Assessing the utility of Hsp90 gene for inferring evolutionary relationships within the ciliate subclass Hypotricha (Protista, Ciliophora)

Qi Zhang\(^{1,2+}\), Jiahui Xu\(^{1,2+}\), Alan Warren\(^3\), Ran Yang\(^1\), Zhuo Shen\(^{4,5*}\) and Zhenzhen Yi\(^{1,2*}\)

Abstract

Background: Although phylogenomic analyses are increasingly used to reveal evolutionary relationships among ciliates, relatively few nuclear protein-coding gene markers have been tested for their suitability as candidates for inferring phylogenies within this group. In this study, we investigate the utility of the heat-shock protein 90 gene (Hsp90) as a marker for inferring phylogenetic relationships among hypotrich ciliates.

Results: A total of 87 novel Hsp90 gene sequences of 10 hypotrich species were generated. Of these, 85 were distinct sequences. Phylogenetic analyses based on these data showed that: (1) the Hsp90 gene amino acid trees are comparable to the small subunit rDNA tree for recovering phylogenetic relationships at the rank of class, but lack sufficient phylogenetic signal for inferring evolutionary relationships at the genus level; (2) Hsp90 gene paralogs are recent and therefore unlikely to pose a significant problem for recovering hypotrich clades; (3) definitions of some hypotrich orders and families need to be revised as their monophilies are not supported by various gene markers; (4) The order Sporadotrichida is paraphyletic, but the monophyly of the "core" Urostylida is supported; (5) both the subfamily Oxytrichinae and the genus Urosoma seem to be non-monophyletic, but monophyly of Urosoma is not rejected by AU tests.

Conclusions: Our results for the first time demonstrate that the Hsp90 gene is comparable to SSU rDNA for recovering phylogenetic relationships at the rank of class, and its paralogs are unlikely to pose a significant problem for recovering hypotrich clades. This study shows the value of careful gene marker selection for phylogenomic analyses of ciliates.

Keywords: Ciliates, Heat-shock protein 90 gene, Hypotricha, Phylogeny
Background

Evolutionary relationships of many ciliated protists (ciliates) remain unknown due to difficulties in species identification caused by their small size, complex morphological characters and high species diversity, although this topic is vital for understanding the evolution of life on Earth [1–4]. Most published molecular phylogenetic trees of ciliates are based on rDNA sequences, including the small subunit rDNA (SSU rDNA), large subunit rDNA (LSU rDNA) and the internal transcribed spacer (ITS) region [5–8]. All presently used markers give rise to artifacts in phylogenetic reconstructions resulting in the recovery of ambiguous relationships in gene trees [9, 10]. Analysis of sequences of multiple unlinked loci having different evolutionary histories, as opposed to linked SSU rDNA, LSU rDNA, and ITS regions, is necessary since phylogenetic bias might be common to loci that are linked [11]. Hence, protein-coding genes, such as alpha-tubulin, actin, Hsp70 and histone H4 genes, are increasingly used to reconstruct ciliate phylogenies [1, 3, 12–17]. With the development of phylogenomics, it is now possible to reconstruct phylogenetic relationships among ciliates based on analyses of hundreds of protein-coding genes [1, 18–22]. However, only a few of these protein-coding gene markers in comparatively few taxa have been tested for their suitability as candidates for inferring phylogenetic relationships among ciliates [23–25].

It has previously been shown that heat shock protein 90 (Hsp90) can resolve evolutionary relationships among eukaryotic taxa at high taxonomic rank, including alveolates and deep-branching dinoflagellates [26–29], and possibly also at genus level, e.g., Paramecium and Tetrahymena [30]. Furthermore, Hsp90 is ubiquitous and highly conserved in eukaryotic cells making it easy to amplify using PCR [31, 32]. As in other protein-coding genes used for molecular phylogenies, paralogs caused by gene duplication, especially recent ones, might be the biggest disadvantage of using Hsp90 in phylogenetic analyses [3, 33, 34]. Notably, gene duplications in ciliates are common due to extremely high copy numbers of genes caused by unique features such as nuclear dimorphism [6, 35, 36]. Hence, it is necessary to test whether Hsp90 gene paralogs will confound phylogenetic analyses before this gene is widely used for determining evolutionary relationships among ciliates.

The subclass Hypotricha is mainly defined by the patterns of ventral cirri arranged either in longitudinal files or in scattered groups and represents one of the most diverse groups within the Ciliophora [37]. This subclass has been the subject of many taxonomic revisions, particularly in the past three decades [1, 38–43]. Phylogenetic relationships within the Hypotricha are still poorly understood and the rapidly growing molecular phylogenetic studies have consistently questioned monophyly and assignments of many taxa [44–46].

In the present study, phylogenetic analyses based on the Hsp90 gene were carried out for 10 species (11 populations) of hypotrichs. The main aims were to examine whether Hsp90 is a suitable gene marker for resolving evolutionary relationships among ciliates using Hypotricha as an example, and to re-evaluate phylogenetic relationships within the subclass Hypotricha based on new Hsp90 sequence data.

Results

Hsp90 gene sequences of hypotrich ciliates

We obtained a total of 87 novel Hsp90 gene sequences from 11 populations of hypotrichs (Table 1). In order to avoid data redundancy we only used 85 distinct sequences in downstream analyses. The amplified fragment length of the Hsp90 gene was 1089–1119 base pairs (bp) with 41.2–60.1% GC content of which 543 sites (47.4%) were variable. Numbers of variable sites were highly divergent within each population, ranging from 16 (1.4%, Pseudokeronopsis rubra) to 216 (18.9%, Ponturostyla enigmatica). The third codon position exhibited the highest level of variation (42.0%). A total of 74 distinct amino acid sequences were detected among the 85 distinct nucleotide sequences. The 11 identical amino acid sequences were removed. The numbers of parsimony-informative and variable sites varied greatly at intra-population level. For instance, only one parsimony-informative site and five variable sites were present in Pseudokeronopsis rubra, while 48 and 67, respectively, were observed in Ponturostyla enigmatica (Fig. 1a).

Average nucleotide and amino acid pairwise distances within 11 hypotrich populations ranged from 0.0066 (Pseudokeronopsis rubra) to 0.1461 (Ponturostyla sp.), and 0.0051 (Pseudokeronopsis rubra) to 0.0843 (Ponturostyla enigmatica), respectively (Fig. 1b). Average interspecific pairwise distances varied from 0.1062 (Pseudokeronopsis erythrina vs. P. rubra) to 0.3156 (Hypotrichium paraconicum vs. Neowallackia sp.) for nucleotides, and 0.0424 (Pseudokeronopsis erythrina vs. P. rubra) to 0.1966 (Pseudokeronopsis erythrina vs. Pseudoamphisella quadrinucleata) for amino acids (Table S1).

Phylogenetic trees

In the Hsp90 amino acid (HSP90-Amino) tree, Oligohymenophorea and Spirotrichea were the only monophyletic classes with more than one representative species included in the analyses (Fig. 2). Another two classes, i.e. Heterotrichia and Phyllopharyngea, contain only one sequence each. Within Hypotricha, the orders Sporadotrichida and Urostyliida were both monophyletic and order Stichotrichida was represented by only one species. Two out of six hypotrich families (Oxytrichidae and Urostylidae) represented by more than one species were polyphyletic. At the genus level, there was no sister relationship
Table 1: Comparison of Hsp90 nucleotide sequences (1145 bp) in 11 hypotrich populations

Populations	No. of distinct sequences	Total no. of variable sites (percentage of 1145 nucleotides)	No. of variable sites at first positions (percentage of variable sites)	No. of variable sites at second positions (percentage of variable sites)	No. of variable sites at third positions (percentage of variable sites)	Transversions (percentage of variable sites)	Transitions C/T (percentage of variable sites)	Transitions A/G (percentage of variable sites)
Ponturostyla sp.	2 (2)	143 (12.5)	54 (37.8)	14 (9.8)	75 (52.4)	52 (36.4)	46 (32.2)	45 (31.4)
Ponturostyla enigmatica	6 (6)	216 (18.9)	71 (32.9)	38 (17.6)	107 (49.5)	159 (73.6)	26 (12.0)	31 (14.4)
Urosoma caudata p1	15 (15)	133 (2.9)	5 (11.1)	19 (37.8)	19 (37.8)	25 (75.8)	4 (12.0)	4 (12.1)
Urosoma caudata p2	5 (5)	22 (1.9)	7 (31.8)	6 (27.3)	9 (409)	16 (727)	2 (9.1)	4 (18.2)
Urosoma caudata (p1, p2)	20 (20)	103 (9.0)	11 (10.7)	45 (43.7)	47 (45.6)	81 (786)	14 (13.6)	8 (7.8)
Urosoma karinae	10 (10)	44 (3.8)	5 (11.4)	11 (25.0)	28 (63.6)	29 (659)	9 (20.5)	6 (13.6)
Pseudokeronopsis rubra	9 (9)	16 (1.4)	4 (25.0)	4 (25.0)	8 (500)	12 (750)	2 (12.5)	2 (12.5)
Pseudokeronopsis erythrina	8 (8)	153 (13.4)	57 (37.3)	13 (8.5)	83 (54.2)	125 (81.7)	15 (9.8)	13 (8.5)
Pseudoamphisiella quadrinucleata	7 (7)	26 (2.3)	11 (42.3)	3 (11.5)	12 (462)	18 (692)	3 (11.5)	5 (19.3)
Hemigastrostyla enigmatica	7 (7)	38 (3.3)	7 (18.4)	9 (23.7)	22 (570)	24 (632)	9 (23.7)	5 (13.1)
Hypotrichidium paraconicum	9 (7)	23 (2.0)	5 (21.7)	8 (34.8)	10 (435)	16 (696)	3 (13.0)	4 (174)
Neowallackia sp.	9 (9)	42 (3.7)	6 (14.3)	15 (35.7)	21 (500)	35 (833)	4 (9.5)	3 (7.2)
Total	87 (85)	543 (47.4)	208 (38.3)	107 (19.7)	228 (420)	440 (81.0)	56 (10.3)	47 (8.7)
between the two representatives of *Urosoma*, i.e., *U. caudata* and *U. karinae*, and sequences of two Ponturostyla species fell into three different clades. In contrast, the two Pseudokeronopsis species clustered together in a strongly supported clade (98% ML, 1.00 BI). Only *U. caudata* was represented by more than one population (*U. caudata* p1 & p2), and their sequences formed a clade with reliable support (97% ML, 1.00 BI). For each of six populations, i.e., *Urosoma karinae* (99% ML, 1.00 BI), *Neowallackia* sp. (100% ML, 1.00 BI), *Pseudoamphisiella quadrinucleata* (99% ML, 1.00 BI), *Hypotrichidium paraconicum* (99% ML, 1.00 BI), *Hemigastrostyla enigmatica* (100% ML, 1.00 BI) and *Pseudokeronopsis rubra* (93% ML, 1.00 BI), all sequences formed high to maximally supported clades. For five other populations, i.e., *U. caudata* p1, *U. caudata* p2, *Ponturostyla enigmatica*, *Ponturostyla* sp. and *Pseudokeronopsis erythrina*, this was not the case. For example, one sequence of *Pseudokeronopsis erythrina* grouped within the *P. rubra* clade. Within the class Oligohymenophorea, two sequences of *Paramecium tetraurelia* branched off with full support (100% ML, 1.00 BI) and clustered with *Tetrahymena bergeri* (AY391257) with moderate or low support (82% ML, 0.75 BI).

The topologies of the Hsp90 nucleotide (HSP90-Nuc) trees (Fig. 3) and Hsp90 nucleotide trees without third codon positions (HSP90-Nuc12) (Fig. 4) corresponded closely with that of the HSP90-Amino tree (Fig. 2), although there were three notable differences. Firstly, sequences of *Urosoma caudata* p1 and *U. caudata* p2 were separated from each other within a large clade and both populations appeared to be monophyletic in both the HSP90-Nuc and HSP90-Nuc12 trees, whereas they clustered together in the HSP90-Amino tree. Secondly, the clade comprising sequences of *Chilodonella uncinata* (DQ662856) occupied the basal position in the HSP90-Nuc and HSP90-Nuc12 trees, but it grouped with Oligohymenophorea and Heterotricha in the HSP90-Amino tree. Thirdly, the subclass Hypotricha was polyphyletic in the HSP90-Nuc and HSP90-Nuc12 trees, but monophyletic in the HSP90-Amino tree.

The topology of the SSU-rDNA tree (Fig. 5a) was almost congruent with the HSP90-Amino tree (Fig. 2). The major difference was that the two *Urosoma* species clustered together in the SSU-rDNA tree, whereas they were separated into different clades in the HSP90-Amino tree.

The topology of the SSU-HSPNuc12 tree (Fig. 5b) was nearly identical to that of the SSU-rDNA tree (Fig. 5a) except that Urostylida/Urostylidae was monophyletic only in the SSU-HSPNuc12 tree (Fig. 5b). The monophyly of the subclass Hypotricha was also recovered in SSU-HSPNuc12 tree which is consistent with the HSP90-Amino and SSU-rDNA trees (Figs. 2 and 5a).

Discussion

Is Hsp90 gene a suitable gene marker for inferring hypotrich phylogeny?

Previous studies have shown that the best way to evaluate the utility of a gene marker is to compare its congruence with other data [9]. Some researchers have suggested that Hsp90 is as good or better than any other single gene marker for inferring eukaryote phylogeny [29]. Here, the reliability of the Hsp90 gene is compared with other gene markers, especially SSU rDNA, based on accepted monophyletic groups at different taxonomic ranks. In the present investigation the class Oligohymenophorea was monophyletic, which is consistent with previous reports based on a variety of gene markers [3, 6, 54, 55]. In contrast, the subclass Hypotricha was non-monophyletic in
our HSP90-Nuc and HSP90-Nuc12 trees (Figs. 3 and 4) but monophyletic in the HSP90-Amino, SSU-rDNA and SSU-HSPNuc12 trees (Figs. 2 and 5). Non-monophyly in HSP90 trees (Figs. 3 and 4) might be caused by the rapid evolution of Hsp90 gene nucleotide sequences which is not suitable for reconstruction relationships of high-level taxa. It is suggested that amino acid sequences, rather than nucleotide sequences, of the Hsp90 gene are more
suitable for the classification of ciliates. The subclass Hypotricha was monophyletic in most previous molecular phylogenetic trees based on a variety of gene markers [6, 56–59], although in a few studies it was non-monophyletic [1, 6, 33]. The utility of the Hsp90 gene is comparable to that of SSU rDNA at class level. Out of three hypotrich genera for which Hsp90 gene sequences from more than one species were available, two (Urosoma and Ponturostyla) were paraphyletic (Figs. 2 and 3). This suggests that the Hsp90 gene might lack sufficient phylogenetic signal for inferring evolutionary relationships at the genus level. Due to the lack of taxon coverage, we were unable to determine whether the Hsp90 gene yields sufficient phylogenetic signal to determine relationships at order or family levels. The order Sporadotrichida, and two families for which sequences from multiple species were available, were polyphyletic (Figs. 2, 3, 4, 5).
This is consistent with previous findings based on SSU rDNA, actin and alpha-tubulin gene markers [43, 44, 46].

Multiple distinct Hsp90 nucleotide sequences were detected in every species, probably as a result of gene duplications. Of the 11 populations represented by more than one sequence, eight formed a well-supported clade in the HSP90-Nuc tree, the exceptions being *Pseudokeronopsis erythrina*, *Ponturostyla* sp. and *Ponturostyla enigmatica* (Fig. 3). This indicates that the Hsp90 gene duplications are recent and might have occurred after the separation of populations, suggesting that Hsp90 gene paralogs are unlikely to pose a substantial problem in defining hypotrich clades. Similarly, only recent duplication events have been detected in ciliates for the alpha-tubulin gene [17], this being the most widely used protein-coding gene for inferring evolutionary relationships in a range of ciliate groups [1, 13, 16, 17, 25]. Some studies, however, have concluded that the alpha-tubulin gene might not provide sufficient phylogenetic signal to resolve evolutionary relationships within some groups, e.g., *Spirostomum*, possibly due to the especially pronounced purifying selection [16, 60, 61]. In the case of the actin gene, the presence of ancient gene duplications
and actin isoforms being too divergent means that it is not possible to resolve evolutionary relationships below the rank of class [3]. These findings indicate that gene duplication patterns of different protein-coding genes are variable depending on the gene and the ciliate group. More studies are therefore needed to test more genes and more ciliate groups.

Phylogenetic relationships within the subclass Hypotricha

In the present study, each of the orders Sporadotrichida and Stichotrichida were paraphyletic and support values for some clades were low (Figs. 2, 3, 4, 5). This is consistent with previous molecular phylogenetic studies [3, 62–67]. It seems that gene markers with sufficient phylogenetic signal to recover the monophyletic Hypotricha are currently unavailable, although several (e.g., SSU rDNA, LSU rDNA, ITS and alpha-tubulin) have been widely used. This is reasonable considering that classification systems based on morphology, morphogenesis and gene sequences are not concordant with each other, probably due to the high diversity of ciliary and other somatic structures, as well as various modes of cortical development, within the Hypotricha [38–43, 68]. Currently, Hsp90 gene sequence data are available for only one species of Stichotrichida, namely *Hypotrichidium paraconicum*. Therefore, relationships within this order could not be analyzed. In contrast, several important phylogenetic relationships are recovered within the orders Sporadotrichida and Urostyliida.

Sporadotrichida

It has been suggested that the family Oxytrichidae, which is characterized by typically having 18 front-ventral-transverse (FVT) cirri, should be divided into
two subfamilies, the Oxytrichinae, with a flexible body, and the Stylonychinae, with a rigid body [38, 39]. All genera of Oxytrichidae included in the present study, i.e., *Oxytricha*, *Urosoma*, *Ponturostyla* and *Hemigastrotyla* belong to the subfamily Oxytrichinae. However, the subfamily Oxytrichinae was not monophyletic in any of the trees (Figs. 2, 3, 4, 5). This is consistent with previous studies based on SSU rDNA [69], actin [3] and alpha-tubulin genes [17], suggesting that the ontogenetic character which characterizes this group, viz. the participation of the posteriormost postoral ventral cirrus in primordia formation, might not be a synapomorphy. Furthermore, approximately Unbiased (AU) tests performed on HSP90-Nuc, HSP90-Nuc12, HSP90-Amino, SSU-rDNA and SSU-HSPNuc12 datasets rejected the monophyly of the subfamily Oxytrichinae (P < 0.05) (Table 2). The monophyly of the genus *Urosoma* was not supported in the HSP90-Nuc, HSP90-Nuc12, HSP90-Amino and SSU-HSPNuc12 trees, although this was not rejected by AU tests (P > 0.05, Table 2) (Figs. 2, 3, 4, 5b). Furthermore, no support values were revealed for the clade containing two *Urosoma* species shown in ML analyses based on the SSU-rDNA dataset (Fig. 5a). It is noteworthy that the monophyly of the genus *Urosoma* was not recovered in previous studies based on SSU rDNA sequences [47, 48]. The genus *Urosoma* might therefore be an artificial assemblage and its synapomorphies (i.e., frontoventral cirri arrange in a row with anterior cirrus (III/2) located slightly to the left, postoral ventral cirri in a dense cluster behind the buccal vertex, usually with two pretransverse ventral, five transverse cirri, one right and one left row of marginal cirri, and caudal cirri present) might be plesiomorphies of the subclass Hypotricha [38, 48].

Urostylida

It is not surprising that *Pseudoamphisiella* was separated from the “core” Urostylida in most our trees (Figs. 2, 3, 4, 5a) since phylogenetic trees based on various gene markers have previously revealed the fragmentation of the order Urostylida into a “core” group and the rest [1, 46, 70, 71]. Considering that the monophyly of the “core” urostyloid group was consistently recovered and other urostylid taxa usually had no robust assignment in our phylogenetic trees, we suggest that the morphological definition of the order Urostylida needs to be further refined.

Conclusions

Our investigation indicates that, though lacking sufficient phylogenetic signal at the genus level, the Hsp90 gene is comparable to SSU rDNA for recovering evolutionary relationships at the rank of class and that its paralogs are unlikely to pose a significant problem for recovering hypotrich clades. The Hsp90 gene therefore has significant potential utility for determining the systematics of ciliates. The findings of this study also suggest that careful selection of nuclear protein-coding gene markers is needed for phylogenetic analyses of ciliates.

Methods

Culturing, DNA extraction, PCR amplification, and sequencing

All the ciliates used in this study are listed in Table 3. Pure cultures were maintained in Petri dishes at room temperature (approximately 25 °C) with rice grains to stimulate the growth of bacteria as food for the ciliates [72]. One or more cells of each culture were repeatedly washed in sterile water with the same salinity as that of the sampling site. Genomic DNA was extracted using REDExtract-NAmp Tissue PCR Kit (Sigma, St. Louis, MO, USA).

PCR amplifications of the Hsp90 genes were performed using a TaKaRa Ex Taq DNA Polymerase Kit (TaKaRa Biomedicals, Japan). The primers used for Hsp90 gene amplification were Hsp90F4 (5′-CGGCAC GTTCTACWSNAAYAARGA-3′) and Hsp90R3 (5′-GGTCTTTTCTTCTGGCGTGTTCAGTGTA-3′) [26]. PCR conditions were: 2 min initial denaturation (95 °C), followed by 35 cycles of 45 s at 92 °C, 45 s at 48 °C and 1.5 min at 72 °C, with a final extension of 10 min (72 °C). Reactions were run in a total volume of 50 ul containing 5 ul 10 × Ex Taq DNA Polymerase buffer, 5 ul 2.5 mmol/L dNTP mix, 0.4 ul Ex Taq DNA Polymerase, 0.8 ul of each primer (25 mM), 2 ul of template DNA, and 36 ul of autoclaved double-distilled water.

After confirmation of the amplified DNA by 1.0% agarose gel, a single bright band containing the target DNA was purified using the Universal DNA purification

Table 2 Approximately Unbiased (AU) test results of the monophyly of Oxytrichinae and *Urosoma* based on different datasets

Datasets	Topology constraints	-ln* Likelihood	AU value (%)
HSP90-Nuc	Oxytrichinae	18,926.7784542	< 0.001
	Urosoma	18,720.53438758	0.693
HSP90-Nuc12	Oxytrichinae	24,480.25572958	< 0.001
	Urosoma	24,253.92785203	0.579
HSP90-Amino	Oxytrichinae	6100.82366514	< 0.001
	Urosoma	6017.78810081	0.576
SSU-rDNA	Oxytrichinae	16,280.0858004	< 0.001
	Urosoma	16,280.0858004	0.576
SSU-HSPNuc12	Oxytrichinae	24,480.25572958	< 0.001
	Urosoma	24,480.25572958	0.579

*a-Ln = negative value of natural logarithm; P values> 0.05 in bold
kit (TIANGEN, Beijing, China). Subsequently, the purified PCR products were cloned with the pMD18-T Cloning Vector (TaKaRa Biomedicals, Japan) and DH5-α E. coli cells. A total of 2–15 positive colonies from each population were sequenced in both directions in an ABI Prism 377 Automated DNA Sequencer (Majorbio sequencing facility, Shanghai, China) using primers M13-F47 and M13-R48.

Sequence analyses and construction of phylogenetic trees
Five datasets were included in the phylogenetic analyses: (1) HSP90-Nuc (98 sequences in total, i.e., Hsp90 nucleotide sequences including 85 that were distinct and newly obtained from the present study together with all 10 ciliate sequences available from the GenBank database); (2) HSP90-Amino (98 sequences in total, i.e., corresponding amino acid sequences of HSP90-Nuc); (3) HSP90-Nuc12 (98 sequences in total, i.e. HSP90-Nuc including only first two codon positions); (4) SSU-rDNA (15 sequences in total, i.e., corresponding SSU rDNA sequences of species in Dataset HSP90-Nuc, expect for three that were absent in GenBank, namely Oxystricha trifallax, Newallackia sp. and Blepharisma intermedium); (5) SSU-HSPNuc12 (15 sequences in total: two-gene combined dataset including SSU-rDNA and HSP90-Nuc including only first two codon positions). In each dataset, three species of Apicomplexa were chosen as the outgroup.

The Hsp90 nucleotide sequences were translated into amino acid sequences by DAMBE 6.3.0.1 software [73]. Intra- and inter-population genetic distances were calculated using MEGA 7.0 [74]. Mean pairwise nucleotide distances were calculated using the Kimura 2-parameter correction model [75]. Mean pairwise amino acid distances were calculated using the Poisson model [76]. Multiple sequence alignments of all nucleotide and amino acid sequences were performed with CLUSTAL W implemented in BioEdit v.7.0.1 [77] and then manually modified in order to trim both ends. Alignments used for subsequent phylogenetic analyses included the following numbers of positions: 1743 (HSP90-Nuc), 386 (HSP90-Amino), 1162 (HSP90-Nuc12), 1806 (SSU-rDNA), and 2968 (SSU-HSPNuc12). Models for nucleotide datasets were selected under the Akaike information criterion (AIC) by MrModeltest [78]. GTR + I + G was the best-fitted model for datasets HSP90-Nuc and SSU-rDNA. GTR + G was the best-fitted model for datasets HSPNuc12, SSU-HSPNuc12, as well as first and second codon positions of Hsp90 nucleotide sequences. Blosum62 + I + G was the best-fitted model for the amino acid dataset (HSP90-Amino) selected by AIC as implemented in ProtTest 1.4 [79]. Bayesian inference (BI) analyses were performed with MrBayes 3.1.2 [80]. Markov chain Monte Carlo (MCMC) simulations were run with two sets of four chains for 1,000,000 generations with trees sampled every 100 generations. The first 2500 trees were discarded as burn-in. The remaining trees were

Organisms	Sampling locality Location	Sampling Salinity (%a)	GenBank No.	Morphological Data Sources
Ponturostyla sp.	Futian Mangrove (22°31′N; 114°04′E), Guangdong	20	MN892397-MN892398	[53]
Ponturostyla enigmatica	Futian Mangrove (22°31′N; 114°04′E), Guangdong	5	MN892399-MN892404	[53]
Urosoma caudata p1	Nansha Island (22°85′N; 113°51′E), Guangdong	25	MN892405-MN892419	[48]
Urosoma caudata p2	Futian Mangrove (22°31′N; 114°04′E), Guangdong	8	MN892420-MN892424	[48]
Urosoma karinae	Futian Mangrove (22°31′N; 114°04′E), Guangdong	7	MN892425-MN892434	[2, 47]
Pseudokeronopsis rubra	Qingdao(36°03′N;120°20′E), Shandong	30	MN892435-MN892443	[50]
Pseudokeronopsis erythrina	Pearl River Estuary (22°41′N; 113°38′E), Guangdong	15	MN892444-MN892451	[44]
Pseud amphisiella quadrinucleata	Clear Water Bay (22°20′N, 114°17′E), Hong Kong	33.5	MN892452-MN892458	[52]
Hemigastrostyla enigmatica	Daya Bay (22°43′N; 114°32′E), Guangdong	20	MN892459-MN892465	[51]
Hypotrichidium paraconicum	Maipo Mangrove (22°29′N; 114°02′E), Hong Kong	18	MN892466-MN892472	[49]
Neowallackia sp.	Futian Mangrove (22°31′N; 114°04′E), Guangdong	10	MN892473-MN892481	[41]
unconstrained ML topologies were calculated using HSPNuc12 datasets by RAxML; the remaining taxa were Urosoma species were generated based on HSP90-Nuc, and Lynn (2008) [43].

CONSEL v0.1j [83]. and systematic classification follow Gao et al., (2016) [1] [74] was used to visualize tree topologies. Terminology PROTGAMMA model of amino substitution. MEGA7.0 GTRGAMMA model of nucleotide substitution and the majority-rule consensus approach. A maximum likelihood tree was constructed using the GTRGAMMA model of nucleotide substitution and the PROTGAMMA model of amino substitution. MEGA7.0 [74] was used to visualize tree topologies. Terminology and systematic classification follow Gao et al., (2016) [1] and Lynn (2008) [43].

Constrained ML trees of Oxytrichinae species and Urosoma species were generated based on HSP90-Nuc, HSP90-Nuc12, HSP90-Amino, SSU-rDNA and SSU-HSPNuc12 datasets by RAxML; the remaining taxa were unspecified. Resulting constrained topologies and the unconstrained ML topologies were calculated using PAUP v.4.0 [81] and were analyzed with AU test [82] in CONSEL v0.1j [83].

Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.1186/s12862-020-01653-0.

Additional file 1: Supplementary Table S1. Inter-specific genetic distances of Hsp90 nucleotide and amino acid sequences.

Abbreviations
AIC: Akaike information criterion; BI: Bayesian inference; DNA: Deoxyribonucleic acid; GTR + I + G: General time reversible + invariable sites + gamma model of nucleotide substitution; Hsp/HSP: Heat-shock protein gene; HSP90-Amino: Hsp90 amino acid sequences dataset; HSP90-Nuc: Hsp90 nucleotide sequence datasets; HSP90-Nuc: Hsp90 nucleotide sequences dataset without third codon positions; ITS: Internal transcribed spacer; LSU rDNA: Large subunit rDNA; ML: Maximum likelihood; p1: Population 1; p2: Population 2; PCR: Polymerase chain reaction; sp.: Species; SSU rDNA: Small subunit rDNA; SSU-HSPNuc12: Small subunit rDNA sequence dataset; SSU-HSPNuc12: Two-gene combined dataset including SSU-rDNA and HSP90-Nuc12

Acknowledgements
Many thanks are due to Prof. Weibo Song, Ocean University of China, for his constructive comments to improve the figures. We also thank former and present members in the Laboratory of Protozoology at both OUC and SCNU, for providing DNA or cells.

Authors’ contributions
ZY did the research design and supervised the phylogenetic analyses. RY carried out the laboratory experiments. QZ and JHK analyzed data and drafted the manuscript. AW revised the manuscript and supervised discussion related to morphological characters. ZS completed the figures and revised the manuscript. All authors have read and approved the manuscript.

Funding
This work was financially supported by the Marine S&T Fund of Shandong Province for Pilot National Laboratory for Marine Science and Technology (Qingdao) (2018SDKJ0406–1), the National Natural Science Foundation of China (grant numbers 31772440, 31907486, 31672279), and Guangdong MEPP Fund (NO. GDOE (2019) A23). The funding bodies had no role in the design or implementation of this study or in preparation of the manuscript.

Availability of data and materials
Sequence data are available in GenBank (Accession Numbers: MN802397-MN802481). The datasets used and/or analyses during the current study are available from the corresponding author Zhenzhen Yi on reasonable request.

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Author details
1Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, School of Life Science, South China Normal University, Guangzhou 510631, China. 2Pilot National Laboratory for Marine Science and Technology, (Qingdao), Qingdao 266237, China. 3Department of Life Sciences, Natural History Museum, London SW7 5BD, UK. 4Institute of Microbial Ecology and Matter Cycle, School of Marine Sciences, Sun Yat-sen University, Zhuhai 519000, China. 5Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519000, China.

Received: 13 March 2020 Accepted: 7 July 2020
Published online: 16 July 2020

References
1. Gao F, Warren A, Zhang Q, Gong J, Miao M, Sun P, et al. The all-data-based evolutionary hypothesis of ciliated protists with a revised classification of the phylum Ciliophora (Eukaryota, Alveolata). Sci Rep. 2016;6:24874.
2. Hu X, Lin X, Song W. Ciliates atlas: species found in the South China Sea. Beijing: Science Press; 2019.
3. Yi Z, Huang L, Yang R, Lin X, Song W. Actin evolution in ciliates (Protist, Alveolata) is characterized by high diversity and three duplication events. Mol Phylogenet Evol. 2016;96:45–54.
4. Zhao Y, Yi Z, Warren A, Song W. Species delimitation for the molecular taxonomy and ecology of the widely distributed microbial eukaryote genus Euplotes (Alveolata, Ciliophora). P Roy Soc B-Biol Sci. 2018;285:20172159.
5. Wang YR, Jiang YH, Liu YQ, Li Y, Katz LA, Gao F, Yan Y. Comparative studies on the polymorphism and copy number variation of mtSSU rDNA in ciliates (Protista, Ciliophora): implications for phylogenetic, environmental, and ecological research. Microorganisms. 2020;8(3):316.
6. Wang YR, Wang CD, Jiang YH, Katz LA, Gao F, Yan Y. Further analyses of variation of ribosome DNA copy number and polymorphism in ciliates provide insights relevant to studies of both molecular ecology and phylogeny. Sci China Life Sci. 2017;60:203–14.
7. Lu B, Li L, Hu XZ, Ji D, Al-Rasheid KAS, Song W. Novel contributions to the peritrich family Vaginicolidae (Protista, Ciliophora), with morphological and phylogenetic analyses of three poorly-known species within genera Pyxicola, Cohurnia and Vaginicola. Zool J Linnean Soc. 2019;187:1–30.
8. Shao C, Hu C, Fan Y, Warren A, Lin X. Morphology, morphogenesisis and molecular phylogeny of a freshwater ciliate, Monomircocaryon euglenivorum (Ciliophora, Oxytrichidae). Eur J Protistol. 2019;68:25–36.
9. Budin K, Philippe H. New insights into the phylogeny of eukaryotes based on ciliate Hsp70 sequences. Mol Biol Evol. 1998;15:943–56.
10. Moreira D, Le Guyader H, Philippe H. Unusually high evolutionary rate of the elongation factor 1 alpha genes from the Ciliophora and its impact on the phylogeny of eukaryotes. Mol Biol Evol. 1999;16:234–45.
11. Maddison WP. Gene trees in species trees. Syst Biol. 1997;46:523–36.
12. Bernhard D, Schlegel M. Evolution of histone H4 and H3 genes in different ciliate lineages. J Mol Evol. 1998;46:344–54.
13. Frédéres NM, Paiva TDS, da Silva-Neto ID, Schlegel M, Schrago CG. Expanded phylogenetic analyses of the class Heterotrichia (Ciliophora, Postciliolidae)omphalotrochida) using five molecular markers and morphological data. Mol Phylogenet Evol. 2016;95:229–46.
14. Katz LA, Lasek-Nesselquist E, Sneydenbos-West OL. Structure of the micronuclear a-tubulin gene in the phylopharyngean ciliate Chilodanella uncinta: implications for the evolution of chromosomal processing. Gene. 2003;315:15–9.
15. Keneke S, Schlegel M, Berendonk TU. Convergent evolution of heat-inducibility during subfunctionalization of the Hsp70 gene family. BMC Evol Biol. 2013;13:49.

16. Rajter L, Vdánč P. Selection and paucity of phylogenetic signal challenge the utility of alpha-tubulin in reconstruction of evolutionary history of free-living flagellates. Mol Phylogenet Evol. 2018;127:534–44.

17. Yi Z, Katz LA, Song W. Assessing whether alpha-tubulin sequences are suitable for phylogenetic reconstruction of Ciliophora with insights into its evolution in eukaryotes. PLoS One. 2012;7:e40635.

18. Chen X, Jiang Y, Gao F, Zheng W, Knott TJ, Stover NA, et al. Genome analyses of the new model protist Euplotes vannus focusing on genome rearrangement and resistance to environmental stresses. Mol Ecol Resour. 2019;19:292–308.

19. Feng JM, Jiang CQ, Warren A, Tian M, Cheng J, Liu GL, et al. Phylogenomic analyses reveal subclass Scuticociliatia as the sister group of subclass Hymenostomatia within class Oligohymenophorea. Mol Phylogenet Evol. 2015;90:104–11.

20. Gentekaki E, Kolisko M, Boscaro V. Large-scale phylogenomic analysis reveals the phylogenetic position of the problematic taxon Protocruzia and unravels the deep phylogenetic affinities of the ciliate lineages. Mol Phylogenet Evol. 2014;78:36–42.

21. Gentekaki E, Kolisko M, Gong Y, Lynn D. Phylogenomics solves a long-standing evolutionary puzzle in the ciliate world: the subclass Peritrichia is monophyletic. Mol Phylogenet Evol. 2017;106:1–5.

22. Jiang CQ, Wang GE, Xiong J, Yang WT, Sun ZY, Feng JM, et al. Insights into the origin and evolution of Peritrichia (Oligohymenophorea, Ciliophora) based on analyses of morphology and phylogenomics. Mol Phylogenet Evol. 2019;132:25–35.

23. Strüder-Kypke MC, Lynn DH. Comparative analysis of the mitochondrial cytochrome c oxidase subunit I (COI) gene in ciliates (Alveolata, Ciliophora) and evaluation of its suitability as a biodiversity marker. Syst Biodivers. 2010;8:131–48.

24. Yi Z, Strüder-Kypke M, Hu X, Lin X, Song W. Sampling strategies for improving tree accuracy and phylogenetic analyses: a case study in ciliate protists, with notes on the genus Paramicrocystis. Mol Phylogenet Evol. 2014;71:142–8.

25. Zhang Q, Simpson A, Song W. Insights into the phylogeny of systematically controversial haplostomatous ciliates (Ciliophora, Litostomatea) based on multigene analyses. P Roy Soc B-Biol Sci. 2012;279:2625–35.

26. Keeling PJ, Leander BS. Characterization of a non-canonical genetic code in the oxyrinchid Streblospio benedetti. J Mol Biol. 2003;326:1337–49.

27. Shalchian-Tabrizi K, Minge M, Cavalier-Smith T, Nedreklepp J, Klaveness D, Lynn DH, et al. Notes on the genus Paramecium and phylogenetic analyses of ciliates. Zool Scr. 2015;44:574–85.

28. Chen L, Liu W, Liu A, Al-Rashid KAS, Shao C. Morphology and molecular phylogeny of a new marine hypotrichous ciliate, Hypotrichidium paracanonicum n. sp. (Ciliophora, Hypotrichia). J Eukaryot Microbiol. 2013;60:588–600.

29. Song W, Warren A, Roberts D, Wilbert N, Li L, Sun P, Xu X, Ma H. Comparison and redefinition of four marine, coloured Pseudokonopidae spp. (Ciliophora: Hypotrichia), with emphasis on their living morphology. Acta Protozool. 2006;45:265–90.

30. Shao C, Jing Y, Al-Rashid KA, Al-Farraj SA, Warren A, Song W. Establishment of a new hypotrichous genus, Heterotachysoma n. gen. and notes on the morphogenesis of Hemigastropora exigua (Ciliophora, Hypotrichia), with emphasis on their living morphology. Acta Protozool. 2013;52:103–12.

31. Shao C, Jing Y, Al-Rashid KA, Al-Farraj SA, Warren A, Song W. Establishment of a new hypotrichous genus, Heterotachysoma n. gen. and notes on the morphogenesis of Hemigastropora exigua (Ciliophora, Hypotrichia), with emphasis on their living morphology. Acta Protozool. 2013;52:103–12.

32. Corliss JO. The ciliated protozoa. Characterization, classification, and guide to the literature, 2nd edn. Oxford: Pergamon Publishers; 1979.

33. Lynn DH. The ciliated protozoa: characterization, classification, and guide to the literature. 3rd ed. Dordrecht: Springer Press; 2008.

34. Chen X, Clamp JC, Song W. Phylogeny and systematic revision of the family Pseudokonopidae (Protista, Ciliophora, Hypotrichia), with description of a new estuarine species of Pseudokonopida. Zool Scr. 2011;40:651–71.

35. Dong J, Li L, Fan X, Ma H, Warren A. Two Urosomia species (Ciliophora, Hypotrichia): a multidisciplinary approach provides new insights into their ultrastructure and systematics. Eur J Protistol. 2020;72:125661.

36. Wang P, Gao F, Huang J, Strüder-Kypke M, Yi Z. A case study to estimate the applicability of secondary structures of SSU-rRNA gene in taxonomy and phylogenetic analyses of ciliates. Zool Scr. 2015;44:574–85.

37. Chen L, Liu W, Liu A, Al-Rashid KAS, Shao C. Morphology and molecular phylogeny of a new marine hypotrichous ciliate, Hypotrichidium paracanonicum n. sp. (Ciliophora, Hypotrichia). J Eukaryot Microbiol. 2013;60:588–600.

38. Song W, Warren A, Roberts D, Wilbert N, Li L, Sun P, Xu X, Ma H. Comparison and redefinition of four marine, coloured Pseudokonopidae spp. (Ciliophora: Hypotrichia), with emphasis on their living morphology. Acta Protozool. 2006;45:265–90.

39. Shao C, Jing Y, Al-Rashid KA, Al-Farraj SA, Warren A, Song W. Establishment of a new hypotrichous genus, Heterotachysoma n. gen. and notes on the morphogenesis of Hemigastropora exigua (Ciliophora, Hypotrichia), with emphasis on their living morphology. Acta Protozool. 2013;52:103–12.

40. Zufall RA, Katz LA. Micronuclear and macronuclear forms of β-tubulin genes in the ciliate Chilodonella uncinata reveal insights into genome processing and protein evolution. J Eukaryot Microbiol. 2007;54:275–82.

41. Bhatti D, Kumar S, Terza AL, Chandra K. Morphology and ontogeny of Tenuemena pilulatoidea indica nov. subspec. (Ciliophora, Hypotrichia), from the Thane Creek, Mumbai, India. Eur J Protistol. 2019;71:125629.

42. Chen L, Liu W, Liu A, Al-Rashid KAS, Shao C. Morphology and molecular phylogeny of a new marine hypotrichous ciliate, Hypotrichidium paracanonicum n. sp. (Ciliophora, Hypotrichia). J Eukaryot Microbiol. 2013;60:588–600.
Hypotrichia, Urostylidae), with redefinition of the genus Neourostylis. Eur J Protistol. 2018;66:48–62.

60. Israel RL, Pond SLK, Muse SV, Katz LA. Evolution of duplicated alpha-tubulin genes in ciliates. Evolution. 2002;56:1110–22.

61. Shazib SUA, Váčný P, Slovak M, Gentschki E, Shin MK. Deciphering phylogenetic relationships and delimiting species boundaries using a Bayesian coalescent approach in protists: a case study of the ciliate genus Spirostomum (Ciliophora, Heterotriche). Sci Rep. 2019:16360.

62. Chen L, Wu W, El-Serehy HA, Hu X, Clamp JC. Morphology, morphogenesis, and phylogeny of an Acanthohystrocoelia (Ciliophora, Urostyloidea) population from the United States. Eur J Protistol. 2018;65:11–15.

63. Kim KS, Min GS. Morphology and molecular phylogeny of Oxytricha seokmoensis sp. nov. (Hypotrichia: Oxytrichidae), with notes on its morphogenesis. Eur J Protistol. 2019;71:125641.

64. Lian C, Luo X, Warren A, Zhao Y, Jiang J. Morphology, morphogenesis, and phylogeny of an Anteholosticha intermedia (Ciliophora, Urostylida) population from the United States. Eur J Protistol. 2018;65:1–15.

65. Shao C, Lyv Z, Pan Y, Al-Rasheid KA, Yi Z. Morphology and phylogenetic analysis of two oxytrichid soil ciliates from China, Oxytricha paragranulifera n. sp. and Oxytricha granulifera Foissner and Adam, 1983 (Protista, Ciliophora, Hypotrichia). Int J Syst Evol Micr. 2014;64:3016–27.

66. Jung JH, Cho J, Jang YH, Gil DY. Morphology and molecular phylogeny of Holostichides tenua nov. spec. (Ciliophora: Spirotrichea) with discussion on the possible non-monophyly of Holostichides. Eur J Protistol. 2018;62:69–78.

67. Wang J, Li J, Shao C. Morphology, morphogenesis, and molecular phylogeny of a novel saline soil ciliate, Heterourosomoida sinica n. sp. (Ciliophora, Hypotrichia). Int J Syst Evol Micr. 2014;64:3016–27.

68. Kim KS, Min GS. Morphology and molecular phylogeny of a new freshwater ciliate, Gonostomum jangbogoensis n. sp. (Hypotrichia, Hypotricha), from Victoria Land, Antarctica. Eur J Protistol. 2020;73:125669.

69. Shao C, Lyv Z, Qi S, Yu Y, Shao C. Morphology and morphogenesis of a new soil urostylid ciliate, Australothrix xianiensis nov. spec. (Ciliophora, Hypotrichia). Eur J Protistol. 2018;64:72–81.

70. Chen T, Yi Z, Huang J, Lin X. Evolution of the germline actin gene in hypotrichous ciliates: multiple nonscrambled IESs at extremely conserved locations in two urostylids. J Eukayot. Microbiol. 2015;62:198–95.

71. Xia X. DAMBE6: new tools for microbial genomics, phylogenetics, and molecular evolution. J Hered. 2017;108:431–7.

72. Kimura M. A simple method for estimating evolutionary rate of base substitutions through comparative studies of nucleotide sequences. J Mol Evol. 1980;16:111–20.

73. Shimodaira H. An approximately unbiased test of phylogenetic tree selection. Syst Biol. 2002;51:2104–5.

74. Shimodaira H, Hasegawa M. Consel: for assessing the confidence of phylogenetic tree selection. Syst Biol. 2001;50:492–508.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.