Monitorización del gasto cardíaco con ecocardiografía transtorácica y catéter de Swan Ganz. Estudio comparativo en pacientes en ventilación mecánica con presión positiva espiratoria final elevada

INTRODUCCIÓN

El monitoreo hemodinámico de pacientes críticos es de utilidad tanto para caracterizar adecuadamente el estado de la hemodinámica, realizar el diagnóstico y guiar tratamientos. Permite caracterizar el estado de transporte de oxígeno a los tejidos y el metabolismo del oxígeno. (1) Para medir el gasto cardíaco (GC) existen numerosas alternativas y métodos, en los que se combinan medidas continuas, medidas de flujo sanguíneo, medidas de termodilución y medidas de...
variabilidad de onda de pulso. El método estándar es la termodilución pulmonar realizada con el catéter arterial pulmonar (CAP). Swan y Ganz lo implementaron para su uso clínico en la década de los ’70.\(^{(2)}\)

Entre las críticas al uso del CAP se enumeran las siguientes: es un método invasivo que requiere cateterismo de corazón derecho y arteria pulmonar y por lo tanto está sujeto a eventuales complicaciones; la interpretación de los resultados y su aplicación clínica se relaciona con el entrenamiento y conocimiento del operador; todo lo anterior genera aumento de la carga de iatrogenia.\(^{(3,4)}\) Dentro de los métodos de valoración no invasivos del gasto cardiaco la ecocardiografía transtorácica (ETT) ha sido reportada como herramienta de valoración hemodinámica.\(^{(5)}\) La ETT enfocada en función cardíaca puede proveer respuestas sobre la función cardíaca global para guiar tratamientos con menor invasividad.\(^{(6)}\) La ETT proporciona valiosa información sobre función diastólica, estructuras cardíacas, motilidad regional y función valvular.\(^{(7-9)}\) Existen suficientes datos y estudios sobre la comparación de ETT con métodos estándar de valoración hemodinámica en pacientes ambulatorios y en pacientes en ventilación mecánica.\(^{(10)}\)

Los pacientes en ventilación mecánica presentan modificaciones que podrían modificar la medida del GC entre estas se enumeran: inadecuada ventana ultrasonica; la presión positiva y la presión positiva espiratoria final (PEEP) podrían modificar las condiciones hemodinámicas; la presencia de insuficiencia tricúspide. La ventilación mecánica y la PEEP modifican los determinantes de función cardíaca, esto podría determinar que la correlación entre diferentes métodos de medida del GC no sea adecuada.\(^{(11,12)}\) Ademá y la presencia de insuficiencia tricúspide es frecuente en pacientes en ventilación mecánica y puede influir en las medidas del GC.\(^{(13-15)}\)

Nuestra hipótesis es que la medida de GC por ETT es comparable con las medidas hemodinámicas invasivas con CAP en pacientes en ventilación mecánica con PEEP elevada.

El objetivo del presente trabajo es comparar las medidas de GC realizadas con ETT y CAP en pacientes en ventilación mecánica, con niveles elevados de PEEP.

MÉTODOS

Estudio de tipo comparativo de la medida de GC en una muestra de conveniencia de pacientes internados en Medicina Intensiva, en donde se estudiaron variables hemodinámicas por dos métodos (ETT y CAP) en diferentes niveles de PEEP.

Entre enero 2011 y diciembre 2012 se estudiaron pacientes ingresados en el Centro de Tratamiento Intensivo del Hospital de Clínicas en ventilación mecánica en quienes se realizó colocación de CAP por el equipo médico tratante.

Las indicaciones para la colocación de CAP fueron shock cardiogénico, shock séptico, insuficiencia cardíaca avanzada con hipoperfusión periférica, shock de etiología no aclarada, insuficiencia respiratoria severa y posoperatorio de cirugía cardíaca con shock posoperatorio. Se excluyeron 9 pacientes por inadecuada ventana ultrasonica, inestabilidad hemodinámica severa, arritmia o valvulopatía aórtica o mitral severa. La calidad de la ventana acústica fue graduada de la siguiente manera: 0: no se obtuvo imagen ecocardiográfica transtorácica; 1: el endocardio de los ventrículos no se puede visualizar en su mayoría (pobre visualización de las válvulas cardíacas y/o de los grandes vasos); 2: segmentos cortos de endocardio no son visualizados completamente (visualización parcial de las válvulas cardíacas y/o de los grandes vasos); 3: visualización completa de ambos ventrículos (visualización completa de las válvulas cardíacas y/o de los grandes vasos).\(^{(16)}\)

El estudio se realizó de acuerdo a la declaración de Bioética de Helsinki de estudios en humanos. El estudio se aprobó por el Comité de Ética Médica del Hospital de Clínicas. El consentimiento informado fue firmado por familiares. Los pacientes estuvieron en ventilación mecánica en tratamiento con sedación y analgesia con midazolam y fentanyl en dosis habitualmente usadas.

Medidas ecocardiográficas se realizaron con un equipo marca -Siemens acuson- por Cardiólogos con 3 años de experiencia en la realización de ecocardiografía en pacientes críticos. Las variables ecocardiográficas se realizaron de acuerdo a los estándares de la American Society of Echocardiography (ASE).\(^{(17)}\)

El GC estimado en el enfoque apical de cinco cámaras por método Doppler fue derivado del volumen sistólico usando la integral tiempo velocidad (ITV) del flujo a través del tracto de salida del ventrículo izquierdo (TSVI), el diámetro del TSI y la frecuencia cardíaca durante el estudio de imagen. El ITV aórtico fue registrado desde el enfoque apical colocando la muestra Doppler en el TSVI por debajo (5mm proximal) del nivel de la válvula aórtica. El diámetro del TSVI fue medido en el eje para externo largo. El gasto cardíaco se calcule con la siguiente fórmula:
\[
\text{Volumen latido} = \text{ITV (cm)} \times (\text{área de sección transversal}) = \pi (\text{diámetro TSVI}/2)^2 \\
\text{Donde } \pi \text{ es igual a } 3.1416
\]
Volumen latido = \(\pi \times (\text{diámetro TSVI}/2)^2 \times \text{ITV} \) cm s, mL

Gasto cardiaco = frecuencia cardíaca (latidos por minuto) \(\times \text{ITV} \) (cm) \(\times 3,1416 \times (\text{diámetro TSVI} \ (\text{cm})/2)^2(\text{cm}^3) \) = mL por minuto

Las dimensiones cardíacas, y la función ventricular se midieron de acuerdo a las guías de la ASE.\(^{17,18}\) La fracción de eyección ventricular izquierda (FEVI) fue evaluada por el método de Simpson. La presencia de insuficiencia tricúspide se evaluó por ETT con Doppler continuo de acuerdo a las guías de American Society of Echocardiography. La severidad de la insuficiencia tricúspide se clasificó como leve, moderada o severa.\(^{18}\)

Medidas con Swan Ganz

Las medidas invasivas se realizaron con un catéter pulmonar marca Biosensor\(^8\). Se realizó la colocación por médicos intensivistas a cargo del paciente, se usaron la vía venosa central jugular y subclavia sin complicaciones. Se realizó el procedimiento guiado por presiones para confirmar presiones de enclavamiento pulmonar, se realizó control con radiología de tórax. El catéter pulmonar se conectó a un monitor Solar General Electric\(^8\) para registro de presiones y medida de gasto cardíaco por termodilución. El GC se midió por termodilución pulmonar con el CAP. Se utilizó un catéter arterial pulmonar biosensor\(^8\). Las medidas se realizaron al final de la espiración, se tomó el promedio de cinco medidas consecutivas descartándose la menor y la mayor de las medidas. Se descartaron las medidas con una variabilidad mayor del 10%.\(^{19}\) La termodilución pulmonar se hizo por inyección de suero salino 10mL por el sector proximal del CAP, se verificó la presencia de curva de termodilución.\(^{20-22}\) El GC se computó en un monitor Solar General Electric\(^8\). Las presiones se midieron en mmHg, con cero de referencia en la zona de la medida del tórax. Se midió presión auricular diastólica (PAD), presión arterial sistólica pulmonar (PASP), presión arterial pulmonar media (PAMP), presión arterial pulmonar diastólica (PADP), presión arterial pulmonar capilar enclavada (PCP). La resistencia arterial pulmonar (RVP) en unidades Wood fue calculada usando la ecuación RVP = (PAMP-PCP)/GC, la resistencia arterial sistémica (RVS) fue calculada por la ecuación RVS = (presión arterial media - PAD)/GC, ambas se expresaron en dinas.s.cm\(^{-5}\) y dinas.s.cm\(^{-5}\).m\(^{-2}\).

Efecto de la presión positiva espiratoria final

Los pacientes fueron estudiados con tres niveles de PEEP, 10cmH\(_2\)O, 15cmH\(_2\)O y 20cmH\(_2\)O con 5 minutos de estabilización entre cada medida. Cuando el paciente estaba en uno de estos niveles no se descendió el PEEP por considerarse parte de su tratamiento. En cada nivel de PEEP se realizó medida de GC por ETT y por CAP consecutivamente, para obtener cada valor de GC se realizaron 5 medidas de GC con CAP y 3 medidas de GC con ETT.

En cada nivel de PEEP se obtuvo un par de medidas de GC por CAP y por ETT para cada paciente. Cuando no fue posible obtener una condición estable no se registraron medidas hemodinámicas. No hubo eventos adversos durante el protocolo de PEEP.

Estadistica

Los valores se expresaron como media y desviación estándar (DE) y rango. Los datos categóricos se expresaron como frecuencias y porcentajes. La normalidad se estudió con el test de Kolmogorov-Smirnov. El test de Kruskal-Wallis fue usado para comparar los datos continuos. La concordancia entre los métodos se estudió con el coeficiente de correlación intraclass (CCI) en cada nivel de PEEP un coeficiente de concordancia mayor de 0,75 fue considerado excelente con un valor de p < 0,05 fue considerado significativo. Los límites de acuerdo (LDA) y error entre ambos métodos, y la desviación estándar de las diferencias (precisión) se estudiaron con el diagrama de Bland Altman (gráfica de la diferencia versus la media de las medidas). El coeficiente de error se calculó como desviación estándar por dos sobre la media de todas las medidas y expresado en porcentaje. La precisión se calculó como la DE de las diferencias entre ambos métodos y la dispersión se calculó como el rango de los límites de acuerdo de las diferencias de ambos métodos. El coeficiente de variabilidad se calculó dividiendo la DE de las medidas por el promedio de las medidas para cada paciente para CAP y para ETT respectivamente. El efecto de la temperatura sobre el GC se evaluó mediante regresión lineal simple. La variabilidad del ITV en la medida de GC se evaluó con GC medido por CAP en valores de GC menores de 5L/min o mayores o iguales de 5L/min, la misma fue expresada como media, DE, y rango.

RESULTADOS

Se estudiaron 25 pacientes en los cuales fue posible incluir 16 pacientes. Se incluyeron pacientes en quienes se colocó CAP por criterio del equipo tratante. Las características clínicas de los pacientes incluidos fueron, edad 60 ± 15 años, tiempo en ventilación mecánica 4 ± 2 días, la mortalidad fue de 31% (Tabla 1). Los diagnósticos fueron
postoperatorios de cirugía cardíaca (n = 3), sepsis (n = 6), infarto agudo de miocardio (n = 3), síndrome coronario agudo (n = 2), insuficiencia cardíaca (n = 2).

Variables	Gasto cardíaco* (L/min)	Frecuencia cardíaca (lpm)	PAD* (mmHg)	Ventilación mecánica (l/min)	PAPS* (mmHg)	PCP* (mmHg)	APACHE II	Mortalidad (%)
Edad (años)	60 ± 15	102 ± 15	18 ± 6	4 ± 2	42 ± 13	22 ± 5	19 ± 7	31
Gasto cardíaco* (L/min)	6.7 ± 2.8							
Frecuencia cardíaca (lpm)		102 ± 15						
PAD* (mmHg)	18 ± 6							
Ventilación mecánica (l/min)		4 ± 2						
PAPS* (mmHg)			42 ± 13					
PCP* (mmHg)				22 ± 5				
APACHE II					19 ± 7			
Mortalidad (%)							31	

De los 16 pacientes se obtuvieron 44 pares de medidas de GC. En 14 pacientes se realizaron 14 pares de medidas de GC con ETT y CAP en los tres niveles de PEEP (14 por 3 = 42 pares), en un paciente se realizó un par de medidas con PEEP de 10cmH2O, en otro paciente se realizó un par de medidas con PEEP de 15cmH2O, se completó un total 44 pares de medidas.

Para evaluar la variabilidad que aportaron cada uno de los diferentes diagnósticos evaluamos el rango de valores de GC (máximo menos el mínimo) y el porcentaje de pares de medidas que aportan al total de pares de medidas. Encontramos que los pares de medidas de sepsis fueron el 41% y el rango de medidas de GC fue de 8,30L/min, los pares de medidas de posoperatorio de cirugía cardíaca (POCC) fueron 16% con un rango de medidas de GC de 6,71L/min, los pares de medidas de insuficiencia cardíaca fueron 14% con un rango de medidas de GC de 0,80L/min, los pares de medidas de insuficiencia cardíaca fueron 14% con un rango de medidas de GC de 4,90L/min, los pares de medidas de infarto agudo de miocardio (IAM) fueron 16% con un rango de medidas de GC de 2,20L/min. No hubo efecto de la temperatura sobre los valores de GC (R2 = 0,073, p = 0,183).

Todos los pacientes estuvieron en ventilación mecánica, sedados y analgesiados. Con PEEP 10cmH2O, la complacencia respiratoria semiestática fue de 29 ± 9mL/cmH₂O, el PaO₂/FIO2 fue de 226 ± 72, la presión platillo fue de 27 ± 5cmH₂O, y la frecuencia respiratoria 16 ± 4rpm.

En cuanto al tratamiento con vasopresores e inotrópicos, 36% requirió noradrenalina, y 21% requirió dobutamina. El valor medio de GC medido por ETT fue de 7,0 ± 2,6L/min mientras que el obtenido con CAP fue de 6,6 ± 2,9L/min en todas las medidas. No hubo diferencias significativas de GC medido por ETT y por CAP entre los diferentes niveles de PEEP (Tabla 2). El coeficiente de variabilidad de la medida de GC por CAP fue 6%, el coeficiente de variabilidad de la medida de GC por ETT fue 9%.

En relación a la presencia de insuficiencia tricúspide, con PEEP de 10cmH₂O, se detectó insuficiencia tricúspide en 10 de 15 medidas (67%). Con PEEP de 15cmH₂O, se detectó insuficiencia tricúspide en 8 de 15 medidas (53%). Con PEEP de 20cmH₂O se detectó insuficiencia tricúspide en 6 de 14 medidas (43%). En total se detectó insuficiencia tricúspide en 24 de 44 medidas de GC (55%).

El coeficiente de correlación intraclase para todas las medidas de GC por ETT y por CAP fue de 0.919 (intervalo de confianza de 95% - IC95%, 0,851 - 0,956), n = 44; para de PEEP 10cmH₂O fue 0,901 (IC95%, 0,706 - 0,936), n = 15; para PEEP 15cmH₂O fue 0,947 (IC95%, 0,841 - 0,982), n = 15; PEEP 20cmH₂O fue 0,908 (IC95%, 0,713 - 0,970), n = 14; p < 0,001 (Figura 1a).

Con insuficiencia tricúspide el CCI fue 0,791 (IC95%, 0,576 - 0,904), n = 24; sin insuficiencia tricúspide el CCI fue 0,935 (IC95%, 0,848 - 0,973), n = 20.

El análisis de Bland Altman para todas las medidas de GC mostró un sesgo de 0.44L/min con LDA entre -2,37L/min a 3,25L/min. La precisión fue de 1,43L/min, el porcentaje de error fue de 42%, la dispersión de 5,18L/min (Figura 1b). Con diferentes niveles de PEEP los valores de sesgo, LDA, y porcentaje de error no variaron significativamente (Tabla 2 y Figura 1b). La presencia de insuficiencia tricúspide aumenta el porcentaje de error de 32 % a 52% (Tabla 3).

En nuestro estudio encontramos una dispersión de rango de ITV desde 9cm a 34cm, lo cual explica en parte la dispersión de valores de GC. Cuando el GC medido por termodilución pulmonar es mayor de 5L/min el ITV fue mayor de 16cm (rango 16cm a 34cm, 24 ± 5), mientras que cuando fue menor de 5L/min el rango de ITV fue de 9cm a 22cm (18 ± 4cm).
Tabla 2 - Resultados de Bland Altman para gasto cardiaco

PEEP (cmH₂O)	n	GC ETT (L/min)	GC CAP (L/min)	EM ± DE (L/min)	LDA (L/min)	Promedio de suma de ambos métodos	Dispersión (L/min)	Precisión (L/min)	Porcentaje de error %
10	15	7.4 ± 2.7; (3.3 - 11.0)	6.9 ± 2.9; (3.1 - 11.8)	0.46 ± 1.55	-2.58 a 3.50	7.20 ± 2.73	5.62	1.55	43
15	15	6.6 ± 2.4; (3.3 - 11.1)	6.0 ± 2.8; (3.1 - 12.1)	0.56 ± 1.17	-1.73 a 2.86	6.36 ± 2.53	4.03	1.17	37
20	14	6.9 ± 2.5; (3.0 - 12.4)	6.7 ± 3.0; (3.1 - 13.0)	0.29 ± 1.64	-2.93 a 3.52	6.80 ± 2.71	6.15	1.64	48
Total	44	7.0 ± 2.6; (3.0 - 12.4)	6.6 ± 2.9; (3.1 - 13.0)	0.44 ± 1.43	-2.37 a 3.25	6.79 ± 2.65	5.62	1.43	42

PEEP - presión positiva espiratoria final; GC - gasto cardiaco; ETT - ecocardiografía transtorácica; CAP - catéter arterial pulmonar; EM - error medio (promedio de la diferencia entre los métodos); DE - desviación estándar; LDA - límites de acuerdo. Dispersión es el rango de límites de acuerdo de diferencias; Precisión es igual a desviación estándar de diferencias; máximo y mínimo del promedio de la suma de ambos métodos (L/min). Error medio. Media de diferencia de métodos ± 1.96 desviación estándar; media ± desviación estándar. Porcentaje de error (100 multiplicado por 2 desviación estándar dividido por el promedio de los valores de gasto cardiaco), n, número de pares de medidas.

La FEVI se encontró leve a moderadamente disminuida, no hubo cambios de la FEVI con los diferentes niveles de PEEP.

Se encontró correlación significativa entre FEVI y GC medido por ETT (r = 0.373) y por CAP (r = 0.562). No se detectó foramen oval permeable en ninguno de los niveles de PEEP. La PCP medida con CAP en todos los niveles de PEEP fue de 22 ± 5mm Hg, el índice de resistencia vascular sistémica (IRVS) fue 1569 ± 496 dinas.seg.cm⁻².m⁻² y el índice de resistencia vascular pulmonar (IRVP) fue de 269 ± 154 dinas.seg.cm⁻².m⁻², no variaron significativamente con los diferentes niveles de PEEP.

DISCUSIÓN

En nuestro estudio encontramos que fue posible medir el GC de manera no invasiva con ETT en pacientes en ventilación mecánica con PEEP elevada. Encontramos adecuada correlación con el método de termodilución pulmonar por CAP. El error medio fue de 0.44L/min, con LC de ± 2.81L/min con un porcentaje de error de 42%. Cuando estudiamos la presencia de insuficiencia tricúspide encontramos que la misma determinó una disminución del CCI y un aumento del porcentaje de error.

La medida de GC por ecocardiografía Doppler ha sido validada en otros estudios en diferentes poblaciones de pacientes en ventilación espontánea o ventilación mecánica.(23-27) Nuestro estudio agrega información a la serie de estudios que se conocen en la literatura,(23-29) El error medio, los LC, y el porcentaje de error en nuestro estudio son comparables con otros estudios de medida de GC por ETT. El error medio de los estudios previos se ubica entre 0,03 a 0,75L/min, los LC están entre ± 0,57 a ± 2,87L/min, el porcentaje de error reportado esta entre 11% a 69%. Se ha reportado que el porcentaje de error de medida de GC de un método aceptable debería ser aproximadamente 30%. El porcentaje de error reportado en estudios previos comparativos de GC vario entre 11% a
La diferencia en el acuerdo entre ambos métodos puede ser explicada por varios factores: aumento del gas entre el transductor y el corazón lo que modificaría la alineación entre medidas, cambios en el GC determinadas por el efecto de la presión positiva sobre la hemodinamia, el retorno venoso y la postcarga. Es conocido que la PEEP al reclutar unidades alveolares genera aumento del volumen pulmonar interponiendo entre el transductor y el corazón lo que reduce la calidad y nitidez de la imagen ecocardiográfica obtenida. Además la PEEP modifica las condiciones de llenado cardiaco y postcarga lo que podría modificar la condición fisiológica cardiaca al cambiar el patrón de llenado cardiaco y los tiempos de eyeción ventricular. En los estudios previamente reportados el valor de GC estuvo en el rango de 2,5 L/min a 12,0 L/min, en nuestro estudio el rango de valores de GC estuvo entre 3 a 13 L/min, esto puede ser explicado por la heterogeneidad atribuible a diferentes patologías incluidas tales como sepsis o síndrome coronario agudo, a lo que se suma los valores de temperatura y las limitaciones del método Doppler pulsado en la detección de valores elevados de GC cuando la velocidad de flujo sanguíneo es mayor de 2 m/s. Los pacientes con sepsis y en POCC aportaron la mayor variabilidad de rango de GC al mismo tiempo que aportaron un porcentaje importante de la cantidad de pares de medidas. Este elemento sin duda que modificaría la condición fisiológica cardiaca al cambiar el patrón de llenado cardiaco y los tiempos de eyeción ventricular. En los estudios previos en donde el n estuvo entre 18 a 48 pacientes. Se observó que el tamaño de la muestra es pequeño en relación a estudios previos en donde el n estuvo entre 18 a 48 pacientes. Segundo, no se realizó el cálculo de tamaño de la muestra para el tipo de estudio, aunque en ninguno de los estudios previos fue realizado. Tercer lugar, la heterogeneidad de la muestra con diferentes condiciones fisiopatológicas (shock cardiogénico y shock distributivo) que aumentan el rango de valores de GC y la dispersión. Encontramos que los pacientes con sepsis y en POCC aportaron la mayor variabilidad de rango de GC. Cuarto, cuando se realizaron las medidas hemodinámicas los investigadores no fueron ciegos a los cambios de PEEP, o a los resultados de ambas técnicas al momento de obtenerlas. Quinto, debemos considerar los errores en la medida del GC por el método Doppler en rango de valores cercanos a 12 L/min, cuando

Tabla 3 - Efecto de la insuficiencia tricúspide en la medida de gasto cardiaco

	Sin insuficiencia tricúspide (n = 20)*	Con insuficiencia tricúspide (n = 24)*	Diferencia (L/min)**			
	ETT	CAP	ETT	CAP		
GC promedio (L/min)	7,40 ± 2,51	6,95 ± 2,94	6,88 ± 2,59	6,25 ± 2,84	0,72**	0,69**
GC promedio de ambos métodos (L/min)	7,17 ± 2,68; (13 - 4)	6,47 ± 2,59; (12 - 3)	0,71**			
Error medio (L/min)	0,45 ± 1,14	0,43 ± 1,67	0,02**; 0,53			
Porcentaje de error (%)	32	52				

ETT - ecocardiografía transtorácica; CAP - catéter arterial pulmonar; GC - gasto cardiaco. Valores se expresan como media ± desviación estándar; máximo - mínimo. * Número de medidas. ** Diferencia de medias; δ diferencia de desviación estándar. Relación de desviación estándar con insuficiencia tricúspide dividido entre la desviación estándar sin insuficiencia tricúspide. 0,71/1,43 = 0,50. Porcentaje de aumento de desviación estándar con insuficiencia tricúspide es igual a 100 (0,71-1,43)/1,43 lo que es igual a 46. Porcentaje de error es igual a 100 por la desviación estándar por 2/promedio del gasto cardiaco de ambos métodos.
ABSTRACT

Objective: To compare cardiac output measurements by transthoracic echocardiography and a pulmonary artery catheter in mechanically ventilated patients with high positive end-expiratory pressure. To evaluate the effect of tricuspid regurgitation.

Methods: Sixteen mechanically ventilated patients were studied. Cardiac output was measured by pulmonary artery catheterization and transthoracic echocardiography. Measurements were performed at different levels of positive end-expiratory pressure (10cmH₂O, 15cmH₂O, and 20cmH₂O). The effect of tricuspid regurgitation on cardiac output measurement was evaluated. The intraclass correlation coefficient was studied; the mean error and limits of agreement were studied with the Bland-Altman plot. The error rate was calculated.

Results: Forty-four pairs of cardiac output measurements were obtained. An intraclass correlation coefficient of 0.908 was found (p < 0.001). The mean error was 0.44L/min for cardiac output values between 5 and 13L/min. The limits of agreement were 3.25L/min and -2.37L/min. With tricuspid insufficiency, the intraclass correlation coefficient was 0.791, and without tricuspid insufficiency, 0.935. Tricuspid insufficiency increased the error rate from 32% to 52%.

Conclusions: In patients with high positive end-expiratory pressure, cardiac output measurement by transthoracic echocardiography is comparable to that with a pulmonary artery catheter. Tricuspid regurgitation influences the intraclass correlation coefficient. In patients with high positive end-expiratory pressure, the use of transthoracic echocardiography to measure cardiac output is comparable to invasive measures.

Keywords: Cardiac output; Hemodynamic monitoring; Echocardiography; Positive end-expiratory pressure; Pulmonary artery catheter; Respiration, artificial

REFERENCES

1. Pinsky MR. Hemodynamic evaluation and monitoring in the ICU. Chest. 2007;132(6):2020-9.
2. Swan HJ, Ganz W, Forrester J, Marcus H, Diamond G, Chonette D. Catheterization of the heart in man with use of a flow-directed balloon-tipped catheter. N Engl J Med. 1970;283(9):447-51.
3. Connors AF Jr, Speroff T, Dawson NV, Thomas C, Harrell FE Jr, Wagner D, et al. The effectiveness of right heart catheterization in the initial care of critically ill patients. SUPPORT Investigators. JAMA. 1996;276(11):889-97.
4. Clermont G, Kong L, Weissfeld JD, Thompson BT, Wheeler AP, Angus DC; NHLBI ARDS Clinical Trials Network. The effect of pulmonary artery catheter use on costs and long-term outcomes of acute lung injury. PLoS One. 2011;6(7):e22512.
5. Ayuela Azcarate JM, Clau Terré F, Ochagavia A, Vicho Pereira R. [Role of echocardiography in the hemodynamic monitoring of critical patients]. Med Intensiva. 2012;36(3):220-32. Spanish.
6. Oren-Grinberg A, Talmor D, Brown SM. Focused critical care echocardiography. Crit Care Med. 2013;41(11):2618-26.
7. Feigenbaum H. Hemodynamics. In: Feigenbaum H, Armstrong WF, Ryan T, editors. Feigenbaum’s Echocardiography. 6th ed. Philadelphia: Lippincott Williams & Wilkins; 2004. p. 214-45.
8. García-Vicente E, Campos-Nequía A, Gombera Serrano MM. Ecocardiografía en la unidad de cuidados intensivos. Med Intensiva. 2008;32(5):236-47.
9. Oh JK, Seward JB, Tajik AJ. Evaluation hemodinamica. In: Oh JK, Seward JB, Tajik AJ, editors. Eco-manual. 2a. ed. Madrid: Marban; 2004. p. 59-72.
10. Luecke T, Pelosi P. Clinical review: Positive end-expiratory pressure and cardiac output. Crit Care. 2005;9(6):607-21.
Monitorización del gasto cardiaco con ecocardiografía transtorácica y cateter de Swan Ganz

11. Gernoth C, Wagner G, Pelosi P, Luecke T. Respiratory and haemodynamic changes during decremental open lung positive end-expiratory pressure titration in patients with acute respiratory distress syndrome. Crit Care. 2009;13(2):R59.

12. Sarantreas T, Panou F, Manikis D, Mavrogenis A, Kostopanagiotou G, Papadimos T. Pocket-sized transthoracic echocardiography for intraoperative monitoring of heart function in spontaneously breathing patients and the optimal acoustic window. Br J Anaesth. 2016;116(4):556-7.

13. Balk M, Pachl J, Hendi J. Effect of the degree of tricuspid regurgitation on cardiac output measurements by thermodilution. Intensive Care Med. 2002;28(8):1117-21. Erratum in Intensive Care Med 2002;28(11):1689. Martin, Balk [corrected to Balk, Martin]; Jan, Pachl [corrected to Pachl, Jan]; Jan, Hendi [corrected to Hendi, Jan].

14. Artucio H, Hurtado J, Zimet L, de Paula J, Beron M. PEEP-induced tricuspid regurgitation. Intensive Care Med. 1997;23(8):836-40.

15. Jullien T, Valtier B, Hongnat JM, Dubourg O, Bourdarias JP, Jardin F. Incidence of tricuspid regurgitation and venal caval backward flow in mechanically ventilated patients. A color Doppler and contrast echocardiographic study. Chest. 1995;107(2):488-93.

16. Lang RM, Badano LP, Mor-Avi V, Alfaiato J, Armstrong A, Emande L, et al. Recommendations for the evaluation of left ventricular diastolic function by echocardiography: an update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. J Am Soc Echocardiogr. 2015;28(1):1-39.e14.

17. Nagueh SF, Smiseth OA, Appleton CP, Byrd BF 3rd, Dokainish H, Edwardsen T, et al. Recommendations for the Evaluation of Left Ventricular Diastolic Function by Echocardiography: An Update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. J Am Soc Echocardiogr. 2016;29(4):277-314.

18. Zoghbi WA, Enriquez-Sarano M, Foster F, Grayburn PA, Kraft CD, Levine RA, Nihoyannopoulos P, Otto CM, Quinones MA, Rakowski H, Stewart WJ, Waggoner A, Weissman NJ. American Society of Echocardiography, Recommendations for the Evaluation of the Severity of Native Valvular Regurgitation with Two-dimensional and Doppler Echocardiography. J Am Soc Echocardiogr. 2003;16(1):777-802.

19. Nishikawa T, Dohi S. Errors in the measurement of cardiac output by thermodilution. Can J Anaesth. 1993;40(2):142-53.

20. American Society of Anesthesiologists Task Force on Pulmonary Artery Catheterization. Practice Guidelines for Pulmonary Artery Catheterization: an updated report by the American Society of Anesthesiologists Task Force on Pulmonary Artery Catheterization. Anesthesiology. 2003;99(4):R881-1024.

21. Chatterjee K. The Swan-Ganz catheters: past, present, and future. A viewpoint. Circulation. 2009;119(1):147-52. Erratum in Circulation. 2009;119(21):e548.

22. Rosenkranz S, Preston IR. Right heart catheterization: best practice and pitfalls in pulmonary hypertension. Eur Respir Rev. 2015;24(138):642-52.

23. Gola A, Pozzoli M, Capomolla S, Traversi E, Sanarico M, Cobelli F, et al. Hemodynamic parameters obtained by transthoracic echocardiography and Swan-Ganz catheter: a comparative study in liver transplant patients. J Intensive Care. 1996;78(6):708-12.

24. Marcelino P, Germano N, Marum S, Fernandes AP, Ribeiro P, Lopes MG. Haemodynamic parameters obtained by transthoracic echocardiography and Swan-Ganz catheter: a comparative study in liver transplant patients. Acta Med Port. 2006;19(3):197-205.

25. Bouhemad B, Nicolas-Robin A, Benois A, Lemaire S, Goarin JP, Rousby JJ. Echocardiographic Doppler assessment of pulmonary capillary wedge pressure in surgical patients with postoperative circulatory shock and acute lung injury. Anesthesiology. 2003;99(6):1091-100.

26. McLean AS, Needham A, Stewart D, Parkin R. Estimation of cardiac output by noninvasive echocardiographic techniques in the critically ill subject. Anaesth Intensive Care. 1997;25(3):250-4.

27. Zoghbi WA, Quinones MA. Determination of cardiac output by Doppler echocardiography: a critical appraisal. Herz. 1986;11(5):258-68.

28. Mayer SA, Sherman D, Fink ME, Homma S, Solomon RA, Lennihan L, et al. Noninvasive monitoring of cardiac output by Doppler echocardiography in patients treated with volume expansion after subarachnoid hemorrhage. Crit Care Med. 1995;23(9):1470-4.

29. Bergamaschi V, Vignazia GL, Messina A, Colombo D, Cammarota G, Corte FD, et al. [Transthoracic echocardiographic assessment of cardiac output in mechanically ventilated critically ill patients by intensive care unit physicians]. Rev Bras Anestesiol. 2019;69(1):20-6. Portuguese.

30. Cecconi M, Rhodes A, Poloniecki J, Della Rocca G, Grounds RM. Bench-to-bedside review: the importance of the precision of the reference technique in method comparison studies— with specific reference to the measurement of cardiac output. Crit Care. 2009;13(1):201.

31. Critchley LA, Critchley JA. A meta-analysis of studies using bias and precision statistics to compare cardiac output measurement techniques. J Clin Monit Comput. 1999;15(2):85-91.

32. Yang XK, Critchley LA, Joynt GM. Determination of the precision error of the pulmonary artery thromlization catheter using an in vitro continuous flow test rig. Anaesth Analg. 2011;112(1):70-7.

33. Witterslev M, Møller-Sørensen H, Johansen RR, Perner A. Systematic review of cardiac output measurements by echocardiography vs. thermodilution: the techniques are not interchangeable. Intensive Care Med. 2016;42(8):1223-33.

34. Tian Z, Liu YT, Fang Q, Ni C, Chen TB, Fang LG, et al. Hemodynamic parameters obtained by transthoracic echocardiography and right heart catheterization: a comparative study in patients with pulmonary hypertension. Chin Med J (Engl). 2011;124(12):1796-801.

35. Temporelli PL, Scapellato F, Eleuteri E, Imaparato A, Giannuzzi P. Doppler echocardiography in advanced systolic heart failure: a noninvasive alternative to Swan-Ganz catheter. Circ Heart Fail. 2010;3(3):387-94.

36. Berglund JE, Haldén E, Jacobson S, Landelius J. Echocardiographic analysis of cardiac function during high PEEP ventilation. Intensive Care Med. 1994;20(3):174-80.

37. Gernoth C, Wagner G, Pelosi P, Luecke T. Respiratory and haemodynamic changes during decremental open lung positive end-expiratory pressure titration in patients with acute respiratory distress syndrome. Crit Care. 2009;13(2):R59.

38. Russo A, Di Stasio E, Scaglisi A, Bevilacqua F, Isgrò MA, Marana R, et al. Positive end-expiratory pressure during laparoscopy: cardiac and respiratory effects. J Clin Anesth. 2013;25(4):314-20.

39. Balick-Weber CC, Nicolás P, Hédrez-Montout M, Blanchet P, Stéphan F. Respiratory and haemodynamic effects of volume-controlled vs pressure-controlled ventilation during laparoscopy: a cross-over study with echocardiographic analysis. Br J Anaesth. 2007;99(3):429-35.

40. Chin JH, Lee EH, Kim WJ, Choi DK, Hahm KD, Sim JY, et al. Positive end-expiratory pressure aggravates left ventricular diastolic relaxation further in patients with pre-existing relaxation abnormality. Br J Anaesth. 2013;111(3):388-73.

41. Butt M, Dwivedi G, Shantsila A, Kha Mr, Lip GY. Left ventricular systolic and diastolic function in obstructive sleep apnoea: impact of continuous positive airway pressure therapy. Circ Heart Fail. 2012;5(2):226-33.

42. Juhl-Olsen P, Hermansen JF, Frederiksen CA, Rasmussen LA, Jakobsen J. Respiratory and haemodynamic effects of volatile anesthetics. Anaesthesist. 1988;37(2):144-51.

43. Bergmann H Jr, Bergmann H, NeckS S, Blauhut B. [Noninvasive monitoring using echocardiography. II. Determination of cardiac output and comparison of volatile anesthetics]. Anaesthesist. 1985;34(11):563-70. German.

44. Lee W, Rokey R, Cotton DB. Noninvasive maternal stroke volume and cardiac output determinations by pulsed Doppler echocardiography. Am J Obstet Gynecol. 1988;158(3 Pt 1):505-10.

Rev Bras Ter Intensiva. 2019;31(4):474-482
46. Davies JN, Allen DR, Chant AD. Non-invasive Doppler-derived cardiac output: a validation study comparing this technique with thermodilution and Fick methods. Eur J Vasc Surg. 1991;5(5):497-500.
47. Tardif JC, Cao QL, Pandian NG, Esakof DD, Pollard H. Determination of cardiac output using acoustic quantification in critically ill patients. Am J Cardiol. 1994;74(8):810-3.
48. Tchorz KM, Chandra MS, Markert RJ, Healy M, Anderson H 3rd, Ekeh AP, et al. Comparison of hemodynamic measurements from invasive and noninvasive monitoring during early resuscitation. J Trauma Acute Care Surg. 2012;72(4):852-60.
49. Mercado P, Maizel J, Beyls C, Titeca-Beauport D, Joris M, Kontar L, et al. Transthoracic echocardiography: an accurate and precise method for estimating cardiac output in the critically ill patient. Crit Care. 2017;21(1):136.
50. Legras A, Caille A, Begot E, Lhéritier G, Lherm T, Mathonnet A, Frat JP, Courte A, Martin-Lefèvre L, Gouillot JP, Mercier E, Vignon P; ARCO and CRICS network. Acute respiratory distress syndrome (ARDS)-associated acute cor pulmonale and patent foramen ovale: a multicenter noninvasive hemodynamic study. Crit Care. 2015;19:174.
51. Heerdt PM, Pond CG, Blessios GA, Rosenbloom M. Inaccuracy of cardiac output by thermodilution during acute tricuspid regurgitation. Ann Thorac Surg. 1992;53(4):706-8.
52. Boerboom LE, Kinney TE, Olinger GN, Hoffmann RG. Validity of cardiac output measurement by the thermodilution method in the presence of acute tricuspid regurgitation. J Thorac Cardiovasc Surg. 1993;106(4):636-42.
53. Ihlen H, Myhre E, Pamlie J, Forfang K, Larsen S. Changes in left ventricular stroke volume measured by Doppler echocardiography. Br Heart J. 1985;54(4):378-83.
54. Fisher DC, Sahn DJ, Friedman MJ, Larson D, Valdes-Cruz LM, Horowitz S, et al. The effect of variations on pulsed Doppler sampling site on calculation of cardiac output: an experimental study in open-chest dogs. Circulation. 1983;67(2):370-6.
55. Evangelista A, Garcia-Dorado D, Garcia del Castillo H, Gonzalez-Alujas T, Soler-Soler J. Cardiac index quantification by Doppler ultrasound in patients without left ventricular outflow tract abnormalities. J Am Coll Cardiol. 1995;25(3):710-6.
56. Stewart WJ, Jiang L, Mich R, Pandian N, Guerrero JL, Weyman AE. Variable effects of changes in flow rate through the aortic, pulmonary and mitral valves on valve area and flow velocity: impact on quantitative Doppler flow calculations. J Am Coll Cardiol. 1985;6(3):653-62.