Brain aggregoma with clonal B-cell perivascular proliferation detected by next-generation sequencing. A case report and review of the literature

Alenka Matjašič1, Karmen Wechtersbach1, Rajko Kavalar2, Matej Voršič3, Janez Ravnik3, Mara Popović1

1Institute of Pathology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia, 2Department of Pathology, University Medical Centre Maribor, Maribor, Slovenia, 3Department of Neurosurgery, University Medical Centre Maribor, Maribor, Slovenia

Abstract

Light-chain deposition disease (LCDD), a rare type of monoclonal immunoglobulin deposition disease, can be presented as systemic or localized, very rarely affecting central nervous system (CNS). Only 10 cases of CNS-LCDD have been described so far. We present an eleventh case of cerebral tumour-like LCDD, called aggregoma, and compare it with previously reported cases. A 49-year-old patient was admitted to the hospital due to a first generalized epileptic seizure. Magnetic resonance imaging (MRI) showed focal lesion in the right occipital lobe. Abundant parenchymal aggregates of pale eosinophilic material were observed, Congo red negative, Thioflavin T moderately positive, and λ-light chain positive, but κ negative in immunofluorescence with mild perivascular lymphoplasmacytic infiltrates in the intervening brain tissue. Clonality testing by next-generation sequencing showed the monoclonal nature of B-lymphocytes. Electron microscopy showed a finely granular ultrastructure of the aggregates without deposition in the vessel walls. A whole-body workup did not show any extra-cerebral immune dyscrasias.

Key words: aggregoma, CNS-LCDD, immunoglobulin light chains, next-generation sequencing, paraproteinaemia.

Introduction

Monoclonal immunoglobulin deposition disorders (MIDDs) are well-known clinicopathological entities related to the deposition of monoclonal immunoglobulins in fibrillar amyloidotic and, much more rarely, in granular or amorphous non-amyloidotic form (Randall type) [2]. Systemic MIDDs in both forms, light chain amyloidosis (AL), and, in non-amyloidotic form designated light and/or heavy chain deposition disease (LCDD/HCDD), always affect the kidneys, but other organs can be affected. The only functionally preserved organ in systemic MIDDs is the brain, due to the blood-brain barrier (BBB), with an exception to this rule [6].

Localized MIDDs have been described in respiratory and gastrointestinal tracts, lymph nodes, bones, and brain, usually as tumour-like amyloid deposits designated amyloidomas or, much more rarely, as tumour-like non-amyloid deposits called aggregomas [19]. Diffuse LCDD restricted to a single organ has also been described [16]. Only 10 cases of LCDD restricted to the brain have so far been described.
The majority of them were aggregomas, with or without vascular involvement. Only 1 case manifested as multifocal cerebral light chain vasculopathy (CLCV) [13].

Herein we describe a female patient with brain aggregoma and further compare it with 10 reported cases.

Case report

The patient was admitted to the neurological department after a first generalized epileptic seizure without neurological deficits. Magnetic resonance imaging (MRI) showed a focal lesion in the right occipital lobe (Fig. 1). Surgical complete excision of a firm lesion, sharply demarcated from oedematous brain tissue, was performed. The postoperative head MRI revealed postoperative changes after complete excision of the lesion (Fig. 1).

The patient had no signs of systemic lymphoproliferative disease.

Microscopic examination revealed abundant multifocal homogenous material with crack-like artefacts (Fig. 2A), which was Congo red negative (Fig. 2B) but Thioflavin T moderately positive (Fig. 2C). Immunofluorescence on lambda (λ) and kappa (κ) light chain (LC) showed aggregates to be λ-positive (Fig. 2D) and κ-negative (figure not shown). Mild perivascular lymphoplasmacytic infiltrates in the intervening brain tissue were composed mostly of T- and B-lymphocytes and very few plasma cells with no LC restriction (figures not shown). A small piece of formalin-fixed, paraf-

Fig. 1. Magnetic resonance imaging (MRI) of the brain before (A, B) and after surgery (C, D). A) The T2-weighted axial image shows a slightly unevenly hyperintense lesion in the right occipital lobe, with surrounding oedema. B) The T1-weighted axial image with gadolinium shows very slight contrast enhancement of the lesion. C) The T2-weighted axial postoperative image shows macroscopically the completely removed lesion. D) No contrast enhancement on the T1-weighted image after the lesion has been removed.
fin-embedded (FFPE) tissue was processed for electron microscopy, as previously described [7], revealing electron-dense finely granular material in the brain tissue but not in the vessel walls (Fig. 2E, F). A diagnosis of tumour-like LCDD or aggregoma was made.

We isolated total DNA from perivascular lymphocytic infiltrates, which were present between the abundant aggregates of λ-LC, enriched in the sample as previously described [9]. Next-generation sequencing (NGS)-based clonality testing of B-lymphocytes was performed using commercially available LymphoTrack assays (Invivoscribe Technologies) targeting immunoglobulin heavy (IGH) and κ light (IGK) chain, following the manufacturer’s protocols. We detected a monoclonal B-lymphocyte population with rearrangements in IGH-FR2 and IGK (see Fig. 3), further supporting λ-LC deposits and the aggregoma diagnosis.

Discussion with review of previously reported cases

The presented case of cerebral LCDD is similar to some, but different from others, of 10 pre-
Fig. 3. Next-generation sequencing (NGS) for immunoglobulin heavy (IGH) chain and immunoglobulin κ (IGK) light chain clonality detection. The NGS (using Invivoscribe assays and S5 Ion Torrent system) showed a monoclonal B-cell population. Each coloured box represents the frequency of reads with an identical sequence. NGS results show a monoclonal pattern in IGH regions FR2 (68343 reads) and IGK (403081 reads), and a polyclonal pattern in the IGH FR3 region (139975 reads). Sequencing of the FR1 region failed, because it did not produce the number of reads required for a reliable analysis (1363 reads, the threshold is set at 20000 reads). The 2 clones present in IGK analysis (V3/IGKDEL and IGKINTR/IGKDEL) (bottom histogram) suggest inactivation of IGK alleles and subsequent rearrangement of immunoglobulin λ light chain genes. IGL expression requires a functional rearrangement of the IGL gene, which happens with inactivation of IGK alleles through deletion of their regulatory elements [14].
Table I. The main clinical, radiological, neuropathological, and molecular characteristics of previously reported 10 cases of light chain deposition disease (LCDD) restricted to the brain, and the presented case

Study	Sex	Age	Initial clinical presentation	MRI, location, CLCV and/or aggregoma	Specimen	LC	Clonality of lymphoplasmacytic infiltrate	CSF p/c	CSF oligoclonal band	Systemic findings
Fischer et al. 2006 [4]	M	19	Seizures	FLAIR hyperintense right occipital lobe aggregoma?	Stereotactic biopsy	λ	Low grade B-cell lymphoma with plasmacellular diff. and λ LC restriction	0.62 g/l	3.3 c/μl	No NA
Popović et al. 2007 [13]	M	35	Psychosis, Bulbar signs	T2 hyperintense T1 hypointense, gadolinium enhanced multifocal, periventricular lesions, R > L, the largest in the right occipital lobe multifocal CLCV	Postmortem brain section	λ	Monoclonal B-cells perivascular infiltrate, neoplastic or reactive? without LC restriction	0.36 g/l	7 c/μl	Yes NA at autopsy
Pantazis et al. 2010 [12]	M	72	Seizures, focal motor	FLAIR hyperintense T1 + gadolinium – unevenly enhanced, multifocal periventricular mostly right parieto-occipital lesions CLCV, aggregoma?	Stereotactic biopsy	λ	Primary cerebral low grade lymphoplasmacytic B-cell lymphoma	IgG 445 mg/l	5 c/ml	Yes NA
Vital et al. 2010 [17]	M	60	Gait instability	FLAIR hyperintense T1 isointense, gadolinium enhanced, cerebellar CLCV and aggregoma	Craniotomy resection	κ	Monoclonal plasma cells with κ LC restriction	0.7 mg/dl	5 c/mm³	No NA
Menke et al. 2012 [10]	M	60	Left hemiparesis	T2 hyperintense T1 + gadolinium slightly enhanced right fronto-parietal periventricular CLCV, aggregoma?	Stereotactic biopsy	λ	Monoclonal plasma cells with λ LC restriction	ND	ND	NA
Skardelly et al. 2013 [15]	F	61	Right hemiparesis/hypoesthesia	FLAIR hyperintense T1 + gadolinium punctate slightly enhanced left insula and basal ganglia aggregoma	Craniotomy resection	λ	Low-grade lymphoplasmacytic lymphoma with λ LC and IgA restriction	NA	No	ND
Yu et al. 2014 [18]	F	44	Incidental finding	T2/FLAIR hyperintense T1 hypointense non-enhancing tumour-like mass in the right frontal lobe CLCV, aggregoma?	Stereotactic biopsy	κ	Mild perivascular lymphocytic infiltrate, LC restriction was not assessed	NA	No	NA
Mercado et al. 2017 [11]	M	44	Left lower extremity hypoesthesia progressed to left-sided weakness	T2 heterogeneously hyperintense T1 + gadolinium focally enhanced right parieto-occipital lobe CLCV, aggregoma?	Stereotactic biopsy	κ	Lymphoplasmacytic infiltrate with κ LC restriction	No	No	NA
Previously reported cases (Table I). The range of age at presentation was 19 to 72 years (mean age 52 years), which is only slightly younger than the age of appearance of primary central nervous system lymphomas (PCNSL) in immunocompetent patients [3], with a male predilection (male-to-female ratio 7 : 4). Another similarity between brain LCDD and PCNSL is the periventricular location in the majority of cases. In 7 cases, including the presented case, the lesion was located in the right occipital lobe close to the ventricle [1,4,5,11,12,18]. Even in the case with post-mortem brain examination, the largest lesion was in the same location [13]. In the other 3 cases, the locations were right cerebellar [17], right fronto-parietal [10], and right frontal [18]. The lesions were multifocal in 2 cases [12,13]. The leading symptom of disease in the presented case was epileptic seizure, as it was in the additional 2 with similar locations [4,12]. Otherwise, there were hemiparesis with or without hemihypesthesia [10,11,15], headache with speech and visual disturbances [1,5], gait instability in the case with cerebellar location [17], and bulbar signs in the case with multifocal CLCV with severe medullary involvement [13]. The MRI presentation of all cases was very similar.

Specimens for microscopic observation of the lesions were obtained by stereotactic biopsy in 6 cases [4,10-12,15,18], by craniotomy followed by excision of the lesion in 4 cases, including the presented one [1,5,17], and whole brain examination was performed in 1 case [13]. In stereotactic biopsy specimens, the exact location of the aggregates could not always be determined, while in the excised specimens after craniotomy, the location of aggregates was well defined: in 3 cases, including the presented one, the aggregates were parenchymal, sparing the vessel walls [5,17], and giving tumour-like LCDD called aggregoma, while in 1 case the aggregates were only in the vessel walls [1], giving focal CLCV. Multifocal CLCV with no parenchymal aggregates was clearly observed only in the case of whole brain examination [13].

In the presented case, NGS clonality testing showed monoclonal B-cell lymphocytes. In all other cases, monoclonal lymphoplasmacytic infiltrate was observed with κ-LC restriction in 4 cases [1,5,11,17], and λ-LC restriction in 2 cases [10,15], in contrast to amyloidomas of CNS, in which almost exclusively λ-LC have so far been described [8]. LC restriction in the lymphoplasmacytic infiltrate was not mentioned in

Study	Age	Initial clinical presentation	MRI, location, CLCV and/or aggregoma	Specimen	LC	Clonality of lymphoplasmacytic infiltrate	CSF p/c	CSF oligodendroglial band	Systemic findings
Boulter et al. 2018	M 64	Headache with bilateral blurry vision	T2/FLAIR hyperintense T1 hypointense, gadolinium enhanced right parieto-occipital region focal CLCV	Craniotomy resection	κ	Lymphoplasmacytic infiltrate with κ-LC restriction	No	NA	NA
Grainger et al. 2019	F 64	Headache, left sided visual disturbance, transient speech arrest	T2/FLAIR hyperintense T1 hypointense, gadolinium enhanced right occipital lobe aggregoma	Craniotomy resection	κ	Lymphoplasmacytic infiltrate with κ-LC restriction	0.84 g/l	Normal cell count	NA
Present Case	F 49	Seizures	T2 unevenly hyperintense T1 + gadolinium focally slightly enhanced right occipital lobe aggregoma	Craniotomy resection	λ	Mild perivascular monoclonal lymphoplasmacytic infiltrate	ND	ND	NA

CLCV – cerebral light chain vasculopathy, CSF – cerebrospinal fluid, LC – light chain, NA – not done, p/c – protein/cells
the other 3 cases [4,12,13]. In 3 cases, the infiltrate was defined as primary cerebral low-grade lymphoma [4,12,15]. Cerebrospinal fluid (CSF) examination was done in all cases except 2 [5,10]. CSF oligoclonal bands were found in only 2 cases [12,13]. A whole-body work up was performed in all cases except 1 [15], showing no sign of systemic immune dyscrasia.

To summarize, LCDD restricted to the brain is a very rare disease, radiologically mimicking a tumour or multiple sclerosis. We propose the name aggregoma only in cases with deposition of LC inside the brain tissue, with or without deposition in the vessel walls. The nature of monoclonal lymphoplasmacytic infiltrate, reactive or neoplastic, accompanying the deposits in all cases, remains questionable.

Ethics approval

The publication of the case report was approved by an institutional review board.

Availability of data and material

The data and the participation consent for the current case are not publicly available due to privacy concerns but are available from the corresponding author upon reasonable request.

Acknowledgments

The authors are grateful to Nina Hauptman, Ph.D. and Metod Perme for their technical support. Martin Cregeen provided language editing.

Disclosure

The authors report no conflict of interest.

References

1. Boult TD, Sadaka A, Nakawah MQ, Smith SV, Alouch N, Berry SE, Whyte AE, Fuller GN, Lee AG. Primary central nervous system lymphoma with light chain deposition disease (aggregoma). J Neuropathohalmal 2018; 38: 195-197.
2. Buxbaum JN, Chuba JV, Hellman GC, Solomon A, Gallo GR. Monoclonal immunoglobulin deposition disease: light chain and light and heavy chain deposition diseases and their relation to light chain amyloidosis. Clinical features, immunopathology, and molecular analysis. Ann Intern Med 1990; 112: 455-464.
3. Camilleri-Broet S, Martin A, Moreau A, Angonin R, Henin D, Gon-tier ME Rousselet MC, Caulet-Maugendre S, Cuilliére P, Lefrancq T, Mokhtari K, Morcos M, Broét P, Kujas M, Hauw JL, Desablenes B, Raphael M. Primary central nervous system lymphomas in 72 immunocompetent patients: pathologic findings and clinical correlations. Groupe Ouest Est d’etude des Leucenies et Autres Maladies du Sang (GOELAMS). Ann J Clin Pathol 1998; 110: 607-612.
4. Fischer L, Korfel A, Stoltenburg-Didinger G, Ranisco C, Thiel E. A 19-year-old male with generalized seizures, unconsciousness and a deviation of gaze. Brain Pathol 2006; 16: 185-186, 187.
5. Grainger BT, Issa S, Anderson NE. Primary idiopathic CNS non-amyloidogenic light chain deposition disease complicated by treatment-resistant focal seizure disorder. J Clin Neurosci 2019; 59: 313-315.
6. Leonardis L, Pihner DN, Zupan M, Vizjak A, Belcijan NL, Juricic V, Popovic M. Fatal recurrent dermatoneuro syndrome associated with systemic AL amyloidosis. Clin Neuropathol 2016; 35: 72-77.
7. Ligezhan R, Baderca F, Alexa A, Iacovlev M, Bonte D, Muraescu ED, Nebunu A. The value of the reprocessing method of paraffin-embedded biopsies for transmission electron microscopy. Rom J Morphol Embryol 2009; 50: 613-617.
8. Lörh M, Kessler AF, Monoranu CM, Grosche J, Linsenmann T, Ernestus RJ, Hartig W. Primary brain amyloidoma, both a neoplastic and a neurodegenerative disease: a case report. BMC Neurol 2019; 19: 59.
9. Matjasic A, Zupan A, Bostjancic E, Pstrm J, Popovic M, Kolenic D. A novel PTPRZ1-ETVI fusion in gliomas. Brain Pathol 2020; 30: 226-234.
10. Menke JR, Jentoft ME, Dogan A, Avent JM, Miller DV, Giannini C. Periventricular white matter immunoglobulin lambda light chain deposition disease diagnosed by proteomic analysis. Acta Neuropathol 2012; 124: 293-295.
11. Mercado JJ, Markert JM, Meador W, Chapman P, Perry A, Hackney JR. Primary CNS nonamyloidogenic light chain deposition disease: case report and brief review. Int J Surg Pathol 2017; 25: 755-760.
12. Pantazis G, Psaras T, Kiope, von Coelln R, Fend E, Bock T, Schitten-helm J, Melms A, Meyermann R, Bornemann A. Cerebral low-grade lymphoma and light chain deposition disease: exceedingly high IgG levels in the cerebrospinal fluid as a diagnostic clue. Clin Neuropathol 2010; 29: 378-383.
13. Popovic M, Tavcar R, Glavac D, Volavsek M, Pirtosek Z, Vizjak A. Light chain deposition disease restricted to the brain: The first case report. Hum Pathol 2007; 38: 179-184.
14. Rustad ER, Hultcrantz M, Yellaspanta VO, AkHaghi T, Ho C, Arriea ME, Roshal M, Patel A, Chen D, Devlin SM, Jacobsen A, Huang Y, Miller JE, Papaemmanuil E, Landgren O. Baseline identification of clonal V(D)J sequences for DNA-based minimal residual disease detection in multiple myeloma. PLoS One 2019; 14: e0211600-e.
15. Skardelly M, Pantazis G, Bisdas S, Feigli GC, Schuhmann ML, Tatagiba MS, Tatagiba MS, Ritz R. Primary cerebral low-grade B-cell lymphoma, monoclonal immunoglobulin deposition disease, cerebral light chain deposition disease and “aggregoma”: an update on classification and diagnosis. BMC Neurol 2013; 13: 107.
16. Toor AA, Ramdane BA, Joseph J, Thomas M, O’Hara C, Barlogie B, Walker P, Joseph L. Cardiac nonamyloidotic immunoglobulin deposition disease. Mod Pathol 2006; 19: 233-237.
17. Vital A, Ellie E, Loriseau H. A 61-year-old man with instability of gait and right hand clumsiness. Brain Pathol 2010; 20: 273-274.
18. Yu JR, Wilson DM, Chang EE, Cotter J, Perry A, Mahindra A, Glastonbury CM. Isolated intracerebral light chain deposition disease: novel imaging and pathologic findings. Clin Imaging 2014; 38: 868-871.
19. Zidar N, Zver S, Jurcic V. Extraosseus plasmacytoma of the pharynx with localized light chain deposition. Case report. Pathol Oncol Res 2010; 16: 249-252.