The pediculated gastrocnemius muscle flap as a treatment for soft tissue problems of the knee – indication, placement and results

Abstract

With the increase of endoprosthetic knee replacements, there is also an increase of critical wounds to the knee due to a high incidence of soft tissue problems (ranging from wound healing defects to severe wound infections). The literature describes a general rate of soft tissue complications of up to 20% [1], [2], with 5% [3] involving exposed bone. These complications are an increasingly important problem for surgeons. Since sufficient coverage of bones, tendons and prosthetic material with soft tissue is a necessity, the use of a pediculated muscle flap is the only solution in some cases. The gastrocnemius muscle is very useful for this purpose. It is an elaborate procedure which is associated with a high rate of complications. However, this procedure can establish a secure coverage with soft tissue, and the function of the prosthesis and the patient’s extremity can be saved. We have treated 23 patients with a gastrocnemius rotation flap after knee prosthesis or knee arthrodesis infection with consecutive soft tissue damage at our hospital from 8/2004 through 3/2011. The overall rate of healing of the knee infections with stable soft tissue status is almost 87%. The revision rate with lifting of the flap and revision of the sutures at the point of insertion as well as the point of extraction was about 35% with long-term conservative or additional surgical treatments.

Keywords: gastrocnemius muscle flap, soft tissue damage of the knee, prosthesis infections

Boris Moebius1
Eike Eric Scheller1

1 Evang. Krankenhaus Hubertus, Berlin, Germany

Zusammenfassung

Bei einer Zunahme von endoprothetischen Gelenkersatz am Kniegelenk kommt es aufgrund der hohen Rate an Weichteilproblemen (von der Wundheilungsstörung bis hin zum tiefen Wundinfekt) auch zu einer Zunahme an kritischen Wunden im Bereich des Kniegelenks. In der Literatur wird eine allgemeine Weichteilkomplikationsrate von bis zu 20% [1], [2], in 5% [3] sogar mit freiliegendem Knochen beschrieben. Diese stellen mittlerweile ein immer gewichtiger werdendes Problem für den behandelnden Chirurgen dar. Bei einer notwendigen suffizienten Weichteilbedeckung von Knochen, Sehnen und prothetischem Material bleibt in speziellen Fällen nur der Ausweg einen gestielten Muskellappen zu verwenden. Hierfür ist der M. Gastrocnemius hervorragend geeignet. Es handelt sich um ein aufwendiges Verfahren, welches mit einer hohen Komplikationsrate vergesellschaftet ist. Durch dieses Verfahren kann jedoch ein sicherer Weichteilverschluss erreicht werden und damit die Funktion der Prothese und die Extremität des Patienten gerettet werden. Zwischen 8/2004 und 3/2011 wurden in unserem Haus 23 Patienten mit einem Gastrocnemiuswenkklappen nach Knieprothesen- oder Kniearthrodeseninfekt mit konsekutivem Weichteilschaden behandelt. Insgesamt lag die Ausheilungsrate der Knieinfekte mit stabilen Weich-
Material and methods
Laing et al. [11] have described five stages of soft tissue defects after knee endoprosthetics 1992:

- Stage 0: Redness near the wound without wound dehiscence or development of necrosis
- Stage 1: Only superficial skin necrosis or tension blisters, deeper layers not affected; no fistula
- Stage 2: Extensive skin necrosis with fistula towards the knee, deeper layers of tissue not affected
- Stage 3: Joint fistula with dehiscence of deeper layers; a small part of the joint prosthesis is visible
- Stage 4: Widespread tissue necrosis with wound dehiscence and visible prosthesis

For stages 0 and 1, a conservative treatment with fixation of the knee and bed rest for the patient is favoured and the soft tissue damage usually heals well without surgical treatment. For stage 2 and above, surgical measures are preferred. In stage 2, the superficial skin necrosis should be removed and temporary soft tissue coverage and vacuum therapy should occur. A swab should be submitted for an antibiogram for subsequent antibiotic therapy. Permanent soft tissue coverage can occur in the case of asepsis. Depending on size, a split-skin (MESH-graft) or full-skin graft can be chosen.

For soft tissue damage of stage 3 (Figure 1), a muscle flap is necessary, because the deeper damages cannot be treated with mere skin transplants [12]. The benefits of muscle flaps, e.g. a gastrocnemius rotation flap, are evident: because the muscle flap is supplied with blood, it can be placed on infected wounds; this leads to a significant improvement of wound healing. This is due to secure soft tissue coverage of possibly exposed bone and prosthetic material. It is also due to the transportation of immunocompetent cells to the site of infection with the normal blood supply which leads to an improvement of wound healing and defence against infection [13]. For this stage, the elevation and use of one gastrocnemius muscle belly, medial or lateral, is sufficient (Figure 2).

The lateral gastrocnemius muscle flap plasty was first described by Ger [15]. The localisation of the damage dictates which muscle belly should be used. The medial head is often longer and wider than the lateral head which is why it is usually used. Due to separate blood supply through the Aa. surales medialis and laterialis, the elevation of an isolated flap [16] and the coverage of almost the entire knee (Figure 3) is possible. The muscle belly should be lifted without a skin graft because this could cause problems with the closure of the skin near the location of extraction. For the dermal closure of the implanted muscle flap, split-skin (MESH-graft) with a thickness of 0.3 to 0.5 mm should be used. The muscular aponeurosis and parts of the fascia of the muscle should be removed, so that it can heal well (Figure 4).

In case of stage 4 soft tissue damage, both bellies of the gastrocnemius muscle can be used. An area of up to 60 square centimetres can be covered this way [17]. The muscle coverage with split-skin (MESH-graft) is also indicated (Figure 5, Figure 6, Figure 7, Figure 8, Figure 9).
If there is an intact suralis muscle, the expected muscular deficit regarding plantar flexion is remarkably small [18], [19] and there is little aesthetic defect involved with muscle flap plasty [20].
Results

We treated 23 patients between 8/2004 and 3/2011 with a gastrocnemius muscle flap. 16 patients were treated for stage 3 soft tissue damage and seven patients were treated for stage 4 soft tissue damage. Accordingly, 16 patients received one-headed muscle flaps and seven patients received two-headed muscle-flaps with split-skin grafts from the ipsilateral thigh. Out of 23 patients, eight patients had to undergo surgery once more. Dehiscence or necrosis at the split-skin graft occurred in three patients, and this required repeated split-skin grafts. One patient experienced dehiscence near the extraction point of the muscle which was successfully treated with split-skin graft after vac-therapy. Four patients experienced recurring infection of the prosthesis with development of a fistula and large soft tissue destruction which was successfully treated with elaborate surgical measures in one case. The extremity could not be saved in three cases, and this resulted in above-knee amputation.

Conclusion

Due to the increasing number of implantation of knee endoprostheses and the associated number of soft tissue damages, a standardized procedure for the treatment of these complications is necessary. In the case of deep soft tissue damages with fistulas reaching the prosthesis or exposing the prosthesis, the gastrocnemius muscle flap is a good method for secure coverage of the prosthesis with well-perfused tissue. Despite the high rate of complications of almost 35% which required at least another surgery, the amputation of the extremity could be avoided for 87% of the treated patients. This method of soft tissue reconstruction is a necessary skill for surgeons involved with the implantation of knee endoprostheses.

Notes

Competing interests

The authors declare that they have no competing interests.

References

1. Bruner S, Jester A, Sauerbier M, Germann G. Use of a cross-over fistula for simultaneous microsurgical tissue transfer and restoration of blood flow to the lower extremity. Microsurgery. 2004;24(2):114-7. DOI: 10.1002/micr.20005
2. Gerwin M, Rothaus KO, Windsor RE, Brause BD, Insall JN. Gastrocnemius muscle flap coverage of exposed or infected knee prosthesis. Clin Orthop Relat Res. 1993;286:64-70.
3. Johnson DP, Bannister GC. The outcome of infected arthroplasty of the knee. J Bone Joint Surg Br. 1986;68(2):289-91.
4. BARMER GEK. 3,5 Milliarden Euro für neue Knie- und Hüftgelenke. Report Krankenhaus. Berlin; Juli 2010.
5. König A, Kirschner S. Langzeitergebnisse in der Knieendoprothetik [Long-term results in total knee arthroplasty]. Orthopäde. 2003;32(6):516-26.
6. Erler K, Neumann U, Anders C, Venbrocks RA, Babisch J, Pieper KS, Scholle HC, Brückner L. Nachuntersuchungsergebnisse mittels EMG-Mapping – 5 Jahre nach Knieprothesenimplantation [5-Year Follow-up Study of Total Knee Arthroplasty by Means of EMG Mapping]. Z Orthop Ihre Grenzgeb. 2003;141(1):48-53. DOI: 10.1055/s-2003-37304
7. Johnson DP. The effect of continuous passive motion on woundhealing and joint mobility after knee arthroplasty. J Bone Joint Surg Am. 1990;72(3):421-6.
18. Markhede G, Nistor L. Strength of plantar flexion and function after resection of various parts of the triceps surae muscle. Acta Orthop Scand. 1979;50(6):693-7. DOI: 10.3109/17453677908991295

19. Murray MP, Guten GN, Sepic SB, et al. Function of the triceps surae during gait; compensatory mechanism for unilateral los. J Bone Joint Surg Am. 1978;60(4):473-6.

20. Mathes SJ, Nahai F. Reconstructive Surgery: Principles, Anatomy and Technique. London/New York: Churchill Livingstone; 1997.

Corresponding author:
Dr. med. Boris Moebius
Evang. Krankenhaus Hubertus, Spanische Allee 10-14; D-14129 Berlin, Germany
moebius@ekh-berlin.de

Please cite as
Moebius B, Scheller EE. The pediculated gastrocnemius muscle flap as a treatment for soft tissue problems of the knee – indication, placement and results. GMS Interdiscipl Plast Reconstr Surg DGPW. 2012;1:Doc07. DOI: 10.3205/iprs000007, URN: urn:nbn:de:0183-iprs0000078

This article is freely available from http://www.egms.de/en/journals/iprs/2012-1/iprs000007.shtml

Published: 2012-01-09

Copyright
©2012 Moebius et al. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by-nc-nd/3.0/deed.en). You are free: to Share — to copy, distribute and transmit the work, provided the original author and source are credited.