Clustered Colouring of Graph Classes with Bounded Treedepth or Pathwidth

Sergey Norin† Alex Scott‡ David R. Wood¶

Abstract. The clustered chromatic number of a class of graphs is the minimum integer \(k \) such that for some integer \(c \) every graph in the class is \(k \)-colourable with monochromatic components of size at most \(c \). We determine the clustered chromatic number of any minor-closed class with bounded treedepth, and prove a best possible upper bound on the clustered chromatic number of any minor-closed class with bounded pathwidth. As a consequence, we determine the fractional clustered chromatic number of every minor-closed class.

1 Introduction

This paper studies improper vertex colourings of graphs with bounded monochromatic degree or bounded monochromatic component size. This topic has been extensively studied recently [1–6, 8, 10, 12–21, 23–25]; see [26] for a survey.

A \(k \)-colouring of a graph \(G \) is a function that assigns one of \(k \) colours to each vertex of \(G \). In a coloured graph, a monochromatic component is a connected component of the subgraph induced by all the vertices of one colour.

A colouring has defect \(d \) if each monochromatic component has maximum degree at most \(d \). The defective chromatic number of a graph class \(\mathcal{G} \), denoted by \(\chi_{\Delta}(\mathcal{G}) \), is the minimum integer \(k \) such that, for some integer \(d \), every graph in \(\mathcal{G} \) is \(k \)-colourable with defect \(d \).

A colouring has clustering \(c \) if each monochromatic component has at most \(c \) vertices. The clustered chromatic number of a graph class \(\mathcal{G} \), denoted by \(\chi_{\star}(\mathcal{G}) \), is the minimum integer \(k \) such that, for some integer \(c \), every graph in \(\mathcal{G} \) has a \(k \)-colouring with clustering \(c \). We shall consider such colourings, where the goal is to minimise the number of colours, without optimising the clustering value.

Every colouring of a graph with clustering \(c \) has defect \(c - 1 \). Thus \(\chi_{\Delta}(\mathcal{G}) \leq \chi_{\star}(\mathcal{G}) \) for every class \(\mathcal{G} \).

The following is a well-known and important example in defective and clustered graph colouring. Let \(T \) be a rooted tree. The depth of \(T \) is the maximum number of vertices
on a root–to–leaf path in T. The closure of T is obtained from T by adding an edge between every ancestor and descendant in T. For $h, k \geq 1$, let $C(h, k)$ be the closure of the complete k-ary tree of depth h, as illustrated in Figure 1.

Figure 1: The standard example $C(4, 2)$.

It is well known and easily proved (see [26]) that there is no $(h - 1)$-colouring of $C(h, k)$ with defect $k - 1$, which implies there is no $(h - 1)$-colouring of $C(h, k)$ with clustering k. This says that if a graph class \mathcal{G} includes $C(h, k)$ for all k, then the defective chromatic number and the clustered chromatic number are at least h. Put another way, define the tree-closure-number of a graph class \mathcal{G} to be

$$\text{tcn}(\mathcal{G}) := \min \{ h : \exists k \ C(h, k) \notin \mathcal{G} \} = \max \{ h : \forall k \ C(h, k) \in \mathcal{G} \} + 1;$$

then

$$\chi_\star(\mathcal{G}) \geq \chi_\Delta(\mathcal{G}) \geq \text{tcn}(\mathcal{G}) - 1.$$

Our main result, Theorem 1 below, establishes a converse result for minor-closed classes with bounded treedepth. First we explain these terms. A graph H is a minor of a graph G if a graph isomorphic to H can be obtained from some subgraph of G by contracting edges. A class of graphs \mathcal{M} is minor-closed if for every graph $G \in \mathcal{M}$ every minor of G is in \mathcal{M}, and \mathcal{M} is proper minor-closed if, in addition, some graph is not in \mathcal{M}. The connected treedepth of a graph H, denoted by $\overline{\text{td}}(H)$, is the minimum depth of a rooted tree T such that H is a subgraph of the closure of T. This definition is a variant of the more commonly used definition of the treedepth of H, denoted by $\text{td}(H)$, which equals the maximum connected treedepth of the connected components of H. (See [22] for background on treedepth.) If H is connected, then $\text{td}(H) = \overline{\text{td}}(H)$.

In fact, $\text{td}(H) = \overline{\text{td}}(H)$ unless H has two connected components H_1 and H_2 with $\text{td}(H_1) = \text{td}(H_2) = \text{td}(H)$, in which case $\overline{\text{td}}(H) = \text{td}(H) + 1$. It is convenient to work with connected treedepth to avoid this distinction. A class of graphs has bounded treedepth if there exists a constant c such that every graph in the class has treedepth at most c.

2
Theorem 1. For every minor-closed class \mathcal{G} with bounded treedepth,

$$
\chi_\Delta(\mathcal{G}) = \chi_*(\mathcal{G}) = \text{tcn}(\mathcal{G}) - 1.
$$

Our second result concerns pathwidth. A *path-decomposition* of a graph G consists of a sequence (B_1, \ldots, B_n), where each B_i is a subset of $V(G)$ called a *bag*, such that for every vertex $v \in V(G)$, the set $\{i \in [1,n] : v \in B_i\}$ is an interval, and for every edge $vw \in E(G)$ there is a bag B_i containing both v and w. Here $[a,b] := \{a, a+1, \ldots, b\}$. The *width* of a path decomposition (B_1, \ldots, B_n) is $\max\{|B_i| : i \in [1,n]\} - 1$. The *pathwidth* of a graph G is the minimum width of a path-decomposition of G. Note that paths (and more generally caterpillars) have pathwidth 1. A class of graphs has *bounded pathwidth* if there exists a constant c such that every graph in the class has pathwidth at most c.

Theorem 2. For every minor-closed class \mathcal{G} with bounded pathwidth,

$$
\chi_\Delta(\mathcal{G}) \leq \chi_*(\mathcal{G}) \leq 2 \text{tcn}(\mathcal{G}) - 2.
$$

Theorems 1 and 2 are respectively proved in Sections 2 and 3. These results are best possible and partially resolve a number of conjectures from the literature, as we now explain.

Ossona de Mendez et al. [24] studied the defective chromatic number of minor-closed classes. For a graph H, let \mathcal{M}_H be the class of H-minor-free graphs (that is, not containing H as a minor). Ossona de Mendez et al. [24] proved the lower bound, $\chi_\Delta(\mathcal{M}_H) \geq \overline{td}(H) - 1$ and conjectured that equality holds.

Conjecture 3 ([24]). For every graph H,

$$
\chi_\Delta(\mathcal{M}_H) = \overline{td}(H) - 1.
$$

Conjecture 3 is known to hold in some special cases. Edwards et al. [10] proved it if $H = K_t$; that is, $\chi_\Delta(\mathcal{M}_{K_t}) = t - 1$, which can be thought of as a defective version of Hadwiger’s Conjecture; see [25] for an improved bound on the defect in this case. Ossona de Mendez et al. [24] proved Conjecture 3 if $\overline{td}(H) \leq 3$ or if H is a complete bipartite graph. In particular, $\chi_\Delta(\mathcal{M}_{K_{s,t}}) = \min\{s,t\}$.

Norin et al. [23] studied the clustered chromatic number of minor-closed classes. They showed that for each $k \geq 2$, there is a graph H with treedepth k and connected treedepth k such that $\chi_*(\mathcal{M}_H) \geq 2k - 2$. Their proof in fact constructs a set \mathcal{X} of graphs in \mathcal{M}_H with bounded pathwidth (at most $2k - 3$ to be precise) such that $\chi_*(\mathcal{X}) \geq 2k - 2$. Thus the upper bound on $\chi_*(\mathcal{G})$ in Theorem 2 is best possible.

Norin et al. [23] conjectured the following converse upper bound (analogous to Conjecture 3):

Conjecture 4 ([23]). For every graph H,

$$
\chi_*(\mathcal{M}_H) \leq 2 \overline{td}(H) - 2.
$$
While Conjectures 3 and 4 remain open, Norin et al. [23] showed in the following theorem that $\chi_\Delta(M_H)$ and $\chi_\star(M_H)$ are controlled by the treedepth of H:

Theorem 5 ([23]). For every graph H, $\chi_\star(M_H)$ is tied to the (connected) treedepth of H. In particular,

$$\text{td}(H) - 1 \leq \chi_\star(M_H) \leq 2^{\text{td}(H)+1} - 4.$$

Theorem 1 gives a much more precise bound than Theorem 5 under the extra assumption of bounded treedepth.

Our third main result concerns fractional colourings. For real $t \geq 1$, a graph G is **fractionally t-colourable with clustering c** if there exist $Y_1, Y_2, \ldots, Y_s \subseteq V(G)$ and $\alpha_1, \ldots, \alpha_s \in [0, 1]$ such that

1. Every component of $G[Y_i]$ has at most c vertices,
2. $\sum_{i=1}^s \alpha_i \leq t$,
3. $\sum_{v \in Y_i} \alpha_i \geq 1$ for every $v \in V(G)$.

The **fractional clustered chromatic number** $\chi_\Delta^f(G)$ of a graph class \mathcal{G} is the infimum of $t > 0$ such that there exists $c = c(t, \mathcal{G})$ such that every $G \in \mathcal{G}$ is fractionally t-colourable with clustering c.

Fractionally t-colourable with defect d and **fractional defective chromatic number** $\chi_\Delta^f(\mathcal{G})$ are defined in exactly the same way, except the condition on the component size of $G[Y_i]$ is replaced by “the maximum degree of $G[Y_i]$ is at most d”.

The following theorem determines the fractional clustered chromatic number and fractional defective chromatic number of any proper minor-closed class.

Theorem 6. For every proper minor-closed class \mathcal{G},

$$\chi_\Delta^f(\mathcal{G}) = \chi_\star^f(\mathcal{G}) = \text{tcn}(\mathcal{G}) - 1.$$

This result is proved in Section 4.

We now give an interesting example of Theorem 6.

Corollary 7. For every surface Σ, if \mathcal{G}_Σ is the class of graphs embeddable in Σ, then

$$\chi_\Delta^f(\mathcal{G}_\Sigma) = \chi_\star^f(\mathcal{G}_\Sigma) = 3.$$

Proof. Note that $C(3, k)$ is planar for all k. Thus $\text{tcn}(\mathcal{G}_\Sigma) \geq 4$. Say Σ has Euler genus g. It follows from Euler’s formula that $K_{3, 2g+3} \not\in \mathcal{G}_\Sigma$. Since $K_{3, 2g+3} \subseteq C(4, 2g + 3)$, we have $C(4, 2g + 3) \not\in \mathcal{G}_\Sigma$. Thus $\text{tcn}(\mathcal{G}_\Sigma) = 4$. The result follows from Theorem 6. \qed

In contrast to Corollary 7, Dvořák and Norin [8] proved that $\chi_\star(\mathcal{G}_\Sigma) = 4$. Note that Archdeacon [2] proved that $\chi_\Delta(\mathcal{G}_\Sigma) = 3$; see [5] for an improved bound on the defect.

1 If $c = 1$, then this corresponds to a (proper) fractional t-colouring, and if the α_i are integral, then this yields a t-colouring with clustering c.

4
2 Treedepth

Say G is a subgraph of the closure of some rooted tree T. For each vertex $v \in V(T)$, let T_v be the maximal subtree of T rooted at v (consisting of v and all its descendants), and let $G[T_v]$ be the subgraph of G induced by $V(T_v)$.

The weak closure of a rooted tree T is the graph G with vertex set $V(T)$, where two vertices $v, w \in V(T)$ are adjacent in G whenever v is a leaf of T and w is an ancestor of v in T. As illustrated in Figure 2, let $W(h, k)$ be the weak closure of the complete k-ary tree of height h.

Figure 2: The weak closure $W(4, 2)$.

Note that $W(h, k)$ is a proper subgraph of $C(h, k)$ for $h \geq 3$. On the other hand, Norin et al. [23] showed that $W(h, k)$ contains $C(h, k - 1)$ as a minor for all $h, k \geq 2$. Therefore Theorem 1 is an immediate consequence of the following lemma.

Lemma 8. For all $d, k, h \in \mathbb{N}$ there exists $c = c(d, k, h) \in \mathbb{N}$ such that for every graph G with treedepth at most d, either G contains a $W(h, k)$-minor or G is $(h - 1)$-colourable with clustering c.

Proof. Throughout this proof, d, k and h are fixed, and we make no attempt to optimise c.

We may assume that G is connected. So G is a subgraph of the closure of some rooted tree of depth at most d. Choose a tree T of depth at most d rooted at some vertex r, such that G is a subgraph of the closure of T, and subject to this, $\sum_{v \in V(T)} \text{dist}_T(v, r)$ is minimal. Suppose that $G[T_v]$ is disconnected for some vertex v in T. Choose such a vertex v at maximum distance from r. Since G is connected, $v \neq r$. By the choice of v, for each child w of v, the subgraph $G[T_w]$ is connected. Thus, for some child w of v, there is no edge in G joining v and $G[T_w]$. Let u be the parent of v. Let T' be obtained from T by deleting the edge vw and adding the edge uw, so that w is a child of u in T'. Note that G is a subgraph of the closure of T' (since v has no neighbour in $G[T_w]$). Moreover,
dist\(_T(v, r)\) = dist\(_T(x, r)\) - 1 for every vertex \(x \in V(T_w)\), and dist\(_T(y, r)\) = dist\(_T(y, r)\) for every vertex \(y \in V(T) \setminus V(T_w)\). Hence \(\sum_{v \in V(T')} \text{dist}_T(v, r) < \sum_{v \in V(T)} \text{dist}_T(v, r)\), which contradicts our choice of \(T\). Therefore \(G[T_v]\) is connected for every vertex \(v\) of \(T\).

Consider each vertex \(v \in V(T)\). Define the level \(\ell(v) := \text{dist}_T(r, v) \in [0, d - 1]\). Let \(T_v^+\) be the subtree of \(T\) consisting of \(T_v\) plus the \(vr\)-path in \(T\), and let \(G[T_v^+]\) be the subgraph of \(G\) induced by \(V(T_v^+)\). For a subtree \(X\) of \(T\) rooted at vertex \(v\), define the level \(\ell(X) := \ell(v)\).

A ranked graph (for fixed \(d\)) is a triple \((H, L, \preceq)\) where:

- \(H\) is a graph,
- \(L : V(H) \to [0, d - 1]\) is a function,
- \(\preceq\) is a partial order on \(V(H)\) such that \(L(v) < L(w)\) whenever \(v < w\).

Here and throughout this proof, \(v < w\) means that \(v \leq w\) and \(v \neq w\). Up to isomorphism, the number of ranked graphs on \(n\) vertices is at most \(2^{(\binom{n}{2})} \cdot 3^{(\binom{n}{2})}\). For a vertex \(v\) of \(T\), a ranked graph \((H, L, \preceq)\) is said to be contained in \(G[T_v^+]\) if there is an isomorphism \(\phi\) from \(H\) to some subgraph of \(G[T_v^+]\) such that:

(A) for each vertex \(v \in V(H)\) we have \(L(v) = \ell(\phi(v))\), and

(B) for all distinct vertices \(v, w \in V(H)\) we have that \(v < w\) if and only if \(\phi(v)\) is an ancestor of \(\phi(w)\) in \(T\).

Say \((H, L, \preceq)\) is a ranked graph and \(i \in [0, d - 1]\). Below we define the \(i\)-splice of \((H, L, \preceq)\) to be a particular ranked graph \((H', L', \preceq')\), which (intuitively speaking) is obtained from \((H, L, \preceq)\) by copying \(k\) times the subgraph of \(H\) induced by the vertices \(v\) with \(L(v) > i\). Formally, let

\[
V(H') := \{\langle v, 0 \rangle : v \in V(H), L(v) \in [0, i]\} \cup \{\langle v, j \rangle : v \in V(H), L(v) \in [i + 1, d], j \in [1, k]\}.
\]

\[
E(H') := \{\langle v, 0 \rangle \langle w, 0 \rangle : vw \in E(H), L(v) \in [0, i], L(w) \in [0, i]\} \cup \{\langle v, 0 \rangle \langle w, j \rangle : vw \in E(H), L(v) \in [0, i], L(w) \in [i + 1, d], j \in [1, k]\} \cup \{\langle v, j \rangle \langle w, j \rangle : vw \in E(H), L(v) \in [i + 1, d], L(w) \in [i + 1, d], j \in [1, k]\}.
\]

Define \(L'(v, j) := L(v)\) for every vertex \((v, j) \in V(H')\). Now define the following partial order \(\preceq'\) on \(V(H'):\)

- \((v, j) \preceq' (v, j)\) for all \((v, j) \in V(H')\);
- if \(v < w\) and \(L(v), L(w) \in [0, i]\), then \((v, i) \preceq' (w, 0)\);
- if \(v < w\) and \(L(v) \in [0, i]\) and \(L(w) \in [i + 1, d]\), then \((v, 0) \preceq' (w, j)\) for all \(j \in [1, k]\); and
- if \(v < w\) and \(L(v), L(w) \in [i + 1, d]\), then \((v, j) \preceq' (w, j)\) for all \(j \in [1, k]\).

Note that if \((v, a) \preceq' (w, b)\), then \(a \leq b\) and \(v < w\) (implying \(L(v) < L(w)\)). It follows that \(\preceq'\) is a partial order on \(V(H')\) such that \(L'((v, a)) < L'((w, b))\) whenever \((v, a) \preceq' (w, b)\). Thus \((H', L', \preceq')\) is a ranked graph.
For $\ell \in [0, d - 1]$, let
\[N_\ell := (d + 1)(h - 1)(k + 1)^{d-1-\ell}. \]
For each vertex v of T, define the profile of v to be the set of all ranked graphs (H, L, \preceq) contained in $G[T^+_v]$ such that $|V(H)| \leq N_\ell(v)$. Note that if v is a descendant of u, then the profile of v is a subset of the profile of u. For $\ell \in [0, d - 1]$, if $N = N_\ell$ then let
\[M_\ell := 2^{(\frac{d}{2})}d^\frac{\ell}{2}(\frac{3}{2}). \]
Then there are at most M_ℓ possible profiles of a vertex at level ℓ.

We now partition $V(T)$ into subtrees. Each subtree is called a group. (At the end of the proof, vertices in a single group will be assigned the same colour.) We assign vertices to groups in non-increasing order of their distance from the root. Initialise this process by placing each leaf v of T into a singleton group. We now show how to determine the group of a non-leaf vertex. Let v be a vertex not assigned to a group at maximum distance from r. So each child of v is assigned to a group. Let Y_v be the set of children y of v, such that the number of children of v that have the same profile as y is in the range $[1, k - 1]$. If $Y_v = \emptyset$ start a new singleton group $\{v\}$. If $Y_v \neq \emptyset$ then merge all the groups rooted at vertices in Y_v into one group including v. This defines our partition of $V(T)$ into groups. Each group X is rooted at the vertex in X closest to r in T. A group Y is above a distinct group X if the root of Y is on the path in T from the root of X to r.

The next claim is the key to the remainder of the proof.

Claim 1. Let $wv \in E(T)$ where w is the parent of v, and u is in a different group to v. Then for every ranked graph (H, L, \preceq) in the profile of v, the $\ell(u)$-splice of (H, L, \preceq) is in the profile of u.

Proof. Since (H, L, \preceq) is in the profile of v, there is an isomorphism ϕ from H to some subgraph of $G[T^+_v]$ such that for each vertex $x \in V(H)$ we have $L(x) = \ell(\phi(x))$, and for all distinct vertices $x, y \in V(H)$ we have that $x \prec y$ if and only if $\phi(x)$ is an ancestor of $\phi(y)$ in T.

Since u and v are in different groups, there are k children y_1, \ldots, y_k of u (one of which is v) such that the profiles of y_1, \ldots, y_k are equal. Thus (H, L, \preceq) is in the profile of each of y_1, \ldots, y_k. That is, for each $j \in [1, k]$, there is an isomorphism ϕ_j from H to some subgraph of $G[T^+_{y_j}]$ such that for each vertex $x \in V(H)$ we have $L(x) = \ell(\phi_j(x))$, and for all distinct vertices $x, y \in V(H)$ we have that $x \prec y$ if and only if $\phi_j(x)$ is an ancestor of $\phi_j(y)$ in T.

Let (H', L', \preceq') be the $\ell(u)$-splice of (H, L, \preceq). We now define a function ϕ' from $V(H')$ to $V(G[T^+_u])$. For each vertex $(x, 0)$ of H' (thus with $x \in V(H)$ and $L(x) \in [0, \ell(u)]$), define $\phi'((x, 0)) := \phi(x)$. For every other vertex (x, j) of H' (thus with $x \in V(H)$ and $L(x) \in [\ell(u) + 1, d - 1]$ and $j \in [1, k]$), define $\phi'((x, j)) := \phi_j(x)$.

We now show that ϕ' is an isomorphism from H' to a subgraph of $G[T^+_u]$. Consider an edge $(x, a)(y, b)$ of H'. Thus $xy \in E(H)$. It suffices to show that $\phi'((x, a))\phi'((y, b)) \in G[T^+_u]$. If $x \prec y$, then x is an ancestor of y in the profile of u. Thus $\phi'(x) \preceq \phi'(y)$, and $\phi'(x) \neq \phi'(y)$. Thus there are at most M_ℓ different profiles for vertices at level ℓ. Therefore, for each profile $\phi'(x)$, there are at most $\binom{k}{\ell}$ different profiles $\phi'(y)$ such that $\phi'(x) \preceq \phi'(y)$ and $\phi'(x) \neq \phi'(y)$.
Thus $0((x, a)) = 0(x)$ and $0((y, b)) = 0(y)$. Since 0 is an isomorphism to a subgraph of $0[0^+]\), we have $0(x)0(y) \in E(0[0^+])$, which is a subgraph of $0[0^+]\). Hence $0((x, a))0((y, b)) \in E(0[0^+])$, as desired. Now suppose that $a = 0$ and $b \in [1, k]$. Thus $0((x, a)) = 0(x)$ and $0((y, b)) = 0(y)$. Moreover, both $0(0(x))$ and $0(0(y))$ equal $0(x) \in [0, 0(u)]$. There is only vertex z in 0^+ with $0(z)$ equal to a specific number in $[0, 0(u)]$. Thus $0((x, a)) = 0(x) = 0(y) = z$. Since $0(y)$ is an isomorphism to a subgraph of $0[0^+]\), we have $0(y)0(y) \in E(0[0^+])$, which is a subgraph of $0[0^+]\). Hence $0((x, a))0((y, b)) \in E(0[0^+])$, as desired. Finally, suppose that $a = b \in [1, k]$. Thus $0((x, a)) = 0_a(x)$ and $0((y, b)) = 0_a(y)$. Since 0_a is an isomorphism to a subgraph of $0[0^+]\), we have $0_a(x)0_a(y) \in E(0[0^+])$, which is a subgraph of $0[0^+]\). Hence $0((x, a))0((y, b)) \in E(0[0^+])$, as desired. This shows that 0 is an isomorphism from $0'$ to a subgraph of $0[0^+]\).

We now verify property (A) for $(0', L', \preceq')$. For each vertex $(x, 0)$ of $0'$ (thus with $x \in V(0)$ and $0(x) \in [0, 0(u)])$ we have $0'(0((x, 0))) = 0(x) = 0(0((x, 0)))$, as desired. For every other vertex (x, j) of $0'$ (thus with $x \in V(0)$ and $0(x) \in [0(u) + 1, d^d] - 1$ and $j \in [1, k]$) we have $0'(0((x, j))) = 0(x) = 0(0((x, j)))$, as desired. Hence property (A) is satisfied for $(0', L', \preceq')$.

We now verify property (B) for $(0', L', \preceq')$. Consider distinct vertices $(x, a), (y, b) \in V(0')$. First suppose that $a = 0$ and $b = 0$. Then $(x, a) \not\preceq' (y, b)$ if and only if $x < y$ if and only if $0(x)$ is an ancestor of $0(y)$ in 0 if and only if $0((x, a))$ is an ancestor of $0((y, b))$ in 0, as desired. Now suppose that $a = 0$ and $b \in [1, k]$. Then $(x, a) \not\preceq' (y, b)$ if and only if $x < y$ if and only if $0(x)$ is an ancestor of $0(y)$ in 0 if and only if $0((x, a))$ is an ancestor of $0((y, b))$ in 0, as desired. Now suppose that $a = b \in [1, k]$. Then $(x, a) \not\preceq' (y, b)$ if and only if $x < y$ if and only if $0(x)$ is an ancestor of $0(y)$ in 0 if and only if $0((x, a))$ is an ancestor of $0((y, b))$ in 0, as desired. Finally, suppose that $a, b \in [1, k]$ and $a \neq b$. Then (x, a) and (y, b) are incomparable under \preceq', and $0((x, a))$ and $0((y, b))$ in 0 are unrelated in 0, as desired. Hence property (B) is satisfied for $(0', L', \preceq')$.

So $0'$ is an isomorphism from $0'$ to a subgraph of $0[0^+]\]$ satisfying properties (A) and (B). Thus $(0', L', \preceq')$ is contained in $0[0^+]\]$, as desired. Since $(0, L, \preceq)$ is in the profile of ν, we have $|V(0)| \leq (d + 1)(h - 1)(k + 1)^h - \ell(v)$. Since $|V(0')| \leq (k + 1)|V(0)|$ and $\ell(u) = \ell(v) - 1$, we have $|V(0')| \leq (d + 1)(h - 1)(k + 1)^h - \ell(v) = (d + 1)(h - 1)(k + 1)^h - \ell(u)$. Thus $(0', L', \preceq')$ is in the profile of u.

The proof now divides into two cases. If some group X_0 is adjacent in 0 to at least $h - 1$ other groups above X_0, then we show that 0 contains $W(h, k)$ as a minor. Otherwise, every group X is adjacent in 0 to at most $h - 2$ other groups above X, in which case we show that 0 is $(h - 1)$-colourable with bounded clustering.
Finding the Minor

Suppose that some group \(X_0 \) is adjacent in \(G \) to at least \(h - 1 \) other groups \(X_1, \ldots, X_{h-1} \) above \(X_0 \). We now show that \(G \) contains \(W(h, k) \) as a minor; refer to Figure 3. For \(i \in [1, h - 1] \), since \(X_i \) is above \(X_0 \), the root \(v_i \) of \(X_i \) is on the \(v_0r \)-path in \(T \). Without loss of generality, \(v_0, v_1, \ldots, v_{h-1} \) appear in this order on the \(v_0r \)-path in \(T \). For \(i \in [1, h - 1] \), let \(w_i \) be a vertex in \(X_i \) adjacent to some vertex \(z_i \) in \(X_0 \); since \(G \) is a subgraph of the closure of \(T \), \(w_i \) is on the \(v_0r \)-path in \(T \). For \(i \in [0, h - 2] \), let \(u_i \) be the parent of \(v_i \) in \(T \) (which exists since \(v_{h-2} \neq r \)). So \(u_i \) is not in \(X_i \) (but may be in \(X_{i+1} \)). Note that \(v_0, u_0, w_1, v_1, u_1, \ldots, w_{h-2}, v_{h-2}, u_{h-2}, w_{h-1}, v_{h-1} \) appear in this order on the \(v_0r \)-path in \(T \), where \(v_0, v_1, \ldots, v_{h-1} \) are distinct (since they are in distinct groups).

![Figure 3: Construction of a \(W(4, k) \) minor (where \(u_i \) might be in \(X_{i+1} \)).](image)

Let \(P_j \) be the \(z_jr \)-path in \(T \) for \(j \in [1, h - 1] \). Let \(H_0 \) be the graph with \(V(H_0) := V(P_1 \cup \cdots \cup P_{h-1}) \) and \(E(H_0) := \{ z_jw_j : j \in [1, h - 1] \} \). Define the function \(L_0 : V(H_0) \to [0, d - 1] \) by \(L_0(x) := \ell(x) \) for each \(x \in V(H_0) \). Define the partial order \(\preceq_0 \) on \(V(H_0) \), where \(x \preceq_0 y \) if and only if \(x \) is ancestor of \(y \) in \(T \). Thus \((H_0, L_0, \preceq_0) \) is a ranked graph. By construction, \((H_0, L_0, \preceq_0) \) is contained in \(G[T_{v_0}^+] \). Since \(H_0 \) has less than \((d + 1)(h - 1) \) vertices, \(H_0 \) is in the profile of \(v_0 \). For \(i = 0, 1, \ldots, h - 2 \), let \((H_{i+1}, L_{i+1}, \preceq_{i+1}) \) be the \(\ell(u_i) \)-splice of \((H_i, L_i, \preceq_i) \).

By induction on \(i \), using Claim 1 at each step and since \(G[T_{u_i}^+] \subseteq G[T_{v_i}^+] \), we conclude that for each \(i \in [0, h - 1] \), the ranked graph \((H_i, L_i, \preceq_i) \) is in the profile of \(v_i \). In particular, \((H_{h-1}, L_{h-1}, \preceq_{h-1}) \) is in the profile of \(v_{h-1} \), and \(H_{h-1} \) is isomorphic to a subgraph
of G. Note that each vertex of H_{h-1} is of the form $((\ldots (x, d_1), d_2), \ldots, d_{h-1})$ for some $x \in V(H_0)$ and $d_1, \ldots, d_{h-1} \in [0, k]$. For brevity, call such a vertex $x\langle d_1, \ldots, d_{h-1}\rangle$. Note that if $x = w_j$ for some $j \in [1, h-1]$, then $d_1 = \cdots = d_j = 0$ (since w_j is above u_i whenever $i < j$, and $(H_{i+1}, L_{i+1}, \preceq_{i+1})$ is the $\ell(u_i)$-splice of (H_i, L_i, \preceq_i)).

For $x \in V(H_0)$, let Λ_x be the set of vertices $x\langle d_1, \ldots, d_{h-1}\rangle$ in H_{h-1}. By construction, no two vertices in Λ_x are comparable under \preceq_{h-1}. Therefore, by property (B), $V(T_a) \cap V(T_b) = \emptyset$ for all distinct $a, b \in \Lambda_x$. In particular, $V(T_a) \cap V(T_h) = \emptyset$ for all distinct $a, b \in \Lambda_{v_0}$. As proved above, $G[T_a]$ is connected for each $a \in V(T)$. Let G' be the graph obtained from G by contracting $G[T_a]$ into a single vertex $\alpha\langle d_1, \ldots, d_{h-1}\rangle$, for each $a = v_0\langle d_1, \ldots, d_{h-1}\rangle \in \Lambda_{v_0}$. So G' is a minor of G.

Let U be the tree with vertex set \[
\{(d_1, \ldots, d_{h-1}) : \exists j \in [0, h-1] d_1 = \cdots = d_j = 0 \text{ and } d_{j+1}, \ldots, d_{h-1} \in [1, k]\},
\]
where the parent of $(0, \ldots, 0, d_{j+1}, d_{j+2}, \ldots, d_{h-1})$ is $(0, \ldots, 0, d_{j+2}, \ldots, d_{h-1})$. Then U is isomorphic to the complete k-tree of height h rooted at $(0, \ldots, 0)$. We now show that the weak closure of U is a subgraph of G', where each vertex $(0, \ldots, 0, d_{j+1}, \ldots, d_{h-1})$ of U with $j \in [1, h-1]$ is mapped to vertex $w_j\langle 0, \ldots, 0, d_{j+1}, \ldots, d_{h-1}\rangle$ of G', and each other vertex (d_1, \ldots, d_{h-1}) of U is mapped to $\alpha\langle d_1, \ldots, d_{h-1}\rangle$ of G'. For all $d_1, \ldots, d_{h-1} \in [1, k]$ and $j \in [1, h-1]$ the vertex $z_j\langle d_1, \ldots, d_{h-1}\rangle$ of G is contracted into the vertex $\alpha\langle d_1, \ldots, d_{h-1}\rangle$ of G'. By construction, $z_j\langle d_1, \ldots, d_{h-1}\rangle$ is adjacent to $w_j\langle 0, \ldots, 0, d_{j+1}, \ldots, d_{h-1}\rangle$ in G. So $\alpha\langle d_1, \ldots, d_{h-1}\rangle$ is adjacent to $w_j\langle 0, \ldots, 0, d_{j+1}, \ldots, d_{h-1}\rangle$ in G'. This implies that the weak closure of U (that is, $W(h, k)$) is isomorphic to a subgraph of G', and is therefore a minor of G.

Finding the Colouring

Now assume that every group X is adjacent in G to at most $h - 2$ other groups above X. Then $(h - 1)$-colour the groups in order of distance from the root, such that every group X is assigned a colour different from the colours assigned to the neighbouring groups above X. Assign each vertex within a group the same colour as that assigned to the whole group. This defines an $(h - 1)$-colouring of G.

Consider the function $s : [0, d - 1] \to \mathbb{N}$ recursively defined by
\[
s(\ell) := \begin{cases}
1 & \text{if } \ell = d - 1 \\
(k - 1) \cdot M_{\ell+1} \cdot s(\ell + 1) & \text{if } \ell \in [0, d - 2].
\end{cases}
\]

Then every group at level ℓ has at most $s(\ell)$ vertices. By construction, our $(h - 1)$-colouring of G has clustering $s(0)$, which is bounded by a function of d, k and h, as desired. \hfill \Box

3 Pathwidth

The following lemma of independent interest is the key to proving Theorem 2. Note that Eppstein [11] independently discovered the same result (with a slightly weaker bound
Every graph with pathwidth at most w has a vertex 2-colouring such that each monochromatic path has at most $(w + 3)^w$ vertices.

Proof. We proceed by induction on $w \geq 1$. Every graph with pathwidth 1 is a caterpillar, and is thus properly 2-colourable. Now assume $w \geq 2$ and the result holds for graphs with pathwidth at most $w - 1$. Let G be a graph with pathwidth at most w. Let (B_1, \ldots, B_n) be a path-decomposition of G with width at most w. Let t_1, t_2, \ldots, t_m be a maximal sequence such that $t_1 = 1$ and for each $i \geq 2$, t_i is the minimum integer such that $B_{t_i} \cap B_{t_i-1} = \emptyset$. For odd i, colour every vertex in B_i ‘red’. For even i, colour every vertex in B_i ‘blue’. Since $B_i \cap B_{t_i-1} = \emptyset$ for $i \geq 2$, no vertex is coloured twice. Let G' be the subgraph of G induced by the uncoloured vertices. By the choice of B_i, for $i \geq 2$ each bag B_j with $j \in [t_i-1+1, t_i-1]$ intersects B_{t_i-1}. Thus $(B_1 \cap V(G'), \ldots, B_n \cap V(G'))$ is a path-decomposition of G' of width at most $w - 1$. By induction, G' has a vertex 2-colouring such that each monochromatic path has at most $(w + 3)^{w-1}$ vertices. Since $B_{t_i} \cup B_{t_i+2}$ separates $B_{t_{i+1}} \cup \cdots \cup B_{t_{i+2}-1}$ from the rest of G, each monochromatic component of G is contained in $B_{t_{i+1}} \cup \cdots \cup B_{t_{i+2}-1}$ for some $i \in [0, n - 2]$. Consider a monochromatic path P in $G[B_{t_{i+1}} \cup \cdots \cup B_{t_{i+2}-1}]$. Then P has at most $w + 1$ vertices in $B_{t_{i+1}}$. Note that $P - B_{t_{i+1}}$ is contained in G'. Thus P consists of up to $w + 2$ monochromatic subpaths in G' plus $w + 1$ vertices in $B_{t_{i+1}}$. Hence P has at most $(w + 2)(w + 3)^{w-1} + (w + 1) < (w + 3)^w$ vertices.

Nešetřil and Ossona de Mendez [22] showed that if a graph G contains no path on k vertices, then $td(G) < k$ (since G is a subgraph of the closure of a DFS spanning tree with height at most k). Thus Lemma 9 implies:

Corollary 10. Every graph with pathwidth at most w has a vertex 2-colouring such that each monochromatic component has treedepth at most $(w + 3)^w$.

Proof of Theorem 2. Let \mathcal{G} be a minor-closed class of graphs, each with pathwidth at most w. Let h be the minimum integer such that $C(h, k) \notin \mathcal{G}$ for some $k \in \mathbb{N}$. Consider $G \in \mathcal{G}$. Thus $W(h, k + 1)$ is not a minor of G (since $C(h, k)$ is a minor of $W(h, k + 1)$, as noted above). By Corollary 10, G has a vertex 2-colouring such that each monochromatic component H of G has treedepth at most $(w + 3)^w$. Thus $W(h, k + 1)$ is not a minor of H. By Lemma 8, H is $(h - 1)$-colourable with clustering $c((w + 3)^w, k + 1, h)$. Taking a product colouring, G is $(2h - 2)$-colourable with clustering $c((w + 3)^w, k + 1, h)$. Hence $\chi_{\Delta}(\mathcal{G}) \leq \chi_4(\mathcal{G}) \leq 2h - 2$.

Note that Lemma 9 cannot be extended to the setting of bounded tree-width graphs: Esperet and Joret (see [17, Theorem 4.1]) proved that for all positive integers w and d there exists a graph G with tree-width at most w such that for every w-colouring of G there exists a monochromatic component of G with diameter greater than d (and thus with a monochromatic path on more than d vertices, and thus with treedepth at least $\log_2 d$).
4 Fractional Colouring

This section proves Theorem 6. The starting point is the following key result of Dvořák and Sereni [9].

Theorem 11 ([9]). For every proper minor-closed class \mathcal{G} and every $\delta > 0$ there exists $d \in \mathbb{N}$ satisfying the following. For every $G \in \mathcal{G}$ there exist $s \in \mathbb{N}$ and $X_1, X_2, \ldots, X_s \subseteq V(G)$ such that:

- $td(G[X_i]) \leq d$, and
- every $v \in V(G)$ belongs to at least $(1 - \delta)s$ of these sets.

We now prove a lower bound on the fractional defective chromatic number of the closure of complete trees of given height.

Lemma 12. Let $\mathcal{C}_h := \{C(h, k)\}_{k \in \mathbb{N}}$. Then $\chi^f_d(\mathcal{C}_h) \geq h$.

Proof. We show by induction on h that if $C(h, k)$ is fractionally t-colourable with defect d, then $t \geq h - (h - 1)d/k$. This clearly implies the lemma. The base case $h = 1$ is trivial.

For the induction step, suppose that $G := C(h, k)$ is fractionally t-colourable with defect d. Thus there exist $Y_1, Y_2, \ldots, Y_s \subseteq V(G)$ and $\alpha_1, \ldots, \alpha_s \in [0, 1]$ such that:

- every component of $G[Y_i]$ has maximum degree at most d,
- $\sum_{i=1}^s \alpha_i \leq t$, and
- $\sum_{v \in Y_i} \alpha_i \geq 1$ for every $v \in V(G)$.

Let r be the vertex of G corresponding to the root of the complete k-ary tree and let H_1, \ldots, H_k be the components of $G - r$. Then each H_i is isomorphic to $C(h - 1, k)$. Let $J_0 := \{ j : r \in Y_j \}$, and let $J_i := \{ j : Y_j \cap V(H_i) \neq \emptyset \}$ for $i \in [1, k]$. Denote $\sum_{j \in J_i} \alpha_j$ by $\alpha(J_i)$ for brevity. Thus $\alpha(J_0) \geq 1$. For $i \in [1, k]$, the subgraph H_i is isomorphic to $C(h, k)$ and thus $\alpha(J_i) \geq h - 1 - (h - 2)d/k$ by the induction hypothesis. Thus

\[(k - d)\alpha(J_0) + \sum_{i=1}^k \alpha(J_i) \geq (k - d) + k(h - 1) - (h - 2)d = kh - (h - 1)d.\]

If $j \in J_0$ then Y_j intersects at most d of H_1, \ldots, H_k (since $G[Y_j]$ has maximum degree at most d). Thus every α_j appears with coefficient at most k in the left side of the above inequality, implying

\[(k - d)\alpha(J_0) + \sum_{i=1}^k \alpha(J_i) \leq k \sum_{i=1}^s \alpha_i \leq kt.\]

Combining the above inequalities yields the claimed bound on t. \hfill \Box

1 Dvořák and Sereni [9] expressed their result in the terms of "treedepth fragility". The sentence "proper minor-closed classes are fractionally treedepth-fragile" after Theorem 31 in [9] is equivalent to Theorem 11. Informally speaking, Theorem 11 shows that the fractional "treedepth" chromatic number of every minor-closed class equals 1.
Proof of Theorem 6. By Lemma 12,
\[\chi^{f}_{\Delta}(G) \geq \chi_{\Delta}(G) \geq tcn(G) - 1. \]
It remains to show that \(\chi^{f}_{\Delta}(G) \leq tcn(G) - 1 \). Equivalently, we need to show that for all \(h, k \in \mathbb{N} \) and \(\varepsilon > 0 \), if \(C(h, k) \notin G \) then there exists \(c \) such that every graph in \(G \) is fractionally \((h - 1 + \varepsilon) \)-colourable with clustering \(c \). This is trivial for \(h = 1 \), and so we assume \(h \geq 2 \).

Let \(d \in \mathbb{N} \) satisfy the conclusion of Theorem 11 for the class \(G \) and \(\delta = 1 - \frac{1}{1+\varepsilon/(h-1)}. \) Choose \(c = c(d, k + 1, h) \) to satisfy the conclusion of Lemma 8. We show that \(c \) is as desired.

Consider \(G \in G \). By the choice of \(d \) there exists \(s \in \mathbb{N} \) and \(X_1, X_2, \ldots, X_s \subseteq V(G) \) such that:
- \(td(G[X_i]) \leq d \), and
- every \(v \in V(G) \) belongs to at least \((1 - \delta)s \) of these sets.

Since \(C(h, k) \notin G \), we have \(W(h, k + 1) \notin G \), and by the choice of \(c \), for each \(i \in [1, s] \) there exists a partition \((Y^1_i, Y^2_i, \ldots, Y^{h-1}_i) \) of \(X_i \) such that every component of \(G[Y^j_i] \) has at most \(c \) vertices. Every vertex of \(G \) belongs to at least \((1 - \delta)s \) sets \(Y^j_i \) where \(i \in [1, s] \) and \(j \in [1, h - 1] \). Considering these sets with equal coefficients \(\alpha^j_i := \frac{1}{(1 - \delta)s} \), we conclude that \(G \) is fractionally \(\frac{h-1}{1+\varepsilon} \)-colourable with clustering \(c \), as desired (since \(\frac{h-1}{1+\varepsilon} = h - 1 + \varepsilon \)). \(\square \)

Acknowledgement

This work was partially completed while SN was visiting Monash University supported by a Robert Bartnik Visiting Fellowship. SN thanks the School of Mathematics at Monash University for its hospitality. Thanks to the referee for several helpful comments.

References

[1] NoGa Alon, Guoli Ding, Bogdan Oporowski, and Dirk Vertigan. Partitioning into graphs with only small components. J. Combin. Theory Ser. B, 87(2):231–243, 2003.
[2] Dan Archdeacon. A note on defective colorings of graphs in surfaces. J. Graph Theory, 11(4):517–519, 1987.
[3] Nicolas Broutin and Ross J. Kang. Bounded monochromatic components for random graphs. J. Comb., 9(3):411–446, 2018.
[4] Ilkyoo Choi and Louis Esperet. Improper coloring of graphs on surfaces. J. Graph Theory, 91(1):16–34, 2019.
[5] Lenore Cowen, Wayne Goddard, and C. Esther Jesurum. Defective coloring revisited. J. Graph Theory, 24(3):205–219, 1997.
[6] Vida Dujmović, Louis Esperet, Pat Morin, Bartosz Walczak, and David R. Wood. Clustered 3-colouring graphs of bounded degree. Combin. Probab. Comput., 31(1):123–135, 2022.
[7] Vida Dujmović, Gwenaël Joret, Jakub Kozik, and David R. Wood. Nonrepetitive colouring via entropy compression. *Combinatorica*, 36(6):661–686, 2016.

[8] Zdeněk Dvořák and Sergey Norin. Islands in minor-closed classes. I. Bounded treewidth and separators. 2017, arXiv:1710.02727.

[9] Zdeněk Dvořák and Jean-Sébastien Sereni. On fractional fragility rates of graph classes. *Electronic J. Combinatorics*, 27:P4.9, 2020.

[10] Katherine Edwards, Dong Yeap Kang, Jaehoon Kim, Sang-il Oum, and Paul Seymour. A relative of Hadwiger’s conjecture. *SIAM J. Discrete Math.*, 29(4):2385–2388, 2015.

[11] David Eppstein. Pathbreaking for intervals. In *11011110*, 2020.

[12] Louis Esperet and Gwenaël Joret. Colouring planar graphs with three colours and no large monochromatic components. *Combin., Probab. Comput.*, 23(4):551–570, 2014.

[13] Penny Haxell, Tibor Szabó, and Gábor Tardos. Bounded size components—partitions and transversals. *J. Combin. Theory Ser. B*, 88(2):281–297, 2003.

[14] Dong Yeap Kang and Sang-il Oum. Improper coloring of graphs with no odd clique minor. *Combin. Probab. Comput.*, 28(5):740–754, 2019.

[15] Ken-ichi Kawarabayashi. A weakening of the odd Hadwiger’s conjecture. *Combin. Probab. Comput.*, 17(6):815–821, 2008.

[16] Ken-ichi Kawarabayashi and Bojan Mohar. A relaxed Hadwiger’s conjecture for list colorings. *J. Combin. Theory Ser. B*, 97(4):647–651, 2007.

[17] Chun-Hung Liu and Sang-il Oum. Partitioning H-minor free graphs into three subgraphs with no large components. *J. Combin. Theory Ser. B*, 128:114–133, 2018.

[18] Chun-Hung Liu and David R. Wood. Clustered coloring of graphs excluding a subgraph and a minor. 2019, arXiv:1905.09495.

[19] Chun-Hung Liu and David R. Wood. Clustered graph coloring and layered treewidth. 2019, arXiv:1905.08969.

[20] Chun-Hung Liu and David R. Wood. Clustered variants of Hajós’ conjecture. *J. Combin. Theory, Ser. B*, 152:27–54, 2019.

[21] Bojan Mohar, Bruce Reed, and David R. Wood. Colourings with bounded monochromatic components in graphs of given circumference. *Australas. J. Combin.*, 69(2):236–242, 2017.

[22] Jaroslav Nešetřil and Patrice Ossona de Mendez. *Sparsity*, vol. 28 of *Algorithms and Combinatorics*. Springer, 2012.

[23] Sergey Norin, Alex Scott, Paul Seymour, and David R. Wood. Clustered colouring in minor-closed classes. *Combinatorica*, 39(6):1387–1412, 2019.

[24] Patrice Ossona de Mendez, Sang-il Oum, and David R. Wood. Defective colouring of graphs excluding a subgraph or minor. *Combinatorica*, 39(2):377–410, 2019.

[25] Jan van den Heuvel and David R. Wood. Improper colourings inspired by Hadwiger’s conjecture. *J. London Math. Soc.*, 98:129–148, 2018. arXiv:1704.06536.

[26] David R. Wood. Defective and clustered graph colouring. *Electron. J. Combin.*, DS23, 2018. Version 1.