Isobaric analog state energy in deformed nuclei: A toy model†

X. Roca-Maza,*1,2 H. Sagawa,∗3,4 and G. Colò∗1,∗2

The effects of deformation on the energy of the isobaric analog state (IAS) are studied through microscopic deformed Hartree-Fock-Bogolyubov calculations. A simple yet physical toy model is also presented to provide guidance when predicting unknown IAS energies of deformed nuclei. The deformed HFB calculations are performed for several neutron-deficient medium-mass and heavy nuclei to predict the IAS energies.

Isospin is one of the most important (approximate) symmetries in nuclei. The validity of isospin symmetry has been established by the experimental observation of IASs by charge-exchange reactions. Recently, these states have been investigated extensively in connection with the symmetry energy, particularly to determine the so-called slope parameter L. Thus far, theoretical studies of IAS have mainly focused on spherical nuclei such as 48Ca, 90Zr, and 208Pb. However, a large number of deformed nuclei exist, but transparent information on the effects of deformation on IAS is still lacking. In this paper, we derive a general formula for the effects of deformation on the Coulomb direct contribution to the energy of the IAS and provide a simple albeit physical model. Then, we study several neutron-deficient medium-mass and heavy nuclei, which are now planned to be studied experimentally in RCNP, Osaka within the LUNESTAR project.

The IAS energy E_{IAS} can be defined as the energy difference between the analog state $|A⟩$ and the parent state $|0⟩$ as follows:

$$E_{\text{IAS}} = ⟨A|\mathcal{H}|A⟩ - ⟨0|\mathcal{H}|0⟩ = \langle 0| T_+-[\mathcal{H}, T_-]|0⟩,$$

where $T_{\pm} = \sum_i T^\pm(i)$ are the isospin raising/lowering operators. The direct Coulomb term of IAS energy for an axially symmetric nucleus can be evaluated as

$$E_{\text{IAS}} = E_{\text{IAS}}^{\text{Cd}} + \left[1 - \frac{\beta_{2n}\beta_{2p}}{4\pi} + \frac{(\beta_{2n} - \beta_{2p})(\beta_{2n} + \beta_{2p})}{4\pi} + \frac{(\beta_{2n} - \beta_{2p})^2}{4\pi} \right],$$

where $\beta_{2n(2p)}$ is the quadrupole deformations for neutrons (protons). For $\beta_{2n} = \beta_{2p}$, this reduces to

$$E_{\text{IAS}}^{\text{Cd}} = E_{\text{IAS}}^{\text{Cd,sph}} = 1 - \frac{\beta_{2}^2}{4\pi}. $$

From Eq. (3), one should expect that a larger quadrupole deformation corresponds to a smaller IAS energy. For a qualitative understanding of the effect of deformation on the IAS energy, Eq. (3) predicts, for very deformed nuclei with $\beta_2 \approx 0.8$, a relative reduction in E_{IAS} of approximately 5% with respect to the spherical nucleus.

Table 1 lists the results of deformed HFB calculations for several neutron-deficient nuclei as predicted by SAMi EDF. $E_{\text{IAS}}^{\text{HFB}}$ is the sum of the direct Coulomb, exchange Coulomb, and isospin mixing contributions. The deformation effect on IAS energy has been estimated from the HFB calculations, $\Delta E_{\text{IAS}} = E_{\text{IAS}}^{\text{HFB}}(\beta_{2n}, \beta_{2p}) - E_{\text{IAS}}^{\text{HFB}}(\beta_{2n} = 0, \beta_{2p} = 0)$.

Nucl.	β_{2n}	β_{2p}	$E_{\text{IAS}}^{\text{HFB}}$	$E_{\text{IAS}}^{\text{exp}}(2)$	$\Delta E_{\text{IAS}}^{\text{HFB}}$
196Hg	-0.180	-0.187	18.906	-0.070	
196Pt	-0.147	-0.141	18.649	-0.037	
138Nd	0.040	0.047	15.331	0.010	
136Ce	0.201	0.225	16.755	-0.003	
132Ba	0.000	0.000	15.114	0.000	
126Ce	0.126	0.158	15.352	-0.081	
124Ce	0.040	0.047	15.331	-0.010	
112Sn	0.192	0.199	14.085	-0.001	
100Cd	0.056	0.056	13.810	-0.089	
195Ir	0.186	0.174	13.346	-0.162	
192Os	0.000	0.000	14.749	0.000	
190Er	0.348	0.378	16.975	-0.112	
188Er	0.346	0.377	17.188	-0.110	
186Er	0.346	0.377	17.681	-0.086	
184Er	0.346	0.377	17.681	-0.086	
182W	0.278	0.299	17.911	-0.101	
178W	0.304	0.319	17.629	-0.091	
176W	0.267	0.276	17.538	-0.086	
152Hf	0.335	0.355	18.223	-0.171	

References
1) X. Roca-Maza, G. Colò, H. Sagawa, Phys. Rev. C 86, 031306 (2012).
2) M. Antony, A. Pape, J. Britz, At. Data Nucl. Data Tables 66, 1 (1997).

† Condensed from the article in Phys. Rev. C 102, 064303 (2020)
*1 Dipartimento di Fisica, Università degli Studi di Milano
*2 INFN, Sezione di Milano
*3 RIKEN Nishina Center
*4 Center for Mathematics and Physics, the University of Aizu