Peptide splicing by the proteasome

Published, Papers in Press, November 6, 2017, DOI 10.1074/jbc.R117.807560

Nathalie Vigneron ‡§1, Violette Ferrari ‡§1, Vincent Stroobant ‡§4, Joanna Abi Habib ‡§4, and Benoit J. Van den Eynde ‡§5

From the Ludwig Institute for Cancer Research, the de Duve Institute, Université catholique de Louvain, and WELBIO (Walloon Excellence in Life Sciences and Biotechnology), B-1200 Brussels, Belgium

Edited by Peter Cresswell

The proteasome is the major protease responsible for the production of antigenic peptides recognized by CD8+ cytolytic T cells (CTL). These peptides, generally 8–10 amino acids long, are presented at the cell surface by major histocompatibility complex (MHC) class I molecules. Originally, these peptides were believed to be solely derived from linear fragments of proteins, but this concept was challenged several years ago by the isolation of anti-tumor CTL that recognized spliced peptides, i.e. peptides composed of fragments distant in the parental protein. The splicing process was shown to occur in the proteasome through a transpeptidation reaction involving an acyl-enzyme intermediate. Here, we review the steps that led to the discovery of spliced peptides as well as the recent advances that uncover the unforeseen importance of spliced peptides in the composition of the MHC class I repertoire.

The immune system constantly monitors cellular integrity to restrain tumor development or viral infections. CD8+ cytolytic T lymphocytes (CTL) are essential players in this process, because of their ability to recognize and destroy cells expressing tumoral or viral proteins. CTL indeed recognize peptides derived from these proteins and displayed at the cell surface by major histocompatibility complex (MHC) class I molecules. Peptides recognized by CTL are produced in the cytosol by the proteasome, a large protease complex responsible for the bulk of cellular protein degradation (1). A fraction of the peptides released by the proteasome is thus transferred into the lumen of the ER by a specialized transporter called TAP (transporter associated with antigen processing) (2), where they can be further trimmed by ER-resident amino peptidases (ERAP1 and ERAP2) (3–5) and loaded onto MHC class I molecules. Stable MHC–peptide complexes then exit the ER and migrate through the secretory pathway to reach the cell surface, where they will be displayed for CTL recognition (6). For a number of years, antigenic peptides recognized by CTL were believed to only derive from linear fragments of cellular proteins. This concept was challenged by the identification of several antigenic peptides, composed of two peptide fragments that were originally distant in the parental protein but are assembled together by the creation of a new peptide bond (7–13). This process, called peptide splicing, was shown to take place in the proteasome (8–10). In this minireview, we will recapitulate the discovery of this phenomenon and the recent developments that highlight the unforeseen importance of peptide splicing in the establishment of the MHC class I peptide repertoire.

The proteasome

The proteasome is the central component of the ubiquitin–proteasome system, which is the major ATP-dependent protein degradation system in cells. The 20S proteasome is organized as a cylindrical particle containing four stacked heptamer rings, which delimit the catalytic chamber where the proteins are degraded (Fig. 1A) (14). The two inner rings are made of seven β subunits (β1–β7), and the two outer rings are made of seven α subunits (α1–α7). Three β subunits (β1, β2, and β5) are catalytically active in vertebrate proteasomes and will initiate the cleavage of the peptide bonds in proteins. Entry of proteins into the catalytic chamber is tightly regulated. Indeed, the narrow pore formed by the α ring is further obstructed by the N-terminal tails of these α subunits (14–16); this prohibits the entry of folded proteins into the proteasome chamber and thereby protects cells from detrimental protein degradation. The 20S proteasome therefore has a low activity, at least toward folded protein substrates (17). Regulation of protein entry into the chamber is orchestrated by the regulatory particles, whose HbYX motif binds to pockets located between the α subunits thereby promoting the rearrangement of the N-terminal tails and opening of the gate (18). Four types of regulators were described (19): the 19S regulator (PA700); the 11S regulators (24); and the PA200 regulator (Fig. 1A) (23). An additional particle, P131 was shown to bind proteasomes (24); however, its effective contribution to proteasome function is still a matter of debate (25, 26). The 20S proteasome associated to the 19S regulatory particle forms the 26S proteasome. This complex degrades proteins tagged with polyubiquitin chains, which are attached to lysine residues. Ubiquitin-tagged proteins are recruited to the 19S regulatory particle, which recognizes the ubiquitin motif, then deubiquitinates, unfolds, and translocates protein substrates inside the catalytic chamber (17).
The catalytic activity of the proteasome is centralized to three different β subunits of the proteasome: β1, β2, and β5. As demonstrated by mutagenesis studies and analysis of the crystal structure of proteasome-bound inhibitor (14, 15, 27–29), peptide bond hydrolysis is initiated at the active site: the hydroxyl group found on the side chain of the N-terminal threonine of the catalytic subunit produces a nucleophilic attack on the carbonyl group of the peptide bond (Fig. 2A). This leads to the production of an acyl-enzyme intermediate in which the N-terminal peptide fragment remains attached to the catalytic threonine through an ester link. This acyl-enzyme intermediate is then rapidly hydrolyzed by water molecules present in the proteasome chamber, releasing the peptide fragment, which then exits the proteasome and is transferred into the cytosol (30). Three major proteasome catalytic activities were described: the caspase-like activity, the chymotrypsin-like activity, and the trypsin-like activity, which cleave after acidic, hydrophobic, and basic amino acids, respectively. In the standard proteasome, the caspase-like activity is assigned to the β1 subunit, the trypsin-like activity to β2, and the chymotrypsin-like activity to the β5 subunit. However, these assignments are not absolute, because amino acids surrounding the cleavage site might also influence the cleavage efficacy. More specifically, it is the nature of the amino acids that line the structural pockets around the active site, as well the size and the structure of these pockets that dictate the cleavage characteristics of each subunit (31).

Peptide splicing in the proteasome

Several years ago, Hanada et al. (7) made the unexpected observation that a CTL clone directed against a renal cell car-
MINIREVIEW: Peptide splicing by the proteasome

A Hydrolysis

B Production of the spliced peptide RTK(QLYPEW)

Peptide	Reaction
RTKAWNR + QLYPEW	+
RTKAWNR + QLYPEW	+
RTK + AWNRQLYPEW	-
RTK + QLYPEW	-
RTKAWNR + Ac-QLYPEW	-

C Splicing

D Reverse Splicing

Figure 2. Proteasome catalytic activities. A, hydrolytic activity of the proteasome. The hydroxyl group of the N-terminal threonine of the catalytic subunits of the proteasome attacks the carbonyl group of the peptide bond. This leads to the production of an acyl-enzyme intermediate, in which a peptide fragment remains attached to the proteasome by an ester link. Then a water molecule hydrolyzes the ester link between the peptide and the threonine residue, thereby restoring the hydroxyl group of the catalytic threonine and producing the C-terminal end of the antigenic peptide. B, peptide splicing occurs by transpeptidation. Various synthetic peptides were combined in a pairwise manner and incubated with 20S proteasomes. The presence of the peptide RTK(QLYPEW) in the digests was determined using either a specific CTL or by mass spectrometry. The presence (+) or absence (−) of the peptide in the digest is indicated. Ac-QLYPEW, Nα-acetylated peptide QLYPEW. C, peptide splicing in the proteasome. Here, the splicing of the antigenic peptide RTK(QLYPEW) derived from the gp100 is shown. Following formation of the acyl-enzyme intermediate involving the fragment RTK, the free N-terminal amino group of peptide QLYPEW present in the proteasome chamber attacks the acyl-enzyme intermediate leading to the formation of the peptide RTK(QLYPEW) composed of two peptide fragments originally distant in the protein. D, reverse splicing reaction in the proteasome. The splicing of the antigenic peptide SLPRGT_STPK derived from the SP110 is shown. Following formation of the acyl-enzyme intermediate involving the fragment SLPRGT, the free N-terminal amino group of peptide STPK attacks the acyl-enzyme intermediate leading to the formation of the peptide SLPRGT_STPK. Because in the protein SP110, the C-terminal reactant STPK is located upstream from the N-terminal reactant SLPRGT, the final peptide is composed of two peptide fragments originally distant in the protein and spliced together in reverse order to that in which they occur in the protein.

cinoma recognized a peptide composed of two fragments originally distant in the FGF-5 protein (Table 1). Production of this peptide required the removal of a 40-amino acid-long intervening sequence and the splicing of the peptides located at either end. A second spliced peptide was discovered a few months later, when we isolated, from the blood of a melanoma patient, a CTL that recognized a peptide containing two non-contiguous fragments of the melanoma differentiation antigen.
gp 100 (Table 1) (8). The presence of this peptide in the peptidic eluates obtained from surface HLA molecules confirmed its natural presentation by melanoma cells. The use of proteasome inhibitors suggested that the proteasome was responsible for the splicing of these two fragments. This could be confirmed by incubating purified proteasomes with an unspliced peptide precursor (RTK_QLYPEW); this led to the production of the spliced peptide (RTK_QLYPEW), which could be identified in the digest by mass spectrometry or with the CTL when the digests were pulsed onto antigen-presenting cells. By incubating purified proteasomes with an unspliced peptide precursor (RTK_QLYPEW), we demonstrated that peptide splicing involves a transpeptidation reaction based on the formation of an acyl-enzyme intermediate between fragment RTK and the proteasome. Instead of being hydrolyzed, the ester bond of the acyl-enzyme intermediate is subjected to a nucleophilic attack, driven by the free amino group of the peptide QLYPEW (Fig. 2B). This model was supported by the fact that N\(-\alpha\)-acylation of the QLYPEW peptide incubated with RTK_AWNR and proteasomes completely prevented production of the spliced peptide (Fig. 2B). This reaction leads to the creation of a new peptide bond between the fragment RTK and QLYPEW thereby forming peptide RTK_QLYPEW recognized by the CTL. Similarly, the first spliced peptide identified by Hanada et al. (7) was also shown to be produced by peptide splicing in the proteasome, despite the length (40 amino acids) of the intervening peptide sequence (10).

A few years later, our group identified a third spliced peptide, which corresponded to a minor histocompatibility antigen encompassing a polymorphism in the SP110 protein, and was recognized by a CTL isolated from a recipient of MHC-matched allogeneic hematopoietic cell transplantation (Table 1) (9). Interestingly, this peptide contained two non-contiguous fragments of the SP110 protein that were spliced together in the reverse order to that in which they occur in the parental protein. Again, the peptide splicing reaction was shown to take place in the proteasome by transpeptidation (Fig. 2D).

Because in the three peptides described above, the size of the intervening sequence varied from 4 to 40 amino acids, we have tested whether the length of the intervening sequence could affect the efficiency of peptide splicing (10). To do this, we transfected constructs in which the two peptides to be spliced were separated by intervening sequences of different lengths, and we found that the shorter the intervening sequence, the higher the efficiency of peptide splicing. In addition, to test in cells whether the peptide splicing could occur between peptides located on distinct parental proteins, we transfected COS-7 cells with pairs of constructs mutated at critical residues so that the only way to produce the antigenic peptide was to splice fragments originating from two different proteins. The amount of IFN\(\gamma\) produced by the CTL after incubation with the transfected cells is shown. The results indicate that trans-splicing does not occur at a significant level in cells.

Table 1

Spliced peptide	Peptide sequence	MHC restriction	Peptide splicing partners and intervening sequence	SPa	IPa	Refs.
FGF-5(172–176 and 217–220)	NTYAS_PRFK	HLA-A3	NTYASAIHRTK_GREWYVALNKR_GKAK	+ +	-	7, 10, 47
gp100(40–42 and 47–52)	RTK_QLYPEW	HLA-A32	RTK_AWNRQLYPEW	+ +	/-	8, 47
gp100(47–52 and 40–42)	QLYPEW_RTK	HLA-A3	RTK_AWNRQLYPEW	NDb	NDb	13
gp100(195–202 and 191 or 192)	RSTVPLA_H	HLA-A3	AD_FSR_NTLEG_GAS_PLTGIAD_AQSS_MN	+ +	ND	11, 47
Tyrosinase(368–373 and 336–340)	IYMDGT_AQDF_SF	HLA-A24	AL_HIYM_DG_Td	+ +	+	9, 47
SP110(296–301 and 286–289)	SLPR_GTST_PK	HLA-A3	STPK_RRH_KKS_LPR_GT	+/-	+	9, 47

a SP indicates standard proteasome; IP indicates immunoproteasome.
b ND means not determined.
c Either Arg-191 or Arg-192 can be used to produce the final spliced peptide.
d The deamidated aspartates are underlined.

![Production of the spliced peptide NTYAS_PRFK](image)

Figure 3. Lack of physiological relevance of trans-splicing. Shown is an experiment designed to visualize the occurrence of splicing of fragments originating from two different proteins (i.e. trans-splicing). COS-7 cells were transfected with pairs of constructs mutated at critical residues so that the only way to produce the antigenic peptide was to splice fragments originating from two different proteins. The amount of IFN\(\gamma\) produced by the CTL after incubation with the transfected cells is shown. The results indicate that trans-splicing does not occur at a significant level in cells.
peptide (Table 1) (11). Surprisingly, the peptide identified also contained two additional post-translational modifications resulting in the conversion of two asparagine residues into aspartates by deamidation (Fig. 4). Deamidation of asparagine residues was previously suggested to occur following retro-translocation of glycosylated tyrosinase into the cytosol (32); upon deglycosylation of glycosylated asparagines by peptide N-glycanase (PNGase), asparagines are deamidated into aspartates. The treatment of tumor cells with the PNGase inhibitor benzyloxycarbonyl-VAD-fluoromethyl ketone (32, 33) confirmed that PNGase was responsible for the conversion of the asparagines into aspartate residues in the new tyrosinase spliced peptide (11). Following deamidation, the aspartate-containing tyrosinase protein is degraded by the proteasome, a process that leads to the reverse splicing of two fragments, each containing a post-translationally modified aspartate (11).

More recently, a fifth spliced antigenic peptide was identified by our group, and was derived from the gp100 protein (12) (Table 1). In contrast to previous examples of spliced peptides, which were produced by the association of fragments containing 3–6 amino acids, this new peptide resulted from the association of an N-terminal 8-amino acid fragment with a single arginine residue at the C terminus. However, the analysis of proteasome digests obtained with peptide fragments of different lengths indicated that the transpeptidation could only occur when the fragment performing the nucleophilic attack on the acyl-enzyme intermediate, i.e. the C-terminal splice reactant, was at least 3 amino acids in length. Our results thus indicated that this spliced peptide was produced in two steps. A transpeptidation first produces a spliced peptide elongated at the C terminus. This elongated peptide is then cleaved, likely also by the proteasome, to produce the final spliced antigenic peptide (12). This mechanism allows the production of spliced peptides encompassing a C-terminal fragment as short as 1 or 2 amino acids. It is highly likely that the N-terminal spliced reactant, i.e. the fragment involved in the formation of the acyl-enzyme intermediate, also has a minimal length even though this was not formally tested. However, N-terminal trimming of antigenic peptides is an efficient process that takes place in the ER and is orchestrated by ER-resident amino peptidase (3, 34). Therefore, spliced peptides involving short N-terminal fragments most likely exist and result from the production of N-terminally elongated spliced peptides that are further trimmed in the ER.

Identification of spliced peptides through computational approaches

In essence, the splicing of peptides by the proteasome appears as a by-product of the process of protein degradation by the proteasome. In principle, splicing could involve any peptide fragment released through proteolysis and should produce a large variety of spliced peptides, albeit in relatively low amounts. Yet, until recently, very few spliced peptides were identified, and the identification of spliced antigenic peptides was often limited by the availability of specific CTL directed against these peptides. Mass spectrometry approaches were limited by the fact that peptide databases used to match ions only contain linear peptide fragments. To circumvent this problem, Liepe et al. (35) developed Splicemet, an algorithm...
that allows the identification of spliced peptides in peptide digests. This algorithm elaborates a dataset compiling the m/z values of any spliced and non-spliced peptide that could be theoretically generated by the proteasome from a given precursor peptide. This theoretical dataset is then compared with the m/z values of the peptide fragments obtained after in vitro digestion of the corresponding synthetic precursor with 20S proteasome. The presence of a specific peptide in the digest is then verified by tandem mass spectrometry. Using this approach, a new spliced peptide, QLYPEW_RTK, derived from gp100 was identified (Table 1) (13). Interestingly, this peptide is composed of fragments that are identical to those contained in the previously described spliced peptide RTK_QLYPEW, but these fragments are spliced in reverse order. After stimulation of CD8+ T cells with this peptide, Ebstein et al. (13) isolated an HLA-A3-restricted CTL, which recognized the peptide and was able to kill gp100-expressing tumor cells. Because they observed that the peptide QLYPEW_RTK could be produced in vitro when incubating peptide fragment RTK and QLYPEW together with the proteasome, they suggested that the peptide could be produced in vitro through a proteasome-catalyzed condensation reaction; indeed the small and “final” size of those two fragments (RTK and QLYPEW) precludes the production of an acyl-enzyme intermediate that is required for the transpeptidation reaction. So far, however, the experimental evidence relative to the mechanism of condensation is limited to results obtained with in vitro digests or with cells expressing appropriately truncated constructs, but not with cells expressing full-length proteins (13). Moreover, the prominent role of transpeptidation over condensation was confirmed by mass spectrometry analysis of peptide digests performed in the presence of isotopically-labeled water (36).

In recent years, great progress in peptidomics has allowed the detailed characterization of peptides presented by the MHC class I molecules at the cell surface, based on the mass spectrometry analysis of peptides eluted from MHC molecules. Again, a major limitation in the identification of spliced peptides by peptidomics is the fact that databases used for matching only contain linear protein fragments. Recently, Liepe et al. (37) addressed this issue by creating a custom peptide database, which includes any possible short peptides created by the splicing of non-contiguous peptide fragments from the proteins expressed in the cell lines studied. To restrict the size of the database, only peptides produced by the cis-splicing of fragments separated by 25 amino acids or less were taken into account. When analyzing the HLA-I immunopeptidome obtained from different human cell lines, they showed that spliced peptides represented about 25% of the total amount of peptides found at the cell surface, suggesting that peptide splicing significantly contributes to the diversity of the peptide repertoire. Surprisingly, analysis of the peptides contained in the eluates showed that some proteins were only represented by spliced peptides and not by linear epitopes. This would suggest that these proteins generally lack linear peptides with adequate HLA-binding motifs or produce generally smaller peptides, so that splicing is the only way to produce peptides of adequate length and motif for MHC class I binding. However, it could also be that linear peptides from these proteins are displayed at the cell surface in amounts that are below the detection threshold of mass spectrometry.

Additionally, when Liepe et al. (37), using NetMHC, analyzed the binding affinity of spliced peptides for the HLA-A and -B molecules from which they were eluted, they observed that their IC50 was quite high when compared with non-spliced peptides. The authors suggested that this low predicted binding affinity might reflect intrinsic differences in the HLA-binding motifs of spliced versus non-spliced peptides, which are not captured by existing algorithms because these have been exclusively trained on non-spliced epitopes. In the future, one should try to compare experimentally measured binding affinities of a large series of spliced and non-spliced peptides to solve this issue. Moreover, it will be interesting to see whether other groups can confirm the presence of such a large population of spliced peptides at the cell surface, especially on tumor cells.

Peptide splicing by isopeptide linkage

Studying in vitro peptide digests, Berkers et al. (38) showed that the ε-amino group of lysine residues could also perform a nucleophilic attack on the acyl-enzyme intermediate, leading to the formation of a new type of spliced peptide containing an isopeptide bond (hereafter called spliced isopeptide). Surprisingly, their results show that splicing by ε-amino was only 10-fold less efficient than splicing by α-amino. Spliced isopeptides were shown to bind HLA molecules with high affinity, as long as the isopeptide bond is located in the middle or at the N terminus of the peptide. Strikingly, the presence of an isopeptide bond was shown to protect the spliced isopeptide from proteasome degradation. This increased stability of spliced isopeptides might have actually facilitated their identification in the first place but somewhat biased the evaluation of the splicing efficiency by ε-amino compared with α-amino; in their experiments, Berkers et al. (38) performed proteasome digestions over 16–24-h periods, which might have favored the secondary degradation of spliced peptides over spliced isopeptides, thereby artificially increasing the production rate of these spliced isopeptides compared with the canonical spliced peptides. Moreover, although spliced isopeptides were shown to activate patient-derived CD8+ T cells in vitro, the presence of spliced isopeptides at the cell surface has not yet been demonstrated, questioning whether this phenomenon really occurs in physiological conditions.

Deciphering the rules of peptide splicing by the proteasome

Predicting algorithms have for long been a focus of research, with the aim to facilitate the identification of potential targets in the immunotherapeutic context. Proteasome cleavage prediction algorithms, which are generally trained either on in vitro proteasome digestion datasets or on described MHC class I ligands (whose C terminus reflects the proteasome cleavage site), have been proposed (39). So far, however, their reliability has not been firmly established. Recently, several groups have tried to highlight various parameters that drive peptide splicing by the proteasome. A first approach, developed by Mishto et al. (36), is based on the in vitro digestion of extended peptide precursors and the systematic identification and quantification of
the spliced and the non-spliced peptide fragments released in the course of the digestion. This led to the notion that one of the rate-limiting factors that drive peptide splicing by the proteasome is the quantity of the spliced reactants involved. In particular, the splicing reaction is limited by the amount of the less abundant reactant, regardless whether this fragment ends up localizing at the N- or the C-terminal side of the final antigenic peptide. Unexpectedly, however, Mishto et al. (36) did not observe any correlation between the strength of proteasome cleavage at a given position and the frequency at which the corresponding amino acid is used to compose either the N- or the C-terminal residues of the spliced reactants, i.e. P1’ and P1, respectively (Fig. 5). On the contrary, P1 and P1’ residues were shown to often derive from minor cleavage sites, suggesting that splicing is not a random process but rather depends on the sequence of the spliced reactants. This led the authors to conclude that additional constraints determine the splicing efficiency. In particular, they postulated the existence of an additional pocket, distinct from the primed substrate-binding site, that could accommodate the C-terminal splice reactant and facilitate the peptide-splicing process. It follows that the ability of the C-terminal splice reactant to bind to this pocket (which is linked to its amino acid sequence) should determine its potential involvement in a peptide splicing reaction.

The notion that splicing does not follow random rules was further supported by recent work by Berkers et al. (40), who used short peptide libraries to identify the amino acid sequences that could promote the splicing reaction by the proteasome. Their results indicated that the splicing reaction was driven by the sequence of the N-terminal reactant and by the concentration rather than the sole sequence of the C-terminal ligation partner. Noteworthy, it remains difficult to determine whether the nature of the N-terminal splice reactant is really affecting the splicing reaction itself, or whether it simply reflects the affinity of the N-terminal reactant for the non-primed binding pockets of a particular catalytic subunit and thereby the ability of the acyl-enzyme intermediate to form. In that respect, sequence requirement for splicing is likely to differ between the three catalytic subunits of the proteasome as much as they do for cleavage. This makes it very difficult to compare the splicing of peptides with one or two amino acid substitutions, as these may target the peptide to another catalytic subunit, and the C-terminal reactant itself might not access as efficiently to the primed binding site of each catalytic subunit. Moreover, when Liepe et al. (37) compared spliced peptides eluted from distinct cell lines, they observed significant differences in the nature of the amino acids found at key positions (P1, P’1) (Fig. 5), N terminus, and C terminus. They suggested that the nature of the amino acid found at these positions is also influenced by the HLA molecule to which these peptides bind (37). These biases clearly need to be taken into account when analyzing the rules of peptide splicing using the sequence of spliced peptides bound to HLA class I molecules.

Proteasome subtypes and peptide splicing

Immune cells and cells treated with inflammatory cytokines, such as IFNγ, express alternative proteasome catalytic subunits LMP2(β1i), MECL-1(β2i), and LMP7(β5i), which are incorporated into proteasomes instead of β1, β2, and β5, forming an alternative proteasome subtype, called the immunoproteasome (Fig. 1B). Because standard proteasomes and immunoproteasomes...
MINIREVIEW: Peptide splicing by the proteasome

Peptide splicing by the proteasome

Proteasomes are composed of distinct catalytic subunits, their cleavage specificities are different, as observed by their activity on fluorogenic peptides: the immunoproteasome displays a much lower caspase-like activity, whereas its trypsin-like and chymotrypsin-like activities are increased (41, 42). This can be explained by subtle conformational changes in the substrate-binding pockets of catalytic subunits β1i and β5i (31). The S1 substrate-binding pocket (which interacts with the amino acid residue forming the C-terminal end of the cleaved peptide) of β1i is smaller, more hydrophobic, and lacks a positively charged residue (Arg-45) when compared with that of B1, thereby accounting for the reduced caspase-like activity of β1i and its higher cleavage activity after small hydrophobic and branched residues (31). Likewise, β5i harbors a more spacious S1 pocket than B5, favoring the cleavage after large non-polar residues like tyrosine, tryptophan, or phenylalanine (31). Because of its increased propensity to cleave after basic and hydrophobic amino acids, the immunoproteasome has been predicted to produce peptides that are more efficiently presented by MHC class I, which often call for basic and hydrophobic C termini for efficient binding. This idea was corroborated by the study of mouse knock-outs for all three immunosubunits in which presentation of a number of MHC class I epitopes was decreased (43). However, this notion was challenged by the fact that some antigenic peptides were shown to be more efficiently produced by the standard proteasome than by the immunoproteasome (41–46). The current understanding is that proteasome subtypes produce distinct repertoires of peptides that are partially overlapping. The inefficient processing by one proteasome subtype generally results either from the incapacity of that proteasome to produce the C-terminal cleavage required to release the antigenic peptide or from the fact that it produces a prominent destructive cleavage inside the peptide sequence (45). Because the splicing is directly linked to the proteolytic activity of the proteasome, standard proteasome and immunoproteasome are both expected to produce spliced peptides. This was clearly demonstrated when we compared the processing of four spliced antigenic peptides by the standard proteasome and the immunoproteasome (47). We showed that peptides derived from FGF-5, gp100, and tyrosinase were all better processed by the standard proteasome, whereas the peptide derived from the minor histocompatibility SP110 was better produced by the immunoproteasome (Table 1). Here also, differences in the production of the spliced peptides resulted from a balance between production and destruction of the peptide partners involved in the splicing reaction.

A few years ago, our group identified two additional types of proteasome (Fig. 1B), which contain only one (β5i) or two (β1i and β5i) of the three catalytic subunits of the immunoproteasome (41). These intermediate proteasomes are expressed in a large variety of cell types; they represent 10–20% of the total proteasomes found in tumors and 30–50% of those found in liver, kidney, small bowel, colon, and dendritic cells (41). Studying the catalytic activity of intermediate proteasomes, we showed that intermediate proteasome β1iβ2β5i (hereafter called intermediate proteasome β5i) displayed a chymotrypsin-like activity that was intermediate between that of the standard and the immunoproteasome, whereas that of intermediate proteasome β1iβ5i was similar to the immunoproteasome (41, 42). The trypsin-like activities of both proteasomes β5i and β1iβ5i are intermediate between that of the standard and the immunoproteasome. As expected, the caspase-like activity, which is linked to the presence of the β1 subunit, is exhibited by intermediate proteasome β5i but not by proteasome β1iβ5i. Because of their particular cleavage properties, intermediate proteasomes produce a unique repertoire of peptides (41, 46). Additionally, a fifth type of proteasome was found in the thymus (48, 49). This proteasome, called thymoproteasome, contains catalytic subunit β5t, in place of β5–β5i, and is expressed exclusively in thymic cortical epithelial cells (Fig. 1B). Subunit β5t is associated with β1i and β2i in the thymoproteasome, which displays a lower chymotrypsin-like activity and seems to produce a distinct peptide repertoire as compared with the immunoproteasome (50). Whether the intermediate proteasomes and the thymoproteasome are able to produce spliced peptides has not yet been demonstrated, but the inherent way by which spliced peptides are produced suggests that all proteasome types can produce spliced peptides, as long as they can form the appropriate acyl-enzyme intermediate and C-terminal reactant(s).

Moreover, this also implies that spliced peptides are not restricted to tumor cells but are also produced by healthy cells as long as they contain the appropriate type of proteasome; healthy melanocytes indeed express the spliced peptide derived from tyrosinase and can be recognized by the anti-tyrosinase CTL (11). Spliced peptides therefore do not form a specific category of tumor-associated antigens, but rather they behave like any other “classical” antigen against which central tolerance is potentially established in the thymus. Notably, proteasomes isolated from yeast can also produce spliced peptides (36).

Interestingly, peptide splicing was also involved in the production of MHC class II-restricted antigens recognized by diabetesogenic CD4+ T cells in non-obese diabetic mice (51, 52). Interestingly, the MHC class II spliced peptides identified are produced by the splicing of fragments originating from two different proteins (trans-splicing), which are abundant in the secretory granules of β cells. Although the enzyme responsible for the splicing reaction was not yet identified, it likely corresponds to a protease found in the secretory compartment. In contrast to proteasome-catalyzed peptide splicing, splicing involving abundant secretory proteins may not require enzyme-procured compartmentalization, and likely explains why production of antigenic peptides by trans-splicing is physiologically possible in this context.

Conclusions

CTLs are major sentinels devised to rapidly recognize and destroy cells expressing mutant, infectious or tumoral proteins. Their ability to recognize as few as one to five peptide–MHC complexes at the cell surface provides them with a high sensitivity that enables the detection of cells displaying only subtle changes in their cellular protein content (53). Peptide splicing is a low efficiency process; it was estimated that in vitro, 1–2% of the total fragments produced by proteasome-mediated degradation represent spliced peptides (36). Yet, a number of those
MINIREVIEW: Peptide splicing by the proteasome

peptides were found to elicit meaningful CTL responses in cancer patients (7–9, 12), leading to tumor regression in some patients (11). Because the splicing activity of the proteasome is directly linked to its catalytic activity, its efficacy likely follows similar rules, based on the way peptide partners interact with the primed and unprimed pockets at the catalytic site, including their affinity for the pockets, their off-rate, and the orientation of the attacking peptide in the substrate-binding channel, which might increase its nucleophilicity (54).

Despite the low efficiency of peptide splicing, Liepe et al. (37) reported that the amount of spliced peptides found at the cell surface represented about 25% of the total amount of peptides displayed. If confirmed, this striking observation would raise questions on how such a low-efficiency process might produce so many MHC-I-presented peptides. Is it because the spliced peptides are more efficiently transported through the MHC class I pathway? Do these peptides have increased binding affinities for MHC class I molecules, thereby endowing them with an increased competitiveness for HLA binding compared with other peptides? Do proteasome regulators play a role in the efficiency of the splicing process (for example, by differentially affecting the sequestration of potential C-terminal splice reactants inside the catalytic chamber)? Additional studies will be required to better understand the ins and outs of the regulation of peptide splicing by the proteasome.

Acknowledgment—We are grateful to Auriane Sibille for precious help in the preparation of this manuscript.

References

1. Rock, K. L., Gramm, C., Rothstein, L., Clark, K., Stein, R., Dick, L., Hwang, D., and Goldberg, A. L. (1994) Inhibitors of the proteasome block the degradation of most cell proteins and the generation of peptides presented on MHC class I molecules. Cell 78, 761–771

2. Androlewicz, M. J., Anderson, K. S., and Cresswell, P. (1993) Evidence that transporters associated with antigen processing translocate a major histocompatibility complex class I-binding peptide into the endoplasmic reticulum in an ATP-dependent manner. Proc. Natl. Acad. Sci. U.S.A. 90, 9130–9134

3. Saric, T., Chang, S. C., Hattori, A., York, I. A., Markant, S., Rock, K. L., Tsujimoto, M., and Goldberg, A. L. (2002) An IFN-γ-induced aminopeptidase in the ER, ERAPI, trims precursors to MHC class I-presented peptides. Nat. Immunol. 3, 1169–1176

4. Saveanu, L., Carroll, O., Lindo, V., Del Val, M., Lopez, D., Lepelletier, Y., Greer, F., Schomburg, L., Fruci, D., Niedermann, G., and van Endert, P. M. (2005) Concerted peptide trimming by human ERAPI and ERAPI2 aminopeptidase complexes in the endoplasmic reticulum. Nat. Immunol. 6, 689–697

5. York, I. A., Chang, S. C., Saric, T., Keys, J. A., Favreau, J. M., Goldberg, A. L., and Rock, K. L. (2002) The ER aminopeptidase ERAPI enhances or limits antigen presentation by trimming epitopes to 8–9 residues. Nat. Immunol. 3, 1177–1184

6. Vigneron, N., and Van den Eynde, B. J. (2011) Insights into the processing of MHC class I ligands gained from the study of human tumor epitopes. Cell. Mol. Life Sci. 68, 1503–1520

7. Hanada, K., Yewdell, J. W., and Yang, J. C. (2004) Immune recognition of a human renal cancer antigen through post-translational protein splicing. Nature 427, 252–256

8. Vigneron, N., Stroobant, V., Chaprio, J., Ooms, A., Degiovanni, G., Morel, S., van der Bruggen, P., Boon, T., and Van den Eynde, B. (2004) An antigenic peptide produced by peptide splicing in the proteasome. Science 304, 587–590

9. Warren, E. H., Vigneron, N. J., Gavin, M. A., Coulie, P. G., Stroobant, V., Dalet, A., Tykodi, S. S., Xuereb, S. M., Mitto, J. K., Riddell, S. R., and Van den Eynde, B. J. (2006) An antigen produced by splicing of noncontiguous peptides in the reverse order. Science 313, 1444–1447

10. Dalet, A., Vigneron, N., Stroobant, V., Hanada, K., and Van den Eynde, B. J. (2010) Splicing of distant peptide fragments occurs in the proteasome by transpeptidation and produces the spliced antigenic peptide derived from fibroblast growth factor-5. J. Immunol. 184, 3016–3024

11. Dalet, A., Robbins, P. F., Stroobant, V., Vigneron, N., Li, Y. F., El-Gamil, M., Hanada, K., Yang, J. C., Rosenberg, S. A., and Van den Eynde, B. J. (2011) An antigenic peptide produced by reverse splicing and double asparagine deamidation. Proc. Natl. Acad. Sci. U.S.A. 108, E323–E331

12. Michaux, A., Larrieu, P., Stroobant, V., Fonteneau, J. F., Jotereau, F., Van den Eynde, B. J., Moreau-Aubry, A., and Vigneron, N. (2014) A spliced antigenic peptide comprising a single spliced amino acid is produced in the proteasome by reverse splicing of a longer peptide fragment followed by trimming. J. Immunol. 192, 1962–1971

13. Ebstein, F., Textoris-Taube, K., Keller, C., Golnik, R., Vigneron, N., Van den Eynde, B. J., Schuler-Thurner, B., Schadendorf, D., Lorenz, F. K., Uckert, W., Urban, S., Lehmann, A., Albrecht-Koepe, N., Janek, K., Henkelin, P., et al. (2016) Proteasomes generate spliced epitopes by two different mechanisms and as efficiently as non-spliced epitopes. Sci. Rep. 6, 24032

14. Groll, M., Ditzel, L., Löwe, J., Stock, D., Bochtler, M., Bartunik, H. D., and Huber, R. (1997) Structure of 20S proteasome from yeast at 2.4 Å resolution. Nature 386, 463–471

15. Löwe, J., Stock, D., Jak, B., Zwickl, P., Baumeister, W., and Huber, R. (1995) Crystal structure of the 20S proteasome from the archaeon T. acidophillum at 3.4 Å resolution. Science 268, 533–539

16. Unno, M., Mizushima, T., Morimoto, Y., Tomisugi, Y., Tanaka, K., Yasuoka, N., and Tsukihara, T. (2002) The structure of the mammalian 20S proteasome at 2.75 Å resolution. Structure 10, 609–618

17. Coux, O., Tanaka, K., and Goldberg, A. L. (1996) Structure and functions of the 20S and 26S proteasomes. Annu. Rev. Biochem. 65, 801–847

18. Rablí, J., Smith, D. M., Yu, Y., Chang, S. C., Goldberg, A. L., and Cheng, Y. (2008) Mechanism of gate opening in the 20S proteasome by the proteasomal ATPases. Mol. Cell 30, 360–368

19. Vigneron, N., and Van den Eynde, B. J. (2014) Proteasome subtypes and regulators in the processing of antigenic peptides presented by class I molecules of the major histocompatibility complex. Biomolecules 4, 994–1025

20. Ma, C. P., Slaughter, C. A., and DeMartino, G. N. (1992) Identification, purification, and characterization of a protein activator (PA28) of the 20S proteasome (macropain). J. Biol. Chem. 267, 10515–10523

21. Dubiel, W., Pratt, G., Ferrell, K., and Rechsteiner, M. (1992) Purification of an 11 S regulator of the multicatalytic protease. J. Biol. Chem. 267, 22369–22377

22. Nikaido, T., Shimada, K., Shibata, M., Hata, M., Sakamoto, M., Takasaki, Y., Sato, C., Takahashi, T., and Nishida, Y. (1990) Cloning and nucleotide sequence of cDNA for Ki antigen, a highly conserved nuclear protein detected with sera from patients with systemic lupus erythematosus. Clin. Exp. Immunol. 79, 209–214

23. Ustrell, V., Hoffmann, L., Pratt, G., and Rechsteiner, M. (2002) PA200, a nuclear proteasome activator involved in DNA repair. EMBO J. 21, 3516–3525

24. Chu-Ping, M., Slaughter, C. A., and DeMartino, G. N. (1992) Purification and characterization of a protein inhibitor of the 20S proteasome (macropain). Biochim. Biophys. Acta 1119, 303–311

25. Bader, M., Benjamin, S., Wapinski, O. L., Smith, D. M., Goldberg, A. L., and Steller, H. (2011) A conserved F box regulatory complex controls proteasome activity in Drosophila. Cell 145, 371–382

26. Li, X., Thompson, D., Kumar, B., and DeMartino, G. N. (2014) Molecular and cellular roles of PI31 (PSMF1) protein in regulation of proteasome function. J. Biol. Chem. 289, 17392–17405

27. Fenteany, G., Standaert, R. F., Lane, W. S., Choi, S., Corey, E. J., and Schreiber, S. L. (1995) Inhibition of proteasome activities and subunit-specific amino-terminal threonine modification by lactacystin. Science 268, 726–731
28. Seemüller, E., Lupas, A., Stock, D., Löwe, J., Huber, R., and Baumeister, W. (1995) Proteasome from *Thermoplasma acidiphilum*: a threonine protease. *Science* **268**, 579–582.

29. Heinemeyer, W., Fischer, M., Krimmer, T., Stachon, U., and Wolf, D. H. (1997) The active sites of the eukaryotic 20 S proteasome and their involvement in subunit precursor processing. *J. Biol. Chem.* **272**, 25200–25209.

30. Groll, M., and Huber, R. (2003) Substrate access and processing by the 20S proteasome core particle. *Int. J. Biochem. Cell Biol.* **35**, 606–616.

31. Huber, E. M., Basler, M., Schwab, R., Heinemeyer, W., Kirk, C. J., Groettup, M., and Groll, M. (2012) Immuno- and constitutive proteasome crystal structures reveal differences in substrate and inhibitor specificity. *Cell* **148**, 727–738.

32. Altrich-VanLith, M. L., Ostankovitch, M., Polefrone, J. M., Mosse, C. A., Shabanowitz, J., Hunt, D. F., and Engelhard, V. H. (2006) Processing of a class I-restricted epitope from tyrosinase requires peptide N-glycanase and the cooperative action of endoplasmic reticulum aminopeptidase 1 and cytosolic proteases. *J. Immunol.* **177**, 5440–5450.

33. Misaghi, S., Pacold, M. E., Blom, D., Ploegh, H. L., and Korbel, G. A. (2004) Using a small molecule inhibitor of peptide: N-glycanase to probe its role in glycoprotein turnover. *Chem. Biol.* **11**, 1677–1687.

34. Serwold, T., Gonzalez, F., Kim, J., Jacob, R., and Shastri, N. (2002) ERAAP facilitates some antigens presented by HLA class I molecules. *Science* **298**, 4075–4084.

35. Liepe, J., Mishto, M., Textoris-Taube, K., Janek, K., Keller, C., Henklein, P., Kloeetzl, P. M., and Zaikin, A. (2010) The 20S proteasome splicing activity discovered by SpliceMet. *PLoS Comput. Biol.* **6**, e1000830.

36. Mishto, M., Goede, A., Taube, K. T., Keller, C., Janek, K., Henklein, P., Niewienda, A., Kloss, A., Gohlke, S., Dahlmann, B., Enenkel, C., and Kloeetzl, P. M. (2012) Driving forces of proteasome-catalyzed peptide splicing in yeast and humans. *Mol. Cell. Proteomics* **11**, 1008–1023.

37. Liepe, J., Marino, F., Sidney, I., Jeko, A., Bunting, D. E., Sette, A., Kloeetzl, P. M., Stumpf, M. P., Heck, A. J., and Mishto, M. (2016) A large fraction of HLA class I ligands are proteasome-generated spliced peptides. *Science* **354**, 354–358.

38. Berkers, C. R., de Jong, A., Schuurman, K. G., Linnemann, C., Geenevasen, J. A., Schumacher, T. N., Rodenko, B., and Ovaa, H. (2015) Peptide splicing in the proteasome creates a novel type of antigen with an isopeptide linkage. *J. Immunol.* **195**, 4075–4084.

39. Calis, I. J., Reinkink, P., Keller, C., Kloeetzl, P. M., and Keşmir, C. (2015) Role of peptide processing predictions in T cell epitope identification: contribution of different prediction programs. *ImmunoGenetics* **67**, 85–93.

40. Berkers, C. R., de Jong, A., Schuurman, K. G., Linnemann, C., Meiring, H. D., Janssen, L., Neefjes, J. J., Schumacher, T. N., Rodenko, B., and Ovaa, H. (2015) Definition of proteasomal peptide splicing rules for high-efficiency spliced peptide presentation by MHC class I molecules. *J. Immunol.* **195**, 4085–4095.

41. Guillaume, B., Chapiro, J., Stroobant, V., Colau, D., Van Holle, B., Parviz, G., Bousquet-Doubouch, M. P., Thèate, I., Parmentier, N., and Van den Eynde, B. J. (2010) Two abundant proteasome subtypes that uniquely process some antigens presented by HLA class I molecules. *Proc. Natl. Acad. Sci. U.S.A.* **107**, 18599–18604.

42. Vigneron, N., Abi Habib, J., and Van den Eynde, B. J. (2015) The capture proteasome assay: a method to measure proteasome activity in vitro. *Anal. Biochem.* **482**, 7–15.

43. Kincaid, E. Z., Che, J. W., York, I., Escobar, H., Reyes-Vargas, E., Delgado, J. C., Welsh, R. M., Karow, M. L., Murphy, A. J., Valenzuela, D. M., Yan coppoulos, G. D., and Rock, K. L. (2011) Mice completely lacking immunoproteasomes show major changes in antigen presentation. *Nat. Immunol.* **13**, 129–135.

44. Morel, S., Lévy, F., Burllet-Schiltz, O., Brasseur, F., Probst-Kepper, M., Petirquin, A.-L., Monsarrat, B., Van Velthoven, R., Cerottini, J.-C., Boon, T., Gairin, J. E., and Van den Eynde, B. J. (2000) Processing of some antigens by the standard proteasome but not by the immunoproteasomes results in poor presentation by dendritic cells. *Immunity* **12**, 107–117.

45. Chapiro, J., Claverol, S., Piette, F., Ma, W., Stroobant, V., Guillaume, B., Gairin, J.-E., Morel, S., Burllet-Schiltz, O., Monsarrat, B., Boon, T., and Van den Eynde, B. J. (2006) Destructive cleavage of antigenic peptides either by the immunoproteasome or by the standard proteasome results in differential antigen presentation. *J. Immunol.* **176**, 1053–1061.

46. Guillaume, B., Stroobant, V., Bousquet-Doubouch, M. P., Colau, D., Chapiro, J., Parmentier, N., Dalet, A., and Van den Eynde, B. J. (2012) Analysis of the processing of seven human tumor antigens by intermediate proteasomes. *J. Immunol.* **189**, 3538–3547.

47. Dalet, A., Stroobant, V., Vigneron, N., and Van den Eynde, B. J. (2011) Differences in the production of spliced antigenic peptides by the standard proteasome and the immunoproteasome. *Eur. J. Immunol.* **41**, 39–46.

48. Murata, S., Sasaki, K., Kishimoto, T., Niwa, S., Hayashi, H., Takahama, Y., and Tanaka, K. (2007) Regulation of CD8+ T cell development by thymus-specific proteasomes. *Science* **316**, 1349–1353.

49. Tomaru, U., Ishizu, A., Murata, S., Miyatake, Y., Suzuki, S., Takahashi, S., Kazamaki, T., Ohara, J., Baba, T., Iwasaki, S., Fugo, K., Otsuka, N., Tanaka, K., and Kasahara, M. (2009) Exclusive expression of proteasome subunit β5 in the human thymic cortex. *Blood* **113**, 5186–5191.

50. Nitta, T., Murata, S., Sasaki, K., Fujii, H., Ripen, A. M., Ishimaru, N., Koyasu, S., Tanaka, K., and Takahama, Y. (2010) Thymoproteasome shapes immunocompetent repertoire of CD8+ T cells. *Immunity* **32**, 29–40.

51. Delong, T., Wiles, T. A., Baker, R. L., Bradley, B., Barbou, G., Reisodrph, R., Armstrong, M., Powell, R. L., Reisodrph, N., Kumar, N., Elso, C. M., DeNicola, M., Bottino, R., Powers, A. C., Harlan, D. M., et al. (2016) Pathogenic CD4 T cells in type 1 diabetes recognize epitopes formed by peptide fusion. *Science* **351**, 711–714.

52. Wiles, T. A., Delong, T., Baker, R. L., Bradley, B., Barbou, G., Powell, R. L., Reisodrph, N., and Haskins, K. (2017) An insulin–IAPP hybrid peptide is an endogenous antigen for CD4 T cells in the non-obese diabetic mouse. *J. Autoimmun.* **78**, 11–18.

53. Sykulev, Y., Joo, M., Vturiina, I., Tsomides, T. J., and Eisen, H. N. (1996) Evidence that a single peptide–MHC complex on a target cell can elicit a cytolytic T cell response. *Immunity* **4**, 565–571.

54. Groll, M., Götz, M., Kaiser, M., Weyerh, E., and Moroder, L. (2006) TMC-95-based inhibitor design provides evidence for the catalytic versatility of the proteasome. *Chem. Biol.* **13**, 607–614.