Activation and activities of the p53 tumour suppressor protein

É Bálint and KH Vousden

NCI at Frederick, Building 560, Room 22–96, 1050 Boyles Street, Frederick, MD 21702-1201, USA

Summary The p53 tumour suppressor protein inhibits malignant progression by mediating cell cycle arrest, apoptosis or repair following cellular stress. One of the major regulators of p53 function is the MDM2 protein, and multiple forms of cellular stress activate p53 by inhibiting the MDM2-mediated degradation of p53. Mutations in p53, or disruption of the pathways that allow activation of p53, seem to be a general feature of all cancers. Here we review recent advances in our understanding of the pathways that regulate p53 and the pathways that are induced by p53, as well as their implications for cancer therapy. © 2001 Cancer Research Campaign http://www.bjcancer.com

The p53 gene is frequently mutated in sporadic cancer (Hainaut and Hollstein, 2000) and germline mutations in p53 result in Li–Fraumeni syndrome, a hereditary cancer susceptibility syndrome predisposing individuals to sarcomas, lymphomas, breast, brain and other tumours (Malkin et al, 1990; Srivistava et al, 1990). These findings are paralleled by the observation that mice deficient for p53 are highly tumour susceptible, although p53 deficiency does not prevent normal development (Donehower, 1996). Malignancies that retain the wild-type p53 gene have often acquired other mechanisms to compromise p53 function, and most cancer cells show a defect either in p53 or in the pathway that leads to activation of p53 in response to oncogenic stimuli (Vogelstein et al, 2000). Taken together, inactivation of the p53 pathway seems to be a general mechanism in tumour development and might be a common feature of all cancers. Thus understanding the mechanisms that regulate p53 function has great importance for cancer therapy.

CONTROL OF p53 FUNCTION

Since p53 is a powerful inhibitor of cell proliferation, control of its activity is essential during normal growth and development. Regulation of p53 has been described at the level of transcription, translation, conformational change, and various covalent and noncovalent modifications (Ashcroft and Vousden, 1999). However, at present it seems clear that one of the key mechanisms by which p53 function is regulated is through control of protein stability. Integral to this is the function of the MDM2 protein, and multiple forms of cellular stress activate p53 by countering the MDM2-mediated degradation of p53.

Regulation by MDM2

MDM2 has been shown to inhibit p53 activity in several ways: by binding to the transactivation domain of p53, by targeting p53 for ubiquitination, by inhibiting acetylation of p53 and by shuttling p53 to the cytoplasm. Since the MDM2 gene is a transcriptional target of p53 (Barak et al, 1993), an autoregulatory feedback loop exists in which p53 activates expression of its own negative regulator (Wu et al, 1993). The importance of MDM2 in the regulation of p53 activity is illustrated by the observation that MDM2 deficiency causes early embryonic lethality in mice which is rescued in the p53-null background (Jones et al, 1995; Montes de Oca Luna et al, 1995), indicating that in the absence of MDM2, unrestrained p53 activity blocks normal growth and development. Conversely, amplification of MDM2 is associated with the development of tumours that retain wild-type p53 (Oliner et al, 1992), suggesting that overexpression of MDM2 prevents the normal p53-mediated response to oncogenic stress.

MDM2 binds to p53 within the amino terminus of p53, (Figure 1) directly blocking the interaction of p53 with transcriptional coactivators (Momand et al, 1992; Wadgaonkar and Collins, 1999) and so inhibiting the ability of p53 to activate transcription of target genes. However, a more comprehensive inhibition of p53 function is achieved by the ability of MDM2 to promote proteasome-mediated degradation of p53 (Haupt et al, 1997; Kubbutat et al, 1997). MDM2 contains a RING finger domain (Figure 1) and, like many RING finger proteins, it can function in vitro as a ubiquitin protein ligase (E3) (Joazeiro and Weissman, 2000). MDM2 targets both itself and p53 for ubiquitination, and RING finger domain mutations lead to the stabilization of both proteins (Honda et al, 1997, Fang et al, 2000). Interestingly, the transcriptional co-factor, p300, that plays a role in acetylating and activating p53, also participates in the degradation of p53 by MDM2, possibly by functioning as a platform to allow efficient p53/MDM2 interaction (Grossman et al, 1998).

Besides direct ubiquitination of p53, MDM2 also plays a role in regulating the subcellular localization of p53. MDM2’s ubiquitin ligase activity contributes to the efficient nuclear export of p53 (Boyd et al, 2000; Geyer et al, 2000), which depends on the nuclear export sequence (NES) identified in the C-terminus of p53 (Stommel et al, 1999). It is possible that ubiquitination of p53 reveals the NES, possibly by driving p53 into a monomeric form (Stommel et al, 1999), allowing access to the nuclear export machinery. Treatment of cells with leptomycin B, a drug that blocks nuclear export, results in stabilization and nuclear accumulation of p53 (Freedman and Levine, 1998; Lain et al, 1999; Tao and Levine, 1999) and mutation of the NES in p53 reduces, but does not abolish, the ability of MDM2 to target p53 for degradation (Yu et al,
In tumours usually retain a wild-type protein (Scheffner et al, 1993). Although these HPV-associated oncoprotein in complex with the cellular E6AP have been described to regulate stability of p53. In cervical cancer cells, p53 abundance and activity, various additional mechanisms have been described (Meek, 1999; Ljungman, 2000) and phosphorylation at many of these sites can attenuate binding of p53 to MDM2 in vitro, potentially leading to stabilization of p53 in vivo (Unger et al, 1999; Chehab et al, 2000; Sakaguchi et al, 2000; Shieh et al, 1997, 2000). The kinases signalling to p53 include casein kinase 1 and 2, ATM (ataxia telangiectasia mutated), ATR (ATM/Rad3 related kinase) CHK1 and 2, JNK (jun N-terminal kinase) and DNA-PK (DNA-dependent protein kinase) (Jayaraman and Prives, 1999). Many of the same kinases also phosphorylate MDM2 in vitro, (Guerra et al, 1997; Mayo et al, 1997; Gotz et al, 1999; Khosravi et al, 1999) and MDM2 is heavily phosphorylated in vivo (Hay and Meek, 2000). Phosphorylation of MDM2 within the p53 binding domain, around the NLS, NES and in the acidic domain strongly suggests a regulatory role for these modifications (Hay and Meek, 2000; Maya and Oren, 2000).

Mechanisms to stabilize p53 in response to stress

1. Phosphorylation

Many stress signals, including some DNA-damaging agents, modulate p53 and MDM2 activity through induction of kinases (Lakin and Jackson, 1999). Numerous phosphorylation sites within or near the N-terminal MDM2-binding region of p53 have been described (Meek, 1999; Ljungman, 2000) and phosphorylation at many of these sites can attenuate binding of p53 to MDM2 in vitro, potentially leading to stabilization of p53 in vivo (Unger et al, 1999; Chehab et al, 2000; Sakaguchi et al, 2000; Shieh et al, 1997, 2000). The kinases signalling to p53 include casein kinase 1 and 2, ATM (ataxia telangiectasia mutated), ATR (ATM/Rad3 related kinase) CHK1 and 2, JNK (jun N-terminal kinase) and DNA-PK (DNA-dependent protein kinase) (Jayaraman and Prives, 1999). Many of the same kinases also phosphorylate MDM2 in vitro, (Guerra et al, 1997; Mayo et al, 1997; Gotz et al, 1999; Khosravi et al, 1999) and MDM2 is heavily phosphorylated in vivo (Hay and Meek, 2000). Phosphorylation of MDM2 within the p53 binding domain, around the NLS, NES and in the acidic domain strongly suggests a regulatory role for these modifications (Hay and Meek, 2000; Maya and Oren, 2000).

Genetic evidence from both mice and humans suggests that ATM and CHK2 are key players in the pathway of response to ionizing radiation. The ATM gene is mutated in the genetic disorder ataxia telangiectasia, which is characterized by hypersensitivity to ionizing radiation and predisposition to cancer (Meyn, 1999), while Chk2 was found to be mutated in patients with Li–Fraumeni syndrome who do not carry mutations in p53 (Bell et al, 1992).
et al, 1999). Cells deficient for ATM or Chk2 show a defect in their ability to stabilize p53 following exposure to IR (Kastan et al, 1992; Hirao et al, 2000), strongly supporting a role for these kinases in this damage response.

2. Regulation of MDM2 expression

Although phosphorylation probably plays an important role in some pathways leading to the stabilization of p53, other forms of stress can signal without a requirement for p53 phosphorylation (Ashcroft et al, 1999; Blattner et al, 1999). Several DNA-damaging agents including UV, topoisomerase inhibitors and non-genotoxic stress such as hypoxia, induce a p53 response by specific inhibition of MDM2 transcription (Wu and Levine, 1997; Arriola et al, 1999; Ashcroft et al, 2000; Ma et al, 2000; Zeng et al, 2000; Koumenis et al, 2001). Down-regulation of MDM2 was shown to be p53-independent, but the exact mechanisms are yet to be elucidated.

3. ARF

The alternative reading frame product of the INK4A locus, called p14ARF (mouse p19ARF) binds directly to MDM2, inhibiting the ubiquitin ligase activity of MDM2 and blocking the inhibition of p53 acetylation by MDM2 (Bates et al, 1998; Kamijo et al, 1998; Pomerantz et al, 1998; Stott et al, 1998; Zhang et al, 1998; Honda and Yasuda, 1999; Midgley et al, 2000; Ito et al, 2001). In some systems, ARF also leads to the relocalization of MDM2 from the nucleoplasm to the nucleolus (Weber et al, 1999) utilizing nucleolar localization signals in both ARF and MDM2 (Lohrum et al, 2000; Weber et al, 2000), and as a consequence of ARF expression is the efficient stabilization and activation of p53. ARF plays an important role in the induction of p53 in response to oncogene activation, a critical fail-safe mechanism that eliminates cells with proliferative abnormalities. For example, deregulated E2F1 activity, which is seen in almost all cancers following disruption of the pRB tumour suppressor pathway, sends a strong apoptotic signal. Although part of this E2F1-induced apoptotic response is p53 independent (Phillips et al, 1999; Irwin et al, 2000), E2F1 transcriptionally activates ARF and the subsequent induction of p53 in response to deregulated E2F1 activity is an important component of the response. Similarly, the growth suppressive effects of activated Ras or Myc depend, in part, on the induction of p53 through ARF (Sherr and Weber, 2000). Other oncogenic events that induce a p53 response and might function through ARF include activation of the c-Abl protein-tyrosine kinase (Radfar et al, 1998; Sionov et al, 1999) and deregulation of beta-catenin, a frequent early event in colon carcinogenesis (Damalas et al, 1999). The importance of the ARF/p53 pathway is illustrated in mice, where deletion of ARF results in tumour development (Kamijo et al, 1997). Although mutations specific to ARF are rarely found in human tumours, loss of ARF expression resulting from methylation of the ARF promoter (Esteller, 2000), or overexpression of transcriptional repressors of ARF such as Twist (Maestro et al, 1999), Bmi-1 (Jacobs et al, 1999) or TBX2 (Jacobs et al, 2000) is associated with human cancer development.

4. Other regulators of p53 stability

MDMX, a protein related to MDM2, also possesses a p53-binding domain and a RING finger domain. Binding of MDMX inhibits p53 transactivation function (Shvarts et al, 1996), although MDMX does not appear to target p53 for degradation. It is possible that MDMX does not show ubiquitin ligase activity, and hetero-oligomerization of MDMX with MDM2 through their RING finger domains results in the stabilization of MDM2 (Sharp et al, 1999; Tanihara et al, 1999). Furthermore, when overexpressed, MDMX protected p53 from MDM2-mediated degradation while still maintaining suppression of p53 transactivation (Jackson and Berberich, 2000). The role of MDMX in tumour development remains to be determined, although there is evidence that amplification of MDMX may substitute for p53 mutation or amplification of MDM2 in some tumours (Riemenschneider et al, 1999). Alternatively spliced forms of MDM2, lacking the N-terminal p53-binding domain, have also been described in human cancers and may play a role in regulating full-length MDM2 activity (Sigalas et al, 1996; Perry et al, 2000).

Several other proteins have been reported to interfere with the MDM2-mediated degradation of p53, although their mechanism of function is not well understood. pRB binds MDM2 and inhibits MDM2-dependent degradation of p53, with selective restoration of p53’s apoptotic function (Hsieh et al, 1999). Other proteins that regulate p53 stability, and so potentially inhibit MDM2, include HIF1α (An et al, 1998) ING1 (Garkavtsev et al, 1998), WRN (Blander et al, 2000) and WT1 (Maheswaran et al, 1995).

Regulation of p53 activity

In addition to the regulation of protein stability, there are mechanisms that regulate the activity of p53. The extreme C terminus of the protein controls its sequence-specific DNA binding and transcriptional activity, and these functions can be influenced by a multitude of covalent and non-covalent modifications within the C terminus. Modifications suggested to be involved in activation of p53 include sumoylation (Gostissa et al, 1999; Rodriguez et al, 1999; Muller et al, 2000), phosphorylation, dephosphorylation, acetylation, glycosylation (Shaw et al, 1996), ribosylation (Vaziri et al, 1997; Wang et al, 1998; Simbulan-Rosenthal et al, 1999) and redox regulation.

Transcriptional coactivators p300, CBP and PCAF have been shown to enhance p53-mediated transcription, and are important for p53 growth arrest and apoptotic functions. These coactivators bind to the N terminus and acetylate p53 at C-terminal lysine residues, thereby enhancing its sequence-specific DNA binding (Gu and Roeder, 1997). Phosphorylation of the N terminus of p53 enhances acetylation of the C terminus (Sakaguchi et al, 1998), and these modifications are DNA damage inducible (Sakaguchi et al, 1998; Liu et al, 1999). MDM2 can prevent this acetylation of p53 (Kobet et al, 2000; Ito et al, 2001), and association of p53 with deacetylating complexes provides further levels of control on p53 function (Juan et al, 1999). Acetylation of p53 is regulated by interaction with the promyelocytic leukaemia protein (PML), a RING domain containing tumour suppressor protein. Overexpression of PML relocates p53 into nuclear bodies and induces phosphorylation and acetylation of p53, thereby stimulating its transcriptional activity (Ferrebee et al, 2000; Fogal et al, 2000; Guo et al, 2000; Pearson et al, 2000). Both DNA damage-induced apoptosis and oncogenic ras-induced senescence are impaired in PML-deficient cells, indicating an important role for PML in various p53-mediated stress responses.

Phosphorylation has also been shown to regulate p53 transcriptional activity. For example, the rapid phosphorylation on the C terminus on serine 392 in response to UV (Kapoor and Lozano, 1998) may stimulate sequence-specific DNA-binding activity of p53 (Hupp et al, 1992). A role for phosphorylation is also
implicated in changing the oligomerization state of p53, or regulating its promoter specificity and the choice between apoptosis or cell cycle arrest (Lohrum and Schiedtmann, 1996; Sakaguchi et al., 1997; Oda et al., 2000). An ATM-dependent dephosphorylation of p53 at Ser376 has been described, creating a binding site for 14-3-3 proteins which, in turn, activate sequence-specific DNA binding of p53 (Waterman et al., 1998).

Non-covalent interaction with proteins such as Ref-1 and HMG-1 have also been shown to activate p53 DNA binding. Ref-1 is a multifunctional protein that participates in DNA repair through its asparagine endonuclease activity and regulates the activity of several transcription factors by changing their redox state. Presumably by regulating the redox state of p53, it enhances trans-activation of p53 target promoters and increases p53-induced apoptosis (Jayaraman et al., 1997; Gaiddon et al., 1999). HMG-1 (high mobility group protein-1), a chromatin-associated non-histone protein, also increases the transcription of p53-dependent promoters, probably by inducing bending of the DNA (Jayaraman et al., 1998).

THE p53 RESPONSE

The tumour suppressor function of p53 depends principally on its ability to prevent cellular proliferation in response to stress stimuli that are encountered during tumourigenic progression. Activated p53 leads to cell cycle arrest and apoptosis, and can play a role in the induction of differentiation and cellular senescence (Almog and Rotter, 1997; Lundberg et al., 2000). Wild-type p53 has been shown to inhibit angiogenesis in tumours, by activating or repressing genes that regulate new blood vessel formation (Dameron et al., 1994; Dameron et al., 1998) and to inhibit angiogenesis in tumours, by activating or repressing genes that regulate new blood vessel formation (Dameron et al., 1994; Dameron et al., 1998) and localizing the tumour suppressor function of p53 to negatively regulate the IGF pathway (Buckbinder et al., 1997). The DR5 promoter was shown to be a direct target of p53 (Owen-Schaub et al., 1995; Wu et al., 1999), and the ability of p53 to negatively regulate the IGF pathway (Buckbinder et al., 1997) and inhibit intergrin-associated survival signalling may further sensitize cells to p53-induced death (Bachelder et al., 1999). The NF-κB transcription factor has lately been shown to play an important role in p53-mediated apoptosis (Ryan et al., 2000), in contrast to the anti-apoptotic effect of NF-κB induced in cells that were deficient in p53 and one of the death receptor ligands, FASL, have been observed to be up-regulated by p53 (Owen-Schaub et al., 1995; Wu et al., 1997). The DR5 promoter was shown to be a direct target of p53 (Takimoto and El-Deiry, 2000), while cell surface expression of FAS was enhanced by p53 through promotion of its trafficking from the Golgi to the plasma membrane (Bennett et al., 1998). Activation of death receptors by their ligands (FAS by FASL and DR5 by TRAIL) results in trimerization and recruitment of intracellular adapter molecules which initiate the caspase cleavage cascade and apoptosis (Ashkenazi and Dixit, 1998). Activation of PIDD, a death domain containing protein, by p53 also induces apoptosis and is likely to function through the death receptor pathway (Lin et al., 2000).

Cell cycle arrest

The cell cycle arrest function of p53 correlates well with its ability to function as a transcription factor (Crook et al., 1994; Pietenpol et al., 1994). Of the myriad of p53 target genes identified to date p21Waf1/Cip1 stands out as playing a critical role in the induction of apoptosis that contributes to the p53-induced G2 arrest is 14-3-3 sigma (Waldman et al., 1995; Waldman et al., 1996). Another target of p53 that is up-regulated in 14-3-3 sigma deficient cells could transiently arrest in G2 phase after DNA damage, they were unable to maintain the cell cycle arrest (Chan et al., 1999). As mentioned above, 14-3-3 can bind p53 and activate its sequence-specific DNA binding after IR (Waterman et al., 1998), and so may represent a positive feedback loop to p53 to prevent cell cycle progression in damaged cells. Further potential mediators of the G2 arrest include GADD45 (Wang et al., 1999) and Reprimo (Ohki et al., 2000).

Apoptosis

While there is evidence that p53 can mediate apoptosis by transcription-independent mechanisms, p53 both activates and represses genes that participate in the apoptotic response. Cells in which the wild-type p53 was replaced by a transcriptionally inactive mutant showed loss of both cell cycle arrest and apoptotic functions, supporting the importance of transcriptional regulation in these responses (Chao et al., 2000; Jimenez et al., 2000).

Numerous apoptotic genes that are transcriptionally activated by p53 have been identified, suggesting that the p53 apoptotic response is multifaceted (Vosden, 2000) (Figure 2). The first apoptotic target of p53 identified was the bax gene, a pro-apoptotic member of the BCL-2 family (Miyashita and Reed, 1995). Recently, other pro-apoptotic members of this family named Noxa (Oda et al., 2000) and PUMA (Nakano and Vosden, 2001; Yu et al., 2001) have been identified as p53 targets. These proteins, as well as another p53 target gene product, p53AIP1 (Oda et al., 2000), localize to the mitochondria and promote loss of the mitochondrial membrane potential and cytochrome c release, thus activating the Apaf-1/caspase-9 apoptotic cascade (Bossy-Wetzel and Green, 1999). Significantly, p53-induced apoptosis was found to be inhibited by loss of Apaf-1 or caspase-9 (Soengas et al., 1999). Perturbation of mitochondrial integrity may also be mediated by several genes coding for redox-controlling enzymes, which were identified as p53-induced genes (PIGs) in a colon cell line undergoing p53-mediated apoptosis (Polyak et al., 1997). It has been proposed that reactive oxygen species (ROS) produced by these PIGs cause damage to mitochondria which in turn initiates apoptosis. This model is supported by the observations that antioxidants, which eliminate ROS, can inhibit p53-mediated apoptosis as well as concomitant changes in the mitochondrial membrane potential in some systems (Li et al., 1999). Recently a study revealed that the p53 protein itself can localize to the mitochondria presenting a potential additional transcription-independent way of mediating apoptosis (Marchenko et al., 2000).
response to TNF (Van Antwerp et al, 1996; Phillips et al, 1999). However, in other systems p53 expression has been shown to be dependent on NF-κB (Wu and Lozano, 1994; Kirch et al, 1999), and the contribution of NF-kB to the p53 apoptotic pathway remains unclear.

Choice of response

Whether a cell undergoes cell cycle arrest or apoptosis in response to p53 depends on several factors. Some of these may be independent of p53, such as the presence of extracellular survival factors, the presence of other oncogenic alterations and the availability of additional transcription factors or cofactors (Vousden, 2000). However, the activity of p53 can also contribute to the choice of response. The type and the magnitude of the cellular stress may control p53 function by affecting the level or activity of the p53 protein that is induced. Activation of apoptosis has been associated with higher levels of p53 than those required for cell cycle arrest (Chen et al, 1996), suggesting that the promoters regulating expression of apoptotic genes bind p53 with a lower affinity than the cell cycle arrest targets. Alternatively, affinity of p53 to target promoters might be regulated by conformational change (Thornborrow and Manfredi, 1999), and several mutants of p53 show selective loss of the ability to activate apoptotic target genes and to induce apoptosis (Ryan and Vousden, 1998). Covalent modification such as phosphorylation can also regulate conformation and/or promoter specificity of p53. Phosphorylation of p53 on serine 46, for example, is required for the induction of the apoptotic target gene p53AIP1 (Oda et al, 2000) and inhibition of the kinase responsible for serine 46 phosphorylation by the phosphatase WIP1, which is also p53-inducible, inhibits the ability of p53 to activate the apoptotic response (Takekawa et al, 2000).

DNA repair

Besides preventing cells with damaged genomes from replicating, via its apoptotic and cell cycle arrest function, p53 also participates in DNA damage repair. Cells lacking p53 function are deficient in nucleotide excision repair (NER), which repairs UV-induced DNA damage (Ford and Hanawalt, 1995; Wani et al, 1999) and base excision repair (BER), which removes bases damaged by alkylating agents, oxygen-free radicals or hydrolysis (Offer et al, 2001; Zhou et al, 2001). The C-terminus of p53 directly binds to different forms of damaged DNA: single-stranded DNA, ends of double-strand breaks and DNA ‘bulges’ resulting from insertion/deletion mismatches. Also, p53 can associate with several components of the repair machinery in vitro, including XPB/ERCC3, XPD/ERCC2, p62 subunit of TFIH, CSB, replication protein A and Ref-1. Other biochemical activities of p53, such as DNA reannealing, DNA strand transfer and 3′–5′ exonuclease activity might also play a role in its repair function (for review see Albrechtsen et al (1999) McKay et al (1999)).

Some of the p53 target genes also participate in DNA damage repair. GADD45 binds proliferating cell nuclear antigen (PCNA),
and could inhibit replicative DNA synthesis, thus allowing DNA repair to proceed (Smith et al, 1994). Gadd45-null fibroblasts have defects in NER similar to those seen in p53-null fibroblasts (Smith et al, 2000) and Gadd45-deficient mice show increased radiation carcinogenesis and genomic instability comparable to that seen in p53-deficient mice (Hollander et al, 1999). Another transcriptional target of p53 that plays a role in DNA repair is p53R2, a ribonucleotide reductase gene (Nakano et al, 2000; Tanaka et al, 2000).

Figure 3 In tumour cells with p53, radiation and certain chemotherapeutic agents activate p53 by various mechanisms discussed in the text. Small molecules can be used to inhibit MDM2- or E6-mediated degradation of p53 or to stabilize p53 in the active conformation. Alternatively, p53 or its homologues can be introduced by adenoviral vectors (Adp53, Adp73). Gene therapy is used in combination with radiation or chemotherapy

POSSIBILITY OF p53 IN CANCER THERAPY

Since most cancers are defective in the p53 response, and tumour cells are generally more sensitive to p53-mediated death than many normal cells, reintroduction or reactivation of p53 in tumour cells may have profound therapeutic utility. Several approaches to restore p53 function in tumour cells are presently being pursued (Figure 3). Mutant p53 can be re-activated in cells by small peptides derived from the C-terminus of p53 (Selivanova et al, 1997). Even more promising, small compounds were identified that stabilize both wild-type and mutant p53 in the active conformation and thus are able to slow tumour growth in mice (Foster et al, 1999). Inhibition of MDM2 may be effective in tumours that retain wild-type p53, but fail to properly activate it, due to MDM2 overexpression or loss of ARF. Small peptides or antisense oligonucleotides that target MDM2 have been shown to activate p53 successfully in p53-positive tumour cells (Böttger et al, 1997; Chen et al, 1999). Similarly, inhibition of the HPV E6 protein can induce p53 in cervical cancer cells (Butz et al, 2000; Hietanes et al, 2000). These approaches may be less effective, however, in those cancers where resistance to p53-mediated tumour suppression results from defects in downstream effectors, such as Bax (Rampino et al, 1997) or Apaf-1 (Soengas et al, 2001).

Adenoviral or retroviral vectors have been used to re-introduce wild-type p53 into tumour cells with no or mutant p53, inducing apoptosis and promoting tumour regression in combination with radiation therapy in clinical trials (Roth et al, 1999; Zeimet et al, 2000). Adenoviral expression of the p53 family members p63 or p73 was also able to induce apoptosis in certain cancer cells (Ishida et al, 2000), and since p73 is resistant to degradation by MDM2 and E6 (Marin et al, 1998; Prabhu et al, 1998; Balint et al, 1999; Dobbelstein et al, 1999; Ongkoko et al, 1999; Zeng et al, 1999), its potential for therapeutic application may be promising. In another approach, an adenovirus lacking the p53-inactivating oncogene E1B (Onyx-015) was shown to be able to replicate only in tumour cells that are defective in the p53 pathway, but not in normal cells, thus causing selective tumour cell killing and tumour regression in many patients (McCormick, 2000).

Despite the enhanced sensitivity of many cancer cells to p53-mediated death, many normal cells also undergo apoptosis in response to radiation or chemotherapy, leading to the debilitating side effects that limit the extent of chemotherapy that can be tolerated. In a contrasting approach, an inhibitor of p53 was shown to protect mice from the lethal effects of radiation treatment by preventing damage of wild-type p53-containing normal tissues (Komarova et al, 1999). Although many questions remain unanswered, it is apparent that our improving insights into the regulation and function of the p53 tumour suppressor will yield exciting advances in cancer therapy.

REFERENCES

Abrahamson JLA, Lee JM and Bernstein A (1995) Regulation of p53-mediated apoptosis and cell cycle arrest by steel factor. Mol Cell Biol 15: 6953–6960
Agarwal ML, Agarwal A, Taylor WR and Stark GR (1995) p53 controls both the G2/M and the G1 cell cycle checkpoints and mediates reversible growth arrest in human fibroblasts. Proc Natl Acad Sci USA 92: 8493–9497
Albrechtsen N, Dormreiter I, Grosse F, Kim E, Wiesmüller L and Deppert W (1999) Maintenance of genomic integrity by p53: complementary roles for activated and non-activated p53. Oncogene 18: 7706–7717
Almqvist N and Rotter V (1997) Involvement of p53 in cell differentiation and development. Biochem Biophys Acta 1333: F1–27
An WG, Kasek M, Simon MC, Maltepe E, Blagosklonny MV and Neckers LM (1998) Stabilization of wild-type by hypoxia-inducible factor 1α. Nature 392: 405–408
Ariola EL, Rodriguez Lopez A and Cresta CM (1999) Differential regulation of p21Waf1/CIP1 and Mdm2 by etoposide: etoposide inhibits the p53-Mdm2 autoregulatory loop. Oncogene 18: 1081–1091

Ashcroft M and Vousden KH (1999) Regulation of p53 stability. Oncogene 18: 7637–7643

Ashcroft M, Kubbutat MH and Vousden KH (1999) Regulation of p53 function and stability by phosphorylation. Mol Cell Biol 19: 1751–1758

Bachelder RE, Ribick MJ, Marchetti A, Falcioni R, Soddu S, Davis KR and Mercario AM (1999) p53 inhibits alpha 6 beta 4 integrin signaling by promoting the caspase-3-dependent cleavage of Akt/PKB. J Cell Biol 147: 1037–1042

Balint E, Bates S and Vousden KH (1999) Mdm2 binds p73 without targeting degradation. Oncogene 18: 3923–3929

Barak Y, Joven T, Haffner R and Oren M (1993) Mdm-2 expression is induced by oncogenic human papillomavirus-negative tumours. Lancet 339: 1070–1073

Bell DW, Varley JM, Szydlo TE, Kang DH, Wahrer DC, Shannon KE, Lubratovich M, Verselis SJ, Isselbacher KJ, Fraumeni JF, Birch JM, Li FP, Garber JE and Oren M (1994) Down-regulation of p53 correlates with suppression of growth but not transformation. Cell 79: 827–827

Boyd SD, Tsai KY and Jacks T (2000) An intact HDM2 RING-finger domain is required to prevent mitotic catastrophe after DNA damage. Proc Natl Acad Sci USA 97: 2526–2531

Böttger A, Böttger V, Sparks A, W-L L, Howard SF and Lane DP (1997) Design of a synthetic Mdm2-binding mini protein that activates the p53 response in vivo. Current Biology 7: 860–869

Bouvet M, Ellis LM, Nishizaki M, Fujiwara T, Liu W, Bucana CD, Fang B, Lee JJ and Roth JA (1998) Adenovirus-mediated wild-type p53 gene transfer down-regulates vascular endothelial growth factor expression and inhibits angiogenesis in human cancer. Cancer Res 58: 2288–2292

Boyd MT, Vlachakis N and Haines DS (2000) A novel cellular protein (MTBP) binds to MDM2 and induces a G1 arrest that is suppressed by MDM2. J Biol Chem 275: 31883–31890

Buckbinder L, Talbott R, Velasco-Miguez S, Takenaka I, Faha B, Seizinger BR and Kley N (1995) Induction of the growth inhibitor IGF-binding protein 3 by p53. Nature 377: 552–556

Butk Z, Denk C, Ullmann A, Scheffner M and Hoppe-Seyler F (2000) Induction of apoptosis in human papillomavirus-positive cancer cells by peptide aptamers targeting the viral E6 oncoprotein. Proc Natl Acad Sci USA 12: 6693–6697

Campan CE, Gilmer TM, Coutts SB and Kastan MB (1995) Growth factor modulation of p53-mediated growth arrest versus apoptosis. Genes and Dev 9: 600–611

Chan TA, Hernecking H, Lengauer C, Kinzler KW and Vogelstein B (1999) 14-3-3 sigma is required to prevent mitotic catastrophe after DNA damage. Nature 401: 616–620

Chao C, Saito S, Kang J, Anderson CW, Appella E and Xu Y (2000) p53 transcriptional activity is essential for p53-dependent apoptosis following DNA damage. EMBO J 19: 4967–4975

Chen L, Lu W, Agrawal S, Zhou W, Zhang R and Chen J (1999) Ubiquitous induction of p53 in tumor cells by antisense inhibition of MDM2 expression. Mol Med 5: 21–34

Chen X, Ko LJ, Jayaraman L and Prives C (1996) p53 levels, functional domains, and DNA damage determine the extent of the apoptotic response of tumor cells. Genes and Dev 10: 2438–2451

Crook T, Wrede D, Tidy JA, Masoh WP, Evans DJ and Vousden KH (1992) Clonal p53 mutation in primary cervical cancer: association with human-papillomavirus-negative tumours. Lancet 339: 1070–1073

Crook T, Marston NJ, Sara EA and Vousden KH (1994) Transcriptional activation by p53 correlates with suppression of growth but not transformation. Cell 79: 827–827

Damalas A, Ben-Ze’ev A, Simcha I, Shutman M, Fernando J, Leal M, Zahrinsky J, Geiger B and Oren M (1999) Excess of Mdm2 promotes accumulation of transcriptionally active p53. EMBO J 18: 3054–3063

Dameron KM, Volpert OV, Tainsky MA and Bouk N (1994) Control of angiogenesis in fibroblasts by p53 regulation of thrombospondin-1. Science 265: 1582–1584

Dobbelstein M, Wieszek S, Koening S and Roth J (1999) Inactivation of the p53-homologue p73 by the mdm2-oncoprotein. Oncogene 18: 2101–2106

Donehower LA (1996) The p53-deficient mouse: a model for basic and applied cancer studies. Sem Cancer Biol 7: 269–278

El-Deiry W, Tokino T, Velculescu VE, Levy DB, Parson VE, Trent JM, Lin D, Mercer WE, Kinzler KW and Vogelstein B (1993) WAF1, a potential mediator of p53 tumour suppression. Cell 75: 817–825

Fang S, Jensen JP, Ludwig RL, Vousden KH and Weissman AM (2000) Ubiquitin protein ligase activity of Mdm2: Differential RING finger requirements for ubiquitination and proteasomal targeting of Mdm2 and p53. J Biol Chem 275: 8945–8951

Ferber G, de Stanchina E, Querid E, Baptiste N, Prives C and Lowe SW (2000) PML is induced by oncogenic ras and promotes premature senescence. Genes and Dev 14: 2015–2027

Fogal V, Gostissa M, Sandy P, Zacchi P, Sternsdorf T, Jensen K, Pandolfi PP, Will H, Schneider C and Del Sal G (2000) Regulation of p53 activity in nuclear bodies by a specific pML isoform. EMBO J 19: 6185–6195

Ford JM and Hanawalt PC (1995) Li-Fraumeni syndrome fibroblasts homologous for p53 mutations are deficient in global DNA repair but exhibit normal transcription-coupled repair and enhanced UV resistance. Proc Natl Acad Sci USA 92: 8876–8880

Foster BA, Coffey HA, Morin MJ and Rastinejad F (1999) Pharmacological rescue of mutant p53 conformation and function. Science 286: 2507–2510

Friedman DA and Levine AJ (1998) Nuclear export is required for degradation of endogenous p53 and human papillomavirus E6. Mol Cell Biol 18: 7288–7293

Friedman DA, Wu L and Levine AJ (1999) Functions of the MDM2 oncoprotein. Cell Mol Life Sci 55: 96–107

Fuchs SY, Adler V, Buschmann T, Yin Z, Wu X, Jones SN and Ronai Z (1998) JNK targets p53 ubiquitination and degradation in nonstressed cells. Genes and Dev 12: 2658–2663

Gaiddon C, Moothy NC and Prives C (1999) Ref-1 regulates the transactivation and pro-apoptotic functions of p53 in vivo. EMBO J 18: 5609–5621

Garkavtsev I, Grigorian IA, Ossovskaya VS, Chernov MV, Chumakov PM and Gu W and Roeder RG (1997) Activation of p53 sequence-specific DNA binding by acetylation of the C-terminal domain. Cell 90: 595–606

© 2001 Cancer Research Campaign
Juven-Gershon T, Shifman O, Unger T, Elkeles A, Haupt Y and Oren M (1998) The Mdm2 oncoprotein interacts with the cell fate regulator Numb. Mol Cell Biol 18: 3974–3982
Kamijo T, Zindy F, Roussel MF, Quelle DE, Downing JR, Ashman RA, Grosveld G and Sherr CJ (1997) Tumor suppression at the mouse Ink4a locus mediated by the alternative reading frame product p19ARF. Cell 91: 649–659
Kamijo T, Weber JD, Zambetti G, Zindy F, Roussel MF and Sherr CJ (1997) Functional and physical interactions of the ARF tumor suppressor with p53 and Mdm2. Proc Natl Acad Sci USA 95: 8292–8297
Kapoor M and Lozano G (1998) Functional activation of p53 via phosphorylation following DNA damage by UV but not γ-irradiation. Proc Natl Acad Sci USA 95: 2834–2837
Kastan MB, Zhao Q, El Deiry W-S, Carrier F, Jacks T, Walsh W, Plunkett BS, Vogelstein B and Fornerce R, A, J (1992) A mammalian cell cycle checkpoint pathway utilizing p53 and GADD45 is defective in ataxia-telangiectasia. Cell 71: 587–597
Khosravi R, Maya R, Gottlieb T, Morn M, Shiloh Y and Shkeddy D (1999) Rapid ATM-dependent phosphorylation of MDM2 precedes p53 accumulation in response to DNA damage. Proc Natl Acad Sci USA 96: 14973–14977
Kirsch HC, Flawwinkel S, Rump H, Brockmann D and Esche H (1999) Expression of human p53 requires synergistic activation of transcription from the p53 promoter by AP-1, NF-kappaB and Myc/Max. Oncogene 18: 2728–2738
Kobet E, Zeng X, Zha Y, Keller D and Lu H (2000) MDM2 inhibits p300-mediated p53 acetylation and activation by forming a ternary complex with the two proteins. Proc Natl Acad Sci USA 97: 12547–12552
Komarov PG, Komarova EA, Kondratov RV, Christov K, Koorn JS, Chernov MV and Gadkov AV (1999) A chemical inhibitor of p53 that protects mice from the side effects of cancer therapy. Science 285: 1733–1737
Koumenis C, Alarcon R, Hammond E, Sutphin P, Hoffman W, Murphy M, Der J, Taya Y, Lowe SW, Kastan M and Giaccia A (2001) Regulation of p53 by hypoxia; dissociation of transcriptional repression and apoptosis from p53-dependent transactivation. Mol Cell Biol 21: 1297–1310
Kubbatut MHG and Vosuden KH (1997) Proteolytic cleavage of human p53 by calpain: a potential regulator of protein stability. Mol Cell Biol 17: 460–468
Kubbatut MHG, Jones SN and Vosuden KH (1997) Regulation of p53 stability by Mdm2. Nature 387: 299–303
Kubbatut MHG, Ludwig RL, Levine AJ and Vosuden KH (1999) Analysis of the degradation function of Mdm2. Cell Growth and Diff 10: 87–92
Lain S, Midgley C, Sparks A, Lane EB and Lane DP (1999) An inhibitor of nuclear export activates the p53 response and induces the localization of HDM2 and p53 to U1A-positive nuclear bodies associated with the PODS. Exp Cell Res 248: 457–472
Lakin ND and Jackson SP (1999) Regulation of p53 in response to DNA damage. Oncogene 18: 7644–7655
Li P, Dietz R and von Harsdorf R (1999) p53 regulates mitochondrial membrane potential through reactive oxygen species and induces cytochrome c-independent apoptosis blocked by Becl-2. EMBO J 18: 6027–6036
Lin Y and Benchimol S (1995) Cytochrome inhibitors upregulate p53-mediated apoptosis but not p53-mediated G1 arrest. Mol Cell Biol 15: 6045–6054
Lin Y, Mu W and Benchimol S (2000) Pudd, a new death-domain-containing protein, is induced by p53 and promotes apoptosis. Nature Genet 26: 124–127
Liu L, Sciolich DM, Triefel RC, Zhang HB, Marmorein R, Halaimoset and Berger SL (1999) p53 sites acetylated in vitro by PCAF and p300 are acetylated in vivo in response to DNA damage. Mol Cell Biol 19: 1202–1209
Ljungman M (2000) Dial 9-1-1 for p53: Mechanisms of p53 activation by cellular stress. Neoplasia 2: 208–225
Lohrum M and Schedtmann KH (1996) Differential effects of phosphorylation of rat p53 on transcription of promoters derived from different p53 responsive genes. Oncogene 13: 2527–2539
Lohrum MAE, Ashcroft M, Kubbatut MHG and Vosuden KH (2000) Identification of a cryptic nuclear localization signal in MDM2. Nature Cell Biol 2: 179–181
Loughran O and La Thangue NB (2000) Apoptotic and growth-promoting activity of MDM2. Mol Cell Biol 20: 2186–2197
Lu W, Pochampally R, Chen L, Traide J, Wang Y and Chen J (2000) Nuclear exclusion of p53 in a subset of tumors requires MDM2 function. Oncogene 19: 232–240
Lundberg AS, Hahn WC, Gupta P and Weinberg RA (2000) Genes involved in p53 regulation by cellular senescence and immortalization. Curr Opin Cell Biol 12: 705–709
Lundgren K, Montes de Oca Luna R, McNeill YB, Emerick EP, Spencer B, Barfield CR, Lozano G, Rosenfeld GM and Finlay CA (1997) Targeted expression of MDM2 uncouples S phase from mitosis and inhibits mammary gland development independent of p53. Genes and Dev 11: 714–725
Luo J, Chen D, Shiloh A and Gu W (2000) Deacetylation of p53 modulates its effect on cell growth and apoptosis. Nature 408: 377–381

British Journal of Cancer (2001) 85(12), 1813–1823 © 2001 Cancer Research Campaign
Ma Y, Yuan R, Meng Q, Goldberg JD, Rosen EM and Fan S (2000) p53-independent down-regulation of Mdm2 in human cancer cells treated with Adriamycin. Mol Cell Biol Res Commun 3: 122–128

Maestro R, Del To AS, Hamamori Y, Krasnokutsky S, Sartorelli V, Kedes L, Doglioni C, Beach DH and Hannon GI (1999) Twist is a potential oncogene that inhibits apoptosis. Genes and Dev 13: 2207–2217

Maheswaran S, Engleert C, Bennert F, Heinrich G and Haber DA (1995) The WT1 gene product stabilizes p53 and inhibits p53-mediated apoptosis. Genes and Dev 9: 2143–2156

Malkin D, Li FP, Strong LC, Fraumini Jr, JF, Angelescu LG, Santee SM, Fujitawa T, Roth JA, Deisseroth AB, Zhang W, Kreuzer E and Radinsky R (1995) Wild-type human p53 and a temperature-sensitive mutant induce Fas/APO-1 expression. Mol Cell Biol 15: 3032–3040

Pariat M, Carillo S, Molinari M, Salvat C, Debusche L, Bracco L, Miliner J and Picheralcyz M (1997) Proteolysis by calpains: a possible contribution to degradation of p53. Mol Cell Biol 17: 2806–2815

Phillips AC, Ernst MK, Bates S, Rice NR and Vousden KH (1999) E2F1 potentiates cell death by blocking anti-apoptotic signaling pathways. Mol Cell 4: 771–781

Pietenpol JA, Tokino T, Thailagam S, El-Denary W, Kinzler KW and Vogelstein B (1994) Sequence-specific transcriptional activation is essential for growth suppression by p53. Proc Natl Acad Sci USA 91: 1998–2002

Piechaczek M, Xia Y, Zweier JL, Kinzler KW and Vogelstein B (1997) A model for p53-induced apoptosis. Nature 383: 501–506

Pomerantz J, Schreiber-Agus N, Liégeois NJ, Silverman A, Alland L, Chin L, Potes J, Chen K, Orlow I, Lee H-W, Cordon-Cardo C and DePinho RA (1998) The Ink4a tumor suppressor gene product, p19ARF, interacts with MDM2 and neutralizes MDM2’s inhibition of p53. Cell 92: 713–723

Prabhu NS, Somasundaram K, Satyamourthy K, Herlyn M and El-Denary WS (1998) p73, unlike p53, suppresses growth and induces apoptosis of human papillomavirus E6-expressing cancer cells. Int J Oncol 13: 5–9

Ryan KM, Ernst MK, Bates S, Rice NR and Vousden KH (1999) E2F1 potentiates cell death by blocking anti-apoptotic signaling pathways. Mol Cell 4: 771–781

Rabinovitch PS, Lichtenstein A, Alon U, Oren M, Kouvos NJ, Silverman A, Alland L, Chin L, Potes J, Chen K, Orlow I, Lee H-W, Cordon-Cardo C and DePinho RA (1998) The Ink4a tumor suppressor gene product, p19ARF, interacts with MDM2 and neutralizes MDM2’s inhibition of p53. Cell 92: 713–723

Riemschneider MJ, Buschges R, Wolter M, Reifenberger J, Bostrom K, Kraus JA, Schlegel U and Reifenberger G (1999) Amplification and overexpression of the MDM4 (MDM2) gene from 12q13-15 in a subset of malignant gliomas without TP53 mutation or MDM2 amplification. Cancer Res 59: 6091–6096

Rodriguez MS, Desterro J, Lain S, Midgley CA, Lane DP and Vousden KH (1997) Somatic frameshift mutations in the BAX gene in colon cancers of the microsatellite mutator phenotype. Science 275: 967–969

Roth JA, Swisher SG and Meyn RE (1999) p53 tumor suppressor gene therapy for cancer. Oncology 13: 148–154

Ryan KM and Vousden KH (1998) Characterization of structural p53 mutants which show selective defects in apoptosis, but not cell cycle arrest. Mol Cell Biol 18: 3692–3698

Ryan KM, Ernst MK, Rice NR and Vousden KH (2000) Role of NF-κB in p53-mediated programmed cell death. Nature 404: 892–897

Sakaguchi K, Sakamoto H, Lewis MS, Anderson CW, Erickson JW, Appella E and Xie D (1997) Phosphorylation of serine 392 stabilizes the tetramer formation of tumor suppressor protein p53. Biochem 36: 10117–10124

Sakaguchi K, Herrera JE, Saito S, Miki T, Bustin M, Vassilev A, Anderson CW and Appella E (1998) DNA damage activates p53 through a phosphorylation-acetylation cascade. Genes and Dev 12: 2831–2841

Sakaguchi K, Saito S, Higashimoto Y, Roy S, Anderson CW and Appella E (2000) Damage-mediated phosphorylation of human p53 threonine 18 through a cascade mediated by a casein 1-like kinase. Effect on MDM2 binding. J Biol Chem 275: 9278–9283

Schiffner M, Hubrigse JT, Viestra RD and Howley PM (1993) The HPV-16 E6 and E6-AP complex functions as a ubiquitin-protein ligase in the ubiquitination of human p53. Cell 75: 495–505

Sekalyova G, Isotova Y, Okan I, Frischke M, Ström M, Groner B, Graffström RC and Wiman KG (1997) Restoration of the growth suppression function of mutant p53 by a synthetic peptide derived from the p53 C-terminal domain. Nature Med 3: 632–638

Oliver DJ, Kinzler KW, Melzer PS, Gross-Daniel P and Vogelstein B (1992) Amplification of a gene encoding a p53-associated protein in human sarcomas. Nature 358: 80–83

Ongkowo WM, Wang XQ, Siu WY, Lui JYWS, Yamashita K, Harris AL, Cox LS and Poon RYC (1999) MDM2 and MDMX bind and stabilize the p53-related protein p73. Current Biology 9: 829–832

Owen-Jones LB, Zhang W, Cusack JC, Angel, LS, Santee SM, Fujitawa T, Roth JA, Deisseroth AB, Zhang W, Kreuzer E and Radinsky R (1995) Wild-type human p53 and a temperature-sensitive mutant induce Fas/APO-1 expression. Mol Cell Biol 15: 3032–3040

Baker SL, Greenough NJ, Silverman A, Alland L, Chin L, Potes J, Chen K, Orlow I, Lee H-W, Cordon-Cardo C and DePinho RA (1998) The Ink4a tumor suppressor gene product, p19ARF, interacts with MDM2 and neutralizes MDM2’s inhibition of p53. Cell 92: 713–723

Prabhu NS, Somasundaram K, Satyamourthy K, Herlyn M and El-Denary WS (1998) p73, unlike p53, suppresses growth and induces apoptosis of human papillomavirus E6-expressing cancer cells. Int J Oncol 13: 5–9

Prisco M, Hongo A, Rizzo MG, Sacchi A and Baserga R (1997) The insulin-like growth factor I receptor as a physiologically relevant target of p53 in apoptosis caused by interleukin-3 withdrawal. Mol Cell Biol 17: 1084–1092

Radfar A, Unnikrishnan I, Lee HW, DePinho RA and Rosenberg N (1998) p19ARF induces p53-dependent apoptosis during abelson virus-mediated pre-B cell transformation. Proc Natl Acad Sci USA 95: 13194–13199

Rampino N, Yamamoto H, Ionov Y, Li Y, Sawai H, Reed JC and Perou MC (1997) Somatic frameshift mutations in the BAX gene in colon cancers of the microsatellite mutator phenotype. Science 275: 967–969

Riemenschneider MJ, Buschges R, Wolter M, Reifenberger J, Bostrom K, Kraus JA, Schlegel U and Reifenberger G (1999) Amplification and overexpression of the MDM4 (MDM2) gene from 12q13-15 in a subset of malignant gliomas without TP53 mutation or MDM2 amplification. Cancer Res 59: 6091–6096

Rocha A, Swisher SG and Meyn RE (1999) p53 tumor suppressor gene therapy for cancer. Oncology 13: 148–154

Ryan KM and Vousden KH (1998) Characterization of structural p53 mutants which show selective defects in apoptosis, but not cell cycle arrest. Mol Cell Biol 18: 3692–3698

Ryan KM, Ernst MK, Rice NR and Vousden KH (2000) Role of NF-κB in p53-mediated programmed cell death. Nature 404: 892–897

Sakaguchi K, Sakamoto H, Lewis MS, Anderson CW, Erickson JW, Appella E and Xie D (1997) Phosphorylation of serine 392 stabilizes the tetramer formation of tumor suppressor protein p53. Biochem 36: 10117–10124

Sakaguchi K, Herrera JE, Saito S, Miki T, Bustin M, Vassilev A, Anderson CW and Appella E (1998) DNA damage activates p53 through a phosphorylation-acetylation cascade. Genes and Dev 12: 2831–2841

Sakaguchi K, Saito S, Higashimoto Y, Roy S, Anderson CW and Appella E (2000) Damage-mediated phosphorylation of human p53 threonine 18 through a cascade mediated by a casein 1-like kinase. Effect on MDM2 binding. J Biol Chem 275: 9278–9283

Scheffner M, Hubrigse JT, Viestra RD and Howley PM (1993) The HPV-16 E6 and E6-AP complex functions as a ubiquitin-protein ligase in the ubiquitination of human p53. Cell 75: 495–505

Sekalyova G, Isotova Y, Okan I, Frischke M, Ström M, Groner B, Graffström RC and Wiman KG (1997) Restoration of the growth suppression function of mutant p53 by a synthetic peptide derived from the p53 C-terminal domain. Nature Med 3: 632–638

© 2001 Cancer Research Campaign
transcripts with loss of p53 binding domain sequences: Simbulan-Rosenthal CM, Rosenthal DS, Luo R and Smulson ME (1999) Poly(ADP-ribose) polymerase. Biochem Pharmacol 58: 1591–1600.

Shieh S-Y, Ikeda M, Taya Y and Privé C (1997) DNA damage-induced phosphorylation of p53 alleviates inhibition by MDM2. Cell 91: 325–334.

Shieh S-Y, Aih N, Tamai K, Taya Y and PRIVÉ C (2000) The human homology of checkpoint kinases Chk1 and Chk2: phosphorylate p53 at multiple DNA damage-inducible sites. Genes and Dev 14: 289–300.

Shibata A, Steegenga WT, Riteco N, van Laar T, Dekker P, Bazuine M, van Ham RCA, van der Houwen van Oordt W, Hateboer G, van der Ed AJ and Jochmans AG (1996) MDMX: a novel p53-binding protein with some functional properties of MDM2. EMBO J 15: 5349–5357.

Sigala I, Calvert AH, Anderson JJ, Neal DE and Lune J (1996) Alternatively spliced mdm2 transcripts with loss of p53 binding domain sequences: transforming ability and frequent detection in human cancer. Nature Med 2: 912–917.

Simbulan-Rosenthal CM, Rosenthal DS, Luo R and Smulson ME (1999) Poly(ADP-ribose) polymerase. Biochem Pharmacol 58: 1591–1600.

Sionov RV, Moalem E, Berger M, Kazaz A, Gerlitz O, Ben-Neriah Y, Oren M and Happt Y (1999) c-Ab1 neutralizes the inhibitory effect of Mdm2 on p53. J Biol Chem 274: 8371–8374.

Smith ML, Chen I-T, Zhan Q, Bae I, Chen C-Y, Gilmer TM, Kastan MB, O'Connor PM and Formace AJ (1994) Interaction of the p53-regulated protein Gadd45 with proliferating cell nuclear antigen. Science 266: 1376–1380.

Smith ML, Ford JM, Hollander MC, Bortnick RA, Amundson SA, Seo YR, Deng CX, Hanawalt PC and Formace AJ (2000) p53-mediated DNA repair responses to UV irradiation: studies of mouse cells lacking p53, p21 and/or gadd45. Mol Cell Biol 20: 3705–3714.

Soengas MS, Alarcon RM, Yoshiha H, Giacca AJ, Hakem R, Mak TW and Lowe SW (1999) Apaf-1 and caspase-9 in p53-dependent apoptosis and tumor suppression. EMBO J 18: 3077–3087.

Soengas MS, Capodieci P, Polsky D, Mora J, Esteller M, Opitz-Araya X, McCombie R, Herman JG, Gerald WL, Lazebnik YA, Cordovano C and Lowe SW (2001) Inactivation of the apoptosis effector Apaf-1 in malignant melanoma. Nature 409: 207–211.

Srivastava S, Zou Z, Pirollo K, Blattner W and Chang EH (1990) Germ-line mutations in the human CDKN2A gene for suppressing cell growth in response to stress. J Biol Chem 265: 17512–17515.

Sugnet S, Vonesch J-L, Waltzinger C, Zheng H and Wasylyck B (2000) Negative regulation of p53 coactivator interaction and nucleolar localization of the complex. Mol Cell Biol 20: 5157–5168.

Suzuki I, Nakamura Y, Nakayama Y and Nakayama K (2000) Novel function of the forkhead box protein, FOXO1A. EMBO J 19: 1949–1959.

Tanimura S, Ohtsuka S, Mitsui K, Shirouzu K, Yoshimura A and Ohtsubo M (1999) MDM2 interacts with MDMX through their RING finger domains. FEBS Lett 447: 5–9.

Tao W and Levine AJ (1999) Nucleocytoplasmic shuttling of oncoprotein Hdm2 is required for Hdm2-mediated degradation of p53. Proc Natl Acad Sci USA 96: 2601–2606.

Thorborn EC and Manfredi JJ (1999) One mechanism for cell type-specific regulation of the bax promoter by the tumor suppressor p53 is dictated by the p53 response element. J Biol Chem 274: 33747–33756.

Unger T, Juven-Gershon T, Moalem E, Berger M, Vogt Sionov R, Lozano G, Oren M and Haupt Y (1999) Critical role for Ser20 of human p53 in the negative regulation of p53 by Mdm2. EMBO J 18: 1805–1814.

Van Antwerp DJ, Martin SJ, Kafri T, Green DR and Verma IM (1996) Suppression of TNPu induced apoptosis by NF-kB. Science 274: 787–790.

Vaziri H, West MD, Alloppe RC, Davison TS, Wu Y-S, Arrowsmith CH, Poirier GG and Benchimol S (1997) AP-1 confers telomerase loss in aging human diploid fibroblasts and DNA damage lead to the post-translational activation of p53 protein involving poly(ADP-ribose) polymerase. EMBO J 16: 6018–6033.

Vogelstein B, Lane D and Levine AJ (2000) Surfing the p53 network. Nature 408: 807–310.

Vosonden KH (2000) p53: death star. Cell 101: 691–694.

Waldmann T, Kiziner KW and Vogelstein B (1995) p52 is necessary for the p53-mediated G1 arrest in human cancer cells. Cancer Res 55: 5187–5190.

Waldman T, Lengauer C, Kiziner KW and Vogelstein B (1996) Uncoupling of S phase and mitosis induced by anticancer agents in cells lacking p21. Nature 381: 713–716.

Wang X, Ozhinski T, Takashahi A and Ozhinski T (1998) Poly(ADP-ribose)lation results in p53-dependent signal transduction induced by radiation. Oncogene 17: 2819–2825.

Wang XW, Zhan Q, Courson JD, Khan MA, Kontyu H, Yu L, Hollander MC, O'Connor PM, Formace AJ and Hatt CC (1999) G2M cell cycle checkpoint. J Cell Sci 112: 1807–1811.

Wani MA, Zhu QZ, Eld-Mahdy M and Wani AA (1999) Influence of p53 tumor suppressor protein in bias of DNA repair and apoptotic response in human cells. Cancer Genet Cytogenet 20: 765–772.

Waterman MJ, Stavridis ES, Waterman JLM and Hallazconstez TD (1998) ATM-dependent activation of p53 involves dephosphorylation and association with 14-3-3 proteins. Nat Genet 19: 175–178.

Weber JD, Taylor LJ, Roussel MF, Sherr CJ and Bar-Sagi D (1999) Nuclear Arf sequesters Mdm2 and activates p53. Nature Cell Biol 1: 20–26.

Weber JD, Kuo M-L, Bothner B, DiGiammarino EL, Kriwacki RW, Roussel MF and Sherr CJ (2000) Cooperative signals governing the ARF-Mdm2 interaction and nuclear localization of the complex. Mol Cell Biol 20: 2517–2528.

Wu G, Burns TF, McDonald ER, Jiang W, Meng R, Krantz ID, Kao G, Gan DD, Zhou JY, Muschel R, Hamilton SR, Spinner NB, Markowitz S, Wu G and El-Deiry WS (1997) KILLER/DR5 is a DNA damage-inducible p53-regulated death receptor gene. Nat Genet 17: 141–143.

Wu H and Lozano G (1994) NF-kappaB activation of p53. A potential mechanism for suppressing cell growth in response to stress. J Biol Chem 269: 20067–20074.

Wu L and Levine AJ (1997) Differential Regulation of the p21/WAF-1 and mdm2 genes after high dose UV irradiation: p53-dependent and p53-independent regulation of the mdm2 gene. Mol Med 3: 441–451.

Wu XW, Bayle JH, Olson D and Levine AJ (1993) The p35 mdm-2 autoregulatory feedback loop. Genes and Dev 7: 1126–1132.

Yam CH, Sui WY, Arow T, Chiu CHS, Lau A, Wang XQ and Poon RYC (1999) MDM2 and MDMX inhibit the transcriptional activity of ectopically expressed SMAD proteins. Cancer Res 59: 5075–5078.

Yu J, Zhang L, Hwang PM, Kiziner KW and Vogelstein B (2001) PUMA induces the rapid apoptosis of colorectal cancer cells. Mol Cell In press.

Yu ZK, Geyer RK and Maki CG (2000) MDM2-dependent ubiquitination of nuclear and cytoplasmic p53. Oncogene 19: 5892–5897.

Zaika A, Marchenko N and Moll UM (1999) Cytoplastically “sequestered” wild type p53 protein is resistant to Mdm2-mediated degradation. J Biol Chem 274: 27474–27480.

Zemits AG, Rika H, Berger J, Widschwendter M, Hermann M, Daxenhiller G and Marth C (2000) New insights into p53 regulation and gene therapy for cancer. Biochem Pharmacol 60: 1153–1163.

Zeng X, Chen L, Jost CA, Maya R, Keller D, Wang X, Kaelin W, Oren M, Chen J and Lu H (1999) Mdm2 suppresses p73 function without promoting p73 degradation. Mol Cell Biol 19: 3257–3266.

Zeng X, Keller D, Wu L and Lu H (2000) UV but not gamma irradiation accelerates p53-induced apoptosis in teratocarcinoma cells by repressing Mdm2 transcription. Cancer Res 60: 6184–6188.

Zhang W, Lu Q, Xie ZJ and Meltzer RL (1997) Inhibition of the growth of WI-38 fibroblasts by benzoyloxycarbonyl-Leu-Leu-Try diazomethyl ketone: evidence that cleavage of p53 by a calpain-like protease is necessary for G1 to S-phase transition. Oncogene 14: 255–263.
Zhang Y, Xiong Y and Yarbrough WG (1998) ARF promotes MDM2 degradation and stabilizes p53: ARF-INK4a locus deletion impairs both the Rb and p53 tumor suppression pathways. Cell 92: 725–734

Zhou J, Ahn J, Wilson SH and Prives C (2001) A role for p53 in base excision repair. EMBO J 20: 914–923