Prostate cancer risk related to foods, food groups, macronutrients and micronutrients derived from the UK Dietary Cohort Consortium food diaries

J Athene Lane¹,², Steven E Oliver³, Paul N Appleby⁴, Marleen AH Lentjes⁵, Pauline Emmett¹, Diana Kuh⁶, Alison Stephen⁶,⁷, Eric J Brunner⁸, Martin J Shipley⁸, Freddie C Hamdy⁹, David E Neal¹⁰, Jenny L Donovan¹, Kay-Tee Khaw⁵,¹¹, Timothy J Key⁴

¹Address for correspondence:
School of Social and Community Medicine
Canynge Hall, University of Bristol
39 Whatley Road, Bristol, BS8 2PS, United Kingdom
Tel.: +44 (0)117 928 7335; Fax: +44 (0)117 928 7292
athene.lane@bristol.ac.uk

²NIHR Biomedical Research Unit in Nutrition, Diet and Lifestyle, Level 3, University Hospitals Bristol Education Centre, Upper Maudlin Street, Bristol, BS2 8AE, United Kingdom

³University of York and Hull York Medical School, York, UK; ⁴The Cancer Epidemiology Unit, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK (TJK, PNA); ⁵Medical Research Council Centre for Nutritional Epidemiology in Cancer Prevention and Survival, Cambridge (ML, KTK), UK; ⁶Medical Research Council Unit for Lifelong Health and Ageing, University College London, London, UK (DK, AS); ⁷Department of Nutritional Sciences, University of Surrey, Guildford, Surrey, UK (AS); ⁸Department of Epidemiology and Public Health, University College London, London, UK (EJB, MJS); ⁹Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK (FCH); ¹⁰Cambridge University and Cambridge University Hospitals NHS Trust, Cambridge, UK (DEN); ¹¹Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK (KTK).
Supported by the UK Medical Research Council and the Medical Research Council
Population Health Sciences Research Network. The cohorts received funding from: the
British Heart Foundation; Cancer Research UK; the Department of Health, UK; the Food
Standards Agency, UK; the Medical Research Council, UK; the Stroke Association, UK and
the World Cancer Research Fund. The ProtecT trial is funded by the UK National Institute
for Health Research Health Technology Assessment Programme (projects 96/20/06,
96/20/99) and the nested ProMPT study (Prostate Mechanisms of Progression and
Treatment), funded by the National Cancer Research Institute (NCRI – formed by Cancer
Research UK, the Medical Research Council and the Department of Health).
The funding sources had no role in the study design, conduct, data collection, management,
analysis and interpretation or preparation, review or approval of the article.

All authors have no competing financial interests or other conflict of interests.

Word count: 2931, 6 tables, 42 references

Short running head: Dietary intake and prostate cancer risk
ABSTRACT

Background/Objectives: The influence of dietary factors remains controversial for screen-detected prostate cancer and inconclusive for clinically-detected disease. We aimed to examine these associations using prospective food records.

Methods: 1,717 prostate cancer cases in middle-aged and older UK men were pooled from four prospective cohorts with clinically-detected disease (n = 563) with routine data follow-up (means 6.6-13.3 years) and a case-control study with screen-detected disease (n = 1,054) nested in a randomised trial of prostate cancer treatments (ISCTR N 20141297). Multiple-day food diaries (records) completed by men prior to diagnosis were used to estimate intakes of 37 selected nutrients, food groups and items including carbohydrate, fat, protein, dairy products, fish, meat, fruit and vegetables, energy, fibre, alcohol, lycopene and selenium. Cases were matched on age and diary date to at least one control within study (n = 3,528). Prostate cancer risk was calculated using conditional logistic regression (adjusted for baseline covariates) and expressed as odds ratios per intake quintile (± 95% confidence intervals). Prostate cancer risk was also investigated by localised or advanced stage and by cancer detection method.

Results: There were no strong associations between prostate cancer risk and 37 nutrients. Potentially heterogeneous associations of Vitamin D and fruit and vegetables with clinical or screen-detected disease, cheese reducing localised disease risk and high energy intake increasing advanced cancer risk require confirmation.

Conclusions: Prostate cancer risk, including by disease stage, was not strongly associated with dietary factors measured by food diaries in middle-aged and older UK men.

Keywords: prostate neoplasms; diet, food diary, cohort study, food records
Introduction

Prostate cancer is the most commonly detected life-threatening cancer amongst men in most Western countries, and accounted for over 300,000 deaths worldwide in 2012 (1). The incidence of prostate cancer is increasing worldwide largely due to screening programmes and has doubled in the UK from 1984-2007 (2). The established risk factors for prostate cancer risk factors are age, ethnicity, family history of the disease and some genetic factors (3). Increasingly, obesity has been linked to aggressive prostate cancer risk (4). Prostate cancer incidence and mortality varies globally suggesting that diet and environmental factors may explain some geographic variation (5). Several hypotheses have been explored, including that prostate cancer risk may be elevated by diets rich in meat, dairy products or fat and may be lowered by diets high in fibre, fruit, vegetables and various micronutrients (5,6). The epidemiological evidence for selenium and vitamin E was judged sufficient to commence an randomised supplementation trial, but this was stopped early due to no benefit (7) with subsequent follow-up indicating an increased prostate cancer risk with vitamin E supplementation (8). The American Institute for Cancer Research/World Cancer Research Fund (AICR/WCRF) guidelines currently identify the carotenoid lycopene, a pigment found in tomatoes and other fruits as having a “probable” protective effect on prostate cancer risk (5) whilst diets rich in calcium as “probably” increasing prostate cancer risk.

Epidemiological studies of diet and cancer have predominantly utilised food-frequency questionnaires (FFQ) to measure intake (9). The greater measurement error associated with FFQs in relation to multiple day food diaries (records) has been suggested to account for some null findings for diet and cancer risk (10-11), although this is contested (12).
The UK Dietary Cohort Consortium was established in 2006 (13) to understand diet and cancer relationships using eight population-based studies with food diaries (records). We have utilised the consortium data to analyse prostate cancer risk in relation to dietary intake of food groups, meat, fish and dairy products, fruit and vegetables, lycopene, macronutrients and micronutrients potentially associated with disease.
PARTICIPANTS AND METHODS

Study population

Table 1 summarises the five UK Dietary Cohort Consortium studies that contributed data: European Prospective Investigation into Cancer and Nutrition (EPIC)-Norfolk (14), EPIC-Oxford (15), Medical Research Council National Survey of Health and Development (NSHD) (16), Prostate testing for cancer and Treatment study (ProtecT (17)) and Whitehall II (18). Two additional cohorts only recruited females and one focused on vegetarians so were excluded from this analysis. The study designs, ethical approvals and conduct have been described in detail elsewhere (14-18). Information on demographic and lifestyle factors was collected either during participant interviews or questionnaires administered prior to, or contemporaneously with, the completion of the food diary.

Ascertainment of prostate cancer and follow-up

Four prospective cohort studies (EPIC-Norfolk, EPIC-Oxford, NSHD and Whitehall II) obtained prostate cancer diagnoses through record linkage with the UK National Health Service Office for National Statistics and cancer registries. Case participants were individuals who were undiagnosed with cancer (except non-melanoma skin cancer) at the time of diary completion and who were diagnosed with prostate cancer at least 12 months later (six months in EPIC-Oxford) but before the closure date for each cohort (latest date of complete follow-up for cancer incidence and vital status which was the same for cases and controls) (Table 1). The 9th and 10th Revisions of the International Statistical Classification of Diseases, Injuries and Causes of Death (ICD) were used to define prostate cancer (codes 185 or C61). Clinical staging data from cancer registries (where available) utilised the TNM system with T1-T2 (N0 orNx, M0 or Mx) categorised as localised disease and advanced disease as T3-4.
ProtecT is an ongoing randomised controlled trial of treatments in men diagnosed with localised prostate cancer following community-based prostate specific antigen (PSA) testing in nine centres across the UK (17). Men aged 50-69 years registered at randomly selected general practices were invited to attend recruitment/PSA-testing clinics. There was no selection by symptoms or PSA status (13% had received a prior test) and the UK does not have a prostate cancer screening programme (19). Around 40% of invited men attended clinics between 2003-2009. Food diaries were distributed by trial nurses at recruitment to men also participating in the ProMPT translational study with over 75% returned prior to receipt of PSA results. Participants with an elevated PSA result (≥ 3.0 ng/ml) underwent 10-core prostate biopsies (87% of those eligible received a biopsy) and those with a negative biopsy were offered a second biopsy. All men diagnosed with prostate cancer were cases with clinical stage categorised as described previously.

Selection of matched controls

Cases were matched within an individual study to up to four control participants selected at random from all control participants within the matching criteria. Cohort controls were without notified prostate cancer at closure date for follow-up whilst ProtecT controls either had a PSA result of <3.0ng/ml or negative prostatic biopsies. Matching criteria within each study were participant age (± 3 years from diary commencement) and month of diary completion (± 3 months). As these studies commenced prior to the consortium there were some differences in matching for age (± 6 months for EPIC-Oxford and ±5 years for ProtecT) and for diary completion date (± 6 months EPIC-Oxford).

Measurement of food and nutrient intake

Seven-day food diaries (five-day in NSHD) were completed at recruitment (EPIC-Norfolk and ProtecT) or approximately six months later (EPIC-Oxford) or at second follow-up (Whitehall II) or when participants were 43 years old (NSHD). Participants were asked to
record all food and drinks consumed at times specified (e.g. breakfast, lunch) with photographs of food items to aid estimation of portion sizes. Information from food diaries was coded to derive nutrient intakes based on national food composition tables contemporaneous with diary completion dates as described previously (13). The food groups were defined by the consortium: red meat, processed meat, poultry, white and oily fish and included disaggregation of dishes containing constituent foods (20). EPIC-Norfolk, EPIC-Oxford, Whitehall II and 1,107 ProtecT diaries were coded with the Data Into Nutrients for Epidemiological Research (DINER) data entry and DINERMO processing software (21) whilst NSHD and 1,208 of the ProtecT diaries (coded before joining the consortium but case/control pairs coded with the same software) used the Diet In Data Out (DIDO) programme (22). Some NSHD (100) and ProtecT (99) diaries were processed with DIDO and DINER and there was good agreement for total energy, carbohydrate, fat, calcium, total sugars and starch intakes. The DIDO programme gave lower values for alcohol intake than DINER which we hypothesised reflected UK alcohol measures having increasing over time so the DIDO estimates were retained as they were determined contemporaneously to diary completion.

Statistical methods

The pre-specified consortium analysis plan for all cancers defined the selection and categorisation of dietary exposures and confounders with lycopene and selenium added to the prostate plan based on AICR/WCRF guidelines for prostate cancer prevention (5). Analyses used all available data, including diaries with incomplete days. Conditional logistic regression was used to calculate odds ratios (ORs) and 95% confidence intervals (95% CI) for prostate cancer risk according to quintiles of intake of 37 dietary variables (quintiles calculated on intakes combined across studies for all participants) with the p value for trend test being of principal interest. There was a high proportion of non-consumers of oily fish (first and second quintiles were combined) and yoghurt (first three combined), whilst five cut-
points were used for alcohol consumption (<1, 1-9, 10-19, 20-39, 40 and above g/d). To test for trends in prostate cancer risk across the distribution of intakes we calculated the ORs (95% CI) for a one standard deviation increase in nutrient intake with the p value being obtained by comparing the ratio of the logarithm of the OR and its standard error to the normal distribution.

As age is a risk factor for prostate cancer, age was utilised as a continuous variable in the regression models. Additional adjustment was made for other potential confounders, i.e. total energy intake (quintiles), body mass index (BMI: <22.5, 22.5-24.9, 25.0-27.4, 27.5-29.9, 30.0 and above, unknown kgm⁻²), smoking status (never, previous, current, unknown), marital status (married or cohabiting, single including divorced and separated, unknown), self-reported diabetes at recruitment (no, yes, unknown) and a residential area-based measure of material deprivation (quartiles of Townsend Score) (23). Unknown values were categorised as missing (BMI 6%; smoking 5%; marital status 1%; diabetes 8%; socioeconomic measure 3%), except for energy. Prostate cancer risk was also assessed for the cohort studies combined (i.e. predominantly clinically-diagnosed disease) and for PSA-detected disease (ProtecT study, akin to screening) and reported as a one standard deviation in dietary intake. Disease-diet associations were also examined and reported in the same way for localised and advanced prostate cancer. Analyses were performed using Stata version 10 (24).
RESULTS

Study and participant characteristics

In total, 1,717 men diagnosed with prostate cancer were compared with 3,528 matched controls without prostate cancer (Table 1). There were 1,277 cases of localised prostate cancer (74.4%) and 226 advanced cases (13.2%). Table 2 summarises the clinical and socio-demographics of participants by prostate cancer status. Participants had a mean age of 62 years, were on average slightly overweight (BMI 26.3 kg/m²) and over 85% were married or cohabiting.

Dietary intake and overall prostate cancer risk

The unadjusted intakes of dietary factors for cases and controls are shown in Table 3 combined for the five studies (Table 3). There were some modest differences in consumption between cases and controls; namely oily fish, red meat and protein (each 2% more in cases), energy (1.5% less), cheese (3% less), yoghurt (12% more), alcohol (4% more), fruit and vegetables (1% less), vitamin C (2% more), calcium (1% more), retinol (1% less) and selenium (4% more). The adjusted risk estimates for overall prostate cancer incidence showed no strong linear trends across the distributions of the 37 dietary factors (Table 4).
Dietary intake and risk of prostate cancer by detection method and disease stage

The risk of prostate cancer detected clinically or by PSA is shown in Table 5 in relation to dietary intakes. None of the foods and nutrients showed a major influence on prostate cancer risk for either cancer detection method. Vitamin D might increase the risk of PSA-detected disease (6%) and reduce the risk of clinically-detected disease (8%), whilst fruit and vegetables might reduce the risk of PSA-detected disease (7%) and increase the risk of clinically-detected disease (6%) but these findings require confirmation given the number of associations investigated overall.

The risk of prostate cancer across food and nutrient groups (Table 6) shows that most food or nutrients did not show substantial heterogeneity by disease stage. Cheese consumption reduced the risk of localised disease by 10% with no effect on advanced disease. Higher energy intake appeared to increase the risk of advanced disease by 23%, but not localised disease. These findings require confirmation in other studies given the large numbers of comparisons being made overall.
DISCUSSION

Prostate cancer risk was not strongly associated with 37 dietary components in middle-aged and older men in this comprehensive analysis based on food diaries (records). There was weak evidence of a heterogeneity of risk for Vitamin D and for fruit and vegetables between clinically and screen-detected disease, a reduced risk of localised disease with cheese and possibly an increased risk of advanced cancer with high energy intake. The main strengths of this study are its size and diversity through pooling over 1 700 prostate cancer cases from five predominantly population-based UK studies with adjustment for clinical and demographic confounders. Dietary records were completed prior to men’s knowledge of disease status in the prospective cohorts thus removing recall bias or prior to ProtecT biopsies (definitive diagnosis). Novel comparisons of clinically and screen-detected prostate cancer risk were possible and by disease stage.

This evaluation of prostate cancer risk and dietary factors is also one of few to examine intakes derived from food diaries rather than FFQs. Biomarker validation studies have shown that food diaries are more accurate than FFQs for estimating some nutrients and prospective data collection is less liable to differential recall than FFQs (26-27). Pooling five studies may have potentially introduced non-differential errors in nutrient intakes across the studies but the consortium provided training, protocols and data checking software to enhance consistency. We collected data on entire cohorts and utilised a nested matched case-control analysis to accommodate the resources required for diary coding but this reduced power to identify weak associations compared with a complete cohort analysis.
Limitations of these analyses include the inability to adjust for individual social class which potentially created a confounder in the cohort studies as prostate cancer testing is more frequent in affluent individuals (27). Prostate cancer screening history was unavailable for the cohorts although PSA testing rates are probably low as there is no formal UK screening programme (UK figures are 4-6% (19, 28) and less than 15% had received a prior test in the ProtecT study (17). A limitation which could attenuate diet and prostate cancer associations is that some controls will have undiagnosed disease (based on autopsy data (29)) although all ProtecT controls had a PSA or biopsy result so reducing misattribution bias. Clinical stage was missing for NHSD and Whitehall studies which reduced power to examine differences by stage although they contributed the fewest cases. Some differences (e.g. diary duration) could not be rectified in the analysis as these studies were established before the diet consortium and some confounders relevant to prostate cancer were not collected in all studies, e.g. family history of cancer, or were measured in ways that did not allow pooling (e.g. physical activity). We utilised standardised dietary coding systems which increased exposure quantification consistency although heterogeneity in measurement duration could have also potentially modified any associations. ProtecT study participants were predominately white (ethnicity was not recorded otherwise) so potentially limiting the wider generalisability to populations at elevated risk of disease.

A recent meta-analyses of dietary factors and supplements and prostate cancer risk has concluded that the intake of red and well-done meat, fat and milk should be limited whilst lycopene, green tea and potentially soy-containing products may be preventative (6). These dietary components were not associated in this study with clinically or screen-detected disease or by disease stage (green tea and soy products were not evaluated). However, recent evidence that ProtecT participants who consumed at least 10 portions of tomatoes weekly showed an 18% reduced risk of developing prostate cancer supports the meta-
analyses recommendations (30). Previously, the European EPIC consortium found an increased prostate cancer risk with the highest quartiles of dairy protein (31) but no association with dietary fat (mostly using FFQs) (32). Data from the US Health Professionals study based on clinically-detected cases found no association between calcium intake and localised prostate cancer (measured with FFQs) but a positive association with advanced disease (33). Conversely, calcium intake was related to an increased risk of localised disease with screen-detected cases in the US PLCO trial (34). The finding of a potential protective association of cheese with localised disease requires further exploration and it counters meta-analysis recommendations.

The evidence for a link between obesity and fatal prostate cancer (4) is strengthening and energy intake, which was shown to potentially increased the risk of advanced disease by 23% in this study, might be on that causal pathway. An association between energy intake and advanced disease was shown in a meta-analysis for studies with disease stage with a combined odds ratio of 1.6 for advanced disease (35).

The finding of a heterogeneity of the association of vitamin D with clinically or screen-detected disease requires further investigation. The precision of estimates of foods consumed irregularly such as oily fish, a good source of vitamin D, may be lower in food diaries than questionnaires. Vitamin D levels are also related to sunlight exposure making serological assessments more comprehensive. In the ProtecT study, lower circulating levels of vitamin D were associated with a greater risk of aggressive prostate cancer (higher grade or stage) (36) which would be more prevalent in clinically-detected cases, but the recent meta-analysis does not support Vitamin D supplementation, except for deficiency (6).
There was no association of overall diet (assessed using FFQs) and screen-detected prostate cancer in the US PCPT trial and in a Swedish study (37-38). Food diary data from 133 prostate cancer cases also revealed no association with diet and prostate cancer but a reduction with a Mediterranean diet rich in monounsaturated fatty acids and vegetables/fruits and low in red meats (39). A recent meta-analysis of adherence to a Mediterranean diet and overall cancer risk showed a 4% risk reduction for prostate cancer incidence and 10% reduction for overall cancer mortality (40).

The natural history of prostate cancer remains poorly understood, including the time points when dietary and environmental factors may influence disease development or progression (38). This study measured dietary intake prior to diagnosis and found no major associations with prostate cancer risk yet migrant studies and international variation in prostate cancer incidence suggest that dietary or other environmental components contribute to disease risk. More recent evidence highlights a role of dietary factors in disease progression, e.g. fat intake and prostate cancer mortality (41). Future studies will need to extend measurement of dietary intake across the life course, consider intermediary influences such as the insulin growth factor axis and examine the role of obesity which increases the risk of aggressive prostate cancer and subsequent disease progression and mortality (42).

Conclusions

In summary, this large study revealed no strong evidence that prostate cancer risk is associated with dietary intake measured prior to diagnosis in middle-aged and older men.
Possible associations of Vitamin D, cheese and energy intake with disease risk require further investigation.
ACKNOWLEDGEMENTS

We thank the participants and diary coding staff for their contributions and Ms Vanessa Er and Dr Kate Northstone for analytical advice. Professor Sheila Rodwell (known professionally as Sheila Bingham) who died in 2009 established the Dietary Cohort Consortium as Director of the MRC Centre for Nutritional Epidemiology and Cancer.

The authors’ responsibilities were: JAL, SEO and TJK wrote the manuscript; PNA conducted the statistical analysis and all authors contributed to the interpretation of data and review of manuscript, including the final manuscript. None of the authors had a personal or financial conflict of interest. The sponsors had no role in study design, data collection, analysis and interpretation of results or the writing of the manuscript.
REFERENCES

1. Ferlay J, Soerjomataram I, Ervik M, Dikshit R, Eser S, Mathers C, Rebelo M, Parkin DM, Forman D, Bray, F. GLOBOCAN 2012 v1.0, Cancer Incidence and Mortality Worldwide: IARC CancerBase No. 11 [Internet]. Lyon, France: International Agency for Research on Cancer; 2013. Available: http://globocan.iarc.fr, accessed 23/7/2015

2. Mistry M, Parkin DM, Ahmad AS, Sasieni P. Cancer incidence in the United Kingdom: projections to the year 2030. British Journal of Cancer 2011;105:1795-803.

3. Hjelmborg JB, Scheike T, Holst K, Skytthe A, Penney K Graff RE et al. The heritability of prostate cancer in the Nordic Twin Study of Cancer. Cancer Epidemiology, Biomarkers & Prevention 2014; 23(11); 2303-10.

4. Allott EH, Masko EM, Freedland SJ. Obesity and prostate cancer: Weighing the evidence. European Urology 2013;63:800-9.

5. WCRF. Food, Nutrition, Physical Activity, and the Prevention of Cancer: a Global Perspective. Washington DC: World Cancer Research Fund. American Institute for Cancer Research 2007.

6. Mandair D, Rossi RE, Pericleous M, Whyand T, Caplin ME. Prostate cancer and the influence of dietary factors and supplements: a systematic review. Nutrition and metabolism 2014;11:30.

7. Lippman SM, Klein EA, Goodman PJ, Lucia MS, Thompson IM, Ford LG, et al. Effect of selenium and vitamin E on risk of prostate cancer and other cancers: the Selenium and Vitamin E Cancer Prevention Trial (SELECT). JAMA 2009;301:39-51.

8. Klein EA, Thompson IM, Jr., Tangen CM, Crowley JJ, Lucia MS, Goodman PJ, et al. Vitamin E and the risk of prostate cancer: the Selenium and Vitamin E Cancer Prevention Trial (SELECT). JAMA 2011;306:1549-56.

9. Wang X, Ouyang Y, Liu J, Zhu M, Zhao G, Bao W, et al. Fruit and vegetable consumption and mortality from all causes, cardiovascular disease, and cancer: systematic review and dose-response meta-analysis of prospective cohort studies. BMJ 2014.

10. Kristal AR, Peters U, Potter JD. Is it time to abandon the food frequency questionnaire? Cancer Epidemiology, Biomarkers & Prevention 2005;14:2826-8.

11. Schatzkin A, Kipnis V. Could exposure assessment problems give us wrong answers to nutrition and cancer questions? Journal National Cancer Institute 2004;96:1564-5.

12. Willett WC, Hu FB. Not the time to abandon the food frequency questionnaire: point. Cancer Epidemiol Biomarkers Prev 2006;15(10):1757-1758.

13. Dahm CC, Keogh RH, Spencer EA, et al. Dietary fiber and colorectal cancer risk: a nested case-control study using food diaries. J Natl Cancer Inst 2010;102:614-26.

14. Day N, Oakes S, Luben R, Khaw KT, Bingham S, Welch A, et al. EPIC-Norfolk: study design and characteristics of the cohort. European Prospective Investigation of Cancer. British Journal of Cancer 1999;80 Suppl 1:95-103.
15. Davey GK, Spencer EA, Appleby PN, Allen NE, Knox KH, Key TJ. EPIC-Oxford: lifestyle characteristics and nutrient intakes in a cohort of 33,883 meat-eaters and 31,546 non meat-eaters in the UK. Public Health Nutr 2003;6:259-68.

16. Wadsworth M, Kuh D, Richards M, Hardy R. Cohort Profile: The 1946 National Birth Cohort (MRC National Survey of Health and Development). Int J Epidemiol 2006 Feb;35(1):49-54.

17. Lane JA, Donovan JL, Davis M, Walsh E, Dedman D, Down L, et al. Active monitoring, radical prostatectomy, or radiotherapy for localised prostate cancer: study design and diagnostic and baseline results of the ProtecT randomised phase 3 trial. Lancet Oncology 2014;15:1109-18.

18. Marmot M, Brunner E. Cohort profile: the Whitehall II study. International Journal of Epidemiology 2005;34:251-6.

19. Melia, J. Part 1: The burden of prostate cancer, its natural history, information on the outcome of screening and estimates of ad hoc screening with particular reference to England and Wales. BJU International 2005;95(3):4-15.

20. Spencer E, Key TJ, Appleby PN, Dahm CC, Keogh RH, Fentiman IS, Akbaraly T, Brunner E, Burley V, Cade JE, Greenwood DC, Stephen AM, Mishra G, Kuh D, Luben R, Mulligan AA, Khaw KT, Rodwell SA. Meat, poultry and fish and risk of colorectal cancer: pooled analysis of data from the UK dietary cohort consortium. Cancer Causes Control 2010; 21:1417-1425.

21. Welch AA, McTaggart A, Mulligan AA, Luben R, Walker N, Khaw KT, Day NE, Bingham SA. DINTER (Data Into Nutrients for Epidemiological Research) - a new data-entry program for nutritional analysis in the EPIC-Norfolk cohort and the 7-day diary method. Public Health Nutr 2001;4:1253-65.

22. Price GM, Paul AA, Key TJ. Measurement of diet in a large national survey: comparison of computerized and manual coding of records in household measures. Journal of human nutrition and dietetics 1995;8:417-28.

23. Townsend P. Deprivation. Journal of Social Policy 1987;16:125-46.

24. StataCorp (2007) Stata Statistical Software: Release 10. College Station, TX: StataCorp LP.

25. Bingham SA, Luben R, Welch A, Wareham N, Khaw K-T, Day N. Are imprecise methods obscuring a relation between fat and breast cancer? Lancet 2003;362:212-14.

26. Brunner E, Stallone D, Juneja M, Bingham S, Marmot M. Dietary assessment in Whitehall II: comparison of 7 d diet diary and food-frequency questionnaire and validity against biomarkers. Br J Nutr 2001;86:405-14.

27. Morgan RM, Steele RJ, Nabi G, McCowan C. Socioeconomic variation and prostate specific antigen testing in the community: a United Kingdom based population study. Journal of Urology 2013;190:1207-12.

28. Williams N, Hughes LJ, Turner EL, Donovan JL, Hamdy FC, Neal DE, et al. Prostate-specific antigen testing rates remain low in UK general practice: a cross-sectional study in six English cities. BJU International 2011;108:1402-8.

29. Sakr WA, Grignon DJ, Crissman JD, Heilbrun LK, Cassin BJ, Pontes JJ, Haas GP. High grade prostatic intraepithelial neoplasia (HGPIN) and prostatic adenocarcinoma between the ages of 20-69: An autopsy study of 249 cases. In Vivo (Attiki) 1994;8:439-43.
30. Er V, Lane JA, Martin RM, et al. Adherence to dietary and lifestyle recommendations and prostate cancer risk in the Prostate Testing for Cancer and Treatment (ProtecT) trial. Cancer Epidemiology, Biomarkers & Prevention 2014; 23(10); 2066–77.

31. Allen NE, Key TJ, Appleby PN, et al. Animal foods, protein, calcium and prostate cancer risk: the European Prospective Investigation into Cancer and Nutrition. British Journal of Cancer 2008;98:1574-81.

32. Crowe FL, Key TJ, Appleby PN, Travis RC, Overvad K, Jakobsen MU, et al. Dietary fat intake and risk of prostate cancer in the European Prospective Investigation into Cancer and Nutrition. American Journal of Clinical Nutrition 2008;87:1405-13.

33. Giovannucci E, Liu Y, Platz EA, Stampfer MJ, Willett WC. Risk factors for prostate cancer incidence and progression in the health professionals follow-up study. International Journal of Cancer 2007;121:1571-8.

34. Ahn J, Albanes D, et al. Dairy products, calcium intake, and risk of prostate cancer in the prostate, lung, colorectal, and ovarian cancer screening trial. Cancer Epidemiology, Biomarkers Prev 2007;16(12):2623-30.

35. Platz EA (2002) Energy imbalance and prostate cancer. J Nutr 132: 3471S – 3481S.

36. Gilbert R, Metcalfe C, Fraser WD, Donovan J, Hamdy F, Neal DE, Lane JA, Martin RM. Associations of circulating 25-hydroxyvitamin D with prostate cancer diagnosis, stage and grade. Int J Cancer 2012;131(5):1187-96.

37. Kristal AR, Arnold KB, Neuhouser ML, Goodman P, Platz EA, Albanes D, Thompson IM. Diet, supplement use, and prostate cancer risk: results from the prostate cancer prevention trial. American Journal of Epidemiology 2010;172(5):566-77.

38. Andersson SO, Wolk A, Bergstrom R, Giovannucci E, Lindgren C, Baron J, et al. Energy, nutrient intake and prostate cancer risk: a population-based case-control study in Sweden. International Journal of Cancer 1996;68:716-22.

39. Ax E. Dietary Patterns and Prostate Cancer Risk: Report from the Population Based ULSAM Cohort Study of Swedish Men. Nutrition and Cancer 2014;66:77-87.

40. Schwingshackl LS and Hoffmann G. Adherence to a Mediterranean diet and risk of diabetes: a systematic review and meta-analysis. Int J Cancer 2014;135(8):1884-97.

41. Sutcliffe S, Colditz GA. Prostate cancer: is it time to expand the research focus to early-life exposures? Nature Reviews Cancer 2013;13(3):208-518.

42. Richaman EL, Kenfield SA, Chavarro JE, Stampfer MJ, Giovannucci EL, Willett WC et al. Fat intake after diagnosis and risk of lethal prostate cancer and all-cause mortality. JAMA Internal Medicine 2013;173: 1318-1326.
TABLE 1 Characteristics of the Dietary Cohort Consortium studies

Study	Participants	Diary completion (years)	Final follow-up date	Follow-up duration (years)	Prostate cancer cases (n)	Clinical stage (n, advanced/localised/unknown)	Controls (n)	Age at diary completion (years)
EPIC-Norfolk Population	1993-1998	31/12/2009	7.3 (3.2)\(^2\)	439	105/251/83	1,752	64.8 (7.7)\(^2\)	
EPIC-Oxford Population and vegetarians	1993-1999	31/12/2007	6.6 (2.7)	125	22/73/30	125	64.6 (8.0)	
NSHD Born 1946	1989-1990	31/12/2008	13.3 (3.3)	15	0/0/15	60	43.5 (0.2)	
ProtecT Population	2003-2009	29/04/2009	0.2 (0.3)	1,054	99/953/2	1,261	62.9 (4.7)	
Whitehall II Civil servants	1991-1993	29/11/2005	9.0 (2.9)	84	0/0/84	330	54.8 (4.8)	

\(^{1}\)EPIC: European Prospective Investigation into Cancer and Nutrition; NSHD: National Survey of Health and Development; ProtecT: Prostate testing for cancer and Treatment.

\(^{2}\)Mean (SD) in years.
Characteristic	Controls \(^1\) (n = 3 528)	Cases (n = 1 717)
Age at diary completion (years)	62.7 (7.5)	63.0 (6.5)
Height (m)*	1.75 (0.07)	1.75 (0.07)
Weight (kg)*	80.7 (11.6)	80.8 (11.7)
Body mass index, n (kg/m\(^2\)) (SD)*	26.4 (3.3)	26.3 (3.3)
<22.5 (%)		
22.5-24.9	334 (9.9)	171 (10.8)
25.0-27.4	1 100 (32.7)	487 (30.8)
27.5-29.9	643 (19.1)	291 (18.4)
≥30.0	462 (13.7)	203 (12.8)
Smoking status, n (%)*		
Never	1 116 (33.1)	605 (37.7)
Former	1 873 (55.5)	821 (51.2)
Current	383 (11.4)	177 (11.0)
Marital status, n (%)*		
Married or cohabiting	3 030 (86.4)	1 500 (88.0)
Unmarried	478 (13.6)	205 (12.0)
Diabetes, n (%)*		
No diabetes	3 121 (94.4)	1 462 (95.1)
Diabetes (self-reported)	185 (5.6)	76 (4.9)
Townsend material deprivation score, n (%)*		
Low (richest)	817 (24.6)	403 (25.5)
Medium-low	864 (26.0)	370 (23.4)
Medium-high	837 (25.2)	383 (24.3)
High (poorest)	802 (24.2)	422 (26.7)

\(^1\)Values are unadjusted means (SD except where indicated) combined for five studies.

*Unknown categories not presented.
TABLE 3 Consumption of food groups, foods, macronutrients and micronutrients pooled across five studies

Dietary intake and units¹	Controls (n = 3 258)	Prostate cancer cases (n = 1 717)
Protein²		
Red meat	41.6 (31.3)	42.3 (31.2)
Processed meat	27.8 (22.0)	27.6 (21.2)
Red and processed meat	69.4 (39.8)	70.0 (39.8)
Poultry	25.7 (24.8)	26.0 (25.6)
White fish	15.9 (17.2)	15.3 (17.7)
Oily fish	14.7 (21.2)	15.6 (22.8)
Milk	207 (143)	205 (146)
Cheese	17.4 (17.2)	16.0 (17.2)
Yogurt	24.1 (43.2)	26.9 (47.0)
Total energy intake (MJ/d)³		
	9.12 (2.11)	8.98 (2.07)
Macronutrients²		
Protein	15.4 (2.6)	15.7 (2.7)
Protein from dairy products	2.6 (1.3)	2.6 (1.4)
Carbohydrate	45.6 (6.7)	45.2 (6.9)
Total fat consumption	33.2 (5.4)	32.9 (5.5)
Saturated fat consumption	12.4 (3.0)	12.1 (3.1)
Monounsaturated fat consumption	11.5 (2.1)	11.4 (2.1)
Polyunsaturated fat consumption	6.2 (1.7)	6.1 (1.8)
n-6 fatty acids*	5.3 (1.8)	5.2 (1.7)
n-3 fatty acids*	0.69 (0.26)	0.71 (0.30)
Ratio n-6:n-3*	8.4 (3.7)	8.2 (3.8)
Alcohol consumption²	18.4 (21.4)	19.2 (21.9)
Fruit and vegetables²	313 (174)	310 (169)
Dietary fibre²	15.9 (6.0)	15.6 (6.0)
Micronutrients		
Retinol µg/d	700 (1072)	656 (1020)
Carotene µg/d*	2 675 (1556)	2 773 (1597)
Lycopene µg/d*	1 485 (1983)	1 481 (1968)
Vitamin B6 mg/d	2.25 (0.66)	2.31 (0.68)
Folate µg/d	293 (90)	295 (89)
Vitamin B12 µg/d	5.68 (3.97)	5.64 (3.96)
Nutrient	Mean (SD)	Mean (SD)
------------------	------------	------------
Vitamin C mg/d	87.7 (51.6)	89.2 (55.0)
Vitamin D µg/d	3.82 (2.76)	3.88 (2.80)
Vitamin E mg/d	11.0 (4.9)	10.8 (5.0)
Calcium mg/d	896 (283)	887 (283)
Iron mg/d	13.1 (4.0)	13.0 (3.9)
Magnesium mg/d	322 (91)	323 (90)
Selenium µg/d	71.0 (31.4)	73.8 (40.1)
Zinc mg/d	9.52 (2.53)	9.52 (2.55)

1Values are unadjusted means or percentages (SD), 2g/d, 3percentage of total energy intake in MJ/d, *unknown for some participants.
TABLE 4 Odds ratios for prostate cancer diagnosis by food groups, foods and nutrient consumption

Food group, food or nutrient	Food or nutrient intake (increasing quintiles except where indicated)	P value for trend²	
	1 (referent) 2 3 4 5		
Red meat (g/d)			
Cut-point			
Cases/Controls	345/688 330/735 331/718 355/694 356/693		
Odds ratio (95% CI)	1.00 0.90 (0.74-1.09) 0.93 (0.77-1.14) 1.02 (0.84-1.24) 0.99 (0.81-1.21)	0.99	
Processed meat (g/d)			
Cut-point	8.6 18.9 29.3 43.7		
Cases/Controls	333/716 342/710 347/699 340/709 355/694		
Odds ratio (95% CI)	1.00 1.06 (0.87-1.29) 1.10 (0.91-1.34) 1.11 (0.91-1.35) 1.14 (0.93-1.39)	0.98	
Red and processed meat (g/d)			
Cut-point	37.2 56.8 75.9 99.7		
Cases/Controls	344/705 341/708 321/728 349/700 362/687		
Odds ratio (95% CI)	1.00 1.03 (0.84-1.26) 0.95 (0.78-1.16) 1.07 (0.88-1.31) 1.05 (0.86-1.29)	0.99	
Poultry (g/d)			
Cut-point	0.2 15.3 27.1 43.2		
Cases/Controls	388/718 312/687 323/716 339/713 355/694		
Odds ratio (95% CI)	1.00 0.86 (0.71-1.05) 0.87 (0.72-1.06) 0.89 (0.74-1.08) 0.95 (0.79-1.15)	0.78	
White fish (g/d)			
Cut-point	0.2 9.3 16.5 27.1		
Cases/Controls	626/1224 86/161 351/708 286/690 368/745		
Odds ratio (95% CI)	1.00 1.04 (0.77-1.40) 1.02 (0.86-1.21) 0.92 (0.77-1.10) 1.10 (0.93-1.31)	0.54	
Oily fish (g/d)³			
Cut-point			
Cases/Controls	788/1603 - 213/511 350/728 366/686		
Odds ratio (95% CI)	1.00 - 0.89 (0.73-1.08) 0.93 (0.79-1.10) 1.00 (0.85-1.18)	0.83	
Milk (g/d)			
Cut-point	89 154 216 308		
Cases/Controls	349/699 343/707 350/699 340/709 335/714		
Odds ratio (95% CI)	1.00 1.05 (0.87-1.28) 1.05 (0.86-1.27) 1.04 (0.86-1.27) 1.04 (0.85-1.28)	0.33	
Cheese (g/d)			
Cut-point	2.6 9.9 16.5 28.4		
Cases/Controls	372/674 364/687 340/710 326/733 315/724		
Odds ratio (95% CI)	1.00 1.04 (0.86-1.26) 0.95 (0.78-1.15) 0.89 (0.73-1.08) 0.95 (0.77-1.16)	0.25	
Yoga (g/d)	Cut-point	Cases/Controls	Odds ratio (95% CI)
------------	-----------	----------------	---------------------
0.4		350/690	1.00 (0.93-1.28)
49.3		362/689	0.92 (0.79-1.08)
	1.00		0.57

Fruit and vegetables (g/d)	Cut-point	Cases/Controls	Odds ratio (95% CI)
0.4	171	343/706	1.00 (0.91-1.34)
49.3	246	357/692	0.99 (0.81-1.21)
350/690	325	334/715	1.04 (0.85-1.27)
362/689	434	336/713	1.05 (0.85-1.28)

Energy (MJ/d)	Cut-point	Cases/Controls	Odds ratio (95% CI)
0.4	7.33	362/687	1.00 (0.90-1.32)
49.3	8.45	366/683	1.00 (0.82-1.21)
350/690	9.47	340/709	0.97 (0.79-1.18)
362/689	10.76	320/729	1.11 (0.91-1.36)

Protein (% energy)	Cut-point	Cases/Controls	Odds ratio (95% CI)
0.4	13.3	306/743	1.00 (0.82-1.23)
49.3	14.7	318/731	1.16 (0.95-1.42)
350/690	15.9	363/686	1.02 (0.83-1.25)
362/689	17.5	352/697	1.03 (0.83-1.29)

Dairy protein (% energy)	Cut-point	Cases/Controls	Odds ratio (95% CI)
0.4	1.5	372/677	1.00 (0.82-1.23)
49.3	2.1	326/723	1.16 (0.95-1.42)
350/690	2.7	332/717	1.02 (0.83-1.25)
362/689	3.5	331/718	1.03 (0.83-1.29)

Carbohydrate (% energy)	Cut-point	Cases/Controls	Odds ratio (95% CI)
0.4	39.9	358/691	1.00 (0.82-1.23)
49.3	44.2	357/692	0.89 (0.73-1.07)
350/690	47.3	346/703	0.91 (0.73-1.08)
362/689	51.0	323/726	0.97 (0.75-1.11)

Total fat (% energy)	Cut-point	Cases/Controls	Odds ratio (95% CI)
0.4	28.6	368/681	1.00 (0.82-1.21)
49.3	31.8	342/707	1.03 (0.85-1.25)
350/690	34.6	340/709	0.93 (0.76-1.13)
362/689	37.5	338/711	1.04 (0.85-1.28)

SFA (% energy)	Cut-point	Cases/Controls	Odds ratio (95% CI)
0.4	9.9	384/665	1.00 (0.82-1.21)
49.3	11.3	336/713	1.03 (0.85-1.25)
350/690	12.8	343/706	1.01 (0.83-1.23)
362/689	14.6	323/726	1.04 (0.85-1.27)

MUFA (% energy)	Cut-point	Cases/Controls	Odds ratio (95% CI)
0.4	9.8	353/696	1.00 (0.86-1.26)
49.3	10.9	349/700	1.07 (0.89-1.31)
350/690	12.0	347/702	1.07 (0.88-1.30)
362/689	13.1	329/720	1.04 (0.86-1.26)

PUFA (% energy)	Cut-point	Cases/Controls	Odds ratio (95% CI)
0.4	1.07	353/696	1.00 (0.89-1.30)
49.3	1.08	349/700	1.08 (0.89-1.31)
350/690	1.07	347/702	1.07 (0.88-1.30)
362/689	1.04	329/720	1.04 (0.86-1.26)
	Cut-point	Cases/Controls	Odds ratio (95% CI)
-------------------	-----------	----------------	---------------------
n-6 fatty acids (% energy)*	4.8	367/682	1.00 0.93 (0.77-1.13)
	5.6	333/716	1.04 (0.85-1.26)
	6.4	343/706	1.02 (0.84-1.24)
	7.4	347/702	0.98 (0.80-1.19)
		327/722	0.78

	Cut-point	Cases/Controls	Odds ratio (95% CI)
n-3 fatty acids (% energy)*	4.0	235/593	1.00 0.91 (0.72-1.14)
	4.7	232/596	1.04 (0.82-1.31)
	5.4	254/573	0.98 (0.78-1.24)
	6.5	239/589	0.86 (0.68-1.09)
		216/611	0.42

	Cut-point	Cases/Controls	Odds ratio (95% CI)
Ratio n-6:n-3*	5.5	243/582	1.00 1.15 (0.92-1.44)
	6.8	213/615	0.99 (0.79-1.24)
	8.3	234/593	0.93 (0.74-1.17)
	10.7	231/597	0.94 (0.74-1.18)
		252/575	0.75

	Cut-point	Cases/controls	Odds ratio (95% CI)
Alcohol (g/d)*	1.0	362/780	1.00 0.98 (0.81-1.18)
	10.0	389/871	1.07 (0.88-1.30)
	20.0	348/623	0.93 (0.77-1.12)
	40.0	374/790	1.02 (0.82-1.28)
		244/464	0.93

	Cut-point	Cases/controls	Odds ratio (95% CI)
Dietary fibre (g/d)	10.9	360/689	1.00 0.93 (0.76-1.13)
	13.6	335/714	0.89 (0.73-1.10)
	16.3	342/707	0.98 (0.80-1.21)
	20.1	351/698	0.90 (0.72-1.12)
		329/720	0.34

	Cut-point	Cases/controls	Odds ratio (95% CI)
Retinol (µg/d)	234	359/690	1.00 0.98 (0.81-1.19)
	325	351/698	0.94 (0.77-1.15)
	439	337/712	1.00 (0.81-1.24)
	654	334/715	1.07 (0.86-1.33)
		336/713	0.51

	Cut-point	Cases/controls	Odds ratio (95% CI)
Carotene (µg/d)*	1470	234/593	1.00 0.96 (0.76-1.20)
	2139	230/599	0.88 (0.69-1.11)
	2796	223/604	0.95 (0.75-1.20)
	3696	237/591	0.96 (0.76-1.22)
		252/575	0.84

	Cut-point	Cases/controls	Odds ratio (95% CI)
Lycopene (µg/d)*	350	217/596	1.00 1.10 (0.88-1.38)
	775	236/577	1.17 (0.94-1.47)
	1303	258/554	1.02 (0.81-1.28)
	2140	237/576	0.85 (0.67-1.07)
		213/599	0.28

	Cut-point	Cases/controls	Odds ratio (95% CI)
Vitamin B-6 (mg/d)	1.72	240/593	1.00 1.94 (0.72-3.64)
	2.04	230/599	0.97 (0.67-1.40)
	2.34	223/605	0.99 (0.75-1.32)
	2.76	237/591	0.98 (0.73-1.32)
Nutrient	Cut-point	Cases/controls	Odds ratio (95% CI)
-------------------	-----------	----------------	---------------------
Folate (µg/d)	218	336/713	1.00 1.10 (0.91-1.37)
	261	338/711	1.16 1.09 (0.94-1.42)
	304	327/722	1.16 1.21 (0.98-1.49)
	362	369/680	1.09 1.04 (0.83-1.30)
Vitamin B-12 (µg/d)	3.18	345/704	1.00 1.02 (0.84-1.24)
	4.17	340/709	1.00 1.00 (0.82-1.21)
	5.24	356/693	1.00 1.00 (0.82-1.21)
	7.15	338/711	1.00 1.00 (0.82-1.21)
Vitamin C (mg/d)	45.6	346/703	1.00 1.06 (0.87-1.28)
	65.0	333/716	1.00 0.95 (0.78-1.16)
	88.6	331/718	1.00 0.99 (0.81-1.21)
	125.2	364/685	1.00 1.05 (0.86-1.29)
Vitamin D (µg/d)	1.85	334/715	1.00 1.13 (0.93-1.37)
	2.73	346/703	1.00 1.09 (0.90-1.34)
	3.76	340/709	1.00 1.06 (0.87-1.30)
	5.26	347/702	1.00 1.09 (0.88-1.33)
Vitamin E (mg/d)	7.1	381/668	1.00 0.90 (0.74-1.09)
	9.0	336/713	1.00 0.89 (0.73-1.09)
	11.1	325/724	1.00 0.90 (0.73-1.11)
	14.1	334/715	1.00 1.02 (0.81-1.27)
Calcium (mg/d)	659	362/687	1.00 0.98 (0.80-1.19)
	798	337/712	1.00 0.96 (0.78-1.17)
	928	328/721	1.00 1.20 (0.97-1.49)
	1112	366/683	1.00 1.00 (0.79-1.28)
Iron (mg/d)	9.9	366/683	1.00 0.92 (0.75-1.12)
	11.7	335/714	1.00 0.92 (0.75-1.14)
	13.6	334/715	1.00 1.01 (0.81-1.26)
	15.9	348/702	1.00 0.97 (0.76-1.24)
Magnesium (mg/d)	248	339/710	1.00 1.10 (0.90-1.34)
	292	358/691	1.00 0.90 (0.73-1.11)
	334	316/733	1.00 0.99 (0.80-1.24)
	390	352/697	1.00 1.02 (0.79-1.31)
Selenium (µg/d)	49.3	319/730	1.00 1.10 (0.90-1.34)
	61.0	316/733	1.00 0.90 (0.73-1.11)
	73.2	376/673	1.00 0.99 (0.80-1.24)
	89.1	335/714	1.00 1.02 (0.79-1.31)
Zinc (mg/d)	Cut-point	Cases/controls	Odds ratio (95% CI)
------------	-----------	----------------	-------------------
			1.00
			0.93 (0.76-1.14)
			1.19 (0.98-1.46)
			0.93 (0.76-1.15)
			0.95 (0.76-1.19)
	7.4	347/702	1.00
	8.7	327/722	0.94 (0.77-1.15)
	9.8	369/681	1.07 (0.87-1.32)
	11.4	341/707	0.93 (0.74-1.15)
	11.4	333/716	0.89 (0.70-1.14)

1 Conditional logistic regression adjusted for age, BMI, socioeconomic, smoking and marital status, diabetes and energy intake.
2 P values relate to tests for trend obtained for continuous intake variable.
3 First and second quintiles (and third) combined due to large proportion of non-consumers.
4 Alcohol intake in five categories (<1, 1-9, 10-19, 20-39, ≥40 g/d).
* Unknown for some participants.
| Food or nutrient intake (one SD) | All studies N = 1 717/3 258 | Clinically-detected (4 studies) N = 663/2 267 | PSA-detected (ProtecT study) N = 1 054/1 261 | P value for heterogeneity |
|--|-------------------------------|---|---|---------------------------|
| Red meat (31.3 g/d) | 1.00 (0.94-1.07) | 0.96 (0.87-1.06) | 1.04 (0.95-1.13) | 0.25 |
| Processed meat (21.8 g/d) | 1.00 (0.94-1.07) | 0.98 (0.89-1.08) | 1.02 (0.94-1.11) | 0.55 |
| Red and processed meat (39.8 g/d) | 1.00 (0.94-1.07) | 0.96 (0.86-1.06) | 1.04 (0.96-1.14) | 0.20 |
| Poultry (25.1 g/d) | 1.01 (0.95-1.07) | 1.05 (0.96-1.15) | 0.98 (0.90-1.06) | 0.27 |
| White fish (17.4 g/d) | 1.02 (0.96-1.08) | 1.02 (0.93-1.11) | 1.02 (0.93-1.11) | 0.99 |
| Oily fish (21.7 g/d) | 1.01 (0.95-1.07) | 0.94 (0.86-1.03) | 1.06 (0.97-1.15) | 0.08 |
| Milk (144 g/d) | 1.03 (0.97-1.10) | 1.06 (0.97-1.16) | 1.00 (0.91-1.10) | 0.37 |
| Cheese (17.2 g/d) | 0.96 (0.90-1.03) | 0.96 (0.87-1.05) | 0.96 (0.88-1.06) | 0.93 |
| Yogurt (44.5 g/d) | 0.98 (0.93-1.04) | 0.96 (0.87-1.07) | 0.99 (0.92-1.07) | 0.64 |
| Fruit and vegetables (172 g/d) | 0.99 (0.92-1.05) | 1.06 (0.97-1.16) | 0.93 (0.85-1.03) | 0.06 |
| Energy intake (2.10 MJ/d) | 1.01 (0.95-1.08) | 1.06 (0.96-1.16) | 0.98 (0.89-1.07) | 0.22 |
| Protein (2.7 % energy) | 1.01 (0.95-1.09) | 1.03 (0.92-1.16) | 1.01 (0.92-1.10) | 0.74 |
| Protein from dairy products (1.3 % energy)| 1.00 (0.94-1.06) | 1.03 (0.94-1.13) | 0.97 (0.89-1.06) | 0.38 |
| Carbohydrate (6.8 % energy) | 0.98 (0.92-1.05) | 1.03 (0.93-1.13) | 0.95 (0.87-1.04) | 0.26 |
| Total fat consumption (5.4 % energy) | 1.01 (0.95-1.07) | 0.99 (0.90-1.09) | 1.02 (0.94-1.11) | 0.61 |
| Saturated fat consumption (3.0 % energy) | 1.00 (0.94-1.06) | 0.98 (0.89-1.08) | 1.01 (0.92-1.09) | 0.73 |
| Monounsaturated fat consumption (2.1 % energy) | 1.01 (0.95-1.08) | 1.01 (0.92-1.11) | 1.02 (0.94-1.11) | 0.88 |
| Nutrient | Value (Lower-Upper) |
|----------------------------------|---------------------|
| Polyunsaturated fat consumption (1.7 % energy) | 1.01 (0.95-1.07) 0.98 (0.90-1.08) 1.03 (0.95-1.13) 0.42 |
| n-6 fatty acids (1.8 % energy)* | 0.97 (0.90-1.05) 0.98 (0.89-1.08) 0.95 (0.83-1.10) 0.77 |
| n-3 fatty acids (0.27 % energy)* | 1.01 (0.94-1.09) 1.02 (0.92-1.13) 1.01 (0.91-1.13) 0.88 |
| Ratio n-6:n-3 (3.7)* | 0.99 (0.92-1.06) 0.97 (0.89-1.06) 1.02 (0.90-1.16) 0.55 |
| Alcohol consumption (21.6 g/d) | 1.00 (0.93-1.06) 0.97 (0.88-1.07) 1.02 (0.93-1.11) 0.49 |
| Dietary fibre (6.0 g/d) | 0.97 (0.90-1.04) 1.04 (0.94-1.14) 0.92 (0.83-1.02) 0.09 |
| Retinol (1055 µg/d) | 1.02 (0.96-1.09) 1.04 (0.96-1.12) 1.00 (0.90-1.12) 0.62 |
| Carotene (1568 µg/d)* | 1.01 (0.94-1.08) 1.05 (0.96-1.15) 0.94 (0.82-1.07) 0.17 |
| Lycopene (1978 µg/d)* | 0.96 (0.89-1.03) 0.94 (0.84-1.05) 0.97 (0.88-1.07) 0.68 |
| Vitamin B6 (0.67 mg/d) | 1.05 (0.98-1.13) 1.09 (0.98-1.21) 1.04 (0.94-1.15) 0.54 |
| Folate (90 µg/d) | 1.01 (0.94-1.09) 1.05 (0.95-1.16) 1.00 (0.90-1.10) 0.46 |
| Vitamin B12 (3.97 µg/d) | 1.03 (0.96-1.09) 1.06 (0.98-1.15) 0.99 (0.89-1.09) 0.28 |
| Vitamin C (52.8 mg/d) | 1.02 (0.95-1.08) 1.02 (0.92-1.12) 1.02 (0.94-1.11) 0.91 |
| Vitamin D (2.77 µg/d) | 1.01 (0.95-1.07) 0.92 (0.83-1.03) 1.06 (0.98-1.15) 0.04 |
| Vitamin E (4.9 mg/d) | 1.02 (0.95-1.10) 1.01 (0.91-1.11) 1.05 (0.94-1.18) 0.55 |
| Calcium (283 mg/d) | 1.03 (0.95-1.11) 1.05 (0.94-1.18) 0.99 (0.88-1.11) 0.46 |
| Iron (3.9 mg/d) | 1.00 (0.93-1.08) 1.00 (0.89-1.12) 1.02 (0.92-1.15) 0.75 |
| Magnesium (91 mg/d) | 0.98 (0.90-1.06) 1.02 (0.91-1.14) 0.96 (0.85-1.08) 0.48 |
| Selenium (34.5 µg/d) | 1.00 (0.94-1.07) 0.95 (0.85-1.07) 1.04 (0.96-1.13) 0.22 |
| Zinc (2.53 mg/d) | 0.99 (0.91-1.07) 1.03 (0.92-1.15) 0.96 (0.85-1.08) 0.39 |
1 Conditional logistic regression adjusted for age, BMI, socioeconomic, smoking and marital status, diabetes and energy intake
2 Number of cases and controls.
3 Test of heterogeneity of trends between cohort studies (mostly clinically-detected disease) and ProtecT (PSA-detected disease).
* Unknown for some participants.
TABLE 6 Odds ratios for prostate cancer with dietary intake by disease stage

Food or nutrient intake (one standard deviation)	Localised and advanced stage* (N = 1 503/2 418)	Localised stage N = 1 277/1 952	Advanced stage N= 226/466	P value for heterogeneity by disease stage³
Red meat (31.3 g/d)	1.01 (0.94-1.09)	1.04 (0.96-1.13)	0.83 (0.66-1.04)	0.06
Processed meat (21.8 g/d)	1.00 (0.93-1.08)	1.01 (0.93-1.09)	0.99 (0.80-1.24)	0.92
Red and processed meat (39.8 g/d)	1.01 (0.93-1.09)	1.04 (0.96-1.13)	0.85 (0.67-1.07)	0.11
Poultry (25.1 g/d)	0.99 (0.92-1.06)	0.99 (0.91-1.07)	0.99 (0.81-1.21)	0.96
White fish (17.4 g/d)	1.00 (0.93-1.08)	0.99 (0.92-1.08)	1.10 (0.90-1.35)	0.37
Oily fish (21.7 g/d)	1.02 (0.95-1.10)	1.02 (0.94-1.10)	1.06 (0.87-1.29)	0.71
Milk (144 g/d)	1.02 (0.95-1.11)	1.01 (0.93-1.10)	1.11 (0.92-1.35)	0.36
Cheese (17.2 g/d)	0.93 (0.86-1.01)	0.90 (0.83-0.99)	1.03 (0.84-1.26)	0.25
Yogurt (44.5 g/d)	0.96 (0.89-1.03)	0.96 (0.89-1.03)	1.01 (0.80-1.27)	0.65
Fruit and vegetables (172 g/d)	0.98 (0.91-1.06)	0.97 (0.89-1.05)	1.11 (0.90-1.36)	0.23
Energy intake (2.10 MJ/d)	1.03 (0.95-1.11)	1.00 (0.92-1.08)	1.23 (1.00-1.51)	0.07
Protein (2.7 % energy)	1.01 (0.93-1.09)	1.01 (0.92-1.11)	1.00 (0.79-1.27)	0.96
Protein from dairy products (1.3 % energy)	0.97 (0.90-1.04)	0.94 (0.87-1.02)	1.09 (0.88-1.34)	0.21
Carbohydrate (6.8 % energy)	0.98 (0.91-1.06)	0.98 (0.90-1.07)	1.04 (0.83-1.29)	0.64
Total fat consumption (5.4 % energy)	1.05 (0.97-1.13)	1.04 (0.96-1.13)	1.03 (0.84-1.27)	0.93
Saturated fat consumption (3.0 % energy)	1.04 (0.96-1.12)	1.02 (0.94-1.11)	1.08 (0.88-1.34)	0.62
Monounsaturated fat consumption (2.1 % energy)	1.04 (0.97-1.12)	1.05 (0.97-1.13)	0.99 (0.81-1.22)	0.64
Polyunsaturated fat consumption (1.7 % energy)	1.04 (0.96-1.11)	1.05 (0.97-1.14)	0.94 (0.77-1.16)	0.33
n-6 fatty acids (1.8 % energy)*	0.98 (0.89-1.07)	0.99 (0.90-1.10)	0.91 (0.73-1.13)	0.48
Nutrient	RR (95% CI)	RR (95% CI)	RR (95% CI)	OR (95% CI)
--	----------------------	----------------------	----------------------	-------------
n-3 fatty acids (0.27 % energy)*	1.01 (0.93-1.10)	1.02 (0.93-1.12)	0.96 (0.75-1.22)	0.67
Ratio n-6:n-3 (3.7)*	1.01 (0.92-1.10)	1.01 (0.92-1.12)	0.97 (0.79-1.20)	0.70
Alcohol consumption (21.6 g/d)	0.97 (0.90-1.05)	0.97 (0.90-1.06)	0.93 (0.74-1.17)	0.72
Dietary fibre (6.0 g/d)	0.98 (0.90-1.06)	0.96 (0.88-1.05)	1.14 (0.91-1.43)	0.17
Retinol (1055 µg/d)	1.03 (0.95-1.11)	1.02 (0.93-1.11)	1.09 (0.91-1.29)	0.50
Carotene (1568 µg/d)*	1.02 (0.93-1.11)	1.00 (0.91-1.11)	1.06 (0.84-1.35)	0.66
Lycopene (1978 µg/d)*	0.98 (0.90-1.06)	0.98 (0.90-1.07)	0.93 (0.72-1.19)	0.67
Vitamin B6 (0.67 mg/d)	1.02 (0.94-1.11)	1.02 (0.93-1.12)	1.08 (0.84-1.38)	0.70
Folate (90 µg/d)	1.01 (0.93-1.10)	1.00 (0.92-1.10)	1.08 (0.85-1.38)	0.58
Vitamin B12 (3.97 µg/d)	1.04 (0.97-1.12)	1.04 (0.96-1.13)	1.05 (0.86-1.29)	0.93
Vitamin C (52.8 mg/d)	1.00 (0.92-1.08)	1.00 (0.92-1.09)	0.99 (0.79-1.24)	0.93
Vitamin D (2.77 µg/d)	1.02 (0.95-1.09)	1.03 (0.96-1.12)	0.94 (0.74-1.19)	0.44
Vitamin E (4.9 mg/d)	1.03 (0.94-1.13)	1.04 (0.94-1.15)	0.97 (0.78-1.21)	0.57
Calcium (283 mg/d)	0.97 (0.88-1.07)	0.96 (0.86-1.06)	1.06 (0.82-1.37)	0.47
Iron (3.9 mg/d)	0.99 (0.91-1.09)	1.02 (0.92-1.12)	0.87 (0.67-1.13)	0.28
Magnesium (91 mg/d)	0.97 (0.89-1.07)	0.96 (0.87-1.06)	1.08 (0.83-1.41)	0.42
Selenium (34.5 µg/d)	1.00 (0.93-1.08)	0.99 (0.90-1.08)	0.99 (0.83-1.17)	0.99
Zinc (2.53 mg/d)	1.00 (0.91-1.10)	1.01 (0.91-1.12)	0.96 (0.73-1.26)	0.75

1 Conditional logistic regression adjusted for age, BMI, smoking, marital status, diabetes, socioeconomic status and energy intake.
2 Number of cases and controls.
3 Test of heterogeneity of trends between localised and advanced disease.
* Unknown for some participants.