Demethylation inhibitor fungicides [also known as sterol inhibitor fungicides, belonging to the Fungicide Resistance Action Committee (FRAC) Code Group #3 (FRAC, 2012)] are widely used on turfgrasses throughout the United States. These fungicides are labeled for use on golf courses, athletic fields, sod farms, commercial properties, and on home lawns. The success of this group of materials stems from its relatively broad spectrum of activity and relatively low mammalian toxicity (Bigelow et al., 1997). In addition, this group of fungicides is relatively old and has been in use in turf for at least four decades (Kane and Smiley, 1983). Active ingredients belonging to this class move acropetally and relatively low mammalian toxicity and generally belong to the triazole subgroup with the all those registered for use in turf management to this class move acropetally and belonging to the triazole subgroup with the all those registered for use in turf management to this class move acropetally and relatively low mammalian toxicity (Kane and Smiley, 1983). Active ingredients belonging to this class move acropetally and relatively low mammalian toxicity (Kane and Smiley, 1983). Active ingredients belonging to this class move acropetally and relatively low mammalian toxicity (Kane and Smiley, 1983). Active ingredients belonging to this class move acropetally and relatively low mammalian toxicity (Kane and Smiley, 1983). Active ingredients belonging to this class move acropetally and relatively low mammalian toxicity (Kane and Smiley, 1983).
greens-grade fertilizer (Lebanon Seaboard Corporation, Lebanon, PA). Applications were made May, June, July, and August. Plots measured 1.5 m × 1.5 m with 0.3-m borders permanently marked with lines cut into the turf using an commercial edger. Plots were arranged in a randomized complete blocks with four replicates on an original mixture of 83% ‘Penncross’ and 17% ‘Penneagle’ creeping bentgrass. Less than 5% Poa annua invasion was present in any of the trial plots. During the second year of the trial, five replicates were used on the same green but in an adjacent area. The trial area was originally seeded in 1983 and has never been overseeded. Treatments were applied using a CO₂-pressurized handheld sprayer fitted with TeeJet 8004VS Visiflow flat fan nozzles at a height of ~14 inches and 10-inch spacing delivering 13.0 L/100 m₂ at 40 psi, ≈30% more water than typically used on a green to negate any potential phytotoxic effects. Greens were mowed on a 6-d interval and clippings were removed.

During 2010, all treatments were first applied on 11 June and repeated every 14 d until 20 Aug., for a total of six applications. During 2011, all treatments were first applied on 20 June and repeated every 14 d until 15 Aug., for a total of five applications. For clipping weight sampling, each plot was double-cut using a Jacobsen e-Walk mower (Jacobsen, Charlotte, NC) that allowed for very precise clipping removal within the bounds of each marked plot. After each plot was mowed, the clippings from each replicate were transferred to a paper bag and allowed to dry for 3 d in an oven at 30 °C and oven-dried weights were then recorded. In 2011, the area of each replicate was measured to the square inch to reduce potential error based on variation in plot size. In both 2010 and 2011, rooting depth was determined from five 2.54-cm-diameter core samples taken from each plot to a depth of 30 cm. Soil was slowly removed from the bottom of each core until the first roots were detected and measurements were taken from the thatch/soil interface to the longest root section. In 2010, clippings were collected on 22 June, 29 June, 6 July, and 26 Aug. Root depths were measured on 22 June and 26 Aug. In 2011, clippings were collected on 1 July, 15 July, and 5 Aug. Root depths were measured on 18 Aug. Density and turfgrass quality ratings were observed visually.

In 2010, seven treatments were used (Table 1). Iprodione (Chipeco 26GT) was used as a negative control with the assumption that it would not produce PGR effects. A treatment without any fungicide would have been badly damaged by dollar spot (Sclerotinia homeocarpa FT Bennett) that would have skewed the statistical analysis, a possible result demonstrated by Burpee et al. (1996). In 2011, an additional DMI fungicide was added to each plot to test for any fungicide control, chlorothalonil (Daconil Ultrex). To get an accurate comparison of the materials being tested, each of the DMI treatments was applied at an active ingredient equivalent (Table 1). That is, the rates that were used allowed for an equal amount of active ingredient to be used for each treatment. Although the maximum labeled rate of the paclobutrazol formulation used was 11.7 mL/100 m², equalizing the active ingredients required 35.0 mL/100 m², or a rate three times above maximum, leading to significant declines in turf quality. Both clipping weights and root length data were analyzed using the GLM procedure and the Waller–Duncan mean comparison test by SSPS Version 19.0 (IBM Corporation, Armonk, NY).

Results

During 2010, clipping weights were not statistically different among treatments at the first sampling but were statistically different on the three subsequent samplings (Table 2). In each of the following three samplings, clipping weights from paclobutrazol-treated turf (Tide Paclo) was significantly lower than any of the other materials. To maintain an equivalent amount of active ingredient among treatments, it was necessary to use three times the labeled use rate of paclobutrazol. Paclobutrazol is an active PGR and consequently it should not be surprising that the paclobutrazol treatments would result in consistently lower clipping weights. The effect of paclobutrazol was not immediate and only became apparent after the second sampling. In addition to lower clipping weights, paclobutrazol-treated turf was extremely dark green or a bluish-gray and turfgrass density declined markedly as plots continued to be treated with paclobutrazol (Table 4).

On 29 June and 6 July 2010, highest clipping weights were obtained from the propiconazole-treated plots, although dates were statistically similar to all the other treatments except paclobutrazol and tebuconazole on 29 July 2010 and paclobutrazol on 6 July 2010. Quality and density differences among the treatments were minimal with the exception of propiconazole-treated turf. Although propiconazole has been reported to increase shoot growth in other studies and produce a darker color and reduced turf quality (Kane and Smiley, 1983; Reicher and Throssell, 1997; Xunzhong and Schmidt, 2000), it did not result in a statistically different improvement in turf quality during 2010, although it did have the highest turf quality on both rating dates. It did produce a slightly more noticeable darker color than all other treatments with the exception of paclobutrazole.

During 2011, no significant differences among clipping weights were observed until the last sampling on 5 Aug., when the clipping weights from the paclobutrazol-treated turf were significantly lower than all other treatments (Table 3). In 2011, it took longer for the growth regulator effects of paclobutrazol to be observed (7 weeks after the first application) but applications began later in the season. In addition, the summer of 2010 and the summer of 2011 were dramatically different at the trial site. The on-site weather station recorded twice as many 32 °C days during July 2010 (n = 7) vs. 2011 (n = 3) and Summer 2010 was the hottest summer in New England since 1895. This likely resulted in significant stress on the plants that may have translated into more easily observable PGR effects during 2010. Pennypacker et al. (1982) demonstrated that a reduction in clipping weight on Poa annua when treated with triadimefon was only observed when plants were grown under abnormally hot/wet conditions. Under other environmental regimes, no difference was observed. Although it did take longer for...

Table 1. Trade name, active ingredient, labeled application rates, application rate used of fungicides, and plant growth regulator for field trials, 2010 and 2011.

Trade name	active ingredient (g or mL per 100 m²)	Labeled rate (g or mL per 100 m²)	Application rate used in current study (g or mL per 100 m²)	(kg a.i./ha)		
Daconil Ultrex 82.5WG (chlorothalonil)	2011	31.8	159.2		101.9	8.06
Chipco 26GT 2SC (iprodione)	2010–11	95.5	254.7		63.7	1.52
Tourney 50WG (metconazole)	2010–11	5.5	13.4		15.3	0.76
Eagle 20EW (myclobutanil)	2010–11	16.0	76.4		39.8	0.80
Banner MAXX 1.3MEC (propiconazole)	2010–11	16.0	127.3		51.0	0.80
Lynx 240SC (tebuconazole)	2010–11	NA	NA		31.8	0.81
Bayleton 50WG (triazimefon)	2010–11	7.6	61.0		15.3	0.76
Trinity 1.75C (triticonazole)	2011	16.0	63.7		39.8	0.80
Tide Paclo 2SC—PGR (paclobutrazol)	2010–11	4.7	11.7		35.0	0.82

*Daconil Ultrex and Banner Maxx manufactured by Syngenta Professional Products, Greensboro, NC. Chipco 26GT, Lynx, and Bayleton manufactured by Bayer Environmental Science, Research Triangle Park, NC. Tourney manufactured by Valent Professional Products, Walnut Creek, CA. Eagle manufactured by Dow AgroSciences LLC, Indianapolis, IN. Trinity manufactured by BASF Corporation, Research Triangle Park, NC. Tide Paclo manufactured by Advan LLC, Roswell, GA.

*Lyne 240SC was never registered with the U.S. Environmental Protection Agency; therefore, no legal limits were established for its use—but during the time of its testing in the 1990s and early 2000s, typical university experimental protocols used rates between 31.8 and 63.7 mL/100 m².

NA = not applicable.
Table 2. Total oven-dried clipping weight and creeping bentgrass rooting depth means, 2010.

Treatment	22 June	29 June	6 July	26 Aug.	22 June	26 Aug.
Chlorothalonil	23.1 NS	16.3 bc	22.43 b	80.07 b	6.27 NS	7.41 NS
Myclobutanil	27.4	17.4 bc	24.37 b	83.65 b	7.51	6.43
Metconazole	23.2	16.7 bc	20.07 ab	80.80 b	6.30	6.58
Tebuconazole	32.4	15.9 ab	21.67 b	71.68 b	6.21	6.25
Triadimefon	30.3	18.8 bc	20.48 ab	85.77 b	6.73	7.75
Propiconazole	31.1	20.3 c	27.11 b	75.18 b	7.23	6.48
Paclobutrazol	20.1	11.5 a	10.60 a	35.28 a	7.09	6.38

*Means within a column followed by the same letter are not significantly different according to the Waller–Duncan k-ratio t test (k = 100, P ≤ 0.05).

NS = nonsignificant differences between any treatments within a column.

Table 3. Total oven-dried clipping weight and creeping bentgrass rooting depth means, 2011.

Treatment	1 July	15 July	5 Aug.	18 Aug.
Chlorothalonil	87.3 NS	22.9 NS	30.1 b	6.56 NS
Iprodione	83.0	18.3	31.4 b	6.81
Myclobutanil	76.5	21.6	29.4 b	6.61
Metconazole	81.5	20.9	29.2 b	6.72
Tebuconazole	86.0	19.5	32.1 b	6.68
Triadimefon	71.2	17.6	31.3 b	6.90
Propiconazole	72.4	18.5	29.3 b	6.42
Triticinazole	73.1	17.1	31.1 b	6.30
Paclobutrazol	81.0	15.7	6.8 a	6.73

*Means within a column followed by the same letter are not significantly different according to the Waller–Duncan k-ratio t test (k = 100, P ≤ 0.05).

NS = nonsignificant differences between any treatments within a column.

Table 4. Turfgrass quality ratings 21 and 42 d after treatment (DAT) in 2010 and 2011 trials.

	21 DAT*	42 DAT	21 DAT*	42 DAT
Chlorothalonil	—	—	7.0 NS	7.7 a
Iprodione	6.7 NS	6.3 a	6.7	6.7 ab
Myclobutanil	7.0	6.7 a	7.0	6.3 b
Metconazole	7.3	6.3 a	6.7	7.0 ab
Tebuconazole	7.2	6.0 a	7.8	7.3 b
Triadimefon	7.0	6.7 a	7.0	7.3 ab
Propiconazole	7.5	7.8 a	7.3	7.7 a
Triticinazole	—	6.7	6.7 ab	
Paclobutrazol	6.2	4.7 b	5.8	3.5 c

*Quality ratings determined using modified National Turfgrass Evaluation Program guidelines where 9 = outstanding turf (incorporating color, density, uniformity, disease, and damage), 1 = dead, and 6 or above = acceptable.

NS = nonsignificant differences between any treatments within a column.

Discussion

As previously mentioned, inconsistent and variable field responses often occur with field studies using triazole fungicides to assess PGR effects. The results of this study were relatively consistent with few differences observed among treatments and trial years. Although propiconazole did statistically increase clipping weight compared with other treatments on two rating dates in 2010, the increase was not substantial and was not observed in 2011. The most consistent result was that high levels of paclobutrazol statistically and substantially reduced clipping weights compared with other treatments when rates were equalized to those of labeled DMI fungicides. The results of this study indicate that there were no substantial differences on clipping yield reduction or root depth reduction among the DMI fungicides tested under field conditions when applied to creeping bentgrass. Although no differences on rooting depth were observed in either year, it should be noted that rooting depth is a single method for estimating root quantity and other methods such as root mass or total branching may have been influenced by the chemical treatments.

Although there is concern among turfgrass managers over the potential PGR effects of DMI fungicide applications during the summer, the results do not substantiate these concerns within the parameters tested in a cool, humid climate. In addition, few managers in the Northeast region would make biweekly applications of DMI fungicides for an entire summer, suggesting that the concern over the potential negative impacts may be overstated. This study does not address DMI fungicides applied to *Poa annua* greens or the potential for DMI phytotoxicity. However, in a 1-year field study, Kaminski (2009) examined combinations of triexapac-ethyl, paclobutrazol, and triadimefon and found all individual and combined treatments resulted in higher quality turf than non-treated controls on *Poa annua*. Some DMI fungicides can cause phytotoxicity when used at high rates on creeping bentgrass, especially when used during summer months in high heat (N.A. Mitkowski, personal observation). McCullough et al. (2006) showed phytotoxicity to bermudagrass from fenarimol application in the greenhouse at high temperatures, including burning to leaves yellowing and reduction in clipping weights that may have been a result of foliar damage. However, the concern over phytotoxicity is separate from PGR effects and bermudagrass has repeatedly been observed to suffer from phytotoxicity in the field at rates that are safe on creeping bentgrass. In addition, the current study does not address the use of DMI fungicides in combination with other PGRs. Burpee et al. (1996) and Fidanza et al. (2006) demonstrated that PGR use may increase the efficacy of fungicides.
but did not address the effect of such a combination on actual growth rate through clipping yield. In the current study, high rates of PGRs (paclobutrazol) have correspondingly increased levels of plant growth suppression and a combination of DMI fungicides and a PGR are likely to be observed as additional growth retardation that may be undesirable. In addition, such combinations, particularly trinexapac-ethyl (Primo MAXX) and a DMI fungicide, may be more phytotoxic on *Poa annua* greens in high heat than either product by itself. Additional factors such as extremely low height of cut (under 0.125 inch), high traffic, compaction, and low levels of fertilization may also increase potential negative effects of DMI fungicides on plant growth or quality.

Literature Cited

Bigelow, C.A., R.E. Schmidt, and D.R. Chalmers. 1995. Creeping bentgrass putting green turf as influenced by trinexapac-ethyl and propiconazole application. Amer. Soc. Agron. Annu. Mtg. Abstr. p. 150.

Buchaner, H. and F. Grossman. 1977. Triadimefon: Mode of action in plants and fungi. Neth. J. Plant Pathol. 83:93–103.

Burpee, L.L., D.E. Green, and S.L. Stephens. 1996. Interactive effects of plant growth regulators and fungicides on epidemics of dollar spot in creeping bentgrass. Plant Dis. 80:1245–1250.

Fidanza, M.A., H.C. Wetzel, III, M.L. Agnew, and J.E. Kaminski. 2006. Evaluation of fungicide and plant growth regulator tank-mix programs on dollar spot severity of creeping bentgrass. Crop Prot. 25:1032–1038.

Fungicide Resistance Action Committee. 2012. FRAC code list: Fungicides sorted by mode of action (including FRAC Code numbering). Fungicide Resistance Action Committee. 14 June 2013. <http://www.frac.info/publication/anhang/FRAC-Code-List2011-final.pdf>.

Kaminski, J.E. 2009. Phytotoxicity to *Poa annua* following repeated application of Trinity, Banner Maxx and experimental fungicides, p. 33–35. In: Guillard, K. (ed.). 2008 Turfgrass research report of the University of Connecticut. UCONN, Storrs, CT.

Kamrin, M. 1997. Pesticide profiles: Toxicity, environmental impact and fate. Lewis Publishers, CRC Press, New York, NY.

Kane, R.T. and R.W. Smiley. 1983. Plant-growth regulating effects of systemic fungicides applied to Kentucky bluegrass. Agron. J. 75:469–473.

McCullough, P.E., L.B. McCarty, and H. Liu. 2006. Response of ‘TifEagle’ bermudagrass (*Cynodon dactylon × C. transvaalensis*) to fenarimol and trinexapac-ethyl. Weed Technol. 20:1–5.

Pennypacker, B.W., P.L. Sanders, L.V. Gregory, E.P. Gilbride, and H. Cole, Jr. 1982. Influence of triadimefon on the foliar growth and flowering of annual bluegrass. Can. J. Plant Pathol. 4:259–262.

Reicher, Z.J. and C.S. Throssell. 1997. Effect of repeated fungicide applications on creeping bentgrass turf. Crop Sci. 37:910–915.

Xunzhong, Z. and R.E. Schmidt. 2000. Application of trinexapac-ethyl and propiconazole enhances superoxide dismutase and photochemical activity in creeping bentgrass (*Agrostis stoloniferous var. palustris*). J. Amer. Soc. Hort. Sci. 125:47–51.