The fundamental group of the harmonic archipelago

Paul Fabel
Department of Mathematics & Statistics
Mississippi State University

Abstract

The harmonic archipelago HA is obtained by attaching a large pinched annulus to every pair of consecutive loops of the Hawaiian earring. We clarify $\pi_1(HA)$ as a quotient of the Hawaiian earring group, provide a precise description of the kernel, show that both $\pi_1(HA)$ and the kernel are uncountable, and that $\pi_1(HA)$ has the indiscrete topology.

1 Introduction

This note serves to clarify certain properties of $\pi_1(HA)$ and $\pi_1(HE)$, the topological fundamental groups respectively of the harmonic archipelago and the Hawaiian earring.

The Hawaiian earring HE is the union of a null sequence of simple closed curves meeting in a common point.

Introduced by Bogley and Sieradski, the harmonic archipelago HA, is the space obtained by attaching large pinched annuli, one for each pair of consecutive loops, to the Hawaiian earring HE. In [2] Bogley and Sieradski construct a comprehensive theory which provides a useful framework for investigating the fundamental groups of locally complicated spaces such as HE and HA. Various properties of $\pi_1(HA)$, such as its uncountability, are uncovered in [2].

In [1], Biss also uses HE and HA as motivating examples, and proves some nice general results on topological fundamental groups and their generalized covering spaces.

However, an oversight in [1] (see Remark [2], leads to a false description of $\pi_1(HA)$ and its false generalization Theorem 8.1. There is also a typographical error in the description of ker(j^*), the kernel of the epimorphism $j^* : \pi_1(HE) \to \pi_1(HA)$, induced by inclusion $j : HE \hookrightarrow HA$.

1
After adjusting for this, there remains arguably room for further discussion regarding which elements of $\pi_1(HE)$ belong to $\ker(j^*)$.

For example it follows from the investigations of Morgan/Morrison $[6]$, DeSmit $[4]$, and Cannon/Conner $[3]$ that elements of $\pi_1(HE)$ can be seen as “transfinite words” over an infinite alphabet $\{x_1, x_2, \ldots\}$ with each letter appearing finitely many times.

As described in $[1]$, $\ker(j^*)$ is generated by the relations $x_i = x_j$ for all i and j. Does this mean two transfinite words over $\{x_1, x_2, \ldots\}$ are equivalent in $\pi_1(HE)$ if and only if one can be transformed into the other by finitely many substitutions and finitely many cancellations of consecutive letters? No, for example $x_1x_2^{-1}(x_3x_4\ldots)x_1x_2^{-1}(\ldots x_4^{-1}x_3^{-1})$ is trivial in $\pi_1(HE)$, but cannot be transformed into the trivial word with finitely many such operations.

Are two transfinite words over $\{x_1, x_2, \ldots\}$ equivalent in $\pi_1(HE)$ if one can be transformed into the other after “infinitely many substitutions”? No, for then the essential element $(x_1x_2^{-1}x_3x_4^{-1}\ldots)$ could be transformed into the inessential $x_1x_1^{-1}x_2x_2^{-1}\ldots$.

We provide a precise description of $\ker(j^*)$ in Theorem $[7]$ and prove as Corollary $[8]$ that $\ker(j^*)$ is uncountable. Corollaries $[9]$ and $[10]$ provide proofs of results also indicated in $[2]$ and $[1]$: $\pi_1(HE)$ is uncountable and, despite its large cardinality, $\pi_1(HE)$ has the indiscrete topology.

2 Definitions

For $n \in \{1, 2, 3, \ldots\}$ let $X_n \subset \mathbb{R}^2$ denote the circle of radius $\frac{1}{n}$ centered at $(\frac{1}{n}, 0)$. Let $Y_n = \bigcup_{i=n}^{\infty} X_i$. Thus Y_n is the Hawaiian earring determined by the loops X_n, X_{n+1}, \ldots.

Let $A_n \subset \mathbb{R}^2$ denote the closed pinched annulus bounded by $X_n \cup X_{n+1}$. Let $Y^n = Y_1 \cup A_1 \cup \ldots \cup A_n$. Endow Y^n with the subspace topology inherited from \mathbb{R}^2.

For the underlying set let $HA = \bigcup_{n=1}^{\infty} Y^n$. However we define the topology of HA such that Y^n inherits the usual topology but such that 1) There exists a sequence $z_n \in \text{int}(A_n)$ such that $\{z_1, z_2, \ldots\}$ has no subsequential limit and 2) If $p \in HA$ is a subsequential limit of the sequence y_1, y_2, \ldots, and if $y_n \in \text{int}(A_n)$ for all n, then $p = (0, 0)$.

Let $G_n = \pi_1(Y_n, (0,0))$.

Let $F_{N,n}$ denote the free group on the letters $\{x_N, x_{N+1}, \ldots x_n\}$ coupled with the symbol 1 denoting the trivial element.

Let $\phi_{N,n} : F_{N,n+1} \to F_{N,n}$ denote the homomorphism such that $\phi_{N,n}(x_i) = x_i$ if $N \leq i \leq n$ and $\phi_{N,n}(x_{n+1}) = 1$.

For $N \geq 1$ let G^N denote the inverse limit of free groups determined by $F_{N,N} \leftarrow F_{N,N+1} \ldots$ under the bonding maps $\phi_{N,N}$.

Formally elements of $F_{N,n}$ are equivalence classes of words under
the obvious cancellations, and the group operation is catcatanation. However each element of \(F_{N,n} \) has a unique representative with a minimal number of nontrivial letters. Consequently each element of \(G^N \) is uniquely determined by a **canonical sequence** \(w_N, w_{N+1}, ... \) such that \(w_n \in F_{N,n} \) and \(w_n \) is a maximally reduced word in \(F_{N,n} \).

3 \(\pi_1(HA) \)

It is a nontrivial fact ([3], [4], [6]) that \(\pi_1(Y_1) \) injects naturally into the inverse limit of free groups.

Remark 1 Given \(n \geq N \geq 1 \) let \(Z_{N,n} = \bigcup_{i=N}^{n} X_{i,n} \). Let \(r_{N,n} : Y_N \to Z_{N,n} \) denote the retraction collapsing \(X_i \) to \((0,0) \) for \(i > n \). Since \(r_{N,n}(r_{N,n+1}) = r_{N,n} \), the maps \(r_{N,n} \) induce a homomorphism \(\psi_N : \pi_1(Y_N,(0,0)) \to \lim_{\to} \pi_1(Z_{N,n},(0,0)) \). It is shown in [5] and [6] that \(\psi_N \) is one to one. Moreover \(G_N = \text{im}(\psi_N) \) consists of all canonical sequences \((w_N, w_{N+1}, ...) \) such that for each \(i \) there exists \(M_i \) such that for all \(n \geq N \), \(x_i \) appears at most \(M_i \) times in \(w_n \).

It is falsely asserted in [6] that \(\psi_1 : \pi_1(HE) \to \lim_{\to} F_{1,n} \) is an isomorphism. Consequently Theorem 8.1 of [6] is false.

Remark 2 The canonical monomorphism \(\psi_1 : \pi_1(Y_1,(0,0)) \hookrightarrow G^1 \) is **not** surjective. By compactness of \([0,1]\), a given path in \(Y_1 \) can traverse each loop only finitely many times. Thus the element

\[
(1, x_1 x_2 x_1^{-1} x_2^{-1}, x_1 x_2 x_1^{-1} x_2^{-1} x_3 x_4 x_1^{-1} x_3^{-1}, ...) \in \lim_{\to} F_{1,n}
\]

has no preimage in the Hawaiian earring group.

Remark 3 \(X_n \cup X_{n+1} \) is a strong deformation retract of \(A_n \setminus \{z_n\} \). Thus \(Y^n \) is a strong deformation retract of \(HA \setminus \{z_{n+1}, z_{n+2}, ...\} \).

Lemma 4 Suppose \(f : S^1 \to Y_1 \) is any map. Then \(f \) is inessential in \(HA \) if and only if there exists \(N \) such that \(f \) is inessential in \(Y^N \).

Proof. Suppose \(f \) is inessential in \(HA \). Let \(F : D^2 \to HA \) be a continuous extension of \(f \). Since \(\text{im}(F) \) is compact, there exists \(N \) such that \(z_n \not\in \text{im}(F) \) whenever \(n > N \). Thus \(\text{im}(F) \subset HA \setminus \{z_{N+1}, z_{N+2}, ...\} \). By remark \(\Box \) \(Y^N \) is a strong deformation retract of \(HA \setminus \{Z_{N+1}, Z_{N+2}, ...\} \). Thus \(f \) is inessential in \(Y^N \). Conversely if there exists \(N \) such that \(f \) is inessential in \(Y^N \) then \(f \) is inessential in \(HA \) since \(Y^N \subset HA \). ■

Notice \(Y_N \) is a strong deformation retract of \(Y^{N-1} \) under a homotopy \(R_{N,t} : Y^{N-1} \to Y_N \) collapsing \(A_1 \cup ... A_{N-1} \) onto the simple closed curve.
X_N. In particular given any loop $f : S^1 \to Y_1$ we may canonically deform f in Y^{N-1} to a loop g such that $im(g) \subset Y_N$. Appealing to Remark 1 we may identify $\pi_1(Y_i, (0,0))$ with G_i. Thus the composition $Y_1 \hookrightarrow Y^{N-1} \to Y_N$ induces a homomorphism $q_N^* : G_1 \to G_N$. Combining these observations we obtain the following:

Lemma 5 $q_N^*(w_1, w_2, ...) = (v_N, v_{N+1}, \ldots)$ if and only the following property is satisfied for each $n \geq N$: For each $i \leq N$ replace each occurrence of x_i in w_n with x_N, creating a word w_n' on the letters $\{x_N, \ldots x_n\}$. Then the word w_n is equivalent to v_n in the free group $F_{N,n}$.

Lemma 5 is also handled in [1] and [2]. Our proof is similar to an argument that the 2 sphere is simply connected.

Lemma 6 Let $j : Y_1 \hookrightarrow HA$ denote the inclusion map. Then the induced homomorphism $j^* : \pi_1(Y_1, (0,0)) \to \pi_1(HA, (0,0))$ is surjective.

Proof. Suppose $f : S^1 \to HA$ is any map such that $f(1) = (0,0)$. Let J be a (nonempty) component of $f^{-1}(HA \setminus Y_1)$. Note $HA \setminus Y_1$ is the union of pairwise disjoint connected open sets $int(A_1) \cup int(A_2), \ldots$ Thus there exists i such that $f(J) \subset int(A_i)$ and $f(\partial J) \subset \partial A_i$. If $z_i \in im(f)$ replace f_J by a path homotopic small perturbation \hat{f}_{J} such that $z_i \notin im(\hat{f}_{J})$. By uniform continuity of f finitely many such surgeries are required. Note f and f^* are homotopic in HA and $im(f^*) \subset HA \setminus \{z_1, z_2, \ldots\}$.

By remark 3 Y_1 is a strong deformation retract of $HA \setminus \{z_1, z_2, \ldots\}$ and hence there exists $f^* : S^1 \to Y_1$ such that $j^*[f^*] = [f^*] = [f]$.

Since j^* is a surjection $\pi_1(HA, (0,0))$ is isomorphic to the quotient group $\pi_1(Y_1, (0,0))/ker j^*$. Combining Lemmas 4 and 5 we obtain the following characterization of ker j^*.

Theorem 7 Let $j^* : G_1 \to \pi_1(HA, (0,0))$ denote the epimorphism induced by inclusion $j : Y_1 \hookrightarrow HA$. Let $K = ker j^*$. Then $(w_1, w_2, \ldots) \in K$ if and only if there exists N such that the following holds: Suppose for each $i \leq N$ and for each $n \geq N$ each occurrence of x_i in w_n is replaced by x_N creating a (nonreduced) word v_n on the letters $\{x_N, x_{N+1}, \ldots x_n\}$. Then v_n can be reduced to the trivial element of $F_{N,n}$.

Corollary 8 ker(j^*) is uncountable.

Proof. There exist uncountably many distinct permutations of the set $\{3, 4, 5, 6, \ldots\}$. Moreover, the loops in Y_3 determined by distinct permutations of x_3, x_4, \ldots determine distinct elements of $\pi_1(Y_3, (0,0))$. Thus
G_3 is uncountable. Each $w \in G_3$ determines a homotopically distinct loop in Y_1 corresponding to $x_1x_2^{-1}wx_1x_2^{-1}w^{-1}$. By Theorem 7 this element is in $\ker(j^*)$. \blacksquare

Corollary 9 is also treated in [2].

Corollary 10 $\pi_1(HA, (0, 0))$ is uncountable.

Proof. Consider the set A of functions from $\{1, 3, 5, \ldots\} \to \{0, 1\}$. Each element $f \in A$ determines a permutation $\tau_f : \{1, 2, 3, \ldots\} \to \{1, 2, 3, \ldots\}$ as follows: If $f(2n - 1) = 0$ then τ_f fixes $2n - 1$ and $2n$. Otherwise τ_f swaps $2n - 1$ and $2n$. The permutation τ_f determines a loop in Y_1 by the following recipe. Travel clockwise once around $X_{\tau_f(1)}$, then travel clockwise once around $X_{\tau_f(2)}$, etc... This corresponds to the transfinite word $\tau_f(1)\tau_f(2)\ldots \in \pi_1(Y_1)$.

Note A is uncountable. Declare two elements $\{f, g\} \subset A$ equivalent if f and g agree except on a finite set. Each equivalence class in A has countably many elements and hence B, the set of equivalence classes of A, is uncountable. If $[f]$ and $[g]$ are distinct elements of B then by Lemma 5 for each N, τ_f and τ_g fail to be equivalent in Y^N. Thus by Lemma 4 τ_f and τ_g determine distinct elements of $\pi_1(HA, (0, 0))$. Thus, since B is uncountable, $\pi_1(HA, (0, 0))$ is uncountable. \blacksquare

It shown in [11] (and generalized in [13]) that the quotient space consisting of path components of based loops in a topological space X is a topological group. Despite a large number of elements, $\pi_1(HA, (0, 0))$ has the indiscrete topology. Corollary 10 is also argued in [11].

Corollary 10 The topological group $\pi_1(HA, (0, 0))$ has exactly one nonempty open subset.

Proof. Let $L = \{f : [0, 1] \to HA | f(0) = f(1) = (0, 0)\}$ with the uniform topology. By definition $\pi_1(HA, (0, 0))$ is the collection of path components of L with the quotient topology. Suppose $B \subset \pi_1(HA, (0, 0))$, suppose $B \neq \emptyset$ and suppose $[f] \in B$.

Since $im(f)$ is compact and $\{z_1, z_2, \ldots\}$ is not compact, there exists N such that $im(f) \subset HA \setminus \{z_{N+1}, z_{N+2}, \ldots\}$. For $M > N$ there is a strong deformation retraction from $HA \setminus \{z_{M+1}, z_{M+2}, \ldots\}$ onto Y^M. Thus for large M we may deform f in HA to a nearby map f_M such that $im(f_M) \subset Y^M$. Let $A_M = f_M^{-1}(Y^M \setminus (X_{M+1} \cup X_{M+2} \ldots))$. Redefine f_M over A_M to be the constant $(0, 0)$ creating a map f_M^*. Note $im(f_M^*) \subset A_1 \cup \ldots A_{M-1}$. Notice $A_1 \cup \ldots A_{M-1}$ has the homotopy type of S^1. By wrapping around X_M as many times as necessary, we may extend f_M^* to a map of $f_M^*[0, 1 + \frac{1}{M}] \to HA$ such that f_M^* is an inessential loop and $f(t) \in X_M$ for $t \in [1, \frac{1}{M}]$. Reparameterize f_M^* linearly to create a
map \(f^*_M : [0,1] \to HA \). Notice \(f^*_M \to f \) uniformly. Thus the path component of the trivial loop is dense in the space of based loops of \(HA \). Thus, if \(B \) is open then \(B \) contains the trivial element.

Suppose on the other hand that \(B \) is closed. Choose \(N \) such that \(im(f) \subset Y^n \) whenever \(n \geq N \). Notice \(Y_{n+1} \) is a strong deformation retract of \(Y^n \). Thus \([f] \) contains representatives whose images have arbitrarily small diameter. Thus \(B \) contains the trivial element.

Thus the trivial element of \(\pi_1(HA(0,0)) \) belongs to each nonempty open set and each nonempty closed set. Hence \(\pi_1(HA(0,0)) \) has only one nonempty open subset.

References

[1] Biss, Daniel K. The topological fundamental group and generalized covering spaces. Topology Appl. 124 (2002), no. 3, 355–371.
[2] Bogley, W.A., Sieradski, A.J. Universal path spaces. Preprint. http://oregonstate.edu/~bogleyw/#research
[3] Cannon, J. W.; Conner, G. R. The combinatorial structure of the Hawaiian earring group. Topology Appl. 106 (2000), no. 3, 225–271.
[4] de Smit, Bart. The fundamental group of the Hawaiian earring is not free. Internat. J. Algebra Comput. 2 (1992), no. 1, 33–37.
[5] Fabel, Paul. Completing Artin’s braid group on infinitely many strands. http://front.math.ucdavis.edu/math.GT/0201303 To appear in Journal of Knot Theory and its Ramifications.
[6] Morgan, John W.; Morrison, Ian. A van Kampen theorem for weak joins. Proc. London Math. Soc. (3) 53 (1986), no. 3, 562–576.