Pfaff τ-functions

M. Adler* T. Shiota† P. van Moerbeke‡

July 23, 1999

Contents

0 Introduction \hspace{1cm} 2
1 Borel decomposition and the 2-Toda lattice \hspace{1cm} 5
2 Two-Toda τ-functions versus Pfaffian $\tilde{\tau}$-functions \hspace{1cm} 9
3 Equations satisfied by Pfaffian $\tilde{\tau}$-functions \hspace{1cm} 14
4 Vertex operators for Pfaffian $\tilde{\tau}$-functions \hspace{1cm} 22
5 The exponential of the vertex operator maintains $\tilde{\tau}$-functions \hspace{1cm} 29
6 Examples \hspace{1cm} 32
 6.1 Symmetric matrix integrals \hspace{1cm} 33
 6.2 Quasiperiodic solutions \hspace{1cm} 34

*Department of Mathematics, Brandeis University, Waltham, Mass 02454, USA. E-mail: adler@math.brandeis.edu. The support of a National Science Foundation grant # DMS-98-4-50790 is gratefully acknowledged.

†Department of Mathematics, Kyoto University, Kyoto 606, Japan. The hospitality of the University of Louvain and Brandeis University is gratefully acknowledged.

‡Department of Mathematics, Université de Louvain, 1348 Louvain-la-Neuve, Belgium and Brandeis University, Waltham, Mass 02454, USA. E-mail: vanmoerbeke@geom.ucl.ac.be and @math.brandeis.edu. The support of a National Science Foundation grant # DMS-98-4-50790, a Nato, a FNRS and a Francqui Foundation grant is gratefully acknowledged.
0 Introduction

Throughout, let $A := \mathbb{Z}$ ("bi-infinite" case) or $A := \mathbb{Z}_{\geq 0} = \{0, 1, \ldots\}$ ("semi-infinite" case). Consider the set of equations

$$\frac{\partial m_{\infty}}{\partial t_n} = \Lambda^n m_{\infty}, \quad \frac{\partial m_{\infty}}{\partial s_n} = -m_{\infty}(\Lambda^\top)^n, \quad n = 1, 2, \ldots,$$

(0.1)
on bi- or semi-infinite (i.e., $A \times A$) matrices $m_{\infty} = m_{\infty}(t, s)$, where the matrix $\Lambda = (\delta_{i,j-1})_{i,j \in A}$ is the shift matrix, and Λ^\top its transpose. In [2, 4], it was shown that Borel decomposing

$$m_{\infty}(t, s) = (\mu_{ij})_{i,j \in A} = S_1^{-1} S_2,$$

(0.2)
into lower- and upper-triangular matrices $S_1(t, s)$ and $S_2(t, s)$, leads to a two-Toda (two-dimensional Toda) system for $L_1 := S_1 \Lambda S_1^{-1}$ and $L_2 = S_2 \Lambda^\top S_2^{-1}$, with τ-functions given by

$$\tau_n(t, s) = \det m_{\infty}(t, s), \quad n \in A.$$

This paper deals with skew-symmetric initial data $m_{\infty}(0, 0)$. As readily seen from formula (0.1), the 2-Toda flow then maintains the relation $m_{\infty}(t, s) = -m_{\infty}(-s, -t)^\top$, and hence, by formula (0.3) and the interpretation of its right hand side in footnote 2,

$$\tau_n(t, s) = (-1)^n \tau_n(-s, -t).$$

(0.4)

The main point of this paper is to study the reduction $s = -t$, as used in the theory of random matrices in H. Peng’s doctoral dissertation [16]. When $s \to -t$, formula (0.4) shows that in the limit the odd τ-functions vanish, whereas the even τ-functions are determinants of skew-symmetric matrices. In particular, the factorization (0.2) fails; in fact in the limit $s \to -t$, the

1 Here "$t, s \in \mathbb{C}^\infty$" is an informal way of saying that t and s are two sequences of independent scalar variables; a function of those variables may be defined only in an open subset of $\mathbb{C}^\infty \times \mathbb{C}^\infty$, or may even be a formal power series in t and s.

2 This formula will be used mainly in the semi-finite case, with $m_n = (\mu_{ij})_{0 \leq i,j < n}$. In the bi-infinite case, $m_n = (\mu_{ij})_{-\infty < i,j < n}$ and the determinant is interpreted as

$$\lim_{k \to \infty} \det(\mu_{ij})_{-2k \leq i,j < q}.$$

(*)

assuming the limit makes sense.
system leaves the main stratum to penetrate a deeper stratum in the Borel decomposition. In this paper we show this stratum leads to its own system, whereas in a forthcoming paper with Horozov [7], we show this system is integrable by producing its Lax pair.

Thus, we are led to considering Pfaffians:

\[\tilde{\tau}_n(t) := \text{Pfaff } m_n(t, -t) = (\det m_n(t, -t))^{1/2} = \tau_n(t, -t)^{1/2}, \]

(0.5)

for every even \(n \in A \) (the same remark as in footnote 2 applies here). The “Pfaffian \(\tilde{\tau} \)-function” is itself not a 2-Toda \(\tau \)-function, but it ties up remarkably with the 2-Toda \(\tau \)-function \(\tau \) as follows:

\[\tau_{2n}(t, -t - [\alpha] + [\beta]) = \tilde{\tau}_{2n}(t) \tilde{\tau}_{2n}(t + [\alpha] - [\beta]), \]
\[\tau_{2n+1}(t, -t - [\alpha] + [\beta]) = (\beta - \alpha) \tilde{\tau}_{2n}(t - [\beta]) \tilde{\tau}_{2n+2}(t + [\alpha]). \]

(0.6)

When \(\beta \to \alpha \), we approach the deeper stratum in the Borel decomposition of \(m_\infty \) in a very specific way. It also shows that the odd \(\tau \)-functions \(\tau_{2n+1}(t, -t - [\alpha] + [\beta]) \) approach zero linearly as \(\beta \to \alpha \), at the rate depending on \(\alpha \):

\[\lim_{\beta \to \alpha} \frac{\tau_{2n+1}(t, -t - [\alpha] + [\beta])}{(\beta - \alpha)} = \tilde{\tau}_{2n}(t - [\alpha]) \tilde{\tau}_{2n+2}(t + [\alpha]). \]

Equations (0.6) are crucial in establishing bilinear relations\(^3\) for Pfaffian \(\tilde{\tau} \)-functions, where \(n, m \in A \):

\[\sum_{j, k \geq 0, j - k = -2n + 2m + 1} p_j(-2y) e^{\sum_i -y_i D_i} p_k(-\tilde{D}) \tilde{\tau}_{2n} \cdot \tilde{\tau}_{2m+2} \]
\[+ \sum_{j, k \geq 0, k - j = -2n + 2m - 1} p_j(2y) e^{\sum_i -y_i D_i} p_k(\tilde{D}) \tilde{\tau}_{2n+2} \cdot \tilde{\tau}_{2m} = 0. \]

(0.7)

This is a generating function for the Hirota equations satisfied by \(\tilde{\tau}(t) \); for each \(n \) and \(m \), after expanding (0.7) into a power series in \(y = (y_1, y_2, \ldots) \), the coefficient of each monomial in \(y \) gives a Hirota equation. For example,

\[^3\; [\alpha] := (\alpha, \alpha^2, \alpha^3, \ldots)\]
\[^4\; \tilde{D} = (\frac{\partial}{\partial \alpha}, \frac{1}{2} \frac{\partial}{\partial \alpha^2}, \frac{1}{3} \frac{\partial}{\partial \alpha^3}, \ldots), \text{ and } \tilde{D} = (D_1, \frac{1}{2} D_2, \frac{1}{3} D_3, \ldots) \text{ is the corresponding Hirota symbol, i.e., } P(\tilde{D})f \cdot g := P(\partial/\partial y_1, \frac{1}{2} \partial/\partial y_2, \frac{1}{3} \partial/\partial y_3, \ldots) f(t + y) g(t - y) \big|_{y = 0} \text{ for any polynomial } P, \text{ and } p_k \text{ are the elementary Schur functions: } \sum_0^\infty p_k(t) z^k := \exp(\sum_1^\infty t_i z^i).\]

3 \([\alpha] := (\alpha, \alpha^2, \alpha^3, \ldots)\)

4 \(\tilde{D} = (\frac{\partial}{\partial \alpha}, \frac{1}{2} \frac{\partial}{\partial \alpha^2}, \frac{1}{3} \frac{\partial}{\partial \alpha^3}, \ldots), \text{ and } \tilde{D} = (D_1, \frac{1}{2} D_2, \frac{1}{3} D_3, \ldots) \text{ is the corresponding Hirota symbol, i.e., } P(\tilde{D})f \cdot g := P(\partial/\partial y_1, \frac{1}{2} \partial/\partial y_2, \frac{1}{3} \partial/\partial y_3, \ldots) f(t + y) g(t - y) \big|_{y = 0} \text{ for any polynomial } P, \text{ and } p_k \text{ are the elementary Schur functions: } \sum_0^\infty p_k(t) z^k := \exp(\sum_1^\infty t_i z^i).\)
for $m = n - 1$, the coefficient of the linear terms (y_{k+3}, to be more specific) gives

$$
\left(p_{k+4}(-D) - \frac{1}{2}D_1D_{k+3} \right) \tau_{2n} \cdot \tau_{2n} = p_k(D)\tau_{2n+2} \cdot \tau_{2n-2},
$$

(0.8)

where $k \in \mathbb{Z}_{\geq 0}$ and $2n - 2 \in A$. For $k = 0$, this equation can be viewed as an inductive expression of τ_{2n+2} in terms of τ_{2n-2} and derivatives of τ_{2n}. These equations already appear in the work of Kac and van de Leur [12], in the context of the DKP hierarchy. On the exact connection, see forthcoming work by J. van de Leur [18].

In analogy with the 2-Toda or KP theory, one establishes Fay identities for the Pfaff τ-functions. In this instance, they involve Pfaffians rather than determinants:

$$
Pfaff(\frac{(z_j - z_i)\tau_{2n-2}(t - [z_j] - [z_i])}{\tau_{2n}(t)})_{1 \leq i,j \leq 2k} = \Delta(z)\frac{\tau_{2n-2k}(t - \sum_{k-1}^{2k}[z_i])}{\tau_{2n}(t)}.
$$

(0.9)

In the semi-infinite case, the latter has a useful interpretation in terms of Pfaffians of “Christoffel-Darboux” kernels of the form

$$
K_n(\mu, \lambda) = e^{\sum_{i=1}^{\infty} t_i(\mu^i + \lambda^i)} \sum_0^{n-1} \left(q_{2k}(t, \mu)q_{2k+1}(t, \mu) - q_{2k}(t, \mu)q_{2k+1}(t, \lambda) \right).
$$

(0.10)

where the $q_m(t, \lambda)$ form a system of skew-orthogonal polynomials [4]. This is the analogue of the Christoffel-Darboux kernel for orthogonal polynomials. So, formula (0.9) can be rewritten as

$$
Pfaff(K_n(z_i, z_j))_{1 \leq i,j \leq 2k} = \left(\frac{1}{2} \prod_{i=1}^{2k} X(t; z_i)\tau \right)^{2n},
$$

(0.11)

where $X(t; z)$ is a vertex operator for the corresponding Pfaff lattice (see [7, 6]):

$$
X(t; z) := \Lambda^{-1} e^{\sum_{i=1}^{\infty} t_i z^i} e^{-\sum_{i=1}^{\infty} \frac{z^i}{i} \frac{\partial}{\partial t}} \chi(z).
$$
This vertex operator also has the remarkable property that for a Pfaffian \(\tilde{\tau} \)-function,
\[
\tilde{\tau} + aX(\lambda)X(\mu)\tilde{\tau} = \tilde{\tau}_{2n}(t) + a \left(1 - \frac{\mu}{\lambda} \right) \lambda^{2n-2} \mu^{2n-1} e^{\sum t_{i}(\lambda^{i} + \mu^{i})} \tilde{\tau}_{2n-2}(t - [\lambda^{-1}] - [\mu^{-1}]).
\]
is again a Pfaffian \(\tilde{\tau} \)-function.

As was shown in [2, 3], the 2-Toda lattice has four distinct vertex operators. Upon using the reduction \(s = -t \), the 2-Toda vertex operators reduce to vertex operators for the Pfaff lattice. This enables us to give the action of Virasoro generators on Pfaff \(\tilde{\tau} \)-functions, in terms of the restriction (to \(s = -t \)) of actions on 2-Toda \(\tau \)-functions:
\[
\left(J_{i}^{(k)}(t) + (-1)^{k} J_{i}^{(k)}(s) \right) \tau_{2n}(t, s)|_{s=-t} = 2\tau_{2n}(t) J_{i}^{(k)}(t) \tilde{\tau}_{2n}(t).
\]

Finally, we discuss two examples, a first sketchy one, involving a semi-infinite Pfaff lattice and matrix integrals; this is extensively discussed in [6]. A second example, genuinely bi-infinite, will be given in the context of curves with fixed point free involutions \(\iota \), equipped with a line bundle \(L \) having a suitable antisymmetry condition with respect to \(\iota \).

1 Borel decomposition and the 2-Toda lattice

In [4, 2], we considered the following differential equations for the bi-infinite or semi-infinite moment matrix \(m_{\infty} \)
\[
\frac{\partial m_{\infty}}{\partial t_{n}} = \Lambda^{n} m_{\infty}, \quad \frac{\partial m_{\infty}}{\partial s_{n}} = -m_{\infty}(\Lambda^{T})^{n}, \quad n = 1, 2, \ldots, \tag{1.1}
\]
where the matrix \(\Lambda = (\delta_{i,j-1})_{i,j \in A} \) is the shift matrix; then (1.1) has the following solution
\[
m_{\infty}(t, s) = e^{\sum t_{n}\Lambda^{n}} m_{\infty}(0, 0) e^{-\sum s_{n}(\Lambda^{T})^{n}} \tag{1.2}
\]
in terms of the initial data \(m_{\infty}(0, 0) \).

Assume \(m_{\infty} \) allows, for “generic” \((t, s) \), the Borel decomposition \(m_{\infty} = S_{1}^{-1} S_{2} \), for
\[
S_{1} \in G_{-} := \left\{ \begin{array}{l}
\text{lower-triangular matrices} \\
\text{with 1’s on the diagonal}
\end{array} \right\},
\]
\[
S_{2} \in G_{+} := \left\{ \begin{array}{l}
\text{upper-triangular matrices} \\
\text{with non-zero diagonal entries}
\end{array} \right\}.
\]
with corresponding Lie algebras g_-, g_+. Assume moreover that m_∞, S_1 and S_2 are nice in the sense of Remark at the end of this section. Then setting $L_1 := S_1 \Lambda S_1^{-1}$,

$$S_1 \frac{\partial m_\infty}{\partial t} S_2^{-1} = \begin{cases} S_1 (\partial / \partial t_1) (S_1^{-1} S_2) S_2^{-1} = -\dot{S}_1 S_1 + \dot{S}_2 S_2^{-1} \in g_- + g_+, \\
S_1 \Lambda^n m_\infty S_2^{-1} = S_1 \Lambda^n S_1^{-1} = L_1^n = (L_1^n)^- + (L_1^n)^+ \in g_- + g_+; \end{cases}$$

the uniqueness of the decomposition $g_- + g_+$ leads to

$$- \frac{\partial S_1}{\partial t} S_1^{-1} = (L_1^n)^-, \quad \frac{\partial S_2}{\partial t} S_2^{-1} = (L_1^n)^+.$$

Similarly, setting $L_2 = S_2 \Lambda^T S_2^{-1}$, we find

$$- \frac{\partial S_1}{\partial s} S_1^{-1} = -(L_2^n)^-, \quad \frac{\partial S_2}{\partial s} S_2^{-1} = -(L_2^n)^+.$$

This leads to the 2-Toda equations \[17\] for S_1, S_2 and L_1, L_2:

$$\frac{\partial}{\partial t_n} S_{\{1\}}^{\{2\}} = \pm (L_1^n)^+ S_{\{1\}}^{\{2\}}, \quad \frac{\partial}{\partial s_n} S_{\{1\}}^{\{2\}} = \pm (L_2^n)^+ S_{\{1\}}^{\{2\}};$$

$$\frac{\partial L_i}{\partial t_n} = [(L_1^n)^+, L_i], \quad \frac{\partial L_i}{\partial s_n} = [(L_2^n)^-, L_i], \quad i = 1, 2, \ldots,$$ \[1.4\]

and conversely, reading this argument backwards, we observe that the 2-Toda equations \[1.3\] imply the time evolutions \[1.4\] for m_∞.

The pairs of wave and adjoint wave functions $\Psi = (\Psi_1, \Psi_2)$ and $\Psi^* = (\Psi_1^*, \Psi_2^*)$, defined by

$$\Psi_{\{1\}}^{\{2\}}(t, s, z) = e^{\sum_{i,k} \{t_i, s_i\} z_i} S_{\{1\}}^{\{2\}} \chi(z),$$

$$\Psi_{\{1\}}^{\{2\}}(t, s, z) = e^{-\sum_{i,k} \{t_i, s_i\} z_i} (S_{\{1\}}^{\{2\}})^{-1} \chi(z^{-1}),$$ \[1.5\]

where $\chi(z)$ is the column vector $(z^n)_{n \in A}$, satisfy

$$L \Psi = (z, z^{-1}) \Psi, \quad L^* \Psi^* = (z, z^{-1}) \Psi^*,$$
and

\[
\frac{\partial}{\partial t_n} \Psi = ((L^n_1)_+, (L^n_2)_+) \Psi,
\]

\[
\frac{\partial}{\partial s_n} \Psi = ((L^n_1)_-, (L^n_2)_-) \Psi,
\]

\[
\frac{\partial}{\partial t_n} \Psi^* = -(((L^n_1)_+)^\top, ((L^n_2)_+)\top) \Psi^*,
\]

\[
\frac{\partial}{\partial s_n} \Psi^* = -(((L^n_1)_-)^\top, ((L^n_2)_-)\top) \Psi^*,
\]

which are equivalent to (1.3), and are further equivalent to the following bilinear identities, for all \(m, n \in A\) and \(t, s, t', s' \in \mathbb{C}^\infty\):

\[
\oint_{z=\infty} \Psi_1^n(t, s, z) \Psi_1^m(t', s', z') \frac{dz}{2\pi i z} = \oint_{z=0} \Psi_2^n(t, s, z) \Psi_2^m(t', s', z') \frac{dz}{2\pi i z}.
\]

(1.7)

By 2-Toda theory [17, 4], the problem is solved in terms of a sequence of tau-functions

\[
\tau_n(t, s) = \det m_n(t, s),
\]

with \(m_n(t, s)\) defined in (and \(\det m_n\) interpreted as in) footnote 2:

\[
m_n(t, s) := \begin{cases} (\mu_{ij}(t, s))_{-\infty < i, j < n} & \text{(bi-infinite case),} \\ (\mu_{ij}(t, s))_{0 \leq i, j < n} & \text{(semi-infinite case, with } \tau_0 = 1\text{),} \end{cases}
\]

as

\[
\Psi_1(t, s; z) = \left(\frac{\tau_n(t - [z^{-1}], s)}{\tau_n(t, s)} e^{\sum_{i=1}^{\infty} t_i z^i} z^{-n} \right)_{n \in A},
\]

\[
\Psi_2(t, s; z) = \left(\frac{\tau_{n+1}(t, s) - [z]}{\tau_n(t, s)} e^{\sum_{i=1}^{\infty} s_i z^{-i}} z^{-n} \right)_{n \in A},
\]

\[
\Psi_1^*(t, s, z) = \left(\frac{\tau_{n+1}(t + [z^{-1}], s)}{\tau_{n+1}(t, s)} e^{-\sum_{i=1}^{\infty} t_i z^i} z^{-n} \right)_{n \in A},
\]

\[
\Psi_2^*(t, s, z) = \left(\frac{\tau_n(t, s + [z])}{\tau_{n+1}(t, s)} e^{-\sum_{i=1}^{\infty} s_i z^{-i}} z^{-n} \right)_{n \in A}.
\]

Footnote 5: The contour integral around \(z = \infty\) is taken clockwise about a small circle around \(z = \infty\), while the one around \(z = 0\) is taken counter-clockwise about \(z = 0\).
Note (1.5) and (1.10) yield
\[h(t, s) := \text{(diagonal part of } S_2) = \text{diag} \left(\frac{\tau_{n+1}(t, s)}{\tau_n(t, s)} \right)_{n \in \mathbb{A}}. \] (1.11)

Formulas (1.7) and (1.10) imply the following bilinear identities
\[
\oint_{z=\infty} \tau_n(t - [z^{-1}], s) \tau_{m+1}(t', s') e^{\sum_{i=1}^{\infty}(t_i-t'_i)z^{i-1}z^n-1} dz \\
= \oint_{z=0} \tau_{n+1}(t, s - [z]) \tau_m(t', s' + [z]) e^{\sum_{i=1}^{\infty}(s_i-s'_i)z^{i-1}z^n-1} dz,
\] (1.12)

where \(m, n \in \mathbb{A} \), satisfied by and characterizing the 2-Toda \(\tau \)-functions.

Remark:
In the bi-infinite case the factorization \(m_\infty = S_1^{-1}S_2 \) in (0.2) or the determinant formula (0.3) may fail to make sense. Nevertheless, we can take (0.4) as a starting point, use (0.6) to define \(\tilde{\tau} \) up to the sign, and make sense of the \(\tau \)-side of the whole story.

In the bi-infinite case, factorization as in (0.2) is not unique in general. This is responsible for the Backlund transform of a finite band matrix having a continuous family of solutions. However, it means the matrix multiplication may not be associative in the bi-infinite case: if
\[S_1^{-1}S_2 = S'_1^{-1}S'_2, \]
with \(S_1, S'_1 \in G_- := \{ \text{lower triangular matrices with 1's on the diagonal} \} \) and \(S_2, S'_2 \in G_+ := \{ \text{upper triangular matrices with non-zero diagonal} \} \), and if the matrix multiplication was always associative, we should have
\[S'_1S_1^{-1} = S'_2S_2^{-1} \in G_+ \cap G_- = \{ 1 \}, \]
so that \(S_1 = S'_1 \) and \(S_2 = S'_2 \).

The associativity is important in establishing the relation between equation (0.1) and the 2-Toda flows on \((S_1, S_2)\). Moreover, we are mainly interested in the semi-infinite case, in which the associativity clearly holds. So we assume that, for generic \((t, s)\), \(S_1, S_2 \) and \(m_\infty \) actually belong to suitable subgroups \(G'_\pm \) of \(G_\pm \) and a suitable subspace Mat’ of the space Mat of all infinite matrices, respectively, in which the multiplications
\[
G'_- \times \text{Mat’} \rightarrow \text{Mat’} \quad \text{and} \quad \text{Mat’} \times G'_+ \rightarrow \text{Mat’}
\]
\[
(S, m) \rightarrow Sm \quad \text{and} \quad (m, S) \rightarrow mS
\]
are associative:

\[(SS')m = S(S'm), \quad m(S''S''') = (mS'')S''' \quad \text{and} \quad (Sm)S'' = S(mS'')\]

hold for any \(S, S' \in G'_-, S'', S''' \in G'_+\) and \(m \in \text{Mat}'\).

For instance these conditions are satisfied if the \((i,j)\) entries of every matrix in \(G'_\pm\) and \(\text{Mat}'\) tend to 0 quickly enough as \(i \to -\infty\) uniformly in \(j > i + a\), and as \(j \to -\infty\) uniformly in \(i > j + a\), for some constant \(a\).

2 Two-Toda \(\tau\)-functions versus Pfaffian \(\tilde{\tau}\)-functions

In this section, we assume either the matrix \(m_{\infty}\) is semi-infinite, or \(\det m_n\) can be interpreted as in formula (\(*\)) in footnote 4, and we exhibit the properties of the 2-Toda lattice, associated with a skew-symmetric initial matrix \(m_{\infty}(0, 0)\). The \(\tau\)-functions \(\tau_n(t, s)\) then have the property

\[\tau_n(t, s) = (-1)^n\tau_n(-s, -t).\]

Theorem 2.1 If the initial matrix \(m_{\infty}(0, 0)\) is skew-symmetric, then under the 2-Toda flow, \(m_{\infty}(t, s)\) maintains the relation

\[m_{\infty}(t, s) = -m_{\infty}(-s, -t)^\top. \quad (2.1)\]

Moreover,

\[h^{-1}S_1(t, s) = -(S_2^\top)^{-1}(-s, -t), \quad h^{-1}S_2(t, s) = (S_1^\top)^{-1}(-s, -t), \quad (2.2)\]

\[h^{-1}\Psi_1(t, s, z) = -\Psi_2^*(-s, -t, z^{-1}), \quad h^{-1}\Psi_2(t, s, z) = \Psi_1^*(-s, -t, z^{-1}), \quad (2.3)\]

\[L_1(t, s) = hL_2^\top h^{-1}(-s, -t) \quad \text{and} \quad L_2(t, s) = hL_1^\top h^{-1}(-s, -t), \quad (2.4)\]

with \(h\), defined by (1.11), satisfying

\[h(-s, -t) = -h(t, s). \quad (2.5)\]

Finally,

\[\tau_n(-s, -t) = (-1)^n\tau_n(t, s). \quad (2.6)\]
Proof: Formula (2.1) is an immediate consequence of (1.2) and the skew-symmetry of $m_\infty(0,0)$. Formula (2.2) follows from (2.1) and the Borel decomposition of $m_\infty(t,s)$ and $-m_\infty(-s,-t)^\top$:

$$m_\infty(t,s) = S_1^{-1}(t,s)S_2(t,s),$$

$$-m_\infty(-s,-t)^\top = - S_2^\top(-s,-t)S_1^{-1\top}(-s,-t) = (S_2^\top(-s,-t)h^{-1}(-s,-t))(-h(-s,-t)S_1^{-1\top}(-s,-t)).$$

by the uniqueness of the Borel decomposition of $m_\infty(t,s) = -m_\infty(-s,-t)^\top$, we have

$$S_1^{-1}(t,s) = S_2^\top(-s,-t)h^{-1}(-s,-t) \in G_-$$

$$S_2(t,s) = -h(-s,-t)S_1^{-1\top}(-s,-t) \in G_+.$$

Substituting $(t,s) \rightarrow (-s,-t)$ in the second equation and comparing it to the first one, yields $h(t,s) = -h(-s,-t)$, which is (2.3). Substituting this relation into the first and second equations yields (2.2), which by (1.3) and the definition of L_1 and L_2, amounts to (2.3) and (2.4). Relation (2.6) follows from (1.8), (2.1), footnote 2 and the multilinearity of determinant; or, in the semi-infinite case, from (2.5), using $\tau_0(t,s) = 1$:

$$\frac{\tau_n(t,s)}{\tau_n(-s,-t)} = -\frac{\tau_{n-1}(t,s)}{\tau_{n-1}(-s,-t)} = \cdots = (-1)^n \frac{\tau_0(t,s)}{\tau_0(-t,-s)} = (-1)^n.$$

For a skew-symmetric initial matrix $m_\infty(0,0)$, relation (2.1) implies the skew-symmetry of $m_\infty(t,-t)$. Therefore the odd τ-functions vanish and the even ones have a natural square root, the Pfaffian $\tilde{\tau}_{2n}(t)$:

$$\tilde{\tau}_{2n+1}(t,-t) = 0, \quad \tilde{\tau}_{2n}(t,-t) =: \tilde{\tau}_{2n}^2(t), \quad (2.7)$$

where the Pfaffian, together with its sign specification, is also determined by the formula:

$$\tilde{\tau}_{2n}(t)dx_0 \wedge dx_1 \wedge \cdots \wedge dx_{2n-1} := \frac{1}{n!} \left(\sum_{0 \leq i < j \leq 2n-1} \mu_{ij}(t,-t)dx_i \wedge dx_j \right)^n. \quad (2.8)$$
Theorem 2.2 For τ satisfying (2.4), and hence in particular for a skew-symmetric initial condition $m_\infty(0,0)$, the 2-Toda τ-function $\tau(t,s)$ and the Pfaffians $\tilde{\tau}(t)$ are related by

\begin{alignat*}{2}
\tau_{2n}(t + [\alpha] - [\beta],-t) &= \tilde{\tau}_{2n}(t)\tilde{\tau}_{2n}(t + [\alpha] - [\beta]), \\
\tau_{2n+1}(t + [\alpha] - [\beta],-t) &= (\alpha - \beta)\tilde{\tau}_{2n}(t - [\beta])\tilde{\tau}_{2n+2}(t + [\alpha]),
\end{alignat*}

or alternatively

\begin{alignat*}{2}
\tau_{2n}(t - [\beta],-t + [\alpha]) &= \tilde{\tau}_{2n}(t - [\alpha])\tilde{\tau}_{2n}(t - [\beta]), \\
\tau_{2n+1}(t + [\alpha],-t - [\beta]) &= (\alpha - \beta)\tilde{\tau}_{2n}(t - [\alpha] - [\beta])\tilde{\tau}_{2n+2}(t), \\
\tau_{2n+1}(t - [\beta],-t + [\alpha]) &= (\alpha - \beta)\tilde{\tau}_{2n}(t)\tilde{\tau}_{2n+2}(t + [\alpha] + [\beta]).
\end{alignat*}

Proof: In formula (1.12), set $n = m - 1$, $s = -t + [\beta]$, $t' = t + [\alpha] - [\beta]$ and $s' = s - [\alpha] - [\beta] = -t - [\alpha]$; then using

\begin{align*}
\frac{1}{2\pi i} \oint_{z=\infty} \tau_n(t-[z^{-1}],s)\tau_{m+1}(t'+[z^{-1}],s')e^{\sum_{i=1}^{n}(t'_i-t_i)z^i}z^{n-m-1}dz \\
&= \frac{1}{2\pi i} \oint_{z=\infty} \tau_{m-1}(t-[z^{-1}],s)\tau_{m+1}(t'+[z^{-1}],s')\frac{1-\alpha z}{1-\beta z}dz \\
&= -\text{Res}_{z=\beta^{-1}} \tau_{m-1}(t-[z^{-1}],s)\tau_{m+1}(t'+[z^{-1}],s')\frac{1-\alpha z}{1-\beta z}dz \\
&= (\beta - \alpha)\tau_{m-1}(t-[\beta],s)\tau_{m+1}(t'+[\beta],s') \\
&= (\beta - \alpha)\tau_{m-1}(t-[\beta],-t+[\beta])\tau_{m+1}(t+[\alpha],-t-[\alpha]),
\end{align*}

\begin{align*}
\frac{1}{2\pi i} \oint_{z=0} \tau_m(t,s-[z])\tau_m(t',s'+[z])e^{\sum_{i=1}^{n}(s_i-s'_i)z^i}z^{n-m-1}dz \\
&= \frac{1}{2\pi i} \oint_{z=0} \tau_m(t,s-[z])\tau_m(t',s'+[z])\frac{1}{1-\alpha/z}dz \\
&= (\text{Res}_{z=\alpha} + \text{Res}_{z=\beta})\tau_m(t,s-[z])\tau_m(t',s'+[z])dz \\
&= \frac{1}{\alpha - \beta} \left(\tau_m(t,s-[\alpha])\tau_m(t',s'+[\alpha]) - \tau_m(t,s-[\beta])\tau_m(t',s'+[\beta]) \right) \\
&= \frac{1}{\alpha - \beta} \left(\tau_m(t,-t+[\beta]-[\alpha])\tau_m(t+[\alpha]-[\beta],-t) \\
&\quad - \tau_m(t,-t)\tau_m(t+[\alpha]-[\beta],-t-[\alpha]+[\beta]) \right),
\end{align*}
and (2.6), we have

\[-(\beta - \alpha)^2 \tau_{m-1}(t - [\beta], -t + [\beta]) \tau_{m+1}(t + [\alpha], -t - [\alpha])\]

\[= (-1)^m \tau_m(t + [\alpha] - [\beta], -t)^2 - \tau_m(t, -t) \tau_m(t + [\alpha] - [\beta], -t - [\alpha] + [\beta]).\]

Setting first \(m = 2l\) and then \(m = 2l + 1\), one finds respectively, since odd \(\tau\)-functions vanish on \(\{s = -t\}\) in view of (2.6):

\[0 = \tau_{2l}(t + [\alpha] - [\beta], -t)^2 - \tau_{2l}(t, -t) \tau_{2l}(t + [\alpha] - [\beta], -t - [\alpha] + [\beta]),\]

(2.11)

and

\[-(\beta - \alpha)^2 \tau_{2l}(t - [\beta], -t + [\beta]) \tau_{2l+2}(t + [\alpha], -t - [\alpha])\]

\[= -\tau_{2l+1}(t + [\alpha] - [\beta], -t)^2.\]

(2.12)

Taking the square root, with the consistent choice of sign,\(^6\) (2.8) yields (2.9), and then (2.10) upon setting \(t \rightarrow t - [\alpha]\) or \(t \rightarrow t + [\beta]\).

Corollary 2.3 Under the assumption of theorem 2.2, the wave and adjoint

\(^6\) It suffices to check that (2.8) yields the correct sign in the second equation of (2.9) at \(\beta = 0, t = 0\) and modulo \(O(\alpha^2)\), i.e.,

\[\frac{\partial}{\partial t_1} \tau_{2n+1}(0, 0) \tau_{2n+2}(0),\]

for some \(m_\infty(0, 0)\) for which the right hand side does not vanish. This can be checked easily, e.g., for \(m_\infty(0, 0)\) made of \(2 \times 2\) blocks \(\begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}\) on the diagonal.
wave functions Ψ, Ψ^* along the locus $\{s = -t\}$ satisfy the relations

$$
\Psi_{1,2n}(t, -t, z) = -\left.\left(\frac{\tau_{2n+1}}{\sqrt{\tau_{2n}\tau_{2n+2}}} \Psi_{1,2n+1}(z)\right)\right|_{s=-t}
$$

$$
= \left(\frac{\tau_{2n+1}}{\tau_{2n}} \Psi_{2,2n}^*(z^{-1})\right)_{s=-t} = \left(\sqrt{\frac{\tau_{2n+2}}{\tau_{2n}}} \Psi_{2,2n+1}^*(z^{-1})\right)_{s=-t}
$$

$$
= \tilde{\tau}_{2n}(t - [z^{-1}])z^{2n}e^\sum \iota z^i,
$$

$$
\Psi_{1,2n-1}^*(t, -t, z) = \left(\frac{\tau_{2n-1}}{\sqrt{\tau_{2n-2}\tau_{2n}}} \Psi_{1,2n-2}^*(z)\right)_{s=-t}
$$

$$
= \left(\frac{\tau_{2n-1}}{\tau_{2n}} \Psi_{2,2n-1}(z^{-1})\right)_{s=-t} = -\left(\sqrt{\frac{\tau_{2n-2}}{\tau_{2n}}} \Psi_{2,2n-2}(z^{-1})\right)_{s=-t}
$$

$$
= \tilde{\tau}_{2n}(t + [z^{-1}])z^{-(2n-1)}e^\sum \iota z^i.
$$

Proof: These follow from (1.10), (2.9) and (2.10) by straightforward calculations.

Corollary 2.4 Under the assumption of theorem 2.2, we have

(i) for $k \geq 1$:

$$
\frac{\partial \tau_{2n}}{\partial t_k}_{s=-t} = \tilde{\tau}_{2n}(t)\frac{\partial \tilde{\tau}_{2n}}{\partial t_k} (t),
$$

$$
\frac{\partial \tau_{2n+1}}{\partial t_k}_{s=-t} = p_{k-1}(-\tilde{D}_t)\tilde{\tau}_{2n} \cdot \tilde{\tau}_{2n+2} (t)
$$

$$
:= \sum_{i+j=k-1} (p_i(-\tilde{\partial}_t)\tilde{\tau}_{2n}(t))(p_j(\tilde{\partial}_t)\tilde{\tau}_{2n+2} (t)),
$$

(ii) for $m \geq 2$:

$$
\sum_{k+l=m} \frac{\partial^2 \tau_{2n}}{\partial t_k \partial t_l}_{s=-t} = \tilde{\tau}_{2n}(t) \sum_{k+l=m} \frac{\partial^2 \tilde{\tau}_{2n}}{\partial t_k \partial t_l} (t),
$$

$$
\sum_{k+l=m} \frac{\partial^2 \tau_{2n+1}}{\partial t_k \partial t_l}_{s=-t} = \sum_{k+l=m-1} (k-l)(p_k(-\tilde{\partial}_t)\tilde{\tau}_{2n}(t))(p_l(\tilde{\partial}_t)\tilde{\tau}_{2n+2} (t)),
$$

$$
- \sum_{k+l=m} \frac{\partial^2 \tau_{2n}}{\partial t_k \partial s_l}_{s=-t} = \sum_{k+l=m} \frac{\partial \tilde{\tau}_{2n}}{\partial t_k} (t) \frac{\partial \tilde{\tau}_{2n}}{\partial s_l} (t),
$$
(iii) for \(k, l \geq 0 \):
\[
\begin{align*}
p_k(\partial_t) & p_s(-\partial_t) \tau_{2n}(t, s) |_{s=-t} = \tilde{\tau}_{2n}(t)p_k(\partial_t)p_t(-\partial_t) \tilde{\tau}_{2n}(t), \\
p_k(\partial_t) & p_s(-\partial_t) \tau_{2n+1}(t, s) |_{s=-t} = p_t(-\partial_t) \tilde{\tau}_{2n}(t) \cdot p_{k-1}(\partial_t) \tilde{\tau}_{2n+2}(t) \\
& - p_{t-1}(-\partial_t) \tilde{\tau}_{2n}(t) \cdot p_k(\partial_t) \tilde{\tau}_{2n+2}(t),
\end{align*}
\]
where \(p_k(\cdot) \) are the elementary Schur functions, with \(p_{-1}(\cdot) = 0 \), and \(D_t = (D_t, (1/2)D_{t_2}, \ldots) \) are Hirota’s symbols.

Proof: Relations (i) are obtained by differentiating formulas (2.9) in \(\alpha \), setting \(\beta = \alpha \) and identifying the coefficients of \(\alpha^{k-1} \). The first two relations in (ii) are obtained by differentiating formulas (2.9) in \(\alpha \) and \(\beta \) (i.e., applying \(\partial^2/\partial\alpha\partial\beta \)), setting \(\beta = \alpha \) and identifying the coefficients of \(\alpha^{m-2} \). The last relation in (ii) is obtained by differentiating the first formula in (2.10) in \(\alpha \) and \(\beta \), setting \(\beta = \alpha \), substituting \(t + [\alpha] \) for \(t \), and then identifying the coefficients of \(\alpha^{m-2} \). Finally, expanding both identities (2.9) in \(\alpha \) and \(\beta \), e.g.,

\[
\tau_{2n}(t + [\alpha] - [\beta], s) = \sum_{k, l=0}^\infty \alpha^k\beta^l p_k(\partial_t)p_l(-\partial_t)\tau_{2n}(t, s)
\]

and identifying the powers of \(\alpha \) and \(\beta \) yields relations (iii). ■

Variants of formulas (2.9) and the formulas in the corollary can be obtained by using (2.3) and the following consequence of it:

\[
\left. \frac{\partial^{|I|+|J|}}{\partial t^I\partial s^J} \tau_n \right|_{s=-t} = (-1)^{|I|+|J|+n} \left. \frac{\partial^{|J|+|I|}}{\partial t^J\partial s^I} \tau_n \right|_{s=-t},
\]

where \(I = (i_1, i_2, \ldots) \) and \(J = (j_1, j_2, \ldots) \) are multiindices, \(|I| = i_1 + i_2 + \cdots \), \(\partial t^I = \partial t_1^1\partial t_2^2 \cdots \) etc. In particular, \((\partial^2/\partial t_k\partial s_l + \partial^2/\partial t_l\partial s_k)\tau_{2n+1} = 0 \), so we get the (rather trivial) counterpart of the last formula in part (ii) of the corollary:

\[
\sum_{k+l=m} \frac{\partial^2 \tau_{2n+1}}{\partial t_k\partial s_l} \bigg|_{s=-t} = 0.
\]

3 Equations satisfied by Pfaffian \(\tilde{\tau} \)-functions

In this section, we exhibit the properties of the Pfaffian \(\tilde{\tau} \)-function introduced above, for the 2-Toda \(\tau \)-function satisfying (2.9), or the skew-symmetric initial data \(m_\infty(0, 0) \). As in the last section, whenever we make a connection
with the matrix \(m_\infty\), we assume either \(m_\infty\) is semi-infinite, or \(\det m_n\) can be interpreted as in formula (\(*\)) in footnote \([2]\).

Theorem 3.1 The \(\tilde{\tau}\)-functions satisfy the bilinear relations

\[
\oint_{z=\infty} \tilde{\tau}_{2n}(t - [z^{-1}]) \tilde{\tau}_{2m+2}(t' + [z^{-1}]) e^{\sum_{i=0}^\infty (t_i-t'_i)z^i} z^{2n-2m-2} dz

+ \oint_{z=0} \tilde{\tau}_{2n+2}(t + [z]) \tilde{\tau}_{2m}(t' - [z]) e^{\sum_{i=0}^\infty (t'_i-t_i)z^{-i}} z^{2n-2m} dz = 0, \quad (3.1)
\]

or equivalently\([\text{footnote 2}]\)

\[
\sum_{j,k \geq 0} p_j(-2y)e^{\sum_{i=0}^\infty -y_i D_i} p_k(-\tilde{\mathcal{D}}) \tilde{\tau}_{2n} \cdot \tilde{\tau}_{2m+2}

+ \sum_{j,k \geq 0 \atop k-j=-2n+2m-1} p_j(2y)e^{\sum_{i=0}^\infty -y_i D_i} p_k(\tilde{\mathcal{D}}) \tilde{\tau}_{2n+2} \cdot \tilde{\tau}_{2m} = 0. \quad (3.2)
\]

Proof: Formula (3.1) follows from (1.12) upon replacing \(n\) by \(2n\) and \(m\) by \(2m\)\([\text{footnote 3}]\) using (2.9) and (2.10), with \(\beta = 0\), to eliminate \(\tau_{2n}(t - [z^{-1}], -t)\), \(\tau_{2m+1}(t' - [z])\), \(\tau_{2n+1}(t, -t - [z])\) and \(\tau_{2m}(t' - [z], -t')\) and, upon dividing both sides by \(\tilde{\tau}_{2n}(t)\tilde{\tau}_{2m}(t)\).

7 The \(\tilde{\mathcal{D}} = (\frac{\partial}{\partial t_1}, \frac{\partial}{\partial t_2}, \frac{\partial}{\partial t_3}, \ldots)\), and \(\tilde{\mathcal{D}} = (D_1, \frac{1}{2}D_2, \frac{1}{4}D_3, \ldots)\) is the corresponding Hirota symbol, i.e., \(P(\tilde{\mathcal{D}})f \cdot g := P(\partial/\partial y_1, \frac{1}{2}\partial/\partial y_2, \frac{1}{4}\partial/\partial y_3, \ldots) f(t + y)g(t - y)\big|_{y=0}\) for any polynomial \(P\); and \(p_k\) are the elementary Schur functions: \(\sum_{i} p_k(t)z^i := \exp(\sum_{i} t_i z^i)\).

8 One can check that all the other choices of parities of \(n\) and \(m\) yield the same formula.
Substituting $t - y$ and $t + y$ for t and t', respectively, into the left hand side of (3.1) and Taylor expanding it in y, we obtain

$$\oint_{z=\infty} e^{-\sum_{i=1}^{\infty} 2y_i z^i} \tilde{\tau}_{2n}(t - y - [z^{-1}]) \tilde{\tau}_{2m+2}(t + y + [z^{-1}]) z^{2n-2m-2} \, dz$$

$$+ \oint_{z=0} e^{-\sum_{i=1}^{\infty} 2y_i z^i} \sum_{-y_i D_i} e^{-\sum_{i=1}^{\infty} z^{-1} D_i / i} \tilde{\tau}_{2n} \cdot \tilde{\tau}_{2m+2} z^{2n-2m-2} \, dz$$

$$= \oint_{z=\infty} e^{-\sum_{i=1}^{\infty} 2y_i z^i} \sum_{-y_i D_i} e^{-\sum_{i=1}^{\infty} z^{-1} D_i / i} \tilde{\tau}_{2n} \cdot \tilde{\tau}_{2m+2} z^{2n-2m-2} \, dz$$

$$+ \oint_{z=0} e^{-\sum_{i=1}^{\infty} 2y_i z^i} \sum_{-y_i D_i} e^{-\sum_{i=1}^{\infty} z^{-1} D_i / i} \tilde{\tau}_{2n+2} \cdot \tilde{\tau}_{2m} z^{2n-2m} \, dz$$

$$= \oint_{z=\infty} \sum_{j=0}^{\infty} p_j (-2y) z^j e^{-\sum_{i=1}^{\infty} y_i D_i} \sum_{k=0}^{\infty} p_k (-\tilde{D}) z^{-k} \tilde{\tau}_{2n} \cdot \tilde{\tau}_{2m+2} z^{2n-2m-2} \, dz$$

$$+ \oint_{z=0} \sum_{j=0}^{\infty} p_j (2y) z^j e^{-\sum_{i=1}^{\infty} y_i D_i} \sum_{k=0}^{\infty} p_k (\tilde{D}) z^k \tilde{\tau}_{2n+2} \cdot \tilde{\tau}_{2m} z^{2n-2m} \, dz$$

$$= 2\pi i \left(\sum_{j-k=-2n+2m+1} p_j (-2y) e^{-\sum_{i=1}^{\infty} y_i D_i} p_k (-\tilde{D}) \tilde{\tau}_{2n} \cdot \tilde{\tau}_{2m+2} \right)$$

$$+ \sum_{j-k=-2n+2m-1} p_j (2y) e^{-\sum_{i=1}^{\infty} y_i D_i} p_k (\tilde{D}) \tilde{\tau}_{2n+2} \cdot \tilde{\tau}_{2m} \right),$$

showing the equivalence of (3.1) and (3.2).

The identity (3.1) gives various bilinear relations satisfied by $\tilde{\tau}$. We show that the Pfaffian $\tilde{\tau}$-functions satisfy identities reminiscent of the Fay and differential Fay identities for the KP or 2-Toda τ-functions (e.g., see [1]). From this we deduce a sequence of Hirota bilinear equations for $\tilde{\tau}$, which can be interpreted as a recursion relation for $\tilde{\tau}_{2n}(t)$.

16
Theorem 3.2 The functions $\bar{\tau}_{2n}(t)$ satisfy the following “Fay identity”:

$$
\sum_{i=1}^{r} \bar{\tau}_{2n}\left(t - \sum_{j=1}^{l} [z_j] - [\zeta_i]\right) \bar{\tau}_{2m+2}\left(t - \sum_{j=1}^{r} [\zeta_j]\right) \prod_{k=1}^{l} (\zeta_j - \zeta_k) \prod_{1 \leq k \leq r (\zeta_i - \zeta_k)} = 0,
$$

(3.3)

the “differential Fay identity”:

$$
\{\bar{\tau}_{2n}(t - [u]), \bar{\tau}_{2n}(t - [v])\} + (u^{-1} - v^{-1})(\bar{\tau}_{2n}(t - [u])\bar{\tau}_{2n}(t - [v]) - \bar{\tau}_{2n}(t)\bar{\tau}_{2n}(t - [u] - [v])) = uv(u - v)\bar{\tau}_{2n-2}(t - [u] - [v])\bar{\tau}_{2n+2}(t),
$$

(3.4)

and Hirota bilinear equations, involving nearest neighbors:

$$
\left(p_{k+4}(\bar{D}) - \frac{1}{2}D_1D_{k+3}\right) \bar{\tau}_{2n} \cdot \bar{\tau}_{2n} = p_k(\bar{D})\bar{\tau}_{2n+2} \cdot \bar{\tau}_{2n-2}.
$$

(3.5)

Here, in (3.3) 2n, 2m ∈ A, l, r ≥ 0 such that r - l = 2n - 2m, z_i (1 ≤ i ≤ l) and ζ_i (1 ≤ i ≤ r) are scalar parameters near 0; in (3.4) 2n - 2 ∈ A (hence 2n, 2n + 2 ∈ A), and u and v are scalar parameters near 0; and in (3.3) 2n - 2 ∈ A, k = 0, 1, 2, …, and {f, g} := f'g - fg' = D_1f · g is the Wronskian of f and g, where’ = ∂/∂t_1.

Proof: The Fay identity (3.3) follows from the bilinear identity (3.4) by substitutions

$$
t \mapsto t - [z_1] - \cdots - [z_l] \quad \text{and} \quad t' \mapsto t - [\zeta_1] - \cdots - [\zeta_r].
$$

Indeed, since r - l = 2n - 2m, we have

$$
\exp(\sum (t_i - t'_i)z^i)z^{2n-2m-2}dz = \prod_{k=1}^{l} (1 - zz_k)z^{r-l-2}dz = -\prod_{k=1}^{l} (1/z - z_k) d(1/z)
$$

17
and
\[
\exp\left(\sum (t'_i - t_i)z^{-i}\right)z^{2n-2m}dz = \frac{\prod_{k=1}^r (1 - \zeta_k/z)}{\prod_{k=1}^l (1 - z_k/z)}z^{r-i}dz
\]
\[
= \frac{\prod_{k=1}^r (z - \zeta_k)}{\prod_{k=1}^l (z - z_k)}dz,
\]

so the first and second terms on the left hand side of (3.1), divided by $2\pi i$, become, respectively,

\[
\frac{1}{2\pi i} \oint_{z=\infty} \ldots \quad = - \sum_{i=1}^r \text{Res}_{z=\zeta_i^{-1}} \tau_{2n}\left(t - \sum_{j=1}^l [z_j] - [z^{-1}]\right)
\]
\[
\quad \cdot \tau_{2m+2}\left(t - \sum_{j=1}^r [\zeta_j] + [\zeta^{-1}]\right) \frac{\prod_{k=1}^l (1 - z\zeta_k)}{\prod_{k=1}^r (1 - z_k)}dz
\]
\[
= \sum_{i=1}^r \text{Res}_{z=\zeta_i} \tau_{2n}\left(t - \sum_{j=1}^l [z_j] - [\zeta]\right)
\]
\[
\quad \cdot \tau_{2m+2}\left(t - \sum_{j=1}^r [\zeta_j] + [\zeta]\right) \frac{\prod_{k=1}^l (\zeta - z_k)}{\prod_{k=1}^r (\zeta - \zeta_k)}d\zeta \quad (\zeta := z^{-1})
\]
\[
= \sum_{i=1}^r \tau_{2n}\left(t - \sum_{j=1}^l [z_j] - [\zeta_i]\right) \tau_{2m+2}\left(t - \sum_{j=1}^r [\zeta_j] + [\zeta_i]\right) \frac{\prod_{k=1}^l (\zeta_i - z_k)}{\prod_{1 \leq k \leq r \atop k \neq i} (\zeta_i - \zeta_k)},
\]

and

\[
\frac{1}{2\pi i} \oint_{z=0} \ldots \quad = \sum_{i=1}^l \text{Res}_{z=z_i} \tau_{2n+2}\left(t - \sum_{j=1}^l [z_j] + [z]\right)
\]
\[
\quad \cdot \tau_{2m}\left(t - \sum_{j=1}^r [\zeta_j] - [z]\right) \frac{\prod_{k=1}^r (z - \zeta_k)}{\prod_{k=1}^l (z - z_k)}dz
\]
\[
= \sum_{i=1}^l \tau_{2n+2}\left(t - \sum_{j=1}^l [z_j] + [z_i]\right) \tau_{2m}\left(t - \sum_{j=1}^r [\zeta_j] - [z_i]\right) \frac{\prod_{k=1}^r (z_i - \zeta_k)}{\prod_{1 \leq k \leq r \atop k \neq i} (z_i - z_k)},
\]
(z_2 - z_1)(z_3 - z_4)\tilde{\tau}_{2n}(t - [z_1] - [z_2])\tilde{\tau}_{2n}(t - [z_3] - [z_4])
- (z_3 - z_1)(z_2 - z_4)\tilde{\tau}_{2n}(t - [z_1] - [z_3])\tilde{\tau}_{2n}(t - [z_2] - [z_4])
+ (z_4 - z_1)(z_2 - z_3)\tilde{\tau}_{2n}(t - [z_1] - [z_4])\tilde{\tau}_{2n}(t - [z_2] - [z_3])
+ \left(\prod_{1 \leq i < j \leq 4} (z_i - z_j)\right)\tilde{\tau}_{2n+2}(t)\tilde{\tau}_{2n-2}(t - [z_1] - [z_2] - [z_3] - [z_4]) = 0. \quad (3.6)

The differential Fay identity (3.4) follows from (3.6) by taking a limit (set \(z_4 = 0\), divide by \(z_3\) and let \(z_3 \to 0\)). Alternatively, we can prove (3.4) directly from (3.1): Set \(t - t' = [u] - [v], 2m = 2n - 2\) in (3.1) and in the clockwise integral about \(z = \infty\), set \(z \mapsto 1/z\), yielding

\[
\oint_0 \tilde{\tau}_{2n}(t - [z])\tilde{\tau}_{2n}(t' + [z])\frac{1 - v/z}{1 - u/z} \frac{dz}{z^2} = -\oint_0 \tilde{\tau}_{2n+2}(t + [z])\tilde{\tau}_{2n-2}(t' - [z])\frac{1 - u/z}{1 - v/z} z^2 dz.
\]

The first integral has a simple pole at \(z = u\) and a double pole at \(z = 0\), while the second integral has a simple pole at \(z = v\) only, yielding, after substitution \(t' = t - [u] + [v]\),

\[
\tilde{\tau}_{2n}(t - [u])\tilde{\tau}_{2n}(t + [v])(u - v)\frac{1}{u^2}
+ \left.\frac{d}{dz}\left(\tilde{\tau}_{2n}(t - [z])\tilde{\tau}_{2n}(t - [u] + [v] + [z])\frac{z - v}{z - u}\right)\right|_{z=0}
= -\tilde{\tau}_{2n+2}(t + [v])\tilde{\tau}_{2n-2}(t - [u])(v - u)v^2,
\]

or, after carrying out \(d/dz|_{z=0}\) on the left hand side,

\[
\tilde{\tau}_{2n}(t - [u])\tilde{\tau}_{2n}(t + [v])(u - v)\frac{1}{u^2}
+ \tilde{\tau}_{2n}(t - [u] + [v])\frac{v - u}{u^2} - D_1 \tilde{\tau}_{2n}(t) \cdot \tilde{\tau}_{2n}(t - [u] + [v])\frac{v}{u}
= -\tilde{\tau}_{2n+2}(t + [v])\tilde{\tau}_{2n-2}(t - [u])(v - u)v^2. \quad (3.7)
\]
Shifting \(t \mapsto t - [v] \) and multiplying both sides by \(\frac{u}{v} \) yield (3.4).

Since \(P(-D)f \cdot f = P(D)f \cdot f \) by the definition of Hirota operator, (3.5) is the same as (??), which, as we have pointed out, are nothing but the coefficients of \(y_{k+3} \) in (0.7), or (3.2). It also follows from (3.4), since, for any power series \(F(t, t') \) which satisfies \(F(t, t') \equiv 0 \),

\[
\text{coefficient of } y_{k+3} \text{ in } F(t - y, t + y) = \left(\frac{\partial}{\partial t} - \frac{\partial}{\partial t_n} \right) F(t, t)
\]

\[
= 2 \frac{\partial}{\partial t_n} F(t, t') = 2 \times \text{coefficient of } u^{k+2} \text{ in } \left. \frac{d}{dv} F(t, t - [u] + [v]) \right|_{v = u}.
\]

Indeed, differentiating (3.7), which is equivalent to (3.4), in \(v \), setting \(v = u \) and using \(D_1 f \cdot f = 0 \),

\[
\frac{\partial}{\partial v} (D_1 f(t) \cdot g(t + [v])) = - \frac{1}{2} D_1 D_2 f(t) \cdot g(t + [v])
\]

\[
= - \frac{1}{2} \sum_{j=1}^{\infty} u^{j-1} D_1 D_j f(t) \cdot g(t + [v]),
\]

etc., we have

\[
- \tau_{2n}(t - [u]) \tau_{2n}(t + [u]) \frac{1}{u^2} + \tau_{2n}(t)^2 \frac{1}{u^2} + \frac{1}{2} \sum_{j=1}^{\infty} u^{j-1} D_1 D_j \tau_{2n}(t)
\]

\[
= - \tau_{2n+2}(t + [u]) \tau_{2n-2}(t - [u]) u^2,
\]

which, noting \(f(t + [u]) g(t - [u]) = \sum u^k p_k (D) f \cdot g \), is a generating function for (3.3).

As in the case of KP or 2-Toda \(\tau \)-functions, Pfaffian \(\tau \)-functions satisfy higher degree identities:

Theorem 3.3

\[
\text{Pfaff} \left(\frac{(z_j - z_i) \tau_{2n-2}(t - [z_i] - [z_j])}{\tau_{2n}(t)} \right)_{1 \leq i, j \leq 2k}
\]

\[
= \Delta(z) \frac{\tau_{2n-2k}(t - \sum_{i=1}^{2k} [z_i])}{\tau_{2n}(t)} , \quad (3.8)
\]

where \(k \geq 1, 2n - 2k \in A, z_i \) are scalar parameters near 0, and \(\Delta(u_1, \ldots, u_n) := \prod_{i<j} (u_j - u_i) \).
Proof: This may be obtained, up to the sign, from the second identity in Theorem 4.2 of [3]:

\[
\det \left(\frac{\tau_{N-1}(t-[z_i], s+[y_j])}{\tau_N(t, s)} \right)_{1 \leq i, j \leq k} = \Delta(y) \Delta(z) \left(\frac{\tau_{N-k} \left(t - \sum_{1 \leq i \leq 1}^k [z_i], s + \sum_{i=1}^k [y_i] \right)}{\tau_N(t, s)} \right),
\]

by setting \(N \mapsto 2n, k \mapsto 2k, y_i = z_i \), taking the square roots of both sides and using (2.10). Rather than taking this route, here we prove (3.8) by induction on \(k \), using the bilinear Fay identity (3.3). First, (3.8) is trivial when \(k = 1 \). (Note also that it gives (3.6) when \(k = 2 \).) Suppose (3.8) holds for \(k - 1 \). Then we have, for every \(p \in \{2, \ldots, 2k\} \),

\[
Pfaff \left(\frac{(z_j - z_i)\bar{\tau}_{2n-2} \left(t - [z_i] - [z_j] \right)}{\bar{\tau}_{2n}(t)} \right)_{2 \leq i, j \leq 2k \atop i \neq j} = \Delta(z_2, \ldots, \hat{z}_p, \ldots, z_{2k}) \left(\frac{\bar{\tau}_{2n-2k+2} \left(t - \sum_{2 \leq i \leq 2k, i \neq p} [z_i] \right)}{\bar{\tau}_{2n}(t)} \right).
\]

Multiplying both sides by \((-1)^p(z_p - z_1)\bar{\tau}_{2n-2} \left(t - [z_1] - [z_p] \right) / \bar{\tau}_{2n}(t)\), summing it up for \(p = 2, \ldots, 2k \), and using

\[
(-1)^p(z_p - z_1)\Delta(z_2, \ldots, \hat{z}_p, \ldots, z_{2k}) = \frac{\Delta(z)}{\prod_{2 \leq i \leq 2k}(z_i - z_1) \prod_{i \neq p}^2(\bar{z}_p - z_i)}
\]

and the identity

\[
Pfaff(a_{ij})_{1 \leq i, j \leq 2k} = \sum_{p=2}^{2k} (-1)^p a_{1p} Pfaff(a_{ij})_{2 \leq i, j \leq 2k \atop i, j \neq p} \quad \forall (a_{ij}) \text{ skew symmetric}
\]

\[21\]
which follows from definition (2.8) of the Pfaffian, we have
\[
\text{Pfaff}\left(\frac{(z_j - z_i)\tilde{\tau}_{2n-2}(t - [z_i] - [z_j])}{\tilde{\tau}_{2n}(t)} \right)_{1\leq i,j\leq 2k} = \frac{\Delta(z)}{\prod_{2\leq i\leq 2k}(z_i - z_1)} \cdot \frac{1}{\tilde{\tau}_{2n}(t)^2} \sum_{p=2}^{2k} \frac{(z_p - z_1)}{\prod_{2\leq i\leq 2k}(z_p - z_i)} \cdot \tilde{\tau}_{2n-2}(t - [z_1] - [z_p]) \tilde{\tau}_{2n-2k+2}\left(t - \sum_{2\leq i\leq 2k} [z_i] \right)
\]
using the bilinear Fay identity (3.3) with \(r = 2k - 1, \ l = 1, \ \zeta_i := z_{i+1} \ (1 \leq i \leq 2k - 1) \) and (\(2n, 2m\)) replaced by (\(2n - 2, 2n - 2k\)) this becomes
\[
= \frac{\Delta(z)}{\prod_{2\leq i\leq 2k}(z_i - z_1)} \cdot \frac{1}{\tilde{\tau}_{2n}(t)^2} \\
\cdot (-1) \left(\prod_{i=2}^{2k} (z_1 - z_i) \right) \tilde{\tau}_{2n}(t) \tilde{\tau}_{2n-2k}\left(t - \sum_{i=1}^{2k} [z_i] \right)
= \Delta(z) \frac{\tilde{\tau}_{2n-2k}(t - \sum_{i=1}^{2k} [z_i])}{\tilde{\tau}_{2n}(t)},
\]
completing the proof of (3.8) by induction. \(\blacksquare \)

4 Vertex operators for Pfaffian \(\tilde{\tau} \)-functions

In terms of the operators
\[
X(t, \lambda) := e^{\sum_{i=1}^{\infty} \lambda^k \frac{\partial}{\partial t_i}} e^{-\sum_{i=1}^{\infty} \frac{\lambda^{-k}}{k} \frac{\partial}{\partial s_i}} \quad \text{and} \quad X^*(t, \lambda) := e^{-\sum_{i=1}^{\infty} \lambda^k \frac{\partial}{\partial t_i}} e^{\sum_{i=1}^{\infty} \frac{\lambda^{-k}}{k} \frac{\partial}{\partial s_i}},
\]
acting on functions \(f(t) \) of \(t = (t_1, t_2, \ldots) \in \mathbb{C}^\infty \), define the following four operators\(^9\) acting on column vectors \(g = (g_n(t))_{n \in A} \),
\[
\begin{align*}
X_1(\mu) := X(t, \mu)\chi(\mu), & \quad X_1^*(\lambda) := -\chi^*(\lambda)X^*(t, \lambda), \\
X_2(\mu) := -X(s, \mu)\chi^*(\mu)\Lambda, & \quad X_2^*(\lambda) := \Lambda^\top \chi(\lambda)X^*(s, \lambda),
\end{align*}
\]
\(^9\) Here \(X(s, \lambda) \) has \(s_i \) in place of \(t_i \), as well as \(\partial/\partial s_i \) in place of \(\partial/\partial t_i \), in the definition of \(X(t, \lambda) \), etc.; \(\chi(\mu) := (\mu^n)_{n \in A} \), and \(\chi^*(\mu) = \chi(\mu^{-1}) \).
and their compositions

\[X_{ij}(\mu, \lambda) := X_j^*(\lambda)X_i(\mu), \quad i, j = 1, 2. \]

They form a set of four vertex operators associated with the 2-Toda lattice. Among those, \(X_{12} \) is important in the semi-infinite case, related to the study of orthogonal polynomials. In [3], we showed that

\[
\sum_{m \leq j < n} \Psi_{1,j}(\mu) \Psi_{2,j}^*(\lambda^{-1}) = \frac{(X_{12}(\mu, \lambda)\tau_n - (X_{12}(\mu, \lambda)\tau_m)(n\tau_n - (X_{12}(\mu, \lambda)\tau_m)(m\tau_m)}{n\tau_n - (m\tau_m)(4.1)}
\]

for any \(n, m \in A, n \geq m \). Note on the right hand side the limit exists as \(s \to -t \) if \(n \) and \(m \) are even, so in particular, taking \(n = m + 1 \), we see the poles along \(s = -t \) cancel out in \(\Psi_{1,2m}(\mu)\Psi_{2,2m}^*(\lambda^{-1}) + \Psi_{1,2m+1}(\mu)\Psi_{2,2m+1}^*(\lambda^{-1}) \).

We shall come back to this point after proving the following theorem and its corollary.

Suppose \(\tau \) satisfies (2.6), and let \(\tilde{\tau} \) be the vector of corresponding Pfaffian \(\tilde{\tau} \)-functions. Let \(X_{1}, X_{1}^* \) and \(X_{11} \) act on \(\tilde{\tau} \) as if they are acting on the extended vector \((\tilde{\tau}_n)_{n \in A} \), where \(\tilde{\tau}_n \equiv 0 \) if \(n \) is odd, so that \(\chi(\mu) \) (resp. \(\chi^*(\lambda) \)) acts on \(\tilde{\tau}_{2n} \) by multiplication of \(\mu^{2n} \) (resp. \(\lambda^{-2n} \)). Then we have

\[
\text{10 When } i = j, \quad X_i^* \text{ interacts with } X_i \text{ nontrivially, yielding the factor } \exp(\sum(\mu/\lambda)^k/k) = 1/(1 - \mu/\lambda) \text{ if we bring the multiplication operators to the left and the shift operators in } t \text{ or } s \text{ to the right. So if we denote by } : : \text{ the usual normal ordering of operators in } t, s \text{ (but not in the discrete index } n), \text{ we have}
\]

\[
\text{11 The product } X_1(\lambda)X_1(\mu) \text{ in (L.4) is computed the same way as in footnote 10.}
Theorem 4.1

$$\begin{align*}
(X_{11}(\mu, \lambda) \tau)_N|_{s=-t} &= \begin{cases}
\bar{\tau}_{2n}(t)X_{11}(\mu, \lambda)\bar{\tau}_{2n}(t) & (N = 2n) \\
-\lambda(X_1(\mu)\bar{\tau}_{2n}(t))X_1^*(\lambda)\bar{\tau}_{2n+2} & (N = 2n + 1)
\end{cases} \\
(X_{22}(\mu, \lambda) \tau)_N|_{s=-t} &= \begin{cases}
-\tau_{2n}(t)X_{11}(\lambda, \mu)\bar{\tau}_{2n}(t) & (N = 2n) \\
-\mu(X_1(\lambda)\bar{\tau}_{2n})X_1^*(\mu)\bar{\tau}_{2n+2} & (N = 2n + 1)
\end{cases} \\
(X_{12}(\mu, \lambda) \tau)_N|_{s=-t} &= \begin{cases}
-\lambda\tau_{2n}(t)X_1(\lambda)X_1(\mu)\bar{\tau}_{2n-2}(t) & (N = 2n) \\
(X_1(\mu)\bar{\tau}_{2n})X_1^*(\lambda)\bar{\tau}_{2n} & (N = 2n + 1)
\end{cases}
\end{align*}$$

Corollary 4.2 For $k = 1, 2$, the following holds:

$$J_i^{(k)}(t)\tau_{2n}(t, s)|_{s=-t} = \bar{\tau}_{2n}(t)J_i^{(k)}(t)\bar{\tau}_{2n}(t),$$
$$J_i^{(k)}(s)\tau_{2n}(t, s)|_{s=-t} = (-1)^k\bar{\tau}_{2n}(t)J_i^{(k)}(t)\bar{\tau}_{2n}(t),$$
and so

$$(J_i^{(k)}(t) + (-1)^kJ_i^{(k)}(s))\tau_{2n}(t, s)|_{s=-t} = 2\bar{\tau}_{2n}(t)J_i^{(k)}(t)\bar{\tau}_{2n}(t).$$

Proof: The theorem follows from formulas (2.9) and (2.10) by straightforward calculations:

$$\begin{align*}
(X_{11}(\mu, \lambda) \tau)_N|_{s=-t} &= -\left(\frac{\mu}{\lambda}\right)^Ne^{\sum t_i(\mu^{-1}-\lambda)}\tau_N(t - \lceil \mu^{-1}\rceil - \lceil \lambda^{-1}\rceil, -t) \\
&= -\left(\frac{\mu}{\lambda}\right)^Ne^{\sum t_i(\mu^{-1}-\lambda)}\bar{\tau}_{2n}(t)\bar{\tau}_{2n}(t - \lceil \mu^{-1}\rceil + \lceil \lambda^{-1}\rceil) \\
&= \bar{\tau}_{2n}(t)X_{11}(\mu, \lambda)\bar{\tau}_{2n}(t),
\end{align*}$$

for $N = 2n$:

$$\begin{align*}
&= -\left(\frac{\mu}{\lambda}\right)^Ne^{\sum t_i(\mu^{-1}-\lambda)}\bar{\tau}_{2n}(t)\bar{\tau}_{2n}(t - \lceil \mu^{-1}\rceil + \lceil \lambda^{-1}\rceil) \\
&= \bar{\tau}_{2n}(t)X_{11}(\mu, \lambda)\bar{\tau}_{2n}(t),
\end{align*}$$

for $N = 2n + 1$:

$$\begin{align*}
&= \left(\frac{\mu}{\lambda}\right)^Ne^{\sum t_i(\mu^{-1}-\lambda)}\bar{\tau}_{2n}(t - \lceil \mu^{-1}\rceil + \lceil \lambda^{-1}\rceil)\bar{\tau}_{2n+2}(t + \lceil \lambda^{-1}\rceil) \\
&= \lambda(X_1(\mu)\bar{\tau}_{2n})(X_1^*(\lambda)\bar{\tau}_{2n+2});
\end{align*}$$
$$\forall 2n+1$$
The corollary is shown by expanding X_{11} in λ and $\mu - \lambda$. Recall that
\[
X_{11}(\mu, \lambda) = -\frac{\lambda}{\lambda - \mu} \left(\left(\frac{\mu}{\lambda} \right)^n X(\mu, \lambda) \right)_{n \in A}
= -\frac{\lambda}{\lambda - \mu} \left(\sum_{k=0}^{\infty} \frac{(\mu - \lambda)^k}{k!} \sum_{l=-\infty}^{\infty} \lambda^{-l-k} W^{(k)}_{n,l}(t) \right)_{n \in A},
\]
where $X(\mu, \lambda)$ is the vertex operator in the KP theory \cite{KP}, and
\[
W^{(k)}_{n,l}(t) = \sum_{j=0}^{k} \binom{n}{j} (k)_j W^{(k-j)}_{l},
\]
with $W^{(k)}_{l}$ the coefficients of similar expansion of $X(\mu, \lambda)$.

Expanding X_{11} in (4.2) as above leads to
\[
W^{(k)}_{2n,l}(t) \tau_{2n}(t, s)|_{s=-t} = \tilde{\tau}_{2n}(t) W^{(k)}_{2n,l}(t) \tilde{\tau}_{2n}(t).
\]
In particular, since $J_i^{(k)}$ ($k \leq 2$) and $W_{(n,i)}^{(k)}$ ($k \leq 2$) are linear combinations of each other \cite{KP}:
\[
W^{(0)}_{n,i} = J_i^{(0)} = \delta_{i,0}, \\
W^{(1)}_{n,i} = J_i^{(1)} + nJ_i^{(0)}, \\
W^{(2)}_{n,i} = J_i^{(2)} + (2n - i - 1)J_i^{(1)} + n(n - 1)J_i^{(0)},
\]
on one sees for $k = 1, 2$ that
\[
J_i^{(k)}(t) \tau_{2n}(t, s)|_{s=-t} = \tilde{\tau}_{2n}(t) J_i^{(k)}(t) \tilde{\tau}_{2n}(t).
\]

Consider the following vertex operator\footnote{As before, X treats $\tilde{\tau}$ as an extended vector $(\tilde{\tau}_n)_{n \in A}$, where $\tilde{\tau}_n \equiv 0$ for n odd. So $\chi(z)$ appearing in $X(z)$ acts on $\tilde{\tau}_n$ as multiplication by z^n, and Λ^* acts on $\tilde{\tau}$ as $(\Lambda^* \tilde{\tau})_n = \tilde{\tau}_{n-1}$. In practice, we always have even number of X's acting on $\tilde{\tau}$, so there is always an even power of Λ^*, and $\tilde{\tau}_n$ for odd n will never appear in our formulas.}
\[
X(z) := \Lambda^* X_1(z) = \Lambda^* e^{\sum t_i z^i} e^{-\sum \frac{z^{-i}}{\lambda^i} \partial_i} \chi(z),
\]
and define the kernel

\[K_n(y, z) := \left(\frac{1}{\tau} X(y) X(z) \tilde{\tau} \right)_{2n} \]

It is easy to see that \((X(y) X(z) \tilde{\tau})_{2n} = y X_1(y) X_1(z) \tilde{\tau}_{2n-2} \), so by (4.3)

\[K_n(y, z) = -\left(\frac{X_{12}(y, z) \tilde{\tau}}{\tau_{2n}} \right)_{2n} \]

and by (4.1)

\[\left(\sum_{2m \leq j < 2n} \Psi_{1,j} (\mu) \Psi_{2,j}^* (\lambda^{-1}) \right) \bigg|_{s=\tau} = K_n(\mu, \lambda) - K_m(\mu, \lambda). \]

Here each term \(\Psi_{1,j} (\mu) \Psi_{2,j}^* (\lambda^{-1}) \) on the left hand side blows up along \(s = -t \), but the poles from two successive terms (for \(j = 2k \) and \(j = 2k + 1 \)) cancel, as we saw earlier.

For \(n \in A \), let

\[q_n(t, \lambda) := \begin{cases} \lambda^{2m} \frac{\tilde{\tau}_{2m} (t - [\lambda^{-1}])}{\sqrt{\tilde{\tau}_{2m} (t) \tilde{\tau}_{2m+2} (t)}} & \text{if } n = 2m, \\ \lambda^{2m} \frac{(\partial / \partial t_1 + \lambda) \tilde{\tau}_{2m} (t - [\lambda^{-1}])}{\sqrt{\tilde{\tau}_{2m} (t) \tilde{\tau}_{2m+2} (t)}} & \text{if } n = 2m + 1. \end{cases} \quad (4.5) \]

In the semi-infinite case, the \(q_n \)’s form a system of skew-orthogonal polynomials [7].

Theorem 4.3 The following holds:

\[\text{Pfaff} (K_n(z_i, z_j))_{1 \leq i, j \leq 2k} = \left(\frac{1}{\tau} \prod_{i=1}^{2k} X(z_i) \tilde{\tau} \right)_{2n}, \quad (4.6) \]

\[K_{n+1}(\mu, \lambda) - K_n(\mu, \lambda) = e^{\sum t_i (\mu^i + \lambda^i)} \left(q_{2n}(t, \lambda) q_{2n+1}(t, \mu) - q_{2n}(t, \mu) q_{2n+1}(t, \lambda) \right), \quad (4.7) \]

so in the semi-infinite case

\[K_N(\mu, \lambda) = e^{\sum t_i (\mu^i + \lambda^i)} \sum_{0}^{N-1} \left(q_{2n}(t, \lambda) q_{2n+1}(t, \mu) - q_{2n}(t, \mu) q_{2n+1}(t, \lambda) \right). \quad (4.8) \]
Proof: Using (3.8) and
\[K_n(\mu, \lambda) = \left(\frac{\bar{X}(\mu)\bar{X}(\lambda)\bar{t}}{\bar{t}} \right)_{2n} \]
\[= (\mu - \lambda)(\mu\lambda)^{2n-2} e^{\sum_{i=1}^{\infty} t_i(\mu^i + \lambda^i)} \frac{\tilde{\tau}_{2n-2}(t - [\mu^{-1}] - [\lambda^{-1}])}{\tilde{\tau}_{2n}(t)} \]
\[= (\lambda^{-1} - \mu^{-1})(\mu\lambda)^{2n-1} e^{\sum_{i=1}^{\infty} t_i(\mu^i + \lambda^i)} \frac{\tilde{\tau}_{2n-2}(t - [\mu^{-1}] - [\lambda^{-1}])}{\tilde{\tau}_{2n}(t)}, \quad (4.9) \]
the left hand side of (4.3) becomes
\[(z_1 \cdots z_{2k})^{2n-1} e^{\sum_{j=1}^{2k} \sum_{i=1}^{\infty} t_i} \Delta(z^{-1}) \frac{\tilde{\tau}_{2n-2k}(t - \sum_{j=1}^{2k} [z_j^{-1}])}{\tilde{\tau}_{2n}(t)}. \]
This equals the right hand side of (4.6), because
\[(\bar{X}(z_{2k})\bar{X}(z_{2k-1}) \cdots \bar{X}(z_2)\bar{X}(z_1)\bar{t})_{2n} \]
\[= (z_{2k}^{2n-2} \cdot z_{2k-2}^{2n-2} \cdots z_1^{2n-2k}) e^{\sum_{i=1}^{2k} t_i(z_1^i + \cdots + z_{2k}^i)} \]
\[\times \left[\prod_{1<j \leq 2k} \prod_{1 \leq i < j} \left(1 - \frac{z_i}{z_j} \right) \right] \frac{\tilde{\tau}_{2n-2k}(t - \sum_{j=1}^{2k} [z_j^{-1}])}{\tilde{\tau}_{2n}(t)} \]
\[= (z_1 \cdots z_{2k})^{2n-1} \Delta(z^{-1}) e^{\sum_{i=1}^{2k} t_i(z_1^i + \cdots + z_{2k}^i)} \frac{\tilde{\tau}_{2n-2k}(t - \sum_{j=1}^{2k} [z_j^{-1}])}{\tilde{\tau}_{2n}(t)}. \]
To prove (4.7), we have
\[(\mu - \lambda) \left((\mu\lambda)^{2n} \frac{\tilde{\tau}_{2n}(t - [\mu^{-1}] - [\lambda^{-1}])}{\tilde{\tau}_{2n+2}(t)} - (\mu\lambda)^{2n-2} \frac{\tilde{\tau}_{2n-2}(t - [\mu^{-1}] - [\lambda^{-1}])}{\tilde{\tau}_{2n}(t)} \right) \]
\[= (\mu - \lambda)(\mu\lambda)^{2n} \frac{\tilde{\tau}_{2n}(t - [\mu^{-1}] - [\lambda^{-1}])}{\tilde{\tau}_{2n+2}(t)} \frac{\tilde{\tau}_{2n-2}(t - [\mu^{-1}] - [\lambda^{-1}])}{\tilde{\tau}_{2n}(t)} \]
\[= (\mu\lambda)^{2n} \left(\frac{\tilde{\tau}_{2n}(t - [\mu^{-1}])}{\tilde{\tau}_{2n+2}(t)} \right) + (\mu - \lambda) \frac{\tilde{\tau}_{2n}(t - [\mu^{-1}])}{\tilde{\tau}_{2n+2}(t)} \frac{\tilde{\tau}_{2n}(t - [\lambda^{-1}])}{\tilde{\tau}_{2n}(t)} \]
using (3.4),
\[= \left(\lambda^{2n} \frac{\tilde{\tau}_{2n}(t - [\lambda^{-1}])}{\sqrt{\tilde{\tau}_{2n}(t)\tilde{\tau}_{2n+2}(t)}} \frac{\mu^{2n} \partial \tilde{\tau}_{2n}(t - [\mu^{-1}])}{\sqrt{\tilde{\tau}_{2n}(t)\tilde{\tau}_{2n+2}(t)}} - (\lambda \leftrightarrow \mu) \right) \]
\[= (q_{2n}(t, \lambda)q_{2n+1}(t, \mu) - q_{2n}(t, \mu)q_{2n+1}(t, \lambda)) \]
in terms of the skew-orthogonal polynomials \((4.3)\). Multiplying this with an exponential and noting \((4.9)\), one obtains \((4.7)\). Summing up this telescoping sum yields \((4.8)\):

\[
K_N(\mu, \lambda) = \left(\frac{\mathcal{X}(\mu)\mathcal{X}(\lambda)\tilde{\tau}}{\tilde{\tau}} \right)_{2N} \\
= (\mu - \lambda)(\mu \lambda)^{2N-2}e^{\sum_{i=1}^{\infty} t_i(\mu + \lambda)} \frac{\tilde{\tau}_{2N-2}(t - [\mu^{-1}] - [\lambda^{-1}])}{\tilde{\tau}_{2N}(t)} \\
= \sum_{\nu=0}^{N-1} e^{\sum_{i=1}^{\infty} t_i(\mu + \lambda)}(q_{2\nu}(t, \lambda)q_{2\nu+1}(t, \mu) - q_{2\nu}(t, \mu)q_{2\nu+1}(t, \lambda)).
\]

\section{The exponential of the vertex operator maintains \tilde{\tau}-functions}

The purpose of this section is to show the following theorem:

\textbf{Theorem 5.1} \textit{For a Pfaffian \tilde{\tau}-function,}

\[
\tilde{\tau} + a\mathcal{X}(\lambda)\mathcal{X}(\mu)\tilde{\tau}
\]

\textit{is again a Pfaffian \tilde{\tau}-function.}

Remember that \(\mathcal{X}(\lambda)\mathcal{X}(\mu)\) acts on \(\tilde{\tau}_{2\nu}(t)\), as follows:

\[
\mathcal{X}(\lambda)\mathcal{X}(\mu)\tilde{\tau}_{2\nu}(t) = \left(1 - \frac{\mu}{\lambda}\right)\lambda^{2\nu-2}\mu^{2\nu-1}e^{\sum_{i=1}^{\infty} t_i(\lambda + \mu)}\tilde{\tau}_{2\nu-2}(t - [\lambda^{-1}] - [\mu^{-1}]).
\]

(5.2)

It is convenient to relabel \(\tilde{\tau}_{2\nu} \rightarrow \tilde{\tau}_n\)

\[
\mathcal{X}(\lambda)\mathcal{X}(\mu)\tilde{\tau}_n(t) = \left(1 - \frac{\mu}{\lambda}\right)\lambda^{2n-2}\mu^{2n-1}e^{\sum_{i=1}^{\infty} t_i(\lambda + \mu)}\tilde{\tau}_{n-2}(t - [\lambda^{-1}] - [\mu^{-1}])
\]

\[
= \frac{\mu}{\lambda}(\lambda - \mu)^{\Lambda^{-1}e^{\sum_{i=1}^{\infty} t_i(\lambda + \mu)}}e^{-\sum_{i=1}^{\infty} \left(\frac{\lambda^{-1} + \mu^{-1}}{\mu}\right)i} \mathcal{X}(\lambda^2\mu^2)\tilde{\tau}^n_n
\]

\[
= \frac{\mu}{\lambda}(\lambda - \mu)\mathcal{Y}(\lambda, \mu).
\]

(5.3)
With this relabeling, the bilinear identity takes on the form
\[
\oint_{z=\infty} \tau_n(t - [z^{-1}])\tau_{m+1}(t' + [z^{-1}])e^{\sum_{i=1}^{\infty} (t_i - t'_i)z^i} z^{2n-2m-2} dz \\
+ \oint_{z=0} \tau_{n+1}(t + [z])\tau_m(t' - [z])e^{\sum_{i=1}^{\infty} (t'_i - t_i)z^{-i}} z^{2n-2m} dz = 0. \tag{5.4}
\]

Lemma 5.2 We have:
\[
(1 - \lambda z)^{-1}(1 - \mu z)^{-1} - \frac{1}{\lambda \mu z^2} \left(\frac{1}{1 - \lambda z} \right)^{-1} \left(\frac{1}{1 - \mu z} \right)^{-1} = \frac{1}{\mu - \lambda} \left(z - \frac{1}{\lambda} \right) + \frac{1}{\lambda - \mu} \left(z - \frac{1}{\mu} \right).
\]

Proof: See for instance [8].

Lemma 5.3
\[
\begin{align*}
\oint_{z=\infty} \mathbb{Y} \tau_n(t - [z^{-1}])\tau_{m+1}(t' + [z^{-1}])e^{\sum_{i=1}^{\infty} (t_i - t'_i)z^i} z^{2n-2m-2} dz \\
+ \oint_{z=0} \mathbb{Y} \tau_{n+1}(t + [z])\tau_m(t' - [z])e^{\sum_{i=1}^{\infty} (t'_i - t_i)z^{-i}} z^{2n-2m} dz \\
= \frac{1}{\mu - \lambda} \left(\mu^{2n}\lambda^{2m}\tau_n(t - [\mu^{-1}])\tau_m(t' - [\lambda^{-1}])e^{\sum_{i=1}^{\infty} (t'_i \lambda^i + t_i \mu^i)} \\
- \lambda^{2n}\mu^{2m}\tau_n(t - [\lambda^{-1}])\tau_m(t' - [\mu^{-1}])e^{\sum_{i=1}^{\infty} (t_i \lambda^i + t'_i \mu^i)} \right)
\end{align*}
\]

Proof: Upon performing the following operations
\[
\begin{align*}
&\{ n \mapsto n - 1 \\
&\{ t \mapsto t - [\mu^{-1}] - [\lambda^{-1}] \\
&\{ \text{multiplication by } (\lambda \mu)^{2n-1} e^{\sum_{i=1}^{\infty} t_i (\mu^i + \lambda^i)} \}
\end{align*}
\]
the bilinear identity (5.3) yields

\[
0 = \oint_{z=\infty} \tau_{n-1}(t - [z^{-1}] - [\lambda^{-1}] - [\mu^{-1}]) \tau_{m+1}(t' + [z^{-1}]) (\lambda \mu)^{2n-2} \\
\left(1 - \frac{z}{\lambda} \right) \left(1 - \frac{z}{\mu} \right) \frac{\lambda \mu}{z^2} e^{\sum_i^\infty ((t_i - t_i')z^i + t_i(\mu^i + \lambda^i))} z^{2n-2m-2} dz \\
+ \oint_{z=0} \tau_n(t + [z] - [\lambda^{-1}] - [\mu^{-1}]) \tau_m(t' + [z]) (\lambda \mu)^{2n} \\
\left(1 - \frac{1}{\lambda z} \right)^{-1} \left(1 - \frac{1}{\mu z} \right)^{-1} \frac{1}{\lambda \mu z^2} e^{\sum_i^\infty ((t_i - t_i')z^i + t_i(\mu^i + \lambda^i))} z^{2n-2m} dz.
\]

Subtracting this expression (which is \(= 0\)), the left hand side of (5.5) equals

\[
\oint_{z=\infty} \tau_{n-1}(t - [z^{-1}] - [\lambda^{-1}] - [\mu^{-1}]) \tau_{m+1}(t' + [z^{-1}]) \\
e^{\sum_i^\infty ((t_i - t_i')z^i + t_i(\mu^i + \lambda^i))} (\lambda \mu)^{2(n-1)} z^{2n-2m-2} dz \\
+ \oint_{z=0} \tau_n(t + [z] - [\lambda^{-1}] - [\mu^{-1}]) \tau_m(t' + [z]) \\
e^{\sum_i^\infty ((t_i - t_i')z^i + t_i(\mu^i + \lambda^i))} (\lambda \mu)^{2n} z^{2n-2m} dz \\
= \oint_{z=\infty} \tau_{n-1}(t - [z^{-1}] - [\lambda^{-1}] - [\mu^{-1}]) \tau_{m+1}(t' + [z^{-1}]) e^{\sum_i^\infty ((t_i - t_i')z^i + t_i(\mu^i + \lambda^i))} \\
(\lambda \mu)^{2n-2} \left(1 - \frac{\lambda}{z} \right) \left(1 - \frac{\mu}{z} \right) \frac{\lambda \mu}{z^2} \left(1 - \frac{z}{\lambda} \right) \left(1 - \frac{z}{\mu} \right) z^{2n-2m-2} dz \\
+ \oint_{z=0} \tau_n(t + [z] - [\lambda^{-1}] - [\mu^{-1}]) \tau_m(t' + [z]) e^{\sum_i^\infty ((t_i - t_i')z^i + t_i(\mu^i + \lambda^i))} (\lambda \mu)^{2n} \\
\left(1 - \frac{1}{\lambda z} \right)^{-1} \left(1 - \frac{1}{\mu z} \right)^{-1} \left(1 - \frac{1}{\lambda z} \right) \left(1 - \frac{1}{\mu z} \right) z^{2n-2m} dz \\
= \frac{1}{\mu - \lambda} \left(\mu^{2n} \lambda^{2m} \tau_n(t - [\mu^{-1}]) \tau_m(t' - [\lambda^{-1}]) e^{\sum_i^\infty ((t_i + t_i')(\mu^i + \lambda^i))} \\
\right.
\left.\left. - \lambda^{2n} \mu^{2m} \tau_n(t - [\lambda^{-1}]) \tau_m(t' - [\mu^{-1}]) e^{\sum_i^\infty ((t_i + t_i')(\mu^i + \lambda^i))} \right) \right) ,
\]

ending the proof of the lemma.
Proof of theorem 5.1: It suffices to prove

\[0 = \oint_{z=\infty} (a + b Y) \tau_n(t - [z^{-1}]) (a + b Y) \tau_{m+1}(t' + [z^{-1}]) e^{\sum_{i=1}^{\infty} (t_i - t'_i) z^i} z^{2n-2m-2} dz \]

\[+ \oint_{z=0} (a + b Y) \tau_{n+1}(t + [z]) (a + b Y) \tau_m(t' - [z]) e^{\sum_{i=1}^{\infty} (t'_i - t_i) z^{-i}} z^{2n-2m} dz. \]

The coefficient of \(a^2 \) and \(b^2 \) vanishes, on view of the fact that \(\tau_n \) and \(Y \tau_n \) are Pfaffian \(\tau \)-functions. So it suffices to show the vanishing of the \(ab \)-term.

\[
ab\text{-coefficient} = \oint_{z=\infty} \left(Y \tau_n(t - [z^{-1}]) \tau_{m+1}(t' + [z^{-1}]) + \tau_n(t - [z^{-1}]) Y \tau_{m+1}(t' + [z^{-1}]) \right) e^{\sum_{i=1}^{\infty} (t_i - t'_i) z^i} z^{2n-2m-2} dz \\
+ \oint_{z=0} \left(Y \tau_{n+1}(t + [z]) \tau_m(t' - [z]) + \tau_{n+1}(t + [z]) Y \tau_m(t' - [z]) \right) e^{\sum_{i=1}^{\infty} (t'_i - t_i) z^{-i}} z^{2n-2m} dz.
\]

The first terms in each of the integrals can be evaluated by means of lemma. The sum of the two terms equals

\[
\frac{1}{\mu - \lambda} \left(\mu^{2n} \lambda^{2m} \tau_n(t - [\mu^{-1}]) \tau_m(t' - [\lambda^{-1}]) e^{\sum_{i=1}^{\infty} (t_i \lambda^{-1} + t'_i \mu^{-1})} \right) \\
- \left(\lambda^{2n} \mu^{2m} \tau_n(t - [\lambda^{-1}]) \tau_m(t' - [\mu^{-1}]) e^{\sum_{i=1}^{\infty} (t_i \lambda^{-1} + t'_i \mu^{-1})} \right). \tag{5.6}
\]

Performing the exchange

\[n \leftrightarrow m, \quad t \leftrightarrow t', \quad z \leftrightarrow z^{-1} \]

gives an expression for the sum of the second terms in the integrals; the sum of expression (5.6) and the same expression with the exchange above is obviously zero.

\[\square \]

6 Examples
6.1 Symmetric matrix integrals

Consider the matrix $m_{n}(t, s)$ of (t, s)-dependent moments,

$$
\mu_{k\ell}(t, s) := \int \int_{\mathbb{R}^2} x^k y^\ell e^{\sum_{i=1}^{\infty} (t_i x_i - s_i y_i)} F(x, y) \, dx \, dy, \quad t, s \in \mathbb{C}^\infty,
$$

with regard to a skew-symmetric weight $F(x, y)$, satisfying $F(x, y) = -F(y, x)$.

Then

$$
\tau_n(t, s) := \det m_{n}(t, s)
$$

and

$$
\tau_2(t) := \text{Pfaff } m_2(t, -t) = \sqrt{\tau_2(t, -t)}
$$

satisfies equations (0.6) up to (0.8).

Moreover, the moments μ_{ij} in (6.1) satisfy the equations

$$
\frac{\partial \mu_{ij}}{\partial t_k} = \mu_{i+k,j} \quad \text{and} \quad \frac{\partial \mu_{ij}}{\partial s_k} = -\mu_{i,j+k},
$$

and so $m := m_{\infty}$ satisfies (1.1).

The skew-symmetry of F above implies the skewness of $m_{\infty}(0, 0)$; so, by theorem 2.1, we have

$$
\mu_{ij}(t, s) = -\mu_{ji}(-s, -t).
$$

The skew-symmetric weights $F(x, y)$ of the special form

$$
F(x, y) := e^{V(x)+V(y)} I_E(x) I_E(y) \text{sign}(x - y), \quad \text{for an interval } E \subset \mathbb{R},
$$
and for a union of intervals $E \subset \mathbb{R}$, the expression $\tilde{\tau}_{2n} = \tau_{2n}(t,-t)^{1/2}$ equals the integral over symmetric matrices, given in

$$\tilde{\tau}_{2n}(t) = \sqrt{\tau_{2n}(t,-t)} = \int_{S_{2n}(E)} e^{\text{Tr}(V(X)+\sum_{i=1}^{\infty} t_i X_i)} dX,$$

for the Haar measure dX on symmetric matrices and $S_{2n}(E) := \{2n \times 2n \text{ symmetric matrices } X \text{ with spectrum } \subset E\}$.

In [5], we worked out the Virasoro constraints satisfied by $(??)$, which then leads to inductive expressions for those integrals, involving Painlevé-like expressions.

6.2 Quasiperiodic solutions

In this subsection, we shall combine the construction of quasi-periodic solutions of 2-Toda lattice [14, 17] and the theory of Prym varieties [15] to obtain quasiperiodic solutions of the Pfaff lattice. While we put stress on the semi-infinite case in the present paper, this gives a non-trivial example in the bi-infinite case.

A 2-Toda quasiperiodic solution is given by some deformation of a line bundle L on a complex curve (Riemann surface) C, with the time variables playing the role of deformation parameters, so the orbit under the 2-Toda flows is parametrized by the Jacobian of C. If C is equipped with an involution $\iota: C \to C$, and if L satisfies a suitable antisymmetry condition with respect to ι, then the 2-Toda flows can be restricted to preserve the antisymmetry of L, giving a solution of Pfaff lattice. The Prym variety P of (C, ι) naturally appears as the restricted parameter space. The vanishing of every other $\tau_n(t,-t)$ (see (1.4) or (2.6)) indicates that the space of L’s which satisfy the antisymmetry condition must consist of two connected components, P and P^-. This means the involution ι has no fixed points. So, in general a quasiperiodic solution of the Pfaff lattice does not satisfy the BKP equation and vice versa, since the orbit of a quasiperiodic solution of the BKP equation is isomorphic to the Prym variety of a curve with involution having at least two fixed points.

Preliminary on the geometry of curves

A line bundle on a complex curve C is defined by a divisor $D = \sum m_i p_i$, $m_i \in \mathbb{Z}$, $p_i \in C$, i.e., a set of points p_i on C with (positive or negative)
multiplicities m_i, as $\mathcal{L} = \mathcal{O}(D)$. Its local sections (on an open set $U \subset C$, say) are meromorphic functions on U which have poles of order at most m_i (zeros of order at least $-m_i$) at p_i. The number $d := \sum m_i$ is called the degree of \mathcal{L}. For $\mathcal{L} = \mathcal{O}(D)$ and $m, n \in \mathbb{Z}$, $p, q \in C$, we denote $\mathcal{L}(mp + nq) = \mathcal{O}(D + mp + nq)$ etc. A deformation of \mathcal{L} can be described as a deformation of D, like $D_{t,s} = \sum m_i p_i(t,s)$, but in the 2-Toda theory it is more convenient to describe it by requiring its local sections to have some exponential behaviors at prescribed points, as we shall see later.

Two line bundles $\mathcal{O}(D_1)$ and $\mathcal{O}(D_2)$ are isomorphic if the divisors D_1 and D_2 are “linearly equivalent,” i.e., if they differ by the divisor of a global meromorphic function on C. Jacobian J of C is the space (Lie group) of isomorphism classes of degree 0 line bundles on C. It becomes a principally polarized abelian variety of dimension $g := \text{genus of } C$, i.e., J is a complex torus \mathbb{C}^g/Γ, $\mathbb{C}^g \supset \Gamma \cong \mathbb{Z}^{2g}$, for which there is a divisor (codimension 1 subvariety) $\Theta \subset J$, such that some positive integer multiple of Θ defines an embedding of J into a complex projective space, and Θ is “rigid” in the sense that it has no deformation in J except parallel translations. A complex torus \mathbb{C}^g/Γ is a principally polarized abelian variety if and only if, after some change of coordinates by $GL(g, \mathbb{C})$, the lattice Γ becomes $\mathbb{Z}^g + \Omega \mathbb{Z}^g$ for some complex symmetric $g \times g$ matrix Ω with positive definite imaginary part.

On a principally polarized abelian variety \mathbb{C}^g/Γ, there is a special quasiperiodic function (i.e., holomorphic function on \mathbb{C}^g that satisfies some quasiperiodicity condition with respect to $\mathbb{Z}^g + \Omega \mathbb{Z}^g$) called Riemann’s theta function ϑ, defined by

$$\vartheta(z) = \sum_{m \in \mathbb{Z}^g} \exp(2\pi i m^t z + \pi i m^t \Omega m).$$

The theta divisor Θ becomes the zero divisor of ϑ.

If C has a (holomorphic) involution $\iota: C \to C$ (i.e., $\iota^2 = \text{id}$), J gets an involution ι^* induced by ι. The Jacobian J' of the quotient curve $C' = C/\iota$, and the Prym variety P of the pair (C, ι) (or (C, C')) appear in J roughly as the ± 1 eigenspaces of ι: $J' = J'/(\text{some subgroup of order 2}) \subset J$ and $P \subset J$ are subabelian varieties of J, such that $\iota|_{J'} = +1$, $\iota|_P = -1$, and $J \cong (J' \times P)/(\text{finite subgroup})$. When ι has at most two fixed points, the restriction of Θ on P gives twice some principal polarization on P (the restriction $\vartheta|_P$ becomes the square of the Riemann theta function on P defined by this polarization).
Quasiperiodic solutions of 2-Toda lattice

Let C be a nonsingular complete curve on \mathbb{C} (compact Riemann surface) of genus g, let \mathcal{L} be a line bundle of degree $g-1$ on C, let $p, q \in C$ be distinct points. Let us choose local coordinates z^{-1} at p and z at q, and trivializations of $\mathcal{L}(p)$ at p and q,

$$\sigma_p : \mathcal{L}_p(p) \simeq \mathcal{O}_p \quad \text{and} \quad \sigma_q : \mathcal{L}_q \simeq \mathcal{O}_q.$$

For $t, s \in \mathbb{C}^\infty$, let $\mathcal{L}_{t,s}$ be the line bundle whose (local holomorphic) sections are (local holomorphic) sections of \mathcal{L} away from p and q, and at p (resp. q) have singularities of the form $e^{\sum t_i z^i}$ (holomorphic) (resp. $e^{\sum s_i z^{-i}}$ (holomorphic)). For “generic” $(n, t, s) \in \mathbb{Z} \times \mathbb{C}^\infty \times \mathbb{C}^\infty$, the wave functions $\Psi_{1,n}, \Psi_{2,n}$ are obtained from a (unique) section $\varphi_n(t, s)$ of $\mathcal{L}_{t,s}((n+1)p - nq)$, which has the form $z^n e^{\sum t_i z^i} (1 + O(z^{-1}))$ at p via σ_p, i.e.,

$$\Psi_{1,n}(t, s, z) := \sigma_p(\varphi_n(t, s)) = z^n e^{\sum t_i z^i} (1 + O(z^{-1})), \quad \Psi_{2,n}(t, s, z) := \sigma_q(\varphi_n(t, s)) = z^n e^{\sum s_i z^{-i}} (h_n(t, s) + O(z)).$$ \hspace{1cm} (6.4)

The adjoint wave functions

$$\Psi_{1,n}^* = z^{-n} e^{-\sum t_i z^i} (1 + O(z^{-1})), \quad \Psi_{2,n}^* = z^{-n} e^{-\sum s_i z^{-i}} (h_n(t, s)^{-1} + O(z))$$

are defined similarly, by using

$$(\mathcal{L}_{t,s})^*(-np + (n+1)q) = (\mathcal{L}^*)_{-t,-s}(-np + (n+1)q),$$

in place of $\mathcal{L}_{t,s}((n+1)p - nq)$, where we denote

$$\mathcal{L}^* := \mathcal{H}om(\mathcal{L}, \omega) = \mathcal{L}^{-1} \otimes \omega,$$

with ω being the dualizing sheaf (the canonical bundle, i.e., the line bundle of holomorphic 1-forms), and, in place of σ_p and σ_q, trivializations

$$\sigma_p^* : \mathcal{L}_p^* \simeq \mathcal{O}_p \quad \text{and} \quad \sigma_q^* : \mathcal{L}_q^* \simeq \mathcal{O}_q,$$

\hspace{1cm}13 Here generic means that $\Gamma(\mathcal{L}_{t,s}(-np + nq)) = \{0\}$ holds. For a degree $g-1$ line bundle \mathcal{L}, this condition holds for almost all $(n, t, s) \in \mathbb{Z} \times \mathbb{C}^\infty \times \mathbb{C}^\infty$, and implies that $\dim \Gamma(\mathcal{L}_{t,s}((n+1)p - nq)) = 1$.

36
for which the maps
\[
\begin{align*}
\mathcal{L}_p(p) \otimes \mathcal{L}_p^* & \ni (\phi, \psi) \mapsto \sigma_p(\phi) \sigma_p^*(\psi) dz/z \in \omega(p)_p, \\
\mathcal{L}_q \otimes \mathcal{L}_q^* & \ni (\phi, \psi) \mapsto \sigma_q(\phi) \sigma_q^*(\psi) dz/z \in \omega(q)_q
\end{align*}
\]
(6.5)
extend to the canonical map
\[
\mathcal{L}(p) \otimes \mathcal{L}^*(q) \Rightarrow \omega(p + q).
\]
Hence for general \((n, t, s), (m, t', s') \in \mathbb{Z} \times \mathbb{C}^\infty \times \mathbb{C}^\infty,\)
\[
\Psi_{i,n}(t, s, z) \Psi_{i,m}^*(t', s', z) dz/z, \quad i = 1, 2
\]
become expansions at \(p\) and \(q\), respectively, of a holomorphic 1-form on \(C \setminus \{p, q\}\), so by the residue calculus the pair \(\Psi, \Psi^*\) satisfies the bilinear identities (1.7).

Quasiperiodic solutions of Pfaff lattice

In the above construction, suppose \(C\) has an involution \(\iota: C \to C\) with no fixed point. In this case \(g\) is odd, \(g = 2g' - 1\), with \(g'\) being the genus of the quotient curve \(C' = C/\iota\). Suppose \(q = \iota(p)\), and \(\mathcal{L}\) satisfies
\[
\iota^*(\mathcal{L}) \simeq \mathcal{L}^*, \quad \text{so that} \quad \mathcal{L} \otimes \iota^* \mathcal{L} \simeq \omega.
\]
Choose the local coordinates \(z^{\mp 1}\) and the trivializations \(\sigma_p, \sigma_q, \sigma_p^*, \sigma_q^*\) at \(p\) and \(q = \iota(p)\), such that \(z \cdot \iota^* z \equiv 1\) and \(\sigma_q = \iota^* \sigma_p^* \circ \iota^*\) hold. (We then have \(\sigma_q^* = -\iota^* \circ \sigma_p \circ \iota^*\), with the minus sign due to the fact that \(dz/z\), which appear in (6.3), satisfy \(\iota^*(dz/z) = -dz/z\).) Then the wave and adjoint wave functions constructed above satisfy (2.3), so they lead to a quasiperiodic solution of the Pfaff lattice when \(s = -t\) (and skipping every other \(n\)).

The orbit of the 2-Toda flows is parametrized by the Jacobian \(J\) of \(C\), and the \(\tau\)-functions are written in terms of Riemann’s theta function of \(J\). The orbit of the Pfaff flows will become the Prym variety \(P\) of \((C, \iota)\), with \(\tilde{\tau}\) given by the Prym theta function. To be more precise, let \(J_{g-1}\) be the moduli space of the isomorphism classes of line bundles of degree \(g - 1\) on \(C\). This is a principal homogeneous space \(14\) over \(J\), on which the theta divisor
\[
\Theta := \{ \mathcal{L} \in J_{g-1} \mid \Gamma(\mathcal{L}) \neq (0) \}
\]

\(^{14}\) Hence \(J_{g-1}\) is (non-canonically) isomorphic to \(J\). We choose this isomorphism in such a way that \(\Theta \subset J_{g-1}\) is identified with the zero locus of Riemann’s theta function for \(J\).
is canonically defined. The set of $L \in J_{g-1}$ satisfying (6.6) becomes the disjoint union $P_{g-1} \cup P_{g-1}^-$, where

\[
\begin{align*}
P_{g-1} &:= \{ L \in J_{g-1} \mid L \text{ satisfies (6.6) and } \dim \Gamma(L) \text{ is even} \}, \\
P_{g-1}^- &:= \{ L \in J_{g-1} \mid L \text{ satisfies (6.6) and } \dim \Gamma(L) \text{ is odd} \}.
\end{align*}
\]

are principal homogeneous spaces over the Prym P. We have

\[
P_{g-1}^- \subset \Theta \quad \text{and} \quad P_{g-1}^- \cdot \Theta = 2\Xi,
\]

for some divisor $\Xi \subset P_{g-1}$ which gives a principal polarization on P_{g-1}. Since Θ is the zero locus of Riemann’s theta function ϑ of the Jacobian J, this means ϑ vanishes identically on P_{g-1}^-, and the restriction $\vartheta|_{P_{g-1}^-}$ becomes the square of Riemann’s theta function ϑ_P of (P, Ξ), which is called the Prym theta function.

For a 2-Toda quasiperiodic solution, the discrete time flow (shift of n by 1) is given by the shift $L \mapsto L(p - q)$. In the present case, since $q = \iota(p)$, this flow preserves condition (6.6). Moreover, we have

\[
\forall p \in C, \forall L \in J_{g-1} : \begin{cases} L \in P_{g-1} & \Rightarrow L(p - \iota(p)) \in P_{g-1}^-; \\
L \in P_{g-1}^- & \Rightarrow L(p - \iota(p)) \in P_{g-1}, \end{cases}
\]

so that $L(np - n\iota(p))$’s alternate between P_{g-1} and P_{g-1}^-, and every other τ function vanishes identically when $s = -t$. Shifting the discrete index n by 1 if necessary, we may assume that $\tau_n(t, s)$ satisfies (0.4) or (2.6).

Explicit formulas

Explicit formulas for Ψ, Ψ^* and τ can be given in terms of Riemann’s theta function for J, and hence explicit formulas for $\tilde{\tau}$ can be given in terms of the Prym theta function for P.

Taking a basis A_i, B_i ($i = 1, \ldots, g$) of $H_1(C, \mathbb{Z})$ such that $A_i \cdot B_j = \delta_{i,j}$ and $A_i \cdot A_j = B_i \cdot B_j = 0$, let ω_i ($i = 1, \ldots, g$) be a basis of the space of holomorphic 1-forms such that

\[
\int_{A_i} \omega_j = \delta_{i,j}.
\]

Then

\[
\int_{B_i} \omega_j = \Omega_{i,j}
\]
Adler-Shiota-van Moerbeke: Pfaff \(\tau \) July 23, 1999 §6, p.39

gives a complex symmetric matrix \(\Omega \) with positive definite imaginary part, and \(J = \mathbb{C}^g/(\mathbb{Z}^g + \Omega \mathbb{Z}^g) \) becomes the Jacobian of \(C \). Choosing a point \(p \in C \), the map

\[
\alpha : C \ni x \mapsto \left(\int_p^x \omega_1, \ldots, \int_p^x \omega_g \right) \in J
\]

is well-defined and gives an embedding of \(C \) into \(J \). Composing \(\alpha \) with a translate of Riemann’s theta function:

\[
q(x) := \vartheta(\alpha(x) + a), \quad a \in \mathbb{C}^g, \quad (6.8)
\]

one obtains a multi-valued function on \(C \) which is single-valued around the \(A \)-cycles.

Next, let \(\zeta_n^{(\ell)} \), \(\ell = 1, 2, \ldots \), be the differentials of the second kind (meromorphic 1-forms with no residues) with poles only at \(p \) of the form \(d(z^n + O(1)) \) and no \(A \)-periods (\(\int_A \zeta_n^{(p)} = 0 \)), and let \(\zeta_n^{(q)} \), \(\ell = 1, 2, \ldots \), be defined similarly, with \(p \) replaced by \(q \) and \(z \) by \(z^{-1} \) (recall that \(z^{-1} \) (resp. \(z \)) is the local coordinate at \(p \) (resp. \(q \))). Let \(\zeta_0 \) be the differential of the third kind (meromorphic 1-form with simple poles) with no \(A \)-periods and poles only at \(p \) and \(q \) of the form \(dz/z + O(1) \). Then, given \((n,t,s) \in \mathbb{Z} \times \mathbb{C}^\infty \times \mathbb{C}^\infty \), the multi-valued holomorphic function

\[
C \ni x \mapsto \varepsilon(x) := \exp\left(\int_x^p \left(n \zeta_0 + \sum_{n=1}^\infty t_n \zeta_n^{(p)} + \sum_{n=1}^\infty s_n \zeta_n^{(q)} \right) \right) \quad (6.9)
\]

has singularities at \(p \) and \(q \) of the form \(z^n e^{\sum t_n z^n} \) and \(z^n e^{\sum s_n z^{-n}} \), respectively, and is single-valued around \(A \)-cycles. The product of the form \(\varepsilon(x) q(x)/q(p) \), where \(\varepsilon(x) \) and \(q(x) \) are as in (6.8) and (6.9), with

\[
a = a(n,t,s) = n a(q) + \sum_{i=1}^\infty t_i U_i + \sum_{i=1}^\infty s_i V_i + a_0, \quad \forall a_0 \in \mathbb{C}^g, \quad (6.10)
\]

and \(U_i = -(d/d(z^{-1}))^i \alpha(p)/(i-1)! \), \(V_i = -(d/dz)^i \alpha(q)/(i-1)! \), gives function on \((n,t,s) \), and hence the wave functions \(\Psi \), with the desired properties:

- \(\varphi_n(t,s;x) \) is single-valued around the \(A \)-cycles, and when \(x \) goes around \(B_i \), it is multiplied by a factor independent of \(n,t,s \),

- \(\varphi_n(t,s;x) \simeq z^n e^{\sum t_i z^i} (1 + O(z^{-1})) \) at \(x \simeq p \), and

- \(\varphi_n(t,s;x) \simeq z^n e^{\sum s_i z^{-i}} (h_n(t,s) + O(z)) \) at \(x \simeq q \).
The adjoint wave functions \(\Psi^* \) are obtained similarly, from \(\varepsilon(x)^{-1} \vartheta(\alpha(x) - a)/\vartheta(-a) \) with the same \(a \) as above.

The 2-Toda \(\tau \)-function can be computed from those formulas as

\[
\tau_n(t, s) = \exp(Q(n, t, s)) \vartheta(a(n, t, s))
\]

for some quadratic form \(Q(n, t, s) \), i.e.,

\[
Q(n, t, s) = \sum_{i,j=1}^{\infty} Q_{i,j} t^i t_j + \sum_{i,j=1}^{\infty} Q'_{i,j} s_i s_j + \sum_{i=1}^{\infty} n(q_i t_i + q'_i s_i),
\]

with \(Q_{i,j} = Q_{j,i} \) appearing in the Laurent expansion of the integral of \(\zeta_i^{(p)} \) or \(\zeta_j^{(q)} \) as

\[
\int x \zeta_i^{(p)} = z^i - 2 \sum_{j=1}^{\infty} Q_{i,j} z^{-j} / j \quad \text{for} \quad x \approx p,
\]

\(Q'_{i,j} = Q'_{j,i} \) appearing similarly in the Laurent expansion of the integral of \(\zeta_i^{(q)} \) or \(\zeta_j^{(g)} \) as

\[
\int x \zeta_i^{(q)} = z^{-i} - 2 \sum_{j=1}^{\infty} Q'_{i,j} z^j / j \quad \text{for} \quad x \approx q,
\]

and \(q_i \) and \(q'_i \) appearing similarly in the expansions

\[
\int x \zeta_0 = \log z - \sum_{j=1}^{\infty} q_j z^{-j} / j \quad \text{for} \quad x \approx p
\]

and

\[
\int x \zeta_0 = \log z - \sum_{j=1}^{\infty} q'_j z^j / j \quad \text{for} \quad x \approx q.
\]

Suppose \(C \) has an involution \(\iota \) with no fixed points, so that \(g = 2g' - 1 \) with \(g' \) being the genus of the quotient curve \(C' = C/\iota \). Suppose \(q = \iota(p) \).

Take the cycles \(A_i, B_i \) \((i = 1, \ldots, g) \) in such a way that \(\iota(A_i) \simeq A_{g+1-i} \), \(\iota(B_i) \simeq B_{g+1-i} \). Then \(\iota^*(\omega_i) = \omega_{g+1-i} \), and \(\Omega \) satisfies \(\Omega_{i,j} = \Omega_{g+1-i,g+1-j} \).

The map \(\iota: \mathbb{C}^g \ni (z_1, \ldots, z_g) \mapsto (z_g, \ldots, z_1) \in \mathbb{C}^g \) maps the lattice \(\Gamma := \mathbb{Z}^g + \Omega \mathbb{Z}^g \) onto itself, and the embeddings

\[
\bar{J}' = J'/(\mathbb{Z}/2\mathbb{Z}) \subset J \quad \text{and} \quad P \subset J
\]
are given by the images under $\pi_L: \mathbb{C}^g \to \mathbb{C}^g/\Gamma$ of the ± 1-eigenspaces of \bar{i}: Setting

$$R' := (\delta_{i,j} + \delta_{i,g+1-j})_{1 \leq i \leq g, 1 \leq j \leq g'} \quad \text{and} \quad R'' := (\delta_{i,j} - \delta_{i,g+1-j})_{1 \leq i \leq g, 1 \leq j \leq g'-1},$$

so that $\mathbb{C}^g_+ := R'\mathbb{C}^g$ and $\mathbb{C}^g_- := R''\mathbb{C}^{g'-1}$ are the ± 1-eigenspaces of \bar{i}, and for any $z \in \mathbb{C}^g$, $z' := (1/2)(R')^t z$ and $z'' := (1/2)(R'')^t z$ give the decomposition $z = R'z' + R''z'' \in \mathbb{C}^g_+ \oplus \mathbb{C}^g_-$, we have

$$\bar{J}' = \mathbb{C}^g / (\varepsilon \mathbb{Z}^g + \Omega' \mathbb{Z}^g) \simeq \pi_L(R'\mathbb{C}^g) \subset \mathbb{C}^g / (\mathbb{Z}^g + \Omega' \mathbb{Z}^g) \quad z' \mapsto R'z'$$

and

$$P = \mathbb{C}^g / (\mathbb{Z}^{g'-1} + \Omega'' \mathbb{Z}^{g'-1}) \simeq \pi_L(R''\mathbb{C}^{g'-1}) \subset \mathbb{C}^g / (\mathbb{Z}^g + \Omega' \mathbb{Z}^g) \quad z'' \mapsto R''z'', \quad (6.12)$$

where $\varepsilon = \text{diag}(1,1,\ldots,1,1/2)$,

$$\Omega' = \left(\frac{\Omega_{i,j} + \Omega_{i,g+1-j}}{(1 + \delta_{i,g'})(1 + \delta_{j,g'})} \right)_{1 \leq i,j \leq g'} \quad \text{and} \quad \Omega'' = (\Omega_{i,j} - \Omega_{i,g+1-j})_{1 \leq i,j \leq g'-1}. $$

In (5.10), suppose $a_0 = R''a''_0 \in R''\mathbb{C}^{g'-1}$. Since, by definition, $\alpha(q) = \alpha(q) - \alpha(p) \in \pi_L(\mathbb{C}^g)$ and $\bar{i}(U_i) = V_i$, we then have $a(n,t,-t) = R''a''(n,t)$, where

$$a''(n,t) = \frac{1}{2}(R'')^t a(n,t,-t) = (R'')^t \left(\frac{1}{2}n\alpha(q) + \sum_{i=1}^{\infty} t_i U_i \right) + a''_0. $$

Hence by using (5.11) and (5.12), and noting that $Q'_{i,j} = Q_{i,j}$ and $q'_i = -q_i$, we have

$$\tilde{\tau}(t) = \exp(\tilde{Q}(n,t)) \vartheta_P(a''(n,t)), $$

where

$$\tilde{Q}(n,t) = \sum_{i,j=1}^{\infty} Q_{i,j}t_i t_j + \sum_{i=1}^{\infty} q_i n t_i, $$

and

$$\vartheta_P(z) = \sum_{m \in \mathbb{Z}^{g'-1}} \exp(2\pi im^t z + \pi im^t \Omega'' m), \quad \text{for} \quad z \in \mathbb{C}^{g'-1}. $$
References

[1] M. Adler and P. van Moerbeke: *Birkhoff strata, Bäcklund transformations and limits of isospectral operators*, Adv. in Math., **108**, 140–204 (1994).

[2] M. Adler and P. van Moerbeke: *String orthogonal Polynomials, String Equations and two-Toda Symmetries*, Comm. Pure and Appl. Math., **L**, 241–290 (1997).

[3] M. Adler and P. van Moerbeke: *The spectrum of coupled random matrices*, Annals of Math., **149**, 921-976 (1999).

[4] M. Adler and P. van Moerbeke: *Group factorization, moment matrices and 2-Toda lattices*, Intern. Math. Research Notices, **12**, 555–572 (1997).

[5] M. Adler and P. van Moerbeke: *On symmetric random matrices*, solv-int/9903009, to appear (1999).

[6] M. Adler and P. van Moerbeke: *The Pfaff Lattice, matrix integrals and a map from Toda to Pfaff*, solv-int/9909, (1999).

[7] M. Adler, E. Horozov and P. van Moerbeke: *The Pfaff lattice and skew-orthogonal polynomials*, Intern. math. Res. Notices **11** 569-588 (1999).

[8] M. Adler, T. Shiota, A. Morozov and P. van Moerbeke: *A matrix integral solution to $[P,Q] = P$ and matrix Laplace transforms*, Comm. Math. Phys., **180**, 233–263 (1996).

[9] E. Date, M. Jimbo, M. Kashiwara, T. Miwa: *Transformation groups for soliton equations*, In: Proc. RIMS Symp. Nonlinear integrable systems — Classical and quantum theory (Kyoto 1981), Ed. by H. Fujita et al. pp. 39–119. Singapore: World Scientific 1983.

[10] L. Dickey: *Soliton equations and integrable systems*, World Scientific (1991).

[11] M. Iwao, R. Hirota: *Soliton solutions of a coupled modified KdV equations*, J. of the Phys. Soc. of Japan, 577–588 (1997).
[12] V.G. Kac and J. van de Leur: *The geometry of spinors and the multicomponent BKP and DKP hierarchies* in ”The bispectral problem (Montreal PQ, 1997)”, CRM Proc. Lecture notes 14, AMS, Providence, 159-202 (1998).

[13] M.L. Mehta: Random matrices, 2nd ed. Boston: Acad. Press, 1991

[14] D. Mumford, An algebro-geometric construction of commuting operators and of solutions to the Toda lattice equation, Korteweg-de Vries equation and related non-linear equations, In: Proceedings Int. Symp. Algebraic Geometry, Kyoto (1977), Kinokuniya Book Store, Tokyo, 1978, pp. 115–153

[15] D. Mumford, Prym varieties I, In: Contributions to analysis, Ed. by L. Ahlfors et al., Academic Press, 1974, pp 325–350

[16] H. Peng: *The spectrum of random matrices for symmetric ensembles*, Brandeis dissertation (1997).

[17] K. Ueno and K. Takasaki: *Toda Lattice Hierarchy*, Adv. Studies in Pure Math. 4, 1–95 (1984).

[18] J. van de Leur: *Symmetric matrix integrals and the geometry of spinors*, preprint (1999).