TWO DIMENSIONAL INVISIBILITY CLOAKING VIA TRANSFORMATION OPTICS

HONGYU LIU AND TING ZHOU

Abstract. We investigate two-dimensional invisibility cloaking via transformation optics approach. The cloaking media possess much more singular parameters than those having been considered for three-dimensional cloaking in literature. Finite energy solutions for these cloaking devices are studied in appropriate weighted Sobolev spaces. We derive some crucial properties of the singularly weighted Sobolev spaces. The invisibility cloaking is then justified by decoupling the underlying singular PDEs into one problem in the cloaked region and the other one in the cloaking layer. We derive some completely novel characterizations of the finite energy solutions corresponding to the singular cloaking problems. Particularly, some ‘hidden’ boundary conditions on the cloaking interface are shown for the first time. We present our study for a very general system of PDEs, where the Helmholtz equation underlying acoustic cloaking is included as a special case.

1. Introduction

A region is said to be cloaked if its contents together with the cloak are indistinguishable from background space to certain exterior detections.Blueprints for making objects invisible to electromagnetic waves were proposed by Pendry et al. [17] and Leonhardt [11] in 2006. In the case of electrostatics, the same idea was discussed by Greenleaf et al. [5] in 2003. The works [5, 11, 17] rely on transformation optics for the construction of cloaking devices, which we shall further examine in the present paper. For state-of-the-art surveys on the rapidly growing literature and many applications of transformation optics, we refer to [4, 16, 19].

In transformation optics, the key ingredient is that optical material parameters have transformation properties which could be pushed forward to form new material parameters. Then, to construct cloaking devices, the idea is to blow up a point in the background space to form the cloaked region. The ambient background medium is then pushed forward to form the cloaking medium. Since the blowing-up transformation is singular, the resulting cloaking medium is inevitably singular. Two theoretical approaches have...
come out to handle the singular cloaking problems. In Kohn et al. [10], the authors introduce the notion of near-invisibility cloaking in electrostatics from a regularization viewpoint. The singular ideal cloaking is regarded as the limit of the regular near-invisibility cloaking depending on certain regularizer. For acoustic cloaking, the near-invisibility is investigated in [9, 12, 15] in both two and three dimensions. In [3], Greenleaf et al. proposed to investigate the physically meaningful solutions, i.e. finite energy solutions, corresponding to degenerate differential equations underlying the three-dimensional cloaking. The proposal has been shown to work for both acoustic and electromagnetic cloaking, and can treat cloaking of passive objects as well as active/radiating objects. On the other hand, the analysis in [3] is conducted in the geometric setting by taking advantage of the one-to-one correspondence in \(\mathbb{R}^3 \) between the optical parameters and a smooth Riemannian metric. This argument does not carry over to \(\mathbb{R}^2 \). As one shall see in Section 2, for two-dimensional cloaking, the cloaking medium has both degeneracy and blow-up singularities at the cloaking interface, making the problem more difficult to analyze.

In this paper, we consider the two-dimensional invisibility cloaking for a very general system of second order partial differential equations. The Helmholtz equation underlying the acoustic cloaking is included as a special case. In order to handle the singular cloaking problem, we follow the finite energy solutions approach from [3]. Recently, Hetmaniuk and Liu [6] introduce weighted Sobolev spaces with degenerate weights for three-dimensional acoustic cloaking problems, encompassing and generalizing the idea of finite energy solutions approach. For the present two-dimensional cloaking problems, we study weighted Sobolev spaces with more severely singular weights. The invisibility justification follows by study of weak solutions from the introduced weighted Sobolev space to the underlying singular PDEs. Our analysis is given in a very general setting. The cloaking is shown to work for arbitrary positive frequency and can cloak both passive media and source/sink inside the cloaked region. Since the cloaking media are more singular than those for the three-dimensional cloaking, we derive completely different and novel characterizations of solutions to the underlying wave equations compared to those derived for the three-dimensional acoustic cloaking in [3, 6]. Moreover, some ‘hidden’ boundary conditions on the cloaking interface are shown for the first time, giving more insights into the invisibility cloaking.

In this paper, we focus entirely on transformation-optics-approach in constructing cloaking devices. But we mention in passing the other promising cloaking schemes including the one based on anomalous localized resonance [14], and another one based on special (object-dependent) coatings [1]. The rest of the paper is organized as follows. In Section 2, we introduce the transformation optics and invisibility cloaking and give the construction of the two-dimensional radial cloaking devices. Section 3 is devoted to the
two-dimensional invisibility cloaking

3

analysis of the radial cloaking by considering finite energy solutions in singularly weighted Sobolev spaces. In Section 4, we extend our study to general invisibility cloaking.

2. Transformation optics and radial invisibility cloaking

We first fix notations for some function spaces which are crucial for our study. Let \(\Omega \) be a bounded Lipschitz domain in \(\mathbb{R}^2 \). Let \(m \geq 1 \) be an integer, and \(u : \Omega \to \mathbb{C}^m \) be a complex vector-valued function. \(L^p(\Omega)^m \) is the space consisting of \(\mathbb{C}^m \)-valued measurable functions whose components belong to \(L^p(\Omega) \). Following Schwartz, put \(\mathcal{E}(\Omega)^m = C^\infty(\Omega)^m \) and \(\mathcal{D}(\Omega)^m = C_c^\infty(\Omega)^m \) be complex-valued, smooth test function spaces. Let \(H^s(\Omega) \) denote the standard Sobolev space of order \(s \) and \(\tilde{H}^s(\Omega) = \text{closure of } \mathcal{D}(\Omega) \text{ in } H^s(\mathbb{R}^n) \). Note that \(\tilde{H}^{-s}(\Omega) \) is an isometric realization of \(H^s(\Omega)^* \) for \(s \in \mathbb{R} \). The definition of the vector Sobolev spaces on \(\Omega \), \(H^s(\Omega)^m = H^s(\Omega; \mathbb{C}^m) \) and \(\tilde{H}^s(\Omega)^m = \tilde{H}^s(\Omega; \mathbb{C}^m) \) etc. shall now be obvious.

Next, we introduce the second-order partial differential operator (PDO) \(\mathcal{P} \) of the form

\[
\mathcal{P} u = -\sum_{\alpha,\beta=1}^{2} \frac{\partial}{\partial x^\alpha} \left(A^{\alpha\beta} \frac{\partial u}{\partial x^\beta} \right) - \omega^2 B u \quad \text{on } \Omega,
\]

where the coefficients

\[
A^{\alpha\beta} = \left[a^{\alpha\beta}_{pq} \right] \in L^\infty(\Omega)^{m \times m}, \quad B = \left[b_{pq} \right] \in L^\infty(\Omega)^{m \times m}
\]

are functions from \(\Omega \) into \(\mathbb{C}^{m \times m} \), the space of complex \(m \times m \) matrices. Here \(\omega \in \mathbb{R} \) and \(m \geq 1 \) is an integer and thus, \(\mathcal{P} \) acts on a (column) vector-valued function \(u : \Omega \to \mathbb{C}^m \) to give a vector-valued function \(\mathcal{P} u : \Omega \to \mathbb{C}^m \), whose components are

\[
(\mathcal{P} u)_p = -\sum_{k=1}^{m} \sum_{\alpha,\beta=1}^{2} \partial_\alpha \left(a^{\alpha\beta}_{pk} \partial_\beta u_k \right) - \omega^2 \sum_{q=1}^{m} b_{pq} u_q.
\]

In the sequel, let \(A := \left[A^{\alpha\beta} \right] \in \mathbb{C}^{2m \times 2m} \) be the block matrix, and \(\mathcal{P}_{[A,B]} \) be the PDO (2.1) associated with \(A \) and \(B \). For the present study, we always assume that

\[
(A^{\alpha\beta})^* = A^{\beta\alpha} \quad \text{for } \alpha, \beta = 1, 2,
\]

where \(* \) denotes the conjugate transpose of a matrix or vector. Moreover, we introduce the following algebraic conditions for the coefficient matrices \(A^{\alpha\beta} \) and \(B \). Let \(0 < c_1 < c_2 < \infty \) be two constants. For all \(x \in \Omega \), and
problem of our present study. Moreover, we are concerned with the inverse note the medium and the source/sink supported in Ω. This is the prototype the underlying Helmholtz equation. In the sequel, we let \{ these are also mathematical conditions to guarantee the well-posedness of condition on the material parameters. According to our earlier discussion, and modulus. For a regular parameters of the medium supported in Ω, related respectively to, density tensor source/sink inside the region Ω. A scalar wave equation \(p_{tt} - \nabla \cdot (A \nabla p) = f(x)e^{-i\omega t} \). Here \(f \) represents a source/sink inside the region \(\Omega \). \(A \) and \(B \) are the acoustic material parameters of the medium supported in \(\Omega \), related respectively to, density tensor and modulus. For a regular acoustic medium, (2.4) and (2.5) are the physical condition on the material parameters. According to our earlier discussion, these are also mathematical conditions to guarantee the well-posedness of the underlying Helmholtz equation. In the sequel, we let \{Ω; A, B, f\} denote the medium and the source/sink supported in \(\Omega \). This is the prototype problem of our present study. Moreover, we are concerned with the inverse
problems of identifying the inside object \(\{ \Omega; A, B, f \} \) by the exterior wave measurements, which are encoded into the DtN operator \(\{ 2.8 \} \). The inverse problems have widespread practical applications in science and engineering, and have received extensive and intensive investigations in last years (see, e.g., [8, 18]). In this context, an invisibility cloaking device is introduced as follows (see also [3, 9]).

Definition 2.1. Let \(\Omega \) and \(D \) be bounded domains in \(\mathbb{R}^2 \) with \(D \subset \Omega \). \(\Omega \backslash \bar{D} \) and \(D \) represent, respectively, the cloaking region and the cloaked region. \(\{ \Omega \backslash \bar{D}; A_c, B_c, f_c \} \) is said to be an **invisibility cloaking device** for the region \(D \) with respect to the regular reference/background space \(\{ \Omega; A_b, B_b, f_b \} \) if

\[
\Lambda_{A_c, B_c, f_c}^\omega = \Lambda_{A_b, B_b, f_b}^\omega \quad \text{for all} \quad \omega > 0,
\]

where the extended medium \(\{ \Omega; A_e, B_e \} \) and the extended source \(f_e \) are given by

\[
\{ \Omega; A_e, B_e, f_e \} = \begin{cases}
\{ \Omega \backslash \bar{D}; A_c, B_c, f_c \} & \text{in } \Omega \backslash \bar{D}, \\
\{ D; A_a, B_a, f_a \} & \text{in } D,
\end{cases}
\]

with \(\{ D; A_a, B_a, f_a \} \) arbitrary but regular.

In Definition 2.1, \(\{ \Omega; A, B \} \) is regular means that \(A \) and \(B \) satisfy the algebraic conditions \(\{ 2.4 \} \) and \(\{ 2.5 \} \). According to Definition 2.1, we note that the cloaking device \(\{ \Omega \backslash D; A_c, B_c, f_c \} \) makes the interior target object \(\{ D; A_a, B_a, f_a \} \) indistinguishable from the reference/background space \(\{ \Omega; A_b, B_b, f_b \} \) by exterior detections. In fact, the exterior observer would not even be aware that something is being hidden.

Next, we present the transformation properties of material parameters, which are the cruxes of the construction of cloaking devices via transformation optics approach. In the following, we let \(y = F(x) \) be a diffeomorphism such that \(F : \Omega \to \tilde{\Omega} \). Then, the push-forwards of material parameters are given by

\[
F_*\{ \Omega; A, B \} = \{ \tilde{\Omega}; F_*A, F_*B \} := \{ \tilde{\Omega}; \tilde{A}, \tilde{B} \},
\]

with

\[
\tilde{A}_{pq}(y) = \sum_{\alpha, \beta = 1}^2 \frac{\partial y_p}{\partial x_\alpha} \frac{\partial y_q}{\partial x_\alpha} A^{\alpha \beta}(x) J^{-1} \bigg|_{x = F^{-1}(y)}, \quad p, q = 1, 2,
\]

\[
\tilde{B}(y) = B(x) J^{-1} \bigg|_{x = F^{-1}(y)},
\]

where \(J := \det(\partial y_\alpha / \partial x_\beta) \), the determinant of the Jacobian of \(F \). We shall make use of the following result

Lemma 2.2. Let \(F : \Omega \to \tilde{\Omega} \) be a diffeomorphism. For \(u, v \in H^1(\Omega)^m \), let \(\tilde{u} = (F^{-1})^*u := u \circ F \in H^1(\tilde{\Omega})^m \) and \(\tilde{v} = (F^{-1})^*v \in H^1(\tilde{\Omega})^m \). Then we have

\[
\mathcal{Q}_{[A, B]}(u, v) = \mathcal{Q}_{[F_*A, F_*B]}(\tilde{u}, \tilde{v}).
\]
Proof. It is verified directly by change of variables in integration as follows

\[Q_{[A,B]}(u, v) = \int_{\Omega} \left(\sum_{\alpha, \beta=1}^{2} [A^{\alpha \beta} \frac{\partial u}{\partial x_\beta} \frac{\partial v}{\partial x_\alpha} - (Bu)^* v] \right) \, dx \]

\[= \int_{\tilde{\Omega}} \sum_{p,q=1}^{2} \left(\sum_{\alpha, \beta=1}^{2} \frac{\partial y_p}{\partial x_\beta} \frac{\partial y_q}{\partial x_\alpha} A^{\alpha \beta} J^{-1} \right) \frac{\partial \tilde{u}}{\partial y_p} \frac{\partial \tilde{v}}{\partial y_q} - \left(\frac{B}{J} \tilde{u} \right)^* \tilde{v} \, dy \]

\[= Q_{[\tilde{A}, \tilde{B}]}(\tilde{u}, \tilde{v}). \]

The proof is completed. \qed

In the rest of this section, based on the above transformation properties, we give the construction of the two-dimensional cloaking devices, which we shall investigate in subsequent sections. We start our study by considering the cloaking of the unit central disc. In Section 4, we shall indicate how to extend our study to the general case. In the following, we denote by \(B_\rho \) the central disc of radius \(\rho \) and \(S_\rho := \partial B_\rho \). Let \(\{ B_2; A_b, B_b, f_b \} \) be the (regular) background/reference space, where \(f_b \) is supported away from \(\{ 0 \} \).

Here, we always assume that there is no eigenvalue problem for (2.10) in the reference space, and hence there is a well-defined DtN operator on \(S_2 \), namely \(\Lambda^{\omega}_{A_b, B_b, f_b} \). Consider the transformation \(F \), defined by

\[
F : \begin{cases}
B_2 \setminus \{ 0 \} &\rightarrow & B_2 \setminus B_1 \\
x &\mapsto & (1 + \frac{|x|^2}{2}) \frac{x}{|x|}
\end{cases}
\]

(2.15)

\(F \) blows up the origin in the reference space to \(B_1 \) while maps \(B_2 \setminus \{ 0 \} \) to \(B_2 \setminus B_1 \) and keeps \(S_2 \) fixed. We note that the blow-up transformation (2.15) has been extensively investigated for the design of three-dimensional cloaking devices in the literature (see [4]). Under the transformation \(F \), the ambient reference medium in \(B_2 \setminus \{ 0 \} \) is then push-forwarded to form transformation medium in \(B_2 \setminus B_1 \) as follows

\[
A_c(y) = F_* A_b(x) \quad \text{and} \quad B_c(y) = F_* B_b(x), \quad y \in B_2 \setminus B_1.
\]

(2.16)

In Section 3, we shall show that

Theorem 2.3. \(\{ B_2 \setminus B_1; A_c, B_c, f_c \} \) with \(f_c = J^{-1} (F^{-1})^* f_b \) and \(A_c \) and \(B_c \) given by (2.16) is an invisibility cloaking device for the region \(B_1 \) with respect to the reference space \(\{ B_2; A_b, B_b, f_b \} \). That is, for any extended object \(\{ B_2; A_e, B_e, f_e \} \), we have

\[
\Lambda^{\omega}_{A_c, B_c, f_c} = \Lambda^{\omega}_{A_b, B_b, f_b}.
\]

(2.17)
In the sequel, we conveniently define the push-forward of the source term as

\[F_* f = \det(DF)(F^{-1})^* f. \]

So, the cloaking device in Theorem 2.3 is given by

\[\{B_2 \setminus B_1; A_c, B_c, f_c \} = F_* \{B_2 \setminus \{0\}; A_6, B_b, f_b\}. \]

Next, we derive the explicit expressions of material parameters of the cloak-}

ing medium in Theorem 2.3. By (2.12)-(2.13) and straightforward calculations, we have for \(y \in B_2 \setminus B_1 \)

\[
A_c(y) = \frac{|y| - 1}{|y|} \Pi(y) \otimes I_m A_b(F^{-1}(y)) \Pi(y) \otimes I_m
\]

\[
+ \Pi(y) \otimes A_b(F^{-1}(y))(I - \Pi(y)) \otimes I_m
\]

\[
+ \frac{|y|}{|y| - 1} (I - \Pi(y)) A_b(F^{-1}(y))(I - \Pi(y))
\]

\[
+ (I - \Pi(y)) \otimes I_m A_b(F^{-1}(y)) \Pi(y) \otimes I_m,
\]

(2.18)

\[
B_c(y) = \frac{4(|y| - 1)}{|y|^2} B_b(F^{-1}(y)),
\]

(2.19)

where \(I_m \) is the \(m \times m \) identity matrix and \(\Pi(y) : \mathbb{R}^2 \to \mathbb{R}^2 \) is the projection to the radial direction, defined by

\[\Pi(y)\xi = \left(\frac{\xi \cdot y}{|y|} \right) \frac{y}{|y|}, \]

i.e. \(\Pi(y) \) is represented by the symmetric matrix \(|y|^{-2}yy^T \). For \(y \in B_2 \setminus B_1 \), we let \(\hat{y} := \frac{y}{|y|} \in S_1 \) and \(\hat{y}^\perp = [\hat{y}_1, \hat{y}_2]^T \in S_1 \) be such that \(\hat{y} \cdot \hat{y}^\perp = 0 \). Let \(1_m \in \mathbb{R}^m \) with each entry being 1, and set \(\xi_l = \hat{y}_l 1_m \in \mathbb{R}^m \)

and \(\xi_l^\perp = \hat{y}_l^\perp 1_m \in \mathbb{R}^m \) for \(l = 1, 2 \). Then, by straightforward calculations, together with the following facts

\[\Pi(y)\hat{y} = \hat{y} \quad (I - \Pi(y))\hat{y} = 0, \quad \Pi(y)\hat{y}^\perp = 0, \quad (I - \Pi(y))\hat{y}^\perp = \hat{y}^\perp, \]

we have

\[
\sum_{p,q=1}^2 [A_c^{pq}(y)\xi_q]^* \xi_p = \frac{|y| - 1}{|y|} \sum_{p,q=1}^2 [A_b^{pq}(F^{-1}(y))\xi_q]^* \xi_p,
\]

\[
\sum_{p,q=1}^2 [A_c^{pq}(y)\xi_q^\perp]^* \xi_p^\perp = \frac{|y|}{|y| - 1} \sum_{p,q=1}^2 [A_b^{pq}(F^{-1}(y))\xi_q^\perp]^* \xi_p^\perp.
\]

Since \(A_b \) is a regular medium parameter, we have by (2.4) that as \(|y| \to 1^+ \)

\[
\sum_{p,q=1}^2 [A_c^{pq}(y)\xi_q]^* \xi_p \to 0 \quad \text{and} \quad \sum_{p,q=1}^2 [A_c^{pq}(y)\xi_q^\perp]^* \xi_p^\perp \to \infty.
\]
Meanwhile, it is obvious that B_c does not satisfy (2.5). That is, the algebraic conditions (2.4) and (2.5) for a regular medium are violated by the cloaking medium $\{B_2 \setminus \bar{B}_1; A_c, B_c\}$, which exhibits both degeneracy and blow-up singularities as one approaches the cloaking interface S_1^+, i.e. from $B_2 \setminus \bar{B}_1$.

We remark that this is in sharp difference from the study in [3] for three-dimensional cloaking devices where one would encounter only degeneracy singularities.

3. Finite energy solutions for singular PDEs

Consider the differential equation underlying the cloaking problem in Theorem 2.3,

$$\mathcal{P}_{[A_c,B_c]} u = f_e \quad \text{on} \quad B_2, \quad u|_{S_2} = h.$$

As we have seen in the end of Section 2, the cloaking medium $\{B_2 \setminus \bar{B}_1; A_c, B_c\}$ is singular. One has to be careful in defining the meaning of a solution to the singular PDEs system (3.1) (see also Remark 3.3 for the necessity of introducing a suitable class of weak solutions to (3.1) other than spatial H^1-solutions). To that end, we define for $\phi(y) \in \mathcal{E}(B_2)^m$,

$$\mathcal{E}_{[A,B]}(\phi) = \left| \int_{\Omega} \left(\sum_{\alpha,\beta=1}^{2} (A^{\alpha\beta} \partial_{\beta}\phi)^* \partial_{\alpha}\phi + (B\phi)^* \phi \right) \right|^{1/2}.$$

We note that if $\{B_2; A, B\}$ is a regular medium, then it is straightforward to verify

$$\mathcal{E}_{[A,B]}(\phi) \sim \| \phi \|_{H^1(B_2)^m}.$$

Here and in the sequel, for two relations R_1, R_2, $R_1 \sim R_2$ means that there exists two finite positive constants c_1, c_2 such that $c_1 R_1 \leq R_2 \leq c_2 R_1$. Also, in the following, for notational convenience, we shall frequently refer to $R_1 \lesssim R_2$ as $R_1 \leq c_2 R_2$. Next, one can verify directly that due to the blow-up singularity of A_e on S_1^+,

$$\phi \in \mathcal{E}(B_2)^m \quad \text{and} \quad \mathcal{E}_{[A,e]}(\phi) < \infty \quad \text{iff} \quad \frac{\partial \phi}{\partial \theta} \bigg|_{S_1} = 0.$$

Here and also in what follows, we make use of the standard polar coordinate $(y_1, y_2) \mapsto (r \cos \theta, r \sin \theta)$ in \mathbb{R}^2. Hence, we set

$$\mathcal{S}^\infty(B_2)^m := \{ \phi \in \mathcal{E}(B_2)^m \; ; \; \frac{\partial \phi}{\partial \theta} \bigg|_{S_1} = 0 \},$$

and

$$\mathcal{S}^0(B_2)^m := \mathcal{S}^\infty(B_2)^m \cap \mathcal{S}(B_2)^m,$$

which are closed subspaces of $\mathcal{E}(B_2)^m$. Set

$$W_e(y) := \frac{4(|y| - 1)}{|y|} I_m \quad \text{for} \; 1 < |y| < 2; \quad I_m \quad \text{for} \; |y| \leq 1.$$
We note by using the fact B_ϵ is a regular material parameter, together with (2.19) and (2.5), that for $\phi \in \mathcal{F}_\infty^\infty(B_2)$
\begin{equation}
\mathcal{E}[A_e, W_\epsilon](\phi) \sim \mathcal{E}[A_e, B_\epsilon](\phi).
\end{equation}
On the other hand, it is easy to see that $\mathcal{E}[A_e, W_\epsilon](\cdot)$ defines a norm on $\mathcal{F}_\infty^\infty(B_2)^m$. Let
\begin{equation}
H_{[A_e, B_\epsilon]}^1(B_2)^m := \operatorname{cl}\{ \mathcal{F}_\infty^\infty(B_2)^m; \mathcal{E}[A_e, W_\epsilon](\cdot) \},
\end{equation}
that is, the closure of the linear function space $\mathcal{F}_\infty^\infty(B_2)^m$ with respect to the singularly weighted Sobolev norm $\mathcal{E}[A_e, W_\epsilon](\cdot)$. Clearly, one can consider the elements in $H_{[A_e, B_\epsilon]}^1(B_2)^m$ as \mathbb{C}^m-valued measurable functions. Moreover, we have

Lemma 3.1. The map

$$
\phi \mapsto D_{A_e}^\alpha \phi := \sum_{\beta=1,2} A_e^{\alpha\beta} \partial_{\beta} \phi, \ \phi \in \mathcal{F}_\infty^\infty(B_2)^m, \ \alpha = 1, 2
$$

has a bounded extension
\begin{equation}
D_{A_e}^\alpha : H_{[A_e, B_\epsilon]}^1(B_2)^m \mapsto \mathcal{M}(B_2; \mathbb{C}^m),
\end{equation}
where $\mathcal{M}(B_2; \mathbb{C}^m)$ represents the space of complex \mathbb{C}^m-valued Borel measures on B_2. Moreover, for $u \in H_{[A_e, B_\epsilon]}^1(B_2)^m$, we have in the sense of Borel measures
\begin{equation}
(D_{A_e}^\alpha u)(S_1) = 0, \ \alpha = 1, 2.
\end{equation}

Proof. Let $\phi \in \mathcal{F}_\infty^\infty(B_2)^m$, $g \in C(B_2)^m$ and $\tilde{\phi} = F^\ast \phi, \tilde{g} = F^\ast g \in \mathcal{L}_\infty^\infty(B_2)^m$. Then, it is straightforward to show that $D_{A_e}^\alpha \phi \in \mathcal{L}_\infty^\infty(B_2)^m$. Hence, it has that
\begin{align*}
\int_{B_2} (D_{A_e}^\alpha \phi)^\ast g \, dy &= \int_{B_2 \setminus S_1} (D_{A_e}^\alpha \phi)^\ast g \, dy \\
&= \int_{B_2 \setminus [S_1]} \left(\sum_{k,l \leq 1} \frac{\partial y_\alpha}{\partial x_k} \frac{\partial \tilde{\phi}}{\partial x_l} A_b^{kl} \right)^\ast \tilde{g} \, dx + \int_{B_2} (D_{A_e}^\alpha \phi)^\ast g \, dx
\end{align*}
On B_2, one has $\partial y_\alpha / \partial x_k = \mathcal{O}(1)$. This together with the facts that $\{B_2; A_b, B_b\}$ and $\{B_1; A_a, B_a\}$ are regular, we use (3.2) to further have
\begin{align}
| \int_{B_2} (D_{A_e}^\alpha \phi)^\ast g \, dy | &\lesssim \| \tilde{\phi} \| H^1(B_2)^m \| \tilde{g} / r \| L^2(B_2)^m + \| \phi \| H^1(B_2)^m \| g \| L^2(B_1)^m \\
&\lesssim [\mathcal{E}[A_b, B_b](\tilde{\phi}) + \mathcal{E}[A_e, B_\epsilon](\tilde{\phi})] \| g \| C(B_2)^m \text{dist}(\text{supp}(g), S_1) \\
&\lesssim [\mathcal{E}[A_e, B_\epsilon](\phi) \| g \| C(B_2)^m \text{dist}(\text{supp}(g), S_1)]
\end{align}

(3.10) (3.11) (3.12)
In the above inequalities, from (3.10) to (3.11), we have made use of the following facts by using Lemma 2.2.

\[(3.13) \quad E_{[A_b,B_b]}(\tilde{\phi}) = Q_{[A_b,-B_b]}(\tilde{\phi}, \phi) = Q_{[F,A_b,-F,B_b]}(\phi, \phi) = E_{[A_c,B_c]}(\phi),\]

whereas from (3.11) to (3.12), we have made use of the equivalence (3.6). This proves the bounded extension (3.8). Finally, (3.9) follows by taking functions g supported in sufficiently small neighborhoods of S_1.

The proof is completed. \(\square\)

Now, the solution to the singular system of PDEs (3.1) is defined by the distributional duality as to find $u \in H^1_{[A_e,B_e]}(B_2)^m$ such that $u|_{S_2} = h \in H^{1/2}(S_2)^m$ and

\[(3.14) \quad Q_{[A_e,B_e]}(u, \phi) = \langle f_e, \phi \rangle, \quad \forall \phi \in \mathcal{P}_0^\infty(B_2)^m.\]

Remark 3.2. Since the singularities of A_e and B_e are only attached to S_2^+, we know that for any $u \in H^1_{[A_e,B_e]}(B_2)^m$, $u \in H^1_{\text{loc}}(B_2 \setminus S_1)^m$. Therefore, for (3.14) we have the well-defined $u|_{S_2} = h \in H^{1/2}(S_2)^m$ and also a well-defined Dirichlet-to-Neumann map on S_2 defined by

\[(3.15) \quad \Lambda_{A_e,B_e,f_e}(h) = \sum_{\alpha,\beta \leq 1} \nu_\alpha A_\alpha^\beta \partial_\beta u \in H^{-1/2}(S_2)^m,\]

provided (3.14) has a unique solution.

Remark 3.3. As is known,

\[
\left| \int_{B_2} \left(\sum_{\alpha,\beta = 1}^2 (A_\alpha^\beta \partial_\beta u)^* \partial_\alpha u + (B_e u)^* u \right) \, dy \right|
\]

is the (generalized) energy of the system. Hence, the solution in (3.14) is physically meaningful in that it has finite energy.

Next, we shall show the following on the solution of (3.14).

Theorem 3.4. $u \in H^1_{[A_e,B_e]}(B_2)^m$ is a solution to (3.14) if and only if $\tilde{v}(x) = (F^*(u|_{B_2 \setminus B_1}))^e \in H^1(B_2)^m$ with $(F^*(u|_{B_2 \setminus B_1}))^e$ denoting the extension of $F^*(u|_{B_2 \setminus B_1})$ from $B_2 \setminus \{0\}$ to B_2 (e.g., by setting it be 0), is a solution to

\[(3.16) \quad \mathcal{P}_{[A_b,B_b]} \tilde{v} = f_b \quad \text{on} \quad B_2, \quad \tilde{v}|_{S_2} = h\]

and $w = u|_{B_1} \in H^1(B_1)^m$ is a solution to

\[(3.17) \quad \mathcal{P}_{[A_e,B_e]} w = f_a \quad \text{on} \quad B_1, \quad w|_{S_1} = c_0,\]

where $c_0 \in \mathbb{C}^m$ is a constant vector determined by

\[(3.18) \quad \int_{S_1} \sum_{\alpha,\beta \leq 1} \nu_\alpha A_\alpha^\beta \partial_\beta w \, dS = 0.\]
As a direct consequence of Theorem 3.4, we first give the proof of Theorem 2.3.

Proof of Theorem 2.3. Let \(u \in H^1_{[A_e, B_e]}(B_2)^m \) be a solution to (3.1) corresponding to the cloaking problem for \(\{B_2; A_e, B_e, f_e\} \), whereas \(\tilde{v} \in H^1(B_2)^m \) be a solution to (3.16) corresponding to the differential equation in the reference space \(\{B_2; A_b, B_b, f_b\} \). By Theorem 3.4, we have

\[
\left. u \right|_{B_2 \setminus B_1} = (F^{-1})^*(\tilde{v}|_{B_2 \setminus \{0\}}), \quad \left. \tilde{v} \right|_{B_2 \setminus \{0\}} = F^*(u|_{B_2 \setminus B_1}).
\]

Next, let \(\kappa(t) \in \mathcal{D}(\mathbb{R}) \) be a smooth real cut-off function such that \(0 \leq \kappa(t) \leq 1 \) with \(\kappa(t) = 1 \) for \(t < 4/3 \) and \(\kappa(t) = 0 \) for \(t > 5/3 \). For arbitrary \(\phi \in \mathcal{E}(B_2) \), set \(\psi(y) := (1 - \kappa(|y|))\phi(y) \in \mathcal{F}^\infty(B_2) \). By Green’s identity, we have

\[
Q_{[A_e, B_e]}(u, \psi) = Q_{[A_e, B_e]}(u, \psi)
= (f_e, \psi)_{B_2} + \langle \Lambda^\omega_{A_e, B_e, f_e}(h), \gamma \psi \rangle_{S_2}
= (f_e, \psi)_{B_2} - \{A^\omega_{A_e, B_e, f_e}(h), \gamma \psi \rangle_{S_2}.
\]

Then, by change of variables in integrations in (3.19), and using Lemma 2.2 and, \(F|_{S_2} = \text{Identity} \) and \(f_e = J^{-1}(F^{-1})^*f_b \), we further have

\[
Q_{[A_b, B_b]}(\tilde{v}, \phi) = (f_b, \phi)_{B_2} + \langle \Lambda^\omega_{A_e, B_e, f_e}(h), \gamma \psi \rangle_{S_2},
\]

where \(\tilde{v} = F^\ast \phi \in \mathcal{E}(B_2) \). By using Green’s identity again, we know

\[
Q_{[A_b, B_b]}(\tilde{v}, \phi) = (f_b, \phi)_{B_2} + \langle \Lambda^\omega_{A_b, B_b, f_b}(h), \gamma \psi \rangle_{S_2},
\]

which implies by (3.20) that

\[
\langle \Lambda^\omega_{A_b, B_b, f_b}(h), \gamma \psi \rangle_{S_2} = \langle \Lambda^\omega_{A_e, B_e, f_e}(h), \gamma \psi \rangle_{S_2}
\]

and hence

\[
\Lambda^\omega_{A_e, B_e, f_e} = \Lambda^\omega_{A_b, B_b, f_b}.
\]

The proof is completed.

□

We proceed to the proof of Theorem 3.4. We first derive two auxiliary lemmata characterizing the singularly weighted Sobolev space \(H^1_{[A_e, B_e]}(B_2) \). In the following, \(\chi_\Omega \) denotes the characteristic function for a set \(\Omega \subset \mathbb{R}^2 \).

Lemma 3.5. Let \(c_1 \) and \(c_2 \) be two constant vectors in \(\mathbb{C}^m \). Then

\[
c_1 \chi_{B_1} + c_2 \chi_{B_2 \setminus B_1} \in H^1_{[A_e, B_e]}(B_2)^m.
\]

Proof. Since a constant function always belongs to \(H^1_{[A_e, B_e]}(B_2)^m \), it suffices to show that \(\varphi(y) := \chi_{B_1}c \in H^1_{[A_e, B_e]}(B_2)^m \) with \(c \in \mathbb{C}^m \) a constant vector.

Let \(\rho \in \mathcal{D}(\mathbb{R}) \) be a cut-off function such that \(0 \leq \rho(t) \leq 1 \) with \(\rho(t) = 1 \) for \(t < 1/2 \) and \(\rho(t) = 0 \) for \(t > 1 \). Then, define for \(\varepsilon > 0 \),

\[
\varphi_\varepsilon(y) = \begin{cases} c, & y \in B_1, \\ \rho\left(\frac{\ln \varepsilon}{\ln(|y| - 1)}\right)c, & y \in B_2 \setminus B_1. \end{cases}
\]
Obviously, \(\varphi_\varepsilon \in \mathcal{T}^\infty(B_2)^m \). Next, we shall show
\[
(3.23) \quad \lim_{\varepsilon \to 0^+} \| \varphi_\varepsilon - \varphi \|_{H^1_{[A_c,B_c]}(B_2)^m} = 0,
\]
which then implies that \(\varphi \in H^1_{[A_c,B_c]}(B_2)^m \). In fact, we have
\[
\| \varphi_\varepsilon - \varphi \|^2_{H^1_{[A_c,B_c]}(B_2)^m} = \mathcal{E}^2_{[A_c,B_c]}(\varphi_\varepsilon - \varphi)
\leq \mathcal{E}^2_{[A_c,B_c]}(\varphi_\varepsilon) \tag{3.24}
= \left| \int_{B_2 \setminus B_1} \left(\sum_{\alpha,\beta \leq 1} (A^\alpha_\varepsilon \partial_\beta \varphi_\varepsilon)^* \partial_\alpha \varphi_\varepsilon + (B_c \varphi_\varepsilon)^* \varphi_\varepsilon \right) \, dy \right|
\]
By using the explicit expression for \(B_c \) in [2.19] together with the fact the \(B_b \) is a regular material parameter, it is straightforwardly shown that
\[
(3.25) \quad \left| \int_{B_2 \setminus B_1} (B_c \varphi_\varepsilon)^* \varphi \, dy \right| \leq \int_{B_2 \setminus B_1} \left| \rho \left(\frac{\ln \varepsilon}{\ln(\|y\| - 1)} \right) \right|^2 \, dy
\lesssim \text{Vol}(\Gamma_\varepsilon) \to 0 \quad \text{as} \quad \varepsilon \to 0^+,
\]
where
\(\Gamma_\varepsilon := \{ y \in \mathbb{R}^2; 1 < \|y\| < 1 + \varepsilon \} \).

Next, by direct calculations, we have
\[
(3.26) \quad \nabla \left(\rho \left(\frac{\ln \varepsilon}{\ln(\|y\| - 1)} \right) \right) = \rho' \left(\frac{\ln \varepsilon}{\ln(\|y\| - 1)} \right) \cdot \frac{\ln \varepsilon}{\|y\| - 1} \cdot \frac{\hat{y}}{\|y\| - 1},
\]
where \(\hat{y} := y/\|y\| \in S_1 \). By using (2.18) and (3.26), we further have
\[
(3.27) \quad \left(\nabla \rho \left(\frac{\ln \varepsilon}{\ln(\|y\| - 1)} \right) \otimes c \right)^* A_c^* \left(\nabla \rho \left(\frac{\ln \varepsilon}{\ln(\|y\| - 1)} \right) \otimes c \right)
= \rho' \left(\frac{\ln \varepsilon}{\ln(\|y\| - 1)} \right)^2 \cdot \frac{\ln \varepsilon}{\ln(\|y\| - 1)^4} \cdot \frac{1}{\|y\| - 1} \cdot \left((A_b(\hat{y} \otimes c))^*(\hat{y} \otimes c) \right)
\]
By using (3.27), we can deduce
\[
(3.28) \quad \left| \int_{B_2 \setminus B_1} \left(\sum_{\alpha,\beta \leq 1} (A^\alpha_\varepsilon \partial_\beta \varphi_\varepsilon)^* \partial_\alpha \varphi_\varepsilon \right) \, dy \right|
\leq \int_{\Gamma_\varepsilon} \left| \frac{\ln \varepsilon}{\ln(\|y\| - 1)^4} \cdot \frac{1}{\|y\| - 1} \right| \, dy \to 0 \quad \text{as} \quad \varepsilon \to 0^+.
\]
Combining (3.24), (3.25) and (3.28), we have (3.23). The proof is completed. \(\square \)

Lemma 3.6. Let \(u \) be a measurable \(\mathbb{C}^m \)-valued function on \(B_2 \). Then \(u \in H^1_{[A_c,B_c]}(B_2)^m \) if and only if the following two conditions hold:
(i) \(w := u \big|_{B_1} \in H^1(B_1)^m \) and

\[
\gamma^{-1} w := w \big|_{S^1} = \text{constant},
\]

where \(\gamma^{-1} \) is the trace operator on \(S^1 \), i.e., as one approaches \(S_1 \) from \(B_1 \).

(ii) \(v := u \big|_{B_2 \setminus B_1} \) satisfies

\[
\int_{B_2 \setminus B_1} \sum_{\alpha, \beta \leq 1} (A_{c}^{\alpha \beta} \partial_\beta v)^* \partial_\alpha v \, dy < \infty, \quad \int_{B_2 \setminus B_1} (B_c v)^* v \, dy < \infty
\]

and

\[
e_{\theta} \cdot \nabla p \big|_{S^1} = 0, \quad p = 1, 2, \ldots, m,
\]

where \(e_{\theta} \) is the unit angular directional vector on the sphere \(S^1 \).

Proof. First, we show conditions (i) and (ii) are necessary for \(u \in H^1_{[A_c, B_c]}(B_2)^m \).

Clearly, we have

\[
\mathcal{E}_{[A_a, B_a]}(w) \lesssim \|u\|_{H^1_{[A_c, B_c]}(B_2)^m},
\]

which together with the fact \(\{B_1; A_a, B_a\} \) is regular implies that

\[
\|w\|_{H^1(B_1)^m} \lesssim \|u\|_{H^1_{[A_c, B_c]}(B_2)^m}, \quad \text{i.e.,} \quad w \in H^1(B_1)^m.
\]

Let \(\{\phi_n\}_{n=1}^\infty \subset \mathcal{F}^\infty(B_2)^m \) be such that

\[
\|\phi_n - u\|_{H^1_{[A_c, B_c]}(B_2)^m} \to 0 \quad \text{as} \quad n \to \infty.
\]

Then, we obviously have

\[
\|\phi_n \big|_{B_1} - w\|_{H^1(B_1)^m} \to 0 \quad \text{as} \quad n \to 0.
\]

Hence,

\[
\|\gamma^{-1} \phi_n - \gamma^{-1} w\|_{H^{1/2}(S^1)^m} \lesssim \|\phi_n \big|_{B_1} - w\|_{H^1(B_1)^m} \to 0 \quad \text{as} \quad n \to 0.
\]

Noting \(\partial \phi_n / \partial \theta \big|_{S_1} = 0 \), we know \(\gamma^{-1} \phi_n \) are constants independent of the angular variable \(\theta \). Therefore, \(\gamma^{-1} w \) is constant. Whereas for \(v := u \big|_{B_2 \setminus B_1} \), it is trivial to see that (3.30) holds. To see (3.31), we let \(\tilde{v} = F^* v \). Using the change of variables in (3.30), we have

\[
\int_{B_2 \setminus \{0\}} \sum_{\alpha, \beta \leq 1} (A_{c}^{\alpha \beta} \partial_\beta \tilde{v})^* \partial_\alpha \tilde{v} \, dx < \infty \quad \text{and} \quad \int_{B_2 \setminus \{0\}} (B_c \tilde{v})^* \tilde{v} \, dx < \infty.
\]

Since the reference space \(\{B_2; A_b, B_b\} \) is regular, we further have by using (2.4) and (2.5)

\[
\int_{B_2 \setminus \{0\}} \sum_{\alpha \leq 1} |\partial_\alpha \tilde{v}|^2 \, dx < \infty \quad \text{and} \quad \int_{B_2 \setminus \{0\}} |\tilde{v}|^2 \, dx < \infty.
\]
Set $\Psi_p = \nabla \tilde{v}_p|_{B_2 \setminus \{0\}}$, $p = 1, 2, \ldots, m$. We have $\Psi_p \in L^2(B_2 \setminus \{0\})^{2 \times 1}$. Extending Ψ and \tilde{v} on $\{0\}$ (e.g., by setting to be zero), and using the same notations for the extensions, we have

$$
\Psi_p \in (L^2(B_2))^{2 \times 1} \text{ and } \tilde{v}_p \in L^2(B_2).
$$

The difference $\nabla \tilde{v}_p - \Psi_p$ belongs to $H^{-1}(B_2)$ and it is supported on $\{0\}$. Since no non-zero distribution in $H^{-1}(B_2)$ is supported on $\{0\}$, we see $\nabla \tilde{v}_p = \Psi_p$. Hence, $\tilde{v}_p \in H^1(B_2)$ and therefore $\tilde{v} \in H^1(B)^m$.

Let the Fourier decomposition of \tilde{v}_p, $1 \leq p \leq m$, be given by

$$
(3.32) \quad \tilde{v}_p(r, \theta) = \frac{1}{\sqrt{2\pi}} \sum_{n \in \mathbb{Z}} \tilde{v}_p^{(n)}(r)e^{in\theta}.
$$

In [2], it is proved

$$
(3.33) \quad \tilde{v}_p^{(n)}(0) = 0, \quad n \neq 0.
$$

Formally, we write $\tilde{v}_p(0, \theta) = \tilde{v}_p^{(0)}(0)$. Since $v_p \chi_{B_2 \setminus B_1} = (F^{-1})^* \tilde{v}_p$, we have

$$
\forall \ 1 < r < 2, \ v_p(r, \theta) = \frac{1}{\sqrt{2\pi}} \sum_{n \in \mathbb{Z}} v_p^{(n)}(r)e^{in\theta} \quad \text{with} \quad v_p^{(n)}(r) = \tilde{v}_p^{(n)}(2(r - 1)).
$$

By (3.33), we have

$$
(3.34) \quad v_p^{(n)}(1) = \tilde{v}_p^{(n)}(0) = 0 \quad \text{for} \ n \neq 0,
$$

which implies

$$
\frac{1}{r} \frac{\partial v_p}{\partial \theta}(r, \theta) \bigg|_{r=1} = 0.
$$

Next, we show that (i) and (ii) are also sufficient conditions for a measurable function u on B_2 to belong to $H^1_{[A_e, B_e]}(B_2)^m$. We first assume that $u|_{B_2 \setminus B_1} = 0$. By (i), let c_0 be a constant vector such that $u|_{S^*_e} = c_0$. According to Lemma 3.3, it suffices to show that $\hat{u} := u - c_0 \chi_{B_1} \in H^1_{[A_e, B_e]}(B_1)^m$.

Clearly,

$$
\hat{w} := \hat{u} \chi_{B_1} = w - c_0 \chi_{B_1} \in H^1_0(B_1)^m.
$$

Hence, there exists $\{\varphi_n\}_{n=1}^\infty \subset \mathcal{D}(B_1)$ such that

$$
\|\varphi_n - \hat{w}\|_{H^1(B_1)^m} \to 0 \quad \text{as} \ n \to \infty.
$$

Let $\phi_n \in \mathcal{D}(B_2)^m$ be such that $\phi_n|_{B_1} = \varphi_n$ and $\phi_n|_{B_2 \setminus B_1} = 0$. Using the fact that $\{B_1; A_a, B_a\}$ is regular and $\tilde{u}|_{B_2 \setminus B_1} = 0$, we have

$$
\|\phi_n - \hat{u}\|_{H^1_{[A_e, B_e]}(B_2)^m} = \mathcal{E}^2_{[A_e, B_e]}(\varphi_n - \hat{w}) \lesssim \|\varphi_n - \hat{w}\|_{H^1(B_1)^m}^2 \to 0 \quad \text{as} \ n \to \infty,
$$

which implies that $\hat{u} \in H^1_{[A_e, B_e]}(B_1)^m$.

Now, let u be a measurable function satisfying (i) and (ii). As is shown above, $u \chi_{B_1} \in H^1_{[A_e, B_e]}(B_2)^m$, one only needs to show that $u - u \chi_{B_1}$ is
We first show for \(\lim \) and Theorem 3.7. To see that \(\theta \) vector independent of the angular variable \(\theta \). Using similar argument as earlier by substraction of a Heaviside function from \(u \) together with Lemma 3.5, we can further assume that \(u \) vanishes on \(\mathcal{B}_1 \). Moreover, without loss of generality, we can also assume that \(u \) vanishes near \(\mathcal{S}_2 \). Let \(\tilde{v} := F^* (u|_{\mathcal{B}_2 \setminus \mathcal{B}_1}) = F^* v \). According to our earlier argument, \(v \in H^1(\mathcal{B}_2)^m \) (note here we identify \(v \) and its extension on \(\{0\} \)). Since \(v \) vanishes near \(\mathcal{S}_2 \) and \(\{0\} \) is a \((2,1)\)-polar set, there are \(\tilde{\phi}_n \in \mathcal{D}(\mathcal{B}_2 \setminus \{0\})^m \) such that
\[
\| \tilde{\phi}_n - \tilde{v} \|_{H^1(\mathcal{B}_2)^m} \to 0 \quad \text{as} \; n \to \infty.
\]
Let \(\phi_n \in \mathcal{D}^\infty(\mathcal{B}_2)^m \) be such that
\[
\phi_n|_{\mathcal{B}_2 \setminus \mathcal{B}_1} = (F^{-1})^* \tilde{\phi}_n \quad \text{and} \quad \phi_n|_{\mathcal{B}_1} = 0.
\]
Using \(u|_{\mathcal{B}_1} = 0 \) and the fact that \(\{\mathcal{B}_2; \mathcal{A}_b, \mathcal{B}_b\} \) is regular, we have
\[
\| \phi_n - u \|_{H^1_{[\mathcal{A}_e, \mathcal{B}_e]}(\mathcal{B}_2)^m} \lesssim \mathcal{E}_{\mathcal{B}_2 \setminus \mathcal{B}_1; \mathcal{A}_e, \mathcal{B}_e}(\phi_n - v)
\]
\[
= \mathcal{E}_{[\mathcal{A}_b, \mathcal{B}_b]}(\tilde{\phi}_n - \tilde{v})
\]
\[
\lesssim \| \tilde{\phi}_n - \tilde{v} \|_{H^1(\mathcal{B}_2)^m} \to 0 \quad \text{as} \; n \to \infty,
\]
which implies that \(u \in H^1_{[\mathcal{A}_e, \mathcal{B}_e]}(\mathcal{B}_2)^m \).

The proof is completed. \(\square \)

Now, we are ready to present the proof of Theorem 3.4.

Proof of Theorem 3.4. We first show that if \(u \in H^1_{[\mathcal{A}_e, \mathcal{B}_e]}(\mathcal{B}_2)^m \) is a solution to (3.11) and (3.14), then we must have the decoupled problems (3.16) and (3.17).

Let \(v := u|_{\mathcal{B}_2 \setminus \mathcal{B}_1} \) and \(\tilde{v} = F^* \tilde{v} \). In the following, as in the proof of Lemma 3.6, we identify \(\tilde{v} \) and its \(H^1 \)-extension from \(\mathcal{B}_2 \setminus \{0\} \) to \(\mathcal{B}_2 \). Clearly, \(\tilde{v} \) satisfies (3.16). On the other hand, let \(w := u|_{\mathcal{B}_1} \), then \(\gamma w \) is a constant vector independent of the angular variable \(\theta \) by Lemma 3.6. So, it is trivial to see that \(w \) satisfies (3.17). Hence, we only need to show (3.18), whereas the determination of \(c_0 \) from (3.18) will be discussed in the subsequent Theorem 3.7.

Set
\[
\Sigma^+_\epsilon := \{y \in \mathbb{R}^2; 1 < |y| < 1 + \epsilon/2\}, \; \Sigma^-_\epsilon := \{y \in \mathbb{R}^2; 1 - \epsilon/2 < |y| < 1\},
\]
and
\[
\Upsilon^+_\epsilon := \{y \in \mathbb{R}^2; |y| = 1 + \epsilon/2\}, \; \Upsilon^-_\epsilon := \{y \in \mathbb{R}^2; |y| = 1 - \epsilon/2\}.
\]

We first show for \(\varphi \in \mathcal{D}^\infty(\mathcal{B}_2)^m \)
\[
(3.35) \quad \lim_{\epsilon \to 0^+} \left| \int_{\Sigma^-_\epsilon} \left(\sum_{\alpha, \beta \leq 1} (A^{\alpha \beta}_{e} \partial_{\beta} u)^* \partial_{\alpha} \varphi - \omega^2 (B_{e} u)^* \varphi - f^*_e \varphi \right) dy \right| = 0.
\]
In fact, by using the expression of \((A, B)\) in \(\Sigma^\pm\) and the change of variables in integrations, together with \(\varepsilon\) being \(J^{-1}(F^{-1})^* f_0\) in \(\Sigma^\pm\) and \(\tilde{v}\) being the \(H^1\)-extension of \(F^* v\) from \(B_2 \setminus \{0\}\) to \(B_2\), we have

\[
\begin{align*}
(3.36) \quad &\quad \left| \int_{\Sigma^\varepsilon^+} \left(\sum_{\alpha, \beta \leq 1} (A_{e}^{\alpha \beta} \partial_{\beta} u)^* \partial_{\alpha} \varphi - \omega^2 (B_e u)^* \varphi - f_e^* \varphi \right) \right| dy \\
&= \left| \int_{B_2} \left(\sum_{\alpha, \beta \leq 1} (A_{b}^{\alpha \beta} \partial_{\beta} \tilde{v})^* \partial_{\alpha} \tilde{\varphi} - \omega^2 (B_b \tilde{v})^* \tilde{\varphi} - f_b^* \tilde{\varphi} \right) \right| dx \\
&\lesssim \left(\|\tilde{v}\|_{H^1(B_2)^m} + \|f_b\|_{H^{-1}(B_2)^m} \right) \|\tilde{\varphi}\|_{H^1(B_2)^m} \to 0 \quad \text{as } \varepsilon \to 0^+, \\
\end{align*}
\]

where \(\tilde{\varphi} \in H^1(B_2)^m\) is the continuous extension of \(F^* (\varphi|_{B_2 \setminus B_1})\) from \(B_2 \setminus \{0\}\) to \(B_2\). On the other hand, noting \(u|_{B_1} = w \in H^1(B_1)^m\) and \(f_a|_{B_1} \in H^{-1}(B_1)^m\), it is straightforward to verify

\[
\begin{align*}
(3.37) \quad &\quad \lim_{\varepsilon \to 0^+} \left| \int_{\Sigma^\varepsilon^-} \left(\sum_{\alpha, \beta \leq 1} (A_{e}^{\alpha \beta} \partial_{\beta} u)^* \partial_{\alpha} \varphi - \omega^2 (B_e u)^* \varphi - f_e^* \varphi \right) \right| dy \\
&= \lim_{\varepsilon \to 0^+} \left| \int_{\Sigma^\varepsilon^-} \left(\sum_{\alpha, \beta \leq 1} (A_{a}^{\alpha \beta} \partial_{\beta} w)^* \partial_{\alpha} \varphi - \omega^2 (B_a w)^* \varphi - f_a^* \varphi \right) \right| dy \\
&= 0.
\end{align*}
\]

Next, by (3.14) and using (3.36) and (3.37), together with integration by parts, we have

\[
(3.38) \quad 0 = \int_{B_2} \left(\sum_{\alpha, \beta \leq 1} (A_{e}^{\alpha \beta} \partial_{\beta} u)^* \partial_{\alpha} \varphi - \omega^2 (B_e \varphi)^* \varphi - f_e^* \varphi \right) \right| dy
\]

\[
= \int_{B_2 \setminus S_1} \left(\sum_{\alpha, \beta \leq 1} (A_{e}^{\alpha \beta} \partial_{\beta} u)^* \partial_{\alpha} \varphi - \omega^2 (B_e \varphi)^* \varphi - f_e^* \varphi \right) \right| dy
\]

\[
= \lim_{\varepsilon \to 0^+} \int_{B_2 \setminus (\Sigma^\varepsilon^+ \cup B_1 \cup \Sigma^\varepsilon^-)} \left(\sum_{\alpha, \beta \leq 1} (A_{e}^{\alpha \beta} \partial_{\beta} u)^* \partial_{\alpha} \varphi - \omega^2 (B_e \varphi)^* \varphi - f_e^* \varphi \right) \right| dy
\]

\[
= \lim_{\varepsilon \to 0^+} \left(\int_{T^\varepsilon^+} \left(\sum_{\alpha, \beta \leq 1} \nu_{\alpha} A_{e}^{\alpha \beta} \partial_{\beta} u \varphi dS(y) + \int_{T^\varepsilon^-} \left(\sum_{\alpha, \beta \leq 1} \nu_{\alpha} A_{a}^{\alpha \beta} \partial_{\beta} u \varphi dS(y) \right) \right. \right)
\]

where, by a bit abuse of notations, \(\nu\) denotes the exterior unit normal to respective domain, \(\Sigma^\varepsilon^+\) and \(\Sigma^\varepsilon^-\). Next, we estimate the integral in the right hand side of the last equation in (3.38). In the sequel, we denote by \(\tilde{v}\) the exterior unit normal vector to the domain \(B_e\). Using the change of variables
in integration and the fact that \(\tilde{v} = F^*(u|_{B_2 \setminus \hat{B}_1}) \) belongs to \(H^1(B_2)^m \) and satisfies (3.16), we have

\[
\left| \int_{T^+} \left(\sum_{\alpha, \beta \leq 1} \nu_\alpha A^\alpha_\beta \partial_\beta u \right)^* \varphi dS(y) \right| = \left| \int_{\partial B_\varepsilon} \left(\sum_{\alpha, \beta \leq 1} \tilde{v}_\alpha A^\alpha_\beta \partial_\beta \tilde{v} \right)^* \tilde{\varphi} dS(x) \right|
\]

(3.39)

\[
= \left| \int_{B_\varepsilon} \left(\sum_{\alpha, \beta \leq 1} (A^\alpha_\beta \partial_\beta \tilde{v})^* \partial_\alpha \tilde{\varphi} - \omega^2 (B_\varepsilon \tilde{v})^* \tilde{\varphi} - f^*_\varepsilon \tilde{\varphi} \right) dx \right|
\]

\[
\lesssim \left(\| \tilde{v} \|_{H^1(B_\varepsilon)^m} + \| f_\varepsilon \|_{\hat{H}^{-1}(B_\varepsilon)^m} \right) \| \tilde{\varphi} \|_{H^1(B_\varepsilon)^m} \to 0 \quad \text{as} \quad \varepsilon \to 0^+.
\]

By (3.38) and (3.39), we see

\[
\int_{S_1} \left(\sum_{\alpha, \beta \leq 1} \nu_\alpha A^\alpha_\beta \partial_\beta w \right)^* \varphi dS(y) = \lim_{\varepsilon \to 0^+} \int_{T^+} \left(\sum_{\alpha, \beta \leq 1} \nu_\alpha A^\alpha_\beta \partial_\beta w \right)^* \varphi dS(y) = 0
\]

which implies by the fact \(\varphi|_{S_1} \) could be an arbitrary constant vector from \(\mathbb{C}^m \) that

\[
\int_{S_1} \sum_{\alpha, \beta \leq 1} \nu_\alpha A^\alpha_\beta \partial_\beta w \ dS(y) = 0.
\]

Now, let \(\tilde{v} \in H^1(B_2)^m \) and \(w \in H^1(B_1)^m \) be solutions, respectively to (3.16) and (3.17). Set \(u = (F^{-1})^* \tilde{v} \) on \(B_2 \setminus \hat{B}_1 \) and be \(w \) on \(B_1 \), and extend it to \(B_2 \) by setting it be zero on \(S_1 \). By Lemma 3.6, we see that \(u \in H^1(A_\varepsilon, B_2)^m \). Moreover, it is readily seen that one also has

\[
P_{[A_\varepsilon, B_2]} u = f_\varepsilon \quad \text{on} \quad B_2 \setminus \hat{B}_1, \quad u|_{S_2} = h,
\]

and

\[
P_{[A_\varepsilon, B_\varepsilon]} u = f_\varepsilon \quad \text{on} \quad B_1.
\]

By Lemma 3.1, together with (3.40) and (3.41), we have for any \(\varphi \in \mathcal{F}_0^\infty(B_2)^m \)

\[
\|Q_{[A_\varepsilon, B_\varepsilon]}(u, \varphi) - \langle f_\varepsilon, \varphi \rangle \Omega \|
\]

(3.42)

\[
= \lim_{\varepsilon \to 0^+} \int_{B_2 \setminus (S_1 \cup S_2)} \left(\sum_{\alpha, \beta \leq 1} \left(A^\alpha_\beta \partial_\beta u \right)^* \partial_\alpha \varphi - \omega^2 \left(B_\varepsilon \varphi \right)^* \varphi - f^*_\varepsilon \phi \right) dy
\]

\[
= \lim_{\varepsilon \to 0^+} \left(\int_{T^+} - \left(\sum_{\alpha, \beta \leq 1} \nu_\alpha A^\alpha_\beta \partial_\beta u \right)^* \varphi dS(y) + \int_{T^+} \left(\sum_{\alpha, \beta \leq 1} \nu_\alpha A^\alpha_\beta \partial_\beta u \right)^* \varphi dS(y) \right)
\]
Again, using the estimate in (3.39), we know
\[
(3.43) \quad \lim_{\varepsilon \to 0^+} \int_{\Gamma^+} (\sum_{\alpha, \beta \leq 1} \nu_\alpha A_\alpha^\beta \partial_\beta u)^* \varphi \ dS(y) = 0
\]
On the other hand, by noting \(u = w \) on \(B_1 \), and using (3.18) and \(\varphi|_{S_1} \) is a constant vector in \(C^m \), we further have
\[
(3.44) \quad \lim_{\varepsilon \to 0^+} \int_{\Gamma^-} (\sum_{\alpha, \beta \leq 1} \nu_\alpha A_\alpha^\beta \partial_\beta u)^* \varphi \ dS(y) = 0
\]
Finally, by (3.42)–(3.44), we have
\[
Q[A_\alpha, B_\alpha](u, \varphi) = \langle f_e, \varphi \rangle_{\Omega}, \ \forall \varphi \in \bar{T}_0^\infty(B_2).
\]
That is, \(u \in H^{1}[A_\alpha, B_\alpha](B_2)^m \) is a solution to (3.14).

The proof is complete. \(\square \)

In the rest of this section, we study the interior problem (3.17)–(3.18). To that end, we introduce the following closed subspace of \(H^1(B_1)^m \),
\[
W := \{ g \in H^1(B_1)^m; \ \gamma g|_{S_1} \text{ is a constant vector in } C^m \}. \tag{3.45}
\]
Then, (3.17)–(3.18) is weakly formulated as
\[
w \in W \quad \text{and} \quad Q[A_\alpha, B_\alpha](w, g) = \langle f_a, g \rangle_{B_1}, \ \forall g \in W. \tag{3.46}
\]
The corresponding homogeneous problem is
\[
w \in W \quad \text{and} \quad Q[A_\alpha, B_\alpha](w, g) = 0, \ \forall g \in W,
\]
and by noting (2.3), its adjoint problem is
\[
v \in W \quad \text{and} \quad Q[A, B^*](v, g) = 0, \ \forall g \in W. \tag{3.48}
\]

Theorem 3.7. Let \(W \) denote the set of solutions to (3.47). Then, either (i) \(W = \{0\} \); or (ii) \(\dim W = n \) for some finite \(n \geq 1 \). In the case (i), the problem (3.47) is uniquely solvable. Whereas in case (ii), the homogeneous adjoint problem (3.48) also has exactly \(n \) linearly independent solutions, say \(v_1, v_2, \ldots, v_n \in W \), and the inhomogeneous problem (3.46) is solvable iff
\[
\langle v_p, f_a \rangle = 0 \quad \text{for } 1 \leq p \leq n. \tag{3.49}
\]

Proof. Consider the operator \(\mathcal{L} : W \to W^* \) determined by \(Q[A_\alpha, B_\alpha] \) in the standard way as
\[
(\mathcal{L}g_1)(g_2) = Q[A_\alpha, B_\alpha](g_1, g_2).
\]
Let \(\mathcal{H} = L^2(B_1)^m \) act as the pivot space. Clearly, the inclusion \(W \subseteq \mathcal{H} \) is compact. So, \(\mathcal{L} \) is Fredholm with index 0. Furthermore, each distribution \(f_a \in \bar{H}^{-1}(B_1)^m \) gives rise to a unique functional \(F_a \in W^* \), defined by \(F_a(g) = \langle f_a, g \rangle_{B_1} \) for \(g \in W \). Thus, the equation (3.46) is equivalent to
\[
\mathcal{L}w = F_a. \tag{3.50}
\]
The celebrated Fredholm theory applied to (3.50) gives the desired results in the theorem. \(\square \)
Remark 3.8. In order to guarantee the existence of solutions to (3.1), we impose the following compatibility condition on the interior source/sink f_a,

$\langle v, f_a \rangle = 0$,

where v is any solution to (3.45).

Concerning the solution to the cloaking problem (3.1), we have the following qualitative observations

Remark 3.9. Let $u \in H^1_{[A_b, B_b]}(B_2^m)$ be a solution to (3.1). Set γ^+ and γ^- be the two sided trace operators on the cloaking S_1. Then, by (3.38), we see

$$\int_{S_1} \left[\sum_{\alpha, \beta \leq 1} \nu_\alpha A^{\alpha \beta}_c \partial_\beta u \right] dS = \int_{S_1} \left[\gamma^+ \left(\sum_{\alpha, \beta \leq 1} \nu_\alpha A^{\alpha \beta}_c \partial_\beta u \right) - \gamma^- \left(\sum_{\alpha, \beta \leq 1} \nu_\alpha A^{\alpha \beta}_c \partial_\beta u \right) \right] dS = 0$$

On the other hand, we see that generically one has

$$[u]_{S_1} := \gamma^+ u - \gamma^- u = \text{constant vector } \neq 0,$$

since otherwise we would have an over-determined system (3.17)–(3.18).

This observation also encompasses the necessity of introducing the finite energy solutions other than spatial H^1-solutions to the singular cloaking problem (3.1).

4. General invisibility cloaking

Up till now, we have considered invisibility cloaking where the cloaked region is the unit disc B_1, and the cloaking layer is the annulus $B_2 \setminus \overline{B}_1$. In this section, we extend our study to the general cloaking. To that end, let $G : B_2 \to \Omega$ be an orientation-preserving and bi-Lipschitz mapping and let $D = G(B_1)$. Then, for F in (2.15), let

$$K = G \circ F \circ G^{-1} : \Omega \to \Omega,$$

which blows up the point $G(\{0\})$ to D within Ω while keeps $\partial \Omega$ fixed. Now, we shall show

Theorem 4.1. Let $\{\Omega; A_b, B_b, f_b\}$ with f_b supported away from $G(\{0\})$ be the regular reference/background space. Then

$$\{\Omega \setminus \overline{D}; A_c, B_c, f_c\} = K_* \{\Omega \setminus G(\{0\}); A_b, B_b, f_b\}$$

is an invisibility cloaking device for the region D with respect to the reference space $\{\Omega; A_b, B_b, f_b\}$. That is, for any extended object

$$\{\Omega; A_e, B_e, f_e\} = \begin{cases} \{\Omega \setminus \overline{D}; A_c, B_c, f_c\} & \text{in } \Omega \setminus \overline{D}, \\ \{D; A_a, B_a, f_a\} & \text{in } D, \end{cases}$$
where \(\{D; A_a, B_a\} \) is an arbitrary regular medium and \(f_a \in \bar{H}^{-1}(D)^m \), we have
\[
(4.1) \quad \Lambda_{A_a, B_a, f_a}^\omega = \Lambda_{A_b, B_b, f_b}^\omega.
\]

Proof. Let
\[
(4.2) \quad \{B_2; A_b, B_b, f_b\} := (G^{-1})_*\{\Omega; A_h, B_h, f_h\},
\]
and
\[
(4.3) \quad \{B_2 \setminus \bar{B}_1; A_c, B_c, f_c\} = (F \circ G^{-1})_*\{\Omega \setminus G(\{0\}); A_b, B_b, f_b\} = F_*\{B_2 \setminus \{0\}; A_b, B_b, f_b\}.
\]

Then,
\[
(4.4) \quad \{\Omega \setminus \bar{D}; A_c, B_c, f_c\} = G_*\{B_2 \setminus \bar{B}_1; A_c, B_c, f_c\}.
\]
Since \(G \) is orientation-preserving and bi-Lipschitz, we know \(\{B_2; A_b, B_b, f_b\} \) is a regular space and, \(A_c, B_c \) have same singularities on the cloaking interface \(\partial D^+ \) as of \(A_c, B_c \) on \(S^+_2 \). In order to stick close to our discussion in Sections 2 and 3, we introduce
\[
(4.5) \quad \{B_1; A_a, B_a, f_a\} = (G^{-1})_*\{D; A_a, B_a, f_a\},
\]
and define \(\{B_2; A_c, B_c, f_c\} \) correspondingly. Now we introduce the singulary weighted Sobolev space \(H^1_{[A_c, B_c, f_c]}(\Omega)^m \) similarly to \(H^1_{[A_c, B_c]}(B_2)^m \). The solution to the cloaking problem,
\[
(4.6) \quad \bar{P}_{[A_c, B_c]}u = f_e \quad \text{on } B_2, \quad u|_{S_2} = h
\]
where \(h = (G|_{S_2})^* h \). By Theorem 3.4 we know \(\tilde{v}(x) = (F^*(u|_{B_2 \setminus B_1}))^e \in H^1(B_2)^m \) is satisfies
\[
(4.7) \quad \bar{P}_{[A_b, B_b]}\tilde{v} = f_b \quad \text{on } B_2, \quad \tilde{v}|_{S_2} = h,
\]
whereas \(w = u|_{B_1} \in H^1(B_1)^m \) is a solution to
\[
(4.8) \quad \int_{S_1} \sum_{\alpha, \beta \leq 1} \nu_\alpha A_\alpha^\beta \partial_\beta w \ dS = 0.
\]
Therefore, we know \(\tilde{v} := (G^{-1})^* \tilde{v} = (K^*(u|_{\Omega \setminus \bar{D}}))^e \in H^1(\Omega)^m \) satisfies
\[
(4.9) \quad \bar{P}_{[A_b, B_b]}\tilde{v} = f_h \quad \text{on } \Omega, \quad \tilde{v}|_{\partial \Omega} = h,
\]
whereas \(w := (G^{-1})^* w = u|_{D} \in H^1(D)^m \) is a solution to
\[
(4.10) \quad \bar{P}_{[A_a, B_a]}w = f_a \quad \text{on } D, \quad w|_D = c_0,
\]
and define
with $c_0 \in \mathbb{C}^m$ a constant vector determined by

$$\int_{\partial D} \sum_{\alpha, \beta \leq 1} \nu_\alpha A_\alpha \alpha^\beta \partial_\beta w \ dS = 0.$$

Finally, by a similar argument to that for the proof of Theorem 2.3, one can show (4.1). The proof is completed.

5. Discussion

In this paper, we investigate the invisibility cloaking for a general system of PDEs in \mathbb{R}^2. The material parameters possess transformation properties, which allow the construction of cloaking media by singular push-forward transformations. The cloaking media are inevitably singular resulting in singular PDEs. Thus one needs to be careful in defining the meaning of solutions to the singular cloaking problems. In [3] the notion of finite energy solutions was introduced which is a meaningful physical condition because it relates to the energy of the waves. We follow their approach to treat more singular PDEs in the present paper. By studying the finite energy solution, we decouple the cloaking problem with one in the cloaking region having the same DtN operator as that in the background/reference space, and the other one in the cloaked region possessing some ‘hidden’ boundary condition on the interior cloaking interface. On the other hand, we would like to point out that this is not the unique way of defining solutions to the singular cloaking problems. An alternative treatment is provided in [7] by the authors to split the finite energy solutions space directly and hence decouple the cloaking problem into the cloaked region and cloaking region automatically. In order to achieve more physical insights into these solutions, one might relate them to solutions from regularized approximate cloaking.

References

[1] Alu, A. and Engheta, N., Achieving transparency with plasmonic and metamaterial coatings, Phys. Rev. E 72 (2005), 016623.
[2] Bernardi, C., Dauge, M., and Maday, Y., Spectral Methods for Axisymmetric Domains, Gauthier-Villars, Paris, 1999.
[3] Greenleaf, A., Kurylev, Y., Lassas, M., and Uhlmann, G., Full-wave invisibility of active devices at all frequencies, Comm. Math. Phys., 275 (2007), 749–789.
[4] Greenleaf, A., Kurylev, Y., Lassas, M., and Uhlmann, G., Cloaking devices, electromagnetic wormholes and transformation optics, SIAM Review, 51 (2009), 3–33.
[5] Greenleaf, A., Lassas, M., and Uhlmann, G., On nonuniqueness for Calderón’s inverse problem, Math. Res. Lett., 10, 685 (2003).
[6] Hetmaniuk, U., Liu, H. Y. On acoustic cloaking devices by transformation media and their simulation, SIAM J. Appl. Math., in revision.
[7] Hetmaniuk, U., Liu, H. Y. and Zhou, T. On two dimensional acoustic cloaking devices and their simulations, submitted, 2010
[8] Isakov, V., Inverse Problems for Partial Differential Equations, 2nd ed., Springer-Verlag, New York, 2006.
[9] Kohn, R., Onofrei, D., Vogelius, M., and Weinstein, M., Cloaking via change of variables for the Helmholtz equation, Commu. Pure Appl. Math., to appear.
[10] **Kohn, R., Shen, H., Vogelius, M., and Weinstein, M.**, Cloaking via change of variables in electrical impedance tomography, Inverse Problems, 24 (2008), 015016.

[11] **Leonhardt, U.**, Optical conformal mapping, Science, 312 (2006), 1777–1780.

[12] **Liu, H. Y.**, Virtual reshaping and invisibility in obstacle scattering, Inverse Problems, 25 (2009), 045006.

[13] **McLean, W.**, Strongly Elliptic Systems and Boundary Integral Equations, Cambridge University Press, Cambridge, 2000.

[14] **Milton, G. W. and Nicorovici, N.-A. P.**, On the cloaking effects associated with anomalous localized resonance, Proc. Roy. Soc. A, 462 (2006), 3027–3095.

[15] **Nguyen, H. M.**, Cloaking via change of variables for the Helmholtz equation in the whole space, Commu. Pure Appl. Math., to appear

[16] **Norris, A. N.**, Acoustic cloaking theory, Proc. R. Soc. A, 464 (2008), 2411-2434.

[17] **Pendry, J. B., Schurig, D., and Smith, D. R.**, Controlling Electromagnetic Fields, Science, 312 (2006), 1780–1782.

[18] **Uhlmann, G.**, Developments in inverse problems since Calderón’s foundational paper, Ch. 19 in *Harmonic Analysis and Partial Differential Equations*, M. Christ, C. Kenig and C. Sadosky, eds., University of Chicago Press (1999), 295-345.

[19] **Yan, M., Yan, W., and Qiu, M.**, Invisibility cloaking by coordinate transformation, Chapter 4 of *Progress in Optics*–Vol. 52, Elsevier, pp. 261–304, 2008.

Department of Mathematics, University of Washington, Box 354350, Seattle, WA, 98195–4350

E-mail address: hyliu@math.washington.edu

Department of Mathematics, University of Washington, Box 354350, Seattle, WA, 98195–4350

E-mail address: tzhou@math.washington.edu