Prehypertension and psychosocial risk factors among university students in ASEAN countries

by Erna Rochmawati
Prehypertension and psychosocial risk factors among university students in ASEAN countries

Karl Peltzer1,2, Supa Pengpid3,4, Vanphanom Sychareun5, Alice Joan G. Ferrer6, Wah Yun Low7, Thang Nguyen Huu8, Ha Hla Win9, Ema Rochmawati10 and Nirwan Turnbull11

Abstract

Background: Existing evidence suggests that the cardiovascular morbidities are increasing among pre-hypertensive individuals compared to normal. The aim of this study was to evaluate the prevalence of prehypertension, hypertension and to identify psychosocial risk factors for prehypertension among university students in Association of South East Asian Nation (ASEAN) countries.

Methods: Based on a cross-sectional survey, the total sample included 4649 undergraduate university students (females = 65.3%; mean age 20.5, SD = 2.9, age range of 18–30 years) from 7 ASEAN countries (Indonesia, Laos, Malaysia, Myanmar, Philippines, Thailand and Vietnam). Blood pressure, anthropometric, health behaviour and psychosocial variables were measured.

Results: Overall, 19.0% of the undergraduate university students across ASEAN countries had prehypertension, 6.7% hypertension and 74.2% were normotensives. There was country variation in prehypertension prevalence, ranging from 11.3% in Indonesia and 11.5% in Malaysia to above 18% in Laos, Myanmar and Thailand. In multivariate analysis, sociodemographic variables (male gender, living in an upper middle income country, and living on campus or off campus on their own), nutrition and weight variables (not being overweight and obese, having once or more times soft drinks in a day and never or rarely having chocolate or candy), heavy drinking and having depressive symptoms were associated with prehypertension.

Conclusion: The study found a high prevalence of prehypertension in ASEAN university students. Several psychosocial risk factors including male gender, obesity, soft drinks consumption, heavy drinking and depression symptoms have been identified which can help in intervention programmes.

Background

Several studies have shown an increase in the prevalence of hypertension in high and low and middle income countries [1, 2]. Similar to the trend worldwide, hypertension is also the single most attributable cause for mortality in South-East Asia. But while in developed regions, the prevalence of hypertension appears to be stabilizing or decreasing, the rates in Southeast Asia continue to rise [3]. If you are prehypertensive, you are more likely to become hypertensive and have a higher cardiovascular risk (compared with normotensives), and comprehensive therapeutic lifestyle modification strategy in prehypertensive subjects is indicated to reduce the risk of developing hypertension [4, 5]. In addition, studies found that hypertension and prehypertension can start in adolescence (or earlier) and continue into adulthood [6]. A study among young adults (20–30 years) found that students were at higher risk for prehypertension than the general youth population [7].

Currently, there are few studies on the assessment of prehypertension in young adults or university students in Association of Southeast Asian Nations (ASEAN). For example, in Malaysia the prevalence of prehypertension among university students was found to be 30.1% [8] to 42.9% [9], in the Philippines 13.9% [10] and in Thailand...
44.5% [11]. Among Indian medical students a prehypertension prevalence rate of 45% [12] and in another study among male undergraduate students in India 55.1% [13] was found. Studies among university students in the Middle East found a prehypertension prevalence of 47.4% in Egypt [14], 39.5% in Kuwait [15], and 13.5% among females in Saudi Arabia [16].

Psychosocial risk factors associated with prehypertension or hypertension among university students and general adult population include sociodemographics such as male gender [15, 17], nutrition variables such as Body Mass Index (BMI) overweight/obesity [7, 12, 15, 16, 18, 19], excess sodium intake [7, 12], inadequate intake of fruit and vegetables [13, 20], and health risk behaviour variables such as physical inactivity [20, 21], substance use, including smoking [15, 22], heavy alcohol use [23, 24] and short sleep duration [23, 25, 26]. Psychosocial stress and support may include depression [8, 27, 28], posttraumatic stress disorder (PTSD) [29], low life satisfaction [30], and lack of social support [25, 31, 32].

As a result, the purpose of this study was to evaluate the prevalence of prehypertension, hypertension and to identify psychosocial risk factors for prehypertension based on a cross-sectional survey of a university undergraduate population in ASEAN countries (Indonesia, Laos, Malaysia, Myanmar, Philippines, Thailand and Vietnam).

Methods

Study design and participants

This cross-sectional study was part of a larger investigation of a range of health behaviours in university students, and was conducted by a network of researchers in participating countries (see Acknowledgments). The university selection was a convenient sample.

Procedure

The questionnaire utilised for data collection was developed in English, then translated and back-translated into the languages (Bahasa, Khmer, Lao, Myanmar, Thai, Vietnamese) of the participating countries. Research assistants administered the questionnaire at the end of a teaching class (inclusion criteria: all students present in class). In each study country, undergraduate students were surveyed in classrooms selected through a stratified random sample procedure (one university department randomly selected from each faculty as a primary sampling unit, and for each selected department randomly ordered undergraduate courses). Participation rates were in all countries more than 90%, except for Indonesia 86% and Myanmar 73%.

Measures

Blood pressure (BP) measurements and classification

Three consecutive measurements of systolic and diastolic BP were measured by well-trained research assistants using appropriately sized cuff and the bell of a standard stethoscope, with at least 1 min between assessments after the participant had rested for 5 min in a sitting position. Average blood pressure was calculated arithmetically for the 3 measurements of each systolic and diastolic blood pressure. Missing values were excluded from being included in the study. Blood pressure classification was done using JNC 7 algorithm [33]. Prehypertension was defined as systolic blood pressure (SBP) measurement of 120–139 mmHg or diastolic blood pressure (DBP) of 80–89 mmHg in people who were not taking antihypertensive medication. Hypertension was defined as SBP ≥140 mmHg and/or DBP ≥90 mmHg and/or current use of antihypertensive medication. Normotension was defined as SBP value <120/80 mmHg in students who were not taking antihypertensive medication [34]. All respondents were initially asked if they have ever been diagnosed with hypertension and if they did, whether or not they have been taking any kind of drugs or other treatment for the last 2 weeks and last 12 months.

Socio-demographic factor questions included age, gender, residential status, subjective socioeconomic background, and country income status [35].

Nutrition variables

Anthropometric measurements. Height (without footwear) using a stadiometer and weight (without footwear and any heavy accessories) using a calibrated weighing scale was measured. Body mass index (BMI) was calculated as weight in kg divided by height in metre squared. Body mass index (BMI) was classified according to Asian criteria: normal weight (18.5 to <23.0), overweight (23.0 to <25.0) and 25+ as obese [36].

Fruit and vegetable (FV) consumption was assessed with two questions, “How many servings of fruit do you eat on a typical day?” and “How many servings of vegetables do you eat on a typical day?” (One standard serving = 80 g) [37]. Cronbach alpha for this fruit and vegetable measure was 0.74. Insufficient fruit and vegetable consumption was defined as less than five servings of fruits and/or vegetables a day [37]. Cronbach alpha for the two questions in this sample was 0.68.

Additional dietary variables included: (a) trying to avoid eating foods that contain fat and cholesterol (yes, no); (b) adding salt to meals (1 = usually to 4 = never); (c) eating a meal that includes meat (beef, pork, lamb, etc.) (1 = at least once a day to 5 = never); [38], (d) times per day usually drink carbonated soft drinks in the past 30 days (1 = No to 7 = 5 or more times per day), (e) number of days ate food from a fast food restaurant in the past 7 days (1 = 0 days to 8 to 7 days) [39], and (f) frequency of consuming chocolate or candy (1 = more than once a day to 6 = never).
Health behaviour

Physical activity. Physical activity was assessed using the self-administered International Physical Activity Questionnaire (IPAQ) short version, for the last 7 days (IPAQ-S7). We used the instructions given in the IPAQ manual [40], and categorized physical activity (short form) according to the official IPAQ scoring protocol [41], as low, moderate and high.

Tobacco use was assessed with the question: Do you currently use one or more of the following tobacco products (cigarettes, snuff, chewing tobacco, cigars, etc.)? Response options were “yes” or “no” [42]. Past month binge drinking was assessed with one item of the Alcohol Use Disorder Identification Test [43].

Sleep duration. The survey also included one question about self-reported hours of sleep, on average in a 24 h period. The category of 7–8 h of sleep was used as reference. This reference category was chosen because some studies reported that those who slept 7 or 8 h usually had the lowest mortality risk [44].

Psychosocial stress measures

Post traumatic stress disorder (PTSD). Breslau’s 7-item screener was used to identify PTSD symptoms in the past month: participants who scored four or more were considered to have a positive screen for PTSD [45]. (Cronbach’s alpha = 0.77).

The Centre for Epidemiologic Studies Depression Scale (CES-D; 10 items) was used to assess depressive symptoms, and scores 15 or more were classified as severe depressive symptoms [46]. (Cronbach’s alpha = 0.81).

Well-being and social support

Life satisfaction was assessed with one item, “All things considered, how satisfied are you with your life as a whole?” Response option ranged from 1 = very satisfied to 5 = very dissatisfied [48].

Social support was measured with three items from the Social Support Questionnaire [47]. (Cronbach’s alpha = 0.64).

Data analysis

The data were analyzed using IBM-SPSS for Windows, version 23 (Chicago, Illinois, USA). Descriptive statistics were used to calculate frequency of study variables of the study population and Chi-square test to assess difference in proportions. Logistic regression analyses were used to test significant determinants of prehypertension status, with prehypertension serving as the dichotomous outcome variable (prehypertension versus normotensives) and sociodemographics, health, nutrition and psychosocial stress as the independent predictor variables.

Results

Sample characteristics

The total sample included 4649 undergraduate university students (females = 65.3%; mean age 20.5, SD = 2.3, age range of 18–30 years) from 7 ASEAN countries (Indonesia, Laos, Malaysia, Myanmar, Philippines, Thailand and Vietnam). Among countries, the sample size ranged from 231 in Indonesia to 1019 in Malaysia. Overall, 19.0% of the undergraduate university students across ASEAN countries had prehypertension, 6.7% hypertension and 74.2% were normotensives. Of those who were classified as having hypertension, 29.8% were currently using of antihypertensive medication. There was country variation in prehypertension prevalence, ranging from 11.3% in Indonesia and 11.5% in Malaysia to above 18% in Laos, Myanmar and Thailand. The hypertension prevalence ranged from 2% to 4% in Laos, Malaysia and Philippines to above 12% in Indonesia and Thailand. Overall, prehypertension and hypertension prevalence was higher among male than female university students (see Tables 1 and 2).

Association between psychosocial risk factors and prehypertension

In bivariate analyses, sociodemographic variables (male gender, living in an upper middle income country, and living on campus or off campus on their own), nutrition and weight variables (not being underweight and obese, not usually adding salt in food, having once or more times soft drinks in a day and never or rarely having chocolate or candy), health behaviour variables (high physical activity, current tobacco use and heavy drinking), having depressive symptoms, low life satisfaction and low social support were associated with prehypertension.

In multivariate analyses, sociodemographic variables (male gender, living in an upper middle income country, and living on campus or off campus on their own), nutrition and weight variables (not being underweight and obese, having once or more times soft drinks in a day and never or rarely having chocolate or candy), heavy drinking and having depressive symptoms were associated with prehypertension (see Table 3).

Discussion

The study found among a large sample of undergraduate university students across seven ASEAN countries a prehypertension prevalence of 19.0%, which seems generally lower than previous in the region [6, 9, 11–13] and in the middle east [14, 15]. There was some country variation in prehypertension prevalence, ranging from 11.3% in Indonesia and 11.5% in Malaysia to above 18% in Laos, Myanmar and Thailand. Students residing in upper middle income countries such as Thailand had a higher prevalence of prehypertension than those in lower middle income countries. These country differences in terms of prehypertension...
prevalence may be attributed to different stages of the epide-
milogic transition of the participating student populations in the various coun-
tries. As found in some previous studies [15, 17], this study found a significant higher prevalence of prehypertension among male (28.7%) than female (13.9%) students. Nevertheless, a large proportion of, especially male, university students in ASEAN countries seem to suffer from prehypertension requiring comprehensive lifestyle modification programmes [4]. Compared with students who were residing with their parents or guardians, students who were living on campus or off campus on their own were at a higher risk for prehypertension. It is possible that students living away from their parents are more influenced by their peers in terms of lifestyle changes increasing the development of prehypertension. Regarding weight variables, being overweight was protective and being obese increased the odds of having prehypertension. The association between overweight/obesity and prehypertension and hypertension has been confirmed in a number of studies [7, 12, 15, 16, 18, 19]. Further, having once or more times soft drinks in a day increased the odds of prehypertension and moderate consumption of chocolate or candy (1–6 times a week) was protective of prehypertension. In a systematic review, Kied et al. [48] found that “flavonol-rich chocolate and cocoa products may have a small but statistically significant effect in lowering blood pressure by 2–3 mm Hg in the short term.” Unlike a few previous studies [7, 13, 20], this study did not find an association between excess sodium intake, inadequate intake of fruit and vegetables and prehypertension. A previous study [49], found an association between sodium intake and hypertension in the older age group but not in the younger age group, so it is possible that other risk factors (such as obesity or raised blood pressure) play a larger role than sodium intake at the age of young adulthood [50]. Another study among Chinese adults also did not find an association between salt intake and prehypertension [51]. Another possible reason for this result could be recall bias resulting from self-reporting of salt intake [51].

Regarding health risk behaviours, this study found that heavy drinking students had an higher odds of having
Table 2: Sample characteristics (N = 4549)

Nutrition variables	Normotensiones	Prehypertension	Hypertension	P-value
Body Mass Index (BMI)				
Normal	1922 (75.6)	470 (18.5)	152 (6.0)	<0.001
Underweight	810 (81.3)	126 (12.6)	62 (6.2)	
Overweight	330 (71.3)	101 (21.8)	32 (6.9)	
Obese	207 (56.3)	171 (31.5)	65 (12.0)	
Usually eat salt	1175 (77.4)	252 (16.6)	91 (6.6)	0.002
Avoid foods containing fat and cholesterol	1241 (73.5)	316 (18.7)	11 (7.8)	
Sufficient fruits and vegetables				
Soft drinks (once or more a week)	2536 (75.2)	651 (18.8)	220 (5.2)	0.048
Fast food (once or more a week)	632 (67.7)	232 (23.0)	94 (9.3)	0.033
Red meat at least once a day	1240 (73.2)	338 (20.9)	115 (6.8)	0.006
Chocolate or candy	1980 (75.0)	503 (19.0)	158 (6.0)	0.063
Never or rarely				
1-6 times a week	973 (75.0)	238 (18.3)	87 (6.7)	
Once or more times a day	364 (75.4)	85 (17.8)	34 (7.6)	
Health behaviour				
Physical activity				
Low	1974 (75.1)	473 (18.0)	182 (6.9)	0.069
Moderate	1462 (73.3)	409 (20.5)	124 (6.2)	
High	469 (69.8)	160 (23.9)	43 (6.4)	
Current tobacco use	114 (65.9)	47 (27.2)	12 (6.9)	0.918
Heavy drinking at least monthly	199 (65.4)	95 (30.3)	20 (6.4)	<0.001
Sleep duration				
7-8h	1572 (75.5)	370 (17.8)	140 (6.7)	0.385
6 or less hours	1574 (73.2)	429 (20.6)	147 (6.8)	
9 or more hours	294 (75.8)	73 (18.8)	22 (5.7)	
Psychosocial stress				
Depression (severe)	308 (64.8)	114 (23.3)	57 (11.9)	<0.001
Posttraumatic stress disorder (PTSD)	812 (72.4)	230 (20.5)	79 (7.0)	0.312
Well being and social support				
Life satisfaction				
Low	1918 (71.9)	545 (20.4)	204 (7.1)	<0.001
Medium	456 (71.3)	100 (16.4)	41 (8.2)	
High	1174 (79.4)	237 (16.6)	68 (4.6)	
Social support				
Low	1565 (71.6)	450 (20.6)	172 (7.9)	<0.001
High	1875 (76.6)	433 (17.7)	141 (5.8)	

Not assessed in Laos and Philippines

prehypertension, as also found in previous studies [23, 24]. Although current evidence suggests that the moderate consumption of alcohol lowers the blood pressure, chronic ethanol consumption (≥ three drinks a day) is associated with an increased incidence of hypertension [52]. Tobacco use was found in bivariate analysis associated with prehypertension prevalence, as also some previous studies found a significant association [15, 22]. Unlike several previous studies [20–23, 25, 26], this study did not find an association between physical inactivity, short sleep duration and prehypertension. However, several other studies also did not find a clear association between physical inactivity and raised blood pressure [53, 54]. It is possible that the driving force behind increased blood pressure in this
Table 3 Predictors of pre-hypertension compared to normal blood pressure

Sociology-demographics	OR (95% CI)	AOR (95% CI)
Age in years		
18–19	1 (Reference)	
20–21	1.01 (0.85–1.21)	
22–30	1.05 (0.87–1.27)	
Gender		
Female	1 (Reference)	1 (Reference)
Male	2.70 (2.32–3.14)**	2.56 (2.17–3.02)**
Economic family background		
Wealthy	1 (Reference)	
Poor	0.92 (0.79–1.09)	
Country income		
Upper middle income	1 (Reference)	1 (Reference)
Lower middle income	0.52 (0.45–0.60)**	0.52 (0.42–0.65)**
Living arrangement		
Lives with parents/guardians	1 (Reference)	1 (Reference)
Lives away from parents/guardians	1.38 (1.16–1.64)**	1.39 (1.03–1.86)*
Nutrition variables		
Body Mass Index (BMI)		
Normal	1 (Reference)	1 (Reference)
Underweight	0.64 (0.51–0.79)**	0.67 (0.52–0.87)**
Overweight	1.25 (1.08–1.40)	1.11 (0.96–1.28)
Obese	2.28 (1.84–2.82)**	1.94 (1.55–2.43)**
Usually eat salt	0.77 (0.65–0.91)**	0.97 (0.82–1.14)
Avoid foods containing fat and cholesterol	1.00 (0.86–1.17)	
Insufficient fruits and vegetables	0.88 (0.73–1.07)	
1 drink (once or more a week)	1.34 (1.13–1.61)**	1.56 (1.27–1.92)**
2 drink (once or more a week)	0.95 (0.79–1.13)	
No drink at least once a day	1.00 (0.86–1.16)	
Chocolate or candy		
Never or rarely	1 (Reference)	1 (Reference)
1–6 times a week	0.73 (0.60–0.88)**	0.74 (0.60–0.90)**
Once or more times a day	0.70 (0.53–0.91)**	0.82 (0.62–1.09)
Health behaviour		
Physical activity		
Low	1 (Reference)	
Moderate	1.05 (0.88–1.24)	
High	1.36 (1.08–1.71)**	1.25 (0.98–1.59)
Current tobacco use	1.65 (1.16–2.34)**	1.03 (0.70–1.51)
Heavy drinking at least monthly	1.98 (1.32–2.54)**	1.91 (1.18–2.56)**
Sleep duration		
7–8 h	1 (Reference)	
6 or less hours	0.86 (0.74–1.01)	
9 or more hours	0.91 (0.69–1.20)	
Psychosocial stress and support		
Table 3 Predictors of pre-hypertension compared to normal blood pressure (Continued)

Predictor	OR	95% CI	p Value
Depression (Severe)	1.51	(1.20 - 1.90)*	1.47
Posttraumatic stress disorder (PTS)	1.14	(0.96 - 1.35)	---
Life satisfaction	1.01	(0.79 - 1.28)	1.01
Low	0.71	(0.50 - 0.94)**	0.07
Medium	1.01	(0.78 - 1.31)	---
High	0.00	(0.00 - 0.00)***	---
Social support	0.30	(0.56 - 0.93)**	0.00

Table 4 Predictors of pre-hypertension compared to normal blood pressure (Continued)

Study population is not solely physical inactivity but is linked to other factors such as obesity, which still can be advocated for in order to improve a healthy body. Further, in a previous review [55], it was found that the association between short sleep and higher blood pressure and hypertension was stronger among middle-aged adults, which possibly could mean that among a younger age (emerging adulthood) effects of short sleep on raised blood pressure are not yet found.

In terms of psychosocial stress and support, this study found in agreement with previous studies [6, 27, 28] that depression was positively related to prehypertension. "There is considerable evidence suggesting that hyperactivity of the sympathetic nervous system and genetic influences are the underlying mechanisms in the relationship between depression and hypertension." [56]. Further, in bivariate analysis this study found association between low life satisfaction, and lack of social support and prehypertension, as found in previous studies [25, 50 - 52].

Conclusion

The study found high prevalence, in particular among men, of prehypertension in a large sample of university students across seven ASEAN countries. Often, in university students, prehypertension may not be discovered until late. This is because university students are generally healthy and will normally not go for a routine health check-up. The data from this study draws attention to the importance of examining the blood pressure of young persons. Several psychosocial risk factors including male gender, obesity, soft drinks consumption, heavy drinking and depression prevalence have been identified which can help in intervention programmes.

Abbreviation

ASEAN: Association of Southeast Asian Nations; BMI: Body Mass Index; DP: Diet and Physical Activity Questionnaire (DPAQ); PTS: Posttraumatic Stress Disorder

Acknowledgments

The following colleagues participated in the ASEAN student health survey and contributed to data collection (locations of universities): Southeast Asia: Indonesia: Pinging Hoo (Iowa State), Malaysia: Shafiea Mohd. (Kuala Lumpur), Myanmar: M. Tan (Yangon), Philippines: Ainat Fec (Wagak), Thailand: Niswan Umbah (Maharajab), Vietnam: Thang Nguyen Hau (Hanoi).

Funding

Partial funding for this study was provided by the South African Department of Higher Education.

Available data and materials

The code for the current study has not been shared publicly and participants were informed at the time of providing consent that only researchers involved in the project would have access to the information they provided.

Authors' contributions

All authors made substantial contributions for the manuscript, and SP conceived and designed the research. VH, AEG, and NT acquired the data. SP and AEG performed statistical analysis. VH and SP drafted the manuscript. Both authors read and approved the final version of the manuscript. All authors have agreed to authorship and order of authorship for this manuscript.
Ethics approval and consent to participate
The study was conducted in accordance with the Declaration of Helsinki and was approved by an ethical committee in each participating country. "Research Ethics Committee, Faculty of Medicine and Health Sciences, Universiti Malaysia Pahang, University of Malaya Medical Ethics Committee (UEC) 2014-9505, Malaysia. Research and Ethical Committee of University of Medicine 1, Yangon, Myanmar. "Office of the Committee for Research Ethics, Social Sciences, the Faculty of Social Sciences and Humanities, Mahidol University, Thailand. UGC/SSH/2015/11112; Ethics Committee at University of Health Sciences, Laos Ethics; Committee of the Western Visayas Health Research, Philippines; and "Committee of Research Ethics of Faculty of Public Health, Vietnam. Informed consent was obtained from each participant, and privacy and confidentiality of the respondents were strictly protected.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Author details
1Department of Science and Technology Development, Tien Duc Thang University, Ho Chi Minh City, Vietnam. 2Faculty of Pharmacy, Tien Duc Thang University, Ho Chi Minh City, Vietnam. 3A*Star Institute for Health Development, Mahatma Gandhi University, Myanmar. 4Department of Research & Innovation, University of Limpopo, Polokwane, South Africa. 5Faculty of Postgraduate Studies, University of Health Sciences, Ministry of Health Vietnam, Hanoi, Lao PDR. Division of Social Sciences, University of the Philippines Visayas, Iloilo, Philippines. Faculty of Medicine, University of Malaysia, Kuala Lumpur, Malaysia. 6Faculty of Public Health, Hanoi Medical University, Hanoi, Vietnam. 7Preventive and Social Medicine Department, University of Medicine 1, Yangon, Myanmar. 8School of Nursing, Universitas Muhammadiyah Yogyakarta, Jl. Unirig Seno, Tamantar, Kosti, Jakarta, Indonesia. 9Faculty of Public Health, Mahasarakham University, Mahasarakham, Thailand.

Received: 5 May 2017 Accepted: 16 August 2017
Published online: 23 August 2017

References
1. Fujii BM, Zhao Y, Aoun RN. US trends in prevalence, awareness, treatment, and control of hypertension, 1989-2000. JAMA. 2010;303(21):2145–50.
2. Ishihara M, Darmascen C, Hypertension in developing countries. Lancet. 2012;380(9834):651–9.
3. Castillo B. Prevalence and management of hypertension in Southeast Asia. J Hypertens. 2016;34 Suppl 1. doi:10.1093/ihj/diw099. 08:43953.
4. Habib GB, Vlassi SS, Ahmed H. Is 2015 the pivotal year for hypertension: a cardiovascular risk factor or simply a milestone? J Am Heart Assoc. 2015;4(6):e003725. doi:10.1161/JAHA.115.003725.
5. Huang Y, Cai X, Liu C, Zhu D, Hui J, Xia Y, Peng J, Xu D. Prevalence and the risk of coronary heart disease in Asian and Western populations: a meta-analysis. J Am Heart Assoc. 2017;6(10):e007051. doi:10.1161/JAHA.116.007051.
6. Bednarz PK, Davids VR. Prehypertension in adolescents: risk and progression. J Clin Hypertens. 2012;14(9):696–9. doi:10.1111/j.1754-9499.2012.00653.x.
7. Ines S, Nambocado G, Kallamani M, Madani A, Shohib S. Prehypertension among young adults (20-29 years) in coastal villages of Udupi district in southern India: an ongoing study. PLoS One. 2016;11:e0144038. doi:10.1371/journal.pone.0144038. eCollection 2016.
8. Balakrishnan AG, Sathish MS, Vini M, MZ. Psychological determinants of prehypertension among Red year undergraduate students in a public University in Malaysia. Med J Malaysia Publ Health Med. 2014;42(6):267–76.
9. Lee PY, Corg TA, Muna S, Syed Anis S, Kamarulzaman B. Do university students have high cardiovascular risk? A study in a public University. Universiti Sains Malaysia. 2014;154(3):
10. Pengpid S, Pelzter K, Ferrer AJ. Prehypertension and associated factors among university students in the Philippines. Int J Adolesc Med Health. 2014;26(2):45–52.
11. Sadiq S. Prevalence of prehypertension and hypertension in university students: association with overweight and obesity. J Rural Health. 2013;30(2):11–22.
12. Delannoy A, Bhattacharjee H, Prabhakar A, Maji P. Prevalence of prehypertension and its relationship with body mass index among the female students of Ambajogai government medical college. Int J Rural Med. 2015;3(9):107. doi:10.14315/23069622(2015)9-30513.
13. Loghaj N, Methivil P, Balu P. Prevalence of prehypertension and its association with risk factors in the cardiovascular disease among male undergraduate students in Chennai. Int J Commun Med Public Health. 2016;3(5):542–51.
14. Soliman M, El-Salamony O, Kobiashvili K, Elsherif NA. Khamis S. Study of hypertension among Fayoum university students. Int J Public Health Res. 2014;2(2):25–9.
15. Al-Hajeed HT, Sadek AA. Pre-hypertension and hypertension in college students in Kuwait: a neglected issue. J Family Community Med. 2012;19(2):103–12.
16. Khazal MA, Al-Obab AK, Abushr J, Al-Sowaidi L, Maliki SM. Prehypertension among young adults in Damman, Saudi Arabia. East Med Health J. 2012;18(7):128–34.
17. Neh-Chungin BH, Muthowe N, Yagudia YH, Asiala MC. Association of waist and hip circumference with the prevalence of prehypertension and hypertension in young South African adults. Afr J Health Sci. 2012;19(2):61–9.
18. Chen YP, Li J, Xiong X, Zhang J, Cai L, Huang GM, et al. Impact of body mass index on blood pressure in a college student population. Nan Hui Med J. 2011;13(4):100–2.
19. Al-Ali K, Khaled A, Saeed S, Al-Robeber A, Cardiovascular risk factors and physical activity among university students in Somalia. J Community Health. 2015;40(2):230–39.
20. Coller SA, Landis JM. Treatment of prehypertension: lifestyle and other management. N Engl J Med. 2012;366(3):261–9.
21. Zhang W, Zhang L, An YY, Ma L. Prehypertension and clustering of cardiovascular risk factors among adults in suburban Beijing. China J Epidemiol. 2011;31(4):440–6.
22. Tawfik M, Youssef NA, Omer WT, Abu-Abdou LG, Ramahi AM, Saleh MM. Prevalence and risk factors of obesity and hypertension among students at a central university in the West Bank, Jordan Med J. 2012;7:10.4302/jpm. v7i29.19222.
23. Tadros T, Aburizku H. Hypertension and associated factors among university students in Gondar, Ethiopia: a cross-sectional study. BMC Public Health. 2014;14:987. doi:10.1186/1471-2458-14-987.
24. Jorgensen RM, Maisel SA. Alcohol consumption and prehypertension: an investigation of university youth. Behav Med. 2008;34(2):121–8.
25. Cuffe J, O’Dwyer L, Williams N, O’Dwyer G, Donoghoe M. Psychosocial risk factors for hypertension: an update of the literature. Curr Hypertens Rep. 2014;16(1):83. doi:10.1007/s11906-013-0483-3.
26. Gao X, Zheng C, Li J, Yu Z, Lian S, Zou X, et al. Association between sleep duration and hypertension among Chinese children and adolescents. Clin Cardiol. 2013;36(12):74–81.
27. Vaccarino V, Johnson BD, Shipp DB, Kien SL, Koshi SF, Sitte V, et al. Depression, inflammation, and incident cardiovascular disease in women with subclinical coronary ischemia, the National Heart, Lung, and Blood Institute-sponsored WISE study. J Am Coll Cardiol. 2007;50(2):204–9.
28. Lee MK, Cornelie MA, Hall NW, Yancu CN, Myers JA. The steers of being young and Black: Cardiovascular health and young adults. Psychol Health. 2016;31(5):678–89.
29. Ringsberg A, Herrman H, Onguera S, Silveira M, Zubiate M, Almeida WA, et al. Association of psychosocial risk factors with risk of acute myocardial infarction in 11119 cases and 33854 controls from 52 countries (the INTERHEART study): a case-control study. Lancet. 2004;364(9423):62.
30. Romano Martinez V, Lyle S, Willsam J. Relationship between life satisfaction levels and high blood pressure in adolescents: PA-1443 J Hypertension. 2016;38 – p 261. doi:10.1093/eurheartj/ehw593.
31. Carvalho RB, Belchior MA, Shewned A. Effect of satisfaction with social support on blood pressure in normotensive and borderline hypertensive men and women. Int J Behav Med. 1998;5(1):76–85.
32. O’Donovan A, Hughes R. Aortic stiffness and loneliness in college students: effects of pulse pressure variability on academic stress. Int J Adolesc Med Health. 2007;19(4):523–4.
33. Chobanian AV, Bakris GL, Black HR, Cushman WC, Green LA, Izzo JL, et al. Seventh report of the Joint National Committee on prevention, detection, evaluation, and treatment of high blood pressure. Hypertension. 2003;42:1206-52.

34. Kim Y, Lee S. Prevalence and risk factors associated with prehypertension by gender and age in a Korean population in the NHANES 2010-2012. Iran J Public Health. 2015;44:2139-44. 1602.

35. World Bank New Country Classifications. Available online: 2016 data worldbank.org/health/health-topics/guidelines/ Accessed on 5 October 2016

36. Kansawa M, Yoshikawa M, Okada T, Numata Y, Mizumoto P, Inoue S. Guidelines and classification of obesity in Japan and Asia Oceania. World Rev Nutr Diet. 2009;94:1-12.

37. Hull N, Morrow S, Harbor SJ, Lynch W. Global variability in fruit and vegetable consumption. Ann J Prev Med. 2009;36(5):462-4685.

38. Wanitphakdeedee W, Sangkauy A, Bleska P, Davoudi B, Reschke K, Lapinskas R, et al. Healthy dietary practices among European students. Health Psychol. 1997;16(5):455-50.

39. Centers for Disease Control (CDC). The Global School and Health Survey background. Available online: https://www.cdc.gov/gshs/. Accessed 18 May 2016.

40. Craig CL, Marshall AL, Sjostrom M, Bauman AE, Booth ML, Moodie ME, et al. International physical activity questionnaire: 12-country validity and reliability. Med Sci Sports Exerc. 2003;35:1381-95.

41. International Physical Activity Questionnaire (IPAQ). IPAQ Scoring Protocol. Available online: https://www.ipaq.org.au/index.php?section=Accessed 5 Apr 2016.

42. World Health Organization (WHO). Guidelines for controlling and monitoring the tobacco epidemic. Geneva: WHO; 1998.

43. Babar T, Higgs-Biddle J, Saunders J, Monteiro M. AUDIT: the alcohol use disorder identification test. Geneva: World Health Organization; 2001.

44. Hublin C, Partner M, Kistenmacher K, Kaspar J. Sleep and mortality: a population-based 22-year follow-up study. Sleep. 2001;24:1245-53.

45. Kimmering R, Quinette P, Prins A, Nicol P, Lawler C, Cronkite K, et al. Brief report: utility of a short screening scale for DSM-IV PTSD in a primary care setting. J Gen Intern Med. 2006;21:965-7.

46. Andreasen EM, Maleng-Jerstad A, Carter WB, Patrick DL. Screening for depression in well older adults: evaluation of a short form of the CU-DU Center for Epileptology Studies Depression Scale. Am J Prev Med. 1994;10:67-84.

47. Brock D, Savastano R, Worsen B, Pierce G. Simultaneous assessment of perceived global and relationship-specific support. J Soc Psychol. 1996;136:145-52.

48. Reed K, Sullivan TR, Attwell P, Frank OR, Stodol NP. Effect of cocoa on blood pressure. Cochrane Database Syst Rev. 2012;28:C008893. doi:10.1002/14651858.CD008893.

49. Zhao X, Yang X, Zhang X, Li Y, Zhao X, Ren L, et al. Dietary salt intake and coronary artery disease in patients with prehypertension. J Clin Hypertens. 2014;16:5575-80. doi:10.1111/jch.12394. Epub 2014 Jan 23.

50. Haghshenas A, Samadi-Rad A, Khosro A, Noori F, Botham M, Mohammad-Rad N, Abdollahi M, Radoust M, et al. The association between salt intake and blood pressure mediated by body mass index and coeliac adiposity. Arch Iran Med. 2013;16:530-71. doi:10.34172/AIM.2013.530.00269.

51. Xu J, Liu J, Zhao G, Li J, Han S. Prevalence of prehypertension and associated risk factors among Chinese adults from a large-scale multiethnic population survey. BMC Public Health. 2016;16:1275. doi:10.1186/s12889-016-3114-4.

52. Huyinna R, Amidu RA, Feidler L. Alcohol-induced hypertension: mechanisms and prevention. World J Cardiol. 2014;6(3):245-52.

53. Amna A, Almeida E, Abreu MC, Godinho R, Cardoso LF, Almeida A. The association of physical activity, body mass index and the blood pressure levels among urban poor youth in Accra, Ghana. BMC Public Health. 2015;15:266. doi:10.1186/1471-2458-15-266.

54. Malheiro SR, Alencara LF, Melo MH. Association of bodyweight and physical activity with blood pressure in a rural population in the Amazon ecolleage of Para State, Brazil. Rev Soc Bras Med Trop. 2016;20;118.

55. Gargiulo JF. A review of evidence for the link between deep duration and hypertension. Ann N Y Acad Sci. 2014;227:1238-42. doi:10.1111/anns.12401.

56. Scollo M, Scialfa MG, Auri MB, Lotito NR. Hypertension and depression. Clinics. 2006;61(6):241-50.
Prehypertension and psychosocial risk factors among university students in ASEAN countries

Karl Peltzer, Supa Pengpid, Vanphanom Sychareun, Alice Joan G. Ferrer et al. "Prehypertension and psychosocial risk factors among university students in ASEAN countries", BMC Cardiovascular Disorders, 2017

Exclude quotes: On
Exclude bibliography: On
Exclude matches: < 1%