THE DECOMPOSITION OF CERTAIN ABSTRACT-INDUCED MODULES OVER REDUCTIVE ALGEBRAIC GROUPS

JUNBIN DONG

Abstract. Let G be a connected reductive algebraic group over an algebraically closed field F, and B be a Borel subgroup of G. Let k be another field. We determine the composition factors of the abstract induced module $M(\theta) = kG \otimes_{kB} \theta$ (here kH is the group algebra of H over the field k and θ is a character of B over k) when $\text{char } F = p$ is positive and $\text{char } k \neq p$ for a general character θ. In particular, when θ is trivial, we give the composition factors of $M(\text{tr})$ for any F and k.

1. Introduction

Let G be a connected reductive algebraic group over an algebraically closed field F. Let k be another field. In this paper we study the abstract representations of G over k. Firstly we assume that $F = \overline{F}_q$. According to a theorem of Borel and Tits (see [2]), we know that except the trivial representation, all other irreducible representations of kG are infinite-dimensional if G is a semisimple algebraic group over \overline{F}_q when $\text{char } k \neq \text{char } F_q$. Let G_{q^a} be the set of F_{q^a}-points of G, then $G = \bigcup G_{q^a}$. Thus the abstract representations of G are closely related to the representations of finite reductive groups. Around 2013, Nanhua Xi provided a new and fundamental method to study the abstract representations of G over k by taking the direct limit of the finite-dimensional representations of G_{q^a} and got many interesting results (see [12]). In particular, he showed that the infinite Steinberg module is irreducible when $\text{char } k = 0$ or $\text{char } F$. Later, Ruotao Yang removed this restriction on char k and proved the irreducibility of Steinberg module for any field k. Recently, A.Putman and A.Snowden showed that when F is an infinite field, then the Steinberg representation of G is always irreducible (see [10]). Contrast to the proofs of Xi and Yang which make essential use of the fact that F_q is a union of finite fields, the arguments of [10] can deal with any infinite field F.

As Joseph Bernstein [11] notes, the way to make an advance in representation theory is to find a way to construct representations and practically our only tool is the induction functor. So at the beginning of the study of abstract representations
of algebraic groups, we need to construct a lot of representations. Now let T be a maximal torus and B be a Borel subgroup containing T. Let θ be a character of T, which can be regarded as a character of B by letting U acts trivially on θ. Motivated by the famous Verma module in the representations of complex Lie algebras, we study the abstract-induced module $M(\theta) = kG \otimes_{kB} \theta$ in this paper. Inspired by Xi’s results in [12], we construct the kG-modules $E(\theta)_J$ (see Section 2 for its definition), which are the subquotient modules of $M(\theta)$. The following is the main theorem (see Theorem 6.1) of this paper.

Theorem 1.1. Let F be a field of characteristic $p > 0$ and k be another field with $\text{char } k \neq p$. Then for each character θ of T, all kG-modules $E(\theta)_J$ are irreducible and pairwise non-isomorphic.

By this theorem, we determine all the composition factors of the induced module $M(\theta)$. In particular, we obtain a large class of abstract infinite-dimensional irreducible kG-modules. Hence we can also define the principal representation category $\mathcal{O}(G)$ as in [3]. Moreover, the Alvis-Curtis duality of infinite type (see [9]) can be generalized on the Grothendieck group $K_0(\mathcal{O}(G))$ of $\mathcal{O}(G)$.

It is well known that the flag variety G/B plays a very important role in the representation theory. Now we just regard G/B as a quotient set and consider the vector space $k[G/B]$, which has a basis of the left cosets of B in G. Thus $k[G/B]$ is a kG-module, which is isomorphic to $M(\text{tr})$. We call $k[G/B]$ the permutation module on the flag variety G/B and we will decompose this module for any fields F and k in the last section. In particular, the Steinberg module is the socle of $k[G/B]$. As A.Putman and A.Snowden introduced in [11] Section 1.1.4, the Steinberg module has show its importance in representation theory, number theory and algebraic K-theory. Since the flag variety is a common and crucial object in representation theory and algebraic geometry, we believe that our decomposition of $k[G/B]$ will also have much more applications.

This paper is organized as follows: Section 2 contains some notations and preliminary results. In particular, we study the properties of the subquotient module $E(\theta)_J$ of $M(\theta)$. In Section 3, we list some properties of the unipotent groups U and introduce and study the self-enclosed subgroup of U, which is useful in the later discussion. In Section 4, we study certain modules over unipotent groups which generalize the results of [10] Proposition 6.7. Section 5 gives the nonvanishing property of the augmentation map. Combining the results in Section 4 and Section 5, we prove the irreducibility of $E(\theta)_J$ in Section 6 under some restrictions on the characteristics of F and k. Thus, we get all the composition factors of $M(\theta)$. In the last section, we will prove that all the kG-modules $E(\text{tr})_J$ are irreducible for any fields F and k.
2. Notations and Preliminary Results

Let G be a connected reductive algebraic group over an algebraically closed field F, e.g. $G = GL_n(F)$. Let B be an Borel subgroup, and T be a maximal torus contained in B, and $U = R_u(B)$ be the unipotent radical of B. We identify G with $G(F)$ and do likewise for the various subgroups of G such as $B, T, U \cdots$. We denote by $\Phi = \Phi(G; T)$ the corresponding root system, and by Φ^+ (resp. Φ^-) the set of positive (resp. negative) roots determined by B. Let $W = N_G(T)/T$ be the corresponding Weyl group. We denote by $\Delta = \{\alpha_i \mid i \in I\}$ the set of simple roots and by $S = \{s_i := s_{\alpha_i} \mid i \in I\}$ the corresponding simple reflections in W. For each $\alpha \in \Phi$, let U_α be the root subgroup corresponding to α and we fix an isomorphism $\varepsilon_\alpha : \overline{F}_q \rightarrow U_\alpha$ such that $\varepsilon_\alpha(c)t^{-1} = \varepsilon_\alpha(\alpha(t)c)$ for any $t \in T$ and $c \in \overline{F}_q$. For any $w \in W$, let U_w (resp. U_w') be the subgroup of U generated by all U_α with $w(\alpha) \in \Phi^-$ (resp. $w(\alpha) \in \Phi^+$).

Now let k be another field and all the representations are over k. Let \overline{T} be the set of characters of T. Each $\theta \in \overline{T}$ can be regarded as a character of B by the homomorphism $B \rightarrow T$. Let \mathbb{k}_θ be the corresponding B-module. We are interested in the induced module $M(\theta) = kG \otimes_k B \mathbb{k}_\theta$. Let 1_θ be a fixed nonzero element in \mathbb{k}_θ. We abbreviate $\xi \xi = x \otimes 1_\theta \in M(\theta)$ for $x \in G$.

Proposition 2.1. For any $\theta \in \overline{T}$, we have the isomorphism $\text{End}_{kG}(M(\theta)) \simeq \mathbb{k}$ as \mathbb{k}-algebras. In particular, the kG-module $M(\theta)$ is indecomposable.

Proof. Let $\varphi \in \text{End}_{kG}(M(\theta))$ which is determined by $\varphi(1_\theta)$. Set $\xi = \varphi(1_\theta)$ and it is easy to see that $\xi \in M(\theta)^U$ and $t\xi = \theta(t)\xi$ for any $t \in T$. Using the Bruhat decomposition, we have

$$M(\theta) = \sum_{w \in W} \mathbb{k}U\tilde{w}1_\theta,$$

where \tilde{w} is a fixed representative of $w \in W$. Now let ξ be the following expression

$$\xi = \sum_{w \in W} \sum_{x \in U} a_{x,w}x\tilde{w}1_\theta, \quad a_{x,w} \in \mathbb{k}.$$

Noting that for an element $x \in U$ with $x \neq \text{id}$ (the neutral element of U), the T-orbit of x has infinitely many elements. Thus ξ has to be the form $\xi = \sum_{w \in W} a_w \tilde{w}1_\theta$.

However, we have $\xi \in M(\theta)^U$ and then $\xi = a1_\theta$ for some $a \in \mathbb{k}$ which completes the proof. \qed

For each $i \in I$, let G_i be the subgroup of G generated by $U_{\alpha_i}, U_{-\alpha_i}$, and set $T_i = T \cap G_i$. For $\theta \in \overline{T}$, define the subset $I(\theta)$ of I by

$$I(\theta) = \{i \in I \mid \theta|_{T_i} \text{ is trivial}\}.$$

The Weyl group W acts naturally on \overline{T} by

$$(w \cdot \theta)(t) := \theta^{w}(t) = \theta(\tilde{w}^{-1}tw).$$
for any \(\theta \in \hat{\mathcal{T}} \).

Let \(J \subset I(\theta) \), and \(G_J \) be the subgroup of \(G \) generated by \(G_i, i \in J \). We choose a representative \(\tilde{w} \in G_J \) for each \(w \in W_J \) (the standard parabolic subgroup of \(W \)). Thus, the element \(w1_\theta := \tilde{w}1_\theta \) (\(w \in W_J \)) is well-defined. For \(J \subset I(\theta) \), we set

\[
\eta(\theta)_J = \sum_{w \in W_J} (-1)^{\ell(w)}w1_\theta,
\]
and let \(M(\theta)_J = kG\eta(\theta)_J \) the \(kG \)-module which is generated by \(\eta(\theta)_J \).

For \(w \in W \), denote by \(\mathcal{R}(w) = \{ i \in I \mid ws_i < w \} \). For any subset \(J \subset I \), we set

\[
X_J = \{ x \in W \mid x \text{ has minimal length in } xW_J \};
\]
\[
Y_J = \{ w \in X_J \mid \mathcal{R}(ww) = J \}.
\]

We have the following proposition.

Proposition 2.2. [[B Proposition 2.5]] For any \(J \subset I(\theta) \), the \(kG \)-module \(M(\theta)_J \) has the form

\[
M(\theta)_J = \sum_{w \in X_J} kU\tilde{w}\eta(\theta)_J = \sum_{w \in X_J} kU_{w,w^{-1}}\tilde{w}\eta(\theta)_J.
\]

In particular, the set \(\{ uw\tilde{w}\eta(\theta)_J \mid w \in X_J, u \in U_{w,w^{-1}} \} \) forms a basis of \(M(\theta)_J \).

For the convenience of later discussion, we give some details about the expression of the element \(s_iu_i\tilde{w}\eta(\theta)_J \), where \(u_i \in U_{\alpha_i, \{ \text{id} \}} \) (the neutral element of \(U \)) and \(w \) satisfies that \(\ell(ww_J) = \ell(w) + \ell(w_J) \), where \(w_J \) is the longest element in \(W_J \). For each \(u_i \in U_{\alpha_i, \{ \text{id} \}} \), we have

\[
s_iu_i\tilde{s}_i^{-1} = f_i(u_i)s_ih_i(u_i)g_i(u_i),
\]
where \(f_i(u_i), g_i(u_i) \in U_{\alpha_i, \{ \text{id} \}} \), and \(h_i(u_i) \in T_i \) are uniquely determined. Moreover if we regard \(f_i \) as a morphism on \(U_{\alpha_i, \{ \text{id} \}} \), then \(f_i \) is a bijection. The following lemma is very useful in the later discussion. Its proof can be found in [B Proposition 2.5] and we omit it.

Lemma 2.3. Let \(u_i \in U_{\alpha_i, \{ \text{id} \}} \), with the notation above, we have

(i) If \(ww_J \leq s_iww_J \), then \(s_iu_i\tilde{w}\eta(\theta)_J = s_i\tilde{w}\eta(\theta)_J \).

(ii) If \(s_iw \leq w \), then \(s_iu_i\tilde{s}_i\eta(\theta)_J = \theta^{s_iw}(h_i(u_i))f_i(u_i)s_i\tilde{s}_i\eta(\theta)_J \).

(iii) If \(w \leq s_iw \) but \(s_iww_J \leq ww_J \), then \(s_iu_i\tilde{s}_i\eta(\theta)_J = \theta(t)(f_i(u_i) - 1)\tilde{w}\eta(\theta)_J \), where \(t \in T \) satisfies that \(s_i\tilde{w} = w\tilde{s}jt \) for some \(\tilde{s}_j \in G_j \) (thus \(\theta(t) \) is determined).

Now we define the most critical \(kG \)-module \(E(\theta)_J \) in this paper, which is a subquotient of \(M(\theta) \). For \(J \subset I(\theta) \), set

\[
E(\theta)_J = M(\theta)_J/M(\theta)_J',
\]
where \(M(\theta)_J' \) is the sum of all \(M(\theta)_K \) with \(J \subset K \subset I(\theta) \). We denote by \(C(\theta)_J \) the image of \(\eta(\theta)_J \) in \(E(\theta)_J \).
The argument about $E(\theta)_J$ in [6] Section 2 is also valid. We list some results here without proof. For $J \subset I(\theta)$, we set

$$Z_J = \{ w \in X_J \mid J'(ww_J) \subset J \cup (I \setminus I(\theta)) \}.$$

The following proposition gives a basis of $E(\theta)_J$.

Proposition 2.4. [6] Proposition 2.7] For $J \subset I(\theta)$, we have

$$E(\theta)_J = \sum_{w \in Z_J} kU_{wJ} \bar{w}C(\theta)_J.$$

In particular, the set $\{ \bar{w}C(\theta)_J \mid w \in Z_J, u \in U_{wJ} \}$ forms a basis of $E(\theta)_J$.

Proposition 2.5. [6] Proposition 2.8] Let $\theta_1, \theta_2 \in \hat{T}$ and $K_1 \subset I(\theta_1), K_2 \subset I(\theta_2)$. Then $E(\theta_1)_{K_1}$ is isomorphic to $E(\theta_2)_{K_2}$ as kG-modules if and only if $\theta_1 = \theta_2$ and $K_1 = K_2$.

3. **Self-enclosed Subgroup**

This section contains some preliminaries and properties of unipotent groups, which is useful in later discussion (especially in Section 7). As before, let U be the unipotent radical of a Borel subgroup B. For any $w \in W$, we set

$$\Phi_w^- = \{ \alpha \in \Phi^+ \mid w(\alpha) \in \Phi^- \}, \quad \Phi_w^+ = \{ \alpha \in \Phi^+ \mid w(\alpha) \in \Phi^+ \}.$$

Now assume $\Phi_w^- = \{ \beta_1, \beta_2, \ldots, \beta_k \}$ and $\Phi_w^+ = \{ \gamma_1, \gamma_2, \ldots, \gamma_l \}$ for a given $w \in W$ and, we denote

$$U_w = U_{\beta_1} U_{\beta_2} \cdots U_{\beta_k} \quad \text{and} \quad U'_w = U_{\gamma_1} U_{\gamma_2} \cdots U_{\gamma_l}.$$

The following properties are well known (see [3]).

(a) For $w \in W$ and $\alpha \in \Phi$ we have $\bar{w}U_\alpha \bar{w}^{-1} = U_{w(\alpha)}$;

(b) U_w and U'_w are subgroups and $\bar{w}U'_w \bar{w}^{-1} \subset U$;

(c) The multiplication map $U_w \times U'_w \to U$ is a bijection;

(d) Each $u \in U_w$ is uniquely expressible in the form $u = u_{\beta_1} u_{\beta_2} \cdots u_{\beta_k}$ with $u_{\beta_i} \in U_{\beta_i}$;

(e) (Commutator relations) Given two positive roots α and β, there exist a total ordering on Φ^+ and integers $c_{\alpha\beta}^{mn}$ such that

$$[\varepsilon_{\alpha}(a), \varepsilon_{\beta}(b)] := \varepsilon_{\alpha}(a)\varepsilon_{\beta}(b)\varepsilon_{\alpha}(a)^{-1}\varepsilon_{\beta}(b)^{-1} = \prod_{m, n > 0} \varepsilon_{m \alpha + n \beta}(c_{\alpha\beta}^{mn} a^m b^n)$$

for all $a, b \in \mathbb{F}_q$, where the product is over all integers $m, n > 0$ such that $m \alpha + n \beta \in \Phi^+$, taken according to the chosen ordering.

Now we denote by $\Phi^+ = \{ \delta_1, \delta_2, \ldots, \delta_m \}$. For an element $u \in U$, we have $u = x_1 x_2 \cdots x_m$ with $x_i \in U_{\delta_i}$. If we choose another order of Φ^+ and write $\Phi^+ = \{ \delta'_1, \delta'_2, \ldots, \delta'_m \}$, we get another expression of u such that $u = y_1 y_2 \cdots y_m$ with $y_i \in U_{\delta'_i}$. If $\delta_i = \delta'_i = \alpha$ is a simple root, by the commutator relations of
root subgroups, we get $x_i = y_j$ which is called the U_α-component of u. Noting
that the simple roots are $\Delta = \{\alpha_1, \alpha_2, \ldots, \alpha_n\}$ and each $\gamma \in \Phi^+$ can be written
as $\gamma = \sum_{i=1}^{n} k_i \alpha_i$, we denote by $ht(\gamma) = \sum_{i=1}^{n} k_i$ the hight of γ. It is easy to see
that $\prod_{ht(\gamma) \geq s} U_\gamma$ is a subgroup of U for any fixed integer $s \in \mathbb{N}$ by the commutator
relations of root subgroups.

Given an order $"\prec"$ on Φ^+ and we list all the positive root as $\delta_1, \delta_2, \ldots, \delta_m$ with
respect to this order. For any $u \in U$, we have a unique expression in the form
$u = u_1 u_2 \ldots u_m$ with $u_i \in U_{\delta_i}$. Let X be a subset of U, we denote by

$$X \cap \prec U_{\delta_k} = \{u_k \in U_{\delta_k} \mid \text{there exits } u \in X \text{ such that } u = u_1 u_2 \ldots u_k \ldots u_m\}.$$

It is easy to see that $X \cap U_{\delta_k} \subseteq X \cap \prec U_{\delta_k}$. Now let H be a subgroup of U and we
say that a subgroup H is self-enclosed with respect the order $"\prec"$ if

$$H \cap \prec U_{\delta_k} = H \cap U_{\delta_k} \text{ for any } k = 1, 2, \ldots, m.$$

If H is self-enclosed with respect to any order on Φ^+, we say that H is a self-enclosed
subgroup of U.

Let H be a self-enclosed subgroup of U. For each $\gamma \in \Phi^+$, we set $H_\gamma = H \cap U_\gamma$. Then we have

$$H = H_{\delta_1} \cdot H_{\delta_2} \ldots \cdot H_{\delta_m}.$$

For $w \in W$, set $H_w = H \cap U_w$. Then it is easy to see that H_w is also a self-enclosed
subgroup and we have $H_w = \prod_{\gamma \in \Phi^+} H_\gamma$.

Example 3.1. Suppose $\mathbb{F} = \overline{\mathbb{F}}_q$ and $\{\delta_1, \delta_2, \ldots, \delta_m\}$ are all the positive roots such
that $ht(\delta_1) \leq ht(\delta_2) \leq \ldots \leq ht(\delta_m)$. Assume that U is defined over $\overline{\mathbb{F}}_q$ and let U_{q^a}
be the set of $\overline{\mathbb{F}}_{q^a}$-points of U. Given $a_1, a_2, \ldots, a_m \in \mathbb{N}$ such that a_i is divisible by
a_j for any $i < j$, set

$$H = U_{\delta_1, q^{a_1}} \cdot U_{\delta_2, q^{a_2}} \ldots \cdot U_{\delta_m, q^{a_m}}.$$

Then it is not difficult to check that H is a self-enclosed subgroup of U.

Now let H be a subgroup of U. Let $V = U_{\beta_1} \cdot U_{\beta_2} \ldots U_{\beta_k}$, which is also a
subgroup of U. We denote by

$$U = \bigcup_{x \in L} xV, \quad U = \bigcup_{y \in R} V y$$

where L (resp. R) is a set of the left (right) coset representatives of V in U. Then
we define the following two sets:

$$H_V = \{v \in V \mid \text{there exists } u \in H \text{ such that } u = x v \text{ for some } x \in L\},$$

$$vH = \{v \in V \mid \text{there exists } u \in H \text{ such that } u = v y \text{ for some } y \in R\}.$$

Using the commutator relations, it is not difficult to have the following proposition.
Proposition 3.2. With the notation above, let H be a self-enclosed subgroup of U, then we have

$$H \cap V = H V = V H = H \cap V$$

for any subgroup V of U which has the form $U_{\beta_1} U_{\beta_2} \ldots U_{\beta_k}$ for some positive roots $\beta_1, \beta_2, \ldots, \beta_k$.

Now we consider the special case that F is a field of positive characteristic p. In this case, it is well known that all the finitely generated subgroups of U are finite p-groups. We have the following lemma.

Lemma 3.3. Let X be a finite set of U, then there exists a finite p-group H of U such that $H \supseteq X$ and H is self-enclosed.

Proof. Denote by $\Phi^+ = \{ \delta_1, \delta_2, \ldots, \delta_m \}$ such that $\text{ht}(\delta_1) \leq \text{ht}(\delta_2) \leq \cdots \leq \text{ht}(\delta_m)$. For each $1 \leq k \leq m$, we denote by $X_k = X \cap U_{\delta_k}$. Let H_1 be the subgroup of U_{δ_1} which is generated by X_1. Now we define the subgroup H_k by recursive step. Suppose that $H_1, H_2, \ldots, H_{k-1}$ are defined, we set

$$Y_k = \langle H_1, H_2, \ldots, H_{k-1} \rangle \cap U_{\delta_k}$$

and let H_k be the subgroup of U_{δ_k} which is generated by X_k and Y_k. Now we have a series of subgroups H_1, H_2, \ldots, H_m and then we set

$$H = \langle H_1, H_2, \ldots, H_m \rangle$$

which is a finitely generated subgroup of U. Thus H is a finite p-subgroup of U, which contains X by its construction. Moreover, it is not difficult to check that H is a self-enclosed of U using the commutator relations of root subgroups.

\[\square\]

4. Certain Modules over Unipotent Groups

In this section, we study certain modules over unipotent groups. The setting and arguments follow [10, Section 6]. In this section, let F be a field of characteristic $p > 0$. Let k be another field with $\text{char } k \neq p$. We let U be a smooth connected unipotent group over F equipped with an action of G_m. For $t \in G_m$ and $g \in U$, denote the action of t on g by t^g. An action of G_m on U is defined to be positive if the weights of the action of G_m on $\text{Lie}(U)$ are positive. Let $X(G_m)$ be the set of characters of G_m over k. The set of all maps $G_m \to k$ can be made into a vector space V over k. It is well known that $X(G_m)$ is a linearly independent subset of V. The main result of this section is the following.

Proposition 4.1. Let U be a smooth connected unipotent group over an infinite field F of positive characteristic p equipped with a positive G_m-action. Let k be
another field with char \(k \neq p \). Let \(\theta_1, \theta_2, \ldots, \theta_n \in X(\mathbb{G}_m) \) and \(M \) be a \(k[U \times \mathbb{G}_m] \)-module such that

\[
M = k[U]m_1 + k[U]m_2 + \cdots + k[U]m_n,
\]

where \(tm_i = \theta_i(t)m_i \) for any \(t \in \mathbb{G}_m \). Let \(N \subset M \) be a submodule such that

\[
\theta_1(t) \sum_{j_1} a_{j_1} g_{j_1} \cdot m_1 + \theta_2(t) \sum_{j_2} a_{j_2} g_{j_2} \cdot m_2 + \cdots + \theta_n(t) \sum_{j_n} a_{j_n} g_{j_n} \cdot m_n \in N
\]

for any \(t \in \mathbb{G}_m \). Then we have

\[
\sum_{j_1} a_{j_1} m_1 + \sum_{j_2} a_{j_2} m_2 + \cdots + \sum_{j_n} a_{j_n} m_n \in N.
\]

Proposition 4.1 is inspired by [10, Proposition 6.7]. The proof is also similar and we introduce some notations and give some preliminary results before we give the proof. For a subset \(S \) of \(U \) and an additive subgroup \(a \) of \(k \), define \(U(S, a) \) to be the subgroup generated by \(\{s^a | s \in S, a \in a \} \). For a group \(H \) and a \(\mathbb{Z}[H] \)-module \(M \), let \(M_H \) denote the \(H \)-coinvariants of \(M \), i.e., the largest quotient of \(M \) on which \(H \)-acts trivially. By the same arguments of [10, Proposition 6.6], we have the following key lemma.

Lemma 4.2. Let \(U \) be a smooth connected unipotent group over an infinite field \(F \) of positive characteristic \(p \) equipped with a positive \(\mathbb{G}_m \)-action. Let \(k \) be another field with char \(k \neq p \). Let \(S \) be a finite set of \(U \) and \(a \) be an infinite additive subgroup of \(F \). Let \(M \) be a \(k[U(S, a)] \)-module and \(m \in M \) be nonzero. Then there exists an infinite additive subgroup \(e \) of \(a \) such that the image of \(m \) in \(M_{U(S, e)} \) is nonzero.

Proof of Proposition 4.1. Replacing \(M \) by \(M/N \), we can assume that \(N = 0 \). Let \(S = \bigcup_{k=1}^n g_{j_k} \). Let \(b \) be a nonzero additive subgroup of \(F \). We denote by \(\equiv \) the equality in the \(U(S, b) \)-coinvariants of \(M \). Let \(t \in b \) be a nonzero element, since the elements \(t g_{j_k} \in U(S, b) \) act trivially on these coinvariants, we have \(t g_{j_k} \cdot m_k \equiv m_k \) for all \(k \) and \(j_k \). Thus we see that

\[
\theta_1(t) \sum_{j_1} a_{j_1} m_1 + \theta_2(t) \sum_{j_2} a_{j_2} m_2 + \cdots + \theta_n(t) \sum_{j_n} a_{j_n} m_n
\]

maps to 0 in \(M_{U(S, b)} \). Without lost of generality, we can assume that \(\theta_1, \theta_2, \ldots, \theta_n \) are different from each other. Noting that \(M_{U(S, b)} \) can also be a \(k[U \times \mathbb{G}_m] \)-module. Using the linear independence of \(\theta_1, \theta_2, \ldots, \theta_n \), it is not difficult to see that each \(\sum_{j_k} a_{j_k} m_k \) maps to 0 in \(M_{U(S, b)} \). In particular, we see that

\[
\sum_{j_1} a_{j_1} m_1 + \sum_{j_2} a_{j_2} m_2 + \cdots + \sum_{j_n} a_{j_n} m_n
\]
maps to 0 in $M_{U(S,b)}$ for all nonzero b. Then we use Lemma 4.2 (applied with $a = F$) and get that
\[
\sum_{j_1} a_{j_1} m_1 + \sum_{j_2} a_{j_2} m_2 + \cdots + \sum_{j_n} a_{j_n} m_n = 0.
\]
The proposition is proved.

\[\square\]

Remark 4.3. Proposition 4.1 is no longer true when $F = k$. For example, we consider $G = SL_2(F)$. Let T be the diagonal matrices and B be the upper triangular matrices in $SL_2(F)$. For each $c \in F^*$, we set $h(c) = \begin{pmatrix} c & 0 \\ 0 & c^{-1} \end{pmatrix} \in T$.

Let $V = F^2$ be the natural representation of $SL_2(F)$ and denote by $v_1 = (1, 0)^t$, $v_2 = (0, 1)^t$ the natural basis of F^2. Define $\theta : T \to F^*$ by $\theta(h(c)) = c$. Let φ be the homomorphism such that $\varphi(h(c)) = v_1$. Thus V is a quotient module of $M(\theta)$, which is isomorphic to $M(\theta)/\ker \varphi$. It is easy to check that for any $x \in F$, we have
\[
1_\theta + \begin{pmatrix} 1 & x + 1 \\ 0 & 1 \end{pmatrix} s_1 - \begin{pmatrix} 1 & x \\ 0 & 1 \end{pmatrix} s_1 \in \ker \varphi.
\]
However $1_\theta \not\in \ker \varphi$ and thus Proposition 4.1 is not valid generally when $F = k$.

5. Nonvanishing Property of the Augmentation Map

Fix a character $\theta \in \hat{T}$ and a subset $J \subset I(\theta)$. By Proposition 2.4, we have
\[
E(\theta)_J = \bigoplus_{w \in Z_J} k U_{w,jw^{-1}} wC(\theta)_J
\]
as k-vector space. For each $w \in Z_J$, we denote by
\[
\mathcal{P}_w : E(\theta)_J \to kW_{w,jw^{-1}} wC(\theta)_J
\]
the projection of vector spaces and by
\[
\epsilon_w : kW_{w,jw^{-1}} wC(\theta)_J \to k
\]
the augmentation map (restricted on w) which takes the sum of the coefficients with respect to the natural basis, i.e., for $\xi = \sum_{x \in U_{w,jw^{-1}}} a_x x wC(\theta)_J$, we set $\epsilon_w(\xi) = \sum_{x \in U_{w,jw^{-1}}} a_x$. Now we denote by
\[
\epsilon = \bigoplus_{w \in Z_J} \epsilon_w \mathcal{P}_w : E(\theta)_J \to k|Z_J|
\]
the augmentation map of $E(\theta)_J$.
When considering the irreducibility of Sternberg module, the nonvanishing property of the augmentation map is very crucial (see [13, Lemma 2.5] and [10, Proposition 1.6]). In this section, we show that the nonvanishing property also holds for the general augmentation map ϵ defined above. Firstly we have a lemma as following.

Lemma 5.1. Let $\xi \in E(\theta)_J$ be a nonzero element. Then there exists $g \in G$ such that $\varPsi_g(g\xi)$ is nonzero.

Proof. By Proposition 2.4, we let $\xi \in E(\theta)_J$ with the following expression

$$\xi = \sum_{w \in Z_J} \sum_{x \in U_{wJw^{-1}}} a_{w,x} x \hat{w} C(\theta)_J.$$

Then there exists one $h \in W$ with minimal length such that $a_{h,x} \neq 0$ for some $x \in U_{wJw^{-1}}$, which implies that $\varPsi_h(\xi)$ is nonzero. When $h = e$, the lemma is proved. Now suppose that $\ell(h) \geq 1$, so there is a simple reflection s such that $\sigma = sh < h$. Without lost of generality, we can assume that $a_{h,id} \neq 0$. We claim that either $\varPsi_\sigma(\hat{s} \xi)$ is nonzero or $\varPsi_\sigma(s \hat{y} \xi)$ is nonzero for some $y \in U_s$.

If $\varPsi_\sigma(\hat{s} \xi) = 0$, then there exists an element $v \in Z_J$ satisfies the condition

$$(\clubsuit) \quad sv \notin Z_J \quad \text{and} \quad \varPsi_\sigma(\hat{s} \hat{v} C(\theta)_J) \neq 0.$$

The subset of Z_J whose elements satisfy this condition is also denoted by \clubsuit. Thus $\varPsi_\sigma(\hat{s} \xi) = 0$ tells us that

$$\varPsi_\sigma(\hat{s} \cdot \varPsi_h(\xi)) + \varPsi_\sigma(\hat{s} \cdot \sum_{v \in \clubsuit} \varPsi_v(\xi)) = 0.$$

In particular, we get $\varPsi_\sigma(\hat{s} \cdot \sum_{v \in \clubsuit} \varPsi_v(\xi)) \neq 0$. Since U is infinite, we can choose an element $y \in U_s$ such that all the U_s-component of yx with $a_{h,x} \neq 0$ is nontrivial. Then $\varPsi_\sigma(\hat{s} \cdot \varPsi_h(y \xi)) = 0$ by Lemma 2.3 (ii). On the other hand, for $v \in \clubsuit$ and $a_{v,x} \neq 0$, we have

$$\hat{s} y x \hat{v} C(\theta)_J = \hat{s} y x y^{-1} \hat{s}^{-1} \hat{s} \hat{v} C(\theta)_J,$$

which implies that $\varPsi_\sigma(\hat{s} \cdot \sum_{v \in \clubsuit} \varPsi_v(y \xi)) \neq 0$. Indeed if we write

$$\varPsi_\sigma(\hat{s} \cdot \sum_{v \in \clubsuit} \varPsi_v(\xi)) = \sum_{x \in U_{wJw^{-1}}} b_{\sigma,x} x \hat{\sigma} C(\theta)_J \neq 0,$$

it is not difficult to see that

$$\varPsi_\sigma(\hat{s} \cdot \sum_{v \in \clubsuit} \varPsi_v(\eta \xi)) = \sum_{x \in U_{wJw^{-1}}} b_{\sigma,x} (\hat{s} y x y^{-1} \hat{s}^{-1} \hat{s} \hat{v} C(\theta)_J$$

which is also nonzero. Therefore

$$\varPsi_\sigma(\hat{s} y \xi) = \varPsi_\sigma(\hat{s} \cdot \sum_{v \in \clubsuit} \varPsi_v(\eta \xi)) \neq 0.$$
By the argument above, we can do induction on the length of h and thus the lemma is proved. \hfill \box

Now we give the nonvanishing property of the augmentation map of $E(\theta)_J$, which is very useful in the later discussion.

Proposition 5.2. Let $\xi \in E(\theta)_J$ be a nonzero element. Then there exists $g \in G$ such that $\epsilon(g\xi)$ is nonzero.

Proof. By Lemma 5.1 we can assume that $\mathcal{P}_e(\xi)$ is nonzero. For

$$\xi = \sum_{w \in Z_J} \sum_{x \in U_{w,J}} a_{w,x} x v C(\theta)_J \in E(\theta)_J,$$

we say that ξ satisfies the condition \triangledown_h, if $\sum_{x \in U_{h}^e} a_{e,x} \neq 0$ for some $h \in W_J$. We prove the following claim: if ξ satisfies the condition \triangledown_h for some $h \in W_J$, then there exists $g \in G$ such that $\epsilon_e \mathcal{P}_e(g\xi)$ is nonzero.

We prove this claim by induction on the length of h. If $h = e$, then it is obvious that $\epsilon_e \mathcal{P}_e(\xi)$ is already nonzero. We assume that the claim is valid for any $h \in W_J$ with $\ell(h) \leq m$. Now let $h \in W_J$ with $\ell(h) = m + 1$ such that $\sum_{x \in U_{h}^e} a_{e,x} \neq 0$.

We have $h = \sigma s$ for some $s \in R(h)$. Firstly we consider the element $s \cdot \mathcal{P}_e(\xi)$. Since $U_{w,J} = U_{h}^e U_h = U_{h}^e U_{e}^s U_s$, each element $x \in U_{w,J}$ has a unique expression $x = x_h^e x_s^e x_s$. When $x_s^e x_s \neq id$ and $x_s = id$, we get $x_s^e \neq id$. For the case $x_s \neq id$, using Lemma 2.3 (iii), we have

$$s x v C(\theta)_J = x_h^e x_s^e x_s v C(\theta)_J = \lambda x_h^e x_s^e (f(x_s) - 1) C(\theta)_J$$

for some $\lambda_x \in k$, where $x_h^e = sx_h^{-1} s^{-1}$ and $f(x_s) \in U_s$. Therefore $s \cdot \mathcal{P}_e(\xi)$ satisfies the condition \triangledown_s. Hence we consider $s\xi$ and if $s\xi$ satisfies the condition \triangledown_s, then $\epsilon_e \mathcal{P}_e(s\xi)$ is nonzero and we are done. Otherwise there exists at least an element $v \in Z_J$ satisfies that

$$\mathcal{B}_v : sv \notin Z_J \text{ and } \mathcal{P}_e(s v C(\theta)_J) \neq 0.$$
Thus if we write
\[P_e(\dot{s} \cdot \sum_{v \in \Delta} \mathcal{P}_e(\xi)) = \sum_{x \in U_w \cap U'_w} b_x x C(\theta)_J, \]
it is not difficult to see that
\[P_e(\dot{s} \cdot \sum_{v \in \Delta} \mathcal{P}_e(y \xi)) = \sum_{x \in U_w \cap U'_w} b_x (\dot{s} y x y^{-1} \dot{s}^{-1}) C(\theta)_J. \]
Thus \(P_e(\dot{s} \cdot \sum_{v \in \Delta} \mathcal{P}_e(y \xi)) \) satisfies the condition \(\trianglelefteq_\sigma \) since \(P_e(\dot{s} \cdot \sum_{v \in \Delta} \mathcal{P}_e(\xi)) \) satisfies the condition \(\trianglelefteq_\sigma \). Thus \(\epsilon_e P_e(\dot{s} y \xi) \) is nonzero by inductive hypothesis.

In conclusion we have proved our claim by induction on the length of \(h \in W_J \).

6. Principal Representation Category

With the previous preparations in Section 3 and Section 4, the main result of this section is as following.

Theorem 6.1. Let \(F \) be a field of positive characteristic \(p \) and \(k \) be another field with \(\text{char } k \neq p \). For each \(\theta \in \hat{T} \), then all \(kG \)-modules \(E(\theta)_J (J \subset I(\theta)) \) are irreducible and pairwise non-isomorphic. In particular, the \(kG \)-module \(M(\theta) \) has exactly \(2^{|I(\theta)|} \) composition factors, each occurring with multiplicity one.

Proof. We show that any nonzero submodule \(M \) of \(E(\theta)_J \) contains \(C(\theta)_J \), and hence \(M = E(\theta)_J \). In particular, all \(E(\theta)_J \) are irreducible for any \(J \subset I(\theta) \). Let \(\xi \in M \) be a nonzero element with the following expression
\[\xi = \sum_{w \in Z_J} \sum_{x \in U_{wJw^{-1}}} a_{w,x} x \dot{w} C(\theta)_J \in M. \]

By Proposition 5.2 we can assume that \(\epsilon(\xi) \neq 0 \). By \cite{10} Proposition 3.9, there exists a one-parameter subgroup \(\sigma : \mathbb{G}_m \to T \) that acts positively on \(U \). Therefore using Proposition 4.1 we have
\[\sum_{w \in Z_J} \sum_{x \in U_{wJw^{-1}}} a_{w,x} \dot{w} C(\theta)_J \in M. \]

In particular, we see that
\[M \cap \sum_{w \in Z_J} k \dot{w} C(\theta)_J \neq 0. \]
Thus it is not difficult to see that
\[M \cap \sum_{w \in Z_{J} \cap W_{\theta}} \mathbb{k}wC(\theta)_{J} \neq 0 \]
by some discussion about the \(T \)-eigenvectors. Noting that the argument of \cite[Lemma 3.8, 3.9]{6} is still valid in our general setting, so all \(E(\theta)_{J} \) are irreducible and pairwise non-isomorphic by Proposition \ref{2.5}. The theorem is proved. \(\square \)

Remark 6.2. (a) The above theorem is not true for general \(\theta \) when \(F = \mathbb{k} \). However when \(F = \mathbb{k} = \overline{\mathbb{F}}_{q} \), Theorem \ref{3.8} is also valid when \(\theta \) is antidominant (see \cite[Theorem 4.1]{6}). Moreover, the paper \cite{6} has showed that \(M(\theta) \) has such a composition series if and only if \(\theta \) is antidominant (see \cite[Theorem 5.1, 5.2]{6}.
(b) When \(\theta \) is trivial, we will prove that all the \(\mathbb{k}G \)-modules \(E(\text{tr})_{J} \) \((J \subset I) \) are irreducible in Section 7 (see Theorem \ref{7.1}). This generalizes the results of \cite[Theorem 3.1]{4} and \cite[Theorem 4.1]{5}.
(c) I conjecture that Theorem \ref{5.1} still holds for any fields \(F, \mathbb{k} \) whenever \(\text{char} \ F \neq \text{char} \ \mathbb{k} \). So the methods deal with the case \(\text{char} \ F = 0 \) need to be developed.

From now on in this section, let \(F \) be a field of characteristic \(p > 0 \) and \(\mathbb{k} \) be another field with \(\text{char} \ \mathbb{k} \neq p \). As in \cite{8}, we introduce a category \(\mathcal{O}(G) \) called principal representation category. It is the full subcategory of \(\mathbb{k}G \)-Mod such that any object \(M \) in \(\mathcal{O}(G) \) is of finite length and its composition factors are \(E(\theta)_{J} \) for some \(\theta \in \widehat{T} \) and \(J \subset I(\theta) \). Thus \(\mathcal{O}(G) \) is an abelian category which is also noetherian and artinian. The paper \cite{8} gave some evidences to show that \(\mathcal{O}(G) \) is a highest weight category in the sense of Cline, Parshall and Scott (see \cite{7}) when \(F = \overline{\mathbb{F}}_{q} \) and \(\text{char} \ \mathbb{k} = 0 \). So is this conjecture established in the more general case?

We can also define the Alvis-Curtis duality of infinite type as in \cite{9}. Let \(K_{0}(\mathcal{O}(G)) \) be the Grothendieck group of \(\mathcal{O}(G) \). Thus we call the following functor \(\mathbb{D}_{G} : K_{0}(\mathcal{O}(G)) \rightarrow K_{0}(\mathcal{O}(G)) \) Alvis-Curtis duality of infinite type which is defined by
\[\mathbb{D}_{G} = \sum_{J \subset I} (-1)^{|J|} \mathcal{R}^{J} \mathcal{R}_{J}, \]
where \(\mathcal{R}_{J} \) is Harish-Chandra restriction and \(\mathcal{R}^{J} \) is Harish-Chandra induction defined in \cite[Section 3]{9}. For \(J \subset I \), let
\[\sigma(J) = \{ i \in I \mid s_{i} = w_{0}s_{j}w_{0} \text{ for some } j \in J \} \]
which is an involution on the set \(I \). Fixed \(\theta \in \widehat{T} \) and for \(J \subset I(\theta) \), we introduce an operation \(\mathbb{D}_{\theta} \) on \(J \) by
\[\mathbb{D}_{\theta}(J) = \sigma(I(\theta)) \setminus \sigma(J) = I(\theta^{w_{0}}) \setminus \sigma(J). \]
With these notations we can also get the following theorem whose proof is the same as \cite[Theorem 4.2]{9}.
Theorem 6.3. For \(\theta \in \hat{T} \), \(J \subset I(\theta) \), we have
\[
\mathcal{D}_G([E(\theta, J)]) = [E(\theta w_0)_{\mathcal{D}_G(J)}].
\]

It is easy to check that \(\mathcal{D}_G(\mathcal{D}_G(J)) = J \) for \(J \subset I(\theta) \). Then \(\mathcal{D}_G \circ \mathcal{D}_G \) is the identity functor on \(K_0(\mathcal{O}(G)) \). This duality is a morphism on \(K_0(\mathcal{O}(G)) \). Does there exist a functor \(\mathcal{D}_G : \mathcal{O}(G) \to \mathcal{O}(G) \) such that \([\mathcal{D}_G] = \mathcal{D}_G\)?

7. Permutation Module on Flag Varieties

One important and interesting case is that \(\theta \) is trivial. In such case, we call \(k[\mathcal{G}/\mathcal{B}] = \mathcal{G} \otimes_k \mathcal{B}_{tr} \) the permutation module on the flag variety \(\mathcal{G}/\mathcal{B} \). The flag varieties are very important in the representations of reductive algebraic groups. Moreover, the decomposition \(k[\mathcal{G}/\mathcal{B}] \) may have many applications in other areas such as algebraic geometry and number theory. We simply denote \(E(\mathcal{G}) \) by \(E \) and \(C(\mathcal{G}) \) by \(C \).

The following lemma is easy to get but very useful in our discussion later.

Lemma 7.2. Let \(G \) be a finite abelian \(p \)-group with a direct product \(G = H \times K \). Let \(H' \) be another subgroup of \(G \) such that \(|H| = |H'| \). Then \(H'K = 0 \) or \(G \).

For \(H \) a self-enclosed subgroup of \(\mathcal{U} \), denote by \(H_\gamma = H \cap U_\gamma \) as before for each \(\gamma \in \Phi^+ \). Noting \(\Phi^+ = \{ \delta_1, \delta_2, \ldots, \delta_m \} \), we have
\[
H = H_{\delta_1} H_{\delta_2} \ldots H_{\delta_m}.
\]

Let \(H_w = H \cap U_w \). Then we have \(H_w = \prod_{\gamma \in \Phi^+} H_\gamma \) and \(H_w = \prod_{\gamma \in \Phi^+} H_\gamma \). The following two lemmas are very crucial in the later proof of Theorem 7.1.

Lemma 7.3. Assume that \(\text{char } k = p > 0 \) and let \(M \) be a nonzero \(kG \)-submodule of \(E_J \). Then there exists an element \(w \in Y_J \) and a finite \(p \)-subgroup \(X \) of \(U_{w,J,w-1} \) such that \(XwC_J \in M \).

Proof. Let \(\xi \) be a nonzero element of \(M \) which has the form
\[
\xi = \sum_{w \in Y_J} \sum_{x \in U_{w,J,w-1}} a_{w,x} xwC_J \in E_J.
\]
By Lemma 3.3, there exists a self-enclosed finite p-subgroup V of U, which contains all $x \in U_{w_jw^{-1}}$ with $w \in Y_j$ and $a_{w,x} \neq 0$. Then we have
\[kV \xi \subset \bigoplus_{w \in Y_j} kV_{w_jw^{-1}w}wC_j \]
as kV-modules. Since $(kV \xi)^V \neq 0$ by Proposition 26] and noting that
\[(\bigoplus_{w \in Y_j} kV_{w_jw^{-1}w}wC_j)^V \subset \bigoplus_{w \in Y_j} kV_{w_jw^{-1}w}wC_j, \]
there exists a nonzero element
\[\eta = \sum_{w \in Y_j} a_w V_{w_jw^{-1}w}wC_j \in kV \xi \subset M. \]
Set $A(\eta) = \{ w \in Y_j \mid a_w \neq 0 \}$. If $|A(\eta)| = 1$, the lemma is proved.

Now we assume that $|A(\eta)| \geq 2$. Denote by $\Phi(\eta) = \bigcup_{w \in A(\eta)} \Phi_{w_jw^{-1}}$. We give an order on $\Phi(\eta) = \{ \gamma_1, \gamma_2, \ldots, \gamma_d \}$ such that $ht(\gamma_1) \leq ht(\gamma_2) \leq \cdots \leq ht(\gamma_d)$. We can choose a root γ_s with s maximal such that $\gamma_s \notin \bigcap_{w \in A(\eta)} \Phi_{w_jw^{-1}}$. We choose an element $y \in U_{\gamma_s \setminus V_{\gamma_s}}$ and let H be a self-enclosed finite p-subgroup of $U_{\gamma_s \setminus U_{\gamma_{s+1}} \setminus \ldots \setminus U_{\gamma_d}}$ such that H contains $V_{\gamma_s} \cap V_{\gamma_{s+1}} \cap \ldots \cap V_{\gamma_d}$ and y. Let X be the subgroup of U which is generated by H and V. Then it is easy to check that X is a self-enclosed subgroup of U. Denote by Ω_1 a set of left coset representatives of $V_{\gamma_s} \cap V_{\gamma_{s+1}} \cap \ldots \cap V_{\gamma_d}$ in H. For the $w \in Y_j$ such that $\gamma_s \notin \Phi_{w_jw^{-1}}$, we have
\[\Omega_1 V_{w_jw^{-1}}wC_j = X_{w_jw^{-1}}wC_j. \]
For the $w \in Y_j$ such that $\gamma_s \notin \Phi_{w_jw^{-1}}$, we have
\[\Omega_1 V_{w_jw^{-1}}wC_j = 0 \]
since $\text{char } k = p$. Then we get
\[\eta' = \Omega_1 \eta = \sum_{w \in Y_j} b_w X_{w_jw^{-1}}wC_j, \]
which satisfies that $|A(\eta')| < |A(\eta)|$, where $A(\eta') = \{ w \in Y_j \mid b_w \neq 0 \}$. Thus by the induction on the cardinality of $A(\eta)$, the lemma is proved.

\[\square \]

Lemma 7.4. Assume that $\text{char } F = \text{char } k = p > 0$ and let M be a nonzero kG-submodule of E_F. If there exists a finite p-group X of $U_{w_jw^{-1}}$ such that $\Omega s wC_j \in M$, where $sw \in Y_j$ and $sw > w$ (which implies that $w \in Y_j$), then there exists a finite p-group H of $U_{w_jw^{-1}}$ such that $HwC_j \in M$.

Proof. Using Lemma 3.3, we can assume that X is a self-enclosed subgroup of $U_{w_jw^{-1}}$. Since $U_{w_jw^{-1}} = U_s(U_{w_jw^{-1}})^s$, we can write $X = X_n V$, where $V = X \cap (U_{w_jw^{-1}})^s$ is also a self-enclosed subgroup of $(U_{w_jw^{-1}})^s$. Thus we have $X = \ldots$
In the following, we will prove that if \(Y \subseteq X \) and \(sw < wCJ \in M \) for some finite subset \(Y \) of \(U_s \) and a self-enclosed subgroup \(V \) of \((U_{w,jw^{-1}})^s \), then there exists a finite \(p \)-group \(H \) of \(U_{w,jw^{-1}} \) such that \(HwCJ \in M \). Without lost of generality, we can assume that the subset \(Y \) contains the neutral element of \(U_s \).

For each \(u \in U_\alpha \setminus \{ id \} \), we have

\[
\hat{s}u\hat{s} = f_\alpha(u)h_\alpha(u)\hat{s}g_\alpha(u)
\]

where \(f_\alpha(u), g_\alpha(u) \in U_\alpha \) and \(h_\alpha(u) \in T \) are unique determined. Then

\[
\hat{s}u\hat{s}wCJ = f_\alpha(u)h_\alpha(u)\hat{s}g_\alpha(u)s^{-1}wCJ.
\]

Without lost of generality, we can assume that the group \(V \) contains enough elements such that

\[
g_\alpha(u)s^{-1}wCJ = \hat{s}^{-1}wCJ
\]

for any \(u \in Y \setminus \{ id \} \). Indeed, denote by

\[
G_\alpha(X) = \{ g_\alpha(u) \in U_\alpha \mid u \in Y \setminus \{ id \} \}
\]

and let \(H \) be a self-enclosed subgroup which contains \(G_\alpha(X) \) and \(\hat{s}^{-1}V\hat{s} \). Then \(H_{w,jw^{-1}} = H \cap U_{w,jw^{-1}} \) is also a self-enclosed subgroup which contains \(\hat{s}^{-1}V\hat{s} \). Then we can consider \(\hat{Y} \hat{s}H_{w,jw^{-1}}\hat{s}^{-1} \) instead of \(\hat{Y} \hat{V} \) at the beginning. Therefore we have

\[
\hat{s}u\hat{s}wCJ = f_\alpha(u)h_\alpha(u)\hat{s}wCJ = f_\alpha(u)h_\alpha(u)Vh_\alpha(u)^{-1}wCJ,
\]

which implies that

\[
\hat{s}XwCJ = \hat{s}V\hat{s}^{-1}wCJ + \sum_{u \in Y \setminus \{ id \}} f_\alpha(u)h_\alpha(u)Vh_\alpha(u)^{-1}wCJ.
\]

Now we denote

\[
\Phi_{w,jw^{-1}} \cup \Phi_{w,jw^{-1}s} = \{ \beta_1 = \alpha, \beta_2, \ldots, \beta_m \}
\]

with \(\text{ht}(\beta_1) \leq \text{ht}(\beta_2) \leq \cdots \leq \text{ht}(\beta_m) \). Since \(sw \in Y_j \) and \(sw > w \), we have \((U_{w,jw^{-1}})^s \neq U_{w,jw^{-1}} \) by [5 Corollary 2.2]. Thus we can choose a maximal integer \(r \) such that \(\beta_r \not\in \Phi_{w,jw^{-1}} \cap \Phi_{w,jw^{-1}s} \) and \(\beta_j \in \Phi_{w,jw^{-1}} \cap \Phi_{w,jw^{-1}s} \) for \(j > r \). When \(\beta_r \in \Phi_{w,jw^{-1}} \setminus \Phi_{w,jw^{-1}s} \), using Lemma 3.3 and Lemma 7.2 we can choose certain subgroup \(\Omega_k \) of \(U_{\beta_k} \) for each \(r \leq k \leq m \) such that

\[
\Omega_r \Omega_{r+1} \cdots \Omega_m f_\alpha(u)h_\alpha(u)Vh_\alpha(u)^{-1}wCJ = 0
\]

and \(\Omega_r \Omega_{r+1} \cdots \Omega_m \hat{s}V\hat{s}^{-1}wCJ = \Omega wCJ \) for some finite subgroup \(\Omega \) of \(U_{w,jw^{-1}} \). Then the lemma is proved in this case.

When \(\beta_r \in \Phi_{w,jw^{-1}} \setminus \Phi_{w,jw^{-1}s} \), also by Lemma 3.3 and Lemma 7.2 we can choose certain subgroup \(\Gamma_k \) of \(U_{\beta_k} \) for each \(r \leq k \leq m \) such that there exists at least one
$u \in Y \setminus \{\text{id}\}$ satisfies that
\[\Gamma_r \Gamma_{r+1} \ldots \Gamma_m f_\alpha(u) h_\alpha(u) V h_\alpha(u)^{-1} s w C_J = f_\alpha(u) I_s w C_J, \]
where Γ is some finite subgroup of $(U_{w, w^{-1}})^s$. On the other hand, these groups Γ_k also make $\Gamma_r \Gamma_{r+1} \ldots \Gamma_m s V \hat{s}^{-1} w C_J = 0$. So we get $\sum_{x \in F} x I_s w C_J \in M$ for some set F with $|F| < |Y|$ and some finite subgroup Γ of $(U_{w, w^{-1}})^s$. Hence by the same discussion as before, we could get another element $\sum_{y \in F'} y I'_s w C_J \in M$ for some set F' with $|F'| < |F|$ and some finite subgroup Γ' of $(U_{w, w^{-1}})^s$. Finally, we get an element $H sw C_J \in M$ for some finite subgroup H of $(U_{w, w^{-1}})^s$. Thus we have $H^s w C_J \in M$ and the lemma is proved.

\square

Proof of Theorem 7.1. We just need to consider the case $\text{char } F = \text{char } k = p > 0$ by the previous discussion. Let M be a nonzero kG-submodule of E_J. Combining Lemma 7.3 and Lemma 7.4, there exists a finite p-subgroup H of $U_{w, J}$ such that $H C_J \in M$. Similar to the arguments of [13, Lemma 2.5], we see that the sum of all coefficients of $w J x C_J$ in terms the basis $\{uC_J \mid u \in U_{w, J}\}$ is zero when x is not the neutral element of $U_{w, J}$. So if we write
\[\xi = w J H C_J = \sum_{x \in U_{w, J}} a_x x C_J, \]
we have $\sum_{x \in U_{w, J}} a_x = (-1)^{l(w, J)}$ which is nonzero. We consider the $kU_{w, J}$-module generated by ξ, and then using [10] Proposition 4.1, we see that $C_J \in M$. Therefore $M = E_J$, which implies the irreducibility of E_J for any $J \subset I$. All the kG-modules E_J are pairwise non-isomorphic by Proposition 2.5 and thus the theorem is proved.

\square

Acknowledgements. The author is grateful to Prof. Nanhua Xi and Prof. Xiaoyu Chen for their suggestions and helpful discussions. The work is sponsored by Shanghai Sailing Program (No.21YF1429000) and NSFC-12101405.

References

1. Bernstein, J. *Representations of p-adic groups Lectures by Joseph Bernstein*, Harvard University, 1992
2. Borel A, Tits J. *Homomorphismes “abstraits” de groupes algébriques simples*, Ann. of Math. (2) 97 (1973), 499-571.
3. R. W. Carter, *Finite Groups of Lie Type: Conjugacy Classes and Complex Characters*, Pure Appl. Math. John Wiley and Sons, New York, 1985.
4. Xiaoyu Chen, Junbin Dong, *The permutation module on flag varieties in cross characteristic*, Math. Z. 293 (2019): 475-484.
5. Xiaoyu Chen, Junbin Dong, *The decomposition of permutation module for infinite Chevalley groups*, Sci. China Math. 64 (2021), no. 5, 921-930.
6. Xiaoyu Chen, Junbin Dong, *Abstract-induced modules for reductive algebraic groups with Frobenius maps*, IMRN, https://doi.org/10.1093/imrn/rnaa352.
7. Cline E, Parshall B, Scott L. *Finite-dimensional algebras and highest weight categories*, J. Reine Angew. Math. 391 (1988), 85-99.
8. Junbin Dong, *The principal representations of reductive algebraic groups with Frobenius maps*, J. Algebra 591 (2022), 342-359.
9. Junbin Dong, *Alvis-Curtis duality for representations of reductive groups with Frobenius maps*, Forum Math. 32 (2020), no.5, 1289-1296.
10. A.Putman, A. Snowden, *The Steinberg representation is irreducible*, arXiv:2107.00794.
11. J.P. Serre. *Linear Representations of Finite Groups*, GTM 42. New York-Heidelberg, Springer-Verlag, 1977.
12. Nanhua Xi, *Some infinite dimensional representations of reductive groups with Frobenius maps*, Sci.China Math. 57(2014), 1109–1120.
13. Ruotao Yang, *Irreducibility of infinite dimensional Steinberg modules of reductive groups with Frobenius maps*, J. Algebra 533 (2019), 17-24.

Institute of Mathematical Sciences, ShanghaiTech University, 393 Middle Huaxia Road, Pudong, Shanghai 201210, China.

Email address: dongjunbin1990@126.com