Research Article

The value of magnetic resonance imaging and ultrasonography (MRI/US)-fusion biopsy in clinically significant prostate cancer detection in patients with biopsy-naïve men according to PSA levels: A propensity score matching analysis

Hye J. Byun, Teak J. Shin, Wonho Jung, Ji Y. Ha, Byung H. Kim*, Young H. Kim

A Department of Urology, Keimyung University School of Medicine, Dongsan Hospital, Daegu, South Korea
b Department of Radiology, Keimyung University School of Medicine, Dongsan Hospital, Daegu, South Korea

A R T I C L E I N F O

Article history:
Received 21 July 2021
Received in revised form 3 October 2021
Accepted 26 October 2021
Available online 4 November 2021

Keywords:
Magnetic resonance imaging
Prostate cancer
Prostate-specific antigen

A B S T R A C T

Objectives: To evaluate the detection rate of clinically significant prostate cancer (csPCa) in Magnetic resonance imaging and ultrasonography (MRI/US) fusion biopsy in patients with biopsy-naïve men for varying prostate-specific antigen (PSA) levels. Since MRI can efficiently detect csPCa compared to standard transrectal ultrasound (TRUS) guided biopsy; however, the optimal PSA threshold for its use is unclear.

Materials and methods: We retrospectively reviewed those who underwent MRI/US-fusion and standard biopsy from January 2016 to June 2018. Patients were divided into three groups: PSA < 4, 4-10, >10 ng/mL. Propensity scoring was performed to balance the characteristics of the different biopsy groups, and the detection rate of csPCa was compared.

Results: Data from a total of 670 males were included in the analysis (standard TRUS, n = 333; MRI/US fusion, n = 337). Prior to matching, patients who received MRI/US-fusion biopsy had lower prostate volume. Propensity score matching balanced this characteristic and generated a cohort comprising 195 patients from each group. In the matched cohort, patients with PSA 4-10 ng/mL had a significantly increased risk of csPCa by MRI/US-fusion vs. standard biopsy (35.0% vs. 26.6%, P = 0.033). However, patients with PSA < 4 ng/mL had csPCa found by MRI/US-fusion versus standard biopsy (12.0% vs. 16.0%, P = 0.342), whereas, patients with PSA > 10 ng/mL had csPCa found by MRI/US-fusion versus standard biopsy (78.0% vs. 80.0%, P = 0.596). In multivariate logistic analysis among patients with PSA 4-10 ng/mL, MRI/US-fusion biopsy (odds ratio: 2.46, 95% confidence interval = 1.31-4.60, P = 0.005) were significantly associated with a detection of csPCa.

Conclusions: Detection of csPCa by MRI/US-fusion biopsy is more efficient in patients with biopsy-naïve men with PSA 4-10 ng/mL. However, standard TRUS biopsy may identify csPCa in patients with PSA < 4 ng/mL and > 10 ng/mL, emphasizing the importance of performing a standard biopsy in conjunction with MRI/US-fusion biopsy in such populations.

© 2022 Asian Pacific Prostate Society. Publishing services by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
targeted biopsies [3-6]. However, multiparametric MRI (mpMRI) is expensive and not commonly used in a clinical setting. Instead, a simplified biparametric MRI (bpMRI) protocol, comprising of only T2-weighted and diffusion-weighted imaging, has been proposed for the diagnosis of csPCa, [7, 8].

Therefore, we conducted MRI/US-fusion biopsy in patients with biopsy-naïve men with elevated PSA levels and compared the results of standard TRUS biopsy (TRUSbx), and we further compared the detection rate of csPCa in males with PSA in the gray zone in order to minimize overdiagnosis and unnecessary treatment.

2. materials and Methods

2.1. Study Subjects

We retrospectively reviewed the medical records of a total of 670 males that underwent either MRI/US-fusion (n = 337) biopsy or standard TRUSbx (n = 333) at the Keimyung University Dongsan Medical Center, from January 2016 to June 2018 (Fig. 1). The Institutional Review Board approved this study (DSMC 2020-11-033). We compared the following clinical variables: age (years), PSA (ng/mL), prostate volume (PV) (cc), Gleason score (GS, the greatest grade), clinical T stage, and lymph node metastasis and distant metastasis. All histopathological biopsies were reported (core length, cancer length, and GS) by a pathologist with at least 10 years of experience in genitourinary pathology. We defined csPCa with a GS 3+4 or greater [9]. The patients were then divided into three groups as follows; PSA <4 ng/mL, 4–10 ng/mL, and >10 ng/mL.

2.2. MRI protocol

The bpMRI examination was performed using a 3.0-T scanner with a 32-channel phased-array coil (Ingenia 3T CX Quasar Dual; Philips, The Netherlands). The Prostate Imaging Reporting and Data System version 2.1 (PI-RADSv2.1) scores were assigned by a radiologist (with at least 3 years of prostate MRI experience) on a scale from 1 to 5 [10]. In a case of a suspicious lesion on MRI (PI-RADS 3-5), a targeted biopsy (TBx) was conducted (from one to three cores) using the MRI-TRUS fusion software-assisted system (BioJET®, D&K Technologies, Barum, Germany) followed by six plus six systemic biopsy (SBx) cores [11]. All biopsies were performed by an experienced radiologist through a transrectal route with an enema and prophylactic antibiotics.

2.3. Statistical Analysis

The propensity score matching was performed to adjust for significant imbalances in baseline characteristics between two biopsy methods. This approach can be applied to minimize selection bias in observational data [12]. Categorical variables were compared between the groups using the chi-square, Fisher’s exact test, or linear-by-linear association, where appropriate. One-way analysis of variance or Student’s t-test was used for continuous variables. Binary logistic regression was used to estimate the odds of csPCa among males with PSA 4–10 ng/mL. The probability of csPCa was modeled by the stepwise regression of the following four predetermined potential risk factors. The 95% profile likelihood ratio confidence intervals (95% CIs) were calculated for the adjusted odds ratios (ORs). All statistical analyses were performed using SPSS version 25.0 software (IBM, Armonk, NY, USA). P-values less than 0.05 were considered to be statistically significant.

3. Results

3.1. Subjects Characteristics

A total of 670 males were included in the analysis (MRI/US fusion, n = 337; standard TRUS, n = 333) (Fig. 1). Among them, 348 (51.9%) were diagnosed with PCa, and 258 (38.5%) were diagnosed with csPCa. Details of descriptive statistics for the entire cohort (n = 670), as well as the propensity score-matched cohort (n = 390), are summarized in Table 1. In the entire cohort, there was a significant imbalance in prostate volume between the two groups. Mean PV in the standard TRUSbx group was higher than that of the MRI/US-fusion biopsy group (50.2 vs. 45.0; P = 0.002). Propensity score matching resulted in a cohort of 195 patients in each group. In the matched cohorts, there were no between-group differences with respect to patient baseline characteristics.

![Fig. 1. Flowchart of inclusion criteria of the final patient cohort.](image-url)
3.2. Detection of csPCa Among Patients with PSA level

Table 2 shows the detection rate of PCa and csPCa in the entire and matched cohort. The overall detection rate of csPCa of MRI/US-fusion versus standard TRUSbx groups was no significantly different in the unmatched (39.8% vs. 37.2%, \(P = 0.502 \)) and matched cohort (43.0% vs. 38.9%, \(P = 0.163 \)). In the matched cohort, in males with PSA 4–10 ng/mL, the detection rate of csPCa in the MRI/US-fusion biopsy was higher compared to the standard biopsy group (35.0% vs. 26.6%, \(P = 0.033 \)). The detection rate of csPCa in the standard biopsy group was not statistically different compared to the MRI/US-fusion group in males with PSA <4 ng/mL (12.0% vs. 16.0%, \(P = 0.342 \)) and in males with PSA >10 ng/mL (78.0% vs. 80.0%, \(P = 0.596 \)) (Fig. 2).

Table 3 summarizes the results of univariate and multivariate analysis for the csPCa in males with PSA 4–10 ng/mL. In a multivariate analysis, older age (OR = 1.10, 95% CI = 1.06–1.15, \(P < 0.001 \)), smaller PV (OR = 0.96, 95% CI = 0.93–0.98, \(P < 0.001 \)), and MRI/US-fusion biopsy (OR = 2.46, 95% CI = 1.31–4.60, \(P = 0.005 \)) were significantly associated with csPCa.

3.3. Presence of Suspicious Lesions on bpMRI

Subgroup analyses were performed to identify the presence of suspicious lesions on bpMRI. Among subjects that underwent

Characteristics	Standard TRUS (n = 333)	MRI-fusion (n = 337)	P-value	Standard TRUS (n = 195)	MRI-fusion (n = 195)	P-value
Mean age, yr (SD)	68.5 (8.3)	67.9 (8.9)	0.339	68.2 (8.6)	68.1 (8.5)	0.899
Mean PSA, ng/mL (SD)	45.1 (31.5)	35.6 (15.0)	0.619	40.3 (24.6)	40.2 (20.7)	0.990
Mean PV, cc (SD)	50.2 (23.7)	45.0 (19.3)	0.002	47.6 (21.7)	47.5 (17.3)	0.946
Mean total biopsy core, n	12.3 (1.4)	13.0 (2.1)	<0.001	12.3 (1.3)	12.7 (1.6)	0.502
PCA diagnosis, n (%)	184 (55.3)	164 (48.7)	0.088	112 (57.4)	103 (52.8)	0.089
Gleason score, n (%)			0.744			
6	60 (18.0)	30 (8.9)		41 (21.0)	28 (14.3)	0.642
7	47 (14.1)	53 (15.7)		38 (19.4)	39 (20.0)	
8-10	77 (23.1)	81 (24.0)	0.340	33 (16.9)	36 (18.4)	0.678
Clinical T stage, n (%)						
T1	51 (15.3)	32 (9.5)		25 (12.8)	20 (10.2)	0.207
T2	91 (27.3)	94 (27.9)		57 (29.2)	58 (29.7)	
T3 – T4	42 (12.6)	38 (11.3)	0.371	30 (15.3)	25 (12.8)	0.240
Lymph node metastases, n (%)	19 (5.7)	25 (7.4)		10 (5.1)	15 (7.6)	0.207
Distant metastases, n (%)	21 (6.3)	20 (5.9)	0.841	5 (2.5)	6 (3.0)	0.657
csPCa, n (%)	124 (37.2)	134 (39.8)	0.502	76 (38.9)	84 (43.0)	0.163

PSA, prostate-specific antigen; PV, prostate volume; TRUS, transrectal ultrasonic; MRI, magnetic resonance image; PCa, prostate cancer; csPCa, clinically significant prostate cancer.

3.2. Detection of csPCa Among Patients with PSA level

Table 2 shows the detection rate of PCa and csPCa in the entire and matched cohort. The overall detection rate of csPCa of MRI/US-fusion versus standard TRUSbx groups was no significantly different in the unmatched (39.8% vs. 37.2%, \(P = 0.502 \)) and matched cohort (43.0% vs. 38.9%, \(P = 0.163 \)). In the matched cohort, in males with PSA 4–10 ng/mL, the detection rate of csPCa in the MRI/US-fusion biopsy was higher compared to the standard biopsy group (35.0% vs. 26.6%, \(P = 0.033 \)). The detection rate of csPCa in the standard biopsy group was not statistically different compared to the MRI/US-fusion group in males with PSA <4 ng/mL (12.0% vs. 16.0%, \(P = 0.342 \)) and in males with PSA >10 ng/mL (78.0% vs. 80.0%, \(P = 0.596 \)) (Fig. 2).

Table 3 summarizes the results of univariate and multivariate analysis for the csPCa in males with PSA 4–10 ng/mL. In a multivariate analysis, older age (OR = 1.10, 95% CI = 1.06–1.15, \(P < 0.001 \)), smaller PV (OR = 0.96, 95% CI = 0.93–0.98, \(P < 0.001 \)), and MRI/US-fusion biopsy (OR = 2.46, 95% CI = 1.31–4.60, \(P = 0.005 \)) were significantly associated with csPCa.

3.3. Presence of Suspicious Lesions on bpMRI

Subgroup analyses were performed to identify the presence of suspicious lesions on bpMRI. Among subjects that underwent
PSA, prostate-specific antigen; TRUS, transrectal ultrasound; MRI, magnetic resonance image; PCa, prostate cancer; csPCa, clinically significant prostate cancer.

Table 4
The association between systemic and targeted biopsy in MRI-fusion biopsy ($n = 337$)

MRI (n = 337)	Suspicious cancer lesion (−) (n = 180)	Suspicious cancer lesion (+) (n = 157)	
Total PCa, n (%)	87 (48.3)	77 (49.0)	
csPCa, n (%)	63 (35)	71 (45.2)	
PSA category			
PSA <4 ng/mL (n = 54)			
Total PCa, n (%)	9/29 (31.0)	6/25 (24.0)	
csPCa, n (%)	2/29 (6.9)	4/25 (16.0)	
PSA 4–10 ng/mL (n = 196)			
Total PCa, n (%)	44/112 (39.3)	39/84 (46.4)	
csPCa, n (%)	28/112 (25.0)	35/84 (41.7)	
PSA >10 ng/mL (n = 87)			
Total PCa, n (%)	34/39 (87.2)	32/48 (66.7)	
csPCa, n (%)	33/39 (84.6)	32/48 (66.7)	

P-value: 0.565, 0.399, 0.317, 0.013, 0.042, 0.055

PSA, prostate specific antigen; TRUS, transrectal ultrasound; MRI, magnetic resonance image; PCa, prostate cancer; csPCa, clinically significant prostate cancer.
For males with PSA <4 ng/mL, there was no significant difference between the method of biopsy for csPCA. For this PSA level, the detection rate of csPCA was only 11.8% (15/108), and therefore, MRI/US-fusion biopsy did not affect the results. For males with PSA >10 ng/mL, the detection rate of PCa and csPCA in the standard biopsy group was higher compared to the TBx; SBx was sufficient for diagnosing of PCa in patients with PSA >10 ng/mL. For this PSA level, the detection rate of csPCA was 78.4% (135/172), and therefore, MRI-fusion biopsy did not affect the results. Thereby, we suggest that TRUS-guided systemic random biopsy is sufficient for males with PSA <4 ng/mL or >10 ng/mL.

There are several limitations to our study. First, this is a retrospective, single-center study that may lead to a selection bias. Adjustment for possible confounding factors was made by propensity score matching, although it is possible that unknown confounding factors may persist. Further multicenter large cohort studies are required to confirm our findings. Second, the actual detection rates of csPCA may have been underestimated compared to studies using whole-gland prostatectomy or template mapping biopsy. Third, data were interpreted using PI-RADS v2 on MRI by an experienced radiologist; it is also possible that one person interpreted the MRI findings, and there was bias in that interpretation.

5. Conclusion

In conclusion, we report that the MRI/US-fusion biopsy has a high accuracy for detecting csPCA compared to standard TRUSbx in patients with biopsy-naïve men with PSA levels in the gray zone of 4–10 ng/mL. This technique, considering the good performance and cost-effectiveness of the bpMRI, is a good option for initial prostate biopsy in a clinical setting.

Author’s Contribution

Hye Jin Byun: Project development, Data Collection, Manuscript writing. Teak Jun Shin: Project development, Data analysis. Wonho Jung: Data collection. Ji Yong Ha: Data collection. Byung Hoon Kim: Project development, Manuscript editing. Young Hwan Kim: Project development.

Conflicts of interest

There is no conflict of interest.

References

1. Sung H, Feral J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. Ca – Cancer J Clin 2021;71(3):205–249.
2. Dwivedi DK, Kumar R, Dwivedi AK, Bora CS, Thuluk S, Sharma S, et al. Pre-biopsy multiparametric MRI-based risk score for predicting prostate cancer in biopsy-naïve men with prostate-specific antigen between 4-10 ng/mL. J Magn Reson Imag 2018;47(5):1227–1236.
3. Ahmed HU, El-Shater Bosaily A, Brown LC, Gabe R, Kaplan R, Parmar MK, et al. Diagnostic accuracy of multi-parametric MRI and TRUS biopsy in prostate cancer (PROMIS): a paired validating confirmatory study. Lancet 2017;389(10071):815–822.
4. Kasivisvanathan V, Rannikko AS, Boshghi M, Panebianco V, Mynderse LA, Vaarala MI, et al. MRI-targeted or standard biopsy for prostate-cancer diagnosis. N Engl J Med 2018;378(19):1767–1777.
5. Rouviere O, Puech P, Renard-Penna R, Claudon M, Roy C, Mege-Lechevallier F, et al. Use of prostate systematic and targeted biopsy on the basis of multi-parametric MRI in biopsy-naïve patients (MRI-FIRST): a prospective, multicentre, paired diagnostic study. Lancet Oncol 2019;20(1):100–109.
6. van der Leeft M, Cornel E, Israel B, Hendriks R, Padhani AR, Hoogenboom M, et al. Head-to-head comparison of transrectal ultrasound-guided prostate biopsy versus multiparametric prostate resonance imaging with subsequent magnetic resonance-guided biopsy in biopsy-naïve men with elevated prostate-specific antigen: a large prospective multicentre clinical study. Eur Urol 2019;75(4):570–578.
7. Wei CG, Chen T, Zhang YY, Pan P, Dai CY, Yu HC, et al. Erratum to “Biparametric prostate MRI and clinical indicators predict clinically significant prostate cancer in men with "gray zone" PSA levels” [Eur. J. Radiol. 127 (2020) 108977]. Eur J Radiol 2020;129:101925.
8. Cho J, Ahn H, Hwang S, Lee HJ, Choi G, Byun SS, et al. Biparametric versus multiparametric magnetic resonance imaging of the prostate: detection of clinically significant cancer in a perfect match group. Prostate Int 2020;8(4):145–151.
9. Mehralivand S, Bednarova S, Shih JH, Mertan PV, Gaur S, Merino MJ, et al. Prospective evaluation of PI-RADS version 2 using the International Society of Urological Pathology Prostate Cancer Grade Group System. J Urol 2017;198(3):583–590.
10. Barrett T, Rajesh A, Rosenkrantz AB, Choyke PL, Turkbey B. PI-RADS version 2.1: one small step for prostate MRI. Clin Radiol 2019;74(11):841–852.
11. Twees S, Peters I, Tieymeyer A, Peperhove M, Hartung D, Pertsch S, et al. Evaluation of MRI/ultrasound fusion-guided prostate biopsy using transrectal and transperineal approaches. Biomed Res Int 2017;2017:2176471.
12. D’Agostino Jr RB, D’Agostino Sr RB. Estimating treatment effects using observational data. JAMA 2008;299(19):2480–2487.
13. Chiu PK, Ng CF, Semjonow A, Zhu Y, Vincendeau S, Houlgatte A, et al. A multicentre evaluation of the role of the prostate health index (PHI) in regions with differing prevalence of prostate cancer: adjustment of PHI reference ranges is needed for European and Asian settings. Eur Urol 2019;75(4):558–561.
14. Wysock J, Becher E, Persily J, Loeb S, Lepor H. Concordance and performance of 4Kscore and SelectMDx for informing decision to perform prostate biopsy and detection of prostate cancer. Urology 2020;141:119–124.
15. Tutrone R, Donovan MJ, Torkler P, Tadigotla V, McLain T, Noehrholm M, et al. Clinical utility of the exosome based ExoDx prostate(intelliScore) EPI test in men presenting for initial biopsy with a PSA 2-10 ng/mL. Prostate Cancer Prostatic Dis 2020.
16. Rodriguez SVM, Garcia-Perdomo HA. Diagnostic accuracy of prostate cancer antigen 3 (PCA3) prior to first prostate biopsy: A systematic review and meta-analysis. Can Urol Assoc J 2020;14(5):E214–9.
17. Wojno KJ, Costa FJ, Cornel RJ, Small JD, Pasin E, Van Criekinge W, et al. Reduced rate of repeated prostate biopsies observed in ConfirmMDx clinical utility field study. Am Health Drug Bene 2014;73(7):129–34.
18. Lee SM, Liyanage SH, Wulansingh W, Wolfe K, Carr T, Younis C, et al. Toward an MRI-based nomogram for the prediction of transperineal prostate biopsy outcome: a physician and patient decision tool. Urol Oncol 2017;35(11):564.e11–e18.
19. Boesen L, Thomsen FB, Norgaard N, Logager V, Balslev I, Bispbjerg R, et al. A predictive model based on biparametric magnetic resonance imaging and clinical parameters for improved risk assessment and selection of biopsy-naive men for prostate biopsies. Prostate Cancer Prostatic Dis 2019;22(4):609–616.
20. de Rooij M, Cieniien S, Witjes JA, Barentsz JO, Roos MVM, Gittes JP. Cost-effectiveness of magnetic resonance (MR) imaging and MR-guided targeted biopsy versus systematic transrectal ultrasound-guided biopsy in diagnosing prostate cancer: a modelling study from a health care perspective. Eur Urol 2014;66(3):430–436.
21. Al-Azab R, Toi A, Lockwood G, Kulkarni GS, Fleshner N. Prostate volume is a strong predictor of cancer diagnosis at transrectal ultrasound-guided prostate biopsy with prostate-specific antigen values between 2.0 and 9.0 ng/mL. J Urol 2007;178(1):103–107.
22. Polanec SH, Bickel H, Wengert CJ, Arnoldner M, Clausner P, Susani M, et al. Can the addition of clinical information improve the accuracy of the PI-RADS version 2 for the diagnosis of clinically significant prostate cancer in positive MRI? Clin Radiol 2020;75(2):157 e1–e7.
23. Cuocolo R, Stanzione A, Rusconi C, Petretta M, Ponsiglione A, Fusco F, et al. PSA-density does not improve bi-parametric prostate MR detection of prostate cancer in a biopsy-naive patient population. Eur J Radiol 2018;104:64–70.