Invariable generation of certain groups of piecewise linear homeomorphisms of the interval

Yoshifumi Matsuda and Shigenori Matsumoto

Abstract. Let P be the group of all the orientation preserving piecewise linear homeomorphisms of the interval $[0, 1]$. Given any $a > 1$, let P^a be the subgroup of P consisting of all the elements with slopes in $a\mathbb{Z}$, and let P^Q be the subgroup of P consisting of all the elements with slopes and breaks in \mathbb{Q}. We show that the groups P, P^a, P^Q, as well as Thompson group F, are invariably generated.

1. Introduction

The concept of invariable generation for a group G was introduced by J. Wiegold in [9].

Notation 1.1. For elements g and h of a group G, and a subgroup H of G, we denote:

$h^g = ghg^{-1}$, $H^g = \{h^g \mid g \in G\}$, $H^g = \{h^g \mid h \in H\}$.

Definition 1.2. (1) A subgroup H of G is called classful if $H \cap g^G \neq \emptyset$ for any $g \in G$, or equivalently,

$$\bigcup_{g \in G} H^g = G.$$ (1.1)

(2) A group G is said to be invariably generated if there are no classful subgroups other than G itself.

Any finite group is invariably generated, as is shown by a counting argument on [9]. Much easier is the fact that any abelian group is invariably generated. In [9], it is shown that the invariable generation is extension closed. Therefore any virtually solvable group is invariably generated. It is also projection closed. Given a prime number $p > 10^{75}$, an infinite group whose arbitrary proper nontrivial subgroup is of order p is constructed in [8]. Such groups are necessarily generated by arbitrary two elements not from the same proper subgroup, and is invariably

2010 Mathematics Subject Classification. Primary 20F65. secondary 20F05.

Key words and phrases. Invariable generation, piecewise linear homeomorphism, Thompson group.

The first author is partially supported by Grant-in-Aid for Young Scientists (B) No. 25800036, and the second by Grant-in-Aid for Scientific Research (C) No. 25400096.

1The convention g^h is not the same as the customary one.
generated, provided there are more than one nontrivial conjugacy classes. The Grigorchuk group [5] is also invariably generated [7]. However the invariable generation is not subgroup closed: an example is given in [10]. It is also not direct union closed: the group of the permutations of \(N \) with finite support is not invariably generated, since the stabilizer of \(1 \in N \) is classful. Infinite groups with one nontrivial conjugacy class, constructed in [6], are not invariably generated. Free groups of generators \(\geq 2 \) are not invariably generated [9]. More generally, nonelementary convergence groups are not invariably generated [3]. Acylindrically hyperbolic groups are not invariably generated [2]. Invariable generation of linear groups are discussed in [7].

The current paper is concerned with groups of piecewise linear (PL) homeomorphisms of the interval.

Theorem 1. Thompson group \(F \) is invariably generated.

Our method cannot give the finite invariance generation of \(F \) obtained in [4]. Denote by \(P \) the group formed by all the orientation preserving PL homeomorphisms of the unit interval \([0, 1]\), and by \(P^Q \) the subgroup of \(P \) formed by elements with slopes and breaks in \(Q \). Fix an arbitrary real number \(a > 1 \). Let \(P^a \) be the subgroup of \(P \) consisting of all the elements with slopes in \(aZ \).

Theorem 2. The group \(P^a \) is invariably generated.

Theorem 3. The group \(P \) is invariably generated.

Theorem 4. The group \(P^Q \) is invariably generated.

The proofs of the above theorems are quite similar. In Section 2, we summarize conditions for a subgroup \(G \) of \(P \) to be invariently generated. In later sections we show that \(F, P^a, P \) and \(P^Q \) satisfy these conditions independently.

2. Conditions for invariable generation

Let \(G \) be any subgroup of the group \(P \) of all the orientation preserving PL homeomorphisms of the interval \([0, 1]\). We shall raise three conditions for \(G \) to be invariably generated. Let \(X \) be a dense subset of \((0, 1)\) which is left invariant by \(G \), and let \(X^* = X \cup \{0, 1\} \). A closed interval \(I \subset [0, 1] \) is called an \(X \)-interval (resp. \(X^* \)-interval) if the endpoints of \(I \) are contained in \(X \) (resp. \(X^* \)).

Definition 2.1. For an \(X^* \)-interval \(I \), let us denote
\[
G(I) = \{ g|_I \mid g \in G, \text{ Supp}(g) \subset I \} \quad \text{and} \quad G|_I = \{ g|_I \mid g \in G, \ g(I) = I \}.
\]

The first condition is to fix the relation between \(G \) and \(X \).

Condition A:
1. The breaks of any \(g \in G \) are contained in \(X \).
2. The group \(G \) acts on \(X \) transitively.
3. For any \(X \)-interval \(I \), \(G|_I = G(I) \).
4. For any \(X^* \)-interval \(I \), there is a PL homeomorphism \(\psi_I : [0, 1] \to I \) such that \(\psi_I(X^*) = X^* \cap I \) and \(G^{\psi_I} = G(I) \).

The other two conditions are concerned with an arbitrary classful subgroup \(H \) of \(G \).

Condition B: Any classful subgroup \(H \) acts on \(X \) transitively.
DEFINITION 2.2. For an X^*-interval I, let us denote $H(I) = \{ h|_I \in H, \text{Supp}(h) \subset I \}$ and $H|_I = \{ h|_I \in H, h(I) = I \}$.

Condition C: For any classful subgroup H, there is an X-interval I_0 such that $H|_{I_0} = G(I_0)$.

In this section, we show that if a subgroup G of P satisfies conditions A, B and C, then G is invariably generated. Henceforth in this section, we assume G satisfies conditions A, B and C. For $f \in G$, define $s(f) \in [0,1]$ by

\[s(f) = \text{sup}(s | f|_{[0,s]} = \text{id}) \]

By condition A(1), $s(f)$ is contained in X^*. Let H be an arbitrary classful subgroup of G.

Lemma 2.3. For any X^*-interval $I = [t,1] \subset [0,1]$, $H(I)$ is a classful subgroup of $G(I)$.

Proof: Given any $f|_I \in G(I)$ where $f \in G$ with Supp$(f) \subset I$, let us show that there is $g \in G$ such that Supp$(g) \subset I$ and $f^g \in H$. Since H is classful, there is $g_1 \in G$ such that $f^{g_1} \in H$. Now $s(f^{g_1}) = g_1(s(f)) \in X$. Notice that $s(f) \geq t$ since Supp$(f) \subset I$. By condition B, there is $g_2 \in H$ such that $g_2(g_1(s(f))) = g(s(f))$. Then $f^{g_2g_1} = (f^{g_1})^{g_2}$ is an element in H since $f^{g_1} \in H$ and $g_2 \in H$. Moreover $f^{g_2g_1}|_I$ belongs to $H(I)$ since it satisfies $s(f^{g_2g_1}) = s(f) \geq t$. Notice that $s(f)$ is a fixed point of g_2g_1. Now by condition A(3), there is an element $g \in G$ which is the identity on $[0,s(f)]$ and is equal to g_2g_1 on $[s(f),1]$. Then we have $f^g = f^{g_2g_1} \in H$, as is required.

For any X^*-interval $I = [t,1]$, choose a PL homeomorphism $\psi_I : [0,1] \rightarrow I$ such that $\psi_I(X) = X \cap (t,1)$ and $G^{\psi_I} = G(I)$ (condition A(4)). Since $H(I)$ is classful in $G(I)$, $H(I)^{\psi^{-1}}$ is classful in $G(I)^{\psi^{-1}} = G$. By condition B, $H(I)^{\psi^{-1}}$ acts transitively on X. Therefore $H(I)$ acts transitively on $X \cap (t,1)$. This way we get the following lemma.

Lemma 2.4. The classful subgroup H acts doubly transitively on X. □

By the same argument as Lemma 2.3 applied to the inclusion of an X-interval $I = [t,t']$ into an X^*-interval $=[t,1]$, we get the following.

Lemma 2.5. For any X-interval I of $(0,1)$, the group $H(I)$ is a classful subgroup of $G(I)$. □

We shall discuss consequences of condition C. Let I_0 be an X-interval such that $H|_{I_0} = G(I_0)$.

Lemma 2.6. We have $H(I_0) = G(I_0)$.

Proof: Choose an arbitrary $f|_{I_0} \in G(I_0)$, where $f \in G$ with Supp$(f) \subset I_0$. Then since $H(I_0)$ is classful in $G(I_0)$ (Lemma 2.3), there is $g \in G$ such that Supp$(g) \subset I_0$ and $f^g \in H$. Since $g|_{I_0} \in G(I_0) = H|_{I_0}$, there is $h \in H$ such that $h(I_0) = I_0$ and $h|_{I_0} = g|_{I_0}$. Then since Supp$(f) \subset I_0$, we have $f^g = f^h$, and hence $f = (f^g)^{h^{-1}} \in H$. This, together with the assumption Supp$(f) \subset I_0$, implies that $f|_{I_0} \in H(I_0)$. □

Corollary 2.7. For any X-interval I in $(0,1)$, we have $H(I) = G(I)$.
Proof. By double transitivity of the action of H on X (Lemma 2.4), there is $h \in H$ such that $h(I_0) = I$. Now
\[H(I) = H(I_0)^h = G(I_0)^h = G(I), \]
as is required. \qed

Finally we shall prove that $H = G$. Let
\[G_0 = \{ g \in G \mid g'(0) = g'(1) = 1 \}, \quad H_0 = \{ h \in H \mid h'(0) = h'(1) = 1 \}. \]
Let $\{J_n\}_{n \in \mathbb{N}}$ be an increasing sequence of X-intervals such that $\bigcup_n J_n = (0, 1)$.
We have
\[H_0 = \bigcup_{n \in \mathbb{N}} H(J_n) \quad \text{and} \quad G_0 = \bigcup_{n \in \mathbb{N}} G(J_n). \]
Since by the previous lemma, $H(J_n) = G(J_n)$ for any $n \in \mathbb{N}$, we get $G_0 = H_0$.
Now for any $f \in G$, there is $g \in G$ such that $f^g \in H$. But then $f^g f^{-1} = [g, f] \in G_0 \subset H$, and therefore $f \in H$. This finishes the proof that if G satisfies conditions A, B and C, then G is invariably generated.

In the rest of the paper, we use the following terminology.

Definition 2.8. For $f \in P$, an interval $[0, \epsilon]$ or $[1 - \epsilon, 1]$ on which f is linear is called an end linear zone of f.

3. The group F

Let us denote by $\mathbb{Z}[2^{-1}] \subset \mathbb{R}$ the set of dyadic rationals. Thompson group F is the subgroup of P consisting of all the elements with slopes in $2\mathbb{Z}$ and breaks in $\mathbb{Z}[2^{-1}]$. For F, we define X in the previous section as $X = \mathbb{Z}[2^{-1}] \cap (0, 1)$. It is well known that F satisfies condition A. For A(4), we can take ψ_I to be any PL homeomorphism from $[0, 1]$ to I with slopes in $2\mathbb{Z}$ and breaks in $\mathbb{Z}[2^{-1}]$. See [1] for the existence.

Definition 3.1. Define a homomorphism $\alpha : F \to \mathbb{Z}^2$ by
\[\alpha(f) = (\log_2 f'(0), \log_2 f'(1)). \]
Notice that $f \in \text{Ker}(\alpha)$ if and only if $\text{Supp}(f) \subset (0, 1)$. It is well known [1] that $\text{Ker}(\alpha) = [F, F]$. Of course α is a class function: $\alpha(f) = \alpha(f^g)$. Let
\[F_{1,-1} = \{ f \in F \mid f(x) > x, \forall x \in (0, 1), \alpha(f) = (1, -1) \}. \]
Given $f \in F_{1,-1}$, points 2^{-i} from an end linear zone of f at 0 are contained in a single orbit of the $\langle f \rangle$-action. Their images by high iterates of f which lie in an end linear zone at 1 are of the form $1 - k2^{-j}$ for some positive odd integer k.

Definition 3.2. Define a map $\beta : F_{1,-1} \to 2\mathbb{N} - 1$, by setting $\beta(f)$ to be the above odd integer k.

Lemma 3.3. The map β is surjective.
Let \(k \in 2\mathbb{N} - 1 \) be given. Choose a large integer \(j \), and define \(g \in F \) by setting
\[
g(x) = 2x \quad \text{on} \quad [0, 2^{-j}],
g(x) = 2^{-1}(x - 1) + 1 \quad \text{on} \quad [1 - k2^{-j}.1],
\]
and \(g \) is a PL homeomorphism with slopes in \(2\mathbb{Z} \) and breaks in \(\mathbb{Z}[2^{-1}] \) from the interval \([2^{-j}, 2^{-j+1}]\) to \([2^{-j+1}, 1 - k2^{-j}]\). Then we have \(\beta(g) = k \).

Lemma 3.4. The map \(\beta \) is class invariant, that is, \(\beta(g^f) = \beta(g) \) for any \(g \in F_{1,-1} \) and any \(f \in F \).

Proof. Assume \(\beta(g) = k \in 2\mathbb{N} - 1 \) for \(g \in F_{1,-1} \). Then there is an orbit \(O \) of \(g \) which contains \(2^{-j} \) and \(1 - k2^{-j} \) for any large \(j \). Choose an arbitrary element \(f \in F \) and assume that the slopes of \(f \) are \(2^j \) near 0 and \(2^j \) near 1. Then \(f \) maps \(O \) to an orbit of \(g^f \) which contains \(2^{-j+jf} \) and \(1 - k2^{-j+jf} \) for any large \(j \), showing that \(\beta(g^f) = k \).

Let \(H \) be an arbitrary classful subgroup of \(F \).

Corollary 3.5. The map \(\beta \) restricted to \(H \cap F_{1,-1} \) is surjective onto \(2\mathbb{N} - 1 \).

The next lemma shows that condition B of Section 2 is satisfied by \(F \).

Lemma 3.6. The classful subgroup \(H \) acts transitively on \(X = \mathbb{Z}[2^{-1}] \cap (0, 1) \).

Proof. By Corollary 3.5 there is an element \(h_0 \in H \) such that \(\beta(h_0) = 1 \). Thus for any large \(j \), the points \(2^{-j} \), as well as \(1 - 2^{-j} \), are on one orbit of \(h_0 \). Again by Corollary 3.5 the \(H \) orbit of these points contains \(1 - k2^{-j} \) for any \(k \in 2\mathbb{N} - 1 \) and any large \(j \). Applying negative iterates of \(h_0 \), we get that the \(H \) orbit contains all the points in \(X \).

We need more in order to establish condition C for \(F \). For \(n \) large, let \(I_n = [2^{-n-1}, 2^{-n}] \), \(J_n = [1 - 2^{-n}, 1 - 2^{-n-1}] \) and let \(\phi_n : [0, 1] \to I_n, \psi_n : [0, 1] \to J_n \) be the orientation preserving surjective linear map of slope \(2^{-n-1} \). Let
\[
F_{1,-1,1} = \{g \in F_{1,-1} \mid \beta(g) = 1\}.
\]
Given any \(g \in F_{1,-1,1} \), if we choose \(n \) large enough, some iterate \(g^N \) maps \(I_n \) onto \(J_n \). The map \(\psi_n^{-1} \circ g^N \circ \phi_n \) is independent of the choice of \(n \). In fact, if \(k > 0 \), \(g^k \phi_{n+k} = \phi_n \) and \(g^k \psi_n = \psi_{n+k} \). Therefore we have
\[
\psi_{n+k}^{-1}g^{N+2k} \phi_{n+k} = (\psi_{n+k}^{-1}g^k)g^N(g^k \phi_{n+k}) = \psi_n^{-1}g^N \phi_n.
\]
Notice also that \(\psi_n^{-1}g^N \phi_n \) is an element of \(F \).

Definition 3.7. Define a map \(\gamma : F_{1,-1,1} \to F \) by \(\gamma(f) = \psi_n^{-1} \circ g^N \circ \phi_n \).

Lemma 3.8. The map \(\gamma \) is surjective.

We shall adopt a bit longer proof, which is applicable also to the group \(P^n \) in the next section.

Proof. Choose an arbitrary element \(g \in F_{1,-1,1} \) which is linear on \([0, 2^{-n}]\) and \([1 - 2^{-n}, 1]\). There is \(N > 0 \) such that \(g^N \) maps \(I_n \) onto \(J_n \). Let \(f_0 = \psi_1^{-1}g^N \phi_n \in F \). Any element of \(F \) can be written as \(f \circ f_0 \) for some \(f \in F \). The map \(\hat{f} = \psi_n \circ f \circ \psi_n^{-1} \) is a PL homeomorphism of the interval \(J_n \) with slopes in \(2\mathbb{Z} \) and breaks in \(\mathbb{Z}[2^{-1}] \).
Define an element $g_1 \in F_{1,-1,1}$ to be equal to $\hat{f}g$ on J_{n-1} and equal to g elsewhere. Notice that $\hat{f}g$ is still linear on $[0, 2^{-n}]$ and $[1 - 2^{-n}, 1]$. We also have

$$\psi_n^{-1}g_1^N\phi_n = \psi_n^{-1}\hat{f}g^N\phi_n = (\psi_n^{-1}\hat{f}\psi_n)(\psi_n^{-1}g^N\phi_n) = ff_0.$$

Since ff_0 is an arbitrary element of F, we are done. \hfill \square

Lemma 3.9. The map γ is class invariant. Precisely, if $g \in F_{1,-1,1}$ and $f \in F$, then $\gamma(gf) = \gamma(g)$.

Proof. Choose n large enough so that g and f are linear on the intervals $[0, 2^{-n}]$ and $[1 - 2^{-n}, 1]$. Since $g \in F_{1,-1,1}$, some iterate g^N of g maps I_n to J_n. Put $k = \gamma(g) = \psi_n^{-1}g^N\phi_n$, and let us show that $\gamma(gf) = k$. We assume f is of slope 2^{j_0} on $[0, 2^{-n}]$ and of slope 2^{j_1} on $[1 - 2^{-n}, 1]$. Then g^f is linear (of slope 2) on $[0, 2^{-n+j_0}]$, and is linear (of slope 2^{-1}) on $[1 - 2^{-n+j_1}, 1]$. The map g^f maps I_{n-j_0} onto J_{n-j_1}. Since $\phi_{n-j_0} = f\phi_n$ and $\psi_{n-j_1} = f\psi_n$, we have

$$\psi_{n-j_1}(g^f)^N\phi_{n-j_0} = \psi_n^{-1}f^{-1}(fgf^{-1})^Nf\phi_n = \psi_n^{-1}g^N\phi_n = k.$$

If n is big enough compared with j_0 and j_1, we have $\phi_{n-j_0} = (g^f)^{j_0-j_1}\phi_{n-j_1}$. Therefore

$$k = \psi_{n-j_1}(g^f)^N\phi_{n-j_0} = \psi_n^{-1}(g^f)^{N+j_0-j_1}\phi_{n-j_1}.$$

This shows $\gamma(gf) = k$, as required. \hfill \square

Corollary 3.10. The map γ restricted to $H_{1,-1,1} = H \cap F_{1,-1,1}$ is surjective onto F. \hfill \square

Fix once and for all an element $h_0 \in H_{1,-1,1}$ such that $\gamma(h_0) = \text{id}$. Thus there is $n > 0$ such that h_0 is linear on $[0, 2^{-n}]$ and $[1 - 2^{-n}, 1]$, that some iterate h_0^n maps I_n onto J_n and that $\psi_n^{-1}h_0^n\phi_n = \text{id}$. The next lemma shows that the group F satisfies condition C of Section 2.

Lemma 3.11. We have $H|I_n = F(I_n)$.

Proof: Choose an arbitrary element $\hat{f} \in F(I_n)$ and let $f = \phi_n^{-1}\hat{f}\phi_n \in F$. By Corollary 3.10 there is $h_1 \in H_{1,-1,1}$ such that $\gamma(h_1) = f$. More precisely, for some big $m > 0$, there is $N > 0$ such that $h_1^N(I_m) = J_m$ and that $\psi_n^{-1}h_1^N\phi_m = f$. One can choose m to be greater than n in the lemma. Then some iterate h_0^N of h_0 maps I_m onto J_m and $\psi_m^{-1}h_0^N\phi_m$ is still the identity. Thus

$$\phi_m^{-1}h_0^{-N}h_1^N\phi_m = (\psi_m^{-1}h_0^{-N}\phi_m)^{-1}(\psi_m^{-1}h_1^N\phi_m) = \text{id}^{-1}f = f,$$

and since $h_0^{-m}\phi_n = \phi_m$,

$$\phi_n^{-1}h_0^{-m}(h_0^{-N}h_1^N)h_0^{-m}\phi_n = f.$$

But this means

$$h_0^{-m}(h_0^{-N}h_1^N)h_0^{-m}|I_n = \hat{f}.$$

Since $\hat{f} \in F(I_n)$ is arbitrary and the LHS is in $H|I_n$, we are done. \hfill \square
4. The group P^a

Let $a > 1$ be an arbitrary real number.

Definition 4.1. Given two compact intervals I and J, we denote by $PL^a(I, J)$ the space of the PL homeomorphisms from I to J with slopes in \mathbb{A}^Z. Such a map is called a PL^a homeomorphism.

Lemma 4.2. For any compact interval I and J, the space $PL^a(I, J)$ is nonempty.

Proof. Let $I = [p, q]$ and $J = [r, s]$. Consider a line $L \subset \mathbb{R}^2$ of slope a^n, $n > 1$, passing through the point (p, r), and another line L' of slope a^{-m}, $m > 1$, passing through (q, s). If n and m are sufficiently large, L and L' intersect at a point in the open rectangle $(p, q) \times (r, s)$, yielding the graph of a desired map in $PL^a(I, J)$. \hfill \square

Definition 4.3. Define a group P^a by $P^a = PL^a([0, 1], [0, 1])$.

We choose $X = (0, 1)$ in condition A. Then the group P^a satisfies $A(1), A(2)$ and $A(3)$ by virtue of Lemma 4.2. For $A(4)$, we just take $\psi : [0, 1] \to I$ to be the orientation preserving linear homeomorphism. Therefore in this section, X^*-intervals are just closed intervals. In the rest we shall establish conditions B and C for P^a by almost the same method as in Section 3.

Define a homomorphism $\alpha : P^a \to \mathbb{Z}^2$ by $\alpha(f) = (\log_a f'(0), \log_a f'(1))$.

Clearly α is a surjective class function. Let $P^a_{1,-1} = \{g \in P^a \mid g(x) > x, \forall x \in (0, 1), \alpha(g) = (1, -1)\}$.

Given $g \in P^a_{1,-1}$, points a^{-i} for i large are contained in a single orbit of g. Consider their images by high iterates of g which are near 1. They are of the form $1 - \xi a^{-j}$ for some number $\xi \in (a^{-1}, 1]$.

Definition 4.4. Define a map $\beta : P^a_{1,-1} \to (a^{-1}, 1]$, by setting $\beta(g)$ to be the above number ξ.

Then one can show that the map β is a surjective class function just as Lemmas 3.3 and 3.4 in Section 3. In particular, the map β restricted to $H \cap P^a_{1,-1}$ is surjective onto $(a^{-1}, 1]$, where H is an arbitrary classful subgroup of P^a. Then by the same method as Lemma 3.5 we get the following lemma, which establishes condition B.

Lemma 4.5. Any classful subgroup H acts transitively on $(0, 1)$.

For a positive integer n, let $I_n = [a^{-n-1}, a^{-n}]$, $J_n = [1 - a^{-n}, 1 - a^{-n-1}]$ and let $\phi_n : [0, 1] \to I_n$, $\psi_n : [0, 1] \to J_n$ be the orientation preserving linear homeomorphism of the same slope $a^{-n}(1 - a^{-1})$. Let $P^a_{1,-1,1} = \{g \in P^a_{1,-1} \mid \beta(g) = 1\}$.

Given any $g \in P^a_{1,-1,1}$, if we choose n large enough, then g is linear on the intervals $[0, a^{-n}]$ and $[1 - a^{-n}, 1]$. By the definition of $P^a_{1,-1,1}$, some iterate g^N of g sends I_n to J_n, and the map $\psi_n^{-1} \circ g^N \circ \phi_n$ is independent of the choice of n. Notice also that $\psi_n^{-1} \circ g^N \circ \phi_n$ is an element of P^a, since ϕ_n and ψ_n are linear homeomorphisms of the same slope.

Definition 4.6. Define a map $\gamma : P^a_{1,-1,1} \to P^a$ by $\gamma(f) = \psi_n^{-1} \circ g^N \circ \phi_n$.

One can show that the map γ is a surjective class function just as in Lemmas \ref{lem:5.5} and \ref{lem:5.9}. Fix once and for all an element $h_0 \in H \cap P_{1,-1,1}$ such that $\gamma(h_0) = \text{id}$. Thus there is $n > 0$ such that h_0 is linear on $[0, a^{-n}]$ and $[1 - a^{-n}, 1]$, that some iterate h_0^N maps I_n onto J_n and that $\psi_n^{-1}h_0^N\phi_n = \text{id}$. Just as in Lemma \ref{lem:5.11} we get the following lemma which establishes condition C.

Lemma 4.7. We have $H|_{I_n} = P^a(I_n)$.

5. The groups P and P^Q

In this section, we mainly deal with the group P of all the orientation preserving PL homeomorphisms of $[0,1]$. In the last part, we remark one word for necessary modifications with the group P^Q. For P, put $X = (0,1)$ as in Section 4. Then condition A is trivially fulfilled. Let H be an arbitrary classful subgroup of P. First we shall establish conditions B.

Lemma 5.1. The group H acts transitively on $(0,1)$.

Proof. There is an element $h_0 \in H$ such that $h_0(0) = 2$ and that $h(x) > x$ for any $x \in (0,1)$. Assume $h_0(x) = 2x$ on the interval $[0,2^{-n}]$ for some $n > 0$. The interval $[2^{-n-1}, 2^{-n}]$ is a fundamental domain of the action of the group (h_0). Thus it suffices to show that for any $\xi \in (2^{-1},1]$, there is an element of H which maps 2^{-n} to $\xi 2^{-n}$. Choose an element $h_1 \in H$ such that $h_1'(0) = \xi$. Assume h_1 is linear on an interval $[0, 2^{-m}]$ for some $m > n$. Then $h_1(2^{-m}) = \xi 2^{-m}$, and hence $h_0^{m-n}h_1h_0^{-m}(2^{-n}) = \xi 2^{-n}$, as is required. \hfill \Box

In the rest of this section, we shall establish condition C by the following lemma.

Lemma 5.2. For some closed interval $I_0 \subset (0,1)$, we have $H|_{I_0} = P(I_0)$.

For any closed interval $I \subset [0,1]$, denote by $\phi_I : [0,1] \to I$ the orientation preserving bijective linear map. Define

$$P_{1,-1} = \{ g \in P \mid g(x) > x, \forall x \in (0,1), \ g'(0) = 2, \ g'(1) = 2^{-1} \}.$$

Let I (resp. J) be a fundamental domain of $g \in P_{1,-1}$ contained in an end linear zone of g (Definition \ref{def:2.8}) at 0 (resp. at 1). Thus $I = [a, 2a]$ for some $a > 0$ and $J = [1 - 2b, 1 - b]$ for some $b > 0$. If there is $N > 0$ such that $g^N(I) = J$, we say that the pair I and J are monitoring intervals for g. The map $f = \phi_I^{-1}g^N\phi_I \in P$ is called the information of g monitored by I and J. We also say that I and J monitor the information f.

Definition 5.3. For any $g \in P_{1,-1}$, denote by $\mathcal{I}(g) \subset P$ the set of all the monitored informations of g.

Lemma 5.4. For any $f \in P$, there is $g \in P_{1,-1}$ such that $f \in \mathcal{I}(g)$.

Proof. The proof is almost the same as Lemma \ref{lem:5.3}. \hfill \Box

Lemma 5.5. Given $g \in P_{1,-1}$ and $f \in \mathcal{I}(g)$, the intervals which monitor the information f can be chosen arbitrarily near 0 and 1.

Proof. If the intervals I and J monitor the information f, and if $n > 0$, then clearly the intervals $g^{-n}(I)$ and $g^n(J)$ monitor the same information f. \hfill \Box

Lemma 5.6. If $g \in P_{1,-1}$ and $g_1 \in P$, then $\mathcal{I}(g^{g_1}) = \mathcal{I}(g)$.
PROOF. Let g and g_1 be as in the lemma, and let $f \in \mathcal{I}(g)$. It suffices to show that $f \in \mathcal{I}(g^{\phi_1})$. By Lemma 5.5, one can choose the monitoring intervals I, J of g which monitor the information f in the end linear zones of g_1. Then $g_1(I)$ and $g_1(J)$ are monitoring intervals of g^{ϕ_1}, with information f since $\phi_{g_1(I)} = g_1\phi_I$ and $\phi_{g_1(J)} = g_1\phi_J$.

Corollary 5.7. For any $f \in P$, there is $h \in H \cap P_{1,-1}$ such that $f \in \mathcal{I}(h)$.

Choose an element $h_0 \in H \cap P_{1,-1}$ so that $id \in \mathcal{I}(h_0)$, and let I_0 and J_0 be monitoring intervals of h_0 with information id. That is, there is $N_0 > 0$ such that $h_0^{-N_0}(I_0) = J_0$ and $\phi_{h_0}^{-1}h_0^{N_0}\phi_{I_0} = id$. Let \hat{f} be an arbitrary element of $P(I_0)$, and let $f = \phi_{I_0}^{-1}\hat{f}\phi_{I_0} \in P$. By Corollary 5.7, there is $h_1 \in H \cap P_{1,-1}$ such that $f \in \mathcal{I}(h_1)$. Let I_1, J_1 be the corresponding monitoring intervals: we assume $h_1^{-N_1}(I_1) = J_1$ for some $N_1 > 0$ and $\phi_{h_1}^{-1}h_1^{N_1}\phi_{I_1} = f$. Put $I_0 = [a, 2a]$, $J_0 = [1 - 2b, 1 - b]$, $I_1 = [c, 2c]$ and $J_1 = [1 - 2d, 1 - d]$ for some $a, b, c, d > 0$. Choose an element $h_2 \in H$ such that $h_2(0) = c/a$ and $h_2(1) = d/b$. Choose a big $n > 0$ so that both intervals $h_0^{-n}(I_0)$ and $h_0^{n}(J_0)$ are in the end linear zones of h_2. Direct computation shows that $h_2(h_0^{-n}(I_0)) = h_1^{-n}(I_1)$ and $h_2(h_0^{n}(J_0)) = h_1^{n}(J_1)$. See the figure.

The equality $\phi_{h_0}^{-1}h_0^{N_0}\phi_{I_0} = id$ implies (cf. the proof of Lemma 5.5)

$$\phi_{h_0}^{-1}(J_0)h_0^{N_0+2n}\phi_{h_0^{-n}(I_0)} = id.$$

Likewise we have

$$\phi_{h_1}^{-1}(J_1)h_1^{N_1+2n}\phi_{h_1^{-n}(I_1)} = f.$$

These equalities show

$$\phi_{h_0}^{-1}(J_0)h_0^{-N_0-2n}\phi_{h_0^{n}(J_0)}\phi_{h_1}^{-1}(J_1)h_1^{N_1+2n}\phi_{h_1^{-n}(I_1)} = f.$$

Since h_2 is linear on the intervals $h_0^{-n}(I_0)$ and $h_0^{n}(J_0)$, we have $h_2\phi_{h_0^{n}(J_0)} = \phi_{h_1^{-n}(I_1)}$ and $h_2\phi_{h_0^{-n}(I_0)} = \phi_{h_1^{n}(J_1)}$. Therefore

$$\phi_{h_0}^{-1}(J_0)h_0^{-N_0-2n}h_2^{-1}h_1^{N_1+2n}h_2\phi_{h_0^{-n}(I_0)} = f.$$

Finally since $h_0^{-N_0}\phi_{h_0^{-n}(I_0)} = \phi_{I_0}$, we get

$$\phi_{I_0}^{-1}h_0^{-N_0-n}h_2^{-1}h_1^{N_1+2n}h_2h_0^{-n}\phi_{I_0} = f.$$

This implies

$$h_0^{-N_0-n}h_2^{-1}h_1^{N_1+2n}h_2h_0^{-n}|_{I_0} = \hat{f}.$$
Since $f \in P(I_0)$ is arbitrary, and the map on the LHS is from $H|_{I_0}$, the proof of Lemma 5.2 is now complete.

For the subgroup P^Q of P consisting of all the elements with slopes and breaks in \mathbb{Q}, we define $X = \mathbb{Q} \cap (0,1)$. The argument for P^Q is the same for P under necessary modifications.

References

[1] J. M. Belk, Thompson’s group F, Thesis, Cornell University.
[2] M. Bestvina and K. Fujiwara, Handlebody subgroups in a mapping class group, preprint, arXiv:1412.7847v2.
[3] T. Gelander, Convergence groups are not invariably generated, Int. Math. Res. Notices 19(2014), 9806-9814.
[4] T. Gelander, G. Golan and K. Juschenko, Invariable generation of Thompson groups, preprint, arXiv:1611.08264v2.
[5] R. I. Grigorchuk, On Burnside’s problem on periodic groups, Funktional Anal. i Prilozhen 14(1980), 53-54.
[6] G. Higman, B. H. Neumann and H. Neumenn, Embedding theorems for groups, J. London Math. Soc. 24(1949), 247-254.
[7] W. M. Kantor, A. Lubotzky and A. Shalev, Invariance generations on infinite groups, J. Algebra 421(2015), 296-310.
[8] A. Yu. Ol’shanskii, Groups of bounded period with subgroups of prime order, Algebra i Logika 21(1982), 553-618.
[9] J. Wiegold, Transformation groups with fixed-point-free permutations, Arch. Math. (Basel) 27(1976), 473-475.
[10] J. Wiegold, Transformation groups with fixed-point-free permutations, II, Arch. Math. (Basel) 29(1977), 571-573.

Department of Physics and Mathematics, College of Science and Engineering, Aoyama Gakuin University, 5-10-1 Fuchinobe, Chuo-ku, Sagamihara-shi, Kanagawa, 252-5258
E-mail address: ymatsuda@gem.aoyama.ac.jp

Department of Mathematics, College of Science and Technology, Nihon University, 1-8-14 Kanda-Surugadai, Chiyoda-ku, Tokyo, 101-8308 Japan
E-mail address: matsumo@math.cst.nihon-u.ac.jp