Influence of long-range interactions on strategy selection in crowd

Krzysztof Malarz,1 Malgorzata J. Krawczyk, and Krzysztof Kulakowski

AGH University of Science and Technology, Faculty of Physics and
Applied Computer Science, al. Mickiewicza 30, 30-059 Krakow, Poland.
(Dated: May 14, 2014)

An order–disorder phase transition is observed for Ising-like systems even for arbitrarily chosen probabilities of spins flips [K. Malarz et al, Int. J. Mod. Phys. C 22, 719 (2011)]. For such athermal dynamics one must define \((z + 1)\) spin flips probabilities \(w(n)\), where \(z\) is a number of the nearest-neighbours for given regular lattice and \(n = 0, \ldots, z\) indicates the number of nearest spins with the same value as the considered spin. Recently, such dynamics has been successfully applied for the simulation of a cooperative and competitive strategy selection by pedestrians in crowd [P. Gawroński et al, Acta Phys. Pol. A 123, 522 (2013)]. For the triangular lattice \((z = 6)\) and flips probabilities dependence on a single control parameter \(x\) chosen as \(w(0) = 1, w(1) = 3x, w(2) = 2x, w(3) = x, w(4) = x/2, w(5) = x/4, w(6) = x/6\) the ordered phase (where most of pedestrians adopt the same strategy) vanishes for \(x > x_C \approx 0.429\). In order to introduce long-range interactions between pedestrians the bonds of triangular lattice are randomly rewired with the probability \(p\). The amount of rewired bonds can be interpreted as the probability of communicating by mobile phones. The critical value of control parameter \(x_C\) increases monotonically with the number of rewired links \(M = p z N / 2\) from \(x_C(p = 0) \approx 0.429\) to \(x_C(p = 1) \approx 0.81\).

PACS numbers: 64.60.De — Statistical mechanics of model systems (Ising model, Potts model, field-theory models, Monte Carlo techniques, etc.); 64.60.Cn — Order–disorder transformations; 87.23.Ge — Dynamics of social systems.

Keywords: Athermal phase transition; Crowd dynamics; Long-range interactions; Computer simulation

I. INTRODUCTION

In theoretical studies the critical point \(x_C\) (i.e. Curie temperature \(T_C\) for Ising model, or percolation threshold \(p_C\) in geometrical systems) may by influenced by lattice/network topology [1–5], numerical scheme of spin updates [6], clustering coefficient of the network [7], range of interaction [8] and also by assumed sites neighbourhood for geometrical systems [9–12]. Here we consider an order–disorder transition in an athermal system, where the probabilities of change of a local (spin-like) variable depends in arbitrary way on the system parameters. In this system, the concepts of energy and temperature do not apply. Recently, an order–disorder phase transition has been observed for such a system [13]. For such athermal dynamics one has to define \((z + 1)\) spin flips probabilities \(w(n)\), where \(z\) is a number of the nearest-neighbours for given regular lattice and \(n = 0, \ldots, z\) indicates the number of nearest spins with the same value as the considered spin. This dynamics has been successfully applied for the simulation of a cooperative and competitive strategy selection by pedestrians in crowd [14]. For the triangular lattice \((z = 6)\) and flips probabilities dependence on a single control parameter \(x\) chosen as \(w(0) = 1, w(1) = 3x, w(2) = 2x, w(3) = x, w(4) = x/2, w(5) = x/4, w(6) = x/6\) the ordered phase (where most of pedestrians adopt the same strategy) vanishes for \(x > x_C \approx 0.429\).

In this paper we extend our recent studies [14] by introducing long-range interactions among pedestrians in a crowd. In order to introduce long-range interactions between pedestrians the bonds of triangular lattice are randomly rewired with the probability \(p\). The schematic sketch of network construction is presented in Fig. 1.

We show that critical value of control parameter \(x_C\) increases monotonically with the number of rewired links \(M = p z N / 2\) from \(x_C(p = 0) \approx 0.429\) to \(x_C(p = 1) \approx 0.81\). Moreover, we present others signatures of order–disorder phase transition occurrence, including the Binder cumulant \(U_4\) and pedestrians’ susceptibility for changing their strategy \(\chi\) behaviours in the vicinity of phase transition.

II. MODEL

The system contains \(N\) sites of triangular lattice with helical boundary conditions (see Fig. 1). Each lattice node is decorated with a single spin-like variable \(s_i = \pm 1\) representing actual strategy (i.e. cooperative or competitive) adopted by a pedestrian \(i\) in a crowd. The long-range interactions among pedestrian are introduced by random rewiring of \(M = p z N / 2\) links, where \(p\) is the single edge rewiring probability. In every Monte Carlo step each pedestrian is investigated either he/she will change his/her strategy \((s_i(t+1) = -s_i(t))\) or not \((s_i(t+1) = s_i(t))\). The probabilities of changing mind by pedestrians are given as \(w(n)\), where \(n\) indicates the number of the nearest pedestrian using the same strategy as the considered agent \(i\). We use the same set of probabili-
the temporal order parameter \(\langle m(t) \rangle = T^{-1} \sum_{t=T+1}^{2T} [m(t)]^k \), \(k = 1, 2, 4 \),

where

\[m(t) = N^{-1} \sum_{i=1}^{N} s_i(t) \]

is a spatial average of the pedestrian strategies and \(2T = 10^6, 10^7, 10^8, 10^9 \) for \(N = 10^6, 512^2, 256^2, 128^2, 64^2 \) and \(32^2 \), respectively.

To observe additional signatures of the order–disorder phase transition in our system we evaluate the fourth-order Binder cumulant

\[U_4 = 1 - \frac{\langle m^4 \rangle}{3 \langle m^2 \rangle^2} \]

and pedestrians susceptibility for changing opinion

\[\chi = \frac{dm}{dh} \]

III. RESULTS

In the vicinity of the phase transition \(x_C \) the critical slowing down was observed for original unrewired lattice \((p = 0) \) [14]. It means that when model control parameter \(x \) approaches the critical point \(x \rightarrow x_C \), the order parameter \(m(t) \) oscillations become more intensive. Introducing of long-range interactions does not destroy this effect as presented in Fig. 2.

In Fig. 3 the temporal order parameter \(\langle m \rangle \) and \(\langle m^2 \rangle \) dependence on model control parameter \(x \) are presented. The value of \(x \) parameter for which \(\langle m \rangle \) and \(\langle m^2 \rangle \) vanish correspond to the critical point \(x_C \). The dependence
of critical value of the model control parameter x_C on rewiring probability p is presented in Fig. 4. The critical value of control parameter x_C increases monotonically with the number of rewired links $M = pN/2$ from $x_C(p = 0) \approx 0.429$ to $x_C(p = 1) \approx 0.81$.

Also the pedestrians’ susceptibility for changing the strategy χ dependence on parameter x may be used for critical point estimation. For finite but large enough system sizes N the $\chi(x)$ dependence may become maximum near x_C. This maximum positions for $p = 0.01$ and $p = 0.9$ are marked by vertical lines in Figs. 5 (c, d).

The intersection points of the cumulants U_4 for different system sizes N usually depend only rather weakly on those sizes, providing a convenient estimate for the value of the critical point x_C. This intersection appears for $x_C \approx 0.52$ and for $x_C \approx 0.80$ for $p = 0.01$ and $p = 0.9$, respectively. These intersection points coincide very nicely with points of vanishing order parameters $\langle m^k \rangle (k = 1, 2)$.

FIG. 3. Order parameter $\langle m \rangle$ and $\langle m^2 \rangle$ dependence on model control parameter x for various rewiring probabilities p. The temporal average over last $T = 5 \times 10^5$ sweeps through the lattice is used to evaluate average values of $\langle m \rangle$ and $\langle m^2 \rangle$. The values of x for which $\langle m^2 \rangle$ decrease to zero approximate the critical values of x_C. The simulations are carried out for lattice with $N = 10^6$ sites.

FIG. 4. Critical value of the model control parameter x_C dependence on a rewiring probability p.

IV. CONCLUSIONS

In this paper the influence of the long-range interactions on strategy selection was investigated. The critical point value x_C increases monotonically with number of rewired links. Critical point values x_C indicated by $U_4(x; L)$ and $\chi(x)$ dependencies on parameter x (Fig. 5) coincide nicely with x_C evaluated from $\langle m \rangle(x)$ and $\langle m^2 \rangle(x)$ dependencies (Fig. 3). As we see, the athermal character of the model preserves the validity of the tools, commonly accepted in statistical mechanics. Yet, it does not destroy typical system behaviours near the order–disorder critical point.

In our interpretation, the ordered phase is a model equivalent of a situation, where most of pedestrians accept the same strategy, selfish or cooperative. The result indicate, that a small amount of rewired bonds strongly supports the ordered phase. This means in particular, that using mobile phones enhances the homogeneity of the strategy of the majority. We note that a similar problem of interacting nodes in a network has been considered in [15, 16], where spin-flip probabilities have been calculated within the Ising model. There, the applied formulæ rely on the well-known analogy with magnetic energy and temperature. Our formulation and results allow to expect that most of these approaches can be reformulated within a more general, athermal frame.

ACKNOWLEDGMENTS

The work was partially supported by the Polish Ministry of Science and Higher Education and its grants for Scientific Research and by the PL-Grid Infrastructure.
FIG. 5. The dependence of the Binder cumulant U_4 (a, b) and pedestrians’ susceptibility for changing their strategy χ (c, d) on the model control parameter x. The values of the susceptibility χ are obtained for $N = 512^2$. The vertical lines correspond to critical point position x_C.

[1] K. Malarz, M. Zborek, B. Wróbel, TASK Quarterly 9, 475 (2005).
[2] F. W. S. Lima, K. Malarz Int. J. Mod. Phys. C 17, 1273 (2006).
[3] F. W. S. Lima, J. Mostowicz, K. Malarz, Commun. Comput. Phys. 10, 912 (2011).
[4] J. C. Santos, F. W. S. Lima, K. Malarz, Physica A 390, 359 (2011).
[5] A. Malakis, G. Gulpinar, Y. Karaaslan, T. Papakonstantinou, G. Aslan, Phys. Rev. E 85, 031146 (2012).
[6] A. O. Sousa, K. Malarz, S. Galam, Int. J. Mod. Phys. C 16, 1507 (2005).
[7] A. Mańka, K. Malarz, K. Kulakowski, Int. J. Mod. Phys. C 18, 1765 (2007).
[8] K. Malarz, Int. J. Mod. Phys. C 14, 561 (2003).
[9] L. Kurzawski, K. Malarz, Rep. Math. Phys. 70, 163 (2012).
[10] M. Majewski, K. Malarz, Acta Phys. Pol. B 38, 2191 (2007).
[11] S. Galam, K. Malarz, Phys. Rev. E 72, 027103 (2005).
[12] K. Malarz, S. Galam, Phys. Rev. E 71, 016125 (2005).
[13] K. Malarz, R. Korff, K. Kulakowski, Int. J. Mod. Phys. C 22, 719 (2011).
[14] P. Gawroński, K. Malarz, M. J. Krawczyk, J. Malinowski, A. Kupczak, W. Sikora, K. Kulakowski, J. Wąs, J. Kandelhardt, Acta Phys. Pol. A 123, 522 (2013).
[15] K. Suchecki, J. A. Hołyst, Phys. Rev. E 74, 011122 (2006).
[16] K. Suchecki, J. A. Hołyst, Phys. Rev. E 80, 031110 (2009).
[17] W. de Nooy, A. Mrvar, V. Batagelj, Exploratory Social Network Analysis with Pajek (2nd Edition), Cambridge University Press (2012).