The T300A Crohn's disease risk polymorphism impairs function of the WD40 domain of ATG16L1

Citation
Boada-Romero, Emilio, Inmaculada Serramito-Gómez, María P. Sacristán, David L. Boone, Ramnik J. Xavier, and Felipe X. Pimentel-Muiños. 2016. “The T300A Crohn's disease risk polymorphism impairs function of the WD40 domain of ATG16L1.” Nature Communications 7 (1): 11821. doi:10.1038/ncomms11821. http://dx.doi.org/10.1038/ncomms11821.

Published Version
doi:10.1038/ncomms11821

Permanent link
http://nrs.harvard.edu/urn-3:HUL.InstRepos:27662060

Terms of Use
This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA

Share Your Story
The Harvard community has made this article openly available. Please share how this access benefits you. Submit a story.

Accessibility
A coding polymorphism of human ATG16L1 (rs2241880; T300A) increases the risk of Crohn’s disease and it has been shown to enhance susceptibility of ATG16L1 to caspase cleavage. Here we show that T300A also alters the ability of the C-terminal WD40-repeat domain of ATG16L1 to interact with an amino acid motif that recognizes this region. Such alteration impairs the unconventional autophagic activity of TMEM59, a transmembrane protein that contains the WD40 domain-binding motif, and disrupts its normal intracellular trafficking and its ability to engage ATG16L1 in response to bacterial infection. TMEM59-induced autophagy is blunted in cells expressing the fragments generated by caspase processing of the ATG16L1-T300A risk allele, whereas canonical autophagy remains unaffected. These results suggest that the T300A polymorphism alters the function of motif-containing molecules that engage ATG16L1 through the WD40 domain, either by influencing this interaction under non-stressful conditions or by inhibiting their downstream autophagic signalling after caspase-mediated cleavage.
Crohn’s disease (CD) is a complex genetic and multifactorial condition that involves inflammation of discontinuous areas of the small intestine and colon. The pathiology is initially episodic, but usually evolves to chronic and refractory states, causing severe complications that may require resective surgery. The underlying molecular causes of CD have remained elusive.

A number of genetic association studies have contributed to the identification of molecules and signalling pathways involved in the onset of this condition. Several coding risk polymorphisms identified in such studies correspond to molecules that mediate innate immunity and autophagy, suggesting a role for these processes in the disease.

Autophagy is an intracellular degradation pathway that helps maintain the metabolic homeostasis of the cell. A selective form of autophagy, termed xenophagy, plays an important role in innate immunity by promoting the elimination of invading microorganisms. Thus, different mechanisms mediate sequestration of infectious agents into autophagic vesicles that eventually fuse with lysosomes for degradation of their contents.

Recent work from our laboratory showed that the WDD is specifically recognized by a novel 19-amino acid element found in the intracellular domain of the transmembrane protein TMEM59. This activity requires four critical positions within the active element (Y266, E272, Y277 and L280) that define a novel motif able to bind the WDD (ref. 41). Such unconventional autophagic event participates in the LC3 labelling of single-membrane phagosomes containing Staphylococcus aureus, suggesting a role in the innate cellular response against invading microorganisms. The WDD of ATG16L1 has also been shown to recognize ubiquitin, an ability that might be common to functionally diverse WD40 domain folds.

Here we show that, under non-stressful conditions, unprocessed ATG16L1-T300A (hereafter ATG16L1-A300) has an intrinsic reduced ability to bind certain versions of the ATG16L1-binding motif that recognizes the WDD, an alteration that results in defective downstream autophagy, slow intracellular trafficking of motif-containing transmembrane molecules and reduced engagement of ATG16L1 in response to S. aureus infection.

Results

ATG16L1 WDD is required for TMEM59-induced autophagy. To evaluate the functional consequences of caspase-3-mediated processing of ATG16L1 on the activity of molecules that include a WDD-binding motif (for example, TMEM59), we reconstituted ATG16L1/C0 HCT116 cells with either intact ATG16L1, the N-terminal or C-terminal portions that result from caspase-3 processing, or both portions simultaneously. We then subjected the resulting cellular strains to TMEM59-induced autophagy or autophagy promoted by conventional stimuli. Interestingly, the ability of TMEM59 to induce lipiddation of co-transfected HA-LC3 was blocked by uncoupling of the N- and C-terminal domains of ATG16L1 (Fig. 1a). However, clearance of p62-HA remained unaltered in the same conditions (Supplementary Fig. 1a), suggesting that TMEM59-induced autophagy and the basal autophagic flux have different ATG16L1 domain requirements. The autophagic activity of TMEM59 in this setting was restricted to the functional motif that we previously identified in its intracellular domain, since it was retained by a deleted version of the protein exclusively harbouring the 19-amino acid minimal active peptide (TMEM59-L282) and blocked by mutation of the four critical residues to alanine (4M version, Fig. 1b). Inhibition of TMEM59-induced autophagy by split ATG16L1 was also detected by measuring the translocation of co-transfected green fluorescent protein (GFP)-LC3 (Fig. 1c) or endogenous LC3 (Supplementary Fig. 1b) to a punctated pattern. Notably, basal and rapamycin-induced autophagy proceeded normally provided that the N-terminal portion of ATG16L1 was present, regardless of whether or not it was physically connected to the C-terminal region (Fig. 1d–f). This is consistent with previous reports showing that the N-terminal domain of ATG16L1 suffices to sustain basal autophagy in mammalian cells. Taken together, these results argue that ATG16L1 includes two functional modules: an N-terminal effector region located, thus promoting a more efficient lysosomal targeting of these vesicles. This activity requires four critical positions within the active element (Y266, E272, Y277 and L280) that define a novel motif able to bind the WDD (ref. 41). Such unconventional autophagic event participates in the LC3 labelling of single-membrane phagosomes containing Staphylococcus aureus, suggesting a role in the innate cellular response against invading microorganisms. The WDD of ATG16L1 has also been shown to recognize ubiquitin, an ability that might be common to functionally diverse WD40 domain folds.

How the T300A mutation alters the biology of ATG16L1 has remained unclear. Existing evidence argues that it does not impair, or has relatively minor effects, on basal and starvation-induced autophagy. Instead, it appears to derail some of the alternative functions carried out by ATG16L1, such as maintenance of the secretory compartment in intestinal Paneth and goblet cells, inflammation control and xenophagy. Recently, it has been shown that T300A increases susceptibility of ATG16L1 to caspase-3 cleavage in a neighboring consensus site, leading to decreased levels of full-length ATG16L1 in the context of a stressful situation and, consequently, dysfunctional autophagy and xenophagy.

ATG16L1 mediates autophagy by assembling the molecular complex that lipiddates LC3. In this complex, the dimer ATG5-ATG12 holds the lipiddating activity, whereas ATG16L1 defines the site where LC3 will be lipiddatted. ATG16L1 includes a C-terminal domain formed by seven WD40-type repetitions (the WD domain, WDD; residues 320–607), the function of which has remained unclear. This region is absent in yeast Atg16, indicating that it is not necessary for the basic functions of autophagy in unicellular organisms. In fact, it appears to be irrelevant for basal or starvation-induced autophagy in mammalian cells, as ATG16L1-deficient cells fully recover these canonical autophagic activities when restored with a version of ATG16L1 that lacks the WD40 repeats. Such observation is in line with the fact that it is not necessary for the basic functions of autophagy in unicellular organisms. In fact, it appears to be irrelevant for basal or starvation-induced autophagy in mammalian cells, as ATG16L1-deficient cells fully recover these canonical autophagic activities when restored with a version of ATG16L1 that lacks the WD40 repeats.

Recent work from our laboratory showed that the WDD is specifically recognized by a novel 19-amino acid element found in the intracellular domain of the transmembrane protein TMEM59. This activity requires four critical positions within the active element (Y266, E272, Y277 and L280) that define a novel motif able to bind the WDD (ref. 41). Such unconventional autophagic event participates in the LC3 labelling of single-membrane phagosomes containing Staphylococcus aureus, suggesting a role in the innate cellular response against invading microorganisms. The WDD of ATG16L1 has also been shown to recognize ubiquitin, an ability that might be common to functionally diverse WD40 domain folds.

How the T300A mutation alters the biology of ATG16L1 has remained unclear. Existing evidence argues that it does not impair, or has relatively minor effects, on basal and starvation-induced autophagy. Instead, it appears to derail some of the alternative functions carried out by ATG16L1, such as maintenance of the secretory compartment in intestinal Paneth and goblet cells, inflammation control and xenophagy. Recently, it has been shown that T300A increases susceptibility of ATG16L1 to caspase-3 cleavage in a neighboring consensus site, leading to decreased levels of full-length ATG16L1 in the context of a stressful situation and, consequently, dysfunctional autophagy and xenophagy.

Here we show that, under non-stressful conditions, unprocessed ATG16L1-T300A (hereafter ATG16L1-A300) has an intrinsic reduced ability to bind certain versions of the ATG16L1-binding motif that recognizes the WDD, an alteration that results in defective downstream autophagy, slow intracellular trafficking of motif-containing transmembrane molecules and reduced engagement of ATG16L1 in response to S. aureus infection.
that mediates all autophagic activities of the protein, and a C-terminal WD40 domain that acts as a docking site for upstream inducers of unconventional autophagy, such as TMEM59. In addition, these data suggest that caspase-cleaved ATG16L1 may preferentially impair the autophagic activity of molecules that engage ATG16L1 through the WDD.

ATG16L1–A300 impairs TMEM59-induced autophagy. Recent reports have shown that enhanced processing of ATG16L1–A300 by caspase 3 occurs in response to stressful inducers of autophagy, such as bacterial infection or metabolic stress.46,47 However, given that position 300 localizes in the vicinity of the WD40 repeats (residues 320–607), we wondered whether the A300 risk polymorphism might influence the unconventional autophagic activities mediated by the WDD under homeostatic conditions with minimal caspase 3 activity. Using ATG16L1−/− HCT116 cells restored with T300 or A300 forms of ATG16L1 (Supplementary Fig. 2a), we found that TMEM59-induced autophagy was impaired in cells expressing the A300 allele, both at the level of LC3 translocation to a vesiculated pattern (Fig. 2a; Supplementary Fig. 2b) and, less prominently, by measuring LC3 lipidation (Fig. 2b). Again, the levels of co-transfected p62-HA remained unchanged (Supplementary Fig. 2a), suggesting that the autophagic activity of TMEM59 that becomes derailed by ATG16L1–A300 is different from the basal autophagic flux. Consistently, no alterations in basal or rapamycin-induced autophagy were detected in cells harbouring basal autophagic flux. Consistently, no alterations in basal or rapamycin-induced autophagy were detected in cells harbouring the risk allele (Supplementary Fig. 2d–f). Importantly, the decreased autophagic activity of TMEM59 caused by ATG16L1-A300 occurred even in the presence of a pan-caspase inhibitor (Fig. 2c) that blocks caspase-3 activation and ATG16L1 cleavage (Fig. 2c) that blocks caspase-3 activation and ATG16L1 cleavage (Supplementary Fig. 3a). In addition, cells expressing a mutated version of ATG16L1-A300 induced by tumour necrosis factor (TNF; Supplementary Fig. 3a).

Figure 1 | Impaired TMEM59-induced autophagy in the presence of ATG16L1 fragments resulting from caspase-3-mediated cleavage. (a,b) Immunoblot analysis of HA-LC3 lipidation induced by TMEM59 overexpression for 36 h in ATG16L1−/− HCT116 cells restored with full-length HA-ATG16L1 (FL), both ATG16L1 fragments (Nt: 1–299; Ct: 300–607) or irrelevant vector (−). TMEM59−Δ282 is the largest C-terminal deletion that retains the autophagic potential of the molecule. 4M designates a form of TMEM59 where the four residues that are essential for its autophagic activity are mutated to alanine. (c) Quantification of GFP-LC3 punctae per transfected cell induced by TMEM59 overexpression for 36 h in the same cell lines as in a and b. Shown are mean values ± s.d. (n = 50 cells, **P < 0.001 Student’s t-test). (d,e) Immunoblot analysis of endogenous LC3 lipidation and p62 expression levels induced in the indicated restored ATG16L1−/− HCT116 cells by treatment with E64d/Pepstatin (10 µg ml−1 each, 8 h) or bafilomycin (50 nM, 8 h) ± rapamycin (2 µg ml−1, 8 h). (f) Quantification of endogenous LC3 punctae per cell induced by the indicated treatments (treatment conditions were as in d and e); NS, not significant, P > 0.05 Student’s t-test). All results shown in this figure are representative of at least two repetitions.
(Supplementary Fig. 2a) that is insensitive to caspase cleavage (ATG16L1-A300-D299A; Supplementary Fig. 3b) displayed similar autophagic defects compared with caspase-sensitive ATG16L1-A300 (Fig. 2d). Control experiments showed no overt influence of the double mutant on basal or nutritional autophagy (Supplementary Fig. 2d–f). These results indicate that the autophagic defects displayed by TMEM59 in the presence of the risk allele do not require caspase processing of ATG16L1-A300.

Our previous studies in a variety of cell lines indicated that the autophagic activity of TMEM59 is directed against the same intracellular vesicles where this protein is located and this was also the case in HCT116 cells (Fig. 2e). In a series of confocal quantification experiments, we found that the vesicles harbouring TMEM59-GFP were decorated on average with less monomeric RFP (mRFP)-LC3 in HCT116 cells expressing the risk allele compared with those restored with the T300 form (Fig. 2e,f). These results indicate that ATG16L1-A300 impairs the ability of...
TMEM59 to induce the autophagic labelling of its own vesicular compartment.

The A300 allele alters TMEM59 intracellular trafficking. Unexpectedly, we observed that the intracellular trafficking of TMEM59 was altered in cells expressing the A300 allele. Thus, these cells exhibited an increased number of TMEM59-GFP-positive vacuoles compared with those expressing ATG16L1-T300, both in HCT116 cells engineered to harbour the T300A mutation (knock-in (KI)-HCT116-A300 (ref. 45); Fig. 3a) and in ATG16L1−/− HCT116 cells restored with HA-ATG16L1-A300 (Fig. 3b). This is likely a loss-of-function phenotype, since

Figure 3 | Altered intracellular trafficking of TMEM59 in cells expressing ATG16L1-A300. (a,b) Quantification of the number of TMEM59-GFP-positive vesicles per cell 24 h after transfection in parental (T) and ATG16L1-A300 knock-in (KI); HCT116 cell lines (a, n = 40 cells), or in ATG16L1−/− HCT116 cells restored with T300 (T) or A300 (A) forms of ATG16L1, or irrelevant vector (−), (b, n = 60 cells). Shown are scatter plots where each event represents the score obtained for one cell and the thick horizontal line indicates the mean value (***P < 0.001 Student’s t-test). The inset shows representative confocal pictures; scale bars represent 5 μm. (c,d) Quantification of the number of intracellular vesicles containing aggregated, endocytosed CD16:7-263-281 chimera per cell after aggregation with anti-CD16 antibodies in the cellular strains shown in a and b, respectively (c, n = 20 cells; d, n = 30 cells). ***P < 0.001 Student’s t-test. The inset shows representative confocal pictures; scale bars represent 5 μm. (e-h) Quantification of the number of intracellular vesicles containing aggregated, endocytosed CD16:7-263-281 chimera in ATG16L1−/− HCT116 cells restored with the indicated ATG16L1 constructs, (e) in the absence or presence of zVAD.fmk (50 μM, last 8 h of culture; n = 40 cells), (f) in cells restored with caspase-3-sensitive and insensitive (D299A) ATG16L1 constructs (n = 40 cells), (g) in the absence or presence of E64d/pepstatin (10 μg ml−1 each, 8 h) or bafilomycin (50 nM, 8 h; n = 40 cells) or (h) after aggregation of wild type or Y268A,E272A (2M) versions of the CD16:7-263-281 chimera (n = 40 cells). ***P < 0.001 Student’s t-test; NS, not significant, P > 0.05 Student’s t-test. All shown results are representative of at least two independent repetitions.
Defective binding of ATG16L1-A300 to TMEM59. Since the functional alterations introduced by ATG16L1-A300 in the autophagic activity and trafficking of TMEM59 are not prevented by caspase-3 inhibition (Figs 2c and 3e) or expression of a caspase-3 insensitive ATG16L1-A300 construct (ATG16L1-A300-D299A; Figs 2d and 3f and Supplementary Fig. 4a), they likely result from pathological mechanisms other than the reported increased susceptibility of the risk allele to caspase cleavage46,47. One possibility is that the A300 polymorphism alters the ability of the WDD to interact with its target motif. To test this idea we performed co-immunoprecipitation studies after expression of the relevant partners. We found that TMEM59 tagged with glutathione-S-transferase (GST; TMEM59-GST) co-precipitated with the A300 variant of full-length ATG16L1 in transfected HEK-293T cells (Fig. 4a). The detected interaction was mediated by the WDD-binding motif, since it was inhibited by mutation of the four critical residues (4M version; Fig. 4a). In addition, less TMEM59 was found in GST-ATG16L1-A300 precipitates (Fig. 4b). Similar results were obtained in HCT116 cells engineered by knock-in to express ATG16L1-A300, and in Atg16l1−/− mouse embryonic fibroblasts (MEFs)39 or ATG16L1−/− HCT116 cells restored with T300 or A300 versions of ATG16L1 (Fig. 4c). Restored MEFs showed comparable levels of both ATG16L1 forms (Supplementary Fig. 5a), and unaltered basal autophagy in the presence of ATG16L1-A300 (Supplementary Fig. 5b). These data suggest that the T300A mutation impairs the ability of the WDD to interact with its natural ligands. However, given that the intracellular trafficking of TMEM59 is abnormal in ATG16L1-A300 expressing cells (Fig. 3), such impaired binding might be explained by an altered subcellular localization of any of the partners (TMEM59-GST or HA-ATG16L1 itself). To clarify this issue, we resorted to in vitro systems based on peptide arrays or pull-down co-precipitation assays involving recombinant proteins.

We designed peptide microarrays in which the 19-amino acid peptide of TMEM59 that includes the ATG16L1-binding motif (263–281) was immobilized onto glass slides along with point mutants as controls. A subset of the peptides included a biotin group introduced at the end of the synthesis procedure to allow assessment of the amount of immobilized peptide. We probed the resulting arrays with a recombinant form of the WDD fused to GST and the HA tag (GST-HA-WD-320–607) purified from bacterial expression systems or an extended WDD construct that includes residue 300 (GST-HA-ATG16L1-231–607, excluding the N-terminal and coiled-coil domains)27 produced in yeast. Both proteins were able to recognize the wild-type peptide but reacted poorly with the 4M derivative (Fig. 5a,b), suggesting that the observed interaction involves the WDD-binding motif. These results obtained with ligands produced in heterologous systems argue that the interaction with the target peptide is probably direct, since it is unlikely that a contaminating protein from bacteria or yeast (whose Atg16 ortholog lacks the WDD) mediates the binding event. Notably, a ligand preparation purified from mammalian expression systems showed superior binding activity (Fig. 5c), perhaps due to post-translational requirements provided by a native environment. Again, this interaction was motif-specific, since it was largely abrogated by mutation of the critical residues (4M version; Fig. 5c). None of the observed differences was due to dissimilar amounts of immobilized peptides, because an anti-biotin antibody reacted equally well with the relevant peptides (Fig. 5d). In addition, we detected reduced binding between GST-HA-ATG16L1-231–607 (produced in human cells) and peptides harbouring mutations in functionally important positions (Y268, Y277 and L280)41, but not in the case of mutants involving irrelevant residues such as V269, K273 or G278 (ref. 41; (Fig. 5e)). One notable exception was E272A, which showed normal binding to the WDD ligand (Fig. 5e) but, according to our previous studies, is critical for LC3 lipidation41. Interestingly, we also showed that this mutation does not inhibit recruitment of GFP-LC3 to TMEM59 (ref. 41), suggesting that E272 is exclusively involved in the LC3 lipidation step but not in recruitment of LC3-I to the lipidating complex41, a step known to be mediated by ATG16L1 through ATG5 and ATG3 (ref. 50). Therefore, an involvement of this residue in binding to ATG16L1 should not be expected in the peptide array setting. Together, these data argue that the observed interaction between the extended WDD ligand (residues 231–607) and the immobilized target peptides faithfully reflects the functional features of the 263–281 element.

We next used ligand preparations purified from human cells to test whether the T300A mutation alters the ability of the WDD to interact with the motif in this system. Binding assays conducted with GST-HA-ATG16L1-231–607 in a T300 or A300 configuration showed that the latter recognized the native peptide with a significantly lower affinity compared with the T300 form (Fig. 5f). The levels of background signal measured using a variety of methods were similar in the arrays developed with both ligand versions (Fig. 5g), indicating that the assay was performed under comparable conditions in both cases. Consistent with these
results, pull-down studies carried out with fusion proteins between GST and the active element (GST-263–281; expressed and purified from bacteria) showed that full-length ATG16L1-A300 binds defectively to the target peptide (Fig. 5h). The interaction defect was more profound in this system compared with the data obtained using peptide microarrays (Fig. 5f), perhaps because the mutation alters ATG16L1 folding more severely in heterologous environments. Together, these data suggest that the T300A mutation causes an intrinsic structural alteration in the WDD that disrupts its ability to bind the ATG16L1-binding motif that we previously identified in TMEM59.

Certain WDD-binding motif versions are insensitive to T300A. To determine whether this disability prevents binding of the WDD to alternative versions of the motif, we tested other peptides harbouring different configurations of the pattern for binding to both forms of ATG16L1. We previously identified four peptides of varying length present in unrelated proteins (DEDD212–25, T3JAM 318–333, NOD2 63–78 and TLR2 761–779) that are able to bind the WDD of ATG16L1 (ref. 41). Regardless of whether these elements play an ATG16L1-binding role in the context of their native proteins, when isolated they constitute alternative members of the ATG16L1-binding motif landscape41. Pull-down studies carried out with fusion constructs between GST and the different peptides showed that each was sufficient to bind ATG16L1-T300 expressed in bacteria (Fig. 6), thus confirming that they harbour an ATG16L1-binding signature. However, in two cases (DEDD2 and T3JAM), binding to the A300 form was blunted (Fig. 6), whereas the other two (TLR2 and NOD2) bound equally well (or better) to the CD risk protein (Fig. 6). Therefore, the disruption introduced by the T300A mutation in the ability of the WDD to bind its peptidic partners is restricted to particular versions of the ATG16L1-binding motif.

Defective xenophagy by disruption of the TMEM59-ATG16L1 axis. We previously showed that, on infection with S. aureus, TMEM59 binds ATG16L1 to induce an unconventional autophagic event that promotes LC3 labelling of bacteria-containing phagosomes41. To test whether this interaction is altered by the T300A mutation, we carried out co-precipitation studies in cells infected with S. aureus TA–/– MEFs restored with T300 or A300 versions of HA-ATG16L1, since they associated defectively with ATG16L1-A300 compared with the T300 form (Fig. 7a). No major differences in infection rates were detected between the two cellular strains, as indicated by the levels of GFP (which is constitutively expressed by the bacteria) present in infected cells (Fig. 7a). Notably, we found no decay in the levels of full-length ATG16L1 (Supplementary Fig. 7) and no evidence of cleaved ATG16L1 or caspase-3 activation (Supplementary Fig. 7) in the same samples, arguing that the interaction defect does not require caspase-3-mediated processing of ATG16L1-A300.

The binding impairment displayed by the A300 allele correlated with reduced LC3 lipidation in response to S. aureus.
infection (Fig. 7a), decreased labelling of bacterial phagosomes with LC3 (Fig. 7b) and increased recovery of colony-forming units from infected cells (Fig. 7c), indicating that the T300A mutation causes defective xenophagy and reduced control of the infection at an early stage. As expected, Atg16l1^{−/−} MEFs showed poor xenophagy in reaction to the bacteria (Fig. 7d–f). Expression of non-risk ATG16L1 restored this response (Fig. 7d–f), part of which was lost in cells expressing separated

Figure 5 | Defective in vitro binding between the active peptide 263–281 and ATG16L1-A300. (a–g) Quantification of binding signals provided by peptide microarrays developed with different ligands. Figures show mean values ± s.d. (n = 9 replicas, ***p<0.001 Student’s t-test), unless otherwise indicated. (a,b,d,e) Values are expressed as a fraction of the figures provided by the wild type (WT) peptide. (a) Binding of GST-ATG16L1-320–607 expressed in bacteria to WT or 4M versions of the 263–281 peptide. (b) Binding of GST-ATG16L1-231–607 purified from yeast to WT or 4M versions of the 263–281 peptide. (c) Binding of GST-ATG16L1-231–607 purified from yeast or human cells (as indicated) to WT or 4M versions of the 263–281 peptide. The inset shows a magnified scanned image of an actual peptide microarray developed with the ligand purified from human cells. (d) Binding of an anti-biotin antibody to WT or 4M versions of the 263–281 peptide. (e) Binding of GST-ATG16L1-231–607 purified from yeast cells to the indicated irrelevant array positions. No subtraction of background signal was done in this case. Values are expressed as a fraction of the figures provided by the T300 ligand version. (f) Binding of GST-ATG16L1-231–607 (T300 or A300 variants, as shown) purified from human cells to the indicated irrelevant array positions. No subtraction of background signal was done in this case. Values are expressed as a fraction of the figures provided by the T300 ligand version. (g) Background binding of GST-ATG16L1-231–607 (T300 or A300 variants, as shown) purified from human cells to the indicated irrelevant array positions. No subtraction of background signal was done in this case. Values are expressed as a fraction of the figures provided by the T300 ligand version.
We now reveal that the T300A mutation also derails the xenophagy against invading S. aureus viability, and show that a portion of such activity is mediated by the WDD. Consistent with a function of TMEM59 in this pathway, depletion of this molecule using short interfering RNAs (siRNAs) recapitulated the xenophagic defects observed in the presence of ATG16L1-A300 or split ATG16L1 (Supplementary Fig. 8a–d). The cellular strains analysed did not show substantial differences in the number of intracellular GFP-positive bacteria (Supplementary Fig. 9), suggesting comparable infection rates. Together, these results point to the existence of an early xenophagic burst mediated by the WDD that is derailed by the A300 allele, at least in part through an inability of this mutant to bind the ATG16L1-binding motif. A fraction of such response is likely induced by TMEM59, although other molecules including the motif could also be involved. Importantly, cells expressing split ATG16L1 retained some xenophagic activity (Fig. 7d–f), suggesting that an overlapping layer of WDD-independent, conventional autophagy may also contribute to this function.

Discussion

Since the discovery of the T300A polymorphism as a risk factor for CD (refs 6,7), a substantial body of work has revealed a role of ATG16L1 in restraining S. aureus viability, and show that a portion of such activity is mediated by the WDD. Consistent with a function of TMEM59 in this pathway, depletion of this molecule using short interfering RNAs (siRNAs) recapitulated the xenophagic defects observed in the presence of ATG16L1-A300 or split ATG16L1 (Supplementary Fig. 8a–d). The cellular strains analysed did not show substantial differences in the number of intracellular GFP-positive bacteria (Supplementary Fig. 9), suggesting comparable infection rates. Together, these results point to the existence of an early xenophagic burst mediated by the WDD that is derailed by the A300 allele, at least in part through an inability of this mutant to bind the ATG16L1-binding motif. A fraction of such response is likely induced by TMEM59, although other molecules including the motif could also be involved. Importantly, cells expressing split ATG16L1 retained some xenophagic activity (Fig. 7d–f), suggesting that an overlapping layer of WDD-independent, conventional autophagy may also contribute to this function.

We now reveal that the T300A mutation also derails the normal function of ATG16L1 in the absence of caspase-3-mediated cleavage. This single amino acid change alters the ability of the C-terminal WDD to interact with an amino acid motif that we previously identified in the transmembrane protein TME59 (ref. 41). In the context of this molecule, the mutation impairs binding between the WDD and the motif, a defect that results in poor autophagic labelling of the endosomes in which TME59 is located and slowed transit of these vesicles through the endocytic route. However, additional versions of the motif also displayed binding defects to the risk allele (see for example the motifs present in T3JAM and DEDD2; Fig. 6), suggesting that a cohort of ATG16L1 activators containing different configurations of the pattern have their activities blunted by the mutant protein in non-stressed conditions. Members of this family that may be involved in xenophagy (like TMEM59) could facilitate the onset of the uncontrolled inflammatory response that is typical of CD by being unable to restrain intracellular proliferation of the pathogens in the presence of the risk allele. However, our findings suggest alternative mechanisms through which ATG16L1-A300 could contribute to inflammation. For instance, expression of T3JAM and DEDD2 has been shown to increase c-Jun N-terminal kinase (JNK) signalling and apoptosis, respectively, and both the JNK pathway and programmed cell death are thought to participate in intestinal inflammation. It is possible that an impaired interaction with ATG16L1-A300 (Fig. 6) could lead to decreased autophagic degradation and, as a consequence, increased levels of these mediators, thus promoting excessive activity of these signalling routes in the face of certain stimuli. Interestingly, we found that the interaction between the WDD and different motif versions is dissimilarly affected by the T300A mutation, arguing that some WDD-binding proteins might actually function better in the presence of the risk allele, or may not be affected at all. These results suggest a complex picture of the activity of the motif in the presence of ATG16L1-A300.

We show here that the A300 risk allele alters two cellular functions reminiscent of the defects observed in CD experimental model systems. First, ATG16L1-A300 impairs the normal intracellular trafficking of endosomes harbouring TME59. Derailed trafficking of secretory vesicles and a disorganized secretory compartment are well-known phenotypes of the intestinal Paneth and goblet cells of both mice and CD patients carrying the ATG16L1-A300 allele. It is conceivable that a key regulator of these specialized vesicles also includes the motif and its dysfunction in the presence of the risk allele alters...
their proper secretory trafficking. Second, we found that ATG16L1-A300 delainers an early WDD-dependent xenophagic response against \textit{S. aureus} that contributes to fight the infection. Conflicting results have been published regarding the overall role of autophagy in \textit{S. aureus} infection, ranging from no effect56 to a supporting role in bacterial replication41,57. Notably, we show here that ATG16L1 induces a concomitant layer of WDD-independent xenophagy in response to \textit{S. aureus} (Fig. 7). A complex interplay between these two overlapping xenophagic activities, together with the varying intensity of basal, conventional autophagy in different cellular systems, and the known role of this process in favouring \textit{S. aureus} replication at later stages41,57, might account for such different observations. In addition, ATG16L1 has been shown to promote tolerance to \textit{S. aureus} α-toxin56, an activity that could be explained by the central function of autophagy in increasing resistance to stressful situations. But regardless the complexity of this particular system, the defects in WDD function caused by the T300A mutation that we describe here provide a novel mechanistic view to understand the more general alterations in xenophagy previously linked to this allele and CD (refs 39,48,49). Interestingly, the A300 polymorphism occurs at high frequency in the human population57, and it has been associated with additional physiopathological situations, like decreased survival following bone marrow transplantation58, improved survival in colorectal cancer59, gastric cancer susceptibility60 or Paget’s disease of bone61. Therefore, understanding the biochemical consequences of the T300A mutation might be an important first step towards unravelling the physiological role of this allele beyond CD.

Our data support that the unconventional autophagic activity of WDD-binding proteins is also blunted in the presence of caspase-3-mediated cleavage of ATG16L1-A300, since TMEM59

Figure 7 | ATG16L1-A300 binds defectively to TMEM59-GST and impairs xenophagy in response to \textit{S. aureus}. (a) Immunoblot analysis of GSH immunoprecipitates (IP) or total cell lysates (TL) of \textit{Atg16l1}{-/-} MEFs reconstituted with the indicated versions of ATG16L1 (T300 (T) or A300 (A)), retrovirally transduced with TMEM59-GST and subsequently infected (+) with a \textit{S. aureus} strain (SA; 2 h; multiplicity of infection (m.o.i.) = 25) that constitutively expresses GFP, or left uninfected (–). These results are representative of three repetitions. (b,c) Quantification of the number of LC3-positive phagosomes containing GFP-positive \textit{S. aureus} bacteria 2 h after infection (m.o.i. = 10) in \textit{Atg16l1}{-/-} MEFs restored with the indicated versions of ATG16L1 (T or A), full-length ATG16L1-T300 (FL), both ATG16L1 fragments that result from caspase-3 processing of the risk allele (Nt: 1–299; Ct: 300–607)), or control vector (–). Values are expressed as a fraction of the scores obtained for cells expressing ATG16L1-T300 (mean ± s.d. of triplicates; n = 500 cells; ***P < 0.001 Student’s t-test). (c,f) Quantification of the colony-forming units (C.F.U.s) recovered from infected cells (× 10^{-2}) ***

Restored Atg16|1–/– MEFs expressing TMEM59-GST

Bacterial C.F.U.s recovered from infected cells (× 10^{-2})
was unable to trigger LC3 activation in a cellular system in which the entire pool of ATG16L1 was uncoupled in two fragments (thus mimicking caspase-mediated cleavage). In contrast, basal and rapamycin-induced autophagy were unaffected in these extreme conditions. This result is consistent with previous reports showing that the WDD is not involved in conventional autophagy18–21. However, other reports have found inhibition of the canonical pathway by cleaved ATG16L1 (refs 46,47). These discrepancies suggest that, in some experimental systems, the WDD might play a role in conventional autophagy, or that under certain conditions the canonical route may include a relevant component of WDD-mediated unconventional autophagic processes similar to the one induced by TMEM59.

Our findings imply that a single amino acid change (T300A) is able to cause two different outcomes: altered affinity of the WDD for its target motif and increased susceptibility to caspase-3 processing. Although an alanine residue in position P1 of a consensus site is known to enhance caspase-3 processing of synthetic peptides6,28, the T300A mutation could also promote a shift in the overall structure of the WDD that might improve accessibility of the site to caspase 3. In this scenario, both effects could be the consequence of the same structural alteration imposed by the T300A mutation.

Together, our results help draw a coherent molecular model regarding how the A300 polymorphism causes pathology. We propose that a collection of motif-containing WDD-binding proteins have their natural autophagic activities modified by the risk allele under homeostatic situations in which levels of caspase 3 activity are negligible. In addition, the activity of these effectors would be blunted by ATG16L1-A300 processing in biological contexts in which stress promotes caspase-3 activation. Either way, alterations in the pathway involving motif-containing proteins and the WDD appear to be a prominent consequence of the ATG16L1-A300 polymorphism. Identification of additional members of this family of effectors will likely help unravel the signalling pathways whose dysfunction is required to trigger the onset of CD.

Methods

Cell lines and reagents. HEK-293T cells were obtained from the American Type Culture Collection. The HCT116 cell line derivatives KI-ATG16L1-T300A (generated by knock-in gene targeting) and ATG16L1−/− have been described elsewhere28. MEFS deficient in Atg16l1 have been previously described50. Cells were cultured at 37 °C and a humidified 5% CO2 atmosphere in DMEM (Invitrogen) containing 10% fetal bovine serum (Invitrogen) and 100 μM streptomycin (Invitrogen). Bafloxicin, E64d, pepstatin, rapamycin, TNFα and cycloheximide were purchased from Sigma. zVAD.fmk was obtained from Calbiochem.

DNA constructs. DNA constructs expressing HA-tagged human ATG16L1 (for mammalian and bacterial expression), HA-LC3, GFP-LC3, TEM59 (full-length or Δ282, wild-type or 4M, untagged or C-terminal GST-tagged), p62-HA and D-thiogalactoside-induced bacteria (BL21) expressing the relevant GST fusion proteins (pGEX plasmid, GE Healthcare) were lysed by treatment with lysozyme (100 μg ml−1), freeze-thawing and sonication in a buffer containing 20 mM Tris HCl pH 8.0, 500 mM NaCl, 1 mM EDTA and 0.1% Triton X-100 (NET buffer). Lysates were cleared by centrifugation and incubated (1 h, 4 °C, rotation) with agarose beads coupled to glutathione (GE Healthcare). Loaded beads were washed extensively and used for ATG16L1 pull-down from induced crude bacterial lysates containing ATG16L1-T300 or -A300 proteins expressed from the pET plasmid (Novagen) in BL21(DE3) bacteria. Expression of these constructs in the soluble fraction was poor, but detectable. Beads were incubated with the amount of ATG16L1-containing lysate equivalent to 1 ml of induced culture (3 h, 4 °C, rotation), washed and processed for western blotting.

Immunofluorescence studies and microscopy. Cells were seeded on poly-L-lysine coated coverslips, transfected, infected and/or treated the next day and fixed in 4% paraformaldehyde at the end of the experiment. Preparations were then permeabilized in a solution containing 0.5% Igepal CA-630 detergent, blocked in a solution containing 3% BSA and stained with the relevant primary antibodies for 1 h at room temperature. Endogenous LC3 was stained using a rabbit anti-LC3 polyclonal antibody (MBL PM036, 1:200) except for experiments involving infection with S. aureus where a mouse monoclonal anti-LC3 antibody (MBL M152-3 [IgG1 low affinity for protein A] 1:50) was used. Fluorochrome-coupled

Cell lysis and co-immunoprecipitation assays. Cells were lysed in a buffer containing 1% Igepal CA-630 detergent (Sigma), 50 mM Tris HCl pH 7.5, 150 mM NaCl, 5 mM EDTA and protease inhibitors (Sigma). After a 5 min centrifugation step (4 °C), the resulting supernatants were evaluated for protein concentration (Bradford method, BioRad). For detection of endogenous LC3, t-ATG16L1 and t-TMEM59, cell lysates were by resuspending the cell pellet in 2x standard sample buffer containing 4% SDS but lacking β-mercaptoethanol and bromophenol blue, followed by extensive boiling. β-mercaptoethanol and bromophenol blue were added to the samples after measurement of protein concentrations. For co-immunoprecipitations with GST-fusion constructs, total cell lysates were diluted to a final detergent concentration of 0.2% and incubated (4 °C, 1–3h, rotation) with agarose beads coupled to gluathione (GE Healthcare). Beads were then washed at least three times with immunoprecipitation buffer and resuspended in 2x SDS sample buffer.

Western blotting. Equal amounts of protein were resolved by SDS–polyacrylamide gel electrophoresis, transferred to a polyvinylidene-difluoride membrane (Millipore), and probed with specific antibodies against HA (monoclonal antibody (mAb), Babco MMS-101P, 1:1,000), ATG16L1 (mAb, Babco PRB-130P, 1:1,000) or GFP (mAb, Babco MMS-118P, 1:1,000) tags. For experiments involving the C-terminal fragment of ATG16L1 or TMEM59-GST resistance cassettes (generated by knock-in gene targeting) and their parental counterpart; for this reason, many of the experiments were conducted in ATG16L1−/− cells restored with T300 or A300 HA-ATG16L1. ATG16L1-deleted wild-type or 4M, untagged or C-terminal GST-tagged, p62-HA and D-thiogalactoside-induced bacteria (BL21) expressing the relevant GST fusion proteins (pGEX plasmid, GE Healthcare) were lysed by treatment with lysozyme (100 μg ml−1), freeze-thawing and sonication in a buffer containing 20 mM Tris HCl pH 8.0, 500 mM NaCl, 1 mM EDTA and 0.1% Triton X-100 (NET buffer). Lysates were cleared by centrifugation and incubated (1 h, 4 °C, rotation) with agarose beads coupled to glutathione (GE Healthcare). Loaded beads were washed extensively and used for ATG16L1 pull-down from induced crude bacterial lysates containing ATG16L1-T300 or -A300 proteins expressed from the pET plasmid (Novagen) in BL21(DE3) bacteria. Expression of these constructs in the soluble fraction was poor, but detectable. Beads were incubated with the amount of ATG16L1-containing lysate equivalent to 1 ml of induced culture (3 h, 4 °C, rotation), washed and processed for western blotting.

Pull-down assays. Isopropyl-β-D-thiogalactoside-induced bacteria (BL21) expressing the relevant GST fusion proteins (pGEX plasmid, GE Healthcare) were lysed by treatment with lysozyme (100 μg ml−1), freeze-thawing and sonication in a buffer containing 20 mM Tris HCl pH 8.0, 500 mM NaCl, 1 mM EDTA and 0.1% Triton X-100 (NET buffer). Lysates were cleared by centrifugation and incubated (1 h, 4 °C, rotation) with agarose beads coupled to glutathione (GE Healthcare). Loaded beads were washed extensively and used for ATG16L1 pull-down from induced crude bacterial lysates containing ATG16L1-T300 or -A300 proteins expressed from the pET plasmid (Novagen) in BL21(DE3) bacteria. Expression of these constructs in the soluble fraction was poor, but detectable. Beads were incubated with the amount of ATG16L1-containing lysate equivalent to 1 ml of induced culture (3 h, 4 °C, rotation), washed and processed for western blotting.

NATURE COMMUNICATIONS | DOI: 10.1038/ncomms11821 | www.nature.com/naturecommunications
secondary antibodies were purchased from Jackson ImmunoResearch (Cy3) or Molecular Probes (Alexa 488). No immunofluorescence signal was detected in Atg16l1−/− MEFs co-transfected with S. aureus, indicating that the antibody is unable to directly recognize the bacteria (through protein A, naturally expressed by S. aureus). To confirm that the antibody is unable to directly recognize the bacteria (through protein A, naturally expressed by S. aureus), the antibodies were used to conjugate Cy3-labeled goat anti-mouse x chain antibody (Jackson ImmunoResearch 115-005-174, 60 μg/ml, 1:1000). Cell arrays were then incubated with a solution containing a mixture of secondary antibodies were purchased from Jackson Immunoresearch (Cy3) or Molecular Devices (Jackson Immunoresearch 315-005-008) to promote endocytosis. Aggregation was performed for 8 h. To stain for endocytosed CD167 chimeras, unpermeabilized and blocked with unlabelled goat anti-mouse x chain antibody (Jackson ImmunoResearch 115-005-174, 60 μg/ml, 1:1000). LC3 (both endogenous and transfected GFP-LC3 punctae quantification, TME59-GFP or CD167-263-281 vesicle counting and evaluation of GFP-expressing S. aureus in infected cells were conducted using a Zeiss AxioPhot fluorescence microscope. Evaluation of endogenous LC3 punctae in cells transfected with TME59 was carried out by co-transfection with GFP and subsequent scoring of LC3 punctae (stained with a red fluorochrome: Cy3) only in positive cells. In cases where the relevant vesicles were accumulated in the perinuclear region (for example, TME59-GFP cells expressed in harbouring ATG16L1-T300) we inferred the number of vacuoles forming the irregular cluster by assessing the number of protruding lobuli. When indicated, samples were analysed under a Leica S5 confocal microscope using the 488 (green), 561 (red) and/or 633 (blue) excitation bands. Quantification of mRFP-LC3 intensity on TME59-GFP vesicles was carried out over confocal images using the Intensity Quantification tool of the Leica Application Suite-Advance Fluorescence (LAS-AF) software.

Peptide microarrays. Expression and purification of the recombinant ligand from bacteria (GST-α-ATG16L1-230–607) was performed using conventional techniques. Briefly, the construct was cloned in the pGEX bacterial expression vector and induced in mid-log BL21 bacterial cells using 10 μM isopropyl-β-D-thiogalactoside at 25°C for 5 h. Cells were lysed by adding 1% Igepal CA-630 lysis buffer. The resulting clarified lysates were diluted 1/10 in PBS and subsequently incubated with a solution containing a mixture of unpermeabilized cells were quenched with 4% paraformaldehyde (PFA, 1 h, room temperature) followed by washing with PBS and subsequent incubation with a solution containing a mixture of secondary antibodies (10 μg/ml) and antibody conjugated to Cy3 (Jackson ImmunoResearch 115–165–174, 1:10,000). LC3 (both endogenous and transfected GFP-LC3 punctae quantification, TME59-GFP or CD167-263-281 vesicle counting and evaluation of GFP-expressing S. aureus in infected cells were conducted using a Zeiss AxioPhot fluorescence microscope. Evaluation of endogenous LC3 punctae in cells transfected with TME59 was carried out by co-transfection with GFP and subsequent scoring of LC3 punctae (stained with a red fluorochrome: Cy3) only in positive cells. In cases where the relevant vesicles were accumulated in the perinuclear region (for example, TME59-GFP cells expressed in harbouring ATG16L1-T300) we inferred the number of vacuoles forming the irregular cluster by assessing the number of protruding lobuli. When indicated, samples were analysed under a Leica S5 confocal microscope using the 488 (green), 561 (red) and/or 633 (blue) excitation bands. Quantification of mRFP-LC3 intensity on TME59-GFP vesicles was carried out over confocal images using the Intensity Quantification tool of the Leica Application Suite-Advance Fluorescence (LAS-AF) software.

siRNA assays. MEFs were transfected with pre-designed pools of four RNA duplexes against mouse Tmem59 (On-TargetPlus, Dharmacon L-059473-01) using the transfection reagent DharmaFECT1 (Dharmacon) following the instructions provided by the manufacturers. Control siRNAs were a mix of duplexes having no perfect match with any mouse gene (On-TargetPlus Non-targeting pool, Dharmacon D-001810-10). Since Tmem59 expression levels are normally below the detection threshold of our antibody48, the degree of protein depletion caused by siRNA treatment was assessed after induction of Tmem59 expression by treatment with bafilomycin 48 h after transfection with the relevant siRNAs.

Data availability. The data that support the findings of this study are available from the corresponding author on request.

References
1. Sartor, R. B. Mechanisms of disease: pathogenesis of Crohn’s disease and ulcerative colitis. Nat. Clin. Pract. Gastroenterol. Hepatol. 3, 390–407 (2006).
2. Abraham, C. & Cho, J. H. Inflammatory bowel disease. N. Engl. J. Med. 361, 2066–2078 (2009).
3. Khor, B., Gardet, A. & Xavier, R. J. Genetics and pathogenesis of inflammatory bowel disease. Nature 474, 307–311 (2011).
4. Steppenbeck, T. S. et al. Crohn disease: a current perspective on genetics, autoimmunity and cytokine interactions. Nat. Rev. Immunol. 7, 355–374 (2007).
5. Podolsky, D. K. Inflammatory bowel disease. N. Engl. J. Med. 347, 417–429 (2002).
6. Rioux, J. D. et al. Genome-wide association study identifies new susceptibility loci for Crohn disease and implicates autoimmunity in disease pathogenesis. Nat. Genet. 39, 596–604 (2007).
7. Hampe, J. et al. A genome-wide association scan of nonsynonymous SNPs identifies a susceptibility variant for Crohn disease in ATG16L1. Nat. Genet. 39, 207–211 (2007).
8. Huget, J. P. et al. Association of NOD2 leucine-rich repeat variants with susceptibility to Crohn’s disease. Nature 411, 599–603 (2001).
9. Ogura, Y. et al. A frameshift mutation in NOD2 associated with susceptibility to Crohn’s disease. Nature 411, 603–606 (2001).
10. Duer, R. H. et al. A genome-wide association study identifies IL23R as an inflammatory bowel disease gene. Science 314, 1461–1463 (2006).
11. Lapaque, P., Brest, P., Hofman, P. & Darfeuille-Michaud, A. Etiology of inflammatory bowel disease: many roads lead to autophagy. J. Mol. Med. (Berl.) 280–293 (2010).
12. Joo, J. et al. A genome-wide association study identifies IL23R as an inflammatory bowel disease gene. Nat. Genet. 39, 987–996 (2012).
13. Mizushima, N. & Komatsu, M. Autophagy: renovation of cells and tissues. Cell 147, 728–741 (2011).
14. Kroemer, G., Marino, G. & Levine, B. Autophagy and the integrated stress response. Mol. Cell 40, 280–293 (2010).
15. Feng, Y., He, D., Yao, Z. & Klionsky, D. J. The machinery of macroautophagy. Cell Res. 24, 24–41 (2014).
16. Sumper, Jr R. & Levine, B. Autophagy and innate immunity: triggering, targeting and tuning. Semin. Cell Dev. Biol. 21, 699–711 (2010).
17. Noda, T. & Yoshimori, T. Molecular basis of canonical and bactericidal autophagy. Int. Immunol. 21, 1199–1204 (2009).
18. Pimentel-Muinños, F. X. & Boada-Romero, E. Selective autophagy against mammalian compartments: canonical and unconventional purposes and mechanisms. Autophagy 10, 397–407 (2014).
19. Levine, B., Mizushima, N. & Virgin, H. W. Autophagy in immunity and inflammation. Nature 469, 323–335 (2011).
19. Gomes, L. C. & Dícki, I. Autophagy in antimicrobial immunity. Mol. Cell 54, 224–233 (2014).
20. Dever, V. E. & Levine, B. Autophagy, immunity, and microbial adaptations. Cell Host Microbe 5, 527–549 (2009).
21. Caruso, R., Warner, N., Inohara, N. & Nunez, G. NOD1 and NOD2: signaling, host defense, and inflammatory disease. Immunity 41, 898–908 (2014).
22. Plantinga, T. S., Joosten, L. A., van der Meer, J. W. & Netea, M. G. Modulation of inflammation by autophagy: consequences for Crohn's disease. Curr. Opin. Pharmacol. 12, 97–102 (2012).
23. Nguyen, H. T., Lapaquette, P., Bringer, M. A. & Darfeuille-Michaud, A. Autophagy and Crohn's disease. J Innate Immune. 5, 434–443 (2013).
24. Fujita, N. et al. The Atg16l1 complex specifies the site of LC3 lipidation for membrane biogenesis in autophagy. Mol. Biol. Cell 19, 2092–2100 (2008).
25. He, C. & Klionsky, D. J. Regulation mechanisms and signaling pathways of autophagy. Annu. Rev. Genet. 43, 87–93 (2009).
26. Hanada, T. et al. The Atg12-Atg5 conjugate has a novel E3-like activity for protein lipidation in autophagy. J. Biol. Chem. 282, 37298–37302 (2007).
27. Mizushima, N. et al. Mouse Apg16l1, a novel WD-repeat protein, targets to the autophagic isolation membrane with the Apg12-Apg5 conjugate. J. Cell Sci. 116, 1679–1688 (2003).
28. Nishimura, T. et al. FIP200 regulates targeting of Atg16l1 to the isolation membrane. EMBO. Rep. 14, 284–291 (2013).
29. Gammoh, N., Florey, O., Overholtzer, M. & Jiang, X. Interaction between FIP200 and Atg16l1 distinguishes ULK1 complex-dependent and -independent autophagy. Nat. Struct. Mol. Biol. 20, 144–149 (2013).
30. Fujita, N. et al. Differential involvement of Atg16l1 in Crohn disease and canonical autophagy: analysis of the organization of the Atg16l1 complex in fibroblasts. J. Biol. Chem. 284, 32602–32609 (2009).
31. Choi, J. et al. The parasitophorous vacuole membrane of Toxoplasma gondii is targeted for disruption by ubiquitin-conjugating systems of autophagy. Immunity 40, 924–935 (2014).
32. Dooley, H. C. et al. WDLP2 links LC3 conjugation with PIP2, autophagosome formation, and pathogen clearance by recruiting Atg12-5-16l1. Mol. Cell 55, 238–252 (2015).
33. Itoh, T. et al. Golgi-resident small GTPase Rab33B interacts with Atg16l1 and modulates autophagosome formation. Mol. Biol. Cell 19, 2916–2925 (2008).
34. Sorbara, M. T. et al. The protein Atg16l1 suppresses inflammatory cytokines induced by the intracellular sensors Nod1 and Nod2 in an autophagy-independent manner. Immunity 39, 858–873 (2013).
35. Saitoh, T. et al. Loss of the autophagy protein Atg16l1 enhances endotoxin-induced IL-1β production. Nature 456, 264–268 (2008).
36. Conway, K. L. et al. Atg16l1 is required for autophagy in intestinal epithelial cells and protection of mice from Salmonella infection. Gastroenterology 145, 1343–1355 (2013).
37. Cadwell, K. et al. Virus-plus-susceptibility gene interaction determines Crohn's disease gene Atg16l1 phenotypes in intestine. Cell 141, 1135–1145 (2010).
38. Cadwell, K. et al. A key role for autophagy and the autophagy gene Atg16l1 in mouse and human intestinal Paneth cells. Nature 456, 259–263 (2008).
39. Kuballa, P., Huet, A., Rios, J. D., Daly, M. J. & Xavier, R. J. Impaired autophagy of an intracellular pathogen induced by a Crohn's disease-associated Atg16l1 variant. PLoS ONE 3, e3391 (2008).
40. Travassos, L. H. et al. Nod1 and Nod2 direct autophagy by recruiting ATG16L1 to the plasma membrane at the site of bacterial entry. Nat. Immunol. 11, 55–60 (2010).
41. Boada-Romeru, E. et al. DERM95 defines a novel ATG16L1-binding motif that promotes local activation of LC3. EMBO J. 32, 566–582 (2013).
42. Ullrich, S. et al. The novel membrane protein TMEM59 modulates complex glycocalyx formation, cell surface expression, and secretion of the amyloid precursor protein. J. Biol. Chem. 285, 20664–20674 (2010).
43. Fujita, N. et al. Recruitment of the autophagic machinery to endosomes during infection is mediated by ubiquitin. J. Cell. Biol. 203, 115–128 (2013).
44. Pashkova, N. et al. WD40 repeat propellers define a ubiquitin-binding domain that regulates turnover of F box proteins. Mol. Cell 40, 433–440 (2010).
45. Messer, J. S. et al. The Crohn's disease: associated ATG16L1 polymorphism impairs function of the WD40 domain of ATG16L1. Nat. Commun. 7:11821 doi: 10.1038/ncomms11821 (2016).