Pure semigroups of isometries on Hilbert C^*-modules

B.V.Rajarama Bhat† and Michael Skeide‡

August 2014

Abstract

We show that pure strongly continuous semigroups of adjointable isometries on a Hilbert C^*-module are standard right shifts. By counter examples, we illustrate that the analogy of this result with the classical result on Hilbert spaces by Sz.-Nagy, cannot be improved further to understand arbitrary isometry semigroups of isometries in the classical way.

1 Introduction

The following classical result characterizes one-parameter semigroups (in the sequel, semigroups) of isometries on Hilbert spaces; see the standard text book Sz.-Nagy and Foias [SNF70, Theorem 9.3].

1.1 Theorem (Sz.-Nagy [SN64]). Let $s = \{s_t\}_{t \in \mathbb{R}^+}$ be a strongly continuous semigroup of isometries on a Hilbert space H. Then $H = H_u \oplus H_p$ where H_u and H_p are unique subspaces such that:

1. H_u reduces s to a semigroup of unitaries.
2. H_p reduces s to a completely nonunitary semigroup.

Moreover, the completely nonunitary part is unitarily equivalent to a standard right shift.

It is our aim to prove the appropriately formulated analogue of the last sentence for semigroups of isometries on Hilbert modules (Theorem 1.2 proved in Section 3) and to analyze to what extent we can save statements about decomposition (Section 2).
Recall that:

- A family $s_t = \{s_t\}_{t \in \mathbb{R}^+}$ of linear maps on a vector space is a (one-parameter) \textit{semigroup} if $s_r s_t = s_{r+t}$ and if $s_0 = \text{id}$, the identity.

- A semigroup s on a normed space V is \textit{strongly continuous} if $t \mapsto s_t v$ is continuous for all $v \in V$.

- A linear map s_t on a (pre-)Hilbert module E (for instance, on a (pre-)Hilbert space) is an \textit{isometry} if it preserves inner products: $\langle s_t x, s_t y \rangle = \langle x, y \rangle$ for all $x, y \in E$. (It follows that a semigroup of isometries is strongly continuous if and only if $t \mapsto \langle x, s_t y \rangle$ is continuous for all $x, y \in E$.) An isometry between Hilbert space is, like all bounded linear operators, \textit{adjointable}, that is, it has an adjoint. An isometry between (pre-)Hilbert modules is adjointable if and only if there exists a projection onto its range, that is, if and only if its range is \textit{complemented}.

- A \textit{unitary} is a surjective isometry. A semigroup s of isometries is \textit{completely nonunitary} if there is no nonzero subspace reducing s to a semigroup of unitaries. A semigroup s of adjointable isometries is \textit{pure} if s_t^* converges strongly to 0. (Note that, by the Riemann-Lebesgue lemma, there are unitary semigroups that converge to 0 weakly.) Equivalently, the projections $s_t s_t^*$ converge strongly to 0, respectively, the projections $\text{id} - s_t s_t^*$ converge strongly to id. For a semigroup s of isometries on Hilbert space, the properties to be completely nonunitary and to be pure are equivalent. See, however, Example 2.5.

- A subspace W of a vector space V \textit{reduces} the semigroup s on V if $s_t W \subset W$ for all t. The (co)restriction of s to W is called the semigroup \textit{reduced} by W or simply the \textit{reduced semigroup}. A (pre-)Hilbert submodule F of a (pre)Hilbert module E is \textit{completely reducing} for the semigroup s on E if both F and F^\perp (see Section 2) reduce s. There are two special instances of completely reducing submodules: Firstly, if s is adjointable and F reduces also the adjoint semigroup s^*. (In general, if s reduces F, then $\langle s_t^*(F^\perp), F \rangle = \langle F^\perp, s_t F \rangle \subset \langle F^\perp, s_t F \rangle = \{0\}$, so $s_t^*(F^\perp) \subset F^\perp$, that is, F^\perp reduces s^*. So if s^* reduces F, then $s = s^{**}$ reduces F^{-}.) Secondly, if F reduces the semigroup of isometries s to a unitary semigroup. (Indeed, from $s_t F = F$ and s_t being an isometry, we obtain $\langle s_t(F^\perp), F \rangle = \langle s_t(F^\perp), s_t F \rangle = \langle F^\perp, F \rangle = \{0\}$, so $s_t(F^\perp) \subset F^\perp$.)

Of course, for Hilbert spaces there are many more equivalent characterizations their closed completely reducing subspaces. But only the definition we give here, meets the situations we deal with in Section 2 when we analyze how much of the first part of Theorem 1.1 can be saved.
Let F be a Hilbert module over a C^*-algebra \mathcal{B}. The **standard right shift** over F is the semigroup $v = \{v_t\}_{t \in \mathbb{R}^+}$ of isometries on $L^2(\mathbb{R}_+, F) := L^2(\mathbb{R}_+) \otimes F$ defined by

$$[v_t f](x) = \begin{cases} f(x - t) & x \geq t, \\ 0 & \text{else}. \end{cases}$$

Here, the **external tensor product** $L^2(\mathbb{R}_+) \otimes F$ of the Hilbert \mathcal{C}–module $L^2(\mathbb{R}_+)$ and the Hilbert \mathcal{B}–modules F can be identified with the completion of the space of functions $\text{span}\{x \mapsto h(x)y \mid h \in C_c(\mathbb{R}_+), y \in F\}$ (C_c meaning continuous function with compact support) in the norm arising from the inner product $\langle f, g \rangle := \int \langle f(x), g(x) \rangle \, dx$. Clearly, the the standard right shift is strongly continuous. (Indeed, for any bounded strongly continuous functions $t \mapsto a_t \in \mathcal{B}(L^2(\mathbb{R}_+))$ the function $t \mapsto a_t \otimes \text{id}_F \in \mathcal{B}(L^2(\mathbb{R}_+) \otimes F)$ is strongly continuous, too, because by boundedness it is sufficient to check strong continuity on the total set of elementary tensors, and because on elementary tensors strong continuity of $a_t \otimes \text{id}_F$ follows from strong continuity of a_t.)

In Section 3 we will prove:

1.2 Theorem. Let $\{s_t\}_{t \geq 0}$ is a pure strongly continuous semigroup of adjointable isometries on a Hilbert module E. Then $\{s_t\}$ is unitarily equivalent to a standard right shift.

The reader who is interested only in that result may switch to the proof in Section 3 immediately. In the remainder of this introduction, we motivate the proof. We also explain briefly why for Hilbert modules we need a fresh proof. In the Section 2 we explain by counter examples, why Theorem 1.2 as compared with Theorem 1.1 is the best we may hope for. We also explain why we may not hope for a generalization of the Stone-von Neumann theorem to Hilbert modules, and why for von Neumann (or W^*-)modules no new proof is needed.

Motivation of the proof. Suppose we knew that $E = L^2(R_+, F)$ “in some way” (that is, after choosing a suitable unitary $V : L^2(R_+, F) \to E$) and s is the standard right shift in this identification (that is, $s_t = Vv_tV^*$ under the unitary equivalence transform arising from that suitable unitary).

The first problem to be faced is, how can we extract F from the abstract space E and the abstract isometry semigroup s? Form the solution we propose here, all the other steps will suggest themselves.

Note that E contains many copies of F, namely, for each $0 \leq a < b$ the submodule $\mathbb{I}_{(a,b]}F$ of functions $\mathbb{I}_{[a,b]}y$ (where $y \in F$ and \mathbb{I}_{S} denotes the indicator function of the set S), is isomorphic F via $\mathbb{I}_{[a,b]}y \mapsto y\sqrt{b-a}$. Moreover, the isomorphism

$$L^2(R_+, F) \supset \mathbb{I}_{(a,b]}F \to F \to \mathbb{I}_{[a+\varepsilon,b+\varepsilon]}F \subset L^2(R_+, F)$$
we obtained that way, is nothing but s_i restricted to $H_{(a,b)}F$. On the other hand, the elements $H_{(a,b)}y$ (varying also a and b) form a total subset of E. So, understanding how to get them abstractly will, if Theorem 1.2 is true, lead to a proof.

First of all, assuming the isometries are adjointable, we easily get the submodules $E_{a,b} := L^2([a,b), F)$ of F. Indeed, the projection $s_i s_i^*$ onto the range of s_i, is nothing but multiplication with $I_{[a,i)}$, and the projection onto $E_{a,b}$ is

$$H_{(a,b)} = H_{(a,\infty)} - H_{(b,\infty)} = s_b s_b^* - s_a s_a^* =: p_{a,b}.$$

So, how to find, inside $E_{a,b}$, the elements of the form $H_{(a,b)}y$? We define $u_{a,b}^t$ to be the unitary shift modulo $b - a$ on $E_{a,b}$. (This can be done entirely in terms of s; see (3.1).) Then $H_{(a,b)}y$ are precisely those elements that are invariant under that unitary group. We find them by applying the projection

$$q_{a,b} : x \mapsto \frac{1}{b - a} \int_a^b u_{a,b}^t x dt$$

to all elements $x \in E_{a,b}$. (Thanks to strong continuity of s, this integral is a well-defined Riemann integral over a continuous vector-valued function.) In this way, we get elements in $E_{a,b}$ that behave like elements $H_{(a,b)}y$. The analytic heart of the proof, will be to show that the elements $q_{c,d} x (x \in E_{a,b}, [c,d) \subset [a,b))$ are total in $E_{a,b}$. This is done in Lemma 3.8 which assert that

$$\sum_{k=1}^n q_{a,b} \to \frac{1}{b - a} \int_a^b u_{a,b}^t x dt$$

converges strongly to the identity of $E_{0,1}$. The rest is simple reconstruction of the right shift on $E = \bigoplus_{k \in \mathbb{N}} E_{k-1,k} \cong E_{0,1}^{\infty}$ out of $u_{0,1}^{0,1}$. (See Lemma 2.4.)

The key point in the proof is that we manage (basically by Lemma 3.8) to approximate explicitly in norm an arbitrary element of E by sums over elements that behave like $H_{(a,b)}y$. No arguments like zero-complement or weakly total=strongly total (which work only for Hilbert spaces) are involved. The original proof for Hilbert spaces involves unbounded operators and adjoints; it does not appear to be generalizable to modules.
2 (Counter)examples and other obstacles

The proofs of several statements in the classical Theorem [1] for Hilbert spaces rely on several crucial properties and results that are not available for Hilbert modules. The most important are: Self-duality of closed subspaces and, therefore, existence of projections onto them; existence of adjoints; weakly total subsets are norm total. In this section, we explain the consequences of having these pieces missing by counter examples and prove some weaker statements. The proof of that statement we can confirm fully, Theorem 1.2, has been outlined in the end of the introduction and will be performed in Section 3.

Closely related to projections onto closed submodules are the subtleties around orthogonal complements. For convenience, we start by repeating those facts that generalize easily to Hilbert modules. (Of course, orthogonal complements can be defined for arbitrary subsets, and a number of statements remain true also for pre-Hilbert modules and their not necessarily closed submodules, for instance, such as the B–linear span of a subset. We ignore these, here.)

- Let F and G be closed submodules of a Hilbert B–module E such that $\langle F, G \rangle = \{0\}$. Then $y + z \mapsto y \oplus z$ defines an isometry $F + G \to F \oplus G$. This isometry is, clearly, surjective, that is, a unitary. We denote this situation as $F + G = F \oplus G$. Of course, $F \cap G = \{0\}$.

- Let F be a closed submodule of a Hilbert B–module E. The orthogonal complement of F is defined as $F^\perp := \{ x \in E : \langle F, x \rangle = \{0\} \}$. Since, clearly, $\langle F, F^\perp \rangle = \{0\}$, we have $F + F^\perp = F \oplus F^\perp$. (Corollary: $F \oplus F^\perp = E$ if and only if there exists a projection $p \in B^a(E)$ with $pE = F$.) Obviously, $F_1 \subset F_2$ implies $F_1^\perp \supset F_2^\perp$.

- Clearly, $F^{\perp \perp} \supset F$. Applying this to F^\perp we get $(F^\perp)^{\perp \perp} \supset F^\perp$, and by the preceding conclusion we get $(F^\perp)^{\perp \perp} \subset F^\perp$. So, $F^{\perp \perp} = F^\perp$. (Corollary: If $G = F^\perp$ for some submodule F, then $G^{\perp \perp} = G$. Corollary: An adjointable map $a : E \to E'$ is zero on $F^{\perp \perp}$ if and only if it is zero on F. Indeed, $aF = \{0\} \iff \langle E', aF \rangle = \{0\} \iff \langle a^*E', F \rangle = \{0\} \iff a^*E' \subset F^\perp = (F^{\perp \perp})^\perp \iff \langle a^*E', F^{\perp \perp} \rangle = \{0\} \iff \langle E', aF^{\perp \perp} \rangle = \{0\} \iff aF^{\perp \perp} = \{0\}$. Note, too, that it appears to be unknown if the analogue statement is true for bounded right linear maps a. If this way true, one could show that if G is a submodule of E containing F and fulfilling $F^\perp \cap G = \{0\}$, then $G^\perp = F^\perp$ and, consequently, $G^{\perp \perp} = F^{\perp \perp} \supset G$.)

- Since also $F^\perp + F^{\perp \perp} = F^\perp \oplus F^{\perp \perp}$, we get $(F \oplus F^{\perp \perp})^\perp = F^\perp \cap F^{\perp \perp} = \{0\}$. So, F and F^\perp separate the points of E and the relative orthogonal complement of F in $F^{\perp \perp}$ is $\{0\}$, that is, F separates the points of $F^{\perp \perp}$. Clearly, $F^{\perp \perp}$ is the biggest submodule containing F and orthogonal to F^\perp (that is, subset of $F^{\perp \perp}$). So, if we have orthogonal submodules F and G of E and if $G = F^\perp$, then $F^{\perp \perp} \oplus F^\perp$ is the biggest submodule of E that allows into the decomposition into a direct sum with summands containing F and G, respectively. (Once more, if the values of bounded right linear maps on $F^{\perp \perp}$ should turn out to be determined...
As the most general situation, we consider a semigroup \(\mathcal{S} \) of isometries on a Hilbert module \(E \) that is \textit{a priori} neither adjointable nor strongly continuous. Example 2.1 illustrates, among many peculiarities regarding decomposition, that a strongly continuous semigroup of isometries need not be adjointable. In Observation 2.7 we point out that a ‘surprisingly reasonable’ semigroup of adjointable isometries is not strongly continuous.

2.1 Example. Let \(\mathcal{B} \) be a C*-algebra and let \(\mathcal{I} \) be a proper closed ideal of \(\mathcal{B} \). We mention the following technical result: For any Hilbert space \(H \), the complement of \(H \otimes \mathcal{I} \) in \(H \otimes \mathcal{B} \) is \((H \otimes \mathcal{I})^\perp = H \otimes (\mathcal{I}^\perp) \). (Indeed, by means of an ONB \(\{e_s\}_{s \in S} \) for \(H \), the elements of \(H \otimes \mathcal{B} \) are precisely those of the form \(x = \sum_s e_s \otimes b_s \), where the sum \(\sum_s b_s^* b_s \) exists. Of course, if all \(b_s \) are in \(\mathcal{I}^\perp \), then \(\langle H \otimes \mathcal{I}, x \rangle = \{0\} \). If one \(b_s \) is not \(\mathcal{I}^\perp \), then there exists \(c \in \mathcal{I} \) such that \(c^* b_s \neq 0 \). Consequently, \(\langle e_s \otimes c, x \rangle = c^* b_s \neq 0 \), so that \(x \neq 0 \) is not in the complement of \(H \otimes \mathcal{I} \).

Consequently, \(H \otimes \mathcal{I} \) has zero-complement in \(H \otimes \mathcal{B} \) if and only if \(\mathcal{I} \) is essential in \(\mathcal{B} \), and \(H \otimes \mathcal{I} \) is complemented in \(H \otimes \mathcal{B} \) if and only if \(\mathcal{I} \) is complemented in \(\mathcal{B} \).

Consider the the bilateral right shift \(u_t \), on \(L^2(\mathbb{R}, \mathcal{B}) \), obviously, a strongly continuous semigroup. Clearly, \(u_t \) sends \(E := L^2(\mathbb{R}_-, \mathcal{I}) \oplus L^2(\mathbb{R}_+, \mathcal{B}) \) into \(E \), so that the the (co)restrictions \(s_t \) of \(u_t \) to \(E \) define a strongly continuous semigroup of isometries. An isometry is adjointable if and only if its image is complemented. So, if \(\mathcal{I} \) is not complemented in \(\mathcal{B} \), then \(s_t E = L^2(\mathbb{R}_-, \mathcal{I}) \oplus L^2([0, t], \mathcal{I}) \oplus L^2([t, \infty), \mathcal{B}) \) is not complemented in \(E = L^2(\mathbb{R}_-, \mathcal{I}) \oplus L^2([0, t], \mathcal{B}) \oplus L^2([t, \infty), \mathcal{B}) \), so that \(s_t \) is not adjointable.

If \(\mathcal{I} \) is essential in \(\mathcal{B} \), then even \((s_t^* E)^\perp = \{0\} \) for all \(t \). It would be an interesting question to examine all strongly continuous semigroups of (not necessarily) adjointable isometries with this property. (If \((s_t^* E)^\perp = \{0\} \) and \(s_t \) is adjointable, then \(s_t \) is a unitary.)

On the other hand, if \(\mathcal{I} \) is complemented in \(\mathcal{B} \) (so that \(s_t \) is adjointable), then \(E = L^2(\mathbb{R}, \mathcal{I}) \oplus L^2(\mathbb{R}_+, \mathcal{I}^\perp) \). On the first summand, \(s_t \) reduces to a (unitary) bilateral right shift. On the second summand it reduces to a standard right shift over \(\mathcal{I}^\perp \).

What about the decomposition stated in Theorem 1.1 in the general situation? Well, let us first speak about the maximal unitary part. Note that \(s_t E \) is a decreasing family of (closed) submodules of \(E \). Clearly, the (closed!) submodule \(E_u := \bigcap_{t \in \mathbb{R}_+} s_t E \) reduces the semigroup \(s_t \). Since \(s_t E \) is decreasing, the restriction is a unitary onto \(E_u \). Moreover, if \(E' \) is any other closed submodule of \(E \) reducing \(s_t \) to a semigroups of unitaries, then \(E' = s_t E' \subset s_t E \) so that \(E' \subset E_u \).

In other words, \(E_u \) carries the unique maximal unitary part of \(s \).
In Example 2.1, we get $E_u = L^2(\mathbb{R}, I)$, and the maximal unitary part is complementary if and only if I is. Moreover, $E_u^+ = L^2(\mathbb{R}_+, I^+)$ reduces s to a pure semigroup of adjointable isometries (already given as a standard right shift). We have $E = E_u \oplus E_u^+$ if and only if I is complemented in \mathcal{B}. In particular, if I is essential (and proper), then E_u^+ is $[0]$ but $E_u \neq E = E_u^{\perp\perp}$.

What about E_u^- in the general situation? Well, we must have $\bigcap_{t \in \mathbb{R}_+} s_t(E_u^+) = [0]$. (Otherwise, this subset of $s_0(E_u^+) = E_u^+$ would contribute to $\bigcap_{t \in \mathbb{R}_+} s_tE = E_u.$) Also, suppose $x \in E_u^+$, that is, $\langle y, x \rangle = 0$ for all those $y \in E$ that, for all r, can by written as $y = s_t y_r$. Note that with y also y_t is in E_u for all t. (Indeed, $s_t(s_{ry_r}) = y = s_t y_t$ and s_t is injective. Therefore, $s_t y_{r+t} = y_t$ for all r.) Then $\langle y, s_t x \rangle = \langle s_t y_t, s_t x \rangle = \langle y_t, x \rangle = 0$, that is, $s_t x \in E_u^\perp$. In other words, E_u reduces s completely to a unitary semigroup and E_u^\perp reduces s to a completely nonunitary semigroup.

Note that, in Example 2.1, the submodule $E' := L^2(\mathbb{R}_+, I)$ of E_u fulfills $\bigcap_{t \in \mathbb{R}_+} s_tE' = [0]$. So, also $E_u^+ \oplus E' = L^2(\mathbb{R}_+, I \oplus I^+)$ reduces s to a completely nonunitary semigroup. There is no such condition as “maximal submodule reducing s_t to a completely nonunitary semigroup” that can replace pureness. However, $(E_u^+ \oplus E')^\perp = L^2(\mathbb{R}_+, I)$, which does not reduce s. So, $E_u^+ \oplus E'$ is not completely reducing. We do not know if E_u^+ is something like the biggest completely reducing submodule module that reduces s to a completely nonunitary semigroup. (The main problem is to show that if F_1 and F_2 reduce s to completely nonunitary semigroups, then so does $\overline{F_1 + F_2}$.)

We collect:

2.2 Proposition. A semigroup s of isometries on E (neither necessarily adjointable nor necessarily strongly continuous) has a unique maximal unitary part acting on the completely reducing submodule E_u and E_u^\perp reduces s to a completely nonunitary semigroup. $E_u \oplus E_u^\perp$ need not be all of E.

There is an interesting submodule of E_u^\perp, namely, $E_p := \bigcup_{t} (s_tE)^\perp$. (Indeed, since s_tE is not smaller than E_u, the complement $(s_tE)^\perp$ is not bigger than the complement E_u^\perp, and this turns over to union and closure.) This submodule is interesting, because if s is pure so that $\text{id}_E - s_t s_t^*$ converges strongly to id_E, then $E_p = \bigcup_{t} (s_tE)^\perp = \bigcup_{t} (\text{id}_E - s_t s_t^*)E = E$. And whenever the statements of Theorem 1.1 hold in full, then $E_u^\perp = E_p$.

Generally, also the submodule E_p reduces s to a completely nonunitary semigroup of isometries. In Example 2.1, we have $E_p = E_u^\perp$, but in Example 2.5 we will see that this need not be so, not even if s is adjointable. In general, we also do not know, if $E_p^\perp = E_u$. (Note, however, that if $E_p^\perp \supset E_u$ reduces s to a semigroup of unitaries, then necessarily $E_p^\perp = E_u$, because E_u is maximal.) This situation improves if s is adjointable.

In Example 2.1 the restriction of s to $E_u^\perp = E_p$ is a a standard right shift. In particular, the restricted s_t are adjointable. Also here, we do not know if this is true in general for one of the restrictions of s to E_u^\perp or to E_p. However, if the s_t are adjointable from the beginning, then

$$E_p^\perp = \left(\bigcup_{t} (s_tE)^\perp \right)^\perp = \bigcap_{t} (s_tE)^{\perp\perp} = \bigcap_{t} s_tE,$$
because s,E is complemented, so, $E_p^\perp = E_u$. Also, the restriction of s_t to E_p remains adjointable. (Suppose $x \in (s,E)^\perp$, so that $(x,s,y) = 0$ for all $y \in E$. So, $s_t^*x = s_t(s_y) = 0$, that is, $s_t^*x \in (s,E)^\perp$. It follows that the adjoint s_t^* leaves E_p invariant, and the restriction of s_t^* is an adjoint of the restricted s_t. Finally, the restriction to E_p is pure. (Indeed, to show that $s_t^*y \to 0$ for all $y \in E_p$, by boundedness of s_t^* it is sufficient to show that for x from the dense subset $\bigcup_r (s,E)^\perp$. So let $y \in (s,E)^\perp$ for some r. Then $0 = (s_t,x,y) = (x,s_t^*y)$ for all $x \in E$, hence, $s_t^*y = 0$. It follows that $s_t,y = 0$ for all $t \geq r$.) Moreover, E_p is the unique biggest completely reducing submodule of E_u^\perp that reduces s to a pure semigroup of isometries.

We collect:

2.3 Proposition. A semigroup s of adjointable isometries on E (not necessarily strongly continuous) has a unique maximal pure part acting on E_p such that E_p is completely reducing, and $E_p^\perp = E_u$ reduces s to the unique maximal unitary part. $E_u \oplus E_p$ need not be all of E but (since $E_u = E_p^\perp$) its orthogonal complement is $\{0\}$.

Clearly, if s is also strongly continuous, then to the part on E_p we may apply Theorem [1.2]

We now discuss an example that shows that even assuming adjointability, the module E need not coincide with $E_u \oplus E_p$. Since in this example $E_u = \{0\}$, it also follows that completely nonunitary ($E_u = \{0\}$) does not imply pure ($E_p = E$). We prepare with the following lemma (the second part of which will also be important in the proof in Section [3]).

2.4 Lemma. Let u, denote the unitary right-shift modulo 1 on $L^2[0,1)$. Suppose \tilde{s} is an isometry on a Hilbert B–module \tilde{E}. For $t \in \mathbb{R}_+$ denote by n_t the largest integer $\leq t$.

1. The maps

$$s_t := (u_t \otimes \text{id}_F)(\mathbb{I}_{[0,1-(-n_t)])} \otimes \mathbb{I}_{[0,n+1]} + \mathbb{I}_{[1-(-n_t),1]} \otimes \mathbb{I}_{[0,n+1]})$$

define a strongly continuous semigroup of adjointable isometries on $L^2[0,1) \otimes \tilde{E}$.

2. If $\tilde{E} = F^\infty$ and if $\tilde{s} : (y_1, y_2, \ldots) \mapsto (0, y_1, y_2, \ldots)$ is the one-sided right shift, then s_t, under the canonical isomorphism

$$L^2[0,1) \otimes F^\infty \cong L^2[0,1)^\infty \otimes F \cong L^2(\mathbb{R}_+) \otimes F,$$

is nothing but the standard right shift v_t on $L^2(\mathbb{R}_+) \otimes F$.

Proof. Clearly, s_t are adjointable isometries. The function u_t is strongly continuous and the projections $\mathbb{I}_{[0,1-(-n_t)])}$ and $\mathbb{I}_{[1-(-n_t),1]}$ in $B(L^2[0,1))$ depend strongly continuously on $t \in [n-1, n)$ for all $n \in \mathbb{N}$. So, for the same reason for which the standard right shift v_t is strongly continuous as discussed before Theorem [1.2] also s_t is strongly right continuous. On the other hand, the definition of s_t does not change (for $t > 0$), if we replace n_t with the largest integer $< t$. So, s_t is
also strongly left continuous. For showing Part I it, therefore, remains to show that the \(s_r \) form a semigroup.

Note that \(s_n = \text{id} \otimes \mathbb{S}^n \) for all \(n \in \mathbb{N}_0 \). (In particular, \(s_0 = \text{id} \).) Also, \(s_t s_n = s_{t+n} = s_n s_t \) for all \(t \in \mathbb{R}_+ \) and \(n \in \mathbb{N}_0 \), is easily verified. So, it is sufficient to verify the semigroup property \(s_r s_t = s_{r+t} \) for \(r, t \in (0, 1) \). Note that

\[
\mathbb{H}_{[1-r,1]} u_t = u_t \begin{cases} \\
\mathbb{H}_{[1-r,t,1-t]} & t \leq 1-r, \\
\mathbb{H}_{[0,1-t]} + \mathbb{H}_{[2-r,t,1]} & t \geq 1-r,
\end{cases}
\]

hence,

\[
\mathbb{H}_{[0,1-r]} u_t = (\text{id} - \mathbb{H}_{[1-r,1]}) u_t = u_t \begin{cases} \\
\mathbb{H}_{[0,1-r]} + \mathbb{H}_{[1-t,1]} & t \leq 1-r, \\
\mathbb{H}_{[1-t,2-r-t]} & t \geq 1-r.
\end{cases}
\]

Therefore,

\[
s_r s_t = (u_r u_t \otimes \text{id}_F) \begin{cases} \\
\left(\mathbb{H}_{[0,1-r-t]} + \mathbb{H}_{[1-t,1]} \right) \mathbb{H}_{[0,1-t]} \otimes \text{id}_F + \mathbb{H}_{[1-r-t,1-t]} \mathbb{H}_{[0,1-t]} \otimes \mathbb{S}^2 & t \leq 1-r, \\
\mathbb{H}_{[1-t,2-r-t]} \mathbb{H}_{[0,1-t]} \otimes \text{id}_F + \left(\mathbb{H}_{[1-t,2-r-t]} \mathbb{H}_{[1-t,1]} + \mathbb{H}_{[0,1-t]} \right) \mathbb{H}_{[0,1-t]} \otimes \mathbb{S}^2 \mathbb{S} & t \geq 1-r,
\end{cases}
\]

\[
= (u_{r+t} \otimes \text{id}_F) \begin{cases} \\
\mathbb{H}_{[0,1-r-t]} \otimes \text{id}_F + \mathbb{H}_{[1-t,1]} \otimes \mathbb{S}^2 + \mathbb{S} + 0 \otimes \mathbb{S}^2 & t \leq 1-r, \\
0 \otimes \text{id}_F + \mathbb{H}_{[1-t,2-r-t]} \otimes \mathbb{S} \mathbb{S} + \mathbb{H}_{[2-r,t,1]} \otimes \mathbb{S}^2 & t \geq 1-r
\end{cases}
\]

\[
= (u_{r+t} \otimes \text{id}_F) \begin{cases} \\
\mathbb{H}_{[0,1-r-t]} \otimes \text{id}_F + \mathbb{H}_{[1-t,1]} \otimes \mathbb{S} \mathbb{S} & t \leq 1-r, \\
\mathbb{H}_{[0,2-r-t]} \otimes \mathbb{S} \mathbb{S} + \mathbb{H}_{[2-r,t,1]} \otimes \mathbb{S}^2 & t \geq 1-r
\end{cases}
\]

in either case.

Part II is shown best by decomposing \(L^2(\mathbb{R}_+) \otimes F \) into a direct sum over \(L^2[n-1,n) \otimes F \) \((n \in \mathbb{N})\) in which, then, each \(L^2[n-1,n) \otimes F \) is identified with \(L^2[0,1) \otimes F \). As tracking what the standard right shift on \(L^2(\mathbb{R}_+) \otimes F \) does in this identification, is quite obvious, we do not give details. ■

2.5 Example. The first part of the lemma promises to find an example of a strongly continuous semigroup of adjointable isometries \(s_r \) on a Hilbert module \(E \) with \(E^+_p = \{0\} \) but \(E_p \neq E \),
provided we find an adjointable isometry \tilde{s} on a Hilbert module \tilde{E} such that $\tilde{E}_p := \bigcup_n (\tilde{s}^* \tilde{E})^\perp \neq \tilde{E}$ but $\tilde{E}_p^+ \neq \{0\}$. (Indeed, defining E and s_i as in the lemma, we conclude from $s_n = \operatorname{id} \otimes \tilde{s}^n$ and from $s_i s_i^*$ increasing, that $E_p = L^2(0, 1) \otimes E^\sigma \neq E$. The statement about the complement is shown precisely as for I and B in the beginning of Example 2.1.)

Let \tilde{v} be a proper isometry on a Hilbert space $H \neq \{0\}$. Define $\tilde{E} := C_b(\mathbb{N}, H)$, the bounded H–valued functions on \mathbb{N}. It is routine to show that the inner product $\langle f, g \rangle(k) := \langle f(k), g(k) \rangle$ turns \tilde{E} into a Hilbert module over $\mathcal{B} := C_b(\mathbb{N})$. Then the operator \tilde{s} on \tilde{E} defined by pointwise action of \tilde{v} on a function $f \in \tilde{E}$, $[\tilde{s}f](k) := \tilde{v}f(k)$, is an isometry and pointwise action of \tilde{v}^* is an adjoint. Since \tilde{v} is proper, we may choose an orthonormal family $\{e_n\}_{n \in \mathbb{N}}$ in H such that $e_n \in (\tilde{v}^{n-1} \tilde{v}^{n-1} \tilde{v}^n - \tilde{v}^n \tilde{v}^n) H$. Define $f \in \tilde{E}$ by $f(k) = e_k$. Then, clearly, $\lim_{n \to \infty} \tilde{v}^n \tilde{v}^n f$ does not exists, so $f \notin \tilde{E}$. On the other hand, if \tilde{v} is pure (that is \tilde{v}^n converges strongly to 0), then, clearly, $\tilde{E}_p^+ = \{0\}$.

2.6 Observation. Note that in the preceding example with pure \tilde{v}, it is easy to see that E_p may be identified with $H \otimes \mathcal{B}$. Since every infinite-dimensional Hilbert space admits a pure isometry, this also shows that in this case $C_b(H) \supset H \otimes C_b(\mathbb{N})$.

One may ask, why in the example, not taking immediately a pure strongly continuous semigroup of isometries \tilde{s}_i on H (necessarily unitarily equivalent to the standard right shift on some $L^2(\mathbb{R}_+, K)$? In fact, there is no problem to define, then, on the same $\tilde{E} = C_b(\mathbb{N}, H)$ a semigroup of adjointable isometries \tilde{s}_i by pointwise action of \tilde{v}_i on functions on \tilde{E}. However, the function $g \in \tilde{E}$ defined by

$$g(k) := y \frac{\| \frac{1}{k+1} \|^*}{\sqrt{\frac{1}{k} - \frac{1}{k+1}}} = y \sqrt{k(k+1)} \| \frac{1}{k+1} \|^*$$

for some non-zero vector $y \in K$ shows that the semigroup \tilde{s}_i is not strongly continuous. It is strongly continuous when restricted to the submodule $E_p = H \otimes C_b(\mathbb{N}) \ni g$. The same g show that \tilde{s}_i is not even \mathcal{B}–weakly continuous, that is, $t \mapsto \langle g, \tilde{s}_i g \rangle$ is not continuous (in any standard topology of \mathcal{B}).

2.7 Observation. Note that every semigroup of (not necessarily adjointable) isometries s_i on E may be ‘dilated’ to a semigroup \tilde{s}_i of unitaries on \tilde{E}. (‘Dilating’ means that $\tilde{E} \supset E$ and that \tilde{s}_i (co)restricts to s_i on E.) Indeed, if we put $E_t :=$ and define the maps $\beta_{t,s}: E_s \to E_t$ for all $t \geq s$ to be s_{t-s}, then the E_t and $\beta_{t,s}$ form an inductive system. Let \tilde{E} denote the inductive limit and denote by i_t the canonical embeddings of E_t into \tilde{E}. It is not difficult to show that $\tilde{s}_i: k_{t,s}x \mapsto k_{t,s}x$ determines a unitary for each t and that these unitaries form a semigroup \tilde{s}. (See the appendix of Bhat and Skeide [BS00] for inductive limits of Hilbert modules.) Of course, $E \cong i_0 E \subset \tilde{E}$ and restriction to E gives back s. (The inductive limit for the semigroup of non necessarily adjointable isometries in Example 2.1 is $L^2(\mathbb{R}, \mathcal{B})$ with canonical embeddings i_t sending $L^2(\mathbb{R}_+, I) \oplus L^2(\mathbb{R}_+, \mathcal{B})$ onto the subset $L^2((-\infty, -t], I) \oplus L^2([-t, \infty), \mathcal{B})$ of $L^2(\mathbb{R}, \mathcal{B})$.)
One may show: \(\widetilde{s} \) is strongly continuous if and only if \(s \) is; \(E \) is complemented in \(\widetilde{E} \) if and only if the \(\beta_{t,s} \) are adjointable, that is, if the \(s_t \) are adjointable; if \(s \) is even pure, then the projections \(E_t \) onto \((\widetilde{s}_tE)^\perp \) converge strongly to \(\text{id}_E \) and 0 for \(t \to \infty \) and \(t \to -\infty \), respectively. So, if \(s \) is a strongly continuous semigroup of adjointable isometries, then the family \(E_t \) is a spectral measure that is strongly continuous. So, it follows that the integrals

\[
\widetilde{T}_t := \int e^{it\lambda} \, dE_\lambda
\]

exist strongly and define a strongly continuous group of unitaries on \(iE \). Extending \(wts \) to negative times, the two strongly continuous unitary groups \(\widetilde{s} \) and \(\widetilde{T} \) fulfill the Weyl commutation relations

\[
\widetilde{s}_t \widetilde{T}_s = e^{ist} \widetilde{T}_s \widetilde{s}_t.
\]

Now, if we apply our theorem to the pure strongly continuous semigroup \(s \), so that \(s \) is given as a standard right shift on some \(L^2(\mathbb{R}_+, F) \), then \(\widetilde{E} = L^2(\mathbb{R}, F) \) with \(i_tE = L^2([-t, \infty), F) \), and

\[
[\overline{T}_t(f)](x) = e^{itx} f(x).
\]

The Stone-von Neumann theorem asserts that every pair of strongly continuous semigroups of unitaries on a Hilbert space \(H \) that fulfills the Weyl relations, is unitarily equivalent to the pair \(\widetilde{s} \) and \(\overline{T} \) for some Hilbert space \(F \).

This can be interpreted in two directions. On the one hand, whenever the Stone-von Neumann theorem holds, we can use this to prove Theorem 1.2. (Simply construct \(\widetilde{E} \), \(\widetilde{s} \), and \(\overline{T} \), apply the Stone-von Neumann theorem, and remember how \(E \) and \(s \) sit inside \(L^2(\mathbb{R}, F) \).) On the other hand, if, starting with strongly continuous unitary groups \(\widetilde{s} \) and \(\overline{T} \) on \(\widetilde{E} \) that fulfill the Weyl relations, we would succeed to find a submodule \(E \) turning the \(E_\lambda \) (defines as above) into a spectral measure giving \(\overline{T}_t \) back as \(e^{it\lambda} \), then Theorem 1.2 would allow prove the Stone-von Neumann theorem for that pair.

For Hilbert spaces the latter can be done, writing \(\overline{T}_t \) as \(\int_\mathbb{R} e^{it\lambda} \, dE_\lambda \) by means of Stone’s theorem, and showing that \(\widetilde{s}_t dE_\lambda = dE_{t+s} \widetilde{s}_t \). (The \(E := E_0 \) does the job.) For Hilbert modules there is no spectral theorem, consequently, there is no Stone theorem for unitary groups. We, thus, do not know how to restrict one of the unitary groups fulfilling the Weyl relations to a pure semigroup of isometries to which our Theorem could be applied. Consequently, we do not get a Stone-von Neumann theorem for unitary groups on Hilbert modules.

2.8 Observation. Note that for von Neumann (or \(W^* \)-modules), Theorem 1.1 generalizes verbatim, if we understand that “strongly continuous” is now referring to the strong operator topology of the von Neumann module \(E \subset \mathcal{B}(G, H) \), where the von Neumann algebra \(\mathcal{B} \) is acting (nondegenerately) on a Hilbert space \(G \), and where the Hilbert space \(H = E \odot G \) is the internal tensor nproduct over \(\mathcal{B} \) of \(E \) with the Hilbert \(\mathcal{B} \)-\(\mathbb{C} \)-module \(G \); see Skeide [Ske00, Ske01]. (The
fact that the semigroup in Theorem 1.2 is a C_0-semigroup, which is much stronger a continuity condition, plays a crucial role in the proof in Section 3. Like all bounded right linear maps on a von Neumann module, the s_t are adjointable, automatically. Also, $E_u^+ = \overline{E_u^+}$ (the strong closure of E_u) and $E = E_u \oplus E_u^+$. In the case, $E = E_u^+$ (equivalently, $E_u = \{0\}$), necessarily $s_t s_t^* \uparrow \text{id}_E$ in the strong topology of $B^a \subset B(H)$. We may apply Theorem 1.1 to that semigroup on H, and obtain a Hilbert space K such that s_t is given by v_t on $L^2(\mathbb{R}_+, K)$.

Now by Skeide [Ske05], the subspace $E \subset B(G, H)$ is characterized as
\[E = \{ x \in B(G, H) : \rho'(b') x = xb' \ (b' \in B') \}, \]
where ρ' is a (unique) normal unital representation of B' on H, and $B^a(E) = \rho'(B')$. Since $H = L^2(\mathbb{R}_+, K)$ and $s_t \in B^a(E)$, there is a representation of B' on $L^2(\mathbb{R}_+, K) = L^2(\mathbb{R}_+) \otimes K$ such that its range commutes with all v_t. It is standard to verify, that this representation is necessarily of the form $\text{id}_{L^2(\mathbb{R}_+)} \otimes \sigma'$, where σ' is a (normal unital) representation of B' on K. By [Ske03], the space
\[F := \{ y \in B(G, K) : \sigma'(b') x = xb' \ (b' \in B') \} \]
is a von Neumann B-module. It is routine to verify that the strong closure of $L^2(\mathbb{R}_+) \otimes F$ in $B(G, L^2(\mathbb{R}_+) \otimes K)$ (the element $f \otimes y$ acting as $g \mapsto f \otimes yg$) is E.

Of course, in the very same way we do get a Stone-von Neumann theorem for strongly continuous semigroups of unitaries on a von Neumann module.

3 Proof of Theorem 1.2

Let B be a C^*-algebra and let E be a Hilbert C^*-module over B. Let $B^a(E)$ denote the C^*-algebra of all adjointable (hence bounded) operators on E. Let $\{s_t\}_{t \geq 0}$ be a strongly continuous one parameter semigroup of adjointable isometries on E, that is,

Note that $s_t s_t^*$ is a decreasing family of projections with $s_0 s_0^* = \text{id}$. So for $0 \leq a < b < \infty$ also $p_{a,b} := s_a s_a^* - s_b s_b^*$ form a spectral measure on the reals half-line. We also put $p_{c,d} := 0$ if $c > d$, and $p_{a,\infty} := s_a s_a^*$. We take $E_{a,b} := p_{a,b} E$.

Recall the standard notation $c \vee d := \max\{c, d\}$, and $c \wedge d := \min\{c, d\}$.

3.1 Proposition

Let $0 \leq t < \infty, 0 \leq a < b \leq \infty$ and $0 \leq c < d \leq \infty$.

1. $p_{a,b} p_{c,d} = p_{a \vee c, b \wedge d}$.
2. $s_t p_{a,b} = p_{a+t,b+t}; \hspace{1em} p_{a,b} s_t = s_t p_{(a-t)\vee 0, (b-t)\vee 0}$
3. $s_t^* p_{a,b} = p_{(a-t)\vee 0, (b-t)\vee 0}^*; \hspace{1em} p_{a,b} s_t^* = s_t^* p_{a+t,b+t}$.

Proof. (i) is a standard computation for spectral measures.

The first formula in (ii) follows from $s_t s_a s_a^* = s_{a+t} s_a^* = s_{a+t} s_{a+t}^* =$. The second formula in (ii) follows by taking also into account that for $t \geq a$ we get $s_{a+t} s_t = s_{a+t-a} = s_t = s_0 s_0^* s_t$.

12
The formulae in (iii) are adjoints of (ii). ■

The \(E_{a,b} \) are our candidates for \(L^2([a,b), F) \). A typical behaviour is:

3.2 Corollary
From \(s_t p_{a,b} = p_{a+b,t+} s_t \) and \(p_{a,b} s_t^* = s_t^* p_{a+t,b+} \) we infer that \(s_t \) (co)restricts to a unitary \(E_{a,b} \to E_{a+t,b+t} \) with inverse \(s_t^* \) restricted to \(E_{a+t,b+t} \).

We are now going to define the unitary groups \(u^{a,b} \) that simulate the shift modulo \(b - a \) on \(L^2([a,b), F) \). For \(0 \leq a < b < \infty \) and \(0 \leq t < (b-a) \), define \(u^{a,b}_t \) by

\[
u^{a,b}_t = s_t p_{a,b-t} + s_t^* p_{b-t,b}.
\]

Making use of Proposition 3.1, we also have:

\[
u^{a,b}_t = p_{a+t,b+t} s_t^* + p_{a+t,b-t} s_t.
\]

We extend the definition of \(u^{a,b}_t \) periodically to all \(t \in \mathbb{R} \) by setting

\[
u^{a,b}_t = u^{a,b}_{t-n(b-a)},
\]

for \(t \in [n(b-a), (n+1)(b-a)) \), with \(n \in \mathbb{Z} \).

3.3 Proposition
(Unitarity and Group property) Each \(u^{a,b}_t \) is a unitary on \(E_{a,b} \) and \(u^{a,b}_r u^{a,b}_t = u^{a,b}_{r+t} \) for all \(r,t \in \mathbb{R} \).

Proof. Since \(u_t \) is periodic with period \(b-a \), it is sufficient if we do computations for times in \([0,b-a)\).

By Corollary 3.2, \(u^{a,b}_t \), as the direct sum of two unitaries from \(E_{a,b} = E_{a,b-t} \oplus E_{b-t,b} \) onto \(E_{a+t,b} \oplus E_{a,a+t} = E_{a,b} \), is unitary.

For the semigroup property, let \(0 \leq r,t < b-a \). Then

\[
u^{a,b}_r \nu^{a,b}_t = (s_r p_{a,b-r} + s^*_r p_{b-r,b})(p_{a+t,b+t} s_t + p_{a+t,b-t} s_t^*)
\]

\[= s_r p_{a+(a+b-r)} s_t + s_r p_{a+(b-r)} s_t^* s^*_r p_{b-a-t} + s_r p_{a+(b-r)} s_t^* s_r p_{b-a-t}
\]

\[+ s_r p_{a+(b-r)} s_t^* s_r p_{b-a-t} + s_r p_{a+(b-r)} s_t p_{b-r-a} s^*_t + s_r p_{a+(b-r)} s_t p_{b-r-a} s^*_t + s_r p_{a+(b-r)} s_t p_{b-r-a} s^*_t
\]

\[= s_r p_{a+b-r} s_t + s_r p_{a+b-r} s_t^* s^*_r p_{b-b-a-t} + s_r p_{a+b-r} s_t p_{b-a-t} + 0
\]

\[= s_r p_{a+b-r} s_t + s_r p_{a+b-r} s_t^* s^*_r p_{b-b-a-t} + s_r p_{a+b-r} s_t p_{b-a-t}
\]

\[= s_r p_{a+b-r} s_t + s_r p_{a+b-r} s_t^* s^*_r p_{b-b-a-t} + s_r p_{a+b-r} s_t p_{b-a-t}
\]

\[= s_r p_{a+b-r} s_t + s_r p_{a+b-r} s_t^* s^*_r p_{b-b-a-t} + s_r p_{a+b-r} s_t p_{b-a-t}
\]

\[= s_r p_{a+b-r} s_t + s_r p_{a+b-r} s_t^* s^*_r p_{b-b-a-t} + s_r p_{a+b-r} s_t p_{b-a-t}
\]

\[= s_r p_{a+b-r} s_t + s_r p_{a+b-r} s_t^* s^*_r p_{b-b-a-t} + s_r p_{a+b-r} s_t p_{b-a-t}
\]

\[= s_r p_{a+b-r} s_t + s_r p_{a+b-r} s_t^* s^*_r p_{b-b-a-t} + s_r p_{a+b-r} s_t p_{b-a-t}
\]

\[= u^{a,b}_{r+t}.
\]
Secondly, \(a + t \geq b - r \), that is, \(r + t \geq b - a \). So,
\[
u^a_t u^b_t = 0 + s_r P_{a,b-r} s^*_{b-a-r} + s^*_{b-a-r} P_{a+t,b} s_t + s^*_{b-a-r} P_{a+r,b-a-t} + s_{r-t}(b-a) P_{b-r-a-r} + s_{r-(b-a)-r} P_{2(b-a)-r-t,b} + s^*_{2(b-a)-r-t} P_{2b-a-r-t,b} = u^a_{r+1}(b-a) = u^{a,b}_{r+1}.
\]

Now, a semigroup homomorphism between groups is a group homomorphisms. So, the \(u^{a,b}_t \), effectively, form a unitary one-parameter group. ■

3.4 Proposition. (Continuity) \(t \mapsto u^{a,b}_t \) is strongly continuous.

Proof. Observe that for \(x \in E \) and \(t \geq 0 \), \(|s_t x - x| = |s_t^a x - s_t^a x| \leq |s_t^a| (|x - s_t x|) = |x - s_t x|\). Hence \(t \mapsto s_t^a \) is strongly continuous. If \(t \mapsto A_t \) and \(t \mapsto B_t \) are strongly continuous, then \(t \mapsto A_t B_t \) is also strongly continuous. (Indeed, by the principle of uniform boundedness, \(A_t \) is locally uniformly bounded. By \(||A_t B_t x - A_t B_t x|| \leq ||A_t|| ||(B_t - B_t) x|| + ||(A_t - A_t)B_t x|| \), we see that for fixed \(r \in \mathbb{R} \) and \(x \in E \), \(A_t B_t x \) converges to \(A_t B_t x \) for \(t \to r \).) Therefore, maps like \(t \mapsto s_{t+a} s_{t+b} \) and there adjoints are strongly continuous. Consequently, \(t \mapsto u^{a,b}_t \) is strongly continuous on \([0, (b - a))\). Further,
\[
\lim_{t \to (b-a)} u^{a,b}_t = \lim_{t \to (b-a)} [s_t P_{a,b-t} + s^*_{b-a-t} P_{b-t,b}] = \lim_{t \to (b-a)} [s_t (s_a s_t^a - s_t s_t^a) + s^*_{b-a-t} s^*_{b-t} - s_b s_t^b)] = 0 + \text{id}(s_a s_t^a - s_b s_t^b) = P_{a,b} = u^{a,b}_0.
\]

Therefore, also the periodic extension to the real line is strongly continuous. ■

The functions of the form \(x \mapsto q_{a,b} x \) in \(L^2([a, b], F) \) are precisely those which are invariant under the unitary shift modulo \(b - a \). Taking the mean should give as a projection onto that invariant subspace. Therefore, for \(x \in E \), and \(0 \leq a < b < \infty \), define
\[
q_{a,b} x = \frac{1}{b-a} \int_0^{b-a} u^{a,b}_t x dt
\]
in the sense of Riemann integral over the continuous function \(u^{a,b}_t x \).

3.5 Lemma. \(u^{a,b}_t q_{a,b} = q_{a,b} \).

Proof. It is enough to show the statement for \(0 \leq r < (b - a) \). As \(u^{a,b}_t = u^{a,b}_{t-(b-a)} \) for \(b - a \leq t < 2(b - a) \), we get
\[
u^{a,b}_t q_{a,b} x = \frac{1}{b-a} \int_0^{b-a} u^{a,b}_t u^{a,b}_t x dt = \frac{1}{b-a} \int_{r}^{+r} u^{a,b}_t x dt = \frac{1}{b-a} \int_{r}^{+r} u^{a,b}_t x dt = q_{a,b} x.
\]
3.6 Corollary. \(q_{a,b} \) is a subprojection of \(p_{a,b} \) on \(E \).

Proof. As
\[
u_t^{a,b} = p_{a+b} s_t + p_{a+a+b} s_{b-a-t},
\]
it is clear that the range of \(q_{a,b} \) is contained in the range of \(p_{a,b} \).

To show that a linear map \(q \) is a projection, it is sufficient to check \(\langle qx, qy \rangle = \langle x, qy \rangle \). For \(q_{a,b} \) that formula follows from \(\langle qx, qy \rangle = \frac{1}{2} \int_0^{b-a} \langle x, (u_t^{a,b})^* q_{a,b} y \rangle \) and the lemma. ■

The following simple corollary of the lemma shows that pieces of \(q_{a,b} x \) in subintervals behave nice with respect to the the shift.

3.7 Corollary. For \(0 < r < b - a \),
\[
s_r p_{a+r} q_{a,b} = p_{a+r} s_r q_{a,b} = p_{a+r} u_r q_{a,b} = p_{a+r} q_{a,b},
\]
We now come to the analytical heart of our proof of Theorem 1.2. The following lemma will guarantee that we may approximate everything by linear combinations of elements \(q_{a,b} x \) \((x \in E, 0 \leq a < b < \infty) \).

3.8 Lemma. For \(x \in E_{0,1} \),
\[
\lim_{n \to \infty} \sum_{k=1}^{n} q_{\frac{k-1}{n}} x = x.
\]

Proof. Note that
\[
\sum_{k=1}^{n} q_{\frac{k-1}{n}} x = n \int_0^1 \sum_{k=1}^{n} u_{\frac{k-1}{n}} x dt.
\]
For \(\epsilon > 0 \), choose \(N \) such that for all \(t \in [0, \frac{1}{N}] \),
\[
\|s_t x - x\| < \frac{\epsilon}{2}, \text{ and } \|s_t^* x - x\| < \frac{\epsilon}{2}.
\]
Consider \(n \geq N \). We get
\[
\left\| \left(\sum_{k=1}^{n} u_{\frac{k-1}{n}} x \right) - x \right\| = \left\| \left(\sum_{k=1}^{n} p_{\frac{k-1}{n}} s_k x + \sum_{k=1}^{n} p_{\frac{k-1}{n}} s_{k}^* x \right) - \left(\sum_{k=1}^{n} p_{\frac{k-1}{n}} x + \sum_{k=1}^{n} p_{\frac{k-1}{n}} x \right) \right\|
\leq \left\| \sum_{k=1}^{n} p_{\frac{k-1}{n}} s_k x - x \right\| + \left\| \sum_{k=1}^{n} p_{\frac{k-1}{n}} s_{k}^* x - x \right\|
\leq \left\| \sum_{k=1}^{n} p_{\frac{k-1}{n}} s_k x - x \right\| + \left\| \sum_{k=1}^{n} p_{\frac{k-1}{n}} s_{k}^* x - x \right\|
\leq \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon.
\]

15
Hence, \(\left\| n \int_0^{1/n} \sum_{k=1}^{n} u_k x dt - x \right\| = \left\| n \int_0^{1/n} (\sum_{k=1}^{n} u_k - \text{id}) x dt \right\| \leq n \int_0^{1/n} \epsilon dt = \epsilon. \)

Form now on we prepare for proving in Proposition 3.13 that \(E_{0,1} \cong L^2((0, 1), q_{0,1}E) \), making \(q_{0,1}E \) our hot candidate for being the \(F \) we seek, and for proving in Corollary 3.14 that \(u^{0,1} \), indeed, transforms under this isomorphisms into the shift modulo 1.

3.9 Proposition. For \(0 \leq a < c < d < b < \infty \),
\[p_{c,d} q_{a,b} p_{c,d} = \frac{d - c}{b - a} q_{c,d}. \]

Proof. For \(0 \leq t \leq (b - a) \),
\[p_{c,d}(p_{a+t,b} s_t + s_t^* p_{a+t,b}) p_{c,d} = p_{c+t,d} p_{c+t,d + s_t} + s_t^* p_{c+t,d} + p_{c+t,d} p_{c+t,d} \]
which is non-zero only if \(0 < t < (d - c) \). Hence, by the application of change of variable
\[q_{a,b} x = \frac{1}{b - a} \int_0^{b-a} (p_{a+t,b} s_t + p_{a,a+t} s_{b-a-t}) x dt \]

\[= \frac{1}{b - a} \left(\int_0^{b-a} p_{a+t,b} s_t x dt + \int_0^{b-a} p_{a,a-t} s_{b-a-t} x dt \right) \]

\[= \frac{1}{b - a} \int_0^{b-a} (p_{a+t,b} s_t + s_t^* p_{a+t,b}) x dt, \]
\[\]
we get
\[p_{c,d} q_{a,b} p_{c,d} x = \frac{1}{b - a} \int_0^{d-c} (p_{c+t,d} s_t + s_t^* p_{c+t,d}) x dt \]

\[= \frac{d - c}{b - a} q_{c,d} x. \]

3.10 Proposition. \(s_r q_{a,b} = q_{a+r,b+r} s_r \), that is, \(s_r \) (co)restricts to a unitary \(q_{a,b} E \to q_{a+r,b+r} E \).

Proof.
\[s_r q_{a,b} x = \frac{1}{b - a} \int_0^{b-a} s_r \left[s_t p_{a+b-t} + p_{a+a+t-s_{b-a-t}} \right] x dt \]

\[= \frac{1}{b - a} \int_0^{b-a} \left[s_t p_{a+r+b-r-t} s_r x + p_{a+r,a+r+t} s_{b-a-t} s_r x \right] dt \]

\[= \frac{1}{b - a} \int_0^{b-a} \left[s_t p_{a+r+b-r-t} s_r x + p_{a+r,a+r+t} \left(p_{c+a} s_{b-a-t} s_r x \right) \right] dt \]

\[= \frac{1}{b - a} \int_0^{b-a} \left[s_t p_{a+r+b-r-t} + p_{a+r,a+r+t} s_{b-a+(b-r)-r} s_r x \right] dt \]

\[= q_{a+r,b+r} s_r x. \]

3.11 Proposition. Suppose \(z \in q_{0,1}(E) \). Then for \(0 < r, t \), with \(r + t < 1 \),
\[p_{0,r+t} z = p_{0,r} z + s_r p_{0,t} z. \]
Proof. We have $p_{0,r+t}z = p_{0,r}z + p_{r,r+t}z = p_{0,r}z + p_{r,r+t}p_{r,1}z$. Now Proposition 3.9 with $a = 0$, $b = 1$ yields $p_{r,1}z = p_{r,1}s_{1}z$. Hence, $p_{0,r+t}z = p_{0,r}z + p_{r,r+t}p_{r,1}s_{1}z = p_{0,r}z + p_{r,r+t}s_{1}z = p_{0,r}z + s_{1}p_{0,r}z$. ■

3.12 Proposition. Suppose $z, w \in q_{0,1}(E)$. Then for $0 < c_{1} < d_{1} < 1$ and $0 < c_{2} < d_{2} < 1$, \(\langle p_{c_{1},d_{1}z}, p_{c_{2},d_{2}w} \rangle = \mu([c_{1},d_{1}] \cap [c_{2},d_{2}])(z, w) \), where μ denotes the Lebesgue measure.

Proof. For $0 < t < 1$, set $f(t) = \langle z, p_{0,t}w \rangle$. Then from the previous Proposition, for $0 < r + t < 1$,

$$f(r + t) = \langle p_{0,r+t}z, p_{0,r+t}w \rangle = \langle p_{0,r}z, p_{0,r}w \rangle + \langle s_{r}p_{0,r}z, s_{r}p_{0,r}w \rangle = \langle p_{0,r}z, p_{0,r}w \rangle + \langle p_{0,r}z, p_{0,r}w \rangle = f(r) + f(t).$$

Then by strong continuity of $t \mapsto p_{0,t}$, it follows that $f(t) = t \langle z, w \rangle$ for all t. Hence the result. ■

Recall that $L^{2}([0,1], F) := L^{2}[0,1] \otimes F$ is the external tensor product. The subset of functions of the form $\mathbb{I}_{[c,d]}z$ ($0 \leq c < d \leq 1$) is total.

3.13 Proposition. Take $F = q_{0,1}(E)$. Define $M : L^{2}([0,1], F) \to E_{0,1}$ by

$$M(\mathbb{I}_{[c,d]}z) = p_{c,d}z,$$

for $z \in F$ and $0 \leq c < d \leq 1$ (\mathbb{I} denotes the indicator function), and extending linearly. Then M extends to a unitary map.

Proof. The isometry property of M has been proved in the previous proposition. Now for $x \in E_{0,1}$, and $1 \leq k \leq n$, by Proposition 3.9 \(q_{(\frac{k-1}{n}, \frac{k}{n})} x \) is in the range of $p_{(\frac{k-1}{n}, \frac{k}{n})} q_{0,1}$. Then from Proposition 3.8 \(\lim_{n \to \infty} \sum_{k=1}^{n} q_{(\frac{k-1}{n}, \frac{k}{n})} x = \lim_{n \to \infty} n \int_{0}^{1} \sum_{k=1}^{n} u_{t} \mathbb{I}_{(\frac{k-1}{n}, \frac{k}{n})} x dt = x \). This shows that the range of M is whole of $E_{0,1}$. ■

Let π_{t} denote the periodic shift on $L^{2}([0,1], F)$

3.14 Corollary. $M^{*}u_{t}^{0,1} = \pi_{t}M^{*}$.

Proof. It suffices to check this on $p_{c,d}z$ with either $0 \leq c < d < 1 - t$ or $1 - t \leq c < d < 1$, as every other choice is a sum of such. For the stated cases, the statements follows directly from the definitions of $u_{t}^{0,1}$, π_{t}, and M. ■

3.15 Remark. Of course, the proposition and its corollary remain true, replacing the interval $[0,1)$ with any other interval nonempty interval $[a,b) \subset \mathbb{R}_{+}$. 17
Proof of Theorem 1.2. By pureness,
\[E = \bigoplus_{k=0}^{\infty} E_{k,k+1} = \bigoplus_{k=0}^{\infty} s_k E_{0,1}. \]

Since \(s_k E_{0,1} \equiv L^2[0,1) \otimes F \), and since \(s \) acts under these identifications as it should, we are ready for an application of Lemma 2.4(2). \(\square \)

Acknowledgments. We started thinking about Theorem 1.2 during a Research in Pairs project at Mathematisches Forschungsinstitut Oberwolfach in 2007; hospitality at MFO during this RiP is gratefully acknowledged. MS is greatful to BVRB and Indian Statistical Institute Bangalore for kind hospitality during several stays, and for travel support from the Dipartimento E.G.S.I. of University of Molise.

References

[BV00] B.V.R. Bhat and M. Skeide, *Tensor product systems of Hilbert modules and dilations of completely positive semigroups*, Infin. Dimens. Anal. Quantum Probab. Relat. Top. 3 (2000), 519–575, (Rome, Volterra-Preprint 1999/0370).

[Ske00] M. Skeide, *Generalized matrix C*-algebras and representations of Hilbert modules*, Mathematical Proceedings of the Royal Irish Academy 100A (2000), 11–38, (Cottbus, Reihe Mathematik 1997/M-13).

[Ske01] , *Hilbert modules and applications in quantum probability*, Habilitationschrift, Cottbus, 2001, Available at http://web.unimol.it/skeide/.

[Ske03] , *Commutants of von Neumann modules, representations of \(\mathcal{B}^{a}(E) \) and other topics related to product systems of Hilbert modules*, Advances in quantum dynamics (G.L. Price, B.M. Baker, P.E.T. Jorgensen, and P.S. Muhly, eds.), Contemporary Mathematics, no. 335, American Mathematical Society, 2003, (Preprint, Cottbus 2002, arXiv: math.OA/0308231), pp. 253–262.

[Ske05] , *Von Neumann modules, intertwiners and self-duality*, J. Operator Theory 54 (2005), 119–124, (arXiv: math.OA/0308230).

[SN64] B. Sz.-Nagy, *Isometric flows in Hilbert space*, Proc. Comb. Phil. Soc. 60 (1964), 45–49.

[SNF70] B. Sz.-Nagy and C. Foias, *Harmonic analysis of operators on Hilbert space*, North-Holland Publishing Company, 1970.