A Linear Time Algorithm for Seeds Computation

Tomasz Kociumaka, Marcin Kubica, Jakub Radoszewski, Wojciech Rytter, Tomasz Waleń

University of Warsaw

SODA 2012 Kyoto, January 18, 2012
Periodicity and quasiperiodicity

Periodicity:

\[
\begin{array}{c}
a \ b \ a \ a \ a \ b \ a \ a \ a \ b \ a \ a \ a \ b \ a \ a \ a \\
\end{array}
\]

One of the key concepts in text algorithms.
Periodicity and quasiperiodicity

Periodicity:

\[
\begin{array}{cccccccccccccc}
& & & & a & b & a & a & a & b & a & a & a & b & a & a & a & b & a & a & a & a
\end{array}
\]

One of the key concepts in text algorithms.
Periodicity and quasiperiodicity

Periodicity:

\[
\begin{array}{cccccccccccc}
\text{a} & \text{b} & \text{a} & \text{a} & \text{a} & \text{b} & \text{a} & \text{a} & \text{a} & \text{b} & \text{a} & \text{a} & \text{a} & \text{b} & \text{a} & \text{a} \\
\end{array}
\]

One of the key concepts in text algorithms.
Periodicity and quasiperiodicity

Periodicity:

\[
\begin{array}{cccccccccccc}
\text{a} & \text{b} & \text{a} & \text{a} & \text{a} & \text{b} & \text{a} & \text{a} & \text{a} & \text{b} & \text{a} & \text{a} & \text{a} & \text{b} & \text{a} & \text{a} \\
\end{array}
\]

One of the key concepts in text algorithms.
Periodicity and quasiperiodicity

Periodicity:

One of the key concepts in text algorithms.
Periodicity and quasiperiodicity

Periodicity:

a b a a a b a a a b a a a b a a a b

One of the key concepts in text algorithms.
Periodicity and quasiperiodicity

Periodicity:

```
abaaaabaaaaabaaaaaabb
```

Quasiperiodicity:

```
aabaaaabaaaaabaaaaaaba
```
Periodicity and quasiperiodicity

Periodicity:

\[\text{abaabaabaabaabaabaabaaba} \]

Quasiperiodicity:

\[\text{aaababaabaabaabaabaaba} \]
Covers and seeds

Cover:

\[
\begin{align*}
 \overbrace{a b a a b a a a b a b a a b a a b a a b a a a b}^{	ext{Each letter of the word is covered by an occurrence of the cover.}}
\end{align*}
\]
Covers and seeds

Cover:

Each letter of the word is covered by an occurrence of the cover.
Covers and seeds

Seed:

```
.. a a b a a b b a a b a b a a b b a a b a a a
```
Seed:

Each letter of the word is covered by an occurrence of the seed. The occurrences can be external.
The main problem

Problem (Shortest-Seed)

*Given a word w of length n over an alphabet Σ, compute the shortest seed of w.**
The main problem

Problem (Shortest-Seed)

Given a word w *of length* n *over an alphabet* Σ, *compute the shortest seed of* w.

Problem (All-Seeds)

Given a word w *of length* n *over an alphabet* Σ, *compute an* $O(n)$-*sized representation of all the seeds of* w.

Theorem (Our result)

The All-Seeds Problem for $\Sigma = \{0, 1, \ldots, n\}$ can be solved in $O(n)$ time.
The main problem

Problem (Shortest-Seed)

Given a word w of length n over an alphabet Σ, compute the shortest seed of w.

Problem (All-Seeds)

Given a word w of length n over an alphabet Σ, compute an $O(n)$-sized representation of all the seeds of w.

Theorem (Our result)

The All-Seeds Problem for $\Sigma = \{0, 1, \ldots, n^{O(1)}\}$ can be solved in $O(n)$ time.
Seeds were introduced in 1993 by Iliopoulos, Moore & Park.

In the same paper $O(n \log n)$-time algorithm for the All-Seeds Problem over a fixed-size alphabet is given.
Seeds were introduced in 1993 by Iliopoulos, Moore & Park.

In the same paper $O(n \log n)$-time algorithm for the All-Seeds Problem over a fixed-size alphabet is given.

No $o(n \log n)$ algorithm even for the Shortest-Seed Problem for binary alphabet up to now.
Seeds were introduced in 1993 by Iliopoulos, Moore & Park.

In the same paper $O(n \log n)$-time algorithm for the All-Seeds Problem over a fixed-size alphabet is given.

No $o(n \log n)$ algorithm even for the Shortest-Seed Problem for binary alphabet up to now.

W.F. Smyth stated finding a linear algorithm for the All-Seeds Problem as a hard open problem in his survey (2000).
An $O(\log n)$-time PRAM algorithm for n processors, Ben-Amran et al., SODA 1994.
Background

- An $O(\log n)$-time PRAM algorithm for n processors, Ben-Amran et al., SODA 1994.

- For covers linear algorithms for similar problems are known:
 - shortest covers of each prefix (Breslauer, 1992)
 - all covers (Moore & Smyth, SODA 1994)
An $O(\log n)$-time PRAM algorithm for n processors, Ben-Amran et al., SODA 1994.

For covers linear algorithms for similar problems are known:

- shortest covers of each prefix (Breslauer, 1992)
- all covers (Moore & Smyth, SODA 1994)

Variants of seeds have been studied:

- approximate seeds (Christodoulakis et al., 2003)
- λ-seeds (Guo, Zhang & Iliopoulos, 2006)
Constraints for seeds

Two different types of constraints

• Border constraints, easier
Two different types of constraints

- Border constraints, easier
- Maxgap constraints, harder

Maxgap is a maximal distance between the starting positions of two consecutive occurrences of a given subword.
The All-Seeds Problem can be linearly reduced to computing the maxgaps of all subwords (encoded in a suffix tree).

No $o(n \log n)$ algorithm known.
The All-Seeds Problem can be linearly reduced to computing the maxgaps of all subwords (encoded in a suffix tree).

No \(o(n \log n) \) algorithm known.

Definition (Quasiseed)

A subword \(v \) is a *quasiseed* of \(w \) if there there are less than \(|v| \) letters both before its first occurrence and after the last one and each letter between those two occurrences is covered by an occurrence of \(v \).
Useful properties of quasiseeds

An $O(n)$ representation on the suffix tree.
Useful properties of quasiseeds

Lemma (Restricted-Quasiseeds)

Given an integer d and a word w of length n, the representation of all quasiseeds of length in $\{d, d + 1, \ldots, 2d\}$ can be found in $O(n)$ time.
Useful properties of quasiseeds

Lemma (Restricted-Quasiseeds)

Given an integer d and a word w of length n, the representation of all quasiseeds of length in $\{d, d + 1, \ldots, 2d\}$ can be found in $O(n)$ time.

- The All-Seeds Problem can be linearly reduced to computing (the representation of) all quasiseeds.
Main problem

Problem (All-Quasiseeds)

Given a word of length n, compute the representation of all its quasiseeds.
Recursive structure of the algorithm

Interval m-staircase

$w :$
Interval m-staircase

A subword v of length $< m$ is a quasiseed of w if and only if it is a quasiseed of each subword corresponding to an m-staircase interval.

Lemma (Short Quasiseeds)
The total length of the intervals in the staircase (size of the staircase) is about $3n$.
Recursive structure of the algorithm

- The total length of the intervals in the staircase (size of the staircase) is about $3n$.
- If it were $\frac{1}{2}n$, the recursion could yield a linear algorithm.

We need to reduce the staircase.
The total length of the intervals in the staircase (size of the staircase) is about $3n$.

If it were $\frac{1}{2}n$, the recursion could yield a linear algorithm.

We need to reduce the staircase.
The total length of the intervals in the staircase (size of the staircase) is about $3n$.

If it were $\frac{1}{2}n$, the recursion could yield a linear algorithm.

We need to reduce the staircase.
Outline:

1. Find an appropriate reduced staircase
2. Find the long quasiseeds (non-recursively)
3. Find the short quasiseeds (recursive calls)
4. Merge the results of those calls

Main issue: How to find an appropriate m, so that simultaneously:
- the reduced staircase is small,
- long quasiseeds can be found in $O(n)$.

Due to the Restricted-Quasiseeds Lemma, $m = \Theta(n)$ would suffice for the second part.

Merging is not as easy as it may seem (RMQ and static find-union).
Recursive structure of the algorithm

Outline:
1. Find an appropriate reduced staircase
2. Find the long quasiseeds (non-recursively)
3. Find the short quasiseeds (recursive calls)
4. Merge the results of those calls

Main issue: How to find an appropriate m, so that simultaneously:
- the reduced staircase is small,
- long quasiseeds can be found in $O(n)$.

Due to the Restricted-Quasiseeds Lemma, $m = \Theta(n)$ would suffice for the second part.
Recursive structure of the algorithm

Outline:
1. Find an appropriate reduced staircase
2. Find the long quasiseeds (non-recursively)
3. Find the short quasiseeds (recursive calls)
4. Merge the results of those calls

Main issue: How to find an appropriate m, so that simultaneously:
- the reduced staircase is small,
- long quasiseeds can be found in $O(n)$.

Due to the Restricted-Quasiseeds Lemma, $m = \Theta(n)$ would suffice for the second part.
- Merging is not as easy as it may seem (RMQ and static find-union).
A variant of a well known LZ-factorization
A variant of a well known LZ-factorization

Definition (f-factorization)

An f-factorization $f_1 f_2 \ldots f_k$ of w is constructed greedily: f_i is either just the first occurrence of a letter or the longest prefix of the remaining suffix that is a subword of $f_1 \ldots f_{i-1}$.

```
a | b | a | a | b | a | b | a | a | b | a | b | b | c | a
```
Theorem (Crochemore, 1983; Crochemore et al. 2009)

The f-factorization over (constant) integer alphabet can be computed in $O(n)$ time.
Lemma

Let F be the f-factorization of w ($|w| = n$) and v be a quasiseed of w, $|v| < \frac{n}{50}$. Then at most

$$\left\lfloor \frac{2n}{|v|} \right\rfloor - 1$$

factors from F lie within $\left[\frac{2n}{50}, \frac{49n}{50} \right]$.

Not many middle factors
Lemma

Let F be the f-factorization of w ($|w| = n$) and v be a quasiseed of w, $|v| < \frac{n}{50}$. Then at most

$$\left\lfloor \frac{2n}{|v|} \right\rfloor - 1$$

factors from F lie within $\left[\frac{2n}{50}, \frac{49n}{50} \right]$.

Not many middle factors

Stairs lying within a single factor are not necessary.
The algorithm does not know the quasiseed, but can find the number of middle factors.

Let g be the number of middle factors of the word w, $|w| = n > 200$.

Lemma
There is no quasiseed v of w such that:

$2n g + 1 < |v| \leq n^{50}$.

Lemma
If $m \leq n^{50} (g + 1)$ then the size of the reduced staircase is $< n^2$.

Tomasz Kociumaka
A Linear Time Algorithm for Seeds Computation
The algorithm does not know the quasiseed, but can find the number of middle factors. Let g be the number of middle factors of the word w, $|w| = n > 200$.

Lemma

There is no quasiseed v of w such that:

$$\frac{2n}{g+1} < |v| \leq \frac{n}{50}.$$
Key lemmas

The algorithm does not know the quasiseed, but can find the number of middle factors. Let g be the number of middle factors of the word w, $|w| = n > 200$.

Lemma

There is no quasiseed v of w such that:

$$\frac{2n}{g+1} < |v| \leq \frac{n}{50}.$$

Lemma

If $m \leq \frac{n}{50(g+1)}$ then the size of the reduced staircase is $< \frac{n}{2}$.

Tomasz Kociumaka A Linear Time Algorithm for Seeds Computation 18/20
Final structure of the algorithm

1. Find an f-factorization and the number of middle factors (g)

2. \[m := \left\lfloor \frac{n}{50(g+1)} \right\rfloor \]

3. Compute the reduced staircase

4. Compute the long quasiseeds (belonging to two ranges of fixed ratio)

5. If $m > 0$ compute the short quasiseeds by recursive calls and merge the results
Conclusions

- We have presented a linear algorithm for the All-Quasiseeds Problem (over integer alphabet).
- This yields a linear algorithm for the All-Seeds Problem (over integer alphabet).
Conclusions

- We have presented a linear algorithm for the All-Quasiseeds Problem (over integer alphabet).
- This yields a linear algorithm for the All-Seeds Problem (over integer alphabet).

Thank you!