MORITA’S THEORY FOR THE SYMPLECTIC GROUPS

ZHI QI AND CHANG YANG

Abstract. We construct and study the holomorphic discrete series representations and the principal series representations of the symplectic group $\text{Sp}(2n, F)$ over a p-adic field F as well as a duality between some sub-representations of these two representations. The constructions of these two representations generalize those defined in Morita and Murase’s works. Moreover, Morita built a duality for $\text{SL}(2, F)$ defined by residues. We view the duality we defined as an algebraic interpretation of Morita’s duality in some extent and its generalization to the symplectic groups.

Contents

Notations 2

0. Introduction 2

1. Symplectic groups and their representations 3

1.1. The symplectic group $\text{Sp}(2n, F)$ 3

1.2. $\text{Ind}^{\text{Sp}}_{\sigma}$ and the principal series $(\text{Ind}^{\text{Sp}}_{\sigma}(P, V), T_{\sigma})$ 4

1.3. The p-adic Siegel upper half-space 5

1.4. Holomorphic discrete series $(\mathcal{O}_{\sigma}(\Sigma), \pi_{\sigma})$ 10

2. Duality 13

2.1. Duality operator I_{σ} 13

2.2. Duality operator J_{σ} and the image of I_{σ} 16

3. Morita’s theory for $\text{SL}(2, F)$ 18

3.1. The p-adic upper half-plane 18

3.2. Holomorphic discrete series of $\text{SL}(2, F)$ 19

3.3. Principal series of $\text{SL}(2, F)$ 20

3.4. Morita’s duality for $\text{SL}(2, F)$ 21

3.5. Duality operator I_s 21

4. Concluding remarks 22

References 22

Key words and phrases. symplectic groups, p-adic Siegel upper half-space, principal series, holomorphic discrete series, Morita’s duality, Casselman’s intertwining operator.
Notations

Let p be a prime, F a finite extension of \mathbb{Q}_p, \mathfrak{o} the ring of integers of F, ϖ the uniformizer of \mathfrak{o}, $||$ the normalized absolute value, and F^{alg} an algebraic closure of F. Let K be an extension of F with an absolute value extending $|\cdot|$, and K is complete under this absolute value. Because Hahn-Banach theorem is applied, we assume that K is spherically complete in §2 and §3.

0. Introduction

Morita and Murase constructed and studied in [5] the p-adic holomorphic discrete series representations of $\text{SL}(2, F)$. In [8], Schneider introduced the holomorphic discrete series of $\text{SL}(n + 1, F)$ associated to a rational representation of $\text{GL}(n, F)$. He showed that, as a $\text{SL}(n + 1, F)$-representation, the space of holomorphic exterior differential r-forms on the Drinfel’d’s space belongs to the holomorphic discrete series.

Morita started the systematic study of the principal series (parabolic induced representations) of $\text{SL}(2, F)$ in [6] and [7]. In order to prove the irreducibility conjectures on the holomorphic discrete series, Morita constructed a duality pairing via residues between the holomorphic discrete series and the principal series ([6]).

In the first paragraph, we generalize Morita’s constructions to the symplectic groups. After recollecting some notions on the symplectic groups, in §1.2, following [6], we construct another interpretation of the parabolic induced representation, which is conventionally called the principal series. General results of Féaux de Lacroix on the induced representations of the F-Lie groups ([3]) are applied for our purpose. In §1.3, we introduce a p-adic analogue of the Siegel upper half-space, and on which we define an F-rigid analytic structure. The method is similar to the one utilized to study the Drinfel’d’s space in [10]. In §1.4, we introduce the notion of the holomorphic discrete series of $\text{Sp}(2n, F)$ associated to a K-rational representation of $\text{GL}(n, F)$ and prove that the space of rigid analytic exterior differential r-forms on the Siegel upper half-space can be realized as a holomorphic discrete series representation.

In the second paragraph, in a purely algebraic way, we construct two invariant closed subspaces of the principal series and the holomorphic discrete series respectively and establish a duality operator between them. We remark that, since the two spaces are of compact type and nuclear K-Fréchet respectively, the duality fits into the framework of Schneider and Teitelbaum’s theory (cf. [11]).

In the last paragraph, in the case of $\text{SL}(2, F)$, we analyze the relations between the duality constructed in the second paragraph and Morita’s duality: composing with Casselman’s intertwining operator defined by taking derivation, Morita’s duality equals our duality up to a constant.

Acknowledgements. We are especially grateful to Bingyong Xie. He guided our researches and communicated many important ideas to us. We also want to thank Professor P. Schneider for several comments and advices.
1. Symplectic groups and their representations

1.1. The symplectic group $\text{Sp}(2n, F)$. Let n be a positive integer and

$$J_n := \begin{pmatrix} 0 & I_n \\ -I_n & 0 \end{pmatrix}.$$

The symplectic group $\text{Sp}(2n, F)$ is the subgroup of $\text{GL}(2n, F)$ consisting of g satisfying

$$g^t J_n g = J_n.$$

If we write $g = \begin{pmatrix} A & B \\ C & D \end{pmatrix}$, then $g \in \text{Sp}(2n, F)$ if and only if either of the following two conditions hold:

\begin{align*}
(1.1) & \quad tAD - tCB = I_n, \quad tAC = tCA, \quad tBD = tDB; \\
(1.2) & \quad D^tA - C^tB = I_n, \quad D^tC = C^tD, \quad B^tA = A^tB.
\end{align*}

Then we introduce two homogeneous spaces $\mathcal{P}(n)$ and $\mathcal{L}(n)$ associated to $\text{Sp}(2n, F)$. $\mathcal{P}(n)$ denotes the set of pairs (X, Y), $X, Y \in M(n, F)$, such that

$$X^t Y = Y^t X, \quad \text{rank}(XY) = n.$$

We define a right action of $\text{Sp}(2n, F)$ and a left action of $\text{GL}(n, F)$ on $\mathcal{P}(n)$ via

$$(X, Y)g := (XA +YC, XB + YD), \quad g = \begin{pmatrix} A & B \\ C & D \end{pmatrix} \in \text{Sp}(2n, F),$$

$$h(X, Y) := (hX, hY), \quad h \in \text{GL}(n, F),$$

respectively. Let

$$U := \left\{ \begin{pmatrix} I_n & B \\ 0 & I_n \end{pmatrix} \in \text{Sp}(2n, F) \right\}.$$

We identify the $\text{Sp}(2n, F)$-homogeneous space $U \setminus \text{Sp}(2n, F)$ and $\mathcal{P}(n)$ via $\begin{pmatrix} A & B \\ C & D \end{pmatrix} \mapsto (C, D)$ (the inverse map comes from the symplectic Gram-Schmidt process).

$\mathcal{L}(n)$ denotes the set of transposed Lagrangian subspaces. Let

$$P := \left\{ \begin{pmatrix} D^{-1} & B \\ 0 & D \end{pmatrix} \in \text{Sp}(2n, F) \right\}.$$

We identify $\mathcal{L}(n)$ with the $\text{Sp}(2n, F)$-homogeneous space $P \setminus \text{Sp}(2n, F)$. Since P is a parabolic subgroup, $P \setminus \text{Sp}(2n, F)$ is a smooth projective variety over F.

Because $P \cong U \rtimes \text{GL}(n, F)$, we have a natural $\text{Sp}(2n, F)$-equivariant isomorphism $\mathcal{P}(n) \cong \mathcal{L}(n)$; the projection from $\mathcal{P}(n)$ to $\mathcal{L}(n)$ maps (X, Y) to the transposed Lagrangian subspace spanned by the row vectors of (X, Y).

Finally we define open subsets which define the coordinates on $\text{Sp}(2n, F)$, $\mathcal{P}(n)$ and $\mathcal{L}(n)$.

Let

$$U_0 := \left\{ \begin{pmatrix} A & B \\ C & D \end{pmatrix} \in \text{Sp}(2n, F) \mid \det(C) \neq 0 \right\}.$$
We have the following unique decomposition in $\text{Sp}(2n, F)$ for matrices in U_0:

\begin{equation}
\begin{pmatrix}
A & B \\
C & D
\end{pmatrix} = \begin{pmatrix}
I_n & AC^{-1} \\
0 & I_n
\end{pmatrix} \begin{pmatrix}
C^{-1} & 0 \\
0 & C
\end{pmatrix} \begin{pmatrix}
I_n & -I_n \\
0 & C^{-1}D
\end{pmatrix}
\end{equation}

AC^{-1} and $C^{-1}D$ are symmetric ((1.1) and (1.2)); we identify U_0 with $\text{Sym}(n, F) \times \text{GL}(n, F) \times \text{Sym}(n, F)$.

Let U_0 be the open subset of $\mathcal{P}(n)$:

$$\{(h, hz) \mid h \in \text{GL}(n, F), z \in \text{Sym}(n, F)\}.$$

Under the identification $\mathcal{P}(n) \equiv U \backslash \text{Sp}(2n, F)$ we have $U_0 \equiv U \backslash U_0$.

Also we identify $\text{Sym}(n, F)$ with the open subset $P \backslash U_0$ of $\mathcal{L}(n)$.

To lighten notations, hereafter we let $G = \text{Sp}(2n, F)$, $G_o = \text{Sp}(2n, o)$, $H = \text{GL}(n, F)$, $H_o = \text{GL}(n, o)$ and abbreviate $\mathcal{P}(n)$ and $\mathcal{L}(n)$ to \mathcal{P} and \mathcal{L} respectively. $\text{pr}_{\mathcal{P}}^G$, $\text{pr}_{\mathcal{L}}^G$ and $\text{pr}_{\mathcal{L}}^D$ denote the canonical projections.

1.2. $\text{Ind}_p^G \sigma$ and the principal series ($C^\text{an}_\sigma(\mathcal{P}, V), T_\sigma$). Let (V, σ) be a locally analytic representation (cf. [3] 3.1.5 and [11] §3) of H on a barreled locally convex Hausdorff K-vector space V, which means that the orbit maps are V-valued locally analytic functions; more precisely, for any $v \in V$ there exists a BH-space W of V (that is, a Banach space W together with a continuous injection $W \hookrightarrow V$) such that $g \mapsto \sigma(g)v$ expands (in a neighborhood of the unit element) to a power series with W-coefficients (cf. [3]).

σ extends to a representation of P via the projection

$$P \to H, \quad \begin{pmatrix}
D^{-1} & B \\
0 & D
\end{pmatrix} \mapsto D.$$

We consider the parabolic induced representation $\text{Ind}_p^G \sigma$ whose underlying space is the space of V-valued locally analytic functions f on G satisfying

$$f(pg) = \sigma(p)f(g), \quad \text{for all } g \in G, p \in P;$$

G acts by the right translation.

Because the homogeneous space \mathcal{L} is compact, $\text{Ind}_p^G \sigma$ is a locally analytic representation of G ([3] 4.1.5).

Next, we give another description of $\text{Ind}_p^G \sigma$. Let $C^\text{an}_\sigma(\mathcal{P}, V)$ be the space of V-valued locally analytic functions φ on \mathcal{P} satisfying

$$\varphi(hX, hY) = \sigma(h)\varphi(X, Y), \quad \text{for all } (X, Y) \in \mathcal{P} \text{ and } h \in H.$$

We define the principal series representation ($C^\text{an}_\sigma(\mathcal{P}, V), T_\sigma$) of G:

\begin{equation}
(T_\sigma(g)\varphi)(X, Y) := \varphi((X, Y)g).
\end{equation}

Lemma 1.1.

1. The representation $\text{Ind}_p^G \sigma$ is (naturally) isomorphic to $(C^\text{an}_\sigma(\mathcal{P}, V), T_\sigma)$.

2. $\text{Ind}_p^G \sigma$ is isomorphic to $C^\text{an}(\mathcal{L}, V)$.

Proof. (1) From a locally analytic section \(\iota\) of \(pr_L^G\) we obtain an isomorphism \(\overline{\iota} : \text{Ind}^G_B(I) \cong C^{\text{an}}(\mathcal{P}, V), f \mapsto f \circ \overline{\iota}\) ([3] 4.3.1); by restriction, \(\overline{\iota}\) induces an isomorphism between \(\text{Ind}^G_B(\sigma)\) and \(C^{\text{an}}_\sigma(\mathcal{P}, V)\) which is independent of \(\iota\). G-equivariance is evident.

(2) A locally analytic section \(\iota\) of \(pr_L^P\) induces an isomorphism \(\iota^\circ : \text{Ind}^G_B(\sigma) \cong C^{\text{an}}(\mathcal{L}, V)\) (ibid.).

Because \(\mathcal{L}\) is compact, \(C^{\text{an}}(\mathcal{L}, V)\) is of compact type ([11] Lemma 2.1). By [11] Proposition 1.2, Theorem 1.3 and [9] Proposition 16.10, we have

Corollary 1.2. Let \(B\) be a closed subspace of \(C^{\text{an}}(\mathcal{P}, V)\), then \(B\) and \(C^{\text{an}}(\mathcal{P}, V)\) are of compact type, in particular, they are reflexive, bornological, and complete; \(B^*_p\) and \(C^{\text{an}}_\sigma(\mathcal{P}, V)/B\) are nuclear Fréchet spaces.

For technical needs, we fix a finite disjoint open covering \(\{\overline{U}_k\}_k\) of \(\mathcal{L}\) satisfying:

1. \(\text{Sym}(n, \sigma) \subset \{\overline{U}_k\}_k\);
2. each \(\overline{U}_k\) is translated into \(\text{Sym}(n, \sigma)\) by an element \(g_k\) in \(G\);
3. Let \(U_k := (pr_L^P)^{-1}(\overline{U}_k)\). We define the analytic local section \(\iota_k : \overline{U}_k \to U_k\) of \(pr_L^P\) to be the \(g_k^{-1}\)-translation of the section

\[
\iota_0 : \text{Sym}(n, F) \to U_0, \quad z \mapsto (1, -z).
\]

Let \(\iota\) be the locally analytic section of \(pr_L^P\) defined by \(\iota_k\), and define \(K := \iota(\mathcal{L})\).

If the locally analytic sections \(\iota\) and \(\overline{\iota}\) in the proof of Lemma 1.1 are compatible with \(\iota\), that is, if \(\overline{\iota} = \iota \circ \overline{\iota}\), then Lemma 1.1 implies that \(\iota\) induces an isomorphism

\[
(1.5) \quad \iota^\circ : C^{\text{an}}(\mathcal{P}, V) \to C^{\text{an}}(\mathcal{L}, V) \quad \varphi \mapsto \varphi \circ \iota.
\]

1.3. The p-adic Siegel upper half-space. In this section, we define a \(p\)-adic analogue of the Siegel upper half-space which also generalize the \(p\)-adic upper half-plane (cf. [2]), and we start the discussion of some basic properties.

Let \(S\) be the \(F\)-rigid analytic variety \(\text{Sym}(n)\) which is isomorphic to the affine space \(A_{\text{div}}(n+1)/F^\text{alg}\). The underlying space of \(S\) is \(\text{Sym}(n, F^\text{alg})\) (Strictly speaking, \(\text{Sym}(n, F^\text{alg})/\text{Gal}(F^\text{alg}/F)\) (cf. [1]), but it is more convenient not to consider the Galois action in our situation).

Definition 1.3. Let

\[
\Sigma := \{Z \in S \mid \det(XZ + Y) \neq 0 \text{ for any pair } (X, Y) \in \mathcal{P}\}.
\]

\(\Sigma\) is called the \(p\)-adic Siegel upper half-space.

First, we show that \(\Sigma\) is nonempty.

Lemma 1.4. If \(Z\) is a diagonal matrix in \(S\) whose diagonal entry \(Z_{ii}\) is of absolute value \(|Z_{ii}|^{1/(n+1)}\), with distinct positive integers \(k_i\), then \(Z \in \Sigma\).

Proof. We show that \(\det(XZ + Y) \neq 0\) for any pair \((X, Y) \in \mathcal{P}\). By multiplying a matrix of \(H\) on the left and a permutation matrix on the right of \(X\) and \(Y\), and conjugating \(Z\) by the permutation matrix, we may assume that \(X = \begin{pmatrix} I_r & \tilde{X} \\ 0 & 0 \end{pmatrix}\), where...
Therefore
\[\det(XZ + Y) = \det(Z_1 + \bar{X}Z_2 \bar{Y} + Y_1 + Y_2 \bar{Y}) \det Y_4. \]
\[\text{rank}(X Y) = n \text{ and } Y_3 = -Y_4 \bar{Y} \text{ implies that } Y_4 \text{ is invertible, } \det Y_4 \neq 0. \]
Clearly, the first determinant on the right is a nonzero polynomial in Z_{ii} with coefficients in F, and the degree of Z_{ii} in each term $\leq n$; by the assumptions on Z_{ii}, the terms appeared in the polynomial are of distinct absolute values, and therefore the determinant is nonzero. In conclusion, $\det(XZ + Y) \neq 0$.

Q.E.D.

In the following, we endow Σ with a structure of F-rigid analytic variety and show that it is an admissible open subset of S and consequently an open rigid analytic subspace of S (compare [10] §1 Proposition 1).

We define $P_o = \text{pr}^G_p(G_o), P_o$ is compact. By Iwasawa’s decomposition, $G = P \cdot G_o$, and $P = H \cdot P_o$, and therefore
\[\Sigma = \{ Z \in S \mid \det(XZ + Y) \neq 0 \text{ for any pair } (X, Y) \in P_o \}. \]

For $Z \in S$, let
\[|Z| := \max_{1 \leq i,j \leq n} \left\{ 1, |Z_{ij}| \right\}. \]

For a nonnegative integer m and a pair $(X, Y) \in P_o$, we define
\[B^-(m; X, Y) := \{ Z \in S \mid |\det(XZ + Y)| < |Z|^n |\sigma|^{mn} \} \text{ for some } h \in H_o, \]
\[B^-(m; X, Y) = B^-(m; X', Y'). \]

Lemma 1.5. If m is a nonnegative integer and $(X, Y), (X', Y') \in P_o$ such that $(X, Y) \equiv (hX', hY') \mod \sigma^{mn+1}$ for some $h \in H_o$, then
\[B^-(m; X, Y) = B^-(m; X', Y'). \]

Proof. Obviously $B^-(m; X, Y) = B^-(m; hX, hY)$. We may assume $(X, Y) \equiv (X', Y') \mod \sigma^{mn+1}$.

We choose $\lambda \in (F^{alg})^\times$ such that $|\lambda| = |Z|$. We note that $|\lambda^{-1}| \leq 1$ and $|\lambda^{-1}Z_{ij}| \leq 1$, then
\[X \cdot \lambda^{-1}Z + Y \cdot \lambda^{-1} \equiv X' \cdot \lambda^{-1}Z + Y' \cdot \lambda^{-1} \mod \sigma^{mn+1}, \]
\[\det(XZ + Y) \cdot \lambda^{-n} \equiv \det(X'Z + Y') \cdot \lambda^{-n} \mod \sigma^{mn+1}, \]
whence
\[|\det(XZ + Y)| |Z|^{-n} < |\sigma|^{mn} \iff |\det(X'Z + Y')| |Z|^{-n} < |\sigma|^{mn}. \]

Therefore $B^-(m; X, Y) = B^-(m; X', Y')$.

Q.E.D.
We define

$$\Sigma(m; X, Y) := S - B^{-1}(m; X, Y) = \{Z \in S \mid |det(XZ + Y)| \geq |Z|^m |\omega|^{mn}\}.$$

Let

$$\Sigma(m) := \bigcap_{(X,Y) \in \mathcal{P}_0} \Sigma(m; X, Y)$$

$$= \left\{ Z \in S \mid \frac{|\omega|^{mn}}{|det(XZ + Y)|} \leq 1, \frac{|\omega|^{mn}Z_{ij}^n}{|det(XZ + Y)|} \leq 1 \text{ for any } (X,Y) \in \mathcal{P}_0 \right\}.$$

Let $\mathcal{P}^{(m)}$ be any finite subset of \mathcal{P}_0 containing $(0, I_n)$ and a set of representatives in \mathcal{P}_0 for $H_0 \mathcal{P}_0$ (mod ω^{mn+1}). Then Lemma 1.5 implies that

$$\Sigma(m) = \bigcap_{(X,Y) \in \mathcal{P}^{(m)}} \Sigma(m; X, Y).$$

Let $\mathcal{P}^{(m)}_0 = \mathcal{P}^{(m)} - \{(0, I_n)\}$.

$$\Sigma(m; 0, I_n) = \{Z \in S \mid |Z_{ij}| \leq |\omega|^{-m}, 1 \leq i \leq j \leq n\}$$

$$= \text{Sp} \left(F \left(\left(\frac{|\omega|^{mn}Z_{ij}}{|det(XZ + Y)|} \right) \leq 1 \right) \right),$$

is an admissible open affinoid subset of S. $\Sigma(m)$ is the intersection of a finite number of rational sub-domains of $\Sigma(m; 0, I_n)$:

$$\left\{ Z \in \Sigma(m; 0, I_n) \mid \frac{|\omega|^{mn}}{|det(XZ + Y)|} \leq 1, \frac{|\omega|^{mn}Z_{ij}^n}{|det(XZ + Y)|} \leq 1 \right\},$$

with (X, Y) running through $\mathcal{P}^{(m)}_0$. Therefore $\Sigma(m)$ is the affinoid variety:

$$\text{Sp} \left(F \left(\left(\frac{|\omega|^{mn}Z_{ij}}{|det(XZ + Y)|}, \frac{|\omega|^{mn}Z_{ij}^n}{|det(XZ + Y)|} \right) \leq 1 \right) \right).$$

$$\{\Sigma(m)\}_{m=0}^{\infty}$$

forms an admissible affinoid covering of Σ: Σ admits a rigid analytic variety structure (see [1] 9.3). According to [1] 9.1.2 Lemma 3 (compare [1] 9.1.4 Proposition 2), the following Proposition implies that Σ is an admissible open subset of S.

Proposition 1.6. Any morphism from an affinoid variety to S with image in Σ factors through some $\Sigma(m)$.

Proof: The argument is similar to the third proof of [10] §1 Proposition 1.

Let X be an affinoid variety, $\phi : X \to S$ a morphism from X to S with image in Σ. For any $(X, Y) \in \mathcal{P}_0$,

$$x \mapsto \frac{1}{|det(X\phi(x) + Y)|}, \quad x \mapsto \frac{(\phi(x))_{ij}^n}{|det(X\phi(x) + Y)|}.$$
are F-rigid analytic functions on X. By the maximum modulus principle ([1] §6.2 Proposition 4 (i)), there exists a positive integer $m_{(X,Y)}$ such that

$$\max_{1 \leq i \leq j \leq n} \max_{x \in X} \left\{ \frac{1}{\det(X\phi(x) + Y)}, \left| \frac{(\phi(x))_{ij}^m}{\det(X\phi(x) + Y)} \right| \right\} \leq |\sigma|^{-m_{(X,Y)}}.$$

In other words, $\phi(X) \subset \Sigma(m_{(X,Y)}; X, Y)$. In view of Lemma 1.5, $m_{(X,Y)}$ can be chosen locally constant; because P_0 is compact, there exists a positive integer m such that $\phi(X) \subset \Sigma(m)$. Q.E.D.

$\mathcal{O}(\Sigma(m))$ denotes the space of F-rigid analytic functions on $\Sigma(m)$; it is an F-affinoid algebra with the supremum norm. We see from (1.6) that $\psi \in \mathcal{O}(\Sigma(m))$ has an expansion in the form:

$$\psi(Z) = \sum_{(k, (X,Y)) \in (\mathbb{N}_0)^{p(m)}} P_{(k, (X,Y))}(Z) \prod_{(X,Y) \in P^{(m)}} \det(XZ + Y)^{-k_{(X,Y)}},$$

where \mathbb{N}_0 denotes the set of non-negative integers, $P_{(k, (X,Y))}(Z)$ are polynomials in Z_{ij} with coefficients in F, and the expansion converges with respect to the supremum norm $\| \cdot \|_{\mathcal{O}(\Sigma(m))}$. In particular, $\det(XZ + Y)^{-1} \in \mathcal{O}(\Sigma(m))$ for any $(X, Y) \in P$. Let $\mathcal{O}(\Sigma)$ be the F-algebra of F-rigid analytic functions on Σ, which is the projective limit of $\mathcal{O}(\Sigma(m))$,

$$\mathcal{O}(\Sigma) := \varprojlim_m \mathcal{O}(\Sigma(m)).$$

We endow $\mathcal{O}(\Sigma)$ with the projective limit topology.

Let $\mathcal{O}_K(\Sigma(m))$ and $\mathcal{O}_K(\Sigma)$ denote $\mathcal{O}(\Sigma(m)) \otimes_F K$ and $\mathcal{O}(\Sigma) \otimes_K K$ respectively. If we let $\Sigma_K(m)$ and Σ_K denote the extension of the ground field K/F of $\Sigma(m)$ and Σ respectively ([1] §9.3.6), then $\mathcal{O}_K(\Sigma(m))$ and $\mathcal{O}_K(\Sigma)$ are the K-rigid analytic functions on $\Sigma_K(m)$ and Σ_K respectively.

Proposition 1.7. $\mathcal{O}_K(\Sigma)$ is a nuclear K-Fréchet space.

Proof. By [9] Corollary 16.6 and Proposition 19.9, it suffices to prove that $\mathcal{O}_K(\Sigma(m))$ form a compact projective system.

$\mathcal{O}_K(\Sigma(m))$ is generated by

$$\sigma^m Z_{ij}, \frac{\sigma^m Z_{ij}}{\det(XZ + Y)}, \frac{\sigma^m Z_{ij}}{\det(XZ + Y)}, \ 1 \leq i \leq j \leq n, (X, Y) \in P^{(m)}_0.$$

Since

$$\sup_{Z \in \Sigma(m-1)} \sup_{(X,Y) \in P^{(m)}_0} \left\{ |\sigma^m Z_{ij}|, \left| \frac{\sigma^m Z_{ij}}{\det(XZ + Y)} \right|, \left| \frac{\sigma^m Z_{ij}}{\det(XZ + Y)} \right| \right\} \leq |\sigma|.$$

By [12] Lemma 1.5, the transition homomorphism from $\mathcal{O}_K(\Sigma(m))$ to $\mathcal{O}_K(\Sigma(m-1))$ is compact. Q.E.D.

Clearly the compact projective system passes to closed subspaces. Moreover, a K-Fréchet space is the strong dual of a space of compact type if and only if it is nuclear ([11] Theorem 1.3).
Corollary 1.8. Let \mathcal{N} be a closed subspace of $\mathcal{O}_K(\Sigma)$, then \mathcal{N} is a nuclear Fréchet space; \mathcal{N}^* is of compact type.

Remark 1.9. If K is spherically complete, Theorem 1.3 and Proposition 1.2 in [11] imply that $\mathcal{O}_K(\Sigma)/\mathcal{N}$ is also a nuclear Fréchet space.

Since all the generators (1.8) of $\mathcal{O}(\Sigma(m))$ are F-rigid analytic functions on $\Sigma(m')$ for any $m' \geq m$ and therefore on Σ, we obtain

Proposition 1.10.

(1) Σ is a Stein space ([4]), that is, the image of $\mathcal{O}(\Sigma(m+1))$ under the transition homomorphism in $\mathcal{O}(\Sigma(m))$ is dense for any nonnegative integer m.

(2) The image of $\mathcal{O}(\Sigma)$ under the transition homomorphism in $\mathcal{O}(\Sigma(m))$ is dense.

Finally, we define a rigid analytic G-action (need (1.1) to check) on Σ:

$$gZ := (AZ + B)(CZ + D)^{-1}, \quad g = \begin{pmatrix} A & B \\ C & D \end{pmatrix} \in G, Z \in \Sigma.$$

We define the automorphy factor

$$j(g, Z) := (CZ + D).$$

From a straightforward computation, we have the automorphy (cocycle) relation

$$j(g_1g_2, Z) = j(g_1, g_2Z)j(g_2, Z).$$

Lemma 1.11. Let m be a nonnegative integer. Then for any $g \in G_o$,

$$g\Sigma(m) \subset \Sigma(nm).$$

Proof. Let $g = \begin{pmatrix} A & B \\ C & D \end{pmatrix} \in G_o, Z \in \Sigma(m)$ and $(X, Y) \in P_o$. Then $(XA + YC, XB + YD) \in P_o$, whence

$$\frac{|Z|^n}{|\det(CZ + D)|} \leq |\sigma|^{-nm},$$

$$\frac{|Z|^n}{|\det((XA + YC)Z + (XB + YD))|} \leq |\sigma|^{-nm}.$$

By Cramer’s rule,

$$gZ = (AZ + B)(CZ + D)^{-1}$$

$$= (AZ + B) \cdot \text{adj}(CZ + D) \frac{1}{\det(CZ + D)},$$

where $\text{adj}(CZ+D)$ denotes the adjugate matrix of $CZ+D$. It is clear that $\det(CZ+D)$ and all the entries of $(AZ + B) \cdot \text{adj}(CZ + D)$ are polynomials in Z_{ij} with coefficients in 0 and degree $\leq n$, hence

$$|\det(CZ + D)| \leq |Z|^n,$$

$$|(AZ + B) \cdot \text{adj}(CZ + D)|_{ij} \leq |Z|^n.$$
Finally,
\[
\frac{|gZ|^n}{|\det(X(gZ) + Y)|} = \frac{|\det(CZ + D)|}{|\det((XA + YC)Z + (XB + YD))|} \max \left\{ 1, \frac{|(AZ + B) \cdot \text{adj}(CZ + D))_{ij}|^n}{|\det(CZ + D)|^n} \right\}
\leq \frac{|Z|^n}{|\det((XA + YC)Z + (XB + YD))|} \max \left\{ 1, \frac{|Z|^{n-1}}{|\det(CZ + D)|^{n-1}} \right\}
\leq |\sigma|^{-n^2m}.
\]
Therefore \(g\Sigma(m) \subset \Sigma(nm)\).

Q.E.D.

1.4. Holomorphic discrete series \((\mathcal{O}_\sigma(\Sigma), \pi_\sigma)\). We abbreviate \(\Sigma_k(m)(K)\) and \(\Sigma_k(K)\) to \(\Sigma(m)\) and \(\Sigma\) respectively. Conventionally, \(\mathcal{O}_K(\Sigma(m))\) is described as the space of \(K\)-valued functions on \(\Sigma(m)\) with expansions in the form (1.7) which converge in the supremum norm of the \(K\)-valued function space on \(\Sigma_k(m)\), and \(\mathcal{O}_K(\Sigma)\) as the space of \(K\)-valued functions on \(\Sigma\) whose restrictions on \(\Sigma(m)\) are functions in \(\mathcal{O}_K(\Sigma(m))\). We abbreviate \(\mathcal{O}_K(\Sigma(m))\) and \(\mathcal{O}_K(\Sigma)\) to \(\mathcal{O}(\Sigma(m))\) and \(\mathcal{O}(\Sigma)\) respectively.

Let \((V, \sigma)\) be a \(d\)-dimensional \(K\)-rational representation of \(H\). Let
\[
\sigma(h) = \det(h)^{-\frac{d}{2}} P(h), \quad s \in \mathbb{N}_0, P \in M(d, K[h_{ij}]).
\]
Let \(\mathcal{O}_\sigma(\Sigma(m)) := \mathcal{O}(\Sigma(m)) \otimes_{K} V\) and \(\mathcal{O}_\sigma(\Sigma) := \mathcal{O}(\Sigma) \otimes_{K} V\). We define the holomorphic (rigid analytic) discrete series representation \((\mathcal{O}_\sigma(\Sigma), \pi_\sigma)\) of \(G\):
\[
(\pi_\sigma(g)\psi)(Z) := \sigma(j(g^{-1}, Z))^{-1} \psi(g^{-1}Z), \quad \psi \in \mathcal{O}_\sigma(\Sigma), g \in G.
\]
Proposition 1.6 implies that \(g^{-1}\) translates \(\Sigma(m)\) into some \(\Sigma(m')\), it is not difficult to see that \(\pi_\sigma(g)\psi \in \mathcal{O}_\sigma(\Sigma)\) by checking that its coordinates have expansions of the form (1.7) and they are bounded under the supremum norms \(\|\cdot\|_{\mathcal{O}(\Sigma(m))}\). By the automorphy relation (1.9), we verify that \(\pi_\sigma\) is a \(G\)-representation.

Proposition 1.12. \((\mathcal{O}_\sigma(\Sigma), \pi_\sigma)\) is continuous.

Proof. Since \(\mathcal{O}_\sigma(\Sigma)\) is the projective limit of \(\mathcal{O}_\sigma(\Sigma(m))\), it suffices to prove, for each \(m\), the continuity of
\[
G_0 \times \mathcal{O}_\sigma(\Sigma) \rightarrow \mathcal{O}_\sigma(\Sigma(m))
\]
\[
(g, \psi) \mapsto (\pi_\sigma(g)\psi)_{\Sigma(m)}.
\]
Moreover, according to Lemma 1.11, \(G_0\Sigma(m) \subset \Sigma(nm)\), whence the above map factors through \(G_0 \times \mathcal{O}_\sigma(\Sigma(nm))\). Thus we only need to consider the continuity of the map:
\[
G_0 \times \mathcal{O}_\sigma(\Sigma(nm)) \rightarrow \mathcal{O}_\sigma(\Sigma(m))
\]
\[
(g, \psi) \mapsto (\pi_\sigma(g)\psi)_{\Sigma(m)}.
\]
For \(g \in G_0\), the entries of \(\sigma(j(g^{-1}, Z))^{-1}\) are polynomials with coefficients in \(\mathfrak{o}\) and variables \(Z_{ij}, \det(j(g^{-1}, Z))^{-1}\) and the coefficients of \(P\). We note that, for \(Z \in \Sigma(m)\),
\[|Z_{ij}| \leq |\sigma|^{-m} \text{ and } |\det(j(g^{-1}, Z))^{-1}| \leq |\sigma|^{-nm}, \text{ then there is a constant } c > 0 \text{ such that} \]
\[
\max_{g \in G_o} \max_{Z \in \Sigma(m)} \|\sigma(j(g^{-1}, Z))^{-1}\|_{\text{End}(U)} \leq c.
\]
Therefore
\[
\max_{g \in G_o} \|\pi_o(g)\psi\|_{\sigma_o(\Sigma(m))} = \max_{g \in G_o} \max_{Z \in \Sigma(m)} \|\pi_o(g)\psi(Z)\|_V
\]
\[
\leq \max_{g \in G_o} \max_{Z \in \Sigma(m)} \|\sigma(g^{-1}, Z)^{-1}\|_{\text{End}(V)} \cdot \max_{g \in G_o} \max_{Z \in \Sigma(m)} \|\psi(g^{-1}Z)\|_V
\]
\[
\leq c \cdot \max_{Z \in \Sigma(m)} \|\psi(Z)\|_V
\]
\[
= c\|\psi\|_{\sigma_o(\Sigma(m))}.
\]
So the map (1.11) is continuous. Q.E.D.

Now let \(U_0(o) \) denote the parameterized open neighborhood of the unit element, \(\text{Sym}(n, o) \times H_o \times \text{Sym}(n, o) \subset U_0 \cap G_o. \)

Proposition 1.13. For any \(\psi \in \sigma_o(\Sigma(nm)) \), the orbit map
\[
U_0(o) \to \sigma_o(\Sigma(m))
\]
\[g \mapsto (\pi_o(g)\psi)_{\Sigma(m)} \]
is an \(\sigma_o(\Sigma(m)) \)-valued analytic function (that is, can be expanded as a convergent power series with variables the coordinate parameters of \(U_0(o) \) and coefficients in the Banach space \(\sigma_o(\Sigma(m)) \)).

Proof. We first prove the following

Lemma 1.14. Let \(\psi \in \sigma_o(\Sigma(nnm)), z \in \text{Sym}(n, o) \) and \(h \in H_o. \)

1. \(\pi_o\begin{pmatrix} I_n & z \\ 0 & I_n \end{pmatrix} \psi(Z) = \psi(Z - z) \) expands into a convergent power series in \(z_{ij} \) (1 \(\leq i \leq j \leq n \)) with coefficients in \(\sigma_o(\Sigma(m)) \);

2. \(\pi_o\begin{pmatrix} h^{-1} & 0 \\ 0 & h \end{pmatrix} \psi(Z) = \sigma(h)\psi(hZ) \) expands into a convergent power series in \(h_{ij} - \delta_{ij} \) (1 \(\leq i, j \leq n \)) with coefficients in \(\sigma_o(\Sigma(m)) \), where \(\delta_{ij} \) is the Kronecker delta.

Proof. (1) We consider the ring \(\sigma(\Sigma(m))[z] \) of formal power series \(\varphi(z) \) in \(z_{ij} \) with coefficients in \(\sigma(\Sigma(m)) \); \(\varphi(z) \) is expressed as
\[
\varphi(z) = \sum_{\alpha \in \text{Sym}(n,H_o)} \alpha \cdot z^\alpha, \quad \alpha \in \sigma(\Sigma(m)), \quad z^\alpha := \prod_{1 \leq i \leq j \leq n} z_{ij}^{r_{ij}}.
\]
If the constant term \(\alpha_0 \) is invertible in \(\sigma(\Sigma(m)) \), then \(\varphi(z) \in \sigma(\Sigma(m))[z] \). In particular, for \((X, Y) \in \mathcal{P} \), the constant term in the expansion of \(\det(X(Z - z) + Y) \) is \(\det(XZ + Y) \) which is invertible in \(\sigma(\Sigma(m)) \), whence \(\det(X(Z - z) + Y)^{-1} \) belongs to \(\sigma(\Sigma(m))[z] \).
In view of the expansion form (1.7), each coordinate of \(\psi(Z - z) \) expands into a formal power series in \(z_j \) with coefficients series in \(\mathcal{O}(\Sigma(m)) \), but it follows from (1.12) that

1. the coefficients are indeed convergent series in \(\mathcal{O}(\Sigma(m)) \) so that each coordinate of \(\psi(Z - z) \) belongs to \(\mathcal{O}(\Sigma(m))[\![z]\!] \),

2. the \(\mathcal{O}(\Sigma(m)) \)-coefficient formal power series expansion of \(\psi(Z - z) \) converges in \(\mathcal{O}_\sigma(\Sigma(m)) \) for all \(z \in \text{Sym}(n, o) \).

(2) is proved similarly. Q.E.D.

From (1.3), we see that \(g \in U_0(o) \) decomposes in \(G_o \) into

\[
\begin{pmatrix} I_h & z_1 \\ I_n & I_n \end{pmatrix}
\begin{pmatrix} I_n & 0 \\ h^{-1} & I_n \end{pmatrix}
\begin{pmatrix} 0 & -I_n \\ I_n & 0 \end{pmatrix}
\begin{pmatrix} I_n & z_2 \\ 0 & I_n \end{pmatrix}
\]

where \(z_1, z_2 \in \text{Sym}(n, o) \) and \(h \in H_o \). Lemma 1.14 and (1.12) imply that \(\pi_\sigma(g) \psi \) expands into a convergent power series with variables the coordinate parameters of \(U_0(o) \) and coefficients in \(\mathcal{O}_\sigma(\Sigma(m)) \).

Q.E.D.

Corollary 1.15. The power series expansion of \(\det(Z - z)^{-1} \) on \(\text{Sym}(n, o) \) converges in \(\mathcal{O}(\Sigma(m)) \). Or equivalently, \(\det(Z - z)^{-1} \) expands into a power series

\[
\sum_{\xi \in \text{Sym}(n, 0)} \alpha_\xi(Z) \cdot \mathcal{O}(\Sigma(m)),
\]

such that \(\lim_{|z| \to 0} \|\alpha_\xi\|_{\mathcal{O}(\Sigma(m))} = 0 \) (\(|z| = \sum_{1 \leq i \leq j \leq n} r_{ij} \)).

Next, we consider the adjoint representation \(\pi_\sigma^* \) of \(G \) on \(\mathcal{O}_\sigma(\Sigma(m))^* = \lim_{m} \mathcal{O}_\sigma(\Sigma(m))^*_m \).

The transition homomorphisms \(\mathcal{O}_\sigma(\Sigma(m))^*_m \to \mathcal{O}_\sigma(\Sigma)^*_b \) are injective (Proposition 1.10 (2)). Lemma 1.11 implies that, for any \(g \in G_o \), \(\pi_\sigma^*(g) \) maps \(\mathcal{O}_\sigma(\Sigma(m))^*_m \) into \(\mathcal{O}_\sigma(\Sigma(nm))^*_b \) via

\[
\langle \psi, \pi_\sigma^*(g)\mu \rangle = \langle (\pi_\sigma(g^{-1})\psi)|_{\Sigma(m)}, \mu \rangle, \quad \mu \in \mathcal{O}_\sigma(\Sigma(m))^*, \psi \in \mathcal{O}_\sigma(\Sigma(nm)).
\]

It is easy to deduce from Proposition 1.13 that, for any \(\mu \in \mathcal{O}_\sigma(\Sigma(m))^* \), the orbit map

\[
U_0(o)^{-1} \to \mathcal{O}_\sigma(\Sigma(nm))^*_b
\]

\[
g \mapsto \pi_\sigma^*(g)\mu
\]

is an \(\mathcal{O}_\sigma(\Sigma(nm))^*_b \)-valued analytic function. Therefore we have

Corollary 1.16. \(\mathcal{O}_\sigma(\Sigma)^*_b, \pi_\sigma^* \) is locally analytic.

Finally we study the *de Rham complex* \(\Omega(\Sigma) \) of rigid analytic exterior differential forms. Explicitly, let \(0 \leq r \leq n(n + 1)/2 \),

\[
\begin{align*}
\Omega^1_K &= \bigoplus_{1 \leq i \leq j \leq n} Kd\zeta_{ij}, \\
\Omega^r_K &= \bigwedge^r \Omega^1_K(\Sigma), \\
\Omega^r(\Sigma) &= \mathcal{O}(\Sigma) \otimes K \Omega^r_K.
\end{align*}
\]
As interesting examples, we show that the spaces \(\Omega'(\Sigma) \) as \(\mathbb{G} \)-representations belong to the holomorphic discrete series of \(\mathbb{G} \) (compare [8] §3).

We define a \(K \)-rational representation \(\sigma_1 \) of \(\mathbb{H} \) on \(\Omega^1_K \):

\[
\sigma_1(h) dZ_{ij} := \sum_{1 \leq k < l \leq n} (h_{ik} h_{jl} + h_{il} h_{jk}) dZ_{kl} + \sum_{k=1}^n h_{ik} h_{jk} dZ_{kk}.
\]

Or succinctly,

\[
\sigma_1(h) dZ = h \cdot dZ \cdot \phi, \quad dZ := (dZ_{ij}).
\]

Let \(\sigma_r := \wedge^r \sigma_1 \).

1. For \(g = \begin{pmatrix} I_n & z \\ 0 & I_n \end{pmatrix} \), \(g \cdot dZ = d(Z - z) = dZ \).
2. For \(g = \begin{pmatrix} I_n & z \\ 0 & I_n \end{pmatrix} \), \(g \cdot dZ = d(hZ \cdot \phi) = h \cdot dZ \cdot \phi = \sigma_1(h) dZ \).
3. For \(g = \begin{pmatrix} 0 & I_n \\ -I_n & 0 \end{pmatrix} \), from the identity \(d(Z^{-1}) \cdot Z + Z^{-1} \cdot dZ = 0 \), we have \(g \cdot dZ = d(-Z^{-1}) = Z^{-1} \cdot dZ \cdot Z^{-1} = \sigma_1(Z^{-1}) dZ \).

In view of the decomposition (1.3) of \(U_0 \), the discussions above implies that the action of \(\mathbb{G} \) on \(\Omega'(\Sigma) \) coincides with \(\pi_{\sigma_r} \) on \(U_0 \); as \(U_0 \) is dense in \(\mathbb{G} \), they coincide on \(\mathbb{G} \). We have proved the following result.

Proposition 1.17. Let \(1 \leq r \leq n(n+1)/2 \) and \(\sigma_r \) defined above. The \(\mathbb{G} \)-action on \(\Omega'(\Sigma) \) coincides with \(\pi_{\sigma_r} \).

2. **Duality**

In the following, we assume that \(\mathbb{K} \) is spherically complete. Let \((V, \sigma) \) be a \(d \)-dimensional \(K \)-rational representation of \(\mathbb{H} \). We choose a basis \(v_1, \ldots, v_d \) of \(V \); we denote by \(v_1^*, \ldots, v_d^* \) the corresponding dual basis of the dual space \(V^* \). \((V^*, \sigma^*) \) denotes the dual representation of \((V, \sigma) \).

2.1 Duality operator \(I_{\sigma} \). For \(Z \in \Sigma \) and \(v^* \in V^* \), let \(\varphi_{Z,v^*} \) be the \(V^* \)-valued locally analytic function on \(\mathcal{P} \):

\[
\varphi_{Z,v^*}(X,Y) := \sigma^*(XZ + Y)v^*.
\]

Let \(B^0_{\sigma^*}(\mathcal{P}, V^*) \) be the subspace of \(C^0_{\sigma^*}(\mathcal{P}, V^*) \) spanned by \(\varphi_{Z,v^*} \), \(B_{\sigma^*}(\mathcal{P}, V^*) \) the closure of \(B^0_{\sigma^*}(\mathcal{P}, V^*) \). Clearly \(B_{\sigma^*}(\mathcal{P}, V^*) \) is \(\mathbb{G} \)-invariant.

For any continuous linear functional \(\xi \in B_{\sigma^*}(\mathcal{P}, V^*)^* \), we define a \(V \)-valued function on \(\Sigma \):

\[
I_{\sigma}(\xi)(Z) := \sum_{k=1}^d \langle \varphi_{Z,v_k}, \xi \rangle v_k, \quad Z \in \Sigma.
\]

We check that \(I_{\sigma}(\xi) \) is independent of the choice of the basis \(\{v_k\}_{k=1}^d \). Evidently, \(I_{\sigma} \) is injective.
Lemma 2.1. \(I_\sigma \) is \(G \)-equivariant, that is,
\[
I_\sigma(T^*_\sigma(g)\xi) = \pi_\sigma(g)I_\sigma(\xi),
\]
for any \(g \in G \).

Proof. Let \(g = \begin{pmatrix} A & B \\ C & D \end{pmatrix} \in G \). We have
\[
I_\sigma(T^*_\sigma(g)\xi)(Z) = \sum_{k=1}^d \langle \varphi_{Z,v_k^*}, T^*_\sigma(g)\xi \rangle v_k
\]
\[
= \sum_{k=1}^d \langle T_\sigma^*(g^{-1})\varphi_{Z,v_k^*}, \xi \rangle v_k
\]
\[
= \sum_{k=1}^d \langle (\sigma^*(X^*g^{-1}Z + Y)v_{k,g}, \xi) v_k \rangle v_k
\]
\[
= \sigma(j(g^{-1}, Z))^{-1}(\sum_{k=1}^d \langle (\sigma^*(X^*g^{-1}Z + Y)v_{k,g}), \xi \rangle v_k)
\]
\[
= (\pi_\sigma(g)I_\sigma(\xi))(Z),
\]
where \(v_{k,g} = \sigma(j(g^{-1}, Z))v_k \).

Q.E.D.

Proposition 2.2.

(1) For any continuous linear functional \(\xi \in B_{\sigma^*}(\mathcal{P}, V^*)^* \), \(I_\sigma(\xi) \) is a \(V \)-valued rigid analytic function on \(\Sigma \).

(2) \(I_\sigma \) is a continuous homomorphism of \(G \)-representations from \((B_{\sigma^*}(\mathcal{P}, V^*)^*_b, T^*_\sigma) \) to \((\mathcal{O}_{\sigma}(\Sigma), \pi_\sigma) \).

Proof. We denote by \(i \) the inclusion: \(B_{\sigma^*}(\mathcal{P}, V^*) \hookrightarrow C^\text{an}_{\sigma^*}(\mathcal{P}, V^*) \), \(i^* \) its adjoint operator. Because of our assumption that \(K \) is spherically complete, Hahn-Banach Theorem ([9] Corollary 9.4) implies that \(i^* \) is surjective. Because \(C^\text{an}_{\sigma^*}(\mathcal{P}, V^*)^*_b \) and \(B_{\sigma^*}(\mathcal{P}, V^*)^*_b \) are Fréchet spaces (Corollary 1.2), \(i^* \) is open (from the open mapping theorem ([9] Proposition 8.6)). Consequently, the continuity of \(I_\sigma \circ i^* \) implies that of \(I_\sigma \). Therefore, (1) and (2) are equivalent to:

(1') \(I_\sigma \circ i^*(\xi) \in \mathcal{O}_{\sigma}(\Sigma) \) for any \(\xi \in C^\text{an}_{\sigma^*}(\mathcal{P}, V^*)^* \);

(2') \(I_\sigma \circ i^* : (C^\text{an}_{\sigma^*}(\mathcal{P}, V^*)^*_b, T^*_\sigma) \to (\mathcal{O}_{\sigma}(\Sigma), \pi_\sigma) \) is a continuous homomorphism of \(G \)-representations.
We still denote \(I_\sigma \circ \iota \) by \(I_\sigma \). For \(\xi \in C^\text{an}_{\sigma^*}(\mathcal{P}, V^*)_b \), we write \(I_\sigma(\xi) \) in integral:

\[
I_\sigma(\xi)(Z) = \sum_{k=1}^{d} \int_{U} \varphi_{Z,k^d} d\xi \cdot v_k
\]

\[
= \sum_{k=1}^{d} \sum_{k} \int_{U_k} \varphi_{Z,k} d\xi \cdot v_k
\]

\[
= \sum_{k} \pi_\sigma(g_k) \left(\sum_{k=1}^{d} \int_{U_k} \varphi_{Z,(v_k g_k)^*} d(T_{\sigma^*}(g_k^{-1})\xi) \cdot v_{k g_k} \right),
\]

where the disjoint open covering \(\{U_k\}_k \) of \(\mathcal{P} \) and \(g_k \) are defined in Sec. 1.2, and \(v_{k g_k} \) is defined in the proof of Lemma 2.1. Therefore it suffices to consider

\[
(2.3) \quad \sum_{k=1}^{d} \int_{U} \varphi_{Z,k^d} d\xi' \cdot v_k.
\]

where \(U \) are taken to be \(U_k \cdot g_k \) and \(\xi' \) is the image of \(\xi \) under \(C^\text{an}_{\sigma^*}(\mathcal{P}, V^*)_b \to C^\text{an}(U, V^*)_b \).

For the open subset \(\overline{U} = \text{pr}_U(U) \) of \(\text{Sym}(n, 0) \), we have the isomorphism induced from the section \(t_0 \) (compare (1.5)):

\[
C^\text{an}_{\sigma^*}(\mathcal{U}, V^*)_b \cong C^\text{an}(\overline{U}, V^*)_b.
\]

Then (2.3) equals to

\[
\overline{T}_{\sigma^*}(\overline{U})(\overline{\xi})(Z) := \sum_{k=1}^{d} \int_{U} (\sigma^*(Z - z) v_k^*) d\overline{\xi}(z) \cdot v_k,
\]

where \(\overline{\xi} \) is the image of \(\xi' \) in \(C^\text{an}(\overline{U}, V^*)_b \) via the isomorphism (2.4). It suffices to prove that \(\overline{T}_{\sigma^*}(\overline{U})(\overline{\xi}) \) is rigid analytic on \(\Sigma(m) \), and that the map

\[
C^\text{an}(\overline{U}, V^*)_b \to \Theta_{\sigma}(\Sigma(m))
\]

\[
\overline{\xi} \mapsto \overline{T}_{\sigma^*}(\overline{U})(\overline{\xi})|_{\Sigma(m)}
\]

is continuous (G-equivariance is proved in Lemma 2.1).

As \(\sigma^* \) is algebraic, there is a nonnegative integer \(t \) and polynomials \(Q_k \) \((1 \leq k, \ell \leq d) \) in \(h_{ij} \) \((1 \leq i, j \leq n) \) with coefficients in \(K \), such that

\[
\sigma^*(h)v_k^* = \sum_{\ell=1}^{d} \det(h)^{-t} Q_k(h) v_{\ell}^*.
\]

We expand

\[
\det(Z - z)^{-t} Q_k(Z - z) = \sum_{\ell} \alpha_{\ell k}(Z) \cdot z_{\ell}^k
\]

Evidently from Corollary 1.15, \(\alpha_{\ell k} \in \Theta(\Sigma(m)) \) and

\[
(2.5) \quad \lim_{|U| \to \infty} ||\alpha_{\ell k}||_{\Theta(\Sigma(m))} = 0.
\]
Moreover, there is a constant $c_m > 0$, depending only on m, σ and $\{v_k\}_{k=1}^d$, such that

$$\|\alpha_{f,k}\|_{\mathcal{O}(\Sigma(m))} \leq c_m. \tag{2.6}$$

Then

$$\begin{aligned}
I_{\sigma;U}(\vec{\xi})(Z) &= \sum_{k=1}^d \int_U \det(Z - z)^{-1} Q_{k\ell}(Z - z) d\vec{\xi}(z) \cdot v_k \\
&= \sum_{k=1}^d \left(\sum_{\ell=1}^d \left(\int_U \vec{\xi} \cdot v_\ell^* d\vec{\xi}(z) \right) \cdot \alpha_{f,k}(Z) \right) v_k. \tag{2.7}
\end{aligned}$$

Since $\|\vec{\xi}\|_{C^m(\Omega)} \leq 1$,

$$\begin{aligned}
\left| \int_U \vec{\xi} \cdot v_\ell^* d\vec{\xi}(z) \right| &\leq \|v_\ell^*\|_V \cdot \|\vec{\xi}\|_{C^m(\Omega;V^*)}. \tag{2.8}
\end{aligned}$$

(2.5) and (2.8) imply that the expansion (2.7) of $I_{\sigma;U}(\vec{\xi})$ converges in $\mathcal{O}_\sigma(\Sigma(m))$. (2.6) and (2.8) imply

$$\|I_{\sigma;U}(\vec{\xi})\|_{\mathcal{O}(\Sigma(m))} \leq \max_{1 \leq k, \ell \leq d} c_m \|v_\ell^*\|_V \|v_k\|_V \|\vec{\xi}\|_{C^m(\Omega;V^*)}. \tag{2.9}$$

The continuity follows. Q.E.D.

2.2. **Duality operator** J_{σ} and the image of I_{σ}. Let $\mathcal{N}_\sigma(\Sigma)$ denote the image of I_{σ}. In this section, we propose to determine $\mathcal{N}_\sigma(\Sigma)$. For this, we need to introduce J_{σ}, the adjoint operator of I_{σ}: an injective continuous linear operator from $\mathcal{N}_\sigma(\Sigma)_b^*$ to $(B_{\sigma}(\mathcal{P}, V^*)_b^*)^* \cong B_{\sigma}(\mathcal{P}, V^*)$ ($B_{\sigma}(\mathcal{P}, V^*)$ is reflexive according to Corollary 1.2). First, we find the formula for J_{σ}.

For any $\mu \in \mathcal{N}_\sigma(\Sigma)^*$ and $\xi \in B_{\sigma}(\mathcal{P}, V^*)$, we have

$$\langle J_{\sigma}(\mu), \xi \rangle = \langle I_{\sigma}(\xi), \mu \rangle. \tag{2.10}$$

For $(X, Y) \in \mathcal{P}$ and $v \in V$, we define the Dirac distribution $\xi_{(X,Y),v}$ as follows, which is a continuous linear functional of $B_{\sigma}(\mathcal{P}, V^*)$:

$$\langle \varphi, \xi_{(X,Y),v} \rangle = \langle v, \varphi(X, Y) \rangle_v, \quad \varphi \in B_{\sigma}(\mathcal{P}, V^*),$$

and a V-valued rigid analytic function $\psi_{(X,Y),v}$ on Σ:

$$\psi_{(X,Y),v}(Z) := \sigma(XZ + Y)^{-1} v. \tag{2.11}$$

Lemma 2.3.

$$I_{\sigma}(\xi_{(X,Y),v}) = \psi_{(X,Y),v}. \tag{2.12}$$

Proof. By definition (2.2),

$$\begin{aligned}
(I_{\sigma}(\xi_{(X,Y),v}))(Z) &= \sum_{k=1}^r \langle \varphi Z v_k^*, \xi_{(X,Y),v} \rangle v_k \\
&= \sum_{k=1}^r \langle v, \sigma^* (XZ + Y) v_k^* \rangle_v \cdot v_k
\end{aligned}$$
valued locally analytic on structure is naturally induced onto Banach algebra is surjective (Hahn-Banach Theorem),

Moreover, the dual space of \(\Sigma \) is an isomorphism from \(B \).

\(\sum k=1^n \langle \psi(X,Y),v \rangle v_k \)

\(\sigma(XZ + Y)^{-1}v = \psi(X,Y,v) \).

Q.E.D.

Let \(\mathcal{N}_0^0(\Sigma) \) denote the subspace of \(\mathcal{O}(\Sigma) \) spanned by \(\psi(X,Y,v) \) for all \((X, Y) \in \mathcal{P} \) and \(v \in V. \) Clearly \(\mathcal{N}_0^0(\Sigma) \) is G-invariant. Lemma 2.3 implies \(\mathcal{N}_0^0(\Sigma) \subset \mathcal{N}_0^0(\Sigma). \)

Proposition 2.4. For any continuous linear functional \(\mu \in \mathcal{N}_0^0(\Sigma)^* \), we have

\[
J_\sigma(\mu)(X, Y) = \sum_{k=1}^d \langle \psi(X,Y,v_k), \mu \rangle v_k^*.
\]

Proof. We have

\[
\sum_{k=1}^r \langle \psi(X,Y,v_k), \mu \rangle v_k^* = \sum_{k=1}^r \langle J_\sigma(\xi(X,Y),v_k), \mu \rangle v_k^*
\]

(Lemma 2.3)

\[
= \sum_{k=1}^r \langle J_\sigma(\mu), \xi(X,Y,v_k) \rangle v_k^*
\]

(Duality formula (2.9))

\[
= \sum_{k=1}^r \langle v_k, J_\sigma(\mu)(X,Y) \rangle v_k^* = J_\sigma(\mu)(X,Y).
\]

Q.E.D.

From (2.11), we see that \(J_\sigma \) factors through \(\mathcal{N}_0^0(\Sigma)^* \), and (2.11) defines an injection from \(\mathcal{N}_0^0(\Sigma)^*_b \) to \(B_0(\mathcal{P}, V^*) \). Because \(J_\sigma \) is injective and \(\mathcal{N}_0^0(\Sigma)^*_b \to \mathcal{N}_0^0(\Sigma)^*_b \) is surjective (Hahn-Banach Theorem), \(\mathcal{N}_0^0(\Sigma)^*_b = \mathcal{N}_0^0(\Sigma)^*_b \). Therefore by Hahn-Banach theorem, we have

Lemma 2.5. \(\mathcal{N}_0^0(\Sigma) \) is dense in \(\mathcal{N}_0^0(\Sigma) \).

Theorem 2.6.

1. \(J_\sigma \) is an isomorphism from \(B_0(\mathcal{P}, V^*) \) to \(\mathcal{N}_0^0(\Sigma) \).
2. \(\mathcal{N}_0^0(\Sigma) \) is the closure of \(\mathcal{N}_0^0(\Sigma) \) in \(\mathcal{O}(\Sigma) \).

Proof. Let \(B(L, V^*) := \iota(\sigma) \mathcal{B}_0(\mathcal{P}, V^*) \), and still denote \(\iota|_{\mathcal{B}_0(\mathcal{P}, V^*)} \) by \(\iota \).

Let \(I \) be any (finite) disjoint open chart covering \(\{\overline{U}_i\} \) of \(L \), then we recall that \(\mathcal{C}^0(L, V^*) \) is defined as the inductive limit, indexed with all the \(I \), of the \(K \)-Banach algebra \(F_I(L, V^*) = \prod_i \mathcal{O}(U_i, V^*) \), where \(\mathcal{O}(\overline{U}_i, V^*) \) denotes the space of \(K \)-analytic functions on \(\overline{U}_i \) (cf. [3] 2.1.10 and [11] \S 2). The inductive limit structure is naturally induced onto \(B(L, V^*) \), that is, \(B(L, V^*) = \lim_i E_I(L, V^*) \).

Moreover, the dual space \(B(L, V^*)^* \) is the projective limit of \(E_I(L, V^*) \).

Let \(\mathcal{N}_0^0(\Sigma(m)) \) be the image of \(\mathcal{N}_0^0(\Sigma) \) in \(\mathcal{O}(\Sigma(m)) \).

Considering \(\pi_m(g^{-1})v_k \), we see that the map \((X, Y) \mapsto \psi(X,Y,v_k) \) is an \(\mathcal{O}(\Sigma(m)) \)-valued locally analytic on \(\mathcal{P} \) (see Proposition 1.13). Since \(\mathcal{K} \) is compact,

\[
r_m = \min_{1 \leq k \leq n} \inf_{d(X,Y) \in \mathcal{K}} \|\psi(X,Y,v_k)\|_{\mathcal{O}(\Sigma(m))}
\]
is positive. Let \(\mathcal{L} \) be the lattice \(\sum_{k=1}^{d} \sum_{(X,Y) \in \mathcal{K}} \mathfrak{a}_k \cdot \psi_{(X,Y),v} \) in \(\mathcal{M}_{\sigma_\sigma^0}(\Sigma) \), then, for each \(m \), the image of \(\mathcal{L} \) in \(\mathcal{M}_{\sigma_\sigma^0}(\Sigma(m)) \) contains the ball of radius \(r_m \) centered at zero, and therefore the interior of \(\mathcal{L} \) is a nontrivial open lattice.

Consider

\[
(\iota^{\sigma^{-1}})^* \circ I_{\sigma,1}^{-1}|_{\mathcal{M}_{\sigma_\sigma^0}(\Sigma)} : \mathcal{M}_{\sigma_\sigma^0}(\Sigma) \rightarrow B(\mathcal{L}, V^*)^*_b
\]

\[
\psi_{(X,Y),v} \mapsto (\iota^{\sigma^{-1}})^*(\xi_{(X,Y),v})
\]

For \((X,Y) \in \mathcal{K} \),

\[
\| (\iota^{\sigma^{-1}})^*(\xi_{(X,Y),v}) \|_{B(\mathcal{L}, V^*)^*_b} = \max_{\varphi \in E_{\mathcal{L}}(V^*)} \frac{\langle \varphi, (\iota^{\sigma^{-1}})^*(\xi_{(X,Y),v}) \rangle}{\| \varphi \|_{E_{\mathcal{L}}(V^*)}}
\]

\[
= \max_{\varphi \in \iota^{\sigma^{-1}}(E_{\mathcal{L}}(V^*))} \frac{\langle \varphi, \xi_{(X,Y),v} \rangle}{\| \varphi \|_{E_{\mathcal{L}}(V^*)}}
\]

\[
\leq \max_{(X,Y) \in \mathcal{K}} \| \varphi(X', Y') \|_{V^*}
\]

Therefore the image of \(\mathcal{L} \) under \((\iota^{\sigma^{-1}})^* \circ I_{\sigma,1}^{-1}|_{\mathcal{M}_{\sigma_\sigma^0}(\Sigma)} \) in \(B(\mathcal{L}, V^*)^*_b \) is bounded, since its image in \(E_{\mathcal{L}}(V^*)^* \) are all norm-bounded by \(\max_{1 \leq l \leq d} \| v_l \|_V \). Because \(\mathcal{M}_{\sigma_\sigma^0}(\Sigma) \) is metrizable, it is bornological ([9] Proposition 6.14), and therefore \(I_{\sigma,1}^{-1}|_{\mathcal{M}_{\sigma_\sigma^0}(\Sigma)} \) is continuous ([9] Proposition 6.13). \(\mathcal{M}_{\sigma_\sigma^0}(\Sigma) \) is isomorphic to \(I_{\sigma,1}^{-1}(\mathcal{M}_{\sigma_\sigma^0}(\Sigma)) \), then their completions are isomorphic, which, in view of Lemma 2.5, must be \(\mathcal{M}_{\sigma}(\Sigma) \) and \(B_{\sigma^*}(P, V^*)^*_b \) respectively.

Corollary 2.7. \(J_{\sigma} \) is an isomorphism of G-representations from \((\mathcal{M}_{\sigma}(\Sigma), \pi_{\sigma}) \) to \((B_{\sigma^*}(P, V^*), T_{\sigma^*}) \).

Remark 2.8. We conjecture that \((\mathcal{M}_{\sigma}(\Sigma), \pi_{\sigma}) \) and \((B_{\sigma^*}(P, V^*), T_{\sigma^*}) \) are topologically irreducible G-representations if \(\sigma \) is irreducible. These are conjectured and claimed by Morita for \(\text{SL}(2, F) \) ([6] Corollary after Theorem 3 and [7] Theorem 1 (i).) However, there is a serious gap in his proof of [7] Proposition 3. Schneider and Teitelbaum gave the first valid proof of [7] Theorem 1 (i) in [11] when \(F = \mathbb{Z}_p \).

3. Morita’s theory for \(\text{SL}(2, F) \)

In this section, we study Morita’s theory for \(\text{Sp}(2, F) = \text{SL}(2, F) \). We study the duality established in \(\S 2 \) for \(\text{SL}(2, F) \) and show its relations with Morita’s duality and Casselman’s intertwining operator.

First, we review the construction of the holomorphic discrete series and principal series for \(\text{SL}(2, F) \) from [5], [6] and [7] in accordance with our notations.

3.1. The \(p \)-adic upper half-plane. For more details, we refer the readers to [5] \(\S 2 \) and [2] 1.2.

In the following, let \(G = \text{SL}(2, F) \) and \(G_o = \text{SL}(2, o) \).
Let $\Sigma := K - F$ be the p-adic upper half-plane, \mathcal{P} the set of nonzero pairs $(x, y) \in F \times F$, $\mathcal{L} = F^x \setminus \mathcal{P} = \mathbb{P}^1(F)$, $\mathcal{P}_o \subset \mathcal{P}$ the set of pairs $(x, y) \in o \times o$ such that $(x, y) \not\equiv (0,0)$ mod \mathfrak{p}. As usual, we define a G-action on Σ via
\[g \cdot Z := (aZ + b)(cZ + d)^{-1}, \quad g = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in G. \]

Let m be a nonnegative integer. For a pair $(x, y) \in \mathcal{P}_o$, we define
\[B^-(m; x, y) := \{ Z \in K \mid |xZ + y| < \max\{1, |Z|\} |\sigma^m| \}. \]

Let $\Sigma(m) := \bigcap_{(x, y) \in \mathcal{P}_o} K - B^-(m; x, y)$
\[= \{ Z \in \Sigma \mid |xZ + y| \geq \max\{1, |Z|\} |\sigma^m| \text{ for any } (x, y) \in \mathcal{P}_o \}. \]

It is not hard to verify that the admissible affinoid covering $\{\Sigma(m)\}_{m=0}^{\infty}$ of Σ coincide with that defined in [2] 1.2.

Let $\mathcal{O}(\Sigma(m))$ be the space of K-valued rigid analytic functions on $\Sigma(m)$. Explicitly, by taking partial fractional expansion of each summand in (1.7), we see that $\psi \in \mathcal{O}(\Sigma(m))$ is a K-valued functions on $\Sigma(m)$ which has an expansion in the form:
\[\psi(Z) = \sum_{i=0}^{\infty} a^{(\infty)}_i Z^i + \sum_{j=1}^{\ell} \sum_{i=-s}^{\infty} a^{(j)}_i (Z - z_j)^i, \]
where $\ell \geq 0$, $a_i^{(s)} \in K$, $z_j \in F$, and the expansion converges with respect to the supremum norm. The space of K-rigid analytic functions on Σ is the projective limit of $\mathcal{O}(\Sigma(m))$.

3.2. Holomorphic discrete series of $\text{SL}(2, F)$. Let s be an integer. We define the holomorphic discrete series $(\mathcal{O}(\Sigma), \pi_s)$ of G (see (1.10); compare [5] §3-1.):

\[\pi_s(g)\psi(Z) := (-cZ + a)^{-s} \psi((dZ - b)(-cZ + a)^{-1}) \]
where $g = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in G$ and $\psi \in \mathcal{O}(\Sigma)$. π_s is a continuous representation of G.

Let $\mathcal{N}_s^0(\Sigma)$ be the subspace of $\mathcal{O}(\Sigma)$ spanned by 1 and $\psi_s^{(s)}(Z) := (Z - z)^{-s}$ (see (2.10)) for all $z \in F$, and $\mathcal{N}_s^0(\Sigma)$ the closure of $\mathcal{N}_s^0(\Sigma)$. $\mathcal{N}_s^0(\Sigma)$ is G-invariant.

If $s \leq 0$, obviously $\mathcal{N}_s^0(\Sigma)$ is the space of polynomial functions $\psi(Z)$ of degree $\leq -s$.

If s is a positive integer, let $\mathcal{N}_s^0(\Sigma)$ be the subspace of $\mathcal{O}(\Sigma)$ consisting of all rational functions ψ which has a partial fractional expansion of the form
\[\psi(Z) = \sum_{i=0}^{\infty} a^{(\infty)}_i Z^i + \sum_{j=1}^{\ell} \sum_{i=-s}^{\infty} a^{(j)}_i (Z - z_j)^i, \]
where the sum is finite with $\ell \geq 0$, $z_j \in F$ and $a_i^{(s)} \in K$. Clearly $\mathcal{N}_s^0(\Sigma)$ is G-invariant. Let $\mathcal{N}_s(\Sigma)$ be the closure of $\mathcal{N}_s^0(\Sigma)$ in $\mathcal{O}(\Sigma)$.

The next lemma follows immediately from [5] Theorem 2 (i).
Lemma 3.1. Let \(s \) be a positive integer. The smallest \(G \)-invariant closed subspace of \(\mathcal{O}(\Sigma) \) containing 1 is \(\mathcal{N}_s(\Sigma) \).

We note that \(1 \in \mathcal{N}_s(\Sigma) \) and \(\mathcal{N}_s^0(\Sigma) \subset \mathcal{N}_s^0(\Sigma) \), and therefore we have

Proposition 3.2. Let \(s \) be a positive integer. \(\mathcal{N}_s(\Sigma) = \mathcal{N}_s^0(\Sigma) \).

3.3. Principal series of \(SL(2, F) \). The references for this section are [6] §2, 3 and [7] §2.

Let \(s \) be an integer and \(\chi_s \) the character of \(F^\times \), \(\chi_s(z) = z^s \). Let \(\mathcal{C}^\text{an}(\mathcal{P}) \) be the space of \(K \)-valued locally analytic functions \(\varphi \) on \(\mathcal{P} \) satisfying

\[
\varphi(hx, hy) = \chi_s(h)\varphi(x, y), \quad (x, y) \in \mathcal{P}, h \in F^\times.
\]

In the following, we identify \((1, F)\) with \((1, -z) \to z\) and write \(\varphi(z) = \varphi(1, -z) \) and \(\varphi(\infty) = \varphi(0, 1) \). Then \(\varphi(z) \) is a locally analytic function on \(F \) which has Laurent expansion at infinity of the form:

\[
\varphi(z) = \sum_{i=s}^{\infty} b_i^{(\infty)} z^i, \quad b_i^{(\infty)} \in K.
\]

Clearly, \(\varphi(\infty) = (-1)^i b_i^{(\infty)} \).

Let \(D_s \) denote the space of all such functions \(\varphi(z) \) on \(F \). We have a \(K \)-linear bijective \(D_s \equiv \mathcal{C}^\text{an}_{\chi_s}(\mathcal{P}) \); we endow \(D_s \) the topology which makes this map into an isomorphism. Then the representation of \(G \), \((\mathcal{C}^\text{an}_{\chi_s}(\mathcal{P}), T_{\chi_s})\), defined by (1.4) is realized as the representation \((D_s, T_s)\):

\[
(3.2) \quad T_s(g)\varphi(z) := (-cz + a)^s \varphi((dz - b)(-cz + a)^{-1}), \quad g = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in G, \varphi \in D_s.
\]

Let \(B_s^0 \) be the subspace of \(D_s \) spanned by the \(K \)-valued locally analytic functions \(\varphi^{(s)}_z(z) := (Z - z)^s \) (see (2.1)) for all \(Z \in \Sigma \), and \(B_s \) the closure of \(B_s^0 \). \(B_s \) is \(G \)-invariant.

If \(s \) is a nonnegative integer, let \(P_s^\text{loc} \) be the subspace of \(D_s \) consisting of \(K \)-valued functions \(\varphi(z) \) on \(F \) such that the local Taylor expansion at each point of \(F \) and the Laurent expansion at infinity of \(\varphi(z) \) are both given by polynomials of degree \(\leq s \). \(P_s^\text{loc} \) is \(G \)-invariant. \(\varphi \in P_s^\text{loc} \) if and only if its \((s + 1)\)-th derivation \((d/dz)^{s+1} \varphi(z) \equiv 0 \). Let \(P_s \) be the space of all polynomial functions on \(F \) of degree \(\leq s \). \(P_s^\text{loc} \) and \(P_s \) are both closed \(G \)-invariant subspaces. Clearly \(B_s \supset P_s \).

The subspace of \(\mathcal{C}^\text{an}_{\chi_s}(\mathcal{P}) \) corresponding to \(P_s \) (resp. \(P_s^\text{loc} \)) is the space of (resp. locally) homogeneous polynomial functions \(\varphi(x, y) \) on \(\mathcal{P} \) of degree \(s \).

In addition, we define \(F_s^\text{loc} = P_{-1} = 0 \).

Proposition 3.3 (Casselman’s intertwining operator). Let \(s \geq -1 \).

\[
S_s : D_s \to D_{-s-2}
\]

\[
(3.3) \quad \begin{array}{c}
\varphi(z) \mapsto (d/dz)^{s+1} \varphi(z)
\end{array}
\]

induces a \(G \)-isomorphism \(D_s / P_s^\text{loc} \) onto \(D_{-s-2} \).
3.4. Morita’s duality for $\text{SL}(2, F)$.

Definition 3.4 (cf. [6] §5.). Let s be an integer.

1. We call the following K-linear pairing $\langle , \rangle_{M}^{(s)} : D_{s-2} \times \mathcal{O}(\Sigma) \to K$ Morita’s pairing:

$$\langle \varphi, \psi \rangle_{M}^{(s)} := \text{the sum of residues of the 1-form } \varphi(z)\psi(z) \text{ d}z \text{ on } L,$$

where $\varphi \in D_{s-2}$ and $\psi \in \mathcal{O}(\Sigma)$.

2. For $\psi \in \mathcal{O}(\Sigma)$, let $\mathcal{M}_{s}(\psi)$ be the linear functional of D_{s-2} defined by

$$\langle \varphi, \mathcal{M}_{s}(\psi) \rangle = \langle \varphi, \psi \rangle_{M}^{(s)}, \quad \varphi \in D_{s-2}.$$

$\mathcal{M}_{s} : \mathcal{O}(\Sigma) \to (D_{s-2})^{*}$ is called Morita’s duality operator.

By the explicit computations of $\langle , \rangle_{M}^{(s)}$ (ibid.), we obtain:

Proposition 3.5 (Compare ibid. Theorem 3). Let s be an integer.

1. If s is a positive integer, then \mathcal{M}_{s} induces isomorphisms of G-representations

$$\mathcal{O}(\Sigma)/\mathcal{N}_{s}(\Sigma, \pi_{s}) \mathcal{M}_{s} \cong (D_{s-2}/P_{s-2})_{b}^{*}, T_{s-2}^{*}$$

and

$$\mathcal{N}_{s}(\Sigma, \pi_{s}) \mathcal{M}_{s} \cong (D_{s-2}/P_{s-2}^{\text{loc}})_{b}^{*}, T_{s-2}^{*}.$$

2. If $s \leq 0$, then \mathcal{M}_{s} induces isomorphisms of G-representations

$$\mathcal{O}(\Sigma)/\mathcal{N}_{s}(\Sigma, \pi_{s}) \mathcal{M}_{s} \cong ((D_{s-2})^{*}_{b}, T_{s-2}^{*}).$$

We still denote these isomorphisms by \mathcal{M}_{s}.

3.5. Duality operator I_{s}. We define a continuous linear operator I_{s} from $(B_{s})_{b}^{*}$ to $\mathcal{N}_{s}(\Sigma)$ (see §2.1)

$$I_{s}(\xi)(Z) := \langle \varphi_{Z}^{(s)}, \xi \rangle.$$

Theorem 3.6. If s is a positive integer. We have a commutative diagram:

$$
\begin{array}{ccc}
\mathcal{N}_{s}(\Sigma, \pi_{s}) & \xrightarrow{(s-1)! \mathcal{M}_{s}} & (D_{s-2}/P_{s-2}^{\text{loc}})_{b}^{*}, T_{s-2}^{*} \\
\uparrow I_{s} & \& \downarrow S_{s-2}^{*} \\
(D_{s})_{b}^{*}, T_{s}^{*} & \cong & ((D_{s})_{b}^{*}, T_{s}^{*})
\end{array}
$$

Proof. $i^{*} : (D_{s})_{b}^{*} \to (B_{s})_{b}^{*}$ is surjective, where i is the inclusion: $B_{s} \hookrightarrow D_{s}$ (Hahn-Banach Theorem). According to Theorem 2.6, Proposition 3.5 (1) and Proposition 3.3, I_{s}, $(s-1)! \mathcal{M}_{s}$ and S_{s-2}^{*} in the diagram are all isomorphisms of G-representations. Therefore it suffices to prove the commutativity of the following diagram:

$$
\begin{array}{ccc}
\mathcal{N}_{s}(\Sigma, \pi_{s}) & \xrightarrow{(s-1)! \mathcal{M}_{s}} & (D_{s-2}/P_{s-2}^{\text{loc}})_{b}^{*}, T_{s-2}^{*} \\
\downarrow I_{s} & \& \downarrow i^{*}(S_{s-2}^{*}) \\
(D_{s})_{b}^{*}, T_{s}^{*} & \cong & ((B_{s})_{b}^{*}, T_{s}^{*})
\end{array}
$$
We define \(\xi_\infty \in (B_{-s})^* \) by \(\langle \varphi_{Z}^{(-s)}, \xi_\infty \rangle = \varphi_{Z}^{(-s)}(\infty) = 1 \), then \(I_s(\xi_\infty)(Z) = 1 \) by definition (3.5).

Since \(\pi_s(g)1 \), for all \(g \in G \), topologically spans \(\mathcal{N}_s \), we require the equality

\[
(s - 1)! (S_{s-2}^{-1})^* \circ M_s(1) = \xi_\infty.
\]

For any \(Z \in \Sigma \), we have \(S_{s-2} \left(\varphi_{Z}^{(-1)} \right) = (s - 1)! \varphi_{Z}^{(-s)} \), hence

\[
\langle \varphi_{Z}^{(-s)}, (s - 1)! (S_{s-2}^{-1})^* \circ M_s(1) \rangle = (s - 1)! S_{s-2}^{-1}(\varphi_{Z}^{(-s)}), M_s(1))
\]

\[
= \langle \varphi_{Z}^{(-1)}, (1)^{(s)}_M \rangle
\]

\[
= \text{Res}_\infty (Z - z)^{-1} dz
\]

\[
= 1
\]

\[
= \langle \varphi_{Z}^{(-s)}, \xi_\infty \rangle.
\]

Since \(\varphi_{Z}^{(-s)} \), for all \(Z \in \Sigma \), topologically spans \(B_{-s} \), (3.6) follows. Q.E.D.

If \(s \leq 0 \), then \(I_s : (B_{-s})^*_b \to \mathcal{N}_s(\Sigma) \) is an isomorphism between two \((-s + 1)\)-dimensional \(G \)-representations.

4. Concluding remarks

Professor P. Schneider pointed out that the \(p \)-adic Siegel upper half-space \(\Sigma \) was constructed in M. van der Put and H. Voskuil’s paper [13] as the symmetric space associated to the symplectic group \(G = \text{Sp}(2n, F) \). In fact, if we let \(P^- \) denote the transpose of \(P \), and \(G, U \) and \(P^- \) the \(F \)-rigid analytifications of \(G, U \) and \(P^- \) respectively, then \(\Sigma \) can be realized as the complement of all the \(G \)-translations of \((G - U \cdot P^-)/P^- \) in \(G/P^- \). However, the construction of the affinoid covering using the Bruhat-Tits building in [13] is different from ours.

We claim that this observation enables us to generalize most of the constructions and results in this article to the split reductive groups.

References

[1] S. Bosch, U. Güntzer, R. Remmert, Non-Archimedean analysis: a systematic approach to rigid analytic geometry, Grundlehren der Mathematischen Wissenschaften, 261, Springer-Verlag, Berlin-New York (1984)
[2] S. Dasgupta, J. Teitelbaum, The \(p \)-adic upper half-plane, \(p \)-adic Geometry: Lectures from the 2007 Arizona Winter School, University Lecture Series, 45, American Mathematical Society, Providence, RI, (2008)
[3] C. T. Féaux de Lacroix, Einige Resultate über die topologischen Darstellungen \(p \)-adischer Liegruppen auf unendlich dimensionalen Vektorräumen über einem \(p \)-adischen Körper, Thesis, Köln 1997, Schriftenreihe Math. Inst. Univ. Münster, 3. Serie, Heft 23, p. 1-111 (1999)
[4] R. Kiehl, Theorem A und Theorem B in der nichtarchimedischen Funktionentheorie, Invent. Math., 2, p. 256-273 (1967)
[5] Y. Morita, A. Murase, Analytic representations of \(SL_2 \) over a \(p \)-adic number field, J. Fac. Sci. Univ. Tokyo, Sect. IA, 28, p. 891-905 (1982)
[6] Y. Morita, Analytic representations of SL_2 over a p-adic number field, II, Automorphic forms of several variables : Taniguchi Symposium, Katata, 1983, Prog. Math., 46, p. 282-297, Birkhäuser, Boston (1984)

[7] Y. Morita, Analytic representations of SL_2 over a p-adic number field, III, Automorphic Forms and Number Theory, Adv. Studies Pure Math., 7, p. 185-222, Tokyo: Kinokuniya (1985)

[8] P. Schneider, The cohomology of local systems on p-adically uniformized varieties, Math. Ann. 293, p. 623-650 (1992)

[9] P. Schneider, Nonarchimedean Functional Analysis, Springer-Verlag, Berlin-New York (2001)

[10] P. Schneider, U. Stuhler, The cohomology of p-adic symmetric spaces, Invent. Math. 105, no. 1, p. 47-122 (1991)

[11] P. Schneider, J. Teitelbaum, Locally analytic distributions and p-adic representation theory, with application to GL_2, J. Amer. Math. Soc., 15, p. 443-468 (2002)

[12] P. Schneider, J. Teitelbaum, p-adic boundary values, Asteréisque, 278, p. 51-125 (2002)

[13] M. van der Put, H. Voskuil, Symmetric spaces associated to split algebraic groups over a local field, J. reine angew. Math., 433, p. 69-100 (1992)