Interferon-\(\gamma\) Induces Senescence in Normal Human Melanocytes

Suiquan Wang1, Miaoni Zhou1, Fuquan Lin1, Dongyin Liu1, Weisong Hong1, Liangjun Lu1,2, Yiping Zhu1,2, Aie Xu1*

1 Department of Dermatology, Hangzhou Institute of Dermatology and Venereology, Third People’s Hospital of Hangzhou, Hangzhou, Zhejiang Province, China, 2 Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province, China

Abstract

Background: Interferon-\(\gamma\) (IFN-\(\gamma\)) plays an important role in the proceedings of vitiligo through recruiting lymphocytes to the lesional skin. However, the potential effects of IFN-\(\gamma\) on skin melanocytes and the subsequent contribution to the vitiligo pathogenesis are still unclear.

Objective: To investigate the effects of IFN-\(\gamma\) on viability and cellular functions of melanocytes.

Methods: Primary human melanocytes were treated with IFN-\(\gamma\). Cell viability, apoptosis, cell cycle melanin content and intracellular reactive oxygen species (ROS) level were measured. mRNA expression was examined by real-time PCR. The release of interleukin 6 (IL-6) and heat shock protein 70 (HSP-70) was monitored by ELISA. \(\beta\)-galactosidase staining was utilized to evaluate melanocyte senescence.

Results: Persistent IFN-\(\gamma\) treatment induced viability loss, apoptosis, cell cycle arrest and senescence in melanocytes. Melanocyte senescence was characterized as the changes in pigmentation and morphology, as well as the increase of \(\beta\)-galactosidase activity. Increase of p21(Cip1/Waf1) protein was evident in melanocytes after IFN-\(\gamma\) treatment. IFN-\(\gamma\) induction of senescence was attenuated by siRNAs against p21, Janus kinase 2 (JAK2) or signal transducer and activator of transcription 1 (STAT1), but not by JAK1 siRNA nor by p53 inhibitor pifithrin-\(\alpha\). IFN-\(\gamma\) treatment increased the accumulation of intracellular ROS in melanocytes, while ROS scavenger N-acetyl cysteine (NAC) effectively inhibited IFN-\(\gamma\) induced p21 expression and melanocyte senescence. IL-6 and HSP-70 release was significantly induced by IFN-\(\gamma\) treatment, which was largely inhibited by NAC. The increase of IL-6 and HSP-70 release could also be observed in senescent melanocytes.

Conclusion: IFN-\(\gamma\) can induce senescence in melanocytes and consequently enhance their immuno-competency, leading to a vitiligo-prone milieu.

Introduction

The loss of melanocytes is the cause of skin de-pigmentation in vitiligo, an acquired disfiguring skin disorder which affects 0.5–1% of the worldwide population [1]. The pathogenesis of vitiligo is elusive but appears to involve immunologic factors, oxidative stress, sympathetic neurogenic disturbance or other factors [2]. Melanocyte-specific CD8+ T lymphocytes-mediated autoimmune response is currently highlighted to be associated with the destruction of the melanocytes in vitiligo [3–5]. But the mechanisms that provoke the immune response against autologous melanocytes are still unclear. Since cytokines and the related inflammatory mediators modulate the activation and skin homing of lymphocytes [6,7], they are the important research objectives for elucidating the onset of autoimmune vitiligo. On the other hand, the discovery of redox imbalance in the vitiligo links the oxidative stress to vitiligo [8–10]. Recently, melanocytes in non-lesional skin of vitiligo patients were further proven to display aberrant senescence-like features [10]. Vitiligo is accordingly proposed to be a degenerative disorder, possibly caused by continuous stress which leads to apoptosis or senescence in melanocytes [10]. Due to the fact that some cytokines also directly or indirectly regulate the proliferation and/or differentiation of melanocytes [11], it is possible that melanocyte degeneration and autoimmune response are triggered by the same spectrum of cytokines.

Studies have shown that various cytokines including interferon-\(\gamma\) (IFN-\(\gamma\)) [3,12], tumor necrosis factor \(\alpha\) (TNF\(\alpha\)) [13,14] and chemokine (C-C motif) ligand 22 (CCL22) [15] are differentially expressed in the lesional skin and serum of vitiligo patients and...
health controls, indicating their roles in vitiligo. Among these cytokines, IFN-γ becomes the most attractive molecule as a result of recent discoveries suggesting its critical roles in the onset and progression of autoimmune vitiligo [16,17].

As a pro-inflammatory cytokine, IFN-γ is predominately released by Th1 lymphocytes, CD8+ cytotoxic T lymphocytes and NK cells [18]. Other cell types including antigen presenting cells, B cells and NKT cells can also secrete IFN-γ [19–21]. The presence of IFN-γ is important in early innate immune response against infection, whereas IFN-γ secretion by T lymphocytes displays complex effects on regulating adaptive immune response [22]. Aside from host defense, IFN-γ is implicated in pathology of some autoimmune diseases such as systemic lupus erythematosus, multiple sclerosis and insulin-dependent diabetes [23]. In terms of vitiligo, IFN-γ level was significantly increased in lesional and adjacent uninvolved skin, as well as in the serum of vitiligo patients [3,12]. Recent studies using various mouse models of vitiligo confirmed that IFN-γ played an important role in skin depigmentation through inducing local accumulation of melanocyte-specific CD8+ T cells [16,17].

In this study, we aimed to understand the effects of IFN-γ on the viability and cellular functions of melanocytes, and the underlying mechanisms. Our data demonstrated that IFN-γ blocked cell cycle and induced senescence in melanocytes and consequently increased their immuno-competency by enhancing the expression of immune response accelerators including interleukin 6 (IL-6) and heat shock protein 70 (HSP-70). Our findings thus provide more evidence to support the critical roles of IFN-γ in the pathogenesis of vitiligo.

Materials and Methods

Ethics statement

Institutional Research Ethics Approval from Institutional Research Ethics Committee of Third Hospital of Hangzhou, Hangzhou, China was obtained to collect samples of human material for research. The Declaration of Helsinki Principles was followed and patients gave written informed consent.

Cell culture

The primary normal melanocytes (NHM) were isolated from human foreskin specimens obtained after circumcision surgery. Vitiligo melanocytes (VHM) were isolated from normally pigmented skin in the gluteal regions of vitiligo patients. Cells were cultured in Hu16 medium (F12 supplemented with 10% fetal bovine serum (FBS), 20 ng/ml bFGF and 20 μg/ml IBMX). Cells were used between passages 2 and 5. Methods for the isolation and cultivation of melanocytes were described previously [24]. Melanocytes were seeded at a density of 1×10^5 cells per well into 96-well plates or at a density of 3×10^3 cells per well into 6-well plates and incubated overnight before experiments. All culture medium components were purchased from Life Technologies (NY, USA).

Cell viability, cell cycle and apoptosis examinations

Cell viability was measured using a Non-Radioactive Cell Proliferation Assay kit (Promega, WI, USA) according to the manufacturer’s protocol. The absorbance of the final reaction product was measured at 490 nm with a microplate spectrophotometer (SpectraMax190, Molecular Devices, CA, USA).

For cell cycle analysis, the melanocytes were fixed with pre-chilled 70% ethanol overnight at 4°C after the treatment. Prior to analysis, cells were spun down and re-suspended in staining solution (PBS with 30 μg/ml propidium iodide (PI) and 200 μg/ml RNase A). Cells were incubated at 37°C for 30 minutes and immediately assayed on a flow cytometer (FACScalibur, BD Biosciences, CA, USA).

Melanocyte apoptosis was detected with Annexin V-PI staining kit (Life Technologies). Cells were detached and re-suspended in 100 μl of binding buffer containing Annexin V-FITC and PI for 15 min at room temperature in the dark. Then, 400 μl of 1× binding buffer was added, and the cells were analyzed immediately with a flow cytometer.

The melanin content measurement

Cell lysates were prepared by lysing melanocytes in 20 mM Tris-HCl (pH 7.2) containing 1% Triton X-100, 0.01% SDS, and a protease inhibitor cocktail (Roche Molecular Biochemical, IN, USA). Cell lysates were centrifuged at 12,000 rpm for 15 minutes at 4°C. Melanin in cell pellets was then dissolved in 1 N NaOH/10% DMSO by heating at 80°C for 1 h. The melanin content was assayed in a microplate spectrophotometer at 470 nm, and the relative melanin quantity was normalized with protein concentration of each sample which was measured by BCA protein assay kit (Beyotime, China).

ELISA

Released HSP-70 was monitored using an HSP-70 high sensitivity enzyme linked immunosorbert assay (ELISA) kit (ENZO, Switzerland), and the release of IL-6 was measured using an IL-6 ELISA kit (Abcam, UK). Briefly, 100 μl of standards or the experimental supernatant were pipetted into microtiter plate and incubated for 2 hours at room temperature. After removal of the samples, the plate was washed and incubated with antibody specific for HSP-70 or IL-6, followed by incubation with secondary antibody conjugated to horseradish peroxidase. The plate was then incubated with substrate solution for 30 min before the reaction was terminated by the addition of stop solution. Optical density was read at 450 nm with a microplate spectrophotometer. HSP-70 or IL-6 concentration of each sample was converted from standard curve.

Intracellular ROS measurement

Melanocytes were washed with PBS and incubated with 2 μM 2, 7-dichlorodihydrofluorescein diacetate (DCFH-DA) (Life Technologies) diluted in serum free medium at 37°C for 30 min. The intracellular ROS level was immediately analyzed with flow cytometer at an excitation wavelength of 488 nm and an emission wavelength of 530 nm.

RNA Isolation and Real-time RT-PCR analysis

Total RNA was extracted from melanocytes with SV total RNA purification kit (Promega, Shanghai, China). Reverse transcript reaction was performed using QuantiTect Reverse Transcription Kit (Qiagen, Germany). Real time PCR was performed using QuantIFast SYBR Green PCR Kit (Qiagen). The expression levels of each gene was normalized against β-actin using the comparative CΔt method, and expressed as percentage of control, with the control as 1. Sequences of primers are listed on the Table S1.

RNA silencing

Melanocytes were transfected with siRNA pools for target genes and a non-targeting control siRNA (GenePharma, China) using Lipofectamine 2000 (Life Technologies) according to manufacturer’s protocol. Cells were cultured for 48 hours before receiving further treatments.

Immunoblotting

The proteins in the total cell lysates were separated by 10% SDS-PAGE followed by transferring to a nitrocellulose membrane.
The membrane was blocked with 5% non-fat milk in TBST (50 mM Tris.Cl, pH 7.6, 150 mM NaCl, 0.1% Tween-20) for 1 hour at room temperature, followed by overnight incubation at 4°C with specific primary antibodies against p53, p21, p16, Jak1, Jak2, STAT1 and β-actin (Abcam, UK). The membrane was then washed with TBST and incubated with fluorescent dye-labeled secondary antibody for 1 h at room temperature in the dark. The protein immuno-complex was visualized by an Odyssey Infrared Imaging System (LI-COR, USA).

Senescence Associated β-galactosidase (SA-β-gal) staining

The senescent status of the cells was detected using Senescence-galactosidase staining kit (Cell signaling technology, MA, USA). In brief, cells were washed with PBS and fixed with 1/6 fixation buffer.

Figure 1. IFN-γ decreased viability of melanocytes, caused apoptosis and cell cycle arrest. Primary normal human Melanocytes were treated with various concentrations of IFN-γ (0, 100 or 1000 U/ml) for 72 h. Cell viability was then examined by MTS assay (A). Apoptosis was analyzed by flow cytometry after cells were stained with PI and Annexin V-FITC (B). (C) Cell cycle distribution of melanocytes was measured 24 h post IFN-γ treatment. Results are presented as mean ± SD from at least three independent melanocyte cultures. *P<0.05, **P<0.01, Student’s t-test compared with controls.

doi:10.1371/journal.pone.0093232.g001

Figure 2. Effects of IFN-γ on melanogenesis in normal melanocytes. (A) Melanocytes were treated with various concentrations of IFN-γ (0, 100 or 1000 U/ml) for 3 or 7 days before melanin content was measured. The melanin content was normalized on the basis of protein concentration. (b–g) Total RNA was extracted from melanocytes treated with or without IFN-γ for 24 hours. Real-time PCR was then performed to evaluate the relative mRNA levels of (B) tyrosinase (TYR), (C) tyrosinase-related protein 1 (TYRP1), (D) Melan-A, (E) melanocyte protein 17 (PMEL17), (F) microphthalmia-associated transcription factor (MITF), and (G) dopachrome tautomerase (DCT). The values shown represent the mean ± SD of three independent melanocyte cultures. *P<0.05 and **P<0.01.

doi:10.1371/journal.pone.0093232.g002
for 5 min at room temperature. Cells were then washed three times with PBS and incubated with staining solution at 37°C for 24 hour. The reaction was stopped by washing off the staining solution. The percentage of SA-β-gal positive cells was determined after counting cells from five randomly selected fields. Representative fields were photographed at 10× objective.

Statistical analysis

Student’s t-test was used to assess statistical significance. A value of P<0.05 or P<0.01 was considered to be a significant difference. Data were expressed as the mean ± SD from at least three independent experiments.

Results

IFN-γ causes cell cycle arrest and apoptosis in normal human melanocytes

To evaluate the effects of IFN-γ on melanocytes, we treated normal human melanocytes with IFN-γ and then examined the cell viability and apoptosis. As shown in Fig. 1A, IFN-γ significantly decreased the cell viability in a dose dependent manner. 1000 U/ml IFN-γ also caused obvious apoptosis in melanocytes (35.0% vs. 7.8% in untreated cells, p<0.05). In contrast, 100 U/ml IFN-γ induced very low rate of apoptosis (13.9% vs. 7.8%, Fig. 1B). Cell cycle analysis results demonstrated that IFN-γ at both concentrations caused the accumulation of
melanocytes at G1 phase, while decreased the percentage of cells at S and G2/M phases (Fig. 1C). This result suggests that IFN-γ blocks cell growth by inducing G1/S cell cycle arrest.

IFN-γ regulates the transcription of melanogenesis-related genes and increases melanin content in normal human melanocytes

To investigate the effect of IFN-γ on melanogenesis, melanocytes were treated with various concentrations of IFN-γ and harvested at 3 or 7 days after the treatment. The results demonstrated that 100 U/ml IFN-γ gradually and moderately increased the intracellular melanin level (40% on day 3 and 68% on day 7, p<0.01). 1000 U/ml IFN-γ didn’t change the melanin level on day 3 but increased the melanin content on day 7 by 100% (Fig. 2A). We further examined the transcriptional profiles of melanogenesis-related genes. The results showed that IFN-γ up-regulated mRNA level of tyrosinase (TYR) (Fig. 2B), Melan-A (Fig. 2D), melanocyte protein 17 (PMEL17) (Fig. 2E) and microphthalmia-associated transcription factor (MITF) (Fig. 2F). IFN-γ had no significant effect on the mRNA expression of tyrosinase-related protein 1 (TYRP1) (Fig. 2C), but significantly decreased the transcription of dopachrome tautomerase (DCT) (Fig. 2G).

IFN-γ induces senescence in melanocytes through p21Cip1/Waf1

The morphological pictures showed that the normal adult human melanocytes were pale, dendritic with small cell bodies. In contrast, melanocytes after persistent IFN-γ treatment became large, flat in shape with shorter and fewer dendrites, and some cells were highly pigmented (Fig. 3A). We also noticed a significant increase of SA-β-gal staining, a marker of senescence, in melanocytes with 7 days of IFN-γ stimulation (Fig. 3A, B). IFN-γ treated melanocytes grew slower than untreated normal cells even after the removal of IFN-γ (Fig. 3C). p53/p21Cip1/Waf1 and p16Ink4a are two major pathways that mediate senescence [25,26]. Depending on the cell type or stressor, senescence might be mediated by activation of either of the pathway [26–28]. Immunoblotting analysis indicated that protein level of p21 was greatly elevated with the increasing duration of IFN-γ treatment, while p16 level didn’t change during the experiment (Fig. 3D). Surprisingly, the protein level of p53, the transcriptional activator of p21, didn’t show significant increase upon IFN-γ treatment (Fig. 3D). In vitiligo melanocytes, IFN-γ treatment also increased the p21 protein level accompanied by the increase of SA-β-gal expression without changing the protein levels of p53 and p16 (Fig. S1). To verify whether p21 was required for the melanocyte senescence induced by IFN-γ, we transfected melanocytes with siRNA pools targeting p21. As demonstrated, p21 siRNA treatment suppressed the IFN-γ-induced increase of SA-β-gal staining (Fig. 3E), while p53 inhibitor pifithrin-α failed to have such an effect (Fig. 3F).

IFN-γ-induced p21 expression and senescence depend on JAK2 and STAT1 signaling in melanocytes

In canonical IFN-γ signaling, IFN-γ bound receptor complex recruits Janus kinase 1 (JAK1) and JAK2 kinases, leading to the phosphorylation and nuclear translocation of signal transducer and activator of transcription 1 (STAT1), which in turn transcriptionally activates downstream IFN-γ inducible genes [18]. To elucidate the possible involvement of JAK/STAT signaling in IFN-γ induced melanocyte senescence, we transfected...
IFN-γ-induced melanocyte senescence requires reactive oxygen species (ROS)

ROS has been reported to play a critical role in the induction of melanocyte senescence. The accumulation of ROS in melanocytes is associated with the occurrence of cytotoxicity or apoptosis in vitiligo skin in vivo [33]. Previous studies suggested that melanocytes in non-lesional skin of vitiligo patients displayed aberrant features [10,35,36], including increased production of biologically active proteins among the senescence-associated secretory phenotype (SAPS), such as IL-6 and matrix metalloproteinase-3, compared with melanocytes from normal healthy controls. It is then proposed that vitiligo is a degenerative disease with melanocytes showing pre-senescent phenotype caused by oxidative and other stresses [10]. In this study, we observed that persistent exposure to IFN-γ caused melanocyte senescence for which ROS is required. Because IFN-γ is present in various inflammatory conditions and is found to be elevated in the vitiliginous skin, it is possible that depigmentation in vitiligo arises from localized inflammation, where IFN-γ interferes with the cell viability of surrounding melanocytes, leading to the senescence-driven melanocyte detachment.

Melanocyte senescence is often accompanied with the increase of pigmentation [37,38]. In our study, IFN-γ promoted the accumulation of melanin in melanocytes, and increased the transcription of some of the melanogenesis-related genes. However, it also significantly decreased the mRNA level of DCT, which encodes a critical enzyme in the synthesis of eumelanin [39]. Thus, IFN-γ might change the eumelanin/pheomelanin ratio in melanocytes. Even though IFN-γ treatment increases the melanin content in melanocytes, it also causes the morphologic changes of melanocytes including shortened dendrites which might be associated with the change of their melanosome transferring

Discussion

Autoimmunity and oxidative stress are considered as key factors involved in the destruction of melanocytes in vitiligo. Despite the existence of accumulating evidence supporting the pathogenic role of oxidative stress, there is a lack of convincing proof indicating the occurrence of cytotoxicity or apoptosis in vitiligo skin in vivo [33]. Normal melanocytes produce various cytokines and other immune-related factors [32,33]. We first measured the mRNA level of IL-6 in the melanocytes exposed to IFN-γ. It was shown that 24 hour of IFN-γ stimulation significantly enhanced the IL-6 transcription by about 4-fold. When the IFN-γ duration prolonged to 7 days, the enhancement of IL-6 transcription was increased even higher to 20-fold (Fig. 6A). The ELISA results confirmed time-dependent IL-6 secretion in melanocytes after IFN-γ treatment (Fig. 6B). Similar to IL-6, the secretion of heat shock protein 70 (HSP-70) was also enhanced significantly with IFN-γ stimulation (Fig. 6C). In addition, the effect of IFN-γ on IL-6 and HSP-70 was largely inhibited by the ROS scavenger NAC (Fig. 6D). To determine whether the senescence status changes the release of IL6 and Hsp70, we collected the supernatants from IFN-γ-induced senescent melanocytes and normal melanocytes. The result indicated that senescent melanocytes released significantly higher amount of IL-6 and HSP-70 compared with normal melanocytes (Fig. 6E). Thus, IFN-γ-induced IL-6 and HSP-70 release was associated with ROS production and cell senescence.

ROS and senescence status enhanced the secretion of IL-6 and HSP-70 from melanocytes

Normal melanocytes produce various cytokines and other immune-related factors [32,33]. We first measured the mRNA level of IL-6 in the melanocytes exposed to IFN-γ. It was shown that 24 hour of IFN-γ stimulation significantly enhanced the IL-6 transcription by about 4-fold. When the IFN-γ duration prolonged to 7 days, the enhancement of IL-6 transcription was increased even higher to 20-fold (Fig. 6A). The ELISA results confirmed time-dependent IL-6 secretion in melanocytes after IFN-γ treatment (Fig. 6B). Similar to IL-6, the secretion of heat shock protein 70 (HSP-70) was also enhanced significantly with IFN-γ stimulation (Fig. 6C). In addition, the effect of IFN-γ on IL-6 and HSP-70 was largely inhibited by the ROS scavenger NAC (Fig. 6D). To determine whether the senescence status changes the release of IL6 and Hsp70, we collected the supernatants from IFN-γ-induced senescent melanocytes and normal melanocytes. The result indicated that senescent melanocytes released significantly higher amount of IL-6 and HSP-70 compared with normal melanocytes (Fig. 6E). Thus, IFN-γ-induced IL-6 and HSP-70 release was associated with ROS production and cell senescence.
Therefore, the overall impact of IFN-γ and melanocyte senescence on skin pigmentation is needed to be determined by further study.

p53/p21 and p16 are two main pathways engaged in the regulation of senescence [25,26]. In a stress condition, p53 might be activated and it in turn transcriptionally activates p21 to execute the senescence induction. However, p21 can also be induced in a p53-independent way [41,42]. Previous study demonstrated the main contribution of p16 on accelerated senescence observed in vitiligo melanocytes [10] or senescence in normal melanocytes at high passage levels [43]. Here we demonstrated that IFN-γ treatment affected the expression of p21 in both of normal melanocytes and vitiligo melanocytes without changing the protein levels of p53 and p16, and only knocking-down of p21 was effective to prevent the IFN-γ-induced melanocyte senescence. These results suggest that IFN-γ induced melanocyte senescence is mediated by p21, but not by p53 or p16.

Among the factors that can be released from melanocytes, we are particularly interested in IL-6. Part of reason is that IL-6 is an important immune reaction regulator and considered to play critical roles in the pathogenesis of various autoimmune disorders [44–46]. Increasing serum and/or lesional skin levels of IL-6 have been documented in vitiligo [47]. Additionally, it has been shown that IL-6 directly inhibits the growth and modulates antigen expression of melanocytes [48]. High level of IL-6 in the lesional skin of vitiligo was indicated to be relevant to the failure of melanocyte transplantation therapy (unpublished data). It was hypothesized that increasing IL-6 links melanocyte stress and immune targeting of these cells [32]. Another molecule that plays important roles in vitiligo is HSP-70. HSP-70 is a molecular chaperon which protects cellular proteins from premature degradation by supporting proper protein folding. It can be released into extracellular environment. In contrast to the cytoprotective function of intracellular HSP-70, extracellular HSP-70 is immunogenic and associated with some autoimmune disease [49,50]. HSP-70 has recently gained the attention as a critical molecule to accelerate immune response against melanocytes in vitiligo [51,52]. Secreted HSP-70 from melanocytes can activate dendritic cells (DCs) and enhance the capacity of DCs to uptake and presenting antigens leading to an increased vitiligo response [52,53]. Whereas, an HSP-70 molecule with single mutation in the DC binding region interferes with the activation of DC and reverses the depigmentation in a mouse vitiligo model [54]. In this study, we found that release of IL-6 or HSP-70 from melanocytes was significantly elevated upon persistent exposure to IFN-γ or after senescence induction. These results indicate that IFN-γ can profoundly affect the immuno-competency of melanocytes.

Redox imbalance occurs generally in vitiligo [34]. H₂O₂, a main source of ROS, has been proven to accumulate in the capacity [40]. Therefore, the overall impact of IFN-γ and melanocyte senescence on skin pigmentation is needed to be determined by further study.

Figure 6. Release of IL-6 and hsp70 from melanocytes was enhanced after persistent IFN-γ treatment or senescence induction. (A) Melanocytes were treated with or without 100 U/ml IFN-γ for continuous 7 days. RNA was extracted from melanocytes at day 1 and day 7. Real time PCR was performed to evaluate the transcription of IL-6 in these cells. CON represents the control cells. (B–D) Melanocytes were treated with or without 100 U/ml IFN-γ for 7 days in the presence of vehicle or 1 mM NAC. Supernatants of cell culture were collected at the indicated time points. Medium was changed 48 h before the supernatant collection. Release of IL-6 (B) or HSP-70 (C) in response to IFN-γ treatment was monitored by ELISA analysis. (D) The effect of NAC on the release of IL-6 and HSP-70 after IFN-γ treatment was evaluated. (E) Melanocytes were treated with or without 100 U/ml IFN-γ for 7 days to induce senescence. Senescent melanocytes were then cultured in normal medium for 4 days before the supernatant was collected. The medium was changed 48 h before the supernatant collection. Protein levels of released IL-6 and HSP-70 from senescent cells were compared with those from normal cells.

doi:10.1371/journal.pone.0093232.g006
epidermis of acute vitiligo patients [9]. The findings of ROS involvement in the IFN-γ induced melanocyte senescence and stimulation of IL-6 and HSP-70 release provides new evidence of link among oxidative stress, melanocyte degeneration and autoimmune vitiligo [35]. It is conceivable to hypothesize that increased ROS by other factors may also trigger melanocyte senescence, and the following release of IL-6 and HSP-70 as well. If the hypothesis is correct, it will give us an additional rationale to use antioxidants for the treatment of vitiligo.

Taken together, our findings support the idea that IFN-γ directly decreases the viability of melanocytes, and meanwhile it helps create a vitiligo-prone milieu by enhancing the release of some autoimmune accelerators such as IL-6 and HSP-70. The overall effects then facilitate the onset and progress of vitiligo. More studies are necessary to be carried out to further elucidate the mechanism and impact of melanocyte senescence to develop effective strategies on vitiligo treatment.

Supporting Information

Figure S1 Analysis of senescence-related gene expression in vitiligo melanocytes after IFN-γ treatment.

References

1. Ezzedine K, Lim HW, Suzuki T, Katayama I, Hamzavi I, et al. (2012) Vitiligo Global Issue Consensus Conference Panels. Revised classification/nomenclature of vitiligo and related issues: the Vitiligo Global Issues Consensus Conference. Pigment Cell Melanoma Res 25: E1–13.
2. Taieb A, Picozzi M (2009) Clinical practice. Vitiligo. N Engl J Med 360: 160–169.
3. van den Boorn JG, Konijnenberg D, Dellemijn TA, van der Veen JP, Bos JD, et al. (2012) Intracellular reactive oxygen species (ROS) involvement in the IFN-γ-induced melanocyte senescence and stimulation of IL-6 and HSP-70. Exp Dermatol 21: 1007–1014.
4. Seif El Nasr H, Shaker O, Fawzi MM, El-Hanafi G (2013) Basic fibroblast growth factor and tumour necrosis factor α correlates with an impairment in regulatory T cells in patients with generalized vitiligo. PLoS One 8: e57351.
5. Liy Y, Yi W, Y. J., Yue S, Weinim S, et al. (2012) Global activation of CD68+ cytotoxic T lymphocytes correlates with an impairment in regulatory T cells in patients with generalized vitiligo. PLoS One 8: e70905.
6. McCully ML, Ladeli K, Hako-yabe S, Manel RE, Price DA, et al. (2012) Epidermis instructs skin homing receptor expression in human T cells. Blood 120: 4501–4506.
7. Biedermann T, Lametschwandtner G, Tzannou G, Kudin I, Hinterregger S, et al. (2006) IL-12 instructs skin homing of human Th2 cells. J Immunol 177: 3763–3770.
8. Dell’anna ML, Cario-Andre M, Lepreux S, Pain C, Taieb A, et al. (2012) Global activation of CD68+ cytotoxic T lymphocytes correlates with an impairment in regulatory T cells in patients with generalized vitiligo. PLoS One 8: e57351.
9. Biedermann T, Lametschwandtner G, Tzannou G, Kudin I, Hinterregger S, et al. (2006) IL-12 instructs skin homing of human Th2 cells. J Immunol 177: 3763–3770.
10. Biedermann T, Lametschwandtner G, Tzannou G, Kudin I, Hinterregger S, et al. (2006) IL-12 instructs skin homing of human Th2 cells. J Immunol 177: 3763–3770.
11. Hirose T (2006) Role of keratinocyte-derived factors involved in regulating the senescence, and the following release of IL-6 and HSP-70 as well.
12. Bellei B, Pitisci A, Ottaviani M, Ludovici M, Cota C, et al. (2013) Vitiligo: A Possible Model of Degenerative Diseases. PLoS One 8: e59782.
13. Bellei B, Pitisci A, Ottaviani M, Ludovici M, Cota C, et al. (2013) Vitiligo: A Possible Model of Degenerative Diseases. PLoS One 8: e59782.
14. Seif El Nasr H, Shaker O, Fawzi MM, El-Hanafi G (2013) Basic fibroblast growth factor and tumour necrosis factor α correlates with an impairment in regulatory T cells in patients with generalized vitiligo. PLoS One 8: e57351.
15. Liy Y, Yi W, Y. J., Yue S, Weinim S, et al. (2012) Global activation of CD68+ cytotoxic T lymphocytes correlates with an impairment in regulatory T cells in patients with generalized vitiligo. PLoS One 8: e70905.
16. Harris JE, Harris TH, Weninger W, Wherry EJ, Hunter CA, et al. (2012) A mouse model of vitiligo with focused epidermal degeneration requires IFN-γ for autoactive CD68+ T cell accumulation in the skin. J Invest Dermatol 132: 1869–1876.
17. Gavrilo K, Nichols L, Chen Y, Lu B, Engellhardt VH (2010) Mechanisms of spatial and temporal development of autoimmune vitiligo in tyrosinase-specific TCR transgenic mice. J Immunol 184: 1899–1917.
18. Bach EA, Aguet M, Schreiber RD (1997) The IFN gamma receptor: a paradigm for cytokine receptor signaling. Annu Rev Immunol 15: 963–991.
19. Carumna G, Lee D, Domans O, Park SH, Beavis A, et al. (1999) Cutting edge: Cross-talk between cells of the innate immune system: NK cells rapidly activate NK cells. J Immunol 163: 4674–4650.
20. Fracht DM, Fiskas T, Bogdan C, Schindler H, O’Shea JJ, et al. (2001) IFN-gamma production by antigen-presenting cells: mechanisms emerge. Trends Immunol 22: 556–560.
21. Hashon L, Hershkovitz R, Lantner F, Lieder O, Alon R, et al. (2000) Autocrine secretion of interferon gamma negatively regulates homing of immature B cells. J Exp Med 192: 1301–1308.
22. Sen GC (2001) Viruses and interferons. Annu Rev Microbiol 55: 255–281.
23. Schroder K, Hertzog PJ, Ravasi T, Huene DA (2004) Interferon-gamma: an overview of signals, mechanisms and functions. J Leukoc Biol 75: 163–109.
24. Hong WS, Hu DX, Qian GP, McCormack SA, Xu A, et al. (2013) Ratio of size of recipient and donor areas in treatment of vitiligo by autologous cultured melanocyte transplantation. Br J Dermatol 165: 520–525.
25. Kullman T, Michaloglou C, Mooi WJ, Peper DS (2010) The essence of senescence. Genes Dev 24: 2463–2479.
26. Beaussjour CM, Krotolica A, Galimis F, Narita M, Lowe SW, et al. (2003) Reversal of human cellular senescence: roles of the p53 and p16 pathways. EMBO J 22: 4212–4222.
27. Barraud R, Nikoloufo MA (2010) Pathways of oncogene-induced senescence in human melanocytic cells. Cell Cycle 9: 2782–2788.
28. Herbig U, Jolinga WA, Chen BP, Chen DJ, Sedivy JM (2004) Telomere shortening triggers senescence of human cells through a pathway involving ATM, p53, and p21(CIP1), but not p16(INK4a). Mol Cell 14: 501–513.
29. Catalano A, Rodolfi S, Caprini P, Crippoli V, Procopio A (2005) 5-Lipoxygenase regulates senescence-like growth arrest by promoting ROS-dependent p53 activation. EMBO J 24: 170–179.
30. Macip S, Igarashi M, Fang L, Chen A, Pan ZZ, et al. (2002) Inhibition of p21-mediated ROS accumulation can rescue p21-induced senescence. EMBO J 21: 2180–2181.
31. Roy N, Stoyanova T, Dominguez-Brauer C, Park HJ, Bagchi S, et al. (2010) DDB2, an essential mediator of premature senescence. Mol Cell 40: 823–830.
32. Tossi S, Orlov SJ, Manga P (2012) Vitiligo-inducing phenols activate the unfolded protein response in melanocytes resulting in upregulation of IL-6 and IL-10. J Invest Dermatol 132: 2601–2609.
33. Imokawa G (2004) Autocrine and paracrine regulation of melanocytes in human skin and in pigmented disorders. Pigment Cell Melanoma Res 17: 96–110.
34. Schallreuter KU, Bahadoran P, McCulloch S, Molinska A, Elassaty YE, et al. (2008) Vitiligo pathogenesis: autoimmune disease, genetic defect, excessive reactive oxygen species, calcium imbalance, or what else. Exp Dermatol 17: 139–140.
35. Gavrilo K, Cario-Andre M, Lepreux S, Pain C, Taieb A (2003) Melanocyte detachment after skin friction in non lesional skin of patients with generalized vitiligo. Br J Dermatol 148: 95–101.

Vitiligo melanocytes (V1–V3) and normal melanocytes (NHM) were treated with or without IFN-γ for 7 days. (A) Cell lysates were subjected to SDS-PAGE and analyzed by western blot with indicated antibodies. β-actin was probed as the loading control. (B) SA-β-gal expression in vitiligo melanocytes (VHM) or normal melanocytes (NHM) was determined based on microscopic analysis.

(TIF)

Table S1 List of primers for real-time PCR reaction.

(DOCX)

Acknowledgments

We gratefully acknowledge the assistance of Prof. Cong Cao at Soochow University in the preparation and review of this manuscript.

Author Contributions

Conceived and designed the experiments: SW AX. Performed the experiments: SW MZ FL DI WH LL YZ. Analyzed the data: SW LL. Wrote the paper: SW AX.

PLOS ONE | www.plosone.org

8 March 2014 | Volume 9 | Issue 3 | e93232
36. Zhou Z, Li CY, Li K, Wang T, Zhang B, et al. (2009) Decreased methionine sulphoxide reductase A expression renders melanocytes more sensitive to oxidative stress: a possible cause for melanocyte loss in vitiligo. Br J Dermatol 161: 504–509.

37. Bandyopadhyay D, Timchenko N, Susa T, Hornby PJ, Campisi J, et al. (2001) The human melanocyte: a model system to study the complexity of cellular aging and transformation in non-fibroblastic cells. Exp Gerontol 36: 1265–1275.

38. Sviderskaya EV, Hill SP, Evans-Whipp TJ, Chin L, Orlov SJ, et al. (2002) p16(Ink4a) in melanocyte senescence and differentiation. J Natl Cancer Inst 94: 446–454.

39. Costin GE, Valencia JC, Wakamatsu K, Ito S, Solano F, et al. (2005) Mutations in dopachrome tautomerase (Dct) affect eumelanin/pheomelanin synthesis, but do not affect intracellular trafficking of the mutant protein. Biochem J 391: 249–259.

40. Marks MS, Sehra MC (2001) The melanosome: membrane dynamics in black and white. Nat Rev Mol Cell Biol 2: 738–748.

41. Zuo S, Liu C, Wang J, Wang F, Xu W, et al. (2012) IGFBP-P1 induces p21 expression through a p33-independent pathway, leading to cellular senescence of MCF-7 breast cancer cells. J Cancer Res Clin Oncol 138: 1045–1055.

42. Sayama K, Shirakata Y, Midorikawa K, Hanakawa Y, Hashimoto K (1999) Possible involvement of p21 but not of p16 or p53 in keratinocyte senescence. J Cell Physiol 179: 40–44.

43. Sviderskaya EV, Gray-Schopfer VC, Hill SP, Smit NP, Evans-Whipp TJ, et al. (2003) p16/Cyclin-dependent kinase inhibitor 2A deficiency in human melanocyte senescence, apoptosis, and immortalization: possible implications for melanoma progression. J Natl Cancer Inst 95: 723–732.

44. Ishihara K, Hirano T (2002) IL-6 in autoimmune disease and chronic inflammatory proliferative disease. Cytokine Growth Factor Rev 13: 357–368.

45. Kishimoto T (2005) Interleukin-6: from basic science to medicine–40 years in immunology. Annu Rev Immunol 23: 1–21.

46. Norose K, Yano A, Wang XC, Tokushima T, Umihira J, et al. (1994) Dominance of activated T cells and interleukin-6 in aqueous humor in Vogt-Koyanagi-Harada disease. Invest Ophthalmol Vis Sci 35: 33–39.

47. Moretti S, Spallanzani A, Amato I, Haussmann G, Gallozzi I, et al. (2002) New insights into the pathogenesis of vitiligo: imbalance of epidermal cytokines at sites of lesions. Pigment Cell Melanoma Res 15: 87–92.

48. Kirnbauer R, Charvat B, Schauer E, Kock A, Urbanski A, et al. (1992) Regulation of intercellular adhesion molecule-1 expression on human melanocytes and melanoma cells: evidence for a regulatory role of IL-6, IL-7, TNF beta, and UVB light. J Invest Dermatol 98: 320–326.

49. Mycko MP, Cwiklinska H, Walczak A, Libert C, Raine CS, et al. (2008) A heat shock protein gene (Hsp70.1) is critically involved in the generation of the immune response to myelin antigen. Eur J Immunol 38: 1999–2013.

50. Mycko MP, Cwiklinska H, Szynski J, Szymanska B, Kudla G, et al. (2004) Inducible heat shock protein 70 promotes myelin autoantigen presentation by the HLA class II. J Immunol 177: 4168–4177.

51. Mosenson JA, Zloza A, Klarquist J, Barfuss AJ, Guevara-Patino JA, et al. (2012) HSP70α is a critical component of the immune response leading to vitiligo. Pigment Cell Melanoma Res 25: 88–98.

52. Denman CJ, McCracken J, Hariharan V, Klarquist J, Oyarbide-Valencia K, et al. (2008) HSP70α accelerates depigmentation in a mouse model of autoimmune vitiligo. J Invest Dermatol 128: 2041–2048.

53. Kroll TM, Bonniyasamy H, Boissy RE, Hernandez C, Nickoloff BJ, et al. (2005) 4-Tertiary butyl phenol exposure sensitizes human melanocytes to dendritic cell-mediated killing: relevance to vitiligo. J Invest Dermatol 124: 788–806.

54. Mosenson JA, Zloza A, Nieland JD, Garrett-Mayer E, Eby JM, et al. (2013) Mutant HSP70 reverses autoimmune depigmentation in vitiligo. Sci Transl Med 5: 134ra201.

55. Laddha NC, Dwivedi M, Mansuri MS, Gani AR, Ansarullah M, et al. (2013) Vitiligo: interplay between oxidative stress and immune system. Exp Dermatol 22: 245–250.