Raman spectroscopy links differentiating osteoblast matrix signatures to pro-angiogenic potential

Aikta Sharma*, Alice Goring*, Katherine Stainesb, Roger Emeryc, Andrew A. Pitsillidesd, Richard O.C. Orefoe, Sumeet Mahajanf, ⁎, Claire E. Clarkin*a

a - School of Biological Sciences, Highfield Campus, University of Southampton, Southampton SO17 1BJ, United Kingdom of Great Britain and Northern Ireland
b - School of Applied Sciences, Sighthill Campus, Edinburgh Napier University, Edinburgh EH11 4BN, United Kingdom of Great Britain and Northern Ireland
c - Department of Surgery and Cancer, Faculty of Medicine, St Mary's Campus, Imperial College London, London W2 1PG, United Kingdom of Great Britain and Northern Ireland
d - Department of Comparative Biomedical Sciences, Royal Veterinary College, London NW1 0TU, United Kingdom of Great Britain and Northern Ireland
e - Centre for Human Development, Stem Cell and Regeneration, Institute of Developmental Sciences, Faculty of Medicine, University of Southampton;
f - School of Chemistry and Institute for Life Sciences, Highfield Campus, University of Southampton, Southampton SO17 1BJ, United Kingdom of Great Britain and Northern Ireland

- Raman spectroscopy identifies distinct mineral and matrix signatures produced by primary murine osteoblasts which link directly to the stages of osteoblast maturation.
- Poly-L-lysine coating restricts primary osteoblast differentiation and mineralization.
- Restriction of osteoblast differentiation is associated with a unique matrix signature which enhances VEGF production.
- Characterization of a pro-angiogenic matrix signature could be assessed in live tissue, and thus have potential to be exploited clinically as a biomarker of pathological mineralization.
Supplementary figures
Raman spectroscopy links differentiating osteoblast matrix signatures to pro-angiogenic potential

Aikta Sharmaa, Alice Goringa, Katherine Stainesb, Roger Emeryc, Andrew A. Pitsillidesd, Richard O.C. Oreffoe, Sumeet Mahajanf and Claire E. Clarkina

a School of Biological Sciences, Highfield Campus, University of Southampton, Southampton SO17 1BJ, United Kingdom of Great Britain and Northern Ireland
b School of Applied Sciences, Sighthill Campus, Edinburgh Napier University, Edinburgh EH11 4BN, United Kingdom of Great Britain and Northern Ireland
c Department of Surgery and Cancer, Faculty of Medicine, St Mary's Campus, Imperial College London, London W2 1PG, United Kingdom of Great Britain and Northern Ireland
d Department of Comparative Biomedical Sciences, Royal Veterinary College, London NW1 0TU, United Kingdom of Great Britain and Northern Ireland
e Centre for Human Development, Stem Cell and Regeneration, Institute of Developmental Sciences, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton SO16 6YD, United Kingdom of Great Britain and Northern Ireland
f School of Chemistry and Institute for Life Sciences, Highfield Campus, University of Southampton, Southampton SO17 1BJ, United Kingdom of Great Britain and Northern Ireland

Correspondence to Sumeet Mahajan and Claire E. Clarkin: S.Mahajan@soton.ac.uk, C.E.Clarkin@soton.ac.uk.

https://doi.org/10.1016/j.mbplus.2019.100018

Abstract

Mineralization of bone is achieved by the sequential maturation of the immature amorphous calcium phase to mature hydroxyapatite and is central to the process of bone development and repair. To study normal and dysregulated mineralization in vitro, substrates are typically coated with poly-\textit{L}-lysine (PLL) to facilitate cell attachment. The current study has used Raman spectroscopy to investigate the effect of PLL coating on osteoblast (OB) matrix composition during differentiation, with a focus on collagen specific proline and hydroxyproline and precursors of hydroxyapatite. Deconvolution analysis of murine derived long bone OB Raman spectra demonstrated collagen species were 4.01-fold higher in OBs grown on PLL. An increase of 1.91-fold in immature mineral species (amorphous calcium phosphate) and a reduction of 9.32-fold in mature mineral species (carbonated apatite) on PLL were detected. The unique low mineral signatures driven by PLL were associated with reduced alkaline phosphatase enzymatic activity, Alizarin Red staining, Alpl and Phospho-1 mRNA. The enhancement of immature mineral species and restriction of mature mineral species of OBs present on PLL were associated with increased cell viability and pro-angiogenic VEGF release. These results demonstrate the utility of Raman spectroscopy to characterize matrix signatures and their association with VEGF of differentiating OBs. Importantly, Raman spectroscopy could provide a label-free approach to clinically assess the angiogenic potential of bone in aged patients during fracture repair or in cases of pathological mineralization.

Introduction

Mineralization is a physiological process regulated by the interactions of minerals and organic extracellular molecules central to skeletal development and remodeling. Today, researchers continue to investigate the vital processes by which mineralized tissues form and repair since suboptimal or pathological conditions can lead to bone loss. Raman spectroscopy, a non-invasive and label-free technique, has been utilized to study the mineralization process. This study aimed to investigate the effect of PLL coating on osteoblast matrix composition during differentiation using Raman spectroscopy.
Excessive mineralization will directly impact bone structure, mechanical competence and fragility. However, experimental approaches to define the contributions of specific matrix components underlying mineral formation remain limited. Historically, extracellular matrix (ECM) mineralization in the skeleton was considered as a passive process. However, genetic mouse studies have confirmed this process to be a highly complex, temporal process regulated by multiple genetic pathways [1–8]. These diverse pathways can regulate the homeostasis of ionic calcium and inorganic phosphates required for bone mineral formation, the synthesis of mineral scaffolding ECM, and the maintenance of the levels of the inhibitory organic and inorganic mediators that control further mineral crystal nucleation. Prior to the formation of the stable form of hydroxyapatite (HA), a range of calcium phosphate intermediates are generated, consisting of amorphous calcium phosphate (ACP), the first insoluble phase of calcium phosphate, followed by transient amorphous calcium phosphate (ACP) to octacalcium phosphate (OCP) and carbonated apatite (CAP) before establishment of mature crystalline hydroxyapatite (HA; D).

Fig. 1. Raman spectroscopy of primary murine long bone osteoblasts (OBs). OBs were extracted from the long bones of P4 C57BL/6 mice then plated onto uncoated or poly-L-lysine (PLL) quartz coverslips in basal or osteogenic (osteo) conditions ahead of fixation and Raman spectroscopy (A). Deviations in normalized mean spectral intensity ($n = 125$ spectra; B) were evident in proline (853 cm$^{-1}$), hydroxyproline (876 cm$^{-1}$), phosphate region (940 cm$^{-1}$ to 980 cm$^{-1}$), amide III region (1242 cm$^{-1}$), CH$_2$ deformation (1450 cm$^{-1}$) and amide I (1660 cm$^{-1}$). Schematic of collagen matrix development from enzymatically processed tropocollagen molecules, α_1 and α_2 chains (C). Schematic of conversion of mineral species from amorphous calcium phosphate (ACP) to octacalcium phosphate (OCP) and carbonated apatite (CAP) before establishment of mature crystalline hydroxyapatite (HA; D).

Please cite this article as: A. Sharma, A. Goring, K. Staines, et al., Raman spectroscopy links differentiating osteoblast matrix signatures to pro-angiogenic potential, https://doi.org/10.1016/j.mbplus.2019.100018
intermediate forms, octacalcium phosphate (OCP) and subsequently carbonated apatite (CAP) [9,10].

HA crystals have been shown to form inside matrix vesicles (MV) which bud from the surface membrane of hypertrophic chondrocytes and osteoblasts (OBs) [11–14]. It is believed that the combination of inorganic calcium and phosphate ions accumulating inside MVs instigate the breakdown of the MV membrane, releasing HA crystals into the extracellular fluid, thereby facilitating crystal propagation in and around the collagenous ECM. Locally, in the OB and its microenvironment, phosphatases such as PHOSPHO1 and tissue-nonspecific alkaline phosphatase (ALP) are thought to be key factors in the initiation of mineralization [3] which, in tandem, are functionally responsible for providing phosphates necessary for crystal nucleation and growth within MVs and the dephosphorylation of local inhibitory pyrophosphate [15,16].

In vitro, the elucidation of these mechanisms that underlie these distinct stages of matrix mineralization is difficult, therefore identifying novel therapeutic candidates which drive deficient or pathological mineralization remains a significant challenge. Molecular approaches to quantify gene expression levels (e.g. Phospho1, Alpl) are typically used to assess OB differentiation status in vitro and are commonly combined with immunofluorescent or histological matrix stains including Von Kossa, Alizarin Red or Sirius Red. However, these approaches require considerable sample preparation, are semi-quantitative and, crucially, fail to provide sufficient information to define a specific mineralization stage of individual cells within a population. Raman spectroscopy is a label-free, non-destructive vibrational fingerprinting optical technique that has been used to detect biochemical changes in a variety of cell types [16–19] in both qualitative and quantitative capacities [20–24]. We have recently used Raman spectroscopy in the detection of early osteogenic lineage commitment where this approach provided enriched quantitative information regarding the composition of OB ECM in comparison to standard cell differentiation and gene expression.
assays [25]. Herein, we have used Raman spectroscopy and the effect of poly-L-lysine (PLL) to assess whether distinct mineral and matrix signatures produced by individual OBs are linked directly to the stage of OB differentiation. Furthermore, given that mineralization is driven by the vascular supply to bone, we have investigated if a link exists between the composition of specific mineral and matrix components within the OB ECM with vascular endothelial growth factor (VEGF) production.

Results

Raman spectroscopy reveals immature mineral and matrix osteoblast signatures on PLL coatings

To study the effect of PLL coating on OB differentiation using Raman spectroscopy, primary murine long bone OBs were isolated from the tibia, fibula and femur of 4-day old (P4) C57BL/6 mice using the collagenase-collagenase-EDTA-collagenase (CCEC) method (Fig. 1A). Cells were cultured under basal or differentiation-promoting osteogenic (osteo) conditions on uncoated or PLL coated quartz coverslips for 19 days before fixation ahead of Raman spectroscopy (Fig. 1A). Previously we have shown that Raman spectroscopy can successfully detect changes in differentiating primary OB cell cultures [25]. Here, we used Raman spectroscopy to quantify changes specifically occurring within the mineral and matrix components of the secreted ECM on these substrates. Specifically, collagen associated matrix bands namely proline and hydroxyproline (853 cm\(^{-1}\) and 876 cm\(^{-1}\) respectively), CH\(_2\) deformation (1450 cm\(^{-1}\)) and amide I (1660 cm\(^{-1}\)) in addition to those associated with mineral species in the phosphate region between 940 cm\(^{-1}\) and 980 cm\(^{-1}\) were also examined (Fig. 1B). During ECM deposition and subsequent mineralization, type I collagen is first processed and secreted by OBs (Fig. 1C) before the collagen is later mineralized through the release of mineral crystals, transformed from their precursors, that penetrate the membrane of MVs in which they nucleate (Fig. 1D) [13,26,27].

Phenotypic changes in OB cells were observed between cells grown on PLL (Fig. 2A) with cells appearing flatter, closer together with less processes evident versus uncoated controls. Upon the examination of the collagen specific vibrations of proline and hydroxyproline (Fig. 2B and C respectively), small increases were observed in OB cultures on PLL coatings in basal medium compared to uncoated controls (+2.08 and +1.09-fold respectively), which were significantly increased under culture in osteogenic conditions (+4.01 and +5.57-fold respectively). As both proline and hydroxyproline are often considered together, due to their prevalence in the X and Y position of the glycine-X-Y repeat of collagen (Fig. 1C) [28,29], the sum of intensities significantly increased on PLL coated quartz versus uncoated controls as expected (Fig. 2D; +2.23 and +4.28-fold respectively). Following the calculation of the area ratio of hydroxyproline/proline, reflecting the strength of the intra-strand bonds between these residues in collagen, an unsurprising increase was noted on PLL coated quartz versus controls (Fig. 2E; +2.23 and +4.28-fold respectively), indicating that the collagen triple helix is more tightly held together in these conditions and mature.

The transient precursors of mature crystalline bone mineral, namely ACP (948 cm\(^{-1}\)), OCP (970 cm\(^{-1}\)) and CAP (959 cm\(^{-1}\)) were also detected. As a function of the total phosphates (940 cm\(^{-1}\) to 980 cm\(^{-1}\)), levels of ACP were significantly higher in OBs cultured in basal (Fig. 2F; +1.89-fold) and osteogenic medium (+1.91-fold) on PLL coatings compared to the uncoated controls. Conversely OCP was reduced in OBs cultured in basal medium on PLL coated quartz versus uncoated controls (Fig. 2G; –1.56-fold) yet significantly increased in cultures supplemented with osteogenic medium (+1.6 fold). The largest fold reduction was observed in CAP produced by OBs on PLL coated quartz versus the respective uncoated controls (Fig. 2H; –4.77 and –9.32-fold respectively). The mineral/matrix ratio calculated by the area ratio of CAP to proline, detailing overall mineralization ability was significantly decreased in OB cultures on PLL coated quartz compared to uncoated controls (Fig. 2I; –1.65 and –33.54-fold respectively), demonstrating that a mature mineralising OB signature can only be obtained in vitro through culture on uncoated quartz in osteogenic medium. Collectively, this univariate analysis of these Raman spectra indicates that the mineralization of the ECM, is not sufficiently achieved in the presence of PLL. These findings were complemented by the clustering of scores observed following the application of principle component (PCA) analysis on the collected Raman spectra from each condition (Fig. 3A). PC1 is comprised of the highest variation (40.3%) between conditions and primarily accounted by ACP and CAP as seen in the loadings. The evaluation of the PC clustering values indicated similarity between the scores for the basal uncoated (mean score = –0.001582) and osteogenic coated group (mean score = –0.0001143) which are consistent with the findings of the deconvolution analysis (Fig. 2F and H). PC2 and PC3 accounted for 28.9% and 9.72% of the spectral variation respectively (Fig. 3A). Although contributing less variation, PC2 consists of intermediate metastable phases existing between CAP and OCP (959 cm\(^{-1}\) to 980 cm\(^{-1}\)) [25,30]. These subtle differences in PC2 however, allow discrimination between basal and osteogenic
Fig. 3. PLL inhibits osteoblast differentiation but increases cell viability and angiogenic potential. Reduced Alizarin Red staining of mineral (scale bars represent 250 μm), was observed in 19-day OB cultures on PLL coated quartz (A). Enzymatic alkaline phosphatase (ALP) activity (B) and OB mRNA expression levels of Alpl (C) and Phospho1 (D) similarly decreased on PLL coated quartz. Increased OB viability was observed on PLL coated quartz versus uncoated controls (E). OB-derived VEGF release was elevated on PLL coating versus uncoated controls (F). Data represent mean values ± SEM from three separate experiments. Statistical significance between groups was assessed using Student's t-test (P < .05*, P < .01**, P < .001***, P < .0001****). Schematic summarizing the effects of PLL coating of quartz on osteogenic differentiation and angiogenic capacity (G). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
conditions, with basal uncoated and basal coating clustering at mean score = -0.0002549 and -0.001717 respectively versus osteogenic uncoated, mean score = 0.001922, and osteogenic coated, mean score = 0.002317. While the distinction is possible between the various conditions, PC2 and PC3 loadings consist of overlapping contributions from OCP and CAP and hence, do not correlate well to the peak analysis results of the deconvolution (Fig. 2G and H).

PLL inhibits osteoblastic calcium phosphate deposition and downregulates genes associated with matrix mineralization

To establish the functional effect of PLL on osteogenic differentiation potential, OB cultures were stained with Alizarin Red, widely used in the literature to assess the extent of matrix mineralization [31–33] and moreover, to assess the effects on calcium phosphate deposition. In the present study, Alizarin Red staining was found to be reduced on PLL coated substrates versus uncoated controls (Fig. 3A). As expected, an increase in staining was observed on uncoated quartz between cultures in basal and osteogenic medium (Fig. 3A). These findings were further supported following the assessment of enzymatic alkaline phosphatase (ALP) activity, conducted in tandem to gene expression analysis (Fig. 3B–D). PLL was shown to significantly decrease ALP activity in OB cultures on PLL coated quartz (~0.8 and ~3.38-fold respectively) compared to uncoated controls. In addition, a downregulation of markers associated with a mineralizing population of OBs, namely Alpl (Fig. 2C; ~55.17 and ~2.32-fold respectively) and Phospho1 (Fig. 2D; ~57.8 and 28.8-fold respectively) were observed on PLL coated quartz compared to uncoated controls.

Cell viability and angiogenic potential of osteoblasts is increased with PLL

To determine if PLL coating of the quartz coverslips had a detrimental effect on OBs, an ATP luminescent cell viability assay was conducted. Surprisingly, a significant increase in cell viability (Fig. 3E) was observed on PLL coatings compared to uncoated controls (+1.48 and +1.82-fold respectively), suggesting that an increase in adhesion to the quartz supported and increased cellular integrity. Finally, to assay the ability of the OBs cultured on uncoated or PLL coated quartz to produce angiogenic factors, specifically VEGF, a VEGF-A ELISA of the collected conditioned media was conducted. In vitro and in vivo studies have shown OBs are producers of angiogenic factors and signal to endothelial cells in a paracrine manner [34–38]. In the present study, VEGF concentration in the OB-conditioned media was significantly raised in cultures on PLL coated quartz versus control (Fig. 2F; +3.33 and +2.46-fold respectively), together correlating with higher cell viability levels.

Discussion

The mineralization of the ECM by OBs is carefully orchestrated and is essential for the maturation of the osteoid into mature bone [5,6,11,39]. Occurring through a biphasic process, the initial accumulation of mineral species is regulated by an abundance of factors and molecules, concentrated within MVs extracellularly, including the balance between pyrophosphate and inorganic phosphate, ALP, ectonucleotide pyrophosphatase/phosphodiesterase-1 (NPP1) and PHOSPHO1 in addition to the ankylosis protein (ANK) [5,6,11,12,39–44]. Gaps however still remain in our knowledge regarding the control of the key steps involved in physiological mineralization and the role of VEGF within this process, let alone its investigation using label-free methods such as Raman spectroscopy.

To investigate the effect of PLL on collagen production, proline and hydroxyproline bands were selected given that they have been suggested as suitable markers of collagen content and quality in Raman analyses [29,45]. In greater detail, the present study showed that culture of OBs on PLL yielded increased levels of proline and hydroxyproline species which correlated with the additional elevations in ACP and lack of CAP. Thus, PLL has the potential to reduce the maturation ability of OBs by inhibiting their ability to mineralize, and instead, promotes collagen deposition associated with the pre-mineralization phases of OB differentiation [46] leading to an immature matrix signature. These specific changes were corroborated by detection of reduced ALP enzymatic activity, Alpl and Phospho-1 mRNA levels and Alizarin Red staining. The PLL coating leading to immature mineral and altered matrix is reinforced as the converse was observed on uncoated substrates even in the absence of osteogenic medium characterized by elevated CAP and reduced ACP and collagen species levels. We also found that the hydroxyproline/proline ratio, calculated by the area ratio of the collagen triple helix [29] was considerably higher in OB cultures on PLL substrates. Another recognised metric calculated by Raman spectroscopy and frequently used in the quantification of components of bone and bone quality is the mineral/matrix ratio. In the current study, this was used to assess the ability and capacity of OBs to mineralize the ECM [47,48]. Calculated by the area ratio of ν_2PO$_4^2$ (959 cm$^{-1}$) peak for CAP to that of proline (853 cm$^{-1}$), hydroxyproline (876 cm$^{-1}$, data not shown) and their sum (data not shown), we observed

Please cite this article as: A. Sharma, A. Goring, K. Staines, et al., Raman spectroscopy links differentiating osteoblast matrix signatures to pro-angiogenic potential, https://doi.org/10.1016/j.mbplus.2019.100018
that the mineral/matrix ratio was considerably
reduced in the presence of PLL, due to the larger
quantities of collagen species in comparison to CAP.
Mechanistically, our current findings support
known modes of osteoblastic matrix and mineral
deposition [5,6,11,12,40–43,49]. The observed lack
of CAP and increased collagen intra-strand stability
indicate that the capacity of OBs to mineralize is
premature, despite reports that suggest increased
hydroxylation of proline promotes apatite binding
[50]. We showed that PLL supports ECM deposition
by promoting the post-translational modification of
proline, to produce hydroxyproline yet falters se-
quential stages of OB differentiation whereby the
production and release of mineral species is
predominant. If the gap junctions of collagen serve
as mineral nucleation sites, once occupied, the
collagen-intra-strand stability should thereby reduce
to accommodate the deposition of new mineral,
possibly occurring concurrently with initial ECM
deposition. Collectively, the current study indicates
the potential of compositional levels of mineral
species together with the abundance of collagen
species and intra-strand stability as markers of OB
performance and indicators of OB differentiation/
maturity status in vitro.

An unexpected finding of our study was that the
restriction of mature CAP by OBs on PLL was
associated with increased OB viability and VEGF
release. Early OB-derived VEGF has previously
been shown to play a critical role in bone develop-
ment and fracture repair [34,35,51]. Furthermore it
has been identified that early OBs interact specifi-
cally with the vasculature in contrast to more mature
OBs, to regulate VEGF production [52]. Together,
our data supports the idea that early OB VEGF
release occurs alongside matrix deposition and the
use of PLL may promote a pro-angiogenic environ-
ment allowing for blood vessel formation ahead of
mineralization.

PLL coatings of coverslips have been used in the
past in the study of OB function by providing a
positively charged basic amino acid to improve cell
adhesion to facilitate cell study [53–55]. It has
previously been reported the PLL promotes attach-
ment and cell spreading of primary bone cells and
OB-like cell lines [55–59], endothelial cells [60],
cancer cells [61] and stem cells [62–66] through the
electrostatic attraction between the positively
charged PLL residues with the negatively charged
phospholipids on the cell membrane. Studies within
the literature utilising PLL to study OB behaviour or
osteogenesis have typically used concentrations of
0.1 mg/ml or higher [55,59,64–67], which is consid-
erably more concentrated than that used in this study
despite reporting elevated Alizarin Red staining and
markers of OB differentiation such as ALP and
osteocalcin. Our study indicates that PLL restricts
OB maturation as evidenced by reduced Alizarin
Red staining and gene expression analysis, and
therefore the results of such studies need to be
critically assessed and considered carefully. Buo et
al. [68] demonstrated that PLL can improve adeho-
virus transfection efficiency in OB-like cells which
may be partially due the capitvation of such cells
within their proliferative phases occurring prior to OB
differentiation consistent with known timings of OB
progression and development in vitro [25] and the
findings of this study.

In summary, the present study has identified that
OB maturation and ability to participate in matrix
mineralization is restricted when cultured on PLL
coatings. Raman spectroscopy identified that this
restriction in differentiation reduces the mineral/
matrix ratio since the ECM was predominantly
comprised of the immature mineral, ACP, and the
collagen matrix which becomes more abundant (Fig.
3G). Furthermore, we observed a pronounced
increase in the collagen intra-strand stability by
PLL, which in combination with the shift in mineral
deposition, species and availability of collagen components is
suggestive of compromised mineral nucleation ability within the OB ECM. This correlated with a
reduced ALP enzymatic activity, Alizarin Red stain-
ing in addition to Alpl and Phospho-1 mRNA levels
however increased VEGF production and cell
viability was evidenced (Fig. 3G). In contrast, OB
maturity was enhanced in the absence of PLL
where the reversed effects were observed.

Our study further reiterates that label-free vibra-
tional methods such as Raman spectroscopy offer
significant potential in the field of matrix biology and
for disease diagnosis given their enhanced sensitiv-
ty to changes, complementary information content
and non-destructive nature. Our existing knowledge
of disorders of bone mineralization including rickets,
renal diseases, tumor-induced osteomalacia, hypo-
phosphatasia, McCune-Albright syndrome, and os-
teogenesis imperfecta have accumulated through
modal genetic studies, histological analysis, and computed
tomography amongst other imaging modalities how-
ever sensitively probing specific components of the
bone may yield additional information regarding
bone compositional quality. The degree of bone
mineralization has also been reported to be a

determinant of bone strength [69,70] and thus a
bone specific matrix signature is now of critical
importance as it defines the molecular signals
which underlie it. Relating OB matrix signatures to
angiogenic capacity and viability in vitro could
therefore provide a template signature to allow for
the degree of mineralization to be assessed clinically
with implications for an ageing demographic.
Methodology

Materials

Cell culture reagents, such as Minimum Essential Medium α-MEM; no. 41061) and fetal bovine serum (FBS; no. 102701) were purchased from Gibco (Paisley, UK). All other cell culture reagents were obtained from Merck (Gillingham, UK) unless otherwise stated.

Isolation and culture of osteoblasts

All studies involving the use of mice were conducted under the regulations set by the UK Home Office and in accordance with the United Kingdom Animals (Scientific Procedures) Act of 1986. Primary murine long bone OBs were obtained from P4 C57BL/6 mice by the CCEC extraction method as previously described [33]. Briefly, the long bones, namely the tibia, fibula and femur were isolated and washed in Hanks Balanced Salt Solution (HBSS) prior to being incubated in 1 mg/ml collagenase type II (Worthington Biochemical Cooperation, USA) reconstituted in HBSS for 10 min at 37 °C. The supernatant of the first digest was not retained. The second fraction; obtained by repeat digestion with 1 mg/ml collagenase type II for 30 min, third fraction; 4 mM EDTA for 10 min and fourth fraction; 1 mg/ml collagenase type II for 30 min, all at 37 °C, was retained and combined.

Cells were resuspended in basal α-MEM consisting of 10% heat-inactivated FBS, 0.1% gentamicin, 100 U/ml penicillin, 100 μg/ml before being cultured in 75 cm² flasks and incubated at 37 °C/5% CO₂ until 80% confluent. Media were replenished twice weekly.

Upon confluence, OBs were either plated into uncoated or poly-L-lysine (PLL; 50 μg/ml, 30,000–70,000 Mw) coated quartz coverslips (#No5, thickness: 0.5 mm, Ø 20; UQG-Optics, UK) in 12-well plates at a density of 10,000 cells per well. Coverslips were firstly sterilised in 100% ethanol before being incubated in PLL solution or sterile distilled water for 2 h at 37 °C prior to UV irradiation ahead of cell plating. After plating, OBs were left to adhere for 2 days before being treated with basal or osteogenic (osteoid) α-MEM medium containing 10% FBS, 2 mM β-glycerophosphate and 50 μg/ml L-ascorbic acid to stimulate differentiation in vitro. Culture medium was replenished every 3 days until day 19 of culture, unless otherwise stated.

Raman spectroscopy

OBs were fixed briefly washed with PBS prior to fixation with 4% paraformaldehyde (PFA) in preparation ahead of spectral acquisition as both its suitability has been validated [71–74] and widespread use is documented in several studies [25,75–78]. Raman spectra were obtained using a Renishaw® inVia Raman microscope equipped with a 532 nm laser with a Gaussian beam profile and a Leica 63x water-immersion microscope objective with numerical aperture of 1.2 as previously described [25]. The instrument was internally calibrated to the 520.7 cm⁻¹ peak of silicon for wavenumber and intensity calibration ahead of spectral acquisition. Raman spectra were collected using single point static scans, with an exposure of 20 s, 100% laser power and 3 accumulations within the “Fingerprint region” from 800 cm⁻¹ to 1750 cm⁻¹ [79]. The laser power on the sample was approximately 30 mW with the calculated diffraction limited spot size being approximately 280 nm. From each preparation, spectra were collected from 5 points within the cytoplasmic region of 25 cells to minimise both spatial and spectral heterogeneity between samples and conditions. We have previously identified a range of vibrations corresponding to collagen and the ECM [25] such as proline (853 cm⁻¹), hydroxyproline (876 cm⁻¹) and those associated with mineral such as ν₁PO₄²⁻ (959 cm⁻¹) and other weaker bands between 940 cm⁻¹ and 980 cm⁻¹, which were similarly identified in the present study (Figs. 1B and S2A). Cosmic ray artefacts upon acquisition and background contributions from quartz (Fig. S1A) were removed from raw spectra (Fig. S1B) using WiRE 4.1. Further analysis involved the utilisation of iRootLab [80], whereby spectra were pre-processed before further analysis. They were wavelet denoised (Haar wavelets, 6-point smoothing), background corrected by the fitting of a 9th order polynomial and vector normalized (Fig. S2B). Vector normalization is essential to allow comparison of intensities in the spectra between different treatments. The second order derivative (Fig. S2C) was calculated ahead of univariate spectral deconvolution to obtain various peak parameters, in which a mixture of Lorentzian and Gaussian curves was fitted to the regions of interest (Fig. S2A). Peak area was extracted by fitting of relevant spectral regions of the class mean spectra (Fig. S2D) using WiRE 4.1 as previously described [25]. Typically, 3 to 6 peaks were fitted per spectral region until the fitting returned an R² value lower than 1. For multivariate analysis, principle component analysis (PCA) was performed on the denoised and background corrected Raman spectra following mean-centring in iRootLab [80] (Fig. S3A).

Alkaline phosphatase analysis

OBs were washed with PBS prior to fixation in 100% ethanol for 2 min. After washing with distilled water, cells were incubated in a working solution consisting of 70% distilled water, 20% 0.1 M
NaHCO₃ and 10% 30 mM MgCl₂ with 1 mg/ml P-nitrophenol phosphate disodium salt (Merck, UK) for 30 min at 37 °C as described in the literature [25,38]. Two hundred μl of the eluted solution was transferred to a 96-well plate in duplicates and absorbance was measured at 405 nm against P-nitrophenol standards of known concentration.

Alizarin Red staining

Cultured OBs were prepared for staining by washing with PBS prior to fixation in ice cold acetone: methanol (1:1) for 2 min followed by washes in distilled water. Fixed cells were incubated in 2% Alizarin Red staining solution with pH 4.5 and incubated at room temperature in the dark for 45 min.

Cell viability

OBs plated on uncoated or PLL coated quartz coverslips were left to adhere for 2 days before being treated with basal or osteogenic medium for 24 h. After this, cell viability measured in luminescence was quantified using the CellTiter-Glo® Viability Assay Kit (Promega, UK) following cell incubation with the CellTiter-Glo® reagent for 10 min at room temperature using a GloMax®-Multi+ Detection System (Promega, UK).

Collection of conditioned medium and VEGF ELISA

OBs plated on uncoated or PLL coated quartz coverslips were cultured in basal or osteogenic medium until day 18 of culture. On day 18, the differentiation inducing medium was removed and cells “stepped down” in low serum media (1% FBS) for 24 h ahead of collection on day 19. A VEGF-A mouse sandwich enzyme linked immunosorbent assay (ELISA) kit and reagents (R&D Systems, USA) was used to quantify natural and recombinant VEGF (VEGF₁₂₀ and VEGF₁₆₄) in the collected conditioned media following the manufacturers instruction.

Quantitative polymerase chain reaction

RNA from the cultured OBs was isolated from each preparation using the Monarch® Total RNA Miniprep Kit (New England Biolabs, UK) following the manufacturers instruction. Five hundred ng of RNA per condition was reverse transcribed using the LunaScript® RT Supermix (New England Biolabs, UK) as per the manufacturer's recommendation. Quantitative reverse transcription PCR (RT-qPCR) of reactions containing 25 ng cDNA, 250 mM forward and reverse primers (Primerdesign, UK) and PrecisionPlus mastermix was carried out in the StepOnePlus Real-Time PCR System (Applied Biosystems, UK). Primer sequences are as follows, Alpl; forward 5’-TTCTCATTTCGGATGCCAACA-3’ and reverse; 3’-TTCTCATTTCGGATGCCAACA-5’, Phosphof; forward 5’-GGGACGAATCTCAGGG-TACAA-3’ and reverse; 3’-AGTAACCTGGGTCTCTTCTTT-5’. Ct values were normalized to that of Alp5β2 (Primerdesign, UK) [4,8] and relative expression was calculated using the ΔΔCt method as described in the literature [84].

Statistical analysis

Data is expressed as the mean value ± standard error of the mean (SEM). Cells used in experiments were isolated from n = 6 mice from at least three independent litters. Statistical analysis was performed by Student’s t-test. P < .05 was considered to be statistically significant and is noted as *. P values of <.01, <.001 and <.0001 are denoted **, *** and **** respectively.

Declaration of competing interest

None.

Acknowledgements

This study was kindly funded by School Biological Sciences, University of Southampton and DOT Medical Implant Solutions, Germany.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.mbplus.2019.100018.

Received 1 May 2019; Received in revised form 21 August 2019; Accepted 9 October 2019

Available online xxxx

Keywords:
Raman spectroscopy; Poly-L-lysine; Osteoblast mineralization; VEGF
Abbreviations used:

ACP, amorphous calcium phosphate; ALP, tissue nonspecific alkaline phosphatase; OB, osteoblast; CAP, carbonated apatite; EGM, extracellular matrix; HA, hydroxyapatite; MV, matrix vesicles; OCP, octacalcium phosphate; PCA, principle component analysis; PLL, poly-L-lysine; VEGF, vascular endothelial growth factor.

References

[1] B. Javaheri, A. Carriero, K.A. Staines, Y.M. Chang, D.A. Houston, K.J. Oldknow, J.L. Millan, B.N. Kazeruni, P. Salmon, S. Shefelbine, C. Farquharson, A.A. Pitsillides, Phospho1 deficiency transiently modifies bone architecture yet produces consistent modification in osteocyte differentiation and vascular porosity with ageing, Bone (2015) https://doi.org/10.1016/j.bone.2015.07.035.

[2] S. Roberts, S. Narisawa, D. Harney, J.L. Millán, C. Farquharson, Functional involvement of PHOSPHO1 in matrix vesicle-mediated skeletal mineralization, J. Bone Miner. Res. 22 (2007) 617–627, https://doi.org/10.1359/jbmr.070108.

[3] C. Huesa, D. Houston, T. Kiffer-Moreira, M.C. Yadav, J. Luis Millan, C. Farquharson, The functional co-operativity of tissue-nonspecific alkaline phosphatase (TNAP) and PHOSPHO1 during initiation of skeletal mineralization, Biochem. Biophys. Reports 4 (2015) 196–201, https://doi.org/10.1016/j.jbrep.2015.09.013.

[4] C. Huesa, D. Zhu, J.D. Glover, M. Ferron, G. Karsenty, E.M. Evans, D.W. McComb, A.E. Porter, M.M. Stevens, The role of intracellular calcium phosphate in osteoblast-mediated bone apatite formation, Proc. Natl. Acad. Sci. (2012) https://doi.org/10.1073/pnas.1209816109.

[5] K.A. Staines, D. Zhu, C. Farquharson, V.E. MacRae, Identification of novel regulators of osteoblast matrix mineralization by time series transcriptional profiling, J. Bone Miner. Res. 22875–2876, https://doi.org/10.1359/jbmr.2009.09.006.

[6] E. Bonucci, The origin of matrix vesicles and their role in the calcification of cartilage and bone, Int. Cell Biol. 1980–1981 (2013) https://doi.org/10.1007/978-3-662-39932-3_111.

[7] A.J. Stewart, S.J. Roberts, E. Seawright, M.G. Davey, R.H. Flemming, C. Farquharson, The presence of PHOSPHO1 in matrix vesicles and its developmental expression prior to skeletal mineralization, Bone. (2006) https://doi.org/10.1016/j.bone.2006.05.014.

[8] Q. Tu, C. Chang, Diagnostic applications of Raman spectroscopy, nanomedicine nanotechnology, Biol. Med. 7 (2012) https://doi.org/10.1038/347301a0.

[9] P.S. Hung, Y.C. Kuo, H.G. Chen, H.H.K. Chiang, O.K.S. Lee, Detection of osteogenic differentiation by differential mineralized matrix production in mesenchymal stromal cells by CONFOCAL RAMAN microspectroscopy, J Bone Min. Res. 17 (2002) 1118–1126, https://doi.org/10.1039/c6an00152a.

[10] K.P. Tarnowski, M.A. Ignelzi Jr., M.D. Morris, P. Steenhuis, M.A. Ignelzi Jr., Raman spectroscopic evidence for octacalcium phosphate and other transient mineral species deposited during intramembranous mineralization, Bone 39 (2006) 434–442, https://doi.org/10.1016/j.bone.2006.02.059.

[11] S. Boonrungsiman, E. Gentleman, R. Carzaniga, N.D. Evans, D.W. McComb, A.E. Porter, M.M. Stevens, The role of intracellular calcium phosphate in osteoblast-mediated bone mineralization and vascular porosity with ageing, Bone (2015) https://doi.org/10.1016/j.bone.2015.07.035.

[12] S. Narisawa, M.C. Yadav, J.L. Millán, C. Farquharson, The functional co-operativity of tissue-nonspecific alkaline phosphatase (TNAP) and PHOSPHO1 during initiation of skeletal mineralization, Biochem. Biophys. Reports 4 (2015) 196–201, https://doi.org/10.1016/j.jbrep.2015.09.013.

[13] C. Huesa, D. Houston, T. Kiffer-Moreira, M.C. Yadav, J. Luis Millan, C. Farquharson, The functional co-operativity of tissue-nonspecific alkaline phosphatase (TNAP) and PHOSPHO1 during initiation of skeletal mineralization, Biochem. Biophys. Reports 4 (2015) 196–201, https://doi.org/10.1016/j.jbrep.2015.09.013.

[14] C. Huesa, D. Houston, T. Kiffer-Moreira, M.C. Yadav, J. Luis Millan, C. Farquharson, The functional co-operativity of tissue-nonspecific alkaline phosphatase (TNAP) and PHOSPHO1 during initiation of skeletal mineralization, Biochem. Biophys. Reports 4 (2015) 196–201, https://doi.org/10.1016/j.jbrep.2015.09.013.

[15] A.J. Stewart, S.J. Roberts, E. Seawright, M.G. Davey, R.H. Flemming, C. Farquharson, The presence of PHOSPHO1 in matrix vesicles and its developmental expression prior to skeletal mineralization, Bone. (2006) https://doi.org/10.1016/j.bone.2006.05.014.

Please cite this article as: A. Sharma, A. Goring, K. Staines, et al., Raman spectroscopy links differentiating osteoblast matrix signatures to pro-angiogenic potential., https://doi.org/10.1016/j.mbplus.2019.100018
the adhesion, proliferation and chondrogenic differentiation of bone-marrow stromal cells in three-dimensional poly-L-lysine/caprolactone/hydroxyapatite/collagen bilayers, Biophys. J. (2015) https://dx.doi.org/10.1016/j.bpj.2015.02.074.

[56] E. Takai, K.D. Costa, A. Shaheen, X.E. Guo, Oral Implantol. (2015) https://dx.doi.org/10.1563/aaid-ohl-d-13-00036.

[57] A. Krause, E.A. Cowles, G. Gronowicz, Integrin-mediated signaling in osteoblasts on titanium implant materials, J. Biomed. Mater. Res. (2000) https://dx.doi.org/10.1002/1097-4636(20001215)52:7<13::AID-JBM19>3.0.CO;2-F.

[58] P. Tryoen-Tth, D. Vautier, Y. Haikel, J.C. Voegel, P. Schaaf, Biomaterials. (2007) https://dx.doi.org/10.1002/jbm.b.31996.

[59] T. Wang, X. Yang, X. Qi, C. Jiang, Osteoinduction and proliferation of bone-marrow stromal cells in three-dimensional poly-(ε-caprolactone)/hydroxyapatite/collagen scaffolds, J. Transl. Med. (2015) https://dx.doi.org/10.1186/1479-5876-13-355.

[60] C.R. Wittmer, J.A. Phelps, W.M. Saltzman, P.R. Van Tassel, Fibronectin terminated multilayer films: protein adsorption and cell attachment studies, Biomaterials. (2007) https://dx.doi.org/10.1016/j.biomaterials.2006.09.037.

[61] M.S. Libero, M.C. Sadowski, C. Soekmadji, R.A. Davis, C.C. Chevallier, L. Petrizzi, C. Dellavia, D. Mantovani, L. Rimondini, Effect of poly-L-lysine coating on titanium surfaces functionalized with extracellular matrix peptide biomimetics, Clin. Oral Implants Res. (2011) https://dx.doi.org/10.1111/j.1600-0501.2010.02074.x.

[62] E. Tokai, K.D. Costa, A. Shaheen, C.T. Hung, X.E. Guo, Osteoblast elastic modulus measured by atomic force microscopy is substrate dependent, Ann. Biomed. Eng. (2005) https://dx.doi.org/10.1007/s10439-005-3555-3.

[63] L. Cai, J. Lu, V. Sheen, S. Wang, Optimal poly(L-lysine) grafting density in hydrogels for promoting neural progenitor cell function, Biomacromolecules. (2012) https://dx.doi.org/10.1021/bm300381d.

[64] H. Lu, L. Guo, N. Kawazoe, T. Tateishi, G. Chen, Effects of poly(L-lysine), poly(acrylic acid) and poly(ethylene glycol) on the adhesion, proliferation and chondrogenic differentiation of human mesenchymal stem cells, J. Biomed. Mater. Sci. Polym. Ed. (2009) https://dx.doi.org/10.1116/1568562009X426402.
[80] J. Trevisan, P.P. Angelov, A.D. Scott, P.L. Carmichael, F.L. Martin, IRootLab: a free and open-source MATLAB toolbox for vibrational biospectroscopy data analysis, Bioinformatics. (2013) https://doi.org/10.1093/bioinformatics/btt084.

[81] K.A. Staines, B. Javaheri, P. Hohenstein, R. Fleming, E. Ikpegbu, E. Unger, M. Hopkinson, D.J. Buttle, A.A. Pitsillides, C. Farquharson, Hypomorphic conditional deletion of E11/podoplanin reveals a role in osteocyte dendrite elongation, J. Cell. Physiol. (2017) https://doi.org/10.1002/jcp.25999.

[82] E. Ikpegbu, L. Basta, D.N. Clements, R. Fleming, T.L. Vincent, D.J. Buttle, A.A. Pitsillides, K.A. Staines, C. Farquharson, FGF-2 promotes osteocyte differentiation through increased E11/podoplanin expression, J. Cell. Physiol. 233 (2018) 5334–5347, https://doi.org/10.1002/jcp.26345.

[83] X. Yang, J.T. Hatfield, S.J. Hinze, X. Mu, P.J. Anderson, B.C. Powell, Bone to pick: the importance of evaluating reference genes for RT-qPCR quantification of gene expression in craniosynostosis and bone-related tissues and cells, BMC Res. Notes. (2012) https://doi.org/10.1186/1756-0500-5-222.

[84] K.J. Livak, T.D. Schmittgen, Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method, Methods. 25 (2001) 402–408, https://doi.org/10.1006/meth.2001.1262.