Abstract

In this paper we consider the variable inequality problem, that is, to find a solution of the inclusion given by the sum of a function and a point-to-cone application. This problem can be seen as a generalization of the classical system inequality problem taking a variable order structure. Exploiting this special structure, we propose two variants of the subgradient algorithm for solving a system of variable inequalities. The convergence analysis is given under convex-like conditions which, when the point-to-cone application is constant, contains the old subgradient schemes.

Keywords: Convexity; Projection methods; Subgradient methods.

Mathematical Subject Classification(2010): 90C25 47N10

1 Introduction

Given $F : \mathbb{R}^n \to \mathbb{R}^m$ and C a non-empty subset of \mathbb{R}^n, consider the problem of finding $x \in C$ such that the following inequalities are satisfied

$$F(x) \leq 0,$$

or equivalently that

$$0 \in F(x) + \mathbb{R}^m_+.$$

This problem can be generalized as follows: find $x \in C$ such that

$$0 \in F(x) + K,$$

where $K \subset \mathbb{R}^m$ is a closed, convex and pointed cone in \mathbb{R}^m. A partial order \preceq, induced in \mathbb{R}^m by K, is defined as $\hat{y} \preceq y$ if and only if $y - \hat{y} \in K$; see [17]. Then problem (1) can be formulated as the K-inequalities problem

$$\text{find } x \in C \text{ such that } F(x) \preceq_K 0.$$
If the function F is convex with respect to the partial order given by K, i.e. for all $x, \hat{x} \in \mathbb{R}^n$ and $\alpha \in [0, 1]$, $F(\alpha x + (1 - \alpha)\hat{x}) \preceq_K \alpha F(x) + (1 - \alpha)F(\hat{x})$, then problem (2) is called K-convex inequalities problem; see, for instance, [23].

The variable case considers the set valued application $K : \mathbb{R}^m \rightrightarrows \mathbb{R}^m$, where $K(y)$ is a pointed, convex and closed cone, for all $y \in \mathbb{R}^m$. Then the variable version of (1) can be reformulated as finding a point $x \in C$ such that

$$0 \in F(x) + K(F(x)).$$

(3)

This problem is an inclusion model, which has been studied in many works; see for instance [15, 23]. In this case, the set valued application $K(F(x))$ has a special structure, which will be strongly exploited in order to find a solution of problem (3). Based on the variable order structures given by $z \preceq_{K(z)} y$ if and only if $y - z \in K(z)$, problem (3) is equivalent to the following problem, called K-inequality:

$$\text{find } x \in C \text{ such that } F(x) \preceq_{K(F(x))} 0.$$

(4)

The solution set of this problem will be denoted by S^*. In this paper we propose a subgradient approach for solving problem (4), which combines a subgradient iteration with a simple projection step, onto the intersection of C with suitable halfspaces containing the solution set, S^*. The proposed conceptual algorithm contains two variants called Algorithm R, based on Robinson’s subgradient algorithm given in [26] for solving problem (2), and Algorithm S, which corresponds to a special modification of the subgradient algorithms proposed in [9] for the scalar problem and in [10] for problem (2). Their main difference lies in how the projection step is done. For the convergence of the variants, we assume that the solution set S^* is nonempty and that the function F is K-convex with respect to the variable order structure defined by $K(F(\cdot))$. That is, F is K-convex if for all $x, \hat{x} \in \mathbb{R}^n$ and $\alpha \in [0, 1]$,

$$F(\alpha x + (1 - \alpha)\hat{x}) \preceq_K F(\alpha x + (1 - \alpha)\hat{x}) \alpha F(x) + (1 - \alpha)F(\hat{x}).$$

In this case we say that problem (4) is a K-convex inequality problem, where K is understood as a point-to-set valued application; see, for instance, [7].

Note that if K is a constant application, problem (4) corresponds with (1). This model has been already studied in [10, 26]. Moreover, if K is the Pareto cone, i.e., $K = \mathbb{R}^n_+$, it is equivalent to the convex feasibility problem, which has been well-studied [4] and has many applications in optimization theory, approximation theory, image reconstruction and so on; see, for instance, [14, 25, 29]. The variable ordering structures, when K is point-to-cone application, are very useful in several mathematical models, which are formalized via general variable preferences; see the recently works [2, 3], underlining the importance of problems like (4).

The paper is organized as follows. In the next section, we outline the main definitions and preliminary results. In Section 4 some analytical results for K-convex functions are shown. Section 4 is devoted to the presentation of the algorithms and their convergence is shown in Section 5. Finally some comments and remarks are presented in Section 6.

2 Preliminaries

In this section, we present some definitions and results, which are needed in the convergence analysis. Next we deal with the so called Fejér convergence and its properties. We begin with some classical notations.

The inner product in \mathbb{R}^n is denoted by $\langle \cdot, \cdot \rangle$, the norm, induced by this inner product, by $\| \cdot \|$ and $B[x, \rho]$ is the closed ball centered at $x \in \mathbb{R}^n$ with radio ρ, i.e., $B[x, \rho] := \{ y \in \mathbb{R}^n : \|y - x\| \leq \rho \}$. The paper is organized as follows. In the next section, we outline the main definitions and preliminary results. In Section 4 some analytical results for K-convex functions are shown. Section 4 is devoted to the presentation of the algorithms and their convergence is shown in Section 5. Finally some comments and remarks are presented in Section 6.

2 Preliminaries

In this section, we present some definitions and results, which are needed in the convergence analysis. Next we deal with the so called Fejér convergence and its properties. We begin with some classical notations.

The inner product in \mathbb{R}^n is denoted by $\langle \cdot, \cdot \rangle$, the norm, induced by this inner product, by $\| \cdot \|$ and $B[x, \rho]$ is the closed ball centered at $x \in \mathbb{R}^n$ with radio ρ, i.e., $B[x, \rho] := \{ y \in \mathbb{R}^n : \|y - x\| \leq \rho \}$. The paper is organized as follows. In the next section, we outline the main definitions and preliminary results. In Section 4 some analytical results for K-convex functions are shown. Section 4 is devoted to the presentation of the algorithms and their convergence is shown in Section 5. Finally some comments and remarks are presented in Section 6.
A set valued application \(K : \mathbb{R}^m \rightrightarrows \mathbb{R}^m \) is closed if and only if \(gr(K) := \{(x, y) \in \mathbb{R}^n \times \mathbb{R}^n : F(x) = y\} \) is a closed set.

The set \(C \) will be a closed and convex subset of \(\mathbb{R}^n \). For an element \(x \in \mathbb{R}^n \), we define the orthogonal projection of \(x \) onto \(C \), \(P_C(x) \), as the unique point in \(C \), such that \(\| P_C(x) - y \| \leq \| x - y \| \) for all \(y \in C \). In the following a well known fact on orthogonal projections.

Proposition 1. Let \(C \) be a nonempty, closed and convex set in \(\mathbb{R}^n \). For all \(x \in \mathbb{R}^n \) and all \(z \in C \), the following property holds: \(\langle x - P_C(x), z - P_C(x) \rangle \leq 0 \).

Proof. See Theorem 3.14 of [5].

Now we present the Fejér convergence.

Definition 1. Let \(S \) be a nonempty subset of \(\mathbb{R}^n \). A sequence \((x^k)_{k \in \mathbb{N}} \) is said to be Fejér convergent to \(S \), if and only if for all \(x \in S \), there exists \(k > 0 \) such that \(\| x^{k+1} - x \| \leq \| x^k - x \| \) for all \(k \geq k \).

This definition was introduced in [13] and has been further elaborated in [20]. A useful result on Fejér sequences is the following.

Theorem 1. If \((x^k)_{k \in \mathbb{N}} \) is Fejér convergent to \(S \) then,

- \(i) \) The sequence \((x^k)_{k \in \mathbb{N}} \) is bounded,

- \(ii) \) if a cluster point of the sequence \((x^k)_{k \in \mathbb{N}} \) belongs to \(S \), then the sequence \((x^k)_{k \in \mathbb{N}} \) converges.

Proof. See Theorem 2.16 of [4].

3 On K-convexity

Convexity is a very helpful concept in optimization. Convex functions satisfy nice properties such as existence of directional derivative and subgradient. In this section we will study the fulfillment of these properties in the variable order case.

We begin with the analysis of the epigraph of \(K \)-convex functions. In the variable order case the epigraph of \(F \) is defined as

\[
epi(F) := \{(x, y) \in \mathbb{R}^n \times \mathbb{R}^m : F(x) \in y - K(F(x))\}.
\]

In non-variable orders, i.e., when \(K \) is a constant application, the convexity of \(epi(F) \) is equivalent to the convexity of \(F \); see [22]. However, as it is shown in the next proposition, in the variable order setting this important characterization does not hold.

Proposition 2. Suppose that \(F \) is a \(K \)-convex function. Then, \(epi(F) \) is convex if and only if \(K(F(x)) \equiv K \), for all \(x \in \mathbb{R}^n \).

Proof. Suppose that for some \(x, \hat{x} \in \mathbb{R}^n \) such that \(F(x) \neq F(\hat{x}) \), there exists \(z \in K(F(x)) \setminus K(F(\hat{x})) \). Take the points \((x, F(x) + 2\alpha z) \) and \((2\hat{x} - x, F(2\hat{x} - x)) \), with \(\alpha > 0 \). They belong to \(epi(F) \).

Consider the following convex combination:

\[
\frac{(x, F(x) + 2\alpha z)}{2} + \frac{(2\hat{x} - x, F(2\hat{x} - x))}{2} = \left(\hat{x}, \frac{F(x) + F(2\hat{x} - x)}{2} + \alpha z \right).
\]

This point belongs to \(epi(F) \) if and only if

\[
F(\hat{x}) = \frac{F(x) + F(2\hat{x} - x)}{2} + \alpha z - k(\alpha),
\]
where \(k(\alpha) \in K(F(\hat{x})). \) By the \(K \)-convexity of \(F \),
\[
F(\hat{x}) = \frac{F(x) + F(2\hat{x} - x)}{2} - k_1,
\]
where \(k_1 \in K(F(\hat{x})). \) So,
\[
\alpha z + k_1 = k(\alpha).
\]
(5)
Since \(K(F(\hat{x})) \) is closed and convex, and \(z \notin K(F(\hat{x})) \), \(\{z\} \) and \(K(F(\hat{x})) \) may be strictly separated in \(\mathbb{R}^n \) by a hyperplane, \(i.e. \), there exists some \(p \in \mathbb{R}^n \setminus \{0\} \) such that
\[
p^T k \geq 0 > p^T z,
\]\n(6)
for all \(k \in K(F(\hat{x})). \) Therefore, after multiplying (5) by \(p^T \) and using (6) with
\[
k = k(\alpha) \in K(F(\hat{x})),
\]
we obtain that
\[
\alpha p^T z + p^T k_1 = p^T k(\alpha) \geq 0.
\]
Taking limits as \(\alpha \) goes to \(\infty \), the contradiction is established, since
\[
0 \leq \alpha p^T z + p^T k_1 \rightarrow -\infty.
\]
Hence, \(K(F(x)) \equiv K \) for all \(x \in \mathbb{R}^n. \)

In the following we present some analytical properties of \(K \)-convex functions. For the non-differentiable model, we generalize the classical assumptions given in the case of constant cones; see [16, 22]. Let us first present the definition of Daniell cone, for more details; see [24].

Definition 2. We say that a convex cone \(K \) is Daniell cone iff, for all sequence \((x^k)_{k \in \mathbb{N}} \subset \mathbb{R}^n \) satisfying \((x^k - x^{k+1})_{k \in \mathbb{N}} \subset K \) and for some \(x \in \mathbb{R}^n \), \((x^k - x)_{k \in \mathbb{N}} \subset K \), then \(\lim_{k \to \infty} x^k = \inf_{k \in \mathbb{N}} \{x^k\}. \)

Given the partial order structure induced by a cone \(K \), the concept of infimum of a sequence can be defined. Indeed, for a sequence \((x^k)_{k \in \mathbb{N}} \) and a cone \(K \), the point \(\hat{x} \) is \(\inf_{k \in \mathbb{N}} \{x^k\} \) if and only if \((x^k - \hat{x})_{k \in \mathbb{N}} \subset K \), and there is not \(\bar{x} \) such that \(\bar{x} - \hat{x} \in K \) and \((x^k - \bar{x})_{k \in \mathbb{N}} \subset K \).

It is well known that every pointed, closed and convex cone in a finite dimensional space is a Daniell cone; see [21].

Lemma 1. Suppose that there exists \(K \) a Daniell cone such that \(K(F(x)) \subset K \) for all \(x \) in a neighborhood of \(\hat{x} \). If \(F \) is a \(K \)-convex function, then \(F \) is locally Lipschitz around \(\hat{x} \).

Proof. If \(F \) is \(K \)-convex, then \(F \) is \(K \)-convex in the non-variable sense. By Theorem 3.1 of [24], \(F \) is locally Lipschitz.

Proposition 3. Suppose that for each \(\bar{x} \) there exists \(\varepsilon > 0 \) such that \(\bigcup_{\bar{x} \in B(\hat{x}, \varepsilon)} K(F(x)) \subset K \), where \(K \) is a Daniell cone. Then, the directional derivative of \(F \) at \(\bar{x} \) exists along \(d = (x - \bar{x}) \), that is,
\[
F'(\bar{x}; x - \bar{x}) = \lim_{t \to 0^+} \frac{F(\bar{x} + td) - F(\bar{x})}{t}.
\]

Proof. By the convexity of \(F \),
\[
F(\bar{x} + t_1 d) - \frac{t_1}{t_2} F(\bar{x} + t_2 d) - \left(\frac{t_2 - t_1}{t_2} \right) F(\bar{x}) \in -K(F(\bar{x} + t_1 d)),
\]
for all \(0 < t_1 < t_2 < \varepsilon \). Dividing by \(t_1 \), we have
\[
\frac{F(\bar{x} + t_1 d) - F(\bar{x})}{t_1} - \frac{F(\bar{x} + t_2 d) - F(\bar{x})}{t_2} \in -K(F(\bar{x} + t_1 d)) \subset -K.
\]
Hence, \(\frac{F(\bar{x} + t_1d) - F(\bar{x})}{t_1} \) is a non-increasing function. Similarly, as

\[
F(\bar{x}) - \frac{t_1}{t_1 + 1} F(\bar{x} - d) - \frac{1}{t_1 + 1} F(\bar{x} + t_1d) \in -K(F(\bar{x})),
\]

it holds that

\[
\frac{F(\bar{x} + t_1d) - F(\bar{x})}{t_1} - F(\bar{x} - d) - F(\bar{x}) \in K(F(\bar{x})) \subset K.
\]

Since \(K \) is a Daniell cone, \(\frac{F(\bar{x} + t_1d) - F(\bar{x})}{t_1} \) has a limit as \(t_1 \) goes to 0. Hence, the directional derivative exists. \(\square \)

Let us present the definition of subgradient.

Definition 3. We say that \(\epsilon_\bar{x} \) is a subgradient of \(F \) at \(\bar{x} \) if for all \(x \in \mathbb{R}^n \),

\[
F(x) - F(\bar{x}) \in \epsilon_\bar{x}(x - \bar{x}) + K(F(\bar{x})).
\]

The set of all subgradients of \(F \) at \(\bar{x} \) is denoted as \(\partial F(\bar{x}) \).

Proposition 4. If for all \(x \in \mathbb{R}^n \), \(\partial F(x) \neq \emptyset \), then \(F \) is \(K \)-convex.

Proof. Since \(\partial F(x) \neq \emptyset \), for all \(x \in \mathbb{R}^n \), taking any \(\bar{x}, \hat{x} \in \mathbb{R}^n \) there exists \(\epsilon_{\alpha\bar{x}+(1-\alpha)\hat{x}} \) belonging to \(\partial F(\alpha\bar{x} + (1 - \alpha)\hat{x}) \) and \(k_1, k_2 \in K(F(\alpha\bar{x} + (1 - \alpha)\hat{x})) \), such that

\[
F(\hat{x}) - F(\alpha\bar{x} + (1 - \alpha)\hat{x}) = \alpha \epsilon_{\alpha\bar{x}+(1-\alpha)\hat{x}}(\hat{x} - \bar{x}) + k_1,
\]

and

\[
F(\bar{x}) - F(\alpha\bar{x} + (1 - \alpha)\hat{x}) = (\alpha - 1) \epsilon_{\alpha\bar{x}+(1-\alpha)\hat{x}}(\bar{x} - \hat{x}) + k_2.
\]

Multiplying the previous equalities by \((1 - \alpha) \) and \(\alpha \) respectively, their addition leads to

\[
\alpha F(\bar{x}) + (1 - \alpha)F(\bar{x}) - F(\alpha\bar{x} + (1 - \alpha)\hat{x}) = \alpha k_2 + (1 - \alpha)k_1.
\]

Since \(K(F(\alpha\bar{x} + (1 - \alpha)\hat{x})) \) is convex, the result follows. \(\square \)

Proposition 5. If \(K \) is a closed application, then \(\partial F \) is closed.

Proof. Assume that \((x^k)_{k \in \mathbb{N}} \) and \((A^k)_{k \in \mathbb{N}} \subset \partial F(x^k) \) are sequences such that \(\lim_{k \to \infty} x^k = \bar{x} \) and \(\lim_{k \to \infty} A^k = A \). For every \(x \), one has

\[
F(x) - F(x^k) - A^k(x - x^k) \in K(F(x^k)).
\]

Taking \(k \) going to \(\infty \), as \(\lim_{k \to \infty} F(x^k) = F(\bar{x}) \) and \(K \) is a closed mapping, we get that

\[
F(x) - F(\bar{x}) - A(x - \bar{x}) \in K(F(\bar{x})).
\]

Hence, \(A \in \partial F(\bar{x}) \), establishing that \(\partial F(\bar{x}) \) is closed. \(\square \)

Proposition 6. Let \(F \) be a \(K \)-convex function. If \(\text{gr}(K) \) is closed, then for all \(\bar{x} \in \mathbb{R}^n \), where \(F \) is differentiable, \(\nabla F(\bar{x}) = \partial F(\bar{x}) \).
Proof. First we show that $\nabla F(\bar{x})$ belongs to $\partial F(\bar{x})$. Since F is a differentiable function, fixed \bar{x}, we get

$$F(\alpha x + (1 - \alpha)\bar{x}) = F(\bar{x}) + \alpha \nabla F(\bar{x})(x - \bar{x}) + o(\alpha).$$

By K-convexity,

$$F(\bar{x}) + \alpha \nabla F(\bar{x})(x - \bar{x}) + o(\alpha) \in \alpha F(x) + (1 - \alpha)F(\bar{x}) - K(F(\alpha x + (1 - \alpha)\bar{x})).$$

So,

$$\alpha \left(F(x) - F(\bar{x}) - \nabla F(\bar{x})(x - \bar{x}) + \frac{o(\alpha)}{\alpha} \right) \in K(F(\alpha x + (1 - \alpha)\bar{x})).$$

Since K is a cone, it follows that

$$F(x) - F(\bar{x}) - \nabla F(\bar{x})(x - \bar{x}) + \frac{o(\alpha)}{\alpha} \in K(F(\alpha x + (1 - \alpha)\bar{x})).$$

By taking limits as α goes to 0 and recalling that F is a continuous function and K is a closed application, by Lemma it holds that

$$F(x) - F(\bar{x}) - \nabla F(\bar{x})(x - \bar{x}) \in K(F(\bar{x})),$$

and hence, $\nabla F(\bar{x}) \in \partial F(\bar{x})$.

Suppose that $\varepsilon_{\bar{x}} \in \partial F(\bar{x})$. Fixed $d \in \mathbb{R}^n$, we get that, for all $\alpha > 0$,

$$F(\bar{x} + \alpha d) - F(\bar{x}) = \alpha \nabla F(\bar{x})d + o(\alpha) \in \alpha \varepsilon_{\bar{x}}d + k(\alpha),$$

where $k(\alpha) \in K(F(\bar{x}))$. Dividing by $\alpha > 0$, and taking limits as α approaches 0, it follows that

$$[\nabla F(\bar{x}) - \varepsilon_{\bar{x}}]d \in K(F(\bar{x})),$$

recall that $K(F(\bar{x}))$ is a closed set. Repeating the same analysis for $-d$, we obtain that

$$-[\nabla F(\bar{x}) - \varepsilon_{\bar{x}}]d \in K(F(\bar{x})).$$

Taking into account that $K(F(\bar{x}))$ is a pointed cone, $[\nabla F(\bar{x}) - \varepsilon_{\bar{x}}]d = 0$. As the previous equality is valid for all $d \in \mathbb{R}^n$,

$$\nabla F(\bar{x}) = \varepsilon_{\bar{x}},$$

establishing the desired equality. \hfill \Box

Theorem 2. Suppose that there exists K a Daniell cone such that $K(F(x)) \subset K$ for all x in a neighborhood of \hat{x}. If F is K-convex and K is a closed application, then $\partial F(\hat{x}) \neq \emptyset$.

Proof. By Lemma F is a locally Lipschitz continuous function. By Rademacher’s Theorem, for all \hat{x}, F is differentiable almost everywhere on some neighborhood of \hat{x}. Moreover, due to the boundedness of ∇F whenever exists, there exists a sequence x^k convergent to \hat{x} such that $A = \lim_{k \to \infty} \nabla F(x^k)$. By Proposition it holds that $\nabla F(x^k) = \partial F(x^k)$. By Proposition $A \in \partial F(\hat{x})$, hence $\partial F(\hat{x}) \neq \emptyset$. \hfill \Box

Remark 1. Given \hat{x} and V a bounded neighborhood of \hat{x}, under the assumptions of the previous Lemma, the set $\partial F(x)$ is uniformly bounded in V. Indeed as F is K-convex, locally around \hat{x}, F will be also K-convex. Now, since the domain of F is a finite dimensional space, the fact follows directly after [23, Theorem 4.12(ii)].
4 The algorithms

In this section we consider two variants of subgradient method for solving problem (4). The algorithms generate a sequence of projections onto special sets. From now on we assume that the following assumptions hold.

Assumptions

(A1) The subgradients of F are locally bounded.

(A2) F is K-convex.

(A3) $K : \mathbb{R}^m \rightarrow \mathbb{R}^m$ is a closed application.

(A4) For all $x^* \in S^*$ and $x \in C$.

$$K(F(x^*)) \subseteq K(F(x)),$$

We emphasize that Assumption (A1) is a typical assumption for proving the convergence of the subgradient-scalar methods in infinite dimension setting; see [1, 8, 9, 25]. As stated in [23], for the scalar and vector framework, this assumption holds trivially in finite-dimensional spaces. Recently, (A1) was proved in [6] when K is a constant application. A sufficient condition can be found in Remark 1.

The existence of subgradient is guaranteed under (A2)-(A3).

Assumption (A4) implies that there exists a cone K such that $K(F(x^*)) = K$ for all $x^* \in S^*$. In this case problem (4) is equivalent to the non-variable inequality problem

$$\text{find } x \in C \text{ such that } F(x) \preceq K(0).$$

However, as K is not known, this equivalence is not useful from a practical viewpoint. Next example shows a function and an order structure fulfilling (4).

Remark 2. Given problem (4) with $C = \mathbb{R}$, $K(y) = \{(r, \theta), r \geq 0, \theta \in [0, \theta(y)]\}$ and $F : \mathbb{R} \rightarrow \mathbb{R}^2$, $F(x) = (x^2, x)$. Here

$$\theta(y) = \begin{cases} \frac{\pi}{2}, & \text{if } y_1 = 0, \\ \frac{3\pi}{4} - \frac{\arctan(y_2^2/y_1^2)}{2}, & \text{otherwise}. \end{cases}$$

Evidently

$$\mathbb{R}_+ \times \{0\} \subset K(y) \subset \mathbb{R}_+ \times \mathbb{R}.$$

Moreover, $F(x) \in -K(F(x))$ if and only if $x = 0$. Therefore, $S^* = \{0\}$ and due to

$$\theta(y) \geq \frac{\pi}{2} = K(0),$$

Assumption (A4) holds.

Since the function x^2 is convex,

$$F(\alpha x + (1 - \alpha)\hat{x}) - \alpha F(x) - (1 - \alpha)F(\hat{x}) \in -\mathbb{R}_+ \times \{0\} \subset -K(F(\hat{x}))$$

for all $x, \hat{x} \in \mathbb{R}^n$. Hence, F is K-convex. Moreover, the continuity of θ implies that K is a closed application.
Now we will present the conceptual algorithm.

Conceptual Algorithm

Initialization step. Take \(x^0 \in C \), and set \(k = 0 \).

Iterative step. Given \(x^k, U^k \in \partial F(x^k) \). Compute

\[
x^{k+1} := F(x^k, U^k).
\]

(7)

If \(x^{k+1} = x^k \) then stop.

We consider two variants the conceptual algorithm. As they are based on the algorithms proposed in \([11, 26]\), the extensions are called Algorithms R and S respectively. The main difference is given by the definition of the procedure \(F \) in (7), which is defined as follows

\[
F_R(x^k, U^k) := P_{C \cap H(x^k, U^k)}(x^k); \\
F_S(x^k, U^k) := P_{C \cap W(x^k) \cap H(x^k, U^k)}(x^0);
\]

(8)
(9)

where

\[
H(x, U) := \{ z \in \mathbb{R}^n : F(x) + \langle U, z - x \rangle \in -K(F(x)) \} \\
W(x) := \{ z \in \mathbb{R}^n : \langle z - x, x^0 - x \rangle \leq 0 \}.
\]

(10)
(11)

Before we start with the formal analysis of the convergence properties of the algorithm, we make the following remark on the complexity of the projection steps.

Remark 3. Since \(H(x^k, U^k) \) and \(W(x^k) \) are halfspaces, the projections defined in (8) and (9) does not entail any significant additional computational cost over the computation of the projection onto \(C \) itself. Actually, if \(C \) is described by nonlinear constrains, the projections onto these smaller sets may be easier than onto the feasible set; see, for instance, \([8]\).

5 Convergence Analysis

In this part we prove the convergence of the algorithms. The section will be contain three subsections. First we study the properties of the solution set \(S^* \) and present some general properties of the conceptual algorithm. The convergence analysis of the proposed variants, Algorithms R and S, will be presented separately in the last two subsections.

5.1 Properties of the solution set

Proposition 7. The set \(S^* \) is closed and convex.

Proof. Take \(x, x^* \in S^* \). Then, it holds that

\[
F(\alpha x + (1 - \alpha)x^*) \in \alpha F(x) + (1 - \alpha)F(x^*) - K(F(\alpha x + (1 - \alpha)x^*)),
\]

for all \(\alpha \in [0, 1] \). As \(F(x) \preceq_{K(F(x))} 0 \) and \(F(x^*) \preceq_{K(F(x^*))} 0 \), it follows from (A4) that

\[
K(F(x)) = K(F(x^*)) \subset K(F(\alpha x + (1 - \alpha)x^*)).
\]

Hence,

\[
F(\alpha x + (1 - \alpha)x^*) \in -K(F(\alpha x + (1 - \alpha)x^*)),
\]

8
and therefore $\alpha x + (1 - \alpha)x^* \in S^*.$

For the closeness, consider any sequence $(x^k)_{k\in\mathbb{N}} \subset S^*$ convergent to $x^*.$ As F is a continuous function; see Lemma 1, $\lim_{k\to\infty} F(x^k) = F(x^*)$ and taking into account that $F(x^k) \in -K(F(x^k))$ and the closeness of K leads to $F(x^*) \in -K(F(x^*))$. So, $x^* \in S^*$. □

We assume that S^* is a nonempty set.

Lemma 2. For all $x \notin S^*$ and $U \in \partial F(x)$, it holds that $S^* \subset H(x, U)$.

Proof. Take $x^* \in S^*$. Then, $F(x^*) \in -K(F(z))$ and by the K convexity of F,

$$F(x) + \langle U, x^* - x \rangle - F(x^*) \in -K(F(x)),$$

for all $x \in \mathbb{R}^n$ and all $U \in \partial F(x)$. Hence, using the above inclusion and (4), we get that

$$F(x) + \langle U, x^* - x \rangle \in -K(F(x)) - K(F(x^*)) \subseteq -K(F(x)),$$

for all $x \notin S^*$. So, $x^* \in H(x, U)$. □

Lemma 3. If $x \in H(x, U) \cap C$ for some $U \in \partial F(x)$, then $x \in S^*$.

Proof. Suppose that $x \in H(x, U) \cap C$ for some $U \in \partial F(x)$, then $x \in C$ and

$$F(x) \in -K(F(x)),$$

i.e., $x \in S^*$. □

The above lemma will be useful to show that the stop criterion of the variants of the conceptual algorithm are well defined.

5.2 Convergence of Algorithm R

In this subsection all results are referent to Algorithm R, i.e., with the iterative step as

$$x^{k+1} = \mathcal{F}_R(x^k, U^k) = P_{C \cap H(x^k, U^k)}(x^k),$$

where

$$H(x^k, U^k) = \{z \in \mathbb{R}^n : F(x^k) + \langle U^k, z - x^k \rangle \in -K(F(x^k))\}$$

and $U^k \in \partial F(x^k)$.

The following proposition gives the validity of the stop criterion on Algorithm R.

Proposition 8. If Algorithm R stops at iteration k, then $x^k \in S^*$.

Proof. If Algorithm R stops, then $x^{k+1} = x^k$. It follows from (3) that $x^k \in H(x^k, U^k) \cap C$. So, by Lemma 3 $x^k \in S^*$. □

Proposition 9. The sequence generated by Algorithm R is Féjer convergent to S^*. Moreover, it is bounded and

$$\lim_{k \to \infty} \|x^{k+1} - x^k\| = 0. \quad (12)$$

Proof. Take $x^* \in S^*$. By Lemma 2 $x^* \in H(x^k, U^k)$, for all $k \in \mathbb{N}$. Then

$$\|x^{k+1} - x^*\|^2 - \|x^k - x^*\|^2 + \|x^{k+1} - x^k\|^2 = 2\langle x^* - x^{k+1}, x^k - x^{k+1} \rangle \leq 0,$$

using Proposition 4 and (3) in the last inequality. So,

$$\|x^{k+1} - \hat{x}\|^2 \leq \|x^k - x^*\|^2 - \|x^{k+1} - x^k\|^2. \quad (13)$$
The above inequality implies that \((x^k)_{k \in \mathbb{N}}\) is Féjer convergent to \(S^*\) and hence \((x^k)_{k \in \mathbb{N}}\) is bounded. Also, we get
\[
0 \leq \|x^{k+1} - x^*\|^2 \leq \|x^k - x^*\|^2.
\]
So, \((\|x^k - x^*\|^2)_{k \in \mathbb{N}}\) is a convergent sequence. Therefore, using \((13)\), we get that
\[
\lim_{k \to \infty} \|x^{k+1} - x^k\| = 0.
\]

Theorem 3. *The sequence generated by Algorithm \(R\) converges to some point in \(S^*\).*

Proof. By Proposition 9, \((x^k)_{k \in \mathbb{N}}\) is bounded. So, using (A1), \((U^k)_{k \in \mathbb{N}}\) is bounded, i.e., there exists \(L \geq 0\) such that
\[
\|U^k\| \leq L, \tag{14}
\]
for all \(k\).

Fix \(k \in \mathbb{N}\). Since \(K(F(x^k))\) is a closed convex cone, it is clear that \(y \in \mathbb{R}^m\) can be uniquely written as
\[
y = y_+ + y_-,
\]
with \(y_+ \in K^*(F(x^k)), y_- = -K(F(x^k))\) and \((y_+, y_-) = 0\). For \(y = F(x^k)\), consider \(F(x^k)_+\) and \(F(x^k)_-\). Now
\[
\|F(x^k)_+\|^2 = \langle F(x^k)_+, F(x^k)_+ + F(x^k)_- \rangle = \langle F(x^k)_+, F(x^k) \rangle
\]
\[
= \langle F(x^k)_+, F(x^k) + U^k(x^{k+1} - x^k) \rangle - \langle F(x^k)_+, U^k(x^{k+1} - x^k) \rangle.
\]
But \(F(x^k)_+ \in K^*(F(x^k))\), so \(\langle F(x^k)_+, F(x^k) + U^k(x^{k+1} - x^k) \rangle \leq 0\), and therefore
\[
\|F(x^k)_+\|^2 \leq -\langle F(x^k)_+, U^k(x^{k+1} - x^k) \rangle.
\]
Applying the Cauchy Schwartz inequality and recalling (14), it follows that
\[
\|F(x^k)_+\|^2 \leq L \|F(x^k)_+\| \|x^{k+1} - x^k\|.
\]
Since \(x^k \notin S^*, F(x^k)_+ \neq 0\). So, dividing by \(\|F(x^k)_+\|\), we obtain
\[
\|F(x^k)_+\| \leq L \|x^{k+1} - x^k\|.
\]
Recalling (12), it follows that
\[
\lim_{k \to \infty} \|F(x^k)_+\| = 0. \tag{15}
\]
Now consider a convergent subsequence \((x^{j_k})_{k \in \mathbb{N}}\) of \((x^k)_{k \in \mathbb{N}}\). Denote \(x^*\) as its limit. It follows from (15) that \(F(x^*)_+ = 0\). Henceforth, \(F(x^*) = F(x^*)_-.\) Moreover as
\[
\lim_{k \to \infty} F(x^{j_k})_- = \lim_{k \to \infty} F(x^{j_k}) - \lim_{k \to \infty} F(x^{j_k})_+,
\]
we get that
\[
\lim_{k \to \infty} F(x^{j_k})_- = F(x^*).
\]
Since \(F(x^{j_k})_- \in -K(F(x^{j_k}))\) and (A3) is fulfilled,
\[
F(x^*) \in -K(F(x^*)),
\]
i.e., \(x^* \in S^*\). Therefore, the accumulation points of \((x^k)_{k \in \mathbb{N}}\) belong to \(S^*\). Finally, by the Féjer convergence, the sequence converge to a point in \(S^*\). \(\square\)
5.3 Convergence of Algorithm S

In this subsection all results are referent to Algorithm S, i.e., with the iterative step as

\[x^{k+1} = F_S(x^k, U^k) = P_{C \cap W(x^k) \cap H(x^k, U^k)}(x^0), \]

where

\[H(x^k, U^k) = \{ z \in \mathbb{R}^n : F(x^k) + \langle U^k, z - x^k \rangle \in -K(F(x^k)) \} \]

with \(U^k \in \partial F(x^k) \) and

\[W(x^k) = \{ z \in \mathbb{R}^n : \langle z - x^k, x^0 - x^k \rangle \leq 0 \} \].

The following proposition gives the validity of the stop criterion on Algorithm S.

Proposition 10. If Algorithm S stops at iteration \(k \), then \(x^k \in S^* \).

Proof. If Algorithm S stops, then \(x^{k+1} = x^k \). It follows from \([9]\) that \(x^k \in W(x^k) \cap H(x^k, U^k) \cap C \subset H(x^k, U^k) \cap C \). So, by Lemma \([3]\), \(x^k \in S^* \). \(\square \)

Observe that, in virtue of their definitions, \(W(x^k) \) and \(H(x^k, U^k) \) for some \(U^k \in \partial F(x^k) \) are convex and closed sets, for each \(k \in \mathbb{N} \). Therefore \(C \cap H(x^k, U^k) \cap W(x^k) \) is a convex and closed set, for each \(k \in \mathbb{N} \). So, if \(C \cap H(x^k, U^k) \cap W(x^k) \) is nonempty then, the next iterate, \(x^{k+1} \), is well-defined. Next lemma guarantees this fact.

Lemma 4. For all \(k \in \mathbb{N} \), it holds that \(S^* \subset C \cap H(x^k, U^k) \cap W(x^k) \).

Proof. We proceed by induction. By definition, \(S^* \subset C \). By Lemma \([2]\), \(S^* \subset C \cap H(x^k, U^k) \), for all \(k \). For \(k = 0 \), since \(W(x^0) = \mathbb{R}^m \), \(S^* \subset C \cap H(x^0, U^0) \cap W(x^0) \). Assume that \(S^* \subset C \cap H(x^k, U^k) \cap W(x^k) \), for all \(0 \leq \ell \leq k \). Henceforth, \(x^{k+1} = P_{C \cap H(x^k, U^k) \cap W(x^k)}(x^0) \) is well-defined. Then, by Lemma \([2]\) for all \(x^* \in S^* \), we get that

\[\langle x^* - x^{k+1}, x^0 - x^{k+1} \rangle = \langle x^* - P_{C \cap H(x^k, U^k) \cap W(x^k)}(x^0), x^0 - P_{C \cap H(x^k, U^k) \cap W(x^k)}(x^0) \rangle \leq 0, \]

using the induction hypothesis. The above inequality implies that \(x^* \in W(x^{k+1}) \) and hence, \(S^* \) is a subset of \(C \cap H(x^{k+1}, U^{k+1}) \cap W(x^{k+1}) \). \(\square \)

Corollary 1. Algorithm S is well-defined.

Proof. By the previous lemma, \(S^* \subset C \cap H(x^k, U^k) \cap W(x^k) \), for \(k \in \mathbb{N} \). Since \(S^* \neq \emptyset \), then, given \(x^0 \), the sequence \((x^k)_{k \in \mathbb{N}} \) is computable. \(\square \)

Before proving the convergence of the sequence, we will study its boundedness. Next lemma shows that the sequence remains in a ball determined by the initial point.

Lemma 5. The sequence \((x^k)_{k \in \mathbb{N}} \) is bounded. Furthermore,

\[(x^k)_{k \in \mathbb{N}} \subset B \left[\frac{1}{2} (x^0 + x^*), \frac{1}{2} \rho \right], \]

where \(x^* = P_{S^*}(x^0) \) and \(\rho = \text{dist}(x^0, S^*) \).

Proof. Lemma \([3]\) says that \(S^* \subset C \cap W(x^k) \cap H(x^k, U^k) \) for \(k \in \mathbb{N} \), and by definition of \(x^{k+1} \); see \([7]\) and \([9]\), it is true that

\[\|x^{k+1} - x^0\| \leq \|z - x^0\|, \tag{16} \]

for \(k \in \mathbb{N} \) and all \(z \in S^* \). Henceforth, taking in \((16)\) \(z = x^* \),

\[\|x^{k+1} - x^0\| \leq \|x^* - x^0\| = \rho, \]

where \(x^* = P_{S^*}(x^0) \) and \(\rho = \text{dist}(x^0, S^*) \).
for all k. Hence, $(x^k)_{k \in \mathbb{N}}$ is bounded. Without loss of generality, take $z^* = x^k - \frac{1}{2}(x^0 + x^*)$ and $\bar{x} = x^* - \frac{1}{2}(x^0 + x^*)$. It follows from the fact $x^* \in W(x^{k+1})$ that

$$0 \geq 2\langle x^* - x^{k+1}, x^0 - x^{k+1} \rangle$$

$$= 2\left\langle z^* + \frac{1}{2}(x^0 + x^*) - z^{k+1} - \frac{1}{2}(x^0 + x^*), z^0 + \frac{1}{2}(x^0 + x^*) - z^{k+1} - \frac{1}{2}(x^0 + x^*) \right\rangle$$

$$= 2\langle z^* - z^{k+1}, z^0 - z^{k+1} \rangle = \langle z^* - z^{k+1}, z^* - z^{k+1} \rangle = \|z^{k+1}\|^2 - \|z^*\|^2,$$

using in the third equality that $z^* = -z^0$. So,

$$\|x^{k+1} - \frac{x^0 + x^*}{2}\| \leq \|x^* - \frac{x^0 + x^*}{2}\| = \frac{\rho}{2} \quad (17)$$

Now we will focus on the properties of the accumulation points.

Lemma 6. All accumulation points of $(x^k)_{k \in \mathbb{N}}$ are elements of S^*.

Proof. Since $x^{k+1} \in W(x^k)$,

$$0 \geq 2\langle x^{k+1} - x^k, x^0 - x^k \rangle = \|x^{k+1} - x^k\|^2 - \|x^{k+1} - x^0\|^2 + \|x^k - x^0\|^2.$$

Equivalently,

$$0 \leq \|x^{k+1} - x^k\|^2 \leq \|x^{k+1} - x^0\|^2 - \|x^k - x^0\|^2,$$

establishing that $\langle \|x^k - x^0\| \rangle_{k \in \mathbb{N}}$ is a monotone nondecreasing sequence. It follows from Lemma 6 that $\langle \|x^k - x^0\| \rangle_{k \in \mathbb{N}}$ is bounded and thus, it is a convergent sequence. Therefore,

$$\lim_{k \to \infty} \|x^{k+1} - x^k\| = 0.$$

Let \bar{x} be an accumulation point of $(x^k)_{k \in \mathbb{N}}$ and $(x^{j_k})_{k \in \mathbb{N}}$ be a convergent subsequence to \bar{x}. Since x^{k+1} belongs to $H(x^k, U^k)$, for all k, we have

$$F(x^{j_k} + U^{j_k}(x^{j_k+1} - x^{j_k})) \preceq K(F(x^{j_k})) 0. \quad (18)$$

By Remark 1, $(U^{j_k})_{k \in \mathbb{N}}$ is bounded. So, the sequence $(U^{j_k}(x^{j_k+1} - x^{j_k}))_{k \in \mathbb{N}}$ converges to zero. By taking limits in (18) and recalling that K is closed application, we obtain that

$$
\lim_{k \to \infty} F(x^{j_k}) + U^{j_k}(x^{j_k+1} - x^{j_k}) = F(\bar{x}) \in -K(F(\bar{x})),
\]

implying that $\bar{x} \in S^*$.

Finally, we are ready to prove the convergence of the sequence $(x^k)_{k \in \mathbb{N}}$ generated by Algorithm S to the solution which lies closest to x^0.

Theorem 4. Define $x^* = P_{S^*}(x^0)$. Then $(x^k)_{k \in \mathbb{N}}$ converges to x^*.

Proof. By Lemma 3, $(x^k)_{k \in \mathbb{N}} \subseteq B \left[\frac{1}{2}(x^0 + x^*), \frac{1}{2}\rho \right]$ is bounded. Let $(x^{j_k})_{k \in \mathbb{N}}$ be a convergent subsequence of $(x^k)_{k \in \mathbb{N}}$, and let \bar{x} be its limit. Evidently $\bar{x} \in B \left[\frac{1}{2}(x^0 + x^*), \frac{1}{2}\rho \right]$. Furthermore, by Lemma 6, $\bar{x} \in S^*$. Since

$$S^* \cap B \left[\frac{1}{2}(x^0 + x^*), \frac{1}{2}\rho \right] = \{x^*\},$$

recall that S^* is a convex and closed set, we conclude that x^* is the unique limit point of $(x^k)_{k \in \mathbb{N}}$. Hence $(x^{j_k})_{k \in \mathbb{N}}$ converges to $x^* \in S^*$.
6 Final Remarks

In this paper we have presented two algorithms for finding a solution to the K-convex variable inequalities problem. Using the same hypotheses their convergence is shown. At Algorithm S the projection step involves more calculations than Algorithm R. However, the sequence generated by the first algorithm has better properties. In fact it converges to a solution of the problem, which lies closest to the starting point. We emphasize that this last special feature is interesting and it is useful in specific applications such as image reconstruction [19, 27]. The main drawback of extending these algorithms to the infinite dimensional spaces is that the existence of the subgradient has not been shown in the variable order case.

As studied in [18], variable orders can be considered in two different ways,

$$ y \preceq^1_K \bar{y} \text{ if and only if } \bar{y} - y \in K(y) $$

or

$$ y \preceq^2_K \bar{y} \text{ if and only if } \bar{y} - y \in K(\bar{y}) $$

problem (1) corresponds with the inequality defined by \preceq^1_K. If the order is given by \preceq^2_K, the inequality problem becomes

$$ \text{find } x \in C \text{ such that } F(x) \preceq_{K(0)} 0. $$

Since the cone $K(0)$ is fixed, the previous model is a non-variable K-inequality problem and it can be solved by the solution algorithm proposed in [10, 26].

References

[1] Alber, Ya.I., Iusem, A.N., Solodov, M.V.: On the projected subgradient method for nonsmooth convex optimization in a Hilbert space. *Mathematical Programming* **81**, 23–37 (1998).

[2] Bao, T.Q., Mordukhovich, B.S., Soubeyran, A.: Variational principles in models of behavioral sciences. arXiv:1311.6017 (2013).

[3] Bao, T.Q., Mordukhovich, B.S., Soubeyran, A.: Variational analysis in psychological modeling. http://www.optimization-online.org/DB-FILE/2013/11/4112.pdf (2013).

[4] Bauschke, H.H., Borwein, J.M.: On projection algorithms for solving convex feasibility problems. *SIAM Review* **38**, 367–426 (1996).

[5] Bauschke, H.H., Combettes, P.L.: Convex Analysis and Monotone Operator Theory in Hilbert Spaces. Springer, New York (2011).

[6] Bello Cruz, J.Y.: A subgradient method for vector optimization problems. *SIAM Journal on Optimization* **23**, 2169–2182 (2013).

[7] Bello Cruz, J.Y., Bouza Allende, G.: A steepest descent-like method for variable order vector optimization problems. *Journal Optimization Theory and Application* (2013), doi: 10.1007/s10957-013-0308-6

[8] Bello Cruz, J.Y., Iusem, A.N.: A strongly convergent direct method for monotone variational inequalities in Hilbert spaces. *Numerical Functional Analysis and Optimization* **30**, 23–36 (2009).

[9] Bello Cruz, J.Y., Iusem, A.N.: A strongly convergent method for nonsmooth convex minimization in Hilbert spaces. *Numerical Functional Analysis and Optimization* **32**, 1009–1018 (2011).

[10] Bello Cruz, J.Y., Lucambio Pérez, L.R.: A subgradient-like algorithm for solving vector convex inequalities. *Journal Optimization Theory and Application* (2013), doi: 10.1007/s10957-013-0300-1

[11] Bello Cruz, J.Y., Lucambio Pérez, L.R.: Convergence of a projected gradient method variant for quasiconvex objectives. *Nonlinear Analysis* **9**, 2917–2922 (2010).
[12] Bello Cruz, J.Y., Lucambio Pérez, L.R., Melo, J.G.: Convergence of the projected gradient method for quasiconvex multiobjective optimization. *Nonlinear Analysis* **74** 5268–5273 (2011).

[13] Browder, F.E.: Convergence theorems for sequences of nonlinear operators in Banach spaces. *Mathematische Zeitschrift* **100**, 201–225 (1967).

[14] Censor, Y., Herman, G.T.: Block-iterative algorithms with underrelaxed Bregman projections. *SIAM Journal on Optimization* **13** 283–297 (2002).

[15] Combettes, P.L., Pesquet, J.C.: Primal-Dual Splitting Algorithm for Solving Inclusions with Mixtures of Composite, Lipschitzian, and Parallel-Sum Type Monotone Operators. *Set-Valued and Variational Analysis* **20**, 307–330 (2012).

[16] Chen, G.Y., Johannes J.: Optimality conditions for set-valued optimization problems. *Mathematical Methods of Operations Research* **48**, 187–200 (1998).

[17] Eichfelder, G., Duc Ha, T.X.: Optimality conditions for vector optimization problems with variable ordering structures. *Optimization* **62**, 597–627 (2013).

[18] Eichfelder, G.: Optimal elements in vector optimization with variable ordering structure. *Journal of Optimization Theory and Applications* **151**, 217–240 (2011).

[19] Hudson, H.M., Larkin, R.S.: Accelerated image reconstruction using ordered subsets of projection data. *IEEE Transactions on Medical Imaging* **13**, 601–609 (1994).

[20] Iusem, A.N., Svaiter, B.F., Teboulle, M.: Entropy-like proximal methods in convex programming. *Mathematics of Operations Research* **19**, 790–814 (1994).

[21] Luc, D.T.: Pareto Optimality, Game Theory And Equilibria. In Pareto Optimality, Springer Optimization and its Applications **17**, 481–515 (2008).

[22] Luc, D.T.: Theory of vector optimization. Lecture Notes in Economics and Mathematical Systems **319**, Springer, Berlin (1989).

[23] Luc, D.T., Tan, N.X., Tinh, P.N.: Convex vector functions and their subdifferential. *Acta Mathematica Vietnamica* **23**, 107–127 (1998).

[24] Peressini, A.L.: Ordered Topological Vector Space. Harper and Row, New York (1967).

[25] Polyak, B.T.: Minimization of unsmooth functionals. *USSR Computational Mathematics and Mathematical Physics* **9**, 14–29 (1969).

[26] Robinson, S.M.: A subgradient algorithm for solving K-convex inequalities. Optimization and operations research. Lecture Notes in Economics and Mathematical Systems , Springer, Berlin **117**, 237–245 (1976).

[27] Rockmore, A.J., Macovski, A.: A maximum likelihood approach to transmission image reconstruction from projections. *IEEE Transactions on Nuclear Science* **24**, 1929–1935 (1977).

[28] Verma, R.U.: Hybrid inexact proximal point algorithms based on RMM frameworks with applications to variational inclusion problems. *Journal of Applied Mathematics and Computing* **39**, 345–365 (2012).

[29] von Neumann, J.: Functional Operators, vol. 2: The Geometry of Orthogonal Spaces. Princeton University Press, Princeton (1950).