Infectious hematopoietic necrosis virus: advances in diagnosis and vaccine development

Chean Yeah Yong 1, 2, Hui Kian Ong 1, Hooi Chia Tang 2, Swee Keong Yeap 4, Abdul Rahman Omar 2, Kok Lian Ho 3, Wen Siang Tan 1, 2

1 Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
2 Laboratory of Vaccines and Immunotherapeutics, Institute of Bioscience, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
3 Department of Pathology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
4 China ASEAN College of Marine Sciences, Xiamen University Malaysia, Sepang, Selangor, Malaysia

Corresponding Author: Wen Siang Tan
Email address: wstan@upm.edu.my

The aquaculture of salmonid fishes is a multi-billion dollar industry with production over three million tons annually. However, infectious hematopoietic necrosis virus (IHNV), which infects and kills salmon and trout, reduces significantly the revenue of the salmon farming industry. Currently, there is no effective treatment for IHNV infected fishes, therefore early detection and depopulation of the infected fishes remain the most common practices to contain the spread of IHNV. Apart from hygiene practices in aquaculture and isolation of infected fishes, loss of fishes due to IHNV infection can also be reduced significantly through vaccination programs. In the current review, some of the diagnostic methods for IHNV, spanning from clinical diagnosis to cell culture, serological and molecular methods are discussed in detail. In addition, some of the most significant candidate vaccines for IHNV are also extensively discussed, particularly the DNA vaccines.
Infectious hematopoietic necrosis virus: advances in diagnosis and vaccine development

Chean Yeah Yong¹,², Hui Kian Ong³, Hooi Chia Tang², Swee Keong Yeap⁴,
Abdul Rahman Omar², Kok Lian Ho³ and Wen Siang Tan¹,² *

¹Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia.
²Laboratory of Vaccines and Immunotherapeutics, Institute of Biosciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia.
³Department of Pathology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia.
⁴China ASEAN College of Marine Sciences, Xiamen University Malaysia, Sepang, Selangor, Malaysia.

*Correspondence:
Wen Siang Tan
Department of Microbiology
Faculty of Biotechnology and Biomolecular Sciences
Universiti Putra Malaysia
43400 Serdang, Selangor, Malaysia.
Tel: 603-89466715; Fax: 603-89430913
Email: wstan@upm.edu.my; wensiangtan@yahoo.com
ABSTRACT

The aquaculture of salmonid fishes is a multi-billion dollar industry with production over three million tons annually. However, infectious hematopoietic necrosis virus (IHNV), which infects and kills salmon and trout, reduces significantly the revenue of the salmon farming industry. Currently, there is no effective treatment for IHNV infected fishes, therefore early detection and depopulation of the infected fishes remain the most common practices to contain the spread of IHNV. Apart from hygiene practices in aquaculture and isolation of infected fishes, loss of fishes due to IHNV infection can also be reduced significantly through vaccination programs. In the current review, some of the diagnostic methods for IHNV, spanning from clinical diagnosis to cell culture, serological and molecular methods are discussed in detail. In addition, some of the most significant candidate vaccines for IHNV are also extensively discussed, particularly the DNA vaccines.

INTRODUCTION

Infectious hematopoietic necrosis virus (IHNV) is the causative agent for infectious hematopoietic necrosis in salmonid fishes such as salmon and trout, which represent some of the most important species in aquaculture. Production of worldwide farmed salmon and trout exceeded 3 million tons each year which worth over $17.5 billion (Dixon et al. 2016). Due to the high mortality rate of fishes infected by IHNV particularly in younger fishes (up to 90% or more
in fry), the viral outbreaks have resulted in significant economic losses (Ahmadivand et al. 2017; OIE 2018). The first recorded outbreak occurred in 1950s in blueback salmon brood of 1948 (Rucker 1953). Highly susceptible fish species which often lead to high mortality include rainbow trout and steelhead trout (Oncorhynchus mykiss), Chinook salmon (O. tshawytscha), coho salmon (O. kisutch), sockeye salmon (O. nerka), chum salmon (O. keta), Biwa trout (O. rhodurus), masu salmon (O. masou), and Atlantic salmon (Salmo salar) (Dixon et al. 2016).

IHNV was first isolated from sockeye salmon (Wingfield et al. 1969). It is an enveloped, negative-sense single-stranded RNA virus which belongs to the family of Rhabdoviridae, under the genus Novirhabdovirus with a distinct shape of bullet-like structure. The virion has a size of approximately 150-190 nm in length and 65-75 nm in width when observed under an electron microscope (Fig. 1).

Current control methods for IHNV rely on the avoidance of exposure. Therefore, thorough disinfection of fertilized eggs with disinfectants such as iodophor solution, and the use of virus-free water for rearing such as that obtained from undergrounds or treated with UV or ozone are crucial in preventing IHNV, especially in the early phase of farmed salmonid (OIE 2018). As most of the grow-out phase of the fish occurs in marine environments like net-pens, they could be exposed to viruses shedded from the marine fish reservoirs. Syndromic surveillance is a cost effective approach in minimizing the impact of the virus. If fishes that developed symptoms are separated immediately and culled upon confirmation with a PCR method, farm-wide infections could be prevented (Garver & Wade 2017). In addition, biosecurity measures such as strict regulations in controlling human and vehicle access to and between farm sites; minimizing contacts between farm fish and wild animals with the use of predators and bird nets; appropriate transport and disposal of fish carcasses, offals and blood
water; low stress husbandry practices; applications of fallow periods between cycles; and sterilizing equipment on regular basis with disinfectants such as Virkon® Aquatic are also important in preventing IHNV outbreaks (Wade 2017).

IHNV RNA genome consists of approximately 11 kilobases, which encodes for six viral proteins: nucleoprotein (N), polymerase-associated phosphoprotein (P), matrix protein (M), glycoprotein (G), non-structural protein (NV), and RNA-dependent RNA polymerase (L) (Kurath et al. 1985). The N protein interacts with the viral RNA genome to form the ribonucleoprotein (RNP) complex, which coils into a bullet-shaped structure. The P and L proteins are associated with the RNP, where they play important roles in the transcription of viral mRNAs and genome replication. The M protein lines the inner surface of the host-derived envelope, which glues the RNP and envelope together, and packs them into a bullet-like shape. In addition, the M protein also inhibits the synthesis of host proteins and induces apoptosis (Chiou et al. 2000).

The NV protein is a non-structural protein, which could only be found in infected cells, but not in the virion (Kurath et al. 1985). The NV protein is essential for the pathogenicity of IHNV (Thoulouze et al. 2004). Most recently, Biacchesi et al. (2017) proposed that the NV protein recruits the PPM1Bb protein phosphatase (Mg\(^{2+}\)/Mn\(^{2+}\) dependent, 1Bb) to destabilize the innate immune responses of infected fishes (Biacchesi et al. 2017). The G protein, on the other hand, is a class I viral fusion protein which is present in the outermost layer of IHNV. IHNV G proteins form trimeric peplomers, which are responsible for the viral interaction with its host’s receptor (Coll 1995). The virus is believed to penetrate the host membrane through receptor-mediated fibronectin endocytosis (Bearzotti et al. 1999; Liu & Collodi 2002; Nita-Lazar et al. 2016). The G protein alone is capable of inducing protective immunity against IHNV infection.
(Corbeil et al. 1999). Therefore, the G protein has been studied immensely for vaccine
development against IHNV.

Current review focuses on the past and recent advances in the diagnosis and vaccine
development against IHNV. To the best of our knowledge, there are only 3 review articles
focusing on IHNV (Alonso & Leong 2013; Dixon et al. 2016; Nishizawa & Yoshimizu 2017) for
the past 10 years. Dixon et al. (2016) reviewed on the epidemiology. Nishizawa & Yoshimizu
(2017) reviewed on the epidemiology and virulence changes, as well as the detection and
identification of IHNV. Whereas Alonso & Leong (2013) focused their review on patents on
DNA vaccines. Another 2 reviews (Dalmo 2018; Holvold et al. 2014) were on the DNA vaccines
for fishes including IHNV. However, none has focused on the diagnosis and vaccine
development for IHNV.

SURVEY METHODOLOGY

Recently published journal articles (within 10 years) were searched using the keyword
“infectious hematopoietic necrosis virus” in “Scopus” and “Pubmed”. The results were screened
and relevant articles used as references for this review. In addition, older information was
obtained through “Google” search engine with more specific keywords.

DIAGNOSIS OF IHNV

Early detection of IHNV is crucial in controlling and preventing the spread of this
infectious disease since there is no effective treatment for the viral infection. Preliminary
diagnosis of IHNV is often based on observation of clinical signs and behavioral changes in the
fishes. The outward clinical signs and behavioral changes of the IHNV infected fishes can be
easily recognized and these diagnoses are able to give a presumptive evidence of IHNV infection. However, serological diagnosis methods such as virus neutralization test (VNT) and enzyme-linked immunosorbent assay (ELISA) are still required to confirm the IHNV infection. Molecular diagnostic methods based on PCR and loop-mediated isothermal amplification (LAMP) technologies are generally considered more advanced due to their higher detection sensitivity as compared to the serological methods. These IHNV diagnosis methods will be discussed in detail in the following sections.

Clinical diagnosis

Typically, fishes infected by IHNV will become lethargic. The infected fishes will also show abnormal swimming patterns such as sporadic whirling, spiral swimming and flashing. Other symptoms that can be observed through the physical appearance include darkening of the skin color, exophthalmia, pale gills and mucoid, distended abdomens, opaque feces casts, and petechial hemorrhages (Fig. 2) (Woo & Cipriano 2017).

Several reliable clinical methods for the detection and identification of IHNV are based on the gross and microscopic pathology, chemical pathology, tissue imprints, and electron microscopic analysis. Gross pathological signs of infected fishes include pale internal organs such as liver, kidney, and spleen; distended abdomen with gelatinous substance; exophthalmia; petechial hemorrhages in the muscles and tissues surrounding the organs of the body cavity; and spinal deformities in surviving fishes. Whereas the microscopic pathological signs include necrosis of eosinophilic granular cells in the intestinal wall, and the degenerative necrosis in hematopoietic tissues, digestive tract, kidney, liver, spleen, and pancreas (Schipp 2012). As IHNV can cause renal damage to infected fishes, it can lead to significant changes in the cellular
and chemical blood constituents. By comparing with uninfected fishes, the ill fishes are anemic
and leukopenic, with degenerating thrombocytes and leucocytes. A large amounts of cellular
debris (necrobiotic bodies) can therefore be observed in the blood (Woo et al. 2011).

In IHNV infected fishes, splenic and renal hematopoietic tissues are the first and most
severely affected areas. Therefore, the cytopathic effect of the virus can best be observed using
tissue imprints prepared from the kidney and spleen. These imprints often show foamy
macrophages and necrobiotic debris, indicating IHNV infection (Kibenge & Godoy 2016).

IHNV infection can also be identified through direct observation of virus particles using an
electron microscope. The virions can be detected on the cell surface, within cell vacuoles, as well
as in the intracellular spaces of the virus-infected cells (OIE 2018).

Recently, Burbank et al. (2017) reported a non-lethal sampling technique through fin
clipping in adult steelhead trout, followed by the detection of IHNV with cell culture techniques.
This method has been demonstrated to be more efficient that the standard lethal sampling
methods, such as spleen and anterior kidney sampling (Burbank et al. 2017). The confirmation
test or ‘gold standard’ for IHNV diagnosis is by detecting the virus in cell cultures, followed by
diagnosis using immunological and molecular techniques (Barlič-Maganja et al. 2002; Burbank
et al. 2017; Crane 2008; Winton 1991; Woo et al. 2011). The presence of IHNV is routinely
assessed by observing the development of viral cytopathic effect (CPE) in cell lines such as
epithelioma papulosum cyprinid (EPC) and fathead minnow (FHM) under a phase-contrast
microscope (Dixon et al. 2016). When virus-like structures are observed in cell cultures with the
viral CPE using an electron microscope, a further confirmation test with either the serological
method, molecular method, or a combination of both methods is required (OIE 2018).
Serological diagnosis

Serological diagnosis often requires the use of polyclonal or monoclonal antibodies which bind specifically to the pathogen. The classic VNT is time consuming as it takes 2 to 8 weeks to complete. Nevertheless, VNT is still being used to detect IHNV infection without sacrificing the fish (Jenčič et al. 2014). More rapid tests based on viral antigen recognition, such as the direct and indirect fluorescent antibody tests (FAT/IFAT) (Arnzen et al. 1991; Lapatra et al. 1989; Woo et al. 2011), ELISA (Adams & Thompson 2011; Kim et al. 2008), peroxidase immunohistochemical and alkaline phosphatase immunocytochemical (APIC) staining (Drolet et al. 1993; Yamamoto et al. 1990), and western blotting (Ristow et al. 1993) have been successfully developed. FAT/IFAT and APIC staining are often used to detect the presence of IHNV in infected fishes through immunostaining of tissue imprints or fixed tissue sections. Drolet et al. (1993) demonstrated that the APIC assay can detect IHNV in fixed tissue samples over a year old (Drolet et al. 1993).

Similarly, ELISA, dot blotting, and western blotting are used to confirm the presence of IHNV by detecting the viral components with antibodies which bind specifically to the viral antigens. To further contribute to the serological detection of IHNV, Xu et al. (2016) performed a high throughput screening method by using the flow cytometry to select recombinant antibodies which could be used as potential universal diagnostic reagents. Another rapid detection method which is known as the staphylococcal coagglutination test can be used to diagnose IHNV within 15 minutes (Bootland & Leong 1992; Kim et al. 1994). With the aid of a portable light microscope, this method has the potential to be used as an on-site or point-of-care diagnostic test. However, the staphylococcal coagglutination test is rarely used in the past decade, possibly due to advancements in point-of-care diagnosis using molecular methods. Apart from
using specific antibodies, nucleic acid hybridization probes labeled with biotin or alkaline phosphatase can also be employed to detect the presence of IHNV genomic materials (Gonzalez et al. 1997).

Molecular diagnosis

The application of molecular diagnosis in clinical microbiology laboratories accelerates the detection and identification of IHNV. Molecular diagnostic methods are generally better than serological methods in terms of sensitivity, as the presence of IHNV genes can be easily amplified with methods such as PCR and LAMP (OIE 2018). Since IHNV is an RNA virus, reverse transcription- (RT-) PCR is often used to detect the N and G genes of IHNV (Emmenegger et al. 2000; Knusel et al. 2007). In addition, real-time RT-PCR (qRT-PCR) is also commonly used to detect IHNV. qRT-PCR generally has a lower risk of contamination, greater sensitivity, and exclusion of post-PCR analysis as compared to RT-PCR (Dixon et al. 2016; Woo et al. 2011). More importantly, qRT-PCR is capable of quantifying the viral genome or transcripts, thereby could be used to determine the health status of an infected fish (Overturf et al. 2001).

Purcell et al. (2013) developed a universal qRT-PCR targeting the N gene of IHNV, and reported a sensitivity and specificity of 100%. As quantitation with qRT-PCR requires the establishment of a standard curve, the results generated from different laboratories could be different. Therefore, RT-droplet digital PCR (RT-ddPCR) has been employed for quantitative detection of IHNV as an alternative to qRT-PCR (Jia et al. 2017). In addition, Pinheiro et al. (2016) developed a multiplex RT-PCR (mRT-PCR) for simultaneous detection of major viruses that infect rainbow trout, including IHNV. In the following year, Tong et al. (2017) also...
developed a liquid chip technique for simultaneous detection of IHNV, spring viremia of carp virus (SVVCV), and viral hemorrhagic septicemia virus (VHSV) in salmonids, through the use of fluorescence-coded microspheres for hybridization with the RT-PCR products.

LAMP or RT-LAMP is a powerful diagnostic tool to detect aquaculture diseases as it is rapid and highly sensitive, in which a few copies of cDNA can be amplified by 10^9 folds in less than an hour (Biswas & Sakai 2014; Fu et al. 2011; Suebsing et al. 2011b). Suebsing et al. (2011a) demonstrated that RT-LAMP can detect as little as 0.01 fg of RNA extracted from IHNV-infected cells. In addition, RT-LAMP is suitable to be applied as a point-of-care IHNV detection tool as the amplification of DNA does not require an expensive thermal cycle, which is a must in PCR-based methods. One of the advantages of LAMP in detecting IHNV is that it allows direct and rapid visualization of the amplified products with naked eyes due to the formation of magnesium pyrophosphate (white precipitate byproduct generated from LAMP), which indicates a successful amplification of the target genomic region (Dhama et al. 2014; Gunimaladevi et al. 2005). This feature makes it applicable in laboratory and field conditions.

Ideally, methods established to diagnose IHNV should not be limited to laboratories as they can also be applied in farms which involve a large number of samples. These methods have to be simple, user-friendly, specific, sensitive, rapid, and affordable to fish farmers.

VACCINES AGAINST IHNV

IHNV has negatively impacted the wild and hatchery-reared salmonid fishes (Rouxel et al. 2016). For the past 30 years, many researchers have tried to develop effective and safe vaccines to control this disease (LaPatra et al. 1994; Romero et al. 2011). As early as 1989, Engelking & Leong (1989) purified the G protein from the isolated wild-type IHNV and demonstrated that it...
provided substantial protection to rainbow trout and Kokanee (*O. nerka*) against IHNV challenge.

Five years later, LaPatra et al. (1994) showed that passive immunity against one strain of IHNV cross protected rainbow trout against all other variants. A subsequent study by Roberti et al. (1998) demonstrated that two neutralization-resistant attenuated IHNV mutants, namely RB-1 and 193-110-4, conferred significant protection against wild-type IHNV in rainbow trout with a relative percentage of survival (RPS) of 95% and 100%, respectively. Advancements in biotechnological techniques ignited a spark of interest among researchers to produce the recombinant IHNV G protein in bacteria and yeasts as potential vaccine candidates against the disease (Table 1). In addition, bioinformatics analysis of the IHNV nucleotide sequences deposited in the GenBank suggested that the mutation sites of IHNV G protein under positive selections as potential recombinant vaccine candidates (LaPatra et al. 2008). This idea was adopted by Rouxel et al. (2016) who generated a series of live recombinant IHNV via the reverse genetic approach. This study revealed that the N protein sequence has the most important role to play in the attenuation of IHNV virulence, and modifications of the N and G sequences conferred different degrees of protection and immunity. The details of different types of IHNV vaccines reported in literature are summarized in Table 1.

Despite an intensive development of recombinant vaccines against IHNV, biotechnology-based vaccines such as attenuated vaccines, recombinant subunit vaccines, live recombinant vaccines, and even reverse genetic vaccines are not commercially available, where their developments are encumbered by safety concerns toward consumers and environment (Romero et al. 2011). Thus, more efforts are needed in performing major field trials and commercialization of the potential IHNV vaccines listed in Table 1.
Development of DNA vaccine

DNA vaccine is a type of genetic vaccine which involves the introduction of recombinant plasmid encoding an immunogenic antigen into host cells, whereby the antigen could be translated and primes the immune system (van Drunen Littel-van den Hurk et al. 2001). Along with the advancement in genetic engineering, numerous DNA vaccines have been invented in the past three decades and many have entered clinical trials (Ferraro et al. 2011). Although the developed DNA vaccines are more focused on targeting human diseases, DNA vaccines against IHNV were also frequently reported (Alonso et al. 2003; Ferraro et al. 2011; Tonheim et al. 2008). An obvious advantage of DNA vaccines over protein-based vaccines is the scalability and lower cost of production with reduced complexities. DNA vaccines could circumvent most of the problematic issues associated with protein-based vaccines including challenges in protein purification, low protein expression, low protein solubility and protein misfolding (Leitner et al. 1999). Importantly, most DNA vaccines were also demonstrated to be capable of inducing both the cellular and humoral immune responses similar to the live attenuated vaccines (Wang et al. 1998). Moreover, DNA vaccines have a better safety profile in contrary to live attenuated vaccines comprising attenuated pathogens, which may pose a risk of regaining virulence in the host (Pliaka et al. 2012). In addition, plasmid DNA containing immunostimulatory sequence (CpG motifs) also increases the immunogenicity of the vaccine and reduces the reliance on toxic adjuvants which often result in adverse inflammation (Coombes & Mahony 2001). Plasmid DNA could also be engineered to encode multiple viral antigens to generate multivalent DNA vaccines (Tonheim et al. 2008).

Majority of the IHNV DNA vaccines were developed based on the G protein of the IHNV M and U genotypes, which were found to induce strong humoral immune responses in
immunized fishes (Nichol et al. 1995; Penaranda et al. 2011). DNA vaccines designed based on other internal viral proteins of IHNV such as N, P, M and NV did not induce any significant protective immunogenicity (Corbeil et al. 1999). Recently, an IHNV DNA vaccine encoding the G protein of the J genotype was found to be effective against a wide range of IHNV strains by eliciting strong neutralizing antibody responses and upregulation of Mx-1 gene, an IFN-inducible antiviral effector (Xu et al. 2017a). On other hand, DNA vaccines which consist of recombinant plasmid encoding the G protein derived from other serologically distant rhabdoviruses: SVCV or snakehead rhabdovirus (SHRV) were also shown to induce notable cross protections in the early (30 days post-vaccination) but not the late (70 days post-vaccination) lethal IHNV challenges (Kim et al. 2000). The G proteins of IHNV, SVCV, and SHRV shared only about 11% homology in amino acid sequences, therefore protective responses observed during the early IHNV challenge could largely attributed to the non-specific innate immune responses conferred by IFN-inducible antiviral Mx-1 protein. As the nonspecific immune responses faded over time, immunized fishes become more vulnerable to the late IHNV challenge, thus an increased mortality was observed. Nevertheless, fishes immunized with DNA vaccine encoding the G protein of IHNV survived in both the early and late IHNV challenges, suggesting that a long term effective protection requires specific immune responses (Kim et al. 2000). Previous studies have also indicated that co-infection and interactions between infectious pancreatic necrosis virus (IPNV) and IHNV have led to the loss of infective titer of IHNV due to the early release of interfering cytokines which inhibit the viral activities (Alonso et al. 1999; Saint-Jean & Perez-Prieto 2007; Tafalla et al. 2006). To investigate the capability of IPNV in inducing early cross protection against IHNV, de Las Heras et al. (2009) created a DNA vaccine encoding the VP2 protein of IPNV, and demonstrated its protective efficacy against early heterologous IHNV
challenges. Similar results were obtained when DNA vaccine against another rhabdovirus, VHSV was recruited for early IHNV challenge (LaPatra et al. 2001; Lorenzen et al. 2002b). However, the early non-specific cross protection conferred by the rhabdovirus DNA vaccines was shown to be restricted to viral but not bacterial infection as no increment in survival rate was detected when the immunized trout were challenged with bacterial pathogens (Lorenzen et al. 2002b).

Multivalent DNA vaccines

VHSV and IHNV are common pathogens endemic to rainbow trout in Europe. Co-administration of IHNV and VHSV DNA vaccines in a single injection in rainbow trout was previously reported to induce long-lasting protections against both individual and combined virus challenges (Boudinot et al. 1998; Einer-Jensen et al. 2009). Dual DNA vaccination could be a viable alternative to avoid repeated stressful vaccination procedures in rainbow trout. However, simultaneous vaccinations of several plasmid DNA encoding different antigens have also been reported to reduce the immunogenicity of the vaccines compared to those administered alone (Sedegah et al. 2004). Remarkably, a recent bivalent DNA vaccine encoding both the G protein of IHNV and VP2-VP3 of IPNV was shown to be highly effective in rainbow trout against individual and simultaneous IHNV and IPNV challenges. In all cases, the RPS was over 90% (Xu et al. 2017b). Multivalent vaccines have an added advantage over multi-DNA vaccination due to lower cost of production, as only one type of plasmid is required to produce multiple immunogenic antigens. However, the size of plasmid can affect its transformation into both the prokaryotic and eukaryotic cells (Kreiss et al. 1999; Ohse et al. 1995). Therefore, efforts should be given while designing DNA vaccines to minimize the size of recombinant plasmids,
particularly those of multivalent vaccines. Studies on IHNV DNA vaccines are summarized in Table 2.

Factors affecting the efficacy of DNA vaccines

Protective immune responses induced by DNA vaccines could vary widely based on the route of immunization. Intramuscular injection is the most common DNA immunization technique employed in aquaculture, particularly fishes (Corbeil et al. 2000a; Garver et al. 2005b; Lorenzen et al. 2002a; Penaranda et al. 2011; Xu et al. 2017a). Corbeil et al. (2000a) demonstrated that gene gun and intramuscular injection are the most efficient DNA delivery methods as measured by the protective efficacy on the immunized rainbow trout fry challenged with IHNV, whereas intraperitoneal injection induced partial protection. Nevertheless, other routes of DNA immunization including intrabuccal administration, scarification of the skin and the immersion method were shown to be ineffective against IHNV challenge (Corbeil et al. 2000a). Although DNA vaccination via injection method is highly effective against IHNV, this technique is stressful to fishes, time consuming and laborious (Corbeil et al. 2000a).

A more cost-effective route of vaccination includes oral DNA vaccination. However, an oral vaccination requires the DNA to be protected from degradation in the digestive tract. Adomako et al. (2012) utilized a copolymer, poly (D, L-lactic-co-glycolic acid) (PLGA) as a nanocarrier for the delivery of oral DNA vaccine, where a slight protection towards immunized fishes was reported. Recently, Ballesteros et al. (2015) encapsulated the DNA encoding G protein of IHNV with an alginate microsphere, and orally vaccinated the rainbow trout. Their results revealed that the DNA vaccine was effectively protected in the fish gut by the alginate microsphere, resulting in a significant reduction in mortality of the immunized fishes. To date,
oral vaccination is less effective compared to intramuscular injection. However, further optimization in the future could possibly enhance the protective efficacy of these vaccines. Therefore, it represents a viable alternative in aquaculture, in which it is more practical: lower cost and less laborious.

DNA vaccine delivery by attenuated bacteria via horizontal gene transfer was also previously suggested to be a suitable route of immunization in aquaculture due to its low labor cost. Despite successful demonstration of GFP gene transfer into salmonid fish cells via attenuated invasive \textit{E. coli, in vitro or in vivo} gene transfer of IHNV G protein into fish cells has not been conducted (Simon & Leong 2002).

The efficacy of IHNV DNA vaccines has been reported to be dose dependent (Ballesteros et al. 2015; Corbeil et al. 2000b; Garver et al. 2005b; LaPatra et al. 2000). In general, a larger fish requires a higher vaccination dose for effective protection against IHNV. A 120 g-fish requires about 100 times higher dosage to achieve similar protective immunity compared to fingerlings of 1 to 3 g (LaPatra et al. 2000). Lapatra et al. (2002) later demonstrated that 0.1 µg of IHNV DNA vaccine is sufficient to induce significant protection in rainbow trout fry. As a rule of thumb, to induce sufficient protective immune response in rainbow trout, intramuscular vaccination of at least 10 ng DNA per gram body weight is required (Lorenzen et al. 2002a).

IHNV DNA vaccines are most commonly tested on rainbow trout, often resulting in high neutralizing antibodies and survival rate in the fish (Corbeil et al. 1999; Corbeil et al. 2000b; Kim et al. 2000; Lapatra et al. 2002; Xu et al. 2017a). Atlantic salmon was also recruited as an animal model to study the efficacy of IHNV DNA vaccine, where they were greatly protected from IHNV immersion and cohabitation challenges (over 90% RPS). Furthermore, passive serum transfer from the immunized Atlantic salmon to rainbow trout has also increased the
survival rate of the recipients (Traxler et al. 1999). On other hand, Chinook and sockeye salmon
immunized with DNA vaccines also exhibited increased survivability, although to a lesser extend
compared to Atlantic salmon and rainbow trout (Garver et al. 2005b).

Apart from host differences, external parameters such as temperature also play an
important role in determining the efficacy of the DNA vaccines. Lorenzen et al. (2002a)
suggested that the DNA vaccine encoding G protein of rabies virus failed to elicit early
unspecific protection against IHNV could be due to the low water temperature. Intriguingly,
Lorenzen et al. (2009) later demonstrated that IHNV and VHSV DNA vaccines induced different
defense mechanisms in rainbow trout upon VSHV challenge at different temperatures. At low
temperature of 5 and 10°C, IHNV DNA vaccine could induce a prolonged cross protection
against VSHV challenge but no significant protection was observed at 15°C. In addition, the
activity of Mx protein and the level of neutralizing antibody of the immunized fish were also
found to vary at different temperatures (Lorenzen et al. 2009). Therefore, the effect of vaccines
at different water temperatures should be studied to achieve an optimal protection.

Vaccine efficacy can be affected by the route of vaccine delivery as different vaccination
approaches influence vaccine localization and priming of the immune cells, and consequently
affect the systemic immune responses (Zhang et al. 2015). Due to the complexity of different
vaccines, hosts, vaccine dosages, types of adjuvant involved, injection volumes and intervals
between injections, thus relative immunogenicity of the vaccines administered by different routes
could vary considerably (Zhang et al. 2015). The underlying mechanism of different routes of
vaccination in affecting DNA vaccine’s efficacy in fishes remains elusive. Nevertheless, intramuscular injection is the most widely used method for DNA vaccination in fishes due to its
ability to induce potent immune responses (Tonheim et al. 2008). Studies in mice demonstrated
the distribution of plasmid DNA between the muscle body and epimysium following a DNA vaccination, subsequently myocytes and mononuclear cells were shown to rapidly uptake plasmid DNA shortly after intramuscular injection (Hølvold et al. 2014). DNA immunization by gene gun, on the other hand, introduced the DNA plasmid directly into the cytoplasm, presumably resulting in the DNA being processed by antigen presenting cells, and subsequently activating the adaptive immunity (Wang et al. 2008). DNA vaccines delivered via oral route are relatively less laborious but they were shown to be less effective. Oral DNA vaccination required special protection for the plasmid DNA against hostile fish digestive system to prevent DNA degradation before cellular uptake. Even the DNA plasmid was protected from degradation via certain approaches, transfection efficiency of the plasmid DNA in the fish digestive system poses another challenge (Corbeil et al. 2000a). Immersion route is simple and suitable for mass vaccination of fishes. However, transfection efficiency of the plasmid DNA delivered via immersion route is heavily affected by many factors such as the length of immersion time, size of the fish, stress, pH, osmolarity of the vaccine buffer, the water temperature, and the physical properties (particulate or soluble) of the antigen. Each parameter has to be optimized to improve transfection efficiency and immunogenicity of the DNA vaccine (Nakanishi & Ototake 1997).

Controversial in DNA vaccination

Despite the tremendous amount of promising results yielded by DNA vaccines against fish pathogens, the introduction of foreign DNA into human foods has always been controversial throughout the past decades (Alonso & Leong 2013). There is a possibility that the plasmid DNA could integrate into the host genome, leading to insertion mutations. Nevertheless, plasmid DNA
delivered via intramuscular injection into muscle cells exists as an extra-chromosomal DNA, and its integration into the host genome was reported to be negligible (Kanellos et al. 1999; Ledwith et al. 2000; Nichols et al. 1995). To further mitigate this issue, Alonso et al. (2003) developed a DNA vaccine based on the G gene of IHNV, controlled by the interferon regulatory factor 1A (IRF1A) promoter originated from rainbow trout to prevent its expression in human. In addition, a study by Salonius et al. (2007) also indicated that the potential risk of spontaneous mutations in Atlantic salmon was about 43-folds higher than that caused by DNA vaccination. Furthermore, several studies have suggested that IHNV DNA vaccination of rainbow trout only caused transient histopathological changes in multiple tissues and no long-term histopathological damage was observed (Garver et al. 2005a; Kurath et al. 2006). However, certain regulations such as the Norwegian Gene Technology Act which categorized DNA vaccinated animals as genetically modified organisms (GMO) presents a stringent policy, eventually leading to low public acceptance (Alonso et al. 2011). To eliminate this concern, a self-destructive IHNV DNA vaccine was designed (Alonso et al. 2011). The plasmid DNA contains an inducible fish cell promoter which regulates the expression of G glycoprotein for protective immune responses, and a ZnCl$_2$ inducible promoter which controls the expression of IHNV M protein inducing apoptosis of the transfected cells. Upon successful vaccination, fishes were significantly protected from lethal IHNV challenge, and exposure to ZnCl$_2$ induced apoptosis in fish cells containing the DNA vaccine without causing serious toxicity to the fishes (Alonso et al. 2011). This approach could pave way to the development of safer DNA vaccines with higher public acceptance.

Although many research groups have patented their inventions, including Kurath et al. (1985) (Patent No.: 5354555), Salonius et al. (2007) (Patent No.: EP1553979A1, CA2498896C, CN100339131C, JP4578973B2, ES2288627T3, DK1553979T3, DE60315858T2, PT1553979E,
AT370746T, AU2003277863B2, WO2004026338A1, NO20051840L, HK1082666A1, CY1107784T1), Alonso et al. (2003) & Alonso et al. (2011) (Patent No.: WO/2002/069840), and Xu et al. (2017a) (Patent No.: CN105816871A, CN105861450A), to date, the Apex-IHN® manufactured by Aqua Health Ltd (an affiliate of Novartis) is the only licensed IHNV DNA vaccine in Canada and the United States of America (Grunwald & Ulbert 2015; USDA 2014).

CONCLUSIONS

Up until now, no effective treatment is available for fishes infected by IHNV. Apart from good biosecurity measures, immediate isolation of symptomatic fishes, rapid and accurate diagnosis of IHNV followed by culling of the infected fishes are essential to prevent the virus from spreading to other farm sites, and possibly prevent a farm-wide infection. A combination of both the rapid on-site test (staphylococcal coagglutination test or RT-LAMP) for mass sample screening, and laboratory confirmatory tests (ELISA and RT-PCR) should be performed to achieve a balance between speed and accuracy. Vaccination provides an alternative approach for fish farmers who can afford extra costs to protect their fishes from IHNV infection. As potentially low-cost vaccines such as oral vaccines have yet to show promising results, vaccination may not be applicable to farmers with small capital in the near future. To date, Apex-IHN® is the only licensed DNA vaccine approved in Canada and the United States of America. Despite its outstanding protective efficacy, the use of DNA vaccine is still very limited at the moment. Hence, studies focusing on the safety of DNA vaccines should be encouraged.

REFERENCES
Adams A, and Thompson KD. 2011. Development of diagnostics for aquaculture: challenges and opportunities. Aquaculture Research 42:93-102. doi:10.1111/j.1365-2109.2010.02663.x

Adomako M, St-Hilaire S, Zheng Y, Eley J, Marcum RD, Sealey W, Donahower BC, Lapatra S, and Sheridan PP. 2012. Oral DNA vaccination of rainbow trout, Oncorhynchus mykiss (Walbaum), against infectious haematopoietic necrosis virus using PLGA [Poly(D,L-Lactic-Co-Glycolic Acid)] nanoparticles. J Fish Dis 35:203-214. 10.1111/j.1365-2761.2011.01338.x

Ahmadivand S, Soltani M, Mardani K, Shokrpoo S, Hassanzadeh R, Ahmadpoor M, Rahmati-Holasoo H, and Meshkini S. 2017. Infectious hematopoietic necrosis virus (IHNV) outbreak in farmed rainbow trout in Iran: Viral isolation, pathological findings, molecular confirmation, and genetic analysis. Virus Res 229:17-23. https://doi.org/10.1016/j.virusres.2016.12.013

Alonso M, Chiou PP, and Leong JA. 2011. Development of a suicidal DNA vaccine for infectious hematopoietic necrosis virus (IHNV). Fish Shellfish Immunol 30:815-823. 10.1016/j.fsi.2011.01.001

Alonso M, Johnson M, Simon B, and Leong JA. 2003. A fish specific expression vector containing the interferon regulatory factor 1A (IRF1A) promoter for genetic immunization of fish. Vaccine 21:1591-1600.

Alonso M, and Leong JA. 2013. Licensed DNA Vaccines against Infectious Hematopoietic Necrosis Virus (IHNV). Recent Pat DNA Gene Seq 7:62-65.

Alonso M, Rodriguez S, and Perez-Prieto SI. 1999. Viral coinfection in salmonids: infectious pancreatic necrosis virus interferes with infectious hematopoietic necrosis virus. Arch Virol 144:657-673.

Arnzen JM, Ristow SS, Hesson CP, and Lientz J. 1991. Rapid Fluorescent Antibody Tests for Infectious Hematopoietic Necrosis Virus (IHNV) Utilizing Monoclonal Antibodies to the Nucleoprotein and Glycoprotein. Journal of Aquatic Animal Health 3:109-113. doi:10.1577/1548-8667(1991)003<0109:RFATFI>2.3.CO;2

Ballesteros NA, Alonso M, Saint-Jean SR, and Perez-Prieto SI. 2015. An oral DNA vaccine against infectious haematopoietic necrosis virus (IHNV) encapsulated in alginate microspheres induces dose-dependent immune responses and significant protection in rainbow trout (Oncorhynchus mykiss). Fish Shellfish Immunol 45:877-888. 10.1016/j.fsi.2015.05.045

Barlič-Maganja D, Štrancar M, Hostnik P, Jenčič V, and Grom J. 2002. Comparison of the efficiency and sensitivity of virus isolation and molecular methods for routine diagnosis of infectious haematopoietic necrosis virus and infectious pancreatic necrosis virus. J Fish Dis 25:73-80. doi:10.1046/j.1365-2761.2002.00337.x

Bearzotti M, Delmas B, Lamoureux A, Loustau AM, Chilmonczyk S, and Bremont M. 1999. Fish rhabdovirus cell entry is mediated by fibronectin. J Virol 73:7703-7709.

Biacchesi S, Merour E, Chevret D, Lamoureux A, Bernard J, and Bremont M. 2017. NV Proteins of Fish Novirhabdovirus Recruit Cellular PPM1Bb Protein Phosphatase and Antagonize RIG-I-Mediated IFN Induction. Sci Rep 7:44025. 10.1038/srep44025

Biswas G, and Sakai M. 2014. Loop-mediated isothermal amplification (LAMP) assays for detection and identification of aquaculture pathogens: current state and perspectives. Appl Microbiol Biotechnol 98:2881-2895. 10.1007/s00253-014-5531-z

Bootland LM, and Leong JA. 1992. Staphylococcal coagglutination, a rapid method of identifying infectious hematopoietic necrosis virus. Appl Environ Microbiol 58:6-13.
Engelking HM, and Leong JC. 1989. Glycoprotein from Infectious Hematopoietic Necrosis Virus (IHNV) Induces Protective Immunity against Five IHNV Types. Journal of Aquatic Animal Health 1:291-300. 10.1577/1548-8667(1989)001<0291:GFIHNV>2.3.CO;2

Ferraro B, Morrow MP, Hutnick NA, Shin TH, Lucke CE, and Weiner DB. 2011. Clinical applications of DNA vaccines: current progress. Clin Infect Dis 53:296-302. 10.1093/cid/cir334

Fu S, Qu G, Guo S, Ma L, Zhang N, Zhang S, Gao S, and Shen Z. 2011. Applications of loop-mediated isothermal DNA amplification. Appl Biochem Biotechnol 163:845-850. 10.1007/s12010-010-9088-8

Garver K, and Wade J. 2017. Characterization of infectious hematopoietic necrosis virus (IHNV). DFO Can. Sci. Advis. Sec. Res. Doc. p 2017/2073. vi + 2032 p.

Garver KA, Conway CM, Elliott DG, and Kurath G. 2005a. Analysis of DNA-vaccinated fish reveals viral antigen in muscle, kidney and thymus, and transient histopathologic changes. Mar Biotechnol (NY) 7:540-553. 10.1007/s10126-004-5129-z

Garver KA, LaPatra SE, and Kurath G. 2005b. Efficacy of an infectious hematopoietic necrosis (IHN) virus DNA vaccine in Chinook Oncorhynchus tshawytscha and sockeye O. nerka salmon. Dis Aquat Organ 64:13-22. 10.3354/dao064013

Gonzalez MP, Sanchez X, Ganga MA, Lopez-Lastra M, Jashes M, and Sandino AM. 1997. Detection of the infectious hematopoietic necrosis virus directly from infected fish tissues by dot blot hybridization with a non-radioactive probe. J Virol Methods 65:273-279.

Grunwald T, and Ulbert S. 2015. Improvement of DNA vaccination by adjuvants and sophisticated delivery devices: vaccine-platforms for the battle against infectious diseases. Clinical and experimental vaccine research 4:1-10. 10.7774/cevr.2015.4.1.1

Gunimaladevi I, Kono T, Lapatra SE, and Sakai M. 2005. A loop mediated isothermal amplification (LAMP) method for detection of infectious hematopoietic necrosis virus (IHNV) in rainbow trout (Oncorhynchus mykiss). Arch Virol 150:899-909. 10.1007/s00705-004-0468-7

Holvold LB, Myhr AI, and Dalmo RA. 2014. Strategies and hurdles using DNA vaccines to fish. Vet Res 45:21. 10.1186/1297-9716-45-21

Hølvold LB, Myhr AI, and Dalmo RA. 2014. Strategies and hurdles using DNA vaccines to fish. Veterinary research 45:21-21. 10.1186/1297-9716-45-21

Jenčič V, Hostnik P, Toplak I, and Grilc Fajfar A. 2014. Utility of the viral neutralisation test for detection of antibodies to infectious haematopoietic necrosis virus in rainbow trout (Oncorhynchus mykiss). Bulletin of the European Association of Fish Pathologists 34:175-181.

Jia P, Purcell MK, Pan G, Wang J, Kan S, Liu Y, Zheng X, Shi X, He J, Yu L, Hua Q, Lu T, Lan W, Winton JR, Jin N, and Liu H. 2017. Analytical validation of a reverse transcriptase droplet digital PCR (RT-ddPCR) for quantitative detection of infectious hematopoietic necrosis virus. J Virol Methods 245:73-80. 10.1016/j.jviromet.2017.03.010

Kanellos T, Sylvester ID, Ambali AG, Howard CR, and Russell PH. 1999. The safety and longevity of DNA vaccines for fish. Immunology 96:307-313.

Kibenge FS, and Godoy M. 2016. Aquaculture virology: Academic Press.

Kim CH, Johnson MC, Drennan JD, Simon BE, Thomann E, and Leong JA. 2000. DNA vaccines encoding viral glycoproteins induce nonspecific immunity and Mx protein synthesis in fish. J Virol 74:7048-7054.
Kim CH, Winton JR, and Leong JC. 1994. Neutralization-resistant variants of infectious hematopoietic necrosis virus have altered virulence and tissue tropism. *Journal of Virology* 68:8447-8453.

Kim W-S, Mochizuki M, Nishizawa T, and Yoshimizu M. 2008. Detection of Specific Antibodies against Infectious Hematopoietic Necrosis Virus from Rainbow Trout Sera by ELISA using Two Novirhabdoviruses. *Fish Pathology* 43:112-116. 10.3147/jsfp.43.112.

Knusel R, Bergmann SM, Einer-Jensen K, Casey J, Segner H, and Wahli T. 2007. Virus isolation vs RT-PCR: which method is more successful in detecting VHSV and IHNV in fish tissue sampled under field conditions? *J Fish Dis* 30:559-568. 10.1111/j.1365-2761.2007.00842.x

Kreiss P, Cameron B, Rangara R, Mailhe P, Aguerre-Charriol O, Airiau M, Scherman D, Crouzet J, and Pitard B. 1999. Plasmid DNA size does not affect the physicochemical properties of lipoplexes but modulates gene transfer efficiency. *Nucleic acids research* 27:3792-3798.

Kurath G, Ahern KG, Pearson GD, and Leong JC. 1985. Molecular cloning of the six mRNA species of infectious hematopoietic necrosis virus, a fish rhabdovirus, and gene order determination by R-loop mapping. *J Virol* 53:469-476.

Kurath G, Garver KA, Corbeil S, Elliott DG, Anderson ED, and LaPatra SE. 2006. Protective immunity and lack of histopathological damage two years after DNA vaccination against infectious hematopoietic necrosis virus in trout. *Vaccine* 24:345-354. 10.1016/j.vaccine.2005.07.068

LaPatra SE, Corbeil S, Jones GR, Shewmaker WD, and Kurath G. 2000. The Dose-Dependent Effect on Protection and Humoral Response to a DNA Vaccine against Infectious Hematopoietic Necrosis (IHN) Virus in Subyearling Rainbow Trout. *Journal of Aquatic Animal Health* 12:181-188. 10.1577/1548-8667(2000)012<0181:FATFTR>2.3.CO;2

LaPatra SE, Corbeil S, Jones GR, Shewmaker WD, Lorenzen N, Anderson ED, and Kurath G. 2001. Protection of rainbow trout against infectious hematopoietic necrosis virus four days after specific or semi-specific DNA vaccination. *Vaccine* 19:4011-4019.

LaPatra SE, Evilia C, and Winston V. 2008. Positively selected sites on the surface glycoprotein (G) of infectious hematopoietic necrosis virus. *J Gen Virol* 89:703-708. 10.1099/vir.0.83451-0

LaPatra SE, Lauda KA, and Jones GR. 1994. Antigenic variants of infectious hematopoietic necrosis virus and implications for vaccine development. *Diseases of Aquatic Organisms* 20:119-126. 10.3354/dao020119

Lapatra SE, Lorenzen N, and Kurath G. 2002. A DNA Vaccine Against Infectious Hematopoietic Necrosis Virus. *Fisheries science* 68:1151-1156. 10.2331/fishsci.68.sup2_1151

Lapatra SE, Roberti KA, Rohovec JS, and Fryer JL. 1989. Fluorescent Antibody Test for the Rapid Diagnosis of Infectious Hematopoietic Necrosis. *Journal of Aquatic Animal Health* 1:29-36. doi:10.1577/1548-8667(1989)001<0029:FAFTFR>2.3.CO;2

Ledwith BJ, Manam S, Troilo PJ, Barnum AB, Pauley CJ, Griffths TG, 2nd, Harper LB, Schock HB, Zhang H, Faris JE, Way PA, Beare CM, Bagdon WJ, and Nichols WW. 2000. Plasmid DNA vaccines: assay for integration into host genomic DNA. *Dev Biol (Basel)* 104:33-43.

Leitner WW, Ying H, and Restifo NP. 1999. DNA and RNA-based vaccines: principles, progress and prospects. *Vaccine* 18:765-777.
Liu X, and Collodi P. 2002. Novel form of fibronectin from zebrafish mediates infectious hematopoietic necrosis virus infection. *J Virol* 76:492-498.

Lorenzen E, Einer-Jensen K, Rasmussen JS, Kjaer TE, Collet B, Secombes CJ, and Lorenzen N. 2009. The protective mechanisms induced by a fish rhabdovirus DNA vaccine depend on temperature. *Vaccine* 27:3870-3880. 10.1016/j.vaccine.2009.04.012

Lorenzen N, Lorenzen E, Einer-Jensen K, and LaPatra SE. 2002a. DNA vaccines as a tool for analysing the protective immune response against rhabdoviruses in rainbow trout. *Fish Shellfish Immunol* 12:439-453.

Lorenzen N, Lorenzen E, Einer-Jensen K, and LaPatra SE. 2002b. Immunity induced shortly after DNA vaccination of rainbow trout against rhabdoviruses protects against heterologous virus but not against bacterial pathogens. *Dev Comp Immunol* 26:173-179.

Nakanishi T, and Ototake M. 1997. Antigen uptake and immune responses after immersion vaccination. *Dev Biol Stand* 90:59-68.

Nichol ST, Rowe JE, and Winton JR. 1995. Molecular epizootiology and evolution of the glycoprotein and non-virion protein genes of infectious hematopoietic necrosis virus, a fish rhabdovirus. *Virus Res* 38:159-173.

Nichols WW, Ledwith BJ, Manam SV, and Troilo PJ. 1995. Potential DNA vaccine integration into host cell genome. *Ann N Y Acad Sci* 772:30-39.

Nishizawa T, and Yoshimizu M. 2017. Infectious hematopoietic necrosis. *Fish Pathology* 52:1-5. 10.3147/jsfp.52.1

Nita-Lazar M, Mancini J, Feng C, Gonzalez-Montalban N, Ravindran C, Jackson S, de Las Heras-Sanchez A, Giomarelli B, Ahmed H, Haslam SM, Wu G, Dell A, Ammayappan A, Vakharia VN, and Vasta GR. 2016. The zebrafish galectins Drgal1-L2 and Drgal3-L1 bind in vitro to the infectious hematopoietic necrosis virus (IHNV) glycoprotein and reduce viral adhesion to fish epithelial cells. *Dev Comp Immunol* 55:241-252. 10.1016/j.dci.2015.09.007

Ohse M, Takahashi K, Kadowaki Y, and Kusaoke H. 1995. Effects of plasmid DNA sizes and several other factors on transformation of Bacillus subtilis ISW1214 with plasmid DNA by electroporation. *Biosci Biotechnol Biochem* 59:1433-1437. 10.1271/bbb.59.1433

OIE. 2018. Infectious haematopoietic necrosis. Available at http://www.oie.int/index.php?id=2439&L=0&htmfile=chapitre_ihn.htm (accessed 17 October 2018).

Overturf K, LaPatra S, and Powell M. 2001. Real-time PCR for the detection and quantitative analysis of IHNV in salmonids. *J Fish Dis* 24:325-333. doi:10.1046/j.1365-2761.2001.00296.x

Penaranda MM, Lapata SE, and Kurath G. 2011. Specificity of DNA vaccines against the U and M genogroups of infectious hematopoietic necrosis virus (IHNV) in rainbow trout (Oncorhynchus mykiss). *Fish Shellfish Immunol* 31:43-51. 10.1016/j.fsi.2011.03.003

Pinheiro ACAS, Volpe E, Principi D, Prosperi S, and Ciulli S. 2016. Development of a multiplex RT-PCR assay for simultaneous detection of the major viruses that affect rainbow trout (Oncorhynchus mykiss). *Aquaculture International* 24:115-125. 10.1007/s10499-015-9912-9

Pliaka V, Kyriakopoulou Z, and Markoulatos P. 2012. Risks associated with the use of live-attenuated vaccine poliovirus strains and the strategies for control and eradication of paralytic poliomyelitis. *Expert Rev Vaccines* 11:609-628. 10.1586/erv.12.28
Purcell MK, Thompson RL, Garver KA, Hawley LM, Batt WN, Sprague L, Sampson C, and Winton JR. 2013. Universal reverse-transcriptase real-time PCR for infectious hematopoietic necrosis virus (IHNV). Dis Aquat Organ 106:103-115. 10.3354/dao02644

Ristow SS, Avila Jd, LaPatra SE, and Lauda K. 1993. Detection and characterization of rainbow trout antibody against hematopoietic necrosis virus. Diseases of Aquatic Organisms 15:108-114.

Roberti KA, Rohovec JS, and Winton JR. 1998. Vaccination of Rainbow Trout against Infectious Hematopoietic Necrosis (IHN) by Using Attenuated Mutants Selected by Neutralizing Monoclonal Antibodies. Journal of Aquatic Animal Health 10:328-337. doi:10.1577/1548-8667(1998)010<0328:VORTAI>2.0.CO;2

Romero A, Dios S, Bremont M, Figueras A, and Novoa B. 2011. Interaction of the attenuated recombinant rIHNV-Gvhsv GFP virus with macrophages from rainbow trout (Oncorhynchus mykiss). Vet Immunol Immunopathol 140:119-129. 10.1016/j.vetimm.2010.12.001

Rouxel RN, Tafalla C, Merour E, Leal E, Biacchesi S, and Bremont M. 2016. Attenuated Infectious Hematopoietic Necrosis Virus with Rearranged Gene Order as Potential Vaccine. J Virol 90:10857-10866. 10.1128/jvi.01024-16

Rucker RR. 1953. A contagious disease of salmon possibly of virus origin. Washington,: U. S. Govt. Print. Off.

Saint-Jean SR, and Perez-Prieto SI. 2007. Effects of salmonid fish viruses on Mx gene expression and resistance to single or dual viral infections. Fish Shellfish Immunol 23:390-400. 10.1016/j.fsi.2006.11.012

Salonius K, Simard N, Harland R, and Ulmer JB. 2007. The road to licensure of a DNA vaccine. Curr Opin Investig Drugs 8:635-641.

Schipp M. 2012. Aquatic Animal Diseases Significant to Australia: Identification Field Guide 4th Edition. In: Australian Government Department of Agriculture FaF, Canberra, editor.

Sedegah M, Charoenvit Y, Minh L, Belmonte M, Majam VF, Abot S, Ganeshan H, Kumar S, Bacon DJ, Stowers A, Narum DL, Carucci DJ, and Rogers WO. 2004. Reduced immunogenicity of DNA vaccine plasmids in mixtures. Gene Ther 11:448-456. 10.1038/sj.gt.3302139

Simon BE, and Leong JA. 2002. Gene transfer to fish cells by attenuated invasive Escherichia coli. Mar Biotechnol (NY) 4:303-309. 10.1007/s10126-002-0022-0

Suebsing R, Reon CH, Oh MJ, and Kim JH. 2011a. Reverse transcriptase loop-mediated isothermal amplification assay for infectious hematopoietic necrosis virus in Oncorhynchus keta. Dis Aquat Organ 94:1-8. 10.3354/dao02310

Suebsing R, Kim JH, Kim SR, Park MA, and Oh MJ. 2011b. Detection of viruses in farmed rainbow trout (Oncorhynchus mykiss) in Korea by RT-LAMP assay. J Microbiol 49:741-746. 10.1007/s12275-011-1209-8

Tafalla C, Rodriguez Saint-Jean S, and Perez-Prieto S. 2006. Immunological consequences of the coinfection of brown trout (Salmo trutta) with infectious hematopoietic necrosis virus (IHNV) and infectious pancreatic necrosis virus (IPNV).

Thoulouze MI, Bouguyon E, Carpentier C, and Bremont M. 2004. Essential role of the NV protein of Novirhabdovirus for pathogenicity in rainbow trout. J Virol 78:4098-4107.

Tong G, Wei X, Yin W, Liao X, Yang K, Fang Z, Sun T, Yue Z, and Li X. 2017. Development of a Liquid Chip Technique to Simultaneously Detect Spring Viremia of Carp Virus,
Infectious Hematopoietic Necrosis Virus, and Viral Hemorrhagic Septicemia of Salmonids. *JAOAC Int* 100:159-164. 10.5740/jaoacint.16-0066

Tonheim TC, Bogwald J, and Dalmo RA. 2008. What happens to the DNA vaccine in fish? A review of current knowledge. *Fish Shellfish Immunol* 25:1-18. 10.1016/j.fsi.2008.03.007

Traxler GS, Anderson E, Lapatra SE, Richard J, Shewmaker B, and Kurath G. 1999. Naked DNA vaccination of Atlantic salmon Salmo salar against IHNV. *Dis Aquat Organ* 38:183-190. 10.3354/dao038183

USDA. 2014. Vaccines aquaculture. Technical Evaluation Report Available at https://www.ams.usda.gov/sites/default/files/media/Vaccines%20%28Biologics%29%20report.pdf?fbclid=IwAR19hW2wVHJw3WeiaX86JwZ6tFa6Lnxm-UkvEaCr2iP_AOWI9qtG6ml-ec02019).

van Drunen Littel-van den Hurk S, Loehr BI, and Babiuk LA. 2001. Immunization of livestock with DNA vaccines: current studies and future prospects. *Vaccine* 19:2474-2479.

Wade J. 2017. British Columbia farmed Atlantic Salmon health management practices. *DFO Can Sci Advis Sec Res Doc*:2017/2072. vi + 2055 p.

Wang B, Godillot AP, Madaio MP, Weiner DB, and Williams WV. 1998. Vaccination against pathogenic cells by DNA inoculation. *Curr Top Microbiol Immunol* 226:21-35.

Wang S, Zhang C, Zhang L, Li J, Huang Z, and Lu S. 2008. The relative immunogenicity of DNA vaccines delivered by the intramuscular needle injection, electroporation and gene gun methods. *Vaccine* 26:2100-2110. 10.1016/j.vaccine.2008.02.033

Wingfield WH, Fryer JL, and Pilcher KS. 1969. Properties of the sockeye salmon virus (Oregon strain). *Proc Soc Exp Biol Med* 130:1055-1059.

Winton JR. 1991. Recent advances in detection and control of infectious hematopoietic necrosis virus in aquaculture. *Annual Review of Fish Diseases* 1:83-93.

Woo PTK, Leatherland JF, and Bruno DW. 2011. *Fish diseases and disorders*: CAB International, Wallingford, UK.

Woo PTK, and Cipriano RC. 2017. *Fish Viruses and Bacteria: Pathobiology and Protection*: CAB International, Wallingford, UK.

Xu L, Zhao J, Liu M, Kurath G, Ren G, Lapatra SE, Yin J, Liu H, Feng J, and Lu T. 2017a. A effective DNA vaccine against diverse genotype J infectious hematopoietic necrosis virus strains prevalent in China. *Vaccine* 35:2420-2426. 10.1016/j.vaccine.2017.03.047

Xu L, Zhao J, Liu M, Ren G, Jian F, Yin J, Feng J, Liu H, and Lu T. 2017b. Bivalent DNA vaccine induces significant immune responses against infectious hematopoietic necrosis virus and infectious pancreatic necrosis virus in rainbow trout. *Scientific reports* 7:5700-5700. 10.1038/s41598-017-06143-w

Xu LM, Zhao JZ, Liu M, cao YS, Yin JS, Liu HB, and Tongyan L. 2016. High throughput screening of recombinant antibodies against infectious hematopoietic necrosis virus from a combinatorial antibody library. *Aquaculture* 460:32-36.

Yamamoto T, Batts WN, Arakawa CK, and Winton JR. 1990. Multiplication of Infectious Hematopoietic Necrosis Virus in Rainbow Trout following Immersion Infection: Whole-Body Assay and Immunohistochemistry. *Journal of Aquatic Animal Health* 2:271-280. doi:10.1577/1548-8667(1990)002<0271:MOIHNV>2.3.CO;2
Zhang L, Wang W, and Wang S. 2015. Effect of vaccine administration modality on immunogenicity and efficacy. *Expert Rev Vaccines* 14:1509-1523. 10.1586/14760584.2015.1081067

Figure Legends

Figure 1: Infectious hematopoietic necrosis virus (IHNV) viewed under a transmission electron microscope. Any reuse of this figure is only permitted with a full citation of the original source: (Dixon et al. 2016) (Original Publisher: BioMed Central).

Figure 2: Clinical signs of IHNV infected fishes. The infected fishes often show (A) darkening of the skin, (B) exophthalmia, and (C) petechial haemorrhages around the eyes, gills and fins. Any reuse of this figure is only permitted with a full citation of the original source: (Woo & Cipriano 2017) (Original Publisher: CABI Publishing).
Table 1

Potential antibodies, subunit, attenuated, and inactivated vaccines produced and tested for IHNV.

Binary ethylenimine (BEI); β-propiolactone (BPL); NV: non-structural protein; N: nucleoprotein; G: glycoprotein; RPS: Relative percentage of survival; IN: intranasal delivery; IP: intraperitoneal delivery; IM: intramuscular delivery; TCID$_{50}$: 50% tissue culture infectious dose; LD$_{50}$: Lethal dose that kills 50% of subjects; PFU: plaque-forming unit; IFN: interferon; IHNV: infectious hematopoietic necrosis virus.
Table 1: Potential antibodies, subunit, attenuated, and inactivated vaccines produced and tested for IHNV.

Types of vaccines	Agent of inactivation	Tested subject	Vaccination strategy	Outcome	References	
Purified glycoprotein	Rainbow trout and Kokanee	Immersion immunization, ~50 µg/mL glycoprotein, 30 days	Protection (RPS: 47-83%) against immersion challenge with IHNV (10^3-10^6 TCID₅₀/mL water)	(Engelking & Leong 1989)		
IHNV neutralizing antibodies	Antibodies neutralization	Rainbow trout	IP, passive immunization	Neutralizing activity produced against 1 antigenic variant provided cross protection (RPS: 89-100%) against challenged of IHNV with different antigenic variants (10^4 PFU/mL)	(LaPatra et al. 1994)	
Neutralizing monoclonal antibody-selected attenuated IHNV mutants	Monoclonal antibodies neutralization	Rainbow trout and Kokanee	Immersion immunization, 10^4-10^6 TCID₅₀/mL, 24 h	Protection (RPS: 12%-65%) against wild type virus (10^5 TCID₅₀/mL)	(Roberti et al. 1998)	
Escherichia coli expressed nucleoprotein and	Rainbow trout	Immersion, bacterial lysate (3 mg/mL)	Cross protection (RPS: 38-64%) against 3 strains of IHNV challenge (10^3-10^4 TCID₅₀/mL)	(Oberg et al. 1991)		
Organism	Glycoprotein Fusion	Route	Dose/Concentration	Protection (RPS)	Challenge (TCID₅₀/mL or PFU/mL)	References
--------------------------	------------------------------	----------------	-------------------	------------------	--	-------------------------------------
E. coli expressed glycoprotein	-	Rainbow trout	IP, 50 µg/fish	Induced innate immunity (IFN-1 and IFNγ expression) and protection (RPS: ~70%) against immersion IHNV challenge (10³ TCID₅₀/mL)	(Verjan et al. 2008)	
Caulobacter crescentus expressed glycoprotein fused to S-layer protein	-	Rainbow trout	IP, 10 pmol of recombinant protein	Protection (RPS: 26-34%) against IHNV challenge (10⁴-10⁵ PFU/mL)	(Simon et al. 2001)	
Sf9 cells expressed glycoprotein	-	Rainbow trout	IP, 1.5x10⁵ cells/fish or 50 µL of culture supernatant (sf9 cells cultured at 20°C)	Protection (RPS: 56% for cells and 43% for culture supernatant) against IHNV challenge (10⁵ PFU/mL)	(Cain et al. 1999a; Cain et al. 1999b)	
Aeromonas salmonicida expressed VHSV and IHNV glycoproteins	-	Rainbow trout	Immersion, live or formalin inactivated bacteria (1/10 dilution)	Protection (RPS: 41% for live and 20% for inactivated bacteria) against IHNV challenge	(Noonan et al. 1995)	
E. coli expressed glycoprotein (IHNV-G-GST)	Rainbow trout	IP, 10 µg/fish	Specific antibody against IHNV that can transfer from mother fish to fry and protect (RPS: 50%) against IHNV (10⁶ PFU/mL)	(Oshima et al. 1996)		
--	--------------	---------------	--	---------------------		
E. coli and yeast-derived glycoprotein by yeast surface display technology	Rainbow trout	Oral, 1.6x10⁹ yeast cells	Protection (RPS: 45.8%) against IHNV (10² PFU/mL) via activation of adaptive immunity including upregulation of IgM B cells, helper T cells and cytotoxic T cells; production of specific antibodies; and promotion of antiviral genes expression (IFN-1, Mx-1)	(Zhao et al. 2016; Zhao et al. 2017)		
Removal of non-structural (NV) protein or exchange to viral hemorrhagic septicaemia virus glycoprotein	Rainbow trout	IP, 10⁶ PFU/mL	Protection (RPS: 100%) against IHNV challenge (2x10⁶ PFU/mL); without specific antibody production nor promotion of antiviral IFN/IFN related genes	(Romero et al. 2008)		
Attenuated reverse genetic IHNV Modified nucleoprotein (N) and rainbow trout Immersion, 5x10⁴ PFU/mL	Different modifications of N and G gene sequences resulted in different protection efficacy against IHNV infection. N2G3 strains provided the best protection (RPS: 86%)	(Roussel et al. 2016)				
Mod						
Synthetic peptides	Rainbow trout	IP, 1 mg/fish	Specific antibody against IHNV but inconsistent, no challenge trial	(Emmenegger et al. 1997)		
-------------------	---------------	---------------	---	--------------------------		
P76, P226, P268						
Infectious	Rainbow trout	IP, 10^6.3 TCID₅₀	Protection (RPS: 68.8%) against IHNV (10⁵ TCID₅₀)	(Kim 2009)		
Pancreatic	Rainbow trout	IP, 10^6.3 TCID₅₀	Protection (RPS: 95.2%) against IHNV (10⁵ TCID₅₀)	(Kim 2009)		
Pancreatic	Rainbow trout	IP, 10^6.3 TCID₅₀	Protection (RPS: 95.2%) against IHNV (10⁵ TCID₅₀)	(Kim 2009)		
Polyinosinic polycytidylic acid [Poly(I:C)]	Rainbow trout	IP, 50 µg/fish	Protection (RPS: 95.2%) against IHNV (10⁵ TCID₅₀)	(Kim 2009)		
Binary ethylenimine (BEI), β-propiolactone (BPL), formaldehyde	Rainbow trout	IP, 8x10^{5.82} TCID₅₀	Protection against IP IHNV challenge (10x10^{3.36} LD₅₀); BPL inactivated vaccine (RPS: 91.67%) > PEI inactivated vaccine (RPS: 83.33%) > formaldehyde inactivated vaccine (RPS: 79.17%)	(Tang et al. 2016)		
Inactivated vaccines	Rainbow trout	IP and IM, 10^{7.5} TCID₅₀	BPL inactivated vaccine induced consistent protection against IP IHNV challenge (10⁵ PFU/mL)	(Anderson et al. 2008)		
BEI, BPL, formaldehyde, heat	Rainbow trout	IP and IM, 10^{7.5} TCID₅₀	BPL inactivated vaccine induced consistent protection against IP IHNV challenge (10⁵ PFU/mL)	(Anderson et al. 2008)		
Attenuated IHNV	Tissue culture passage 100x					
----------------	---------------------------					
Rainbow trout	IP, 10^5 (day 0); 10^7 (2 months); 2×10^7 (4 months)	Production of specific antibody (Ristow et al. 2000)				
Rainbow trout	IN and IM, 10^6 PFU/mL	IN provided comparable protection against IM vaccination; live IHNV challenged (5-10,000 PFU/mL) through activation of nasopharynx-associated lymphoid tissue IgT$^+$ B cells without causing damage to central nervous system (LaPatra et al. 2015; Larragoite et al. 2016; Salinas et al. 2015; Tacchi et al. 2014)				

Notes:

2 Binary ethylenimine (BEI); β-propiolactone (BPL); NV: non-structural protein; N: nucleoprotein; G: glycoprotein; RPS: Relative percentage of survival; IN: intranasal delivery; IP: intraperitoneal delivery; IM: intramuscular delivery; TCID$_{50}$: 50% tissue culture infectious dose; LD$_{50}$: Lethal dose that kills 50% of subjects; PFU: plaque-forming unit; IFN: interferon; IHNV: infectious hematopoietic necrosis virus.
Table 2 (on next page)

Potential DNA vaccines produced and tested for IHNV.

P: phosphoprotein; M: matrix protein; NV: non-structural protein; N: nucleoprotein; G: glycoprotein; VP2: viral protein 2; VP3: viral protein 3; RPS: relative percentage of survival; CM: cumulative percentage mortality; IP: intraperitoneal delivery; IM: intramuscular delivery; IB: intrabuccal delivery; GG: gene gun delivery; SS: scarification of skin; TCID$_{50}$: 50% tissue culture infectious dose; IRF1A: interferon regulatory factor 1A; PFU: plaque-forming unit; IHNV: infectious hematopoietic necrosis virus; SHRV: snakehead rhabdovirus; SVCV: spring viremia of carp virus; VHSV: viral hemorrhagic septicemia virus; IPNV: infectious pancreatic necrosis virus.
Table 2: Potential DNA vaccines produced and tested for IHNV.

Immunogens	Tested subject	Vaccination strategy	Outcome	References
DNA encoding G protein of IHNV	Rainbow trout	IM, 100 ng	Protection against IHNV immersion (10^5 PFU/mL) challenges at 4 (RPS: 91.5%), and 7 (RPS: 93.5%) days post-vaccination, and IHNV IP (10^2 PFU in 50 µL) challenges at 28 (RPS: 91.5%), 120 (RPS: 86.5%) and 180 (RPS: 70%) days post-vaccination	(Xu et al. 2017a)
DNA encoding G protein of IHNV	Rainbow trout	IM, 1-100 ng	DNA vaccine dose of 1 to 10 ng conferred significant protections to the immunized fishes against IHNV IP challenge, and higher dose of DNA vaccine (100 ng) improved protection against a broad range of viral strains	(Lapatra et al. 2002)
DNA encoding G protein of IHNV	Rainbow trout	IM, 10 µg	Protection against IHNV immersion (10^5 PFU/mL) challenges at 30 (RPS: 93%), and 70 (RPS: 87%) days post-vaccination	(Kim et al. 2000)
DNA encoding G protein of IHNV	Rainbow trout	IM, 1 µg	Protection against IHNV immersion (10^4 PFU/mL) challenge at 7 days post-vaccination (CM: 2%). When the immunized fishes were challenged with higher dose (10^5 PFU/mL) at 1-2 days post-vaccination, no significant protection	(LaPatra et al. 2001)
protection was observed. However, the immunized fishes were partially protected (CM: ≈41%) when they were challenged at 4 days post-vaccination, and significantly protected when they were challenged at 7 days post-vaccination (CM: 20%)

DNA encoding G protein of IHNV	Rainbow trout	Protection against IHNV immersion (10⁵ PFU/mL) challenge at 18 days post-vaccination (CM: 18%)
IM, 1 μg	IM, IP, IB, GG, SS, 100 ng	(Lorenzen et al. 2002b)
Immersion treatment- water containing 3.4 x 10⁶ DNA-coated magnetic polystyrene beads (10 mg of beads total weight). Concentration of DNA coated per mg		
Fishes immunized via IM, IP and GG route were protected (RPS: 100%, 50.3% and 96.2% respectively) from IHNV immersion (2.8 x 10⁴ PFU/mL) challenges at 29 days post-vaccination. Vaccination via other routes did not induce significant protection against IHNV challenges	(Corbeil et al. 2000a)	
DNA encoding G protein of IHNV	Rainbow trout	IM, 0.001-5 μg
DNA encoding G protein of IHNV	Rainbow trout	IM, 100 ng or 50 μg
DNA encoding G protein of IHNV	Chinook	IM, 0.1 or 1 μg
Protein of IHNV	Species	Protective Effect	Vaccine Dose	Ref.
G protein	sockeye salmon, sockeye salmon, kokanee salmon, rainbow trout	sockeye/kokanee salmon against IHNV immersion or IP challenge (RPS: 23-86%) under variety of conditions but immunized rainbow trout was better protected (RPS: 100%)		2005b
DNA encoding G protein of IHNV	Rainbow trout	DNA vaccine dose of 1 µg and above conferred complete protection to immunized fishes against IHNV IP (10^6 PFU per fish) challenge at 6 weeks post-vaccination	IM, 0.1-25 µg	LaPatra et al. 2000
DNA encoding G protein of IHNV	Atlantic salmon, Rainbow trout	Complete protection (RPS: 90-100%) against IHNV cohabitation (healthy fishes cohabitated with fishes injected with 4.9 X 10^3 PFU per fish) and immersion (4.6 X 10^3 PFU challenges at 8 weeks post-vaccination. Passive immunization of rainbow trout with immune serum from the immunized Atlantic salmon conferred significant protection against IHNV immersion challenge	IM, 25 µg	Traxler et al. 1999
DNA encoding G protein of IHNV	Rainbow trout	Complete protection against IHNV IP (10^3-10^8 PFU per fish) challenges in vaccinated fishes at 3 months post-	IM, 0.1 µg	Kurath et al. 2006
DNA encoding G protein of IHNV	Rainbow trout	IM, 5 μg	Expression of G protein was controlled by IRF1A promoter of fish origin, preventing its expression in human. Significant protection (CM: 19.4%) against IHNV immersion (10^5 PFU/mL) challenge in immunized fishes at 30 days post-vaccination	(Alonso et al. 2003)
DNA encoding G and M proteins of IHNV	Rainbow trout	IM, 1.5-5 μg	Fishes immunized with DNA encoding G (for protective immunity) and M proteins (apoptotic) of IHNV at various doses (1.5-5 μg) were significantly protected against IHNV immersion (10^5 PFU/mL) challenges. Vaccinated fishes that survived the challenge and received the ZnCl2 treatment at 30 days post-challenge demonstrated reduced G protein expression.	(Alonso et al. 2011)
Poly (D, L-lactic-co-glycolic acid) (PLGA) nanoparticles	Rainbow trout	Oral route, 22 or 43 μg of DNA	Fishes immunized with low dose or high dose of nanoparticle containing the DNA were slightly protected against IHNV challenges at 6 and 10 weeks post-vaccination.	(Adomako et al. 2012)
Alginate microsphere encapsulating DNA encoding G protein of IHNV	Immunization with	Alginate microsphere protected the encapsulated DNA vaccine from degradation in fish stomach and expression of G protein was detected in multiple tissue including gills, spleen, kidney and intestinal tissues following vaccination.		
---	---	---		
Rainbow trout	i. 10 μg DNA, ii. 10 μg DNA then boosted once with same dose, iii. 25 μg DNA, iv. 25 μg DNA then boosted with same dose or v. 100 μg via oral route.	Expression of the genes related to innate and adaptive immune response increase with oral vaccine dose. Fishes immunized with 10, 20 (10 +10), 25, 50 (25+25) or 100 μg DNA were partially protected from IHNV immersion (10^5 TCID₅₀/mL) challenges at 30 days post-vaccination with RPS of 21, 30, 30, 45 and 56% respectively.		
DNA encoding G protein of U or M genotype of IHNV	Rainbow trout	Fishes (1.2, 1.4 or 4 g) immunized with DNA encoding G protein of IHNV of M genotype were protected from homologous immersion (2 x 10^5 PFU/mL) challenges at 7 (RPS: 100%) and 28 (RPS: 88-100%) days post-vaccination. Similar protection level was observed against intraperitoneal (5 x 10^6 PFU/mL in 50 µL) IHNV (U genotype) challenge.		
IM, 1 μg		(Ballesteros et al. 2015)		
		(Penaranda et al. 2011)		
Fishes immunized with DNA encoding G protein of IHNV of U genotype were protected from homologous intraperitoneal (5 x 10⁶ PFU/mL in 50 µL) challenges at 7 (RPS: 86%) and 28 (RPS: 96%) days post-vaccination. Similar high protection level against immersion (2 x 10⁵ PFU/mL) IHNV (M genotype) challenge was observed in bigger fishes (4 g) but not juvenile fishes (1.2 g).

DNA encoding N protein of IHNV	Rainbow trout, IM, 1 µg	Partial protection against IHNV immersion (10⁴ PFU/mL) challenge at 28 days post-vaccination (CM: ≈38%). When the immunized fishes were challenged with higher dose (10⁵ PFU/mL) at time points shorter than 1 week, no significant protection was observed.	(LaPatra et al. 2001)
DNA encoding the N, P, M, NV or G protein of IHNV	Rainbow trout, IM, 1, 5 or 10 µg for rainbow trout, 25 µg for sockeye salmon.	Rainbow trout fry immunized with DNA encoding G protein at all doses were protected from immersion (10⁵ PFU/mL) IHNV challenge (CM: 0-2%) at 4 to 6 weeks post-vaccination. Protection against IHNV reduced when these fishes were challenged with IHNV (IP, 10⁶ PFU/mL in 100 µL) at 58 (CM: 31%) and 80 (CM: 49%) days-vaccination. DNA encoding other proteins induced no	(Corbeil et al. 1999)
Passive immunization with immune sera from sockeye salmon immunized with DNA encoding G protein protected rainbow trout against IHNV immersion (10⁵ PFU/mL) challenge (RPS: 100%)

Two immunogens,	Co-administration of two immunogens via IM route, 30 μg each, boosted twice with same doses at 23 and 38 days after primary injection	Elicited IHNV and VHSV specific neutralizing antibodies following immunization. Activated Mx-gene and MHC class II expression at the site of injection. Immune responses induced in fishes by co-administration of the two immunogens were similar to those immunized separately
i. DNA encoding G protein of IHNV and ii. DNA encoding G protein VHSV	Rainbow trout	(Boudinot et al. 1998)
Two immunogens,	Co-administration of two immunogens via IM route, 1 μg each	Protection against IHNV and VHSV immersion (1 × 10⁴ TCID₅₀/mL) challenges at 80 days post-vaccination (CM: 18%)
i. DNA encoding G protein of IHNV and ii. DNA encoding G protein VHSV	Rainbow trout	(Einer-Jensen et al. 2009)
DNA encoding G	IM, 10 μg	Protection against early IHNV immersion (10⁵ PFU/mL)
(Kim et al. 2000)		
DNA encoding G protein of SHRV	trout	Protection against early IHNV immersion (10^5 PFU/mL) challenge at 30 (RPS: 98%) days post-vaccination but not late immersion challenge at 70 (RPS: 26%) days post-vaccination
DNA encoding G protein of SVCV	Rainbow trout IM, 10 μg	Protection against early IHNV immersion (10^5 PFU/mL) challenge at 30 (RPS: 95%) days post-vaccination but not late immersion challenge at 70 (RPS: 17%) days post-vaccination (Kim et al. 2000)
DNA encoding VP2 of IPNV	BF-2 cells transfected with plasmid encoding VP2 induces an antiviral state against IPNV and IHNV infection (de Las Heras et al. 2009)	
DNA encoding G protein of VHSV	Rainbow trout IM, 1 μg	Protection against IHNV immersion (10^4 PFU/mL) challenges at 4, 7 and 14 (CM: 0-10%) days post-vaccination but not immersion challenge at 28 (CM: ≈69%) days post-vaccination (LaPatra et al. 2001)
DNA encoding G protein of VHSV	Rainbow trout IM, 1 μg	Protection against IHNV immersion (10^5 PFU/mL) challenge at 18 days post-vaccination (CM: 13%) (Lorenzen et al. 2002b)
DNA encoding G protein of rabies virus	Rainbow trout IM, 1 μg	No protection against IHNV immersion (10^4 PFU/mL) challenge (LaPatra et al. 2001)
DNA encoding G protein of IHNV	Rainbow trout IM, 1 μg	Protection against IHNV IP (10^2 PFU/mL in 100 μL) challenges at 30 (RPS: 93.3%), and 60 (RPS: 89.4%) days (Xu et al. 2017b)
and VP2-VP3 gene post-vaccination. Protection against simultaneous IHNV and IPNV (10^2 and 10^6 PFU/mL in 100 µL) challenges at 30 (RPS: 86.7%), and 60 (RPS: 92.3%) days post-vaccination.

Notes:

1. P: phosphoprotein; M: matrix protein; NV: non-structural protein; N: nucleoprotein; G: glycoprotein; VP2: viral protein 2; VP3: viral protein 3; RPS: relative percentage of survival; CM: cumulative percentage mortality; IP: intraperitoneal delivery; IM: intramuscular delivery; IB: intrabuccal delivery; GG: gene gun delivery; SS: scarification of skin; TCID_{50}: 50% tissue culture infectious dose; IRF1A: interferon regulatory factor 1A; PFU: plaque-forming unit; IHNV: infectious hematopoietic necrosis virus; SHRV: snakehead rhabdovirus; SVCV: spring viremia of carp virus; VHSV: viral hemorrhagic septicemia virus; IPNV: infectious pancreatic necrosis virus.
Figure 1

Infectious hematopoietic necrosis virus (IHNV) viewed under a transmission electron microscope.

Any reuse of this figure is only permitted with a full citation of the original source: (Dixon et al. 2016) (Original Publisher: BioMed Central).

*Note: Auto Gamma Correction was used for the image. This only affects the reviewing manuscript. See original source image if needed for review.
Figure 2

Clinical signs of IHNV infected fishes.

The infected fishes often show (A) darkening of the skin, (B) exophthalmia, and (C) petechial haemorrhages around the eyes, gills and fins. Any reuse of this figure is only permitted with a full citation of the original source: (Woo & Cipriano 2017) (Original Publisher: CABI Publishing).