Expression of HSV-1 receptors in EBV-associated lymphoproliferative disease determines susceptibility to oncolytic HSV

P-Y Wang1,2, MA Currier1,2, L Hansford1, D Kaplan1, EA Chiocca2, H Uchida3,4, WF Goins5, JB Cohen5, JC Glorioso5, TH van Kuppevelt7, X Mo8 and TP Cripe1,2

Epstein-Barr virus (EBV)-associated B-cell lymphoproliferative disease (LPD) after hematopoietic stem cell or solid organ transplantation remains a life-threatening complication. Expression of the virus-encoded gene product, EBER, has been shown to prevent apoptosis via blockade of PKR activation. As PKR is a major cellular defense against Herpes simplex virus (HSV), and oncolytic HSV-1 (oHSV) mutants have shown promising antitumor efficacy in preclinical models, we sought to determine whether EBV-LPD cells are susceptible to infection by oHSVs. We tested three primary EBV-infected lymphocyte cell cultures from neuroblastoma (NB) patients as models of naturally acquired EBV-LPD. NB12 was the most susceptible, NB122R was intermediate and NB88R2 was essentially resistant. Despite EBER expression, PKR was activated by oHSV infection. Susceptibility to oHSV correlated with the expression of the HSV receptor, nectin-1. The resistance of NB88R2 was reversed by exogenous nectin-1 expression, whereas downregulation of nectin-1 on NB12 decreased viral entry. Xenografts derived from the EBV-LPDs exhibited only mild (NB12) or no (NB88R2) response to oHSV injection, compared with a NB cell line that showed a significant response. We conclude that EBV-LPDs are relatively resistant to oHSV virotherapy, in some cases, due to low virus receptor expression but also due to intact antiviral PKR signaling.

Gene Therapy (2013) 20, 761–769; doi:10.1038/gt.2012.93; published online 20 December 2012

Keywords: oHSV; EBV-LPD; HSV-1 entry receptors

INTRODUCTION

Epstein-Barr virus (EBV)-associated B-cell lymphoproliferative disease (LPD) in immunocompromised patients, particularly after allogeneic bone marrow transplantation or solid organ transplantation, is a life-threatening complication of B-cell outgrowth normally controlled by T-cell surveillance.1 Severity ranges from transient polyclonal B-cell lymphoproliferation to aggressive monoclonal lymphoma. Anti-CD20 antibody therapy and lympholytic chemotherapy can be therapeutic, yet these modalities are fraught with short- and long-term side effects, and in some cases are ineffective.

Attenuated, clinically-safe oncolytic herpes simplex virus (oHSV) mutants are emerging as promising therapeutics for cancer.2 We postulated that EBV-infected cells may be particularly susceptible to lytic infection by a second herpes virus due to EBV-mediated inhibition of antiviral pathways. Although determinants of susceptibility to virus infection are still under investigation, blunted interferon and/or RNA-dependent protein kinase (PKR) responses have important roles in enabling lytic virus replication and spread. Additionally, virus receptor abundance is also being increasingly recognized as an important component of antiviral efficacy for oncolytic virotherapy.

The major antivirus cellular innate immunity defense mechanism is through PKR, which phosphorylates e-IF2α to halt protein synthesis, thereby limiting viral production. HSV-1 counteracts the PKR response by expressing ICP34.5 (encoded by the RL1, ICP34.5 or γ;34.5 gene), which redirects cellular protein phosphatase-1 to dephosphorylate e-IF2α, thus restoring protein synthesis and allowing virus production.3 Deletion of the gene encoding ICP34.5 markedly impairs virus replication in normal cells, but defects in the PKR response in many cancers enable replication of HSV vectors including ICP34.5 mutants.4 EBERs, the EBV-encoded small RNAs, also block activation of PKR,5 suggesting that EBV-infected cells may also be susceptible to infection with ICP34.5-deleted oHSVs.

A number of different cellular receptors mediate HSV-1 attachment and entry. The primary binding of virus to the cell surface occurs via the virus surface glycoproteins B and C binding to heparan sulfate proteoglycans that are relatively ubiquitous. A key interaction for entry then follows, with gD binding to one of the Herpes virus entry (Hve) mediators, primarily either HveA (also called HVEM) or HveC (also called nectin-1 or CD111). In some cases, HveB (also called nectin-2 or CD112) may be used for entry by HSV-1 laboratory strains with specific gD mutations or by...
HSV-2, 3-O sulfated heparan sulfate (3-OS HS) is also now appreciated to be a gD-binding HSV-1 receptor. More importantly, receptor density directly correlates with virus entry efficiency. Nectin-1 appears to be the most efficient receptor, and low or absent nectin-1 expression has been described to be limiting in some cases of thyroid carcinoma, head and neck squamous cell carcinoma and brain tumors that may account for poor oncolytic virotherapeutic responses in those tumor cells.

We studied a serendipitous model of primary neuroblastoma (NB) patient-derived EBV-infected lymphocytes that are tumorigenic in immunodeficient mice. These cells displayed robust PKR activation following oHSV infection, yet some were still susceptible to lytic HSV-1 infection. Their relative susceptibility correlated with expression of the major HSV-1 entry receptor nectin-1. None of the cells were as susceptible as a NB line that was used for comparison, suggesting that oHSV may have limited use as a therapeutic strategy for EBV-LPD.

RESULTS

Tumor-initiating cell cultures from NB patients’ bone marrow aspirates revealed EBV-LPD phenotype.

We initially began by studying tumor-initiating cells (TICs) from metastatic non-MYCN amplified NB patients’ bone marrow aspirates, which display an immature neuronal phenotype and are tumorigenic in mice with very low cell numbers. A recent report suggested that these primary NB cultures were contaminated with patient-derived EBV-infected lymphoblastoid cells, which at later passages, began to dominate the cultures. We obtained three tumor-initiating cell cultures including NB12, NB88R2 and NB122R, and the NB cell line CHLA-20 were evaluated for the expression of NB (CD56, CD81, GD2 and Nestin) and B (CD20 and CD45) cell surface antigens by flow cytometric analysis, EBV-encoded RNA 1 (EBER1) expression via RT-PCR, hypoxanthine–guanine phosphoribosyltransferase (HPRT) was used as housekeeping control and EBER1 in situ hybridization of xenograft tumors. EBER1 positive cells were stained dark blue; CHLA-20 was used as the EBV-negative control. Scale bars, 50 μm.

Figure 1. Tumor-initiating cells (TICs) cultures from NB patients’ bone marrow aspirates revealed EBV-LPD phenotype. The three tumor-initiating cells models NB12, NB88R2 and NB122R, and the NB cell line CHLA-20 were evaluated for (a) the expression of NB (CD56, CD81, GD2 and Nestin) and B (CD20 and CD45) cell surface antigens by flow cytometric analysis, (b) EBV-encoded RNA 1 (EBER1) expression via RT-PCR, hypoxanthine–guanine phosphoribosyltransferase (HPRT) was used as housekeeping control and (c) EBER1 in situ hybridization of xenograft tumors. EBER1 positive cells were stained dark blue; CHLA-20 was used as the EBV-negative control. Scale bars, 50 μm.

Differential susceptibility of EBV-LPDs to oHSV in vitro

As expression of EBERs prevents IFN-α-mediated apoptosis through the inhibition of PKR signaling, we postulated that EBV-positive cells would readily support productive oHSV replication and oncolysis, even using a γ134.5 mutant. We first examined the status of the PKR pathway in the three EBV-LPD cultures upon oHSV infection using oHSV rRp450, with an intact γ134.5 and thus predicted to not be reliant on PKR status of the infecting cell type. Although total PKR levels (both of the molecular weight close to 60 and 68 kDa, detected by antibodies D20 and B10, respectively) remained the same upon rRp450 infection with molecular weight close to 60 kDa was detected in the three EBV-LPDs that did not change upon virus infection. Phospho-eIF2α (Ser52) was seen after virus infection across all cells but with a much weaker signal detected in NB88R2 and NB122R. Like PKR, total eIF2α remained the same upon rRp450 infection.
These results demonstrated that unlike what was found in a previous report, the PKR pathway was not suppressed in these EBV-LPDs. We thus used ICP34.5-expressing viruses for all of our studies with these cells.

We next measured susceptibility to rRp450 (γ134.5-positive) virus-mediated cytotoxicity or lysis. The three EBV-LPDs showed differential responses, with NB12 the most sensitive, NB122R moderately sensitive and NB88R2 nearly resistant. In contrast, CHLA-20 was very susceptible to virus treatment (Figure 2b). The cytotoxicity result correlated with virus replication in that NB12 reached the highest virus yield (B10^6 pfu/ml, a 4-log increase) among the three EBV-LPDs by 72 h post infection. In contrast, NB88R2 showed no significant virus production. The kinetics of virus replication was faster in CHLA-20, which reached 10^6 pfu/ml of virus yield by 48 h post infection, 24 h earlier than NB12 (Figure 2c).

As all of the cells activated PKR albeit to varying degrees, we hypothesized that the differences in virus replication may be due to differences in early stages of the virus life cycle. We thus measured gene transfer using the EGFP-expressing virus, rQnestin34.5 (Figure 2d). At 8 h after infection, more than 50% of NB12 and 80% of CHLA-20 were EGFP positive, suggesting the uptake of significant numbers of virus particles into these cells. In contrast, minimal virus replication was faster in CHLA-20, which reached 10^6 pfu/ml of virus yield by 48 h post infection, 24 h earlier than NB12 (Figure 2c).

As all of the cells activated PKR albeit to varying degrees, we hypothesized that the differences in virus replication may be due to differences in early stages of the virus life cycle. We thus measured gene transfer using the EGFP-expressing virus, rQnestin34.5 (Figure 2d). At 8 h after infection, more than 50% of NB12 and 80% of CHLA-20 were EGFP positive, suggesting the uptake of significant numbers of virus particles into these cells. In contrast, minimal virus replication was faster in CHLA-20, which reached 10^6 pfu/ml of virus yield by 48 h post infection, 24 h earlier than NB12 (Figure 2c).

As all of the cells activated PKR albeit to varying degrees, we hypothesized that the differences in virus replication may be due to differences in early stages of the virus life cycle. We thus measured gene transfer using the EGFP-expressing virus, rQnestin34.5 (Figure 2d). At 8 h after infection, more than 50% of NB12 and 80% of CHLA-20 were EGFP positive, suggesting the uptake of significant numbers of virus particles into these cells. In contrast, minimal virus replication was faster in CHLA-20, which reached 10^6 pfu/ml of virus yield by 48 h post infection, 24 h earlier than NB12 (Figure 2c).

As all of the cells activated PKR albeit to varying degrees, we hypothesized that the differences in virus replication may be due to differences in early stages of the virus life cycle. We thus measured gene transfer using the EGFP-expressing virus, rQnestin34.5 (Figure 2d). At 8 h after infection, more than 50% of NB12 and 80% of CHLA-20 were EGFP positive, suggesting the uptake of significant numbers of virus particles into these cells. In contrast, minimal virus replication was faster in CHLA-20, which reached 10^6 pfu/ml of virus yield by 48 h post infection, 24 h earlier than NB12 (Figure 2c).

As all of the cells activated PKR albeit to varying degrees, we hypothesized that the differences in virus replication may be due to differences in early stages of the virus life cycle. We thus measured gene transfer using the EGFP-expressing virus, rQnestin34.5 (Figure 2d). At 8 h after infection, more than 50% of NB12 and 80% of CHLA-20 were EGFP positive, suggesting the uptake of significant numbers of virus particles into these cells. In contrast, minimal virus replication was faster in CHLA-20, which reached 10^6 pfu/ml of virus yield by 48 h post infection, 24 h earlier than NB12 (Figure 2c).

As all of the cells activated PKR albeit to varying degrees, we hypothesized that the differences in virus replication may be due to differences in early stages of the virus life cycle. We thus measured gene transfer using the EGFP-expressing virus, rQnestin34.5 (Figure 2d). At 8 h after infection, more than 50% of NB12 and 80% of CHLA-20 were EGFP positive, suggesting the uptake of significant numbers of virus particles into these cells. In contrast, minimal virus replication was faster in CHLA-20, which reached 10^6 pfu/ml of virus yield by 48 h post infection, 24 h earlier than NB12 (Figure 2c).

As all of the cells activated PKR albeit to varying degrees, we hypothesized that the differences in virus replication may be due to differences in early stages of the virus life cycle. We thus measured gene transfer using the EGFP-expressing virus, rQnestin34.5 (Figure 2d). At 8 h after infection, more than 50% of NB12 and 80% of CHLA-20 were EGFP positive, suggesting the uptake of significant numbers of virus particles into these cells. In contrast, minimal virus replication was faster in CHLA-20, which reached 10^6 pfu/ml of virus yield by 48 h post infection, 24 h earlier than NB12 (Figure 2c).

As all of the cells activated PKR albeit to varying degrees, we hypothesized that the differences in virus replication may be due to differences in early stages of the virus life cycle. We thus measured gene transfer using the EGFP-expressing virus, rQnestin34.5 (Figure 2d). At 8 h after infection, more than 50% of NB12 and 80% of CHLA-20 were EGFP positive, suggesting the uptake of significant numbers of virus particles into these cells. In contrast, minimal virus replication was faster in CHLA-20, which reached 10^6 pfu/ml of virus yield by 48 h post infection, 24 h earlier than NB12 (Figure 2c).

As all of the cells activated PKR albeit to varying degrees, we hypothesized that the differences in virus replication may be due to differences in early stages of the virus life cycle. We thus measured gene transfer using the EGFP-expressing virus, rQnestin34.5 (Figure 2d). At 8 h after infection, more than 50% of NB12 and 80% of CHLA-20 were EGFP positive, suggesting the uptake of significant numbers of virus particles into these cells. In contrast, minimal virus replication was faster in CHLA-20, which reached 10^6 pfu/ml of virus yield by 48 h post infection, 24 h earlier than NB12 (Figure 2c).

As all of the cells activated PKR albeit to varying degrees, we hypothesized that the differences in virus replication may be due to differences in early stages of the virus life cycle. We thus measured gene transfer using the EGFP-expressing virus, rQnestin34.5 (Figure 2d). At 8 h after infection, more than 50% of NB12 and 80% of CHLA-20 were EGFP positive, suggesting the uptake of significant numbers of virus particles into these cells. In contrast, minimal virus replication was faster in CHLA-20, which reached 10^6 pfu/ml of virus yield by 48 h post infection, 24 h earlier than NB12 (Figure 2c).

As all of the cells activated PKR albeit to varying degrees, we hypothesized that the differences in virus replication may be due to differences in early stages of the virus life cycle. We thus measured gene transfer using the EGFP-expressing virus, rQnestin34.5 (Figure 2d). At 8 h after infection, more than 50% of NB12 and 80% of CHLA-20 were EGFP positive, suggesting the uptake of significant numbers of virus particles into these cells. In contrast, minimal virus replication was faster in CHLA-20, which reached 10^6 pfu/ml of virus yield by 48 h post infection, 24 h earlier than NB12 (Figure 2c).

As all of the cells activated PKR albeit to varying degrees, we hypothesized that the differences in virus replication may be due to differences in early stages of the virus life cycle. We thus measured gene transfer using the EGFP-expressing virus, rQnestin34.5 (Figure 2d). At 8 h after infection, more than 50% of NB12 and 80% of CHLA-20 were EGFP positive, suggesting the uptake of significant numbers of virus particles into these cells. In contrast, minimal virus replication was faster in CHLA-20, which reached 10^6 pfu/ml of virus yield by 48 h post infection, 24 h earlier than NB12 (Figure 2c).

As all of the cells activated PKR albeit to varying degrees, we hypothesized that the differences in virus replication may be due to differences in early stages of the virus life cycle. We thus measured gene transfer using the EGFP-expressing virus, rQnestin34.5 (Figure 2d). At 8 h after infection, more than 50% of NB12 and 80% of CHLA-20 were EGFP positive, suggesting the uptake of significant numbers of virus particles into these cells. In contrast, minimal virus replication was faster in CHLA-20, which reached 10^6 pfu/ml of virus yield by 48 h post infection, 24 h earlier than NB12 (Figure 2c).
or nectin-1-restricted mutant (d5-28V) in that NB12 remained the most susceptible among the three EBV-LPDs via the readout of EGFP signal. All cells infected with the HVEM-restricted virus (A3C/Y38C) did not show an obvious EGFP positive phenotype (Figure 3c), suggesting that HVEM does not appear to have a significant role in the entry of these cells. The specificity of such viruses for their coordinated receptors was confirmed on the CHO cell sets expressing the respective receptors (Supplementary Figure S1c) in that d5-28V (Nectin-1-restricted) only infected CHO-A. Taken together, our results confirm that susceptibility of EBV-LPDs to oHSV treatment correlated with surface nectin-1 expression.

Exogenous expression of nectin-1 in EBV-LPDs overcomes the receptor barrier and further permits oHSV killing and replication. In order to further prove that low expression of nectin-1 is the limiting factor for EBV-LPDs susceptibility to oHSV infection, we stably expressed nectin-1 in NB88R2 cells. The cytotoxicity of oHSV-1 mutants, rQnestin34.5 and its control version lacking expression of ICP34.5 (only present in rQnestin34.5) and nectin-1 are necessary for effective treatment in EBV-LPDs for oHSV-based therapy. (Surface nectin-1 expression was confirmed via flow cytometric analysis as shown in Figure 4c) On the other hand, knockdown of nectin-1 expression in NB12 (Figure 4d, ShNectin-1) via lentiviral-mediated shRNA transduction decreased rQnestin34.5 entry as compared with the naive control (Figure 4d, Naive) or non-target shRNA control (Figure 4d, Sh02). Together, these results provide both gain- and loss of function evidence that nectin-1 expression is necessary for EBV-LPD cells to be permissive for oHSV infection.

oHSV treatment showed antitumor efficacy in CHLA-20 and prolonged the survival of NB12, but had no effect on NB88R2 xenograft tumor models. To determine the susceptibility of EBV-LPD tumors to oHSV therapy in vivo, xenograft models were established in NSG mice and rRp450 was used for direct intratumoral injection. In the CHLA-20 tumor model, all mice in the virus treatment group (8/8) showed tumor shrinkage (Supplementary Figure S2a) and seven had reached significant survival for at least 2 months after initial treatment (Figure 5a). In EBV-LPD model animals, virus treatment slowed down tumor growth (Supplementary Figure S2b) and prolonged the survival of NB12 xenografts (Figure 5b). Consistent with our cell line data, no significant differences in animal survival (Figure 5c) or tumor growth (Supplementary Figure S2c) between the two groups were observed in the NB88R2 EBV-LPD line,

Figure 3. HSV entry and receptor expression in EBV-LPDs. (a) Flow cytometric analysis of HSV entry receptors, nectin-1, nectin-2, herpesvirus entry mediator (HVEM) and 3-O-sulfated heparan sulfate (3-OS HS). Tinted areas indicate isotype or unstained controls, and open lines are signals for specific receptors. (b) Real-Time PCR analysis for RNA expression of nectin-1, nectin-2, HVEM and heparan sulfate (glucosamine) 3-O-sulfotransferase 3B1 (HS3ST3B1, surrogate marker for 3-OS HS). Data are presented relative to GAPDH. Error bars, s.d. (n = 3). (c) Gene transfer assay via entry-receptor-restricted EGFP-expressing HSV-1 recombinants. Cells were infected with either K26GFP (with wild-type gD), d5-28V (nectin-1-restricted) or A3C/Y38C (HVEM-restricted) HSV at 20 or 100 genome copies per cell. Percent of EGFP positive cells was determined by flow cytometric analysis 24 h after virus infection.

 increase in virus production after rQnestin34.5 infection (Figure 4b). As expected, cells infected with rQnestin34.5 had significantly higher virus production than those infected with rHSVQ1 over time (Figure 4b, asterisks for black bar vs white bar). Moreover, trend analysis also revealed that in the nectin-1 high cells (NB12 and Nectin-1), viral production significantly increased over time when infected by rQnestin34.5 (both P-values for time dependence tests <0.0001) whereas it remained unchanged in nectin-1 null cells (NB88R2 and Mieg3), suggesting that both ICP34.5 (only present in rQnestin34.5) and nectin-1 are necessary for effective treatment in EBV-LPDs for oHSV-based therapy. (Surface nectin-1 expression was confirmed via flow cytometric analysis as shown in Figure 4c) On the other hand, knockdown of nectin-1 expression in NB12 (Figure 4d, ShNectin-1) via lentiviral-mediated shRNA transduction decreased rQnestin34.5 entry as compared with the naive control (Figure 4d, Naive) or non-target shRNA control (Figure 4d, Sh02). Together, these results provide both gain- and loss of function evidence that nectin-1 expression is necessary for EBV-LPD cells to be permissive for oHSV infection.
indicating that these tumors were resistant to oHSV treatment. We also confirmed that xenograft tumors retained the fidelity of HSV entry receptor expression (Supplementary Figure S3) as appeared in the cell culture. Meanwhile, we observed some early deaths (tumor volume <2500 mm³) in the virus-treated groups, one in the CHLA-20 group with a tumor volume <100 mm³ at day 35, five in the NB12 group with tumor volumes ~2000 mm³ between days 23–28 after the initial treatment (Figures 5a and 5b), but none in the NB88R2 group. As most of the tissues were necrotic when we noticed the death of the animals, we were unable to perform any further analyses to identify the cause of death. We postulate the deaths were due to excessive virus replication in the responsive models (CHLA-20 and NB12) after such intensive treatment, though we cannot rule out the development of metastatic cancer in those animals. Unlike the high cure rate in CHLA-20, although NB12 tumors responded to oHSV treatment, all the recipients eventually succumbed to excessive tumor growth (Figure 5b). In vivo virus replication revealed a significant difference in the kinetics of virus production between the two models. Although NB12 tumors showed only modest virus production with <2-log increase between 3–72 h post infection, CHLA-20 showed a marked virus yield of 4 logs (Figure 5d). Together, our results demonstrate that with adequate HSV entry receptor expression (NB12), EBV-LPD can be modestly responsive to oHSV treatment.

DISCUSSION

Oncolytic virotherapy possesses considerable potential as a novel treatment modality for various forms of cancer and is being tested using different oncolytic viral vectors in a variety of tumor models.
We studied HSV-1-based oncolytic therapy in several serendipitous tumor models of primary EBV-infected lymphocytes, reminiscent of EBV-derived LPD. We postulated that the predicted EBV-mediated inhibition of PKR signaling via EBER expression would render cells susceptible to oHSV virotherapy. Instead, we found PKR signaling intact, with cells only moderately supportive of oHSV replication. Moreover, we found that the effectiveness of oHSV virotherapy was dependent on HSV-1 entry receptor expression, tracking most closely with nectin-1 amongst the EBV-LPD cells analyzed. Gain- and loss-of-function studies as well as receptor-restricted recombinant mutant viruses confirmed the role of nectin-1 as the primary oHSV entry receptor in these cells. Our findings in this model system of EBV-LPD highlight the need to assess HSV-1 entry receptor expression when considering oHSV virotherapy, not only on a cancer-type basis but also on a patient-by-patient basis.

EBV-LPD after hematopoietic stem cell or solid organ transplantation is a serious and often fatal complication. Although several therapeutic options have been somewhat effective for treating EBV-LPD, the overall results are unsatisfactory. Expression of EBV-encoded small RNAs (EBER1 & EBER2) has been detected in all forms of EBV latently infected cells. These polyA-negative, non-coding RNAs were shown to associate with several malignant phenotypes of Burkitt’s lymphoma. In Burkitt’s lymphoma cells, expression of the EBERs was shown to inhibit IFN-α induced apoptosis through direct binding and blocking of the activation of double-stranded RNA-activated protein kinase PKR, indicating that this antiviral pathway is impaired in EBV-infected cells. Therefore, we postulated that EBV-LPD cells might be highly permissive for oHSV treatment. However, other studies suggested that the resistance to IFN-α-mediated apoptosis was not through PKR inhibition. Meanwhile, virus-associated RNA I expressed by adenovirus shows many similarities with the EBERs, such that EBERs were able to complement a virus-associated RNA I-deleted translational adenovirus defective and showed promising antitumor efficacy in EBV-associated diseases. Altogether, these findings prompted us to study whether these EBV-LPD cultures respond to oHSV treatment and to identify the factor(s) involved in oHSV infection.

In our study, the three EBV-LPD lines each expressed high levels of EBER1 (Figure 1b), which was not present within the CHLA-20 NB control cells. Additionally, PKR species with molecular weights ~70 kDa and above were activated upon oHSV in all three EBV-LPDs as well as in the EBV-negative (and thus EBV-negative) NB cell line CHLA-20 (Figure 2a). Concomitantly, phosphorylation of eIF2α (Figure 1b), which was not present within the CHLA-20 cell line CHLA-20 (Figure 2a). Concomitantly, phosphorylation of eIF2α was also observed across all cells tested, suggesting our results favor the fact that EBERs do not directly inhibit IFN-α-mediated PKR pathway, at least in our primary EBV-LPD cultures. Similarly, pT451 PKR with molecular weight ~60 kDa was observed in all three untreated EBV-LPDs and remained at similar levels following oHSV virus infection (Figure 2a), PKR has been identified in nuclear and cytoplasmic fractions. Although the role of nuclear PKR remains unclear, pT451 PKR, which represents the active PKR, was predominantly nuclear in high-risk myelodysplastic syndrome samples compared with mainly cytoplasmic form in low-risk samples. Recently, studies in acute leukemia cells suggested that PKR in the nucleus is active and responded to stress. Interestingly, the majority of nuclear pT451 PKR in the study was ~60 kDa, indicating that the constitutively activated PKR(60kDa) in our three EBV-LPDs that we had observed might be predominately located in the nucleus. Given the fact that these EBV-LPDs were much less susceptible to oHSV than the comparative EBV-LPDs, it will be interesting to know whether activated PKR(60kDa) has a role in restricting oHSV replication. Based on our findings, we postulate that the stronger phospho-eIF2α signal in the two permissive lines NB12 and CHLA-20 was driven by more efficient entry of HSV, and thus more virus-mediated PKR activation. The intensity of PKR response likely correlates with the amount of virus the cells receive. Therefore, we saw stronger phospho-PKR (70 kDa) signal in NB12 and CHLA-20 after virus infection, which ultimately led to more eIF2α phosphorylation. We think that the process between

Figure 5. Differential susceptibility of EBV-LPDs to oHSV in vivo. NB12, NBB88R2 or CHLA-20 cells were implanted subcutaneously into the flanks of NSG mice. Implanted tumors were intratumorally injected with phosphate buffered saline (PBS) (solid line), 10^7 pfu rRp450 (dotted line) for a total of 5 treatments when tumor mass reached 150–250 mm³. Mice were sacrificed when the tumor size reached 2500 mm³ or due to the appearance of morbidity. Kaplan–Meier survival curves were plotted and scored for statistical significance with the log-rank test for the results of (a) CHLA-20 xenografts, n = 9 (PBS), n = 8 (rRp450), (b) NB12 xenografts, n = 13 (PBS), n = 14 (rRp450) and (c) NBB88R2 xenografts, n = 15 (PBS), n = 14 (rRp450). (d) Virus production in NB12 and CHLA-20 tumors. The implanted tumors were injected with 10^7 pfu of rRp450 using a single unfractoned dose. Tumors were harvested and homogenized at 3 and 72 h post infection for plaque assay. Solid triangles indicate mice sacrificed before tumor volume reached 2500 mm³.
phosphorylation and dephosphorylation of eIF2α is dynamic, meaning while the increased entry of the virus stimulated more robust PKR responses, there is also more expression of ICP34.5 to redirect cellular protein phosphatase-1α to dephosphorylate some of the eIF2α, enabling productive virus replication. Owing to higher virus entry in the two permissive cells, we observed increased activated-PKR; therefore, overall more phospho-eIF2α appeared even though more dephosphorylation was also taking place.

The susceptibility of our primary EBV-LPDs to oHSV correlated with major HSV-1 entry receptor nectin-1 expression which had an impact on virus entry, cytopathicity and virus production. Notably, nectin-1 has been shown to be the major entry receptor in a few other types of tumors, including squamous cell carcinoma,11 thyroid cancers10 and gliomas.12,21 Although HVEM was expressed in all 3 EBV-LPDs (Figures 3a and b), it did not appear to have a significant role in entry on these cells (Figure 3c), suggesting that either there was a lack of co-receptor expression as indicated before20 or that a loss of function mutation occurred as in a recent report.28 As we observed only a modest effect of oHSV on tumor growth (Supplementary Figure S2), even in the model expressing nectin-1 (Supplementary Figure S3) and only a modest increase in animal survival (Figure 5b), our data are not particularly compelling for the application of oHSV for EBV-LPD. The underlying reason for relative resistance is unknown but is possibly due to the intact PKR response within the EBV-LPD lines. In contrast, the positive control NB line was highly susceptible to oHSV, confirming our previous report of the activity of oHSV in NB cell lines and xenografts.33 Interestingly, CHLA-20 cells only expressed an intermediate level of nectin-1, with little to no detectable nectin-2 or HVEM (Figures 3a and b). Moreover, the level of nectin-1 in the CHLA-20 cells was even less than that observed in the only slightly permissive NB12 EBV-LPD line (Figures 3a and b). In contrast to the EBV-LPDs, CHLA-20 did express high levels of 3-OS HS, raising the possibility that this receptor may have a role in mediating virus entry in those cells. In fact, 3-OS HS has been shown to have an important role in HSV-1 entry in human mesenchymal stem cells36 and human corneal fibroblasts.15 Our data suggest that measuring the expression of HSV-1 entry receptors to identify those that lack all the major HSV entry receptors may be an important biomarker to identify cancer types or even individual cancer cases that may not be suitable for oHSV oncotherapy.

Materials and Methods

Cells and viruses

As previously described by Hansford et al.,13 and Pietras et al.,14 TICS were cultured in DMEM-F12 (3:1) with 2% B27 supplement (Life Bioscience, San Jose, CA, USA) and penicillin/streptomycin (100 U ml⁻¹ and 100 μg ml⁻¹, respectively). rHSVQ1 (F strain) and rQnestin34.5 (F strain) were described previously.17,36 CHO cells were cultured in F12 medium containing 20% FBS, 0.5% MITO plus Serum Extender (BD Biosciences) for 20 min at 4°C. CHO-A cells were cultured in Eagle’s Minimal Essential Medium with 10% FBS and penicillin/streptomycin (100 U ml⁻¹ and 100 μg ml⁻¹, respectively). Vero cells (ATCC, Manassas, VA, USA), were cultured in Eagle’s Minimal Essential Medium with 10% FBS and penicillin/streptomycin (100 U ml⁻¹ and 100 μg ml⁻¹, respectively). Chinese hamster ovary (CHO) cells negative for expression of HSV-1 entry receptors (CHO-K1) and CHO-K1 cells transduced to express human nectin-1 (CHO-N1) or nectin-2 (CHO-N2) were kind gifts from Patricia G. Spear (Northwestern University, IL, USA). CHO-K1 cells stably expressing human HVEM (CHO/A) were as described.19 CHO cells were cultured in F12 medium containing 20% FBS, penicillin/streptomycin (100 U ml⁻¹ and 100 μg ml⁻¹, respectively), and G418. Oncolytic HSV-1 mutants rPfp50 (KOS strain), rHSVQ1 (F strain) and rQnestin34.5 (F strain) were described previously.17,36 Briefly, rPfp450 contains the insertion of the rat CYP2B1 gene into UL39 (ICP6). rHSVQ1 contains a deletion in both copies of the γ-34.5 gene and an insertion of the green fluorescent protein (GFP) cDNA under control of the ICP6 promoter. rQnestin34.5 was derived from the parental virus rHSVQ1 by insertion of a single copy of the γ-34.5 gene under the control of the nestin enhancer and hsp68 minimal promoter into the UL39 region. The wild-type gD virus (K26GFP) and receptor-restricted derivatives K26-gDΔS28V (nectin-1) and K26-gD:AC3Y38C (HVEM) were engineered as previously described.37 All virus stocks were produced and purified by the Virus Production Core at the University of Pittsburgh School of Medicine.

Flow cytometry

Tumor and CHO cultured cells were dispersed into single cell suspensions via mechanical trituration or a nonenzymatic cell dissociation buffer (Sigma-Aldrich, St. Louis, MO, USA) treatment if needed. Xenograft tumors were harvested from animals, transferred to phosphate buffered saline, cut into small pieces with a scalpel and then digested for 1 h at 37°C in Liberase Blenzyne3 (25 μg ml⁻¹, Roche Applied Science, Indianapolis, IN, USA). The cellular suspensions were then passed through a 70 μm cell strainer and centrifuged. The cell pellet was then treated with red blood cell lysis buffer (Sigma-Aldrich), washed and suspended in phosphate buffered saline. Analyses were performed on the BD FACSCount flow cytometer (BD, Franklin Lakes, NJ, USA) using FlowJo 9.4.10 analyzing software (Tree Star Inc., Ashland, OR, USA). Single-cell suspensions of ~1 × 10⁶ elements were treated with 10% FcR blocking reagent (Milenyi Biotec Inc., Auburn, CA, USA) for 10 min at 4°C and then stained with directly conjugated antibodies (Abs) directed against the following human cell surface markers: CD20 fluorescein isothiocyanate conjugated, CD45 phycoerythrin conjugated, CD56 allophycocyanin (APC) conjugated, CD81 phycoerythrin conjugated (above Abs were all from BD Bioscience, San Jose, CA, USA). The following unconjugated Abs were also used: human ganglioside GD2 (BD Biosciences), antihuman nectin-1, nectin-2 and HVEM (above Abs were all from Santa Cruz Biotechnology, Santa Cruz, CA, USA). After applying the unconjugated Abs or their isotype controls, cells were stained with a secondary fluorescein isothiocyanate-conjugated goat antimouse IgG (BD Biosciences). Dead cells were detected by adding 7-amino-actinomycin D (7-AAD, BD Biosciences) to each tube 10 min prior to analysis. In Figure 4c, phycoerythrin conjugated goat antimouse IgG (Southern Biotech, Birmingham, AL, USA) was used as the secondary antibody.

For 3-O-Sulfated Heparan Sulfate (3-OH HS) analysis, cells were first fixed in 1% paraformaldehyde for 10 min at 4°C, followed by incubation with antibody H54C3 and then stained with 7-amino-actinomycin D (7-AAD, BD Biosciences) to each tube 10 min prior to analysis in Figure 4c. Cells were then incubated with 3-OH HS (Southern Biotech, Birmingham, AL, USA) and then washed and suspended in phosphate buffered saline. Analyses were performed on the BD FACSCount flow cytometer (BD, Franklin Lakes, NJ, USA) using FlowJo 9.4.10 analyzing software (Tree Star Inc., Ashland, OR, USA). Single-cell suspensions of ~1 × 10⁶ elements were treated with 10% FcR blocking reagent (Milenyi Biotec Inc., Auburn, CA, USA) for 10 min at 4°C and then stained with directly conjugated antibodies (Abs) directed against the following human cell surface markers: CD20 fluorescein isothiocyanate conjugated, CD45 phycoerythrin conjugated, CD56 allophycocyanin (APC) conjugated, CD81 phycoerythrin conjugated (above Abs were all from BD Bioscience, San Jose, CA, USA). The following unconjugated Abs were also used: human ganglioside GD2 (BD Biosciences), antihuman nectin-1, nectin-2 and HVEM (above Abs were all from Santa Cruz Biotechnology, Santa Cruz, CA, USA). After applying the unconjugated Abs or their isotype controls, cells were stained with a secondary fluorescein isothiocyanate-conjugated goat antimouse IgG (BD Biosciences). Dead cells were detected by adding 7-amino-actinomycin D (7-AAD, BD Biosciences) to each tube 10 min prior to analysis. In Figure 4c, phycoerythrin conjugated goat antimouse IgG (Southern Biotech, Birmingham, AL, USA) was used as the secondary antibody.

EBV in situ hybridization

Excised xenograft tumors were fixed in 10% formalin and then processed and stained by the Cincinnati Children’s Hospital Histology Core. Tissue sections were probed with Digoxigenin-UTP-labeled EBER1 oligo and then visualized with anti-Digoxin – Biotin (Sigma-Aldrich) and the Blue Map Detection Kit (Ventana Medical Systems, Tucson, AZ, USA). Nuclear Fast Red (Polysciences, Inc., Warrington, PA, USA) was used as a counterstain. Staining was performed on an automated platform Ventana Discovery (Ventana Medical Systems).

Cell survival/MTS assay

Cells were plated in 96-well dishes at 3 × 10⁴ cells/well, incubated at 37°C for 1–2 h and then infected with oncolytic HSV mutants at MOI 0.001, 0.01, 0.1 and 1.0 or higher in quadruplicate. The assays were performed using Cell Titer96 AQueous Non-Radioactive Cell Proliferation Assay (Promega, Madison, WI, USA) per manufacturer’s instructions on days 2, 4 and 6. Results were presented as percent cell survival compared with uninfected controls.

Virus production

Tumor cells were plated in 24-well dishes at 5 × 10⁴ cells per well, incubated at 37°C for 2 h, and infected with viruses at MOI 0.01. Plates were gently shaken every 20 min for 2 h. At 2, 24, 48 and 72 h post infection, both cells and supernatants were harvested, freeze-thawed three times, diluted and titrated by standard plaque assay on Vero cells.20
Western blot

Cells were plated in 6-well dishes at 2.0 × 10^6 cells per well, incubated for 2 h, and then infected at MOI of 0 or 5. Uninfected and rPrp45-infected cells at 24 h post infection were lysed in RIPA buffer (1% Triton X-100, 1% sodium deoxycholate, 0.1% SDS, 160 mM NaCl, 10 mM Tris, 5 mM EDTA) containing 50 mM sodium fluoride (NaF), 1 mM sodium metavanadate (NaVO_3) and protease inhibitor (Roche, Indianapolis, IN, USA). Total protein levels were quantified by Bradford protein assay (Bio-Rad, Hercules, CA, USA). Then, 30 μg of total protein was resolved on SDSPAGE gels from Bio-Rad, electrotransferred to PVDF membranes and probed with antibodies against total PKR (B-10 and D-20, Santa Cruz Biotechnology), phospho-PKR (Thr^32, Santa Cruz Biotechnology), total eIF2α (FL-315, Santa Cruz Biotechnology) or phospho-eIF2α (Ser^51, Santa Cruz Biotechnology), actin (C4, Seven Hills Bioreagents, Cincinnati, OH, USA). Immunocomplexes were detected by incubation with a horseradish peroxidase conjugated secondary antibody (GE Healthcare Life Science, Piscataway Township, NJ, USA) and visualized by enhanced chemiluminescence reagent (GE Healthcare Life Science).

Animal studies

Animal studies were approved by the Cincinnati Children's Hospital Institutional Animal Care and Use Committee (IACUC). To establish tumors, NB12, NB88R2 and CHLA-20 cells (3–6 × 10^5, 3–6 × 10^4, 1 × 10^4, respectively) were injected subcutaneously with 33% Matrigel (BD Biosciences) into the flanks of 6–8 week-old NOD.Cg-Pkdrc scid Il2rg tm1Wjl/SzJ (NSG) mice (Comprehensive Mouse and Cancer Core at CCHMC). When tumors reached 150–250 mm3, the animals were treated with intratumoral rPrp45 (10^5 pfu in 100 μl) every 3–4 days for a total of five injections. Control mice received intratumoral phosphate buffered saline following the same regimen. Tumor volume was determined by V = (L × W^2)/2, where L is the length of the tumor and W is the width. Animals were monitored for tumor volumes two times per week for 60 days after initial treatment or until tumor exceeded 10% of the animal’s body weight.

Viral entry

Cells were plated in 6-well dishes at 2 × 10^5 cells per well, incubated at 37 °C for 2 h, and infected with EGPF-containing HSVs, rQnestin34.5 at indicated MOIs (Figure 2d) or unrestricted or receptor-restricted viruses K26GFP, d5-28V or A3C/Y38C (see Figure 3c) at indicated genome copy numbers. At 8 or 24 h post virus infection, cells were harvested, stained with 7-AAD (BD Biosciences) and analyzed by flow cytometric analysis to determine the percent of living cells expressing EGP.

RNA extraction

Total RNA was isolated from 1 × 10^6 cells using the RNeasy Plus Mini Kit (Qiagen, Valencia, CA, USA) per manufacturer’s instructions. The concentration and purity of the recovered RNA was determined measuring the optical density at 260 and 280 nm.

Reverse transcription PCR and Quantitative PCR

cDNA was generated using SuperScriptII Reverse Transcriptase (Life Technologies) per the manufacturer’s instructions. For EBER1 expression, 1 μl of cDNA, 400 nM of each primer and 11 μl of Platinum PCR Supermix (Life Technologies) were used in a 12.5 μl PCR reaction. PCR was performed on a PTC200 DNA Engine Thermal Cycler (MJ Research Inc., St. Bruno, QC, Canada) using one cycle at 95 °C for 5 min, 30 cycles at 95 °C for 30 s, 58 °C for 30 s and 72 °C for 30 s. Hypoxanthine–guanine phosphoribosyltransferase was used as the housekeeping control gene. The EBER1 reaction minus the reverse transcriptase was utilized as the negative control. For qPCR, 10 μl of Power SYBR Green PCR Master Mix (Life Technologies), 5 μl of 1:25 diluted cDNA and 500 nM of each primer of interest was used in a 20 μl reaction. The reaction was performed using the Applied Biosystems 7500 Real-Time PCR System (Life Technologies). The samples were run at 50 °C for 2 min, 95 °C for 10 min, 40 cycles of 94 °C for 15 s, 58 °C for 35 s and 72 °C for 35 s, followed by a standard dissociation stage to determine the melting temperature of each amplification product. Comparative quantitation method was used for data analysis. The results were presented as expression fold relative to GAPDH. Primers used in the study are listed in Supplementary Table S1.

Exogenous nectin-1 expression

Human nectin-1 expression construct pBGS38, kindly provided by Patricia G. Spear (Northwestern University, IL, USA), was used as a PCR template to amplify the 1.55 kb hNectin-1 cDNA. The amplified fragment was ligated into pMIEGS, a murine stem-cell virus-based bicistronic retrovector with enhanced green fluorescent protein (EGFP) expression cassette, using NotI at the 5’-end and XhoI at the 3’-end for cloning. The newly generated 8.05 kb plasmid pMIEGS-hNectin-1 was both restriction digested and sequence verified to confirm the accuracy of the DNA sequence. RD114 pseudotyped retroviral particles expressing hNectin-1 or mock vector were produced by the Cincinnati Children’s Hospital Viral Vector Core and used to transduce patient-derived EBV-infected lymphoblastoid cells. For retroviral transduction, 1 × 10^4 N88R2 cells in a 50:50 culture medium/viral supernatant plus 4 μg/ml of polybrene were plated in a RetroNectin-coated (Takara Bio Inc., Mountain View, CA, USA) 6-well dish that was preloaded with viral particles. After incubation at 37 °C overnight, the supernatants were replaced with fresh culture medium. At 5–7 days post-transduction, EGFP-positive cells were confirmed and FACS sorted. Surface nectin-1 expression was confirmed via flow cytometry analysis as described above.

shRNA knockdown of nectin-1 expression

pLKO.1-puro lentiviral clones containing shRNA against human nectin-1 (TRCN00000052933) or non-target shRNA (SH02, scramble control) were purchased from the lenti-shRNA Library Core at Cincinnati Children’s Hospital. VSV-G pseudotyped viral particles were produced and concentrated by the Viral Vector Core at CCHMC and used for infection of subconfluent cells at 1:100–1:400 dilution in the presence of 4 μg ml^-1 of polybrene. Media were replaced after 24 h and puromycin was added at 48 h post infection to enrich for transduced cells.

Statistical analysis

SAS 9.3 (SAS, Inc, Cary, CA, USA) was used for Figures 4a and b analyses. Analysis of variance was used to model the effects of virus, cell lines, time of infection and their interactions. The overall effect of cell lines was not significant, thus cell lines were pooled. The effects of virus and their interactions were analyzed using Tukey’s test. For Figure 4b, data were transformed by log₁₀ to equalize the variance across groups. Time dependency was analyzed by trend analysis. Statistics for Figure 5 were done using GraphPad Prism 5.03 for Windows (GraphPad Software, Inc. La Jolla, CA, USA). For Figures 5a–c, survival was analyzed by log-rank; for Figure 5d, comparisons between two means were performed with an unpaired Student’s t-test. *P<0.05, **P<0.01, ***P<0.001, and ****P<0.0001.

CONFLICT OF INTEREST

The authors declare no conflict of interest.

ACKNOWLEDGEMENTS

We thank Patricia G Spear (Northwestern University, IL, USA) for providing the nectin-1 expression vector pBGS38, and CHO-K1, CHO-N1 and CHO-N2 cells. This work was supported by Cincinnati Children’s Hospital Medical Center Division of Hematology/Oncology, CancerFree Kids, theeoffagaintcancer.org, the Kate Linz Foundation, Alex’s Lemonade Stand Foundation for Childhood Cancer, the Ohio State University Comprehensive Cancer Center Pelotonia Team Science Award, the Research Institute at Nationwide Children’s Hospital, Canadian Cancer Society Research Institute, and NIH grants R21-CA133663-01A1 (TPC), R01-CA114004 (TPC), R01-CA119298 (JCG) and P01-NS040923 (JCG).

REFERENCES

1 Jagadeesh D, Woda BA, Draper J, Evens AM. Post transplant lymphoproliferative disorders: risk, classification, and therapeutic recommendations. Curr Treat Options Oncol 2012; 13: 122–136.
2 Martuza R. Conditionally replicating herpes vectors for cancer therapy. J Clin Invest 2000; 105: 841–846.
3 He B, Gross M, Roizman B. The gamma(1)34.5 protein of herpes simplex virus 1 complexes with protein phosphatase 1alpha to dephosphorylate the alpha subunit of the eukaryotic translation initiation factor 2 and preclude the shutoff of protein synthesis by double-stranded RNA-activated protein kinase. Proc Natl Acad Sci USA 1997; 94: 843–848.
Huang YY, Yang AD, Lee PW. Oncogenes in Ras signalling pathway dictate host-cell permisiveness to herpes simplex virus 1. *Not Cell Biol* 2001; 3: 745–750.

Nanbo A, Inoue K, Adachi-Takasawa K, Takada K. Epstein-Barr virus RNA confers resistance to interferon-alpha-induced apoptosis in Burkitt’s lymphoma. *EMBO J* 2002; 21: 954–965.

Warner MS, Geraghty RJ, Martinez WM, Montgomery RI, Whitbeck JC, Xu R et al. A cell surface protein with herpesvirus entry activity (HveB) confers susceptibility to infection by mutants of herpes simplex virus type 1, herpes simplex virus type 2, and pseudorabies virus. *Virology* 1998; 246: 179–189.

Lopez M, Cocchi F, Menotti L, Avitabile E, Debreuil P, Campadelli-Fiume G. Nectin-2alpha (PRR2alpha or HveB) and nectin2delta are low-efficiency mediators for entry of herpes simplex virus mutants carrying the Leu25Pro substitution in glycoprotein D. *J Virol* 2000; 74: 1267–1274.

Shukla D, Liu J, Blaklock P, Shworak NW, Bai X, Esko JD et al. A novel role for 3-O-sulfated heparan sulfate in herpes simplex virus 1 entry. *Cell* 1999; 99: 13–22.

Krummenacher C, Baribaud F, Ponce de Leon M, Baribaud I, Whitbeck JC, Xu R et al. Comparative usage of herpesvirus entry mediator A and nectin-1 by laboratory strains and clinical isolates of herpes simplex virus. *Virology* 2004; 322: 286–299.

Huang YY, Yu Z, Lin SF, Li S, Fong Y, Wong RJ. Nectin-1 is a marker of thyroid cancer sensitivity to herpes oncolytic therapy. *J Clin Endocrinol Metab* 2007; 92: 1965–1970.

Nicholls P, Voller A, Deshpande D, Wright C, Gill SR, Hopewell JS et al. Nectin-1 expression by squamous cell carcinoma is a predictor of herpes oncolytic sensitivity. *Mol Ther* 2007; 15: 103–113.

Friedman G, Langford CP, Coleman JM, Cassady KA, Parker JN, Markert JM et al. Engineered herpes simplex viruses efficiently infect and kill CD133+ human glioma xenograft cells that express CD111. *J Neurooncol* 2009; 95: 199–209.

Hansford LM, McKee AE, Zhang L, George RE, Gerstle JT, Thorner PS et al. Neuroblastoma cells isolated from bone marrow metastases contain a naturally occurring tumor-initiating cell. *Cancer Res* 2007; 67: 11234–11243.

Pietras A, Hansford LM, Johnsson AS, Bridges E, Sjolund J, Gisselsson D. Generation of herpesvirus entry mediator (HVEM)-restricted herpes simplex virus type 2 mutant viruses: resistance of HVEM-expressing cells and identification of mutations that rescue nectin-1 recognition. *J Virol* 2009; 83: 2951–2961.

Heslop HE. How I treat EBV lymphoproliferative disease. *Blood* 2009; 114: 4002–4008.

Supplementary Information accompanies the paper on Gene Therapy website (http://www.nature.com/.gt)