Metabolomics and traditional indicators unveil stress of a seagrass (*Cymodocea nodosa*) meadow at intermediate distance from a fish farm

Willemien de Kock, Harald Hasler-Sheetal, Marianne Holmer, Manolis Tsapakis, Eugenia T Apostolaki

To cite this version:

Willemien de Kock, Harald Hasler-Sheetal, Marianne Holmer, Manolis Tsapakis, Eugenia T Apostolaki, Metabolomics and traditional indicators unveil stress of a seagrass (*Cymodocea nodosa*) meadow at intermediate distance from a fish farm. Ecological Indicators, Elsevier, 2020, 109, 105765, 10.1016/j.ecolind.2019.105765

https://io.hcmr.gr/wp-content/uploads/2020/02/de-Kock_Accepted-Manuscript_comb.pdf

Submitted on 28 Feb 2020
Accepted Manuscript

Metabolomics and traditional indicators unveil stress of a seagrass (*Cymodocea nodosa*) meadow at intermediate distance from a fish farm

Willemien de Kock, Harald Hasler-Sheetal, Marianne Holmer, Manolis Tsapakis, Eugenia T Apostolaki

DOI: https://doi.org/10.1016/j.ecolind.2019.105765

To appear in: Ecological Indicators

Received date: 27 June 2019

Revised date: 16 September 2019

Accepted date: 21 September 2019

Please cite this article as: Willemien de Kock, Harald Hasler-Sheetal, Marianne Holmer, Manolis Tsapakis, Eugenia T Apostolaki, Metabolomics and traditional indicators unveil stress of a seagrass (*Cymodocea nodosa*) meadow at intermediate distance from a fish farm. The address for the corresponding author was captured as affiliation for all authors. Please check if appropriate.
Metabolomics and traditional indicators unveil stress of a seagrass (Cymodocea nodosa) meadow at intermediate distance from a fish farm

Willemien de Kock 1,2,3,4, Harald Hasler-Sheetal 5,6, Marianne Holmer 5, Manolis Tsapakis 1, Eugenia T Apostolaki 1*

1 Institute of Oceanography, Hellenic Centre for Marine Research, PO Box 2214, 71003, Heraklion, Crete, Greece
2 Biology Department, University of Crete, PO Box 2208, 71409, Heraklion, Crete, Greece
3 Faculté des Sciences, Université de Nantes, 2 rue de la Houssinière, 44322 Nantes Cedex, France
4 Scottish Association for Marine Science, Scottish Marine Institute, Oban, Argyll, PA37 1QA, United Kingdom
5 Department of Biology, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark
6 Nordcee, Department of Biology, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark

* Corresponding author. E-mail address: eapost@hcmr.gr (E.T. Apostolaki).

Abstract

Seasonal variation of structural, physiological and growth indicators and the metabolome of the seagrass Cymodocea nodosa, as well as biogeochemical conditions of underlying sediment were studied in two meadows growing at increasing distance downstream from a fish farm in the Aegean Sea in order to assess seagrass performance under stress. Horizontal rhizome production decreased significantly with proximity to the fish farm (0.67 and 1.57 g DW m⁻² d⁻¹...
close and far from the fish-farm, respectively). This coincided with observed effects on ecophyiological indicators, such as rhizome nitrogen, leaf carbon and leaf δ^{13}C, which were elevated with proximity to the fish-farm. Seasonality was shown by some indicators being elevated in either in the warm (C of all tissues and leaf δ^{34}S) or the cold period (N of all tissues). Growth promoting metabolites (sucrose, fructose, myo-inositol, heptacosane, tetracosane, stigmasterol, catechin and alpha-tocopherol) were lower close to the zone, whereas metabolites involved with stress-response (alanine, serine, proline, putrescine, ornithine, 3,4-dihydroxybenzoic acid and cinnamic acid) were higher. We found that growth-promoting metabolites were positively correlated with horizontal rhizome production, whereas the metabolites related to stress were negatively correlated. Metabolomic fingerprinting of seagrass provides opportunities for early detection of environmental degradation in marine ecological studies.

Key-words: Mediterranean; early warning indicators; coastal management; eutrophication; omics; seagrass
Introduction

Seagrasses are indicators of environmental deterioration, as meadow declines often point to disturbances that affect the entire ecosystem (Orth et al., 2006). ‘Critical slowing down’ or mortality events show that meadows have reached a tipping point, after which there is low capacity for recovery (El-Hacen et al., 2018). Environmental stress plays the biggest part in plant growth and development (Steinberg, 2011) and therefore stress needs to be identified far earlier to avoid permanent loss of seagrasses. Many different indicators are used to evaluate seagrass health in Europe, with little overlap between regions, creating difficulty in making continent-wide assessments (Marbà et al., 2013). Traditional ecological indicators involve nutrient availability in water and sediment (Fourqurean et al., 1992; van Katwijk et al., 2011), structural variables like shoot density and biomass (Agawin et al., 1996; Ibarra-Obando et al., 2004), physiological variables such as elemental and isotopic composition of seagrass tissue (Christianen et al., 2012; M Pérez et al., 1991), and growth such as rhizome production (Duarte et al., 1994), all of which have been identified as good indicators of seagrass stress (Roca et al. 2016). The response time of traditional indicators is varied, with physiological indicators generally responding far more rapidly (leaf δ^{15}N = ~8 weeks, leaf N = ~2-15 weeks), than structural (shoot density = ~5-25 weeks, above ground biomass = ~10-50 weeks) or growth indicators (leaf growth = ~2-20 weeks) (Roca et al., 2016).

Omics tools promise earlier and more targeted detection of stress (Malandrakis et al., 2017a), as they have the potential to reveal how seagrasses respond to abiotic stress, and how tolerance is obtained (Exadactylos, 2015), which could contribute to seagrass management and conservation (Macreadie et al., 2014). Since the turn of the century, and the genome sequencing of the model plant Arabidopsis thaliana (The Arabidopsis Genome Initiative, 2000), these tools have helped gain a deeper understanding into the molecular function of plants. Among omics, the metabolome provides the best indication of the physical composition of the biological
system in question (Horgan et al., 2009). Metabolomics involves detecting and measuring small molecules (<10 kDa), called metabolites, produced by cells during their lifetime (Fiehn, 2002). Due to their position as the end product of gene transcription, changes in metabolites are amplified compared to changes in the transcriptome or proteome (Urbanczyk-Wochniak et al., 2003). Hereby allowing earlier detection of changes in complex biological systems (Peng et al., 2015), making it an accurate tool to determine abiotic stress in plants (Jorge et al., 2016). For instance, plants biosynthesize specialized metabolites, such as the amino acids alanine and proline, in order to cope with environmental stress when stress response genes are expressed (Nakabayashi & Saito, 2015). Low levels of non-structural carbohydrates like soluble sugars can also be precise indicators of environmental stress in plants (Jiang et al., 2013). The observable traits of plants (e.g. biomass, growth rate, etc.) can be greatly influenced by resistance and stress response metabolites (Bino et al., 2004). Combining metabolomics with traditional indicators provides advantages for ecological monitoring. While traditional indicators deliver information on physiological state, environmental quality, and structural growth (Roca et al., 2016), the metabolome compliments these by presenting the chemical response of the plant (Nakabayashi & Saito, 2015), providing a holistic impression of the biological system. Metabolites change in response to environmental stimuli (Malandrakis et al., 2017a), and have cascading effects on indicators such as growth rate (Meyer et al., 2007), therefore exploring these relationships provides information on how changes in the metabolome are projected into changes in the measurable traits of a plant. Nevertheless, understanding of the molecular biology of seagrasses is very limited compared to what is known about terrestrial plants (Davey et al., 2016) and research into seagrass metabolomics is in its infancy (Kumar et al., 2016). Until now, there are only a few studies addressing the response of seagrass metabolites to environmental changes, which suggested that metabolomics was a useful tool in the early detection of Zostera marina stress previously
Once more information is gathered concerning stress-response, seagrasses can become even better bioindicators of marine ecosystem health (Malandrakis et al., 2017a), in particular by integrating them into traditional ecological monitoring programs (Kletou et al., 2018).

The seagrass *Cymodocea nodosa* forms meadows throughout the Mediterranean Sea and into the Atlantic. It is abundant in the Aegean Sea, where it grows in coastal waters up to 40 m depth (Borum & Greve, 2004). It is the most common species in shallow protected to semi-exposed sub-tidal environments (Orlando-Bonaca et al., 2016). *C. nodosa* is regarded as the most adaptable Mediterranean seagrass (Boudouresque et al., 2009), being more tolerant of nutrient enrichment (Delgado et al., 1997), heat fluctuations (Malandrakis et al., 2017b; Tutar et al., 2017), salinity stress (Piro et al., 2015), and general environmental stress (Garrido et al., 2013). *C. nodosa* is a suitable bioindicator species to assess anthropogenic stress in the marine environment as tissue-based metrics such as nitrogen content in the leaves can be used to distinguish meadows under stress (Papathanasiou et al., 2016).

Limited work has been carried out on the impact of fish farming on *C. nodosa*, however, in one study *C. nodosa* showed degraded growth and mortality 100 m from a fish-farm (Delgado et al., 1997). There are no guidelines in place to protect *C. nodosa* from fish farming, unlike the other Mediterranean seagrass species *Posidonia oceanica* which has narrow protections, such as the 400 m safety buffer recommendation between fish-cages and seagrass beds (Holmer et al., 2008). When factoring in current velocities, the intermediate distances are also impacted by fish-farming (Tsagaraki et al., 2013). There are several studies showing that the greatest effects of fish-farming on the suspended sections of the water column in the Mediterranean are between 100-500 m from the fish cages depending on current velocity (Sarà et al., 2006; Sarà, 2007; Tsagaraki et al., 2013). Intermediate impacts on the seagrass *P. oceanica* at distances 35-
400 m from fish-cages have caused vertical growth declines of 20-40% of the pre-disturbed values (Marbà et al., 2006).

In this paper we assess the performance of *C. nodosa* meadows at intermediate distance from a fish farm using traditional seagrass-based indicators and metabolomics. We do so by quantifying the seasonal variability in nutrient availability in water, pore water and sediment, along with structural (density and biomass), physiological (elemental and isotopic composition of carbon, nitrogen and sulfur) and growth indicators (rhizome production) and the metabolome of seagrasses growing at intermediate distance and away from a fish farm in the Aegean Sea (Greece). We also explore the relationships of *C. nodosa* metabolites of stress and growth with horizontal production, to examine if *C. nodosa* has obstructed performance. The combination of traditional ecological indicators and metabolomics provides more understanding of how environmental stressors affect seagrass stress response. This is the first work to combine traditional seagrass-based indicators and metabolomics to reveal stress of seagrass meadows.
Materials and Methods

Sampling Strategy

Sampling was carried out at Vourlias Bay (Peloponnese, Greece), which is an allocated aquaculture zone with intense fish-farming activity (9 farms). The site was located approximately 2 km east of the main bay, separated by a headland where there is a fish-farm with 28 cages (37° 27’ 08” N 23° 04’ 20” E) (Fig. 1). Apart from this aquaculture facility, there were no other features (e.g. rivers, towns) that could cause a disturbance to the environment.

Two sampling stations were selected which will henceforth be referred to as ‘Station A’ and ‘Station B’ at 440 m and 780 m distance from the fish-farm, respectively. The seagrass meadow at Station A was the closest we could find to the fish-farm. Phosphorous sedimentation in seagrass meadows of the Mediterranean, which has been proved a reliable indicator of fish-farm waste, has been shown to decrease exponentially with distance from the cages and the sedimentation rates were roughly 100% and 40% higher at 250 m and 500 m from the fish-farm, respectively, than at non-impacted sites (Holmer et al., 2008). Yet, seagrass meadows growing 800 m downstream from fish farms have shown no evidence of impact (Marbà et al., 2006). Based on the above, it could be expected that there is an effect at 440 m (Station A) and that this effect should be low at Station B, and therefore we can expect to detect differences between stations. The predominant coastal currents in the area move from the North-West, travelling through Vourlias Bay and towards our sample sites, passing the adjacent fish farm. Station A is situated in a small bay where the currents circulate, whereas the currents pass Station B and move down the coast to the South-East (data taken from model described in Tsagaraki et al., 2011).

The site was visited twice, during a warm (June 2017) and a cold (March 2018) period, when water temperature was 29° C and 15° C respectively. The water depth was 8 m at both stations.
At each station we randomly collected 3 replicates (100 mL each) of bottom water using acid-washed plastic syringes, just above the seagrass canopy. Pore water samples (60 mL each, 3 replicates per station) were also collected by acid-washed plastic syringe with a perforated sipper which extracted water from the sediment down to 10 cm depth.

Bottom and pore water samples were filtered using pre-combusted filters (Whatman GF/F).

Bottom water (25 ml) and pore water (900 µl) samples were fixed with 10 mL of 10 mM and 100 µl of 100 mM zinc acetate, respectively, and kept frozen for the determination of isotopic composition 34S of sulfate. The remaining filtered water and pore water were kept frozen, and later analyzed for ammonium and phosphate. The filters were kept frozen for the determination of particulate organic carbon and particulate total nitrogen.

Sediment samples (4 replicates, i.d. 4.5 cm) were collected by divers using Plexiglas cores, which were randomly inserted in the sediment down to 10 cm depth. Subsamples were taken from three of the replicates, and promptly fixed using 1 M zinc acetate and kept frozen at -20°C, to prevent degradation for the determination of the 34S sulfide isotopic ratio. The remaining sediment was also frozen and later used for analysis on total organic carbon (TOC), total inorganic carbon (IC), total nitrogen (TN), 13C and 15N. The fourth sediment sample replicate was frozen and subsequently analyzed for granulometry.

Samples for measuring $C.\ nodosa$ density, biomass, elemental and isotopic content, and metabolomics were collected using an aluminium cylindrical corer of area 177 cm2. At each station, 5 replicates were randomly taken. When out of the water, these samples were immediately processed to avoid stress to the plants, in order to ensure an accurate metabolic profile. At each station we also randomly hand-collected an additional 6-10 long (40 cm) horizontal $C.\ nodosa$ ramets for analysis of yearly horizontal rhizome production. Seagrass core samples were washed in seawater to remove sediment, and the number of shoots (apical and vertical) were counted for shoot density. The two youngest leaves, rhizomes and root
bundles from each of the 5 replicates were rinsed using milliQ water and scraped free from epiphytes before they were put in liquid nitrogen and later stored at -80 °C, to be analysed for metabolites and nutrient content. The remaining seagrass tissue was kept frozen.

Laboratory Analysis

Ammonium analysis of water samples was carried out using the indophenol blue method (Ivancic & Degobbis, 1984) and determination of phosphate was carried out as described by Strickland and Parsons (1972). Samples for measuring δ^{34}S$_{sulfate}$ were treated by being boiled in acid before sulphate precipitation with BaCl$_2$ resulting in BaSO$_4$. Particulate organic carbon (POC) and particulate organic nitrogen (PON) were measured from the frozen filters. The filtrate was analysed using an elemental analyser according to the Hedges & Stern (1984) procedure.

Sediment was dried at 60 °C for 48 hours to attain density, water content and porosity measurements. The dried sediment was pulverised before being measured for elemental and isotopic composition. Total carbon, nitrogen and 15N were analysed in sediment as it was. The sediment was then acidified for the determination of organic carbon (OC) and 13C. The inorganic carbon (IC) was estimated as the difference between total carbon and OC. The elemental and isotopic composition was expressed in % and δ unit notation (‰ deviations from the established international standards ratio), respectively.

For sediment 34S sulfide measurements we used the two-step distillation method (Fossing and Jorgensen, 1989) to obtain the chromium reducible sulfur (CRS) and acid volatile sulfur (AVS) fractions. A 5-10 g fraction of homogenised sediment was combined with 10 mL 50% ethanol in a reaction flask, and degassed with N$_2$ for 10 minutes. The AVS fraction was attained by distilling the mixture for 30 minutes at room temperature with 8 mL 12M HCl. The CRS fraction required reduction using 1M Cr$_2^+$ in 0.5M HCl, and then boiling and distilling for 30 minutes. The sulfide extract was collected as Ag$_2$S precipitate in traps and δ^{34}S was analysed.
as described below. Granulometry assessment of the sediment was carried out by removing all
grains larger than 63 µm (sand) by wet sieving. The remaining sediment was then categorised
using a Sedigraph (Micromeritics 5100) into < 63 µm (silt) and > 0.1 µm (clay).

The young seagrass tissue was freeze-dried to be analyzed for total sulfur (TS) and the δ³⁴S
isotopic fraction and their metabolic profile. The remaining (leaves, rhizomes and roots) tissue,
which had not been quenched in liquid nitrogen, was dried at 60 °C for 48 hours and
homogenized with the young tissue to determine dry weight. Young and remaining tissue were
ground to a powder to be used for analysis of elemental and isotopic composition on total
carbon (TC), nitrogen (TN), δ¹³C, δ¹⁵N and δ³⁴S using elemental analyser combustion
continuous flow isotope ratio mass spectroscopy. The δ³⁴S measurement required the ground
up seagrass tissue to be weighed into tin capsules along with vanadium pentoxide.

Metabolites were extracted, analysed and annotated as described in Hasler-Sheetal et al 2016.
In brief, we extracted metabolites from freeze-dried seagrass tissue and analysed by GC-qtof-
MS after derivatisation. The data was inspected, annotated and analysed using MassHunter and
Mass Profiler Professional (Agilent Technologies, Santa Clara, USA).

Yearly horizontal production rates were determined through the measurement of the horizontal
internodal lengths (the length between leaf scars) on the horizontal ramets (Duarte et al., 1994),
in order to determine the leaf plastochrome interval (PI). All ramets were dried at 60 °C for 48
hours. The measurements were performed on a Zeiss model Discovery.V12 stereo microscope
with a Jenoptik ProgRes® C14 plus camera addition and the aid of ProgRes® CapturePro
image capture software.

Calculations

Horizontal rhizome production (g DW m⁻² y⁻¹) was calculated from the measured rhizome
internodal lengths. First a 30% running average was applied to the data, in order to account for
short-term variability (Duarte et al., 1994; Mishra et al., 2018), and then the distances between
consecutive minima recorded, this estimates the annual horizontal growth. The sequence of
internodal length along the horizontal rhizome was measured according to Duarte et al. (1994),
which allowed an estimation of annual horizontal rhizome elongation rate per apex. The
following formula was then applied to the data:

\[
\text{Horizontal rhizome production} = \frac{\text{annual production} \times \text{horizontal weight} \times \text{apex density}}{\text{horizontal length}}
\]

Where annual production (cm \(y^{-1} \)) is each annual cycle measured from the consecutive minima,
horizontal weight (g) is the total dry horizontal rhizome weight of the ramet, apex density (m\(^{-2}\)) is the number of apical shoots per metre, and horizontal length (cm) is the total length of the
ramet. We display here the mean production measurements of the two sampling campaigns.

Biomass (g DW m\(^{-2}\)) was estimated as the dry weight of the seagrass tissue; leaves, rhizomes
or roots, divided by the sampled area. Shoot density (shoots m\(^{-2}\)) was estimated as the number
of shoots divided by the sampled area. Biomass and density measurements of the three seagrass
tissues were obtained by multiplying the measured value by the surface area of the aluminium
cylindrical corer.

The percentage of sulfur in seagrass leaves, rhizomes and roots taken up from sediment sulfide
\(F_{\text{sulfide}}\) was calculated using the equation:

\[
F_{\text{sulfide}} = \left(\frac{\delta^{34} S_{\text{tissue}} - \delta^{34} S_{\text{sulfate}}}{\delta^{34} S_{\text{sulfide}} - \delta^{34} S_{\text{sulfate}}} \right) \times 100
\]
In this formula $\delta^{34}\text{S}_{\text{tissue}}$ is the measured $\delta^{34}\text{S}$ in the leaf, rhizome or root, $\delta^{34}\text{S}_{\text{sulfate}}$ in the water, and $\delta^{34}\text{S}_{\text{sulfide}}$ content of the sediment (Holmer & Kendrick, 2013).

Statistical analyses

Before statistical testing, we carried out normality and homogeneity checks in SPSS (IBM Corp., 2017) which included using Cochran’s Q test. Two-way Analysis of Variance (ANOVA) in SPSS was used to test for differences between stations and seasons. Principal component analyses (PCA) were carried out using the R ‘stats’ package (R Core Team, 2013) and MetaboAnalyst 4.0 (Chong et al., 2018) in order to identify differences between stations or seasons. Missing values in the metabolomics dataset were calculated using a K-nearest neighbour algorithm, variables with over 50% missing values were discarded. Data was normalised by median, log transformed, and auto-scaled (mean-centred and divided by the standard deviation of each variable). The most influential metabolites in separating the seasons and stations along the principal components (PC) were identified by inspecting the loadings for each PC. Heatmaps were used to visualise how stress and growth-related metabolites differed between stations. Linear regression analysis was carried out on the F_{sulfide} data in order to identify sulfide intrusion and also in order to detect possible relationships between metabolites and growth. Correlations were carried out using Spearman’s rho to assess whether stress and growth associated metabolites showed positive or negative trends with horizontal rhizome production. The statistical significance of these correlations were tested using one-tailed and two-tailed t-tests. As it was possible to predict the trend direction in advance, using one-tailed t-testing was appropriate. As two-tailed t-tests protect against type-I errors and cognitive biases, we also report it.
Results

Pore water ammonium and sediment CRS pools and TN were elevated by 78%, 73% and 170%, respectively, at Station A compared to Station B (Table 1). The other measured biogeochemical variables (bottom and pore water PO\textsubscript{4} and δ34S, bottom water NH\textsubscript{4}, POC and PN, and sediment OC, IC, δ15N and δ34S sulfide pools) were not affected by station, except for sediment δ13C and AVS pools, but this depended on season. δ13C signal was highest during the warm period, and AVS pools had an interaction effect between station and season, where the biggest variation between stations was during the cold period. The other values reached significantly higher values during either the warm (pore water PO\textsubscript{4}, sediment OC, TN, δ13C) or the cold period (bottom water PO\textsubscript{4}, sediment IC and δ15N, Table 1). The sediment grain size distribution was similar at the two sites (Station A = 91% sand, 9% silt and clay; Station B = 93% sand, 7% silt and clay).

Horizontal rhizome production and root biomass were decreased two-fold at Station A compared to Station B (Table 2). Rhizome biomass had an interaction effect between station and season, with the biggest variation between seasons at Station A, twice as high in the warm period. The majority of the structural variables were enhanced during the warm period (shoot density by 83 %, leaf biomass by 218 %, total biomass by 113 % and above:below ground biomass ratio by 100, Table 2).

The majority of the measured elemental concentrations and isotopic values were significantly elevated at Station A compared to Station B: Leaf C by 1.5 %, rhizome N by 27 %, root N by 37 %, rhizome S by 9.2 %, root S by 30 %, leaf δ13C by 11 %, rhizome δ13C by 2.4 %, root δ13C by 1.3 %, leaf δ34S by 0.9 %, root δ34S by 2.8% (Table 2). Some variables (S of leaves and rhizomes, δ15N of all tissues, and rhizome δ34S) also had a station effect, but this depended on the season (Table 2). Seasonality was shown by many of the variables being elevated either
in the warm (C of all tissues and leaf δ²⁴S) or the cold period (N of all tissues, Table 2). \(F_{\text{sulfide}}\) did not show significant differences between stations or sampling periods. \(F_{\text{sulfide}}\) linear regressions of leaves and rhizomes (\(R^2 = 0.58, p < 0.01\)) and of rhizomes and roots (\(R^2 = 0.39, p < 0.05\)) were positively related indicating sulfide intrusion in the plants from the roots.

PCA analysis on metabolite levels in \(C. \text{nodosa}\) leaves revealed clear separations between stations but not seasons (Fig. 2). Metabolites in rhizome tissue showed a seasonal difference, and root metabolites separated mainly by season. However, there was also separation between Station A and B during the winter.

Mass spectrometry detected 203 leaf metabolites. A portion of them were related to seagrass stress or growth and varied between stations (Fig. 3). Analysis of the \(C. \text{nodosa}\) metabolome was carried out on leaves and roots. Particular focus was given to the leaves as this is the most active metabolic tissue in plants which has shown the biggest changes in metabolite composition in response to abiotic stress (Obata et al., 2015). Growth and stress-related metabolites varied between stations (Fig. 3, Table 3). Growth-promoting metabolites including sugars and sterols were lower at Station A. The growth metabolite with the largest difference between stations was fructose (2.5 times lower at Station A). Several stress-indicating metabolites including some amino acids were higher at Station A, and two metabolites known to decrease during abiotic stress (2-oxoglutaric acid and stearic acid) were lower at Station A (Fig. 3). Remarkably putrescine was 112 times higher at Station A. Spearman correlations between horizontal rhizome production and growth-promoting metabolite levels in the leaves yielded positive correlations (Table 4), the strongest significant (p<0.05) correlation being with the sugar myo-inisitol \((r_s = 0.647)\). Spearman correlations between horizontal rhizome production and stress-indicating metabolites yielded significant negative correlations except for 2-oxoglutaric acid, which showed a positive correlation. The strongest correlation was with putrescine \((r_s = -0.624, \text{Table 4})\). Linear regression analysis showed a significant negative
relationship between horizontal rhizome production and alanine, and a significant positive relationship between horizontal rhizome production and sucrose (Fig. 4).

Of the 20 most significant (ANOVA) metabolites in root tissue, a large proportion of amino acids were higher at Station A during cold period (Fig. 5). We found significant negative relationships between leaf glutamate and horizontal rhizome production ($R^2 = -0.45$, Fig. 6), and leaf $\delta^{15}N$ ($R^2 = -0.43$), this establishes a link between the traditional ecological indicators and metabolomics.

Discussion

Traditional seagrass-based indicators and metabolomic analyses revealed that the performance of *C. nodosa* was altered under abiotic stress from aquaculture effluents. The traditional indicators demonstrate higher nutrient loading and lower growth at Station A. Significant elevation of CRS pools and TN in the sediment and pore water ammonium at Station A suggests that the benthos was impacted by effluents from the fish-farm, similar to high sediment TN measured in an organically enriched *C. nodosa* meadow in Crete [0.8 % DW (Apostolaki et al., 2018)]. A comparable two-fold increase in pore-water ammonium with proximity to fish-cages has been found previously in the Mediterranean (Apostolaki et al., 2011). Decrease in root biomass has also been observed elsewhere, due to shading (Martin et al., 2018), salinity increases (Pagès et al., 2010) and effects of fish farming (Delgado et al., 1999), revealing that *C. nodosa* was under stress. Similarly, lower rhizome production at Station A suggests impacts of fish-farm effluent with proximity to the source, comparable to a two-fold reduction in *P. oceanica* growth after the installation of fish-cages within 400 m (Marbà et al., 2006). Nutrient availability has been shown to stimulate (Perez et al., 1991), or impair growth (Cunha & Duarte, 2004; Perez et al., 1994) depending on the degree of nutrient enrichment. The fact that the majority of elemental concentrations and isotopic levels in the three seagrass tissues were
higher at Station A implies a higher degree of impact from the fish-farm effluent (Marta Pérez et al., 2008), impairing growth. Leaf C and leaf δ\(^{13}\)C at Station B were similar to the values reported from the Western Mediterranean for *C. nodosa* (Fourqurean et al., 2007), however, at Station A they exceeded these values (leaf C in warm period only), suggesting increased uptake. High growth demands in the summer result in seagrasses N demand exceeding the supply (Pedersen & Borum, 1992). This could explain why we found that N in all tissues followed a seasonal pattern comparable with previous studies, where the higher values were in the cold period not the warm (Fourqurean et al., 1997). Sulfide intrusion was moderate and ranged lower than previously reported (Apostolaki et al., 2018), [20 – 45 %, 25 – 45 %, 20 – 50 %, for leaves, rhizomes and roots respectively (Apostolaki et al., 2018)].

In accordance with the results of traditional indicators, analysis of the metabolome showed that the meadow at Station A has impaired growth, as seen by the decrease in the sugars sucrose, fructose and myo-inositol at Station A. The storage of carbohydrates in seagrass balances the use of carbon by respiration and growth (Alcoverro et al., 2001). Meadows growing in disturbed areas have been shown to contain lower carbohydrate levels in plant tissue, and lower biomass and productivity (Ruiz & Romero, 2003). Volatile organic compounds such as heptacosane and tetracosane, which were lower at Station A, have been identified as plant growth promoters (Jishma et al., 2017; Tahir et al., 2017). Stigmasterol, catechin and alpha-tocopherol (vitamin E) all also have roles in promoting and regulating plant growth (Dufourc, 2008; Rani et al., 2011; Semida et al., 2014). As the majority of these ‘growth metabolites’ correlated positively with horizontal rhizome production, this indicates they have a positive association.

We found that metabolites known to accumulate under plant stress were high in seagrass at Station A, indicating reduced performance. During abiotic stress in plants, specific metabolites increase due to their signaling or protective roles. The amino acid metabolism is reconfigured...
under stress, which leads to the accumulation of amino acids such as alanine, by way of the alanine and GABA shunts (Diab & Limami, 2016; Jorge et al., 2016; Rocha et al., 2010). Alanine has been found increased in seagrass under sulfide stress (Hasler-Sheetal et al., 2016). Polyamines regulate plant growth, development and stress responses (Shu et al., 2015). The polyamine putrescine is well known to accumulate in plants under stress (Alet et al., 2011; Cuevas et al., 2008), which corresponds well to our measurements of an increase of two orders of magnitude at Station A. Stress can also lead to depletion of some metabolites, as we have observed with 2-oxoglutaric acid and stearic acid at Station A. Stearic acid, and other fatty acids, have been shown to deplete under temperature stress in terrestrial plants (Liu & Huang, 2004). The organic acid 2-oxoglutaric acid has been shown to deplete in the leaves of water stressed soybean plants (Silvente et al., 2012). Despite their unique environment, we could expect seagrasses to have similar stress responses as terrestrial plants as stress response mechanisms are largely conserved throughout the plant kingdom (Akpinar et al., 2012). Ongoing abiotic stress is expected to lead to reduced plant performance, and therefore less growth, which is in accordance with the negative correlations found between ‘stress metabolites’ and horizontal rhizome production.

The increase of amino acids in the roots at Station A during the cold period, coinciding with higher pore water ammonium levels, could be explained by increased ammonium assimilation. Rapid entry of ammonium into the cells causes many changes to seagrass physiology including impaired ATP production and photosynthetic electron transport (Alexandre et al., 2018; Villazán et al., 2013). To minimize these effects, seagrasses rapidly assimilate ammonium and convert it into amino acids, which depletes carbon skeletons (Brun et al., 2002, 2008).

The GOGAT cycle, where nitrate or ammonium are ultimately integrated into amino acids, is recognised as the most important route of nitrogen assimilation in higher plants (Robinson et al., 1991), of which glutamate is a central metabolite. Glutamate can induce the expression of
stress related genes as part of plant stress response (Kan et al., 2017). It has been suggested that regulation of genes in this pathway could be used as an indicator for exposure to ammonium pulses in seagrass (Pernice et al., 2016). Passive ammonium transport is not regulated (Touchette & Burkholder, 2000), therefore uptake of ammonium by the plant continues. The significant negative relationships between leaf glutamate and leaf δ^{15}N, and horizontal rhizome production indicate the usefulness of glutamate as an indicator for plant stress.

Combining metabolomics and traditional indicators provide opportunities to speed up monitoring. Leaf δ^{15}N is currently among the most rapid purpose-specific indicators for nutrient stress in small seagrasses, and has a response time of around eight weeks, considerably faster than shoot density (Roca et al., 2016). Metabolomics could allow even earlier detection because metabolites are altered from the moment the plant stress response is activated (Nakabayashi & Saito, 2015). Integrating metabolomics and traditional indicators provides a comprehensive picture that is benefitted by evidence of metabolism response. The pattern of ‘stress’ and ‘growth’ metabolites presented in this study are supported by the observations by the traditional tissue nutrient and biogeochemical indicators; that abiotic stress is increased with proximity to the fish-farm, and therefore C. nodosa performance is impaired although it is widely considered a resilient species (Boudouresque et al., 2009). In future research, the metabolism of C. nodosa should be studied in more depth. This study would have benefited from an increased number of sample stations. Yet the results of this study indicate that metabolomic fingerprinting can serve as a reliable early warning indicator and help provide a more thorough picture of plant performance, in particular ‘stress’ or ‘growth’ associated metabolites should be considered when selecting new indicators for seagrass health assessment.
References

Agawin, N. S. R., Duarte, C. M., & Fortes, M. D. (1996). Nutrient limitation of Philippine seagrasses (Cape Bolinao, NW Philippines): in situ experimental evidence. Marine Ecology Progress Series, 138, 233–243. https://doi.org/10.3354/meps138233

Akpinar, B. A., Avsar, B., Lucas, S. J., & Budak, H. (2012). Plant abiotic stress signaling. Plant Signaling & Behavior, 7(11), 1450–1455. https://doi.org/10.4161/psb.21894

Alcoverro, T., Manzanera, M., & Romero, J. (2001). Annual metabolic carbon balance of the seagrass Posidonia oceanica: the importance of carbohydrate reserves. Marine Ecology Progress Series, 211, 105–116. https://doi.org/10.3354/meps211105

Alet, A. I., Sanchez, D. H., Cuevas, J. C., Del Valle, S., Altabella, T., Tiburcio, A. F., Marco, F., Ferrando, A., Espasandin, F. D., Gonzalez, M. E., Ruiz, O. A., & Carrasco, P. (2011). Putrescine accumulation in Arabidopsis thaliana transgenic lines enhances tolerance to dehydration and freezing stress. Plant Signaling & Behavior, 6(2), 278–286. https://doi.org/10.4161/PSB.6.2.14702

Alexandre, A., Silva, J., & Santos, R. (2018). Light Is More Important Than Nutrient Ratios of Fertilization for Cymodocea nodosa Seedling Development. Frontiers in Plant Science, 9, 768. https://doi.org/10.3389/fpls.2018.00768

Apostolaki, E. T., Holmer, M., Marba, N., & Karakassis, I. (2011). Reduced carbon sequestration in a Mediterranean seagrass (Posidonia oceanica) ecosystem impacted by fish farming. Aquaculture Environmental Interactions, 2, 49–59. https://doi.org/10.3354/aei00031

Apostolaki, E. T., Holmer, M., Santinelli, V., & Karakassis, I. (2018). Species-specific response to sulfide intrusion in native and exotic Mediterranean seagrasses under stress. Marine Environmental Research, 134, 85–95. https://doi.org/10.1016/j.marenvres.2017.12.006
Bino, R. J., Hall, R. D., Fiehn, O., Kopka, J., Saito, K., Draper, J., Nikolau, B. J., Mendes, P., Roessner-Tunali, U., Beale, M. H., Trethewey, R. N., Lange, B. M., Wurtele, E. S., & Sumner, L. W. (2004). Potential of metabolomics as a functional genomics tool. https://doi.org/10.1016/j.tplants.2004.07.004

Borum, J., & Greve, T. (2004). The four European seagrass species. European Seagrasses: An Introduction to Monitoring and Management. The M&MS Project.

Boudouresque, C. F., Bernard, G., Pergent, G., Shili, A., & Verlaque, M. (2009). Regression of Mediterranean seagrasses caused by natural processes and anthropogenic disturbances and stress: a critical review, 52(5), 395–418. https://doi.org/10.1515/bot.2009.057

Brun, F. G., Hernández, I., Vergara, J. J., Peralta, G., & Pérez-Lloréns, J. L. (2002). Assessing the toxicity of ammonium pulses to the survival and growth of Zostera noltii. Marine Ecology Progress Series, 225, 177–187. https://doi.org/10.3354/meps225177

Brun, F. G., Olivé, I., Malta, E. J., Vergara, J. J., Hernández, I., & Pérez-Lloréns, J. L. (2008). Increased vulnerability of Zostera noltii to stress caused by low light and elevated ammonium levels under phosphate deficiency. Marine Ecology Progress Series, 365, 67–75. https://doi.org/10.3354/meps07512

Chong, J., Soufan, O., Li, C., Caraus, I., Li, S., Bourque, G., Wishart, D. S., & Xia, J. (2018). MetaboAnalyst 4.0: towards more transparent and integrative metabolomics analysis. Nucleic Acids Research. https://doi.org/10.1093/nar/gky310

Christianen, M. J. A., Govers, L. L., Bouma, T. J., Kiswara, W., Roelofs, J. G. M., Lamers, L. P. M., & van Katwijk, M. M. (2012). Marine megaherbivore grazing may increase seagrass tolerance to high nutrient loads. Journal of Ecology, 100(2), 546–560. https://doi.org/10.1111/j.1365-2745.2011.01900.x

Cuevas, J. C., López-Cobollo, R., Alcázar, R., Zarza, X., Koncz, C., Altabella, T., Salinas, J., Tiburcio, A. F., & Ferrando, A. (2008). Putrescine Is Involved in Arabidopsis Freezing
Tolerance and Cold Acclimation by Regulating Abscisic Acid Levels in Response to Low Temperature. *Plant Physiology*, 148(2), 1094 LP – 1105. https://doi.org/10.1104/pp.108.122945

Cunha, A. H., & Duarte, A. C. M. (2004). Population age structure and rhizome growth of Cymodocea nodosa in the Ria Formosa (southern Portugal). *Marine Biology*, 146, 841–847. https://doi.org/10.1007/s00227-004-1496-2

Davey, P. A., Pernice, M., Sablok, G., Larkum, A., Lee, H. T., Golicz, A., Edwards, D., Dolferus, R., & Ralph, P. (2016). The emergence of molecular profiling and omics techniques in seagrass biology; furthering our understanding of seagrasses. *Functional and Integrative Genomics*, 16(5), 465–480. https://doi.org/10.1007/s10142-016-0501-4

Delgado, O., Grau, A., Pou, S., Riera, F., Massuti, C., Ala, M. Z., & Ballesteros, E. (1997). Seagrass regression caused by fish cultures in Fornells Bay (Menorca, Western Mediterranean). *Oceanologica Acta*, 20(3), 557–563.

Delgado, O., Ruiz, J., Pérez, M., Romero, J., & Ballesteros, E. (1999). Effects of fish farming on seagrass (Posidonia oceanica) in a Mediterranean bay: seagrass decline after organic loading cessation. *Oceanologica Acta*, 22(1), 109–117. https://doi.org/10.1016/S0399-1784(99)80037-1

Diab, H., & Limami, A. M. (2016). Reconfiguration of N Metabolism upon Hypoxia Stress and Recovery: Roles of Alanine Aminotransferase (AlaAT) and Glutamate Dehydrogenase (GDH). *Plants (Basel, Switzerland)*, 5(2), 25. https://doi.org/10.3390/plants5020025

Duarte, C. M., Marba, N., Cebrianl, J., Enriquezl, S., Fortes, M. D., Gallegos, M. E., Merino, M., Olesen, B., Sand-Jensen, K., Uri, J., & Vermaat, J. (1994). Reconstruction of seagrass dynamics: age determinations and associated tools for the seagrass ecologist. *Marine Ecology Progress Series*, 107, 195–209. https://doi.org/10.3354/meps107195
Dufourc, E. J. (2008). The role of phytosterols in plant adaptation to temperature. *Plant Signaling & Behavior, 3*(2), 133–134.

https://doi.org/https://doi.org/10.4161/psb.3.2.5051

El-Hacen, E.-H. M., Bouma, T. J., Fivash, G. S., Sall, A. A., Piersma, T., Olff, H., & Govers, L. L. (2018). Evidence for ‘critical slowing down’ in seagrass: a stress gradient experiment at the southern limit of its range. *Scientific Reports, 8*(1), 17263.

https://doi.org/10.1038/s41598-018-34977-5

Exadactylos, A. (2015). Molecular Approach of Seagrasses Response Related to Tolerance Acquisition to Abiotic Stress. In *Molecular Approaches to Genetic Diversity*. InTech.

https://doi.org/10.5772/59425

Fiehn, O. (2002). Metabolomics – the link between genotypes and phenotypes. *Plant Molecular Biology, 48*(1), 155–171. https://doi.org/10.1023/A:1013713905833

Fourqurean, J. W., Marbà, N., Duarte, C. M., Diaz-Almela, E., & Ruiz-Halpern, S. (2007). Spatial and temporal variation in the elemental and stable isotopic content of the seagrasses Posidonia oceanica and Cymodocea nodosa from the Illes Balears, Spain. *Marine Biology, 151*(1), 219–232. https://doi.org/10.1007/s00227-006-0473-3

Fourqurean, J. W., Moore, T. O., Fry, B., & Hollibaugh, J. T. (1997). Spatial and temporal variation in C:N:P ratios, δ15N, and δ13C of eelgrass Zostera marina as indicators of ecosystem processes, Tomales Bay, California, USA. *Marine Ecology Progress Series, 157*, 147–157. https://doi.org/10.3354/meps157147

Fourqurean, J. W., Zieman, J. C., & Powell, G. V. N. (1992). Relationships between porewater nutrients and seagrasses in a subtropical carbonate environment. *Marine Biology, 114*(1), 57–65. https://doi.org/10.1007/bf00350856

Garrido, M., Lafabrie, C., Torre, F., Fernandez, C., & Pasqualini, V. (2013). Resilience and stability of Cymodocea nodosa seagrass meadows over the last four decades in a
Mediterranean lagoon. *Estuarine, Coastal and Shelf Science, 130*, 89–98.

Hasler-Sheetal, H., Castorani, M. C. N., Glud, R. N., Canfield, D. E., & Holmer, M. (2016). Metabolomics Reveals Cryptic Interactive Effects of Species Interactions and Environmental Stress on Nitrogen and Sulfur Metabolism in Seagrass. https://doi.org/10.1021/acs.est.6b04647

Hasler-Sheetal, H., Fragner, L., Holmer, M., & Weckwerth, W. (2015). Diurnal effects of anoxia on the metabolome of the seagrass Zostera marina. *Metabolomics, 11*(5), 1208–1218. https://doi.org/10.1007/s11306-015-0776-9

Holmer, M., Argyrou, M., Dalsgaard, T., Danovaro, R., Diaz-Almela, E., Duarte, C. M., Frederiksen, M., Grau, A., Karakassis, I., Marbà, N., Mirto, S., Pérez, M., Pusceddu, A., & Tsapakis, M. (2008). Effects of fish farm waste on Posidonia oceanica meadows: Synthesis and provision of monitoring and management tools. *Marine Pollution Bulletin, 56*(9), 1618–1629. https://doi.org/10.1016/j.marpolbul.2008.05.020

Holmer, M., & Hasler-Sheetal, H. (2014). Sulfide intrusion in seagrasses assessed by stable sulfur isotopes - a synthesis of current results. *Frontiers in Marine Science, 1*, 64. https://doi.org/10.3389/fmars.2014.00064

Holmer, M., & Kendrick, G. A. (2013). High Sulfide Intrusion in Five Temperate Seagrasses Growing Under Contrasting Sediment Conditions. *Estuaries and Coasts, 36*(1), 116–126. https://doi.org/10.1007/s12237-012-9550-7

Horgan, R., Clancy, O., Myers, J., & Baker, P. (2009). An overview of proteomic and metabolomic technologies and their application to pregnancy research. *BJOG: An International Journal of Obstetrics & Gynaecology, 116*(2), 173–181. https://doi.org/10.1111/j.1471-0528.2008.01997.x

Ibarra-Obando, S. E., Heck, K. L., & Spitzer, P. M. (2004). Effects of simultaneous changes
in light, nutrients, and herbivory levels, on the structure and function of a subtropical turtlegrass meadow. *Journal of Experimental Marine Biology and Ecology*, 301(2), 193–224. https://doi.org/10.1016/J.JEMBE.2003.10.001

IBM SPSS Statistics for Windows, Version 25.0. (n.d.). Armonk, NY: IBM Corp.

Ivancic, I., & Degobbis, D. (1984). An optimal manual procedure for ammonia analysis in natural waters by the Indophenol Blue method. *Water Research*, 8(9), 1–3. https://doi.org/https://doi.org/10.1016/0043-1354(84)90230-6

Jiang, Z., Huang, X., & Zhang, J. (2013). Dynamics of nonstructural carbohydrates in seagrass Thalassia hemprichii and its response to shading. *Acta Oceanologica Sinica*, 32(8), 61–67. https://doi.org/10.1007/s13131-013-0342-0

Jishma, P., Hussain, N., Chellappan, R., Rajendran, R., Mathew, J., & Radhakrishnan, E. K. (2017). Strain-specific variation in plant growth promoting volatile organic compounds production by five different Pseudomonas spp. as confirmed by response of Vigna radiata seedlings. *Journal of Applied Microbiology*, 123(1), 204–216. https://doi.org/10.1111/jam.13474

Jorge, T. F., Rodrigues, J. A., Caldana, C., Schmidt, R., van Dongen, J. T., Thomas-Oates, J., & António, C. (2016). Mass spectrometry-based plant metabolomics: Metabolite responses to abiotic stress. *Mass Spectrometry Reviews*, 35(5), 620–649. https://doi.org/10.1002/mas.21449

Kan, C.-C., Chung, T.-Y., Wu, H.-Y., Juo, Y.-A., & Hsieh, M.-H. (2017). Exogenous glutamate rapidly induces the expression of genes involved in metabolism and defense responses in rice roots. *BMC Genomics*, 18(1), 186. https://doi.org/10.1186/s12864-017-3588-7

Kletou, D., Kleitou, P., Savva, I., Attrill, M. J., Antoniou, C., & Hall-Spencer, J. M. (2018). Seagrass recovery after fish farm relocation in the eastern Mediterranean. *Marine*
Environmental Research, 140, 221–233.

https://doi.org/10.1016/j.marenvres.2018.06.007

Kumar, M., Kuzhiumparambil, U., Pernice, M., Jiang, Z., & Ralph, P. J. (2016).
Metabolomics: an emerging frontier of systems biology in marine macrophytes. Algal Research, 16, 76–92. https://doi.org/10.1016/j.algal.2016.02.033

Liu, X., & Huang, B. (2004). Changes in Fatty Acid Composition and Saturation in Leaves and Roots of Creeping Bentgrass Exposed to High Soil Temperature. Journal of the American Society for Horticultural Science (Vol. 129).
https://doi.org/https://doi.org/10.21273/JASHS.129.6.0795

Macreadie, P. I., Schliep, M. T., Rasheed, M. A., Chartrand, K. M., & Ralph, P. J. (2014).
Molecular indicators of chronic seagrass stress: A new era in the management of seagrass ecosystems? Ecological Indicators, 38, 279–281.
https://doi.org/10.1016/J.ECOLIND.2013.11.017

Malandrakis, E. E., Danis, T., Iona, A., & Exadactylos, A. (2017a). Abiotic Stress of Seagrasses: Recent Advances in Transcriptomics, Genomics, and Systems Biology. In Systems Biology of Marine Ecosystems (pp. 119–132). Cham: Springer International Publishing. https://doi.org/10.1007/978-3-319-62094-7_6

Malandrakis, E. E., Dadali, O., Kavouras, M., Danis, T., Panagiotaki, P., Miliou, H., Tsioli, S., Orfanidis, S., Küpper, F. C., & Exadactylos, A. (2017b). Identification of the abiotic stress-related transcription in little Neptune grass Cymodocea nodosa with RNA-seq. Marine Genomics, 34, 47–56. https://doi.org/10.1016/j.margen.2017.03.005

Marbà, N., Krause-Jensen, D., Alcoverro, T., Birk, S., Pedersen, A., Neto, J. M., Orfanidis, S., Garmendia, J. M., Muxika, I., Borja, A., Dencheva, K., & Duarte, C. M. (2013).
Diversity of European seagrass indicators: Patterns within and across regions. Hydrobiologia, 704(1), 265–278. https://doi.org/10.1007/s10750-012-1403-7
Marbà, N., Santiago, R., Diaz-Almela, E., Álvarez, E., & Duarte, C. M. (2006). Seagrass (Posidonia oceanica) vertical growth as an early indicator of fish farm-derived stress. *Estuarine, Coastal and Shelf Science, 67*(3), 475–483. https://doi.org/10.1016/j.ecss.2005.11.034

Martin, B. C., Statton, J., Siebers, A. R., Grierson, P. F., Ryan, M. H., & Kendrick, G. A. (2018). Colonizing tropical seagrasses increase root exudation under fluctuating and continuous low light. *Limnology and Oceanography, 63*(S1), S381–S391. https://doi.org/10.1002/lno.10746

Meyer, R. C., Steinfath, M., Lisec, J., Becher, M., Witucka-Wall, H., Törjék, O., Fiehn, O., Eckardt, A., Willmitzer, L., Selbig, J., & Altmann, T. (2007). The metabolic signature related to high plant growth rate in Arabidopsis thaliana. *Proceedings of the National Academy of Sciences of the United States of America, 104*(11), 4759–4764. https://doi.org/10.1073/pnas.0609709104

Mishra, A., Cabaço, S., Vizzini, S., Santos, R., & Apostolaki, E. (2018). Population dynamics of *Cymodocea nodosa* in the vicinity of volcanic CO2 seeps.

Nakabayashi, R., & Saito, K. (2015). Integrated metabolomics for abiotic stress responses in plants. *Current Opinion in Plant Biology, 24*, 10–16. https://doi.org/10.1016/J.PBI.2015.01.003

Obata, T., Witt, S., Lisec, J., Palacios-Rojas, N., Florez-Sarasa, I., Yousfi, S., Araus, J. L., Cairns, J. E., & Fernie, A. R. (2015). Metabolite Profiles of Maize Leaves in Drought, Heat, and Combined Stress Field Trials Reveal the Relationship between Metabolism and Grain Yield. *Plant Physiology, 169*(4), 2665–2683. https://doi.org/10.1104/pp.15.01164

Orlando-Bonaca, M., Lipej, L., & Francé, J. (2016). The most suitable time and depth to sample *Cymodocea nodosa* (Ucria) Ascherson meadows in the shallow coastal area.
Experiences from the northern Adriatic Sea. *Acta Adriatica*, 57(2), 251–262.

Orth, R. J., Carruthers, T. J. B., Dennison, W. C., Duarte, C. M., Fourquarean, J. W., Heck, K. L., Hughes, A. R., Kendrick, G. A., Kenworthy, W. J., Olyarnik, S., Short, F. T., Waycott, M., & Williams, S. L. (2006). A Global Crisis for Seagrass Ecosystems. *BioScience*, 56(12), 987–996. https://doi.org/10.1641/0006-3568(2006)56[987:agcfse]2.0.co;2

Pagès, J. F., Pérez, M., & Romero, J. (2010). Sensitivity of the seagrass *Cymodocea nodosa* to hypersaline conditions: A microcosm approach. *Journal of Experimental Marine Biology and Ecology*, 386(1–2), 34–38. https://doi.org/10.1016/J.JEMBE.2010.02.017

Papathanasiou, V., Orfanidis, S., & Brown, M. T. (2016). Cymodocea nodosa metrics as bioindicators of anthropogenic stress in N. Aegean, Greek coastal waters. *Ecological Indicators*, 63, 61–70. https://doi.org/10.1016/j.ecolind.2015.11.059

Pedersen, M. F., & Borum, J. (1992). Nitrogen dynamics of eelgrass *Zostera marina* during a late summer period of high growth and low nutrient availability. *Marine Ecology Progress Series*, 80, 65–73. https://doi.org/10.3354/meps080065

Peng, B., Li, H., & Peng, X.-X. (2015). Functional metabolomics: from biomarker discovery to metabolome reprogramming. *Protein & Cell*, 6(9), 628–637. https://doi.org/10.1007/s13238-015-0185-x

Pérez, M., Duarte, C. M., Romero, J., Sand-Jensen, K., & Alcoverro, T. (1994). Growth plasticity in *Cymodocea nodosa* stands: the importance of nutrient supply. *Aquatic Botany*, 47(3–4), 249–264. https://doi.org/10.1016/0304-3770(94)90056-6

Pérez, M., Romero, J., Duarte, C. M., & Sand-Jensen, K. (1991). Phosphorus limitation of *Cymodocea nodosa* growth. *Marine Biology*, 109(1), 129–133. https://doi.org/10.1007/BF01320239

Pérez, Marta, García, T., Invers, O., & Ruiz, J. M. (2008). Physiological responses of the
seagrass Posidonia oceanica as indicators of fish farm impact. *Marine Pollution Bulletin*, 56(5), 869–879. https://doi.org/10.1016/j.marpolbul.2008.02.001

Pernice, M., Sinutok, S., Sablok, G., Commault, A. S., Schliep, M., Macreadie, P. I., Rasheed, M. A., & Ralph, P. J. (2016). Molecular physiology reveals ammonium uptake and related gene expression in the seagrass Zostera muelleri. *Marine Environmental Research*, 122, 126–134. https://doi.org/10.1016/J.MARENVRES.2016.10.003

Piro, A., Marin-Guirao, L., Serra, I. A., Spadafora, A., Sandoval-Gil, J. M., Bernardeau-Esteller, J., Fernandez, J. M. R., & Mazzuca, S. (2015). The modulation of leaf metabolism plays a role in salt tolerance of Cymodocea nodosa exposed to hypersaline stress in mesocosms. *Frontiers in Plant Science*, 6, 464. https://doi.org/10.3389/fpls.2015.00464

R: A language and environment for statistical computing, (2013). R Foundation for Statistical Computing, Vienna, Austria.

Rani, A., Kumar Vats, S., Sharma, M., & Kumar, S. (2011). Catechin promotes growth of Arabidopsis thaliana with concomitant changes in vascular system, photosynthesis and hormone content. *Biologia Plantarum*, 55(4), 779–782. https://doi.org/10.1007/s10535-011-0187-3

Robinson, S. A., Slade, A. P., Fox, G. G., Phillips, R., Ratcliffe, R. G., & Stewart, G. R. (1991). The Role of Glutamate Dehydrogenase in Plant Nitrogen Metabolism. *Plant Physiology*, 95, 509–516. https://doi.org/10.1104/pp.95.2.509

Roca, G., Alcoverro, T., Krause-Jensen, D., Balsby, T. J. S., van Katwijk, M. M., Marbà, N., Santos, R., Arthur, R., Mascaró, O., Fernández-Torquemada, Y., Pérez, M., Duarte, C. M., & Romero, J. (2016). Response of seagrass indicators to shifts in environmental stressors: A global review and management synthesis. *Ecological Indicators*, 63, 310–323. https://doi.org/10.1016/j.ecolind.2015.12.007
Rocha, M., Licausi, F., Araújo, W. L., Nunes-Nesi, A., Sodek, L., Fernie, A. R., & van Dongen, J. T. (2010). Glycolysis and the tricarboxylic acid cycle are linked by alanine aminotransferase during hypoxia induced by waterlogging of Lotus japonicus. *Plant Physiology, 152*(3), 1501–1513. https://doi.org/10.1104/pp.109.150045

Ruiz, J. M., & Romero, J. (2003). Effects of disturbances caused by coastal constructions on spatial structure, growth dynamics and photosynthesis of the seagrass Posidonia oceanica. *Marine Pollution Bulletin, 46*(12), 1523–1533. https://doi.org/10.1016/j.marpolbul.2003.08.021

Sarà, G, Scilipoti, D., Milazzo, M., & Modica, A. (2006). Use of stable isotopes to investigate dispersal of waste from fish farms as a function of hydrodynamics. *Marine Ecology Progress Series, 313*, 261–270. https://doi.org/10.3354/meps313261

Sarà, Gianluca. (2007). Ecological effects of aquaculture on living and non-living suspended fractions of the water column: A meta-analysis. *Water Research, 41*(15), 3187–3200. https://doi.org/10.1016/J.WATRES.2007.05.013

Semida, W. M., Taha, R. S., Abdelhamid, M. T., & Rady, M. M. (2014). Foliar-applied α-tocopherol enhances salt-tolerance in Vicia faba L. plants grown under saline conditions. *South African Journal of Botany, 95*, 24–31. https://doi.org/10.1016/J.SAJB.2014.08.005

Shu, S., Yuan, Y., Chen, J., Sun, J., Zhang, W., Tang, Y., Zhong, M., & Guo, S. (2015). The role of putrescine in the regulation of proteins and fatty acids of thylakoid membranes under salt stress. *Scientific Reports, 5*(1), 14390. https://doi.org/10.1038/srep14390

Silvente, S., Sobolev, A. P., & Lara, M. (2012). Metabolite adjustments in drought tolerant and sensitive soybean genotypes in response to water stress. *PloS One, 7*(6), e38554. https://doi.org/10.1371/journal.pone.0038554

Steinberg, C. (2011). *Stress ecology: environmental stress as ecological driving force and...
key player in evolution. Springer.

Strickland, J. D. H., & Parsons, T. R. (1972). A Practical Handbook of Seawater Analysis.

Fisheries Research Board of Canada Bulletin, 167.

Tahir, H. A. S., Gu, Q., Wu, H., Raza, W., Hanif, A., Wu, L., Colman, M. V., & Gao, X. (2017). Plant Growth Promotion by Volatile Organic Compounds Produced by Bacillus subtilis SYST2. Frontiers in Microbiology, 8, 171. https://doi.org/10.3389/fmicb.2017.00171

The Arabidopsis Genome Initiative. (2000). Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature, 408, 796. https://doi.org/https://doi.org/10.1038/35048692

Touchette, B. W., & Burkholder, J. M. (2000). Review of nitrogen and phosphorus metabolism in seagrasses. Journal of Experimental Marine Biology and Ecology (Vol. 250). https://doi.org/10.1016/S0022-0981(00)00195-7

Tsagaraki, T., Petihakis, G., Tsiaras, K., Triantafyllou, G., Tsapakis, M., Korres, G., Kakagiannis, G., Frangoulis, C., & Karakassis, I. (2011). Beyond the cage: Ecosystem modelling for impact evaluation in aquaculture. Ecological Modelling, 222(14), 2512–2523. https://doi.org/10.1016/J.ECOLMODEL.2010.11.027

Tsagaraki, T., Pitta, P., Frangoulis, C., Petihakis, G., & Karakassis, I. (2013). Plankton response to nutrient enrichment is maximized at intermediate distances from fish farms. Marine Ecology Progress Series, 493, 31–42. https://doi.org/10.3354/meps10520

Tutar, O., Marin-Guirao, L., Ruiz, J. M., & Procaccini, G. (2017). Antioxidant response to heat stress in seagrasses. A gene expression study. Marine Environmental Research, 132, 94–102. https://doi.org/10.1016/J.MARENVRES.2017.10.011

Urbanczyk-Wochniak, E., Luedemann, A., Kopka, J., Selbig, J., Roessner-Tunali, U., Willmitzer, L., & Fernie, A. R. (2003). Parallel analysis of transcript and metabolic
profiles: a new approach in systems biology. *EMBO Reports*, 4(10), 989–993.

https://doi.org/10.1038/sj.embor.embor944

dan Katwijk, M. M., van der Welle, M. E. W., Lucassen, E. C. H. E. T., Vonk, J. A.,
Christianen, M. J. A., Kiswara, W., Inayat al Hakim, I., Arifin, A., Bouma, T. J.,
Roelofs, J. G. M., & Lamers, L. P. M. (2011). Early warning indicators for river nutrient
and sediment loads in tropical seagrass beds: A benchmark from a near-pristine
archipelago in Indonesia. *Marine Pollution Bulletin*, 62(7), 1512–1520.
https://doi.org/10.1016/J.MARPOLBUL.2011.04.007

Villazán, B., Brun, F. G., Jiménez-Ramos, R., Pérez-Lloréns, J. L., & Vergara, J. J. (2013).
Interaction between ammonium and phosphate uptake rates in the seagrass *Zostera*
noltii. *Marine Ecology Progress Series*, 488, 133–143.
https://doi.org/10.3354/meps10395
Acknowledgments

The study was funded by the ACES Erasmus Mundus JMD (Grant No. 553648-EPP-1-2014-1-UK-EPPKA1-JMD-MOB) and the EU H2020 project TAPAS (Grant Agreement No. 678396). We thank I. Glampedakis, C. Escobar-Sierra and G. Hatzigeorgiou for assistance with sampling, A. Giuliani for the 3D graphic and useful discussions, and Katrine Clement Kirkegaard, I. Stavrakaki, E. Dafnomili, S. Zivanovic and X. Vlata for helping with laboratory analysis.

Declarations of interest: none
Figure Legends

Fig. 1. Map of sampling area in the Argolikos Gulf with stations A and B indicated. Fish farm cages are indicated by circles.

Fig. 2. Scores plots of PCA analyses of metabolite relative concentrations in *C. nodosa* leaves at the two sites, in two seasons.

Fig. 3. Heatmaps of metabolites in leaf tissue showing: (Left) plant growth associated metabolites, and (Right) Stress related metabolites in plants.

Fig. 4. Linear regressions between horizontal rhizome production and (Top) Sucrose and (Bottom) L-alanine.

Fig. 5. Heatmap of the 20 most significantly different root metabolites between station or sample site (2-way ANOVA).

Fig. 6. Linear regressions of (Top) Horizontal rhizome production and leaf glutamate, (Middle) Pore water ammonium and leaf δ¹⁵N and (Bottom) Leaf glutamate and leaf δ¹⁵N.
Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Table Legends

Table 1. Ammonium, phosphate and δ^{34}S sulfate of bottom water and pore water for each station. Organic (OC) and inorganic (IC) carbon and total nitrogen (TN) pools and δ^{34}S sulfide of seagrass sediments. Significant differences ($P < 0.05$) between stations are given by capital letters and between season by small letters, * indicates station X season effect.

Table 2. Shoot density, leaf, rhizome and root biomass, above to below ground biomass ratio, total biomass and horizontal rhizome production, and average TC, TN, TS, δ^{13}C, δ^{15}N, δ^{34}S, $F_{sulfide}$ AVS and $F_{sulfide}$ CRS for leaves rhizomes and roots at the two stations during the warm and cold periods. Significant differences ($P < 0.05$) between stations are given by capital letters (A) and between seasons by small letters (a), * indicates station X season effect.

Table 3. Two-way ANOVA testing of stress-associated and growth-associated metabolites in seagrass leaves.

Table 4. Spearman correlations between horizontal rhizome production and metabolites associated with growth or stress in seagrass leaves in both sampling periods.
Table 1.

	Station A	Station B
Bottom water		
NH₄ (µM)	0.45 ± 0.10	0.99 ± 0.55
PO₄ (µM)	0.02 ± 0.01 a	0.07 ± 0.06 a
δ²⁵³S sulfide (%)	20.71	20.69
POC (µg/l)	153.40 ± 5.37	301.29 ± 323.33
PN (µg/l)	50.10 ± 5.02	20.02 ± 16.19
Sediment		
OC (% DW)	6.25 ± 0.42 a	3.51 ± 0.12 a
IC (% DW)	3.75 ± 0.19 a	6.78 ± 0.23 a
TN (% DW)	0.074 ± 0.01 Aa	0.061 ± 0.003 Aa
δ²³⁴⁴C (%)	-0.85 ± 0.69 a*	-1.66 ± 0.58 a*
δ²⁴⁵⁵N (%)	0.66 ± 0.35 a	1.49 ± 0.15 a
δ²⁴⁴S sulfide (AVS pools) (%)	-19.92 ± 1.64	-17.82 ± 3.26
δ²⁴⁴S sulfide (CSS pools) (%)	-26.81 ± 0.60	-25.26 ± 1.27
δ²⁴³S pools (µM)	155.75 ± 45.17*	55.18 ± 41.00*
δ²⁴³S pools (µM)	1158.35 ± 1051.82 A	881.33 ± 861.55 A
Table 2.

	Station A	Station B		
	Warm Period	Cold Period	Warm Period	Cold Period
Shoot density (shoots m\(^{-2}\))	2559.19 ± 135.97	1052.77 ± 297.21	1822.20 ± 1967.34	1369.48 ± 1374.09
Leaf biomass (g DW m\(^{-2}\))	57.50 ± 4.16 a	10.33 ± 2.74 a	56.75 ± 19.48 a	15.00 ± 1.89 a
Rhizome biomass (g DW m\(^{-2}\))	113.83 ± 46.38 a	46.22 ± 12.48 a	78.05 ± 22.60 a	98.85 ± 33.41 a
Root biomass (g DW m\(^{-2}\))	33.86 ± 8.70 A	25.00 ± 6.71 A	48.37 ± 26.20 A	69.31 ± 40.80 A
Above ground biomass	0.21 ± 0.05 a	0.13 ± 0.01 a	0.21 ± 0.06 a	0.08 ± 0.04 a
Total biomass (g DW m\(^{-2}\))	185.19 ± 46.00 a	56.55 ± 14.95 a	163.17 ± 62.17 a	106.84 ± 34.99 a
Horizontal rhizome production (g m\(^{-2}\) y\(^{-1}\))	0.67 ± 0.54 A	1.57 ± 0.78 A		
Leaf C (% DW)	41.07 ± 2.21 A	37.79 ± 1.64 A	39.84 ± 2.95 A	37.86 ± 0.56 A
Rhizome C (% DW)	38.50 ± 1.57 A	36.56 ± 1.51 A	39.92 ± 0.34 A	37.69 ± 0.86 A
Root C (% DW)	40.69 ± 0.70 A	37.26 ± 0.85 A	40.08 ± 0.83 A	37.51 ± 1.19 A
Leaf N (% DW)	1.81 ± 0.12 a	2.22 ± 0.45 a	1.73 ± 0.33 a	2.29 ± 0.11 a
Rhizome N (% DW)	0.69 ± 0.05 A	1.80 ± 0.25 A	0.52 ± 0.15 A	1.43 ± 0.15 A
Root N (% DW)	0.76 ± 0.10 A	1.09 ± 0.07 A	0.52 ± 0.15 A	0.83 ± 0.09 A
Leaf S (% DW)	0.39 ± 0.03 A*	0.31 ± 0.04 A*	0.34 ± 0.03 A*	0.39 ± 0.04 A*
Rhizome S (% DW)	0.45 ± 0.04 A*	0.38 ± 0.10 A*	0.35 ± 0.06 A*	0.41 ± 0.04 A*
Root S (% DW)	0.48 ± 0.08 A	0.42 ± 0.13 A	0.34 ± 0.04 A	0.35 ± 0.05 A
Leaf δ\(^{13}\)C (%)	-7.69 ± 0.25 A	-6.24 ± 3.66 A	-8.16 ± 0.22 A	-7.55 ± 0.16 A
Rhizome δ\(^{13}\)C (%)	-7.87 ± 0.44 A	-7.83 ± 0.26 A	-8.09 ± 0.08 A	-7.99 ± 0.28 A
Root δ\(^{13}\)C (%)	-8.22 ± 0.41 A	-8.94 ± 0.56 A	-8.36 ± 0.53 A	-8.41 ± 0.28 A
Leaf δ\(^{15}\)N (%)	2.05 ± 0.51 A*	-0.93 ± 0.99 A*	1.97 ± 0.43 A*	3.34 ± 0.35 A*
Rhizome δ\(^{15}\)N (%)	1.14 ± 0.64 A*	-0.31 ± 0.08 A*	-0.19 ± 0.11 A*	3.02 ± 0.23 A*
Root δ\(^{15}\)N (%)	1.92 ± 0.66 A*	0.13 ± 0.03 A*	0.96 ± 0.93 A*	3.51 ± 0.48 A*
Leaf δ\(^{37}\)S (%)	16.79 ± 0.28 A	15.33 ± 0.74 A	16.27 ± 0.64 A	15.55 ± 0.89 A
Rhizome δ\(^{37}\)S (%)	10.17 ± 1.76 A*	8.08 ± 0.49 A*	9.37 ± 1.79 A*	10.57 ± 1.53 A*
Root δ\(^{37}\)S (%)	10.55 ± 2.57 A	11.69 ± 1.50 A	11.99 ± 2.63 A	9.64 ± 2.75 A
Leaf Feasac AVS (%)	9.51 ± 1.13	14.96 ± 0.70	9.77 ± 1.67	13.07 ± 1.82
Rhizome Feasac AVS (%)	25.41 ± 5.20	32.85 ± 1.46	26.87 ± 3.77	28.10 ± 5.45
Root Feasac AVS (%)	28.84 ± 5.60	27.10 ± 1.60	16.41 ± 1.07	30.80 ± 5.80
Leaf Feasac CRS (%)	8.11 ± 0.63	11.43 ± 2.01	8.30 ± 1.73	10.37 ± 0.83
Rhizome Feasac CRS (%)	21.68 ± 5.84	23.26 ± 2.05	22.80 ± 8.98	22.28 ± 5.89
Root Feasac CRS (%)	20.18 ± 7.26	20.54 ± 3.53	13.89 ± 1.73	24.76 ± 6.58
Table 3

Metabolite	Source of variability	df	MS	F	p-value
	Stress-Associated				
L-arginine	Station	1	7.546	10.024	0.001
	Season	1	0.057	0.081	ns
	Station × Season	1	0.244	0.349	ns
L-proline	Station	1	8.716	14.143	**
	Season	1	0.316	0.533	ns
	Station × Season	1	0.120	0.195	ns
L-ornithine	Station	1	9.529	16.363	***
	Season	1	0.091	0.067	ns
	Station × Season	1	0.065	0.077	ns
Putrescine	Station	1	12.605	34.869	***
	Season	1	0.805	2.486	ns
	Station × Season	1	0.018	0.051	ns
3,4-dihydroxybenzoic acid	Station	1	11.107	54.301	***
	Season	1	1.472	4.588	ns
	Station × Season	1	1.386	4.319	ns
Cinnamic acid	Station	1	14.593	55.525	***
	Season	1	0.094	0.016	ns
	Station × Season	1	0.041	0.149	ns
2-oxoglutaric acid	Station	1	16.179	71.875	***
	Season	1	0.002	0.019	ns
	Station × Season	1	0.002	0.010	ns
Stearic acid	Station	1	12.899	107.759	***
	Season	1	0.346	2.372	ns
	Station × Season	1	0.601	4.388	ns
Growth-Associated	Station	1	17.206	179.368	***
	Season	1	0.123	1.139	ns
	Station × Season	1	0.070	0.682	ns
3-galactosyl	Station	1	16.476	116.642	***
	Season	1	0.141	0.984	ns
	Station × Season	1	0.003	0.576	ns
myo-Inositol	Station	1	15.399	89.854	***
	Season	1	0.073	0.531	ns
	Station × Season	1	0.003	0.005	ns
2-hexosamine	Station	1	12.705	266.720	***
	Season	1	0.072	1.052	ns
	Station × Season	1	0.076	1.082	ns
Tetrazosane	Station	1	18.851	135.093	***
	Season	1	0.001	0.009	ns
	Station × Season	1	0.152	1.229	ns
Stigmasteral	Station	1	16.081	113.680	***
	Season	1	0.002	0.040	ns
	Station × Season	1	0.001	0.013	ns
Catechin	Station	1	14.677	54.787	***
	Season	1	0.203	1.232	ns
	Station × Season	1	0.046	0.185	ns
alpha-Tocopherol	Station	1	14.357	56.831	***
	Season	1	0.027	0.096	ns
	Station × Season	1	0.098	0.340	ns

Metabolite	Source of variability	df	MS	F	p-value
	Stress-Associated				
	Growth-Associated				

ns = not significant
* p < 0.05
** p < 0.01
*** p < 0.001
Table 4

Metabolites correlated with horizontal rhizome production	N	Spearman’s rho Correlation coefficient	Sig. (1-tailed)	Sig. (2-tailed)
Growth				
Sucrose	20	0.453	*	*
Fructose	20	0.577	**	**
myo-Inositol	20	0.647	**	**
Heptacosane	20	0.620	**	**
Tetracosane	20	0.368	ns	ns
Stigmasterol	20	0.562	**	**
Catechin	20	0.289	ns	ns
alpha-Tocopherol	20	0.525	**	*
Stress				
L-alanine	20	-0.460	*	*
L-serine	20	-0.439	*	ns
L-proline	20	-0.316	ns	ns
Putrescine	20	-0.624	**	**
L-ornithine	20	-0.412	*	ns
3,4-Dihydroxybenzoic acid	20	-0.430	*	ns
Cinnamic acid	20	-0.400	*	ns
2-Oxoglutaric acid	20	0.510	*	*
Stearic acid	20	0.071	ns	ns

ns not significant

* p < 0.05.

** p < 0.01.