Functional polymorphisms of the APOA1/C3/A4/A5-ZPR1-BUD13 gene cluster are associated with dyslipidemia in a sex-specific pattern

Wei Bai 1, Changgui Kou 1, Lili Zhang 1, Yueyue You 1, Weiyong Yu 1, Wanqing Hua 1, Yuanyuan Li 1, Yaqin Yu 1, Tiancheng Zhao Corresponding Authors: 2, Yanhua Wu Corresponding Authors: 1, 3

1 Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun, Jilin Province, China
2 Department of Endoscopy Center, China-Japan Union Hospital of Jilin University, Changchun, Jilin Province, China
3 Division of Clinical Research, First Hospital of Jilin University, Changchun, Jilin Province, China
Email address: zhaotiancheng@jlu.edu.cn, wuyanhua@jlu.edu.cn

Background. Dyslipidemia contributes to the risk of many diseases, including stroke, cardiovascular disease and metabolic-related diseases. Previous studies have indicated that single nucleotide polymorphisms (SNPs) are associated with different levels of serum lipid. Therefore, this study explored the relationship between the APOA1/C3/A4/A5-ZPR1-BUD13 gene cluster gene polymorphisms and dyslipidemia in the total sample population and stratified by genders in a northeast Chinese population.

Methods. A total of 3850 participants from Jilin Province, China, were enrolled in our study, and their serum lipid levels were measured. Six functional SNPs (APOA1 rs5072, APOC3 rs5128, APOA4 rs5104, APOA5 rs651821, ZPR1 rs2075294 and BUD13 rs10488698) were genotyped using polymerase chain reaction and MALDI-TOF-MS. Logistic regression analysis was performed to explore the relationship of APOA1/C3/A4/A5-ZPR1-BUD13 gene cluster gene polymorphisms with dyslipidemia. Linkage disequilibrium and haplotype analyses were performed with SNPStats program and Haploview software.

Results. All SNPs conformed to Hardy-Weinberg Equilibrium. Logistic regression analysis revealed that rs5072, rs5128 and rs651821 were associated with hypertriglyceridemia, rs5104 and rs651821 were associated with low-HDL cholesterolemia in overall group. rs651821 was associated with hypertriglyceridemia and low-HDL cholesterolemia in both the male and female group. However, among females, rs5072 was observed to be associated with hypertriglyceridemia. Haplotype analysis showed that haplotypes TGCCGC and CAGCGC were associated with dyslipidemia in the overall, male and female groups.

Conclusion. SNPs in the APOA1/C3/A4/A5-ZPR1-BUD13 gene cluster were associated with dyslipidemia. Furthermore, the association of APOA1 rs5072 in this gene cluster with dyslipidemia differed between genders; thus, additional studies are needed to confirm this conclusion, and the mechanisms underlying these results warrant further exploration.
Functional polymorphisms of the APOA1/C3/A4/A5-ZPR1-BUD13 gene cluster are associated with dyslipidemia in a sex-specific pattern

Wei Bai1, Changgui Kou1, Lili Zhang1, Yueyue You1, Weiyiing Yu1, Wanqing Hua1, Yuanyuan Li1, Yaqin Yu1, Tiancheng Zhao2*, Yanhua Wu1,3*

1. Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, 1163 Xinmin Street, Changchun, 130021, Jilin province, China
2. Department of Endoscopy Center, China-Japan Union Hospital of Jilin University, Changchun, 130033, Jilin province, China.
3. Division of Clinical Research, First Hospital of Jilin University, Changchun, 130021, Jilin province, China.

*Corresponding Authors: Tiancheng Zhao, Yanhua Wu

Email address: Tiancheng Zhao, zhaotiancheng@jlu.edu.cn
Yanhua Wu, wuyanhua@jlu.edu.cn
Abstract

Background. Dyslipidemia contributes to the risk of many diseases, including stroke, cardiovascular disease and metabolic-related diseases. Previous studies have indicated that single nucleotide polymorphisms (SNPs) are associated with different levels of serum lipid. Therefore, this study explored the relationship between the APOA1/C3/A4/A5-ZPR1-BUD13 gene cluster gene polymorphisms and dyslipidemia in the total sample population and stratified by genders in a northeast Chinese population.

Methods. A total of 3850 participants from Jilin Province, China, were enrolled in our study, and their serum lipid levels were measured. Six functional SNPs (APOA1 rs5072, APOC3 rs5128, APOA4 rs5104, APOA5 rs651821, ZPR1 rs2075294 and BUD13 rs10488698) were genotyped using polymerase chain reaction and MALDI-TOF-MS. Logistic regression analysis was performed to explore the relationship of APOA1/C3/A4/A5-ZPR1-BUD13 gene cluster gene polymorphisms with dyslipidemia. Linkage disequilibrium and haplotype analyses were performed with SNPStats program and Haploview software.

Results. All SNPs conformed to Hardy-Weinberg Equilibrium. Logistic regression analysis revealed that rs5072, rs5128 and rs651821 were associated with hypertriglyceridemia, rs5104 and rs651821 were associated with low-HDL cholesterolemia in overall group. rs651821 was associated with hypertriglyceridemia and low-HDL cholesterolemia in both the male and female group. However, among females, rs5072 was observed to be associated with hypertriglyceridemia. Haplotype analysis showed that haplotypes TGCCGC and CAGCGC were associated with dyslipidemia in the overall, male and female groups.

Conclusion. SNPs in the APOA1/C3/A4/A5-ZPR1-BUD13 gene cluster were associated with dyslipidemia. Furthermore, the association of APOA1 rs5072 in this gene cluster with dyslipidemia differed between genders; thus, additional studies are needed to confirm this conclusion, and the
mechanisms underlying these results warrant further exploration.

Keywords: *APOA1/C3/A4/A5-ZPR1-BUD13* gene cluster, single nucleotide polymorphism (SNP), dyslipidemia

Background

Dyslipidemia, which is characterized by abnormally increased total cholesterol (TC), triglycerides (TG), low-density lipoprotein cholesterol (LDL-C) and decreased high-density lipoprotein cholesterol (HDL-C) levels, is a well-established risk factor for cardiovascular diseases (CVD) (El Hajj et al. 2016; Parhofer 2015; Rai et al. 2016) and contributes to metabolic syndrome (MetS), stroke and other metabolism-related diseases (Albai et al. 2017; Amalakanti et al. 2016; Wang et al. 2017; Wu et al. 2016). A nationally representative survey in China indicated that the prevalence of high TC, high LDL-C, low HDL-C and high TG in Chinese adults over the age of 18 was 6.9%, 8.1%, 20.4% and 13.8%, respectively (Zhang et al. 2018). Previous studies involving epidemiological surveys found that diet, exercise and other environmental risk factors may be associated with abnormal serum lipid levels (Tan et al. 2016). However, genetic factors could also partially explain the development of dyslipidemia (Dron & Hegele 2016; Dron & Hegele 2018; Weiss et al. 2006).

The *APOA1/C3/A4/A5-ZPR1-BUD13* (APO, apolipoprotein; ZPR1, zinc finger; BUD13, BUD13 homolog) gene cluster is located on chromosome 11q23.3, and the apolipoprotein gene cluster at this location has been revealed to be more often associated with lipid traits via genome-wide association study (GWAS) (Braun et al. 2012; Willer et al. 2013). APOA1 synthesis and lipolysis promote HDL-mediated reverse cholesterol transport by generating cholesterol acceptors (Reichl & Miller 1989); therefore, APOA1 plays an important part in lipid metabolism, especially that of HDL cholesterol. The major function of APOC3 in lipid metabolism is to inhibit lipoprotein lipase (LPL); thus, the concentrations of plasma APOC3 are positively associated with TG concentrations (Ooi et al. 2008). APOA4 modulates the activation of LPL by APOC2 (Goldberg et al. 1990) and participates in reverse cholesterol transport (Stein et al. 1986). The transcription of APOA4 is regulated synchronously with that of APOA1, supporting the relationship between these
apolipoproteins (Malmendier et al. 1991), and APOA4 is associated with TG and HDL levels. APOA5 is a component of HDL and regulates TG levels via hydrolysis of TG-rich lipoproteins and endocytosis of lipoprotein remnants (Forte et al. 2009). BUD13 encodes the BUD13 homolog protein, which is one of the subunits of the splicing factor that affects nuclear pre-mRNA retention (Brooks et al. 2009). ZPR1 encodes a regulatory protein involved in cell proliferation and signal transduction (Galcheva-Gargova et al. 1996). In summary, based on the above mechanisms, this gene cluster can influence lipid levels, therapy contributing to the risk of dyslipidemia.

Relevant studies have been conducted to explore the relationship between serum lipid levels and genetic loci in this gene cluster among different ethnic groups (Aung et al. 2014a; Aung et al. 2014b; Hsueh et al. 2017; Suarez-Sanchez et al. 2017; Yin et al. 2011). However, to the best of our knowledge, there have been few studies conducted in northeast Chinese populations that explore the relationship between the APOA1/C3/A4/A5-ZPR1-BUD13 gene cluster and dyslipidemia. Functional SNP may influence gene and protein expression. This study assessed the association of tag and well-studied SNPs (APOA1 rs5072, APOC3 rs5128, APOA4 rs5104, APOA5 rs651821, ZPR1 rs2075294 and BUD13 rs10488698) selected from the Han Chinese data in Haploview (http://hapmap.ncbi.nlm.nih.gov/) and based on previous studies (Wu et al. 2015; Wu et al. 2016) with dyslipidemia in the overall sample and stratified by genders in a large sample from a Han Chinese population.

Materials and Methods

Study population

The Project of Present Situation and Change Forecast of Disease Spectrum in Jilin Province, China, was conducted from June 2012 to August 2012 among individuals aged 18 to 79 years in all nine areas of Jilin Province. This project was a cross-sectional and representative survey of Jilin Province, China, which aimed to evaluate the prevalence and risk factors associated with chronic diseases (Wang et al. 2015). The genetic associations results for dyslipidemia-related diseases have been reported in previous studies (Su et al. 2016; You et al. 2018; You et al. 2017). The whole sample size of the survey was 21435, and the participants in our present study were randomly
chosen from the whole sample. They were unrelated members of the Han population, and individuals with a family history of dyslipidemia and other metabolic diseases or without complete serum lipid data were excluded; the participants were excluded if they were being treated with any drugs that may affect lipid parameters. In total, 3850 participants (1927 males and 1923 females) were enrolled in the association study between the APOA1/C3/A4/A5-ZPR1-BUD13 gene cluster and dyslipidemia.

Dyslipidemia was assessed according to the Guidelines on Prevention and Treatment of Dyslipidemia in Chinese Adults (Prevention & Adults 2007): hypertriglyceridemia, TG ≥ 2.26 mmol/L; hypercholesterolemia, TC ≥ 6.22 mmol/L; hyper-LDL cholesterolemia, LDL-C ≥ 4.14 mmol/L; low-HDL cholesterolemia, HDL-C < 1.04 mmol/L.

For laboratory evaluation, including the assessment of total TC, TG, HDL-C and LDL-C levels, 5-mL blood samples were collected from each individual. The blood samples were transported under refrigeration and then stored at -20°C. Our study was approved by the ethics committee of the Jilin University School of Public Health (2012-R-011), and all subjects in this study signed a written informed consent form.

SNP selection
Tag SNPs were selected from the Han Chinese data in Haploview (http://hapmap.ncbi.nlm.nih.gov/). Other functional or well-studied SNPs were simultaneously selected based on previous studies (Wu et al. 2015; Wu et al. 2016) that have documented associations between SNPs in the APOA1/C3/A4/A5-ZPR1-BUD13 gene cluster and lipid levels. The minor allele frequency (MAF) criterion for these SNPs was a MAF greater than 0.05 in the Chinese Han population. Finally, 6 SNPs were included in this study: APOA1 rs5072, APOC3 rs5128, APOA4 rs5104, APOA5 rs651821, ZPR1 rs2075294 and BUD13 rs10488698.

DNA extraction and genotyping
Genomic DNA was extracted from peripheral blood lymphocytes following the protocols provided with a commercial DNA extraction kit (JiuNa biology, Hangzhou, China). Genotyping of each SNP was performed via MALDI-TOF-MS (Sequenom, San, Diego, CA, USA) with a
MassARRAY system. Completed genotyping reactions were dispensed onto a 384-well SpectroCHIP using a MassARRAY nanodispenser (Sequenom). The detection rates for the 6 SNPs were 99.7%, 99.6%, 95.8%, 99.6%, 99.8%, and 99.8% (for APOA1 rs5072, APOC3 rs5128, APOA4 rs5104, APOA5 rs651821, ZPR1 rs2075294 and BUD13 rs10488698, respectively).

Statistical analysis

Continuous variables with a normal distribution were summarized as the mean ± standard deviation and compared by Student’s t-test. The Chi-square test was used to check whether the genotype and allele distributions of the six SNPs were significantly different between males and females. For each SNP, Hardy-Weinberg Equilibrium (HWE) was calculated with the goodness-of-fit Chi-square test. $P<0.05$ was considered statistically significant. Binary logistic regression analysis was used to detect associations between the genotypes of the six SNPs in the APOA1/C3/A4/A5-ZPR1-BUD13 gene cluster (in Dominant Model) and dyslipidemia adjusted for sex (adjusted only in the overall group), age, BMI and waist circumference in the overall, male and female groups. We set hypercholesterolemia, hypertriglyceridemia, high LDL cholesterolemia and reduced HDL cholesterolemia as dependent variables, while genotypes, sex (only in the overall group), age, BMI and waist circumference were set as independent variables and entered as method. The strength of any evident association was explored by calculating odds ratios together with their 95% confidence intervals (CI), and P values of no more than 0.008 after Bonferroni Correction were considered statistically significant. All analyses were conducted using SPSS 24.0. Linkage disequilibrium and haplotype analyses were performed with the SNPStats program (http://bioinfo.iconcologia.net/SNPStats)(Sole et al. 2006) and Haploview software(Barrett et al. 2005).

Results

Subject characteristics and distributions of genotype and allele

The baseline characteristics of the subjects stratified by genders were shown in Table 1. No difference was observed between males and females in terms of BMI, but the average age and
waist circumference were greater in males than females. In addition to the percentage of subjects with hypercholesterolemia, there were significant differences in the percentages of subjects with hypertriglyceridemia, high LDL, reduced HDL and dyslipidemia between males and females. There were 2264 participants without dyslipidemia while the numbers of participants with one to four type of dyslipidemia were 763, 623, 184 and 16, respectively. The top five types of dyslipidemia (and the number of participants with each type) were as follows: hypertriglyceridemia (425), hypertriglyceridemia + reduced HDL cholesterolemia (397), reduced HDL cholesterolemia (220), hypercholesterolemia + high LDL cholesterolemia (126) and hypertriglyceridemia + hypercholesterolemia + high LDL cholesterolemia (107).

The genotype distributions of the six SNPs in the APOA1/C3/A4/A5-ZPR1-BUD13 gene cluster conformed to HWE in the overall group (Table S1). The allele distribution of one SNP (rs651821) was different between males and females, and the genotype and allele distributions of the six SNPs were shown in Table S1. Genotype distributions and allele frequencies of dyslipidemia and normal groups were shown in Table S2.

Association between SNPs and dyslipidemia

In the overall group, logistic regression analysis revealed that dyslipidemia was associated with three SNPs (rs5072, rs5104 and rs651821) after adjusting for sex, age, BMI and waist circumference (Table 2). In the male group, rs651821 was found to be associated with hypertriglyceridemia (OR=1.78, 95% CI=1.41-2.26) and low-HDL cholesterolemia (OR=1.61, 95% CI=1.27-2.05). Similar results were observed in the female group. However, we found that rs5072 was associated with hypertriglyceridemia (OR=1.39, 95% CI=1.09-1.76) in the female group (Table 2). The association between the numbers of risk alleles and dyslipidemia was shown in Table S3.

Linkage disequilibrium (LD) and haplotype analyses

The pattern of pairwise linkage disequilibrium (LD) between the SNPs of the APOA1/C3/A4/A5-ZPR1-BUD13 gene cluster was shown in Figure 1. Rs10488698, rs2075294 and rs651821 were located in block 1, while rs5104, rs5128 and rs5072 were located in block 2.
after choosing the cut-off value of 0.75 for D’. The haplotype analysis results were shown in Table 3. People carrying haplotypes 2 and 3 presented an increased risk of dyslipidemia in the total sample and the female and male groups. The association between haplotypes in blocks and different types of dyslipidemia stratified by sexes was explored. We found that subjects with haplotype CGC of block 1 exhibited a higher risk of developing hypertriglyceridemia and reduced HDL cholesterolemia in both sexes. In males, subjects carrying haplotype GCT of block 2 presented a higher risk of developing hypertriglyceridemia and reduced HDL cholesterolemia; however, these results were not observed in females. Details were shown in Table S4.

Discussion

The study applied a large sample design to study the association between the APOA1/C3/A4/A5-ZPR1-BUD13 gene cluster gene polymorphisms and dyslipidemia. The participants in this study were enrolled from a representative community-based population. To the best of our knowledge, this is the first study to analyze the association of this gene cluster with dyslipidemia in a sex-specific pattern in northeast China.

The APOA1/C3/A4/A5 gene cluster is a well-studied gene cluster. Suarez-Sanchez F et al. found that there was a significant association between APOA1 rs5072 and TG in Mexican children (Suarez-Sanchez et al. 2017), and in an Indian study (Pranavchand & Reddy 2017), Pranavchand R concluded that rs5072 was also associated with increased TG; both of these findings were similar to our results. Pranavchand R (Pranavchand & Reddy 2017) found that the genotypic and allelic frequencies of rs5072 exhibited no significant differences between cases and controls; however, our study indicated that there was an association between them in females. One explanation for the difference between these two studies could be that they were conducted in people of different ethnicities and ages. A recent exome-wide association study (EWAS) (Yamada et al. 2017) performed in a Japanese population indicated that APOA4 rs5104 located in this gene was associated with the serum TG concentration. A genome-wide association study (GWAS) conducted in Chinese people (Zhou et al. 2013) showed that rs651821 presented a strong association with TG levels. Cha S et al. (Cha et al. 2014) drew the conclusion that subjects carrying
the variant allele of this SNP exhibited a higher risk of developing low-HDL cholesterolemia than noncarriers in both genders in Koreans, which was consistent with our findings. In our study, haplotype analysis showed that participants carrying the CGC haplotype of block 1 presented a higher risk of developing hypertriglyceridemia (OR=1.76, 95% CI=1.59-1.96) and reduced HDL (OR=1.80, 95% CI=1.59-2.03) than those carrying the CGT haplotype, which revealed that the T allele of rs651821 was associated with a higher risk of hypertriglyceridemia and reduced HDL. The MAFs of rs5072, rs5128, rs5104 and rs651821 in our study were 0.3060, 0.2966, 0.2995, and 0.2406, respectively. These results were similar to the frequencies identified in the southern Han Chinese population in the 1000 Genomes Project, which were 0.3190, 0.3190, 0.3571 and 0.2714. Compared with the frequencies observed in American subjects (0.0656, 0.0492, 0.1311 and 0.1639), British subjects (0.1099, 0.1209, 0.1648 and 0.0714) and other ethnicities, the frequencies determined in our study were markedly different. Ethnicity may be critically important in studying the association between SNPs and dyslipidemia. We used Polyphen to predict the influence of two missense mutations (APOA4 rs5014 and BUD13 rs10188698) on the resultant proteins and found that there was no significant influence on protein function. We also observed that these two SNPs were not associated with any types of dyslipidemia.

At present, studies on BUD13-ZPR1 gene polymorphisms focus on the association with lipid-related diseases. BUD13 and ZPR1 were found to be associated across anatomical categories of coronary artery disease in an Indian study(Pranavchand et al. 2017). Another study(Lin et al. 2016) performed in a Taiwanese population indicated that BUD13 may contribute to the risk of metabolic syndrome, and BUD13 rs623908 was shown to be significantly associated with high TG, low HDL, and HDL levels. Among Chinese individuals(Xu et al. 2018), a strong association between BUD13-ZPR1 rs964184 and coronary heart disease was found, and both gender and age had great impacts on the association of the rs964184 polymorphism with coronary heart disease. Another study(Ueyama et al. 2015) indicated that rs964184 was significantly associated with the prevalence of metabolic syndrome. In addition, there have been studies showing that that ZPR1 contributed to the risk of type 2 diabetes mellitus(Guan et al. 2016; Tokoro et al. 2015). Due to the association
of these two genes with lipid-related diseases, we conjecture that \textit{BUD13} and \textit{ZPR1} gene polymorphisms may contribute to the risk of dyslipidemia.

In our study, we obtained the novel finding of sex-specific differences between the \textit{APOA1/C3/A4/A5-ZPR1-BUD13} gene cluster gene polymorphisms and dyslipidemia. These differences could be partially explained by differences in sex between males and females. Menopause could change the lipid profile by reducing HDL-C and increasing TG, TC and LDL-C (Reddy Kilim & Chandala 2013). However, after menopause, healthy females were prone to become more insulin resistant and gain total body and intra-abdominal fat (Milewicz et al. 2001). Additionally, females with polycystic ovary syndrome (PCOS) usually become overweight or obese, especially abdominally obese (Wu & von Eckardstein 2003). Accumulation of body and central fat and decreased insulin resistance are associated with TG, HDL-C and LDL-C and may therefore alter lipid homeostasis, respectively (Ferrannini et al. 2007). Consequently, mechanisms underlying sex-specific differences between the gene cluster and dyslipidemia are complex and should be further studied. We also found that the associations of the SNPs with dyslipidemia were different when the total sample, males and females were considered separately. We speculated that these associations may be influenced by sex and \textit{P} values we set, since some \textit{P} values were between 0.008 and 0.05. There are some limitations of our study that must be recognized. In each gene, we selected only one tag SNP with a MAF > 5\% reported in published articles. We may have ignored some SNPs with low MAFs or important functions in the \textit{APOA1/C3/A4/A5-ZPR1-BUD13} gene cluster. In addition, dyslipidemia is influenced not only by genetic factors but also by diet, exercise and other environmental factors. We adjusted only sex, age, BMI and waist circumference in our study. Consequently, more environmental factors need to be recorded and adjusted in future studies, and the effects and mechanisms of SNPs in relation to gene expression and protein expression warrant further study.

\textbf{Conclusion}

In conclusion, we analyzed and assessed the association between \textit{APOA1/C3/A4/A5-ZPR1-BUD13} gene cluster gene polymorphisms and dyslipidemia between sexes. We not only obtained
several results consistent with those reported based on previous studies but also found one SNP (rs5072) was different between males and females, providing new insight into the mechanisms of dyslipidemia in different genders.

Acknowledgments

We are grateful to the Jilin Provincial Health Department and the Chinese Jilin Provincial Center for Disease Control and Prevention for supporting our project.

References

Albai O, Roman D, and Frandes M. 2017. Hypertriglyceridemia, an important and independent risk factor for acute pancreatitis in patients with type 2 diabetes mellitus. *Ther Clin Risk Manag* 13:515-522. 10.2147/tcrm.s134560

Amalakanti S, Nagarjunakonda S, Uppala V, Gajula RK, Potharlanka MG, Rajanala L, Athina S, and Daggumati R. 2016. Stroke: Changing Risk Factor Profile and Unaltered Mean Age in a Developing Country. A Retrospective Study and Literature Review. *Eur Neurol* 75:229-235. 10.1159/000445944

Aung LH, Yin RX, Wu DF, Wang W, Wu JZ, and Liu CW. 2014a. Sex-specific association of the zinc finger protein 259 rs2075290 polymorphism and serum lipid levels. *Int J Med Sci* 11:471-478. 10.7150/ijms.8489

Aung LH, Yin RX, Wu JZ, Wu DF, Wang W, and Li H. 2014b. Association between the MLX interacting protein-like, BUD13 homolog and zinc finger protein 259 gene polymorphisms and serum lipid levels. *Sci Rep* 4:5565. 10.1038/srep05565

Barrett JC, Fry B, Maller J, and Daly MJ. 2005. Haploview: analysis and visualization of LD and haplotype maps. *Bioinformatics* 21:263-265. 10.1093/bioinformatics/bth457

Braun TR, Been LF, Singhal A, Worsham J, Ralhan S, Wander GS, Chambers JC, Kooner JS, Aston CE, and Sanghera DK. 2012. A replication study of GWAS-derived lipid genes in Asian Indians: the chromosomal region 11q23.3 harbors loci contributing to triglycerides. *PLoS One* 7:e37056. 10.1371/journal.pone.0037056

Brooks MA, Dziembowski A, Quevillon-Cheruel S, Henriot V, Faux C, van Tilbeurgh H, and Seraphin B. 2009. Structure of the yeast Pml1 splicing factor and its integration into the RES complex. *Nucleic Acids Res* 37:129-143. 10.1093/nar/gkn894

Cha S, Yu H, Park AY, and Song KH. 2014. Effects of apolipoprotein A5 haplotypes on the ratio of triglyceride to high-density lipoprotein cholesterol and the risk for metabolic syndrome in Koreans. *Lipids Health Dis* 13:45. 10.1186/1476-511x-13-45

Dron JS, and Hegele RA. 2016. Genetics of Lipid and Lipoprotein Disorders and Traits. *Curr Genet Med Rep* 4:130-141. 10.1007/s40142-016-0097-y

Dron JS, and Hegele RA. 2018. Polygenic influences on dyslipidemias. *Curr Opin Lipidol* 29:133-143. 10.1097/mol.0000000000000482

El Hajj MS, Mahfoud ZR, Al Suwaidi J, Alkhiyami D, and Alasmar AR. 2016. Role of pharmacist in cardiovascular disease-related health promotion and in hypertension and dyslipidemia
management: a cross-sectional study in the State of Qatar. *J Eval Clin Pract* 22:329-340.

Ferrannini E, Balkau B, Coppack SW, Dekker JM, Mari A, Nolan J, Walker M, Natali A, and Beck-Nielsen H. 2007. Insulin resistance, insulin response, and obesity as indicators of metabolic risk. *J Clin Endocrinol Metab* 92:2885-2892. 10.1210/jc.2007-0334

Forte TM, Shu X, and Ryan RO. 2009. The ins (cell) and outs (plasma) of apolipoprotein A-V. *J Lipid Res* 50 Suppl:S150-155. 10.1194/jlr.R800050-JLR200

Galcheva-Gargova Z, Konstantinov KN, Wu IH, Klier FG, Barrett T, and Davis RJ. 1996. Binding of zinc finger protein ZPR1 to the epidermal growth factor receptor. *Science* 272:1797-1802.

Goldberg IJ, Scheraldi CA, Yacoub LK, Saxena U, and Bisgaier CL. 1990. Lipoprotein ApoC-II activation of lipoprotein lipase. Modulation by apolipoprotein A-IV. *J Biol Chem* 265:4266-4272.

Guan F, Niu Y, Zhang T, Liu S, Ma L, Qi T, Feng J, Zuo H, Li G, Liu X, and Wang S. 2016. Two-stage association study to identify the genetic susceptibility of a novel common variant of rs2075290 in ZPR1 to type 2 diabetes. *Sci Rep* 6:29586. 10.1038/srep29586

Hsueh WC, Nair AK, Kobes S, Chen P, Goring HHH, Pollin TI, Malhotra A, Knowler WC, Baier LJ, and Hanson RL. 2017. Identity-by-Descent Mapping Identifies Major Locus for Serum Triglycerides in Amerindians Largely Explained by an APOC3 Founder Mutation. *Circ Cardiovasc Genet* 10. 10.1161/circgenetics.117.001809

Lin E, Kuo PH, Liu YL, Yang AC, Kao CF, and Tsai SJ. 2016. Association and interaction of APOA5, BUD13, CETP, LIPA and health-related behavior with metabolic syndrome in a Taiwanese population. *Sci Rep* 6:36830. 10.1038/srep36830

Malmendier CL, Alaupovic P, and Jr HBB. 1991. Hypercholesterolemia, Hypocholesterolemia, Hypertriglyceridemia, in Vivo Kinetics. *Advances in Experimental Medicine & Biology*.

Milewicz A, Tworowska U, and Demissie M. 2001. Menopausal obesity--myth or fact? *Climacteric* 4:273-283.

Ooi EM, Barrett PH, Chan DC, and Watts GF. 2008. Apolipoprotein C-III: understanding an emerging cardiovascular risk factor. *Clin Sci (Lond)* 114:611-624. 10.1042/cs20070308

Parhofer KG. 2015. Interaction between Glucose and Lipid Metabolism: More than Diabetic Dyslipidemia. *Diabetes Metab J* 39:353-362. 10.4093/dmj.2015.39.5.353

Pranavchand R, Kumar AS, and Reddy BM. 2017. Genetic determinants of clinical heterogeneity of the coronary artery disease in the population of Hyderabad, India. *Hum Genomics* 11:3.

Pranavchand R, and Reddy BM. 2017. Quantitative trait loci at the 11q23.3 chromosomal region related to dyslipidemia in the population of Andhra Pradesh, India. *Lipids Health Dis* 16:116. 10.1186/s12944-017-0507-5

Prevention JCfDCgo, and Adults ToDi. 2007. [Chinese guidelines on prevention and treatment of dyslipidemia in adults]. *Zhonghua Xin Xue Guan Bing Za Zhi* 35:390.

Rai H, Sinha N, Finn J, Agrawal S, and Mastana S. 2016. Association of serum lipids and coronary artery disease with polymorphisms in the apolipoprotein AI-CIII-AIV gene cluster. *Cogent
Reddy Kilim S, and Chandala SR. 2013. A comparative study of lipid profile and oestradiol in pre- and post-menopausal women. *J Clin Diagn Res* 7:1596-1598.

Reichl D, and Miller NE. 1989. Pathophysiology of reverse cholesterol transport. Insights from inherited disorders of lipoprotein metabolism. *Arteriosclerosis* 9:785-797.

Sole X, Guino E, Valls J, Iniesta R, and Moreno V. 2006. SNPStats: a web tool for the analysis of association studies. *Bioinformatics* 22:1928-1929. 10.1093/bioinformatics/btl268

Stein O, Stein Y, Lefevre M, and Roheim PS. 1986. The role of apolipoprotein A-IV in reverse cholesterol transport studied with cultured cells and liposomes derived from an ether analog of phosphatidylcholine. *Biochim Biophys Acta* 878:7-13.

Su Y, Ma Y, Rao W, Yang G, Wang S, Fu Y, Liu Y, Zhang Y, You Y, Yu Y, and Kou C. 2016. Association Between Body Mass Index and Diabetes in Northeastern China: Based on Dose-Response Analyses Using Restricted Cubic Spline Functions. *Asia Pac J Public Health* 28:486-497. 10.1177/1010539516656436

Suarez-Sanchez F, Klunder-Klunder M, Valladares-Salgado A, Gomez-Zamudio J, Peralta-Romero J, Meyre D, Burguete-Garcia A, and Cruz M. 2017. APOA5 and APOA1 polymorphisms are associated with triglyceride levels in Mexican children. *Pediatr Obes* 12:330-336. 10.1111/ijpo.12147

Tan NC, Koh KH, Goh CC, Koh YL, and Goh SC. 2016. Asian patients with dyslipidemia in an urban population: Effect of ethnicity on their LDL-cholesterol treatment goals. *J Clin Lipidol* 10:410-419. 10.1016/j.jclnl.2015.12.014

Tokoro F, Matsuoka R, Abe S, Arai M, Noda T, Watanabe S, Horibe H, Fujimaki T, Oguri M, Kato K, Minatoguchi S, and Yamada Y. 2015. Association of a genetic variant of the ZPR1 zinc finger gene with type 2 diabetes mellitus. *Biomed Rep* 3:88-92. 10.3892/br.2014.379

Ueyama C, Horibe H, Yamase Y, Fujimaki T, Oguri M, Kato K, Arai M, Watanabe S, Murohara T, and Yamada Y. 2015. Association of FURIN and ZPR1 polymorphisms with metabolic syndrome. *Biomed Rep* 3:641-647. 10.3892/br.2015.484

Wang S, Kou C, Liu Y, Li B, Tao Y, D'Arcy C, Shi J, Wu Y, Liu J, Zhu Y, and Yu Y. 2015. Rural-urban differences in the prevalence of chronic disease in northeast China. *Asia Pac J Public Health* 27:394-406. 10.1177/1010539514551200

Wang Y, Liu F, Li L, Deng S, and He Z. 2017. The association between apolipoprotein Al-C3-A5 gene cluster promoter polymorphisms and risk of ischemic stroke in the northern Chinese Han population. *J Int Med Res* 45:2042-2052. 10.1177/0300060517713517

Weiss LA, Pan L, Abney M, and Ober C. 2006. The sex-specific genetic architecture of quantitative traits in humans. *Nat Genet* 38:218-222. 10.1038/ng1726

Willer CJ, Schmidt EM, Sengupta S, Peloso GM, Gustafsson S, Kanoni S, Ganna A, Chen J, Buchkovich ML, Mora S, Beckmann JS, Bragg-Gresham JL, Chang HY, Demirkar A, Den Hertog HM, Do R, Donnelly LA, Ehret GB, Esko T, Feitosa MF, Ferreira T, Fischer K, Fontanillas P, Fraser RM, Freitag DF, Gurdasani D, Heikila K, Hypponen E, Isaacs A, Jackson AU, Johansson A, Johnson T, Kaakinen M, Kettunen J, Kleber ME, Li X, Luan J,
Lyytikainen LP, Magnusson PKE, Mangino M, Mihailov E, Montasser ME, Muller-Nurasyid M, Nolte IM, O'Connell JR, Palmer CD, Perola M, Petersen AK, Sanna S, Saxena R, Service SK, Shah S, Shungin D, Sidore C, Song C, Strawbridge RJ, Surakka I, Tanaka T, Teslovich TM, Thorleifsson G, Van den Herik EG, Voight BF, Volcik KA, Waite LL, Wong A, Wu Y, Zhang W, Absher D, Asiki G, Barroso I, Been LF, Bolton JL, Bonnycastle LL, Brambilla P, Burnett MS, Cesana G, Dimitriou M, Doney ASF, Doring A, Elliott P, Epstein SE, Ingi Eyjolfsson G, Gigante B, Goodarzi MO, Grallert H, Gravito ML, Groves CJ, Hallmans G, Hartikainen AL, Hayward C, Hernandez D, Hicks AA, Holm H, Hung YJ, Illig T, Jones MR, Kaleebu P, Kastelein JJP, Khaw KT, Kim E, Klopp N, Komulainen P, Kumari M, Langenberg C, Lehtimaki T, Lin SY, Lindstrom J, Loos RJF, Mach F, McArdle WL, Meisinger C, Mitchell BD, Muller G, Nagaraja R, Narisu N, Nieminen TVM, Nsubuga RN, Olafsson I, Ong KK, Palotie A, Papamarkou T, Pomilla C, Pouta A, Rader DJ, Reilly MP, Ridker PM, Rivadeneira F, Rudan I, Ruokonen A, Samani N, Scharnagl H, Seeley J, Silander K, Stancakova A, Stankowsky S, Swift AJ, Tietre L, Uitterlinden AG, van Pelt LJ, Vedantam S, Wainwright N, Wijmenga C, Wild SH, Willemsen G, Wilskaard T, Wilson JF, Young EH, Zhao JH, Adair LS, Arveiler D, Assimes TL, Bandinelli S, Bennett F, Bochud M, Boehm BO, Boomsma DI, Borecki IB, Bornstein SR, Bovet P, Burnier M, Campbell H, Chakravarti A, Chambers JC, Chen YI, Collins FS, Cooper RS, Danesh J, Dedoussis G, de Faire U, Feranil AB, Ferrucci L, Freimer NB, Fried G, Groop LC, Gudnason V, Gyllensten U, Hamsten A, Harris TB, Hingorani A, Hirschhorn JN, Hofman A, Hovingh GK, Hsiung CA, Humphries SE, Hunt SC, Hveem K, Iribarren C, Jarvelin MR, Jula A, Kahonen M, Kaprio J, Kesaniemi A, Kivist M, Kooper JS, Koudstaal PJ, Krauss RM, Kuh D, Kuusisto J, Kyvik KO, Laakso M, Lakka TA, Lind L, Lindgren CM, Martin NG, Marz W, McCarthy MI, McKenzie CA, Meneton P, Metspalu A, Moilanen L, Morris AD, Munroe PB, Njolstad I, Pedersen NL, Power C, Pramstaller PP, Price JF, Psaty BM, Quertermous T, Rauramaa R, Saleheen D, Salomaa V, Sanghera DK, Saramies J, Schwarz PEH, Sheu WH, Shuldiner AR, Siegbahn A, Spiteri TD, Stefansson K, Strachan DP, Tayo BO, Tremoli E, Tuomilehto J, Uusitupa M, van Duijn CM, Vollenweider P, Wallentin L, Wareham NJ, Whitfield JB, Wolffenbuttel BHR, Ordovas JM, Boerwinkle E, Palmer CNA, Thorsteinsdottir U, Chasman DI, Rotter JI, Franks PW, Ripatti S, Cupples LA, Sandhu MS, Rich SS, Boehnke M, Deloukas P, Kathiresan S, Mohlke KL, Ingelsson E, and Abecasis GR. 2013. Discovery and refinement of loci associated with lipid levels. Nat Genet 45:1274-1283. 10.1038/ng.2797

Wu FC, and von Eckardstein A. 2003. Androgens and coronary artery disease. Endocr Rev 24:183-217. 10.1210/er.2001-0025

Wu Y, Yu S, Wang S, Shi J, Xu Z, Zhang Q, Fu Y, Qi Y, Liu J, Fu R, Kou C, and Yaquin Y. 2015. Zinc Finger Protein 259 (ZNF259) Polymorphisms are Associated with the Risk of Metabolic Syndrome in a Han Chinese Population. Clin Lab 61:615-621.

Wu Y, Yu Y, Zhao T, Wang S, Fu Y, Qi Y, Yang G, Yao W, Su Y, Ma Y, Shi J, Jiang J, and Kou C. 2016. Interactions of Environmental Factors and APOA1-APOC3-APOA4-APOA5
Gene Cluster Gene Polymorphisms with Metabolic Syndrome. *PLoS One* 11:e0147946. 10.1371/journal.pone.0147946

Xu X, Li Y, Huang Y, Ye H, Han L, Ji H, Chen X, Wu N, Jiang D, Xu L, Dai D, Duan S, and Chen X. 2018. Impact of gender and age on the association of the BUD13-ZNF259 rs964184 polymorphism with coronary heart disease. *Anatol J Cardiol* 19:42-49. 10.14744/AnatolJCardiol.2017.8002

Yamada Y, Sakuma J, Takeuchi I, Yasukochi Y, Kato K, Oguri M, Fujimaki T, Horibe H, Muramatsu M, Sawabe M, Fujiwara Y, Taniguchi Y, Obuchi Y, Kawai H, Shinkai S, Mori S, Arai T, and Tanaka M. 2017. Identification of eight genetic variants as novel determinants of dyslipidemia in Japanese by exome-wide association studies. *Oncotarget* 8:38950-38961. 10.18632/oncotarget.17159

Yin RX, Li YY, and Lai CQ. 2011. Apolipoprotein A1/C3/A5 haplotypes and serum lipid levels. *Lipids Health Dis* 10:140. 10.1186/1476-511x-10-140

You Y, Wu YH, Zhang Y, Zhang L, Song Y, Bai W, Li Y, Yu Y, and Kou C. 2018. Effects of polymorphisms in APOA5 on the plasma levels of triglycerides and risk of coronary heart disease in Jilin, northeast China: a case-control study. *BMJ Open* 8:e020016. 10.1136/bmjopen-2017-020016

You Y, Yu Y, Wu Y, Rao W, Zhang Y, Liu Y, Yang G, Fu Y, Shi J, and Kou C. 2017. Association Study between Ghrelin Gene Polymorphism and Metabolic Syndrome in a Han Chinese Population. *Clin Lab* 63:175-181. 10.7754/Clin.Lab.2016.160715

Zhang M, Deng Q, Wang L, Huang Z, Zhou M, Li Y, Zhao Z, Zhang Y, and Wang L. 2018. Prevalence of dyslipidemia and achievement of low-density lipoprotein cholesterol targets in Chinese adults: A nationally representative survey of 163,641 adults. *Int J Cardiol* 260:196-203. 10.1016/j.ijcard.2017.12.069

Zhou L, He M, Mo Z, Wu C, Yang H, Yu D, Yang X, Zhang X, Wang Y, Sun J, Gao Y, Tan A, He Y, Zhang H, Qin X, Zhu J, Li H, Lin X, Zhu J, Min X, Lang M, Li D, Zhai K, Chang J, Tan W, Yuan J, Chen W, Wang Y, Wei S, Miao X, Wang F, Fang W, Liang Y, Deng Q, Dai X, Lin D, Huang S, Guo H, Lilly Zheng S, Xu J, Lin D, Hu FB, and Wu T. 2013. A genome wide association study identifies common variants associated with lipid levels in the Chinese population. *PLoS One* 8:e82420. 10.1371/journal.pone.0082420
Table 1 (on next page)

Basic characteristics and distribution of dyslipidemia of included subjects
Table 1 Basic characteristics and distribution of dyslipidemia of included subjects

Characteristics	Total (n=3850)	Male (n=1927)	Female (n=1923)	P
Age (year)	49.54(9.58)	49.93(9.75)	49.16(9.39)	0.013
Waist (cm)	82.73(11.22)	84.74(11.25)	80.72(10.83)	<0.001
BMI (kg/m²)	24.40(3.96)	24.38(3.93)	24.42(4.00)	0.734
Hypertriglyceridemia, n (%)	1110(28.8)	664(34.5)	446(23.2)	<0.001
Hypercholesterolemia, n (%)	444(11.5)	214(11.1)	230(12.0)	0.406
High LDL, n (%)	352(9.1)	145(7.5)	207(10.8)	<0.001
Reduced HDL, n (%)	719(18.7)	450(23.4)	269(14.0)	<0.001
Dyslipidemia, n (%)	1586(41.2)	880(45.7)	706(36.7)	<0.001

Note:

BMI, body mass index

Means (standard deviation) for age, waist and BMI, a P value in bold indicated differences were significant between males and females (P<0.05).
Table 2 (on next page)

Association between genotypes of the six SNPs and dyslipidemia stratified by genders
Table 2 Association between genotypes of the six SNPs and dyslipidemia stratified by genders

SNPs	Hypertriglyceridemia	Hypercholesterolemia	High LDL	Reduced HDL	
	(n=1110) OR (95% CI)	(n=444) OR (95% CI)	(n=352) OR (95% CI)	(n=719) OR (95% CI)	
Overall					
APOA1-rs5072	TC+TT vs CC	1.36(1.15-1.60)	1.02(0.83-1.25)	0.84(0.67-1.05)	1.16(0.97-1.39)
APOA4-rs5104	GA+GG vs AA	1.25(1.06-1.48)	1.01(0.82-1.25)	0.82(0.65-1.03)	1.24(1.03-1.49)
APOA3-rs5128	GC+CC vs GG	1.33(1.13-1.57)	1.02(0.83-1.25)	0.84(0.67-1.05)	1.16(0.97-1.39)
APOA5-rs651821	CT+CC vs TT	2.01(1.71-2.38)	1.23(1.00-1.50)	1.00(0.80-1.25)	**1.90(1.59-2.28)**
ZPR1-rs2075294	GT+TT vs GG	0.89(0.74-1.07)	0.83(0.66-1.05)	0.87(0.67-1.13)	0.91(0.75-1.12)
BUD13-	CT+TT vs CC	0.75(0.59-0.95)	1.02(0.77-1.35)	0.99(0.73-1.36)	0.70(0.54-0.92)
Males					
APOA1-rs5072	TC+TT vs CC	1.34(1.06-1.69)	1.16(0.86-1.56)	0.81(0.58-1.15)	1.19(0.94-1.52)
APOA4-rs5104	GA+GG vs AA	1.28(1.01-1.63)	1.14(0.84-1.54)	0.77(0.54-1.09)	1.28(1.00-1.63)
APOA3-rs5128	GC+CC vs GG	1.31(1.04-1.65)	1.20(0.89-1.62)	0.85(0.60-1.20)	1.16(0.91-1.47)
APOA5-rs651821	CT+CC vs TT	**1.78(1.41-2.26)**	1.16(0.86-1.56)	0.77(0.55-1.10)	**1.61(1.27-2.05)**
ZPR1-rs2075294	GT+TT vs GG	0.99(0.76-1.30)	0.68(0.48-0.98)	0.61(0.39-0.95)	1.03(0.78-1.35)
BUD13-	CT+TT vs CC	0.87(0.62-1.20)	1.24(0.84-1.83)	1.68(1.10-2.57)	0.74(0.52-1.05)
Females					
APOA1-rs5072	TC+TT vs CC				

Manuscript to be reviewed
SNP	Haplotype Comparison	OR (95% CI) Overall	OR (95% CI) Male	OR (95% CI) Female	OR (95% CI) BMI Adjusted
TC+TT vs CC	APOA4-rs5104	**1.39 (1.09-1.76)**	0.92 (0.69-1.22)	0.87 (0.65-1.17)	1.10 (0.84-1.45)
GA+GG vs AA	APOA3-rs5128	1.22 (0.96-1.55)	0.91 (0.68-1.22)	0.86 (0.64-1.17)	1.18 (0.89-1.55)
GC+CC vs GG	APOA5-rs651821	1.37 (1.08-1.74)	0.89 (0.67-1.18)	0.85 (0.63-1.15)	1.14 (0.87-1.50)
CT+CC vs TT	ZPR1-rs2075294	**2.26 (1.77-2.88)**	1.27 (0.95-1.69)	1.19 (0.89-1.60)	**2.29 (1.73-3.04)**
GT+TT vs GG	BUD13-	0.82 (0.63-1.07)	1.01 (0.73-1.38)	1.11 (0.80-1.53)	0.78 (0.57-1.07)
CT+TT vs CC		0.66 (0.46-0.94)	0.94 (0.62-1.42)	0.64 (0.39-1.03)	0.67 (0.44-1.02)

Note:

1. SNP, single nucleotide polymorphism
2. BMI, body mass index
3. OR, odds ratio
4. CI, confidence interval
5. ORs (95% CI) were shown in bold if corresponding P values were no more than 0.008 ($0.05/6$).
6. The genetic model in this association analysis was the Dominant Model.
7. (a) ORs and 95% CI were adjusted for sex, age, waist circumference and BMI in the overall group; ORs and 95% CI were adjusted for age, waist circumference and BMI in the male and female groups.
Table 3 (on next page)

Association between \textit{APOA1/C3/A4/A5-ZPR1-BUD13} gene cluster haplotypes and the risk for dyslipidemia
Table 3 Association between APOA1/C3/A4/A5-ZPR1-BUD13 gene cluster haplotypes and the risk for dyslipidemia

Haplotype	SNPs	Number of variants	Frequency	Adjusted OR (95% CI)	P_c	
Overall						
1	C A G T G C	0	0.3867	1.00	-	
2	T G C C G G C	4	0.1297	1.63(1.36-1.96)	<0.0001	
3	C A G C G G C	1	0.1145	1.65(1.35-2.02)	<0.0001	
4	C A G T T C	1	0.0673	1.02(0.79-1.32)	0.86	
5	C A G T G T	1	0.0644	0.83(0.65-1.06)	0.13	
6	T G C T T C	4	0.0615	1.05(0.80-1.37)	0.75	
7	T G C T G C	3	0.0614	0.92(0.69-1.23)	0.59	
8	T A C T G C	2	0.0251	0.61(0.38-0.99)	0.047	
9	C G G C G G C	2	0.0187	1.43(0.87-2.38)	0.16	
10	C G G T G C	1	0.0153	0.87(0.46-1.62)	0.66	
11	T A C C G C	3	0.0119	2.35(1.22-4.51)	0.01	
12	C G G T T C	2	0.0119	1.54(0.86-2.75)	0.15	
Rare^d	-	-	-	0.0316	1.20(0.83-1.75)	0.33
Males						
1	C A G T G C	0	0.3813	1.00	-	
2	T G C C G G C	4	0.1396	1.43(1.10-1.87)	0.0078	
3	C A G C G G C	1	0.1200	1.56(1.16-2.10)	0.003	
4	C A G T T C	1	0.0680	0.90(0.64-1.28)	0.57	
5	C A G T G T	1	0.0626	0.97(0.65-1.44)	0.88	
6	T G C T G C	3	0.0606	1.20(0.79-1.81)	0.39	
7	T G C T T C	4	0.0592	1.15(0.77-1.73)	0.50	
8	T A C T G C	2	0.0269	0.69(0.36-1.32)	0.26	
9	C G G C G G C	2	0.0162	0.88(0.46-1.71)	0.77	
10	C G G T G C	1	0.0153	0.62(0.25-1.53)	0.30	
11	C G G T T C	2	0.0108	1.55(0.61-3.95)	0.36	
Rare^d	-	-	-	0.0395	1.13(0.69-1.88)	0.62
Females						
1	C A G T G C	0	0.3932	1.00	-	
2	T G C C G G C	4	0.1199	1.89(1.45-2.45)	<0.0001	
3	C A G C G G C	1	0.1084	1.71(1.29-2.28)	2e-04	
4	C A G T T C	1	0.0720	1.12(0.80-1.59)	0.50	
5	T G C T T C	3	0.0638	1.04(0.72-1.50)	0.85	
6	T G C T G C	3	0.0620	0.68(0.44-1.06)	0.09	
7	C A G T G T	1	0.0602	0.80(0.55-1.15)	0.23	
8	T A C T G C	2	0.0237	0.67(0.33-1.35)	0.26	
9	C G G C G G C	2	0.0216	1.94(1.05-3.58)	0.033	
	SNP	Genotype	p-value	OR (95% CI)	Adjusted p-value	
---	--------------	----------	---------	-------------	-----------------	
10	C G G T G C	1	0.0149	1.39(0.58-3.32)	0.45	
11	T A C C G C	3	0.0144	2.76(1.30-5.85)	0.0081	
12	C G G T T C	2	0.0129	1.48(0.69-3.16)	0.31	
13	T G C T G T	4	0.0115	1.52(0.61-3.75)	0.37	
Rare	- - - - -	-	0.0214	1.16(0.58-2.30)	0.67	

Note:
SNP, single nucleotide polymorphism
BMI, body mass index
OR, odds ratio
CI, confidence interval

(a) SNPs are as follows: 1, rs5072; 2, rs5104; 3, rs5128; 4, rs651821; 5, rs2075294; 6, rs10478698.
(b) ORs were adjusted for sex, age, BMI and waist circumference in the overall group and were adjusted for age, BMI and waist circumference in males and females.
(c) P values of less than 0.008 were considered to be significant after Bonferroni correction and were presented in bold.
(d) Rare: haplotypes with frequencies<0.01.
Figure 1

Linkage disequilibrium analysis of six SNPs

The value of D' chosen as cut-off for linkage disequilibrium was 0.75.