Advances in Experimental Medicine and Biology

Volume 1408

Series Editors
Wim E. Crusio, Institut de Neurosciences Cognitives et Intégratives d’Aquitaine, CNRS and University of Bordeaux, Pessac Cedex, France
Haidong Dong, Departments of Urology and Immunology, Mayo Clinic, Rochester, MN, USA
Heinfried H. Radeke, Institute of Pharmacology & Toxicology, Clinic of the Goethe University Frankfurt Main, Frankfurt am Main, Hessen, Germany
Nima Rezaei, Research Center for Immunodeficiencies, Children’s Medical Center, Tehran University of Medical Sciences, Tehran, Iran
Ortrud Steinlein, Institute of Human Genetics, LMU University Hospital, Munich, Germany
Junjie Xiao, Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, School of Life Science, Shanghai University, Shanghai, China
Advances in Experimental Medicine and Biology provides a platform for scientific contributions in the main disciplines of the biomedicine and the life sciences. This series publishes thematic volumes on contemporary research in the areas of microbiology, immunology, neurosciences, biochemistry, biomedical engineering, genetics, physiology, and cancer research. Covering emerging topics and techniques in basic and clinical science, it brings together clinicians and researchers from various fields.

Advances in Experimental Medicine and Biology has been publishing exceptional works in the field for over 40 years, and is indexed in SCOPUS, Medline (PubMed), EMBASE, BIOSIS, Reaxys, EM Biology, the Chemical Abstracts Service (CAS), and Pathway Studio.

2021 Impact Factor: 3.650 (no longer indexed in SCIE as of 2022)
Preface

The present book is a compilation of high-quality contributions centered around elucidating the underlying molecular pathways to uncover new avenues for therapy and diagnosis in the fields of immunology, inflammation, cancer, endocrinology, and several others.

Its conceptualization emerges as a joint effort from researchers belonging to The Millennium Institute on Immunology and Immunotherapy (MIII) to encourage outreach within the research community at a global scale, with articles submitted by renowned investigators worldwide.

The MIII is a center for scientific excellence that brings together researchers from six Chilean universities: the Pontificia Universidad Católica de Chile, Universidad de Chile, Universidad Andrés Bello, Universidad de la Frontera, Universidad de Antofagasta, and Universidad Austral. At MIII, basic immunology research is performed to obtain practical applications in immunotherapy, such as new immunological therapies, vaccines, and new pharmacological tools. Research conducted at MIII is aimed at training young scientists and fully understanding the operation of the immune system to develop new therapies to cope with human diseases related to cancer, autoimmunity, infections, cardiovascular pathologies, and endocrine disorders. Since 2015, the MIII has been a formal member of the Center Excellence Network belonging to the Federation of Clinical Immunology Societies, which includes several centers in the USA, Europe, and Asia. The MIII was the first FCE in the southern end of America.

We thank each of the individual researchers and their groups for contributing with hot-topic articles bringing balance and diversity to this work. Special acknowledgments to Dr. Sebastian Gatica for his extraordinary support and assistance in preparing every detail of this book.

Santiago, Chile Felipe Simon
Madrid, Spain Carmelo Bernabeu
Contents

Part I Molecular Pathology of Immune, Inflammatory, and Hemostatic Disorders

1 Immune Responses at Host Barriers and Their Importance in Systemic Autoimmune Diseases 3
 Katina Schinnerling, Hugo A. Penny, Jorge A. Soto, and Felipe Melo-Gonzalez

2 Statins and Hemostasis: Therapeutic Potential Based on Clinical Evidence ... 25
 Yolanda Prado, Diego Aravena, Felipe M. Llancalahuen, Cristobal Aravena, Felipe Eltit, Cesar Echeverria, Sebastian Gatica, Claudia A. Riedel, and Felipe Simon

3 Effects of Adrenergic Receptor Stimulation on Human Hemostasis: A Systematic Review ... 49
 Sebastian Gatica, Diego Aravena, Cesar Echeverria, Juan F. Santibanez, Claudia A. Riedel, and Felipe Simon

4 α1-Adrenergic Stimulation Increases Platelet Adhesion to Endothelial Cells Mediated by TRPC6 .. 65
 Felipe M. Llancalahuen, Alejandro Vallejos, Diego Aravena, Yolanda Prado, Sebastian Gatica, Carolina Otero, and Felipe Simon

5 Physical Activity, Burnout, and Engagement in Latin American Students of Higher Education During the COVID-19 Pandemic ... 83
 Andrea González, Oscar Achiardi, Martina Valencia, and Claudio Cabello-Verrugio

6 Small Plastics, Big Inflammatory Problems .. 101
 Yolanda Prado, Cristobal Aravena, Diego Aravena, Felipe Eltit, Sebastian Gatica, Claudia A. Riedel, and Felipe Simon

7 Impact of a Community-Based Pelvic Floor Kinesic Rehabilitation Program on the Quality of Life of Chilean Adult Women with Urinary Incontinence ... 129
 Eduardo Cifuentes-Silva, Natalia Valenzuela-Duarte, Ismael Canales-Gajardo, and Claudio Cabello-Verrugio
Part II Molecular Pathology of Endocrine and Muscular Disorders

8 Iodine Intake Based on a Survey from a Cohort of Women at Their Third Trimester of Pregnancy from the Bosque County Chile .. 147
Maria Cecilia Opazo, Camilo Fuentes Pena, Luis Méndez,
Diana Rojas, Daniel Aguayo, Juan Carlos Oyanedel,
Rodrigo Moreno-Reyes, Nelson Wollhk, Alexis M. Kalergis,
and Claudia A. Riedel

9 Appraisal of the Neuroprotective Effect of Dexmedetomidine: A Meta-Analysis 163
Sebastian Gatica, Cristobal Aravena, Yolanda Prado,
Diego Aravena, Cesar Echeverría, Juan F. Santibanez,
Claudia A. Riedel, Jimmy Stehberg, and Felipe Simon

10 Bile Acids Alter the Autophagy and Mitogenesis in Skeletal Muscle Cells .. 183
Franco Tacchi, Josué Orozco-Aguilar, Mayalen Valero-Breton,
and Claudio Cabello-Verrugio

11 Upregulation of CCL5/RANTES Gene Expression in the Diaphragm of Mice with Cholestatic Liver Disease . . 201
Vania Morales, Andrea González,
and Claudio Cabello-Verrugio

12 Differential Fibrotic Response of Muscle Fibroblasts, Myoblasts, and Myotubes to Cholic and Deoxycholic Acids .. 219
Luis Maldonado, Josué Orozco-Aguilar,
Mayalen Valero-Breton, Franco Tacchi,
Eduardo Cifuentes-Silva, and Claudio Cabello-Verrugio

13 BMAL1 Regulates Glucokinase Expression Through E-Box Elements In Vitro 235
Paula Llanos, Patricio Ordenes, David B. Rhoads,
Juan F. Santibanez, Maria García-Robles, and Carola Millán

Part III Molecular Pathology of Cancer: Determinants and Potential Therapies

14 Correlation Between Endoglin and Malignant Phenotype in Human Melanoma Cells: Analysis of hsa-mir-214 and hsa-mir-370 in Cells and Their Extracellular Vesicles .. 253
Lidia Ruiz-Llorente, María Jesús Ruiz-Rodríguez,
Claudia Savini, Teresa González-Muñoz,
Erica Riveiro-Falkenbach, José L. Rodríguez-Peralto,
Héctor Peinado, and Carmelo Bernabeu
15 Increase in Frequency of Myeloid-Derived Suppressor Cells in the Bone Marrow of Myeloproliferative Neoplasm: Potential Implications in Myelofibrosis 273
Sunčica Kapor, Sanja Momčilović, Slobodan Kapor, Slavko Mojsilović, Milica Radojković, Milica Apostolović, Branka Filipović, Mirjana Gotić, Vladan Čokić, and Juan F. Santibanez

16 The “Ins and Outs” of Prostate Specific Membrane Antigen (PSMA) as Specific Target in Prostate Cancer Therapy 291
Felipe Eltit, Nicole Robinson, Pak Lok Ivan Yu, Mitali Pandey, Jerome Lozada, Yubin Guo, Manju Sharma, Dogancan Ozturan, Laetitia Ganier, Eric Belanger, Nathan A. Lack, David M. Perrin, Michael E. Cox, and S. Larry Goldenberg

17 Transforming Growth Factor-β1 in Cancer Immunology: Opportunities for Immunotherapy 309
Víctor H. Villar, Tijana Subotićki, Dragoslava Dikić, Olivera Mitrović-Ajtić, Felipe Simon, and Juan F. Santibanez

Index ... 329
Editors and Contributors

About the Editors

Felipe Simon, Ph.D. He is currently Full Professor of the Faculty of Life Science in Universidad Andres Bello, at Santiago, Chile, and researcher at the Millennium Institute of Immunology and Immunotherapy. His line of research is mainly focused on understanding the molecular mechanisms involved in systemic inflammatory syndromes, with a special interest in vascular and immune dysfunction, to identify suitable molecular targets and develop new and more efficient therapies to tackle organ damage and mortality. He has published more than 100 articles with more than 3,800 citations and has an H-index = 40 (Google Scholar, 2022). He has been conferred several awards, participated as expert evaluator in numerous accreditation committees, and is currently Director of Research of the Faculty of Life Sciences at Universidad Andres Bello. He is member of Chilean Society of Physiological Science and the American Physiological Society.

Carmelo Bernabeu, Ph.D. He is Research Professor at the Spanish National Research Council since 2003. His scientific interest focuses on cardiovascular diseases involving endoglin, a cell surface receptor present in endothelial cells. Among them are: hereditary hemorrhagic telangiectasia (HHT), a vascular disease caused by heterozygous mutations in the endoglin gene; and preeclampsia, a disease affecting pregnant women and associated with hypertension and proteinuria, in which a pathogenic role has been described for elevated levels of a circulating form of endoglin. He has worked in different US universities and research centers, including the University of California at Los Angeles, Harvard University Medical School in Boston, and University of Utah in Salt Lake City. He has published more than 200 articles with more than 18,000 citations and has an H-index = 71 (Google Scholar, 2022). He is Editor of several international journals in the area of Biomedicine and is a current member and past Chair, of the Global Research and Medical Advisory Board of the Hereditary Hemorrhagic Telangiectasia Foundation.
Contributors

Oscar Achiardi Escuela de Kinesiología, Facultad de Ciencias, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile

Daniel Aguayo Centro de Bioinformática y Biología Integrativa, Facultad Ciencias de la Vida Universidad Andrés Bello, Santiago, Chile; Agricultura Digital, Salfa Agrícola, Centro de Innovación Sustentable, Salinas y Fabres S. A. Paine, Paine, Chile

Milica Apostolović Department of Hematology, Clinical and Hospital Center “Dr Dragiša Mišović-Dedinje”, Belgrade, Serbia

Cristobal Aravena Laboratory of Integrative Physiopathology, Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile; Millennium Institute on Immunology and Immunotherapy, Santiago, Chile

Diego Aravena Laboratory of Integrative Physiopathology, Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile; Millennium Institute on Immunology and Immunotherapy, Santiago, Chile

Eric Belanger Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada

Carmelo Bernabeu Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas (CSIC), Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain

Claudio Cabello-Verrugio Laboratory of Muscle Pathology, Fragility and Aging, Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile; Millennium Institute on Immunology and Immunotherapy, Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile; Center for the Development of Nanoscience and Nanotechnology (CEDENNA), Universidad de Santiago de Chile, Santiago, Chile

Ismael Canales-Gajardo Escuela de Kinesiología, Facultad de Salud y Ciencias Sociales, Universidad de Las Américas, Quito, Chile

Eduardo Cifuentes-Silva Laboratory of Muscle Pathology, Fragility and Aging, Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile; Millennium Institute on Immunology and Immunotherapy, Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile; Center for the Development of Nanoscience and Nanotechnology (CEDENNA), Universidad de Santiago de Chile, Santiago, Chile

Vladan Ćokić Molecular Oncology group, Institute for Medical Research, National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia

Michael E. Cox Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada; Vancouver Prostate Centre, Vancouver, Canada
Editors and Contributors

Dragoslava Đikić Institute for Medical Research, National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia

Cesar Echeverría Laboratory of Molecular Biology, Nanomedicine and Genomics, Faculty of Medicine, University of Atacama, Copiapo, Chile

Felipe Eltit Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada; Vancouver Prostate Centre, Vancouver, Canada

Branka Filipović Faculty of Medicine, University of Belgrade, Belgrade, Serbia; Department of Gastroenterology, Clinical and Hospital Center “Dr. Dragiša Mišović-Dedinje”, Belgrade, Serbia

Camilo Fuentes Pena Department of Nuclear Medicine, Hôpital Erasme, Université Libre de Bruxelles, Brussels, Belgium

Laetitia Ganier Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada; Vancouver Prostate Centre, Vancouver, Canada

María García-Robles Departamento de Biología Celular, Universidad de Concepción, Concepción, Chile; Centro Interdisciplinario de Neurociencias de Valparaíso, Instituto de Neurociencias, Universidad de Valparaíso, Valparaíso, Chile

Sebastian Gatica Millennium Institute on Immunology and Immunotherapy, Santiago, Chile; Laboratory of Integrative Physiopathology, Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile

S. Larry Goldenberg Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada; Vancouver Prostate Centre, Vancouver, Canada

Andrea González Laboratory of Muscle Pathology, Fragility and Aging, Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile; Millennium Institute on Immunology and Immunotherapy, Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile; Center for the Development of Nanoscience and Nanotechnology (CEDENNA), Universidad de Santiago de Chile, Santiago, Chile

Teresa González-Muñoz Microenvironment & Metastasis Group, Molecular Oncology Program, Spanish National Cancer Research Centre (CNIO), Madrid, Spain

Mirjana Gotić Faculty of Medicine, University of Belgrade, Belgrade, Serbia; Clinic for Hematology, Clinical Center of Serbia, Belgrade, Serbia

Yubin Guo Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada; Vancouver Prostate Centre, Vancouver, Canada
Alexis M. Kalergis Millennium Institute on Immunology and Immunotherapy, Santiago, Chile; Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile; Departamento de Endocrinología, Facultad de Medicina, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile

Slobodan Kapor Institute of Anatomy “Niko Miljanić”, Belgrade, Serbia; Faculty of Medicine, University of Belgrade, Belgrade, Serbia

Sunčica Kapor Department of Hematology, Clinical and Hospital Center “Dr Dragiša Mišović-Dedinje”, Belgrade, Serbia

Nathan A. Lack Vancouver Prostate Centre, Vancouver, Canada; Koç University Research Center for Translational Medicine (KUTTAM), Istanbul, Türkiye; Koç University School of Medicine, Istanbul, Türkiye

Felipe M. Llancalahuen Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile; Millennium Institute on Immunology and Immunotherapy, Santiago, Chile

Paula Llanos Facultad de Ingeniería y Ciencias, Universidad Adolfo Ibáñez, Viña del Mar, Chile

Jerome Lozada Department of Chemistry, University of British Columbia, Vancouver, BC, Canada

Luis Maldonado Laboratory of Muscle Pathology, Fragility and Aging, Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile; Faculty of Life Sciences, Millennium Institute on Immunology and Immunotherapy, Universidad Andres Bello, Santiago, Chile; Center for the Development of Nanoscience and Nanotechnology (CEDENNA), Universidad de Santiago de Chile, Santiago, Chile

Felipe Melo-Gonzalez Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile; Millennium Institute on Immunology and Immunotherapy, Santiago, Chile

Carola Millán Departamento de Ciencias, Facultad de Artes Liberales, Universidad Adolfo Ibáñez, Viña del Mar, Chile

Olivera Mitrović-Ajtić Institute for Medical Research, National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia

Slavko Mojsilović Group for Hematology and Stem Cells, Institute for Medical Research, National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia

Sanja Momčilović Laboratory for Neuroendocrinology, Institute for Medical Research, National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
Vania Morales Laboratory of Muscle Pathology, Fragility and Aging, Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile; Millennium Institute on Immunology and Immunotherapy, Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile; Center for the Development of Nanoscience and Nanotechnology (CEDENNA), Universidad de Santiago de Chile, Santiago, Chile

Rodrigo Moreno-Reyes Department of Nuclear Medicine, Hôpital Erasme, Université Libre de Bruxelles, Brussels, Belgium

Luis Méndez Millennium Institute on Immunology and Immunotherapy, Santiago, Chile; Escuela de Nutrición y Dietética, Facultad de Medicina, Universidad Andrés Bello, Santiago, Chile

María Cecilia Opazo Millennium Institute on Immunology and Immunotherapy, Santiago, Chile; Instituto de Ciencias Naturales, Facultad de Medicina Veterinaria y Agro-nomía, Universidad de Las Américas, Santiago, Chile

Patricio Ordenes Departamento de Biología Celular, Universidad de Concepción, Concepción, Chile

Josué Orozco-Aguilar Laboratory of Muscle Pathology, Fragility and Aging, Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile; Millennium Institute on Immunology and Immunotherapy, Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile; Center for the Development of Nanoscience and Nanotechnology (CEDENNA), Universidad de Santiago de Chile, Santiago, Chile; Laboratorio de Ensayos Biológicos (LEBi), Universidad de Costa Rica, San José, Costa Rica; Facultad de Farmacia, Universidad de Costa Rica, San José, Costa Rica

Carolina Otero Escuela de Química y Farmacia, Facultad de Medicina, Universidad Andres Bello, Santiago, Chile

Juan Carlos Oyanedel Facultad de Educación y Ciencias Sociales, Universidad Andrés Bello, Santiago, Chile

Dogancan Ozturan Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada; Vancouver Prostate Centre, Vancouver, Canada

Mitali Pandey Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada; Vancouver Prostate Centre, Vancouver, Canada

Héctor Peinado Microenvironment & Metastasis Group, Molecular Oncology Program, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
Hugo A. Penny Academic Unit of Gastroenterology, Royal Hallamshire Hospital, Sheffield, UK;
Department of Infection, Immunity and Cardiovascular Diseases, University of Sheffield, Sheffield, UK

David M. Perrin Department of Chemistry, University of British Columbia, Vancouver, BC, Canada

Yolanda Prado Millennium Institute on Immunology and Immunotherapy, Santiago, Chile;
Laboratory of Integrative Physiopathology, Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile

Milica Radojković Department of Hematology, Clinical and Hospital Center “Dr Dragiša Mišović-Dedinje”, Belgrade, Serbia;
Faculty of Medicine, University of Belgrade, Belgrade, Serbia

David B. Rhoads Harvard Medical School, Boston, MA, US;
Pediatric Endocrinology, Mass General Hospital for Children, Boston, MA, US

Claudia A. Riedel Millennium Institute on Immunology and Immunotherapy, Santiago, Chile;
Laboratory of Integrative Physiopathology, Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile;
Facultad de Ciencias de La Vida, Universidad Andrés Bello, Santiago, Chile

Erica Riveiro-Falkenbach Department of Pathology, Instituto i+12, Hospital Universitario 12 de Octubre, Madrid, Spain

Nicole Robinson Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada;
Vancouver Prostate Centre, Vancouver, Canada

José L. Rodríguez-Peralto Department of Pathology, Instituto i+12, Hospital Universitario 12 de Octubre, Madrid, Spain

Diana Rojas Escuela de Nutrición y Dietética, Facultad de Medicina, Universidad Andrés Bello, Santiago, Chile

Lidia Ruiz-Llorente Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas (CSIC), Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain;
Biochemistry and Molecular Biology Unit, Department of System Biology, School of Medicine and Health Sciences, University of Alcalá, Alcalá de Henares, Madrid, Spain

María Jesús Ruiz-Rodríguez Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas (CSIC), Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain;
Centro Nacional de Investigaciones Cardiovasculares (CNIC), Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
Juan F. Santibanez Integrative Center for Biology and Applied Chemistry (CIBQA), Bernardo O’Higgins University, Santiago, Chile; Molecular Oncology group, Institute for Medical Research, National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia

Claudia Savini Microenvironment & Metastasis Group, Molecular Oncology Program, Spanish National Cancer Research Centre (CNIO), Madrid, Spain

Katina Schinnerling Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile

Manju Sharma Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada; Vancouver Prostate Centre, Vancouver, Canada

Felipe Simon Millennium Institute on Immunology and Immunotherapy, Santiago, Chile; Millennium Nucleus of Ion Channel-Associated Diseases, Universidad de Chile, Santiago, Chile; Laboratory of Integrative Physiopathology, Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile

Jorge A. Soto Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile; Millennium Institute on Immunology and Immunotherapy, Santiago, Chile

Jimmy Stehberg Laboratory of Integrative Physiopathology, Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile

Tijana Subotički Institute for Medical Research, National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia

Franco Tacchi Laboratory of Muscle Pathology, Fragility and Aging, Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile; Millennium Institute on Immunology and Immunotherapy, Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile; Center for the Development of Nanoscience and Nanotechnology (CEDENNA), Universidad de Santiago de Chile, Santiago, Chile

Martina Valencia Escuela de Kinesiología, Facultad de Ciencias, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile

Natalia Valenzuela-Duarte Departamento de Kinesiología y Nutrición de la Facultad de Ciencias de la Salud, Universidad de Tarapacá, Arica, Chile; Escuela de Kinesiología, Facultad de Salud y Ciencias Sociales, Universidad de Las Américas, Quito, Chile

Mayalen Valero-Breton Laboratory of Muscle Pathology, Fragility and Aging, Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile; Millennium Institute on Immunology and Immunotherapy, Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile; Center for the Development of Nanoscience and Nanotechnology (CEDENNA), Universidad de Santiago de Chile, Santiago, Chile
Alejandro Vallejos Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile; Millennium Institute on Immunology and Immunotherapy, Santiago, Chile

Víctor H. Villar Cancer Research UK Beatson Institute, Glasgow, UK

Nelson Wolhak Endocrine Section, Hospital del Salvador, Santiago de Chile, Department of Medicine, University of Chile, Santiago, Chile

Pak Lok Ivan Yu Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada; Vancouver Prostate Centre, Vancouver, Canada
Part I

Molecular Pathology of Immune, Inflammatory, and Hemostatic Disorders
Immune Responses at Host Barriers and Their Importance in Systemic Autoimmune Diseases

Katina Schinnerling, Hugo A. Penny, Jorge A. Soto, and Felipe Melo-Gonzalez

Abstract

Host barriers such as the skin, the lung mucosa, the intestinal mucosa and the oral cavity are crucial at preventing contact with potential threats and are populated by a diverse population of innate and adaptive immune cells. Alterations in antigen recognition driven by genetic and environmental factors can lead to autoimmune systemic diseases such as rheumatoid arthritis, systemic lupus erythematosus and food allergy. Here we review how different immune cells residing at epithelial barriers, host-derived signals and environmental signals are involved in the initiation and progression of autoimmune responses in these diseases. We discuss how regulation of innate responses at these barriers and the influence of environmental factors such as the microbiota can affect the susceptibility to develop local and systemic autoimmune responses particularly in the cases of food allergy, systemic lupus erythematosus and rheumatoid arthritis. Induction of pathogenic autoreactive immune responses at host barriers in these diseases can contribute to the initiation and progression of their pathogenesis.

Keywords

Autoimmunity · Host barriers · Food allergy · Systemic lupus erythematosus · Rheumatoid arthritis

Abbreviations

ACPA Anti-citrullinated protein antibodies
HLA Human leukocyte antigen
HSD High-salt diet
IBS Irritable bowel syndrome
IFN-γ Interferon gamma
Ig Immunoglobulin
IL Interleukin
ILC Innate lymphoid cell
ILD Interstitial lung disease
LPS Lipopolysaccharide
LBP LPS-binding protein

K. Schinnerling · J. A. Soto · F. Melo-Gonzalez
Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
e-mail: jorge.soto.r@unab.cl

F. Melo-Gonzalez
e-mail: felipe.melo@unab.cl

H. A. Penny
Academic Unit of Gastroenterology, Royal Hallamshire Hospital, Sheffield S10 2JF, UK

H. A. Penny
Department of Infection, Immunity and Cardiovascular Diseases, University of Sheffield, Sheffield, UK

J. A. Soto · F. Melo-Gonzalez
Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
1.1 Introduction

Epithelial surfaces constitute an important physical barrier, which protects the body from external threats, but also provides an interface for communication between host and environment. The intercellular space between epithelial cells is sealed by tight junctions. These are complex structures composed of several proteins, including occludin, claudins, and zonula occludens, which regulate the permeability of the epithelium to small molecules [1]. In addition, mucosal barriers such as the lung and the intestine are covered by complex glycoproteins called mucins, protecting the epithelial layer from microbial colonization and exposure to environmental signals [2]. However, the intestine plays a key role at absorbing different nutrients and thus a fine regulation between tolerance and defensive responses needs to be achieved. Innate immune cells are key regulators of the initiation of pro-inflammatory responses upon stimulation with environmental antigens at epithelial barriers. Environmental stress, infections, microbial dysbiosis, pro-inflammatory cytokines, and diet can alter the permeability of the epithelial barrier, which might have systemic consequences, including the development of hypersensitivity and autoimmune disorders in susceptible individuals. This review focuses on the pivotal role of immune responses at epithelial barriers for the initiation and progression of systemic inflammatory diseases, such as food allergy, systemic lupus erythematosus, and rheumatoid arthritis.

1.2 Food Allergy

Food allergies are usually characterized by exacerbated type 2 immune responses that can lead to systemic inflammation and potentially fatal anaphylactic reactions. Recent studies suggest that 10.8% of US adults have a food allergy but this percentage may be even higher, as 19% of US adults self-reported a food allergy in a recent population-based survey [3]. Importantly, a high percentage of individuals reporting food allergies exhibit severe reactions and/or exhibit multiple food allergies [3]. In addition, food allergy is more prevalent in women and some ethnic groups based in the electronic health records of a large population group in US but peanut allergy may be more prevalent in men [4]. Although prevalent in westernized countries, several aspects of the pathogenesis of food allergies are incompletely understood, due to the inability to replicate them in animal models. This section will explore some of the described mechanisms of initiation of food allergy at the intestinal mucosa and the skin, which have been mainly characterized in murine models of allergy using the chicken egg allergen ovalbumin (OVA) and other dietary antigens.

1.2.1 Initiation of Food Allergy at the Intestinal Mucosa

Sensitization to food allergens has been proposed to start at the intestinal mucosa, by the uptake of dietary allergens and subsequent antigen presentation followed by the induction of allergen-specific T helper type 2 (Th2) cells and allergen-specific Immunoglobulin (Ig)E secretion (reviewed in [5]). Further exposure to the allergen may induce binding of IgE to FcεR receptors on the surface of mast cells and basophils, leading to degranulation and release of inflammatory...
mediators such as histamine [5]. In this way, ingestion of food allergens may lead to serious adverse systemic reactions and anaphylaxis.

The type 2 cytokines interleukin (IL)-4 and IL-13 have been studied as potential initiators of food allergy in the intestinal mucosa. Mice exhibiting enhanced IL-4 receptor signaling develop anaphylaxis following OVA sensitization in the presence or absence of bacterial toxins. These mice exhibited increased intestinal permeability, intestinal mast cell hyperplasia, Th2 responses and OVA-specific IgE. Lack of IgE or the IgE receptor FcεRII prevented anaphylaxis in this mouse model, indicating that IL-4 signaling may induce IgE-dependent anaphylaxis to food allergens [6]. In contrast, mice deficient in IL-4 production sensitized to OVA exhibit low levels of IgE, reduced intestinal mast cell degranulation and resistance to OVA-induced diarrhea, whereas IL-13 deficient mice were partially protected against diarrhea. Importantly, prophylactic administration of an anti-IL-4Ra antibody in WT mice sensitized to OVA was protective against OVA-induced diarrhea, its administration after the sensitization reduced IgE and mast cell degranulation, but failed to reduce allergen-induced diarrhea, suggesting that IL-4 is not required at the effector phase of the response [7].

IL-4 has been proposed as a key regulator of intestinal mast cells during food allergy, as it is able to induce intestinal mastocytosis. Enhanced IL-4 receptor signaling drives enhanced anaphylactic reactions in a model of passive sensitization with anti-2,4-dinitrophenol (DNP) IgE and challenge with DNP-BSA (bovine serum albumin). In addition, IL-4-Ra signaling triggers intestinal mast cell expansion during OVA-induced allergy, which may be mediated by STAT6 signaling and subsequent increased levels of the high affinity receptor FcεR II, improved mast cell survival and activation [8]. Several studies have shown that sensitization to OVA increases intestinal mast cells and a higher density of these cells correlates with the severity of systemic symptoms in IgE-mediated oral antigen-induced anaphylaxis [9]. In addition, transgenic mice overexpressing intestinal-specific IL-9 are more susceptible to develop food allergy and IgE-mediated anaphylaxis, as they exhibit intestinal mastocytosis and increased intestinal permeability [10]. Importantly, a population of IL-9-producing mucosal mast cells are the main source of IL-9 in a model of IgE-mediated food allergy and they arise in response to IL-4-producing Th2 cells, amplifying intestinal mastocytosis [11].

On the other hand, other innate immune cells have been implicated in the pathogenesis of food allergy. In a model of intraperitoneal OVA-sensitization and intragastric OVA challenge, in vivo basophil depletion prevented allergic diarrhea but did not alter systemic total IgE and anti-OVA IgE levels, indicating that basophils may play a role during the effector phase, but not during the priming phase, of food allergy [12]. Selective and inducible deletion of mast cells and basophils in mice results in decreased peanut-induced anaphylaxis, indicating that both cell types are involved in their pathogenesis [13]. Group 2 innate lymphoid cells (ILC2s) are also important sources of the type 2 cytokines IL-4, IL-5 and IL-13 and are induced upon stimulation with different alarmins such as IL-33 and IL-25 [14]. Intestinal ILC2 may activate in response to mast cell-derived signals during experimental food allergy using OVA or peanut allergens [15]. Mice lacking mast cells or IgE exhibit impaired ILC2 activation during food allergy and IgE-activated mast cell drive ILC2 expansion in an IL-4Ra-dependent manner [15]. In addition, ILC2-derived IL-13 can increase susceptibility to severe anaphylaxis by enhancing responsiveness to mast cell-derived signals [15]. Expression of IL-25 during experimental food allergy precedes anaphylaxis and induces IL-5 and IL-13 expression on intestinal ILC2s, as shown in transgenic mice overexpressing IL-25 or lacking the IL-25 receptor IL-17RB [16]. ILC2-derived IL-13 is also enhanced by allergen-specific CD4+ Th2 cells expressing IL-17RB in response to IL-25 and mice lacking CD4+ Th2 cells do not exhibit ILC2-mediated food allergy [16]. Therefore, complex interactions between several immune
cell types may be important for both priming and effector phases of food allergies (Table 1.1).

Enteric infections may participate in the local induction of allergic responses. Mice infected with *Citrobacter rodentium*, or exposed to the superantigen staphylococcal enterotoxin B, exhibit an increase in intestinal IgE antibodies against dietary antigens in murine models [17]. Further exposure to these dietary antigens leads to visceral pain in an IgE- and mast-cell dependent mechanism, which subsequently leads to increased histamine release and sensitization of visceral afferents [17]. It was further demonstrated that patients with irritable bowel syndrome (IBS) exhibited antigen-specific IgE responses, mast cell activation and inflammation following local administration of dietary antigens (soy, wheat, gluten, milk) into the GI tract [17]. Although these responses were restricted to the gastrointestinal tract, clinical evidence suggests an overlap between gastrointestinal disorders such as IBS and atopic diseases including asthma, eczema, and dermatitis [18, 19].

1.2.2 Initiation of Food Allergy at the Skin Barrier

On the other hand, several studies have linked the pathogenesis of food allergies with skin damage and skin allergies. Patients with atopic dermatitis exhibit high prevalence of IgE antibodies against food allergens and display increased numbers of intestinal IgE+ cells and increased intestinal permeability [20, 21]. It has been hypothesized that defects in the epithelial barrier may contribute to food allergen sensitization. Loss-of-function mutations in the gene encoding the skin polyprotein filaggrin (FLG) show a strong correlation with IgE-mediated peanut allergy in food-challenge positive patients [22]. In addition, exposure to environmental peanut dust has been identified as a risk factor for peanut allergy in children carrying FLG mutations, indicating that peanut sensitization in the skin can occur during the infancy [23]. Therefore, alterations in the skin barrier in susceptible individuals may contribute to the initiation of food allergy.

Murine models of sensitization have revealed some of the mechanisms that may induce food allergy following skin exposure to the allergen. Repeated cutaneous exposure to OVA in a mouse model led to increased levels of IL-4 in circulation, expansion of intestinal mast cells and IgE-dependent anaphylaxis. In contrast, mice treated orally with OVA in combination with cholera toxin for 8 weeks exhibited an increased in serum IgE but not the other parameters and subsequently did not develop anaphylaxis following an oral challenge with OVA [24]. In addition, epicutaneous exposure and challenge with OVA induces increased IL-4 secretion and induction of IL-9-producing mucosal mast cells, which is mediated by IL-4Ra receptor and partly dependent on BATF signaling on mast cells [25]. These results indicate that skin exposure to food antigens may lead to abnormal intestinal immune responses and later to systemic allergic responses.

An important epithelial-derived signal able to induce type 2 responses is thymic stromal lymphopoietin (TSLP). In a model of skin lesion followed by epicutaneous sensitization with OVA or peanut allergen, TSLP drives an increase of skin basophils and subsequent increase in antigen-specific secretion of IL-4 and IL-5 in the skin lymph nodes, antigen-specific serum IgE and accumulation of mast cells in the intestine [26]. Food allergy susceptibility was reduced by disruption of TSLP responses or basophil depletion, indicating that the TSLP-basophil axis may be important in the induction of food allergy in damaged skin and antigen sensitization [26]. In a similar model, TSLP requires TSLPR-signaling on dendritic cell (DC) to induce Th2 responses in the intestine [27]. Experiments using TSLP-deficient mice or TSLP blocking showed that local TSLP is sufficient to drive food allergy but systemic TSLP is not required to induce food allergy and may be required in the sensitization phase but not in the challenge [27]. Therefore, TSLP can promote the initiation of allergic responses through basophil and DC activation and drive food allergy.
Autoimmune disease	Host barrier	Environmental triggers	Epithelial-derived factors	Microbial-derived factors	Immune factors	Systemic effects
Food allergy	Skin	Skin damage + allergen sensitization	TSLP, IL-33	–	† ILC2 (IL-4, IL-5, IL-13)	IL-4, IgE-mediated anaphylaxis
					† Tuft cells (IL-25)	
					† Basophils (IL-4)	
					† Mast cells (IL-9)	
Intestine		Allergen sensitization	IL-33, IL-25	–	† ILC2 (IL-4, IL-5, IL-13)	IgE-mediated anaphylaxis
					† Basophils (IL-4)	
					† Mast cells (IL-9)	
		Dysbiosis (↓ Clostridiales) + allergen sensitization	Unknown	Metabolites?	Th2-like T_{reg} (IL-4)	
Systemic lupus erythematosus	Skin	† *Staphylococcus aureus*	Unknown	Superantigens/toxins?	Neutrophils (NETs)	SLE-associated autoantibodies (anti-dsDNA, anti-Sm)
					Th17 cells	Ig immunocomplex
Intestine		Dysbiosis (↓ Firmicutes ↑ Bacteroides)	Unknown	LPS	Th17 cells	LPS, CD14, and α1-acid glycoprotein
		Intestinal permeability	↑ Tight junctions	LPS	Th17 cells?	LPS, CD14, and α1-acid glycoprotein
Rheumatoid arthritis	Oral cavity	Keystone pathogens (*Porphyromonas gingivalis, Aggregatibacter actinomycetemcomitans*)	Unknown	PPAD LtxA	Neutrophil (NETs), Th17 cells (IL-17)	ACPA
		Dysbiosis (↑ Prevotella sp., *Anaeroglobus geminatus*)	IL-33	LPS/others?	Neutrophil (NETs), Th17 cells (IL-17), Th1 cells (IFN-γ, TNF-α)	ACPA, RF
	Lung	Tobacco smoke, inhaled pollutants, dysbiosis	Unknown	–	Neutrophil (NETs)	ACPA
	Intestine	Dysbiosis (↑ *Prevotella copri*, ↑ *Collinsella aerofaciens*, ↑ *Subdoligranulum*)	Unknown	LPS/others?	Th17 cells (IL-17)	Autoreactive T cells (Th1, Th17), IgG and IgA autoantibodies
		Dysbiosis (↑ SFB)	Unknown	↓ SCFA	Thf cells, ↓ IL-2	Autoantibodies
		Intestinal permeability	↓ Tight junctions	LPS	↓ IL-10R	LPS, LBP, sCD14

Abbreviations: ACPA anti-citrullinated protein antibodies; IL interleukin; ILC innate lymphoid cells; LPS lipopolysaccharide; LBP LPS-binding protein; Ltx-A leukotoxin-A; NET neutrophil extracellular traps; PAD peptidyl-arginine deiminase; RF rheumatoid factor; SCFA short chain fatty acids; SFB segmented filamentous bacteria; SLE systemic lupus erythematosus; Th T helper cells
Extensive evidence suggest that IL-33 is also an important inducer of food allergy following antigen sensitization in damaged skin. In line with this, a murine model of sustained mechanical skin injury resulted in increased local and systemic production of IL-33 and mice deficient in the IL-33 receptor ST2 exhibited less severity in a model of oral anaphylaxis to OVA. These effects were attributed to the stimulatory role of IL-33 in IgE-mediated mast cell degranulation, as mice deficient in mast cells were protected against oral anaphylaxis [28]. Another similar study showed that OVA epicutaneous sensitization in a model of skin lesion induced keratinocyte-derived IL-33, inducing food allergy in a TSLP-independent manner but it is unclear whether TSLP could directly induce IL-33 production in the skin [29]. These findings show an important role of keratinocyte-derived IL-33 during the initiation and progression of food allergy. Furthermore, a role for skin-derived IL-33 and gut-derived IL-25 in the activation of ILC2 has been reported in the same model of skin injury [30]. Skin injury induced a systemic release of IL-33 which resulted in expansion in the expansion and activation of intestinal ILC2, which secrete IL-4 and IL-13, leading to an expansion of intestinal mast cells and an increase in intestinal permeability [30]. In addition, ILC2-derived IL-13 drives the expansion of Tuft cells and subsequent release of IL-25, which synergizes with IL-33 in intestinal ILC2 activation. Thus, mice with skin injury and subjected to an oral model of anaphylaxis with OVA exhibited more severe allergic reactions [30]. These findings suggest that the alterations in intestinal mast cells driven by skin injury may lead to altered intestinal permeability and could subsequently induce higher antigen absorption. IL-33 has been also associated with sensitization to the peanut allergens Ara h 1 and Ara h following epicutaneous exposure to peanut in mice [31]. Keratinocyte-derived IL-33 may modulate DC function and, in turn, drive Th2 priming, which was significantly reduced following anti-ST2 blockage in vivo [31]. Therefore, IL-33 acts as an important signal promoting allergic responses systemically (Table 1.1).

A model of murine long-term skin depilation (hairlessness) also showed alterations in skin permeability together with induction of the inflammasome pathway, characterized by increased expression of the receptor NLRP3 and secretion of the pro-inflammatory cytokines IL-1b and IL-18 [32]. Following long-term skin depilation, mice were epicutaneously sensitized and challenged with the major peach allergen Pru p 3 and developed skin inflammation, infiltration of ILC-like lymphocytes into the skin and anaphylaxis [32]. In line with this, patients with peach allergy exhibited increased ILC2 in circulation whereas incubation with Pru p 3 induced higher levels of the co-stimulatory molecule CD86 and sphingosine-1-phosphate receptor 1, suggesting that ILC2 may play a role in the induction of peach allergy [32]. However, it remains to be elucidated in peanut and peach allergy whether ILC2s migrate from the skin to the gut after allergen sensitization and which mechanisms may regulate their migration.

1.2.3 Mechanisms of Oral Tolerance in Food Allergy

Several mechanisms related to immunological tolerance prevent food allergy. A recent study demonstrated that ingestion of a peanut butter product in mice may be protective in a model of airway or skin sensitization to peanut. Peanut-specific IgE and IgG antibodies were abrogated following peanut ingestion, which was mediated by a population of cytotoxic T lymphocyte-associated protein 4 (CTLA-4)+ CD4+ T regulatory cells, preventing germinal center B cell allergic responses [33]. Similarly, mice orally exposed to OVA before skin sensitization exhibited reduced food allergy and were protected from anaphylaxis [27]. These findings suggest that oral tolerance may be able to counteract allergic responses initiated by allergen sensitization in the skin.

Antigen-specific IgA may play an important inhibitory role in allergy, as shown in a study using mouse bone marrow derived-mast cells and peritoneal mast cells, preventing IgE-mediated
degranulation in an allergen-specific manner [34]. This inhibition of mast cell-allergic functions is mediated by the suppression of Syk phosphorylation. In addition, IgA prevented peanut-induced activation in basophils from a peanut allergic donor, which suggests that IgA may control basophil and mast cell function at mucosal barriers [34]. Indeed, a potential role of IgA preventing food allergen uptake at the intestinal mucosa by M cells has been proposed as a mechanism of oral tolerance [35]. In addition, a model of IgE-mediated anaphylaxis was prevented by circulating IgA antibodies rather than locally secreted mucosal IgA as it was shown that in this model the allergen needs to be absorbed systemically to induce IgE-mediated anaphylaxis [36].

T regulatory (Treg) cells play an important role preventing autoimmune responses in food allergy. Treg cell-derived transforming growth factor (TGF)-β1 can prevent mast cell expansion and activation, which may prevent food allergy [37]. In contrast, allergen-specific pathogenic Treg cells acquire a Th2-like phenotype secreting IL-4 during experimental food allergy, indicating that alterations in Tregs may be involved in food allergy [38]. On the other hand, Treg cell-derived TGF-β1 can also induce the differentiation of RAR-related orphan nuclear (ROR)γt+ Treg cells, which induce oral tolerance in response to Clostridiales and Bacteroidales during mouse weaning and human infancy [37]. Indeed, treatment with bacterial consortium of both groups prevented experimental food allergy by inducing RORγt+ Treg cells in a Myd88-dependent manner [37, 39]. In addition, Clostridia species may induce IL-22 expression on ILC3 and T cells, which reinforces the intestinal barrier and reduces allergen access to the bloodstream [40]. In line with this, gut dysbiosis may be associated with increased susceptibility to food allergy and anaphylaxis in mice, by either the expansion of pathogenic microorganisms such as Enterococcus and/or the reduction of beneficial species including Clostridiales and Akkermansia that contribute to altered intestinal permeability and allergic immune responses in murine models (Table 1.1) [41–44]. Indeed, consumption of antibiotics or high fat diet causes gut dysbiosis and increases susceptibility to experimental food allergy [43, 44]. Therefore, microbiota-induced Tregs and other protective signals induced by the microbiota may be crucial at preventing food allergy, but whether augmentation of the commensal niche with probiotic supplements promotes immunological tolerance towards dietary allergens and/or improves symptoms associated with food allergy remains unclear [45, 46].

1.3 Systemic Lupus Erythematosus and Its Association with Mucosal Barriers

Systemic lupus erythematosus (SLE) is an inflammatory and multi-systemic disease characterized by the immune system’s attack on its own tissues. Mainly, this disease is triggered by the generation of autoantibodies, immune complexes, and an aberrant response of the adaptive immune system cells [47]. Among the main affected organs, we find the heart, kidneys, lungs, joints, bones, and skin [48]. Additionally, SLE has been related to the appearance of mucosal damage directly associated with oral and gastrointestinal lesions [49–51].

About 40% of patients with SLE may manifest oral lesions, with oral ulcers being the most identified in them [52]. However, these manifestations can be asymptomatic in many cases, dismissing this variable for the patient’s clinical diagnosis, which is one of the four criteria for the diagnosis of SLE [53]. Oral lupus erythematosus (OLE) is a complex condition presented as interface mucositis associated with hyperkeratosis and an alternation between epithelial hyperplasia, atrophy, and other multiple biological processes [53]. At the immunological level, an increase in deposits of IgG, IgA, and IgM immunoglobulins, together with the C3 protein of the complement pathway, are identified in the areas of the lesion [52, 53].
1.3.1 Dysbiosis of Intestinal Microbiota and “Leaky Gut” as Triggers of Inflammation in SLE

Currently, more evidence suggests that different degrees of dysbiosis in mouse models and patients with SLE may be related to intestinal infection, thus promoting a more significant development of SLE. SLE-patients exhibit a different intestinal microbiota compared to healthy controls, which is enriched in bacterial species from oral origin and microbial peptides derived from these species are pro-inflammatory [54]. In addition, a TLR7-dependent lupus-prone murine model exhibited increased translocation of *Lactobacillus reuteri* to the mesenteric lymph nodes (mLN), liver and spleen and exacerbates lupus-related pathogenesis [55]. Both microbiota-depleted and germ-free mice in the same model displayed reduced tissue damage and pathology, indicating that the microbiota may play a pathogenic role in the onset of SLE. In this line, it is hypothesized that gut microbial dysbiosis can cause damage to the gut barrier, triggering a leaky gut and the susceptibility to develop autoimmune diseases associated with the translocation of bacteria into the circulatory system [56, 57]. In an MRL/lpr model using a mixture of 5 *Lactobacillus* strains as treatment, it was possible to identify a recovery of the renal function in SLE mice. This role was attributed to the increased secretion of IL-10 and its modulation of the T regulatory over Th17 response, which impacts the generation of immune deposits by circulating IgG2a. The positive effect was mainly associated with *L. reuteri* and *Lactobacillus* sp. bacteria from the mixture. Interestingly, this positive effect was identified only in female and castrated male mice but not in non-castrated males, suggesting that these beneficial effects could be related to a sex hormone-dependent manner [58].

Some factors related to Lupus and the permeability of the intestinal barrier are related to immunological components, within which the activation of the NF-κB pathway is essential [59]. In this sense, it has been described that proinflammatory cytokines such as TNF-α, IL-1β, and interferon (IFN)-γ, commonly secreted during an active SLE, can impair the tight junctions’ interactions, affecting the expression of tight junction proteins and their arrangement. Consequently, a negative effect on the modulation of the actin cytoskeleton arrangement in intestinal epithelial cells triggers damage to the gut barrier [60, 61]. The NF-κB activation regulates and maintains the immune homeostasis in gut epithelial tissues, promoting increased apoptosis of the enterocytes in the gut epithelial when this pathway is absent or inhibited [51, 62].

On the other hand, some reports showed that active SLE patients presented minor diverse gut microbiota compared to inactive SLE patients. Interestingly, in the active SLE patients, an increase in the proportion of Proteobacteria has been found [63]. Additionally, a positive correlation between the SLE and the presence of *Streptococcus*, *Campylobacter*, and *Veillonella* bacteria has been identified [64, 65]. Interestingly, a low number of Firmicutes has been observed in SLE patients showing a lower ratio of *Firmicutes* than *Bacteroidetes* [66]. These results are consistent with a study performed in China, where feces and saliva samples from health and SLE patients were evaluated. In this line, the results confirm that a deficient diversity and number of bacteria found in SLE patients’ feces correlate with gut microbiome dysbiosis. However, an increase in this diversity was found in the saliva samples from these patients, with is correlated with the studies of Oral Systemic Lupus (OSL) [67].

Ruminococcus gnavus (*R. gnavus*) has been identified in patients with an active SLE compared to healthy control, suggesting that the abundance of this bacteria can be related to SLE disease activity [68]. In contrast, in a B6SKG mice model, it was identified that an increase in the proliferation of segmented filamentous bacteria (SFB) belonging to *Firmicutes* triggered a lupus-like phenotype associated with a high differentiation of T helper 17 (Th17) cells [69]. Furthermore, a murine model of SLE (MRL/lpr) shows a decrease in the number of *Lactobacilli* and an increase in *Lachnospiraceae* improved
disease outcomes in this model [70]. Interestingly, an increase in the abundance of *Lactobacillaceae* has been negatively associated with SLE in mice, suggesting that the administration of these bacteria could be used as a treatment to decrease the risk of triggering SLE [70, 71]. In the (NZW × BXSB) F1 lupus model, an increase in the abundance of *Enterococcus gallinarum* promotes an impairment in the intestinal barrier. Interestingly, *E. gallinarum* can translocate towards the liver of these mice, similar to those found in patients with SLE [72].

Additionally, some compounds from the bacteria, such as lipopolysaccharide (LPS), and from fungi such as (1 → 3)-β-D-glucan molecules, have been identified in sera samples from SLE patients, reinforcing the idea that microorganisms could correlate with SLE disease [73–75]. Both components can stimulate the immune system through the Toll-like receptor type 4 (TLR-4) and dectin-1. This activation promotes the induction of proinflammatory cytokines like type I IFN, which is essential for the activation of B cells for the induction of autoantibodies [76, 77].

On the other hand, it has been reported that a high-salt diet (HSD) might be correlated with gut microbiota dysbiosis and autoimmune progression. This phenomenon can be explained because HSD might activate DCs, modulating the activation of the p38/MAPK-STAT1 signaling pathway and triggering the activation of T Helper 17 (Th17) cells [78]. In line with this, HSD induces accelerated progression of lupus in a murine model by promoting DC activation although its association with increased Th17 activation remains unclear [79].

Another component that can disrupt and weaken the intestinal barrier function is Calprotectin. This molecule is a calcium-containing protein secreted in high yield by macrophages and neutrophils [80]. In SLE patients, this molecule has been identified in stool samples suggesting a weakening function of the impaired intestinal barrier [68, 80]. Also, other factors such as LPS, CD14, and α1-acid glycoprotein were found in serum from SLE patients suggesting the presence of these molecules could be identified by the translocation of bacteria through the intestinal barrier in these patients (Table 1.1) [73, 74, 81–83].

1.3.2 Initiation of SLE at the Skin Barrier

A study in SLE patients concluded that 70% of the recruited participants presented oral lesions. The buccal mucosal and lips were the most prevalent zones with damage [48]. Another study performed in the Shahid Mohammadi Hospital in Bandar Abbas showed similar results to those reported by Kudsi et al. [48]. The vast majority of oral lesions were associated with women compared to men. In addition, the main type of lesion identified were mouth ulcers located mainly on the lips and buccal mucosa [84]. In this line, in another study, it was reported that people with active SLE had increased susceptibility to developing problems such as dental caries, periodontitis, and oral mucosal lesions as compared to people with inactive SLE [85]. Initiation of SLE at the skin barrier is not well documented but a recent study reveals that the skin microbiota can contribute to the progression of the disease. The skin colonizer *Staphylococcus aureus* (*S. aureus*) has been considered a fundamental microorganism for developing skin lesions in a mouse animal model characterized by epithelial cell-specific IκBζ-deficient (NfkbizΔK5), observing the induction of different types of autoantibodies and glomerulonephritis with IgG deposition, and increasing the induction of SLE in these animals [86]. In addition, the skin colonization with *S. aureus* promoted increased neutrophil activation and neutrophil extracellular release, which in turn induce the IL-23/IL-17A pro-inflammatory pathway [86]. *S. aureus* has also been reported in active lesions of cutaneous SLE, which colonization is favored by type 1 IFN-mediated barrier disruption [87]. Thus, *S. aureus* and skin dysbiosis can contribute to the initiation and/or progression of SLE (Table 1.1).
1.4 Rheumatoid Arthritis and Its Origin at Mucosal Barriers

Rheumatoid arthritis (RA) is a chronic autoimmune disease which primarily affects the synovial joints, causing pain and disability, but also implies systemic complications, such as cardiovascular diseases [88]. The worldwide prevalence of RA is estimated as 0.51%, being three times higher in women than in men [89, 90]. The immunopathogenesis of RA is driven by autoreactive CD4+ T cells, which activate tissue-destructive functions in macrophages and synovial fibroblasts and promote the production of autoantibodies, that can form immune complexes in the joint [91]. Autoantibodies against IgG (rheumatoid factor, RF) or anti-citrullinated protein antibodies (ACPA) are important diagnostic hallmarks of seropositive RA, although they are only present in 50–70% of RA patients.

Citrullination of autoantigens, catalyzed by the enzyme peptidyl-arginine deiminase (PAD), is a crucial process involved in the immunopathogenesis of seropositive RA [92]. This post-translational modification converts the positively charged amino acid arginine to neutral citrulline and thereby increases the affinity of peptide antigens to the “shared epitope”, expressed by certain RA-associated HLA class II genes [93, 94]. Besides predisposing genetic factors, such as the HLA-DRB1 “shared epitope” and PTPN22 single-nucleotide polymorphism, it has been proposed that environmental triggers at mucosal surfaces might provide important “hits” either by inducing systemic inflammation or promoting the transition from systemic autoimmunity to joint inflammation in RA [92, 95].

The hypothesis of a mucosal origin of RA is supported by the findings that the onset of clinical apparent RA is preceded by the presence in serum of ACPA and RF autoantibodies of the IgA isotype, produced at mucosal surfaces and an increase of circulating IgA+ plasmablasts in at-risk individuals [96, 97]. Furthermore, elevated levels of autoantibodies complexed with the secretory component, necessary for the transport of IgA across the mucosal surface, have been observed in the peripheral blood of patients with early RA [98, 99].

1.4.1 Initiation of Rheumatoid Arthritis by Inflammation and Antigen Citrullination in the Oral Cavity

The oral cavity is considered as a site of first encounter to environmental substances before they enter the gastrointestinal tract and airways [100]. In addition to its permanent contact with microorganisms, food antigens and allergens, the oral mucosa is constantly exposed to mechanical challenges. The oral mucosal barrier consists of a three to five layers of squamous epithelium, contains both keratinized and non-keratinized parts and supplements its chemical and biological defense with saliva [101]. An area of the oral barrier which is particularly vulnerable to microdamage from mastication and colonization by oral pathogens is the tooth-associated mucosa or gingiva [102]. Leakage in the oral mucosa occurs mainly at the inner lining of the gingiva, where the crevicular and junctional epithelium are connected to the tooth surface only through hemidesmosomes and therefore constitute a primary portal for microbial translocation into blood circulation [101]. Even at steady state conditions, the oral mucosa contains a higher proportion of neutrophils than other mucosal barriers and is characterized by an environment that promotes neutrophil recruitment [102]. Neutrophils are the first population of leukocytes that arrive at the site of infection and their principal functions include the recognition, phagocytosis, and degradation of pathogens, as well as the release of granules, and formation of neutrophil extracellular traps (NETs) to immobilize pathogens and prevent their dissemination. NET formation, or NETosis, is a process during which neutrophils release their chromatin complexed with nuclear and cytoplasmic proteins, including PAD [103]. Besides its beneficial effect in eliminating pathogens, the release of NETs also causes damage of host tissue, exposes intracellular
autoantigens, and exacerbates inflammatory responses [104]. It has been shown that local tissue damage induces IL-6 secretion by epithelial cells which promoted protective barrier and antimicrobial responses mediated by IL-17-producing Th17 cells [105]. In contrast, oral pathogens induced aberrant Th17 responses driven by IL-23 and IL-6, and neutrophil activation, conducing to periodontitis with consequent bone resorption and tooth loss [106].

Individuals with RA have a higher incidence of periodontal disease, associated with dysbiotic oral microbiota, while RA symptoms have been shown to improve after periodontitis treatment [107–109]. A study performed in Brazil reported that the subgingival microbiota in RA patients, even in those without periodontitis, was characterized by a higher bacterial load, increased microbial diversity and an enrichment of periodontitis-related bacteria such as Prevotella species, as well as other pathogenic species including Selenomonas spp. and Anaeroglobus geminatus [109]. Interestingly, the presence and abundance of A. geminatus has been shown to correlate with the presence of ACPAs/RF autoantibodies [107]. Oral dysbiosis in RA is associated with elevated levels of inflammatory cytokines IL-2, IL-6, IFN-γ, TNF-α, IL-33, and IL-17 in saliva, compared to healthy subjects [109], which are known promtors of neutrophil recruitment and activation and Th1/Th17 cell differentiation. Accordingly, RA patients showed increased NET formation in circulating and synovial neutrophils compared to healthy and osteoarthritis controls, which correlated with the presence of ACPA and levels of systemic inflammatory markers [104].

An important link between periodontitis and RA is provided by the finding, that the oral microbiome of RA patients is also enriched in citrulline-producing inflammophilic microorganisms, including Porphyromonas gingivalis and Aggregatibacter actinomycetemcomitans, keystone pathobionts of periodontal disease, which have been proposed to be directly implicated in the breakdown of immune tolerance to citrullinated antigen epitopes (Table 1.1) [110–114]. In this context, the citrullinome of the periodontal pocket in periodontitis patients was shown to be similar to the spectrum of citrullinated proteins found in the RA joint, including major targets of RA-specific autoantibodies such as citrullinated α-enolase, hnRNP A2/B1 and vimentin [110]. Importantly, dysbiosis of the subgingival microbiota, together with an increase of P. gingivalis, precedes the onset of joint inflammation in individuals at-risk of developing RA, suggesting an important role in the initiation of autoimmune responses [114]. P. gingivalis is unique in its expression of arginine-gingipains and particularly PAD, capable of generating citrullinated host peptides [111], that can be recognized by lymphocytes as neoantigens and might induce the production of ACPA. Another bacterial trigger of oral inflammation, and potentially also RA, is A. actinomycetemcomitans, whose pore-forming virulence factor leukotoxin-A activates endogenous PAD in host neutrophils and the release of hypercitrullinated antigens [110]. However, the association between exposure to P. gingivalis or A. actinomycetemcomitans and the presence of ACPA in RA patients remains controversial [115, 116]. A recent study suggests that immune responses to P. gingivalis-derived citrullinated antigens might contribute to the generation of ACPA in RA patients through molecular mimicry [117, 118].

Although periodontitis alone is probably not sufficient for the development of RA, the characteristic neutrophil and Th17-dominated immune responses at the oral mucosa, which are exacerbated by microbial dysbiosis and the presence of oral pathobionts, might provoke autoantigen citrullination and ACPA production in genetically predisposed individuals, driving systemic and joint-specific autoimmunity.

1.4.2 Initiation of Rheumatoid Arthritis by Antigen Citrullination at the Lung Mucosa

The lung mucosa has been considered as a major site of protein citrullination and initiation of ACPA-positive RA, promoted by infection or
microbial dysbiosis and the inhalation of pollutants such as tobacco smoke [119]. The presence of ACPA in sputum and bronchoalveolar fluid is an early sign of RA [120–122].

Pulmonary manifestations, such as bronchiectasis (defined as irreversible bronchial damage and dilatation) and interstitial lung disease (ILD) are the most common extra-articular manifestations of RA, occurring in almost 70% of patients, but may also be the first signs of RA, preceding articular symptoms [123, 124]. RA with extra-articular manifestation of ILD is associated with IgA RF and secretory component ACPA [125]. The development of RA-ILD is related to a promoter polymorphism in the MUC5B gene that provokes an increased expression of mucin 5B, a highly glycosylated mucus-forming protein secreted by cells in the airway mucosa [126]. Mucin 5B overexpression in the small airways might reduce the mucociliary function which leads to retention of inhaled particles causing more harmful effects including lung injury in case of exposure to pollutants and smoking [2].

Smoking is associated with the presence of IgA ACPA in serum and increases the risk of developing RA in humanized mice and humans expressing the shared epitope, by triggering PAD expression and antigen citrullination in the lung [99, 119, 127]. Citrullination is related to enhanced NET formation by neutrophils and macrophages. It has been shown that subjects at risk of developing RA display increased levels of NET remnants in sputum [128]. NETs contain RA-related citrullinated autoantigens that might induce the generation of ACPA [129]. Due to a loss of integrity of the lung mucosal barrier, e.g., as a product of infection and exacerbated inflammatory responses, ACPA may enter systemic circulation and reach the joints. This hypothesis was strengthened by a proteomic approach of Ytterberg and colleagues, who identified identical citrullinated peptide antigens (derived from citrullinated vimentin) in bronchial biopsies and synovial tissues specimen of RA patients, supporting the link between antigen-citrullination in the lung and joint inflammation [130].

It has been reported that smoking can also induce alterations of the lung microbiota [131], although this has not been studied so far in the context of RA. Scher and colleagues analyzed the microbial composition of bronchoalveolar lavage fluid (BAL) of patients with early untreated RA, sarcoidosis and healthy controls by 16S rRNA gene sequencing and found distal airway dysbiosis in both patient groups, with an overrepresentation of Pseudonocardia, characteristic to RA patients [116]. At the lung mucosa, inhalation of tobacco smoke or other pollutants, epithelial damage, microbial infections or dysbiosis might act either separately or together to induce local inflammation, associated with the release of NETs and autoantigen citrullination, leading to ACPA production and translocation into systemic circulation in individuals genetically predisposed to develop ILD and RA (Table 1.1).

1.4.3 Dysbiosis of Intestinal Microbiota and “Leaky Gut” as Triggers of Inflammation in Rheumatoid Arthritis

Current research focuses particularly on the role of the intestinal barrier integrity in the development of RA [132]. In the gut, the physical barrier is formed by a layer of epithelial cells, closely connected by tight junction proteins that regulate the paracellular pathway. The overlaying chemical barrier is formed by the mucus layer, limiting direct interactions with microbes and large molecules [1]. The breakdown of the intestinal barrier, e.g., by apoptosis of intestinal epithelial cells due to microbial infection, creates a proinflammatory environment that promotes the differentiation of autoreactive Th17 cells [133]. Pro-inflammatory cytokines, particularly IFN-γ and TNF-α, promote dysfunction of the epithelial barrier by causing ZO-1 internalization, occluding downregulation, and apoptosis in epithelial cells [134, 135]. The permeability of the gut epithelium to small molecules is regulated by zonulin, a precursor of haptoglobin-2, which
signals through co-binding of protease-activated receptor 2 and epidermal growth factor receptor, resulting in a protein-kinase-C-dependent disassembly of the tight junction complex [136]. Zonulin is secreted by intestinal epithelial cells in response to dietary stimuli, such as gluten, or enterobacteria [137]. Recent studies by the groups of Zaiss and Mauri independently revealed a critical role of the intestinal barrier integrity and particularly zonulin, in the transition from asymptomatic systemic autoimmunity to inflammatory joint disease in RA [138, 139]. Levels of zonulin were shown to be increased in serum of RA patients, including individuals with pre-clinical RA, while the expression of tight junction proteins occluding, claudin-1, and zonula occludens-1 was decreased in the intestinal epithelium of RA patients as compared to healthy controls [138, 140]. Accordingly, bacterial LPS and gut permeability markers such as LPS-binding protein (LBP) and soluble CD14 (sCD14) were shown to be increased in serum of individuals with pre-clinical and early RA, indicating that a leaky barrier and the translocation of microbial components precede the development of articular symptoms [138, 139]. In established RA, the increased serum levels of LBP and soluble sCD14 correlated with an increased disease activity [140].

Enhanced gut permeability and intestinal inflammation were also shown to precede the onset of arthritis in a mouse model of collagen-induced arthritis [138]. Arthritis has been demonstrated to be accompanied by an increased migration of immune cells to the intestinal mucosa in humans and mice, indicated by elevated proportions of cells expressing the gut homing chemokine receptor CCR9 [139]. Interestingly, both dysbiotic microbiota and pro-inflammatory leukocytes were necessary to disrupt gut barrier integrity [139]. Matei and colleagues also demonstrated that arthritis-associated microbiota and inflammatory cytokines like IFN-γ diminish IL-10 receptor expression by intraepithelial lymphocytes, which further contributes to the disruption of gut barrier integrity and joint inflammation [139]. Restoration of the epithelial barrier function by the administration of a zonulin antagonist ameliorated experimental arthritis in mice and might therefore be a promising therapeutic target for the treatment of RA [138, 139]. The presence and abundance of tight-junction-disrupting bacteria, such as Collinsella aerofaciens and P. gingivalis in feces of RA patients supports a role of these bacteria in enhancing gut permeability [141, 142].

Cheng and coworkers performed fecal metagenomic studies on four stages of RA and found stage-specific alterations of microbial species during disease progression [143]. C. aerofaciens was found significantly enriched only in the first stage of RA, indicating its contribution to the early breach in gut barrier integrity. This is supported by a previous report, demonstrating the ability of C. aerofaciens to increase epithelial permeability and IL-17 expression in vitro and to induce severe arthritis in the collagen-induced arthritis (CIA) model [141]. Using the K/BxN mouse model of autoimmune arthritis, Teng and colleagues demonstrated that gut commensal segmented filamentous bacteria (SFB) are able to drive the differentiation of T follicular helper (Tfh) cells in Peyer’s patches, by inhibiting IL-2 receptor signals, and to promote the migration of these Tfh cells from gut to systemic sites where they can induce the production of autoantibodies [144].

Immune responses at the gut mucosa are regulated by metabolites of commensal bacteria, such as short chain fatty acids (SCFA) and an immunoregulatory environment that favors the generation of T_{reg} cells [145]. SCFA are produced by the fermentation of dietary fibers and exert protective effects on the intestinal epithelial barrier and the host immune system. It has been shown that SCFA are also able to suppress inflammatory arthritis in mice [146]. Microbial dysbiosis is known to affect intestinal SCFA levels [147]. Accordingly, a recent study by Rosser and colleagues reported reduced levels of the SCFAs butyrate and propionate in feces of RA patients and an increase in serum acetate compared to healthy controls, indicating a perturbation of microbiota composition [148]. A high-fiber diet has been shown to favor
SCFA-producing bacteria, which had beneficial effects on the intestinal barrier and reduced disease activity in RA patients [149].

Comparison of the fecal microbiome of transgenic mice expressing the RA-susceptible HLA-DRB1*0401 transgene with those expressing RA-resistant HLA-DRB1*0402 revealed an increase in Clostridium-like bacteria in susceptible mice, related to an increased intestinal permeability and inflammatory Th1/Th17 gene transcripts in the small intestine [150]. Studies of the human microbiome demonstrated concordance between oral and intestinal microbiomes as well as microbial dysbiosis in RA patients, with RA-specific overrepresentation of Ligilactobacillus salivar ius, C. aerofaciens and Prevotella copri, dependent on the analyzed geographic population [141, 150, 151]. Prevotella species, and particularly P. copri, were enriched in a proportion of individuals with pre-clinical seropositive and recent-onset untreated RA [151, 152].

Pianta and colleagues described Th1 responses to P. copri peptides in the peripheral blood of 42% of patients with new-onset RA, as well as IgG and IgA antibodies to the P. copri protein of origin Pc-p27 in 16% and 10% of all RA patients, respectively [153]. The same group also identified two immunogenic synovial autoantigens, N-acetylglucosamine-6-sulfatase and filamin A, which share sequence homology with Prevotella and trigger lymphocyte responses in 35% and 42% of RA patients, respectively, suggesting that molecular mimicry between microbial and self-peptides might contribute to autoimmune responses [153]. P. copri can overgrow commensal intestinal microbiota and promotes Th17 cell responses in the large intestine, by inducing the expression of Th17-driving cytokines IL-6 and IL-23 in antigen-presenting cells [151, 154]. In the zymosan-induced SKG mouse model of arthritis, administration of RA-derived microbiota enriched with Prevotellaceae, or P. copri alone, promoted a more severe arthritis [154]. A current study demonstrated that P. copri decreases the thickness of the intestinal mucus layer, pointing to its contribution to the impaired intestinal barrier function observed in RA [155].

Only recently, Chriswell and coworkers identified an arthritogenic strain of Subdoligranulum in feces isolates, by binding of monoclonal IgG and IgA autoantibodies. This strain of the Lachnospiraceae/Ruminococcaceae genus stimulated in germ-free mice the expansion of Th17 cells, production of RA–associated IgG autoantibodies and joint swelling [156]. Taken together, loss of barrier integrity at the intestinal mucosa, induced by dysbiotic microbiota, overgrowth of certain bacterial species and subclinical gut inflammation mediated by Th17 cells, favours the translocation of microbial components and the induction of systemic inflammation promoting autoimmunity and articular manifestations of RA (Table 1.1).

1.5 Conclusions

Although the systemic manifestations of food allergy, SLE and RA are quite different, the epithelial and mucosal barriers represent important sites that can contribute to the initiation and/or progression of these autoimmune diseases (Fig. 1.1). The microbiota inhabiting the skin, the intestine, lung, and the oral cavity can be altered following infection or damage leading to dysbiosis. As discussed above, some bacterial species and genus may be either beneficial or pathogenic by releasing different molecules that can modulate immune responses towards self-antigens and dietary antigens. Strengthening of the beneficial properties of gut commensals may help to develop effective therapies against autoimmune diseases but its use is still under evaluation. Dysbiosis may also be associated with increased barrier permeability, which in turn may contribute to increased antigen passage to the circulation and increase the chances of developing exacerbated autoimmune responses. It is unclear whether other environmental factors may contribute to barrier permeability in the autoimmune diseases discussed in this review and further research is required to elucidate the
mechanisms that may modulate barrier function in autoimmunity.

Several lines of research are investigating the role of different epithelial- and immune cell-derived signals present at host barriers that promote systemic autoimmunity in the autoimmune diseases discussed in this manuscript (Table 1.1). In food allergy, there is extensive research about the role of innate and adaptive cells associated with type 2 responses residing in the skin and the intestinal mucosa, including ILC2, basophils, mast cells and Th2 cells, which may support the generation of allergen-specific IgE and the potential induction of anaphylactic responses. In contrast, initiation and progression of RA has been associated with NET formation, antigen citrullination and the generation of autoreactive Th17 cells, which may be generated at the oral cavity and/or the intestine and may migrate systemically. In the case of SLE, although there is evidence of the importance of the skin and intestinal barriers in the pathogenesis of the

Fig. 1.1 Pathogenesis of autoimmune diseases at different host barriers. Systemic lupus erythematosus: SLE pathogenesis can involve the oral cavity, exhibiting deposits of IgG, IgA, and IgM immunoglobulins and the C3 protein; the skin, where S. aureus can induce neutrophils and the IL-23/IL-17 axis promoting systemic disease and the intestine where gut dysbiosis can alter the T_{reg}/Th17 balance and contribute to disease pathogenesis. These local responses contribute to the systemic presence of autoreactive T cells and autoantibodies against ANAs and smith. Rheumatoid arthritis: RA pathogenesis can involve the oral cavity, where oral bacterial pathogens and neutrophils can contribute to tissue damage and later to antigen citrullination; the intestine, where dysbiosis can promote altered T_{reg}/Th17 balance and pathogenic autoreactive responses and the lung, where environmental triggers such as smoking can promote neutrophil pathogenic function leading to antigen citrullination. These local responses contribute to the systemic presence of autoreactive Th1/Th17 cells and autoantibodies against RF and ACPA. Food allergy: food allergy pathogenesis can involve the skin, where tissue damage and antigen sensitization contribute to the release of inflammatory signals and increase in ILC2 and the systemic release of these signals can promote food allergy in the intestine. Intestinal inflammation can be promoted in response to skin allergen sensitization or independently by the increase in ILC2, mast cells, basophils and Th2 responses, contributing to systemic responses. These local responses contribute to the systemic presence of allergen-specific IgE, which could induce anaphylactic reactions. This figure was created with BioRender.com.
disease, much less is understood about the immune mechanisms regulating its initiation and progression at those barriers.

Statements and Declarations

Funding This study was supported by Agencia Nacional de Investigación y Desarrollo de Chile (ANID) through Fondo Nacional de Desarrollo Científico y Tecnológico (FONDECYT) grant no. 1120882 (to KS) and no. 11200764 (to FM-G), PAI ANID No. SA77210051 (to JAS), PAI ANID No. 77180094 (to KS) and by the Millennium Institute on Immunology and Immunotherapy ANID ACE 210015; CN09_016/ICN 2021_045; former P09/016-F. HAP is funded by the NIHR on a Clinical Lecturers grant.

Disclosure of Interests All authors declare they have no conflict of interest.

Ethical Approval This article does not contain any studies with human participants or animals performed by any of the authors.

Author Contributions All authors listed have made a substantial, direct and intellectual contribution to the work, and approved it for publication.

References

1. Chelakkot C, Ghim J, Ryu SH (2018) Mechanisms regulating intestinal barrier integrity and its pathological implications. Exp Mol Med 50:1–9. https://doi.org/10.1038/s12276-018-0126-x
2. Evans CM, Fingerlin TE, Schwarz MI et al (2016) Idiopathic pulmonary fibrosis: a genetic disease that involves mucociliary dysfunction of the peripheral airways. Physiol Rev 96:1567–1591. https://doi.org/10.1152/physrev.00004.2016
3. Gupta RS, Warren CM, Smith BM et al (2019) Prevalence and severity of food allergies among US adults. JAMA Netw Open 2:e185630–e185630. https://doi.org/10.1001/jamanetworkopen.2018.5630
4. Acker WW, Płasek JM, Blumenthal KG et al (2017) Prevalence of food allergies and intolerances documented in electronic health records. J Allergy Clin Immunol 140:1587–1591.e1. https://doi.org/10.1016/j.jaci.2017.04.006
5. Yu W, Freeland DMH, Nadeau KC (2016) Food allergy: immune mechanisms, diagnosis and immunotherapy. Nat Rev Immunol 16:751–765. https://doi.org/10.1038/nri.2016.111
6. Mathias CB, Hobson SA, Garcia-Lloret M et al (2011) IgE-mediated systemic anaphylaxis and impaired tolerance to food antigens in mice with enhanced IL-4 receptor signaling. J Allergy Clin Immunol 127:795–805.e8056. https://doi.org/10.1016/j.jaci.2010.11.009
7. Brandt EB, Munitz A, Orekov T et al (2009) Targeting IL-4/IL-13 signaling to alleviate oral allergen-induced diarrhea. J Allergy Clin Immunol 123:53–58. https://doi.org/10.1016/j.jaci.2008.10.001
8. Burton OT, Darling AR, Zhou JS et al (2013) Direct effects of IL-4 on mast cells drive their intestinal expansion and increase susceptibility to anaphylaxis in a murine model of food allergy. Mucosal Immunol 6:740–750. https://doi.org/10.1038/mi.2012.112
9. Ahrens R, Osterfeld H, Wu D et al (2012) Intestinal mast cell levels control severity of oral antigen-induced anaphylaxis in mice. Am J Pathol 180:1535–1546. https://doi.org/10.1016/j.ajpath.2011.12.036
10. Forbes EE, Groschwitz K, Abonia JP et al (2008) IL-9- and mast cell-mediated intestinal permeability predisposes to oral antigen hypersensitivity. J Exp Med 205:897–913. https://doi.org/10.1084/jem.20071046
11. Chen C-Y, Lee J-B, Liu B et al (2015) Induction of interleukin-9-producing mucosal mast cells promotes susceptibility to IgE-mediated experimental food allergy. Immunity 43:788–802. https://doi.org/10.1016/j.immuni.2015.08.020
12. Kashiwakura J-I, Ando T, Karasuyama H et al (2019) The basophil-IL-4-mast cell axis is required for food allergy. Allergy 74:1992–1996. https://doi.org/10.1111/all.13834
13. Reber LL, Marichal T, Mukai K et al (2013) Selective ablation of mast cells or basophils reduces peanut-induced anaphylaxis in mice. J Allergy Clin Immunol 132:881–888.e11. https://doi.org/10.1016/j.jaci.2013.06.008
14. Sonnenberg GF, Hepworth MR (2019) Functional interactions between innate lymphoid cells and adaptive immunity. Nat Rev Immunol 19:599–613
15. Burton OT, Medina Tamayo J, Stranks AJ et al (2018) IgE promotes type 2 innate lymphoid cells in a murine model of food allergy. Mucosal Immunol 11:202–212. https://doi.org/10.1016/j.mi.2017.10.010
16. Lee J-B, Chen C-Y, Liu B et al (2016) IL-25 and adaptive immunity. Nat Rev Immunol 19:599–613. https://doi.org/10.1038/nri.2016.111
17. Aguilera-Lizarraga J, Florens MV, Viola MF et al (2021) Local immune response to food antigens drives meal-induced abdominal pain. Nature 590:151–156. https://doi.org/10.1038/s41586-020-03118-2
18. Jones MP, Walker MM, Ford AC, Talley NJ (2014) The overlap of atopy and functional gastrointestinal disorders among 23,471 patients in primary care. Aliment Pharmacol Ther 40:382–391. https://doi.org/10.1111/apt.12846
Immune Responses at Host Barriers and Their Importance

19. Tobin MC, Moparty B, Farhadi A et al (2008) Atopic irritable bowel syndrome: a novel subgroup of irritable bowel syndrome with allergic manifestations. Ann Allergy Asthma Immunol 100:49–53. https://doi.org/10.1016/S1081-1206(10)60044-8

20. Spergel JM (2010) From atopic dermatitis to asthma: the atopic march. Ann Allergy Asthma Immunol 105:99–106. https://doi.org/10.1016/j.anai.2009.10.002

21. Caffarelli C, Cavagni G, Romanini E et al (2001) Duodenal IgE-positive cells and elimination diet responsiveness in children with atopic dermatitis. Ann Allergy Asthma Immunol 86:665–670. https://doi.org/10.1016/S1081-1206(10)62296-X

22. Brown SJ, Asai Y, Cordell HJ et al (2011) Loss-of-function variants in the laggrin gene are a significant risk factor for peanut allergy. J Allergy Clin Immunol 127:661–667. https://doi.org/10.1016/j.jaci.2011.01.031

23. Brough HA, Simpson A, Makinson K et al (2014) Exposure to food allergens through inflamed skin promotes intestinal food allergy through the thymic stromal lymphopoietin–basophil axis. J Allergy Clin Immunol 133:1390–1399.e6. https://doi.org/10.1016/j.jaci.2014.01.021

24. Bartnikas LM, Gürish MF, Burton OT et al (2013) Epicutaneous sensitization results in IgE-dependent intestinal mast cell expansion and food-induced anaphylaxis. J Allergy Clin Immunol 131:451–460. e606. https://doi.org/10.1016/j.jaci.2012.11.032

25. Tomar S, Ganesan V, Sharma A et al (2021) IL-4–BATF signaling directly modulates IL-9 producing mucosal mast cell (MCC9) function in experimental food allergy. J Allergy Clin Immunol 147:280–295. https://doi.org/10.1016/j.jaci.2020.08.043

26. Noti M, Kim BS, Siracusa MC et al (2014) Exposure to food allergens through inflamed skin promotes intestinal food allergy through the thymic stromal lymphopoietin–basophil axis. J Allergy Clin Immunol 133:1390–1399.e6. https://doi.org/10.1016/j.jaci.2014.01.021

27. Han H, Thelen TD, Comeau MR, Ziegler SF (2014) Thymic stromal lymphopoietin-mediated epicitcaneous inflammation promotes acute diarrhea and anaphylaxis. J Clin Invest 124:5442–5452. https://doi.org/10.1172/JCI77798

28. Galand C, Leyva-Castillo JM, Yoon J et al (2016) IL-33 promotes food anaphylaxis in epicutaneously sensitized mice by targeting mast cells. J Allergy Clin Immunol 138:1356–1366. https://doi.org/10.1016/j.jaci.2016.03.056

29. Han H, Roan F, Johnston LK et al (2018) IL-33 promotes gastrointestinal allergy in a TSLP-independent manner. Mucosal Immunol 11:394–403. https://doi.org/10.1038/s41371-2017-0161

30. Leyva-Castillo J-M, Galand C, Kam C et al (2019) Mechanical skin injury promotes food anaphylaxis by driving intestinal mast cell expansion. Immunity 50:1262–1275.e4. https://doi.org/10.1016/j.immuni.2019.03.023

31. Tordesillas L, Goswami R, Benedé S et al (2014) Skin exposure promotes a Th2-dependent sensitization to peanut allergens. J Clin Invest 124:4965–4975. https://doi.org/10.1172/JCI75660

32. Pazos-Castro D, Gonzalez-Klein Z, Montalvo AY et al (2022) NLRP3 priming due to skin damage precedes LTP allergic sensitization in a mouse model. Sci Rep 12:3329. https://doi.org/10.1038/s41598-022-07421-y

33. Krempski JW, Lama JK, Iijima K et al (2022) A mouse model of the LEAP study reveals a role for CTLA-4 in preventing peanut allergy induced by environmental peanut exposure. J Allergy Clin Immunol 150:425–439.e3. https://doi.org/10.1016/j.jaci.2022.02.024

34. El Ansari YS, Kanagaratham C, Burton OT et al (2022) Allergen-specific IgA antibodies block IgE-mediated activation of mast cells and basophils. Front Immunol 13

35. Tordesillas L, Berin MC (2018) Mechanisms of oral tolerance. Clin Rev Allergy Immunol 55:107–117. https://doi.org/10.1007/s12016-018-8680-5

36. Strait RT, Mahler A, Hogan S et al (2011) Ingested allergens must be absorbed systemically to induce systemic anaphylaxis. J Allergy Clin Immunol 127:982–989.e1. https://doi.org/10.1016/j.jaci.2011.01.034

37. Turner JA, Stephen-Victor E, Wang S et al (2020) Regulatory T cell-derived TGF-β1 controls multiple checkpoints governing allergy and autoimmunity. Immunity 53:1202–1214.e6. https://doi.org/10.1016/j.immuni.2020.10.002

38. Noval Rivas M, Burton OT, Wise P et al (2015) Regulatory T cell reprogramming toward a Th2-cell-like lineage impairs oral tolerance and promotes food allergy. Immunity 42:512–523. https://doi.org/10.1016/j.immuni.2015.02.004

39. Abdel-Gadir A, Stephen-Victor E, Gerber GK et al (2019) Microbiota therapy acts via a regulatory T cell MyD88/RORγt pathway to suppress food allergy. Nat Med 25:1164–1174. https://doi.org/10.1038/s41591-019-0461-z

40. Stefka AT, Feehley T, Tripathi P et al (2014) Commensal bacteria protect against food allergen sensitization. Proc Natl Acad Sci USA 111:13145–13150. https://doi.org/10.1073/pnas.1412008111

41. Stark KG, Falkowski NR, Brown CA et al (2022) Contribution of the microbiome, environment, and genetics to mucosal type 2 immunity and anaphylaxis in a murine food allergy model. Front Allergy 3:851993. https://doi.org/10.3389/falgy.2022.851993

42. Smeekens JM, Johnson-Weaver BT, Hinton AL et al (2021) Fecal IgA, antigen absorption, and gut microbiome composition are associated with food allergy and genetics to mucosal type 2 immunity and anaphylaxis. Front Immunol 12:626–670. https://doi.org/10.3389/j.immuni.2020.599637
43. Zhang Q, Cheng L, Wang J et al (2021) Antibiotic-induced gut microbiota dysbiosis damages the intestinal barrier, increasing food allergy in adult mice. Nutrients 13:3315. https://doi.org/10.3390/nutrients13103315
44. Hussain M, Bonilla-Rosso G, Kwong Chung CKC et al (2019) High dietary fat intake induces a microbiota signature that promotes food allergy. J Allergy Clin Immunol 144:157–170.e8. https://doi.org/10.1016/j.jaci.2019.01.043
45. Mennini M, Arasi S, Artesani MC, Fiocchi AG (2019) High dietary fat intake induces a microbiota signature that promotes food allergy. J Allergy Clin Immunol 144:157–170.e8. https://doi.org/10.1016/j.jaci.2019.01.043
46. Tan-Lim CSC, Esteban-Ipac NAR (2018) Probiotics as treatment for food allergies among pediatric patients: a meta-analysis. World Allergy Organ J 11:25. https://doi.org/10.1186/s40413-018-0204-5
47. Kaul A, Gordon C, Crow MK et al (2016) Systemic lupus erythematous patients: a meta-analysis. World Allergy Organ J 9:3. https://doi.org/10.1186/s13075-016-02614-8.
48. Kudsi M, Nahas LD, Alsawah R, Hamsho A, Omar A (2021) The prevalence of oral mucosal lesions and related factors in systemic lupus erythematosus patients. Arthritis Res Ther 21:107. https://doi.org/10.1186/s13075-019-1878-y
49. Luo XM, Edwards MR, Mu Q et al (2018) Gut microbiota in human systemic lupus erythematosus and a mouse model of lupus. Appl Environ Microbiol 84:e02288. https://doi.org/10.1128/AEM.02288-17
50. Meyer U, Kleinheinz J, Handschel J et al (2000) Oral findings in three different groups of immunocompromised patients. J Oral Pathol Med 29:153–158. https://doi.org/10.1034/j.1600-0714.2000.290402.x
51. Ma L, Morel L (2022) Loss of gut barrier integrity in lupus. Front Immunol 13:919792. https://doi.org/10.3389/fimmu.2022.919792
52. Nico MMS, Romiti R, Lourenço SV (2011) Oral lesions in four cases of subacute cutaneous lupus erythematosus. Acta Derm Venereol 91(4):436–439
53. Hsieh R, da Costa Marques ERM, Silva R, Hsieh R (2020) Oral mucosal manifestation of lupus erythematosus: a short review. Dental Oral Biol Craniofac Res 1–4. https://doi.org/10.13487/jдобc.2020.02.09
54. Chen B, Jia X, Xu J et al (2021) An autoimmunogenic and proinflammatory phenotype defined by the gut microbiota of patients with untreated systemic lupus erythematosus. Arthritis Rheumatol 73:232–243. https://doi.org/10.1002/art.41511
55. Zegarra-Ruiz DF, El Beidaq A, Ililguue AJ et al (2019) A diet-sensitive commensal lactobacillus strain mediates TLR7-dependent systemic autoimmunity. Cell Host Microbe 25:113–127.e6. https://doi.org/10.1016/j.chom.2018.11.009
56. Shen Z-H, Zhu C-X, Quan Y-S et al (2018) Relationship between intestinal microbiota and ulcerative colitis: mechanisms and clinical application of probiotics and fecal microbiota transplantation. World J Gastroenterol 24:5–14. https://doi.org/10.3748/wjg.v24.i5
57. Lobionda S, Sittipo P, Kwon HY, Lee YK (2019) The role of gut microbiota in intestinal inflammation with respect to diet and extrinsic stressors. Microorganisms 7. https://doi.org/10.3390/microorganisms7080271
58. Mu Q, Zhang H, Liao X et al (2017) Control of lupus nephritis by changes of gut microbiota. Microbiome 5:73. https://doi.org/10.1186/s40168-017-0300-8
59. Malynn BA, Ma A (2019) A20: a multifunctional tool for regulating immunity and preventing disease. Cell Immunol 340:103914. https://doi.org/10.1016/j.cellimm.2019.04.002
60. Al-Sadi R, Boivin M, Ma T (2009) Mechanism of cytokine modulation of epithelial tight junction barrier. Front Biosci (Landmark Ed) 14:2765–2778. https://doi.org/10.2741/3413
61. Oke V, Gunnarsson I, Dorschner J et al (2007) High levels of circulating interferons type I, type II and type III associate with distinct clinical features of active systemic lupus erythematosus. Arthritis Res Ther 21:107. https://doi.org/10.1186/s13075-019-1788-4
62. Nenci A, Becker C, Wullaert A et al (2007) Epithelial NEMO links innate immunity to chronic intestinal inflammation. Nature 446:557–561. https://doi.org/10.1038/nature05698
63. Liu XM, Edwards MR, Mu Q et al (2018) Gut microbiota in human systemic lupus erythematosus and a mouse model of lupus. Appl Environ Microbiol 84:e02288–e02317. https://doi.org/10.1128/AEM.02288-17
64. Hevia A, Milani C, López P et al (2014) Intestinal dysbiosis associated with systemic lupus erythematosus. mBio 5:e01548. https://doi.org/10.1128/mBio.01548-14
65. Li Y, Wang H-F, Li X et al (2019) Disordered microbial diversity and a mouse model of lupus. mBio 5:e01548. https://doi.org/10.1128/mBio.01548-14
66. He Z, Shao T, Li H et al (2016) Alterations of the gut microbiota in Chinese patients with systemic lupus erythematosus. Gut Pathog 8:64. https://doi.org/10.1186/s13099-016-0146-9
67. Liu F, Ren T, Li X et al (2021) Distinct microbiomes of gut and saliva in patients with systemic lupus erythematosus and clinical associations. Front Immunol 12
68. Azzouz D, Omarbekova A, Heguy A et al (2019) Lupus nephritis is linked to disease-activity associated expansions and immunity to a gut commensal. Ann Rheum Dis 78:947–956. https://doi.org/10.1136/annrheumdis-2018-214856
69. Shirakashi M, Maruya M, Hirota K et al (2022) Effect of impaired T cell receptor signaling on the gut microbiota in a mouse model of systemic autoimmunity. Arthritis Rheumatol 74:641–653. https://doi.org/10.1002/art.42016
1 Immune Responses at Host Barriers and Their Importance …

70. Zhang H, Liao X, Sparks JB, Luo XM (2014) Dynamics of gut microbiota in autoimmun lupus. Appl Environ Microbiol 80:7551–7560. https://doi.org/10.1128/AEM.02676-14

71. Mu Q, Tavella VJ, Kirby JL et al (2017) Antibiotics ameliorate lupus-like symptoms in mice. Sci Rep 7:13675. https://doi.org/10.1038/s41598-017-14233-0

72. Manfredo Vieira S, Hiltsensperger M, Kumar V et al (2018) Translocation of a gut pathobiont drives autoimmunity in mice and humans. Science 359:1156–1161. https://doi.org/10.1126/science.aar7201

73. Shi L, Zhang Z, Yu AM et al (2014) The SLE transcriptome exhibits evidence of chronic endotoxin exposure and has widespread dysregulation of non-coding and coding RNAs. PLoS ONE 9: e93846

74. Ogurinade E, Zhou Z, Luo Z et al (2019) A link between plasma microbial translocation, microbiome, and autoantibody development in first-degree relatives of systemic lupus erythematosus patients. Arthritis Rheumatol 71:1858–1868. https://doi.org/10.1002/art.40935

75. Issara-Amphorn J, Surawut S, Worasilchai N et al (2018) The synergy of endotoxin and (1→3)-β-D-glucan, from gut translocation, worsens sepsis in Ilb-deficient mice. J Innate Immun 10:189–201. https://doi.org/10.1159/000486321

76. Takeuchi O, Akira S (2010) Pattern recognition receptors and inflammation. Cell 140:805–820. https://doi.org/10.1016/j.cell.2010.01.022

77. Thim-uam A, Surawut S, Issara-Amphorn J et al (2020) Leaky-gut enhanced lupus progression in the Fc gamma receptor-Ilb deficient model of Fc receptor-IIb deficient mice. J Innate Immun 10:189–201. https://doi.org/10.1159/000486321

78. Wilck N, Matus MG, Kearney SM et al (2017) Salt-responsive gut commensal modulates TH17 axis and disease. Nature 551:585–592. https://doi.org/10.1038/nature23462

79. Xiao ZX, Hu X, Zhang X et al (2020) High salt diet accelerates the progression of murine lupus through dendritic cells via the p38 MAPK and STAT1 signaling pathways. Signal Transduct Target Ther 5:34. https://doi.org/10.1038/s41392-020-0139-5

80. Gisbert JP, Bermejo F, Perez-Calle J-L et al (2009) Fecal calprotectin and lactoferrin for the prediction of inflammatory bowel disease relapse. Inflamm Bowel Dis 15:1190–1198. https://doi.org/10.1002/ibd.20933

81. Nockher WA, Wigand R, Schoeppe W, Scherberich JE (1994) Elevated levels of soluble CD 14 in serum of patients with systemic lupus erythematosus. Clin Exp Immunol 96:15–19. https://doi.org/10.1111/j.1365-2249.1994.tb06222.x

82. Beeram SR, Zhang C, Suh K et al (2021) Characterization of drug binding with alpha1-acid glycoprotein in clinical samples using ultrafast affinity extraction. J Chromatogr A 1649:462240. https://doi.org/10.1016/j.chroma.2021.462240

83. Mackiewicz A, Marcinkowska-Pieta R, Ballou S et al (1987) Microheterogeneity of alpha1-acid glycoprotein in the detection of intercurrent infection in systemic lupus erythematosus. Arthritis Rheum 30:513–518. https://doi.org/10.1002/art.1780300505

84. Rezvaninejad R, Dadmehr M, Rezvaninejad R (2021) Prevalence of oral manifestations in systemic lupus erythematosus patients referred to Shahid Motahari Hospital in 2018–2019. Jundishapur J Health Sci 13:e116144. https://doi.org/10.5812/jhjs.116144

85. Aurlene N, Manipal S, Prabu D, Rajmohan (2020) Prevalence of oral mucosal lesions, dental caries, and periodontal disease among patients with systemic lupus erythematosus in a teaching hospital in Chennai, Tamil Nadu, J Fam Med Prim Care 9

86. Thim-uam A, Surawut S, Issara-Amphorn J et al (2022) Staphylococcus aureus skin colonization promotes SLE-like autoimmune inflammation via neutrophil activation and the IL-23/IL-17 axis. Sci Immunol 7:eab9811. https://doi.org/10.1126/sciimmunol.abm9811

87. Sirobushanam S, Parsa N, Reed TJ et al (2020) Staphylococcus aureus colonization is increased on lupus skin lesions and is promoted by IFN-mediated barrier disruption. J Invest Dermatol 140:1066–1074.e4. https://doi.org/10.1016/j.jid.2019.11.016

88. Smolen JS, Aletaha D, McInnes IB (2016) Rheumatoid arthritis. Lancet 388:2023–2038. https://doi.org/10.1016/S0140-6736(16)30173-8

89. van Vollenhoven RF (2009) Sex differences in rheumatoid arthritis: more than meets the eye. BMC Med 7:12. https://doi.org/10.1186/1711-7015-7-12

90. Alamutia KB, Nossent JC, Preen DB et al (2021) The prevalence of rheumatoid arthritis: a systematic review of population-based studies. J Rheumatol 48:4669. https://doi.org/10.3899/jrheum.200367

91. Smolen JS, Aletaha D, Barton A et al (2018) Rheumatoid arthritis. Nat Rev Dis Primers 4:18001. https://doi.org/10.1038/nrdp.2018.1

92. Malmström V, Catrina AI, Klæreskog L (2017) The immunopathogenesis of seropositive rheumatoid arthritis: from triggering to targeting. Nat Rev Dis Primers 4:18001. https://doi.org/10.1038/nrdp.2018.1

93. Gregersen PK, Silver J, Winchester RJ (1987) The shared epitope hypothesis: an approach to understanding the molecular genetics of susceptibility to rheumatoid arthritis. Arthritis Rheum 30:1205–1213. https://doi.org/10.1002/art.1780301102

94. Hill JA, Southwood S, Sette A et al (2003) Cutting edge: the conversion of arginine to citrulline allows for a high-affinity peptide interaction with the rheumatoid arthritis-associated HLA-DRB1*0401 MHC class II molecule. J Immunol 171:538. https://doi.org/10.4049/jimmunol.171.2.538
95. Holers VM, Demoruelle MK, Kuhn KA et al (2018) Rheumatoid arthritis and the mucosal origins hypothesis: protection turns to destruction. Nat Rev Rheumatol 14:542–557. https://doi.org/10.1038/s41584-018-0070-0
96. Kinslow JD, Blum LK, Deane KD et al (2016) Elevated IgA plasmablast levels in subjects at risk of developing rheumatoid arthritis. Arthritis Rheumatol 68:2372–2383. https://doi.org/10.1002/art.39771
97. Rantapää-Dahlgqvist S, de Jong BAW, Berglin E et al (2003) Antibodies against cyclic citrullinated peptide and IgA rheumatoid factor predict the development of rheumatoid arthritis. Arthritis Rheum 48:2741–2749. https://doi.org/10.1002/art.11223
98. Jorgensen C, Moynier M, Bologna C et al (1995) Rheumatoid factor associated with a secretory component in rheumatoid arthritis. Rheumatology 34:236–240. https://doi.org/10.1093/rheumatology/34.3.236
99. Roos K, Martinsson K, Ziegelasch M et al (2016) The revisited origin of systemic diseases. Cells 5:18. https://doi.org/10.3390/cells5010018
100. Gaffen SL, Moutsopoulos NM (2020) Regulation of host–microbe interactions at oral mucosal barriers by type 17 immunity. Sci Immunol 5:eaau4594. https://doi.org/10.1126/sciimmunol.aau4594
101. Park D-Y, Park JY, Lee D et al (2022) Leaky gum: the revisited origin of systemic diseases. Cells 11:1079. https://doi.org/10.3390/cells11071079
102. Williams DW, Greenwell-Wild T, Brenchley L et al (2021) Human oral mucosa cell atlas reveals a stomal–neutrophil axis regulating tissue immunity. Cell 184:4090–4104.e15. https://doi.org/10.1016/j.cell.2021.05.013
103. Brinkmann V, Reichard U, Goosmann C et al (2004) Neutrophil extracellular traps kill bacteria. Science 303:1532–1535. https://doi.org/10.1126/science.1092385
104. Khandpur R, Carmona-Rivera C, Vivekanandan-Aää et al (2018) A bacterial citrullinated epitope are increased in early rheumatoid arthritis, and can be produced by gingival tissue B cells: implications for autoimmunity in rheumatoid arthritis. Arthritis Rheum 62:2662–2672. https://doi.org/10.1002/art.27552
105. Lopez-Oliva I, Paropkari AD, Saraswat S et al (2018) Dysbiotic subgingival microbial communities in periodontally healthy patients with rheumatoid arthritis. Arthritis Rheum 70:1008–1013. https://doi.org/10.1002/art.40485
106. Potempa J, Mydel P, Koziel J (2017) The case for periodontitis in the pathogenesis of rheumatoid arthritis. Nat Rev Rheumatol 13:606–620. https://doi.org/10.1038/nrrheum.2017.132
107. Cheng Z, Do T, Mankia K et al (2021) Dysbiosis in the oral microbiomes of anti-CCP positive individuals at risk of developing rheumatoid arthritis. Ann Rheum Dis 80:162. https://doi.org/10.1136/annrheumdis-2020-216972
108. Volkov M, Dekkers J, Loos BG et al (2018) Comment on “Aggregatibacter actinomycetemcomitans-induced hypercitrullination links periodontal infection to autoimmunity in rheumatoid arthritis.” Sci Transl Med 10:eaan8349. https://doi.org/10.1126/scitranslmed.aan8349
109. Scher JU, Joshua V, Artacho A et al (2016) The lung microbiota in early rheumatoid arthritis and autoimmunity. Microbiome 4:60. https://doi.org/10.1186/s40168-016-0206-x
110. Sherina N, de Vries C, Kharlamova N et al (2022) Antibodies to a citrullinated Porphyromonas gingivalis epitope are increased in early rheumatoid arthritis, and can be produced by gingival tissue B cells: implications for a bacterial origin in RA etiology. Front Immunol 13:804822. https://doi.org/10.3389/fimmu.2022.804822
111. Jenning M, Marklein B, Ytterberg J et al (2020) Bacterial citrullinated epitopes generated by Porphyromonas gingivalis infection—a missing link for ACPA production. Ann Rheum Dis 79:1194. https://doi.org/10.1136/annrheumdis-2019-216919
119. Klareskog L, Stolt P, Lundberg K et al (2006) A new model for an etiology of rheumatoid arthritis: smoking may trigger HLA–DR (shared epitope)–restricted immune reactions to autoantigens modified by citrullination. Arthritis Rheum 54:38–46. https://doi.org/10.1002/art.21575
120. Reynisdottir G, Karimi R, Joshua V et al (2014) Structural changes and antibody enrichment in the lungs are early features of anti-citrullinated protein antibody-positive rheumatoid arthritis. Arthritis Rheumatol 66:31–39. https://doi.org/10.1002/art.38201
121. Willis VC, Demoruelle MK, Derber LA et al (2013) Sputum autoantibodies in patients with established rheumatoid arthritis and subjects at risk of future clinically apparent disease. Arthritis Rheum 65:2545–2554. https://doi.org/10.1002/art.38066
122. Demoruelle MK, Bowers E, Lahey LJ et al (2018) Antibody responses to citrullinated and noncitrullinated antigens in the sputum of subjects with rheumatoid arthritis and subjects at risk for development of rheumatoid arthritis. Arthritis Rheumatol 70:516–527. https://doi.org/10.1002/art.40401
123. Khan T, Jose RJ, Renzoni EA, Mouyis M (2021) A closer look at the role of anti-CCP antibodies in the pathogenesis of rheumatoid arthritis-associated interstitial lung disease and bronchiectasis. Rheumatol Ther 8:1463–1475. https://doi.org/10.1007/s40744-021-00362-4
124. Wilson TM, Trent B, Kuhn KA, Demoruelle MK (2020) Microbial influences of mucosal immunity in rheumatoid arthritis. Curr Rheumatol Rep 22:83. https://doi.org/10.1007/s11926-020-00960-1
125. Oka S, Higuchi T, Furukawa H et al (2022) Serum rheumatoid factor IgA, anti-citrullinated peptide antibodies with secretory components, and anti-carbamylated protein antibodies associate with interstitial lung disease in rheumatoid arthritis. BMC Musculoskelet Disord 23:46. https://doi.org/10.1186/s12891-020-04985-0
126. Juge P-A, Lee JS, Ebstein E et al (2018) MUCSB promoter variant and rheumatoid arthritis with interstitial lung disease. N Engl J Med 379:2209–2219. https://doi.org/10.1056/NEJMoa1801562
127. Bidkar M, Vassallo R, Luckey D et al (2016) Cigarette smoke induces immune responses to vimentin in both, arthritis-susceptible and -resistant humanized mice. PLoS ONE 11:e0162341–e0162341. https://doi.org/10.1371/journal.pone.0162341
128. Demoruelle MK, Harrall KK, Ho L et al (2017) Anti-citrullinated protein antibodies are associated with neutrophil extracellular traps in the sputum in relatives of rheumatoid arthritis patients. Arthritis Rheumatol 69:1165–1175. https://doi.org/10.1002/art.40066
129. Carmona-Rivera C, Carlucci PM, Moore E et al (2017) Synovial fibroblast–neutrophil interactions promote pathogenic adaptive immunity in rheumatoid arthritis. Sci Immunol 2:eaag3358. https://doi.org/10.1126/sciimmunol.aag3358
130. Ytterberg AJ, Joshua V, Reynisdottir G et al (2015) Shared immunological targets in the lungs and joints of patients with rheumatoid arthritis: identification and validation. Ann Rheum Dis 74:1772. https://doi.org/10.1136/annrheumdis-2013-204912
131. Huang X, Fan X, Ying J, Chen S (2019) Emerging trends and research foci in gastrointestinal microbiome. J Transl Med 17:67. https://doi.org/10.1186/s12967-019-1810-x
132. Brandl C,ucci L, Schett G, Zaiss MM (2021) Crossing the barriers: revisiting the gut feeling in rheumatoid arthritis. Eur J Immunol 51:798–810. https://doi.org/10.1002/eji.202048876
133. Campisi L, Barbet G, Ding Y et al (2016) Apoptosis in response to microbial infection induces autoreactive TH17 cells. Nat Immunol 17:1084–1092. https://doi.org/10.1038/ni.3512
134. Andrews C, McLean MH, Durum SK (2018) Cytokine tuning of intestinal epithelial function. Front Immunol 9:1270. https://doi.org/10.3389/fimmu.2018.01270
135. Bruewer M, Utech M, Ivanov AI et al (2005) Interferon-γ induces internalization of epithelial tight junction proteins via a macrophagocytosis-like process. FASEB J 19:923–933. https://doi.org/10.1096/fj.04-3260com
136. Fasano A (2011) Zonulin and its regulation of intestinal barrier function: the biological door to inflammation, autoimmunity, and cancer. Physiol Rev 91:151–175. https://doi.org/10.1152/physrev.00003.2008
137. Ulluwisewa D, Anderson RC, McNabb WC et al (2011) Regulation of tight junction permeability by intestinal bacteria and dietary components. J Nutr 141:769–776. https://doi.org/10.3945/jn.110.135657
138. Tajik N, Frech M, Schulz O et al (2020) Targeting zonulin and intestinal epithelial barrier function to prevent onset of arthritis. Nat Commun 11:1995. https://doi.org/10.1038/s41467-020-15831-7
139. Matei DE, Menon M, Alber DG et al (2021) Intestinal barrier dysfunction plays an integral role in arthritis pathology and can be targeted to ameliorate disease. Med (N Y) 2:864–883.e9. https://doi.org/10.1016/j.medj.2021.04.013
140. Audo R, Sanchez P, Riviere B et al (2022) Rheumatoid arthritis is associated with increased gut permeability and bacterial translocation that are reversed by inflammation control. Rheumatology keac454. https://doi.org/10.1093/rheumatology/keac454
141. Chen J, Wright K, Davis JM et al (2016) An expansion of rare lineage intestinal microbes characterizes rheumatoid arthritis. Genome Med 8:43. https://doi.org/10.1186/s13073-016-0299-7
142. Flak MB, Colas RA, Munoz-Atienza E et al (2019) Inflammatory arthritis disrupts gut resolution mechanisms, promoting barrier breakdown by Porphyromonas gingivalis. JCI Insight 4:e125191. https://doi.org/10.1172/jci.insight.125191
143. Cheng M, Zhao Y, Cui Y et al (2022) Microbial dysbiosis and metabolic disorders promote rheumatoid arthritis across successive stages: a multi-omics cohort study. bioRxiv. https://doi.org/10.1101/2022.02.13.480248
144. Teng F, Klinger CN, Felix KM et al (2016) Gut microbiota drive autoimmune arthritis by promoting differentiation and migration of Peyer’s patch T follicular helper cells. Immunity 44:875–888. https://doi.org/10.1016/j.immuni.2016.03.013
145. Engevik MA, Versalovic J (2017) Biochemical features of beneficial microbes: foundations for therapeutic microbiology. Microbiol Spectr 5. https://doi.org/10.1128/microbiolspec.BAD-0012-2016
146. Maslowski KM, Vieira AT, Ng A et al (2009) Regulation of inflammatory responses by gut microbiota and chemoattractant receptor GPR43. Nature 461:1282–1286. https://doi.org/10.1038/nature08530
147. Lucas S, Omata Y, Hofmann J et al (2018) Short-chain fatty acids regulate systemic bone mass and protect from pathological bone loss, Nat Commun 9:55. https://doi.org/10.1038/s41467-017-02490-4
148. Rosser EC, Piper CJM, Matei DE et al (2020) Microbiota-derived metabolites suppress arthritis by amplifying aryl-hydrocarbon receptor activation in regulatory B cells. Cell Metab 31:837–851.e10. https://doi.org/10.1016/j.cmet.2020.03.003
149. Guerreiro CS, Calado A, Sousa J, Fonseca JE (2018) Diet, microbiota, and gut permeability—the unknown triad in rheumatoid arthritis, Front Med (Lausanne) 5:349. https://doi.org/10.3389/fmed.2018.00349
150. Zhang X, Zhang D, Jia H et al (2015) The oral and gut microbiomes are perturbed in rheumatoid arthritis and partly normalized after treatment, Nat Med 21:895–905. https://doi.org/10.1038/nm.3914
151. Scher JU, Sczesnak A, Longman RS et al (2013) Expansion of intestinal Prevotella copri correlates with enhanced susceptibility to arthritis. eLife 2: e01202–e01202. https://doi.org/10.7554/eLife.01202
152. Alpizar-Rodriguez D, Lesker TR, Gronow A et al (2019) Prevotella copri in individuals at risk for rheumatoid arthritis. Ann Rheum Dis 78:590–593. https://doi.org/10.1136/annrheumdis-2018-214514
153. Pianta A, Arvikar S, Strle K et al (2017) Evidence of the immune relevance of Prevotella copri, a gut microbe, in patients with rheumatoid arthritis. Arthritis Rheumatol 69:964–975. https://doi.org/10.1002/art.40003
154. Maeda Y, Kurakawa T, Umemoto E et al (2016) Dysbiosis contributes to arthritis development via activation of autoreactive T cells in the intestine. Arthritis Rheumatol 68:2646–2661. https://doi.org/10.1002/art.39783
155. Rolhion N, Chassaing B, Nahori M-A et al (2019) A Listeria monocytogenes bacteriocin can target the commensal Prevotella copri and modulate intestinal infection. Cell Host Microbe 26:691–701.e5. https://doi.org/10.1016/j.chom.2019.10.016
156. Chriswell ME, Lefferts AR, Clay MR et al (2022) Clonal IgA and IgG autoantibodies from individuals at risk for rheumatoid arthritis identify an arthritisogenic strain of Subdoligranulum. Sci Transl Med 14:eabn5166. https://doi.org/10.1126/scitranslmed.abn5166
Statins and Hemostasis: Therapeutic Potential Based on Clinical Evidence

Yolanda Prado, Diego Aravena, Felipe M. Llancalahuen, Cristobal Aravena, Felipe Eltit, Cesar Echeverria, Sebastian Gatica, Claudia A. Riedel, and Felipe Simon

Abstract

Hemostasis preserves blood fluidity and prevents its loss after vessel injury. The maintenance of blood fluidity requires a delicate balance between pro-coagulant and fibrinolytic status. Endothelial cells (ECs) in the inner face of blood vessels maintain hemostasis through balancing anti-thrombotic and pro-fibrinolytic activities. Dyslipidemias are linked to hemostatic alterations. Thus, it is necessary a better understanding of the underlying mechanisms linking hemostasis with dyslipidemia. Statins are drugs that decrease cholesterol levels in the blood and are the gold standard for treating hyperlipidemias. Statins can be classified into natural and synthetic molecules, approved for the treatment of hypercholesterolemia. The classical mechanism of action of statins is by competitive inhibition of a key enzyme in the synthesis pathway of cholesterol, the HMG-CoA reductase. Statins are frequently administrated by oral ingestion and its interaction with other drugs and food supplements is associated with altered bioavailability. In this review we deeply discuss the actions of statins beyond the control of dyslipidemias, focusing on the actions in thrombotic modulation, vascular and cardiovascular-related diseases, metabolic diseases including metabolic syndrome, diabetes, hyperlipidemia, and hypertension, and chronic diseases such as cancer, chronic obstructive pulmonary disease, and chronic kidney disease. Furthermore, we were prompted to delved deeper in the molecular mechanisms by means statins regulate coagulation acting on liver, platelets, and endothelium. Clinical evidence show that statins are effective regulators of dyslipidemia with a high impact in hemostasis regulation and its deleterious consequences. However, studies are required to elucidate its underlying molecular mechanism and improving their therapeutic actions.
2.1 Introduction

Hemostasis is a complex system in which vascular cells, blood cells and circulating coagulation factors, interact to preserve blood fluidity and prevent its loss after vessel injury [1]. The maintenance of blood fluidity requires a delicate balance between pro-coagulant and fibrinolytic status [2] and the loss of equilibrium, usually concludes in thrombotic or hemorrhagic episodes [3].

Endothelial cells (ECs) located in the lumen of blood vessels play a critical role in hemostasis maintenance by balancing anti-thrombotic and pro-fibrinolytic activities [4] (characterized by the release of nitric oxide (NO), antithrombin (AT), protein C, protein S, tissue factor pathway inhibitor (TFPI) and tissue-type plasminogen activator (tPA) [5]) with pro-thrombotic and anti-fibrinolytic activities (characterized by the release of von Willebrand Factor (vWF), plasminogen activator inhibitor (PAI-1), thrombin activable fibrinolysis inhibitor (TAFI), selectins, intercellular adhesion molecule 1 and 2 (ICAM-1, ICAM-2) and vascular cell adhesion molecule 1 (VCAM-1) [6, 7]). Similarly, circulating cells, such as platelets, monocytes, and leukocytes, play an important role in thrombosis due their expression of pro-thrombotic molecules as tissue factor (TF), phosphatidyl serine (PS), glycoprotein IIIa (GPIIIa) and selectins [8], as well as their capacity to recruit more of these cells to adhere and form stable clots [9]. Furthermore, the liver is pivotal in maintaining the balance of
hemostasis by synthetizing all blood clotting factors, including pro-thrombin (PT) and fibrinogen [10]. When the balance of hemostasis favors thrombosis, biomarkers of thrombosis progression (e.g., fibrin and D-dimer) are generated, and their quantification offers an objective measure for patient diagnosis and prognosis [11].

The onset of pro-coagulant states is a marker of severity, in viral diseases such as hepatitis B, and the levels of AT, which critically fell in patients with severe disease, correlated with hospitalization length [12]. Furthermore, in patients diagnosed with chronic hepatitis B and C, a decrease in plasma AT was associated with hepatocellular damage and liver disease progression. Interestingly, a reduction in the anticoagulant protein C was also detected in critically ill patients and showed better sensitivity as marker to discriminate liver disease stages [13]. Similarly, in HIV patients, a reduction in protein C levels, and particularly its cofactor, protein S, was detected and linked to an increased thrombotic risk [14]. Similar findings have been described in neonatal septic patients [15] as well as patients with biliary acute pancreatitis [16].

In ulcerative colitis, which is characterized by hypercoagulable states and microthrombus formation, serum levels of TFPI (inhibitor of extrinsic coagulation pathway) increased significantly, suggesting a relevant participation in the pathogenesis and progression of the disease [17]. TFPI levels also demonstrated adequate sensitivity, specificity and positive predictive value in the diagnosis of asymptomatic venous thromboembolism (VTE) in patients with epithelial ovarian cancer [18]. Similar findings were described in patients with concomitant lung cancer for the diagnosis of deep venous thrombosis (DVT) and tumor metastasis [19].

The participation of adhesion proteins in thrombosis-associated diseases such as coronavirus disease 2019 (COVID-19) has also been subject of analysis. vWF, for example, increased in COVID-19 patients and related to disease severity [20] and mortality [21]. Selectin levels at admission of COVID-19 patients exhibited a considerable increase, especially in those experiencing thrombosis during hospitalization. Remarkably, P-selectin, E-selectin and L-selectin were predictors for thrombosis with 97.1, 97.6 and 96.5% sensitivity, while the three exhibited a 100% [22]. ICAM-1 expression was significantly enhanced in COVID-19 patients [23] and VCAM-1 was increased in lung samples and circulation from death COVID-19 patients, suggesting a local and systemic contribution of adhesion molecules in thrombotic disbalance [24].

The interplay between circulating cells and plasma coagulation factors is well recognized in the etiology of thrombosis [25]. Platelet activation has been linked to hypercoagulation in type-2 diabetes [26], platelet-monocyte aggregates and subsequent increase in tissue factor expression was observed in patients with severe COVID-19 [27], enhanced platelet–eosinophil interactions have been linked to thrombosis in atherosclerosis [27] and neutrophils and neutrophil extracellular traps are structural components of ischemic stroke thrombi [28]. Thrombin activation and thrombin fragments F1 + 2 shown to be considerably higher in patients with peripheral artery disease and chronic limb ischemia and were associated to exacerbated hypercoagulability and thrombotic risk [29]. Fibrinogen, the precursor of fibrin (the network-forming strands that trap circulating cells and supports clot structure) [30] demonstrated a significant decrease in postpartum hemorrhage [31], a significant increase in patients with inflammatory bowel disease, enhancing hypercoagulable status [32], a higher correlation with mortality in cancer patients [33], and a strong predictive value in early acute coronary syndrome diagnosis [34].

The primary fibrinolytic protein, tPA, has a highly affinity to fibrin [35], which explain its increased reactivity in thrombotic events [36]. tPA was shown to have a considerable rise and strong connection with poor respiratory function and death in COVID-19 patients [37]. Similarly, demonstrated enhanced activity in type-2 diabetic patients, acting as an early predictor of lower extremity arterial disease [38] and exhibited increased expression in patients with acute
pulmonary embolism (PE), demonstrating a high sensitivity and negative predictive value to exclude PE [39].

tPA is essential for fibrin breakdown and thrombus resolution since it catalyzes plasminogen conversion into plasmin [40]. The generation of fibrin degradation products, as D-dimer offers an indirect measure of plasmin activity and fibrinolysis progression. Despite its low specificity, a rise in plasma D-dimer is an unequivocal sign of local or systemic coagulation activation [41]. D-dimer has been extensively studied and its increase is a reliable marker for the diagnosis of life-threatening conditions as disseminated intravascular coagulation in sepsis [42], DVT [43], VTE after lower limb fractures surgery [44], hypercoagulability and preeclampsia severity [45], severity of acute superior mesenteric venous thrombosis [46], severity of acute pancreatitis [47], severity [48] and in hospital mortality of COVID-19 patients [49].

Dyslipidemias, or disorders of the lipid profile [50], are highly prevalent worldwide and have been strongly associated with life-threatening complications in patients with cardiovascular disease (CVD) [50], diabetes [51], kidney disease [52] and liver disease [53]. Interestingly, dyslipidemias have been linked to hemostatic alterations [54]. While low-density lipoproteins (LDLs), one of the main types of circulating lipoproteins, are widely recognized for their atherosclerotic and atherothrombotic properties [55], high-density lipoproteins (HDLS) are widely recognized as “good” or “protective” [56]. However, recent evidence refutes the latter by linking HDLs to thrombosis [57, 58] and increased levels of D-dimer [59]. Moreover, the oxidized form of HDL has been associated with increased coagulation and reduced fibrinolysis in type 2 diabetes patients [60] and increased procoagulant phenotype in platelets [61]. In fact, it has been described that HDL, promoted thrombin formation, increasing the risk of hypercoagulability during dyslipidemia, [62]. Moreover, hyperlipidemic adult patients present alterations in thrombotic and fibrinolytic molecules such as vWF, tPA and PAI [63] and, similarly, hyperlipidemic pediatric patients present dysfunctional fibrinolytic activity [64, 65]. Significantly, coagulation-associated complications account for close to 100,000 annual deaths in the United States [66], highlighting how necessary a better understanding of the underlying mechanisms is to pave the way for future therapies.

Statins are drugs that lower cholesterol levels in the blood [67] and are the gold standard for treating hyperlipidemias [68]. Based on their origin, statins can be classified into natural and synthetic molecules (Fig. 2.1). Natural statins include lovastatin, simvastatin and pravastatin, all deriving from fungi and sharing a similar structure [69]. Lovastatin is isolated from Aspergillus terreus and is fully approved for the treatment of heart disease and hypercholesterolemia [70]. The active metabolite of lovastatin, beta-hydroxy acid, is produced in the stomach after lovastatin hydrolysis [71]. Simvastatin is a semi-synthetic statin derived from lovastatin [72], and like its precursor, it is a prodrug used in the inactive lactone form, with beta-hydroxy acid also as the active metabolite [73]. Conversely, pravastatin is derived from mevastatin, a statin isolated from Penicillium citrinium [74], further biotransformed by Streptomyces carbophilus [75], which is administered in its active form [76]. Synthetic statins include atorvastatin, rosuvastatin, pitavastatin, fluvastatin, and cerivastatin, all of which share fluorophenyl groups in their structure [69]. Atorvastatin is the most frequently administered statin for the treatment of hypercholesterolemia and is used as a calcium salt of hydroxy acid, its active form, in a posology ranging from 10 to 80 mg a day [77]. Rosuvastatin, outstanding by its hepatic specificity [78], is considered the most potent statin and the most effective in the reduction of circulating cholesterol [79]. It is administered as calcium salt in a posology ranging from 5 to 40 mg per day [80]. Pitavastatin, also named nisvastatin [81], is a novel statin [82] with a maximal approved dosage (4 mg/day) showing an efficiency lowering cholesterol levels equivalent to simvastatin/atorvastatin and superior to pravastatin [83]. Fluvastatin, the carboxylic acid, is a statin highly permeable in the intestine [84] which action in
lowering cholesterol levels is attributed to the increase in expression of LDL receptor in hepatocytes and LDL catabolism [85]. Finally, cerivastatin, was recalled due strong secondary effects, especially rhabdomyolysis with subsequent death [86].

Based on their solubility profile, statins are classified as hydrophilic (rosuvastatin and pravastatin, with great hepatoselectivity [87] and action mediated by specific carriers [79]), or lipophilic (simvastatin, atorvastatin, cerivastatin, fluvastatin, pitavastatin and lovastatin, which are associated with pleiotropic effects [88] due their ability to cross the cell membrane by passive diffusion [89]).

The canonical mechanism of action of statins is by competitive inhibition of HMG-CoA reductase, a key enzyme in the synthesis pathway of cholesterol. Another mechanism is the inhibition of isoprenoids, reducing HMG-CoA to mevalonic acid [90]. Evidence shows that the inhibition of HMG-CoA reductase induces the expression of LDL receptors and the increased presence of this receptors in the plasma membrane increases the uptake of LDL particles from circulation by liver cells [91].

The most frequent administration route of statins is oral and after the uptake, present a highly variable exposure [92]. Atorvastatin and rosuvastatin for instance, both lipophilic, presenting the highest half-life times, with 20 h and 7–20 h respectively, while the rest, exhibited lower times. Pitavastatin in addition, has a half-life of 10 h, fluvastatin 1–3 h, cerivastatin 2–3 h, pravastatin 1–3 h, lovastatin 2–5 h, simvastatin 2–5 h [93]. The bioavailability is also highly variable. Rosuvastatin, exhibited 20% after an oral dose of 40 mg/day (PMID: 14667956).
Atorvastatin 15% [94], lovastatin 5% [95] and simvastatin 5% after a dose of 80 mg/day [96]. In this matter, the design of new drug delivery systems is showing a promising potential, considering the increased circulation time and reduced liver uptake that translate in improved treatment efficiency [97].

Statins are primarily metabolized by cytochrome P450 CYP3A4 isoform, except for fluvastatin that is metabolized by CYP2C9 isoform pathway [79]. Not all statins show the same behavior after administration. Atorvastatin and rosvastatin show a long half-life due to, among other characteristics, their metabolites remain active, prolonging the inhibition of HMG-CoA reductase [98, 99]. In the other hand, due to their short half-life, the other statins must be administered at evening, when cholesterol synthesis increases to take advantage of their effect [90]. Renal excretion of statins is low, encompassing from 5 to 30%. A major part of metabolites is eliminated via bile secretion [79]. The oral administration of statins also involves a strong hepatic first-pass extraction, metabolizing between 70 and 80% of statin administered [92]. But fluvastatin exhibited limited systemic exposure after the extensive sequestration in the first-pass metabolism that implies a brief half-life of 30 min, reduced active metabolites and adverse effects attributed to drug accumulation [100]. In addition, circulating statins are predominantly bound to proteins, reducing even more their bioavailability in the circulation and peripheral tissues [92]. In this context, hepatic diseases could mean a relevant factor to consider before statin administration in comparison to renal insufficiency, depending on the statin used.

Importantly, the action of statins has shown elevated interaction with other drugs. It is known for instance, that simvastatin (metabolized by the enzyme CYP3A4) is affected using CYP3A4 inhibitors as azole antifungals (itraconazole), macrolide antibacterial (erythromycin and clarithromycin), and calcium channel antagonists (diltiazem, mibebradil, and verapamil) that significantly increased simvastatin AUC [101]. Conversely, ferburtinib, a CYP3A4 substrate, increased the AUC of simvastatin about 150% [102], while Amlodipine, a CYP3A4 inhibitor, increased in approximately 80% the AUC of simvastatin [103]. Similarly, atorvastatin is metabolized by CYP3A4, being the AUC also affected by the enzyme inhibitors [101]. Additionally, the inhibition of OATP1B (statins transporter) with a single intravenous injection of rifampicin increased the AUC of atorvastatin by about seven times compared to its baseline levels [104]. Finally, lovastatin reduced AUC and Cmax after 3 days of berberine (an insulin sensibilizing drug) also mediated by CYP 450 3A4 [105].

The use of pravastatin and the OATP inhibitor cyclosporine, showed a significant increase in pravastatin concentrations at plasma levels [106, 107]. Similarly, glecaprevir and pibrentasvir, antiviral drugs against chronic hepatitis C virus infection and inhibitors of OATP1B1 and OATP1B3, increased the AUC of this statin in approximately 130% in healthy subjects [108]. For rosvastatin, the use of darolutamide, a drug approved for the treatment of prostate cancer increased the AUC of rosvastatin to about 400% [109]. In addition, Recent studies found that a single 600 mg dose of rifampin (a strong inducer of CYP3A4) administered either orally or intravenously increased the AUC of rosvastatin by 300% [110, 111].

Pitavastatin co-therapy with lopinavir/ritonavir decrease its AUC by 20% in healthy adult volunteers, showing its potential for the safe treatment of dyslipidemia in patients with HIV and receiving antiretroviral therapy [112]. The co-administration of cyclosporine with pitavastatin generated an increase in the AUC of pitavastatin by about five times its basal AUC [113], and a similar effect that is obtained when co-administering a single dose of rifampicin together with pitavastatin [114]. Fluvastatin with cimetidine, ranitidine, or omeprazole, generated an increase in Cmax of 43, 70 and 50% respectively with each drug, while the AUC increased in a range of 24–33% when fluvastatin was used with these drugs, decreasing plasma clearance between 18 and 23% [115, 116]. In addition, the use of fluvastatin with rifampin reduced fluvastatin AUC by 50% [117].
Finally, the interaction of food supplements with statins also showed remarkable effects. Lovastatin for instance, reduced the exposure of its active metabolite (lovastatin acid) in circulation after a high fat diet and increased the exposure of the inactive form in muscles, promoting myotoxicity by the downregulation of carboxylesterase (CES) activity, an effect prevented by the intake of isoflavones that improve CES activity and subsequently, increase the circulating levels of lovastatin acid [118]. Similarly, has been reported that supplementation with essential amino acids enhance the effect of rosuvastatin and improved cellular energetics and renal function [119]. For simvastatin, it has been described that the supplementation with vitamin D promoted a significant reduction in the bioavailability of its active and inactive forms (simvastatin acid) [120]. Atorvastatin in the other hand, has showed potentiated effect in lowering circulating lipid levels and treat hyperlipidemia when is administered with coenzyme Q10, although the associated mechanisms remain to be clarified it is interesting that this dual treatment also reduced myotoxicity [121]. Similarly, pravastatin showed improved effect when combined with N-3 fatty acid supplementation, diminishing LDL cholesterol particles in hyperlipidemic patients. However, molecular mechanisms are still unexplored [122]. Pitavastatin has showed delayed absorption after a high-fat meal although that did not represent any adverse effect [123], whereas Fluvastatin absorption remained unaffected after eating [100].

2.2 Statins in Thrombotic Events

Beyond its role in the regulation of lipid profile, statins have shown pleiotropic effects including the regulation of inflammatory signaling [124], fibrosis reduction in hepatitis C patients [125], antioxidant properties in the inhibition of superoxide synthesis by macrophages and other reactive oxygen spices (ROS) from endothelium [90]. However, the study of statins effectivity in the treatment of hemostatic (thrombotic/fibrinolytic and hemorrhagic) alterations remain as an unsolved issue, considering the variability observed in clinical trials depending on statin subtype used, administered dose, treatment time and concomitant pathology (Table 2.1).

In randomized controlled studies performed in patients experiencing VTE, rosuvastatin is the most used statin. A study including 247 patients, shows that the 126 patients randomized to rosuvastatin treatment group improved coagulation parameters including reduced circulating levels of coagulation factor VIII (FVIII), vWF, factor XI (FXI), factor VII (FVII) and D-dimer after one month under treatment [126]. Similarly, in a cohort of 228, the group of patients receiving rosuvastatin (10 mg/day) for three months showed decreased levels of D-dimer, suggesting an attenuation in the thrombotic event, together with a visible reduction in mean platelet volume, an indicator of platelet activation [133]. Likewise, a study including a cohort of 245 patients experiencing VTE, where 125 were submitted to rosuvastatin treatment for 4 weeks, exhibits that drug users decreased endogenous thrombin potential [127]. Similarly, the reduction in mean clot lysis time, an indicator of plasma fibrinolytic potential, was observed in a study including 126 patients with previous VTE treated 28 days with rosuvastatin. This treatment also decreased plasmin inhibitor and TAFI expression, and increased fibrinogen expression while plasminogen activator inhibitor I (PAI-I) did not change levels [128]. Likewise, patients with deep venous thrombosis treated with rosuvastatin for 28 days showed improved levels of procoagulant phospholipids activity independent of plasma cholesterol levels [129].

Similarly, a study performed in 818 patients with DVT of which 34% were under stain therapy with atorvastatin (10–80 mg/day), simvastatin (20–80 mg/day) and pravastatin (10–80 mg/day) for 3 months showed that the exposition to statins was associated to improved thrombus resolution in patients with DVT. However, that effect was not associated with reduced thromboembolic recurrence or mortality [165]. Interestingly, the use of rosuvastatin plus heparin in the treatment of DVT for three months did not promote significant changes in the
Table 2.1 Statins effect in hemostatic alterations considering administered dose, study duration, number of participants, primary pathology and results from clinical studies

Statin	Dose mg/day	Duration	n	Pathologies	Results	References
Statin in thrombotic events						
Rosuvastatin	20	1 month	247	VTE	Reduced FVIII, vWF, FXI, FVII and D-dimer	[126]
Rosuvastatin	20	4 weeks	126	VTE	Reduction on endogenous thrombin potential	[127]
Rosuvastatin	20	28 days	126	Previous VTE	Mean clot lysis time, plasmin inhibitor and TAFI decrease. PAI not change, fibrinogen	
					increased	[128]
Rosuvastatin	20	28 days	245	Previous VTE	Reduction of procoagulant phospholipids, not explained by changes in total cholesterol	
					nor change in levels of total- or platelet-derived EVs	[129]
Atorvastatin	10–80	3 months	818	DVT	Improved thrombus resolution	[130]
Simvastatin	10–80					
Pravastatin	10–80					
Rosuvastatin		3 months	230	DVT	No effect on D-dimer	[131]
Simvastatin, atorvastatin, fluvastatin, rosuvastatin and pravastatin	NA	3 months	156	Suspected pulmonary embolism	Decreased D-dimer	[132]
Rosuvastatin	10	3 months	228	VTE	Decreased D-dimer and mean platelet volume	[133]
Statin in vascular and cardiovascular-related diseases						
Atorvastatin	10	4 weeks	35	Heart failure	Anti-thrombin III, protein C, FV, tPA and PAI decreased with atorvastatin. Plasma vWF,	
					FVII, protein S remain unaffected	[134]
Atorvastatin	10 and 80	2 weeks	60	Acute coronary syndrome	Low and high atorvastatin dose suppress elevated expression of vWF	[135]
Atorvastatin	10	6 weeks	45	Unstable angina	Atorvastatin prevent increase in antithrombin III and vWF. No variations in tPA protein	
					S, FVIII and protein C	[136]
Atorvastatin	80	8 weeks	90	Arterial occlusive disease	Atorvastatin reduced thrombin generation and TF, GPIIIa and p-selectin of	
					platelet derived microparticles from patients with peripheral vascular disease	[137]
Statin	Dose	Duration	n	Pathologies	Results	References
Atorvastatin	20 mg	N/A	59	Carotid atherosclerotic plaque	TF Ag and TFPI Ag levels, and TF activity in plaques after atorvastatin treatment were lower	[138]
Rosuvastatin	40 mg	N/A	54	Acute coronary syndrome	Reduced interactions between platelet-neutrophils and platelet-monocytes. No effect on platelet aggregation, sP-selectin	[139]
Simvastatin	80 mg	15 days	32	Aneurysmal subarachnoid hemorrhage	No changes in coagulation, fibrinolysis o endothelial function after statin treatment	[140]
Pravastatin	20–40	6 months	93	Coronary artery disease and cholesterolmia	Decreased PAI and tPA antigen. No changes in D-dimer, prothrombin, FVIIa, vWF. Ex-vivo decreased thrombus area in non-CAD. CAD patients decreased thrombus formation	[141]
Fluvastatin	80 mg	6 h	57	Acute coronary syndrome	Soluble endothelial protein C receptor increased and free TFPI increased after administration of fluvastatin	[142]
Pravastatin	40 mg	3 months	50	CVD	Significant reduction in blood thrombogenicity and endothelium-dependent vasoresponse. No effect on fibrinogen, sL-sP-selectin and sICAM-1	[143]
Simvastatin	20 mg					
Simvastatin	40 mg	4 weeks	38	Coronary artery disease	Increased plasma clot permeability, short fibrinolysis time, increased clot porosity	[144]
Atorvastatin	40 mg					
Simvastatin	40 mg	At least 1-month prior admission	19	Myocardial infarction	Reduction in thrombin-antithrombin complexes in the vascular injury site, but not in circulation	[145]
Atorvastatin and simvastatin	20–40	1 year	58	Coronary heart disease	Increased D-dimer and tPA activity and reduced tPA antigen in atorvastatin group. In simvastatin groups was observed reduced prothrombin 1.2 fragments. No differences in coagulation variables	[146]

Metabolic diseases and related risk factors (metabolic syndrome, diabetes, hyperlipidemia, hypertension)

Statin	Dose	Duration	n	Pathologies	Results	References
Atorvastatin	80 mg	12 weeks	88	Metabolic syndrome	Improved lipidic profile, no changes in ICAM-1, platelet activity. Increased VCAM-1 activity	[147]

(continued)
Statin	Dose mg/day	Duration	n	Pathologies	Results	References
Simvastatin	40	8 weeks	50	Metabolic syndrome	Reduced PAI activity. No alter sP-selectin	[148]
Atorvastatin	10 and 80	30 weeks	217	Type 2 diabetes mellitus	Atorvastatin dose dependently reduced D-dimer and PAI, Fibrinogen, vWF, tPA, FVIIa were not influenced by atorvastatin	[149]
Atorvastatin	40	10 weeks	30	Diabetes	Reduction in thrombin generation	[150]
Atorvastatin	80	2 months		Type 1 diabetes, dyslipidemia	Increased fibrin network permeability and decreased thrombin potential, GP IIIa, p-selectin and TF	[151]
Pravastatin	40	8 weeks	50	Type 2 diabetes	Reduction in vWF, sTF. Fibrinogen and D-dimer did no decrease	[152]
Simvastatin	20	24 weeks		Prediabetes and hypercholesterolemia	Decreased PAI levels. Combined therapy with ezetimibe induced reduction in E-selectin, ICAM-1	[153]
Simvastatin	20	3 months	20	Type 2 diabetes and dyslipidemia	t-Pa increased but also PAI, vWF, E-P-selectin, ICAM-1 and VCAM-1 after simvastatin treatment	[154]
Simvastatin	40	90 days	39	Hypertriglyceridemia	Reduced plasma levels and activity of fibrinogen, FVII and PAI-1. No reduction in vWF	[155]
Simvastatin	40	90 days	104	Hypercholesterolemia	Simvastatin reduced plasma/activity of fibrinogen, FVII, FX, vWF and PAI. Combined therapy showed the best results in hemostatic variables	[156]
Simvastatin	40	28 days	20	Hypercholesterolemia	Decreased TAT, sP-selectin, thrombin in microvascular injury site, B-thromboglobulin	[157]
Atorvastatin	80	1 month	45	Hypercholesterolemia	Rosuvastatin normalized platelet cholesterol, TF and FXa production and increased HDL-C	[158]
Rosuvastatin	20					
Simvastatin, atorvastatin, cerivastin, fluvastatin and pravastatin	N/A	6 weeks	144	Hypercholesterolemia	Simvastatin and atorvastatin decreased platelet dependent thrombin generation	[159]
regulation of hemostasis considering that D-dimer remains invariable when compared with heparin group [131]. However, in patients with suspected pulmonary embolism, the use of statins, promoted a reduction in D-dimer levels by 15%. Interestingly, the 72% of patients received lipophilic statins (simvastatin, atorvastatin or fluvastatin) presented lower D-dimer levels, but this difference was not significant when compared with hydrophilic statins [132]. Based in the above findings, further studies are required for the exhaustive evaluation of coagulation- and fibrinolysis-related parameters after long term rosvustatin u other statins use.

2.3 Statins in Vascular and Cardiovascular-Related Diseases

Statins are also used in cardiovascular-related disorders, where atorvastatin is the most used drug. Interestingly, for depicting the effect of atorvastatin in hemostasis, the administered dose, the exposition time and the concomitant pathology are relevant. In arterial occlusive disease for instance, the administration of atorvastatin at high dose (80 mg/day) reduced plasma prothrombin 1 + 2 fragment concentration, thrombin generation (including thrombin peak) and TF, GPIIIa, P-selectin expression in a mechanism dependent on platelet-derived microparticles, a phenomenon evaluated with complementary in vitro studies [137]. Similarly, an inferior dose of atorvastatin (20 mg/day) in patients with carotid atherosclerotic plaque promoted reduced TF antigen levels and activity [138], suggesting that independent of administered dose, atorvastatin is an effective alternative in the prevention of thrombotic events mediated by TF.

Alternatively, in patients suffering heart failure, a condition known for promoting a procoagulant state, atorvastatin (10 mg/day) for 4 weeks altered endothelial and hepatic proteins involved in coagulation and fibrinolysis, particularly, decreasing antithrombin III, protein-C, FV, tPA and PAI no affecting vWF, FVII and protein-S levels. It is interestingly the authors discussed the anti-inflammatory effect of atorvastatin, founded on the decrement of proinflammatory cytokines, which could be related with alteration in coagulation parameters, and represent other mechanistic pathway in coagulation disorders improvement [134]. Similarly, the
same (10 mg/day) or even a higher dose of atorvastatin (80 mg/day) used on another cohort of patients with acute coronary syndrome for 2 weeks was effective in the modulation of vWF levels [135].

Likewise, in a longer intervention in patients with unstable angina, the administration of atorvastatin at low dose also prevented the increase of antithrombin III and vWF, remain unchanged the levels of tPA, protein-S, FVIII and protein-C. It is important to highlight that the study was conducted in normocholesterolemic patients, which means that the effects on coagulation parameters are independent of cholesterol level improvement, positioning this statin even at low dose as a potential therapeutic alternative in the prevention of thrombotic events [136]. Further, in 19 patients with myocardial infarction treated with 40 mg/day of simvastatin, was observed a reduction in thrombin generation and platelet activation compared with 34 patients unexposed to statins [145]. Finally, in a study comparing the effectiveness of statins in hemostatic regulation of patients with coronary heart disease, results demonstrated that atorvastatin surpasses simvastatin in the improvement of fibrinolytic activity in patients with coronary heart disease, increasing D-dimer levels and tPA activity. Unlike the studies above, this work evaluated a long-time treatment (one year) [146].

Similarly, the use of rosuvastatin in a clinical trial including 53 patients experiencing acute coronary syndrome demonstrated that a high dose (40 mg/day) and short exposition time (8–24 h) reduced platelet-neutrophil and platelet–monocyte interactions without affecting platelet aggregation or p-selectin expression [139]. The use of pravastatin in patients with coronary artery disease and cholesterolemia showed that its administration for 6 months decreased PAI-I but also tPA levels and interestingly, D-dimer, prothrombin, FVII, or vWF production was no affected [141]. Finally, when fluvastatin was administered for 6 h in patients with acute coronary syndrome it promoted an increased expression of endothelial protein-C receptor and TFPI, modifying key antithrombotic factors in truly short periods [142]. Conversely, the use of simvastatin at 80 mg/day for 14 days in a randomized controlled trial of patients with aneurysmal subarachnoid hemorrhage, it was found that this drug shows was not involved in the regulation of coagulation, fibrinolysis, or endothelial function parameters, but reduced, as expected, the levels of cholesterol in blood [140]. This is remarkably interesting considering the opposite results described above, where statins demonstrated key participation in thrombotic events but not in the hemorrhagic one, and considering the pathophysiological differences of these processes, the use of statins in the treatment of hemorrhagic diseases deserve further explorations.

2.4 Metabolic Diseases and Related Risk Factors

In patients with metabolic syndrome, complementary therapy with statins has also showed controversial effects. In a cohort of 88 patients high atorvastatin dose (80 mg/day) for 12 weeks showed to improve lipidic profile without affecting the coagulant activity after 12 weeks of treatment [147]. Conversely, in a cohort of 50 patients, the use of simvastatin (40 mg/day) for 8 weeks showed an improvement in fibrinolysis, through PAI-I activity reduction [148].

In a study performed on diabetic patients, atorvastatin treatment contributed to an improved coagulant status. When the drug was administered at low and high dose (10 and 80 mg/day, respectively) for 30 weeks for instance, it was observed a reduction in D-dimer and PAI-I, and this change was dependent on the administered dose. Also, atorvastatin showed to increase fibrin permeability, decrease thrombin potential, and reduce GPIIIa, p-selectin and TF expression [149]. Similarly, atorvastatin administration at 40 mg/day for 10 weeks reduced thrombin generation [150]. That could be mediated by the reduction in the anticoagulant protein C expression observed in diabetic patients without macrovascular complications [166]. The data above suggest the potential of atorvastatin to improve a procoagulant state through reduction...
in thrombin activity or concentration. Likewise, simvastatin was evaluated in diabetic patients with dyslipidemia and the treatment for 3 months showed to increase fibrinolytic-related proteins as tPA and PAI-I, but also procoagulant factors such as vWF, and cellular adhesion proteins as E-selectin, P-selectin, ICAM-1, and VCAM-1 [154]. On the contrary, the treatment for 24 weeks in pre-diabetic and hypercholesterolemic patients decreases PAI-I levels [153]. This could suggest a time dependent effect and the contribution of baseline conditions as determinant in coagulation outcomes, but further investigation is needed to determine if these variables are relevant.

Moreover, in patients with lipid disorders, simvastatin at 40 mg/day is used, showing a reduction in fibrinogen, FVII and PAI-I levels in plasma after 90 days of treatment in a cohort of 39 patients [155]. Similarly, in a cohort of 104 patients, 90 days of treatment with simvastatin showed to reduce procoagulant proteins as fibrinogen, FVII, FX, vWF and PAI-I [156]. Finally, a study comparing atorvastatin and simvastatin effect, showed differential contribution of these drugs. Both exhibited prolonged PT but only simvastatin reduced fibrinogen concentration and promoted PTT prolongation [160]. Interestingly, simvastatin use showed to increase TAT, sP-selectin, thrombin and β-macroglobulin, essential proteins in platelet function [157], suggesting that platelets present a particular response to statins administration. In this matter, a study comparing the effectiveness of atorvastatin and rosuvastatin in hypercholesterolemic patients showed that rosuvastatin but no atorvastatin normalized platelet cholesterol content and was associated with improved TF and FXa production. The article discusses about a possible pleiotropic effect of rosuvastatin and provide clues about the differential effect of statins [158].

Furthermore, a study comparing simvastatin, atorvastatin, cerivastatin, fluvastatin and pravastatin, showed that only rosuvastatin and atorvastatin decreased platelet dependent thrombin generation [159]. Finally, in hypercholesterolemic patients with essential hypertension and non-alcoholic fatty liver disease, the treatment with statins reduced platelet aggregation by 16%, thrombin time by 12.2% and increased antithrombin III activity by 3%, prothrombin time by 32%, INR by 25% and thrombin time by 23% [165]. These findings are remarkably interesting, considering that in patients with lipid disorders, statins exhibited strong influence in hemostatic parameters and in the regulation of platelet function.

2.5 Other Chronic Diseases

In other chronic diseases as chronic obstructive pulmonary disease (COPD), simvastatin at 40 mg/day promoted a slight increase in TF activity and decreased TFPI and FVII [161]. Moreover, the administration of simvastatin improved clot properties in COPD patients, reduced density of networks and less resistant to lysis [162]. Conversely, in cancer patients, statin (rosuvastatin) use does not improve biomarkers of VTE risk and in patients with chronic kidney disease, statin (atorvastatin) use does not change the fibrinolytic parameters evaluated [164].

2.6 Molecular Mechanisms in Statins Improved Coagulation

The evidence summarized here showed that the action of statins in coagulation regulation is highly dependent on statin subtype used, administered dose, and target tissue [79, 167], although involved molecular mechanisms are poorly understood (Fig. 2.2).

The liver, the main site of cholesterol synthesis and subsequently the main target of statins [96, 168] is also the primary site of coagulation factors synthesis [169]. Therefore, deciphering local mechanisms of coagulation regulation mediated by statins is a relevant issue. Recent findings support this notion considering that hepatic cell cultures and animal models showed that Rac1/hepatocyte nuclear factor 1α (HNF1α) pathway participated in the increased expression
of the anticoagulant protein C after simvastatin treatment [67]. Despite this interesting finding, more studies are needed to elucidate the interplay between statins, and hepatic-derived coagulation regulation.

Given the participation of platelets in hemostasis [170], it is necessary deepen in the molecular mechanisms explaining the effect exerted by statins since previous findings indicated that statins reduce mean platelet volume [171] and reduce platelet reactivity and thus, improving in 65% aspirin resistance [172]. Interestingly, experiments in pre- or post-treated platelets with lovastatin showed reduction in platelet hyperreactivity, prevention in thrombin generation, downregulation in TF expression and reduced platelet aggregation [158]. Complementary studies explored the effects of pravastatin, atorvastatin and simvastatin on platelet reactivity and found that only pravastatin and simvastatin reduced platelet aggregation and thromboxane formation by platelet membrane-associated proteins [173]. The protease-activated receptor-1 (PAR-1), with a pivotal participation in platelet activation, has demonstrated high responsiveness to statins, particularly pravastatin that dose-dependently downregulated platelet activity by preventing ADP-induced PAR-1 expression [174]. Finally, statins including atorvastatin, rosuvastatin and fluvastatin potentiate the antibacterial effect of platelets over Staphylococcus aureus through glycoprotein IIb-IIIa, however, the implication of this finding requires further in vivo exploration [175].

It is well known that hypercholesterolemia promoted platelet reactivity associated with a procoagulant state and increased CVD risk [176]. Interestingly, high ox-LDL levels in hypercholesterolemic mice lead upregulation in monocyte-derived TF expression and activity, increasing thrombin-antithrombin activity and D-dimer levels, both markers of systemic coagulation activation. Interestingly, hypercholesterolemic mice and monkeys treated with simvastatin 50 mg/kg/day and 10 mg/kg/day respectively, reduced ox-LDL levels and monocyte-derived TF, with subsequent attenuation of plasma coagulation activation markers independent of total cholesterol levels regulation [177].

Endothelial dysfunction and concomitant microthrombosis are key mechanisms in the
pathogenesis of sepsis [178]. During experimental sepsis was demonstrated that simvastatin (25 mg/kg/day) pretreatment prevented hepatic microthrombosis and peripheral consumption-related bleeding by preserving thrombomodulin expression and downregulate fibrin deposition and vWF release in liver sinusoids [179]. Similarly, simvastatin (20 mg/kg/day) administration reduced septic-induced coagulopathy in mice, improving coagulation factors and platelet depletion, PAI-1 expression and fibrin deposition, ultimately, attenuating disseminated intravascular coagulation and increasing survival rate. Although in this case, simvastatin effects was also attributed to improved intestinal permeability and dysbiosis [180].

Endothelial-derived molecules as nitric oxide has been directly associated with reduced platelet adhesion to endothelial cells [181] and inactivation of intravascular coagulation [182]. In that context it is interesting the contribution of statins, considering that simvastatin promotes e-NOS activation [183] through Akt activation [184] and, active metabolites of atorvastatin have shown reduced oxidative stress in endothelial cells, increasing NO bioavailability [185]. The above has direct implications in endothelial function, considering NO decrease endothelial adhesion proteins, including ICAM-1 [186]. Complementary studies in endothelial cells pre-incubated with simvastatin or atorvastatin, stimulated with LPS y cocultured with platelets find reduced expression of VCAM-1 [187].

Considering the inconclusive and controversial evidence of statins contribution in the improvement of fibrinolysis, the effectiveness of atorvastatin, cerivastatin, fluvastatin, lovastatin, pravastatin and simvastatin in vascular cells was evaluated. Results showed that all statins except pravastatin promoted a significant decrease in PAI-1 mRNA and protein in smooth muscle cells (SMCs) and ECs under IL-1 or TNF-alpha stimulation. Similarly, all statin, except pravastatin upregulated tPA release in SMC, whereas in endothelium, only simvastatin and lovastatin elevated tPA mRNA and protein production [188]. In the endothelial cell line EA.hy926 was demonstrated that statins, specifically atorvastatin promoted antithrombotic properties through the regulation of cholesterol and lipid metabolism, since atorvastatin administration at micromolar concentrations reduced PS, sphingomyelin, cholesterol and ceramides between 50 and 70%, that associated to significant reduction in FVIIa, TF and prothrombinase activity, suggesting that statins limit enzymatic proteolytic complexes involved in exacerbated coagulation cascade propagation [189].

Finally, endothelial progenitor cells (EPCs) with an essential role in the regulation of platelet activation, aggregation, and subsequent participation in thrombus formation [190, 191], showed a significant increase after atorvastatin administration, showing a novel and promising role in hemostasis regulation [192].

2.7 Concluding Remarks

Taken together, evidence from clinical research showed that statins are proved and effective regulators of dyslipidemia with a high impact in vascular function and hemostasis regulation in acute and chronic diseases. However, relevant primary investigation is required to elucidate the underlying molecular mechanisms mediating differential statin actions, improving their therapeutic actions and avoid detrimental side effects.

Statements and Declarations

Funding This research was funded by research grants from Agencia Nacional de Investigación y Desarrollo (ANID)—Fondo Nacional de Desarrollo Científico y Tecnológico FONDECYT Grants 1201039, 11170840 and 1191300. ANID—Millennium Science Initiative Program—ICN09_016/ICN 2021_045: Millennium Institute on Immunology and Immunotherapy (ICN09_016/ICN 2021_045; former P09/016-F), Millennium Nucleus of Ion Channel-Associated Diseases (NCN19_168), ANID-PCHA/Doctorado Nacional 21200881 (FM), 21220694 (YP), ANID-PCHA/Gastos Operacionales proyecto de tesis Doctoral/24220128 (FM).
Disclosure of interests All authors declare they have no conflict of interest.

Ethical Approval This article does not contain any studies with human participants or animals performed by any of the authors.

References

1. Sere KM, Hackeng TM (2003) Basic mechanisms of hemostasis. Semin Vasc Med 3(1):3–12
2. Semeraro N, Colucci M (1992) Changes in the coagulation-fibrinolysis balance of endothelial cells and mononuclear phagocytes: role in disseminated intravascular coagulation associated with infectious diseases. Int J Clin Lab Res 21(3):214–220
3. Tanaka KA, Key NS, Levy JH (2009) Blood coagulation: hemostasis and thrombin regulation. Anesth Analg 108(5):1433–1446
4. Verhamme P, Hoylaerts MF (2006) The pivotal role of the endothelium in haemostasis and thrombosis. Acta Clin Belg 61(5):213–219
5. Bouvy C, Gheldof D, Chatelain C, Mullier F, Dogne JM (2014) Contributing role of extracellular vesicles on vascular endothelium haemostatic balance in cancer. J Extrascell Vesicles 3
6. Egbrink MG, Van Gestel MA, Broeders MA, Tangelder GI, Heemskerk JM, Reneman RS et al (2005) Regulation of microvascular thromboembolism in vivo. Microcirculation 12(3):287–300
7. Ganesh D, Jain P, Shanthamurthy CD, Toraskar S, Kikkeri R (2021) Targeting selectins mediated biological activities with multivalent probes. Front Chem 9:773027
8. Stark K, Massberg S (2021) Interplay between inflammation and thrombosis in cardiovascular pathology. Nat Rev Cardiol 18(9):666–682
9. Nicolau L, Massberg S (2020) Platelets as key players in inflammation and infection. Curr Opin Hematol 27(1):34–40
10. Kujovic J (2015) Coagulopathy in liver disease: a balancing act. Hematology Am Soc Hematol Educ Program 2015:243–249
11. Boknas N, Laine C, Hillarp A, Macwan AS, Gustafsson KM, Lindahl TL et al (2022) Associations between hemostatic markers and mortality in COVID-19—compounding effects of D-dimer, antithrombin and PAP complex. Thromb Res 213:97–104
12. Arientova S, Beran O, Chalupa P, Korinkova M, Holub M (2019) Antithrombin as a marker of severe acute hepatitis B. Indian J Gastroenterol 38(2):143–149
13. Abo-Elenein AM, Mahrouk MM, Abou-Saif S, Saeed OM, Khodeir S, Elkadeem M et al (2020) Role of both protein C and antithrombin III as predictors of stage of liver disease in chronic viral hepatitis B or C infected patients. Endocr Metab Immune Disord Drug Targets 20(1):112–117
14. Sim MMS, Banerjee M, Myint T, Garvy BA, Whiteheart SW, Wood JP (2022) Total plasma protein S is a prothrombotic marker in people living with HIV. J Acquir Immune Defic Syndr 90(4):463–471
15. Samra N, AlGhwass M, Elgawhary S, Hassan M, Bekhit O, Mohamed W et al (2019) Serum level of antithrombin III (ATIII) could serve as a prognostic biomarker in neonatal sepsis. Fetal Pediatr Pathol 38(4):290–298
16. Yang N, Hao J, Zhang D (2017) Antithrombin III and D-dimer levels as indicators of disease severity in patients with hyperlipidaemic or biliary acute pancreatitis. J Int Med Res 45(1):147–158
17. He HL, Zhang JB, Li Q (2014) Clinical significance of expression of tissue factor and tissue factor pathway inhibitor in ulcerative colitis. World J Gastroenterol 20(23):7461
18. Miyake R, Yamada Y, Yamanaka S, Kawaguchi R, Ootake N, Myoba S et al (2022) Tissue factor pathway inhibitor 2 as a serum marker for diagnosing asymptomatic venous thromboembolism in patients with epithelial ovarian cancer and positive D-dimer results. Mol Clin Oncol 16(2):46
19. Fei X, Wang H, Yuan W, Wo M, Jiang L (2017) Tissue factor pathway inhibitor-1 is a valuable marker for the prediction of deep venous thrombosis and tumor metastasis in patients with lung cancer. Biomed Res Int 2017:8983763
20. Marco A, Marco P (2021) Von Willebrand factor and ADAMTS13 activity as clinical severity markers in patients with COVID-19. J Thromb Thrombolysis 52(2):497–503
21. Philippe A, Chocron R, Gendron N, Bory O, Beauvais A, Peron N et al (2021) Circulating Von Willebrand factor and high molecular weight multimers as markers of endothelial injury predict COVID-19 in-hospital mortality. Angiogenesis 24(3):505–517
22. Watany MM, Abdou S, Elkolaly R, Elgharabawy N, Hodeib H (2022) Correction to: evaluation of admission levels of P, E and L selectins as predictors for thrombosis in hospitalized COVID-19 patients. Clin Exp Med
23. Nagashima S, Mendes MC, Camargo Martins AP, Borges NH, Godoy TM, Miggiolaro A et al (2020) Endothelial dysfunction and thrombosis in patients with COVID-19-brief report. Arterioscler Thromb Vasc Biol 40(10):2404–2407
24. Birnhuber A, Fliesser E, Gorkiewicz G, Zacharias M, Seeliger B, David S et al (2021) Between inflammation and thrombosis: endothelial cells in COVID-19. Eur Respir J 58(3)
25. Cerletti C, Tamburrelli C, Izzì B, Gianfagna F, de Gaetano G (2012) Platelet–leukocyte interactions in thrombosis. Thromb Res 129(3):263–266
26. Pretorius L, Thomson GJA, Adams RCM, Nell TA, Laubscher WA, Pretorius E (2018) Platelet activity and hypercoagulation in type 2 diabetes. Cardiovasc Diabetol 17(1):141

27. Marx C, Novotny J, Salbeck D, Zellner KR, Nicolai L, Pekayvaz K et al (2019) Eosinophil–platelet interactions promote atherosclerosis and stabilize thrombosis with eosinophil extracellular traps. Blood 134(21):1859–1872

28. Laridan E, Denorme F, Desender L, Francois O, Andersson T, Deckmyn H et al (2017) Neutrophil extracellular traps in ischemic stroke thrombi. Ann Neurol 82(2):223–232

29. Zamzam A, Syed MH, Rand ML, Singh K, Hussain MA, Jain S et al (2020) Altered coagulation profile in peripheral artery disease patients. Vascular 28(4):368–377

30. Levy JH, Szlam F, Tanaka KA, Sniecenski RM (2012) Fibrinogen and hemostasis: a primary hemostatic target for the management of acquired bleeding. Anesth Analg 114(2):261–274

31. Charbit B, Mandelbrot L, Samain E, Baron G, Haddaoui B, Keita H et al (2007) The decrease of fibrinogen is an early predictor of the severity of postpartum hemorrhage. J Thromb Haemost 5(2):266–273

32. Shen J, Ran ZH, Zhang Y, Cai Q, Yin HM, Zhou XT et al (2009) Biomarkers of altered coagulation and fibrinolysis as measures of disease activity in active inflammatory bowel disease: a gender-stratified, cohort analysis. Thromb Res 123(4):604–611

33. Panova-Noeva M, Schulz A, Arnold N, Hermanns MI, Prochaska JH, Laubert-Reh D et al (2018) Coagulation and inflammation in long-term cancer survivors: results from the adult population. J Thromb Haemost 16(4):699–708

34. Zhou Q, Mao M, Meng J, Shi K, Lin J, Lu Q (2020) The thromboelastography G parameter as a potential biomarker of acute coronary syndrome. Scand J Clin Lab Invest 80(3):196–210

35. Gebbink MF (2011) Tissue-type plasminogen activator-mediated plasminogen activation and contact activation, implications in and beyond haemostasis. J Thromb Haemost 9(Suppl 1):174–181

36. Van de Werf F, Ludbrook PA, Bergmann SR, Tiefenbrunn AJ, Fox KA, de Geest H et al (1984) Coronary thrombosis with tissue-type plasminogen activator in patients with evolving myocardial infarction. N Engl J Med 310(10):696–703

37. Zuo Y, Warnock M, Harbaugh A, Yalavarthi S, Gockman K, Zuo M et al (2021) Plasma tissue plasminogen activator and plasminogen activator inhibitor-1 in hospitalized COVID-19 patients. Sci Rep 11(1):1580

38. Sahli D, Eriksson JW, Boman K, Svensson MK (2009) Tissue plasminogen activator (tPA) activity is a novel and early marker of asymptomatic LEAD in type 2 diabetes. Thromb Res 123(5):701–706

39. Flores J, Garcia-Avello A, Alonso E, Ruiz A, Navarrete O, Alvarez C et al (2014) Tissue plasminogen activator as a novel diagnostic aid in acute pulmonary embolism. Vasa 43(6):450–458

40. Zhu J, Wan Y, Xu H, Wu Y, Hu B, Jin H (2019) The role of endogenous tissue-type plasminogen activator in neuronal survival after ischemic stroke: friend or foe? Cell Mol Life Sci 76(8):1489–1506

41. Lachatre F, Gothot A (2007) Clinical use of D-dimer testing. Rev Med Liege 62(1):29–35

42. Hosseini SF, Behnam-Roudsari S, Alavinia G, Emami A, Toghyani A, Moradi S et al (2021) Diagnostic and prognostic value of sepsis-induced coagulopathy and international society on thrombosis and hemostasis scoring systems in COVID-19-associated disseminated intravascular coagulopathy. J Res Med Sci 26:102

43. Fukuoka H, Takeuchi T, Matsumoto R, Bando H, Suda K, Nishizawa H et al (2014) D-dimer as a significant marker of deep vein thrombosis in patients with subclinical or overt Cushing’s syndrome. Endocr J 61(10):1003–1010

44. Yang Y, Zan P, Gong J, Cai M (2017) d-Dimer as a screening marker for venous thromboembolism after surgery among patients younger than 50 with lower limb fractures. Clin Appl Thromb Hemost 23(1):78–83

45. Marcq G, Beaugrand Dubart L, Tournoys A, Subtil D, Deruelle P (2014) Evaluation of D-dimer as a marker for severity in pregnancies with preeclampsia. Gynecol Obstet Fertil 42(6):393–398

46. Yang S, Fan X, Ding W, Liu B, Meng J, Wang K et al (2014) D-dimer as an early marker of severity in patients with acute superior mesenteric venous thrombosis. Medicine (Baltimore) 93(29):e270

47. Ke L, Ni HB, Tong ZH, Li WQ, Li N, Li JS (2012) D-dimer as a marker of severity in patients with severe acute pancreatitis. J Hepatobiliary Pancreat Sci 19(3):259–265

48. Ozen M, Yilmaz A, Cakmak V, Beyoglu R, Oskay A, Seyit M et al (2021) D-Dimer as a potential biomarker for disease severity in COVID-19. Am J Emerg Med 40:55–59

49. Zhang L, Yan X, Fan Q, Liu H, Liu X, Liu Z et al (2020) D-dimer levels on admission to predict inhospital mortality in patients with Covid-19. J Thromb Haemost 18(6):1324–1329

50. Piriillo A, Casula M, Olmastroni E, Norata GD, Catapano AL (2021) Global epidemiology of dyslipidaemias. Nat Rev Cardiol 18(10):689–700

51. Tomlinson B, Patil NG, Fok M, Lam CWK (2021) Managing dyslipidemia in patients with type 2 diabetes. Expert Opin Pharmacother 22(16):2221–2234

52. Thobani A, Jacobson TA (2021) Dyslipidemia in patients with kidney disease. Cardiol Clin 39(3):353–363

53. Katsiki N, Mikhailidis DP, Mantzoros CS (2016) Non-alcoholic fatty liver disease and dyslipidemia: an update. Metabolism 65(8):1109–1123
54. Spasic I, Ubavic M, Sumarac Z, Todorovic M, Vuckovic B (2021) Influence of lipid metabolism disorders on venous thrombosis risk. J Med Biochem 40(3):245–251
55. Carmina R, Duriez P, Fruchart JC (2004) Atherogenic lipoprotein particles in atherosclerosis. Circulation 109(23 Suppl 1):1112–1117
56. Rannou E (1987) A concrete case: celioscopy in the exploration of a left latero-uterine mass associated with pelvic pain and delayed menses. Soins Gynecol Obstet Pueric Pediatr 73–74:35–36
57. Poropat Flerin T, Bozic Mijovski F, Peratoner L, Simeone R, Barbi E, Karasek D, Vaverkova H, Halenka M, Jackulova D, de Laat-Kremers R, Di Castelnuovo A, van der Monagle P, Andrew M (2004) Impaired hemostatic potentials, and coronary atherosclerosis. Dis Markers 2022:2993309
58. Ferreira CN, Carvalho MG, Reis HJ, Gomes KB, Sousa MO, Palotas A (2014) Hyper-coagulable profile with elevated pro-thrombotic biomarkers and increased cerebro- and cardio-vascular disease risk exist among healthy dyslipidemic women. Curr Neurovasc Res 11(2):142–148
59. Jia X, Zhang X, Sun D, Yang N, Li R, Luo Z (2022) Triglyceride to HDL-C ratio is associated with plasma D-dimer levels in different types of pancreatitis. Sci Rep 12(1):12952
60. Ebara S, Marumo M, Mukai J, Ohki M, Uchida K, Wakabayashi I (2018) Relationships of oxidized HDL with blood coagulation and fibrinolysis in patients with type 2 diabetes mellitus. J Thromb Thrombolysis 45(2):200–205
61. Assinger A, Koller F, Schmid W, Zellner M, Babeluk R, Koller E et al (2010) Specific binding of hypochlorite-oxidized HDL to platelet CD36 triggers proinflammatory and procoagulant effects. Atherosclerosis 212(1):153–160
62. de Laat-Kremers R, Di Castelnuovo A, van der Vorm L, Costanzo S, Ninivaggi M, Cerletti C et al (2022) Increased BMI and blood lipids are associated with a hypercoagulable state in the Moli-sani cohort. Front Cardiovasc Med 9:897733
63. Karasek D, Vaverkova H, Halenka M, Jackulova D, Fryasak Z, Slavik L et al (2011) Prothrombotic markers in asymptomatic dyslipidemic subjects. J Thromb Thrombolysis 31(1):27–36
64. Albisetti M, Chan AK, McCreindle BW, Dong W, Monagle P, Andrew M (2004) Impaired fibrinolytic activity is present in children with dyslipidemias. Pediatr Res 55(4):576–580
65. Cernecca F, Peratoner L, Simeone R, Barbi E, Cattin L (1995) Dyslipidemia and reduced fibrinolysis in a child with hemolytic-uremic syndrome. Pediatr Med Chir 17(1):69–71
66. Sharara RS, Hattab Y, Patel K, DiSilvio B, Singh AC, Malik K (2017) Introduction to the anatomy and physiology of pulmonary circulation. Crit Care Nurs Q 40(3):181–190
67. Chang SN, Wu CK, Lai LP, Chiang FT, Hwang JJ, Tsai CT (2019) The effect and molecular mechanism of statins on the expression of human anti-coagulation genes. Cell Mol Life Sci 76(19):3891–3898
68. Tonkin A, Byrnes A (2014) Treatment of dyslipidemia. F1000Prime Rep 6:17
69. Jiang W, Hu JW, He XR, Jin WL, He XY (2021) Statins: a repurposed drug to fight cancer. J Exp Clin Cancer Res 40(1):241
70. Valentovic M (2007) Lovastatin. Elsevier
71. Duong H, Bajaj T (2022) Lovastatin. StatPearls, Treasure Island, FL
72. Talreja O, Kerndt CC, Cassagnol M (2022) Simvastatin. StatPearls, Treasure Island, FL
73. Zhao JJ, Xie IH, Yang AY, Roadcap BA, Rogers JD (2000) Quantitation of simvastatin and its beta-hydroxy acid in human plasma by liquid-liquid cartridge extraction and liquid chromatography/tandem mass spectrometry. J Mass Spectrom 35(9):1133–1143
74. Endo A, Kuroda M, Tsujita Y (1976) ML-236A, ML-236B, and ML-236C, new inhibitors of cholesterologenesis produced by Penicillium citrinum. J Antibi (Tokyo) 29(12):1346–1348
75. Manzoni M, Rollini M (2002) Biosynthesis and biotechnological production of statins by filamentous fungi and application of these cholesterol-lowering drugs. Appl Microbiol Biotechnol 58(5):555–564
76. Ward NC, Watts GF, Eckel RH (2019) Statin toxicity. Circ Res 124(2):328–350
77. Reig-Lopez J, Garcia-Arieta A, Mangas-Sanjuan V, Merino-Sanjuan M et al (2021) Current evidence, challenges, and opportunities of physiologically based pharmacokinetic models of atorvastatin for decision making. Pharmaceutics 13(5)
78. Luvai A, Mbogaya W, Hall AS, Barth JH (2012) Rosuvastatin: a review of the pharmacology and clinical effectiveness in cardiovascular disease. Clin Med Insights Cardiol 6:17–33
79. Schachter M (2005) Chemical, pharmacokinetic and pharmacodynamic properties of statins: an update. Fundam Clin Pharmacol 19(1):117–125
80. Bajaj T, Giwa AO (2022) Rosuvastatin. StatPearls, Treasure Island, FL
81. Kajinami K, Takekoshi N, Saito Y (2003) Pitavastatin in the rat. AAPS PharmSci 2(3):E26
85. Yuan JN, Tsai MY, Hegland J, Hunninghake DB (1991) Effects of fluvastatin (XU 62–320), an HMG-CoA reductase inhibitor, on the distribution and composition of low density lipoprotein subtypes in humans. Atherosclerosis 87(2–3):147–157

86. Franco D, Henao Y, Monsalve M, Gutierrez F, Hincapié J, Amariles P (2013) Hypolipidemic agents drug interactions: approach to establish and assess its clinical significance. Structured review. Farm Hosp 37(6):539–557

87. Climent E, Benaiges D, Pedro-Botet J (2021) Hydrophilic or lipophilic statins? Front Cardiovasc Med 8:687585

88. Kunutsor SK, Laukkanen JA (2020) Heart failure risk reduction: hydrophilic or lipophilic statins? Cardiology 145(6):384–386

89. Dulak J, Jozkowicz A (2005) Anti-angiogenic and anti-inflammatory effects of statins: relevance to anti-cancer therapy. Curr Cancer Drug Targets 5(8):579–594

90. Corsini A, Bellosta S, Baetta R, Fumagalli R, Paoletti R, Bernini F (1999) New insights into the pharmacodynamic and pharmacokinetic properties of statins. Pharmacol Ther 84(3):413–428

91. Hobbs HH, Brown MS, Goldstein JL (1992) The pharmacology of statins. Pharmacol Res 88:320), an HMG-CoA reductase inhibitor, on the distribution and composition of low density lipoprotein subtypes in humans.

92. Blumenthal RS (2000) Statins: effective antiatherosclerotic therapy. Am Heart J 139(4):577–583

93. Sirtori CR (2014) The pharmacology of statins. Pharmacol Res 88:3

94. Shamsuddin, Fazil M, Ansari SH, Ali J (2016) Drug–drug interactions in Italian patients with chronic hepatitis C treated with pangenotypic direct acting agents: insights from a real-world study. Int J Environ Res Public Health 18(13)

95. Suram D, Veerabrahma K (2022) Design and pharmacodynamic and pharmacodynamic assessment. AAPS PharmSciTech 23(5):123

96. Okamoto M, Sakura E, Shimamoto H, Yokote Y, Hashimoto M, Fujii H et al (1986) Analysis of mitral inflow velocity pattern in relation to left ventricular end-diastolic pressure. J Cardiog 16(4):941–948

97. Wang K, Yu C, Liu Y, Zhang W, Sun Y, Chen Y (2018) Enhanced antiatherosclerotic efficacy of statin-loaded reconstituted high-density lipoprotein via ganglioside GM1 modification. ACS Biomater Sci Eng 4(3):952–962

98. Lennemas H (2003) Clinical pharmacokinetics of atorvastatin. Clin Pharmacokinet 42(13):1141–1160

99. Martin PD, Warwick MJ, Dane AL, Brindley C, Short T (2003) Absolute oral bioavailability of rosuvastatin in healthy white adult male volunteers. Clin Ther 25(10):2553–2563

100. Smith HT, Jokubaitis LA, Troendle AJ, Hwang DS, Robinson WT (1993) Pharmacokinetics of fluvastatin and specific drug interactions. Am J Hypertens 6(1 Pt 2):375S–382S

101. Hirota T, Ieiri I (2015) Drug–drug interactions that interfere with statin metabolism. Expert Opin Drug Metab Toxicol 11(9):1435–1447

102. Jones NS, Yoshida K, Salphati L, Kenny JR, Durk MR, Chinn LW (2020) Complex DDI by fenumribin and the use of transporter endogenous biomarkers to elucidate the mechanism of DDI. Clin Pharmacol Ther 107(1):269–277

103. Jiang F, Choi JY, Lee JH, Ryu S, Park ZW, Lee JG et al (2017) The influences of SLCO1B1 and ABCB1 genotypes on the pharmacokinetics of simvastatin, in relation to CYP3A4 inhibition. Pharmacogenomics 18(5):459–469

104. Lau YY, Huang Y, Frassetto L, Benet LZ (2007) Effect of OATP1B1 transporter inhibition on the pharmacokinetics of atorvastatin in healthy volunteers. Clin Pharmacol Ther 81(2):194–204

105. Cui H, Wang J, Zhang Q, Dang M, Liu H, Dong Y et al (2016) In vivo and in vitro study on drug–drug interaction of lovastatin and berberine from pharmacokinet and HepG2 cell metabolism studies. Molecules 21(4):464

106. Harcourt B (1973) Proceedings: detection and investigation of homonymous hemianopic visual field defects in young children. Arch Dis Child 48(10):826–827

107. Yee SW, Giacomini MM, Shen H, Humphreys WG, Horng H, Brian W et al (2019) Organic anion transporter polyepptide IB1 polymorphism modulates the extent of drug–drug interaction and associated biomarker levels in healthy volunteers. Clin Transl Sci 12(4):388–399

108. Mangia A, Scaglione F, Toniutto P, Pirisi M, Coppola N, Di Perri G et al (2021) Drug–drug interactions in Italian patients with chronic hepatitis C treated with pangenotypic direct acting agents: insights from a real-world study. Int J Environ Res Public Health 18(13)

109. Zuth C, Koskenen M, Fricke R, Pien O, Kornjamo T, Graudenz K et al (2019) Drug–drug interaction potential of darolutamide: in vitro and clinical studies. Eur J Drug Metab Pharmacokinet 44(6):747–759

110. Lai Y, Mandlekar S, Shen H, Holenarsipur VK, Langish R, Rajanna P et al (2016) Coproporphyrins in plasma and urine can be appropriate clinical biomarkers to recapitulate drug–drug interactions mediated by organic anion transporting polypeptide inhibition. J Pharmacol Exp Ther 358(3):397–404

111. Wu HF, Hristeva N, Chang J, Liang X, Li R, Frassetto L et al (2017) Rosuvastatin pharmacokinetic and HepG2 cell metabolism studies. Molecules 21(4):464

112. Morgan RE, Campbell SE, Suehira K, Sponseller CA, Yu CY, Medlock MM (2012) Effects of steady-state lipinavir/ritonavir on the pharmacokinetics of...
pitavastatin in healthy adult volunteers. J Acquir Immune Defic Syndr 60(2):158–164
113. Hu M, Tomlinson B (2014) Evaluation of the pharmacokinetics and drug interactions of the two recently developed statins, rosuvastatin and pitavastatin. Expert Opin Drug Metab Toxicol 10(1):51–65
114. Chen Y, Zhang W, Huang WH, Tan ZR, Wang YC, Huang X et al (2013) Effect of a single-dose rifampin on the pharmacokinetics of pitavastatin in healthy volunteers. Eur J Clin Pharmacol 69 (11):1933–1938
115. Garnett WR (1994) The pharmacology of fluvastatin, a new HMG-CoA reductase inhibitor. Clin Cardiol 17(S4):IV-3–IV-10
116. Blum CB (1994) Comparison of properties of four inhibitors of 3-hydroxy-3-methylglutaryl-coenzyme A reductase. Am J Cardiol 73(14):3D–11D
117. Garnett WR (1995) Interactions with hydroxymethylglutaryl-coenzyme A reductase inhibitors. Am J Health Syst Pharm 52(15):1639–1645
118. Feng D, Ge C, Tan ZY, Sun JG, Xie Y, Yao L et al (2018) Isoflavones enhance pharmacokinematic exposure of active lovastatin acid via the upregulation of carboxylesterase in high-fat diet mice after oral administration of Xuezhikang capsules. Acta Pharmacol Sin 39(11):1804–1815
119. Corsetti G, D’Antona G, Ruocco C, Stacchiotti A, Romano C, Tedesco L et al (2014) Dietary supplementation with essential amino acids boosts the beneficial effects of rosuvastatin on mouse kidney. Amino Acids 46(9):2189–2203
120. Al-Asmari AK, Ullah Z, Al-Sabaan F, Tariq M, Al-Eid A, Al-Omani SF (2015) Effect of vitamin D on bioavailability and lipid lowering efficacy of simvastatin. Eur J Drug Metab Pharmacokinet 40 (1):87–94
121. Choi HK, Won EK, Choung SY (2016) Effect of coenzyme Q10 supplementation in statin-treated obese rats. Biomol Ther (Seoul) 24(2):171–177
122. Dogay Us G, Mushtaq S (2022) N-3 fatty acid supplementation mediates lipid profile, including small dense LDL, when combined with statins: a randomized double blind placebo controlled trial. Lipids Health Dis 21(1):84
123. Shang D, Deng S, Yao Z, Wang Z, Ni X, Zhang M et al (2016) The effect of food on the pharmacokinetic properties and bioequivalence of two formulations of pitavastatin calcium in healthy Chinese male subjects. Xenobiotica 46(1):34–39
124. Sternberg Z, Chichelli T, Sternberg D, Hojnacki D, Drake A, Liu S et al (2013) Quantitative and qualitative pleiotropic differences between Simvastatin single and Vitoryon combination therapy in hypercholesterolemic subjects. Atherosclerosis 231 (2):411–420
125. Simon TG, King LY, Zheng H, Chung RT (2015) Statin use is associated with a reduced risk of fibrosis progression in chronic hepatitis C. J Hepatol 62(1):18–23
126. Biedermann JS, Kruip M, van der Meer FJ, Rosendaal FR, Leebeek FWG, Cannegieter SC et al (2018) Rosuvastatin use improves measures of coagulation in patients with venous thrombosis. Eur Heart J 39(19):1740–1747
127. Orsi FA, Biedermann JS, Kruip M, van der Meer FJ, Rosendaal FR, van Hylckama VA et al (2019) Rosuvastatin use reduces thrombin generation potential in patients with venous thromboembolism: a randomized controlled trial. J Thromb Haemost 17(2):319–328
128. Schol-Gelok S, de Maat MPM, Biedermann JS, van Gelder T, Leebeek FWG, Lijfering WM et al (2020) Rosuvastatin use increases plasma fibrinolytic potential: a randomised clinical trial. Br J Haematol 190(6):916–922
129. Ramberg C, Hindberg K, Biedermann JS, Cannegieter SC, van der Meer FJ, Snir O et al (2022) Rosuvastatin treatment decreases plasma procoagulant phospholipid activity after a VTE: a randomized controlled trial. J Thromb Haemost 20(4):877–887
130. Hsu C, Brahmandam A, Brownson KE, Huyhn N, Reynolds J, Lee Al et al (2019) Statin therapy associated with improved thrombus resolution in patients with deep vein thrombosis. J Vasc Surg Venous Lymphat Disord 7(2):169–175.e4
131. San Norberto EM, Gastambide MV, Taylor JH, Garcia-Saiz I, Vaquero C (2016) Effects of rosuvastatin as an adjuvant treatment for deep vein thrombosis. Vasa 45(2):133–140
132. Schol-Gelok S, van der Hulle T, Biedermann JS, van Gelder T, Klok FA, van der Pol LM et al (2018) Clinical effects of antiplatelet drugs and statins on D-dimer levels. Eur J Clin Invest 48(7):e12944
133. Alirezaei T, Sattari H, Irlouzadian R (2022) Significant decrease in plasmad-dimer levels and mean platelet volume after a 3-month treatment with rosuvastatin in patients with venous thromboembolism. Clin Cardiol 45(7):717–722
134. Tousoulis D, Antoniades C, Bosinakou E, Kotsopoulos M, Tsougoulis C, Tentolouris C et al (2005) Effects of atorvastatin on reactive hyperaemia and the thrombosis-fibrinolysis system in patients with heart failure. Heart 91(1):27–31
135. Ordulu E, Erdogan O (2008) Early effects of low versus high dose atorvastatin treatment on coagulation and inflammation parameters in patients with acute coronary syndromes. Int J Cardiol 128 (2):282–284
136. Tousoulis D, Bosinkou E, Kotsopoulos M, Antoniades C, Katsi V, Stefanadis C (2006) Effects of early administration of atorvastatin treatment on thrombotic process in normocholesterolemic patients with unstable angina. Int J Cardiol 106(3):333–337
137. Mobarrez F, He S, Broijersen A, Wiklund B, Antovic A, Antovic J et al (2011) Atorvastatin reduces thrombin generation and expression of tissue factor, P-selectin and GPIIbA on platelet-derived microparticles in patients with peripheral
arterial occlusive disease. Thromb Haemost 106 (2):344–352

138. Cortellaro M, Cofrancesco E, Arbustini E, Rossi F, Negri A, Tremoli E et al (2002) Atorvastatin and thrombogenicity of the carotid atherosclerotic plaque: the ATROCAP study. Thromb Haemost 88(1):41–47

139. Sexton TR, Wallace EL, Macaulay TE, Charnigo RJ, Evangelista V, Campbell CL et al (2015) The effect of rosuvastatin on thrombomodulation in the setting of acute coronary syndrome. J Thromb Thrombolysis 39(2):186–195

140. Vergouwen MD, Meijers JC, Geskus RB, Coert BA, Horn J, Stroes ES et al (2009) Biologic effects of simvastatin in patients with aneurysmal subarachnoid hemorrhage: a double-blind, placebo-controlled randomized trial. J Cereb Blood Flow Metab 29(8):1444–1453

141. Dangas G, Badimon JJ, Smith DA, Unger AH, Levine D, Shao JH et al (1999) Pravastatin therapy in hyperlipidemia: effects on thrombus formation and the systemic hemostatic profile. J Am Coll Cardiol 33(5):1294–1304

142. Atalar E, Coskun S, Haznedaroğlu IC, Yucel N, Ozer N, Sivri B et al (2005) Immediate effects of fluvastatin on circulating soluble endothelial protein C and free tissue factor pathway inhibitor in acute coronary syndromes. Cardiovasc Drugs Ther 19 (3):177–181

143. Rauch U, Osende JJ, Chesebro JH, Fuster V, Vorchoheimer DA, Harris K et al (2000) Statins and cardiovascular diseases: the multiple effects of lipid-lowering therapy by statins. Atherosclerosis 153(1):181–189

144. Undas A, Celinska-Lowenhoff M, Lowenhoff T, Szczeklik A (2006) Statins, fenofibrate, and quinapril increase clot permeability and enhance fibrinolysis in patients with coronary artery disease. J Thromb Haemost 4(5):1029–1036

145. Pastuszczak M, Kotlarz A, Mostowiek M, Zalewski J, Zmudka K, Undas A (2010) Prior simvastatin treatment is associated with reduced thrombin generation and platelet activation in patients with acute ST-segment elevation myocardial infarction. Thromb Res 125(5):382–386

146. Seljeflot I, Tonstad S, Hjermann I, Arnesen H (2002) Improved fibrinolysis after 1-year treatment with HMG CoA reductase inhibitors in patients with coronary heart disease. Thromb Res 105(4):285–290

147. Velarde GP, Choudhary N, Bravo-Jaimes K, Smotherman C, Sherazi S, Kraemer DF (2021) Effect of atorvastatin on lipogenic, inflammatory and thrombogenic markers in women with the metabolic syndrome. Nutr Metab Cardiovasc Dis 31(2):634–640

148. Wang L, Rockwood J, Zak D, Devaraj S, Jialal I (2008) Simvastatin reduces circulating plasminogen activator inhibitor 1 activity in volunteers with the metabolic syndrome. Metab Syndr Relat Disord 6 (2):149–152

149. Van De Ree MA, De Maat MP, Kluft C, Menders AE, Princen HM, Huisman MV et al (2003) Decrease of hemostatic cardiovascular risk factors by aggressive vs. conventional atorvastatin treatment in patients with Type 2 diabetes mellitus. J Thromb Haemost 1(8):1753–1757

150. Macchia A, Laffaye N, Comignani PD, Cornejo Pucci E, Igarzabal C, Scazzotta AS et al (2012) Statins but not aspirin reduce thrombotic risk assessed by thrombin generation in diabetic patients without cardiovascular events: the RATIONAL trial. PLoS ONE 7(3):e32894

151. Tehrani S, Mobarrez F, Antovic A, Santesson P, Lins PE, Adamson U et al (2010) Atorvastatin has antithrombotic effects in patients with type 1 diabetes and dyslipidemia. Thromb Res 126(3): e225–e231

152. Sommerijer DW, MacGillavry MR, Meijers JC, Van Zanten AP, Reitsma PH, Ten Cate H (2004) Anti-inflammatory and anticoagulant effects of pravastatin in patients with type 2 diabetes. Diabetes Care 27(2):468–473

153. Kater AL, Batista MC, Ferreira SR (2010) Improved endothelial function with simvastatin but unchanged insulin sensitivity with simvastatin or ezetimibe. Metabolism 59(6):921–926

154. Skrha J, Stule T, Hilgertova J, Weiserova H, Kvasnicka J, Ceska R (2004) Effect of simvastatin and fenofibrate on endothelium in type 2 diabetes. Eur J Pharmaco 493(1–3):183–189

155. Krysiak R, Zmuda W, Okopien B (2013) Effect of simvastatin on hemostasis in patients with isolated hypertriglyceridemia. Pharmacology 92(3–4):187–190

156. Krysiak R, Zmuda W, Okopien B (2012) The effect of ezetimibe and simvastatin on hemostasis in patients with isolated hypercholesterolemia. Fundam Clin Pharmacol 26(3):424–431

157. Undas A, Celinska-Lowenhoff M, Domagala TB, Iwaniec T, Dropinski J, Lowenhoff T et al (2005) Early antithrombotic and anti-inflammatory effects of simvastatin versus fenofibrate in patients with hypercholesterolemia. Thromb Haemost 94(1):193–199

158. Panes O, Gonzalez C, Hidalgo P, Valderas JP, Acevedo M, Contreras S et al (2017) Platelet tissue factor activity and membrane cholesterol are increased in hypercholesterolemia and normalized by rosuvastatin, but not by atorvastatin. Atherosclerosis 257:164–171

159. Puccetti L, Bruni F, Bova G, Cercignani M, Palazzuoli A, Console E et al (2001) Effect of diet and treatment with statins on platelet-dependent thrombin generation in hypercholesterolemic subjects. Nutr Metab Cardiovasc Dis 11(6):378–387

160. Kadikoylu G, Yukeslen V, Yavasoglu I, Bolaman Z (2003) Hemostatic effects of atorvastatin versus simvastatin. Ann Pharmacother 37(4):478–484

161. Rao AK, Del Carpio-Cano F, Janapati S, Zhao H, Voelker H, Lu X et al (2021) Effects of simvastatin on tissue factor pathway of blood coagulation in STATCOPE (simvastatin in the prevention of
COPD exacerbations) trial. J Thromb Haemost 19(7):1709–1717

162. Undas A, Kaczmarek P, Sladek K, Stepień E, Skucha W, Rzeszutko M et al (2009) Fibrin clot properties are altered in patients with chronic obstructive pulmonary disease. Beneficial effects of simvastatin treatment. Thromb Haemost 102(6):1176–1182

163. Ades S, Douce D, Holmes CE, Cory S, Prior S, Butenas S et al (2018) Effect of rosuvastatin on risk markers for venous thromboembolism in cancer. J Thromb Haemost 16(10):1099–1106

164. Goicoechea M, de Vinuesa SG, Lahera V, Cacho-Ferreiro V, Gomez-Campfeta F, Vega A et al (2006) Effects of atorvastatin on inflammatory and fibrinolytic parameters in patients with chronic kidney disease. J Am Soc Nephrol 17(12 Suppl 3):S231–S235

165. Netyazhenko V, Bazhenova N (2021) The influence of hypercholesterolemia and concomitant statin therapy on the state of platelet-plasma hemostasis in patients with essential hypertension and non-alcoholic fatty liver disease. Georgian Med News 318:75–81

166. Kim HK, Kim JE, Park SH, Kim YI, Nam-Goong IS, Kim ES (2014) High coagulation factor levels and low protein C levels contribute to enhanced thrombin generation in patients with diabetes who do not have macrovascular complications. J Diabetes Complicat 28(3):365–369

167. Hirota T, Fujita Y, Ieiri I (2020) An updated review of pharmacokinetic drug interactions and pharmacogenetics of statins. Expert Opin Drug Metab Toxicol 16(9):809–822

168. Valladales-Restrepo LF, Medina-Morales DA, Giraldo-Giraldo C, Machado-Alba JE (2021) Prescription of statins and pharmacokinetic interactions in Colombian patients. Expert Opin Drug Metab Toxicol 17(5):627–634

169. Strachan A (2018) A concise summary of coagulation in liver disease. J Anest Inten Care Med 6(1)

170. Hou Y, Carrin N, Wang Y, Gallant RC, Marshall A, Ni H (2015) Platelets in hemostasis and thrombosis: novel mechanisms of fibrinogen-independent platelet aggregation and fibronectin-mediated protein wave of hemostasis. J Biomed Res 29

171. Sivri N, Tekin G, Yalta K, Aksoy Y, Senen K, Yetkin E (2013) Statins decrease mean platelet volume irrespective of cholesterol lowering effect. Kardiol Pol 71(10):1042–1047

172. Tirmaksiz E, Pamukcu B, Oflaz H, Nisanci Y (2009) Effect of high dose statin therapy on platelet function; statins reduce aspirin-resistant platelet aggregation in patients with coronary heart disease. J Thromb Thrombolysis 28(2):171–177

173. Luzak B, Rywaniak J, Stanczyk L, Watala C (2012) Pravastatin and simvastatin improves acetylsalicylic acid-mediated in vitro blood platelet inhibition. Eur J Clin Invest 42(8):864–872

174. Chu LX, Zhou SX, Yang F, Qin YQ, Liang ZS, Mo CG et al (2016) Pravastatin and C reactive protein modulate protease-activated receptor-1 expression in vitro blood platelets. Cell Mol Biol (Noisy-le-grand) 62(2):75–80

175. Hannachi N, Fournier PE, Martel H, Habib G, Camoin-Jau L (2021) Statins potentiate the antibacterial effect of platelets on Staphylococcus aureus. Platelets 32(5):671–676

176. Jansen AC, van Aalst-Cohen ES, Tanck MW, Cheng S, Fontechna MR, Li J et al (2005) Genetic determinants of cardiovascular disease risk in familial hypercholesterolemia. Arterioscler Thromb Vase Biol 25(7):1475–1481

177. Owens AP 3rd, Passam FH, Antoniak S, Marshall SM, McDaniel AL, Rudel L et al (2012) Monocyte tissue factor-dependent activation of coagulation in hypercholesterolemic mice and monkeys is inhibited by simvastatin. J Clin Invest 122(2):558–568

178. Vallet B (2001) Microthrombosis in sepsis. Minerva Anestesiol 67(4):298–301

179. La Mura V, Gagliano N, Arnaboldi F, Sartori P, Procacci P, Denti L et al (2022) Simvastatin prevents liver microthrombosis and sepsis induced coagulopathy in a rat model of endotoxia. Cells 11(7)

180. Xu M, Luo LL, Du MY, Tang L, Zhou J, Hu Y et al (2022) Simvastatin improves outcomes of endotoxin-induced coagulopathy by regulating intestinal microenvironment. Curr Med Sci 42(1):26–38

181. Radomski MW, Palmer RM, Moncada S (1987) Endogenous nitric oxide inhibits human platelet adhesion to vascular endothelium. Lancet 2(8567):1057–1058

182. Jourdain M, Tournois A, Leroy X, Mangalaboyi J, Fourrier F, Goudemand J et al (1997) Effects of N omega-nitro-L-arginine methyl ester on the endotoxin-induced disseminated intravascular coagulation in porcine septic shock. Crit Care Med 25(3):452–459

183. Hsu CP, Zhao JF, Lin SJ, Shyu SK, Guo BC, Lu TM et al (2016) Asymmetric dimethylarginine limits the efficacy of simvastatin activating endothelial nitric oxide synthase. J Am Heart Assoc 5(4): e00327

184. Lian WS, Lin H, Cheng WT, Kikuchi T, Cheng CF (2011) Granulocyte-CSF induced inflammation-associated cardiac thrombosis in iron loading mouse heart and can be attenuated by statin therapy. J Biomed Sci 18:26

185. Mason RP, Dawoud H, Jacob RF, Sherratt SCR, Yetkin E (2013) Statins decrease mean platelet volume irrespective of cholesterol lowering effect. Biomed Pharmacother 103:1231–1237

186. Zhao F, Ji Z, Chi J, Tang W, Zhai X, Meng L et al (2015) Platelets in hemostasis and thrombosis: novel mechanisms of fibrinogen-independent platelet aggregation and fibronectin-mediated protein wave of hemostasis. J Biomed Res 29

187. Mason RP, Dawoud H, Jacob RF, Sherratt SCR, Yetkin E (2013) Statins decrease mean platelet volume irrespective of cholesterol lowering effect. Kardiol Pol 71(10):1042–1047

188. Efstratiou E, Efstathiou I, Christodoulou S, Papatheodorou A, Dimakou E, Katsikas K et al (2015) The effects of Chinese yellow wine on nitric oxide synthase and intercellular adhesion molecule-1 expressions in rat vascular endothelial cells. Acta Cardiol 71(1):27–34

189. Stach K, Nguyen XD, Lang S, Elmas E, Weiss C, Borggreve M et al (2012) Simvastatin and...
atorvastatin attenuate VCAM-1 and uPAR expression on human endothelial cells and platelet surface expression of CD40 ligand. Cardiol J 19(1):20–28

188. Wiesbauer F, Kaun C, Zorn G, Maurer G, Huber K, Wojta J (2002) HMG CoA reductase inhibitors affect the fibrinolytic system of human vascular cells in vitro: a comparative study using different statins. Br J Pharmacol 135(1):284–292

189. Dietzen DJ (2005) The antithrombotic effect of atorvastatin is mediated by decreased plasma membrane exposure of phosphatidylserine. Blood 106 (11):1021–1028

190. Abou-Saleh H, Hachem A, Yacoub D, Gillis MA, Merhi Y (2015) Endothelial progenitor cells inhibit platelet function in a P-selectin-dependent manner. J Transl Med 13:142

191. Abou-Saleh H, Yacoub D, Theoret JF, Gillis MA, Neagoe PE, Labarthe B et al (2009) Endothelial progenitor cells bind and inhibit platelet function and thrombus formation. Circulation 120(22):2230–2239

192. Wang B, Sun L, Tian Y, Li Z, Wei H, Wang D et al (2012) Effects of atorvastatin in the regulation of circulating EPCs and angiogenesis in traumatic brain injury in rats. J Neurol Sci 319(1–2):117–123
Effects of Adrenergic Receptor Stimulation on Human Hemostasis: A Systematic Review

Sebastian Gatica, Diego Aravena, Cesar Echeverría, Juan F. Santibanez, Claudia A. Riedel, and Felipe Simon

Abstract

Catecholamine stimulation over adrenergic receptors results in a state of hypercoagulability. Chronic stress involves the release and increase in circulation of catecholamines and other stress related hormones. Numerous observational studies in human have related stressful scenarios to several coagulation variables, but controlled stimulation with agonists or antagonists to adrenergic receptors are scarce. This systematic review is aimed at presenting an updated appraisal of the effect of adrenergic receptor modulation on variables related to human hemostasis by systematically reviewing the effect of adrenergic receptor-targeting drugs on scale variables related to hemostasis. By searching 3 databases for articles published between January 1st 2011 and February 16th, 2022 reporting effects on coagulation parameters from stimulation with α- or β-adrenergic receptor targeting drugs in humans regardless of baseline condition, excluding records different from original research and those not addressing the main aim of this systematic review. Risk of bias assessed using the Revised Cochrane risk-of-bias tool for randomized trials (RoB 2). Tables describing a prothrombotic anti-fibrinolytic state induced after β-adrenergic receptor agonist stimulation and
the opposite after α1-, β-adrenergic receptor antagonist stimulation were synthesized from 4 eligible records by comparing hemostasis-related variables to their baseline. Notwithstanding this low number of records, experimental interventions included were sound and mostly unbiased, results were coherent, and outcomes were biologically plausible. In summary, this systematic review provides a critical systematic assessment and an updated elaboration, and its shortcomings highlight the need for further investigation in the field of hematology.

Keywords

Adrenergic • Coagulation • Hemostasis • Catecholamines • Fibrinolysis

Abbreviations

- aPTT: Activated partial thromboplastin time
- BPM: Beats per minute
- cAMP: Cyclic adenosine monophosphate
- CREB: CRE binding protein
- DAG: 1,2-diacylglycerol
- GDP: Guanosine diphosphate
- GPCR: G protein-coupled receptors
- GTP: Guanosine triphosphate
- HCTZ: Hydrochlorothiazide
- HUVEC: Human umbilical vein endothelial cells
- IP3: Inositol 1,4,5-trisphosphate
- LVH: Left ventricle hypertrophia
- MPV: Mean platelet volume
- PCGR: Protein C global ratio
- PKA: cAMP-dependent kinase
- PKC: Calcium-dependent protein kinase
- PKC: Protein kinase C
- PLC: Phospholipase C
- PRISMA: Preferred reporting items for systematic reviews and meta-analyses framework
- PTF1 + 2: Prothrombin fragments 1 + 2
- RoB 2: Revised Cochrane risk-of-bias tool for randomized trials
- tPA: Tissue plasminogen activator
- vWF: von Willebrand Factor
- WoS: Clarivate Analytics’ Web of Science
- WPBs: Weibel–Palade bodies

3.1 Introduction

Adrenaline and noradrenaline, the hormone and the neurotransmitter respectively, are produced from L-tyrosine in two sources in the body: sympathetic nerve endings, which release noradrenaline on effector organs after stimulation, and the chromaffin cells of the adrenal medulla, which are actually sympathetic postganglionic neurons and the main source of synthesis, storage and release of adrenaline and noradrenaline under the stimulation of nicotine acetylcholine receptors [1].

Both catecholamines (adrenaline and noradrenaline), named as such because of the catechol ring they share in their chemical structure (1,2-dihydroxybenzene), mediate a wide variety of essential functions in the body, among which vasodilation, vasoconstriction, cardiac proliferation, blood pressure, and systolic and diastolic pressure are the most prominent [2, 3]. These catecholamines are released in situations of anger, stress, or anxiety, and during allergic or hypotensive reactions, mediated by other hormones such as histamine, angiotensin II, and bradykinin [1]. They exert their effects by binding to adrenergic receptors or adrenoreceptors, which are distributed in the central and autonomic nervous systems, as well as in peripheral tissues [2, 3]. The importance of these chemical mediators is such that the alteration in the synthesis and release of catecholamines—which circulate normally in the blood in the order of nanomoles [1]—or in the way they bind to their specific receptors can lead to cardiac and prostatic hyperplasia, cardiac hypertrophy, hypertension or even cancer [2].
3.1.1 Classification of Adrenergic Receptors

Based on their pharmacological affinity to a myriad of drugs and synthetic agents (agonists and antagonists), adrenergic receptors are classified into three groups: β, α_1 and α_2, a nomenclature owed to the identity in their primary sequence [2, 3]. Each group has three subtypes: β_1, β_2, α_1A, α_1B, α_1D, α_2A, α_2B and α_2C, all products of different genes. The α-adrenergic receptors are generally considered vasoconstrictors, while β-adrenergic receptors are mainly considered vasodilators. The fewest α-receptors are found in the cerebral vessels. The β_1 and β_2 receptors are mostly found in the vessels of the heart, lungs, and mesentery. In the myocardium, the inotropic and chronotropic effects of the catecholamines, are mediated most strongly via β_1 receptors.

Sutherland and Rall observed that cyclic adenosine monophosphate (cAMP), which forms from the cyclization of ATP, is an intermediary in the action of adrenaline, which acts on the phosphorylase that participates in the formation of glucose from glycogen [4]. In 1967, two types of β-adrenergic receptors were identified after observations on their difference in affinity for adrenaline, which activates the β_2-adrenergic subtype with 100 times more potency than the β_1-adrenergic subtype. The β_3-adrenergic subtype was discovered later and was considered “atypical” because of its relative insensitivity to typical β_1 and β_2 antagonists [5].

The classification of α_1-adrenergic receptor began with the use of prazosin, a selective antagonist [2]. With WB4101, another antagonist, two subtypes of α_1-adrenergic receptor were clearly identified: α_1A and α_1B. The first gene cloned was that of the α_1B receptor, later the α_1A-adrenergic receptor was cloned, with which there was an initial controversy since it had previously been named α_1C-adrenergic (α_1A/C). Subsequently, the α_1D-adrenergic receptor (α_1A/D) was identified and cloned, consolidating the nomenclature as α_1A, α_1B and α_1D. On the other hand, the group of α_2-adrenergic receptors was finally identified using the antagonist yohimbine, and classified into two subtypes: α_2B and α_2C, characterized as agonists and antagonists in functional and biochemical assays [2, 3].

3.1.2 Characteristics of Adrenergic Receptors

Adrenergic receptors belong to the superfamily of G protein-coupled receptors (GPCR). They are comprised of seven hydrophobic regions or transmembrane helices, three extracellular loops essential for ligand binding, and three intracellular loops. Adrenergic receptors respond to changes in the environment and different physiological conditions, such as an changes in the concentration of adrenaline and noradrenaline in the bloodstream [1]. The binding of an agonist to the receptor induces a conformational change that allows it to couple to the heterotrimeric G protein, which, when activated, exchanges guanosine diphosphate (GDP), bound to the α-subunit in its inactive state, for guanosine triphosphate (GTP). Release of GDP allows dissociation of the GTP-bearing α-subunit from the $\beta\gamma$ dimer. Hydrolysis of GTP to GDP by the α subunit (which has GTPase activity) allows the α and $\beta\gamma$ subunits to associate; the activation/deactivation cycle of the G protein starts again when the receptor is activated [5].

There are four families of heterotrimeric G proteins: G_s (stimulatory), G_i (inhibitory), $G_{q/11}$ and $G_{12/13}$ [5, 6]. After the activation of the G protein ($G_{q/11}$ and G_i), phospholipase C (PLC) catalyzes the release of inositol 1,4,5-trisphosphate (IP3) and 1,2-diacylglycerol (DAG), which cause the release of calcium ions from the endoplasmic reticulum; while adenyl cyclase produces cyclic AMP (cAMP). These second messengers (IP3, DAG, calcium ions, and cAMP) activate proteins that amplify the extracellular signal, such as calcium-dependent protein kinase (PKC) and cAMP-dependent kinase (PKA) [5].
3.1.3 Tissue Distribution of Adrenergic Receptors

Adrenergic receptor expression in human tissues has been reported to have significant differences with other animals [7, 8]. Classical studies describe the most predominant subtype of α_1-adrenergic receptor in human tissues to be the α_{1C}-adrenergic receptor [9], which predominates in the liver, heart, vena cava, cerebellum, and cerebral cortex; followed by the α_{1B}-adrenergic receptor, which predominates in the kidney and spleen; then followed by the α_{1D}-adrenergic receptor, which predominates in the aorta. Beta-adrenergic receptor subtypes β_1, β_2, and β_3, have also been identified predominantly in cardiac, airway smooth muscle, and adipose tissue, respectively [10]. However, a recent and comprehensive quantitative analysis of the human transcriptome reported α_{1B}-adrenergic receptor expression to be predominant in the spleen, brain, and kidney, α_{2A}-adrenergic receptor expression to be predominant in the adipose tissue, gallbladder, and pancreas, α_{2B}-adrenergic receptor expression to be predominant in the adipose tissue, esophagus, and lung, β_2-adrenergic receptor expression to be predominant in the adipose tissue, gallbladder, and pancreas, β_3-adrenergic receptor expression to be predominant in the spleen, adipose tissue, and liver [11]. Because the focus of this latter analysis is not on adrenergic biology, the list of mRNA and proteins, although extensive and thorough, is not sufficient to cover the entirety of the adrenergic receptor family. Thus, in light of the discrepancies found in the latter quantitative analysis, a technological gap appears, which encourages further research on adrenergic receptor distribution. This differential tissue distribution highlights the level of complexity of adrenergic receptor expression and suggests that some selectivity may be obtained using adrenergic receptor subtype-selective agonists and antagonists for treating various human diseases.

3.1.4 Physiological Activity of Adrenergic Receptors

Catecholamines influence all major organs of the body. Its effects take place in seconds compared to the minutes, hours or days that characterize the actions of the endocrine system. Catecholamines participate in integrative mechanisms, both neural and endocrine. Its participation in the response to stress, the regulation of smooth muscle tone, the control of blood pressure, the metabolism of carbohydrates and lipids, thermoregulation, as well as in the secretion of various hormones and in numerous central and peripheral processes [5]. The adrenergic system also plays a fundamental role with the hypothalamic–pituitary–adrenal axis (CRH-ACTH-Cortisol), in responses to stress.

The sympathetic activity of the nervous system and the secretion of catecholamines from the adrenal medulla are often coordinated, although their actions are not always simultaneous and congruent. In many situations of intense sympathetic stimulation, such as exercise or exposure to cold, the adrenal medulla is progressively stimulated and circulating adrenaline reinforces the physiological effects of the sympathetic nervous system. However, in other situations they act independently, e.g., when hypoglycemia stimulates the adrenal medulla as a defense mechanism, to compensate the hypoglycemic state, or when hypotension stimulates the sympathetic nervous system to maintain blood pressure and allow for tissue perfusion [5].

3.1.5 Therapeutic Modulation of Adrenergic Receptor-Signaling

Catecholamines, and their signaling through adrenergic receptors in target cells, base their effect most prominently to control hemodynamics. However, there are effects that extend
beyond the cardiovascular (e.g., in the gastroin-testinal tract, lungs, immune system, endocrine system, bone marrow, muscles, metabolism, and the coagulation system) that become of particular interest during chronic, excessive, or therapeutic sympathetic stimulation [12, 13].

Therapeutically, catecholamines are mainly used in case dominated by a reduction in hemodynamic capacity, most notably during shock, where the hemodynamic deficit hinders the capacity of the body to adequately cover the blood supply to organs. In practice, shock is often defined as a drop in systolic or mean arterial blood pressure below certain limits (e.g., 90 or 65 mmHg). Since arterial blood pressure is feasible to monitor, such limit values have often been established as a trigger for therapy with vasopressors. For the treatment of hypotension during septic shock, the current guidelines [14] recommend the use of norepinephrine in addition to sufficient volume therapy, while adrenaline is primarily recommended in anaphylactic shock [15]. The administration of vasopressors increases systemic vascular resistance and thus the afterload of the heart. Additionally, constriction of the venous capacity vessels in the event of a volume deficiency can also increase the preload and thus the stroke volume via the Frank–Starling mechanism. In the case of cardiogenic shock, the clinically established definition includes not only hypotension but also other hemodynamic measurements [16]. In such situations, clinical guidelines recommend the administration of norepinephrine to increase mean arterial pressure to a range between 65 and 75 mmHg.

Such therapeutic algorithms have significantly shaped the procedures in intensive care units. However, there has been increasing evidence that the administration of catecholamines can also adversely affect patient prognosis or that catecholamines can have a damaging effect on target organs, e.g., the heart and microcirculation. In this context, the hemodynamic target parameters, on which catecholamine therapy is mainly based, have since been questioned [17–19].

3.1.6 Chronic Stimulation of Adrenergic Receptors

Paradoxically, evidence on the effects of chronic, persistent catecholamine stimulation outside of the intensive care unit is remarkably scarce. Interestingly, it has been described that long-term sympathetic activation leads to β-adrenergic receptor desensitization and decreased expression (downregulation) [20]. However, few studies have regarded chronic catecholamine stimulation at a body-wide level, of which a causal link has been established with Alzheimer’s disease, dementia and amnestic mild cognitive impairment [21], posttraumatic stress disorder [22], cardiac hypertrophy [23], cancer [24, 25], immunosuppression [26, 27], and overall inflammatory and procoagulant state [28]. Interestingly, the greater fraction of current knowledge about adrenergic physiology focuses on the acute, immediate, effects of adrenergic receptor modulators [5] rather than on their chronic effects, and amongst them, hemostasis is the least studied. Thus, the objective of this systematic review is to present an updated appraisal of the effect of adrenergic receptor modulation on variables related to human hemostasis by systematically reviewing the effect of adrenergic receptor-targeting drugs on scale variables related to hemostasis.

3.2 Methods

This systematic review was reported using the preferred reporting items for systematic reviews and meta-analyses framework (PRISMA) [29].

Eligibility criteria: Overall inclusion criterion was: articles reporting effects on coagulation parameters from stimulation with α- or β-adrenergic receptor targeting drugs in humans regardless of baseline condition. Exclusion criteria were: articles different from original research, not addressing the objective, not reporting
baseline and after-treatment measurements, and not reporting statistically significant differences (Fig. 3.1). Remaining records included for qualitative analysis were classified into two groups according to the effect of the drug administered (agonists and antagonists).

Fig. 3.1 PRISMA 2020 flow diagram for study selection
Information sources were 3 databases queried from January 1st, 2011 until February 16th, 2022: National Library of Medicine’s PubMed, Elsevier’s Scopus and Clarivate Analytics’ Web of Science (WoS). Search strategy for each database is fully detailed in Table S1. In brief, a combination of keywords (i.e., adrenergic receptor, D-dimer, fibrinogen, and coagulation) was used in search strings limiting records to those in English within the date frame. For the selection process, two reviewers (DA, SG) worked independently on each record without automation assistance during the selection process, which was based on carefully reading the title, abstract, and/or full text, to exclude those different from original research that eluded the search filter, to exclude those not addressing the objective, and those reporting data without statistically significant differences (Fig. 3.1). Discrepancies were then sorted out over a discussion round including all authors and led by both reviewers. Data was then collected independently by the reviewers (DA, SG) from texts, tables, or figures, of eligible records.

Eligible records were those that presented the net effect of adrenergic receptor-targeting drugs on scale variables related to hemostasis (i.e., coagulation or fibrinolysis) within the results. Outcomes sought were either a significant increase or decrease of the scale variable with respect to its baseline. This operational arrangement ensured full compatibility between all the results and the outcomes. Complementary data on baseline condition, dose, and readout time, were also considered for evaluation but were not considered as part of the outcomes. Given its complete availability both, outcomes and complementary data, were neither imputed nor assumed.

Risk of bias and certainty assessment: For each record included, risk of bias was assessed independently by two reviewers (DA, SG) using the Revised Cochrane risk-of-bias tool for randomized trials (RoB 2) [30] without using any automation. Also, for every record included, certainty was assessed independently by two reviewers (DA, SG) using the CASP Randomised Controlled Trials Checklist [31] without using any automation. Appraisal for missing results was addressed using both tools. Results, comments, and discrepancies from these assessment tools were placed and resolved in a discussion round including all authors and led by both reviewers (DA, SG).

Synthesis: For the synthesis of the results, plausibility tests to obtain effect measures (i.e., risk ratio and mean difference) for each scale variable were performed first. Then, scale variables were compared to their baseline, outcomes were constructed, and complementary data (i.e., baseline condition, target adrenergic receptors, dose, and readout time) was matched. Lastly, data was arranged on the basis of the mechanism of stimulation of adrenergic receptor-targeting drugs: agonists (Table 3.1) and antagonists (Table 3.2).

Table 3.1 Effect of AR agonists on variables related to human hemostasis

Baseline condition	Drug	Mechanism	AR	Dose	Readout time	Outcome	Hemostasis-related scale variable	Reference	
Healthy	Salbutamol	Agonist	β_1, β_2	5 mg Single dose	60 min	Increased	Factor V activity Factor VIII activity vWF antigen D-dimer PTF1 + 2	[32]	
							Decreased	aPTT PCGR tPA	

Abbreviations AR adrenergic receptor; vWF von Willebrand factor; PTF1 + 2 prothrombin fragments 1 + 2; aPTT activated partial thromboplastin time; PCGR Protein C global ratio; tPA tissue plasminogen activator
3.3 Results

The search identified 1025 total records, of which, 1020 were excluded during the selection process and 4 were included (Fig. 3.1). Because the search was performed over three different sources (PubMed, Scopus, and WoS) records duplicated across databases (188) were excluded. Although filters for article type (original research) were applied, post hoc manual screening of meta-information further identified 148 records not meeting this inclusion criterion. Full-text analysis identified 675 records not addressing the objective and 555 records not providing data on baseline levels of scale variables related to hemostasis for comparison, and out of those that did, 8 records reported differences that were not statistically significant. Because of the way inclusion criteria were designed, the search resulted to be deterministic, i.e., without any records borderline for exclusion.

3.3.1 Study Characteristics

The 4 records identified in the search were prospective randomized interventional studies with a single recruitment step except for article by Boman et al. [33] which was an interventional sub-study performed in a sample already recruited for a larger trial, which, in turn, had already been randomized. Baseline subject characteristics were mild hypertension and left ventricular hypertrophy [33], prostatic hypertrophy [34], coronary angiopathy [35], and one study of generally healthy subjects [32].

Average subject age was 60 years old, except for article by Ali-Saleh et al. [32], for which

Table 3.2	Effect of AR antagonists on variables related to human hemostasis							
Baseline condition	**Drug**	**Mechanism**	**AR**	**Dose**	**Readout time**	**Outcome**	**Hemostasis-related scale variable**	**References**
M-m hypertension and LVH	Atenolol	Blocker	β_1	50 mg per day	36 weeks	Increased	tPA	vWF
Benign prostatic hyperplasia	Doxazosin	Blocker	α_1	4 mg per day	12 weeks	Increased	Bleeding time	[34]
	Terazosin			5 mg per day			Coagulation time	
	Doxazosin			4 mg per day				
	Terazosin			5 mg per day				
Chronic angiopathy	Carvedilol	Blocker	α_1, β	25 mg per day	6 months	Decreased	D-dimer	[35]
	Nebivolol		β_1	10 mg per day			MPV	
	Carvedilol		$\alpha_1, \beta_1, \beta_2$	25 mg per day				
	Nebivolol		β_1	10 mg per day				

Abbreviations AR adrenergic receptor; M-m mild to moderate; LVH left ventricle hypertrophia; tPA tissue plasminogen activator; vWF von Willebrand factor; MPV mean platelet volume
average subject age was 26 years old. Average systolic blood pressure was 155.5 mmHg, average diastolic blood pressure was 95.5 mmHg, and average heart rate was 76.75 BPM across studies, except for the only study including healthy subjects [32] (for which average systolic blood pressure was 116 mmHg, average diastolic blood pressure was 69 mmHg, and average heart rate was 68 BPM) and article by Alan et al. [34], for which baseline biopotentials were recorded but failed to be reported.

A summary of the adrenergic receptor-targeting drugs administered, their mechanism, dose, and readout times, is available in Tables 3.1 and 3.2. Blood sample handling was standard across all studies and hemostasis-related scale variables were measured using clinical-grade equipment and commercially available ELISA kits.

3.3.2 Risk of Bias

Critical appraisal of the findings in the 4 records identified in the search revealed a low risk of bias on four domains: (A) Sequence for participant allocation was explicitly random in most of the records. Baseline differences between intervention groups did not suggest a problem with the randomization process. (B) Data was available for all, or nearly all, participants, (C) Methods of measuring continuous variables were appropriate, and (D) Numerical results were unlikely to have been selected on the basis of results within the outcomes. A low risk of bias was also found on a fifth domain (E, Appraisal of deviations from the intended interventions) for all records except one [33]. Study by Boman et al. [33], which included subjects with mild hypertension and left ventricular hypertrophy at baseline, set a goal blood pressure (< 140/90 mmHg) to reach during a follow-up period of 12 weeks. During this period, an unspecified number of the patients (those not reaching goal blood pressure after 6 or 12 weeks of treatment with the original intervention drug) had a secondary intervention with hydrochlorothiazide (HCTZ) to help them reach such goal. Risk of bias due to missing results was low, as none of the studies failed to report results.

3.3.3 Results of Individual Studies and Synthesis

With on a sample of 51 participants who had benign prostatic hyperplasia, Alan et al. [34] administered α_1-adrenergic receptor blockers for 12 weeks. Participants who were administered doxazosin ($n = 25$) showed a significant ($p < 0.05$) 22.9% increase in bleeding time from 1.502 ± 0.39 to 1.846 ± 1.93 min and a significant ($p < 0.05$) 22.13% increase in coagulation time from 4.429 ± 1.16 to 5.409 ± 1.42 min, measured at baseline and after 12 weeks. Participants who were administered terazosin ($n = 26$) showed a significant ($p < 0.05$) 20.16% increase in bleeding time from 1.384 ± 0.31 to 1.663 ± 0.49 min and a significant ($p < 0.05$) 10.2% increase in coagulation time from 5.158 ± 1.13 to 5.684 ± 1.18 min, as measured at baseline and after 12 weeks (Table 3.2).

On a sample of 17 healthy participants, Ali-Saleh et al. [32] administered a β_2-adrenergic receptor agonist for 60 min. Participants who were administered salbutamol showed a significant ($p < 0.05$) 4.59% increase in Factor V activity from 92.182 ± 4.22 to 96.41 ± 4.25%, a significant ($p = 0.05$) 12.62% increase in Factor VIII activity from a mean 102.53 ± 5.85 to 115.47 ± 5.62%, a significant ($p < 0.01$) 171.71% increase in von Willebrand Factor (vWF) antigen levels from a mean 98.06 ± 6.83 to 103.24 ± 6.64, a significant ($p < 0.05$) 6.81% decrease in activated partial thromboplastin time (aPTT) from a mean 27.37 ± 0.45 to 25.51 ± 0.56 s, a significant ($p < 0.01$) 171.71% increase in D-dimer from a mean 0.27 ± 0.04 to 0.73 ± 0.24 mg/L, a significant ($p < 0.05$) 285.43% increase in prothrombin fragments 1 + 2 (PTF1 + 2) from a mean 152.65 ± 5.85 to 320.09 ± 588.35 pM, a significant ($p < 0.001$) 17.66% decrease in Protein C global ratio (PCGR) from a mean 0.99 ± 0.07 to 0.82 ± 0.06, and a significant ($p < 0.1$) 7.69% decrease in tissue plasminogen activator (tPA) from a mean 6.5 ± 0.5 to 6 ± 0.4 ng/mL, as measured at baseline and after 60 min (Table 3.1).

On a sample of 11 participants who had mild-to-moderate hypertension and left ventricle...
hyperplasia, Boman et al. [33] administered a \(\beta_1 \)-adrenergic receptor blocker for 36 weeks. After adjusting for both baseline systolic blood pressure and change in left ventricular mass, participants who were administered atenolol showed a significant (\(p < 0.1 \)) 33.71% increase in levels of tPA from a median 8.9 to 11.9 ng/mL, a significant (\(p < 0.1 \)) 18.41% increase in vWF from 113.5 to 134.3%, as measured at baseline and after 36 weeks (Table 3.2).

On a sample of 61 participants who had chronic angiopathy, Karabacak et al. [35] administered an \(\alpha_1 \)-, \(\beta \)-adrenergic receptor blocker, or a \(\beta_1 \)-adrenergic receptor blocker for 6 months. Participants who were administered carvedilol (n = 31) showed a significant (\(p < 0.01 \)) 13.48% decrease in mean platelet volume (MPV) from a mean 8.9 \(\pm \) 1 to 7.7 \(\pm \) 1 fL, and a significant (\(p < 0.01 \)) 49.07% decrease in D-dimer from a mean 428 \(\pm \) 306 to 218 \(\pm \) 164 \(\mu \)g/dL, as measured at baseline and after 6 months (Table 3.2). Participants who were administered nebivolol (n = 30) showed a significant (\(p < 0.01 \)) 9.09% decrease in MPV from a mean 8.8 \(\pm \) 1.2 to 8 \(\pm \) 0.7 fL, and a significant (\(p < 0.01 \)) 53.74% decrease in D-dimer from a mean 454 \(\pm \) 407 to 210 \(\pm \) 170 \(\mu \)g/dL, as measured at baseline and after 6 months (Table 3.2).

For the synthesis of the results, scale variables were tested for effect measures. However, paucity of comparable variables and pooled sample sizes were insufficient to run statistical tests. Therefore, scale variables were compared to their baseline and outcomes sought were either a significant increase or decrease of such variable. Levels of D-dimer increased with a \(\beta_2 \)-adrenergic receptor agonist and decreased consistently with \(\alpha_1 \)-, \(\beta \)-adrenergic receptor blockers. Levels of IPA decreased with a \(\beta_2 \)-adrenergic receptor agonist and increased with a \(\beta \)-adrenergic receptor blocker (the latter with high risk of bias). Levels of vWF increased with both a \(\beta_2 \)-adrenergic receptor agonist and a \(\beta \)-adrenergic receptor blocker (the latter with high risk of bias). MPV decreased consistently with \(\alpha_1 \)-, \(\beta_1 \)-, and \(\beta_2 \)-blockers. Activity of Factors V and VIII increased and aPTT and PCGR decreased with a \(\beta_2 \)-adrenergic receptor agonist. Bleeding and coagulation times increased with an \(\alpha_1 \)-adrenergic receptor blocker.

3.3.4 Assessments of Certainty

Certainty in the body of evidence was critically appraised on the basis of three domains. (A) All 4 records addressed a clearly focused research question, most of them assigned participants randomly, and all of them accounted for the same number of participants at its conclusion. (B) Methodologically, all 4 records included at least one level of blindness to the intervention (except for one [34], for which there is no explicit mention to this point), had similar baseline conditions between groups, and each study group received the same type of intervention (except for one [33], which included an additional level of treatment for select participants). (C) Results reported in all 4 records reported the effects of the intervention comprehensively and with precision.

3.4 Discussion

The present systematic review reports an updated appraisal of the effect of adrenergic receptor modulation on variables related to human hemostasis. Overall, a pro-thrombotic anti-fibrinolytic state was induced after \(\beta \)-adrenergic receptor agonist stimulation and the opposite was induced after \(\alpha_1 \)-, \(\beta \)-adrenergic receptor antagonist stimulation. Salbutamol, which is a partial \(\beta_2 \)-adrenergic receptor agonist [36], is able to extend its action on \(\beta_2 \)-adrenergic receptors beyond pulmonary tissues [37]. Thus, the increase in pro-coagulant proteins (Factors V and VIII activity, vWF, D-dimer, and PTF1 + 2) and the decrease of anti-fibrinolytic parameters (aPTT, PCGR, and tPA) is a consistent way to interpret its extrapulmonary effects under a healthy baseline (Table 3.1). The same shows to be true by counterpart with \(\beta_1 \)-\(\beta_2 \)-adrenergic receptor blockers administered \textit{p.o.}, which decrease pro-coagulant parameters D-dimer and...
MPV, increase anti-fibrinolytic parameter tPA, and increase overall coagulation parameters bleeding and coagulation time (Table 3.2). Interestingly, this effect appears to be consistent regardless of the vast differences in readout times (60 min through 6 months).

Agonists to β-adrenergic receptors initiate an intracellular signaling cascade typically involving activation of proteins Gs, adenylate cyclase, and cyclic adenosine monophosphate (cAMP)-dependent protein kinase (PKA)—the latter via an increase in cAMP, resulting in the release of pro-coagulation proteins. This is best exemplified in endothelial cells, which line blood vessels internally all throughout the body. After β-adrenergic receptor stimulation, the rise in cAMP induces a slow but sustained release of Weibel–Palade bodies (WPBs) and their pro-coagulant contents [38] (significantly vWF, P-selectin, and coagulation Factor VIII) [39], thus explaining the rise in vWF, coagulation factor VIII, and downstream surrogates such as D-dimer and PTF1 + 2, observed in Table 3.1, and the inverse effect observed in Table 3.2. Interestingly, WPBs also respond to rises in intracellular free Ca2+ which occur downstream of a1-adrenergic receptor stimulation through protein Gq, thus explaining why blocking this signaling pathway results in a decrease of coagulation surrogates D-dimer and MPV, and overall coagulation parameters bleeding and coagulation times (Table 3.2). Additionally, increased levels of Factor VIII can be further corroborated by contrast with observations by an independent group who established that Factor VIII plasma concentration can be decreased with the use of β-adrenergic receptor antagonist propranolol [40].

An apparently contradictory situation has been detected for tPA in Tables 3.1 and 3.2. While levels of tPA were expected to increase after β-adrenergic receptor stimulation with an agonist and to decrease with an antagonist because (1) tPA is a component of WPBs, and should share the same outcome as Factor VIII and vWF by means of the β-adrenergic receptor/adenylate cyclase/cAMP signaling pathway [38], and (2) as β-adrenergic receptor stimulation increases intracellular cAMP, activation of highly conserved, species-specific, cAMP response elements (CRE) within the tPA gene promoter via CRE binding (CREB) proteins stimulate tPA synthesis de novo [41], the outcome for β-adrenergic receptor agonism was to decrease and for β-adrenergic receptor antagonism was to increase. Our explanation to this conundrum is that tPA is being actively consumed in the overall pro-coagulant state. Although, naturally, this warrants further experimental considerations, especially because tPA levels have been described as refractory to high levels of cAMP induced by adenylate cyclase agonist forskolin in human umbilical vein endothelial cells (HUVECs) [42], and particularly because levels of tPA have been shown to increase after stimulation of protein kinase C (PKC) with phorbolester [42]. Notably, PKC is an effector of the α1-adrenergic receptor intracellular cascade, and while decreased plasmatic levels of tPA could be associated with active consumption, an overall crosstalk of both signaling pathways cannot be ruled out. In fact, convergence—and multi-level crosstalk—of β-adrenergic receptor Gi and Gs, and α1-adrenergic receptor Gq pathways, to the Ras/Raf/MAPKK/MAPK for the upregulation of transcription has been reviewed previously [43]. Furthermore, special consideration should be taken when interpreting results from in vitro, in vivo, and even in human in vivo, because of tissue-, and even species-specific differences in the mechanisms of regulation of tPA. Incidentally, evidence suggests that a glucagon-cAMP-PKA dependent mechanism blocks the upregulation of tPA in a traumatic brain injury model in pigs [44].

Similarly, if plasmatic levels of vWF were to be attributed exclusively to the β-adrenergic receptor/adenylate cyclase/cAMP signaling pathway, then use of atenolol should be accompanied with a decrease in the outcome, for which the opposite is shown in Table 3.2. In this case, while Table 3.1 displays results for a healthy group of subjects, vWF measurements were performed in a group of subjects with an underlying heart condition using a β1-adrenergic receptor selective blocker that exerts most of its
effects on the heart [45]. As such, it is plausible that, given that vWF levels are higher in hypertensive subjects [46] and they correlate with and even predict left ventricle hypertrophia (LVH) [47], use of 50 mg of atenolol a day is not sufficient to significantly lower baseline levels of vWF.

Although an empirical connection between β-adrenergic receptor agonism and increased activity of coagulation Factor V and decreased levels of PCGR are shown in Table 3.1, current state of the literature does not allow to backup this assertion directly and further research regarding this matter is required.

Intriguingly, long adrenergic receptor stimulation (Table 3.2) had an effect not much different than shorter stimulation (Table 3.1). Apparently, chronic, persistent catecholamine stimulation offers the same pro-coagulant net effect to subjects as acute dosing. However, longer adrenergic receptor stimulation was only described for individuals with a pre-existing chronic condition, which makes interpretation unclear. For technical and ethical reasons, only few studies have prospectively explored the effects of chronic catecholamine stimulation in human. However, accumulating results from observational studies univocally relate chronic mental stress to hypercoagulability, as seen in elderly Alzheimer caregivers [48–50], exhausted female school teachers [28], work-overwhelmed accountants [51], and workers with a negative relationship with their bosses [52], among many others. Nevertheless, it is without a doubt that chronic stress not only will influence levels of catecholamines, but also of cortisol [53], vasopressin [54], thyroid and hormones [55], among many others, and lack of control over the amount and progression of these endogenous stress hormones will always be an inherent source of confusion when attempting to elucidate the mechanisms underlying such effect. Thus, as observational studies fall short and prospective studies are technically and ethically challenging, in vivo studies allow for more accurate mechanistical observations. Yet, finding well suited animal experiments regarding the effect of adrenergic receptor-stimulation, or even chronic stress, on hemostasis or hypercoagulability from a mechanistical intracellular perspective is not an easy task. Besides the foreseeable inotropic effects (rapid elevation of systolic and diastolic blood pressure by approximately 40 mmHg with respect to baseline), continuous infusion of natural catecholamines in rats causes a significant increase in tissue weight and protein content in the aorta and the heart within 6 days of infusion [56]. Additionally, and considering catecholamine pharmacokinetics during chronic stress, it would also appear that not only the duration of the stimulus is important, but also the concentration of the hormone and the time-coordinated presence of α- or β-adrenergic receptors at the cell surface [57]. Consequently, for all these considerations and current limitations, the stepping stone is further experimentation.

3.5 Strengths and Limitations

In harmony with the scarce number of articles regarding the effects of adrenergic receptor stimulation on human hemostasis in the last 10 years, the last systematic review about this subject dates back to the year 2000 [58]. Thus, the present systematic review represents a unique updated appraisal of the observations and mechanisms gathered 22 years ago, now executed under the rigorous guidelines laid by the PRISMA 2020 statement [59]. Nevertheless, the fact that only 4 records met the inclusion criteria is, by all means, the foremost limitation to this study, and it embodies a reflection of how overlooked this field has been over the last decade. Far from discouraging our intentions for writing—and because experimental interventions were found sound and mostly unbiased, results assessed in the synthesis process were coherent, and outcomes were biologically plausible, notwithstanding the pathological baseline for subjects in Table 3.2—this scarcity of data highlights the need for further investigation at the basic/clinical level, turning the succinct nature of this systematic review into a calling for more research in the field, especially when addressing duration of the adrenergic receptor stimulus.
3.6 Conclusions

In sum, this systematic review shows that a prothrombotic anti-fibrinolytic state was induced after β-adrenergic receptor agonist stimulation and the opposite was induced after α₁-β-adrenergic receptor antagonist stimulation. Effect of the duration of adrenergic receptor stimulation offers inconclusive information that warrants further research.

Statements and Declarations

Acknowledgements None.

Funding This work was supported by Fondo Nacional de Desarrollo Científico y Tecnológico FONDECYT [Grant numbers 3220565 (SG), 1201039 (FS), 11170840 (CE), 1191300 (CR)]; Millennium Science Initiative Program—ICN09_016/ICN 2021_045; Millennium Institute on Immunology and Immunotherapy (ICN09_016/ICN 2021_045; former P09/016-F) (FS, CR); The Millennium Nucleus of Ion Channel-Associated Diseases (MiNICAD) is supported by the Initiativa Científica Milenio ANID, Chile (FS); Ministry of Education, Science and Technological Development of the Republic of Serbia (grant number 451-03-9/2021-14/200015) (JFS).

Disclosure of Interests All authors declare they have no conflict of interest.

Ethical Approval This article does not contain any studies with human participants or animals performed by any of the authors.

Authors’ Contributions SG and DA extracted and analyzed the data. SG, CE, CR, JFS, and FS, collectively contributed to manuscript drafting. All authors read and approved the final manuscript.

References

1. Lymperopoulos A, Brill A, McCrink KA (2016) GPCRs of adrenal chromaffin cells & catecholamines: the plot thickens. Int J Biochem Cell Biol 77:213–219
2. Cotecchia S (2010) The α₁-adrenergic receptors: diversity of signaling networks and regulation. J Recept Sig Transd 30:410–419
3. Kalant H, Grant D, Mitchell J (2006) Principles of medical pharmacology
4. Sutherland EW, Rall TW (1958) Fractionation and characterization of a cyclic adenosine ribonucleotide formed by tissue particles. J Biol Chem 232:1077–1091
5. Paravati S, Rosani A, Warrington S (2022) Physiology, catecholamines. PMID: 29939538
6. DeFilippis EM, Givertz MM (2016) Treating diabetes in patients with heart failure: moving from risk to benefit. Curr Hear Fail Rep 13:111–118
7. Price DT, Lefkowitz RJ, Caron MG, Berkowitz D, Schwann DA (1994) Localization of mRNA for three distinct alpha 1-adrenergic receptor subtypes in human tissues: implications for human alpha-adrenergic physiology. Mol Pharmacol 45:171–175
8. Duncan GE, Little KY, Koplas PA, Kirkman JA, Breese GR, Stumpf WE (1991) β-adrenergic receptor distribution in human and rat hippocampal formation: marked species differences. Brain Res 561:84–92
9. Price DT, Schwann DA, Lomasney JW, Allen LF, Caron MG, Lefkowitz RJ (1993) Identification, quantification, and localization of mRNA for three distinct alpha 1 adrenergic receptor subtypes in human prostate. J Urol 150:546–551
10. Johnson M (1998) The β-adrenoceptor. Am J Resp Crit Care 158:S146–S153
11. Uhlén M, Fagerberg L, Hallström BM, Lindskog C, Oksvold P, Mardinoglu A et al (2015) Tissue-based map of the human proteome. Science 347:1260419
12. Dünser MW, Hassibed WR (2009) Sympathetic overstimulation during critical illness: adverse effects of adrenergic stress. J Intensive Care Med 24:293–316
13. Lymeropoulos A, Rengo G, Koch WJ (2013) Adrenergic nervous system in heart failure. Circ Res 113:739–753
14. Evans L, Rhodes A, Alhazzani W, Antonelli M, Coopersmith CM, French C et al (2021) Surviving sepsis campaign: international guidelines for management of sepsis and septic shock 2021. Crit Care Med 49:e1063–e1143
15. Simons FER, Arduso LRF, Dimov V, Ebisawa M, El-Gamal YM, Lockey RF et al (2013) World allergy organization anaphylaxis guidelines: 2013 update of the evidence base. Int Arch Allergy Immunol 162:193–204
16. Werdan K, Boeken U, Briegel MJ, Buerke M, Geppert A, Janssens U et al (2021) Kurzversion der 2. Auflage der deutsch-österreichischen S3-Leitlinie “Infarkt-bedingter Kardiogener Schock—Diagnose, Monitoring und Therapie”. Der Anaesthesist 70:42–70
17. Dünser MW, Takala J, Brunauer A, Bakker J (2013) Re-thinking resuscitation: leaving blood pressure cosmetics behind and moving forward to permissive hypotension and a tissue perfusion-based approach. Crit Care 17:326
18. Kox M, Pickkers P (2013) “Less is more” in critically ill patients: not too intensive. JAMA Intern Med 173:1369–1372
19. Singer M, Brealey D (2011) Another nail in the hammer’s coffin? Crit Care 15:179
20. McGraw DW, Liggett SB (2005) Molecular mechanisms of β2-adrenergic receptor function and regulation. Proc Am Thorac Soc 2:292–296
21. Wang LY, Raskind MA, Wilkinson CW, Shofer JB, Sikkema C, Szt P et al (2018) Associations between
CSF cortisol and CSF norepinephrine in cognitively normal controls and patients with amnestic MCI and AD dementia. Int J Geriat Psychiatry 33:763–768

22. Geracioti TD, Baker DG, Ekhortar NN, West SA, Hill KK, Bruce AB et al (2001) CSF norepinephrine concentrations in posttraumatic stress disorder. Am J Psychiatry 158:1227–1230

23. Frey N, Katus HA, Olson EN, Hill JA (2004) Hypertrophy of the heart. Circulation 109:1580–1589

24. Zhang B, Wu C, Chen W, Qiu L, Li S, Wang T et al (2020) The stress hormone norepinephrine promotes tumor progression through β2-adrenoceptors in oral cancer. Arch Oral Biol 113:104712

25. Liu J, Deng G-H, Zhang J, Wang Y, Xia X-Y, Luo X-M et al (2015) The effect of chronic stress on anti-angiogenesis of sunitinib in colorectal cancer models. Psychoneuroendocrinology 52:130–142

26. Capellino S, Claus M, Watzl C (2020) Regulation of natural killer cell activity by glucocorticoids, serotonin, dopamine, and epinephrine. Cell Mol Immunol 17:705–711

27. Muthuswamy R, Okada NJ, Jenkins FJ, McGuire K, McAllulife PF, Zeh HJ et al (2017) Epinephrine promotes COX-2-dependent immune suppression in myeloid cells and cancer tissues. Brain Behav Immun 62:78–86

28. Bellingerth S, Weigl T, Kudielka BM (2009) Chronic work stress and exhaustion is associated with higher allostatic load in female school teachers. Ann N Y Acad Sci 12:37–48

29. Moher D, Liberati A, Tetzlaff J, Altman DG, Group P (2009) Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. BMJ 339:b2535

30. Sterne JAC, Savović J, Page MJ, Elbers RG, Blenkins NS, Boutron I et al (2019) RoB 2: a revised tool for assessing risk of bias in randomised trials. BMJ 366:l4898

31. CASP randomised controlled trial checklist 2020. Available from: https://casp-uk.net/casp-tools-checklists

32. Ali-Saleh M, Sarig G, Ablin JN, Brenner B, Jacob G (2016) Inhalation of a short-acting β2-adrenoceptor agonist induces a hypercoagulable state in healthy subjects. PLoS ONE 11:e0158652

33. Boman K, Boman JH, Andersson J, Olofsson M, Dahlöf B (2010) Effects of atenolol or losartan on fibrinolysis and von Willebrand factor in hypertensive patients with left ventricular hypertrophy. Clin Appl Thrombosis Hemostasis 16:146–152

34. Alan C, Knilmaz B, Koçoğlu H, Ersay AR, Ertung Y, Eren AE (2011) Comparison of effects of alpha receptor blockers on endothelium vessels and coagulation parameters in patients with benign prostatic hyperplasia. Urology 77:1439–1443

35. Karabacak M, Dogan A, Aksoy F, Ozaydin M, Erdogan D, Karabacak P (2014) Both carvedilol and nebivolol may improve platelet function and prothrombotic state in patients with nonsmecic heart failure. Angiology 65:533–537

36. Yao X, Parnot C, Deupi X, Ratnamala VRP, Swaminath G, Farrens D et al (2006) Coupling ligand structure to specific conformational switches in the beta2-adrenoceptor. Nat Chem Biol 2:417–422

37. Lipworth BJ, Clark DJ (1997) Effects of airway calibre on lung delivery of nebulsalbutamol. Thorax 52:1036

38. Vischer UM, Wollheim CB (1997) Epinephrine induces von Willebrand factor release from cultured endothelial cells: involvement of cyclic AMP-dependent signalling in exocytosis. Thromb Haemost 77:1182–1188

39. Valentić KM, Sadler JE, Valentić JA, Voorburg J, Eikenboom J (2011) Functional architecture of Weibel–Palade bodies. Blood 117:5033–5043

40. Hoppener MR, Kraaijenhagen RA, Hutten BA, Bülter HR, Peters RJG, Levi M (2004) Beta-receptor blockade decreases elevated plasma levels of factor VIII C in patients with deep vein thrombosis. J Thromb Haemost 2:1316–1320

41. Eberhardt W, Engels C, Müller R, Pfeilschifter J (2002) Mechanisms of dexamethasone-mediated inhibition of cAMP-induced IPA expression in rat mesangial cells. Kidney Int 62:809–821

42. Rydholm H, Boström S, Eriksson E, Risberg B (2009) Complex intracellular signal transduction regulates tissue plasminogen activator (t-PA) and plasminogen activator inhibitor type-1 (PAI-1) synthesis in cultured human umbilical vein endothelium. Scand J Clin Lab Invest 55:323–330

43. Dzimiri N (1999) Regulation of beta-adrenoceptor signaling in cardiac function and disease. Pharmacol Rev 51:465–501

44. Armstead WM, Kiessling JW, Cines DB, Higashi AA-R (2011) Glucagon protects against impaired NMDA-mediated cerebrovasodilatation and cerebral autoregulation during hypotension after brain injury by activating cAMP protein kinase A and inhibiting upregulation of tPA. J Neurotrauma 28:451–457

45. Reeves PR, McKinsh J, McIntosh DAD, Winrow MJ (2009) Metabolism of atenolol in man. Xenobiota 39:313–320

46. Spencer CGC, Gurney D, Blann AD, Beever DG, Lip GYH, Trial ASC Anglo-Scandinavian Cardiac Outcomes (2002) Von Willebrand factor, soluble P-selectin, and target organ damage in hypertension: a substudy of the Anglo-Scandinavian Cardiac Outcomes Trial (ASCOT). Hypertension 40:61–66

47. Liu G, Yin G-S, Tang J, Ma D-J, Ru J, Huang X-H (2015) The effect of chronic stress on anti-angiogenesis of sunitinib in colorectal cancer models. Psychoneuroendocrinology 52:130–142
50. von Känel R, Dimsdale JE, Adler KA, Patterson TL, Mills PJ, Grant I (2005) Exaggerated plasma fibrin formation (D-dimer) in elderly Alzheimer caregivers as compared to noncaregiving controls. Gerontology 51:7–13
51. Frimerman A, Miller HI, Laniado S, Keren G (1997) Changes in hemostatic function at times of cyclic variation in occupational stress. Am J Cardiol 79:72–75
52. Davis MC, Matthews KA, Meilahn EN, Kiss JE (1995) Are job characteristics related to fibrinogen levels in middle-aged women? Health Psychol 14:310–318
53. Hargreaves KM (1990) Neuroendocrine markers of stress. Anesth Prog 37:99–105
54. Aguilera G, Subburaju S, Young S, Chen J (2008) The parvocellular vasopressinergic system and responsiveness of the hypothalamic pituitary adrenal axis during chronic stress. Prog Brain Res 170:29–39
55. Helmreich DL, Parfitt DB, Lu X-Y, Akil H, Watson SJ (2005) Relation between the hypothalamic-pituitary-thyroid (HPT) axis and the hypothalamic-pituitary-adrenal (HPA) axis during repeated stress. Neuroendocrinology 81:183–192
56. Johnson MD, Grignolo A, Kuhn CM, Schanberg SM (1983) Hypertension and cardiovascular hypertrophy during chronic catecholamine infusion in rats. Life Sci 33:169–180
57. Wong DL, Tai TC, Wong-Faull DC, Claycomb R, Meloni EG, Myers KM et al (2012) Epinephrine: a short- and long-term regulator of stress and development of illness: a potential new role for epinephrine in stress. Cell Mol Neurobiol 32:737–748
58. Känel RV, Dimsdale JE (2000) Effects of sympathetic activation by adrenergic infusions on hemostasis in vivo. Eur J Haematol 65:357–369
59. Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD et al (2021) The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ 372:n71
\(\alpha_1\)-Adrenergic Stimulation Increases Platelet Adhesion to Endothelial Cells Mediated by TRPC6

Felipe M. Llancalahuen, Alejandro Vallejos, Diego Aravena, Yolanda Prado, Sebastian Gatica, Carolina Otero, and Felipe Simon

Abstract

Stimulation of \(\alpha_1\)-adrenergic nervous system is increased during systemic inflammation and other pathological conditions with the consequent adrenergic receptors (ARs) activation. It has been reported that \(\alpha_1\)-stimulation contributes to coagulation since \(\alpha_1\)-AR blockers inhibit coagulation and its organic consequences. Also, coagulation induced by \(\alpha_1\)-AR stimulation can be greatly decreased using \(\alpha_1\)-AR blockers. In health, endothelial cells (ECs) perform anticoagulant actions at cellular and molecular level. However, during inflammation, ECs turn dysfunctional promoting a procoagulant state. Endothelium-dependent coagulation progresses at cellular and molecular levels, promoting endothelial acquisition of procoagulant properties to potentiate coagulation by means of prothrombotic and antifibrinolytic proteins expression increase in ECs releasing them to circulation, the thrombus formation is strengthened. Calcium signaling is a main feature of coagulation. Inhibition of ion channels involved in Ca\(^{2+}\) entry severely decreases coagulation. The transient receptor potential canonical 6 (TRPC6) is a non-selective Ca\(^{2+}\)-permeable ion channel. TRPC6 activity is induced by diacylglycerol, suggesting that is regulated by \(\alpha_1\)-ARs. Furthermore, \(\alpha_1\)-ARs stimulation elicits a TRPC-like current in rat mesenteric artery smooth muscle and mesangial cells. However, whether TRPC6 could promote an ECs-mediated platelet adhesion induced by \(\alpha_1\)-adrenergic stimulation is currently not known. Therefore, the aim of this study was to examine if the TRPC6 calcium channel mediates platelet adhesion induced by \(\alpha_1\)-adrenergic stimulation. Our results suggest that platelet adhesion to ECs is enhanced by the \(\alpha_1\)-adrenergic stimulation evoked by phenylephrine mediated by TRPC6 activity. We conclude that TRPC6 is a molecular determinant in platelet adhesion to ECs with implications in systemic inflammatory diseases treatment.
Keywords

Endothelial cells · α1-adrenergic receptor · Platelet adhesion · TRPC6 · Calcium

Abbreviations

ACD Citric acid dextrose buffer
ARs Adrenergic receptors
DAG Diacylglycerol
ECs Endothelial cells
FV Coagulation factor V
FVII Coagulation factor VII
FVIII Coagulation factor VIII
FX Coagulation factor X
FXa Activated coagulation factor X
FXI Coagulation factor XI
GPCR G protein-coupled receptors
GPIIIa Glycoprotein III a
GPIIb Glycoprotein II b
HUVEC Human umbilical vein endothelial cell
IP3 Inositol trisphosphate
MTT 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide
PIP2 Phosphatidylinositol 4,5-bisphosphate
PKC Protein kinase C
PLC Phospholipase C
PRP Platelet-rich plasma
SMC Smooth muscle cells
TAFI Thrombin activable fibrinolysis inhibitor
TF Tissue factor
TFPI Tissue factor pathway inhibitor
TM Thrombomodulin
tPA Tissue-type plasminogen activator
TRPC6 Transient receptor potential cation channel 6
TRPM7 Transient receptor potential melastatin channel 7
u-PA Plasminogen activator
vWF von Willebrand Factor

4.1 Introduction

Systemic inflammation, as well as other severe acute and chronic pathological states, considerably impair sympathetic nervous system function, resulting in elevated levels of endogenous catecholamines (norepinephrine and epinephrine) and consequent activation of adrenergic receptors (ARs) [1–11]. The adrenergic system is a complex interplay of neurohormonal mechanisms that regulate critical functions in the central nervous system such as sleep or autonomic outflow as well as peripheral functions such as cardiovascular control [12, 13]. This system is composed by the α- and β-adrenergic receptors, a ubiquitous group of glycoproteins that belong to the superfamily of G protein-coupled receptors (GPCR) and perform critical roles for the maintenance of vital functions such as the adaptation to environmental variations [14]. Particularly, the α-ARs are subdivided into α-1 and α-2 subtypes. The α1-AR subtype is mainly coupled to a Gq protein, which activates phospholipase C (PLC), cleaving phosphatidylinositol 4,5-bisphosphate (PIP2) to generate diacylglycerol (DAG) and inositol trisphosphate (IP3). DAG/IP3 promote the activation of Ca2+ signaling pathways and also activates protein kinase C (PKC), which phosphorylates a number of proteins modifying their actions [15, 16]. Interestingly, it has been reported that α1 adrenergic stimulation contributes to coagulation since the use of the α1 adrenergic receptor blockers inhibited coagulation [17–19] and its organic consequences [20, 21]. Concordantly, coagulation induced by α1 adrenergic receptor stimulation can be greatly decreased using α1 adrenoreceptor blockers, while full inhibition can be achieved using both α- and β-adrenergic receptor blockers or non-selective blockers [22–25]. Given that the use of adrenergic receptor blockers decreased coagulation during systemic inflammation, it is feasible
to hypothesize that adrenergic stimulation, rather than pro-inflammatory mediators, is a critical element in promoting coagulation, making adrenergic stimulation a main factor to investigate [22, 25–27].

Hemostasis is the integration of molecular mechanisms preventing bleeding at the site of an injury while preserve normal blood flow in the circulation [28]. When there is an injury, the exposed molecules in the damaged tissue activate platelets, triggering thrombus formation. This event prevents blood loss in a platelet-dependent coagulation (primary hemostasis) [29]. Secondary hemostasis by the contrary, requires the active contribution of endothelial cells (ECs) lining the inner face of blood vessels, as well as the polymerization of fibrin in an insoluble mesh formed by platelets and even another circulating cells such as red blood cells, neutrophils and monocytes [30]. In health, ECs inhibit coagulation by acting as anticoagulants at the molecular and cellular levels. However, during inflammation, ECs become dysfunctional carrying out abnormal functions, playing a critical role in regulating coagulation [31, 32]. In this environment, endothelial cells could gain procoagulant properties supporting increased coagulation in an endothelium-dependent manner. This finding highlighted the notion that adrenergic stimulation generated during inflammation might modify normal function of ECs, shifting from anticoagulant environment into an altered procoagulant state.

Endothelium-dependent coagulation progresses at cellular and molecular levels supported by the reduction of anticoagulant and profibrinolytic molecules as well as the enhanced release of pro-thrombotic and anti-fibrinolytic molecules into the circulation, intensifying pro-coagulant states [9, 33, 34]. Endothelial anticoagulant molecules include thrombomodulin (TM) and tissue factor pathway inhibitor (TFPI) [35, 36]; the profibrinolytic include tissue plasminogen activator (t-PA) and urokinase plasminogen activator (u-PA) [37, 38], while the prothrombotic proteins include tissue factor (TF) [34, 39]; the anti-fibrinolytic proteins include plasminogen activator inhibitor type 1 (PAI-1) and thrombin-activable fibrinolysis inhibitor (TAFI) [40–42]. Similarly, platelet–endothelial interactions are critical in coagulation progression, given that the glycoprotein IIb/IIIa (GPIIb/IIIa) for example, is the receptor mediating the binding between platelets and ECs [43, 44] via endothelial proteins such as von Willebrand factor (vWF) [45, 46], as well as the expression of other adhesion molecules by ECs such as adhesion molecule p-Selectin [47–49] and the integrin avb3 [50, 51].

Calcium signaling is a hallmark of coagulation [52–55]. It is known that inhibition of ion channels involved in Ca$^{2+}$ entry severely decreases coagulation [56–61], as well as the a1-AR signal transduction pathway is involved in the activation of Ca$^{2+}$ signaling during inflammation [15, 16]. Thus, Ca$^{2+}$ entry appears as a crucial step linking adrenergic stimulation with coagulation. Interestingly, the transient receptor potential canonical 6 (TRPC6) is a non-selective Ca$^{2+}$-permeable ion channel, composed by five-fold more permeable to Ca$^{2+}$ than Na$^+$ [62, 63]. TRPC6 exhibits rectification with single-channel conductance of \sim 35 pS [63, 64]. TRPC6 is expressed in several cell types, including ECs, exhibiting higher expression than its homologues TRPC3 and TRPC7 [22, 65]. A functional channel is constituted by four TRPC6 subunits, that can be associated with TRPC3 and TRPC7 to form heterotetrametric channels, although their significance is poorly understood [62, 66, 67]. Since the initial findings showing that TRPC6 activity is induced by DAG, the notion that TRPC6 is regulated by G-coupled a1-ARs emerged [64, 68]. Results showing TRPC6 activation in response to PIP$_2$ hydrolysis mediated by PLCb, g and e [64, 68, 69], and that TRPC6 membrane translocation is regulated by GPCR activation [70, 71], reinforced the idea that TRPC6 is regulated by a1 adrenergic receptors activation. The notion that TRPC6 activity is regulated by ARs stimulation was finally demonstrated with results showing that a1 adrenergic receptors stimulation elicits a TRPC-like current in rat mesenteric artery smooth muscle cells (SMC) [72]. This finding was confirmed a decade later reporting that TRPC6 activity is induced by a1-ARs stimulation in
mesangial cells, showing that a1-adrenergic stimulation activates TRPC6-mediated Ca\(^{2+}\) influx, which was abolished by PLC inhibition [73]. TRPC6 phosphorylation by PKC inhibits channel activity, indicating that PLC, unlike PKC activity, is required to activate TRPC6 [74]. Thus, TRPC6 is a Ca\(^{2+}\)-permeable ion channel regulated by a1-adrenergic stimulation that appears as a suitable candidate to mediate coagulation-related actions in ECs. However, this hypothesis has not been demonstrated so far.

Participation of TRPC6 in endothelium-dependent coagulation induced by adrenergic stimulation is a novel idea. For that reason, little information is available. However, some studies performed in platelets in the context of wound healing condition, give the notion that such idea is supported. It has been reported that TRPC6 and TRPM7 mediate Ca\(^{2+}\) entry in platelets [75–78], which is crucial for platelet aggregation [78–81]. TRPC6 deletion in mice results in extended bleeding and coagulation time [81], but the global deficiency makes it hard to interpret the specific underlying mechanism. Taken together, it is suggested that TRPC6 could promote an ECs-mediated platelet adhesion induced by a1-adrenergic stimulation. However, this hypothesis is currently not known. Therefore, the aim of this study was to examine if the TRPC6 calcium channel mediates platelet adhesion to endothelial cells induced by a1-adrenergic stimulation.

Our results showed that endothelial cells exposed to the a1 adrenergic agonist phenylephrine exhibited an increased platelet adhesion to endothelial cells monolayer. Concordantly, endothelial cells exposed to the a1 adrenergic antagonist terazosin, did not show change in platelet adhesion. Interestingly, endothelial cells exposed to the a1 adrenergic agonist phenylephrine in the presence of the pharmacological TRPC6 blocker BI-749327, showed a total inhibition of the platelet adhesion induced by phenylephrine challenge, while the treatment with the TRPC6 blocker BI-749327 was efficient to inhibit the integrin avb3 expression increase induced by phenylephrine. The expression of von Willebrand factor and P-selectin were unchanged when endothelial cells were exposed to either phenylephrine or BI-749327.

These results could be useful in understanding the underlying mechanism of platelet adhesion to endothelial cells turning away from the complexity that involves the study of adrenergic over stimulation in a pathological and inflammatory context and could have implications in the treatment of systemic inflammatory diseases or enhanced adrenergic stimulation conditions.

4.2 Methods

Cell Culture: Human umbilical vein endothelial cell (HUVEC)-derived endothelial cell line EA.hy926 was cultured in Dulbecco’s Modified Eagle Medium (DMEM-Low) with 10% fetal bovine serum (FBS), 4 mM l-glutamine, 1 g/L d-glucose, 100 μg/mL penicillin–streptomycin and 2.5 μg/mL amphotericin. Cells were grown in an incubator at 37 °C in a humidified atmosphere (95% air and 5% CO\(_2\)). All cell culture supplies were purchased from Sigma-Aldrich.

Cell Viability Assays: Human umbilical vein endothelial cell (HUVEC)-derived endothelial cell line EA.hy926 was cultured in Dulbecco’s Modified Eagle Medium (DMEM-Low) with 10% fetal bovine serum, 4 mM l-glutamine, 1 g/L d-glucose, 100 μg/mL penicillin–streptomycin and 2.5 μg/mL amphotericin. Cells were grown in an incubator at 37 °C in a humidified
atmosphere (95% air and 5% CO₂). Passage took place every 2–3 days. All cell culture supplies were purchased from Sigma-Aldrich, USA. Toxicity was determined using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) cell viability assay after 24 h of incubation with Phenylephrine, Terazosin and BI-749327. MTT is a yellow compound that, when reduced by active mitochondria, produces purple formazan crystals that can be measured spectrophotometrically. For this purpose, MTT (Sigma-Aldrich, USA) was dissolved in phosphate buffered saline (PBS) to a concentration of 5 mg/mL and further diluted in culture medium (1:10). Cells were incubated with this MTT-solution for 4 h in an incubator at 37 °C in a humidified atmosphere (95% air and 5% CO₂). Afterwards, 100 µL of isopropyl alcohol were added. To completely dissolve the formazan salts, plates were incubated for 10 min on a shaker and quantified by measuring absorbance at 570 nm with an ELISA microplate reader. Cell viability was calculated as percentage of surviving cells compared against cells vehicle-exposed (control condition).

Platelets to Endothelial Cells Adhesion Assay:

Endothelial cells were plated at a density of 2.5 × 10^4 cells in a 96-well plate, and past 24 h were pretreated with the selective α-1 receptor inhibitor Terazosin (200 nM), the calcium blocker BI-749327 (500 nM) or transfected with an siRNA anti TRPC6 (siRNA^{TRPC6}) or siRNA control (siRNA^{Non-targeting}). For molecular TRPC6 inhibition, cells were transfected with 5 nmol/L siRNA (Dharmacon, USA) using lipofectamine (Invitrogen) and Opti-MEM (Gibco) and according to manufacturer instructions the transfection media was replaced after 4 h. Experiments were performed 48 h after transfection. To start the assay, the α1-adrenergic agonist Phenylephrine, was added at a final concentration of 0.1 µM with fluorescent-labeled platelets (∼ 2.25 × 10^6 platelets per well, contained in 100 µL of minimal experimentation medium) for 18 h at 37 °C. Then, non-adherent platelets were washed three times with warm PBS and observed in the FLoid Cell Imaging Station (ThermoFisher Scientific, USA). This experiment was made by technical triplicate and six fields for each condition by replicate were analyzed.

The images obtained were processed in grayscale using a pixel analysis software designed for these experiments. Briefly, the mean size of a platelet unit was calculated in pixels. Then, the number of total platelets per image was calculated as the fluorescence intensity of each pixel, then were grouped into 5 grays scales to apply the intensity correction factor.

Platelet Isolation from Human Peripheral Blood: The whole blood was obtained from normal male volunteer donors who declared have not consumed drugs that could interfere with platelet adhesion as anti-inflammatories, anticoagulants or antiplatelet drugs at least ten days before the blood extraction. Blood was collected in a Vacutainer tube with sodium citrate as anticoagulant. For each experiment 12 mL were collected. The extracted blood was transferred to 15 mL conical tubes and centrifuged at 200 g for 30 min at room temperature. Once centrifuged, the upper portion of the plasma, corresponding to platelet-rich plasma (PRP), was transferred to a new tube, and HEP Buffer was added in a 1:1 ratio, mixing it by inversion three times. Subsequently, the samples were centrifuged at 400 g for 30 min at room temperature to recover the supernatant again. To the latter, citric acid dextrose buffer (ACD) was added in 1:10 proportion, and then was mixed by inversion three times, centrifuged for 15 min at 3000 g at room temperature, and the pellet was recovered and resuspended in HEPES Tyrode’s buffer free of MgCl₂. Subsequently, the isolated platelets were counted using a Neubauer chamber and suspended at a concentration of ∼ 2.25 × 10^6 platelets/mL. Then, platelets were stained with the fluorescent dye vibrant DiO (ThermoFisher Scientific, USA) for 15 min at 37 °C. Platelets

Platelet Isolation from Human Peripheral Blood: The whole blood was obtained from normal male volunteer donors who declared have not consumed drugs that could interfere with platelet adhesion as anti-inflammatories, anticoagulants or antiplatelet drugs at least ten days before the blood extraction. Blood was collected in a Vacutainer tube with sodium citrate as anticoagulant. For each experiment 12 mL were collected. The extracted blood was transferred to 15 mL conical tubes and centrifuged at 200 g for 30 min at room temperature. Once centrifuged, the upper portion of the plasma, corresponding to platelet-rich plasma (PRP), was transferred to a new tube, and HEP Buffer was added in a 1:1 ratio, mixing it by inversion three times. Subsequently, the samples were centrifuged at 400 g for 30 min at room temperature to recover the supernatant again. To the latter, citric acid dextrose buffer (ACD) was added in 1:10 proportion, and then was mixed by inversion three times, centrifuged for 15 min at 3000 g at room temperature, and the pellet was recovered and resuspended in HEPES Tyrode’s buffer free of MgCl₂. Subsequently, the isolated platelets were counted using a Neubauer chamber and suspended at a concentration of ∼ 2.25 × 10^6 platelets/mL. Then, platelets were stained with the fluorescent dye vibrant DiO (ThermoFisher Scientific, USA) for 15 min at 37 °C. Platelets
were washed by centrifugation at 3000 g for 5 min at room temperature three times. The pellet was resuspended in DMEM-Low 1% FBS and 100 µL of medium containing ~ 2.25 \times 10^6 platelets was added to the endothelial cells’ co-culture.

Quantification and Analysis of Platelet Adhesion to Endothelial Cells: The images obtained were processed in grayscale using a pixel analysis software designed for these experiments. Briefly, the mean size of a platelet or a neutrophil unit was calculated in pixels. Then, the number of total platelets or total neutrophils per image was calculated as the fluorescence intensity of each pixel, then were grouped into 5 grays scales to apply the intensity correction factor.

Detection of vWF, P-Selectin and Integrin αvβ3 by Fluorescent Immunocytochemistry: Pre-cultured and pre-treated ECs were washed twice with PBS and fixed with 3.7% paraformaldehyde (PFA) for 30 min at room temperature before being permeabilized with 0.1% Triton X-100 in PBS for 30 min at RT and then blocked for 2 h at room temperature with 3% Bovin serum albumin (BSA) in PBS. Cells were washed again and incubated with the primary antibodies to detect endothelial vWF (Invitrogen, USA), P-Selectin (Invitrogen, USA) and Integrin αvβ3 (Bioss, USA). Then, cells were washed twice and incubated with the secondary antibodies. Samples were mounted with ProLong Glass antifade mounting medium with NucBlue (Invitrogen, USA). For the quantification of fluorescence, areas of interest were selected and subjected to analysis using the Image J software. Fluorescence quantification was normalized against control condition (vehicle-treated condition).

Statistical Analysis: Results are presented as mean ± standard deviation or mean ± 95% confidence interval (CI) for the relative risk. Differences were considered significant at \(p < 0.05 \). Statistical differences were assessed by Student’s t-test (Mann–Whitney type), one-way analysis of variance (one-way ANOVA) See the figure legends for the specific test used.

4.3 Results

4.3.1 Platelet Adhesion Is Mediated by the α-1 Adrenergic Receptor

Considering the association between α-1 signaling and coagulation \([10]\), we examined whether platelet adhesion to ECs can be induced by activation of the α-1 adrenergic receptor. To that end, we performed experiments in phenylephrine-treated human ECs cocultured with isolated human platelets, and platelet-to-EC adhesion was measured. ECs treated with phenylephrine for 18 h showed an ~ 2.5-fold increase in platelet adhesion (Fig. 4.1b, e, g) compared with vehicle-treated ECs (Fig. 4.1a, d, g). Importantly, in ECs preincubated for 1 h with terazosin, the selective blocker of adrenergic α-1 receptors, phenylephrine-induced platelet adhesion was completely abolished (Fig. 4.1c, f, g).

4.3.2 TRPC6 Activity Mediates Phenylephrine-Induced Platelet Adhesion to ECs

On the other hand, it has been reported that there is a relationship between the activation of the α-1 adrenergic receptor and the activity of ion channel TRPC6 \([73, 82]\). So, we set out to examine the role of TRPC6 in phenylephrine-induced platelet adhesion to ECs. For this, we used the selective blocker of TRPC6 activity BI-749327, and remarkably, ECs preincubated for 1 h with BI-749327 completely abolished the phenylephrine-induced platelet adhesion (Fig. 4.2d, h, i).

4.3.3 Phenylephrine, Terazosin and BI-749327 Do Not Show Cytotoxicity in ECs

To demonstrate that platelet adhesion was mediated by receptor α-1 and TRPC6 activity, the cytotoxicity of all drugs Phenylephrine, Terazosin and BI-749327 was evaluated in ECs.
Fig. 4.1 Stimulation of the α-1 adrenergic receptor induces platelet adhesion to endothelial cells. Representative images from vehicle (a–d), phenylephrine (b–e) and terazosin-treated ECs (c–f) exposed to saline solution and then cocultured with platelets for 18 h. Scale bar represents 100 μm. Platelets were stained by Vybrant Dio (green), and platelet adhesion was analyzed (g) (N = 5). Results were normalized against vehicle-exposed cells (control condition). Statistical differences were assessed by a one-way analysis of variance (ANOVA) followed by Tukey post hoc test. ***p < 0.001 and ****p < 0.0001. Results showed as mean ± SD.

Fig. 4.2 Activity of TRPC modulates phenylephrine-induced platelet adhesion to endothelial cells. Representative images from vehicle (a–e), phenylephrine (b–f), BI-749327 (c–g) and phenylephrine + BI-749327-treated ECs (d–h) and then cocultured with platelets for 18 h. Scale bar represents 100 μm. Platelets were stained by Vybrant Dio (green), and platelet adhesion was analyzed (i) (N = 5). Results were normalized against vehicle-exposed cells (control condition). Statistical differences were assessed by a one-way analysis of variance (ANOVA) followed by Tukey post hoc test. ***p < 0.001 and ****p < 0.0001. Results showed as mean ± SD.
This was evaluated by MTT assay, it was observed that Phenylephrine does not present cytotoxicity in ECs in the concentration ranging from 0.1 to 10 μM (Fig. 4.3a) at 24 h. On the other hand, Terazosin showed low cytotoxicity in ECs up to 0.250 μM (\leq30%) at 24 h (Fig. 4.3b). Finally, BI-749327 showed no cytotoxicity in ECs at any of the evaluated concentrations after 24 h of exposure (Fig. 4.3c).

4.3.4 TRPC6 Expression Mediates Phenylephrine-Induced Platelet Adhesion to ECs

Next, to unequivocally demonstrate that endothelial TRPC6 is required for platelet-to-EC adhesion, we applied a molecular biological experimental strategy to downregulate TRPC6 expression using a small interfering RNA (siRNA) against the human isoform of TRPC6 (siRNA$^{\text{TRPC6}}$). Thus, experiments were performed in phenylephrine-treated ECs transfected with siRNA$^{\text{TRPC6}}$ or siRNA$^{\text{Nontargeting}}$, and platelet adhesion was determined. The results showed that siRNA$^{\text{TRPC6}}$-transfected ECs exposed to phenylephrine (Fig. 4.4d, m, j), completely prevented the phenylephrine-induced platelet adhesion (Fig. 4.4d, j, m) compared with vehicle-treated ECs (Fig. 4.4a–g, m) or siRNA$^{\text{Nontargeting}}$-transfected phenylephrine-treated ECs (Fig. 4.4f, l, m).

4.3.5 TRPC6 Is Required for Endothelial Integrin $\alpha\nu\beta3$ Expression Induced by Phenylephrine, but not for P-Selectin and vWF

It is well known that endothelial P-selectin, Integrin $\alpha\nu\beta3$ and vWF are crucial proteins that promote platelet adhesion to ECs [50, 51, 83]. Thus, we studied whether TRPC6 is required for vWF, Integrin $\alpha\nu\beta3$ and P-selectin expression in phenylephrine-treated ECs. Phenylephrine-treated ECs did not show an increase in vWF (Fig. 4.5a), and P-selectin (Fig. 4.5b). Interestingly, a significant increase was seen in the expression of Integrin $\alpha\nu\beta3$ (Fig. 4.5c), compared with the vehicle-treated condition. The pharmacological inhibition of TRPC6 with BI-749327 showed a significant prevention of phenylephrine-induced expression of Integrin $\alpha\nu\beta3$ (Fig. 4.5c), but not in the expression of vWF (Fig. 4.4a) and P-selectin (Fig. 4.4b).
4.4 Discussion

This work investigates the role of endothelium in a purer environment, with aiming to elucidate what is the real contribution of some molecules in the context of a hyperadrenergic state in four different axes, \(\alpha_1 \) adrenergic hyperstimulation and persistency, the activity of an adrenergic-stimulated calcium channel, TRPC6; the presence of TRPC6 itself and the effects on phenotypical changes in endothelium mainly focused on the expression of proteins related to favor a procoagulant state.

Coagulopathies are common and severe complications in diverse acute and chronic
diseases such as liver disease [84], coronavirus disease 2019 [85], cardiovascular disease [86] or sepsis [87]. Although coagulation is a complex response generally linked to wound healing when endothelial layer is disrupted, during inflammation, usually occurs in presence of endothelium, favoring its dysfunction. Coagulation represents a convoluted cascade that involves both molecular activation of coagulation factors that are present in plasma and endothelial phenotype modification allowing a cell adhesion phenomenon that favors thrombus formation. As it was mentioned before, coagulation mechanisms could activate without wound or injury present as well driving to thrombus formation. A thrombus can be defined as a blood clot formed inside a blood vessel in situ that alters or disrupts the blood flow driving severe complications. Thrombus formation occludes vessels generating hypoperfusion with subsequent anoxia in tissues [88]. Laminar flux of blood flow changes to turbulent which impairs transport of molecules between blood vessels and organs [89, 90]. In addition, the proportion of perfused blood vessels is considerably decreased, generating organ dysfunction [91] with a concomitant elevated mortality [92]. Central organs such as lung, kidney and liver are compromised tending to lose their functions. Besides, during thrombus formation, the fibrinolytic process to degrade thrombi also increases generating enormous D-dimer products as clinical indicators of thrombi degradation [37, 38].

It is well known that a pathological condition is often accompanied by inflammation, an immune response that implies a series of physiological and physio-pathological effects, one of which is the hyperstimulation of the adrenergic system, which leads to persistent increase in circulating catecholamines, triggering responses that are not necessarily focused on homeostatic parameters compensation. Both acute and chronic inflammatory signals are well recognized as triggers of sympathetic activation and hyperadrenergic states linked to adverse health effects [93] including increased cardiovascular risk [94, 95], immune dysregulation in coronavirus disease 2019 [96], increased mortality risk in septic shock [97] and monocyte activation and monocyte-platelet aggregates formation in hypertension [98]. Similarly, during inflammatory states, the anticoagulant actions performed by the endothelium to preserve blood fluidity are severely altered [99, 100], given cumulative evidence describing procoagulant states driving shortened coagulation and bleeding time, as well as the decrease in platelet count and reduced plasma levels of coagulation factors, a irrefutable indicator of consuming associated with thrombus formation processes [101, 102].

Diverse studies have shown a relation between α1 adrenergic stimulation and coagulation parameters, owing to the fact that several diseases requiring a treatment with adrenergic agonist or antagonist exhibit a direct or indirect effect on the coagulation system. For example, it has been well described that α-blockers drugs used in treatment to improve benign prostate hyperplasia symptoms as doxazosin and terazosin significantly increased coagulation time and bleeding time, suggesting that α1 blocking favors an anticoagulant state [20]. Another study found that the use of carvedilol in heart failure exhibited to reduction in D-dimer concentration and main platelet volume (an indicator of platelet activation) [103]. Despite of the above, these phenomena were studied in vivo, rising questions about the effective contribution of the endothelial tissue to the coagulation system changes. Endothelium, as being a main performer in hemostasis regulation, takes relevance in coagulopathies development, so the understanding of its behavior during an hyperadrenergic event appears to be an interesting way to find new biomolecules having an important role in endothelial dysfunction as calcium channels activated by adrenergic system.

The interaction between endothelium and platelets is critical for preserving hemostasis under physiological conditions [104]. Inflammation in its place promotes it loss and favors coagulation hyperactivation, exacerbating adverse outcomes particularly when combined with catecholamines over exposition [105] as evidenced by immortalized murine endothelial cells exposed to supraphysiological concentrations of catecholamines.
that lose their morphological integrity [106] and platelets when exposed to catecholamines, that significantly increased their count and size, both of which are associated with elevated activation, recruitment and aggregation [107].

Our results indicate that α1-adrenergic stimulation can individually elicit a significant procoagulative response. Regarding the contribution of α1 adrenoceptor, the presence of different types of adrenergic receptors and their density is a relevant factor driving signaling cascades in endothelium in front of a hyperadrenergic state. There are some investigations about this in other endothelial cells, as in vitro cultured rat coronary microvascular endothelial cells, where it has been demonstrated a high presence of α1 adrenergic receptors, specially α1D isoform [108]. Despite there are not studies showing adrenergic receptor types expression in EA hy.926 cells, there are in cultures human umbilical vein endothelial cells (HUVEC), demonstrating a high presence of α1 adrenergic receptors. Interestingly, the expression of these receptors is dynamic, and could change in front of inflammatory responses [109]. Curiously, our results show to increase platelet adhesion and pro-adhesive protein expression in endothelial cells (Figs. 4.1 and 4.5), demonstrating that just the basal expression of α1 adrenergic receptor presence is enough to induce a procoagulant phenotype, but that could be a clue in the explanation of why in systemic inflammatory diseases endothelial dysfunction can be exacerbated. Also, adrenergic receptors present another way to be regulated. Catecholamines triggers short-term adrenergic receptors internalization which is suggested as a compensatory mechanism to limit unfavorable adrenergic effects [110]. However, our findings showed that adrenergic receptors internalization does not interfere with platelet adhesion progression. This is probably because α1 adrenergic receptor subtypes present differential time dependent mechanisms of distribution, internalization and signaling following stimulation [111], linked with long-term responses such as protein expression [112–114].

The contribution of TRPC6 in platelet-mediated function and hemostatic regulation is well characterized. Previous studies demonstrated for example, that TRPC6 regulate receptor-operated calcium entry (ROCE) and cytosolic calcium concentration in platelets [78, 115] and TRPC6 deficient mice demonstrated increased bleeding and coagulation time attributed to deficient platelet function [81]. Whereas in endothelium, TRPC6 activity has been mainly linked to inflammation progression since promoted endothelial shape change after thrombin stimulation [116] and its colocalization with platelet/endothelial cell adhesion molecule-1 modulated leukocyte (PECAM) regulate transendothelial migration following histamine exposure [117].

PLC activity, DAG production, and enhanced calcium signaling attributed to effector proteins as calcium channels are all part of the canonical α1-ARs signal transduction pathway [118]. DAG directly activated TRPC6 ion channel [64, 119], and interestingly, it was shown that TRPC6 modulated the calcium influx necessary for mesangial cell proliferation following α1 adrenergic receptor stimulation with phenylephrine [73].

Our results demonstrated that endothelial TRPC6 regulate platelet adhesion to endothelial cells, showing for the first time the contribution of the α1-AR/TRPC6 axis in endothelial-mediated hemostasis regulation. It is vital to note that a physiological response to adrenergic stimulation is highly reliant on diverse factors such as adrenergic receptor stimulation duration as well as their density and diversity, therefore, investigating independents contributions is a complex issue and demands the system to be simplified. Factors as the expression and density of proteins and the expected effect might be extrapolated to other proteins outside ARs, such as calcium channels. TRPC6 is widely expressed in blood vessels from different territories, but the analysis of its density showed that is mainly expressed in tunica intima, where is located endothelium, and adventitia [120]. The above
reaffirms the hypothesis that TRPC6 could be an important contributor to coagulation potentiation in a hyperadrenergic context.

Coagulant state progresses as a consequence of endothelium activation, especially in arteries, but also in veins and capillaries [121, 122]. Through activation process, endothelial cells are activated expressing proteins described above to promote platelet adhesion to endothelium in the whole body, initiating and maintaining a great mass of thrombi formation [123, 124]. It has been previously demonstrated that the exacerbated expression of endothelial adhesion proteins is a key step in thrombus onset. When analyzed the expression of proteins induced by adrenergic stimulation, was interesting to note that despite the role of von Willebrand factor, P-selectin, and integrin αvβ3 in the amplification of coagulation, only integrin αvβ3 shows a significant expression change in these conditions.

To put in context the importance of these macromolecules studied here, it is important to highlight that von Willebrand factor is a glycoprotein selectively expressed in endothelial cells and megakaryocytes, thus it is contained inside platelets [125]. The cellular storages of this protein are Weibel–Palade Bodies in endothelium and α-granules in platelets, respectively. The release of von Willebrand factor from the storage vesicles can be triggered by several agonists such as thrombin, histamine and other inflammatory molecular signals. These have in common the augment in cytosolic calcium concentrations [126]. This factor has diverse functions, but mainly related to hemostasis regulation to coagulation. For example, it mediates platelet aggregation and adhesion to vascular endothelium [125], carries coagulation factor VIII allowing it to circulate stabilized and preventing its abnormal activation [127], among other functions. Regarding the life of this protein, von Willebrand factor mechanisms that induce its expression or drive its clearance remain obscure. The latest studies suggest von Willebrand factor complex clearance involves two phases in vivo, fast and slow [128], but our results do not are affected by physiologic clearance processes.

Meanwhile, P-selectin is a protein that is also expressed in both platelet and endothelial cells, and it is found inside the same storage vesicles mentioned above [129, 130]. P-selectin, as well as von Willebrand factor, is presented in two forms: soluble and integrated to plasma membrane [131, 132]. Soluble P-selectin is described to come mainly from platelets, and it is suspected to have its own physiological activity. Interestingly, endothelial cells show that P-selectin exposed in membrane is recycled back into the cell [133] and this could collaborate with an increase of half-life of this protein in endothelial cells. Moreover, P-selectin is not only an adhesion molecule. First, it has been demonstrated that its interaction with monocytes can induce tissue factor (TF) expression, mediating the adhesion of platelets to white blood cells, thus, collaborating with maintaining the local coagulation response after injury for hours. Second, P-selectin can transduce signals in cells, allowing the expression of some important immunological and pro-adhesive molecules such as chemokines and β2-integrin [134].

Finally, integrin αvβ3 is a cellular receptor that binds several ligands containing the arginine, glycine, aspartate (RGD) motif, such as both fibrin and fibrinogen, von Willebrand factor, thrombospondin, and collagen and laminin, proteins related to cell adhesion to extracellular matrix [135]. It has been described that integrin αvβ3 plays important roles on endothelium aside from just induce strong adhesion. Studies collect the importance of this protein in angiogenesis and endothelial cells survival [136]. Also, a study suggests that integrin αvβ3 plays an important role in coagulation binding to factor XVIII, a transglutaminase that collaborates with fibrin net cross-link [137], thus, stabilizing the strong clot. Interestingly, the study also demonstrated that some glycoproteins that are present in platelets surface also have the capacity to bind this coagulation factor, so integrin αvβ3 could collaborate to platelet adhesion to endothelium in an indirect manner [138].

It is therefore necessary to evaluate the mechanisms of storage and expression of the studied proteins since the stimulation time with adrenergic receptors can lead to differential responses such as
transient metabolic signaling or gene expression mechanisms that allow de novo synthesis. In terms of transitory signaling, changes in protein levels are predicted as a result of their release from storage vesicles such as Weibel–Palade Bodies. When findings of a long-term stimulation, as given here, are analyzed, it can be suspected that proteins were synthesized from the novo. However, it is vital to keep in mind that proteins synthesis and clearance duration might present differential statio-temporal patterns. For example, the mechanism by which von Willebrand factor is eliminated at a cellular level remains unclear. The data presented here suggest functional and phenotypical characteristics, but not the molecular mechanisms underlying these phenomena. Therefore, further studies could be helpful to elucidate transcriptional mechanisms are possibly involved in this hyperadrenergic state, may be providing some clues and improving the understanding about the regulation of α1β3 and the other analyzed proteins by the administered treatments.

Despite the role of α1-adrenergic receptor overstimulation in hemostasis (blood fluidity maintenance) regulation remains poorly elucidated, we can conclude that TRPC6 is crucial in the regulation of platelet adhesion to endothelial cells. Therefore, TRPC6 appears as a very important candidate in the regulation of hemostasis alterations induced by acute and chronic inflammation.

Statements and Declarations

Funding This research was funded by research grants from Agencia Nacional de Investigación y Desarrollo (ANID)—Fondo Nacional de Desarrollo Científico y Tecnológico FONDECYT Grants 1201039. ANID—Millennium Science Initiative Program—ICN09_016/ICN 2021_045: Millennium Institute on Immunology and Immunotherapy (ICN09_016/ICN 2021_045; former P09/016-F).

Disclosure of Interests All authors declare they have no conflict of interest.

Ethical Approval All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

References

1. Alzahrani SH, Ajjan RA (2010) Coagulation and fibrinolysis in diabetes. Diab Vasc Dis Res 7 (4):260–273
2. Duburcq T, Tournoys A, Gennmi V, Hubert T, Gmyr V, Pattou F et al (2015) Impact of obesity on endotoxin-induced disseminated intravascular coagulation. Shock 44(4):341–347
3. Gavras I, Gavras H (2004) Hypertension, vasoactive peptides and coagulation factors. J Hypertens 22 (6):1091–1092
4. Gupta D, Molina EJ, Palma J, Gaughan JP, Long W, Macha M (2008) Adenoviral beta-adrenergic receptor kinase inhibitor gene transfer improves exercise capacity, cardiac contractility, and systemic inflammation in a model of pressure overload hypertrophy. Cardiovasc Drugs Ther 22 (5):373–381
5. Hess K (2015) The vulnerable blood. Coagulation and clot structure in diabetes mellitus. Hamostaseologie 35(1):25–33
6. Lallukka S, Luukkonen PK, Zhou Y, Isokuortti E, Leivonen M, Juuti A et al (2017) Obesity/insulin resistance rather than liver fat increases coagulation factor activities and expression in humans. Thromb Haemost 117(2):286–294
7. Moriau M, Noël H, Masure R (1974) Effects of alpha and beta receptor stimulating and blocking agents on experimental disseminated intravascular coagulation. Thromb Diath Haemorrh 32(1):157–170
8. Schmitz D, Wilsenack K, Lendemanns S, Schewlowski M, Oberbeck R (2007) beta-Adrenergic blockade during systemic inflammation: impact on cellular immune functions and survival in a murine model of sepsis. Resuscitation 72(2):286–294
9. Schouten M, Wiersinga WJ, Levi M, van der Poll T (2008) Inflammation, endothelium, and coagulation in sepsis. J Leukoc Biol 83(3):536–545
10. von Kanel R, Dimsdale JE (2000) Effects of sympathetic activation by adrenergic infusions on hemostasis in vivo. Eur J Haematol 65(6):357–369
11. von Kanel R, Dimsdale JE, Adler KA, Dillon E, Perez CJ, Mills PJ (2003) Effects of nonspecific beta-adrenergic stimulation and blockade on blood coagulation in hypertension. J Appl Physiol 94 (4):1455–1459
12. Lymperopoulos A, Rengo G, Koch WJ (2013) Adrenergic nervous system in heart failure: pathophysiology and therapy. Circ Res 113(6):739–753
13. Pupo AS, Minneman KP (2001) Adrenergic pharmacology: focus on the central nervous system. CNS Spectr 6(8):656–662
14. Motiejunaite J, Amar L, Vidal-Petiot E (2021) Adrenergic receptors and cardiovascular effects of catecholamines. Ann Endocrinol (Paris) 82(3–4):193–197
15. Campbell AP, Smrcka AV (2018) Targeting G protein-coupled receptor signalling by blocking G proteins. Nat Rev Drug Discov 17(11):789–803
16. Ghanemi A, Hu X (2015) Elements toward novel therapeutic targeting of the adrenergic system. Neuropeptides 49:25–35
17. Latour JG, Leger-Gauthier C, Solymos BC (1985) Vasooactive agents and production of thrombosis during intravascular coagulation. 2. alpha-Adrenergic stimulation: effects and mechanisms. Pathology 17(3):429–436
18. Nossent AY, Dai L, Rosendaal FR, Vos HL, Eikenboom JC (2005) Beta 2 adrenergic receptor polymorphisms: association with factor VIII and von Willebrand factor levels and the risk of venous thrombosis. J Thromb Haemost 3(2):405–407
19. Zee RY, Cook NR, Cheng S, Erlich HA, Lindpainter K, Ridker PM (2006) Comparison of effects of alpha receptor blockers on endothelial functions and coagulation parameters in patients with benign prostatic hyperplasia. Urology 77(6):1439–1443
20. Nowak G, Markwardt F (1981) The inflammatory and thrombotic diseases. Expert Opin Ther Targets 20(2):151–158
21. Castellino FJ, Donahue DL, Navari RM, Ploplis VA, Walsh M (2011) An accompanying genetic severe deficiency of tissue factor protects mice with a protein C deficiency from lethal endotoxemia. Blood 117(1):283–289
22. Authi KS (2007) TRP channels in platelet function. Handb Exp Pharmacol 179:425–443
23. Chiarella SE, Soberanes S, Urich D, Ertung Y, Eren AE (2011) Comparison of effects of alpha-adrenergic receptor function- and coagulation parameters in patients with benign prostatic hyperplasia. J Clin Invest 124(7):2935–2946
24. Jimenez I, Prado Y, Marchant F, Otero C, Eltit F, Cabello-Verrugio C et al (2020) TRPM channels in human diseases. Cells 9(12):2604
25. von Kanel R, Mills PJ, Ziegler MG, Dimsdale JE (2002) Effect of beta2-adrenergic receptor function and increased norepinephrine on the hypercoagulable state with mental stress. Am Heart J 144(1):68–72
26. Corrall RJ, Webber RJ, Frier BM (1980) Increase in coagulation factor VIII activity in man following acute hypoglycaemia: mediation via an adrenergic mechanism. Br J Haematol 44(2):301–305
27. Rammer L, Stahl E (1979) Effect of beta-adrenergic blockade by propranolol upon intravascular coagulation in the rat kidney. Nephron 24(5):246–249
28. Gale AJ (2011) Continuing education course #2: current understanding of hemostasis. Toxicol Pathol 39(1):273–280
29. Gaetner F, Massberg S (2016) Blood coagulation in immunothrombosis—at the frontline of intravascular immunity. Semin Immunol 28(6):561–569
30. Monagle P, Massicotte P (2011) Developmental haemostasis: secondary haemostasis. Semin Fetal Neonatal Med 16(6):294–300
31. Le Hyress M, Tu L, Ricard N, Phan C, Thuillet R, Fadel E et al (2015) Proinflammatory signature of the dysfunctional endothelium in pulmonary hypertension. Role of the macrophage migration inhibitory factor/CD74 complex. Am J Respir Crit Care Med 192(8):983–997
32. Lupu F, Kinasewitz G, Dormer K (2020) The role of endothelial shear stress on haemodynamics, inflammation, coagulation and glycopalx during sepsis. J Cell Mol Med 24(21):12258–12271
33. Boos CJ, Goon PK, Lip GW (2006) The endothelium, inflammation, and coagulation in sepsis. Clin Pharmacol Ther 79(1):20–22
34. Chu AJ (2011) Tissue factor, blood coagulation, and beyond: an overview. Int J Inflamm 2011:367284
35. Ito T, Kakihana Y, Maruyama I (2016) Thrombomodulin as an intravascular safeguard against inflammatory and thrombotic diseases. Expert Opin Ther Targets 20(2):151–158
36. Maroney SA, Mast AE (2008) Expression of tissue factor pathway inhibitor by endothelial cells and platelets. Transfus Apher Sci 38(1):9–14
37. Akol H, Boon E, van Haren F, van der Hoeven J (2002) Successful treatment of fulminant pneumococcal sepsis with recombinant tissue plasminogen activator. Eur J Intern Med 13(6):389
38. Benaroch EE (2007) Tissue plasminogen activator: beyond thrombolysis. Neurology 69(8):799–802
39. Castellino FJ, Donahue DL, Navari RM, Ploplis VA, Walsh M (2011) An accompanying genetic severe deficiency of tissue factor protects mice with a protein C deficiency from lethal endotoxemia. Blood 117(1):283–289
40. Cesarma-Maus G, Hajjar KA (2005) Molecular mechanisms of fibrinolysis. Br J Haematol 129(3):307–321
41. Renczens R, Roelof JI, de Waard V, Florquin S, Lijnen HR, Carmeliet P et al (2005) The role of plasminogen activator inhibitor type 1 in the inflammatory response to local tissue injury. J Thromb Haemost 3(5):1018–1025
42. Urano T, Suzuki Y (2012) Accelerated fibrinolysis and its propagation on vascular endothelial cells by secreted and retained tPA. J Biomed Biotechnol 2012:208108
43. Kunicki TJ (2001) The role of platelet collagen receptor (glycoprotein Ia/Iib; integrin alpha2 beta1) polymorphisms in thrombotic disease. Curr Opin Hematol 8(5):277–285
44. Monnet E, Sizaret P, Arbeille B, Fauvel-Lafeve F (2000) Different role of platelet glycoprotein GP Ia/Iib in platelet contact and activation induced by type I and type III collagens. Thromb Res 98(5):423–433
45. Swystun LL, Georgescu I, Mewburn J, Deforest M, Nesbitt K, Hebert K et al (2017) Abnormal von
Willebrand factor secretion, factor VIII stabilization and thrombus dynamics in type 2N von Willebrand disease mice. J Thromb Haemost 15(8):1607–1619
46. Xu ER, von Bulow S, Chen PC, Lenting PJ, Kolsek K, Aponte-Santamaria C et al (2019) Structure and dynamics of the platelet integrin-binding C4 domain of von Willebrand factor. Blood 133(4):366–376
47. Ridker PM, Buring JE, Rifai N (2001) Soluble P-selectin and the risk of future cardiovascular events. Circulation 103(4):491–495
48. Secor D, Li F, Ellis CG, Sharpe MD, Gross PL, Secor D, Swarbreck S, Ellis CG, Sharpe MD, Gawaz M, Neumann FJ, Dickfeld T, Reininger A, Ward PA (2012) Inflammation and alphavbeta3 integrin. Am J Respir Crit Care Med 185(1):5–6
49. Bristow SM, Gamble GD, Stewart A, Horne AM, Reid IR (2015) Calcium effects of calcium supplements on blood pressure and blood coagulation: secondary analysis of a randomised controlled trial in post-menopausal women. Br J Nutr 114 (11):1868–1874
50. Davis CC, Edwards M (2017) Role of calcium in the coagulation of NOM with ferric chloride. Environ Sci Technol 51(20):11652–11659
51. Fang X, Chen C, Wang Q, Gu J, Chi C (2001) The interaction of the calcium- and integrin-binding protein (CIBP) with the coagulation factor VIII. Thromb Res 102(2):177–185
52. Stenflo J, Stenberg Y, Muranyi A (2000) Calcium-binding EGF-like modules in coagulation proteinases: function of the calcium ion in module interactions. Biochim Biophys Acta 1477(1-2):51–63
53. Greer IA (1987) Therapeutic progress—review XXVII. Platelet function and calcium channel blocking agents. J Clin Pharm Ther 12(4):213–222
54. Horner S, Menke K, Hildebrandt C, Kassack MU, Nickel P, Ullmann H et al (2005) The novel suramin analogue NF864 selectively blocks P2X1 receptors in human platelets with potency in the low nanomolar range. Naunyn Schmiedebergs Arch Pharmacol 372(1):1–13
55. Kelly CR, Dickinson CD, Ruf W (1997) Ca2+ binding to the first epidermal growth factor module of coagulation factor VIIa is important for cofactor interaction and proteolytic function. J Biol Chem 272(28):17467–17472
56. Koklic T, Majumder R, Lentz BR (2014) Ca2+ switches the effect of PS-containing membranes on factor Xa from activating to inhibiting: implications for initiation of blood coagulation. Biochem J 462 (3):591–601
57. Kumar R, Singh N, Singh K, Kalhan A, Prasad KK (2004) Recent insights on biochemical and molecular basis for developing antihaemostatic agents: a review. Indian J Clin Biochem 19(1):122–128
58. Ohkubo YZ, Tajikhorshid E (2008) Distinct structural and adhesive roles of Ca2+ in membrane binding of blood coagulation factors. Structure 16 (1):72–81
59. Dietrich A, Gudermann T (2007) Trpc6. Handb Exp Pharmacol 179:125–141
60. Shi J, Mori E, Mori Y, Mori M, Li J, Ito Y et al (2004) Multiple regulation by calcium of murine homologues of transient receptor potential proteins TRPC6 and TRPC7 expressed in HEK293 cells. J Physiol 561(Pt 2):415–432
61. Hofmann T, Obukhov AG, Schaefer M, Hartneck C, Gudermann T, Schultz G (1999) Direct activation of human TRPC6 and TRPC3 channels by diacylglycerol. Nature 397(6716):259–263
62. Yip H, Chan WY, Leung PC, Kwan HY, Liu C, Huang Y et al (2004) Expression of TRPC homologs in endothelial cells and smooth muscle layers of human arteries. Histochem Cell Biol 122 (6):553–561
63. Earley S, Brayden JE (2015) Transient receptor potential channels in the vasculature. Physiol Rev 95(2):645–690
64. Nilius B, Owssianik G (2010) Transient receptor potential channelopathies. Pflugers Arch 460 (2):437–450
65. Dietrich A, Kalwa H, Rost BR, Gudermann T (2005) The diacylglycerol-sensitive TRPC3/6/7 subfamily of cation channels: functional characterization and physiological relevance. Pflugers Arch 451(1):72–80
66. Kalwa H, Storch U, Demleitner J, Fiedler S, Mayer T, Kandler M et al (2015) Phospholipase C epsilon (PLCepsilon) induced TRPC6 activation: a common but redundant mechanism in primary podocytes. J Cell Physiol 230(6):1389–1399
67. Cayouette S, Lussier MP, Mathieu EL, Bousquet SM, Boulay G (2004) Exocytotic insertion of TRPC6 channel into the plasma membrane upon Gq protein-coupled receptor activation. J Biol Chem 279(8):7241–7246
68. Suzuki F, Morishima S, Tanaka T, Muramatsu I (2007) Snapin, a new regulator of receptor signaling, augments alpha1A-adrenoceptor-operated calcium influx through TRPC6. J Biol Chem 282 (40):29563–29573
69. Hill AJ, Hinton JM, Cheng H, Gao Z, Bates DO, Hancox JC et al (2006) A TRPC-like non-selective
cation current activated by alpha 1-adrenergic receptors in rat mesenteric artery smooth muscle cells. Cell Calcium 40(1):29–40

73. Kong F, Ma L, Zou L, Meng K, Ji T, Zhang L et al (2015) Alpha1-adrenergic receptor activation stimulates calcium entry and proliferation via TRPC6 channels in cultured human mesangial cells. Cell Physiol Biochem 36(5):1928–1938

74. Bousquet SM, Monet M, Boulay G (2010) Protein kinase C-dependent phosphorylation of transient receptor potential canonical 6 (TRPC6) on serine 448 causes channel inhibition. J Biol Chem 285(52):40534–40543

75. Gotru SK, Chen W, Kraft P, Becker IC, Wolf K, Stritt S et al (2018) TRPM7 kinase controls calcium responses in arterial thrombosis and stroke in mice. Arterioscler Thromb Vasc Biol 38(2):344–352

76. Mahaut-Smith MP (2013) A role for platelet TRPC channels in the Ca2+ response that induces procoagulant activity. Sci Signal 6(281):pe23

77. Ngo ATP, McCarty OIT, Aslan JE (2018) TRPing out platelet calcium: TRPM7 (transient receptor potential melastatin-like 7) modulates calcium mobilization and platelet function via phospholipase C interactions. Arterioscler Thromb Vasc Biol 38(2):285–286

78. Vemana HP, Karim ZA, Conlon C, Khasawneh FT (2015) A critical role for the transient receptor potential channel type 6 in human platelet activation. PLoS ONE 10(4):e0125764

79. Chaudhuri P, Rosenbaum MA, Sinharoy P, Damron DS, Birnbaumer L, Graham LM (2016) Membrane translocation of TRPC6 channels and endothelial migration are regulated by calmodulin and PI3 kinase activation. Proc Natl Acad Sci USA 113(8):2110–2115

80. Dionisio N, Albarran L, Berna-Erro A, Hernandez-Cruz JM, Salido GM, Rosado JA (2011) Functional role of the calmodulin- and inositol 1,4,5-trisphosphate receptor-binding (CIRB) site of TRPC6 in human platelet activation. Cell Signal 23(11):1850–1856

81. Paez Espinosa EV, Murad JP, Ting HJ, Khasawneh FT (2012) Mouse transient receptor potential channel 6: role in hemostasis and thrombogenesis. Biochem Biophys Res Commun 417(2):853–856

82. Thebault S, Flourakis M, Vanoverbergh K, Vandermoere F, Roudbaraki M, Lehen’kyi V et al (2006) Differential role of transient receptor potential channels in Ca2+ entry and proliferation of prostate cancer epithelial cells. Cancer Res 66(4):2038–2047

83. Coenen DM, Mastenbroek TG, Cosemans J (2017) Platelet interaction with activated endothelium: mechanistic insights from microfluidics. Blood 130(26):2819–2828

84. Blasi A, Calvo A, Prado V, Reverter E, Reverter JC, Hernandez-Tejero M et al (2018) Coagulation failure in patients with acute-on-chronic liver failure and decompensated cirrhosis: beyond the international normalized ratio. Hepatology 68(6):2325–2337

85. Vinayagam S, Sattu K (2020) SARS-CoV-2 and coagulation disorders in different organs. Life Sci 260:118431

86. Kietiriroje N, Ariens RAS, Ajan RA (2021) Fibrolysin in acute and chronic cardiovascular disease. Semin Thromb Hemost 47(5):490–505

87. Esmon CT (2005) The interactions between inflammation and coagulation. Br J Haematol 131(4):417–430

88. Ushijima J, Wang L, Ko H, Horiiuchi I, Chikazawa K, Sasaki S et al (2018) Rupture of hidden abnormal myometrial vessels during cesarean delivery of a patient with subsersosal leiomyoma: a possible pathogenesis of sudden-onset disseminated intravascular coagulation. Clin Case Rep 6(9):1747–1750

89. Torngren S, Almgard LE, Blomback M, Norming U, Nyman CR (1990) Blood coagulation alterations after embolic occlusion of the renal circulation. Scand J Urol Nephrol 24(2):141–144

90. van Hinsbergh VW (2002) Coagulation signals for intact blood vessels. Lancet 359(9322):1958–1960

91. Pranskunas A, Pilvinis V, Dambrauskas Z, Rasimaviciute R, Planciuniene R, Dobozinskas P et al (2012) Early course of microcirculatory perfusion in eye and digestive tract during hypodynamic sepsis. Crit Care 16(3):R83

92. Rudd KE, Johnson SC, Aages KM, Shackelford KA, Tsoi D, Kivelan DR et al (2020) Global, regional, and national sepsis incidence and mortality, 1990–2017: analysis for the Global Burden of Disease Study. Lancet 395(10219):200–211

93. Mohammad NS, Nazli R, Zafar H, Fatima S (2022) Effects of lipid based Multiple Micronutrients Supplement on the birth outcome of underweight pre-eclamptic women: a randomized clinical trial. Pak J Med Sci 38(1):219–226

94. Joho S, Ushijima R, Nakagaito M, Kinugawa K (2020) Sympathetic overactivation predicts body weight loss in patients with heart failure. Auton Neurosci 223:102625

95. Zhang D, Hu W, Tu H, Hackfort BT, Duan B, Xiong W et al (2021) Macrophage depletion in stellate ganglia alleviates cardiac sympathetic overactivation and ventricular arrhythmogenesis by attenuating neuroinflammation in heart failure. Basic Res Cardiol 116(1):28

96. Gubbi S, Nazari MA, Taieb D, Klubowiezdzinska J, Pacak K (2020) Catecholamine physiology and its implications in patients with COVID-19. Lancet Diabetes Endocrinol 8(12):978–986

97. Sacha GL, Lam SW, Wang L, Duggal A, Reddy AJ, Bauer SR (2022) Association of catecholamine dose, lactate, and shock duration at vasopressin initiation with mortality in patients with septic shock. Crit Care Med 50(4):614–623
98. Zaldívaria MT, Riveraj J, Herings D, Marusic P, Satar Y, Lim B et al. (2011) Renal denervation reduces monocyte activation and monocyte-platelet aggregate formation: an anti-inflammatory effect relevant for cardiovascular risk. Hypertension 69(2):323–331

99. Patel P, Walborn A, Rondina M, Fareed J, Hoppensteadt D (2019) Markers of inflammation and infection in sepsis and disseminated intravascular coagulation. Clin Appl Thromb Hemost 25:1076-09619843338

100. Stief TW, Ijaghah O, Weiste B, Herzum I, Renz H, Max M (2007) Analysis of hemostasis alterations in sepsis. Blood Coagul Fibrinolysis 18(2):179–186

101. Al-Yahya AM, Al-Masri AA, El Eter EA, Herga A, Lateef R, Mawlama O (2018) Progranulin inhibits platelet aggregation and prolongs bleeding time in rats. Eur Rev Med Pharmacol Sci 22(10):3240–3248

102. Deschmann E, Saxhouse MA, Feldman HA, Norman M, Barbam B, Sola-Visner M (2019) Association between in vitro bleeding time and bleeding in preterm infants with thrombocytopenia. JAMA Pediatr 173(4):393–394

103. Karabacak M, Dogan A, Aksoy F, Ozaydin M, Erdogan D, Karabacak P (2014) Both carvedilol and nebivolol may improve platelet function and prothrombotic state in patients with nonischemic heart failure. Angiology 65(6):533–537

104. Verhamme P, Hoylaerts MF (2006) The pivotal role for cardiovascular risk. Hypertension 23(2):323–331

105. Kjeldsen SE, Weder AB, Egan B, Neubig R, Nakata H, Nishida M et al. (2006) Clathrin required for phosphorylation and internalization of beta2-adrenergic receptor by G protein-coupled receptor kinase 2 (GRK2). J Biol Chem 281(42):31940–31949

106. Kavanagh AT, Haga T, Kobayashi H, Kim KM, Nakata H, Nishida M et al. (2006) Clathrin required for phosphorylation and internalization of beta2-adrenergic receptor by G protein-coupled receptor kinase 2 (GRK2). J Biol Chem 281(42):31940–31949

107. Weber EW, Han F, Tauseef M, Birnbaumer L, Mehta D (2007) Galphaq-TRPC6-mediated Ca2+ entry induces RhoA activation and resultant endothelial cell shape change in response to thrombin. J Biol Chem 282(11):7833–7843

108. Weber EW, Han F, Tauseef M, Birnbaumer L, Mehta D, Muller WA (2015) TRPC6 is the endothelial calcium channel that regulates leukocyte transendothelial migration during the inflammatory response. J Exp Med 212(11):1883–1899

109. Wang D, Wang Q, Ji T, Yang H, Kong F, Jiao J, Wang D, Wang Q, Ji T, Yang H, Kong F, Jiao J (2020) The role of TRPC6 in alpha1-AR activation-induced calcium signal changes in human podocytes. Ann Palliat Med 9(4):1596–1605

110. Aires V, Hichami A, Boulay G, Khan NA (2007) Activation of TRPC6 calcium channels by diacylglycerol (DAG)-containing arachidonic acid: a comparative study with DAG-containing docosahexaenoic acid. Biochimie 89(8):926–937

111. Abdinghoff J, Sersello D, Jacobs T, Beckmann A, Tschernig T (2022) Evaluation of the presence of TRPC6 channels in human vessels: a pilot study using immunohistochemistry. Biomed Rep 16(5):42

112. Levi M, Ten Cate H (1999) Disseminated intravascular coagulation. N Engl J Med 341(8):586–592

113. Yau JW, Teoh H, Verma S (2015) Endothelial cell control of thrombosis. BMC Cardiovasc Disord 15:130

114. Arello-Rodrigo E, Alvarez-Larran A, Reverter JC, Colomer D, Villarmon L, Bellosillo B et al. (2009) Platelet turnover, coagulation factors, and soluble markers of platelet and endothelial activation in essential thrombocytopenia: relationship with
thrombosis occurrence and JAK2 V617F allele burden. Am J Hematol 84(2):102–108
124. Nhek S, Clancy R, Lee KA, Allen NM, Barrett TJ, Marcantoni E et al (2017) Activated platelets induce endothelial cell activation via an interleukin-1beta pathway in systemic lupus erythematosus. Arterioscler Thromb Vasc Biol 37(4):707–716
125. Vischer UM (2006) von Willebrand factor, endothelial dysfunction, and cardiovascular disease. J Thromb Haemost 4(6):1186–1193
126. Vischer UM, de Moerloose P (1999) von Willebrand factor: from cell biology to the clinical management of von Willebrand’s disease. Crit Rev Oncol Hematol 30(2):93–109
127. Terraube V, O’Donnell JS, Jenkins PV (2010) Factor VIII and von Willebrand factor interaction: biological, clinical and therapeutic importance. Haemophilia 16(1):3–13
128. O’Sullivan IM, Ward S, Lavin M, O’Donnell JS (2018) von Willebrand factor clearance—biological mechanisms and clinical significance. Br J Haematol 183(2):185–195
129. Bonfanti R, Furie BC, Furie B, Wagner DD (1989) PADGEM (GMP140) is a component of Weibel–Palade bodies of human endothelial cells. Blood 73(5):1109–1112
130. Stenberg PE, McEver RP, Shuman MA, Jacques YV, Bainton DF (1985) A platelet alpha-granule membrane protein (GMP-140) is expressed on the plasma membrane after activation. J Cell Biol 101(3):880–886
131. Dunlop LC, Skinner MP, Bendall LJ, Favaloro EJ, Castaldi PA, Gorman JJ et al (1992) Characterization of GMP-140 (P-selectin) as a circulating plasma protein. J Exp Med 175(4):1147–1150
132. Hartwell DW, Mayadas TN, Berger G, Frenette PS, Rayburn H, Hynes RO et al (1998) Role of P-selectin cytoplasmic domain in granular targeting in vivo and in early inflammatory responses. J Cell Biol 143(4):1129–1141
133. Burger PC, Wagner DD (2003) Platelet P-selectin facilitates atherosclerotic lesion development. Blood 101(7):2661–2666
134. Andre P (2004) P-selectin in haemostasis. Br J Haematol 126(3):298–306
135. Cheresh DA (1993) Integrins: structure, function, and biological properties. Adv Mol Cell Biol 6:225–252
136. Abumiya T, Lucero J, Heo JH, Tagaya M, Koziol JA, Copeland BR et al (1999) Activated microvessels express vascular endothelial growth factor and integrin alpha(v)beta3 during focal cerebral ischemia. J Cereb Blood Flow Metab 19(9):1038–1050
137. Schwartz ML, Pizzo SV, Hill RL, McKee PA (1973) Human factor XIII from plasma and platelets. Molecular weights, subunit structures, proteolytic activation, and cross-linking of fibrinogen and fibrin. J Biol Chem 248(4):1395–1407
138. Dardik R, Shenkman B, Tamarin I, Eskaeva R, Harsfalvi J, Varon D et al (2002) Factor XIII mediates adhesion of platelets to endothelial cells through alpha(v)beta3 and glycoprotein IIb/IIIa integrins. Thromb Res 105(4):317–323
Physical Activity, Burnout, and Engagement in Latin American Students of Higher Education During the COVID-19 Pandemic

Andrea González, Oscar Achiardi, Martina Valencia, and Claudio Cabello-Verrugio

Abstract

The coronavirus-disease-2019 (COVID-19) pandemic has had a devastating physical and psychological impact on society, especially on students. In this study, we describe the levels of physical activity (Physical-Activity-Questionnaire-Short-Form (IPAQ-SF)), Burnout (School-Burnout-Inventory for students (SBI-U)) and engagement (Utrecht-Work-Engagement-Scale-9 items (UWES-9S)) in a cohort of Latin American higher education students during the COVID-19 pandemic in 2020. We also determined whether physical activity, Burnout, and engagement are related according to gender and area of study.

Self-reported data from 571 Latin American students (64.79% women, 34.15% men; average age 25.24 ± 5.52 years) were collected via an online survey questionnaire. Spearman correlation analyses evaluated the associations between physical activity, Burnout, and engagement. Comparative analyses by gender and field of study were also performed. The results showed no correlation or association in the linear regression between the IPAQ-SF and SBI-U scores or between the IPAQ-SF and the UWES-9S scores. By gender, men had higher IPAQ-SF scores (p < 0.05) and reported higher intensity physical activity than women, but women had higher SBI-U scores (p < 0.05). No difference was found between men and women according to the UWES-9S scores (p = 0.28). There was also no difference in IPAQ-SF scores (p = 0.29) regarding the field of study. Our results suggest that women perform less physical activity than men, which is consistent with higher Burnout. However, physical activity was not associated with Burnout or engagement overall, which indicates that it was insufficient to prevent emotional stress in Latin American higher education students during a pandemic.

Keywords

COVID-19 · Pandemic · Higher education · Students · Physical activity · Burnout · Engagement
5.1 Introduction

In December 2019, a new respiratory virus called severe acute respiratory syndrome caused by coronavirus type 2 (SARS-CoV-2) began to affect the world [1]. SARS-CoV-2, which belongs to the coronaviruses, leads to a cardiovascular, respiratory, gastrointestinal, muscular, and neurological disease named coronavirus disease 2019 (COVID-19). Four common types of coronaviruses (alpha, beta, gamma, delta, and omicron, among others) have been recognized, among which alpha and beta types are known to infect the respiratory tract in humans [2]. The mode of transmission of COVID-19 is through droplets produced by talking, sneezing, or coughing, or suspended droplets that remain in the environment [3]. According to data from the World Health Organization (WHO), the common symptoms of COVID-19 are fever, dry cough, and fatigue. Still, there could be other less frequent symptoms that may affect some patients, such as loss of taste or smell, nasal congestion, conjunctivitis (eye redness), throat pain, headache, muscle or joint pain, different types of skin rashes, nausea or vomiting, diarrhea, and chills or dizziness [4].

Being highly transmissible between humans has generated a global pandemic, which has claimed the lives of a considerable part of the population and continues its course to the present day [1]. Worldwide, as of October 25, 2022, the WHO has reported approximately 625,248,843 confirmed cases of COVID-19, including 6,562,281 deaths, which are constantly increasing [4].

The COVID-19 pandemic has proven to be a problematic situation that has affected physical and emotional health worldwide since 2019. Chile and other Latin American countries instituted a health emergency, and people were confined to their homes in 2020. Although the quarantine effectively restrained the pandemic, strict rules and isolation disrupted habits and adversely affected the physical and mental health of the population. Data on the COVID-19 pandemic are nonetheless emerging rapidly, with studies conducted on university students, the general population, healthcare workers, and people with mental disorders [5]. Taken together, these studies confirm the negative impact of the COVID-19 crisis on mental health, particularly regarding anxiety, stress, and depression. This fact was exacerbated among young adults who rely upon positive peer interactions for their general well-being [6]. According to UNESCO statistics, the most challenging moment was April 2020, when over 1484 million students of all education levels were affected, specifically 84.8% of the global total. In this context, college
education was no exception because, during the same month, 170 countries and communities had closed their higher education institutions, affecting over 220 million college students [7]. University students continued to attend classes but shifted to an online format, which halted face-to-face teaching. Thus, the higher education system changed its conventional academic activities towards teaching exclusively online.

This new setting forced them to migrate to a program called “Emergency Remote Teaching”, which involved using virtual media without adequate preparation [8–11]. According to Pérez-Villalobos et al. (2021), in Chile, many students do not have sufficient and/or proper infrastructure or connectivity from their homes. A similar situation is present in other Latin American countries. Moreover, students from families with lower economic incomes have more significant problems accessing the equipment and necessary connectivity and difficulty handling the technology. Together, these factors generate a gap that can paradoxically increase when universities implement new technological teaching resources without adequate support with software and hardware [8].

On the other hand, online teaching can interfere with students’ private lives, disrupting their daily routines and habits and negatively affecting their mental health [12–15]. Furthermore, lockdown, physical/spatial distancing, and other restrictions psychologically affect students and negatively influence their mental well-being, increasing anxiety, and stress levels, as observed in Chinese, French, and Spanish students [5, 9, 16–19]. For example, French university student respondents to a World Mental Health survey for university students completed questions concerning COVID-19 confinement. It showed they experienced increased anxiety as well as moderate to severe stress during confinement [19]. Additionally, a study carried out on Spanish university students whose objective was to design and validate an instrument to measure fear of COVID-19 obtained results that indicated that the level of fear of COVID-19 was moderate. In contrast, other authors carried out the same measurement on Iranian university students and the Bangladeshi population, resulting in high levels of fear of COVID-19 in both studies [20, 21]. Apparently, psychological responses vary according to culture and socio-demographic aspects [20, 21].

Under these new academic circumstances, and considering that college students constitute a particularly vulnerable population regarding mental health problems, it is probable that they will develop emotional disturbances, stress, a low sense of engagement (or degree of involvement) in their educational obligations, and emotional and/or physical fatigue—all typical features of burnout syndrome [19, 22, 23]. Burnout was first described in the 70s in the work context. Maslach defines it as “a psychological disorder syndrome arising as a prolonged response to interpersonal stressors at work,” and she describes three different types of Burnouts: Individual Burnout caused by personality factors such as perfectionism; Interpersonal Burnout caused by problematic relationships with colleagues; and Organizational Burnout caused by the inadequate organization (as extreme requests and deadlines) [24, 25]. Burnout syndrome is considered a psychological state that happens in normal individuals, where there is an inability to cope with the resulting emotional stress of prolonged exposure to stressful factors at work, which leads to occupying all the person's resources in it, leading to feelings of exhaustion and failure [26, 27]. Burnout is characterized by emotional exhaustion, cynicism, depersonalization, and reduced professional efficacy [4]. It is included in the 11th Revision of the International Classification of Diseases (ICD-11) as an “occupational phenomenon,” and World Health Organization defined Burnout as an “occupational official phenomenon” as it refers specifically to the occupational context [4]. Therefore, it should not be used in reference to other areas of life. This syndrome of emotional exhaustion, depersonalization, and reduced personal accomplishment can apply to all individuals engaged in work activities and other psychologically “work-like” activities, such as studying [28].

Like formal workers, university students can be exposed to risky conditions for the
development of Burnout characterized by concurrent, excessive, and inappropriate demands, chronically unresolved or inadequately resolved, which lead, over time, to significant psychosocial damage [29]. Student burnout is a psychological syndrome that manifests as exhaustion from the intense demands of studying, cynical attitudes toward study goals and learning, decreased performance, and feelings of incompetence [30]. The student has a feeling of not being able to give more of himself, an attitude of negative criticism, devaluation, loss of interest, importance, and value of studies, and growing doubts about his ability to carry them out [31]. Regarding academic learning, emotional exhaustion refers mainly to the inability to deal with problems encountered during the learning process, leading to negative emotions, Burnout, and depression. Cynicism is perceived as the development of a negative, pessimistic attitude and the feeling of decreased efficacy and academic achievement, manifesting as arriving late, leaving early, skipping classes altogether, and failing to complete academic tasks on time. Low professional effectiveness (the feeling of accomplishment) refers to students' lack of a sense of achievement when completing school requirements [30, 32, 33].

Student Burnout among university students can affect their physical and mental development, manifesting as a lessened feeling of engagement, drowsiness, fatigue, development of eating disorders, migraines, emotional instability, depression, illicit drug use, alcohol use, arterial hypertension, and even higher risk of myocardial infarction and suicidal thoughts [34–39]. These symptoms can also lead to the waste of educational resources, the decline of the students' learning ability, and the possibility of carrying these symptoms onward, which can have adverse effects on their work performance and personal lives [40, 41].

Another aspect that could be affected in university students with the non-face-to-face modality of classes during the pandemic and confinement is engagement. Engagement is a concept initially associated with work that is characterized by vigor, dedication, and absorption. However, it has also been applied to the activities carried out by students, defining it as academic engagement. The reasons for them are that from a psychological point of view, the activities carried out by students can also be considered as work since they are goal-directed, structured, and mandatory [42]. In engagement, vigor refers to a person's high levels of energy and mental resilience while studying, the willingness to put in the effort to study, and persistence when faced with difficult situations. Dedication refers to being fully involved in studies, finding meaning in them, and approaching them with enthusiasm, inspiration, pride, and challenge. Absorption refers to being wholly concentrated and absorbed in what is being studied, which makes time go by quickly and makes it difficult for the person to "detach" from the study [43]. Engagement is favorable for students since it is related to high levels of well-being, more significant commitment to their studies, and better academic performance [44]. It is currently known that engagement depends on the student's characteristics, such as personality, positive emotions, and personal resources [45]. Probably due to a lack of psychological support, the direct collaboration between peers, interaction with instructors, and community support occurs poor learning management decreasing motivation and engagement [46].

On the other hand, in a younger population, another possible adverse effect of a pandemic was the increase in unhealthy habits, such as the consumption of alcohol and tobacco, the adoption of a high-fat diet, the decrease in the intensity and quantity of physical activity, and an increase of sedentary time [6, 16, 17, 47–49]. In fact, it is known that during the pandemic, the adverse effects also affected people's lifestyles, with a decrease in the level and intensity of physical activity, as well as an increase in the consumption of less healthy food, an increase in sedentary behavior and increased consumption of alcohol and tobacco along with higher levels of anxiety between 18 and 34 years [6, 16, 17, 47]. Physical activity is a relevant aspect due to its well-known benefits for the general health of
individuals. It is defined by the World Health Organization (WHO) as “any bodily movement produced by skeletal muscles, with the consequent consumption of energy. Physical activity refers to any movement, even during leisure time, to move to certain places and from them, or as part of a person's job” [50]. During the pandemic, García Tascón et al. showed that the quantity and intensity of physical activity decreased in women and men, from cardiorespiratory and strength training (greater intensity) to flexibility and neuromotor exercise (lower intensity) [48]. Similarly, Castañeda-Babarro et al. showed that physical activity and intensity in healthy adults decreased during confinement and sedentary time increased, primarily in young people, students, and formerly very active men [51].

The relevance of these changes in physical activity during the pandemic is essential to understanding the adverse effects on physical health and possible impact on mental health. In this regard, the relationship between physical activity and a person’s psychological well-being, emotional state, mood changes, stress reduction, anxiety, and depression has been well documented [52, 53]. Researchers have attempted to determine the amount, type, and intensity of physical activity that might have optimal preventive effects on mental health. To date, results have indicated that regular physical training (strength and resistance)—independent of intensity—could be beneficial in reducing depression and anxiety symptoms [53–55]. Therefore, the reduction of students’ physical activity could negatively impact their mental health, especially with the concurrence of the pandemic, lockdown, and shift to online academic activities.

The COVID-19 pandemic changed life as we once knew it; the teaching–learning process was not unaffected. Students abruptly exchanged conventional face-to-face classes with remote classrooms to protect themselves and others. Unfortunately, this change in how classes are conducted has adversely affected young people’s social, emotional, and mental health and lifestyle habits, affecting college students’ academic performance. To study this phenomenon, we conducted research on physical activity, Burnout, and engagement in a population of Latin American higher education students during the COVID-19 pandemic. In addition, we determined whether physical activity, Burnout, and engagement were related to each other according to gender and area of study.

5.2 Methods

Different instruments were selected to assess the outcomes of interest, considering the availability of a validated Spanish version and the feasibility of self-administered questionnaires. For burnout and engagement, versions especially aimed at higher education students were selected.

Physical activity is defined by the World Health Organization (WHO) as “any bodily movement produced by skeletal muscles, with the consequent consumption of energy. Physical activity refers to any movement, even during leisure time, to move to certain places and from them, or as part of a person's job” [50].

Physical activity was assessed using the Spanish version of the International Physical Activity Questionnaire–Short Form (IPAQ-SF). This questionnaire was used for initial screening and research. The IPAQ-SF consists of four domains intended to measure levels of physical activity, estimated from the average time devoted to walking as well as activities of moderate to vigorous intensity during the previous week. Through four general questions, the IPAQ-SF collects relevant information about the time participants are physically active. The four general questions related to the time spent by the person in vigorous physical activity, moderate physical activity, walking, and sitting time, concerning the 7 days before its application. The scale categorizes vigorous physical activity as those that require strong physical exertion and cause the subject to breathe harder than normal; moderate physical activity such as those that need moderate physical effort and cause the subject to breathe something stronger than normal; walking physical activity, including walking around the house, to go from one place to another.
or any other walk that the subject performs for recreation, sport, exercise or pleasure and the time in which the subject has remained seated, either in his work, at home, studying and in his free time, which includes the time of visits, time sitting or lying down reading and/or watching television. In all cases, the considered physical activity must have been performed for a minimum of 10 continuous minutes within the last 7 days. The instrument uses as a measure for the activity the unit METs, which corresponds to a unit of measurement of the metabolic rate concerning the minimum oxygen consumption that the body needs to maintain its vital functions. Total physical activity was expressed in metabolic equivalent (MET) minutes per week, which was found by multiplying the number of days that a respective activity was performed by its average duration in minutes by a MET factor defined for each type of activity (e.g., walking = 3.3 MET, moderately intensive activity = 4.0 MET, and vigorously intensive activity = 8.0 [56, 57].

Burnout syndrome is defined as a psychological syndrome that manifests as exhaustion from the intense demands of studying, cynical attitudes towards study goals and learning, decreased performance, and feelings of incompetence. Initially, the MBI (Maslach Burnout Inventory) questionnaire, also known as the MBI-Human Services Survey (MBI-HSS), was used to investigate burnout syndrome in health workers. This survey had 22 items where the three characteristic variables of Burnout in health professionals were evaluated: exhaustion, depersonalization, and low professional efficacy. Exhaustion refers to that feeling of not being able to give more of oneself; depersonalization refers to having a cold attitude and distant treatment with patients, and low professional efficacy, refers to the feeling of not correctly executing professional functions and not being able to be competent when solving problems of the job function that arise. Later, Burnout began to be studied in other work areas, so the questionnaire became the MBI-General Survey (MBI-GS) that could be applied to people in any type of job. This questionnaire is more abbreviated and has 16 items where the dimension of exhaustion and low professional efficacy (which are part of the original questionnaire) are evaluated. The depersonalization or cold and distant attitude toward patients was changed for depersonalization in relation to work, a concept named as cynicism that corresponds to cold, indifferent, or distant attitudes towards work in general. Burnout in students was then evaluated, for which the MBI-GS was adapted to university students, obtaining the MBI-SS (Maslach Burnout Inventory-Student Survey) questionnaire, assuming that the academic activity of a student is equivalent to that of a formal worker. Currently, there is also the School-Burnout Inventory (SBI-U), an instrument validated and applied in various languages, including Spanish, which has 9 items. This questionnaire does not yet have normative values. Still, it allows for identifying the presence of Burnout syndrome in university students with acceptable reliability and is very similar to the MBI-SS questionnaire. In this research, Burnout was assessed using the Spanish version of the School Burnout Inventory adapted for college students (SBI-U), which consists of nine items graded on a Likert scale (1 = Completely disagree to 6 = Completely agree), separated into three domains (sub-scales) regarding exhaustion, cynicism, and inadequacy. The total score was achieved by adding all the scores together [58–61].

Engagement is a concept initially associated with work that is understood as a positive, satisfactory mental state characterized by vigor, dedication, and absorption. However, it has also been applied to the activities carried out by students, defining it as academic engagement. The reasons for them are that from a psychological point of view, the activities carried out by students can also be considered as work since they are goal-directed, structured, and mandatory. Academic engagement promotes learning, academic performance, and the well-being of the student, which is why it is so important to evaluate it. To evaluate engagement, a survey was initially created to assess engagement in students (UWES-S) that had 17 items and is known as the extended version. Then a short version of the
same scale was developed with 9 items, called UWES-S9. Regarding the information that needs to be obtained from the scale (extended or abbreviated), it is suggested that if you want to get differentiated information on the three dimensions of engagement, it is better to use a three-dimensional analysis, but if you wish to obtain information on the concept of engagement (not each of its components, it is preferable to use the total score. This research assessed engagement using the 9-item version of the Utrecht Work Engagement Scale for students (UWES-S-9).

Engagement was assessed using the 9-item version of the Utrecht Work Engagement Scale for students (UWES-S-9). This instrument uses nine items graded with a Likert scale (0 = Never to 6 = Always), separated into three domains regarding vigor, dedication, and absorption. For each domain, a score was achieved by averaging the scores of the items within that domain. A total score was achieved by adding the average scores [62, 63].

These three instruments were combined into a comprehensive survey (via surveymonkey.com) that included questions regarding general demographics, such as age, gender, and nationality. The survey was conducted following the Declaration of Helsinki and was approved by the ethics committee of the Universidad Andrés Bello in Santiago, Chile (Approval number 017/2020). The survey was piloted primarily by 34 undergraduate students to identify any problems with redaction or structure.

After corrections were made, the survey was distributed via e-mail and links on social media platforms that targeted higher education students from Latin America (native Spanish speakers). Students were required to be registered at any formal post-secondary educational institution (universities, technological institutes, art institutes, etc.). There was no discrimination regarding age, gender, or field of study. Participants gave informed consent to the research and their involvement before gaining access to the complete survey. Responses were collected for a total of 12 weeks.

After survey collection, the data were exported to a spreadsheet for codification and quality control. Then, the data were transferred to a statistical software package (GraphPad 9.3.1), and analyses were performed according to their distribution. Comparisons among genders were made for total scores for physical activity, Burnout, engagement, and the proportion of physical activity levels using the Mann–Whitney test. Correlations (using the Spearman test) and linear regressions were performed separately for men and women in terms of physical activity, Burnout, and engagement. Finally, comparisons among students from different areas of knowledge were made according to the ISCED fields of education and training (ISCED-F 2013), defined by UNESCO [64]. A p-value of < 0.05 was considered statistically significant.

5.3 Results

The participants in this research were students pursuing higher education in different fields of study. They were from various Latin American countries, including Argentina (n = 9; 1.57%), Bolivia (n = 1; 0.17%), Chile (n = 369; 64.62%), Colombia (n = 12; 2.10%), Costa Rica (n = 14; 2.45%), El Salvador (n = 149; 26.09%), Honduras (n = 6; 1.05%), Mexico (n = 7; 1.22%), Peru (n = 1; 0.17%), and Venezuela (n = 3; 0.52%). Table 5.1 shows the demographics of the survey participants, sorted by their field of education.

After data collection, we evaluated the participants’ physical activity levels during the COVID-19 pandemic by totaling their IPAQ scores and comparing them by gender group. As seen in Fig. 5.1a, men scored higher than women (p < 0.005). In addition, when the intensity levels of physical activity were analyzed, we found that men performed more activities of moderate to vigorous intensity than women (Fig. 5.1b). Next, we evaluated Burnout by comparing the participants’ SBI scores, grouped by field of study. Figure 5.2 shows that women had higher SBI scores than men (35.61 ± 0.49
and 32.78 ± 0.69, respectively) (p < 0.005). Then, using the UWES-ES, we evaluated the participants’ engagement with academic activities. As seen in Fig. 5.3, there was no significant difference between men and women (3.61 ± 1.34 and 3.76 ± 1.24; p = 0.2893). Finally, we determined that the IPAQ scores did not correlate with the SBI scores (r = −0.182, p = 0.01, respectively) or the UWES-ES scores (r = −0.167, p < 0.01). A linear regression analysis also showed no association between IPAQ scores and SBI scores (r² = 0.035, p < 0.01) or between IPAQ scores and UWES-ES scores (r² = 0.045, p < 0.01).

We then evaluated the students’ IPAQ scores when grouped by field of study (Health Science, Education, Technology, Social science, Basic science, and Administration & commerce). We found no significant differences between the students based on what they majored in (see Fig. 5.4). Figure 5.5 compares the SBI scores among the fields of study. Of note, technology students scored higher than social sciences students (p < 0.05), and health sciences students scored lower compared to both social sciences and education students (p < 0.05).

5.4 Discussion

We applied a survey to Chilean university students to determine the behavior of physical activity, Burnout, and engagement during the COVID-19 pandemic. We also determine if physical activity, Burnout, and engagement are related to each other according to gender and area of study.

Our results indicate that men perform more intense, more frequent physical activities than women, which is consistent with the last national health survey (ENS) conducted by the Chilean Ministry of Health (MINSAL) in 2016–2017, where it is shown that women have a higher percentage of a sedentary lifestyle than men (90% vs. 83.3%), a situation that is repeated when comparing the data from the ENS for the years 2003 and 2009–2010 [65]. These results are also like those found in other populations, where the percentage of physical inactivity is 8% higher in women than in men. Among the possible causes of this fact are low socioeconomic status and the gender difference itself, which negatively affects women and manifests in the form of low security and accessibility to physical activities that are not paid for (such as walking,

Table 5.1 General characteristics of students according to different areas of knowledge

Field of Study	Health science (n=249)	Education (n=105)	Technology (n=42)	Social science (n=102)	Basic science (n=44)	Administration and commerce (n=29)	Total (n=571)
Age (years)	24 (14.1)	25.5 (0.7)	26.1 (4.2)	27.7 (3.5)	25 (0.7)	27.3 (2.8)	25.24 (5.52)
Sex							
Female (%)	171 (68.67)	53 (50.47)	14 (33.33)	82 (80.39)	32 (72.73)	18 (62.06)	370 (64.79)
Male (%)	76 (30.52)	50 (47.71)	27 (64.28)	20 (19.60)	11 (25)	11 (37.93)	195 (34.15)
Prefer not to say (%)	2 (0.80)	2 (1.90)	1 (2.38)	0 (0)	1 (2.27)	0 (0)	6 (1.05)

Data were reported as mean (±SD). Sex was reported as a percentage (%) of the total n of each group.
Fig. 5.1
(a) Men’s and women’s physical activity measured in MET minutes per week, as determined by the IPAQ.
(b) Men’s and women’s frequency and duration of moderately to vigorously intensive activity. Values are expressed as mean and standard error. Statistical significance is indicated by $p < 0.05$ with a 95% CI.

Fig. 5.2 Burnout scores in men and women, as determined by the SBI. Values are expressed as mean and standard error. Statistical significance is indicated by $p < 0.05$ with a 95% CI.

Fig. 5.3 Engagement scores in men and women, as determined by the UWES-ES. Values are expressed as mean and standard error. Statistical significance is indicated by $p < 0.05$ with a 95% CI.
On the other hand, traditional roles assigned to women, as well as a lack of social and community support, could also lead them to have less time for physical activities [67–73]. In this regard, women traditionally had to take care of housework, which in the pandemic became more noticeable, as well as those women who are mothers or caregivers had to dedicate full time to this type of unpaid work, which consumed the time they could have spent doing physical activity.

Additionally, our results show that women have higher SBI scores than men regarding Burnout, which is supported by and consistent with others mentioned in the literature where, in groups of university students during the COVID-19 pandemic, Burnout had a fundamental role in the development of symptoms of stress and depression [74, 75]. On the other hand, the studies showed that women presented more symptoms associated with depression, anxiety, and stress than men. Furthermore, symptoms worsened if a female student got sick with COVID-19, lived alone during quarantine, and/or had financial problems during that period [74–78]. Thus, Burnout played a fundamental role in the development of stress and depression in college students, especially in women during the COVID-19 pandemic. Some possible reasons for the gender difference in SBI scores could be that women have a greater need for social contact, a greater feeling of responsibility for the care and

Fig. 5.4 Differences in physical activity levels among students when grouped by field of study, determined by the IPAQ (MET-min/week). Values are expressed as mean and standard error. Statistical significance is indicated by p < 0.05 with a 95% CI

Fig. 5.5 Different burnout levels among students when grouped by field of study, as determined by the SBI. Values are expressed as mean and standard error. Statistical significance is indicated by p < 0.05 with a 95% CI

Fig. 5.6 Differences in engagement levels among students when grouped by field of study, as determined by the UWES-ES. Values are expressed as mean and standard error. Statistical significance is indicated by p < 0.05 with a 95% CI
well-being of family and friends, and less tolerance for changing situations [13, 75, 79]. Considering that college students have a greater predisposition than the general population to develop psychological disorders associated with Burnout and that women have an even greater propensity, the pandemic undoubtedly and negatively aggravated women’s mental health due to isolation, fear of contagion, information overload, and the stigma of being infected [74, 80–82].

In general, these unfavorable results for women could be due to the overload of unpaid work at home, added to the concern and fear of catching a virus about which little was known at the beginning of the pandemic. In addition, caring for sick people with COVID-19 in your family or close circle, and being concerned about those who have become seriously ill or have died during the pandemic, could also favor these results. Suppose we add to the above concerns for the livelihood of the home (which in many cases was lost), the full-time care of children and adolescents, and carrying out university studies. In that case, these situations may push anyone to the limit, mainly women.

Regarding engagement, although we did not find significant differences among the genders in this study, we know that as college students’ stress, anxiety, and depression levels rise, commitment to academics decreases, which results in more stress, eventually becoming a vicious circle of stressors—lowered engagement—more stress [79]. In relation to this result, it could be expected that since women have higher levels of stress and anxiety than men, they could have lower engagement scores than men in the context of the pandemic. However, in this research, we did not find differences according to sex. In this regard, it is essential to mention that the scores obtained in both men and women in this investigation are lower than those reported by other studies in Latin American students, where the general score is between 4.0 and 5.0 points, while in our results the scores are 3.6 and 3.7 in men and women, respectively. This decrease in the score compared to pre-pandemic studies could be due to the effect of confinement and the forced change to a virtual methodology, which could evenly influence male and female students in having less engagement [83].

Our analyses did not find any correlation or linear relationships among physical activity, Burnout, and engagement. This finding suggests that different factors determine physical activity levels and emotional health. Thus, we cannot assert that physical activity is a protective factor for the emotional health of Latin American higher education students. Our results differ from those reported by Deng and Wang. They claimed that typical and regular training of an adequate duration was associated with a lowered risk of developing mental disorders [84, 85]. A possible explanation for this discrepancy is that the students surveyed in Deng and Wang’s study quickly resumed physical education classes virtually once the online modality began; this situation probably did not occur in the Latin American study we analyzed. Furthermore, a technological gap could have affected the Latin American study if the situations had been similar. Another explanation could be related to the frequency (two or more days a week) and duration (more than 1 h) of physical activity reported by the authors (i.e., at least 120 min/week). The students in our sample averaged only 93.7 min/week of physical activity, and more than half reported low-level activity (data not shown).

The positive effects of physical activity on anxiety, depression, and other psychological disorders are known. However, outdoor and/or group physical activity (not in quarantine) may have a more positive effect than exercising alone and/or under lockdown, especially if contact with nature or socialization enhances motivation—performing physical activity in parks is associated with better levels of mental health. Thus, if chronic stress because of the pandemic reduces the willingness to perform any physical activity, depression symptoms arise, and a vicious circle forms [82, 86, 87].

When analyzing the data obtained by the field of study, we found that technology and health sciences students have a higher level of Burnout
and less engagement than students in social sciences and education. Our results agree concerning students in health sciences with the previous literature, which also found that those students show more stress-related illnesses, such as migraines, anxiety, and sleep disorders, than students from other programs [34–39]. A possible reason for this could be the small amount of time health students spend on physical activity [88, 89]. On the other hand, because they know more about health, they may feel greater responsibility for caring for their family, friends, and loved ones, a feeling that increases if they have children [90]. Furthermore, more knowledge of the possible results of a COVID-19 infection could be an additional stress factor. Other stressors include concerns about the labor market, the academic demands of the career, gender discrimination, criticism from patients and other medical personnel, peer comparisons, the gap between theory and practice, and concern about professional practice environment issues [91, 92].

The current literature shows no consensus regarding the results obtained from technology students, however. Some studies found high levels of Burnout and low levels of engagement, and other studies demonstrated lower levels of stress and depression in technology students compared to, for example, medicine or nursing students [93, 94]. On the other hand, reports from Naser (2021) and Vitasari (2010) showed that engineering students were likelier than others to suffer from depression and anxiety [95, 96]. Interestingly, if student demographics are considered, women studying technology who have economic problems, are married, and/or have children have more anxiety and depression significantly compared to men in the same field and other areas of study, which also coincides with the results of this research [95]. Possible explanations for the lack of consensus could be about the fear and concern that technology and engineering students feel about finding jobs after graduation, which may manifest as a lack of confidence, ambivalence, confusion, anxiety, depression, or lack of commitment [97].

5.5 Research Limitations

The results of this research should be interpreted with caution due to the limitations of the convenience sampling method, which could prevent the results from being generalized. Conducting a cross-sectional study could help identify causality between study variables. On the other hand, in future research, it would be interesting to analyze each area evaluated in the Burnout and engagement scales to identify subtle differences between women and men, as well as between the study area.

5.6 Conclusion

Considering this study’s findings, mental health issues need to gain significantly more attention in higher education institutions due to the pandemic-related increase in Burnout and decrease in engagement among college students [98] To better support students during a pandemic and/or quarantine, policymakers and school boards must consider findings from studies like this one when formulating policy recommendations and strategies [99] Furthermore, it is necessary to continue investigating college students’ physical and mental health, given the enormous change in teaching–learning methodologies that have been implemented during the COVID-19 pandemic—especially in Chile, where the digital and socioeconomic gap is significant.

Statements and Declarations

Author Contributions Conceptualization, A.G., O.A., M.V., and C.C-V.; Methodology, O.A., and A.G.; Validation, O.A., and A.G.; Investigation, A.G., O.A., and C.C-V.; Visualization, A.G., O.A., and C.C-V.; Supervision, C.C-V.; Project administration, C.C-V.; Formal Analysis, O.A., and A.G.; Writing—Original Draft Preparation, A.G., O.A., M.V., and C.C-V.; Writing—Review & Editing, A.G., and C.C-V.

Funding The manuscript was supported by research grants from the National Fund for Science and Technological Development (FONDECYT 1200944 [C.C-V.]); Agencia Nacional de Investigación y Desarrollo (ANID) - Millennium Science Initiative Program - ICN09_016 / ICN 2021_045: Millennium Institute on Immunology and
Immunotherapy (ICN09_016 / ICN 2021_045; former P09/016-F) [C.C-V.]; Basal Grant CEDENNA (AFB180001 [C.C-V.]).

Disclosure of Interests All authors declare that they have no conflict of interest.

Ethical Approval All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards. Approval was granted by the ethics committee of the Universidad Andrés Bello in Santiago, Chile (Approval number 017/2020).

References

1. Yuki K, Fujiogi M, Koutsogiannaki S (2020) COVID-19 pathophysiology: a review. Clin Immunol 215:108427. https://doi.org/10.1016/j.clim.2020.108427

2. Assadiasl S, Fatahi Y, Zavvar M, Nicknam MH (2020) COVID-19: significance of antibodies. Hum Antibodies 28(4):287–297. https://doi.org/10.3233/HAB-200429

3. Bansod S, Ahirwar AK, Sakarde A, Asia P, Gopal N, Alam S et al (2021) COVID-19 and geriatric population: from pathophysiology to clinical perspectives. Horm Mol Biol Clin Investig. 42(1):87–98. https://doi.org/10.1515/hmbci-2020-0053

4. Atroszko PA, Demetrovics Z, Griffiths MD (2020) Work addiction, obsessive-compulsive personality disorder, burn-out, and global burden of disease: implications from the ICD-11. Int J Environ Res Public Health 17(2). https://doi.org/10.3390/ijerph17020660

5. Cao W, Fang Z, Hou G, Han M, Xu X, Dong J et al (2020) The psychological impact of the COVID-19 epidemic on college students in China. Psychiatry Res 287:112934. https://doi.org/10.1016/j.psychres.2020.112934

6. Gallo L, Gallo T, Young S, Moritz K, Akison L (2020) The impact of isolation measures due to COVID-19 on energy intake and physical activity levels in Australian university students. Nutrients 12(6):1865. https://doi.org/10.3390/nu12061865

7. Bassett RM (2020) Sustaining the values of tertiary education during the COVID-19 crisis. Int Higher Educ 102:5–7

8. Pérez-Villalobos C, Ventura-Ventura J, Spormann-Romeri C, Meliállán R, Jara-Reyes C, Paredes-Villarreal X et al (2021) Satisfaction with remote teaching during the first semester of the COVID-19 crisis: psychometric properties of a scale for health students. PLoS One 16(4):e0250739-e. https://doi.org/10.1371/journal.pone.0250739

9. Reuter PR, Forster BL, Kruger BJ (2021) A longitudinal study of the impact of COVID-19 restrictions on students’ health behavior, mental health and emotional well-being. PeerJ 9:e12528-e. https://doi.org/10.7717/peerj.12528

10. Aucejo EM, French J, Ugaldé Araya MP, Zafar B (2020) The impact of COVID-19 on student experiences and expectations: evidence from a survey. J Public Econ 191:104271-. https://doi.org/10.1016/j.jpubeco.2020.104271

11. Gillis A, Krull LM (2020) COVID-19 remote learning transition in spring 2020: class structures, student perceptions, and inequality in college courses. Teach Sociol 48(4):283–299. https://doi.org/10.1177/0092055X20954263

12. Aguilar S (2020) A research-based approach for evaluating resources for transitioning to teaching online. Inf Learn Sci 121(5/6):301–310. https://doi.org/10.1108/ILS-04-2020-0072

13. Essadek A, Rabeyron T (2020) Mental health of French students during the Covid-19 pandemic. J Affect Disord 277:392–393. https://doi.org/10.1016/j.jad.2020.08.042

14. Zhang Y, Zhang H, Ma X, Di Q (2020) Mental health problems during the COVID-19 pandemics and the mitigation effects of exercise: a longitudinal study of college students in China. Int J Environ Res Public Health 17(10):3722. https://doi.org/10.3390/ijerph17103722

15. Ochnick D, Rogowska AM, Kuśnierz C, Jakubiak M, Schütz A, Held MJ et al (2021) A comparison of depression and anxiety among university students in nine countries during the COVID-19 pandemic. J Clin Med 10(13):2882. https://doi.org/10.3390/jcm10132882

16. Romero-Blanco C, Rodríguez-Almagro J, Onieva-Zafra M, Parra-Fernández M, Prado-Laguna M, Hernández-Martínez A (2020) Physical activity and sedentary lifestyle in university students: changes during confinement due to the COVID-19 pandemic. Int J Environ Res Public Health 17(18):6567. https://doi.org/10.3390/ijerph17186567

17. Antunes R, Frontini R, Amaro N, Salvador R, Matos R, Morouço P et al (2020) Exploring lifestyle habits, physical activity, anxiety and basic psychological needs in a sample of Portuguese adults during COVID-19. Int J Environ Res Public Health 17(12):4360. https://doi.org/10.3390/ijerph17124360

18. Islam MS, Sujan MSH, Tasnim R, Sidker MT, Potenza MN, van Os J (2020) Psychological responses during the COVID-19 outbreak among university students in Bangladesh. PLoS One 15(12):e0245083-e. https://doi.org/10.1371/journal.pone.0245083

19. Husky MM, Kovess-Masfety V, Swendsen JD (2020) Stress and anxiety among university students in France during Covid-19 mandatory confinement. Compr Psychiatry 102:152191-. https://doi.org/10.1016/j.comppsych.2020.152191
20. Ahorsu D, Lin C, Imani V, Saffari M, Griffiths M, Pakpour A (2020) The fear of COVID-19 scale: development and initial validation. Int J Ment Health Addict 18(1):1–9. https://doi.org/10.1007/s11469-020-00270-8

21. Sakib N, Akter T, Zohra F, Bhuiyan A, Mamun M, Griffiths M (2021) Fear of COVID-19 and depression: a comparative study among the general population and healthcare professionals during COVID-19 pandemic crisis in Bangladesh. Int J Ment Health Addict. https://doi.org/10.1007/s11469-020-00477-9

22. Freudenberger HJ (1974) Staff burn-out. J Soc Issues 30(1):159–165. https://doi.org/10.1111/j.1540-4560.1974.tb00706.x

23. Descals-Tomás A, Rocabet-Beut E, Abellán-Roselló L, Gómez-Artiga A, Doménech-Betoret F (2021) Influence of teacher and family support on university student motivation and engagement. Int J Environ Res Public Health 18(5):2606. https://doi.org/10.3390/ijerph18052606

24. Humphries N, Morgan K, Conry MC, McGowan Y, Montgomery A, McGee H (2014) Quality of care and health professional burnout: narrative literature review. Int J Health Care Qual Assur 27(4):293–307. https://doi.org/10.1108/IHCQA-08-2012-0087

25. Schaufeli WB (1995) The evaluation of a burnout phenomenon in therapeutic communities. J Psychoactive Drugs 18(1):251. https://doi.org/10.1080/02791072.1995-02791072.187

26. Pines A, Maslach C (1978) Characteristics of staff burnout in mental health settings. Hosp Community Psychiatry 29(4):233–237. https://doi.org/10.1176/ps.29.4.233

27. Freudenberger HJ (1986) The issues of staff burnout in therapeutic communities. J Psychoactive Drugs 18(3):247–251. https://doi.org/10.1080/02791072.1986.10472354

28. Maslach C, Leiter MP (2016) Understanding the burnout experience: recent research and its implications for psychiatry. World Psychiatry 15(2):103–111. https://doi.org/10.1002/wps.20311

29. Dyrbye L, Shanafelt T (2016) A narrative review on burnout experienced by medical students and residents. Med Educ 50(1):132–149. https://doi.org/10.1111/medu.12927

30. Schaufeli WB, Martinez IM, Pinto AM, Salanova M, Bakker AB (2002) Burnout and engagement in university students: a cross-national study. J Cross Cult Psychol 33(5):464–481. https://doi.org/10.1177/002212090203305003

31. Navarro-Abal Y, Gomez-Salgado J, Lopez-Lopez MJ, Climent-Rodriguez JA (2018) Organisational justice, burnout, and engagement in university students: a comparison between stressful aspects of labour and university organisation. Int J Environ Res Public Health 15(10). https://doi.org/10.3390/ijerph15102116

32. Garden A-M (1991) Relationship between burnout and performance. Psychol Rep 68(3):963–977. https://doi.org/10.2466/pr0.1991.68.3.963

33. Meier ST, Schmeck RR (1985) The burnout phenomenon in college student: a descriptive profile. J College Student Personnel

34. Ashton CH, Kamali F (1995) Personality, lifestyles, alcohol and drug consumption in a sample of British medical students. Med Educ 29(3):187–192. https://doi.org/10.1111/j.1365-2932.1995.tb02828.x

35. Arora A, Kannan S, Gowri S, Choudhary S, Sudarasanan S, Khosla PP (2016) Substance abuse amongst the medical graduate students in a developing country. Indian J Med Res 143(1):101–103. https://doi.org/10.4103/0971-5916.178617

36. Dyrbye LN, Thomas MR, Shanafelt TD (2006) Systematic review of depression, anxiety, and other indicators of psychological distress among U.S. and Canadian medical students. Acad Med 81(4)

37. Väänänen A, Koskinen A, Joensuu M, Kivimäki M, Vahtera J, Kovvonen A et al (2008) Lack of predictability at work and risk of acute myocardial infarction: an 18-year prospective study of industrial employees. Am J Public Health 98(12):2264–2271. https://doi.org/10.2105/AJPH.2007.122382

38. Dyrbye LN, Thomas MR, Massie FS, Power DV, Eacker A, Harper W et al (2008) Burnout and suicidal ideation among U.S. medical students. Ann Intern Med 149(5):334–341. https://doi.org/10.1001/anninternmed.149.5.334

39. Netterstrøm B, Conrad N, Bech P, Fink P, Olsen O, Rugulies R et al (2008) The relation between work-related psychosocial factors and the development of depression. Epidemiol Rev 30(1):118–132. https://doi.org/10.1093/epirev/mxn004

40. Ghetti C, Chang J, Gosman G (2009) Burnout, psychological skills, and empathy: balint training in obstetrics and gynecology residents. J Grad Med Educ 1(2):231–235. https://doi.org/10.4300/JGME-D-09-00049.1

41. Martini S, Arfken CL, Churchill A, Balon R (2004) Burnout comparison among residents in different medical specialties. Acad Psychiatry 28(3):240–242. https://doi.org/10.1176/appi.ap.28.3.240

42. Schaufeli WB, Bakker AB, Hoogduin K, Schaan C, Kladler A (2001) on the clinical validity of the maslach burnout inventory and the burnout measure. Psychol Health 16(5):565–582. https://doi.org/10.1080/08870440108405527

43. Rongen A, Robroek SJ, Schaufeli W, Burosdorf A (2014) The contribution of work engagement to self-perceived health, work ability, and sickness absence beyond health behaviors and work-related factors. J Occup Environ Med 56(8):892–897. https://doi.org/10.1097/JOM.000000000000196

44. Loscalzo Y, Giannini M (2022) Heavy study investment: an analysis of the defense mechanisms characterizing studyholism and study engagement. Int J Environ Res Public Health 19(15). https://doi.org/10.3390/ijerph19159413

45. Pezaro S, Clyne W, Fulton EA (2017) A systematic mixed-methods review of interventions, outcomes
and experiences for midwives and student midwives in work-related psychological distress. Midwifery 50:163–173. https://doi.org/10.1016/j.midw.2017.04.003

46. Wester ER, Walsh LL, Arango-Caro S, Callis-Duehl KL (2021) Student engagement declines in STEM undergraduates during COVID-19-driven remote learning. J Microbiol Biol Educ 22(1). https://doi.org/10.1128/jmbe.v22i1.2385

47. Ammar A, Brach M, Tabelsi K, Chitourou H, Boukhris O, Masmoudi L et al (2020) Effects of COVID-19 home confinement on eating behaviour and physical activity: results of the ECLB-COVID19 international online survey. Nutrients 12(6):1583. https://doi.org/10.3390/nu12061583

48. García-Tascón M, Sahelices-Pinto C, Mendaña-Cuervo C, Magaz-González AM (2020) The impact of the COVID-19 confinement on the habits of PA practice according to gender (male/female): spanish case. Int J Environ Res Public Health 17(19):6961. https://doi.org/10.3390/ijerph17196961

49. Kosendiai A, Król M, Ścisakalska M, Kepinska M (2021) The changes in stress coping, alcohol use, cigarette smoking and physical activity during COVID-19 related lockdown in medical students in Poland. Int J Environ Res Public Health 19(1):302. https://doi.org/10.3390/ijerph19010302

50. Budzynski-Seymour E, Milton K, Mills H, Wade M, Foster C, Vishnubala D et al (2021) A rapid review of communication strategies for physical activity guidelines and physical activity promotion: a review of worldwide strategies. J Phys Act Health 18 (8):1014–1027. https://doi.org/10.1123/jpah.2020-0832

51. Castañeda-Babarro A, Arbillaga-Etxarri A, Gutiérrez-Santamaría B, Coca A (2020) Physical activity change during COVID-19 confinement. Int J Environ Res Public Health 17(18):6878. https://doi.org/10.3390/ijerph17186878

52. Biddle S, Mutrie N (2001) Psychology of physical activity: determinants, well-being and interventions. Med Sci Sports Exerc. https://doi.org/10.4324/9780203019320

53. Sánchez A, Miró E, Jiménez M, Pilar M (2008) Bienestar psicológico y hábitos saludables: ¿están asociados a la práctica de ejercicio físico? Int J Clin Health Psychol 8

54. De Cock K, Biddle S, Teychenne M, Bennie J (2021) Is all activity equal? Associations between different domains of physical activity and depressive symptom severity among 261,121 European adults. Depression Anxiety 38. https://doi.org/10.1002/da.23157

55. Bennie JA, De Coker K, Biddle SJH, Teychenne MJ (2020) Joint and dose-dependent associations between aerobic and muscle-strengthening activity with depression: a cross-sectional study of 1.48 million adults between 2011 and 2017. Depression Anxiety 37(2):166–178. https://doi.org/10.1002/da.22986

56. Rodríguez-Muñoz S, Corella C, Abarca-Sos A, Zaragoza J (2017) Validation of three short physical activity questionnaires with accelerometers among university students in Spain. J Sports Med Phys Fitness 57(12):1660–1668. https://doi.org/10.23736/s0022-4707.17.06665-8

57. Ruiz-Casado A, Alejo LB, Santos-Lozano A, Soria A, Ortega MJ, Pagola I et al (2016) Validity of the physical activity questionnaires IPAQ-SF and GPAQ for cancer survivors: insights from a Spanish cohort. Int J Sports Med 37(12):979–985

58. Pérez-Fuentes MC, Molero Jurado MDMA, Simón Márquez MDMA, Oropesa Ruiz NF, Gámez Linares JJ. Validation of the Maslach burnout inventory-student survey in Spanish adolescents (1886–144X(Electronic))

59. Boada-Grau J, Merino-Tejedor E, Sánchez-García J-C, Prizmic-Kuzmic A-I, Vigil-Colet A (2015) Adaptation and psychometric properties of the SBI-U scale for academic burnout in university students. Anales de Psicología 31:290–297

60. Salas A, Gil-Monte P (2012) Psychometric properties of the Spanish burnout inventory in Mexican teachers. Revista de Educación (Madrid) 260–273. https://doi.org/10.4438/1988-592X-RE-2011-359-094

61. Hederich-Martínez C, Caballero-Domínguez CC (2016) Validación del cuestionario Maslach Burnout Inventory-Student Survey (MBI-SS) en contexto académico colombiano. CES Psicología 9:1–15

62. Carmona-Halty MA, Schaufeli WB, Salanova M (2019) The Utrecht Work Engagement Scale for students (UWES–9S): factorial validity, reliability, and measurement invariance in a Chilean sample of undergraduate university students. Front Psychol 10

63. Guerra Díaz F, Jorquera Gutiérrez R (2021) Análisis psicométrico de la Utrecht Work Engagement Scale en las versiones UWES-17S y UWES-9S en universitarios chilenos. Revista Digital de Investigación en Docencia Universitaria 15

64. UNESCO: ISCED Fields of Education and Training (2013) (ISCED-F 2013) (2014) Accessed

65. MINSAL: Encuesta Nacional de Salud. http://epi.minsal.cl/encuesta-ens/ (2016–2017) Accessed

66. Guthold R, Stevens GA, Riley LM, Bull FC (2018) Lancet Glob Health 6(10):e1077–e1086. https://doi.org/10.1016/S2214-109X(18)30357-7

67. Althoff T, Sosič R, Hicks J, King A, Delp S, Leskovec J (2017) Large-scale physical activity data reveal worldwide activity inequality. Nature 547(7663):336–339. https://doi.org/10.1038/nature23018

68. Ranasinghe CD, Ranasinghe P, Jayawardena R, Misra A (2013) Physical activity patterns among South-Asian adults: a systematic review. Int J Behav Nutr Phys Act 10:116–. https://doi.org/10.1186/1479-5868-10-116

69. Koohpayehzadeh J, Etemad K, Abbasi M, Meysamie A, Sheikhbahaei S, Asgari F et al (2014) Gender-specific changes in physical activity pattern in Iran: national surveillance of risk factors of non-
communicable diseases (2007–2011). Int J Public Health 59(2):231–241. https://doi.org/10.1007/s00038-013-0529-3

70. Ferrari GLDM, Kovalsky I, Fisberg M, Gómez G, Rigotti A, Sanabria LYY et al (2020) Sociodemographic patterning of objectively measured physical activity and sedentary behaviours in eight Latin American countries: Findings from the ELANS study. Eur J Sport Sci 20(5):670–681. https://doi.org/10.1080/17461391.2019.1678671

71. Mielke GI, da Silva ICM, Kolbe-Alexander TL, Brown WJ (2018) Shifting the physical inactivity curve worldwide by closing the gender gap. Sports Med 48(2):481–489. https://doi.org/10.1007/s40279-017-0754-7

72. Bauman A, Ainsworth BE, Bull F, Craig CL, Mielke GI, da Silva ICM, Kolbe-Alexander TL, Ferrari GLdM, Kovalsky I, Fisberg M, Gonzalez A et al (2020) The Relationship of COVID-19 pandemic in Poland. Psychol Med 1(1):1–15. https://doi.org/10.1007/s40299-021-00641-2

73. Ferrari GLdM, Kovalsky I, Fisberg M, Gómez G, Rigotti A, Sanabria LYY et al (2020) Sociodemographic patterning of objectively measured physical activity and sedentary behaviours in eight Latin American countries: Findings from the ELANS study. Eur J Sport Sci 20(5):670–681. https://doi.org/10.1080/17461391.2019.1678671

74. Charles NE, Strong SJ, Burns LC, Bullerjahn MR, Serafin KM (2021) Increased mood disorder symptoms, perceived stress, and alcohol use among college students during the COVID-19 pandemic. Psychiatry Res 296:113706

75. Debowska A, Horeczy B, Boduszek D, Dolinski D (2019) Psychometric properties of Spanish version student stress scale into Turkish. Asia Pac Educ Res. https://doi.org/10.1007/s40279-017-0754-7

76. Bauman A, Ainsworth BE, Bull F, Craig CL, Mielke GI, da Silva ICM, Kolbe-Alexander TL, Ferrari GLdM, Kovalsky I, Fisberg M, Gonzalez A et al (2020) The Relationship of COVID-19 pandemic in Poland. Psychol Med 1(1):1–15. https://doi.org/10.1007/s40299-021-00641-2

77. Salari N, Hosseinian-Far A, Jalali R, Vaisi-Raygani A, Rasoulopor S, Mohammadi M et al (2020) Prevalence of stress, anxiety, depression among the general population during the COVID-19 pandemic: a systematic review and meta-analysis. Glob Health 16(1):1–11

78. Rehman U, Shahnawaz MG, Khan NH, Kharshing KD, Khursheed M, Gupta K et al (2021) Depression, anxiety and stress among Indians in times of Covid-19 lockdown. Community Ment Health J 57(1):42–48

79. Karaman MA, Lerma E, Vela JC, Watson JC (2019) Predictors of academic stress among college students. J Coll Couns 22(1):41–55. https://doi.org/10.1002/jccc.12113

80. Verger P, Guagliardo V, Gilbert F, Rouillon F, Kovess-Masfety V (2010) Psychiatric disorders in students in six French universities: 12-month prevalence, comorbidity, impairment and help-seeking. Soc Psychiatry Psychiatr Epidemiol 45(2):189–199. https://doi.org/10.1007/s00127-009-0055-z

81. Ibrahim AK, Kelly SJ, Adams CE, Glazebrook C (2013) A systematic review of studies of depression prevalence in university students. J Psychiatr Res 47(3):391–400. https://doi.org/10.1016/j.jpsychires.2012.11.015

82. Burtscher J, Burtscher M, Millet GP (2020) (Indoor) isolation, stress, and physical inactivity: vicious circles accelerated by COVID-19? Scand J Med Sci Sports 30 (8):1544–1545. https://doi.org/10.1111/sms.13706

83. Serrano C, Andreu Y, Murgui S, Martinez P (2019) Psychometric properties of Spanish version student Utrecht Work Engagement Scale (UWES-S-9) in high-school students. Span J Psychol. 22:E21. https://doi.org/10.1071/spj.2019.25

84. Deng C-H, Wang J-Q, Zhu L-M, Liu H-W, Guo Y, Peng X-H et al (2020) Association of web-based physical education with mental health of college students in Wuhan during the COVID-19 outbreak: cross-sectional survey study. J Med Internet Res 22(10):e21301. https://doi.org/10.2196/21301

85. Wang C, Pan R, Wan X, Tan Y, Xu L, McIntyre RS et al (2020) A longitudinal study on the mental health of general population during the COVID-19 epidemic in China. Brain Behav Immun 87:40–48. https://doi.org/10.1016/j.bbi.2020.04.028

86. Stults-Kolehmainen MA, Sinha R (2014) The effects of stress on physical activity and exercise. Sports Med 44(1):81–121. https://doi.org/10.1007/s40279-013-0090-5

87. Kaczynski A, Potwarka L, Smale B, Havitz M (2009) Association of Parkland proximity with neighborhood and park-based physical activity: variations by gender and age. Leisure Sci 31:174–191. https://doi.org/10.1177/0149040809336045

88. Galli N, Reel JJ (2012) ’It was Hard, But it was Good’: a qualitative exploration of stress-related growth in Division I intercollegiate athletes. Qual Res Sport Exercise Health 4(3):297–319. https://doi.org/10.1080/2159676X.2012.693524

89. Dubuc-Charbonneau N, Durand-Bush N (2015) Moving to action: the effects of a self-regulation intervention on the stress, burnout, well-being, and self-regulation capacity levels of university students. J Clin Sport Psychol 9(2):173–192. https://doi.org/10.1123/jcsp.2014-0036

90. Pryjmachuk S, Richards DA (2007) Predicting stress in pre-registration nursing students. Br J Health Psychol 12(1):125–144. https://doi.org/10.1348/135910706X98524

91. Bartlett Michelle L, Taylor H, Nelson JD (2016) Comparison of mental health characteristics and stress between baccalaureate nursing students and non-nursing students. J Nurs Educ 55(2):87–90. https://doi.org/10.3928/01484834-20160114-05
92. Hyoung HK, Ju YS, Im SI (2014) A concept mapping study on clinical stress for nursing students during clinical practice. J Korean Acad Nurs Adm 20 (4):394–404
93. Al Rasheed F, Naqvi A, Ahmad R, Ahmad N (2017) Academic stress and prevalence of stress-related self-medication among undergraduate female students of health and non-health cluster colleges of a public sector university in Dammam, Saudi Arabia. J Pharm Bioallied Sci 9(4):251–258. https://doi.org/10.4103/jpbs.JPBS_189_17
94. Bayram N, Bilgel N (2008) The prevalence and socio-demographic correlations of depression, anxiety and stress among a group of university students. Soc Psychiatry Psychiatr Epidemiol 43(8):667–672. https://doi.org/10.1007/s00127-008-0345-x
95. Naser A, Alwaﬁ H, Amara N, Alhamad H, Almadani M, Alsairafi Z et al (2021) Epidemiology of depression and anxiety among undergraduate students. Int J Clin Pract 75:e14414. https://doi.org/10.1111/ijcp.14414
96. Vitasari P, Wahab N, Othman A, Herawan T, Sinnadurai SK (2010) The relationship between study anxiety and academic performance among engineering students. Proc Soc Behav Sci 8:490–497. https://doi.org/10.1016/j.sbspro.2010.12.067
97. Ercan I, Irgil E, Sigirli D, Ozen N, Kan I (2008) Evaluation of anxiety among medical and engineering students by factor analysis. Stud Psychol 50:267–275
98. Toquero CM (2020) Challenges and opportunities for higher education amid the COVID-19 pandemic: the Philippine context. Pedagogical Res 5. https://doi.org/10.29333/pr/7947
99. Aristovnik A, Keržič D, Ravšelj D, Tomaževič N, Umek L (2020) Impacts of the COVID-19 pandemic on life of higher education students: a global perspective
Abstract

The immune system is the first defense against potentially dangerous chemicals, infections, and damaged cells. Interactions between immune cells and inflammatory mediators increase the coordinated activation of cross-talking signaling pathways, resulting in an acute response necessary to restore homeostasis but potentially detrimental if uncontrolled and prolonged. Plastic production exceeds million tons per year, becoming a global concern due to the stability of its constituent polymers, low density, which allows them to spread easily, and small size, which prevents proper removal by wastewater treatment plants, promoting environmental accumulation and increasing health threats. The interaction between plastic particles and the immune system is still being investigated, owing to growing evidence of increased risk not only for dietary intake due to its presence in food packaging, drinking water, and even fruits and vegetables, but also to emerging evidence of new intake pathways such as respiratory and cutaneous. We discuss in depth the impact of small plastic particles on the immune response across the body, with a focus on the nervous system and peripheral organs and tissues such as the gastrointestinal, respiratory, lymphatic, cardiovascular, and reproductive systems, as well as the involvement in increased susceptibility to worsening concomitant diseases and future perspectives in the exploration of potential therapeutics.

Keywords

Inflammation · Microplastics · Nanoplastics · Cytokynes · Oxidative stress

Abbreviations

ATP · Adenosine triphosphate
Bcl-2 · B-cell lymphoma 2
BEAS-2B · Bronchial epithelium transformed with Ad12-SV40 2B
6.1 Introduction

Plastic production exceeds million tons every year, becoming a global concern due to the stability of its constituent polymers, their low density which make them easy to spread and their small size which prevents proper removal by wastewater treatments plants, promoting accumulation and increasing health threats [1–3]. Rather of being chemically converted or mineralized, disposable plastics from food packages, gloves and others, are fragmentated into tiny particles known as microplastics (MPs) and nanoplastics (NPs) [4]. Although there is no consensus on how to classify them, the International Organization of Standardization determined particles as small as 5 mm as MPs and those small as 1 µM as NPs [5].

Studies attempting to elucidate biological absorption pathways, have shown interactions other than gastrointestinal, such as cutaneous and respiratory [6, 7]. Skin, for example, prevents MP and NP diffusion while allowing access through wounds or sweat glands [8]. The alveolar layer, by contrast, is thin enough to allow nanoparticles to permeate to the circulation [9]. Although it is unclear how MP and NP are taken by cells, current findings suggest that protein-plastic interactions might enhance cellular uptake [10], with endocytic mechanisms such as pinocytosis and phagocytosis, as suitable candidates [11].

Beyond its contribution in environmental concerns, the exploration of the interaction between plastic particles and human response is an ongoing issue considering its cytotoxic and genotoxic potential [12] as well as its ability to interact with and induce structural and functional protein changes [13]. Preliminary research on the effects of NPs in mice described that oral delivery was associated with plastic accumulation in
intestine, kidneys, and liver. Despite the fact that biochemical plasma measurements and histological samples showed no morphologic alterations, mice exposed to plastic particles exhibited an increase in inflammatory (levels of pro-inflammatory cytokines) and oxidative (reactive oxygen spices (ROS) production and superoxide dismutase (SOD) activity) status [14]. Similarly, after 5 weeks of oral MP and NP administration, an accumulation of plastic particles and aggregates was seen in intestinal lumen and spleen. Remarkably, the findings of this investigation revealed a sex-dependent response to plastic particles. While female animals do not store plastic in their reproductive system, male animals accumulated significant levels in their testes and seminaliferous tubules, which was associated with decreased testosterone production. Furthermore, only male splenocytes enhanced the expression of Interleukin 12 p35 (IL-12p35) and interleukin 23 (IL-23), amplifying the inflammatory response. Similarly, the anxiogenic response, locomotor activity, and gene expression in the brain indicated sex-dependent variations in response to plastic particles [15].

Moreover, 10 days of intranasal administration of MP and NP to rats resulted in weight loss, slimming, and decrease in cell layer on nasal mucosa, as well as elevated Transient receptor potential melastatin member 8 (TRPM8) expression, which was linked to respiratory inflammation. Although there were no morphological alterations in lung samples, histological abnormalities in kidney and liver were detected, suggesting that plastic passing for systemic circulation is the initial step in detrimental activities in peripheral organs [16]. Finally, after 28 of exposure to NPs, mice exhibited accumulation in stomach, intestine, testis, lungs, brain and spleen. While biochemical analysis revealed no significant changes, histological samples exhibited increased apoptosis and evident morphological damage. The liver presented increased infiltration of immune cells, vacuolization of hepatocytes and increased sinusoidal space; the lungs, showed alveolar wall thickness and interstitial fibrosis; the kidneys showed enhanced tubular atrophy, glomerulus alteration and immune cells infiltration; the intestine presented damaged epithelium and villi, epithelial permeability, crypt dysplasia and lymphocytes aggregation; the brain presented neuronal malformations in the cerebral cortex and finally, the testis, presented atrophy, immature germ cells accumulation in seminaliferous tubules and vacuolization in the same tissues [17].

6.2 Immune System

The immune system is the initial defense against potentially hazardous molecules, pathogens or damaged cells [18]. Mast cells, natural killer, granulocytes (neutrophils, eosinophils and basophils), dendritic cells and macrophages are immunological innate response cells [19], whereas inflammatory mediators include complement proteins, cytokines, nitric oxide and oxygen free radicals [20]. Interactions between immune cells with inflammatory mediators (released by immune and non-immune cells) promotes the coordinated activation of cross-talking signaling pathways, resulting in an acute response essential to restore homeostasis, which can be potentially harmful if uncontrolled and persistent [21].

The interplay between plastic particles and the immune system is still being explored, but interesting findings have already been reported (Table 6.1). The activation of the NOD-, LRR- and pyrin domain-containing protein 3 (NLRP3) inflammasome in THP-1 cells (macrophages) by plastic particles was studied, revealing that amine-modified polystyrene particles activated NLRP3, whereas polyethylene terephthalate-, polycrylonitrile-, and nylon-derived particles increased IL-8 production in NLRP3-/- cells, demonstrating the pro-inflammatory properties of microplastics [22]. Similarly, the inflammatory response in human monocytes and monocyte-derived dendritic cells was significantly elevated by NP, particularly irregular NP exposure, as seen by increased pro-inflammatory cytokine release [23].

Furthermore, sulfate-modified NPs accumulated in cytoplasm lipid droplets in human
and murine macrophages and enhanced mitochondrial-mediated oxidative stress, promoting foam cell differentiation, a critical hallmark of atherosclerosis [24]. Similarly, NP boosted differentiation of murine macrophages into lipidic foam cells, which was associated with increased lipid droplet formation and accumulation in cytoplasm. Moreover, increased ROS production and lysosomal damage at high concentrations, suggesting that NPs alters lipid metabolism and promote lipotoxicity in macrophages [25]. After 3 h of exposure to heat-released particles, MP induced morphologic changes consistent with activation, whereas NP was significantly internalized and accumulated in the cytosol and lysosomes of macrophages, suppressing lysosomal activity associated with defective autophagy and increasing ROS generation, which could have direct implications in disease [26].

In human peripheral blood lymphocytes, NP produced 93% hemolysis and decreased cell

Model	Plastic type	Concentration	Time	Result	References
NLRP3-proficient and -deficient THP-1 cells	Micro and nanoplastics	4 mg/mL	N/A	NLRP3 [IL-8]	[22]
Primary human monocytes and monocyte-derived dendritic cells	Nanoplastic	30–300 particles cell⁻¹	N/A	cytokine release	[23]
				pro-inflammatory response	
Human macrophages	Nanoplastic	100ug/ml	N/A	acute mitochondrial oxidative stress	[24]
				impaired lysosomal clearance	
RAW 264.7 macrophages	Nanoplastic	50ug/ml	N/A	lipotoxicity	[25]
				foam cell formation	
				atherosclerosis	
Mouse macrophages	Micro and nanoplastic	3 h		inflammation	[26]
				lysosomal activities of macrophages	
Human lymphocyte cells	Polystyrene nanoplastics	2000 µg/mL, 1000 µg/mL, and 500 µg/mL	N/A	chromosomal aberrations, such as chromosomal breaks and dicentric chromosomes	
				nucleoplasmic bridge (NBP) formation and nuclear budding (NBUD)	[27]
				frequency of mitotic index (MI)	
				micronuclei (MN) formation and cytostasis%	
				nuclear division index (NDI)	
				oxidative stress-mediated cytotoxicity, DNA damage, and genomic instabilities	
Immortalized human lymphocytes	Nanoparticles	N/A	N/A	oxidative stress, apoptosis and mortality	[28]
				cells’ Young Modulus	
Mice neutrophils	Polystyrene nanoplastics	N/A	N/A	NET formation, with involvement of reactive oxygen species, peptidyl arginine deiminase 4 (PAD4), and neutrophil elastasePAD4	[29]

N/A: Not available
viability (by close to 60%). Similarly, NP administration increased chromosomal damage and genomic instability markers such as mitotic index, micronuclei frequency, cytostasis, chromosomal breaks, chromosomal rings, and dicentric chromosomes, affecting cellular proliferation as evidenced by the nuclear division index [27], and further studies in immortalized lymphocytes confirmed the cytotoxic effects of NPs [28]. Finally, NP exposure caused the release of neutrophil extracellular traps in murine neutrophils via synergistic mechanisms involving increased calcium signaling, ROS and elastase production, and peptidyl arginine deiminase 4 overexpression, resulting in histone citrullination and chromatin depolymerization [29].

6.3 Nervous System

The nervous system formed by a complex neuronal and glial network [30], allowing organisms attend self or external demands to preserve vital functions [31]. The inflammation in nervous system also known as neuroinflammation, is a common response in acute or chronic brain or peripheral diseases, being linked to impaired cognitive function or neurodegenerative diseases such as Alzheimer, Parkinson, amyotrophic lateral sclerosis, among others [32]. So, deciphering harmful potential of plastics and possible adverse effects in brain-mediated functions is a relevant issue (Table 6.2).

The effect of NP in nerve injury and subsequent learning impairment was also evaluated in mice exposed chronically to NP (6 months). The results showed that NP promoted detrimental effects in cognitive function and increased ROS and deoxyribonucleic acid (DNA) damage dose-dependently. Further experiments indicated that NP acted in synaptic terminals affecting close to 96 messenger ribonucleic acid (mRNA) and a complex network of competing endogenous RNA (ceRNA) involving 27 circular RNAs, 19 miRNAs and 35 mRNAs associated to synaptic alteration [33].

Moreover, in mice was demonstrated that 28-day exposure to NP induced neurodegeneration like Parkinson disease mediated by mitochondrial dysfunction associated-energetic metabolism impairment in neuronal cells, in excitatory neurons. Similarly, was found increased pro-inflammatory status in astrocytes and microglia and proteostasis alterations and synaptic dysfunction in astrocytes, oligodendrocytes and endotheliocytes [34].

In zebrafish, aminated-NPs accumulated in gastrointestinal tract and brain, affected development as evidenced the reduction of spontaneous movement, heartbeat, hatching, as well brain cell apoptosis promoting neurobehavioral damage through NMDA2B receptor interaction [35]. Similarly, NPs accumulated in gonads, intestine, liver and brain, impaired lipid and energy metabolism and increase oxidative stress in a size- and shape-dependent fashion. Interestingly, NPs also promoted neurobehavioral impairment as evidenced the altered locomotion, aggressiveness and dysregulated circadian rhythm mediated by toxic neurotransmitter accumulation [36].

In HT22 hippocampal neuronal cells exposed to MP and NP was observed increased attachment to cell surface and internalization with perinuclear localization independent of particles size. Interestingly, the smallest particles need to get clustered for effective intercellular trafficking being trapped in lysosomal structures, while MP were distributed in cytoplasm. Showing differential cellular distribution suggesting differential uptake mechanisms. Interestingly, results showed that a difference of other studies reporting that only NP promoted ROS, in this experimental setting, MP were also able to promote ROS increased after transient exposure (1 h) and, after long-term exposure (24 h), only NP promoted elevation in ROS production and importantly, these particles were mainly involved in cell cycle alterations and cell viability reduction. Authors hypothesize that NP promoted oxidative damage to macromolecules as DNA, lipids and proteins through mitochondrial mediated mechanisms or due intrinsic reactivity properties of NP [37].

In mice, NP administered for 7 days permeated blood brain barrier and accumulated in brain. The neurotoxicity and cerebral injury
Model	Plastic type	Concentration	Time	Result	References
Mice	Polystyrene nanoplastics	0, 10, 25, 50 mg/kg	6 months	↑ ROS levels and DNA damage ↓ injury in the synaptic function	[33]
C57BL/6 J mice	Polystyrene nanoplastics	50 nm, 0.25–250 mg/kg	28 days	↑ Parkinson’s disease (PD)-like neurodegeneration ↓ dysfunction in all brain cells, and especially in excitatory neurons, ↑ inflammatory turbulence in astrocytes and microglia, dysfunction of proteostasis and synaptic-function regulation in astrocytes, oligodendrocytes, and endotheliocytes ↓ adenosine triphosphate (ATP) content and expression levels of ATP-associated genes and proteins	[34]
Zebrafish	Polystyrene nanoplastic	30 and 50 mg/L	N/A	↑ stronger developmental toxicity (decreased spontaneous movement, heartbeat, hatching rate, and length) ↑ cell apoptosis in the brain ↑ neurobehavioral impairment ↑ levels of glycine, cysteine, glutathione, and glutamic acid ↑ levels of spermine, spermidine, and tyramine	[35]
Zebrafish	Nanoplastic	0.5 ppm, 1.5 ppm, and 5 ppm	7 days, 30 days and 7 weeks	↑ disturbance of lipid and energy metabolism ↓ oxidative stress and tissue accumulation ↑ behavior alterations in their locomotion activity, aggressiveness, shoal formation, and predator avoidance behavior Affect fish reproductive function	[36]
Mouse hippocampal neuronal HT22 cells	Micro and nanoparticles	5, 25 and 75 µg/mL	1 h and 24 h	↑ ROS ↑ cytotoxicity ↑ neural cells	[37]
Mice and immortalized human cerebral microvascular endothelial cell (hCMEC/D3)	Polystyrene nanoplastics	0.5–50 mg/kg	7 days	↑ permeability of BBB ↑ reactive oxygen species (ROS) ↑ nuclear factor kappa-B (NF-κB) ↑ tumor necrosis factors α (TNF-α) secretion ↑ necroptosis of hCMEC/D3 cells ↓ transendothelial electrical resistance (TEER)	[38]

(continued)
elicited by plastic particles was mediated by microglial cells, which showed increased activation that promoted neuronal damage. In addition, in vitro explorations in microvascular cerebral endothelial cells showed increased internalization of NP, ROS and tumor necrosis alpha (TNF-\(\alpha\)) production, nuclear factor kappa-light-chain-enhancer of activated B cells (NF-\(\kappa\)B) activation, necroptosis and tight junction disruption, explaining the crossing of plastic particles to brain [38]. Interestingly, NP aerosols has also shown hazard effects in brain since inhaled nanoparticles accumulated in brain and trigger neuronal toxicity and neuroinflammation associated to abnormal animal behavior [39]. Further experiments in mice exposed to NPs in drinking water for 180 consecutive days corroborated these findings through the observation of plastic accumulation in brain, disruption of blood–brain barrier, increased dendritic spine density and hippocampal inflammation concentration-dependent. These alterations promoted cognitive and memory impairment [40].

Model	Plastic type	Concentration	Time	Result	References
Mice	Nanoplastics	N/A	N/A	↑ deposit in the brain of mice via aerosol inhalation. ↑ fewer activities in comparison to those inhaling water droplets ↑ neurotoxicity	[39]
BALB/c Mice	Polystyrene microplastics	100 µg/L and 1000 µg/L PS-MPs	180 days	↑ exhibited disruption of the blood–brain barrier, ↑ level of dendritic spine density, and an inflammatory response in the hippocampus ↑ cognitive and memory deficits	[40]

*N/A: Not available

6 Small Plastics, Big Inflammatory Problems

6.4 Respiratory System

Anatomically, respiratory system is composed by nose, oropharynx, larynx, trachea, bronchi, bronchioles and lungs. Although the lungs are the most studied and even considered the main and functional structure from respiratory system by facilitate gas exchange between inhaled air and blood [41], external components and upper airway has an essential role for filter harmful particles on air [42]. In front to irritant particles, the inflammatory response in airway is natural to initiate healing. However, this local inflammation is usually associated to airway remodeling and parenchymal destruction as same has been observed in acute respiratory distress, chronic obstructive pulmonary disease, asthma or cystic fibrosis [43].

Growing evidence about airborne plastics has showed their potential to penetrate and damage airways (Table 6.3). The analysis of 20 post-mortem lung samples, showed the presence of 33 polymeric particles, presenting the inhalation as another entry mechanism [44]. To clarify the effect of plastics in airways, a preliminary approach performed in A549, as an in vitro model of lung cells, evaluate the effect of MP and NP ranging 2 µM to 80 nm and the authors described that NP promote strong cellular damage compared to MP, affecting cell viability [45]. Complementary studies performed in the same cellular line evaluated the role of NP in lung fibrosis and results showed that NP, specially the positively charged, promoted alterations associated to fibrosis development including increased
migration and epithelial-to-mesenchymal transition, ROS, NADPH4 expression, mitochondrial dysfunction evidenced in membrane potential alterations and altered energetic metabolism and endoplasmic reticulum stress [46]. Finally, experiments performed in bronchial epithelium transformed with Ad12-SV40 2B (BEAS-2B) and human pulmonary alveolar epithelial cells (HPAEpiC) showed that NP exposure dose-dependently reduce cell viability, altered oxidative equilibrium and tight junctions, which could be associated to lung damage [47].

Among the mechanisms associated to the increased response to microplastics, long non-coding RNA and circular RNA emerged as targets since Sprague–Dawley rats instilled with MPs by three days showed increased deposits in lungs, alveolar and bronchial epithelium destruction, upregulation of pro-inflammatory cytokines such as interleukin 6 (IL-6), TNF-α and interleukin 1β (IL-1β) and significant increase in non-coding RNA XLOC_031479, circular RNA 014924 and circular RNA 006603 and the downregulated expressions of long

Model	Plastic type	Concentration	Time	Result	References
Human lung tissues	Airborne microplastics	N/A	N/A	↑ Deleterious health outcomes in respiratory system following inhalation	[44]
A549 Cells	Polystyrene Micro- and Nanoplastics	5, 25, 100, 200ug/mL	24 h	↑ cytotoxicity and genotoxicity ↓ Cell viability and the induction of micronuclei (MN)	[45]
A549 cells	Polystyrene nanoplastic	N/A	N/A	↑ migration and EMT markers ↑ up-regulation of reactive oxygen species (ROS) and NADPH oxidase 4 (NOX4), an ROS generator located in the mitochondria and endoplasmic reticulum (ER) ↑ mitochondrial dysfunction as ↑ ER stress as indicated by the up-regulated ER stress markers	[46]
Human lung epithelial cells	Polystyrene nanoplastic	7.5, 15 and 30 μg/cm²	N/A	↑ cell viability 770 genes in the 7.5 μg/cm² group and 1951 genes in the 30 μg/cm² group were distinctly ↑ inflammatory effects, and triggered apoptotic pathways to cause cell death ↑ transepithelial electrical resistance by depleting tight junctional proteins ↑ matrix metallopeptidase and Surfactant protein A levels	[47]
Rat	Polystyrene Microplastics and Nanoplastics	100 nm (100 mg/10 ml), 500 nm (100 mg/10 ml), 1 μm (100 mg/10 ml) and 2.5 μm (100 mg/10 ml)	3 days	Increased deposits in lungs, alveolar and bronchial epithelium destruction, upregulation of pro-inflammatory cytokines such as interleukin 6 (IL-6), TNF-α and interleukin 1β (IL-1β) and significant increase in non-coding RNA XLOC_031479, circular RNA 014924 and circular RNA 006603	[48]

N/A: Not available
non-coding RNA XLOC_014188 and circular RNA003982, providing new insights of the genetic regulation exerted by MPs [48].

6.5 Circulatory System

Circulatory system comprises cardiovascular system and lymphatic system [49]. The first, the cardiovascular, consist of heart and vascular system (arteries, veins and capillaries) covering all the body and allowing proper nutrients and oxygen supply to all organ, tissues and cells [50]. During local or systemic inflammatory response, circulatory system and specially microcirculation, suffer structural (remodeling) and functional changes, increasing the reactivity of microvascular cells such as endothelial cells, pericytes and smooth muscle cells and circulating blood cells as platelets and red blood cells (RBCs), orchestrating thrombogenic responses, often life-threatening, in face to unregulated inflammatory events [51, 52] (Table 6.4).

NP, particularly amine-modified promoted structural and functional modifications in freshly isolated RBCs after its uptake, increasing aggregation, hemolysis, generation of microvesicles and adhesion to endothelial cells, involving calcium upregulation, and depletion of intracellular adenosine triphosphate (ATP) and glutathione (GSH), increased adhesion. Further, in vivo experiments performed in rats demonstrated that murine RBC presented similar response after exposure to plastic particles, increasing hemolytic activity as in human-derived cells. Interestingly, in vivo was observed the externalization of the pro-coagulant molecule phosphatidylserine and thrombin generation, promoting rapidly venous thrombus formation in rats [53].

In zebrafish embryos, MP and NP promoted pathological alterations of caudal vein plexus, impairing caudal tissues development and peripheral microcirculation disturbances [54]. Similarly, NP exposure promoted pericardial edema, decreased cardiac output, blood flow velocity, gastrointestinal angiogenesis, disturbed cardiovascular development, increased endothelial dysfunction, neutrophil recruitment, red blood cells aggregation and enhanced thrombosis formation in tail vein from zebrafish embryos [55].

The exposition of endothelial cells to anionic NP increased ROS production, autophagy via PI3K/AKT pathway, apoptosis mediated by Bcl-2 downregulation. Also was observed a notable internalization of NP and binding to vascular endothelial cadherin (VE-cadherin) unaffected transcriptional or post-translational expression but promoting disruption of adherent junctions and subsequent endothelial leakiness. Interestingly, the block of endocytosis does not prevent endothelial leakiness but was observed that NP promoted Src activation, and its pharmacological inhibition prevented VE-cadherin phosphorylation and gaps formation. Further in vivo exploration of mice injected with NP presented signs of vascular leak in brain, liver, spleen, lungs, kidney, and diaphragm [56]. Similarly, human umbilical vein endothelial cells (HUVECs) exposed to plastic particles, showed increased adhesion of the biggest particles, whereas the smallest were taken up and formed aggregates in the cytoplasm. Interestingly, long-term exposure of big particles for 48 h enhanced lactate dehydrogenase (LDH) production, autophagy and autophagosome formation, showing a that internalization and autophagy are size- and time-dependent in endothelial cells [57]. Conversely, HUVEC exposition to MPs and NPs showed no significant increase in inflammation, autophagy, ROS, LDH release and adhesion proteins expression. Only following 48 h of exposition a decrease in cell viability was observed [58].

In porcine coronary artery endothelial cells, the exposition to NP promoted a premature senescent associated phenotype featured by increased β-galactosidase activity, increased p53, p21 and p16 levels promoting reduced proliferation. Moreover, reduced eNOS activity impairing vasorelaxation, increased ROS production through exacerbated NOX (NADPH oxidase) activity and decreased sirt1 expression. Importantly, the use of antioxidant molecules prevents endothelial senescent phenotype and oxidative damage [59].
Model	Plastic type	Concentration	Time	Result	References
Human red blood cells Rats	Polystyrene nanoplastic	100 µg/mL and 500 µg/mL	3 h	Morphological changes of RBCs by PS-NPs PS-NPs induced the externalization of phosphatidylserine, generation of microvesicles in RBCs, and perturbations in the intracellular microenvironment. ↑ activity of scramblases responsible for phospholipid translocation in RBCs ↑ thrombus formation	[53]
Zebrafish embryos	Microplastics and nanoplastics	N/A	N/A	↑ mortality rate caused pathological changes of caudal vein plexus inhibition of intact growth of zebrafish embryos. ↓ Peripheral microcirculation at caudal region	[54]
Zebrafish embryos	Polyethylene nanoplastics	50 µg/mL	N/A	↑ pericardial edema ↓ the cardiac output (CO) and blood flow velocity ↑ thrombosis ↑ Reactive oxidative stress (ROS) and systemic inflammation ↑ neutrophils recruiting in the tail vein	[55]
HUVECs and Swiss mice	Nanoplastic	0.05, 0.1, 0.25 and 0.5 mg/mL	1, 3 or 6 h	↑ disrupted the vascular endothelial cadherin junctions ↑ vasculature permeability	[56]
Human umbilical vein endothelial cells	Polystyrene nanoplastic	25 µg/mL	48 h	↑ lactate dehydrogenase release from HUVECs ↑ cell membrane damage, ↑ autophagy initiation and autophagosome formation	[57]
Human umbilical vein endothelial cells	Polystyrene microplastic	5, 10, 25 and 100 µg/mL	48 h	↓ cell viability	[58]
Porcine coronary artery endothelial cell	Polystyrene nanoplastic	0.1, 1, and 10 µg/mL	6 h	↑ senescence markers, senescence-associated β-galactosidase activity, and p53, p21, and p16 protein expression ↓ proliferation ↓ endothelial nitric oxide synthase (eNOS) expression ↑ reactive oxygen species formation in ECs, and increased oxidative stress levels were associated with the induction of NADPH oxidaes expression, ↑ Sirt1 expression	[59]

(continued)
The lymphatic system on the other hand, has traditionally been known as a complement of cardiovascular system or a simple drainage system since consistent in a unilateral transit pathway from interstice to venous territory [60, 61]. Components of the lymphatic system include the primary lymphoid organs, composed by thymus and bone marrow; the secondary lymphoid organs, including lymph nodes, spleen and Peyer’s patches [62]; and finally, the tertiary lymphoid organs, also known as inducible lymphoid organs, tertiary lymphoid tissues or ectopic lymphoid organs, that include T and B cells, dendritic cells, follicular dendritic cells, stromal cells, high endothelial venules and lymphatic vessels [63]. The interplay between elements from lymphatic system allows fluid homeostasis, adsorption of gastrointestinal lipids, immune response (traffic of antigen-presenting cells and lymphocytes) and metabolic balance [64, 65], thus

Table 6.4 (continued)

Model	Plastic type	Concentration	Time	Result	References
Mesenchymal stromal cells	Environmental microplastics	<1 μm and <2.6 μm	N/A	↓ proliferating cells (around 30%) Alteration of differentiation potential. AMSCs remained in an early stage of adipocyte differentiation ↓ Bone Gamma-Carboxy glutamate Protein ↓ Osteopontin (SPP1)	[67]
Stem cell fate	Polystyrene nanoplastics	N/A	N/A	↑ GPX3 expression and ↑ HSP70 (ROS-related gene) and XBP1 (endoplasmic reticulum stress-related gene) expression ↑ MFN2 (mitochondrial fusion related gene) expression and ↑ FIS1 (mitochondrial fission related gene) ↑ proportion of cells in the S phase	[68]
C57BL/6 J mice	Polystyrene micro- nanoplastics	PS-MNPLs, 10 μm, 5 μm and 80 nm	42 days	↑ hematopoietic toxicity ↓ colony-forming, self-renewal and differentiation capacity ↑ proportion of lymphocytes ↑ hematopoietic injury	[69]
C57BL/6 mice	polystyrene microplastics	(0.1 mg and 0.5 mg) of 5 μm	28 days	↑ white blood cell count ↑ increased Pict count ↓ growth of colony-forming unit CFU-G, CFU-M and CFU-GM	[70]
Murine splenic lymphocytes	Nanoplastic	N/A	N/A	↓ cell viability ↓ cell apoptosis ↓ apoptosis-related protein expression Altered mitochondrial membrane potential, and impaired mitochondrial function ↑ oxidative stress and mitochondrial structural damage ↑ induced endogenous apoptosis ↑ expression of activated T cell markers on the T cell surface ↑ differentiation of CD8 + T cells and the expression of helper T cell cytokines	[71]

N/A: Not available
the effect of microplastics has taken attention in view of the relevant role played for this complex system in pathophysiological processes [66].

When exposed to water bottle-derived MP, bone marrow mesenchymal stromal cells and adipose mesenchymal stromal cells showed defective differentiation pathways and decreased cell survival, which was related with increased senescence or apoptosis [67]. Surprisingly, the presence of modified-NP (amine free and decreased crosslink density) promoted ROS elimination in human bone marrow-derived mesenchymal stem cells via 70 kilodalton heat shock protein (HSP70) and X-box binding protein 1 (XBP1) downregulation (ROS- and endoplasmic reticulum stress-related genes, respectively), improved mitochondrial fusion, increased cellular proliferation, and adipogenic differentiation. However, long-term exposure showed increased cytotoxicity [68].

Intragastric administration of MP and NP to mice for 42 days promotes hematological toxicity as indicated by cellular changes in bone marrow, decreased colony-formation capacity, proliferation and differentiation, and increased lymphocyte numbers. Splenic abnormalities were also identified, especially a decrease in spleen weight, increased ultrastructural modifications, and the production of lipid droplets in mice exposed to MP and NP. In addition, plastic particles disrupted gut homeostasis by increasing dysbiosis, inflammation, and altered gut metabolism, which was linked to increased hematotoxicity [69]. Similarly, mice given MP orally for 28 days showed significant particle accumulation in the abdomen and limb bones, a decrease in white blood cell count, colony-forming ability, genomic and cell signal alterations related to T-cell homeostasis, osmotic stress, structural organization, and metabolism in bone marrow cells [70].

Finally, in Murine splenocytes, NP accumulation, especially of positive charged particles, was found, decreasing cell viability, upregulated apoptosis-related proteins, ROS production and mitochondrial dysfunction triggering impaired T cell activation, differentiation and cytokine expression [71].

6.6 Digestive System

The digestive system is composed of gastrointestinal tract (oral cavity, pharynx, esophagus, stomach, small intestine, and large intestine) and the accessory organs (teeth, tongue, and glandular organs such as salivary glands, liver, gallbladder, and pancreas) [72] mediating primary functions such as digestion, absorption, excretion and protection [73]. Interestingly, gastrointestinal alterations have been found to play an essential role in systemic inflammation, and even associated exacerbated poor outcomes as organ failure and death in view of the pathogenic interaction between digestive organs (from gastrointestinal tract and accessories) with muscles, lungs and even brain [74] (Table 6.5).

6.6.1 Gut

Food packages, drinking water and even fruits and vegetables have shown plastic traces representing a risk of dietary intake [75–77]. Regarding to this, experimental studies has shown that disposable plastic containers independent of frequency of use are associated to important gut microbiota alterations that were consistent with dysbiosis observed in mice treated with MP and NP. In fact, was demonstrate that the use of plastic containers also induces oral microbiota alterations that could not be prevented with reduction in the size and amount of microparticles consumed [78]. The oral exposure of mice to MPs for 6 weeks showed relevant histological alterations including increased intestinal crypt depth and defective recruitment of immune cells linked to increased alterations in intestinal microbiota [79]. Afterwards, intestinal histology of zebrafish exposed to MP and NP was analyzed and the findings showed that smaller plastic particles promoted worst intestinal epithelial damage and decrease gut microbiome diversity [80]. That was concordant with complementary studies showing that NP rather than MP, exacerbated gut dysbiosis and inflammation in adult zebrafish [81]. Remarkably, additional
Table 6.5 Gastrointestinal system-related effects of small plastic according to experimental model or sample, plastic type, experimental concentration used, experimental time and main findings

Model	Plastic type	Concentration	Time	Result	References
Gut and oral microbiota	Micro and nanoplastics	200 ug and 500 ug	N/A	↑ gastrointestinal dysfunction and cough. ↑ altered gut and oral microbiota ↓ gut bacteria	[78]
Mice	Polyethylene microplastics	100 µg/g of food	6 weeks	↑ Crypt depth throughout the intestinal tissues, defective recruitment of some intestinal immune cells was and intestinal dysbiosis	[79]
Zebrafish	Micro and nano polystyrene plastics	45–85 and 40–54 nm	30 days	↑ intestinal epithelial damage The gut microbial communities were affected by the combined exposure to microplastics	[80]
Zebrafish	Micro and nanoplastics	10 µg/L and 1 mg/L of MPs (8 µm) and NPs (80 nm)	21 days	↑ microbiota dysbiosis in the gut of zebrafish ↑ flora diversity of gut microbiota ↑ Proteobacteria ↓ Fusobacteria, Firmicutes and Verrucomicrobiota. ↓ Actinobacteria decreased in the MPs treatment ↑ NPs treatment groups ↑ Aeromonas MPs and NPs treatment groups ↑ mRNA levels of il8, il10, il1β and tnfα in the gut	[81]
Mice	Polystyrene micro and macroplastics	N/A	28 days	↑ injuries to the gut tract, ↓ expression of tight junction proteins ↑ toxic effect of gut microbiota dysbiosis in M/NPLs-induced gut barrier dysfunction	[82]
Mice	Polystyrene nanoparticles	3 and 223 µg/kg body weight	N/A	↑ lipolysis under β-adrenergic stimulation in adipocytes in vitro and ex vivo ↑ lipid mobilization in obese mice and subsequently contributed to larger adipocyte size in the subcutaneous WAT ↑ macrophage infiltration in the small intestine ↑ lipid accumulation in the liver	[83]
Mice	Polystyrene micro and nanoparticles	50 nm PS, PS50; 500 nm PS, PS500; 5000 nm PS, PS5000	24 h	↑ permeability in the mouse intestines ↑ severe dysfunction of the intestinal barrier ↑ reactive oxygen species (ROS)-mediated epithelial cell apoptosis in the mice	[84]
Human intestinal organoids	Polystyrene nanoplastics	10 and 100 µg/mL	N/A	↑ cell apoptosis and inflammatory response ↑ endocytosis in the PS-NPs uptaking into enterocyte cells	[85]
Human Intestinal	Polystyrene nanoparticles	N/A	N/A	Changes at the ultrastructural and molecular levels	[86]

(continued)
Model	Plastic type	Concentration	Time	Result	References
Caco-2 Cells				This would indicate that no DNA damage or oxidative stress is observed	
				in the human intestinal Caco-2 cells after long-term exposure to PSNPs	
Human Intestinal Caco-2 Cells	Polystyrene Nanoplastics	0, 10 and 100ug/ml	24 h	↑cytotoxic effects modulate the cell's uptake of silver and slightly	[87]
				modify some harmful cellular effects of silver, such as the ability to	
				induce genotoxic and oxidative DNA damage	
Small intestinal epithelium	Micro and nanoplastics	N/A	N/A	↓viability ↑permeability to 3 kD dextran	[88]
				↑diffusion.	
				↑phagocytosis	
				↑endocytosis	
Normal human colon cells	Polystyrene micro and	N/A	N/A	↑metabolic changes under both acute and chronic exposure by inducing	[89]
	nanoplastics			oxidative stress,	
				↑glycolysis via lactate to sustain energy metabolism and glutamine	
				metabolism to sustain anabolic processes	
Human intestinal barrier	Polystyrene nanoplastics	24 h		↑ MNPLs uptaken	[90]
Mice	Polystyrene nanoplastics	N/A	N/A	↑pathological changes in the liver,	[91]
				↑excessive autophagy through altered expression levels of PI3K, mTOR,	
				Beclin-1, ATG5, LC3 and P62	
				↑apoptosis in the liver, ↑pyroptosis in the liver through NLRP3/Caspase-1	
				pathway via targeting NLRP3, ASC, Pro-Caspase-1, GSDMD and Cleaved-	
				Caspase-1 expressions	
				pathological changes in the liver,	
				↑visceral organ injury, hepatotoxicity and impaired lipid metabolism	[92]
Mice and HL7702 cells	Polystyrene Microplastics	0.1 and 1 mg/L	60 days	Aggregations of neutrophils and apoptotic macrophages in the abdomen	[93]
				of the larvae, ↑hepatic inflammation in the larvae, ↑fabbp10a in the	
				larval livers	
Zebrafish	Polystyrene nanoplastics	0.1 mg/ml	N/A	↑aggregations of neutrophils and apoptotic macrophages in the abdomen	[94]
				of the larvae, ↑hepatic inflammation in the larvae, ↑fabbp10a in the	
				larval livers	
				↑metabolic pathways of catabolic processes, amino acids, and purines	
				↑steroid hormone biosynthesis in zebrafish larvae, which may lead to	
				the occurrence of immune-related diseases	
findings demonstrated that plastic-induced gut barrier disruption is mediated by the enhanced gut microbiota dysbiosis [82].

Experiments in mice exposed to NP in drinking water showed accumulation of NP in white adipose tissue and stomach viscerally and subcutaneously, associated to increased macrophage infiltration to small intestine. Then in vitro exposition of preadipocytes and adipocytes to NP at similar concentrations as reported in clinical studies (about 10^{10} particles/ml of 60 nm-sized) promoting a major internalization in preadipocytes within 4-8 h and reduced lipolysis under β-adrenergic stimulation [83]. Moreover, mice co-exposed to MP and NP showed increased intestinal permeability and toxicity induced by increased ROS production and epithelial cell apoptosis, being prevented with antioxidant pre-treatment [84].

Studies in intestinal organoids exposed to NP showed that plastic particles are accumulated in intestinal cells promoting inflammatory response and apoptosis. Interestingly, the use of inhibitors of clathrin-mediated endocytosis ameliorate the uptake of plastic particles by enterocytic cells [85]. Moreover, subtoxic polystyrene NPs exposure for 8 weeks, showed time-dependent internalization and ultrastructural changes in undifferentiated Caco-2 cells [86]. Similarly, Caco2 cells exposed to NPs showed exacerbated uptake and internalization was even observed in the nucleus, interestingly, at used concentrations these particles do no promoted exacerbated cytotoxic response, genotoxic response or oxidative damage [87].

In an in vitro model of intestinal epithelium, the use of environmentally relevant MP and NP increased permeability and reduced viability. Interestingly, cells exhibited mixed internalization mechanisms suggesting diffusion and phagocytosis of plastic particles [88]. Normal human intestinal CCD-18Co cells as model of healthy colon cells exposed to MP and NP at different concentrations for 48 h or 28 days showed interesting results. At 48 h, NP are highly internalized by colon cells, reaching up to 90% instead the 20% showed by MP. Despite de high mobilization into colon cells, NP and MP do not promote cytotoxicity or mortality, but the lowest concentrations of NP increased ROS production. Posteriorly, cancerogenic potential was evaluated and metabolic results showed glutamate and glutathione metabolism alterations strongly associated to metabolic rewiring. At long-term

Model	Plastic type	Concentration	Time	Result	References
Liver HepG2 cells	Polystyrene micro and nanoplastics	0.1–100 μg/mL	1–24 h	↑ toxicity ↑ intracellular concentrations ↑ apoptotic cell death ↑ upregulated interleukin-8	[95]
Caco-2 and HepG2 Cells	Nanoplastics			↑ DNA strand breaks pair ↑ reactive oxygen species production or changes in cell cycle distribution	[96]
Rats	Nylon microplastic and nanoplastics	N/A	N/A	rats excrete smaller MPs more slowly than the bigger ones PA66-NP can pass through the gut barrier and entered the blood circulation	[97]
Mice	Polystyrenes nanoplastics	N/A	N/A	Long-term accumulation and in vivo inert property of nanoplastics ↑ health risks	[98]

N/A: Not available
exposure, a 90% of MP was internalized, ROS production was increased in both MP and NP with partial recovery in cells with intermittent exposure, although metabolic function does not recover [89]. Finally, an in vitro model (differentiated Caco-2/HT29 intestinal cells and Caco-2/HT29 + Raji-B cells) of human barrier exposed to NP for 24 despite the uptake and dose-dependent translocation no significant genotoxic or oxidative damage was detected [90].

6.6.2 Liver

The effect of plastic particles on hepatic function has also been evaluated, showing for instance that arsenic- or polystyrene-derived NP promoted hepatotoxicity through increased ultrastructural markers of autophagy, apoptosis and pyroptosis, promoting liver injury in mice [91]. Moreover, oral administration of NPs increased organ injury, particularly in the liver, where altered lipid metabolism in mice through ROS/Pi3K/Akt signaling pathway [92]. Similarly, MPs from circulation promoted toxicity in hepatocytes through nuclear and mitochondrial DNA damage and enhanced proinflammatory cytokines expression by the activation of cGAS/STING pathway, ultimately promoting, liver injury and fibrosis even in low doses [93].

In zebrafish larvae, exposition to NP increased intestinal accumulation, abdominal neutrophil aggregation and macrophage apoptosis, liver-type inflammatory binding protein, ROS generation and metabolite alterations promoting hepatic inflammation [94].

Liver HepG2 cells showed high internalization of MP and NP, especially aminated-NP, which reduced cell viability. However, MP showed increased trend to promote cell death and inflammatory response, evidenced in elevated apoptosis and upregulation of IL-8 time-dependently [95]. Complementarily, HepG2 and Caco-2 cells exposed to NP from real-life food containers presented DNA break, showing the genotoxic effect of these particles [96].

6.6.3 Excretion

The dynamic of MP/NP uptake and clearance remains poorly documented in mammals, however, Peng and colleagues [97] feed rats with fiber and granular MPs and NPs for 7. The results showed that close to 90% and 94% of fiber and granular MP respectively, was eliminated in the feces, and interestingly, this occurs within the first 48 h after ingesting. Conversely, NPs excretion just reached 70%, being the major proportion (54%) also excreted within the first 48 h after intake. The reduced excretion rate showed for these particles suggested absorption by digestive tract which was further confirmed with the presence of NPs in rat plasm, indicating that ingested NPs cross gut barrier, enter to the circulation, accumulate in other organs as liver, spleen and lung and keep structural stability for at least 28 days [98].

6.7 Reproductive System

In humans, the presence of plastic particles (Table 6.6) has been reported in placenta and meconium from newborns [99]. Similarly, placenta from 6 donors presented of 12 types of plastic particles with distinct size, chemical composition and pigmentation in diverse placental portions, including maternal, fetal and amniochorial membranes [100]. Further, the same group reported the presence of microplastics in human placenta that correlated with unusual alterations in organelles from placenta, in mitochondria and endoplasmic reticule. In this work, the authors also informed plastic-consuming habits of pregnant women, showing a high prevalence of plastic wrapped food, drinking in plastic containers, use of cosmetics with synthetic polymers, including shower gel, creams, soap, toothpaste and chewing-gum consume. The localization of plastic particles included inner and outer membrane of villus layer, lysosomes, peroxisomes, vacuoles and lipid droplets intracellularly, stroma, pericytes and endothelial cells in extracellular space [101].
Table 6.6 Reproductive system-related effects of small plastic according to experimental model or sample, plastic type, experimental concentration used, experimental time and main findings

Model	Plastic type	Concentration	Time	Result	References
Human placenta and fetal meconium	Micropalstics	N/A	N/A	Human placenta and meconium samples were screened positive for polyethylene, polypropylene, polystyrene, and polyurethane, of which only the latter one was also detected as airborne fallout in the operating room—thus representing potential contamination	[99]
Human placenta	Microplastics	N/A	N/A	Accumulation in fetal side, maternal side and chorioamniotic membrane of human placenta	[100]
Human placentas	Microplastics	N/A	N/A	oxidative stress, apoptosis, and inflammation, characteristic of metabolic disorders underlying obesity, diabetes, and metabolic syndrome and partially accounting for the recent epidemic of non-communicable diseases	[101]
Mice	Polystyrene nanoplastic	N/A	N/A	Suppressive effects on embryo development	
↑ increased frequency of congenital abnormalities (especially in the nervous system), including neural tube defects					
↑ autophagy. ↑apoptotic cell death	[102]				
Zebrafish	Polystyrene nanoplastics	10 mg/L	120 days	Bioaccumulation of TDCIPP	
↑ parental transfer of TDCIPP to their offspring					
↑thyroid disruption in adults, and then leads to thyroid endocrine disruption in their larval offspring.					
↑transgenerational thyroid endocrine disruption,					
↑T4					
↑ thyroglobulin (tg), uridine diphosphate-glucuronosyltransferase (ugt1ab), thyroid-stimulating hormone (tshβ), and thyroid hormone receptor (trα) expression in the F1 larvae	[103]				
Human placental cells	Polystyrene nanoparticles	N/A	N/A	Toxicity induced on human placental cells. ↑ cytotoxicity, inhibition of protein kinase A (PKA) activity, oxidative stress, and cell cycle arrest	
↑intracellular reactive oxygen species in human placental cells, ↑DNA damage and lead to cell cycle arrest in G1 or G2 phase, inflammation and apoptosis	[104]				
Model	Plastic type	Concentration	Time	Result	References
---------------------------	------------------	---------------	--------------	---	-------------
Human trophoblast	Polystyrene	100 ug/ml	24 h	[cell viability caused cell cycle arrest cell migration and invasion abilities level of intracellular reactive oxygen species and the production of proinflammatory cytokines (TNF-α and IFN-γ)]	[105]
Mice	Polystyrene	1 and 10 mg/L	N/A	[fetal weights Abnormal morphologies of cells in the placenta and fetus Disturbed cholesterol metabolism and complement and coagulation cascades pathways]	[106]
Human placenta cells	Micro and	N/A	N/A	[number of unique features in pristine particles DAMAGE to the plasma membrane hsd17b1]	[107]
Mouse Embryonic	Polystyrene	200 mg/L	2 days	[Plastic accumulation at the juxtanuclear position]	[108]
Fibroblasts	Nanoplastics				
Mouse Embryonic	Polystyrene	N/A	N/A	[Oxidative and inflammatory stress caused Affect cellular functions]	[109]
Fibroblasts	Nanoplastics				
Mouse	Polystyrene	0.1, 1 and	From pregnancy until postnatal day 21	[Birth and postnatal body weight in offspring mice liver weight oxidative stress, caused inflammatory cell infiltration, proinflammatory cytokine expression Disturbed glycometabolism disrupted seminiferous epithelium and decreased sperm count in mouse offspring testicular oxidative injury malondialdehyde generation and altered superoxide dismutase and catalase activities infiltration, proinflammatory cytokine expression]	[110]
Neonatal rat ventricular	Polystyrene	N/A	N/A	[Mitochondrial membrane potentials and cellular metabolism]	[111]
myocytes	Nanoplastics				
Cultured neural stem	Polystyrene	N/A	N/A	Altered the functioning of NSCs, neural cell compositions, and brain histology in progeny Molecular and functional defects were also observed in cultured NSCs in vitro abnormal brain development neuropathological and cognitive deficits	[112]
cells (NSCs) and mice	Nanoplastics				
Mice	Polystyrene	1 and 10 mg/kg	35 days	[Acrosome integrity and acrosome reaction, altered testicular ultrastructure]	[113]

N/A: Not available
These findings further were confirmed in mice, where NPs crossed the placenta and affected offspring development. In addition, studies about embryo/fetal development showed increased congenital abnormalities, especially impaired neural tube formation mediated by enhanced endocytosis, autophagy activation (unrelated with plastic degradation) and further cytoplasmic accumulation promoting apoptosis [102]. Additionally, in zebrafish exposed to MP and NP for 120 days was observed parental intestinal, branchial, sexual organ and hepatic accumulation, being enhanced in female animals, and decreased T4 thyroid hormone production. Interestingly, transference of plastic particles was observed in the offspring eggs and transgenerational thyroid disbalance [103].

Mechanisms involved in maternal and fetal interactions with plastic particles has described the adverse effect of amino-charged NP, considering that after exposure downregulated protein kinase A (PKA) activity, increase oxidative stress and cell cycle arrest in human placental cells promoting inflammation and apoptosis [104]. Similarly, experiments performed in human trophoblast that NP were captured to cytoplasm, affecting cell viability, cell cycle arrest, cell migration and invasion, increased ROS and the proinflammatory cytokines tumor necrosis factor alpha (TNF-α) and interferon gamma (IFN-γ) [105].

Importantly, further evidence has shown that maternal exposure to NP reduced fetal growth that could be mediated by altered cholesterol transportation in fetal skeletal muscle and placenta. Additionally, transcriptional analysis performed demonstrated alteration in coagulation genes [106]. Complementary studies observed in placental cells that MP and NP do not affected viability, but NP was highly captured by cells and promoted membrane damage [107].

In mouse embryonic fibroblasts (MEF) exposed to NP was observed increased uptake of particles with juxtanuclear accumulation that was associated to retrograde transport along microtubules. Blocking histone deacetylase 6 resulted in rapid exocytic NP clearance and interestingly, the inhibition of retrograde transport of NP prevented pro-inflammatory and pro-oxidative status [108]. Similarly, MEF exposed to NPs also accumulated in cytoplasm after endocytic entry, with subsequent oxidative, inflammatory damage and impaired autophagy activation associated to enhanced accumulation in lysosomes or autolysosomes. Remarkably, accumulation of NPs was alleviated after prolonged cell culture, suggesting that plastic particles are removed from the cells, although associated mechanisms remain unclear [109].

The trans-generational effect of NP was explored in mice exposed to plastic particles during pregnancy and lactation periods and findings showed reduced body and liver weight in the offspring. Interestingly, male offspring presented important alterations including increased ROS, cell infiltration, inflammatory cytokines, impaired carbohydrates metabolism in liver and reduced testis weight, seminiferous epithelium integrity and sperm count associated to elevation in oxidative testicular injury [110]. Similarly, neonatal cardiomyocytes presented altered contractility after positively charged NP exposure [111] and maternal exposure to high NP dose in gestation and lactation induced impaired neural stem cell functioning, neuronal composition and cerebral histology in the offspring triggering neurophysiological and cognitive alterations, showing the harmful potential of plastics after crossing blood-milk barrier [112].

Finally, the reproductive toxicity induced by plastic particles was demonstrated in mouse spermatocytes where exposition to NP for 35 days decreased sperm quality and altered testicular structures, as evidenced the reduction of acrosome reaction, integrity, biogenesis and impaired testicular ultrastructure [113].

6.8 Predisposition to Diseases

In acute inflammatory settings, for instance endotoxemia, it was observed that polystyrene NP exacerbate the harmful response to lipopolysaccharide (LPS), promoting upregulated reactive oxygen species (ROS) production, worsened myocardial morphology linked to
increased expression fibrosis-associated proteins and increased autophagy via ROS/TGF-β1/Smad pathway [114]. Complementarily, RAW2647 cells stimulated with LPS, and NP presented enhanced oxidative stress through Mitogen-activated protein kinase (MAPK) pathway and endotoxemic mice injected with NP undergone worsened splenic inflammation and necroptosis via ROS/MAPK [115]. Likewise, endotoxemic mice exposed to NP worsened ROS production, oxidative stress through NF-κB/NLRP3 pathway, decreasing tight junction proteins and pro-inflammatory cytokines production resulting in exacerbated duodenal inflammation and permeability [116].

In diabetic mice, the exposure to MPs exacerbated hepatic damage, alterations in lipid metabolism, inflammatory response and intestinal dysbiosis [117]. In mice with normal diet and high-fat diet and then exposed to MP presented increased insulin resistance, plasma LPS, TNF-α and IL-1β and enhanced dysbiosis [118]. Further findings confirmed that MPs exposure promoted insulin resistance and even diabetes in mice [119].

Mice with previous intestinal immune imbalance and then exposed to MPs presented exacerbated response to MPs, evidenced in the enhanced accumulation of plastic particles and subsequent release of pro-inflammatory mediators such as TNF-α, IL-1β and IFN-γ, worsened histological damage in colonic mucosa, disturbance of microbiota and impaired metabolism, showing that the presence of immune disturbances increases susceptibility to plastic side effects [120].

In a mice model of non-alcoholic fatty liver disease (NAFLD), the intravenous administration of NP showed exacerbated hepatitis mediated by interference in lipid metabolism, increased infiltration of Kupffer cells and enhanced oxidative status associated to the reduction of SOD activity. In addition, NP exposure promoted excessive collagen production, aggravating fibrosis and liver injury [121].

Moreover, considering the vast evidence demonstrating the adverse effects of plastics in gastrointestinal system, the effect of MP was evaluated under pathological conditions in dextran sodium sulfate (DSS)-induced colitis. Results showed that in healthy mice, MP exposure promoted minimal effect on intestinal barrier integrity and liver function, whereas in animals with colitis, MP promoted colon shortening, histological damage, inflammation, reduced mucosa and increased colon permeability. Additionally, increased secondary liver injury risk [122].

The evaluation of cancerogenic effect of plastic particles exposure was carried in prone-to-transformed progress MEF cells exposed by 6 months. Importantly, the authors observed that cancer markers including the linked to premature tumoral phenotype (stress related genes or microRNA alteration), late tumoral phenotype (growing and migration ability) and tumoral aggressivity (invasion, pluripotentiality, tumorspheres formation) were intensified in cells exposed to plastic-derived particles [123]. Similarly, mouse embryonic fibroblast exposed to MP and NP for 12 weeks, presented aggravated DNA damage and acquisition of an oncogenic phenotype featured by morphological changes, aggressivity and invading potential [124].

6.9 Concluding Remarks

Taken together, clinical and experimental data highlighted the hazardous potential of plastic particles beyond their environmental influence, since has been detected in human samples, raising concerns about their unknown implications. The current analysis gives interesting mechanistic insights into the local and systemic action in practically all tissues, as well as its role in inflammatory responses. However, further research is needed to determine long-term consequences, the interaction with comorbidities, transgenerational impacts, and, of course, therapeutical potential steps to avoid its negative side effects.
Statements and Declarations

Funding This research was funded by research grants from Agencia Nacional de Investigación y Desarrollo (ANID) - Fondo Nacional de Desarrollo Científico y Tecnológico FONDECYT Grants 1201039 and 1191300. ANID - Millennium Science Initiative Program - ICN09_016/ICN 2021_045; Millennium Institute on Immunology and Immunotherapy (ICN09_016/ICN 2021_045; former P09/016-F). Millennium Nucleus of Ion Channel-Associated Diseases (NCN19_168). ANID-PCHA/Doctorado Nacional 21220694 (YP).

Disclosure of Interests: All authors declare they have no conflict of interest.

Ethical Approval This article does not contain any studies with human participants or animals performed by any of the authors.

References

1. Ivar do Sul JA (2021) Why it is important to analyze the chemical composition of microplastics in environmental samples. Mar Pollut Bull [Internet], 1 Apr 2021 [cited 2022 Nov 1]; 165. Available from: https://pubmed.ncbi.nlm.nih.gov/33578189/
2. Halden RU (2010) Plastics and health risks. Annu Rev Public Health [Internet], 21 Apr 2010 [cited 2022 Nov 1]; 31:179–94. Available from: https://pubmed.ncbi.nlm.nih.gov/20070188/
3. Lionetto F, Corcione CE, Rizzo A, Maffezzoli A (2021) Production and characterization of polyethylene terephthalate nanoparticles. Polymers (Basel) [Internet], 1 Nov 2021 [cited 2022 Nov 1]; 13(21). Available from: https://pubmed.ncbi.nlm.nih.gov/34771306/
4. Food Safety Authority E (2016) Presence of microplastics and nanoplastics in food, with particular focus on seafood. EFSA J [Internet], 1 Jun 2016 [cited 2022 Nov 1]; 14(6):e04501. Available from: https://onlinelibrary.wiley.com/doi/full/10.2903/j.efsa.2016.4501
5. Tian L, Skoczynska E, van Putten RJ, Leslie HA, Gruter GJM (2022) Quantification of polyethylene terephthalate micro- and nanoparticles in domestic wastewater using a simple three-step method. Sci Total Environ [Internet], 20 Jan 2022 [cited 2022 Nov 1]; 857(Pt 2). Available from: https://pubmed.ncbi.nlm.nih.gov/36206911/
6. Santillo D, Miller K, Johnston P (2017) Microplastics as contaminants in commercially important seafood species. Integr Environ Assess Manag [Internet], 1 May 2017 [cited 2022 Nov 1]; 13 (3):516–521. Available from: https://pubmed.ncbi.nlm.nih.gov/28440928/
7. Yee MSL, Hii LW, Looi CK, Lim WM, Wong SF, Kok YY et al (2021) Impact of microplastics and nanoplastics on human health. Nanomater (Basel, Switzerland) [Internet], 1 Feb 2021 [cited 2022 Nov 1]; 11(2):1–23. Available from: https://pubmed.ncbi.nlm.nih.gov/33669327/
8. Schneider M, Stracke F, Hansen S, Schaefer UF (2009) Nanoparticles and their interactions with the dermal barrier. Dermatoendocrinol [Internet], July 2009 [cited 2022 Nov 1]; 1(4):197–206. Available from: https://pubmed.ncbi.nlm.nih.gov/20592791/
9. Lehner R, Weder C, Petri-Fink A, Rothent-Rutishauser B (2019) Emergence of nanoplastic in the environment and possible impact on human health. Environ Sci Technol [Internet] [cited 2022 Nov 1]; 53(4). Available from: https://pubmed.ncbi.nlm.nih.gov/30629421/
10. Walczak AP, Kramer E, Hendriksen PJM, Tromp P, Helsper JPF, Van Der Zande M et al (2015) Translocation of differently sized and charged polystyrene nanoparticles in in vitro intestinal cell models of increasing complexity. Nanotoxicology [Internet], 1 May 2015 [cited 2022 Nov 1]; 9(4):453–461. Available from: https://pubmed.ncbi.nlm.nih.gov/25093449/
11. dos Santos T, Varela J, Lynch I, Salvati A, Dawson KA (2011) Effects of transport inhibitors on the cellular uptake of carboxylated polystyrene nanoparticles in different cell lines. PLoS One [Internet], 19 Sept 2011 [cited 2022 Nov 1]; 6(9). Available from: https://pubmed.ncbi.nlm.nih.gov/21949717/
12. Wang Q, Wang J, Chen H, Zhang Y (2022) Toxicity effects of microplastics and nanoplastics with cadmium on the alga Microcystis aeruginosa. Environ Sci Pollut Res Int [Internet], 4 Oct 2022 [cited 2022 Nov 1]; Available from: https://pubmed.ncbi.nlm.nih.gov/36194332/
13. Hollóczki O, Gehrke S (2019) Nanoplastics can change the secondary structure of proteins. Sci Rep [Internet], 1 Dec 2019 [cited 2022 Nov 1]; 9(1). Available from: https://pubmed.ncbi.nlm.nih.gov/31690820/
14. Choi YJ, Park JW, Lim Y, Seo S, Hwang DY (2021) In vivo impact assessment of orally administered polystyrene nanoparticles: biodistribution, toxicity, and inflammatory response in mice. Nanotoxicology [Internet] [cited 2022 Nov 1]; 15 (9):1180–1198. Available from: https://pubmed.ncbi.nlm.nih.gov/34731582/
15. Nikolic S, Gazdic-Jankovic M, Rosic G, Miletic-Kovacevic M, Jovicic N, Nestorovic N et al (2022) Orally administered fluorescent nanosized polystyrene particles affect cell viability, hormonal and inflammatory profile, and behavior in treated mice. Environ Pollut [Internet], 15 July 2022 [cited 2022 Nov 1]; 305. Available from: https://pubmed.ncbi.nlm.nih.gov/35405220/
16. Huang J, Dong G, Liang M, Wu X, Xian M, An Y et al (2022) Toxicity of micro(nano)plastics with different size and surface charge on human nasal epithelial cells and rats via intranasal exposure. Chemosphere [Internet], 1 Nov 2022 [cited 2022 Nov 1]; 307(Pt 4). Available from: https://pubmed.ncbi.nlm.nih.gov/36029863/

17. Xu D, Ma Y, Han X, Chen Y (2021) Systematic toxicity evaluation of polystyrene nanoplastics on mice and molecular mechanism investigation about their internalization into Caco-2 cells. J Hazard Mater [Internet], 5 Sept 2021 [cited 2022 Nov 1]; 417. Available from: https://pubmed.ncbi.nlm.nih.gov/34015712/

18. Nicholson LB (2016) The immune system. Essays Biochem [Internet], 10 Oct 2016 [cited 2022 Nov 1]; 60(3):275. Available from: /pmc/articles/PMC5091071/

19. Costa Da Silva M, Vieira Rocha C, Bañobre-López M, Gallo J (2021) Stimulation and suppression of the innate immune system through nanotechnology. ACS Appl Nano Mater [Internet], 26 Mar 2021 [cited 2022 Nov 1]; 4(3):2303–2316. Available from: https://pubs.acs.org/doi/abs/10.1021/acsanm.0c03424

20. Juhn SK, Jung MK, Hoffman MD, Drew BR, Preciado DA, Sausen NJ et al (2020) The role of inflammatory mediators in the pathogenesis of otitis media and sequelae. Clin Exp Otorhinolaryngol [Internet] [cited 2022 Nov 1]; 1(3):117. Available from: /pmc/articles/PMC2671742/

21. Anderson JM, Rodriguez A, Chang DT (2008) Foreign body reaction to biomaterials. Semin Immunol [Internet], Apr 2008 [cited 2022 Nov 1]; 20(2):86. Available from: /pmc/articles/PMC2327202/

22. Busch M, Bredeck G, Waag F, Rahimi K, Ramachandran H, Bessel T et al (2022) Assessing the NLRP3 inflammasome activating potential of a large panel of micro- and nanoplastics in THP-1 cells. Biomolecules [Internet], 1 Aug 2022 [cited 2022 Nov 1]; 12(8). Available from: https://pubmed.ncbi.nlm.nih.gov/36008988/

23. Weber A, Schwiebs A, Solhaug H, Stenvik J, Nilsem AM, Wagner M et al (2022) Nanoplastics affect the inflammatory cytokine release by primary human monocytes and dendritic cells. Environ Int [Internet], 1 May 2022 [cited 2022 Nov 1]; 163. Available from: https://pubmed.ncbi.nlm.nih.gov/35303527/

24. Florance I, Chandrasekaran N, Gopinath PM, Mukherjee A (2022) Exposure to polystyrene nanoplastics impairs lipid metabolism in human and murine macrophages in vitro. Toxicology [Internet], 30 Jun 2021 [cited 2022 Nov 1]; 458. Available from: https://pubmed.ncbi.nlm.nih.gov/34217793/

25. Teng M, Zhao X, Wu F, Wang C, Wang C, White JC et al (2022) Charge-specific adverse reaction: combined action of silver and plastic nanoparticles on immortalized human lymphocytes. J Trace Elem Med Biol [Internet], 1 Sept 2022 [cited 2022 Nov 2]; 73. Available from: https://pubmed.ncbi.nlm.nih.gov/35617720/

26. Deng J, Ibrahim MS, Tan LY, Yeo XY, Lee YA, Park SJ et al (2022) Microplastics released from food containers can suppress lysosomal activity in mouse macrophages. J Hazard Mater [Internet], 5 Aug 2022 [cited 2022 Nov 1]; 435. Available from: https://pubmed.ncbi.nlm.nih.gov/35523089/

27. Sarma DK, Dubey R, Samarth RM, Shubham S, Chowdhury P, Kumawat M et al (2022) The biological effects of polystyrene nanoplastics on human peripheral blood lymphocytes. Nanomater (Basel, Switzerland) [Internet], 1 May 2022 [cited 2022 Nov 2]; 12(10). Available from: https://pubmed.ncbi.nlm.nih.gov/35630854/

28. Ilić K, Krce L, Rodriguez-Ramos J, Rico F, Kaléec N, Aviani I et al (2022) Cytotoxicity of nanomixture: combined action of silver and plastic nanoparticles on immortalized human lymphocytes. J Trace Elem Med Biol [Internet], 1 Sept 2022 [cited 2022 Nov 2]; 73. Available from: https://pubmed.ncbi.nlm.nih.gov/35617720/

29. Zhu X, Peng L, Song E, Song Y (2022) Polystyrene nanoplastics induce neutrophil extracellular traps in mice neutrophils. Chem Res Toxicol [Internet], 21 Mar 2022 [cited 2022 Nov 2]; 35(3):378–382. Available from: https://pubmed.ncbi.nlm.nih.gov/35060696/

30. Jessen KR (2004) Glial cells. Int J Biochem Cell Biol [Internet], 2004 [cited 2022 Nov 1]; 36(10):1861–1867. Available from: https://pubmed.ncbi.nlm.nih.gov/15203098/

31. Gibbons CH (2019) Basics of autonomic nervous system function. Handb Clin Neurol [Internet], 1 Jan 2019 [cited 2022 Nov 3]; 160:407–418. Available from: https://pubmed.ncbi.nlm.nih.gov/31277865/

32. Lyman M, Lloyd DG, Ji X, Vizcaychipi MP, Ma D (2014) Neuroinflammation: the role and consequences. Neurosci Res [Internet] [cited 2022 Nov 2]; 79(1):1–12. Available from: https://pubmed.ncbi.nlm.nih.gov/24144733/

33. Chu C, Zhang Y, Liu Q, Pang Y, Niu Y, Zhang R (2022) Identification of ceRNA network to explain the mechanism of cognitive dysfunctions induced by PS NPs in mice. Ecotoxicol Environ Saf [Internet], 1 Aug 2022 [cited 2022 Nov 2]; 241. Available from: https://pubmed.ncbi.nlm.nih.gov/35753268/

34. Liang B, Huang Y, Zhong Y, Li Z, Ye R, Wang B et al (2022) Brain single-nucleus transcriptomics highlights that polystyrene nanoplastics potentially induce Parkinson’s disease-like neurodegeneration by causing energy metabolism disorders in mice. J Hazard Mater [Internet], 15 May 2022 [cited 2022 Nov 2]; 430. Available from: https://pubmed.ncbi.nlm.nih.gov/35739658/
effects of polystyrene nanoplastics on zebrafish (Danio rerio) development and behavior. Environ Int [Internet]. 1 May 2022 [cited 2022 Nov 2]; 163. Available from: https://pubmed.ncbi.nlm.nih.gov/35334375/
36. Sarasamma S, Audira G, Siregar P, Malhotra N, Lai YH, Liang ST et al (2020) Nanoplastics cause neurobehavioral impairments, reproductive and oxidative damages, and biomarker responses in zebrafish: throwing up alarms of widespread health risk of exposure. Int J Mol Sci [Internet], 2 Feb 2020 [cited 2022 Nov 2]; 21(4). Available from: https://pubmed.ncbi.nlm.nih.gov/32093039/
37. Liu S, Li Y, Shang L, Yin J, Qian Z, Chen C et al (2022) Size-dependent neurotoxicity of micro- and nanoplastics in flowing condition based on an in vitro microfluidic study. Chemosphere [Internet], 1 Sept 2022 [cited 2022 Nov 2]; 303(Pt 3). Available from: https://pubmed.ncbi.nlm.nih.gov/35690177/
38. Shan S, Zhang Y, Zhao H, Zeng T, Zhao X (2022) Polystyrene nanoplastics penetrate across the blood-brain barrier and induce activation of microglia in the brain of mice. Chemosphere [Internet], 1 July 2022 [cited 2022 Nov 2]; 298. Available from: https://pubmed.ncbi.nlm.nih.gov/35302003/
39. Liu X, Zhao Y, Dou J, Hou Q, Cheng J, Jiang X (2022) Bioeffects of inhaled nanoplastics on neurons and alteration of animal behaviors through deposition in the brain. Nano Lett [Internet], 9 Feb 2022 [cited 2022 Nov 2]; 22(3):1091–1099. Available from: https://pubmed.ncbi.nlm.nih.gov/35089039/
40. Jin H, Yang C, Jiang C, Li L, Pan M, Li D et al (2022) Evaluation of neurotoxicity in BALB/c mice following chronic exposure to polystyrene microplastics. Environ Health Perspect [Internet], 1 Oct 2022 [cited 2022 Nov 2]; 130(10):107002. Available from: https://pubmed.ncbi.nlm.nih.gov/36251724/
41. Haddad M, Sharma S (2022) Physiology, Lung. StatPearls [Internet] [cited 2022 Nov 2]. Available from: https://pubmed.ncbi.nlm.nih.gov/31424761/
42. Pierce RJ, Worsnop CJ (1999) Upper airway function and dysfunction in respiration. Clin Exp Pharmacol Physiol [Internet] [cited 2022 Nov 2]; 26 (1):1–10. Available from: https://pubmed.ncbi.nlm.nih.gov/10027063/
43. He Z, Chen Y, Chen P, Wu G, Cai S (2010) Local inflammation occurs before systemic inflammation in patients with COPD. Respiratory [Internet], Apr 2010 [cited 2022 Nov 1]; 15(3):478–484. Available from: https://pubmed.ncbi.nlm.nih.gov/20210891/
44. Amato-Loureño LF, Carvalho-Oliveira R, Júnior GR, dos Santos Galvão L, Ando RA, Mauad T (2021) Presence of airborne microplastics in human lung tissue. J Hazard Mater [Internet], 15 Aug 2021 [cited 2022 Nov 2]; 416. Available from: https://pubmed.ncbi.nlm.nih.gov/34492918/
45. Shi X, Wang X, Huang R, Tang C, Hu C, Ning P et al (2022) Cytotoxicity and genotoxicity of polystyrene micro- and nanoplastics with different size and surface modification in A549 cells. Int J Nanomedicine [Internet] [cited 2022 Nov 2]; 17:4509–4523. Available from: https://pubmed.ncbi.nlm.nih.gov/36186531/
46. Halimu G, Zhang Q, Liu L, Zhang Z, Wang X, Gu W et al (2022) Toxic effects of nanoplastics with different sizes and surface charges on epithelial-to-mesenchymal transition in A549 cells and the potential pharmacological mechanism. J Hazard Mater [Internet], 15 May 2022 [cited 2022 Nov 2]; 430. Available from: https://pubmed.ncbi.nlm.nih.gov/35739668/
47. Yang S, Cheng Y, Chen Z, Liu T, Yin L, Pu Y et al (2021) In vitro evaluation of nanoplastics using human lung epithelial cells, microarray analysis and co-culture model. Ecotoxicol Environ Saf [Internet], 15 Dec 2021 [cited 2022 Nov 2]; 226. Available from: https://pubmed.ncbi.nlm.nih.gov/34619472/
48. Fan Z, Xiao T, Luo H, Chen D, Lu K, Shi W et al (2022) A study on the roles of long non-coding RNA and circular RNA in the pulmonary injuries induced by polystyrene microplastics. Environ Int [Internet], 1 May 2022 [cited 2022 Nov 2]; 163. Available from: https://pubmed.ncbi.nlm.nih.gov/35390562/
49. Hu D, Li L, Li S, Wu M, Ge N, Cui Y et al (2019) Lymphatic system identification, pathophysiology and therapy in the cardiovascular diseases. J Mol Cell Cardiol [Internet], 1 Aug 2019 [cited 2022 Nov 3]; 133:99–111. Available from: https://pubmed.ncbi.nlm.nih.gov/31181226/
50. Chaudhry R, Miao JH, Rehman A (2022) Physiology, cardiovascular. StatPearls [Internet] [cited 2022 Nov 3]. Available from: https://pubmed.ncbi.nlm.nih.gov/29630249/
51. Stark K, Massberg S (2021) Interplay between inflammation and thrombosis in cardiovascular pathology. Nat Rev Cardiol 2021 189 [Internet], 6 May 2021 [cited 2022 Nov 2]; 18(9):666–682. Available from: https://www.nature.com/articles/s41569-021-00552-1
52. Pober JS, Sessa WC (2014) Inflammation and the blood microvascular system. Cold Spring Harb Perspect Biol [Internet], 1 Jan 2014 [cited 2022 Nov 3]; 7(1). Available from: https://pubmed.ncbi.nlm.nih.gov/25384307/
53. Kim EH, Choi S, Kim D, Park HJ, Bae Y, Choi SH et al (2022) Amine-modified nanoplastics promote the procoagulant activation of isolated human red blood cells and thrombus formation in rats. Part Fibre Toxicol [Internet], 1 Dec 2022 [cited 2022 Nov 3]; 19(1):60. Available from: https://pubmed.ncbi.nlm.nih.gov/36104730/
54. Park SH, Kim K (2022) Microplastics induced developmental toxicity with microcirculation dysfunction in zebrafish embryos. Chemosphere
55. Sun M, Ding R, Ma Y, Sun Q, Ren X, Sun Z et al. (2021) Cardiovascular toxicity assessment of polyethylene nanoplastics on developing zebrafish embryos. Chemosphere [Internet]. 1 Nov 2021 [cited 2022 Nov 3]; 286(2):34374342.

56. Wei W, Li Y, Lee M, Andrikopoulos N, Lin S, Chen C et al. (2022) Anionic nanoplastic exposure induces endothelial leakiness. Nat Commun [Internet]. 1 Dec 2022 [cited 2022 Nov 3]; 13(1). Available from: https://pubmed.ncbi.nlm.nih.gov/35963861/

57. Lu YY, Li H, Ren H, Zhang X, Huang F, Zhang D et al. (2022) Size-dependent effects of polystyrene nanoplastics on autophagy response in human umbilical vein endothelial cells. J Hazard Mater [Internet], 5 Jan 2022 [cited 2022 Nov 3]; 421. Available from: https://pubmed.ncbi.nlm.nih.gov/34358975/

58. Lu Y, Yang, Cao M, Tian M, Huang Q (2022) Internalization and cytotoxicity of polystyrene microplastics in human umbilical vein endothelial cells. J Appl Toxicol [Internet] [cited 2022 Nov 3]; Available from: https://pubmed.ncbi.nlm.nih.gov/35978532/

59. Shiwakoti S, Ko JY, Gong D, Dhakal B, Lee JH, Adhikari R et al. (2022) Effects of polystyrene nanoplastics on endothelium senescence and its underlying mechanism. Environ Int [Internet], 1 Jun 2022 [cited 2022 Nov 3]; 164. Available from: https://pubmed.ncbi.nlm.nih.gov/35461096/

60. Role of pericytes in vascular immunosurveillance [Internet] [cited 2019 Nov 14]. Available from: https://www.bioscience.org/2018/v23/af/4615/2.htm

61. Sun BL, Wang L hua, Yang T, Sun J yi, Mao L lei, Yang M, Feng et al. (2018) Lymphatic drainage system of the brain: a novel target for intervention of neurological diseases. Prog Neurobiol [Internet]. 1 Apr 2018 [cited 2022 Nov 3]; 163–164:118–143. Available from: https://pubmed.ncbi.nlm.nih.gov/28903061/

62. Ruddle NH (2016) High endothelial venules and lymphatic vessels in tertiary lymphoid organs: characteristics, functions, and regulation. Front Immunol [Internet]. 9 Nov 2016 [cited 2022 Nov 3]; 7(Nov). Available from: https://pubmed.ncbi.nlm.nih.gov/27881983/

63. Ruddle NH (2020) Basics of inducible lymphoid organs. Curr Top Microbiol Immunol [Internet] [cited 2022 Nov 3]; 426:1–19. Available from: https://pubmed.ncbi.nlm.nih.gov/32588229/

64. Von Der Weid PY, Rainey KJ (2010) Review article: lymphatic system and associated adipose tissue in the development of inflammatory bowel disease. Aliment Pharmacol Ther [Internet]. 15 Sept 2010 [cited 2022 Nov 3]; 32(6):697–711. Available from: https://pubmed.ncbi.nlm.nih.gov/20636483/

65. Aspelund A, Robciuc MR, Karaman S, Makinen T, Alitalo K (2016) Lymphatic system in cardiovascular medicine. Circ Res [Internet] [cited 2022 Nov 3]; 118(3):515–530. Available from: https://pubmed.ncbi.nlm.nih.gov/26846644/

66. Swartz MA (2001) The physiology of the lymphatic system. Adv Drug Deliv Rev [Internet], 23 Aug 2001 [cited 2022 Nov 3]; 50(1–2):3–20. Available from: https://pubmed.ncbi.nlm.nih.gov/11489331/

67. Najihi H, Alessio N, Squillaro T, Conti GO, Ferrante M, Di Bernardo G et al. (2022) Environmental microplastics (EMPs) exposure alter the differentiation potential of mesenchymal stromal cells. Environ Res [Internet]. 1 Nov 2022 [cited 2022 Nov 3]; 214(Pt 4). Available from: https://pubmed.ncbi.nlm.nih.gov/35973457/

68. Im GB, Kim YG, Jo IS, Yoo TY, Kim SW, Park HS et al. (2022) Effect of polystyrene nanoplastics and their degraded forms on stem cell fate. J Hazard Mater [Internet], 15 May 2022 [cited 2022 Nov 3]; 430. Available from: https://pubmed.ncbi.nlm.nih.gov/35149489/

69. Jing J, Zhang L, Han L, Wang J, Zhang W, Liu Z et al. (2022) Polystyrene micro-/nanoplastics induced hematopoietic damages via the crosstalk of gut microbiota, metabolites, and cytokines. Environ Int [Internet], 1 Mar 2022 [cited 2022 Nov 3]; 161. Available from: https://pubmed.ncbi.nlm.nih.gov/35149446/

70. Sun R, Xu K, Yu L, Pu Y, Xiong F, He Y et al. (2021) Preliminary study on impacts of polystyrene microplastics on the hematological system and gene expression in bone marrow cells of mice. Ecotoxicol Environ Saf [Internet], 15 July 2021 [cited 2022 Nov 3]; 218. Available from: https://pubmed.ncbi.nlm.nih.gov/33962271/

71. Li Y, Xu M, Zhang Z, Halimu G, Li Y, Li Y et al. (2022) In vitro study on the toxicity of nanoplastics with different charges to murine splenic lymphocytes. J Hazard Mater [Internet], 15 Feb 2022 [cited 2022 Nov 3]; 424(Pt B). Available from: https://pubmed.ncbi.nlm.nih.gov/34688005/

72. Verma CR, Gorule PA, Kumkar P, Kharat SS, Gosavi SM (2020) Morpho-histochemical adaptations of the digestive tract in Gangetic mud-eel Ophichthys cuchia (Hamilton 1822) support utilization of mud-dwelling prey. Acta Histochem, 1 Oct 2020, 122(7)

73. Cheng LK, O’Grady G, Du P, Egbuji JU, Windsor JA, Pullan AJ (2010) Gastrointestinal system. Wiley Interdiscip Rev Syst Biol Med [Internet], Jan 2010 [cited 2022 Nov 2]; 2(1):65–79. Available from: https://pubmed.ncbi.nlm.nih.gov/20836011/

74. de Jong PR, González-Navajas JM, Jansen NIG (2016) The digestive tract as the origin of systemic inflammation. Crit Care [Internet], 18 Oct 2016 [cited 2022 Nov 2]; 20(1). Available from: https://pubmed.ncbi.nlm.nih.gov/27751165/

75. Li J, Wang G, Gou X, Xiang J, Huang QT, Liu G (2022) Revealing trace nanoplastics in food
packages—an electrochemical approach facilitated by synergistic attraction of electrostatics and hydrophobicity. Anal Chem [Internet], 20 Sept 2022 [cited 2022 Nov 2]; 94(37). Available from: https://pubmed.ncbi.nlm.nih.gov/36070514/

76. Almamain L, Aljoma M, Bineid M, Aljeldah FM, Aldawsari F, Liebmann B et al (2021) The occurrence and dietary intake related to the presence of microplastics in drinking water in Saudi Arabia. Environ Monit Assess [Internet], 1 July 2021 [cited 2022 Nov 2]; 193(7). Available from: https://pubmed.ncbi.nlm.nih.gov/34100164/

77. Oliveri Conti G, Ferrante M, Banni M, Favara C, Nicolosi I, Cristaldi A et al (2020) Micro- and nanoplastics in edible fruit and vegetables. The first diet risks assessment for the general population. Environ Res [Internet], 1 Aug 2020 [cited 2022 Nov 2]; 187. Available from: https://pubmed.ncbi.nlm.nih.gov/32454310/

78. Zha H, Lv J, Lou Y, Wo W, Xia J, Li S et al (2023) Oral exposure to polyethylene microplastics alters gut morphology, immune response, and microbiota composition in mice. Environ Res [Internet], 1 Sept 2022 [cited 2022 Nov 2]; 212(Pt B). Available from: https://pubmed.ncbi.nlm.nih.gov/35952428/

79. Djounia M, Vignal C, Dehaut A, Caboche S, Hirt N, Waxin C et al (2022) Oral exposure to polyethylene microplastics alters gut morphology, immune response, and microbiota composition in mice. Environ Res [Internet], 1 Sept 2022 [cited 2022 Nov 2]; 212(Pt B). Available from: https://pubmed.ncbi.nlm.nih.gov/35398082/

80. Yu Z, Zhang L, Huang Q, Dong S, Wang X, Yan C (2022) Combined effects of micro-/nano-plastics and oxytetracycline on the intestinal histopathology and microbiome in zebrafish (Danio rerio). Sci Total Environ [Internet], 15 Oct 2022 [cited 2022 Nov 2]; 843. Available from: https://pubmed.ncbi.nlm.nih.gov/35772560/

81. Xie S, Zhou A, Wei T, Li S, Yang B, Xu G et al (2021) Nanoplastics induce more serious microbiota dysbiosis and inflammation in the gut of adult zebrafish than microplastics. Bull Environ Contam Toxicol [Internet], 1 Oct 2022 [cited 2022 Nov 2]; 107(4):640–650. Available from: https://pubmed.ncbi.nlm.nih.gov/34379141/

82. Qiao J, Chen R, Wang M, Bai R, Cui X, Liu Y et al (2021) Perturbation of gut microbiota plays an important role in micro/nanoplastics-induced gut barrier dysfunction. Nanoscale [Internet], 21 May 2021 [cited 2022 Nov 2]; 13(19):8806–8816. Available from: https://pubmed.ncbi.nlm.nih.gov/33904557/

83. Shi HT, Pan X, Liu Q, Long KK, Cheng KKY, Ko BCB et al (2022) Dietary exposure to polystyrene nanoplastics impairs fasting-induced lipolysis in adipose tissue from high-fat diet fed mice. J Hazard Mater [Internet], 15 Oct 2022 [cited 2022 Nov 2]; 440. Available from: https://pubmed.ncbi.nlm.nih.gov/35952428/

84. Liang B, Zhong Y, Huang Y, Lin X, Liu J, Lin L et al (2021) Underestimated health risks: polystyrene micro- and nanoplastics jointly induce intestinal barrier dysfunction by ROS-mediated epithelial cell apoptosis. Part Fibre Toxicol [Internet], 1 Dec 2021 [cited 2022 Nov 2]; 18(1). Available from: https://pubmed.ncbi.nlm.nih.gov/34098985/

85. Hou Z, Meng R, Chen G, Lai T, Qing R, Hao S et al (2022) Distinct accumulation of nanoplastics in human intestinal organoids. Sci Total Environ [Internet], 10 Sept 2022 [cited 2022 Nov 2]; 838 (Pt 2). Available from: https://pubmed.ncbi.nlm.nih.gov/35597345/

86. Domenech J, de Brito M, Velázquez A, Pastor S, Hernández A, Marcos R et al (2021) Long-term effects of polystyrene nanoparticles as carriers of metals. Interactions of polystyrene nanoparticles with silver nanoparticles and silver nitrate, and their effects on human intestinal Caco-2 cells. Biomolecules [Internet], 1 Oct 2021 [cited 2022 Nov 2]; 11(10). Available from: https://pubmed.ncbi.nlm.nih.gov/34680075/

87. Domenech J, Cortés C, Vela L, Marcos R, Hernán- dez A (2021) Polystyrene nanoparticles as carriers of metals. Interactions of polystyrene nanoparticles with silver nanoparticles and silver nitrate, and their effects on human intestinal Caco-2 cells. Biomolecules [Internet], 1 Oct 2021 [cited 2022 Nov 2]; 11(10). Available from: https://pubmed.ncbi.nlm.nih.gov/34207836/

88. DeLoid GM, Cao X, Bitounis D, Singh D, Llopis PM, Buckley B et al (2021) Toxicity, uptake, and nuclear translocation of ingested micronanoplastics in an in vitro model of the small intestinal epithelium. Food Chem Toxicol [Internet], 1 Dec 2021 [cited 2022 Nov 2]; 158. Available from: https://pubmed.ncbi.nlm.nih.gov/34673181/

89. Bonanomi M, Salmistraro N, Porro D, Pinsino A, Colangelo AM, Gagliò D (2022) Polystyrene micro and nano-particles induce metabolic rewiring in normal human colon cells: a risk factor for human health. Chemosphere [Internet], 1 Sept 2022 [cited 2022 Nov 2]; 303(Pt 1). Available from: https://pubmed.ncbi.nlm.nih.gov/35580641/

90. Domenech J, Hernández A, Rubio L, Marcos R, Cortés C (2020) Interactions of polystyrene nanoparticles with in vitro models of the human intestinal barrier. Arch Toxicol [Internet], 1 Sept 2020 [cited 2022 Nov 2]; 94(9):2997–3012. Available from: https://pubmed.ncbi.nlm.nih.gov/32592077/

91. Zhong G, Rao G, Tang L, Wu S, Tang Z, Huang R et al (2022) Combined effect of arsenic and polystyrene-nanoplastics at environmentally relevant concentrations in mice liver: Activation of apoptosis, pyroptosis and excessive autophagy. Chemosphere [Internet], 1 Aug 2022 [cited 2022 Nov 3]; 300. Available from: https://pubmed.ncbi.nlm.nih.gov/35413363/

92. Fan X, Wei X, Hu H, Zhang B, Yang D, Du H et al (2022) Effects of oral administration of polystyrene nanoplastics on plasma glucose metabolism in mice. Chemosphere [Internet], 1 Feb 2022 [cited 2022
93. Shen R, Yang K, Cheng X, Guo C, Xing X, Sun H et al (2022) Accumulation of polystyrene microplastics induces liver fibrosis by activating cGAS/STING pathway. Environ Pollut [Internet], 1 May 2022 [cited 2022 Nov 3]; 300. Available from: https://pubmed.ncbi.nlm.nih.gov/35167931/

94. Cheng H, Duan Z, Wu Y, Wang Y, Zhang H, Shi Y et al (2022) Immunotoxicity responses to polystyrene nanoplastics and their related mechanisms in the liver of zebrafish (Danio rerio) larvae. Environ Int [Internet], 1 Mar 2022 [cited 2022 Nov 3]; 161. Available from: https://pubmed.ncbi.nlm.nih.gov/35134711/

95. Banerjee A, Bille LO, McGarvey AM, Shelver WL (2022) Effects of polystyrene micro/nanoplastics on liver cells based on particle size, surface functionalization, concentration and exposure period. Sci Total Environ [Internet], 25 Aug 2022 [cited 2022 Nov 3]; 836. Available from: https://pubmed.ncbi.nlm.nih.gov/35513145/

96. Roursgaard M, Hezareh Rothmann M, Schulte J, Karadimou I, Marinelli E, Moller P (2022) Genotoxicity of particles from grinded plastic items in Caco-2 and HepG2 cells. Front public Heal [Internet], 6 July 2022 [cited 2022 Nov 3]; 10. Available from: https://pubmed.ncbi.nlm.nih.gov/35875006/

97. Peng C, He N, Wu Y, Lu Y, Sun H, Wang L (2022) Excretion characteristics of nylon microplastics and absorption risk of nanoplastics in rats. Ecotoxicol Environ Saf [Internet], 15 Jun 2022 [cited 2022 Nov 3]; 238. Available from: https://pubmed.ncbi.nlm.nih.gov/35512478/

98. Zhao X, Wang Y, Ji Y, Mei R, Chen Y, Zhang Z et al (2022) Polystyrene nanoplastics demonstrate high structural stability in vivo: a comparative study with silica nanoparticles via SERS tag labeling. Chemosphere [Internet], 1 Aug 2022 [cited 2022 Nov 3]; 300. Available from: https://pubmed.ncbi.nlm.nih.gov/35413362/

99. Braun T, Ehrlich L, Henrich W, Koppel S, Lomako I, Schwab P et al (2021) Detection of Microplastic in human placenta and meconium in a clinical setting. Pharmaceutics [Internet], 1 July 2021 [cited 2022 Nov 3]; 13(7). Available from: https://pubmed.ncbi.nlm.nih.gov/34206212/

100. Ragusa A, Svelato A, Santacroce C, Catalano P, Notarstefano V, Carnevali O et al (2021) Plasticenta: first evidence of microplastics in human placenta. Environ Int [Internet], 1 Jan 2021 [cited 2022 Nov 3]; 146. Available from: https://pubmed.ncbi.nlm.nih.gov/33395930/

101. Ragusa A, Matta M, Cristiano L, Matassa R, Battaglione E, Svelato A et al (2022) Deeply in plasticenta: presence of microplastics in the intra-cellular compartment of human placentas. Int J Environ Res Public Health [Internet], 1 Sept 2022 [cited 2022 Nov 3]; 19(18). Available from: https://pubmed.ncbi.nlm.nih.gov/36141864/

102. Nie J, Shui, Yang H, Cheen X, Wang G, Yang X (2021) Polystyrene nanoplastics exposure caused defective neural tube morphogenesis through caveolea-mediated endocytosis and faulty apoptosis. Nanotoxicology [Internet] [cited 2022 Nov 3]; 15(7):885–904. Available from: https://pubmed.ncbi.nlm.nih.gov/34087085/

103. Zhao X, Liu Z, Ren X, Duan X (2021) Parental transfer of nanopolyurethane-enhanced tris(1,3-dichloro-2-propyl) phosphate induces transgenerational thyroid disruption in zebrafish. Aquat Toxicol [Internet], 1 July 2021 [cited 2022 Nov 3]; 236. Available from: https://pubmed.ncbi.nlm.nih.gov/34058436/

104. Shen F, Li D, Guo J, Chen J (2022) Mechanistic toxicity assessment of differently sized and charged polystyrene nanoparticle based on human placental cells. Water Res [Internet], 1 Sept 2022 [cited 2022 Nov 3]; 223. Available from: https://pubmed.ncbi.nlm.nih.gov/35988336/

105. Hu J, Zhu Y, Zhang J, Xu Y, Wu J, Zeng W et al (2022) The potential toxicity of polystyrene nanoplastics to human trophoblasts in vitro. Environ Pollut [Internet], 15 Oct 2022 [cited 2022 Nov 3]; 311. Available from: https://pubmed.ncbi.nlm.nih.gov/35970350/

106. Chen G, Xiong Q, Jia S, van Gestel CAM, van Straalen NM, Roelofs D et al (2022) Maternal exposure to polystyrene nanoplastics retarded fetal growth and triggered metabolic disorders of placenta and fetus in mice. Sci Total Environ [Internet], 1 Jan 2022 [cited 2022 Nov 3]; 854. Available from: https://pubmed.ncbi.nlm.nih.gov/36108837/

107. Dusza HM, Katrukha EA, Nijmeijer SM, Akhmanova A, Vethaak AD, Walker DI et al (2022) Uptake, transport, and toxicity of pristine and weathered micro- and nanoplastics in human placenta cells. Environ Health Perspect [Internet], 1 Sept 2022 [cited 2022 Nov 3]; 130(9):97006. Available from: https://pubmed.ncbi.nlm.nih.gov/36129437/

108. Han SW, Ryu KY (2022) Increased clearance of non-biodegradable polystyrene nanoplastics by exocytosis through inhibition of retrograde intracellular transport. J Hazard Mater [Internet], 5 Oct 2022 [cited 2022 Nov 3]; 439. Available from: https://pubmed.ncbi.nlm.nih.gov/35850071/

109. Han SW, Choi J, Ryu KY (2021) Stress response of mouse embryonic fibroblasts exposed to polystyrene nanoplastics. Int J Mol Sci [Internet], 2 Feb 2021 [cited 2022 Nov 3]; 22(4):1–11. Available from: https://pubmed.ncbi.nlm.nih.gov/33672484/

110. Huang T, Zhang W, Lin T, Liu S, Sun Z, Liu F et al (2022) Maternal exposure to polystyrene nanoplastics during gestation and lactation induces hepatic and testicular toxicity in male mouse offspring. Food Chem Toxicol [Internet], 1 Feb 2022 [cited 2022 Nov 3]; 160. Available from: https://pubmed.ncbi.nlm.nih.gov/34990788/
111. Roshanzadeh A, Oyunbaatar NE, Ganjbakhsh SE, Park S, Kim DS, Kanade PP et al (2021) Exposure to nanoplastics impairs collective contractility of neonatal cardiomyocytes under electrical synchronization. Biomaterials [Internet], 1 Nov 2021 [cited 2022 Nov 3]; 278. Available from: https://pubmed.ncbi.nlm.nih.gov/34628193/

112. Jeong B, Baek JY, Koo J, Park S, Ryu YK, Kim KS et al (2022) Maternal exposure to polystyrene nanoplastics causes brain abnormalities in progeny. J Hazard Mater [Internet], 15 Mar 2022 [cited 2022 Nov 3]; 426. Available from: https://pubmed.ncbi.nlm.nih.gov/34823950/

113. Zhou L, Yu Z, Xia Y, Cheng S, Gao J, Sun W et al (2022) Repression of autophagy leads to acrosome biogenesis disruption caused by a sub-chronic oral administration of polystyrene nanoparticles. Environ Int [Internet], 1 May 2022 [cited 2022 Nov 3]; 163. Available from: https://pubmed.ncbi.nlm.nih.gov/35381522/

114. Lin P, Tong X, Xue F, Qianru C, Xinyu T, Zhe L et al (2022) Polystyrene nanoplastics exacerbate lipopolysaccharide-induced myocardial fibrosis and autophagy in mice via ROS/TGF-β1/Smad. Toxicology [Internet], Oct 2022 [cited 2022 Nov 3]; 480:153338. Available from: https://pubmed.ncbi.nlm.nih.gov/36167198/

115. Tang X, Fan X, Xu T, He Y, Chi Q, Li Z et al (2022) Polystyrene nanoplastics exacerbate lipopolysaccharide-induced necroptosis and inflammation via the ROS/MAPK pathway in mice spleen. Environ Toxicol [Internet], 1 Oct 2022 [cited 2022 Nov 3]; 37(10):2552–2565. Available from: https://pubmed.ncbi.nlm.nih.gov/35833596/

116. He Y, Li Z, Xu T, Luo D, Chi Q, Zhang Y et al (2022) Polystyrene nanoplastics deteriorate LPS-modulated duodenal permeability and inflammation in mice via ROS-driven NF-κB/NLRP3 pathway. Chemosphere [Internet], 1 Nov 2022 [cited 2022 Nov 3]; 307(Pt 1). Available from: https://pubmed.ncbi.nlm.nih.gov/35830933/

117. Liu S, Wang Z, Xiang Q, Wu B, Lv W, Xu S (2022) A comparative study in healthy and diabetic mice followed the exposure of polystyrene microplastics: differential lipid metabolism and inflammation reaction. Ecotoxicol Environ Saf [Internet], 1 Oct 2022 [cited 2022 Nov 3]; 244. Available from: https://pubmed.ncbi.nlm.nih.gov/36087466/

118. Huang D, Zhang Y, Long J, Yang X, Bao L, Yang Z et al (2022) Polystyrene microplastic exposure induces insulin resistance in mice via dysbacteriosis and pro-inflammation. Sci Total Environ [Internet], 10 Sept 2022 [cited 2022 Nov 3]; 838(Pt 1). Available from: https://pubmed.ncbi.nlm.nih.gov/35588841/

119. Shi C, Han X, Guo W, Wu Q, Yang X, Wang Y et al (2022) Disturbed Gut-Liver axis indicating oral exposure to polystyrene microplastic potentially increases the risk of insulin resistance. Environ Int [Internet], 1 Jun 2022 [cited 2022 Nov 3]; 164. Available from: https://pubmed.ncbi.nlm.nih.gov/35526298/

120. Liu S, Li H, Wang J, Wu B, Guo X (2022) Polystyrene microplastics aggravate inflammatory damage in mice with intestinal immune imbalance. Sci Total Environ [Internet], 10 Aug 2022 [cited 2022 Nov 3]; 833. Available from: https://pubmed.ncbi.nlm.nih.gov/35427627/

121. Li L, Xu M, He C, Wang H, Hu Q (2022) Polystyrene nanoplastics potentiate the development of hepatic fibrosis in high fat diet fed mice. Environ Toxicol [Internet], 1 Feb 2022 [cited 2022 Nov 3]; 37(2):362–372. Available from: https://pubmed.ncbi.nlm.nih.gov/34755918/

122. Luo T, Wang D, Zhao Y, Li X, Yang G, Jin Y (2022) Polystyrene microplastics exacerbate experimental colitis in mice tightly associated with the occurrence of hepatic inflammation. Sci Total Environ [Internet], 20 Oct 2022 [cited 2022 Nov 3]; 844. Available from: https://pubmed.ncbi.nlm.nih.gov/35752249/

123. Barguilla I, Domenech J, Ballesteros S, Rubio L, Marcos R, Hernández A (2022) Long-term exposure to nanoplastics alters molecular and functional traits related to the carcinogenic process. J Hazard Mater [Internet], 15 Sept 2022 [cited 2022 Nov 3]; 438. Available from: https://pubmed.ncbi.nlm.nih.gov/35785738/

124. Barguilla I, Domenech J, Rubio L, Marcos R, Hernández A (2022) Nanoplastics and arsenic co-exposures exacerbate oncogenic biomarkers under an in vitro long-term exposure scenario. Int J Mol Sci [Internet], 1 Mar 2022 [cited 2022 Nov 3]; 23(6). Available from: https://pubmed.ncbi.nlm.nih.gov/35328376/
Impact of a Community-Based Pelvic Floor Kinesic Rehabilitation Program on the Quality of Life of Chilean Adult Women with Urinary Incontinence

Eduardo Cifuentes-Silva, Natalia Valenzuela-Duarte, Ismael Canales-Gajardo, and Claudio Cabello-Verrugio

Abstract

The pelvic floor forms the primary bottom tissue of the pelvic cavity. It comprises muscles that play a fundamental role in bowel and bladder emptying. Alterations of pelvic floor muscles will result in dysfunctions such as urinary incontinence (UI). Given the high prevalence of UI and its impact on the quality of life (QoL) in patients with pelvic floor muscle dysfunctions, it is necessary to implement public, community, and generalized programs focused on treating these dysfunctions. **Objective**: To determine the effect of a community rehabilitation program on QoL, UI severity, and pelvic floor muscle strength in patients with UI. **Patients and Method**: A descriptive prospective cohort study. Twenty subjects between 44 and 75 years old with a diagnosis of UI, participants of a community kinesic rehabilitation program on the pelvic floor in Maipú, Santiago, Chile, were evaluated. These volunteers were intervened for six months, and QoL was measured with the 36-Item Short-Form Health Survey (SF-36) and International Consultation on Incontinence Questionnaire Short-Form (ICIQ-SF) scales, UI severity with the Sandvick test, and pelvic floor muscle strength with the Oxford scale. Patients were followed up three months post-intervention. **Results**: Significant improvements were observed in all scales after applying for the community kinesic rehabilitation program, and the changes were maintained at a 3-month follow-up. **Conclusions**: Since the improvement in QoL, UI severity, and pelvic floor muscle strength after the intervention, it is relevant to consider the implementation of community programs aimed at education, screening, and early rehabilitation of these patients.

Keywords

Urinary incontinence · Pelvic floor disorders · Quality of life · Rehabilitation · Community health planning

E. Cifuentes-Silva · C. Cabello-Verrugio (✉)
Laboratory of Muscle Pathology, Fragility, and Aging, Faculty of Life Sciences, Universidad Andres Bello, 8370146 Santiago, Chile
e-mail: claudio.cabello@unab.cl

E. Cifuentes-Silva · C. Cabello-Verrugio
Millennium Institute on Immunology and Immunotherapy, Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile
Center for the Development of Nanoscience and Nanotechnology (CEDENNA), Universidad de Santiago de Chile, Santiago, Chile

N. Valenzuela-Duarte
Departamento de Kinesiología y Nutrición de la Facultad de Ciencias de la Salud, Universidad de Tarapacá, Arica, Chile

N. Valenzuela-Duarte · I. Canales-Gajardo
Escuela de Kinesiología, Facultad de Salud y Ciencias Sociales, Universidad de Las Américas, Quito, Chile
Abbreviations

Abbreviation	Description
BMI	Body mass index
COVID-19	Coronavirus disease 2019
HR-QoL	Health-Related Quality of Life
ICIQ-SF	International Consultation on Incontinence Questionnaire Short-Form
ICS	International Continence Society
KHQ	King's health questionnaire
MMSE	Mini-mental State Examination
PFM	Pelvic floor muscles
QoL	Quality of life
SF-36	36-Item Short-Form Health Survey
TENS	Transcutaneous electrical nerve stimulation
UI	Urinary incontinence
VAS	Visual Analog Scale

7.1 Introduction

Urinary continence results from the anatomical and functional integrity and coordination of the lower urinary tract, composed of the bladder and urethra. It is under the influence of the central, peripheral, and autonomic nervous systems that coordinate the filling and emptying phases of the bladder through inhibitory and facilitating actions on the smooth and striated musculature that form the functional unit of the urinary tract and where the pelvic floor plays a fundamental role [1, 2].

The pelvic floor forms the bottom of the pelvic cavity. It comprises a series of muscles, fasciae, nerve, and vascular structures enclosing the pelvis’s lower part [3, 4]. The pelvic cavity also contains the pelvic organs, such as the bladder, uterus, cervix, vagina, and rectum, which are directly related to the pelvic floor muscles (PFM) [5]. Among the functions of the PFM, mainly the levator ani and coccygeus, is to reduce the displacement of the bladder neck, stabilize the vaginal wall and actively participate in the micturition process by contracting and relaxing them in synergy with the muscles of the abdominal wall, detrusor, internal and external urethral sphincters [4, 6]. These muscles can be consciously activated to help stabilize the anterior vaginal wall and urethra [5, 6]. Besides, these muscles play a fundamental role in visceral support, bladder and digestive containment and emptying, sexual functions, and the movement of the fetus during delivery. Therefore, their alteration will result in pelvic floor dysfunction related to clinical alterations, including urinary incontinence [3, 5].

Urinary incontinence (UI) is the involuntary loss of urine or involuntary urination [7]. There are different types of UI. The International Continence Society (ICS) has classified UI [8] as (A) Stress, when urethral closure pressure is insufficient, or there is excess urethral mobility due to weakness of pelvic floor muscles that upon a sudden increase in abdominal pressure from activities such as running, coughing, sneezing or laughing, results in urine leakage [4, 8]. (B) Urgency, when there is increased contractility of the bladder, i.e., an excess of uncontrolled detrusor muscle activity during the filling phase [6, 8] and (C) mixed, the association of symptoms of involuntary urine leakage on exertion with symptoms of urgency [8–10].

UI is a health problem whose incidence varies between 30 and 60% [9]. UI-related dysfunctions impact quality of life (QoL), in issues such as social, psychological, physical, occupational, and sexual [9, 11]. The prevalence of UI in the female life cycle is directly related to age, the number of pregnancies, childbirths, and hormonal changes [11].

Given the high prevalence of UI and the impact on the QoL of people with pelvic floor muscle dysfunctions, it is necessary to implement programs focused on treating these dysfunctions. Under this perspective, we characterize clinical- and socio-demographically patients with pelvic floor dysfunctions from a hospital belonging to the public health system. Specifically, in the volunteers with a medical diagnosis of UI, we sought to determine the effect of applying for a
community rehabilitation program in the QoL, the severity of UI, and pelvic floor muscle strength.

7.2 Methods

Type of Study: Descriptive prospective cohort study. In August 2021, a community pelvic floor rehabilitation program called “Esencia de Mujer” (Essence of a woman) was developed and financed by 6% competitive funds from the National Fund for Regional Development (FNDR by its acronym in Spanish).

Participants: Participants were recruited through an open call aimed at women with pelvic floor dysfunctions through mass media on social networks and placement of advertising posters in physical spaces in the commune of Maipú in the Metropolitan Region, Santiago, Chile. To participate, they were asked to send their cell phone number. Attendance at an informative talk was arranged by telephone to explain the procedures involved in the study and intervention in detail.

Sample: The sample included 22 women between 44 and 75 years old who freely accepted to participate in the research from the open call. Women living at Maipú in Santiago, Chile, met the inclusion criteria.

Inclusion criteria: Participants fulfilled the following inclusion criteria: female sex, belonging to Maipú, age range between 44 and 75 years, with a confirmed medical diagnosis of UI regardless of its clinical type, and able to understand simple commands, according to Mini-mental State Examination Spanish version (MMSE) [12].

Exclusion criteria: Participants who presented any of the antecedents described in the following criteria were excluded from this study by self-report of the users or by the clinical interview: Mental or physical disability that limited the performance of the protocol, interdiction, having an acute pathology that directly or indirectly influenced pelvic floor dysfunction at the time of the evaluation, consumption of drugs that could interfere with the interventions, presence of cardiometabolic pathologies that generate confounding variables, pregnancy, urinary tract or skin infections, stage 3 and 4 prolapse. Thus, a total sample of 22 participating women was obtained.

The users who had a pelvic floor dysfunction diagnosis and were excluded from the study were not part of the reports of this research. Nevertheless, they did receive therapy corresponding to their condition.

7.3 Ethical Aspects:

This study was approved by the Scientific Ethics Committee of the Universidad de las Américas (Project ID: CEC_FP_2021009).

Informed Consent and Data collection: Before the incorporation of the users who wished to participate in the study, they were given information concerning the study during the first session, voluntarily determining their participation by signing an informed consent form. During the first session, the background information of the participating users was collected and encrypted to protect their identity.

Subsequently, the Spanish version of the MMSE questionnaire was applied by employing an individual interview [12].

Anthropometric measurements: Basic parameters were measured, such as weight, height, and calculation of body mass index (BMI), according to Keys et al. [13].

Kinesic evaluation: A global evaluation was performed, including posture, abdominal and diaphragmatic musculature. Then, an evaluation of pelvic floor muscle contraction by manual testing in the supine decubitus position, with flexion and abduction of the hips, flexion of the knees and feet supported, with the genital region and lower limbs bare [14, 15]. The physical examination consisted of visual inspection, palpation, and muscle assessment [15, 16].

To perform vaginal touch and to manually assess the perineal musculature, the index and middle fingers were introduced into the vaginal introitus previously lubricated, following the direction of the vaginal canal obliquely downward and backward. Then, the pelvic floor
The muscle contraction assessment was measured according to the protocol published by Laycock, with its acronym PERFECT (P = power, E = endurance, R = repetitions, F = fast, ECT = every contraction timed) [16, 18]. The user was asked to maintain the contraction strength until a 50% loss of strength was detected, with a maximum of 10 s [17, 19]. Muscle fatigue was assessed by the number of contractions with a maximum of 10 that the patient could perform with maximum resistance recorded, with a rest time of 4 s between contractions [15, 18]. For contraction speed, we asked the user to perform after a rest period of 1 min, the most significant number of rapid one-second contractions until muscle fatigue, with a maximum of 10 [15, 16].

The type of incontinence was classified according to the characteristics of incontinence episodes following the guidelines of the International Continence Society (ICS) [8].

Perineal muscle strength using the modified Oxford scale: The contractile capacity of the pelvic floor muscles was quantified by digital assessment [15, 20]. According to this scale, strength was categorized with a value between 0 and 5. This evaluation was performed pre- and post-intervention.

Quality of life (QoL): Two self-administered questionnaires in Spanish were used: the 36-Item Short-Form Health Survey (SF-36) v2 [21] and the International Consultation on Incontinence Questionnaire Short-Form (ICIQ-SF) [22], which sought to evaluate QoL globally and specifically concerning UI, respectively.

Severity of Urinary Incontinence (UI): The Sandvick severity test [23] was used to evaluate the symptomatology severity of the participants with UI, asking 2 questions to categorize its degree into mild, moderate, severe, and very severe.

The QoL and UI severity questionnaires were applied pre-intervention, immediately post-intervention, and 3 months post-intervention.

Pain assessment: In patients with pain during the evaluation, the Visual Analog Scale (VAS) [24] was applied to quantify pain in the pelviperineal area. If the pain was limiting for the session, priority was given to treating the pain and then receiving therapy corresponding to IU. In patients whose pain was not limiting for the kinesic session, pain and UI were treated together.

Kinesic treatment: This consisted of the following interventions:

Education regarding pelvic floor dysfunction: This was accomplished through presentations that included images and delivery of educational material regarding her pathology and the role of the pelvic floor musculature in their recovery.

Manual biofeedback: Controls were performed in individual sessions implementing a program of specific muscle re-education exercises according to the Laycock muscle contraction assessment protocol [15, 16]. The therapist performed this protocol by inserting the index and middle fingers into the patient’s vaginal canal. Afterward, the patient was asked to perform a muscular contraction of the pelvic floor to evaluate her muscle strength. At the same time, a more remarkable contraction power or duration could be requested. Controls were carried out every 2 weeks, and each lasted 20 min.

Specific and personalized pelvic floor exercise: The home exercises for each case were dosed according to the progress evaluated in the controls using the PERFECT protocol [15, 16, 18]. According to the results obtained in the controls, exercise progressions were indicated. The participants performed the exercise regimen 2 times a day, 3 to 4 times a week.

Functional training: Finally, the volunteers who strengthened the perineal musculature with the home exercises and individual controls were referred to group sessions where functional training was practiced integrating the pelvic floor musculature, which consisted of a warm-up, followed by functional exercises of the upper limbs, trunk, and lower limbs, and finally stretching. For all the exercises, the focus was on breathing with an abdominal pattern and with
effort in the expiratory stage, activating the pelvic floor [25, 26]. An aerobic dance was performed during the warm-up for 7 min. The functional exercises of the upper extremities were performed with elastic bands: triceps, horizontal extension, arm flexion, and vertical push-up on the wall, all varying according to repetitions and resistance of the elastic band [25, 26]. Trunk exercises were performed on the floor: bird dog and bridge, all with body weight and progressions with elastic bands. Lower extremity exercises included squats and lunges with progressions [25, 26]. The intensity for all the exercises was moderate and measured by the Borg CR10 effort perception scale [27]. Based on this, during the first week, the participants performed 1 series of each exercise, reaching 2 series in the second week. The sessions had an extension of 50 min twice a week.

Neuromodulation of the tibialis posterior: Consisted of transcutaneous electrostimulation with Transcutaneous electrical nerve stimulation (TENS) current with a pulse amplitude of 200 ms, frequency 20 Hz, with regulated intensity until dorsiflexion of the greater brace and/or plantar flexion of the second to the fifth brace of 1 to 10 mA or according to the tolerance of the patient. An electrode was located 3 cm proximal and 1 cm posterior to the medial malleolus of the right or left leg, and another electrode was on the calcaneus [28–31]. It was applied 3 times per week.

Extension of the rehabilitation program: The total duration of participation in the program was 6 months.

Statistical analysis: Qualitative and categorical data were presented as relative percentages. Data analysis was performed using Graphpad Prism® 9 statistical software. Quantitative variables were evaluated for normality with the Shapiro–Wilk test. Variables that showed parametric behavior are reported with their respective mean and standard deviation. Variables that did not present normal behavior are reported with median and interquartile ranges. For the association between quantitative variables, the Wilcoxon rank test and the Friedman test were used as appropriate. Statistical significance was established with an alpha error of less than 0.05.

7.4 Results

Considering the 22 users evaluated, the mean age was 59.5 ± 8.71 years, the median weight was 69.45 (59.83–83.05) kilograms, and the average height was 1.59 ± 0.06 m, with a median BMI corresponding to 27.22 (23.81–35.47). They received pelvic floor kinesic rehabilitation to treat their UI between August 01, 2021 and January 31, 2022 with a mean attendance to scheduled sessions of $80.35 \pm 22.95\%$.

Regarding the schooling of the sample, 81.36% had secondary or higher education, and 18.64% did not complete elementary education. About the number of pregnancies in the sample, 95.45% had at least one pregnancy, 4.55% had never been pregnant, 63.64% had undergone episiotomy at some time in their deliveries, and 86.36% did not have instrumentalized deliveries. Details of the demographic and anthropometric characteristics of the participants are shown in Table 7.1.

When the classification of the type of incontinence, according to the ICS described in Table 7.2, was analyzed, we found that in the initial evaluation, most of the sample presented a categorization of stress UI with 54.55%, followed by mixed UI with 31.82% and urgency UI with 13.64%. It should be noted that no patient was categorized as continent. However, the sample, 40.91%, was classified as continent at the end of the intervention, followed by emergency UI with 31.82%, stress UI with 22.73%, and mixed UI with 4.55%. At the 3-month post-intervention follow-up, 31.82% of the sample remained continent, 36.36% had urgency UI, 27.27% had stress UI, and 4.55% had mixed UI.

The assessments of UI severity can be seen in Tables 7.3 and 7.4.

Our study determined a significant improvement (p-value < 0.0001) in the ICIQ SF. The sample shows an initial median score of 10 (7.75–13–5) at the end of treatment of 5 (0–5).
Table 7.1 Baseline characteristics of the sample

Characteristic	Value
Total participants	22
Age (years) [Mean ± SD]	59.5 ± 8.71
Weight (kg) [Median (Q1–Q3)]	69.45 (59.83–83.05)
Height (m) [Mean ± SD]	1.59 ± 0.06
BIM (Kg/m²) [Median (Q1–Q3)]	27.22 (23.81–35.47)

Education (% of total)

Education	% of total
Incomplete elementary school	4.55
Complete elementary school	13.64
Complete high school	63.64
Technical and vocational education	18.18

N° of births (% of total)

N° of births	% of total
0	4.55
1	18.18
2	13.64
3	36.36
4	13.64
5	13.64

Episiotomy (% of total)

Episiotomy	% of total
Yes	63.64
No	36.36

Instrumentalization in childbirth (% of total)

Instrumentalization	% of total
Yes (Forceps)	13.64
No	86.36

Percentage of attendance to scheduled sessions [Mean ± SD]

Evaluation (%) of total	Mean ± SD
80.35 ± 22.95	

The variables age and attendance percentage are presented with their respective means and SD (standard deviation). The variables weight and body mass index (BMI) are presented with their respective median and quartile 1–quartile 3 (Q1–Q3). The variables education, number of births, episiotomy, and instrumentalization in childbirth are expressed as relative percentages of the total.

Table 7.2 Classification of the type of incontinence according to the International Continence Society

Type of incontinence	Evaluation (% of total)		
	Initial	Final	Follow-up
Continent	0	40.91	31.82
Urgency	13.64	31.82	36.36
Stress	54.55	22.73	27.27
Mixed	31.82	4.55	4.55

The type of incontinence was categorized pre-intervention, post-intervention, and at a 3-month post-intervention follow-up. The categorizations are expressed in relative percentages of the total.
and a follow-up of 5 (0–6.25). In the specific quality of life question, which was “To what extent have these urine leaks, that you have, affected your daily life?” scoring from 1, which is nothing, to 10, the maximum, the sample shows as the initial result a median of 4.5 (3–6.25), at the end of treatment 2 (1–2) and follow-up 2 (1–3), obtaining positive and significant results (p-value < 0.0001) for our intervention. In addition, the results at the end of treatment were maintained 3 months post-intervention.

Pelvic floor muscle strength, evaluated with the Oxford scale, increased significantly (p-value < 0.0001). Our sample shows a median of 2 (1–3) as the initial result and at the end of treatment 3 (3–4).

In the Sandvik severity test, our study obtained a decreased severity of urinary incontinence (p-value < 0.0001), our sample gave an initial result of a median of 6 (3.75–6.5), at the end of treatment 1 (0–2), and maintained at follow-up 1.5 (0–2.25). In addition, we could observe that initially, 13.64% of the sample presented mild incontinence, 63.64% moderate, 13.64% severe, and 9.09% very severe. At the end of the study, 40.91% were continent, 50% presented mild incontinence, 9.09% moderate, 0% severe, and 0% very severe. At follow-up, 31.82% were continent, 45.45% showed mild incontinence, 18.18% moderate, 4.55% severe, and 0% very severe. Thus, we can observe that three months after the intervention, there was a high percentage of decreased severity even if there were continent patients.

It can be seen that all the evaluation scales showed significant changes toward the end of the intervention. It should be noted that the Oxford scale was applied only at the end of the program, and the Sandvik test and ICIQ-SF were applied at the 3-month follow-up.

Finally, the evaluation of the quality of life according to the SF-36 scale is detailed in Table 7.5.

Table 7.3	Assessment of severity of urinary incontinence				
Test	Evaluation [Median (Q1–Q3)]	Initial	Final	Follow-up	p-value
Sandvick	6 (3.75–6.5)	1 (0–2)	1.5 (0–2.25)	<0.0001	
ICIQ-SF	10 (7.75–13.5)	5 (0–5)	5 (0–6.25)	<0.0001	
HR-QoL. ICIQ-SF	4.5 (3–6.25)	2 (1–2)	2 (1–3)	<0.0001	
Oxford	2 (1–3)	3 (3–4)	–	<0.0001	

Assessments of the Sandvick Test and ICIQ-SF were performed pre-intervention, post-intervention, and at a 3-month post-intervention follow-up. The Oxford scale was only applied pre and post-intervention. Each result has its respective median and quartile 1–quartile 3 (Q1–Q3). ICIQ-SF: International Consultation on Incontinence Questionnaire Short-Form; HR-QoL: Health-Related Quality of Life

Table 7.4	Classification of the severity of incontinence according to the Sandvick test			
Category	Evaluation (% of total)	Initial	Final	Follow-up
Continent	0	40.91	31.82	
Slight	13.64	50.00	45.45	
Moderate	63.64	9.09	18.18	
Severe	13.64	0	4.55	
Very severe	9.09	0	0	

The type of urinary incontinence severity was categorized pre-intervention, post-intervention, and at a 3-month post-intervention follow-up. The Sandvick severity test categorizations are expressed as relative percentages of the total
In the SF-36 questionnaire, we observed significant improvements (p-value = 0.0007) in physical functioning at the end of the intervention with a median of 95 (83.75–100) points. At program follow-up, it even tended to increase with a median of 97.5 (82.5–100) points.

Regarding physical health limitations, these remained at a median of 100 from the initial evaluation to the 3-month follow-up (p-value = 0.0205).

In the limitations in emotional problems, there were no significant changes (p-value = 0.8395) with an initial median 100 (24.98–100) points. At the end of the intervention, there were improvements with a median of 100 (50.03–100) points, and at the follow-up stage, they tended to decrease with a median of 83.35 (0–100) points.

There were significant improvements in energy/fatigue (p-value = 0.0004). At the end of the treatment, a median of 72.5 (65–80) points was observed, while at the follow-up of the program, there was a decrease in the evaluated results with a median of 70 (50–75) points. These values remained higher compared to the median of 70 (53.75–76.25) points at the beginning of the intervention.

In the emotional role, we obtained significant improvements at the end of the intervention with a median of 72 (60–85) points. At the follow-up of the program, there was a tendency to decrease with a median of 62 (48–76) points (p-value < 0.0001).

In the social role, the tendencies were maintained at the end of the intervention with a median of 85.5 (71.88–100) points compared to the beginning with a median of 87.5 (71.88–100) points. At the follow-up of the program, it decreased by a median of 75 (59.38–100) points. These changes were not significant (p-value = 0.0891).

Regarding pain, our sample obtained significant improvements (p-value = 0.0013). At the end of the treatment, a median of 78.75 (67.5–90) points was observed, and at the follow-up of the program, there was a decrease with a median of 70 (43.13–90) points. This value was higher than at the beginning of the intervention, with a median of 70 (24.38–80) points.

There were significant improvements in general health (p-value < 0.0001). At the end of the intervention, there was a median of 75 (61.25–81.25) points. This value was higher than at the beginning of the intervention, with a median of 55 (47.5–70) points.

7.5 Discussion

There is vast evidence that UI is an underreported, underdiagnosed, and undertreated disease that diminishes QoL. Pelvic floor rehabilitation has a positive impact on the QoL of women with UI [10, 18, 28–34]. It has been seen

| Table 7.5 Evaluation of quality of life according to 36-Item Short-Form Health Survey |
|---------------------------------|----------------|----------------|----------------|----------|
| Sections | Evaluation SF-36 [Median (Q1–Q3)] | Initial | Final | Follow-up | p-value |
| Physical functioning | 90 (68.75–96.25) | 95 (83.75–100) | 97.5 (82.5–100) | 0.0007 |
| Limitations in physical health | 100 (0–100) | 100 (93.75–100) | 100 (43.75–100) | 0.0205 |
| Limitations on emotional problems | 100 (24.98–100) | 100 (50.03–100) | 83.35 (0–100) | 0.8395 |
| Energy/fatigue | 70 (53.75–76.25) | 72.5 (65–80) | 70 (50–75) | 0.0004 |
| Emotional role | 64 (51–81) | 72 (60–85) | 62 (48–76) | <0.0001 |
| Social role | 87.5 (71.88–100) | 87.5 (71.88–100) | 75 (59.38–100) | 0.0891 |
| Pain | 70 (24.38–80) | 78.75 (67.5–90) | 70 (43.13–90) | 0.0013 |
| General Health | 55 (47.5–70) | 75 (63.75–80) | 75 (61.25–81.25) | <0.0001 |

36-Item Short-Form Health Survey (SF-36) assessments were performed pre-intervention, post-intervention, and at a 3-month post-intervention follow-up. Each outcome has its respective median and quartile 1–quartile 3 (Q1–Q3).
that patients with UI do not report their diagnosis to health professionals and normalize the symptomatology, taking years to receive the necessary treatment, making surgery the only viable alternative to their condition [34, 35]. Despite reports showing that more people with UI are consulting physicians, many women remain undiagnosed. [34, 36, 37]. For this reason, preventive and timely intervention in pelvic floor education and rehabilitation is an excellent alternative to reduce associated healthcare costs and positively impact the QoL of patients with UI and pelvic floor dysfunctions [36, 38]. In this sense, it is central to implement a multidisciplinary approach to education, screening, and diagnosis of UI to perform a timely and early low-cost rehabilitation [37–39]. Despite this background, public policies do not align with the available evidence. The national reports obey local and private initiatives due to the interest of healthcare professionals or teachers [14, 40, 41]. Therefore, it is highly relevant to generate evidence that supports massive and public programs with low implementation costs and with a community approach that can have a positive impact on the QoL of users with UI and pelvic floor dysfunctions, as is the case of the “Esencia de Mujer” (Essence of a woman) program.

Our study was able to recruit 22 women with a diagnosis of UI. Although the sample is limited in the number of participants compared to other studies, there are reports with similar individuals that have reported significant changes in QoL and muscle strength after a rehabilitation protocol focused on UI [10]. In a randomized controlled study, Nascimento-Correia et al. recruited 30 women with pelvic floor dysfunction and a diagnosis of UI but divided their sample into control and intervention groups. Thus, the authors performed therapy for 12 weeks during 1 h in group sessions with only 15 women, obtaining significant differences in QoL measured with the King’s health questionnaire (KHQ) [18].

No dropouts were reported among the recruited patients. However, the attendance percentage at scheduled sessions was 80.35 ± 22.95%. We found no reports for this indicator. We believe that the margins of nonattendance could be directly related to the conditions of confinement and quarantine due to the Coronavirus disease 2019 (COVID-19) pandemic in which the study was conducted [42], so it would be necessary to consider implementing this program in a non-pandemic context to evaluate its potential impact.

One of the factors influencing UI and pelvic floor dysfunctions is age. This factor in our sample ranged from 44 to 75 years, averaging 59.5 ± 8.71 years. These age values are similar to those reported in the systematic review by Radzimina et al., where the patients’ ages range from 40 to 85 years [10]. The coincidence is because the prevalence of pelvic floor dysfunctions is mainly seen over the fourth decade of life [43]. However, a group of patients, such as pregnant patients, escapes this reported range. Cohen-Quintana et al. report in a descriptive study including pregnant volunteers with pelvic floor dysfunction and UI, a mean age of 26.65 years [40]. The sum of these antecedents and our results allows us to consider the importance of the transversality of pelvic floor rehabilitation programs throughout the life cycle. At the same time, it must be regarded that the world population is aging, which means that there will be a high percentage of the world population with UI; nonetheless, studies are needed to characterize the current reality of pelvic floor dysfunctions and age.

Another factor influencing the diagnosis of UI and pelvic floor dysfunction is BMI, which in our sample was 27.22 (23.81–35.47) kg/m². This factor becomes relevant since it has been reported, utilizing logistic regression, that overweight and obesity are associated with a higher risk of presenting pelvic floor dysfunctions. This risk ranges from 2.0 to 2.6 times, respectively [44]. Considering this evidence and our results, it is essential to address pelvic floor dysfunctions from a multidisciplinary approach that considers nutritional and physical activity aspects to reduce BMI and indirectly impact this risk factor for pelvic floor dysfunction.

Different studies have established that pregnancy, instrumental delivery, and cesarean
sections increase the prevalence of pelvic floor dysfunctions [44–46]. Our data coincide with this trend since 95.45% of the sample had at least one pregnancy, 63.64% underwent episiotomy, and 13.64% of the users underwent forceps-type instrumentalization. However, some data may be underestimated since they were obtained by self-reporting and not with access to their clinical records.

In our study, we categorized the sample by classifying the type of UI according to the ICS. The most significant predominance in the initial evaluation is stress incontinence, with 54.55%, and none of the patients presented continent. Our sample has similar behavior to those reported in the literature, where stress incontinence is predominant according to the ICS classification [47–49]. At the end of the pelvic floor rehabilitation program, 40.91% of the sample was classified as continent 3 months after the final evaluation, and continent status was maintained in 31.82% of the sample. Although the authors do not use the same follow-up period, they agree that the changes obtained after a rehabilitation program are maintained until at least 6 months post-intervention [48, 49].

As we have seen, QoL is one of the indicators of success in pelvic floor rehabilitation programs for UI. Our study reflected significant changes in the ICIQ-SF questionnaire, a tool designed to identify people with UI and the impact on QoL. Our results show that our kinesic rehabilitation program positively impacts the QoL of users with UI and pelvic floor dysfunctions, maintaining these results up to 3 months after the end of the program. These positive results in QoL align with the strength assessment measured with the Oxford scale, whose initial median was 2 (1–3) points and 3 (3–4) points at the end of treatment. Unfortunately, muscle strength follow-up was not possible due to the context of the COVID-19 pandemic [42].

Rehabilitation programs have been shown to impact strength and QoL in different populations [10, 18, 28–34]. Among the antecedents, we would like to highlight that the ICIQ-SF questionnaire has been used to evaluate QoL in people similar to those covered in our study, as in the case of post-menopausal women with stress UI [50] and older women with stress UI after a community intervention [51]. In the Chilean population, there is a report by Jerez et al. where, after a pelvic floor rehabilitation program in people with UI, they managed to significantly improve QoL and muscle strength using an exercise protocol similar to the one used by us; nevertheless, they did not evaluate QoL with a validated scale such as the ICIQ-SF [14].

Another factor to consider in evaluating UI is the severity of the clinical symptoms. Concerning the Sandvik severity test, our study obtained a decrease in the severity of urinary incontinence maintained after the 3-month post-intervention follow-up. Considering the categorization provided by the Sandvik severity test, we observed in the initial evaluation that 100% of the sample qualified with a degree of severity and that after the community rehabilitation program, 40.91% of the sample qualified as a continent and 31.82% of users remained in the same category after 3 months of intervention. In contrast, 9.09% of the sample presented very severe categorization at the beginning of the program; after the intervention and at follow-up, no user qualified for this categorization. At 3 months post-intervention, there was a high percentage of decrease in severity even with a high percentage of continent users. Our findings suggest that the decline in QoL and UI severity are directly related. These statements are in line with the results reported by Klovning et al., which evaluated the ICIQ-SF and the Sandvik severity test (called the Incontinence Severity Index in their study), establishing a high correlation between the two questionnaires [52].

One factor influencing pelvic floor dysfunctions related to UI is the level of schooling. In our sample, 18.18% had higher education, and 81.82% had secondary education or less. By logistic regression models in the American population, it has been shown that lower schooling was associated with higher prevalence rates for pelvic floor dysfunctions related to UI [53, 54]. These data are consistent with those obtained by Sacomori et al. in a cross-sectional study of the Brazilian population [55]. Saadia found similar
results in the Saudi population concerning the incidence of UI and educational level, associating this higher incidence of cases with the lack of general information on pathology [56]. These antecedents lead us to postulate that the same phenomenon of higher incidence would occur at a lower educational level in our sample. However, due to the nature of our study, we cannot correlate these variables, so other analyses are needed to elucidate this question in the Chilean population.

Finally, and to complement the results obtained in QoL evaluation, we wanted to determine whether the changes observed by a specific UI scale, such as the ICIQ-SF, could also be investigated with a generic QoL scale already validated and applied in the Chilean population, as is the case of the SF-36 [22, 57]. Of the areas considered by the SF-36, we observed: (A) Stabilization of the variable limitations of physical health. (B) Significant improvements were maintained even at the 3-month post-intervention follow-up in the physical functioning and general health sections. (C) Downward trends with no significant differences in the limitations in emotional problems and social roles. (D) Improvements at the end of the intervention but a slight decrease in the Energy/fatigue, emotional role, and pain sections at follow-up. These results clearly show that the pelvic floor rehabilitation intervention for UI successfully impacted the QoL since none of the areas considered by the questionnaire generated a decrease in their score with significant differences. Even two of them were upward even at post-intervention follow-up. Our results agree with a previous report that found improvements in QoL measured with SF-36 after an intervention protocol in postpartum Chinese women who underwent pelvic floor muscle training versus the control group [58].

Concerning the Chilean population and QoL according to the SF-36, it has been seen that UI is associated with lower SF-36 values [34]. Several reports and our data support that the SF-36 is a valid tool for screening and assessing QoL in populations with pelvic floor dysfunction and UI [22, 34, 57, 58].

Regarding the role of the COVID-19 pandemic in QoL, Guzmán-Muñoz et al. compared self-reported QoL in young adults in a non-pandemic setting versus a setting under health alert for COVID-19. They demonstrated in women that Health-Related Quality of Life (HR-QoL) decreased during the COVID-19 quarantine in the dimensions of energy/fatigue, social function, emotional role, mental health, and general health [59]. This result leads us to believe that the confinement factor could have negatively impacted the perception of QoL in our sample. However, other studies are needed to evaluate a pelvic floor rehabilitation program for patients diagnosed with UI without the conditioning factor of the COVID-19 pandemic.

As we highlighted above, the Chilean reality is that few intervention initiatives focus on community pelvic floor rehabilitation despite the available evidence supporting its implementation [10, 18, 28–34]. Our study establishes novel and essential milestones from community rehabilitation that could be replicated: (A) Implementation of the rehabilitation program in a neighborhood unit of the commune of Maipú that managed to detect pelvic floor dysfunctions that were not being treated in the public health network. (B) To focus on a low-cost community intervention on the pelvic floor with positive results that can be implemented with competitive funds that are not usually used in health care. The sum of both factors suggests that this type of program can generate a positive impact at a low cost in the healthcare network and easy access for the community, so it would be essential to consider its massification.

7.6 Conclusions

In the sample studied, improvements in QoL, UI severity, and pelvic floor muscle strength were observed after applying a community kinesic rehabilitation program to patients with pelvic floor dysfunctions and UI diagnosis. Our data align with those reported in the literature, so it is relevant to consider the implementation of
community programs aimed at education, screening, and early rehabilitation of these patients to reduce the prevalence of these clinical conditions.

On the one hand, future studies should consider increasing the sample studied, evaluating control groups, considering other pathologies that entail pelvic floor dysfunctions, and follow-up of the groups for a more extended time, both at the world level and in the Chilean population. On the other hand, whether carrying out this kinesic rehabilitation program outside the pandemic context of COVID-19 would have a more significant effect on the population studied

Statements and Declarations

Funding The manuscript was supported by the 6% competitive funds from the National Fund for Regional Development (FNDR by its acronym in Spanish), research grants from the National Fund for Science and Technological Development (FONDECYT 1200944 [CCV]); Agencia Nacional de Investigación y Desarrollo (ANID) - Millennium Science Initiative Program - ICN09_016/ICN 2021_045: Millennium Institute on Immunology and Immunotherapy (ICN09_016/ICN 2021_045; former P09/016-F) [CCV]); Basal Grant CEDENA (AFB180001 [CCV]).

Acknowledgements To Elvia Doria Cabrera, Geovanis Ruiz Torres, and María de Los Ángeles Valenzuela for referring users to the program. To Victoria Cifuentes Silva for her support in writing the final text.

Disclosure of Interest The authors declare that they have no conflict of interest.

Ethical Approval All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards. Approval was granted by the Scientific Ethics Committee of the Universidad de las Américas (Approval number ID: CEC_FP_2021009).

Author Contributions Conceptualization, E.C-S., N.V-D., I.C-G., and C.C-V.; Methodology, E.C-S., N.V-D., and I.C-G.; Validation, E.C-S., N.V-D., and I.C-G.; Investigation, E.C-S., N.V-D., and I.C-G.; Visualization, E.C-S., N.V-D., and I.C-G.; Supervision, C.C-V.; Project administration, C.C-V.; Formal Analysis, E.C-S., N.V-D., I.C-G., and C.C-V.; Writing—Original Draft Preparation, E.C-S., N.V-D., and I.C-G.; Writing—Review & Editing, E.C-S., N.V-D., I.C-G., and C.C-V.

References

1. Beckel JM, Holstege G (2011) Neurophysiology of the lower urinary tract. Handb Exp Pharmacol 202:149–169. https://doi.org/10.1007/978-3-642-16499-6_8
2. de Groat WC, Griffiths D, Yoshimura N (2015) Neural control of the lower urinary tract. Compr Physiol 5(1):327–396. https://doi.org/10.1002/cphy.c130056
3. Carrillo K, Sanguineti A (2013) Anatomía del piso pélvico. Revista Médica Clínica Las Condes 24 (2):185–189. https://doi.org/10.1016/s0716-8640(13)70148-2
4. Parratte B, Bonnailand V, Tatu L, Lepage D, Vuillier F (2007) Anatomy and physiology of the lower urinary tract, 1 edn. Elsevier BV
5. Eickmeyer SM (2017) Anatomy and physiology of the pelvic floor. Phys Med Rehabil Clin N Am 28(3):455–460. https://doi.org/10.1016/j.pmr.2017.03.003
6. Viktrup L, Bump RC (2003) Simplified neurophysiology of the lower urinary tract. Primary Care Update for Ob/Gyns 10(5):261–264. https://doi.org/10.1016/S1068-607X(03)00043-X
7. Irwin GM (2019) Urinary incontinence. Primary Care Clin Office Pract 46(2):233–242. https://doi.org/10.1016/j.pop.2019.02.004
8. Abrams P, Cardozo L, Fall M, Griffiths D, Rosier P, Ullumen U et al (2003) The standardisation of terminology in lower urinary tract function: report from the standardisation sub-committee of the International Continence Society. Urology 61(1):37–49. https://doi.org/10.1016/S0090-4295(02)02243-4
9. Ptak M, Ciećwiez S, Brodowska A, Starczewska A, Nawrocka-Rutkowska J, Diaz-Mohedo E et al (2019) The effect of pelvic floor muscles exercise on quality of life in women with stress urinary incontinence and its relationship with vaginal deliveries: a randomized trial. In: BioMed research international. https://doi.org/10.1155/2019/5321864
10. Radzimirysz A, Strączyńska A, Weber-Rajek M, Styćzyńska H, Strojek K, Piekorz Z (2018) O impacto do treinamento muscular do assoalho pélvico na qualidade de vida de mulheres com incontinência urinária: uma revisão sistemática da literatura. Clin Interv Aging 13:957–965
11. Ghaderi F, Mohammadi K, Amir Sasan R, Niko Kheslat S, Osouei AE (2016) Effects of stabilization exercises focusing on pelvic floor muscles on low back pain and urinary incontinence in women. Urology 93:50–54. https://doi.org/10.1016/j.urology.2016.03.034
12. Llamas-Velasco S, Llorente-Ayuso L, Contador I, Bermejo-Pareja F (2015) Spanish versions of the Minimental State Examination (MMSE). Questions for their use in clinical practice. Rev Neurol 61(8):363–371. https://doi.org/10.3388/nn.6108.2015107
13. Keys A, Fidanza F, Karvonen MJ, Kimura N, Taylor HL (2014) Indices of relative weight and obesity*. Int J Epidemiol 43(3):655–665. https://doi.org/10.1093/ije/dyu058
14. Jerez K, Cifuentes M, Bennett C, Fuentes C, Cuidad D (2013) Resultados de la rehabilitación kinésica de piso pélvico en un grupo de mujeres con incontinencia de orina. Rev chil urol 78(1):29–32
15. Martínez S, Ferri A, Patiño S, Viñas S, Martínez C (2004) Entrevista clínica y valoración funcional del suelo pélvico. Fisioterapia 26(5):266–280. https://doi.org/10.1016/s0211-5638(04)73111-9
16. Laycock J, Jerwood D (2001) Pelvic floor muscle assessment: the PERFECT scheme. Physiotherapy 87 (12):631–642. https://doi.org/10.1016/S0031-9406(05)61108-X
17. Ferraz V, Cruz AA, Ferreira M, Oliveira Junior T, Christofoletti G, Pegorare A (2020) Effect of the pilates method on sexual function, pelvic floor muscle strength and quality of life of breast cancer survivors. Rev Bras Cancerol 66(2)
18. Nascimento-Correia G, Santos-Pereira V, Tahara N, Driusso P (2012) Efectos del fortalecimiento del suelo pélvico en la calidad de vida de un grupo de mujeres con incontinencia urinaria: estudio aleatorizado controlado. Actas Urol Esp 36(4):216–221. https://doi.org/10.1016/j.acurol.2011.07.007
19. Sutter Latorre G, Pigatto P, Costa Oliveira da Silva C, Pinto Miranda M, Feio Carneiro Nunes E (2020) Pelvic floor muscle strength in pilates practitioners. J Health NPEPS 5(1):147–159. https://doi.org/10.30681/252610103979
20. Marques S, da Silveira S, Pássaro A, Haddad J, Baracat E, Ferreira E (2020) Effect of pelvic floor and hip muscle strengthening in the treatment of stress urinary incontinence: a randomized clinical trial. J Manipulative Physiol Ther 43(3):247–256. https://doi.org/10.1016/j.jmpt.2019.01.007
21. Castellon AD, Mejías AC, Arecchabala MC, Soto MT (2007) Validacion de una escala de calidad de vida en un grupo de personas con esquizofrenia de la Region Metropolitana—Chile. Ciencia y Enfermeria 13(1):35–44. https://doi.org/10.4067/s0717-9553200700100005
22. Busquets MC, Serra RT (2012) Validación del cuestionario internacional consulta on incontinencia questionnaire short-form (ICIQ-SF) en una población chilena usuaria del fondo nacional de salud (FONASA). Rev Med Chil 140(3):340–346. https://doi.org/10.4067/S0034-98872012000300009
23. Sandvik H, Seim A, Vanvik A, Hunksaar S (2000) A severity index for epidemiological surveys of female urinary incontinence: comparison with 48-hour pad-weighing tests. Neurouroil Urodyn 19(2):137–145. https://doi.org/10.1002/(SICI)1520-6777(2000)19:2%3c137::AID-NAU4%3e3.0.CO;2-G
24. Vicente MT, Delgado S, Bandrés F, Ramírez MV, Capdevila L (2018) Valoración del dolor. Revista Comparativa de Escalas y Cuestionarios. Revista de la Sociedad Española del Dolor 25(4):228–236. https://doi.org/10.20986/resed.2018.3632/2017
25. Smolarek-Kolecna N, Englert-Golon M, Okrymowska P, Rożek-Piechura K, Słopień R, Pięta B (2021) Pelvic floor muscle training as a method supporting the treatment of pelvic floor dysfunctions in women. Clin Exp Obstet Gynecol 48(5):1022–1024. https://doi.org/10.31083/j.ceog480516
26. Kim H, Suzuki T, Yoshida Y, Yoshida H (2007) Effectiveness of multidimensional exercises for the treatment of stress urinary incontinence in elderly community-dwelling Japanese women: a randomized, controlled, crossover trial. J Am Geriatr Soc 55(12):1932–1939. https://doi.org/10.1111/j.1532-5415.2007.01447.x
27. Borg E, Kajiser L (2006) A comparison between three rating scales for perceived exertion and two different work tests. Scand J Med Sci Sports 16 (1):57–69. https://doi.org/10.1111/j.1600-0838.2005.00448.x
28. Ricci P, Freundlich O, Solá V, Pardo J (2008) Transcutaneous posterior tibial nerve stimulation in the treatment of urinary incontinence. Rev Chil Obstet Ginecol 73(3):209–213
29. Hentzen C, Haddad R, Sheikh Ismaiel S, Chesnel C, Robain G, Amarencos G et al (2018) Efficacy of posterior tibial nerve stimulation (PTNS) on overactive bladder in older adults. Eur Geriatric Med 9(2):249–253. https://doi.org/10.1007/s41999-017-0013-3
30. Teixeira A, Azevedo P, Henriques R, Batista J, Borges L, Barbareco L et al (2020) Effectiveness of transcutaneous tibial nerve stimulation at two different thresholds for overactive bladder symptoms in older women: a randomized controlled clinical trial. Maturitas 135(February):40–46. https://doi.org/10.1016/j.maturitas.2020.02.008
31. Valles-Antuña C, Pérez-Haro ML, González-Ruiz de LC, Quintás-Blanco A, Tamargo-Díaz EM, García-Rodríguez J et al (2017) Estimulación transcutánea del nervio tibial posterior en el tratamiento de la incontinencia urinaria de urgencia refractaria, de origen idiopático y neurogénico. Actas Urológicas Españolas 41(7):465–470. https://doi.org/10.1016/j.acuro.2017.01.009
32. Hunksaar S, Lose G, Sykes D, Voss S (2004) The prevalence of urinary incontinence in women in four European countries. BJU Int 93(3):324–330. https://doi.org/10.1111/j.1464-410x.2003.04609.x
33. Salgado-Maldonado A, Ramirez-Santana M (2020) Urinary incontinence in Chilean women: a prevalence study of the health profile and associated factors. Medwave 20(6)
34. Napal C, Bueno C, Echendia B, Egaña C, Lezaun R, Pasado SB (2004) Presente y Futuro de la incontinencia urinaria. Asoc Española Enferm en Urología 1(89):8–10
35. Puchades A, Muñoz A, Puchades R, Carcena L (2013) Una revisión sobre la incontinencia urinaria de...
esfuerzo. Asoc Española Enferm en Urología 124: 9–16

36. Brocklehurst JC (1993) Urinary-incontinence in the community—analysis of a Mori Poll. Brit Med J 306 (6881):832–834. https://doi.org/10.1136/bmj.306.6881.832

37. Wallner LP, Porten S, Meenan RT, Rosetti MCO, Calhoun EA, Sarma AV et al (2009) Prevalence and severity of undiagnosed urinary incontinence in women. Am J Med 122(11):1037–1042. https://doi.org/10.1016/j.amjmed.2009.05.016

38. Subak LL, Brown JS, Kraus SR, Brubaker L, Lin F, Richter HE et al (2006) The “costs” of urinary incontinence for women. Obstet Gynecol 107 (4):908–916. https://doi.org/10.1097/01.Aog.0000206213.48334.09

39. Mattiasson A, Djurhuus JC, Fonda D, Lose G, Nordling J, Stohrer M (1998) Standardization of outcome studies in patients with lower urinary tract dysfunction: a report on general principles from the Standardisation Committee of the International Continence Society. Neurourology Urodyn 17(3):249–253. https://doi.org/10.1002/(SICI)1520-6777(1998)17:3<3C24::AID-NAU9%3E3.0.CO;2-D

40. Cohen C, Carrasco M, Manriquez C, Bascur C (2017) Fortalecimiento de la musculatura del piso pélvico en gestantes en control en un centro de salud familiar: Un estudio experimental. Rev Chil Obstet Ginecol 82(5):471–479

41. Osorio L, Ortiz A, Muñoz P, Sacomori C (2018) Prevalence of urinary incontinence and sexual dysfunction of pregnant women assisted at a familiar health center in Santiago of Chile. Revista Cubana de Obstetricia y Ginecología 44(1):1–11

42. Cohen JF, Korevaar DA, Matczak S, Brice J, Chalumeau M, Toubiana J (2020) COVID-19-related mortality by age groups in Europe: a meta-analysis. medRxiv. 2020:2020.04.11.20061721-2020.04.11

43. Coyne KS, Kvasz M, Ireland AM, Milsom I, Kopp ZS, Chapple CR (2012) Urinary incontinence and its relationship to mental health and health-related quality of life in men and women in Sweden, the United Kingdom, and the United States. Eur Urol 61(1):88–95. https://doi.org/10.1016/j.eururo.2011.07.049

44. MacLennan AH, Taylor AW, Wilson DH, Wilson D (2000) The prevalence of pelvic floor disorders and their relationship to gender, age, parity and mode of delivery, p 1460–1470

45. Tahtinen RM, Cartwright R, Tsui JF, Aaltonen RL, Aoki Y, Cardenas JL et al (2016) Long-term impact of mode of delivery on stress urinary incontinence and urgency urinary incontinence: a systematic review and meta-analysis. Eur Urol 70(1):148–158. https://doi.org/10.1016/j.eururo.2016.01.037

46. Rortveit G, Daltveit AK, Hannestad YS, Hunskær S, Norwegian ES (2003) Urinary incontinence after vaginal delivery or cesarean section. N Engl J Med 348(10):900–907. https://doi.org/10.1056/NEJMoa021788

47. Bradley CS, Rahn DD, Nygaard IE, Barber MD, Nager CW, Kenton KS et al (2010) The questionnaire for urinary incontinence diagnosis (QUID): validity and responsiveness to change in women undergoing non-surgical therapies for treatment of stress predominant urinary incontinence. Neurourology Urodyn 29(5):727–734. https://doi.org/10.1002/nau.20818

48. Aslan E, Komurcu N, Beji NK, Yalcin O (2008) Bladder training and Kegel exercises for women with urinary complaints living in a rest home. Gerontology 54(4):224–231. https://doi.org/10.1159/000133565

49. Fan HL, Chan SSC, Law TSM, Cheung RYK, Chung TKH (2013) Pelvic floor muscle training improves quality of life of women with urinary incontinence: a prospective study. Aust N Z J Obstet Gynaecol 53(3):298–304. https://doi.org/10.1111/ajo.12075

50. Bertot A, Schwartzman R, Uchoa S, Wender MCO (2017) Effect of electromyographic biofeedback as an add-on to pelvic floor muscle exercises on neuromuscular outcomes and quality of life in postmenopausal women with stress urinary incontinence: a randomized controlled trial. Neurourology Urodyn 36(8):2142–2147. https://doi.org/10.1002/nau.23258

51. Kargar M, Talebizadeh M, Mirzaei M (2015) The effect of pelvic muscle exercises on urinary incontinence and self-esteem of elderly females with stress urinary incontinency, 2013. Global J Health Sci 7 (2):71–79. https://doi.org/10.5539/gjhs.v7n2p71

52. Klovinga A, Avery K, Sandvik H, Hunskær S (2009) Comparison of two questionnaires for assessing the severity of urinary incontinence: the ICIQ-US SF versus the incontinence severity index. Neurourology Urodyn 28(5):411–415. https://doi.org/10.1002/nau.20674

53. Wu JM, Vaughan CP, Goode PS, Redden DT, Burgio KL, Richter HE et al (2014) Prevalence and trends of symptomatic pelvic floor disorders in U.S. women. Obstetrics Gynecol 123(1):141–148. https://doi.org/10.1097/AOG.000000000000057

54. Anger J, Saigal C, Litwin M (2006) The prevalence of urinary incontinence among community dwelling adult women: results from the national health and nutrition examination survey. J Urol 175(2):601–604. https://doi.org/10.1016/S0022-5347(05)00242-9

55. Sacomori C, Vinter CR, Sperandio FF, Felden E, Cardoso FL (2015) Trabajos Originales Propuesta de puntos de corte para diferentes indicadores antropométricos en la predicción de la incontinencia urinaria en mujeres 80(3):229–235

56. Saadia Z (2015) Effect of age, educational status, parity and BMI on development of urinary incontinence—a cross sectional study in Saudi population. Materia Socio Medica 27(4):251–. https://doi.org/10. 5455/msm.2015.27.251-254

57. Lera L, Fuentes-Garcia A, Sanchez H, Albala C (2013) Validity and reliability of the SF-36 in Chilean older adults: the ALEXANDROS study.
58. Wang H, Feng X, Liu Z, Liu Y, Xiong R (2021) A rehabilitation programme focusing on pelvic floor muscle training for persistent lumbopelvic pain after childbirth: a randomized controlled trial. J Rehab Med 53(4):jrm00180-jrm. https://doi.org/10.2340/16501977-2812

59. Guzmán E, Concha Y, Lira C, Vásquez J, Castillo M (2021) Impacto de un contexto de pandemia sobre la calidad de vida de adultos jóvenes TT—impact of a pandemic context on the quality of life of young adults. Revista Cubana de Medicina Militar 50(2):13
Part II

Molecular Pathology of Endocrine and Muscular Disorders
Iodine Intake Based on a Survey from a Cohort of Women at Their Third Trimester of Pregnancy from the Bosque County Chile

María Cecilia Opazo, Camilo Fuentes Pena, Luis Méndez, Diana Rojas, Daniel Aguayo, Juan Carlos Oyanedel, Rodrigo Moreno-Reyes, Nelson Wollhk, Alexis M. Kalergis, and Claudia A. Riedel

Abstract

Adequate iodine nutrition is fundamental for all humans and is critical during pregnancy and lactation due to iodine forms part of the structure of thyroid hormones (THs) and it is required for THs function. Iodine is a scarce micronutrient that must be obtained from the diet. Sufficient iodine can be found in the nature from seafood and given it is not frequently consumed by Chileans, public health policies state that table salt in Chile must be iodized. Health plans must be monitored to determine if the intake of iodine is being appropriated and the population has not fallen in deficiency or excess. The aim of this work was to evaluate iodine intake in 26 women at the third trimester of pregnancy.

Supplementary Information The online version contains supplementary material available at https://doi.org/10.1007/978-3-031-26163-3_8.

M. C. Opazo · L. Méndez · A. M. Kalergis
Millennium Institute on Immunology and Immunotherapy, Santiago, Chile

M. C. Opazo
Instituto de Ciencias Naturales, Facultad de Medicina Veterinaria y Agronomía, Universidad de Las Américas, Santiago, Chile

C. Fuentes Pena · R. Moreno-Reyes
Department of Nuclear Medicine, Hôpital Erasme, Université Libre de Bruxelles, Brussels, Belgium

L. Méndez · D. Rojas
Escuela de Nutrición y Dietética, Facultad de Medicina, Universidad Andrés Bello, Santiago, Chile

D. Aguayo
Centro de Bioinformática y Biología Integrativa, Facultad Ciencias de la Vida Universidad Andrés Bello, Santiago, Chile

Agricultura Digital, Salfa Agrícola, Centro de Innovación Sustentable, Salinas y Fabrés S. A. Paine, Paine, Chile

N. Wollhk
Endocrine Section, Hospital del Salvador, Santiago de Chile, Department of Medicine, University of Chile, Santiago, Chile

J. C. Oyanedel
Facultad de Educación y Ciencias Sociales, Universidad Andrés Bello, Santiago, Chile

A. M. Kalergis
Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile

Departamento de Endocrinología, Facultad de Medicina, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile

C. A. Riedel (✉)
Facultad de Ciencias de La Vida, Universidad Andrés Bello, Santiago, Chile
e-mail: claudia.riedel@unab.cl

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
F. Simon and C. Bernabeu (eds.), Advances in Molecular Pathology, Advances in Experimental Medicine and Biology 1408, https://doi.org/10.1007/978-3-031-26163-3_8
Pregnant women are resident from El Bosque a low-income County located in Santiago de Chile. These Chilean pregnant women were recruited by nutritionist at the Centros de Salud familiar (CESFAM). A 24 h dietary recall (24 h-DR) was applied to them to evaluate iodine intake. Samples of urine and blood were taken by health professionals to analyze parameters of thyroid function and to measure urine iodine concentration (UIC). The survey analysis showed that the iodine consumption in these pregnant women derived mainly from salt, bread and milk and not from seafood. The survey analysis indicated that iodine intake was above the requirements for pregnant women. However, the average UIC indicated that iodine intake was adequate, suggesting the need to find a better parameter to determine iodine intake in pregnant women.

8.1 Introduction

Adequate iodine nutrition is fundamental for all humans, and it is critical during pregnancy and lactation. The main biological function of iodine is to be an essential component of the structure of thyroid hormones (HTs) [1]. Iodine is obtained from the diet as iodide, and it is concentrated at the thyroid gland by the Na⁺/I⁻ symporter (NIS) [2]. About the 70–80% of the iodine is concentrated by the thyroid gland. Iodine absorption occurs principally at upper small intestine where all different forms of iodine are reduced to iodide which is transported by NIS action at the apical surface of the enterocyte. NIS expression is regulated mainly by thyroid stimulating hormone (TSH) and iodine itself. TSH stimulates the synthesis of NIS and its targeting to the basolateral plasma membrane of thyrocytes. Meanwhile, acute high levels of iodine in the blood reduces NIS expression by the thyroid gland, this effect is known as the Wollk-Chaikoff effect. After iodide is being released to the circulation, it is taken up by the thyroid gland and kidney depending on physiological needs [3]. During pregnancy there is an increase in the amount of iodine required for the pregnant woman compared to normal adult. This is due to the maternal thyroid gland must synthesize THs for herself and the fetus at least until 20th week of gestation [2]. It has been reported that at the
beginning of pregnancy not only TSH stimulates the thyroid gland to transport iodide into the thyroid gland and to increase the THs synthesis, but also the human chorionic gonadotropin hormone (hCG). Thus, the maternal thyroid gland will increase iodide clearance and it will be subjected to a physiological challenge that in many women becomes a physiological stress [2]. In fact, it is highly frequent that at the beginning of pregnancy women developed transient hypothyroxinemia (HTX). It has been reported in humans and in animal models that HTX impairs cognition in the offspring. To overcome iodide deficiency in pregnancy, women are encouraged to increase iodine consumption. Unfortunately, iodine is found in very low concentrations at the soil and in vegetables, fruits, and meat which contributes with the prevalence of iodine deficiency worldwide [4]. To overcome this problem, in Chile, since 1960 public health policies had been developed to ensure that the table salt must be iodized to prevent iodine deficiency [5, 6]. However, the high consumption of salt has caused in Chilean population to be exposed to iodine excess intake and consequently high prevalence of thyroid diseases [7]. In Chile about 24% of the adult population suffers of thyroid diseases [8, 9]. Moreover, it has been reported that iodine deficiency or excess during gestation is responsible for growth retardation, short stature, bone malformations and cognitive impairment in the offspring [10, 11]. For these reasons iodine intake in pregnant women needs to be monitored to prevent the consequences of iodine deficiency or excess in the offspring. Therefore, knowing the status of iodine nutrition and thyroid function in pregnant women will be a valuable information for the developing of proper health policies. The assessment of iodine status is not an easy task due to all available biomarkers of nutritional iodine status have their limitations. The most frequently biomarker used index is urinary iodine concentration (UIC) [12]. UIC is a sensitive indicator of iodine intake during the days prior to sampling. However, UIC is not indicative of long-term iodine intake and of the iodine nutritional status. UIC can be applied as a population-based indicator of iodine nutritional status [13]. According to the World Health Organization (WHO), a median population of UIC below 100 µg/L for pregnant women is considered indicative of iodine deficiency. While values between 100 and 150 µg/L reflect normal iodine intake and values above 300 µg/L indicate excessive iodine intake [12]. The determination of THs as a biomarker of iodine intake is less sensitive and is only affected when iodine deficiency is severe [13, 14]. TSH can be used as a biomarker for iodine nutritional status mainly when iodine deficiency is also severe [15]. Tg is a thyroid specific protein and precursor of THs. It has been proposed that the levels of Tg in the blood can be used as an iodine status biomarker. This is because exist a positive relationship with thyroid mass increase [16]. During iodine deficiency Tg levels increase in serum. Importantly, to consider is the interference of anti-Tg antibodies in the serum. These antibodies can bind Tg reducing Tg levels and resulting in an inappropriate estimation of iodine status [17]. Moreover, assay reproducibility and standardization is still lacking in Tg available assays [17, 18]. Thyroid physiological alterations related to iodine intake have a U-shaped distribution [19], therefore, public health strategies focused on guaranteeing an adequate intake of iodine in the population should focus on maintaining levels within an optimal range. Scientific evidence has shown that iodine excess can induce physiological changes in susceptible groups, particularly those previously exposed to iodine deficiency, and pregnant or lactating women [20]. Several expert committees have pointed out the need to identify the most important dietary sources of iodine. Thus, this information will contribute to improve the data on the iodine content in foods and beverages [21]. This information will also allow to understand in more detail the population patterns of iodine intake. Therefore, by applying dietary assessment methods to estimate iodine intake, and thus be able to assess iodine status through dietary recommendations [22]. All food intake assessment methods pose several challenges, as many of the instruments used are time
consuming for participants and rely on memory, portion estimation, and precise frequency. Additionally, dietary methods must rely on accurate and reliable data about the chemical composition of different macronutrients and micronutrients in foods. Moreover, these methods should include native and traditional foods used from each country and region [23]. Regarding the determination of iodine intake, there are additional limitations, as the iodine content of foods can vary considerably between similar products, for example, as in dairy products or between the same species of seafood [24]. Twenty-four-hour dietary recalls (24 h-DR) are one of the most used dietary methods to qualitatively determine the consumption of one or more foods in nutritional research [23]. 24 h-DR can also be used to assess habitual iodine intake. However, all 24 h-DR developed must be validated for the specific nutrient and population that will be used [25]. On the other hand, the success of these methods relies on the recall and accuracy of whom answer the questions. An advantage of this method is that it is very useful for evaluating foods that contain high levels of a specific nutrient [26]. We think that this method can be applied to determine the intake of iodine in pregnant women population given that iodine must be present in high level in frequent type of food like are salt, bread and milk. Hence, the usefulness of this method will be for evaluating the nutritional contribution of bread and dairy products as a primary source of iodine, given their high and cross-sectional level of consumption in the Chilean population. According to the National Health Survey (ENS), practically the entire population reports consuming bread while 98% report consuming some type of dairy products, which corroborates the massiveness of the foods to be evaluated [27]. Several studies have used this strategy to evaluate iodine consumption and its nutritional sources, particularly in countries where iodine consumption is a constant concern, such as Spain [28], Norway [29, 30], Denmark [31], Poland [32], Australia [33], and England [34, 35]. In Latin America, some studies have been published on the Brazilian population [36]. In Chile there are no studies on the consumption of foods that contribute to iodine nutrition. The aim of this work is to determine the status of iodine nutrition in a cohort of Chilean pregnant women from El Bosque County, a low-income municipality located in Santiago de Chile. For that 24 h-DR was performed and the survey was analyzed by using a Food Processor Software. The iodine content in bread and milk that was used in this study derived from our data. This is the first work that compares iodine intake in Chilean pregnant women based in a 24 h-DR with UIC.

8.2 Methods

Study design and participants: Pregnant women at the third trimester of gestation were recruited at primary health care center from the following Centros de Salud Familiar (CESFAM) of El Bosque County: Carlos Lorca, Cóndores de Chile, Mario Salcedo, Orlando Letelier and Santa Laura from the Servicio de Salud Metropolitano Sur (SSMS). El Bosque is a Municipality located in the southern part of Santiago. According to the 2017 Census, the Municipality is home to 162,505 inhabitants (National Institute of Statistics) [37]. El Bosque has higher rates of poverty than the Metropolitan Region and National averages (14%, 11.1% and 13.7% respectively), as well as higher enrolment in the National Health Fund or public insurance (88.4%, 70% and 76.5%) (Ministry of Social Development) [38]. The inclusion criteria used in this study are shown in Table 8.1. Briefly, adult (> 18 years old) and single pregnancy women were included. Pregnant women that were recruited signed an informed consent and responded a brief health questionnaire to inform about their gestational age, parity, gravidity, weight, height, presence thyroid disease or other disease (chronic or not), daily medication, smoking habit, type, and frequency of intake of multivitamins with or without iodine supplementation. Five mL of blood were taken for measuring thyroid hormones,
TSH and thyroglobulin (Tg). Three to five mL of urine sample were taken for iodine and creatinine determination. Both blood and urine were obtained by health professionals that belong to the CESFAMs. Urine and plasma samples were stored at −20 °C until analyses. This study was approved by the ethical committee of the Servicio de Salud Metropolitano Sur (SSMS) (see ethical approval section).

UIC determination: Urine iodine concentration (UIC) was measured in duplicate at the Laboratorio de Endocrinología e Inmunología from Universidad Andrés Bello by using a modification of the Sandell-Kolthoff reaction with spectrophotometric detection (Epoch, Biotek) and with a method sensitivity of 12 μg /L [39]. Urine samples were frozen and kept at -20 °C until analysis. Briefly, the samples were mineralized by adding ammonium persulfate and homogenized by vortexing at 95°C for 40 min followed by cooling bath at 20–30 min. 50 μL of sample or standard were added to each well of a 96 well plate followed by a solution of arsenic acid and agitated for 1 min. After agitation, a solution of Cerium Ammonium (IV) sulfate was added and incubated for 30 min at room temperature. Then, the absorbance at a 450 nm wavelength was determined using a spectrophotometer. The values were interpolated from a standard curve ranging from 0 to 50 μg/dL of iodine.

Laboratory analyses: Creatinine (Cr) (mg/dL) in urine samples and free T₃ (fT₃) (pg/mL), total T₃ (tT₃) (ng/dL), free T₄ (fT₄) (ng/dL), total T₄ (tT₄) (μg/dL), thyroid stimulating hormone (TSH) (μUI/mL) and thyroglobulin (Tg) (ng/mL) in serum samples were measured in a certified laboratory (IEMA, Providencia, Santiago). Hormones and Tg were measured by chemiluminescence using a Maglumi 2000 and Immulite 2000 equipment respectively. Cr was measured using a BA400 equipment (IEMA, Providencia, Santiago).

24 h dietary recall (24 h-DR): A standard set of questionnaires were designed to collect basic information from participants. This information included health status, dietary information due to allergies, intolerances, food preferences, use of dietary supplements, salt, and condiments consumption. Experienced dieticians performed a 24 h-DR by phone followed by a food portion size estimation. The 24-h diet records included food or drink. Details of the food such as brand, preparation/cooking method, and weight at the time of consumption were registered. To analyze food preparations, the weight of all individual ingredients and the weight of the portion were registered for all the preparation consumed by the patient [40]. Discretionary salt intake, which correspond to salt added during cooking or at the table, was calculated according to standard referent portion sizes as pieces and/or spoons. The amount of iodine in salt was considered as 40 μg/g according to the last modification of the Chilean salt ionization program [5]. The iodine content in milk skim, whole milk, lactose-free milk, powdered milk, and traditional Chilean white bread (marraqueta/hallulla) was determined by Inductively Coupled Plasma Mass Spectroscopy (ICP-MS) (DICTUC). The values obtained by ICP-MS for bread and milk were included in the present study for the calculation of iodine intake. The iodine content values available in the United States Department of Agriculture (USDA) food composition database [41] were used as reference values for the rest of foods. Taking together all this data, the theoretical estimated iodine consumption (tEIC) was
computed using the ESHA Food Processor software (version 11.11.32; 2022) by a trained dietician.

Determination of iodine concentration in milk and bread by ICP-MS: Iodine content in whole milk, lactose-free whole milk, semi-skimmed liquid milk, liquid skimmed milk, lactose-free liquid skimmed milk, whole milk powder, powdered skim milk from Colón brand and bread white samples (and white traditional Chilean bread named hallula and marraqueta) by using Inductively Coupled Plasma-Mass Spectrometry (ICP-MS) briefly, iodine measurement were performed by the Norma ISO 20647:2015. First, a sample of bread or milk is digested in KOH at 105 ± 5 °C during. Then the iodine is stabilized in NH₄OH and Na₂S₂SO₃. Then, the samples were reconstituted and filtered. The filtrated sample was analyzed directly at the ICP-MS using praseodymium as internal standard. The quantification was performed through a calibration curve which followed the laboratory requirements: the error for each point was established as < 10% with an r value < 0.998. The set of samples plus blanks, were analyzed by duplicate and the reference material fulfill the acceptance criteria established as: Blank < LD, RSD < 10% with a recuperation of reference material between 90 and 110%. The ICP-MS equipment is located at the Dirección de Investigaciones Científicas y Tecnológicas de la Pontificia Universidad Católica de Chile, (DICTUC) in Santiago, Chile. These experimental values were used to determine the calculated iodine consumption (cIC) for each patient according to the data provided by the patient when interviewed by the dietician in the 24 h-RD.

Statistical analysis: Statistical analyses were conducted using the statistical functions in Python SciPy packages (version 1.9.9; available from: https://www.scipy.org/). All plots were drawn using Python Matplotlib package (version 3.6.0; available from: https://matplotlib.org/) and GraphPad Prism 9 (version 9.4.1). Student’s T test and Spearman’s or Pearson’s correlation coefficient (r) was calculated. Correlation will be considered as follows according to r value: 0–0.1 as negligible correlation; 0.10–0.39 as weak correlation; 0.4–0.69 as moderate correlation; 0.7–0.89 a strong correlation and 0.9–1 a very strong correlation according to the criteria proposed by Schober et al., [42]. Standardized values ((Value-Median)/SD) were used to obtain the histogram plots and scatter plots. A Locally Weighted Scatterplot Smoothing (LOWESS) representative curve was added. LOWESS smoothing was applied to show the trends for each variable pair (light red) and each point was colored according to the patient iodine consumption. P values were considered statically significant when *p < 0.05, **p < 0.01 and ***p < 0.001. Principal components analysis (PCA) was performed using a standardizing method and selecting the principal components by the “Kaiser rule” with eigenvalues > 1. Table S4 shows the PC summary for all PCs generated. PC1 and PC2 account for the 88% of the cumulative variance of the analyzed population.

8.3 Results

8.3.1 Characteristic of Pregnant Women that Participated in the Study

A total number of 72 pregnant women were recruited for this study. From them, only 26 women fulfilled the inclusion criteria. A 88.45% was recruited at CESFAM Carlos Lorca meanwhile a 7.69% and a 3.8% of all the patients were recruited at CESFAM Cóndores de Chile, and CESFAM Mario Salcedo respectively (Table 8.2). The characteristics of the recruited pregnant women are shown at Table 8.3. All patients were residents from El Bosque that have

Primary health service	Percentage	Count
CESFAM Carlos Lorca	88.45%	23
CESFAM Cóndores de Chile	7.69%	2
CESFAM Mario Salcedo	3.8%	1
an average age of 30.4 years old and average of gestational age of 23 weeks at the time they were recruited for this study. The survey, urine and blood samples were obtained at the third gestation trimester by health professionals. Anthropometrical data showed an average weight of 76.86 Kg and an average height of 159.8 cm. The calculated BMI value for this group of pregnant women was of 30.03. This BMI is considered obese according to WHO guidelines [43]. In fact, a 46% of the participants were considered obese and only a 11% showed a healthy weight. A 92.3% of patients were non-smokers with a very low percentage of chronic diseases as diabetes or hypertension (Table 8.4). Regarding vitamins and supplements consumption the 65.4% of the interviewed women were consuming iron meanwhile the 23.1% were consuming folic acid as prenatal supplements (Table 8.5).

8.3.2 Thyroid Physiological Parameters

To evaluate thyroid function in pregnant women, thyroid physiological parameters were measured. The levels of fT3, rT3, rT4, fT4, TSH and Tg were determined from blood samples and Cr and UIC were determine in urine samples. The global mean and S.E.M for each parameter can be found at Table 8.6. The mean of all thyroid physiological parameters was observed between the normal ranges for pregnant women [44–47].

Table 8.3 Characteristics of pregnant women included in the study

Characteristic	Value
Number of total Pregnant women included	26
El Bosque resident patients	100% (26)
Average age (years ± SEM)	30.4 ± 1.1
Average gestational age (weeks ± SEM)	22.8 ± 1.2
Average weight (Kg ± SEM)	76.9 ± 2.9
Average height (cm ± SEM)	159.8 ± 1.2
Average BMI (Kg/m² ± SEM)	30.0 ± 1.2
Average gravidity (number ± SEM)	1.9 ± 0.2
Average parity (number ± SEM)	0.8 ± 0.2

Table 8.4 Health status of pregnant women included in the study

Status	Percentage
Smoking	7.7% (2)
Non-smoking	92.3% (24)
Underweight patients (BMI < 18.5)	3.8% (1)
Healthy weight patients (18.5 < BMI < 24.9)	11.5% (3)
Overweight patients (25 < BMI < 29.9)	30.8% (8)
Obese patients (30 < BMI < 39.9)	46.2% (12)
Extremely Obese (BMI > 40)	3.8% (1)
Insulin resistant	7.7% (2)
Diabetic	7.7% (2)
Hypertensive	3.8% (1)
Hypothyroid	3.8% (1)
Others (Asma. Ulcerative colitis. Hyperemesis. Headache. depression)	7.7% (2)

In parenthesis the number of women with these characteristics is indicated.
Table 8.5 Information of supplement and vitamin consumption taken for pregnant women included in this study

Supplements	
Iron	65.4% (17)
Folic acid	23.1% (6)
Calcium	7.7% (2)
Omega 3	3.8% (4)

Vitamins	
Prenatal vitamins	15.4% (8)

In parenthesis the number of women with these characteristics is indicated

Table 8.6 Average for thyroid physiological parameters

Parameter	Value (± SEM)	Normal Range
Creatinuria (mg/dL ± SEM)	90.03 ± 11.72	(90–300 mg/dL)
Free T₃ (pg/mL ± SEM)	3.188 ± 0.053	(2.5–13 pg/mL)
Total T₃ (ng/dL ± SEM)	170 ± 9.70	(99–257 ng/dL) [40]
Total T₄ (µg/dL ± SEM)	10.98 ± 0.32	(7.3–15.1 µg/dL) [41]
Free T₄ (ng/dL ± SEM)	0.994 ± 0.017	(0.5–4.82 ng/dL) [41]
TSH (µUI/mL ± SEM)	2.025 ± 0.19	(0.3–3.5 µUI/mL) [42]
Thyroglobulin (ng/mL ± SEM)	17.83 ± 4.88	(5.3–25.2 ng/mL) [43]
UIC (µg/L ± SEM)	212.6 ± 19.84	(150–249 µg/L) [5]
I/Cr (µg/g ± SEM)	304.8 ± 34.76	(33–535 µg/g) [b]

[a] National Health Survey (ENS). Chile 2017
[b] Urinary iodine percentile ranges in the United States 2013 (normal ranges)

Individual analysis of thyroid physiological parameters for each patient are shown in Table S1. It was observed values in the normal range for fT₃, fT₄ and Tg. However, one patient had high levels of fT₃, another patient had low levels of fT₃, and one patient had high level of tT₄. Meanwhile, two patients had high levels of TSH and other two patients presented high levels of Tg. Regarding, to the individual values of UIC six patients presented a UIC value over the normal range and three patients had low levels of UIC. The values of UIC were corrected by Cr and the analysis showed that four patients had higher levels of UIC/Cr. Correlation analysis showed the absence of strong associations between thyroid physiological parameters (Fig. 8.2).

8.3.3 Food Iodine Content and Estimated Iodine Consumption

Iodine concentration in food varies greatly between regions because it depends on the soil and high levels of iodine are found in areas that are close to the sea [10, 48, 49]. In Chile the salt is iodized, and it has been shown that the population ingest 10 g of salt daily [50]. Chilean diet has a higher consumption of bread, milk, and salt [50]. Therefore, iodine concentration was measured for two types of highly consumed breads in the Chilean population and different types of milk available in the Chilean market by ICP-MS (see methodology). This methodology presents an increased selectivity and sensitivity for iodine.
determination [51]. The obtained results are shown in Table 8.7, interestingly we found that semi-skimmed liquid milk (Colún), lactose-free semi-skimmed liquid milk (Colún) and lactose-free skimmed liquid milk (Colún) have high concentrations of iodine 92.40 µg/100 mL, 91.50 µg/100 mL and 87.40 µg/100 mL respectively compared to the other types of milk subtypes (Table 8.7). Moreover, hallulla has the higher iodine concentration compared to marraqueta 22.98 µg/100 g and 8.49 µg/100 g respectively.

8.3.4 Theoretical Estimated Iodine Consumption (tEIC) and Calculated Iodine Consumption (cIC)

The theoretical estimated iodine consumption (tEIC) for each pregnant woman of this study was obtained from the analysis of a 24 h-DR by trained nutritionists using the Food processor software. The data from the 24 h-DR was entered into the Food Processor Software to obtain the tEIC. The value of iodine used for bread and milk in the analysis with the Food Processor Software corresponded to the value obtained from the ICP-MS determination (Table 8.7), meanwhile for any other food type the iodine value was the one provided the software manufacturer. The reason for that lies in that bread and milk are frequent consumed by pregnant women and the content of iodine in these types of foods varies greatly in Chile compared to other countries [50] (Table S3). The tEIC for each patient is shown in Table S3. Based on the recommended dietary allowance (RDA) the patient’s daily iodine dietary intake was classified as insufficient (<160 µg), adequate (160–220 µg) above the requirements (220–220–299 µg) or excessive (> 300 µg). Interestingly, the distribution of tEIC in this group of patients was 3.84% for those with insufficient iodine intake, 26.9% was under adequate iodine intake, 38.5% was above requirement and 30.8% under excessive iodine intake with a mean of tEIC for this group of pregnant women above requirements. Considering that the population residing at El Bosque County, is considered as a low-income population and that they consume higher amounts of bread, milk and salt, we estimated a calculated iodine consumption (cIC) based on the amounts of these foods consumed by the patients. The cIC considered the iodide ingested daily only due to bread, milk and salt daily consumed provided by the patient in the 24 h-DR and using the ICP-MS data previously obtained. The individual cIC for each pregnant woman and the mean plus SEM for the study group are shown in Table S2. At the Table 8.8, cIC can be compared to tEIC. The obtained tEIC was of 269.6 ± 16.40 µg/day meanwhile the cIC was of 222.6 ± 16.64 µg/day. Figure 8.1 shows the comparison between tEIC and cIC. The statistical analysis showed that there is not significant difference between tEIC and cIC (Fig. 8.1a).

Table 8.7 Iodine content in Chilean bread (µg/100 mg) and milk (µg/100 mL or µg/100 g) measured by ICP-MS

Type of Product	Iodine Content (µg/100 mg or µg/100 g)
Whole liquid milk (Colún)	22.60
Lactose free whole liquid milk (Colún)	22.40
Semi-skimmed liquid milk (Colún)	92.40
Lactose-free semi-skimmed liquid milk (Colún)	91.50
Skimmed liquid milk (Colún)	34.80
Lactose-free skimmed liquid milk (Colún)	87.40
Whole powdered milk (Colún)	50.30
Skimmed powdered milk (Colún)	42.40
Marraqueta bread	8.49
Hallulla bread	22.98
and the correlation analysis showed a strong correlation between both parameters t_{EIC} and c_{IC} (Fig. 8.1b) suggesting that salt, bread, and milk could be the principal types of food contributing with the daily dietary iodide intake of the Chilean pregnant women. A PCA analysis was performed over the variables contributing to t_{EIC} to understand their correlation and contribution to this parameter. Figure 8.1c shows the obtained loading plot. Here we observed the clustering of bread and milk showing a strong correlation between both variables with a moderate correlation with PC1 and PC2. Fish and seafoods presents a moderate correlation with PC1 and week correlation with PC2, on the other hand meat, present negligible correlation with both PC1 and PC2 meanwhile fruits and vegetables present a very strong negative correlation with PC2. Interestingly, there is cluster composed by snacks, rice and noodles and butter/ham/cheese showing

Patient	t_{EIC} (µg/day)	Classification according reference value* (160–220 µg/day)	c_{IC} (µg/day)	Classification according reference value* (160–220 µg/day)
1	378.71	Excessive	232.17	Above requirements
2	423.01	Excessive	358.76	Excessive
3	167.96	Adequate	100.24	Insufficient
4	270.50	Above requirements	149.33	Insufficient
5	253.57	Above requirements	171.52	Adequate
6	312.15	Excessive	271.79	Above requirements
7	162.63	Adequate	109.20	Insufficient
8	124.84	Insufficient	79.40	Insufficient
9	164.08	Adequate	154.83	Insufficient
10	263.50	Above requirements	225.12	Above requirements
11	249.51	Above requirements	222.15	Above requirements
12	261.95	Above requirements	214.49	Adequate
13	259.81	Above requirements	223.78	Excessive
14	190.39	Adequate	183.68	Adequate
15	295.25	Above requirements	242.87	Above requirements
16	254.83	Above requirements	167.47	Adequate
17	332.42	Excessive	303.97	Excessive
18	265.78	Above requirements	221.22	Adequate
19	384.51	Excessive	362.35	Excessive
20	436.99	Excessive	406.67	Excessive
21	380.34	Excessive	345.28	Excessive
22	190.10	Adequate	129.23	Insufficient
23	310.29	Excessive	285.26	Above requirements
24	241.86	Above requirements	190.49	Adequate
25	207.72	Adequate	172.98	Adequate
26	292.00	Above requirements	264.16	Above requirements
Mean ± SEM	269.6 ± 16.40	Above requirements	222.6 ± 16.64	Above requirements

*NIH Recommended Dietary Allowances (RDAs) for Iodine. Insufficient < 160 µg/day; Adequate 160–220 µg/day; Above requirements 220–299 µg/day; Excessive > 300 µg/day
positive correlation between them and a strong correlation with PC1 but moderate correlation with PC2. Interestingly, salt and eggs does not cluster with any variable presenting opposite directions showing no correlation between them. Nevertheless, salt is clustering with tEIC and cIC which is showing a positive strong correlation between them, with a lesser angle with cIC suggesting a very strong positive correlation between salt and cIC.

8.3.5 Matrix Correlation Analysis

To evaluate the correlation between tEIC, clinical and anthropometric parameters, we perform a correlation analysis matrix. The obtained results are shown in Fig. 8.2. No or weak correlation was observed between tEIC and parameters. A moderate correlation was found between fT3 and fT3 and between fT3 and fT4. Moreover, a moderate correlation was observed Cr with UIC.
and I/Cr. Interestingly, a moderate correlation was observed between tT₃ and age, on other hand tT₄ present a moderate correlation with Tg and height. As expected, a strong correlation was observed between weight and BMI. These results are shown in Fig. 8.2.

8.4 Discussion

Proper thyroid function and iodide consumption during pregnancy are essential aspects for fetus development [52]. There is scarce information regarding thyroid function and iodide intake for Chilean pregnant women and this information is necessary to take proper public health decisions. Specially, in Chile where the prevalence of thyroid diseases is ten times higher than most countries. This study contributes with information regarding iodine consumption and the types of foods that contribute to iodine intake in a cohort of pregnant women from Chile. Our data shows that the intake of iodine based on tEIC and cIC is above requirement, and in contrast the UIC and UIC/Cr values fall into adequate. Moreover, this study shows that milk and bread are the type of food besides salt that contributes better to the intake of iodine in the diet of Chilean pregnant women. The iodine concentration in bread and milk determined in this study used ICP-MS, a very sensitive technique [53–55]. The 24 h-DR revealed that bread and milk are the types of food most consume by pregnant women from this study. Therefore these foods were chosen for the
analysis. The content of iodine for whole milk was 22.60 µg/100 mL which is similar to the value reported using the same technique by United States (~ 22.2 µg/100 mL) [55]. Interestingly, the iodine content in semi and skimmed milks was higher than in whole milks (Table 8.7). The highest value was 92.4 µg/100 mL in the semi-skimmed liquid milk and 42.40 µg/100 g for powdered skimmed milk. It has been reported higher values of iodine content by using ICP-MS. Similar to our determination are the case reported from Finland and New Zealand that indicated 540 µg/Kg [48] and 40–150 µg/Kg [49] respectively of iodine content in skimmed milk. Tinggi et al., reported 3.48 mg/Kg of iodine in non-fat milk [55] a higher content of iodide that we found. Like Tinggi et al., Todorov et al., reported higher values of iodine in non-fat milk (342 µg/100 g) by using ICP-MS. This information is very relevant for chilean public health medicine to aware that pregnant women consuming skim milk should reduce the salt intake to avoid high iodine ingestion [53, 56]. Dahl et al., reported 23, 2 µg/100 mL of iodine content in non-fat milk using ICP-MS [57]. The reason for these variations on iodide concentration in milk between different countries and between whole and skimmed milk are unknown. Factors like the region, manufacture procedures and period of the year could be interesting possibilities to analyze for the variations on iodine content in milk. We found that the content of iodine in Chilean bread (marraqueta) was 8.49 µg/100 g this value indicated that the amount of iodine in Chilean bread was lower than the reported for Leiva et al., in 2002. In fact, they reported 760 µg/g for hallulla and 830 µg/g for marraqueta [6]. The reduction of iodine content in bread can be due to the modification of the iodization health plan in Chile aimed to reduce the intake of iodine [5]. In fact, the iodine content in 8.49 µg/100 g for marraqueta and 22.98 µg/100 g for hallulla were similar to 5.6 µg/100 g reported by Chilean Iodine Educational Bureau in 1952, before the startup of iodization health plan in Chile [58]. In this work, based on the analysis of the 24 h-DR the tEIC applied to pregnant women we found that this population has an iodine intake above the recommended dietary based on the range given by NIH Recommended Dietary Allowances (RDAs) for iodine [59]. The same conclusion was obtained if we only considered the iodine intake due to the consumption of bread, milk, and salt (cIC, Table S2). Both tEIC and cIC values fall above the requirements established for proper iodine intake during pregnancy (Table 8.8 and Fig. 8.1). In fact, no significant differences were observed between tEIC and cIC (Fig. 8.1a). Moreover, a strong correlation was found among these values (Fig. 8.1b), suggesting cIC can be used as a fairly approximation to determine the daily intake of iodine in pregnant women population. Interestingly, iodine content from bread, milk, and salt (cIC) accounted for the ~ 80% of tEIC, indicating that these foods are the main contributors to the daily iodine intake in our group of pregnant women. Based on Fig. 8.1c we would like to emphasize that the values of iodine in both tEIC and cIC correlated better with iodine in salt, milk, and bread than with the value of iodine in seafood. This observation is very relevant because seafood has high iodine content, suggesting that this group has low consumption of seafood. UIC and UIC/Cr were evaluated in the same group of pregnant women that the survey was applied (Table 8.6). The average values obtained for UIC and UIC/Cr indicated that this group of pregnant women had an adequate of iodine intake (Table 8.6). However, we did not find correlation between tEIC or cIC and UIC or UIC/Cr (Fig. 8.2). Mainly, all pregnant women studied in this work showed normal levels of thyroid hormones, TSH and Tg and one or two cases showed values over or lower the normal range (Table S1) [44–46]. Based on Fig. 8.2 UIC or UIC/Cr did not correlate with thyroid hormones or TSH suggesting that THs and TSH does not reflex or correlate with UIC or UIC/Cr. Therefore, we emphasize the necessity to search for better parameters to follow thyroid function and iodine intake individually in pregnant women. This study recruited a small cohort of pregnant women that have in common that they are resident of the same Chilean County, and they were at the same
gestational age when the survey and biological samples were taken. Therefore, our conclusions can only be interpreted for this group and cannot be extrapolated to other Chilean pregnant groups. However, our study indicate that it is necessary to analyze the iodine content in the food and to measure thyroid parameters like thyroid hormones, TSH, Tg, UIC and UIC/Cr to obtain more representative date for Chilean pregnant women. Specially, all these information is important because in Chile the prevalence of thyroid disease is around 24% [5, 27].

8.5 Conclusion

In this work we reported the iodine intake obtained from a 24 h-DR survey in a small cohort of pregnant women was above requirements. These women are from the same Chilean county and were at the same gestational age. The average of cEIC fall above requirements based on the range of proper iodine intake given by RDA. Our data support that the iodine consumption in these pregnant women derived mainly from salt, bread, and milk and not from seafood or other types of food analyzed in the 24-h-DR. This is the first study that incorporates the content of iodine for Chilean bread and milk determined using the ICP-MS, a very sensitive technique for iodine determination. This determination showed that the intake of iodine is above requirements in a low-income population. Even though, cIC did not correlate with the UIC of these pregnant women and the UIC falls in inadequate iodine consumption, the above presented results emphasize the need to find a better parameter and to combine different methodologies to assess iodine intake in pregnant women.

Statements and Declarations

Funding This study was funded by the Millennium Institute on Immunology and Immunotherapy PROGRAMA ICM—ANID, ICN2021_045; VI Comisión Mixta de Cooperación entre Chile y la Región de Valonia-Bruselas; Proyecto Núcleo UNAB DI-03-19/N; and FONDECYT #1191300.

Disclosure of Interests All authors declare they have no conflict of interest.

Ethical Approval All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards. Approval was granted by the Ethical Committee at the Servicio Metropolitano de Salud Sur (SSMS) MEMORANDUM No: 070/2020.

References

1. McDonnell G, Russell AD (1999) Antiseptics and disinfectants: activity, action, and resistance. Clin Microbiol Rev 12:147–179
2. Glinoer D (1997) Maternal and fetal impact of chronic iodine deficiency. Clin Obstet Gynecol 40:102–116. https://doi.org/10.1097/00003081-199703000-00011
3. Callejas L, Mallesara S, Orlander PR (2016) Iodine intake and healthy aging. In: Molecular basis of nutrition and aging: a volume in the molecular nutrition series, pp. 583–597. https://doi.org/10.1016/B978-0-12-801816-3.00041-8
4. Yang J, Zhu L, Li X et al (2017) Maternal iodine status during lactation and infant weight and length in Henan Province, China. BMC Pregnancy Childbirth 17:1–6. https://doi.org/10.1186/S12884-017-1569-0
5. Capítulo VI (2022) Bases para la discusión de una nueva política nacional de yodación como alternativa para disminuir la prevalencia de la enfermedad tiroidea en Chile—Centro Políticas Púlicas UC. https://politicaspublicas.uc.cl/publicacion/capitulo-vi-bases-para-la-discusion-de-una-nueva-politica-nacional-de-yodacion-como-alternativa-para-disminuir-la-prevalencia-de-la-enfermedad-tiroidea-en-chile/. Accessed 2 Mar 2022
6. Leiva BL, Braverman L, Muzzo BS (2002) Aporte del pan a la nutrición de yodo del escolar chileno. Revista chilena de nutrición 29:62–64. https://doi.org/10.4067/S0717-75182002000100009
7. Ramezani Tehrani F, Nazarpour S, Behboudi-Gandevani S (2021) Isolated maternal hypothyroxinemia and adverse pregnancy outcomes: a systematic review. J Gynecol Obstet Hum Reprod 50
8. Ghirri P, Lunardi S, Boldrini A (2014) Iodine supplementation in the Newborn. Nutrients 6:382–390. https://doi.org/10.3390/nu6010382
9. Ahad F, Ganie SA (2010) Iodine, Iodine metabolism and Iodine deficiency disorders revisited. Indian J Endocrinol Metab 14:13–17
10. Opazo MC, Coronado-Arrázola I, Vallejos OP et al (2020) The impact of the micronutrient iodine in health and diseases. Crit Rev Food Sci Nutr

11. Opazo MC, Haensggen H, Bohnwald K et al (2017) Imprinting of maternal thyroid hormones in the offspring. Int Rev Immunol 36:240–255. https://doi.org/10.1080/08830185.2016.1277216

12. WHO, UNICEF I Assessment of iodine deficiency disorders and monitoring their elimination

13. Pearce EN, Caldwell KL (2016) Urinary iodine, thyroid function, and thyroglobulin as biomarkers of iodine status. Am J Clin Nutr 104(Suppl):898S-901S. https://doi.org/10.3945/ajcn.115.110395

14. Burke CW, Shakespear RA (1976) Triiodothyronine and thyroxine in urine. II. renal handling, and effect of urinary protein. J Clin Endocrinol Metab 42:504–513. https://doi.org/10.1210/JCEM-42-3-504

15. Sun Y, Teng D, Zhao L, et al (2022) Iodine deficiency is associated with increased thyroid hormone sensitivity in individuals with elevated TSH. Eur Thyroid J 11. https://doi.org/10.1530/ETJ-21-0084

16. Veibjerg P, Knudsen N, Perrild H et al (2009) Thyroglobulin levels among iodine deficient pregnant women living in Northern Ireland. Eur J Clin Nutr 76(11):1542–1547. https://doi.org/10.1038/s41430-022-01144-2

17. Hollowell JG, Staehling NW, Dana Flanders W et al (2002) Serum TSH, T4, and thyroid antibodies in the United States population (1988 to 1994); national health and nutrition examination survey (NHANES III). J Clin Endocrinol Metab 87:489–499. https://doi.org/10.1210/JCEM.87.2.8182

18. Bilek R, Dvořáková M, Grimmichová T, Jiskra J (2020) Iodine, thyroglobulin and thyroid gland. Physiol Res 69:S225. https://doi.org/10.33549/PHYSIORES.934514

19. Katagiri R, Yuan X, Kobayashi S, Sasaki S (2017) Effect of excess iodine intake on thyroid diseases in different populations: a systematic review and meta-analyses including observational studies. PLoS ONE 12:e0173722. https://doi.org/10.1371/journal.pone.0173722

20. Rohner F, Zimmermann M, Jooste P et al (2014) Biomarkers of nutrition for development–iodine review. J Nutr 144:1322S–1342S. https://doi.org/10.3945/jn.113.181974

21. Ershow AG, Skeaff SA, Merkel JM, Pehrsson PR (2018) Development of databases on iodine in foods and dietary supplements. Nutrients 10. https://doi.org/10.3390/NUT10010100

22. Shim J-S, Oh K, Kim HC (2014) Dietary assessment methods in epidemiologic studies. Epidemiol Health 36:e2014009. https://doi.org/10.4178/EPH/E2014009

23. Nerhus I, Markhus MW, Nilsen BM et al (2018) Iodine content of six fish species, Norwegian dairy products and hen’s egg. Food Nutr Res 62:1291. https://doi.org/10.29219/FNR.V62.1291

24. Rasmussen L, Ovesen L, Bülow I et al (2001) Evaluation of a semi-quantitative food frequency questionnaire to estimate iodine intake. Eur J Clin Nutr 55((4):287–292. https://doi.org/10.1038/sj.ejcn.1601156

25. Authority EFS (2014) Guidance on the EU menu methodology. EFSA J 12:3944. https://doi.org/10.2903/j.efsa.2014.3944

26. ENCUESTA NACIONAL DE SALUD 2016–2017 Segunda entrega de resultados

27. Murcia M, Rebagliato M, Espada M et al (2010) Iodine intake in a population of pregnant women: INMA mother and child cohort study. Spain. J Epidemiol Community Health (1978) 64:1094–1099. https://doi.org/10.1136/JECH.2009.092593

28. Niess S, Aakre I, Kjellevold M et al (2019) Validation and reproducibility of a new iodine specific food frequency questionnaire for assessing iodine intake in Norwegian pregnant women. Nutr J 18:1–12. https://doi.org/10.1186/S12937-019-0489-4

29. Markhus MW, Kvestad I, Midtbø LK et al (2018) Effects of cod intake in pregnancy on iodine nutrition and infant development: study protocol for Mommy’s food—a randomized controlled trial. BMC Nutrition 2018 4:1 4:1–8. https://doi.org/10.1186/S40795-018-0215-1

30. de Bourdeaudhuij I, te Velde S, Brug J et al (2008) Personal, social and environmental predictors of daily fruit and vegetable intake in 11-year-old children in nine European countries. Eur J Clin Nutr 62:834–841. https://doi.org/10.1038/SJ.EJCN.1602794

31. Głąbska D, Malowaniec E, Guzek D (2017) Validity and reproducibility of the iodine dietary intake questionnaire assessment conducted for young polish women. Int J Environ Res Pub Health 14:700. https://doi.org/10.3390/IJERPH14070700

32. Condo D, Makrides M, Skeaff S, Zhou SJ (2015) Development and validation of an iodine-specific FFQ to estimate iodine intake in Australian pregnant women. Br J Nutr 113:944–952. https://doi.org/10.1017/S0007114514500197

33. Combet E, Lean MEJ (2014) Validation of a short food frequency questionnaire specific for iodine in UK females of childbearing age. J Hum Nutr Diet 27:599–605. https://doi.org/10.1111/JHN.12219

34. Bouga M, Lean MEJ, Combet E (2018) Iodine and pregnancy—a qualitative study focusing on dietary guidance and information. Nutrients 10:408. https://doi.org/10.3390/NUT10040408

35. Cardoso MA, Tomita LY, Lagana EC (2010) Assessing the validity of a food frequency questionnaire among low-income women in São Paulo, southeastern Brazil. Cad Saude Publica 26:2059–2067. https://doi.org/10.1590/S0102-311X2010001100007
37. Censo (2017). http://www.censo2017.cl/microdatos/. Accessed 2 Nov 2022.
38. Observatorio Social—Ministerio de Desarrollo Social y Familia. http://observatorio.ministeriodeesarrollosocial.gob.cl/encuesta-casen-en-pandemia-2020. Accessed 2 Nov 2022.
39. Jooste PL, Strydom E (2010) Methods for determination of iodine in urine and salt. Best Pract Res Clin Endocrinol Metab 24:77–88. https://doi.org/10.1016/J.BEEM.2009.08.006
40. Poslusna K, Ruprich J, de Vries JHM et al (2009) Misreporting of energy and micronutrient intake estimated by food records and 24 hour recalls, control and adjustment methods in practice. Br J Nutr 101(Suppl 2). https://doi.org/10.1017/S0007114509990602
41. USDA. https://www.usda.gov/. Accessed 23 Oct 2022.
42. Schober P, Schwarte LA (2018) Correlation coefficients: appropriate use and interpretation. Anesth Analg 126:1763–1768. https://doi.org/10.1213/ANE.0000000000002864
43. Obesity and overweight. https://www.who.int/news-room/fact-sheets/detail/obesity-and-overweight. Accessed 20 Oct 2022.
44. Soldin OP, Tractenberg RE, Soldin SJ (2004) Differences between measurements of T4 and T3 in pregnant and nonpregnant women using isotope dilution tandem mass spectrometry and immunoassays: are there clinical implications? Clin Chim Acta 347:61–69. https://doi.org/10.1016/J.CCCN.2004.03.033
45. Karakosta P, Chatzi L, Bagkeris E et al (2011) First- and second-trimester reference intervals for thyroid hormones during pregnancy in “rhea” mother-child cohort, Crete, Greece. J Thyroid Res. https://doi.org/10.4061/2011/490783
46. Galoiu S (2016) First trimester of pregnancy reference ranges for serum TSH and thyroid tumor reclassified as benign. Acta Endocrinologica (Bucharest) 12:242–243. https://doi.org/10.4183/AEB.2016.242
47. Nakamura S, Sakata S, Komaki T et al (1984) Serum thyroglobulin concentration in normal pregnancy. Endocrinol Jpn 31:675–679. https://doi.org/10.1507/ENDOCRJR1954.31.675
48. Varo P, Saari E, Paaso A, Koivistoinen P (1982) Iodine in finnish foods. Int J Vitam Nutr Res 52:80–89
49. Cressey PJ (2003) Iodine content of New Zealand dairy products. J Food Compos Anal 16:25–36. https://doi.org/10.1016/S0889-1575(02)00132-1
50. Gormaz T, Cortés S, Tiboni-Oschiulewski O, Weisstaub G (2022) The chilean diet: is it sustainable? Nutrients 14:3103. https://doi.org/10.3390/NUI4153103
51. Todorov TI, Gray PJ (2016) Analysis of iodine in food samples by inductively coupled plasma-mass spectrometry. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 33:282. https://doi.org/10.1080/19440049.2015.1131337
52. Glimoer D (2007) The importance of iodine nutrition during pregnancy. Public Health Nutr 10:1542–1546. https://doi.org/10.1017/S1368980007360886
53. Todorov TI, Gray PJ (2016) Analysis of iodine in food samples by inductively coupled plasma-mass spectrometry. 33:282–290. https://doi.org/10.1080/19440049.2015.1131337
54. Tinggi U, Schoendorfer N, Davies PSW et al (2012) Determination of iodine in selected foods and diets by inductively coupled plasma-mass spectrometry. Pure Appl Chem 84:291–299. https://doi.org/10.1351/PAC-11-08-03/MACHINEREADABLECITATION/RIS
55. Vance KA, Makhmudov A, Shakirova G et al (2018) Determination of iodine content in dairy products by inductively coupled plasma mass spectrometry. At Spectrosc 39:95
56. Niero G, Franzoi M, Vigolo V et al (2019) Validation of a gold standard method for iodine quantification in raw and processed milk, and its variation in different dairy species. J Dairy Sci 102:4808–4815. https://doi.org/10.3168/jds.2018-15946
57. Dahl L, Opsahl JA, Meltzer HM, Julshamn K (2003) Iodine concentration in Norwegian milk and dairy products. Br J Nutr 90:679–685. https://doi.org/10.1079/BJN2003921
58. Iodine content of foods; annotated bibliography 1825–1951, with review and tables | WorldCat.org. https://www.worldcat.org/es/title/4664098. Accessed 29 Oct 2022.
59. Iodine—dietary reference intakes for Vitamin A, Vitamin K, Arsenic, Bromine, Chromium, Copper, Iodine, Iron, Manganese, Molybdenum, Nickel, Silicon, Vanadium, and Zinc—NCBI Bookshelf. https://www.ncbi.nlm.nih.gov/books/NBK222323/. Accessed 29 Oct 2022.
Appraisal of the Neuroprotective Effect of Dexmedetomidine: A Meta-Analysis

Sebastian Gatica, Cristobal Aravena, Yolanda Prado, Diego Aravena, Cesar Echeverría, Juan F. Santibanez, Claudia A. Riedel, Jimmy Stehberg, and Felipe Simon

Abstract

Dexmedetomidine is an adrenergic receptor agonist that has been regarded as neuroprotective in several studies without an objective measure to it. Thus, the aim of this meta-analysis was to analyze and quantify the current evidence for the neuroprotective effects of dexmedetomidine in animals. The search was performed by querying the National Library of Medicine. Studies were included based on their language, significance of their results, and complete availability of data on animal characteristics and interventions. Risk of bias was assessed using SYRCLE’s risk of bias tool and certainty was assessed using the ARRIVE Guidelines 2.0. Synthesis was performed by calculating pooled standardized mean difference and presented in forest plots and tables. The number of eligible records included per outcome is the following: 22 for IL-1β, 13 for IL-6, 19 for apoptosis, 7 for oxidative stress, 7 for Escape Latency, and 4 for Platform Crossings. At the cellular level, dexmedetomidine was found protective against production of IL-1β (standardized mean difference (SMD) = −4.3 [−4.8; −3.7]) and IL-6 (SMD = −5.6 [−6.7; −4.6]), apoptosis (measured through TUNEL, SMD = −6.0 [−6.8; −4.6]), and oxidative stress (measured as MDA production, SMD = −2.0

Supplementary Information The online version contains supplementary material available at https://doi.org/10.1007/978-3-031-26163-3_9.

S. Gatica · C. Aravena · Y. Prado · D. Aravena · C. A. Riedel · F. Simon Laboratory of Integrative Physiopathology, Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile e-mail: s.gaticafernandez@uandesbello.edu F. Simon e-mail: fsimon@unab.cl

J. F. Santibanez
Institute for Medical Research, National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia

J. F. Santibanez
Integrative Center for Biology and Applied Chemistry (CIBQA), Bernardo O’Higgins University, Santiago, Chile

F. Simon
Millennium Nucleus of Ion Channel-Associated Diseases, Universidad de Chile, Santiago, Chile

J. Stehberg
Laboratory of Neurobiology, Institute of Biomedical Sciences, Faculty of Medicine and Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023

F. Simon and C. Bernabeu (eds.), Advances in Molecular Pathology, Advances in Experimental Medicine and Biology 1408, https://doi.org/10.1007/978-3-031-26163-3_9
(−2.4; −1.4)) exclusively in the central nervous system. At the organism level, dexmedetomidine improved behavioral outcomes measuring escape latency (SMD = −2.4 [−3.3; −1.6]) and number of platform crossings (SMD = 9.1 [−6.8; −11.5]). No eligible study had high risk of bias and certainty was satisfactory for reproducibility in all cases. This meta-analysis highlights the complexity of adrenergic stimulation and sheds light into the mechanisms potentiated by dexmedetomidine, which could be exploited for improving current neuroprotective formulations.

Keywords
Adrenergic · Dexmedetomidine · Neuroprotection · Nervous system · Inflammation · Oxidative stress

Abbreviations
AR Adrenergic receptor
ARRIVE Animal Research: Reporting of In Vivo Experiments
cAMP Cyclic adenosine monophosphate
CI Confidence interval
CNS Central nervous system
DAG Diacylglycerol
DRG Dorsal root ganglion
GIRKs G protein-coupled inwardly-rectifying K⁺ channels
MDA Malondialdehyde
NMDAR NMDA-type glutamatergic receptors
OXPHOS Oxidative phosphorylation
OSP Outlier, significance, and precision
PKA Protein kinase A
PLC Phospholipase C
PIP2 Phosphatidylinositol 4,5-bisphosphate
PKC Protein kinase C
PRISMA Preferred Reporting Items for Systematic reviews and Meta-Analyses
ROS Reactive oxygen species
SMD Standardized mean difference
SYRCLE SYstematic Review Centre for Laboratory animal Experimentation
TUNEL Terminal deoxynucleotidyl transferase (TdT) dUTP Nick-End Labeling

9.1 Introduction
The preservation of normal physiological functions after insult has been pursued by physicians for centuries. From Hippocrates advising to use snow and ice to reduce hemorrhage in wounded soldiers around 400 BCE, to the first scientific records of the use of hypothermia to preserve physiological functions after traumatic brain injury, asphyxia, and cardiac arrest, strides to regain wellness have been a driving motive throughout history [1]. When presented with a physiological insult, the holistic conception of a human subsides to a more equivocal one carrying an implicit hierarchy with cognitive functions at the pinnacle [2]. Ergo, improving neurological outcomes after biological, physical, or chemical insult becomes pivotal for individual-wide homeostasis. When the limit of adaptive neural responses to injurious agents (e.g., pathogenic bacteria, radiation), stress (e.g., sleep deprivation, traumatic injury, spinal injury, surgery), or deprivation of blood nutrient supply (e.g., during ischemia or hemorrhage) is exceeded, irreversible injury ensues and alternatives for cell fate are (canonically) necrosis or apoptosis. During the onset of membrane damage, main sources of cell stressors include mitochondria (releasing reactive oxygen species [ROS], useful for oxidative phosphorylation [OXPHOS] and the electron transport chain [3]), unconfined lysosomal enzymes, and release of misfolded proteins, activating pro-apoptotic proteins [4], all contributing synergistically to create a recursive pro-inflammatory environment compromising neural function [5] and increasing the risk of mortality [6, 7]. Thus, as long as there are human
activities carrying an implicit chance for neural injury, multivariate, rigorous, and objective appraisal of the effects of novel compounds for neuroprotection will remain a critical need.

Different types of \(\alpha_2 \) adrenergic isoreceptors have been described throughout the body. While \(\alpha_{2B} \) adrenergic receptor (AR) is present and characteristic of peripheral vascular smooth muscle [8], \(\alpha_{2A} \text{AR} \) and \(\alpha_{2C} \text{AR} \) are widely distributed throughout the central nervous system (CNS) [9, 10], of which, the predominant type is the \(\alpha_{2A} \text{AR} \) [11], where it controls adrenergic neuronal exocytosis [12], mediates sedation, analgesia, and sympathetic tone [13, 14].

Dexmedetomidine, an imidazole compound [15], can bind plasma proteins, cross the blood–brain barrier [16], and effectively interact with \(\alpha_{2A} \text{AR} \), which has been described as the predominant isoreceptor mediating the antinociceptive, sedative, and hypothermic actions of dexmedetomidine in the CNS [13]. Intracellularly, stimulation of \(\alpha_{2A} \text{AR} \) by dexmedetomidine leads to the activation of heterotrimeric G \(_i\) \(\alpha \) subunit, inhibition of adenyl cyclase, decrease in cyclic adenosine monophosphate (cAMP) formation, and the preservation of protein kinase A (PKA) resting state [17]. In synchrony, activation of G\(_{i\alpha}\) subunit leads to uncoupling and release of the G\(_i\)-associated G\(_{\beta\gamma}\) subunit, which binds and opens G protein-coupled inwardly-rectifying K\(^+\) channels (GIRKs), increasing K\(^+\) permeability, hyperpolarizing the cell membrane, and decreasing excitability of neurons [18]. Additionally, activation of the G\(_i\)-associated G\(_{\beta\gamma}\) subunit directly inhibits Ca\(_{\text{v}2}\) channels, thus modulating neurotransmitter and hormone release [19]. Moreover, \(\alpha_{2A} \text{AR} \) G\(_i\)-associated G\(_{\beta\gamma}\) subunit leads to phospholipase C (PLC) activation, cleavage of phosphatidylinositol 4,5-bisphosphate (PIP\(_2\)), increased [Ca\(^{2+}\)], calmodulin activation, and Src-dependent phosphorylation of Erk1/2 [20, 21], as well as the activation of protein kinase C (PKC) after PLC release of diacylglycerol (DAG) in the presence of increased [Ca\(^{2+}\)] [22].

Experimental evidence of dexmedetomidine as a neuroprotective agent has been documented in vivo at both the cellular (protecting against apoptosis, the production of ROS, and increased levels of pro-inflammatory cytokines) and full organism level (preventing neurocognitive deterioration [23, 24] and mortality [25]). For its neuroprotective effects, several molecular mechanisms have been proposed in a wide combination of noxious conditions, among which dexmedetomidine has been reported to significantly reduce levels of hippocampal pro-apoptotic proteins Cyt-c, Apaf-1, and caspase-3 [26], to regulate the p38/c-Myc/CLIC4 signaling pathway leading to apoptosis in the hippocampus [27], to inhibit apoptosis via the HDAC5/NPAS4/MDM2/PSD-95 axis [28], to reduce IL-6 levels in the cortex via pJAK2 and pSTAT3 dependent routes [29], to inhibit ROS production in dorsal root ganglion (DRG) neurons via intracellular signaling routes involving Bax and Bcl-2 [30], and to limit ROS generation via t-BHP [31]. Regardless of the countless independent observations about the underlying molecular mechanism, a quantitative and comprehensive approach regarding neuroprotection exerted by dexmedetomidine at the organism level is yet to be presented. Therefore, the aim of this meta-analysis was to analyze and quantify the current evidence for the neuroprotective effects of dexmedetomidine. To this end, outcomes of inflammation, apoptosis, and oxidative stress, measured in central nerve tissue were sought, as well as outcomes of neurocognitive function.

9.2 Methods

This meta-analysis was conducted following the Preferred Reporting Items for Systematic reviews and Meta-Analyses (PRISMA) 2020 Guideline [32].

9.2.1 Eligibility Criteria

Synthesis was carried out individually, per outcome. Outcomes of inflammation, apoptosis, and oxidative stress were operationally defined as IL-1\(\beta\), IL-6, apoptosis rate (measured using the Terminal deoxynucleotidyl transferase ‘‘TdT’’
dUTP Nick-End Labeling [TUNEL] method), and malondialdehyde (MDA) formation, respectively. Outcomes of neurocognitive state were operationally defined as Morris water maze test variables «escape latency» and «number of platform crossings». Records were selected based on the following inclusion criteria: institutional access, English language, in-tissue significant measurements in CNS from mice or rats injected with dexmedetomidine i.p., uninfluenced from age extremes. Exclusion criteria included: retracted articles, serum/plasma measurements, mRNA measurements, vague subject description, vehicle different from saline, species different from mice or rats, and studies with long-term experimental design.

9.2.2 Information Sources and Search Strategy

On July 15th 2022, the National Library of Medicine was last consulted through PubMed using the following query strings: “(dexmedetomidine) AND ((IL-1beta) OR (IL-1b))” (194 records from 2007 to 2022), “dexmedetomidine IL-6” (313 records from 2001 to 2022), “dexmedetomidine tunel” (90 records from 2008 to 2022), “dexmedetomidine mda” (124 records from 2004 to 2022), “(dexmedetomidine) AND (escape latency)” (22 records from 2007 to 2022), “(dexmedetomidine) AND (platform) AND ((cross) OR (crossing))” (14 records from 2016 to 2022), “dexmedetomidine morris” (58 records from 2007 to 2022) without any filters or limits.

9.2.3 Selection and Data Collection Processes

Three reviewers (SG, CA, DA) inspected the title, abstract, and/or full text for each record for inclusion criteria and existence of operational outcomes independently and without any automation tool. Discrepancies were sorted out over a discussion round including all authors and led by the 3 reviewers. The same 3 reviewers collected the data from each of the eligible records in an independent fashion without any automation tool.

9.2.4 Data and Synthesis

Data of operationally defined variables (i.e., IL-1β, IL-6, apoptosis rate, MDA formation, escape latency, and number of platform crossings) was extracted by 4 reviewers (SG, CA, YP, DA), tabulated, organized, and complemented with the following auxiliary variables: main article theme, measured tissue, species, animal weight, dexmedetomidine dose and route, and sample size (n). Data expressed as median ± IQR was transformed to mean ± SD using the method by Hozo et al. [33] and error data expressed as SEM was transformed to SD using the formula: SD = SEM * SQRT(n). All variables in the dataset were complete except for animal weight, which was imputed for 7 (out of 115 records) from nomogram charts published elsewhere [34–38]. Because animal weight was not homogeneous, a correction factor for normalizing dexmedetomidine dose was introduced (dose [µg/kg i.p.]/weight [g]) to allow full dataset comparison. Thus, raw input for meta-analyses consisted of normalized mean, normalized SD, and n. Synthesis was performed per outcome by calculating the standardized mean difference (SMD, bias corrected Hedge’s G) between the injury group as control and the injury + dexmedetomidine group as treatment. Because some studies tested more than a single dose [39–48] or more than a single type of tissue [42, 47], the term record was assigned to a single measurement (single dose in a single type of tissue). Thus, the number of records in each outcome dataset was greater than the number of studies. For the synthesis, raw datasets were loaded on R 4.1.1 and a first-round meta-analysis was performed using the General Package for Meta-Analysis (meta) [49]. Then, outliers were queried using the dmetar package [50] and further identified based on p-value and confidence interval.
(CI) overlap, i.e., studies with a *p*-value > 0.05 and a CI not contained within the CI interval of the pooled effect. Subsequently, a second-round meta-analysis was performed with filtered studies, which was then queried for the presence and extent of statistical heterogeneity using the meta package (Tables S7–S12). Lastly, a third-round meta-analysis was performed with filtered records to obtain the final set of results. No subgroup or meta-regression was performed. As part of the synthesis, heterogeneity contribution was visually displayed using Baujat plots (Tables S7–S12) [51], individual and pooled effects were visually displayed using forest plots, and effect symmetry and study precision were visually displayed using contour-enhanced funnel plots (Figs. S1–S6) [52].

9.2.5 Risk of Bias and Certainty Assessment

Four reviewers (SG, CA, YP, DA) independently assessed eligible records individually and comprehensively for bias and certainty using the SYstematic Review Centre for Laboratory animal Experimentation (SYRCLE)’s risk of bias tool [53] and the Essential 10 set from the Animal Research: Reporting of In Vivo Experiments (ARRIVE) guidelines 2.0 [54], without the use of automation. Risk of bias due to missing results was assessed as a part of the SYRCLE’s risk of bias tool.

9.3 Results

The search and identification process proceeded by outcome: out of 194 total studies for IL-1\(\beta\), 172 were excluded and 22 were included [24, 39, 40, 47, 55–72] (Fig. 9.1a), out of 313 total studies for IL-6, 300 were excluded and 13 were included [24, 41, 42, 56, 59–62, 65, 67, 73–75] (Fig. 9.1b), out of 90 total studies for apoptosis rate, 71 were excluded and 19 were included [24, 28, 40, 43–47, 58, 59, 70, 72, 73, 76–81] (Fig. 9.1c), out of 124 total studies for MDA formation, 117 were excluded and 7 were included [47, 48, 56, 67, 70, 82, 83] (Fig. 9.1d), out of 80 total studies for escape latency, 73 were excluded and 7 were included [39, 41, 67, 80, 84–86] (Fig. 9.1e), and out of 72 total studies for number of platform crossings, 68 were excluded and 4 were included [39, 67, 85, 86] (Fig. 9.1f). Behavioral outcomes received record input from search string “dexmedetomidine morris”, which yielded 58 studies and contributed with 4 eligible studies for escape latency and 3 eligible studies for platform crossings. Final number of eligible records (as defined in the methods section) was 25 for IL-1\(\beta\) (Table S1), 15 for IL-6 (Table S2), 27 for apoptosis rate (Table S3), 8 for MDA formation (Table S4), 9 for escape latency (Table S5), and 5 for platform crossings (Table S6). Inclusion criteria was restrictive enough to allow for deterministic exclusion.

9.3.1 Study Characteristics

Eligible records corresponded to 67 measurements in the brain (14 in the cortex, 33 in the hippocampus, 1 in the striatum, and 19 from unspecified cerebral regions) and 8 in the spinal cord from mice of the BALB/C, C57BL/6, CD-1, ICR, and Swiss albino strains, and from rats of the Sprague Dawley and Wistar strains. Mice weighted an average of 26.9 g and were injected i.p. with dexmedetomidine at doses ranging from 10 to 500 \(\mu\)g/kg. Rats weighted an average of 246 g and were injected i.p. with dexmedetomidine at doses ranging from 1 to 800 \(\mu\)g/kg. Injury models included traumatic brain injury, post-operative cognitive disorder, sepsis, ischemia/reperfusion, among others. A comprehensive list of injury models, animal characteristics, and doses for eligible records is available in Table 9.1.

Interleukin-1\(\beta\) was measured primarily in the brain (23 records against 2 records in the spinal cord) from mice of the BALB/C, C57BL/6, CD-1, ICR, and Swiss albino strains, and from rats of the Sprague Dawley strain. Mice weighted an average of 28.6 g and were injected i.p. with dexmedetomidine at doses ranging from 20 to 500 \(\mu\)g/kg. Rats weighted an average of 229.6 g
and were injected i.p. with dexmedetomidine at doses ranging from 10 to 800 µg/kg. A comprehensive list of injury model, animal characteristics, and doses for eligible records is available in Table S1.

Interleukin-6 was measured primarily in the brain (14 records against 1 record in the spinal cord) from mice of the C57BL/6, CD-1, and ICR strains, and from rats of the Sprague Dawley and Wistar strains. Mice weighted an average of 28.3 g and were injected i.p. with dexmedetomidine at doses ranging from 10 to 150 µg/kg. Rats weighted an average of 236.4 g and were injected i.p. with dexmedetomidine at doses ranging from 4 to 50 µg/kg. A comprehensive list of injury model, animal characteristics, and doses for eligible records is available in Table S2.

Apoptosis rate was measured using TUNEL primarily in the brain (22 records against 5 record in the spinal cord) from mice of the BALB/C and C57BL/6 strains, and from rats of the Sprague Dawley strain. Mice weighted an average of 24.2 g and were injected i.p. with dexmedetomidine at doses ranging from 25 to 500 µg/kg. Rats weighted an average of 262.5 g and were injected i.p. with dexmedetomidine at doses ranging from 1 to 200 µg/kg. A comprehensive list of injury model, animal characteristics, and doses for eligible records is available in Table S3.

Malondialdehyde formation was measured exclusively in the brain from mice of the BALB/C and C57BL/6 strains, and from rats of the Sprague Dawley and Wistar strains. Mice weighted an average of 24.3 g and were injected i.p. with dexmedetomidine at doses ranging from 20 to 25 µg/kg. Rats weighted an average of 240 g and were injected i.p. with dexmedetomidine at doses ranging from 5 to 100 µg/kg. A comprehensive list of injury model, animal characteristics, and doses for eligible records is available in Table S4.

Escape latency was measured in mice of the C57BL/6 and ICR strains, and from rats of the Sprague Dawley strain. Mice weighted an...
Table 9.1 Sequential meta-analysis model refinement for each outcome appraised

Outcome	Analysis	N	SMD	p	95% CI	95% PI	I^2 (%)	95% CI	Q	p
IL-1β	Raw analysis	25	-4.786	< 0.0001	[-6.0682; -3.5029]	[-11.0328; 1.4617]	87.40	[82.7%; 90.9%]	190.76	< 0.0001
	OSP assessment	18	-4.910	< 0.0001	[-5.7547; -4.0653]	[-7.9134; -1.9065]	65.90	[44.0%; 79.3%]	49.89	< 0.0001
	Infl. cases excluded	15	-4.282	< 0.0001	[-4.8395; -3.7247]	[-4.8965; -3.6677]	18.10	[0.0%; 55.1%]	17.1	0.2507
IL-6	Raw analysis	15	-11.36	0.0005	[-17.5285; -5.1821]	[-36.8379; 14.1274]	87.30	[80.7%; 91.7%]	110.41	< 0.0001
	OSP assessment	9	-5.649	< 0.0001	[-6.6763; -4.6207]	[-8.0694; -3.2276]	27.10	[0.0%; 66.0%]	10.97	0.2034
	Infl. cases excluded	14	-5.980	< 0.0001	[-6.7658; -5.1951]	[-7.6019; -4.3590]	32.90	[0.0%; 64.6%]	19.37	0.112
TUNEL	Raw analysis	27	-6.521	< 0.0001	[-8.0214; -5.0204]	[-14.1191; 1.0773]	87.60	[83.1%; 90.9%]	209.18	< 0.0001
	OSP assessment	18	-6.795	< 0.0001	[-7.9142; -5.6758]	[-10.9903; -2.5997]	67.30	[46.5%; 80.0%]	52	< 0.0001
	Infl. cases excluded	14	-5.980	< 0.0001	[-6.7658; -5.1951]	[-7.6019; -4.3590]	32.90	[0.0%; 64.6%]	19.37	0.112
MDA	Raw analysis	8	-4.759	0.0002	[-7.2585; -2.2585]	[-13.8356; 4.3186]	93.80	[90.0%; 96.2%]	113.01	< 0.0001
	OSP assessment	7	-4.114	0.0012	[-6.6033; -1.6255]	[-13.0236; 4.7948]	90.40	[82.7%; 94.6%]	62.24	< 0.0001
	Infl. cases excluded	5	-1.918	< 0.0001	[-2.4342; -1.4011]	[-2.7564; -1.0789]	43.40	[0.0%; 79.2%]	7.07	0.1322
Escape latency	Raw analysis	9	-12.50	0.1291	[-28.6375; 3.6440]	[-73.7227; 48.7292]	95.10	[92.5%; 96.7%]	161.66	< 0.0001
	OSP assessment	7	-4.258	0.0007	[-6.7092; -1.8064]	[-12.8636; 4.3749]	89.30	[80.5%; 94.2%]	56.26	< 0.0001
	Infl. cases excluded	3	-2.428	< 0.0001	[-3.2641; -1.5925]	[-7.8467; 2.9901]	0	[0.0%; 89.6%]	0.32	0.8519
Platform crossings	Raw analysis	5	6.880	0.0008	[2.8570; 10.9038]	[-8.1549; 21.9157]	96.40	[93.8%; 97.9%]	109.73	< 0.0001
	OSP assessment	4	9.138	< 0.0001	[6.8230; 11.4531]	[0.6758; 17.6003]	45.50	[0.0%; 81.9%]	5.5	0.1383

SMD Standardized mean difference, CI Confidence interval, PI Predictive interval, I^2 Higgins and Thompson’s I^2 Statistic, Q Cochran’s Q, OSP Outlier, significance, and precision assessment
average of 27.5 g and were injected i.p. with dexmedetomidine at doses ranging from 10 to 20 µg/kg. Rats weighted an average of 248.3 g and were injected i.p. with dexmedetomidine at doses ranging from 15 to 40 µg/kg. A comprehensive list of injury model, animal characteristics, and doses for eligible records is available in Table S5.

Number of platform crossings was measured in mice of the C57BL/6 strain and from rats of the Sprague Dawley strain. Mice weighted an average of 22.5 g and were injected i.p. with dexmedetomidine at a dose of 20 µg/kg. Rats weighted an average of 230 g and were injected i.p. with dexmedetomidine at doses ranging from 20 to 40 µg/kg. A comprehensive list of injury model, animal characteristics, and doses for eligible records is available in Table S6.

9.3.2 Results of Syntheses

Raw meta-analysis of in-tissue levels of IL-1β suggested a significantly protective effect for dexmedetomidine against insult (SMD = −4.786), but with a significant level of heterogeneity between studies (I² = 87.4%) (Table 9.1). Outlier, significance, and precision (OSP) assessment identified 7 studies distorting the random-effects model [47, 57, 60, 63, 68]. A second-round meta-analysis, after OSP exclusion, suggested a significantly protective effect for dexmedetomidine against insult (SMD = −5.6485), with no record significantly contributing to model heterogeneity (I² = 27.1%, Table 9.1, Table S8). Visual inspection of effect symmetry and study precision (risk of bias among contributing studies) showed that second-round records fell within the area of 95% confidence of the overall effect in a symmetrical fashion (Fig. 9.2), corroborating precision in exclusion criteria (Table S8) and meta-analysis refinement (Table 9.1). This latter round was considered final and was visually characterized in detail using a forest plot (Fig. 9.2).

Raw meta-analysis of in-tissue levels of IL-6 suggested a significantly protective effect for dexmedetomidine against insult (SMD = −11.3553), but with a significant level of heterogeneity between studies (I² = 87.30%). Outlier, significance, and precision assessment identified 6 records distorting the random-effects model [41, 42, 60, 73]. A second-round meta-analysis, after OSP exclusion, revealed a significantly protective effect for dexmedetomidine against insult (SMD = −5.6485), with no record significantly contributing to model heterogeneity (I² = 27.1%, Table 9.1, Table S8). Visual inspection of effect symmetry and study precision (risk of bias among contributing studies) showed that second-round records fell within the area of 95% confidence of the overall effect in a symmetrical fashion (Fig. S2), corroborating precision in exclusion criteria (Table S8) and meta-analysis refinement (Table 9.1). This latter round was considered final and was visually characterized in detail using a forest plot (Fig. 9.3).

Raw meta-analysis of apoptosis rate (measured using TUNEL) suggested a significantly protective effect for dexmedetomidine against insult (SMD = −6.5209), but with a significant level of heterogeneity between studies (I² = 87.6%). Outlier, significance, and precision (OSP) assessment identified 9 records distorting the random-effects model [40, 43, 47, 59, 79, 81]. A second-round meta-analysis, after OSP exclusion, suggested a significantly protective effect for dexmedetomidine against insult (SMD = −6.795), but with a significant level of heterogeneity between studies (I² = 67.3%). Heterogeneity assessment further identified 4 records considerably contributing to overall heterogeneity [40, 73, 77, 80] (Table S9).

A third-round meta-analysis, excluding cases with evident influence over model heterogeneity, revealed a significantly protective effect for dexmedetomidine against insult (SMD = −5.9804) with a significant level of homogeneity
between studies ($I^2 = 32.9\%$) (Table 9.1). Visual inspection of effect symmetry and study precision (risk of bias among contributing studies) showed that third-round records fell within the area of 95% confidence of the overall effect in a symmetrical fashion (Fig. S3), except for 1 record [44], which was attributed the smallest weight in the model. Thus, round iteration resulted in a gain in precision in exclusion criteria (Table S9) and meta-analysis refinement (Table 9.1). This latter round was considered final and was visually characterized in detail using a forest plot (Fig. 9.4).

Raw meta-analysis of in-tissue formation of MDA suggested a significantly protective effect for dexmedetomidine against insult (SMD = −4.7585), but with a significant level of heterogeneity between studies ($I^2 = 93.80\%$). Outlier, significance, and precision (OSP) assessment identified 1 study distorting the random-effects model [67]. A second-round meta-analysis, after OSP exclusion, suggested a significantly protective effect for dexmedetomidine against insult (SMD = −4.1144), but with a significant level of heterogeneity between studies ($I^2 = 90.40\%$). Heterogeneity assessment

Record [Citation]	SMD	95% CI	p-value	Weight
Wang Z et al. (2018) [64]	−4.24	[−5.46; −3.01]	< 0.01	20.8%
Zhang Y et al. (2021) [40]	−3.01	[−4.56; −1.47]	< 0.01	13.0%
Zhang Y et al. (2021) [40]	−3.43	[−5.10; −1.75]	< 0.01	11.1%
Xu KL et al. (2018) [55]	−4.17	[−5.85; −2.49]	< 0.01	11.0%
Li R et al. (2020) [70]	−3.87	[−5.68; −2.05]	< 0.01	9.4%
Wang YL et al. (2021) [61]	−4.22	[−6.16; −2.29]	< 0.01	8.3%
Hu J et al. (2018) [56]	−4.43	[−6.44; −2.42]	< 0.01	7.7%
Chen L et al. (2019) [62]	−4.63	[−7.13; −2.13]	< 0.01	5.0%
Lu Y et al. (2017) [57]	−3.88	[−6.82; −0.94]	< 0.01	3.6%
Wang D et al. (2018) [69]	−6.68	[−10.58; −2.78]	< 0.01	2.0%
Li F et al. (2019) [59]	−8.07	[−12.12; −4.02]	< 0.01	1.9%
Zhang L et al. (2021) [63]	−5.79	[−9.90; −1.68]	< 0.01	1.8%
Li P et al. (2021) [40]	−7.49	[−11.81; −3.17]	< 0.01	1.7%
Karakaya F et al. (2022) [72]	−7.79	[−12.27; −3.31]	< 0.01	1.5%
Zhu YJ et al. (2016) [71]	−9.08	[−14.26; −3.91]	< 0.01	1.2%

Random effects model -4.28 [$-4.84; -3.72$] 100.0%

Heterogeneity: $I^2 = 18\%$, $t^2 < 0.0001$, $p = 0.25$

Fig. 9.2 Forest plot depicting pooled effect of dexmedetomidine on levels of IL-1β in animal CNS after insult

Record [Citation]	SMD	95% CI	p-value	Weight
Guo B et al. (2021) [75]	−6.91	[−8.28; −5.54]	< 0.01	21.8%
Hu J et al. (2018) [60]	−4.48	[−6.51; −2.46]	< 0.01	14.9%
Tian M et al. (2021) [24]	−3.51	[−5.55; −1.48]	< 0.01	14.9%
Minaei A et al. (2019) [59]	−5.16	[−7.42; −2.89]	< 0.01	13.1%
Li R et al. (2020) [67]	−5.50	[−7.89; −3.11]	< 0.01	12.2%
Feng X et al. (2021) [61]	−6.06	[−9.63; −2.48]	< 0.01	6.7%
Li P et al. (2019) [65]	−7.53	[−11.32; −3.73]	< 0.01	6.1%
Wang D et al. (2018) [62]	−6.92	[−10.94; −2.90]	< 0.01	5.5%
Zhang X et al. (2018) [73]	−7.44	[−11.74; −3.14]	< 0.01	4.9%

Random effects model -5.65 [$-6.68; -4.62$] 100.0%

Heterogeneity: $I^2 = 27\%$, $t^2 = 0.7732$, $p = 0.20$

Fig. 9.3 Forest plot depicting pooled effect of dexmedetomidine on levels of IL-6 in animal CNS after insult
further identified 2 studies considerably contributing to overall heterogeneity [56, 82] (Table S10). A third-round meta-analysis excluding cases with evident influence over model heterogeneity revealed a significantly protective effect for dexmedetomidine against insult (SMD = −1.9176) with a significant level of homogeneity between studies (I² = 43.4%) (Table 9.1). Visual inspection of effect symmetry and study precision (risk of bias among contributing studies) showed that third-round records fell within the area of 95% confidence of the overall effect in a symmetrical fashion (Fig. S4), except for 1 study [70], which was attributed the smallest weight in the model. Thus, round iteration resulted in a gain in precision in exclusion criteria (Table S10) and meta-analysis refinement (Table 9.1). This latter round was considered final and was visually characterized in detail using a forest plot (Fig. 9.5).

Raw meta-analysis of behavioral outcome escape latency suggested a significantly protective effect for dexmedetomidine against insult (SMD = −12.4967), but with a significant level of heterogeneity between studies (I² = 95.1%). Outlier, significance, and precision assessment identified 2 records distorting the random-effects model [67, 86]. A second-round meta-analysis, after OSP exclusion, revealed a significantly protective effect for dexmedetomidine against insult (SMD = −4.2578), but with a significant level of heterogeneity between studies (I² = 89.3%). Heterogeneity assessment further identified 4 records considerably contributing to overall heterogeneity [41, 80, 85] (Table S11). A third-round meta-analysis, excluding cases with evident influence over model heterogeneity, revealed a significantly protective effect for dexmedetomidine against insult (SMD = −2.4283) with an abrogated heterogeneity between studies (I² = 0%) (Table 9.1). Visual inspection of effect symmetry and study precision (risk of bias among contributing studies) showed that third-round records fell within the area of 95% confidence of the overall effect in a symmetrical fashion (Fig. S5), corroborating precision in exclusion criteria (Table S11) and meta-analysis refinement (Table 9.1). This latter round was considered final and was visually characterized in detail using a forest plot (Fig. 9.6).

Raw meta-analysis of behavioral outcome platform crossings suggested a significantly protective effect for dexmedetomidine against insult (SMD = 6.8804), but with a significant level of heterogeneity between studies (I² = 96.4%). Outlier, significance, and precision
assessment identified 1 record distorting the random-effects model [67, 86]. A second-round meta-analysis, after OSP exclusion, revealed a significantly protective effect for dexmedetomidine against insult (SMD = 9.1381), with no record significantly contributing to model heterogeneity ($I^2 = 45.5\%$, Table 9.1, Table S12). Visual inspection of effect symmetry and study precision (risk of bias among contributing studies) showed that second-round records fell within the area of 95% confidence of the overall effect in a symmetrical fashion (Fig. S6), corroborating precision in exclusion criteria (Table S12) and meta-analysis refinement (Table 9.1). This latter round was considered final and was visually characterized in detail using a forest plot (Fig. 9.7).

9.3.3 Risk of Bias and Certainty of Evidence

Risk of bias measured using the SYRCLE’s tool was low for all eligible studies in all domains except for «Allocation concealment», «Random housing», «Random outcome assessment», and «Blinding» (Fig. S7), for which an unclear risk of bias was found in all eligible studies. No eligible studies with high risk of bias were found. No risk of bias due to missing results were found. Certainty of evidence measured using the ARRIVE Guidelines 2.0 found transparent and accurate reporting in every domain except for Item 2b «How sample size was decided», Items 3a and 3b «Criteria used for including and excluding animals», Item 4a «Criteria for randomization», Item 4b «Control for confounders, Item 5 «Blinding», for all eligible studies, and Item 8b «Provide further relevant information on the provenance of animals» for only 8 studies [41, 43, 46, 47, 57, 77, 79, 81] (Table S14).

9.4 Discussion

Dexmedetomidine is almost univocally considered neuroprotective. Although efforts to establish its value as such have been made in the form...
of review articles [87], a literature gap in this regard is widely recognized. To bridge this literature gap in an objective manner, the latest and most elaborate endeavor, a systematic review [88], found dexmedetomidine effects to be heterogenous and occasionally counter-intuitive. The present study recognizes the lack of a robust and definitive appraisal and provides a cohesive assessment for a definitive settlement on the neuroprotective effects of dexmedetomidine.

Stringent appraisal of the neuroprotective potential of dexmedetomidine involved excluding the measurement of outcomes of inflammation, apoptosis, and oxidative stress outside of the CNS. Because of the complex environment and physiological compensations that in vitro settings are unable to replicate, only studies performed in vivo were considered. Among these, the i.v. route of administration was present, but given its dominance among eligible studies and its comparative simplicity, only articles using i.p. delivery were included. To ensure inter-study comparability, and because some physiological and biochemical parameters are not present stably throughout the lifespan of an individual [37], age extremes (i.e., neonatal, postnatal, and aged) were also considered exclusion criteria.

Exploration of sources of potential heterogeneity showed that the analysis could not have been carried out without introducing an arithmetic association between animal dose and weight. Also, the process of meta-analysis refinement did not exhibit a preference for a type of species except for TUNEL, for which most of the records ruled out corresponded to data from rats (Table S13). However, for this case, most of the records included in the analysis corresponded to measurements in rats, so species representativity was ultimately balanced. Additionally, the process of meta-analysis refinement did not exhibit a preference for type of structure within the tissue, as the number of structures in each group resulted relatively even, except for MDA formation, for which the number of records measuring the brain (as a whole) was greater in the group of records included in the model (Table S13). The physiological relevance of this instance may be interesting to explore empirically. Furthermore, and regarding only records that were included in the final model, a general parity was evidenced between species, except for behavioral variables, for which all results in mice were ruled out (Table S13). The reason for this blunt type of exclusion is unexpected and may represent an area of interest for further research.

Although a protective effect of dexmedetomidine on inflammatory cytokines was indeed expected, the contrastive pooled effect between IL-1β (pooled SMD = −4.84, Table 9.1) and IL-6 (pooled SMD = −5.65) may be a corroboration [60] of the signaling preference through α2AAR over α2BAR. Besides canonical pathways converging in NF-κB phosphorylation [89], dexmedetomidine has been described to down-regulate pro-inflammatory cytokine synthesis and release through the PI3K/Akt/mTOR [80], NLRP3/caspase1 [39], and Keap1/Nrf2 [90] pathways. Although Nrf2 may engage additional transcription factors, including NF-kB [91, 92], it is essential in redox homeostasis and responses to reactive oxygen species [93, 94]. In fact, Nrf2

Table 9.1

Record [Citation]	SMD	95% CI	p-value	SMD	Weight
Guo B et al. (2021) [67]	11.00	[8.90; 13.09]	< 0.01		
Zhang Y et al. (2021) [39]	7.28	[4.24; 10.33]	< 0.01		
Zhang Y et al. (2021) [39]	10.17	[6.03; 14.31]	< 0.01		
Deng F et al. (2020) [86]	6.03	[0.33; 11.74]	0.04		

Random effects model 9.14 [6.82; 11.45]

Heterogeneity: $I^2 = 46\%$, $T^2 = 2.4729$, $p = 0.14$

![Forest plot depicting pooled effect of dexmedetomidine on behavioral variable «platform crossings» in animal CNS after insult](image-url)
has been reported to mediate neuroprotection through the Nrf2/HO-1/NAD(P)H/NQO1 pathway [95] and by limiting mitochondrial ROS production [23]. However, the considerably lower magnitude of protection against MDA formation (pooled SMD = −1.92) and the smaller number of records included in the final-round meta-analysis may represent a mechanistic suggestion about how distant α2AAR (and α2BAR) and Nrf2 signaling pathways are. Thus, further experimental characterization may contribute to the understanding of the low performance of dexmedetomidine over MDA formation that the present study found (pooled SMD = −1.9). Nonetheless, Nrf2 has also been found to mediate dexmedetomidine action against apoptosis [95]. As expected, because dexmedetomidine signaling through JAK2/STAT3 [96, 97] and PI3K/AKT/GSK3β [98, 99] has been previously documented, a protective effect against apoptosis (pooled SMD = −5.98) was found. In sum, by selectively appraising its effects in the CNS—at the cellular/tissular level, dexmedetomidine alone is cohesively able to protect from inflammation and apoptosis, and less cohesively able to protect from oxidative stress. Thus, if neuroprotection is the goal, then the therapeutic potential of dexmedetomidine as an anti-inflammatory and anti-apoptotic agent may be complemented with an antioxidant agent to achieve a comprehensive neuroprotective effect. Although this compound strategy has been explored previously (dexmedetomidine and lidocaine [100], dexmedetomidine and phosphocreatine [101]), finding which agent to pair and at which proportion is a technical challenge with an enormous potential that requires further research.

Behavioral variables (escape latency and number of platform crossings) are de facto a standard for testing hippocampal function [102]. While pooled effect for the former had a comparatively lower magnitude (pooled SMD = −2.43), pooled effect for the latter elicited the highest magnitude of the present study (Table S13). With the effect of dexmedetomidine over pro-inflammatory cytokine production and apoptosis tested primarily in the hippocampus (Figs. 9.2, 9.3, 9.4 and 9.5 could, at least, partially explain why and how animals in the treated group largely overperform their control counterparts, independent from the nature of the injurious agent or physiological insult. This effect, although delineated previously [86, 103, 104], has never been quantified in this manner and represents one of the cornerstones of neuroprotection.

Physiologically, all the proposed intracellular signaling mechanisms by which dexmedetomidine induces its neuroprotective effects are associated to synaptic plasticity and have a prominent role in brain pathology. For example, hippocampal Rac1 is associated to memory consolidation, maintenance, and memory loss [105–109], and its inhibition increases memory and synaptic plasticity [110]. The JNK pathway regulates memory formation, synaptic plasticity and is an important target for neurodegenerative diseases [111]. The NR2B/ERK pathway includes the activation of NMDA-type glutamatergic receptors (NMDAR) and the subsequent activation of the ERK signaling pathway, which are critical for synaptic plasticity and memory [112, 113] and are associated to neurodegenerative diseases [114–116]. Lastly, the neurotrophic factor BDNF, through its different signaling pathways, and specially through TrkB-dependent signaling, has an important role in regulating synaptic plasticity and dendritic growth, and is associated to cognitive deficits in neurodegenerative disorders [117].

Since the proposed mechanisms for hippocampal protection include several signaling pathways that are critical for hippocampal function and are affected by neurodegenerative disorders and insults, including the Rac1/AKT/NF-κB [67], the JNK pathway [118], NR2B/ERK [119], and BDNF-TrkB-CREB [120] signaling pathways, therapeutic explorations with dexmedetomidine and other antioxidant agents that target these signaling cascades in the hippocampus may represent the ultimate neuroprotective formula against a myriad of physiological insults.
9.5 Strengths and Limitations

Foremost, the ability to size events occurring at the molecular/cellular level and their translation into behavior and cognition at the same time is one of the key strengths of the present meta-analysis. Then, stringent exclusion criteria constitute an integral feature that added objectivity to our conclusions. Limiting our analysis to measures in the CNS is also a key feature that selectively implicates the action of dexmedetomidine through \(\alpha_{2A} \)AR and \(\alpha_{2B} \)AR. Interestingly, segmentation of analysis by species did not result in a change in the direction of the effects (data not shown), thus reinforcing the level of falsifiability of the hypothesis on dexmedetomidine regardless of the animal model used to test it (or when individual studies were published, since our meta-analysis did not discriminate by publishing date). Although use of SYRCLE’s risk of bias tool signaled some domains as unclear, because of the biological nature of the outcomes, these could have influenced the readouts in no capacity, and simply represent an excessive sensitivity of the tool for our particular case. Overall risk of bias was low and not a single study was found at high risk (of bias), which reinforces their inclusion. Even though the objective of the ARRIVE Guidelines 2.0 is to maximize transparency and accuracy to ensure reproducibility, an excessive sensitivity was found for Items 2b, 3a, 3b, 4a, 4b, and 5, for, even without thorough details on such items, outcomes for the particular case of the driving question behind this meta-analysis remain inextricable. Overall, key data on sample sizes, subject identifiers (i.e., species, strain, age, and weight), interventions (i.e., dose, route of administration, and type of vehicle), and statistical analyses to gauge outcomes, were deemed satisfactory enough to ensure reproducibility, which justifies their inclusion. From a methodological perspective, several decisions, based on thorough scientific criteria, that had to be taken to carry out the analyses could be pointed as possible sources of error, e.g., using the average weight of animals in each record, using published data to impute animal weight from age, and using TUNEL as the only measure of apoptosis. Nevertheless, we estimate the actual contribution to error to be marginal as demonstrated by the level of significance in third-round meta-analyses and the degree of symmetry in funnel plots (Figs. S1–S6).

9.6 Conclusions

The present meta-analysis corroborates the neuroprotective action of dexmedetomidine by quantifying its effect on inflammation, apoptosis, oxidative stress, and behavioral variables. Because of its methodological design and previous data on receptor distribution, these effects are suggested to proceed through signaling pathways dependent mainly on \(\alpha_{2A} \)AR in cells of the CNS. Since oxidative stress showed the lowest association with protective effect, it is suggested that intracellular signaling of dexmedetomidine in the CNS may be more dissociated from mechanisms regulating oxidative damage than from inflammation and apoptosis. This study highlights the level complexity that selective tissular interaction with \(\alpha_{2A} \)AR agonist entails at the in vivo level.

Statements and Declarations

Funding This work was supported by Fondo Nacional de Desarrollo Científico y Tecnológico FONDECYT [Grant numbers 3220565 (SG), 1201039 (FS), 11170840 (CE), 1191300 (CR)]; Millennium Science Initiative Program—ICN09_016/ICN 2021_045: Millennium Institute on Immunology and Immunotherapy (ICN09_016/ICN 2021_045; former P09/016-F) (FS, CR); The Millennium Nucleus of Ion Channel-Associated Diseases (MiNICAD) is supported by the Iniciativa Científica Milenio ANID, Chile (FS); Ministry of Education, Science and Technological Development of the Republic of Serbia (grant number 451-03-9/2021-14/200015) (JFS).

Disclosure of Interests All authors declare they have no conflict of interest.

Ethical Approval This article does not contain any studies with human participants or animals performed by any of the authors.
Author Contribution SG, CA, YP, and DA extracted and analyzed the data. SG, CE, CR, JFS, and FS, collectively contributed to manuscript drafting. All authors read and approved the final manuscript.

Acknowledgements None.

References

1. Song SS, Lyden PD (2012) Overview of Therapeutic Hypothermia. Curr Treat Option Ne 14(6):541–548
2. Black J, Furney S, Graf H, Nolte A (2009) Philosophical foundations of health education. In: Black J (ed)
3. Chen Y, Zhou Z, Min W (2018) Mitochondria, oxidative stress and innate immunity. Front Physiol 9:1487
4. Yagami T, Yamamoto Y, Koma H (2019) Pathophysiological roles of intracellular proteases in neuronal development and neurological diseases. Mol Neurobiol 56(5):3090–3112
5. Beamer E, Göö Y (2019) Pathophysiological mechanisms in neuroinflammation: an update from molecules to behavior. Neuropharmacology 104:94–104
6. Yang C, Hawkins KE, Doré S, Candelario-Jalil E (2019) Neuroinflammatory mechanisms of blood-brain barrier damage in ischemic stroke. Am J Physiol-Cell Physiol 316(2):C135–C153
7. Tauber SC, Djukic M, Gossner J, Eiffert H, Brück W, Nau R (2021) Sepsis-associated encephalopathy and septic encephalitis: an update. Expert Rev Antiinf 19(2):215–231
8. Kim JG, Sung HJ, Ok SH, Kwon SC, Cheon KS, Kim HJ et al (2011) Calcium sensitization involved in dexmedetomidine-induced contraction of isolated rat aorta. Can J Physiol Pharm 89(9):681–689
9. Talley EM, Rosin DL, Lee A, Guyenet PG, Lynch KR (1996) Distribution of α2A-adrenergic receptor-like immunoreactivity in the rat central nervous system. J Comp Neurol 372(1):111–134
10. Rosin DL, Talley EM, Lee A, Stornetta RL, Gaylinn BD, Guyenet PG et al (1996) Distribution of α2C-adrenergic receptor-like immunoreactivity in the rat central nervous system. J Comp Neurol 372(1):135–165
11. MacDonald E, Kobilka BK, Scheinin M (1997) Gene targeting—homing in on α2-adrenergocceptor-subtype function. Trends Pharmacol Sci 18(6):211–219
12. Scholz J, Finnerup NB, Attal N, Aziz Q, Baron R, Bennett MI et al (2019) The IASP classification of chronic pain for ICD-11. Pain 160(1):53–59
13. Hunter JC, Fontana DJ, Hedley LR, Jasper JR, Lewis R, Link RE et al (1997) Assessment of the role of α2-adrenoceptor subtypes in the antinociceptive, sedative and hypothermic action of dexmedetomidine in transgenic mice. Brit J Pharmacol 122(7):1339–1344
14. Baron R (2009) Sensory nerves. Handb Exp Pharmacol 194:3–30
15. Maze M, Virtanen R, Daunt D, Banks SJM, Stover EP, Feldman D (1991) Effects of dexmedetomidine, a novel imidazole sedative-anesthetic agent, on adrenal steroidogenesis: in vivo and in vitro studies. Anesthesia Analgesia 73(2):204
16. Gertler R, Brown HC, Mitchell DH, Silvius EN (2001) Dexmedetomidine: a novel sedative-analgesic agent. Bayl Univ Medical Cent Proc 14(1):13–21
17. Motiejunaite J, Aamar L, Vidal-Pérot E (2021) Adrenergic receptors and cardiovascular effects of catecholamines. Ann D’endocrinologie 82(3–4):193–197
18. Láscher C, Slesinger PA (2010) Emerging roles for G protein-gated inwardly rectifying potassium (GIRK) channels in health and disease. Nat Rev Neurosci 11(5):301–315
19. Zamponi GW, Currie KPM (2013) Regulation of CaV2 calcium channels by G protein coupled receptors. Biochimica Et Biophysica Acta Bba - Membr 1828(7):1629–1643
20. Rocca GJD, van Biesen T, Daaka Y, Luttrell DK, Luttrell LM, Lefkowitz RJ (1997) Ras-dependent mitogen-activated protein kinase activation by g protein-coupled receptors convergence of Gi- and Gq-mediated pathways on calcium/calmodulin, Pyk2, and Src kinase. J Biol Chem 272(31):19125–19132
21. Dorn GW, Oswald KJ, McCluskey TS, Kuhel DG, Liggett SB (1997) αz2A-Adrenergic receptor stimulated calcium release is transduced by Gi-associated Gβγ-mediated activation of phospholipase C. Biochemistry 36(21):6415–6423
22. Putney JW (1999) TRP, inositol 1,4,5-trisphosphate receptors, and capacitative calcium entry. Proc National Acad Sci 96(26):14669–14671
23. Huang J, Jiang Q (2019) Dexmedetomidine protects against neurological dysfunction in a mouse intracerebral hemorrhage model by inhibiting mitochondrial dysfunction-derived oxidative stress. J Stroke Cerebrovasc Dis 28(5):1281–1289
24. Tian M, Wang W, Wang K, Jin P, Lenahan C, Wang Y et al (2021) Dexmedetomidine alleviates cognitive impairment by reducing blood-brain barrier interruption and neuroinflammation via regulating Th1/Th2/Th17 polarization in an experimental sepsis model of mice. Int Immunopharmacol 101(Pt B):108332
25. Xue H, Wu Z, Xu Y, Gao Q, Zhang Y, Li C et al (2021) Dexmedetomidine post-conditioning ameliorates long-term neurological outcomes after
neonatal hypoxic ischemia: the role of autophagy. Life Sci 270:118980

26. Gao Y, Zhang Y, Dong Y, Wu X, Liu H (2020) Dexmedetomidine mediates neuroglobin up-regulation and alleviates the hypoxia/reoxygenation injury by inhibiting neuronal apoptosis in developing rats. Front Pharmacol 11:55553

27. Chen Y, Li L, Zhang J, Cui H, Wang J, Wang C et al (2021) Dexmedetomidine alleviates lipopolysaccharide-induced hippocampal neuronal apoptosis via inhibiting the p38 MAPK/c-Myc/CLIC4 signaling pathway in rats. Mol Neurobiol 58(11):5533–5547

28. Lv H, Li Y, Cheng Q, Chen J, Chen W (2021) Neuroprotective effects against cerebral ischemic injury exerted by dexmedetomidine via the HDAC5/NPAS4/MDM2-PSD-95 axis. Mol Neurobiol 58(5):1990–2004

29. Chen Y, Zhang X, Zhang B, He G, Zhou L, Xie Y (2017) Dexmedetomidine reduces the neuronal apoptosis related to cardiopulmonary bypass by inhibiting activation of the JAK2–STAT3 pathway. Drug Des Dev Ther 11:2787–2799

30. Liu P, Chen T, Tan F, Tian J, Zheng L, Deng Y et al (2020) Dexmedetomidine alleviated neuropathic pain in dorsal root ganglion neurons by inhibition of anaerobic glycolysis activity and enhancement of ROS tolerance. Bioscience Rep 40(5):BSR20191994

31. Qiu L, Ge L, Hu Q (2020) Dexmedetomidine protects SK-N-SH nerve cells from oxidative injury by maintaining iron homeostasis. Biological Pharm Bulletin 43(3):424–431

32. Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD et al (2021) The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ 372:n71

33. Hozo SP, Djulbegovic B, Hozo I (2005) Estimating the mean and variance from the median, range, and the size of a sample. Bmc Med Res Methodol 5(1):13

34. The Jackson Laboratory. Body weight information for C57BL/6J. Available from: https://www.jax.org/jax-mice-and-services/strain-data-sheet-pages/body-weight-chart-000664

35. Shin HJ, Cho YM, Shin HJ, Kim HD, Choi KM, Kim MG et al (2017) Comparison of commonly used ICR stocks and the characterization of Kori: ICR. Laboratory Animal Res 33(1):8–14

36. ENVIGO. CD-1 mice growth curve. Available from: https://www.envigo.com/model/hsd-icr-cd-1

37. Nistiar F, Racz O, Lukacinova A, Hubkova B, Novakova J, Lovasova E et al (2012) Age dependency on some physiological and biochemical parameters of male wistar rats in controlled environment. J Environ Sci Heal Part A 47(9):1224–1233

38. Taconic. Sprague dawley rat model. Available from: https://www.taconic.com/pdfs/sprague-dawley-rat.pdf

39. Zhang Y, Tan SL, Du J, Chen Y, Jia J, Feng JG et al (2021) Dexmedetomidine alleviates neuroinflammation, restores sleep disorders and neurobehavioral abnormalities in rats with minimal hepatic encephalopathy. Int Immunopharmacol 96:107795

40. Wang Z, Zhou W, Dong H, Ma X, He Z (2018) Dexmedetomidine pretreatment inhibits cerebral ischemia/reperfusion-induced neuroinflammation via activation of AMPK. Mol Med Rep 18(4):3957–3964

41. Hwang L, Ko IG, Jin JJ, Kim SH, Kim CJ, Chang B et al (2019) Dexmedetomidine ameliorates memory impairment in sleep-deprived mice. Anim Cells Syst 23(6):371–379

42. Wang N, Wang M (2019) Dexmedetomidine suppresses sevoflurane anesthesia-induced neuroinflammation through activation of the PI3K/Akt/mTOR pathway. BMC Anesthesiol 19(1):134

43. Çınar S, Tümkaya L, Mercantepe T, Saral S, Rakıcı S, Yılmaz A et al (2021) Can dexmedetomidine be effective in the protection of radiotherapy-induced brain damage in the rat? Neurotox Res 39(4):1338–1351

44. Sun D, Wang J, Liu X, Fan Y, Yang M, Zhang J (2020) Dexmedetomidine attenuates endoplasmic reticulum stress-induced apoptosis and improves neuronal function after traumatic brain injury in mice. Brain Res 1732:146682

45. Chiu KM, Lin TY, Lee MY, Lu CW, Wang MJ, Wang SJ (2019) Dexmedetomidine protects neurons from kainic acid-induced excitotoxicity by activating BDNF signaling. Neurochem Int 129:104493

46. Hwang L, Choi IY, Kim SE, Ko IG, Shin MS, Kim CJ et al (2013) Dexmedetomidine ameliorates intracerebral hemorrhage-induced memory impairment by inhibiting apoptosis and enhancing brain-derived neurotrophic factor expression in the rat hippocampus. Int J Mol Med 31(5):1044–1056

47. Ning Q, Liu Z, Wang X, Zhang R, Zhang J, Yang M et al (2017) Neurodegenerative changes and neuroapoptosis induced by systemic lipopolysaccharide administration are reversed by dexmedetomidine treatment in mice. Neuror Res 39(4):357–366

48. Ayoglu H, Gül S, Hanci V, Bahadir B, Bektas S, Mungan AG et al (2010) The effects of dexmedetomidine dosage on cerebral vasospasm in a rat subarachnoid haemorrhage model. J Clin Neurosci 17(6):770–773

49. Balduzzi S, Rücker G, Schwarzer G (2019) How to perform a meta-analysis with R: a practical tutorial. Evid Based Ment Heal 22(4):153

50. Harrer M, Cuijpers P, Furukawa T, Ebert DD, Dmetar: companion R package for the guide “doing meta-analysis in R”. Available from: http://dmetar.protectlab.org/

51. Fodor LA, Cotet CD, Cuijpers P, Szamoskozi Ștefan, David D, Cristea IA (2018) The
effectiveness of virtual reality based interventions for symptoms of anxiety and depression: a meta-analysis. Sci Rep 8(1):10323

52. Peters JL, Sutton AJ, Jones DR, Abrams KR, Hooijmans CR, Rovers MM, de Vries RB, Zhu YJ, Peng K, Meng XW, Ji FH (2016) Du Sert NP, Ahluwalia A, Alam S, Avey MT, Feng X, Ma W, Zhu J, Jiao W, Wang Y (2021) Dexmedetomidine alleviates early brain injury following traumatic brain injury by inhibiting autophagy and neuroinflammation through the ROS/Nrf2 signaling pathway. Mol Med Rep 24(3):661

56. Kii N, Sawada A, Yoshikawa Y, Tachibana S, Mei B, Li J, Zuo Z (2021) Dexmedetomidine attenuates sepsis-associated in inflammatory pathway and preexisting traumatic brain injury. Anesthesia Analgesia 134(4):869–880

58. Wang YL, Zhang Y, Cai DS (2021) Dexmedetomidine ameliorates postoperative cognitive dysfunction via the MicroRNA-381-mediated EGR1/p53 axis. Mol Neurobiol 58(10):5052–5066

59. Li F, Wang X, Zhang Z, Zhang X, Gao P (2019) Dexmedetomidine attenuates neuroinflammatory-induced apoptosis after traumatic brain injury via Nrf2 signaling pathway. Ann Clin Transl Neurol 6(9):1825–1835

61. Wang D, Xu X, Wu YG, Lyu L, Zhou ZW, Zhang JN (2018) Dexmedetomidine attenuates traumatic brain injury: action pathway and mechanisms. Neurol Regen Res 13(5):819–826

62. Li R, Lai IK, Pan JZ, Zhang P, Maze M (2020) Dexmedetomidine exerts an anti-inflammatory effect via α2 adrenergic receptors to prevent lipopolysaccharide-induced cognitive decline in mice. Anesthesiology 132(2):393–407

63. Sun YB, Zhao H, Mu DL, Zhang W, Cui J, Wu L et al (2019) Dexmedetomidine inhibits astrocyte pyroptosis and subsequently protects the brain in vivo and in vivo models of sepsis. Cell Death Dis 10(3):167

64. Zhang L, Xiao F, Zhang J, Wang X, Ying J, Wei G et al (2021) Dexmedetomidine mitigated NLRP3-mediated neuroinflammation via the ubiquitin-autophagy pathway to improve perioperative neurocognitive disorder in mice. Front Pharmacol 12:64625

65. Hu J, Vacas S, Feng X, Lutrin D, Uchida Y, Lai IK et al (2018) Dexmedetomidine prevents cognitive decline by enhancing resolution of high mobility group box 1 protein–induced inflammation through a vagomimetic action in mice. Anesthesiology 128(5):921–931

68. Wang WG, Wang L, Jiao ZH, Xue B, Xu ZW (2018) Locomotor activity of rats with SCI is improved by dexmedetomidine by targeting the expression of inflammatory factors. Mol Med Rep 18(1):415–420

69. Li P, Shen T, Luo X, Yang J, Luo Z, Tan Y et al (2021) Modulation of microglial phenotypes by dexmedetomidine through TREM2 reduces neuroinflammation in heatstroke. Sci Rep 11(1):13345

70. Chen L, Cao J, Cao D, Wang M, Xiang H, Yang Y et al (2019) Protective effect of dexmedetomidine against diabetic hyperglycemia-exacerbated cerebrovascular ischemia/reperfusion injury: an in vivo and in vitro study. Life Sci 235:116553

71. Karakaya D, Cakir-Aktas C, Uzun S, Soylemezoglu F, Mut M (2022) Tailored therapeutic doses of dexmedetomidine in evolving neuroinflammation after traumatic brain injury. Neurocrit Care 36(3):802–814

72. Lu Y, Lin B, Zhong J (2017) The therapeutic effect of dexmedetomidine on rat diabetic neuropathy pain and the mechanism. Biological Pharm Bulletin 40(9):b17-00224

73. Zhang W, Yu T, Cui X, Yu H, Li X (2020) Analgesic effect of dexmedetomidine in rats after chronic constriction injury by mediating microRNA-101 expression and the E2F2–TLR4–NF-κB axis. Exp Physiol 105(9):1588–1597

74. Minaei A, Haghdoot-Yazdi H (2019) Dexmedetomidine attenuates the induction and reverses the progress of 6-hydroxydopamine-induced parkinsonism; involvement of KATP channels, alpha 2 adrenoceptors and anti-inflammatory mechanisms. Toxicol Appl Pharm 382:114743

75. Zhang X, Yan F, Feng J, Qian H, Cheng Z, Yang Q et al (2018) Dexmedetomidine inhibits
inflammatory reaction in the hippocampus of septic rats by suppressing NF-kB pathway. PLoS ONE 13(5):e0196897

76. Shan W, Liao X, Tang Y, Liu J (2021) Dexmedetomidine alleviates inflammation in neuropathic pain by suppressing NLRP3 via Nrf2 activation. Exp Ther Med 22(4):1046

77. Xu H, Zhao B, She Y, Song X (2018) Dexmedetomidine ameliorates lidocaine-induced spinal neurotoxicity via inhibiting glutamate release and the PKC pathway. Neurotoxicology 69:77–83

78. Zhao L, Zhai M, Yang X, Guo H, Cao Y, Wang D et al (2019) Dexmedetomidine attenuates neuronal injury after spinal cord ischaemia-reperfusion injury by targeting the CNPY2-endoplasmic reticulum stress signalling. J Cell Mol Med 23(12):8173–8183

79. Kim E, Kim HC, Lee S, Ryu HG, Park YH, Kim JH et al (2017) Dexmedetomidine confers neuroprotection against transient global cerebral ischemia/reperfusion injury in rats by inhibiting inflammation through inactivation of the TLR-4/NF-kB pathway. Neurosci Lett 649:20–27

80. Shen M, Wang S, Wen X, Han XR, Wang YJ, Zhou XM et al (2017) Dexmedetomidine exerts neuroprotective effect via the activation of the PI3K/Akt/mTOR signaling pathway in rats with traumatic brain injury. Biomed Pharmacother 95:885–893

81. Wang SL, Duan L, Xia B, Liu Z, Wang Y, Wang GM (2017) Dexmedetomidine preconditioning plays a neuroprotective role and suppresses TLR4/NF-kB pathways model of cerebral ischemia reperfusion. Biomed Pharmacother 93:1337–1342

82. Kan MC, Wang WP, Yao GD, Li JT, Xie T, Wang W et al (2013) Anticonvulsant effect of dexmedetomidine in a rat model of self-sustaining status epilepticus with prolonged amygdala stimulation. Neurosci Lett 543:17–21

83. Yuan F, Fu H, Sun K, Wu S, Dong T (2017) Effect of dexmedetomidine on cerebral ischemia-reperfusion rats by activating mitochondrial ATP-sensitive potassium channel. Metab Brain Dis 32(2):539–546

84. Li M, Jin Z, Zhan J, Wang Y, Chen K (2022) Dexmedetomidine improved one-lung ventilation-induced cognitive dysfunction in rats. BMC Anesthesiol 22(1):115

85. Zhao S, Cheng WJ, Liu X, Li Z, Li HZ, Shi N et al (2022) Effects of dexmedetomidine and oxycodone on neurocognitive and inflammatory response after tourniquet-induced ischemia-reperfusion injury. Neurochem Res 47(2):461–469

86. Deng F, Cai L, Zhou B, Zhou Z, Xu G (2020) Whole transcriptome sequencing reveals dexmedetomidine-improves postoperative cognitive dysfunction in rats via modulating lncRNA. 3 Biotech 10(5):202

87. Liaquat Z, Xu X, Zilundu PLM, Fu R, Zhou L (2021) The current role of dexmedetomidine as neuroprotective agent: an updated review. Brain Sci 11(7):846

88. Hoorn CE, Hoeks SE, Essink H, Tibboel D, Graaff JC (2019) A systematic review and narrative synthesis on the histological and neurobehavioral long-term effects of dexmedetomidine. Pediatr Anesth 29(2):125–136

89. Zhai Y, Zhu Y, Liu J, Xie K, Yu J, Yu L et al (2020) Dexmedetomidine post-conditioning alleviates cerebral ischemia-reperfusion injury in rats by inhibiting high mobility group protein B1 group (HMGB1)/toll-like receptor 4 (TLR4)/nuclear factor kappa B (NF-kB) signaling pathway. Med Sci Monit Int Medical J Exp Clin Res 26:e918617-1–e918617-11

90. Alharbi KS, Afzal M, Alzarea SI, Khan SA, Alomar FA, Kazmi I (2022) Rosinidin protects streptozotocin-induced memory impairment-activated neurotoxicity by suppressing oxidative stress and inflammatory mediators in rats. Medicina 58(8):993

91. Johansson K, Cebula M, Rengby O, Dreij K, Carlström KE, Sigmundsson K et al (2017) Cross talk in HEK293 cells between Nrf2, HIF, and NF-κB activities upon challenges with redox therapeutics characterized with single-cell resolution. Antioxid Redox Sign 26(6):229–246

92. Kobayashi EH, Suzuki T, Funayama R, Nagashima T, Hayashi M, Sekine H et al (2016) Nrf2 suppresses macrophage inflammatory response by blocking proinflammatory cytokine transcription. Nat Commun 7(1):11624

93. Suzuki T, Motohashi H, Yamamoto M (2013) Toward clinical application of the Keap1–Nrf2 pathway. Trends Pharmacol Sci 34(6):340–346

94. Wang N, Nie H, Zhang Y, Han H, Wang S, Liu W et al (2022) Dexmedetomidine exerts cerebral protective effects against cerebral ischemic injury by promoting the polarization of M2 microglia via the Nrf2/HO-1/NLRP3 pathway. Inflamm Res 71(1):93–106

95. Shao G (2022) Dexmedetomidine inhibits cerebral nerve cell apoptosis after cerebral hemorrhage in rats via the Nrf2/HO-1/NQO1 signaling pathway. Eur Rev Med Pharmac 26(13):4574–4582

96. Feng P, Zhang A, Su M, Cai H, Wang X, Zhang Y (2021) Dexmedetomidine inhibits apoptosis of astrocytes induced by oxygen-glucose deprivation via targeting JAK/STAT3 signal pathway. Brain Res 1750:147141

97. Liu H, Li J, Jiang L, He J, Zhang H, Wang K (2022) Dexmedetomidine pretreatment alleviates cerebral ischemia/reperfusion injury by inhibiting neuroinflammation through the JAK2/STAT3 pathway. Braz J Med Biol Res 55:e12145
98. Lv J, Wei Y, Chen Y, Zhang X, Gong Z, Jiang Y et al (2017) Dexmedetomidine attenuates propofol-induced neuroapoptosis partly via the activation of the PI3K/Akt/GSK3β pathway in the hippocampus of neonatal rats. Environ Toxicol Phar 52:121–128
99. Cheng X, Hu J, Wang Y, Ye H, Li X, Gao Q et al (2018) Effects of dexmedetomidine postconditioning on myocardial ischemia/reperfusion injury in diabetic rats: role of the PI3K/Akt-dependent signaling pathway. J Diabetes Res 2018:3071959
100. Zhang J, Zhang H, Zhao L, Zhao Z, Liu Y (2021) Effect and mechanism of lidocaine pretreatment combined with dexmedetomidine on oxidative stress in patients with intracranial aneurysm clipping. J Healthc Eng 2021:4293900
101. Sun X, Kang F, Shen Y, Shen Y, Li J (2021) Dexmedetomidine and phosphocreatine post-treatment provides protection against focal cerebral ischemia-reperfusion injury in rats. Acta Histochem Cytoc 54(4):105–113
102. Garthe A, Kempermann G (2013) An old test for new neurons: refining the Morris water maze to study the functional relevance of adult hippocampal neurogenesis. Front Neurosci-switz 7:63
103. Alam A, Hana Z, Jin Z, Suen KC, Ma D (2018) Surgery, neuroinflammation and cognitive impairment. EBioMedicine 37:547–556
104. Fang S, Chen Y, Yao P, Li Y, Yang Y, Xu G (2018) Dexmedetomidine alleviates postoperative cognitive dysfunction in aged rats probably via silent information regulator 1 pathway. Nan Fang Yi Ke Da Xue Xue Bao J South Medical Univ 38(9):1071–1075
105. Lei B, Lv L, Hu S, Tang Y, Zhong Y (2022) Social experiences switch states of memory engrams through regulating hippocampal Rac1 activity. Proc National Acad Sci 119(15):e2116844119
106. Lv L, Liu Y, Xie J, Wu Y, Zhao J, Li Q et al (2019) Interplay between α2-chimaerin and Rac1 activity determines dynamic maintenance of long-term memory. Nat Commun 10(1):5313
107. Liu Y, Lv L, Wang L, Zhong Y (2018) Social isolation induces Rac1-dependent forgetting of social memory. Cell Rep 25(2):288-295.e3
108. Davis RL, Zhong Y (2017) The biology of forgetting—a perspective. Neuron 95(3):490–503
109. Haditsch U, Leone DP, Farinelli M, Chrostek-Grashoff A, Brakebusch C, Mansuy IM et al (2009) A central role for the small GTPase Rac1 in hippocampal plasticity and spatial learning and memory. Mol Cell Neurosci 41(4):409–419
110. Zhang H, Zablath YB, Zhang H, Liu A, Gugustea R, Lee D et al (2022) Inhibition of Rac1 in ventral hippocampal excitatory neurons improves social recognition memory and synaptic plasticity. Front Aging Neurosci. 14:914491
111. Coffey ET (2014) Nuclear and cytosolic JNK signalling in neurons. Nat Rev Neurosci 15(5):285–299
112. Krapivinsky G, Krapivinsky L, Manasian Y, Ivanov A, Tyzio R, Pellegrino C et al (2003) The NMDA receptor Is coupled to the ERK pathway by a direct Interaction between NR2B and RASGRF1. Neuron 40(4):775–784
113. Schmitt JM, Guire ES, Saneyoshi T, Soderling TR (2005) Calmodulin-Dependent kinase kinase/calmodulin kinase I activity gates extracellular-regulated kinase-dependent long-term potentiation. J Neurosci 25(5):1281–1290
114. Sun XY, Tuo QZ, Liuyang ZY, Xie AJ, Feng XL, Yan X et al (2016) Extrasynaptic NMDA receptor-induced tau overexpression mediates neuronal death through suppressing survival signaling ERK phosphorylation. Cell Death Dis 7(11):e2449–e2449
115. Amadoro G, Ciotti MT, Costanzi M, Cestari V, Calissano P, Canu N (2006) NMDA receptor mediates tau-induced neurotoxicity by calpain and ERK/MAPK activation. Proc National Acad Sci 103(8):2892–2897
116. Xie CW (2004) Calcium-regulated signaling pathways. Neuronol Med 6(1):53–64
117. Banerjee M, Shenoy RR (2021) Emphasizing roles of BDNF promoters and inducers in Alzheimer’s disease for improving impaired cognition and memory. J Basic Clin Physiol Pharmacol 0(0):00001015202101812
118. Zhu Y, Li S, Liu J, Wen Q, Yu J, Yu L et al (2019) Role of JNK signaling pathway in dexmedetomidine post-conditioning-induced reduction of the inflammatory response and autophagy effect of focal cerebral ischemia reperfusion injury in rats. Inflammation 42(6):2181–2191
119. Li G, Cao F, Jin Y, Wang Y, Wang D, Zhou L (2021) Role of NR2B/ERK signaling in the neuroprotective effect of dexmedetomidine against sevoflurane induced neurological dysfunction in the developing rat brain. Acta Neurobiol Exp 81(3):271–278
120. Dong Y, Hong W, Tang Z, Gao Y, Wu X, Liu H (2020) Dexmedetomidine attenuates neurotoxicity in developing rats induced by sevoflurane through upregulating BDNF-TrkB-CREB and downregulating ProBDNF-P75NRT-RhoA signaling pathway. Mediat Inflamm 2020:5458061
Bile Acids Alter the Autophagy and Mitogenesis in Skeletal Muscle Cells

Franco Tacchi, Josué Orozco-Aguilar, Mayalen Valero-Breton, and Claudio Cabello-Verrugio

Abstract

Muscle atrophy decreases muscle mass with the subsequent loss of muscle function. Among the mechanisms that trigger sarcopenia is mitochondrial dysfunction. Mitochondria, whose primary function is to produce ATP, are dynamic organelles that present the process of formation (mitogenesis) and elimination (mitophagy). Failure of any of these processes contributes to mitochondrial malfunction. Mitogenesis is mainly controlled by Peroxisome proliferator-activated receptor-gamma coactivator-1alpha (PGC-1α), a transcriptional coactivator that regulates the expression of TFAM, which participates in mitogenesis. Mitophagy is a process of selective autophagy. Autophagy corresponds to a degradative pathway of protein complexes and organelles. Liver disease caused sarcopenia and increased bile acids in the blood. We demonstrated that the treatment with cholic (CA) or deoxycholic (DCA) bile acids generates mitochondrial dysfunction and loss of biomass. This work assessed whether CA and DCA alter autophagy and mitogenesis. For this, western blot evaluated the autophagy process by determining the protein levels of the LC3II/LC3I ratio. In addition, we assessed mitogenesis using a luciferase-coupled plasmid reporter for the PGC-1α promoter and the protein levels of TFAM by western blot. Our results indicate that treatment with CA or DCA induces autophagy, represented by an increase in the LC3II/LC3I ratio. In addition, a decreased autophagic flux was observed. On the other hand, when treated with CA or DCA, a decrease in the activity of the PGC-1α promoter was observed. However, the levels of TFAM increased in myotubes incubated...
with CA and DCA. Our results demonstrate that CA and DCA modulate autophagy ad mitogenesis in C2C12 myotubes.

Keywords
Mitophagy · Bile acids · Mitochondrial biogenesis · Autophagy · Sarcopenia

Abbreviations
BA Bile acids
CA Cholic acid
CDCA Chenodeoxycholic acid
CCLD Chronic cholestatic liver disease
CREB CAMP response element-binding protein
DCA Deoxycholic acid
ETC Electron transporting chain
FXR Farnesoid receptor
HIF Hypoxia-inducible factor
LCA Lithocholic acid
MHC Myosin heavy chain
NRF Nuclear respiratory transcription factors
OXPHOS Oxidative phosphorylation
PGC-1α Peroxisome proliferator-activated receptor-gamma coactivator-1 alpha
ROS Reactive oxygen species
TDCA Taurodeoxycholic acid
TFAM Transcription Factor A Mitochondrial
TGR5 Takeda-G-protein-receptor-5
UPS Ubiquitin-proteasome system

10.1 Introduction
Skeletal muscle corresponds to most of the body mass, reaching 41.3% of body weight in men and 33.1% in women [1]. Skeletal muscles can convert chemical energy into mechanical energy to generate the force and power that allow us to maintain posture and produce movements. Defining its function from a metabolic perspective, it regulates glycemia and stores essential substrates such as carbohydrates and amino acids [2]. This last has been described as necessary for synthesizing proteins in many tissues, such as the skin, brain, and heart, and maintaining the temperature [3]. In addition, releasing amino acids from skeletal muscle contributes to glycemic control during periods of starvation [2]. Therefore, avoiding any pathological condition affecting muscle mass is critical because it leads to complications associated with movement, muscle strength, and metabolism [2]. Another fundamental characteristic of skeletal muscle is its plasticity, meaning the ability to either increase or decrease its mass, known as hypertrophy and atrophy [4].

Several causes can generate the loss of muscle mass and weakness, including disuse [5], sepsis [6], denervation [7], aging (called primary sarcopenia), and induced by chronic pathologies (secondary sarcopenia). Among chronic diseases that generate sarcopenia are chronic obstructive pulmonary disease, heart failure, and liver disease [8].

Sarcopenia characterizes by a decline in muscle mass and strength and decreased physical activity [9]. Indeed, sarcopenic muscle presents decreased levels of myofibrillar proteins, such as myosin heavy chain (MHC), myosin light chain (MLC), and troponin. These proteins, together with other structural ones, compose the sarcomere, the contractile muscle unit [10, 11]. The mechanism involved in decreased myofibrillar protein levels is an imbalance in the synthesis and degradation protein pathways, highlighting the ubiquitin-proteasome system (UPS) and calpains as the main degradative pathways involved [12].

Another process involved in sarcopenia is autophagy, which can be altered in sarcopenic muscle [13]. Autophagy is responsible for removing damaged cellular components, such as proteins and even organelles [14]. Autophagy requires forming an isolated membrane portion and the post-translational modification of the cytosolic protein LC3I, which conjugates with phosphatidylethanolamine to form LC3II. Then, LC3II incorporates into the isolated membrane, forming the phagophore, capable of engulfing the molecules target that will be charged, creating a
double-membrane vesicle called an autophagosome. This new structure subsequently fusions with the lysosome to form the autolysosome, a compartment where the content inside will be degraded [15].

Finally, the mitochondria are also involved in generating and maintaining sarcopenia. The primary function of mitochondria is to produce ATP. Still, it is also involved in other processes such as apoptosis, autophagy, calcium signaling, and reactive oxygen species (ROS) production [16]. The oxidative phosphorylation (OXPHOS) is carried out by I, II, and III complexes, which constitute the electron transport chain (ETC), together with the ATP synthase. ETC produces not only energy but also ROS. The main ROS formed is superoxide ion (O$_2^-$), which is converted for the cell to hydrogen peroxide (H$_2$O$_2$), a less toxic by-product [17]. However, when there is increased O$_2^-$ and H$_2$O$_2$ levels, they will be converted to hydroxyl ions (OH). These reactive species can oxidize biomolecules, including the ETC component and mitochondrial DNA, resulting in a mitochondrial malfunction that subsequently increases ROS, enhancing the damage [17]. Therefore, normal mitochondrial function requires defense mechanisms, such as antioxidant molecules and enzymes, a system responsible for eliminating misfolded or aggregated proteins, and the mitochondrial life cycle [18]. It consists of a constant mitochondrial remodeling through ongoing events of fission and fusion, a process known as mitochondrial dynamic. On a hand, mitochondrial fusion is mainly modulated by proteins such as Mitofusin 1 and 2 (Mfn 1 and 2) and OPtic Atrophy 1 (Opa 1) proteins [19, 20]. On the other hand, mitochondrial fission is mainly regulated by the proteins Dynamin-Related Protein 1 (Drp1) [19, 20], mitochondrial fission 1 protein (Fis1), mitochondrial fission factor (Mff), and mitochondrial dynamic protein 49 and 51 (MiD49, and MiD51), which participate actively in the fragmentation of mitochondria [21].

Several studies have determined the role of mitochondrial fusion in maintaining skeletal muscle function, as also mitochondrial integrity and activity. Thus, a study using muscle-specific KO mice for both Mfn-1 and Mfn-2 shows that mice develop mitochondrial dysfunction, accumulation of mitochondrial DNA damage, and deficit in growth [22]. In comparison, a KO mouse for Mfn2 in skeletal muscle was shown to result in oxidative stress and sarcopenia in adult mice [23]. Interestingly, the deletion of Mfn1 and Mfn2 in adult skeletal muscle resulted in a decline in muscle function, evidenced by a significant decrease in exercise performance, indicating that mitochondrial fusion is essential to physical activity in mice [24]. Another antecedent shows that specific deletion of Opa1 in skeletal muscle produces not only mitochondrial dysfunction but also oxidative stress, endoplasmic reticulum (ER) stress, and inflammation [25–27]. In addition, Opa1 deficiency also induces the secretion of Fibroblast Growth Factor 21 (FGF21) from skeletal muscle, mechanistically explaining some alterations such as lipid dysregulation, inflammation, and the senescence of different tissues [25]. These antecedents indicate that mitochondrial fusion proteins are essential for maintaining mitochondrial and skeletal muscle function.

Regarding the fission process, some antecedents indicate its role in maintaining skeletal muscle health. The genetic silencing of Fis1 and Drp1 in skeletal muscle and the consequent inhibition of mitochondrial fission has been shown to prevent muscle wasting induced by two models of muscle atrophy, such as starvation or overexpression of FoxO3a [28]. Muscle-specific Drp1 KO mice show a severe myopathic phenotype, including muscle wasting, weakness, and evidence of muscle degeneration and regeneration [29]. Another study with muscle-specific Drp1 knockdown showed a decrease in mitochondrial respiration and increased muscle regeneration, denervation, fibrosis, and oxidative stress [30]. Interestingly, both Drp1 KO and knockdown presented altered autophagy and mitophagy [29, 30]. These mice also showed muscle atrophy [29, 30], indicating that Drp1 is crucial in regulating skeletal muscle development and maintenance. The antecedent reinforces this observation showing that muscle-specific Drp1 overexpression altered skeletal muscle growth in mice [31, 32]. Another study showed that loss of
Fis1 leads to mitochondrial dysfunction, proteostasis impairment, and muscle degeneration in Drosophila [33]. Taken altogether, the antecedents presented above clearly indicate that mitochondrial fission is essential for skeletal muscle function.

Other events that belong to the mitochondrial life cycle are the production of new mitochondria, known as mitochondrial biogenesis or mitogenesis, and the elimination of damaged mitochondria through mitophagy, a process of selective autophagy for mitochondria [34]. These processes are connected, and any alteration in them leads to mitochondrial dysfunction, characterized by low ATP production and/or increased ROS [35].

Mitogenesis is defined as the growth of pre-existing mitochondria and their eventual division, increasing the number, size, and mass of mitochondria [36, 37]. This process is induced by exercise, caloric restriction, low temperature, oxidative stress, cell division, and differentiation [36, 37]. Mitochondrial proteins are synthesized in two genomes. The mitochondrial genome contains 13 genes (37 total) that codify for components participating in OXPHOS [36, 37]. In addition, the nuclear genome encodes 1000–1500 proteins, which are synthesized on cytosolic ribosomes and imported to mitochondria [38]. Therefore, biogenesis requires the coordination of the two genomes involved. The master regulator of mitogenesis is the protein peroxisome proliferator-activated receptor-gamma coactivator (PGC)-1alpha (PGC-1α). This protein is a cytosolic transcriptional co-activator that, in response to biogenesis-inducing stimuli, undergoes post-translational modifications to translocate to the nucleus, interact with different transcription factors, and regulate the target-gene transcription [36, 37]. Among these transcriptional factors are myocyte-enhancing factor-2 (MEF2) and nuclear respiratory transcription factors 1 and 2 (NRF-1 and NRF-2) [39]. NRF-1 induces the expression of mitochondrial transcription factor A (TFAM), which, once synthesized, translocates to the mitochondria to induce the expression of mitochondrial genes, such as components of the ETC, together to regulate mitochondrial DNA replication [40]. NRF-2 induces the expression of various genes, including NAD(P)H quinone oxidoreductase 1, glutathione S-transferase, and subunit 4 of the hetero-oligomeric enzyme cytochrome c oxidase (COX IV) [41].

The disruption of mitochondrial biogenesis has been described in sarcopenia. In a murine model of colorectal cancer-induced sarcopenia, decreased PGC-1α protein levels and target genes for PGC-1α, such as cytochrome C and COX IV, were found [42]. In other studies, it was described that the decrease in mitogenesis precedes muscle weakness. Therefore, mitochondrial biogenesis is a cause of sarcopenia and not a consequence [42–44]. It has been described a decrease in PGC-1α in sarcopenic conditions such as obesity and type 2 diabetes in mouse and human muscles [45, 46]. Therefore, alterations in mitogenesis are closely linked to the development of sarcopenia.

Diverse soluble factors generate sarcopenia, among them bile acids [47]. Bile acids are amphipathic molecules produced in the liver from cholesterol and stored in the gallbladder [48]. They divide according to their origin into primary BA, the most abundant and synthesized in the liver, such as cholic acid (CA) and chenodeoxylic acid (CDCA), or secondary BA (or dehydroxylated derivates), which are primary BA modified by intestinal bacteria. These are the acids deoxycholic (DCA) and lithocholic (LCA) [48, 49]. The most abundant BA are CA, CDCA, and DCA [50]. Bile acids are synthesized in hepatocytes from cholesterol [51]. Once synthesized, they are secreted from the hepatocyte to the bile duct and discharged into the small intestine [52]. About 95% of bile acids are recycled back to the liver through enterohepatic circulation [52].

Bile acids also are essential in pathologies such as cholestatic chronic liver diseases (CCLD). A typical characteristic of CCLD is the increased serum levels of bile acids [53, 54]. CCLD is a pathology characterized by progressive liver damage, eventually leading to cirrhosis. This last stage presents different alterations, such as liver fibrosis and hepatocellular dysfunction.
Therefore, it ultimately leads to a liver transplant. Of patients with cirrhosis, 40–80% have muscle weakness and develop sarcopenia, the loss of muscle mass, strength, and function [56, 57]. This condition has profound implications for the transplant since people who present both sarcopenia and cirrhosis have lower post-transplant survival (40%), in contrast to people who do not show muscle weakness (80%) [58]. Besides, sarcopenia could help predict mortality in cirrhotic patients [59]. In these pathologies, a decrease in muscle mass has been described in animal models and humans [58, 60].

Bile acids have gastrointestinal functions widely described, such as lipid digestion, dietary protein denaturation, and antimicrobial effects [51]. However, recent studies have indicated bile acids as signaling molecules through two receptors, Farnesoid X (FXR) and TGR5 [61, 62]. FXR is a nuclear receptor in the liver, adrenal glands, kidney, and intestinal tract [63]. TGR5 is a G protein-coupled membrane receptor that increases energy expenditure when activated in brown adipose tissue [62, 64]. In addition, TGR5 has been described as an essential regulator of blood glucose since promoting the release of insulin in the pancreatic β cells [65, 66]. In non-ciliated cholangiocytes, TGR5 induces proliferation. However, in ciliated cholangiocytes, proliferation is inhibited [67]. Therefore, it is possible to observe opposite effects in a cell-dependent manner. The metabolic role of TGR5 in skeletal muscle remains unclear, and some functions have been indirectly proposed to occur in muscle by data extrapolation from other tissues. Thus, TGR5 can induce the deiodinase 2 expression, which would increase energy expenditure and oxygen consumption, based on studies previously described for brown adipose tissue, in a mechanism dependent on CREB activated by PKA [68]. In addition, it has been proposed that TGR5 expression can be upregulated in skeletal muscle under exercise and could favor myogenesis [69]. Accordingly to these antecedents, we have previously described that the TGR5 receptor increases its expression during skeletal muscle differentiation [47]. However, its participation in pathologies that affect skeletal muscle has been poorly studied. In this line of evidence, recent reports from our laboratory indicate that the absence of the TGR5 expression using a murine model of CCLD and knock-out (KO) for the TGR5 receptor prevents sarcopenia induced by CCLD. This antecedent suggests bile acids can mediate its effect on skeletal muscle through this receptor [47]. On the other hand, when incubating C₂C₁₂ myotubes with cholic acid (CA) and deoxycholic acid (DCA), a decrease in MHC protein levels was observed, together with an increase in MuRF-1 and atrogin-1 [47]. These alterations are molecular markers of a sarcopenic-like phenotype in vitro. In addition, when mitochondrial parameters were analyzed, a decreased mitochondrial mass, increased mitochondrial ROS levels, and reduced oxygen consumption rate was observed (Antioxidants in press). Therefore, bile acid treatment causes mitochondrial dysfunction in myotubes and isolated skeletal muscle fibers. However, the mechanisms that may be causing the abnormal functioning of the mitochondria have not been described in this model. Thus, we evaluated the effect of CA and DCA on processes that could regulate mitochondrial biomass, specifically mitogenesis and autophagy.

10.2 Methods

10.2.1 Cell Culture

C₂C₁₂ myoblasts were obtained from the American Type Culture Collection (ATCC). The media used for the expansion and maintenance of myoblasts and their differentiation into myotubes were Dulbecco’s Modified Eagle’s Medium (DMEM) (Thermo Fisher Scientific, Waltham, MA, USA), 100 U/mL of Penicillin, 100 µg/mL of Streptomycin, and 0.25 µg/mL of Amphotericin B (Gibco), supplemented with fetal bovine serum (FBS) (Hyclone) and horse serum (HS) (Thermo Fisher Scientific, Waltham, MA, USA) respectively. Cultures of C₂C₁₂ myotubes generated from differentiated myoblasts were used for all experiments [70]. Myoblasts were expanded and maintained by seeding them in
culture dishes in DMEM medium supplemented with 10% FBS. For experiments, 30,000 cells/cm² were seeded in DMEM-10% FBS. The next day, these cells were differentiated by washing the plate twice with PBS and DMEM. Finally, the culture was incubated with DMEM supplemented with 2% HS to differentiate, which was changed every 24 h until day 5 of differentiation, when cells were treated. Cell cultures for expansion and differentiation were grown at 37 °C, with 5% CO₂.

10.2.2 Treatments of C₂C₁₂ Myotubes

Myotubes from 5 days of differentiation were washed with 1 mL of DMEM and maintained in a 2% HS-DMEM medium. Then, cholic acid (CA, 300 μM) (Sigma-Aldrich, St Louis, MO, USA) or deoxycholic acid (DCA, 120 μM) (Sigma-Aldrich, St Louis, MO, USA) was added for 8, 24, 48, or 72 h (h). For autophagy assay, a pre-treatment with chloroquine (CQ, 50 μM) (Sigma-Aldrich, St Louis, MO, USA) was added 30 min (min) before the treatment with bile acids to visualize changes in LC3II levels at the 8 h. For the other treatment (48 and 72 h) in autophagy assay, CQ was added 8 h before finishing the treatment. The cultures designated as the control group (Vehicle) were incubated with 2% HS-DMEM and CQ [71]. Once the incubations were finished, the plate was washed twice with 1 ml of cold PBS and frozen at −20 °C until protein extraction was carried out.

10.2.3 Protein Extraction

At the end of experiments, C₂C₁₂ cells were incubated with RIPA buffer (50 mM Tris–HCl pH 7.5; 150 mM NaCl; 1 mM Na₂EDTA; 1 mM EGTA; 1% NP-40; 1% sodium deoxycholate; phosphatase inhibitors: 1 mM orthovanadate; 1 mM NaF; 30 mM sodium pyrophosphate sodium; protease inhibitors: 1 mM PMSF and 1 mM cocktail of protease inhibitors) under orbital shaking for 15 min. Subsequently, the cell lysate was removed, recovered, and centrifuged at 2200 × g for 10 min at 4 °C. Finally, the supernatant was recovered, and the pellet corresponding to cell debris was discarded. Protein samples were stored at −20 °C for total protein measurement and subsequent use in Western blot assays. The total protein concentration in the extracts was quantified using the Micro BCA™ Protein Assay Kit (ThermoFisher Scientific, Waltham, MA, USA).

10.2.4 Western Blot

30 μg of proteins were used to detect TFAM, LC3II, and LC3I. Protein samples were mixed with loading buffer (60 mM Tris–HCl pH 6.8; 25% glycerol; 2% SDS; 0.7 M β-mercaptoethanol; 0.1% blue strip bromophenol) in a 1:5 ratio of the volume to be loaded. Electrophoresis was then carried out under denaturant conditions in 10% acrylamide: bisacrylamide (29:1) gels (SDS-PAGE) to determine TFAM with running buffer (25 mM Tris–HCl pH 8.3; 192 mM Glycine; 0.1% w/v SDS) at 100 V and room temperature. To determine LC3II and LC3I, electrophoresis was performed on a 15% gel at 80 V and 4 °C. Subsequently, the proteins were transferred to a PDVF membrane Immobilon-P (ThermoFisher Scientific, Waltham, MA, USA), which was previously activated with methanol for 5 min. The transfer sandwich was assembled with the membrane and the gel, and they were placed in a chamber with transfer buffer (25 mM Tris–HCl pH 8.3; 192 mM Glycine; 20% v/v Methanol) and allowed to transfer at 350 mA for 90 min at room temperature, except for LC3 which was performed at 4 °C. After transference, the membrane was again immersed in methanol for 5 min and allowed to dry at room temperature. Next, the membrane was blocked with a solution of TBS (150 mM NaCl; 50 mM Tris–HCl pH 7.5) − 0.1% Tween 20–5% BSA for 1 h. In the end, the blocking solution was discarded to incubate the membranes with the primary antibodies in the blocking solution at 4 °C overnight. The following day, the membrane was washed three times for 5 min with TBS-0.1% Tween 20. The secondary
α-Rabbit antibody (Thermo Fisher Scientific, Waltham, MA, USA) was added and diluted in a TBS-0.1% Tween 20–5% BSA for 1 h at room temperature. Then, the membranes were washed three times with TBS-0.1% Tween 20, followed by three washes with PBS. Finally, the primary/secondary antibody complex’s binding to the target proteins was revealed by chemiluminescence (Thermo Fischer Scientific, Walthman MA, USA) and detected through an image documentation system FOTO/Analyst Luminary/FX Workstation (Fotodyne Inc., Hartland, WI, USA). The image quantification was carried out using the Image J program (NIH, Bethesda, MD, USA), and the protein levels, in the case of TFAM, were normalized to the levels of β-actin, used as load control. In the case of LC3II, the LC3I levels were used as standardization since the analysis performed was the LC3II/LC3I ratio. To calculate the autophagic flux, the following calculation was used [(LC3II + CQ) – (LC3II-CQ)].

10.2.5 Plasmids

A luciferase plasmid reporter ligated to a section of the PGC-1α gene promoter extracted from an Escherichia coli DH5α strain was used. PGC-1 alpha promoter 2 kb luciferase (pPGC-1α-Luc) was a gift from Bruce Spiegelman (Addgene plasmid # 8887; http://n2t.net/addgene:8887; RRID: Addgene_8887) [39]. Finally, together with pPGC-1α-Luc, a plasmid containing the Renilla luciferase gene (pRL-SV40) was co-transfected, which was used to normalize the luciferase activity. pRL-SV40 was a gift from Ron Prywes (Addgene plasmid # 27163; http://n2t.net/addgene:27163; RRID:Addgene_27163) [39].

10.2.6 Amplification and Transfection of Plasmids

The bacteria containing the reporter plasmid pPGC-1α-Luc were grown overnight (O.N.) in Terrific Broth liquid medium (Thermofisher Scientific, Waltham, MA, USA), supplemented with 100 µg/mL of Ampicillin as an antibiotic for selection. The following day, a protocol of DNA plasmid isolation and purification Maxi-Prep was performed using the E.Z.N.A® Plasmid DNA Maxi Kit (Omega Bio Tek, Norcross, GA, USA). Once the plasmid was purified, 0.5 µg/mL of it was digested with 0.25 U/µL of the enzyme BamHI (Thermofisher Scientific, Waltham, MA, USA) O.N. at 37 °C. An agarose gel was prepared by 0.7% m/v in Tris–acetate EDTA (TAE) buffer, and 5 µL of plasmid, mixed with loading buffer in a 5:1 ratio, was loaded and electrophoresed at 70 V for 1 h.

C2C12 cells were co-transfected with 1 µg of pPGC-1α-Luc and 0.02 µg of pRL-SV40 using 1 µl of LipofectAMINE 2000 (Thermofisher Scientific, Waltham, MA, USA) in Opti-MEM I. After 6 h, FBS was added to the medium, and the cells were cultured for 12 h. Further, the cells were differentiated for 4 days, and myotubes were incubated with DCA (120 µM) and CA (300 µM) for 24 h.

10.2.7 Luciferase Activity

After incubation with bile acids, the luciferase activity was determined using the reagents and the protocol of the Dual-Luciferase® Reporter Assay System (Promega, Madison, WI, USA). The DualGLO reagents and the GLOMAX™ 20/20 Luminometer (Promega, Madison, WI, USA) were used to detect luciferase activity. Each activity value Luciferase was normalized by its respective Renilla Luciferase activity value.

10.2.8 Statistical Analysis

The statistical analysis of the data was performed with Prism 9.0 analysis software (GraphPad Software, San Diego, CA, USA). The non-parametric test, “The Mann–Whitney U test,” was used for all the two groups’ studies. Differences were considered significant when the p-value was < 0.05.
10.3 Results

10.3.1 Cholic and Deoxycholic Acids Impair Autophagy in C₂C₁₂ Myotubes

Autophagy is a process that can be altered under sarcopenic conditions. For this reason, we evaluated autophagy parameters such as the LC3II/LC3I ratio through Western blot analysis in a model of sarcopenic-like phenotype in vitro using C₂C₁₂ myotubes. In this autophagy assay, chloroquine (CQ), a molecule that prevents autophagosome fusion with the lysosome [106], was used to determine the increase in the levels of LC3II. As shown in Fig. 10.1a, 16 KDa and 14 kDa bands are associated with LC3I and LC3II, respectively. The graph of Fig. 10.1b shows that the incubation of CA with CQ does not change the ratio of LC3II/LC3I at 8 h compared to the vehicle condition with CQ. However, cells treated for 48 h with CA plus CQ increased the LC3II/LC3I ratio by 1.34-fold (Fig. 10.1c, d) and by 1.28-fold at 72 h (Fig. 10.1d, f) compared to the CQ-treated vehicle. Therefore, treatment with 300 µM CA in the presence of CQ can increase the LC3II/LC3I ratio in C₂C₁₂ myotubes. In the case of the myotubes incubated with DCA, there is no increase in LC3II/LC3I at 8 h of treatment in the presence of CQ (Fig. 10.2a, b). In contrast, incubation for 48 h incremented 2.13-fold in the LC3II/LC3I ratio compared to the vehicle with CQ (Fig. 10.2c, d). At 72 h, there were no changes in the LC3II/LC3I levels compared to the same experimental groups (Fig. 10.2e, f). Therefore, the treatment with 120 µM of DCA increases LC3II/LC3I exclusively at 48 h.

From the results obtained, it was possible to determine that the treatment with CA decreases the autophagic flow. However, treatment with DCA induces a biphasic response with a transient increase at 48 h and further diminution at 72 h.

10.3.2 Cholic and Deoxycholic Acids Decrease PGC-1α Transcriptional Activity Without Altering TFAM Protein Levels in C₂C₁₂ Myotubes

PGC-1α is a master gene to induce mitogenesis, and an increment in its transcriptional activity is associated with increased mitochondrial biogenesis. Therefore, we used the reporter plasmid PGC-1α-Luc to determine whether bile acids affect the transcriptional activity of the PGC-1α promoter [83]. First, myoblasts were transfected with PGC-1α-Luc and incubated with horse serum, a stimulus that induces PGC-1α expression, showing a 120% increase in luciferase activity compared to the control (Fig. S1). Therefore, the transfected plasmid in the myoblasts can respond to a stimulus that induces the expression of PGC-1α.

C₂C₁₂ myotubes previously transfected with the plasmid PGC-1α-Luc were treated with CA and DCA for 24 h. CA and DCA (Fig. 10.4a, b,
respectively) caused a 50% decrease in the luciferase activity compared to the vehicle. Therefore, treatment with both bile acids decreases the transcriptional activity of the PGC-1α promoter.

Another protein involved in mitogenesis downstream of PGC-1α is TFAM. Thus, TFAM protein levels were analyzed by Western blot. Incubation with CA did not change TFAM levels at 8 h (Fig. 10.5a, b). However, CA increased 2.9-fold at 48 h after incubation (Fig. 10.5d, e). The same Figure shows that at 72 h, there were no changes under CA incubation (Fig. 10.5a, c). DCA incubation produced a transient upregulation of 1.67- and 1.5-fold in TFAM levels at 48 and 72 h, respectively (Fig. 10.5d, f), while no changes were observed at 8 h (Fig. 10.5a, c).

Together, these results indicate that both CA and DCA increase TFAM levels, which does not correlate with the decrease in PGC-1α promoter activity (Fig. S1).

10.4 Discussion

Autophagy is a process that eliminates cellular components (including organelles) that could be damaged and recycled [14]. The induction of autophagy pathways has been linked to sarcopenia [13]. The results in the present manuscript show that treatment with CA or DCA increases LC3II/LC3I ratio. This result indicates that these bile acids induce the conversion of
LC3I to LC3II, thereby increasing the autophagosome. However, when autophagic flux was analyzed, bile acids decreased this process. Thus, the increase in the LC3II/LC3I ratio obtained when treating myotubes with CA and DCA may be due to an accumulation of autophagosomes that are not degraded via the lysosome. Therefore, treatment with bile acids inhibits autophagy.

The published studies of bile acids and their effect on autophagy are limited to events in the hepatic tissue [72–74]. Under physiological conditions, after food intake, bile acids can act as nutrient sensors in the liver, promoting anabolic processes and inhibiting catabolic processes, including autophagy [75, 76]. Interestingly, bile acids-dependent inhibition of autophagy in the liver depends on the FXR receptor. This receptor is not expressed in skeletal muscle, discarding its participation in the inhibition of autophagy mediated by CA and DCA in myotubes observed in the present study [72]. Similar effects have been published using chenodeoxycholic acid (CDCA) in a human liver cell line, causing a decrease in autophagy [73]. Contrary to these antecedents, in a liver disease model caused by α1-antitrypsin protein deficiency, treatment with ursodeoxycholic acid (UDCA) induces autophagy through an unknown mechanism [74]. Therefore, our results about the autophagy induced by CA and DCA are essential as evidence of this process in a non-hepatic cell type.
Fig. 10.3 Cholic acid declines, and deoxycholic has a biphasic response, the autophagic flux in C₂C₁₂ myotubes. C₂C₁₂ myotubes were incubated with 300 µM of cholic acid (CA) (a–c) or 120 µM of deoxycholic acid (DCA) (d–f) for 8 (a–d), 48 (b–e), and 72 h (c–f) in absence or presence of chloroquine (CQ). At the end of the experiments, a Western blot of LC3I (16 KDa) and LC3II (14 KDa) was performed using β-actin (42 KDa) as the loading control. Images from Figs. 10.1 and 10.2 were used to calculate autophagic flux using \([\text{LC3II + CQ} - \text{LC3II-CQ}]\). The control condition (Vehicle) corresponds to myotubes without CA or DCA. Value of the graphs corresponds to the mean ± SEM of the groups normalized to vehicle and expressed as a fold of change. (n = 3, *p < 0.05, Mann–Whitney U test)

Fig. 10.4 Cholic and deoxycholic acids decreased PGC-1α transcriptional activity in C₂C₁₂ myotubes. Undifferentiated C₂C₁₂ cells were co-transfected with a plasmid reporter containing a section of PGC-1α promoter coupled to the luciferase gene and a pRL-SV40 plasmid. Cells were differentiated for 5 days and then incubated with 300 µM of cholic acid (CA) (a) or 120 µM of deoxycholic acid (DCA) (b) for 48 h. When the treatment was finished, dual luciferase activities were measured and expressed as a percentage of change. The control condition (Vehicle) corresponds to myotubes without CA or DCA. The graphs (a and b) value corresponds to the mean ± SEM of the groups normalized to vehicle. (n = 3, *p < 0.05, Mann–Whitney U test)
The absence of the FXR receptor in skeletal muscle, through which bile acids generate their anti-autophagic effect, and the presence of the TGR5 receptor suggest that it could participate in the autophagy inhibition mechanism. However, it must be further evaluated.

The life cycle of mitochondria allows the maintenance of a pool of healthy mitochondria in the cell. Among the processes involved in the life cycle is mitogenesis, which generates an increase in the number of new mitochondria and an increase in mitochondrial size and mass [36]. Mitochondrial biogenesis is repressed in sarcopenia, mainly associated with a decrease in the master regulator PGC-1α, which reduces the levels of all genes downstream [42, 45, 46, 77]. In the present study, using a transfection strategy of a plasmid reporter for the PGC-1α promoter

Fig. 10.5 Cholic and deoxycholic acids increase TFAM protein levels in C2C12 myotubes. Differentiated C2C12 cells forming myotubes were incubated with 300 µM of cholic acid (CA) (a and b, d and e, g and h) or 120 µM of deoxycholic acid (DCA) (a, c, d, f, g, i) for 24 (a–c), 48 (d–f), and 72 h (g and i). When the treatment was finished, a Western blot of TFAM (24 KDa) was performed using β-actin (42 KDa) as the loading control. The control condition (Vehicle) corresponds to myotubes without CA or DCA. The value of the graphs (B–C, E–F, H–I) corresponds to the mean ± SEM of the groups normalized to vehicle and expressed as fold of change. (n = 3, *p < 0.05, Mann–Whitney U test)
coupled with the luciferase gene allowed us to analyze the behavior of its transcriptional activity in the presence of CA and DCA. Our results enable us to speculate that the expression of PGC-1α is decreased when myotubes are treated with these bile acids. Further experiments should be performed to evaluate the effect of CA and DCA on protein levels of PGC-1α, its intracellular location, and possible post-translational modifications that modulate its activity as a transcriptional coactivator and regulator of target genes that affect mitogenesis.

In addition, the effect of CA and DCA on TFAM protein, a target gene of PGC1-α, was evaluated [40]. Unexpectedly, an increase in TFAM protein levels by CA and DCA was observed. Thus, it is probable that a PGC1-α-independent mechanism can explain the increment in TFAM levels. A possible explanation for this phenomenon is the existence of an alternative pathway for the induction of TFAM levels. Studies in human aortic endothelial cells support this assertion, showing that HIF2α and c-Myc could regulate TFAM expression through a mechanism independent of PGC-1α and PGC-1β [78]. This possibility is reinforced by studies in cardiac myocytes that demonstrated mitochondrial biogenesis and markers such as TFAM were regulated in c-Myc-dependent and PGC-1α-independent ways [79]. Thus, a mechanism that modulates PGC-1α-independent mitogenesis involves the c-Myc protein. Subsequent experiments must be conducted to establish whether this mechanism could participate in regulating mitogenesis by CA and DCA. In this context, there is evidence that DCA and taurodeoxycholic acid (TDCA) can increase c-Myc mRNA levels [80–82]. Therefore, bile acids could induce c-Myc expression in C2C12 myotubes, increasing TFAM levels independent of PGC-1α. A recent publication from our group indicates that treatments with CA and DCA cause a decrease in mitochondrial biomass. This asseveration suggests that although TFAM levels increased with CA and DCA, more deep studies must be performed to evaluate the balance between mitogenesis and mitophagy to produce a decrease in mitochondrial mass.

TGR5 is the only high-affinity receptor for bile acids expressed by skeletal muscle cells. TGR5 is a G protein-coupled membrane receptor that, when activated by bile acids, increases cyclic AMP (cAMP) levels [64]. When TGR5 binds to its ligands and increases cAMP levels, promoting the activation of the "cAMP response element-binding" (CREB) transcription factor [83]. Interestingly, the mitogenesis master regulator gene, PGC-1α, has CREB binding sites in its promoter. Therefore, CREB activation should induce PGC-1α expression [84]. It has been reported in an in vitro model of endothelial cells from the aorta and human podocytes that the activation of TGR5 by taurolithocholic acid (TLCA) and the specific activator INT-777 induces an increase in PGC-1α levels together with markers of mitochondrial biogenesis, dependent on CREB activation [85, 86]. If the effects of CA and DCA observed in our work are dependent on TGR5, the question that arises is how the activation of this receptor by CA and DCA generates an opposite effect (decrease in biomass, mitochondrial dysfunction) to that described in other cell types [85, 86]. Further studies must be performed to elucidate this question.

10.5 Conclusions

Cholic and deoxycholic acids increased LC3II/LC3I ratio by inhibiting the autophagic flux in C2C12 myotubes. Cholic and deoxycholic acids decreased PGC-1α promoter activity in C2C12 myotubes with increased TFAM protein levels.

Statements and Declarations

Funding The manuscript was supported by research grants from the National Fund for Science and Technological Development (FONDECYT 1200944 [CCV], 1201039 [FS]); Agencia Nacional de Investigación y Desarrollo (ANID)—Millennium Science Initiative Program—ICN09_016/ICN 2021_045: Millennium Institute on Immunology and Immunotherapy (ICN09_016/ICN 2021_045; former P09/016-F) [CCV, FS]). The Millennium Nucleus of Ion Channel-Associated Diseases (MiNICAD) is supported by the Iniciativa Científica Milenio, ANID, Chile.
Ethical Approval This article does not contain any studies with human participants or animals performed by any of the authors.

Author Contributions Conceptualization, F.T., and C.C.-V.; Methodology, F.T., M.V.-B., J.O.-A., and C.C.-V.; Validation, M.V.-B., and J.O.-A.; Investigation, F.T., M.V.-B., J.O.-A., F.S., and C.C.-V.; Visualization, F.T., and C.C.-V.; Supervision, C.C.-V.; Project administration, F.T., J.O.-A., F.S., and C.C.-V.; Visualization, F.T., and C.C.-V.; Writing—Original Draft Preparation, M.V.-B., F.T., J.O.-A., and C.C.-V.; Writing—Review and Editing, F.T., M.V.-B., J.O.-A., F.S., and C.C.-V.

References

1. Lee RC, Wang Z, Heo M, Ross R, Janssen I, Heymsfield SB (2000) Total-body skeletal muscle mass: development and cross-validation of anthropometric prediction models. Am J Clin Nutr 72 (3):796–803. https://doi.org/10.1093/ajcn/72.3.796
2. Frontera WR, Ochala J (2015) Skeletal muscle: a brief review of structure and function. Calcif Tissue Int 96(3):183–195. https://doi.org/10.1007/s00223-014-9915-y
3. Wolfe RR (2006) The underappreciated role of muscle in health and disease. Am J Clin Nutr 84 (3):475–482. https://doi.org/10.1093/ajcn/84.3.475
4. Grounds MD (2002) Reasons for the degeneration of ageing skeletal muscle: a central role for IGF-1 signalling. Biogerontology 3(1–2):19–24. https://doi.org/10.1023/a:1015234709314
5. Bodine SC (2013) Mitochondria and disuse and their effects on whole muscle performance in older adult humans. Front Physiol 4:369. https://doi.org/10.3389/fphys.2014.00369
6. Morales MG, Olguín H, Di Capua G, Brandan E, Simon F, Cabello-Verrugio C (2015) Endotoxin-induced skeletal muscle wasting is prevented by angiotensin(1–7) through a p38 MAPK-dependent mechanism. Clin Sci (Lond) 129(6):461–476. https://doi.org/10.1042/CS20140840
7. Carlson BM (2014) The biology of long-term denervated skeletal muscle. Eur J Transl Myol 24 (1):3293. https://doi.org/10.4081/etm.2014.3293
8. Abrego J, Elorza AA, Riedel CA, Vilos C, Simon F, Cabrera D et al (2018) Role of oxidative stress as key regulator of muscle wasting during Cachexia. Oxid Med Cell Longev 2018:2063179. https://doi.org/10.1155/2018/2063179
9. Cruz-Jentoft AJ, Bahat G, Bauer J, Boirie Y, Bruyere O, Cederholm T et al (2019) Sarcopenia: revised European consensus on definition and diagnosis. Ageing 48(1):16–31. https://doi.org/10.1093/ageing/afy169
10. Scicchitano BM, Dobrowolny G, Sica G, Musaro A (2018) Molecular insights into muscle homeostasis atrophy and wasting. Curr Genomics 19(5):356–369. https://doi.org/10.2174/1389202919666180101153911
11. Miller MS, Callahan DM, Toth MJ (2014) Skeletal muscle myofilament adaptations to aging, disease, and disuse and their effects on whole muscle performance in older adult humans. Front Physiol 5:369. https://doi.org/10.3389/fphys.2014.00369
12. Lecker SH, Jagoe RT, Gilbert A, Gomes M, Barcos V, Bailey J et al (2004) Multiple types of skeletal muscle atrophy involve a common program of changes in gene expression. FASEB J 18(1):39–51. https://doi.org/10.1096/fj.03-0610com18/1/39[pii]
13. Sandri M (2010) Autophagy in skeletal muscle. FEBS Lett 584(7):1411–1416. https://doi.org/10.1016/j.febslet.2010.01.056
14. Mizushima N, Klionsky DJ (2007) Protein turnover – a regulator of muscle wasting during Cachexia. Oxid Med Cell Longev 2007:1155/2018/2063179. https://doi.org/10.1155/2018/2063179
15. Mizushima N, Komatsu M (2011) Autophagy: renovation of cells and tissues. Cell 147(4):728–741. https://doi.org/10.1016/j.cell.2011.10.026
16. Boengler K, Kosiol M, Mayr M, Schulz R, Rohrbach S (2017) Mitochondria and ageing: role in heart, skeletal muscle and adipose tissue. J Cachexia Sarcopenia Muscle 8(3):349–369. https://doi.org/10.1002/jcsm.12178
17. Cadenas E, Davies KJ (2000) Mitochondrial free radical generation, oxidative stress, and aging. Free Radic Biol Med 29(3–4):222–230. https://doi.org/10.1016/s0891-5849(00)00317-8
18. Held NM, Houtkooper RH (2015) Mitochondrial quality control pathways as determinants of metabolic health. BioEssays 37(8):867–876. https://doi.org/10.1002/bies.201500013
19. Suen DF, Norris KL, Youle RJ (2008) Mitochondrial dynamics and apoptosis. Genes Dev 22(12):1577–1590. https://doi.org/10.1101/gad.1658508
20. Chan DC (2012) Fusion and fission: interlinked processes critical for mitochondrial health. Annu Rev Genet 46:265–287. https://doi.org/10.1146/annurev-genet-110410-132529
21. Tilokani L, Nagashima S, Paupe V, Prudent J (2018) Mitochondrial dynamics: overview of molecular mechanisms. Essays Biochem 62(3):341–360. https://doi.org/10.1042/EBC20170104
22. Chen H, Vermulst M, Wang YE, Chomyn A, Prolla TA, McCaffrey JM et al (2010) Mitochondrial fusion is required for mtDNA stability in skeletal muscle and tolerance of mtDNA mutations. Cell 141(2):280–289. https://doi.org/10.1016/j.cell.2010.02.026
23. Sebastian D, Sorianello E, Segales J, Irazoki A, Ruiz-Bonilla V, Sala D et al (2016) Mfn2 deficiency links age-related sarcopenia and impaired autophagy to

Disclosure of Interests The authors declare that they have no conflict of interest.

Author Contributions Conceptualization, F.T., and C.C.-V.; Methodology, F.T., M.V.-B., J.O.-A., and C.C.-V.; Validation, M.V.-B., and J.O.-A.; Investigation, F.T., M.V.-B., J.O.-A., F.S., and C.C.-V.; Visualization, F.T., and C.C.-V.; Supervision, C.C.-V.; Project administration, C.C.-V.; Formal Analysis, F.T., M.V.-B., F.T., J.O.-A., and C.C.-V.; Writing—Original Draft Preparation, M.V.-B., F.T., J.O.-A., and C.C.-V.; Writing—Review and Editing, F.T., M.V.-B., J.O.-A., F.S., and C.C.-V.
activation of an adaptive mitophagy pathway. EMBO J 35(15):1677–1693. https://doi.org/10.15252/embj.201593084

24. Bell MB, Bush Z, McGinnis GR, Rowe GC (2019) Adult skeletal muscle depletion of mitofusin 1 and 2 impedes exercise performance and training capacity. J Appl Physiol 126(2):341–353 (1985). https://doi.org/10.1152/japplphysiol.00719.2018

25. Tezze C, Romanello V, Desbats MA, Fadini GP, Albiero M, Favaro G et al (2017) Age-Associated loss of OPA1 in muscle impacts muscle mass, metabolic homeostasis, systemic inflammation, and epithelial senescence. Cell Metab 25(6):1374–1389 e6. https://doi.org/10.1016/j.cmet.2017.04.021

26. Pereira RO, Tadinada SM, Zasadny FM, Oliveira KJ, Pires KMP, Olvera A et al (2017) OPA1 deficiency promotes secretion of FGF21 from muscle that prevents obesity and insulin resistance. EMBO J 36(14):2126–2145. https://doi.org/10.15252/embj.201696179

27. Rodriguez-Nuevo A, Diaz-Ramos A, Noguera E, Diaz-Saez F, Duran X, Munoz JP et al (2018) Mitochondrial DNA and TLR9 drive muscle inflammation upon Opa1 deficiency. EMBO J 37(10). https://doi.org/10.15252/embj.201796553

28. Romanello V, Guadagnin E, Gomes L, Roder I, Sandri C, Petersen Y et al (2010) Mitochondrial fission and remodelling contributes to muscle atrophy. EMBO J 29(10):1774–1785. https://doi.org/10.1038/emboj.2010.60

29. Favaro G, Romanello V, Varanita T, Andrea Desbats M, Morbidoni V, Tezze C et al (2019) DRP1-mediated mitochondrial shape controls calcium homeostasis and muscle mass. Nat Commun 10(1):2576. https://doi.org/10.1038/s41467-019-10226-9

30. Dulac M, Leduc-Gaudet JP, Reynaud O, Ayoub MB, Guerin A, Finkelstein M et al (2020) Drp1 knockdown induces severe muscle atrophy and remodelling, mitochondrial dysfunction, autophagy impairment and denervation. J Physiol 598 (17):3691–3710. https://doi.org/10.1113/JP279802

31. Touvier T, De Palma C, Gramont E, Scagliola A, Incerti E, Mazelin L et al (2015) Muscle-specific Drp1 overexpression impairs skeletal muscle growth via translational attenuation. Cell Death Dis 6:e1663. https://doi.org/10.1038/cddis.2014.595

32. Giovarelli M, Zecchini S, Martini E, Garre M, Barozzi S, Ripolone M et al (2020) Drp1 overexpression induces desmin disassembling and drives kinesin-1 activation promoting mitochondrial trafficking in skeletal muscle. Cell Death Differ 27 (8):2383–2401. https://doi.org/10.1038/s41418-020-0510-7

33. Lee TT, Chen PL, Su MP, Li JC, Chang YW, Liu RW et al (2021) Loss of Fis1 impairs proteostasis during skeletal muscle aging in Drosophila. Aging Cell 20(6):e13379. https://doi.org/10.1111/ace1.13379

34. Kiriyama Y, Nochi H (2017) Intra- and intercellular quality control mechanisms of mitochondria. Cells 7 (1). https://doi.org/10.3390/cells7010001

35. Marzetti E, Lorenzi M, Landi F, Picca A, Rosa F, Tanganelli F et al (2017) Altered mitochondrial quality control signaling in muscle of old gastric cancer patients with cachexia. Exp Gerontol 87(Pt A): 92–99. https://doi.org/10.1016/j.exger.2016.10.003

36. Jornayvaz FR, Shulman GI (2010) Regulation of mitochondrial biogenesis. Essays Biochem 47:69–84. https://doi.org/10.1042/bse0470069

37. Zhang Y, Xu H (2016) Translational regulation of mitochondrial biogenesis. Biochem Soc Trans 44(6): 1717–1724. https://doi.org/10.1042/BST20160071C

38. Baker MJ, Frazier AE, Gulbis JM, Ryan MT (2007) Mitochondrial protein-import machinery: correlating structure with function. Trends Cell Biol 17(9):456–464. https://doi.org/10.1016/j.tcb.2007.07.010

39. Handschin C, Rhee J, Lin J, Tarr PT, Spiegelman BM (2003) An autoregulatory loop controls peroxisome proliferator-activated receptor gamma coactivator 1alpha expression in muscle. Proc Natl Acad Sci U S A 100(12):7111–7116. https://doi.org/10.1073/pnas.1232352100

40. Wu Z, Puigserver P, Andersson U, Zhang C, Adelmant G, Mootha V et al (1999) Mechanisms controlling mitochondrial biogenesis and respiration through the thermogenic coactivator PGC-1. Cell 98 (1):115–124. https://doi.org/10.1016/S0092-8674(00)80611-X

41. Roberts FL, Markby GR (2021) New insights into molecular mechanisms mediating adaptation to exercise; a review focusing on mitochondrial biogenesis, mitochondrial function, mitophagy and autophagy. Cells 10(10). https://doi.org/10.3390/cells10102639

42. White JP, Puppa MJ, Sato S, Gao S, Price RL, Baynes JW et al (2012) IL-6 regulation on skeletal muscle mitochondrial remodeling during cancer cachexia in the ApcMin/+ mouse. Skelet Muscle. 2:14. https://doi.org/10.1186/2044-5040-2-14

43. Sun R, Zhang S, Hu W, Lu X, Lou N, Yang Z et al (2016) Valproic acid attenuates skeletal muscle wasting by inhibiting C/EBPbeta-regulated atrogin1 expression in cancer cachexia. Am J Physiol Cell Physiol 311(1):C101–C115. https://doi.org/10.1152/ajpcell.00344.2015

44. Brown JL, Rosa-Caldwell ME, Lee DE, Blackwell TA, Brown LA, Perry RA et al (2017) Mitochondrial degeneration precedes the development of muscle atrophy in progression of cancer cachexia in tumour-bearing mice. J Cachexia Sarcopenia Muscle 8(6):926–938. https://doi.org/10.1002/jcsm.12232

45. Mootha VK, Lindgren CM, Eriksson KF, Subramanian A, Sihag S, Lehár J et al (2003) PGC-1alpha-responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes. Nat Genet 34(3):267–273. https://doi.org/10.1038/ng1180

46. Zorzano A, Hernandez-Alvarez MI, Palacin M, Mingrone G (2010) Alterations in the mitochondrial regulatory pathways constituted by the nuclear co-factors PGC-1alpha or PGC-1beta and mitofusin 2 in
skeletal muscle in type 2 diabetes. Biochim Biophys Acta 1797(6–7):1028–1033. https://doi.org/10.1016/j.bbi.2010.02.017
47. Abridge J, Gonzalez F, Aguirre F, Tacchi F, Gonzalez A, Meza MP et al (2021) Cholic acid and deoxycholic acid induce skeletal muscle atrophy through a mechanism dependent on TGR5 receptor. J Cell Physiol 236(1):260–272. https://doi.org/10.1002/jcp.29839
48. Chiang JY (2013) Bile acid metabolism and signaling. Compr Physiol 3(3):1191–1212. https://doi.org/10.1002/cphy.c120023
49. Di Ciula A, Garruti G, Lunardi Baccetto R, Molina-Molina E, Bonfrate L, Wang DQH et al (2017) Bile acid physiology. Ann Hepatol 16:S4–S14. https://doi.org/10.5604/01.3001.0010.5493
50. Einarsso C, Ellis E, Abrahamsson A, Ericzon BG, Bjorkhem I, Axelson M (2000) Bile acid formation in primary human hepatocytes. World J Gastroenterol 6(4):522–525. https://doi.org/10.3745/wjg.v6.i4.522
51. Hofmann AF, Hagey LR (2014) Key discoveries in bile acid chemistry and biology and their clinical applications: history of the last eight decades. J Lipid Res 55(8):1553–1595. https://doi.org/10.1194/jlr.R049437
52. Ferrebee CB, Dawson PA (2015) Metabolic effects of intestinal absorption and enterohepatic cycling of bile acids. Acta Pharm Sin B. 5(2):129–134. https://doi.org/10.1016/j.apsb.2015.01.001
53. Abridge J, Campos F, Gonzalez F, Aguirre F, Gonzalez A, Huerta-Salgado C et al (2020) Sarcopenia induced by chronic liver disease in mice requires the expression of the bile acids membrane receptor TGR5. Int J Mol Sci 21(21). https://doi.org/10.3390/ijms21127922
54. Fickert P, Stoger U, Fuchsbiicher A, Moustafa T, Marschall HU, Weiglein AH et al (2007) A new xenobiotic-induced mouse model of sclerosing cholangitis and biliary fibrosis. Am J Pathol 171(2):525–536. https://doi.org/10.2353/ajpath.2007.061133
55. Pellicoro A, Ramachandran P, Iredale JP, Fallowfield JA (2014) Liver fibrosis and repair: immune regulation of wound healing in a solid organ. Nat Rev Immunol 14(3):181–194. https://doi.org/10.1038/nri3623
56. Kim HY, Jang JW (2015) Sarcopenia in the prognosis of cirrhosis: going beyond the MELD score. World J Gastroenterol 21(25):7637–7647. https://doi.org/10.3748/wjg.v21.i25.7637
57. Hanai T, Shiraki M, Nishimura K, Ohnishi S, Imai K, Suetsugu A et al (2015) Sarcopenia impairs prognosis of patients with liver cirrhosis. Nutrition 31(1):193–199. https://doi.org/10.1016/j.nut.2014.07.005
58. Montano-Loza AJ, Meza-Junco J, Prado CM, Liefers JR, Baracos VE, Bain VG et al (2012) Muscle wasting is associated with mortality in patients with cirrhosis. Clin Gastroenterol Hepatol 10(2):166–173. e1. S1542-3565(11)00916-5 [pii]. https://doi.org/10.1016/j.cgh.2011.08.028
59. Hanai T, Shiraki M, Ohnishi S, Miyazaki T, Ieda T, Kochi T et al (2016) Rapid skeletal muscle wasting predicts worse survival in patients with liver cirrhosis. Hepatol Res 46(8):743–751. https://doi.org/10.1111/hepr.12616
60. Campos F, Abridge J, Aguirre F, Garces B, Arrese M, Karpen S et al (2018) Sarcopenia in a mice model of chronic liver disease: role of the ubiquitin-proteasome system and oxidative stress. Pflugers Arch 470(10):1503–1519. https://doi.org/10.1007/s00424-018-2167-3
61. Lee H, Zhang Y, Lee FY, Nelson SF, Gonzalez FJ, Edwards PA (2006) FXR regulates organic solute transporters alpha and beta in the adrenal gland, kidney, and intestine. J Lipid Res 47(1):201–214. https://doi.org/10.1194/jlr.M500417-JLR200
62. Keitel V, Haussinger D (2012) Perspective: TGR5 (Gpbar-1) in liver physiology and disease. Clin Res Hepatol Gastroenterol 36(5):412–419. https://doi.org/10.1016/j.clinre.2012.03.008
63. Shin DJ, Wang L (2019) Bile acid-activated receptors: a review on FXR and other nuclear receptors. Handb Exp Pharmacol 256:51–72. https://doi.org/10.1007/164_2019_236
64. Duboc H, Tache Y, Hofmann AF (2014) The bile acid TGR5 membrane receptor: from basic research to clinical application. Dig Liver Dis 46(4):302–312. https://doi.org/10.1016/j.dld.2013.10.021
65. Potthoff MJ, Potts A, He T, Duarte JA, Taussig R, Mangelsdorf DJ et al (2013) Coleselum suppresses hepatic glycogenolysis by TGR5-mediated induction of GLP-1 action in DIO mice. Am J Physiol Gastrointest Liver Physiol 304(4):G371–G380. https://doi.org/10.1152/ajpgi.00400.2012
66. Pols TW, Auwerx J, Schoonjans K (2010) Targeting the TGR5-GLP-1 pathway to combat type 2 diabetes and non-alcoholic fatty liver disease. Gastroenterol Clin Biol 34(4–5):270–273. https://doi.org/10.1016/j.gcb.2010.03.009
67. Keitel V, Haussinger D (2013) TGR5 in cholangiocytes. Curr Opin Gastroenterol 29(3):299–304. https://doi.org/10.1097/MOG.0b013e32835f3f14
68. Watanabe M, Houten SM, Matakai C, Christofforetti MA, Kim BW, Sato H et al (2006) Bile acids induce energy expenditure by promoting intracellular thyroid hormone activation. Nature 439(7075):484–489. https://doi.org/10.1038/nature04330
69. Sasaki T, Kuboyama A, Mita M, Murata S, Shimizu M, Inoue J et al (2018) The exercise-inducible bile acid receptor Tgr5 improves skeletal muscle function in mice. J Biol Chem 293(26):10322–10332. https://doi.org/10.1074/jbc.RA118.002733
70. Aravena J, Abridge J, Gonzalez F, Aguirre F, Gonzalez A, Simon F et al (2020) Angiotensin (1–7) decreases myostatin-induced NF-kappaB signaling and skeletal muscle atrophy. Int J Mol Sci 21(3). https://doi.org/10.3390/ijms21031167
71. Rivera JC, Abridge J, Tacchi F, Simon F, Brandan E, Santos RA et al (2020) Angiotensin-(1–7) prevents lipopolysaccharide-induced autophagy via the mas receptor in skeletal muscle. Int J Mol Sci 21(24). https://doi.org/10.3390/ijms21249344
Seok S, Fu T, Choi SE, Li Y, Zhu R, Kumar S et al (2014) Transcriptional regulation of autophagy by an FXR-CREB axis. Nature 516(7529):108–111. https://doi.org/10.1038/nature13949

Kim S, Han SY, Yu KS, Han D, Ahn HJ, Jo JE et al (2018) Impaired autophagy promotes bile acid-induced hepatic injury and accumulation of ubiquitinated proteins. Biochem Biophys Res Commun 495(1):1541–1547. https://doi.org/10.1016/j.bbrc.2017.11.202

Tang Y, Fickert P, Trauner M, Marcus N, Blomenkamp K, Teckman J (2016) Autophagy induced by exogenous bile acids is therapeutic in a model of alpha-1-AT deficiency liver disease. Am J Physiol Gastrointest Liver Physiol 311(1):G156–G165. https://doi.org/10.1152/ajpgi.00143.2015

Galman C, Angelin B, Rudling M (2005) Bile acid synthesis in humans has a rapid diurnal variation that is asynchronous with cholesterol synthesis. Gastroenterology 129(5):1445–1453. https://doi.org/10.1053/j.gastro.2005.09.009

Yamagata K, Daitoku H, Shimamoto Y, Matsuzaki H, Hirota K, Ishida J et al (2004) Bile acids regulate gluconeogenic gene expression via small heterodimer partner-mediated repression of hepatocyte nuclear factor 4 and Foxo1. J Biol Chem 279(22):23158–23165. https://doi.org/10.1074/jbc.M313222200

Sparks LM, Xie H, Koza RA, Mynatt R, Hulver MW, Bray GA et al (2005) A high-fat diet coordinately downregulates genes required for mitochondrial oxidative phosphorylation in skeletal muscle. Diabetes 54(7):1926–1933. https://doi.org/10.2337/diabetes.54.7.1926

Zarrabi AJ, Kao D, Nguyen DT, Loscalzo J, Handy DE (2017) Hypoxia-induced suppression of c-Myc by HIF-2alpha in human pulmonary endothelial cells attenuates TFAM expression. Cell Signal 38:230–237. https://doi.org/10.1016/j.cellsig.2017.07.008

Ahuja P, Zhao P, Angelis E, Ruan H, Korge P, Olson A et al (2010) Myc controls transcriptional regulation of cardiac metabolism and mitochondrial biogenesis in response to pathological stress in mice. J Clin Invest 120(5):1494–1505. https://doi.org/10.1172/JCI38331

Tselepis C, Morris CD, Wakelin D, Hardy R, Perry I, Luong QT et al (2003) Upregulation of the oncogene c-myc in Barrett’s adenocarcinoma: induction of c-myc by acidified bile acid in vitro. Gut 52(2):174–180. https://doi.org/10.1136/gut.52.2.174

Jenkins GI, Harries K, Doak SH, Wilmes A, Griffths AP, Baxter JN et al (2004) The bile acid deoxycholic acid (DCA) at neutral pH activates NF-kappaB and induces IL-8 expression in oesophageal cells in vitro. Carcinogenesis 25(3):317–323. https://doi.org/10.1093/carcin/bgh032

Perrone EE, Liu L, Turner DJ, Strauch ED (2012) Bile salts increase epithelial cell proliferation through HUr-induced c-Myc expression. J Surg Res 178(1):155–164. https://doi.org/10.1016/j.jss.2012.02.029

Casaburi I, Avena P, Lanzino M, Sisci D, Giordano F, Maris P et al (2012) Chenodeoxycholic acid through a TGR5-dependent CREB signaling activation enhances cyclin D1 expression and promotes human endometrial cancer cell proliferation. Cell Cycle 11(14):2699–2710. https://doi.org/10.4161/cc.21029

Wu Z, Huang X, Feng Y, Handschin C, Feng Y, Gallicrnsen PS et al (2006) Transducer of regulated CREB-binding proteins (TORCs) induce PGC-1alpha transcription and mitochondrial biogenesis in muscle cells. Proc Natl Acad Sci U S A 103(39):14379–14384. https://doi.org/10.1073/pnas.0606714103

Zhao LJ, Zhang SF (2018) Activation of TGR5 promotes mitochondrial biogenesis in human aortic endothelial cells. Biochem Biophys Res Commun 500(4):952–957. https://doi.org/10.1016/j.bbrc.2018.04.210

Wang XX, Edelstein MH, Gafter U, Qiu L, Luo Y, Dobrinskikh E et al (2016) G protein-coupled bile acid receptor TGR5 activation inhibits kidney disease in obesity and diabetes. J Am Soc Nephrol 27(5):1362–1378. https://doi.org/10.1681/ASN.2014121271
Upregulation of CCL5/RANTES Gene Expression in the Diaphragm of Mice with Cholestatic Liver Disease

Vania Morales, Andrea González, and Claudio Cabello-Verrugio

Abstract

Chronic liver diseases are a group of pathologies affecting the liver with high prevalence worldwide. Among them, cholestatic chronic liver diseases (CCLD) are characterized by alterations in liver function and increased plasma bile acids. Secondary to liver disease, under cholestasis, is developed sarcopenia, a skeletal muscle dysfunction with decreased muscle mass, strength, and physical function. CCL5/RANTES is a chemokine involved in the immune and inflammatory response. Indeed, CCL5 is a myokine because it is produced by skeletal muscle. Several studies show that bile acids induce CCL5/RANTES expression in liver cells. However, it is unknown if the expression of CCL5/RANTES is changed in the skeletal muscle of mice with cholestatic liver disease.

We used a murine model of cholestasis-induced sarcopenia by intake of hepatotoxin 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC diet), in which we detected the mRNA levels for ccl5. We determined that mice fed the DDC diet presented high levels of serum bile acids and developed typical features of sarcopenia. Under these conditions, we detected the ccl5 gene expression in diaphragm muscle showing elevated mRNA levels compared to mice fed with a standard diet (chow diet). Our results collectively suggest an increased ccl5 gene expression in the diaphragm muscle concomitantly with elevated serum bile acids and the development of sarcopenia.

Keywords

Sarcopenia · Cholestasis · Myokine · CCL5/RANTES · Bile acids

Abbreviations

ALT Alanine aminotransferase
ALP Alkaline phosphatase
BA Bile acids
BIA Bioelectrical impedance analysis
CCLD Chronic cholestatic liver diseases
CLD Chronic liver diseases
CSA Cross-section area
CST 30-second (30-s) chair stand test
DDC Hepatotoxin
3,5-diethoxycarbonyl-1,4-dihydrocollidine

V. Morales · A. González · C. Cabello-Verrugio
Laboratory of Muscle Pathology, Fragility and Aging, Faculty of Life Sciences, Universidad Andres Bello, Santiago 8370146, Chile
e-mail: claudio.cabello@unab.cl

Millennium Institute on Immunology and Immunotherapy, Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile

Center for the Development of Nanoscience and Nanotechnology (CEDENNA), Universidad de Santiago de Chile, Santiago, Chile

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
F. Simon and C. Bernabeu (eds.), Advances in Molecular Pathology, Advances in Experimental Medicine and Biology 1408, https://doi.org/10.1007/978-3-031-26163-3_11
11.1 Introduction

The skeletal muscle represents between 40 and 50% of the body mass and is an excellent reservoir of proteins since approximately 80% of the muscle fibers are composed of them [1]. Skeletal muscle participates in several mechanical functions, such as the generation of muscle strength and mobility. Skeletal muscle is composed of muscle fibers which are long and multinucleated cells. The contractile function is carried out by the presence of a sarcomere in the cytoplasm [1].

The sarcomere is the basic contractile unit of muscle fiber. Each sarcomere is composed of, at least, two central protein filaments: actin and myosin. These proteins form two types of myofilaments, thick and thin. Thick filaments are composed of myosin heavy chain (MHC) protein, whereas thin filaments are constituted by α-actin. Thin filaments also contain regulatory proteins, troponin, and tropomyosin [2]. The myofilaments are the active structures responsible for muscular contraction, which is described accordingly to the most popular model called the sliding filament theory. In this theory, active force is generated as actin filaments slide on the myosin filaments, resulting in the contraction of an individual sarcomere. In brief, muscular contraction is produced when actin-myosin cross-bridges are formed. This interaction occurs when a thick myosin filament containing numerous heads is attached to the thinner actin filaments. Basically, a myosin head is like a cocked spring, which flexes and produces a power stroke on binding with an actin filament. The power stroke slides the actin filament on the myosin, resulting in force generation and shortening of an individual sarcomere. Because sarcomeres are structures arranged in series by joining end to end throughout an entire muscle fiber, their simultaneous contraction shortens the muscle as a whole [3–5].

When myofilaments are viewed under an electron microscope, their arrangement gives the appearance of alternating bands of light and dark striations. A Z-band borders it on each end with adjacent I-bands, and there is a central M-line with adjacent H-bands and partially overlapping A-bands. The Z-band (or Z-disk) is a dense fibrous structure made of actin, α-actinin, and other proteins. Thin filaments (or actin filaments) are anchored at one end at the Z-band. Titin is anchored to both the Z-band and the M-line. Thick filaments are anchored in the middle of the sarcomere at the M-line. The I-band is the region on either side of a Z-disc that contains only thin filaments and titin. This partial overlap in filaments makes the A-band darker at its ends, leaving a light area in the middle (H-band) where there is no overlap with the light bands. A key clue to the mechanism of contraction was the finding that during contraction, the H and I bands shorten, while the A bands do not [2–4].

Skeletal muscle fibers are broadly classified as “slow-twitch” (type 1) and “fast-twitch” (type 2). Based on differential myosin heavy chain (MYH) gene expression, fast-twitch fibers are further classified into three major subtypes (types 2A, 2X, and 2B, although humans do not appear to have MYH4-expressing type 2B fibers).
Hybrid MYH expression in different fibers of a muscle group can allow for even more subtypes (1/2A, 2A/2X, 2X/2B), resulting in an almost continuous range of ATP usage and muscle contraction speeds, from the fastest (type 2B) to the slowest (type 1). Skeletal muscle fibers also vary in energy production. Type 1 and 2A fibers primarily use oxidative metabolism, and type 2X and 2B fibers rely on glycolytic metabolism. However, even here, there is variation, and energy usage is not a strict predictor of fiber type [6, 7].

The skeletal muscle plays an essential role in many activities, such as maintaining posture, speaking, breathing, generating muscle power, and moving the body. It has high plasticity and an endocrine function since it can produce and secrete molecules called myokines into circulation. Myokines are cytokines or peptides synthesized and released by fibers in muscle tissue in response to muscular contractions [8]. The term “myokine” was introduced by a Swedish scientist, Bengt Saltin, in 2003 [9]. Myokines are implicated in the autocrine regulation of metabolism in muscles and the para/endocrine regulation of other tissues and organs, including the adipose tissue, liver, bone, and brain, through their receptors [10, 11]. Some of the myokines reported in the literature are Irisin, interleukin 6 (IL-6), myostatin, and Insulin-like growth factor-1 (IGF-1) [12–15]. Irisin is a novel exercise-triggered myokine [16]. It is a peptide of 12 kDa mainly synthesized and secreted by skeletal muscle and a small amount by the liver and adipose tissue [17, 18]. To date, the irisin receptor is unknown. However, it is described that the target cells for irisin are white adipocytes, myocytes, and hepatocytes [19]. Thus, irisin communicates the skeletal muscle with adipose tissue [16, 20, 21]. In skeletal muscle, irisin induces myogenesis and mitochondrial biogenesis and protects against muscle atrophy [22, 23]. Myostatin, also known as growth differentiation factor 8 (GDF8), is a myokine belonging to the transforming growth factor-beta (TGF-b) superfamily, present in cardiac muscle and adipose tissue but is most abundant in skeletal muscle [24]. Myostatin is a negative regulator of muscle mass. In this line, the absence of the myostatin gene produces an increase in muscle mass, contributing to hypertrophy [25–27]. Interleukin-6 (IL-6) is a pro-inflammatory cytokine synthesized by several organs and is responsible for the acute phase reaction in the inflammatory process in injury [28, 29]. Under normal conditions, IL-6 levels in circulation are low, but in inflammatory states, these levels can rise above 1000-fold [30]. Furthermore, IL-6 has a critical metabolic role in controlling body weight, liver physiology, and bone metabolism [30]. IL-6 can have two opposite functions in skeletal muscle: pro-inflammatory or anti-inflammatory activities. IGF-1 is a myokine with a single-chain polypeptide of 70 amino acid residues cross-linked by three disulfide bridges and a molecular weight of 7 KDa [31]. IGF-1 is synthesized and secreted mainly in the liver and skeletal muscle, acting on multiple target tissues in an endocrine/paracrine and autocrine manner. In skeletal muscle, increased IGF-1 levels after endurance and resistance training favors cell growth and differentiation by stimulating anabolic pathways activity and decreasing the catabolic pathway activity [28, 32–34].

There are other myokines less investigated, such as CCL5/RANTES. This myokine, also called chemokine ligand 5 (Regulated upon Activation, Normal T cell Expressed and Secreted), belongs to the CC subfamily of chemokines since it has a conserved region of 4 cysteine amino acids in its structure, and it has a size of 7.4 kDa [12–15]. Most inflammatory cells can express CCL5/RANTES. T cells and monocytes are the most common types of CCL5-expressing cells. While CCL5/RANTES can bind to CCR1, CCR3, CCR4 and CCR5, it has the highest affinity to CCR5 [35–37]. CCR5 (also known as CD195) is a G-protein-coupled receptor (GPCR) whose transcription is regulated by CREB-1. CCR5 contains 352 amino acids with a calculated molecular mass of 40.6 kDa and shares 71% sequence identity with CCR2, with most of the differences being located in the extracellular and cytoplasmic domains [38–41]. Both receptors are in proximity on chromosome 3p21 [39, 40].
addition to T cells, CCR5 expresses in smooth muscle endothelial cells, epithelial cells, and parenchymal cells [36, 42]. Besides CCL5/RANTES, CCR5 also binds to CCL3 (MIP-1α) and CCL4 (MIP-1β) with an N-terminal extracellular tail [43]. CCR5 is the most important receptor for HIV-1 infection with a gp-120 combination. Thus, it has been considered a promising target for anti-HIV therapies [44]. Regarding HIV, the predominant role of CCR5 for viral entry and replication is depicted by the resistance to HIV-1 infection of individuals who lack CCR5 due to a 32-bp deletion in the CCR5 gene [45, 46]. Many (nonfunctional) CCR5 variants were identified in various human populations in addition to the deletion of 32 bp, suggesting that this receptor has been subject to unknown selective forces [47, 48].

CCL5/RANTES participates in the inflammatory process and is expressed mainly by platelets, macrophages, endothelial cells, and the skeletal muscle [37, 49, 50]. In hepatic fibrosis, it has been observed in a murine model that there is an increase in the intrahepatic expression of CCL5/RANTES and that by eliminating the gene (ccl5−/−), fibrosis decreases. This effect was also observed when an antagonist was administered for CCL5/RANTES (Met-CCL5) [51]. In skeletal muscle, antecedents in a murine model with free access to a running wheel showed a reduction in the protein levels of CCL5/RANTES and the ccl5 gene expression in muscles compared to muscles from sedentary mice [52]. Another study using an “in vitro contractile system” model in C2C12 myotubes applying electrical pulses to stimulate muscle contraction showed a decrease in the expression of CCL5/RANTES after electrical stimulation [53].

The skeletal muscle can be affected by several chronic non-transmissible diseases, such as chronic liver diseases (CLD). These pathologies are a group of disorders characterized by decreased liver function resulting from chronic inflammation or damage to liver tissue [54, 55]. CLD are highly prevalent pathologies, with 5.5 million people suffering from them worldwide [56]. In Chile, according to data from the Department of Statistics and Health Information (DEIS) of the Ministry of Health, in 2011, a total of 94,985 deaths, 5.2%, corresponding to liver pathologies, ranking after ischemic pathologies heart and cerebrovascular. In CLD, the liver progressively deteriorates, beginning with an inflammatory process that becomes chronic and develops early fibrosis due to an increase in the extracellular matrix components. Subsequently, and due to this chronic inflammation and fibrosis, the liver is permanently damaged, losing most of its functions irreversibly, a condition known as liver cirrhosis, which corresponds to the final stage of the pathology and in which patients may need a liver transplant [57, 58]. Liver cirrhosis has one of the highest mortality rates in Latin America, with 24.2% hospitalized in the general ward, which increases to 86% in intensive care unit patients [59–61]. The most common causes of CLD are chronic viral hepatitis, alcohol abuse, biliary cirrhosis, and non-alcoholic fatty liver disease (NAFLD) [62]. NAFLD includes a variety of liver disorders, such as non-alcoholic fatty liver, non-alcoholic steatohepatitis (NASH), cirrhosis, and NASH associated with hepatocellular carcinoma [63]. Another type of CLD that is highly prevalent is that of cholestatic origin, called chronic cholestatic liver diseases (CCLD). Cholestasis is an impairment in bile formation and/or bile flow, which might present clinically with fatigue, pruritus, and jaundice. Cholestasis can be classified as intrahepatic or extrahepatic. Intrahepatic cholestasis can occur due to a functional hepatocellular defect or obstructive lesions of the intrahepatic biliary tracts distal to or from bile canaliculi (intrahepatic biliary tract distal from bile canaliculi). Extrahepatic biliary obstruction can be caused by stones, tumors, cysts, or strictures [64].

Among the complications that CCLD entails, we find dyslipidemia, portal hypertension, and mainly the loss of muscle mass and strength and physical function associated with mobility, a condition known as sarcopenia [56, 65, 66]. Sarcopenia is defined by typical features such as decreased skeletal muscle strength and mass and low physical performance [67]. Sarcopenia is considered secondary when related to nutritional alterations, immobilization, and chronic non-
transmissible diseases [68, 69]. Sarcopenic skeletal muscle shows a decrease in cross-section area (CSA), muscle fiber type switching, and decreased levels of sarcomeric proteins, such as tropomyosin, myosin heavy chain (MHC), and troponin I [70]. Mechanistically, alterations in the ubiquitin–proteasome system, such as increased expression of E3 ubiquitin ligases atrogin-1 and MuRF-1, oxidative stress, typically denoted by increased production of reactive oxygen species (ROS) and redox-dependent protein modifications, mitochondrial dysfunction, autophagy, and myonuclear apoptosis [55, 70].

Sarcopenia is one of the most critical and prevalent comorbidities related to the development and progression of CLD, including CCLD [71–74]. Muscle dysfunction is associated with increased morbidity and mortality in patients with CLD, alterations in typical daily activities, and frailty, disability, and hospitalization [73, 75–77]. Interestingly, sarcopenia has been reported as an independent predictor of pre- and post-liver transplantation mortality [78]. The prevalence of sarcopenia in CLD is high, and it has been shown that there is a loss of muscle mass in the early and late stages of the pathology, a condition that worsens proportional to its severity [72, 74]. In liver cirrhosis, the prevalence is 48.1%, and in the final stages of CLD, about 60% of patients present it, which is associated with decompensation and higher morbidity and mortality [72, 75, 76]. Furthermore, people with sarcopenia, after liver transplantation, have a higher risk of infection, a more extended stay in Intensive Care Units (ICU) and the need for connection to mechanical ventilation, and a higher rate of post-surgery complications (respiratory, kidney, heart, and graft failure) than those without sarcopenia [79–82]. It is also associated with an increased risk of falls, fractures, lower health-related quality of life, acute decompensation of liver disease, acute on chronic liver failure, and increased risk of death in patients with cirrhosis [69, 83, 84]. Unfortunately, sarcopenia is not reversible after liver transplantation. In fact, it may increase due to the use of immunosuppressive drugs such as steroids and calcineurin inhibitors. This situation can favor the appearance of the multiple complications already mentioned, hence the relevance of being diagnosed and treated on time [85, 86].

The diagnosis of sarcopenia must consider the evaluation of the three parameters that compose it: muscle strength, muscle mass, and physical function associated with mobility. Muscular strength is defined as the force generated by muscular contraction against an external load [87]. Clinically, it can be evaluated by grip strength, chair stand test, 1 or 10 repetition maximum (1 RM or 10 RM). Muscle mass is the part of the total body mass composed of musculoskeletal tissue [88]. Muscle mass can be indirectly evaluated with imaging and clinical methods such as Dual-energy X-ray Absorptiometry (DXA), Computed tomography, Magnetic resonance imaging (MRI), Ultrasound (US), Bioelectrical impedance analysis (BIA), and Anthropometry and calf circumference. Physical function is defined as the function of the entire body related to mobility and locomotion, which allows the performance of functional physical activities in daily life independently [69, 89, 90]. Usually, it is evaluated with tests that involve displacement, such as Gait speed, Timed-Up and Go test (TUG), 6-min walk test, 400 m walk test, or with tests that require the lower extremities, such as Short Physical Performance Battery (SPPB) or 30-s (30-s) chair stand test (CST).

Our previous work on cholestatic CLD-associated sarcopenia using a murine model by intake of hepatotoxin 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC) presents the typical features of sarcopenia, such as decreased muscle strength and mass, and decline in muscle function. This model of sarcopenia is characterized by a fiber-type transition, a reduction in fiber diameter, and MHC levels. We also found oxidative stress evaluated by increased ROS levels and carbonylated- and 4HNE-modified proteins. In addition, changes in proteostasis were determined. Specifically, the high levels of MAFbx/atrogin-1 and MuRF-1/TRIM63, two E3 ubiquitin ligases associated with muscle wasting [55, 66]. Sarcopenia is a crucial determinant of
frailty that leads to loss of autonomy and functionality in activities of daily living and is an independent predictor of post-liver transplant mortality [91–93].

Among the contributors to sarcopenia in CLD are bile acids. In cholestatic EHC generated by occlusion of the bile ducts, there is an increase in plasma bile acids levels, affecting not only the liver but also other organs and tissues in the body, such as the gut, brown adipose tissue, macrophages, and also skeletal muscle, mainly due to their functions as extrahepatic signaling molecules [94–97]. This increase in bile acids in the plasma reaches the skeletal muscle and, through the TGR-5 receptor located on the plasma membrane of skeletal muscle cells, induces a condition of sarcopenia in a DDC murine model. In addition, bile acids, specifically deoxycholic and cholic acids, cause the loss of muscle mass in cell cultures of C2C12 myotubes and isolated muscle fibers, leading to a sarcopenic-like phenotype [94]. Interestingly, bile acids can increase the ccl5 mRNA levels in hepatic cells [98, 99]. However, the modulation of the ccl5 gene expression in skeletal muscle is unknown under cholestatic conditions characterized by high levels of plasma bile acids.

11.2 Methods

11.2.1 Animals

C57BL/6 J WT male mice (16 weeks old) were randomized and separated into experimental groups to perform three independent experiments. Mice were fed with a standard diet (chow) or a diet supplemented with 0.1% 5-diethoxycarbonyl-1,4-dihydrocollidine (DDC) hepatotoxin to induce CLD (Sigma-Aldrich, St Louis, MO, USA) for six weeks [55, 100]. Each experimental group contained five to nine mice. The animals (weighing 25–30 g) were kept in the mice housing of the Department of Biological Sciences at Universidad Andrés Bello, at a controlled temperature (22–24 °C), with food and water ad-libitum and with inverted 12-h light/dark cycles (Light: 8 PM to 8 AM). The animals were adapted for two weeks before the start of the experimental intervention to ground food and five days before the evaluation tests that require acclimatization, such as the treadmill. After treatment, the animals were anesthetized with a mixture of 100 mg/kg ketamine and 10 mg/kg xylazine and sacrificed through cervical dislocation. Subsequently, the gastrocnemius and tibialis anterior muscles were dissected, cleaned from residual non-muscular tissue, and removed from animals. The muscles used to obtain the total tissue homogenate used in RNA extraction were quickly frozen in liquid N2 and stored at −80 °C until processing. Muscles used for histological analysis were frozen promptly in isopentane previously cooled in liquid N2 and stored at −80 °C until processing.

Our experiments followed all international, national, and institutional suggestions and guidelines for animal care and use. Our studies and procedures with animals had the Animal Ethics Committee’s formal approval at the Universidad Andrés Bello (approval number 007/2016, March 2016).

11.2.2 Plasma Bile Acids Levels

Total plasma bile acids levels were using the colorimetric assay (Randox Laboratories Ltd., Kearneysville, WV, USA). Blood was drawn from the mouse’s tail (approximately 30 µL) and centrifuged at 1500 × g for 10 min at 4 °C. Subsequently, the plasma was separated for the assay [101].

To determine the concentration of total bile acids, a calibrator of known concentration was used, which was resuspended in physiological saline (0.9% NaCl). Using 750 mL of reagent 1 and 250 mL of reagent 2 provided by the kit were added, and subsequently, 10 µL of calibrator or mouse serum. The respective blanks were used, and the OD405nm was measured in plastic cuvettes. Thus, the absorption of the samples and the calibrator provided by the kit were measured at 405 nm at 60 and 120 s (A1 and A2, respectively), and the difference between
the two values was calculated ($\Delta A = A_2 - A_1$). The total bile acid concentration is calculated based on the following formula:

\[
(\Delta A_{\text{sample}}/\Delta A_{\text{gauge}}) \times [\text{gauge}] = [\text{sample}] \mu\text{mol/L}
\]

11.2.3 Parameters of Liver Injury

The colorimetric assay (Sigma-Aldrich, St Louis, MI, USA) was used to measure serum alanine aminotransferase (ALT). Serum alkaline phosphatase (ALP) activity and total bilirubin levels were determined by routine clinical chemistry testing, as previously described [102].

11.2.4 Hepatomegaly

Hepatomegaly is one of the data that allows for characterizing and confirming liver damage induced by DDC hepatotoxin, where we observed an increase in liver weight in animals with CLD [95].

11.2.5 Measurement of Muscle Mass

The muscle mass was measured as the lean mass of mice by EchoMRI resonator analysis (Echo Medical Systems, Houston, TX, USA) at six weeks of treatment.

11.2.6 Maximal Incremental Exercise Test

To assess physical performance, mice were subjected to a maximal incremental race test on a treadmill (Panlab LE8610MTS). Briefly, mice were on a treadmill starting at 12 cm/s for 2 min. Then, velocity was increased up to 15 cm/s for 3 min: Further, an increment of 2 cm/s each 1 min until the fatigue of mice was determined by the lack of response to the motivational stimulus (air puff) for 10 consecutive seconds [103].

11.2.7 Grip Strength Test

To evaluate the muscle strength in the forelimb and hindlimb, we used a dynamometer for little animals (Ugo Basile, Grip Strength meter 47,200). The procedure was carried out according to previous reports until it reached 15 repeats in the hind and forelegs of animals, which allows for calculating the maximum strength of these. The final value was expressed as the maximum force of the hind and forelegs normalized by the length of the tibia of the animals [104, 105].

11.2.8 RT-qPCR

The diaphragm muscles were obtained after dissection to determine the expression of CCL5/RANTES in control and CLD animals. The samples were rapidly frozen and stored at $-80 \, ^\circ\text{C}$ until processing. For RNA extraction, a homogenate was obtained from 10 mg of tissue with 1 mL of Chomczynski-phenol reagent (Winkler, Chile) for 1 min with ultraturrax Tissue Tearor TM (Biospec Products Inc., Mexico) on ice. This homogenate was centrifuged at 16,000 g for 15 min at 4 $^\circ\text{C}$, and the resulting supernatant was mixed with chloroform (Merck, Germany) and again centrifuged at 16,000 g for 15 min at 4 $^\circ\text{C}$. The resulting aqueous phase was mixed with an equal volume of isopropanol (Merck, Germany) and allowed to precipitate overnight at $-20 \, ^\circ\text{C}$. At the end of the incubation, the sample was centrifuged at 16,000 g for 15 min at 4 $^\circ\text{C}$, the supernatant was removed, and the precipitate was washed with 75% ethanol in DEPC water (Winkler, Chile). Subsequently, it was centrifuged at 16,000 g for 15 min at 4 $^\circ\text{C}$. The supernatant was removed, and the precipitate was allowed to dry and resuspended in DEPC water. The supernatant with the mRNA was stored at $-80 \, ^\circ\text{C}$ until it was used for total RNA quantification [106].

Total RNA was quantified in the UV-mini-1240 spectrophotometer (Shimadzu, Japan) at 260 nm and 280 nm wavelength to verify RNA purity, using the 260/280 ratio, taking a value of
2.0 as a reference. Integrity was verified by electrophoresis in an agarose gel (1% agarose, 5% formaldehyde, MOPS buffer pH 7.2, in DEPC water), using MOPS in DEPC water as a running buffer [106].

Complementary DNA (cDNA) synthesis was performed from 1 μg of total RNA, which was incubated with DNase (2 U) in 1 × DNase buffer (Fermentas, Thermo Fisher Scientific, USA) at 37 °C for the digestion of possible genomic DNA traces. DNase was then inactivated by incubation in 50 mM EDTA solution for 10 min at 65 °C. Reverse transcription was performed with 25 mM random primers (Invitrogen, Thermo Fisher Scientific, USA), First Strand 1 × buffer (Invitrogen, Thermo Fisher Scientific, USA), 25 mM dNTP (Fermentas, Thermo Fisher Scientific, USA), Riboblock (10 U) (Fermentas, Thermo Fisher Scientific, USA), 0.1 M DTT (Invitrogen, Thermo Fisher Scientific, USA) and the enzyme MMLV (Moloney Murine Leukemia Virus Transcriptase Reverse) (100 U) (Invitrogen, Thermo Fisher Scientific, USA) in DEPC water. Reverse transcription was performed in the MultiGene Opti-Max thermocycler (Labnet International, USA). The cDNA obtained was stored at −20 °C until later use [106]. The cDNA from reverse transcription was analyzed to evaluate the ccl5 gene expression (Forward: ATCTCTGCAGCTGCCC TCAC; Reverse: CTTGGCGGTTCCTTCGAG TG) with SyBR Green using β-actin (Forward: GTGACGTTGACATCCGTAAAGA; Reverse: GCCGGACTCATCGTACTCC) as a housekeeping gene. PCR was performed in triplicate using an Eco Real-Time PCR System (Illumina, San Diego, CA, USA). The mRNA expression was calculated using the comparative ΔΔ Ct method [107].

11.2.9 Statistical Analysis

The statistical analysis of the data was performed with Prism 9.0 analysis software (GraphPad Software, San Diego, CA, USA). The normality of the data was determined with the Shapiro–Wilk test. Normal data were analyzed with a t-test to compare the two groups. Differences were considered significant when the p-value was < 0.05.

11.3 Results

We corroborated the induction of cholestatic liver disease in mice that intake DDC hepatotoxin in the diet, measuring parameters of hepatic function as previously reported [55]. Figure 11.1a shows that mice fed a DDC diet for six weeks presented hepatic alterations evidenced by higher serum alanine aminotransferase (ALT) activity than mice fed with a chow diet. Figure 11.1b shows that mice from the DDC group have more elevated serum alkaline phosphatase (ALP) activity than the Chow group. In addition, we observed that animals fed with a DDC diet showed hepatomegaly (Fig. 11.2). These parameters indicate hepatic dysfunction. Then, we corroborated that mice fed with the DDC diet presented elevated plasma bile acid levels than mice fed with the chow diet (Fig. 11.3).

Together, these results demonstrated that mice fed a DDC diet developed a cholestatic liver disease with typical liver dysfunction and increased plasma bile acids levels.

Then, we evaluated the parameters of sarcopenia in mice fed with chow and DDC diets. First, we assessed the effect of the DDC diet on muscle strength through a grip strength test. Figure 11.4 shows that muscle strength is decreased in the forelimb (Fig. 11.4a) and hindlimb (Fig. 11.4b) in mice fed with the DDC diet compared to mice with the chow diet.

Another parameter key to describing sarcopenia is the muscle mass determined by nuclear magnetic resonance analysis. Figure 11.5 shows that the DDC group decreased muscle mass compared to the Chow group.

Further, we evaluated the physical function through the maximal incremental race test on a treadmill. Figure 11.6 shows that mice fed with the DDC diet presented an impaired physical function compared to mice fed with the chow diet. Thus, the DDC group had a decreased
maximum running distance (Fig. 11.6a), reduced maximum running speed (Fig. 11.6b), and decreased maximum race time (Fig. 11.6c) compared to the chow group.

Together, the results from muscle strength and mass and physical function confirm that mice fed the DDC diet developed sarcopenia.

Finally, we evaluated the ccl5 gene expression in diaphragm muscle from chow and DDC mice. Figure 11.7 shows that the mRNA levels for ccl5 increased in the diaphragm of the DDC group compared to the chow group. Thus, our results show that the diaphragm from cholestasis-induced sarcopenic mice presented elevated ccl5 gene expression, which correlated with plasma bile acids and liver dysfunction.

Fig. 11.1 Mice with cholestatic liver disease presented alteration of hepatic parameters. C57BL/6 J male mice were fed a chow or a DDC-supplemented diet for 6 weeks. Blood was collected at the end of the experiment. a ALT and b ALP activities were measured. The values correspond to the mean ± SEM (n = 6–9). Statistical differences were examined by unpaired Student’s t-test and are indicated by p < 0.0001 with a 95% CI

Fig. 11.2 Cholestatic liver disease produces hepatomegaly in mice. C57BL/6 J male mice were fed a chow or a DDC-supplemented diet for 6 weeks. After euthanasia, liver weight was obtained at the end of the experiments. The values correspond to the mean ± SEM (n = 6–9). Statistical differences were examined by unpaired Student’s t-test and are indicated by p < 0.0001 with a 95% CI

Fig. 11.3 Mice affected with cholestatic liver disease have elevated plasma bile acid levels. C57BL/6 J male mice were fed a chow or a DDC-supplemented diet for 6 weeks. Blood was collected at the end of the experiment, and plasma bile acid levels were measured. The values were normalized to the chow diet and are expressed as the mean ± SEM (n = 6–9). Statistical differences were examined by unpaired Student’s t-test and are indicated by p < 0.0001 with a 95% CI
In the present study, we have observed that mice fed with DDC have elevated ccl5 gene expression in diaphragm muscles which correlated with high levels of bile acids, CLD, and developed muscle dysfunction.

An essential characteristic of the skeletal muscle is its high plasticity, allowing it to adapt to different stimuli, which can be positive (such as specific exercises or high-protein diets) or negative (such as the aging process, malnutrition, disuse, and chronic pathologies such as is cholestatic CLD).

In animals with CLD, we observed a decrease in muscle strength, muscle mass, and physical function compared to animals that received a standard diet (Chow) and evaluated by grip strength test (fore and hind limb strength), nuclear magnetic resonance (muscle mass) and maximum running capacity (physical performance). This sarcopenia is also observed in humans and is one of the main consequences of CLD, negatively affecting the physical function related to health and the performance in activities of daily living in patients who suffer from it. It is also an independent predictor of post-liver transplant mortality [91–93]. If we consider the scarcity of organs available for organ transplantation in Chile and the world, preventing sarcopenia or determining its presence and severity could help to choose those people who require the procedure and whose probability of success and survival is greater [78].

On the other hand, in cholestatic CLD, there are increased bile acids in the plasma, producing...
a deleterious effect on the liver, also affecting the skeletal muscle, decreasing its mass and strength, concomitantly with a decreased physical function, a condition referred to as sarcopenia.

Given the importance of the effect of bile acids on the skeletal muscle during EHC, in this research, we evaluated the concentration of bile acids in the serum of mice after finishing the treatment with the DDC diet in the sixth week of the experimental intervention. Our results confirm that the DDC animals presented higher plasma bile acid levels than mice fed a chow diet, as we have previously reported. The DDC hepatotoxin crystallizes in the bile ducts, producing their obstruction and generating an increase in bile acids in the plasma, which is consistent with the state and progression of the hepatic dysfunction in the mice. Additionally, bile acids have extrahepatic functions acting as signaling molecules and producing harmful effects in several tissues [94–97]. In skeletal muscle, bile acids can bind to the membrane TGR5 receptor to

Fig. 11.6 Cholestatic liver disease decreased the physical performance of mice. C57BL/6 J male mice were fed a chow or a DDC-supplemented diet for 6 weeks. At the end of the experiments, a maximal incremental run test was performed to measure a the decrease in the maximum running distance (m), b the decline in maximum running speed (cm/s), and c the reduction in maximum race time (s) in DDC group to compare chow group. The values correspond to the mean ± SEM (n = 6–9). Statistical differences were examined by unpaired Student’s t-test and are indicated by p < 0.0001 with a 95% CI.
generate atrophy and sarcopenia [94]. We have previously reported the mechanisms involved in the sarcopenia induced by the DDC diet, including activation of sarcopenic-specific E3 ligases MuRF-1 and atrogin-1, oxidative stress, unbalanced proteostasis of sarcomeric components, mitochondrial dysfunction, and myonuclear apoptosis. Interestingly, most of these features present in DDC-induced sarcopenia are reproducible by induction of sarcopenic-like phenotype mediated by bile acids in muscle fibers showing the critical role of bile acids in muscle dysfunction [94, 108].

Hepatomegaly also allows us to characterize and confirm liver damage induced by DDC hepatotoxin, and our results showed that the DDC mice had hepatomegaly. This increased liver weight could be due to chronic inflammation of the organ, dilatation of the bile ducts, protoporphyrin plugging, and a progressive change in liver tissue due to fibrosis and cirrhosis that can affect the size and weight of the organ [109].

Our results show that mice fed with a DDC diet presented increased ccl5 gene expression in the diaphragm muscle for the first time. This result is relevant because the first report correlates the ccl5 expression with a sarcopenic condition such as cholestatic liver disease.

CCL5/RANTES is a molecule that can be described as either a myokine or a cytokine. The latter has been described as having a role in regulating the immune system, where it has been observed in damaged liver tissue. A deficiency of CCL5/RANTES promotes better repair, helping a better inflammatory process and regeneration. Still, these effects have not been studied in their role as a myokine in muscle [110].

CCL5/RANTES is a new myokine with functions poorly described in skeletal muscle. The antecedents describe that ccl5 expression is modulated by contractile activity, decreasing these levels by contraction [53]. To date, the only precedent that relates an increase in the expression of ccl5 and the diaphragm muscle is in a model of endotoxemia and pseudomonas lung infection [111]. Interestingly our results were obtained in the diaphragm, a skeletal muscle with continuous and involuntary contractile activity, which could mask the more significant upregulation of ccl5 expression in other muscles with voluntary and non-continuous contractile activity.

Bile acids are excellent candidates for the soluble factor that could induce the upregulation of ccl5 gene expression. Some reports indicate that bile acids such as cholic, deoxycholic, and chenodeoxycholic acids can induce ccl5 expression [98]. In addition, some reports demonstrated that the increase of the ccl5 expression could be mediated by the activation of the NF-kB signaling pathway [99]. Interestingly, NF-kB is a signaling pathway involved in the induction of sarcopenia by several conditions [112–114]. In turn, it has been described that the NF-kB signaling pathway is activated in response to a variety of stimuli such as infections, exposure to cytokines, and growth factors, among others, so these acids possibly act as stimuli for this pathway. Activating the IKKβ complex that will
subsequently phosphorylate the IkBα proteins bound to NF-κβ, these will degrade, releasing NF-κβ. NF-κβ is subsequently translocated to the nucleus to promote the expression of genes that, in this case, could correspond to CCL5/RANTES. It is vital in future research to determine the expression of CCL5 in other muscles, both in the forelegs and hindlegs of animals, but mainly in the hindlegs, since these muscles are primarily affected by sarcopenia. In addition, it would be interesting to know if CCL5 expression is modified by positive factors for skeletal muscle, such as physical training.

11.5 Conclusion

Our results collectively suggest an increased ccl5 gene expression in the diaphragm muscle concomitantly with elevated serum bile acids and the development of sarcopenia.

Statements and Declarations

Funding The manuscript was supported by research grants from the National Fund for Science and Technological Development (FONDECYT 1200944 [CCV]); Agencia Nacional de Investigación y Desarrollo (ANID)—Millennium Science Initiative Program—ICN09_016/ICN 2021_045: Millennium Institute on Immunology and Immunotherapy (ICN09_016/ICN 2021_045; former PO9/016-F) [CCV]; Basal Grant CEDENNA (AFB180001 [CCV]).

Disclosure of Interests The authors declare that they have no conflict of interest.

Ethical Approval All applicable international, national, and/or institutional guidelines for the care and use of animals were followed. Approval was granted by the ethics committee of the Universidad Andrés Bello in Santiago, Chile (Approval number 017/2020).

Author Contributions Conceptualization, V.M., and C.C-V.; Methodology, V.M., A.G., and C.C-V.; Validation, V.M., and A.G.; Investigation, V.M., A.G., and C.C-V.; Visualization, V.M., A.G., and C.C-V.; Supervision, C.C-V.; Project administration, C.C-V.; Formal Analysis, V.M., A.G., and C.C-V.; Writing—Original Draft Preparation, V.M., A.G., and C.C-V.; Writing—Review and Editing, A.G., and C.C-V.

References

1. Frontera WR, Ochala J (2015) Skeletal muscle: a brief review of structure and function. Calcif Tissue Int 96(3):183–195. https://doi.org/10.1007/s00223-014-9915-y
2. Mukund K, Subramaniam S (2020) Skeletal muscle: a review of molecular structure and function, in health and disease. Wiley Interdiscip Rev Syst Biol Med 12 (1):e1462. https://doi.org/10.1002/wsbm.1462
3. de Souza LF, Rassier DE (2020) Sarcomere length nonuniformity and force regulation in myofibrils and sarcomeres. Biophys J 119(12):2372–2377. https://doi.org/10.1016/j.bpj.2020.11.005
4. Prill K, Dawson JF (2020) Assembly and maintenance of sarcomere thin filaments and associated diseases. Int J Mol Sci 21(2). https://doi.org/10.3390/ijms21020542
5. Ojima K (2019) Myosin: formation and maintenance of thick filaments. Anim Sci J 90(7):801–807. https://doi.org/10.1111/asj.13226
6. Qaisar R, Bhaskaran S, Van Remmen H (2016) Muscle fiber type diversification during exercise and regeneration. Free Radic Biol Med 98:56–67. https://doi.org/10.1016/j.freeradbiomed.2016.03.025
7. Talbot J, Maves L (2016) Skeletal muscle fiber type: using insights from muscle developmental biology to dissect targets for susceptibility and resistance to muscle disease. Wiley Interdiscip Rev Dev Biol 5 (4):518–534. https://doi.org/10.1002/wdev.230
8. Pedersen BK, Akerstrom TC, Nielsen AR, Fischer CP (2007) Role of myokines in exercise and metabolism. J Appl Physiol 103(3):1093–1098 (1985). https://doi.org/10.1152/japplphysiol.00080.2007
9. Pedersen BK, Steensberg A, Fischer C, Keller C, Keller P, Plomgaard P et al (2013) Searching for the exercise factor: is IL-6 a candidate? J Muscle Res Cell Motil 24(2–3):113–119. https://doi.org/10.1007/s10231-012-0026-0
10. Lee JH, Jun HS (2019) Role of myokines in regulating skeletal muscle mass and function. Front Physiol 10:42. https://doi.org/10.3389/fphys.2019.00042
11. Carson BP (2017) The potential role of contraction-induced myokines in the regulation of metabolic function for the prevention and treatment of type 2 diabetes. Front Endocrinol (Lausanne) 8:97. https://doi.org/10.3389/fendo.2017.00097
12. Hoffmann C, Weigert C (2017) Skeletal muscle as an endocrine organ: the role of myokines in exercise adaptations. Cold Spring Harb Perspect Med 7(11). https://doi.org/10.1101/cshperspect.a029793
13. Pedersen BK (2009) The diseasome of physical inactivity—and the role of myokines in muscle–fat cross talk. J Physiol 587(Pt 23):5559–5568. https://doi.org/10.1113/jphysiol.2009.179515
14. Piccirillo R (2019) Exercise-Induced myokines with therapeutic potential for muscle wasting. Front Physiol 10:287. https://doi.org/10.3389/fphys.2019.00287

15. Polyzos SA, Kountouras J, Shields K, Mantzoros CS (2013) Irisin: a renaissance in metabolism? Metabolism 62(8):1037–1044. https://doi.org/10.1016/j.metabol.2013.04.008

16. Boström P, Wu J, Jedrychowski MP, Korde A, Ye L, Lo JC et al (2012) A PGC1α-dependent myokine that drives brown-fat-like development of white fat and thermogenesis. Nature 481(7382):463–468. https://doi.org/10.1038/nature10777

17. Roca-Rivada A, Castelao C, Senin LL, Landrove MO, Baltar J, Belén Crueiras A et al (2013) FNDC5/irisin is not only a myokine but also an adipokine. PLoS One 8(4):e60563-e. https://doi.org/10.1371/journal.pone.0060563

18. Huh JY (2018) The role of exercise-induced myokines in regulating metabolism. Arch Pharmaco 41(1):14–29. https://doi.org/10.1007/s12272-017-0994-y

19. Perakakis N, Triantafyllou GA, Fernández-Real JM, Huh JY, Park KH, Seufert J et al (2017) Physiology and role of irisin in glucose homeostasis. Nat Rev Endocrinol 13(6):324–337. https://doi.org/10.1038/nrendo.2016.221

20. Barbatelli G, Murano I, Madsen L, Hao Q, Jimenez M, Kristiansen K et al (2010) The emergence of cold-induced brown adipocytes in mouse white fat depots is determined predominantly by white to brown adipocyte transdifferentiation. Am J Physiol-Endocrinol Metab 298(6):E1244–E1253. https://doi.org/10.1152/ajpendo.00605609

21. Sanchis-Gomar F, Perez-Quilis C (2014) The p38–PGC-1α–irisin–betatrophin axis. Adipocyte 3(1):67–68. https://doi.org/10.4161/adip.27370

22. Zhao M, Zhou X, Yuan C, Li R, Ma Y, Tang X (2020) Association between serum irisin concentrations and sarcopenia in patients with liver cirrhosis: a cross-sectional study. Sci Rep 10(1):16093. https://doi.org/10.1038/s41598-020-73176-z

23. Reza MM, Subramaniyan N, Sim CM, Ge X, Sathiakumar D, McFarlane C et al (2017) Irisin is a pro-myogenic factor that induces skeletal muscle hypertrophy and rescues denervation-induced atrophy. Nat Commun 8(1):1104. https://doi.org/10.1038/s41467-017-01131-0

24. Bacewicz J, Silkiewicz M, Wojszel ZB (2020) Myostatin as a biomarker of muscle wasting and other pathologies-state of the art and knowledge gaps. Nutrients 12(8):2401. https://doi.org/10.3390/nu12082401

25. Morvan F, Rondeau J-M, Zou C, Minetti G, Scheufler C, Scharenberg M et al (2017) Blockade of activin type II receptors with a dual anti-ActRIIA/IIB antibody is critical to promote maximal skeletal muscle hypertrophy. Proc Natl Acad Sci 114(47):12448. https://doi.org/10.1073/pnas.1707925114

26. McPherron AC, Lawler AM, Lee SJ (1997) Regulation of skeletal muscle mass in mice by a new TGF-beta superfamily member. Nature 387(6628):83–90. https://doi.org/10.1038/387083a0

27. Mosher DS, Quignon P, Bustamante CD, Sutter NB, Mellersh CS, Parker HG et al (2007) A mutation in the myostatin gene increases muscle mass and enhances racing performance in heterozygote dogs. PLoS Genet 3(5):e79-e. https://doi.org/10.1371/journal.pgen.0030079

28. Gomarasca M, Banfi G, Lombardi G (2020) Myokines: the endocrine coupling of skeletal muscle and bone. In: Makowski GS (ed) Advances in clinical chemistry (chapter four). Elsevier, pp 155–218

29. Chung HS, Choi KM (2020) Organokines in disease. In: Makowski GS (ed) Advances in clinical chemistry (chapter six). Elsevier, pp 261–321

30. Rose-John S (2020) Interleukin-6 signalling in health and disease. F1000Research. 9:F1000 Faculty Rev-13. https://doi.org/10.12688/f1000research.26058.1

31. Laron Z (2004) IGF-1 and insulin as growth hormones. Biology of IGF-1: its interaction with insulin in health and malignant states. 56–83. https://doi.org/10.1002/0470869976.ch5

32. Rinderknecht E, Hemberle RE (1978) The amino acid sequence of human insulin-like growth factor I and its structural homology with proinsulin. J Biol Chem 253(8):2769–2776

33. Hawley John A, Hargreaves M, Joyner Michael J, Zierath JR (2014) Integrative biology of exercise. Cell 159(4):738–749. https://doi.org/10.1016/j.cell.2014.10.029

34. Scicchitano BM, Dobrowolny G, Sica G, Musaró A (2018) Molecular insights into muscle homeostasis atrophy and wasting. Current Genomics 19(5):356–369. https://doi.org/10.2174/1389202919666180101153911

35. Aldinucci D, Borghese C, Casagrande N (2012) The CCL5/CCR5 Axis in cancer progression. Cancers (Basel) 12(7). https://doi.org/10.3390/cancers12071765

36. Velasco-Velazquez M, Xolalpa W, Pestell RG (2014) The potential to target CCL5/CCR5 in breast cancer. Expert Opin Ther Targets 18(11):1265–1275. https://doi.org/10.1517/14728222.2014.949238

37. Marques RS, Guabiraba R, Russo RC, Teixeira MM (2013) Targeting CCL5 in inflammation. Expert Opin Ther Targets 17(12):1439–1460. https://doi.org/10.1517/14728222.2013.837886

38. Combadiere C, Ahuja SK, Tiffany HL, Murphy PM (1996) Cloning and functional expression of CC CKR5, a human monocyte CC chemokine receptor selective for MIP-1(alpha), MIP-1(beta), and RANTES. J Leukoc Biol 60(1):147–152. https://doi.org/10.1002/jlb.60.1.147

39. Raport CJ, Gosling J, Schweickart VL, Gray PW, Charo IF (1996) Molecular cloning and functional characterization of a novel human CC chemokine
receptor (CCR5) for RANTES, MIP-1beta, and MIP-1alpha. J Biol Chem 271(29):17161–17166. https://doi.org/10.1074/jbc.271.29.17161

40. Samson M, Labbe O, Mollereau C, Vassart G, Parmentier M (1996) Molecular cloning and functional expression of a new human CC-chemokine receptor gene. Biochemistry 35(11):3362–3367. https://doi.org/10.1021/bi952950g

41. Wierda RJ, Kuipers HF, van Eggermond MC, Benard A, van Leeuwen JC, Carluccio S et al (2012) Epigenetic control of CCR5 transcript levels in immune cells and modulation by small molecules inhibitors. J Cell Mol Med 16(8):1866–1877. https://doi.org/10.1111/j.1582-4934.2011.01482.x

42. Schlecker E, Stojanovic A, Eisen C, Quack C, Falek C, Umansky V et al (2012) Tumor-infiltrating monocytic myeloid-derived suppressor cells mediate CCR5-dependent recruitment of regulatory T cells favoring tumor growth. J Immunol 189(12):5602–5611. https://doi.org/10.4049/jimmunol.1201018

43. Weitzenfeld P, Ben-Baruch A (2014) The chemokine system, and its CCR5 and CXCR4 receptors, as potential targets for personalized therapy in cancer. Cancer Lett 352(1):36–53. https://doi.org/10.1016/j.canlet.2013.10.006

44. Martinez-Munoz L, Barroso R, Dyrhaug SY, Navarro G, Lucas P, Soriani SF et al (2014) CCR5/CD4/CXCR4 oligomerization prevents HIV-1 gp120IIIB binding to the cell surface. Proc Natl Acad Sci U S A 111(19):E1960–E1969. https://doi.org/10.1073/pnas.1322887111

45. Liu R, Paxton WA, Choe S, Martin SR, Horuk R et al (1997) Homozygous defect in HIV-1 coreceptor accounts for resistance of some multiply-exposed individuals to HIV-1 infection. Cell 86(3):367–377. https://doi.org/10.1016/s0092-8674(00)80110-5

46. Samson M, Libert F, Doranz BJ, Rucker J, Liesnard C, Farber CM et al (1996) Resistance to HIV-1 infection in Caucasian individuals bearing mutant alleles of the CCR-5 chemokine receptor gene. Nature 382(6593):722–725. https://doi.org/10.1038/382722a0

47. Carrington M, Kissner T, Gerrard B, Ivanov S, O’Brien SJ, Dean M (1997) Novel alleles of the chemokine-receptor gene CCR5. Am J Hum Genet 61(6):1261–1267. https://doi.org/10.1086/301645

48. Ansari-Lari MA, Liu XM, Metzker ML, Rut AR, Gibbs RA (1997) The extent of genetic variation in the CCR5 gene. Nat Genet 16(3):221–222. https://doi.org/10.1038/ng0797-221

49. Krensky AM, Ahn YT (2007) Mechanisms of disease: regulation of RANTES (CCL5) in renal disease. Nat Clin Pract Nephrol 3(3):164–170. https://doi.org/10.1038/ncnpneph0418

50. Zeng Z, Lan T, Wei Y, Wei X (2022) CCL5/CCR5 axis in human diseases and related treatments. Genes Dis 9(1):12–27. https://doi.org/10.1016/j.gendis.2021.08.004

51. Berres ML, Koenen RR, Rueland A, Zaldivar MM, Heinrichs D, Sahin H et al (2010) Antagonism of the chemokine Ccl5 ameliorates experimental liver fibrosis in mice. J Clin Invest 120(11):4129–4140. https://doi.org/10.1172/JCI41732

52. Ishiuchi Y, Sato H, Komatsu N, Kawaguchi H, Matsuwaki T, Yamanouchi K et al (2018) Identification of CCL5/RANTES as a novel contraction-reducible myokine in mouse skeletal muscle. Cytokine 108:17–23. https://doi.org/10.1016/j.cyto.2018.03.012

53. Nedachi T, Fujita H, Kanzaki M (2008) Contractile C2C12 myotube model for studying exercise-inducible responses in skeletal muscle. Am J Physiol Endocrinol Metab 295(5):E1191–E1204. https://doi.org/10.1152/ajpendo.90280.2008

54. Bajaj S, Kashyap R, Srivastava A, Singh S (2017) Metabolic derangement in acute and chronic liver disorders. Indian J Endocrinol Metab. 21(5):695–698. https://doi.org/10.4103/ijem.IJEm_146_17

55. Campos F, Abrujo J, Aguirre F, Garces B, Arrese M, Karpen S et al (2018) Sarcopenia in a mice model of chronic liver disease: role of the ubiquitin-proteasome system and oxidative stress. Pflugers Arch 470(10):1503–1519. https://doi.org/10.1007/s00424-018-2167-3

56. Hope AA, Morrison RS (2011) Integrating palliative care with chronic liver disease care. J Palliat Care 27(1):20–27

57. Redman JS, Kaspar M, Puri P (2022) Implications of pre-transplant sarcopenia and frailty in patients with non-alcoholic steatohepatitis and alcoholic liver disease. Transl Gastroenterol Hepatol 7:29. https://doi.org/10.21037/gh-20-236

58. Uchiyama H (2017) Sarcopenia in liver transplant recipients: its relevance to peritransplant morbidity and mortality. Hepatobiliary Surg Nutr. 6(3):196–199. https://doi.org/10.21037/hbsn.2017.03.10

59. Zubieta-Rodriguez R, Gomez-Correa J, Rodriguez-Amaya R, Ariza-Mejia KA, Toloza-Cuta NA (2017) Hospital mortality in cirrhotic patients at a tertiary care center. Rev Gastroenterol Mex 82(3):203–209. https://doi.org/10.1016/j.rgmx.2016.10.002

60. Xinmenes RO, Farias AQ, Scalabrini Neto A, Diniz MA, Kubota GT, Ivo MM et al (2016) Patients with cirrhosis in the ED: early predictors of infection and mortality. Am J Emerg Med 34(1):25–29. https://doi.org/10.1016/j.ajem.2015.09.004

61. Levesque E, Hoti E, Zubieta-Rodriguez R, Iori C, Habouchi H, Castaing D et al (2012) Prospective evaluation of the prognostic scores for cirrhotic patients admitted to an intensive care unit. J Hepatol 56(1):95–102. https://doi.org/10.1016/j.jhep.2011.06.024

62. Gonzalez A, Huerta-Salgado C, Orozco-Aguilar J, Aguirre F, Tacchi F, Simon F et al (2020) Role of oxidative stress in hepatic and extrahepatic dysfunctions during nonalcoholic fatty liver disease (NAFLD). Oxid Med Cell Longev 2020:1617805. https://doi.org/10.1155/2020/1617805
63. Perumpail BJ, Khan MA, Yoo ER, Cholankeril G, Kim D, Ahmed A (2017) Clinical epidemiology and disease burden of nonalcoholic fatty liver disease. World J Gastroenterol 23(47):8263–8276. https://doi.org/10.3748/wjg.v23.i47.8263
64. European Association for the Study of the Liver (2009) EASL clinical practice guidelines: management of cholestatic liver diseases. J Hepatol 51 (2):237–67. https://doi.org/10.1016/j.jhep.2009.04.009
65. Pedersen MR, Mayo MJ (2020) Managing the symptoms and complications of cholestasis. Clin Liver Dis (Hoboken) 15(3):120–124. https://doi.org/10.1016/cld.901
66. Abrigo J, Marin T, Aguirre F, Tacchi F, Vilos C, Simon F et al (2019) N-Acetyl cysteine attenuates the sarcopenia and muscle apoptosis induced by chronic liver disease. Curr Mol Med 20(1):60–71. https://doi.org/10.2174/1566524019666190917124636
67. Cruz-Jentoft AJ, Dawson Hughes B, Scott D, Sanders KM, Rizzoli R (2020) Nutritional strategies for maintaining muscle mass and strength from middle age to later life: a narrative review. Maturitas 132:57–64. https://doi.org/10.1016/j.maturitas.2019.11.007
68. Sarcopenia KK (2019) Wien Med Wochenschr 169(7–8):157–172. https://doi.org/10.1007/s10354-018-0618-2
69. Cruz-Jentoft AJ, Bahat G, Bauer J, Boirie Y, Bruyere O, Cederholm T et al (2019) Sarcopenia: revised European consensus on definition and diagnosis. Age Ageing 48(1):16–31. https://doi.org/10.1093/ageing/afy169
70. Abrigo J, Elorza AA, Riedel CA, Vilos C, Simon F, Cabrera D et al (2018) Role of oxidative stress as key regulator of muscle wasting during Cachexia. Oxid Med Cell Longev 2018:2063179. https://doi.org/10.1155/2018/2063179
71. Bhanji RA, Narayanan P, Allen AM, Malhi H, Watt KD (2017) Sarcopenia in hiding: the risk and consequence of underestimating muscle dysfunction in nonalcoholic steatohepatitis. Hepatology (Baltimore, MD) 66(6):2055–2065. https://doi.org/10.1002/hep.29420
72. Hsu CS, Kao JH (2018) Sarcopenia and chronic liver diseases. Expert Rev Gastroenterol Hepatol 12 (12):1229–1244. https://doi.org/10.1080/17477412.2018.1534586
73. Noh J (2020) Sarcopenia as a novel risk factor for nonalcoholic fatty liver disease. J Obes Metab Syndr 29(1):1–3. https://doi.org/10.7570/jomes20017
74. Kim G, Kang SH, Kim MY, Baik SK (2017) Prognostic value of sarcopenia in patients with liver cirrhosis: a systematic review and meta-analysis. PLoS ONE 12(10):e0186990. https://doi.org/10.1371/journal.pone.0186990
75. De Bandt JP, Jegatheesan P, Tennoune-El-Hafaia N (2018) Muscle loss in chronic liver diseases: the example of nonalcoholic liver disease. Nutrients 10(9). https://doi.org/10.3390/nu10091195
76. Ebadi M, Bhanji RA, Mazurak VC, Montano-Loza AJ (2019) Sarcopenia in cirrhosis: from pathogenesis to interventions. J Gastroenterol 54(10):845–859. https://doi.org/10.1007/s00535-019-01605-6
77. Cabrera D, Cabello-Verrugio C, Solís N, Martín DS, Cofre C, Pizarro M et al (2018) Somatotropic axis dysfunction in non-alcoholic fatty liver disease: beneficial hepatic and systemic effects of hormone supplementation. Int J Mol Sci 19(5). https://doi.org/10.3390/ijms19051339
78. Meeks AC, Madill J (2017) Sarcopenia in liver transplantation: a review. Clin Nutr ESPEN 22:76–80. https://doi.org/10.1016/j.clnesp.2017.08.005
79. DiMartini A, Cruz RJ Jr, Dew MA, Myaskovsky L, Goodpaster B, Fox K et al (2013) Muscle mass predicts outcomes following liver transplantation. Liver Transpl 19(11):1172–1180. https://doi.org/10.1002/lt.23724
80. Golse N, Bucur PO, Ciacio O, Pittau G, Sa Cunha A, Adam R et al (2017) A new definition of sarcopenia in patients with cirrhosis undergoing liver transplantation. Liver Transpl 23(2):143–154. https://doi.org/10.1002/lt.24671
81. Kalafateli M, Mantzoukis K, Choi Yau Y, Mohammad AO, Arora S, Rodrigues S et al (2017) Malnutrition and sarcopenia predict post-liver transplantation outcomes independently of the model for end-stage liver disease score. J Cachexia Sarcopenia Muscle 8(1):113–121. https://doi.org/10.1002/jcsm.12095
82. Ooi PH, Hager A, Mazurak VC, Dajani K, Bharagava R, Gilmour SM et al (2019) Sarcopenia in chronic liver disease: impact on outcomes. Liver Transpl 25(9):1422–1438. https://doi.org/10.1002/lt.25591
83. Dasarathy S, Merli M (2016) Sarcopenia from mechanism to diagnosis and treatment in liver disease. J Hepatol 65(6):1232–1244. https://doi.org/10.1016/j.jhep.2016.07.040
84. Praktiknjo M, Book M, Luetkens J, Pohlmann A, Meyer C, Thomas D et al (2018) Fat-free muscle mass in magnetic resonance imaging predicts acute-on-chronic liver failure and survival in decompensated cirrhosis. Hepatology 67(3):1014–1026. https://doi.org/10.1002/hep.29602
85. Son SW, Song DS, Chang Ul, Yang JM (2021) Definition of sarcopenia in chronic liver disease. Life (Basel) 11(4). https://doi.org/10.3390/life11040349
86. Jindal A, Jagdish RK (2019) Sarcopenia: Ammonia metabolism and hepatic encephalopathy. Clin Mol Hepatol 25(3):270–279. https://doi.org/10.3350/cmh.2019.0015
87. Suchomel TJ, Nimphius S, Stone MH (2016) The importance of muscular strength in athletic performance. Sports Med 46(10):1419–1449. https://doi.org/10.1007/s40279-016-0486-0
Upregulation of CCL5/RANTES Gene Expression in the Diaphragm

88. Heymsfield SB, McManus C, Smith J, Stevens V, Nixon DW (1982) Anthropometric measurement of muscle mass: revised equations for calculating bone-free arm muscle area. Am J Clin Nutr 36 (4):680–690. https://doi.org/10.1093/ajcn/36.4.680

89. Beaudart C, Rolland Y, Cruz-Jentoft AJ, Bauer JM, Sieber C, Cooper C et al (2019) Assessment of muscle function and physical performance in daily clinical practice: a position paper endorsed by the European society for clinical and economic aspects of osteoporosis, osteoarthritis and musculoskeletal diseases (ESCEO). Calcif Tissue Int 105(1):1–14. https://doi.org/10.1007/s00223-019-00545-w

90. Cruz-Jentoft AJ, Sayer AA (2019) Sarcopenia. Lancet 393(10191):2636–2646. https://doi.org/10.1016/S0140-6736(19)31138-9

91. Aguirre F, Abrigo J, Gonzalez F, Gonzalez A, Simon F, Cabello-Verrugio C (2020) Protective effect of angiotensin 1–7 on sarcopenia induced by chronic liver disease in mice. Int J Mol Sci 21(11). https://doi.org/10.3390/ijms21113891

92. Collins BC, Laakkonen EK, Lowe DA (2019) Aging of the musculoskeletal system: how the loss of estrogen impacts muscle strength. Bone 123:137–144. https://doi.org/10.1016/j.bone.2019.03.033

93. Dasarathy S (2014) Treatment to improve nutrition and functional capacity evaluation in liver transplant candidates. Curr Treat Options Gastroenterol 12(2):242–255. https://doi.org/10.1007/s11938-014-0016-9

94. Abrigo J, Gonzalez F, Aguirre F, Tacchi F, Gonzalez A, Meza MP et al (2021) Cholic acid and deoxycholic acid induce skeletal muscle atrophy through a mechanism dependent on TGR5 receptor. J Cell Physiol 236(1):260–272. https://doi.org/10.1002/jcp.29839

95. Clerbaux LVHN, Gouw A, Manco R et al (2017) Relevance of the CDE and DDC mouse models to study ductular reaction in chronic human liver diseases. IntechOpen. https://doi.org/10.5772/intechopen.69533

96. Dossa AY, Escobar O, Golden J, Frey MR, Ford HR, Gayer CP (2016) Bile acids regulate intestinal cell proliferation by modulating EGFR and FXR signaling. Am J Physiol Gastrointest Liver Physiol 310(2):G81-92. https://doi.org/10.1152/ajpgi.00065.2015

97. Orozco-Aguilar J, Simon F, Cabello-Verrugio C (2021) Redox-Dependent effects in the pathophysiological role of bile acids. Oxid Med Cell Longev 2021:4847941. https://doi.org/10.1155/2021/4847941

98. Allen K, Jaeschke H, Copple BL (2011) Bile acids induce inflammatory genes in hepatocytes: a novel mechanism of inflammation during obstructive cholestasis. Am J Pathol 178(1):175–186. https://doi.org/10.1016/j.ajpath.2010.11.026

99. Hirano F, Kobayashi A, Hirano Y, Nomura Y, Fukawa E, Makino I (2001) Bile acids regulate RANTES gene expression through its cognate NF-kappaB binding sites. Biochem Biophys Res Commun 288(5):1095–1101. https://doi.org/10.1006/bbrc.2001.5893

100. Fickert P, Stoger U, Fuchsbiicher A, Moustafa T, Marschall HU, Weiglein AH et al (2007) A new xenobiotic-induced mouse model of sclerosing cholangitis and biliary fibrosis. Am J Pathol 171 (2):525–536. https://doi.org/10.2353/ajpath.2007. 061133

101. Thavasu PW, Longhurst S, Joel SP, Slevin ML, Balkwill FR (1992) Measuring cytokine levels in blood. Importance of anticoagulants, processing, and storage conditions. J Immunol Methods 153(1–2):115–24. https://doi.org/10.1016/0022-1759(92)90313-i

102. Fickert P, Zollner G, Fuchsbiicher A, Stumptner C, Pojer C, Zenz R et al (2001) Effects of ursodeoxycholic and cholic acid feeding on hepatocellular transporter expression in mouse liver. Gastroenterology 121(1):170–183. https://doi.org/10.1053/gast.2001.25542

103. Tanner CB, Madsen SR, Hallowell DM, Goring DM, Moore TM, Hardman SE et al (2013) Mitochondrial and performance adaptations to exercise training in mice lacking skeletal muscle LKB1. Am J Physiol Endocrinol Metab 305(8):E1018–E1029. https://doi. org/10.1152/ajpendo.00227.2013

104. Bonetto A, Andersson DC, Waning DL (2015) Assessment of muscle mass and strength in mice. Bonekey Rep. 4:732. https://doi.org/10.1152/bonekey.2015.101

105. Aartsma-Rus A, van Putten M (2014) Assessing functional performance in the mdx mouse model. J Vis Exp (85). https://doi.org/10.3389/fnstr.2014.00001

106. Aravena J, Abrigo J, Gonzalez F, Aguirre F, Gonzalez A, Simon F, et al. Angiotensin (1–7) Decreases myostatin-induced NF-kappaB signaling and skeletal muscle atrophy. Int J Mol Sci 21(3). https://doi.org/10.3390/ijms21031167

107. Morales MG, Abrigo J, Acuna MJ, Santos RA, Bader M, Brandan E et al (2016) Angiotensin-(1–7) attenuates disuse skeletal muscle atrophy in mice via its receptor Mas. Disease Models Mech 9 (4):441–449. https://doi.org/10.1242/dmm.023390

108. Abrigo J, Campos F, Gonzalez F, Aguirre F, Gonzalez A, Huerta-Salgado C et al (2020) Sarcopenia induced by chronic liver disease in mice requires the expression of the bile acids membrane receptor TGR5. Int J Mol Sci 21(21). https://doi.org/10.3390/ijms21217922

109. Laure-Alix C (2018) Relevance of the CDE and DDC mouse models to study ductular reaction in chronic human liver diseases. IntechOpen. https://www.intechopen.com/books/experimental-animal-models-of-human-diseases-an-effective-therapeutic-strategy/relevance-of-the-cde-and-ddc-mouse-models-to-study-ductular-reaction-in-chronic-human-liver-diseases. Accessed
110. Li M, Sun X, Zhao J, Xia L, Li J, Xu M et al (2020) CCL5 deficiency promotes liver repair by improving inflammation resolution and liver regeneration through M2 macrophage polarization. Cell Mol Immunol 17(7):753–764. https://doi.org/10.1038/s41423-019-0279-0

111. Demoule A, Divangahi M, Yahiaoui L, Danialou G, Gvozdic D, Petrof BJ (2009) Chemokine receptor and ligand upregulation in the diaphragm during endotoxemia and Pseudomonas lung infection. Mediators Inflamm 2009:860565. https://doi.org/10.1155/2009/860565

112. Thoma A, Lightfoot AP (2018) NF-kB and Inflammatory Cytokine signalling: role in skeletal muscle atrophy. Adv Exp Med Biol 1088:267–279. https://doi.org/10.1007/978-981-13-1435-3_12

113. Martin AI, Gomez-SanMiguel AB, Priego T, Lopez-Calderon A (2018) Formoterol treatment prevents the effects of endotoxin on muscle TNF/NF-kB, Akt/mTOR, and proteolytic pathways in a rat model. Role of IGF-I and miRNA 29b. Am J Physiol Endocrinol Metab 315(4):E705-E14. https://doi.org/10.1152/ajpendo.00043.2018

114. Sriram S, Subramanian S, Juvvuna PK, Ge X, Lokireddy S, McFarlane CD et al (2014) Myostatin augments muscle-specific ring finger protein-1 expression through an NF-kB independent mechanism in SMAD3 null muscle. Mol Endocrinol 28(3):317–330. https://doi.org/10.1210/me.2013-1179
Differential Fibrotic Response of Muscle Fibroblasts, Myoblasts, and Myotubes to Cholic and Deoxycholic Acids

Luis Maldonado, Josué Orozco-Aguilar, Mayalen Valero-Breton, Franco Tacchi, Eduardo Cifuentes-Silva, and Claudio Cabello-Verrugio

Abstract

Fibrosis is a condition characterized by an increase in the components of the extracellular matrix (ECM). In skeletal muscle, the cells that participate in the synthesis of ECM are fibroblasts, myoblasts, and myotubes. These cells respond to soluble factors that increase ECM. Fibrosis is a phenomenon that develops in conditions of chronic inflammation, extensive lesions, or chronic diseases. A pathological condition with muscle weakness and increased bile acids (BA) in the blood is cholestatic chronic liver diseases (CCLD). Skeletal muscle expresses the membrane receptor for BA called TGR5. To date, muscle fibrosis in CCLD has not been evaluated. This study aims to assess whether BA can induce a fibrotic condition in muscle fibroblasts, myoblasts, and myotubes. The cells were incubated with deoxycholic (DCA) and cholic (CA) acids, and fibronectin protein levels were evaluated by Western blot. In muscle fibroblasts, both DCA and CA induced an increase in fibronectin protein levels. The same response was found in fibroblasts when activating TGR5 with the specific receptor agonist (INT-777). Interestingly, DCA reduced fibronectin protein levels in both myoblasts and myotubes, while CA did not show any effect in these cell populations. These results suggest that DCA and CA can induce a fibrotic phenotype in muscle-derived fibroblasts. On the other hand, DCA decreased the fibronectin in myoblasts and myotubes, whereas CA did not show any effect in these cell populations. Our results show that BA has different effects depending on the cell population to be analyzed.
12.1 Introduction

Muscular fibrosis is an excessive increase in extracellular matrix (ECM) elements, which replace muscle tissue and negatively affect skeletal muscle function [1, 2]. The ECM components that increase in this condition are collagen type I and III and fibronectin [3]. Muscle fibers can synthesize ECM proteins, and it has even been shown to respond in vitro to a fibrotic stimulus, increasing fibronectin levels [4]. It has also been described that myoblasts, a cell population originating from satellite cells that can differentiate into muscle fibers, can increase collagen and fibronectin expression [5–7]. In addition, muscle-derived fibroblasts under fibrotic conditions increase the expression of ECM proteins such as collagens I and III, fibronectin, and metalloprotease inhibitors (TIMP). This latter inhibits the expression or activity of metalloproteinases (MMP), enzymes responsible for ECM degradation [8, 9]. Furthermore, fibroblasts proliferate under fibrotic conditions [10]. Together, these events favor ECM deposition and the development of fibrosis.

When the muscle is injured, one of the first participants are the endothelial cells, which are capable of releasing cytokines that will recruit leukocytes, in addition to releasing MMPs that will break down the basement membrane to facilitate immune cell infiltration into the muscle. These latter cells will fulfill the role of phagocytizing cell debris [1, 3]. Furthermore, satellite cells activate and proliferate, forming myoblasts that divide, fuse, and differentiate. Thus, new muscle fibers are formed, replacing damaged ones. Parallel to these processes, fibroblasts proliferate and secrete, together with other resident cells such as myoblasts and muscle fibers, a transient ECM that will function as a scaffold and facilitate the formation of new muscle fibers [3]. At this point is critical an acute and temporary inflammation for avoiding regeneration leads to fibrosis since chronic inflammation can cause the fibroblasts to resist apoptosis [8].

Fibrosis has been described in non-genetic chronic diseases that indirectly affect skeletal muscle, such as kidney disease, arterial hypertension, and type 2 diabetes [11]. Another chronic disease characterized by muscle weakness is cholestatic chronic liver diseases (CCLD). In these pathologies, a decrease in muscle mass has been described in animal models and humans. However, whether the skeletal muscle from CCLD presents fibrosis has not been evaluated [12, 13].

CCLD is a pathology characterized by progressive liver damage, eventually leading to cirrhosis. This last stage presents different alterations, such as liver fibrosis and hepatocellular dysfunction [14]. Therefore, it ultimately leads to a liver transplant. Of patients with cirrhosis, 40–80% have muscle weakness and develop sarcopenia, the loss of muscle mass,
strength, and function [15, 16]. This condition has profound implications for the transplant since people who present both sarcopenia and cirrhosis have lower post-transplant survival (40%), in contrast to people who do not show muscle weakness (80%) [13]. Besides, sarcopenia could help predict mortality in cirrhotic patients [17].

For studying the relationship between muscle weakness with CCLD, murine model sarcopenia derived from sclerosing cholangiopathy has recently been described for our laboratory [12]. This animal model develops liver damage ending in cirrhosis via induction fibrosis in the bile ducts [9]. Different features are described in this model, among them an increase in liver size [18] and a decrease in strength, muscle mass, and function [12]. Another feature in this model, which has not been published, is the increased fibronectin protein levels (data not shown). This antecedent, added to the loss of function previously described [12], allows us to infer that this tissue presents fibrosis in this model.

A typical characteristic of the murine model of sclerosing cholangiopathy-induced sarcopenia is the increased serum levels of bile acids (BA) [18, 19]. BA are amphipathic molecules produced in the liver from cholesterol and stored in the gallbladder [20]. They divide according to their origin into primary BA, the most abundant and synthesized in the liver, such as cholic acid (CA) and chenodeoxycholic acid (CDCA), or secondary BA (or dehydroxylated derivates), which are primary BA modified by intestinal bacteria. These are the acids deoxycholic (DCA) and lithocholic (LCA) [20, 21]. The most abundant BA are CA, CDCA, and DCA [22].

The BA function has been classically associated with the fat emulsion to facilitate intestinal absorption. However, this role has been extended with its function as signaling molecules [21, 23, 24]. Since the 1990s, BA began to be described to act as hormones through nuclear receptors [25], the Farnesoid receptor (FXR). This receptor is a nuclear hormone receptor identified as N1H4. Farnesoid receptor expresses in tissues that participate in BA synthesis and absorption, such as the liver and the gut [26]. Another BA receptor is the Takeda-G-protein-receptor-5 (TGR5) membrane receptor, distributed in different tissues that do not necessarily participate in the BA synthesis pathways and are more associated with BA metabolic mechanisms [24]. In this context, TGR5 is expressed in the gallbladder, liver, adipose tissue, kidney, and skeletal muscle [27–29].

The metabolic role of TGR5 in skeletal muscle remains unclear, and some functions have been indirectly proposed to occur in muscle by data extrapolation from other tissues. Thus, TGR5 can induce the deiodinase 2 expression, which would increase energy expenditure and oxygen consumption, based on studies previously described for brown adipose tissue, in a mechanism dependent on CREB activated by PKA [27]. In addition, it has been proposed that TGR5 expression can be upregulated in skeletal muscle under exercise and could favor myogenesis [29]. However, its participation in pathologies that affect skeletal muscle has been poorly studied. In this line of evidence, recent reports from our laboratory indicate that the absence of the TGR5 expression prevents sarcopenia in mice with CCLD. This antecedent suggests that BA can mediate its effect on skeletal muscle through this receptor [30]. In addition, we also reported that DCA and CA induced atrophy in culture cells and skeletal muscle fibers, inducing an increment of the ubiquitin-proteasome system (UPS), oxidative stress, and mitochondrial dysfunction in a TGR5-dependent manner [30]. This evidence indicates that BA and TGR5 activation is detrimental to skeletal muscle tissue. However, its participation in fibrotic pathologies that affect skeletal muscle has not been studied.

Regarding fibrosis, the only antecedents that link this condition with the TGR5 receptor are described in renal tissue. In a diabetic nephropathy model, characterized by an increase in the expression of TGF-β and fibronectin, the TGR5 activation decreases the levels of fibrotic markers in glomerular mesangial cells [28, 31]. Therefore, activation of this receptor has a protective effect on renal fibrosis. However, the role of TGR5 in muscular fibrosis has not been determined.
Therefore, this work aims to evaluate the effect of CA and DCA on the fibrosis evidenced in the three cell populations derived from skeletal muscle: primary muscle fibroblasts, C2C12 myoblasts, and C2C12 myotubes.

12.2 Methods

Animals: C57BL/6J WT male mice (16 weeks old) were fed a standard diet. The animals (weighing 25–30 g) were kept in the mice housing of the Department of Biological Sciences of the Universidad Andrés Bello, at a controlled temperature (22–24 °C), with food and water ad-libitum and inverted 12-h light/dark cycles (Light: 8 P.M.–8 A.M.). Our experiments followed all international, national, and institutional suggestions and guidelines for animal care and use. Our studies and procedures with animals had the Animal Ethics Committee’s formal approval at the Universidad Andrés Bello (approval number 007/2016, March 2016).

C2C12 cell culture: C2C12 cell line was obtained from American Type Culture Cells (ATCC, CRL-1772) (Manassas, VA, USA). C2C12 is a sub-clone derived by Blau et al. [32] using the cell line established by Yaffe and Saxel from the hindlimb skeletal muscle of a wild-type C3H mouse [33]. Cells were maintained in a growth medium (DMEM supplemented with 10% fetal bovine serum (FBS)-1% antibiotic/antimycotic solution). Cells were trypsinized each time they reached 70% confluence. Myoblast maintenance was carried out in an incubator at 37 °C and 5% CO₂. Once the cells were grown to approximately 90% confluence, Myoblast maintenance was carried out in an incubator at 37 °C and 5% CO₂. Once the cells were grown to approximately 90% confluence, they were twice washed with HBSS and then supplemented with a differentiation medium (DMEM-2% horse serum (SC) and 1% antibiotic/antimycotic solution). This last medium was changed every 48 h to obtain cells fully differentiated at day 5. The maintenance of the myotubes during the differentiation was carried out in an incubator at 37 °C and 5% CO₂.

Primary culture of fibroblasts: C57BL6 mice were anesthetized with isoflurane until they were completely asleep and sacrificed by cervical dislocation. Once this was done, the muscles of the hindlimbs (tibialis anterior, soleus, extensor digitorum longus (EDL), and gastrocnemius) were removed. These muscles were placed in 35 mm plates with minimal medium (DMEM-1% antibiotic/antimycotic solution). The muscles were cleaned, removing fat and tendons. They were cut into small pieces and placed in 35 mm plates with freshly prepared growth medium (DMEM-10% FBS-1% antibiotic/antimycotic) for 10 days. During that time, they changed their medium periodically. Once this time had elapsed, the migration of cells from the muscle fragments was confirmed, the tissue was removed from the culture. The cells adhered to the plate were washed twice with PBS to remove muscle debris, and a growth medium (DMEM-10% FBS) was added and replaced every 2 days until they reached 50% confluence. Then, the cells were trypsinized and replated. Further 1 h, the supernatant was removed to enrich the cell population in cells with rapid adherence to the plate, mainly fibroblasts, to the detriment of other cell populations that could be present, mainly myoblasts [34]. After this step, the cells were cultured and amplified until obtaining enough cells for the experiments (not beyond passage 4). For experiments, fibroblasts were seeded at 70% confluence. Fibroblast maintenance was carried out in an incubator at 37 °C and 5% CO₂.

Treatments with bile acids: Cells (myoblasts, myotubes, and muscle-fibroblasts) were incubated with cholic acid (CA) (Sigma-Aldrich, St Louis, MO, USA) or deoxycholic acid (DCA) (Sigma-Aldrich, St. Louis, MO, USA) was added for the times indicated in each figure. The cultures designated as the control group (Vehicle) were incubated with DMEM. Once the incubations were finished, the plate was washed twice with 1 ml of cold PBS and frozen at −20 °C until protein extraction was carried out.

Immunofluorescence microscopy: The location of TCF4 and MyoD in the primary culture of fibroblast were analyzed by indirect immunofluorescence. Cells were fixed in 4% paraformaldehyde permeabilized with 0.05% Triton X-100 and incubated with rabbit
anti-TCF4 (1:200; Cell Signaling, Danvers, MA, USA) and rabbit anti-MyoD (1:50; Santa Cruz Biotech., Dallas, TX, USA) overnight. Alexa-Fluor 488 conjugated anti-rabbit (Thermo Fisher Scientific, Waltham, MA, USA) was used as the secondary antibody. For nuclear staining, the sections were incubated with 1 µg/ml Hoechst 33258 in phosphate-buffered saline (PBS) for 10 min. After rinsing, the cells were mounted with a fluorescent-mounting medium Fluoromount (Sigma-Aldrich, St. Louis, MO, USA) under glass coverslips. Images were captured using the Motic BA310 epifluorescence microscope (Motic, Hong Kong).

Protein cell extracts: Cells were washed 3 times with 2 ml cold PBS and then resuspended in RIPA lysis buffer (50 mM Tris-HCl pH 7.5; 150 mM NaCl; 1 mM Na2EDTA; 1 mM EGTA; 1% NP-40; 1% Sodium deoxycholate; phosphatase inhibitors: 1 mM orthovanadate; 1 mM NaF; 30 mM sodium pyrophosphate; protease inhibitors: 1 mM PMSF and 1 mM cocktail of protease inhibitors) 200 µl for myotubes and 100 µl for fibroblasts and myoblasts, and were subsequently incubated on ice for 15 min. Finally, the lysate was centrifuged at 10,000 × g for 10 min at 4 °C, the supernatant was recovered, and the pellet, corresponding to cell debris, was discarded. Protein samples were stored at −20 °C for total protein measurement and subsequent use in Western blot assays. The bicinchoninic acid method (microBCA protein assay kit) (Thermo Fisher Scientific, Waltham, MA, USA) was used to determine the total protein concentration. The reaction was performed in 96-well plates according to the manufacturer’s instructions. The OD of 575 nm was measured on the plate reader. The absorbance values obtained were corrected for the respective blanks and interpolated with a calibration curve made from bovine serum albumin (BSA) solution of known concentration.

Western blot analysis: For Western blot analysis, 8 or 30 µg of protein were used for fibronectin and TGR5, respectively. Protein samples were mixed with loading buffer (60 mM Tris-HCl pH 6.8; 25% glycerol; 2% SDS; 0.7 M β-mercaptoethanol; 0.1% bromophenol blue) in a 1:5 volume to load. Electrophoresis was then performed under denaturing conditions on 8% or 12% polyacrylamide gels (SDS-PAGE) with running buffer (25 mM Tris-HCl pH 8.3; 192 mM glycine; 0.1% w/v SDS) at 100 V for 3 h. Subsequently, the proteins were transferred to a PVDF membrane (Thermo Fisher Scientific, Waltham, MA, USA), previously activated with methanol for 5 min, using a transfer buffer (25 mM Tris-HCl pH 8.3; 192 mM glycine; 20% v/v methanol) and subjected to 400 mA for 150 min at room temperature. After transfer, the membrane was incubated in methanol for 5 min and allowed to dry at room temperature. Next, the membrane was blocked with a solution of TBS (150 mM NaCl; 50 mM Tris-HCl pH 7.5) with 0.1% Tween 20 and 5% BSA (TBS-Tween 20-BSA) for 1 h. At the end of this time, the membrane was incubated with primary antibodies (anti-fibronectin, -β-actin, -TGR5, -TCF4, and -MyoD) diluted in a blocking solution at 4 °C overnight. The next day, the membrane was washed 3 times with TBS-0.1% Tween 20 for 5 min and then incubated with the secondary antibody diluted in TBS-Tween 20-BSA for 1 h at room temperature. Subsequently, the membrane was washed 3 times with TBS-0.1% Tween 20, and 3 times with PBS. The binding of the primary/secondary antibody complex to the proteins of interest was revealed by chemiluminescence (Thermo Fisher Scientific, Waltham, MA, USA), detected through an image documentation system FOTO/Analyst Luminary/FX, Fotodyne (ThermoFisher Scientific, St. Waltham, MA, USA). The quantification of the bands obtained was carried out using the Image J program (NIH, Bethesda, MD, USA). The protein levels were normalized related to the levels of β-actin, used as a loading control.

Statistical analysis: The statistical analysis of the data was performed with Prism 9.0 analysis software (GraphPad Software, San Diego, CA, USA). The normality of the data was determined with the Shapiro-Wilk test. Normal data were analyzed with a t-test to compare the two groups. One-way ANOVA with Tukey multiple
comparison tests was used to analyze three or more groups. Differences were considered significant when the p-value was < 0.05.

12.3 Results

Skeletal muscle-derived fibroblasts express bile acid receptor TGR5

Fibroblasts are a cell population that encompasses different cells that may differ from each other depending on the tissue in which they are found [35]. This antecedent suggests that these cells must be extracted from this tissue to evaluate the effects on muscle fibroblasts. The procedure and characterization of primary cultures of fibroblasts obtained from the muscles of the hindlimbs of mice have been previously described [36, 37]. The skeletal muscle fibroblast marker TCF4 [38] was used to evaluate the presence of fibroblasts. As observed in the graph of Fig. S1, skeletal muscle-derived fibroblasts reach a 95% purity relative to myoblasts detected by the MyoD marker.

Since TGR5 is the only receptor for bile acids described in muscle tissue [27], the presence of this receptor was explicitly evaluated in the population of muscle fibroblasts. As can be seen in Fig. S2, the TGR5 receptor is expressed in muscle-derived fibroblasts. This result indicates that fibroblasts are sensitive to BAs, and TGR5 could mediate its effects.

Deoxycholic and cholic acids increase fibronectin levels in the primary culture of muscle fibroblasts

Once the fibroblasts were obtained and their identity and purity verified, they were treated with DCA at different concentrations to evaluate their effect on fibronectin protein levels. The fibroblasts were treated for 48 h with DCA in several concentrations previously tested for not affecting cell viability (from 30 to 180 µM) [30]. In addition, TGF-β was used as a positive control since it has been reported to induce an increase in fibronectin in muscle cells, including fibroblasts [34]. As shown in Fig. 12.1a, the fibroblasts are sensitive to DCA and TGF-β, increasing fibronectin levels. Figure 12.1b shows the quantification evidenced by an increase in the fibronectin levels under all the concentrations of DCA used, reaching double the values of the fibrotic marker in all of them, independent of the concentration. Therefore, it can be concluded that DCA induces an increase in the fibrotic-like phenotype in primary mouse skeletal muscle fibroblasts.

In muscle-derived fibroblasts, the effect of CA on fibronectin protein levels was also evaluated by incubating them at increasing concentrations ranging from 50 to 500 µM (Fig. 12.2a). These concentrations were previously shown not to alter cell viability assessed in muscle cells [30]. Figure 12.2b corresponds to the quantification of Fig. 12.1a, showing an increase in the fibronectin protein levels at the highest CA concentrations (250 and 500 µM), reaching approximately twice the baseline values. Therefore, it can be concluded that CA may be an inducer of fibrosis in muscle fibroblasts.

Since DCA and CA are ligands for the TGR5 receptor and muscle-derived fibroblasts express this receptor, we evaluated the fibrotic effect of TGR5 activation with a specific agonist, INT-777. Figure S3a shows the fibronectin levels in response to INT-777 at 10 and 25 mM. The quantification of the data indicates that TGR5 activation mediated by INT-777 increments the fibronectin protein levels (Fig. S3b).

In short, when incubated with DCA, CA, or a specific TGR5 agonist, the muscle-derived fibroblasts respond by increasing fibronectin levels. This effect occurs at all DCA concentrations and only at the highest CA concentrations, suggesting that the receptor that mediates this effect is more sensitive to DCA than to CA, coinciding with the TGR5 receptor affinities of activation. These results indicate that the TGR5 receptor could mediate the BA-induced fibrotic effect on muscle-derived fibroblasts.

Deoxycholic acid, but not cholic acid, reduces basal protein levels of fibronectin in C2C12 myoblasts

We evaluated the effect of the DCA and CA on fibrosis in myoblasts, another mononuclear cell
population that participates in muscle fibrosis [7]. C2C12 myoblasts were incubated for 48 h with DCA or CA at the same doses as in precedent experiments. Figure 12.3a shows the Western blot for fibronectin of myoblasts incubated with several concentrations of DCA. The quantification shown in Fig. 12.3b indicates that myoblasts reduce the fibronectin levels compared to the vehicle in all DCA doses.

On the other hand, when myoblasts are incubated with CA, and the fibronectin levels are evaluated by Western blot, as seen in Fig. 12.4a, it is possible to observe no changes compared to vehicle conditions (Fig. 12.4b).

We observed that C2C12 myoblasts are sensitive to DCA but not CA, decreasing the basal fibronectin levels, contrary to the evidence observed on muscle-derived fibroblasts.

Deoxycholic acid reduces the basal protein levels of fibronectin in C2C12 myotubes, while CA does not modify them

Myotubes are in vitro models of muscle fibers described to participate in muscle fibrosis [4]. Thus, myotubes were incubated for 48 h with DCA. Figure 12.5a shows a representative Western blot in myotubes showing TGF-β as the positive control. The quantification shown in Fig. 12.5b indicates that DCA produces a 50% reduction in the basal protein levels of fibronectin, like the effect observed in myoblasts. However, unlike myoblasts, this response can only be seen at the highest DCA concentrations (120 and 180 µM), suggesting that myotubes are less sensitive than myoblasts. TGF-β did not
produce the increase in fibronectin that could be observed in the other cell types, which is consistent with previous reports [39] that explain the lesser sensitivity of myotubes to TGF-β signaling than myoblasts.

On the other hand, but in the same line that results shown in myoblasts, CA does not generate changes in the protein levels of the fibronectin, as can be seen in the Western Blot (Fig. 12.6a) and its respective quantification (Fig. 12.6b).

Together, these data conclude that only DCA produces a response in the myotubes and that this would decrease the fibronectin protein levels.

12.4 Discussion

In the present study, we have observed that muscle-derived fibroblasts increment the fibronectin protein levels in response to DCA and CA. On the other hand, myoblasts and myotubes present decreased fibronectin levels under DCA incubation, whereas both cell populations are irresponsive to CA.

Increased serum BA are characteristic of CCLD, a disease highly relevant in the Chilean population. According to the department of statistics and health information (DEIS), the mortality rate related to liver diseases and intrahepatic bile ducts corresponds to 5.56% of all the causes of death within the period 2000–2011 (DEIS-MINSAL).

The role of skeletal muscle during CCDL has begun to gain relevance since the correlation between muscle weakness and lower post-liver transplant survival was described [13]. Also, it has been demonstrated in a murine model that CCDL can induce sarcopenia characterized by decreasing muscle strength, locomotion functionality, reduction in fiber diameter, decreased MHC
protein levels, and increased UPS markers [12]. The effect of CCDL on skeletal muscle depends on an increase in ROS levels and the presence of the TGR5 receptor [19, 40]. Besides, an increase in a marker of fibrosis, fibronectin, has been found in skeletal muscle (data not shown), which correlated with a decrease in contractile function [12]. DCA and CA can replicate all sarcopenic effects in cell culture and skeletal muscle fibers [30]. In this line, this is the first report of possible fibrotic effects of BA in skeletal muscle.

The antecedents of the BA role in skeletal muscle have focused on sarcopenia. This condition is defined as decreased muscle mass, strength, and physical function [41]. Therefore, in recent years exercise has been proposed as a therapy to mitigate the symptoms of this disease [42]. However, fibrosis in the skeletal muscle could prevent optimal muscle mass recovery because the functional muscle tissue is replaced by fibrotic tissue [43]. In addition, fibrosis can generate a microenvironment that prevents muscle repair and could reduce the efficiency of exercise-related therapy.

In the model of cholestatic disease implemented for our group [18], an increase in a marker of fibrosis, fibronectin, has been found in skeletal muscle (data not shown), which correlated with a decrease in the contractile function [12]. These antecedents adjust to the definition of fibrosis. In addition, in previous work from our group, it was described that BA could act as soluble factors for inducing sarcopenia in a murine model and induce a sarcopenic-like phenotype in vitro, which depended on the TGR5 expression [30].

In the present study, three cell populations participating in skeletal muscle fibrosis, such as fibroblasts, myoblasts, and myotubes, were evaluated regarding their fibrotic response to DCA and CA by assessing the fibronectin protein levels, a typical fibrotic marker.
Our results show that skeletal muscle-derived fibroblasts expressed the TGR5 receptor. The presence of TGR5 in a related cell type was described in the cell line 3T3-L1 [44], which is used as a precursor of adipocytes. This research explains that the activation of TGR5 in adipocyte precursor cells favors differentiation into brown adipocytes. Although this work did not explicitly evaluate the presence of the receptor, 3T3 cells respond to the incubation with the specific TGR5 agonist INT-777, which strongly suggests the presence of the receptor. Therefore, our work is the first study that describes the presence of TGR5 in muscle-derived fibroblasts.

Muscle-derived fibroblasts respond by increasing fibronectin protein levels when they are incubated with DCA and CA, as well as with INT 777, suggesting the TGR5 activation and the participation of this receptor in the fibrotic response to DCA and CA. The behavior of muscle-derived fibroblasts in response to BA supports the idea that TGR5 could be participating in the influence of CA and DCA on fibroblasts. In this line, the response to DCA is observed even at the lowest concentrations evaluated (30 and 60 µM), while for CA, the response was seen at the highest concentrations (250 and 500 µM). These results are consistent with the TGR5 affinity for these BA since TGR5 has a higher affinity for DCA than CA [45]. In addition, CA is an agonist for TGR5 and not for FXR, reinforcing the idea that TGR5 mediates the CA effects [23]. However, to fully confirm the participation of TGR5 in the increase of fibronectin levels in fibroblasts, complementary studies in fibroblasts without the receptor, decreasing its expression, or using a TGR5 antagonist must be performed.

Fig. 12.4 Cholic acid does not change basal protein levels of fibronectin in C2C12 myoblasts. Myoblasts were incubated with 50, 100, 250, and 500 µM of cholic acid (CA) for 48 h. **a** Protein levels of fibronectin were detected by western blot analysis using b-actin levels as a loading control. TGF-β was used as a positive control (+). Molecular weight markers are depicted in kDa. **b** The quantitative analysis of value is expressed as a fold of change. Values correspond to the mean ± SEM (n = 3, *p < 0.05 vs. control condition (without CA); one-way ANOVA and Tukey’s multiple comparison test).
molecular mechanisms involved in increased fibronectin levels. In this sense, an imbalance in the proteostasis of fibronectin can be explained by increased protein synthesis and/or decreased degradation. If we consider that the canonical signaling pathway of TGR5 (G-protein and cAMP increase) could mediate the imbalance in proteostasis of fibronectin, it could be speculated that an increase in fibronectin levels is produced by increased synthesis, similar to the finding described in mesangial cells that link the PKA-CRE pathway [46]. Another mechanism that could explain the increase in fibronectin synthesis is the DCA- and CA-dependent activation of AP-1 via the ERK1/2 pathway. It has been described that BA, via TGR5, can activate ERK 1/2 in different cell types, such as macrophages, colonocytes, and cholangiocytes [47–49]. Besides, the ERK 1/2 phosphorylation can induce the expression of fibronectin in decidual fibroblasts by activating AP-1 [50]. In addition, it has been described that ERK1/2 participates in skeletal muscle fibrosis [4]. Therefore, experiments should be conducted to evaluate the possible role of ERK1/2 in the increase of fibronectin levels induced by BA in muscle fibroblasts.

Two mechanisms have been described for fibronectin degradation: one dependent on extracellular proteases such as MMPs [51] and another dependent on internalization and subsequent binding to lysosomes [52]. In the former, it has been shown that muscle cells can express different MMPs, such as MMP-1, MMP-2, MMP-3, MMP-9, and MMP-14, capable of degrading fibronectin [51, 53]. In colorectal cells, DCA increases the expression of MMP-9 [54, 55]. This antecedent is relevant for myoblasts, a cell type that expresses MMP-9 [56], since it could explain the decline in the fibronectin levels when myoblasts are exposed to DCA.

MMP-14 has been shown to participate in the mechanism of fibronectin degradation dependent...
on endocytosis. Thus, cells lacking MMP-14 reduce fibronectin endocytosis [57]. MMP-14 has been proposed to have an anti-fibrotic role in skeletal muscle since, in addition to degrading fibronectin, it can activate MMP-2, another enzyme that participates in fibronectin degradation [58]. Further studies must be performed to elucidate the possible role of MMP-14 in the fibrotic response of muscle-derived fibroblasts, myoblasts, and myotubes.

In myoblasts and myotubes, no difference was found in fibronectin levels when treated with CA. In the case of DCA treatments, an opposite response to fibroblasts was seen since DCA decreases fibronectin protein levels. This result agrees with the antecedent showing that TGR5 activation reduces the protein levels of fibrotic markers, such as fibronectin, in kidney cells [28].

It has recently been described that BAs can stimulate other receptors besides TGR5 and FXR. Among these are S1P and muscarinic receptors [59]. Even though skeletal muscle express 4 of the 5 isoforms (S1P1, S1P2, S1P3, and S1P4) [60], BA only activates S1P2 [61]. Although initially, it was shown that conjugated BA only achieved this activation, then it was described that DCA could activate the S1P2 receptor in macrophages [62]. S1P2 receptor declines its expression during skeletal muscle cells differentiation [63] process in which there is an increase in MMP-2 and -14 and fibronectin degradation [58]. Thus, it is possible to speculate a decrease in fibronectin levels if DCA activates the S1P2 receptor. Interestingly, this receptor is decreased in myotubes doing more sensitive the myoblasts to its effects. This antecedent

Fig. 12.6 Cholic acid does not change basal protein levels of fibronectin in C2C12 myotubes. Myotubes were incubated with 50, 100, 250, and 550 µM of CA for 48 h. **a** Protein levels of fibronectin were detected by western blot analysis using β-actin levels as a loading control. TGF-β was used as a positive control (+). Molecular weight markers are depicted in kDa. **b** The quantitative analysis of value is expressed as a fold of change. Values correspond to the mean ± SEM (n = 3, *p < 0.05 vs. control condition (without CA); one-way ANOVA and Tukey’s multiple comparison test).
correlates with the reduced response to DCA shown by the myotubes. This antecedent proposes that the S1P2 receptor could mediate the effect of DCA on myoblasts and myotubes.

Muscarinic receptors are G-coupled receptors for acetylcholine, with five subtypes described. M2 and M4 receptors have been seen to have Gi activity, that is, their activation inhibits the enzyme adenylate cyclase. While M1, M3, and M5 have a Gq activity. There are no muscarinic receptors in adult skeletal muscle, only nicotinic receptors. However, the presence of these receptors has been seen in cell cultures derived from skeletal muscle and when differentiating. Experiments suggest only the presence of M1 and M3 in these cells [64]. The interaction between BA and these receptors has only been described for conjugated BA, with DCA modulating M2 and M3 receptors [65, 66]. It has been described that the M3 receptor absence reduces collagen I and fibronectin in lung tissue [67]. The latter is consistent with results found in myotubes and myoblasts in the present study since DCA could act as an antagonist of the M3 receptor and reduce the expression of fibronectin.

Once the effects of BA on muscle fibroblasts, myoblasts, and myotubes have been defined, it would be interesting to evaluate if one cell type influences the other. It has been described that these cells can communicate between themselves and modify their functions and protein expression. For example, Fry in 2016 showed that myoblast-isolated exosomes from exercised mice reduce the expression of ECM components via miRNA 206 in fibroblast cultures [68]. Similarly, fibroblasts derived from people with Duchenne muscular dystrophy, a disease characterized by fibrosis and skeletal muscle damage, release exosomes that, when added to cell cultures, favor the synthesis of ECM proteins [68]. On the other hand, it has been suggested that fibroblasts help with efficient myogenesis, as co-cultures of fibroblasts and myoblasts have shown [69]. Therefore, the communication between these three cell types could alter the effects of the BA described in this work since they were evaluated individually here. Eventually, the interaction between these cell populations could converge in the presence of fibrosis in mice with CCLD, despite myotubes and myoblasts showing a decrease in the fibrotic marker when treated with DCA.

12.5 Conclusion
In summary, these results suggest that the bile acids DCA and CA can induce skeletal muscle fibrosis through a differential response to muscle fibroblasts through the TGR5 receptor. The effect of DCA in myoblasts and myotubes was to decrease the fibronectin levels, whereas CA did not change the levels of this fibrotic protein. Further studies must be conducted to quantify each cell type’s actual and total contribution to the skeletal muscle and how it can induce muscle fibrosis in the murine model of CCLD.

Statements and Declarations
Funding The manuscript was supported by research grants from the National Fund for Science and Technological Development (FONDECYT 1200944 [CCV]); Agencia Nacional de Investigación y Desarrollo (ANID) - Millennium Science Initiative Program - ICN09_016/ICN 2021_045: Millennium Institute on Immunology and Immunotherapy (ICN09_016/ICN 2021_045; former P09/016-F [CCV]); Basal Grant CEDENNA (AFB180001 [CCV]).

Disclosure of Interest The authors declare that they have no conflict of interest.

Ethical Approval All applicable international, national, and/or institutional guidelines for the care and use of animals were followed. Approval was granted by the ethics committee of the Universidad Andrés Bello in Santiago, Chile (Approval number 017/2020).

Author Contributions Conceptualization, L.M., and C.C-V.; Methodology, L.M., M.V-B., F.T., J.O-A., and C.C-V.; Validation, M.V-B., F.T. and J.O-A.; Investigation, L.M., M.V-B., F.T., J.O-A., and C.C-V.; Visualization, L.M., and C.C-V.; Supervision, C.C-V.; Project administration, C.C-V.; Formal Analysis, L.M., M.V-B., F.T., J.O-A., and C.C-V.; Writing—Original Draft Preparation, M.V-B., F.T., J.O-A., and C.C-V.; Writing—Review & Editing, L.M., M.V-B., F.T., J.O-A., and C.C-V.
References

1. Wynn TA (2008) Cellular and molecular mechanisms of fibrosis. J Pathol 214(2):199–210. https://doi.org/10.1002/path.2277

2. Brandon E, Gutierrez J (2013) Role of proteoglycans in the regulation of the skeletal muscle fibrotic response. FEBS J 280(17):4109–4117. https://doi.org/10.1111/febs.12278

3. Mann CJ, Perdiguero E, Kharraz Y, Aguilar S, Pessina P, Serrano AL et al (2011) Aberrant repair and fibrosis development in skeletal muscle. Skelet Muscle 1(1):21. https://doi.org/10.1186/2044-5040-1-21

4. Vial C, Zuniga LM, Cabello-Verrugio C, Canon P, Fadic R, Brandon E (2008) Angiotensin II receptor type 1 blockade decreases CTGF/CCN2-mediated damage and fibrosis in normal and dystrophic skeletal muscles. J Cell Mol Med 16(4):752–764. https://doi.org/10.1002/jcp.21324

5. Beach RL, Rao JS, Festoff BW (1985) Extracellular-matrix synthesis by skeletal muscle in culture. Major secreted collagenous proteins of clonal myoblasts. Biochem J 225(3):619–627. https://doi.org/10.1042/bj2250619

6. Cabello-Verrugio C, Morales MG, Cabrera D, Vio CP, Brandon E (2012) Fibroitic response induced by angiotensin-II requires NAD(P)H oxidase-induced reactive oxygen species (ROS) in skeletal muscle cells. Biochem Biophys Res Commun 410(3):665–670. https://doi.org/10.1016/j.bbrc.2011.06.051

7. Smith LR, Barton ER (2018) Regulation of fibrosis in muscular dystrophy. Matrix Biol 68:69–602–615. https://doi.org/10.1016/j.matbio.2018.01.014

8. Chapman MA, Meza R, Lieber RL (2016) Skeletal muscle fibroblasts in health and disease. Differentiation 92(3):108–115. https://doi.org/10.1016/j.diff.2016.05.007

9. Mahdy MAA (2019) Skeletal muscle fibrosis: an overview. Cell Tissue Res 375(3):575–588. https://doi.org/10.1007/s00441-019-2855-2

10. Abramowitz MK, Paredes W, Zhang K, Brightwell CR, Newsom JN, Kwon HJ et al (2018) Skeletal muscle fibrosis is associated with decreased muscle inflammation and weakness in patients with chronic kidney disease. Am J Physiol Renal Physiol 315(6):F1658–F1669. https://doi.org/10.1152/ajprenal.00314.2018

11. Campos F, Abrigo J, Aguirre F, Garcés B, Arrese M, Karpen S et al (2018) Sarcopenia in a mice model of chronic liver disease: role of the ubiquitin-proteasome system and oxidative stress. Pflugers Arch 470(10):1503–1519. https://doi.org/10.1007/s00424-018-2167-3

12. Montano-Loza AJ, Meza-Junco J, Prado CM, Liefers JR, Baracos VE, Bain VG et al (2012) Muscle wasting is associated with mortality in patients with cirrhosis. Clin Gastroenterol Hepatol 10(2):166–173, 73 e1. S1542-3565(11)00916-5 [pii]. https://doi.org/10.1016/j.cgh.2011.08.028

13. Pellicoro A, Ramachandran P, Iredale JP, Fallowfield JA (2014) Liver fibrosis and repair: immune regulation of wound healing in a solid organ. Nat Rev Immunol 14(3):181–194. https://doi.org/10.1038/nri3623

14. Kim HY, Jang JW (2015) Sarcopenia in the progression of cirrhosis: going beyond the MELD score. World J Gastroenterol 21(25):7637–7647. https://doi.org/10.3748/wjg.v21.i25.7637

15. Hanai T, Shiraiki M, Nishimura K, Ohnishi S, Imai K, Suetsugu A et al (2015) Sarcopenia impairs prognosis of patients with liver cirrhosis. Nutrition 31(1):193–199. https://doi.org/10.1016/j.nut.2014.07.005

16. Hanai T, Shiraiki M, Ohnishi S, Miyazaki T, Iida T, Kochi T et al (2016) Rapid skeletal muscle wasting predicts worse survival in patients with liver cirrhosis. Hepatol Res 46(8):743–751. https://doi.org/10.1111/hepr.12616

17. Fickert P, Stoger U, Fuchsbiichler A, Moustafa T, Marschall HU, Weiglein AH et al (2007) A new xenobiotic-induced mouse model of sclerosing cholangitis and biliary fibrosis. Am J Pathol 171(2):525–536. https://doi.org/10.2353/ajpath.2007.061133

18. Abrigo J, Campos F, Gonzalez F, Aguirre F, Gonzalez A, Huerta-Salgado C et al (2020) Sarcopenia Induced by chronic liver disease in mice requires the expression of the bile acids membrane receptor TGR5. Int J Mol Sci 21(21). https://doi.org/10.3390/ijms21217922

19. Chiang JY (2013) Bile acid metabolism and signaling. Compr Physiol 3(3):1191–1212. https://doi.org/10.1002/cphy.c120023

20. Di Ciaula A, Garruti G, Lunardi Baccetto R, Molina E, Bonfrate L, Wang DQH et al (2017) Bile acid physiology. Ann Hepatol 16:S4–S14. https://doi.org/10.5604/01.3001.0010.5493

21. Einarssson C, Ellis E, Abrahamsson A, Ericzon BG, Bjorkhem I, Axelsson M (2000) Bile acid formation in primary human hepatocytes. World J Gastroenterol 6(4):522–525. https://doi.org/10.3748/wjg.v6.i4.522

22. Kanda T, Foucand L, Nakamura Y, Niot I, Besnard P, Fujita M et al (1998) Regulation of expression of bile acids membrane receptor. Biochem J 330(Pt 1):261. https://doi.org/10.1042/bj3300261

23. Karpen S et al (2018) Sarcopenia in a mice model of chronic liver disease: role of the ubiquitin-proteasome system and oxidative stress. Pflugers Arch 470(10):1503–1519. https://doi.org/10.1007/s00424-018-2167-3

24. Orozco-Aguilar J, Simon F, Cabello-Verrugio C (2021) Redox-dependent effects in the physiopathological role of bile acids. Oxid Med Cell Longev 2021:4847941. https://doi.org/10.1155/2021/4847941

25. Makishima M, Okamoto AY, Repa JJ, Tu H, Learned RM, Luk A et al (1999) Identification of a nuclear receptor for bile acids. Science 284(5418):
1362–1365. https://doi.org/10.1126/science.284.5418.1362
26. Schaar FG, Trauner M, Jansen PL (2014) Bile acid receptors as targets for drug development. Nat Rev Gastroenterol Hepatol 11(1):55–67. https://doi.org/10.1038/nrgastro.2013.151
27. Watanabe M, Houten SM, Mataki C, Christoffolo-lete MA, Kim BW, Sato H et al (2006) Bile acids induce energy expenditure by promoting intracellular thyroid hormone activation. Nature 439(7075):484–489. https://doi.org/10.1038/nature04330
28. Yang Z, Li J, Xiong F, Huang J, Chen C, Liu P et al (2016) Berberine attenuates high glucose-induced fibrosis by activating the G protein-coupled bile acid receptor TGR5 and repressing the S1P2/MAPK signaling pathway in glomerular mesangial cells. Exp Cell Res 346(2):241–247. https://doi.org/10.1016/j.yexcr.2016.06.005
29. Sasaki T, Kuboyama A, Mita M, Murata S, Shimizu M, Inoue J et al (2018) The exercise-inducible bile acid receptor Tgr5 improves skeletal muscle function in mice. J Biol Chem 293(26):10322–10332. https://doi.org/10.1074/jbc.RA118.002733
30. Abrigo J, Gonzalez F, Aguirre F, Tacchi F, Gonzalez A, Meza MP et al (2021) Cholic acid and deoxycholic acid induce skeletal muscle atrophy through a mechanism dependent on TGR5 receptor. J Cell Physiol 236(1):260–272. https://doi.org/10.1002/jcp.29839
31. Xiong F, Li X, Yang Z, Wang Y, Huang J et al (2016) TGR5 suppresses high glucose-induced upregulation of fibronectin and transforming growth factor-β1 in rat glomerular mesangial cells by inhibiting RhoA/ROCK signaling. Endocrine 54(3):657–670. https://doi.org/10.1007/s12020-016-1032-4
32. Blau HM, Pavlath GK, Hardeman EC, Chiu CP, Silberstein L, Webster SG et al (1985) Plasticity of the differentiated state. Science 230(4727):758–766. https://doi.org/10.1126/science.2414846
33. Yaffe D, Saxel O (1977) Serial passaging and differentiation of myogenic cells isolated from dystrophic mouse muscle. Nature 270(5639):725–727
34. Riquelme-Guzmán C, Contreras O, Brandan E (2018) Expression of CTGF/CCN2 in response to LPA is stimulated by fibrotic extracellular matrix via the integrin/FAK axis. Am J Physiol Cell Physiol 314(4):C415–C427. https://doi.org/10.1152/ajpcell.00013.2017
35. Meran S, Steadman R (2011) Fibroblasts and myofibroblasts in renal fibrosis. Int J Exp Pathol 92(3):158–167. https://doi.org/10.1111/j.1365-2613.2011.00764.x
36. Acuna MJ, Pessina P, Olguín H, Cabrera D, Vio FC, Bader M et al (2014) Restoration of muscle strength in dystrophic muscle by angiotensin-1-7 through inhibition of TGF-beta signalling. Hum Mol Genet 23(5):1237–1249. https://doi.org/10.1093/hmg/ddt514
37. Melone MA, Peluso G, Galderisi U, Petillo O, Cotrufo R (2000) Increased expression of IGF-binding protein-5 in duchenne muscular dystrophy (DMD) fibroblasts correlates with the fibroblast-induced down-regulation of DMD myoblast growth: an in vitro analysis. J Cell Physiol 185(1):143–153. https://doi.org/10.1002/1097-4652(200010)185:1%3c143::Aid-jcp1%3e3.0.Co;2-u
38. Mathew SJ, Hansen JM, Merrell AJ, Murphy MM, Lawson JA, Hutcheson DA et al (2011) Connective tissue fibroblasts and Tcfr4 regulate myogenesis. Development 138(2):371–384. https://doi.org/10.1242/dev.057463
39. Drogueut R, Cabello-Verrugio C, Santander C, Brandan E (2010) TGF-beta receptors, in a Smad-independent manner, are required for terminal skeletal muscle differentiation. Exp Cell Res 316(15):2487–2503. https://doi.org/10.1016/j.yexcr.2010.04.031
40. Abrigo J, Marin T, Aguirre F, Tacchi F, Vilos C, Simon F et al (2019) N-Acetyl cysteine attenuates the sarcopenia and muscle apoptosis induced by chronic liver disease. Curr Mol Med 20(1):60–71. https://doi.org/10.2174/15665240196661907124636
41. Frontera WR, Ochala J (2015) Skeletal muscle: a brief review of structure and function. Calcif Tissue Int 96(3):183–195. https://doi.org/10.1007/s00223-014-9915-y
42. Williams FR, Berzigotti A, Lord JM, Lai JC, Armstrong MJ (2019) Review article: impact of exercise on physical frailty in patients with chronic liver disease. Aliment Pharmacol Ther 50(9):988–1000. https://doi.org/10.1111/apt.15491
43. Kim Y, Men SS, Liang C, Receno CN, Brutsaert TD, Korol DL et al (2017) Effects of long-term exposures to low iron and branched-chain amino acid containing diets on aging skeletal muscle of Fisher 344 Brown Norway rats. Appl Physiol Nutr Metab. https://doi.org/10.1139/apnm-2017-0272
44. Velazquez-Villegas LA, Perino A, Lemos V, Zietak M, Nomura M, Pols TWH et al (2018) TGR5 signalling promotes mitochondrial fission and beige remodelling of white adipose tissue. Nat Commun 9(1):245. https://doi.org/10.1038/s41467-017-02068-0
45. Kawamata Y, Fujii R, Hosoya M, Harada M, Yoshida H, Miwa M et al (2003) A G protein-coupled receptor responsive to bile acids. J Biol Chem 278(11):9435–9440. https://doi.org/10.1074/jbc.M209706200
46. Wang L, Zhu Y, Sharma K (1998) Transforming growth factor-beta1 stimulates protein kinase A in mesangial cells. J Biol Chem 273(14):8522–8527. https://doi.org/10.1074/jbc.273.14.8522
47. Gong Z, Zhou J, Zhao S, Tian C, Wang P, Xu C et al (2016) Chenodeoxycholic acid activates NLRP3 inflammasome and contributes to cholestatic liver fibrosis. Oncotarget 7(51):83951–83963. https://doi.org/10.18632/oncotarget.13796
48. Jensen DD, Godfrey CB, Niklas C, Canals M, Kocan M, Poole DP et al (2013) The bile acid receptor TGR5 does not interact with β-arrestins or traffic to endosomes but transmits sustained signals
from plasma membrane rafts. J Biol Chem 288(32): 22942–22960. https://doi.org/10.1074/jbc.M113.455774

49. Reich M, Deutschmann K, Sommerfeld A, Klindt C, Kluge S, Kubitz R et al (2016) TGR5 is essential for bile acid-dependent cholangiocyte proliferation in vivo and in vitro. Gut 65(3):487–501. https://doi.org/10.1136/gutjnl-2015-309458

50. Tseng L, Tang M, Wang Z, Mazella J (2003) Progesterone receptor (hPR) upregulates the fibronectin promoter activity in human decidual fibroblasts. DNA Cell Biol 22(10):633–640. https://doi.org/10.1089/104454903770238102

51. Gillies AR, Lieber RL (2011) Structure and function of the skeletal muscle extracellular matrix. Muscle Nerve 44(3):318–331. https://doi.org/10.1002/mus.22094

52. Sottile J, Chandler J (2005) Fibronectin matrix turnover occurs through a caveolin-1-dependent process. Mol Biol Cell 16(2):757–768. https://doi.org/10.1091/mbc.e4-08-0672

53. Davis ME, Gumucio JP, Sugg KB, Bedi A, Menias CL (2013) MMP inhibition as a potential method to augment the healing of skeletal muscle repair. J Muscle Res Cell Motil 36(3):215–227. https://doi.org/10.1007/s10974-015-9414-4

54. Shi F, Sottile J (2011) MT1-MMP regulates the turnover and endocytosis of extracellular matrix fibronectin. J Cell Sci 124(Pt 23):4039–4050. https://doi.org/10.1242/jcs.087858

55. Snyman C, Niesler CU (2015) MMP-14 in skeletal muscle repair. J Muscle Res Cell Motil 36(3):215–225. https://doi.org/10.1007/s10974-015-9414-4

56. Hanafi NI, Mohamed AS, Sheikh Abdul Kadir SH, Othman MHD (2018) Overview of bile acids signaling and perspective on the signal of ursodeoxycholic acid, the most hydrophilic bile acid, in the heart. Biomolecules 8(4). https://doi.org/10.3390/biom8040159

57. Donati C, Cencetti F, Bruni P (2013) Sphingosine 1-phosphate axis: a new leader actor in skeletal muscle biology. Front Physiol 4:338. https://doi.org/10.3389/fphys.2013.00338

58. Studer E, Zhou X, Zhao R, Wang Y, Takabe K, Nagashashi M et al (2012) Conjugated bile acids activate the sphingosine-1-phosphate receptor 2 in primary rodent hepatocytes. Hepatology 55(1):267–276. https://doi.org/10.1002/hep.24681

59. Zhao S, Gong Z, Du X, Tian C, Wang L, Zhou J et al (2018) Deoxycholic acid-mediated sphingosine-1-phosphate receptor 2 signaling exacerbates DSS-induced colitis through promoting cathepsin B release. J Immunol Res 2018:2481418. https://doi.org/10.1155/2018/2481418

60. Donati C, Meacci E, Nuti F, Becciolini L, Farnararo M, Bruni P (2005) Sphingosine 1-phosphate regulates myogenic differentiation: a major role for S1P2 receptor. FASEB J 19(3):449–451. https://doi.org/10.1096/fj.04-1780fje

61. Furlan I, Godinho RO (2005) Developing skeletal muscle cells express functional muscarinic acetylcholine receptors coupled to different intracellular signaling systems. Br J Pharmacol 146(3):389–396. https://doi.org/10.1038/sj.bjp.0706329

62. Ibrahim E, Diakonov I, Aranthavarajah D, Swift T, Goodwin M, McIlvride S et al (2018) Bile acids and their respective conjugates elicit different responses in neonatal cardiomyocytes: role of Gi protein, muscarinic receptors and TGR5. Sci Rep 8(1):7110. https://doi.org/10.1038/s41598-018-25569-4

63. Raufman JP, Chen Y, Zimmia P, Cheng K (2002) Deoxycholic acid conjugates are muscarinic cholinergic receptor antagonists. Pharmacology 65(4):215–221. https://doi.org/10.1159/000064347

64. Kistemaker LE, Bos ST, Muckle WM, Hylkema MN, Hiemstra PS, Wess J et al (2014) Muscarinic M3 receptors contribute to allergen-induced airway remodeling in mice. Am J Respir Cell Mol Biol 50(4):690–698. https://doi.org/10.1165/rcmb.2013-0220OC

65. Zanotti S, Gibertini S, Blasevich F, Bragato C, Ruggieri A, Saredi S et al (2018) Exosomes and exosomal miRNAs from muscle-derived fibroblasts promote skeletal muscle fibrosis. Matrix Biol 74:77–100. https://doi.org/10.1016/j.matbio.2018.07.003

66. Mackey AL, Magnan M, Chazaud B, Kjaer M (2017) Human skeletal muscle fibroblasts stimulate in vitro myogenesis and in vivo muscle regeneration. J Physiol 595(15):5115–5127. https://doi.org/10.1113/jp273997
BMAL1 Regulates Glucokinase Expression Through E-Box Elements In Vitro

Paula Llanos, Patricio Ordenes, David B. Rhoads, Juan F. Santibanez, María García-Robles, and Carola Millán

Abstract

The organization of a circadian system includes an endogenous pacemaker system, input pathways for environmental synchronizing (entraining) stimuli, and output pathways through which the clock regulates physiological and behavioral processes, for example, the glucose-sensing mechanism in the liver. The liver is the central regulator of metabolism and one of our peripherals clocks. In mammals, central to this pacemaker are the transcription factors Circadian Locomotor Output Cycles Kaput (CLOCK) and BMAL1 (Brain and Muscle ARNT-Like 1). BMAL1 dimerizes with CLOCK, and this heterodimer then binds to the E-box promoter elements (CACGTG) present in clock and clock-controlled genes (CCGs). However, we are just beginning to understand how output pathways and regulatory mechanisms of CCGs are involved in rhythmic physiological processes. Glucokinase (GCK) is a fundamental enzyme in glucose homeostasis, catalyzing the high Km phosphorylation of glucose and allowing its storage. Moreover, gck is a dependent circadian gene. This study aims to determine the contribution of clock genes to hepatic gck expression and to define the specific role of E-box sequences on the circadian regulation of hepatic gck. Results showed that gck expression follows a circadian rhythm in rat hepatocytes in vitro. Accordingly, bmal1 expression induces the glucokinase circadian rhythmic expression in hepatocytes and the analysis of human and rat gck promoters, indicating the presence of E-box regions. Moreover, the basal activity of gck promoter was increased by clock/bmal1 co-transfection but inhibited by Period1/Period2 (per1/per2).
Abbreviations

Abbreviation	Description
bHLH-PAS	Basic helix–loop–helix/per-ARNT-SIM
bHLHz	Basic region/helix–loop–helix/leucine zipper
BMAL1	Brain and muscle ARNT-like 1
CLOCK	Circadian locomotor output cycles kaput
CRY	Cryptochrome
DMEM	Dulbecco’s modified Eagle’s medium
EGTA	Ethylene glycol-bis-(2-aminoethyl ether) N,N,N’,N’-tetraacetic acid
FBS	Fetal bovine serum
GCK	Glucokinase
LGCK	GCK liver
GLUT2	Glucose transporter 2
GFP	Green fluorescent protein
hGK	Human GK (cloning)
HEPES	N-2-hydroxyethyl piperazine-N-2-ethane sulfonic acid
MMH-D3	Met murine hepatocytes
PER1	Period 1
PER2	Period 2
RT-qPCR	Quantitative reverse transcription PCR
SCN	Suprachiasmatic nucleus

Keywords

Hepatocytes · Glucokinase · BMAL1 · E-box

13.1 Introduction

In most living organisms, from bacteria to humans, physiological and behavioral processes are coordinated by circadian clocks. The circadian rhythm helps organisms adjust and anticipate the daily environmental changes, which is well represented by the daily sleep and wakefulness pattern, allowing synchronization of mammals’ physiology to the 24-h solar cycle. Such rhythmic oscillations are thought to have evolved in response to the daily light/dark rhythms [1]. Moreover, the internal clocks regulate daily eating, blood pressure, and hormone regulation patterns, which are critical for mammal functions and activities [2–4]. Much is known about the molecular and cellular mechanisms that govern the circadian clock; by contrast, much less is known about how the activity of circadian clocks causes physiological outputs to be rhythmic. Remarkably, the circadian system comprises two types of clocks set through daily feeding: the central pacemaker and the peripheral clock. The central pacemaker clock in the suprachiasmatic nucleus (SCN) is set by light and can synchronize peripheral clocks of other tissues through systemic signals. However, the signals that regulate these clocks and the molecular mechanisms in different types of cells are less known. In addition, other stimuli different from light can also regulate peripheral oscillators and dissociate rhythms of the peripheral clock from those of the SCN. Thus, for instance, in mice [5] and rats [6], the clock in the liver can be entrained by daily feeding regimes that do not alter the phase of the SCN clock. Thus, suggesting that each circadian output depends in vivo on complex coordination between the activity of the SCN and peripheral clocks. Meanwhile, the peripheral Circadian clocks, such as those found in the liver, are regulated by various signals, including body temperature, hormone metabolites, and feeding/fasting cycles influenced by food availability. Although the SCN is a synchronizer of peripheral clocks, peripheral clocks can be uncoupled from its central control. Through changes in the feeding schedule, the phase relationship between the central clock in the SCN and the clocks in the liver can be altered [5], suggesting that changes in metabolism caused by alterations in feeding rhythm may affect the circadian system. Specifically, the expression of some enzymes and transporter can be affected by clock genes and in a complementary way, the enzymes of the metabolism and proteins that regulate transcription can influence the central
core of the clock. There is evidence in animal models of the relationship between the disruption of clock genes, the loss of rhythmicity, and changes in metabolic homeostasis [5, 6].

Hepatic function, including glucose and lipids metabolism, is fine-tuning and controlled by a rhythmic regulation as circadian profiles of critical enzymes and transporters have been demonstrated in mammals’ livers [3, 7–9]. Several organs regulate metabolism, however, the liver is directly related to glucose metabolism. In this context, the circadian output pathways are a reflection of the physiological state and therefore the liver cells are capable of sensing and responding adaptively to changes in the environment to modify processes of entry and exit of nutrients. The SCN pacemaker oscillator is very sensitive to light signals, however, in the liver, the circadian clock is largely insensitive to the light regime, but its phase and amplitude are influenced by feeding activity [5, 6]. The liver oscillator is thought to help the organism adapt to a daily pattern of food availability by temporally tuning the expression of many genes regulating metabolism and physiology. Such temporal regulation of metabolism is important since the absence of a robust circadian clock predisposes the organism to various metabolic dysfunction and diseases [10]. Hepatocyte cultures have been used for analyzing circadian gene expression. Through bioinformatics analysis it was found 1130 circadian mRNA in Met Murine Hepatocytes (MMH-D3). This is an in vitro culture cells model, which is isolated from the central clock, showing an autonomous clock that could regulate many genes with circadian rhythm [11]. However, more studies are needed to understand the connection of the liver clock with the central clock and its real autonomy.

The liver is essential in buffering circulating glucose daily [7]. The liver’s circadian circuit adaptively assimilates nutrients such as glucose through glycolysis or glycogen synthesis [12, 13]. In particular, maintaining glucose homeostasis is one of the critical physiological functions of the liver. Glucose uptake into the hepatocyte, gluconeogenesis, and glycogenolysis must be sustained over daily feeding and fasting periods [1]. In this sense, hexokinase IV, also called glucokinase (GCK), is a crucial glycolysis and glycogen synthesis enzyme. It is associated with significant diseases, such as diabetes and obesity [14]. Hexokinase IV/GCK plays a fundamental role in glucose homeostasis. Glucose is transported into the hepatic cells by glucose transporter 2 (GLUT2), Glucokinase, with low affinity (Km 10–15 mM), phosphorylate glucose to produce glucose-6-phosphate and allow its storage via the glycogen synthesis pathways [15]. The product, the glucose-6-phosphate, does not inhibit GCK. The role of GCK is fundamental both in the liver and the pancreas. Knockout mice that do not have this enzyme in the beta cell of the pancreas die within three days of birth from acute hyperglycemia [16, 17]. In normoglycemia, GCK is detected in both nuclei and cytoplasm of parenchymal cells, and its subcellular localization seems to play on GCK function [18]. The regulation of this enzyme is fine and complex. Because enzyme localization is critical to its function, GCK regulatory protein (GKRP) can phosphorylate the enzyme to modulate GCK activity and mediate its nuclear translocation. [19, 20]. The circadian clock regulates the expression of certain key metabolic enzymes and transport systems, like GLUT2 and GCK. So, it is necessary to understand better the molecular mechanisms through which the circadian clock will regulate hepatic GCK expression.

Many studies support that insulin is a principal regulator of lgck gene expression. The transcriptional regulation of gck in the liver is widely studied, and several regulatory sites along its promoter region have been isolated (reviewed in [21, 22]). Among the regulatory sites described for this enzyme, the E-box sequence seems to play a critical role in the transcriptional activation of the gck promoter gene [23]. Namely, as part of the circadian clock mechanism, the E-box sequences are located within the promoter region of several clock genes and are critical for recruiting other clock elements to produce proper circadian rhythmicity [24, 25]. The internal mechanism of the clock involves a series of proteins/transcription factors that self-regulate in the form of interlocked transcriptional negative
feedback loops: Circadian Locomotor Output Cycles Kaput (CLOCK), and Brain and Muscle ARNT-Like 1 (BMAL1); Period (per) 1 and 2 and Cryptochrome (cry). For instance, the basic helix–loop–helix/Per-ARNT-SIM (bHLH-PAS)-containing transcription factors, CLOCK, BMAL1 form heterodimers that bind to the E-box enhancer elements in the promoters of the per 1 and 2 and cry genes, which increases their transcription. Furthermore, PER and CRY inhibit the BMAL1-CLOCK complex, which inhibits their expression, along with PER and CRY degradation, allowing the initiation of a new circadian cycle [26, 27]. The heterodimer BMAL1-CLOCK binds to the E-box promoter elements (CACGTG) present in clock and clock-controlled genes (CCGs) for example, gck. However, we are just beginning to understand how output pathways and regulatory mechanisms of CCGs are involved in rhythmic physiological processes.

The gene gck regulatory mechanisms have been studied; however, few studies have involved the circadian clock as part of its regulation. In the liver promoter of the gck gene, there is a cis-acting element of the E-box denominated P2 that is functional and active. This element, P2, is localized from nt-89 to -81 in relation to the transcriptional starting site in the gck rat gene. P2 has a canonical sequence (CACGTG) that binding factors of the basic region/helix–loop–helix/leucine zipper (bHLH zipper), which could suggest its regulation by the central core of the clock [7, 28–30]. But, despite the presence of functional cis-acting elements in the gck promoter, the precise function of these regions or their relationship to clock genes has not been elucidated so far.

This study aims to determine the contribution of clock genes to hepatic gck expression and to define the specific role of E-box sequences on the circadian regulation of hepatic gck promoter.

Results showed that gck expression follows a circadian rhythm in rat hepatocytes in vitro. Accordingly, Bmal1 induces the glucokinase circadian rhythmic expression in hepatocytes and the analysis of human and rat glucokinase promoters, indicating the presence of E-box regions. Moreover, the basal activity of the gck promoter was increased by clock/bmal1 co-transfection but inhibited by per1 and per2 co-transfection. Thus, the data suggest that the clock proteins tightly regulate the transcriptional activity of the gck promoter.

13.2 Methods

General nomenclature guideline: For the gene/protein nomenclature it was used the guideline recommended by Oxford Academy.

Animal housing conditions: All animals were handled according to Animal Welfare Assurance. All animal work was carried out following the ARRIVE guidelines (https://arriveguidelines.org, accessed July 1, 2021). Female adult Sprague-Dawley rats weighing 250 g were used in all experiments. Animals were housed in a separate animal room with constant temperature (21 ± 2 °C) and a controlled 12-h light/12-h dark cycle; lights were turned on every day at 7:00 a.m. Animals had free access to a standard rodent diet (Lab Diet, 5P00 Prolab RMH 3000, Purina Mills, St. Louis, MO) and tap water.

Hepatocyte isolation and culture: Hepatocytes were isolated from Sprague-Dawley overnight-fasted rats (~250 g) using the collagenase-perfusion of the liver through the portal vein, essentially [31]. Rats were anesthetized by intraperitoneal injection of ketamine:xylazine:ingor (2:2:1). The portal vein was cannulated with an 18-gauge intravenous catheter. The liver was perfused with a calcium-free buffer solution containing 130 mM NaCl, 3 mM KCl, 1 mM NaH2PO4, D-glucose 10 mM, 0.5 mM ethylene glycol-bis-(2-aminoethyl ether) N, N', N'-tetraacetic acid (EGTA), and 10 mM N-2-hydroxyethyl piperazine-N-2-ethane sulfonic acid (HEPES) (pH 7.4) maintained at 37 °C, at a rate of 10 ml/min for 10 min. This was followed by perfusion with a perfusion buffer solution containing 130 mM NaCl, 3 mM KCl, 1 mM NaH2PO4, D-glucose 10 mM, 0.5 mM ethylene glycol-bis-(2-aminoethyl ether) N, N', N'-tetraacetic acid (EGTA), and 10 mM N-2-hydroxyethyl piperazine-N-2-ethane sulfonic acid (HEPES) (pH 7.4) maintained at 37 °C, at a rate of 10 ml/min for 10 min. This was followed by perfusion with a perfusion buffer solution containing 4 mM CaCl2 and 0.04% p/v collagenase Type IV (Sigma-Aldrich, St. Louis, MO, USA) for 5 min (10 ml/min). Flow rates and
pressures were controlled by a perfusion pump (Masterflex Variable Speed Peristaltic Pump Model 7520-00). The liver was transferred to 10 mm dishes with 25 ml perfusion buffer solution and was mechanically dissociated into single cells. Hepatocytes were washed in perfusion buffer solution and suspended in Dulbecco’s modified Eagle’s medium (DMEM) with 5.5 mmol glucose, 10% fetal bovine serum (FBS) (Thermo Scientific, Waltham, MA) supplemented with 2 mM l-glutamine, 100 U/ml penicillin, 100 mg/ml streptomycin, 2 ng/ml insulin, 100 nmol/L dexamethasone and 2.5 mg/ml fungizone (Thermo Scientific). Cells were centrifuged at 100 × 2g for 2 min at 4 °C and resuspended in DMEM 10% FBS with supplements. Cell viability was determined by Trypan blue staining and was > 90%. Hepatocytes were then plated into collagen type I (Gibco, NY, USA)-coated six well-plates at a density of 1.0 × 10^6 cells/dish. The medium was replaced 2 h after plating.

Cell cultures and transfections: Rat hepatocyte primary cultures were transfected with commercial plasmid SureSilencing shRNA with a pshBMAL1/amp containing a green fluorescent protein (GFP) expression cassette and scrambled vector (Qiagen, Valencia, CA, USA), using lipofectamine 2000 (Invitrogen). Transfection was conducted in the presence of OptiMEM (Gibco) supplemented with 10% FBS (Thermo Fisher Scientific) supplemented with 2 mM l-glutamine, 100 U/ml penicillin, 100 mg/ml streptomycin, 2 ng/ml insulin, 100 nmol/L dexamethasone and 2.5 mg/ml fungizone (Thermo Scientific). Cells were centrifuged at 100 × g for 2 min at 4 °C and resuspended in DMEM 10% FBS with supplements. Cell viability was determined by Trypan blue staining and was > 90%. Hepatocytes were then plated into collagen type I (Gibco, NY, USA)-coated six well-plates at a density of 1.0 × 10^6 cells/dish. The medium was replaced 2 h after plating.

The human hepatoma cell line Hep3B was cultured in Dulbecco’s modified Eagle’s medium (DMEM) with 25 mM glucose, supplemented with 1% penicillin-streptomycin (Invitrogen) and 10% fetal bovine serum (FBS, Invitrogen) in 60 cm^2 Tissue culture flasks (Corning, USA) and maintained in an incubator at 37 °C at 95% humidity and 5% CO_2. When the dishes reached 80% confluently, the cells were trypsin-detached and culture-expanded in a fresh medium.

ImageJ software analyses: Fluorescence images were analyzed using ImageJ software (version 1.52a, included with Java 1.8.0_112, National Institutes of Health, USA). The raw fluorescence images were analyzed to select the positive GFP cells. The positive cells were counted and compared in both conditions to measure the efficiency of transfection.

Measurement of mRNA from primary hepatocyte cultures: Quantitative reverse transcription PCR (RT-qPCR) analysis was used to measure the expression of the hepatocyte cyclophilin, gck, clock, bmal1 and per2. The following sets of primers were used: cyclophilin, sense 5′-ATA ATG GCA CTG GTG GCA AGT C-3′ and antisense 5′-ATT CCT GGA CCC AAA ACG CTC C-3′; gck, sense 5′-GTG AGG TCG GCA TGA TTG T-3′ and antisense 5′-TCC ACC AGC TCC ACA TTC T-3′; clock, sense 5′-GCG GCA GAA TAG CAC CCA GAG T-3′ and antisense 5′-ACT TGG CAC CAT GAC GGC CC-3′; bmal1, sense 5′-CCG TGG ACC AAG GTA GA-3′ and antisense 5′-CTG TGA GCT GTG GGA AGG TT-3′; per2, sense 5′-ACG CTG GCA ACC TTG AAG TA-3′ and antisense 5′-GAC ACA GCC ACA GCA AAC AT-3. Total RNA was isolated from the primary hepatocyte cultures using Trizol (Invitrogen). For RT-PCR, 1 µg of RNA was incubated in a 10 µl reaction volume containing 10 mM Tris-HCl (pH 8.3), 50 mM KCl, 5 mM MgCl_2, 20 U RNase inhibitor, 1 mM dNTPs, 2.5 µM oligo d (T) primers, and 50 units of MuLV reverse transcriptase (New England Biolabs, Ipswich, MA, USA) for 10 min at 23 °C followed by 30 min at 42 °C and 5 min at 94 °C. Parallel reactions were performed without reverse transcriptase to control the presence of contaminant DNA. PCR reactions were carried out in an Mx3000P QPCR System (Agilent Technologies, Santa Clara, CA, USA). RT-qPCR was performed using the qPCR Master Mix kit for Brilliant II SYBR Green (Agilent Technologies, Inc.) in a final volume of 12.5 µl consisting of 1x SYBR Green Master Mix, 500 nM of each
primer, and 1 µl of cDNA sample. All reactions were performed with an initial denaturation of 5 min at 95 °C, followed by 40 cycles of 30 s at 95 °C, annealing for 30 s at 60 °C, and extension for 1 min at 72 °C. The relative expression of gck and clock genes to cyclophilin mRNA was calculated based on the PCR efficiency method.

Cloning and site-directed mutagenesis of the gck promoter: The genomic sequence encoding the liver human gck gene was downloaded from NCBI at the Nucleotide database (NM_033507). The strategies of Cloning that we use were based on [32]. Plasmid Constructs Human gck genomic sequences were amplified using the polymerase chain reaction (PCR) from human genomic DNA purchased from Promega (Wisconsin, USA).

Five sequences match specifically for the 5′ sequence of the liver gck gene. Sequences spanning bases; −1049 to +135, −753 to +135, −571 to +135, −345 to +135, and −161 to +135, which are relative to the liver-specific mRNA start site (Table 13.1). Each one was amplified with primers with HindIII and ScaI restriction enzyme digestion sites to the 5′ and 3′ primers, respectively, to have directional cloning. PCR products of Promoter fragments were purified by MinElute PCR Purification Kit (Qiagen) and cloned into a luciferase reporter plasmid pGL3Basic 3.1 (Promega, USA), which generated plasmids hGK-1049Luc, hGK-753Luc, hGK-571Luc, hGK-345Luc, hGK-161Luc. It was named hGK to differentiate it from the endogenous promoter.

A mutant’s site was generated using the shorter promoter vector to confirm the importance of the two E-box sites’ closest mRNA start site, hGK-161Luc. Site-directed mutagenesis protocol was used according to the protocol suggested for the kit GeneArt® Site-Directed Mutagenesis PLUS System and using the following specific primers designed with the mutation; hGK mutebox1/2_FW:5′-TCCCCG TGGCCTGTTGGCTTTACCTGGATGGCC TACCTC CCTTTC-3′ and hGK mutebox1/2_RV:5′-GAAAGGGAGGTAGGC CATCCAGGTA ACAGCCAACAGGGCACC GGGA-3′. All cloned promoter sequences were verified by sequencing. Enzyme restriction sequences are underlined.

Luciferase assays: Hep3B cells were seeded onto a 48-well plate at 80% of confluence for reporter assays. They were transfected the next day with indicated promoter-reporter plasmids, mutated reporter vectors, and over-expression plasmids using Lipofectamine 2000 (Invitrogen) method. The overexpression plasmids were BMAL1 (pBMPC3), CLOCK1 (pCKPC4), PER1 (pCMV Sport2 mPER1) and PER2 (pCMV Sport2 mPER2) purchased from Addgene (Massachusetts, USA). In order to normalize transfection efficiency, Renilla luciferase (pRL-TK; Promega) was used in transfections. Then, the Luciferase expression was measured after 48 h using the Promega Dual-Luciferase Reporter Assay System (Promega).

Name	Location	Strand	Sequence	RE site
−1049f	−1049	+	gcgcgaagCCACTTGGCCTCAGCTTCAGGC	SacI
−753f	−753	+	gcgcgaagAGGGCCTTGGGAGGTGAT	SacI
−571f	−571	+	gcgcgaagAGAGCCTGGAAAGTCAGGTC	SacI
−345f	−345	+	gcgcgaagACCTCAAGAGCAAGTCACAG	SacI
−161f	−161	+	gcgcgaagATCCCTACCCCATGTTCACAG	SacI
Ex1	135	−	gcgcgaagTTTGGGAGGCAGAGATGCTCC	HindIII
Statistical analysis: Statistical values were evaluated by one-way analysis of variance (ANOVA), followed by Dunnett’s multiple comparisons tests. The values of results are expressed as mean ± standard error of the mean (SEM). Statistical analysis was performed with the statistics package Test GraphPad, (Prism 8, GraphPad Software, San Diego, California, USA). In all cases, the significance level was set at \(P < 0.05 \); it was considered statistically significant. All experiments were performed with at least three individual replicates.

13.3 Results

Glucokinase expression follows a circadian profile/rhythm in rat hepatocytes in vitro

The first approach was to assess whether primary cultures of hepatocytes can maintain their circadian clock autonomously in vitro. RT-qPCR analysis was performed along with the periodic expression of core clock genes \(bmal1 \) and \(clock \) to determine whether \(gck \) mRNA may follow a circadian expression in primary rat hepatocytes in vitro.

Figure 13.1 shows that \(bmal1 \) and \(clock \) mRNA expression (Fig. 13.1a, b) have a circadian profile, with an increase in the expression levels from 0 h (circadian time) and a peak of expression after 4 h, followed by a noticeable decrease that reaches baseline expression levels after 8 h.

Similarly, \(gck \) mRNA expression (Fig. 13.1a) exhibited an oscillatory circadian profile reaching a peak of expression after 4 and a lower expression between 8 and 20 h. After 20 h, there was a rapid rise in mRNA expression for \(gck \). These results demonstrate that primary hepatocytes cultures express \(gck \) in a circadian profile and maintain their circadian rhythms through the mRNA expression of \(bmal1 \) and \(clock \).

\(bmal1 \) induces the Glucokinase circadian rhythmic expression in hepatocytes

In order to determine whether clock genes regulate the endogenous \(gck \) gene, an in vitro culture of primary rat hepatocytes with a circadian loss of function was generated by inhibiting \(bmal1 \) expression. First, it was analyzed the efficiency of transfection and inhibition of shRNA for \(Bmal1-GFP \) in the H4 cell line. Then, \(bmal1 \) mRNA was knocked down using an shRNA coupled to GFP expression to control transfection efficiency. Fluorescence analysis of cells transfected with indicated shRNAs for GFP expression showed an equivalent transfection percentage (\(\sim 40\% \)) of both \(Bmal1 \) shRNAs used (shRNA1 and shRNA2) (Fig. 13.2a–j). The inhibition efficiency of each \(Bmal1 \) shRNA was quantified by RT-qPCR assay; the plot showed effective inhibition of \(bmal1 \) by both siRNAs at 24 h in about 54% for shRNA1 and 44% for shRNA2 (Fig. 13.2k).

These results show that the shRNAs for \(bmal1 \) inhibit efficiently the expression of this endogenous cyclophilin amplified in the same sample and under the same experimental conditions. The relative temporal expression of each mRNA of interest was normalized to cyclophilin. \(\Delta Ct \) values were normalized to the average \(\Delta Ct \) of time 0 (0 h post-transfection). Data are the Mean ± SD of three independent experiments.
gene in H4 cell line and that the inhibition is more effective after 24 h of transfection.

Next, to determine whether clock genes control the gck mRNA expression, the sh-Bmal1-GFP shRNA1 construct was used to evaluate the loss of circadian expression in hepatocytes in vitro. Also, bmal1 and per2 mRNA expression were analyzed since both are transcription factors of the central core of the circadian clock. bmal1 and per2 mRNA expression were determined by RT-qPCR after using a specific shRNA against it. As it was expected, bmal1 and per2 mRNA expression showed an evident disruption in the circadian profile expression during 24 h (Fig. 13.3a, b).

Similarly, the gck circadian expression observed in the control conditions was severely decreased during the 4 h of circadian peaks in hepatocytes in vitro (Fig. 13.3c). On the other hand, the inhibition of the expression of bmal1 leads to a loss of the oscillatory circadian profile of gck. These results show that the downregulation of mRNA of bmal1 influences the expression of the gck gene.

Analysis of E-box regions in human and rat glucokinase promoter

It has been shown that the upstream sequences of the starting site of the gck transcription up to 1 Kb contain regulatory sequences essential for gene expression [32]. However, there is no evidence for specific sequences for the gck promoter, such as E-box, for its regulation through the core clock.

The structure of the gck gene has been characterized in mammals, rats, mice, and humans
Different regions of the promoter site have been proposed as transcriptional regulators in the three studied mammalian species [21, 32]. So, to determine sites where core clock proteins can bind to activate gck transcription through E-box, 5′ flanking sequence (−1049 to +135 bases) of the gck liver promoter (lgck) from rat and human species were analyzed. The analysis of E-box sites in the human gck promoter region (NM_033507) revealed the existence of nine non-canonical E-box consensus sequences (CANNTG) within the proximal minimal promoter at −82 and −93 relative to the transcription starting site and seven E-box non-canonical consensus sequences were identified at more distal sequences at −219, −483, −594, −611, −632, −668 and −758 (Fig. 13.4). Comparing the sequence to the rat lgck gene promoter (AH002177.2), eight E-box sites distributed throughout the 1049 bp analyzed within the proximal minimal promoter at −59 and −68 relative to the transcription starting site, and seven more distal sequences at −208, −449, −576, −866, −911 and −1038 were found (Fig. 13.4). At least 3 of these sites (E-box 1, 4 y 9) were located in similar human and rat lgck promoter regions.

Fig. 13.3 Down regulation of mRNA of bmal1 leads to a loss of the oscillatory circadian profile of gck and per2. Temporal expression analysis of bmal1, per2, and gck in bmal1 knockdown primary hepatocytes. The cell culture was transfected with shRNA for bmal1 or scramble (Control) 24 h before the first sample acquisition. After that, the samples were obtained every 4 h for 24 h and analyzed by qRT-PCR assay of mRNA for bmal1, per2, and gck in the presence of bmal1 shRNA (red lines) or scramble shRNA (black lines) to obtain a temporal expression profile of each gene. The relative mRNA expression of each gene of interest was normalized to Cyclophilin. ΔCt values were normalized to the average ΔCt of time 0 (0 h post-transfection). Data are the Mean ± SD of three independent experiments.

BMAL1 and CLOCK regulate the transcriptional activity of human glucokinase promoter

To evaluate the contribution of E-box sites in the 5′ flanking sequence (−1049 to +135 bases) of human liver-specific gck promoter, a series of reporter constructs upstream of the luciferase gene with different lengths of the 5′ flanking sequence was generated. The promoter activity of the constructs was tested in the human hepatoma cell lines Hep3B. All promoter fragments constructs showed a discreet basal activity when transfected in Hep3B (Fig. 13.5a, black bars). The co-transfection of reporter constructs with CLOCK and BMAL1 significantly enhanced reporter gene expression in all the promoter constructs (Fig. 13.5a, dark grey bars). These results confirmed that the gck promoter contains significant regulatory regions for gene transcription. Human hGK-161Luc exhibited a higher transcriptional response to CLOCK and BMAL1. This fragment includes 2 E-box sites of interest; one (E-box1) is highly conserved in rats and humans (Fig. 13.4). In turn, per1 and per2 ectopic expression did not modify the basal levels of all promoter fragment constructs (Fig. 13.5a, gray light bars) while significantly
reducing the capacity of clock and bmal1 to enhance the transcriptional activity of human hGK-161Luc hGK-345Luc and hGK-571Luc constructs (Fig. 13.5a white bars). Next, the contribution of proximal E-box localized at −82 and −93 to the lgck transcriptional activity was determined. The two e-box sites (EB-1 and EB-2) in construct hGK-161Luc were mutated (hGK-161mut-Luc) and subjected to transcriptional regulation by clock genes (Fig. 13.5b). Transient transfection of Hep3B cells with the hGK-161mut-Luc revealed an increase of 104-fold in promoter activity compared to the wild-type promoter construct. At the same time, hGK-161mut-Luc activity was decreased by about 1.5-fold by CLOCK/BMAL1 and about 1.7-fold by PER1/PER2 expression. However, the ectopic co-expression CLOCK/BMAL1 and PER1/PER2 hGK-161mut-Luc did not modify PER2 hGK-161mut-Luc promoter activity.

In summary, it was cloned the human gck promoter to characterize its dependence on CLOCK/BMAL1 and PER1/PER2, in particular via E-boxes. The hGK promoters were active in Hep3B. Moreover, in the hepatoma cell lines, the hGK promoters activity was increased by cotransfected BMAL1/CLOCK but were not affected by co-transfected PER1/PER2. Thus, BMAL1/CLOCK modulate human gck promoter activity, most likely via E-boxes.

13.4 Discussion

The circadian clock of the liver has been reported to regulate metabolism and energy homeostasis. The availability of glucose in the body is a measure of its energy state and therefore determines the ability of cells to work correctly. Deregulation of this process causes important diseases such as obesity and diabetes. Peripheral organs that are involved in the maintenance of glucose homeostasis include the liver. However, few studies have focused on elucidating the basis of this process and how the circadian clock is involved.

The regulation of glucose homeostasis is one of the liver’s leading roles in mammals’ metabolism. Namely, the glucose transporter GLUT2, a BMAL1-regulated transporter [7], enters glucose into hepatocytes and rapidly converts it into
glucose-6-phosphate by GCK, which also shows a rhythmic expression. Liver GCK expression regulates glycolysis and glycogen synthesis pathways. It shows a rhythmic pattern reaching maximum alongside the transition from the rest phase to the active phase of the feeding–fasting cycles [34].

Although there is consensus on the importance of the enzyme GCK in metabolic processes and diseases, the regulation of gck expression and transcriptional mechanisms is unclear [22]. Interestingly, the circadian expression profiles of genes involved in glucose regulation mechanisms in the liver coincide with their metabolic functions. For example, the glucose transporter GLUT2, presents its maximum expression during the fasting phase of the cycle. In contrast, GCK shows its maximum circadian expression during the feeding phase [7].

This research allows an understanding of the specific mechanisms associated with the regulation of circadian expression of gck in the liver cells. In isolated rat hepatocytes, the results indicated that gck exhibits an oscillatory circadian pattern similar to those observed for bmal1 and clock (Fig. 13.1).

Glucose homeostasis is one of the leading liver functions regulated by circadian control. In this line, it has been demonstrated that glucose transporter 2 (GLUT2) is regulated by clock BMAL1 through E-box elements. The figure illustrates the effect of E-box mutations on gck promoter activity in Hep3B cells. E-box sites at −211/−222 were mutated in combination using site-directed mutagenesis. Hep3B cells were transfected with hGK-mut-luc or hGK-luc constructs in different conditions; co-transfected with clock/bmal1, co-transfected with per1/per2, and co-transfected with clock/bmal1/per1/per2. Firefly luciferase expression was measured at 48 h post-transfection and normalized to renilla luciferase to correct for variability in transfection efficiency. Results are expressed as the mean of four independent experiments, each one performed in triplicate.
hepatocytes directly impacts the expression of clock genes and the glucose metabolism-related glycolytic metabolic pathways, glycogen metabolism, and gck gene. Consequently, the liver function in maintaining glucose blood levels through glycolysis is critically implicated in all those functions.

Our results showed that gck is a dependent circadian gene, and a functional cis-acting element of the E-box type was identified in the liver promoter of the gck gene. Similar to GLUT2, gck exhibits an oscillatory circadian pattern similar to bmal1 and clock.

It has been suggested that core clock genes and gck mRNA can maintain an autonomous circadian rhythm in vitro, independent of the central clock and other local controls such as hormonal and neural signals [7]. In vivo evidence demonstrated that gck expression has a circadian regulation since its rhythmic expression is lost in bmal1 knockout mice [7]. However, this research could not demonstrate whether this circadian control is autonomous or dependent on the central clock. In our study, we found a circadian expression profile in a culture of hepatocytes isolated from the central control, which suggests that it behaves as an autonomous clock in culture.

Our results also confirms the critical role of bmal1 on the gck rhythmic expression since its knockdown inhibits gck and per2 circadian profile expression. These results suggest that a loss of function in the central clock through bmal1 in hepatocytes directly impacts the expression of clock genes and the glucose metabolism-related gck gene. Consequently, the liver function in maintaining glucose blood levels through glycolysis metabolic pathways, glycogen metabolism, and glycogenesis [36] could be further affected since GCK is critically implicated in all those functions.

Consequently, knowing the relevance of the gck gene regulation for its function in hepatocytes and due to the lack of a proposed mechanism to date, the next question was how clock genes regulate gck expression at the promoter level. In this sense, the cyclic activation and repression of E-box-driven transcription seem to be one of the primary mechanisms for circadian gene expression [37]. Accordingly, in silico analysis showed the presence of several E-boxes within rat and human gck promoters (Fig. 13.4). The results demonstrated that the activity of the 5 fragments of the human gck gene studied (1049, 753, 571, 345, and 161 bp) increases in the presence of CLOCK and BMAL1 in vitro (Fig. 13.5). This data suggest that the sequence established in this region of the gck gene contributes to the positive regulation of the gene in the presence of CLOCK and BMAL1. Contrary to expected, the highest activation was found in the smallest fragment, hGK161. At the same time, the site-directed mutation of 2 E-box sequences in the 161 gck fragment provided consistent evidence of the existence of that regulatory region at the gck promoter. The latter is of utmost importance given that if these 2 E-box sequences are eliminated, the activity of the reporter gene increases significantly regarding the control and the activation with BMAL1 and CLOCK. This suggests that two E-boxes sites proximal to the starting transcription site may have a repressive function on the gck promoter. In addition, the activation-inhibition degree can also implicate the clock proteins’ affinity with the site or binding sequence [38].

This study revealed the complexity of the gck gene regulatory mechanism associated with clock proteins. It opened the question of which specific sequences within this 1049 bp contribute to this inhibition and what other endogenous proteins can be involved. In this respect, there is evidence of several transcription factors and regulatory elements (USF2, HNF4, HIF1A, among others) associated with this first fragment of gck that can intervene in gene regulation, but that is not the focus of this study (or are not evaluated in this research) and further studies are necessary to elucidate it (review by [21]).

On the other hand, positive and negative regulatory elements have been demonstrated within the gck human gene sequence. More specifically, several inhibitory sites above the 1049 bp were detected in cells L-02 and HepG2 [32] that contribute to the “down or up-regulation” of the gene basal expression in the
presence or absence of insulin or serum. In this study, it is worth mentioning that the authors compared two cell lines that presented different behaviors in all the studied conditions. This indicates that the expression environment (endogenous factors) is relevant for the gene response activation, as we mentioned before.

In summary, different fragments of the gck promoter that are proximal to the transcription starting site and contain E-box sequences are active when incorporated into the Hep3B cell line. The basal activity was increased by clock/bmal1 co-transfection but inhibited by per1/per2 co-transfection. We can conclude that clock proteins modulate the human gck promoter transcriptional activity. In line with previously reported results, our data suggest that the circadian clock plays a crucial role in regulating the temporal expression of gck.

To complete the definition of this complex circadian regulation of gck promoter, it could be interesting to involve in vitro studies on other peripheral tissues implied in glucose homeostasis, such as the pancreas. Also, include in vivo models where those tissues are connected by the central clock.

Statements and Declarations

Funding This work was supported by grants from the Agencia Nacional de Investigacion y Desarrollo-ANID, Chile: Fondecyt inicio N 11121518 (to CM); Fondecyt Regular N 1221508; as well as the grant ICM-ANID P09-022-F from the CENTRO INTERDISCIPLINARIO DE NEUROCIENCIAS DE VALPARAISO (to MG-R) and by the Ministry of Education Science and Technological Development of the Republic of Serbia No 451-03-68/2022-14/200015 (to JFS); We thank the support of the visiting professor program of UBO to JFS. We thank Cristian Droppelmann, Ph.D., for his comment on the manuscript.

Disclosure of Interests All authors declare they have no conflict of interest.

Ethical Approval All applicable international, national, and/or institutional guidelines for the care and use of animals were followed. Approval was granted by the Ethics and Animal Care and Use Committee of the National Research and Development Agency (ANID, No. 1221508) and the Universidad de Concepción, Chile.

References

1. Crespo M, Leiva M, Sabio G (2021) Circadian clock and liver cancer. Cancers (Basel) 13(14):3631. https://doi.org/10.3390/cancers13143631; PMID: 34298842; PMCID: PMC8306999
2. Gu C, Li J, Zhou J, Yang H, Rohling J (2021) Network structure of the master clock is important for its primary function. Front Physiol 12:678391. Published 2021 Aug 16. https://doi.org/10.3389/fphys.2021.678391
3. Ferrell JM, Chiang JY (2015) Circadian rhythms in liver metabolism and disease. Acta Pharm Sin B 5(2):113–122. https://doi.org/10.1016/j.apsb.2015.01.003
4. Palm D, Uzoni A, Simon F, Fischer M, Coogan A, Tucha O, Thome J, Faltraco F (2021) Evolutionary conservations, changes of circadian rhythms and their effect on circadian disturbances and therapeutic approaches. Neurosci Biobehav Rev 128:21–34. https://doi.org/10.10116f.neubiorev.2021.06.007. Epub 2021 June 5. PMID: 34102148
5. Damiola F, Le Minh N, Preitner N, Kornmann B, Fleury-Olela F, Schibler U (2000) Restricted feeding uncouples circadian oscillators in peripheral tissues from the central pacemaker in the suprachiasmatic nucleus. Genes Dev 14(23):2950–2961. https://doi.org/10.1101/gad.183500; PMID: 11144885; PMCID: PMC317100
6. Stokkan KA, Yamazaki S, Tei H, Sakaki Y, Menaker M (2001) Entrainment of the circadian clock in the liver by feeding. Science 291(5503):490–493. https://doi.org/10.1126/science.291.5503.490; PMID: 11161204
7. Lamia KA, Storch KF, Weitz CJ (2008) Physiological significance of a peripheral tissue circadian clock. Proc Natl Acad Sci U S A 105(39):15172–15177. https://doi.org/10.1073/pnas.0806717105. Epub 2008 Sept 8. PMID: 18779586; PMCID: PMC2532700
8. Storch KF, Lipan O, Leykin I, Viswanathan N, Davis FC, Wong WH, Weitz CJ (2002) Extensive and divergent circadian gene expression in liver and heart. Nature 417(6874):78–83. https://doi.org/10.1038/nature744. Epub 2002 Apr 21. Erratum in: Nature 2002 Aug 8; 418(6898):665. PMID: 11967526
9. Ueda HR, Chen W, Adachi A, Wakamatsu H, Hayashi S, Takasugi T, Nagano M, Nakahama K, Suzuki Y, Sugano S, Iino M, Shigeyoshi Y, Hashimoto S (2002) A transcription factor response element for gene expression during circadian night. Nature 417(6874):78–83. https://doi.org/10.1038/nature744. Epub 2002 Apr 21. Erratum in: Nature 2002 Aug 8; 418(6898):665. PMID: 11967526
10. Taleb Z, Karpowicz P (2022) Circadian regulation of digestive and metabolic tissues. Am J Physiol Cell Physiol 323(2):C306–C321. https://doi.org/10.1152/ajpcell.00166.2022. Epub 2022 June 8. PMID: 35675638
11. Atwood A, DeConde R, Wang SS, Mockler TC, Sabir JS, Ideker T, Kay SA (2011) Cell-autonomous circadian clock of hepatocytes drives rhythms in transcription and polyamine synthesis. Proc Natl Acad Sci U S A 108(45):18560–18565. https://doi.org/10.1073/pnas.1115753108. Epub 2011 Oct 31. PMID: 22042857; PMCID: PMC3125069

12. Doi R, Oishi K, Ishida N (2010) CLOCK regulates circadian rhythms of hepatic glycogen synthesis through transcriptional activation of Gys2. J Biol Chem 285(29):22114–22121. https://doi.org/10.1074/jbc.M110.110361

13. Kalsbeek A, La Fleur S, Fliers E (2014) Circadian control of glucose metabolism. Mol Metab 3(4):372–383. Published 2014 Mar 19. https://doi.org/10.1016/j.molmet.2014.03.002

14. Matschinsky FM, Magnuson MA, Zelent D, Jetton TL, Doliba N, Han Y, Taub R, Grimsby J (2006) The network of glucokinase-expressing cells in glucose homeostasis and the potential of glucokinase activators for diabetes therapy. Diabetes 55(1):1–12. PMID: 16380470

15. Adeva-Andany MM, González-Lucán M, Donapetry-García C, Fernández-Fernández C, Ameneiros-Rodríguez E (2016) Glycogen metabolism in humans. BBA Clin 5:85–100. Published 2016 Feb 27. https://doi.org/10.1016/j.bbalci.2016.02.001

16. Bali D, Svetlanov A, Lee HW, Fusco-DeMane D, Leiser M, Li B, Barzilai N, Surana M, Hou H, Fleischer N et al (1995) Animal model for maturity-onset diabetes of the young generated by disruption of the mouse glucokinase gene. J Biol Chem 270(37):21464–21467. https://doi.org/10.1074/jbc.270.37.21464. PMID: 7665557

17. Terauchi Y, Sakura H, Yasuda K, Iwamoto K, Takahashi N, Ito K, Kasai H, Suzuki H, Ueda O, Komada N et al (1995) Pancreatic beta-cell-specific targeted disruption of glucokinase gene. Diabetes 44(11):2146–2148. https://doi.org/10.2337/diab.44.11.2146. PMID: 9-1. PMID: 18177499; PMCID: PMC2254435

18. Waterman F, Furuya E (2010) Quantitative image analysis reveals that phosphorylation of liver-type isozyme of fructose-6-phosphate 2-kinase/fructose-2,6-bisphosphatase does not affect nuclear translocation of glucokinase in rat primary hepatocytes. J Biol Chem 270(51):30253–30256. https://doi.org/10.1074/jbc.270.51.30253. PMID: 8530440

19. Vanderkammen A, Van Schaftingen E (1990) The mechanism by which rat liver glucokinase is inhibited by the regulatory protein. Eur J Biochem 191(2):483–489. https://doi.org/10.1111/j.1432-1033.1990.tb19147.x. PMID: 2384095

20. Vanderkammen A, Van Schaftingen E (1991) Competitive inhibition of liver glucokinase by its regulatory protein. Eur J Biochem 200(2):545–551. https://doi.org/10.1111/j.1432-1033.1991.tb16217.x. PMID: 1889417

21. Bae JS, Kim TH, Kim MY, Park JM, Ahn YH (2010) Transcriptional regulation of glucose sensors in pancreatic β-cells and liver: an update. Sensors (Basel) 10(5):5031–5053. https://doi.org/10.3390/s100505031. Epub 19 May 2010. PMID: 22399922; PMCID: PMC3292162

22. Agius L (2016) Hormonal and metabolite regulation of hepatic glucokinase. Annu Rev Nutr 36:389–415. https://doi.org/10.1146/annurev-nutr-071715-051145. Epub 4 May 2016. PMID: 27146014

23. Moates JM, Nanda S, Cissell MA, Tsai MJ, Stein R (2003) BETA2 activates transcription from the upstream glucokinase gene promoter in islet beta-cells and gut endocrine cells. Diabetes 52(2):403–408. https://doi.org/10.2337/diabetes.52.2.403. PMID: 12540614

24. Nakahata Y, Yoshida M, Takano A, Soma H, Yamamoto T, Yasuda A, Nakatsu T, Takumi T (2008) A direct repeat of E-box-like elements is required for cell-autonomous circadian rhythm of clock genes. BMC Mol Biol 9:1. https://doi.org/10.1186/1471-2199-9-1. PMID: 18177499; PMCID: PMC2254435

25. Moñez O, Brewer M, Baler R (2002) Circadian transcription. Thinking outside the E-box. J Biol Chem 277(39):36009–36017. https://doi.org/10.1074/jbc.M203909200. Epub 2002 Jul 18. PMID: 12130638

26. Akashi M, Okamoto A, Tsuchiya Y, Todo T, Nishida E, Node K (2014) A positive role for PERIOD in mammalian circadian gene expression. Cell Rep 7(4):1056–1064. https://doi.org/10.1016/j.celrep.2014.03.072. Epub 2014 May 1. PMID: 24794436

27. Chiou YY, Yang Y, Rashid N, Ye R, Selby CP, Sancar A (2016) Mammalian period represses and de-represses transcription by displacing CLOCK-BMAL1 from promoters in a cryochrome-dependent manner. Proc Natl Acad Sci U S A 113(41):E6072–E6079. https://doi.org/10.1073/pnas.1612917113. Epub 2016 Sept 29. PMID: 27688755; PMCID: PMC5068302

28. Oishi K, Miyazaki K, Kadota K, Kikuno R, Nagase T, Tsuzuki G, Ohkura N, Azama T, Mesaki M, Yukimasa S, Kobayashi H, Itaka C, Uemura T, Horikoshi M, Kudo T, Shimizu Y, Yano M, Monden M, Machida K, Matsuda J, Horie S, Todo T, Ishida N (2003) Genome-wide expression analysis of mouse liver reveals CLOCK-regulated circadian output genes. J Biol Chem 278(42):41519–41527. https://doi.org/10.1074/jbc.M304564200. Epub 2003 Jul 15. PMID: 12865428

29. Iynedjian PB (1993) Mammalian glucokinase and its gene. Biochem J 293(Pt 1):1–13. https://doi.org/10.1042/bj130001. PMID: 8392329; PMCID: PMC1134312

30. Iynedjian PB (2009) Molecular physiology of mammalian glucokinase. Cell Mol Life Sci 66(1):27–42. https://doi.org/10.1007/s00018-008-8322-9. PMID: 18726182; PMCID: PMC2780631

31. Shiota G, Kawasaki H (1998) Hepatocyte growth factor in transgenic mice. Int J Exp Pathol 79(5):267–277. https://doi.org/10.1046/j.1365-2613.1998.730403.x. PMID: 10193310; PMCID: PMC3220208
32. Wang Y, Guo T, Zhao S, Li Z, Mao Y, Li H, Wang X, Wang R, Xu W, Song R, Jin L, Li X, Irwin DM, Niu G, Tan H (2012) Expression of the human glucokinase gene: important roles of the 5' flanking and intron 1 sequences. PLoS One 7(9): e45824. https://doi.org/10.1371/journal.pone.0045824. Epub 2012 Sept 20. PMID: 23029263; PMCID: PMC3447760

33. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410

34. Mukherji A, Bailey SM, Staels B, Baumert TF (2019) The circadian clock and liver function in health and disease. J Hepatol 71(1):200–211. https://doi.org/10.1016/j.jhep.2019.03.020. Epub 2019 Mar 28. PMID: 30930223

35. Agius L (2008) Glucokinase and molecular aspects of liver glycogen metabolism. Biochem J 414(1):1–18. https://doi.org/10.1042/BJ20080595. PMID: 18651836

36. Trefts E, Gannon M, Wasserman DH (2017) The liver. Curr Biol 27(21):R1147–R1151. https://doi.org/10.1016/j.cub.2017.09.019. PMID: 29112863; PMCID: PMC5897118

37. Hardin PE (2004) Transcription regulation within the circadian clock: the E-box and beyond. J Biol Rhythms 19(5):348–360. https://doi.org/10.1177/0748730404268052. PMID: 15534316

38. Kepsutlu B, Kizilel R, Kizilel S (2014) Quantification of interactions among circadian clock proteins via surface plasmon resonance. J Mol Recogn 27(7):458–469. https://doi.org/10.1002/jmr.2367. PMID: 24895278
Part III

Molecular Pathology of Cancer: Determinants and Potential Therapies
Correlation Between Endoglin and Malignant Phenotype in Human Melanoma Cells: Analysis of hsa-mir-214 and hsa-mir-370 in Cells and Their Extracellular Vesicles

Lidia Ruiz-Llorente, María Jesús Ruiz-Rodríguez, Claudia Savini, Teresa González-Muñoz, Erica Riveiro-Falkenbach, José L. Rodríguez-Peralto, Héctor Peinado, and Carmelo Bernabeu

Abstract

Endoglin (CD105) is an auxiliary receptor of transforming growth factor (TGF)-β family members that is expressed in human melanomas. It is heterogeneously expressed by primary and metastatic melanoma cells, and endoglin targeting as a therapeutic strategy for melanoma tumors is currently been explored. However, its involvement in tumor development and malignancy is not fully understood. Here, we find that endoglin expression correlates with malignancy of primary melanomas and cultured melanoma cell lines. Next, we have analyzed the effect of ectopic endoglin expression on two miRNAs (hsa-mir-214 and hsa-mir-370), both involved in melanoma tumor progression and endoglin regulation. We show that compared with control cells, overexpression of endoglin in the WM-164 melanoma cell line induces; (i) a significant increase of hsa-mir-214 levels in small extracellular vesicles (EVs) as well as an increased trend in cells; and (ii) significantly lower levels of hsa-mir-370 in the EVs fractions, whereas no significant differences were found in cells. As hsa-mir-214 and hsa-mir-370 are not just involved in melanoma tumor progression, but they can also target endoglin-expressing endothelial cells in the tumor vasculature, these results suggest a complex and differential regulatory mechanism involving the intracellular and extracellular signaling of
hsa-mir-214 and hsa-mir-370 in melanoma development and progression.

Keywords
Cancer • Melanoma • miRNAs • Extracellular vesicles • Exosomes • Endoglin • TGF-β • BMP

Abbreviations

Abbreviation	Full Form
AKT	Serine/threonine-specific protein kinase B (PKB)
ALIX	ALG-2-interacting protein X
BMP	Bone morphogenetic protein
BSA	Bovine serum albumin
CAFs	Cancer-associated fibroblasts
circRNA	Circular RNA
CMV	Citomegalovirus
CYLD	Cylindromatosis
DMEM	Dulbecco’s modified Eagle medium
EMT	Epithelial-mesenchymal transition
EVs	Small extracellular vesicles
FBS	Fetal bovine serum
HA	Hemagglutinin
HEPES	4-[2-Hydroxyethyl]-1-piperazineethanesulfonic acid
HHT	Hereditary hemorrhagic telangiectasia
hPSCs	Human pancreatic stellate cells
HRP	Horseradish peroxidase
hsa-mir	Homo sapiens microRNA
MAFs	Melanoma-associated fibroblasts
MEK	Mitogen-activated ERK kinase
mir	MicroRNA
miRNA	MicroRNA
NP-40	Nonidet P-40
PAGE	Poly-acrylamide gel electrophoresis
PBS	Phosphate-buffered saline
PMEL	Premelanosome protein
qRT-PCR	Real-time quantitative reverse transcription PCR
SDS	Sodium dodecyl sulfate
TAMs	Tumor-associated macrophages
TBS	Tris-buffered saline
TGF-β	Transforming growth factor beta
TYR2	Tyrosinase 2

14.1 Introduction

The mechanism involved in tumor development and dissemination of cancer cells is still poorly understood and numerous proteins, miRNAs and signaling pathways have been reported to regulate this process [1, 2]. Among these, endoglin, an auxiliary receptor of the transforming growth factor β (TGF-β) family, has emerged as a promising therapeutic target [3, 4]. Endoglin (Eng; CD105) is a 180-kDa disulfide-linked homodimeric transmembrane glycoprotein [5, 6] highly expressed by proliferating endothelial cells in tumor associated neoangiogenesis [7], as well as in a large number of cancers with poor prognosis [8–13]. The role of endoglin in tumor progression and metastasis has been studied in several cancer cell types using in vitro and in vivo models [14–21]. In this regard, an active role of endothelial endoglin in extracellular extravasation of healthy and metastatic tumor cells has been postulated [22, 23]. Furthermore, endoglin-targeted therapy for malignant melanoma is currently been investigated with promising results [24–26]. While endoglin is heterogeneously expressed by primary and metastatic melanoma cells, its involvement in the malignant and metastasis processes is not fully understood [8, 27–30]. Given the high mortality rate of this type of skin cancer and the unresponsiveness of some patients to current immunological treatments, a better knowledge of the mechanisms and active players involved in melanoma growth and development, including endoglin, is a subject of scientific and clinical interest [31, 32].
While endoglin is a type 1 transmembrane glycoprotein with cytoplasmic, transmembrane and extracellular regions, almost 90% of the protein is encompassed within its extracellular region [5]. For this reason, the extracellular region of endoglin has focused many structural and functional studies [6, 33]. Structurally, the extracellular region of endoglin contains two distinct domains: (i) a conserved Zona Pellucida (ZP) juxtamembrane domain at the C-terminus consisting of ~260 amino acids (Lys362-Asp561) with eight conserved cysteine residues and divided in two well-defined subdomains (ZP-C and ZP-N); and (ii) a domain at the N-terminus named orphan (orphan domain; OD) due to its lack of significant homology with other protein families [34, 35]. The orphan domain is involved in recognition of TGF-β family ligands [35, 36], whereas the ZP domain is involved in the interaction with members of the integrin family via its arginine-glycine-aspartic acid (RGD) motif located within the ZP-N subdomain [37]. The cellular and pathophysiological function of endoglin has been widely studied in endothelial cells, which are the target in hereditary hemorrhagic telangiectasia type 1 (HHT1), a vascular disease caused by heterozygous mutations in the endoglin gene. HHT1 is associated with telangiectases in skin and mucosa, as well as with arteriovenous malformations in lung, liver, and brain [38, 39]. As an auxiliary receptor of the TGF-β system, endoglin can bind with high affinity to bone morphogenetic protein (BMP)-9 and BMP-10 ligands [36] and interact with the type I and II serine/threonine kinase TGF-β receptors, including ALK1 and ALK5 (type I receptors) and the type II TβRII [40, 41] to modulate cellular responses to different TGF-β family members. Several lines of experimental evidence suggest that binding of BMP9 to endoglin potentiates ALK1 signaling, including the fact that mutations in the gene coding for ALK1 (ACVRL1) are responsible for a second form of HHT (HHT2), whereas heterozygous and homozygous mutations in GDF2, the gene encoding BMP-9, lead to an HHT-like variant [38, 42]. Signaling triggered by BMP-9 through the endoglin/ALK1 route mediates, via the Smad1/5/8 pathway, the expression of a wide range of genes, including the gene for the helix-loop-helix transcription factor inhibitor of differentiation 1 (ID1), a negative transcriptional regulator which is involved in the development of malignant melanoma [43–45]. Beyond the TGF-β/BMP-related functions, endoglin is also involved in integrin-mediated cell adhesion via its RGD motif in its extracellular ZP-N subdomain. Thus, endoglin has shown functional binding activity to integrins, such as α5β1 or αIIbβ3 from leukocytes, smooth muscle cells and platelets [22, 37, 46]. Of note, integrins, the major family of cell adhesion receptors in humans, play a key role in tumor growth and metastasis and several studies have investigated the contribution of integrins to the phenotypic aggressiveness of melanoma [47, 48]. In this line, differential expression of integrins in primary cutaneous melanoma has been used to distinguish indolent from aggressive, prometastatic melanoma. Also, some integrins preferentially direct circulating melanoma cells to specific organs, promoting the development of metastases. For example, melanoma cells expressing β1 or β3 integrins, both endoglin interactors, tend to metastasize to the lungs or generate lymph node metastases, respectively. In addition to their relevant role in mediating invasion and metastasis, integrins are not only promising biomarkers, but also attractive therapeutic targets in melanoma [47, 48]. Given the role of integrins in tumor angiogenesis, tumor cell migration and proliferation, and organ-specific metastasis in malignant melanoma, it can be postulated that endoglin, as integrin counter-receptor, will have a relevant impact in melanoma development.

In addition to the membrane-bound form of endoglin, a circulating form of endoglin packed into small extracellular vesicles (EVs) has been described in several pathological conditions, such as preeclampsia, liver disease or thromboembolic pulmonary hypertension [49–52]. Heterogeneous EVs, including exosomes, can be secreted by all cell types carrying various bioactive cargos such as proteins, RNAs, lipids or metabolites [53].
They are emerging as key regulators of intercellular communication in health and disease with potential relevance as biomarkers and therapeutic strategies in different pathological conditions [54, 55]. EVs can transfer their bioactive cargo from donor to recipient cells and influence the biological function of the target cell. In this regard, a functional role for circulating endoglin in EVs has been postulated in several studies, including a protective mechanism supporting endothelial cell survival and angiogenesis [49]. In addition, endoglin⁺ EVs have been proposed as a biomarker for preeclampsia and metastatic breast cancer [10, 50]. Among the different bioactive cargos of EVs are microRNAs (miRNAs, miRs), which are small endogenous non-coding RNAs that regulate gene expression. During the last decade, compelling evidences support the involvement of cellular and EVs miRNAs in cancer. Among others, miRNAs may act as either tumor suppressors or oncogenes, activating invasion and metastasis, or inducing angiogenesis; as therapeutic targets; and as potential biomarkers for cancer diagnosis, and prognosis [56–59]. Aberrant expression of miRNAs occurs in several human cancers, including melanoma. Thus, dysregulation of miRNAs has been linked to suppression, progression, differentiation, development, and prognosis of melanoma [60–62]. Some miRNAs are specific for one or more skin cancer type, such as hsa-mir-21 and hsa-mir-221, which are observed in cutaneous melanoma and squamous carcinoma; while hsa-mir-155 has been detected in melanoma and cutaneous lymphoma. In this work, we have focused our studies on the pleiotropic hsa-mir-214 and hsa-mir-370, as they are predicted and have been shown to target endoglin [63, 64]. Both, hsa-mir-214 and hsa-mir-370 are dysregulated in several other tumors, besides skin cancers, displaying contrasting behavior. Regardless of whether hsa-mir-214 levels are upregulated or downregulated in skin cancer and melanoma, its dysregulation always correlates with metastasis or poor progression [65, 66]. In the case of hsa-mir-370, controversial findings have also been reported since its upregulation correlates with progression and poor prognosis in breast and prostate cancer [67, 68], as well as promotion of cell apoptosis and inhibition of proliferation in human gastric cancer [69]. By contrast, (i) downregulation of hsa-mir-370 in esophageal squamous-cell carcinoma is associated with cell proliferation and cancer progression [70], and (ii) hsa-mir-370 acts as a tumor suppressor in hepatocellular carcinoma [71]. Interestingly, enforced expression of hsa-mir-370 in melanoma cell lines promotes proliferation, inhibits apoptosis and enhances invasion [72]. Overall, these contradictory results suggest that the function of these miRNAs is highly dependent on the cancer cell context, likely due to their differential cell source, cell target, expression level and/or specific mRNA targeting in each case.

Here we have delved into role of endoglin in human melanoma. We find a correlation between expression levels of endoglin with malignancy in primary melanomas and cultured melanoma cell lines. In addition, overexpression of endoglin in a melanoma cell line leads to dysregulated levels of hsa-mir-214 and hsa-mir-370, mRNAs involved in melanoma tumor progression and endoglin regulation. These results suggest that endoglin is actively involved in development and dissemination of malignant melanoma, and identify endoglin as a potential therapeutic target to block tumor progression.

14.2 Methods

Immunohistochemistry of melanoma tissues: A total of 73 human specimens (3 benign nevi, 73 malignant melanomas) were analyzed with the corresponding informed consent and ethical protocols approved by the Clinical Investigation Ethical Committee. Immunohistochemistry was performed on 4-μm-thick sections of formalin-fixed, paraffin-embedded tissue samples using an anti-endoglin monoclonal antibody (SN6h, Dako). The staining results were independently analyzed by two expert pathologists who were blinded to the staging and clinical features of the subjects.
Cell culture: WM-164, SK-Mel-28, SK-Mel-103, and SK-Mel-147 cell lines were kindly provided by Dr. Maria S. Soengas (Spanish National Cancer Research Centre (CNIO), Madrid, Spain). Cells were cultured in DMEM (Lonza BE12-604F) supplemented with 10% heat-inactivated filtered fetal bovine serum (FBS) (Gibco) and 20 µg/mL gentamycin (Lonza 17-519Z). This melanoma cell line was routinely tested for mycoplasma contamination.

Lentiviral production and generation of human ENG stably overexpressing WM-164 cells: Lentiviral plasmids expressing human endoglin containing a hemagglutinin (HA) tag (pLV-CMV-IRES-Puro/hEng) and the corresponding empty vector (pLV-CMV-IRES-Puro/Ø) were kindly provided by Professor Peter ten Dijke (LUMC, Leiden, The Netherlands). These vectors were used in conjunction with the packaging plasmids p8.91 and pSVCG. HEK 293T cells were seeded in a 10-cm plate and transfected with 5 µg p8.91, 2.5 µg pSVCG and 5 µg pLV-CMV-IRES-Puro/Ø or pLV-CMV-IRES-Puro/hENG, using Lipofectamine® 2000 (Thermo Fisher Scientific), according to the manufacturer’s instructions. After 10–12 h, medium was changed by fresh culture medium (DMEM) and cells were incubated for additional 48 h. Culture supernatants containing lentiviral particles were harvested, clarified by centrifugation at 1500 rpm for 5 min, and filtered through a 0.45 µm filter. Lentiviral particles at 1:3 dilution were used to infect WM-164 cells in suspension in the presence of 4 µg/mL polybrene (Sigma). After incubation for 24 h, medium was replaced by fresh culture medium. Twenty four hours later, infected cells were selected in the presence of 0.4 µg/mL puromycin (Sigma), and the resulting endoglin-overexpressing WM-164 cells (WM-164 ENG) were validated by immunoblot and flow cytometry analyses.

Immunoblot assays: Cells were washed twice with PBS and lysed in cold lysis solution containing 50 mM HEPES pH 7.5, 0.4 M KCl, 10% glycerol, 1% NP-40 and protease inhibitors (PhosSTOP™, Sigma Aldrich). Lysates were sonicated for 1 min and centrifuged at 13,000 rpm for 10 min at 4 °C. Supernatant fractions were used for Western blot analyses. Protein extracts or purified EVs were quantified for protein content using the bicinchoninic acid assay (Pierce™ BCA Protein Assay kit, Thermo Scientific). Equal amounts of extracted protein or purified EVs from each sample were resuspended in Laemmli buffer and, subsequently, incubated at 95 °C for 10 min. Samples were separated by SDS-PAGE and then transferred onto a PVDF membrane (Invitrogen). Protein-bound membranes were blocked with 0.1% Tween-20 (Sigma-Aldrich) in Tris-buffered saline (TBS) containing 5% BSA or 2.5–3% milk (TBS-T), and phosphatase inhibitor cocktail (0.2 mM sodium orthovanadate, 5 mM sodium beta-glycerophosphate and 10 mM sodium fluoride) for 2 h at room temperature. Membranes were then incubated overnight at 4 °C with the following primary antibodies specific for: human endoglin (1:1000 in TBS-T/BSA, Abcam #169545); ALIX (1:1000 in TBS-T/milk, Cell Signal #2171); MEK 1/2 (1:1000 in milk; Cell Signaling #8727S); AKT (1:1000 in milk, Cell Signaling #9272); β-actin (1 µg/mL in TBS-T/BSA, Sigma #A1978); and GAPDH (1:500 in TBS-T/BSA, Abcam #9484). Then, membranes were washed with TBT-T and incubated for 1 h at room temperature with the corresponding secondary HRP-linked antibodies. After rinsing with TBS-T, protein bands were revealed using SuperSignal™ West Pico PLUS Chemiluminescent substrate (Thermo Scientific) to enhance HRP luminescence, followed by analysis using the Molecular Imager® Gel Doc™ XR+ System with Image Lab™ software (Bio-Rad).

Immunofluorescence flow cytometry: Cell surface expression of endoglin in WM164 cells was analyzed by flow cytometry. After collecting and washing transfected cells in PBS by soft centrifugation at 1000 rpm 8 °C for 5 min, non-specific binding was blocked for 20 min at 4 °C with sterile-filtered 1% BSA in PBS (PBS-BSA). Cells were then incubated for 1 h at 4 °C with a mouse monoclonal antibody against human endoglin (P4A4, anti-CD105, 1/100; Developmental Studies Hybridoma Bank-DSHB-
University of Iowa, USA) or against the hemagglutinin (HA) tag (1/100; MilliporeSigma). As a negative control, cells were stained with isotype control antibodies (Immunostep, Salamanca, Spain) at the same concentration as the corresponding primary antibody. Following incubation with primary antibodies, cells were washed with PBS, and incubated with Alexa-Fluor-488-conjugated anti-mouse antibody (1/200, Molecular Probes) for an additional period of 45 min. Samples were then washed, resuspended in cold PBS, and analyzed with a FC500 Beckman Coulter flow cytometer using the FlowLogic software. Endoglin protein levels were measured using the fluorescence intensity mean and expressed as fold induction relative to empty-transfected cells.

EVs isolation by sequential ultracentrifugation, characterization and analyses: Cells were cultured in media supplemented with 10% EVs-depleted FBS. Serum was depleted of bovine EVs by ultracentrifugation at 100,000 g for 70 min at 10 °C and then filtered. Supernatant fractions collected from 48 to 72 h exponentially growing cell cultures were pelleted by centrifugation at 500 g for 10 min at 4 °C to remove any cell contamination. In addition, possible apoptotic bodies and large cell debris were removed from supernatants by centrifugation at 12,000 g for 20 min at 10 °C. EVs, including exosomes were then collected by spinning at 100,000 g for 70 min at 10 °C. The pellet with EVs was then washed in 20 mL of PBS and collected again by ultracentrifugation at 100,000 g for 70 min at 10 °C (Beckman, L100 X-P). The final pellet of EVs was resuspended in PBS. EVs size and particle number were analyzed using Nanosight (Nanoparticle Tracking Analysis-NTA) and its protein content was measured by BCA.

RNA isolation, cDNA synthesis and quantitative RT-PCR: microRNA (miRNA) and total RNA were isolated from cells using the miRNeasy Micro kit (Qiagen), according to the manufacturer’s instructions. To quantify specific microRNAs, first they were reversed transcribed using Taqman™ MicroRNA Reverse Transcription kit and then, PCR was performed using Taqman Universal PCR Master mix (Applied Biosystems) and specific and pre-designed Taqman® MicroRNA assays (hsa-miR-214: ID 002306 and hsa-miR-370: ID 002275). For quantification of gene expression, RT-PCR was performed with SuperScript™ II (Invitrogen) and FastStart Essential DNA Green Master (Roche) using the primers shown in Table 14.1. qRT-PCR was performed on Light Cycler 96 (Roche), according to the following PCR settings: initial denaturation for 10 min at 95 °C, 40 cycles of 15 s at 95 °C and 60 s at 60 °C for miRNA assays and 30 s at 60 °C in the case of gene expression assays. Both miRNA and total RNA quantifications were performed in triplicates. Gene and miRNA expressions were analyzed using the delta-deltaCT method for relative quantification and all samples were normalized to the corresponding housekeeping gene, hsa-miR-16 ID 000391 and human mRNA β-actin.

14.3 Results

Endoglin expression in primary melanomas and cultured cells

Endoglin expression was assessed in a cohort of primary melanomas and dermal nevi by immunohistochemistry. As expected, staining of endoglin was observed in endothelial cells from primary melanomas and dermal nevi. While endoglin staining was not detected in dermal nevi, 41.4 and 18.6% of primary melanomas showed low or high endoglin expression, respectively, in tumor cells (Fig. 14.1). These data suggest that, compared to normal nevi, melanoma tumors show markedly increased levels of endoglin. This prompted us to study whether endoglin expression correlates with melanoma malignancy or metastatic potential. Endoglin expression levels were also analyzed by immunoblotting in a panel of different melanoma cell lines (Fig. 14.2). While the non-metastatic or low metastatic melanoma cell lines (WM-164 and SK-Mel-28, respectively) showed low levels of endoglin, the more metastatic cell lines (SK-Mel-147 and SK-Mel-103)
had higher levels of endoglin expression (Fig. 14.2). These results suggest that endoglin expression correlates with malignancy in primary melanomas as well as in cultured melanoma cell lines.

Table 14.1 Sequences of primers used for qRT-PCR

Human gene	Sequence (5’-3’)
ENG (forward)	CTGCTGCTGAGCTGAATGAC
ENG (reverse)	AGTCCACCTTCACCCTGAC
PMEL (forward)	CTCATTCCAGTCGCACTTC
PMEL (reverse)	CAGATAGCCACTGGGTAC
TYR2 (forward)	TACGGCGTAATCCTGGAAA
TYR2 (reverse)	ATTTGCCATGCTGCTTGAA
MLANA (forward)	GCTCATCGGGCTGGTGTATT
MLANA (reverse)	ATAAGCAGGTGGAGCAATG
MITF (forward)	AACTCATGCGGTGAGCAAT
MITF (reverse)	TACCTGCAGGTGGAGCAAT
VEZF-1 (forward)	AGAGGAAAGCCGGCTGACT
VEZF-1 (reverse)	ACTCAGGAGCTTCACAGA
ACTB (forward)	GGACTTCGAGCAAGAGAT
ACTB (reverse)	AGCACTGTGTGGCGTAGA

Fig. 14.1 Endoglin expression in primary melanomas. The presence of endoglin in human dermal nevi (n = 3) and primary melanoma (n = 70) tissues was analyzed by immunohistochemistry and endoglin staining was quantified and classified as negative, low intensity or high intensity by the pathologist.

Primary melanomas	N (%)
Negative	28 (40.0)
Low intensity	29 (41.4)
High intensity	13 (18.6)
Total	70

Dermal nevi	N (%)
Negative	3 (100)
Low intensity	0
High intensity	0
Total	3

Characterization of ectopically overexpressed endoglin in the WM-164 cell line

To investigate the impact of endoglin in the malignant phenotype of melanoma cells, the low metastatic melanoma cell line WM-164 was...
transduced with a lentivirus encoding HA-tagged human endoglin. Following cell infection and puromycin selection, we verified the ectopic expression of endoglin by immunoblot analysis in cellular extracts and EVs fractions (Fig. 14.3a). As expected, endoglin-transduced cells and derived EVs showed a clear signal of ectopic endoglin relative to mock-transduced cells. To confirm the correct isolation of the EVs, the expression of ALIX, a broad biomarker of EVs, was tested. ALIX was not detected in cellular extracts, whereas a weak band was observed in EVs from mock- and endoglin-transduced cells (Fig. 14.3a), confirming the proper quality of purified EVs. To assess whether endoglin overexpression could be affecting other relevant signaling pathways, we analyzed total protein levels of MEK and AKT by immunoblotting. No significant differences were found in MEK and AKT protein levels between mock- and endoglin-transduced cells (Fig. 14.3b). The expression of ectopic endoglin in transduced WM-164 cells was also analyzed by flow cytometry using anti-HA or anti-endoglin (P4A4) monoclonal antibodies (Fig. 14.4). The strong expression of cell surface endoglin was demonstrated in endoglin-transduced WM-164 cells compared to the weak labelling of mock-transduced cells, as evidenced by the histograms obtained with anti-HA (Fig. 14.4a, left panel) and P4A4 anti-endoglin (Fig. 14.4a, right panel and Fig. 14.4b) monoclonal antibodies. Taken together, immunoblot (Fig. 14.3) and flow cytometry (Fig. 14.4) analyses demonstrate that

Fig. 14.2 Endoglin expression in primary melanomas and melanoma cell lines. Western blot analysis (upper panel) of endoglin expression in four melanoma cell lines with different metastatic phenotype. Quantification of endoglin staining relative to β-actin is shown in the lower panel.
lentiviral transduction of WM-164 cells efficiently yields endoglin overexpression at their cell surface. The results from Figs. 14.1 and 14.2 suggesting that endoglin expression correlates with malignancy of melanomas prompted us to analyze the malignant phenotype of the endoglin-expressing WM-164 cells by measuring the levels of PMEL and TYR2, two well-known melanoma markers. PMEL (Premelanosome protein) is expressed by melanocytes and melanoma cells, and is widely used as a melanoma marker in serum samples. Compared with normal melanocytes, PMEL is over-expressed at all stages of melanoma progression [73, 74]. Tyrosinase TYR2 is involved in melanogenesis and mediates anti-apoptotic effects in human melanoma cells [75]. Analysis by qRT-PCR of endoglin-transduced WM-164 cells and their

Fig. 14.3 Western blot analysis of endoglin-expressing WM-164 cells. a Analysis of cellular lysates and EVs from mock-transduced (ø) or endoglin-transduced (hENG⁺) WM-164 cells using antibodies to endoglin (anti-HA), the EVs marker ALIX or GAPDH, as a loading control. b Analysis of cellular lysates from mock-transduced (ø) or endoglin-transduced (hENG⁺) WM-164 cells using antibodies to endoglin (anti-HA), total MEK, total AKT or β-actin, as a loading control. Representative Western blots are shown.

Fig. 14.4 Flow cytometry analysis of endoglin-expressing WM-164 cells. a Cell surface expression of endoglin was analyzed in mock-transduced (ø) or endoglin-transduced (hENG⁺) WM-164 cells using anti-HA or P4A4 antibodies that recognize the recombinant endoglin. Representative flow cytometry histograms are shown. b Endoglin protein levels were measured in cells stained with P4A4 anti-endoglin antibody (n = 4 per condition) as in panel (a). **p < 0.01; by two-tailed student’s t-test.
derived EVs showed that *PMEL* and *TYR2* mRNA levels were significantly higher than those of mock-transduced WM-164 controls (Fig. 14.5). These results further support the involvement of endoglin in melanoma progression.

Effect of endoglin expression on additional markers of melanoma cancer cells

To further assess whether endoglin upregulation exerted a functional effect during melanoma development and progression, three additional markers were analyzed: (i) MLANA (also known as MART-1, Melanoma antigen recognized by T-cells 1); (ii) MITF (Microphthalmia-associated transcription factor); and (iii) VEZF-1 (Vascular endothelial zinc finger 1). Of note, MLANA and MITF are relevant proteins involved in melanocyte and melanoma biology. MLANA is a cytoplasmic protein expressed by normal melanocytes and benign nevi and it is used in the clinic to detect and confirm melanocytic tumors [76, 77]. In addition, MITF has been described as the main transcription factor regulating key processes in melanoma cell development, growth, survival, proliferation, differentiation and invasion [78, 79]. Also, VEZF-1 is a Krüppel-like zinc finger protein that contributes to cancer pathogenesis [80, 81]. qRT-PCR analysis showed that MLANA, MITF and VEZF-1 mRNA levels were significantly increased in endoglin-expressing WM-164 cells, but not in EVs, both compared to mock-transduced cells (Fig. 14.6). These findings further support the active role of endoglin in melanoma development and progression.

![Fig. 14.5 Analysis of the melanoma marker genes PMEL and TYR2 in endoglin-expressing WM-164 cells.](image-url)

Cells and EVs showing the qRT-PCR results for *PMEL* and *TYR2* from cells (upper panels) or their derived EVs (lower panels) are shown (n = 3 per condition). *p < 0.05; **p < 0.01; ***p < 0.001; by two-tailed student’s t-test.
Effect of ectopic endoglin expression in the levels of hsa-miR-214 and hsa-miR-370

Emerging evidence support the involvement of cellular and EVs miRNAs in cancer progression, diagnosis, and prognosis [56–59], including melanoma [60–62]. Therefore, we investigated the effect of endoglin in the levels of miR-214 and miR-370 as they (i) have been found dysregulated in several cancer types, including skin cancers, (ii) are predicted to target endoglin [64], and (iii) differential expression of circulating miR-370 has been reported in plasma from patients with hereditary hemorrhagic telangiectasia type 1 (HHT1), an autosomal dominant disorder due to mutations in the endoglin gene [64]. We then measured by qRT-PCR hsa-miR-214 and hsa-miR-370 levels in cells and EVs from endoglin-expressing WM-164 cells (Fig. 14.7). Levels of hsa-miR-370 were similar in control and endoglin-expressing WM-164 cells, whereas the expression of hsa-miR-214 showed a non-significant increased trend in endoglin-positive WM-164 cells compared to controls (Fig. 14.7, left panels). In EVs from endoglin-transduced WM-164 cells, the levels of hsa-miR-370 displayed a significant reduction, while those of hsa-miR-214 showed a significant increase compared to mock-transduced WM-164 cells (Fig. 14.7, right panels). These results suggest that endoglin expression in melanoma involves the dysregulation of hsa-miR-214 and hsa-miR-370, which in turn could modulate melanoma progression.
In this work, we demonstrate a correlation between endoglin expression and tumor malignancy in primary melanoma and cultured melanoma cell lines. We have also deepened into the underlying endoglin-dependent molecular mechanisms, mainly focusing on the role of microRNAs in this process. Besides its physiological role in angiogenesis, endoglin has also emerged as a promising therapeutic target in recent years since endoglin expression has been reported either in tumor vessels or neoplasm in tumor cells, including melanoma, renal cell carcinoma (RCC), leukemias, certain subtypes of sarcomas, and breast, ovarian, endometrial, and prostate cancer. The role of endoglin in tumor cells depends on the cellular context. In this regard, and in line with our results obtained in melanoma, endoglin would be promoting tumor development and progression, playing an important role in oncogenic signalling (Fig. 14.8); whereas in other cases it has been associated with tumor suppression [4, 15, 82, 83].

In melanoma, endoglin has been pointed out to be essential for tumor plasticity, playing a key role in the interplay between TGF-β and BMP signalling pathways. Accordingly, endoglin downregulation hinders anchorage-independent growth and invasiveness and abrogates tumor growth in preclinical models of melanoma [8]. Moreover, experiments with shRNA against endoglin have shown to significantly reduce proliferation, survival and migration of melanoma cells [26, 30]. Recently, the therapeutic efficacy of a fusion protein containing endoglin single-chain variable fragment and IP10 (Endoglin-scFv/IP10) has been demonstrated. Indeed, this fusion protein inhibited proliferation and angiogenesis, while stimulating apoptosis within melanoma tissue [25]. In this context, our results further support the hypothesis that endoglin mediates malignant melanocyte transformation in WM-164, as the levels of the well-known melanoma markers PMEL and TYR2 increase upon endoglin overexpression. Furthermore, an increased trend of hsa-mir-214 levels is observed from cells (left panels) or their derived EVs (right panels) are shown (n = 4 per condition). The miRNA expression levels are displayed relative to WM-164 cells transduced with the empty vector. *p < 0.05; **p < 0.01 by two-tailed student’s t-test.
in endoglin-transduced melanoma cells. Interestingly, hsa-mir-214 dysregulation has been widely described in several tumors, including melanoma.

Cancer-derived extracellular vesicles, including EVs, can target different cell types in the tumor microenvironment modulating tumor growth and metastasis [84–86]. Of note, cellular endoglin expression significantly regulates both hsa-mir-214 and hsa-mir-370 in EVs, of which endoglin is also a component. Thus, compared to EVs from control cells, endoglin overexpressing cells show reduced levels of hsa-mir-370 while increased content of hsa-mir-214 in EVs. We hypothesize that these dysregulated microRNAs in EVs may play a relevant role in tumor development and metastasis (Fig. 14.8). For example, the reduction of hsa-mir-370 levels in EVs from endoglin-expressing melanoma cells could favour the process of neo-angiogenesis, which is necessary for tumor growth. This can be achieved because endoglin is negatively regulated by hsa-mir-370 [63], and endoglin is highly expressed by actively proliferating endothelial cells of the tumor vasculature [7]. Consequently, EVs from the primary melanoma tumors carrying lower levels of hsa-mir-370 would favour migration, proliferation, differentiation and adhesion of endothelial cells. Given the reported role of hsa-mir-214 in tumor progression [65, 66], increased levels of hsa-mir-214 in EVs from melanoma cells may act in a paracrine manner once taken up by neighbour melanocyte cells, thereby transforming them and contributing to tumor growth and development (Fig. 14.8). The EVs-mediated targeting of hsa-mir-370 and hsa-mir-214 may not be limited to neoangiogenic vessels or melanocytes, as an effect on additional non-cancer cells from the tumor environment is expected as well [87]. Apart from malignant cells, non-cancerous cells, including adipocytes, endothelial cells of tumor vessels, lymphocytes, tumor-associated macrophages (TAMs), and cancer-associated fibroblasts (CAFs), as well as
molecules produced and released by them, constitute the tumor microenvironment [88, 89]. Active and mutual interactions, through a paracrine signalling or circulatory and lymphatic systems, between tumor cells and the tumor microenvironment have been described to play decisive roles in tumor initiation, development and progression, metastasis, and response to therapies [90, 91]. Consequently, the tumor environment has received increased attention in the recent cancer literature [92, 93]. For instance, melanoma-associated fibroblasts (MAFs) have been described to have a role in melanoma progression, therapy resistance and immunosurveillance [94–96]. Moreover, a variety of immune cells, i.e., T and B lymphocytes, macrophages, neutrophils, dendritic and natural killer cells support the growth and invasiveness of melanoma cells, using multiple mechanisms. Among them, it is remarkable the downregulation in T lymphocytes of anti-apoptotic proteins, including Bcl-2, caused by melanoma-derived EVs containing miRNAs, such as hsa-mir-690 [97, 98]. A recent study has shown that hsa-mir-125b-5p transferred by cutaneous melanoma-derived EVs induces a tumor-promoting TAM phenotype in macrophages [99]. A role for EVs carrying hsa-mir-370 or hsa-mir-214 on malignant progression has been outlined. Breast cancer cells-secreted EVs with hsa-mir-370-3p cargo can aggravate breast cancer through downregulation of CYLD tumor suppressor in fibroblasts concomitantly with activation of the NF-κB signaling pathway, thereby promoting the tumor cell functions [100]. Interestingly, expression of endoglin, a target of hsa-mir-370, in CAFs regulates invasion and stimulates colorectal cancer metastasis [101]. Also, by sponging hsa-mir-370-3p, the circular RNA (circRNA) circ_0020710 can promote melanoma cell proliferation, migration and invasion in vitro, as well as tumor growth in vivo through the upregulated expression of the CXCL12 [102], a chemokine known to regulate melanoma metastasis to distant sites [103]. In the case of hsa-mir-214, its downregulation in CAFs contributes to migration and invasion of gastric cancer cells through induction of epithelial-mesenchymal transition (EMT) [104]. Accordingly, hsa-mir-214-3p has been proposed as a novel therapeutic target in pancreatic CAFs and human pancreatic stellate cells (hPSCs), as its inhibition led to inhibition of TGF-β-induced differentiation of pancreatic CAFs and reduced expression of myofibroblast markers during the differentiation of hPSCs to myofibroblasts [105]. Furthermore, a role of tumor-secreted miR-214 in the conversion of CD4+ T cells into immune-suppressive regulatory T cells, promoting tumor immune escape has been described [106]. Future independent studies remain to be performed to better understand the functional impact of the endoglin-induced dysregulated microRNAs in melanoma cells and their microenvironment, as well as the possible mechanisms involved.

Along with the hsa-mir-214 and hsa-mir-370 cargos, EVs derived from endoglin-enriched melanoma cells, also contain the protein endoglin, in agreement with previous reports in EVs from endoglin-expressing endothelial cells or primary hepatic stellate cells [49–51]. Although endoglin+ EVs have been proposed as biomarkers for metastatic breast cancer [10], the putative functional role of this endoglin cargo in cancer remains to be elucidated. It is well established that endoglin specifically binds integrins [22, 37, 46] and tumor cell-derived EVs contain integrins involved the generation of pre-metastatic niches in specific tissues promoting organ-specific metastases of several types of cancer including melanoma [47, 84, 107]. Accordingly, it is tempting to speculate that by interacting with integrins, endoglin could be involved in these malignant processes. Further investigations are needed to better understand the role of endoglin in melanoma development.

Statements and Declarations

Funding This work was supported by grants from Ministerio de Ciencia, Innovación y Universidades (SAF2013-43421-R to CB), Consejo Superior de Investigaciones Científicas (201920E022 to CB), Fondo de Investigación Sanitaria (FIS) de la Seguridad Social (PI-20/01553 to JLR-P), and Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER; ISCIII-CB06/07/0038 to CB and contract CNV-234-PRF-360 to LR-L) of Spain. CIBERER is an initiative of the
Instituto de Salud Carlos III (ISCIII) of Spain supported by FEDER funds. The CNIO, certified as a Severo Ochoa Excellence Centre, is supported by the Spanish government through the ISCIII.

Disclosure of Interests All authors declare they have no conflict of interest.

Ethical Approval All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed Consent Informed consent for participation and publication was obtained from all individual participants included in the study.

Acknowledgements The authors would like to thank Carmen Langa and Elena de Blas for technical support, Prof. Peter ten Dijke (LUMC, Leiden, The Netherlands) and Dr. Carmen Langa and Elena de Blas for technical support, and Prof. Dr. César Menor-Salván for support and advice with BioRender software.

References

1. Motwani J, Eccles MR (2021) Genetic and genomic pathways of melanoma development, invasion and metastasis. Genes (Basel) 12(10):1543. https://doi.org/10.3390/genes12101543

2. Cherepakhin OS, Argenyi ZB, Moshtiri AS (2021) Genomic and transcriptomic underpinnings of melanoma genesis, progression, and metastasis. Cancers (Basel) 14(1):123. https://doi.org/10.3390/cancers14010123

3. Liu Y, Paauwe M, Nixon AB, Hawinkels LJAC (2020) Endoglin targeting: lessons learned and questions that remain. Int J Mol Sci 22(1):147. https://doi.org/10.3390/ijms22010147

4. González Muñoz T, Amaral AT, Puerto-Camacho P, Peinado H, de Alava E (2021) Endoglin in the spotlight to treat cancer. Int J Mol Sci 22(6):3186. https://doi.org/10.3390/ijms22063186

5. Gougos A, Letarte M (1990) Primary structure of endoglin, an RGD-containing glycoprotein of human endothelial cells. J Biol Chem 265:8361–8364

6. López-Novoa JM, Bernabeu C (2010) The physiological role of endoglin in the cardiovascular system. Am J Physiol Heart Circ Physiol 299(4):H959–H974. https://doi.org/10.1152/ajpheart.01251.2009

7. Bernabeu C, Lopez-Novoa JM, Quintanilla M (2009) The emerging role of TGF-beta superfamily coreceptors in cancer. Biochim Biophys Acta 1792(10):954–973. https://doi.org/10.1016/j.bbbadis.2009.07.003

8. Pardali E, van der Schaft DW, Wiercinska E, Gorter A, Hogendoorn PC, Griffoen AW, ten Dijke P (2011) Critical role of endoglin in tumor cell plasticity of Ewing sarcoma and melanoma. Oncogene 30(3):334–345. https://doi.org/10.1038/onc.2010.418

9. Liu P, Sun YL, Du J, Hou XS, Meng H (2012) CD105/Ki67 coexpression correlates with tumor progression and poor prognosis in epithelial ovarian cancer. Int J Gynecol Cancer 22:586–592

10. Douglas SR, Yeung KT, Yang J, Blair SL, Cohen O, Eliceiri BP (2021) Identification of CD105+ extracellular vesicles as a candidate biomarker for metastatic breast cancer. J Surg Res 268:168–173. https://doi.org/10.1016/j.jss.2021.06.050

11. Laukhina E, Schuettfort VM, D’Andrea A, Pradere B, Mori K, Quhal F, Sari Motlagh R, Mostafaei H, Katayama S, Grossmann NC, Rajwa P, Zeinler F, Abufaraj M, Moschini M, Zimmermann K, Karakiewicz PI, Fajkovic H, Scherr D, Compérat E, Nyirady P, Rink M, Enikeev D, Shariat SF (2022) Preoperative plasma level of endoglin as a predictor for disease outcomes after radical cystorectomy for nonmetastatic urothelial carcinoma of the bladder. Mol Carcinog 61(1):5–18. https://doi.org/10.1002/mc.23355

12. Greiner SM, Märklin M, Holzmanner S, Kanab K, Meyer S, Hinterleitner C, Tandler C, Hagedstein I, Jung G, Salih HR, Heitmann JS, Kauer J (2022) Identification of CD105+ extracellular vesicles as a candidate biomarker for metastatic breast cancer. J Surg Res 268:168–173. https://doi.org/10.1016/j.jss.2021.06.050

13. Puerto-Camacho P, Díaz-Martín J, Olmedo-Pelayo J, Bolado-Carrancio A, Salguero-Aranda C, Jordán-Pérez C, Esteban-Medina M, Álamo-Alvarez I, Delgado-Bellido D, Lobo-Selma L, Dopazo J, Sastre A, Alonso J, Grünewald TGP, Bernabeu C, Byron A, Brunton VG, Amaral AT, de Alava E (2022) Endoglin and MMP14 contribute to Ewing sarcoma spreading by modulation of cell-matrix interactions. Int J Mol Sci 23(15):8657. https://doi.org/10.3390/ijms23158657

14. Quintanilla M, Ramirez JR, Pérez-Gómez E, Romero D, Velasco B, Letarte M, López-Novoa JM, Bernabéu C (2003) Expression of the TGF-beta coreceptor endoglin in epidermal keratinocytes and its dual role in multistage mouse skin carcinogenesis. Oncogene 22(38):5976–5985. https://doi.org/10.1038/sj.onc.1206841

15. Pérez-Gómez E, Villa-Morales M, Santos J, Fernández-Piquer E, Gamallo C, Dotor J, Bernabéu C, Quintanilla M (2007) A role for endoglin as a suppressor of malignancy during mouse skin
carcinogenesis. Cancer Res 67(21):10268–10277. https://doi.org/10.1158/0008-5472.CAN-07-1348
16. Oxmann D, Held-Feindt J, Stark AM, Hattermann K, Yoneda T, Mentlein R (2008) Endoglin expression in metastatic breast cancer cells enhances their invasive phenotype. Oncogene 27 (25):3567–3575. https://doi.org/10.1038/sj.onc.1211025
17. Romero D, Terzic A, Conley BA, Craft CS, Jovanovic B, Bergan RC, Vary CP (2010) Endoglin phosphorylation by ALK2 contributes to the regulation of prostate cancer cell migration. Carcinogenesis 31(3):359–366. https://doi.org/10.1093/carcin/bgp217
18. Santibanez JF, Perez-Gomez E, Fernandez-L A, Garrido-Martin EM, Carnero A, Malumbres M, Vary CP, Quintanilla M, Bernabéu C (2010) The TGF-beta co-receptor endoglin modulates the expression and transforming potential of H-Ras. Carcinogenesis 31(12):2145–2154. https://doi.org/10.1093/carcin/bgp199
19. Lakshman M, Huang X, Ananthanarayanan V, Jovanovic B, Liu Y, Craft CS, Romero D, Vary CP, Bergan RC (2011) Endoglin suppresses human prostate cancer metastasis. Clin Exp Metastasis 28(1):39–53. https://doi.org/10.1007/s10585-010-9356-6
20. Henry LA, Johnson DA, Crook T, Thompson AM, Reis-Filho JS, Isacke CM (2011) Endoglin expression in breast tumors suppresses invasion and metastasis and correlates with improved clinical outcome. Oncogene 30(9):1046–1058. https://doi.org/10.1038/onc.2010.488
21. Romero D, O’Neill C, Terzic A, Contois L, Young K, Conley BA, Bergan RC, Brooks PC, Vary CP (2011) Endoglin regulates cancer-stromal cell interactions in prostate tumors. Cancer Res 71 (10):3482–3493. https://doi.org/10.1158/0008-5472.CAN-10-2665
22. Rossi E, Sanz-Rodriguez F, Eleno N, Düwell A, Blanco FJ, Langa C, Botella LM, Cabanás C, Lopez-Novoa JM, Bernabéu C (2013) Endothelial endoglin is involved in inflammation: role in leukocyte adhesion and transmigration. Blood 121 (2):403–415. https://doi.org/10.1182/blood-2012-06-435347
23. Anderberg C, Cunha SI, Zhai Z, Cortez E, Pardali E, Johnson JR, Franco M, Pérez-Ribes M, Cordero R, Fuxe J, Johansson BR, Goumans MJ, Casanovas O, ten Dijke P, Arthur HM, Pietras K (2013) Deficiency for endoglin in tumor vasculature weakens the endothelial barrier to metastatic dissemination. J Exp Med 210(3):563–579. https://doi.org/10.1084/jem.20120662
24. Tesic N, Kamensek U, Sersa G, Kranjc S, Stimac M, Lampreht U, Prent V, Vandermeulen G, Butinar M, Turk B, Cemazar M (2015) Endoglin (CD105) silencing mediated by shRNA under the control of endothelin-1 promoter for targeted gene therapy of melanoma. Mol Ther Nucleic Acids 5(4):e239. https://doi.org/10.1038/mtna.2015.12
25. Li Y, Yang X, Lu X, Peng Z, Lai C, Xie S, Wei S, Yao H, Ding Z, Zhao X, Liu A, Hou X, Mo F (2020) Recombinant endoglin-single-chain variable fragment/induced protein 10 fusion protein potently boosts the anti-tumor efficacy of adoptively transferred TRP2-specific CD8+ CD28+ cytotoxic T lymphocytes in mice. J Biomed Nanotechnol 16 (7):1119–1134. https://doi.org/10.1166/jbn.2020.2949
26. Savarin M, Kamensek U, Znidar K, Todorovic V, Sersa G, Cemazar M (2021) Evaluation of a novel plasmid for simultaneous gene electrotransfer-mediated silencing of CD105 and CD146 in combination with irradiation. Int J Mol Sci 22 (6):3069. https://doi.org/10.3390/ijms22063069
27. Altomonte M, Montagner R, Fonsatti E, Colizzi F, Cattarossi I, Braseveanu LI, Nicotra MR, Catte lan A, Natali PG, Maio M (1996) Expression and structural features of endoglin (CD105), a transforming growth factor beta1 and beta3 binding protein, in human melanoma. Br J Cancer 74 (10):1586–1591
28. Salgado KB, Toscani NV, Silva LL, Hilbig A, Barbosa-Coutinho LM (2007) Immunexpression of endoglin in brain metastasis secondary to malignant melanoma: evaluation of angiogenesis and comparison with brain metastasis secondary to breast and lung carcinomas. Clin Exp Metastasis 24(6):403–410
29. Muhoz R, Arias Y, Ferreras JM, Jiménez P, Langa C, Rojo MA, Gayoso MJ, Córdoba-Díaz D, Bernabéu C, Gibrés T (2013) In vitro and in vivo effects of an anti-mouse endoglin (CD105)-immunotoxin on the early stages of mouse B16MEL4A5 melanoma tumours. Cancer Immunol Immunother 62(3):541–551. https://doi.org/10.1007/s00262-012-1357-7
30. Dolinsek T, Sersa G, Prosen L, Bosnjak M, Stimac M, Razborsek U, Cemazar M (2015) Electrotransfer of plasmid DNA encoding an anti-mouse endoglin (CD105) shRNA to B16 melanoma tumors with low and high metastatic potential results in pronounced anti-tumor effects. Cancers (Basel) 8(1):3. https://doi.org/10.3390/cancers8010003
31. Schadendorf D, van Akkooi ACJ, Berking C, Griewank KG, Gutzmmer R, Hauschild A, Stang A, Roesch A, Uggurel S (2018) Melanoma. Lancet 392 (10151):971–984. https://doi.org/10.1016/S0140-6736(18)31559-9
32. Albittar AA, Alhalabi O, Gilitza Oliva IC (2020) Immunotherapy for melanoma. Adv Exp Med Biol 1244:51–68. https://doi.org/10.1007/978-3-030-41008-7_3
Correlation Between Endoglin and Malignant Phenotype in Human …

33. Bernabeu C, Conley BA, Vary CP (2007) Novel biochemical pathways of endoglin in vascular cell physiology. J Cell Biochem 102(6):1375–1388. https://doi.org/10.1002/jcb.21594

34. Llorca O, Trujillo A, Blanco FJ, Bernabeu C (2007) Structural model of human endoglin, a transmembrane receptor responsible for hereditary hemorrhagic telangiectasia. J Mol Biol 365(3):694–705. https://doi.org/10.1016/j.jmb.2006.06.015

35. Saito T, Bokhove M, Croci R, Zamora-Caballero S, Han L, Letarte M, de Sanctis D, Jovine L (2017) Structural basis of the human endoglin-BMP9 interaction: insights into BMP signaling and HHT1. Cell Rep 19(9):1917–1928. https://doi.org/10.1016/j.celrep.2017.05.011

36. Alt A, Miguel-Romero L, Donderis J, Aristorena M, Blanco FJ, Round A, Rubio V, Bernabeu C, Marina A (2012) Structural and functional insights into endoglin ligand recognition and binding. PLoS ONE 7(2):e29948. https://doi.org/10.1371/journal.pone.0029948

37. Rossi E, Smadja DM, Boscolo E, Langa C, Arevalo MA, Pericacho M, Gamella-Pouzelo L, Kauskot A, Botella LM, Gaussem P, Bischoff J, Lopez-Novoa JM, Bernabeu C (2016) Endoglin regulates mural cell adhesion in the circulatory system. Cell Mol Life Sci 73(8):1715–1739. https://doi.org/10.1007/s00018-015-2099-4

38. Ruiz-Llorente L, Gallardo-Vara E, Rossi E, Smadja DM, Botella LM, Bernabeu C (2017) Endoglin and alk1 as therapeutic targets for hereditary hemorrhagic telangiectasia. Expert Opin Ther Targets 21(10):933–947. https://doi.org/10.1080/14728222.2017.1365839

39. Bernabeu C, Bayrak-Toydemir P, McDonald J, Letarte M (2020) Potential second-hits in hereditary hemorrhagic telangiectasia. J Clin Med 9(11):3571. https://doi.org/10.3390/jcm9113571

40. Guerrero-Esteo M, Sanchez-Elsner T, Letamendia A, Bernabeu C (2002) Extracellular and cytoplasmic domains of endoglin interact with the transforming growth factor-beta receptors I and II. J Biol Chem 277(32):29197–29209. https://doi.org/10.1074/jbc.M111991200

41. Blanco FJ, Santibanez JF, Bernabeu C (2005) Interaction and functional interplay between endoglin and ALK-1, two components of the endothelial transforming growth factor-beta receptor complex. J Cell Physiol 204(2):574–584. https://doi.org/10.1002/jcp.20311

42. Hodgson J, Ruiz-Llorente L, McDonald J, Quarrell O, Ugonna K, Bentham J, Mason R, Martin J, Moore D, Bergstrom K, Bayrak-Toydemir P, Wooderchak-Donahue H, Morrell NW, Condiffe R, Bernabeu C, Upton PD (2021) Homozygous GDF2 nonsense mutations result in a loss of circulating BMP9 and BMP10 and are associated with either PAH or an “HHT-like” syndrome in children. Mol Genet Genomic Med 9(12):e1685. https://doi.org/10.1002/mgg3.1685

43. Cummings SD, Ryu B, Samuels MA, Yu X, Meeker AK, Healey MA, Alani RM (2008) Id1 delays senescence of primary human melanocytes. Mol Carcinog 47(9):653–659. https://doi.org/10.1002/mc.20422

44. Hawinkels LJ, de Vinuesa AG, Pauwels M, Kruithof-de Julio M, Wiercinska E, Pardali E, Mezzanotte L, Keereweer S, Braunmüller TM, Heijkants RC, Jonkers J, Löwik CW, Goumans MJ, ten Hagen TL, ten Dijke P (2016) Activin receptor-like kinase 1 ligand trap reduces microvascular density and improves chemotherapy efficiency to various solid tumors. Clin Cancer Res 22(1):96–106. https://doi.org/10.1158/1078-0432.CCR-15-0743

45. Peres J, Damerell V, Chauhan J, Popovic A, Desprez PY, Galibert MD, Goding CR, Prince S (2021) TBX3 promotes melanoma migration by transcriptional activation of ID1, which prevents activation of E-cadherin by MITF. J Invest Dermatol 141(9):2250-2260.e2. https://doi.org/10.1016/j.jid.2021.02.740

46. Rossi E, Pericacho M, Bachelot-Loza C, Pidard D, Gaussem P, Poiraunt-Chassac S, Blanco FJ, Langa C, Gonzalez-Manchon C, Novoa JML, Smadja DM, Bernabeu C (2018) Human endoglin as a potential new partner involved in platelet-endothelium interactions. Cell Mol Life Sci 75(7):1269–1284. https://doi.org/10.1007/s00018-017-2694-7

47. Huang R, Hofstad FK (2018) Integrins as therapeutic targets in the organ-specific metastasis of human malignant melanoma. J Exp Clin Cancer Res 37(1):92. https://doi.org/10.1186/s13046-018-0763-x

48. Arias-Mejias SM, Warda KY, Quattrocchi E, Alonso-Quinones H, Sominidi-Damodaran S, eno JML, Smadja DM, Bernabeu C (2018) Human endoglin as a potential new partner involved in platelet-endothelium interactions. Cell Mol Life Sci 75(7):1269–1284. https://doi.org/10.1007/s00018-017-2694-7

49. Belik D, Tsang H, Wharton J, Howard L, Bernabeu C, Wojciak-Stothard B (2016) Endothelium-derived microparticles from chronically thromboembolic pulmonary hypertensive patients facilitate endothelial angiogenesis. J Biomed Sci 19(1):92. https://doi.org/10.1186/s12929-016-0224-9

50. Ermini L, Ausman J, Melland-Smith M, Yeganeh B, Rolfo A, Litvack ML, Todros T, Letarte M, Post M, Caniggia I (2017) A Single Kruithof-de Julio M, Wiercinska E, Pardali E, Mezzanotte L, Keereweer S, Braunmüller TM, Heijkants RC, Jonkers J, Löwik CW, Goumans MJ, ten Hagen TL, ten Dijke P (2016) Activin receptor-like kinase 1 ligand trap reduces microvascular density and improves chemotherapy efficiency to various solid tumors. Clin Cancer Res 22(1):96–106. https://doi.org/10.1158/1078-0432.CCR-15-0743

51. Meurer S, Wimmer AE, Leur EV, Weiskirchen R (2019) Endoglin trafficking/exosomal targeting in liver cells depends on N-glycosylation. Cells 8(9):997. https://doi.org/10.3390/cells8090997

52. Vicen M, Igreja S, Alves BJ, Tripska K, Vitterová B, Najmanová I, Eissazadeh S, Micuda S, Nachtigal P
Membrane and soluble endoglin role in cardiovascular and metabolic disorders related to metabolic syndrome. Cell Mol Life Sci 78(6):2405–2418. https://doi.org/10.1007/s00018-020-03701-w

Willms E, Cabañas C, Mäger I, Wood MJ, Vader P (2018) Extracellular vesicle heterogeneity: subpopulations, isolation techniques, and diverse functions in cancer progression. Front Immunol 30(9):738. https://doi.org/10.3389/fimmu.2018.00738

54. Zeng EZ, Chen I, Chen X, Yuan X (2022) Exosomal microRNAs as novel cell-free therapeutics in tissue engineering and regenerative medicine. Biomedicines 10(10):2485. https://doi.org/10.3390/biomedicines10102485

55. Han C, Yang J, Sun J, Qin G (2022) Extracellular vesicles in cardiovascular disease: biological functions and therapeutic implications. Pharmacol Ther 233:108025. https://doi.org/10.1016/j.pharmthera.2021.108025

56. Peng Y, Croce CM (2016) The role of microRNAs in human cancer. Signal Transduct Target Ther 28(1):15004. https://doi.org/10.1038/sigtrans.2015.4

57. Sun Z, Shi K, Yang S, Liu J, Zhou Q, Wang G, Song J, Li Z, Zhang Z, Yuan W (2018) Effect of exosomal miRNA on cancer biology and clinical applications. Mol Cancer 17(1):147. https://doi.org/10.1186/s12933-018-0897-7

58. Hill M, Tran N (2021) miRNA interplay: mechanisms and consequences in cancer. Dis Model Mech 14(4):dmm047662. https://doi.org/10.1242/dmm.047662

59. Menon A, Abd-Aziz N, Khalid K, Poh CL, Naidu R (2022) miRNA: a promising therapeutic target in cancer. Int J Mol Sci 23(19):11502. https://doi.org/10.3390/ijms231911502

60. Thyagarajan A, Shaban A, Sahu RP (2018) MicroRNA-directed cancer therapies: implications in melanoma intervention. J Pharmacol Exp Ther 364(1):1–12. https://doi.org/10.1122/jpet.117.242636

61. Durante G, Broseghini E, Comito F, Naddeo M, Milani M, Salamon I, Campione E, Dika E, Ferracin M (2022) Circulating microRNA biomarkers in melanoma and non-melanoma skin cancer. Expert Rev Mol Diagn 22(3):305–318. https://doi.org/10.1080/14737159.2022.2049243

62. Huang N, Lee KJ, Stark MS (2022) Current trends in circulating biomarkers for melanoma detection. Front Med (Lausanne) 5(9):873728. https://doi.org/10.3389/fmed.2022.873728

63. Chen XP, Chen YG, Lan JY, Shen ZJ (2014) MicroRNA-370 suppresses proliferation and promotes endometrioid ovarian cancer chemosensitivity to cDDP by negatively regulating ENG. Cancer Lett 353:201–210. https://doi.org/10.1016/j.canlet.2014.07.026

64. Ruiz-Llorente L, Albiñana V, Botella LM, Bernabeu C (2020) Differential expression of circulating plasma miRNA-370 and miRNA-10a from patients with hereditary hemorrhagic telangiectasia. J Clin Med 9(9):2855. https://doi.org/10.3390/jcm9092855

65. Neagu M, Constantin C, Cretoiu SM, Zurac S (2020) miRNAs in the diagnosis and prognosis of skin cancer. Front Cell Dev Biol 28(8):71. https://doi.org/10.3389/fcell.2020.00071

66. Penna E, Orso F, Taverna D (2015) miR-214 as a key hub that controls cancer networks: small player, multiple functions. J Invest Dermatol 135(4):960–969. https://doi.org/10.1038/jid.2014.479

67. Sim J, Ahn H, Abdul R, Kim H, Yi KJ, Chung YM, Chung MS, Paik SS, Song YS, Jang K (2015) High microRNA-370 expression correlates with tumor progression and poor prognosis in breast cancer. J Breast Cancer 18(4):323–328. https://doi.org/10.4048/jbc.2015.18.4.323

68. Wu Z, Sun H, Zeng W, He J, Mao X (2012) Upregulation of microRNA-370 induces proliferation in human prostate cancer cells by downregulating the transcription factor FOXO1. PLoS ONE 7(9):e45825. https://doi.org/10.1371/journal.pone.0045825

69. Zeng Y, Fu M, Wu GW, Zhang AZ, Chen JP, Lin HY, Fu YA, Jia J, Cai ZD, Wu XJ, Lan P (2016) Upregulation of microRNA-370 promotes cell apoptosis and inhibits proliferation by targeting PTEN in human gastric cancer. Int J Oncol 49(4):1589–1599. https://doi.org/10.3892/ijo.2016.3642

70. Chen M, Xia Y, Tan Y, Jiang G, Jin H, Chen Y (2018) Downregulation of microRNA-370 in esophageal squamous-cell carcinoma is associated with cancer progression and promotes cancer cell proliferation via upregulating PIN1. Gene 30(661):68–77. https://doi.org/10.1016/j.gene.2018.03.090

71. Pan XP, Wang HX, Tong DM, Li Y, Huang LH, Wang C (2017) miRNA-370 acts as a tumor suppressor via the downregulation of PIM1 in hepatocellular carcinoma. Eur Rev Med Pharmacol Sci 21(6):1254–1263

72. Wei S, Ma W (2017) MiR-370 functions as oncogene in melanoma by direct targeting pyruvate dehydrogenase B. Biomed Pharmacother 90:278–286. https://doi.org/10.1016/j.biopor.2017.03.068

73. Muqaku B, Eisinger M, Meier SM, Tahir A, Pukrop T, Haferkamp S, Slany A, Reichle A, Gerner C (2017) Multi-omics analysis of serum samples demonstrates reprogramming of organ functions via systemic calcium mobilization and platelet activation in metastatic melanoma. Mol Cell Proteomics 16(1):86–99. https://doi.org/10.1074/mcp.M116.063133

74. Zhang S, Chen K, Liu H, Jing C, Zhang X, Qu C, Yu S (2021) PMEL as a prognostic biomarker and negatively associated with immune infiltration in skin cutaneous melanoma (SKCM). J Immunother Cancer 44(6):214–223. https://doi.org/10.1007/JCIJ.0000000000000374

75. Sendel A, Kohler I, Fellmann C, Lowe SW, Hengartner MO (2010) HIF-1 antagonizes p53-mediated apoptosis through a secreted neuronal tyrosinase. Nature 465(7298):577–583. https://doi.org/10.1038/nature09141
76. Dass SE, Huizenga T, Farshchian M, Mehregan DR (2021) Comparison of SOX-10, HMB-45, and melan-A in benign melanocytic lesions. Clin Cosmet Investig Dermatol 5(14):1419–1425. https://doi.org/10.2147/CCID.S333376

77. Vincze E, Rudnick E (2022) Melanocytic marker melan-A detects molluscum contagiosum bodies. J Histotechnol 45(1):36–38. https://doi.org/10.1080/01478885.2021.1964872

78. Abrahamian C, Grimm C (2021) Endolysosomal cation channels and MITF in melanocytes and melanoma. Biomolecules 11(7):1021. https://doi.org/10.3390/biom11071021

79. Goding CR, Arnheiter H (2019) MITF—the founder of the melanocytic lineage. Genes Dev 33(15):101–1021. https://doi.org/10.1101/gad.324657.119

80. AlAbdi L, He M, Yang Q, Norvil AB, Gowher H (2015) Identiﬁcation of Endoglin as an epigenetically regulated tumour-suppressor gene in lung cancer. Br J Cancer 113(6):970–978. https://doi.org/10.1038/bjc.2015.302

81. Shi X, Zhao P, Zhao G (2022) VEZF1, destabilized by STUB1, affects cellular growth and metastasis of hepatocellular carcinoma by transcriptionally regulating PAQR4. Cancer Gene Ther. https://doi.org/10.1038/s41417-022-00540-8

82. Wong VC, Chan PL, Bernabeu C, Law S, Lung ML (2008) Identiﬁcation of an invasion and tumor-suppressing gene, endoglin (ENG), silenced by both epigenetic inactivation and allelic loss in esophageal squamous cell carcinoma. Br J Cancer 109(9):1290–1298. https://doi.org/10.1038/sj.bjc.6605223

83. O’Leary K, Shia A, Cavicchioli F, Haley V, Comino A, Merlano M, Mauri F, Walter K, Lackner M, Wischnewsky MB, Crook T, Lo Negro C, Schmid P (2015) Identiﬁcation of Endoglin as an epigenetically regulated tumour-suppressor gene in lung cancer. Br J Cancer 113(6):970–978. https://doi.org/10.1038/bjc.2015.302

84. Peinado H, Zhang H, Matei IR, Costa-Silva B, Hoshino A, Rodrigues G, Psaila B, Kaplan RN, Bromberg JF, Kang Y, Bissell MJ, Cox TR, Giaccia AJ, Erler JT, Hiratsuka S, Ghajar CM, Hoshino A, Rodrigues G, Psaila B, Kaplan RN, Romano V, Belviso I, Venuta A, Ruocco MR, Masone S, Aliotta F, Fiume G, Montagnani S, Avagliano A, Arcucci A (2021) Inﬂuence of tumor microenvironment and fibroblast population plasticity on melanoma growth, therapy resistance and immunoevasive. Int J Mol Sci 22(10):5283. https://doi.org/10.3390/ijms22105283

85. Nogué L, Benito-Martín A, Hergueta-Redondo M, Peinado H (2018) The influence of tumour-derived extracellular vesicles on local and distal metastatic dissemination. Mol Aspects Med 60:15–26. https://doi.org/10.1016/j.mam.2017.11.012

86. Cardeñes B, Clares I, Bezos T, Toribio V, López-Martín S, Rocha A, Peinado H, Yáñez-Mó M, Cabañas C (2022) ALCAM/CD166 is involved in the binding and uptake of cancer-derived extracellular vesicles. Int J Mol Sci 23(10):5753. https://doi.org/10.3390/ijms23105753

87. Bhatta B, Cooks T (2020) Reshaping the tumor microenvironment: extracellular vesicles as messengers of cancer cells. Carcinogenesis 41(11):1461–1470. https://doi.org/10.1093/carcin/bga107

88. Gunaydın G (2021) CAFs interacting with TAMs in tumor microenvironment to enhance tumorigenesis and immune evasion. Front Oncol 14(11):668349. https://doi.org/10.3389/fonc.2021.668349

89. Su T, Zhang P, Zhao F, Zhang S (2021) Exosomal microRNAs mediating crosstalk between cancer cells with cancer-associated fibroblasts and tumor-associated macrophages in the tumor microenvironment. Front Oncol 1(11):631703. https://doi.org/10.3389/fonc.2021.631703

90. Lapagne C, Domagala M, Le Naour A, Que-merais C, Hamel D, Fournié JJ, Couderc B, Bousquet C, Ferrand A, Poupot M (2019) Latest advances in targeting the tumor microenvironment for tumor suppression. Int J Mol Sci 20(19):4719. https://doi.org/10.3390/ijms20194719

91. Cao H, Gao S, Jogan R, Sugimura R (2022) The tumor microenvironment reprograms immune cells. Cell Reprogram. https://doi.org/10.1089/cell.2022.0047

92. Xiao Y, Yu D (2021) Tumor microenvironment as a therapeutic target in cancer. Pharmaco Ther 221:107753. https://doi.org/10.1016/j.pharmthera.2020.107753

93. Pernet S, Evrard S, Khatib AM (2022) The give-and-take interaction between the tumor microenvironment and immune cells regulating tumor progression and repression. Front Immunol 13(13):850856. https://doi.org/10.3389/fimmu.2022.850856

94. Bellei B, Migliano E, Picardo M (2020) A framework of major tumor-promoting signal transduction pathways implicated in melanoma-fibroblast dialogue. Cancers (Basel) 12(11):3400. https://doi.org/10.3390/cancers12113400

95. Romano V, Belviso I, Venuta A, Ruocco MR, Masone S, Aliotta F, Fiume G, Montagnani S, Avagliano A, Arcucci A (2021) Influence of tumor microenvironment and fibroblast population plasticity on melanoma growth, therapy resistance and immunoevasive. Int J Mol Sci 22(10):5283. https://doi.org/10.3390/ijms22105283

96. Érsek B, Sillő P, Cakir U, Molnár V, Bencsik A, Mayer B, Mezey E, Kárpáti S, Pós Z, Németh K (2021) Melanoma-associated fibroblasts impair CD8+ T cell function and modify expression of immune checkpoint regulators via increased arginase activity. Cell Mol Life Sci 78(2):661–673. https://doi.org/10.1007/s00018-020-03517-8

97. Zhou J, Yang Y, Wang W, Zhang Y, Chen Z, Hao C, Zhang J (2018) Melanoma-released exosomes directly activate the mitochondrial apoptotic pathway of CD4+ T cells through their microRNA cargo. Exp Cell Res 371(2):364–371. https://doi.org/10.1016/j.yexcr.2018.08.030
98. Simiczynjew A, Dratkiewicz E, Mazurkiewicz J, Ziętek M, Matkowski R, Nowak D (2020) The influence of tumor microenvironment on immune escape of melanoma. Int J Mol Sci 21(21):8359. https://doi.org/10.3390/ijms21218359

99. Gerloff D, Lützkendorf J, Moritz RKC, Wersig T, Mädler K, Müller LP, Sunderkötter C (2020) Melanoma-derived exosomal miR-125b-5p educates tumor associated macrophages (TAMs) by targeting lysosomal acid lipase A (LIPA). Cancers (Basel) 12(2):464. https://doi.org/10.3390/cancers12020464

100. Ren Z, Ly M, Yu Q, Bao J, Lou K, Li X (2021) MicroRNA-370-3p shuttled by breast cancer cell-derived extracellular vesicles induces fibroblast activation through the CYLD/Nf-κB axis to promote breast cancer progression. FASEB J 35(3):e21383. https://doi.org/10.1096/fj.202001430RR

101. Paauwe M, Schoonderwoerd MJA, Helderman RFCP, Harryvan TJ, Groenewoud A, van Pelt GW, Bor R, Hemmer DM, Versteeg HHI, Snaar-Jagalska BE, Theuer CP, Hardwick JCH, Sier CFM, Ten Dijke P, Hawinkels LJAC (2018) Endoglin expression on cancer-associated fibroblasts regulates invasion and stimulates colorectal cancer metastasis. Clin Cancer Res 24(24):6331–6344. https://doi.org/10.1158/1078-0432.CCR-18-0329

102. Wei CY, Zhu MX, Lu NH, Liu JQ, Yang YW, Zhang Y, Shi YD, Feng ZH, Li JX, Qi FZ, Gu JY (2020) Circular RNA circ_0020710 drives tumor progression and immune evasion by regulating the miR-370-3p/CXCL12 axis in melanoma. Mol Cancer 19(1):84. https://doi.org/10.1186/s12943-020-01191-9

103. McConnell AT, Ellis R, Pathy B, Plummer R, Lovat PE, O’Boyle G (2016) The prognostic significance and impact of the CXCR4-CXCR7-CXCL12 axis in primary cutaneous melanoma. Br J Dermatol 175(6):1210–1220. https://doi.org/10.1111/bjd.14720

104. Wang R, Sun Y, Yu W, Yan Y, Qiao M, Jiang R, Guan W, Wang L (2019) Downregulation of miRNA-214 in cancer-associated fibroblasts contributes to migration and invasion of gastric cancer cells through targeting FGF9 and inducing EMT. J Exp Clin Cancer Res 38(1):20. https://doi.org/10.1186/s13046-018-0995-9

105. Kuninty PR, Bojmar L, Tjomsland V, Larsson M, Storm G, Östman A, Sandström P, Prakash J (2016) MicroRNA-199a and -214 as potential therapeutic targets in pancreatic stellate cells in pancreatic tumor. OncoTARGET 7(13):16396–16408. https://doi.org/10.18632/oncotarget.7651

106. Yin Y, Cai X, Chen X, Liang H, Zhang Y, Li J, Wang Z, Chen X, Zhang W, Yokoyama S, Wang C, Li L, Li L, Hou D, Dong L, Xu T, Hiroi T, Yang F, Ji H, Zhang J, Zen K, Zhang CY (2014) Tumor-secreted miR-214 induces regulatory T cells: a major link between immune evasion and tumor growth. Cell Res 24(10):1164–1180. https://doi.org/10.1038/cr.2014.121

107. Aladowicz E, Lanfrancone L (2014) Investigating the metastatic niche in melanoma: a new therapeutic opportunity? Future Oncol 10(5):699–701. https://doi.org/10.2217/fon.14.26

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license and indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the chapter’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
Increase in Frequency of Myeloid-Derived Suppressor Cells in the Bone Marrow of Myeloproliferative Neoplasm: Potential Implications in Myelofibrosis

Sunčica Kapor, Sanja Momčilović, Slobodan Kapor, Slavko Mojsilović, Milica Radojković, Milica Apostolović, Branka Filipović, Mirjana Gotić, Vladan Čokić, and Juan F. Santibanez

Abstract

The Philadelphia-negative myeloproliferative neoplasms (MPNs), defined as clonal disorders of the hematopoietic stem cells, are characterized by the proliferation of mature myeloid cells in the bone marrow and a chronic inflammatory status impacting the initiation, progression, and symptomatology of the malignancies. There are three main entities defined as essential thrombocythemia (ET), polycythemia vera (PV), and primary myelofibrosis (PMF), and genetically classified by JAK2V617F, CALR, or MPL mutations. In MPNs, due to the overproduction of inflammatory cytokines by the neoplastic cells and non-transformed immune cells, chronic inflammation may provoke the generation and expansion of myeloid-derived suppressors cells (MDSCs) that highly influence the
adaptive immune response. Although peripheral blood MDSC levels are elevated, their frequency in the bone marrow of MPNs patients is not well elucidated yet. Our results indicated increased levels of total (T)-MDSCs (CD33+HLA-DR−/low) and polymorphonuclear (PMN)-MDSCs (CD33+/HLA-DRlow/CD15+/CD14−) in the bone marrow and peripheral blood of all three types of MPNs malignancies. However, these bone marrow MDSCs-increased frequencies did not correlate with the clinical parameters, such as hepatomegaly, leukocytes, hemoglobin, or platelet levels, or with JAK2 and CALR mutations. Besides, bone marrow MDSCs, from ET, PV, and PMF patients, exhibited immunosuppressive function, determined as T-cell proliferation inhibition. Notably, the highest T-MDSCs and PMN-MDSC levels were found in PMF samples, and the increased MDSCs frequency strongly correlated with the degree of myelofibrosis. Thus, these data together indicate that the immunosuppressive MDSCs population is increased in the bone marrow of MPNs patients and may be implicated in generating a fibrotic microenvironment.

Keywords

MPNs · Bone-marrow · MDSCs · Immunosuppression · Fibrosis · And TGF-β1

Abbreviations

Abbreviation	Definition
CALR	Calreticulin
DC	Dendritic cells
ET	Essential thrombocytopenia
GM-CSF	Granulocyte macrophage-colony stimulating factor
HD	Healthy donors
HSC	Hematopoietic stem cell
HU	Hydroxyurea
IL	Interleukin
JAK	Janus Kinase
LDH	Lactate dehydrogenase
MDSCs	Myeloid-derived suppressor cells
M-MDSCs	Monocytic myeloid-derived suppressor cells
MNCs	Mononuclear cells
MPL	Thrombopoietin receptor
MPNs	Myeloproliferative neoplasms
NK	Natural Killer
PMF	Primary myelofibrosis
PMN-MDSCs	Polymorphonuclear myeloid-derived suppressor cells
PV	Polycythemia vera
SE	Sedimentation
STAT	Signal transducer and activators of transcription
TGF-β1	Transforming growth factor-β1
T-MDSCS	Total myeloid-derived suppressors cells
TNF-α	Tumor necrosis factor-α
WBC	White blood cells
WHO	World Health Organization

15.1 Introduction

BCR-ABL1/Philadelphia chromosome-negative myeloproliferative neoplasms (MPNs) are clonal hematopoietic disorders driven by somatic mutation in Janus Kinase (JAK)2, Calreticulin (CALR), or thrombopoietin receptor (MPL) genes. There are three main MPNs entities: Essential thrombocythemia (ET), mainly characterized by a megakaryocyte expansion and increased platelet count; polycythemia vera (PV) typically exhibits an increased erythrocytes mass along with leukocytosis and thrombocytosis, which is consistent with the panmyelosis detected in the bone marrow of the patients; and primary myelofibrosis (PMF), mainly characterized by an abnormal proliferation of myeloid cells, extramedullary hematopoiesis, and a variable grade of reticulin/collagen bone marrow deposition due to myelofibrosis [1]. Besides, the ET and PV incidences have a similar rate of 1–2 cases per 100,000 person-years in the United States. Meanwhile, PMF seems more infrequent,
with 0.3 per 100,000 person-years incidences [2].

Even though MPNs, with an aberrantly increased number of mature cells, in the first stages are displayed as an indolent disorder, for example, ET and PV mainly exhibit asymptomatic peripheral cytoses; all the MPNs possess the potential to evolve to end-stage myelofibrosis and bone marrow failure or to develop acute leukemia [3].

Under normal conditions, healthy persons exhibit an inflammatory cascade regulated by a fine-tuning interplay of neuro-hormonal factors and cytokines with cellular activities and responses. Dysregulation of this system is a hallmark feature of the MPNs. At the same time, MPNs are characterized by dysregulated inflammatory responses that drive the evolution of malignancies [4]. Inflammation has been demonstrated to contribute to the development, progression, symptomatic burden, and prognosis of MPNs, which is characterized by elevated levels of inflammatory cytokines, such as tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) [5, 6].

Namely, polyclonal myeloid cells such as granulocytes, macrophages, and dendritic cells are identified as the primary inflammatory cytokines source in MPNs. Their abnormal activation may lead to disease progression and therapy resistance [7]. All MPNs are associated with different degrees of BM fibrosis, while the severity of myelofibrosis is directly proportional to the growth factor and proinflammatory cytokine production [8]. In this sense, transforming growth factor-β1 (TGF-β1), one of the hallmarks of cancer inflammation, is identified as part of the cytokine signature for fibroblast proliferation and activation and the development of bone marrow fibrosis [9, 10].

Interestingly, all the MPNs sub-groups evolve from genetic mutations within pluripotent stem cell populations in the bone marrow that also accumulate during the development of the disease. JAK2 V617F was the first described mutation inherent to MPNs, with 96% in PV, 50% in ET, and 50% in PMF [4, 11]. The constitutive activation of JAK2 V617F provokes hyperactivation of the signal transducer and activators of transcription (STAT) transcription factors with the results of exacerbated myeloid growth and expansion [12]. Moreover, JAK-STAT signaling induces the expression of various critical mediators of cancer and inflammation, such as immunomodulatory cytokines and growth factors, which further cause a positive autofeedback via the JAK/STAT pathway, thus perpetuating the malignant cellular phenotype [4, 13]. The other two primary MPN driver mutations, CALR and MPL, also constitutively activate JAK2/STAT signaling to promote, in this way, the development of MPNs [14].

Consequently, in most of these, the transformed hematopoietic stem progenitor cell clone express mutations in the constitutively activated JAK2 and downstream signaling that further drives malignant hematopoiesis. Moreover, the dysfunctional cytokine production in MPNs, including overproduction of TGF-β1, granulocyte macrophage-colony stimulating factor (GM-CSF), interleukin (IL)-3, and IL-6, could lead to the accumulation of immature myeloid cells such as myeloid-derived suppressor cells (MDSCs) [15, 16]. MDSCs seem to be one of the major obstacles to displaying natural antitumor immunity. They have been demonstrated to be abnormally elevated in inflammatory-associated diseases such as infection and diabetes [17, 18]. Specifically, MDSCs and their immunosuppressive activity have been related to the initiation and progression of cancer associated with chronic inflammation [19]. These immunosuppressive cells are mainly recognized as CD33⁺HLA-DR⁻/low with high inhibition capabilities on T cell proliferation and activation [20]. MDSCs exert their T-cell suppression by producing soluble factors involved in oxidative stress, such as reactive oxygen species, nitric oxide, and increased expression of inducible nitric oxide synthase. Also, they express several cytokines with immunosuppressive activities, such as IL-10 and TGF-β1 [16, 20]. Furthermore, MDSCs also demonstrate CD11b positivity, and by the expression of CD15 or CD14, they could be marked as polymorphonuclear (PMN-
MDSCs, expressing CD15) and monocytic (MDSCs, expressing CD14) [21]. In cancer, because of pathological signals produced by the tumor, MDSCs accumulate in bone marrow and spleen, wherefrom they migrate into peripheral blood and peripheral tissues, including tumors [22]. Moreover, PMN-MDSCs contribute to tumor growth and chemoresistance, as well as the resistance to immune checkpoint inhibitor therapy in melanoma patients through cytokine production and immunosuppression [23]. Although the cellular and molecular mechanisms of MDSC generation and expansion are an increased subject of investigation, it is well understood that these immunosuppressive cells arise in inflammatory conditions during an emergency myelopoiesis, namely when there is a growing demand for myeloid cells [24]. Under pathological conditions, such as infection or cancer, bone marrow emergency myelopoiesis responds to the increased production of inflammatory factors, such as GM-CSF, IL-6, and chemokines. In addition, these factors contribute to the generation and expansion of immunosuppressive MDSCs that collaborate in preventing excessive tissue damage due to an exacerbated immune response [16, 25]. Mainly, the MDSCs number is expanded as immature cells in the bone marrow. After that, they migrate to circulation, where terminal differentiation is blocked and converted into functional MDSCs [21]. Also, chronic inflammation may stimulate extramedullary myelopoiesis and promote the spleen and peripheral lymphoid organs’ MDSCs production, thus increasing the number of these cells in the resolution of the inflammation [26]. Besides, MDSCs have the potential to migrate to different peripheral organs and differentiate towards dendritic cells (DC), neutrophils, or macrophages to support immune cell functions [27]. T-cell lymphocyte (T-cell) inhibition is the hallmark of the functional features of MDSCs; At the same time, they may also inhibit DC and natural killer (NK) cells with lesser potency [20]. In this way, MDSCs contribute to generating an immune-tolerant tumor microenvironment associated with a poor cancer prognosis and tumor burden [28].

The bone marrow niche is a complex and specialized microenvironment essential for hematopoietic stem cell (HSC) functionality. This niche mainly comprises two related components, the cellular, and non-cellula entities, that are part of three principal compartments: the endosteal niche, which is composed of bone-associated metabolisms, such as osteocytes, that coordinate the activity of the two other cellular members; the osteoblasts and osteoclasts cells [29]; the perivascular niche that includes sinusoidal endothelium and arterioles, transition zone vessels, mesenchymal stroma/stem cells, and reticular cells; and the third compartment, the extracellular matrix (ECM), which as non-cellular domain provides a physical structure for bone marrow niche integrity. The ECM is formed by several structural proteins, mainly collagens I, II, III, IV, and X, laminin, reticulin, and fibronectin, among others. As well as ECM-embedded growth factors, cytokines, and chemokines [30]. All these compartments exhibit a finely coordinated interplay for HSC survival and proportioned a dynamic adaptation to external threats and ensuring HSC fate [2].

In MPNs, the bone marrow niche homeostasis seems to be disrupted, which highly contributes to the proliferation/expansion, and survival of clonal mutated HSC [2], therefore the switch of healthy bone marrow to a dysfunctional one with profound alterations within the bone marrow niches is implicated in the physiopathological mechanisms of MPNs that culminate in the development of inflammatory and profibrotic environment bone marrow [31]. Bone marrow fibrosis, or myelofibrosis, is generated by excessive deposition of reticulin and collagen fibers, which also allows evaluating and scoring bone marrow fibrosis by the hematopathologist based on extracellular matrix fibers density [32]. In MPNs, myelofibrosis represents PMF or arises from pre-existing ET or PV patients [9]. One of the hallmarks of myelofibrosis is elevated peripheral blood levels of proinflammatory cytokines [33]. Concerning bone marrow fibrosis, increased production of TGF-β in the bone marrow of MPNs has been described, mainly
produced by megakaryocytes and monocytes [33]. In particular, TGF-β contributes to the development of myelofibrosis and hematopoietic niche disruption in MPNs by regulating mesenchymal stromal cell differentiation towards myofibroblastic features [33]. In addition, monocyte-derived fibrocytes and endothelial cells-derived mesenchymal stromal cells may increase the number of fibroblastic cells in the bone marrow of MPNs patients [34]. Moreover, in the advanced stage of myelofibrosis, the bone marrow of MPNs patients develops osteosclerosis, a pathological bone modification due to a gradual loss of the marrow giving rise to a replacement by collagen fibers and bone trabeculae rich in activated myofibroblasts, which generate new bone shaping and bone volume growth. Thereby, these pathological events produced increased bone density and abnormal hardening that affects normal bone marrow activities [31].

Besides participating in creating fibrotic bone marrow, TGF-β1 regulates MDSC generation, expansion, and function. For instance, in combination with GM-CSF, this factor induces the MDSC in vitro with effective inhibition of T-cell proliferation. It may also induce T-regulatory cells, which together further promote an immunosuppressive tumor microenvironment [35, 36].

Although a previous study identified the increased frequency of CD11b+ , CD14−, and CD33+ cells MDSCs in the peripheral blood of MPNs patients [37], the levels of MDSCs in the bone marrow of MPNs patients remained unexplored. In this study, we have identified the frequency of total (T)MDSCs and the CD15+PMN-MDSCs in the bone marrow and peripheral blood of patients with ET, PV, and PMF and correlated levels of clinical and laboratory parameters. Furthermore, we analyzed the immunosuppressive ability of the cells by their capacity to inhibit T-cell proliferation and their correlation with MPNs bone marrow fibrosis. Our findings might have an important implication for understanding the patient immune status and mechanisms behind disease progression and myelofibrosis.

15.2 Methods

Patients and samples: Sixty-four MPNs de novo patients (ET 17; PV 29; and PMF 18) and 5 healthy donors (HD) were recruited for bone marrow. Thirty-one (ET 11; PV 11; and PMF 9) and 11 HD were recruited for peripheral blood analyses of MDSCs. All patients were newly diagnosed according to the World Health Organization (WHO) criteria at the Clinic for Hematology, Clinical Center of Serbia. Bone marrow (n = 5) and peripheral blood (n = 11) was obtained from age-matched healthy donors (HD) at the Institute of Blood Transfusion and Hemobiology, Military Medical Academy, Serbia. Patients and donors signed the informed consent form in accordance with the Declaration of Helsinki. All patients were previously untreated, and data including age, gender, laboratory findings (white blood cells (WBC) and platelets count, hemoglobin, LDH levels, SE rate), size of the liver and spleen, grade of bone marrow fibrosis, JAK2 and CALR mutation status, the requirement of hydroxyurea (HU) treatment; were collected at the diagnosis.

Flow cytometry analysis of MDSCs: Iliac crest bone marrow and peripheral blood samples of healthy voluntary donors and patients were collected in tubes with ethylenediaminetetraacetic acid (EDTA). Mononuclear cells (MNCs) were separated by density gradient centrifugation with a lymphocyte separation medium (LSM, Capricorn Scientific GmbH, Germany). Briefly, each sample was diluted 1:1 with Ca2+/Mg2+—free PBS and then layered gently on the top of ten ml lymphocyte separation medium. After centrifugation (400 g, 30 min, 20 °C), the mononuclear cells’ interfaces were collected and washed twice with room-temperature PBS. Viable cells were determined using the trypan blue technique (Gibco, Thermo Fisher Scientific, MA, USA). After that, 1 × 10^6 MNCs from MPN patients and HD were freshly obtained and subjected to immunophenotype analysis. 0.5 × 10^5 cells in PBS were stained using anti-CD33-PE, anti-HLADR-APC, anti-CD14-FITC, and anti-CD15-
PerCP antibodies (BioLegend, CA, USA) for 20 min at 4 °C. Then, cells were washed three times with room temperature PBS and subjected to flow cytometry analysis (BD FACS-Calibur, Becton Dickinson, Heidelberg, Germany). Generally, 50,000 events per sample were acquired, and the results were evaluated by the NovoExpress software (Agilent, CA, USA).

MDSCs depletion and T cell proliferation analysis: To deplete MDSC from HD and patients’ samples, 5 x 10^6 MNCs in RPMI medium (three samples from each group) were incubated for 15 min at 4 °C with anti-CD33 magnetic microbeads (Miltenyi Biotec, Bergisch-Gladbach, Germany) as described previously [38]. After washing with PBS, labeled cells were run through LS columns and placed on a MACS separator (Miltenyi Biotec, Bergisch-Gladbach, Germany) according to the manufacturer’s instructions. The non-trapped cells were then collected for T-cell proliferation analyses. At the same time, a small number of cells were stained with anti-CD33 and anti-HLA-DR antibodies for flow cytometry analysis, to ensure that MDSCs were successfully depleted. Further, CD33-depleted MNC samples and MNC samples without depletion from the same donor were subjected to comparative analysis of T cell proliferation by CFSE proliferation assay. Briefly, 10^5 cells per ml were incubated with 1 μM CFSE (Sigma–Aldrich, St. Louis, MO, USA) for 10 min at RT. A drop of fetal bovine serum was added to stop the labeling reaction and to complete the staining procedure; then, cells were washed three times with room temperature PBS. The proliferation of T-cells was stimulated with 20 mg of αCD3/CD28 micro-beads (Invitrogen, UK), and cells were left in culture with RPMI supplemented with 10% FCS (Sigma–Aldrich, St. Louis, MO, USA). After three culture days, cells were washed twice with PBS and fixed with 2% formaldehyde/PBS until they were subjected to FACS analysis of the CFSE proliferation assay. CFSE dilution was estimated using the unstained and zero-time cells (related to the cells just after CFSE staining treated with Mitomycin C (40 μg/ml for 30 min). The proliferation of the cells was calculated based on CFSE dilution by FCS EXPRESS 5 software (De Novo Software, Los Angeles, CA, USA) [39].

Azan trichrome staining: MPNs patients’ trephine biopsy samples were subjected to azan trichrome staining for visualization of collagen fibrils, and fibrosis assessment. Sections were deparaffinized and rehydrated by using xylene, descending alcohol (100, 96, 70%), and distilled water for 15 min each. Then, sections were immersed in Azocarmine B solution for 30 min, washed, and left for 1 min in 1% Anile-alcohol solution for differentiation. The reaction was stopped by adding the acid alcohol, following the treatment of the sample with 5% Phosphotungstic acid for 60 min. Further, sections were stained using Azan reagent for the next 60 min and dehydrated in ascending series of alcohol solution (70, 96, and 100%) each for 2 min. Finally, sections were cleared by washing twice in xylene, and a Mount medium was added. As a result of the staining procedure, nuclei were red, while fibers were stained blue. All reagents were provided by Sigma–Aldrich, St. Louis, MO, USA. Samples were analyzed by using the microscope (Olympus Provis AX70). Myelofibrosis was graded according to the WHO 2016 grading system that included four grades (MF 0–3) [7, 40/37].

Statistical analysis: Statistical analyses were made with the student’s t-test or ANOVA test. The Spearman test was used to analyze the correlation between the study groups. Data are given as means ± SEM, and p-values < 0.05 are considered to indicate significant differences. All statistical analyses were conducted using the GraphPad Prism 4 software (GraphPad Software Inc., San Diego, CA, USA).
15.3 Results

15.3.1 Myeloproliferative Neoplasm Patients’ Clinical Data

This study included 64 MPNs de novo patients. The clinical data of these enrolled patients at diagnosis are shown in Table 15.1. Out of the 64 patients, 17 were classified as having ET, were classified as having PV, and 18 were classified as having PMF. 55% of the ET patients were positive for the JAK2 V617F mutation, 100% PV harbor JAK2 V617F mutation, and 67% of PMF patients carrying JAK2 V617F. Meanwhile, 21% of ET and 22% of PMF patients carry CARL mutations. The median age of the ET patients, comprising five males and 12 females, was 56 years (range: 28–80 years); while for PV patients, 15 males and 14 females, was 60 years (range: 32–85 years); for PMF patients, 14 males and four females, the median age was 62 (range: 36–87 years) at the time of diagnosis. Meanwhile, the grade of fibrosis was analyzed by the Azan trichrome staining at the time of diagnosis by staining collagen fibers on bone marrow biopsies. 72% of ET patients present grade 1 fibrosis, PV patients exhibit 55% of grade 1, 31% of grade 2, and 3.4% of grade 3, and PMF patients present 5 of 6% of grade 1, 22.2% of grade 2, and 11.1% of grade 3 of fibrosis.

15.3.2 The Frequency of T-MDSCs and PMN-MDSCs is Elevated in the Bone Marrow of MPNs Patients

To identify and evaluate the increased frequency of MDSC in the bone marrow, the mononuclear isolated cells of MPNs patients, described in Table 15.1, and HD samples (N = 5, four males and one female median age 36 (range: 25–41 years) were subjected to immunophenotyping as described by Bronte et al. ‘s report [20]. The T-MDSCs immunophenotyping is defined as CD33⁺/HLA-DR^{low} myeloid cells, while PMN-MDSCs were identified as CD33⁺/HLA-DR^{low} / CD15⁺/CD14⁻ cells. The quantity of T-MDSCs and PMN-MDSCs in the bone marrow samples freshly obtained from HD and ET, PV, and PMF patients at diagnosis, was evaluated using flow cytometry. The gating strategy and representative results for one HD and one MPNs patient from each group are presented in Fig. 15.1a. The results indicated that the percentages of bone marrow T-MDSCs and PMN-MDSCs were significantly elevated in all of the MPNs samples compared to HD (ET 35.17 ± 9.4%, p = 0.04 for T-MDSCs and 40.4 ± 15.1%, p = 0.038 for PMN-MDSCs; PV 44.05 ± 8.33%, p = 0.01 for T-MDSCs and 39.23 ± 11.8%, p = 0.031 for PMN-MDSCs versus HD 25.36 ± 12.7% T-MDSCs and 18.8 ± 10.4% PMN-MDSCs), most prominently in PMF (55.37 ± 12.38% versus HD 25.36 ± 12.7%, p = 0.004 for T-MDSCs and 54.58 ± 14.3% versus HD 18.8 ± 10.4%, p = 0.008 for PMN-MDSCs) (Fig. 15.1b and c).

Noticeably, the analysis of the correlation between the clinical data and the number of MDSCs indicated that the elevated bone marrow-associated MDSCs frequencies did not correlate with age or hepatomegaly, leukocytes, hemoglobin, or platelet levels. Furthermore, no correlation was observed between MDSCs and JAK2/CALR status (data not shown).

15.3.3 The Frequency of T-MDSCs and PMN-MDSCs is Increased in the Peripheral Blood of MPNs Patients

Previous studies demonstrated significantly high circulating CD11b⁺, CD33⁺, and CD14⁻ MDSCs levels in the peripheral blood of MPNs patients [37]. Consequently, in this study, we investigated the presence of T-MDSCs and the PMN-MDSCs in the freshly obtained peripheral blood samples of 31 MPNs patients at diagnosis and 11 HD.
Consistent with the previous observation, the levels of T-MDSCs were elevated in the peripheral blood of MPNs patients compared to healthy donors. Significantly higher levels of T-MDSCs were noticed in the peripheral blood of PV and PMF patients compared to HD (PV, 19.7 ± 6.23, p = 0.008; PMF, 35.53 ± 9.84, p = 0.004 versus HD 7.44 ± 3.8), while the levels of circulating T-MDSCs in ET were moderately increased but did not reach statistical significance (Fig. 15.2a). Moreover, significant differences in levels of circulating PMN-MDSCs between HD and all MPNs entities were detected (PMF 14.78 ± 5.03%, p = 0.01; PV 9.36 ± 3.54%, p = 0.026 and ET 6.15 ± 2.75, p = 0.023 versus HD 3.83 ± 1.4) (Fig. 15.2b). Further analysis of the absolute number of MDSCs (MDSCs/μl) calculated using the WBC count revealed similar results. As shown in Fig. 15.2c and d, ET patients have a high number of MDSCs relative to normal (468.04/μl, p = 0.004 for T-MDSCs and 348.78/μl, p = 0.0008 for PMN-MDSCs), while PV (544.67/μl, p = 0.0029 for T-MDSCs and 417.56/μl, p < 0.0001 for PMN-MDSCs) and PMF (718.53/μl, p < 0.0001 for PMN-MDSCs) patients have significantly higher numbers compared to HD (331.24/μl, p = for T-MDSCs and 229.12/μl for PMN-MDSCs). The quantity of M-MDSCs (CD33+/HLA-DRlow/CD14+/CD15−) in peripheral blood and bone marrow samples of MPNs patients did not show significant differences related to HD (data not shown).

Table 15.1 MPN patients’ clinical characteristic
No of patients
Age at diagnosis (range)
Males/females
WBC, 10^9/l (range)
Hemoglobin, g/l (range)
Platelets, 10^9/l (range)
LDH, U/l (range)
SE, mm/h (range)
Enlarged liver (AP diameter larger than 15 cm), (%)
Enlarged spleen (AP diameter larger than 13 cm), (%)
JAK2 V617F mutation, (%)
Calreticulin mutation, (%)

Bone marrow fibrosis

	ET	PV	PMF
Grade 1, (%)	72	55	56
Grade 2, (%)	0	31	22.2
Grade 3, (%)	0	3.4	11.1
HU treatment, (%)	66	46	44
Number of deaths, (%)	0	3.4	11

The main clinical parameter of essential thrombocytopenia (N=17), polycythemia vera (N= 29), and primary myelofibrosis (N=18) patients are indicated. All patients were newly diagnosed according to the World Health Organization (WHO) criteria. Abbreviations: ET-essential thrombocytosis, PV-polycythemia vera, PMF-primary myelofibrosis, WBC- white blood cells, LDH-lactate dehydrogenase, SE-sedimentation rate, AP-antero posterior, HU-hydroxyurea.
15.3.4 MPNs-Related MDSCs Exhibited Immunosuppressive Capabilities

To verify whether the increased MDSCs populations in MPNs patients may exhibit an immunosuppressive function, we tested their capacity to inhibit T-cell proliferation by an MDSCs depletion assay. After reducing the MDSCs number in the peripheral blood mononuclear cells fraction (from 52.7 to 20.91%) by a CD33 microbeads system (Fig. 15.3a), a T-cell proliferation assay was performed. The analysis was performed by selecting three patients’ samples per group for each ET, PV, and PMF MPN sub-malignancies under a complete number of MNC cells or subjected to MDSCs depletion. CFSE-labeled T-cells were stimulated with anti-CD3 and CD8 antibodies for 72 h, and the dilution of CFSE fluorescence was determined by flow cytometry. The results, shown in Fig. 15.3b and c, indicated that the MPNs-isolated MNC fractions, under MDSCs depletion, exhibited a significant improvement in T-cell proliferation rate. The ET patients’ samples were significantly increased to 95.2% with MDSCs depletion compared to 41.05% in the sample without depletion (p = 0.001). Similar results were obtained in PV (87.2% versus 46.1%, p = 0.005) and PMF patients’ samples (88.09% versus 46.5%, p = 0.005). Therefore, these results suggested that the elevated MDSCs frequency in the peripheral blood of MPNs patients effectively displayed immunosuppressive T-cell activities.

Fig. 15.1 Significantly elevated levels of total MDSCs and PMN-MDSCs in the bone marrow of patients with MPN. a Flow cytometry analysis was performed with gates set on CD33 HLA-DRlow (total MDSCs), and within this population, the fraction of cells expressing CD15 and negative for CD14 was determined (CD33 HLA-DRlowCD15CD14 PMN MDSC).

15 Increase in Frequency of Myeloid-Derived Suppressor Cells … 281
15.3.5 Fibrosis in the Bone Marrow of MPNs Patients

To evaluate fibrosis of BM, paraffin-embedded bone marrow samples from ET, PV, and PMF patients were stained with Azan Trichrome. According to collagen deposition marked with blue, we determined the degree of bone marrow fibrosis according to what is defined by Barbui et al. [40] and Arber et al. [41]. As is shown in Fig. 15.4a, a low-grade collagen deposition, with only perivascular staining, was named grade 0; moderate, short, and thin collagen fibers were named grade 1. Meanwhile, a high level with tick collagen fibers forming a network was marked as grade 2/3.

Remarkable, high levels of T-MDSCs frequency were found in MPNs patients with bone marrow fibrosis grades 2/3 (mean 72.64 two, \(p = 0.00.004 \)), compared to patients without fibrosis (45.52%). In comparison, patients with grades two had moderately increased levels of T-MDSCs (48.9%, \(p = 0.19 \)) (Fig. 15.4b). Moreover, the PMN-MDSCs population was significantly increased in all patients with bone marrow fibrosis (grade 1, 41.6%, \(p = 0.048 \); grades 2/3, 59.7%, \(p = 0.00,041 \)) related to patients without fibrosis (30.07%) (Fig. 15.4c). Meanwhile, the correlation analyses indicated that the MDSCs levels were correlated with the degree of bone marrow fibrosis. A significant correlation was found between the percentage of T-MDSCs (Pearson \(r = 0.3448; \) \(p = 0.0107 \)) as well as PMN-MDSCs (Pearson \(r = 0.398; \) \(p = 0.006 \)) and levels of bone marrow fibrosis (\(n = 46 \) patients).
15.3.6 TGF-β1 Induces MDSC from Bone Marrow Mononuclear Cells

Previous results marked that TGF-β1 expression is increased in the bone marrow of MPNs patients and is one of the primary mediators of bone marrow fibrosis in patients with PMF [42, 43]. Next, we investigate the effect of TGF-β1 combined with GM-CSF and stem cell factor (SCF), on the induction of T-MDSCs from MNC of HD and MPNs system. The flow cytometry analyses of CD33 and HLA-DR positive populations revealed that 3- and 6-day-long treatment with these factors significantly increased levels of T-MDSCs (Fig. 15.5a and b). These results suggest that elevated TGF-β1, responsible for significant bone marrow fibrosis, could also lead to the induction of bone marrow MDSCs in patients with MPNs.

15.4 Discussion

Despite that MPNs are defined as clonal hematopoietic stem cell disorders characterized by the proliferation of mature myeloid cells in the bone marrow [2], in the last years, MDSCs, a group of cells with immature characteristics and immunosuppressive functions, have been implicated in regulating inflammation in MPNs [44, 45]. Specifically, MPNs exhibit a dysregulation in the function and number of immune cells, such as increased frequency of monocytes and macrophages and expansion of MDSCs [46]. This study mainly focuses on analyzing MDSCs in the bone marrow of all three subtypes of MPNs patients, ET, PV, and PMF. Although total and PMN-MDSCs frequency is elevated in MPNs at diagnosis, with the highest number in PMF, no correlation between clinical parameters and
MDSCs frequency was found. Meanwhile, the level of M-MDSCs did not increase in MPNs compared to healthy donors. Moreover, when the frequency of peripheral blood circulating MDSCs was determined, an increased number of T-MDSCs was also established. Consistently, PMN-MDSCs were found to be increased in peripheral blood MNC fractions of MPNs patients. Interestingly, PMF patients exhibit the highest MDSCs frequency independent of their bone marrow or peripheral blood source. Furthermore, and as expected, MPNs-associated MDSCs demonstrated efficacy in inhibiting T-cell activation and proliferation. Therefore, the results of this study showed that immunosuppressive MDSCs frequency is elevated in the bone marrow of MPNs patients, mainly represented by the PMN-MDSCs subgroup, and the elevated peripheral blood MDSCs levels confirm what was reported by Wang et al. [37]. Similarly, as reported in this study, MDSCs levels did not correlate with the presence of JAK2V617F or Calreticulin allele burden, white blood cells, hemoglobin levels, platelet counts, and splenomegaly.

Besides, it is now recognized that MDSCs may represent an inflammatory link with the inhibition of antitumor T-cell immunity in hematologic neoplasms [14]. Moreover, since MDSCs have immunosuppressive and tumor-promoting activities, their increased levels, mainly PMN-MDSCs, observed in high-grade cancers correlate with a poor prognosis, including diffuse large B-cell lymphoma, Hodgkin lymphoma, and chronic lymphocytic leukemia [47]. Although the result of this study suggested that the highest levels of MDSCs correlate with fibrosis grades 2/3, whether MDSCs levels correlate with poor prognosis in MPNs needs to be further confirmed.
Interestingly, in chronic lymphocytic leukemia, a sub-MPNs group carrying the Philadelphia chromosome, the treatment with the tyrosine kinase inhibitors imatinib and dasatinib [48], two BCR- and ABL-mediated oncogenic signaling inhibitors, efficiently depleted MDSCs along with IL-10 and Arginase-1 biomarkers reduction [49]. In this sense, MPN chemotherapy considers the use of cytoreductive hydroxyurea as the first line of treatment and the JAK2 inhibitor ruxolitinib [50, 51]. However, no studies have addressed the potential of MPNs therapies to decrease MDSCs levels. In this case, preliminary analysis performed in our laboratory indicated the potential for hydroxyurea to reduce MDSCs levels in MPNs patients, but this has been performed in a limited number of patients that does not permit obtaining conclusive results.

Besides acute myeloid leukemia, myelodysplastic syndrome and chronic lymphocytic leukemia also have an increased level of MDSCs in the bone marrow and peripheral blood. In all these myeloid malignancies, MDSCs highly contribute to systemic and bone marrow immunosuppression contributing to transformed myeloid cell expansion [52]. Furthermore, acute myeloid leukemia-elevated MDSC frequency in the bone marrow is associated with a significantly shorter overall survival and poor prognosis. In contrast, a low number of MDSC-like blasts indicates leukemia-free survival of AML patients [53]. Also, the neoplastic myeloid cell transformation may contribute to the establishment of chronic inflammation that further promotes selective clonal expansion over normal hematopoietic cells [54]. In MPNs, increased
inflammation may be generated, in one way, by transformed clones themselves and by influencing nonmutant bystander immune cells to adopt proinflammatory phenotypes. In particular, in MPNs, prominent chronic inflammation can be caused by the JAK2V617F mutant cells, for example, due to their aberrant inflammatory cytokine production, creating thus the conditions to activate other cells to an inflammatory stage [55]. So, it is possible to speculate that the inflammatory scenario created by neoplastic cells, with increased production of proinflammatory cytokines, mimics an emergency myelopoiesis and makes a perfect condition for generating and expanding MDSC in the bone marrow and peripheral blood of MPN patients. Interestingly, chronic lymphocytic leukemia-derived MDSC seems to be composed of nonmutated cells and cells harboring driver oncprotein BCR/ABL protein [56]. Nevertheless, whether MPN-derived MDSCs harbor the driver JAK2, CALR, and MLP mutations needs further investigation.

Notably, ET and PV are generally less aggressive forms of malignancies. Both may progress to myelofibrosis, with worsening marrow fibrosis mainly characterized by the accumulation of extracellular fibers in the stroma of the bone marrow [57]. The evaluation of MPNs-associated bone marrow fibrosis, according to a semiquantitative 0–3 scale grading system for collagen deposition [58], and MDSCs levels in the bone marrow of MPNs patients indicated a correlation between the degree of tissue fibrosis and total and PMN-MDSCs frequency. MPNs are mainly characterized or classified according to the bone marrow morphology and the quantity of marrow fibrosis, along with clinical, laboratory, cytogenetic, and molecular features [2]. Bone marrow fibrosis is one of the distinctive features of PMF, accompanied by massive splenomegaly and peripheral splenomegaly [59].

Moreover, all MPNs may exhibit a potential to evolve to end-stage myelofibrosis, which causes either bone marrow failure or progression to secondary acute myeloid leukemia [3, 60]. Although the primary cause of PMF is not well elucidated, several pathogenic mechanisms of myelofibrosis have been described in MPNs. Predominantly, bone marrow fibrosis may result from a nonclonal proliferation and hyperactivity of fibroblast due to elevated inflammatory cytokines and growth factors expressed mainly by clonally expanded megakaryocytes [61]. Also, bone marrow fibrosis may be understood as a complex interaction among megakaryocytes, monocytes/macrophages, endothelial cells, and fibroblasts [62]. For instance, due to exacerbating bone marrow megakaryocyte activity, elevated amounts of TGF-β1 are produced [63]. In this scenario, this cytokine is a potent inducer of fibrosis with the capacity to control the bone marrow mesenchymal stromal cell's fate towards fibroblasts/myofibroblasts along with increasing collagen I, collagen III, and fibronectin deposition [9, 34, 64–66]. Also, monocytes may contribute to MPNs’ pathogenesis of bone marrow fibrosis via TGF-β1 production. This process implicates a monocyte differentiation towards clonal-derived fibrocytes co-expressing hematopoietic and stromal cell markers [2, 34].

In turn, MDSCs also secreted copious amounts of TGF-β1 [62], which may contribute to the pathogenesis of bone marrow fibrosis. As well, elevated bone marrow TGF-b levels may induce MDSCs expansion and immunosuppressive activities [48], generating a positive loop that may consolidate inflammation and myelofibrosis in MPNs. Nevertheless, the exact contribution of MDSCs to bone marrow fibrosis needs to be elucidated in further investigations.

Despite the immunosuppressive MDSCs functions, some investigations demonstrated its role in the induction of fibrosis. For instance, adoptive MDSCs transfer in a mouse xenograft cancer model contributes to the generation of fibrotic tumor stroma and cancer-associated fibroblast activation [67]. Also, PMN-MDSCs may participate in the production of cardiac fibrosis along with myofibroblast activation [68]. However, none of these investigations have linked MDSCs and TGF-β with fibrosis.

In summary, this study demonstrated increased frequency levels of MDSCs in the bone marrow of MPNs patients. Although increased MDSC levels did not correlate with MPNs
clinical parameters or JAK2 or CALR mutations, the results indicated a correlation of MDSC-increased bone marrow frequency with the intensity of myelofibrosis. These results may picture the potential for considering MDSCs as a prognostic marker in MPNs. They may also represent a link between chronic inflammation and inhibition of anticancer T-cell immunity in MPNs [2].

Statements and Declarations

Funding: This study was funded by the Ministry of Education, Science and Technological Development of the Republic of Serbia (grant number 451-03-9/2021-14/200015).

Disclosure of Interests: All authors declare they have no conflict of interest.

Ethical Approval: All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards. Approval was granted by the ethics committee of the Clinical Center of Serbia, Belgrade (decision number 4/1). This article does not contain any studies of the Clinical Center of Serbia, Belgrade (decision number 4/1). This article does not contain any studies of the Clinical Center of Serbia, Belgrade (decision number 4/1). This article does not contain any studies of the Clinical Center of Serbia, Belgrade (decision number 4/1). This article does not contain any studies of the Clinical Center of Serbia, Belgrade (decision number 4/1).

Data Availability Statement: The material supporting the conclusions of this study have been included within the article

Acknowledgements: We thank the support of the visiting professor program of UBO to JFS.

References

1. Khoury JD, Solary E, Abla O, Akkari Y, Alaggio R, Apperley JF et al. (2022 Jul) The 5th edition of the World Health Organization classification of haematolymphoid tumours: myeloid and histiocytic/dendritic neoplasms. Leukemia 36(7):1703–1719. https://doi.org/10.1038/s41375-022-01613-1. Epub 2022 Jun 22. PMID: 35732831; PMCID: PMC925913

2. Nasilto V, Riva G, Paolini A, Forghieri F, Roncati L, Lusenti B et al (2021) Inflammatory microenvironment and specific T cells in myeloproliferative neoplasms: immunopathogenesis and novel immunotherapies. Int J Mol Sci 23(6):3206. https://doi.org/10.3390/ijms23063206; PMCID:PMC7885877

3. Tefferi A, Guglielmelli P, Larson DR, Finke C, Wassie EA, Pieri L et al. (2014 Oct 16) Long-term survival and blast transformation in molecularly annotated essential thrombocytopenia, polycythemia vera, and myelofibrosis. Blood 124(16):2507–13; quiz 2615. https://doi.org/10.1182/blood-2014-05-579136. Epub 2014 Jul 18. PMID: 25037629; PMCID: PMC4199952

4. Geyer HL, Dueck AC, Scherber RM, Mesa RA (2015) Impact of inflammation on myeloproliferative neoplasm symptom development. Med Inflamm 2015:284706. https://doi.org/10.1155/2015/284706. Epub 2015 Oct 11. PMID: 26538823; PMCID: PMC4619953

5. Mendez Luque LF, Blackmon AL, Ramanathan G, Fleischman AG (2019 Jun) Key role of inflammation in myeloproliferative neoplasms: instigator of disease initiation, progression and symptoms. Curr Hematol Malig Rep 14(3):145–153. https://doi.org/10.1007/s11899-019-00508-w. PMID: 31119475; PMCID: PMC7746200

6. Wang Y, Zuo X (2019) Cytokines frequently implicated in myeloproliferative neoplasms. Cytokine X 1(1):100005. https://doi.org/10.1016/j.cytotex.2019.100005.PMID:33604548;PMCID:PMC7885877

7. Bhuria V, Baldauf CK, Schraven B, Fischer T (2022) Thromboinflammation in Myeloproliferative Neoplasms (MPN)-a puzzle still to be solved. Int J Mol Sci 23(6):3206. https://doi.org/10.3390/ijms23063206; PMCID:PMC9594909

8. Hermouet S, Bigot-Corbel E, Gardie B (2015) Pathogenesis of myeloproliferative neoplasms: role and mechanisms of chronic inflammation. Med Inflamm 2015:145293. https://doi.org/10.1155/2015/145293. Epub 2015 Oct 11. PMID: 26538820; PMCID: PMC4619950

9. Zahr AA, Salama ME, Carreau N, Tremblay D, Verstovsek S, Mesa R, Hoffman R, Mascarenhas J (2016) Bone marrow fibrosis in myelofibrosis: pathogenesis, prognosis and targeted strategies. Haematologica 101(6):660–671. https://doi.org/10.3324/haematol.2015.141283.PMID:27252511; PMCID:PMC5013940

10. Vukotić M, Kapor S, Dragojević T, Đikić D, Mitrović Ajić O, Đikić M et al. (2022 Mar) Inhibition of proinflammatory signaling impairs fibrosis of bone marrow mesenchymal stromal cells in myeloproliferative neoplasms. Exp Mol Med 54(3):273–284. https://doi.org/10.1038/s12276-022-00742-y. Epub 2022 Mar 14. PMID: 35288649; PMCID:PMC8980093

11. Levine RL, Wadleigh M, Cools J, Ebert BL, Wernig G, Huntly BJ et al (2005) Activating mutation in the tyrosine kinase JAK2 in polycythemia vera, essential thrombocytopenia, and myeloid metaplasia with myelofibrosis. Cancer Cell 7(4):387–397. https://doi.org/10.1016/j.ccr.2005.03.023. PMID: 15837627

12. Wolf A, Eulenfeld R, Gabler K, Rovering C, Haan S, Behrmann I et al. (2013 Jul 1) JAK2-V617F-induced MAPK activity is regulated by PI3K and acts synergistically with PI3K on the proliferation of JAK2-
V617F-positive cells. JAKSTAT. 2(3):e24574. https://doi.org/10.4161/jkst.24574. Epub 2013 Apr 8. PMID: 24069558; PMCID: PMC3772110

13. Hu X, Li J, Fu M, Zhao X, Wang W (2021) The JAK/STAT signaling pathway: from bench to clinic. Signal Transduct Target Ther 6(1):402. https://doi.org/10.1038/s41392-021-00791-1. PMID: 34824210; PMCID: PMC8617206

14. Edahiro Y, Araki M, Komatsu N (2020 Aug) Mechanism underlying the development of myelo-proliferative neoplasms through mutant calreticulin. Cancer Sci 111(8):2682–2688. https://doi.org/10.1111/cas.14503. Epub 2020 Jun 27. PMID: 32462673; PMCID: PMC7419020

15. Masselli E, Pozzi G, Gobbi G, Merighi S, Gessi S, Vitale M, Carubbi C (2020) Cytokine profiling in myeloproliferative neoplasms: overview on phenotype correlation, outcome prediction, and role of genetic variants. Cells 9(9):2136. https://doi.org/10.3390/cells9092136. PMID: 32967342; PMCID: PMC7564952

16. Mojsilovic S, Mojsilovic SS, Bjelica S, Santibanez JF (2022 Jan) Transforming growth factor-beta1 and myeloid-derived suppressor cells: A cancerous partnership. Dev Dyn 251(1):105-124. https://doi.org/10.1002/dvdy.339. Epub 2021 Apr 8. PMID: 33797140

17. Wang S, Tan Q, Hou Y, Dou H (2021) Emerging roles of myeloid-derived suppressor cells in diabetes. Front Pharmacol 16(12):798320. https://doi.org/10.3389/fphar.2021.798320. PMID: 34975496; PMCID: PMC8716856

18. Medina E, Hartl D (2018) Myeloid-Derived Suppressor Cells in Infection: A General Overview. J Innate Immun 10(5–6):407–413. https://doi.org/10.1159/000489830. Epub 2018 Jun 26. PMID: 29945134; PMCID: PMC6784037

19. Veglia F, Perego M, Gabrilovich D (2018 Feb) Myeloid-derived suppressor cells coming of age. Nat Immunol 19(2):108–119. https://doi.org/10.1038/s41590-017-0022-x. Epub 2018 Jan 18. PMID: 29348500; PMCID: PMC5854158

20. Bronte V, Brandau S, Chen SH, Colombo MP, Frey AB, Greten TF et al (2016) Recommendations for myeloid-suppressor cell nomenclature and characterization standards. Nat Commun 6(7):12150. https://doi.org/10.1038/ncomms12150. PMID: 27381735; PMCID: PMC4935811

21. Bizymi N, Bjelica S, Kittang AO, Mojsilovic S, Velegraki M, Pontikoglou C et al (2019) Myeloid-derived suppressor cells in hematologic diseases: promising biomarkers and treatment targets. Hematopoietics 3(1):e168. https://doi.org/10.1097/HSH.00000000000000168. PMID: 31723807; PMCID: PMC6745940

22. Veglia F, Sanseverino E, Gabrilovich DI (2021 Aug) Myeloid-derived suppressor cells in the era of increasing myeloid cell diversity. Nat Rev Immunol 21(8):485–498. https://doi.org/10.1038/s41577-020-00490-y. Epub 2021 Feb 1. PMID: 33526920; PMCID: PMC7849958

23. Gondois-Rey F, Paul M, Alcaraz F, Bourass S, Monnier J, Malissen N et al (2021) Identification of an immature subset of PMN-MDSC correlated to response to checkpoint inhibitor therapy in patients with metastatic melanoma. Cancers (Basel) 13(6):1362. https://doi.org/10.3390/cancers13061362. PMID: 33802925; PMCID: PMC8802694

24. Cuenca AG, Delano MJ, Kelly-Scumpia KM, Moreno C, Scumpia PO, Laface DM et al (2011 Mar–Apr) A paradoxical role for myeloid-derived suppressor cells in sepsis and trauma. Mol Med 17(3–4):281–92. https://doi.org/10.2119/molmed.2010.00178. Epub 2010 Nov 12. PMID: 21085745; PMCID: PMC3060988.

25. Sica A, Guarnieri V, Gennari A (2019) Myelopoiesis, metabolism and therapy: a crucial crossroads in cancer progression. Cell Stress 3(9):284–294. https://doi.org/10.15698/cst2019.09.197. PMID: 31535085; PMCID: PMC6732213

26. Kumar V, Patel S, Tyaganov E, Gabrilovich DI (2016 Mar) The nature of myeloid-derived suppressor cells in the tumor microenvironment. Trends Immunol 37(3):208–220. https://doi.org/10.1016/j.it.2016.01.004. Epub 2016 Feb 6. PMID: 26858199; PMCID: PMC4775398

27. Gabrilovich DI (2017) Myeloid-derived suppressor cells. Cancer Immunol Res 5(1):3–8. https://doi.org/10.1158/2326-6066.CIR-16-0297. PMID: 28052991; PMCID: PMC5426480

28. Kalalhal SG, Thanavala Y (2021 Mar) Importance of myeloid derived suppressor cells in cancer from a biomarker perspective. Cell Immunol 361:104280. https://doi.org/10.1016/j.cellimm.2020.104280. Epub 2020 Dec 31. PMID: 33445053; PMCID: PMC9204650

29. Coşkun BI (2021) The osteocyte as a director of bone metabolism. Arch Rheumatol. 36(4):617–619. https://doi.org/10.46497/ArchRheumatol.2021.8632. PMID: 35382360; PMCID: PMC8957769

30. Zanetti C, Krause DS (2020 Sep) Caught in the net: the extracellular matrix of the bone marrow in normal hematopoiesis and leukemia. Exp Hematol. 38(10):1046–57. https://doi.org/10.1016/j.exphem.2020.07.010. Epub 2020 Aug 2. PMID: 32755619

31. Spampinato M, Giallongo C, Romano A, Longhitano L, La Spina E, Avola R et al (2021) Focus on osteosclerotic progression in primary myelofibrosis. Biomolecules 11(1):122. https://doi.org/10.3390/biom11010122. PMID: 33477816; PMCID: PMC7832894

32. Thiele J, Kvasnicka HM, Facchetti F, Franco V, van der Walt J, Orazi A (2005) European consensus on grading bone marrow fibrosis and assessment of cellularity. Haematologica 90(8):1128–1132 PMID: 16079113

33. Yao JC, Oetjen KA, Wang T, Xu H, Abou-Ezzi G, Krambs JR, Uttarwar S, Duncavage EJ, Link DC (2022) TGF-β signaling in myeloproliferative neoplasms contributes to myelofibrosis without disrupting the hematopoietic niche. J Clin Invest 132(11):
15 Increase in Frequency of Myeloid-Derived Suppressor Cells …

34. Verstovsek S, Manshouri T, Pilling D, Bueso-Ramos CE, Newberry KJ, Prijic S et al. (2016 Aug 22) Role of neoplastic monocyte-derived fibrocytes in primary myelofibrosis. J Exp Med 213(9):1723–40. https://doi.org/10.1084/jem.20160283. Epub 2016 Aug 1. PMID: 27481130; PMCID: PMC4995084

35. Casacuberta-Serra S, Parés M, Golbano A, Coves E, Espejo C, Barquinero J (2017 Jul) Myeloid-derived suppressor cells can be efficiently generated from human hematopoietic progenitors and peripheral blood monocytes. Immunol Cell Biol 95(6):538–548. https://doi.org/10.1038/icb.2017.4. Epub 2017 Jan 21. PMID: 28108746

36. Wang Y, Ma Y, Fang Y, Wu S, Liu L, Fu D, Shen X (2015) Regulatory T cell: a protection for tumour cells. J Cell Mol Med 20(10):1154–60. https://doi.org/10.1111/j.1582-4934.2011.01437.x. PMID: 26304912; PMCID: PMC4591957

37. Wang JC, Kundra A, Andrei M, Baptiste S, Chen C, Ko JS, Zea AH, Rini BI, Ireland JL, Elson P, Kapor S, Vukotić M, Mitrović Ajtić O, Radojković M et al (2021) Hydroxyurea induces bone marrow mesenchymal stromal cells senescence and modifies cell functionality in vitro. J Pers Med 11(11):1048. https://doi.org/10.3390/jpm11111048. PMID:34834400;PMCID:PMC8619969

38. Barosi G (2014) An immune dysregulation in MPN. Curr Hematol Malig Rep 9(4):331–339. https://doi.org/10.1007/s11991-014-0227-0. PMID: 25139710

39. Garcia-Gutiérrez V, Hernández-Boluda JC (2019) Tyrosine kinase inhibitors available for chronic myeloid leukemia: efficacy and safety. Front Oncol 9:603. https://doi.org/10.3389/fonc.2019.00603. PMID:31334123;PMCID:PMC6617580

40. Barbui T, Thiele J, Gisslinger H, Kvasnicka HM, Vannucchi AM, Guglielmelli P et al (2018) The 2016 WHO classification and diagnostic criteria for myeloproliferative neoplasms: document summary and in-depth discussion. Blood Cancer J 8(2):15. https://doi.org/10.1038/s41408-018-0054-y. PMID:29426921;PMCID:PMC5807384

41. Arber DA, Orazi A, Hasserjian R, Thiele J, Borowitz MJ, Le Beau MM et al (2016) The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia. Blood 127(20):2391–2405. https://doi.org/10.1182/blood-2016-03-643544. Epub 2016 Apr 11 PMID: 27069254

42. Nazha A, Khoury JD, Rampal RK, Daver N (2015 Oct) Fibrogenesis in primary myelofibrosis: diagnostic, clinical, and therapeutic implications. Oncologist 20(10):1154–1160. https://doi.org/10.1634/theoncologist.2015-0094. Epub 2015 Aug 24. PMID: 26304912; PMCID: PMC4591957

43. Kreipe H, Bürsche G, Bock O, Hussein K (2012) Myelofibrosis: molecular and cell biological aspects. Fibrogenesis Tissue Repair 5(Suppl 1):S21. https://doi.org/10.1186/1755-1536-5-S1-S21. PMID: 23259436;PMCID:PMC3368793

44. Wu Y, Yi M, Niu M, Mei Q, Wu K (2022) Myeloid-derived suppressor cells: an emerging target for anticancer immunotherapy. Mol Cancer 21(1):184. https://doi.org/10.1186/s12943-022-01657-y. PMID: 36163047;PMCID:PMC9513992

45. Gunes EG, Rosen ST, Querfeld C (2020) The role of myeloid-derived suppressor cells in hematologic malignancies. Curr Opin Oncol 32(5):518–526. https://doi.org/10.1097/CCO.0000000000000662. PMID:32675593;PMCID:PMC7735379

46. Barosi G (2014) An immune dysregulation in MPN. Curr Hematol Malig Rep 9(4):331–339. https://doi.org/10.1007/s11991-014-0227-0. PMID: 25139710

47. Garcia-Gutiérrez V, Hernández-Boluda JC (2019) Tyrosine kinase inhibitors available for chronic myeloid leukemia: efficacy and safety. Front Oncol 9(3):603. https://doi.org/10.3389/fonc.2019.00603. PMID:31334123;PMCID:PMC6617580

48. Christiansson L, Söderlund S, Mangsbo S, Hjorth-Hansen H, Höglund M, Markevärn B et al (2015) The tyrosine kinase inhibitors imatinib and dasatinib reduce myeloid suppressor cells and release effector lymphocyte responses. Mol Cancer Ther 14(5):1181–1191. https://doi.org/10.1158/1535-7163.MCT-14-0849. Epub 2015 Mar 11 PMID: 25761894

49. Barosi G (2014) An immune dysregulation in MPN. Curr Hematol Malig Rep 9(4):331–339. https://doi.org/10.1007/s11991-014-0227-0. PMID: 25139710

50. Loscocco GG, Vannucchi AM (2022) Role of JAK inhibitors in myeloproliferative neoplasms: current point of view and perspectives. Int J Hematol 115(5):626–644. https://doi.org/10.1007/s12185-022-03335-7. Epub 2022 Mar 29 PMID: 35352288

51. Cuthbert D, Stein BL (2019) Therapy-associated leukemic transformation in myeloproliferative neoplasms—What do we know? Best Pract Res Clin Haematol 32(1):65–73. https://doi.org/10.1016/j.beha.2019.02.004. Epub 2019 Feb 8 PMID: 30927977

52. Kapor S, Santibanez JF (2021) Myeloid-derived suppressor cells and mesenchymal stem/stromal cells in myeloid malignancies. J Clin Med 10(13):2788. https://doi.org/10.3390/jcm10132788. PMID: 34202907;PMCID:PMC8268878

53. Hyun SY, Na EJ, Jang JE, Chung H, Kim SJ, Kim JS, Kong JH, Shim KY, Lee JI, Min YH, Cheong JW (2020 Oct) Immunosuppressive role of CD11b+ CD33+ HLA-DR- myeloid-derived suppressor cells-like blast subpopulation in acute myeloid leukemia. Cancer Med 9(19):7007–7017. https://doi.org/10.1002/cam4.3360. Epub 2020 Aug 11. PMID: 32780544; PMCID: PMC7541151

54. Stubbins RJ, Platzbecker U, Karsan A (2022) Inflammation and myeloid malignancy: quenching
62. Palumbo GA, Parrinello NL, Giallongo C, D’Amico E, Zhanghi A, Puglisi F et al (2019) Monocytic myeloid derived suppressor cells in hematological malignancies. Int J Mol Sci 20(21):5459. https://doi.org/10.3390/ijms20215459. PMID:31683978; PMCID:PMC6862591

63. Yao JC, Oetjen KA, Wang T, Xu H, Abou-Ezzi G, Krambs JR et al (2022) TGF-β signaling in myeloproliferative neoplasms contributes to myelofibrosis without disrupting the hematopoietic niche. J Clin Invest 132(11):e154092. https://doi.org/10.1172/JCI154092.PMID:35439167;PMCID:PMC9151699

64. Agarwal A, Morrone K, Bartenstein M, Zhao ZJ, Verma A, Goel S (2016) Bone marrow fibrosis in primary myelofibrosis: pathogenic mechanisms and the role of TGF-β. Stem Cell Investig 26(3):5. https://doi.org/10.3978/j.issn.2306-9759.2016.02.03.PMID:27358897;PMCID:PMC4923632

65. Meng XM, Nikolic-Paterson DJ, Lan HY (2016) TGF-β: the master regulator of fibrosis. Nat Rev Nephrol 12(6):325–338. https://doi.org/10.1038/nrneph.2016.48. Epub 2016 Apr 25 PMID: 27108839

66. Dong M, Blobe GC (2006 Jun 15) Role of transforming growth factor-beta in hematologic malignancies. Blood 107(12):4589–96. https://doi. org/10.1182/blood-2005-10-4169. Epub 2006 Feb 16. PMID: 16845890; PMCID: PMC1895802

67. Deng X, Li X, Guo X, Lu Y, Xie Y, Huang X et al. (2022 Jun) Myeloid-derived suppressor cells promote tumor growth and sorafenib resistance by inducing FGFI upregulation and fibrosis. Neoplasia 28:100788. https://doi.org/10.1016/j.neo.2022.100788. Epub 2022 Apr 1. PMID: 35378464; PMCID: PMC8980488

68. Qiu Y, Cao Y, Tu G, Li J, Su Y, Fang F et al (2021) Myeloid-derived suppressor cells alleviate renal fibrosis progression via regulation of CCL5-CCR5 axis. Front Immunol 10(12):698894. https://doi.org/10.3389/fimmu.2021.698894

69. Dong M, Blobe GC (2006 Jun 15) Role of transforming growth factor-beta in hematologic malignancies. Blood 107(12):4589–96. https://doi.org/10.1182/blood-2005-10-4169. Epub 2006 Feb 16. PMID: 16845890; PMCID: PMC1895802

70. Meng XM, Nikolic-Paterson DJ, Lan HY (2016) TGF-β: the master regulator of fibrosis. Nat Rev Nephrol 12(6):325–338. https://doi.org/10.1038/nrneph.2016.48. Epub 2016 Apr 25 PMID: 27108839

71. Dong M, Blobe GC (2006 Jun 15) Role of transforming growth factor-beta in hematologic malignancies. Blood 107(12):4589–96. https://doi. org/10.1182/blood-2005-10-4169. Epub 2006 Feb 16. PMID: 16845890; PMCID: PMC1895802

72. Deng X, Li X, Guo X, Lu Y, Xie Y, Huang X et al. (2022 Jun) Myeloid-derived suppressor cells promote tumor growth and sorafenib resistance by inducing FGFI upregulation and fibrosis. Neoplasia 28:100788. https://doi.org/10.1016/j.neo.2022.100788. Epub 2022 Apr 1. PMID: 35378464; PMCID: PMC8980488
The “Ins and Outs” of Prostate Specific Membrane Antigen (PSMA) as Specific Target in Prostate Cancer Therapy

Felipe Eltit, Nicole Robinson, Pak Lok Ivan Yu, Mitali Pandey, Jerome Lozada, Yubin Guo, Manju Sharma, Dogancan Ozturan, Laetitia Ganier, Eric Belanger, Nathan A. Lack, David M. Perrin, Michael E. Cox, and S. Larry Goldenberg

Abstract

Prostate-specific membrane antigen (PSMA) is expressed in epithelial cells of the prostate gland and is strongly upregulated in prostatic adenocarcinoma, with elevated expression correlating with metastasis, progression, and androgen independence. Because of its specificity, PSMA is a major target of prostate cancer therapy; however, detectable levels of PSMA are also found in other tissues, especially in salivary glands and kidney, generating bystander damage of these tissues. Antibody target therapy has been used with relative success in reducing tumor growth and prostate specific antigen (PSA) levels. However, since antibodies are highly stable in plasma, they have prolonged time in circulation and accumulate in organs with an affinity for antibodies such as bone marrow. For that reason, a second generation of PSMA targeted therapeutic agents has been developed. Small molecules and minibodies have had promising clinical trial results, but concerns about their specificity had arisen with side effects due to accumulation in salivary glands and kidneys. Herein we study the specificity of small molecules and minibodies that are currently being clinically tested. We observed a high affinity of these molecules for PSMA in prostate, kidney and salivary gland, suggesting that their effect is not prostate specific. The search for specific prostate target agents must continue so as to optimally treat patients with prostate cancer, while minimizing deleterious effects in other PSMA expressing tissues.
16.1 Introduction

Prostate cancer (PC) remains a highly prevalent disease, and one in 9 men will suffer from PC during their lifetime [1]. Although present with demographic differences, worldwide it is the second leading cause of cancer deaths in men. Often overlooked in mortality statistics, are the huge impacts on the quality of life for men and their partners from the various therapeutic modalities, especially for later stage disease. Approximately half of patients will be offered androgen deprivation therapy (ADT), radiotherapy, chemotherapy, and/or immunotherapy, for biochemically recurrent, locally advanced, or metastatic disease [2]. Most patients who start ADT live symptom-free for years, but must endure adverse effects including: physical, mental, sexual and metabolic [3]. More troubling, almost all men with metastatic PC progress from ADT-responsive to ADT-resistant end-stage disease with little hope of a cure. Finding a way of avoiding ADT while extending life would significantly improve their quality of life. More optimistically, the possibility of an all-out cure at all stages of disease could be within reach. The concept of targeted therapy has been known since Ehrlich imagined an antibody-based “magic bullet” that would deliver a toxin to cancer while sparing normal tissues [4]. However, over the past century, attempts at targeted therapy have largely failed. Yet the “magic bullet” for PC is evolving from promise to reality due to the following scientific advances.

Prostate-specific Membrane Antigen (PSMA) specific targeting has been used for therapeutic and diagnostic purposes. PSMA, is highly expressed on the surface of PC cells and its expression increases with tumor grade and in
metastatic sites [5]. For this reason, antibodies, small molecules, and antibody-based constructs such as minibodies have been developed to target PSMA and carry radioactive isotope particles to identify and/or induce the death of PC cells [6]. PSMA was first detected in 1987 as an antigen of monoclonal antibodies developed through murine hybridomas against the human prostate adenocarcinoma cell line LNCaP [7]. The authors described the reactivity of these antibodies as “very narrow and limited to the surfaces of LNCaP cells only”. Then, they tested their novel antibodies against sections of 175 human tissue specimens and observed positive immunoreaction in the epithelial cells of PC and hypertrophic and normal prostate tissue, as well as 2 out of 11 kidneys, suggesting that PSMA could be a specific target for PC.

PSMA gene was cloned as 2.65-kb cDNA for a transcript that encodes a 750-amino acid protein [8], that was mapped in chromosome 11p13-p11.1 [9]. PSMA shares 97% amino acid identity with PSMAL (FOLH1B), that is thought to be a duplicated gene that maps in 11q14 [10]. PSMA is a type II transmembrane glycoprotein belonging to the M28 metallopeptidase family, which includes aminopeptidases and carboxypeptidases. These enzymes need divalent cations (preferentially Zn but can also use Mg or Ca) as enzymatic cofactors [11]. PSMA has a short (18 amino acid) N-terminal cytoplasmatic tail [12], followed by a single transmembrane helix (25 amino acids) and a large extracellular portion (706 amino acids). PSMA has several N-glycosylation sites [8], for a final molecular weight of 100 kDa. In its N-terminal domain, PSMA interacts with several cytoplasmic proteins to allow internalization and recycling.

PSMA catalytic function was firstly describe by Pinto et al. [13]. By isolating PSMA from LNCaP cells membranes, they found a glutamate carboxypeptidase that cleaves amino acids from the C-terminal of proteins and peptides by hydrolysis on different alternative substrates, including the nutrient folate (pteroylmonoglutamate), the neuropeptide N-acetyl-l-aspartyl-l-glutamate, and the chemotherapeutic, methotrexate [13]. The latter activity has been used to explain why PSMA expressing cancers are resistant to methotrexate treatment. Interestingly, PC cells that did not react to anti-PSMA antibodies, such as PC-3, DU-145, or TSU-Pr1, did not show folate or glutamate hydrolase activity. In brain, PSMA-like mRNA was described by Northern blot analysis [14] and its translation to a functional protein was later confirmed by immunoprecipitation and functional assays [15]. The brain-expressed protein demonstrated to have hydrolase activity catabolizing the neuropeptide N-acetylaspartylglutamate (NAAG). For those reasons PSMA is also known as Glutamate carboxypeptidase II (GCP2), N-acetylated-alpha-linked acidic dipeptidase (NAALADase), and Folate hydrolase I (FOLH1).

Although PSMA is known for being a marker of prostate cancer, it is also expressed in other tissues. In mouse models, PSMA (GCP2) has been described in brain, kidney, and salivary gland, but interestingly not in prostate [16]. Human tissues that express PSMA include brain (neurons, type II astrocytes and Schwann cells), kidney, salivary gland, liver, colon, testis, ovary, prostate, small intestine, and spleen [17, 18]. Early studies that developed antibodies against human PSMA described positive immunostaining in frozen sections of prostate acini, proximal tubules of kidney, and weak staining in duodenum. This tissue-restricted expression pattern suggests a role for PSMA in very specific biochemical processes in each tissue. Furthermore, contemporary imaging technologies in human patients, using positron emission tomography (PET) to visualize radiolabeled PSMA tracers 68Ga-PSMA or 18F-PSMA have also shown uptake in lacrimal gland, liver, spleen and gallbladder, and mild uptake in nasal and esophageal mucosa, vocal cords, trachea, and bronchi [19, 20]. Importantly, PSMA has been described in the vasculature of a variety of cancers [21]. Such as metastatic renal cell carcinoma [22], bladder cancers [23], glioblastoma multiforme [24], hepatocellular carcinoma, testicular-embryonal, neuroendocrine, colon, among others, which strongly suggests PSMA role in neovascularization process. Interestingly this neovascularation cancer-associated PSMA+ is not present in PC [25].
The development of radiotherapeutic anti-PSMA targeted antibodies and small molecules increased the relevance of diverse PSMA expression, since targeting organs that are different from PC could potentially cause severe off-target effects. PSMA-J591 antibody was the first antibody that specifically recognized the extracellular domain of PSMA, and it was used in combination with radio-emitter particles for specific PC targeting. While showing promising results in tumor growth, limitations due to its large size which prevents penetration in solid tumors, serum stability which maintains radioactive elements in circulation for long periods of time, and accumulation in tissues with affinity for antibodies (e.g. bone marrow), led to the search for new alternatives. Small molecules were then developed to address these limitations. Although targeting prostate PSMA, and with promising preliminary results, 124I-PSMA and 131I-PSMA still showed elevated uptake in salivary glands, kidney and liver [26] resulting in xerostomia (dry mouth), anemia and kidney dysfunction in clinical studies[27]. A newer generation of targeted agents has attempted to achieve a more selective prostatic PSMA targeting to decrease these adverse effects. As such, the small molecules PSMA-617 (vipivotide tetraxetan) and J519 antibody-based PSMA-minibodies have shown more promising results in clinical trials [28–30]. We tested these two specific PSMA target agents and tested against cell lines and tissues to evaluate their affinity and specificity. Our results show that both, PSMA-617 and a J591-based-minibody have a high affinity and specificity for PSMA. However, since they strongly interact with prostate cancer tissue, they similarly also interact with salivary gland and kidney. We hypothesize that the observed selectivity in clinical images of J591-based minibodies is due to the restricted localization of PSMA to the luminal surface of the cells, compared to small molecules like PSMA-617 which will diffuse into cells. Our results suggest that the adverse effects of treatment with PSMA-targeted agents will continue to be a problem in the near future due to the lack of prostate specificity of the currently used agents, and the search for prostate-specific targets must continue.

16.2 Methods

Patients: All procedures were performed under approval from the ethics board of the University of British Columbia (H19-02061) and were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable. All patients provided signed consent. We obtained tissue from submandibular salivary glands resected as part of radical mandibulectomy because of non-salivary pathology (4 Squamous cell carcinoma of tongue, 1 squamous cell carcinoma of sublingual mucosa, 1 squamous cell carcinoma of the tongue, 1 aggressive ameloblastoma of the jaw) from 7 patients (4 women, mean age 69 YO). Parotid non tumoral tissue was obtained from 4 patients that underwent partial parotidectomy as consequence of myxoid pleomorphic adenoma (3 women, mean age 56 YO). Non-tumoral kidney tissue was obtained from 4 radical nephrectomies as consequence of renal clear cell carcinoma (1 woman, mean age 66 YO). Since renal clear cell carcinoma tissue is distinctive from normal tissue, non-tumoral cortical and medullar kidney tissue was dissected out macroscopically and confirmed microscopically by an experienced pathologist (Dr. Eric Belanger). We obtained sections of prostate carcinoma in different grades from the genitourinary biobank of the Vancouver Prostate Centre (ethics approval No V09-0320).

Histology and Immunohistochemistry: All tissue sections were divided into two specimens, one fixed in Buffered formalin for 24 h to continue regular histological processing, and one specimen was snap frozen for cryosection. Snap freezing was performed by immersing the freshly obtained samples in liquid nitrogen, and subsequently embedding them in optimal cutting temperature compound (OCT). The tissue samples were stored at −80, and tissue slides were
created in a cryostat. 6-micron sections were mounted on poly-lysine coated glass slides, fixed in 95% ethanol for 2 min and used immediately. Formalin fixed samples were dehydrated in ascendent concentrations of alcohol (70, 80, 90, 95, and 100% x 3 for 1.5 h each) and cleared in xylene substitute (2 x 2 h), before paraffin infiltration (3 x 1.5 h) and embedding. 5-micron sections were created using a microtome (Leica), and mounted on poly-lysine coated glass slides. All samples were stained with hematoxylin-eosin following established protocols [31].

For immunodetection of PSMA, we used the following commercially available antibodies: rabbit monoclonal EPR6253 (Abcam, ab133579), mouse monoclonal 3E6 (Agilent, M3620); for frozen sections we used rabbit polyclonal (Sigma HPA010593), and mouse monoclonal (LifeSpan BioSciences LS-B3040) antibodies. After deparaffinization, the tissue slides were rehydrated and endogenous peroxidase was quenched by incubation with hydrogen peroxide 10%. Since salivary peroxidase and myeloperoxidase are abundantly secreted in saliva because of their antimicrobial properties [32], quenching endogenous peroxidases process was extended in salivary gland sections up to 4 changes of peroxide every 10 min in paraffin embedded sections, and up to 8 changes every 10 min in frozen sections. After washing with PBS, non-specific protein block was performed with 3% bovine serum albumin (BSA) in PBS for 30 min. Primary antibodies were incubated overnight at 4°C. After thorough washing with PBS, horseradish peroxidase conjugated secondary antibodies, anti-mouse (Abcam, ab205719) or anti-rabbit (Abcam, ab205718), were incubated for 90 min at 37°C. This antibody was then visualized with HRP-conjugated anti-mouse antibody and the immunoreaction was revealed by using a diaminobenzidine substrate kit (Vector).

For fluorescent visualization, the minibody was conjugated with Alexa fluor 488 (UBC Antibody Lab) and used in a 1/100 dilution in BSA 0.2 M arginine for immunofluorescence in cell culture and tissue sections. We incubated the minibody solution on the slides overnight at 4°C and nuclear staining was performed after washing with Hoechst 33342 (ThermoFischer). The slides were mounted by using a fluorescence mounting medium (Dako, S3023), and visualized under epifluorescence with the microscope and cameras described above.

Fluorescently Cy3 dye labelled vipivotide (PSMA-617) was prepared and provided by Dr. Jerome Lozada as described previously [33]. For histological visualization, after non-specific protein binding, a 0.01 mg/mL solution in 3% BSA was incubated for 1 h at room temperature. After washing with PBS, we performed nuclear staining with Hoechst 33342, slide mounting and visualization as described above.

Cell Culture: PCa cell lines: C4-2, and PC3, and Human Embryonic Kidney cell HEK293T were obtained from ATCC (Manassas, VA). LNCaP cell lines were cultured in Roswell Park Memorial Institute (RPMI, Invitrogen, Burlington, ON, Canada) 1640 media supplemented with 10%
fetal bovine serum (FBS, Invitrogen). HEK293T cells were maintained in Dulbecco’s Modified Eagle Medium (DMEM, Invitrogen) supplemented with 10% FBS. All cell lines were maintained at 37 °C and 5% CO2.

PSMA Truncations and Point Mutations: To generate the PSMA truncations, a pcDNA3.1 plasmid containing variant 3 PSMA from LNCaP n-terminally linked mCherry was used. Truncations were created from the 3’ end by PCR mutagenesis so that aside from the full-length molecule of 750 amino acids, truncations were made available at 740, 452, 316, and 177 amino acids. Glycosylation mutations of PSMA were generated by converting the glycosylation associated asparagine N-476A to alanine using site directed mutagenesis. Modified PSMA variants were investigated through the transfection of HEK293T cells using Lipofectamine™ LTX Reagent with PLUS™ Reagent (ThermoFisher Scientific) and flow cytometry analysis was performed two days after transfection.

PSMA KO LNCaP Generation: LNCaP cells (ATCC) were transiently transfected with a pool of lentiCRISPRv2 plasmids containing one of three sgRNAs which targeted exons 8, 13, and 16 of PSMA with 19 bp target regions (sgRNA (1): AGCCACGCCACGCTCTTGA, sgRNA (2): AGCCAGGTCCAACATTGTA, sgRNA (3): TTTTAGTATACCGTGCTC). Puromycin selection was used to enrich for transfected cells. PSMA KO cells were enriched by probing for PSMA using an AlexaFluor 488-conjugated anti-PSMA antibody (ThermoFisher Scientific, GCP-05) and sorting for the negative population in two successive rounds of FACS. The knockout was confirmed through flow cytometry, western blotting, and amplicon generation sequencing.

Flow Cytometry: Cells were lifted using EDTA, washed in PBS and incubated with the fluorescently labeled (described above) J591-based minibody or PSMA-617 on ice and protected from light for one hour in a HEPES buffer. Analysis was performed on a BD FACSCANTO II flow cytometer using 488 nm excitation.

16.3 Results

16.3.1 PSMA Localization is Restricted to Secretory Poles of Specific Epithelial Cells

We started our observations of PSMA-targeted agents by using traditional immunohistochemistry with commercially available antibodies (Fig. 16.1). As expected, we observed staining for PSMA in the secretory pole of epithelial prostate cells, with reduced staining in other parts of the cells and negative staining in the surrounding connective tissue (Fig. 16.1b and c). As previously described, PSMA expression is associated with the degree of anaplasia of PC cells [5]. Consistently, we observed mild immunostaining in well-defined single layered acini (Fig. 16.1c), with increased staining in those acini showing anaplastic changes such as multiple cell layers, cell crowding and folding (Fig. 16.1d). Furthermore, in highly anaplastic acini, we observed PSMA not restricted to the secretory pole of the cells but compromising the whole cell surface and cytoplasm in the most anaplastic areas (Fig. 16.1d).

Xerostomia is a major side effect of PSMA-targeted radiotherapeutic small molecules and as such deserves a deeper appreciation of the details of salivary gland PSMA expression and targeted agent affinity. We separately analyzed the two major salivary glands: submandibular and parotid, due to their different secretory patterns that include different protein composition and viscosity [34, 35]. Submandibular is a mixed gland that generates a seromucous secretion, due to the presence of two well differentiated type of secretory acini, serous and mucous. While parotid is a predominantly serous gland, with minimum mucous component, and sublingual is preferentially a mucous gland. Serous acini are histologically described as rounded or elliptical clusters of 5–20 cells in a single section (Fig. 16.2a–d), which are characterized by their affinity for hematoxylin in routine H-E staining.
(basophils), and rounded nuclei located in the basal 1/3 of the cells. In their secretory pole, the cells have a great number of sub-micron diameter basophilic granules, which are loaded with their secretion content, mostly composed of enzymes such as amylase and proline rich proteins [36]. Mucous acini present low affinity for conventional H-E staining (Fig. 16.2b), thus they are observed as clear structures, in which the nuclei adopt a basal location, but instead of round they appear as ovoid or even lentil-shaped, with their major axis perpendicular to the major axis of the cells (Fig. 16.2b). Mucous acini secrete a viscous saliva with high concentration of mucins. In mixed glands, mucous acini usually present a serous crescent (Gianuzzi) around them (Fig. 16.2b). From the secretory acini, saliva is transported through a series of collecting tubes. The first part of this tubular system is the intercalated tube, composed of cubic simple epithelium (Fig. 16.2c), which continues with the striated duct and major collecting tubes (Fig. 16.2d), characterized by larger lumens, columnar epithelial cells with elongated nuclei. By using immunohistochemistry in formalin fixed paraffin embedded submandibular glands, we observed that PSMA localized predominantly in serous acini (Fig. 16.2e and f), with the immuno-staining being restricted to the secretory pole of the cells, including cell border and part of the cytoplasm, which is consistent with the known membrane localization and internalization...
Fig. 16.2 PSMA localization in Submandibular gland.

a Low magnification image of histological section, in which the variety of histological elements can be observed, such as serous and mucous acini, collecting ducts. b Higher magnification of mucous acini (asterisk) and serous acini (circle). Mucous acini are characterized by a clear cytoplasm under regular histological staining and lentil-shaped nuclei in the basal pole of the cells (arrowhead). Serous crescents (arrows) are observed around mucous acini (asterisks). c Intercalated ducts (arrows) are composed by cuboidal epithelium with round-shaped nuclei (arrowheads) and are observed in vicinity of serous acini (circles). d Striated ducts are formed by a columnar epithelium (arrows) and bigger lumen (asterisk). e Low magnification of PSMA immunohistochemistry on submandibular gland. Positive PSMA detection is observed in acini and smaller ducts (arrowheads), but negative staining in striated and major collecting ducts (arrows). f Higher magnification showing negative staining in mucous acini (asterisks) but positive staining in serous acini (circles). g Positive PSMA staining of intercalated duct (arrows), serous acini (circles) and serous crescents (arrowheads). h Negative PSMA detection in striated ducts (arrows). Bar = 100 mM. Staining A-D = hematoxylin–eosin
of PSMA [37]. However mucous acini showed no staining (Fig. 16.2f). The intercalated duct showed intense immunostaining also restricted to the luminal membrane with minimal cytoplasmatic staining (Fig. 16.2g), while no PSMA detection in striated ducts (Fig. 16.2h) or major collecting tubes (Fig. 16.2e).

Consistent with the description for submandibular glands, and using the same technical approach, we observed PSMA in serous acini and intercalated duct of parotid glands (Fig. 16.3a–c), but not in striated ducts (Fig. 16.3d) or major collecting tubes. Of note, detection of PSMA in salivary gland from women showed similar intensity to those obtained from men (Fig. 16.3), suggesting no sex differences in PSMA expression in non-prostatic tissue and raises the question of how the androgen receptor axis modulates PC PSMA expression.

Kidney is another major organ where PSMA-targeting has been described to generate deleterious effects [27]. Kidney’s functional unit, the nephron, is composed of the glomeruli, where blood is filtered, followed by a series of tubules. The proximal convoluted tube, the largest of the renal tubules, is composed of a tall cubic epithelium, with rounded nuclei and a brush border or microvilli that increases the contact surface with the secreted fluid and extends towards most of the lumen. The cytoplasm of these cells is highly eosinophilic and thus stains strongly pink in H-E sections (Fig. 16.4). The Loop of Henle consists of simple squamous epithelium and is located mostly in the renal medulla. The distal

![Fig. 16.3](image-url) PSMA localization in parotid gland. a Low magnification of immunohistochemical staining of PSMA, with positive staining for acinar structures (arrowheads) but negative in collecting ducts in a predominantly adipose connective matrix. b Higher magnification image showing positive PSMA immunostaining of serous acini, preferentially in the lumina border of secretory cells (arrowheads). c Positive PSMA-immune detection on intercalated ducts (arrows), restricted preferentially to the luminal pole of the cells. d Negative PSMA-detection on striated duct (arrows), surrounded by positive stained acini (arrowheads). Bar = 100 mM
convoluted tube is shorter, with a wider lumen and composed of cubic epithelium that is less eosinophilic with less microvilli than the proximal convoluted tubule. In formalin fixed paraffin embedded kidney sections, we observed PSMA immunostaining restricted to the luminal border of the proximal convoluted tubule are PSMA negative, as well as distal convoluted tubes (arrowheads), while proximal convoluted tubes stain positive for PSMA (arrows). d–f Higher magnification images showing positive staining for PSMA in the luminal surface of proximal convoluted tubules (arrows), while glomeruli (asterisks) and distal convoluted tubes (arrowheads) remain negative. Bar = 100 microns. Staining A-B = Hematoxylin–eosin.

Fig. 16.4 PSMA localization in human kidney. a Low magnification histological section of kidney cortex, showing glomeruli (asterisks) and multiple tubules sections. b High magnification mage of kidney cortex, where segments of proximal convoluted tubes (arrows), distal convoluted tubes (arrowheads), and Henle loop (red arrows) are shown. c Low magnification image of PSMA immunodetection in kidney cortex. Glomeruli (asterisk) (Fig. 16.4c and d) and absent in the distal convoluted tubule (Fig. 16.4f) Loop of Henle and collecting tubules of the medulla. The staining of the lumen of the proximal convoluted tubules, suggests that it is present in the microvilli membrane, where PSMA may have a role in the glutamate interchange.
16.3.2 Small Molecule PSMA-617 is not Selective for Prostate PSMA and Can Recognize Salivary and Kidney PSMA

PSMA antibody based theranostics has faced many challenges as the large molecular size of antibodies does not allow them to easily penetrate solid tumors, limiting their therapeutic capabilities. Furthermore, antibodies are very stable in plasma so that they remain a long time in circulation, increasing the exposure time of non-cancer tissues, especially those with some PSMA expression or affinity for antibodies [6]. For these reasons, small molecules have been developed as therapeutic carriers of radioemitters or cytotoxic drugs. PSMA-617 is a small molecule that has been charged with 177Lu and used in several clinical trials that successfully reduced PC progression markers. To evaluate the tissue specificity of PSMA-617 we used a Cy3 fluorescent conjugated version and characterized its PSMA binding in tissue frozen sections. As expected, we observed that PC tissue stains strongly with PSMA-617 (Fig. 16.5a and b). In salivary gland we observed a strong staining on serous acini (Fig. 16.5c and d), but negligible staining in mucous acini (arrowheads in Fig. 16.5d), while in kidney, we observed PSMA-617 strongly stained the proximal convoluted tubules (arrows in Fig. 16.5e) but not distal convoluted tubules (arrowheads in Fig. 16.5e) or collecting tubes (Fig. 16.5f). These results confirm that small molecules have no specificity for prostate PSMA and suggests that they might actually lead to an increase in adverse effects under prolonged treatment.

16.3.3 J591-Based Minibody Binds a Portion of the Extracellular Domain of PSMA by the Region of Binding of PSMA-617

In the search for selective prostate PSMA ligands, antibody-based targeting agents were the first developed agents to be studied in clinical trials with relative success [37]. J591 is a highly sensitive antibody that targets the extracellular domain of PSMA. It has been proposed that J591 is selective for prostatic PSMA with minimal affinity for PSMA in other tissues, possible due to a much lower PSMA expression [38]. To overcome the limitations of antibodies, such as reduced penetration in solid tumors, prolonged time of clearance, and deleterious effects on tissues with affinity for antibodies, a J591 based minibody conjugated with 89Zr (89Zr-IAB2M) was engineered and used in clinical trials [29]. We tested the specificity of our J591-based minibody construct (VPC-PSMA-101).

By using flow cytometry on HEK293T cells transfected with different PSMA truncations, we determined that the VPC-PSMA-101 (J591-based minibody) binds in the extracellular domain between amino acids 316 and 346, consistent with the epitope proposed previously [39] and with a loss of binding that occurs when PSMA is truncated at amino acid 316 (Fig. 16.6a–c).

It has been previously proposed that mutation of asparagine N-476A, that harbors the glycosylation site, would significantly decrease the binding of J591 antibody [40]. However, the described domain that J591 binds to does not include this residue. In fact, it is on the opposite side of the molecule. While trying to confirm if this mutation would be critical in the epitope recognition of J591-based minibody, we tested a PSMA mutant. We found no changes in binding with alanine mutation to these glycosylation sites. (Fig. 16.6d). We are unaware of any other reports attempting to validate this early observation. We conclude that differences in glycosylation of these residues is not a potential mechanism of differential J591 affinity for PSMA presented on PC versus normal tissues.

16.3.4 J591-Based Minibody is not Specific for Prostatic PSMA and Can React with PSMA of Other Tissues

We next tested the selectivity and specificity of the J591-based minibody, with imaging on human cells and tissues. By immunofluorescence
labeling of LNCaP (PSMA+) and PC3 (PSMA-) prostate cancer cell lines, we confirmed that J591-based minibody selectively stains LNCaP but not PC3 cells or PSMA-KO cells (Fig. 16.7a and b). By using direct immunofluorescence (Fig. 16.7c) and immunohistochemistry (Fig. 16.7d), we characterized the expression of PSMA in PC frozen tissue sections. When used on sections of kidney and salivary gland, the J591 minibody shows positive staining of the luminal part of serous acini and intercalated tubes (Fig. 16.7e) and the proximal convoluted tubule in kidney (Fig. 16.7f), while other parts of tissues remained negative to PSMA staining, as expected. These results confirm the selectivity of J591 minibody for PSMA but suggests that J591 minibody does not have specific affinity for prostate PSMA compared to other tissues. Differences seen may be related to the pharmacokinetics of the minibody absorption, distribution, and clearance or the higher expression of PSMA in prostate adenocarcinoma.
16.3.5 PSMA KO Model Confirms J591-Based Minibody Specificity

To confirm the specificity of the J591-based minibody, we developed a KO LNCaP cell line. Through flow cytometry we determined that J591-based minibody showed significantly higher affinity (~100-fold) for wt LNCaP compared to KO cells (Fig. 16.8). This difference was much higher than that observed for PSMA 617 (Fig. 16.8b) suggesting that J591-based minibody is a more selective carrier of therapeutic agents than PSMA 617. These results confirm that the reactivity of the J591-based minibody is specific to PSMA, and not to other proteins that could be differentially expressed in LNCaP cells compared to PC3.

16.4 Discussion

Selective tumor targeting has been a key objective in cancer therapy over the years. In this context, PSMA selectivity is critical in the future of prostate cancer therapy, due to its high expression in PC and low expression in most other tissues. Non-prostate PSMA expression is a major cause of adverse ‘bystander’ effects of specific targeted therapy. Antibodies, small molecules and minibodies have been used as carriers of radioisotope particles for theranostic or therapeutics, that have been successful in limiting tumor progression, but generating a variety of adverse effects due to this non-specific targeting. Our analysis of PSMA targeting agents that aim to selectively target PC, shows that...
antibodies, small molecules and minibodies and have high affinity and specificity for PSMA, but there is no evidence of specific PC PSMA selectivity. Thus, the promising results observed in clinical imaging of antibodies and minibodies are due mostly to the specific location of PSMA in the lumen of glands and organs, where the exposure to big organic molecules such as antibodies is low, but small molecules that can diffuse into these surfaces also generate more severe adverse effects.

One example of this phenomenon is with the small molecule PSMA-617 conjugated to the beta-emitter 177Lutetium. Studies with this molecule showed positive results, with PSA decline after treatment [41, 42]. However, reports of adverse effects such as anemia, neutropenia, thrombocytopenia, xerostomia significantly increased after...
repeated treatments (rechallenge) [43]. Alpha emitters such as ^{225}Ac would be more specific in cancer treatment because of its lower penetration depth (1 mm) which would more selectively affect the tissues that express PSMA, with expected lower negative bystander impacts. ^{255}Ac-PSMA-617 has been used in clinical trials, where it has demonstrated to be effective in PSA reduction [44]; however maintaining elevated rates of side effects including xerostomia (63% of patients) [45] proposed to be due to the presence of PSMA expression in salivary glands. As we show in this manuscript, although restricted to serous acini and intercalated duct, PSMA is expressed in all major salivary glands that are responsible for 90% of total saliva production [46]. Furthermore, the lowest expression (and thus lower effect of PSMA agents) is presumably in the mucous glands (sublingual) that only contributes 5% of total saliva, while the highest expression is in the predominantly serous gland parotid which is responsible for only 25% of saliva during resting conditions but 60% of salivary secretion under stimulation, thus increasing the perception of dry mouth when eating.

Antibody based agents with high affinity for PSMA have been used as guidance systems, mostly conjugated with radioactive isotopes ^{177}Lu, ^{255}Ac, ^{277}Th, ^{90}Y, ^{85}Zr, ^{89}Zr or ^{131}I, for both diagnostic imaging and therapeutic purposes [6]. Successful imaging trials have demonstrated a high sensitivity of PSMA-J591 antibody conjugated with ^{85}Zr for PET/CT-scanning to detect PC metastases to skeletal and soft tissues [29]. The subsequent development of J591-based PSMA minibody (IAB2M) aimed to overcome the adverse effects of antibody-based therapy (prolonged time in circulation and accumulation in tissues with antibody affinity such as bone marrow. Phase I and Phase II clinical trials for the ^{89}Zr-desferroxiamine conjugated IAB2M have shown in PET/CT a similar performance to ^{85}Zr-J591 imaging [29]. As the therapeutic community waits for the results of phase III clinical trials, we tested the specificity of a similar minibody for PC PSMA. Our results, demonstrating affinity of J591-based minibodies for salivary and kidney, suggests that if J591-based minibodies are secreted and/or present in those tissues, xerostomia and some degree of renal dysfunction are expected. However, the higher molecular weight than the small molecule 617 should give the minibody constructs significant advantages by reducing its glomerular filtration and salivary secretion.

Our observations, show that while PSMA detection is strongly associated to the luminal border of salivary glands, prostate and kidney, the protein localization also extends to the cytoplasm of epithelial cells. This could be due to a process of PSMA internalization that was first observed in LNCaP cell cultures by laser scanning confocal microscopy, where the fluorescence labelling was observed in the cytoplasm of LNCaP cells 2 h after antibody exposure [36].
Immunogold labeling and TEM observation revealed that the internalization process of PSMA occurs in 60 nm clathrin coated vesicles [36]. Further analysis revealed that the intracellular domain of PSMA interacts with the globular N-terminal domain of clathrins, which is not common in clathrin binding proteins [47]. This interaction is through a specific sequence (MWNLL) in its amino terminal segment has been described as critical to PSMA internalization [48]. Additionally, the cytoplasmic tail of PSMA interacts with alpha-adaptin, a protein that is part of the clathrin adaptor protein-2 complex (AP-2). Interestingly, it was demonstrated that in human immortalized endothelial cells, one fifth of PSMA internalization occurs also in caveolae, where it colocalizes with transferrin, and PSMA is still internalized after blocking clathrin coated vesicles [49]. This internalization process could be a potential advantage in the development of PSMA-ligands with cytotoxic elements that will be internalized and may exert their function intracellularly, which represents an opportunity to develop active agents different from currently studied alpha or beta emitters.

In conclusion, our work confirms the selectivity and specificity of J591-based minibody and PSMA-617 in binding PSMA expressing cells and tissues, with high affinity for prostate cancer, but also with affinity for salivary gland and kidney. This non-prostate cancer tissue affinity causes the secondary effects that will limit their usefulness as targeting-agents in patients. We believe that the prostate PSMA selectivity of J591 antibodies and minibodies, suggested by clinical imaging, are due mostly to the restricted location of PSMA in areas with low exposure to antibodies. Thus, the search for specific agents that selectively bind PSMA will eventually provide more effective diagnostics and therapeutics for prostate cancer patients with minimum adverse effects, thus ultimately improving their quality of life.

Statements and Declarations Funding: This project was possible thanks to generous philanthropic contributions, and a Prostate Cancer Canada Discovery Grant. FE received a Michael Smith Foundation Fellowship and a Prostate Cancer Foundation of British Columbia Fund in Aid to work in this project. **Disclosure of Interests:** All authors declare no conflict of interest. **Ethical Approval:** All procedures performed in studies involving human patients were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards. Approval was granted by the ethics board of the University of British Columbia (H19-02.061). **Acknowledgments:** We thank the patients and their families.

References

1. 2017–2018 PCF Progress report
2. Student S, Hejmo T, Poterad-Hejmo A, Lešniak A, Buldak R (2020) Anti-androgen hormonal therapy for cancer and other diseases. Eur J Pharmacol 866:172783
3. Soeyonggo T, Locke J, Del Giudice ME, Alibhai S, Fleshner NE, Warde P (2014) National survey addressing the information needs of primary care physicians: side effect management of patients on androgen deprivation therapy. J Can Urol Assoc 8:227–234
4. Tans SY, MD, Grimes MS (2010) Man With the Magic Bullet. Singapore Med J 51(11):1854–1915
5. O’Keefe DS, Bacich DJ, Huang SS, Heston WDW (2018) A perspective on the evolving story of PSMA XE “PSMA” biology, PSMA-based imaging, and endoradiotherapeutic strategies. J Nucl Med 59(7):1007–1013
6. Hawkey NM, Sartor AO, Morris MJA AJ (2022) Prostate-specific membrane antigen-targeted theranostics: past, present, and future approaches. Clin Adv Hematol Oncol 20(4):227–238
7. Horoszewicz JS, Kawinski E, Murphy GP (1987) Monoclonal antibodies to a new antigenic marker in epithelial prostatic cells and serum of prostatic cancer patients. Anticancer Res 7(5 B)
8. Israeli RS, Powell CT, Fair WR, Heston WD (1993) Molecular cloning of a complementary DNA encoding a prostate-specific membrane antigen. Cancer Res 53(2):227–230
9. Rinker-Schaeffer CW, Hawkins AL, Su SL, Israeli RS, Griffin CA, Isaacs JT, Heston WD (1995) Localization and physical mapping of the prostate-specific membrane antigen (PSM) gene to human chromosome 11. Genomics 30(1):105–108
10. O’Keefe DS, Bacich DJ, Heston WDW (2004) Comparative analysis of prostate-specific membrane antigen (PSMA) versus a prostate-specific membrane antigen-like gene. Prostate 58(2):200–210
11. Chevrier B, D’Orchymont H, Schalk C, Tarnus C, Moras C (1996) The structure of the Aeromonas proteolytica aminopeptidase complexed with a hydroxamate inhibitor. Involvement in catalysis of
Glu151 and two zinc ions of the co-catalytic unit. Eur J Biochem 237(2):393–398
12. Bafinka C, Rojas C, Slusher B, Pomper M (2012) Glutamate carboxypeptidase II in diagnosis and treatment of neurologic disorders and prostate cancer. Curr Med Chem 19(6):865–870
13. Pinto JT, Suffoletto BP, Berzin TM, Qiao CH, Lin S, Tong WP et al (1996) Prostate-specific membrane antigen: a novel folate hydrolase in human prostatic carcino mata cells. Clin Cancer Res 2(9):1445–1451
14. Carter RE, Feldman AR, Coyle JT (1996) Prostate-specific membrane antigen is a hydrolase with substrate and pharmacologic characteristics of a neuropeptidase. Proc Natl Acad Sci U S A 93(2):749–753
15. Luthi-Carter R, Barczak AK, Speno H, Coyle JT (2019) Molecular characterization of human brain N-acetylated alpha-linked acidic dipeptidase (NAALADase). J Pharmacol Exp Ther 286(2):1020–1025
16. Knedltík T, Vorlová B, Navrátil V, Tykvtar J, Sedlák F, Vaculín S et al (2017) Mouse glutamate carboxypeptidase II (GCPII) has a similar enzyme activity and inhibition profile but a different tissue distribution to human GCPII. FEBS Open Bio 7(9):1362–1378
17. Sáčka P, Záměncík J, Barinka C, Hlouchová K, Vichá A, Míčcová P et al (2007) Expression of glutamate carboxypeptidase II in human brain. Neuroscience 144(4):1361–1372
18. Pangalos MN, Neefs JM, Somers M, Verhasselt P, Bekkers M, van der Helm L et al (1999) J Biol Chem 274(13):8470–8483
19. Hohberg M, Eschner W, Schmidt M, Koebe C, Fischer T et al (2016) Lacrimal glands may represent organs at risk for radionuclide therapy of prostate cancer with [(177)Lu]DKFZ-PSMA-617. Mol Imaging Biol 18(3):437–445
20. Barbosa FG, Queiroz MA, Nunes RF, Costa LB, Zamboni EC, Gomes JFM et al (2020) Nonprostate diseases on PSMA PET imaging: a spectrum of benign diseases on PSMA PET imaging: a spectrum of benign diseases on PSMA PET imaging: a spectrum of benign diseases on PSMA PET imaging: a spectrum of benign diseases. J Nucl Med 57(12):2581–2594
21. Liu H, Hoy P, Kim S, Xia Y, Rajasekaran A, Navarro V, Knudsen B, Bander NH (1997 Sep 1) Monoclonal antibodies to the extracellular domain of prostate-specific membrane antigen also react with tumor vascular endothelium. Cancer Res 57(17):3629–3634
22. Chang SS, Reuter VE, Heston WD, Gaudin PB (2001) Metastatic renal cell carcinoma neovascular sttes prostate-specific membrane antigen. Urology 57(4):801–805
23. Sampakiski MK, Heston W, Elson P, Magi-Galluzzi C, Hansel DE (2021) Folate hydrolase (prostate-specific membrane [corrected] antigen) 1 expression in bladder cancer subtypes and associated tumor neovascularization. Mod Pathol 24(11):1521–1529
24. Mahzouni P, Shavakhi M (2019) Prostate-specific membrane antigen expression in neovascularization of glioblastoma multiforme. Adv Biomed Res 8:18
25. Chang SS (2004) Overview of prostate-specific membrane antigen. Rev Urol 6 Suppl 10(Suppl 10):S13–S18
26. Zechmann CM, Afshar-Oromieh A, Armor T, Stubbs JB, Mier W, Hadaschik B et al (2014) Radiation dosimetry and first therapy results with a (124)I- (131)I-labeled small molecule (MIP-1095) targeting PSMA for prostate cancer therapy. Eur J Nucl Med Mol Imaging 41(7):1280–1292
27. Meyrick D, Gallyamov M, Sabarimurugan S, Falzone N, Lenzo N (2021) Real-world data analysis of efficacy and survival after Lutetium-177 labelled PSMA ligand therapy in metastatic castration-resistant prostate cancer. Target Oncol 16(3):369–380
28. Hofman MS, Violet J, Hicks RJ, Ferdinandus J, Thang SP, Akhurst T et al (2018) [177Lu]-PSMA-617 radionuclide treatment in patients with metastatic castration-resistant prostate cancer (LuPSMA trial): a single-centre, single-arm, phase 2 study. Lancet Oncol 19(6):825–833
29. Frigerio B, Morlino S, Luison E, Seregini E, Lorenzoni A, Satta A (2019) Anti-PSMA 124I-scFvD2B as a new immuno-PET tool for prostate cancer: preclinical proof of principle. J Exp Clin Cancer Res 38(1):326
30. Eltit F, Mohammad N, Medina I Haegert A, Duncan CP, Garbus D S, et al. (2021 Dec) Perticular lymphatic aggregates in hip prosthesis-associated adverse local tissue reactions demonstrate Th1 and Th2 activity and exhausted CD8+ cell responses. J Orthop Sci 39(12):2581–2594
31. Raran-Kurussi S, Cherry S, Zhang D, Waugh DS Removal of Affinity Tags with TEV Protease
32. Kuo HT, Lepage ML, Lin KS, Pan J, Zhang Z, Liu Z et al (2019) One-step 18F-labeling and preclinical evaluation of prostate-specific membrane antigen trifluoroborate probes for cancer imaging. J Nucl Med 60(8):1160–1166
33. Morales-Bozo I, Urtzúa-Orellana B, Domínguez P, Aguílera S, López-Solís R (2006) Patterns and variability in electrophoretic polypeptide profiles of human saliva in a healthy population. J Physiol Biochem 62(3):179–188
34. Denny P, Hagen FK, Hardt M, Liao L, Yan W, Arellanno M, Bassilian S et al. (2008 May) The proteomes of human parotid and submandibular/sublingual gland salivas collected as the ductal secretions. J Proteome Res 7(5):1994–2006
35. Veerman EC, van den Keybus PA, Vissink A, Nieuw Amerongen AV (1996) Human glandular salivas: their separate collection and analysis. Eur J Oral Sci 104(4):346–352
37. Bander NH, Milowsky MI, Nanus DM, Kostakoglu L, Vallabhajosula S, Goldsmith SJ (2005) Phase I trial of 177lutetium-labeled J591, a monoclonal antibody to prostate-specific membrane antigen, in patients with androgen-independent prostate cancer. J Clin Oncol 23(21):4591–4601

38. Tagawa ST, Beltran H, Vallabhajosula S, Goldsmith SJ, Osborne J, Matulich D et al. (2010) Anti-prostate-specific membrane antigen-based radioimmunotherapy for prostate cancer. Cancer 116(4 Suppl):1075–1083

39. Bander NH, Nanus DM, Milowsky MI, Kostakoglu L, Vallabhajosula S, Goldsmith SJ (2003) Targeted systemic therapy of prostate cancer with a monoclonal antibody to prostate-specific membrane antigen. Semin Oncol 30(5):667–676

40. Ghosh A, Heston WDW (2003) Effect of carbohydrate moieties on the folate hydrolysis activity of the prostate specific membrane antigen. Prostate 57(2):140–151

41. Hofman MS, Emmett L, Sandhu S, Iravani A, Joshua AM, Goh GC et al. (2021) [177Lu]Lu-PSMA-617 versus cabazitaxel in patients with metastatic castration-resistant prostate cancer (TheraP): a randomised, open-label, phase 2 trial. Lancet 397(10276):797–804

42. Alam MR, Singh SB, Thapaliya S, Shrestha S, Deo S, Khanal K (2022) A Review of 177Lutetium-PSMA and 225Actinium-PSMA as emerging theranostic agents in prostate cancer. Cureus 14(9):e29369

43. Yordanova A, Linden P, Hauser S, Meisenheimer M, Küpös S, Feldmann G et al (2019) Outcome and safety of rechallenge [177Lu] Lu-PSMA-617 in patients with metastatic prostate cancer. Eur J Nucl Med Mol Imaging 46(5):1073–1080

44. Sathekge M, Bruchertseifer F, Knoesen O, Reyneke F, Lawal I, Lengana T et al (2019) 225Ac-PSMA-617 in chemotherapy-naive patients with advanced prostate cancer: a pilot study. Eur J Nucl Med Mol Imaging 46(1):129–138

45. Lee DY, Kim Y-I (2022) Effects of 225Ac-labeled prostate-specific membrane antigen radioligand therapy in metastatic castration-resistant prostate cancer: a meta-analysis. J Nucl Med 63(6):840–846

46. Iorgulescu G (2009) Saliva between normal and pathological. Important factors in determining systemic and oral health. J Med Life 2(3):303–307

47. Goodman O, Barwe SP, Ritter B, McPherson PS, Vasko AJ, Keen JH et al (2007) Interaction of prostate specific membrane antigen with clathrin and the adaptor protein complex-2. Int J Oncol 31(5):1199–1203

48. Rajasekaran SA, Anilkumar G, Oshima E, Bowie JU, Liu H, Heston W et al (2003) A novel cytoplasmic tail MXXXL motif mediates the internalization of prostate-specific membrane antigen. Mol Biol Cell 14(12):4835–4845

49. Anilkumar G, Barwe SP, Christiansen JJ, Rajasekaran SA, Kohn DB, Rajasekaran AK (2006) Association of prostate-specific membrane antigen with caveolin-1 and its caveolae-dependent internalization in microvascular endothelial cells XE Endothelial cells: implications for targeting to tumor vasculature. Microvasc Res 72(1–2):54–61
Abstract

Transforming growth factor-beta1 (TGF-β1) regulates a plethora of cell-intrinsic processes that modulate tumor progression in a context-dependent manner. Thus, although TGF-β acts as a tumor suppressor in the early stages of tumorigenesis, in late stages, this factor promotes tumor progression and metastasis. In addition, TGF-β also impinges on the tumor microenvironment by modulating the immune system. In this aspect, TGF-β exhibits a potent immunosuppressive effect, which allows both cancer cells to escape from immune surveillance and confers resistance to immunotherapy. While TGF-β inhibits the activation and antitumoral functions of T-cell lymphocytes, dendritic cells, and natural killer cells, it promotes the generation of T-regulatory cells and myeloid-derived suppressor cells, which hinder antitumoral T-cell activities. Moreover, TGF-β promotes tumor-associated macrophages and neutrophils polarization from M1 into M2 and N1 to N2, respectively. Altogether, these effects contribute to the generation of an immunosuppressive tumor microenvironment and support tumor promotion. This review aims to analyze the relevant evidence on the complex role of TGF-β in cancer immunology, the current outcomes of combined immunotherapies, and the anti-TGF-β therapies that may improve the success of current and new oncotherapies.

Keywords

TGF-β1 · T-cell lymphocyte · Immunosuppression · Cancer · Immunotherapy
17.1 Introduction

The tumor microenvironment (TME) is fundamental to creating favorable conditions for the cancer cells to proliferate and evolve into malignant stages, where they acquire the capabilities to metastasize or colonize distant organs. In this complex tumor evolution process, the transforming growth factor β-1 (TGF-β1), hereafter TGF-β, is implicated in almost all stages of cancer progression, such as cell proliferation, migration, invasion, survival, angiogenesis, and metastasis. However, the effect of TGF-β on tumor development is dual. While TGF-β displays tumor-suppressive activities at early stages, in cancer cells in the late stage of malignancy, TGF-β promotes the progression of cancer cells into a more proliferative and aggressive state [1, 2]. In addition to the cell-intrinsic effect of TGF-β, this factor also modulates other cellular components of the TME. TGF-β is able to modulate both innate and adaptive immune cell responses, which generates a complex immunosuppressive network that favors cancer cells escape from immune surveillance [2–5]. Therefore, targeting TGF-β effects both on cancer cells and immune cells is a rational therapeutic strategy. Indeed, many efforts and therapeutic strategies aim to target TGF-β to recover or potentiate the antitumor function of the immune system.

In this review, we analyze the complex role of TGF-β in cancer immunology. We also aim to convey insights on the main aspects of TGF-β in tumor progression, focusing primarily on regulating the TME-associated immune system. Furthermore, we address current outcomes of immunotherapies against TGF-β, which open novel immunotherapies approaches to improve both the success of new and existing oncotherapies and the quality of life of cancer patients.
17.2 Transforming Growth Factor-β 1 Signaling

TGF-β is one of the three TGF-β isoforms described in mammals (β1, β2, and β3). Although these three subtypes share a high level of sequence homology, their functions could be divergent [6]. Bioactive TGF-β is involved in several biological processes associated with tumor growth and progression, such as cell differentiation, proliferation, apoptosis, and angiogenesis, and possesses an immune response suppression activity, as well as in establishing a protumoral stroma, and finally promotes cancer cell metastasis [2, 3, 5]. The transcription control of the TGF-β gene also reflects its link with tumorigenesis. Despite that the TGF-β gene promoter lacks a classic TATA box, its transcriptional activation is promoted by several cis-elements and oncogenes and is repressed by tumor suppressor factors [7]. TGF-β is initially produced as a precursor of 75 kDa that can be cleaved by a furin-type convertase, generating the small latent complex (SLC) composed of the immature TGF-β and the latency-associated peptide (LAP). Thereafter, the SLC can bind the latent TGF-β binding protein, forming a second protein complex that remains covalently associated with the extracellular matrix (ECM) until TGF-β is released [8–10]. Interestingly in immune cells, the TGF-β complex can bind to the cell surface membrane via crosslinking with the leucine-rich repeat-containing protein 32/33. This interaction allows the crosstalk between immune cells by directly presenting pro-TGF-β to the receptor on the target cells [11]. The bioavailability of TGF-β depends on diverse releasing mechanisms such as plasmin or metalloproteinases dependent proteolytic cleavage, integrin-mediated activation, oxidative stress, and an acidic ECM microenvironment [8, 12, 13]. After the release of TGF-β from the ECM, it binds to its specific cell surface receptors to lead to a diverse signal transduction cascade implicated in the biological functions of the target cells [9]. TGF-β binds and activates the type-II receptor kinase (TβR2) that subsequently interacts and activates the type-I receptor kinase (TβR1), giving rise to the generation of a hexameric signaling complex able to activate the canonical and non-canonical TGF-β intracellular signaling [14, 15]. Moreover, the TβR3, also called betaglycan, with high affinity, may interact with TGF-β promoting its receptor binding and intracellular signaling [9, 16].

The canonical signaling comprises the activated receptor complex that recruits and activates by phosphorylation the inner plasmatic membrane-associated mediators Smad2 and Smad3. Their phosphorylation promotes the translocation of these proteins from the membrane to the cytosol, enabling interaction with the common partner Smad4. This heteromeric effector complex is translocated to the nucleus, which in association with other transcription factors, regulates TGF-β responsive gene targets [14, 17, 18]. Interestingly, among the target genes, TGF-β-Smad pathways induce a negative feedback response mediated by the expression of Smad7, an inhibitory Smad, which by competing with Smad2,3 prevent their binding to TβR1, therefore blocking the canonical intracellular transduction pathway [19, 20].

The non-canonical TGF-β signaling, also termed non-Smad pathways, involves the activation and crosstalk of several intracellular pathways such as mitogen-activated protein kinases (MAPK) ERK1,2, JNK, and p38, phosphoinositide 3-kinase (PI3K)/AKT1,2 and mammalian target of rapamycin (mTOR), nuclear factor κB (NF-κB), cyclooxygenase-2 (COX-2) and prostaglandins, the small GTPase proteins Ras, and Rho family of GTPases. Nevertheless, these pathways are not TGF-β signaling specific as they can be regulated by other signaling pathways, such as receptor tyrosine kinases [3, 21, 22]. Altogether, the diversity of TGF-β signaling explains the ability of TGF-β to influence a broad variety of molecular, cellular, cellular, and physiological activities.
17.3 Transforming Growth Factor-β Role in Cancer

TGF-β acts as a tumor suppressor in normal epithelial cells in the early stage of carcinoma by inhibiting proliferation and inducing apoptosis in premalignant epithelial cells [2, 23]. In particular, the tumor suppressor features of TGF-β are reflected in its capacity to inhibit cell proliferation in epithelial cells by regulating the expression of cyclin-dependent kinase (CDK) inhibitors, including p15Ink4b and p21Cip1. These proteins inhibit cyclinD-CDK4/6 and cyclinE/A-CDK2 complexes while inducing p16ink4a and p19ARF expression in order to promote a hyperphosphorylated state of the tumor-suppressor retinoblastoma (Rb). Hyperphosphorylated Rb forms a complex with E2F transcription factors, inhibiting its capacity to promote cell proliferation. E2F transcription factors regulate several essential genes implicated in the progression through the G1 to the S-phase of the cell cycle and DNA replication, thereby, their inhibition contributes to cell arrest [24–27]. In addition, TGF-β also inhibits cell cycle progression by repressing the expression of the transcription factor c-Myc and its DNA binding and promoting cell differentiation (Id1, 2, and 3) [28–30]. This factor also regulates cell survival and apoptosis. On the one hand, TGF-β induces cell death by upregulation of the death-associated protein kinase (DAP-kinase) expression, which in turn, promotes the association of TβR2 with the adaptor protein DAXX enabling the induction of JNK-mediated apoptosis. TGF-β also induces apoptosis by the so-called TGF-β signals (ARTS), which translocate from the mitochondria to the nucleus, thus inhibiting the X-linked inhibitor of apoptosis protein functions [31–33].

In contrast, in the late stage of carcinogenesis, TGF-β acquires protumoral properties as a result of multiple genetic and epigenetic modifications on the TGF-β signaling members that inhibit its tumor-suppressive functions. Indeed, TGF-β favors tumor growth, development, and metastasis [2, 3, 23, 29]. Among the major alteration of the TGF-β signaling in cancer, the downregulation of TGF-β receptors due to gene deletion, mutations or epigenetic silencing provokes a ligand compensatory overexpression, which leads to an increase in tumor aggressiveness [34]. For instance, TβR2 is epigenetically silenced by histone acetylation and DNA methylation; however, the expression of this receptor can be restored using 5-Aza-2'-deoxycytidine, an inhibitor of DNA methyltransferase, which also reestablishes the cell cycle arrest in esophageal squamous cell carcinoma [3, 35]. In addition, the SMAD4 loss by homozgyous deletion has been described in several cancer types including human pancreatic cancers, sporadic gastroenterological tumors, human skin squamous cell carcinomas, human cervical cancer, head and neck squamous cell carcinoma, and colorectal cancer [36]. The loss of function of SMAD4 is also associated with a germline mutation in the autosomal dominant familial juvenile polyposis syndrome, which results in benign noncancerous masses in the digestive tract [37]. These data support the notion that Smad4 exerts tumor suppression functions. In contrast, inactivation of the TGF-β signaling such as SMAD2-inactivating mutations has been described with very low frequency in several cancers, such as colorectal, lung, cervical, and hepatocellular carcinomas. Indeed, low levels of Smad2 mRNA correlate with better survival of patients with oral squamous cell carcinoma [38, 39]. Conversely, no SMAD6 and SMAD7, the inhibitory Smads, exhibit cancer-linked mutations. Moreover, an increased Smad6 expression correlates with better survival in squamous cell carcinoma patients, and high Smad7 expression reduces TGF-β signaling in hepatocellular carcinoma [39, 40].

TGF-β levels seem to correlate with the malignancy stage of cancer development, and it is a valuable factor for the diagnosis, prognosis, cancer biomarker, and therapeutic target [41–43]. Indeed, in melanoma, breast cancer, renal cancer, prostatic cancer, and pancreatic cancer, elevated plasma level of TGF-β is associated with the advanced stages of cancer, metastasis, and poor clinical outcome [44–46]. Moreover, TGF-β
Peripheral circulating levels are also elevated in multiple myeloma and non–Hodgkin lymphoma, and it is highly increased in high-grade and cutaneous T-cell lymphomas with a T-regulatory phenotype, among others [47 and references therein]. Although elevated TGF-β levels can be produced by cancer cells, tumor-infiltrating myeloid cells and local stroma cells can also contribute to its production, promoting tumor progression and metastasis via autocrine and paracrine mechanisms [2, 3].

Finally, the tumor promoter functions of TGF-β are not only limited to the pro-metastatic cancer cells, but it also acts on the stroma cells, such as cancer-associated fibroblasts and immune cells, as well as creates an immunosuppressive TME, which further favors tumor development and growth [2, 3, 5, 48].

17.4 Transforming Growth Factor-β and Cellular Immune System Interactions

The TME has considered a complex system constituted of several cell types that can be part of the local tissue or recruited during tumor development. Certainly, TME involves multiple components of stroma cells and non-stroma cells [49]. The heterogeneous cellular TME elements mainly contain cancer-associated fibroblasts, endothelial cells, and infiltrating immune cells such as T-cells, B-cells, Dendritic cells (DC), and myeloid cells. These cells, individually or collaboratively, may contribute to generating an immune-suppressive TME that further supports cancer development and progression [50]. Despite cancer cells expressing antigens that can be recognized by the immune system, immunosuppressive TME protects cancer cells from immunosurveillance and prevent the success of immunotherapies [51].

TGF-β has been indicated as a critical player in the generation of an immune-tolerant TME. This factor may either regulate the immune response by acting on the cancer cells, such as downregulating the major histocompatibility complex (MHC) Class I molecules expression, or by influencing the systemic and tumor local response in cancer patients [2, 3, 47, 51, 52]. TGF-β is actively involved in promoting an immunosuppressive TME by controlling the different immune types of cells, including macrophages, DC, and T-cells [53].

TGF-β isoforms have been described as critical regulators of the immune system. The lethal multi-organ inflammation observed due to a massive T-cell dysregulation in the β1-/- mice have pictured TGF-β as a master regulator of mammalian immune system function and homeostasis [54, 55]. Similar inflammatory phenotypes were described later in a smad3 knock-out mouse. The animals died due to multi-organ inflammatory injuries, partly because of severe responsiveness and chemotaxis defects in neutrophils, T-cells, and B-cells [56, 57]. In addition, smad3-/- T-cells exhibit deficiency in their capacity to differentiate towards Tregs, but they were able to acquire a lymphocyte T helper (Th)17 phenotype after TGF-β and interleukin (IL)-6 treatment [5]. Furthermore, this cytokine regulates the functionality of a broad variety of immune cells, such as T-cells, natural killers (NK), DC, neutrophils, and monocytes/macrophages (Fig. 17.1) [58]. Therefore, TGF-β can regulate the initiation and stimulation of innate and adaptive immune responses impacting the anticancer immune cell activities and finally affecting immunotherapies [3, 59].

17.4.1 TGF-β Regulates T-cell Activities and Function

TGF-β regulates almost all critical steps of T-cell anticancer events. Thus, this factor impacts T-cell activation, proliferation, and differentiation, as well as their migration to tumor mass and tumor-draining lymph nodes [3]. In cytotoxic CD8+ T-cells, one of the primary anticancer cellular effectors, TGF-β represses its cell-mediated antitumor activities through direct interaction or indirectly, controlling the accessory cells that rule CD8+ T-cell activities [3, 60]. The TME-associated TGF-β represses the cytolytic T-cell gene program inhibiting then
perforin, granzyme A and B, interferon-γ, and Fas ligand expression [61]. Moreover, this cytokine blocks IL-2 and IL-2 receptor expression via inhibition of the nuclear translocation of the nuclear factor of activated T-cells (NFAT) nuclear translocation in effector and memory T-cells [62, 63]. In addition, the tumor-specific cytotoxic T-cell proliferation is suppressed by TGF-β due to the inhibition of c-Myc and promotion of Smad3-Foxp1 interaction, which abrogated the tumor-reactive T-cells proliferation in vivo [64]. Besides, SH2 domain-containing protein tyrosine phosphatase-1 is induced by TGF-β and recruited to the immunological synapse. This protein binds Tyr phosphorylated domains in the chains of the T-cell receptor (TCR) complex and dephosphorylates them to inhibit the response to external signals [65–67]. Therefore, increased TME TGF-β levels impede the capacity of T-cells to lead an anti-cancer cytolytic response and promote cytotoxic T-cell exhaustion [60].

17.4.2 TGF-β Promotes the Generation of CD4 + Regulatory T-cells

Treg frequency is increased in cancer and participates in the production of tumor antigens tolerance microenvironment, facilitating the escape of cancer cells from immunosurveillance [2]. Given Tregs are generated from a specialized cluster of differentiation (CD)4+ T-cells subset, TGF-β impedes uncommitted CD4+ T-cells from adopting cytotoxic-T-cell-like and NK-like phenotypes, which are involved in tumor eradication [3, 68, 69]. The generation of the CD4+ CD25+ Tregs is mediated by TGF-β lies in Smad3 interaction and activation of the Treg signature transcription factor Foxp3 promoter [70, 71]. Furthermore, TGF-β promotes Treg differentiation over Th17 T-cells generation by inhibiting IL-23R expression and increasing Foxp3 expression that antagonizes the transcription factor RORγt expression [72]. Interestingly, thymus-derived Tregs and induced Tregs may suppress immune responses via the production and activation of TGF-β suggesting positive feedback between TME-associated TGF-β and Treg expression [70].

17.4.3 TGF-β Regulates Natural Killer Cell Function and Activity

Natural Killers are a group of innate immune cells with cytolytic and cytokine-producing capacities against virus-infected cells and cancer cells [73]. TGF-β can exert its immunosuppressive action on NK cells by influencing function metabolism [74]. The ex vivo treatment of NK with TGF-β reduced their antitumoral capacities by decreasing NK group 2 member D (NKG2D) and Nkp30 receptor expression, both membrane receptors that recognize stressed and tumor cells [75]. Consistently, TGF-β has been implicated in the downregulation of NK-associated NKG2D expression in a mouse model of head and neck squamous cell cancer. At the same time, a high TGF-β level of peripheral
circulation of human head and neck squamous cell cancer patients is related to a reduced NK expression of receptor NKp46, a primary NK cell-activating receptor in fighting tumor cells [60, 76–78]. From the metabolic point of view, TGF-β significantly reduces in IL-2-stimulated NK cells the glycolysis, oxidative phosphorylation, and respiratory chain in a mTORC1-independent manner. These effects involve Smad2,3 effectors paralleled to CD71, interferon (IFN)λ-γ, and granzyme B inhibition [79]. In addition, another investigation has shown the role of mTORC1 signaling in NK cell metabolism under the TGF-β challenge. In a model of metastatic breast cancer, peripheral NK cells exhibited low metabolism and mTORC1 response, which was rescued by TGF-β neutralization, resulting in the recovery of oxidative phosphorylation, mTORC1 activity, and IFN-γ production [80]. These observations are consistent with the fact that, in mice and humans, TGF-β inhibits IL-15-induced mTORC1 activation. Furthermore, NK TβR2 deletion increases NK-associated mTORC1 and cytotoxic activities in response to IL-15, along with metastasis inhibition in vivo [81]. In genetically engineered mouse cancer models, the TGF-β/Smad4 axis induces NK cells to acquire a type 1 innate lymphoid cells phenotype disabling cytotoxic functions to control viral infection and tumor metastasis [82, 83].

17.4.4 TGF-β Represses Dendritic Cells Functionality

Dendritic cells are crucial in immunity and immune surveillance; they recognize foreign antigens or aberrant host antigens. Moreover, as antigen-presenting cells, DC mediate tumor immunity via CD4+ and CD8+ T-cell activation [84 and references therein]. TGF-β represses the expression of MHC class II, CD40, CD80, and CD86, and tumor necrosis factor (TNF)-α, IL-12, and CCL5/Rantes in tumor-associated DCs, thus, impairing their antigen-presenting function. This renders DCs functionally defective due to their immature phenotype, which in turn, results in a more tumor-permissive immune microenvironment [60, 85, 86]. Furthermore, tumor-derived TGF-β inhibits plasmacytoid DC production of inflammatory cytokines, such as IFNα, TNF-α, and IL-6, promoting immune tolerance in ovarian cancer [87]. In murine models of breast cancer and melanoma, the loss of TβR3 and its extracellular domain in cancer cells enhances TGF-β signaling in plasmacytoid DC. This results in increases in IDO and CCL22 chemokine expression in plasmacytoid and myeloid DCs, respectively, which results in the promotion of Tregs tumor infiltration and suppression of antitumor immunity [88]. Remarkably, intratumoral DCs are also a source of TGF-β, enhancing Treg differentiation and potentially inducing MDSC expansion and function [85]. Furthermore, TGF-β switches the DC phenotype towards an immature myeloid cell phenotype via upregulation of the Inhibitor of Differentiation-1, which increases immunosuppression during tumor progression [89].

17.4.5 TGF-β1 Increases the Expansion and Function of Myeloid-Derived Suppressor Cells

Myeloid-derived suppressor cells are composed of populations of myeloid progenitor cells and immature myeloid cells, mainly characterized by the absence of differentiation markers of mature myeloid cells, demonstrating immunosuppressive activities [90, 91]. TGF-β has been involved in the generation, expansion, and function of MDSC. For instance, TGF-β combined with GM-CSF induces the accumulation of monocytic (M)-MDSC from human monocytes in vitro with an effective suppressive capacity of T-cells proliferation while causing Treg generation [92, 93]. Interestingly, B regulatory cells (Bregs), by producing TGF-β educate and enhance polymorphonuclear (PMN)-MDSC and M-MDSC to inhibit T-cell proliferation and cytotoxic CD8+ T lymphocytes differentiation, indicating a different cell interaction in the creation of an immunosuppressive environment [94]. Furthermore,
MDSC-derived from NSCLC patients expresses and secretes TGF-β, which, in an autocrine manner, promotes CD39+/CD73+ MDSC by the hypoxia-inducible factor (HIF)-1α/mTOR axis along with an increased capacity to inhibit T-cell activation and reduced NK cells activities [95]. Moreover, in melanoma, paracrine M-MDSC-produced TGF-β inhibits T-cell proliferation ex vivo [91, 96, 97]. In addition, an autocrine feedback loop may occur in MDSC generation. The MDSC generated from monocytes after TGF-β treatment shows increased TGFB1 gene transactivation and protein production, which consolidate the immunosuppressive function and phenotype of M-MDSC [93]. In addition, MDSC-secreted TGF-β promotes the expression of programmed cell death protein-1 (PD-1) in CD8+ T-cells, which promotes PD-1/PD-ligand-1 (PDL-1) therapy resistance in the TME supporting the notion of TGF-β as a therapeutic target in cancer immunotherapy [98].

17.4.6 TGF-β Regulates Tumor-Associated Macrophages Polarization and Function

Among tumor-associated immune stroma, tumor-associated macrophages [TAMs] are the primary immune cell components that infiltrate tumors and seem crucial to cancer cell proliferation, progression, and metastasis [51, 99]. TAMs are mobilized from bone marrow to infiltrate tumor stroma in response, in part, to tumor-derived inflammatory CC chemokines. At the same time, their survival depends on TME-associated cytokines such as CSF and VEG [100]. Within the TME, several signals influence a wide array of transcriptional networks that allow macrophages to display polarized phenotypes. Macrophages adopt a classical activated M1, with antitumoral activities, and alternatively activated M2 phenotypes, with demonstrated pro-tumoral functions [101]. Nevertheless, macrophages may exhibit several inter-polarized or subtype phenotypes that need to be investigated [102]. High TAM tumor infiltration usually is associated with poor clinical prognosis in most solid cancers [103]. TME-associated TGF-β promotes monocyte recruitment and induces differentiation towards macrophages [104]. Then, these macrophages differentiate into a TAM2-versus-TAM1 phenotype in response to TGF-β [2]. Also, the specific macrophage TβR2 deletion disables cells to differentiate into TAM1, along with the increase in antigen-antitumorigenic TAM functions [105, 106]. Furthermore, TAM2 cells may produce TGF-β that further exacerbates the immunosuppression and contribute to establishing an immunotolerant TME [2, 107].

17.4.7 Tumor-Associated Neutrophils and TGF-β

Neutrophils account for 50–70% of circulating leukocytes, have strongly associated with cancer cells and tumor vasculature, and play crucial roles in tumor growth and progression [108]. Similar to macrophages, neutrophils may also adopt an antitumoral phenotype (named N1) and protumoral phenotype (termed N2) [109]. Depleting tumor-associated neutrophils displaying an N2 phenotype (TAN2) reduces tumor growth and immunosuppressive TME and increases cytotoxic T lymphocyte activities [110, 111]. In turn, tumor-associated neutrophils adopting an N1 phenotype (TAN1) exhibit killing tumor cells capabilities associated with direct or antibody-dependent cytotoxicity and promote adaptive immune cell activation, including T-cells, NKs, and DCs [112].

TGF-β has been demonstrated to be one of the central modulators of neutrophil polarization. TGF-β blockage increases TAN1 neutrophil accumulation, which leads to increased cytotoxicity and activation of CD8+ T cells [109, 113]. Further, TGF-β decreases tumor-suppressive neutrophil roles by inhibiting its capacity to eliminate Fas-ligand-expressing cells, which collaborate further to create a permissive and supportive stroma for tumor progression and metastasis [114].
17.5 Perspectives for Targeting TGF-β1 in Cancer Immunotherapies

Due to TGF-β generating a permissive and immunosuppressive TME, it is an attractive target for cancer immunotherapies. For decades, a vast number of laboratories have dedicated their work to unveiling the leading cellular and molecular mechanisms involved in the TGF-β roles in cancer. This endeavor has been crucial to understanding the TGF-β role in the microenvironment and the development of effective therapeutic strategies to inhibit TGF-β signaling and attenuate tumor growth and progression. Relating to all intratumoral cellular components (i.e., cancer, stromal and immune cells).

Several strategies have been developed as anti-TGF-β oncotherapies. These include TGF-β-neutralizing antibodies, peptide inhibitors, TGF-β receptor kinase inhibitors, antisense oligonucleotides, TGF-β ligand traps, and, more recently, bifunctional antibodies/biomolecules and bifunctional chemical inhibitors. These developed compounds may reduce the excessive TGF-β production and bioavailability and interfere with TGF-β signaling pathways in cancer patients [106, 115–119]. All these therapeutic policies have led to a constant increase in clinical studies, either as monotherapies or in combination with different chemotherapies that are reviewed by Teixeira et al. [120], Derynck et al. [3], and Huang et al. [121]. In the last decade, due to the critical role of TGF-β in cancer immunosuppression, high expectations have been set in combining anti-TGF-β approaches with current immunotherapies strategies.

17.5.1 Immune Checkpoint Immunotherapy and TGF-β

Immunotherapy strategies have provided new insights into the fight against cancer. The discovery of cytotoxic T lymphocyte-associated antigen-4 (CTLA-4) and PD-1 immune checkpoints [122] propelled the development of immune checkpoint inhibitors (ICIs) [123], which specifically block proteins that disable the immune system to attack cancer cells, has become a breakthrough in tumor therapy [124]. Currently, several ICIs have been developed and are in use in clinical trials. Indeed, in 2011 the first antibody to sequester and block CTLA-4, ipilimumab, thus hindering its binding to cell surface B7 protein, was authorized and followed by the generation of antibodies against PD-1 and PDL-1, pembrolizumab and nivolumab, and atezolizumab and durvalumab respectively, increasing then the immunotherapy armament [125, 126].

The immune system has a mission to recognize and eliminate non-self-immunogenic elements to preserve healthy homeostasis. Primarily, tumor-associated antigens are expected to trigger an anti-tumor response in a cancer-immunity cycle model [127, 128]. This model considers that cancer-associated antigens or neo-antigens are recognized, seized, and processed by DC. Next, DCs present these processed cancer antigens to the MHC proteins to the peripheral lymphoid organs’ naïve T-cells. These cells prime and activate T-cells to specifically recognize cancer-associated antigens and infiltrate tumor mass to exert cytotoxic activities on the cancer cells. Also, more tumor antigens are released and increasing the magnitude of the anti-tumor immune response [127, 128]. However, the upregulation of immune checkpoints prevents effector T-cells to trigger immune cytotoxicity responses to fight cancer. Interestingly, these co-inhibitory signals usually counterbalance co-stimulatory signaling to preserve peripheral tolerance and avoid anti-immune diseases [129]. Thus, cancer cells expressing immune checkpoints result in immune surveillance escape and favor tumor progression and metastasis [128].

The critical role of TGF-β in cancer immunosuppression makes it a promising combining target with ICIs immunotherapy strategies to prolong anticancer immune responses (Fig. 17.2) [120]. In this sense, increased cancer-associated TGF-β signaling contributes to the intrinsic
resistance to ICIs [3]. At the same time, anti-PD-1 antibody therapy is improved by combination with anti-TGF-β neutralizing antibodies in xenograft models of skin cancer [130]. A clinical trial [NCT02947165] that combines anti-PD-1 (spartalizumab), and anti-TGFβ1/2 antibodies (NIS793) has been initiated in patients with advanced malignancies. Advanced therapeutic strategies consider bifunctional fusion proteins composed of TβR2 ligand-binding domain, which function as a TGF-β “trap,” or anti-TGF-β antibodies combined with immune checkpoints-blocking antibodies, have also been effective in both preclinical models and clinical trials [60]. For instance, anti-CTLA4-TβR2 bifunctional fusion protein inhibits Tregs and Th17 cell differentiation. This increases tumor-specific IFNγ+ effector and memory cells, improving the anti-tumor response in melanoma and triple-negative melanoma breast cancer lines resistant to immune checkpoint blockade [131]. Moreover, the first-in-class PD-L1/extracellular domains of human TβR2 bifunctional fusion protein M7824 (MSB0011359C) improve the immuno-therapy response in murine breast and colon cancer models with increased intratumoral T-cell and NK cell activation [132]. Furthermore, in 2015, a phase I clinical trial was launched to treat patients with metastatic or locally advanced solid tumors with M7824 [NCT02517398]. The first data indicate that M7824 appears to have a manageable safety profile in cancer patients. This bifunctional fusion protein can saturate PD-L1 in peripheral blood mononuclear cells and clear all three plasmatic TGF-βs [133].

17.5.2 Adoptive Cell Therapy/Chimeric Antigen Receptor (CAR) T-Cell Therapy and TGF-β

A new revolutionary therapeutic technique has recently emerged, the chimeric antigen receptor (CAR) T-cells, which provides further insight into adoptive cell therapy (ACT) for cancer [124]. From a simple view, the CAR construct results from the fusion of a specific anti-tumor-associated antigen (TAA) antibody polypeptide chain with the TCR/CD3ζ signal-mediated activating machinery of the T cell. Also, it may contain one or more domains derived from co-stimulatory T cell receptors CD28, 4-1BB, or OX40. Then, the TAA-CAR-specific construct is ectopically expressed in the immune effector cells to recognize and potentially target cancer cells. When CAR T cells bind to TAA at the cancer cell surface, they proliferate and kill tumor cells. CAR T cells represent a significant advancement in cancer immunotherapy and a genetic engineering platform to develop CAR-based immunotherapies using other immune cells [134].

On the other hand, immune suppression mediated by TGF-β is one of the main obstacles to the success of adoptive cell therapy for the treatment of solid tumors. Adoptive transfer that considers ex vivo expanded genetically engineered T cells with chimeric antigen receptors combined with TGF-β inhibition is now considered for cancer immunotherapy [135] (Fig. 17.3). Recently, Golumba-Nagy et al. [135] have developed CAR T-cells with engineered modification of CD28 by site-directed mutagenesis (CD28-ζ CAR) that avoids TGF-β-mediated repression and may improve CAR T-cell activity against tumors with elevated TGF-β expression. In addition, CRISPR/Cas9-mediated knock out of TβR2 in CAR T cells, reduces the induced Tregs conversion and prevents CAR T-cell exhaustion. In vivo, TβR2-edited CAR T-cells show improved capacities for tumor elimination of either cell line-derived xenograft or patient-derived xenograft solid tumor models. When a PD-1 deletion was engineered to generate PDCD1/TGFBR2 double-KO CAR T-cells, CAR T-cell resistance to suppressive TME improved dramatically [136].

A dominant-negative form of TβR2 co-expressed along with CAR in T-cells directed to prostate-specific membrane antigen (CART-PSMA-TGFβRDNC cells) has shown increased proliferation, exhaustion resistance, and enhanced cytokine release by engineered lymphocytes. These characteristics accompanied
long-term in vivo survival and tumor abolition in aggressive human prostate cancer mouse models. Due to the great expectation created by the potency of preclinical results, a phase I clinical trial was initiated in 2017 to treat patients with relapsed and refractory metastatic prostate cancer (NCT03089203) [50]. Moreover, CAR T-cells that express an extracellular single-chain variable fragment based on the sequence of three TGF-β-blocking antibodies that neutralize the active form of human TGF-β (TGF-β CAR) have been produced. These molecules inhibit endogenous TGF-β signaling and stimulate the engineered TGF-β CAR T-cells through CD28-signaling, which reconverts TGF-β binding from inhibitory to T-cell activating signaling. In this case, TGF-β potently stimulates T-cells to proliferate and secrete Th1 cytokines. Thus, TGF-β CAR-T cells exert an immunosuppressive role in the presence of TGF-β1 [137]. Furthermore, TGF-β CAR-T cells protect tumor-associated immune cells from TGF-1 suppressive effects since in the presence of TGF-β, tumor-targeted CD8+ T-cells retain cytolytic activity and disable CD4+ T-cells differentiation towards Tregs [137]. The inhibition of TGF-β signaling by the TβR1 inhibitor galunisertib enhances CD133 and Her2 CAR T-cells anti-cancer activity in glioma and breast cancer cell lines [138]. Therefore, this may establish new routes and encourage clinical use of engineered CAR T-cells with anti-TGF-β function to target immunosuppressive TME resulting from increased levels of TGF-β.

17.6 Concluding Remarks

During the last decades, fruitful efforts have been made to unveil the underlying cellular and molecular implicated in the main aspects of the TME-associated immunosuppressive environment. In this sense, this review described and
discussed the aspects involved in the diverse roles of TGF-β in the generation of immune permissive TME, in part due to immunosurveillance repression, which favors cancer cells to escape from immune attack and enables tumor progression and metastasis. TGF-β seems to participate in regulating cellular and non-cellular compartments in the tumor mass. Beyond cancer cells and extracellular matrix regulation, TGF-β strongly influences the function and activities of almost all immune cells infiltrating within the tumor stroma, such as inhibiting T-cells, NKs, and DCs activation and function, while promoting the generation of immune cells with immunosuppressive activities, including Tregs, TAM1 and TAN1 cells, which creates immune-tolerant conditions protecting cancer cells from immune clearance.

All these immunoregulatory activities of TGF-β make it an attractive target for improving current immunotherapies. Many clinical trials have been implemented as combined strategies considering TGF-β inhibition and ICIs immunotherapy. Also, combined preclinical
studies have combined TGF-β inhibition with the CAR-T approach. In both cases, combining TGF-β targeting with ICIs or adoptive cell therapy may negatively impact the amplification loop between TGF-β and cancer cells, inhibiting T-cell activation and cytotoxicity functions. Therefore, these combined therapies may limit tumor progression and metastasis, impairing tumor immunosurveillance escape and body dissemination.

Although CAR-T has shown to be promising in treating hematological malignancies, this strategy tackled some challenges in being implemented in solid tumors [139]. Solid tumors comprise heterogeneous cell populations, a complex, dense extracellular matrix, a hypoxic microenvironment, and an elevated interstitial pressure, which prevent T-cell recruitment, activation, and cytotoxic persistence while simultaneously promoting the recruitment of immune suppressor cells [140]. These aspects also dampen CAR T cell antitumor activities, and new adoptive cell therapies have been developed. For instance, besides displaying professional antigen-presenting cell [APC] activities, macrophages exhibit a high capacity to migrate and infiltrate the tumor mass. Recently the concept of CAR-M has been introduced [141, 142]. Moreover, this technology can include other immune cells, such as natural killer (NK)/NKT cells, γδ T cells, DCs, macrophages, and Tregs [143]. Nevertheless, all these cells are under the influence of TGF-β, indicating that manipulating TGF-β function and activity may be a therapeutical requirement to improve the success of cancer immunotherapies.

Finally, clarifying the complex immunoregulatory network of TGF-β in tumors is critical for understanding the contribution to cancer initiation, progression, immune resistance, and metastasis. This may reveal new potential clinical treatments to increase the success of current chemotherapies and immunotherapies in fighting cancer growth and metastasis.

Statements and Declarations
Funding: This study was funded by the Ministry of Education, Science and Technological Development of the Republic of Serbia (grant number 451-03-9/2021-14/200015), Fondo Nacional de Desarrollo Científico y Tecnológico FONDECYT [Grant number: 1201039 (FS)]; Millennium Science Initiative Program—ICN09_016/ICN2021_045: Millennium Institute on Immunology and Immunotherapy (ICN09_016/ICN2021_045; former P09/016-F) (FS); The Millennium Nucleus of Ion Channel-Associated Diseases (MiNICAD) is supported by the Iniciativa Científica Milenio ANID, Chile NCN19_168 (FS).

Disclosure of Interests: All authors declare they have no conflict of interest.

Ethical Approval: This article contains neither any studies with human participants nor performed studies with animals by any of the authors.

Data Availability Statement: The material supporting the conclusion of this review has been included within the article.

Acknowledgments: We thank the support of the visiting professor program of UBO to J.F.S.

References
1. Trikha P (2014 Aug) Carson WE 3rd. Signaling pathways involved in MDSC regulation. Biochim Biophys Acta 1846(1):55–65. https://doi.org/10.1016/j.bbacli.2014.04.003. Epub 2014 Apr 13. PMID: 24727385; PMCID: PMC4140957
2. Batlle E, Massagué J (2019) Transforming growth factor-β signaling in immunity and cancer. Immunity 50(4):924–940. https://doi.org/10.1016/j.immuni.2019.03.024. PMID: 30995507; PMCID: PMC7507121
3. Derynck R, Turley SJ, Akhurst RJ (2021 Jan) TGFβ biology in cancer progression and immunotherapy. Nat Rev Clin Oncol 18(1):9–34. https://doi.org/10.1038/s41571-020-0403-1. Epub 2020 Jul 24. PMID: 32710082
4. Zhao H, Wei J, Sun J (2020 Dec) Roles of TGF-β signaling pathway in tumor microenvironment and cancer therapy. Int Immunopharmacol 89(Pt B):107101. https://doi.org/10.1016/j.intimp.2020.107101. Epub 2020 Oct 21. PMID: 33099067
5. Xue VW, Chung JY, Córdoba CAG, Cheung AH, Kang W, Lam EW, Leung KT, To KF, Lan HY, Tang PM (2020) Transforming growth factor-β: a multifunctional regulator of cancer immunity. Cancers (Basel) 12(11):3099. https://doi.org/10.3390/cancers12113099.PMID:33114183;PMCID: PMC7690808
6. Govinden R, Bhoola KD (2003) Genealogy, expression, and cellular function of transforming growth factor-beta. Pharmacol Ther 98(2):257–265. https://doi.org/10.1016/s0163-7258(03)00035-4. PMID: 12725873
7. Birchenall-Roberts MC, Ruscetti FW, Kasper J, Lee HD, Friedman R, Geiser A et al (1990) Transcriptional regulation of the transforming growth factor β1 promoter by v-src gene products is mediated through the AP-1 complex. Mol Cell Biol 10(9):4978–4983. https://doi.org/10.1128/mcb.10.9.4978.PMID:2117705;PMCID:PMC361127

8. Annes JP, Munger JS, Rifkin DB (2003) Making sense of latent TGFbeta activation. J Cell Sci 116(Pt 2):217–224. https://doi.org/10.1242/jcs.00229.PMID:12482908

9. Tzavlaki K, Moustakas A (2020 Mar 23) TGF-β Signaling. Biomolecules. 10(3):487. https://doi.org/10.3390/biom10030487. PMID:32210029; PMCID:PMC7175140

10. Robertson IB, Rifkin DB (2016) Regulation of the TGF-β family signaling by inhibitory Smads. Cold Spring Harb Perspect Biol 9(2):a022129. https://doi.org/10.1101/cshperspect.a022129.PMID:27864313;PMCID:PMC5287080

11. Nishimura SL (2009 Oct) Integrin-mediated transforming growth factor-beta activation, a potential effector of TGF-beta-induced cell cycle arrest. Nature 371(6494):257–261. https://doi.org/10.1038/371257a0. PMID:8078588

12. Li CY, Suardet L, Little JB (1995) Potential role of WAF1/Cip1/p21 as a mediator of TGF-beta cytokinhibitory effect. J Biol Chem 270(10):4971–4974. https://doi.org/10.1074/jbc.270.10.4971. PMID:7890601

13. Martinez-Hackert E, Sundan A, Holien T (2020 Oct) Receptor binding competition: A paradigm for regulating TGF-β family action. Cytokine Growth Factor Rev 6:S1359–6101(20)30206–9. https://doi.org/10.1016/j.cytogfr.2020.09.003. Epub ahead of print. PMID:33087301

14. Derynck R, Budi EH (2019 Feb 26) Specificity, versatility, and control of TGF-β family signaling. Sci Signal 12(570):eaav5183. https://doi.org/10.1126/scisignal.aav5183. PMID:30808818; PMCID:PMC6800142

15. Martinez-Hackert E, Sundan A, Holien T (2020 Oct) Receptor binding competition: A paradigm for regulating TGF-β family action. Cytokine Growth Factor Rev 6:S1359–6101(20)30206–9. https://doi.org/10.1016/j.cytogfr.2020.09.003. Epub ahead of print. PMID:33087301

16. López-Casillas F, Payne HM, Andres JL, Massagué J (1994) Betaglycan can act as a dual modulator of TGF-beta access to signaling receptors: mapping of ligand binding and GAG attachment sites. J Cell Biol 124(4):557–568. https://doi.org/10.1083/jcb.124.4.557.PMID:8106553;PMCID:PMC2119924

17. Shi Y, Massagué J (2003) Mechanisms of TGF-beta signaling from cell membrane to the nucleus. Cell 113(6):685–700. https://doi.org/10.1016/s0092-8674(03)00432-x. PMID:12809600

18. Feng XH, Derynck R (2005) Specificity and versatility in TGF-beta signaling through Smads. Annu Rev Cell Dev Biol 21:659–693. https://doi.org/10.1146/annurev.cellbio.21.022404.142018. PMID:16212511

19. Miyazawa K, Miyazono K (2017) Regulation of TGF-β family signaling by inhibitory Smads. Cold Spring Harb Perspect Biol 9(3):a022095. https://doi.org/10.1101/cshperspect.a022095.PMID:27920040; PMCID:PMC5334261

20. Itoh S, ten Dijke P (2007) Negative regulation of TGF-beta receptor/Smad signal transduction. Curr Opin Cell Biol 19(2):176–184. https://doi.org/10.1016/j.cceb.2007.02.015. Epub 2007 Feb 20 PMID:17317136

21. Mu Y, Gudey SK, Landström M (2012) Non-Smad signaling pathways. Cell Tissue Res 347(1):11–20. https://doi.org/10.1007/s00441-011-1201-y. Epub 2011 Jun 24 PMID:21701805

22. Zhang YE (2017) Non-Smad signaling pathways of the TGF-β family. Cold Spring Harb Perspect Biol 9(2):a022129. https://doi.org/10.1101/cshperspect.a022129.PMID:27864313;PMCID:PMC5287080

23. Jiang AC, Massagué J (2008) Molecular basis of metastasis. N Engl J Med 359(26):2814–2823. https://doi.org/10.1056/NEJMra0805239.PMID:19109576;PMCID:PMC4189180

24. Hannon GJ, Beach D (1994) p15INK4B is a therapeutic target in cancer. Ann Rev Cell Dev Biol 21:659–6101(20)30206–9. https://doi.org/10.1016/j.cytogfr.2020.09.003. Epub ahead of print. PMID:33087301
30. Roschger C, Cabrele C (2017) The Id-protein family in developmental and cancer-associated pathways. Cell Commun Signal 15(1):7. https://doi.org/10.1186/s12964-016-0161-y. PMID: 28122577;PMCID:PMC5267474

31. Jang CW, Chen CH, Chen CC, Chen YJ, Su YH, Chen RH (2002) TGF-beta induces apoptosis through Smad-mediated expression of DAP kinase. Nat Cell Biol 4(1):51–58. https://doi.org/10.1038/ncb731. Erratum In: Nat Cell Biol 2002 Apr;4(4):328. PMID: 11740493

32. Perlman R, Schieman WP, Brooks MW, Lodish HF, Weinberg RA (2001) TGF-beta-induced apoptosis is mediated by the adapter protein Daxx that facilitates JNK activation. Nat Cell Biol 3(8):708–714. https://doi.org/10.1038/35087019. Erratum In: Nat Cell Biol 2002 Feb;4(2):179. PMID: 11483955

33. Gottfried Y, Rotem A, Lotan R, Steller H, Larisch S (2004 Apr 7) The mitochondrial ARTS protein promotes apoptosis through targeting XIAP. EMBO J 23(7):1627–35. https://doi.org/10.1038/sj.emboj.7600155. Epub 2004 Mar 18. PMID: 15029247; PMCID: PMC391065

34. Massagué J (2008) TGFbeta in cancer. Cell 134(2):215–230. https://doi.org/10.1016/j.cell.2008.07.001. PMID:18662538;PMCID:PMC3512574

35. Ma Y, He S, Gao A, Zhang Y, Zhu Q, Wang P et al (2020) Methylation silencing of TGF-beta signaling pathway in colorectal cancer. J Cell Biochem 120(6):8899–8907. https://doi.org/10.1002/jcb.28331. Epub 2018 Dec 16 PMID: 30556274

36. Maslankova J, Vecurkovska I, Rabajdova M, Katushova J, Kicka M, Gayova M et al (2022) Regulation of transforming growth factor-beta signaling as a therapeutic approach to treating colorectal cancer. World J Gastroenterol 28(33):4744–4761. https://doi.org/10.3748/wjg.v28.i33.4744. PMID: 36159297;PMCID:PMC9476856

37. Padua D, Massagué J (2009) Roles of TGFbeta in metastasis. Cell Res 19(1):89–102. https://doi.org/10.1038/cr.2008.316. PMID: 19050696

38. Ivanović V, Todorović-Raković N, Demajo M, Nesković-Konstantinović Z, Subota V, Ivanisević et al. (2003 Mar) Elevated plasma levels of transforming growth factor-beta 1 (TGF-beta 1) in patients with advanced breast cancer: association with disease progression. Eur J Cancer 39(4):454–61. https://doi.org/10.1016/s0959-8049(02)00502-6. PMID: 12751375

39. Krasagakis K, Tholke D, Farthmann B, Eberle J, Mansmann U, Orfanos CE (1998) Elevated plasma levels of transforming growth factor (TGF)-beta1 and TGF-beta2 in patients with disseminated malignant melanoma. Br J Cancer 77(9):1492–1494. https://doi.org/10.1038/bjc.1998.245. PMID: 9652767;PMCID:PMC2150189

40. Teicher BA (2007) Transforming growth factor-beta and the immune response to malignant disease. Clin Cancer Res 13(21):6247–6251. https://doi.org/10.1158/1078-0432.CCR-07-1654. PMID: 17975134

41. Caja F, Vannucci L (2015 Jul-Sep) TGFβ: A player on multiple fronts in the tumor microenvironment. J Immunotoxicol 12(3):300–7. doi: https://doi.org/10.3109/1547691X.2014.945667. Epub 2014 Aug 20. PMID: 25140864

42. Mao Y, Keller ET, Garfield DH, Shen K, Wang J (2013) Stromal cells in tumor microenvironment and breast cancer. Cancer Metastasis Rev 32(1–2):303–315. https://doi.org/10.1007/s10555-012-9415-3. PMID:23114846;PMCID:PMC4432936

43. Tang N, Cheng C, Zhang X, Qiao M, Li N, Mu W et al (2020) TGF-β inhibition via CRISPR promotes the long-term efficacy of CAR T cells against solid tumors. JCI Insight 5(4):e133977. https://doi.org/
51. Labani-Motlagh A, Ashja-Mahdavi M, Loskog A (2020) The tumor microenvironment: a milieu hindering and obstructing antitumor immune responses. Front Immunol 15(11):940. https://doi.org/10.3389/fimmu.2020.00940. PMID:32499786; PMCID:PMC7243284

52. Park HY, Wakefield LM, Mamura M (2009 Aug) Regulation of tumor immune surveillance and tumor immune subversion by tgf-Beta. Immune Netw 9(4):122–126. https://doi.org/10.4110/in.2009.9.4.122. Epub 2009 Aug 31. PMID:20157598; PMCID:PMC2816944

53. Caja L, Dituri F, Mancarella S, Caballero-Diaz D, Moustakas A, Giannelli G et al (2018) TGF-β and the tissue microenvironment: relevance in fibrosis and cancer. Int J Mol Sci 19(5):1294. https://doi.org/10.3390/ijms19051294.PMID:29701666;

54. Ohtani H, Terashima T, Sato E (2018 Jun) Immune networks construct a balanced immune system. J Immunol 139(1):1–10. https://doi.org/10.4049/jimmunol.18021170.PMID:12810687;PMCID:PMC2193945

55. Worthington JJ, Fenton TM, Czajkowska BI, Kulkarni AB, Karlsson S, Thomas DA, Massagué J (2018) The tumor microenvironment: a milieu hindering and obstructing antitumor immune responses. Proc Natl Acad Sci U S A 90(2):770–774. https://doi.org/10.1073/pnas.90.2.770.PMID:8234339;PMCID:PMC47689

56. Kulkarni AB, Huh CG, Becker D, Geiser A, Thomas DA, Massagué J (2008) TGF-beta directly targets cytotoxic T cell functions during tumor evasion of immune surveillance. Cancer Cell 8(5):369–380. https://doi.org/10.1016/j.ccr.2008.05.012. PMID:18268245

57. Yang X, Letterio JJ, Lechleider RJ, Chen L, Malhotra N, Kang J (2013) SMAD regulatory networks construct a balanced immune system. Immunology 139(1):1–10. https://doi.org/10.1111/imimm.12076.PMID:23347175;PMCID:PMC3634534

58. Geiser AG, Letterio JJ, Kulkarni AB, Karlsson S, Roberts AB, Sporn MB (1993) Transforming growth factor beta 1 (TGF-beta 1) controls expression of major histocompatibility genes in the postnatal mouse: aberrant histocompatibility antigen expression in the pathogenesis of the TGF-beta 1 null mouse phenotype. Proc Natl Acad Sci U S A 90(21):9944–9948. https://doi.org/10.1073/pnas.90.21.9944.PMID:8234339;PMCID:PMC47689

59. Bierie B, Moses HL (2010 Feb) Transforming growth factor beta (TGF-beta) and inflammation in cancer. Cytokine Growth Factor Rev 21(1):49–59. https://doi.org/10.1016/j.cytogfr.2009.11.008. Epub 2009 Dec 16. PMID: 20018551; PMCID:PMC2834863
Transforming Growth Factor-β1 in Cancer Immunology

69. Zhao H, Liao X, Kang Y (2017) Tregs: where we are and what comes next? Front Immunol 24 (8):1578. https://doi.org/10.3389/fimmu.2017.01578. PMID:29225597;PMCID:PMC5705554

70. Marie JC, Liggitt D, Rudensky AY (2006) Cellular mechanisms of fatal early-onset autoimmunity in mice with the T cell-specific targeting of transforming growth factor-beta receptor. Immunity 25(3):441–454. https://doi.org/10.1016/j.immuni.2006.07.012. PMID:16973387

71. Dahmani A, Delisle JS (2018) TGF-β in T cell biology: implications for cancer immunotherapy. Cancers (Basel) 10(6):194. https://doi.org/10.3390/cancers10060194. PMID:29891791;PMCID:PMC6025055

72. Liu Y, Zhang P, Li J, Kulkarni AB, Perruche S, Dasgupta S, Bhattacharya-Chatterjee M, O’Malley BW Jr, Chatterjee SK (2005) Inhibition of NK cell activity through TGF-beta1 by down-regulation of NKG2D in a murine model of head and neck cancer. J Immunol 175(8):5541–5550. https://doi.org/10.4049/jimmunol.175.8.5541. PMID:16210663

73. Dutta A, Banerjee A, Saikia N, Phookan J, Barua MN, Barua S (2015) Negative regulation of natural killer cell in tumor tissue and peripheral blood of oral squamous cell carcinoma. Cytokine 76 (2):123–130. https://doi.org/10.1016/j.cyt.2015.09.006. Epub 2015 Sep 12 PMID:26372424

74. Zamai L, Del Zotto G, Buccella F, Gabrielli S, Canonico B, Artico M et al (2020) Understanding the synergy of NKp46 and co-activating signals in various NK cell subpopulations: paving the way for more successful NK-cell-based immunotherapy. Cells 9(3):753. https://doi.org/10.3390/cells9030753. PMID:32204481;PMCID:PMC7140651

75. Zaiatz-Bittencourt V, Finlay DK, Gardiner CM (2018) Canonical TGF-β signaling pathway represses human NK cell metabolism. J Immunol 200(12):3934–3941. https://doi.org/10.4049/jimmunol.1701461. Epub 2018 May 2 PMID:29720425

76. Cortez VS, Ulland TK, Cervantes-Barragan L, Bando JK, Robinette ML, Wang Q, White AJ, Giltillan S, Cella M, Colonna M (2017 Sep) SMAD4 impedes the conversion of NK cells into ILC1-like cells by curtailing non-canonical TGF-β signaling. Nat Immunol 18(9):995–1003. https://doi.org/10.1038/nature06878. PMID:28759001

77. Wang Y, Xiang Y, Xin VW, Wang XW, Peng XC, Liu XQ et al (2020) Dendritic cell biology and its role in tumor immunotherapy. J Hematol Oncol 13(2):919–29. https://doi.org/10.1084/jem.20050463. Epub 2005 Sep 26. PMID:16186184; PMCID:PMC2213166

78. Tian M, Schiemann WP (2009) The TGF-beta paradox in human cancer: an update. Future Oncol 5(2):259–271. https://doi.org/10.2217/14796694.5.2.259. PMID:19284383;PMCID:PMC2710615

79. Labidi-Galy SI, Sisirak V, Meeus P, Gobert M, Canonico B, Artico M et al (2020) Understanding the symmetry of NKp46 and co-activating signals in various NK cell subpopulations: paving the way for more successful NK-cell-based immunotherapy. Cells 9(3):753. https://doi.org/10.3390/cells9030753. PMID:32204481;PMCID:PMC7140651

80. Zaiatz-Bittencourt V, Finlay DK, Gardiner CM (2018) Canonical TGF-β signaling pathway represses human NK cell metabolism. J Immunol 200(12):3934–3941. https://doi.org/10.4049/jimmunol.1701461. Epub 2018 May 2 PMID:29720425

81. Cortez VS, Ulland TK, Cervantes-Barragan L, Bando JK, Robinette ML, Wang Q, White AJ, Giltillan S, Cella M, Colonna M (2017 Sep) SMAD4 impedes the conversion of NK cells into ILC1-like cells by curtailing non-canonical TGF-β signaling. Nat Immunol 18(9):995–1003. https://doi.org/10.1038/nature06878. PMID:28759001

82. Viel S, Marçais A, Guimaraes FS, Loftus R, Rabilloud J, Grau M et al. (2016 Feb) TGF-β inhibits the activation and functions of NK cells by repressing the mTOR pathway. Sci Signal 19(415):ra19. https://doi.org/10.1126/scisignal.aad1884. PMID:26884601
90. Papaspyridonos M, Matei I, Huang Y, do Rosario Andre M, Brazier-Mitoura H, Waite JC et al. (2015 Apr 29) Id1 suppresses anti-tumour immune responses and promotes tumour progression by impairing myeloid cell maturation. Nat Commun 6:6840. https://doi.org/10.1038/ncomms7840. PMID: 25924227; PMCID: PMC4423225

91. Nagaraj S, Gabrilovich DI (2012 Aug) Regulation of suppressive function of myeloid-derived suppressor cells by CD4+ T cells. Semin Cancer Biol 22(4):282–288. https://doi.org/10.1016/j.semcancer.2012.01.010. Epub 2012 Jan 31. PMID: 22313876; PMCID: PMC3349790

92. Yang Y, Li C, Liu T, Dai X, Bazhin AV (2020) Myeloid-derived suppressor cells in tumors: from mechanisms to antigen specificity and microenvironmental regulation. Front Immunol 22(11):1371. https://doi.org/10.3389/fimmu.2020.01371. PMID: 32793192; PMCID: PMC7387650

93. Casacuberta-Serra S, Parès M, Golbano A, Coves E, Espejo C, Barquinero J (2017) Myeloid-derived suppressor cells can be efficiently generated from human hematopoietic progenitors and peripheral blood monocytes. Immunol Cell Biol 95(6):538–548. https://doi.org/10.1038/icb.2017.4. Epub 2017 Jan 21 PMID: 28108746

94. Gonzalez-Junca A, Driscoll KE, Pellicciotta I, Du S, Lo CH, Roy R et al. (2019 Feb) Autocrine TGFβ is a survival factor for monocytes and drives immunosuppressive lineage commitment. Cancer Immunol Res 7(2):306–320. https://doi.org/10.1158/2326-6066.CIR-18-0310. Epub 2018 Dec 11. PMID: 30538091; PMCID: PMC6828175

95. Bodogai M, Moritoh K, Lee-Chang C, Hollander CM, Sherman-Baust CA, Wersto RP et al. (2015 Sep 1) Immunosuppressive and metastatic functions of myeloid-derived suppressive cells rely upon education from tumor-associated B cells. Cancer Res 75(17):3456–65. https://doi.org/10.1158/0008-5472.CAN-14-3077. Epub 2015 Jul 16. PMID: 26183924; PMCID: PMC4558269

96. Li J, Wang L, Chen X, Li L, Li Y, Ping Y et al. (2017) CD39/CD73 upregulation on myeloid-derived suppressor cells via TGF-β-mTOR-HIF-1 signaling in patients with non-small cell lung cancer. Oncocimmunology 6(6):e1320011. https://doi.org/10.1080/2162402X.2017.1320011. PMID: 28680754; PMCID: PMC5486179

97. Filipazzi P, Valenti R, Huber V, Pilla L, Canese P, Iero M et al. (2007) Identification of a new subset of myeloid suppressor cells in peripheral blood of melanoma patients with modulation by a granulocyte-macrophage colony-stimulation factor-based antitumor vaccine. J Clin Oncol 25(18):2546–2553. https://doi.org/10.1200/JCO.2006.08.5829. PMID: 17577033

98. Yang Z, Guo J, Weng L, Tang W, Jin S, Ma W (2020) Myeloid-derived suppressor cells-new and exciting players in lung cancer. J Hematol Oncol 13(1):10. https://doi.org/10.1186/s13045-020-0843-1. PMID: 32005273; PMCID: PMC6995114

99. Chen X, Wang L, Li P, Song M, Qin G, Gao Q et al. (2018 Nov 15) Dual TGF-β and PD-1 blockade synergistically enhances MAGE-A3-specific CD8+ T cell response in esophageal squamous cell carcinoma. Int J Cancer 143(10):2561–2574. https://doi.org/10.1002/ijc.31730. Epub 2018 Sep 21. Erratum in: Int J Cancer. 2020 Jan 1;146(1):E24. PMID: 29981155

100. Petty AJ, Owen DH, Yang Y, Huang X (2021) Targeting tumor-associated macrophages in cancer immunotherapy. Cancers (Basel) 13(21):5318. https://doi.org/10.3390/cancers13215318. PMID: 34771482; PMCID: PMC8582510

101. Balkwill F, Charles KA, Mantovani A (2005) Smoldering and polarized inflammation in the initiation and promotion of malignant disease. Cancer Cell 7(3):211–217. https://doi.org/10.1016/j.ccr.2005.02.013. PMID: 15766659

102. Lin Y, Xu J, Lan H (2019) Tumor-associated macrophages in tumor metastasis: biological roles and clinical therapeutic applications. J Hematol Oncol 12(1):76. https://doi.org/10.1186/s13045-019-0760-3. PMID: 31300030; PMCID: PMC6626377

103. Xu Y, Wang X, Liu L, Wang J, Wu J, Sun C (2022 May) Role of macrophages in tumor progression and therapy (Review). Int J Oncol 60(5):57. https://doi.org/10.3892/ijo.2022.5347. Epub 2022 Apr 1. PMID: 35362544; PMCID: PMC8997338

104. Li M, He L, Zhu J, Zhang P, Liang S (2022) Targeting tumor-associated macrophages for cancer treatment. Cell Biosci 12(1):85. https://doi.org/10.1186/s13578-022-00823-5. PMID: 35672862; PMCID: PMC9172100

105. Bierie B, Moses HL (2006 Feb-Apr) TGF-beta and cancer. Cytokine Growth Factor Rev 17(1–2):29–40. https://doi.org/10.1016/j.cytogfr.2005.09.006. Epub 2005 Nov 10. PMID: 16289860

106. Novitsky SV, Pickup MW, Chytial A, Polosukhina D, Owens P, Moses HL (2012 Sep) Deletion of TGF-β signaling in myeloid cells enhances their anti-tumorigenic properties. J Leukoc Biol 92(3):641–651. https://doi.org/10.1189/jlb.1211639. Epub 2012 Jun 8. PMID: 22685318; PMCID: PMC3427612

107. Krstic J, Santibanez JF (2014) Transforming growth factor-beta and matrix metalloproteinases: functional interactions in tumor stroma-infiltrating myeloid cells. Sci World J 21(2014):521754. https://doi.org/10.1155/2014/521754. PMID: 24578639; PMCID: PMC3918721
108. Liu Z, Kuang W, Zhou Q, Zhang Y (2018) TGF-β1 secreted by M2 phenotype macrophages enhances the stemness and migration of glioma cells via the SMAD2/3 signalling pathway. Int J Mol Med 42:3395–3403

109. Masucci MT, Minopoli M, Carrierio MV (2019 Nov 15) Tumor associated neutrophils, their role in tumorigenesis, metastasis, prognosis and therapy. Front Oncol 9:1146. https://doi.org/10.3389/fonc.2019.01146. PMID: 31799175; PMCID: PMC6874146

110. Fridlender ZG, Sun J, Kim S, Kapoor V, Cheng G, Ling L et al (2009) Polarization of tumor-associated neutrophil phenotype by TGF-beta: N1 versus N2 TAN. Cancer Cell 16(3):183–194. https://doi.org/10.1016/j.ccr.2009.06.017.PMID:19732719; PMCID:PMC2754404

111. Fridlender ZG, Albelda SM (2012) Tumor-associated neutrophils: friend or foe? Carcinogenesis 33(5):949–955. https://doi.org/10.1093/carcin/bgs123. Epub 2012 Mar 16 PMID: 22425643

112. Pekarek LA, Starr BA, Toledano AY, Schreiber H (1995) Inhibition of tumor growth by elimination of granulocytes. J Exp Med 181(1):435–440. https://doi.org/10.1084/jem.181.1.435.PMID:7807024; PMCID:PMC2191807

113. Mantovani A, Cassatella MA, Costantini C, Jaillon S (2011) Neutrophils in the activation and regulation of innate and adaptive immunity. Nat Rev Immunol 11(8):519–531. https://doi.org/10.1038/nri3024. PMID: 21785456

114. Fridlender ZG, Sun J, Mishalian I, Singhal S, Cheng G, Kapoor V et al. (2012b) Transcriptomic analysis comparing tumor-associated neutrophils with granulocytic myeloid-derived suppressor cells and normal neutrophils. PLoS One. 7(2):e31524. https://doi.org/10.1371/journal.pone.0031524. Epub 2012 Feb 14. PMID: 22348096; PMCID:PMC3279406

115. Chen JJ, Sun Y, Nabel GJ (1998) Regulation of the TGF-β1 receptor system and its role in physiological and pathological conditions. Clin Sci (Lond) 121(6):233–251. https://doi.org/10.1042/CS20110086. PMID: 21615335

116. Akhurst RJ (2017) Targeting TGF-β signaling for cancer therapy. Clin Cancer Res 23(15):3849–3855. https://doi.org/10.1158/1078-0432.CCR-16-2011. PMID: 28451352; PMCID:PMC5608061

117. Haque S, Morris JC (2017 Aug 3) Transforming growth factor-β: a therapeutic target for cancer. Hum Vacc Immunother 13(8):1741–1750. https://doi.org/10.1007/s12432-017-0495-6; PMID: 28753106; PMCID:PMC5630004

118. Yeh HW, Lee SS, Chang CY, Lang YD, Jou YS (2019) A new switch for TGFβ in cancer. Cancer Res 79(15):3797–3805. https://doi.org/10.1158/0008-5472.CAN-18-2019. Epub 2019 Jul 12 PMID: 31300476

119. Huynh LK, Hipolito CJ, Ten Dijke P (2019) A perspective on the development of TGF-β inhibitors for cancer treatment. Biomolecules 9(11):743. https://doi.org/10.3390/biom9110743.PMID:31744193; PMCID:PMC6921009

120. Santibáñez JF, Quintanilla M, Bernabeu C (2011) TGF-β-TGF-β receptor system and its role in physiological and pathological conditions. Clin Sci (Lond) 121(6):233–251. https://doi.org/10.1042/CS20110086. PMID: 21615335

121. Teixeira AF, Ten Dijke P, Zhu HJ (2020) On-target anti-TGF-β therapies are not succeeding in clinical cancer treatments: what are remaining challenges? Front Cell Dev Biol 8(8):605. https://doi.org/10.3389/fcell.2020.00605.PMID:32733895; PMCID:PMC7360684

122. Huang CY, Chung CL, Hu TH, Chen JJ, Liu PF, Chen CL (2020 Dec 16) Recent progress in TGF-β inhibitors for cancer therapy. Biomed Pharmacother 130:11046. Epub ahead of print. PMID: 33341049

123. Huang PW, Chang JW (2019 Oct) Immune checkpoint inhibitors win the 2018 Nobel Prize. Biomed J Rev Cancer 16(5):275–87. https://doi.org/10.1038/nrc.2016.36. Epub 2016 Apr 15. PMID: 27079802; PMCID:PMC5381938

124. Wang Y, Zhang H, Liu C, Wang Z, Wu W, Zhang N et al (2022) Immune checkpoint modulators in cancer immunotherapy: recent advances and emerging concepts. J Hematol Oncol 15(1):111. https://doi.org/10.1186/s11620-022-11552-8.PMID:9831564

125. Xin YuJ, Hubbard-Lucey VM, Tang J (2020 Dec 16) Recent progress in TGF-β inhibitors for cancer treatment. Biomolecules 9(11):743. https://doi.org/10.3390/biom9110743.PMID:31744193; PMCID:PMC6921009

126. Robinet C, Adedecofimmune-checkpointinhibitorsincancertherapy.NatCommun.2020Jul30;11(1):3801.doi:10.1038/s41467-020-17670-y.PMID:32732879;PMCID:PMC7393098

127. Chen DS, Mellman I (2013) Oncomodulators in cancer immunotherapy: recent advances and emerging concepts. J Hematol Oncol 16(1):296. https://doi.org/10.1186/s13045-013-0092-6.PMID:23461774; PMCID:PMC3986972.[125]

128. Robert C, Adedecofimmune-checkpointinhibitorsincancertherapy.NatCommun.2020Jul30;11(1):3801.doi:10.1038/s41467-020-17670-y.PMID:32732879;PMCID:PMC7393098

129. Xin YuJ, Hubbard-Lucey VM, Tang J (2019) Immuno-oncology drug development goes global. Nat Rev Drug Discov 18(12):9527–9538. https://doi.org/10.1038/s41573-019-00167-9. PMID:31780841

130. Chen DS, Mellman I (2013) Oncomodulators in cancer immunology: the cancer-immunity cycle. Immunity 39:1–10. https://doi.org/10.1016/j.immuni.2013.07.012

131. Bai X, Yi M, Jiao Y, Chu Q, Wu K (2019) Blocking TGF-β signaling to enhance the efficacy of immune checkpoint inhibitor. Onco Targets Ther 12(9):9527–9538. https://doi.org/10.2147/OTT.S224013.PMID:31807028;PMCID:PMC6857659

132. Vinay DS, Ryan EP, Pawelec G et al (2015) Immune evasion in cancer: mechanistic basis and therapeutic strategies. Semin Cancer Biol 35(Suppl):S185–S198. https://doi.org/10.1016/j.semcancer.2015.03.004

133. Dodagatta-Marri E, Meyer DS, Reeves MQ, Panigagua R, To MD, Binnewies M et al (2019) α-PD-1
therapy elevates Treg/Th balance and increases tumor cell pSmad3 that are both targeted by α-TGFβ antibody to promote durable rejection and immunity in squamous cell carcinomas. J Immunother Cancer 7(1):62. https://doi.org/10.1186/s40425-018-0493-9. PMID:30832732; PMCID:PMC6399967

131. Ravi R, Noonan KA, Pham V, Bedi R, Zavoronkov A, Ozerov IV et al (2018) Bifunctional immune checkpoint-targeted antibody-ligand traps that simultaneously disable TGFβ enhance the efficacy of cancer immunotherapy. Nat Commun 9 (1):741. https://doi.org/10.1038/s41467-017-02696-6. PMID:29467463; PMCID:PMC5821872

132. Lan Y, Zhang D, Xu C, Hance KW, Marelli B, Qi J et al. (2018 Jan 17) Enhanced preclinical antitumor activity of M7824, a bifunctional fusion protein simultaneously targeting PD-L1 and TGF-β. Sci Transl Med 10(424):eaan5488. https://doi.org/10.1126/scitransmed.aan5488. PMID: 29343622

133. Strauss J, Heery CR, Schlom J, Madan RA, Cao L, Kang Z et al (2018) Phase I Trial of M7824 (MSB0011359C), a bifunctional fusion protein targeting PD-L1 and TGFβ. Adv Solid Tumors Clin Cancer Res 24(6):1287–1295. https://doi.org/10.1158/1078-0432.CCR-17-2653. Epub 2018 Jan 3 PMID: 29298798

134. Caldwell KJ, Gottschalk S, Talleur AC (2021) Allogeneic CAR cell therapy-more than a pipe dream. Front Immunol 11:618427. Published 2021 Jan 8. https://doi.org/10.3389/fimmu.2020.618427

135. Hartley J, Abken H (2019) Chimeric antigen receptors designed to overcome transforming growth factor-β-mediated repression in the adoptive T-cell therapy of solid tumors. Clin Transl Immunology, 8(6):e1064. https://doi.org/10.1002/cti2.1064. PMID:31236274; PMCID:PMC6589154

136. Golumba-Nagy V, Kuehle J, Hombach AA, Abken H (2018 Sep 5) CD28-ζ CAR T cells resist TGF-β repression through IL-2 signaling, which can be mimicked by an engineered IL-7 autocrine loop. Mol Ther 26(9):2218–2230. https://doi.org/10.1016/j.ymthe.2018.07.005. Epub 2018 Jul 10. PMID: 30055872; PMCID:PMC6127517

137. Kloss CC, Lee J, Zhang A, Chen F, Melenhorst JJ, Lacey SF et al (2018 Jul 5) Dominant-negative TGF-β receptor enhances PSMA-targeted human CAR T cell proliferation and augments prostate cancer eradication. Mol Ther 26(7):1855–1866. https://doi.org/10.1016/j.ymthe.2018.05.003. Epub 2018 May 8. PMID: 29807781; PMCID: PMC6037129

138. Hou Chang ZL, Lorenzini MH, Chen X, Tran U, Bangayan NJ, Chen YY (2018 Mar) Rewiring T-cell responses to soluble factors with chimeric antigen receptors. Nat Chem Biol 14(3):317–324. https://doi.org/10.1038/nchembio.2565. Epub 2018 Jan 29. PMID: 29377003; PMCID: PMC6035732

139. Wang Z, Liu Q, Risu N, Fu J, Zou Y, Tang J et al (2020) Galunisertib enhances chimeric antigen receptor-modified T cell function. Eur J Histochem 64(2):3122. https://doi.org/10.4081/ejh.2020.3122. PMID:32705856; PMCID:PMC7388644

140. Grimes JM, Carvajal RD, Muranski P (2021 Feb) Cellular therapy for the treatment of solid tumors. Transfus Apher Sci 60(1):103056. https://doi.org/10.1016/j.transci.2021.103056. Epub 2021 Jan 10. PMID: 33478888

141. Tokarew N, Ogonek J, Endres S, von Bergwelt-Baildon M, Kobold S (2019 Jan) Teaching an old dog new tricks: next-generation CAR T cells. Br J Cancer 120(1):26–37. https://doi.org/10.1038/s41416-018-0325-1. Epub 2018 Nov 9. PMID: 30413825; PMCID: PMC6325111

142. Mojsilovic SS, Mojsilovic S, Villar VH, Santibanez JF (2021) The Metabolic features of tumor-associated macrophages: opportunities for Immunotherapy? Anal Cell Pathol [Amst]. 14(2021):5523055. https://doi.org/10.1155/2021/5523055.PMID:34476174; PMCID:PMC8407977

143. Anderson NR, Minutolo NG, Gill S, Klichinsky M (2021) Macrophage-based approaches for cancer immunotherapy. Cancer Res 81(5):1201–1208. https://doi.org/10.1158/0008-5472.CAN-20-2990. Epub 2020 Nov 17 PMID: 33203697
Index

A
Adrenergic, 49–53, 55, 57–61, 65–71, 73–77, 115, 163–165
Autoimmunity, 12, 13, 15–17
Autophagy, 104, 109, 116, 119, 120, 183–188, 190–192, 194, 205

B
A1-adrenergic receptor, 58, 59
Bile acids, 183, 186–192, 194, 195, 201, 206, 208–213, 219, 221, 222, 224, 231
BMAL1, 235, 238–247
BMP, 255, 264
Bone-marrow, 8, 53, 111, 112, 273–277, 279–287, 291, 294, 305, 316
Burnout, 83–94

C
Calcium, 11, 28, 30, 50, 51, 65, 67–69, 73–76, 105, 109, 185, 238
Cancer, 27, 37, 50, 53, 120, 186, 254, 256, 257, 262, 263, 265, 266, 275, 276, 284, 286, 292, 293, 301, 303–305, 309–321
Catecholamines, 49–53, 60, 66, 74, 75
CCL5/RANTES, 201, 203, 204, 207, 212, 213, 315
Cholestasis, 29, 37, 103, 116, 186, 203, 235–239, 241–246
Cholestasis, 201, 204, 209
Coagulation, 25–28, 31, 35–39, 49, 53, 55, 57–60, 65–68, 70, 74–76, 119
Community health planning, 129
COVID-19, 27, 28, 83–85, 87, 89, 90, 92–94, 137–140
Cytokynes, 103

D
Dexmedetomidine, 163–168, 170–176

E
E-box, 235, 237, 238, 240, 242–247
Endoglin, 253–266
Endothelial cells, 25, 26, 39, 50, 59, 65–71, 73–77, 107, 109, 116, 195, 204, 220, 253–255, 258, 265, 266, 277, 286, 306, 313

F
Fibrinolysis, 26, 28, 35, 36, 39, 55, 66, 67
Fibronectin, 219–221, 223–231, 276, 286
Fibrosis, 31, 103, 107, 116, 120, 185, 186, 204, 212, 219–222, 224, 225, 227–229, 231, 274–279, 282–284, 286
Food allergy, 3–6, 8, 9, 16, 17
FOHL1, 292

G
Glucokinase, 235, 237, 238, 241–244

H
Hemostasis, 25–27, 35, 38, 39, 49, 50, 53, 55–58, 60, 67, 74–77
Hepatocytes, 29, 37, 103, 116, 186, 203, 235–239, 241–246
Higher education, 83, 85, 87, 89, 93, 94, 133, 138
Host barriers, 3, 17

I
Immunosuppression, 53, 276, 285, 315–317
Immunotherapy, 18, 39, 61, 77, 121, 140, 160, 176, 195, 292, 309, 316–321
Inflammation, 4, 6, 8, 10, 12–17, 65–67, 74, 75, 77, 103, 105, 107, 109, 112, 115, 116, 119, 120, 165, 174–176, 185, 204, 212, 219, 220, 273, 275, 276, 283, 285–287, 313
Iodine, 147–152, 154, 155, 158–160
Iodine intake, 148–151, 155, 158–160

L
Lipids, 28, 31, 37, 39, 52–103–105, 111, 112, 116, 120, 185, 187, 237, 255
Liver diseases, 186, 201, 204, 219, 220, 226
M
MDSCs, 273–287
Melanoma, 253–256, 258–266, 276, 312, 315, 316, 318
Microplastics, 102, 103, 108, 111, 116
MiRNAs, 105, 253, 254, 256, 263, 264, 266
Mitochondrial biogenesis, 186, 190, 194, 195, 203
Mitophagy, 183, 185, 186, 195
MPNs, 273–287
Myokine, 201, 203, 212

N
Nanoplastics, 102
Nervous system, 50, 52, 65, 66, 101, 105, 130, 164, 165
Neuroprotection, 165, 175

O
Oxidative stress, 39, 104, 105, 119, 120, 163, 165, 174–176, 185, 186, 205, 212, 221, 275, 311

P
Pandemic, 83, 84, 86, 87, 89, 90, 92–94, 137–140
Pelvic floor disorders, 129
Physical activity, 83, 84, 86–94, 137, 184, 185
Platelet adhesion, 39, 65, 68–73, 75–77
Pregnancy, 119, 131, 133, 137, 147–150, 158, 159
Prostate Cancer, 30, 256, 264, 291–294, 302–304, 306, 319
PSMA, 291–306

Q
Quality of life, 129, 130, 132, 135, 139, 205, 292, 306, 310

R
Rehabilitation, 129, 131, 133, 136–140
Rheumatoid Arthritis, 3, 4, 12, 14, 17

S
Sarcopenia, 183–187, 191, 194, 201, 204–206, 208–213, 221, 226, 227
Skeletal muscle cells, 195, 206, 230
Statin, 25, 28–31, 35–39
Students, 83–90, 92–94
Systemic lupus erythematosus, 3, 4, 9, 17

T
Targeted therapy, 254, 292, 303
T-cell lymphocyte, 276, 309, 310
TGF-β1, 9, 120, 274, 275, 277, 283, 286, 310, 314, 315, 317, 319, 320
TGF-β, 221, 224–227, 229, 230, 254, 255, 264, 266, 286, 309–321
TGR5 receptor, 187, 194, 211, 221, 224, 227, 228, 231
Thrombosis, 26–28, 31, 109
TRPC6, 65–70, 72, 73, 75, 77
24-h dietary recall, 148, 150, 151

U
Urinary incontinence, 50, 85, 129, 130, 132, 135, 138, 256, 286, 317