New Characterizations of Algebraic Regularity

Keqin Liu
Department of Mathematics
The University of British Columbia
Vancouver, BC
Canada, V6T 1Z2

May, 2017

Abstract
In this paper, we give new characterizations of algebraic regularity by using differential forms and difference quotients.

1 Introduction

In [2], we introduced the algebraic regularity on the quaternions by using a new generalization of Cauchy-Riemann system, and characterized the new generalization of Cauchy-Riemann system by using Fueter-operators. In this paper, we characterize the algebraic regularity on the quaternions by using differential forms and difference quotients.

Throughout this paper, we let $\mathcal{H} = \mathcal{R}e_1 \oplus \mathcal{R}e_2 \oplus \mathcal{R}e_3 \oplus \mathcal{R}e_4$ be the quaternions discovered by W. R. Hamilton in 1843, where \mathcal{R} is the real number field, e_1 is the identity of the real division associative algebra \mathcal{H}, and the multiplication among the remaining three elements in the \mathcal{R}-basis $\{e_1, e_2, e_3, e_4\}$ is defined by

$$e_2^2 = e_3^2 = e_4^2 = -e_1, \quad e_ie_j = -e_je_i = (-1)^{i+j+1}e_{9-i-j},$$

where $2 \leq i < j \leq 4$.

Recall that the algebraic regularity on the quaternions is defined in the following way:

Definition 1.1 Let U be an open subset of \mathcal{H}. We say that a quaternion-valued function $f : U \to \mathcal{H}$ is algebraic regular at $c = \sum_{i=1}^{4} c_i e_i \in U$ if f has two properties given below.
(i) There exist two C^1 real-valued functions $f_0 : \mathbb{R}^4 \to \mathbb{R}$ and $f_1 : \mathbb{R}^4 \to \mathbb{R}$ such that

$$f(x) = f_1(x_1, x_2, x_3, x_4)e_1 + \sum_{k=2}^{4} x_k f_0(x_1, x_2, x_3, x_4)e_k$$ \hspace{1cm} (1)$$

for all $x = \sum_{i=1}^{4} x_i e_i \in U$.

(ii) The following equations hold at $(c_1, c_2, c_3, c_4) \in \mathbb{R}^4$:

$$\frac{\partial f_1}{\partial x_1} = f_0 + x_2 \frac{\partial f_0}{\partial x_2} + x_3 \frac{\partial f_0}{\partial x_3} + x_4 \frac{\partial f_0}{\partial x_4},$$ \hspace{1cm} (2)$$

$$\frac{\partial f_1}{\partial x_i} = -x_i \frac{\partial f_0}{\partial x_1}, \quad x_i \frac{\partial f_0}{\partial x_j} = x_j \frac{\partial f_0}{\partial x_i},$$ \hspace{1cm} (3)$$

where $2 \leq i, j \leq 4$ and $i \neq j$.

We say that $f : U \to \mathbb{H}$ is an algebraic regular function on U if f is algebraic regular at every point of U.

2 Characterizing Algebraic Regularity by Differential Forms

Let U be an open subset of the quaternion \mathbb{H}. A quaternion-valued function $f : U \to \mathbb{H}$ has the form

$$f(x) = f \left(\sum_{k=1}^{4} x_k e_k \right) = \sum_{k=1}^{4} f_k(x_1, x_2, x_3, x_4)e_k,$$ \hspace{1cm} (4)$$

where $x = \sum_{k=1}^{4} x_k e_k \in U$, $x_1, x_2, x_3, x_4 \in \mathbb{R}$ and $f_k(x_1, x_2, x_3, x_4)$ is a real-valued function of four real variables x_1, x_2, x_3 and x_4. The quaternion-valued function $f : U \to \mathbb{H}$ given by (4) is said to be smooth (or C^1) if the real-valued function $f_k(x_1, x_2, x_3, x_4)$ is smooth (or C^1) for $1 \leq k \leq 4$. The alternate notations for the real-value function $f_k(x_1, x_2, x_3, x_4)$ are given as follows

$$f_k(x_1, x_2, x_3, x_4) = f_k(x) = f_k(x_1 e_1 + x_i e_i + x_j e_j + x_{9-i-j} e_{9-i-j}),$$

where $x = \sum_{k=1}^{4} x_k e_k$ and $2 \leq i \neq j \leq 4$.

For $1 \leq i \leq 4$, we define $dx^i \in Hom_{\mathbb{R}}(\mathbb{H}, \mathbb{R})$ by

$$(dx^i)(q_1 e_1 + q_2 e_2 + q_3 e_3 + q_4 e_4) := q_i,$$
where \(q_i \in \mathbb{R} \) for \(1 \leq i \leq 4 \). Clearly, \(\{dx^1, dx^2, dx^3, dx^4\} \) is a basis for the real vector space \(\text{Hom}_\mathbb{R}(\mathcal{H}, \mathbb{R}) \).

A **quaternion-valued** \(m \)-form on an open subset \(U \) of \(\mathcal{H} \) is an expression of the form

\[
\alpha = \sum_{1 \leq i_1, \ldots, i_m \leq 4} f_{i_1, \ldots, i_m}(x) \, dx^{i_1} \wedge dx^{i_2} \wedge \cdots \wedge dx^{i_m}, \tag{5}
\]

where \(f_{i_1, \ldots, i_m}(x) : U \to \mathcal{H} \) is a smooth quaternion-valued function on \(U \), and \(dx^{i_1} \wedge dx^{i_2} \wedge \cdots \wedge dx^{i_m} \) is the ordinary alternating \(\mathbb{R} \)-multilinear map from \(\mathcal{H} \times \cdots \times \mathcal{H} \) to \(\mathbb{R} \). By (5), a quaternion-valued \(0 \)-form on an open subset \(U \) of \(\mathcal{H} \) is a quaternion-valued function defined on \(U \). The smooth quaternion-valued functions \(f_{i_1, \ldots, i_m}(x) \) are called the **coefficients** of \(\alpha \). We say that \(\alpha \) is a **real-valued** \(m \)-form if all of its coefficients are smooth real-valued functions.

The **exterior product** of a quaternion-valued \(m \)-form \(\alpha \) given by (5) and a quaternion-valued \(n \)-form given by

\[
\beta = \sum_{1 \leq j_1, \ldots, j_n \leq 4} g_{j_1, \ldots, j_n}(x) \, dx^{j_1} \wedge dx^{j_2} \wedge \cdots \wedge dx^{j_n}, \tag{6}
\]

is defined to be the quaternion-valued \((m+n) \)-form \(\alpha \wedge \beta \) which is given by:

\[
\sum_{1 \leq i_1, \ldots, i_m \leq 4} \sum_{1 \leq j_1, \ldots, j_n \leq 4} f_{i_1, \ldots, i_m}(x) g_{j_1, \ldots, j_n}(x) \, dx^{i_1} \wedge dx^{i_2} \wedge \cdots \wedge dx^{i_m} \wedge dx^{j_1} \wedge \cdots \wedge dx^{j_n}.
\]

Proposition 2.1 Let \(\alpha \) and \(\beta \) be quaternion-valued \(m \)-form \(\alpha \) given by (5) and a quaternion-valued \(n \)-form given by (6). If either \(\alpha \) or \(\beta \) is a real-valued form, then \(\alpha \wedge \beta = (-1)^{mn} \beta \wedge \alpha \).

If \(f : U \to U \) is a quaternion-valued 0-form given by \(f(x) = \sum_{i=1}^{4} f_i(x) e_i \) with the real-valued functions \(f_1(x), f_2(x), f_3(x) \) and \(f_4(x) \), we define the **differential** \(df \) of \(f \) to be the quaternion-valued 1-form on \(U \) given by

\[
\begin{align*}
df = & \frac{\partial f}{\partial x_1} \, dx^1 + \frac{\partial f}{\partial x_2} \, dx^2 + \frac{\partial f}{\partial x_3} \, dx^3 + \frac{\partial f}{\partial x_4} \, dx^4, \tag{7}
\end{align*}
\]

where \(\frac{\partial f}{\partial x_i} := \sum_{j=1}^{4} \frac{\partial f_j}{\partial x_i} e_j \) is a quaternion-valued function for \(1 \leq i \leq 4 \).
Proposition 2.2 If f and g are quaternion-valued 0-forms on an open subset U of \mathbb{H}, then
\begin{align*}
 d(f + g) &= df + dg, \quad \text{(8)} \\
 d(fg) &= f \wedge (dg) + (df) \wedge g, \quad \text{(9)} \\
 d(qf) &= q(df), \quad d(fq) = (df) q \quad \text{for } q \in \mathbb{H}. \quad \text{(10)}
\end{align*}

If α is a quaternion-valued m-form given by (5), we define $d\alpha$ is the quaternion-valued $(m + 1)$-form given by
\begin{equation}
 d\alpha := \sum_{1 \leq i_1, \ldots, i_m \leq 4} d(f_{i_1, \ldots, i_m}) \wedge dx^{i_1} \wedge dx^{i_2} \wedge \cdots \wedge dx^{i_m}. \quad \text{(11)}
\end{equation}

The operator d is called the **exterior differentiation**. The next proposition gives the basic properties of the exterior differentiation.

Proposition 2.3 (i) If $q \in \mathbb{H}$ and α, β are quaternion-valued m-forms, then
\[d(\alpha + \beta) = d(\alpha) + d(\beta), \quad d(q\alpha) = q \, d(\alpha) \quad \text{and} \quad d(\alpha q) = d(\alpha) q. \]

(ii) If α is a quaternion-valued m-form and β is a quaternion-valued n-form, then
\[d(\alpha \wedge \beta) = (d\alpha) \wedge \beta + (-1)^m \alpha \wedge (d\beta). \]

(iii) If α is a quaternion-valued m-form, then
\[d(d\alpha) = 0. \]

Following [3], we use Dq to denote the following quaternion-valued 3-form:
\begin{align*}
 Dq &:= e_1 dx^2 \wedge dx^3 \wedge dx^4 - e_2 dx^1 \wedge dx^3 \wedge dx^4 + e_3 dx^1 \wedge dx^2 \wedge dx^4 - e_4 dx^1 \wedge dx^2 \wedge dx^3 \\
 \text{or} \\
 Dq &:= e_1 dx^2 \wedge dx^3 \wedge dx^4 + \sum_{2 \leq i < j \leq 4} (-1)^{i+j} e_{9-i-j} dx^1 \wedge dx^i \wedge dx^j. \quad \text{(12)}
\end{align*}

Also, recall from [3] that left Fueter operator operators $D_L := \sum_{i=1}^{4} e_i \frac{\partial}{\partial x_i}$ and the right Fueter operator $D_R := \sum_{i=1}^{4} \left(\frac{\partial}{\partial x_i} \right) e_i$ are defined by
\begin{align*}
 D_L(f) := e_1 \left(\frac{\partial f}{\partial x_1} \right) + e_2 \left(\frac{\partial f}{\partial x_2} \right) + e_3 \left(\frac{\partial f}{\partial x_3} \right) + e_4 \left(\frac{\partial f}{\partial x_4} \right), \\
 D_R(f) := \left(\frac{\partial f}{\partial x_1} \right) e_1 + \left(\frac{\partial f}{\partial x_2} \right) e_2 + \left(\frac{\partial f}{\partial x_3} \right) e_3 + \left(\frac{\partial f}{\partial x_4} \right) e_4,
\end{align*}

where
\[\frac{\partial f}{\partial x_i} := \left(\frac{\partial f}{\partial x_i} \right) e_1 + \left(\frac{\partial f}{\partial x_i} \right) e_2 + \left(\frac{\partial f}{\partial x_i} \right) e_3 + \left(\frac{\partial f}{\partial x_i} \right) e_4 \quad \text{for } 1 \leq i \leq 4. \]
Proposition 2.4 If $f : U \to \mathcal{H}$ is a C^1 quaternion-valued function defined on an open subset of \mathcal{H}, then

$$D q \land df = -D_1(f) v \quad \text{and} \quad df \land D q = D_r(f) v,$$

where $v = dx^1 \land dx^2 \land dx^3 \land dx^4$ is the volume form.

We now introduce two more real-valued 3-forms $D_0 q$ and $D_1 q$ as follows:

$$D_0 q := (x_2 + x_3 + x_4) dx^2 \land dx^3 \land dx^4 - \sum_{2 \leq i < j \leq 4} (-1)^{i+j} x_{9-i-j} dx^1 \land dx^i \land dx^j; \quad (14)$$

$$D_1 q := dx^2 \land dx^3 \land dx^4 + \sum_{2 \leq i < j \leq 4} (-1)^{i+j} dx^1 \land dx^i \land dx^j; \quad (15)$$

The basic properties of the two real-valued 3-forms above are given in the following

Proposition 2.5 Let U be an open subset of \mathcal{H}. If f is a C^1 quaternion-valued function defined on U, then the following equations hold on U:

$$D_0 q \land df = -df \land D_0 q = \left(- (x_2 + x_3 + x_4) \frac{\partial f}{\partial x_1} + x_2 \frac{\partial f}{\partial x_2} + x_3 \frac{\partial f}{\partial x_3} + x_4 \frac{\partial f}{\partial x_4} \right) v, \quad (16)$$

$$D_1 q \land df = -df \land D_1 q = - \left(\frac{\partial f}{\partial x_1} + \frac{\partial f}{\partial x_2} + \frac{\partial f}{\partial x_3} + \frac{\partial f}{\partial x_4} \right) v, \quad (17)$$

where $v = dx^1 \land dx^2 \land dx^3 \land dx^4$ is the volume form.

Using Proposition 2.5, we have

Proposition 2.6 Let U be an open subset of \mathcal{H}. If $f : U \to \mathcal{H}$ is a function given by

$$f(x) = f_1(x_1, x_2, x_3, x_4)e_1 + \sum_{k=2}^{4} x_k f_0(x_1, x_2, x_3, x_4)e_k,$$

where $x = \sum_{i=1}^{4} x_i e_i \in U$ with $x_1, x_2, x_3, x_4 \in \mathcal{R}$, f_1 and f_0 are C^1 functions, then the following are equivalent:

(i) f is algebraic regular on U;
(ii) Both the equation
\[D q \wedge df + 2 D_0 q \wedge df_0 + 2 D_1 q \wedge df_1 = 0 \] (18)
and the equation
\[df \wedge D q + 2 df_0 \wedge D_0 q + 2 df_1 \wedge D_1 q = 0 \] (19)
hold on \(U \).

3 Characterizing Algebraic Regularity by Difference Quotients

Let \(f(x) = f_1(x_1, x_2, x_3, x_4)e_1 + \sum_{k=2}^{4} x_k f_0(x_1, x_2, x_3, x_4)e_k \) be a quaternion-valued function defined on an open subset \(U \) of \(\mathbb{H} \), where \(x = \sum_{i=1}^{4} x_i e_i \) with \(x_1, x_2, x_3, x_4 \in \mathbb{R} \) for \(1 \leq i \leq 4 \). For each \(c = \sum_{i=1}^{4} c_i e_i \) with \(c_1, c_2, c_3, c_4 \in \mathbb{R} \), we define six pure quaternion-valued functions on \(U \) as follows:

\[
\begin{align*}
f_{9-i-j}^c(x) &= [c_i f_0(c_1 e_1 + x_i e_i + c_j e_j + c_{9-i-j} e_{9-i-j}) + \\
&+ c_j f_0(c_1 e_1 + c_i e_i + x_j e_j + c_{9-i-j} e_{9-i-j})] e_{9-i-j} + \\
&- [(1)^{i+j} c_i f_0(x_1, c_2, c_3, c_4) + \\
&+ c_{9-i-j} f_0(c_1 e_1 + c_i e_i + x_j e_j + c_{9-i-j} e_{9-i-j})] e_j + \\
&+ [(1)^{i+j} c_j f_0(x_1, c_2, c_3, c_4) + \\
&- c_{9-i-j} f_0(c_1 e_1 + x_i e_i + c_j e_j + c_{9-i-j} e_{9-i-j})] e_i, \quad (20)
\end{align*}
\]

\[
\begin{align*}
f_{9-i-j}^{-c}(x) &= [c_i f_0(c_1 e_1 + x_i e_i + c_j e_j + c_{9-i-j} e_{9-i-j}) + \\
&+ c_j f_0(c_1 e_1 + c_i e_i + x_j e_j + c_{9-i-j} e_{9-i-j})] e_{9-i-j} + \\
&+ [(1)^{i+j} c_i f_0(x_1, c_2, c_3, c_4) + \\
&- c_{9-i-j} f_0(c_1 e_1 + c_i e_i + x_j e_j + c_{9-i-j} e_{9-i-j})] e_j + \\
&- [(1)^{i+j} c_j f_0(x_1, c_2, c_3, c_4) + \\
&+ c_{9-i-j} f_0(c_1 e_1 + x_i e_i + c_j e_j + c_{9-i-j} e_{9-i-j})] e_i, \quad (21)
\end{align*}
\]

where \(2 \leq i < j \leq 4 \).
In the proposition below, we characterize the algebraic regularity by the limits of a new kind of difference quotients which use the six pure quaternion-valued functions $f_i^c(x)$ and $f_i^e(x)$ with $i = 2, 3$ and 4.

Proposition 3.1 Let $f : U \to \mathcal{H}$ be a quaternion-valued function defined by

$$f(x) = f_1(x_1, x_2, x_3, x_4)e_1 + \sum_{i=2}^{4} x_i f_0(x_1, x_2, x_3, x_4)e_i,$$

where U is an open subset of \mathcal{H}, $x = \sum_{k=1}^{4} x_k e_k \in U$ with $x_1, x_2, x_3, x_4 \in \mathbb{R}$. Let

$$c = \sum_{k=1}^{4} c_k e_k \in U$$
and

$$\Delta q = \sum_{k=1}^{4} (\Delta q)_k e_k,$$

where $c_k, (\Delta q)_k \in \mathbb{R}$ for $1 \leq k \leq 4$. If $f_1(x_1, x_2, x_3, x_4)$ and $f_0(x_1, x_2, x_3, x_4)$ are C^1 functions, then the following are equivalent:

(i) f is algebraic regular at $x = c$;

(ii) $\lim_{\Delta q \to 0} \frac{(\Delta q)^{-1}}{\Delta q} \left\{ f(c + \Delta q) - f(c) + \sum_{i=2}^{4} \left[f_i^e \left(c + (\Delta q)_i \sum_{k=1}^{4} e_k \right) - f_i^c (c) \right] \right\}$ exists;

(iii) $\lim_{\Delta q \to 0} \left\{ f(c + \Delta q) - f(c) + \sum_{i=2}^{4} \left[f_i^c \left(c + (\Delta q)_i \sum_{k=1}^{4} c_k \right) - f_i^e (c) \right] \right\} (\Delta q)^{-1}$ exists.

Moreover, if one of the three coditions above holds, then both the limit in (ii) and the limit in (iii) equal to $\frac{\partial f}{\partial x_1}(c)$.

Based on Proposition 3.1, we call $\frac{\partial f}{\partial x_1}$ the **quaternion derivative** of an algebraic regular function f on an open subset U of \mathcal{H}. It is easy to check that if f is an algebraic regular function on an open subset U of \mathcal{H}, then its quaternion derivative $\frac{\partial f}{\partial x_1}$ is also an algebraic regular function on the open subset U.

References

[1] R. Fueter, *Die Funktionentheorie der Differentialgleichungen $\Delta u = 0$ and $\Delta^2 u = 0$ mit vier reellen Variablen*, Comment. Math. Helv. 7 (1935), 307-330
[2] K. Liu, *Algebraic Regularity over Quaternions and Regular Four-Manifolds*, arXiv:1511.08532

[3] A. Sudbery, *Quaternionic analysis*, Math. Proc. Camb. Phil. Soc. 85 (1979), 199-225