A Quarter-symmetric Metric Connection on Almost Contact B–metric Manifolds

Şenay Bulut

Eskişehir Technical University, Science Faculty, Department of Mathematics, Eskişehir, Turkey

Abstract.

The aim of this paper is to study the notion of a quarter-symmetric metric connection on an almost contact B–metric manifold $(M, \varphi, \xi, \eta, g)$. We obtain the relation between the Levi-Civita connection and the quarter-symmetric metric connection on $(M, \varphi, \xi, \eta, g)$. We investigate the curvature tensor, Ricci tensor and scalar curvature tensor with respect to the quarter-symmetric metric connection. In case the manifold $(M, \varphi, \xi, \eta, g)$ is a Sasaki-like almost contact B–metric manifold, we get some formulas. Finally, we give some examples of a quarter-symmetric metric connection.

1. Introduction

The investigations of a quarter-symmetric metric connection in a differentiable manifold with affine connection take a central place in the study of the differential geometry. In 1975, it was defined and studied by Golab[11]. The systematic study of the quarter-symmetric metric connection was continued by [2, 3]. The quarter-symmetric metric connection in Riemannian, Kaehlerian and Sasakian manifolds was studied by [1, 4, 5, 13]. The quarter-symmetric metric connection on Riemannian manifold with an almost contact structure and pseudo-Riemannian manifolds was studied by [12, 14].

A classification of the space of the torsion tensors on almost contact B–metric manifolds is made in [8]. According to the classification we determine the class of the torsion tensor of the quarter-symmetric metric connection.

Sasaki-like almost contact B–metric manifolds was studied in [7]. We investigate the quarter-symmetric metric connection on Sasaki-like almost contact B–metric manifolds.

We organize the present paper as follows: Section 2 contains the basic known results of almost contact B–metric manifolds and Sasaki-like almost contact B–metric manifolds. The brief results of the quarter-symmetric metric connection on an almost contact B–metric manifold are given in Section 3. In Section 4, the properties of the curvature tensors corresponding to the quarter-symmetric metric connection on Sasaki-like almost contact B–metric manifolds are investigated. In the last section, we construct some examples of almost contact B–metric manifolds equipped with the quarter-symmetric metric connection and verify our results.

2010 Mathematics Subject Classification. Primary 53C05; Secondary 53C15, 53D10

Keywords. A quarter-symmetric metric connection; Almost contact B–metric manifold; Sasaki-like almost contact B–metric manifold.

Received: 19 July 2019; Revised: 24 September 2019; Accepted: 08 October 2019

Communicated by Ljubica Velimirović

Email address: skarapazar@eskisehir.edu.tr (Şenay Bulut)
Convention: Let $\mathcal{M} = (\mathcal{M}, \varphi, \xi, \eta, g)$ be a $(2n + 1)$-dimensional almost contact B-metric manifold. Let \mathcal{M} be $(2n + 1)$-dimensional almost contact structure (φ, η, ξ) consisting of an endomorphism φ of the tangent bundle, a Reeb vector field ξ, its dual 1-form η such that the following relations are satisfied:

$$\varphi^2 = -I + \eta \otimes \xi,$$

$$\eta(\xi) = 1, \quad \eta \circ \varphi = 0, \quad \varphi \xi = 0.$$ \hspace{1cm} (1)

Then, $(\mathcal{M}, \varphi, \xi, \eta)$ is called almost contact manifold. Moreover, if the almost contact manifold $(\mathcal{M}, \varphi, \xi, \eta)$ is endowed with a pseudo-Riemannian metric g of signature $(n + 1, n)$ compatible with the almost contact structure in the following way

$$g(\varphi x, \varphi y) = -g(x, y) + \eta(x)\eta(y),$$

then $(\mathcal{M}, \varphi, \xi, \eta, g)$ is called almost contact B-metric manifold.

2. Almost Contact B–metric Manifolds

Let \mathcal{M} be $(2n + 1)$–dimensional almost contact manifold with an almost contact structure (φ, η, ξ) consisting of an endomorphism φ of the tangent bundle, a Reeb vector field ξ, its dual 1–form η such that the following relations are satisfied:

$$\varphi^2 = -I + \eta \otimes \xi,$$

$$\eta(\xi) = 1, \quad \eta \circ \varphi = 0, \quad \varphi \xi = 0.$$ \hspace{1cm} (1)

Then, $(\mathcal{M}, \varphi, \xi, \eta)$ is called almost contact manifold. Moreover, if the almost contact manifold $(\mathcal{M}, \varphi, \xi, \eta)$ is endowed with a pseudo-Riemannian metric g of signature $(n + 1, n)$ compatible with the almost contact structure in the following way

$$g(\varphi x, \varphi y) = -g(x, y) + \eta(x)\eta(y),$$

then $(\mathcal{M}, \varphi, \xi, \eta, g)$ is called almost contact B–metric manifold.

2n–dimensional contact distribution $H = \ker \eta$, induced by the contact 1–form η, can be considered as the horizontal distribution. The restriction of φ to H is an almost complex structure, and the restriction of g to H is a Norden metric, i.e.,

$$g|_H(\varphi|_H(x), \varphi|_H(y)) = -g(x, y)$$

for any $x, y \in \chi(H)$. Thus, $(H, \varphi|_H)$ can be considered as $2n$–dimensional almost complex manifold with Norden metric.

The structure group of the almost contact B–metric manifolds is $O(n, \mathbb{C}) \times 1$, that is, $O(n, \mathbb{C}) \times 1$ consists of $(2n + 1) \times (2n + 1)$ matrices of the following type

$$\begin{pmatrix}
A & B & 0_{n \times 1} \\
-B & A & 0_{n \times 1} \\
0_{1 \times n} & 0_{1 \times n} & 1
\end{pmatrix}, \quad AA^t - BB^t = I_n, \quad AB^t + BA^t = 0_{n \times n},$$

where $A, B \in GL(n, \mathbb{R})$ and I_n and 0_n are the unit matrix and zero matrix, respectively.

The fundamental tensor F of type $(0, 3)$ on $(\mathcal{M}, \varphi, \xi, \eta, g)$ is determined by

$$F(x, y, z) = g((\nabla_x \varphi)y, z),$$

where ∇ is the Levi-Civita connection of g. Moreover, the tensor F has the following properties:

$$F(x, y, z) = F(x, z, y) = F(x, \varphi y, \varphi z) + \eta(y)F(x, \xi, z) + \eta(z)F(x, \xi, \xi),$$

$$(\nabla_x \eta)y = g(\nabla_x \xi, y) = F(x, \varphi y, \xi).$$ \hspace{1cm} (3)

2.1. Sasaki-like Almost Contact B–metric Manifolds

An almost contact B–metric manifold $(\mathcal{M}, \varphi, \xi, \eta, g)$ is called a Sasaki-like almost contact B–metric manifold if the tensor F satisfies the following conditions:

$$F(X, Y, Z) = F(\xi, Y, Z) = F(\xi, \xi, Z) = 0,$$

$$F(X, Y, \xi) = -g(X, Y).$$

If $(\mathcal{M}, \varphi, \xi, \eta, g)$ is a Sasaki-like almost contact B–metric manifold, then the following conditions are given in [7]:
3. A Quarter-symmetric Metric Connection on Almost Contact B–Metric Manifolds

If T is the torsion tensor of a linear connection D given by

$$T(x, y) = D_x y - D_y x - [x, y],$$

then the corresponding tensor of type $(0, 3)$ is determined by

$$T(x, y, z) = g(T(x, y), z).$$

It is well-known that any metric connection D is completely determined by its torsion tensor with

$$2g(D_x y - \nabla_x y, z) = T(x, y, z) - T(y, z, x) + T(z, x, y).$$

Definition 3.1. A linear connection $\tilde{\nabla}$ on an almost contact B–metric manifold is called a quarter-symmetric connection if its torsion tensor T of the connection $\tilde{\nabla}$ satisfies the condition

$$T(x, y) = \eta(y)\phi x - \eta(x)\phi y.$$

If moreover, the connection $\tilde{\nabla}$ satisfies the condition

$$(\tilde{\nabla}_x g)(y, z) = 0,$$

for all $x, y, z \in \chi(M)$, then $\tilde{\nabla}$ is called a quarter-symmetric metric connection, otherwise it is called a quarter-symmetric non-metric connection.

Let us define a connection $\tilde{\nabla}_x y$ by the following equation:

$$2g(\tilde{\nabla}_x y, z) = xg(y, z) + yg(z, x) - zg(x, y) + g([x, y], z) - g([y, z], x) + g(z, x), y) + g(\eta(y)\phi x - \eta(x)\phi y, z) + g(\eta(x)\phi z - \eta(z)\phi x, y),$$

where $x, y, z \in \chi(M)$. This connection $\tilde{\nabla}$ satisfies the following conditions:

$$\tilde{\nabla}_x (y + z) = \tilde{\nabla}_x y + \tilde{\nabla}_x z,$$
$$\tilde{\nabla}_{x+y} z = \tilde{\nabla}_x z + \tilde{\nabla}_y z,$$
$$\tilde{\nabla}_x f y = f\tilde{\nabla}_x y,$$
$$\tilde{\nabla}_x (f y) = f\tilde{\nabla}_x y + x(f)y,$$

a. The covariant derivative $\nabla\varphi$ satisfies the equality

$$(\nabla_z \varphi)y = -g(x, y)\xi - \eta(y)x + 2\eta(x)\eta(y)\xi.$$ (4)

b. The manifold M is normal, i.e., $N = 0$, the fundamental 1–form η is closed, i.e., $d\eta = 0$ and the integral curves of ξ are geodesics, i.e., $\nabla_z \xi = 0$.

c. The covariant derivative $\nabla\eta$ satisfies the equality

$$(\nabla_z \eta)Y = -g(X, \varphi Y).$$

d. The 1–forms θ and θ^* satisfy the equalities $\theta = -2n \eta$ and $\theta^* = 0$.

e. $\nabla_z X = -\varphi X - [X, \xi]$.

f. $\nabla_z \xi = -\varphi x$.

3. A Quarter-symmetric Metric Connection on Almost Contact B–Metric Manifolds

If T is the torsion tensor of a linear connection D given by

$$T(x, y) = D_x y - D_y x - [x, y],$$

then the corresponding tensor of type $(0, 3)$ is determined by

$$T(x, y, z) = g(T(x, y), z).$$

It is well-known that any metric connection D is completely determined by its torsion tensor with

$$2g(D_x y - \nabla_x y, z) = T(x, y, z) - T(y, z, x) + T(z, x, y).$$

Definition 3.1. A linear connection $\tilde{\nabla}$ on an almost contact B–metric manifold is called a quarter-symmetric connection if its torsion tensor T of the connection $\tilde{\nabla}$ satisfies the condition

$$T(x, y) = \eta(y)\phi x - \eta(x)\phi y.$$ (8)

If moreover, the connection $\tilde{\nabla}$ satisfies the condition

$$(\tilde{\nabla}_x g)(y, z) = 0,$$ (9)

for all $x, y, z \in \chi(M)$, then $\tilde{\nabla}$ is called a quarter-symmetric metric connection, otherwise it is called a quarter-symmetric non-metric connection.

Let us define a connection $\tilde{\nabla}_x y$ by the following equation:

$$2g(\tilde{\nabla}_x y, z) = xg(y, z) + yg(z, x) - zg(x, y) + g([x, y], z) - g([y, z], x) + g(z, x), y) + g(\eta(y)\phi x - \eta(x)\phi y, z) + g(\eta(x)\phi z - \eta(z)\phi x, y),$$ (10)

where $x, y, z \in \chi(M)$. This connection $\tilde{\nabla}$ satisfies the following conditions:

$$\tilde{\nabla}_x (y + z) = \tilde{\nabla}_x y + \tilde{\nabla}_x z,$$
$$\tilde{\nabla}_{x+y} z = \tilde{\nabla}_x z + \tilde{\nabla}_y z,$$
$$\tilde{\nabla}_x f y = f\tilde{\nabla}_x y,$$
$$\tilde{\nabla}_x (f y) = f\tilde{\nabla}_x y + x(f)y,$$ (11)
for all $x, y, z \in \chi(M)$ and $f \in C^\infty(M)$. Therefore, the connection ∇ determines a linear connection on (M, g). According to (10), we have the following relation:

$$g(\nabla_x y, z) - g(\nabla_y x, z) = g([x, y], z) + g(\eta(y)\varphi x - \eta(x)\varphi y, z).$$

(12)

Then, we get

$$T(x, y) = \nabla_x y - \nabla_y x - [x, y] = \eta(y)\varphi x - \eta(x)\varphi y.$$

(13)

Moreover, it can be easily verified that ∇ is compatible with the metric g on M, i.e.,

$$\nabla g = 0.$$

(14)

∇ determines metric connection on $(M, \varphi, \xi, \eta, g)$.

Theorem 3.2. If $(M, \varphi, \xi, \eta, g)$ is an almost contact B–metric manifold, then there exists a unique linear connection ∇ satisfying the conditions (13) and (14).

Now we give a relation between the Levi-Civita connection ∇ and the quarter-symmetric metric connection ∇ on $(M, \varphi, \xi, \eta, g)$. Let

$$\nabla_x y = \nabla_x y + U(x, y),$$

where $U(x, y)$ is a tensor of type $(1, 2)$. It can be seen that

$$U(x, y) = \frac{1}{2}[T(x, y) + S(x, y) + S(y, x)],$$

where

$$g(S(x, y), z) = g(T(z, x), y).$$

From (13) we get

$$U(x, y) = \eta(y)\varphi x - \eta(qx, y)\xi.$$

(15)

Hence, a quarter-symmetric metric connection ∇ on $(M, \varphi, \xi, \eta, g)$ is given by

$$\nabla_x y = \nabla_x y + \eta(y)\varphi x - \eta(qx, y)\xi.$$

(16)

Conversely, it is easy to show that a linear connection ∇ on $(M, \varphi, \xi, \eta, g)$ defined by (16) determines a quarter-symmetric metric connection.

If T is the torsion tensor of a quarter-symmetric metric connection ∇, then the corresponding tensor of type $(0, 3)$ is given by

$$T(x, y, z) = \eta(y)g(\varphi x, z) - \eta(x)g(\varphi y, z).$$

(17)

In particular, we have

$$T(\varphi x, \varphi y, z) = 0, \text{ and}$$

$$T(x, y, \xi) = 0.$$

(18)

(19)

The classification of the space of the torsion tensors with respect to almost contact B–metric structure is made in [8]. The class of the torsion tensor corresponding to the quarter-symmetric metric connection is determined in the following.

Proposition 3.3. The torsion T of the quarter-symmetric metric connection ∇ on $(M, \varphi, \xi, \eta, g)$ belongs to T_{10}.

Proof. Let \mathcal{T} be a vector space of all tensors T of type $(0,3)$ over $T_p(M)$ having skew-symmetry by the first two arguments, i.e.,

$$\mathcal{T} = \{T(x, y, z) \in \mathbb{R}|T(x, y, z) = -T(y, x, z), x, y, z \in T_pM\}.$$

Firstly, we have the operator $p_1: \mathcal{T} \rightarrow \mathcal{T}$ by

$$p_1(T)(x, y, z) = -T(q^2x, q^2y, q^2z).$$

We have the following orthogonal decomposition of \mathcal{T} by the image and the kernel of p_1:

$$W_1 = \text{im}(p_1) = \{T \in \mathcal{T} \mid p_1(T) = T\}, \quad W_2 = \ker(p_1) = \{T \in \mathcal{T} \mid p_1(T) = 0\}.$$

From (18) we obtain $p_1(T) = 0$, namely, $T \in \ker(p_1) = W_1^\perp$. Now consider the operator $p_2: W_1^\perp \rightarrow W_1^\perp$ defined by

$$p_2(T)(x, y, z) = \eta(z)T(q^2x, q^2y, \xi) = \eta(z)g(T(q^2x, q^2y), \xi).$$

(20)

Since $p_2 \circ p_2 = p_2$, we have the following decomposition of W_1^\perp:

$$W_2 = \text{im}(p_2) = \{T \in W_1^\perp \mid p_2(T) = T\}, \quad W_2^\perp = \ker(p_2) = \{T \in W_1^\perp \mid p_2(T) = 0\}.$$

According to (19) we get $p_2(T) = 0$, that is, $T \in \ker(p_2) = W_2^\perp$. We consider the operator $p_3: W_2^\perp \rightarrow W_2^\perp$ defined by

$$p_3(T)(x, y, z) = \eta(x)T(\xi, q^2y, q^2z) + \eta(y)T(q^2x, \xi, q^2z).$$

By using the equalities given in (2), (6) and (13), the above equality is written in the form

$$p_3(T)(x, y, z) = \eta(x)T(\xi, q^2y, q^2z) + \eta(y)T(q^2x, \xi, q^2z) = \eta(x)g(\eta y, q^2z) + \eta(y)g(\xi, q^2z) = -\eta(x)g(\eta y, q^2z) + \eta(y)g(\xi, q^2z)$$

(21)

Then, $p_3(T) = T$, that is, $T \in \text{im}(p_3) = W_3$. The following operators $L_{3,0}$ and $L_{3,1}$ are involutive isometries on W_3:

$$L_{3,0}(T)(x, y, z) = \eta(x)T(\xi, q^2y, q^2z) - \eta(y)T(\xi, q^2x, q^2z),$$

$$L_{3,1}(T)(x, y, z) = \eta(x)T(\xi, q^2x, q^2z) - \eta(y)T(\xi, q^2x, q^2z).$$

(22)

From (17) we get $L_{3,0}(T) = -T$, namely, $T \in W_3^\perp$ and $L_{3,1}(T) = T$, namely, $T \in W_3$. Where

$$W_3 = \{T \in W_3 \mid L_{3,0}(T) = -T\}, \quad W_3 = \{T \in W_3 \mid L_{3,1}(T) = T\}.$$

The torsion forms t and t' of T are defined by

$$t(x) = g^{ij}T(x, e_i, e_j),$$

$$t'(x) = g^{ij}T(x, e_i, qe_j),$$

with respect to the basis $\{\xi, e_1, \ldots, e_2n\}$, respectively. By using the torsion tensor T in (17) the torsion forms t and t' can be easily calculated as $t = 0, t' \neq 0$. Hence, $T \in W_{3,1} = T_{10}$ where

$$W_{3,1} = \{T \in W_3 \mid t = 0, t' \neq 0\}.$$

□
Note that for almost contact B–metric manifold \((M, \varphi, \xi, \eta, g)\) with respect to the basis \([\xi, e_1, \ldots, e_{2n}]\) we have the following relation:
\[
\tilde{\nabla}_x y = \nabla_x y, \quad \tilde{\nabla}_x \xi = \nabla_x \xi + \varphi x.
\]

(23)

Let \((M, \varphi, \xi, \eta, g)\) be an almost contact B–metric manifold. The curvature tensor of type \((1, 3)\) is defined by
\[
R(x, y)z = \nabla_x \nabla_y z - \nabla_y \nabla_x z - \nabla_{[x,y]} z.
\]

If \(R(x, y, z, w) = g(R(x, y)z, w)\), then the Ricci tensor \(Ric\), the scalar curvature \(Scal\) and \(\ast\) scalar curvature \(Scal^*\) are, respectively, defined by
\[
Ric(x, y) = \sum_{i=0}^{2n} \varepsilon_i Ric(e_i, x, y, e_i),
\]
\[
Scal = \sum_{i=0}^{2n} \varepsilon_i Ric(e_i, e_i),
\]
\[
Scal^* = \sum_{i=0}^{2n} \varepsilon_i Ric(e_i, \varphi e_i).
\]

(24)

For more details see [6, 7].

It is well-known that the manifold \((M, \varphi, \xi, \eta, g)\) is called Einstein if the Ricci tensor \(Ric\) is proportional to the metric tensor \(g\), i.e. \(Ric = \lambda g\), \(\lambda \in \mathbb{R}\). Moreover, the manifold \(M\) is called an \(\eta\)–complex-Einstein manifold if the Ricci tensor \(Ric\) satisfies the condition
\[
Ric = \lambda g + \mu \varphi g + \nu \eta \otimes \eta,
\]

(25)

where \(\lambda, \mu, \nu \in \mathbb{R}\) and \(\varphi(x, y) = g(x, \varphi y) + \eta(x)\eta(y)\). If \(\mu = 0\), we call \(M\) an \(\eta\)–Einstein manifold.

The relation between curvature tensors with respect to the Levi-Civita connection and the quarter-symmetric metric connection on almost contact B–metric manifold \((M, \varphi, \xi, \eta, g)\) is given by
\[
\tilde{R}(x, y)z = R(x, y)z + \eta(z)\nabla_x (\varphi y) - \nabla_y (\varphi x) - \varphi [x, y]
- g(z, \varphi y + \nabla_x \xi)\varphi x + g(z, \varphi x + \nabla_x \xi)\varphi y
- g(\nabla_x (\varphi y) - \nabla_y (\varphi x) - \varphi [x, y], z)\xi - g(\varphi y, z)\nabla_x \xi + g(\varphi x, z)\nabla_y \xi,
\]

(26)

where \(\nabla_x (\varphi y) - \nabla_y (\varphi x) - \varphi [x, y] = (\nabla_x \varphi) y - (\nabla_y \varphi) x\).

When the structures are \(\nabla\)–parallel, i.e. \(\nabla \varphi = \nabla \xi = \nabla \eta = \nabla g = 0\), the almost contact B–metric manifold belongs to the class \(\mathcal{F}_0\). If the almost contact B–metric manifold is in the special class \(\mathcal{F}_0\), then the relation between the curvature tensors \(\tilde{R}\) and \(R\) is given by
\[
\tilde{R}(x, y)z = R(x, y)z - g(z, \varphi y)\varphi x + g(z, \varphi x)\varphi y.
\]

(27)

4. A Quarter-symmetric Metric Connection on Sasaki-like Almost Contact B–Metric Manifolds

There is considerable interest in natural connections having some additional geometric or algebraic properties about their torsion[9]. In this section we show that the quarter-symmetric metric connection \(\nabla\) on Sasaki-like almost contact B–metric manifolds is a natural connection and investigate curvature properties on these manifolds.

Theorem 4.1. The quarter-symmetric metric connection \(\nabla\) on Sasaki-like almost contact B–metric manifolds is a natural connection, i.e. \(\nabla \varphi = \nabla \xi = \nabla \eta = \nabla g = 0\).
Proof. By using (4) we obtain the following:

\[
\begin{align*}
(\tilde{\nabla}_x \varphi)y &= \tilde{\nabla}_x (\varphi y) - \varphi(\tilde{\nabla}_x y) \\
&= \tilde{\nabla}_x (\varphi y) - \varphi(\varphi x, \varphi y)\xi - \varphi(\tilde{\nabla}_x y) - \eta(y)\varphi^2 x \\
&= (\tilde{\nabla}_x \varphi)y + \varphi(x, y)\xi - \eta(x)\eta(y)\xi + \eta(y)x - \eta(x)\eta(y)\xi \\
&= 0.
\end{align*}
\]

The equality \(\tilde{\nabla}_\xi = \tilde{\nabla}_\eta = \tilde{\nabla}_1 = 0 \) follow immediately from (14), (28) and second part of (3).

The following Proposition given in [7] gives some properties of Sasaki-like almost contact \(B^- \) metric manifolds with Levi-Civita connection.

Proposition 4.2. On a Sasaki-like almost contact \(B^- \) metric manifold \((M, \varphi, \xi, \eta, 1) \) the following formulas hold:

a. \(R(x, y)\xi = \eta(y)x - \eta(x)y \).

b. \([X, \xi] \in H\).

c. \(\nabla_\xi X = -\varphi X - [X, \xi] \in H\).

d. \(R(\xi, X)\xi = -X \).

e. \(\text{Ric}(y, \xi) = 2\eta(y) \).

f. \(\text{Ric}(\xi, \xi) = 2n \).

If \((M, \varphi, \xi, \eta, g)\) is a Sasaki-like almost contact \(B^- \) metric manifold, then we have the following relation:

\[
\tilde{R}(x, y)z = R(x, y)z - \eta(y)\eta(z)x + \eta(x)\eta(z)y + \eta(y)\varphi(x, z)\xi - \eta(x)\varphi(y, z)\xi + g(\varphi y, z)\varphi x - g(\varphi x, z)\varphi y.
\]

(29)

Set \(z = \xi \) into (29) and use (1) to obtain

\[
\tilde{R}(x, y)\xi = R(x, y)\xi - \eta(y)x + \eta(x)y.
\]

(30)

Set \(x = \xi \) and \(y \to x \) into (30) to get

\[
\tilde{R}(\xi, x)\xi = R(\xi, x)\xi - \eta(x)\xi + x.
\]

Moreover, for any \(X \in \chi(H) \) the above equality implies by Proposition (4.2)(d)

\[
\tilde{R}(\xi, X)\xi = 0.
\]

By virtue of the identity in the Proposition (4.2)(f) we have

\[
\tilde{\text{Ric}}(\xi, \xi) = \text{Ric}(\xi, \xi) - 2n = 0.
\]

(31)

5. Examples

In this section we construct a number of examples of almost contact \(B^- \) metric manifolds with the quarter-symmetric metric connection.
5.1. Example 1

Consider the real connected 3-dimensional Lie group \(L \) with the left invariant vector fields \(\{\xi = e_0, e_1, e_2\} \). Let the non-zero commutators of the corresponding Lie algebra be
\[
[\xi, e_1] = ae_2, \quad [\xi, e_2] = -ae_1,
\]
where \(a \in \mathbb{R} \). Let an almost contact \(B \)-metric structure be defined by
\[
g(e_0, e_0) = g(e_1, e_1) = -g(e_2, e_2) = 1, \quad \varphi(e_1) = e_2, \quad \varphi(e_2) = -e_1, \quad \varphi(\xi) = 0, \quad \eta(\xi) = 1. \tag{32}
\]
It can be easily shown that \(L \) is an almost contact \(B \)-metric manifold. The non-zero components of the Levi-Civita connection \(\nabla \) and the quarter-symmetric metric connection \(\tilde{\nabla} \) are respectively given by
\[
\begin{align*}
\nabla_{e_1}\xi &= -ae_2, \quad \nabla_{e_2}\xi = ae_1, \quad \nabla_{e_2}e_1 = -ae_1, \\
\tilde{\nabla}_{e_1}\xi &= (1-a)e_2, \quad \tilde{\nabla}_{e_2}\xi = (a-1)e_1, \\
\tilde{\nabla}_{e_2}e_1 &= (1-a)e_2.
\end{align*}
\]

The non-zero components of the curvature tensors \(R \) and \(\tilde{R} \) corresponding to the connections \(\nabla \) and \(\tilde{\nabla} \) are given by
\[
\begin{align*}
R_{010} &= -a^2e_1, \quad R_{020} = -a^2e_2, \quad R_{011} = a^2\xi, \\
R_{022} &= -a^2\xi, \quad R_{121} = a^2e_2, \quad R_{122} = a^2e_1, \\
\tilde{R}_{010} &= (a-a^2)e_1, \quad \tilde{R}_{020} = (a-a^2)e_2, \quad \tilde{R}_{011} = (a^2-a)\xi, \\
\tilde{R}_{022} &= (a-a^2)\xi, \quad \tilde{R}_{121} = (a-1)^2e_2, \quad \tilde{R}_{122} = (a-1)^2e_1.
\end{align*}
\]
Moreover, the non-zero-components of Ricci tensors \(\text{Ric} \) and \(\tilde{\text{Ric}} \) can be easily calculated as
\[
\begin{align*}
\text{Ric}_{00} &= 2a^2, \quad \text{Ric}_{11} = \text{Ric}_{22} = 0, \\
\tilde{\text{Ric}}_{00} &= 2(a^2-a), \quad \tilde{\text{Ric}}_{11} = a-1, \quad \tilde{\text{Ric}}_{22} = 1-a.
\end{align*}
\]

By using above components of \(R \) and \(\tilde{R} \) the scalar curvatures \(\text{Scal}, \tilde{\text{Scal}} \) and \(\tilde{\text{Scal}}^c \) can be easily calculated as
\[
\text{Scal} = 2a^2, \quad \tilde{\text{Scal}} = 2a^2 - 2, \quad \tilde{\text{Scal}}^c = 0.
\]
The Ricci tensor \(\tilde{\text{Ric}} \) satisfies the condition
\[
\text{Ric} = \tilde{\text{Ric}} = (a-1)g + (2a^2 - 3a + 1)\eta \otimes \eta.
\]
Then, the manifold \(M \) is an \(\eta \)-Einstein manifold.

In particular, in case of \(a = 1 \) we get \(\tilde{R} = 0 \). Namely, \(L \) has a flat quarter-symmetric metric connection.

5.2. Example 2

In \cite{10} a real connected Lie group \(L \) as a manifold from the class \(\mathcal{F}_5 \) is introduced. Now we consider this example. In this case, \(L \) is a 3–dimensional real connected Lie group and its associated Lie algebra with a global basis \(\{\xi = e_0, e_1, e_2\} \) of the left invariant vector fields on \(L \) is defined by
\[
[\xi, e_1] = ae_2, \quad [\xi, e_2] = ae_1, \quad [e_1, e_2] = 0,
\]
where \(\lambda \in \mathbb{R} \). Let an almost \(B \)-metric contact structure be defined by (32). Then, \((L, \varphi, \xi, \eta, g) \) is a 3–dimensional almost contact \(B \)-metric manifold.
By using the Koszul formula, we get the non-zero covariant derivatives of \(e_i \) with respect to the Levi-Civita connection \(\nabla \) and the quarter-symmetric metric connection \(\bar{\nabla} \) as follows:

\[
\nabla \alpha e_1 = -\nabla \alpha e_2 = \alpha \xi, \quad \nabla \alpha \xi = -\alpha e_1, \quad \nabla \xi \xi = -\alpha e_2,
\]

\[
\bar{\nabla} \alpha e_1 = -\bar{\nabla} \alpha e_2 = \alpha \xi, \quad \bar{\nabla} \alpha \xi = -\alpha e_1 + e_2, \quad \bar{\nabla} e_2 \xi = -\alpha e_2 - e_1,
\]

The non-zero components of the curvature tensor \(R \) and \(\tilde{R} \) are respectively given by

\[
R_{010} = R_{122} = a^2 e_1, \quad R_{020} = R_{121} = a^2 e_2, \quad R_{022} = -R_{011} = a^2 \xi,
\]

\[
\tilde{R}_{010} = \alpha^2 e_1 - \alpha e_2, \quad \tilde{R}_{020} = \alpha^2 e_2 + \alpha e_1, \quad \tilde{R}_{121} = (a^2 + 1)e_2, \quad \tilde{R}_{021} = \tilde{R}_{012} = -\alpha \xi, \quad \tilde{R}_{011} = -\tilde{R}_{022} = -\alpha^2 \xi, \quad \tilde{R}_{122} = (a^2 + 1)e_1.
\]

The non-zero components of the Ricci tensors \(\text{Ric} \) and \(\tilde{\text{Ric}} \) with respect to the connections \(\nabla \) and \(\bar{\nabla} \) can be easily calculated as follows:

\[
\text{Ric}_{00} = \text{Ric}_{11} = -\text{Ric}_{22} = -2a^2, \quad \text{Ric}_{00} = -2a^2, \quad \text{Ric}_{22} = 2a^2 + 1, \quad \text{Ric}_{11} = -a.
\]

The scalar curvatures \(\text{Scal} \) and \(\tilde{\text{Scal}} \) with respect to \(\nabla \) and \(\bar{\nabla} \) are computed by \(\text{Scal} = -6a^2 \) and \(\tilde{\text{Scal}} = -6a^2 - 2 \), respectively. \(\text{Scal} \) and \(\tilde{\text{Scal}} \) are negative for all \(a \in \mathbb{R} \). While *scalar curvature* \(\text{Scal}^* \) with respect to \(\nabla \) is zero, *scalar curvature* \(\tilde{\text{Scal}}^* \) with respect to \(\bar{\nabla} \) is \(-2a\). The Ricci tensor \(\tilde{\text{Ric}} \) with respect to the Levi-Civita connection \(\nabla \) satisfies the condition

\[
\tilde{\text{Ric}} = -2a^2 g.
\]

Then, the Lie group \(L \) is an Einstein manifold. The Ricci tensor \(\tilde{\text{Ric}} \) with respect to the quarter-symmetric metric connection \(\bar{\nabla} \) satisfies the condition

\[
\tilde{\text{Ric}} = (-2a^2 - 1)g + a \tilde{g} + (1 - a) \eta \otimes \eta.
\]

Then, the Lie group \(L \) with respect to the quarter-symmetric metric connection \(\bar{\nabla} \) is an \(\eta \) complex-Einstein manifold.

5.3. Example 3

Let us consider the Lie group \(G \) of dimension 5 with a basis of left-invariant vector fields \(\{ \xi = e_0, e_1, e_2, e_3, e_4 \} \) defined by the commutators

\[
[\xi, e_1] = \lambda e_2 + \mu e_4 + e_3, \quad [\xi, e_2] = -\lambda e_1 - \mu e_3 + e_4,
\]

\[
[\xi, e_3] = -e_1 - \mu e_2 + \lambda e_4, \quad [\xi, e_4] = \mu e_1 - e_2 - \lambda e_3,
\]

where \(\lambda, \mu \in \mathbb{R} \). Define an invariant almost contact \(B \)-metric structure on \(G \) by

\[
g(e_1, e_1) = g(e_2, e_2) = -g(e_3, e_3) = -g(e_4, e_4) = g(\xi, \xi) = 1, \quad g(e_5) = e_5, \quad g(\xi) = 0, \quad \eta (\xi) = 1.
\]

By using the Koszul formula the non-zero connection 1-forms of the Levi-Civita connection \(\nabla \) are calculated in ([7]) as follows:

\[
\nabla_1 e_1 = \lambda e_2 + \mu e_4, \quad \nabla_2 e_2 = -\lambda e_1 - \mu e_3,
\]

\[
\nabla_3 e_3 = -\mu e_2 + \lambda e_4, \quad \nabla_4 e_4 = \mu e_1 - \lambda e_3,
\]

\[
\nabla_5 e_5 = -e_2, \quad \nabla_5 \xi = -e_4, \quad \nabla_5 e_1 = e_1, \quad \nabla_5 e_3 = e_2.
\]

\[
\nabla_5 e_1 = \nabla_5 e_2 = \nabla_5 e_3 = \nabla_5 e_4 = \nabla_5 e_5 = -\xi.
\]
It can be easily checked that the constructed manifold $(G, \varphi, \xi, \eta, g)$ is a Sasaki-like almost contact B-metric manifold. A quarter-symmetric metric connection $\tilde{\nabla}$ on $(G, \varphi, \xi, \eta, g)$ is given by (20). The non-zero connection 1-forms of the quarter-symmetric metric connection $\tilde{\nabla}$ can be calculated as follows:

\[
\begin{align*}
\tilde{\nabla}_\xi e_1 &= \lambda e_2 + \mu e_4, \\
\tilde{\nabla}_\xi e_2 &= -\lambda e_1 - \mu e_3, \\
\tilde{\nabla}_\xi e_3 &= -\mu e_2 + \lambda e_4, \\
\tilde{\nabla}_\xi e_4 &= \mu e_1 - \lambda e_3.
\end{align*}
\] (45)

Then, we get $\tilde{R}(e_i, e_j)e_k = 0$ for $i, j, k = 0, \ldots, 4$. That is, $\tilde{R} = 0$. Hence, the manifold $(G, \varphi, \xi, \eta, g)$ has a flat quarter-symmetric metric connection. In particular, if we take $\lambda = 0$ and $\mu = 0$, then it can be verified that all covariant derivatives $\tilde{\nabla}_e e_j$ are zero, that is, $\tilde{\nabla} = 0$. The curvature tensor R with respect to the Levi-Civita connection ∇ is not zero but, $\tilde{R} = 0$.

Kaynaklar

[1] K. Yano, T. Imai, Quarter-symmetric metric connections and their curvature tensors, Tensor, N.S. 38 (1982) 13–18.
[2] S. C. Rastogi, On quarter-symmetric metric connection, C. R. Acad. Sci. Bulgar 31 (1978) 811–814.
[3] S. C. Rastogi, On quarter-symmetric metric connection, Tensor, 44(2) (1987) 133–141.
[4] A. K. Mondal, U. C. De, Some properties of a quarter symmetric connection on a Sasakian manifold, Bull. Math. Anal. Appl. 3 (2009) 99–108.
[5] U. C. De, J. Sengupta, Quarter-symmetric metric connection on a Sasakian manifold, Commun. Fac. Sci. Univ. Ank. Series A1 49 (2000) 7–13.
[6] B. O’Neill, Semi-Riemannian Geometry, Academic Press, New York, 1983.
[7] S. Ivanov, H. Manev, M. Manev, Sasaki-like almost contact complex Riemannian manifolds, J. Geo. and Phys 107(2016) 136–148.
[8] M. Manev, M. Ivanova, A classification of the torsion tensors on almost contact manifolds with B-metric, Central European Journal of Mathematics, 12(10) (2014) 1416–1432.
[9] M. Manev, M. Ivanova, Canonical-type connection on almost contact manifolds with B–metric, Ann. Glob. Anal. Geom. 43 (2013) 397–408.
[10] H. Manev, D. Mekerov, Lie groups as 3-dimensional almost contact B-metric manifolds, J. Geo. 106 (2015) 229–242.
[11] S. Golab, On semi-symmetric and quarter-symmetric linear connections, Tensor N.S., 29 (1975) 249–254.
[12] I. E. Hirica, L. Nicolescu, On quarter-symmetric metric connections on pseudo-Riemannian manifolds, Balkan Journal of Geo. 16(1) (2011) 56–65.
[13] R. S. Mishra, S. N. Pandey, On quasi-symmetric metric F-connections, Tensor, N.S. 34 (1980) 1–7.
[14] S. Mukhopadhyay, A. K. Roy, B. Barua, Some properties of a quarter-symmetric metric connection on a Riemannian manifold, Soochow J. of Math. 17(2) (1992) 205–211.