Phase II study of weekly oxaliplatin and 24-h infusion of high-dose 5-fluorouracil and folinic acid in the treatment of advanced gastric cancer

Y Chao1, KH Yeh2,3, CJ Chang2, LT Chen1,8, TY Chao4, MF Wu5, CS Chang6, JY Chang2,8, CY Chung6, WY Kao4, RK Hsieh1 and AL Cheng*2

1Taipei Veterans General Hospital, Taipei, Taiwan; 2National Taiwan University Hospital, Taipei, Taiwan; 3Far Eastern Memorial Hospital, Taipei, Taiwan; 4Tri-Service General Hospital, Taipei, Taiwan; 5Chung Shan Medical and Dental College Hospital, Taipei, Taiwan; 6Changhua Christian Hospital, Taipei, Taiwan; 7Mackay Memorial Hospital, Taipei, Taiwan; 8National Health Research Institutes, Taipei, Taiwan

To investigate the efficacy and safety of combining weekly oxaliplatin with weekly 24-h infusion of high-dose 5-fluorouracil (5-FU) and folinic acid (FA) in treatment of patients with advanced gastric cancer; Patients with histologically confirmed, locally advanced or recurrent/metastatic gastric cancer were studied. Oxaliplatin 65 mg m⁻² 2-h intravenous infusion, and 5-FU 2600 mg m⁻² plus FA 300 mg m⁻² 24-h intravenous infusion, were given on days 1 and 8, repeated every 3 weeks. Between January 2001 through January 2002, 55 patients were enrolled. The median age was 64 years (range: 22–75). In all, 52 patients (94.5%) had recurrent or metastatic disease and three patients had locally advanced disease. Among 50 patients evaluable for tumour response, 28 patients achieved partial response, with an overall response rate of 56% (95% confidence interval (CI): 41.8–70.3%). All 55 patients were evaluated for survival and toxicities. Median time to progression and overall survival were 5.2 and 10.0 months, respectively, during median follow-up time of 24.0 months. Major grades 3–4 toxicities were neutropenia in 23 cycles (7.1%) and thrombocytopenia in 16 cycles (5.0%). Treatment was discontinued for treatment-related toxicities in nine patients (16.4%), of whom eight were due to oxaliplatin-related neurotoxicity. One patient (1.8%) died of neutropenic sepsis. This oxaliplatin-containing regimen is effective in the treatment of advanced gastric cancer. Except for neurotoxicity that often develops after prolonged use of oxaliplatin, the regimen is well tolerated.

British Journal of Cancer (2004) 91, 453–458. doi:10.1038/sj.bjc.6601985 www.bjcancer.com
Published online 29 June 2004
© 2004 Cancer Research UK

Keywords: oxaliplatin; high-dose 5-fluorouracil; folinic acid; advanced gastric cancer

Gastric cancer is the second leading cause of cancer death worldwide (Ho, 1988; Roder, 2002). The prognosis is generally poor, with overall 5-year survival ranged from 5 to 15%. Most patients present with advanced or metastatic diseases, for which curative resection is not possible. Chemotherapy is used primarily for palliation of symptoms (Findlay and Cunningham, 1993; Wils, 1996; De Vivo et al, 2000). In the past three decades, a variety of chemotherapy regimens were developed for the treatment of advanced gastric cancer (MacDonald et al, 1980; Preusser et al, 1989; Wilke et al, 1990; Wils et al, 1991; Kim et al, 1993; Cocconi et al, 1994; Zaniboni et al, 1995; Ychou et al, 1996; Cheng et al, 1998). All these regimens had variable degrees of success in phase II trials; however, results of the subsequent phase III trials often failed to confirm the relatively high response rates of earlier reports (Kelsen et al, 1992; Kim et al, 1993; Cocconi et al, 1994; Webb et al, 1997; Vanhoef et al, 2000). The survival benefit was limited with overall survival consistently below 10 months, and substantial treatment-related toxicities were observed in most regimens (Waters et al, 1999; Ajanie et al, 2003; Ohtsu et al, 2003). Further, second-line chemotherapy is hardly effective in most trials, indicating the rapid emergence of drug resistance of gastric cancer cells to currently available anticancer drugs (Findlay and Cunningham, 1993; Wils, 1996; De Vivo et al, 2000). New treatments with better therapeutic index or novel agents with lesser cross-resistance are needed.

Oxaliplatin is a third-generation platinum compound that has a wide range of antitumour activities (Machover et al, 1996; Monnet et al, 1998; de Gramont et al, 2000; Misset et al, 2001). Compared with cisplatin, oxaliplatin appears to have a better safety profile; and the cross-resistance to cisplatin is minimal (Kollmannsberger et al, 2002). Oxaliplatin has higher anticancer activity than cisplatin in some preclinical experiments (Di Francesco et al, 2002). Synergism between oxaliplatin and 5-fluorouracil (5-FU) has been demonstrated in vitro (Pendyala and Creaven, 1993; Hsu et al, 2000), and in vivo (Andre et al, 1999). Combination of oxaliplatin and 5-FU has proven effective as first- or second-line treatment for advanced colorectal cancer (Machover et al, 1996; de...
PATIENTS AND METHODS

Patients

Eligibility criteria of the patients included (1) pathologically confirmed, locally advanced (nonresectable), recurrent or metastatic gastric cancer, (2) objectively measurable disease by imaging studies, (3) no prior chemotherapy except postoperative adjuvant chemotherapy that was received more than 12 months before entry into the study, (4) ECOG (Eastern Cooperative Oncology Group) performance status ≤ 2, (5) age between 18 and 75 years, (6) adequate hepatic, renal, and bone marrow functions, and (7) serum triglyceride > 70 mg dl⁻¹. The low limit for serum triglyceride was set to avoid HDFL-related hyperammonaemic encephalopathy, which occurs in around 5% of Taiwanese patients (Yeh and Cheng, 1997).

Exclusion criteria included (1) pre-existing peripheral neuropathy, (2) pregnant, breastfeeding, or woman of child-bearing potential without adequate contraception, (3) concurrent or prior malignancy except curatively resected cervical carcinoma in situ or squamous cell carcinoma of skin, (4) central nervous system metastases, (5) active infection, and (6) concurrent treatments that interfered with study evaluation. This study was approved by the ethics committee of all participating institutes. Signed informed consent was obtained from all patients.

Study design

This is a prospective, multicentre, phase II clinical trial.

Chemotherapy protocol

On days 1 and 8 of each cycle of chemotherapy, oxaliplatin 65 mg m⁻² was given as a 2-h intravenous infusion, then followed by 5-FU 2600 mg m⁻² and FA 300 mg m⁻² as a continuous 24-h intravenous infusion. Treatment was repeated every 21 days. Treatment was continued until disease progression or unacceptable toxicity developed. Patients with complete response received at least two more cycles of chemotherapy.

Dose modification

Subsequent cycle of chemotherapy was withheld if peripheral blood neutrophils < 1500 mm⁻³ or platelets < 100 000 mm⁻³ was noted on the due day. If recovery of neutrophils and platelets took more than 3 weeks after the due day, the patient was removed from protocol treatment. 5-FU was decreased to 2000 mg m⁻² for subsequent cycles if grade 4 thrombocytopenia or neutropenia developed in the preceding cycle of chemotherapy. Dose of 5-FU was further reduced to 1600 mg m⁻² for subsequent cycles if grade 4 thrombocytopenia or neutropenia developed again after first level of dose reduction of 5-FU. Oxaliplatin was decreased to 50 mg m⁻² if grade 4 thrombocytopenia or neutropenia developed after two levels of 5-FU dose reduction. If grade 3–4 nonhaematological toxicities or grade 2 hand–foot syndrome developed, 5-FU was decreased to 2000 mg m⁻² for subsequent cycles. Dose of 5-FU was further decreased to 1600 mg m⁻² for subsequent cycles if grade 3–4 nonhaematological toxicities or grade 2 hand–foot syndrome recurred after first levels of dose reduction of 5-FU. Oxaliplatin was decreased to 50 mg m⁻² if grade 3–4 nonhaematological toxicities or grade 2 hand–foot syndrome developed again after two levels of 5-FU dose reduction. For grade 2–3 neurotoxicities, oxaliplatin was omitted until recovery of the neurotoxicities to grade 1 or less; and the dose of oxaliplatin was decreased to 50 mg m⁻² for subsequent cycles. Oxaliplatin was discontinued if grade 2–3 neurotoxicities lasted for more than 3 weeks.

Evaluation of efficacy and toxicities

Evaluations before chemotherapy included medical history taking, physical examination, complete blood count, blood chemistry, chest X-ray, computed tomography (CT) scan of abdomen, and gastroendoscopy. After starting protocol treatment, complete blood count was examined weekly and blood chemistry every 3 weeks. Patients’ condition and treatment-related toxicities were evaluated weekly. Tumour size was measured by imaging studies every 6 weeks. Tumour response was evaluated according to the World Health Organization criteria. Toxicities were graded using the NCI-Common Toxicity Criteria (version 1).

Statistical methods

The Simon two-stage design was used. The response rates of interest were $P_b = 40\%$ and $P_t = 60\%$. If there were more than 12 responses in 29 patients in the first stage, the study would continue to 54 patients in the second stage. If there were more than 27 responses in 54 patients in the second stage, this treatment would be acceptable with $\alpha = 0.05$ and $\beta = 0.10$.

Time to progression was defined as the duration from the date of starting protocol treatment to the date of documented disease progression or death by any cause. The overall survival was defined as the duration from the date of starting protocol treatment to the date of death. Kaplan–Meier method was used in all survival analyses.

RESULTS

Patients and treatment

Between January 2001 through January 2002, 55 patients were enrolled into the study. Major clinicopathologic features of the patients are listed in Table 1. The median age of the patients was 64 years (range: 22–75). A total of 323 cycles (median: 6, range: 1–17) of chemotherapy were given. Median relative dose intensity was 95% (range: 67–100%) for oxaliplatin, 95% (range: 48–100%) for 5-FU, and 95% (range: 48–100%) for FA. Oxaliplatin has a cumulative toxicity, the median relative dose intensity of oxaliplatin was 100% (range: 70–100%) at cycle 3 and 88% (range: 67–100%) at cycle 6, respectively. In total, 75% of the patients received more than 80% of intended doses of oxaliplatin, 5-FU and FA.
Efficacy

Five patients were not evaluable for response: four failed to return to the clinic for tumour measurements and one later found to have nonmeasurable tumours. Of the 50 patients evaluable for tumour response, there were 28 patients with partial remission (PR), four patients with stable disease (SD), and 18 patients with progressive disease (PD). The total tumour response rate was 56% (95% CI: 41.8–70.3%). The median time to tumour response was 3 months (range: 2.2–8.3 months). Five out of the six patients, who had previously received postoperative adjuvant chemotherapy which contains cisplatin and 5-FU, achieved PR. Two responders went on to receive curative surgical resection or radiotherapy for the residual tumours. Both patients were alive and tumour-free at 16 and 25 months after starting protocol chemotherapy, respectively.

Median follow-up time of the whole group of 55 patients was 24.0 months as cut-off date for analysis on 25 July 2003. The median time to progression was 5.2 months (95% CI: 4.0–7.0 months) (Figure 1). The median overall survival was 10.0 months (95% CI: 8.0–13.3 months) (Figure 2).

Toxicity

All 55 patients were evaluated for toxicities (Table 2). Nine patients (14.5%) discontinued treatment because of treatment-related toxicity. Eight out of these nine patients discontinued treatment because of oxaliplatin-related neurotoxicity. The median dose of oxaliplatin received by these eight patients was 910 mg m$^{-2}$ (range: 715–1170 mg m$^{-2}$). Another patient discontinued treatment due to heart failure, which was considered unrelated to chemotherapy.

Table 1 Clinicopathologic features of the patients

Patient number (%)
Total patients
Sex: male/female
ECOG performance
0
1
2
Treatments for primary tumour
No prior therapy
Surgery only
Surgery + adjuvant chemotherapy
Disease status
Locally advanced
Recurrence/metastasis
Disease sites
Liver
Lymph nodes
Peritoneum
Gastrointestinal tract
Bone
Lung
Others

Table 2 Toxicity of the oxaliplatin-HDFL regimen

Toxicity	Grade 1–2	Grade 3–4	Grade 1–2	Grade 3–4
Haematological				
Neutropenia	72.7a	21.8	34.3b	7.1
Leukopenia	58.1	7.2	21.0	1.8
Thrombocytopenia	60.0	12.7	24.5	5.0
Febrile neutropenia	1.8	5.4	0.3	0.9
Anaemia	61.8	9.0	34.7	2.8
Gastrointestinal				
Nausea	81.8	10.9	38.4	2.5
Vomiting	87.2	12.7	31.6	2.2
Diarrhoea	69.1	12.7	22.0	2.4
Stomatitis	50.9	3.6	13.3	0.9
Anorexia	70.9	1.8	36.5	0.3
Weight loss	9.1	0	1.85	0
Neuropathic	72.7	12.7	46.8	2.2
Others				
Cardiac	0	1.8	0	0.3
Fever	27.3	1.8	7.1	0.3
Infection without neutropenia	16.4	0	4.3	0
Alopecia	21.8	0	16.4	0

aAll numbers are percentage of the 55 patients. bAll numbers are percentage of the 323 cycles given.
DISCUSSION

The results of this phase II study indicated that weekly oxaliplatin and 24-h infusion of high-dose 5-FU and FA is an effective combination chemotherapy for advanced gastric cancer. The overall response rate of 36% was within the range (30–70%) of previous major protocols such as FAMTX, ELF, EAP, ECF, and recent taxane-based (Bokemeyer et al, 1997; Kollmannsberger et al, 2000; Cascini et al, 2001) or irinotecan-based regimens (Blbeberg, 1999; Ajani et al, 2002; Slater et al, 2002). Recently, three other studies, using different administering schedules of oxaliplatin and 5-FU, have also demonstrated a good efficacy in gastric cancer (Louvet et al, 2002; Kim et al, 2003; Al-Batran et al, 2004). These phase II studies showed a response rates of 43–44.9% (Louvet et al, 2002; Al-Batran et al, 2004) and 26% (Kim et al, 2003) in the first- and second-line treatment, respectively. Oxaliplatin appears to be a useful adjunct to systemic chemotherapy against advanced gastric cancer. Currently, a randomised multicentre study (REAL-2) is underway with a two by two factorial design to compare the efficacy of capecitabine with 5-FU, and oxaliplatin with cisplatin in the ECF regimen, for patients with advanced oesophagogastric cancer. The study aims to enroll 1000 patients with the primary end point being 1-year survival. The interim analysis of the REAL-2 study showed good antitumour activity in favour of oxaliplatin and capecitabine with a response rate of 52% (95% CI: 34.4–68.1%) in an EOX (epirubicin, oxaliplatin, capecitabine) regimen (Sumpter et al, 2003).

In this study, 5-FU and FA was given by two weekly 24-h infusion (the HDFL regimen) every 3 weeks. The rationale of this scheduling for 5-FU was based on our previous observations which indicated that HDFL is in general a highly effective and very safe regimen for advanced gastric cancer (Hsu et al, 1997; Yeh and Cheng, 1998). The patients' compliance was excellent. To avoid calcite precipitation and catheter blockage (Ardalan 1991, 1995), we decreased the dose of FA from 500 to 300 mg m\(^{-2}\), respectively. Oxaliplatin appears to be a useful adjunct to systemic chemotherapy against advanced gastric cancer. Currently, a randomised multicentre study (REAL-2) is underway with a two by two factorial design to compare the efficacy of capecitabine with 5-FU, and oxaliplatin with cisplatin in the ECF regimen, for patients with advanced oesophagogastric cancer. The study aims to enroll 1000 patients with the primary end point being 1-year survival. The interim analysis of the REAL-2 study showed good antitumour activity in favour of oxaliplatin and capecitabine with a response rate of 52% (95% CI: 34.4–68.1%) in an EOX (epirubicin, oxaliplatin, capecitabine) regimen (Sumpter et al, 2003).

It is noteworthy that the response rate of 36% comparing well to the ECF regimen (26% in phase II studies). The HDFL regimen may be an alternative regimen for patients with advanced gastric cancer. However, the haematological toxicity of the present study is still favourable and well tolerated. Neurotoxicity was also found to be the predominant dose-limiting toxicity in another oxaliplatin-containing regimen for gastric cancer (Louvet et al, 2002). Other major toxicities, including neutropenia, thrombocytopenia, stomatitis, and diarrhoea, were of the same range of severity as other major regimens such as FAMTX, ECF, FUP, ELF, and FOLFFOX (Webb et al, 1997; Vanhoef er et al, 2000; Louvet et al, 2002). Owing to patients’ selection in phase II studies, it may not be possible or relevant to compare the toxicity profiles of the present study with three other phase II studies, using different administering schedules of oxaliplatin and 5-FU in gastric cancer (Louvet et al, 2002; Kim et al, 2003; Al-Batran et al, 2004). However, the haematological toxicity of the present study is still favourable and well tolerated with grade 3–4 neutropenia and febrile neutropenia of 7.1 and 0.9%, respectively, in a total of 325 cycles given. Further, the absence of grade-2 alopecia in this study compared favourably to other regimens.

We conclude that combination of weekly oxaliplatin and weekly 24-h infusion of 5-FU and FA is an active regimen with acceptable toxicities for the treatment of advanced gastric cancer.

ACKNOWLEDGEMENTS

We thank Dr WK Chan, for critical review and comments of this paper. This study was supported by grants from National Health Research Institutes, Taiwan; and Sanofi-Synthelabo Research, France.

REFERENCES

Ajani JA, Baker J, Pisters PW, Ho L, Mansfield PF, Feig BW, Charnsangavej C (2002) CPT-11 plus cisplatin in patients with advanced, untreated gastric or gastroesophageal junction carcinoma: results of a phase II study. Cancer 94: 641–646

Ajani JA, Van Custum E, Moiseyenko V, Tjulandin M, Fodor M, Majlis A, Boni C, Zuber E, Blattmann A (2003) Docetaxel (D), cisplatin, 5-fluorouracil and mitomycin C in advanced gastric cancer: results of a randomized phase II trial (Y325). Proc Am Soc Clin Oncol 22: 249 (abstract 999)

Al-Batran SE, Atmaca A, Hegewisch-Becker S, Jaeger D, Hahnfeld S, Rummel MJ, Seipel T, Rost A, Orth J, Knuth A, Jaeger E (2004) Phase II trial of biweekly infusion of leucovorin, fluorouracil, and oxaliplatin in patients with advanced gastric cancer. J Clin Oncol 22: 658–663

Andre T, Bensmaia MA, Louvet C, Francois E, Lucas V, Desseigne F, Beerbright K, Bouche C, Lecureuche Y, Morvan F, Dupont-Andre G, de Gramont A (1999) Multicenter phase II study of bimonthly high-dose leucovorin, fluorouracil infusion, and oxaliplatin for metastatic colorectal cancer resistant to the leucovorin and fluorouracil regimen. J Clin Oncol 17: 3560–3568

Ardalan B, Chua L, Tian EM, Reddy R, Siddhar K, Benedetto P, Richman S, Legaspi A, Waldman S, Morrell L (1991) A phase II study of weekly 24-hour infusion with high-dose fluorouracil with leucovorin in colorectal carcinoma. J Clin Oncol 9: 625–630

British Journal of Cancer (2004) 91(3), 453 – 458 © 2004 Cancer Research UK
leucovorin versus bolus fluorouracil plus leucovorin in advanced colorectal cancer: European organization for Research and Treatment of Cancer Gastrointestinal Group Study 40952. J Clin Oncol 21: 3721 – 3728

Kollmannsberger C, Quicketz D, Haag C, Lingenfelser T, Schroeder M, Hartmann JT, Barionius W, Hempel V, Clemens M, Kanz L, Bokemeyer C (2000) A phase II study of paclitaxel, weekly, 24-hour continuous infusion 5-fluorouracil, folinic acid and cisplatin in patients with advanced gastric cancer. Br J Cancer 83: 458 – 462

Kollmannsberger C, Rick O, Derigs HG, Schleuener N, Schofski P, Beyer J, Schoch R, Sayer HG, Gerl A, Kuczyk M, Spott C, Kanz L, Bokemeyer C (2002) Activity of oxaliplatin in patients with relapsed or cisplatin-refractory germ cell cancer: a study of the German Testicular Cancer Study Group. J Clin Oncol 20: 2031 – 2037

Louvet C, Andre T, Tigaud JM, Gamelin E, Douillard JY, Brunet R, Francois E, Jacob JH, Levoir D, Taammana A, Rougger P, Cбиркович Е, De Gramont A (2002) Phase II study of oxaliplatin, fluorouracil, and folinic acid in locally advanced or metastatic gastric cancer patients. J Clin Oncol 20: 4543 – 4548

Louvet G, de Gramont A, Demuyck B, Nordlinger B, Maisene J, Lagadec B, Delfau S, Varette C, Gonzalez-Canali G, Krluk M (1991) High-dose folinic acid, 5-fluorouracil bolus and continuous infusion in poor-prognosis patients with advanced measurable gastric cancer. Ann Oncol 2: 229 – 230

MacDonald JS, Schein PS, Woolley PV, Smythe T, Ueno W, Hoth D, Smith F, Bonni R, Gisselbrecht S, Karsh J, Langford (1993) Fluorouracil, doxorubicin, and mitomycin combination versus PELF chemotherapy in advanced gastric cancer: a prospective randomized trial of the Italian Oncology Group for Clinical Research. J Clin Oncol 12: 2687 – 2693

de Gramont A, Figer A, Seymour M, Hommerin M, Hmissi A, Cassidy J, Boni C, Cortes-Funes H, Cervantes A, Freyer G, Papamichaloulis D, Le Bail N, Louvet C, Hendler D, de Braud F, Wilson C, Morvan F, Bonetti A (2000) Leucovorin and fluorouracil with or without oxaliplatin as first-line treatment in advanced colorectal cancer. J Clin Oncol 18: 2938 – 2947

De Vivo R, Pignata S, Palaià R, Parisi V, Daniele B (2000) The role of chemotherapy in the management of gastric cancer. J Clin Gastroenterol 30(Suppl 2): 114 – 121

Cancer Treat Rev 19: 29 – 44

Do H (1998) Epidemiological studies in gastric cancer. Gastric Cancer. New York, NY: Churchill Livingstone, pp 1 – 25

Hsu CH, Yeh KH, Lin LT, Liu JM, Lin JT, Chen YC, Cheng AL (1997) Weekly 24-hour infusion of high-dose 5-fluorouracil and leucovorin in the treatment of advanced gastric cancers – an effective and low-toxic regimen for patients with poor general condition. Oncology 54: 275 – 280

Hsu CH, Yeh KH, Yeh PY, Chen ML, Lin ZR, Cheng AL (2000) Cytotoxicity of oxaliplatin on gastric cancer cells – studies on single-agent activity and combination effect with 5-fluorouracil. Proc Am Assoc Cancer Res 41: 517 (abstract 3295)

Johnson PW, Thompson PI, Seymour MT, Deasy NP, Thuraspring RC, Slevin ML, Wrigley PF (1991) A less toxic regimen of 5-fluorouracil and leucovorin in the treatment of advanced gastric cancer. Br J Cancer 66: 603 – 605

Kelsen D, Atiq OT, Saltz L, Niedzwiecki D, Ginn D, Chapman D, Heelan R, Lightdale C, Vinciguerra V, Brennan M (1992) FAMTX versus etoposide, doxorubicin, and cisplatin: a random assignment trial in gastric cancer. J Clin Oncol 10: 541 – 548

Kim DY, Kim JH, Lee SH, Kim TY, Heo DS, Bang YJ, Kim NK (2003) Phase II study of oxaliplatin, 5-fluorouracil and leucovorin in patients with advanced gastric cancer. Ann Oncol 14: 383 – 387

Kim NK, Park YS, Hee DS, Suh C, Kim SY, Park KC, Kang YK, Shin DB, Kim HT, Kim HK (1993) A phase III randomized study of 5-fluorouracil and cisplatin versus 5-fluorouracil, doxorubicin, and mitomycin C versus 5-fluorouracil and cisplatin alone in the treatment of advanced gastric cancer. Cancer 71: 3813 – 3818

Kohne CH, Wils J, Lorenz M, Schoffski P, Voigtmann R, Bokemeyer C, Lutz M, Kleeberg C, Ridwelski K, Souchon R, El-Serafi M, Weiss U, Burkhard O, Ruckle H, Lichtenstjer M, Langenbuch T, Scheitrus W, Baron B, Couvreur ML, Schmoll HJ (2003) Randomized Phase III study of high-dose fluorouracil given as a weekly 24-hour infusion with or without leucovorin versus bolus fluorouracil plus leucovorin in advanced colorectal cancer: European organization for Research and Treatment of Cancer Gastrointestinal Group Study 40952. J Clin Oncol 21: 3721 – 3728

Kollmannsberger C, Quicketz D, Haag C, Lingenfelser T, Schroeder M, Hartmann JT, Barionius W, Hempel V, Clemens M, Kanz L, Bokemeyer C (2000) A phase II study of paclitaxel, weekly, 24-hour continuous infusion 5-fluorouracil, folinic acid and cisplatin in patients with advanced gastric cancer. Br J Cancer 83: 458 – 462

Kollmannsberger C, Rick O, Derigs HG, Schleuener N, Schofski P, Beyer J, Schoch R, Sayer HG, Gerl A, Kuczyk M, Spott C, Kanz L, Bokemeyer C (2002) Activity of oxaliplatin in patients with relapsed or cisplatin-refractory germ cell cancer: a study of the German Testicular Cancer Study Group. J Clin Oncol 20: 2031 – 2037

Louvet C, Andre T, Tigaud JM, Gamelin E, Douillard JY, Brunet R, Francois E, Jacob JH, Levoir D, Taammana A, Rougger P, Cбиркович Е, De Gramont A (2002) Phase II study of oxaliplatin, fluorouracil, and folinic acid in locally advanced or metastatic gastric cancer patients. J Clin Oncol 20: 4543 – 4548

Louvet G, de Gramont A, Demuyck B, Nordlinger B, Maisene J, Lagadec B, Delfau S, Varette C, Gonzalez-Canali G, Krluk M (1991) High-dose folinic acid, 5-fluorouracil bolus and continuous infusion in poor-prognosis patients with advanced measurable gastric cancer. Ann Oncol 2: 229 – 230

MacDonald JS, Schein PS, Woolley PV, Smythe T, Ueno W, Hoth D, Smith F, Bonni R, Gisselbrecht S, Karsh J, Langford
Research and Treatment of Cancer Gastrointestinal Tract Cancer Cooperative Group. *J Clin Oncol* 18: 2648 – 2657

Vanhoefer U, Wilke H, Weh HJ, Clemens M, Harstrick A, Stahl M, Hossfeld DK, Seebier S (1994) Weekly high-dose 5-fluorouracil and folinic acid as salvage treatment in advanced gastric cancer. *Ann Oncol* 5: 850 – 851

Waters JS, Norman A, Cunningham D, Scarffe JH, Webb A, Harper P, Joffe JK, Mackean M, Mansi J, Leahy M, Hill A, Oates J, Rao S, Nicolson M, Hickish T (1999) Long-term survival after epirubicin, cisplatin and fluorouracil for gastric cancer: results of a randomized trial. *Br J Cancer* 80: 269 – 272

Webb A, Cunningham D, Scarffe JH, Harper P, Norman A, Joffe JK, Hughes M, Mansi J, Findlay M, Hill A, Oates J, Nicolson M, Hickish T, O'Brien M, Iveson T, Watson M, Underhill C, Wardley A, Meehan M (1997) Randomized trial comparing epirubicin, cisplatin, and fluorouracil versus fluorouracil, doxorubicin, and methotrexate in advanced esophagealgastric cancer. *J Clin Oncol* 15: 261 – 267

Wilke H, Preusser P, Fink U, Achterrath W, Lenaz L, Stahl M, Schober C, Link H, Meyer HJ, Lucke B (1990) High dose folic acid/etoposide/5-fluorouracil in advanced gastric cancer – a phase II study in elderly patients or patients with cardiac risk. *Invest New Drugs* 8: 65 – 70

Wils J (1996) The treatment of advanced gastric cancer. *Semin Oncol* 23: 397 – 406

Wils JA, Klein HO, Wagener DJ, Bleiberg H, Reis H, Korsten F, Conroy T, Fickers M, Leyvraz S, Buyse M (1991) Sequential high-dose methotrexate and fluorouracil combined with doxorubicin – a step ahead in the treatment of advanced gastric cancer: a trial of the European Organization for Research and Treatment of Cancer Gastrointestinal Tract Cooperative Group. *J Clin Oncol* 9: 827 – 831

Ychou M, Astrc C, Rouanet P, Fabre JM, Saint-Aubert B, Domergue J, Ribard D, Ciurana AJ, Janbon C, Pujol H (1996) A phase II study of 5-fluorouracil, leucovorin and cisplatin (FLP) for metastatic gastric cancer. *Eur J Cancer* 32A: 1933 – 1937

Yeh KH, Cheng AL (1994) An alternative method to overcome central venous portable external infusion pump blockage in patients receiving weekly 24-hour high-dose fluorouracil and leucovorin. *J Clin Oncol* 12: 875 – 876

Yeh KH, Cheng AL (1997) High-dose 5-fluorouracil infusional therapy is associated with hyperammonaemia, lactic acidosis and encephalopathy. *Br J Cancer* 75: 464 – 465

Yeh KH, Cheng AL (1998) Gastric cancer associated with acute disseminated intravascular coagulation: successful initial treatment with weekly 24-hour infusion of high-dose 5-fluorouracil and leucovorin. *Br J Haematol* 100: 769 – 772

Yeh KH, Cheng AL, Lin MT, Hong RL, Hsu CH, Lin JF, Chang KJ, Lee PH, Chen YC (1997) A phase II study of weekly 24-hour infusion of high-dose 5-fluorouracil and leucovorin (HDFL) in the treatment of recurrent or metastatic colorectal cancers. *Anticancer Res* 17: 3867 – 3871

Yeh KH, Yeh SH, Chang YS, Cheng (2000a) Minimal toxicity to myeloid progenitor cells of weekly 24-hr infusion of high-dose 5-fluorouracil: direct evidence from colony forming unit-granulocyte and monocyt (CFU-GM) clonogenic assay. *Pharmocol Toxicol* 86: 122 – 124

Yeh KH, Yeh SH, Hsu CH, Wang TM, Ma IF, Cheng AL (2000b) Prolonged and enhanced suppression of thymidylate synthase by weekly 24-h infusion of high-dose 5-fluorouracil. *Br J Cancer* 83: 1510 – 1515

Zaniboni A, Barni S, Labianca R, Marini G, Pancera G, Giacon G, Piazza E, Signaroldi A, Legnani W, Laportini G (1995) Epirubicin, cisplatin, and continuous infusion 5-fluorouracil is an active and safe regimen for patients with advanced gastric cancer. An Italian Group for the Study of Digestive Tract Cancer (GISCAD) report. *Cancer* 76: 1694 – 1699