Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
Severe acute respiratory syndrome (SARS) is a pulmonary infection that has been identified in multiple outbreaks around the world, emerging initially in Guangdong Province, China, in November 2002. The number of reported cases increased exponentially and reached 8422, which resulted in 916 deaths by August 2003 (WHO website). The syndrome is caused by a previously unknown virus – SARS-associated coronavirus (SARS-CoV) [1-3]. The global SARS outbreak has been contained, mainly owing to strict patient isolation and aggressive containment of infected regions, but the virus itself has potential to reappear. This concern is supported by studies reporting a cyclic pattern for other human-infective coronaviruses that attack mainly in the winter, sometimes skipping years, for example, the related human coronavirus, HCoV-OC43, which breaks out every two to four years [4].

To date, there are ~36 antiviral drugs, half of which were developed in the past 15 years to treat a single virus, HIV-1. Development of these antiviral drugs gained from the advances in molecular and structural biology coupled with advances in medicinal chemistry and in the industrialization of the drug discovery process. The SARS epidemic has emphasized the need to develop drugs against emerging viral infections quickly, and demonstrates the usage of genomic technologies in antiviral research. In the past two decades, biology has become an information-driven science as a result of the emergence of genomic technologies and the expansion of the Internet that allows analysis of genomic databases at every researcher’s desktop. These advanced genomic technologies led to rapid sequencing of SARS-CoV [5,6] and, for the first time in history, the sequencing of a genome of an infective agent preceded the understanding of its basic biology and etiology. Armed with this genomic information, research groups around the world suggested multidisciplinary approaches to attain anti-SARS drugs. In general, physicians tried to relieve the symptoms mainly by modulating parts of the immune system, while vaccinologists began the long process of developing a vaccine against the virus. Molecular and structural biologists suggested ways to interfere with the viral life cycle, and these are the focus of this review (Figure 1). The strategy starts from virus identification, goes through genome sequencing and, hopefully, ends with an antiviral drug. Drug development remains a challenge, but the acceleration
in drug discovery offered by genome technologies will hopefully enable significant timetable cuts in achieving antiviral medicine. Other, more classical anti-viral strategies used to treat SARS patients, like the use of interferon, will not be discussed here. The interested reader is referred to [7,8]. This review includes a retrospective summary of the development of anti-HIV drugs, followed by an appraisal of anti-SARS strategies and their applicability for rapid development of antivirals against SARS-CoV, if it does resurface, and against the next, probably inevitable, viral threat.
useful drug target with the approval of the HIV fusion inhibitor, enfuvirtide (Fuzeon), in 2003 [13]. Unlike other HIV drugs that are small molecules developed against viral enzymes, enfuvirtide is a peptide that corresponds to a specific segment of the viral envelope protein. Importantly, this segment can be directly pinpointed by computational sequence analysis [14,15]. This strategy seems promising in developing anti-viral therapeutic peptides to other viruses that possess type 1 viral fusion proteins [e.g. measles virus and respiratory syncytial virus (RSV)], which share some structural motifs with HIV. Little is known about viral-induced membrane fusion of other viruses that do not share these motifs.

Entry inhibitors

Viruses can be divided into two groups based on the composition of their outer surface: (a) non-enveloped viruses are enclosed by a protein shell called a capsid; (b) enveloped viruses are surrounded by a membrane ‘stolen’ from their last host. In order to infect host cells, that is, to inject their genetic material into the cell, enveloped viruses need to overcome both viral and cellular membrane barriers. Viral entry of many enveloped viruses, including SARS-CoV, involves two major steps. First, the virion binds to receptor(s) localized on the surface of its host cell, and second, the viral membrane fuses with the host cell membrane. SARS-CoV spike glycoprotein, responsible for these two steps, is translated as a large polypeptide that is subsequently cleaved to produce two functional subunits, S1 and S2. S1 is the peripheral protein, which binds to cellular receptor(s), whereas S2 is a type I transmembrane protein that catalyzes the membrane fusion reaction. Both steps are crucial for viral infection, and therefore were suggested as targets for antivirals.

Blocking the interaction between SARS-CoV and its cellular receptors

Since the identification of CD4 as the cellular receptor for HIV in 1984 [16,17], several therapeutic agents aiming to inhibit the binding of HIV to CD4 were suggested. Unfortunately, these efforts have yet to bear fruit. Major difficulties that slow down the development of inhibitors for the binding of CD4 to gp120 include: (i) the gp120-binding site for CD4 consists largely of a recessed pocket; (ii) antibodies that bind to CD4 antigen are likely to block virus attachment but can be immunosuppressive because they will lead to depletion of CD4 cells. Currently, both a recombinant CD4-IgG2 fusion protein (PRO-542) and a small-molecule (BMS-488043) aiming to prevent HIV from attaching to CD4, are in clinical trials. These efforts reflect the motivation of inhibiting the first step in the viral life cycle, that is, the binding of the virus to its host cell. This approach was strengthened when CXCR4 and CCR5 were identified as additional essential cellular receptors for HIV [18,19], and with the discovery that CCR5-deficient people are resistant to infection by HIV [20].

Similar to HIV, binding of the viral spike glycoprotein to some receptor(s) on host cells is the first step in SARS-CoV infection. Blocking the interaction between these receptors and the virus could prevent infection, thus inspiring the search for SARS-CoV cellular receptors. Recently, human angiotensin converting enzyme-related carboxypeptidase (ACE2), a type I integral membrane metalloprotease, was identified as a receptor for SARS-CoV [21]. A soluble form of ACE2 and an antibody recognizing SARS-CoV S1 efficiently neutralized SARS-CoV in vitro, supporting the speculation that the ACE2-binding site of the spike glycoprotein is an attractive target for vaccine and drug development [21,22]. This is further supported by an ACE2 inhibitor, which also inhibits SARS-CoV infection in vitro [23]. Notably, a 193-amino acid fragment of SARS-CoV S1, which efficiently bound ACE2, blocked spike glycoprotein-mediated infection with an IC₅₀ of less than 10 nM [24]. More recently, a human lung cDNA library was screened to identify receptors for SARS-CoV, revealing that human CD209L can also mediate infection by SARS-CoV, although it is a much less efficient receptor than ACE2. Interestingly, CD209L is expressed in human lung in type II alveolar cells, which are an important target for SARS-CoV infection [25]. It is still not known whether interactions between ACE2 and CD209L play a role in SARS-CoV infection and pathogenesis.

Fusion inhibitors

HIV entry involves the binding of the viral envelope glycoproteins (comprising gp120 and gp41, which are the homologous of SARS-CoV S1 and S2, respectively) to CD4 on the host cell plasma membrane. This induces conformational changes, enabling the N-terminal heptad repeat region (N-HR) of gp41 to be exposed. At this stage, enfuvirtide binds to the N-HR of gp41, hence blocking further conformational changes required for membrane fusion. Enfuvirtide is a synthetic peptide inhibitor corresponding to a segment of gp41, known as the C-terminal heptad repeat (C-HR). Following the CD4-induced conformational change of gp41, plasma membrane CCR5 (or CXCR4) molecules are recruited to the binding site, and bind to the CD4–envelope complexes. This triggers a highly stable interaction between the C-HR and the N-HR regions of gp41, which drives the membrane fusion reaction to completion. Thus, enfuvirtide can no longer inhibit the fusion process [26]. Slower engagement of the co-receptor with the CD4–envelope complexes, results in a stronger inhibition by C-HR-derived peptides [27,28]. Furthermore, reduction in CCR5 binding efficiency resulted in slower fusion kinetics and increased sensitivity to enfuvirtide [28,29]. Further support for this model is provided by the finding that CCR5 and CXCR4 antagonists showed strong anti-HIV synergy with enfuvirtide against CCR5-dependent and CXCR4-dependent HIV isolates, respectively [30,31]. In addition, PRO-542 acts in concert with enfuvirtide in virus–cell and cell–cell fusion assay, by triggering formation
of gp41 fusion intermediates, enabling enfuvirtide to act on free HIV-1 virions [32].

There are no peptide fusion inhibitors for influenza virus. It is noteworthy that influenza virus uses a different mechanism to enter its host cells: it is first endocytosed into the cell, followed by a pH-dependent fusion between the viral and the endosome membranes. Strikingly, it takes only few milliseconds from the time the pH drops in the endosomes until the fusion process is completed [33–36]. In contrast, the time scale of HIV infection is about 20 minutes, allowing ample time for binding of entry inhibitors [26,27,37]. SARS-CoV entry kinetics resembles that of HIV. At 5 minutes after exposure, the SARS-CoV lined the plasma membrane of Vero cells [38]. Fusion and entry of the viral load into the cytoplasm was observed mainly between 15 and 20 minutes [38]. The timescale similarity between HIV and SARS-CoV fusion process, as opposed to the fast membrane fusion of influenza virus, indicates that entry inhibitors could be successful with SARS-CoV. Despite the lack of sequence
homology and the difference in length between SARS-CoV S2 and HIV gp41, homologous regions of the N-HR and C-HR in SARS-CoV S2 were identified immediately after the SARS-CoV genome sequence was published (Figure 2). Thus, a similar strategy might be applied to inhibit the entry of SARS-CoV [39], (http://www.virology.net/Articles/sars/s2model.html). Indeed, preliminary reports revealed anti-SARS activity for peptides corresponding to the C-HR of SARS-CoV S2 protein [40–42], and indicated a mode of action similar to that of enfuvirtide [43–46].

The kinetic similarity of SARS and HIV entries suggests a synergism between SARS-CoV spike glycoprotein inhibitors and agents that block some of its receptors. The role of different cellular receptors in SARS-CoV entry should be characterized to discover the receptor(s) that trigger conformational changes and transform the spike protein into the stable ‘fusogenic’ form. Antagonists for these receptor(s) could synergize with fusion inhibitors. The synergy between SARS fusion inhibitors and ACE2 or CD209L antagonists has not yet been investigated. The first step is to determine optimal fusion inhibitors. Intriguingly, whereas polar residues disrupt the heptad repeat in the C-HR of HIV-1 gp41, the C-HR of SARS-CoV S2 has a perfect leucine/isoleucine heptad repeat (Figure 2d). This could explain why the exact sequence boundaries of the C-HR-derived peptides are crucial for efficient inhibition [41,42,44,47], as aggregation of the peptides in solution could abolish anti-viral activity. Interestingly, two reports demonstrate that N-HR-derived peptides are also active [40,41], while others found that only C-HR-derived peptides have anti-SARS activity [42,47]. It is noteworthy that the reason for the poor inhibitory activities of N-HR-derived peptides in other viruses is contributed to their tendency to aggregate in solution, suggesting that, similar to the C-HR-derived peptides, the exact sequence boundaries of the N-HR-derived peptides are important.

The main advantage of fusion inhibitors is their immediate discovery as they are simply the corresponding fragments of a known protein. However, their drawbacks as therapeutic peptides are lack of oral bioavailability and high production costs. Auspiciously, SARS is a respiratory syndrome, thus, peptidic fusion inhibitors could be given by inhalation. This approach was applied successfully in RSV-infected mice [48].

SARS-CoV enzymes as targets for antivirals

To serve as drug targets, viral proteins should fulfill two criteria: (i) they should be essential for the viral life cycle; and (ii) they should exhibit low similarity to host proteins. SARS-CoV genome analysis was performed to predict its proteome [49], and three viral enzymes were suggested as targets for drug discovery: the helicase, the RNA-dependent RNA polymerase and the main protease. These enzymes are crucial for replication, transcription, translation and post-translational polyprotein processing (Box 1). Assay development based on these three SARS-CoV target enzymes was initiated [50–52], thus paving the way for high-throughput in vitro screening approaches to identify candidate inhibitors in compound libraries.

Other approaches

The traditional and, in many cases, the most cost-efficient way of dealing with viruses has been through vaccines. The logic of vaccine development against SARS-CoV emerges from the combination of several findings: (i) re-infection with SARS-CoV causes only mild illness; (ii) SARS is fatal mainly to old people who have difficulty in producing good humoral and cellular immune responses; and (iii) the case fatality ratio of SARS ranges from 0–50% depending on the age group affected, with an overall
estimates of case fatality of 14–15% (WHO website). Thus, most infected individuals recover from SARS. Furthermore, the success of a vaccine against other mammal-infective coronaviruses is encouraging [53,54]. Modern antiviral vaccine development depends heavily on the viral genome. The availability of the human genome, together with the recent sequencing of the SARS-CoV genome, greatly increases the probability of success of vaccine development. The full-length spike glycoprotein of SARS-CoV, expressed by vaccinia virus, induces binding and neutralizing antibody and protectively immunizes mice against a subsequent infection with SARS-CoV [55]. In addition, DNA vaccine encoding the spike glycoprotein of the SARS-CoV induces T-cell and neutralizing antibody responses, as well as protective immunity, in a mouse model [56].

The discovery of RNAi raises many hopes regarding antiviral strategies and carries the promise of a shortcut in the drug discovery process. Usually, target discovery is followed by exhaustive HTS and/or structure-based screening of many thousands of compounds in the hope that some of them will efficiently bind to the target. Theoretically, with small-interfering RNA (siRNA) as a drug, the course from target to drug is much shorter. Encouraging results in mice were obtained using an RNAi-based therapy against hepatitis B virus (HBV): transfection with plasmids expressing short hairpin RNAs (shRNAs) homologous to HBV mRNAs effectively inhibited replication initiation in cultured cells and mice liver, showing that such an approach could be useful in the treatment of viral diseases [57]. Currently, there are attempts to use siRNA as anti-SARS drugs, but they are still in preliminary in vitro stages [58-60]. The application of this relatively new technology to therapeutics faces several safety and technical issues, including delivery of the RNA molecule into the virus-infected cells and the activation of interferon system [61,62].

The challenges ahead...

SARS-CoV reminds us that viral infections are a global threat. It is vital that the scientific community acquire the ability to develop anti-viral therapy promptly. We can be encouraged by the remarkable speed with which the global community acted in a coordinated research effort to investigate SARS-CoV. Immediately after the last nucleotide of the SARS-CoV genome was verified, the sequence was distributed through the internet to the worldwide scientific community. Among the genomic-based approaches that followed, inhibitors of the viral-induced membrane fusion seem the most promising.

The mutation rate of SARS-CoV is much slower than that of HIV-1 and is among the lowest of RNA viruses [63,64]. However, viral resistance will be an obstacle. The solution could lie in the use of a drug cocktail, combining antiviral drugs with different modes of action (e.g. protease and polymerase inhibitors), to lower the chances for drug-resistant viruses to arise. In addition, drug cocktails are beneficial when the optimal dose of a drug, given as a mono-therapy, is toxic – then, combining drugs with distinct modes of action, in sub-optimal doses, might alleviate toxicity issues. Moreover, the recent advancement in the understanding of HIV entry into its host cell revealed an opportunity for synergism, based on the molecular mechanism of viral entry. Drugs that inhibit the interaction between CCR5 and the CD4-envelope complexes enhance the efficiency of HIV fusion inhibitors by elongating the exposure time of their target site. The timescale similarity of the SARS-CoV fusion process to that of HIV is encouraging. Hopefully, future identification and characterization of SARS-CoV receptors will open a way for an efficient antiviral strategy, by synergistically combining viral entry inhibitors.

Within a few months, scientists have managed to leverage the technological advances of the past 20 years of anti-AIDS research into an unprecedented antiviral campaign against SARS (Figure 3). SARS served as a test tube for novel approaches developed following the AIDS epidemic. The current SARS epidemic was finally contained, yet quick development of antivirals is still high priority. Today, we are closer than ever to achieving therapeutic solutions for a viral epidemic shortly after viral outbreak.

Acknowledgements

We thank L. Rychlewski, A. Wool, E. Eisenberg, N. Rabbie, A. Toporik, M. Olshansky and S.G. Pieszajovich for critical reading of the manuscript. We are also grateful to artist R. Lieber for capturing the central idea of the article with her illustration.
References

1. Ksiazek, T.G. et al. (2003) A novel coronavirus associated with severe acute respiratory syndrome. N. Engl. J. Med. 348, 1953–1966
2. Drosten, C. et al. (2003) Identification of a novel coronavirus in patients with severe acute respiratory syndrome. N. Engl. J. Med. 348, 1967–1976
3. Peiris, J.S. et al. (2003) Coronavirus as a possible cause of severe acute respiratory syndrome. Lancet 361, 1319–1325
4. Vabret, A. et al. (2003) An outbreak of coronavirus OC43 respiratory infection in Normandy, France. Clin. Infect. Dis. 36, 985–989
5. Marra, M.A. et al. (2003) The Genome sequence of the SARS-associated coronavirus. Science 300, 1399–1404
6. Rota, P.A. et al. (2003) Characterization of a novel coronavirus associated with severe acute respiratory syndrome. Science 300, 1394–1399
7. Sainz, B., Jr et al. (2004) Interferon-beta and interferon-gamma synergistically inhibit the replication of severe acute respiratory syndrome-associated coronavirus (SARS-CoV). Virology 329, 11–17
8. Fujii, T. et al. (2004) Current concepts in SARS treatment. J. Infect. Chemother. 10, 1–7
9. Barre-Sinoussi, F. et al. (1983) Isolation of a T-lymphotropic retrovirus from a patient at risk for acquired immune deficiency syndrome (AIDS) from patients with AIDS and at risk for AIDS. Science 220, 868–871
10. Gallo, R.C. et al. (1984) Frequent detection and isolation of cytopathic retroviruses (HTLV-III) by attenuated vaccinia virus protectively of pore formation. N. Engl. J. Med. 329, 1319–1325
11. Matthews, T. et al. (1996) CC CKR5: a RANTES, MIP-1alpha, MIP-1beta receptor as a fusogenic mechanism for macrophage-tropic HIV-1. Science 272, 1955–1958
12. Alkhatib, G. et al. (1996) CC CRKS: a RANTES, MIP-1alpha, MIP-1beta receptor as a fusion cofactor for envelope/coreceptor affinity, receptor density, and function. Proc. Natl. Acad. Sci. U. S. A. 93, 6231–6236
13. Blumenthal, R. et al. (1996) Dilation of the envelope hemagglutinin fusion pore revealed by the kinetics of individual cell-cell fusion events. J. Cell Biol. 135, 63–71
14. Mittal, A. et al. (2003) Kinetically differentiating hemagglutinin-mediated membrane fusion as a function of technique. Anal. Biochem. 305, 145–152
15. Ng, M.L. et al. (2003) Early events of SARS coronavirus infection in vero cells. J. Med. Virol. 71, 323–331
16. Klatzmann, D. et al. (2004) Structure-based discovery of a novel angiotensin-converting enzyme 2 inhibitor. Hypertension 44, 903–906
17. Drosten, C. et al. (2004) A 193-amino acid fragment of the SARS coronavirus S protein efficiently binds angiotensin-converting enzyme 2. J. Biol. Chem. 279, 3197–3201
18. Feng, Y. et al. (2003) Cloaked hemagglutinating antigen for winter dysentery coronavirus vaccine enriched with hemagglutinating antigen for winter dysentery coronavirus. J. Virol. 77, 6270–6273
19. Vang, K.S. et al. (2004) The CD4 (T4) receptor for severe acute respiratory syndrome human immunodeficiency virus type 1 fusion, infection, and entry inhibitor sensitivity. J. Virol. 78, 5476–5485
20. Nong, S.K. et al. (2004) Unique and conserved features of genome and proteome of SARS-coronavirus group 2 lineage. J. Mol. Biol. 331, 991–1004
21. Skeel, E.J. et al. (2003) Unique and conserved features of genome and proteome of SARS-coronavirus, an early split-off from the coronavirus group 2 lineage. J. Mol. Biol. 331, 991–1004
22. Ksiazek, T.G. et al. (2003) A novel coronavirus associated with severe acute respiratory syndrome. N. Engl. J. Med. 348, 1953–1966
23. Li, W. et al. (2003) Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus. Nature 426, 450–454
24. Sui, J. et al. (2004) Potent neutralization of severe acute respiratory syndrome (SARS) coronavirus by a human mAb to S1 protein that blocks receptor association. Proc. Natl. Acad. Sci. U. S. A. 101, 2536–2541
25. Mathews, T. et al. (2004) Structure-based discovery of a novel angiotensin-converting enzyme 2 inhibitor. Hypertension 44, 903–906
26. Nong, S.K. et al. (2004) A 193-amino acid fragment of the SARS coronavirus S protein efficiently binds angiotensin-converting enzyme 2. J. Biol. Chem. 279, 3197–3201
27. Jeffers, S.A. et al. (2004) CD209L (L-SIGN) is a receptor for severe acute respiratory syndrome coronavirus. Proc. Natl. Acad. Sci. U. S. A. 101, 15748–15753
28. Gallo, S.A. et al. (2003) The HIV Env-mediated fusion reaction. Biochim. Biophys. Acta 1614, 36–50
29. Reeves, J.D. et al. (2002) Sensitivity of HIV-1 to entry inhibitors correlates with envelope/coreceptor affinity, receptor density, and fusion kinetics. Proc. Natl. Acad. Sci. U. S. A. 99, 16249–16254
30. Reeves, J.D. et al. (2004) Impact of mutations in the coreceptor binding site on human immunodeficiency virus type 1 fusion, infection, and entry inhibitor sensitivity. J. Virol. 78, 5476–5485
31. Tremblay, C.L. et al. (2002) Anti-human immunodeficiency virus interactions of SCH-C (SCH 351125), a CCR5 antagonist, with other antiretroviral agents in vitro. Antimicrob. Agents Chemother. 46, 1336–1339
32. Tremblay, C.L. et al. (2000) Strong synergy between the fusion inhibitor T-20 and PRO 542 and T-20 are potently synergistic in blocking virus-cell and cell-cell fusion. Proc. Natl. Acad. Sci. U. S. A. 101, 8709–8714
33. Pastey, M.K. et al. (2000) A RhoA-derived peptide inhibits syncytium formation induced by respiratory syncytial virus and parainfluenza virus type 3. Nat. Med. 6, 35–40
34. Snijder, E.J. et al. (2003) Unique and conserved features of genome and proteome of SARS-coronavirus, an early split-off from the coronavirus group 2 lineage. J. Mol. Biol. 331, 991–1004
35. Chen, Y. et al. (2003) Mechanisms and enzymes involved in SARS coronavirus genome expression. J. Gen. Virol. 84, 2305–2315
36. Tannier, J.A. et al. (2003) The seve acute respiratory syndrome (SARS) coronavirus NTPase/helicase belongs to a distinct class of 5’ to 3’ viral helicases. J. Biol. Chem. 278, 39578–39582
37. Wu, C.Y. et al. (2004) Small molecules targeting severe acute respiratory syndrome human coronavirus. Proc. Natl. Acad. Sci. U. S. A. 101, 10012–10017
38. Koonen, M.J. et al. (1999) Immunogenic peptide comprising a mouse hepatitis virus A59 B-cell ligand and an influenza virus T-cell epitope protects against lethal infection. J. Virol. 64, 6270–6273
39. Takamura, K. et al. (2002) Field study of bovine coronavirus vaccine enriched with hemagglutinating antigen for winter dysentery in dairy cows. Can. J. Vet. Res. 66, 278–281
40. Bish, H. et al. (2004) Severe acute respiratory syndrome coronavirus spike protein expressed by attenuated vaccinia virus protectively
Reviews

65 In the recent review published by Nassar et al. in Drug Discovery Today (Improving the decision-making process in the structural modification of drug candidates: enhancing metabolic stability, Vol. 9, Issue 23, 1 December 2004, Pages 1020–1028) an important literature citation was omitted from the published reference list. The details of this article, including a weblink to a free article download, are provided below. The editorial team of Drug Discovery Today would like to apologise for this omission.

Metabolism-driven optimization of pharmacokinetics

Current Drug Discovery, May 2004, Pages 17–22

Alan J. Henderson and Peter R. Guzzo

http://www.currentdrugdiscovery.com/2004/may.html