Leave-one-out cross-validation is risk consistent for lasso

Darren Homrighausen
Department of Statistics
Colorado State University
Fort Collins, Colorado
darrenho@stat.colostate.edu

Daniel J. McDonald
Department of Statistics
Indiana University
Bloomington, IN 47408
dajmcdon@indiana.edu

May 2, 2014

Abstract

The lasso procedure is ubiquitous in the statistical and signal processing literature, and as such, is the target of substantial theoretical and applied research. While much of this research focuses on the desirable properties that lasso possesses—predictive risk consistency, sign consistency, correct model selection—all of it has assumes that the tuning parameter is chosen in an oracle fashion. Yet, this is impossible in practice. Instead, data analysts must use the data twice, once to choose the tuning parameter and again to estimate the model. But only heuristics have ever justified such a procedure. To this end, we give the first definitive answer about the risk consistency of lasso when the smoothing parameter is chosen via cross-validation. We show that under some restrictions on the design matrix, the lasso estimator is still risk consistent with an empirically chosen tuning parameter.

Keywords: stochastic equicontinuity, uniform convergence, persistence

1 Introduction

Since its introduction in the statistical [21] and signal processing [3] communities, the lasso has become a fixture as both a data analysis tool [13, 20, for example] and as an object for deep theoretical investigations [6, 8, 15]. To fix ideas, suppose that the observational model is of the form

$$Y = X\theta + \sigma W.$$ (1)

where $Y = (Y_1, \ldots, Y_n)^T$ is the vector of responses and $X \in \mathbb{R}^{n \times p}$ is the feature matrix, with rows $(X_i^T)_{i=1}^n$, W is a noise vector, and σ is the signal-to-noise ratio. Under (1), the lasso estimator, $\hat{\theta}(\lambda)$, is defined to be the minimizer of the following functional:

$$\hat{\theta}(\lambda) := \arg\min_{\theta} \frac{1}{2n} ||Y - X\theta||_2^2 + \lambda ||\theta||_1.$$ (2)

Here, $\lambda \geq 0$ is a tuning parameter controlling the trade-off between fidelity to the data (small λ) and sparsity (large λ). We tacitly assume that X has full column rank, and thus, $\hat{\theta}(\lambda)$ is the unique minimum.

Under conditions on the matrix X, noise vector W, and the parameter θ, the optimal choice of λ leads to risk consistency [8]. However, arguably the most crucial aspect of any procedure’s performance is the selection of the tuning parameters. Typically, theory advocating the lasso’s
empirical properties specifies only the rates. That is, this theory claims “if \(\lambda = \lambda_n \) goes to zero at the correct rate, then \(\hat{\theta}(\lambda_n) \) will be consistent in some sense.” For the regularized problem in (2), taking \(\lambda_n = o((\log(n)/n)^{1/2}) \) gives risk consistency under very general conditions. However, this type of theoretical guidance says nothing about the properties of the lasso when the tuning parameter is chosen using the data.

There are several proposed techniques for choosing \(\lambda \), such as minimizing the empirical risk plus a penalty term based on the degrees of freedom [28, 24] or using an adapted Bayesian information criterion [26]. In many papers, [21, 8, 11, 5, 28, 22, 25, for example], the recommended technique for selecting \(\lambda \) is to choose \(\lambda = \hat{\lambda}_n \) such that \(\hat{\lambda}_n \) minimizes a cross-validation estimator of the risk.

Some results supporting the use of cross-validation for statistical algorithms other than lasso are known. For instance, kernel regression [9, Theorem 8.1], k-nearest neighbors [9, Theorem 8.2], and various classification algorithms [18] all behave well with tuning parameters selected using the data. Additionally, suppose we form the adaptive ridge regression estimator [7]

\[
\arg\min_{\theta,(\lambda_j)} ||Y - X\theta||^2_2 + \sum_{j=1}^{p} \lambda_j \theta^2_j
\]

subject to the constraint \(\lambda \sum_{j=1}^{p} 1/\lambda_j = p \). Then the solution to equation (3) is equivalent, under a reparameterization of \(\lambda \), to the solution to equation (2). As ridge regression has been shown to have good asymptotic properties under (generalized) cross-validation, there is reason to believe these properties may carry over to lasso and cross-validation using this equivalence. However, rigorous results for the lasso have yet to be developed.

The supporting theory for other methods indicates that there should be corresponding theory for the lasso. However, other results are not so encouraging. In particular, [19] shows that cross-validation is inconsistent for model selection. As lasso implicitly does model selection, and shares many connections with forward stagewise regression [5], this raises a concerning possibility that lasso might similarly be inconsistent under cross-validation. Likewise, [14] shows that using prediction accuracy (which is what cross-validation estimates) as a criterion for choosing the tuning parameter fails to recover the sparsity pattern consistently in an orthogonal design setting. Furthermore, [27] show that sparsity inducing algorithms like lasso are not (uniformly) algorithmically stable. In other words, leave-one-out versions of the lasso estimator are not uniformly close to each other. As shown in [1], algorithmic stability is a sufficient, but not necessary, condition for risk consistency.

These results taken as a whole leave the lasso in an unsatisfactory position, with some theoretical results and generally accepted practices advocating the use of cross-validation while others suggest that it may not work. Our result partially resolves this antagonism by showing that, in some cases, the lasso with cross-validated tuning parameter is indeed risk consistent.

In this paper we provide a first result about the risk consistency of lasso with the tuning parameter selected by cross-validation under some assumptions about \(X \). In Section 2 we introduce our notation and state our main theorem. In Section 3 we state some results necessary for our proof methods and in Section 4 we provide the proof. Lastly, in Section 5 we mention some implications of our main theorem and some directions for future research.

2 Notation, assumptions, and main results

The main assumptions we make for this paper ensure that the sequence \((X_i)_{i=1}^n \) is sufficiently regular. These are
Assumption A:

\[C_n := \frac{1}{n} \sum_{i=1}^{n} X_i X_i^\top \to C, \]

where \(C \) is a positive definite matrix with \(\text{eigen}_{\text{min}}(C) = c_{\text{min}} > 0 \), and

Assumption B: There exists a constant \(C_X < \infty \) independent of \(n \) such that

\[||X_1||_2 \leq C_X. \]

Note that Assumption A appears repeatedly in the literature in various contexts [21, 6, 17, 14, for example]. Additionally, Assumption B is effectively equivalent to assuming \(\max_i \{||X_i||_2, 1 \leq i \leq n\} = O(1) \) as \(n \to \infty \), which is also standard [2, for example].

We define the predictive risk and the leave-one-out cross-validation estimator of risk to be

\[R_n(\lambda) := \frac{1}{n} \mathbb{E} ||X(\hat{\theta}(\lambda) - \theta)||^2 + \sigma^2 = \mathbb{E} ||\hat{\theta}(\lambda) - \theta||^2_{C_n} + \sigma^2 \]

and

\[\hat{R}_n(\lambda) = \frac{1}{n} \sum_{i=1}^{n} (Y_i - X_i^\top \hat{\theta}^{(i)}(\lambda))^2, \]

respectively. Here we are using \(\hat{\theta}^{(i)}(\lambda) \) to indicate the lasso estimator \(\hat{\theta}(\lambda) \) computed using all but the \(i^{th} \) observation. Also, we write the \(\ell^2 \)-norm weighted by a matrix \(A \) to be \(||x||_A^2 = x^\top A x \).

Lastly, let \(\Lambda \) be a large, compact subset of \([0, \infty)\) the specifics of which are unimportant. In practical situations, any \(\lambda \in [\max_j \hat{\theta}_j(0), \infty) \) will result in the same solution, namely \(\hat{\theta}_j(\lambda) = 0 \) for all \(j \), so any large finite upper bound is sufficient. Then define

\[\hat{\lambda}_n := \arg\min_{\lambda \in \Lambda} \hat{R}_n(\lambda), \quad \text{and} \quad \lambda_n := \arg\min_{\lambda \in \mathbb{R}^+} R_n(\lambda). \]

For \(\hat{\theta}(\lambda) \) to be consistent, it must hold that \(\lambda \to 0 \) as \(n \to \infty \). Hence, for some \(N, n \geq N \) implies \(\lambda_n \in \Lambda \subset \mathbb{R}^+ \). Therefore, without loss of generality, we assume that \(\lambda_n \in \Lambda \) for all \(n \).

We spend the balance of this paper discussing and proving the following result:

Theorem 2.1 (Main Theorem). Suppose that Assumptions A and B hold and that there exists a \(C_\theta < \infty \) such that \(||\theta||_1 \leq C_\theta \). Also, suppose that \(W_i \sim P_i \) are independently distributed and that there exists a \(\tau < \infty \) independent of \(i \) such that

\[\mathbb{E}_{P_i} [e^{tW_i}] \leq e^{\tau^2 t^2/2} \]

for all \(t \in \mathbb{R} \). Then

\[R_n(\hat{\lambda}_n) - R_n(\lambda_n) \to 0. \]

Essentially, this result states that under some conditions on the design matrix \(X \) and the noise vector \(W \), the predictive risk of the lasso estimator with tuning parameter chosen via cross-validation converges to the predictive risk of the lasso estimator with the oracle tuning parameter. In other words, the typical procedure for a data analyst is asymptotically equivalent to the optimal procedure. We will take \(\mathbb{P} = \prod_i P_i \) to be the \(n \)-fold product distribution of the \(W_i \)'s and use \(\mathbb{E} \) to denote the expected value with respect to this product measure.
To prove this theorem, we show that \(\sup_{\lambda \in \Lambda} |\hat{R}_n(\lambda) - R_n(\lambda)| \to 0 \) in probability. Then (8) follows as
\[
R_n(\hat{\lambda}_n) - R_n(\lambda_n) = \left(R_n(\hat{\lambda}_n) - \hat{R}_n(\hat{\lambda}_n) \right) + \left(\hat{R}_n(\hat{\lambda}_n) - R_n(\lambda_n) \right)
\leq \left(R_n(\hat{\lambda}_n) - \hat{R}_n(\hat{\lambda}_n) \right) + \left(\hat{R}_n(\lambda_n) - R_n(\lambda_n) \right)
\leq 2 \sup_{\lambda \in \Lambda} \left(R_n(\lambda) - \hat{R}_n(\lambda) \right)
= o_P(1).
\]

In fact, the term \(R_n(\hat{\lambda}_n) - R_n(\lambda_n) \) is non-stochastic (the expectation in the risk integrates out the randomness in the data) and therefore convergence in probability implies sequential convergence and hence \(o_P(1) = o(1) \).

We can write
\[
|R_n(\lambda) - \hat{R}_n(\lambda)|
\leq \frac{1}{n} \mathbb{E} \left[\|X\hat{\theta}(\lambda)\|^2 - \sum_{i=1}^{n} Y_i^2 + \frac{2}{n} \mathbb{E}(X\hat{\theta}(\lambda))^\top X\theta + \sigma^2 \right]
\leq \frac{1}{n} \mathbb{E} \|X\hat{\theta}(\lambda)\|^2 - \frac{1}{n} \sum_{i=1}^{n} (X_i^\top \hat{\theta}^{(i)}(\lambda))^2 - 2Y_i X_i^\top \hat{\theta}^{(i)}(\lambda)
\leq \frac{1}{n} \mathbb{E} \|X\hat{\theta}(\lambda)\|^2 - \frac{1}{n} \sum_{i=1}^{n} (X_i^\top \hat{\theta}^{(i)}(\lambda))^2 + 2 \left(\frac{1}{n} \mathbb{E}(X\hat{\theta}(\lambda))^\top X\theta - \frac{1}{n} \sum_{i=1}^{n} Y_i X_i^\top \hat{\theta}^{(i)}(\lambda) \right)
\quad + \frac{1}{n} \|X\theta\|^2 + \sigma^2 - \frac{1}{n} \sum_{i=1}^{n} Y_i^2.
\]

Our proof follows by addressing (a), (b), and (c) in lexicographic order in Section 4. To show that each term converges in probability to zero uniformly in \(\lambda \), we will need a few preliminary results.

3 Preliminary material

In this section, we present some definitions and lemmas which are useful for proving risk consistency of the lasso with cross-validated tuning parameter. First, we give some results regarding the uniform convergence of measurable functions. Next, we use these results to show that the leave-one-out lasso estimator converges uniformly to the full-sample lasso estimator. Finally, we present a concentration inequality for quadratic forms of sub-Gaussian random variables.

3.1 Equicontinuity

Our proof of Theorem 2.1 uses a number of results relating uniform convergence with convergence in probability. The essential message is that particular measurable functions behave nicely over compact sets. Mathematically, such collections of functions are called stochastically equicontinuous.

To fix ideas, we first present the definition of stochastic equicontinuity in the context of statistical estimation. Suppose that we are interested in estimating some functional of a parameter \(\beta \), \(\hat{Q}_n(\beta) \), using \(\hat{Q}_n(\beta) \) where \(\beta \in \mathcal{B} \).
Definition 3.1 (Stochastic equicontinuity). If for every \(\varepsilon, \eta > 0 \) there exists a random variable \(\Delta_n(\varepsilon, \eta) \) and constant \(n_0(\varepsilon, \eta) \) such that for \(n \geq n_0(\varepsilon, \eta) \), \(\mathbb{P}(|\Delta_n(\varepsilon, \eta)| > \varepsilon) < \eta \) and for each \(\beta \in \mathcal{B} \) there is an open set \(\mathcal{N}(\beta, \varepsilon, \eta) \) containing \(\beta \) such that for \(n \geq n_0(\varepsilon, \eta) \),

\[
\sup_{\beta' \in \mathcal{N}(\beta, \varepsilon, \eta)} |\tilde{Q}_n(\beta') - \tilde{Q}_n(\beta)| \leq \Delta_n(\varepsilon, \eta),
\]

then we call \(\{\tilde{Q}_n\} \) stochastically equicontinuous over \(\mathcal{B} \).

An alternative formulation of stochastic equicontinuity which is often more useful can be found via a Lipschitz-type condition.

Theorem 3.2 (Theorem 21.10 in [4]). Suppose there exists a random variable \(B_n \) and a function \(h \) such that \(B_n = O_p(1) \) and for all \(\beta', \beta \in \mathcal{B} \), \(|\tilde{Q}_n(\beta') - \tilde{Q}_n(\beta)| \leq B_n h(d(\beta', \beta)) \), where \(h(x) \downarrow 0 \) as \(x \downarrow 0 \) and \(d \) is a metric on \(\mathcal{B} \). Then \(\{\tilde{Q}_n\} \) is stochastically equicontinuous.

The importance of stochastic equicontinuity is in showing uniform convergence, as is expressed in the following two results.

Theorem 3.3 (Theorem 2.1 in [16]). If \(\mathcal{B} \) is compact, \(|\tilde{Q}_n(\beta) - \overline{Q}_n(\beta)| = o_p(1) \) for each \(\beta \in \mathcal{B} \), \(\{\tilde{Q}_n\} \) is stochastically equicontinuous over \(\mathcal{B} \), and \(\{\overline{Q}_n\} \) is equicontinuous, then \(\sup_{\beta \in \mathcal{B}} |\tilde{Q}_n(\beta) - \overline{Q}_n(\beta)| = o_p(1) \).

This theorem allows us to show uniform convergence of estimators \(\tilde{Q}_n(\beta) \) of statistical functionals to \(\overline{Q}_n(\beta) \) over compact sets \(\mathcal{B} \). However, we may also be interested in the uniform convergence of random quantities to each other. While one could use the above theorem to show such a result, the following theorem of [4] is often simpler.

Theorem 3.4 ([4]). If \(\mathcal{B} \) is compact, then \(\sup_{\beta \in \mathcal{B}} G_n(\beta) = o_p(1) \) if and only if \(G_n(\beta) = o_p(1) \) for each \(\beta \) in a dense subset of \(\mathcal{B} \) and \(\{G_n(\beta)\} \) is stochastically equicontinuous.

3.2 Uniform convergence of lasso estimators

Using stochastic equicontinuity, we prove two lemmas about lasso estimators which, while intuitive, are nonetheless novel. The first shows that the lasso estimator converges uniformly over \(\Lambda \) to its expectation. The second shows that the lasso estimator computed using the full sample converges in probability uniformly over \(\Lambda \) to the lasso estimator computed with all but one observation.

Before stating our lemmas, we include without proof some standard results about uniform convergence of functions. A function \(f : [a, b] \to \mathbb{R} \) has the Luzin \(N \) property if, for all \(N \subset [a, b] \) that has Lebesgue measure zero, \(f(N) \) has Lebesgue measure zero as well. Also, a function \(f \) is of bounded variation if and only if it can be written as \(f = f_1 - f_2 \) for non-decreasing functions \(f_1 \) and \(f_2 \).

Theorem 3.5. A function \(f \) is absolutely continuous if and only if it is of bounded variation, continuous, and has the Luzin \(N \) property.

Theorem 3.6. If a function \(f : [a, b] \to \mathbb{R} \) is absolutely continuous, and hence differentiable almost everywhere, and satisfies \(|f'(x)| \leq C_L \) for almost all \(x \in [a, b] \) with respect to Lebesgue measure, then it is Lipschitz continuous with constant \(C_L \).

Throughout this paper, we use \(C_L \) as generic notation for a Lipschitz constant; its actual value changes from line to line. The following result is useful for showing the uniform convergence \(\hat{\theta}(\lambda) \).
Proposition 3.7. The random function $\hat{\theta}(\lambda)$ is Lipschitz continuous over Λ. That is, there exists $C_L < \infty$ such that for any $\lambda, \lambda' \in \Lambda$,
\[
\left\| \hat{\theta}(\lambda) - \hat{\theta}(\lambda') \right\|_2 \leq C_L |\lambda - \lambda'|.
\]
Additionally, $C_L = O(1)$ as $n \to \infty$.

Proof. The solution path of the lasso is piecewise linear over λ with a finite number of ‘kinks.’ Using the notation developed in [23, Section 3.1], over each such interval, the nonzero entries in $\hat{\theta}(\lambda)$ behave as a linear function with slope $n(\mathbb{X}_E^\top \mathbb{X}_E)^{-1}s_E$, where $E \subset \{1, \ldots, p\}$ is the set of the indices of the active variables, s_E is the vector of signs, and \mathbb{X}_E is the feature matrix with columns restricted to the indices in E.

Therefore, as $\left\| n(\mathbb{X}_E^\top \mathbb{X}_E)^{-1}s_E \right\|_2 \leq \left\| n(\mathbb{X}_E^\top \mathbb{X}_E)^{-1} \right\|_2$, $\hat{\theta}(\lambda)$ is Lipschitz continuous with
\[
C_L = \max_{E \subset \{1, \ldots, p\}} \left\| n(\mathbb{X}_E^\top \mathbb{X}_E)^{-1} \right\|_2.
\]
By Assumption A, for any E, $\frac{1}{n} \mathbb{X}_E^\top \mathbb{X}_E \to \mathbb{C}_E$. Also, $\text{eigen}_{\min}(C_E) \geq c_{\min}$ for any E. Fix $\epsilon = c_{\min}/2$. Then, there exists an N such that for all $n \geq N$ and any E,
\[
\frac{1}{n} \text{eigen}_{\min}(\mathbb{X}_E^\top \mathbb{X}_E) \geq \epsilon.
\]
Therefore, for n large enough, $C_L \leq \frac{1}{\epsilon} < \infty$, which is independent of n.

Lemma 3.8. For any $i = 1, \ldots, n$,
\[
\sup_{\lambda \in \Lambda} \left\| \hat{\theta}(\lambda) - \hat{\theta}^{(i)}(\lambda) \right\|_2 \overset{p}{\to} 0.
\]

Proof. The pointwise convergence of $\left\| \hat{\theta}(\lambda) - \hat{\theta}^{(i)}(\lambda) \right\|_2$ to zero follows by [6, Theorem 1]. Hence, we invoke the consequent of Theorem 3.4 as long as $\left\| \hat{\theta}(\lambda) - \hat{\theta}^{(i)}(\lambda) \right\|_2$ is stochastically equicontinuous. For this, it is sufficient to show that $\hat{\theta}(\lambda)$ and $\hat{\theta}^{(i)}(\lambda)$ are Lipschitz in the sense of Theorem 3.2. This follows for both estimators by Proposition 3.7.

Lemma 3.9. For all $1 \leq j \leq p$, $\{\hat{\theta}_j(\lambda)\}$ is stochastically equicontinuous, $\{E[\hat{\theta}_j(\lambda)]\}$ is equicontinuous, and $|\hat{\theta}_j(\lambda) - E[\hat{\theta}_j(\lambda)]| = o_p(1)$. Thus,
\[
\sup_{\lambda \in \Lambda} \left| \hat{\theta}_j(\lambda) - E[\hat{\theta}_j(\lambda)] \right| = o_p(1).
\]
Furthermore,
\[
\sup_{\lambda \in \Lambda} \left\| \hat{\theta}(\lambda) - E[\hat{\theta}(\lambda)] \right\|_{C_n}^2 = o_p(1),
\]
where this notation is introduced in equation (6).

Proof. To show this claim, we use Theorem 3.3. For pointwise convergence, note that $\hat{\theta}(\lambda)$ converges in probability to an non-stochastic limit [6, Theorem 1], call it $\theta(\lambda)$. Also, $|\hat{\theta}_j(\lambda)| \leq \left\| \hat{\theta}_j(0) \right\|_1$, which is integrable. By the Skorohod representation theorem, there exists random variables $\tilde{\theta}_j(\lambda)'$ such
that $\hat{\theta}_j(\lambda)' \rightarrow \theta(\lambda)$ almost surely and $\hat{\theta}_j(\lambda)'$ has the same distribution as $\hat{\theta}_j(\lambda)$ for each n. By the dominated convergence theorem,

$$\lim \mathbb{E}\hat{\theta}_j(\lambda) = \lim \mathbb{E}\hat{\theta}_j(\lambda)' = \mathbb{E}\theta(\lambda) = \theta(\lambda).$$

Therefore, $|\hat{\theta}_j(\lambda) - \mathbb{E}\hat{\theta}_j(\lambda)| \rightarrow 0$ in probability.

Stochastic equicontinuity follows by Proposition 3.7 and Theorem 3.2. Hence, Theorem 3.3 is satisfied as long as $\{\mathbb{E}\hat{\theta}_j(\lambda)\}$ is equicontinuous. Observe that the expectation and differentiation operations commute for $\hat{\theta}(\lambda)$. Therefore, the result follows by Proposition 3.7.

Finally, we have

$$\left| \hat{\theta}(\lambda) - \mathbb{E}\hat{\theta}(\lambda) \right|_{C_n}^2 = \left(\hat{\theta}(\lambda) - \mathbb{E}\hat{\theta}(\lambda) \right)^\top C_n \left(\hat{\theta}(\lambda) - \mathbb{E}\hat{\theta}(\lambda) \right)$$

$$\leq \left| \hat{\theta}(\lambda) - \mathbb{E}\hat{\theta}(\lambda) \right|_2 \left| C_n \left(\hat{\theta}(\lambda) - \mathbb{E}\hat{\theta}(\lambda) \right) \right|_2$$

$$\leq \left| \hat{\theta}(\lambda) - \mathbb{E}\hat{\theta}(\lambda) \right|_2^2 \left| C_n \right|_2$$

$$= \left| C_n \right|_2 \sum_{j=1}^p \left| \hat{\theta}_j(\lambda) - \mathbb{E}\hat{\theta}_j(\lambda) \right|^2,$$

which goes to zero uniformly, as $\left| C_n \right|_2 \rightarrow \left| C \right|_2 < \infty$.

\[\square \]

3.3 Concentration of measure for quadratic forms

Finally, we present a special case of Theorem 1 in [12] which will allow us to prove that part (c) in the decomposition converges to zero in probability.

Lemma 3.10. Let $Z \in \mathbb{R}^n$ be a random vector with mean vector μ satisfying

$$\mathbb{E} \left[\exp \left(\alpha^\top (Z - \mu) \right) \right] \leq \exp \left(\left| \alpha \right|^2 \frac{\tau^2}{2} \right)$$

for some $\tau > 0$ and all $\alpha \in \mathbb{R}^n$. Then, for all $\epsilon > 0$,

$$P \left(\left| \frac{1}{n} Z^\top Z - \left| \mu \right|^2 - \tau^2 \right| > \epsilon \right) \leq 2 e^{-n\epsilon^2}.$$

Proof. This result follows from a result in [12] (see also [10]) which we have included in the appendix. By that result with $A = I$, we have

$$P \left(\frac{1}{n} Z^\top Z - \left| \mu \right|^2 - \tau^2 > 2 \sqrt{\frac{\log n}{\tau^2}} \left(\tau^2 + \left| \mu \right|^2 + \left| \mu \right|^2 \right) \right) \leq e^{-n\epsilon^2} \sqrt{\frac{\log n}{\tau^2}} \quad (12)$$

Setting $\delta = \sqrt{\log n}$ and $\epsilon = 2 \delta \left(\tau^2 + \left| \mu \right|^2 + \left| \mu \right|^2 \right)$, we can solve for δ. The quadratic formula gives

(under the constraint $\delta > 0$)

$$\delta = \sqrt{(\tau^2 + \left| \mu \right|^2)^2 + 4\tau^2\epsilon - \tau^2 - \left| \mu \right|^2} \geq \epsilon$$

by concavity of $\sqrt{\cdot}$. Thus, for any $\epsilon > 0$,

$$P \left(\frac{1}{n} Z^\top Z - \left| \mu \right|^2 - \tau^2 > \epsilon \right) \leq e^{-n\epsilon^2} \leq e^{-n\epsilon^2}$$

The same argument can be applied symmetrically. A union bound gives the result.

\[\square \]
4 Proofs

In this section, we address each component of the decomposition in (9). Parts (a) and (b) follow from uniform convergence of the lasso estimator to its expectation (Lemma 3.9) and asymptotic equivalence of the leave-one-out lasso estimator and the full-sample lasso estimator (Lemma 3.8) while part (c) requires the sub-Gaussian concentration of measure result in Lemma 3.10.

Proposition 4.1 (Part (a)).

\[
\sup_{\lambda \in \Lambda} \left| \frac{1}{n} \mathbb{E} \left\| X \hat{\theta}(\lambda) \right\|_2^2 - \frac{1}{n} \sum_{i=1}^{n} \left(X_i^T \hat{\theta}^{(i)}(\lambda) \right)^2 \right| = o_p(1).
\]

Proof. Observe

\[
\left| \frac{1}{n} \mathbb{E} \left\| X \hat{\theta}(\lambda) \right\|_2^2 - \frac{1}{n} \sum_{i=1}^{n} (X_i^T \hat{\theta}^{(i)}(\lambda))^2 \right|
\leq \begin{cases}
\left| \frac{1}{n} \mathbb{E} \left\| X \hat{\theta}(\lambda) \right\|_2^2 - \frac{1}{n} \sum_{i=1}^{n} (X_i^T \hat{\theta}^{(i)}(\lambda))^2 \right| \\
\left(a i \right) \\
+ \left| \frac{1}{n} \mathbb{E} \left\| X \hat{\theta}(\lambda) \right\|_2^2 - \frac{1}{n} \sum_{i=1}^{n} (X_i^T \hat{\theta}^{(i)}(\lambda))^2 \right| \\
\left(a i i \right)
\end{cases}
\]

For (ai), note that \(\mathbb{E} \| X \hat{\theta}(\lambda) \|_2^2 = \text{trace}(X^T XV \hat{\theta}(\lambda)) + \| X \hat{\theta}(\lambda) \|_2^2 \). Hence,

\[
(ai) \leq \left| \text{trace}(C_n \hat{\theta}(\lambda)) \right| + \frac{1}{n} \left| \| \mathbb{E} X \hat{\theta}(\lambda) \|_2^2 - \| X \hat{\theta}(\lambda) \|_2^2 \right|
\leq \| C_n \|_F \left\| \hat{\theta}(\lambda) \right\|_F + \frac{1}{n} \left| \| \mathbb{E} X \hat{\theta}(\lambda) \|_2^2 - \| X \hat{\theta}(\lambda) \|_2^2 \right|
\leq \| C_n \|_F \left\| (X^T X)^{-1} \right\|_F + \frac{1}{n} \left| \| \mathbb{E} X \hat{\theta}(\lambda) \|_2^2 - \| X \hat{\theta}(\lambda) \|_2^2 \right|
= \frac{\sigma^2}{n} \| C_n \|_F \left\| C_n^{-1} \right\|_F + \left| \hat{\theta}(\lambda) + \mathbb{E} \hat{\theta}(\lambda) \right|_{C_n} \| \hat{\theta}(\lambda) - \mathbb{E} \hat{\theta}(\lambda) \|_{C_n}.
\]

This term goes to zero uniformly by Lemma 3.9. The third inequality follows from [17, equation 4.1]. For (a(ii), note that

\[
\frac{1}{n} \left| \| X \hat{\theta}(\lambda) \|_2^2 - \sum_{i=1}^{n} (X_i^T \hat{\theta}^{(i)}(\lambda))^2 \right| = \frac{1}{n} \left| \sum_{i=1}^{n} \left((X_i^T \hat{\theta}(\lambda))^2 - (X_i^T \hat{\theta}^{(i)}(\lambda))^2 \right) \right|
\leq \frac{1}{n} \sum_{i=1}^{n} \left| (X_i^T \hat{\theta}(\lambda))^2 - (X_i^T \hat{\theta}^{(i)}(\lambda))^2 \right|
= \frac{1}{n} \sum_{i=1}^{n} \left| X_i^T \hat{\theta}(\lambda) \hat{\theta}(\lambda)^T X_i - X_i^T \hat{\theta}^{(i)}(\lambda) \hat{\theta}^{(i)}(\lambda)^T X_i \right|
= \frac{1}{n} \sum_{i=1}^{n} \left| X_i^T \left(\hat{\theta}(\lambda) \hat{\theta}(\lambda)^T - \hat{\theta}^{(i)}(\lambda) \hat{\theta}^{(i)}(\lambda)^T \right) X_i \right|
\leq \frac{1}{n} \sum_{i=1}^{n} \| X_i \|_2^2 \left| \hat{\theta}(\lambda) \hat{\theta}(\lambda)^T - \hat{\theta}^{(i)}(\lambda) \hat{\theta}^{(i)}(\lambda)^T \right|_F.
\]
The term $\|X_i\|_2^2 \leq C_X^2$ by Assumption B. Furthermore,

$$
\left\| \tilde{\theta}(\lambda)\tilde{\theta}(\lambda)^\top - \hat{\theta}^{(i)}(\lambda)\hat{\theta}^{(i)}(\lambda)^\top \right\|_F
= \left\| \tilde{\theta}(\lambda) \right\|_2^4 + \left\| \hat{\theta}^{(i)}(\lambda) \right\|_2^4 - 2(\tilde{\theta}(\lambda)^\top\hat{\theta}^{(i)}(\lambda))^2
= \tilde{\theta}(\lambda)^\top \left(\tilde{\theta}(\lambda) - \hat{\theta}^{(i)}(\lambda) \right) \left(\tilde{\theta}(\lambda) + \hat{\theta}^{(i)}(\lambda) \right) +
+ \hat{\theta}^{(i)}(\lambda)^\top \left(\tilde{\theta}(\lambda) - \hat{\theta}(\lambda) \right) \left(\hat{\theta}^{(i)}(\lambda) + \hat{\theta}(\lambda) \right)
\leq \left(\left\| \tilde{\theta}(\lambda) \right\|_2 + \left\| \hat{\theta}^{(i)}(\lambda) \right\|_2 \right) \left\| \tilde{\theta}(\lambda) + \hat{\theta}^{(i)}(\lambda) \right\|_2 \left\| \tilde{\theta}(\lambda) - \hat{\theta}^{(i)}(\lambda) \right\|_2
\leq \left(\left\| \tilde{\theta}(0) \right\|_2 + \left\| \hat{\theta}^{(i)}(0) \right\|_2 \right) \left\| \tilde{\theta}(0) + \hat{\theta}^{(i)}(\lambda) \right\|_2 \left\| \tilde{\theta}(0) - \hat{\theta}^{(i)}(\lambda) \right\|_2
$$

Hence, by Lemma 3.8, equation (13) goes to zero in probability uniformly over $\lambda \in \Lambda$. □

Proposition 4.2 (Part (b)).

$$
\sup_{\lambda \in \Lambda} \left\| \frac{1}{n} \mathbb{E}(X_i\tilde{\theta}(\lambda))^\top X\theta - \frac{1}{n} \sum_{i=1}^n Y_i X_i^\top \hat{\theta}^{(i)}(\lambda) \right\| = o_p(1).
$$

Proof. Observe,

$$
\sum_{i=1}^n Y_i X_i^\top \hat{\theta}^{(i)}(\lambda) = \sum_{i=1}^n (X_i^\top \theta + \sigma^2 W_i)(X_i^\top \hat{\theta}^{(i)}(\lambda))
= \sum_{i=1}^n X_i^\top \theta X_i^\top \hat{\theta}^{(i)}(\lambda) + \sum_{i=1}^n \sigma^2 W_i X_i^\top \hat{\theta}^{(i)}(\lambda).
$$

So,

$$
\left\| \frac{1}{n} \mathbb{E}(X_i\tilde{\theta}(\lambda))^\top X\theta - \frac{1}{n} \sum_{i=1}^n Y_i X_i^\top \hat{\theta}^{(i)}(\lambda) \right\|
\leq \left\| \mathbb{E}(\tilde{\theta}(\lambda))^\top C_n \theta - \tilde{\theta}(\lambda)^\top C_n \theta \right\| + \left\| \tilde{\theta}(\lambda)^\top C_n \theta - \frac{1}{n} \sum_{i=1}^n Y_i X_i^\top \hat{\theta}^{(i)}(\lambda) \right\|
= \left\| (\mathbb{E}(\tilde{\theta}(\lambda) - \tilde{\theta}(\lambda))^\top C_n \theta \right\| + \left\| \tilde{\theta}(\lambda)^\top C_n \theta - \frac{1}{n} \sum_{i=1}^n Y_i X_i^\top \hat{\theta}^{(i)}(\lambda) \right\|
\leq \left\| \mathbb{E}(\tilde{\theta}(\lambda) - \tilde{\theta}(\lambda))^\top C_n \theta \right\| + \left\| \frac{1}{n} \tilde{\theta}(\lambda)^\top X^\top X\theta - \frac{1}{n} \sum_{i=1}^n X_i^\top \theta X_i^\top \hat{\theta}^{(i)}(\lambda) \right\|
+ \left\| \frac{1}{n} \sum_{i=1}^n \sigma^2 W_i X_i^\top \hat{\theta}^{(i)}(\lambda) \right\|.
$$

9
By Lemma 3.9, (bi) goes to zero uniformly. For (bii),
\[\frac{1}{n} \left| \hat{\theta}(\lambda)^\top X \hat{\theta} - \sum_{i=1}^{n} X_i^\top \theta X_i^\top \hat{\theta}(i)(\lambda) \right| = \frac{1}{n} \left| \sum_{i=1}^{n} \theta^\top X_i X_i^\top \left(\hat{\theta}(\lambda) - \hat{\theta}(i)(\lambda) \right) \right| \]
\[\leq \frac{1}{n} \sum_{i=1}^{n} \left(||\theta||_2 ||X_i||_2 \right) \left(||\hat{\theta}(\lambda) - \hat{\theta}(i)(\lambda)||_2 \right) \]
\[\leq C_\theta C_X^2 \frac{1}{n} \sum_{i=1}^{n} \left(||\hat{\theta}(\lambda) - \hat{\theta}(i)(\lambda)||_2 \right). \]

This goes to zero uniformly by Lemma 3.8.

For (biii), \(|\hat{\theta}(i)(\lambda)||_1 \leq ||\hat{\theta}(i)(0)||_1\) for any \(\lambda, i\). So:
\[\left| \frac{1}{n} \sum_{i=1}^{n} \sigma^2 W_i X_i^\top \hat{\theta}(i)(\lambda) \right| = \frac{\sigma^2}{n} \sum_{i=1}^{n} W_i X_i^\top \hat{\theta}(i)(\lambda) \]
\[\leq \frac{\sigma^2}{n} \sum_{i=1}^{n} W_i ||X_i||_\infty \left(||\hat{\theta}(i)(\lambda)||_1 \right) \]
\[\leq \frac{\sigma^2 C_X}{n} \sum_{i=1}^{n} W_i \left(||\hat{\theta}(i)(0)||_1 \right) \overset{a.e.}{\to} 0. \]

The proof of almost-everywhere convergence is given in the appendix. This completes the proof of Proposition 4.2. \(\square\)

Proposition 4.3 (Part (c)).
\[||X\theta||_2^2 + \sigma^2 - \frac{1}{n} \sum_{i=1}^{n} Y_i^2 \right| = o_p(1). \]

Proof. By assumption, \(E_{P_1}[e^{tW_i}] \leq e^{r^2 t^2/2}\) for all \(t \in \mathbb{R}\). Thus, for any \(\alpha \in \mathbb{R}^n\),
\[E \left[\exp \left(\alpha^\top (Y - X\theta) \right) \right] = E \left[\exp \left(\sum_{i=1}^{n} \alpha_i (Y_i - X_i^\top \theta) \right) \right] \]
\[= E \left[\exp \left(\sum_{i=1}^{n} \alpha_i W_i \right) \right] \]
\[= \prod_{i=1}^{n} E_{P_1}[\exp(\alpha_i W_i)] \]
\[\leq \prod_{i=1}^{n} \exp \left(\alpha_i^2 r^2/2 \right) \]
\[= \exp \left(||\alpha||_2^2 r^2/2 \right). \]

Therefore, we can apply Lemma 3.10 with \(\mu = X\theta\). \(\square\)

By Propositions 4.1, 4.2 and 4.3, each term in (9) converges uniformly in probability to zero thus completing the proof of Theorem 2.1.
5 Discussion and future work

A common practice in data analysis is to estimate the coefficients of a linear model with the lasso and choose the regularization parameter by cross-validation. Unfortunately, no definitive theoretical results existed as to the effect of choosing the tuning parameter in this data-dependent way. In this paper, we provide a solution to the problem by demonstrating, under particular assumptions on the design matrix, that the lasso is risk consistent even when the tuning parameter is selected via leave-one-out cross-validation.

However, a number of important open questions remain. The first is to generalize to other forms of cross-validation, especially K-fold. In fact, this generalization should be possible using the methods developed herein. Lemma 3.8 holds when more than one training example is held out, provided that the size of the datasets used to form the estimators still increases to infinity with n. Furthermore, with careful accounting of the held out sets, Proposition 4.2 should hold as well.

A second question is to determine whether cross-validation holds in the high-dimensional setting where $p > n$. However, our methods are not easily extensible to this setting. We rely heavily on Assumption A which says that $n^{-1}X^\top X$ has a positive definite limit as well as the related results of [6] which are not available in high dimensions or with random design. Additionally, an interesting relaxation of our results would be to assume that the matrices C_n are all non-singular, but tend to a singular limit. This would provide a more realistic scenario where regularization is more definitively useful.

Finally, one of the main benefits of lasso is its ability to induce sparsity and hence perform variable selection. While selecting the correct model is far more relevant in high dimensions, it may well be desirable in other settings as well. As mentioned in the introduction, various authors have shown that cross-validation and model selection are in some sense incompatible. In particular, CV is inconsistent for model selection. Secondly, using prediction accuracy (which is what $\hat{R}_n(\lambda)$ is estimating) as the method for choosing λ fails to recover the sparsity pattern even under orthogonal design. Thus, while we show that the predictions of the model are asymptotically equivalent to those with the optimal tuning parameter, we should not expect to have the correct model even if θ were sparse. In particular, $\hat{\theta}(\lambda)$ does not necessarily converge to the OLS estimator, and may not converge to θ. We do show (Lemma 3.9) that $\hat{\theta}(\lambda)$ converges to its expectation uniformly for all λ. While this expectation may be sparse, it may not be. But we are unable to show that with cross-validated tuning parameter, the lasso will select the correct model. While this is not surprising in light of previous research, neither is it comforting. The question of whether lasso with cross-validated tuning parameter can recover an unknown sparsity pattern remains open. Empirically, our experience is that cross-validated tuning parameters lead to over-parameterized estimated models, but this has yet to be validated theoretically.

A Supplementary results

Theorem A.1 (Theorem 1 in [12]). Let $A \in \mathbb{R}^{m \times n}$, and define $\Sigma = A^\top A$. Suppose that $Z \in \mathbb{R}^n$ is a random vector such that there exists $\mu \in \mathbb{R}^n$ and $\sigma > 0$ with

$$
\mathbb{E} \left[\exp \left(\alpha^\top (Z - \mu) \right) \right] \leq \exp \left(||\alpha||_2^2 \sigma^2 / 2 \right)
$$

for all $\alpha \in \mathbb{R}^n$. Then, for all $t > 0$,

$$
P \left(||AZ||_2^2 > g_\sigma(t) + g_\mu(t) \right) \leq e^{-t},
$$

11
where

\[g_\sigma(t) = \sigma^2 \left(tr(\Sigma) + 2\sqrt{tr(\Sigma^2)t} + 2 ||\Sigma|| t \right) \]

and

\[g_\mu(t) = ||A\mu||^2 \left(1 + 4 \left(\frac{t ||\Sigma||_2^2}{tr(\Sigma^2)} \right)^{1/2} + \frac{4t ||\Sigma||_2^2}{tr(\Sigma^2)} \right)^{1/2} , \]

with \(||\Sigma||_2 \) the operator norm of \(\Sigma \).

Almost everywhere convergence of (biii).

\[
\frac{\sigma^2 C_X}{n} \left| \sum_{i=1}^{n} W_i \left| \hat{\theta}^{(i)}(0) \right|_1 \right| \leq \frac{\sigma^2 C_X}{n} \left| \sum_{i=1}^{n} W_i \left| \left| \hat{\theta}^{(i)}(0) - \theta \right|_1 + ||\theta||_1 \right| \right|
\]

\[
\leq \frac{\sigma^2 C_X}{n} \left(\left| \sum_{i=1}^{n} W_i \left| \hat{\theta}^{(i)}(0) - \theta \right|_1 \right| + C_\theta \left| \sum_{i=1}^{n} W_i \right| \right)
\]

The second term goes to zero in probability by the strong law of large numbers. For the first term, define \(C_{i,n} = (n - ||X_i||_2^2)^{-1} \), then

\[
\hat{\theta}^{(i)}(0) = (X_{(i)}^\top X_{(i)})^{-1} X_{(i)}^\top Y_{(i)}
\]

\[
= \hat{\theta}(0) - C_{i,n} X_i Y_i + C_{i,n} X_i X_i^\top \hat{\theta}(0)
\]

\[
= \frac{1}{n}(C_{i,n} X_i X_i^\top + I)X^\top \theta + \frac{1}{n}(C_{i,n} X_i X_i^\top + I)X^\top W
\]

\[
- C_{i,n} X_i X_i^\top \theta - C_{i,n} X_i W_i
\]

\[
= \theta + \frac{1}{n}(C_{i,n} X_i X_i^\top + I)X^\top W - C_{i,n} X_i W_i.
\]

So,

\[
\left| \hat{\theta}^{(i)}(0) - \theta \right|_1
\]

\[
= \left| \frac{1}{n}(C_{i,n} X_i X_i^\top + I)X^\top W - C_{i,n} X_i W_i \right|_1
\]

\[
= \left| \frac{1}{n}C_{i,n} X_i X_i^\top X_{(i)} W_{(i)} + \frac{1}{n}C_{i,n} X_i X_i^\top X_i W_i + \frac{1}{n}X^\top W - C_{i,n} X_i W_i \right|_1
\]

\[
= \frac{1}{n} \left| C_{i,n} X_i X_i^\top X_{(i)} W_{(i)} - X_i W_i + X^\top W \right|_1
\]

\[
= \frac{1}{n} \left| C_{i,n} X_i X_i^\top X_{(i)} W_{(i)} + X_{(i)} W_{(i)} \right|_1.
\]
Therefore,

\[
\frac{\sigma^2 C_X}{n} \left\| \sum_{i=1}^{n} W_i \left| \hat{\beta}^{(i)}(0) - \theta \right|_1 \right\| \\
= \frac{\sigma^2 C_X}{n^2} \left\| \sum_{i=1}^{n} W_i \left| C_{i,n} X_i X_i^T X_{(i)}^T W_i + X_{(i)}^T W_i \right|_1 \right\| \\
= \frac{\sigma^2 C_X}{n^2} \left\| \sum_{i=1}^{n} W_i \sum_{k=1}^{p} C_{i,n} X_{ik} \sum_{\ell=1}^{p} X_{i\ell} \sum_{j \neq i} X_{j\ell} W_j + \sum_{j \neq i} X_{jk} W_j \right\| \\
= \frac{\sigma^2 C_X}{n^2} \left\| \sum_{i=1}^{n} W_i \sum_{k=1}^{p} \sum_{j \neq i} W_j \left(C_{i,n} X_{ik} \sum_{\ell=1}^{p} X_{i\ell} X_{j\ell} + X_{jk} \right) \right\| \\
\leq \frac{\sigma^2 C_X}{n^2} \left(\sum_{i=1}^{n} W_i \sum_{k=1}^{p} \sum_{j \neq i} W_j C_{i,n} X_{ik} \right) + \frac{\sigma^2 C_X}{n^2} \left(\sum_{i=1}^{n} W_i \sum_{k=1}^{p} \sum_{j \neq i} W_j X_{jk} \right) \\
\leq \frac{\sigma^2 C_X}{n^2} \left(\sum_{i=1}^{n} W_i \sum_{j \neq i} W_j \right) + \frac{\sigma^2 C_X}{n^2} \left(\sum_{i=1}^{n} W_i \sum_{j \neq i} W_j \right),
\]

where \(C_n^* := (n - \max_i \|X_i\|_2^2)^{-1} = \max_i C_{i,n} \). To bound \(\frac{1}{n^2} \left| \sum_{i=1}^{n} W_i \sum_{j \neq i} W_j \right| \), observe

\[
\frac{1}{n^2} \left| \sum_{i=1}^{n} W_i \sum_{j=1}^{n} W_j - W_i \right| \leq \frac{1}{n^2} \left| \sum_{i=1}^{n} W_i \left(\sum_{j=1}^{n} W_j \right) \right| \\
\leq \frac{1}{n^2} \left| \sum_{i=1}^{n} W_i \left(\sum_{j=1}^{n} W_j \right) \right| + \frac{1}{n^2} \left| \sum_{i=1}^{n} W_i \sum_{j=1}^{n} W_j \right| \\
\leq \frac{1}{n^2} \left| \sum_{i=1}^{n} W_i \left| W_i \right| \right| + \frac{1}{n^2} \left| \sum_{i=1}^{n} W_i \sum_{j=1}^{n} W_j \right| \\
= \frac{1}{n} \left| \sum_{i=1}^{n} W_i \left| W_i \right| \right| + \frac{1}{n} \left| \sum_{i=1}^{n} W_i \right| \frac{1}{n} \sum_{j=1}^{n} W_j \overset{\alpha \xi}{\to} 0.
\]
[4] Davidson, J. (1994), *Stochastic Limit Theory: An Introduction for Econometricians*, Oxford.

[5] Efron, B., Hastie, T., Johnstone, I., and Tibshirani, R. (2004), “Least angle regression,” *The Annals of Statistics*, **32**(2), 407–499.

[6] Fu, W., and Knight, K. (2000), “Asymptotics for lasso-type estimators,” *The Annals of Statistics*, **28**(5), 1356–1378.

[7] Grandvalet, Y. (1998), “Least absolute shrinkage is equivalent to quadratic penalization,” in ICANN’98, pp. 201–206, Springer.

[8] Greenshtein, E., and Ritov, Y. A. (2004), “Persistence in high-dimensional linear predictor selection and the virtue of overparametrization,” *Bernoulli*, **10**(6), 971–988.

[9] Györfi, L., Kohler, M., Krzyżak, A., and Walk, H. (2002), *A Distribution-Free Theory of Nonparametric Regression*, Springer Verlag.

[10] Hanson, D., and Wright, F. (1971), “A bound on tail probabilities for quadratic forms in independent random vectors,” *The Annals of Mathematical Statistics*, **42**(3), 1079–1083.

[11] Hastie, T., Tibshirani, R., and Friedman, J. (2009), *The Elements of Statistical Learning: Data Mining, Inference, and Prediction*, Springer Verlag.

[12] Hsu, D., Kakade, S. M., and Zhang, T. (2011), “A tail inequality for quadratic forms of subgaussian random vectors,” arXiv:1110.2842.

[13] Lee, S., Zhu, J., and Xing, E. (2010), “Adaptive multi-task lasso: with application to eQTL detection,” in *Advances in Neural Information Processing Systems*, eds. J. Lafferty, C. K. I. Williams, J. Shawe-Taylor, R. Zemel, and A. Culotta, vol. 23, pp. 1306–1314.

[14] Leng, C., Lin, Y., and Wahba, G. (2006), “A note on the lasso and related procedures in model selection,” *Statistica Sinica*, **16**(4), 1273–1284.

[15] Meinshausen, N., and Bühlmann, P. (2006), “High-dimensional graphs and variable selection with the lasso,” *The Annals of Statistics*, **34**(3), 1436–1462.

[16] Newey, W. K. (1991), “Uniform convergence in probability and stochastic equicontinuity,” *Econometrica*, **59**(4), 1161–1167.

[17] Osborne, M., Presnell, B., and Turlach, B. (2000), “On the lasso and its dual,” *Journal of Computational and Graphical statistics*, **9**(2), 319–337.

[18] Schaffer, C. (1993), “Selecting a classification method by cross-validation,” *Machine Learning*, **13**, 135–143.

[19] Shao, J. (1993), “Linear model selection by cross-validation,” *Journal of the American Statistical Association*, **88**, 486–494.

[20] Shi, W., Wahba, G., Wright, S., Lee, K., Klein, R., and Klein, B. (2008), “LASSO-patternsearch algorithm with application to ophthalmology and genomic data,” *Statistics and its Interface*, **1**(1), 137.

[21] Tibshirani, R. (1996), “Regression shrinkage and selection via the lasso,” *Journal of the Royal Statistical Society: Series B (Statistical Methodology)*, **58**(1), 267–288.
[22] Tibshirani, R. (2011), “Regression shrinkage and selection via the lasso: A retrospective,” *Journal of the Royal Statistical Society: Series B (Statistical Methodology)*, 73(3), 273–282.

[23] Tibshirani, R. J. (2013), “The lasso problem and uniqueness,” *Electronic Journal of Statistics*, 7, 1456–1490.

[24] Tibshirani, R. J., and Taylor, J. (2012), “Degrees of freedom in lasso problems,” *The Annals of Statistics*, 40, 1198–1232.

[25] van de Geer, S., and Lederer, J. (2011), “The lasso, correlated design, and improved oracle inequalities,” arXiv:1107.0189.

[26] Wang, H., and Leng, C. (2007), “Unified lasso estimation by least squares approximation,” *Journal of the American Statistical Association*, 102(479), 1039–1048.

[27] Xu, H., Mannor, S., and Caramanis, C. (2008), “Sparse algorithms are not stable: A no-free-lunch theorem,” in *46th Annual Allerton Conference on Communication, Control, and Computing*, pp. 1299–1303, IEEE.

[28] Zou, H., Hastie, T., and Tibshirani, R. (2007), “On the degrees of freedom of the lasso,” *The Annals of Statistics*, 35(5), 2173–2192.