Real-time population of Knowledge Bases: Opportunities and Challenges

Ndapa Nakashole
Gerhard Weikum
Real-time Data Sources

• In news and social media, the implicit query is:
 – What’s happening right now?

• Batch-oriented KBP methods rely on Web snapshots (e.g., ClueWeb09, ca. 3 years old)

• News aggregators present a timely big picture
 – But they display text snippets and headlines, not relational facts
 – [Google News, …]
Goal: Real-time KBP

- **Goal:** Timely transformation of text into relational facts
 - Enabling fine-grained exploration of the big picture as it emerges

- The big picture is a series of stories and events

- Stories and events are made of facts
Francois Hollande elected as president of France
Koffi Annan warns about Syria
George Zimmerman arrested in Martin murder case

2012 French Elections
Syria crisis
Treyvon Martin case
Challenges (1): Relation Discovery

• **Open Set of Relations**
 - Need to discover and maintain a large, dynamically evolving set of relations

• **Go beyond common relations** such as “bornIn”
 - Example interesting relations: firedFrom, hadAffairWith, …

• **Capture only semantically meaningful relations**
 - Discard noisy relations
Challenge (2): Dynamic Entity Discovery

• For **semantic consistency** in the facts we extract
 – Need to map noun phrases to entities in a KB
 – E.g., “Jeff Dean” can mean Google engineer or rock musician

• But, KBs are **incomplete** in the entities they contain
 – Jeff Dean the Google engineer doesn’t have a Wikipedia page
 – He is missing in Wikipedia-derived KBs

• **Open set of entities**
 – Need to recognise and handle out-of-KB entities
 – But go above the level of noun phrases
Challenge (3): Extraction under Time Constraints

• Due to need for timely fact extraction
 – Need to produce results under time constraints

• We would like to report the facts soon after they become available as
 – not a few weeks down the line
Our Approach
Approach – Relation Discovery: Semantically-typed patterns

• To identify meaningful relations
 – We introduced Syntactic-Lexical-Ontological (SOL) patterns

• **Syntactic-Lexical** – surface words and part-of-speech stags
• **Ontological** – semantic classes as entity placeholders, e.g., `<singer, scientist, …>`

• Example SOL patterns:
 – `<comedian> parodied <person>`
 – `<musician> wrote hits for <musician>`
 – `<person> headliner at <event>`
• **SOL patterns** are arranged them into *synonyms* and a hierarchy of *subsumptions*

• **Example subsumptions:**
 – wife of => spouse of
 – spouse of => knows

• **We produced ca. 350,000 SOL patterns**
 – Available for download
 – For details see: Nakashole, Weikum and Suchanek at EMNLP 2012
Approach – Dynamic Entity Discovery: Infer types for new entities

- SOL patterns require that entities have types
 - Need to align new entities along ontological dimension
 - Proposal: infer entity types from SOL patterns

- SOL pattern: `<singer> released <album>`
 - Given: X released Y, Is X of type singer? Not always!
 - Due to: polysemy in syntax
 - Due to: incorrect dependency paths between entity pairs

- But we can approximate likely types
Approach – Time Constraints: Continuous processing model

- Continuously process stream of incoming documents
- Define a **time slice** for extraction
 - Time window
 - Within time slice, define **target recall**
 - Redundancy means need not process all documents in a time slice

G. W Bush travels to Texas
Elton John performs at Royal Concert
...

M Shaporava defeated by V. Azarenka
Demi Moore files for divorce from A.Kutcher
Martin Scorcesee nominated for Oscar
...

KB
Thanks!

Poster 14