Trends in Clinically Significant Pain Prevalence Among Hospitalized Cancer Patients at an Academic Hospital in Taiwan

A Retrospective Cohort Study

Wei-Yun Wang, MS, Shung-Tai Ho, MD, Shang-Liang Wu, PhD, Chi-Ming Chu, PhD, Chun-Sung Sung, PhD, Kwua-Yun Wang, PhD, and Chun-Yu Liang, PhD

Abstract: Clinically significant pain (CSP) is one of the most common complaints among cancer patients during repeated hospitalizations, and the prevalence ranges from 24% to 86%. This study aimed to characterize the trends in CSP among cancer patients and examine the differences in the prevalence of CSP across repeated hospitalizations.

A hospital-based, retrospective cohort study was conducted at an academic hospital. Patient-reported pain intensity was assessed and recorded in a nursing information system. We examined the differences in the prevalence of worst pain intensity (WPI) and last evaluated pain intensity (LPI) of ≥4 or ≥7 points among cancer inpatients from the 1st to the 18th hospitalization. Linear mixed models were used to determine the significant difference in the WPI and LPI (≥4 or ≥7 points) at each hospitalization.

We examined 88,133 pain scores from the 1st to the 18th hospitalization among cancer patients. The prevalence of the 4 CSP types showed a trend toward a reduction from the 1st to the 18th hospitalization. There was a robust reduction in the CSP prevalence from the 1st to the 5th hospitalization, except in the case of LPI ≥ 7 points. The prevalence of a WPI ≥ 4 points was significantly higher (0.240-fold increase) during the 1st hospitalization than during the 5th hospitalization. For the 2nd, 3rd, and 4th hospitalizations, there was a significantly higher prevalence of a WPI ≥ 4 points compared with the 5th hospitalization. We also observed significant reductions in the prevalence of a WPI ≥ 7 points during the 1st to the 4th hospitalizations, an LPI ≥ 4 points during the 1st to the 3rd hospitalizations, and an LPI ≥ 7 points during the 1st to the 2nd hospitalization.

Although the prevalence of the 4 CSP types decreased gradually, it is impossible to state the causative factors on the basis of this observational and descriptive study. The next step will examine the factors that determine the CSP prevalence among cancer patients. However, based on these positive findings, we can provide feedback to nurses, physicians, and pharmacists to empower them to be more committed to pain management.

(Medicine 95(1):e2099)

Abbreviations: CSP = clinically significant pain, FLACC = Faces, Legs, Activity, Cry, and Consolability, FPS = Faces Pain Scale, LPI = last evaluated pain intensity, NIS = nursing information system, NRS = numerical rating scale, VAS = visual analogue scale, WPI = worst pain intensity.

INTRODUCTION

Pain is one of the most feared and burdensome symptoms experienced during repeated hospitalizations among cancer patients.1,2 Cancer patients repeatedly require hospitalization to receive professional care, and cancer-related care services are usually performed in 3 stages. Patients undergo surgery, chemotherapy, and/or radiation therapy after the cancer diagnosis (the initial stage), and continue receiving chemotherapy and other treatments after this initial stage (the continuing stage). Eventually, palliative and/or hospice care are provided to cancer patients to minimize their pain before death (the final stage). However, the prevalence of pain among cancer patients ranges from 24% to 86%,1,4 and more than one-third of patients with pain grade their pain as moderate or severe. Despite clear World Health Organization (WHO) recommendations, pain still is a major problem experienced by cancer patients.1

When attempting to calculate pain prevalence in the hospital setting, simply asking a patient whether they are experiencing pain is not adequate because the severity of pain is not determined.1 Patient-reported pain intensity can be assessed using a 0 to 10 numerical rating scale (NRS); the Faces Pain Scale (FPS); the Faces, Legs, Activity, Cry, and Consolability (FLACC) Behavioral Tool; or a visual analogue scale (VAS), which are important tools that quantify a patient’s perception of pain.4-9 “Clinically significant pain” (CSP) is defined as patient-reported pain intensity >4 points.10 In particular, pain intensity ≥7 points is defined as severe pain.4,11,12 To clearly document patient-reported pain intensity and to make the data available in real time, an electronic nursing information system (NIS) must be established to record and
collect pain intensity, rather than relying on traditional manual chart documentation.

Although previous studies have used pain prevalence as an important indicator of pain in patients, no data are currently available regarding CSP prevalence, which can be examined among cancer patients according to the worst pain intensity (WPI) and the last evaluated pain intensity (LPI) before discharge for each hospitalization. Moreover, the literature on pain assessment and management among hospitalized cancer patients remains limited. In addition, traditional manual chart reviews and interviews are still the most common methods for data collection. Therefore, if we want to conduct time-series-based and hospital-based outcome analyses among patients, an electronic NIS is superior to the traditional methods of data collection. The formula for calculating the CSP prevalence was as follows: CSP prevalence at each hospitalization = number of patients with WPI (LPI) scores ≥ 4 (moderate-to-severe pain) or ≥ 7 points (severe pain)/total number of inpatients for this hospitalization.

set up the reference point for determining the differences in the prevalence of WPI and LPI over the 3-year time period. After we reconfirmed the data based on the chart number and admission date, the number of pain scores was reduced to 94,037. We determined the CSP prevalence during each hospitalization, and the number of hospitalizations per patient at this hospital ranged from 1 to 18. In total, 88,133 pain scores were studied. The process of retrieving CSP information from the NIS database is shown in Figure 1.
TABLE 1. The Prevalence of Clinically Significant Pain Among Cancer Inpatients During Each Hospitalization

Hospitals	Person-Times	WPI ≥ 4 Points	LPI ≥ 4 Points	WPI ≥ 7 Points	LPI ≥ 7 Points								
	Person-Times	Prevalence, %	Prevalence Differences										
1	24,430	10,164	41.6	—	6244	25.6	—	4446	18.3	—	1183	4.9	—
2	13,469	3915	29.1	—	2298	17.1	—	1697	12.6	—	1604	3.4	—
3	9385	2104	22.4	—	1320	14.1	—	904	9.7	—	248	2.7	—
4	7366	1422	19.3	−3.1	895	12.2	−1.9	642	8.7	−0.9	171	2.3	−0.3
5	6092	1072	17.6	−1.7	675	11.1	−1.1	458	7.5	−1.2	129	2.1	−0.2
6	5040	876	17.4	−0.2	553	11.0	−0.1	384	7.6	−0.1	107	2.1	0.0
7	4156	714	17.2	−0.2	452	10.9	−0.1	318	7.7	0.0	103	2.5	0.4
8	3365	565	16.8	−0.4	351	10.4	−0.4	267	7.9	0.3	85	2.5	0.0
9	2764	466	16.9	0.1	285	10.3	−0.1	199	7.2	−0.7	63	2.3	−0.2
10	2277	367	16.1	−0.7	226	9.9	−0.4	168	7.4	0.2	47	2.1	−0.2
11	1995	296	14.8	−1.3	198	9.9	0.0	136	6.8	−0.6	37	1.9	−0.2
12	1726	256	14.8	0.0	157	9.1	−0.8	112	6.5	−0.3	27	1.6	−0.3
13	1492	225	15.1	0.2	145	9.7	0.6	92	6.2	−0.3	22	1.5	−0.1
14	1228	182	14.8	−0.3	107	8.7	−1.0	81	6.6	0.4	18	1.5	0.0
15	1021	145	14.2	−0.6	94	9.2	0.5	70	6.9	0.3	19	1.9	0.4
16	881	125	14.2	0.0	82	9.3	0.1	49	5.6	−1.3	16	1.8	0.0
17	770	111	14.4	0.2	59	7.7	−1.6	37	4.8	−0.8	11	1.4	−0.4
18	676	85	12.6	−1.8	49	7.2	−0.4	35	5.2	0.4	10	1.5	0.0

LPI = last evaluated pain intensity, WPI = worst pain intensity.

Differences compared with the previous prevalence.

Total number of person-times.

Average of the 1st to 18th hospitalizations.
Demographic Characteristics of the Inpatients With Cancer

We examined 88,133 pain scores from the 1st to the 18th hospitalization of patients with cancer. The inpatient age ranged from 0.3 to 101.6 years with a mean of 59.3 ± 17.1 years. Among the inpatients, 47,773 (54.2%) were males and 40,360 (45.8%) were females.

Trends in CSP Prevalence

As the number of hospitalizations increased, the prevalence of a WPI ≥ 4 points decreased from 41.6% to 12.6%, and the prevalence of a WPI ≥ 7 points decreased from 18.3% to 5.2%. Regarding LPI, we also observed downward trends in pain prevalence. With increasing hospitalizations, the prevalence of an LPI ≥ 4 points decreased from 25.6% to 7.2%, and the prevalence of an LPI ≥ 7 points decreased from 4.9% to 1.5%. There was a robust reduction in the CSP prevalence from the 1st to the 5th hospitalization, except for an LPI ≥ 7 points (Table 1).

Differences in CSP Prevalence During Each Hospitalization

The prevalence of a WPI ≥ 4 points during the 1st hospitalization was significantly higher (0.240-fold increase) than the 5th hospitalization. For the 2nd, 3rd and 4th hospitalizations, there was a significantly higher prevalence of a WPI ≥ 4 points compared with the 5th hospitalization. After the 11th hospitalization, the prevalence of a WPI ≥ 4 points was significantly lower than the prevalence for the 5th hospitalization. In addition, the prevalence of an LPI ≥ 4 points was significantly higher during the 1st (0.145-fold increase), 2nd (0.060-fold increase), and 3rd (0.030-fold increase) hospitalizations (Table 2). Table 2 also shows the prevalence of a WPI or LPI ≥ 7 points. To evaluate the CSP prevalence from the 1st to the 5th hospitalization, we characterized the trends in the prevalence of the 4 CSP types (Fig. 2).

DISCUSSION

In this study, we examined the CSP prevalence during each hospitalization among cancer patients who were repeatedly hospitalized over time. Importantly, we found that the prevalence of the 4 CSP types decreased from the 1st to the 18th hospitalization. Specifically, the prevalence of a WPI ≥ 4 or 7 points was significantly reduced from the 1st to the 4th hospitalization. The prevalence of an LPI ≥ 4 points was significantly reduced from the 1st to the 3rd hospitalization, and the prevalence of an LPI ≥ 7 points was significantly reduced from the 1st to the 2nd hospitalization.

In the present study, the prevalence of a WPI ≥ 4 points ranged from 12.6% to 41.6%, and the prevalence of a WPI ≥ 7 points ranged from 5.2% to 18.3%. These values are similar to other studies and lower than the values published in a systematic review of cases over the past 40 years. However, the previous studies focused on pain prevalence during a single hospitalization. Because cancer patients often require repeated hospitalizations, examining pain prevalence during one hospitalization is insufficient for these inpatients. Therefore, a long-term analysis of pain during the repetitive hospitalizations of each patient should be performed.

In addition, we assessed LPI before discharge and demonstrated that the prevalence of an LPI ≥ 4 or 7 points was lower than the prevalence of a WPI ≥ 4 or 7 points for each hospitalization. The CSP prevalence tended to decrease before discharge for each hospitalization. At our institution, after each pain assessment, the nurses used proper painkiller therapy to prevent the severity of the pain from worsening; however, to date, there is still a gap between pain assessment and the implementation of pain treatment strategies. To reduce the clinical divide, high-quality pain documentation is useful because the assessment and documentation of pain are viewed as the cornerstones of effective pain management. Standard-setting agencies, such as the Joint Commission, rely on documentation in the patient care record to assess the quality of pain management. However, over one-third of the information recorded is not in accord with the patient’s report, and the nurses’ documentation regarding pain may be incomplete in the nursing records. Therefore, we used systematic pain assessments and regularly documented pain intensity by direct entry into an NIS database in our hospital. Nurses specifically recorded the pain score in the NIS, so that the pain intensity and effectiveness of the chosen pain management therapy could be rapidly determined by nurses, physicians, and pharmacists. Through systematic pain assessment and documentation in an NIS, nurses are more attentive to pain symptoms among cancer patients and can immediately notify the physician in charge to...
TABLE 2. Differences in the Clinically Significant Pain Prevalence Among Cancer Inpatients During Each Hospitalization

Times (5th hospitalization as the reference group)	WPI	LPI	WPI	LPI
Times 1st vs 5th	0.240	0.228, 0.252	0.145	0.135, 0.155
Times 2nd vs 5th	0.115	0.102, 0.128	0.060	0.049, 0.071
Times 3rd vs 5th	0.048	0.034, 0.062	0.030	0.018, 0.042
Times 4th vs 5th	0.017	0.003, 0.032	0.011	0.002, 0.023
Times 6th vs 5th	-0.002	-0.018, 0.014	-0.001	-0.015, 0.012
Times 7th vs 5th	-0.004	-0.021, 0.013	-0.002	-0.016, 0.012
Times 8th vs 5th	-0.008	-0.026, 0.010	-0.006	-0.022, 0.009
Times 9th vs 5th	-0.007	-0.027, 0.012	-0.008	-0.024, 0.009
Times 10th vs 5th	-0.015	-0.035, 0.006	-0.012	-0.029, 0.006
Times 11th vs 5th	-0.028	-0.049, 0.006	-0.012	-0.030, 0.007
Times 12th vs 5th	-0.028	-0.050, -0.005	-0.020	-0.039, 0.001
Times 13th vs 5th	-0.025	-0.049, -0.001	0.041	-0.034, 0.007
Times 14th vs 5th	-0.028	-0.054, -0.002	-0.024	-0.046, -0.001
Times 15th vs 5th	-0.034	-0.062, -0.006	0.019	-0.043, 0.005
Times 16th vs 5th	-0.034	-0.064, -0.004	0.027	-0.018, -0.043, 0.008
Times 17th vs 5th	-0.032	-0.064, 0.001	0.051	-0.034, -0.061, -0.007
Times 18th vs 5th	-0.050	-0.084, -0.016	0.004	-0.038, -0.067, -0.010

CI = confidence interval, LPI = last evaluated pain intensity, WPI = worst pain intensity.

*From the 1st to 5th hospitalizations, the prevalence of the four CSP types sharply decreased, and the absolute differences compared with the previous prevalence was greater than or equal to the average absolute prevalence differences.
improve pain. At our institution, pain assessment and management are addressed through a multidisciplinary approach. Nurses, physicians, and pharmacists all facilitate pain management; importantly, the nurses are the gatekeepers in pain assessment and management.

All cancer patients will experience pain during repeated hospitalizations. Carr et al10 noted that the recurrence of moderate or severe pain during repeated hospitalizations reflects a lack of continuous and effective pain management strategies. In our hospital, the prevalence of a WPI ≥ 4 and 7 points was significantly reduced from the 1st to the 4th hospitalization. The prevalence of an LPI ≥ 4 points was significantly reduced from the 1st to the 3rd hospitalization, and the prevalence of an LPI ≥ 7 points was significantly reduced from the 1st to the 2nd hospitalization. This observation affirmed the significantly decreased CSP prevalence during repeated hospitalizations, which could be the long-term outcome of the nurses’ role as gatekeepers in pain assessment and management for cancer inpatients.

Our study had 2 methodological strengths. First, we used an NRS, the FPS, or the FLACC Behavioral Tool to measure an individual’s pain intensity, which is also known as a patient-reported outcome. Patient-reported outcomes are important measurements that have been incorporated into ongoing clinical care.18 This implies that during daily practice, simply asking “the pain question” (without the use of extensive and time-consuming questionnaires) can detect patients who are experiencing pain. Based on the patient-reported pain intensity, we could characterize the trends in CSP prevalence during repeated hospitalizations. Using the same scoring method at different time points to measure pain allows clinicians to observe variation in pain over time.19 However, cancer pain is a complex and multidimensional symptom that is affected by psychological and social variables and the disease process itself.15 Although the distinction between the presence or absence of CSP among cancer patients will enable the calculation CSP prevalence, this distinction does not provide information about the severity of pain or the degree of pain reduction between the WPI and LPI for each hospitalization. To facilitate the comparison of studies and to coordinate the planning of pain services, multidimensional tools, such as the absolute difference in pain intensity or the percentage difference in pain intensity, may be used in future research.

The second strength of this study was the use of an electronic data capture system for outcome studies that integrated data collection into the ongoing process of patient care to conduct a hospital-based study. In general, there is still a lack of information about pain assessment and scoring on a hospital-wide basis.19 This gap presents a challenge, and it can be difficult to integrate the collection of valid outcome measures into a busy clinical practice in which time and cost-containment pressures already exist. The real-time availability of data essentially requires electronic data capture followed by automatic reporting. The burden of providing the data on either the patient or the physician must be minimized to make data collection as brief as possible to facilitate meaningful results. Therefore, the development and implementation of patient-reported outcome data collection systems for a large number of pain programs and integration into electronic health records are critical steps.18 Then, patient-reported pain intensity can be clearly documented, eliminating transcription error, facilitating the subsequent retrieval and analysis of data, and allowing tracking over time by clinicians to guide patient care.10

Our study evaluated the CSP prevalence in an entire population of cancer inpatients during each hospitalization in an academic hospital, thereby addressing the weaknesses of the previous study,7 which evaluated the pain intensity of first-time medical oncology unit inpatients. In addition, most studies related to pain prevalence have relied on interviews, manual documentation of pain assessment, and retrospective chart reviews.21–24 In our study, the CSP prevalence was similar to or lower than the prevalence reported in other studies. This result may be due to the electronic NIS instead of the traditional data collection method. The most common electronic NIS functionalities or components are records of patient pain intensity and clinical notes.20 The NIS enables the integration of pain intensity data collection into the ongoing process of pain measurement, and provides comprehensive information about pain assessment.18 The electronic NIS is increasingly viewed as an essential tool for quality assurance and improvement in a variety of care settings.25 Further research regarding pain documentation using electronic medical records is needed.

This study also had 2 limitations. One limitation is that this study was conducted in a cancer inpatient cohort that was heterogeneous regarding clinical stage. This study was conducted at a single academic hospital. Thus, the second limitation

FIGURE 2. Trends in the CSP prevalence from the 1st to the 5th hospitalization. The 5th hospitalization was viewed as a reference group to determine the CSP differences for WPI and LPI of (A) ≥ 4 or (B) ≥ 7 points using linear mixed models. (A) For WPI ≥ 4, 1st versus 5th times ($P < 0.001$); 2nd versus 5th times ($P < 0.001$); 3rd versus 5th times ($P < 0.001$); and 4th versus 5th times ($P = 0.021$). For LPI ≥ 4, 1st versus 5th times ($P < 0.001$); 2nd versus 5th times ($P < 0.001$); 3rd versus 5th times ($P < 0.001$); and 4th versus 5th times ($P = 0.088$). (B) For WPI ≥ 7, 1st versus 5th times ($P < 0.001$); 2nd versus 5th times ($P < 0.001$); 3rd versus 5th times ($P < 0.001$); and 4th versus 5th times ($P = 0.027$). For LPI ≥ 7, 1st versus 5th times ($P < 0.001$); 2nd versus 5th times ($P < 0.001$); 3rd versus 5th times ($P = 0.063$); and 4th versus 5th times ($P = 0.490$). CSP = clinically significant pain, LPI = last evaluated pain intensity, WPI = worst pain intensity.
is that the generalizability of the findings may be limited. However, our study design can be replicated at other institutions to validate these results.

CONCLUSION

In conclusion, this report represents the first hospital-based study that used an electronic database to analyze CSP prevalence among cancer inpatients in Taiwan. The trend curves for the prevalence of the 4 CSP types indicated a reduction from the 1st to the 18th hospitalization. In particular, the prevalence of a WPI ≥ 4 and 7 points was significantly reduced from the 1st to the 4th hospitalization. Although the prevalence of the 4 CSP types decreased gradually, it is impossible to state the causative factors on the basis of this observational and descriptive study. The next step will examine the factors that determine the CSP prevalence among cancer patients. However, based on these positive findings, we can provide feedback to nurses, physicians, and pharmacists to empower them to be more committed to pain management.

ACKNOWLEDGMENTS

The authors thank the contributions made by Yi-Syuan Wu (biostatistician) during the statistical analysis of the data.

REFERENCES

1. van den Beuken-van Everdingen MHJ, de Rijke JM, Kessels AG, et al. Prevalence of pain in patients with cancer: a systematic review of the past 40 years. Ann Oncol. 2007;18:1437–1449.
2. Mearis M, Shega JW, Knoebel RW. Does adherence to National Comprehensive Cancer Network guidelines improve pain-related outcomes? An evaluation of inpatient cancer pain management at an academic medical center. J Pain Symptom Manage. 2014;48:451–458.
3. Li TY, Hsieh JS, Lee KT, et al. Cost trend analysis of initial cancer treatment in Taiwan. PLOS One. 2014;9:e108432.
4. Melotti RM, Samolsky-Dekel BG, Ricchi E, et al. Pain prevalence and predictors among inpatients in a major Italian teaching hospital. A baseline survey towards a pain free hospital. Eur J Pain. 2005;9:485–495.
5. Farrar JT. Advances in clinical research methodology for pain clinical trials. Nat Med. 2010;16:1284–1293.
6. Paice JA, Cohen FL. Validity of a verbally administered numeric rating scale to measure cancer pain intensity. Cancer Nurs. 1997;20:88–93.
7. Martoni AA, Esposito CD, Cricca A, et al. Twice-daily pain monitoring as standard clinical practice for inpatients at a medical oncology unit: a descriptive study. Ann Oncol. 2007;18:158–162.
8. Voepel-Lewis T, Zanotti J, Dammeyer JA, et al. Reliability and validity of the face, legs, activity, cry, consolability behavioral tool in assessing acute pain in critically ill patients. Am J Crit Care. 2010;19:55–62.
9. Alghadir A, Anwer S, Anwar D, et al. The development and validation of Hundred Paisa Pain Scale for measuring musculoskeletal pain: a prospective observational study. Medicine (Baltimore). 2015;94:e1162.
10. Carr EJC, Meredith P, Chumbley G, et al. Pain: a quality of care issue during patients’ admission to hospital. J Adv Nurs. 2014;70:1391–1404.
11. de Rond ME, de Wit R, van Dam FS, et al. A pain monitoring program for nurses: effect on communication, assessment and documentation of patients’ pain. J Pain Symptom Manage. 2000;20:424–439.
12. Wang K, Chen Z, Meng Z, et al. Analgesic effect of high intensity focused ultrasound therapy for unresectable pancreatic cancer. Int J Hyperthermia. 2011;27:101–107.
13. Visentin M. Towards a pain-free hospital: a project to improve the approach to the patient in pain. J Headache Pain. 2002;3:59–61.
14. Chen YF. The integrity and appropriateness of cancer pain assessment data in a medical center to promote pain-free hospital. [National Digital Library of Theses and Dissertations in Taiwan]. October 23, 2013. Available at: http://handle.ncl.edu.tw/11296/ndltd/67278617764982538647. Assessed May 23, 2014.
15. Samuels JG, Fetzer S. Pain management documentation quality as a reflection of nurse’s clinical judgment. J Nurs Care Qual. 2009;24:223–231.
16. Joint Commission Accreditation of Healthcare Organizations. Comprehensive Accreditation Manual for Hospital: The Official Handbook. Joint Commission Resources, Inc; USA 2006.
17. de Rond ME, de Wit R, van Dam FS, et al. A pain monitoring program for nurses: effect on the administration of analgesics. Pain. 2000;89:25–38.
18. Witkin LR, Farrar JT, Ashburn MA. Can assessing chronic pain outcomes data improve outcomes? Pain Med. 2013;14:779–791.
19. Farrar JT, Polomano RC, Berlin JA, et al. A comparison of change in the 0-10 numeric rating scale to a pain relief scale and global medication performance scale in a short-term clinical trial of breakthrough pain intensity. Anesthesiology. 2010;112:1464–1472.
20. Luckett T, Davidson PM, Green A, et al. Assessment and management of adult cancer pain: a systematic review and synthesis of recent qualitative studies aimed at developing insights for managing barriers and optimizing facilitators within a comprehensive framework of patient care. J Pain Symptom Manage. 2013;46:229–253.
21. de Remer CE, Fleming VH, Brown S, et al. Evaluation of pain management documentation. South Med J. 2011;104:629–633.
22. Lucente Forte E, Collini F, Simonetti M, et al. Assessing pain in hospital in-patients: a cross-sectional study in Tuscany, Italy. Intern Emerg Med. 2012;7:477–482.
23. Hanley MA, Jensen MP, Ebde DM, et al. Clinically significant change in pain intensity ratings in persons with spinal cord injury or amputation. Clin J Pain. 2006;22:25–31.
24. Gerbershagen HJ, Gerbershagen JJ, Lutz J, et al. Pain prevalence and risk distribution among inpatients in a German teaching hospital. Clin J Pain. 2009;25:431–437.
25. Zheng NT, Rokoske FS, Kirk MA, et al. Hospices’ use of electronic medical records for quality assessment and performance improvement programs. J Pain Symptom Manage. 2014;48:582–589.