Typology of Breeding Sites and Species Diversity of Culicids (Diptera: Culicidae) in Akanda and its Environ (North West, Gabon)

Richard Pamba, Aubin A. Koumba, Christophe R. Zinga-Koumba, Silas L. Sevidzem, Alexis Mbouloungou, Lauriane L. Yacka, Luc S. Djogbenou, Jacques F. Mavoungou, and Bertrand M’Batchi

The typology of larval habitats and the species diversity of culicids were conducted in the Akanda and its environs by collecting mosquito larvae and nymphs present in water collections, from May to June 2019. A total of 334 breeding sites of which 158 positive (47.31%) and 176 negative (52.69%) were identified. Water storage media such as: barrels (n = 95; 28.44%), puddles (n = 73; 21.86%), ponds (n = 47; 14.07%), tires (n = 31; 9.28%) and drains (n = 22; 6.59%) were the most frequent types of breeding sites. In addition, 1 549 mosquito larvae were collected, of which 59.39% belong to the sub-family Culicinae and 40.61% belong to the sub family Anophelinae. After rearing, 790 adults were obtained and divided into 8 species, including Aedes albopictus, Aedes aegypti, Anopheles gambiae s.l., Anopheles pharaonis, Culex tigripes, Culex decens, Culex quinquefasciatus, and Mansonia uniformis. Although preliminary, this information on the culicid fauna could be useful for the implementation of appropriate control strategies in the study area. Likewise, the presence of Anopheles gambiae s.l. in this area requires that additional studies on its resistance to insecticides be conducted as recommended by the World Health Organization.

Keywords: Typology, breeding sites, species diversity, mosquitoes, Akanda, Gabon

I. INTRODUCTION

Malaria remains by far the most widespread parasitic disease in the intertropical world, and particularly in sub-Saharan Africa [1,2]. According to the World Health Organization (WHO), malaria affected nearly 228 million people worldwide in 2019 compared to 219 million in 2017 with 405,000 human losses [3]. Among the deaths attributable to this parasitosis, 67% (272,000) involved children under the age of 5 (WHO, 2019). In addition, Africa remains the continent most affected by this disease with 93% (213 millions) of malaria episodes and 94% of deaths [3].

Besides this parasitosis, arboviruses such as dengue, chikungunya, yellow fever and Zika fever, threaten 831 millions people worldwide, including 70% of the African population [4]. These diseases represent a major scourge to the health of human populations [5], [6], [7].

In Gabon, vector-borne diseases represent public health problems [8, 9]. Referring to the National Health Information System (NHIS), malaria was the cause of 153,666 cases of consultation and 160 deaths recorded in health facilities in 2017 [10]. According to Leroy et al. [11], the 2007 Chikungunya epidemic caused nearly 20,000 cases in the country.

Also, these diseases, notably malaria, appear as one of the main obstacles on economic development in Gabon with relatively high cases of death and associated school and professional absenteeism [12]. The fight against these vector-borne diseases is essentially based on the control of vector populations. Indeed, vector control is one of the effective
approaches to reduce the incidence of a disease in endemic areas. However, the effectiveness of this method requires an up-to-date entomological database. Indeed, the work conducted by Akono et al. [13] has shown that the establishment of an effective vector control method requires, for a given eco-climatic aspect, a good knowledge of the ecology of the vectors, in particular the identity and the biocology of the vector mosquitoes and the characterization of their breeding sites. However, such knowledge is not available in the majority of localities in Gabon.

It is in this context that a preliminary entomological survey was conducted in Akanda and its environs, located in a degraded forest area, at 30 km from the city of Libreville, capital of Gabon. This town, created in 2013, has been subject to a significant urban dynamics associated with an increase in population. The installation of infrastructures and the construction of new human dwellings have strongly modified the natural landscape of this locality thus causing important disturbances among the populations of vectors.

The purpose of this study was to identify the different types of mosquito breeding sites, to determine the species diversity of Culicidae and to characterize the larval breeding sites of these insects in Akanda and its surroundings.

II. MATERIALS AND METHODS

A. Study Area

This study was conducted from May to June 2019 (rainy season) in the city of Akanda (0 ° 30'06" N; 09 ° 30'00" E), a sub-urban area located in the northern periphery of the city of Libreville, capital of Gabon (Fig. 1). This area was declared as a municipality in 2013. Akanda covers an area of 45,482 hectares and is part of the departement du Komo-Mondah, in the province de l’Estuaire. It includes two boroughs divided into 15 districts [14]. There are several socio-economic activities including trading, sports, health, education, and tourism.

From a climatic point of view, Akanda has an equatorial climate, with humidity between 85 % and 100 % in the rainy season [15]. It is marked by an alternation of four seasons, namely: a short dry season (from December to January), a long rainy season (from February to May) with high rainfalls, a long dry season (from June to September) and a short rainy season (October to November). This area experiences heavy rainfall with nearly 2,000 to 3,800 mm on average per year [15]. The average annual temperature is 26 ° C [15]. At the topographic level, Akanda is characterized, as a whole, by a flat relief with a predominance of plains. It lays on an uneven oro-hydrographic complex, endowed with multiple hills and valleys crossed by numerous rivers in the estuaire du Komo river [15]. In addition, the Akanda area has diversified flora and fauna colonizing the coastal forests and mangroves of Pongara National Park, Akanda National Park, and the Raponda Walker Arboretum. The vegetation in this area is deeply threatened by the current urban extension. According to the 2013 General Population and Housing Census (GPHC), this city has about 34,548 inhabitants distributed unevenly [16].

B. Identification of Breeding Sites in the Study Area

Mosquito breeding sites were surveyed in several places in Akanda, including: Marseille Mveng-Ayong, Premier Campement Makwengue, Cap-Estérias, Sablière, Avorbam, Angondjé Centre Amissa, Cap Caravane, Entraco, and Okala. The choice of these sites was guided by their ecological profile and the structuring of their landscape. These surveys were conducted during the rainy season, from May to June 2019. The survey consisted of direct observation of the presence or not of the pre-imaginal stages of mosquitoes [17]. All breeding sites likely to contain immature stages of mosquitoes were geo-located using the Garmin GPSMAP 62st device [18]. Other information concerning the identified breeding sites (type of water collection, origin of the water, presence of larvae or nymphs of mosquitoes) was noted in order to better characterize them.

C. Sampling of Immature Stages of Mosquitoes

Mosquito larvae and nymphs were collected during the study period from the different sites chosen, using the "dipping" method [17], [19], [20]. Each sample was transferred to labeled trays, using 300 ml entomological pipettes. Subsequently, all the trays were put in coolers and transported to the insectarium of the Vector Ecology Laboratory (LEV) of the Research Institute in Tropical Ecology (IRET-CENEREST) for the rearing.

D. Rearing Of Mosquito Larvae and Pupae

In the laboratory, the different larvae collected were sorted and counted by sub-family (Anophelinea or Culicinae). They were then raised in plastic trays placed on the pailleasse and covered with a piece of mosquito net to avoid possible egg-laying of other mosquitoes and the escape of adult mosquitoes in case of emergence. These larvae were fed every day with fish food (Sera Vipagran) [21]. The water in each tray (the water from the original breeding sites) was changed once every three days to avoid death by asphyxiation of the larvae further to the decomposition of food.

In addition, all the nymphs obtained were sampled daily and placed in 0.25 l plastic cups containing water from the breeding sites. These cylindrical cups were placed in emergence cages covered with a mosquito net. The adult mosquitoes obtained from these nymphs were killed using an insecticide spray (Baygon) for their morphological identification.

E. Morphological Identification of Adult Mosquitoes

The adult mosquitoes that emerged from the nymphs were identified on the basis of the morphological criteria using a dissecting microscope and the taxonomic key of Central African mosquitoes by Baldacchino and Paupy [22], and the ORSTOM software for Culicidae identification.
F. Data Analysis

Data on breeding sites, larvae and adult mosquitoes were entered and organized in the Excel 2013 spreadsheet. This spreadsheet allowed us to calculate the numbers and percentages of adults and immature stages of mosquitoes, and to produce tables and graphs. Moreover, the GPS points of the study sites were integrated into ArcGIS 10.2 for the elaboration of the map of the study area.

III. RESULTS

A. Types of Breeding Sites in the Study Area

A total of 334 mosquito breeding sites divided into 24 types were identified during this study. Among the types of breeding sites encountered, we identified: barrels, puddles, ponds, tires, gutters, pits, tanks, pools, wells, tree holes, abandoned canoes, car carcasses, water-trays, boxes, abandoned lids, cans, bowls, pots, bath-tubes, cement bricks, jars, and car-prints (Fig. 2).

Fig. 2. Types of mosquito breeding sites in Akanda and its environs.

Among the identified breeding sites, barrels (n = 95; 28.44 %), puddles (n = 73; 21.86 %), ponds (n = 47; 14.07 %), tires (n = 31; 9.28 %), and channels (n = 22; 6.59 %) were the most numerous types of larval habitats (Fig. 2). The other types represented approximately 19.76% (n = 66) of the breeding sites listed in the study area. Most of these mosquito breeding places were temporary (n = 244), unclear (n = 205), and natural (n = 204) (Table 2).

Principal types of breeding sites	Percentage of breeding sites identified
Barrels	28.44%
Puddles	21.86%
Ponds	14.07%
Tires	9.28%
Channels	6.59%
Other	19.76%

Table 2: Characteristics of mosquito breeding sites in Akanda and its environs.

B. Positivity Of Mosquito Breeding Sites

Among the positive breeding sites recorded, 117 harbored Culicinae larvae (74.05%), 23 harbored Anophelinae (14.56%), and 18 were Culicinae+Anophelinae (11.39%) (Fig. 3).

Fig. 3. Proportion of breeding sites in Akanda and its environs.

C. Spatial Distribution Of Positive Breeding Sites

Of the 334 larval habitats identified, 158 (47.31%) were positive, while 176 (52.69%) were negative (Table 3). The maximum number of positive breeding sites identified were recorded at Ecole Nationale des Eaux et Forêts (ENEF) (n = 44) and Premier Campement (n = 36). The other districts registered less than 20 positive breeding sites and included Okala Carrière (n = 19), Mikoloungou (n = 18), Entraco-Stade de l’Amité (n = 15), Sablière (n = 11), Cap Caravane (n = 8), Cités Angondjé (n = 5), and Angondjé Village (n = 2) (Table 3).

Table 3: Distribution of breeding sites in the study area.

D. Abundance And Distribution Of Mosquito Larvae

During this study, 2,288 mosquito larvae were collected, including 1,659 individuals from Culicinae (72.51%) and 629 specimens of Anophelinae (27.49%) (Table 4). The Premier Campement was the study site that presented the highest number of larvae (n = 543), followed by the ENEF (n = 399) and that of Entraco-Stade de l’Amité (n = 300). The rest of the study sites recorded less than 200 larvae (Table 4).
TABLE 4: ABUNDANCE OF LARVAL POPULATIONS ACCORDING TO THE STUDY SITES

Study sites	Total number of larvae collected
Okala Carrière	380
Entraco-Stade de l’Amité	300
Sablière	163
Cap Caravane	150
ENEF	399
Premier Campement	543
Cités Angondjé	47
Angondjé village	198
Mikoloungou	108
Total	2,288

E. Species Richness Of Culicid Fauna

During this study, eight (8) mosquito species including Aedes albopictus, Aedes aegypti, Anopheles gambiae s.l., Anopheles pharoaensis, Culex tigripes, Culex decens, Culex quinqueducfasciatus, and Mansonia uniformis were identified (Table 5). All these species belonged to 2 subfamilies (Anophelinae and Culicinae) and to 4 genera (Aedes, Anopheles, Culex and Mansonia). The Anophelinae subfamily was represented by two species while the Culicinae subfamily was represented by 6 species (Table 5). The genera Anopheles and Culex were the most species-rich taxa (3 species). The other genera were represented by two species (Aedes) and one species (Mansonia) (Table 5).

TABLE 5: SPECIES RICHNESS OF THE CULICIDIAN FAUNA IN THE STUDY AREA

Sub-family	Genus	Species
Anophelinae	Anopheles	Anopheles gambiae s.l.
	Anopheles pharoaensis	
Culex	S1	2
	Aedes	Aedes aegypti
	Aedes	Aedes albopictus
Culex	S2	2
	Culex	Culex tigripes
	Culex	Culex decens
	Culex	Culex quinqueducfasciatus
S3	Mansonia	Mansonia uniformis
S4	Mansonia	1

F. Abundance And Distribution Of Adult Mosquitoes

After the rearing, nearly 1,182 adults were obtained including 444 belonging to the genus Culex (37.56%), 405 Aedes (34.26%), 322 Anopheles (27.24%) and 11 Mansonia (0.94%). Among these adult mosquitoes, 343 (29.02%) were collected from Okala Carrière, 277 (23.43%) from Entraco-Stade de l’Amité, 200 (16.92%) from ENEF, and 161 (13.62%) from the Sablière. In contrast, all other study sites recorded fewer than 61 adults (<5.16%) (Table 6).

IV. DISCUSSION

This study identified the different breeding sites of mosquitoes and species diversity in Akanda and its environs. In fact, nearly 334 breeding sites grouped into 24 types have been identified. This multiplicity of mosquito breeding sites could be linked to the uncontrolled urban extension, the non-application of adequate hygiene measures and the lack of sanitation in the immediate environment of human habitations in the Akanda area. Our results corroborate with those obtained by numerous authors who recorded in various rural and urban localities of Central Africa several mosquito breeding sites [13, 17]. Furthermore, these results are similar to those observed by several authors in certain villages and cities in Africa [23,24,25,26]. Moreover, the studies conducted by Koumba et al. [17] on mosquito larval habitats in the Mouila area, (southern Gabon) showed a large multiplicity of mosquito breeding sites.

The breeding sites of Culiciniae were the most abundant compared to the other types of positive larval habitats. Indeed, in recent years, the Akanda area, like all other African cities, has undergone various demographic as well as infrastructural changes, marked by anarchic urbanization and high rainfall. All these factors have an impact on the biocology of Culiciniae, thereby favorising the proliferation of the pre-imaginal stages of certain species of the genus Culex and Aedes [13]. Also, these results are similar to those obtained by Koumba et al. [26] in Mouila, in Gabon, and they highlighted that the occurrence of diversified breeding sites could be related to certain factors including demography and human activities.

The abundance of mosquitoes of the genera Culex and Aedes could be due to environmental conditions and anthropic activities, favorable for the proliferation of these taxa. These results corroborate those obtained by several authors who have shown that this sub-family adapts better to the environmental conditions offered by most localities [26, 27]. Furthermore, the abundance of species of the Culiciniae sub-family (6 species) is due to the high plasticity of this sub-family in colonizing diversified ecosystems. Excessive household waste, watering activities, and vehicle prints create favourable conditions for the development and maintenance of Culex and Aedes [28,29]. However, it should be noted that the low presence of mosquitoes of the genera Anopheles and Mansonia is due to the scarcity of their preferred breeding sites. According to Teklu et al. [30], Anopheles spp. prefers sunny natural breeding sites, without vegetation and unpolluted. In contrast, Mansonia larvae are found in water.

Table 6: Abundance of Adults Mosquitoes According to the Study Sites

Study sites	Anopheles	Culex	Aedes	Mansonia
Okala Carrière	105	73	161	4
Entraco-Stade de l’Amité	53	74	144	6
Sablière	33	42	85	1
Cap Caravane	20	30	0	0
ENEF	70	115	15	0
Premier Campement	20	40	0	0
Cités Angondjé	10	20	0	0
Angondjé Village	6	30	0	0
Mikoloungou	5	20	0	0
Total	322	444	405	11
collaboration du technical and logistic support. The authors are grateful insects are maintained by rain and human activities.

Therefore explain the breeding sites for these blood-sucking insects are maintained by rain and human activities. Awareness and sanitation campaigns should be conducted in order to educate the local populations on the good practices of the prevention and control of these vectors that cause malaria and other diseases.

ACKNOWLEDGMENT
We thank the Institute for Research in Tropical Ecology for their technical and logistic support. The authors are grateful to the inhabitants of the Akanda community for their collaboration during the study period.

REFERENCES
[1] F. Tchoumboungou, P. M. J. Dongmo, M. L. Sameza, E. G. Nkouaya Mbanjo, G. B. Taiko Fotsot, P. H. Amvam Zollo, and C. Menut, “Activité larvicide sur Anopheles gambiae Gîles et composition chimique des huiles essentielles extraites de quatre plantes cultivées au Cameroun,” Biotechnol. Agron. Soc. Environ., vol. 13, no. 1, pp. 77-84, 2009.

[2] WHO, “The world malaria report 2018,” World Health Organization, Geneva, pp. 1-210, 2018.

[3] WHO, “The world malaria report 2019,” World Health Organization, Geneva, pp. 1-232, 2019.

[4] J. Z. Bi Zahoui, “Anthropogenic impacts on Aedes mosquitoes community dynamics in Côte d’Ivoire,” Ph.D. dissertation, University of Basel, Switzerland, pp. 1-173, 2017.

[5] E. M. Bakwo-Fils, P. Ntouka Akono, P. Belong, and J. Messi, “Impact des aménagements piscicoles sur le pullulent culicidien à Yaoundé, Cameroun,” Entomologie Faunistique-Faunist Entomologie, vol. 62, no. 3, pp. 109-114, 2010.

[6] F. I. Agbodion, and O. O. Uyi, “Temporal distribution of and habitat diversification by some mosquitoes (Diptera: Culicidae) species in Bénin city, Nigeria,” Journal of Entomology, vol. 10, no. 1, pp. 13-23, 2013.

[7] M. Iram, A. Chibani, A. Alemd, A. Alkhal, A. Belala, M. Hadj, D. Belghiti, and K. El Kharrim, “Etude écologique et entomologique des gîtes larvaires des Culicidés de la Province de Kenitra (Maroc),” European Scientific Journal, vol. 12, no. 32, pp. 185-7-7431, 2016.

[8] C. Paupy, F. Kassa Kassa, M. Caron, D. Nkoghe, and E. Melo, “A chikungunya outbreak associated with the vector Aedes albopictus in remote villages of Gabon,” Vector Borne Zoonotic Diseases, vol. 12, pp. 167-169, 2012.

[9] Minsanté-SNIS, “Annuaire statistique année 2017,” Ministère de la Santé de la République Gabonaise, Libreville, Gabon, 337p, 2018.

[10] Minsanté-SNIS, “Carte sanitaire 2017,” Ministère de la Santé de la République Gabonaise, Libreville, Gabon, 215p, 2018.

[11] E. M. Leroy, D. Nkoghe, B. Ollomo, C. Nze-Nkoghe, P. Buecart, G. Grad, X. Pourrut, R. Charrel, G. Moureau, A. Ndjoji-Mbihngou, and X. De Lamballerie, “Concurrent Chikungunya and Dengue virus infections during simultaneous outbreaks, Gabon, 2007,” Emerging Infectious Diseases, vol. 15, no. 4, pp. 591-593, 2009.

[12] Minsanté-SNIS, “Mission de collecte des données en vue d’une cartographie pour établir un état des lieux, des équipements, des usages et des perceptions des TIC des établissements concernés par le Système National d’Information Sanitaire (SNIS),” Rapport final de mission, Libreville, 139p, 2016.

[13] P. N. Akono, A. Mbiha Mbiha, P. Awono Ambene, L. Youmbi Enga, Y. A. Kayoum, and S. Kekeunou, “Larvaires et sensibilité des vecteurs du paludisme aux insecticides dans des localités (semi-urbaine et rurale) de la région du littoral camerounais : données préliminaires,” Revue d’Écologie (Terre et Vie), vol. 73, no. 2, pp. 132-141, 2018.

[14] A. Mbouloungou, A. A. Kounba, J. B. Mombo, N. Dondhanh Lyangui, J. F. Mavoungou, and J. Djieki, “Geographie du paludisme dans la région de Libreville-Owendo-Akanda, Gabon,” European Scientific Journal, vol. 15, no. 2, pp. 362-382, 2019.

[15] V. M. T. Mouyalou, “Dynamique morphosédimentaire d’un segment côtière sableux : du Lycée Léon Mba (Libreville) à La Sablière (Baie d’Akaounou),” Thèse de Doctorat in Sciences Géographiques. Université Omar Bongo, Libreville, Gabon, 345p, 2017.

[16] DGS-RGPL (Direction Générale de la Statistique du Gabon-Recensement Général de la Population et des Logements), “Résultats globaux du Recensement Général de la Population et des Logements de 2013 (RGPL, 2013) du Gabon,” Libreville, 247p, 2015.

[17] A. A. Kounba, C. R. Zinga Kounba, R. Mintsu Nguema, L. S. Djogbenou, P. Obame Ondo, G. K. Keho, P. Comlan, L. S. Djogbenou, O. Fayé, B. M’batchi, and J. F. Mavoungou, “Suscptibilité d’Anopheles gambiae s.s et An. coluzaux aux organophosphorés et aux carbamates en zones d’exploitation industrielle de palmiers à huile à Mouila, Gabon,” Bulletin de la Société de Pathologie Exotique, vol. 111, pp. 176-182, 2018.

[18] M. W. Service, “Irrigation/boom or bane?” In: Service M.W. Demography and vector-borne diseases, CRC Press (eds) Boca Raton, 283-301, 1989.

[19] C. Paupy, Clé de détermination des Culicidae présentes en Afrique Centrale et au Gabon, Document de travail, IRD/CIRMF, 108 p, 2010.

[20] B. Hayett, D. Fouzia, and S. Nouredine, “Étude systématique et écologique des moustiques (Diptera: Culicidae) dans la région de Tébessa (Algérie),” Entomol. Faunist., vol. 65, pp. 99-103, 2012.

[21] J. Djiege, A. A. Missilhom, R. Djouka, and M. Akogbeto, “Survveillance entomologique : Dynamique de la population et de la résistance aux insecticides chez Anopheles gambiae s.s en milieu de riziculture irrigué au Sud Bénin,” Journal of Applied Biosciences, vol. 11, pp. 10934-10943, 2017.

[22] F. Diakarida, M. V. B. Jean, G. L. Yao-Acapovi, and S. L. Sevidzem, “Risk of Dengue Transmission in Cocody (Abidjan, Ivory Coast),” J. Parasitol. Res., vol. 1, pp. 1-7, 2019.

[23] A. A. Kounba, C. R. Zinga-Kounba, R. Mintsu Nguema, G. K. Keho, G. L. Djogbenou, and J. F. Mavoungou, “Identification and characterisation of the gîtes larvaires des moustiques en saison sèche à la périphérie de la ville de Mouila, Sud du Gabon,” Afrique SCIENCE, vol. 16, no. 2, pp. 192-205, 2020.

[24] T. Baldet, “Étude comparative de deux stratégies de lutte contre Culex quinquefasciatus Say, 1823 par Bacillus sphaericus Neide, 1904 dans la ville de Maroua (Nord-Cameroun),” Thèse de Doctorat, Université des Sciences et Techniques du Languedoc, Montpellier II, France, 1995.

[25] R. J. A. Assako, D. Bleye, and F. Simard, “Apports des sciences sociales et de l’entomologie dans l’analyse de l’endémicité du paludisme à HEVECAM, une agro-industrie du Sud Cameroun,” Geo-Eco-Trop, vol. 29, pp. 101-114, 2005.

[26] A. Seti, “Epidémiologie du paludisme et environnement: étude de deux populations amérindiennes de l’est de l’ouest guyanais,” Thèse de Doctorat, Université des Antilles et de la Guyane, 369p, 2011.

[27] B. M. Teklu, H. Tekie, M. McCartney, and S. Kibret, “The effect of physical water quality and water level changes on the occurrence and density of Anopheles mosquito larvae around the shoreline of the Koka reservoir, central Ethiopia,” Hydrob. Earth Syst. Sci., vol. 14, pp. 2595-603, 2010.

[28] K. N. Vijayakumari, and D. Murali, “Oviposition and larval attachment by Mansonia mosquitoes on host plants,” Millennium Zool., vol. 11, pp. 23-70, 2010.
Sevidzem Silas Lendzele: Researcher in Microbiology. BSc Hons (UB, Cameroon), MSc (UDs, Cameroon) (Corresponding author).

Pamba Richard: Researcher in Medical Entomology. BSc (USS/UOB, Gabon), MSc (UQAM, Canada), PhD (in progress EDGE, Gabon).

Koumba Aubin Armel: Researcher in Medical and Veterinary Entomology. BSc (UCAD, Senegal), MSc (UCAD, Senegal), PhD (in progress EDSVT-UAC, Benin).

Zinga-Koumba Christophe Roland: Assistant Lecturer in Medical and Veterinary Entomology. BSc (UCAD, Senegal), MSc (UCAD, Senegal), PhD (ERAIFT, DR Congo in 2016).

Mbouloungou Alexis: Researcher in Health Geography. BSc (UOB, Gabon), MSc (UOB, Gabon), PhD (in progress UOB, Gabon).

Yacka-Mouele Lauriane: Researcher in Parasitology. BSc (USTM, Gabon), MSc (USTM, Gabon).

Djogbenou Luc S: Senior Lecturer in Medical Entomology. BSc (UAC, Benin), MSc (UM, France), PhD (UM, France in 2008).

Mavoungou Jacques F: Professor in Medical and Veterinary Entomology. BSc (UM France), MSc (UM France), PhD (UM France in 2007).