On backward uniqueness for parabolic equations when Osgood continuity of the coefficients fails at one point

Daniele Del Santo Martino Prizzi

Abstract

We prove the uniqueness for backward parabolic equations whose coefficients are Osgood continuous in time for $t > 0$ but not at $t = 0$.

1 Introduction

Let us consider the following backward parabolic operator

$$L = \partial_t + \sum_{i,j=1}^{n} \partial_{x_j} (a_{jk}(t,x) \partial_{x_k}) + \sum_{j=1}^{n} b_j(t,x) \partial_{x_j} + c(t,x).$$

We assume that all coefficients are defined in $[0,T] \times \mathbb{R}_x^n$, measurable and bounded; $(a_{jk}(t,x))_{j,k}$ is a real symmetric matrix for all $(t,x) \in [0,T] \times \mathbb{R}_x^n$ and there exists $\lambda_0 \in (0,1]$ such that

$$\sum_{j,k=1}^{n} a_{jk}(t,x) \xi_j \xi_k \geq \lambda_0 |\xi|^2$$

for all $(t,x) \in [0,T] \times \mathbb{R}_x^n$ and $\xi \in \mathbb{R}_\xi^n$.

Given a functional space \mathcal{H} we say that the operator L has the \mathcal{H}–uniqueness property if, whenever $u \in \mathcal{H}$, $Lu = 0$ in $[0,T] \times \mathbb{R}_x^n$ and $u(0,x) = 0$ in \mathbb{R}_x^n, then $u = 0$ in $[0,T] \times \mathbb{R}_x^n$. Our choice for \mathcal{H} is the space of functions

$$\mathcal{H} = H^1((0,T), L^2(\mathbb{R}_x^n)) \cap L^2((0,T), H^2(\mathbb{R}_x^n)).$$

This choice is natural, since it follows from elliptic regularity results that the domain of the operator $-\sum_{j,k=1}^{n} \partial_{x_j} (a_{jk}(t,x) \partial_{x_k})$ in $L^2(\mathbb{R}^n)$ is $H^2(\mathbb{R}^n)$ for all $t \in [0,T]$.

In our previous papers [5, 6] we investigated the problem of finding the minimal regularity assumptions on the coefficients a_{jk} ensuring the \mathcal{H}–uniqueness property to L. Namely, we proved the \mathcal{H}–uniqueness property...
for the operator L when the coefficients a_{jk} are Lipschitz continuous in x and the regularity in t is given in terms of a modulus of continuity μ, i.e.
\[
\sup_{s_1, s_2 \in [0,T], x \in \mathbb{R}^n} \frac{|a_{j,k}(s_1, x) - a_{j,k}(s_2, x)|}{\mu(|s_1 - s_2|)} \leq C,
\]
where μ satisfies the so called Osgood condition
\[
\int_0^1 \frac{1}{\mu(s)} \, ds = +\infty.
\]

Suitable counterexamples show that Osgood condition is sharp for backward uniqueness in parabolic equations: given any non-Osgood modulus of continuity μ, it is possible to construct a backward parabolic equation, whose coefficients are C^∞ in x and μ-continuous in t, for which the \mathcal{H}-uniqueness property does not hold. In the mentioned counterexamples the coefficients are in fact C^∞ in t for $t \neq 0$, and Osgood continuity fails only at $t = 0$.

In this paper we show that if the loss of Osgood continuity is properly controlled as $t \to 0$, then we can recover the \mathcal{H}-uniqueness property for L. Our hypothesis reads as follows: given a modulus of continuity μ satisfying the Osgood condition, we assume that the coefficients a_{jk} are Hölder continuous with respect to t on $[0,T]$, and for all $t \in]0,T]$ and for all $\epsilon > 0$
\[
\sup_{s_1, s_2 \in [t,T], x \in \mathbb{R}^n} \frac{|a_{j,k}(s_1, x) - a_{j,k}(s_2, x)|}{|s_1 - s_2|} \leq Ct^{-\beta},
\]
where $0 < \beta < 1$. The coefficients a_{jk} are assumed to be globally Lipschitz continuous in x. Under such hypothesis we prove that the \mathcal{H}-uniqueness property holds for L. As in our previous papers [5, 6], the uniqueness result is consequence of a Carleman estimate with a weight function shaped on the modulus of continuity μ. The weight function is obtained as solution of a specific second order ordinary differential equation. In the previous results cited above, the corresponding o.d.e. is autonomous. Here, on the contrary, the time dependent control (1) yields to a non-autonomous o.d.e.. Also, the "Osgood singularity" of a_{jk} at $t = 0$ introduces a number of new technical difficulties which are not present in the fully Osgood-regular situation considered before.

The result is sharp in the following sense: we exhibit a counterexample in which the coefficients a_{jk} are Hölder continuous with respect to t on $[0,T]$, for all $t \in]0,T]$ and for all $\epsilon > 0$
\[
\sup_{s_1, s_2 \in [t,T], x \in \mathbb{R}^n} \frac{|a_{j,k}(s_1, x) - a_{j,k}(s_2, x)|}{|s_1 - s_2|} \leq Ct^{-(1+\epsilon)},
\]
and the operator L does not have the \mathcal{H}-uniqueness property. The borderline case $\epsilon = 0$ in (2) is considered in paper [7]. In such a situation only a very particular uniqueness result holds and the problem remains essentially open.

2
2 Main result

We start with the definition of modulus of continuity.

Definition 1. A function \(\mu : [0, 1] \to [0, 1] \) is a modulus of continuity if it is continuous, concave, strictly increasing and \(\mu(0) = 0, \mu(1) = 1 \).

Remark 1. Let \(\mu \) be a modulus of continuity. Then
- for all \(s \in [0, 1] \), \(\mu(s) \geq s \);
- on \((0, 1]\), the function \(s \mapsto \frac{\mu(s)}{s} \) is decreasing;
- the limit \(\lim_{s \to 0^+} \frac{\mu(s)}{s} \) exists;
- on \([1, +\infty[\), the function \(\sigma \mapsto \frac{1}{\sigma^2 \mu(\frac{1}{\sigma})} \) is decreasing.

Definition 2. Let \(\mu \) be a modulus of continuity and let \(\phi : I \to B \), where \(I \) is an interval in \(\mathbb{R} \) and \(B \) is a Banach space. \(\phi \) is a function in \(C^\mu(I, B) \) if
\[
\| \phi \|_{C^\mu(I, B)} = \| \phi \|_{L^\infty(I, B)} + \sup_{0 < |t-s| < 1} \frac{\| \phi(t) - \phi(s) \|_B}{\mu(|t-s|)} < +\infty.
\]

Remark 2. Let \(\alpha \in (0, 1) \) and \(\mu(s) = s^\alpha \). Then \(C^\mu(I, B) = C^{0,\alpha}(I, B) \), the space of Hölder-continuous functions. Let \(\mu(s) = s \). Then \(C^\mu(I, B) = \text{Lip}(I, B) \), the space of bounded Lipschitz-continuous functions.

We introduce the notion of Osgood modulus of continuity.

Definition 3. Let \(\mu \) be a modulus of continuity. \(\mu \) satisfies the Osgood condition if
\[
\int_0^1 \frac{1}{\mu(s)} \, ds = +\infty. \tag{3}
\]

Remark 3. Examples of moduli of continuity satisfying the Osgood condition are \(\mu(s) = s \) and \(\mu(s) = s \log(e + \frac{1}{s} - 1) \).

We state our main result.

Theorem 1. Let \(L \) be the operator
\[
L = \partial_t + \sum_{j,k=1}^n \partial_{x_j} (a_{j,k}(t, x) \partial_{x_k}) + \sum_{j=1}^n b_j(t, x) \partial_{x_j} + c(t, x), \tag{4}
\]
where all the coefficients are supposed to be complex valued, defined in \([0, T] \times \mathbb{R}^n\), measurable and bounded. Let \((a_{j,k}(t, x))_{j,k} \) be a real symmetric matrix and suppose there exists \(\lambda_0 \in (0, 1) \) such that
\[
\sum_{j,k=1}^n a_{j,k}(t, x) \xi_j \xi_k \geq \lambda_0 |\xi|^2, \tag{5}
\]
for all \((t, x) \in [0, T] \times \mathbb{R}^n\) and for all \(\xi \in \mathbb{R}^n\). Under this condition \(L\) is a backward parabolic operator. Let \(\mathcal{H}\) be the space of functions such that

\[
\mathcal{H} = H^1((0, T), L^2(\mathbb{R}^n_x)) \cap L^2((0, T), H^2(\mathbb{R}^n_x)).
\]

Let \(\mu\) be a modulus of continuity satisfying the Osgood condition. Suppose that there exist \(\alpha \in (0, 1)\) and \(C > 0\) such that,

\begin{enumerate}[i)]
 \item for all \(j, k = 1, \ldots, n\),
 \[
 a_{j,k} \in C^{0,\alpha}([0, T], L^\infty(\mathbb{R}^n_x)) \cap L^\infty([0, T], \text{Lip}(\mathbb{R}^n_x));
 \]
 \item for all \(j, k = 1, \ldots, n\) and for all \(t \in (0, T]\),
 \[
 \sup_{s_1, s_2 \in \mathbb{R}^n} \frac{|a_{j,k}(s_1, x) - a_{j,k}(s_2, x)|}{\mu(|s_1 - s_2|)} \leq Ct^{\alpha-1}.
 \]
\end{enumerate}

Then \(L\) has the \(\mathcal{H}\)-uniqueness property, i.e. if \(u \in \mathcal{H}\), \(Lu = 0\) in \([0, T] \times \mathbb{R}^n_x\) and \(u(0, x) = 0\) in \(\mathbb{R}^n_x\), then \(u = 0\) in \([0, T] \times \mathbb{R}^n_x\).

3 Weight function and Carleman estimate

We define

\[
\phi(t) = \int_1^t \frac{1}{\mu(s)} ds.
\] (9)

The function \(\phi : [1, +\infty[\to [0, +\infty]\) is a strictly increasing \(C^1\) function and, from Osgood condition, it is bijective. Moreover, for all \(t \in [1, +\infty[\),

\[
\phi'(t) = \frac{1}{t^2 \mu(\frac{1}{t})}.
\]

We remark that \(\phi'(1) = 1\) and \(\phi'\) is decreasing in \([1, +\infty[\), so that \(\phi\) is a concave function. We remark also that \(\phi^{-1} : [0, +\infty[\to [1, +\infty[\) and, for all \(s \in [0, +\infty[\),

\[
\phi^{-1}(s) \geq 1 + s.
\]

We define

\[
\psi_\gamma(\tau) = \phi^{-1}(\gamma \int_0^\tau (T - s)^{\alpha-1} ds),
\] (10)

where \(\tau \in [0, \gamma T]\).

\[
\phi(\psi_\gamma(\tau)) = \gamma \int_0^{\psi_\gamma(\tau)} (T - s)^{\alpha-1} ds
\]

and

\[
\phi'(\psi_\gamma(\tau))\psi'_\gamma(\tau) = (T - \frac{\tau}{\gamma})^{\alpha-1}.
\]
Then
\[
\psi'_{\gamma}(\tau) = (T - \frac{T}{\gamma})^{\alpha - 1} \cdot (\psi_{\gamma}(\tau))^2 \mu\left(\frac{1}{\psi_{\gamma}(\tau)}\right),
\]
i. e. ψ_{γ} is a solution to the differential equation
\[
u'_{\tau} = (T - \frac{T}{\gamma})^{\alpha - 1} \cdot u^2(\tau) \cdot \mu\left(\frac{1}{u(\tau)}\right).
\]
Finally we set, for $\tau \in [0, \gamma T]$,
\[
\Phi_{\gamma}(\tau) = \int_{0}^{\tau} \psi_{\gamma}(\sigma) \, d\sigma.
\]
Remark that, with this definition, $\Phi'_{\gamma}(\tau) = \psi_{\gamma}(\tau)$ and
\[
\Phi''_{\gamma}(\tau) = (T - \frac{T}{\gamma})^{\alpha - 1} \cdot (\psi'_{\gamma}(\tau))^2 \cdot \mu\left(\frac{1}{\Phi'_{\gamma}(\tau)}\right).
\]
In particular, for $t \in (0, \frac{T}{2}]$,
\[
\Phi''_{\gamma}(\gamma(T - t)) = t^{\alpha - 1} \cdot \Phi'_{\gamma}(\gamma(T - t)) \cdot \frac{\mu\left(\frac{1}{\Phi'_{\gamma}(\gamma(T - t))}\right)}{\Phi'_{\gamma}(\gamma(T - t))} \geq t^{\alpha - 1} \geq \left(\frac{T}{2}\right)^{\alpha - 1},
\]
since $\Phi'_{\gamma}(\gamma(T - t)) = \psi_{\gamma}(\gamma(T - t)) \geq 1$ and $\frac{\mu(s)}{s} \geq 1$ for all $s \in (0, 1)$.

We can now state the Carleman estimate.

Theorem 2. In the previous hypotheses there exist $\gamma_0 > 0$, $C > 0$ such that
\[
\int_{0}^{\frac{T}{2}} e^{\frac{2}{\gamma} \Phi_{\gamma}(\gamma(T - t))} \|\partial_t u + \sum_{j,k=1}^{n} \partial_{x_j}(a_{j,k}(t,x) \partial_{x_k} u)\|_{L^2(\mathbb{R}^n)}^2 \, dt
\]
\[
\geq C \gamma^{\frac{1}{2}} \int_{0}^{\frac{T}{2}} e^{\frac{2}{\gamma} \Phi_{\gamma}(\gamma(T - t))} (\|\nabla_x u\|_{L^2(\mathbb{R}^n)}^2 + \gamma^2 \|u\|_{L^2(\mathbb{R}^n)}^2) \, dt
\]
for all $\gamma > \gamma_0$ and for all $u \in C_0^\infty(\mathbb{R}^{n+1})$ such that $\text{Supp} \, u \subseteq [0, \frac{T}{2}] \times \mathbb{R}^n$.

The way of obtaining the \mathcal{H}-uniqueness from the inequality (14) is a standard procedure, the details of which can be found in [5, Par. 3.4].

4 Proof of the Carleman estimate

4.1 Littlewood-Paley decomposition

We will use the so called Littlewood-Paley theory. We refer to [2], [3], [9] and [1] for the details. Let $\psi \in C^\infty([0, +\infty[; \mathbb{R})$ such that ψ is non-increasing and
\[
\psi(t) = 1 \quad \text{for} \quad 0 \leq t \leq \frac{11}{10}, \quad \psi(t) = 0 \quad \text{for} \quad t \geq \frac{19}{10}.
\]
We set, for $\xi \in \mathbb{R}^n$,
\[
\chi(\xi) = \psi(|\xi|), \quad \varphi(\xi) = \chi(\xi) - \chi(2\xi).
\]
(15)

Given a tempered distribution u, the dyadic blocks are defined by
\[
u_0 = \Delta_0 u = \chi(D)u = \mathcal{F}^{-1}(\chi(\xi)\hat{u}(\xi)),
\]
\[
u_j = \Delta_j u = \varphi(2^{-j}D)u = \mathcal{F}^{-1}(\varphi(2^{-j}\xi)\hat{u}(\xi)) \text{ if } j \geq 1,
\]
where we have denoted by \mathcal{F}^{-1} the inverse of the Fourier transform. We introduce also the operator
\[
S_k u = \sum_{j=0}^{k} \Delta_j u = \mathcal{F}^{-1}(\chi(2^{-k}\xi)\hat{u}(\xi)).
\]

We recall some well known facts on Littlewood-Paley decomposition.

Proposition 1. ([4, Prop. 3.1]) Let $s \in \mathbb{R}$. A temperate distribution u is in H^s if and only if, for all $j \in \mathbb{N}$, $\Delta_j u \in L^2$ and
\[
\sum_{j=0}^{+\infty} 2^{j s} \|\Delta_j u\|_{L^2}^2 < +\infty.
\]
Moreover there exists $C > 1$, depending only on n and s, such that, for all $u \in H^s$,
\[
\frac{1}{C} \sum_{j=0}^{+\infty} 2^{j s} \|\Delta_j u\|_{L^2}^2 \leq \|u\|_{H^s}^2 \leq C \sum_{j=0}^{+\infty} 2^{j s} \|\Delta_j u\|_{L^2}^2.
\]
(16)

Proposition 2. ([8, Lemma 3.2]). A bounded function a is a Lipschitz-continuous function if and only if
\[
\sup_{k \in \mathbb{N}} \|\nabla(S_k a)\|_{L^\infty} < +\infty.
\]
Moreover there exists $C > 0$, depending only on n, such that, for all $a \in \text{Lip}$ and for all $k \in \mathbb{N}$,
\[
\|\Delta_k a\|_{L^\infty} \leq C 2^{-k} \|a\|_{\text{Lip}} \quad \text{and} \quad \|\nabla(S_k a)\|_{L^\infty} \leq C \|a\|_{\text{Lip}},
\]
(17)
where $\|a\|_{\text{Lip}} = \|a\|_{L^\infty} + \|\nabla a\|_{L^\infty}$.

4.2 Modified Bony’s paraproduct

Definition 4. Let $m \in \mathbb{N} \setminus \{0\}$ and let $a \in L^\infty$. Let $s \in \mathbb{R}$ and let $u \in H^s$. We define
\[
T^m_a u = S_{m-1} a S_{m+1} u + \sum_{k=m-1}^{+\infty} S_k a \Delta_{k+3} u.
\]
We recall some known facts on modified Bony’s paraproduct.

Proposition 3. ([4] Prop. 5.2.1 and Th. 5.2.8). Let \(m \in \mathbb{N} \setminus \{0\} \) and let \(a \in L^\infty \). Let \(s \in \mathbb{R} \).

Then \(T_a^m \) maps \(H^s \) into \(H^s \) and there exists \(C > 0 \) depending only on \(n \), \(m \) and \(s \), such that, for all \(u \in H^s \),

\[
\| T_a^m u \|_{H^s} \leq C \| a \|_{L^\infty} \| u \|_{H^s}.
\]

(18)

Let \(m \in \mathbb{N} \setminus \{0\} \) and let \(a \in \text{Lip} \).

Then \(a - T_a^m \) maps \(L^2 \) into \(H^1 \) and there exists \(C' > 0 \) depending only on \(n \), \(m \), such that, for all \(u \in L^2 \),

\[
\| au - T_a^m u \|_{H^1} \leq C' \| a \|_{\text{Lip}} \| u \|_{L^2}.
\]

(19)

Proposition 4. ([4] Cor. 3.12]) Let \(m \in \mathbb{N} \setminus \{0\} \) and let \(a \in \text{Lip} \). Suppose that, for all \(x \in \mathbb{R}^n \), \(a(x) \geq \lambda_0 > 0 \).

Then there exists \(m \) depending on \(\lambda_0 \) and \(\| a \|_{\text{Lip}} \) such that for all \(u \in L^2 \),

\[
\text{Re} \langle T_a^m u, u \rangle_{L^2, L^2} \geq \frac{\lambda_0}{2} \| u \|_{L^2}^2.
\]

(20)

A similar result remains valid for valued functions when \(a \) is replaced by a positive definite matrix \((a_{j,k})_{j,k}\).

Proposition 5. ([4] Prop. 3.8 and Prop. 3.11 and [5] Prop. 3.8) Let \(m \in \mathbb{N} \setminus \{0\} \) and let \(a \in \text{Lip} \). Let \((T_a^m)^* \) be the adjoint operator of \(T_a^m \).

Then there exists \(C \) depending only on \(n \) and \(m \) such that for all \(u \in L^2 \),

\[
\| (T_a^m - (T_a^m)^*) \partial_x u \|_{L^2} \leq C \| a \|_{\text{Lip}} \| u \|_{L^2}.
\]

(21)

We end this subsection with a property which will needed in the proof of the Carleman estimate.

Proposition 6. ([5] Prop. 3.8]) Let \(m \in \mathbb{N} \setminus \{0\} \) and let \(a \in \text{Lip} \). Denote by \([\Delta_k, T_a^m] \) the commutator between \(\Delta_k \) and \(T_a^m \).

Then there exists \(C \) depending only on \(n \) and \(m \) such that for all \(u \in H^1 \),

\[
\sum_{h=0}^{\infty} \| \partial_x ([\Delta_k, T_a^m] \partial_x u) \|_{L^2}^2 \leq C \| a \|_{\text{Lip}} \| u \|_{H^1}.
\]

(22)

4.3 Approximated Carleman estimate

We set

\[
v(t, x) = e^{-\frac{\gamma}{2} \Phi_1(\gamma(T-t))} u(t, x).
\]

The Carleman estimate ([14]) becomes: there exist \(\gamma_0 > 0 \), \(C > 0 \) such that

\[
\int_0^T \| \partial_t v + \sum_{j,k=1}^n \partial_x (a_{j,k}(t, x) \partial_x v) + \Phi_1(\gamma(T-t)) v \|^2_{L^2(\mathbb{R}^n_x)} dt \\
\geq C \gamma \frac{1}{2} \int_0^T (\| \nabla_x v \|_{L^2(\mathbb{R}^n_x)}^2 + \gamma \frac{1}{2} \| u \|_{L^2(\mathbb{R}^n_x)}^2) dt,
\]

(23)
for all $\gamma > \gamma_0$ and for all $v \in C_0^\infty(\mathbb{R}^{n+1})$ such that $\text{Supp } u \subseteq [0, \frac{T}{2}] \times \mathbb{R}_x^n$.

First of all, using Proposition 3 we fix a value for m in such a way that

$$\text{Re } \sum_{j,k} \langle T_{a_{j,k}}^m \partial_x v, \partial_x v \rangle_{L^2, L^2} \geq \frac{\lambda_0}{2} \| \nabla v \|_{L^2},$$

(24)

for all $v \in C_0^\infty(\mathbb{R}^{n+1})$ such that $\text{Supp } u \subseteq [0, \frac{T}{2}] \times \mathbb{R}_x^n$. Next we consider Proposition 3 and in particular from (19) we deduce that (23) will be a consequence of

\[
\int_{0}^{\infty} \| \partial_t v + \sum_{j,k=1}^{n} \partial_j (T_{a_{j,k}}^m \partial_x v) + \Phi'_\gamma(\gamma(T-t)) v \|_{L^2(\mathbb{R}^2)}^2 \, dt \\
\geq C \gamma^{\frac{1}{2}} \int_{0}^{\infty} \left(\| \nabla_x v \|_{L^2(\mathbb{R}^2)}^2 + \gamma \| \nabla v \|_{L^2(\mathbb{R}^2)}^2 \right) \, dt,
\]

(25)

since the difference between (23) and (25) is absorbed by the right side part of (25) with possibly a different value of C and γ_0. With a similar argument, using (16) and (22), (25) will be deduced from

\[
\int_{0}^{\infty} \| \partial_t v_h + \sum_{j,k=1}^{n} \partial_j (T_{a_{j,k}}^m \partial_x v_h) + \Phi'_\gamma(\gamma(T-t)) v_h \|_{L^2(\mathbb{R}^2)}^2 \, dt \\
\geq C \gamma^{\frac{1}{2}} \int_{0}^{\infty} \left(\| \nabla_x v_h \|_{L^2(\mathbb{R}^2)}^2 + \gamma \| v_h \|_{L^2(\mathbb{R}^2)}^2 \right) \, dt,
\]

(26)

where we have denoted by v_h the dyadic block $\Delta_h v$.

We fix our attention on each of the terms

\[
\int_{0}^{\infty} \| \partial_t v_h + \sum_{j,k=1}^{n} \partial_j (T_{a_{j,k}}^m \partial_x v_h) + \Phi'_\gamma(\gamma(T-t)) v_h \|_{L^2(\mathbb{R}^2)}^2 \, dt.
\]

We have

\[
\int_{0}^{\infty} \| \partial_t v_h + \sum_{j,k=1}^{n} \partial_j (T_{a_{j,k}}^m \partial_x v_h) + \Phi'_\gamma(\gamma(T-t)) v_h \|_{L^2(\mathbb{R}^2)}^2 \, dt \\
= \int_{0}^{\infty} \left(\| \partial_t v_h \|_{L^2}^2 + \| \sum_{j,k=1}^{n} \partial_j (T_{a_{j,k}}^m \partial_x v_h) + \Phi'_\gamma(\gamma(T-t)) v_h \|_{L^2}^2 \\
+ \gamma \Phi''_\gamma(\gamma(T-t)) \| v_h \|_{L^2}^2 + 2 \text{Re } \langle \partial_t v_h, \sum_{j,k=1}^{n} \partial_j (T_{a_{j,k}}^m \partial_x v_h) \rangle_{L^2, L^2} \right) \, dt
\]

(27)

Let consider the last term in (27). We define, for $\varepsilon \in (0, \frac{T}{2}]$,

\[
\tilde{a}_{j,k,\varepsilon}(t, x) = \begin{cases} a_{j,k}(t, x), & \text{if } t \geq \varepsilon, \\
a_{j,k}(\varepsilon, x), & \text{if } t < \varepsilon,
\end{cases}
\]

8
and
\[a_{j,k,\varepsilon}(t, x) = \int_{-\varepsilon}^{\varepsilon} \rho_\varepsilon(s) \partial_{j,k,\varepsilon}(t - s, x) \, ds, \]
where \(\rho \in C_0^\infty(\mathbb{R}) \) with \(\text{Supp} \rho \subseteq [-1, 1] \), \(\int_{\mathbb{R}} \rho(s) \, ds = 1 \), \(\rho(s) \geq 0 \) and \(\rho_\varepsilon(s) = \frac{1}{\varepsilon} \rho(\frac{s}{\varepsilon}) \). With a straightforward computation, form (1) and (8), we obtain
\[|a_{j,k}(t, x) - a_{j,k,\varepsilon}(t, x)| \leq C \min\{\varepsilon^\alpha, t^{\alpha-1} \mu(\varepsilon)\}, \quad (28) \]
and
\[|\partial_t a_{j,k,\varepsilon}(t, x)| \leq C \min\{\varepsilon^{\alpha-1}, t^{\alpha-1} \mu(\varepsilon)\}, \quad (29) \]
for all \(j, k = \ldots, n \) and for all \((t, x) \in [0, \frac{T}{2}] \times \mathbb{R}_x^n \). We deduce
\[
\begin{align*}
\int_0^{\frac{T}{2}} 2 \Re \left(\partial_t v_h, \sum_{j,k=1}^n \partial_{x_j} (T^m_{a_{j,k}} \partial_{x_k} v_h) \right)_{L^2,L^2} dt \\
= -2 \Re \int_0^{\frac{T}{2}} \sum_{j,k=1}^n (\partial_{x_j} \partial_t v_h, T^m_{a_{j,k}} \partial_{x_k} v_h)_{L^2,L^2} dt \\
= -2 \Re \int_0^{\frac{T}{2}} \sum_{j,k=1}^n (\partial_{x_j} \partial_t v_h, (T^m_{a_{j,k}} - T^m_{a_{j,k,\varepsilon}}) \partial_{x_k} v_h)_{L^2,L^2} dt \\
- 2 \Re \int_0^{\frac{T}{2}} \sum_{j,k=1}^n (\partial_{x_j} \partial_t v_h, T^m_{a_{j,k,\varepsilon}} \partial_{x_k} v_h)_{L^2,L^2} dt.
\end{align*}
\]
Now, \(T^m_{a_{j,k}} - T^m_{a_{j,k,\varepsilon}} = T^m_{a_{j,k} - a_{j,k,\varepsilon}} \) and, from (18) and (28),
\[
\|(T^m_{a_{j,k}} - T^m_{a_{j,k,\varepsilon}}) \partial_{x_k} v_h\|_{L^2} = \|T^m_{a_{j,k} - a_{j,k,\varepsilon}} \partial_{x_k} v_h\|_{L^2} \leq C \min\{\varepsilon^\alpha, t^{\alpha-1} \mu(\varepsilon)\}\|\partial_{x_k} v_h\|_{L^2}.
\]
Moreover \(\|\partial_{x_j} v_h\|_{L^2} \leq 2^{h+1} \|v_h\|_{L^2} \) and \(\|\partial_{x_j} \partial_t v_h\|_{L^2} \leq 2^{h+1} \|\partial_t v_h\|_{L^2} \), so that
\[
\begin{align*}
|2 \Re \int_0^{\frac{T}{2}} \sum_{j,k=1}^n (\partial_{x_j} \partial_t v_h, (T^m_{a_{j,k}} - T^m_{a_{j,k,\varepsilon}}) \partial_{x_k} v_h)_{L^2,L^2} dt \\
\leq 2C \int_0^{\frac{T}{2}} \min\{\varepsilon^\alpha, t^{\alpha-1} \mu(\varepsilon)\} \sum_{j,k=1}^n \|\partial_{x_j} \partial_t v_h\|_{L^2} \|\partial_{x_k} v_h\|_{L^2} dt \\
\leq \frac{C}{N} \int_0^{\frac{T}{2}} \|\partial_t v_h\|_{L^2}^2 dt + CN 2^{4(h+1)} \int_0^{\frac{T}{2}} \min\{\varepsilon^\alpha, t^{\alpha-1} \mu(\varepsilon)\} \|v_h\|_{L^2}^2 dt,
\end{align*}
\]
where \(C \) depends only on \(n, m \) and \(\|a_{j,k}\|_{L^\infty} \) and \(N > 0 \) can be chosen arbitrarily.

Similarly
\[
\begin{align*}
-2 \Re \int_0^{\frac{T}{2}} \sum_{j,k=1}^n (\partial_{x_j} \partial_t v_h, T^m_{a_{j,k,\varepsilon}} \partial_{x_k} v_h)_{L^2,L^2} dt \\
= \int_0^{\frac{T}{2}} \sum_{j,k=1}^n (\partial_{x_j} v_h, T^m_{\partial_{a_{j,k,\varepsilon}}} \partial_{x_k} v_h)_{L^2,L^2} dt \\
+ \int_0^{\frac{T}{2}} \sum_{j,k=1}^n (\partial_{x_j} v_h, (T^m_{a_{j,k,\varepsilon}} - (T^m_{a_{j,k,\varepsilon}})^\ast) \partial_{x_k} \partial_t v_h)_{L^2,L^2} dt.
\end{align*}
\]
From (18) and (29) we have
\[
\left| \int_0^T \sum_{j,k=1}^n \langle \partial_{x_j} v_h, T_{a_{j,k}}^m \partial_{x_k} v_h \rangle_{L^2,L^2} dt \right| \\
\leq C 2^{2(h+1)} \int_0^T \min \{ \varepsilon^{\alpha-1}, t^{\alpha-1} \frac{\mu(\varepsilon)}{\varepsilon} \} \| v_h \|_{L^2}^2 dt,
\]
and, from (21),
\[
\left| \int_0^T \sum_{j,k=1}^n \langle \partial_{x_j} v_h, (T_{a_{j,k}}^m - (T_{a_{j,k}}^m)^*) \partial_{x_k} \partial_t v_h \rangle_{L^2,L^2} dt \right| \\
\leq C \int_0^T \| \nabla v_h \|_{L^2} \| \partial_t v_h \|_{L^2} dt \\
\leq \frac{CN}{N} \int_0^T \| \partial_t v_h \|_{L^2}^2 dt + CN 2^{2(h+1)} \int_0^T \| v_h \|_{L^2}^2 dt,
\]
where C depends only on n, m and $\| a_{j,k} \|_{\text{Lip}}$ and $N > 0$ can be chosen arbitrarily.

As a conclusion, from (27), we finally obtain
\[
\int_0^T \| \partial_t v_h + \sum_{j,k=1}^n \partial_{x_j}(T_{a_{j,k}}^m \partial_{x_k} v_h) + \Phi'_\gamma(\gamma(T-t)) v_h \|_{L^2(\mathbb{R}^2)}^2 dt \\
\geq \int_0^T \left(\| \sum_{j,k=1}^n \partial_{x_j}(T_{a_{j,k}}^m \partial_{x_k} v_h) + \Phi'_\gamma(\gamma(T-t)) v_h \|_{L^2}^2 + 2^{2(h+1)} \min \{ \varepsilon^{\alpha}, t^{\alpha-1} \frac{\mu(\varepsilon)}{\varepsilon} \} + 1 \right) \| v_h \|_{L^2}^2 dt.
\]

\[(30)\]

4.4 End of the proof

We start considering (30) for $h = 0$. We fix $\varepsilon = \frac{1}{2}$. Recalling (13) we have
\[
\int_0^T \| \partial_t v_H + \sum_{j,k=1}^n \partial_{x_j}(T_{a_{j,k}}^m \partial_{x_k} v_0) + \Phi'_\gamma(\gamma(T-t)) v_0 \|_{L^2(\mathbb{R}^2)}^2 dt \\
\geq \int_0^T \left(\varepsilon \Phi''(\varepsilon(T-t)) - C' \right) \| v_0 \|_{L^2}^2 \\
\geq \int_0^T \left(\gamma \left(\frac{T}{2} \right)^{\alpha-1} - C' \right) \| v_0 \|_{L^2}^2 dt.
\]

Choosing a suitable γ_0, we have that, for all $\gamma > \gamma_0$,
\[
\int_0^T \| \partial_t v_H + \sum_{j,k=1}^n \partial_{x_j}(T_{a_{j,k}}^m \partial_{x_k} v_0) + \Phi'_\gamma(\gamma(T-t)) v_0 \|_{L^2}^2 dt \geq \frac{\gamma}{2} \int_0^T \| v_0 \|_{L^2}^2 dt.
\]

\[(31)\]
We consider (30) for $h \geq 1$. We fix $\varepsilon = 2^{-2h}$. We have

$$\int_0^T \| \partial_t v_h + \sum_{j,k=1}^n \partial_x (T^m_{a,j,k} \partial_{x_k} v_h) + \Phi'_\gamma (\gamma(T - t)) v_h \|_{L^2(\mathbb{R}^2)}^2 dt$$

$$\geq \int_0^T \left(\| \sum_{j,k=1}^n \partial_x (T^m_{a,j,k} \partial_{x_k} v_h) + \Phi'_\gamma (\gamma(T - t)) v_h \|_{L^2}^2 - \Phi'_\gamma (\gamma(T - t)) \| v_h \|_{L^2}^2 \right) dt$$

$$+ \left(\gamma \Phi''_\gamma (\gamma(T - t)) - C(2^{4h} \min\{2^{-2h}, t^{\alpha-1} \mu(2^{-2h})\} + 2^{2h}) \| v_h \|_{L^2}^2 \right) dt$$

$$\geq \int_0^T \left(\| \sum_{j,k=1}^n \partial_x (T^m_{a,j,k} \partial_{x_k} v_h) \|_{L^2}^2 - \Phi'_\gamma (\gamma(T - t)) \| v_h \|_{L^2}^2 \right) dt$$

$$+ \left(\gamma \Phi''_\gamma (\gamma(T - t)) - C(2^{4h} \min\{2^{-2h}, t^{\alpha-1} \mu(2^{-2h})\} + 2^{2h}) \| v_h \|_{L^2}^2 \right) dt.$$

From (21) it is possible to deduce that

$$\| \sum_{j,k=1}^n \partial_x (T^m_{a,j,k} \partial_{x_k} v_h) \|_{L^2}^2 \geq \frac{\lambda_0}{8} 2^{2h} \| v_h \|_{L^2}^2. \quad (32)$$

Suppose first that

$$\Phi'_\gamma (\gamma(T - t)) \leq \frac{\lambda_0}{16} 2^{2h}.$$

From (24) we have

$$\| \sum_{j,k=1}^n \partial_x (T^m_{a,j,k} \partial_{x_k} v_h) \|_{L^2}^2 - \Phi'_\gamma (\gamma(T - t)) \| v_h \|_{L^2}^2 \geq \frac{\lambda_0}{16} 2^{2h} \| v_h \|_{L^2}^2$$

and then, using also (13), we obtain

$$\int_0^T \| \partial_t v_h + \sum_{j,k=1}^n \partial_x (T^m_{a,j,k} \partial_{x_k} v_h) + \Phi'_\gamma (\gamma(T - t)) v_h \|_{L^2(\mathbb{R}^2)}^2 dt$$

$$\geq \int_0^T \left(\| \sum_{j,k=1}^n \partial_x (T^m_{a,j,k} \partial_{x_k} v_h) \|_{L^2}^2 - \Phi'_\gamma (\gamma(T - t)) \| v_h \|_{L^2}^2 \right) dt$$

$$+ \left(\gamma \Phi''_\gamma (\gamma(T - t)) - C(2^{4h} \min\{2^{-2h}, t^{\alpha-1} \mu(2^{-2h})\} + 2^{2h}) \| v_h \|_{L^2}^2 \right) dt$$

$$\geq \int_0^T \left(\frac{\lambda_0}{16} 2^{2h} \| v_h \|_{L^2}^2 + \gamma \left(\frac{T}{2} \right)^{\alpha-1} - C(2^{(4-2\alpha)h}) \| v_h \|_{L^2}^2 \right) dt.$$

Then there exist $\gamma_0 > 0$ and $C > 0$ such that, for all $\gamma \geq \gamma_0$ and for all $h \geq 1$,

$$\int_0^T \| \partial_t v_h + \sum_{j,k=1}^n \partial_x (T^m_{a,j,k} \partial_{x_k} v_h) + \Phi'_\gamma (\gamma(T - t)) v_h \|_{L^2(\mathbb{R}^2)}^2 dt$$

$$\geq C \int_0^T (\gamma + \gamma^2 2^{2h}) \| v_h \|_{L^2}^2 dt \quad (33)$$
Suppose finally that
\[\Phi'_\gamma(\gamma(T-t)) \geq \frac{\lambda_0}{16} 2^{2h}. \]

From (12), the fact that \(\lambda_0 \leq 1 \) and the properties of the modulus of continuity \(\mu \)
\[\Phi''(\gamma(T-t)) = t^{a-1}(\Phi'_\gamma(\gamma(T-t)))^2 \mu(\frac{1}{\Phi'_\gamma(\gamma(T-t))}) \]
\[\geq t^{a-1}(\frac{\lambda_0}{16}) 2^{2h} \mu\left(\frac{16}{\lambda_0} 2^{-2h}\right) \geq t^{a-1}(\frac{\lambda_0}{16}) 2^{2h} \mu(2^{-2h}). \]

and
\[\Phi''(\gamma(T-t)) = t^{a-1}(\Phi'_\gamma(\gamma(T-t)))^2 \mu(\frac{1}{\Phi'_\gamma(\gamma(T-t))}) \]
\[= t^{a-1} \Phi'_\gamma(\gamma(T-t)) \frac{\mu(\frac{1}{\Phi'_\gamma(\gamma(T-t))})}{\Phi'_\gamma(\gamma(T-t))} \geq \left(\frac{T}{2}\right)^{a-1}. \]

Consequently
\[\int_0^T \|Dv_h + \sum_{j,k=1}^n \partial_{x_j}(T_{a,j,k} \partial_{x_k} v_h) + \Phi'_\gamma(\gamma(T-t))v_h\|^2_{L^2(\mathbb{R}^2)} dt \]
\[\geq \int_0^T (\gamma \Phi''(\gamma(T-t))) - C(2^{4h} \min\{2^{-2h}, t^{a-1} \mu(2^{-2h})\} + 2^{2h}) \|v_h\|^2_{L^2} dt \]
\[\geq \int_0^T \frac{\gamma}{2} (t^{a-1}(\frac{\lambda_0}{16}) 2^{2h} \mu(2^{-2h}) + \left(\frac{T}{2}\right)^{a-1}) - C (t^{a-1} 2^{4h} \mu(2^{-2h}) + 2^{2h}) \|v_h\|^2_{L^2} dt. \]

Then there exist \(\gamma_0 > 0 \) and \(C > 0 \) such that, for all \(\gamma \geq \gamma_0 \) and for all \(h \geq 1 \),
\[\int_0^T \|Dv_h + \sum_{j,k=1}^n \partial_{x_j}(T_{a,j,k} \partial_{x_k} v_h) + \Phi'_\gamma(\gamma(T-t))v_h\|^2_{L^2(\mathbb{R}^2)} dt \]
\[\geq C \gamma \int_0^T (1 + 2^{2h}) \|v_h\|^2_{L^2} dt. \] (34)

As a conclusion, form (31), (33) and (34), there exist \(\gamma_0 > 0 \) and \(C > 0 \) such that, for all \(\gamma \geq \gamma_0 \) and for all \(h \in \mathbb{N} \),
\[\int_0^T \|Dv_h + \sum_{j,k=1}^n \partial_{x_j}(T_{a,j,k} \partial_{x_k} v_h) + \Phi'_\gamma(\gamma(T-t))v_h\|^2_{L^2(\mathbb{R}^2)} dt \]
\[\geq C \int_0^T (\gamma + \gamma^2 2^{2h}) \|v_h\|^2_{L^2} dt \] (35)

and (26) follows. The proof is complete.
5 A counterexample

Theorem 3. There exists
\[l \in \left(\bigcap_{\alpha \in [0,1]} C^{0,\alpha}(\mathbb{R}) \right) \cap C^\infty(\mathbb{R} \setminus \{0\}) \]
with
\[\frac{1}{2} \leq l(t) \leq \frac{3}{2}, \quad \text{for all } t \in \mathbb{R}, \] (36)
\[|l'(t)| \leq C_\varepsilon |t|^{-(1+\varepsilon)}, \quad \text{for all } \varepsilon > 0 \text{ and } t \in \{0\}, \] (37)
and there exist \(u, b_1, b_2, c \in C^\infty_b(\mathbb{R} \times \mathbb{R}^2_x) \), with
\[
\text{Supp } u = \{(t, x) \in \mathbb{R}_t \times \mathbb{R}^2_x \mid t \geq 0\},
\]
such that
\[
\partial_t u + \partial_{x_1}^2 u + l \partial_{x_2}^2 u + b_1 \partial_{x_1} u + b_2 \partial_{x_2} u + cu = 0 \quad \text{in } \mathbb{R}_t \times \mathbb{R}^2_x.
\]

Remark 4. Actually the function \(l \) will satisfy
\[
\left| l'(t) \right| < \infty.
\] (38)

From (38) it is easy to obtain (37).

Proof. We will follow the proof of Theorem 1 in [10] (see also Theorem 3 in [5]). Let \(A, B, C, J \) be four \(C^\infty \) functions, defined in \(\mathbb{R} \), with
\[0 \leq A(s), B(s), C(s) \leq 1 \quad \text{and} \quad -2 \leq J(s) \leq 2, \quad \text{for all } s \in \mathbb{R}, \]
and
\[A(s) = 1, \quad \text{for } s \leq \frac{1}{5}, \] \[A(s) = 0, \quad \text{for } s \geq \frac{1}{4}, \]
\[B(s) = 0, \quad \text{for } s \leq 0 \text{ or } s \geq 1, \]
\[B(s) = 1, \quad \text{for } \frac{1}{6} \leq s \leq \frac{1}{2}, \]
\[C(s) = 0, \quad \text{for } s \leq \frac{1}{4}, \] \[C(s) = 1, \quad \text{for } s \geq \frac{1}{3}, \]
\[J(s) = -2, \quad \text{for } s \leq \frac{1}{6} \text{ or } s \geq \frac{1}{2}, \] \[J(s) = 2, \quad \text{for } \frac{1}{6} \leq s \leq \frac{1}{3}. \]

Let \((a_n)_n\), \((z_n)_n\) be two real sequences such that
\[-1 < a_n < a_{n+1}, \quad \text{for all } n \geq 1, \quad \text{and} \quad \lim_{n} a_n = 0, \] (39)
\[1 < z_n < z_{n+1}, \quad \text{for all } n \geq 1, \quad \text{and} \quad \lim_{n} z_n = +\infty. \] (40)

We define
\[r_n = a_{n+1} - a_n, \]
\[q_1 = 0 \quad \text{and} \quad q_n = \sum_{k=2}^{n} z_k r_{k-1}, \quad \text{for } n \geq 2, \]
\[p_n = (z_{n+1} - z_n) r_n. \]
We require
\[p_n > 1, \quad \text{for all} \quad n \geq 1. \] (41)

We set
\[A_n(t) = A\left(\frac{t-a_n}{r_n}\right), \quad B_n(t) = B\left(\frac{t-a_n}{r_n}\right), \]
\[C_n(t) = C\left(\frac{t-a_n}{r_n}\right), \quad J_n(t) = J\left(\frac{t-a_n}{r_n}\right). \]

We define
\[v_n(t, x_1) = \exp(-q_n - z_n(t - a_n)) \cos \sqrt{z_n} x_1, \]
\[w_n(t, x_2) = \exp(-q_n - z_n(t - a_n) + J_n(t)p_n) \cos \sqrt{z_n} x_2, \]
\[u(t, x_1, x_2) \]
\[= \begin{cases}
 v_1(t, x_1), & \text{for } t \leq a_1, \\
 A_n(t)v_n(t, x_1) + B_n(t)w_n(t, x_2) + C_n(t)v_{n+1}(t, x_1), & \text{for } a_n \leq t \leq a_{n+1}, \\
 0, & \text{for } t \geq 0.
\end{cases} \]

The condition
\[\lim_n \exp(-q_n + 2p_n)z_n^\alpha p_n^\beta r_n^{-\gamma} = 0, \quad \text{for all} \quad \alpha, \beta, \gamma > 0, \] (42)

implies that \(u \in C^\infty_b(\mathbb{R}_t \times \mathbb{R}^2_x) \).

We define
\[l(t) = \begin{cases}
 1, & \text{for } t \leq a_1 \text{ or } t \geq 0, \\
 1 + J_n'(t)p_n z_n^{-1}, & \text{for } a_n \leq t \leq a_{n+1}.
\end{cases} \]

\(l \) is a \(C^\infty(\mathbb{R} \setminus \{0\}) \) function. The condition
\[\sup_n \left\{ p_n r_n^{-1} z_n^{-1} \right\} \leq \frac{1}{2 \| J' \|_{L^\infty}} \] (43)

implies (39), i. e. the operator
\[L = \partial_t - \partial^2_{x_1} - l(t)\partial^2_{x_2} \]
is a parabolic operator. Moreover \(l \) is in \(\bigcap_{\alpha \in [0,1]} C^{0,\alpha}(\mathbb{R}) \) if
\[\sup_n \left\{ p_n r_n^{-1-\alpha} z_n^{-1} \right\} < +\infty, \quad \text{for all} \quad \alpha \in [0,1]. \] (44)

Finally, we define
\[b_1 = -\frac{Lu}{u^2 + (\partial_{x_1} u)^2 + (\partial_{x_2} u)^2} \partial_{x_1} u, \]
\[b_2 = -\frac{Lu}{u^2 + (\partial_{x_1} u)^2 + (\partial_{x_2} u)^2} \partial_{x_2} u, \]
\[c = -\frac{Lu}{u^2 + (\partial_{x_1} u)^2 + (\partial_{x_2} u)^2} u. \]
As in [10] and [5], the functions b_1, b_2, c are in $C^\infty_b(\mathbb{R}_t \times \mathbb{R}^2_\gamma)$ if
\[
\lim_n \exp(-p_n)z_n^\alpha + p_n^\beta r_n^{-\gamma} = 0, \quad \text{for all } \alpha, \beta, \gamma > 0.
\] (45)

We choose, for $j_0 \geq 2$,
\[
a_n = -e^{-\sqrt{\log(n+j_0)}}, \quad z_n = (n+j_0)^3.
\]

With this choice (39) and (40) are satisfied and we have
\[
r_n \sim e^{-\sqrt{\log(n+j_0)}} \frac{1}{(n+j_0)\sqrt{\log(n+j_0)}},
\]
where, for sequences $(f_n)_n, (g_n)_n$, $f_n \sim g_n$ means $\lim_n \frac{f_n}{g_n} = \lambda$, for some $\lambda > 0$. Similarly
\[
p_n \sim e^{-\sqrt{\log(n+j_0)}} \frac{n+j_0}{\sqrt{\log(n+j_0)}}
\]
and condition (41) is verified, for a suitable fixed j_0. Remarking that we have, for j_0 suitably large,
\[
q_n = \sum_{k=2}^{n} z_k r_{k-1} \geq z_n r_{n-1} \geq \lambda (n+j_0)^{\frac{5}{2}}
\]
and
\[
p_n \leq \lambda (n+j_0)^{\frac{5}{2}}
\]
for some $\lambda > 0$. Finally
\[
p_n r_n^{-1} z_n^{-1} \sim \frac{1}{n+j_0}.
\]

As a consequence (42), (43), (44) and (45) are satisfied for a suitable fixed j_0. It remains to check (38). We have
\[
|t'(t)| \leq \|J''\|_{L^\infty} p_n r_n^{-2} z_n^{-1}, \quad \text{for } a_n \leq t \leq a_{n+1}
\]
and consequently
\[
\sup_{t \neq 0} \left(\frac{|t|}{1 + |\log |t||} \right) |t'(t)| = \sup_n \sup_{t \in [a_n, a_{n+1}]} \left(\frac{|t|}{1 + |\log |t||} \right) |t'(t)| \leq \sup_n \left(\frac{a_n}{1 - \log a_n} \right) \|J''\|_{L^\infty} p_n r_n^{-2} z_n^{-1} \leq C.
\]

The conclusion of the theorem is reached simply exchanging t with $-t$. \square
References

[1] Bahouri, Hajer; Chemin, Jean-Yves; Danchin, Raphaël “Fourier analysis and nonlinear partial differential equations”. Grundlehren der Mathematischen Wissenschaften, 343. Springer, Heidelberg, 2011.

[2] Bony, Jean-Michel *Calcul symbolique et propagation des singularités pour les équations aux dérivées partielles non linéaires*. Ann. Sci. École Norm. Sup. (4) 14 (1981), no. 2, 209–246.

[3] Chemin, Jean-Yves “Fluides parfaits incompressibles”. Astérisque, 230. Société Mathématique de France, Paris, 1995.

[4] Colombini, Ferruccio; Métivier, Guy *The Cauchy problem for wave equations with non Lipschitz coefficients; application to continuation of solutions of some nonlinear wave equations*. Ann. Sci. Éc. Norm. Supér. (4) 41 (2008), no. 2, 177–220.

[5] Del Santo, Daniele; Prizzi, Martino *Backward uniqueness for parabolic operators whose coefficients are non-Lipschitz continuous in time*. J. Math. Pures Appl. (9) 84 (2005), no. 4, 471–491.

[6] Del Santo, Daniele; Prizzi, Martino *A new result on backward uniqueness for parabolic operators*. Ann. Mat. Pura Appl. (4) 194 (2015), no. 2, 387–403.

[7] Del Santo, Daniele; Jäh, Christian *Non-uniqueness and uniqueness in the Cauchy problem of elliptic and backward-parabolic equations*, in "Progress in Partial Differential Equations - Asymptotic Profiles, Regularity and Well-Posedness", M. Ruzhansky, M. Reissig eds., Springer Proceedings in Mathematics and Statistics 44, Springer International Publishing, Basel 2013, pp. 27–52.

[8] Gérard, Patrick; Rauch, Jeffrey *Propagation de la régularité locale de solutions d’équations hyperboliques non linéaires*. (French) [Propagation of the local regularity of solutions of nonlinear hyperbolic equations] Ann. Inst. Fourier (Grenoble) 37 (1987), no. 3, 65–84.

[9] Métivier, Guy “Para-differential calculus and applications to the Cauchy problem for nonlinear systems”. Centro di Ricerca Matematica Ennio De Giorgi (CRM) Series, 5. Edizioni della Normale, Pisa, 2008.

[10] Pliś, Andrzej *On non-uniqueness in Cauchy problem for an elliptic second order differential equation*. Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 11 (1963), 95–100.