Differentially Private State Estimation in Distribution Networks with Smart Meters

Henrik Sandberg,
György Dán, and Ragnar Thobaben
ACCESS Linnaeus Centre
KTH Royal Institute of Technology, Stockholm, Sweden
Motivation

- **The promise**: Smart meters help in demand response, billing, etc.

- Few real-time measurements in today’s distribution networks → *Enabler for state estimation?*

- **The threat**: Customers’ privacy concerns (among others)

- **The opportunity**: Privacy-preserving monitoring and control techniques
Distribution Network Model

- Conservation of currents:
 \[I_j = \sum_{k > j} L_k, \quad j = 0, 1, \ldots, N - 1 \]

- Large resistance in distribution grids → use currents
- Little dynamics in (current) distribution grids → study steady-state
- **Operator**: Desires to estimate load \(L_j \)
- **Customer \(C \)**: Desires to keep his/her real-time load private
The Base Scenario – Total current with “physical meter noise”:

\[Z_0 = I_0 + W_0 \quad \text{with} \quad W_0 \sim \mathcal{N}(0, R_0) \]

The Smart Meter Scenario – Load current with “privacy noise”:

\[Z_j = L_j + W_j \quad \text{with} \quad W_j \sim \text{Lap}(b_j) \]

\[p_{W_j}(w) = \frac{1}{2b_j} e^{-|w|/b_j}, \quad R_j = 2b_j^2 \]
Problem Formulation: Characterize Estimation vs. Privacy Trade-Offs
Related Work

- **Differential privacy:**
 - Dwork, McSherry, Nissim, Smith, 2006

- **Differential privacy in control:**
 - Le Ny, Pappas, 2014
 - Huang, Wang, Mitra, Dullerud, 2014

- **Privacy for Smart Meters:**
 - Ács, Castelluccia, 2011
 - Tan, Gunduz, Poor, 2013
Differential Privacy [Dwork et al., 2006]

- Two adjacent data vectors:
 \[
 l = \begin{pmatrix} l_1 & l_2 & \cdots & l_i & \cdots & l_{m-1} & l_m \end{pmatrix}^T
 \]
 \[
 l' = \begin{pmatrix} l_1 & l_2 & \cdots & l_i \pm \Delta & \cdots & l_{m-1} & l_m \end{pmatrix}^T
 \]

- Measurement policy (\(q\) deterministic, \(W\) stoch. noise)
 \[
 Z(l, W) = q(l) + W
 \]
 (We will use \(q(l) = \sum_k l_k\))

Definition: Measurement \(Z\) is \((\epsilon, \delta)\)-differentially private if for all events \(E\):

\[
\Pr[Z(l, W) \in E] \leq e^\epsilon \Pr[Z(l', W) \in E] + \delta
\]
Example: ϵ-Differential Privacy with Laplacian Noise

$W \sim \text{Lap}(b)$

$\epsilon = \frac{\Delta}{b} = \frac{\Delta}{\sqrt{R/2}}$

Measurements of adjacent data vectors virtually indistinguishable for small ϵ
The Base Scenario (Z_0): Customer C has (ϵ_0, δ_0)-differential privacy where

$$\epsilon_0 = \frac{\Delta K}{\sigma_0} + \frac{\Delta^2}{2\sigma_0^2}, \quad K = K(\delta_0) = Q^{-1}(\delta_0)$$
Optimal Estimate: Load Model

Suppose loads have a known normal distribution:

\[L \sim \mathcal{N}(m, P) \]

\[
\begin{align*}
 m &= \begin{pmatrix} m_1 \\ \vdots \\ m_N \end{pmatrix} \\
 P &= \begin{pmatrix} P_{11} & \cdots & P_{1N} \\ \vdots & \ddots & \vdots \\ P_{N1} & \cdots & P_{NN} \end{pmatrix} \\
 P_1 &= \begin{pmatrix} P_1 \\ \vdots \\ P_N \end{pmatrix} := \begin{pmatrix} P_{11} + \cdots + P_{1N} \\ \vdots \\ P_{N1} + \cdots + P_{NN} \end{pmatrix} = P_1
\end{align*}
\]
Optimal Estimate: Base Scenario

\[W_0 \sim \mathcal{N}(0, \sigma_0^2) \]

MMSE estimate:

\[\hat{L}_j^0 := \mathbb{E}[L_j | Z_0] = m_j + \frac{P_j}{P_0 + R_0} (Z_0 - m_0) \]

MMSE error:

\[Q_j^0 := \mathbb{E}[(\hat{L}_j^0 - L_j)^2] = P_{jj} - \frac{P_j^2}{P_0 + R_0} \]
Optimal Estimate: Smart Meter Scenario

\[W_0 \sim \mathcal{N}(0, \sigma_0^2) \]

LMMSE estimate:

\[\hat{L}_{j}^{0,j} := \mathbf{E}^{\text{lin}}[L_j | Z_0, Z_j] \]

\[= \hat{L}_j^0 + K_j \left[(Z_j - m_j) - \frac{P_j}{R_0 + P_0} (Z_0 - m_0) \right] \]

LMMSE error:

\[K_j = \frac{(R_0 + P_0)P_{jj} - P_j^2}{(R_0 + P_0)^2} \in [0, 1] \]

\[Q_{j}^{0,j} := \mathbf{E}[(L_j - \hat{L}_{j}^{0,j})^2] = Q_j^0 (1 - K_j) \leq Q_j^0 \]
Trade-Off: Estimation Quality vs. Privacy

Dimensionless quantities:

- Customers’ relative importance at site j: $\eta_j := \frac{\Delta^2}{P_{jj}}$
- Site j’s relative importance on the line: $\zeta_j := \frac{P_{jj}}{P_0 + R_0}$

$C \in [l_i - \Delta, l_i + \Delta]$
$L_j \sim \mathcal{N}(m_j, P_{jj})$
Trade-Off: Estimation Quality vs. Privacy

Baseline privacy:
\[\epsilon_0^2 \approx \frac{\Delta^2 K^2}{R_0} = \eta_j \zeta_j K^2 \left(1 + \frac{P_0}{R_0}\right) \]

Estimation improvement:
\[K_j = \frac{1}{1 + \frac{2\eta_j}{\epsilon^2(1 - \zeta_j)}} \approx \frac{\epsilon^2(1 - \zeta_j)}{2\eta_j} \]
Summary

Simple analytical treatment of trade-off between state estimation quality and customers’ privacy loss ϵ

Estimation gain $\sim \left(\frac{\epsilon}{\epsilon_0}\right)^2 \rightarrow$ Customers with high baseline privacy can make a large difference!

Possible extensions: Dynamics, general topologies, active/reactive power flows