A generalized \((G'/G)\) - expansion method for the loaded modified Korteweg-de Vries equation

I. I. Baltaeva\(^1\), I. D. Rakhimov\(^2\), M. M. Khasanov\(^3\)

January 14, 2022

\(^{1,2,3}\) Urgench state university, H. Alimdjan 14, Urgench 220100, Uzbekistan

e-mail: iroda-b@mail.ru\(^1\), ilxom.raximov.87@gmail.com\(^2\),
hmuzaffar@mail.ru\(^3\)

Abstract

This paper is dedicated to finding the solutions of the equation of the loaded modified Korteweg-de Vries. By the way, it is shown to find the solutions via \((G'/G)\) - expansion method that is one of the most effective ways of finding solutions.

Keywords: soliton solution, loaded mKdV, nonlinear equations, expansion method

1 Introduction

It is known that loaded differential equations have great practical applications. In the literature \([1, 2, 3, 4, 5]\), loaded differential equations are typically called equations containing in the coefficients or in the right-hand side any functionals of the solution, in particular the values of the solution or its derivatives on manifolds of lower dimension. These types of equations were explored in the works of N.N. Nazarov and N.N. Kochin. However, they did not use the term “loaded equation”. At first, the term has been used in the works of A.M. Nakhushev, where the most general definition of a loaded equation is given and various loaded equations are classified in details, for instance, loaded differential, integral, integro-differential, functional equations etc., and numerous applications are described.

In the past several decades, finding solutions to nonlinear evolution equations has been studied by many researchers. There are direct and inverse
methods for finding solutions to integrable nonlinear evolution equations. In particular, the solutions of the integrable nonlinear evolution equations were found by using the Hirota direct method [6, 7], inverse scattering problem [8, 9, 10] and Darboux transformation [11, 12]. Alternatively, the \((G'/G)\) -expansion method [13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23] is also effective in finding traveling wave solutions of nonlinear evolution equations.

Integration of the loaded modified Korteweg – de Vries (mKdV) equation in the class of periodic functions is studied in [24].

In this article, the solutions of the loaded mKdV equation, are explored by usage of \((G'/G)\) -expansion method.

Consider the following loaded mKdV equation

\[
q_t - 6q^2 q_x + q_{xxx} - \gamma(t)q(0,t)q_x = 0,
\]

where \(q(x,t)\) is an unknown function, \(x \in \mathbb{R}, t \geq 0, \gamma(t)\) - is the given real continuous function.

\section{Description of the generalized \((G'/G)\) -expansion method}

Let us be given a nonlinear partial differential equation in the form below

\[
F(q, q_t, q_x, q_{tt}, q_{xx}, q_{xt}, ...) = 0,
\]

with two independent variables \(x\) and \(t\). \(q = q(x,t)\) is a unknown function, \(F\) is a polynomial in \(q\) and its partial derivatives in which the highest order derivatives and nonlinear terms are involved. Now we give the main steps of the \((G'/G)\) -expansion method [25]:

\textbf{Step 1.} We use the travelling wave transformation in the following form

\[
q(x,t) = q(\xi), \quad \xi = kx + \Omega(t),
\]

where \(k\) is a parameter and \(\Omega(t)\) is a continuous function which depends on \(t\). We reduce equation [2] to the following nonlinear ordinary differential equation:

\[
P(q, q', q'', q''', ...) = 0,
\]

where \(P\) is a polynomial of \(q(\xi)\) and all its derivatives \(q' = dq(\xi)/d\xi, q'' = d^2q(\xi)/d\xi^2, \ldots\).

\textbf{Step 2.} We assume that the solution of equation [4] has the form:

\[
q(\xi) = \sum_{j=0}^{m} a_j \left(\frac{G'}{G}\right)^j.
\]
Here $G = G(\xi)$ satisfies the following second order ordinary differential equation
\[G'' + \lambda G' + \mu G = 0, \quad (6) \]
where $G' = dG(\xi)/d\xi$, $G'' = d^2G(\xi)/d\xi^2$ and λ, μ, a_j $(j = 1, 2, \ldots, m)$ are constants that can be determined later, provided $a_m \neq 0$.

Step 3. We determine the integer number m by balancing the nonlinear terms of the highest order and the partial product of the highest order of (4).

Step 4. Substitute (5) along with (6) into (4) and collect all terms with the same order of $(G'(\xi) G(\xi))$, the left-hand side of (4) is converted into a polynomial in $(G'(\xi)/G(\xi))$. Then, set each coefficient of this polynomial to zero to derive a set of over-determined partial differential equations for a_j $(j = 1, 2, \ldots, m)$ and ξ.

Step 5. Substituting the values a_j $(j = 1, 2, \ldots, m)$ and ξ as well as the solutions of equation (6) into (5) we have the exact solutions of equation (2).

3 Exact Solutions of the loaded mKdV equation

In this section, we will show how to find the exact solution of the loaded mKdV equation using the (G'/G) -expansion method. For doing this, we perform the steps above for equation (1). The travelling wave variable below
\[q(x, t) = q(\xi), \xi = kx + \Omega(t), \quad (7) \]
permits us converting equation (1) into an ordinary differential equation for $q = q(\xi)$
\[\Omega'_t(t) q' - 6kq^2 q' + k^3 q''' - k\gamma(t)q(0, t)q' = 0, \quad (8) \]
integrating it with respect to ξ once yields to
\[C + \Omega'_t(t)q - 2kq^3 + k^3 q'' - k\gamma(t)q(0, t)q = 0, \quad (9) \]
where C is an integration constant that can be determined later.

We express the solution of equation (9) in the form of a polynomial in (G'/G) below
\[u(\xi) = \sum_{j=0}^{m} a_j \left(\frac{G'}{G} \right)^j, \quad (10) \]
where $G = G(\xi)$ satisfies the second order ordinary differential equation in the form

$$G'' + \lambda G' + \mu G = 0. \quad (11)$$

Using (10) and (11), q^3 and q'' are easily derived to

$$q^3(\xi) = a_m^3 \left(\frac{G'}{G} \right)^{3m} + ..., \quad (12)$$

$$q''(\xi) = m(m + 1)a_m \left(\frac{G'}{G} \right)^{m+2} + \quad (13)$$

Considering the homogeneous balance between q'' and q^3 in equation (9), based on (12) and (13) we required that $m = 1$. Taking into account the above considerations, the form of q is as following

$$q(\xi) = a_1 \left(\frac{G'}{G} \right) + a_0. \quad (14)$$

Then we know the exact view of q^3

$$q^3(\xi) = a_1^3 \left(\frac{G'}{G} \right)^3 + 3a_1^2a_0 \left(\frac{G'}{G} \right)^2 + 3a_1a_0^2 \left(\frac{G'}{G} \right) + a_0^3. \quad (15)$$

Using (14) and (11) q'' is easily derived to

$$q''(\xi) = 2a_1 \left(\frac{G'}{G} \right)^3 + 3a_1\lambda \left(\frac{G'}{G} \right)^2 + (2a_1\mu + a_1^2\lambda^2) \left(\frac{G'}{G} \right) + a_1\lambda\mu. \quad (16)$$

By substituting (14)–(16) into equation (9) and collecting all terms with the same power of (G'/G), the left-hand side of equation (9) is converted into another polynomial in (G'/G).

$$\begin{align*}
(-2ka_1^3 + 2k^3a_1) \left(\frac{G'}{G} \right)^3 &+ (-6ka_1^2a_0 + 3k^3a_1\lambda) \left(\frac{G'}{G} \right)^2 \\
+ (\Omega'(t)a_1 - 6ka_1a_0^2 + 2k^3a_1\mu + k^3a_1\lambda^2 - k\gamma(t)q(0,t)a_1) \left(\frac{G'}{G} \right) &+ (C + \Omega'(t)a_0 - 2ka_0^3 + a_1k^3\lambda\mu - k\gamma(t)q(0,t)a_0) = 0.
\end{align*} \quad (17)$$

Equating each coefficient of expression (17) to zero, yields a set of simultaneous equations for a_0, a_1, $\Omega(t)$ and C which have the following form:
\[
\left(\frac{G'}{G}\right)^3 : -2k^3a_1^2 + 2k^3a_1 = 0, \\
\left(\frac{G'}{G}\right)^2 : -6k^2a_0 + 3k^3a_1\lambda = 0, \\
\left(\frac{G'}{G}\right)^1 : \Omega'_t(t) - 6ka^2_0 + 2k^3\mu + k^3\lambda^2 - k\gamma(t)q(0,t) = 0, \\
\left(\frac{G'}{G}\right)^0 : C + \Omega'_t(t)a_0 - 2ka^3_0 + a_1k^3\lambda\mu - k\gamma(t)q(0,t)a_0 = 0. \\
\]

By solving these equations, we obtain the followings

\[
a_0 = \frac{k}{2}\lambda, \quad a_1 = k, \quad C = 0, \\
\Omega(t) = \frac{k^3(\lambda^2 - 4\mu)}{2}t + k \int_0^t \gamma(\tau)q(0,\tau)d\tau + \Omega^0. \tag{18}
\]

Here \(\lambda, \mu, k\) and \(\Omega^0\) are arbitrary constants. Using (18), expression (14) can be rewritten as

\[
q(\xi) = k \left(\frac{G'}{G}\right) + \frac{k\lambda}{2}, \tag{19}
\]

where \(\xi = kx + \frac{k^3(\lambda^2 - 4\mu)}{2}t + k \int_0^t \gamma(\tau)q(0,\tau)d\tau + \Omega^0\). The function (19) is a solution of equation (9), provided that the integration constant \(C\) in equation (9) is taken as that in (18). Substituting the general solutions of equation (11) into (19), we have three types of travelling wave solutions of the loaded mKdV equation (1) as follows:

When \((\lambda^2 - 4\mu) > 0\),

\[
q(\xi) = \frac{k\sqrt{\lambda^2 - 4\mu}}{2} \left(\frac{c_1sh\sqrt{\lambda^2 - 4\mu}\xi + c_2ch\sqrt{\lambda^2 - 4\mu}\xi}{c_1ch\sqrt{\lambda^2 - 4\mu}\xi + c_2sh\sqrt{\lambda^2 - 4\mu}\xi} \right). \tag{20}
\]

where \(\xi = kx + \frac{k^3(\lambda^2 - 4\mu)}{2}t + k \int_0^t \gamma(\tau)q(0,\tau)d\tau + \Omega^0\), \(c_1\), \(c_2\) and \(\Omega^0\) are arbitrary constants. It is obvious that the function \(q(0,t)\) can be easily found based on expression (20).

For example, let \(\gamma(t)\) have a form below

\[
\gamma(t) = \left(\frac{1}{k} \sum_{j=1}^{n} j\alpha_j t^{j-1} \right) \frac{2}{k\sqrt{\lambda^2 - 4\mu}} \text{cth} \frac{\lambda^2 - 4\mu}{2} \sum_{j=0}^{n} \alpha_j t^j,
\]
where $\alpha_j (j = 1, 2, \ldots, n)$ are constants. If $c_1 \neq 0$, $c_2 = 0$ and $(\lambda^2 - 4\mu) > 0$, then $q(x, t)$ becomes

$$q(x, t) = \frac{\sqrt{\lambda^2 - 4\mu}}{2} k \text{th} \left(\frac{\sqrt{\lambda^2 - 4\mu}}{2} (kx + \sum_{j=0}^{n} \alpha_j t^j) \right). \quad (21)$$

The function (21) is the solution of the following loaded mKdV equation.

$$q_t - 6q^2 q_x + q_{xxx} - \left(\frac{1}{k} \sum_{j=1}^{n} j \alpha_j t^{j-1} - \frac{k^2 (\lambda^2 - 4\mu)}{2} \right) q_x = 0. \quad (22)$$

Figure 1: The solution (21) of the loaded mKdV equation (22) for $\lambda = 2$, $\mu = -1$, $k = 1$, $\alpha_0 = 0$, $\alpha_1 = 1$, $\alpha_2 = 2$.

When $(\lambda^2 - 4\mu) < 0$,

$$q(\xi) = \frac{k \sqrt{4\mu - \lambda^2}}{2} \left(-c_1 \sin \frac{\sqrt{4\mu - \lambda^2}}{2} \xi + c_2 \cos \frac{\sqrt{4\mu - \lambda^2}}{2} \xi \right) \left(c_1 \cos \frac{\sqrt{4\mu - \lambda^2}}{2} \xi - c_2 \sin \frac{\sqrt{4\mu - \lambda^2}}{2} \xi \right), \quad (23)$$

where $\xi = kx - \frac{k^3 (4\mu - \lambda^2)}{2} t + k \int_{0}^{t} \gamma(\tau) q(0, \tau) d\tau + \Omega^0$, c_1, c_2, and Ω^0 are arbitrary constants. It is not difficult for us to find $q(0, t)$ based on expression (23). Let

$$\gamma(t) = -\left(\frac{1}{k} \sum_{j=1}^{n} j \alpha_j t^{j-1} + \frac{k^2 (4\mu - \lambda^2)}{2} \right) \frac{2}{k \sqrt{4\mu - \lambda^2}} \text{ctg} \left(\frac{\sqrt{4\mu - \lambda^2}}{2} \sum_{j=0}^{n} \alpha_j t^j \right),$$

where $\alpha_j (j = 1, 2, \ldots, n)$ are constants, in particular, if $c_1 \neq 0$ and $c_2 = 0$, then $q(x, t)$ becomes
\[q(x, t) = -\frac{\sqrt{4\mu - \lambda^2}}{2} k \tan \left(\frac{\sqrt{4\mu - \lambda^2}}{2} (kx + \sum_{j=0}^{n} \alpha_j t^j) \right). \] \hspace{1cm} (24)

The function \((24)\) is the solution of the following loaded mKdV equation.

\[q_t - 6q^2 q_x + q_{xxx} - \left(\frac{1}{k} \sum_{j=1}^{n} j \alpha_j t^{j-1} + \frac{k^3(4\mu - \lambda^2)}{2} \right) q_x = 0. \] \hspace{1cm} (25)

Figure 2: The solution \((24)\) of the loaded mKdV equation \((25)\) for \(\lambda = 3, \mu = 3, k = 1, \alpha_0 = 0, \alpha_1 = 1, \alpha_2 = 2.\)

When \((\lambda^2 - 4\mu) = 0,\)
\[q(\xi) = \frac{kc_2}{c_1 + \xi c_2}, \] \hspace{1cm} (26)
where \(\xi = kx + k \int_0^t \gamma(\tau)q(0, \tau) d\tau + \Omega_0, c_1, c_2, \) and \(\Omega_0\) are arbitrary constants. The function \(q(0, t)\) is found based on expression \((26).\) If \(c_1 = 0, c_2 \neq 0, (\lambda^2 - 4\mu) = 0\) and \(\gamma(t)\) has the form
\[\gamma(t) = \sum_{j=0}^{n} \alpha_j t^j \sum_{j=1}^{n} j \alpha_j t^{j-1}, \]
then \(q(x, t)\) becomes
\[q(x, t) = \frac{k}{kx + \sum_{j=1}^{n} \alpha_j t^j}. \] \hspace{1cm} (27)
We know that the function (27) satisfies the following loaded mKdV equation.

\[q_t - 6q^2q_x + q_{xxx} - \left(\sum_{j=1}^{n} j \alpha_j t^{j-1} \right) q_x = 0. \]

(28)

Figure 3: The solution (27) of the loaded mKdV equation (28) for \(\lambda = 2, \mu = 1, k = 1, \alpha_0 = 0, \alpha_1 = 4, \alpha_2 = 1, \alpha_3 = 3. \)

CONCLUSION

The results of this study show that the \((G'/G)\) - extension method is effective in obtaining the exact solutions of the loaded modified Korteweg — de Vries equation. Parameters \(c_1, c_2, \lambda, \mu, k\) and arbitrary function \(\gamma(t)\) in solutions (20), (20), (26) provide sufficient freedom for constructing solutions.

This method is easy to implement using well-known software packages, which allows you to solve complex nonlinear evolutionary equations of mathematical physics.

References

[1] B. B. Kadomtsev, V. I. Karpman, Nonlinear waves, Sov. Phys. Usp. 14, 40 (1971).

[2] A. M. Nakhushev, On nonlocal problems with shift and their connection with loaded equations, Differents. Uravn., 21, 92 (1985).
[3] J. R. Cannon, H. M. Yin, On a class of nonlinear nonclassical parabolic problems, J. Different. Equat., 79, 266 (1989).

[4] J. M. Chadam, A. Peirce, H. M. Yin, The blowup property of solutions to some diffusion equations with localized nonlinear reactions, J. Math. Analys. and Appl., 169, 313 (1992).

[5] U. Baltaeva, P. J. Torres, Analog of the Gellerstedt problem for a loaded equation of the third order, Math. Meth. Appl. Sc., 42, 3865 (2019).

[6] R. Hirota, Exact solution of the Korteweg-de Vries equation for multiple collisions of solitons, Phys. Rev. Lett., 27, 1192 (1971).

[7] A.A. Reyimbergenov, I.D. Rakhimov, The soliton solutions for the nonlinear Schrodinger equation with self-consistent sources, The Bulletin of Irkutsk State University. Series Mathematics, 35, 84 (2021).

[8] C. Gardner, J. Green, M. Kruskal, R. Miura, A method for solving the Korteweg-de Vries equation, Phys. Rev. Letters., 19, 1095 (1967).

[9] M. Wadati, The exact solution of the modified Korteweg-de Vries equation // J. Phys. Soc., 32, 1681 (1972).

[10] I.I Baltaeva, M. Feckan, G. Urazboev, Integration of the loaded KdV equation in the class of "rapidly decreasing" functions, Conf. Modern methods of mathematical physics and their applications, 1, 116 (2020).

[11] C. Rogers, W. F. Shadwick, Backlund Transformations, Academic Press, New York, (1982).

[12] M. Wadati, H. Shamuki, K. Konno, Prog. Theor. Phys. 53, 419 (1975).

[13] Z. L. Li, Constructing of new exact solutions to the GKhV-mKdV equation with any-order nonlinear terms by (G'/G)-expansion method, Appl. Math. Comput., 217, 1398 (2010).

[14] E. M. Zayed, The (G'/G)-expansion method and its applications to some nonlinear evolution equations in the mathematical physics, J. Appl. Math. Comput., 30, 89 (2009).

[15] E. M. Zayed, The (G'/G)-expansion method combined with the Riccati equation for finding exact solutions of nonlinear PDEs, J. Appl. Math. Inform., 29, 351 (2011).
[16] E. M. Zayed, K. A. Alurr, Extended generalized (G'/G)-expansion method for solving the nonlinear quantum Zakharov Kuznetsov equation, Ricerche Mat., 65, 235 (2016).

[17] N. Shang, B. Zheng, Exact Solutions for Three Fractional Partial Differential Equations by the (G'/G) Method, Int. J. Appl. Math., 43, 114 (2013).

[18] A. Bekir, O. Guner, Exact solutions of nonlinear fractional differential equations by (G'/G)-expansion method, Chin. Phys. B, 22, 110202 (2013).

[19] A. Bekir, Application of the (G'/G)-expansion method for nonlinear evolution equations, Phys. Lett. A, 372, 3400 (2008).

[20] S. Zhang, J. L. Tong, W. Wang, A generalized (G'/G)-expansion method for the mKdV equation with variable coefficients, Phys. Lett. A, 372, 2254 (2008).

[21] E. M. E. Zayed, K. A. Gepreel, The (G'/G) expansion method for induction traveling wave solutions of nonlinear partial differential equations in mathematical physics, Journal of Mathematical Physics, 50, 013502 (2009).

[22] E. M. E. Zayed, The (G'/G) expansion method and its applications to some nonlinear evolution equations in the mathematical physics, Journal of Applied Mathematics and Computing, 30, 89 (2009).

[23] G. U. Urazboev, I. I. Baltaeva, I. D. Rakhimov, A generalized (G'/G)-expansion method for the loaded Korteweg–de Vries equation, Sibirskii Zhurnal Industrial’ noii Matematiki, 24, 139 (2021).

[24] M. Khasanov, Integration of the loaded modified Korteweg-de Vries equation in the class of periodic functions, Uzbek Mathematical Journal, 4, 139 (2016).

[25] M. Wang, X. Li, J. Zhang, The (G'/G)-expansion method and travelling wave solutions of nonlinear evolution equations in mathematical physics, Phys Lett. A., 372, 417 (2008).