ER-\(\alpha\)36, a Novel Variant of ER-\(\alpha\), Mediates Estrogen-Stimulated Proliferation of Endometrial Carcinoma Cells via the PKC\(\delta/ERK\) Pathway

Jing-Shan Tong\(^1,2\), Qing-Hua Zhang\(^2\), Zhen-Bo Wang\(^2\), Sen Li\(^2\), Cai-Rong Yang\(^2\), Xue-Qi Fu\(^1\), Yi Hou\(^2\), Zhao-Yi Wang\(^3\), Jun Sheng\(^1,4\)*, Qing-Yuan Sun\(^2\)*

\(^1\)College of Life Sciences, Jilin University, Changchun, China, \(^2\)State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China, \(^3\)Department of Medical Microbiology and Immunology, Creighton University Medical School, Omaha, Nebraska, United States of America, \(^4\)Yunnan Agricultural University, Kunming, China

Abstract

Background: Recently, a variant of ER-\(\alpha\), ER-\(\alpha\)36 was identified and cloned. ER-\(\alpha\)36 lacks intrinsic transcription activity and mainly mediates non-genomic estrogen signaling. The purpose of this study was to investigate the function and the underlying mechanisms of ER-\(\alpha\)36 in growth regulation of endometrial Ishikawa cancer cells.

Methods: The cellular localization of ER-\(\alpha\)36 and ER-\(\alpha\)66 were determined by immunofluorescence in the Ishikawa cells. Ishikawa endometrial cancer control cells transfected with an empty expression vector, Ishikawa cells with shRNA knockdown of ER-\(\alpha\)36 (Ishikawa/RNAiER36) and Ishikawa cells with shRNA knockdown of ER-\(\alpha\)66 (Ishikawa/RNAiER66) were treated with E2 and E2-conjugated to bovine serum albumin (E2-BSA, membrane impermeable) in the absence and presence of different kinase inhibitors HBDDE, bisindolylmaleimide, rottlerin, H89 and U0126. The phosphorylation levels of signaling molecules and cyclin D1/cdk4 expression were examined with Western blot analysis and cell growth was monitored with the MTT assay.

Results: Immunofluorescence staining of Ishikawa cells demonstrated that ER-\(\alpha\)36 was expressed mainly on the plasma membrane and in the cytoplasm, while ER-\(\alpha\)66 was predominantly localized in the cell nucleus. Both E2 and E2-BSA rapidly activated PKC\(\delta\) not PKC\(\zeta\) in Ishikawa cells, which could be abrogated by ER-\(\alpha\)36 shRNA expression. E2-and E2-BSA-induced ERK phosphorylation required ER-\(\alpha\)36 and PKC\(\delta\). However, only E2 was able to induce Camp-dependent protein kinase A (PKA) phosphorylation. Furthermore, E2 enhances cyclin D1/cdk4 expression via ER-\(\alpha\)36.

Conclusion: E2 activates the PKC\(\delta/\)ERK pathway and enhances cyclin D1/cdk4 expression via the membrane-initiated signaling pathways mediated by ER-\(\alpha\)36, suggesting a possible involvement of ER-\(\alpha\)36 in E2-dependent growth-promoting effects in endometrial cancer cells.

Introduction

Endometrial cancer is one of the commonest female pelvic malignancies and is the fourth most common type of cancer in North American and European women \([1,2]\). It is well-known that the steroid hormone 17\(\beta\)-estradiol (E2) plays an important role in the development of endometrial carcinoma \([3,4]\). In the classical model, E2 regulates the expression of estrogen responsive genes by binding to the estrogen receptor-\(\alpha\) (ER) located in the cell cytoplasm, and ligand-bound receptors then migrate to the nucleus and regulate the transcription of target genes via binding to the estrogen responsive elements (EREs) within the target gene promoter \([5,6]\). However, accumulating evidence indicated that ER-\(\alpha\) also exists on the plasma membrane and participates in rapid estrogen signaling or membrane-initiated estrogen signaling. It has been reported that ER-\(\alpha\) is modified by posttranslational palmitoylation in the ligand-binding domain that may contribute to its membrane localization \([7]\). Previously, we identified and cloned a variant of ER-\(\alpha\) with a molecular weight of 36 kDa that is transcribed from previously unidentified promoter located in the first intron of the original 66 kDa ER-\(\alpha\) [ER-\(\alpha\)66] gene \([8]\). ER-\(\alpha\)36 lacks both transcriptional activation domains of ER-\(\alpha\)66 (AF-1 and AF-2), but it retains the DNA-binding domain and partial ligand-binding domain. It possesses a unique 27 amino acid domain that replaces the last 138 amino acids encoded by exons 7 and 8 of the ER-\(\alpha\)66 gene.

PKC isoforms are involved in a variety of cellular functions, including growth, differentiation, tumor promotion, aging, and...
apoptosis [9,10,11]. The PKC family consists of several subfamilies; depending on differences in their structure and substrate requirements 1) classical (α,β I,βII and γ), all of which are activated by calcium and diacylglycerol (DAG); 2) novel (δ, ε, η and θ), all of which require DAG but are calcium-insensitive; 3) atypical (ζ and ζ/α), which are not responsive to either DAG or calcium [9,12,13]. It has been reported that E2 rapidly increases PKC activity via a membrane pathway not involving both ER-α or ER-β [14]. Our previous report demonstrated that 17β-estradiol induced the activation the MAPK/ERK pathway and stimulated the cells proliferation through the membrane-based ER-α36 [15]. We thus hypothesized that ER-α36 may be also involved in the E2-induced PKC activation.

In the present study, we studied the ER-α36 function in endometrial cancer cells and found that ER-α36 mediates E2 induced the membrane-associated PKCα and the MAPK/ERK pathways leading to modulation of growth and survival of endometrial carcinoma cells.

Results
Differential expression of ER-α36 and ER-α66 in Ishikawa cells
ER-α36 is a variant of ER-α generated by alternative promoter usage and alternative splicing [8]. To examine ER-α36 localization in Ishikawa cells, the indirect immunofluorescence assay was performed with anti-ER-α36 specific antibody raised against the 20 amino acids at the C-terminal of ER-α36 that are unique to ER-α36 [15]. Immunofluorescent staining revealed that ER-α36 was expressed on the plasma membrane and in the cytoplasm of Ishikawa cells (Fig. 1A) while ER-α66 was predominantly localized in the cell nucleus (Fig. 1B).

E2 and E2-BSA rapidly induces the activation of PKCδ in Ishikawa cells
We first examined PKC activation by E2 and E2-BSA in Ishikawa cells. Cells treated with E2 (Fig. 2A) showed a rapidly response in the phosphorylation of PKCδ within 5 min of exposure, while the total PKCδ amount was without any change, indicating that E2 induced PKCδ phosphorylation. The membrane impermeable E2-BSA (Fig. 2B) also elicited a similarly rapidly phosphorylation of PKCδ, which then declined gradually in approximately 60 min. These results demonstrated that both E2 and E2-BSA were able to rapidly activate PKCδ in Ishikawa cells. Similar time course studies were performed for E2-induced phosphorylation of PKCα in the Ishikawa cells (Fig. 2C). The concentration-response studies for the PKCα revealed that the E2 could not induce changes of PKCα phosphorylation even at 1 μM (Fig. 2D).

E2, but not E2-BSA, induces PKA activation in Ishikawa cells
We then examine whether E2 and E2-BSA stimulate cAMP-dependent protein kinase (PKA) activation in Ishikawa cells. As shown in Fig. 2E, E2 treatment resulted in rapidly increase of phosphorylation level of PKA within 3 min, and treatment of the cells with Forkolin (20 μM) for 15 min (F) also induced PKA phosphorylation. However, when cells were treated with E2-BSA (Fig. 2F), no significant change in the phosphorylation of PKA was observed, indicating that E2 induces PKA signaling not from the plasma membrane.

ER-α36 but not ER-α66 mediates E2-BSA-stimulated PKCδ activation
To determine the involvement of ER-α36 in E2 activity observed in Ishikawa cells, we decided to knockdown ER-α36

Figure 1. Subcellular localization of ER-α36 and ER-α66 in Ishikawa cells. A. Ishikawa cells cultured on coverslips were fixed and immunofluorescently stained with the anti-ER-α36 specific antibody (green). The cells were also stained with Hoechst 33258 (blue) to show the cell nuclei. B. ER-α66 expression detected by immunofluorescence in Ishikawa cells. The nucleus was stained by Hoechst 33258. Bar, 10 micrometers. doi:10.1371/journal.pone.0015408.g001
expression with the shRNA approach. We established a stable cell line that expresses shRNA specifically against the unique 3'UTR of ER-α36 (Ishikawa/RNAiER36), and found that ER-α36 expression was dramatically down-regulated in the cells (Figs. 3A & 3B). As shown in Fig. 3C, E2 and E2-BSA failed to induce PKCδ phosphorylation in Ishikawa/RNAiER36 cells. Next, we knocked down ER-α66 expression with shRNA in Ishikawa cells (Figs. 3D & 3E). Both E2 and E2-BSA induced phosphorylation of PKCδ in the Ishikawa cells with ER-α66 expression knocked-down with shRNA (Fig. 3F).

To confirm the results, we used endometrial cancer HeLa cells, which have been reported as an ER-α66 negative cell line [16], and HeC1/RNAiER36, which have been described in our previous report [17]. The knockdown of ER-α36 expression was able to abrogate both E2 and E2-BSA induced (Fig. 3G) in HeC1A cells, indicating the involvement of ER-α36 in E2 induced-PKCδ phosphorylation. Thus, our data strongly demonstrate that ER-α36 not ER-α66 is involved in E2-induced PKCδ activation in endometrial cancer cells.

E2 activates ERK1/2 through the PKCδ signaling pathway

Our previous data demonstrated that 17β-estradiol also induced the activation of the MAPK/ERK and stimulates the cell proliferation through the membrane-based ER-α36 [15]. Here we tested whether ER-α36 also mediates E2-BSA induced ERK1/2 activation in Ishikawa cells. As shown in Fig. 4A, E2-BSA treatment induced the rapid phosphorylation of ERK1/2 in Ishikawa cells while Ishikawa cells with ER-α36 expression knocked down with the shRNA failed to response to either E2 or E2-BSA indicating the involvement of ER-α36 in E2 in estrogen stimulated ERK1/2 activation (Fig. 4B). We then investigated whether E2-induced activation of ERK1/2 in Ishikawa cells requires activation of PKC or PKA. Ishikawa cells were treated with E2 in the presence or absence of the nonspecific PKC inhibitor bisindolylmaleimide (Bis), a PKCδ specific inhibitor rottlerin (Rot), a PKCα specific inhibitor HBDDE. Treatment of Bis and rottlerin strongly inhibited E2-induced ERK1/2 activation, indicating the involvement of PKCδ in E2-induced ERK1/2 activation (Fig. 4C). However, both HBDDE and H89 (Fig. 4D) had no effect on E2-induced ERK1/2 activation. Our results thus indicated that the ER-α36-mediated activation of PKCδ is required for activation of the ERK1/2 pathway.

ER-α36 is involved in regulation of cyclin D1 protein expression in Ishikawa cells

Cyclin D1 together with its binding partners cyclin dependent kinase 4 and 6 (cdk4 and cdk6) forms activation complexes that promote cell cycle progression and can function as a transcription coregulator. Overexpression of cyclin D1 is involved in endometrial carcinogenesis [18]. The E2-induced proliferation was associated with the up-regulation of cyclin D1 [19,20,21]. We measured the expression levels of cyclin D1 and cdk4 in Ishikawa cells treated with E2. As shown in Fig. 5A, treatment with E2 induced cyclin D1 and cdk4 expression in Ishikawa/V cells but not in Ishikawa/RNAiER36 cells, which could be effectively abrogated by the PKCδ inhibitor rottlerin and MEK inhibitor U0126 (Fig. 5B). Taken together, these results indicate that ER-α36 mediates E2-induced activation of the PKCδ/ERK pathway and cyclin D1 expression.

Cell proliferation

To further investigate the role of ER-α36-mediated estrogen signaling in cell proliferation of endometrial cancer cells, Ishikawa/V and Ishikawa/RNAiER36 cells were treated with E2-BSA and cell growth was measured by the MTT assay. MTT assay shown that E2-BSA stimulated growth of Ishikawa/V cells while had no effect on growth of Ishikawa/RNAiER36 cells (Figs. 6A & 6B). Bisindolylmaleimide (a general PKC inhibitor), rottlerin (a PKCδ specific inhibitor) or U0126 (a MEK specific inhibitor) were able to inhibit E2-BSA-induced cell proliferation. However, HBDDE (a PKCα specific inhibitor) and H89 (a PKA specific inhibitor) failed to inhibit E2-BSA-induced cell proliferation. These results again suggest that E2-BSA-induced cell proliferation is predominantly mediated through the ER-α36/PKCδ/ERK pathway in endometrial cancer cells.

Discussion

Estrogen receptors are members of the nuclear receptor superfamily and function as ligand-dependent transcription factors in the nucleus to mediate estrogen signaling. However, accumulating evidence indicated the existence of rapid signaling responses to E2 that are independent of transcriptional effects [22,23]. Previously, a novel variant of ER-α, ER-α36, was identified, cloned and characterized [8]. ER-α36 is expressed in established ER-positive and ER-negative breast cancer cells and specimens from breast cancer patients that lacks expression of ER-α66 [24], suggesting that ER-α36 expression is regulated differently from ER-α66. In this study, confocal microscopy results show that ER-α36 is expressed on the plasma membrane and in the cytoplasm of Ishikawa cells. In contrast, ER-α66 is predominantly localized in the cell nucleus.

Previous studies have shown that ER-α36 mediates membrane-initiated effects of estrogen signaling by activation of the mitogen activated protein kinase (MAPK) signaling pathway, and stimulates cell growth [15]. ER-α36 also mediates activation of the MAPK/ERK signaling induced by antiestrogens, such as tamoxifen and ICI 182,780[15,25]. In addition, ER-α36 mediates membrane-initiated testosterone signaling by activation of the ERK and AKT signaling pathway [17]. Recently, investigators have recognized rapid non-genomic effects of estrogen on several cellular processes, such as activation of PKC, PKA, calcium channel, and AKT to stimulate physiological effects [26,27,28], but the mechanisms are not well understood and have not been extensively studied [29,30,31]. PKC family consists of a number of serine-threonine kinases that are divided into three groups based on their activating factors. PKC activators act as tumor promoters.
Although early studies of the effect of PKCδ on cell proliferation suggested that PKCδ suppresses proliferation [32,33,34]. However, several reports have demonstrated that PKCδ could act as a positive regulator of cell proliferation [35,36,37,38]. Here, we found that both E2 and E2-BSA stimulated the activation of PKCδ signaling pathway in Ishikawa cells, and knockdown of ER-α36 expression with the shRNA abrogated E2-induced PKCδ phosphorylation. These indicated that ER-α36 mediates membrane-initiated PKCδ pathway induced by E2. In general, increased PKCδ activity is associated with increased motility and proliferation of cancer cells [39,40,41]. In addition, PKCδ has been shown to inhibit or facilitate apoptosis of cancer cells [42,43]. We found that E2 was unable to induce phosphorylation of PKCδ in Ishikawa cells, suggesting that E2-induced endometrial cancer growth through signaling pathways other than PKCδ.

cAMP is a second messenger that plays a role in intracellular signal transduction of various stimuli. A major function of cAMP in eukaryotes is activation of cAMP-dependent protein kinase (PKA). In the present study, we found that E2 could rapidly activate PKA within 3 min. However, PKA could not be activated by E2-BSA that is unable to traverse the plasma membrane, suggesting that E2 activate PKA not through the membrane-based ER-α36 in Ishikawa cells.

The MAPK family consists of ERK, JNK and P38. ERK plays an essential role in cell growth. Increasing evidence has shown that non-genomic activation of the ERK1/2 by estrogen in both breast and endometrial cancer cells [44,45,46]. Previous studies have shown that the ERK1/2 can be efficiently activated by protein kinase C [47,48]. Here, we found that ER-α36 mediates E2-induced activation of the MAPK/ERK pathway via PKCδ in Ishikawa cells.

Cyclin D1 is a key regulator of cell cycle progression through the G1 phase that, upon its induction, binds and regulates cyclin-dependent kinases (cdks) 4 or 6. The cyclin D1/cdk complexes are capable of phosphorylation substrates essential to promote cell cycle [21,49,50]. Cyclin D1 plays an important role in the pathogenesis of endometrial hyperplasia [18,51,52]. Previous studies have demonstrated that PKCδ and MAPK/ERK pathways up-regulate cyclin D1 protein expression [19,51,53]. Here, we demonstrated that E2 induced cyclin D1 expression through ER-α36-mediated activation of the PKCδ/ERK signaling pathway.

In summary, our results indicate that extra-nuclear ER-α36 mediates the non-genomic estrogen signaling pathways in Ishikawa cells and suggest ER-α36 is a novel and important player in endometrial carcinogenesis.

Materials and Methods

Materials and Reagents

All chemicals and reagents were purchased from Sigma unless otherwise indicated. Anti-phospho-PKCα (ser507) antibody was purchased from Upstate (Temecula, CA). Antibodies for PKCα, phospho-PKCδ (Thr505), PKCδ, phospho-ERK1/2 (Thr202/Tyr204) and ERK1/2 were purchased from Cell Signaling (Beverly, MA). Antibodies against ER-α66, cyclin D1, cdk4 and β-actin were purchased from Santa Cruz Biotechnology (Santa Cruz, CA). The ER-α36 specific antibody against the 20 unique amino acid at the C-terminal of ER-α36, ER-α26 interference plasmid and control plasmids were described before [8,15]. Hoechst 33258, MTI, U0126, HBDE, Rottlerin, Bisindolylmaleimide and Forskolin were purchased from Calbiochem (La Jolla, CA). PepTag Assay kit for Non-Radioactive Detection of cAMP-Dependent Protein Kinase was obtained from Promega (Madison, WI).

Cell Culture and Cell Lines

The human endometrial cancer cell line Ishikawa was obtained from Dr. Li-Hui Wei (Peking University People’s Hospital, Beijing) and cultured in Dulbecco’s modified Eagle’s medium (Gibco-BRL, USA) with 10% fetal calf serum (Hyclone, UT), 5 ug/ml insulin, and cultured in Dulbecco’s modified Eagle’s medium (Gibco-BRL, USA) with 10% fetal calf serum (Hyclone, UT), 5 ug/ml insulin, and maintained at 37°C in a humidified atmosphere of 5% CO2. We established stable Ishikawa cell line transfected with an ER-α36 shRNA expression vector (Ishikawa/RNAiER36), an ER-α26 shRNA expression vector (Ishikawa/RNAiER66) and the empty expression vector (Ishikawa/V). Briefly, the shRNA expression vector pRNAT-U6.1/Neo plasmid containing the shRNA against the 3’UTRs of ER-α36 and ER-α26, respectively and the empty expression vector were transfected into Ishikawa cells with Lipofectamine 2000 (Invitrogen, Carlsbad, CA) according to the manufacturer’s instruction. Forty-eight hours after transfection, cells were re-plated and selected with 500 µg/ml of G418 for two weeks. The medium was changed every three days until colonies appeared. Clones were pooled and expanded for further analysis.

Confocal Microscopy

The cellular localization of ER-α36 and ER-α26 were determined by the indirect immunofluorescence assay. Ishikawa cells cultured on sterile glass coverslips were fixed with 4% paraformaldehyde in PBS for 10 min. After permeabilized with 0.4% Triton X-100 for 10 min at room temperature, cells were blocked in 4% BSA-supplemented PBS for 1 hour and incubated overnight at 4°C with anti-ER-α36-specific antibody or anti-ER-α26 antibody. After three washes in PBS, the cells were labeled with FITC-conjugated secondary antibody. Hoechst 33258 was subsequently added for nuclear staining. Microscopic analysis was performed using a confocal laser-scanning microscope (Zeiss LSM 710 META, Germany).

Western Blot Analysis

Western blotting was performed as described previously [17]. Cells maintained in phenol-red-free DMEM (Gibco-BRL, USA) with 2.5% dextran charcoal-stripped fetal calf serum (Biochrom AG, Germany) for 48–72 h were switched to medium without...
Figure 4. E2 activates the ERK1/2 through the PKCδ signaling pathway. A. Serum starved Ishikawa cells were treated with E2-BSA for indicated time points and cell lysates were immunoblotted with antibody against phosphorylated ERK1/2. Levels of phosphorylation were normalized with the total ERK1/2 protein, and each bar represents means value ± SEM (n = 3). *, P < 0.05 compared to untreated cells. B. Ishikawa/V and Ishikawa/RNAiER36 cells were treated with 10 nM E2 or 10 nM E2-BSA for 10 min, and ERK1/2 phosphorylation was analyzed with Western blot. Expression was normalized to total ERK1/2, and each bar represents mean value ± SEM (n = 3). *, P < 0.05 compared to untreated cells. #, P < 0.05 compared to E2- or E2-BSA-treated Ishikawa/V cells. C. Serum starved Ishikawa cells were treated with 10 nM E2 or together with 5 μM of PKCδ specific inhibitor rottlerin, 5 μM of pan-PKC inhibitor bisindolylmaleimide or 40 μM of PKCε specific inhibitor HBDDE. ERK1/2 phosphorylation was analyzed with Western blot. Expression was normalized to total ERK1/2, and each bar represents mean value ± SEM (n = 3). *, P < 0.05 compared to untreated cells. #, P < 0.05 compared to E2-treated Ishikawa cells. D. Serum starved Ishikawa cells were treated with 10 nM E2 or together with 5 μM of PKA specific inhibitor H89 or 10 μM of MEK inhibitor U0126, and ERK1/2 phosphorylation was analyzed by Western blot. Expression was normalized to total ERK1/2, and each bar represents mean value ± SEM (n = 3). *, P < 0.05 compared to untreated cells. #, P < 0.05 compared to E2-treated Ishikawa cells. doi:10.1371/journal.pone.0015408.g004
Figure 5. ER-α36 mediates E2-stimulated cyclin D1 expression. A. Western blot analysis of cyclin D1 and cdk4 expression in Ishikawa/V and Ishikawa/RNAiER36 cells treated with 10 nM E2 for 6 h and 12 h. Levels of cyclin D1 and cdk4 expression were normalized to the levels of β-actin, and each bar represents mean value ± SEM (n = 3). *, P < 0.05 compared to untreated cells. #, P < 0.05 compared to E2-treated Ishikawa/V cells. B. Ishikawa cells were treated for 12 h with E2 or together with 5 μM of PKCδ inhibitor rottlerin or 10 μM MEK inhibitor U0126. Levels of cyclin D1 and cdk4 expression were normalized to the levels of β-actin, and each bar represents mean value ± SEM (n = 3). *, P < 0.05 compared to untreated cells. #, P < 0.05 compared to E2-treated Ishikawa cells.

doi:10.1371/journal.pone.0015408.g005
12 h before treatment with the agents indicated. The cells were collected in ice-cold PBS, and the cell extracts were prepared in RIPA buffer with proteinase inhibitor cocktail from Sigma (St. Louis, MO). The protein concentrations of the cell lysates were determined and boiled with gel-loading buffer for 10 min at 100°C. Samples containing 30 µg of total protein were electrophoresed on 10% SDS-polyacrylamide gels and transferred to PVDF membrane (Millipore, Temecula, CA). The membranes were probed with appropriate primary antibodies and visualized with the corresponding secondary antibodies and the enhanced chemiluminescence detection system (Amersham, Piscataway, NJ).

RT-PCR
Total RNA was extracted by TRizol reagent (Invitrogen, Carlsbad, CA). Total RNA (2 µg) was used for production of the first strand cDNA by a reverse transcriptase mixture (Takara, Dalian, P.R.China). The PCR primer sets were listed as the following: ER-a36: forward primer: 5'-CAAGTGGTTTCTCCTCGTGTCTAAAGC-3'; reverse primer: 5'-GAGTGTTGTTGCCAGG-3'. ER-a66: forward primer: 5'-CACTCAAACGCGTGCTCTCGGA-3'; reverse primer: 5'-CCAAATCTTTTCTCTGCGACCCTG-3'. GAPDH (control): forward primer: 5'-ACGGATTTGGTCGTATTGGG-3'; reverse primer: 5'-TGATTGGAGGGATCTCGC-3'. PCR fragments were visualized on a 2% agarose gel stained with ethidium bromide.

PKA Measurement
Cell lysates were assayed immediately after lyses using the PepTag Assay kit Promega, Madison, WI) to assess the activities of cAMP-dependent protein kinases according to the manufacturer's instructions. Briefly, lysates were prepared from treated cells and incubated with a fluorescently labeled PKA peptide substrate. Phosphorylation of the peptide by activated PKA resulted in a change in its electrophoretic mobility that reflects the relative PKA activity. The agarose gels were subjected to electrophoresis at 110 V for 20 min and visualized under UV light. The upper band is non-phosphorylated substrate peptide, the lower most band is substrate phosphorylated by PKA.

Figure 6. ER-a36 mediates E2 stimulated cell proliferation. A. Ishikawa/V and Ishikawa/RNAiER36 cells were treated with 10 nM E2-BSA for 24 h, 48 h, 72 h and 96 h. MTT assay was performed as described in the materials and methods. Results of three independent experiments were averaged and mean value ± SEM are shown. *, P<0.05 compared to E2-BSA treated Ishikawa/V cells respectively. B. Ishikawa cells were treated with 10 nM E2-BSA alone or together with 5 µM rottlerin, a PKCδ specific inhibitor, or 5 µM bisindolylmaleimide, a pan-PKC inhibitor, or HBDDE, a PKCa specific inhibitor, or 5 µM H89, a PKA specific inhibitor for 72 h, and MTT assays were then performed. Results of three independent experiments were averaged and mean value ± SEM are shown. *, P<0.05 compared to control cells. doi:10.1371/journal.pone.0015408.g006
MTT Assay

Cell proliferation was analyzed using the 3-(4, 5-dimethylthiazol-2-yl)-2, 5- diphenyltetrazolium bromide (MTT) assay. Briefly, cells were seeded in a 96-well dish to a final concentration of 1x10^3 cells/well and incubated in DMEM medium containing 10% FCS for 24 h. Cells were then cultured in phenol red-free medium containing 2.5% charcoal-stripped FCS (Biochrom AG, Berlin, Germany) with the indicated treatments. Medium was removed and fresh medium was added to each well along with 20 ul of MTT solution (5 mg/ml). After 4 h incubation, 150 ul of DMSO were added to each well. The plates were read at a wavelength of 490 nm using a microplate reader (Biotek PowerWave TM, USA). Eight duplicate wells were used for each treatment, and experiments were repeated three times.

Statistical analysis

Statistical analysis was performed with the paired-samples t-test, or ANOVA followed by the Student-Newman-Keuls testing to determine differences in means. A level of P<0.05 was considered statistically significant. All statistical tests were three-sided.

Acknowledgments

We would thank Dr. Li-Hui Wei for kindly providing the Ishikawa cells. We also wish to thank Shi-Wen Li, Yi Hou, and Hua Qin for their technical assistance.

Author Contributions

Conceived and designed the experiments: Z-YW JS Q-YS J-ST. Performed the experiments: J-ST Q-HZ Z-BW SL C-RY. Analyzed the data: J-ST X-QF. Contributed reagents/materials/analysis tools: Z-YW YH. Wrote the paper: J-ST Z-YW Q-YS.

References

1. Shang Y (2006) Molecular mechanisms of oestrogen and SERMs in endometrial carcinogenesis. Nat Rev Cancer 6: 360–368.
2. Chaudhry P, Asselin E (2009) Resistance to chemotherapy and hormone therapy in endometrial cancer. Endocr Relat Cancer 16: 363–380.
3. Henderson BE, Feigelson HS (2000) Hormonal carcinogenesis. Carcinogenesis 21: 427–433.
4. Muramatsu M, Inoue S (2000) Estrogen receptors: how do they control reproductive and nonreproductive functions? Biochem Biophys Res Commun 336: 1023–1027.
5. Newton AC (1997) Regulation of protein kinase C. Curr Opin Cell Biol 9: 161–167.
6. Nishizuka Y (1986) Studies and perspectives of protein kinase C. Science 233: 305–312.
7. Nishizuka Y (1988) The molecular heterogeneity of protein kinase C and its implications for cellular regulation. Nature 334: 661–665.
8. Nishizuka Y (1995) Protein kinase C and lipid signaling for sustained cellular responses. FASEB J 9: 484–496.
9. Way KJ, Chou E, King GL (2000) Identification of PKC-isozyme-specific biological actions using pharmacological approaches. Trends Pharmacol Sci 21: 101–107.
10. Royan BD, Sylvia VL, Frambach T, Lohmann CH, Dietl J, et al. (2003) Estrogen-dependent rapid activation of protein kinase C in estrogen receptor-positive MCF-7 breast cancer cells and estrogen receptor-negative HCC38 cells is membrane-mediated and inhibited by tamoxifen. Endocrinology 144: 1812–1024.
11. Watson CS, Campbell CH, Gameyuk B (1999) Membrane oestrogen receptors on rat pituitary tumour cells: immunodetection and responses to oestrogen and xenoestrogens. Exp Physiol 84: 1013–1022.
12. Zhang L, Li X, Zhao L, Zhang G, Wang J, et al. (2009) Nongenomic effect of estrogen on the MAPK signaling pathway and calcium influx in endometrial carcinoma cells. J Cell Biochem 105: 553–560.
13. Deucher A, Efimova T, Eckert RL (2002) Calcium-dependent involucrin activation of extracellular signal-regulated kinases induced by estradiol in endometrial carcinoma cells. Chin Med J (Engl) 116: 383–307.
14. Rosenfeld MG, Glass CK (2001) Coregulator codes of transcriptional regulation by nuclear receptors. J Biol Chem 276: 3605–36068.
15. Way KJ, Chou E, King GL, et al. (2003) Identification, cloning, and expression of human estrogen receptor-alpha36, a novel variant of human estrogen receptor-alpha66. Biochem Biophys Res Commun 336: 1023–1027.
involvement of protein kinase C alpha and extracellular signal-regulated kinase
mitogen-activated protein kinase. Mol Carcinog 38: 106–116.

42. Jiang XH, Tu SP, Cui JT, Lin MC, Xia HH, et al. (2004) Antisense targeting
protein kinase C alpha and beta inhibits gastric carcinogenesis. Cancer Res 64:
5797–5794.

43. Leirdal M, Sioud M (1999) Ribozyme inhibition of the protein kinase C alpha
triggers apoptosis in glioma cells. Br J Cancer 80: 1558–1564.

44. Singleton DW, Feng Y, Bred CJ, Khan SA (2003) Nongenomic activity and
subsequent c-fos induction by estrogen receptor ligands are not sufficient to
promote deoxyribonucleic acid synthesis in human endometrial adenocarcinoma
cells. Endocrinology 144: 121–128.

45. Zhang Z, Maier B, Santen RJ, Song RX (2002) Membrane association of
estrogen receptor alpha mediates estrogen effect on MAPK activation. Biochem
Biophys Res Commun 294: 926–933.

46. Song RX, McPherson RA, Adam I, Bao Y, Shupnik M, et al. (2002) Linkage of
rapid estrogen action to MAPK activation by ERalpha-Shc association and She
pathway activation. Mol Endocrinol 16: 116–127.

47. Ueda Y, Hirai S, Osada S, Suzuki A, Mizuno K, et al. (1996) Protein kinase C
activates the MEK-ERK pathway in a manner independent of Ras and
dependent on Raf. J Biol Chem 271: 23512–23519.

48. Qiu ZH, Leslie CC (1994) Protein kinase C-dependent and -independent
pathways of mitogen-activated protein kinase activation in macrophages by
stimuli that activate phospholipase A2. J Biol Chem 269: 19480–19487.

49. Knudsen KE, Arden KC, Cavenee WK (1998) Multiple G1 regulatory elements
control the androgen-dependent proliferation of prostatic carcinoma cells. J Biol
Chem 273: 20213–20222.

50. Quelle DE, Ashmun RA, Shurtleff SA, Kato JY, Bar-Sagi D, et al. (1993)
Overexpression of mouse D-type cyclins accelerates G1 phase in rodent
fibroblasts. Genes Dev 7: 1559–1571.

51. Caso QJ, Einstein MH, Anderson PS, Runowicz CD, Balan R, et al. (2002)
Expression of COX-2, Ki-67, cyclin D1, and P21 in endometrial endometrioid
carcinomas. Int J Gynecol Pathol 21: 147–154.

52. Schmitt JM, Abell E, Wagner A, Davare MA (2004) ERK activation and cell growth
require CaM kinases in MCF-7 breast cancer cells. Mol Cell Biochem 335:
155–171.

53. Shiozawa T, Miyamoto T, Kashima H, Nakayama K, Nikiado T, et al. (2004)
Estrogen-induced proliferation of normal endometrial glandular cells is initiated
by transcriptional activation of cyclin D1 via binding of c-Jun to an AP-1
sequence. Oncogene 23: 8603–8610.