The new explanation of cluster synchronization in the generalized Kuramoto system

Guilhua Tian1,2, Songhua Hu1,2,3, Shuquan Zhong2.

1School of Science, Beijing University of Posts And Telecommunications, Beijing 100876, China.
2State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts And Telecommunications, Beijing 100876, China. and
3 School of Electronic and Information Engineering, North China Institute of Science and Technology, Yanjiao 065201, China

The cluster synchronization (CS) is a very important characteristic for the higher harmonic coupling Kuramoto system. A novel transformation is provided, and it gives CS by the periodic properties of the density function. The periodic properties of the density function also make the cluster sections’ boundaries barrier-like, which helps to explain the sensitiveness of CS on the initial conditions of the oscillators. Detailed numerical studies confirm the theoretical predictions from this new view of the symmetry transformation. The work is very beneficial to the further study on CS in various systems.

PACS numbers: 05.45.Xt, 05.45.-a

I. INTRODUCTION

The symmetries play important role in varies branches of theoretical physics, both in classical and modern areas. For example, in the classical mechanics, the Kepler problem is easily solved if one unified the conservation of energy, angular momentum which are the results of the symmetry of the Kepler problem. Even without solving the problem, the conservation of the angular momentum will tell one many information, like the motion of the planet in the sun system being of plane, etc. In the paper, we will exploit the symmetry method to study the generalized Kuramoto system and give the answer to the question of cluster synchrony state without solving the problem directly.

The Kuramoto model (KM) captures the main property of the collective synchronization with the first harmonic coupling as $H(\theta_j - \theta_i) = K_{ij} \sin(\theta_j - \theta_i)$ and revealed the second continuous transition at the critical coupling strength K_c. KM is applied in many physical, biological and social systems, including electrochemical oscillators, Josephson junction arrays, cardiac pacemaker cells, circadian rhythms in mammals, network structure and neural network$^{[1]-[3]}$.

KM have been generalized in many aspects$^{[5]-[18]}$, one of them is the introduction of the globally higher harmonic coupling $H(\theta_j - \theta_i) = K_{ij} m \sin(m \theta_j - \theta_i)$, $m \in N$, $m > 1$, where many new and interesting phenomena appear, like the cluster synchronization (CS), and switching of the oscillators between different clusters with the external force, etc$^{[19]-[30]}$. Higher harmonic coupling (HHC) is dominating in the electrochemical oscillators in higher voltage$^{[19], [23], [24]}$, in neuronal networks with learning and network adaption$^{[23]-[30]}$. CS is the most outstanding feature of this higher harmonic coupling Kuramoto model(HHC-KM).

Here we will investigate HHC-KM from the point of symmetry, and provide a group transformation, and give CS a thoroughly novel interpretation, and answer the question on the same threshold for CS in different parameters m.

II. THE GENERALIZED KURAMOTO MODEL AND THE TRANSFORMATION TO EXPLAIN CS

The generalized Kuramoto model with the higher harmonic coupling is

$$\dot{\theta}_n = \omega_n + \frac{K}{N} \sum_{j=1}^{N} \sin(m \theta_j - \theta_n).$$

(1)

In the case of small strength $K < K_c$, the term ω_n dominates the change of the phase θ_n and the whole phase system is in the incoherent state. Whenever K exceeds K_c, the second terms in Eq.(1) predominate and CS emerges$^{[19]-[33]}$. It has been also known that CS is sensitive to the initial conditions of the oscillators in Ref.[19].

We study CS from completely new view. We will try to find the relation between the generalized and standard Kuramoto models, and penetrate the phenomena of CS to study their essence. In the standard Kuramoto model

$$\dot{\theta}_n = \omega_n + \frac{K}{N} \sum_{j=1}^{N} \sin(\theta_j - \theta_n),$$

(2)

the coupling strength $K > 0$ is assumed. By introduction of the transformation

$$\phi = m \theta,$$

(3)

together with $m \omega_n$, mK chang into ω_n, K, Eq.(1) takes the form

$$\dot{\phi}_n = \omega_n + \frac{K}{N} \sum_{j=1}^{N} \sin(\phi_j - \phi_n),$$

(4)

which is the same as that of the standard Kuramoto model$^{[53]}$.

atXv:1511.01351v1 [nlin.CD] 31 Oct 2015
The transformation (3) is crucial to obtain the information on Eq.(1) and give the explanation to CS. For Eq.(4), the density function \(f(\phi, \omega, t) \) in the large \(N \) limit satisfies the continuous equations

\[
\partial_t f + \partial_\phi \left[\left(\omega + \frac{K}{2i} \left(R e^{-i\phi} - R^* e^{i\phi} \right) \right) f \right] = 0, \tag{5} \\
R = \int \int f(\phi, \omega, t) e^{i\alpha} d\phi d\omega. \tag{6}
\]

Generally, the dynamical information for CS is obtained through solve Eqs.(3)-(4). Nevertheless, the transformation (3) make it possible to alternatively investigate CS without assorting to the direct solutions to Eqs.(5)-(6). See details in the following.

Suppose initially uniform distribution in \((0, 2\pi)\) for the phases \(\theta_n, n = 1, 2, \cdots, N \), the transformation indicates the corresponding initial phases’ uniform distribution is in \((0, 2m\pi)\) for the phases \(\phi_n, n = 1, 2, \cdots, N \). Because Eq.(3) is periodic in \(\phi \), with the initial periodic condition in \(\phi \), the solution \(f(\phi, \omega, t) \) is also periodic in \(\phi \). So one has

\[f(\phi, \omega, t) = f(\phi + 2\pi, \omega, t) = \cdots = f(\phi + 2(m - 1)\pi, \omega, t), \]

which results in the following outstanding properties for the corresponding density function \(f(\theta, \omega, t) \)

\[f(\theta, \omega, t) = f(\theta + \frac{2\pi}{m}, \omega, t) = \cdots = f(\theta + \frac{2(m - 1)\pi}{m}, \omega, t). \tag{7} \]

Hence the cluster phenomenons appear, and the phases \(\theta_n, n = 1, 2, \cdots, N \) cluster into \(m \) sections. From Eq.(7), it is easy to see that the order parameter is zero no matter the phases \(\theta_n, n = 1, 2, \cdots, N \) are in CS state or not, that is,

\[r e^{i\psi} = \int_{-\infty}^{\infty} \int_{0}^{2\pi} f(\theta, \omega, t) e^{i\theta} d\theta d\omega = 0. \tag{8} \]

So, the order parameter no longer works in the generalized one, as is shown in Fig.1 for the cases of \(m = 2, 3, 6 \) and is substituted by the generalized order parameter \(r_m \) defined as

\[R = r_m e^{i\psi'} = \frac{1}{N} \sum_{j=1}^{N} e^{im\theta_j}, \text{or} \]

\[R = r_m e^{i\psi'} = \int_{-\infty}^{\infty} \int_{0}^{2\pi} f(\theta, \omega, t) e^{im\theta} d\theta d\omega. \tag{9} \]

Eq.(7) guarantees the generalized order parameters \(r_m \) being the same for all parameters \(m \), which also could be obtained from the fact of the same density function \(f(\phi, \omega, t) \) for different \(m \) in calculation \(r_m = |R| \) by Eq.(6). We also numerically calculate \(r_m \) against \(K \) forward for different \(m = 1, 2, 3, 6 \) with the same initial random distributions in \((0, 2\pi)\) and the numerical results confirm the conclusion. See the second panel in Fig.1 for detail.

Note another symmetry of Eq.(11), that is, under the translation

\[\theta_n \rightarrow \theta_n + \bar{\alpha}, \forall 1 \leq n \leq N, \tag{10} \]

Eq.(11) is unchanged. So the cluster sections might be \((\alpha - \frac{\pi}{2m}, \alpha + \frac{\pi}{2m})\), \((\alpha + \frac{\pi}{2m}, \alpha + \frac{3\pi}{2m})\), \cdots, as are shown in Fig.1 and Fig.2. These cluster sections naturally have boundaries, which separate the different cluster sections. The boundaries of the cluster section with its center at \(\alpha + \frac{2n-1}{2} \pi \), \(n = 0, 1, 2, \cdots \), are \(\alpha + \frac{2n-1}{2m} \pi \), \(\alpha + \frac{(2n+1)}{2m} \pi \).

The most important feature of the boundaries is their
potential-barrier characteristic: after the formation of CS, the synchrony phases in each section can only stay in its section, only the asynchrony phases do pass the barriers. The remarkable properties also come from the normal Kuramoto system combining with the transformation Eq. (3). See details in the following.

In the normal Kuramoto system (1), the synchrony state forms around its center β (we define its center’ angle as β), and the synchronization oscillators will stay in the section $(\beta - \frac{\pi}{2}, \beta + \frac{\pi}{2})$. Hence the boundaries of synchrony state lie at $\beta - \frac{\pi}{2}$ and $\beta + \frac{\pi}{2}$. The oscillators who already are synchronized can not go cross the boundaries, so the boundaries behave as potential barriers to forbid the synchronized oscillators to pass through. Nevertheless, the oscillators not synchronized will have enough ‘energy’ (high positive or negative frequency) to overcome the barriers and go beyond them.

As stated above, we suppose $K \gg K_c$. The initial distribution falls into $(0, A)$ with $\frac{2(n-1)\pi}{m} < A < \frac{2n\pi}{m}$, $n < m$. It can be supposed that there are initially about n sections, so the boundaries will prevent all the oscillators except ones on the boundaries to pass through. Hence, the oscillators will evolve into n cluster sections plus very small part of the oscillators enters into the $(n+1)−th$ section, see Fig 3. However, Whether the number of cluster sections is n or $(n+1)$ is very sensitive to initial conditions of the oscillators. For example, it is possible to form $(n+1)$ cluster sections if there are many oscillators near the boundaries B or C, as is the case shown on the second and the fourth panels in Fig 4.

III. CONCLUSION AND DISCUSSION

CS has been investigated by the method of self-consistent approach in Refs. [19, 20, 27, 32]. Neural network actually studied the combination of the first and second harmonic couplings in the generalized Kuramoto model [25-32], which is also treated in Ref. [20, 33]. In the N identical oscillators’ case, the symmetry viewpoint is applied and CS of the two groups of m and $N - m$ oscillators is connected with their symmetry groups of the dynamics $S_m \times S_{N-m}$ [28, 29]. The symmetry group S_N is only suited for the identical oscillators in the Kuramoto model. However, it is still very difficult to obtain...
clear analytical results by the self-consistent approach and detailed understanding of CS [21, 23].

In the nice work [19], CS have been investigated by the self-consistent approach. The density function for the second harmonic coupling case is decomposed into the symmetric and asymmetric parts in Ref. [19], and the Ott-Antonsen (OA) mechanism is utilized to analyze the symmetric case. However, the asymmetric one is not accessible to the analytical study, and numerical methods are needed to the full solution of the density function [19]. For higher harmonic coupling than the second, the density function \(f(\theta, \omega, t) \) is decomposed in to \(m \) parts as \(f = f^{(1)} + \cdots + f^{(m)} \) and \(f^{(j)} = \sum_{n=-\infty}^{\infty} a_n^{(j)} e^{i(mn+j)\theta}, j = 1, 2, \cdots, m. \) OA mechanism could be utilized for \(f^{(m)} \) and the critical strength \(K_c = 2\Delta \) is obtained for the the Lorentz’s distribution of the natural frequency \(\varphi(\omega) = \frac{\Delta}{\pi(\omega^2 + \Delta^2)} \). However, it is not easy to obtain other \(f^{(j)}, j \neq m \) and numerical methods are used for \(f(\theta, \omega, t) \) [19].

However, our study is completely different from that in Ref. [19]. We mainly rely on the transformation [3] and the periodic properties of the density function to study the most typical phenomena CS in the generalized Kuramoto model. By the transformation [3], it is possible to relate CS with the periodic properties of the density function \(f(\phi, \omega, t) \) or \(f(\theta, \omega, t) \). To hold the periodic properties for \(f(\theta, \omega, t) \), the initial distribution of the oscillators in terms of \(\theta, n = 1, 2, \cdots, N \) must range randomly in \((0, 2\pi)\). Because of the periodic properties of \(f(\phi, \omega, t) \) or \(f(\theta, \omega, t) \) and the relation between \(\theta \) and \(\phi \), the \(m \) cluster synchrony states appear corresponding to \(\theta \), which are in one of the sections \((\alpha + \frac{(2n-1)\pi}{2m}, \alpha + \frac{(2n+1)\pi}{2m}) \) for \(n = 0, 1, 2, \cdots, m - 1 \). Corresponding the cluster sections, there naturally exist boundaries for them, which function as the potential barriers to forbid the synchrony oscillators to pass through. The existence of the barrier-like boundary can also explain the sensitiveness of CS to the initial conditions. The initial distribution of the phases \(\theta \) in \((0, A)\) with \(A < 2\pi \) will break the periodic condition for \(f(\phi, \omega, t) \) or \(f(\theta, \omega, t) \) and the violation will result in the sensitiveness of CS to the initial distribution \((0, A)\). The explanation to CS in the letter is novel and simple, and has both the profound mathematical insight and clear physical understanding. Our detailed numerical studies confirm the symmetric analysis.

Acknowledgments

The work was partly supported by the National Natural Science of China (No. 10875018) and the Major State Basic Research Development Program of China (973 Program: No.2010CB923202).

[1] Kuramoto Y., Chemical Oscillations, Waves, and Turbulence (Springer, Berlin, 1984).
[2] Acebron J. A., Bonilla L. L., Perez Vicente C. J., Ritort F., and Spigler R., Rev. Mod. Phys. 77 2005 137.
[3] Strogatz S. H., Physica D 143 2000 1.
[4] Kuramoto Y. and Nishikawa I., J. Stat. Phys. 49 1987 569.
[5] Gupta S., Campa A., and Ruffo S., J. Stat. Mech.: Theory Exp. R08001 2014 1.
[6] Tanaka H., Lichtenberg A. J. and Oishi S., Phys. Rev. Lett. 78 1997 (2104).
[7] Acebron J. A. and Spigler R., Phys. Rev. Lett. 81 19982229.
[8] Acebron J. A., Bonilla L. L. and Spigler R., Phys. Rev. E 62 2000 3437.
[9] Wang H. and Li X., Phys. Rev. E. 83 2011 066214.
[10] Zhang X., Hu X., Kurths J., and Zonghua Liu., Phys. Rev. E. 88 2013 010802(R).
[11] Pinto Rafael S. and Saa A., Phys.Rev. E 91 2015022818.
[12] Zou Y., Pereira T ., Small M., Liu Z., and Kurths J., Phys. Rev. Lett. 112 2014 114102.
[13] Gomez-Gardenes J., Gomez S., Arenas A., and Moreno Y., Phys. Rev. Lett. 106 2011 128701.
[14] Abrams D. M. and Strogatz S. H., Phys. Rev. Lett.,93 2004 174102.
[15] Fu C., Deng Z., Huang L., and Wang X., Phys. Rev. E 87 2013 032909 .
[16] Wu Y., Xiao J., G. Hu and M. Zhan, Europhys. Lett. 97
2012 40005.

[17] Zhu Y., Zheng Z. and Yang J., Phys. Rev. E 89 2014 022914.
[18] Ju P., Dai Q., Cheng H., and Yang J., Phys. Rev. E 90 2014 019903.
[19] Skardal P. S., Ott E. and Restrepo J. G., Phys. Rev. E 84 2011 036208.
[20] Komarov M. and Pikovsky A., Phys. Rev. Lett. PRL 111 2013 204101.
[21] Goldobin E., Koelle D., Kleiner R. and R. G. Mints., Phys. Rev. Lett. 107 2011 227001.
[22] Goldobin E., Kleiner R., Koelle D. and R.G. Mints., Phys. Rev. Lett. 111 2013 057004.
[23] Kiss I. Z., Zhai Y. and Hudson J. L., Phys. Rev. Lett. 94 2005 248301.
[24] Kiss I. Z., Zhai Y. and Hudson J. L., Prog. Theor. Phys. Suppl. 161 2006 99.
[25] Seliger P., Young S. C. and Tsimring L. S., Phys. Rev. E 65 2002 041906.
[26] Hansel D., Mato G. and Meunier C., Europhys. Lett. 23 1993 367.
[27] Hansel D., Mato G. and Meunier C., Phys. Rev. E 48 1993 3470.
[28] Ashwin P. and Borresen J., Phys. Rev. E 70 2004 026203.
[29] Banaji M., Phys. Rev. E 71 2005 016212.
[30] Niyogi R. K. and English L. Q., Phys. Rev. E 80 2009 066213.
[31] Okuda K., Physica D 63 1993 424.
[32] Golomb D., Hansel D., Shraiman B. and Sompolinsky H., Phys. Rev. A 45 1992 3516.
[33] Komarov M. and Pikovsky A., arXiv:1404.7292 2014.
[34] Ott E. and Antonsen T. M., Chaos 18 2008 037113.
[35] Rosenblum M. and Pikovsky A., Phys. Rev. Lett. 98 2007 064101.
[36] Pikovsky A. and Rosenblum M., Physica D: Nonlinear Phenomena 238 2009 27.
[37] Baibolatov Y., Rosenblum M., Zhanabaev Z. Z., Kyzgarina M. and Pikovsky A., Phys. Rev. E 80 2009 046211.
[38] G. Tian, S. Hu, S. Zhong, arXiv:1505.03690 (2015)
[39] After completing our work, we notice Ref. [30] has a similar transformation for $m = 2$ case in the fast study model.