DISTURBANCE OF THE MUSCULOSKELETAL SYSTEM IN JUVENILE ANKYLOSING Spondylitis and disease developed in the adulthood (Involvement of spine and sacroiliac joints)

Ye.D. Yehudina *, O.V. Syniachenko **, T.R. Polesova **, O.E. Chernyshova **, M.V. Yermolaeva *

SE «Dnipropetrovsk medical academy of Health Ministry of Ukraine» *
Department of internal medicine 3
Y. Vernadsky str., 9, Dnipro, 49044, Ukraine
e-mail: elizavetaegudina@gmail.com
Donetsk national medical university **
Department of internal medicine 1,
Pryvokzalna str., 27, Lyman, Donetsk region, 84404, Ukraine

GУ «Днепропетровская медицинская академия МЗ Украины» *
кафедра внутренней медицины 3
(зав. – д. мед. н., доц. А.А. Ханюков)
ул. В. Вернадского, 9, Днепр, 49044, Украина

Донецкий национальный медицинский университет **
кафедра внутренней медицины 1
(зав. – член-кор. НАМН Украины, д. мед. н., проф. О.В. Синяченко)
ул. Правоказильная, 27, Лиман, Донецкая область, 84404, Украина

Key words: ankylosing spondylitis, children, adults, spine, sacroiliac joints

Abstract. Disturbance of the musculoskeletal system in juvenile ankylosing spondylitis and disease developed in the adulthood (involvement of spine and sacroiliac joints). Yehudina Ye.D., Syniachenko O.V., Polesova T.R., Chernyshova O.E., Yermolaeva M.V. Background. Two forms of ankylosing spondylitis (AS) are distinguished: juvenile and adult, depending on debut age of the disease. The diagnosis of juvenile AS (JAS) is one of the most urgent problems in a pediatric rheumatology. The peculiarities of AS course that onsets in childhood and adulthood are manifested by differences in the nature of a spinal column disturbance. At the same time, the evolution of JAS in adulthood remains unexplored. The goals and objectives of research: to study clinical and X-ray symptoms of spondylopathy and sacroiliitis course, to assess their characteristics in the disease that onset in childhood and adulthood. Material and methods. 217 patients with AS (193 men and 24 women) with an average age of 38 years were examined. The fast-progressing course of the disease was detected in 21% of cases, moderate and high degree of activity – in 79% of cases, the II-III stage in 82%, and polyarthritis – in 65%. JAS was detected in 16% of cases (all boys), among them the third stage occurred twice more likely than among the other patients. Results. The clinical and radiologic signs of spondylopathy and sacroiliitis are observed in 95% and 97% of the total number of AS cases, respectively, among all patients with JAS lumbar was detected 4,3 times more frequently, sciatic muscles hypotrophy – 7,8 times, "the string symptom" - 2,9 times", the calcification of the spinal cord - 2,3 times, whereas the prevalence of spinal column injury, the severity of cervico-spondylopathy and sacroiliitis among patients with the disease debut in the adulthood is significantly greater, and the involvement in the process of the lumbar and thoracic spine are detected correspondingly twice as often and by 19%, occurrence of dorsalgia is 4 times as often, the limitation of body lateral bendover by 59%, while there are ambiguous dispersion-correlation links with extraarticular (systemic) manifestations of the disease, and the high prevalence of a peripheral articular syndrome regarding spondylopathy in JAS is a negative prognosis sign, and for the remaining patients there are indices of the Lansbury index and the index of arthropathy progression. Conclusion: the onset of AS in adulthood is a risk factor for the severe course of spondylopathy.
Background. The prevalence of ankylosing spondylitis (AS) reaches 0.3% among the population [12, 16]. The modern concept divides this disease by the predominantly lesion of either the peripheral joints or the axial skeleton [3, 13, 14]. Meanwhile, two forms of AS are identified - juvenile (JAS) and adult (AAC), depending on the age of the disease debut [7, 9].

There are features of AS course that began in childhood and adulthood [2, 5, 14], which, first of all, is manifested by the differences in the nature of the spinal column lesion [1, 6]. At the same time there is a definite evolution of clinical manifestations of JAS in adult patients [8]. According to the literature, severe spine changes are rare in JAS [9], and involvement of the lumbar spine in the process, allegedly, is little typical for such patients [4, 6]. A. Adrovic et al. [10] attributed the presence of asymptomatic sacroilitis and the absence of spondylopathy in the debut of JAS like the distinctive clinical signs in the contrast to AAC. It should be noted that the problem of clarifying the nature of spondylitis and sacroilitis in the early stages of JAS is among the most relevant in pediatric rheumatology [11, 15].

The purpose and objectives of the study: to study the clinical and radiological signs of the spondylopathy and sacroilitis course in patients with AS, to evaluate their characteristics in the disease that began in childhood and adulthood.

MATERIAL AND METHODS

217 AS patients aged 16 to 57 years old (an average of 37.7±0.64 years) were under observation, 88.9% of men and 11.1% of women among them. The disease duration averaged 10.5±0.39 years. I degree of AS activity was established in 21.2% of cases, II – in 56.7% and III – in 22.1%, I stage was noted in 18.4% of the surveyed patients, II – in 50.7% and III – in 30.9%. Slowly progressive disease course occurred in 79.3% of cases, fast-progressing – in 20.7%. The so-called "central form" of AS was diagnosed in 33.6% of cases, "rhizomelic" – in 2.8%, "peripheral" – in 25.4%.

Peripheral arthritis was determined in 66.4% of the patients number. The prevalence of articular syndrome (number of painful joints - NPP) was 82% of patients, Lansbury index (LI) – 117.1±3.89 points, progression of arthritis index (PAI) – 1,3±0.15 r.u. In the X-ray, sonography and densitometry studies, narrowing of the joint space was found in 38.7% of cases, subchondral sclerosis – in 12.9%, osteocystis – in 25.4%, epiphyseal osteoporosis - in 22.1%, systemic osteoporosis – in 51.2%, usuras of bone surface – in 10.6%, intraarticular calcifications – in 11.5%, changes in the horns of the knee joints menisci – in 18.0%, Baker’s cysts - 6.0%, Shtaydie’s bodies – 3.7%, chondromous bodies – 9.2%, Goff’s bodies – 1.4%. The Barnett-Nordin meta-carpal index was 0.43±0.004 r.u., the bone mineral density index was -1.49±0.055 SD. Enthesopathies were noted in 38.7% of the surveyed, tenosynovitis – in 28.6%.

All patients were divided into two groups: the first (main) amounted to 35 (16.1%) patients (all males) with onset of the disease under the age of 18 (JAS), and the others 182 (83.9%), with AAS were included in the 2nd (control) group. The age of the main group representatives in the disease debut was 14.3±0.52 years, and at the time of the examination – 24.9±0.83 years, while in the control group it was 29.6±0.45 years and 40.2±0.58 years respectively. The duration of the disease in the 1st and 2nd groups did not differ. Both groups were approximately equal in the disease degree activity, but fast progressing course of the disease in AAS was 2.7 times more common.
Patients have undergone X-ray ("Multix-Compact-Siemens", Germany) and ultrasonic ("Envisor-Philips", Netherlands and "ATL3500-Siemens", Germany) studies of peripheral joints, sacroiliac joints and spine, dual-energy X-ray absorptiometry of the proximal femur ("Somazom-Emotion-6-Siemens", Germany) and magnetic resonance ("Gygoscan-Intera-Philips", the Netherlands) tomography of spondylopathy and sacroilitis.

The serum levels of antibodies to cyclic citrullinated peptide (aCCP), the concentration of interleukin (IL) 1β and tumor necrosis factor (TNF) were studied using the enzyme immunoassay (Pr2100 Sanofi diagnostic pasteur, France), and the immuno- biochemical analyzer "Olympus-AU-640" (Japan), concentrations of C-reactive protein (CRP), fibrinogen (FG), circulating immune complexes (CIC), immunoglobulins (Ig) A, G and M were determined in blood serum. The aCCP values in serum of the examined AS patients were 22.2±8.4, r=+0.57 U/ml, CRP – 12.0±5.89±0.40 mg/l, FG – 7.4±2.99±0.20 g/l, IgA – 2.3±0.58±0.04 mmol/L, IgG – 15.7±3.23±0.22 mmol/l, IgM – 2.0±0.62±0.04 mmol/l, CIC – 104.5±61.08±4.15 r.u., IL1β – 88.5±100.17±6.80 pg/ml, TNF – 153.5±220.12±14.94 pg/ml.

Statistical analysis of the research results was carried out by computer variations, nonparametric, correlation, regression, one- (ANOVA) and multivariate (ANOVA / MANOVA) variance analysis (Microsoft Excel and Statistica-Stat-Soft, USA). The mean values (M), their standard deviations (SD) and standard errors (m), Pearson parametric correlation coefficients (r) and nonparametric Kendall (τ), Brown-Forsythe dispersion criteria (BF), Wilcoxon-Rao (WR), the multiple regression (R), Student (t) and McNamara-Fisher (χ²), the reliability of statistical parameters (p).

RESULTS AND DISCUSSION
Sacroilitis was determined in all patients with AS, and signs of spondylopathy - in 94.9% of them. It should be noted that JAS and AAS differed a little from each other in spinal cord lesions, correspondingly being 100,0% and 94,0% of cases. This also referred to the severity of spondylopathy, which indices were 0,69±0,084 points and 0,83±0,041 points respectively in the 1st and 2nd groups. In the case of JAS, changes in the cervical spine (χ²=6.83, p=0.009) were more frequent by 33%, while in AAS, changes in lumbar region were twice as often (χ²=33.33, p=0.001) and thoracic spine – by 19% (χ²=5.60, p=0.018), whereas in the sacroilitis incidence, both groups did not differ.

Vertebralgia was noted in 88,5% of the patients with AS, thoracalgia – in 54,8%, dorsalgia – in 50,2%, pelvialgia – in 43,3%, back muscle hypotrophy – in 36,4%, restriction of the trunk lateral bendover – in 31,8%, vertebrobasilar insufficiency – in 30,9%, "petitioner's pose" – in 13,4%, soreness of the vertebrae spinous processes – in 10,1%, "string symptom" and discoid of the back – in 7,8%, lumbago – in 5,1%, sciatic muscles hypotrophia – in 4,6%. In the patients with JAS, dorsalgia was observed 4 times less frequent (χ²=21.57, p<0.001) and the restriction of the trunk lateral bendover – by 59% (χ²=5.90, p=0.015), but lumbago was found 4.3 times more often (χ²=7.37, p=0.007), sciatic muscles hypotrophy – 7.8 times (χ²=14.92, p<0.001) and "bow-strings symptom" – 2.9 times (χ²=5.01, p=0.025), which is reflected in Fig. 1-2.

Inflammatory, dishemic, mechanical and dysfixation character of painful spondyloagenous syndromewas was established in 50,2%, 24,9%, 3,7% and 21,2%, respectively, of all patients with AS. The main and control groups differed a little from each other by the integral nature of pain, and also by the nature of vertebralgia.

Syndesmophytes were found in 89,9% of cases, spondylodyscitis – in 91,7%, narrowing of the facet joint fissure – in 83,0%, calcification of spinal ligamentum - in 13,4%, ossification of intervertebral discs – in 30,9%, ankylosis of facet joints - in 22,6%, which is represented in Fig. 3. It has been established that only calcification of spinal ligaments in JAS occurred 2.3 times more often than with AAS (χ²=5.50, p=0.019). The average severity of the cervical spine and sacroiliac joint lesion in patients with JAS was less by 25% of points (t=6.18, p <0.001) and 17% points (t=2.35, p=0.020), respectively.

According to Brown-Forsythe dispersion analysis, in JAS patients, the severity of spondylopathy is affected by seropositivity in aCCP (BF=5.08, p=0.012) and the prevalence of peripheral articular syndrome (BF=4.77, p=0.015), and in the control group – by character of the disease course (BF=6.85, p=0.001), the presence of tendovaginitis (BF=4.03, p=0.020), osteoporosis (BF=6.62, p=0.002), uveitis (BF=9.71, p<0.001) and peripheral neuropathy (BF=3.14, p=0.046), LI parameters (BF=3.17, p=0.045) and PAI (BF=3.10, p=0.048). In both JAS and AAS, the severity of spondylopathy rises proportionally to the increase in the patients’ age and the disease duration, which is demonstrated by Pearson’s correlation analysis (r=+0.405, p=0.018 and r=+0.378, p<0.001; r=+0.435, p=0.010 and r=+0.229, p<0.001). It should be noted that in the main group there is a direct correlation between the degree of spinal cord lesion and the NPJ index (r=+0.659, p<0.001), and in the control group – LI (r=+0.237, p=0.003). Taking into account the
performed dispersion-correlation analysis, it can be assumed that the risk factors for severe spondylopathy in JAS is NPJ>10 r.u., and for AAS, LI>170 points (>M+SD of the corresponding groups of patients).

![Fig. 1. Frequency of separate clinical signs in patients with JAS and AAS](image1)

Fig. 1. Frequency of separate clinical signs in patients with JAS and AAS

![Fig. 2. Differences in patients with JAS and AAS](image2)

Fig. 2. Differences in patients with JAS and AAS

The presence of coxitis (BF=3.43, p=0.045) exerts a dispersion influence on severity of the spine injury in the main group patients, and involvement in the pathological process of the metatarsophalangeal joints (BF=2.76, p=0.025) – in the control group. Among all patients with AS, the degree of spondylopathy depends on the aCCP parameters (BF=25.79, p<0.001), FG (BF=3.31, p=0.039) and CIC (BF=3.84, p=0.023).

Attention was paid to Kendall's contradictory correlation relations between the severity of the spine lesion and some immunoinflammatory indicators of blood serum. So, if there are direct relations with the levels of aCCP (τ=+0.387, p=0.022) and IgM (τ=+0.366, p=0.030) in JAS, then CRP concentrations (τ=+0.178, p=0.016), IgG (τ=+0.208, p=0.005) and IL1 (τ=+0.148, p=0.048) – in AAS.

It must be emphasized, as Wilcoxon-Rao multifactor analysis demonstrated, the severity of spondylopathy has a significant influence (p<0.001) on other integral signs of the disease both in the main (WR=8.06) and control (WR=5.21) groups, and there are direct regression relations with the severity of immune-inflammatory disorders (R=+1.96, p=0.045 and R=+7.60, p<0.001, respectively).

In JAS, direct Kendall correlations between separate parameters of spine and peripheral joint lesions are established, in particular, the ratios of "syndesmophytes ↔ subchondral sclerosis (τ=+0.240, p=0.042), "spinal cord calcification ↔ arthrocalcinates" (τ=+0.494, p=0.001), "narrowing of the facet joint fissure ↔ chondromous intra-articular bodies" (τ=+0.251, p=0.035), "ossification of the intervertebral disks ↔ osteocystosis" (τ=+0.359, p=0.002).
КЛІНІЧНА МЕДИЦИНА

МЕДИЧНІ ПЕРСПЕКТИВИ / MEDICNI PERSPEKTIVI

88,6 92,3
85,7 90,7
80 83,5
25,7 31,9
17,1 23,6
25,7 11

контуровано дисперсіонна-кореляційні зв’язки з екстракартарні (системні) проявами хвороби.

5. Негативний прогнозний ознака спондиліпатії у JAS - висока частота периферійних артікулярних синдромів, а у AAS - LI і PAI індекси.

6. В майбутньому це буде корисно здатися прогнозувати дальньоділовість і рентгеноові зміни в хворих на спондиліпатію з дебютом хвороби у ранньому та дорослому віці. Оцінка спондиліпатії та сакроілітісу компонентів може мати практичне значення як фактори ризику для окремих екстракартарних проявів хвороби.

Conflict of interest. The authors declare that there is no conflict of interest, while the authors have not received financial support for research from individuals and organizations, fees and other forms of rewards.

REFERENCES

1. Li YH, Zhang XY, Li QH, Zheng DH, Dai L. Andersson lesion in ankylosing spondylitis: a clinical study of 14 cases. Zhonghua Yi Xue Za Zhi. 2017;97(7):517-21. doi: 10.3760/cma.j.issn.0376-2491.2017.07.009

2. Berard RA, Laxer RM. Paediatric rheumatology: A disease activity index for juvenile SpA-a welcome addition. Nat Rev Rheumatol 2014;10(11):642-4. doi: 10.1038/nrrheum.2014.150

3. Brown M, Bradbury LA. New approaches in ankylosing spondylitis. Med J Aust 2017;206(5):192-4.

4. Gazeau P, Cornee D, Timsit MA, Dougados M, Saraux A. Classification criteria versus physician's opinion for considering a patient with inflammatory back pain as suffering from spondyloarthritis. Joint Bone Spine. 2017;16(2):162-8. doi: 10.1016/j.jbspin.2017.01.010

5. Mou Y, Zhang P, Li Q, Lin Z, Liao Z, Wei Q, Gu J. Clinical features in juvenile-onset ankylosing spondylitis patients carrying different B27 subtypes. Biomed Res Int. 2015;20(15):594878. doi: 10.1155/2015/594878

6. Kim TJ, Shin JH, Sung IH, Lee S, Song Y, Kim TH. Comparison on radiographic progression for 5 years between juvenile onset ankylosing spondylitis and adult onset ankylosing spondylitis: an observational study of the Korean spondyloarthropathy registry (OSKAR) data. Clin Exp Rheumatol. 2016;34(4):668-72.

7. Conway R, O'Shea FD. Juvenile versus adult-onset ankylosing spondylitis: are we comparing apples and oranges? J Rheumatol. 2012;39(5):887-9. doi: 10.3899/jrheum.120164

8. Barber CE, Marshall DA, Mosher DP, Akhavan P, Tucker L, Houghton K, Batthish M, Levy DM,
Schmeling H, Ellsworth J, Tibollo H, Grant S, Khodyakov D, Lacaille D. Development of system-level performance measures for evaluation of models of care for inflammatory arthritis in Canada. J Rheumatol. 2016;43(3):530-40. doi: 10.3899/jrheum.150839

9. Jadon DR, Ramanan AV, Sengupta R. Juvenile versus adult-onset ankylosing spondylitis – clinical, radiographic, and social outcomes. a systematic review. J Rheumatol. 2013;40(11):1797-805. doi: 10.3899/jrheum.130542

10. Adrovic A, Barut K, Sahin S, Kasapcopur O. Juvenile spondyloarthropathies. Curr Rheumatol Rep 2016;18(8):55-65. doi: 10.1007/s11926-016-0603-y

11. Lin C, Milojcic D. Diagnosis and treatment juvenile spondyloarthropathy and related diseases. Pediatr Ann. 2012;41(11):172-8. doi: 10.3928/00904481-20121022-11

12. Usenbo A, Kramer V, Young T, Musekiwa A. Prevalence of arthritis in Africa: A systematic review and meta-analysis. PLoS One. 2015;10(8):0133858. doi: 10.1371/journal.pone.0133858

13. Sieper J, Pod Dubny D. Axial spondyloarthritis. Lancet. 2017;19(1):155-65. doi: 10.1016/S0140-6736(16)31591-4

14. Strand V, Singh JA. Evaluation and management of the patient with suspected inflammatory spine disease. Mayo Clin Proc. 2017;20(2):214-8. doi: 10.1016/j.mayocp.2016.12.008

15. Tse SM, Laxer RM. New advances in juvenile spondyloarthritis. Nat Rev Rheumatol. 2012;8(5):269-79. doi: 10.1038/nrrheum.2012.37

16. Rohekar S, Chan J, Tse SM, Haroon N, Chandran V, Bessette L, Mosher D, Flanagan C, Keen KJ, Adams K. 2014 Update of the Canadian Rheumatology Association/spondyloarthritis research consortium of Canada treatment recommendations for the management of spondyloarthritis. Part I: principles of the management of spondyloarthritis in Canada. J Rheumatol. 2015;42(4):654-64. doi: 10.3899/jrheum.141000

СПИСОК ЛИТЕРАТУРЫ

1. Andersson lesion in ankylosing spondylitis: a clinical study of 14 cases / Y. H. Li, X. Y. Zhang, O. H. Li [et al.] // Zhonghua Yi Xue Za Zhi. – 2017. – Vol. 97, N 7. – P. 517-521.

2. Berard R. A. Paediatric rheumatology: A disease activity index for juvenile SpA-a welcome addition / R.A. Berard, R. M. Laxer // Nat. Rev. Rheumatol. – 2014. – Vol. 10, N 11. – P. 642-644.

3. Brown M. New approaches in ankylosing spondylitis / M. Brown, L.A. Bradbury // Med. J. Aust. – 2017. – Vol. 206, N 5. – P. 192-194.

4. Classification criteria versus physician’s opinion for considering a patient with inflammatory back pain as suffering from spondyloarthritis / P. Gazeau, D. Cornec, Schmeling H, Ellsworth J, Grant S, Khodyakov D, Lacaille D. Development of system-level performance measures for evaluation of models of care for inflammatory arthritis in Canada. J Rheumatol. 2016;43(3):530-40. doi: 10.3899/jrheum.150839

5. Comparison on radiographic progression for 5 years between juvenile onset ankylosing spondylitis and adult onset ankylosing spondylitis: an observational study of the Korean spondyloarthritis registry (OSKAR) data / T.J. Kim, J. H. Shin, I. H. Sung [et al.] // Clin. Exp. Rheumatol. – 2016. – Vol. 34, N 4. – P. 668-672.

6. Conway R. Juvenile versus adult-onset ankylosing spondylitis: are we comparing apples and oranges? / R. Conway, F.D. O'Shea // J. Rheumatol. – 2012. – Vol. 39, N 5. – P. 887-889.

7. Development of system-level performance measures for evaluation of models of care for inflammatory arthritis in Canada / C.E. Barber, D.A. Marshall, D.P. Mosher [et al.] // J. Rheumatol. – 2016. – Vol. 43, N 3. – P. 530-540.

8. Jadon D. R. Juvenile versus adult-onset ankylosing spondylitis – clinical, radiographic, and social outcomes. a systematic review / D.R. Jadon, A.V. Ramanan, R. Sengupta // J. Rheumatol. – 2013. – Vol. 40, N 11. – P. 1797-1805.

9. Juvenile spondyloarthropathies / A. Adrovic, K. Barut, S. Sahin, O. Kasapcopur // Curr. Rheumatol. Rep. – 2016. – Vol. 18, N 8. – P. 55-65.

10. Lin C. Diagnosis and treatment of juvenile spondyloarthropathy and related diseases / C. Lin, D. Milojcic // Pediatr. Ann. – 2012. – Vol. 41, N 11. – P. 172-178.

11. Prevalence of arthritis in Africa: A systematic review and meta-analysis / A. Usenbo, V. Kramer, T. Young, A. Musekiwa // PLoS One. – 2015. – Vol. 10, N 8. – E. 0133858.

12. Sieper J. Axial spondyloarthritis / J. Sieper, D. Pod Dubny D. Lancet. – 2017. – Vol. 19, N 1. – P. 155-165.

13. Strand V. Evaluation and management of the patient with suspected inflammatory spine disease / V. Strand, J.A. Singh // Mayo Clin Proc. – 2017. – Vol. 20, N 2. – P. 214218.

14. Tse S.M. New advances in juvenile spondyloarthritis / S. M. Tse, R. M. Laxer // Nat. Rev. Rheumatol. – 2012. – Vol. 8, N 5. – P. 269-279.

15. 2014 Update of the Canadian Rheumatology Association/spondyloarthritis research consortium of Canada treatment recommendations for the management of spondyloarthritis. Part I: principles of the management of spondyloarthritis in Canada / S. Rohekar, J. Chan, S.M. Tse [et al.] // J. Rheumatol. – 2015. – Vol. 42, N 4. – P. 654-664.

Стаття надійшла до редакції 09.01.2018