15 years of PhosphoSitePlus®: integrating post-translationally modified sites, disease variants and isoforms

Peter V. Hornbeck1,*, Jon M. Kornhauser1, Vaughan Latham1, Beth Murray1, Vidhisha Nandhikonda1, Alex Nord2, Elżbieta Skrzypek1, Travis Wheeler2, Bin Zhang1 and Florian Gnad1,*

1Department of Bioinformatics and Computational Biology, Cell Signaling Technology Inc., Danvers, MA, USA and 2University of Montana, Missoula, MT, USA

Received October 11, 2018; Revised October 26, 2018; Editorial Decision October 29, 2018; Accepted November 09, 2018

ABSTRACT

For 15 years the mission of PhosphoSitePlus® (PSP, https://www.phosphosite.org) has been to provide comprehensive information and tools for the study of mammalian post-translational modifications (PTMs). The number of unique PTMs in PSP is now more than 450 000 from over 22 000 articles and thousands of MS datasets. The most important areas of growth in PSP are in disease and isoform informatics. Germline mutations associated with inherited diseases and somatic cancer mutations have been added to the database and can now be viewed along with PTMs and associated quantitative information on novel 'lollipop' plots. These plots enable researchers to interactively visualize the overlap between disease variants and PTMs, and to identify mutations that may alter phenotypes by rewiring signaling networks. We are expanding the sequence space to include over 30 000 human and mouse isoforms to enable researchers to explore the important but understudied biology of isoforms. This represents a necessary expansion of sequence space to accommodate the growing precision and depth of coverage enabled by ongoing advances in mass spectrometry. Isoforms are aligned using a new algorithm. Exploring the worlds of PTMs and disease mutations in the entire isoform space will hopefully lead to new biomarkers, therapeutic targets, and insights into isoform biology.

INTRODUCTION

Protein post-translational modifications (PTMs) are enzyme-catalyzed covalent additions to side-chains of amino acids of proteins (1). The highly dynamic process of post-translational modification within a cell forms a complex and ever-changing nexus of protein modifications that respond to autonomous and exogenous signals. Dynamic networks of PTMs regulate the fundamental processes of life including transcription, metabolism and cell division. The central role that PTMs play in cellular signaling has made it essential to have resources that provide researchers with accurate and comprehensive information about PTMs. Such resources need to include not only an accurate syllabary of the modification sites and surrounding sequences across species, but also the upstream and downstream biological processes and molecular functions that are impacted by the modification state of the post-translationally modifiable site.

PhosphoSitePlus® (PSP, https://www.phosphosite.org) is such a resource. It is focused on the three most commonly studied organisms in biomedical research: human, mouse and rat. Information about experimentally observed PTMs, manually curated by expert scientists, includes upstream regulation by treatments, ligands, and enzymes, and downstream regulation of molecular, cellular and biological consequences controlled by the PTM (2).

While there are over 400 known PTMs (3), the major classes of modifications that are curated into PSP include those that are most widely studied in the regulation of intracellular signaling: phosphorylation of serine, threonine and tyrosine; ubiquitylation and ubiquitin-like modifications of lysine; acetylation of lysine (e.g. acetylation and succinylation); and three distinct types of methylation of lysine (mono-, di- or trimethyl-lysine) and on arginine (dimethyl [asymmetric or symmetric], or monomethyl-
Table 1. Total number of post-translationally modified site groups in PSP: 2015 versus 2018

Modification type	2015	2018	fold-increase
Phosphorylation			
Serine	144 899	175 101	1.21
Threonine	61 654	72 486	1.18
Tyrosine	41 273	46 310	1.12
Ubiquityl-Lys	51 238	77 372	1.51
Acetyl-Lys	27 660	38 387	1.39
Methylation			
Monomethyl-Arg	5000	15 191	3.04
Dimethyl-Arg	2556	2860	1.12
Trimethyl-Lys	321	343	1.07
Sumoyl-Lys	816	8546	10.47
Succinyl-Lys	0	4627	
N-glyco-Asn	2118	2118	1.00
O-galNAc-Ser/Thr	1393	1726	1.24
O-glcNAc-Ser/Thr	321	343	1.07
Total sites:	338 948	451 453	1.33

arginine). These PTMs are dynamically regulated in an emergently complex and coordinated fashion by cellular enzymes that add or remove them from proteins. Regulatory PTMs control cellular processes, molecular functions, or changes in subcellular localization. Each of these modification types can co-occur within close proximity, or overlapping with, each other on the same protein, significantly modifying the biological meaning of each PTM alone (4).

The significant impact of PTM events on cell functions and processes is very evident from their involvement in diseases. Perturbed signaling is the most common cause of uncontrolled cancer-triggering cell growth and proliferation, and other disease-associated cellular malfunctions. Recent advances in next-generation sequencing technologies set the stage for gigantic initiatives such as The Cancer Genome Atlas (TCGA) (5) to profile large numbers of tumors, or the 1000 Genomes project (6) to catalog human genetic variations. Analyses of these data have shown that transferases, including kinases (7) and epigenetic regulators (8), are amongst the most commonly mutated proteins in disease. However, to fully comprehend the interplay between DNA mutations and pathological phenotypes, the integration of genomic with proteomic data is required (9).

The goal of many of the new features of PhosphoSitePlus is to provide information and visualization tools that may enable researchers to identify potentially functional sites and help distinguish sites that regulate pathogenesis from sites of lesser biological consequence. Multiple types of evidence in PSP can help identify functionally important sites including: the evolutionary conservation of a modification site (10,11); the frequency with which a PTM has been observed in unbiased tandem mass spectrometry (MS2) experiments, which correlates with the conservation of the site (12); and the intersection between PTMs and disease-associated missense mutations, which may provide a framework for interpreting key signaling networks and associated PTMs that are perturbed by pathogenic mutations.

CONTENT GROWTH AND CHANGES SINCE 2015

Statistics: sites, organisms, articles, journals, curation and disease mutations

Site statistics. The total number of modification site groups (homologous sites across all species are counted just once) curated into PSP as of September 2018 is 451,453, up 30% from 2015 (Table 1). While phosphoryl, ubiquityl and acetyl represent over 90% of the modification types in PSP (65%, 17% and 8%, respectively), the largest increases in the proportion of sites curated over last three years have been sumoyl, monomethyl and ubiquityl (10-fold, 3-fold and 1.5-fold increases, respectively).

Organisms. PSP is focused on the three most commonly studied species in biomedical research, human, mouse and rat. These organisms account for 63.9%, 27.2% and 8.6% of the sites curated into PSP. While 23 other species are represented in PSP including 15 mammals, three birds, and one each of Asteroidea, ray, insect and amphibian, they together constitute just 0.3% of the total sites aggregated in PSP.

Protein groups: proteins and isoforms. The sequence space of PSP is composed of 56,820 protein sequences contained within 22,944 protein groups. Of these groups, 2532 have no associated PTMs in PSP. When the new Mirage sequence alignment algorithm (https://github.com/TravisWheelerLab/Mirage) is in place (discussed below in the ‘Future Directions’ section), sequences will be synchronized with UniProtKB/Swiss-Prot (13) quarterly. Because of the provisional nature of TrEMBL sequences, including some that cannot be explained by in-frame or out-of-frame sequences, most will be excluded from PSP. Previously, individual sequences were updated as needed, on a daily or weekly basis, a process that is untenable for efficient high throughput curation.

As of September 2018, there are only 6445 human and mouse isoforms in PSP from 4206 protein groups, a number that is adequate to account for all MS2 peptides heretofore curated into PSP. We are in the process of importing all human and mouse UniProtKB/Swiss-Prot isoforms into PSP - this includes 22,418 human and 8743 mouse isoforms from 10,644 protein groups. The human and mouse isoforms will be aligned using the Mirage multiple sequence alignment (MSA) software package as described in the ‘Future Directions’ below.
Articles and journals curated into PSP. The total number of articles curated into PSP is 22,333 (September 2018), including 22,075 articles describing low-throughput characterization (LTP) of PTMs, and 258 that used high throughput (HTP) mass spectrometry to identify PTMs. Over the last three years, 4201 articles, 94 of which report HTP data, were curated into PSP. These articles are from 439 separate journals and, as in all previous periods, more papers were curated from the Journal of Biological Chemistry than any other (455 journals, or 11%).

Open access journals (OAJ) are trending as the fastest growing sector of articles being curated into PSP. Six years ago, no OAJs were in the top 5, while in the 2015–2018 period, two OAJs are in this group: Oncotarget and PLoS One. They have risen to positions 2 and 3, respectively, with 382 and 285 papers each, for a total of 16%. Positions 4 and 5 are held by Oncogene and Proc. Natl. Acad. Sci. U.S.A., with 241 and 181, for a total of 10% of the papers curated in the last 3 years.

External links. A link has been added in the ‘Cross-references’ section of the Protein Information page to the cBioPortal for Cancer Genomics (cbioportal.org) (14,15), a resource enabling users to visualize and analyze large-scale cancer genomics datasets from sources including the TCGA Research Network (cancergenome.nih.gov).

Quantitative data. Curation of HTP records during the last three years has focused almost exclusively on datasets that include quantitative values for peptides/sites. A total of 79 quantitative HTP records have been curated into PSP to date.

Curation of data. Information from articles using LTP methodologies is manually curated via the curatorial interface. Metadata curated from LTP papers includes upstream and downstream regulatory information. The information in HTP site tables has been formatted manually prior to scripted submission of the peptides, sites and quantitative data to the database. Metadata from HTP submissions are manually curated.

Disease informatics. Proteins associated with inherited diseases have been retrieved from ClinVar (16), which lists 3265 proteins with missense mutations that are ‘pathogenic’ or ‘pathogenic/likely pathogenic’ in their July 2018 release.

Crosstalk between inherited disease mutations and post-translational modifications. Mutations that change the amino acid of a residue that is post-translationally modified can disrupt, or alter, the cellular signals that are relayed by that PTM. Such mutations, when they occur on or within 5 residues of the modified site, are called PTMVars (12), and include Class I variants which change the amino acid at the site of a PTM, and Class II variants, which occur within ±5 residues of the PTM. Both types can profoundly alter the signals that are relayed via that PTM. We have combined PTM site data from PSP with the germline missense mutations to give users another dimension in which to evaluate post-translational modifications.

Human germline missense mutations included in PSP as of autumn 2018 are from the UniProtKB Humsavar dataset (www.uniprot.org/docs/humsavar) and are updated monthly. The June 2018 release includes 30,191 disease variants; over 18,500 have been assigned dbSNP IDs. These are expressed on 25,232 human proteins and are associated with 3,000 inherited diseases and syndromes.

Systematic analysis showed that 420 genetic variants overlap with 402 PTM sites on 276 proteins. Table 2 lists 10 such PTM sites that have been mutated, but about which there appear to be no LTP publications that describe the biological activity of the modified site, but with which many HTP records are associated. Supplemental Table S1 lists 70 Class I mutations including 63 phosphorylation, 6 acetylation and 1 ubiquitylation sites. Table 1 summarizes the ten Class I PTMVars that have the greatest number of associated HTP but no LTP records. At the top of the list is phosphotyrosine 62 SHP-2: Tyr62, when mutated, is associated with Juvenile Myelomonocytic Leukemia (17) and Noonan Syndrome 1 (18). Five of these variants overlap with PTM sites. One, phospho-Y62, has been detected in 2,090 mass spectrometry analyses (Table 2) including 800 patient tumors: 36% are lung, 13% liver and 8% ovarian cancers.

In addition to SNPs that change the amino acids at PTM sites, 3,778 genetic variants occur in flanking regions (+/- five residues) of 4,147 PTM sites on 1,113 proteins. For example, phosphoglycerate mutase 2 (PGAM2) contains three SNPs (E89A, R90W, G97D) in the flanking sequence

| Table 2. Missense mutations that replace frequently modified residues |
|--------------------------|----------------|--------|--------|--------|--------|
| GENE | VAR | TYPE | LTP | HTP | DISEASE |
| PTPN11 | Y62D | ph | 0 | 2116 | Noonan syndrome 1, Familial |
| LDLR | Y82C | ph | 0 | 164 | Familial hypercholesterolemia |
| PKP2 | Y63C | ph | 0 | 112 | Ventricular dysplasia, arrhythmogenic |
| BTK | Y36C | ph | 0 | 111 | X-linked agammaglobulinemia |
| TUBB | Y22F | ph | 0 | 104 | Skin creases, circumferential |
| ACTC1 | Y16C | ph | 0 | 92 | Cardiomyopathy, hypertrophic |
| KRT10 | Y16D | ph | 0 | 79 | Epidermolysis hyperkeratosis |
| GNAS | K33N | ub | 0 | 47 | Pseudohypoparathyriodism |
| UFP3B | Y16D | ph | 0 | 38 | Mental retardation |
| HMGCL | K48N | ac | 0 | 45 | 3-hydroxy-3-methylglutaryl-CoA lyase deficiency |

GENE, HGNC gene names; VAR, germline disease missense mutations from Humsavar 20 June 2018, (www.uniprot.org/docs/humsavar); LTP, number of low-throughput references curated into PSP; HTP, number of high-throughput references curated into PSP; TYPE, modification type: PH (phosphorylation), AC (acetylation), UB (ubiquitylation); and DISEASE, associated disease from Humsavar.
of Y92, all of which have been associated with glycogen storage disease 10 (19). Phospho-Y92 has been reported in 2556 records, but no biological function has been attributed to it to our knowledge. Y92 and its surrounding sequence are parts of a substrate binding sequence in yeast (20), suggesting that the phosphorylation of Y92 in humans may reflect a mechanism that regulates substrate binding in PGAM2 throughout a substantial period of evolutionary time.

Somatic cancer mutations. Somatic cancer mutations used in PSP are derived from the 15 published TCGA datasets (5) which are listed in the ‘Cancer’ tab on the Protein Page (Fig 2C) and are available from cBioPortal (14,15). These datasets include 481 370 mutations from 4,440 tumors across 15 cancer types. The cancer types included are Leukemia (AML), Bladder (BLCA), Breast (BRCA), Colorectal (COADREAD), Glioblastoma (GBM), Head & Neck (HNSC), Kidney (KICH and KIRC), Lung (LUAD and LUSC), Ovarian (OV), Prostate (PRAD), Stomach (STAD), Thyroid (THCA) and Endometrial (UCEC).

Most of these are passenger mutations. We therefore selected only hotspot mutations detected in three or more tumors, since recurrent mutations are likely cancer-driving and present the most characteristic feature of oncoproteins (8,21). Notably, the number of tumors per TCGA cancer type varied from 65 (chromophobe renal cell carcinoma) to 817 (breast cancer). Thus, the selection of hotspot mutations may be biased towards cancer types with larger cohorts in the associated TCGA study. Overall, 62 of the 2700 hotspot mutations intersect with 64 PTM sites in 48 proteins. For example, 34 studies found evidence for phosphorylation of Raf1 on residue S257. A total of five tumors types showed a mutation of this residue. Similarly, we found interesting cases for potential oncogenic rewiring of signaling networks due to changes in kinase sequence motifs. Overall, 732 hotspot mutations reside in flanking regions of PTM sites. For example, three tumors show a mutation of growth factor receptor-bound protein 10 (GRB10) on residue T422. This mutation directly intersects with phospho-T422 and is also proximate to phospho-S418 and phospho-S426. All of these phosphosites have been detected in multiple studies, but no associated biological activity has been reported to our knowledge.

The germline and somatic nsSNPs included in PSP will change over time as additional disease associated mutations are discovered, as we understand with more clarity which mutations are closely linked to pathogenesis, and as we incorporate data from additional resources. For example, we may incorporate a subset of missense mutations from 15 additional cancer types in the TCGA PanCancer Atlas (22).

Performance, cloud migration and dynamic visualization. To improve the user experience, we optimized a number of queries and pre-calculated associated statistics for some expensive queries including the HTP and LTP counts. Query optimization speeded up single protein searches by a factor of 15. Now it takes an average of less than two seconds to retrieve information for a specified protein. The web application and database were moved to the cloud in 2018, making future upgrades and extensions more straightforward.
Figure 2. Find proteins in which missense mutations are associated with specific diseases or syndromes. (A) Disease query on the ‘Protein Sequence and Reference Search’ Page. (B) ‘Search Results’ lists proteins in which mutations are causally associated with the selected pathological state. Clicking on the protein selected in the ‘Search Results’ goes to (C) the ‘Protein Page’, where the ‘Protein Information’ section lists additional diseases or syndromes with associated links. The ‘Cancer’ tab opens a PSP page displaying statistics about the number of somatic mutations from TCGA observed for this protein.

Figure 3. Redesigned Site Tables. Site Tables are found in one of the five tabs on the Protein Page. The sites and sequences from the selected species are displayed sequentially down the page. Clicking on a sequence opens a dropdown window displaying the sequences of homologous sites across all members of the protein group. Additional columns for other species or isoforms can be added by selecting the checkboxes above the site table. Effects of the PTM site on biological processes or the protein itself are shown by clicking on the icon displayed after the site sequence. Blue icons to the right of the number of HTP records list site-specific antibodies available from Cell Signaling Technology.

Redesigned site tables

Site Tables have been moved to one of the five tabs on the Protein Page (Figure 3). Previously, sites from all species were shown in the Site Table. In the new version, only the sites from the selected species show up by default. PTM sites, their flanking sequences and LTP & HTP counts, are listed sequentially down the page. Residue numbers and flanking sequences are specific to the selected species, while the numbers in the LTP & HTP columns include the number of curated records for all orthologous members of a site group. Clicking on a sequence opens a dropdown window displaying the sequences of the homologous sites across all members of the protein group (Figure 3), allowing users to investigate conservation of the site and flanking sequence within a column instead of a row. Sequences from other species or isoforms can be displayed as additional columns via the checkboxes on top of the Site Table.

Additionally, effects of the PTM site on protein function or biological processes can be shown by clicking on the icon displayed after the sequence. These are also summarized in a separate ‘PTM Effects’ tab (Figure 3). As in previous iterations of PSP, blue icons to the right of the number of HTP records indicate antibodies specific to the site that are available from Cell Signaling Technology.

Interactive visualization of PTM sites

PTM sites are visualized in a dynamic and novel way: ‘lollipop plots’ allow users to interactively explore identified PTM sites along with quantitative data at the residue level (Figure 4). The horizontal axis of a lollipop plot describes residues and domain annotations from Pfam (25) for a given protein. A zoom feature allows users to focus on specific regions of interest. Clicking the ‘+’ button, using the mouse wheel/multi touch surface, or double-clicking on the plot can trigger the zooming in function. At a certain zoom level, the horizontal axis displays residue numbers and amino
Figure 4. Visualizing PTM sites in lollipop plots. The lollipop plot illustrates phosphorylation (blue), acetylation (green), ubiquitylation (brown) and other (gray) PTM sites on human SHP-2. The horizontal axis displays protein residues and domains, while the vertical axis reflects the number of HTP and LTP papers reporting specified PTM sites of SHP-2. Zooming in (via buttons or mouse) allows the illustration of corresponding amino acids. The plot also shows details about PTM sites (here: phospho-Y63) triggered by hovering the mouse over lollipops.

Adding disease mutations to lollipop plots

To visualize the proximity of PTM sites and disease variants, lollipop plots provide the option to add mutations to the visualization. Irrespective of their proximity to PTM sites, disease-associated SNPs can be included as purple squares (Figure 5A). An additional vertical axis reflects corresponding minor allele frequencies (MAFs) for these SNPs, if available. Hovering the mouse over SNPs provides detailed information about associated diseases. Analogously, somatic hotspot mutations from TCGA can be visualized in lollipop plots. These appear as red squares, and hovering the mouse over gives information about the mutation frequency in the combined panel of 15 published TCGA cancer types (Figure 5B). Adding TCGA mutations to the lollipop plot also yields an additional vertical axis, which reflects the number of associated tumors.

FUTURE DIRECTIONS AND DISCUSSION

Short term

Splice-aware multiple sequence alignment. Alternative isoform usage plays important roles in many biological processes (26,27). Splicing-factor alterations and aberrant isoform expression are implicated in a growing number of diseases including cancer (28). In order to support research into isoform regulation and expression, we are in the process of importing over 30,000 UniProtKB/Swiss-Prot human and mouse isoform sequences into PSP, and all must be accurately aligned with other members of the family. Standard multiple sequence alignment (MSA) tools are adequate for aligning paralogs and homologs, but not for the accurate alignment of multiple isoforms within a protein family.
Figure 5. Adding disease mutations to lollipop plots. (A) The lollipop plot displays PTM sites and disease-associated SNPs (purple squares) on human SHP-2. The inclusion of disease-associated SNPs yields an additional purple vertical axis reflecting the minor allele frequency (MAF), if available. Hovering the mouse over squares yields the display of further details about the disease SNP. (B) Analogously, hotspot mutations from TCGA can be visualized as red squares. In this case the additional vertical axis (red) reflects the total number of tumors having the specified mutation.

Protein families will be aligned separately using Mirage (29), a splice-aware MSA program that produces extremely accurate intra-species alignments. For example, Figure 6 compares alignments of eight isoforms of human ArgBP2 made with Clustal Ω (Figure 6A, 30) and Mirage (Figure 6B). Three isoforms in the Clustal alignment (isoforms 8, 9 and 11) are almost perfectly aligned; however, the remaining isoforms are mismatched at all residues. In contrast, there are no mismatches in the alignment produced by Mirage. It is anticipated that this change will significantly improve the accuracy and speed of the curation and annotation process.

Long term

Quantitative data viewer. We will build tools that will enable users to view quantitative MS2 data sets that have been curated into PSP. For example, we have explored visualizing large-scale quantitative data with Clustergrammer, a prototype interactive and web-accessible heat-map viewer (31), an example of which can be viewed here: https://maayanlab.github.io/cst_drug_treatment/lung_CL_phos_ratios_Y

Visualizing regulatory interactions. We will integrate a web visualization tool enabling users to visualize the PTM-centric regulatory data curated into PSP, including upstream and downstream network connections and molecular interactions regulated by changes in the state of specific post-translationally modified sites.

Prediction of upstream kinases and binding partners. We will integrate a kinase predictor into PSP that combines...
position-specific scoring matrices derived from position-specific scoring matrices (32) with the specificity profiles derived from the experimentally observed substrate motifs extracted from PSP.

DISCUSSION

While we feel that the addition of disease associated missense mutations opens up a fertile area for investigations into the possible rewiring of signaling pathways by single amino acid mutations, there are other explanations why a PTMVar may disrupt signaling networks. One of them is that the variant has altered protein stability, leading to its proteasomal degradation, or inhibiting its molecular interactions required for proper network connectivity (33,34). It would be valuable to include a score into PSP representing the effects of each missense mutation on protein stability in the future.

The inclusion of disease variants with post-translational modifications, and their visualization with interactive lollipop plots, provides the tools for exploring the intersection of mutations, PTMs, diseases and pathways. We hope that the integration of these multiple dimensions will promote novel hypotheses, advancing our understanding of pathogenesis in human disease.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.

ACKNOWLEDGEMENTS

We express our gratitude to Michael Comb for supporting this work since its inception. We thank Roberto Polakiewicz for helpful discussions and insights. We also thank our IT department, including John Giacalone, for their help. We further thank Claire Simpson for supporting analyses and Nick Fernandez with Clustergrammer.

FUNDING

National Institutes of Health [R43GM065768, R44AA014848m, R44CA126080 and U54- HL127624-01]. Funding for open access charge: Cell Signaling Technology.

Conflict of interest statement. None declared.

REFERENCES

1. Walsh,C.T., Garneau-Tsodikova,S. and Gatto,G.J. (2005) Protein Post-translational Modifications: The chemistry of proteome diversifications. *Angew. Chem. Int. Ed.*, 44, 7342–7372.
2. Hornbeck,P.V., Chabra,I., Kornhauser,J.M., Skrzypek,E. and Zhang,B. (2004) PhosphoSite: a bioinformatics resource dedicated to physiological protein phosphorylation. *Proteomics*, 4, 1551–1561.
3. Kibar,G.A., Baliban,R.C. and Floudas,C.A. (2011) Proteome-wide post-translational modification statistics: frequency analysis and curation of the swiss-prot database. *Sci. Rep.*, 1, 90.
4. Csizmok,V. and Forman-Kay,J.D. (2018) Complex regulatory mechanisms mediated by the interplay of multiple post-translational modifications. *Curr. Opin. Struct. Biol.*, 48, 58–67.
5. Hutter,C. and Zenklusen,J.C. (2018) The cancer genome Atlas: Creating lasting value beyond its data. *Cell*, 173, 283–285.
6. 1000 Genomes Project Consortium, Auton,A., Brooks,L.D., Durbin,R.M., Garrison,E.P., Kang,H.M., Korbel,J.O., Marchini,J.L., McCarthy,S., McVean,G.A. et al. (2015) A global reference for human genetic variation. *Nature*, 526, 68–74.
7. Sanchez-Vega,F., Mina,M., Armenia,J., Chatila,W.K., Luna,A., La,K.C., Dimitriadou,S., Liu,D.L., Kantheti,H.S., Saghafinia,S. et al. (2018) Oncogenic signaling pathways in the cancer genome atlas. *Cell*, 173, 321–337.
8. Gnad,F., Doll,S., Manning,G., Arnott,D. and Zhang,Z. (2015) Bioinformatics analysis of thousands of TCGA tumors to determine the involvement of epigenetic regulators in human cancer. *BMC Genomics*, 16, 55.
9. Yaffe,M.B. (2013) The scientific drunk and the Lamppost: Massive sequencing efforts in cancer discovery and treatment. *Sci. Signal.*, 6, pe13.
10. Gnad,F., Ren,S., Cox,J., Olsen,J.V., Macek,B., Oroshi,M. and Mann,M. (2007) PHOSIDA (phosphorylation site database): management, structural and evolutionary investigation, and prediction of phosphosites. *Genome Biol.*, 8, R250.
11. Gnad,F., Forner,F., Zielinska,D.F., Birney,E., Guinawarden,J. and Mann,M. (2010) Evolutionary constraints of phosphorylation in eukaryotes, prokaryotes, and mitochondria. *Mol. Cell Proteomics*, 9, 2642–2653.
12. Hornbeck,P.V., Zhang,B., Murray,B., Kornhauser,J.M., Latham,V. and Skrzypek,E. (2015) PhosphoSitePlus, 2014: mutations, PTMs and recallibrations. *Nucleic Acids Res.*, 43, D512–D520.
13. Bateman,A., Martin,M.J., O’Donovan,C., Magrane,M., Alpi,E., Antunes,R., Bely,B., Bingley,M., Bonilla,C., Britto,R. et al. (2017) UniProt: the universal protein knowledgebase. *Nucleic Acids Res.*, 45, D158–D169.
14. Cerami,E., Gao,J., Dogrusoz,U., Gross,B.E., Sumer,S.O., Aksoy,B.A., Jacobsen,A., Byrne,C.J., Heuer,M.L., Larsson,E. et al. (2012) The cBio cancer genomics portal: An open platform for exploring multidimensional cancer genomics data. *Cancer Discov.*, 2, 401–404.
15. Gao,J., Aksoy,B.A., Dogrusoz,U., Dresdner,G., Gross,B., Sumer,S.O., Sun,Y., Jacobsen,A., Sinha,R., Larsson,E. et al. (2013) Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal. *Sci. Signal.*, 6, pl1.
16. Landrum,M.J., Lee,J.M., Benson,M., Brown,G.R., Chao,C., Chitipiralla,S., Gu,B., Hurt,J., Hoffmann,D., Jang,W. et al. (2018) ClinVar: improving access to variant interpretations and supporting evidence. *Nucleic Acids Res.*, 46, D1062–D1067.
17. Tartaglia,M., Niemeyer,C.M., Fragale,A., Song,X., Buechner,J., Jung,A., Härlen,K., Hasle,H., Licht,J.D. and Gelb,B.D. (2003)
Somatic mutations in SHP-2 in juvenile myelomonocytic leukemia, myelodysplastic syndromes and acute myeloid leukemia. *Nat. Genet.*, 34, 148–150.

18. Pannone, L., Bocchinfuso, G., Flex, E., Rossi, C., Baldassarre, G., Lisewski, C., Pantaleoni, F., Consoli, F., Lepri, F., Magliozzi, M. et al. (2017) Structural, functional, and clinical characterization of a novel SHP-2 mutation cluster underlying Noonan syndrome. *Hum. Mutat.*, 38, 451–459.

19. Tsujino, S., Shanske, S., Sakoda, S., Fenichel, G. and DiMauro, S. (1993) The molecular genetic basis of muscle phosphoglycerate mutase (PGAM) deficiency. *Am. J. Hum. Genet.*, 52, 472–477.

20. Winn, S.I., Watson, H.C., Harkins, R.N. and Fothergill, L.A. (1981) Structure and activity of phosphoglycerate mutase. *Phil. Trans. R. Soc. Lond. B*, 293, 121–130.

21. Davoli, T., Xu, A.W., Mengwasser, K.E., Sack, L.M., Yoon, J.C., Park, P.J. and Elledge, S.J. (2013) Cumulative haploinsufficiency and triplosensitivity drive aneuropathy patterns and shape the cancer genome. *Cell*, 155, 948–962.

22. Hoadley, K.A., Yau, C., Hinoue, T., Wolf, D.M., Lazar, A.J., Drill, E., Shen, R., Taylor, A.M., Cherniack, A.D., Thorsness, V. et al. (2018) Cell-of-Origin patterns dominate the molecular classification of 10,000 tumors from 33 types of cancer. *Cell*, 173, 291–304.

23. Amberger, J.S., Bocchini, C.A., Schiettecatte, F., Scott, A.F. and Hamosh, A. (2015) OMIM.org: Online mendelian inheritance in man (OMIM®), an online catalog of human genes and genetic disorders. *Nucleic Acids Res.*, 31, D789–D798.

24. NCBI Resource Coordinators (2014) Database resources of the National Center for Biotechnology Information. *Nucleic Acids Res.*, 42, D7–D17.

25. Finn, R.D., Bateman, A., Clements, J., Coggill, P., Eberhardt, R.Y., Eddy, S.R., Heger, A., Hetherington, K., Holm, L., Mistry, J. et al. (2014) Pfam: the protein families database. *Nucleic Acids Res.*, 42, D222–D230.

26. Lee, Y. and Rio, D.C. (2015) Mechanisms and regulation of alternative Pre-mRNA splicing. *Annu. Rev. Biochem.*, 84, 291–323.

27. Merkin, J., Russell, C., Chen, P. and Burge, C.B. (2012) Evolutionary dynamics of gene and isoform regulation in mammalian tissues. *Science*, 338, 1593–1599.

28. Cieply, B. and Carstens, R.P. (2015) Functional roles of alternative splicing factors in human disease. *Wiley Interdiscip. Rev. RNA*, 6, 311–326.

29. Nord, A., Hornbeck, P., Carey, K. and Wheeler, T. (2018) Splice-Aware multiple sequence alignment of protein isoforms. *ACM-BCB*, 9, 200–210.

30. Sievers, F. and Higgins, D.G. (2014) Clustal omega. accurate alignment of very large numbers of sequences. In: Russell, D.J. (ed.) *Multiple Sequence Alignment Methods*, Methods in Molecular Biology. Humana Press, Totowa, pp. 105–116.

31. Fernandez, N.F., Gundersen, G.W., Rahman, A., Grimes, M.L., Rikova, K., Hornbeck, P. and Ma’ayan, A. (2017) Clustergrammer, a web-based heatmap visualization and analysis tool for high-dimensional biological data. *Sci. Data*, 4, 170151.

32. Obenauer, J.C., Cantley, L.C. and Yaffe, M.B. (2003) ScanSite 2.0: proteome-wide prediction of cell signaling interactions using short sequence motifs. *Nucleic Acids Res.*, 31, 3635–3641.

33. De Baets, G., Van Durme, J., Reumers, J., Maurer-Stroh, S., Vanhee, P., Dopazo, J., Schymkowitz, J. and Rousseau, F. (2012) SNPeffect 4.0: on-line prediction of molecular and structural effects of protein-coding variants. *Nucleic Acids Res.*, 40, D935–D939.

34. Zhang, Z., Miteva, M.A., Wang, L. and Alexov, E. (2012) Analyzing effects of naturally occurring missense mutations. *Comput. Math. Methods Med.*, 2012, 805827.