A Simpler NP-Hardness Proof for Familial Graph Compression

Ammar Ahmed* † Zohair Raza Hassan*† Mudassir Shabbir*‡

Abstract
This document presents a simpler proof showcasing the NP-hardness of Familial Graph Compression.

1 Introduction
Familial Graph Compression (FGC) is a problem introduced in [1]. The problem entails determining whether it is possible to convert a given graph G to a target graph H via a series of “compressions” based on the presence of certain sub-graphs in G, specified in a set F. A complete definition is given in the next section. A single instance of FGC involves G, H, and F as input. This problem was proven to be NP-complete in [1]:

Theorem 1.1. The FGC problem is NP-complete when:

1. G is simple graph on n nodes, H is the single node graph, and family F contains a single motif C_n i.e. a cycle on n nodes.
2. G is a simple graph on $n = 3k$ nodes, H is the single node graph, and F contains a single motif with k disjoint triangles.
3. G is a simple graph, H is a forest of isolated nodes, and F is a family of graphlets.

In this work, we provide an easier proof for the third setting.

2 Notation and Terminology
We adopt the same notation and terminology as in [1]. The relevant preliminaries have been reiterated below.

*Department of Computer Science, Information Technology University, Pakistan
†All authors contributed equally to this article.
‡Email addresses: ammar.ahmed@itu.edu.pk (Ammar Ahmed), zohair.raza@itu.edu.pk (Zohair Raza Hassan), mudassir@rutgers.edu (Mudassir Shabbir).
2.1 Preliminaries

A graph G is a collection of nodes V and edges $E \subseteq V \times V$ i.e. pairwise interactions between pairs of nodes. For a node u, its neighborhood $N(u)$ is defined as the set of all nodes $v \in V$ such that there exists an edge (u, v) in E. The degree $d(u)$ is defined as the size of the neighborhood of a node u. G is undirected and unweighted, i.e. for $u, v \in V$, an edge (u, v) is same as the edge (v, u). For a fixed graph $G = (V, E)$, a given $F = (V_F, E_F)$ is called a motif of G, if F is isomorphic to a sub-graph in G i.e. F is a motif if there exists $V' \subseteq V$ and a function $\phi : V_F \rightarrow V'$ such that for all edges $(u, v) \in E_F$ there is an edge $((\phi(u), \phi(v))) \in E$. Similarly, $F = (V_F, E_F)$ is called a graphlet of G, if F is isomorphic to an induced sub-graph in G i.e. F is a graphlet if there exists $V' \subseteq V$ and a function $\phi : V_F \rightarrow V'$ such that for all edges $(u, v) \in E_F$ if and only if there is an edge $((\phi(u), \phi(v))) \in E$. We will use the term motif (and similarly graphlet) for both F and any of its isomorphic copies in G.

For a given equivalence relation \sim on the set nodes of a graph G, the quotient graph, denoted by G / \sim, is a graph where the node set is the set of equivalence classes defined by \sim and there is an edge between a pair of nodes (classes) if and only if there is an edge between any pair of nodes of two corresponding classes in G. Intuitively, in quotient graphs, prescribed subsets of nodes are merged and the incidence is preserved without creating multi-edges [2]. We will repeatedly deal with graphs with names G, H, and F_i; their node and edge set will, respectively, be denoted by $(V_G, E_G), (V_H, E_H)$ and (V_{F_i}, E_{F_i}). Finally, for a set V and a positive integer c, $({V \choose c})$ is defined as the set of all size subsets of V with exactly c elements.

2.2 Familial Graph Compression

We start by defining an equivalence relation on the node set V of G based on a motif (or a graphlet) F. Consider the relation R_F where node u is related to v whenever both u and v lie in a sub-graph of G isomorphic to F. We define \sim_F to be the transitive closure of R_F. Intuitively, if two motifs (resp. graphlets) share a common node in G, then all nodes in both motifs (resp. graphlets) are related in \sim_F. Clearly, \sim_F is an equivalence relation on V. Then, an F-compression step (referred to as compression step when F is clear from the context) is defined as computing the quotient graph G / \sim_F. Recall that a quotient graph G / \sim_F is a graph on classes in the partition \sim_F, where two classes are adjacent if any pair of nodes in the corresponding classes are adjacent in the graph G. The familial compression of a graph G for a family \mathcal{F} is the process of repeatedly applying F_i-compression steps on G where after each step G is replaced by the quotient graph of the previous step. Thus, we say that a graph H can be constructed by a \mathcal{F}-compression of G if there exist a sequence of graphs: $[G^0 \ G^1 \ G^2 \ ... \ G^k = H]$ where $G^0 = G$ and $G^i = G^{i-1} / \sim_{F_i}$, i.e. G^i is result of an F_i-compression on the graph G^{i-1} for some $F_i \in \mathcal{F}$. Note, that a graph H may be constructed in several different ways via different compression steps. To avoid trivial compressions, we restrict that each $F \in \mathcal{F}$ contains at least three nodes. The following is the FGC problem:

Problem 2.1 (Familial Graph Compression). Given simple graphs, G, and H, and a family of motifs (or graphlets) \mathcal{F}, can H be constructed from a \mathcal{F}-compression of G?

3 Result

In the original proof for Theorem 1.1 (3), a reduction is provided from a variant of the 3-SAT problem to FGC. In this section we showcase the same result via reduction from Exact Cover by Three Sets (XC3), defined below.

Problem 3.1 (Exact Cover by Three Sets [3]). Let $X = \{x_1, x_2, \ldots, x_{3k}\}$, and let S be a collection of 3-element subsets of X, in which no element in X appears in more than three subsets. For $s_j \in S, s_j =$
The problem consists of determining whether S has an exact cover for X, i.e. a $S' \subseteq S$ such that every element in X occurs in exactly one member of S'.

This problem was proven to be NP-complete in [3]. Note that for our reduction, the fact that “each element appears in no more than three subsets” is inconsequential.

Theorem 3.1. $XC3 \leq_{P} FGC$.

Proof. Suppose we are given an instance of XC3, i.e. the sets X and S. We show how one can make graphs G, and H, and family \mathcal{F} for an FGC instance that is solvable only if the given XC3 instance is solvable.

Let C_i denote a cycle on i vertices. Let $f(i) = i + 2$ for $i \in \{1, 2, 3, \ldots\}$. The graph G is the union of $3k$ disjoint cycles: $G = \bigcup_{x \in X} C_{f(i)}$. For each $s_j \in S$, we define a graph Z_j which is the union of three disjoint cycles: $Z_j = C_{f(j_1)} \cup C_{f(j_2)} \cup C_{f(j_3)}$. The family \mathcal{F} contains Z_j for each $s_j \in S$: $\mathcal{F} = \bigcup_{s_j \in S} Z_j$. Finally, the target graph H is a graph on k isolated vertices, i.e. $|V_H| = k$, and $E_H = \emptyset$.

Intuitively, when a Z_j is compressed in G, it corresponds to selecting a $c_j \in S$ to form an exact cover for X. Observe that FGC would not allow the same element to be covered by different c_j‘s, since the cycle corresponding to the covered elements no longer exist in the quotient graph, and thereby can’t be compressed (selected) again. We get k isolated vertices if an only if k disjoint 3-element subsets form an exact cover of X. Clearly, the reduction can be performed in polynomial time.

Observe that the G, H, and \mathcal{F} used in Theorem 3.1 are exactly as described in Theorem 1.1-(3). We note that this reduction holds even when \mathcal{F} is a family of motifs. We also observe that some simple changes to the provided reduction can be made to show the following:

Theorem 3.2. FGC is NP-complete when G is a connected, simple graph, H is the single node graph, and \mathcal{F} is a family of graphlets or motifs.

References

[1] A. Ahmed, Z. R. Hassan, and M. Shabbir, “Interpretable multi-scale graph descriptors via structural compression,” *Information Sciences*, 2020.

[2] M. C. Golumbic and I. B.-A. Hartman, *Graph theory, combinatorics and algorithms: Interdisciplinary applications*, vol. 34. Springer Science & Business Media, 2006.

[3] T. F. Gonzalez, “Clustering to minimize the maximum intercluster distance,” *Theoretical Computer Science*, vol. 38, pp. 293–306, 1985.