u \in \Delta \). Then \(u \in \Delta J \) \((u \in J \Delta) \) if and only if \(d_i'(u) \in J \) \((d_i(u) \in J) \) for each \(i, 1 \leq i \leq n \).

Proof of the next lemma can be found in [3].

Lemma 2.2. Let \(R \) be a normal subgroup of \(F \), and let \(y \in F \). Then \(y - 1 \in \Delta_R \Delta \) if and only if \(y \in R' \).

We also need the “chain rule” for Fox derivations (see [4]):

Lemma 2.3. Let \(\phi \) be an endomorphism of \(F \) (it can be linearly extended to \(ZF \)) defined by \(\phi(x_k) = y_k, 1 \leq k \leq n \), and let \(v = \phi(u) \) for some \(u, v \in ZF \). Then:

\[
d_j(v) = \sum_{k=1}^{n} \phi(d_k(u))d_j(y_k).
\]

For an endomorphism \(\phi : x_i \to y_i, 1 \leq i \leq n \), of the group \(F_n \), let \(J_\phi = (d_j(y_i))_{1 \leq i,j \leq n} \) be the Jacobian matrix of \(\phi \). We are going to need the following application of Lemma 2.3: if \(g, h \in F_n \) and \(h = \phi(g) \), then
\[(d_1(h)), ..., d_n(h)) = (\phi(d_1(g)), ..., \phi(d_n(g)))J_\phi. \quad (1)\]

Now comes the key lemma:

Lemma 2.4. Let \(J \) be a right ideal of \(ZF\) (hence a free right module over \(ZF\) - see \([3]\)) generated as a free module over \(ZF\) by \(u_1, ..., u_m\). Then the following conditions are equivalent:

(a) A matrix \(M = (a_{ij})_{1 \leq i, j \leq m}\) is invertible over \(ZF\) (i.e., \(M \in GL_m(ZF)\));

(b) The elements \(y_j = \sum_{k=1}^{m} (u_k - 1)a_{kj}, 1 \leq j \leq m\), generate the ideal \(J\) as a right ideal of \(ZF\).

Proof. Suppose \(M\) is invertible over \(ZF\); denote by \(U\) the row matrix \((u_1, ..., u_m)\), and by \(Y\) - the row matrix \((y_1, ..., y_m)\). Then \(UMM^{-1} = YM^{-1} = U\) which means that \(u_1, ..., u_m\) belong to the right ideal of \(ZF\) generated by \(y_1, ..., y_m\). Conversely, suppose we have \(YB = U\) for some matrix \(B\) over \(ZF\). Then \(UMB = U\), hence \(MB = I\), the identity matrix, because \((u_1, ..., u_m)\) form a free basis of a free right \(ZF\)-module \(J\). This implies \(M \in GL_m(ZF)\) - see e.g. \([5]\).

3. Proofs

Proof of Theorem 1.1. We consider several possibilities for an orbit \(O_{AutF_2}(u)\):

(1) \(u\) is a primitive element. In this case, the image of every primitive element of \(F_2\) under the endomorphism \(\phi\) is primitive. By composing \(\phi\) with some automorphism of the group \(F_2\) if necessary, we may assume that \(\phi(x_1) = x_1\).

Now write \(\phi(x_2) = x_1^k g\), where \(k\) is an integer, and \(g\) is an element of the normal closure of \(x_2\), so that \(g\) is a product of elements of the form \(h_i x_2^{\pm 1} h_i^{-1}\).

Since every element of the form \(x_1^n x_2\) is primitive, its image \(s = \phi(x_1^n x_2) = x_1^{n+k} g\) is primitive, too.

Recall now a result of \([4]\) which says that if \(w\) is a primitive element of \(F_2\), then some conjugate of \(w\) can be written in the form \(x_1^{k_1} x_2^{l_1} ... x_1^{k_m} x_2^{l_m}\), so that some of \(x_i\) occurs either solely in the exponent 1 or solely in the exponent \(-1\).

We see that for sufficiently large \(n\), generator \(x_1\) would not occur in any conjugate of \(s\) neither solely in the exponent 1 nor solely in the exponent \(-1\). Therefore, \(x_2\) should be the one with this property.

It follows that no \(h_i\) in the decomposition of \(g\) mentioned above, has entries of \(x_2\), so that every \(h_i\) is a power of \(x_1\).

Then, since the element \(x_1^{-k} x_2\) is primitive, its image \(\phi(x_1^{-k} x_2) = g\) is primitive as well. This implies that the sum of powers of \(x_2\) in the decomposition of \(g\) should be equal to \(\pm 1\); otherwise \(g\) would not be primitive even modulo \(F_2'\). It follows that our \(g\) is actually conjugate to \(x_2^{\pm 1}\).
Summing up, we see that g has the form $hx_{2}^{\pm 1}h^{-1}$ for some $h \in F_{2}$, h a power of x_{1}. Therefore, $\phi(x_{1}) = x_{1}$ and $\phi(x_{2}) = x_{1}^{k}g$ generate the group F_{2}, i.e., ϕ is an automorphism.

(2) $u = v^{k}$ is a power of a primitive element v. In this case, every image of u under the endomorphism ϕ has the form w^{k}, w a primitive element. It follows that the image of every primitive element of F_{2} is primitive, hence we may apply the argument from the previous case.

(3) u has outer rank 2, i.e., u does not belong to a proper free factor of F_{2}. If u does not belong to a proper retract of F_{2}, then ϕ is an automorphism by a result of Turner [15].

Suppose now that u belongs to a proper retract R of F_{2}, and ϕ is the corresponding retraction, i.e., $\phi(F_{2}) = R$ (otherwise ϕ would already be an automorphism by [15]). Since R is a proper retract of F_{2}, it should have rank smaller than 2, i.e., R is cyclic, and $R \subseteq O_{AutF}(u)$.

We show now that no automorphic orbit $O_{AutF}(u)$ can contain a non-trivial cyclic group. By means of contradiction, suppose some automorphic image of some $s \in O_{AutF}(u)$ is of the form s^{k}, $k \geq 2$, and let s have minimal length among all the elements of $O_{AutF}(u)$ with this property. Let $\alpha(s) = s^{k}$ with $k \geq 2$, and let $\alpha^{-1}(s) = r$. Then $\alpha(s) = \alpha(r)^{k} = \alpha(r^{k})$, hence $s = r^{k}$. Thus, every automorphic image of r is of the form r^{m}; furthermore, $r \in O_{AutF}(u)$ (since $r = \alpha^{-1}(s)$), and r has length smaller than that of s (see [10], Proposition I.2.15). This contradiction completes the proof of Theorem 1.1.

Before getting to a proof of Theorem 1.2, we consider a couple of examples.

Example 3.1. The element $u = [x_{1}, x_{2}][x_{3}, x_{4}]...[x_{m-1}, x_{m}]$ of the group F_{2m} is Δ-primitive since the corresponding double Jacobian matrix D_{u} is invertible - see [12], Proposition 4.1.

Example 3.2. The element $v = [x_{1}, x_{2}][x_{2}, x_{3}][x_{3}, x_{4}]$ of the group F_{4} is Δ-primitive. It is not quite obvious that v is an automorphic image of $u = [x_{1}, x_{2}][x_{3}, x_{4}]$. However, this is the case: u is taken to v by the following automorphism: $x_{1} \rightarrow x_{1}x_{3}^{-1}; x_{2} \rightarrow x_{2}x_{3}x_{1}^{-1}; x_{3} \rightarrow x_{3}; x_{4} \rightarrow x_{4}$.

Now we get to Theorem 1.2:

Proof of Theorem 1.2. We give a proof here without introducing background material, just referring to [4] and [7] for details.

First of all, it is an immediate consequence of the definition that $g \in F$ is a Δ-primitive element if and only if for the right ideal J_{g} of the group ring ZF generated by Fox derivatives of u, one has factor-module ZF/J_{g} isomorphic to the trivial F-module Z. In other words, as we have mentioned in the Introduction, the cohomology group $H^{2}(G, ZF)$ of the one-relator group $G = < F \mid g >$ is infinite cyclic. It is also clear that the group G is torsion-free.
Then, Theorem 9.3 of [2] implies that the group $< F \mid g >$ is a Poincaré duality group of dimension 2 (PD2-group). It has been proved later in [7] that every one-relator (torsion-free) PD2-group is a surface group.

Applying now a result of Zieschang [18], we see that, in case $F = F_{2m}$, g must be an automorphic image of $u_{2m} = [x_1, x_2][x_3, x_4]...[x_{2m-1}, x_{2m}]$. This completes the proof.

Proof of Proposition 1.3.

(i) First suppose the matrix $D_u = (d_i'(d_j(u)))_{1 \leq i, j \leq n}$ is invertible. Then, by Lemma 2.4, the elements $y_i = \sum_{k=1}^{n} (x_k - 1)d_k'(d_i(u)) = d_i(u) - \epsilon(d_i(u))$, 1 $\leq i \leq n$, generate the ideal Δ as a right ideal of ZF. Since $u \in F'$, we have $\epsilon(d_i(u)) = 0$, 1 $\leq i \leq n$, by Lemmas 2.1, 2.2. Therefore, u is Δ-primitive.

Conversely, if u is Δ-primitive, then the elements $d_i(u) = \sum_{k=1}^{n} (x_k - 1)d_k'(d_i(u))$, generate Δ as a right ideal of ZF. Again by Lemma 2.4, the matrix D_u is invertible.

(ii) We use an argument from [13] implying that if a matrix $D_{\phi(u)}$ is invertible and $u \in F'$, then ϕ is an automorphism. Applying part (i) of this proposition completes the proof.

Proof of Theorem 1.4. First of all, note that if u is Δ-primitive, then $u \in M'$; otherwise some $d_i(u)$ wouldn’t belong to Δ by Lemmas 2.1, 2.2.

(i) Let $h \in M'_{2}$; then we can write h as $[x_1, x_2]^w$ for some $w \in ZA_2 = Z(M_2/M'_2)$. Then for abelianized Fox derivatives (we denote them the same way as the ones in a free group ring when there is no ambiguity) we have: $d_i(h) = w \cdot d_i([x_1, x_2])$. Hence if $d_i(h)$, $i = 1, 2$, generate the same ideal of ZA_2 as $d_i([x_1, x_2])$, the element w should be invertible in ZA_2, which means it has the form $\pm g$ for some $g \in M_2/M'_2$.

Thus $h = [x_1, x_2]^\pm g$; in particular, it is an automorphic image of $[x_1, x_2]$.

(ii) Consider basic commutators of weight 2 in the group M_n: $c_1 = [x_1, x_2]$; $c_2 = [x_1, x_3]$; ...; $c_N = [x_{n-1}, x_n]$, where $N = n(n - 1)/2$, and consider a product of the form $w = c_1^{k_1}c_2^{k_2}...c_N^{k_N}$. Evaluate abelianized Fox derivatives of the element w:

$d_1(w) = k_1(x_2 - 1) + ... + k_{n-1}(x_n - 1)$;
$d_2(w) = -k_1(x_1 - 1) + k_n(x_3 - 1) + ... + k_{2n-3}(x_n - 1)$;
$d_3(w) = -k_2(x_1 - 1) - k_n(x_2 - 1) + k_{2n-2}(x_4 - 1) + ... + k_{3n-6}(x_n - 1)$.

... .

$d_n(w) = -k_{n-1}(x_1 - 1) - ... - k_{n(n-1)/2}(x_{n-1} - 1)$.

We are now going to show that these derivatives do not generate Δ even modulo Δ^2. To do that, it suffices to show that they are linearly dependent, i.e., that the nxn matrix of coefficients (its (i, j)th entry is the coefficient at $(x_j - 1)$ in the decomposition of $d_i(w)$ above) has determinant 0.

It is easy to see that this matrix (denote it by $A = (a_{ij})$) is antisymmetric, with zeroes on the diagonal. The determinant of a matrix like that must be 0.

7
if n is odd. Indeed, consider a summand $a_{1,i_1}a_{2,i_2}...a_{n,i_n}$ in the decomposition of the determinant. If there is at least one diagonal element among these a_{k,i_k}, then the product is 0. If all a_{k,i_k} are off-diagonal elements, consider the “reflection” $a_{i_1,1}a_{i_2,2}...a_{i_n,n}$. These 2 summands go with different signs since $a_{ij} = -a_{ji}$, and n is odd. Therefore, they cancel out which proves that the determinant of A equals 0. This completes the proof of part (ii).

Proof of Corollary 1.5. If there were a Δ-primitive element in F_n, its image in M_n would be a Δ-primitive element of M_n which contradicts Theorem 1.4 (ii).

Proof of Proposition 1.6. Let $h = \phi(g)$ be a J-primitive element. Since g has outer rank n, the right ideal J is n-generated by $[17]$. It follows that the elements $d_1(g), ..., d_n(g)$ freely generate J as a right ideal of ZF_n. Indeed, if there were a (right) ZF_n-dependence between these elements, then one of them would belong to the right ideal generated by the others - this follows from a general theory of $[3]$. Therefore, J could be generated by less than n elements.

Thus by Lemma 2.4, for some matrix $M \in GL_n(ZF_n)$, we have:

$$ (d_1(h), ..., d_n(h)) = (d_1(g), ..., d_n(g))M. \quad (2) $$

On the other hand, by the equation (1) in the Preliminaries, we have:

$$ (d_1(h), ..., d_n(h)) = (\phi(d_1(g)), ..., \phi(d_n(g)))J_\phi. $$

This together with (2) gives

$$ (d_1(g), ..., d_n(g)) = (\phi(d_1(g)), ..., \phi(d_n(g)))J_\phi M^{-1}. \quad (3) $$

This means $J \subseteq \phi(J)$. Since ϕ is a monomorphism, this yields $J = \phi(J)$, in which case the matrix $J_\phi M^{-1}$ on the right-hand side of (3) must be invertible by Lemma 2.4. Therefore, J_ϕ is invertible, too, hence $\phi \in Aut F_n$ by $[3]$. **Corollary 1.7** follows immediately.

Acknowledgement

I am grateful to S.Ivanov for numerous useful discussions, and to R.Bieri - for pointing out Theorem 1.2.

References

[1] V.A.Artamonov, *Projective metabelian groups and Lie algebras*, Izv. Akad. Nauk SSSR Ser. Mat. 42 (1978), 226-236.

[2] R.Bieri, B.Eckmann, *Relative homology and Poincaré duality for group pairs*, J. Pure Appl. Algebra 13 (1978), 277-319.
[3] J.S. Birman, *An inverse function theorem for free groups*, Proc. Amer. Math. Soc. 41 (1973), 634-638.

[4] M. Cohen, W. Metzler and B. Zimmermann, *What does a basis of $F[a,b]$ look like?*, Math. Ann. 257 (1981), 435-445.

[5] P. M. Cohn, *Free rings and their relations*, Second edition, Academic Press, London, 1985.

[6] W. Dicks, M. J. Dunwoody, *Groups acting on graphs*, Cambridge University Press, 1989.

[7] B. Eckmann, H. Müller, *Poincaré duality groups of dimension 2*, Comment. Math. Helv. 55 (1980), 510-520.

[8] R. H. Fox, *Free differential calculus. I. Derivation in the free group ring*, Ann. of Math. 57 (1953), 547-560.

[9] C. K. Gupta, N. D. Gupta and G. A. Noskov, *Some applications of Artamonov-Quillen-Suslin theorems to metabelian inner rank and primitivity*, Canad. J. Math. 46 (1994), 298-307.

[10] R. Lyndon, P. Shupp, *Combinatorial Group Theory*, Series of Modern Studies in Math. 89. Springer-Verlag, 1977.

[11] R. P. Osborne, H. Zieschang, *Primitives in the free group on two generators*, Invent. Math. 63 (1981), 17-24.

[12] V. Shpilrain, *Recognizing automorphisms of the free groups*, Arch. Math. 62 (1994), 385-392.

[13] V. Shpilrain, *Test elements for endomorphisms of free groups and algebras*, Israel J. Math. 92 (1995), 307-316.

[14] A. A. Suslin, *On the structure of the special linear group over polynomial rings*, Math. USSR Izv., 11 (1977), 221–238.

[15] E. C. Turner, *Test words for automorphisms of free groups*, Bull. London Math. Soc., to appear.

[16] U. U. Umirbaev, *Primitive elements of free groups*, Russian Math. Surveys 49 (1994), 184-185.

[17] U. U. Umirbaev, *On the rank of elements of free groups*, Russian Math. Surveys, to appear.

[18] H. Zieschang, *Alternierende Produkte in freien Gruppen*, Abh. Math. Sem. Univ. Hamburg 27 (1964), 12-31.

Department of Mathematics, University of California, Santa Barbara, CA 93106

e-mail address: shpil@math.ucsb.edu