When mites attack: domestic mites are not just allergens

Yubao Cui

Abstract
Domestic mite species found in indoor environments and in warm or tropical regions are well known for causing allergic disorders. However, little is known about human acariasis, in which mites invade and parasitize the human body in various tissues from the gastrointestinal tract to the lung. Here, we summarize the reported cases of human acariasis of pulmonary, intestinal, oral (anaphylaxis), urinary, otic, and vaginal systems. Because the clinical symptoms of acariasis often overlap with other disease symptoms leading to frequent misdiagnosis, we highlight the need for more attention on these infections.

Keywords: Human acariasis, Pulmonary acariasis, Intestinal acariasis, Urinary acariasis, Oral mite anaphylaxis (Pancake Syndrome), Otoacariasis, Vaginal acariasis

Background
“Domestic mites” refers to a variety of small (0.5 mm) arthropods found living in close proximity to humans (Table 1). They include house dust mites and storage mites. Typically belonging to the family Pyroglyphidae (Analogoea, Astigmata, Acariformes), the house dust mites are commonly found in human homes. Some other mites can be present in house dust, especially several species from the families Glycyphagidae, Aeroglyphidae, Chortoglyphidae, Echimyopodidae, Tyrogluyphidae, Lardoglyphidae, and Suidasidae, as well as species of the families Tarsonemidae and Cheyletidae. The latter are typically regarded as storage mites because they occur widely in stored products like grains, foodstuffs, and Chinese medicinal herbs [1,2]. They are also found in mattresses, pillows, and upholstery. Both the pyroglyphid mites and other mite species that are found in house dust can provoke an IgE antibody response in people worldwide [3-16]. These mites have been widely studied because their feces, eggs, and extracts from their bodies are potent allergens. Indeed, approximately 10% of the total population and 90% of asthmatic patients are allergic to domestic mites [17].

Although domestic mites are well known allergens, they are also responsible for other, non-allergic, symptoms in humans, called acariasis. Little is known about acariasis, in which mites invade and parasitize the human body in various tissues from the gastrointestinal tract to the lung. Mites, throughout their lives or during individual life cycle stages, commonly parasitize animals, and some free-living mites can invade a host only occasionally. When domestic mites invade a human body, it is believed to be a non-specific invasion differing from parasitization of an animal, because the non-specific invasion occurs only occasionally and lacks specific symptoms and are not caused by specific mite species; in contrast, specific invasions are caused by specific parasite species occurring in specific hosts and producing specific symptoms [18]. To date, few reports of human acariasis have been published in English medical journals. However, acariasis has been described for pulmonary, intestinal, oral (anaphylaxis), urinary, otic, and vaginal systems. Importantly, the clinical symptoms of acariasis are non-specific and often overlap with other disease symptoms, leading to frequent misdiagnosis and, likely, many missed cases. In this review, we present the types of acariasis that have been described, and summarize the current knowledge about these little known and little-understood infestations (Table 2).
Pulmonary acariasis is a non-specific infestation of human lungs by free-living mites. In the 1930s, mites were observed in human sputum [4]. Subsequent experiments demonstrated that free-living mites can invade animal lungs and live in the respiratory tract. Indeed, Carter et al. [19] detected mites in sputum from 60.71% (17/28) of asthmatic patients. Interestingly, the authors thought the mites were derived from contamination of the test vessel because the detected mite species were present in dust samples from the same hospital and wards. After ruling out possible contamination, the authors repeatedly tested the sputum samples and obtained the same results. Among those 17 patients, one had severe asthma and had mites in his lungs for more than 7 months. Blood examination showed increased eosinophil numbers in all 17 patients. After treating patients with arsenic, the numbers of mites in their sputum samples increased, which showed that mites in the lungs were driven out, before the numbers of mites decreased and patients’ symptoms resolved [19].

Since that initial report, a number of other cases of pulmonary acariasis have been documented. In 1947, mites were detected in sputum of 3 out of 28 patients with tropical eosinophilia in East Africa [20]. In China, Gao et al. [21] reported for the first time that Tyrophagus and Tarsonemus were found in sputum of a bronchiectasis patient.

Common names	Super family	Family	Genus	Species
House dust mites	Analgoidea	Pyroglyphidae	Dermatophagoides	D. pteronyssinus
			D. farinae	
			D. microceras	
			D. siboney	
			D. evansi	
			D. neotropicalis	
		Hirstia	H. chelidonis	
			H. domicola	
		Sturnaphagoides	S. bakeri	
		Malayoglyphus	M.intermedius	
			M.carmelitus	
		Euroglyphus	E. majnei	
		Gymnoglyphus	G.longior	
		Hughesiella	H. africana	
Storage mites	Glycyphagoidea	Chortoglyphidae	Chortoglyphus	C. arcuatus
		Echimyopodidae	Blomia	B. tropicalis
		Aeroglyphidae	Glycocycometus	G. malaysiensis
		Glycyphagidae	Gohiera	G. fuscus
		Glycyphagus	G. domesticus	
		Lepidoglyphus	L. destructor	
	Acaroidea	Tyroglyphidae	Acarus	A. siro
			Tyrophagus	T. putrescentiae
			Aleuroglyphus	A. ovatus
	Suidasiidae	Suidasia	S. nesbitti	
			S. medanensis	
	Lardoglyphidae	Lardoglyphus	L. zacheri	
			L. konoi	
patient [21]. Ryu et al. [22] reported that a 23-year-old medical student showed a positive reaction on a skin test for Paragonimus westermani, and two Tarsonemus floricus mites were subsequently found by sputum examination and identified morphologically. This was the first human infection with Tarsonemus reported in Korea. Further, in 2007 a new process for identifying mites in sputum was developed. Martínez-Girón R et al. [23] demonstrated that dust mites artificially introduced into sputa could be identified after sputa were liquefied with bleach and the liquid sample was observed under the microscope. Their approach offers a time- and cost-saving tool for identifying dust mites in sputum, but the test is not commonly applied in the clinic because acariasis is not well recognized.

Van Woerden [24] proposed that asthma in house dust mite-sensitive patients may be caused by recurrent inhalation of live dust mites that are able to live for some time in the bronchioles of the lung. The mites may

Acariasis types	Location (s)	Mite species	Symptoms	Diagnosis	Treatment	Refs
Pulmonary	E. Africa, Korea, China	Acarus siro, Tyrophagus putrescentiae, Aeuroglyphus ovatus, Caloglyphus berlesei, Thyreophagus entomophagus, Suidasia nesbitti, Dermatophagozoon farinae, D. pteronyssinus, Euroglyphus maynei, Tarsonemus granarius, Tarsenemus floricus	Continuous dry cough, wheezing, pain in the chest, increasing dyspnea, bronchiectasis	Identifying mites in sputum	Organo-arsenic drugs like carbarsone and acetarsol, as well as drugs like hetrazan, thiodiphenyl-amine, emetine, and some antibiotics	[19-22]
Intestinal	Spain, China	Dermatophagozoon farinae, D. pteronyssinus, Acarus siro, Tyrophagus putrescentiae, Tyrophagus longior, Carpoglyphus domesticus, Glycyphagus domesticus, Gomatus, G. privatus, Carpoglyphus lactis and Tarsonemus granarius, Suidasia mites	Diarrhea, abdominal pain, abdominal discomfort, mucous stools, blood and pus, anal burning sensation, fatigue, weight loss, lack of energy, asthma, vomiting, loss of appetite, fever	Identifying mites in stools	Ivermectin	[21-29]
Urinary	Canada, Romania, China, S. Africa	Histogaster, Acarus siro, Tyrophagus putrescentiae, T. longior, Aeuroglyphus ovatus, Caloglyphus berlesei, C. mycophagus, Suidasia nesbitti, Lardoglyphus kanoi, Glycyphagus domesticus, Carpoglyphus lactis, Lepidoglyphus destructor, Dermatophagozoon farinae, D. pteronyssinus, Euroglyphus maynei, Caloglyphus hughesi, Tarsonemus granarius and T. hominis	Frequent desire to urinate, pyelonephritis, and cystitis	Identifying mites in urine	Chloroquine, metronidazole	[58-63]
Oral (Anaphylaxis)	Japan, Canada, Spain	Dermatophagozoon farinae, Dermatophagozoon pteronyssinus, Tyrophagus putrescentiae, Thyreophagus entomophagus, Blomia freemani, Blomia tropicalis, Suidasia medanensis, Aeuroglyphus ovatus, Lepidoglyphus destructor	Sudden onset of lip and tongue swelling, throat tightness and shortness of breath, angioedema, wheezing, rhinorrhea, etc.	Anaphylaxis	Intramuscular epinephrine, antihistamines and steroids	[30-40]
Otic	China, Taiwan, Thailand	Dermatophagozoon pteronyssinus, Suidasia pontifica	Severe itching, feeling of insects crawling in the ear	Otoscopic examination of mites	Eardrops containing triamcinolone, nystatin, neomycin and gramicidin	[64-66]
Vaginal	China	-	Vaginal itching, increased leukorrhea, low back pain, abdominal pain, and a sensation of abdomen falling	Identifying mites on leukorrhea smears	Metronidazole (3 times every day)	[67]
provide their own food source by excreting proteolytic enzymes—including the protein Der p 1, a major allergen—that free cells from the basement membrane to increase epithelial shedding. Shed respiratory epithelial cells can then be consumed by mites. However, this loss of respiratory epithelium can provoke sensitization to the dust mite proteins and other allergens, which later results in asthma symptoms. Indeed, the association between pulmonary acariasis and asthma has been demonstrated across studies.

Several papers published in Chinese reported on the etiology, pathology, diagnosis, and treatment of pulmonary acariasis. Their work suggested that the occurrence of pulmonary acariasis is related to occupation, with individuals who work in production, processing, and storage of food and herbs having higher risks of infection [25-27]. A few reports from China indicated that the infection rate and prevalence were highest in people aged 36-45 years, the second-highest rates were in 26-35 and 16-25 year-old people [28,29]. Further, males were more commonly infected. However, these patterns may be influenced by occupational characteristics.

There are no specific clinical manifestations that point to pulmonary acariasis, beyond detection of mites in sputum. Patients with mild cases exhibit cold-like or bronchitis-like symptoms. Patients with severe cases often appear to have tuberculosis, pleurisy, or asthma, exhibiting symptoms such as cough, increased sputum volume, chest pain, shortness of breath, fatigue, fever, irritability, blood in sputum, and hemoptysis. A few patients have a severe cough in the morning and evening, accompanied by back pain, headache, dizziness, abdominal pain, and diarrhea. Except for increased eosinophil counts, no abnormalities are detected for red blood cells, hemoglobin, platelets, or liver function. A chest x-ray may show enhanced shadow in the hilar region and increased marking in the depth. Thus, pulmonary acariasis is often misdiagnosed as bronchitis, hilar lymphadenopathy, lung fluke disease, tuberculosis, or pleurisy [30-34]. Clinicians therefore proposed that, along with chest x-ray and blood counts, occupational history can be used for differential diagnosis. Treatment for pulmonary acariasis includes organoarsenic drugs like carbarsone and acehtarol, as well as drugs like ketrazan, thiodyphenylamine, emetine, and some antibiotics [30-34].

Chen et al. [35] reported typical nodular foci developed in the lungs of guinea pigs six days after five mite species, *Aeuroglyphus ovatus*, *Suidasia nesbitti*, *Dermatophagoides fariniae*, *Tyrophagus putrescentiae*, and *Acarus siro*, were injected into the tracheas. The foci occurred in all parts of the lobes, and were found to be yellow in fresh tissues and ranged from one to five millimeters in diameter. The pathological changes were associated mainly with bronchial and peribronchial lesions.

Eosinophil infiltration was not observed in the lungs 20 days later. Multiple multinucleate giant cells grew and there was a striking formation of foreign body granuloma with the involvement of blood vessels. The parasitic mites were usually found in association with some arterioles. It was therefore demonstrated that guinea pigs offer an appropriate animal model for the study of pulmonary acariasis and that the five mites-species possess the same pathogenesis [35].

Intestinal acariasis

Intestinal acariasis is caused by ingestion of mite-contaminated foods. This invasion of the human gastrointestinal tract can cause symptoms including diarrhea, abdominal pain, and burning sensation around the anus. The first case of intestinal acariasis was reported by Hinman & Kammeyer [36], who detected *Tyrophagus longior* (Tyroglyphidae) in human intestine [36]. Three cases of intestinal acariasis were described in Spain; one of these was *Suidasia* mites [37]. Several cases of diarrhea were reportedly caused by *Carpoglyphus lactis*, presumed to have been transmitted through contaminated imported sugar [18,38]. Other studies have identified cases of abdominal pain, diarrhea, fatigue, and pyohemofecia attributable to *Dermatophagoides fariniae*, *Acarus siro*, *Tyrophagus putrescentiae*, *Carpoglyphus domesticus*, *Glycyphagus domesticus*, *G. privatus*, and *Tarsonemus granarius* [39-41]. Interestingly, an allergic intestinal acariasis syndrome has also been described [42]. Occasionally mite eggs, rather than (or in addition to) mites, have been found in stools [43-44]. Indeed, Werneck *et al.* indicated that stool samples containing mite eggs, which were sometimes accompanied by adult mites, may often be misidentified as helmith ova, leading to erroneous treatment with far-reaching consequences [44].

Both direct fecal smear and a saturated salt solution floating method can be used for detection of mites in larva, adult, live, dead, or egg stage. Zhang *et al.* developed an avidin-biotin system enzyme-linked immunosorbent assay (ABC-ELISA) to aid diagnosis of intestinal acariasis [45]. Further, Li [46] suggested the broad-spectrum antiparasitic drug ivermectin as the first choice for treatment of human intestinal acariasis [46].

Oral mite anaphylaxis (Pancake Syndrome)

In 1993, Erben *et al.* observed the first case of systemic anaphylaxis to mite-contaminated foods; the patient was treated with 0.3 mL of 1:1000 subcutaneous epinephrine, 75 mg oral diphenhydramine, and 40 mg of prednisone, and the symptoms gradually subsided over 90 minutes [47]. Later reports have described similar findings [48-54]. The name Pancake Syndrome derives from the commonality of patients being infected by mite-contaminated flour products. Indeed, a recent report by Takahashi
and, in some cases, also their eggs resulting from numerous mites in the urinary sediment with primary infection, pyelonephritis, and pyelocystitis [58]. Since then, other cases of urinary acariasis have been described. Mites were observed on the crusts taken from the radical mastoidectomy cavity and on the earwax from the external auditory canal of a female peasant in China; nearly all stages of the life cycle of the parasite were observed [64]. Similarly, a 70-year-old man in Taiwan presented with a 2-month history of pruritus and a sense of fullness in the right ear, and otoscopic examination revealed a number of mites and mite eggs in the right external auditory canal, which were identified as the house dust mite *Dermatophagoides pteronyssinus* [65]. This patient was treated with eardrops containing triamcinolone, nystatin, neomycin and gramicidin. Finally, in Thailand the external auditory canal of a 57-year-old woman was infested with >20 mites [66].

Urinary acariasis

Urinary acariasis results from the presence of mites in the human urinary system. The first report of mites detected in human urine was published in 1938. These mites were identified as *Histioaster* of the Tyroglyphidae family of storage mites [58]. Since then, other cases of urinary acariasis have been reported [59,60]. One report described 7 cases with primary infection, pyelonephritis, and pyelocystitis resulting from numerous mites in the urinary sediment and, in some cases, also their eggs—some of which were motile, others were encrusted with salts [61]. One report indicated that, in a case with a few mite eggs in the urine, a six-legged mite larva emerged after the eggs were squashed on the slide. The authors suggest that the possibility of gut or bladder mite infection should be entertained only after repeated identification of mites in urine or stool samples from a symptomatic patient with no other cause for the symptoms and where the possibilities of contamination and spurious infection have been excluded [62].

Interestingly, a study in China of a sampling of individuals across different occupations indicated that 3.46% (69/1994) of urine samples contained adults, larvae, or eggs of mites [63]. Mites can damage urethral epithelia because they are good at digging. Furthermore, they can also invade loose connective tissue and small blood vessels in the urinary tract and cause localized ulcers. Undoubtedly, mites detected in urine under a microscope would contribute to diagnosis of this disease. Both chloroquine and metronidazole produce good responses for human urinary acariasis [46]. However, the pathogenesis of urinary acariasis remains uncertain.

Otoacariasis

Less commonly, otoacariasis—or mite infestation in the ear—has been described. Mites were observed on the crusts taken from the radical mastoidectomy cavity and on the earwax from the external auditory canal of a female peasant in China; nearly all stages of the life cycle of the parasite were observed [64]. Similarly, a 70-year-old man in Taiwan presented with a 2-month history of pruritus and a sense of fullness in the right ear, and otoscopic examination revealed a number of mites and mite eggs in the right external auditory canal, which were identified as the house dust mite *Dermatophagoides pteronyssinus* [65]. This patient was treated with eardrops containing triamcinolone, nystatin, neomycin and gramicidin. Finally, in Thailand the external auditory canal of a 57-year-old woman was infested with >20 mites [66].

Vaginal acariasis

In what is probably a similar mechanism to that for urinary acariasis, mites can parasitize the vagina. Chang *et al.* [67] described two cases of vaginal acariasis whose main symptoms were vaginal itching, increased leukorrhea, low back pain, abdominal pain, and a sensation of abdomen falling. Microscopic examination detected mites on leukorrhea smears [67]. Both patients were treated with metronidazole (3 times every day), which resulted in resolution of the infection.

Conclusions

Domestic mites receive a lot of research and clinical attention because of their known allergenicity. However, their parasitic activities in humans are often overlooked. Given the existing reports, it seems likely that most cases of acariasis occur in more tropical climates and in people with occupational exposures to mites. The potential remains, though, that cases of acariasis go undiagnosed in other temperate climates. Considering the potential for misdiagnosis of acariasis, more effort should be devoted to understanding these infections, recognizing the populations most at-risk for infection, raising awareness among physicians for potential diagnosis, and identifying the best treatment options for each type of infection. This review highlights what is known about mites as human parasites, while also making clear that more work needs to be done...
to shed light on the occurrence of mite invasion and its associated symptoms.

Competing interests
The author declares that He has no competing interest.

Acknowledgments
This work was supported by National Sciences Foundation of China (NSFC 30060166, NSFCB 10019330, NSFC 31272369).

Received: 16 May 2014 Accepted: 13 August 2014 Published: 29 August 2014

References
1. Fang W, Cui YB: A survey of stored product mites of traditional Chinese medicinal materials. Pan-Pac Entomol 2009, 85:174–181.
2. Cui YB, Li CP, Wang J, Yang GG, Tian Y: Acaroid mites (Acarist: Astigmata) in Chinese medicinal herbs. Ann Trop Med Parasitol 2003, 97:865–873.
3. Wong SF, Chong AL, Mak JW, Tan J, Ling SJ, Ho TM: Establishment of comparison methods for airborne dust mites. Ann Clin Lab Sci 2012, 42:392–396.
4. Cui Y, Zhou Y, Shi W, Yang L, Wang Y, Shi W: Cloning, bioinformatics analysis, and expression of the dust mite allergen Der f 5 of Dermatophagoides farinae. Braz J Med Biol Res 2012, 45:747–752.
5. Cui Y, Zhou Y, Li W, Ma G, Yang L, Li L: Molecular cloning, expression, sequence analysis of dust mite allergen Der f 6 and its IgE-binding reactivity with mite allergic asthma patients in southern China. Mol Biol Rep 2012, 39:961–968.
6. Cui YB, Zhou Y, Wang N, Teng FX, Yu LL, Binh YH, Song JX, Yang L, Zhang CB: Expression, cloning, and IgE-binding of the full-length dust mite allergen Der f 8. Immunol Res 2014. Epub ahead of print 24830254.
7. Cui Y, Zhou Y, Ma G, Shi W, Yang L: Establishment of two novel ELISA methods for Dermatophagoides farinae-specific IgE detection with recombinant group 2 allergen. Ann Clin Lab Sci 2012, 42:876–877.
8. Cui YB, Cai HX, Zhou Y, Gao CX, Shi WH, Yu M, Li L: Cloning, expression, and characterization of Der f 7, an allergen of Dermatophagoides farinae from China. J Med Entomol 2010, 47:865–876.
9. Cui YB, Cai HX, Li L, Zhou Y, Gao CX, Shi WH, Yu M: Cloning, sequence analysis and expression in E. coli of the group 3 allergen of Dermatophagoides farinae. Chin Med J (Engl) 2009, 122:2657–2661.
10. Cui Y, Peng J, Zhou P, Peng M, Qian S: Bioinformatics studies on the group 2 allergens of Dermatophagoides farinae from China. Asia Pac J Allergy Immunol 2007, 25:199–206.
11. Cui Y: Immunoglobulin E-Binding Epitopes of Mite Allergens: From Characterization to Immunotherapy. Clin Rev Allergy Immunol 2013. Epub ahead of print 24830257.
12. Cui YB: Structural biology of mite allergens. Mol Biol Rep 2013, 40:681–686.
13. Cui YB, Zhou Y, Ma G, Shi W, Yang L, Wang Y: Cloning, expression, and analysis of the group 2 allergen from Dermatophagoides farinae from China. Ann Acad Sci 2010, 82:1–11.
14. Cui YB, Gao CX, Zhou Y, Peng M, Lin Y, Peng JL: Phylogenetic analysis of house dust mites. Central European J Med 2010, 5:69–74.
15. Derewenda U, Li J, Derewenda Z, Dauter Z, Mueller GA, Rule GG, Benjamin DC: The crystal structure of a major dust mite allergen Der p 2, and its biological implications. J Mol Biol 2002, 318:189–197.
16. Wen WH: Non-specific mite infestation. Zhongguo J Sheng Chong Xue Yu Ji Sheng Chong Bing Za Zhi 2005, 25:74–78.
17. Carter HF, Wedd D, D’Abrera VSE: The occurrence of mites (Acariinae in human spumus and their possible significance. Indian Med Gaz 1944, 79:163–168.
18. Wilson HT: Tropical eosinophilia in East Africa. Br Med J 1947, 1801:804–805.
19. Gao JM, Liu MH, Wei BX: A case of mites in patients with respiratory disease and observation on its life cycle and resistance. China Med J 1956, 30:1048–1052.
20. Ryu JS, Ree HJ, Min DY, Ahn MH: A human case of house dust mite Taronemus floricolorus collected from spumus. Korean J Parasitol 2003, 41:171–173.
21. Martinez-Gron R, van Woerden HC, Ribas-Barcelo A: Experimental method for isolating and identifying dust mites from spumus in pulmonary acariasis. Exp Appl Acarol 2007, 42:35–59.
22. van Woerden H: Dust mites living in human lungs—the cause of asthma? Med Hypotheses 2004, 63:193–197.
23. Li CP: An epidemiological survey of pulmonary acariasis in different occupations. Chin Occup Med 2000, 27:23–25.
24. Zhao YQ, Zhen TM, Cheng P, Deng XL, Sun CH, Wang HW, Wang JX: Investigation and control of pulmonary acariasis pathogeny and its epidemic status. Chin J Hygienic Insecticides Equipments 2007, 13:435–438.
25. Zhao YQ, Deng XL, Zhen TM, Cheng P, Sun CH, Gong MQ, Wang HW, Wen GX, Qiu JX, Wang HF, Liu L: Pathogenicity of mite-infected foods as a cause of pulmonary acariasis of Shandong Province, China. J Pathogen Biol 2009, 4:43–45.
26. Zhang XL, Liu JM, Zhang MS, Xia L, Xiao L: A survey on epidemiology and control of pulmonary acariasis in Shenzhen City, Chin J Parasitic Dis Control 1993, 6:236–237.
27. Wang HH, Zhao FH, Wang DQ, Zhao GJ, Cheng WC: Epidemiological survey on pulmonary acariasis in different occupations. Chin J Parasit Dis Control 2003, 16:1.
28. Li YC, Guo YH: Progress in pulmonary acariasis. Chin J Parasitic Dis Control 1997, 10:307–308.
29. Li CP, Shen XB: Progress in human pulmonary acariasis. Acta Academiae Medicae Bengbu 1986, 11:56–50.
30. Liu H, Ning YQ: 18 cases of pulmonary acariasis. Anhui Med 2001, 29:1–6.
31. Shen XB, Sun X, Hu S: Clinical features of human pulmonary acariasis and its treatment. Clin Med Sci 1991, 11:101–102.
32. Li CP, Liang G: A summary of symptoms of human pulmonary acariasis and its treatment. J Qiqihar Med Coll 1991, 12:171–177.
33. Shen XB, Zhang SF, Sun X, Hu SF, Yao M, Guo CL: Pathological observation of experimental pulmonary acariasis. J Bengbu Med Coll 2000, 15:179–182.
34. Hinman E, Kampsmeier RH: Intestinal acariasis due to Tyrophagus longior Gavais. Amer J Trop Med 1934, 1934:355.
35. Martinez Maranon R, Hoffmann A: 3 cases of human intestinal mite infestation in the South of Veracruz. Rev Invest Salud Publica 1976, 36:187–201.
36. Zhou HF: Carpodophyus lactis and intestinal acariasis. Jiangsu Medical Journal 1985, 1:24.
37. Cui YB, Li CP: Wang J: Intestinal acariasis in Anhui Province. World J Gastroenterol 2000, 6:597–600.
38. Zhao XQ: A case of intestinal acariasis. Jiangsu Med J 1984, 10:29.
39. Cui YB, Wang CX, Xu GX, Li L, Wang J, Li ZD: An epidemiological survey of intestinal acariasis. Chin J Parasitic Dis Control 1996, 14:63–65.
40. Scala G: House-dust mite ingestion can induce allergic intestinal syndrome. Allergy 1995, 50:517–519.
41. Uga S, Kimura D, Kimura K, Margono SS: Intestinal parasitic infections in Bekasi district, West Java, Indonesia and a comparison of the infection rates determined by different techniques for fecal examination. Southeast Asian J Trop Med Public Health 2002, 33:462–467.
42. Werneck JS, Cariati T, Gabriel A Jr, Tufffl S, Andrade SS: Mites in clinical stool specimens: potential misidentification as helmhng eggs. Trans Roy Soc Trop Med Hyg 2007, 101:154–1115.
43. Zhang RB, Huang Y, Li CP, Cui YB: Diagnosis of intestinal acariasis with avidin-biotin system enzyme-linked immunosorbent assay. World J Gastroenterol 2004, 10:1369–1371.
44. Li CP: Treatment of human intestinal acariasis. World J Gastroenterol 2005, 8591–2020.
45. Erben AM, Rodriguez JL, McCullough J, Oxnoby DR: Anaphylaxis after ingestion of beignets contaminated with Dermatophagoides farinae. J Allergy Clin Immunol 1993, 92:846–849.
46. Castillo S, Sanchez-Borges M, Capriles A, Suarez-Chacon R, Caballero F, Fernandez-Calendas E: Systemic anaphylaxis after ingestion of mite-contaminated flour. J Allergy Clin Immunol 1995, 95:304.
47. Matsumoto T, Hisano T, Hamaguchi M, Miki T: Systemic anaphylaxis after eating storage-mite-contaminated food. Int Arch Allergy Immunol 1996, 109:197–200.
48. Sanchez-Borges M, Capriles-Hulett A, Fernandez-Calendas E, Suarez-Chacon R, Caballero F, Castillo S, Solitto E: Mite-contaminated foods as a cause of anaphylaxis. J Allergy Clin Immunol 1997, 99:738–743.
51. Wen DC, Shyur SD, Ho CM, Chiang YC, Huang LH, Lin MT, Yang HC, Liang PH: Systemic anaphylaxis after the ingestion of pancake contaminated with the storage mite Blomia freemani. *Ann Allergy Asthma Immunol* 2005, 95:612–614.

52. Hara A, Fukahori S, Nakata H, Fukushima C, Matsuse H, Kohno S: A case of anaphylaxis caused by mite-contaminated Okonomiyaki. *Arerugi* 2006, 55:574–577.

53. Tay SY, Tham E, Yeo CT, Yi FC, Cheong N, Chua KY, Lee BW: Anaphylaxis following the ingestion of flour contaminated by house dust mites – a report of two cases from Singapore. *Asian Pac J Allergy Immunol* 2008, 26:165–170.

54. Adachi YS, Itazawa T, Okabe Y, Higuchi O, Ito Y, Adachi Y: A case of mite-ingestion-associated exercise-induced anaphylaxis mimicking wheat-dependent exercise-induced anaphylaxis. *Int Arch Allergy Immunol* 2013, 162:181–183.

55. Takahashi K, Taniguchi M, Fukutomi Y, Sekiya K, Watai K, Mitsui C, Tanimoto H, Oshikata C, Tsukakura T, Tsukishawa N, Minoguchi K, Nakajima H, Akiyama K: Oral mite anaphylaxis caused by mite-contaminated okonomiyaki/pancake mix in Japan: 8 case reports and a review of 28 reported cases. *Allergol Int* 2014, 63:51–56.

56. Blanco C, Quiralte J, Castillo R, Delgado J, Arteaga C, Barber D, Carrillo T: Anaphylaxis after ingestion of wheat flour contaminated with mites. *J Allergy Clin Immunol* 1997, 99:308–313.

57. Iglesias-Souto J, Sanchez-Machin I, Iraola V, Poza P, Gonzalez R, Matheu V: Oral mite anaphylaxis by *Thyreophagus entomophagus* in a child: a case report. *Clin Mol Allergy* 2009, 7:10.

58. McCulloch AE: Acarasis of the Urinary Tract Caused by Histogaster. *Can Med Assoc J* 1938, 38:351–352.

59. Blazquez A, Bellvert F: Vesical infestation by mites. *Arch Esp Urol* 1962, 16:37–40.

60. Fossati C: On a case of the presence of acarids in urinary sediment. *Acta Med Ital Med Trop Subtrop Gastroenterol* 1963, 18:219–221.

61. Pitariu T, Popescu IG, Banescu O: Acarids of pathological significance in urine. *Rev Ig Bacteriol Virol Parasitol Epidemiol Bacteriol Virol Parasitol Epidemiol* 1979, 24:55–59.

62. Dini LA, Frean JA: Clinical significance of mites in urine. *J Clin Microbiol* 2005, 43:6200–6201.

63. Li CP, Cui YB, Wang J, Yang QG, Tian Y: Acaroid mite, intestinal and urinary acarasis. *World J Gastroenterol* 2003, 9:874–877.

64. Liu AQ, Jing WD, Li F: Infestation and multiplication of Acarids in the radical mastoidectomy cavity and the external auditory canal (a case report). *J Bethune Medical University* 1985, 11:97–99.

65. Liao EC, Chang KC: Images in clinical medicine. Mites in the external auditory canal. *N Engl J Med* 2012, 367:e19.

66. Samsung Y, Apiwathnasorn C, Wonglakorn S, Phayakkaphon A: The first reported case of mites, *Suidasia pontifica*, in the external ear canal of a Thai agricultural worker. *J Trop Med Parasitol* 2006, 29:65–67.

67. Chang DP, Hu XY, Yu NC: Two cases of vaginal acarasis. *Peoples Military Surgeon* 1998, 41:117.

doi:10.1186/1756-3305-7-411

Cite this article as: Cui: When mites attack: domestic mites are not just allergens. *Parasites & Vectors* 2014 7:411.