新冠疫情防控期间西安市人口分布演变及影响因素探测——基于多源时空大数据视角

赵凯旭1,2, 张帅兵3, 黄晓军1*, 李恩龙4, 武凤奇5

(1 西北大学 城市与环境学院, 陕西 西安 710127; 2 北京清华同衡规划设计研究院有限公司 西北分公司, 陕西 西安 710000; 3 东莞理工学院城市学院 城建与环境学院, 广东 东莞 523419; 4 兰州大学 资源环境学院, 甘肃 兰州 730000; 5 西北大学 研究生院, 陕西 西安 710127)

摘要: 新冠疫情的“超常规”管控举措影响了城市人口分布, 研究其演变规律有助于疫情防控期间城市人口活动规律认知、聚集趋势判断, 以及指导精细化管控分区划分和场所差异化管控。基于百度热力和 POI 数据, 采用人口密度指数、ESDA 及地理探测器, 分析了西安市在 2020 年 2-4 月疫情防控期间的人口分布变化及其影响因素。结果表明: (1) 西安市人口密度值及人口密度波动幅度会因一环向郊外递减, 且人口数量及人口流动性逐渐恢复。与非疫情阶段相比, 居民的日常活动周期未发生较大变化, 但受复工后企业错峰午休以及居民减少外出影响, 活动趋势在局部表现不同。 (2) 西安市高、较高密度区逐渐增加, 低、低密度区持续减少, 而随着疫情防控放开及复工复产推进, 城市人口分布逐渐由“中心—外围”转变为“中心—外围、开发区延伸”的空间结构。同时, 西安市人口分布呈现明显的高—低—高值聚集以及内热外冷圆圈式特征, 且随着人口活力的恢复, 这种特征越来越显著。在此基础上, 进一步总结出防控导向型、防控—就业需求导向型、就业—消费需求导向型、购物—休闲需求导向型四种人口活动模式的特征。(3) 西安市 7 类设施对人口分布的影响强度为: 住宅小区 > 餐饮设施 > 生活服务 > 医疗机构 > 购物服务 > 办公场所 > 公园广场 > 住宅小区, 餐饮设施、生活服务、医疗机构的影响强度逐渐减弱, 购物服务、办公场所、公园广场的影响强度逐渐增强, 提出疫情管控影响下城市配适设施与人口分布的耦合关系变化是影响西安市人口分布由相对分散变为更加聚集的重要原因。

关键词: 新冠疫情; 人口分布; 影响因素; 时空大数据; 西安市

Research on Evolution of Population Distribution and Influencing Factors in Xi’an During the COVID-19 Epidemic Control Period——Based on a Perspective of Multi-source Spatio-Temporal Big Data

ZHAO Kai-xu1,2, ZHANG Shuai-bing3, HUANG Xiao-jun1*, LI En-long4, WU Feng-qi5

*本文通讯作者

(1) 收稿日期: 2020-12-23; 修订日期: 2021-05-26

基金项目: 国家自然科学基金面上项目 (41971178); 广东省社会科学青年创新人才基金 (2019WQNCX151)。

作者简介: 赵凯旭 (1990—), 男, 山西吕梁人, 博士生, 主要从事城市与区域规划研究。

140
Abstract “Extraordinary” control measures of COVID–19 affect a city’s population distribution, studying its patterns helps to understand the law of urban population activities, judge the aggregation tendency, determine precise control zoning and strength in different places during the control period. Based on Baidu Heat Map and POI data, population density index, ESDA and geographic detector are used to analyze the population distribution evolution and influencing factors of Xi’an from February to April in 2020. The results show: (1) The value and fluctuation of population density in Xi’an gradually decrease from the first ring to the suburb, and population size and mobility are gradually recovering. Compared with the non–epidemic period, residents’ daily activity has not changed significantly. However, due to the impact of shifted lunch – break time by enterprises and reduction of outdoor activities, human activity characteristics are different at some parts. (2) The higher – and high – density areas of Xi’an gradually increase, and the low – and lower – density areas continue to decrease. With release of control and resumption of work, the spatial structure of urban population gradually changes from “center – periphery” to “center – periphery, extension in industrial zones”. Meanwhile, the spatial distribution presents an obvious characteristic of high – and low – value clusters, as well as a layered structure of inner heat and outer cold, which is becoming more and more obvious along with the restoration of human vitality. On these bases, four activity modes are proposed, which are control – oriented, control and employment – oriented, employment and consumption – oriented, shopping and leisure – oriented. (3) The intensity of driving factors is: residential communities > catering facilities > living service facilities > healthy facilities > commercial facilities > office places > green spaces and squares, the impacts on residential communities, catering facilities, living services and healthy facilities are gradually weakened, and the impacts of commercial facilities, office places and green spaces and squares are gradually increased. And the change of coupling relationship between urban facilities and population distribution during the control period is an important reason that affects the population distribution of Xi’an from scattered to aggregated.

Key words: COVID – 19 Epidemic; Population Distribution; Influencing Factors; Spatio – temporal Big Data; Xi’an

1 引言

2019 年底爆发的新型冠状病毒肺炎疫情(以下简称新冠疫情或疫情)在全国乃至全世界迅速蔓延, 其表现出的高传染性、高病率对群众安全和社会稳定造成了严重威胁。理论上, 人口分布与疾病传播密切相关, 已有研究表明人口密集的环境更有利于新冠疫情传播①, 而人口流动与新冠疫情感染人数也呈现较强相关性①。事实上, 在新冠疫情爆发期, 我国多数城市即刻采取停工停产停学及居家隔离等管控措施控制人
口集聚及人口流动，以达到疫情管控目的。正因如此，与平时相比，新冠疫情管控期间的人口分布规律更值得关注和讨论。在“超常规”疫情管控举措之下，城市内部人口分布表现出哪些时空特征？其影响因素有哪些？研究这些有利于疫情管控期间人口活动规律认知，聚集趋势判断及更精准的管控分区划分、场所管控，对于可能再次复发的新冠疫情的管控及类似社会危机的管控具有重要参考意义。已有成果研究了疫情管控期间全国尺度的人口迁徙特征[2]、人口迁徙对疫情扩散的影响[3-6]、疫情管控对人口流动的影响[7]，但对疫情管控期内城市内部人口分布规律的研究较少，本文尝试对此做一些补充。

近年来，时空大数据成为城市管理研究的重要支撑。研究人员通过百度搜索数据研究了北京市六环内的城市活力[8]、深圳市的电动汽车使用情况[9]，通过百度搜索和 POI 数据结合研究了西安市的人口分布特征[10]。北京市六环内的人口昼夜流动及人口聚集[11]，通过手机信令数据绘制了葡萄牙和法国的人口密度地图[12]，研究了北京市朝阳区的人口分布时空格子[13]、北京市的和上海市的人口分布特征[14]、北京市和上海市的人口分布特征[15-16]等。本文在此基础上尝试进一步拓展百度热力和 POI 数据在城市人口分布动态演变研究中的应用。

基于此，本文聚焦新冠疫情管控期间的人口分布规律，以西安市主城区为例，以百度热力和 POI 数据为切入点，基于人口密度指数模型及 ESDA 模型，地理探测器模型，尝试从城市尺度对人口分布演变及影响因素做深入研究，以期拓展城市人口研究领域及对类似社会危机下的城市管控管理提供参考。

2 研究区域、数据获取与研究方法

2.1 研究区域

西安市系我国西北地区典型大城市，2018 年末市域常住人口 1000.37 万，主城区常住人口 592.6 万。

西安市自 2020 年 2 月 1 日开始执行严格的疫情管控，直到 3 月 6 日疫情逐步稳定后，管控才逐步放开。结合新冠疫情发展及疫情管控措施，西安市新冠疫情大致分为三个阶段：1 月 20 日—2 月 23 日处于疫情扩散阶段，实施严格管控和集中救治阶段；2 月 24 日—3 月 28 日处于高发风险得到控制，统筹推进科学管控和有序复工复产阶段；4 月初至 6 月上旬处于本地传播基本阻断，境外输入风险降低，生产生活逐步恢复正常阶段，下文分别用封控管控阶段、解封管控阶段、放松管控阶段代表西安市新冠肺炎疫情管控的三个阶段，并分析此三阶段的人口分布演变规律(图 1)。考虑到 4 月下旬开始，西安市除学校和娱乐场所尚未全部开放外，大部分社会经济活动恢复正常常态，人口分布相对稳定，因此第三阶段后不再做阶段细分①。同时，考虑数据获取难，最终选取研究区域为西安市三环以内，范围具体为：碑林区、雁塔区、未央区、灞桥区、长安区的建成区，并根据城市主干路网将其分划为 201 个地块作为研究单元(图 2)。

2.2 数据获取

采用 python 语言编写的程序采集研究区域三个阶段内(2 月 3 日-3 月 11 日和周末(2 月 16 日-3 月 15 日-4 月 11 日)7:00-24:00 每小时间隔的百度热力图，同时采集非疫情阶段内(2019 年 4 月 25 日和周末(2019 年 4 月 28 日) 相应时间段百度热力图作对照，共获得 8 天共 144 幅热力地图②。同时，调用百度热度 API 采集西安市 2019 年 4 月 POI (points of interest) 设施数据，包括 14 大类 96 子类共计 446182 条信息点，每条数据包含名称、地点、类型、经纬度等。百度热力和 POI 数据作为基础数据，统一置入 Arcgis 10.2 平台并配准至 CGCS2000_3_Degree_GK_Zone_36 区域坐标系。

2.3 研究方法

2.3.1 人口密度指数模型

借鉴 Li[10]、郭俊[11]等的研究构建人口密度指数模型以反映相对人口密度，用于表征人口分布。百度热力数据共包含 4 个通道，其中通道 4 是由 256 级灰度值表示的 Alpha 通道，数值可反映热力值大小，用于提

①4 月 30 日后，西安市疫情发展趋于稳定，累计治愈 117 例，累计死亡 3 例，现有确诊 0 例，且一直保持至今。
②百度热力图是百度公司于 2011 年开发的一款以百度产品、手机用户地理位置数据为基础的大数据可视化产品，当智能手机访问百度产品时，位置信息被记录并形成位置足迹，可用于反映该地区人口的集聚度。该数据每 15 分钟更新一次，具有较强时效性。另外，本文研究时间段不包含任何极端天气，避免了极端天气对居民活动的影响，具有较好代表性。
取某一区域的人口热力信息。考虑到网民具有不断“上线”和“下线”的动态特性，提取到的热力信息在同一天不同时间段具有较大波动性，且不能进行不同时间段的比较[17]，因此采用某一时间段下某一地块热力值与整体区域热力值的比值以消除这一影响，而后除以该地块用地面积以计算人口密度指数。公式如下：

\[
\rho_i = \left(\frac{Q_i}{\sum_{j=1}^{K} Q_j \times 10^8} \right) / S_i
\] \hspace{1cm} (1)

式中, \(\rho_i \) 为 i 地块人口密度指数, \(Q_i \) 代表 t 时刻 i 地块 Alpha 通道百度热力值, \(\sum_{j=1}^{K} Q_j \) 为 t 时刻所有地块 Alpha 通道百度热力值之和, \(i, j = 1, 2, 3, \cdots, k \) 为研究区域地块样本总数, \(S_i \) 为 i 地块用地面积, 单位为平方米。\(\rho_i \) 无量纲，值越大，即人口密度指数越高，人口分布越多，反之则越小。

2.3.2 探索性数据分析模型

探索性空间数据分析 (ESDA) 主要是基于空间权重矩阵探索空间数据的分布规律以反映地理现象的空间依赖性或异质性[18]，本文应用全局系数 Moran’s I 和局部热点系数 \(G^* \) 研究人口分布整体空间聚集和局部空间聚集。

(1) 全局系数 Moran’s I。全局 Moran’s I 系数能反映人口分布整体的空间关联或空间差异。公式如下：

\[
l = \frac{n}{S_0} \times \left(\sum_{i=1}^{n} \sum_{j=1}^{n} w_{ij} (x_i - \bar{x})(x_j - \bar{x}) \right) / \left(\sum_{i=1}^{n} (x_i - \bar{x})^2 \right) \]

式中, \(l \) 为全局 Moran’s I, \(S_0 \) 的值为 \(\sum_{i=1}^{n} \sum_{j=1}^{n} w_{ij} \), \(x_i \) 和 \(x_j \) 分别是 i 地区和 j 地区的人口密度值, \(\bar{x} \) 为研究区人口密度平均值, \(w_{ij} \) 为空间权重矩阵, \(i, j = 1, 2, 3, \cdots, n \) 为地块样本总数。Moran’s I 取值 [-1, 1], 正值表示空间正相关, 负值表示空间负相关, 绝对值越大相关性越强。零值表示空间不相关, 呈随机分布。

(2) 局部热点系数 \(G^* \)。\(G^* \) 系数能直观反映高值或低值要素在空间上发生聚类的位置。公式如下：

\[
G^*_i = \left[\sum_{j=1}^{n} w_{ij} x_j \right] / \sum_{i=1}^{n} x_i \]

式中, \(G^*_i \) 为局部热点系数值, \(x_i \) 为 i 地块的人口密度值, \(i = 1, 2, 3, \cdots, n \) 为地块样本总数, \(w_{ij} \) 为地区 \(i \) 和 \(j \) 之间的空间权重。相邻为 1, 不相邻为 0。当 \(G^*_i \) 值显著为正时, 表明 i 地块为人口密度高值聚集区, 即热点区, 反之则为冷点区。
2.3.3 地理探测器模型

地理探测器(GeoDetector) 用于探测某种现象的空间异质性及其背后的驱动因子，既可以用于检验单一变量的空间分异性，也可以通过检验两个变量空间分布的一致性来检测两个变量之间可能的因果关系[20]，包含因子探测、交互作用探测、风险探测和生态探测四个部分。本文选用因子探测对西安市人口分布成因进行分析，公式如下:

\[q = 1 - \frac{1}{N \sigma^2} \sum_{h=1}^{L} N_h \sigma_h^2 \] \hspace{1cm} (4)

式中，q 衡量某一驱动因素对人口分布的驱动力大小，N 为地块样本总数，\(h = 1, 2, 3, \ldots, L \) 为分区或分层数，\(\sigma^2 \) 为整个研究区域人口分布总离散方差，\(\sigma_h^2 \) 是第h 分区或分层的人口分布方差。q 取值 \([0, 1]\)，即可解释(100×q%) 的因变量，值越大说明驱动因素对人口分布驱动力越强，反之则越小。

3 西安市人口分布时空演变特征

3.1 西安市人口分布时间变化特征

图3 为人口密度时间变化曲线。非疫情阶段(2019年4月) 作为对照组，下同。封闭管控阶段，西安市春节返乡人员尚未返回，人口数量较少，密度较低。加上严格的管控措施，居民日常活动被约束在较小范围内，流动性较差，因此人口密度及波幅度较小。解封管控阶段，部分企业复工及部分商店开放，人口数量及流动性有所恢复，人口密度及波幅度有小幅增加。放松管控阶段，除学校、娱乐场所外，大部分区域已经开放，人口数量及流动性进一步恢复，人口密度及波幅度也进一步变大，但仍未恢复到非疫情阶段的水平。同时，西安市是典型的单中心城市[20]，一二级区域的设施配套比三环及郊外更加丰富。人口聚集能力强，人口密度较高，而随着疫情管控放开，一二级区域的人口密度及波幅度也进一步变大。反映出在疫情管控三个阶段，西安市人口数量及流动性逐渐恢复，集中体现在一二级区域人口数量及流动性的持续恢复。根据疫情传播与人口聚集性、流动性强相关性可以推测，该区域疫情感染风险同样变大，防控要求也相应变高。

![图3 西安市人口分布时间变化特征](image)

①2020年春节后约有320万务工人员待返西。来源：西安市新冠肺炎疫情联防联控工作发布会，2020年2月11日。
此外，疫情管控期间，单日人口密度基本呈现三环及以内区域从早到晚“低—高—低”变化，城外“高—低—高”变化的特征，且与非疫情阶段的单日人口密度变动趋势相似，说明疫情管控期间，居民的日常活动周期并未发生较大变化。不同的是，相比非疫情阶段，在解封管控阶段和放松管控阶段，一环区域的夜间人口密度小高峰出现的时间点或提前或延迟，下班后的夜间人口密度也较低，这应该是受复工后企业错峰午休以及居民出于防控需要夜间减少外出所导致。

3.2 西安市人口分布空间变化特征

图4 为日均人口密度的空间变化图，通过Arcgis 10.2自然断点法统一为高密度区、较高密度区、较低密度区、低密度区[1]，括号内数字为地块数。三个阶段，高、较高密度区分布在城市内部，数量逐渐增加，较低、低密度区分布在城市外围，数量持续减少。封闭管控阶段，高、较高密度区主要分布在一环区域，经开区与小寨—电视塔片区，较低、低密度区主要分布在三环及郊外，呈现出十分明显的“中心—外围”分布结构。而随着疫情管控放开及复工复产的推进，到解封管控阶段和放松管控阶段，高、较高密度区在高新区、曲江新区、航天基地、城北片区、城东片区向着西南、东南、城北、城东继续扩张，而较低、低密度区则在三环及郊外进一步减少，进而呈现“中心—外围、开发区延伸”的分布结构，且局内的人口分布特征已经趋于常态。可以看出，西安市近郊的开发区与城东片区是疫情管控放开后，除一环区域以外的人口密度主要增长区域，疫情引入风险同样相对较高[2]。

3.3 西安市人口分布空间聚集特征

3.3.1 整体聚集特征

表1 为日平均人口密度的全局Moran’s I，由GeoDa 1.12计算完成，全部通过99%置信水平检验。周内全局Moran’s I由闭封管控阶段的0.623持续增长至放松管控阶段的0.692，周末则由0.598持续增长至0.667，反映了疫情管控期间西安市人口密度呈现显著的高值聚集或低值聚集，周末比周中聚集性更明显，且三个阶段这种聚集特征持续增强，但仍旧弱于非疫情阶段。

①采用自然断点法将2月16日人口密度分为四级并确定分级区间，以此为标准划分其他日期。
②事实上，西安市约有62%的疫情感染小区分布在上述区域。
表 1 新冠疫情管控期间西安市人口分布全局 Moran’s I

日期	Moran’s I	日期	Moran’s I
2 月 3 日 (周一)	0.622 ***	2 月 16 日 (周一)	0.598 ***
3 月 11 日 (周三)	0.662 ***	3 月 15 日 (周三)	0.630 ***
4 月 16 日 (周四)	0.691 ***	4 月 11 日 (周六)	0.667 ***
4 月 25 日 (周四, 非)	0.728 ***	4 月 28 日 (周日, 非)	0.710 ***

注：*，**和***分别表示在 90%、95% 和 99% 置信水平下显著。未标注则在统计意义上不显著。标注 (非) 为 2019 年非疫情期间数据分析结果，作为对照组与疫情管控阶段做对比。(1)

阶段，城市的分布。在周，次热点区主要分布在市区，次热点，未热点区主要分布在市区及郊区，呈现出明显的内热外冷模式。同时，人口活动恢复，人口聚集趋势逐渐加强，且这种特征越来越显著。同时，到解封管控阶段和放松管控阶段，热点，次热点区在逐步向新区、曲江新区扩张。另外，比较放松管控阶段与非疫情阶段，热点区已趋近恢复常态，次热点区在曲江新区、城北区、城东区仍存在一定差异，说明即使在放松管控阶段，不论是出于主动回避还是被动隔离，人群活动的聚集行为仍未恢复常态。

3.3.2 局部聚集特征

图 5 为日平均人口密度空间热、冷点图，通过 Arcgis 10.2 自然断点法将其统一划分为热点区、次热点区、冷点区，冷点区(1)，括号内数字为地块数量。三个阶段，城市的分布。在周，次热点区主要分布在市区，次热点，未热点区主要分布在市区及郊区，呈现出明显的内热外冷模式。同时，人口活动恢复，人口聚集趋势逐渐加强，且这种特征越来越显著。同时，到解封管控阶段和放松管控阶段，热点，次热点区在逐步向新区、曲江新区扩张。另外，比较放松管控阶段与非疫情阶段，热点区已趋近恢复常态，次热点区在曲江新区、城北区、城东区仍存在一定差异，说明即使在放松管控阶段，不论是出于主动回避还是被动隔离，人群活动的聚集行为仍未恢复常态。

值得强调的是，人口密度热、冷点聚集反映了不同阶段的人口空间聚集特征。可以推测，热点聚集区疫情防控风险相对较大，次热点区疫情防控风险相对较小。次热点、次冷点区则分别介于二者之间。对于城市，疫情防控分区而言，以此作为不同阶段疫情精准化防控分区参考依据之一。

3.4 疫情管控期间人口活动模式

基于前文分析可以发现，在疫情管控的不同阶段，人口活动的时空分布呈现出不同的特征。其主要原因可能是由于不同的管控措施引起了人口活动模式发生改变。因此，本文结合日常生活方式相关理论(21)和部分学者的研究(22)，进一步将西安市疫情管控期间与非疫情阶段人口活动模式分为防控导向型、防

(1) 采用自然断点法将 2 月 16 日人口密度值分为四级并确定分级标准，以此为标准划分其他日期。
赵凯旭等：新冠疫情管控期间西安市人口分布演变及影响因素探究

控—就业需求导向型、就业—消费需求导向型、购物—休闲需求导向型四种类型，并分别总结其人口活动特征与分布特征（表2）。值得强调的是，“超常规”的疫情防控表现出较强约束力，在其影响下，不同类型的人口活动模式之间呈现出较大的人口分布差异。同一种类内部的人口分布却呈现出较大相似性，这一定程度上解释了三个阶段的周末人口分布存在一定相似性的现象。

表2 新冠疫情管控期间与非疫情阶段人口活动模式

序号	活动模式	典型阶段	人口活动特征	
1	防控导向型	封闭管控阶段中，周末，解控阶段和放管管控阶段的周末	居民活动以疫情和防控为主，居住时间减少，活动范围较小，流动性较低	低聚集性，人口分布相对分散
2	防控—就业需求导向型	封控管控阶段和放管管控阶段的周末	居民活动以疫情和防控和就业需求驱动为主，且就业需求占比越来越大，活动范围较大，流动性较高	较高聚集性，人口逐渐向城市中心区和开发区域聚集
3	就业—消费需求导向型	非疫情阶段的周末	居民活动以就业、就学、消费需求驱动为主，活动范围和流动性不受限制	高聚集性，人口向城市中心区和开发区域聚集
4	购物—休闲需求导向型	非疫情阶段的周末	居民活动以购物、休闲、娱乐需求驱动为主，活动范围和流动性不受限制	高聚集性，人口向城市中心区和旅游区聚集

4 影响因素探测识别

4.1 影响因子设定

人口分布是居民日常活动的空间特征，体现了时间中不同的功能场所对居民活动的吸引[23]。在疫情防控期间，城市居民的居住、工作、就医、就学、就餐、休闲等需求使得需要通过相应的功能空间予以满足。相对的吸引作用依然存在。但受疫情防控影响，不同阶段的人口活力和配套设施的开放性会发生变化，进而对人口分布的影响作用也发生变化，本文重点对此进行分析。考虑到4月16日之前西安市教育、文化、娱乐场所多未开放，所以重点对住宅小区（x1）、餐饮设施（x2）、生活服务（x3）、医疗机构（x4）、购物场所（x5）、公园广场（x7）7类设施数据清洗后进行分析（表3）。在数据清洗中，考虑到居民日常活动变化并未对百度搜索产生影响，所以对人口停留时间明显短于15分钟的设施进行剔除，如酒店、洗浴中心、便利店等。其他设施则保留。随后通过Arcgis 10.2 分区统计工具将7类设施数据分类统计至801处研究单元（部分缺省值用0.001代替），而后计算分析设施密度，并采用自然断点法将研究区域每类设施的密度分4类至20个分区。最终，以西安市不同阶段人口分布日平均密度为因变量，以7类设施密度的自然断点分区为自变量，代入公式（4），计算其驱动因子。过程由Geodetector软件完成。

表3 自变量编码、名称及POI类型、数量

编号	变量名称	POI类型	数量	比例 (%)
x1	住宅小区	别墅、住宅小区、商务住宅	6540	6.63
x2	餐饮设施	快餐厅、外国餐厅、中餐厅	42155	42.74
x3	生活服务	电讯营业厅、美容美发店、摄影冲印店、维修站点、邮局	18262	18.52
x4	医疗机构	动物医疗中心、疾病预防机构、诊所、专科医院、综合医院	3674	3.73
x5	购物服务	超级市场、商场、专卖店、综合市场	1677	1.70
x6	办公场所	公司企业、产业园区、商务楼宇	25710	26.07
x7	公园广场	市政广场、城市公园、名胜公园	606	0.61

4.2 探测结果分析

表4 为人口分布驱动因子探测结果，除x7外，其他影响因子都在99%水平下显著。西安市7类设施对人口分布的影响强度排序为：住宅小区 > 餐饮设施 > 生活服务 > 医疗机构 > 购物服务 > 办公场所 > 公园广场。因此，在三个疫情管控阶段，住宅小区、餐饮设施、生活服务、医疗机构的影响强度基本一致，购物服务、办公场所、公园广场的影响强度呈递增趋势。

（1）住宅小区直接决定着人口分布。封闭管控阶段，小区实行封闭管理，每户指派专人定期外出采购，大部分居民则被限制在小区内部，活动范围与活动类型相对受限，表现出人口分布受住宅小区较大影响。解
封管控阶段和放松管控阶段，小区解封，人口流动性逐渐恢复，再加上交通、购物、餐饮、休闲、就业等设施逐渐恢复运营，促使居民的户外活动及远距离出行活动变多，对小区依赖性减弱，表现出住宅小区对人口分布的影响在逐步减弱。同时，疫情管控期间，居民出于自我防控考虑，在周末会刻意减少外出次数，即使出行也会倾向聚集于小区及周边，因此三个阶段，住宅小区对人口分布的影响强度周末都要略大于周内。

表4 新冠疫情管控期间西安市人口分布驱动因子探测结果

编号	类型	2月3日	3月11日	4月16日	4月25日(非)	2月16日	3月15日	4月11日	4月28日(非)
x1	住宅小区	0.647	0.535	0.500	0.462	0.653	0.541	0.514	0.466
x2	餐饮设施	0.527	0.482	0.490	0.473	0.528	0.494	0.502	0.480
x3	生活服务	0.545	0.462	0.459	0.447	0.551	0.479	0.475	0.462
x4	医疗机构	0.523	0.431	0.418	0.404	0.521	0.440	0.424	0.409
x5	购物服务	0.382	0.391	0.409	0.421	0.381	0.398	0.419	0.433
x6	办公场所	0.235	0.335	0.346	0.349	0.245	0.264	0.295	0.297
x7	公园广场	0.075	0.088	0.102	0.141	0.074	0.083	0.097	0.135

(2) 对于餐饮设施，生活服务，医疗机构而言，三者之间的分布与住宅小区分布表现出较强相关性，前两者多分布于住宅小区，医院相对稀缺，周边往往聚集了大量小区，多数诊所也直接设在住宅楼内，三者对人口分布的影响较大程度上受到住宅小区对人口集聚作用的影响。仅此在不同阶段对人口分布的影响变化与住宅小区对人口分布的影响变化体现一定程度相似性。然而，餐饮服务和生活服务作为日常生活性消费，影响明显，就医频率相对较高，因此在解封管控阶段和放松管控阶段，人口流动性逐渐增强和餐饮开放堂食、商业网点开放营业的情况下，仍然保持对人口分布较强的影响强度，且周内略大于周内。医疗机构却不同，疫情期间医院和诊所交叉感染几率更大，居民活动有意避开这些区域，因此同样在后两个阶段，且门诊和诊所开放的情况下，医疗机构对人口分布的影响强度却呈现较大下降，周内周内较大较小。

(3) 购物与公园属于居民日常性活动范畴，对人流活动具有较强吸引力。封闭管控阶段，办公区域及商业场所大多关闭，再加上小区封闭，交通停运限制了人口流动，表现出购物服务与办公场所对人口分布影响较弱。解封管控阶段和放松管控阶段，随着复工复产推进和小区、市内交通管制的放开，上述场所逐渐开放，人流活力也逐渐恢复，表现出购物服务与办公场所对人口分布的影响逐渐增强。另外，管控逐步放开后，居民周内在因活动占据太多时间而无暇兼顾购物活动，因此居民周内购物需求和购物时间普遍偏高于周内，购物服务对人口分布的影响略于周内但考虑到管控期间居民周内外出次数的下降，导致这个差异不会很大，而办公场所则刚好相反。

(4) 城市中的公园广场本身数量较少，使用主体还多为中老年人，客观上决定了公园广场对居民吸引力有限，导致整体的影响强度较弱，周内周内也相差较小。但随着疫情管控放开，公园广场重新对外开放，居民的户外活动相应增多，对人口分布的影响强度在逐步增强。

(5) 城市功能的空间结构影响了是人口的空间分布，管控则影响了二者之间的联系。三个阶段，随着疫情管控放开，居民活动与配套设施之间由“弱联系”变为“强联系”。由于不同因子对人口分布的影响机理不同，城市中呈现相对分散分布因子(住宅小区，餐饮设施，生活服务和医疗机构)对人口分布的影响由强至弱，呈相对聚集分布因子(购物服务与办公场所)对人口分布的影响由弱至强，二者共同促使了西安市人口分布也由相对分散变为更加聚集。这也提示了，随着疫情管控放开，场所防控的重点要由低聚集

①住宅小区与生活服务，餐饮设施，医疗机构，办公场所，购物服务，公园广场的空间分布皮尔逊相关系数分别为 0.72，0.73，0.67，0.59，0.56，-0.1。

②公园广场对人口分布的影响作用较弱，此不作比较。

• 148 •
性场所转向高聚集性场所。

5 结论与讨论

5.1 结论

本文基于百度热力和POI数据研究新冠疫情防控期间西安市的人口分布演变及影响因素，主要结论如下:

（1）从时间变化来看，受西安市单中心城市结构影响，人口分布密度由一环向郊外递减。随着疫情防控放开，西安市的人口数量及流动性逐渐恢复，集中体现在一环区域的人口数量与流动性的持续恢复。而随着该地区人口密度度与流动性变大，疫情防控要求也相应变高。此外，疫情防控期间，单日人口密度变化特征与非疫情阶段的单日人口密度变动趋势相似，说明疫情防控期间，居民的日常活动周期并未发生较大变化，但受复工后企业错峰午休以及居民减少外出影响，活动特征在局部表现不同。从空间变化来看，三个阶段，高、较高密度区分布在城市内部，数量逐渐增加，较低、低密度区分布在城市外围，数量持续减少。而随着西安市人流管控放开及复工复产的推进，城市人口分布逐渐由“中心-外围”转变为“中心-外围、开发区延伸”的空间结构，西安市近郊的开发区和城东片区是人口密度的主要增长区域，该区域疫情风险较高相对较高。

（2）从聚集情况来看，疫情防控期间西安市人口分布仍呈现明显的高值聚集或低值聚集，且疫情防控的三阶段聚集趋势持续增强，但仍旧弱于非疫情阶段。西安市人口分布热点主要分布在一二环区域，冷点主要分布在三环及郊外，呈现出明显的内热外冷圈层式聚集特征。而随着人口活力的恢复，这种特征越来越显著，以此可以作为不同阶段疫情精细化管控区参考依据之一。另外，在疫情防控期间，人口分布特征不同主要是由于不同的疫情管控措施引起的人口活动模式发生变化，本文提出了防控导向型、防控—就业需求导向型，就业—消费需求导向型、购物—休闲需求导向型四种人口活动模式，并讨论了相应的人口活动特点和分布特征。

（3）从影响因素来看，影响强度排序为：住宅小区 > 餐饮设施 > 生活服务 > 医疗机构 > 购物服务 > 办公场所 > 公园广场。三个阶段中7类设施的影响强度呈规律性递增或递减。疫情防控的三个阶段，住宅小区由于人口流动性恢复和其他功能设施的开放，对小区域依赖性减弱，影响强度逐渐减弱。餐饮设施、生活服务、医疗机构由于多分布在住宅小区附近，对人口分布的影响对人口聚集作用影响较大，所以同样表现影响强度逐渐减弱。购物服务和办公场所对人流活动具有较强吸引力，且随着人口活力恢复及复工复产的推进，影响强度逐渐增强。公园广场由于数量少，吸引力弱，呈现影响强度较低，但随着公园开放和居住户外活动增多，影响强度在逐步增强。可以看出，疫情防控的变化影响了城市配套设施与人口分布的耦合关系由“弱联系”变为“强联系”，也影响着西安市人口分布由相对分散变为更加聚集，这也提示了，场所防控的重点要由低聚集性场所转向高聚集性场所。

5.2 讨论

城市疫情管控的本质是人流活动的管控，本文的研究为疫情影响期间人口的动态监测拓展了一种可供借鉴的方法。基于该方法，政府可以及时了解城市不同区域以及不同地块人口密度分布的实时变化及其与配套设施的耦合关系变化，深人认知疫情管控期间城市居民的活动模式及聚集规律，进而识别城市疫情管控的重点并指导精准化管控方向，以利于实施差异化管控。

需要说明的是，（1）由百度热力计算出的人口密度仅为相对人口密度[28]，难以反映疫情防控放开后真实的城市人口数量变化和单个地块人口数量变化，也限制了本文对人口密度的分级进行客观划分。虽然已有研究将百度热力RGB颜色代表的人口密度与对应的栅格相乘以计算真实人口，进而得出真实人口密度[172]，但该方法受研究尺度及栅格中颜色信息提取精度限制，并不适合本文微观地块尺度研究。（2）由于西安市不同区域及不同街道采取的管控措施及管控力度存在一定差异，又遇到春节返工潮，导致疫情管控期间人口分布变化较为复杂，出现部分现象与预期不符，比如解封管控阶段末高密度区数量少于前两个阶段的末，而本文基于时空大数据的视角难以解释该现象。对此两点，未来将进一步完善人口密度模型，并尝试从居民个体流动角度对人口变化做补充解释。
引文文献:
[1] Jia J. S., Lu X., Yuan Y., et al. Population flow drives spatio-temporal distribution of COVID-19 in China [J]. Nature, 2020, 582(7812): 389 – 394.
[2] 刘勇, 杨东阳, 沈羽等. 大数据与人口迁移: 基于多源数据的时空分布模型——以各地市为例 [J]. 地理科学进展, 2019, 38(4): 923 – 928.
[3] Mu X. Y., Yeh A. G., Zhang X. H. The interplay of spatial spread of COVID-19 and human mobility in the urban system of China during the Chinese New Year [J]. Environment and Planning B: Urban Analytics and City Science, 2020, 48(7): 1955 – 1971.
[4] 梁泽, 王琳瑶, 杨月等. 人口流入与经济因素的影响 [J]. 环境科学进展, 2020, 33(7): 1571 – 1578.
[5] 刘勇, 杨东阳, 沈羽等. 河南省人口流入与经济因素的影响 [J]. 环境科学进展, 2020, 33(7): 1571 – 1578.
[6] 向云波, 王圣云. 新冠肺炎疫情时空分布及人口流动的影响 [J]. 热带地理, 2020, 40(3): 24 – 32.
[7] 杨晓, 谢泽宇. 新冠肺炎疫情时空分布及人口流动的影响 [J]. 人口研究, 2020, 44(4): 74 – 88.
[8] 刘云舒, 赵鹏飞. 基于位置数据的城市活力研究 [J]. 人口研究, 2018, 37(6): 64 – 69.
[9] 王录录, 常飞. 基于百度热力图的银川市中心城区职住关系分析 [J]. 干旱区地理, 2019, 42(4): 923 – 932.
[10] Li J. G., Li J. W., Yuan Y. Z., et al. Spatiotemporal distribution characteristics and mechanism analysis of urban population density: A case of Xi’an, Shaanxi, China [J]. Cities, 2019, 86(03): 62 – 70.
[11] 郭春, 张宝华, 赵华等. 基于多源数据的北京市六环路以内人口流动与面积划分研究 [J]. 城市发展研究, 2018, 25(12): 107 – 121 + 121 + 2 + 173.
[12] Deville P., Linard C., Martin S., et al. Dynamic population mapping using mobile phone data [J]. Proceedings of the National Academy of Sciences, 2014, 111(45): 15888 – 15893.
[13] 林文青, 毛江涛, 黄大恩等. 基于多源数据的北京市朝阳区人口时空格局评估与预测 [J]. 地理科学进展, 2018, 20(10): 1467 – 1477.
[14] 刘腊林, 方士建, 刘连杰. 人口分布与空间活动的动态特征研究 [J]. 城市发展研究, 2018, 25(12): 2212 – 2224.
[15] 周文华, 谢德胜, 赵华等. 基于多源数据的北京市人口分布与空间活动的动态特征研究 [J]. 城市发展研究, 2018, 25(12): 2212 – 2224.
[16] 郑晓, 徐东伟, 刘家林, 等. 基于多源数据的西安市城市中心体系识别与演化 [J]. 城市科学研报, 2017, 21(4): 37 – 46.
[17] 滕振东, 杨玉成, 等. 基于多源数据的西安市城市中心体系识别与演化 [J]. 城市科学研报, 2017, 21(4): 37 – 46.
[18] 范占华, 谢德胜. 东北地区人口分布的时空演变特征及影响因素 [J]. 经济地理, 2016, 36(12): 60 – 68.
[19] 王玉峰, 徐东伟, 刘家林, 等. 基于多源数据的西安市城市中心体系识别与演化 [J]. 城市科学研报, 2017, 21(4): 37 – 46.
[20] 郑晓, 徐东伟, 刘家林, 等. 基于多源数据的西安市城市中心体系识别与演化 [J]. 城市科学研报, 2017, 21(4): 37 – 46.
[21] 岳立, 尹悦, 柴文, 等. 基于多源数据的西安市城市中心体系识别与演化 [J]. 城市科学研报, 2017, 21(4): 37 – 46.
[22] 梁文青, 刘华勇, 毛江涛, 等. 基于多源数据的西安市城市中心体系识别与演化 [J]. 城市科学研报, 2017, 21(4): 37 – 46.
[23] 刘文华, 毛江涛, 荣艳等. 基于多源数据的西安市城市中心体系识别与演化 [J]. 城市科学研报, 2017, 21(4): 37 – 46.
[24] 陈志华, 谢德胜, 张宝华, 等. 基于多源数据的西安市城市中心体系识别与演化 [J]. 城市科学研报, 2017, 21(4): 37 – 46.
[25] 陈永华, 谢德胜, 张宝华, 等. 基于多源数据的西安市城市中心体系识别与演化 [J]. 城市科学研报, 2017, 21(4): 37 – 46.
[26] 郑晓, 徐东伟, 刘家林, 等. 基于多源数据的西安市城市中心体系识别与演化 [J]. 城市科学研报, 2017, 21(4): 37 – 46.
[27] 刘文华, 毛江涛, 荣艳等. 基于多源数据的西安市城市中心体系识别与演化 [J]. 城市科学研报, 2017, 21(4): 37 – 46.
[28] 陈志华, 谢德胜, 张宝华, 等. 基于多源数据的西安市城市中心体系识别与演化 [J]. 城市科学研报, 2017, 21(4): 37 – 46.