Effect of Traditional Processing Methods on Nutritional Composition and Anti-nutritional Factors of Anchote (*Coccinia Abyssinica* (Lam.) Cogn) Tubers Grown in Western Ethiopia

Habtamu Fekadu¹*, Fekadu Beyene¹ and Gullelat Desse²

¹Wollega University, Ethiopia
²Addis Ababa University, Ethiopia

Abstract
The raw and traditionally processed Anchote (*Coccinia abyssinica* (Lam.) Cogn.) tubers were studied and compared for their nutritional composition: moisture, crude protein, total ash, crude fiber, crude fat, utilized carbohydrate and gross energy; minerals: Ca, Fe, Mg, Zn, and P and anti-nutritional factors: phytate, oxalate, tannin and cyanide. Sensory preference taste of Anchote boiled after peeling and boiled before peeling was also reported. The raw, boiled after peeling and boiled before peeling Anchote tubers had respective contents (g/100g) of moisture 74.93, 81.74, and 76.73; for crude protein contents were 3.25, 2.67 and 3.14; for total ash contents were 2.19, 1.33, and 1.99; for crude fiber contents were 2.58, 3.71, and 2.77; for crude fat contents were 0.19, 0.13, and 0.14; for utilized carbohydrate contents were 16.86, 10.42 and 15.23; for gross energy contents were 82.12, 53.48 and 75.26. The raw, boiled after peeling and boiled before peeling Anchote tubers had respective contents (mg/100g) of Ca 119.50, 115.70, and 118.20; for Fe contents were 5.49, 7.60, and 6.60; for Mg contents were 79.73, 73.50, and 76.47; for Zn contents were 2.23, 2.03, and 2.20; and for P contents were 34.61, 28.12, 25.45. The raw, boiled after peeling and boiled before peeling Anchote tubers had respective contents (mg/100g) of phytate 389.30, 333.63 and 76.47; for oxalate contents were 8.23, 4.23, and 4.66; for tannin contents were 173.55, 102.36 and 121.21; for cyanide contents were 12.67, 8.16 and 11.14. This study also revealed that, there was significant (P<0.05) taste preference of Anchote boiled before peeling to Anchote tubers boiled after peeling, in which 66% of consumers gave priority of the preference taste for Anchote boiled before peeling.

Keywords: Anchote; Boiled; Minerals; Nutritional; Anti-nutritional; Sensory

Introduction
Anchote is the Afan Oromo name for *Coccinia abyssinica*, which is a tuber crop, belongs to the order *Cucurbitales*, family *Cucurbitaceae* [1], indigenous to Ethiopia [2]. There are about 10 species of *Coccinia* in Ethiopia; however, only *Coccinia abyssinica* is cultivated for human consumption [3]. The most widely used vernacular name is Anchote, spelt Ancotee in Oromo. It is also called: Ushushu (Welayita), Shushe (Dawuro), and Aijo (Kafigna) [4]. Anchote is found both cultivated and wild [5]. The total yield of Anchote is 150-180 quintals/hectare, which is in the range of the total yield of sweet potato, and potato [6].

Anchote is endemic to the Western parts of Ethiopia [7], mainly in the Western region of Ethiopia highlands in Eastern Wollega, Western Wollega, Kelam Wollega, and Mattu [8]. Anchote is a valuable food source and according to local farmers, it helps in fast mending of broken/ fracture bones and displaced joints, as it contains high calcium, and proteins and other common and wide spread root and tuber crops [3]. Traditionally, it is also believed that, Anchote makes lactating mothers healthier and stronger [9]. Dawit and Estifanos reported that the juice prepared from tubers of Anchote has saponin as an active substance and is used to treat Gonorrhoea, Tuberculosis, and Tumor Cancer.

Like many other root, and tuber crops, Anchote is rarely eaten raw [10]. Traditionally, boiled after peeling or boiled before peeling and/ or further cooking are applied prior to consumption. Despite the pros and cons of roots and tubers, Walingo [11] recommended, the importance of proper processing before consumption in order to reduce the effect of antinutritional factors and there-by improve nutrient availability. In the case of Anchote, however, no published information is available as to which traditional processing methods are optimal to reduce the effects of the inherent antinutritional factors and to increase availability of the contained nutrients. Therefore, it is imperative to investigate which traditional methods are optimal to improve the quality of Anchote for human consumption and decrease of its risk of human health. The main objective of this research was to determine the effect of traditional processing methods on some nutritional composition, and anti-nutritional factors of Anchote (*Coccinia abyssinica* (Lam.) Cogn.) grown in Western Ethiopia.

Materials and Methods
Sample collection
A total of about 12 kilograms uninfected Anchote were collected from the 12 famers randomly selected (1 kilogram per house hold) of study site (Hara, Wayu kumba and Wayu kiltu kebeles) in Jima Arjo woreda, East Wollega Zone, Western Ethiopia. The samples were packed in polyethylene bags, kept in an ice box (to prevent moisture loss), and transported to Food Science and Bioprocess Technology Institute Research laboratory of Wollega University within three hours. Once in the laboratory, samples were mixed for composite analysis of

*Corresponding author: Habtamu Fekadu, Wollega University, Ethiopia, E-mail: fekadu_habtamu@yahoo.com

Received April 30, 2013; Accepted July 08, 2013; Published July 15, 2013

Citation: Fekadu H, Beyene F, Desse G (2013) Effect of Traditional Processing Methods on Nutritional Composition and Anti-nutritional Factors of Anchote (*Coccinia Abyssinica* (Lam.) Cogn.) Tubers Grown in Western Ethiopia. J Food Process Technol 4: 249. doi: 10.4172/2157-7110.1000249

Copyright: © 2013 Fekadu H, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
the study variables and washed by clean water all together. The washed tuber was grouped into two sections of nine kilograms for the first section and three kilograms for the second section. The first section was used for nutritional and anti-nutritional analysis, whereas the second section was used for sensory analysis.

Sample preparation

The first section was grouped into three lots of three kilograms each. The first lot was used for analysis as raw. The raw sample was sliced to uniform thickness 5 mm using a stainless steel knife. The second lot was used as boiled after peeling. The tuber was peeled and boiled for about three to three and half hours and sliced to uniform thickness 5 mm using a stainless steel knife. The third lot was served as boiled before peeling. The washed tuber was boiled for about three to three and half hours, peeled and sliced to uniform thickness 5 mm using a stainless steel knife. Moisture content of each lot was determined immediately after each lot was sliced into pieces. For other nutritional and anti-nutritional analyses, each of the three lot (control or raw, boiled after peeling, and boiled before peeling) of samples were dried at a time in oven (Gallenkamp Hotbox Oven, size 2, Gallenkamp, UK) at 60°C for 72 hours. Each dried samples were milled into fine powder using electric grinder (NIMA-8300Burman, Germany) until to pass through 0.425 mm sieve mesh size, and finally packed into air tight polyethylene plastic bags to minimize heat buildup, kept in ice box and transported to Addis Ababa University, and stored in the desiccator until required for analysis.

The second section of the samples used for sensory analysis was grouped into two lots of one and half kilograms each. The first lot was used for sensory analysis as boiled after peeling. The washed tuber was peeled (i.e. removal of the outer skin) with stainless steel knife, and boiled in traditional pot containing tap water in the ratio of 1:2 (w/v) for about three to three and half hours, and excess water was drained off as is the usual household practice. The boiled tuber was sliced to uniform thickness 50 cm using a stainless steel knife.

The second lot was served for sensory evaluation as boiled before peeling. The washed tuber was boiled in traditional pot containing tap water in the ratio of 1:2 (w/v), for about three to three and half hours and the excess water then drained off, and peeled with stainless steel knife. The boiled tuber was peeled and sliced to uniform thickness 50 cm using a stainless steel knife. Then, both Anchote tubers were evaluated by fifty consumers of 29(58%) males and 21(42%) females participants and 49 (98%) of the consumers were between the ages of 16-35 years. The consumers were recruited from staff and students of Food Science and Bioprocess Technology Institute at Wollega University, Ethiopia. The general demographic questions and frequency of consumption of consumers were completed before sensory evaluation of the products. They were selected if they indicated that they consumed Anchote boiled before and after peeling at least once per month. Additional criteria used to screen consumers were: no food allergies and/or no frequent illness, nonsmoker, willing to evaluate Anchote and available to participate during the scheduled testing dates.

In the sensory evaluation session, the consumers were seated in an open well illuminated laboratory and about 20 grams of each two samples were presented to each consumer on a tray at ambient temperature (=25°C) within 2 hrs after boiling. The consumers were asked to indicate which of the two coded samples taste is preferred on the score card. The non-directional paired comparison test, exactly a two-sided preference (a version of paired comparison test) according to the "forced choice" technique, with the question: "Of these two samples, which one do you prefer?" was carried out with fifty consumers. The samples were served with identical container coded with 3-digit random numbers, half of the consumers were asked to taste one sample first, the others to taste it second. Necessary precautions were taken to prevent bias of tasting by ensuring that consumers rinsed their mouth with water before and after each tasting of sensory evaluation. Consumers expressed their preference taste of the boiled after peeling and boiled before peeling Anchote tubers using paired comparison test.

Nutritional and anti-nutritional content analysis

Moisture content, total ash, crude protein, crude fiber, and crude fat of the Anchote tubers were determined according to AOAC [12] using sub components 925.09, 923.03, 979.09, 962.09, and 920.39, respectively. Calcium, Iron, Magnesium and Zinc was determined according to the standard method of AOAC [12], whereas Phosphorus was determined according to AOAC [13]. Phytate was determined by the method of Latta and Eskin [14] and later modified by Vantraub and Lapteva [15]. Oxalate was analyzed by method originally employed by Ukpabi and Ejidoh [16]. Tannin was determined by the method of Burns as modified by Maxson and Rooney. Cyanide was determined according to the standard method of AOAC [13]. After analysis of phytate and oxalate the molar ratio of phytate and oxalate to calcium, zinc and iron were calculated to evaluate the effect of elevated levels of phytate and oxalate in the bioavailability of dietary minerals. As the ratios are the better indicators of the bioavailability than the amounts of the mineral and the phytic acid in the diet [17].

Statistical analysis

Nutritional and ant-nutritional analyses were followed one way analysis of variance. Means were compared using Duncan’s multiple range test. All the statistical analyses were performed on the results obtained using SPSS version 15.0 for windows. Also non-directional paired comparison t-test was used to analyze the responses of the consumers with regard to their preference taste for the sample. All data obtained from analysis of dry sample are presented on fresh weight basis.

Results and Discussion

Nutrient composition of raw and processed Anchote

Nutritional value is the main concern when a crop is considered as a food source. Anchote is endemic tuber crop used as a food source in parts of Western Ethiopia. The nutrient compositions of raw and processed Anchote tubers are presented in Table 1.

Moisture content: Moisture content determination is an integral part of the proximate composition analysis of food. The mean moisture content of the raw Anchote was 74.93 (g/100 g), which is in agreement with the finding of EHNRI [18] (74.50 g/100 g). In addition, this is in accordance with the finding of Fufa and Urga [10] (73.00 g/100 g). The mean moisture content of Anchote tuber boiled after and before peeling had 81.74 (g/100 g) and 76.73 (g/100 g), respectively. The moisture content of Anchote boiled after peeling was significantly (P<0.05) higher than both boiled before peeling and raw Anchote tubers. Similarly, the mean moisture content of Anchote boiled before peeling was significantly (P<0.05) higher compared to mean raw Anchote. The moisture content was increased in boiled after peeling by 9.08% and in boiled before peeling 2.41% compared to raw tubers. The increased moisture content might be due to the water absorption capacity of fibers and other natural chemical components during heat treatment [19].
Crude protein: The main functions of proteins are growth and replacement of lost tissues in the human body. It was observed that the mean raw Anchote tuber contain 3.25 g/100 g of crude protein. The result in raw Anchote is in agreement with the finding of EHNRI [18] (3.20 g/100 g). Fufa and Urga [10] reported the raw Anchote tuber contained 3.00 g/100 g crude protein. The mean crude protein content of Anchote tuber boiled after and before peeling of Anchote tuber were 2.67 g/100 g and 3.14 g/100 g, respectively. The mean crude protein content of Anchote boiled after peeling was significantly (P<0.05) lower than both boiled before peeling and raw Anchote tubers. Nevertheless, the mean crude protein content of Anchote boiled before peeling was non-significant (P>0.05) compared to mean raw Anchote. The crude protein content was decreased in boiled after peeling by 17.85% and in boiled before peeling by 3.38% compared to raw tubers. Such a reduction might have been due to protein denaturation during boiling. Consistent with this, Ekanayake et al. stated that the reduction of crude protein during boiling may be attributed to leaching and denaturation of protein caused by boiling.

Total ash: The mean total ash content of raw, boiled after peeling and boiled before peeling were 2.19 g/100 g, 1.33 g/100 g and 1.99 g/100 g, respectively. The mean total ash content boiled after peeling was significantly (p<0.05) lower than both boiled before peeling and raw Anchote tubers. Total ash content is directly proportional with inorganic element content of Anchote. Hence the samples with high percentages ash contents are expected to have high concentrations of various mineral elements, which are advantageous to speed up metabolic processes and improve growth and development. The mean total ash content of raw Anchote was comparable to the finding of Fufa and Urga [10] (2.00 g/100 g). However, EHNRI [18] reported a lesser value, which was 1.10 g/100 g. The slight differences in the total ash content might be related to the soil types, stage of maturity, and agronomic practices [20]. In reference with the raw tubers, the total ash content of Anchote boiled after and before peeling decreased by 39.27% and 9.13%, respectively. The reduction of total ash may be due to leaching of the mineral compound and water absorption during boiling [21].

Crude fiber: The food fibers are defined as the sum of non-starch polysaccharides (cellulose, hemicelluloses, and pectic substances) and lignins, which are mainly components of plant cell walls. The mean crude fiber content of raw Anchote was 2.58 g/100 g. The finding of Fufa and Urga [10] and EHNRI [18] in crude fiber content of raw Anchote is relatively lower values, which is 0.60 g/100 g and 0.70 g/100 g, respectively. These variations were probably due to extent time of storage and variations in the soils [22]. The mean crude fiber contents of boiled after and boiled before peeling of Anchote were 3.71 g/100 g and 2.77 g/100 g, respectively. The crude fiber content of Anchote boiled after peeling was significantly (P<0.05) higher than both boiled before peeling and raw Anchote tubers. The mean crude fiber content of Anchote boiled before peeling was non-significant (P>0.05) compared to mean raw Anchote. Taking a raw Anchote tuber as a reference, the effect of traditional processing methods increased the crude fiber content by 43.79% and 7.36% in Anchote boiled after, and before peeling, respectively. These increases could be due to the fact that as samples were subjected to the boiling, and thus all soluble components might have lost in the process thereby increasing the crude fiber contents [23]. The high levels of crude fiber observed in the boiled after and before peeling of Anchote could be an advantage of traditional processing as it might help in the treatment of diseases such as obesity, diabetes, cancer and gastrointestinal disorders [24] and in digestion and prevention of colon cancer [25].

Crude fat: Anchote is low crude fat content. The mean crude fat content of the raw Anchote was 0.19 g/100 g, which is similar with the finding of Fufa and Urga [10] (0.17 g/100 g) and EHNRI [18] (0.1 g/100 g). The mean crude fat contents of boiled after peeling and boiled before peeling of Anchote tuber were 0.13 g/100 g and 0.14 g/100 g, respectively. The mean crude fat content of Anchote boiled before peeling and boiled before peeling was significantly (P<0.05) lower than raw Anchote tubers. The mean crude fat content of Anchote boiled before peeling was non-significant (P>0.05) compared to mean boiled after peeling Anchote tuber. The crude fat content was decreased in boiled after peeling by 31.58% and in boiled before peeling by 26.32% compared to raw tubers. These decreases might be attributed to their diffusion into the boiling water [23].

Utilized carbohydrate: Utilizable carbohydrate content was determined by difference. The mean utilizable carbohydrate content of the raw Anchote was 16.86 g/100 g. The mean utilizable carbohydrate content of boiled after peeling and boiled before peeling of Anchote tuber were 10.42 g/100 g and 15.23 g/100 g, respectively. The mean utilizable carbohydrate content of Anchote boiled after peeling was significantly (P<0.05) lower than the mean of both boiled peeling and raw Anchote tuber. Similarly, the mean utilizable carbohydrate content of Anchote boiled before peeling was significantly (P<0.05) lower compared to the mean of raw Anchote tuber. The result in raw Anchote was lower than the finding of Fufa and Urga [10] (22.5 g/100 g) and EHNRI [18] (21.1 g/100 g). The utilizable carbohydrate content was decreased in boiled after peeling by 38.19% and in boiled before peeling by 9.67% compared to raw tubers. Reduction in utilizable carbohydrate content during boiling might be due to leaching of soluble carbohydrates like sugars in to the cooking water [26].

Gross energy: The gross energy was calculated by multiplying the mean values of crude proteins, crude fat and total carbohydrate by Atwater factors of 4, 9 and 4, respectively. The mean gross energy content of raw Anchote was 82.12 Kcal/100 g. The mean gross energy contents of boiled after peeling and boiled before peeling of Anchote tuber were 53.48 Kcal/100 g and 75.26 Kcal/100 g, respectively. The mean gross energy content of Anchote boiled after peeling was significantly (P<0.05) lower than the mean of both boiled peeling and raw Anchote tuber. Similarly, the mean gross energy content of Anchote boiled before peeling was significantly (P<0.05) lower compared to the mean raw Anchote tuber. The value in raw Anchote were found to be relatively low as compared to those reported by EHNRI [18] (96.10 Kcal/100 g) and Fufa and Urga [10] (103.3 Kcal/100 g) which

Treatment	Moisture Content (g/100g)	Crude Protein (g/100g)	Total Ash (g/100g)	Crude Fiber (g/100g)	Crude Fat (g/100g)	Utilizable Carbohydrate (g/100g)	Gross Energy (Kcal/100g)
RW	74.93 ± 0.345	3.25 ± 0.061	2.19 ± 0.014	2.58 ± 0.048	0.19 ± 0.020	16.68 ± 0.410	82.12 ± 1.300
BAP	81.74 ± 0.395	2.67 ± 0.145	1.33 ± 0.406	3.71 ± 0.135	0.13 ± 0.017	10.42 ± 0.310	53.48 ± 1.340
BBP	76.73 ± 0.465	3.14 ± 0.187	1.99 ± 0.168	2.77 ± 0.216	0.14 ± 0.010	15.23 ± 0.410	75.26 ± 2.390

Means not followed by the same superscript letters in the same column are significantly different (P<0.05)

NB. RW stands for Raw Anchote, BAP: for Boiled After Peeling and BBP: for Boiled Before Peeling

Table 1: Mean (± SE) nutrient composition of raw and processed Anchote samples.
may be due to ecological factors like rain fall, Temperature, soil type. In reference with raw tubers, the gross energy content of raw Anchote after and before peeling decreased by 26.06% and 7.19%, respectively.

Mineral content of raw and processed Anchote

Minerals in the diet are responsible for several existing problems relating to human health. The human body requires more than twenty-two mineral elements that can be supplied by an appropriate diet in varying amounts for proper growth, health maintenance, and general well-being [27]. Deficiency diseases could be prevented by sufficient intake of specific nutrients/minerals that are involved in many biochemical processes. Root and tuber crops are one of important sources of minerals that are linked to prevent deficiency diseases such as Anemia and Rickets, and daily consumption of these foods is being encouraged [28]. The mineral content of raw and processed Anchote is presented in Table 2.

Calcium: Calcium is the major component of bone and assists in teeth development. Calcium concentrations are also necessary for blood coagulation and for the integrity of intracellular cement substances [29]. The calcium content of the raw Anchote was 119.5 mg/100 g. The result was comparable with the finding of EHNRI [18] (119 mg/100 g). However, Fufa and Urga [10] reported very high calcium contents (344 mg/100 g). The mean calcium contents of boiled after peeling and boiled before peeling of Anchote tuber was 115.70 mg/100 g and 118.20 mg/100 g, respectively. The mean calcium content of Anchote boiled after peeling was significantly (P<0.05) lower than both boiled before peeling and raw Anchote tubers. The mean calcium content of Anchote boiled before peeling was non-significant (P>0.05) compared to raw Anchote. The calcium content was decreased in boiled after peeling by 3.18% and in boiled before peeling by 1.65% compared to raw tubers. The loss of calcium from boiling is not as such pronounced and this little reduction may be due to less leaching of the calcium to the boiling water.

Iron: The mean iron content of the raw, boiled after peeling and boiled before peeling Anchote were 5.49 mg/100 g, 7.60 mg/100 g and 6.60 g/100 g, respectively. The mean iron content of Anchote boiled after peeling was significantly (P<0.05) higher than both boiled before 9 peeling and raw Anchote tubers. The mean iron content of Anchote boiled before peeling was non-significant (P>0.05) compared to raw Anchote. The result in raw Anchote was comparable with the finding of Fufa and Urga [10] (5.5 mg/100 g). However, EHNRI [18] reported lower iron contents (1.30 mg/100 g). The iron content was increased in boiled after peeling by 38.43% and in boiled before peeling by 20.22% compared to raw tubers. Increase in the iron content may be due to contamination of iron from the cooking utensils known as Tuwe [17].

Magnesium: The mean magnesium content of the raw, boiled after peeling and boiled before peeling of Anchote tubers was 79.83 mg/100 g, 73.50 mg/100 g and 76.47 mg/100 g, respectively. The magnesium content of Anchote boiled after peeling was significantly (P<0.05) lower than both boiled before peeling and raw Anchote tubers. Similarly, the mean magnesium content of Anchote boiled before peeling was significantly (P<0.05) different compared to raw Anchote. The mean value in raw Anchote was agreed with the finding of Fufa and Urga [10] (80 mg/100 g). The magnesium content was reduced in boiled after peeling by 7.93% and in boiled before peeling by 4.21% compared to raw tubers. The reduction of magnesium from boiling might be due to magnesium oxalate is less soluble than the potassium and sodium salts [30], this may be the possible reason to observed reduction in magnesium level upon boiling.

Zinc: The zinc content of raw Anchote tuber with a mean value was 2.24 mg/100 g, which is in accordance with the finding of Fufa and Urga [10] 1.8 mg/100 gm. The mean zinc content of boiled after peeling and boiled before peeling of Anchote tuber was 2.03 mg/100 g and 2.20 mg/100 g, respectively. The zinc content of Anchote boiled after peeling was significantly (P<0.05) lower than raw Anchote tubers. The zinc content of Anchote boiled before peeling was non-significant (P>0.05) compared to both mean boiled after peeling and raw Anchote. The mean zinc content was reduced in boiled after peeling by 8.97% and in boiled before peeling by 1.35% compared to raw tubers.

Phosphorus: The phosphorus content of the raw Anchote was 34.61 mg/100 gm. The phosphorus content of boiled after peeling and boiled before peeling of Anchote tuber was 28.12 mg/100 g and 25.45 mg/100 g, respectively. The phosphorus content of Anchote boiled before peeling was significantly (P<0.05) lower than both boiled after peeling and raw Anchote tubers. In the same way, the mean phosphorus content of Anchote boiled after peeling was significantly (P<0.05) different compared to raw Anchote tubers. The mean phosphorus content was reduced in boiled after peeling by 18.75% and in boiled before peeling by 26.47% compared to raw tubers. The losses of phosphorus content in tuber due to leaching on boiling might occur up to 25% [31] this may be the possible reason to observed reduction in magnesium level in this study.

Anti-nutritional factors content of raw and processed Anchote

Anti-nutrients are known to reduce the maximum utilization of nutrients especially proteins, vitamins, and minerals [32]. So that, the levels of anti-nutritional factors in the Anchote tubers are important in the assessment of its nutritional status. Some anti-nutritional factors (phytate, oxalate, tannin and cyanide) content of the raw and processed Anchote is shown in Table 3.

Phytate: The raw Anchote tuber contained 389.30 mg/100 g phytate. The phytate content of Anchote boiled after peeling and before peeling had 333.63 mg/100 g and 334.74 mg/100 g, respectively. The phytate content of Anchote boiled after peeling was significantly (P<0.05) lower than both boiled before peeling and raw Anchote tubers. Similarly, the mean phytate content of Anchote boiled before peeling was significantly (P<0.05) lower than raw Anchote tuber. The mean phytate content was reduced in boiled after peeling by 14.30% and in boiled before peeling by 14.01% compared to raw tubers. The evident reduction in phytate during cooking may be caused by leaching into the tubers.

Treatment	Calcium (mg/100g)	Iron (mg/100g)	Magnesium (mg/100g)	Zinc (mg/100g)	Phosphorus (mg/100g)
RW	119.50 ± 0.36a	5.49 ± 0.39a	79.73 ± 0.85a	2.23 ± 0.12a	34.61 ± 0.70a
BAP	115.70 ± 0.21a	7.60 ± 0.19a	73.50 ± 0.92a	2.03 ± 0.06a	28.12 ± 0.08b
BBP	118.20 ± 1.49g	6.50 ± 0.32a	76.47 ± 0.61a	2.20 ± 0.10a	25.45 ± 0.25b

Means not followed by the same superscript letters in the same column are significantly different (P<0.05) NB. RW stands for Raw Anchote, BAP: for Boiled After Peeling and BBP: for Boiled Before Peeling

Table 2: Mean (± SE) mineral content of raw and processed Anchote samples.
cooking medium, degeneration by heat or the formation of insoluble complexes between phytate and other components, such as phytate-protein and phytate-protein-mineral complexes [33]. The reduction of phytate during processing Anchote tuber is expected to enhance the bioavailability of proteins and dietary minerals of the tubers and at the same time the lower level of phytate may have some health promotional activities. Currently there is evidence that dietary phytate at low level may have beneficial role as an antioxidant, anticarcinogens and likely play an important role in controlling hypercholesterolemia and atherosclerosis [34]. Because Anchote may provide a substantial portion of phytate, the nutritional consequences of phytate in Anchote should be investigated.

Oxalate: The raw Anchote tuber contained 8.26 mg/100 g oxalate. The oxalate content of boiled after peeling and boiled before peeling of Anchote tuber had 4.23 mg/100 g and 4.66 mg/100 g, respectively. The oxalate content of Anchote boiled after peeling was significantly (P<0.05) lower than both boiled before peeling and raw Anchote tubers. Also the mean oxalate content of Anchote boiled before peeling was significantly (P<0.05) lower than raw Anchote tuber. The mean oxalate content was reduced in boiled after peeling by 48.79% and in boiled before peeling by 43.58% compared to raw Anchote tubers. The traditional processing methods were found effective methods to reduce the oxalate content in these tubers. Boiling may cause considerable cell rupture and facilitate the leakage of soluble oxalate into cooking water [35], this may be the possible reason to observed high reduction in oxalate level upon boiling.

Oxalates can have a harmful effect on human nutrition and health, especially by reducing calcium absorption and aiding the formation of kidney stones [36]. High-oxalate diets can increase the risk of renal calcium oxalate formation in certain groups of people [37]. The majority of urinary stones formed in humans are calcium oxalate stones [38]. Currently, patients are advised to limit their intake of foods with a total intake of oxalate not exceeding 50–60 mg per day [39]. The traditionally processed Anchote tubers analyzed in this study are low compared to the recommendations for patients with calcium oxalate stones. The results obtained showed that the processed tuber could be considered safe with regard to cyanide poisoning due to the fact that the cyanide levels were far below the detrimental levels of 50 to 200 mg [44]. However, the amount remaining cyanide content might be slightly toxic to people who consume high quantities of Anchote tubers and need to be further study.

Cyanide: Cyanide, either in synthetic inorganic forms as in KCN or NaCN, or organic forms as in cyanogenic glucosides, is a potent specific inhibitor of several enzyme-catalyzed processes [42]. The results of the present study showed that cyanide in raw, boiled after peeling and boiled before peeling Anchote tuber were 12.67 mg/100 g, 8.16 mg/100 g, and 11.14 mg/100 g, respectively. The cyanide content of Anchote boiled after peeling was significantly (P<0.05) lower than both boiled before peeling and raw Anchote tubers. The mean cyanide content of Anchote boiled before peeling was also significantly (P<0.05) lower compared to mean raw Anchote tuber. The mean cyanide content was reduced in boiled after peeling by 35.59% and in boiled before peeling by 12.08% compared to raw tubers. It has been reported that higher intake of cyanides could result in the development of neurological disease in humans [43]. The amounts of cyanide produced, only plants that accumulate more than 50 to 200 mg are considered to be dangerous [44]. However, smaller amount of cyanides could have several long-term adverse effects on human health. The results obtained showed that the processed tuber could be considered safe with regard to cyanide poisoning due to the fact that the cyanide levels were far below the detrimental levels of 50 to 200 mg [44]. However, the amount remaining cyanide content might be slightly toxic to people who consume high quantities of Anchote tubers and need to be further study.

Molar ratios of Ca: Phy, Oxo: Ca, Phy: Zn, Phy: Fe and [Ca]/[Phy]/[Zn]

The molar ratios for oxalate, calcium, zinc, iron and phytate were calculated to evaluate the effects of elevated levels of oxalate and phytate in the bioavailability of dietary minerals. Bioavailability is the ability of the body to digest and absorb the mineral in the food consumed. The calculated values are also compared with the reported critical toxicity values for these ratios. The calculated Ca: Phy, Oxo: Ca, Phy: Zn, Phy: Fe and [Ca]/[Phy]/[Zn] molar ratios of raw and processed Anchote is shown in Table 4.

Treatment	Phytate (mg/100g)	Oxalate (mg/100g)	Tannin (mg/100g)	Cyanide (mg/100g)
RW	389.30 ± 0.39a	8.23 ± 0.09a	173.55 ± 0.35a	12.67 ± 0.22a
BAP	333.63 ± 0.29a	4.23 ± 0.02a	102.36 ± 0.46a	8.16 ± 0.07a
BBP	334.74 ± 0.42a	4.66 ± 0.17a	121.21 ± 0.11a	11.14 ± 0.17a

Means not followed by the same superscript letters in the same column are significantly different (P<0.05). NB. RW stands for Raw Anchote, BAP: for Boiled After Peeling and BBP: for Boiled Before Peeling.
The molar ratios of Ox:Ca obtained in raw, boiled after peeled and boiled before peeled Anchote were 0.03, 0.02, and 0.02, respectively. The Ox:Ca molar ratios of Anchote boiled after peeling and peeled before peeling was significantly (P<0.05) lower than raw Anchote tubers. The Ox:Ca molar ratios of Anchote boiled before peeling was non-significant (P>0.05) compared to mean boiled after peeling Anchote tuber. The importance of oxalate contents of an individual plant product in limiting total dietary Ca availability is of significance only when the ratio of Ox:Ca is greater than one [45]. Under this circumstance, the oxalate has potential to complex, not only the Ca contained in the plant, but also that derived from other food sources. Consumption of oxalates may result in kidney disease and a high ratio of Ox:Ca in the diet also may cause chronic calcium deficiency [46]. From the result, it was observed that, Anchote tubers had Ox:Ca values lower than the reported critical value (1.0), which indicates that absorption of calcium not adversely affected by phytate in these tubers.

The molar ratios of [Ca]/[Phytate] of raw, boiled after peeled and boiled before peeled Anchote were 17.35 ± 0.91 for raw, 14.82 ± 0.54 for boiled after peeled, and 14.83 ± 0.23 for boiled before peeled Anchote tubers. Phytic acids markedly decrease Ca bioavailability and the Ca:Phy molar ratio has been proposed as an indicator of Ca 14 bioavailability. The Ca: Phy molar ratios >6, indicative of poor calcium bioavailability. The values in the present study were lower than the reported critical molar ratio of Ca:Phy, indicating that absorption of calcium not adversely affected by phytate in these tubers.

The values of [Ca]/[Phytate]/[Zn] millimolar ratios of both processed tubers were found less than the critical value of 0.5 mol/kg [53]. In this study, except the raw tuber, the [Ca]/[Phytate]/[Zn] millimolar ratios of Anchote boiled after peeling was non-significant (P>0.05) compared to mean boiled after peeling Anchote tuber. The potentiating effect of calcium on zinc absorption in the presence of high phytate intakes has led to the suggestion that the [Phy]/[Ca]/[Zn] molar ratios may be a better index of zinc bioavailability than the [Phy]/[Zn] ratio alone. High calcium levels in foods can promote the phytate-induced decrease in zinc bioavailability when the [Ca]/[phytate]/[Zn] millimolar ratio exceeds 0.5 mol/kg [53]. Under this circumstance, the oxalate has potential to complex, not only the Ca contained in the plant, but also that derived from other food sources. Consumption of oxalates may result in kidney disease and a high ratio of Ox:Ca in the diet also may cause chronic calcium deficiency [46]. From the result, it was observed that, Anchote tubers had Ox:Ca values lower than the reported critical value (1.0), which indicates that absorption of calcium not adversely affected by phytate in these tubers.

Sensory preference of traditional processed Anchote
Anchote tubers boiled after peeling and boiled before peeling were presented to fifty consumers panels to preference taste. Among them 33 (66%) consumers preferred tubers boiled before peeling whereas 17 (34%) consumers preferred boiled after peeling Anchote. The results were evaluated according to statistical t-test table of paired comparison test, at p<0.05 level of significance; one sample must be selected at least 33 times out of fifty consumers to be a significantly different. The Anchote boiled before peeling was selected 33 times out of fifty consumers, which meets the critical value of the table to be a significantly different. As a result, there is a significant (P<0.05) preference of taste of Anchote boiled before peeling to Anchote tubers boiled after peeling (Figure 1).
Conclusion

The present finding uncovered information on the nutritional composition (crude fiber, crude fat, crude protein, total ash, moisture content, utilized carbohydrate, gross energy, Zinc, Iron, Calcium, Sodium, Magnesium and Phosphorus) and anti-nutritional factors (Phytate, Oxalate, Tannin and Cyanide) of raw and processed Anchote tubers from western Ethiopia. Sensory preference taste of Anchote boiled after peeling and boiled before peeling was also reported. In addition, the relative bioavailability of the minerals was assessed by calculating molar ratios of antinutrient to the contained minerals. The results of this study showed that raw Anchote contains appreciable quantity of carbohydrate, crude Protein, crude fiber, calcium, magnesium, iron and low levels of antinutrients (Oxalate, tannin, and cyanide) except phytate, when compared to other reported raw roots and tubers. As shown in this study the traditional processing methods of Anchote were very important because that increased in crude fiber content and improved the bioavailability of zinc contained in the Anchote tubers. This study also indicated that traditional processing methods decreased the crude protein, total ash, calcium, iron, zinc content of the tubers. Among the traditional processing methods, boiled before peeling proved to be better in some nutrient and mineral contents considered in this investigation.

The levels of anti-nutritional factors in Anchote are important in the assessment of its nutritional status. In this study, the raw Anchote tubers were found to contain low antinutritional factors, except phytate. Moreover, there were further reductions of the antinutritional factors during traditional processing. This implies, except phytate which might hinder iron bioavailability, traditional processing enables that the during traditional processing. This implies, except phytate which might hinder iron bioavailability, traditional processing enables that the relative bioavailability of minerals such as zinc and calcium known to be affected by these antinutrients. This study also indicated that consumer panels preferred the taste of Anchote boiled before peeling. Therefore traditional processing method of Anchote boiled before peeling is also effective technique and need to be encouraged in terms of consumer’s preference of Anchote taste.

References

1. Asfaw Z, Negatu A, Asfaw M (1992) Survey of the indigenous food plants of Ethiopia and food preparations from the indigenous food crop. Addis Ababa.
2. Addis T, Azerefegne F, Blomme G, Kanaujia K (2008) Biology of the Enset Root Mealybug, Catonococcus Ensete (Williams and Matile-ferroen) (Homoptera: Pseudococcidae) and its geographical distribution in Southern Ethiopia. Proceedings of the 1st international e-Conference on Agricultural BioSciences 1: 35-36.
3. Endashaw Bekele (2007) Study on Actual Situation of Medical Plants in Ethiopia. Prepared for JAICAF (Japan Association for International Collaboration of Agriculture and Forestry), 50-51.
4. Demel T, Feyera S, Mark M, Million B, Pla B (2010) Edible Wild Plants in Ethiopia. Addis Ababa University press, Ethiopia by Eclipse Private Limited Company. pp. 114-115.
5. Edwards SB (1991) Crops with wild relatives found in Ethiopia. In: Plant genetic resources of Ethiopia, Engels J.M.M., J. G. Hawkes & Melaku Woreda (eds). Cambridge Univ. Press, Cambridge.
6. IAR (1986) Roots and Tubers team progress report for the period 1976/79. Addis Ababa. 1986: 1-9.
7. Getahun A (1973) Developmental anatomy of tubers of anchote; A potential dry land tuber crop. In: Acta horticulture, Technical communication of ISHS.
8. Westphal E (1974) Pulses in Ethiopia, their taxonomy and agricultural significance. Center for Agricultural publishing and Documentation, Wageningen.
9. Aberra H (1995) Anchote-An Endemic Tuber crop. Addis Ababa University, P.75.
10. Fufa H, Urga K (1997) Nutritional and antinutritional characteristics of Anchote (Coccinia Abyssinica). Ethiop J Health Dev 11: 163-168.
11. Walingo MK (2009) Indigenous food processing methods that improve zinc absorption and bioavailability of plant diets consumed by the Kenyan population. African Journal of Food, Agriculture, Nutrition and Development 9: 524-535.
12. AOAC (2000) Association of Official Analytical Chemists. Official methods of Analysis (Vol. II 17th edition) of AOAC International. Washington, DC, USA.
13. AOAC (1984) Official Methods of Analysis of Official Analytical Chemists, 4th Edition. Washington, DC, USA.
14. Latta M, Eskin M (1980) A simple and rapid colorimetric method for phytate determination. J Agric Food Chem 28: 1315-1315.
15. Vaintraub IA, Lapteva NA (1988) Colorimetric determination of phytate in unpurified extracts of seeds and the products of their processing. Anal Biochem 175: 227-230.
16. Ukpabi UJ, Ejiofor JI (1989) Effect of deep cut frying on the oxide content and the degree of itching of cocoyams (Xanthosoma and colocassia spp). Technical paper presented at the 5th annual conference of the Agriculture society of Nigeria. Federal University of Technology Owerrri, Nigeria.
17. Omoruyi FO, Dilworth L, Asemota HN (2007) Anti-nutritional factors, Zinc, Iron and Calcium in some Caribbean tuber crops and the effect of boiling or roasting. Nutrition and food science 37: 8-15.
18. Ekanayake S, Jansz ER, Nair BM (2000) Nutritional evaluation of protein and starch of mature Canavalia gladiata seeds. Int J Food Sci Nut 51: 289-294.
19. Arias MTG, Pontes EA, Fernandez MC, Munic FJS (2003) Freezing/defrosting/frying of sardine fillets. Influence of slow and quick defrosting on protein quality. J Sci Food Agr 83: 602-608.
20. Woolfe JA, Poats VS (1987) The potato in the human diet. CIP Lima, Cambridge University Press, Cambridge, Britain.
21. Lewu MN, Adeloba PO, Alolayan AJ (2009) Effect of cooking on the proximate composition of the leaves of some accessions of Colocasia esculenta (L.) Schott in KwaZulu-Natal province of South Africa. African Journal of Biotechnology 8: 1619-1622.
22. Debre F, Brindza J (1996) Potatoes genotypes from the view of production and utility value. Rostlinna Vyroba 42: 509-515.
23. Ahmed A, Bébé F, Clerge T, Clément S, Adj MB (2010) Physicochemical and functional properties of bâché or hypoctolyte axes of Borassus aethiopum Mart. African Journal of Food Science 4: 635-641.
24. Saldanha LG (1995) Fiber in the diet of US children: results of national surveys. Pediatrics 96: 994-997.
25. UICC/WHO (2005) Global Action Against Cancer NOW. Geneva: UICC and WHO Publications Department.
26. Ensenwah CN, Ikenebomeh MJ (2008) Processing Effects on the Nutritional and Anti-nutritional Contents of African Locust Bean (Parkia biglobosa Benth.) Seed. Pakistan Journal of Nutrition 7: 214-217.

27. WHO/FAO (1998) The role of carbohydrates in nutrition, chapter 1. Carbohydrates in human nutrition.

28. Leterme P (2002) Recommendations by health organizations for pulse consumption. Br J Nutr 88 Suppl 3: S239-242.

29. Okaka JC, Okaka ANO (2001) Food composition, spoilage and shelf life extension. ojarc 0 Academic Publishers, Enugu, Nigeria, P: 54-56.

30. Poeydomenge GY, Savage GP (2007) Oxalate content of raw and cooked purslane. Journal of Food, Agriculture and Environment 5: 124-128.

31. True RH, Hogan JM, Augustin J, Johnson SJ, Teitzel C, et al. (1978) Mineral composition of freshly harvested potatoes. Am Potato J 55: 511-519.

32. Ugwu FM, Oranye NA (2006) Effects of some processing methods on the toxic components of African breadfruit (Treculia africana). African Journal of Biotechnology 5: 2329-2333.

33. Siddhuraju P, Becker K (2001) Effect of various domestic processing methods on antinutrients and in vitro protein and starch digestibility of two indigenous varieties of Indian tribal pulse, Mucuna pruriens Var. utilis. J Agric Food Chem 49: 3058-3067.

34. Phillips BP, Lin M, Rasco B (2004) Analysis of phytate in raw and cooked foods. Journal of Food Composition and Analysis 17: 217-226.

35. Albinh PBE, Savage GP (2001) The effect of cooking on the location and concentration of oxalate in three cultivars of New Zealand-grown oca (Oxalis tuberosa Mol.). J Sci Food Agr 81: 1027-1033.

36. Noonan SC, Savage GP (1999) Oxalate content of foods and its effect on humans. Asia Pac J Clin Nutr 8: 64-74.

37. Libert B, Franceschini VR (1987) Oxalate in crop plants. J Agric Food Chem 35: 926-938.

38. Hodgkinson A (1977) Oxalic acid in biology and medicine. Academic Press, London.

39. Massey LK, Palmer RG, Homer HT (2001) Oxalate content of soybean seeds (Glycine max: Leguminosae), soyfoods, and other edible legumes. J Agric Food Chem 49: 4262-4266.

40. Kataria A, Chauhan BM, Punia D (1992) Digestibility of proteins and starch (in vitro) of amphiidioids (black gram x mung bean) as affected by domestic processing and cooking. Plant Foods Hum Nutr 42: 117-125.

41. Anonymous (1973) Tannic acid gain. Food Cosmetol Toxicol. In: Toxicants naturally occurring in foods. National Academy of Sciences.

42. Aletor VA (1993) Allelochemicals in plant foods and feedingstuffs: 1. Nutritional, biochemical and physiopathological aspects in animal production. Vet Hum Toxicol 35: 57-67.

43. Montgomery RD (1980) Cyanogens. In: Toxic constituents of plant foodstuffs, Liener I.E ed., New York, Academic Press.143-155.

44. Kingsbury JM (1964) Poisonous plants of the United States and Canada. Prentice Hall, Englewood Cliffs, New Jersey.

45. Frontela C, Scarino ML, Ferruzza S, Ros G, Martinez C (2009) Effect of dephytinization on bioavailability of iron, calcium and zinc from infant cereals assessed in the Caco-2 cell model. World J Gastroenterol 15: 1977-1984.

46. Hassan LG, Umar KJ, Umar Z (2007) Anti-nutrient factors in Tribulus terrestris (Linn) leaves and predicted bioavailability. J Trop Biosci 7: 33-36.

47. Oberleas D (1983) Phytate content in cereals and legumes and methods of determination. Cereal Food World 28: 352-357.

48. Prasad AS (1984) Discovery and importance of zinc in human nutrition. Fed Proc 43: 2829-2834.

49. Sirkka P (1997) Myo-inositol Phosphates: Analysis, Content in Foods and Effects in Nutrition. Food Sci Technol-LEB 30: 633-647.

50. Morris ER, Ellis R (1989) Usefulness of the dietary phytic acid/zinc molar ratio as an index of zinc bioavailability to rats and humans. Biol Trace Elem Res 19: 107-117.

51. Hurrell RF, Juillerat MA, Reddy MB, Lynch SR, Dassenko SA, et al. (1992) Soy protein, phytate, and iron absorption in humans. Am J Clin Nutr 56: 573-578.

52. Siegenberg D, Baynes RD, Bothwell TH, Macfarlane BJ, Lamparelli RD, et al. (1991) Ascorbic acid prevents the dose-dependent inhibitory effects of polyphenols and phytates on nonheme-iron absorption. Am J Clin Nutr 53: 537-541.

53. Gibson RS (1994) Zinc nutrition in developing countries. Nutr Res Rev 7: 151-173.