Bivariate Discrete Inverse Weibull Distribution

M. S. Eliwa1 and M. El-Morshedy1,*

1Mathematics Department, Faculty of Science, Mansoura University, Mansoura, Pin 35516, Egypt.

Abstract

In this paper, we propose a new class of bivariate distributions, called the bivariate discrete inverse Weibull (BDsIW) distribution, whose marginals are discrete inverse Weibull (DsIW) distributions. Some statistical and mathematical properties are presented. The maximum likelihood method is used for estimating the model parameters. Simulations are presented to verify the performance of the direct maximum likelihood estimation. Finally, two real data sets are analyzed to illustrative purposes.

Key words: Bivariate discrete distributions; discrete inverse Weibull distribution; maximum likelihood method.

AMS 2000 subject classification: 62F10; 62H10.

1 Introduction

The Weibull (W) distribution is one of the most popular and widely used distributions for failure time in reliability theory (see, Weibull (1951)). The cumulative distribution function (CDF) of W distribution is given by

\[\Pi(x; \nu, \zeta) = 1 - e^{-\nu x^\zeta}; \quad x > 0, \]

where \(\nu > 0 \) is scale parameter and \(\zeta > 0 \) is shape parameter. Clearly, the exponential (E) distribution and the Rayleigh (R) distribution are special cases for \(\zeta = 1 \) and \(\zeta = 2 \) respectively. Unfortunately, the shape of the hazard rate function (HRF) of W distribution can be only increasing, decreasing or constant. So, more modifications and generalizations of W distribution are presented in the statistical literature to describe various phenomena in different fields, because in many applications, empirical hazard rate curves often exhibit non-monotonic shapes such as a bathtub, unimodal and others. For example:

1. Keller et al. (1985) proposed inverse Weibull (IW) distribution. The CDF of IW distribution is given by

\[\Pi(x; \nu, \zeta) = e^{-\nu x^{-\zeta}}; \quad x > 0. \]

2. Lai et al. (2003) introduced modified Weibull (MW) distribution. The CDF of MW distribution is given by

\[\Pi(x; \nu, \zeta, \lambda) = 1 - e^{-\nu x^\zeta e^{\lambda x}}; \quad x > 0, \]

where \(\lambda > 0 \) is an accelerating parameter. The exponentiated MW distribution was proposed by Jalmar et al. (2008).

3. Bebbington et al. (2007) proposed flexible Weibull (FxW) distribution. The CDF of FxW distribution is given by

\[\Pi(x; \nu, \gamma) = 1 - e^{-e^{\nu x^{-\gamma}}}; \quad x > 0, \]

where \(\gamma > 0 \) is scale parameter. The exponentiated FxW distribution was presented by El-Gohary et al. (2015a), the inverse flexible Weibull (IFxW) distribution was proposed by El-Gohary et al. (2015b) and the exponentiated of it was studied by El-Morshedy et al. (2017).
4. Cordeiro et al. (2013) introduced exponential-Weibull (E-W) distribution. The CDF of E-W distribution is given by

\[\Phi(x; \gamma, \nu, \beta) = 1 - e^{-\gamma x - \nu x^\beta}; \quad x > 0, \] \hspace{1cm} (5)

where \(\beta \in (0, \infty) - \{1\} \) is shape parameter.

5. Nadarajah et al. (2013) proposed exponentiated Weibull (EW) distribution. The CDF of EW distribution is given by

\[\Phi(x; \nu, \zeta, \eta) = \left(1 - e^{-\nu x^\zeta}\right)^\eta; \quad x > 0, \] \hspace{1cm} (6)

where \(\eta > 0 \) is shape parameter.

6. El-Bassiouny et al. (2017) introduced exponentiated generalized Weibull-Gompertz (EGW-Gz) distribution. The CDF of EGW-Gz distribution is given by

\[\Phi(x; \nu, \zeta, \lambda, \eta, \rho) = \left(1 - e^{-\nu x^\zeta(e^{\lambda x \eta} - 1)}\right)^\rho; \quad x > 0, \] \hspace{1cm} (7)

where \(\rho > 0 \) is shape parameter. The mixture of 2-EGW-Gz distribution was studied by El-Bassiouny et al. (2016).

Moreover, some discrete versions of E, R, W distributions and its generalizations have been presented in the literature because in several cases, lifetimes need to be recorded on a discrete scale rather than on a continuous analogue. So, discretizing continuous distributions has received much attention in the literature. For example:

1. Toshio and Shunji (1975) introduced discrete Weibull (DsW) distribution. The probability mass function (PMF) of DsW distribution is given by

\[\pi(x; \theta, \zeta) = \theta^{x^\zeta} - \theta^{(x+1)^\zeta}; \quad x \in \mathbb{N}_0 = \{0, 1, 2, 3, \ldots\}, \] \hspace{1cm} (8)

where \(0 < \theta < 1 \). Clearly, the discrete Rayleigh (DsR) distribution is a special case for \(\zeta = 2 \), which was presented by Dilip (2004).

2. Gómez-Déniz (2010) proposed generalization of geometric (GGo) distribution. The PMF of GGo distribution is given by

\[\pi(x; \theta, \gamma) = \frac{\gamma \theta^x (1 - \theta)}{(1 - [1 - \gamma] \theta^{x+1}) (1 - [1 - \gamma] \theta^x)}; \quad x \in \mathbb{N}_0. \] \hspace{1cm} (9)

The GGo distribution reduces to geometric or discrete exponential (DsE) distribution when \(\gamma = 1 \).

3. Jazi et al. (2010) introduced DsIW distribution. The PMF of DsIW distribution is given by

\[\pi(x; \theta, \zeta) = \theta^{(x+1)^\zeta} - \theta^{x^\zeta}; \quad x \in \mathbb{N}_0. \] \hspace{1cm} (10)

4. Vahid et al. (2013) proposed discrete generalized exponential type II (DsGE-T2) distribution. The PMF of DsGE-T2 distribution is given by

\[\pi(x; \theta, \zeta) = \left(1 - \theta^{x+1}\right)^\zeta - \left(1 - \theta^x\right)^\zeta; \quad x \in \mathbb{N}_0. \] \hspace{1cm} (11)

5. Vahid and Hamid (2015a) introduced exponentiated discrete Weibull (EDsW) distribution. The PMF of EDsW distribution is given by

\[\pi(x; \theta, \rho, \zeta) = \left(1 - \theta^{(x+1)^\rho}\right)^\zeta - \left(1 - \theta^{x^\rho}\right)^\zeta; \quad x \in \mathbb{N}_0. \] \hspace{1cm} (12)

6. Vahid et al. (2015b) proposed discrete beta exponential (DsBE) distribution. The PMF of DsBE distribution is given by

\[\pi(x; \theta, \gamma, \zeta) = c \theta^{\gamma (x-1)} (1 - \theta^x)^{\zeta-1}; \quad x \in \mathbb{N}_0 - \{0\}, \] \hspace{1cm} (13)

where \(c^{-1} = \sum_{j=0}^{\infty} \frac{(-\theta)^j}{1 - \theta^{j+1}} \frac{(\zeta-1)!(\zeta-2)! \cdots (\zeta-j)!}{j!} \).
On the other hand, in many practical situations, it is important to consider different bivariate continuous and discrete distributions that could be used to model bivariate lifetime data in many fields. So, several bivariate continuous and discrete distributions are available in the statistical literature. For example, Lee (1997), Karlis and Ntzoufras (2000), Wu and Yuen (2003), Yuen et al. (2006), Sarhan and Balakrishnan (2007), Kundu and Dey (2009), Morata (2009), Kundu and Gupta (2009), Ong and Ng (2013), Balakrishnan and Shiji (2014), Lee and Cha (2015), Rasool and Akbar (2016), Hiba (2016), El-Bassiouny et al. (2016), El-Gohary et al. (2016), Vahid and Kundu (2017), Mohamed et al. (2017), Kundu and Vahid (2018), El-Morsheyed and Khalili (2018) among others. An excellent encyclopedic survey of various continuous and discrete bivariate distributions can be found in Balakrishnan and Lai (2009) and Johnson et al. (1997) respectively.

In this regard, we focus the aim of this paper on presenting a flexible discrete bivariate distribution called BDsIW distribution, which can be usefully applied not only by statisticians, but also by data analysis in many different disciplines, such as sports, engineering, and medical applications. The proposed discrete model can be obtained from 3-independent DsIW distributions by using the maximization method as suggested by Lee and Cha (2015). The main reasons for introducing BDsIW distribution are:

1. The proposed model is a very flexible bivariate discrete distribution, and its joint PMF can take different shapes depending on the parameter values.
2. The generation from the proposed model is straightforward. So, the simulation experiments can be performed quite conveniently.
3. The marginals of the proposed model are DsIW distributions. Hence, the marginals are able to analyze the hazard rates in the discrete case.
4. The DsE and DsR distributions are special cases from the proposed model.

2 The BDsIW Distribution and Its Statistical Properties

2.1 Definition and interpretations

Suppose \(W_1 \sim \text{DsIW}(\theta_1, \zeta) \), \(W_2 \sim \text{DsIW}(\theta_2, \zeta) \) and \(W_3 \sim \text{DsIW}(\theta_3, \zeta) \) and they are independently distributed. If \(X_d = \max(W_d, W_3); d = 1, 2 \), then we can say that the bivariate vector \(X = (X_1, X_2) \) has a BDsIW distribution with the parameter vector \(\Psi = (\theta_1, \theta_2, \theta_1, \zeta)^T \). We will denote this discrete bivariate distribution by BDsIW(\(\theta_1, \theta_1, \theta_1, \zeta \)). If \(X \sim \text{BDsIW}(\theta_1, \theta_1, \theta_1, \zeta) \), then the joint CDF of \(X \) for \(x_1, x_2 \in \mathbb{N}_0 \) and for \(x_3 = \min\{x_1, x_2\} \) is given by

\[
F_{X_1, X_2}(x_1, x_2; \Psi) = \theta_1^{(x_1+1) \zeta} \theta_2^{(x_2+1) \zeta} \theta_3^{(x_3+1) \zeta} F_{\text{DsIW}}(x_1; \theta_1, \zeta) F_{\text{DsIW}}(x_2; \theta_2, \zeta) F_{\text{DsIW}}(x_3; \theta_3, \zeta)
\]

\[
= \begin{cases}
F_{\text{DsIW}}(x_1; \theta_1, \zeta) F_{\text{DsIW}}(x_2; \theta_2, \zeta) F_{\text{DsIW}}(x_3; \theta_3, \zeta) & ; 0 < x_1 < x_2 < \infty \\
F_{\text{DsIW}}(x_1; \theta_1, \zeta) F_{\text{DsIW}}(x_2; \theta_2, \zeta) & ; 0 < x_2 < x_1 < \infty \\
F_{\text{DsIW}}(x; \theta_1 \theta_2 \theta_3, \zeta) & ; 0 < x_1 = x_2 = x < \infty
\end{cases}
\] \hspace{1cm} (14)

The marginal CDFs for BDsIW distribution can be represented as follows

\[
F_{X_d}(x_d; \theta_d, \theta_3, \zeta) = P[\max(W_d, W_3) \leq x_d] = F_{\text{DsIW}}(x_d; \theta_d, \theta_3, \zeta).
\] \hspace{1cm} (15)

The corresponding joint PMF of \(X \) for \(x_1, x_2 \in \mathbb{N}_0 \) is given by

\[
f_{X_1, X_2}(x_1, x_2; \Psi) = \begin{cases}
f_1(x_1, x_2; \Psi) & ; 0 < x_1 < x_2 < \infty \\
f_2(x_1, x_2; \Psi) & ; 0 < x_2 < x_1 < \infty \\
f_3(x; \Psi) & ; 0 < x_1 = x_2 = x < \infty
\end{cases}
\] \hspace{1cm} (16)

where

\[
f_1(x_1, x_2; \Psi) = F_{\text{DsIW}}(x_1; \theta_1 \theta_3, \zeta) F_{\text{DsIW}}(x_2; \theta_2, \zeta),
\]

\[
f_2(x_1, x_2; \Psi) = F_{\text{DsIW}}(x_1; \theta_1, \zeta) F_{\text{DsIW}}(x_2; \theta_2 \theta_3, \zeta),
\]

\[
f_3(x; \Psi) = F_{\text{DsIW}}(x; \theta_2, \zeta) F_{\text{DsIW}}(x; \theta_1 \theta_3, \zeta) - F_{\text{DsIW}}(x-1; \theta_2 \theta_3, \zeta) F_{\text{DsIW}}(x; \theta_1, \zeta).
\]
The expressions $f_1(x_1, x_2; \Psi)$, $f_2(x_1, x_2; \Psi)$ and $f_3(x; \Psi)$ for $x_1, x_2 \in \mathbb{N}_0$ can be easily obtained by using the relation
\[f_{X_1,X_2}(x_1, x_2; \Psi) = F(x_1, x_2; \Psi) - F(x_1 - 1, x_2; \Psi) - F(x_1, x_2 - 1; \Psi) + F(x_1 - 1, x_2 - 1; \Psi). \] (17)

Figure 1 shows the plots of the joint PMF of BDsIW distribution for different parameter values.

From Figure 1, it is clear that the joint PMF can take different shapes depending on the model parameter values. Assume $X \sim \text{BDsIW}(\theta_1, \theta_2, \theta_3, \zeta)$, then the joint reliability function of X can be expressed as
\[
R_{X_1,X_2}(x_1, x_2; \Psi) = 1 - F_{X_1}(x_1; \theta_1, \theta_3, \zeta) - F_{X_2}(x_2; \theta_2, \theta_3, \zeta) + F_{X_1,X_2}(x_1, x_2; \Psi)
\]
\[
= \begin{cases}
R_1(x_1, x_2; \Psi) & ; \ 0 < x_1 < x_2 < \infty \\
R_2(x_1, x_2; \Psi) & ; \ 0 < x_2 < x_1 < \infty \\
R_3(x; \Psi) & ; \ 0 < x_1 = x_2 = x < \infty,
\end{cases}
\] (18)

where
\[
R_1(x_1, x_2; \Psi) = 1 - F_{\text{DaIW}}(x_1; \theta_1, \theta_3, \zeta) - F_{\text{DaIW}}(x_2; \theta_2, \theta_3, \zeta) + F_{\text{DaIW}}(x_1; \theta_1, \theta_3, \zeta) F_{\text{DaIW}}(x_2; \theta_2, \zeta),
\]
\[
R_2(x_1, x_2; \Psi) = 1 - F_{\text{DaIW}}(x_1; \theta_1, \theta_3, \zeta) - F_{\text{DaIW}}(x_2; \theta_2, \theta_3, \zeta) + F_{\text{DaIW}}(x_1; \theta_1, \zeta) F_{\text{DaIW}}(x_2; \theta_2 \theta_3, \zeta),
\]
and
\[
R_3(x; \Psi) = 1 - F_{\text{DaIW}}(x; \theta_1 \theta_3, \zeta) - F_{\text{DaIW}}(x; \theta_2 \theta_3, \zeta) + F_{\text{DaIW}}(x; \theta_1 \theta_2 \theta_3, \zeta).
\]

Moreover, the bivariate hazard rate function (BHRF) of X can be represented as
\[
r_{X_1,X_2}(x_1, x_2; \Psi) = \begin{cases}
r_1(x_1, x_2; \Psi) & ; \ 0 < x_1 < x_2 < \infty \\
r_2(x_1, x_2; \Psi) & ; \ 0 < x_2 < x_1 < \infty \\
r_3(x; \Psi) & ; \ 0 < x_1 = x_2 = x < \infty,
\end{cases}
\] (19)

where $r_j(\cdot; \Psi) = \frac{f_j(\cdot; \Psi)}{R_j(\cdot; \Psi)}; j = 1, 2, 3$. Figure 2 shows the plots of the BHRF of BDsIW distribution for different parameter values.
Similarly, when $X_2 < X_1$, then

$$r^*(X_1|X_2 > x_2) = \frac{\zeta(x_2 + 1)^{-\zeta - 1}}{R_2(x_1, x_2; \Psi)} \{F_{\text{DsIW}}(x_2; \theta_2, \zeta) - 1\} \ln (\theta_1 \theta_3), \quad (21)$$

and the HRF of the conditional distribution X_2 given $X_1 > x_1$ is given by

$$r^*(X_2|X_1 > x_1) = \frac{\zeta(x_1 + 1)^{-\zeta - 1} F_{\text{DsIW}}(x_1; \theta_1, \zeta)}{R_2(x_1, x_2; \Psi)} \{F_{\text{DsIW}}(x_1; \theta_1 \theta_3, \zeta) - F_{\text{DsIW}}(x_1; \theta_2, \zeta) \ln (\theta_1 \theta_3)\}. \quad (22)$$

Similarly, when $X_2 < X_1$, then

$$r^{**}(X_1|X_2 > x_2) = \frac{\zeta(x_1 + 1)^{-\zeta - 1}}{R_2(x_1, x_2; \Psi)} \{F_{\text{DsIW}}(x_1; \theta_1, \zeta) - 1\} \ln (\theta_1 \theta_3). \quad (23)$$

On the other hand, assume a parallel system contains 2-component. Then, we can defined the BHRF as a vector which is useful to measure the total life span of a 2-component as follows

$$r(x) = (r(x), r_{12}(x_1|x_2), r_{21}(x_2|x_1)), \quad (24)$$

where $r(x)$ gives the HRF of the system using the information that the 2-component has survived beyond x, $r_{12}(x_1|x_2)$ gives the HRF span of the first component given that it has survived to an age x_1 and the other has failed at x_1. Similar argument holds for $r_{21}(x_2|x_1)$, (see Cox (1972)). If $X \sim \text{BDsIW}(\theta_1, \theta_3, \zeta)$, then

$$r(x)_{X=\min(x_1, x_2)} = \frac{F_{\text{DsIW}}(x - 1; \theta_3, \zeta)}{R_3(x; \Psi)} \left[-F_{\text{DsIW}}(x - 1; \theta_1, \zeta) - F_{\text{DsIW}}(x - 1; \theta_2, \zeta) + F_{\text{DsIW}}(x - 1; \theta_1 \theta_2, \zeta)\right]$$

$$+ \frac{F_{\text{DsIW}}(x; \theta_3, \zeta)}{R_3(x; \Psi)} \left[F_{\text{DsIW}}(x; \theta_1, \zeta) + F_{\text{DsIW}}(x; \theta_2, \zeta) - F_{\text{DsIW}}(x; \theta_1 \theta_2, \zeta)\right],$$

$$r_{12}(x_1|x_2)_{X_1 > X_2} = \zeta(x_1 + 1)^{-\zeta - 1} [1 - F_{\text{DsIW}}(x_1; \theta_1, \zeta)]^{-1} \ln (\theta_1),$$

and

$$r_{21}(x_2|x_1)_{X_1 < X_2} = \zeta(x_2 + 1)^{-\zeta - 1} [1 - F_{\text{DsIW}}(x_2; \theta_2, \zeta)]^{-1} \ln (\theta_2).$$

The following shock model and maintenance model interpretations can be provided for BDsIW distribution.
1. Shock model: Consider a system has 2-component, and it is assumed that the amount of shocks is measured in a discrete unit. Each component is subjected to individual shocks say W_1 and W_2 respectively. The system faces an overall shock W_3, which is transmitted to both the component equally, independent of their individual shocks. So, the observed shocks at the 2-component are $X_1 = \max(W_1, W_3)$ and $X_2 = \max(W_2, W_3)$ respectively.

2. Maintenance model: Consider a system has 2-component, and it is assumed that each component has been maintained independently and also there is an overall maintenance. Due to component maintenance, assume the lifetime of the individual component is increased by W_i amount and because of the overall maintenance, the lifetime of each component is increased by W_3 amount. Here, W_1, W_2 and W_3 are all measured in a discrete unit. So, the increased lifetimes of the 2-component are $X_1 = \max(W_1, W_3)$ and $X_2 = \max(W_2, W_3)$ respectively.

2.2 Some statistical properties

Assume $X \sim \text{BDsIW} \left(\theta_1, \theta_2, \theta_3, \zeta \right)$, then X_1 and X_2 are positive quadrant dependent (PQD) where

$$ F_{X_1, X_2}(x_1, x_2; \Psi) \geq F_{X_1}(x_1; \theta_1, \theta_3, \zeta) F_{X_2}(x_2; \theta_2, \theta_3, \zeta). \quad (25) $$

Furthermore, for every pair of increasing functions $f_{X_1}(\cdot)$ and $f_{X_2}(\cdot)$, we get $\text{Cov} \left\{ f_{X_1}(X_1), f_{X_2}(X_2) \right\} \geq 0$; see for example Nelsen (2006). Let us recall that, the function $k(u, v) : R \times R \to R$, is said to have the total positivity of order two ($TP-O_2$) property if $k(u, v)$ satisfies

$$ k(u_1, v_1)k(u_2, v_2) \geq k(u_2, v_1)k(u_1, v_2), \quad (26) $$

for all $u_1, v_1, u_2, v_2 \in R$. It is consider a very strong and an important property in lifetime testing, see for example Hu et al. (2003). Assume $x_{11}, x_{21}, x_{12}, x_{22} \in N_0$ and $x_{11} < x_{21} < x_{12} < x_{22}$ from $X \sim \text{BDsIW} \left(\theta_1, \theta_2, \theta_3, \zeta \right)$, then the joint reliability function of X satisfies the $TP-O_2$ property where

$$ \frac{R_{X_1, X_3}(x_{11}, x_{21}) R_{X_1, X_3}(x_{12}, x_{22})}{R_{X_1, X_3}(x_{12}, x_{21}) R_{X_1, X_3}(x_{11}, x_{22})} \geq 1. \quad (27) $$

Similarly, when $x_{11} = x_{21} < x_{12} < x_{22}, x_{21} < x_{11} < x_{12} < x_{22}$ etc. Now, we present some statistical properties of the proposed model in a form of results.

Result 1. If the bivariate vector $X = (X_1, X_2)$ has the $\text{BDsIW} \left(\theta_1, \theta_2, \theta_3, \zeta \right)$, then

1. $\max \{ X_1, X_2 \} \sim \text{DslW} \left(\theta_1, \theta_2, \theta_3, \zeta \right)$.

2. The stress-strenght probability is given by

$$ P[X_1 < X_2] = \sum_{x=0}^{\infty} \left(\theta_1 \theta_3 \right)^{(x+1)-x} \left[\left(\theta_2 \theta_3 \right)^{(x+1)-x} - \left(\theta_2 \theta_3 \right)^{-x} \right]. \quad (28) $$

3. The median of X_1 and X_2 is given by

$$ M_{X_d} = \left\{ \log \frac{\theta_d \theta_3}{U} \right\}^{-1}; \quad d = 1, 2, \quad (29) $$

where U has a uniform $U(0, 1)$ distribution.

4. The coefficient of median correlation between X_1 and X_2 is given by

$$ M_{X_1, X_2} = \left\{ \begin{array}{ll} 4F_{\text{DslW}} \left(M_{X_1}; \theta_1 \theta_3, \zeta \right) F_{\text{DslW}} \left(M_{X_2}; \theta_2, \zeta \right) - 1 & ; \ x_1 < x_2 \\
4F_{\text{DslW}} \left(M_{X_1}; \theta_1, \zeta \right) F_{\text{DslW}} \left(M_{X_2}; \theta_2 \theta_3, \zeta \right) - 1 & ; \ x_2 \leq x_1. \end{array} \right. \quad (30) $$

5. The conditional PMF of X_1 given $X_2 = x_2$ is given by

$$ f_{X_1 \mid X_2}(x_1 \mid x_2) = \left\{ \begin{array}{ll} f_{X_1 \mid X_2=x_2}^{(1)}(x_1 \mid x_2) & \text{if} \quad 0 < x_1 < x_2 < \infty \\
f_{X_1 \mid X_2=x_2}^{(2)}(x_1 \mid x_2) & \text{if} \quad 0 < x_2 < x_1 < \infty \\
f_{X_1 \mid X_2=x_2}^{(3)}(x_1 \mid x) & \text{if} \quad 0 < x_1 = x_2 = x < \infty, \quad (31) \end{array} \right. $$

6. The...
where

\[
\begin{align*}
 f_{X_1|X_2 = x_2}^{(1)}(x_1 | x_2) &= \frac{f_{\text{BDsIW}}(x_1; \theta_1 \theta_2, \zeta) f_{\text{BDsIW}}(x_2; \theta_2 \zeta)}{f_{\text{BDsIW}}(x_2; \theta_2 \zeta)}, \\
 f_{X_1|X_2 = x_2}^{(2)}(x_1 | x_2) &= f_{\text{BDsIW}}(x_1; \theta_1 \zeta),
\end{align*}
\]

and

\[
f_{X_1|X_2 = x_2}^{(3)}(x_1 | x) = \frac{f_{\text{BDsIW}}(x; \theta_2 \zeta) f_{\text{BDsIW}}(x; \theta_1 \theta_3 \zeta) - f_{\text{BDsIW}}(x-1; \theta_2 \theta_3 \zeta) f_{\text{BDsIW}}(x; \theta_1 \zeta)}{f_{\text{BDsIW}}(x; \theta_2 \theta_3 \zeta)}.
\]

6. The conditional CDF of X_1 given $X_2 \leq x_2$, is given by

\[
F_{X_1|X_2 = x_2}(x_1 | x_2) = \begin{cases}
 \frac{F_{\text{BDsIW}}(x_1; \theta_1 \theta_3 \zeta)}{F_{\text{BDsIW}}(x_2; \theta_2 \zeta)} & \text{if } 0 < x_1 < x_2 < \infty \\
 \frac{F_{\text{BDsIW}}(x_1; \theta_1 \zeta)}{F_{\text{BDsIW}}(x_2; \theta_2 \zeta)} & \text{if } 0 < x_2 < x_1 < \infty \\
 \frac{F_{\text{BDsIW}}(x_1; \theta_1 \zeta)}{F_{\text{BDsIW}}(x_1; \theta_1 \zeta)} & \text{if } 0 < x_1 = x_2 = x < \infty.
\end{cases}
\]

Proof. The proofs are quite standard and the details are avoided.

Result 2. Assume $(X_{1i}, X_{2i}) \sim \text{BDsIW}(\theta_{1i}, \theta_{2i}, \theta_{3i}, \zeta)$ for $i = 1, 2, \ldots, n$ and they are independently distributed. If

\[
Z_s = \max(X_{1s}, X_{2s}, \ldots, X_{ns}): s = 1, 2 \implies (X_{1s}, X_{2s}) \sim \text{BDsIW} \left(\prod_{i=1}^{n} \theta_{1i}, \prod_{i=1}^{n} \theta_{2i}, \prod_{i=1}^{n} \theta_{3i}, \zeta \right).
\]

Proof. It is easy to prove that using the joint CDF.

Result 3. If the bivariate vector $X \sim \text{BDsIW}((\theta_{1}, \theta_{2}, \theta_{3}, \zeta)$, then the joint probability generating function (PGF) of X_1 and X_2 can be written as infinite mixtures,

\[
G_{X_1, X_2}(y_1, y_2) = \sum_{j=0}^{\infty} \sum_{i=0}^{j-1} \left[(\theta_1 \theta_3)^{(i+1)} - (\theta_1 \theta_3)^{i} \right] \left[(\theta_2 \theta_3)^{(j+1)} - (\theta_2 \theta_3)^{j} \right] y_1^i y_2^j
\]

\[
+ \sum_{j=0}^{\infty} \sum_{i=j+1}^{\infty} \left[(\theta_1 \theta_3)^{(i+1)} - (\theta_1 \theta_3)^{i} \right] \left[(\theta_2 \theta_3)^{(j+1)} - (\theta_2 \theta_3)^{j} \right] y_1^i y_2^j
\]

\[
+ \sum_{i=0}^{\infty} \theta_1^{(i+1)} - (\theta_1 \theta_3)^{i} \left[(\theta_2 \theta_3)^{(i+1)} - (\theta_2 \theta_3)^{i} \right] y_1^i y_2^j
\]

\[
- \sum_{i=0}^{\infty} \theta_1^{(i+1)} - (\theta_1 \theta_3)^{i} \left[(\theta_2 \theta_3)^{(i+1)} - (\theta_2 \theta_3)^{i} \right] y_1^i y_2^j;
\]

\[
|y_1|, |y_2| < 1.
\]

Proof. The proof can be easily obtained by using the fact that

\[
G_{X_1, X_2}(y_1, y_2) = E \left(y_1^{X_1} y_2^{X_2} \right) = \sum_{j=0}^{\infty} P [X_1 = i, X_2 = j] y_1^i y_2^j.
\]

Hence, different moments and product moments of BDsIW distribution can be obtained, as infinite series, using the joint PGF.

3 Statistical Inference

3.1 Maximum likelihood estimation (MLE)

In this section, we use the maximum likelihood method to estimate the unknown parameters $\theta_1, \theta_2, \theta_3$ and ζ of BDsIW distribution. Suppose that, we have a sample of size n, of the form $\{(x_{11}, x_{21}), (x_{12}, x_{22}), \ldots, (x_{1n}, x_{2n})\}$ from BDsIW
distribution. We use the following notations: \(I_1 = \{ x_{1j} < x_{2j}, I_2 = \{ x_{2j} < x_{1j} \}, I_3 = \{ x_{1j} = x_{2j} = x_j \}, I = I_1 \cup I_2 \cup I_3, |I_1| = n_1, |I_2| = n_2, |I_3| = n_3 \) and \(n = \sum_{k=1}^3 n_k \). Based on the observations, the likelihood function is given by

\[
l(\Psi) = \prod_{j=1}^{n_1} f_1(x_{1j}, x_{2j}) \prod_{j=1}^{n_2} f_2(x_{1j}, x_{2j}) \prod_{j=1}^{n_3} f_3(x_j).
\]

(34)

The log-likelihood function becomes

\[
L(\Psi) = \sum_{j=1}^{n_1} \ln \left(\phi_1(x_{1j}; \theta_1, \zeta) \right) + \sum_{j=1}^{n_2} \ln \left(\phi_1(x_{2j}; \theta_2, \zeta) \right) + \sum_{j=1}^{n_3} \ln \left(\phi_1(x_j; \theta_3, \zeta) \right) + \sum_{j=1}^{n_3} \ln \left(\phi_2(x_j; \theta_3, \zeta) \right) + \sum_{j=1}^{n_3} \ln \left(\phi_3(x_j; \theta_3, \zeta) \right).
\]

(35)

where \(\phi_1(x; \theta, \zeta) = \theta^{x+1-\zeta} - \theta^{-\zeta} \). The MLEs of the model parameters can be obtained by computing the first partial derivatives of Equation (35) with respect to \(\theta_1, \theta_2, \theta_3 \) and \(\zeta \) and then putting the results equal to zero. We get the likelihood equations as in the following form

\[
\frac{\partial L}{\partial \theta_1} = \sum_{j=1}^{n_1} \frac{\theta_3 \phi_2(x_{1j} + 1; \theta_1, \theta_3, \zeta) - \theta_3 \phi_2(x_{1j}; \theta_1, \theta_3, \zeta)}{\phi_1(x_{1j}; \theta_1, \theta_3, \zeta)} + \sum_{j=1}^{n_2} \frac{\theta_3 \phi_2(x_{1j} + 1; \theta_1, \theta_3, \zeta) - \theta_3 \phi_2(x_{1j}; \theta_1, \theta_3, \zeta)}{\phi_1(x_{1j}; \theta_1, \theta_3, \zeta)} + \sum_{j=1}^{n_3} \frac{\theta_3 \phi_2(x_{1j} + 1; \theta_1, \theta_3, \zeta) - \theta_3 \phi_2(x_{1j}; \theta_1, \theta_3, \zeta)}{\phi_1(x_{1j}; \theta_1, \theta_3, \zeta)}
\]

(36)

\[
\frac{\partial L}{\partial \theta_2} = \sum_{j=1}^{n_1} \frac{\phi_2(x_{1j} + 1; \theta_2, \zeta) - \phi_3(x_{1j}; \theta_2, \zeta) - \phi_2(x_{1j}; \theta_2, \zeta)}{\phi_1(x_{1j}; \theta_2, \zeta)} + \sum_{j=1}^{n_2} \frac{\phi_2(x_{1j} + 1; \theta_2, \zeta) - \phi_3(x_{1j}; \theta_2, \zeta) - \phi_2(x_{1j}; \theta_2, \zeta)}{\phi_1(x_{1j}; \theta_2, \zeta)} + \sum_{j=1}^{n_3} \frac{\phi_2(x_{1j} + 1; \theta_2, \zeta) - \phi_3(x_{1j}; \theta_2, \zeta) - \phi_2(x_{1j}; \theta_2, \zeta)}{\phi_1(x_{1j}; \theta_2, \zeta)}
\]

(37)

\[
\frac{\partial L}{\partial \theta_3} = \sum_{j=1}^{n_1} \frac{\phi_2(x_{1j} + 1; \theta_1, \theta_3, \zeta) - \phi_2(x_{1j}; \theta_1, \theta_3, \zeta) - \phi_2(x_{1j} + 1; \theta_1, \theta_3, \zeta)}{\phi_1(x_{1j}; \theta_1, \theta_3, \zeta)} + \sum_{j=1}^{n_2} \frac{\phi_2(x_{1j} + 1; \theta_2, \theta_3, \zeta) - \phi_2(x_{1j}; \theta_2, \theta_3, \zeta) - \phi_2(x_{1j} + 1; \theta_2, \theta_3, \zeta)}{\phi_1(x_{1j}; \theta_2, \theta_3, \zeta)} + \sum_{j=1}^{n_3} \frac{\phi_2(x_{1j} + 1; \theta_3, \theta_3, \zeta) - \phi_2(x_{1j}; \theta_3, \theta_3, \zeta) - \phi_2(x_{1j} + 1; \theta_3, \theta_3, \zeta)}{\phi_1(x_{1j}; \theta_3, \theta_3, \zeta)}
\]

(38)

and

\[
\frac{\partial L}{\partial \zeta} = \sum_{j=1}^{n_1} \frac{\phi_3(x_{1j}; \theta_1, \theta_3, \zeta) - \phi_3(x_{1j} + 1; \theta_1, \theta_3, \zeta)}{\phi_1(x_{1j}; \theta_1, \theta_3, \zeta)} + \sum_{j=1}^{n_2} \frac{\phi_3(x_{2j}; \theta_2, \theta_3, \zeta) - \phi_3(x_{2j} + 1; \theta_2, \theta_3, \zeta)}{\phi_1(x_{2j}; \theta_2, \theta_3, \zeta)} + \sum_{j=1}^{n_3} \frac{\phi_3(x_j; \theta_3, \theta_3, \zeta) - \phi_3(x_j + 1; \theta_3, \theta_3, \zeta)}{\phi_1(x_j; \theta_3, \theta_3, \zeta)}
\]

(39)

where \(\phi_2(x; \theta, \zeta) = x^{-\zeta} \theta e^{-\zeta} - 1 \) and \(\phi_3(x; \theta, \zeta) = x^{-\zeta} \theta e^{-\zeta} - 1 \ln(x) \ln(\theta) \). The MLEs of the parameters \(\theta_1, \theta_2, \theta_3 \) and \(\zeta \) can be obtained by solving the above system of four non-linear equations from Equation (36) to Equation (39). The solution of these equations is not easy to solve, so we need a numerical technique to get the MLEs.
3.2 Simulation results

In this section, we introduce some simulation results to show how the proposed MLE performs for different sample sizes and for different parameter values. So, we have taken two sets of parameter values: $\theta_1 = 0.8, \theta_2 = 0.4, \theta_3 = 0.4, \zeta = 0.5$ and $\theta_1 = 0.6, \theta_2 = 0.25, \theta_3 = 0.3, \zeta = 0.9$. The population parameters are generated using software "Mathcad prime 3" package. The sampling distributions are obtained for different sample sizes $n = [50, 100, 150, 250, 400]$ from $N = 500$ replications. In each case we have generated a random sample from the BDsIW($\theta_1, \theta_2, \theta_3, \zeta$) with the given sample size and the parameter values. Tables 1 and 2 obtain the average estimates (AvE) and the mean squared errors (MSEs) of the different parameters.

Size	θ_1	MSE	θ_2	MSE	θ_3	MSE	ζ	MSE
50	0.765	0.0311	0.424	0.0229	0.399	0.0147	0.515	0.0038
100	0.770	0.0307	0.412	0.0226	0.398	0.0129	0.504	0.0017
150	0.771	0.0303	0.414	0.0215	0.399	0.0119	0.497	0.0010
250	0.774	0.0299	0.413	0.0194	0.402	0.0102	0.503	0.0005
400	0.788	0.0284	0.410	0.0193	0.401	0.0100	0.499	0.0004

Table 1. The AvE and MSE values for the BDsIW(0.8, 0.4, 0.4, 0.5).

Size	θ_1	MSE	θ_2	MSE	θ_3	MSE	ζ	MSE
50	0.667	0.0340	0.285	0.0321	0.295	0.0190	0.878	0.0070
100	0.663	0.0326	0.283	0.0304	0.295	0.0157	0.882	0.0055
150	0.661	0.0311	0.283	0.0291	0.297	0.0137	0.884	0.0032
250	0.660	0.0284	0.280	0.0212	0.293	0.0136	0.887	0.0023
400	0.653	0.0202	0.279	0.0204	0.290	0.0135	0.890	0.0017

Table 2. The AvE and MSE values for the BDsIW(0.6, 0.25, 0.3, 0.9).

Based on the simulation results, it is observed that as n increases, the MSE decreases. Moreover, the AvE and initial values are approximately equal. So; the MLE can be used quite effectively for data analysis purposes.

3.3 Data analysis

In this section, we explain the experimental importance of BDsIW distribution using two applications to real data sets. In each data, we shall compare the fits of BDsIW distribution with some competitive models. The tested distributions are compared using some criteria namely, the maximized log-likelihood ($-L$), Akaike information criterion (AIC), corrected Akaike information criterion (CAIC), bayesian information criterion (BIC) and Hannan-Quinn information criterion (HQIC). Further, we can use the Pearson’s chi-square goodness-of-fit test for grouped data to test the goodness of fit of a proposed bivariate distribution. But the sample size must be sufficiently large in order to apply this test. For this reason, we did not use this test in the two data sets analyzed here.

3.3.1 The first data: Football data

This data is reported in Lee and Cha (2015), and it represents a football match score in Italian football match (Serie A) during 1996 to 2011, between ACF Fiorentina(X_1) and Juventus(X_2). This data is reported in Table 3.
Table 3. The score data between ACF Fiorentina and Juventus.

Obs.	Match Date	X_1	X_2	Obs.	Match Date	X_1	X_2
1	25th Oct. 2011	1	2	14	16th Feb. 2002	1	2
2	17th Apr. 2011	0	0	15	19th Dec. 2001	1	1
3	27th Nov. 2010	1	1	16	12th May. 2001	1	3
4	06th Mar. 2010	1	2	17	06th Jan. 2001	3	3
5	17th Oct. 2009	1	1	18	21st Apr. 2000	0	1
6	24th Jan. 2009	0	1	19	18th Dec. 1999	1	1
7	31st Aug. 2008	1	1	20	24th Apr. 1999	1	2
8	02nd Mar. 2008	3	2	21	12th Dec. 1998	1	0
9	07th Oct. 2007	1	1	22	21st Feb. 1998	3	0
10	09th Apr. 2006	1	1	23	04th Oct. 1997	1	2
11	04th Dec. 2005	1	2	24	22nd Feb. 1997	1	1
12	09th Apr. 2005	3	3	25	28th Sept. 1996	0	1
13	10th Nov. 2004	0	1	26	23rd Mar. 1996	0	1

We shall compare the fits of BDsIW distribution with some competitive models like BDsE, BDsR, BDsW, bivariate Poisson with minimum operator (BPo$_{\text{min}}$), bivariate Poisson with 3-parameter (BPo-3P), independent bivariate Poisson (IBPo), BDsIE, and BDsIR distributions. Before trying to analyze the data using BDsIW distribution, we fit at first the marginals X_1 and X_2 separately and the min(X_1, X_2) on this data. The MLEs of the parameters θ and ζ of the corresponding DsIW distribution for X_1, X_2 and min(X_1, X_2) are (0.237, 2.798), (0.095, 2.601) and (0.310, 3.103) respectively. Moreover, the $-L$ values are 30.86, 33.73 and 28.02 respectively. Figure 3 shows the estimated PMF plots for the marginals X_1, X_2 and min(X_1, X_2) using this data.

![Figure 3](image.png)

Figure 3. The estimated PMF for the marginals X_1, X_2 and min(X_1, X_2) using football data set.

From Figure 3, it is clear that DsIW distribution fits the data for the marginals. Now, we fit BDsIW distribution on this data. The MLEs, $-L$, AIC, CAIC, BIC, and HQIC values for the tested bivariate models are reported in Table 4.
Test 1: $H_{01} : \zeta = 1$ (BDsIE) against $H_{11} : \zeta \neq 1$ (BDsIW).

Test 2: $H_{02} : \zeta = 2$ (BDsIR) against $H_{12} : \zeta \neq 2$ (BDsIW).

The likelihood ratio test statistics (Λ), d.f and p-values for BDsIE and BDsIR distributions are given in Table 5.

From Table 4, it is clear that BDsIW distribution provides a better fit than the other tested distributions, because it has the smallest values among $-L$, AIC, CAIC, BIC and HQIC. Since, BDsIE and BDsIR distributions are special cases from BDsIW distribution. Hence, we want to perform the following two tests:

We can conclude that H_{01} and H_{02} are rejected with 5% level of significance. Hence, BDsIE and BDsIR distributions cannot be used for this data set. So, we prefer BDsIW distribution for analyzing this data. Figure 4 shows the estimated joint PMF for BDsIW, BDsIE and BDsIR distributions using this data, which support the results of Table 5.

Model	MLEs	$-L$	AIC	CAIC	BIC	HQIC
BDsE	$\hat{\theta}_1 = 0.652, \hat{\theta}_2 = 0.812, \hat{\theta}_3 = 0.713$	75.35	156.70	157.79	160.47	157.79
BDsR	$\hat{\theta}_1 = 0.790, \hat{\theta}_2 = 0.872, \hat{\theta}_3 = 0.905$	63.99	133.98	135.07	137.75	135.07
BDsW	$\hat{\theta}_1 = 0.807, \hat{\theta}_2 = 0.882, \hat{\theta}_3 = 0.917, \hat{\zeta} = 2.125$	63.89	133.78	134.87	137.55	134.87
BPo_{min}	$\hat{\theta}_1 = 1.36, \hat{\theta}_2 = 2.10, \hat{\theta}_3 = 2.27$	64.22	134.44	135.53	138.21	135.53
BPo-3P	$\hat{\alpha}_1 = 1.08, \hat{\alpha}_2 = 1.38, \hat{\alpha}_3 = 0.70$	64.92	135.83	136.93	139.61	136.93
IBPo	$\hat{\lambda}_1 = 1.08, \hat{\lambda}_2 = 1.38$	67.60	139.21	139.72	141.72	139.92
BDsIE	$\hat{\theta}_1 = 0.669, \hat{\theta}_2 = 0.388, \hat{\theta}_3 = 0.514$	78.54	163.07	163.99	167.28	164.42
BDsIR	$\hat{\theta}_1 = 0.493, \hat{\theta}_2 = 0.212, \hat{\theta}_3 = 0.561$	64.10	134.21	135.29	137.98	135.29
BDsIW	$\hat{\theta}_1 = 0.420, \hat{\theta}_2 = 0.141, \hat{\theta}_3 = 0.587, \hat{\zeta} = 2.738$	61.96	131.82	133.82	136.95	133.37

Table 4. The MLEs, $-L$, AIC, CAIC, BIC, and HQIC values.

Table 5. The Λ, d.f and p-values.

Model	H_0	Λ	d.f.	p-values
BDsIE	$\zeta = 1$	33.152	1	< 0.01
BDsIR	$\zeta = 2$	4.288	1	0.0384

We can conclude that H_{01} and H_{02} are rejected with 5% level of significance. Hence, BDsIE and BDsIR distributions cannot be used for this data set. So, we prefer BDsIW distribution for analyzing this data. Figure 4 shows the estimated joint PMF for BDsIW, BDsIE and BDsIR distributions using this data, which support the results of Table 5.

Figure 4. The estimated joint PMF for BDsIW, BDsIE and BDsIR distributions using football data set.
3.3.2 The second data: Nasal drainage severity score

This data is reported in Davis (2002), and it represents the efficacy of steam inhalation in the treatment of common cold symptoms (0 = no symptoms; 1 = mild symptoms; 2 = moderate symptoms; 3 = severe symptoms). This data is presented in Table 6.

Table 6. Nasal drainage severity score.

Obs.	Day 1 (X_1)	Day 2 (X_2)	Obs.	Day 1 (X_1)	Day 2 (X_2)
1	1	1	16	2	1
2	0	0	17	1	1
3	1	1	18	2	2
4	1	1	19	3	1
5	0	2	20	1	1
6	2	0	21	2	1
7	2	2	22	2	2
8	1	1	23	1	1
9	3	2	24	2	2
10	2	2	25	2	0
11	1	0	26	1	1
12	2	3	27	0	1
13	1	3	28	1	1
14	2	1	29	1	1
15	2	3	30	3	3

We shall compare the fits of BDsIW distribution with some competitive models like bivariate Poisson with 4-parameter (BPo-4P), IBPo, BDsE, BDsIE and BDsIR distributions. We fit at first the marginals X_1 and X_2 separately and the $\min(X_1, X_2)$ on this data. The MLEs of the parameters θ and ζ of the corresponding DsIW distribution for X_1, X_2 and $\min(X_1, X_2)$ are (0.065, 2.505), (0.115, 2.524) and (0.181, 2.699) respectively. Moreover, the $-L$ values are 40.99, 39.83 and 36.68 respectively. Figure 5 shows the estimated PMF plots for the marginals X_1, X_2 and $\min(X_1, X_2)$ using this data.

![Figure 5](image1.png)
![Figure 5](image2.png)
![Figure 5](image3.png)

Figure 5. The estimated PMF for the marginals X_1, X_2 and $\min(X_1, X_2)$ using nasal drainage severity score.

From Figure 5, it is clear that DsIW distribution fits the data for the marginals. Now, we fit BDsIW distribution on
this data. The MLEs, $-L$, AIC, CAIC, BIC, and HQIC values for the tested bivariate models are reported in Table 7.

Model	MLEs	$-L$	AIC	CAIC	BIC	HQIC
BP-4P	$\lambda_1 = 0.262, \hat{\alpha}_1 = 0.165, \lambda_2 = 0.405, \hat{\alpha}_2 = 2.97$	77.66	163.33	164.93	168.93	164.66
IBP	$\hat{\lambda}_1 = 1.499, \hat{\lambda}_2 = 1.367$	92.48	190.96	191.88	195.16	192.30
BDsE	$\hat{\theta}_1 = 0.846, \hat{\theta}_2 = 0.792, \hat{\theta}_3 = 0.693$	88.00	182	182.92	186.20	183.34
BDsIE	$\hat{\theta}_1 = 0.501, \hat{\theta}_2 = 0.622, \hat{\theta}_3 = 0.383$	92.48	190.96	191.88	195.16	192.30
BDsIR	$\hat{\theta}_1 = 0.262, \hat{\theta}_2 = 0.405, \hat{\theta}_3 = 0.363$	78.66	163.32	164.24	167.52	164.66
BDsIW	$\hat{\theta}_1 = 0.192, \hat{\theta}_2 = 0.337, \hat{\theta}_3 = 0.360, \hat{\rho} = 2.453$	76.51	161.02	162.62	166.62	162.81

From Table 7, it is clear that BDsIW distribution provides a better fit than the other tested distributions. Table 8 shows the Λ and p-values for BDsIE and BDsIR distributions using nasal drainage severity score data set.

Model	H_0	Λ	d.f.	p-values
BDIE	H_0	31.94	1	< 0.01
BDIR	H_0	4.3	1	0.0381

From Table 8, we can conclude that H_{01} and H_{02} are rejected with 5% level of significance. So, we prefer BDsIW distribution for analyzing this data. Figure 6 shows the estimated joint PMF for BDsIW, BDsIE and BDsIR distributions using this data, which support the results of Table 8.

Figure 6. The estimated joint PMF for BDsIW, BDsIE and BDsIR distributions using nasal drainage severity score.

4 Conclusions

In this paper, we presented a flexible bivariate discrete distribution called BDsIW distribution. The proposed model has the marginals, which are DsIW distributions. The joint CDF and joint PMF have simple forms; therefore, this new discrete model can be easily used in practice for modelling bivariate discrete data. Some statistical and mathematical properties of the proposed discrete model are studied. Moreover, the simulation results indicated that the MLE works quite satisfactorily and it can be used to estimate the model parameters. Also, we analyzed two real data sets and showed through goodness-of-fit tests that BDsIW distribution works quite well in practice in different fields.

References

[1] Balakrishnan, N., and Lai, C., (2009). Continuous bivariate distributions (Second Edition). New York, Springer.
[2] Balakrishnan, N., and Shijii, K., (2014). On a class of bivariate exponential distributions. Statistics and probability letters, 85, 153-160.

[3] Bebbington, M., Lai, C. D., and Zitikis, R., (2007). A flexible Weibull extension. Reliability engineering and system safety, 92, 719-726.

[4] Cordeiro, G. M., Edwin, M. M., and Artur, J. L., (2013). The exponential-Weibull lifetime distribution. Journal of statistical computation and simulation, http://dx.doi.org/10.1080/00949655.2013.797982.

[5] Cox, D. R., (1972). Regression models and life tables. Royal statistics society, 34, 187-220.

[6] Davis, C. S., (2002). Statistical methods for the analysis of repeated measures data. Springer-Verlag, New York.

[7] Dilip, R., (2004). Discrete Rayleigh distribution. IEEE transactions on reliability, 53(2), 255-260.

[8] El-Bassiouny, A. H., EL-Damcese, M., Abdelfattah, M., and Eliwa, M. S., (2016). Bivariate exponential generalized Weibull-Gompertz distribution. Journal of applied probability and statistics, 11(1), 25-46.

[9] El-Bassiouny, A. H., Medhat EL-Damcese, Abdelfattah Mustafa, and Eliwa, M. S., (2016). Mixture of exponentiated generalized Weibull-Gompertz distribution and its applications in reliability. Journal of statistics applications and probability, 5(3), 1-14.

[10] El-Bassiouny, A. H., Medhat EL-Damcese, Abdelfattah Mustafa, and Eliwa, M. S., (2017). Exponentiated generalized Weibull-Gompertz distribution with application in survival analysis. Journal of statistics applications and probability, 6(1), 7-16.

[11] El-Gohary, A., EL-Bassiouny, A. H., and El-Morshedy, M., (2015a). Exponentiated flexible Weibull extension distribution. International journal of mathematics And its applications, 3(3-A), 1-12.

[12] El-Gohary, A., El-Bassiouny, A. H., and El-Morshedy, M., (2015b). Inverse flexible Weibull extension distribution. International journal of computer applications, 115, 46-51.

[13] El-Gohary, A., El-Bassiouny, A. H., and El-Morshedy, M., (2016). Bivariate exponentiated modified Weibull extension distribution. Journal of statistics applications and probability, 5(1), 67-78.

[14] El-Morshedy, M., and Khalil, A. A., (2018). Bivariate discrete exponentiated Weibull distribution: properties and applications. arXiv:1805.05199v1.

[15] El-Morshedy, M., EL-Bassiouny, A. H., and El-Gohary, A., (2017). Exponentiated inverse flexible Weibull extension distribution. Journal of statistics applications and probability, 6(1), 169-183.

[16] Gómez-Déniz, E., (2010). Another generalization of the geometric distribution. Test, 19(2), 399-415.

[17] Hiba, Z. M., (2016). Bivariate inverse Weibull distribution. Journal of statistical computation and simulation, 86(12), 2335-2345.

[18] Hu, T., Khaleeli, B. E., and Shaked, M., (2003). Multivariate hazard rate orders. Journal of multivariate analysis, 84, 173 -189.

[19] Jalmar, M. F., Edwin, M. M., Cordeiro, G. M., (2008). A generalized modified Weibull distribution for lifetime modeling. Computational statistics and data analysis, 53, 450-462.

[20] Jazi, M. A., Lai, C. D., and Alamatsaz, M. H., (2010). Inverse Weibull distribution and estimation of its parameters. Statistical methodology, 7(2), 121-132.

[21] Johnson, N. L., Kotz, S., and Balakrishnan, N., (1997). Discrete multivariate distributions. New York, Wiley.

[22] Karlis, D., and Ntzoufras, I., (2000). On modelling soccer data. Student, 3, 229-244.

[23] Keller, A. Z., Giblin, M. T., and Farnworth, N. R., (1985). Reliability analysis of commercial vehicle engines. Reliability engineering, 10, 15-25, 89-102.
[24] Kundu, D., and Dey, A. K., (2009). Estimating the parameters of the Marshall-Olkin bivariate Weibull distribution by EM algorithm. Computational statistics and data analysis, 53(4), 956-965.

[25] Kundu, D., and Gupta, R. D., (2009). Bivariate generalized exponential distribution. Journal of multivariate analysis, 100, 581-593.

[26] Kundu, D., and Vahid, N., (2018). Univariate and bivariate geometric discrete generalized exponential distributions. Journal of statistical theory and practice. DOI:10.1080/15598608.2018.1441082.

[27] Lai, C.D., Xie, M., Murthy, D. N. P., (2003). A modified Weibull distribution. IEEE transactions on reliability, 52, 33-37.

[28] Lee, A. J., (1997). Modelling scores in the premier league: Is Manchester United really the best?. Chance, 10, 15-19.

[29] Lee, H., and Cha, J. H., (2015). On two general classes of discrete bivariate distributions. The American statistician, 69(3), 221-230.

[30] Mohamed, I., Eliwa, M. S., and El-Morshedy, M., (2017). Bivariate exponentiated generalized linear exponential distribution with applications in reliability analysis. https://arxiv.org/abs/1710.00502.

[31] Morata, L. B., (2009). A priori ratemaking using bivariate Poisson regression models. Insurance: mathematics and economics, 44, 135-141.

[32] Nadarajah, S., Cordeiro, G. M., Edwin, M. M., (2013). The exponentiated Weibull distribution: a survey. Statistical papers, 54, 839-877.

[33] Nelsen, R. B., (2006). An introduction to copulas. Springer, New York, USA.

[34] Ong, S. H., and Ng, C. M., (2013). A bivariate generalization of the noncentral negative Binomial distribution. Communications in statistics: simulation and computation, 42, 570-585.

[35] Rasool, R., and Akbar, A. J., (2016). On bivariate exponentiated extended Weibull family of distributions. Ciências natura, Santa Maria, 38(2), 564-576.

[36] Sarhan, A., and Balakrishnan, N., (2007). A new class of bivariate distributions and its mixture. Journal of multivariate analysis, 98, 1508-1527.

[37] Toshio, N., and Shunji, O., (1975). The discrete Weibull distribution. IEEE transactions on reliability, 24(5), 300-301.

[38] Vahid, N., Alamataaz, M. H., Bidram, H., and Aghajani, H., (2015b). Discrete beta exponential distribution. Communications in statistics: theory and methods, 44, 2079-2091.

[39] Vahid, N., Alamatsaz, M. H., and Bidram, H., (2013). Discrete generalized exponential distribution of a second type. Statistics, 47 (4), 876-887.

[40] Vahid, N., and Hamid, B., (2015a). The exponentiated discrete Weibull distribution. Sort, 39 (1), 127-146.

[41] Vahid, N., and Kundu, D., (2017). Bivariate discrete generalized exponential distribution. Statistics, 51, 1143-1158.

[42] Weibull, W., (1951). A statistical distribution of wide applicability. Journal of applied mechanics, 18, 293-297.

[43] Wu, X., and Yuen, K. C., (2003). A discrete-time risk model with interaction between classes of business. Insurance: mathematics and economics, 33, 117-133.

[44] Yuen, K. C., Guo, J., and Wu, X., (2006). On the first time of ruin in the bivariate compound Poisson model. Insurance: mathematics and economics, 38, 298-308.