Burkholderia pseudomallei is the causative agent of the potentially fatal disease melioidosis (1). Melioidosis is endemic to Southeast Asia and northern Australia, where B. pseudomallei is found in wet soil (2). B. pseudomallei is a phylogenetically diverse pathogen, as revealed by whole-genome sequence analysis (3).

A recent study demonstrated that B. pseudomallei NCTC 13392 (cited at the time of the study by the United Kingdom National Collection of Type Cultures as strain K96243), provided by the Health Protection Agency (HPA) in the United Kingdom, was shown to cause lethal inhalational melioidosis in a marmoset model (4). We sequenced the isolate used in that study and compared its genome to that of the published version of K96243 (5).

We sequenced the genome as revealed by whole-genome sequence analysis (3). A de novo assembly was performed with Velvet (9) in conjunction with the VelvetOptimiser (http://bioinformatics.net.au/software.velvetoptimiser.shtml). The reference-based assembly and the de novo assembly were then aligned with Mugsy (10). Regions unique to the de novo assembly were parsed from the alignment and concatenated to the comparative assembly. Errors were corrected in the final assembly with iCORN (11). The raw reads were also mapped to the final assembly with the Burrows-Wheeler Aligner (BWA) (12), and SNPs were called with the Genome Analysis Toolkit (GATK) (13).

The final assembly consisted of 48 contigs, with an assembled genome length of 7.16 Mbp and an N50 of ~418 Kbp. The average coverage across the genome was 140× (1,000-bp library). An in silico multilocus sequence type (MLST) analysis classified NCTC 13392 as sequence type 23 (ST23), with a single nucleotide difference to K96243 in the gltB gene. There are 7 ST23 isolates in the MLST database (http://bpseudomallei.mlst.net/), all of which were isolated in Thailand. An SNP analysis of raw reads against the finished genome of K96243 identified 13,256 SNPs, including 3,050 nonsynonymous SNPs. In addition, ~121 Kbp of sequence data was identified in NCTC 13392 that was absent from K96243; genes from these regions were associated with bacteriophages in previously sequenced B. pseudomallei genomes. This analysis demonstrates that the genome of NCTC 13392 is distinct from that of K96243 and that genomic elements from NCTC 13392 might be used to correlate with the results from animal model studies.

Nucleotide sequence accession numbers. This Whole-Genome Shotgun project has been deposited at DDBJ/EMBL/GenBank under the accession no. AOU00000000. The version described in this paper is the first version, accession no. AOU01000000.

ACKNOWLEDGMENTS

This work was funded by the Biomedical Advanced Research and Development Authority (BARDA) through Battelle Memorial Institute (BMI) contract no. HHSO100201100005I to H.C.G. and A.T.

REFERENCES

1. White NJ. 2003. Melioidosis. Lancet 361:1715–1722.
2. Dance DA. 2000. Melioidosis as an emerging global problem. Acta Trop. 74:115–119.
3. Pearson T, Giffard P, Beckstrom-Sternberg S, Auerbach R, Hornstra H, Tuanyok A, Price EP, Glass MB, Leadem B, Hoffmaster AR, Brettin TS, Robison RA, Mayo M,
Gee JE, Tan P, Currie BJ, Keim P. 2009. Phylogeographic reconstruction of a bacterial species with high levels of lateral gene transfer. BMC Biol. 7:78.

4. Nelson M, Dean RE, Salguero FJ, Taylor C, Pearce PC, Simpson AJ, Lever MS. 2011. Development of an acute model of inhalational melioidosis in the common marmoset (Callithrix jacchus). Int. J. Exp. Pathol. 92:428–435.

5. Holden MT, Titball RW, Peacock SJ, Cerdeño-Tárraga AM, Atkins T, Crossman LC, Pitt T, Churcher C, Mungall K, Bentley SD, Sebaihia M, Thomson NR, Bason N, Beacham IR, Brooks K, Brown KA, Brown NF, Challis GL, Cherevach I, Chillingworth T, Cronin A, Crossett B, Davis P, DeShazier D, Feltwell T, Fraser A, Hance Z, Hauser H, Holroyd S, Jagels K, Keith KE, Maddison M, Moule S, Price C, Quail MA, Rabbinowitsch E, Rutherford K, Sanders M, Simmonds M, Songsivilai S, Stevens K, Tumapa S, Vesaratchavest M, Whitehead S, Yeats C, Barrell BG, Oyston PC, Parkhill J. 2004. Genomic plasticity of the causative agent of melioidosis, Burkholderia pseudomallei. Proc. Natl. Acad. Sci. U. S. A. 101:14240–14245.

6. Nelson DM, Dean RE, Salguero FJ, Taylor C, Pearce PC, Simpson AJ, Lever M. 2013. Erratum. Int. J. Exp. Pathol. 94:74.

7. Pop M, Phillippy A, Delcher AL, Salzberg SL. 2004. Comparative genome assembly. Brief. Bioinform. 5:237–248.

8. Swain MT, Tsai IJ, Assefa SA, Newbold C, Berriman M, Otto TD. 2012. A post-assembly genome-improvement toolkit (PAGIT) to obtain annotated genomes from contigs. Nat. Protoc. 7:1260–1284.

9. Zerbino DR, Birney E. 2008. Velvet: algorithms for de novo short read assembly using de Bruijn graphs. Genome Res. 18:821–829.

10. Angiuoli SV, Salzberg SL. 2011. Mugsy: fast multiple alignment of closely related whole genomes. Bioinformatics 27:334–42.

11. Otto TD, Sanders M, Berriman M, Newbold C. 2010. Iterative correction of reference nucleotides (iCORN) using second generation sequencing technology. Bioinformatics 26:1704–1707.

12. Li H, Durbin R. 2009. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25:1754–1760.

13. DePristo MA, Banks E, Poplin R, Garimella KV, Maguire JR, Hartl C, Philippakis AA, del Angel G, Rivas MA, Hanna M, McKenna A, Fennell TJ, Kernytsky AM, Sivachenko AY, Cibulskis K, Gabriel SB, Altshuler D, Daly MJ. 2011. A framework for variation discovery and genotyping using next-generation DNA sequencing data. Nat. Genet. 43:491–498.