$b \rightarrow s\gamma$ decays in the Left-Right Symmetric Model

C. S. Kim* and Yeong Gyun Kim†

Dept. of Physics, Yonsei University, Seoul 120-749, Korea

(April 30, 2021)

Abstract

We consider $b \rightarrow s\gamma$ decays in the Left-Right Symmetric Model. Values of observables sensitive to chiral structure such as the Λ polarization in the $\Lambda_b \rightarrow \Lambda\gamma$ decays and the mixing-induced CP asymmetries in the $B_{d,s} \rightarrow M^0\gamma$ decays can deviate in the LRSM significantly from the SM values. The combined analysis of P_Λ and A_{CP} as well as $BR(b \rightarrow s\gamma)$ can be used to determine the model parameters.
I. INTRODUCTION

The Left-Right Symmetric Model (LRSM) [1] based upon the electroweak gauge group $SU(2)_L \times SU(2)_R \times U(1)$ represents well-known extensions of the Standard Model (SM), and can lead to interesting new physics effects in the B system [2,3]. Due to the extended gauge structure there are both new neutral and charged gauge bosons, Z_R and W_R, as well as a right-handed gauge coupling, g_R. The symmetry $SU(2)_L \times SU(2)_R \times U(1)$ can be broken to $SU(2)_L \times U(1)$ by means of vacuum expectation values of doublet or triplet fields. As for $SU(2)_L \times U(1)$ symmetry breaking, we assume that it takes place when the scalar field Φ acquires the complex vacuum expectation value

$$<\Phi> = \begin{pmatrix} k_1 & 0 \\ 0 & k_2 e^{i\alpha} \end{pmatrix}. \quad (1)$$

After symmetry breaking the charged W_R mixes with W_L of the SM to form the mass eigenstates W^+_i, with eigenvalues M^+_i, and this mixing is described by two parameters; a real mixing angle ζ and a phase α,

$$\begin{pmatrix} W^+_1 \\ W^+_2 \end{pmatrix} = \begin{pmatrix} \cos \zeta & e^{-i\alpha} \sin \zeta \\ -\sin \zeta & e^{-i\alpha} \cos \zeta \end{pmatrix} \begin{pmatrix} W^+_L \\ W^+_R \end{pmatrix}. \quad (2)$$

The mixing angle ζ is small and can be expressed as

$$\zeta = \frac{2r}{1+r^2} \frac{M^2_1}{M^2_2}, \quad (r \equiv k_2/k_1). \quad (3)$$

In this model the charged current interactions of the right-handed quarks are governed by a right-handed CKM matrix, V_R, which, in principle, need not be related to its left-handed counterpart V_L. Here we examine the possibility of using the rare decays $b \to s\gamma$ as a new tool in exploring the parameter space of the LRSM. We assume manifest left-right symmetry, that is $|V_R| = |V_L|$ and $\kappa \equiv g_R/g_L = 1$.

The effective Hamiltonian of $b \to s\gamma$ decay in the LRSM, after ignoring m_s, is given by

$$H_{\text{eff}}(b \to s\gamma) = -\frac{4G_F}{\sqrt{2}} V^*_{tb}V_{ts} [C_{7L}O_{7L} + C_{7R}O_{7R}], \quad (4)$$

where

$$O_{7L} = \frac{e}{16\pi^2} m_b \bar{s}_L \sigma^{\mu\nu} b_R F_{\mu\nu}, \quad O_{7R} = \frac{e}{16\pi^2} m_b \bar{s}_R \sigma^{\mu\nu} b_L F_{\mu\nu}. \quad (5)$$
The magnetic moment operator coefficients are given by

\[C_{7L}(m_b) = C_{7L}^{SM}(m_b) + \frac{m_t}{m_b} V_{tb}^* V_{L} \exp[i \alpha \left[\eta^{16/23} \tilde{F}(x_t) + \frac{8}{3} (\eta^{14/23} - \eta^{16/23}) \tilde{G}(x_t) \right]] \]

\[+ \frac{2r(1 + r^2)}{(1 - r^2)^2} \frac{m_t}{m_b} V_{tb}^* V_{L} \exp[i \alpha \left[\eta^{16/23} \tilde{F}(y_t) + \frac{8}{3} (\eta^{14/23} - \eta^{16/23}) \tilde{G}(y_t) \right]] , \]

(6)

\[C_{7R}(m_b) = \frac{m_t}{m_b} \left(\frac{V_{ts}^* V_{L}}{V_{ts}} \right)^* e^{-i \alpha} \left[\eta^{16/23} \tilde{F}(x_t) + \frac{8}{3} (\eta^{14/23} - \eta^{16/23}) \tilde{G}(x_t) \right] \]

\[+ \frac{2r(1 + r^2)}{(1 - r^2)^2} \frac{m_t}{m_b} \left(\frac{V_{tb}^* V_{L}}{V_{tb}} \right)^* e^{-i \alpha} \left[\eta^{16/23} \tilde{F}(y_t) + \frac{8}{3} (\eta^{14/23} - \eta^{16/23}) \tilde{G}(y_t) \right] , \]

(7)

where

\[C_{7L}^{SM}(m_b) = \eta^{16/23} F(x_t) + \frac{8}{3} (\eta^{14/23} - \eta^{16/23}) G(x_t) + \sum h_i \eta^{p_i} , \]

(8)

with \(\eta = \alpha_s(M_1)/\alpha_s(m_b) \), \(x_t = (m_t/M_1)^2 \) and \(y_t = (m_t/M_H)^2 \), where \(M_H \) is the mass of the charged physical scalars. The various functions of \(x_t, y_t, \) and the coefficients \(h_i, \) and powers \(p_i \) can be founded in the Ref. [3].

II. OBSERVABLES SENSITIVE TO CHIRAL STRUCTURE

A. Branching fraction of inclusive decay \(\mathcal{BR}(b \to s\gamma) \)

The decay rate for inclusive \(b \to s\gamma \) decay is given by

\[\Gamma(b \to s\gamma) = \frac{C_{F} \cdot m_b^5}{32 \pi^3} |\alpha_{em}| V_{ts}^* V_{tb}^2 \left[|C_{7L}(m_b)|^2 + |C_{7R}(m_b)|^2 \right] . \]

(9)

It is common practice to normalize this radiative partial width to the semileptonic rate

\[\Gamma(b \to c e \bar{\nu}) = \frac{C_{F} \cdot m_b^5}{192 \pi^3} |V_{cb}| f \left(\frac{m_c}{m_b} \right) \left[1 - \frac{2}{3\pi} \alpha_s(m_b) g \left(\frac{m_c}{m_b} \right) \right] , \]

(10)

where \(f(x) = 1 - 8x^2 - 24x^4 \ln x + 8x^6 - x^8 \) represents a phase space factor, and the function \(g(x) \) encodes next-to-leading order strong interaction effects [4]. In terms of the ratio \(R \),

\[R \equiv \frac{\Gamma(b \to s\gamma)}{\Gamma(b \to c e \bar{\nu})} = \frac{6 |V_{ts}^* V_{tb}^2| |\alpha_{em}| |C_{7L}(m_b)|^2 + |C_{7R}(m_b)|^2}{\pi |V_{cb}|^2 f \left(\frac{m_c}{m_b} \right) \left[1 - \frac{2}{3\pi} \alpha_s(m_b) g \left(\frac{m_c}{m_b} \right) \right] } , \]

(11)

the \(b \to s\gamma \) branching fraction is obtained by

\[\mathcal{BR}(b \to s\gamma) = \mathcal{BR}(b \to c e \bar{\nu}) \times R \simeq \mathcal{BR}(B \to X \ell \nu)_{exp} \times R \sim (0.105) \times R. \]

(12)
In Eqs. (8,9), we neglected the $1/m_b^2$ corrections. For $\mathcal{BR}(b \to s\gamma)$, we also use the present experimental value [5] of the branching fraction for $B \to X_s\gamma$ decay,

$$\mathcal{BR}(B \to X_s\gamma) = (3.15 \pm 0.35_{\text{stat}} \pm 0.32_{\text{syst}} \pm 0.26_{\text{model}}) \times 10^{-4}. \quad (13)$$

B. Λ Polarization in $\Lambda_b \to \Lambda\gamma$ decay

One way to access the chiral structure is to consider the decay of baryons. From the experimental side the decay $\Lambda_b \to \Lambda\gamma$ is a good candidate, since the subsequent Λ decay $\Lambda \to p\pi$ is self analyzing [6]. The expected branching ratio is of order 10^{-5} and should be measurable at future hadronic B factories, HERA-B, BTeV and LHC-B. The chiral structure can be studied by measuring the polarization of Λ, via the angular distribution,

$$\frac{1}{\Gamma} \frac{d\Gamma}{d\cos\theta} = \frac{1}{2}(1 + P_\Lambda \cos\theta), \quad (14)$$

where

$$P_\Lambda = \frac{|C_{7L}(m_b)|^2 - |C_{7R}(m_b)|^2}{|C_{7L}(m_b)|^2 + |C_{7R}(m_b)|^2}, \quad (15)$$

and θ is the angle between the direction of the momentum of Λ in the rest frame of Λ_b and the direction of the Λ polarization in the Λ rest frame.

C. Mixing-induced CP Asymmetry in $B_{d,s} \to M^0\gamma$ decays

Next, we consider the mixing-induced CP asymmetry for $B_{d,s} \to M^0\gamma$ decays [7]. Here M^0 is any hadronic self-conjugate state, with CP eigenvalue $\xi = \pm 1$. The decay amplitudes are denoted by

\begin{align*}
A(\bar{B}_{d,s} \to M^0\gamma_L) &= A \cos \psi e^{i\phi_L}, \\
A(\bar{B}_{d,s} \to M^0\gamma_R) &= A \sin \psi e^{i\phi_R}, \\
A(B_{d,s} \to M^0\gamma_R) &= \xi A \cos \psi e^{-i\phi_L}, \\
A(B_{d,s} \to M^0\gamma_L) &= \xi A \sin \psi e^{-i\phi_R}. \quad (16)
\end{align*}
Here the parameter ψ gives the relative amount of left-polarized photons compared to right-polarized photons in $B_{d,s}$ decays, and $\phi_{L,R}$ are CP-odd weak phases. Using the time-dependent rates $\Gamma(t)$ and $\Gamma(t)$ for $B_{d,s} \to M^0\gamma$ and $B_{d,s} \to M^0\gamma$ respectively, one finds a time-dependent CP asymmetry

$$A(t) = \frac{\Gamma(t) - \Gamma(t)}{\Gamma(t) + \Gamma(t)} = \xi A_{CP} \sin(\Delta m t),$$

where

$$A_{CP} \equiv \sin(2\psi) \sin(\phi_M - \phi_L - \phi_R),$$

and Δm and ϕ_M are the mass difference and phase in the $B_{d,s} - \bar{B}_{d,s}$ mixing amplitude.

In terms of $C_{7L(R)}$, the ψ and $\phi_{L(R)}$ are given by

$$\sin(2\psi) = \frac{2|C_{7L}(m_b)| C_{7R}(m_b)}{|C_{7L}(m_b)|^2 + |C_{7R}(m_b)|^2},$$

$$\phi_L = \sin^{-1}\left(\frac{\text{Im}(C_{7L}(m_b))}{|C_{7L}(m_b)|}\right), \quad \phi_R = \sin^{-1}\left(\frac{\text{Im}(C_{7R}(m_b))}{|C_{7R}(m_b)|}\right).$$

The phase of $B_{d,s} - \bar{B}_{d,s}$ mixing can be also affected by new LRSM contributions [8], and is given by $\phi_M = \phi_{SM}^M + \delta_M$ where

$$\delta_M = \tan^{-1}\left(\frac{h \sin \sigma}{1 + h \cos \sigma}\right).$$

Here $h = |M_{12}^{LR}|/|M_{12}^{SM}|$ measures the relative size of the left-right contribution to the non-diagonal element M_{12} and can be written as

$$h = F(M_2) \left(\frac{1.6 \text{ TeV}}{M_2}\right)^2 + \left(\frac{12 \text{ TeV}}{M_H}\right)^2,$$

where $F(M_2)$ is a complicated function of the M_2. The phase σ can be expressed as

$$e^{i\sigma} = -\frac{V_{td}^{L*} V_{tb}^{L}}{V_{td}^{R*} V_{tb}^{R}}, \quad e^{i\sigma} = -\frac{V_{ts}^{L} V_{tb}^{R}}{V_{ts}^{R*} V_{tb}^{L*}},$$

for B_d and B_s systems, respectively. And $\phi_{SM}^M = 2\beta$ and $\phi_{SM}^M = 0$ for B_d and B_s systems, respectively (where $-\beta$ is the phase of V_{td} in the standard convention).
III. COMBINED ANALYSIS

In this Section, we perform the combined analysis of three observables, $\mathcal{BR}(b \to s\gamma)$, P_{Λ} and A_{CP}. Fig. 1 is the contour plot for $\mathcal{BR}(b \to s\gamma)$ and P_{Λ} on the $(|C_{7L}(m_{b})|, |C_{7R}(m_{b})|)$ plane. Two solid curves indicate the 1σ range of the measured values of inclusive $\mathcal{BR}(b \to s\gamma)$. Three dashed lines correspond to three different values of P_{Λ}, as indicated in the figure. From the measurements of $\mathcal{BR}(b \to s\gamma)$ and P_{Λ}, one can determine the magnitudes $|C_{7L}(m_{b})|$ and $|C_{7R}(m_{b})|$ separately. And the measurement of A_{CP} would give some informations on the phases of $C_{7L}(m_{b})$ and $C_{7R}(m_{b})$.

A. Simple Case

First, we consider a simple case. We assume $V_{L} = V_{R}$ and ignore the contributions from W_{2}^{\pm} and charged physical scalars. Then only two new physics parameters, ζ and α, remain. To illustrate the usefulness of P_{Λ} measurements, let’s consider $\alpha = 0$ case. Fig. 2(a) shows the dependence of inclusive $\mathcal{BR}(b \to s\gamma)$ on the mixing angle ζ in this case. Two horizontal dashed lines indicate the 1σ range of the present measured values of inclusive $\mathcal{BR}(b \to s\gamma)$. It is clear from the figure that the SM result is essentially obtained when $\zeta = 0$, and also that a conspiratorial solution occurs when $\zeta \sim -0.01$. These two cases are indistinguishable, and even independent of any further improvements in the measurement of the inclusive $\mathcal{BR}(b \to s\gamma)$. However, if P_{Λ} in $\Lambda_{b} \to \Lambda\gamma$ decays is measured in addition, these two solutions are definitely distinguishable as indicated in Fig. 2(b), which shows the dependence of P_{Λ} on the mixing angle ζ. The $\zeta \sim 0$ case corresponds to $P_{\Lambda} \sim +1$, and the $\zeta \sim -0.01$ case corresponds to $P_{\Lambda} \sim -1$.

When we vary the phase α between 0 and π radian, P_{Λ} can have all the possible values from +1 to −1, while satisfying the inclusive $\mathcal{BR}(b \to s\gamma)$ constraints. Figs. 3(a) and 3(b) show the dependence of P_{Λ} on ζ and α respectively, where we impose the present experimental $\mathcal{BR}(B \to X_{s}\gamma)$ constraints. The larger magnitudes of ζ gives larger deviations of P_{Λ} from the SM expectation, $P_{\Lambda}(SM) = +1$. Because the measurements of $\mathcal{BR}(b \to s\gamma)$ and P_{Λ} determine only the magnitudes of $C_{7L}(m_{b})$ and $C_{7R}(m_{b})$, the ζ can be determined up to the sign ambiguity.

Next, we consider A_{CP} in the radiative $B_{d,s}$ decays, $B_{d,s} \to M^{0} + \gamma$, e.g., $B_{d} \to K^{*} + \gamma$
and $B_s \to \phi + \gamma$. The dependences of A_{CP} on the ζ and α is shown in Figs. 4(a) and 4(b), respectively, for $B_d \to M^0\gamma$ decay. And in Figs. 4(c) and 4(d) we show the dependence of A_{CP} on the ζ and α for $B_s \to M^0\gamma$ decay. Here we impose the present experimental inclusive $BR(B \to X_s\gamma)$ constraints [3]. For numerical value of β, we use the central value of the recent CDF measurement [9] of $\sin 2\beta$ from $B_d \to J/\psi + K_s$,

$$\sin 2\beta = 0.79^{+0.41}_{-0.44}. \quad (24)$$

It is clear from the figures that A_{CP} can have rather large values between -20% and 90% for $B_d \to M^0\gamma$ decay, and up to $\pm 60\%$ for $B_s \to M^0\gamma$ decay, while the SM expectation values $A_{CP}(SM)$ are almost zero. We can see that different sign of ζ with same magnitude correspond to different values of A_{CP}. Therefore, the sign ambiguity of ζ determined from P_Λ measurements can be resolved by measuring A_{CP}. Moreover, P_Λ and A_{CP} have definite correlations, as shown in Figs. 5(a) and (b) for $B_d \to M^0\gamma$ and for $B_s \to M^0\gamma$, respectively. Any deviations from these correlations would indicate the failure of the manifest left-right symmetric scenario which we assume in this subsection.

B. General Case

Now we consider more general case. We assume that the elements of V_R have arbitrary phase. We also consider the contributions from W^\pm_2 and charged physical scalars. In this case, $C_{7L}(m_b)$ depends on the parameters; r, ω_1, M_2 and M_H. And $C_{7R}(m_b)$ depends on r, ω_2, M_2 and M_H. The parameters ω_1 and ω_2 are defined as

$$e^{i\omega_1} \equiv \frac{V^\ast_{Rtb}}{V^\ast_{Ltb}} e^{i\alpha}, \quad e^{i\omega_2} \equiv \frac{V^\ast_{Rts}}{V^\ast_{Lts}} e^{i\alpha}. \quad (25)$$

For further numerical calculations, we fix $M_2 = 1.6$ TeV and $M_H = 12$ TeV.

While the magnitude of $C_{7L}(m_b)$ depends on the r and ω_1, the magnitude of $C_{7R}(m_b)$ only on the r but not on the ω_2. Therefore, P_Λ depends on the r and ω_1 but not on the ω_2. The dependences of P_Λ on the r and ω_1 are shown in Figs. 6(a) and 6(b), respectively. For large r, the value of P_Λ can be largely deviated from the SM value due to the large contributions from charged physical scalars even though ζ is small. From the measurement of P_Λ we can determine the values of r and ω_1 (up to discrete ambiguity) for given values of M_2 and M_H.

7
In $B_d \to M^0 \gamma$ decays, A_{CP} has additional dependences on another new phase ω_3 and also on phase β through ϕ_M, the phase of $B_d - \bar{B}_d$ mixing. The phase ω_3 is defined by

$$e^{i\omega_3} \equiv \frac{V^*_{td}R}{V^*_{td}L}e^{i\alpha}. \quad (26)$$

The dependence of A_{CP} on ω_2 appear only through ϕ_R in this case. And the phase of $B_d - \bar{B}_d$ mixing, ϕ_M would be determined independently from the measurement of $A_{J/\Psi K_s}$, i.e. the mixing induced CP asymmetry in the $B_d \to J/\Psi + K_s$ decays. \[9\]

$$A_{J/\Psi K_s} = \sin(\phi_M). \quad (27)$$

Therefore, in addition to P_Λ, for the B_d system the value of ω_2 can be determined up to discrete ambiguity for given values of M_2 and M_H from the measurement of A_{CP}. In $B_s \to M^0 \gamma$ decays, A_{CP} has dependence on the ω_2 through ϕ_R and also on ϕ_M. As can be seen from Eq. (18), A_{CP} can have any values between $-\sin(2\Psi)$ and $+\sin(2\Psi)$ depending on the ω_2. The dependences of $\sin(2\Psi)$, the maximum value of A_{CP}, on the r and ω_1 are shown in the Figs. 7(a) and 7(b), respectively, for $B_{d,s} \to M^0 \gamma$ decays. It is clear that the values of A_{CP} can be largely deviated from the SM prediction. From the measurement of A_{CP} in addition to P_Λ, the value of ω_2 can be also determined up to discrete ambiguity for given values of M_2 and M_H.

To summarize, in this paper we considered the radiative B hadron decay in the Left-Right Symmetric Model (LRSM). Values of observables sensitive to chiral structure such as the Λ polarization in the $\Lambda_b \to \Lambda \gamma$ decays and the mixing-induced CP asymmetries in the $B_{d,s} \to M^0 \gamma$ decays can deviate in the LRSM significantly from the SM values. The combined analysis of P_Λ and A_{CP} as well as $\mathcal{BR}(b \to s\gamma)$ can be used to determine the model parameters. From the correlations between P_Λ and A_{CP}, the validity of the manifest left-right symmetry scenario can also be tested.

ACKNOWLEDGMENTS

We thank G. Cvetic and T. Morozumi for careful reading of the manuscript and their valuable comments. C.S.K. wishes to acknowledge the financial support of 1997-sughak program of Korean Research Foundation, Project No. 1997-011-D00015. The work of Y.G.K. was supported by KOSEF Postdoctoral Program.
REFERENCES

[1] R.N. Mohapatra and J.C. Pati, Phys. Rev. **D11**, 566 (1975), **D11**, 2558 (1975); G. Senjanovic and R.N. Mohapatra, Phys. Rev. **D12**, 1502 (1975); G. Senjanovic, Nucl. Phys. **B153**, 334 (1979).

[2] D. Cocolicchio *et al.*, Phys. Rev. **D40**, 1477 (1989); G. M. Asatryan and A. N. Ioannisyan, Yad. Fiz. **51**, 1350 (1990).

[3] K. S. Babu, K. Fujikawa and A. Yamada, Phys. Lett. **B333**, 196 (1994); P. Cho and M. Misiak, Phys. Rev. **D49**, 5894 (1994); T. Rizzo, Phys. Rev. **D50**, 3303 (1994); H. Asatrian and A. N. Ioannissian, Phys. Rev. **D54**, 5642 (1999).

[4] C. S. Kim and A. D. Martin, Phys. Lett. **B225**, 186 (1989).

[5] CLEO Collab: J. Alexander, plenary talk at ICHEP98, Vancouver, Canada.

[6] T. Mannel and S. Recksiegel, J. Phys. **G24**, 979 (1998).

[7] D. Atwood, M. Gronau and A. Soni, Phys. Rev. Lett. **79**, 185 (1997).

[8] G. Barenboim, J. Bernabeu, J. Matias and M. Raidal, Phys. Rev. **D60**, 016003 (1999).

[9] CDF Collaboration, CDF/PUB/BOTTOM/CDF/4855
FIG. 1. Contour plots for the inclusive $BR(b \to s\gamma)$ and P_Λ. Two solid curves indicate the 1σ range of the present measured values of inclusive $BR(B \to X_s\gamma)$.
(a) Dependence of inclusive \(\text{BR}(b \to s\gamma) \) on mixing angle \(\zeta \). Two horizontal dashed lines indicate the 1\(\sigma \) range of the present measured values of inclusive \(\text{BR}(B \to X_s\gamma) \). (b) Dependence of \(P_A \) on mixing angle \(\zeta \). In both cases we fix \(\alpha = 0 \).
FIG. 3. Dependence of P_Λ on (a) ζ, and on (b) α. Here we imposed the present inclusive $BR(B \to X_s \gamma)$ constraints.
FIG. 4. Dependence of A_{CP} on ζ, and on α is shown in (a) and (b), respectively, for $B_d \to M^0\gamma$ decay; and in (c) and (d), respectively, for $B_s \to M^0\gamma$ decay. Here we imposed the present inclusive $BR(B \to X_s\gamma)$ constraints.
FIG. 5. Correlations between A_{CP} and P_{Λ}: (a) and (b) correspond to $B_d \rightarrow M^0\gamma$ and $B_s \rightarrow M^0\gamma$ decays, respectively. Here we imposed the present inclusive $\mathcal{BR}(B \rightarrow X_s\gamma)$ constraints.
FIG. 6. Dependences of P_{Λ} on (a) r, and on (b) ω_1. Here we imposed the present inclusive $BR(B \to X_s\gamma)$ constraints and fix $M_2 = 1.6$ TeV and $M_H = 12$ TeV.
FIG. 7. Dependences of $\sin(2\Psi)$, the maximum value of A_{CP}, on r, and on ω_1 are shown in (a) and (b), respectively, for $B_{d,s} \to M^0\gamma$ decay. Here we imposed the present inclusive $\mathcal{BR}(B \to X_s\gamma)$ constraints and fix $M_2 = 1.6$ TeV and $M_H = 12$ TeV.