A Journey through ω-3 Supplements: Future Perspectives for Precision Nutrition

Iker Jauregibeitia, Kevin Portune, Javier Amezaga, Itziar Tueros, Sara Arranz

Basque Research and Technology Alliance (BRTA), Parque Tecnológico de Bizkaia, Astondo Bide, Edificio 609, 48160 Derio (Bizkaia), Spain

*Corresponding author: sarranz@azti.es

Received September 10, 2020; Revised October 11, 2020; Accepted October 20, 2020

Abstract Increasing evidence has shown that fatty acids play a key factor in nutrition and health. Despite the well described health benefits associated to the omega-3 fatty acids (ω-3 FA) intake from epidemiological and clinical trials, controversial results are found from some clinical trials regarding the effect of ω-3 FA supplementation to handle certain diseases. In this review, we provide orientation for the reader to understand the importance of a personalized recommendation of the ω-3 polyunsaturated fatty acid supplementation based on a precision nutrition approach. We begin by reviewing the metabolic relevance of ω-3 fatty acids and then discuss the current state of ω-3 fatty acid supplements regarding their indications, regulation, variety from brand to brand, adverse effects and the need to implement a personalized supplementation. We conclude with future perspectives for practitioners and general guidance on precision nutrition.

Keywords: lipidomics, omega 3 fatty acids, precision nutrition, health

Cite This Article: Iker Jauregibeitia, Kevin Portune, Javier Amezaga, Itziar Tueros, and Sara Arranz, “A Journey through ω-3 Supplements: Future Perspectives for Precision Nutrition.” Journal of Food and Nutrition Research, vol. 8, no. 10 (2020): 556-560. doi: 10.12691/jfnr-8-10-3.

1. Introduction

In the last decades, omega-3 fatty acids (ω-3 FA) supplements have experienced a growing increase in consumption by the general public, becoming an increasingly important part of the diet [1]. For example, the use of ω-3 supplements among adults in the U.S. has increased from 4.8% in 2007 to 7.8% in 2012 [2]. The factors that explain this increase in consumption, among others, are the more scientifically backed evidences on the beneficial health effects of ω-3 FA and the fact that typical current dietary habits in western countries do not meet the recommended amount of ω-3 FA intake that should be used for optimal health conditions [4].

2. Metabolic Relevance of ω-3 Fatty Acids

ω-3 FA are essential fatty acids that must be obtained from the diet because humans and other mammals lack endogenous enzymes to synthesize them. Alpha-linolenic acid (ALA) is the precursor of the metabolic pathway for ω-3 FA and can be found in green leafy vegetables and in some seeds (flax, rape, chia, perilla and walnuts). Even if mammalian cells are not able to synthesize ALA, they can metabolize it into more physiologically active compounds by a set of desaturating enzymes via Δ5 and Δ6 desaturases and by lengthening the acyl chain (elongation) via elongases, thus converting them into longer-chain fatty acids of 20 and 22 carbon atoms [5].

Metabolically speaking, the most important ω-3 FA are EPA (20:5 ω-3) and DHA (22:6 ω-3), which have been associated with numerous health benefits. Adequate consumption of ω-3 FA, mainly EPA and DHA fatty acids, has been proven to be vitally important for fetal and infant development [6], improved cardiovascular health [7], benefits in cancer by promoting tumor cell apoptosis [8], immune system [9], or a decreased inflammatory response to injury [10], among other benefits.

Although EPA and DHA can be synthesized from shorter plant-derived ω-3 FA precursors such as ALA, this metabolic pathway is not efficient in humans. Approximately only 8-20% of ALA is converted to EPA in humans, while conversion of ALA to DHA is estimated to be around 0.5-9% [11], although this rate may be affected by hormones [12], sex [13], genetics [14] and age [15]. In addition, since several enzymes are shared between the metabolic pathways of ω-3 and ω-6 PUFAs, ω-3 and ω-6 substrates compete for access to these enzymes and this competition is highly influenced by the relative ratios of each type of PUFA. Furthermore, the ratio of ω-6:ω-3 FA is highly affected by dietary intake and is found in excess of ω-6 in many Western countries (i.e. 20:1 ω-6:ω-3 compared to the 1:1 ratio during evolution), due to increased consumption of the linoleic acid (LA), a precursor of the ω-6 metabolic pathway that is rich in vegetable oils [16]. For example, consumption of LA in the U.S. according the U.S. Department of

Available online at http://pubs.sciepub.com/jfnr/8/10/3
Published by Science and Education Publishing
DOI:10.12691/jfnr-8-10-3
Agriculture has increased 8 times for men and 6 times for women from the beginning of the XIX century to nowadays [17].

An added problem lies in the fact that long chain ω-6 and ω-3 PUFAs synthesized from LA and ALA not only have different, but often opposing effects on immunity and inflammation. Arachidonic acid, which is the main long chain ω-6, metabolites promote acute and chronic inflammation acting as local hormones. In contrast, EPA and DHA can be metabolized to anti-inflammatory mediators [18].

This illustrates the importance of a sufficient dietary intake of EPA and DHA to provide enough levels of ω-3 FA for optimal human health.

3. Indications for ω-3 Fatty Acid Intake

Currently, different recommendations are given by associations and government organizations regarding the dosage of ω-3 FA for the maintenance of optimal health conditions or alleviation of possible disease states. For example, in the UK, the recommendation of ω-3 FA intake is at least two fish meals per week including at least one meal consisting of oily fish (i.e. salmon, tuna, anchovies, sardines etc.), in which translates to an EPA+DHA recommendation of around 450 mg/day [19]. In France, the official recommendation for ω-3 FA intake is 400-500 mg/day of EPA+DHA with at least 100-120 mg/day DHA [20]. The Superior Health Council of Belgium recommends a minimum of 1-2% energy from ω-3 FA for adults, with at least one oily fish per week to supply 250 mg/day of EPA+DHA [21]. The Health Council of the Netherlands establishes a weekly consumption of one serving of fish, preferably oily fish, for a target quantity of 225 mg/day of EPA+DHA [22]. The target intake for Australia and New Zealand is 160 mg/day EPA+DHA for men and 90 mg/day for women [23]. The European Food Safety Authority and the Dietary guideline for Americans, from the U.S. Department of Agriculture and the Department of Health and Human Services, point out that as the available data on ω-3 FA intake is insufficient to derive an average requirement, an intake of 250 mg per day of EPA+DHA appears to be sufficient for cardiovascular prevention in healthy subjects [24,25]. The World Health Organization recommends regular fish consumption (one to two servings per week; each serving should provide the equivalent of 200-500 mg of EPA+DHA) [26].

Differences in ω-3 FA intake recommendations are reflected in differences in the actual average intake of EPA and DHA between countries with western diets [27]. For example, a nationally representative cross-sectional survey collected by the National Center for Health Statistics of the Centers for Disease Control and Prevention in the U.S. showed that the intake of DHA and EPA from foods and dietary supplements for adults was 72 ± 4 mg/d and 41 ± 4 mg/d, respectively [28]. The average consumption of ω-3 FA in Canada is around 177 mg/day, in Australia around 143 mg/day, and in many parts of Europe the daily intake of EPA + DHA by adults is <100 mg/d, since many never eat oily fish [29].

Regarding this, the European Food Safety Authority (EFSA) reported different health benefits associated to daily intake of ω-3 FA that can be included as health claims in manufactured food labeling [30].

A recommended dietary allowance for the optimum minimum intake of EPA and DHA ω-3 FA is therefore needed for the general population without considering any disease state or other specific requirement in special situations (i.e. pregnancy, sports performance) that could potentially alter the recommended amount of each respective fatty acid.

At the same time, there is not a current consensus regarding the tolerable upper intake level (UL) for ω-3 supplements due to insufficient data. Different recommendations have been established in different countries. For example, Australia, New Zealand, and The US Food and Drug Administration set a reference value for the UL of EPA+DHA at 3 g/d [26]. Meanwhile, EFSA states that long-term supplemental intakes of combined EPA and DHA up to 5 g/day do not appear to increase the risk of adverse side effects such as spontaneous bleeding episodes or bleeding complications, or lipid peroxidation among others [4].

4. Regulation of ω-3 Supplements

Since dietary supplements are widely available to the general public (i.e. they are not over-the-counter drugs and are not regulated as such), their purity, chemical integrity, efficacy and safety remains unverified [31]. Some studies show that the concentration of ω-3 FA were lower than what it was stated in the supplemental labels [32] and contained higher oxidation levels than what was permitted by current legislation [33]. In this sense, lipid peroxides contribute to accelerate oxidation of other fatty acids leading to lipid membrane peroxidation, cell damage, and oxidative stress [34]. Endogenous membrane lipid peroxidation results in altered membrane fluidity, transport, and cell signaling [35].

At the same time, levels of trans-isomers have been measured in different concentrations [36] likely due to the high temperatures and pressures used during the manufacturing of concentrated supplements [37]. The dietary intake of trans-fatty acids (TFA) have adverse effects on blood lipid levels, because they cause an increase on LDL-cholesterol and a decrease on HDL-cholesterol [38], both well-established markers of cardiovascular disease [39]. Similarly, cohort studies demonstrated that high intake of TFA is associated with an increased coronary heart disease and mortality rates [40,41].

Current product formulations of ω-3 supplements are offered in various options, ranging from soft gels (most common) to liquids, powders, and gummies, with oil sources from fish, krill, algae and plants. The quantities and prices of ω-3 FA found in dietary supplements are highly variable within and between brands. The dosage recommendations for ω-3 consumption by different manufacturing brands also largely differs, even for recommendations for the treatment of the same disease. For example, Figure 1 shows a comparison of the recommendations of the daily intake of EPA, DHA and...
EPA+DHA for treating cholesterol from 10 different commercial ω-3 supplement products that authors have selected from available products in the European market. This comparison reveals large differences between the recommended doses of supplements from one brand to another, leading to an increased confusion in consumer choice for selecting the adequate supplemental dosages.

ω-3 FA in supplements can be found in different forms such as triglycerides, free fatty acids, ethyl esters and phospholipids. Bioavailability of ω-3 PUFAs as phospholipids (as it appears mainly in krill oil) is higher than other forms of ω-3s [42], while triglycerides and free fatty acids have higher bioavailability than ethyl esters [43]. This is another feature that must be considered when deciding between the appropriate supplement for personal use.

Due to the controversy regarding specific recommendations of adequate intake of ω-3 for the general population as well as different population sub-groups (i.e. those with diet-related diseases), personalized ω-3 intake strategies should be adopted. Implementation of new omic tools, such as genomics, metabolomics, proteomics and transcriptomics, to the field of precision nutrition can facilitate detailed information on specific genotypes as well as the current levels of proteins and metabolites, thus enabling the identification of metabolic deficiencies or genetic variations within individuals. Hence, information obtained from these technologies can lead to a more precise personalized nutritional recommendation by providing information on different responses to diets, on dietary intake, and on new early biomarkers of certain diseases [44], all of which should be considered for recommendations of adequate dosage for each individual.

Examples of applying targeted-omic tools to assess ω-3 supplementation include studying the effect of PUFAs on genetic variation via epigenetic modifications [45] or the study of different metabolomic and transcriptomic profiles of responders and non-responders of ω-3 supplementation [46].

Cell membrane lipidomics, a specific sub-group within metabolomics, offers analyses of long-term food consumption and metabolism history: cell membrane composition reflects the absorption efficiency of the ingested fatty acids, metabolism and distribution of the resulting molecules [47,48]. Cell membrane lipidomic monitoring can also be applied to large populations allowing the molecular characterization of specific diseases or health risk factors, such as, diabetes mellitus [49], cardiovascular disease [50], obesity/overweight, cancer, allergies/intolerance [51]. By determining the actual levels of cell membrane fatty acids of an individual, innovative nutritional strategies to improve health status can be designed, including diet and specific supplements targeting different population groups to help consumers to properly choose the adequate fatty acid supplementation among commercially available products according to their specific needs.

Controversial results from ω-3 supplementation trials can be found in the literature for patients with cardiovascular disease [52]. One reason that ω-3 supplementation was not beneficial in these studies may be due to the fact that they did not measure the basal and endpoint ω-3 FA levels [53,54], therefore it is impossible to determine the actual changes in ω-3 levels in these patients. This further supports the application of lipidomic tools to these studies in order to assess the potential benefits of ω-3 FA supplementation.

6. Conclusions

It can be concluded that the intake of ω-3 supplements is a useful way to reach the recommended levels of ω-3 FA when the current dietary habits don’t meet these demands, especially in cases where higher levels may be required (i.e. disease, pregnancy, infant development). Nevertheless, more research should be carried out in the field to establish an adequate recommended dietary allowance for ω-3 FA in order to provide a clear message to the general public.

However, in the current situation where more research is leading to individualized health and nutritional recommendations, the use of omic technologies for a more precise and personalized supplementation appears to be crucial in order to achieve the expected health benefits and to allow consumers to make correct choices for their needs concerning dosage or different fatty acid supplements. This is not a trivial issue because the supplements are at the reach of any consumer, without any control, and when they are consumed in excess or for long-term, can negatively impact health.

In this sense, the application of cell membrane lipidomics provides a valid option to understand the structural and functional changes in fatty acid composition in both normal and pathological states. It also provides a measurement of the specific fatty acid needs for each individual based on their basal metabolic levels, as well as different metabolic changes that occur supplementation.

Future perspectives should focus as well on the effectiveness of different ω-3 FA sources for supplements
(marine and vegetable oils) and how new industrial processes can affect the quality of these supplements.

Acknowledgements

IJ thanks the Department of Economic Development and Infrastructures of the Basque Government for receiving a PhD grant for young researchers in the scientific-technological and business environment of the Basque agricultural and food sector. This paper is contribution no 993 from AZTI, Food Research, Basque Research and Technology Alliance (BRTA).

Competing Interests

None of the authors have any competing interest.

Funding

This work has been financially supported by the Centre for the Development of Industrial Technology (CDTI) of the Spanish Ministry of Science and Innovation under the grant agreement: TECNOMIFOOD project. CER-20191010.

List of Abbreviations

ALA: Alpha-linolenic Acid; DHA: Docosahexaenoic Acid; EFSA: European Food Safety Authority; EPA: Eicosapentaenoic Acid; FA: Fatty Acids; LA: Linoleic Acid; MUFA: Monounsaturated Fatty Acids; PUFA: Polyunsaturated Fatty Acids; SFA: Saturated Fatty Acids; TFA: Trans-Fatty Acids; UL: Upper intake Level; ω-3: Omega 3.

References

[1] Bailey RL, Gahche JJ, Lentino CV, Dwyer JT, Engel JS, Thomas PR, et al. Dietary supplement use in the United States, 2003-2006. J Nutr. 2011; 141(2): 261-6.
[2] Clarke TC, Black LI, Stussman BJ, Barnes PM, Nahin RL. Trends in the use of complementary health approaches among adults: United States, 2002-2012. Natl Health Stat Report. 2015; 10(79): 1-16.
[3] Bailey RL, Gahche JJ, Miller PE, Thomas PR, Dwyer JT. Why US adults use dietary supplements. JAMA Intern Med. 2013; 173(5): 355-61.
[4] Scientific Opinion on the Tolerable Upper Intake Level of eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA) and docosapentaenoic acid (DPA). EFSA Journal. 2012; 10(7): 2815.
[5] Wall R, Ross RP, Fitzgerald GF, Stanton C. Fatty acids from fish: the anti-inflammatory potential of long-chain omega-3 fatty acids. Nutr Rev. 2010; 68(5): 280-9.
[6] Lauritzen L, Brambilla P, Mazzeocchi A, Harsløf LB, Ciappolino V, Agostoni C. DHA Effects in Brain Development and Function. Nutrients. 2016; 8(1).
[7] Mori TA. Omega-3 fatty acids and cardiovascular disease: epidemiology and effects on cardiometabolic risk factors. Food Funct. 2014; 5(9): 2004-19.
[8] Gleissman H, Johnsen JI, Kogner P. Omega-3 fatty acids in cancer, the protectors of good and the killers of evil? Exp Cell Res. 2010; 316(8): 1365-73.
[9] Calder PC. n-3 fatty acids, inflammation and immunity: new mechanisms to explain old actions. Proc Nutr Soc. 2013; 72(3): 326-36.
[10] Kiecolt-Glaser JK, Belury MA, Andridge R, Malarkey WB, Glaser R. Omega-3 supplementation lowers inflammation and anxiety in medical students: a randomized controlled trial. Brain Behav Immun. 2011; 25(8): 1725-34.
[11] Burdge GC. Metabolism of alpha-linolenic acid in humans. Prostaglandins, leukotrienes, and essential fatty acids. 2006; 75(3): 161-8.
[12] Vessby B, Gustafsson IB, Tengblad S, Boberg M, Andersson A. Desaturation and elongation of fatty acids and insulin action. Ann N Y Acad Sci. 2002; 967: 183-95.
[13] Childs CE, Romeu-Nadal M, Burdge GC, Calder PC. Gender differences in the n-3 fatty acid content of tissues. Proc Nutr Soc. 2008; 67(1): 19-27.
[14] Koletzko B, Lattka E, Zeilinger S, Illig T, Steer C. Genetic variants of the fatty acid desaturase gene cluster predict amounts of red blood cell docosahexaenoic and other polyunsaturated fatty acids in pregnant women: findings from the Avon Longitudinal Study of Parents and Children. The American journal of clinical nutrition. 2011; 93(1): 211-9.
[15] Bolton-Smith C, Woodward M, Tavendale R. Evidence for age-related differences in the fatty acid composition of human adipose tissue, independent of diet. European journal of clinical nutrition. 1997; 51(9): 619-24.
[16] Simopoulos AP. An Increase in the Omega-6/Omega-3 Fatty Acid Ratio Increases the Risk for Obesity. Nutrients. 2016; 8(3).
[17] Jandacek RJ. Linoleic Acid: A Nutritional Quandary. Healthcare. 2017; 5(2).
[18] Chilton FH, Dutta R, Reynolds LM, Sergeant S, Mathias RA, Seeds MC. Precision Nutrition and Omega-3 Polyunsaturated Fatty Acids: A, Case for Personalized Supplementation Approaches for the Prevention and Management of Human Diseases. Nutrients. 2017; 9(11).
[19] Levy L, Tedstone A. UK Dietary Policy for the Prevention of Cardiovascular Disease. Healthcare. 2017; 5(1).
[20] The omega-3 fatty acids and the cardiovascular system: Nutritional benefits and claims. French Agency for Food, Environmental and Occupational Health Safety, 2003.
[21] Belgium Superior Health Council. Dietary guidelines for the Belgian adult population 2019; Available from: https://www.health.belgium.be/en/advisory-report-9284-fbdg-2019#anchor-36076.
[22] Kronhout D, Spaaij CJ, de Goede J, Weggemans RM. The 2015 Dutch food-based dietary guidelines. European journal of clinical nutrition. 2016;70(8):869-79.
[23] Nutrient reference values for Australia and New Zealand including recommended dietary intakes, Australia and New Zealand National Health and Medical Research Council, 2006.
[24] Scientific Opinion on Dietary Reference Values for fats, including saturated fatty acids, polyunsaturated fatty acids, monounsaturated fatty acids, trans fatty acids, and cholesterol. EFSA Journal. 2010; 8(3): 1461.
[25] U.S. Department of Health and Human Services and U.S. Department of Agriculture. Dietary Guidelines for Americans. 2015-2020 [December 2015]; 8 [Available from: https://health.gov/dietaryguidelines/2015/resources/2015-2020_Dietary_Guidelines.pdf.
[26] Fats and fatty acids in human nutrition. Proceedings of the Joint FAO/WHO Expert Consultation. November 10-14, 2008. Geneva, Switzerland: Ann Nutr Metab. 2009; 55(1-3): 5-30.
[27] Patterson AC, Stark KD. Direct determinations of the fatty acid composition of dietary fatty acids: results of an analysis using observational data from NHANES 2003-2008. Nutr J. 2014; 13(31): 1475-2891.
[28] Papanikolaou Y, Brooks J, Reider C, Fulgoni VL, 3rd. U.S. adults are not meeting recommended levels for fish and omega-3 fatty acid intake: results of an analysis using observational data from NHANES 2003-2008. Nutr J. 2014; 13(31): 1475-2891.
[29] Ian Givens D, Gibbs RA. Current intakes of EPA and DHA in the European populations and the potential of animal-derived foods to increase them. Proc Nutr Soc. 2008; 67(3): 273-80.
[30] European Food Safe Authority EFSA. EU Register of nutrition and health claims made on foods. 2016.
[31] Hillenman D, Smer A. Prescription Omega-3 Fatty Acid Products and Dietary Supplements Are Not Interchangeable. Manag Care. 2016; 25(1): 46-52.

[32] Ritter JC, Budge SM, Jovica F. Quality analysis of commercial fish oil preparations. Journal of the science of food and agriculture. 2013; 93(8): 1935-9.

[33] Jackowski SA, Alvi AZ, Mirajkar A, Imani Z, Ganalevych Y, Shaikh NA, et al. Oxidation levels of North American over-the-counter n-3 (omega-3) supplements and the influence of supplement formulation and delivery form on evaluating oxidative safety. Journal of nutritional science. 2015; 4(4).

[34] Albert BB, Cameron-Smith D, Hofman PL, Cutfield WS. Oxidation of marine omega-3 supplements and human health. Biomed Res Int. 2013; 464921(10): 30.

[35] Shahidi F, Zhong Y. Lipid oxidation and improving the oxidative stability. Chemical Society Reviews. 2010; 39(11): 4067-79.

[36] Sciotto C, Mjos SA. Trans isomers of EPA and DHA in omega-3 products on the European market. Lipids. 2012; 47(7): 659-67. Epub 2012/05/09.

[37] Menounou G, Giacometti G, Scanferlato R, Dambruoso P, Sansone A, Tueros I, et al. Trans Lipid Library: Synthesis of Docosahexaenoic Acid (DHA) Monotrans Isomers and Regiosomer Identification in DHA-Containing Supplements. Chem Res Toxicol. 2018; 31(3): 191-200.

[38] Brouwer IA, Wanders AJ, Katan MB. Effect of animal and industrial trans fatty acids on HDL and LDL cholesterol levels in humans—a quantitative review. PloS one. 2010; 5(3): 0009434.

[39] Lewington S, Whitlock G, Clarke R, Sherliker P, Emberson J, Mayr U, et al. Lipid profiling identifies a triacylglycerol signature of insulin resistance and improves diabetes prediction in humans. The Journal of clinical investigation. 2011; 121(4): 1402-11.

[40] Brouwer I. Effect of trans-fatty acid intake on blood lipids and lipoproteins: a systematic review and meta-regression analysis. European journal of clinical nutrition. 2011; 65(7): 773-83.

[41] Bendsen NT, Christensen R, Bartels EM, Astrup A. Consumption of industrial and ruminant trans fatty acids and risk of coronary heart disease: a systematic review and meta-analysis of cohort studies. European journal of clinical nutrition. 2011; 65(7): 773-83.

[42] Ulven SM, Kirkhus B, Langhjât A, Basu S, Elind E, Haider T, et al. Metabolic effects of krill oil are essentially similar to those of fish oil but at lower dose of EPA and DHA, in healthy volunteers. Lipids. 2011; 46(1): 37-46.

[43] Dyorberg J, Madson P, Moller JM, Aardrup I, Schmidt EB. Bioavailability of marine n-3 fatty acid formulations. Prostaglandins, leukotrienes, and essential fatty acids. 2010; 83(3): 137.

[44] Corella D, Ordovas JM. The role of omics in precision nutrition: strengths and weaknesses. Nutr Hosp. 2018; 35(Spec No4): 10-8.

[45] Hernandez Boigues JF, Mach N. The effect of polyunsaturated fatty acids on obesity through epigenetic modifications. Endocrinol Nutr. 2015; 62(7): 338-49.

[46] Rudkowska I, Paradis A-M, Thiﬀault E, Julien P, Barbier O, Couture P, et al. Diﬀerences in metabolomic and transcriptomic proﬁles between responders and non-responders to an n-3 polyunsaturated fatty acids (PUFAs) supplementation. Genes & Nutrition. 2013; 8(4): 411-23.

[47] Stanley EG, Jenkins BJ, Walker CG, Koulman A, Browning L, West AL, et al. Lipidomics Proﬁling of Human Adipose Tissue Identiﬁes a Pattern of Lipids Associated with Fish Oil Supplementation. J Proteome Res. 2017; 16(9): 3168-79.

[48] Visioli F. Lipidomics to Assess Omega 3 Bioactivity. J Clin Med. 2015; 4(9): 1753-60.

[49] Rhee EP, Cheng S, Larson MG, Walford GA, Lewis GD, McCabe E, et al. Lipid proﬁling identiﬁes a triacylglycerol signature of insulin resistance and improves diabetes prediction in humans. Circulation. 2014; 129(18): 1821-31.

[50] Ferrari C, Chatgilialoglu, C. Membrane Lipidomics for Personalized Health. Chichester, UK: John Wiley & Sons; 2015.

[51] Abdelhamid AS, Brown TJ, Brainard JS, Biswas P, Thorpe GC, Moore HJ, et al. Omega-3 fatty acids for the primary and secondary prevention of cardiovascular disease. Cochrane Database Syst Rev. 2018; 18(7).

[52] Shahidi F, Zhong Y. Lipid oxidation and improving the oxidative stability. Chemical Society Reviews. 2010; 39(11): 4067-79.

[53] Wang J, Zhang J, Wang Y, Fu Q, Jiang Y, Yang L, et al. Metabolic effects of krill oil are essentially similar to those of fish oil but at lower dose of EPA and DHA, in healthy volunteers. Lipids. 2011; 46(1): 37-46.

[43] Dyorberg J, Madson P, Moller JM, Aardrup I, Schmidt EB. Bioavailability of marine n-3 fatty acid formulations. Prostaglandins, leukotrienes, and essential fatty acids. 2010; 83(3): 137.

[44] Corella D, Ordovas JM. The role of omics in precision nutrition: strengths and weaknesses. Nutr Hosp. 2018; 35(Spec No4): 10-8.

[45] Hernandez Boigues JF, Mach N. The effect of polyunsaturated fatty acids on obesity through epigenetic modifications. Endocrinol Nutr. 2015; 62(7): 338-49.

[46] Rudkowska I, Paradis A-M, Thiﬀault E, Julien P, Barbier O, Couture P, et al. Diﬀerences in metabolomic and transcriptomic proﬁles between responders and non-responders to an n-3 polyunsaturated fatty acids (PUFAs) supplementation. Genes & Nutrition. 2013; 8(4): 411-23.

[47] Stanley EG, Jenkins BJ, Walker CG, Koulman A, Browning L, West AL, et al. Lipidomics Proﬁling of Human Adipose Tissue Identiﬁes a Pattern of Lipids Associated with Fish Oil Supplementation. J Proteome Res. 2017; 16(9): 3168-79.

[48] Visioli F. Lipidomics to Assess Omega 3 Bioactivity. J Clin Med. 2015; 4(9): 1753-60.

[49] Rhee EP, Cheng S, Larson MG, Walford GA, Lewis GD, McCabe E, et al. Lipid proﬁling identiﬁes a triacylglycerol signature of insulin resistance and improves diabetes prediction in humans. Circulation. 2014; 129(18): 1821-31.