Certain Types of Linear Codes over the Finite Field of Order Twenty-Five

Emad Bakr Al-Zangana*, Elaf Abdul Satar Shehab
Department of Mathematics, College of Science, Mustansiriyah University, Baghdad, Iraq

Received: 4/11/2020 Accepted: 4/1/2021

Abstract
The aim of the paper is to compute projective maximum distance separable codes, PG-MDS of two and three dimensions with certain lengths and Hamming weight distribution from the arcs in the projective line and plane over the finite field of order twenty-five. Also, the linear codes generated by an incidence matrix of points and lines of $PG(2,25)$ were studied over different finite fields.

Keywords: Linear code, MDS, Projective space, Incidence matrix.

1. Introduction
Let $GF(q) = F_q$ denotes the Galois field of q elements, q is a prime power, $F_q^+ = F_q$ is a plus point at infinity, and F_q^k is the vector space of row vectors of length n with entries in F_q. Let $PG(k-1,q)$ be the corresponding projective space of dimension $k-1$. As a special case, $PG(1,q)$ and $PG(2,q)$ are called projective line and projective plane, respectively. The points $P(x_1,\ldots,x_k)$ of $PG(k-1,q)$ are the one dimensional subspaces of F_q^k. In $PG(k-1,q)$, the number of points is $\theta(k-1,q) = (q^k-1)/(q-1)$ and the number of lines is $(q^{k-1} - 1)(q^{k-1} - 1)/(q^2-1)(q-1)$. An $(n;r)$-arc with $n \geq r + 1$ is a set of k points of a projective space, such that most r points are on the hyperplane, but with at least one set of r points are on the hyperplane. In the line, $(n;1)$-arc is just an n-set; that is, a set of n distinct points. An $(n;r)$-arc K is called complete if it is maximal with respect to inclusion; that is, there is no an $(n+1;r)$-arc containing K. The maximum size of an $(n;r)$-arc in $PG(k-1,q)$ is denoted by $m_r(k-1,q)$. In 1947, Bose [1] proved that $m_r(2,q) = q + 2$ for q even, $m_r(2,q) = q + 1$ for q odd.

In the finite projective line, the value of $m_1(1,q)$ is just $q + 1$.

*Email: emad77_kaka@yahoo.com
Definition 1. A conic C in $PG(2, q)$ is the set of rational points of a homogenous nonsingular form F of degree two over F_q.

Bose showed that: an $(m_2(2, q); 2)$-arc in $PG(2, q), q$ odd, is just the conic, and that the conic plus its nucleus (the intersection point of its tangents) is an $(m_2(2, q); 2)$-arc in $PG(2, q), q$ even.

The points $P(X, Y)$ of the projective line $PG(1, q)$ are identified by F_q^+ by sending the points $P(X, Y)$ to X/Y if $Y \neq 0$ and to ∞ if $Y = 0$. The relation between the conic $C^*(X^2 - YZ)$ and F_q^+ exists by sending each point t of F_q^+ to $P(t^2, t, 1)$ point on the conic C^*.

For details and basic results on the projective space and the essential subsets of the projective space, see [2].

The Hamming weight of a vector $x \in F_q^n$ is the number of non-zero coordinates of x, denoted by $wt(x)$. A q-ary $[n, k, d]$-code C over F_q is a k-dimensional subspace of F_q^n, all of whose non-zero vectors (codewords) have a weight of at least $d = d(C)$. A q-ary $[n, k, d]$-code that corrects $e = \left\lfloor \frac{d-1}{2} \right\rfloor$ errors is called e-error correcting code, where $[x]$ denotes the floor function. Let A_d denotes the number of codewords with Hamming weight i in a code C of length n. The sequence $(1, A_1, A_2, \ldots, A_n)$ is called the weight distribution of the code C. The dual code of q-ary $[n, k, d]$-code C over F_q, denoted by C^\perp, is defined by

$$C^\perp = \left\{ x = (x_1, \ldots, x_n) \in F_q^n: \sum_{i=1}^{n} x_i c_i = 0, \forall c = (c_1, \ldots, c_n) \in C \right\}.$$

Any q-ary $[n, k, d]$-code C can be defined by a $(k \times n)$ matrix $G = [I_k A]$ (standard form), where A is a nonsingular $(k \times n)$ matrix with entries from F_q, called the generator matrix, whose rows form a basis. Also, the dual code C^\perp can be defined by a $(n - k) \times n$ matrix $H = [-A^T I_{(n-k)}]$. Two linear codes are isomorphic (equivalent) if the generator matrices are equivalent after doing a sequence of row (column) operations. A sphere-packing bound of a q-ary $[n, k, d = 2e + 1]$-code C over F_q is

$$q^k \left\{ \sum_{i=0}^{e} \binom{n}{i} (q - 1)^i \right\} \leq q^n.$$

A code which achieves the sphere-packing bound is called a perfect code, see [3].

Definition 2 [4]. A q-ary $[n, k, d]$-code C over F_q at $d = n - k + 1$ (the maximum value of d) is called a maximum distance separable code, or MDS code for short. The code C is called projective if the columns of a generator matrix are pairwise linearly independent and denoted by PG-MDS.

Theorem 3 [4]

A q-ary $[n, k, d]$-code C over F_q is MDS if and only if its dual C^\perp is MDS; that is, $d(C) = n - k + 1$ if and only if $d(C^\perp) = k + 1$.

Therefore, A q-ary $[n, k, d]$-code C over F_q is PG-MDS if and only if its dual C^\perp is PG-MDS, since the standard generator matrix of both are depending on the base matrix A.

It is well known that there is equivalence between the existence of a PG-MDS and an arc in the projective space, where this equivalence comes from the fact that the matrix in which each column is a point of an arc has formed a generator matrix of PG-MDS.

The full prove of this relation is presented elsewhere [4] and the statement of the theorem is as follows.

Theorem 4: There exists a PG-MDS q-ary $[n, k, d]$-code if and only if an $(n; n - d)$-arc exists in $PG(k - 1, q)$. As special cases:
(i) If \(k = 2 \), then every \(r \)-set, that is \((r; 1)\)-arc, in \(PG(1, q) \) gives a generator matrix of \(PG\)-MDS \(q \)-ary \([r, 2, r - 1]\)-code over \(F_q \).

(ii) If \(k = 3 \), then every \((r; 2)\)-arc in \(PG(2, q) \) gives a generator matrix of \(PG\)-MDS \(q \)-ary \([r, 3, r - 2]\)-code over \(F_q \).

The weight enumerator of an MDS \((PG\)-MDS\) \(q \)-ary \([n, k, d]\)-code over \(F_q \) is unique, and the weight distribution of the code \(C \) is \((A_0 = 1, A_1, A_2, \ldots, A_n)\), where \(A_j = 0 \) for \(0 < j < d \), and

\[
A_j = (q - 1) \binom{n}{j} \sum_{l=0}^{j-d} (-1)^l \binom{j-l}{l} q^{j-d-l},
\]

for \(d \leq j \leq n \). If \(d = n - k + 1 \), then

\[
A_d = (q - 1) \binom{n}{d}.
\]

For details and descriptions of equations (1) and (2), see \([3]\).

Ezerman et al. \([5]\) determined the weight spectra of certain linear MDS codes, namely those that satisfy the MDS Conjecture. Alderson \([6]\) discussed the weight distribution of MDS \([n, k, d]\)-code and showed that all \(k \) weights from \(n \) to \(n - k + 1 \) are realized.

One of the important questions for a code with parameters \(n, k, d \) is: how many non-isomorphic codes are there having these parameters? Many researches discussed this question directly by working on the code, see for example \([7, 8]\), or indirectly through projective space, both in general cases and for a certain \(q \), see for example \([9,10,11]\).

The first objective of this paper is to present a class of non-isomorphic error-correcting \(PG\)-MDS codes over \(F_{25} \) of two and three dimensions with their weight distributions. The second objective is to construct linear codes from the incidence matrix of lines and points of \(PG(2, 25) \) by giving details of generator matrices over distinct finite fields.

The GAP programming was used to perform the calculations required for achieving the desired results \([12]\).

2. Non-Isomorphic Error-Correcting \(PG\)-MDS Codes over \(F_{25} \)

Al-Zangana and Shehab \([13]\) gave full details of the classification of projectively inequivalent \(k \)-subsets in the projective line over \(F_{25} \), such that each \(k \)-subset contains the standard frame \(F_{25}(3) = \{\infty, 0,1\} \). These results are summarized in Table 1. Let \(n_k \) denotes the number of projectively inequivalent \(k \)-subsets of \(PG(1,25) \).

Table 1 - Projectively inequivalent \(k \)-subsets of \(PG(1,25) \).

\(k \)	4	5	6	7	8	9	10	11	12	13
\(n_k \)	5	8	28	54	131	225	398	531	692	714

Theorem 5. Over \(F_{25} \), the non-isomorphic \(PG\)-MDS codes with parameters \(n, k, d, e \), and no zero weight distributions \(A_l \) are listed in Table 2.

Table 2 - Non-isomorphic \(PG\)-MDS codes of dimension 2.

\(n \)	4	5	6	7	8	9	10	11	12	13
\(k \)	2	2	2	2	2	2	2	2	2	2
\(d \)	3	4	5	6	7	8	9	10	10	10
\(e \)	1	1	1	1	1	1	1	1	1	1
\(A_0 \)	96	120	144	168	192	216	240	264	288	312
\(A_{n-1} \)	528	504	480	456	432	408	384	360	336	312
Here \(\bar{m} \) denotes the number of non-isomorphic PG-MDS codes of specific parameters.

Proof. First of all, since each \(n \)-subset computed in [13] contains the points of the standard frame, then the constructed \((2 \times n) \) matrix \(G \) from the points of \(n \)-subset will be in a standard form and the second row of \(G \) takes the form \(0 \ 1 \ 1 \ldots \ 1 \); that is, \(G = [I_2 \ A] \) and a \(2 \times (n - 2) \) matrix \(A \) has now zero coordinate in each row (column) vector. According to the construction of points of the projective line, the second coordinate is 1 and, hence, the second row of \(A \) is always a vector with one in each coordinate. Hence, it is enough to give the first row of the matrix \(A \) to refer to the generator matrix. Secondly, from Theorem 4, every \(n \)-subset formed a PG-MDS \(q-[n, 2, n - 1] \)-code. For each \(n \), the GAP program was used to compute the weight distributions \(A_i \), \(i = n - 1, n \). Let \(\beta \) be the primitive element of \(F_{25} \).

\(n = 4 \)

692	14	2	13	6	1	336	288
531	15	2	14	6	1	360	264
398	16	2	15	7	1	384	240
225	17	2	16	7	1	408	216
131	18	2	17	8	1	432	192
54	19	2	18	8	1	456	168
28	20	2	19	9	1	480	144
8	21	2	20	9	1	504	120
5	22	2	21	10	1	528	96
1	23	2	22	10	1	552	72
1	24	2	23	11	1	576	48
1	25	2	24	11	1	600	24
1	26	2	25	12	1	624	---

\(n = 5 \)

1st row of generating matrix
1 0 1 \(\beta^{12} \)
1 0 1 \(\beta^4 \)
1 0 1 \(\beta \)
1 0 1 \(\beta^{22} \)
1 0 1 \(\beta^7 \)

\(n = 6 \)

1st row of generating matrix
1 0 1 \(\beta^{12} \ \beta^6 \ \beta^{18} \)
1 0 1 \(\beta^{12} \ \beta^6 \ \beta \)
1 0 1 \(\beta^{12} \ \beta \beta^2 \)
1 0 1 \(\beta^{12} \ \beta \beta^3 \)
1 0 1 \(\beta^{12} \ \beta \beta^4 \)
1 0 1 \(\beta^{12} \ \beta \beta^5 \)
1 0 1 \(\beta^{12} \ \beta \beta^7 \)
1 0 1 \(\beta^{12} \ \beta \beta^8 \)
1 0 1 \(\beta^{12} \ \beta \beta^{10} \)
For $n = 7, \ldots, 13$, the first rows of a one generating matrix are written below, since there is no enough space to write all here.

n	1^{st} row of generating matrix
7	$1 \ 0 \ 1 \ \beta^{12} \ \beta^{11}$
8	$1 \ 0 \ 1 \ \beta^{12} \ \beta^{13}$
9	$1 \ 0 \ 1 \ \beta^{12} \ \beta^{14}$
10	$1 \ 0 \ 1 \ \beta^{12} \ \beta^{15}$
11	$1 \ 0 \ 1 \ \beta^{12} \ \beta^{16}$
12	$1 \ 0 \ 1 \ \beta^{12} \ \beta^{17}$

The complement subset K of each n-subset K formed an $(26 - n)$-subset of $PG(1,25)$. Therefore, the number of inequivalent $(26 - n)$-subsets and n-subsets of $PG(1,25)$ is equal. Thus, the number of non-isomorphic PG-MDS codes with length equal to $26 - n$ and dimension 2 is equal to the number of non-isomorphic PG-MDS codes with length n and dimension 2, where $n = 4, \ldots, 12$. The number of non-isomorphic PG-MDS codes with lengths 23, 24, 25 and dimension 2 is one, since all the 3-sets are equivalents. Also, there is only one non-isomorphism PG-MDS code of length 26 and dimension 2, since the 26-subset of $PG(1,25)$ is just the line.

Corollary 5. Over F_{25}, the dual codes C^\perp of the PG-MDS codes C with parameters \hat{m}, n, shown in Table 2, formed PG-MDS codes with dimension $n - 2, d = 3$ and $e = 1$.

Proof. From Theorem 3, each dual code C^\perp of the PG-MDS q-ary $[n, 2, n - 1]$-code C over F_{25} formed PG-MDS q-ary $[n, n - 2, 3]$-code and $e = 1$ with $n = 4, \ldots, 26$. Since the dual code of C^\perp is C, then the number of non-isomorphic code C^\perp for certain length n is \hat{m}, as in Table 2. The weight distributions (A_3, \ldots, A_n) of C^\perp for fixed n are as listed in Table 3.

Table 3 - Weight distributions (A_3, \ldots, A_n) of C^\perp for $n=4, \ldots, 14$

n	(A_3, \ldots, A_n)
4	(96, 528)
5	(240, 2640, 12744)
6	(480, 7920, 76464, 305760)
7	(840, 18480, 267624, 2140320, 7338360)
8	(1344, 36960, 713664, 8561280, 58706880, 176120946)
9	(2016, 66528, 1605744, 25683840, 264180960, 1585084464, 4226892072)
10	(2880, 110880, 3211488, 64209600, 880603200, 7925423230, 42268920720, 10144409536)
11	(3960, 174240, 5887728, 141261120, 2421658800, 29059881840, 232479063960, 4023)
Al-Zangana and Shehab [14] proved that there are eight inequivalent 5-arcs and 365 inequivalent 6-arcs in the projective plane over \mathbb{F}_{25} through the standard frame $\Gamma_{25}(4) = \{U_0, U_1, U_2, U\}$. The corresponding PG-MDS codes to these arcs are summarized in the following theorem.

Theorem 6. Over \mathbb{F}_{25}, there are
(i) eight non-isomorphic PG-MDS $[5,3,3]$-codes with $e = 1$ and weight distribution $(1, 0, 0, 240, 2640, 12744)$. The dual codes of these codes are PG-MDS $[5,2,4]$-code with $e = 1$ and weight distribution $(1, 0, 0, 0, 120, 504)$.

(ii) 365 non-isomorphic PG-MDS $[6,3,4]$-codes with $e = 2$ and weight distribution $(1, 0, 0, 0, 360, 3024, 12240)$. The dual codes of these codes are equivalent to the base codes.

Example 7
(i) PG-MDS $[5,3,3]$-code C_1 with generator matrix $G_1 = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix}$. The generator matrix of PG-MDS $[5,2,4]$-code C_1^\perp is $H_1 = \begin{bmatrix} \beta^{12} & \beta^{12} & \beta^{12} & \beta^{12} & 10 \\ \beta^4 & \beta^4 & \beta^4 & \beta^4 & \beta^4 \\ \beta^4 & \beta^4 & \beta^4 & \beta^4 & \beta^4 \end{bmatrix}$.

(ii) PG-MDS $[6,3,4]$-code C_2 with generator matrix $G_2 = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix}$. The generator matrix of PG-MDS $[6,3,4]$-code C_2^\perp is $H_2 = \begin{bmatrix} \beta^{12} & \beta^{12} & \beta^{12} & \beta^{12} & 100 \\ \beta^8 & \beta^8 & \beta^8 & \beta^8 & \beta^8 \\ \beta^8 & \beta^8 & \beta^8 & \beta^8 & \beta^8 \end{bmatrix}$. The matrix H_2 can be transformed to G_2 after dividing the first, second, and third columns of H_2 by β^{12} and applying some permutations in rows and columns. Thus, C_2^\perp is equivalent to C_2.

3. Codes from Incidence Matrix
The incidence matrix $IM^* = (a_{ij})$ of points and k-dimensional projective subspaces in the projective space $PG(n, q)$, $q = p^h$, p prime, $h \geq 1$, is defined as the matrix whose rows are indexed by the k-spaces of $PG(n, q)$, $1 \leq k \leq n - 1$, and whose columns are indexed by the points of $PG(n, q)$, and with the entry
\[a_{ij} = \begin{cases} 0 & \text{if point } j \text{ belongs to } k - \text{space } i, \\ 1 & \text{otherwise}. \end{cases} \]

Clearly, the dimension of \(IM^* \) is \(\vartheta(n,q) \times \vartheta(n,q) \). For more details, see [15, 16].

It is known that the rows of the matrix \(IM^* \) generate a \(p \)-ary \([n,k,d]\)-code over a field \(F_p \). This code is normally denoted by \(C_k = C_k(n,q) \), and by \(C(2,q) \) if \(k = 1 \) and \(n = 2 \).

The minimum weight of \(C(2,q) \) is \(q + 1 \), which is proved in giving the general case for that. Therefore, \(e = \left\lfloor \frac{d-1}{2} \right\rfloor = \left\lfloor \frac{q+1-1}{2} \right\rfloor = \left\lfloor \frac{q}{2} \right\rfloor \).

Over \(F_{25} \), The incidence matrix \(IM^* = (a_{ij}) \) of points and lines in the projective space \(PG(2,25) \) was computed. An algorithm was executed with GAP program to compute the generator matrices of linear codes from \(IM^* \) over several finite fields. The results are summarized below.

The matrix \(IM^* \) is given by identifying each row, \(r_i \), by a non-zero position, as shown below.

\[
IM^* = \begin{pmatrix}
 r_1 \\
 r_2 \\
 \vdots \\
 r_{650} \\
 r_{651}
\end{pmatrix}
\]

\[
= \begin{pmatrix}
1, 2, 4, 44, 65, 74, 93, 162, 170, 176, 215, 252, 269, 310, 397, 422, 445, 472, 501, 506, 511, 516, 528, 532, 539, 552, 587 \\
2, 3, 5, 45, 66, 75, 94, 163, 171, 177, 216, 253, 270, 311, 398, 423, 455, 473, 502, 507, 517, 529, 533, 540, 553, 588 \\
1, 3, 4, 44, 65, 74, 93, 162, 170, 176, 215, 252, 269, 310, 397, 422, 445, 472, 501, 506, 511, 516, 528, 532, 539, 552, 587 \\
2, 42, 63, 72, 91, 160, 168, 174, 213, 250, 267, 308, 395, 420, 452, 470, 499, 504, 514, 526, 530, 537, 550, 585, 650, 651 \\
1, 3, 4, 44, 65, 74, 93, 162, 170, 176, 215, 252, 269, 310, 397, 422, 445, 472, 501, 506, 511, 516, 528, 532, 539, 552, 587 \\
2, 42, 63, 72, 91, 160, 168, 174, 213, 250, 267, 308, 395, 420, 452, 470, 499, 504, 514, 526, 530, 537, 550, 585, 650, 651
\end{pmatrix}
\]

In the following theorem, the \(q \)-ary \([n,k,d]\)-code over \(F_q \), \(q = p^m \), generated by \(IM^* \), was founded for \(2 \leq p \leq 397 \) and \(p \) is prime. Since the results will be out of the memory of the computer, the program for \(p > 397 \) cannot be run.

Theorem 8. Over \(F_{25} \), the \(IM^* \) generates the following error-correcting, \(e \), \(q \)-ary \([n,k,d]\)-code over the field \(F_q \), \(q = p^m \):

(i) \(q \)-ary \([651,226,1, \leq d \leq 26]\)-code with \(e = 12 \) if \(q = 5^m \).

(ii) \(q \)-ary \([651,650,1, \leq d \leq 2]\)-code with \(e = 0 \) if \(q = p^m \), \(p = 2, 13 \).

(iii) \(q \)-ary \([651,651,1]\)-code with \(e = 0 \) if \(q = p^m \), \(3 \leq p(\neq 2, 5, 13) \leq 397 \).

Proof. The procedure that was used to find the generating matrix of the \(q \)-ary \([n,k,d]\)-code, depending on the field \(F_q \), is firstly looking for the linearly dependent rows in the matrix \(IM^* \) and secondly looking for the linearly dependent codewords that are generated from the linearly dependent rows of \(IM^* \). This was achieved using the mathematical language GAP. The generating matrix of \(q \)-ary \([n,k,d]\)-code over \(F_q \), \(q = p^m \) is exactly the generating matrix of \(q \)-ary \([n,k,d]\)-code over \(F_p \). Since the entries of the matrix \(IM^* \) are just 0 and 1, then the sums between rows of \(IM^* \) will behave like elements of \(F_p \).

(i) The details of the generating matrix \(\Psi \) of the 5-ary \([651,226,1, \leq d \leq 26]\)-code, \(C(2,25) \), with \(e = 12 \), are given in Tables 4 and 5. Let \(n_{r_i} \) denotes the order of the row \(r_i \) and \(s \) denotes the size of non-zero positions of row \(r_i \).
Table 4- Details of the generator matrix Ψ of C(2,25)

n_{r_i}	$=_{s}$								
1	26	51	26	101	427	151	410		
2	26	52	26	102	427	152	397		
3	26	53	26	103	434	153	397		
4	26	54	26	104	434	154	397		
5	26	55	26	105	432	155	397		
6	26	56	26	106	424	156	394		
7	26	57	26	107	434	157	420		
8	26	58	26	108	421	158	404		
9	26	59	26	109	436	159	379		
10	26	60	26	110	436	160	408		
11	26	61	26	111	429	161	404		
12	26	62	26	112	449	162	402		
13	26	63	26	113	449	163	385		
14	26	64	26	114	430	164	361		
15	26	65	26	115	442	165	361		
16	26	66	26	116	440	166	367		
17	26	67	26	117	440	167	399		
18	26	68	26	118	435	168	387		
19	26	69	26	119	439	169	385		
20	26	70	26	120	439	170	390		
21	26	71	26	121	444	171	390		
22	26	72	26	122	419	172	385		
23	26	73	26	123	432	173	374		
24	26	74	26	124	434	174	387		
25	26	75	26	125	434	175	389		
26	26	76	26	126	415	176	388		
27	26	77	26	127	412	177	391		
28	26	78	26	128	420	178	391		
29	26	79	26	129	420	179	370		
30	26	80	26	130	423	180	370		
31	26	81	26	131	405	181	389		
32	26	82	26	132	398	182	380		
33	26	83	26	133	412	183	354		
34	26	84	26	134	404	184	354		
35	26	85	26	135	404	185	354		
36	26	86	26	136	425	186	359		
37	26	87	26	137	425	187	381		
38	26	88	26	138	424	188	385		
39	26	89	26	139	416	189	385		
40	26	90	26	140	421	190	362		
41	26	91	26	141	414	191	367		
42	26	92	26	142	402	192	365		
43	26	93	26	143	410	193	387		
44	26	94	26	144	410	194	376		
45	26	95	26	145	411	195	365		
46	26	96	26	146	403	196	350		
47	26	97	26	147	422	197	370		
48	26	98	26	148	422	198	370		
49	26	99	26	149	411	199	370		
50	26	100	26	150	410	200	370		
Table 5- Numerical information of the generator matrix Ψ of $C(2,25)$

No.	s_1	n_{s_1}	No.	s_1	n_{s_1}
1	26	65	44	411	2
2	342	4	45	412	2
3	343	1	46	414	1
4	344	2	47	415	1
5	345	3	48	416	1
6	347	2	49	419	1
7	350	1	50	420	3
8	351	2	51	421	2
9	352	1	52	422	2
10	353	3	53	423	1
11	354	3	54	424	2
12	358	2	55	425	2
13	359	1	56	427	2
14	360	1	57	429	1
15	361	3	58	430	1
16	362	1	59	432	2
17	363	1	60	434	5
18	364	1	61	435	1
19	365	3	62	436	3
20	366	1	63	437	3
21	367	2	64	439	2
22	370	6	65	440	4
23	374	1	66	441	1
24	376	1	67	442	2
25	379	1	68	443	2
26	380	1	69	444	2
27	381	1	70	447	1
28	385	5	71	448	1
29	387	3	72	449	4
30	388	1	73	450	2
31	389	2	74	451	3
32	390	2	75	452	1
33	391	2	76	453	1
34	394	1	77	455	1
35	397	4	78	456	2
36	398	1	79	458	1
37	399	1	80	459	1
38	402	2	81	460	2
39	403	1	82	461	1
40	404	4	83	463	1
41	405	1	84	465	2
42	408	1	85	468	1
43	410	4	86	469	1

(ii) Over the field F_2, the Hamming weights of vectors in the generating matrix take the values 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48, 50, 52, 54, 56, 58, 60, 62, 64, 66, 68, 70, 72, 74, 76, 78, 80, 82, 84, 86, 88, 90, 92, 94, 96, 98, 100, 102, 104, 106, 108, 110, 112, 114, 116, 118, 120, 122, 124, 126, 128, 130, 132, 134, 136, 138, 140, 142, 144, 146, 148, 150, 152, 154, 156, 158, 160, 162, 164, 166, 168, 170, 172, 174, 176, 178, 180, 182, 184, 186, 188, 190, 192, 194, 196, 198, 200, 202, 204, 206, 208, 210, 212, 214, 216, 218, 220, 222, 224, 226, 228, 230, 232, 234, 236, 238, 240, 242, 244, 246, 248, 250, 252, 254, 256, 258, 260, 262, 264, 266, 268, 270, 272, 274, 276, 278, 280, 282, 284, 286, 288, 290, 292, 294, 296, 298, 300, 302, 304, 306, 308, 310, 312, 314, 316, 318, 320, 322, 324, 326, 328, 330, 336, 340. Therefore, the Hamming weight of this code is 2.
Over the field F_{13}, the Hamming weights of vectors in the generating matrix take the values from 2 to 556 and 558. Therefore, the Hamming weight of this code is 2.

(iii) Over the field F_{3}, the Hamming weights of vectors in the generating matrix take the values from 1 to 418 and 425. Therefore, the Hamming weight of this code is 1.

Over the field F_{97}, the Hamming weights of vectors in the generating matrix take the values 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 66, 68, 69, 70, 72, 73, 74, 75, 76, 78, 79, 80, 82, 84, 85, 86, 87, 89, 90, 91, 92, 93, 96, 98, 99, 100, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 131, 133, 134, 135, 137, 138, 140, 141, 143, 144, 146, 147, 148, 149, 151, 152, 153, 154, 156, 157, 159, 160, 162, 164, 165, 167, 168, 169, 171, 172, 173, 174, 176, 177, 178, 180, 181, 182, 184, 185, 187, 189, 190, 191, 192, 193, 194, 196, 197, 199, 200, 201, 202, 204, 205, 206, 207, 209, 211, 212, 213, 214, 215, 216, 218, 219, 220, 221, 223, 224, 225, 227, 229, 230, 231, 233, 234, 235, 236, 237, 238, 241, 243, 244, 245, 246, 248, 249, 250, 251, 252, 254, 255, 256, 257, 259, 260, 261, 262, 263, 264, 265, 267, 268, 270, 271, 272, 274, 275, 276, 278, 279, 280, 281, 283, 284, 285, 286, 287, 289, 290, 292, 294, 295, 296, 297, 299, 300, 301, 303, 305, 307, 308, 310, 311, 312, 314, 316, 317, 321, 322, 323, 324, 325, 326, 328, 330, 332, 333, 335, 337, 338, 339, 340, 341, 344, 345, 346, 347, 348, 350, 351, 352, 354, 355, 357, 358, 359, 360, 361, 362, 363, 365, 368, 369, 372, 374, 376, 377, 379, 381, 382, 384, 385, 386, 387, 388, 389, 391, 392, 393, 395, 396, 397, 398, 400, 402, 403, 404, 407, 408, 409, 411, 412, 414, 415, 418, 419, 421, 422, 424, 425, 428, 429, 430, 431, 432, 435, 436, 437, 438, 440, 442, 444, 445, 446, 450, 451, 452, 454, 455, 456, 458, 461, 463, 464, 466, 467, 469, 471, 472, 473, 475, 476, 477, 479, 480, 481, 484, 485, 488, 490, 492, 494, 495, 496, 497, 499, 500, 502, 503, 504, 507, 508, 509, 510, 511, 512, 514, 515, 518, 520, 522, 523, 524, 526, 527, 529, 530, 531, 533, 536, 538, 539, 540, 541, 542, 543, 544, 545, 546, 548, 549, 550, 551, 552, 553, 556, 557, 558, 559, 561, 562, 563, 564, 565.

The unique codeword in the generator matrix over F_{p^m}, $3 \leq p(\neq 2,5,13) \leq 397$ with a weight of 1 is the codeword with 1 in the last coordinate. ■

A linear code C of length n over F_q is called cyclic if: $(a_0a_1 \ldots a_{n-1}) \in C$ then $(a_{n-1}a_0 \ldots a_{n-2}) \in C$. Since each codeword is identified with a polynomial $a_0+a_1X+\ldots+a_{n-1}X^{n-1} \in F_q[X]/(X^n-1)$ (ring of polynomials in $F_q[X]$ of degree less than n), therefore, a q-ary $[n,k,d]$-code C over F_q can be viewed as a subset of F_q^n and a subset of $F_q[X]/(X^n-1)$. It is known that every non-zero cyclic C code is generated by a unique monic irreducible polynomial $f(X)$ with smallest degree r, and the property that $f(X)$ is a factor of $X^n - 1$ and $k = n - r$. This polynomial is called the generator polynomial of C. For details and characteristics of cyclic code, see [3].

Remark 9

(i) The rows r_1, \ldots, r_{65} of IM^* are only rows in the generating matrix of each code generated by IM^* over F_q.

The calculations show that:

(ii) the covering radius ρ of 5-ary [651,226,1 $\leq d \leq 26$]-code is 204 $\leq \rho \leq 425$, and that of $5^{m\geq2}$-ary [651,226,1 $\leq d \leq 26$]-code is $\rho \leq 425$.

(iii) the covering ρ of q^m-ary [651,650,1 $\leq d \leq 2$]-code is 1, where $q = 2,13$.

(iv) the q-ary [651,651,1]-code, $q = p^{m\geq2}$, $3 \leq p(\neq 2,5,13) \leq 397$ is a perfect code with zero covering radius.

Al-Zangana and Shehab
Iraqi Journal of Science, 2021, Vol. 62, No. 11, pp: 4019-4031
Corollary 10. All the dual codes of the codes in Theorem 8,i,ii are cyclic codes.

Proof. The dual codes of 5^m-ary [651,226,1 ≤ d ≤ 26]-code are cyclic, 5^m-ary [651,425,1 ≤ d ≤ 195]-code, and its covering radius is less than 226. The coefficients of the generator polynomials which are of degree 26 are 1, 1, 4, 3, 4, 3, 1, 2, 4, 2, 4, 4, 1, 4, 3, 0, 2, 0, 1, 3, 4, 4, 3, 0, 0, 1, 0, 2, 0, 4, 1, 3, 2, 3, 2, 3, 0, 3, 2, 1, 3, 3, 0, 2, 2, 2, 3, 0, 2, 1, 4, 3, 2, 4, 1, 3, 3, 2, 3, 3, 0, 0, 2, 2, 2, 1, 0, 2, 4, 2, 2, 2, 1, 3, 3, 0, 3, 1, 0, 4, 1, 1, 0, 4, 1, 2, 0, 0, 2, 4, 3, 4, 0, 1, 1, 2, 1, 3, 4, 4, 3, 0, 1, 2, 2, 1, 4, 3, 4, 4, 2, 1, 2, 4, 3, 4, 2, 2, 1, 4, 1, 4, 2, 1, 3, 2, 4, 3, 2, 0, 4, 2, 3, 4, 3, 2, 2, 3, 3, 1, 2, 4, 0, 1, 4, 2, 1, 4, 3, 2, 3, 4, 4, 4, 3, 4, 2, 2, 0, 0, 4, 1, 4, 3, 2, 3, 2, 2, 4, 1, 4, 4, 1, 2, 2, 0, 3, 3, 1, 4, 0, 1, 3, 0, 4, 2, 1, 0, 3, 0, 1, 0, 3, 0, 3, 2, 3, 1, 1, 0, 3, 4, 3, 2, 1, 2, 3, 1. The weight of each row of the generator matrix is 195. Therefore, 1 ≤ d ≤ 195.

The dual code of p^m-ary [651,650,1 ≤ d ≤ 2]-code is cyclic, p-ary [651,1,651]-code. The coefficient of the generator polynomials which are of degree 650 is just 1’s. When $p = 2, m = 1$, the weight of each row of the generator matrix is 195 and its covering radius is 325. Since $e = 325$, then this code is perfect.

4. Conclusions

Over the finite field of order twenty-five, using ideas of arcs in the projective space, many non-isomorphic projective MDS were found. Also, with incidence matrix idea of points and lines in the projective space, many other linear perfect (non-perfect) codes were found. The most important property of the rows of incidence matrix IM^* is that each i-th row is just circulate to the $(i − 1)$-th row, except the last row. The best linear code that can be constructed from the incidence matrix IM^* is when it is taken over F_5, since it will have a Hamming weight $1 ≤ d ≤ 226$, while over the others that are of order distinct from 5, it behaves like a trivial code. Also, when the matrix IM^* is taken over F_2, a perfect code is founded.

Acknowledgements

The author thanks the University of Mustansiriyah and the Department of Mathematics at the College of Science for their supported to do this research.

References

[1] Bose, R. C. “Mathematical theory of the symmetrical factorial design”, Sankhya, vol.8, pp: 107-166, 1947.
[2] Hirschfeld, J. W. P. Projective geometries over finite fields, 2nd ed. New York: Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, 1998.
[3] MacWilliams, F.J. and Sloane, N.J.A. The Theory of error-correcting codes, 6th ed. Amsterdam: North-Holland Publishing Company, 1977.
[4] Ball, S. and Hirschfeld, J.W.P. “Bounds on (n,r)-arcs and their application to linear code”, Finite Fields and Their Applications, vol.11, pp. 326-336, 2005.
[5] Ezerman, M.F., Grassl, M. and Sole, P. “The weights in MDS codes, Institute of Electrical and Electronics Engineers”. Transactions on Information Theory, vol.57, no.1, pp. 392-396, 2011.
[6] Alderson, T.L. “On the weights of general MDS codes”, arXiv: Combinatorics, 2019. DOI:10.1109/tit.2020.2977319.
[7] Dougherty, S.T. and Han, S. “Higher weights and generalized MDS codes”, J. Korean Math. Soc., vol. 47, no. 6, pp.1167-1182, 2010.
[8] Zhao, H., Nian, L. and Xiangyong, Z. “New linear codes with few weights derived from Kloosterman sums”. Finite Fields and Their Applications, vol. 62, article No. 101608, 2020.
[9] Heng, Z., Ding, C. and Wang, W. “Optimal binary linear codes from maximal arcs” 2020, arxiv.org/abs/2001.01049v1.
[10] Al-Zangana, E. B. The geometry of the plane of order nineteen and its application to error correcting codes. Ph.D. Thesis, University of Sussex, UK, 2011.
[11] Heng, Z. and Ding, C. “The subfield codes of hyperoval and conic codes”, Finite Fields and Their Applications, vol. 56, pp. 308-331, 2019.

[12] The GAP Group. GAP. Reference manual, 2020. [Online]. https://www.gap-system.org/

Al-Zangana, E. B. and Shehab, E. AB. “Classification of k-sets in PG(1,25), for k=4,...,13,” Iraqi Journal of Science, vol. 59, no. 1B, pp. 360-368, 2018.

[13] Al-Zangana, E.B. and Shehab, E. AB. “Conic Parameterization in $P(2, 25)$”, Al-Mustansiriyah Journal of Science, vol. 29, no. 2, pp. 164-168, 2018.

[14] Assmus, E.F. and Key, J.D. Designs and their codes. Cambridge; New York, USA: Cambridge University Press, 1992.

[15] Bagchi, B. and Inamdar, S.P. “Projective geometric codes”, Journal of Combinatorial Theory, Series A, vol. 99, no. 1, pp. 128-142, 2002.

[16] Gaojun, L., Cao, X., Xu, S. and Mi, J. “Binary linear codes with two or three weights from niho exponents,” Cryptography and Communications, vol. 10, no. 2, pp. 301-318, 2018.