P2Y receptors as regulators of lung endothelial barrier integrity

Evgeny Zemskov¹, Rudolf Lucas¹, Alexander D. Verin¹², and Nagavedi S. Umapathy¹²

¹Vascular Biology Center, ²Pulmonary and Critical Care Medicine, Medical College of Georgia, Augusta, GA 30912, USA

Address for correspondence: Dr. Nagavedi S. Umapathy, 1459 Laney Walker Blvd, Medical College of Georgia, CB 3701, Augusta, GA 30912, USA. E-mail: usiddaramappa@mcg.edu

ABSTRACT

Endothelial cells (ECs), forming a semi-permeable barrier between the interior space of blood vessels and underlying tissues, control such diverse processes as vascular tone, homeostasis, adhesion of platelets, and leukocytes to the vascular wall and permeability of vascular wall for cells and fluids. Mechanisms which govern the highly clinically relevant process of increased EC permeability are under intense investigation. It is well known that loss of this barrier (permeability increase) results in tissue inflammation, the hallmark of inflammatory diseases such as acute lung injury and its severe form, acute respiratory distress syndrome. Little is known about processes which determine the endothelial barrier enhancement or protection against permeability increase. It is now well accepted that extracellular purines and pyrimidines are promising and physiologically relevant barrier-protective agents and their effects are mediated by interaction with cell surface P2Y receptors which belong to the superfamily of G-protein-coupled receptors. The therapeutic potential of P2Y receptors is rapidly expanding field in pharmacology and some selective agonists became recently available. Here, we present an overview of recently identified P2Y receptor agonists that enhance the pulmonary endothelial barrier and inhibit and/or reverse endothelial barrier disruption.

Key words: EPAC, lipopolysaccharide, microvascular endothelium, MLC-phosphatase, permeability, VE-cadherin

INTRODUCTION

The vascular endothelium is a semi-selective diffusion barrier between the plasma and interstitial fluid and is critical for normal vessel wall homeostasis. The endothelial permeability is regulated by the balance between centripetal and centrifugal intracellular forces, provided by the contractile machinery and the elements opposing contraction, respectively. The latter include tethering complexes, responsible for cell–cell and cell–matrix contacts, and systems granting cell rigidity and preventing cell collapse, such as actin filaments, microtubules, and intermediate filaments.¹ Some naturally occurring substances such as sphingosine-1-phosphate² and the second messenger cAMP³ are known to enhance the endothelial barrier. Recently, much attention has been given to the therapeutic potential of purinergic agonists and antagonists for the treatment of cardiovascular and pulmonary diseases.¹⁴ Purines and pyrimidines function as signaling molecules (receptor legends), which are released extracellularly from different sources in the body and subsequently reach the target organs.¹⁸ Numerous published data obtained in in vitro and in vivo models suggest that they could be physiologically relevant factors protecting the endothelial barrier.¹⁷ ATP, for example, can be released into the bloodstream from platelets⁹ and red blood cells¹⁰,¹¹ and its concentrations may temporarily exceed 100 µM.¹² Furthermore, the endothelium is a source of ATP locally within the vascular bed and ATP is released constitutively across the apical membrane of
the endothelial cells (EC). Enhanced release of ATP is observed from the EC in response to various stimuli, including hypotonic challenge, calcium agonists, shear stress, thrombin, ATP itself and bacterial endotoxin, lipopolysaccharide (LPS). Extracellular ATP may signal directly and this signaling is mediated, in part, by P2Y purinergic receptors.

Purine and pyrimidine receptors (simply called purinoceptors) are divided into two classes: P1 or adenosine receptors and P2, which recognize primarily extracellular ATP, ADP, UTP, and UDP. The P2 receptors are further subdivided into two subclasses. P2X receptors are extracellular ATP-gated calcium-permeable nonselective cation channels that are modulated by extracellular Ca\(^{2+}\), Na\(^{+}\), Mg\(^{2+}\), Zn\(^{2+}\), and Cu\(^{2+}\). Subtypes are defined according to the molecular structure of cloned mammalian P2 receptors, discriminated by different numerical subscripts (P2Xn or P2Yn). This forms the basis of a system of nomenclature that will replace the earlier subtype nomenclature (including P2X, P2Y, P2U, P2T, and P2Z receptors) as correlations between cloned and endogenous receptors are established. Several studies demonstrated that P2X receptors are abundant in EC. However, the P2X specific agonist, AMP-CCP, was completely inactive in human pulmonary artery endothelial cell (HPAEC) and human lung microvascular endothelial cell (HLMVEC) monolayers (our unpublished data) suggesting that P2X receptors are unlikely to be involved in ATP-mediated pulmonary EC barrier enhancement/protection.

P2Y receptors are members of the G-protein-coupled receptors (GPCRs) superfamily, which consists of seven transmembrane domains, three extracellular and three intracellular loops, extracellular N- and intracellular C-termini. The receptors are coupled to their immediate effectors, heterotrimeric G-proteins, and function as guanine exchange factors (GEFs). In the inactive state, heterotrimeric G-proteins are present in the cell as \(\alpha\beta\gamma\) trimers. \(\alpha\) subunit is dissociated from \(\alpha\beta\gamma\) dimer upon GTP binding and, as a result, two functionally-active effectors (\(G\alpha\) and \(G\beta\gamma\)) emerge. Signaling cascades dependent upon \(G\alpha\) and \(G\beta\gamma\) activation by P2Y receptors will be discussed further in the text. In mammalian cells of different origin, the expression of 39 distinct G-protein subunits has been documented: 21 \(\alpha\) subunits, 6 \(\beta\) subunits, and 12 \(\gamma\) subunits. These numbers suggest a remarkable variety of possible heterotrimer combinations. However, not all of them can be realized because of, for example, a tissue-specificity of some subunits.

P2Y purinoceptors are activated by extracellular ATP/ADP/UTP/UDP-glucose/\(\beta\)-NAD. To date, eight P2Y receptors (P2Y1, P2Y2, P2Y4, P2Y6, P2Y11, P2Y12, P2Y13, and P2Y14) were identified in mammalian cells. Expressions of P2Y1, P2Y2, P2Y4, P2Y6, P2Y11, and P2Y14 purinoceptors had been shown in the endothelia or cultured EC. Heterotrimeric G-proteins activated by P2Y receptors in the EC belong to four functionally distinct subfamilies: Gs, Gq/11, Gi, and G12/13. Activations of these particular G-proteins determine a cell response upon agonist stimulations. Here, we have focused on the effects of purine/pyrimidine-induced P2Y-mediated signaling on the endothelial integrity and respective cascades resulting an enhancement/loss of barrier function will be discussed.

SIGNALING PATHWAYS ACTIVATED UPON P2Y RECEPTOR STIMULATION

Endothelial integrity as well as endothelial barrier function is determined by cell–cell and cell–matrix contacts physically and functionally linking to the EC cytoskeleton. Purinoceptor-mediated signaling pathways affecting endothelial barrier function initiate dynamic changes in cytoskeleton organization, regulation of proteins linking cytoskeletal structures to adherens junctions (AJs), tight junctions (TJs), and focal adhesion (FAs) contacts, protein components of AJ, TJ, and FA. AJ and TJ play an essential role in the endothelial cell–cell contacts. Vascular endothelial cadherin (VE-cadherin) is a major component of AJ, transmembrane protein involved in homotypic contacts with adjacent cells. Binding between extracellular domains of VE-cadherin molecules is Ca\(^{2+}\)-dependent, and a removal of Ca\(^{2+}\)-ions from cell culture medium lead to a quick disassembly of AJ and a loss of the EC monolayer integrity. The cytoplasmic domain of VE-cadherin is linked to the cortical actin \(\gamma\)\(\alpha\)-catenins stabilizing AJ as such providing a basis for dynamic reorganization of cell–cell contacts. The EC TJ consists of transmembrane proteins claudins, occludins, and junctional adhesion molecules (JAM) linked to cytoplasmic proteins such as zonula occludens. Actin-mediated disassembly/stabilization of the cell–cell contacts can be determined by phosphorylation levels of actin-associated 20 kDa regulatory myosin light chain (MLC\(_{20}\)). The phosphorylation/dephosphorylation status of MLC\(_{20}\) plays an important role in actin cytoskeleton organization in the EC and therefore critical for endothelial barrier function. Phosphorylation of MLC\(_{20}\) at its Thr-18/Ser-19 residues by Ca\(^{2+}\)/calmodulin-dependent MLC kinase (MLCK) or Rho kinase (ROCK) leads to actomyosin contraction, centripetal force-driven AJ and results in a loss of the EC monolayer integrity, intercellular...
gap formation, and hyperpermeability. By contrast, the pathways leading to dephosphorylation of MLC20, by MLC phosphatase (MLCP) or Ser/Thr protein phosphatase 1 (PP1), result in the formation of a thick cortical actin ring, cell relaxation and spreading. Highly-specific interaction between MLCP with its protein substrate, MLC20, is determined by myosin phosphatase targeting regulatory subunit of PP1 (MYPT1), the regulatory subunit of PP1. Moreover, an interaction of MLCP and MLC20 can be abolished, if MYPT1 is phosphorylated by ROCK at Thr-696/Thr-850. This inhibitory modification of MYPT1 prevents MLCP-dependent dephosphorylation of MLC20 and therefore has a negative effect on the barrier function amplifying F-actin stress fiber formation. As generally considered, an activation of small GTPase RhoA is crucial for the endothelial hyperpermeability. Expression of constitutively active RhoA in the EC is sufficient to induce the monolayer integrity loss. Furthermore, various edemagenic factors (such as thrombin, vascular endothelial growth factor (VEGF), transforming growth factor β (TGF-β), lysophosphatidic acid (LPA), microtubule destabilizers (nocodazole, 2-methoxyestradiol), etc.) were shown to compromise the endothelial barrier by a RhoA-dependent mechanism and an inhibition of either RhoA or its effector, ROCK, could significantly protect the barrier function of the challenged EC.

In the EC, agonist-mediated activation of P2Y receptors may enhance or decrease a barrier function of the endothelium [Figure 1]. Stimulated P2Y11 receptor promotes Gs protein activation, direct interaction of free Gαs-subunit with plasma membrane adenylate cyclase (AC), and elevation of cAMP levels in targeted cells. Numerous publications indicate that the second messenger cAMP has a critical role in a positive modulation of the barrier function. The cAMP-dependent activation of protein kinase A (PKA) has indispensible consequences as a potent positive regulator of endothelial integrity. Recently published data suggest that PKA may prevent RhoA activation by phosphorylation of RhoGDI at Ser-174 and stimulate MLCP via phosphorylation of MYPT1 at Ser-695, shifting the EC to the relaxed shape by prevention of MLC20 phosphorylation and stress fibers formation. Besides, a generation of cAMP may lead to alternative, PKA-independent activation of Exchange Protein directly Activated by cAMP (Epac1) and its downstream effectors, Rap1 and Rac1.

Purinoceptor P2Y14 is involved in heterotrimeric Gi-protein-mediated signaling, which results in an interaction of free Gαi-subunit with AC and inhibition of cAMP synthesis. Besides, Gi-protein-derived Gβγ-dimers initiate PI3-kinase (PI3-K) or phospholipase Cβ (PLCβ) signaling pathways. PI3-K activates PKB/Akt and ERK1/2. PLC activation results in elevation of inositol 1,4,5-triphosphate (IP3) and diacylglycerol (DAG) levels and may follow by [Ca2+]i influx due to stimulation of plasma membrane and endoplasmic reticulum Ca2+-channels. Elevation of [Ca2+]i and DAG levels can induce activation of several PKC isoforms. In case of the regulation of RhoA/ROCK signaling, the PKCα isoform functions as a PKA antagonist, since it may activate this pathway by direct phosphorylation of the upstream effectors, RhoGDI and RhoGEF, increasing, therefore, MLC20 phosphorylation. PKCα may also regulate AJ disassembly via phosphorylation of p120 and β-catenin. P1-purinoceptor-mediated activation of Gai subunits has also been shown to promote an upregulation of p38 MAPK and may possibly activate JNK by ROCK-dependent phosphorylation; however, these pathways were not described for P2Y-mediated Gi-signaling. The p38 MAPK can initiate stress fiber formation via phosphorylation of actin-capping protein hsp27 and its further dissociation from actin filaments. Another important event related to Gi protein-mediated signaling is an activation of Src protein tyrosine kinase (PTK). In the EC, Src family PTK may modulate the barrier function by tyrosine phosphorylation of major protein components of AJ and TJ, although the effect of such phosphorylation on endothelial permeability still needs to be clarified.

Gq/11-protein-mediated signaling is activated by agonist stimulation of P2Y1, P2Y2, P2Y4, P2Y6, and P2Y11.
Free Gαq or Gα11 interact with PLCβ and enhance synthesis of IP₃ and DAG. This essentially results in [Ca²⁺i], influx and activation of PKC isoforms. Extensive studies performed in the EC have demonstrated Ca²⁺-dependent activation of endothelial nitric oxide (NO) synthase (eNOS) (via direct interaction with Ca²⁺/calmodulin and/or via phosphorylation by Ca²⁺/calmodulin-dependent protein kinase II (CaMKII)). NO stimulates guanylate cyclase (GC), resulting in an elevation of second messenger cGMP levels and cGMP-dependent protein kinase G (PKG) activation. This pathway serves as a negative feedback control of Ca²⁺ influx through down-regulation of endoplasmic reticulum (ER) IP₃-sensitive channels and plasma membrane Ca²⁺-influx channels and increases Ca²⁺ uptake by ER via activation of ER Ca²⁺-ATPases. Thus, eNOS/GC/PKG pathway can down-regulate the barrier-compromising Ca²⁺-mediated cell signaling. In human umbilical vein EC (HUVEC), stimulatory phosphorylation of eNOS at Ser-1177 can be activated by extracellular ATP, UTP, or ADP. Inhibitory analysis suggested an involvement of P2Y1, P2Y2, and, possibly, P2Y4 receptors in the activation of eNOS via [Ca²⁺i] increase and DAG-dependent PKCβ. Another protein target of activated PKG is vasodilator-stimulated phosphoprotein (VASP), a protein regulating actin polymerization. PKG/PKA-phosphorylated VASP has been detected in endothelial cell–cell junctions (TJ and AJ). Although an entire role of VASP phosphorylation in endothelial contraction/relaxation remains unclear, this modification correlates with an enhancement of the barrier function in P2Y agonist-stimulated EC monolayers.

P2Y2 receptor can also activate Gα12-dependent pathways. This signaling requires an interaction of the purinoceptor with αvβ3-integrin, since it can be inhibited either by αv-integrin antisense oligonucleotides or by point mutation in an integrin-binding sequence of the P2Y2 receptor. Activation of G12 protein positively modulate Rho-guanine nucleotide exchange factor (p115Rho-GEF) via its interaction with Gα12 subunit or by activated PKCζ phosphorylation. This, in turn, can promote RhoA-dependent ROCK activation and phosphorylation of MLC20 and MYPT1.

Elevation of cytosolic Ca²⁺ in the EC is a common consequence of activation of most P2Y receptors coupled to Gs (via cAMP-activated Ca²⁺-channels), Gq/11 and Gi (via IP₃-mediated Ca²⁺ release). [Ca²⁺i] is essential for activation of eNOS and endothelium-derived release of vasorelaxant, NO. However, an elevation of cytosolic Ca²⁺ is certainly a negative factor for endothelial integrity. Nevertheless, in extracellular purine-activated EC, Ca²⁺ influx is a transient and its effect does not overcome the barrier enhancement.

P2Y RECEPTORS EXPRESSION ANALYSIS IN PULMONARY ENDOTHELIUM

Earlier studies indicated that the most abundant P2 receptor in EC is P2X4 and the other study indicates that P2X4, P2Y11, P2Y1, and P2Y2 are the most expressed P2 receptors in HUVEC. However, in rabbit pulmonary artery EC, the mRNA expression analysis indicates that P2Y1, P2Y2, and P2Y4 receptors are abundantly expressed, but not P2Y6 receptors. Since the expression pattern of P2Y receptors in pulmonary ECs has not been reported earlier, we have used highly clinically relevant human EC to study the mRNA expression. Our quantitative Real-Time RT-PCR (qPCR) analysis of P2Y mRNA expression identifies mRNA for P2Y1, P2Y2, P2Y11, P2Y12, and P2Y14 receptors in both macro (HPAEC) and micro (HLMVEC) vascular pulmonary EC [Figure 2]. Interestingly, P2Y receptors expression levels are quite different in these two closely related cell types of pulmonary vasculature. The P2Y11 receptor (coupled to both Gq and Gs) was highly expressed, P2Y14 receptor expression was moderate and the other P2Y receptors (P2Y1, Y12, and Y2) expression was low to very low levels in HPAEC. However, the mRNA expression levels P2Y receptors were quite different in HLMVEC compared to HPAEC and they all distributed quite significantly [Figure 2]. Our results suggest that P2Y receptors signaling are different in these closely related cell types and detailed studies with receptor-specific agonists and antagonists are needed in order to develop P2Y receptor-based therapeutics.
ROLE OF P2Y RECEPTORS IN PULMONARY EC BARRIER ENHANCEMENT

Since multiple P2Y receptors are expressed at various levels on the pulmonary EC [Figure 2], it is essential to emphasize the P2Y receptor(s) responsible for the pulmonary endothelial barrier enhancement and protection against various insults. The possible interactions between naturally occurring receptor agonists and P2Y receptors expressed on pulmonary EC are very complex. The data regarding role of purines and pyrimidines in the maintenance and alteration of EC barrier are contradictory. Barrier-protective property of ATP has been reported. On the other hand, P2Y1-receptor agonists, 2-methylthio ATP (2meS-ATP) and ADP decreased cell size and enhanced permeation of FITC-labeled dextran through HUVEC monolayers. ATP was found to increase paracellular permeability of microvascular endothelium in frog microvessels. Our studies demonstrate that ATP and its stable analogs significantly increase the transendothelial resistance (TER) in highly clinically relevant human pulmonary EC via P2Y receptors.

Furthermore, β-NAD, an important co-enzyme for cellular metabolism, is an important vascular mediator, eliciting cellular effects through activation of P2Y1/Y11 receptors. In addition to ATP, the β-NAD secreted extracellularly from endothelium. Our recent studies demonstrated that extracellular β-NAD significantly enhances the pulmonary endothelial barrier in a dose-dependent manner via P2Y receptors.

SIGNIFICANCE OF SPATIAL DISTRIBUTION P2Y RECEPTORS IN ENDOTHELIUM AND ITS RELEVANCE TO THE BARRIER PROTECTION

We have shown that various P2Y receptors are expressed in pulmonary EC at various levels [Figure 2]. However, the expression levels of these receptors on apical and basal side of the pulmonary endothelium are not known. We speculate that extracellular purines and pyrimidines released from the blood cells (for example, platelets), apical side of EC or alveolar epithelial cells (basal side of EC) stimulate P2Y receptors based on their expression pattern (apical or basal). In addition, a recent study indicated the hetero-oligomerization between two metabotropic purinoceptors, P2Y1 and P2Y11, co-expressed in HEK293 cells, promotes agonist-induced internalization of the P2Y11 receptor, which itself is unable to undergo endocytosis. Moreover, the agonist profile for the co-expressed P2Y1 and P2Y11 was different from the agonist profile established for cells expressing the P2Y11 receptor only. The hetero-oligomerization of the P2Y1 and P2Y11 receptors modifies the functions of the P2Y11 receptor in response to extracellular nucleotides. Further, a recent study indicate that the human bronchial epithelia express P2Y6 receptors on both apical and basolateral membranes and that the cAMP/PKA pathway regulates apical but not basolateral P2Y6 receptor-coupled ion transport. Therefore, selective activation of specific P2Y receptors responsible for barrier protection might form a basis for the treatment of various lung disorders. The therapeutic potential of P2Y receptors is rapidly expanding field in pharmacology and some selective agonists became recently available.

Table 1 represents both native and synthetic P2Y agonists and antagonists that were used to study P2Y receptors. The P2Y agonist or antagonist can be purchased from Sigma-Aldrich (St. Louis, MO) or Tocris Biosciences (Ellisville, MO). The pharmacological armamentarium for P2Y receptors is limited and agonists that exhibit high-affinity selectivity among P2Y receptors as well as resistance to ectoenzyme-catalyzed metabolism are few. More studies

P2Y receptors	Native/Synthetic	
Y1	MRS 2179, MRS 2365, 2-MeSADP, ADP, (3-NAD)	MRS 2500, MRS 22279, MRS 2179
Y2	UTP, ATP, UTPyS, MRS 2768	AR-C 126313, Suramin
Y4	UTP, UTPyS	ATP, Suramin
Y6	UDP, UTP, UDP(3S, PSB 0474	MRS 2578
Y11	BzATP, ATPyS, ATP, (3-NAD	NF 157, NF 340
Y12	2-MeSADP (b), ADP (a), ATP (a)	ARC 66096, 2-MeSAMP
Y13	2-MeSADP, ATP, 2-MeSATP	MRS 2211
Y14	UDP-glucose, UDP-galactose, UDP-N-acetyl-glucosamine, MRS 2690	
are needed in order to characterize the agonist profile of expressed multiple P2Y receptors on the apical or basal side of EC and the pathophysiological agonist concentrations that selectively activate P2Y receptors. Future detailed studies including expression analysis on both apical and basal EC membrane will help to establish conditions for possible P2Y receptor based therapies.

PROTECTIVE EFFECTS OF P2Y RECEPTORS MEDIATED SIGNALING AGAINST BACTERIAL TOXINS-INDUCED PULMONARY EC HYPERPERMEABILITY

The pulmonary EC lining the vessels are in contact with each other and render the vascular wall into a tight barrier. Any breach in the EC barrier results in leakage of fluid from the lumen of the vessels into the interstitial tissue and/or alveolar lumen, severely impairing gas exchange. Disruption of the vascular barrier is a prominent feature of acute lung injury (ALI)/acute respiratory distress syndrome (ARDS) syndrome and results in pulmonary edema formation and subsequent respiratory dysfunction or failure.\(^\text{[108-110]}\) The barrier-compromising mechanisms of bacterial toxins (for example, Gram-negative endotoxin, LPS) revealed in in vitro models of pulmonary endothelial dysfunction have been demonstrated to target the actin cytoskeleton inducing actin stress fiber formation and intercellular gaps.\(^\text{[54,111]}\) An essential step of such remodeling was an activation of MLC\(_{20}\)-specific protein kinases, namely, ROCK and nonmuscle MLCK.\(^\text{[112,113]}\) As the result, mono- and di-phospho-MLC\(_{20}\) could be detected in LPS-treated cultured EC and in lung tissue of LPS-challenged mice. Significance of activation of the MLC\(_{20}\)-kinases for the endothelial barrier integrity in vivo was confirmed in murine model of ALI (intratracheal instillation of LPS). Inhibitors of ROCK\(^\text{[113]}\) and MLCK\(_{20}\) as well as depletion of MLCK expression in vivo significantly attenuated the barrier dysfunction. These findings formed a basis for an application of the endothelium-protective agents such as agonists of P2Y purinoceptors. Indeed, the agonists stimulating heterotrimeric Gs-protein-coupled purinoceptors activate AC and elevate cAMP levels in the EC have been considered as the barrier protectors, since cAMP could reverse the barrier-compromising effects.\(^\text{[54,80,114]}\) However, activation of heteromeric G-proteins Gq and Gi2 may also to be barrier-protective upon extracellular ATP stimulation.\(^\text{[26]}\) Our recent studies with agonists of P2Y receptors (ATP, ATP\(_{2S}\), and \(\beta\)-NAD) in a clinically relevant HPACE\(_{2}\)\(^\text{[26,80,115]}\) and a murine model of LPS-induced ALI\(^\text{[115]}\) demonstrate the barrier protection. Despite the obvious importance of the EC barrier, significant information concerning its regulation is still lacking. Furthermore, a paucity of information exists concerning the mechanisms involved in preservation of barrier integrity. Therefore, novel strategies to protect the EC barrier could have a profound clinical impact.

ACKNOWLEDGMENTS

This work was supported in part by the Biomedical Research Grant from the American Lung Association (Southeast) to NSU and NHLBI (HL083327, HL067307) to ADV.

REFERENCES

1. Dudek SM, Garcia JJ. Cytoskeletal regulation of pulmonary vascular permeability. J Appl Physiol 2001;91:1487-500.
2. Dudek SM, Camp SM, Chiang ET, Singleton PA, Usatyuk PV, Zhao Y, et al. Pulmonary endothelial cell barrier enhancement by FTY720 does not require the S1P1 receptor. Cell Signal 2007;19:1754-64.
3. Fukuhara S, Sakurai A, Sano H, Yamagishi A, Somekawa S, Takakura N, et al. Cyclic AMP potentiates vascular endothelial cadherin-mediated cell-cell contact to enhance endothelial barrier function through an Epac-Rap1 signaling pathway. Mol Cell Bioi 2005;25:136-46.
4. Angiolillo DJ, ADP receptor antagonism: What’s in the pipeline? Am J Cardiovase Drugs 2007;7:423-32.
5. Trevorhick MA, Mantell SJ, Snaart EF, Barnard A, Wright KN, Yeaddon M. Treating lung inflammation with agonists of the adenosine A2A receptor: Promises, problems and potential solutions. Br J Pharmacol 2008;155:463-74.
6. Burnstock G, Williams M. P2 purinergic receptors: Modulation of cell function and therapeutic potential. J Pharmacol Exp Ther 2000;295:862-9.
7. Hinshaw DB, Burger JM, Delius RE, Hyslop PA. Mechanism of protection of oxidant-injured endothelial cells by glutamine. Surgery 1990;108:298-304.
8. Hirano S, Rees RS, Yaney SL, Welsh MJ, Remick DG, Yamada T, et al. Endothelial barrier dysfunction caused by LPS correlates with phosphorylation of HSP27 in vivo. Cell Biol Toxicol 2004;20:1-14.
9. Beigi R, Kobatake E, Aizawa M, Dubay GR. Detection of local LTP release from activated platelets using cell surface-attached firefly luciferase. Am J Physiol 1999;276:C267-78.
10. Bergfeld GR, Forrest T. Release of ATP from human erythrocytes in response to a brief period of hypoxia and hypercapnia. Cardiovasc Res 1992;20:40-7.
11. Carroll JS, Ku CJ, Karunarathe W, Spence DM. Red blood cell stimulation of platelet nitric oxide production indicated by quantitative monitoring of the communication between cells in the bloodstream. Anal Chem 2007;79:5133-8.
12. Coade SB, Pearson JD. Metabolism of adenosine nucleotides in human blood. Circ Res 1989;65:531-7.
13. Schwiebert LM, Rice WC, Kudlow BA, Taylor AL, Schwiebert EM. Extracellular ATP signaling and P2X nucleotide receptors in monolayers of primary human vascular endothelial cells. Am J Physiol Cell Physiol 2002;282:C289-301.
14. Pearson JD, Gordon JL. Vascular endothelial and smooth muscle cells in culture selectively release adenosine nucleotides. Nature 1979;281:384-6.
15. Bodin P, Burnstock G. ATP-stimulated release of ATP by human endothelial cells. J Cardiovasc Pharmacol 1996;27:872-5.
16. Bodin P, Burnstock G. Increased release of ATP from endothelial cells during acute inflammation. Inflamm Res 1998;47:351-4.
17. Erlinge D. Extracellular ATP: A central player in the regulation of vascular smooth muscle phenotype. Focus on “Dual role of PKA in phenotype modulation of vascular smooth muscle cells by extracellular ATP”. Am J Physiol Cell Physiol 2004;287:C260-2.
Zemskov et al.: P2Y receptors as regulators of lung endothelial barrier integrity

18. Weismuller T, Eltzschig HK, Colgan SP. Dynamic purine signaling and metabolism during neutrophil-endothelial interactions. Purinergic Signal 2005;1:229-39.
19. Ralevic V. Purines as neurotransmitters and neuromodulators in blood vessels. Curr Vase Pharmacol 2009;7:3-14.
20. Verkhrasky A, Kristbal OA, Burnstock G. Purinoreceptors on neuroglia. Mol Neurobiol 2009;39:190-208.
21. Burnstock G. Purinergic receptors as future targets for treatment of functional GI disorders. Gut 2008;57:1193-4.
22. Ralevic V, Burnstock G. Receptors for purines and pyrimidines. Pharmacol Rev 1998;50:413-92.
23. Wang L, Karlsson L, Moses S, Hultgardh-Nilsson A, Andersson M, Borna C, et al. P2 receptor expression profiles in human vascular smooth muscle and endothelial cells. J Cardiovasc Pharmacol 2002;40:841-53.
24. Wilson HL, Varcoe RW, Stokes L, Holland KL, Francis SE, Dower SK, et al. P2X receptor characterization and IL-1/IL-1Ra release from human endothelial cells. Br J Pharmacol 2007;151:115-27.
25. Yamamoto K, Korenaga R, Kamiya J, Qz Z, Sakabe M, Ando J. P2X(4) receptors mediate ATP-induced calcium influx in human vascular endothelial cells. Am J Physiol Heart Circ Physiol 2008;295:H1265-92.
26. Kolovalova IA, Mirzapoiavtza T, Adyhev D, Usatuy P, Romer LH, Jacobson JR, et al. Signaling pathways involved in adenosine triphosphate-induced endothelial cell barrier enhancement. Cire Res 2005;97:115-24.
27. Oldham WM, Hamm HE. Heterotrimeric G protein activation by G-protein-coupled receptors. Nat Rev Mol Cell Biol 2006;9:60-71.
28. Schrueck G, Fredholm BB. Signalling from adenosine receptors to mitogen-activated protein kinases. Cell Signal 2003;15:813-27.
29. Volonte C, Amadio S, D’Ambrosi N, Colpi M, Burnstock G. P2 receptor web: Complexity and fine-tuning. Pharmacol Ther 2006;112:264-80.
30. Ahmad S, Ahmad A, White CW. Purinergic signaling and kinase activation in primary human umbilical vein endothelial cells. Br J Pharmacol 2007;151:115-27.
31. Ahmad S, Ahmad A, White CW. Purinergic signaling and kinase activation for survival in pulmonary oxidative stress and disease. Free Radic Biol Med 2006;41:29-40.
32. Ray CQ, Marshall JM. The cellular mechanisms by which adenosine evokes release of nitric oxide from rat aortic endothelium. J Physiol 2006;570:85-96.
33. Schredelse MP, Voorwinder HJ, van Tilburg EW, Pateman TJ, Ijzerman Ray CJ, Marshall JM. The cellular mechanisms by which adenosine evokes phosphorylation of the myosin phosphatase targeting subunit and CP3-17 during CA2+ sensitization in rabbit smooth muscle. J Physiol 2003;546:879-89.
34. Clements RT, Minnear FL, Singer HA, Keller RS, Vincent PA. RhoA and Rho kinase dependent and independent signals mediate TGF-beta-induced pulmonary endothelial cytoskeletal reorganization and permeability. Am J Physiol Lung Cell Mol Physiol 2005;288:1:294-306.
35. Sun H, Breslin JW, Zhu J, Yuan SY, Wu MH, Rho and ROCK signaling in VEGF-induced microvascular endothelial hyperpermeability. Microcirculation 2006;13:237-47.
36. van Nieuw Amerongen GP, van Delft S, Vermeer MA, Collard JG, van Hinsbergh VV. Activation of RhoA by thrombin in endothelial hyperpermeability: Role of Rho kinase and protein tyrosine kinases. Circ Res 2000;87:335-40.
37. van Nieuw Amerongen GP, Vermeer MA, van Hinsbergh VV. Role of RhoA and Rho kinase in lysophosphatic acid-induced endothelial barrier dysfunction. Arterioscler Thromb Vase Biol 2000;20:1273-87.
38. Communi D, Govaerts C, Parmentier M, Bocuyaems JM. Cloning of a human purinergic P2Y receptor coupled to phospholipase C and adenyly cyclase. J Biol Chem 1997;272:31969-73.
39. Communi D, Robaye B, Bocuyaems JM. Pharmacological characterization of the human P2Y11 receptor. Br J Pharmacol 1999;128:1199-206.
40. Klinger M, Freimuth M, Nannof C. Adenosine receptors: G protein-mediated signalling and the role of accessory proteins. Cell Signal 2002;14:99-108.
41. Qi AD, Kennedy C, Harden TK, Nicholos RA. Differential coupling of the human P2Y(1) receptor to phospholipase C and adenyly cyclase. Br J Pharmacol 2001;132:318-26.
42. Yaar R, Jones MR, Chen JF, Ravid K. Animal models for the study of adenosine receptor function. J Cell Physiol 2005;202:9-20.
43. Birukova AA, Burdette D, Moldbohena V, Xing J, Fu P, Birukov KG. Rac GTPase is a hub for protein kinase A and Epac signaling in endothelial barrier protection by cAMP. Microvasc Res 2010;79:128-38.
44. Birukova AA, Zagranichnya T, Aleksieva E, Boko GM, Birukov KG, Epac/Rap and PKA are novel mechanisms of ANP-induced Rho-mediated pulmonary endothelial barrier protection. J Cell Physiol 2008;215:715-24.
45. Bogatcheva NV, Zemskova MA, Kovalenkov Y, Poizier C, Verin AD. Molecular mechanisms mediating proteptive effect of cAMP on lipopolysaccharide induced human lung microvascular endothelial cells hyperpermeability. J Cell Physiol 2009;221:750-9.
46. Noda K, Zhang J, Fukuhara S, Kunimoto S, Yoshimura M, Mochizuki N. Vascular endothelial-cadherin stabilizes at cell-cell junctions by anchoring to circumferential actin bundle through alpha- and beta-catenins in cyclic AMP-Epac-Rap1 signal-activated endothelial cells. Mol Biol Cell 2010;21:584-96.
47. Schlegel N, Baumer Y, Drenckhahn D, Waschke J. Lipopolysaccharide-induced endothelial barrier breakdown is cyclic adenosine monophosphate dependent in vitro and in vivo. Crit Care Med 2009;37:1735-43.
48. Waschke J, Drenckhahn D, Adamson RH, Barth H, Curry FE. cAMP protects endothelial barrier functions by preventing Rac-1 inhibition. Am J Physiol Heart Circ Physiol 2004;287:H2427-33.
49. Qiao J, Holian O, Lee BS, Huang E, Zhang J, Lum H. Phosphorylation of GTP dissociation inhibitor by PKA negatively regulates RhoA. Am J Physiol Cell Physiol 2008;295:C1161-8.
50. Wang L, Zhou H, Murthy KS. G(q)-dependent signalling by the lysophosphatidic acid receptor LPA(3) in gastric smooth muscle: Reciprocal regulation of MYPT1 phosphorylation by Rho kinase and cAMP-dependent PKA. Biochem J 2008;411:543-51.
51. Fricks IP, Carter RL, Lazarowski ER, Harden TK. Gi-dependent cell signaling responses of the human P2Y14 receptor in model cell systems. J Pharmacol Exp Ther 2009;330:162-8.
52. Sviderski W, Zhou H, Thurby KS. G(q)-dependent signalling by the lysophosphatidic acid receptor LPA(3) in gastric smooth muscle: Reciprocal regulation of MYPT1 phosphorylation by Rho kinase and cAMP-dependent PKA. Biochem J 2008;411:543-51.
53. Feng J, Ito M, Ichikawa K, Amano M, Isaka N, et al. Rho-associated kinase of chicken gizzard smooth muscle. J Biol Chem 1999;274:37385-90.
54. Feng J, Feng J, Eto M, Woodside TP, Khalequzzaman M. Phosphorylation of the myosin phosphatase targeting subunit and CP3-17 during CA2+ sensitization in rabbit smooth muscle. J Physiol 2003;546:879-89.
84. Olantewaju HA, Mustafa SJ. Adenose A2A and A2B receptors mediated nitric oxide production in coronary artery endothelial cells. Gen Pharmacol 2000;35:171-7.

85. Dedkova EN, Blatter LA. Nitric oxide inhibits capacitative Ca2+ entry and enhances endoplasmic reticulum Ca2+ uptake in bovine vascular endothelial cells. J Physiol 2002;539:77-91.

86. Yao X, Huang Y. From nitric oxide to endothelial cytosolic Ca2+; A negative feedback control. Trends Pharmacol Sci 2003;24:263-6.

87. da Silva CG, Specht A, Wiegel B, Ferran C, Kaczmarek E. Mechanism of purinergic activation of endothelial nitric oxide synthase in endothelial cells. Circulation 2009;119:871-9.

88. Krause M, Dett EW, Bear JE, Loureiro J, Gertler FB. ENA/VASP proteins: Regulators of the actin cytoskeleton and cell migration. Annu Rev Cell Dev Biol 2003;19:541-64.

89. Comerford KM, Lawrence DW, Synnestvedt K, Levi BP, Colgan SP. Role of vasodilator-stimulated phosphorylase in PKA-induced changes in endothelial functional permeability. FASEB J 2002;16:583-5.

90. Reinhard M, Jarchau T, Walter U. Actin-based motility: Stop and go with ENA/VASP proteins. Trends Biochem Sci 2001;26:243-9.

91. Liao Z, Seye CJ, Weisman GA, Erb L. The P2Y2 nucleotide receptor requires interaction with alpha v integrins to access and activate G12. J Cell Sci 2007;120:1654-62.

92. Kozasa T, Jiang P, Hart MJ, Sternweiss PM, Singer WD, Gilman AG, et al. p115 RhoGEF, a GTPase activating protein for Galpha12 and Galpha13. Science 1998;280:2109-11.

93. Holinstat M, Mehta D, Kozasa T, Minshall RS, Malik AB. Protein kinase Calpha-induced p115RhoGEF phosphorylation signals endothelial cytoskeletal rearrangement. J Cell Biol 2003;163:793-9.

94. Duza T, Sarcilius H. Conducted dilations initiated by purines in arterioles are endothelium dependent and require endothelial Ca2+. Am J Physiol Heart Circ Physiol 2003;285:H26-37.

95. Govers R, Rabenlijn TJ. Cellular regulation of endothelial nitric oxide synthase. Am J Physiol Renal Physiol 2001;283:F193-206.

96. Noll T, Holschermann H, Kopret K, Gunduz D, Haberbosch W, Tillmanns H, et al. ATP reduces macromolecular permeability of endothelial monolayers despite increasing [Ca2+]. Am J Physiol 1999;276:H1892-901.

97. Konduri GG, Bahkutashvili I, Frenn R, Chandrasekhar I, Jacobs ER, et al. p115 RhoGEF activation of P2Y nucleotide receptors to N-type Ca2+ channels. J Physiol 2002;539:1231-45.

98. Zemskov EA, Gorshkov BA, Sridhar S, Umapathy NS, Zemskov EA, et al. Extracellular beta-nicotinamide adenine dinucleotide (NAD) stimulates Ca2+ entry and permeability in microvessels exposed to ATP. Am J Physiol 1993;265:F107-11.

99. Pillai VB, Sundaresan NB, Kim G, Gupta M, Rajamohan SB, Pillai JB, et al. ATP antagonism of thrombin-induced endothelial barrier permeability. Cardiovasc Res 2003;59:470-8.

100. Tanaka N, Kawasaki K, Nejime N, Kubota Y, Nakamura K, Kunitomo M, et al. P2Y receptor-mediated Ca2+ signaling increases human vascular endothelial cell permeability. J Pharmacol Sci 2004;95:174-80.

101. He P, Curry FE. Differential actions of cAMP on endothelial [Ca2+]i and permeability in microvessels exposed to ATP. Am J Physiol 1993;265:H1019-23.

102. Imai SI. “Clocks” in the NAD World: NAD as a metabolic oscillator for the regulation of metabolism and aging. Biochim Biophys Acts 2010;1804:1584-90.

103. Pillai VB, Sundaresan NB, Kim G, Gupta M, Rajamohan SB, Pillai JB, et al. Exocytosis of melanosome in pig melanocytes: Effect of ATP on melanosome in pig melanocytes. J Biol Chem 2004;279:31791-7.

104. Mutafova-Yambolieva VN, Hwang SJ, Hao X, Chen H, Zhu MX, Wood JD, et al. Beta-nicotinamide adenine dinucleotide is an inhibitory neurotransmitter in visceral smooth muscle. Proc Natl Acad Sci U S A 2007;104:16359-64.

105. Smyth LM, Bolabova J, Mendoza MG, Lew C, Mutafova-Yambolieva VN. Release of beta-nicotinamide adenine dinucleotide upon stimulation of postganglionic nerve terminals in blood vessels and urinary bladder. J Biol Chem 2004;279:48893-903.
106. Ecke D, Hanck T, Tulapurkar ME, Schafer R, Kassack M, Stricker R, et al. Hetero-oligomerization of the P2Y11 receptor with the P2Y1 receptor controls the internalization and ligand selectivity of the P2Y11 receptor. Biochem J 2008;409:107-16.

107. Wong AM, Chow AW, Au SC, Wong CC, Ko WH. Apical vs. Basolateral P2Y6 receptor-mediated Cl- secretion in immortalized bronchial epithelia. Am J Respir Cell Mol Biol 2009;40:733-45.

108. Gando S, Kameue T, Matsuda N, Sawamura A, Hayakawa M, Kato H. Systemic inflammation and disseminated intravascular coagulation in early stage of ALI and ARDS: Role of neutrophil and endothelial activation. Inflammation 2004;28:237-44.

109. Orfanos SE, Mavrommati I, Korovesi I, Roussos C. Pulmonary endothelium in acute lung injury: From basic science to the critically ill. Intensive Care Med 2004;30:1702-14.

110. Varet J, Douglas SK, Gilmartin L, Medford AR, Bates DO, Harper SJ, et al. VEGF in the lung: A role for novel isoforms. Am J Physiol Lung Cell Mol Physiol 2010;298: L768-74.

111. Xing J, Birukova AA. ANP attenuates inflammatory signaling and Rho pathway of lung endothelial permeability induced by LPS and TNFalpha. Microvasc Res 2010;79:56-62.

112. Brown M, Adyshev D, Bindokas V, Moitra J, Garcia JG, Dudek SM. Quantitative distribution and colocalization of non-muscle myosin light chain kinase isoforms and cortactin in human lung endothelium. Microvasc Res 2010;80:75-88.

113. Mong PY, Wang Q. Activation of Rho kinase isoforms in lung endothelial cells during inflammation. J Immunol 2009;182:2385-94.

114. Essler M, Staddon JM, Weber PC, Aepfelbacher M. Cyclic AMP blocks bacterial lipopolysaccharide-induced myosin light chain phosphorylation in endothelial cells through inhibition of Rho/Rho kinase signaling. J Immunol 2000;164:6543-9.

115. Kolosova IA, Mirzapoiazova T, Moreno-Vinasco I, Sammani S, Garcia JG, Verin AD. Protective effect of purinergic agonist ATPgammaS against acute lung injury. Am J Physiol Lung Cell Mol Physiol 2009;294:L319-24.

Source of Support: American Lung Association (Southeast) to NSU and NHLBI (HL083327, HL067307) to ADV., Conflict of Interest: None declared.

Author Help: Online submission of the manuscripts

Articles can be submitted online from http://www.journalonweb.com. For online submission, the articles should be prepared in two files (first page file and article file). Images should be submitted separately.

1) First Page File:
Prepare the title page, covering letter, acknowledgement etc. using a word processor program. All information related to your identity should be included here. Use text/rtf/doc/pdf files. Do not zip the files.

2) Article File:
The main text of the article, beginning with the Abstract to References (including tables) should be in this file. Do not include any information (such as acknowledgement, your names in page headers etc.) in this file. Use text/rtf/doc/pdf files. Do not zip the files. Limit the file size to 1024 kb. Do not incorporate images in the file. If file size is large, graphs can be submitted separately as images, without their being incorporated in the article file. This will reduce the size of the file.

3) Images:
Submit good quality color images. Each image should be less than 4096 kb (4 MB) in size. The size of the image can be reduced by decreasing the actual height and width of the images (keep up to about 6 inches and up to about 1800 x 1200 pixels). JPEG is the most suitable file format. The image quality should be good enough to judge the scientific value of the image. For the purpose of printing, always retain a good quality, high resolution image. This high resolution image should be sent to the editorial office at the time of sending a revised article.

4) Legends:
Legends for the figures/images should be included at the end of the article file.