Supplementary Information

Supplemental Tables 2 and ten figures

TITLE: WSL5, a pentatricopeptide repeat protein, is essential for chloroplast biogenesis in rice under cold stress.

X. Liu1 • J. Lan1 • Y.S. Huang1 • P.H. Cao1 • C.L. Zhou1 • Y.K. Ren1 • N.Q. He1 • S.J. Liu1 • Y.L. Tian1 • T.L. Nguyen1 • L. Jiang1 (✉) • J.M. Wan1,2 (✉)

1 State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China.

2 National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China

* Corresponding authors:

Ling Jiang

Telephone: +86-25-84399061

Fax: +86-25-84399061

E-mail: jiangling@njau.edu.cn

Wan Jianmin

Telephone: +86-25-84396516

Fax: +86-25-84396516

E-mail: wanjm@njau.edu.cn
Supporting information

Additional Supporting Information may be found online for this article:

Data S1 Genes differentially expressed in wild type and *wsl5*.

Data S2 Genes differentially expressed in wild type and *wsl5* under different temperature condition.

Figure S1. Comparison of pigment contents from the second (L2), third (L3), fourth (L4) and fifth (L5) leaves of five-leaf-stage plants between WT and the *wsl5* mutant. (Student’s *t* test, **P < 0.01, *P < 0.05**).

Figure S2. Transmission electron microscopy images of cells from WT and the *wsl5* mutant grown under different temperature conditions. Cells and chloroplast structures from WT (A-F) and *wsl5* (G-M) at 30°C, 25°C and 20°C. Scale bar, 1 μm in A, C, E, G, I, and H; 500 nm in B, D, F, H, J, and K). Note the disorganized structures in *wsl5* at C20 and C25 images relative to WT and C30.

Figure S3. Alignment of WSL5 orthologs in maize and *Arabidopsis*. The RRM domain is red underlined. PPR repeats are indicated below the sequences by black-headed arrows.

Figure S4. *WSL5* was expressed in all tissues, especially during leaf development according to Rice eFP Browser.

Figure S5. GO analysis of genes differentially expressed between wild type and *wsl5*.

Figure S6. Pathway analysis of genes differentially expressed between wild type and *wsl5*.

Figure S7. Expression levels of chlorophyll synthesis genes in wild type and *wsl5*. (Student’s *t*-test, **P < 0.01**).

Figure S8. Editing efficiencies of *rpl2* and *atpA* genes in WT and the *wsl5* mutant. RT-PCR products of *rpl2* and *atpA* transcripts from WT and *wsl5* plants grown in a growth chamber were sequenced. In *wsl5* mutant, the editing efficiency of *rpl2* at C1 and *atpA* at C383 were significantly decreased compared to WT and complementation plants (Com). The panel corresponds to the genomic nucleotide sequence.

Figure S9. Quantitative RT-PCR analyses of *rpl2*, and *rps12* transcripts in WT and the *wsl5* mutant. Histograms show log₂ ratios of spliced to unspliced RNA in *wsl5* plants compared to WT. Values are means ± SD of three replicates.
Figure S1. qRT-PCR analysis of genes differently expressed in RNA-seq. W3 and W2 represent wild type plants grown at 30 and 20°C, respectively. M3 and M2 represent wsl5 plants grown at 30 and 20°C, respectively (Student’s t-test, **P < 0.01).**

Table S1. Comparison of agronomic traits between WT and wsl5 under field conditions.

Table S2. Primers used in this study.

![Figure S1](image1.png)

Figure S1. Comparison of pigment contents from the second (L2), third (L3), fourth (L4) and fifth (L5) leaves of five-leaf-stage plants between WT and the wsl5 mutant.(Student’s t-test, **P < 0.01, *P < 0.05**).

![Figure S2](image2.png)

Figure S2. Transmission electron microscopy images of cells from WT and the wsl5 mutant grown under different temperature conditions. Cells and chloroplast structures from WT (A-F) and...
wsil5 (G-M) at 30°C, 25°C and 20°C. Scale bar, 1 μm in A, C, E, G, I, and H); 500 nm in B, D, F, H, J, and K). Note the disorganized structures in wsil5 at C20 and C25 images relative to WT and C30.

Figure S3. Alignment of WSL5 orthologs in maize and Arabidopsis. The RRM domain is red underlined. PPR repeats are indicated below the sequences by black-headed arrows.

Figure S4. WSL5 was expressed in all tissues, especially during leaf development according to
Rice eFP Browser.

Figure S5. GO analysis of genes differentially expressed between wild type and wsl5.

Figure S6. Pathway analysis of genes differentially expressed between wild type and wsl5.
Figure S7. Expression levels of chlorophyll synthesis genes in wild type and *wsl5*. (Student’s *t*-test, **P < 0.01).

Figure S8. Editing efficiencies of *rpl2* and *atpA* in WT and the *wsl5* mutant. RT-PCR products of *rpl2* and *atpA* transcripts from WT and *wsl5* plants grown in a growth chamber were sequenced. In *wsl5* mutant, the editing efficiency of *rpl2* at C1 and *atpA* at C383 were significantly decreased compared to WT and complementation plants(Com). The panel corresponds to the genomic nucleotide sequence.
Figure S9. Quantitative RT-PCR analyses of *rpl2*, and *rps12* transcripts in WT and the *wsl5* mutant. Histograms show log₂ ratios of spliced to unspliced RNA in *wsl5* plants compared to WT. Values are means ± SD of three replicates.

Figure S10. qRT-PCR analysis of genes differently expressed in RNA-seq. W3 and W2 represent wild type plants grown at 30 and 20°C, respectively. M3 and M2 represent *wsl5* plants grown at 30 and 20°C, respectively (Student’s *t*-test, **P < 0.01).
Supplemental Table 1 Comparison of agronomic traits between WT and wsl5 under field condition

Trait	WT	wsl5
Plant height (cm)	103.32±2.61	101.76±4.85
Panicle length (cm)	26.54±1.49	26.44±1.09
Days to flowering (d)	80.3±1.23	79.8±1.32
1000 grain weight (g)	28.21±1.21	27.85±0.56
Number of tillers	14.4±3.05	13.9±1.52
Flag leaf length (cm)	25.81±3.73	26.02±2.64
Flag leaf width (cm)	1.84±0.15	1.82±0.11

Supplemental Table 2 Primers used in this study

F primer	R primer	
RM8217	ACTAGCGATGTCTGAGTTGAC	
RM559	TATTCACATGCTTTGCTCATC	
RM3466	GGTACACTTGGCCCTATGC	
RM559	ATGGGCTGTCAGTTGCTTCC	
ID4-14	GTCTCCCTCCACCTCTTC	
Y4	AAGGACGAGATCCGAAGCCAAG	
Y4	AGGACGAGATCCGAAGCCAAG	
Y11	TGGCTCTGAGTAGTAGTAGTTCG	
Y16	ACAGCTACGGGTCAATTACTATGT	
Y17	TGGCTCTGAGTAGTAGTAGTTCG	
Y18	ACAGCTACGGGTCAATTACTATGT	
Y47	TGGCTCTGAGTAGTAGTAGTTCG	
WSL5cds	TGGCTCTGAGTAGTAGTAGTTCG	
pAN580WSL5	TGGCTCTGAGTAGTAGTAGTTCG	
WSL5-RT	TGGCTCTGAGTAGTAGTAGTTCG	
rpl2cds	ACCGTGCCCTCCACCTGCTCCTCC	
rpl2-R	TGGCTCTGAGTAGTAGTAGTTCG	
rps12cds	ACCGTGCCCTCCACCTGCTCCTCC	
rps12-RT	TGGCTCTGAGTAGTAGTAGTTCG	
OsLFRN2-RT	ACCGTGCCCTCCACCTGCTCCTCC	
PORA-RT	GATGGAGCGCAGGAGTAGTGA	
OS08G0276100-RT	ACCGTGCCCTCCACCTGCTCCTCC	
OS03G0333400-RT	ACCGTGCCCTCCACCTGCTCCTCC	
Gene	Forward Primer	Reverse Primer
--------------	---------------------------	---------------------------
OS04G0457000-RT	CAAGCTCGCCGAGATCAAG	CCGGCCCTCGAAGTAGAAGAT
OsHSP24.1-RT	CAAGGCCGAGATGAAGAAGC	CTCGACGTTGACCTGGAGAAGA
RAD51-RT	GAAAGCTGTGGAGCATCTTTG	GGACGGTGCTGCTTTCTTTTG
ClpB3-RT	GGTGACTGATGTCGTTGAGT	TGGCTCAGATCCAGAAACGCA
St1-RT	GTCGACATCGAGAGGGAGTT	GCGACGAACCTCGATGTACTG
OsFAD7-RT	TCAAAGCAACGCCAAGGTGAA	TTGCCAGGAACCTGCTTTTCT
OsFAH2-RT	GTCCTGCTGCGTTGCTGAGA	ATGTTGCTGTTTGGCCCAAT
OsFAH1-RT	GCCCTTCGACTTGTCTTTCC	AAACACGCGGCTAGGTGTAG
OsTrxz-RT	GACATCGAGATGCTTTGAGA	GGGCGCTTCTTTGCTTTGATCT
PHO1-RT	TTCTTCTTCCTCGCCACCT	CTCTGCCCTTGACAAAGCTTCC
AGPS2b-RT	GGTGGTGCAAGGGAGCTAGATT	TTAGCCAGTGACGGTGTCAGA
OsTrxm-RT	AAGGAGTACGTCGAGCAAGAT	CGTAGTTTGCGGCGATGTTT
V3-RT	CTGTCAGCAAGGGCATTTCTC	TGGAAAGCAGTACGGCATTGGA
OS12G0194800-RT	GGTGACCTGATGTCGTTGTG	TGGCTCAGATCCAGAAAGCA
OS10G0320100-RT	CCCTCTTAGCTAACGTCTTG	ATCAGCACCTTGGACATCCA