Oct4 Targets Regulatory Nodes to Modulate Stem Cell Function

Pearl A. Campbell1,2, Carolina Perez-Iratxeta1, Miguel A. Andrade-Navarro1,2, Michael A. Rudnicki1,2*

1 Sprott Centre for Stem Cell Research, Ottawa Health Research Institute, Ottawa, Ontario, Canada. 2 University of Ottawa, Department of Cellular and Molecular Medicine, Ottawa, Ontario, Canada

INTRODUCTION

Embryonic Stem Cells (ESCs) are derived from the inner cell mass of the pre-implantation embryo and are characterized by their unlimited capacity for self-renewal and their ability to contribute to all cell lineages. The successful derivation and culture of human ESCs (hESCs) [1] has opened the possibility of their use for generating cells for transplant, for tissue engineering or for drug development and testing. Importantly, full exploitation of the potential of hESCs will require the complete understanding of the function of the genetic factors that specify stem cell identity and regulate their commitment towards specific differentiated cell lineages. However, the transcriptional networks and molecular mechanisms that regulate the formation, self-renewal, and differentiation of hESC and mouse ESC (mESC) remain at best poorly understood.

Oct4 (Pou5f1), a POU-homeodomain transcription factor, plays a central role in self-renewal, pluripotency, and lineage commitment. Initially expressed as a maternal transcript, Oct4 is required for the formation of a pluripotent inner cell mass [2]. Moreover, strict control of Oct4 expression is necessary to maintain ESC identity. Alterations in Oct4 expression promote differentiation and lead to the specification of ectodermal [3], endodermal [4], or mesodermal [5] primitive progenitors. Furthermore, Oct4 has been shown to promote tumor growth in a dose dependent manner [6] and epithelial dysplasia by interfering with progenitor cell differentiation [7], is expressed in various human tumors [8,9] and adult stem cells [10] thus extending the role of Oct4 from embryo to adult.

Recent identification of Oct4 transcriptional targets in ESCs has revealed an unanticipated collaboration between Oct4, Sox2, and Nanog and provides a starting framework of the core transcriptional circuitry which maintains 'ES' through coordination of a series of feedback and feedforward loops [11,12]. Furthermore, several signaling pathways including LIF/JAK/STAT, BMP, WNT, PI3K, MAPK/ERK, TGFβ and Notch [13,14,15,16] have been shown to modulate stem cell function. Several key questions however still remain unresolved as a result of these studies. Firstly, what are the regulatory mechanisms that maintain self-renewal and pluripotency? Conversely, what are the molecular inputs that drive differentiation? Finally, and most importantly, can we deduce the essential themes that characterize stem cell function and thereby utilize this knowledge to gain insight into normal developmental processes to predict the consequences of aberrations to these processes that ultimately lead to human disease?

To address these questions and further elucidate the factors that mediate stem cell function, we undertook an analysis to identify genes whose expression is correlated to Oct4. With the understanding that coexpression of genes may imply coregulation and participation in similar biological processes [17], we sought to identify genes which were correlated to Oct4 transcript expression in a wide variety of stem/progenitor populations which were analyzed by Affymetrix GeneChip technology as part of the Stem Cell Genomics Project [18]. We hypothesized that by using Oct4 as a marker gene for self-renewal, pluripotency, and early lineage...
commitment, this analysis would lead to the identification of 1) Genes that are central to stem cell identity; 2) Oct4 target genes; and 3) Genes that modulate Oct4 function. Although several previous studies have sought to harmonize our understanding of 'stemness' [19,20] it has been suggested that rather than the capacity for self-renewal and differentiation, the unique defining feature of a stem cell is that it represents a lasting steady-state of gene expression suspended in its differentiation pathway, yet maintaining the ability to respond to niche induced signals to carry out the indicated program of cellular specialization [21]. Insight into the juncture between cell extrinsic and intrinsic factors described above will provide an enhanced understanding of the molecular mechanisms which confer stem cells with this ability.

Lineage commitment can be described as a process whereby the unlimited ability for self-renewal and potency are gradually restricted as a cell progresses from one steady state of gene expression to the next. Recently attributed to stochastic events which increase the likelihood of a specific developmental outcome [22], this view is in direct opposition to determinism, which precludes the processing of molecular cues emanating from the cellular niche. In juxtaposition to both the stochastic and deterministic models of development is the view that cellular commitment is facilitated by a hierarchy of transcriptional regulatory networks [23] which exert precise biological control by combinatorial interactions at the protein-protein, and protein-DNA level. The function of these networks is highly responsive to molecular inputs, allowing the rapid processing and relay of information required for either maintenance of a specific cellular state, or progression to an altered steady state. Importantly, our data suggests that Oct4 maintains stem cell identity by targeting key regulatory genes which play critical roles in determining cell fate.

RESULTS AND DISCUSSION

Oct4 Correlation Analysis

A set of 45 murine samples collected as part of the Stem Cell Genomics Project and deposited in StemBase (http://www.StemBase.ca/) [18] were selected to form the basis of this analysis (Supplemental Table S1). A wide variety of samples comprising adult and embryonic stem cells and their differentiated derivatives were collected in biological triplicate and hybridized to the Affymetrix MOE430 GeneChip Set for a total of 270 GeneChips. Following normalization, scaling, and filtering of the data the standard Pearson correlation coefficient (rho) between every probeset which passed the filter, to the Oct4 probeset was computed. A probeset was considered correlated to Oct4 if |rho| ≥ 0.75. This computation was repeated 10,000 times with random subsets consisting of 65% to 70% of the data. Probesets that were correlated to the Oct4 associated probe in at least 40% of the trials were retained for further analysis (Supplemental Table S2).

The stringency of our correlation analysis is set by two parameters: |rho| ≥ 0.75 and the percentage of trials in which this value for rho is met or exceeded. In setting these parameters our aim was to prioritize genes for analysis which may have either represented Oct4 targets or genes which were implicated in self-renewal, pluripotency, or early lineage commitment. The values were pragmatic in nature; chosen as such to produce a reasonable number of genes which could be analyzed in a coherent fashion, possibly being able to provide a snapshot as it were of ‘stemness’. The use of more or less stringent parameters would result in the identification of fewer or more genes. Of note, cursory examination of the cutoffs used reveals that should we have increased the percentage of trials for which |rho| ≥ 0.75 from 40% to 50% we would not have identified at least two previously identified Oct4 targets; Sox2 (49%) and Cdy1 (40%) [11,12].

As a result of this analysis 1299 probesets (1155 unique transcripts) were found to be correlated to Oct4. Seventy-five probesets (69 transcripts) were negatively correlated, while 1224 probesets (1086 transcripts) were positively correlated. The validity of this method for the identification of genes related to stem cell identity is assured by the presence of genes which have previously defined roles in ESCs such as Utf1, Fig4, Nanog and Sox2 which were correlated to Oct4 in 100%, 99%, 97% and 49% of the trials respectively. Comparison of the transcript expression levels of Oct4 and correlated, Nanog, Sox2, Tbox5, Mef2a, and uncorrelated Myog across all samples utilized in this analysis demonstrates the range of Oct4 expression in these samples and also lends meaning at a biological level to the statistical analysis performed (Figure 1).

GO Categorization of Oct4 Correlated Genes

In order to gain insight into the functions of Oct4 correlated genes, GOstat analysis [24] was performed. As a result of this analysis a number of gene ontology (GO) categories were found to be correlated to Oct4 expression. Many over-represented terms were related to transcription and DNA replication (nucleic acid binding, DNA helicase, nucleolus), RNA processing (rRNA processing, spliceosome complex, and RNA splicing), and cellular localization (nucleolus and Cajal body). Many under-represented terms were related to inter-cellular communication (cell communication, receptor activity, signal transduction). A complete output from GOstat is provided (Supplemental Table S3). Because this method of analysis is highly dependent upon the GO categories associated with a specific gene, the use of alternate GO databases can result in divergent findings. Moreover, such analyses are limited by the availability of databases which possess accurate annotations that keep pace with current research.

To overcome these limitations, further refinement of GO classifications for the Oct4 correlated genes was performed by manual curation of a wide variety of databases such as NetAffx, GeneCards, Ensembl, Stanford Source, Bioinformatics Harvester, and PubMed (Supplemental Table S2). This analysis revealed that the categories transcriptional regulation, intracellular signaling, mRNA splicing, cell cycle, DNA repair, and chromatin were highly represented within the positively Oct4 correlated genes. Categories highly represented within the negatively correlated genes included transcriptional regulation, protein modification, transport, intracellular signaling, and apoptosis. A summary of these findings is provided in Figure 2 with representative genes in highly enriched categories provided in Table 1. Of note, these findings are highly consistent with a previously published GO analysis performed following Oct4 knockdown in hESC [25].

Target Gene Validation

To validate our premise that this analysis would lead to the identification of Oct4 direct transcriptional targets, we performed a screen scanning the genomic region from 2 kb upstream of the transcriptional start site to 2 kb downstream from the 3-prime end of the transcribed region of the correlated genes for the presence of neighboring Oct4 and dimerization partner Sox2 binding sites (Supplemental Material and Methods). As a result of this analysis 392 genes were found to possess at least one putative composite binding site (Supplemental Table S4) with several genes such as Oct1/Pou2f1, Smyd3, and Ranbp17 containing
Multiple (17, 16, and 14 respectively) putative sites, which may reflect a requirement for strict regulatory control of these genes throughout development. Although one might predict that genes containing multiple binding sites would show a higher degree of correlation to Oct4, a very cursory analysis of the data reveals that this is in fact not the case. Genes containing 1 Oct4/Sox2 binding site (and % correlation) are: Lig3 (+62), Kid3 (+91), Bim1 (~41), Bmi1 (~55), Nasp (99 and 79-two probesets). Genes containing from 5 to 10 sites include: Insig2 (~61), Ipo11 (~92), Mst1d (~94), Nr6a1 (52 and 53) and Stxbp (52). Genes with greater than 10 sites are: Pou2f1 (~50), Rambp17 (~99), and Snaid (~45).

Validation of 28 of these loci by chromatin immunoprecipitation (ChIP) followed by quantitative real-time PCR (QRT-PCR) confirmed the identification of 26 Oct4 direct transcriptional targets (Figure 3; Supplemental Table S6). Notably, since the completion of our studies, these findings have been confirmed by several groups [11,12,25,26,27].

Further examination of these directly regulated target genes in the context of the correlated gene-list reveals important insights into how Oct4 regulates pivotal pathways involved in controlling pluripotency, self-renewal and early lineage commitment.

Oct4 Correlated Genes are Implicated in Chromatin Regulation

Recent experiments indicate that chromatin organization is dynamic and is subject to regulatory mechanisms that enforce the transcriptional potential of the genome during cellular commitment and differentiation. Chromatin is remodeled into transcriptionally permissive or repressive conformations by complexes that covalently modify histones, act in an ATP-dependent manner to reposition nucleosomes along DNA, or facilitate histone exchange. Several complexes have been identified including SWI/SNF, ISWI, INO80, and M1-2/CHD, and Trithorax group (TrxG), and Polycomb group (PcG) proteins which mediate chromatin remodeling by facilitating epigenetic modification of histone tails to activate or repress gene expression, respectively [28].

Thirty five genes implicated in chromatin remodeling were correlated to Oct4. Putative positive target genes include SWI/SNF members Snuace1, AT rich interactive domain (Swi1 like) containing proteins (ARID domains) Arab1a, Arab5b, Jara1b and Jara2, which was confirmed as a direct Oct4 target. Notably, these

![Figure 1. Oct4 Correlation Analysis.](image)
ARID domain containing proteins, a subset of the Jumonji C family, have recently been associated with histone demethylase activity [29]. Several other genes containing MYST, SET, and CHROMO, and BROMO domains, which facilitate or recognize specific histone modifications, were also identified.

Rest has been implicated in the repression of neuronal specific genes via its ability to recruit cofactors such as histone deacetylases (HDACs), Corest, Sin3, and Mecp2 [30]. The identification of Rest as a direct Oct4 target, in light of its role in maintaining chromatin plasticity throughout neurogenesis, [31] provides a mechanistic understanding of Oct4’s role in promoting neural differentiation [3]. Ironically, Rest has recently been described as both a tumor suppressor [32] and an oncogene [33]. The identification of Corest and Mecp2 as respectively positively and negatively correlated to Oct4 may provide insight into the dynamic nature of Rest co-repressor complexes throughout development that could explain these seeming incongruities. Furthermore, this hypothesis is supported by the recent description of the changing Rest-regulon in the progression from embryonic stem cells to neural stem cells (NSC) to differentiated neurons [34].

Importantly, several members of the TrxG and PcG of transcription factors such as Ash1l, Suz12, Ash2l, Phc1, and Rnf134, Bmi1, and Phc3 were correlated to Oct4, with the five latter genes validated as Oct4 targets. Diverse functions for PcG and TrxG genes in cancer, cell cycle control, and stem cell function have recently been described [35,36,37,38]. The direct transcriptional regulation of several members of these complexes places Oct4 central to the coordination of these activities. The localization of Suz12, a member of Polycomb Repressor Complex 2 (PRC2) at many Oct4 repressed loci in ESC [37,39] provides indication that Oct4-Polycomb interaction may play a significant role in the active repression of lineage. Furthermore, knock-down

Figure 2. Functional classification of Oct4 correlated genes. Manual curation of databases reveals highly enriched Gene Ontology (GO) categories for Oct4 positively (A) and negatively (B) correlated genes. Numbers displayed represent percentage of unique transcripts attributed to each category with only the most abundant categories listed individually.
doi:10.1371/journal.pone.0000553.g002
Figure 3. Validation of Oct4 targets. Chromatin immunoprecipitation (ChIP) assays were performed with Oct4 and IgG antibody and no antibody as a negative control followed by Quantitative Real-time PCR analysis (ChIP/QRT-PCR) for putative positively regulated Oct4 target (A), negatively regulated Oct4 target (B), and non-validated (C) genes. *8L16Rik represents 1110008L16Rik. Results are from two independent ChIP assays, with duplicate QRT-PCR assessment for each. Error bars denote standard error of the mean (SEM). doi:10.1371/journal.pone.0000553.g003

Table 1. Categories of Genes Identified as Oct4 Correlated.

Chromatin Structure	Nuclear Architecture	DNA Repair	Apoptosis	Cell Cycle Control
Arid1a	Pml	Blm	Aatf	Anapc10
Arid5b	Pum1	Brca1	Apo5	Bub1
Ash1l	Col	Chk1	Aven	Ccna2
Ash2l	Ncl	Ddb1	Bag4	Ccnb1
Cdyl	Mep50	Fancd2	Cip1n1	Ccnb2
Rest	Nup54	Lgi1	Commd10	Ccne1
Jarid1b	Nup160	Lgi3	Gtse1	Ccnf
Jarid2	Gemin4	Mre11a	Opa1	Chfr
Nasp	Gemin5	Msh2	Siva	Cdk3rap3
Phc1	Sfn2	Parp1	Spnl	Cull2
Bnf134	Snppn	Rad17	Bin1	D14Abb1e
Setdb1	Snppa	Rad51	Blp1	Gstp1
Sut12	Snppa1	Trp53	Serpinb9	Ig2bp1
Bmi1	Snurf	Xrc5	Sh3gl1b1	Jarid1b
Phc3	Sf3b14	Tdrd7	Casp6	Nipp1

Highly represented Gene Ontology categories as identified by manual curation of databases such as NetAFFX, GeneCards, Ensembl, Stanford Source, and Bioinformatics Harvester and PubMed. Representative genes in each category are provided. Positively correlated genes are displayed in normal font. Negatively correlated genes are displayed in bold italics.

doi:10.1371/journal.pone.0000553.t001
or overexpression of Oct4 has been shown to result in perturbed expression of several members of PcG and TrxG that we have identified as Oct4 targets and has led to loss of the pluripotent state [26,27]. A comparison of the results of this study to the previous studies can be found in Table 2. Taken together, these data provide strong support for Oct4’s role in maintaining chromatin structure in mESC via regulation of and interaction with a unique constellation of PcG and TrxG complexes.

The negative correlation between Bmi1 and Oct4 was surprising in light of its role in maintaining hematopoietic and neuronal stem cells (HSCs, NSCs). Although necessary for self-renewal of HSCs and NSCs, expression of Bmi1, which leads to chromatin condensation and stable gene silencing [40] may be inconsistent with self-renewal in pluripotent cells. Pluripotency involves the ability to repress genes whose expression would result in a loss of potential while retaining the ability to reawaken these transcriptional programs upon differentiation. Therefore, while transcriptional repression is necessary in both pluripotent cells and their differentiated progeny, the means to accomplish it may, of necessity, be entirely different.
PcGs exist as developmentally regulated multi-subunit complexes [41]. Therefore it is predicted that alterations in the balance of PcG members would have profound implications for maintenance of the stem cell state. If, as anticipated above, inappropriate upregulation of Bmi1 (and/or Phc3) leads to the repression of genes that are required for pluripotency, this may ultimately be manifested in a cell's inability to differentiate and may provide a partial explanation for the oncogenic roles of these proteins.

Table 2. Cross-Study Comparison of Oct4 Target Genes
Gene Symbol

ChIP-PCR in mESC
Phc1
Fgf4
Utf1
Nanog D/S
Jarid2
Hsf2bp
Parp1
D14Abb1e
Aqr
Ccnf
Sall4
Igf2bp1
Tdh
Rest
Trp53
Nanog
Shmt1
Ash2l
Rnf134
Phb
Brcal
Tcf4
Rara
Phc3
Hoxb1
Bmi1
Sh3glb1
Tdrd7
Mef2a
Casp6

* Comparison of validated Oct4 targets to previous studies employing ChIP-Pet, ChIP-ChIP and expression analysis following Oct4 knockdown or overexpression. Discordant findings in the ChIP based approaches may be explained by the use of promoter based chips or stringency of analysis. Although shRNA knockdown of Oct4 reveals few genes that are predicted to be bona fide Oct4 targets that are identified in common, comparison to the dataset in Matoba et al. [27] reveals that expression of most of the targets identified in this study are in fact perturbed upon up or downregulation of Oct4. Discordant findings between this study and Matoba et al. may be impacted by the temporal nature of Oct4 regulation of these target genes as has been described previously for the Rest regulon (Sun et al. [34]).

DOI: 10.1371/journal.pone.0000553.t002
Conversely, it is postulated that downregulation of other PcG members such as Pcl1 would result in the de-repression of genes required for differentiation which would compromise self-renewal [42].

Cell Cycle Control in Stem Cells Requires Inactivation of pRb for Self-Renewal, Activation for Differentiation

Carefully regulated execution of cell cycle progression is accomplished in stem cells by a unique constellation of genes which impact self-renewal and lineage commitment. Activation of intracellular signaling pathways such as P38k, Ras/RAf, and Tafk/Stat by molecular cues emanating from the stem cell niche mediate phosphorylation events which control the activity of cyclin/CDK complexes and culminate in the modulation of genes (such as pRb and Tip53) that are implicated in cell cycle checkpoint, cell cycle exit, and differentiation [43].

Assessment of GO terms revealed that 38 cell-cycle related genes were positively correlated to Oct4 including Cdc25a, Cdk8, Ppp1r3b, Ccne2, Ccna2, Ccna1, and Ccnb1, and Ccnf. Validated Oct4 target Ccnf is implicated in cell cycle control at the G1/S and G2/M checkpoints and has recently been associated with the maintenance of pRb in a hyperphosphorylated, inactive state [44]. The role of Ccnf in this process may in part be due to the E3 ubiquitin ligase domain of Ccnf to mediate the degradation of phosphatases such as Ppp1 involved in the sequential activation of pRb through G1/S and G2/M [45]. Conversely, the significantly Oct4 correlated (92%) Ppp1 negative regulatory subunit Nipp1 (Ppp1r8b) may facilitate the functional inactivation of pRb. This hypothesis is consistent with the requirement of Nipp1 in early embryonic development [46] and points toward a potential role for Nipp1 in tumorigenesis [47]. In addition to its role in cell cycle control is also involved in mRNA splicing, and transcriptional repression through interactions with the PcG complexes making it an important putative Oct4 target, capable of integrating the diverse functions of cell cycle control, alternate splicing, chromatin structure, and transcriptional regulation [46].

Based upon this analysis it is predicted that alterations in the expression of Oct4 correlated genes such as Ccnf or Nipp1 that impact the functional status of pRb (or pRb family member p107) would have profound consequences. Inactivation of pRb is required for self-renewal; activation of pRb is obligatory for cell cycle exit and differentiation. An imbalance in either of these processes, possibly emanating from deregulated signaling from the stem cell niche or mutations in the key regulators would lead to unrestrained cellular proliferation.

Genes Involved in Apoptosis and DNA Repair are Correlated to Oct4 and are Implicated in Stem Cell Differentiation

Prevailing thought holds that the initial stages of apoptosis involve the caspase mediated induction of DNA strand breaks and either the recruitment of DNA repair genes that act in concert to halt cell cycle progression and restore genomic stability or, if the damage is too extensive, lead to cell death. Both apoptosis and DNA repair are regulated by several multi-component complexes with the roles of Tip53, Brcd, and pRb being central to their coordination [48].

Analysis of the Oct4 gene list revealed an important emerging theme; mechanisms to actively repress apoptotic pathways are involved in maintaining the stem cell state. Twenty-five apoptotic genes were positively correlated to Oct4, the majority of which, including Aatf, Apc2, Axen, Bag4, Commd10, Nipa, and Opal1, function to inhibit apoptosis. In addition, Bim1, Bip1, Setpans3, Sk3gub1, and Casp6, all apoptosis inducing genes, were found to be negatively correlated to Oct4, with Sk3gub1 and Casp6 confirmed as targets.

Thirty genes implicated in DNA damage and repair, were positively correlated to Oct4. Members of the Brcd1 associated surveillance complex (BASC) including Brcd1, Msd2, Met11a, Rad51, Blo, Chek1, as well as Parp1, Tip53, Fancd2, Tdrd7, and Xrc5, were included. The validation of Tip53, Tdrd7, Brcd1, and Parp1 as direct Oct4 targets strengthens the importance of this group of genes in stem cell function.

The high frequency at which apoptotic genes were negatively correlated to Oct4 and anti-apoptotic genes were positively correlated to Oct4 implies that ‘anti-apoptosis’ is an important theme for maintaining the stem cell state. Conversely, this may also suggest that genes which modulate the initial response to aberrant chromatin structure, apoptosis, and DNA repair, may play important roles in lineage commitment. This notion is consistent with the role of tudor domain containing proteins (such as Tdrd7) in DNA damage response [49]. Casp3 in skeletal muscle differentiation [50], and the roles of Parp1 [51], Tip53 [52], and Brcd1 [53] to modulate differentiation. Interestingly, a relationship between DNA damage repair, chromatin remodeling [54], and histone deacetylation [55], all previously implicated in cellular differentiation, has recently been described. Moreover, knowledge of the normal developmental functions of these genes in cellular differentiation provides mechanistic insight into how these genes, when mutated, lead to cancer.

Nuclear Architecture in Stem Cells Reinforces Their Defining Characteristics

The nucleus is the site of many processes that profoundly impact cellular phenotype including transcription, mRNA splicing, and DNA replication and repair. Research has revealed that in fact control of these activities is coordinated in a dynamic, spatio-temporal manner. The presence of specific nuclear structures (nuclear bodies; NBs), whose function is to concentrate key regulatory molecules, mainly to loci of actively transcribed genes, facilitates this coordination [56].

As a result of this analysis several key molecules whose presence is indicative of NBs were observed. Pml and Coil (Cajal Bodies and PML Bodies), Gem1e and Gem1n (Gems), Nap53, 43, 54, 98, 133, 160, 188 (Nuclear Pore Complex), Ncl and Nolc1 (Nucleolus) and 46 genes implicated in RNA metabolism (Splicing Speckles, Spliceosomes, Exosomes, and Cajal Bodies) were positively correlated to Oct4. Several genes implicated in nuclear transport such as Ipo11, Kpna1, Tnp2a and 3, Xpot, Gle11, Xpo5 and 6 and direct Oct4 targets Igf2bpl and Pph6 were also positively correlated.

The incidence of nuclear bodies is incremental with cellular differentiation and thereby enforce the transcriptional potential of specific genetic loci in early development. The identification of Hoxb1 as a negatively regulated Oct4 target is consistent with this hypothesis in light of the recent finding that in ESCs Hoxb1, although not expressed, is poised at the surface of its chromosome territory. In the initial stages of differentiation Hoxb1 is transcriptionally
activated which results in chromatin decondensation and reorien-
tation of this locus to the nuclear center [57]. Together, these
findings lead us to predict that Oct4 binding functions not only in
the transcriptional repression of genes that would otherwise
facilitate lineage commitment, but also presents a means whereby
these loci are organized spatially within the nucleus so as to be
poised for activation given the appropriate cue.

In addition to the normal physiological roles for NBs described
above, they also play key roles in the response to DNA damage,
DNA repair, apoptosis, and senescence. Loss of regulation in the
recruitment and coordination of key genes contained in these
structures (Tip53, Pml, Brc1, Blm, etc.) would be predicted to have
profound implications in the ability of a cell to respond to signals
that would lead to differentiation. Such dysregulation is associated
with the accumulation of NBs at sites of DNA damage (DNA
damage induced foci) and is implicated in several types of cancer
such as acute promyelocytic leukemia (Pml-Rara translocation) and
Bloom's Syndrome [56].

Conclusions
Through the use of gene expression data compiled from a vast
collection of adult and embryonic stem cells and their differen-
tiated derivatives we have performed a robust statistical analytic
method to identify genes that are correlated to Oct4. Although
several previous studies have mapped transcriptional targets of
Oct4, we believe that this study provides further insight into the
transcriptional regulatory networks, factors, and cofactors that
modulate stem cell function. Importantly, our experiments have
revealed hitherto unappreciated roles for Oct4 for firstly, regulating
chromatin structure in a state consistent with self-renewal and
pluripotency, and secondly, facilitating the expression of genes that
keep the cell poised to respond to cues that lead to differentiation.
Furthermore, our analyses has led to the elucidation of themes that
are essential for maintaining ES including permissive chromatin
structure, nuclear architecture, cell cycle control, apoptosis, and
DNA repair. Finally, we have identified 26 direct Oct4 transcriptional
targets which may represent candidate regulatory nodes by which cell fate decisions could be directed to facilitate the use
of hESCs in therapeutic and regenerative medicine (Figure 4A
and Table S2).

The Oct4 Transcriptional Regulatory Network
The expression of Oct4 in various forms of human cancer [8,9]
and a recently described role for Oct4 in adult stem cells [10] and
the expansion of epithelial progenitor cells [7] supports the theory
that cancer is a disease of stem cells. This theory postulates that
cancers arise in stem cells or early committed progenitors [58]
due to their inability to differentiate in a regulated fashion. Oct4
directly regulates the transcription of genes such as Tip53, Brc1,
Prc1, and Bmi1 which play a central role in a cell’s proximity to
undergo transformation, apoptosis, senescence, and now differenti-
tation.

The process of development and the commitment to differen-
tiate is guided by the ordered expression and repression of genes
required to enforce specific transcriptional programs. Knowledge
of the emerging Oct4 transcriptional regulatory network provides
a means whereby we can begin to understand the molecular
mechanisms that guide these processes and gain insight into
aberrations that lead to disease. While the stem cell state is
guarded by highly dynamic, complex, and interrelated mecha-
nisms which impact the repertoire, location, and functional state
of expressed genes, lineage commitment can be described as
a process whereby the unlimited ability for self-renewal and
potency are gradually restricted as a cell progresses from one
steady state of gene expression to the next. These diametrically
opposed states are mediated by a contrasted balance of forces that
impact chromatin structure, nuclear architecture, cell cycle, DNA
repair, and apoptosis (Figure 4B and C). Further examination of
the interactions among the genes identified as a result of this study
will provide a more thorough understanding of the pressures that
guide cell fate. Critically, only by understanding the normal
developmental function of a gene can we begin to understand the
role that it may play in disease. Importantly, our experiments have
defined how Oct4, as the master regulator of embryonic stem cell
function, plays a central role in regulating key genes in pivotal
pathways involved in controlling pluripotency, self-renewal and
differentiation.

MATERIALS AND METHODS

Stem Cell Culture and Isolation
The samples included in this study were obtained from various
members of the Stem Cell Network in support of The Stem Cell
Genomics Project. Full descriptions of the origin and experimental
conditions used to derive each sample can be obtained from
StemBase: (http://www.scgp.ca:8080/StemBase).

Target Labeling and Hybridization
Total RNA (10 ug or 10–50 ng) was labeled as per manufacturer’s
suggested methods (Affymetrix, Santa Clara, California, USA).
Brieﬂy, following ﬁrst strand and second strand cDNA synthesis,
samples underwent a single round (10 ug starting material) or two
rounds (10–50 ng starting material) of linear amplification using
a T7 based in vitro transcription (IVT) kit (MegascriptT7, Ambion).
During the ﬁnal round of IVT, biotinylated nucleotides were
incorporated into the nascent strand (Enzo Biotech, Farmington,
Connecticut, USA) to produce the labeled target cRNA. Ten
micrograms of cRNA were fragmented to reduce complexity and
hybridized overnight to the MOE 430 GeneChip Set, according to
standard protocol. The GeneChips were then washed and stained
with Streptavidin R-Phycocerythrin (SAPE). Signal amplification
was accomplished by subsequent staining with biotinylated anti-
streptavidin, followed by an additional incubation with SAPE.
Scanning and absolute analysis was performed in MAS 5.0 to
generate the experiment (.exp), raw image (.dat), intensity (.cel)
and absolute analysis (.cch) files. All samples were scaled to a target
intensity of 1500 during analysis.

Correlation Analysis
Normalized expression values for each probe set were obtained
from MAS 5.0 (http://www.affymetrix.com/products/software/
specify/mas,affx) and the mean expression value for each set of
biological triplicates was calculated. The data were scaled by
normalizing to the trimmed mean for all probe sets in the chips
(98%). Probesets that had a consensus detection call of present (P)
in more than 7% and less than 93% of the samples were included
in the analysis. The standard Pearson correlation coefficient (r) be-
tween every probeset which passed the filter, to the Oct4
probeset (1417945_at) was computed. A probeset is considered
correlated to Oct4 if the absolute value of r is greater than or
equal to 0.75. This computation was repeated 10,000 times with
random subsets consisting of 65% to 70% of the data. Probesets
that were correlated in at least 40% of the trials were retained for
further analysis.
GOStat Analysis
GOstat (http://gostat.wehi.edu.au/) was used to examine selected sets of probesets for over- and under-representation of GO terms, using MGI (http://www.informatics.jax.org/mgihome/) as GO to gene association database, and using false discovery rate correction. This method is sensitive to the GO annotations attached to the genes related to the probes, thus the result might change if another database (e.g. GOA) is used.

Binding Site Analysis
The genomic region from 2 kb upstream of the transcriptional start site to 2 kb downstream from the 3-prime end of the transcribed region of the correlated genes was scanned for the presence of neighboring Oct4 (ATGCAAAT) and Sox2 (AACAAGA) binding sites. Global analysis of the Oct4 correlated gene-list was performed in a conservative fashion based upon POU/ HMG/DNA ternary complex assembly as determined by crystal structure assessment of Fgf4 and Utf1 [59]. First, the two components of the Oct4 binding site, namely the POU specific domain (POUs) and the POU homeodomain (POUH) were forced to be consecutive in the sequence while independently in any direction, and in any of the two strands. A perfect match was required for POUs (ATGC), and one mismatch was allowed at any of the four positions of POUH (AAAT). Second, we defined the Sox2 binding site as either AACAAG, which corresponds to

Figures 4. The Oct4 transcriptional regulatory network. Validated Oct4 targets (A) are indicated by solid red or green lines. Red and green indicate negative and positive regulation, respectively for all cases. Dashed lines emanating from Oct4 indicate putatively regulated genes. Solid black lines represent potential regulatory nodes that could facilitate the directed differentiation of ESCs. The pressures that preserve stem cell function and modulate early lineage commitment are diametrically opposed. While Oct4 acts to maintain self-renewal and pluripotency in the undifferentiated ‘ES’ state by its modulation of genes that act to maintain permissive chromatin structure, DNA repair, anti-apoptosis, and inactive pRb (B), in differentiation the balance of these forces is altered to favour repressive chromatin structure, DNA checkpoint control, apoptosis, and active pRb which facilitate cellular commitment (C).

doi:10.1371/journal.pone.0000553.g004

Oct4 and Stem Cell Function
the predominant pattern, or the observed variations AACAAAT, or AACAAATG, in any direction or strand. The maximum distance between Oct4 and Sox2 binding was constrained to 3 nucleotides.

Manual assessment of binding sites for a subset of the Oct4 correlated genes as well as developmentally important regulators Hoxb1 and Tcf4 was performed in a less restrictive fashion. POUs was held invariant while the POUs (AAAT) was allowed to vary by one mismatch in any of the four nucleotide positions. Target sequence identification for the two POU domains relative to each other and to the Sox site were not restricted in order, orientation, or strand. Finally, as has been observed for Oct4/Sox2 cooperative binding on Opm [60], the distances between the Oct4 and Sox2 binding sites was relaxed and allowed to span up to 100 nucleotides.

Chromatin Immunoprecipitation

Chromatin Immunoprecipitation (ChiP) assays were performed using the Chromatin Immunoprecipitation Assay Kit (Upstate Biotechnology, Lake Placid, NJ, USA). Briefly, 5×10^6 J1 ESCs were cross-linked with 1% formaldehyde for 15 minutes at room temperature. Cells were washed three times in ice-cold PBS with protease inhibitors and lysed in buffer provided to which protease inhibitors were also added. The cells were sonicated to an average size of 1500 bp and 250 ng of input chromatin was used for each assay. Immunoprecipitation was performed overnight at 4°C with Oct4 antibody (Santa Cruz Biotechnology, Inc., Santa Cruz, California) and no antibody as a negative control.

Quantitative Real-time PCR

Quantitative PCR was performed using primers that flanked the regions containing putative Oct4 and Sox2 binding sites with the MX4000 (Stratagene, La Jolla, California, USA) using IQ SYBR Green Supermix (BioRad, Hercules, California.). The following cycling parameters were employed: 96°C 10 minutes, followed by 40 cycles of 96°C for 30 seconds, 57°C for 1 minute, and 72°C for 45 seconds. Primer sequences for each amplicon are described in Supplemental Table S2. Each result represents two independent ChiP assays with duplicate QRT-PCR analyses performed on each target gene for each assay. 100% amplification efficiency is assumed based on ΔΔCt values of ~3.3 between each point of a 10-fold serial dilution curve performed for a subset of the amplicons. A 2-fold enrichment therefore represents the minimum threshold for confirmation as an Oct4 target. Error bars denotes the Standard Error of the Mean. Subsequent to QRT-PCR analysis, each amplicon underwent DNA sequence analysis on and ABI 3730 to confirm identity.

SUPPORTING INFORMATION

Table S1 Samples used for Oct4 correlation analysis

Table S2 Summary of Oct4 Correlated Genes with Probeset ID, gene symbol, gene name, direction and percentage of correlation, chromosomal location, summary GO category used for Figure 2 and GO biological process were listed when known.

Table S3 GoStat Analysis

Table S4 Oct4/Sox2 putative binding site analysis with Gene symbol, RefSeq or Ensembl ID, putative binding sequence, and location in transcript enumerated

Table S5 Primer sequences for Oct4 target validation by ChiP/ QRT-PCR

Table S6 Annotation of Oct4 targets.

ACKNOWLEDGMENTS

The Authors would like to acknowledge the Stem Cell Network for their support of the Stem Cell Genomics Project and the technical staff of the Ontario Genomics Innovation Centre for their expert assistance. Kind thanks to Dave Picketts, Marjorie Brand, and Jeff Dilworth for insightful discussions. MAR is an International Scholar of the Howard Hughes Medical Institute and holds the Canada Research Chair in Molecular Genetics.

Author Contributions

Conceived and designed the experiments: MR PC. Performed the experiments: PC. Analyzed the data: CP MA PC. Contributed reagents/materials/analysis tools: CP. Wrote the paper: MR MA PC.

REFERENCES

1. Trounson AO (2001) The derivation and potential use of human embryonic stem cells. Reprod Fertil Dev 13: 523–532.
2. Nicholls J, Zevnik B, Anastasiadis K, Niwa H, Klewe-Nebenius D, et al. (1998) Formation of Pluripotent Stem Cells in the Mammalian Embryo Depends on the POU Transcription Factor Oct4. Cell 95: 379–391.
3. Shimozaki K, Nakashima K, Niwa H, Taga T (2005) Involvement of Oct3/4 in the enhancement of neuronal differentiation of ES cells in neurogenesis-inducing cultures. Development 130: 2505–2512.
4. Reim G, Mitrogiou T, Stainer DV, Kikuchi O, Brand M (2004) The POU Domain Protein Spg (Pou2/Oct4) Is Essential for Endoderm Formation in Cooperation with the HMG Domain Protein Casanova. Developmental Cell 6: 91–101.
5. Niwa H, Miyazaki J, Smith A (2000) Quantitative expression of Oct3/4 defines differentiation, dedifferentiation, or self-renewal of ES Cells. Nature Genetics 24: 372–376.
6. Gidekel S, Pizov G, Bergman Y, Pikarsky E (2003) Oct-3/4 is a dose-dependent fate determinant. Cancer Cell 4: 361–371.
7. Hochschilder K, Yamada Y, Beard C, Jaenisch R (2005) Ectopic expression of Oct4 blocks progenitor-cell differentiation and causes dysplasia in epithelial tissue. Cell 121: 463–477.
8. Monk M, Holding, Cathy (2001) Human Embryonic Genes Re-expressed in Cancer Cells. Oncogene 20: 8085–8091.
9. Jin T, Branch, Donald R, ZhangXiaoyun, QiShangle, Youngson, Bruce, Goss, Paul F (1999) Examination of POU Homeobox Gene Expression in Human Breast Cancer Cells. International Journal of Cancer 81: 104–112.
10. Tai M-H, Chang C-C, Olson LK, Troshko, JE (2005) Oct4 expression in adult human stem cells: evidence in support of the stem cell theory of carcinogenesis. Carcinogenesis 26: 495–502.
11. Boyer LA, Lee TI, Cole MF, Johnstone SE, Levine SS, et al. (2005) Core Transcriptional Regulatory Circuitry in Human Embryonic Stem Cells. Cell 122: 1–10.
12. Loh Y-H, Wu Q, Cheow J-L, Vega VB, Zhang W, et al. (2006) The Oct4 and Nanog transcription network regulates pluripotency in mouse embryonic stem cells. PLoS Genet 2: 841–440.
13. Battle HJ, Begthel H, van den Been MM, Sancho E, Huls G, Meelik J, Robertson J, van de Wetering M, Pavon T, Clevers H (2002) B-catenin and TCF mediate stem cell positioning in the intestinal epithelium by controlling the expression of EphB2/ephrinB. Cell 111: 251–263.
14. Boiani M, Scholer H (2005) Regulatory networks in embryoid-derived pluripotent stem cells. Nature Reviews Molecular and Cellular Biology 6: 872–884.
15. Chickarmane V, Troein C, Nuhe U, Sauro HM, Peterson C (2006) Transcriptional Dynamics of the Embryonic Stem Cell Switch. PLOS Computational Biology 2: 1089–1092.

16. Burdon T, Smith A, Savatier P (2002) Signalling, cell cycle, and pluripotency in embryonic stem cells. Trends in Cell Biology 12: 432–439.

17. Zhang W, Morris QD, Chang R, Shai O, Bakowski MA, et al. (2004) The functional landscape of mouse gene expression. Journal of Biology 3.

18. Perez-Iratxeta C, Palidwor G, Porter CJ, Sanchez NA, Huska MR, et al. (2005) Study of stem cell function using microarray experiments. FEBS Lett 579: 1795–1801.

19. Ivanova N, Dimos J, Schaniel C, Hackney J, Moore K, et al. (2002) A stem cell molecular signature. Science 298: 601–604.

20. Ramalho-Santos M, Youn S, Matsuzaki Y, Mulligan RC, Melton DA (2002) “Stemness”: transcriptional profiling of embryonic and adult stem cells. Science 298: 597–600.

21. Mikkers H, Frisen J (2005) Deconstructing stemness. European Molecular Biology Organization 24: 2715–2719.

22. Arias AM, Hayward P (2006) Filtering transcriptional noise during development: concepts and mechanisms. Nature 7: 34–44.

23. Lee TI, Rinaldi NJ, Robert F, Odom DT, Bar-Joseph Z, et al. (2002) Transcriptional regulatory networks in Saccharomyces cerevisiae. Science 298: 799–804.

24. Brisharat T, Speed TP (2004) GOSat: find statistically overrepresented Gene Ontology within a group of genes. Bioinformatics 20: 1464–1465.

25. Babaei Y, Herwig R, Greber B, Brink TC, Wruck W, et al. (2007) Analysis of Oct4-dependent transcriptional networks regulating self-renewal and pluripotency in human embryonic stem cells. Stem Cells 25: 500–510.

26. Ivanova N, Dobrin R, Lu R, Kosterko L, Lohr J, et al. (2006) Dissecting self-renewal in stem cells with RNA interference. Nature 442: 533–538.

27. Matoba R, Niwa H, Masui S, Ohtsuha S, Carter MG, et al. (2006) DissectingOct3/4-regulated gene networks in embryonic stem cells by expression profiling. PLOS One 1: e26.

28. Cairns BR (2005) Chromatin remodeling complexes: strength in diversity, precision through specialization. Current Opinion in Genetics&Development 15: 185–190.

29. Klose RJ, Kalinn EM, Zhang Y (2006) JmJ-1domain-containing proteins and histone demethylation. Nat Rev Genet 7: 715–727.

30. Huang Y, Meyers SJ, Dingledine R (1999) Transcriptional repression by REST: recruitment of Sin3a and histone deacetylase to neuronal genes. Nature Neuroscience 2: 867–872.

31. Ballas N, Grunstein C, Lu DD, Speh JC, Mandel G (2005) REST and Its Corepressors Mediate Plasticity of Neuronal Gene Chromatin throughout Neurogenesis. Cell 121: 645–657.

32. Westbrook TF, Martin ES, Schlachab MR, Leng Y, Liang AG, et al. (2005) A Genetic Screen for Candidate Tumor Suppressors Identifies REST. Cell 121: 837–848.

33. Lawinger P, Venogopal R, Gao JS, Immaneni A, Sengupta D, et al. (2000) The neuronal repressor REST/NRSF is an essential regulator in melanoblastoma cells. Nature Medicine 6: 826–831.

34. Sun Y-M, Greenway DJF, Johnson R, Street M, Belyaev ND, et al. (2005) Distinct Profiles of REST Interactions with Its Target Genes at Different Stages of Neuronal Development. Mol Biol Cell 16: 5630–5638.

35. Valtz-Lebcek ME, Bruggeman SWM, van Lohuizen M (2004) Stem Cells and Cancer: the Polycomb Connection. Cell 118: 409–418.

36. Lessard J, Sauvageau G (2003) Bmi-1 determines the proliferative capacity of normal and leukemic stem cells. 423: 255–260.

37. Zhang W, Morris QD, Chang R, Shai O, Bakowski MA, et al. (2004) The functional landscape of mouse gene expression. Journal of Biology 3.

38. Perez-Iratxeta C, Palidwor G, Porter CJ, Sanchez NA, Huska MR, et al. (2005) Study of stem cell function using microarray experiments. FEBS Lett 579: 1795–1801.

39. Squazzo SL, O’Geen H, Komashko VM, Krig SR, Jin VX, et al. (2006) Suz12 binds to silenced regions of the genome in a cell-type-specific manner. Nature 2073–2090.