Frequency noise characteristics of a diode laser and its application to physical random number generation

Shinya Maehara
Kohei Kawakami
Hideaki Arai
Kenji Nakano
Kohei Doi
Takashi Sato
Yasuo Ohdaira
Shuichi Sakamoto
Masashi Ohkawa
Frequency noise characteristics of a diode laser and its application to physical random number generation

Shinya Maehara
Niigata University
Faculty of Engineering
8050 Ikarashi 2-no-cho
Nishi-ku, Niigata 950-2181, Japan

Kohei Kawakami
Hideaki Arai
Kenji Nakano
Niigata University
Graduate School of Science and Technology
8050 Ikarashi 2-no-cho
Nishi-ku, Niigata 950-2181, Japan

Kohei Doi
Niigata University
Gender Equality Office
8050 Ikarashi 2-no-cho
Nishi-ku, Niigata 950-2181, Japan

Takashi Sato
Yasuo Ohdaira
Shuichi Sakamoto
Masashi Ohkawa
Niigata University
Faculty of Engineering
8050 Ikarashi 2-no-cho
Nishi-ku, Niigata 950-2181, Japan
E-mail: tsato@eng.niigata-u.ac.jp

Abstract. We describe a method of generating physical random numbers by means of a diode laser that has an extremely wide-band frequency-noise profile. Fluctuations in the laser frequency affect the intensity of the light transmitted through the optical frequency discriminator, detected thereafter as random fluctuations. This allows us to simultaneously generate 8 random bit streams, due to the parallel processing of 8-digit binary numbers sampled by an 8-bit analog-to-digital converter. Finally, we generated physical random numbers at a rate of 3 Gbit/s, by combining one data stream with another stream that is delayed by 2 ms, by exclusive-OR.

1 Introduction

Today’s diode lasers boast features that were unimaginable not long ago: ultra-compact, durable design, high power and high efficiency, low maintenance and low cost. In the interest of fairness, however, there are certain negative aspects that should be considered before moving to “upgrade” to these devices: a not-insignificant level of AM and FM quantum noise,4–6 as well as optical feedback noise.4 The former, generated by the spontaneous fluctuation of emissions, also cause fluctuations in carrier density and the refractive index of the cavity, which in-turn results in random fluctuations in optical power and frequency. The optical feedback noise, on the other hand, stems from the flow of light from an external reflector to the laser’s active layer, which, in-turn causes unstable, i.e., oscillatory and/or chaotic, output and/or mode-hopping noises. It is therefore vitally important that users be able to correctly interpret these signals to ensure safe operation.

Our investigations of diode lasers’ frequency-noise characteristics have led us to the conclusion that their oscillation frequency has a narrow linewidth and moves very fast at random. Owing to this frequency-noise characteristic, we can observe the large intensity fluctuation from the output beam of a diode laser through a frequency discriminator, such as a Fabry-Perot etalon or an absorption cell. This intensity fluctuation shows a random characteristic, so we could produce physical-random-numbers using the diode lasers’ frequency fluctuation. While physical random numbers are currently being generated at a rate of 3 Gbit/s, we believe that far higher speeds are achievable if we simply take advantage of the wide and fast frequency noise characteristics of the diode laser.

The generation of physical random numbers has been approached from a number of different angles. One method, for example, is based on the rate of radioactive decay; another, from thermal noise of a resistor; and a third, from shot noise of a diode. While they are all capable of producing physical random numbers, the speeds at which they do so are slower than the typical pseudo-random number generator. There is yet another method of generating physical random numbers; measuring the phase noise of laser systems’ spontaneously emitted light.5,6 In this instance, a generation speed of 500 Mb/s has been reported. There are several other papers describing generators operating at the range of Gbit/s7–9 that exploit the chaotic response of a diode laser whose light is reflected directly back to its source. Random numbers can be classified as either pseudo- or physical-random in character. Pseudo-random numbers are produced by deterministic algorithms characterized by a calculable periodicity, so they are thought to be ill-suited for the task of generating physical random numbers.
of creating safe cryptography in the era of ultra-high-speed
data-processing, such as those provided by quantum comput-
ing. On the other hand, the noises emitted by Zener diodes
and diode lasers are naturally-occurring random phenomena
with no calculable periodicity, making them useful in
applications such as next-generation cryptography and
large-scale simulations required for understanding natural
phenomena.

Yabuzaki et al.11 used diode laser frequency noise in their
high-resolution spectroscopy. The setup consists of nothing
more than a diode laser, a frequency discriminator (such as
an atomic absorption line), a very fast optical detector, and a
spectrum analyzer. They observed that the light transmitted
through the atomic absorption cell emitted a significant
amount of noise during a slow sweep of the laser frequency.
They also observed signals originating from the hyperfine
structure of Cs, without sweeping the laser frequency.

In this paper, we propose a novel method for the first
physical random number generation utilizing the frequency
noise of a diode laser.12–14 That is to say that we converted
laser frequency fluctuations directly to fluctuations in the
intensity of the light transmitted through the optical fre-
quency discriminator, and then to 8-digit binary numbers
by means of an analog-to-digital converter (ADC). The
present work carries forward our research in the area of
physical-random number generation using the unique noise-
profile of the Fabry-Perot diode laser.

2 Detection of Frequency Noise

Using a frequency discriminator, for example, an Rb absorp-
tion line or a Fabry-Perot etalon, we can convert frequency
noise to intensity noise, generating physical random numbers
in the process. Figure 1 shows the optical setup used to detect
the signals that are proportional to the frequency noise pro-
bduced by the diode laser. In this work, the Rb-D\textsubscript{2} absorption
line was used as an optical frequency discriminator for con-
verting the diode laser’s 780 nm frequency noise to transmit-
ted intensity noise signals. We used a 70 mW, single-mode
diode laser (Sanyo, DL-7140-201) operating at 780 nm, and
driven by a low-noise current source. The laser’s thermostat
(Yamaki, KLT-2E) controls temperature to within ±0.01 K.
We operated the diode laser at 73 mA (threshold current: 30 mA),
controlling both injection current and temperature
conditions, in order to tune the laser frequency to the Rb
absorption line. As shown in Fig. 2, the spectral linewidth
was determined to be 3 MHz at full width at half maximum
(FWHM) from the beat note between identical, temperature-
controlled, free-running diode lasers. When the laser line-
width is too narrow, the intensity noise converted from the
frequency noise in our system is reduced. If, on the other
hand, the laser linewidth is too broad, most of frequency
noise components are far from the absorption line, making
it difficult to acquire an intensity noise of sufficient
amplitude.

Figure 3 shows the conversion principle used to measure
variations in intensity and voltage, based on frequency-
shifts. Figure 3(a) describes the intensity of the transmitted
signal, i.e., the absorption profile of the Rb-D\textsubscript{2} line obtained
by sweeping the laser injection current. When absorption line
spectra are characterized by steep slopes, small fluctuations
in frequency translate to significant changes in light intensity.
Therefore, the laser frequency was set at point \(P_1\), where the
slope of the absorption line spectrum is steepest. As Fig. 3(b)
describes, frequency noise is converted to intensity noise by
the frequency discriminator, i.e., the Rb absorption cell,
when the laser frequency shifts around point \(P_1\). Point \(P_1\)
has a steep slope that allows us to obtain a strong intensity
noise signal, and then generate a physical random number
originating from the frequency noise rather than having to
rely on the amplifier’s noise. Frequency noise, such as at
\(P_2\), \(P_3\), or \(P_4\), is not converted to transmitted light intensity
noise, so we pick up only their small intensity noise emanat-
 ing from the region where the laser frequency does not match
the resonant frequency of Rb. So, the purpose of our study
is to shine a bit more light on the mechanics of diode
lasers’ frequency noise and its potential applicability to such
tasks as the generation of physical random numbers. The
system we currently rely on for physical-random number-
generation is quite simple, requiring nothing more than a
diode laser, a frequency discriminator, and a photo detector.

3 Physical Random Number Generation System

Figure 4 shows the experimental setup for the physical random number generator. The laser beam passes through
an optical isolator and then the Rb cell. Light intensity is
detected by an avalanche photo diode (Hamamatsu, S2381,
1 GHz bandwidth), while voltage signals are amplified by
a radio-frequency amplifier (COSMOWAVE, LPA-G39WD,
50 MHz to 8 GHz bandwidth). We used a digital oscilloscope
(LeCroy, Wave Runner 62Xi-A, 600 MHz bandwidth,
10 GS/s) as an 8-bit ADC.
As indicated in Fig. 5, we can generate 8 random bit-streams at a time, because the light intensity is sampled by an 8-bit ADC and converted to 8 digit binary data. They are uploaded to a computer, and verified in accordance with the National Institute of Standard Technology (NIST)'s test suites.15,16 We also used a spectrum analyzer (ROHDE&SCHWARZ, FSU3, 20 Hz to 3.6 GHz bandwidth) to measure the noise of the light transmitted at several oscillation frequencies.

4 Experimental Results and Discussions

Yabuzaki et al. described significant intensity fluctuation or noise of the beam transmitted through the Cs cell near steeply-sloped areas of the absorption signal when the laser frequency was swept slowly around the Cs-\(D_1\) absorption line.11 In Fig. 6, the transmitted beam is viewed in a test using the Rb-\(D_2\) absorption line. Here, we can demonstrate that the strongest signal is observed where the slope-angle is the steepest. We obtained high-intensity noise-signals proportional to the diode laser’s frequency-fluctuation. Figure 7(a) shows the waveform of the discriminator output. In this experiment, by adjusting the injection current to about 73 mA, we set the laser frequency at position \(P_1\), where the slope of Rb-\(D_2\) absorption line is at its sharpest inclination, as shown in Fig. 3(a). The trace (1) is the signal waveform displayed on the digital oscilloscope, with signal waveforms being observed at different frequencies [see Fig. 3(a)]. When the laser beam was blocked at the entrance of the APD, a trace (3) [Fig. 7(b)] was obtained. Figure 7(c) represents the noise spectra of the transmitted light as measured by the spectrum analyzer; the results of which indicate that we can take full advantage of frequency noise components

![Fig. 3](image-url)
Fig. 3 (a) Observed Rb-\(D_2\) absorption line and (b) conversion of laser frequency noise to laser intensity variation. The laser frequency is set at point \(P_1\), by tuning the injection current. Off-resonant points \(P_2\), \(P_3\), and \(P_4\) are used for references.

![Fig. 4](image-url)
Fig. 4 Experimental setup. DL: diode laser; ISO: optical isolator; BS: beam splitter; APD: avalanche photo diode; Amp: amplifier; ADC: analog/digital converter.

As indicated in Fig. 5, we can generate 8 random bit-streams at a time, because the light intensity is sampled by an 8-bit ADC and converted to 8 digit binary data. They are uploaded to a computer, and verified in accordance with the National Institute of Standard Technology (NIST)'s test suites.15,16 We also used a spectrum analyzer (ROHDE&SCHWARZ, FSU3, 20 Hz to 3.6 GHz bandwidth) to measure the noise of the light transmitted at several oscillation frequencies.
observed at point \(P_1 \), as high as 1 GHz, detected by an APD for physical random number generation.

Applying the method shown in Fig. 5, we can obtain 8 binary number streams, in-parallel, such as \(r_0 \), referring to the lowest digit, \(r_1 \), the second lowest, and so on. Our method follows the approach used by Saito et al. to generate a physical random number. The 8 bit-sequences that were generated were subsequently evaluated, using NIST FIPS140-2 in the early stages of the experiment. As shown in Table 1, we obtained a high examination pass rate for bit-sequences \(r_0 \) through \(r_5 \). We also wanted to use NIST SP 800-22 tests, which require a bit sequence of 1 Gbit length and are commonly used in other reports as an evaluation test for the pseudo-random numbers’ randomness, to compare our result with other reports. Therefore, we prepared a 1 Gbit length bit-sequence using binary numbers from \(r_0 \) to \(r_5 \), which have already been evaluated as random numbers in NIST FIPS140-2 tests. Here, we can obtain the equal probability of occurring “0” and “1” in bit-sequences using the exclusive OR operation between the bit-sequence and itself, delayed by 2 ms. This method is cited in Ref. 10. This operation is an integral part of any evaluation of physical-random-numbers when we use the examination method for pseudo-random number’s randomness, such as NIST SP 800-22 tests. We evaluated our data using the NIST SP 800-22 statistical tests; Table 2 describes the outcome. In these tests, the statistical randomness for a binary stream is verified. The stream, which satisfies all tests, is considered to be a correct random number. From Table 2, we found that 1 Gbit streams generated by frequency noise passed all test items. At other measurement points (\(P_2, P_3, P_4 \)), results were similar to a “laser off” condition. Parameters, such as the laser’s frequency, the laser’s power, and the optical thickness of the Rb vapor, change and determine the intensity of the transmitted laser signal. When the variation is significant, the balance of “0’s” and “1’s” in the upper bits (for
example, r7, r6, and r5 in our manuscript) approaches a rough equivalence, demonstrating its random nature. On the other hand, when the change is small, we cannot expect this randomness in the upper bits. Thus, we demonstrated the generation of physical random numbers based on the frequency noise of the diode laser. Because we used an 8-bit ADC at a sampling rate of 500 MS/s, we were able to obtain 4 Gbit/s at full speed when all binary streams passed the test. Hence, we generated physical-random numbers at a rate of 3 Gbit/s.

Our system allowed us to obtain results that were in good compliance with the standards set forth in NIST SP 800-22. Unfortunately, however, we still have a great deal of work ahead of us in our effort to accurately detect and measure random high-speed output, because of: (1) our inability to control the cut-off frequency of the APD; and (2) the limited performance of our ADC in regards to its analog bandwidth and sampling rate. So, it is of vital importance that we use a noise source having high speed random fluctuation in order to achieve faster physical random number generation.

Table 1
Results of NIST FIPS 140-2 statistical tests. Statistical randomness for a binary stream consisted of 20,000 digits, verified by four tests consisting of the "monobit," the "poker," the "run," and the "longrun." We evaluated 10,000 sets of 20,000 binary numbers and calculated the examination pass rates, at every digit. "Total" means the examination pass rate of binary streams satisfied all four tests.

	r0	r1	r2	r3	r4	r5	r6	r7
Mono	99.96%	98.07%	99.87%	99.77%	99.96%	99.97%	99.11%	99.27%
Poker	99.99%	99.88%	99.99%	99.97%	100.0%	100.0%	97.57%	90.75%
Run	99.52%	98.23%	99.26%	99.29%	99.49%	99.50%	6.16%	0.01%
Longrun	99.94%	99.99%	99.97%	99.96%	99.96%	99.93%	99.98%	99.97%
Total	99.43%	96.55%	99.11%	99.07%	99.43%	99.43%	6.09%	0.016%

Table 2
Results of NIST Special Publication 800-22 statistical tests. A set of 1000 sequences generated using the lower 6-digits is evaluated. Each sequence contains 1 Mbit data. Significance level $\alpha = 0.01$, the P value (uniformity of p values) should be larger than 0.0001, while the proportion should be greater than 0.9805608.

Statistical test	Laser on (P_1)	Laser off	Result	Result		
	P value	Proportion		P value	Proportion	
Frequency	0.120909	0.9830	Success	0.000000	0.0310	Failure
Block frequency	0.099513	0.9880	Success	0.000000	0.0000	Failure
Cumulative sums	0.068999	0.9820	Success	0.000000	0.0200	Failure
Runs	0.803720	0.9930	Success	0.000000	0.0000	Failure
Longest run	0.494392	0.9900	Success	0.000000	0.0000	Failure
Rank	0.131122	0.9920	Success	0.000000	0.0000	Failure
Nonoverlapping template	0.022760	0.9890	Success	0.000000	0.0000	Failure
Overlapping template	0.560545	0.9890	Success	0.000000	0.0000	Failure
Universal	0.034942	0.9880	Success	0.000000	0.0000	Failure
Approximate entropy	0.352107	0.9950	Success	0.000000	0.0000	Failure
Random excursions	0.042950	0.9866	Success	——	——	Failure
Random excursions variant	0.064103	0.9900	Success	0.000000	1.0000	Failure
Serial	0.467322	0.9890	Success	0.000000	0.0000	Failure
Linear complexity	0.494392	0.9890	Success	0.618385	0.9930	Success
also need to introduce a photo detector with a faster response, a broad-range radio-frequency amplifier, and ADC with a broad analog bandwidth, high sampling rate, and high resolution. Although the frequency noise spectrum of the Fabry-Perot type diode laser extends to several GHz, vertical cavity surface emitting lasers (VCSEL) are characterized by even broader oscillation-linewidth and frequency-noise bandwidth, and therefore could be used as higher-speed noise sources. Therefore, we can expect further improvements in physical random number generation speed. Laser frequency is set in a sloped area of the Rb absorption line, under temperature-controlled free-running conditions. Therefore, we should generate physical random numbers with stable laser frequency in order to remove any useless low frequency components.

5 Conclusion

We proposed, designed, and built a system for generating physical random numbers using the frequency noise generated by a Fabry-Perot-type diode laser. We then evaluated the binary number line’s statistical properties, and, in the end, achieved a physical random number generation speed of 3 Gbit/s, maximum.

The next step in this process will require the introduction of a photo detector with improved response-time, a broad-range radio-frequency amplifier and a broadband ADC, a high sampling rate, and a high resolution, i.e., more output digits. To improve the speed at which “fast physical random numbers” are generated, we need to apply the frequency noise characteristics of the diode laser in conjunction with a broad-spectrum, high FM noise-bandwidth light-source, such as a VCSEL.

Acknowledgments

We would like to thank Mr. Hiroki Takamori for his help in our experiment. This work is supported in part by a Grant-in-Aid for Scientific Research (No. 22560035) from the Japan Society for the Promotion of Science.

References

1. Y. Yamamoto, “AM and FM quantum noise in semiconductor lasers—part I: theoretical analysis,” IEEE J. Quantum Electron. 19(1), 34–46 (1983).
2. Y. Yamamoto, S. Saito, and T. Mukai, “AM and FM quantum noise in semiconductor lasers—part I: comparison of theoretical and experimental results for AlGaAs lasers,” IEEE J. Quantum Electron. 19(1), 47–58 (1983).
3. M. Ohira et al., “Estimation of the ultimate frequency stability of semiconductor lasers,” Jpn. J. Appl. Phys. 22(7), 1157–1166 (1983).
4. R. Lang and K. Kobayashi, “External optical feedback effects on semiconductor injection laser properties,” IEEE J. Quantum Electron. 16(3), 347–355 (1980).
5. H. Guo et al., “True random number generation based on measurement of phase noise of a laser,” Phys. Rev. E 81(5), 051137 (2010).
6. B. Qi et al., “High-speed quantum random number generation by measuring phase noise of a single-mode laser,” Opt. Lett. 35(3), 312–314 (2010).
7. A. Uchida et al., “Fast physical random bit generation with chaotic semiconductor lasers,” Nat. Photon. 2, 728–732 (2008).
8. I. Reider et al., “Ultra-high-speed random number generation based on a chaotic semiconductor laser,” Phys. Rev. Lett. 103(2), 024102 (2009).
9. I. Kanter et al., “An optical ultrafast random bit generator,” Nat. Photon. 4, 58–61 (2009).
10. K. Hirano et al., “Fast random bit generation with bandwidth-enhanced chaos in semiconductor lasers,” Opt. Express 18(6), 5512–5524 (2010).
11. T. Yabuzaki, T. Mitsui, and U. Tanaka, “New type of high-resolution spectroscopy with a diode laser,” Phys. Rev. Lett. 67(18), 2453–2456 (1991).
12. H. Nishimura et al., “Physical-random number generation using laser diodes’ inherent noises,” Proc. SPIE 7597, 75970M (2010).
13. T. Ushiki et al., “Super fast physical-random number generation using laser diode frequency noises,” Proc. SPIE 7933, 79332F (2011).
14. H. Takamori et al., “Fast random-number generation using a diode laser’s frequency noise characteristics,” Proc. SPIE 8255, 825521 (2012).
15. Information Technology Laboratory, “Security requirements for cryptographic modules,” NIST Federal Information Processing Standards Publication 140-2 (2001).
16. A. Rukhin et al., “A statistical test suite for random and pseudorandom number generators for cryptographic applications,” NIST Special Publication 800-22 Revision 1a, http://csrc.nist.gov/groups/ST/toolkit/rng/stats_tests.html (2010).
17. T. Moro et al., “Generation of physical random number using the lowest bit of an A-D converter,” IEICE Trans. Electron. J88-A(6), 714–721 (2005). (In Japanese).

Shinya Maehara received his BE in electrical and electronics engineering from Niigata University, Japan, in 2001. He received his ME from the Graduate School of Science and Technology, Niigata University, in 2003. He is currently a research assistant at Niigata University. His research subject is the frequency noise characteristic of a diode laser and its application.

Kohei Kawakami received his BE from Niigata University, Japan, in 2011. He is currently pursuing his ME degree from the Graduate School of Science and Technology, Niigata University.

Hideaki Arai received his BE from Niigata University, Japan, in 2004. He received his ME and Dr Eng degrees from Niigata University in 2006 and 2010, respectively. He currently works at the Gender Equality Office at Niigata University.

Kenji Nakano received his BE from Niigata University, Japan, in 2005. He received his ME from the Graduate School of Science and Technology, Niigata University, in 2007. He is currently a doctoral course student at Niigata University.

Kohei Doi received his BE in electrical and electronics engineering from Niigata University, Japan, in 2004. He received his ME and Dr Eng degrees from Niigata University in 2006 and 2010, respectively. He currently works at the Gender Equality Office at Niigata University.

Takashi Sato received his BS, MS, and PhD in electronic engineering from Kyoto University in 1976, 1978, and 1983, respectively. He is currently a professor at Niigata University. His research subjects are in laser-production of alkali hydride particles, frequency stabilization of dye lasers and semiconductor lasers, the oscillation frequency shift of a semiconductor laser in a magnetic field, and the application of nonlinear optical effects for frequency stabilization of a semiconductor laser.
Yasuo Ohdaira received his BE, ME, and PhD degrees in electronics from Yamanashi University, in 1996, 1998, and 2003, respectively. He has been engaged in the research of high resolution laser spectroscopy and spin control in optical near-fields. He is currently an associate professor at Niigata University. His research interests lie in the area of near-field signal control using nano-structured organic material systems.

Shuichi Sakamoto received his BE, ME, and PhD degrees in mechanical engineering from Niigata University, Japan, in 1986, 1988, and 1991, respectively. In 1992, he joined the faculty of engineering, Niigata University, Japan, as a research associate, and is currently an associate professor. His research interests include acoustics, noise control, and analysis of signal.

Masashi Ohkawa received his BE, ME, and PhD in electrical engineering from Osaka University, Japan, in 1984, 1986, and 1989, respectively. In 1989, he joined the faculty of engineering, Niigata University, Japan, as a research associate, and is currently a professor. His research interests include integrated optic devices and holography.