Pseudomonas aeruginosa Presents Multiple Vital Changes in Its Proteome in the Presence of 3-Hydroxyphenylacetic Acid, a Promising Antimicrobial Agent

Ozgdn O. Ozdemir and Ferda Soyer

ABSTRACT: *Pseudomonas aeruginosa*, a widely distributed opportunistic pathogen, is an important threat to human health for causing serious infections worldwide. Due to its antibiotic resistance and virulence factors, it is so difficult to combat this bacterium; thus, new antimicrobial agents are in search. 3-Hydroxyphenylacetic acid (3-HPAA), which is a phenolic acid mostly found in olive oil wastewater, can be a promising candidate with its dose-dependent antimicrobial properties. Elucidating the molecular mechanism of action is crucial for future examinations and the presentation of 3-HPAA as a new agent. In this study, the antimicrobial activity of 3-HPAA on *P. aeruginosa* and its action mechanism was investigated via shot-gun proteomics. The data, which are available via ProteomeXchange with identifier PXD016243, were examined by STRING analysis to determine the interaction networks of proteins. KEGG Pathway enrichment analysis via the DAVID bioinformatics tool was also performed to investigate the metabolic pathways that undetected and newly detected groups of the proteins. The results displayed remarkable changes after 3-HPAA exposure in the protein profile of *P. aeruginosa* related to DNA replication and repair, RNA modifications, ribosomes and proteins, cell envelope, oxidative stress, as well as nutrient availability. 3-HPAA showed its antimicrobial action on *P. aeruginosa* by affecting multiple bacterial processes; hence, it could be categorized as a multitarget antimicrobial agent.

1. INTRODUCTION

Pseudomonas aeruginosa, which is a Gram-negative bacterium, can colonize in soil, water, plant, and animal tissues in addition to the instruments and surfaces in the hospitals. Due to its highly diverse genotype and phenotype, it can switch the lifestyle according to the environmental conditions, leading to a rapid adaptation of broad changes in metabolism. These opportunistic pathogens are distributed extensively and accepted as one of the most critical agents in the nosocomial infections as well as the community-acquired ones, worldwide. They possess important virulence factors, including exotoxins and biofilm formation, in addition to their intrinsic and adaptive resistance abilities against various antibiotics. Their infections show high mortality and morbidity rates with a challenging treatment process, including extensive antibiotic therapy. Therefore, the effort for the development of new antimicrobial agents against *P. aeruginosa* is in progress. Phenolic acids, which can be accepted as promising antimicrobial agents, are secondary metabolites of the plants that function in various processes of the plant metabolism, including defense against predators and microorganisms. It is speculated that, because of their small size, phenolic acids can strongly interact with membranes or other targets in bacteria, such as easily cross through the outer membrane of Gram-negative bacteria, which can be an advantage in terms of antimicrobial effect. 3-Hydroxyphenylacetic acid (3-HPAA) is a phenolic acid that showed a dose-dependent antimicrobial effect on *P. aeruginosa*, either static or cidal, according to the studies of our group (Figure 1 and Table 1). 3-Hydroxyphenylacetic acid has a small and simple structure with only one hydroxy group on its benzene ring. It belongs to the hydroxycinnamic acid group of phenolic acids since the carboxylic group is attached to the benzene ring via an ethylene group. It is a water-soluble compound and mostly detected in olive oil wastewater, which is a byproduct of the olive oil extraction process. Although various studies demonstrated the antimicrobial effects of phenolic compounds on pathogens, studies focusing on the molecular mechanisms of antimicrobial effects of phenolic acids are limited in the literature. These mechanisms can be examined by omics-studies, to be able to present them as new antimicrobial agents. Since protein production is the final state of the molecular cell process under particular conditions, investigation of protein profile changes is a useful approach for obtaining potential action mechanisms in the field of...

Received: February 17, 2020
Accepted: July 21, 2020
Published: August 5, 2020
antimicrobial discovery.

Mass spectrometry is accepted as a reliable technique to examine bacterial processes such as the proteome comparison of different bacterial strains, determination of proteomic changes in the same bacterial strain under stress conditions such as a toxic compound exposure or determination of the proteomic basis of antibiotic resistance of the bacteria.

Herein, we report the antimicrobial effect of 3-HPAA and the changes in the protein profile of *P. aeruginosa* after treatment with 3-HPAA by liquid chromatography electrospray ionization tandem mass spectrometry (LC-ESI-MS/MS) accompanied with STRING and KEGG analyses to evaluate the protein–protein interactions and related metabolic pathways, respectively. To the best of our knowledge, this would be the first study to show proteomic changes of *P. aeruginosa* following 3-HPAA exposure. Thus, it would aid in improving the information about the antimicrobial effects of phenolic acids at the molecular level. Our study can be a starting point for the use of energy pathways to adapt to the nonoptimal environment in the presence of 3-HPAA. Notable changes were recognized related to vital mechanisms of the bacteria after the exposure, which would be focused in this study as the basis of the antimicrobial effect of 3-HPAA.

2. RESULTS AND DISCUSSION

2.1. Antimicrobial Effect of 3-HPAA

The increasing concentrations of 3-HPAA resulted in a dose-dependent inhibition effect on the growth of *P. aeruginosa* (Figure 1). According to OD (600 nm) measurements, 1.9 mg/mL 3-HPAA showed a 58% inhibition, which is the subinhibitory concentration used in proteomic studies (Table 1). The minimum inhibitory concentration (MIC) was 2.1 mg/mL, with 98% inhibition. However, the enumeration studies demonstrated that 2.1 mg/mL had a bacteriostatic effect.

Application of 2.3 mg/mL resulted in no survivors of *P. aeruginosa*, which was determined as minimum bacteriocidal concentration (MBC) (Table 1).

The concentration of 3-HPAA that resulted in 58% inhibition of bacterial growth (1.9 mg/mL) was determined as the 3-HPAA concentration used in the protein profile studies. The results demonstrate the dose-dependent antimicrobial effect of 3-HPAA on *P. aeruginosa* (Table 1).

2.2. Overall Protein Profile

Bacterial response to changing environmental conditions such as exposure to toxic agents can be observed in their proteome. The application of 3-HPAA resulted in various changes in the protein profile of *P. aeruginosa*. When the MASCOT data (FDR < 1.3%) were subjected to Venn diagram analysis, 312 proteins were detected as mutually unchanged in both the control group and 3-HPAA-treated groups (Figure 2A, region I; Table S17). Besides, the proteins which showed changes depending on 3-HPAA exposure were also detected: 203 undetected proteins (unique to control group) (Figure 2A, region II) and 95 newly detected proteins (unique to 3-HPAA-treated group) (Figure 2A, region III). Depending on their functions reported in the UniProt database, these undetected and newly detected proteins were categorized into eight main groups: DNA-, RNA-, ribosomes and protein-, cell wall and membrane-, metabolism-, redox and cell homeostasis-, and virulence-related, as well as uncharacterized proteins. All proteins are presented in Tables S1–S17.

The calculated percentage of the proteins in these groups (Figure 2B) showed that the lowest percentage of virulence-related proteins might demonstrate that 3-HPAA has a small effect on *P. aeruginosa* virulence. On the other hand, the highest percentage of metabolism-related proteins among these groups might be attributed to various changes in the protein profiles of general metabolism pathways for adaptation to the environment in the presence of 3-HPAA. Notable changes were recognized related to vital mechanisms of the bacteria after the exposure, which would be focused in this study as the basis of the antimicrobial effect of 3-HPAA (Tables 2 and 3).

The pathway enrichment analysis of changed proteins in the presence of 3-HPAA (Table S19) demonstrated that the bacteria manage the adaptation to environmental changes by altering the proteins related to metabolic pathways (Figure 3). The application of 3-HPAA resulted in the nondetection of proteins related to the biosynthesis of antibiotics, which validates the reduction in the virulence of *P. aeruginosa* (Figure 3A).

The newly detected proteins related to the carbon, pyruvate, and methane metabolism might demonstrate the changes in the use of energy pathways to adapt to the nonoptimal conditions due to 3-HPAA treatment. The changes in the microbial metabolism in diverse environments support these changes that occurred in the metabolism of *P. aeruginosa* in the presence of 3-HPAA (Figure 3B).

2.3. DNA-Related Protein Profile

The changes in the protein profile of *P. aeruginosa* after 3-HPAA exposure were mostly observed in the proteins functioned in DNA replication and repair (Tables S1 and S2), which showed strong interactions with each other in STRING analysis (Figure 4A). One of the remarkable results of this study was the nondetection of UvrABC system protein A (*uvrA*) and DNA mismatch repair protein (*mutS*) after 3-HPAA exposure. These proteins play roles in nucleotide excision repair (NER) and mismatch repair (MMR), respectively (Table 2). Since these
mechanisms are two of the primary DNA repair mechanisms in organisms, their impairment would cause the accumulation of mutations, leading to deterioration of the genome of *P. aeruginosa*, which eventually inhibits bacterial growth. Another significant result was the nondetection of DNA topoisomerase 4 subunit B (*parE*) and vitamin B12-dependent ribonucleotide reductase (*nrdJA*), which function in DNA replication (Table 2).

On the other hand, newly detected proteins, such as DNA polymerase III subunit α (*dnaE*) and β sliding clamp (*dnaN*), are functioned in DNA replication and repair (Table 3) and showed strong interactions with undetected proteins in STRING analysis (Figure 4A). It might be speculated that the bacteria managed to compensate for the unperformed functions in DNA replication (Table 2).

2.4. RNA-Related Protein Profile. The undetected RNA-related proteins after 3-HPAA exposure were generally functioned in the regulation of transcription, RNA polymerase core enzyme binding, tRNA processing, and nutrient utilization (Table S3). The newly detected proteins were also functioned in transcriptional regulation in addition to transcription initiation and RNA polymerase transcriptional activation (Table S4). The nondetection of an important sigma factor, the RNA polymerase sigma-54 factor (σ54) (*rpoN*), would affect the function of σ54-dependent promoters in *P. aeruginosa*. Therefore, it leads to problems in the expression of nitrogen metabolism-related proteins due to the role of σ54 in the transcription of nitrogen-related genes under stress conditions. Accordingly, DNA binding transcriptional regulator NtrC (*ntrC*), which has a role in nitrogen utilization, was also undetected, which might show the reduction in nitrogen assimilation in bacteria. The phosphate regulon transcriptional regulatory protein PhoB (*phoB*), which is the major transcription factor that functions in the phosphate limitation of the bacteria, was newly detected (Table 3).

Since *rpoN*, *ntrC*, and *phoB* show strong interactions (Figure 4B), the treatment of *P. aeruginosa* with 3-HPAA might cause the bacteria to experience nitrogen and phosphate starvation and, eventually, bacterial growth inhibition. Fur proteins, which are crucial for bacterial survival but not found in eukaryotic cells, would be useful targets for antimicrobial action. Therefore, 3-HPAA, which caused the nondetection of a Fur protein, ferric uptake regulation protein (*fur*), could be accepted as a promising antimicrobial agent. Depending on the metal chelation properties of the phenolic compounds, the presence of 3-HPAA in the growth environment of bacteria might result in the chelation of iron, which leads to iron limitation. Since this protein is functioned in iron limitation
Table 2. Significant Undetected Proteins of *P. aeruginosa* after 3-HPAA Exposure

protein ID	protein name	gene name	function	group of protein profile
Q9HWG0	UvrABC system protein A	uvrA PA4234	nucleotide excision repair, SOS response	DNA
Q9HY08	DNA mismatch repair protein	mutS PA3620	mismatch repair	DNA
Q9HUJ8	DNA topoisomerase 4 subunit B	parE PA4967	DNA topological change	DNA
Q9HT76	vitamin B12-dependent ribonucleotide reductase factor	nrdJ PA5497	DNA biosynthetic process, DNA replication	DNA
P49988	RNA polymerase sigma-S4 factor	rpoN PA4462	transcription initiation, sigma factor activity	RNA
Q9HU59	transcriptional regulator NtrC	ntrC PA5125	nitrogen fixation, regulation of nitrogen utilization, regulation of transcription	RNA
Q3456	ferric uptake regulation protein	fur PA4764	negative regulation of transcription	RNA
Q9HVY7	stringent starvation protein A	sspA PA4428	RNA polymerase core enzyme binding	RNA
Q9I382	tRNA 2-selenouridine/geranyl-2-thiouridine synthase	selU PA1643	tRNA seleno modification	RNA
Q9HY12	ribonuclease T	rnt PA3528	tRNA 3′-end processing	RNA
Q9IU8	glutamine-tRNA ligase	glmS PA1794	glutamine-tRNA ligase activity	RNA
Q9IU7	cysteine-tRNA ligase	cysS PA1795	cysteine-tRNA ligase activity	RNA
Q9HV58	3OS ribosomal protein S15	rpsO PA4741	ribosome constituent, translation	RNA
Q9HU36	protein-export protein SecB	secB PA5128	protein tetramerization, protein transport	RNA
Q9HZC5	aminopeptidase N	pepN PA3083	peptide catabolic process, proteolysis	RNA
O68822	cytosol aminopeptidase	pepA PA3508	release of an N-terminal amino acid, processing and regular turnover of intracellular proteins.	Protein
Q9HT06	membrane protein insertase YidC	yidC PA5668	membrane insertase activity, insertion and/or proper folding and/or complex formation of integral membrane proteins into the membrane	Cell wall, membrane
Q9I6C1	signal recognition particle receptor PstY	ftsY PA0373	cotranslational protein targeting to membrane	Cell wall, membrane
Q9HV48	ATP-dependent zinc metalloprotease FtsH	ftsH PA4751	cell division, response to antibiotic	Cell wall, membrane
P50598	Tol-Pal system protein TolQ	tolQ PA0969	cell cycle, cell division, bacteriocin transport	Cell wall, membrane
P23189	glutathione reductase	gor PA2025	cell redox homeostasis, response to oxygen radical	Redox and cell homeostasis
Q9I6Z2	alkyl hydroperoxide reductase	ahpF PA0140	response to reactive oxygen species	Redox and cell homeostasis
P35652	superoxide dismutase [Mn]	sodA PA4468	removal of superoxide radicals	Redox and cell homeostasis
Q9I5R7	S-adenosylmethionine decarboxylase proenzyme	speD PA0654	S-adenosylmethionine biosynthetic process, spermidine biosynthetic process	Redox and cell homeostasis
Q9I5F9	ion protease	ion PA0779	response to antibiotic, response to stress, nitric oxide metabolic process, peptidase activity	Redox and cell homeostasis
Table 2. continued

protein ID	protein name	gene name	function
Q9I2T9	aI	protein	Q9I2T9 lon protease lon PA1803 response to antibiotics, response to drug, response to stress, pathogenesis, protein quality control for misfolded or incompletely synthesized proteins, redox and cell homeostasis, single-species biofilm formation, type IV pilus-dependent motility, flagellum-dependent swarming motility
Q9HTW6	aminopeptidase P pepP	PA5224	aminopeptidase activity metabolism
phzS	phenazine biosynthetic process metabolism		
Q9HWG9	5-methylphenazine-1-carboxylate 1-monooxygenase	O69753	phenazine biosynthesis
Q7DC81	protein PhzB1 glutation metabolic process, tryptophan biosynthetic process, phenazine biosynthetic process metabolism		
Q9HWG9	5-methylphenazine-1-carboxylate 1-monooxygenase	O69753	phenazine biosynthesis
Q7DC81	protein PhzB1 glutation metabolic process, tryptophan biosynthetic process, phenazine biosynthetic process metabolism		

Information of protein IDs, protein names, gene names, and functions were obtained from the UniProt database. Group of protein profile was determined based on the function of the particular protein.

and oxidative stress adaptations of bacteria, non-detection of this protein after 3-HPAA treatment (Table 2) might indicate iron starvation accompanying with oxidative stress in P. aeruginosa. Relatedly, newly detected protein OxyR (oxyR), which showed an interaction with Fur in STRING analysis (Figure 4B), is one of the main transcriptional regulators of oxidative stress defense by regulation of oxidative stress response genes (katA, katB, ahpB, and ahpCF), and the genes function in iron homeostasis in P. aeruginosa. These results indicate that the antimicrobial effect of 3-HPAA could be due to the oxidative stress and the failure of bacteria to adapt to iron limitation in the environment containing 3-HPAA. Another critical result related to the problems of bacteria in adaptation was the nondetection of an essential protein of stringent stress response, stringent starvation protein A (spaA). Under stress conditions, stringent response proteins aid the performance of alternative sigma factors, which leads to the proper adaptation of bacteria to new environmental conditions for cell survival. The nondetection of this protein might show the deficiency of bacterial adaptation in the presence of 3-HPAA leading the bacterial inhibition.

After 3-HPAA exposure, tRNA 2-selenouridine/geranyl-2-thiouridine synthase (selU) and Ribonuclease T (rnt) were undetected as a vital result in terms of tRNA modification (Table 2). The protein SelU is the enzyme for geranylation of tRNA, which is a natural hydrophobic tRNA modification discovered in a few bacteria, including P. aeruginosa. The geranylation provides increase in codon recognition fidelity and reduction in frameshift reading by taking action at the wobble position (U34) in the anticodon of lysine, glutamine, and glutamic acid. Protein Rnt is an incumbent in tRNA wobble position (U34) in the anticodon of lysine, glutamine, and reduction in frameshift reading by taking action at the wobble position (U34) in the anticodon of lysine, glutamine, and glutamic acid.

Apart from 3-HPAA treatment, the results indicate that the antimicrobial effect of 3-HPAA on P. aeruginosa might show the deficiency of bacterial adaptation in the presence of 3-HPAA leading the bacterial inhibition.

2.5. Ribosomes and Protein-Related Protein Profile.

The non-detection of glutamine-tRNA ligase (glnS) and cysteine-tRNA ligase (cysS) (Table 2) could be indicated as important changes among the changes in tRNA ligase (aka aminoacyl-tRNA synthetases) profile due to 3-HPAA treatment. Since tRNA ligases are crucial for the growth of the peptide chain in protein translation by carrying the appropriate amino acids to the ribosomes, targeting the tRNA ligase processes is accepted as one of the potent antimicrobial drug development approaches.

For instance, the topical antibiotic Mupirocin, which is still in use against Gram-positive bacteria, takes effect by reversible inhibition of isoleucyl-tRNAs. Likewise, the antibiotic purpuromycin inhibits the bacterial translation by inhibiting the tRNA aminoacylation. In this respect, it could be speculated that the non-detection of glutamine- and cysteine-tRNA ligases might be related to the antimicrobial effect of 3-HPAA on P. aeruginosa.

Besides the changes in the tRNA ligase profile, 3-HPAA resulted in changes in the structural components of ribosomal subunits, which might lead to an improper ribosome structure of the bacteria (Tables S5 and S6). One notable result on this subject was the non-detection of 30S ribosomal protein S15 (rpsO), which was also validated by our group via real-time quantitative PCR (Supporting Information 3, Figure S4 and Table S18). The subunits of prokaryotic ribosomes, 30S small subunit, and 50S large subunit, consist of ribosomal
Table 3. Significant Newly Detected Proteins of *P. aeruginosa* after 3-HPAA Exposure

protein ID	protein name	gene name	function (UniProt)	protein profile group
Q9HXZ1	DNA polymerase III subunit α	dnaE PA3640	DNA replication	DNA
Q9I7C4	β sliding clamp	dnaN PA0002	DNA strand elongation involved in DNA replication, 3′–5′ exonuclease activity, DNA-directed DNA polymerase activity	DNA
P23620	phosphate regulon transcriptional regulatory protein PhoB	phoB PA5360	flagellum-dependent swarming motility, phosphate-ion transport, positive regulation of cellular response to phosphate starvation, transcription	RNA
Q9HTL4	OxyR	oxyR PA5344	RNA polymerase transcription activator, transcription regulatory region DNA binding source, negative regulation of secondary metabolite biosynthetic process, cell motility, lipid biosynthesis, response to reactive oxygen species	RNA
Q9HUN0	30S ribosomal protein S18	rpsR PA4934	structural constituent of ribosome, translation	ribosomes and protein
P33641	outer membrane protein assembly factor BamD	bamD PA4545	cell envelope organization, protein insertion into membrane	cell wall and membrane
G3XDB2	cell division coordinator CpoB	cpoB PA0974	FlaZ-dependent cytokinesis	cell wall and membrane
Q9HUF1	peptide methionine sulfoxide reductase MsrA	msrA PA5018	response to oxidative stress, response to hypochlorite	redox and cell homeostasis
Q9I6I9	spermidine/putrescine import ATP-binding protein PotA	spuF potA PA0502	spermidine transport, putrescine transport	redox and cell homeostasis
Q9HUX1	biosynthetic arginine decarboxylase	speA PA4839	arginine catabolic process, putrescine biosynthetic process, spermidine biosynthetic process	redox and cell homeostasis
Q9X6R0	polyamine aminopropyltransferase 1	speEI speE PA1687	spermidine biosynthetic process	redox and cell homeostasis

a Information of protein IDs, protein names, gene names, and functions were obtained from the UniProt database. *b* Group of protein profile was determined based on the function of the particular protein.
RNAs and various ribosomal proteins. In ribosomal assembly, small and large subunits are connected by intersubunit bridges. The 30S ribosomal protein is crucial for proper bacterial ribosome assembly and translation due to its location in one of these bridges: Bridge B4. It also plays a role in the binding of proteins S6, S18, S11, and S21 in vitro. When Bubunenko et al. examined in vivo function of the 30S ribosomal protein S15 in the binding of these proteins in E. coli, they have shown that the deletion of the rpsO gene did not keep them from binding in vivo. Nevertheless, they also pointed out that the mutant bacteria had a weaker 70S ribosomal structure, and it had a cold-sensitive phenotype. They concluded that under nonoptimal conditions, S15 protein is required for cell survival of Escherichia coli. Depending on the outcome of that study, it could be speculated that, for the survival of the bacteria, some other bacterial ribosomal assembly pathways might exist for use in the absence of S15 in vivo. According to STRING analysis, a newly detected protein, 30S ribosomal protein S18 (rpsR), showed strong interactions to protein S15 (Figure 4), which might be an alternative protein for the assembly of ribosomes in P. aeruginosa to compensate the function of undetected protein S15. All in all, 3-HPAA exposure formed an unideal condition for P. aeruginosa, and it might lead to detrimental effects by restraining the proper ribosomal assembly due to the nondetection of proteins that function in these processes (Table S5). These results demonstrate that the antimicrobial effect of 3-HPAA might be not only due to the defects in ribosomal structure and assembly but also due to the problems in protein translation. The protein modification processes were also affected by 3-HPAA exposure. For instance, protein-export protein SecB (secB), aminopeptidase N (pepN), and cytosol aminopeptidase (pepA) were undetected after the treatment (Table 2). According to the interaction network, aminopeptidase N interacted with cytosol aminopeptidase and protein-export protein SecB (Figure 5). The cleavage of the amino-terminal (N-terminal) of the peptides or proteins, which determine their structure and function, is carried out by the aminopeptidase enzymes. The role of the molecular chaperone SecB is to recognize the precursor proteins with the N-terminal signal sequences for their translocation during the bacterial growth. The nondetection of these proteins after 3-HPAA exposure caused defects in the modification and translocation of precursor proteins with N-terminal signals, which might eventually lead to serious consequences for the overall metabolism of P. aeruginosa.
Proteins. On the other hand, FtsY protein plays a role in the insertion/integration of small membrane proteins into the membrane by working together with Sec YidC protein is one of the major proteins for bacteria, which functions in cell envelope structure composition and organization, cell division, motility, and chemotaxis (Tables S7 and S8). Since cell envelope functions as the protective component for bacterial cell, these vital changes in the proteome of cell envelope might be related to the mode of growth inhibition effect of 3-HPAA on P. aeruginosa. The proteins that showed strong interactions in STRING analysis, membrane protein insertase YidC (yidC), signal recognition particle receptor FtsY (ftsY), ATP-dependent zinc metalloprotease FtsH (ftsH), and Tol-Pal system protein TolQ (tolQ) were undetected due to 3-HPAA exposure (Figure 6). YidC protein is one of the major proteins for bacteria, which functions in the insertion/integration of small membrane proteins into the membrane by working together with Sec proteins. On the other hand, FtsY protein plays a role in the transfer of the newly formed proteins to the cytoplasmic region of the membrane since it targets the nascent polypeptide chains to the membrane. Therefore, 3-HPAA resulted in problems in the membrane protein targeting and insertion into the membrane, which might lead to membrane weakness and damage. The other undetected protein, FtsH, which is universally conserved among prokaryotes, is a protease for rapid control of the regulation of cell metabolism in the presence of environmental stress. It is the only one protease that is attached to the inner membrane, and it is responsible for quality control of membrane proteins as well as post-translation of transcription factors and enzymes. The nondetection of FtsH might cause defects in the regulation of these transcription factors, leading to problems in transcription processes of P. aeruginosa. Among the transcription factors, it also plays a role in the post-translational regulation of RpoN (σ54) in E. coli, which was also undetected after 3-HPAA exposure (Figure 4B). Therefore, we speculate that 3-HPAA treatment caused serious changes in the regulation of transcription in addition to the defects in the cell envelope structure of P. aeruginosa. Besides, the Tol-Pal system protein TolQ, which plays a role in cell cycle and division, was also undetected (Table 2). The Tol-Pal system is vital for Gram-negative bacteria for maintaining the outer membrane integrity. This system is structurally conserved among Gram-negative bacteria, which consists of seven genes in Pseudomonas: orf1, tolQ, tolR, tolA, tolB, oprL, and orf2. Since the generated mutations in the genes of the Tol-Pal system result in damages in the outer membrane, the nondetection of TolQ after 3-HPAA exposure might cause problems in the cell envelope integrity. The newly detected proteins, outer membrane protein assembly factor BamD (bamD), and cell division coordinator CpoB (PA0974) also showed interactions with YidC, FtsH, and TolQ (Figure 6). Since the lipoprotein BamD is crucial for outer membrane biogenesis and CpoB is important for peptidoglycan synthesis control and outer membrane construction, these might be used for the maintenance of the integrity of the cell envelope, especially the outer membrane, for survival. In our preliminary studies, we have determined the defects on P. aeruginosa cell morphology as the invagination lines throughout the surfaces of bacteria in the presence of 3-HPAA (TOC graphic). These morphological changes could be explained by the differences in the aforementioned proteome in the cell envelope. The cell envelope is the barrier against many unfavorable environmental conditions, such as the presence of antimicrobial agents. The notable results of our study could display that 3-HPAA seriously affected the structure and integrity of the P. aeruginosa cell wall and membrane.
membrane, which might be a reason for the inhibition of bacterial growth.

2.7. Redox and Cell Homeostasis-Related Protein Profile. Since reactive oxygen species (ROS) such as superoxide and hydrogen peroxide should be removed to maintain the cellular homeostasis and survival, the changes in the redox and cell homeostasis-related protein profile, which displayed significant stress of *P. aeruginosa* after 3-HPAA treatment (Tables S9 and S10), could be explanatory about bacterial inhibition. The most remarkable change in the redox and cell homeostasis-related protein profile was the non-detection of glutathione reductase (*gor*), which is an evolutionary conserved and highly homologous protein in both prokaryotes and eukaryotes. It plays a vital role in major response to oxidative stress and adaptation. This result might demonstrate that 3-HPAA caused major defects in the glutathione system of bacteria, leading to inadequate response to oxidative stress of 3-HPAA treatment. Gor protein protects the cell from oxidative stress with the detoxification of peroxidases using nicotinamide adenine dinucleotide phosphate (NADPH). It would not be surprising to think that the non-detection of Gor could be lethal due to restraining the NADPH recycling for the pentose phosphate pathway, thereby causing problems in energy metabolism. However, it was shown that *E. coli* with gor mutations could maintain the healthy growth and had enough reduced glutathione. Therefore, glutathione reduction could be performed by another Gor-independent pathway, providing NADPH for proper energy metabolism. Nevertheless, non-detection of Gor protein might be a strong indication of the problems in stress response of *P. aeruginosa* since it plays roles in the adaptation of bacteria to several stress conditions. Alkyl hydroperoxide reductase (*ahpF*) and superoxide dismutase [Mn] (*sodA*), which are the proteins that showed interactions to Gor (*Figure 7*), were also undetected (*Table 2*). Since AhpF and SodA function in the reduction of peroxidases and superoxidases, respectively, it could be concluded that 3-HPAA caused problems in oxidative stress response. Another incapability in stress response might be the non-detection of Lon proteases (*PA1803, PA0779*), which play roles in stress response and antibiotic response (*Table 2*).

Since RNA binding protein Hfq, which regulates Lon proteases, was also undetected after 3-HPAA treatment (*Table S5*), it might be speculated that 3-HPAA exposure damaged Lon protease-mediated processes of *P. aeruginosa*. The problems of *P. aeruginosa* related to 3-HPAA stress were also demonstrated by the newly detected proteins (*Table 3*). Under the oxidative stress conditions, the ROS cause oxidation of the methionine residues of proteins, resulting in the reduction of protein functions. The newly detected protein, methionine sulfoxide reductase Msra (*msra*), which exists in various tissues and organisms, is able to reduce the oxidized methionine back to methionine and aids the regaining of protein function. Since Msra is one of the main enzymes that is induced under the oxidative stress, the bacteria might encounter serious problems via damages in the functional proteins due to 3-HPAA exposure. Besides, the newly detected proteins spermidine/putrescine import ATP-binding protein PotA (*spuF*), biosynthetic arginine decarboxylase (*PA4839*), and polyamine aminopropyltransferase 1 (*speE1*) are functions in spermidine/putrescine metabolism and interacted with each other (*Table 3* and *Figure 7*). However, the non-detection of S-adenosylmethionine decarboxylase proenzyme (*speD*), which also interacted with these proteins (*Table 2* and *Figure 7*), might show that the spermidine/putrescine metabolism becomes defective in the presence of 3-HPAA. Spermidine and putrescine are main polyamines in bacteria that play roles in several processes, including cell viability and protecting the DNA from oxidative damage. Additionally, they have functions in signaling and regulation against stress conditions caused by ROS, heat, UV, acid, and osmotic pressure, which might validate various stresses of *P. aeruginosa* caused by 3-HPAA. Thus, either serious stress conditions or vital defects in stress responses of *P. aeruginosa* might be the reason for the antimicrobial effect of 3-HPAA.

2.8. Metabolism-Related Protein Profile. The profile of the metabolism-related proteins possessed a high quantity of undetected and newly detected proteins (*Tables S11 and S12*) after 3-HPAA exposure, which showed a complicated interaction network (*Figure S1*). These changes might be due to the necessity of the bacteria to change the metabolism for adapting the environment with nonoptimal conditions such as the presence of a toxic substance. On the other hand, the obtained profile changes of some particular metabolic systems of *P. aeruginosa* might have resulted in the inhibition of growth due to the antimicrobial effect of 3-HPAA. Among these, the changes in amino acid biosynthesis might be accepted as one of the notable results. The proteins functioned in the biosyntheses of alanine, lysine, leucine, cysteine, and aromatic amino acids, as well as the catalytic process of arginine, were undetected (*Table S11*). In contrast, lysine, alanine, histidine, glutamine, serine, and glycine metabolism-related proteins were newly detected (*Table S12*) that show interactions with each other (*Figure S1*). It could be speculated that *P. aeruginosa* was compelled to make regulations in the amino acid metabolism in the presence of 3-HPAA either due to the adaptation of the bacteria or the problems in amino acid and protein metabolism. Aminopeptidase P (*pepP*), which is a member of the aminopeptidases P (*APPro*) family and functions explicitly in the removal of the N-terminal residue of polypeptides containing the second residue of proline, was undetected (*Table 2*). It is accepted that PepP is a promising...
antimicrobial target since it is highly conserved among pseudomonads and played a role in the virulence of the bacteria.77 Therefore, the nondetection of this protein might be meaningful in terms of the 3-HPAA antimicrobial action mechanism. The profile of lipid metabolism-related proteins also changed 3-HPAA exposure.

The main change was the nondetection of proteins functioned in fatty acid β-oxidation, while the proteins functioned in lipid biosynthesis, phosphate transport, and phospholipase synthesis were newly detected (Tables S11 and S12). These changes demonstrated the increase in lipid biosynthesis and the decrease in fatty acid degradation of P. aeruginosa, which might indicate the effort of the bacteria to maintain the integrity of cell envelope in the presence of 3-HPAA. During the 3-HPAA exposure, the distinct greenish-blue color of P. aeruginosa culture was not observed (TOC graphic). The proteomic basis of this color change was due to the nondetection of the proteins functioned in phenazine biosynthesis (Table 2). The pyocyanin pigment, called phenazine produced by P. aeruginosa, is responsible for the specific blue color.78 Phenazine is an extracellular, water-soluble, heterocyclic pigment that can produce ROS and be toxic to other microorganisms and eukaryotes.78 It also elevates the virulence of P. aeruginosa by playing the leading role in the quorum sensing mechanism.79 Nowadays, the antimicrobial strategies which target quorum sensing, such as inhibiting the phenazine production, catch attention in combatting against pathogens.80,81,82 Thereby, the nondetection of 5-methylphenazine-1-carboxylate 1-monooxygenase (phzS), phenazine biosynthesis protein PhzB1 (phzB1), and phenazine biosynthesis protein PhzE (phzE1, phzE2) (Table 2) could make 3-HPAA a favorable antimicrobial agent candidate against P. aeruginosa in terms of reduction of phenazine synthesis.

3. CONCLUSIONS

Our study demonstrated that, when 3-HPAA, a dose-dependent antimicrobial agent, was present, notable changes in the protein profile of P. aeruginosa were determined. These might lead to serious problems to bacteria not only in maintaining the proper RNA and protein metabolism but also in shape, cell division, nutrient transport, motility, and chemotaxis, which might be stated as the basis of the antimicrobial effect. The other vital problems were in DNA repair mechanisms, which might cause deleterious results for bacteria due to the accumulation of mutations. Additionally, it could be stated that high oxidative stress and defected stress response of bacteria that 3-HPAA caused might be another reason for bacterial inhibition. Moreover, bacteria encountered iron, phosphate, and sulfate starvation in the presence of 3-HPAA, which might eventually damage the overall metabolism of the bacteria. Depending upon all of the results, we conclude that the antimicrobial activity of 3-HPAA on P. aeruginosa has occurred by more than one route, and it could be entitled as a multitarget antimicrobial agent. Our study could be elucidated as the starting point of further studies in examining the mechanisms of antimicrobial action of phenolic acids against pathogenic bacteria.

4. EXPERIMENTAL SECTION

4.1. Bacterial Growth Conditions. P. aeruginosa (ATCC 27853) were maintained on Mueller Hinton (Sigma-Aldrich) agar plates by overnight incubation at 37 °C. The stock cultures of bacteria were kept in glycerol at −80 °C. In each experiment, the overnight culture of P. aeruginosa was obtained by a single-colony inoculation in Mueller Hinton broth (MHB) following incubation at 37 °C for 18 h without shaking. The optical density (OD) of the overnight culture was determined at 600 nm.

4.2. Determination of MIC of 3-HPAA. 3-HPAA was obtained commercially (Sigma-Aldrich). The solutions of 3-HPAA were prepared at the time of the experiment in sterile double-distilled water and added to MHB. The final bacterial load of 10⁶ cfu/mL from overnight culture was inoculated into MHB, containing 3-HPAA, and incubated at 37 °C for 18 h without shaking. The OD of the treated and control cultures were measured at 600 nm at 0th and 24th hour time points of the growth. At the same time, the cell viabilities of the cultures grown for 24 h were tested by the resazurin method on MHA.

4.3. 3-HPAA Exposure for Protein Studies. The final bacterial load of 10⁶ cfu/mL was inoculated from overnight culture into MHB (Sigma-Aldrich) containing subinhibitory concentration (1.9 mg/mL) of 3-HPAA for the treated group and incubated at 37 °C for 18 h without shaking. The same procedure was simultaneously applied for control bacteria without 3-HPAA addition.

4.4. Total Protein Isolation. The protocol of Sianglum et al. was used with minor modifications in the total protein isolation from the 3-HPAA-treated and the control bacteria. The cells were harvested at 10 000g for 20 min at 4 °C. They were washed twice with NaCl (0.85%) and centrifuged at 20 000g for 20 min at 4 °C. The pellet was dissolved in phosphate-buffered saline (PBS, pH 7.4) and sonicated for 9 s with 9 s intervals for 15 min. After centrifugation at 20 000g for 20 min at 4 °C, the supernatant was collected and kept at −80 °C until usage.

4.5. Peptide Sample Preparation. Acetone precipitation of the protein samples was performed: acetone (ice-cold) was added on the protein samples and mixed by a vortex. They were kept at −20 °C for overnight precipitation. The concentrations of the proteins were determined by Bradford assay (R² > 0.98) and adjusted to 0.4 mg. The solution digestion protocol of Carrera et al. was used with minor modifications.83 It was initiated by a three-step procedure with dithiothreitol (DTT) (10/50 mM Tris–HCl, pH 7.8), iodoacetamide (20/50 mM Tris–HCl, pH 7.8) and DTT (20/50 mM Tris–HCl, pH 7.8) consecutively. The procedure was performed for 50 min each step in the dark at room temperature. The samples were cleaned by centrifugation at 14 000 rpm for 30 min in 10 K cutoff filters and washed with 50 mM Tris–HCl (pH 7.8). Each protein sample was treated with trypsin (in 50 mM Tris–HCl, pH 7.8) at the final concentration of 0.04 μg/mL and incubated overnight at 37 °C for trypsin digestion. The volume of each sample was decreased below 100 μL in a SpeedVac concentrator and kept at −20 °C.

4.6. LC-ESI-MS/MS. Fractionation of peptide samples was carried out by high-performance liquid chromatography (HPLC) (Shimadzu, LC20AD) via high-pH reversed-phase chromatography (reversed phase C18 Column, 25 cm × 0.46 cm, 5 μm) with fraction concatenation.84 The phases in fractionation were used as phase A (10 mM ammonium formate/double-distilled H₂O (ddH₂O), pH 10) and phase B (a mixture of 90% acetonitrile and 10 mM ammonium...
formate/ddH₂O, pH 10). Peptide samples, which were adjusted to 100 μL with phase A, were fractionated by LC-solution software and collected by MALDI-Spotter (SunChrome, SunCollect System). Randomly collected fractions were completely dried in a SpeedVac concentrator, and zip-tip was applied to each sample. In the zip-tip process, each sample was completely dried in a SpeedVac concentrator, and zip-tip was rome, SunCollect System). Randomly collected fractions were applied to each sample. In the zip-tip process, each sample was prepared by the addition of an acetonitrile (20%) and formic acid (0.1%) mixture in ddH₂O following ultrasonication in a bath (15 s) and vortexing (5 s) alternately for three times. After centrifugation at 14 000 rpm for 10 min, zip-tip was carried out for 10–15 cycles for each sample via the ZipTip column (C18), which was conditioned by acetonitrile (100%) and formic acid (1%) previously. The column was washed by formic acid (1%). Then, the peptides were collected by treatment with increasing concentrations of acetonitrile (twice with 50% and once with 75%). Each sample was mixed with 25 μL of formic acid (0.1%) and transferred into the insert tubes. These samples were analyzed by LC-ESI-MS/MS (Dionex Ultimate 3000) HPLC equipped with an LTQ XL mass spectrometer with electrospray ion source (Thermo Scientific). Chromelene software (version 6.80) and low-pH column (Sigma Supelco Ascentis, 15 cm × 500 μm, 2.7 μm) were used for the analysis of peptides. 84 The phases used were phase A (0.1% formic acid/ddH₂O) and phase B (0.1% formic acid/ acetonitrile) during the process (initiated by 98% phase A and 2% phase B; increasing phase B up to 90%). Ion trap electrospraying was carried out using helium gas, and the peaks of the peptide samples were collected twice as raw data by the LTQ Tune software.

4.7. Data Analysis. Proteome Discoverer software (version 1.4) and Mass Matrix MS Data File Conversion software were used for transferring the raw data into MGF format and merging the data of fractions, respectively. The reference protein database of P. aeruginosa was downloaded from UniProt proteomes (Proteome ID: UP000002438). It was adjusted to 100.metabolic pathways of the genes of these proteins were elucidated by the KEGG pathway enrichment analysis tool. The determined categories that have a p-value below 0.05 were demonstrated in the bar chart.

ASSOCIATED CONTENT
■ Supporting Information
The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acsomega.0c00703.

All protein tables showing the proteins categorized based on functions in Uniprot and the list of unchanged mutual proteins (Supporting Information 1); validation of protein data of 30S ribosomal protein S15 (rpsO) by real-time quantitative polymerase chain reaction (qPCR) (Supporting Information 2); STRING representations of metabolism-related, virulence-related, and uncharacterized proteins (Supporting Information 3); and names of the genes in the categories of KEGG pathway enrichment analysis (Supporting Information 4) (PDF)

AUTHOR INFORMATION
Corresponding Author
Ferda Soyer — Department of Molecular Biology and Genetics, Izmir Institute of Technology, 35430 Uzla Izmir, Turkey; orcid.org/0000-0001-8307-1258; Phone: +902327507307; Email: ferdasoyer@iyte.edu.tr

Author
Ozgur O. Ozdemir — Department of Molecular Biology and Genetics, Izmir Institute of Technology, 35430 Uzla Izmir, Turkey

Complete contact information is available at: https://pubs.acs.org/10.1021/acsomega.0c00703

Author Contributions
O.O.O. and F.S. contributed to the design of this study, interpretation of data, and writing of the manuscript. O.O.O. performed the experiments and analyses.

Notes
The authors declare no competing financial interest. The mass spectrometry proteomics data have been deposited to the ProteomeXchange Consortium via the PRIDE partner repository with the dataset identifier PXD016243.

ACKNOWLEDGMENTS
The authors thank Prof. Dr. Talat Yalcin for generously providing his expertise and support for LC-ESI-MS/MS and MASCOT analyses. This work was funded by the Izmir Institute of Technology Research Fund (Project # 2014IYTE22) to F.S., and a Ph.D. grant to O.O.O. by the Izmir Institute of Technology. The mass spectrometry proteomics data have been deposited to the ProteomeXchange Consortium via the PRIDE86,87 partner repository.

REFERENCES
(1) Valentini, M.; Gonzalez, D.; Al Mayride, D.; Filloux, A. Lifestyle transitions and adaptive pathogenesis of Pseudomonas aeruginosa. Curr. Opin. Microbiol. 2018, 41, 15–20.
(2) Ha, D.-G.; O’Toole, G. A. c-di-GMP and its effects on biofilm formation and dispersion: a Pseudomonas aeruginosa review Microbiol. Spectrum 2015, 32 DOI: 10.1128/microbiolspec.MB-0003-2014.
(39)Świącieło, A.; Zych-Wezyk, I. Bacterial stress response as an adaptation to life in a soil environment. *Pol. J. Environ. Stud.* 2013, 22, 1577−1587.

(40)Wang, R.; Vangaveti, S.; Ranganathan, S. V.; Basanta-Sanchez, M.; Haruehanroengra, P.; Chen, A.; Sheng, J. Synthesis, base pairing and structure studies of geranylated RNA. *Nucleic Acids Res.* 2016, 44, 6036−6045.

(41)Seierant, M.; Lessczynska, G.; Sadowska, K.; Dziergowska, A.; Rozanski, M.; Sochacka, E.; Nawrot, B. S-Geranyl-2-thiouridine wobble nucleosides of bacterial tRNAs: chemical and enzymatic synthesis of S-geranylated RNAs and their physicochemical characterization. *Nucleic Acids Res.* 2016, 44, 10986−10998.

(42)Dumelin, C. E.; Chen, Y.; Leconte, A. M.; Chen, Y. G.; Liu, D. R. Discovery and biological characterization of geranylated RNA in bacteria. *Nat. Chem. Biol.* 2012, 8, 913−919.

(43)Rammelt, C.; Rossmanith, W. Repairing tRNA termini: News from the 3′ end. *RNA Biol.* 2016, 13, 1182−1188.

(44)Ferro, I.; Chelysheva, I.; Ignatova, Z. Competition for amino acid flux among translation, growth and detoxification in bacteria. *ACS Omega* http://pubs.acs.org/journal/acsodf

(45)Ho, J. M.; Bakkalbasi, E.; Söll, D.; Miller, C. A. Drugging tRNA aminoaacylation. *RNA Biol.* 2018, 15, 667−677.

(46)Lee, E.-Y.; Kim, S.; Kim, M. H. Aminoacyl-tRNA synthetases, therapeutic targets for infectious diseases. *Biochem. Pharmacol.* 2018, 154, 424−434.

(47)Parenti, M. A.; Hatfield, S. M.; Leyden, J. J. Mupirocin: a topical antibiotic with a unique structure and mechanism of action. *Clin. Pharm.* 1987, 6, 761−70.

(48)Kirimov, V.; Vitali, L. A.; Goldstein, B. P.; Monti, F.; Semenkov, Y.; Makhno, V.; Ripa, S.; Pon, C. L.; Gülerci, C. O. Purupromycin: An antibiotic inhibiting tRNA aminoaacylation. *RNA 1997, 3, 905−913.*

(49)Dumas, J.-L.; van Delden, C.; Perron, K.; Köhler, T. Analysis of antibiotic resistance gene expression in *Pseudomonas aeruginosa* by quantitative real-time-PCR. *FEMS Microbiol. Lett.* 2006, 254, 217−225.

(50)Llanes, C.; Hocquet, D.; Vogné, C.; Benali-Baitich, D.; Neuwirth, C.; Plesiat, P. Clinical strains of *Pseudomonas aeruginosa* overproducing MexAB-OprM and MexXY efflux pumps simulta-

(51)Al-Majdoub, Z. M.; Carroll, K. M.; Gaskell, S. J.; Barber, J. Crystal structure of *Escherichia coli* carboxypeptidase A. *Biochem. Biophys. Res. Commun.* 2013, 424, 6045.

(52)Takemoto, T.; de la Fuente-Nunez, C.; Fang, Y.; Foster, L. J.; Hancock, R. E. W. Antibiotic resistance gene expression in *Pseudomonas aeruginosa* PAO1 toward the silkworm, *Bombyx mori*. *Sci. Rep.* 2016, 6, 26561−26566.

(53)Sturgis, J. N. Organisation and evolution of the tol-pal gene cluster. *J. Mol. Microbiol. Biotechnol.* 2006, DOI: 10.7554/eLife.07118.

(54)Kedrov, A.; Kusters, I.; Driessen, A. J. M. Single-Molecule Fluorescence Detection of Photon Emission from Single *Escherichia coli* bacteria. *Sci. Rep.* 2015, 5, 1802.

(55)Ogasawara, Y.; Funakoshi, M.; Ishii, K. Determination of antibiotic resistance gene expression in *Pseudomonas aeruginosa* by quantitative real-time-PCR. *FEMS Microbiol. Lett.* 2006, 254, 217−225.

(56)Hennon, S. W.; Dalbey, R. E. Cross-Linking-Based Flexibility and Proximity Relationships between the T.M. Segments of the *Escherichia coli* YidC. *Biochemistry* 2014, 53, 3278−3286.

(57)Lee, E.-Y.; Kim, S.; Kim, M. H. Aminoacyl-tRNA synthetases, therapeutic targets for infectious diseases. *Biochem. Pharmacol.* 1987, 761−70.

(58)Ferreira, I.; Chelysheva, I.; Ignatova, Z. Competition for amino acid flux among translation, growth and detoxification in bacteria. *ACS Omega* http://pubs.acs.org/journal/acsodf

(59)Hennon, S. W.; Dalbey, R. E. Cross-Linking-Based Flexibility and Proximity Relationships between the T.M. Segments of the *Escherichia coli* YidC. *Biochemistry* 2014, 53, 3278−3286.

(60)Dalbey, R. E.; Wang, P.; Kuhn, A. Assembly of bacterial inner membrane proteins. *Annu. Rev. Biochem.* 2011, 80, 161−87.
(79) El-Fouly, M. Z.; Sharaf, A. M.; Shahin, A. A. M.; El-Bialy, H. A.; Omara, A. M. A. Biosynthesis of pyocyanin pigment by Pseudomonas aeruginosa. J. Radiat. Res. Appl. Sci. 2015, 8, 36–48.
(80) Dietrich, L. E.; Price-Whelan, A.; Petersen, A.; Whiteley, M.; Newman, D. K. The phenazine pyocyanin is a terminal signaling factor in the quorum sensing network of Pseudomonas aeruginosa. Mol. Microbiol. 2006, 61, 1308–1321.
(81) Ugurlu, A.; Karahasan Yagci, A.; Ulusoy, S.; Aksu, B.; Bosgelmez-Tinaz, G. Phenolic compounds affect production of pyocyanin, swarming motility and biofilm formation of Pseudomonas aeruginosa. Asian Pac. J. Trop. Biomed. 2016, 6, 698–701.
(82) Lu, H. D.; Pearson, E.; Ristroph, K. D.; Duncan, G. A.; Ensign, L. M.; mSuk, J. S.; Hanes, J.; Prudhomme, R. K. Pseudomonas aeruginosa pyocyanin production reduced by quorum-sensing inhibiting nanocarriers. Int. J. Pharm. 2018, 544, 75–82.
(83) Sianglum, W.; Srimanote, P.; Wonglumsom, W.; Kittiniyom, K.; Voravuthikunchai, S. P. Phenolic compounds affect production of pyocyanin, swarming motility and biofilm formation of Pseudomonas aeruginosa. Asian Pac. J. Trop. Biomed. 2016, 6, 698–701.
(84) Dinc, M. Proteomic Analyses of Biological Samples by Using Different Mass Spectrometric Strategies. Ph.D. Dissertation, Izmir Institute of Technology: Izmir, Turkey, 2018.
(85) Szklarczyk, D.; Morris, J. H.; Cook, H.; Kuhn, M.; Stefan Wyder, S.; Simonovic, M.; Santos, A.; Doncheva, N. T.; Roth, A.; Bork, P.; Jensen, L. J.; von Mering, C. The STRING database in 2017: quality-controlled protein-protein association networks, made broadly accessible. Nucleic Acids Res. 2017, 45, D362–D368.
(86) Perez-Riverol, Y.; Csordas, A.; Bai, J.; Bernal-Llinares, M.; Hewapathirana, S.; Kundu, D. J.; Inuganti, A.; Griss, J.; Mayer, G.; Eisenacher, M.; Pérez, E.; Uszkoreit, J.; Pfeuffer, J.; Sachsenberg, T.; Yilmaz, S.; Tiwary, S.; Cox, J.; Audain, E.; Walser, M.; Jarnuczak, A. F.; Ternent, T.; Brazma, A.; Vizcaíno, J. A. The PRIDE database and related tools and resources in 2019: improving support for quantification data. Nucleic Acids Res. 2019, 47, D442–D450.
(87) Deutsch, E. W.; Csordas, A.; Sun, Z.; Jarnuczak, A.; Perez-Riverol, Y.; Ternent, T.; Campbell, D. S.; Bernal-Llinares, M.; Okuda, S.; Kawano, S.; Morita, R. L.; Carver, J. J.; Wang, M.; Ishihama, Y.; Bandeira, N.; Hermjakob, H.; Vizcaíno, J. A. The ProteomeXchange Consortium in 2017: supporting the cultural change in proteomics public data deposition. Nucleic Acids Res. 2017, 54, D1100–D1106.