Genetics of coronary heart disease with reference to ApoAI-CIII-AIV gene region

Suraksha Agrawal, Sarabjit Mastana

Abstract

Cardiovascular diseases are affected by multiple factors like genetic as well as environmental hence they reveal factorial nature. The evidences that genetic factors are susceptible for developing cardiovascular diseases come from twin studies and familial aggregation. Different ethnic populations reveal differences in the prevalence coronary artery disease (CAD) pointing towards the genetic susceptibility. With progression in molecular techniques different developments have been made to comprehend the disease physiology. Molecular markers have also assisted to recognize genes that may provide evidences to evaluate the role of genetic factors in causation of susceptibility towards CAD. Numerous studies suggest the contribution of specific “candidate genes”, which correlate with various roles/pathways that are involved in the coronary heart disease. Different studies have revealed that there are large numbers of genes which are involved towards the predisposition of CAD. However, these reports are not consistent. One of the reasons could be weak contribution of genetic susceptibility of these genes. Genome wide associations show different chromosomal locations which dock, earlier unknown, genes which may contribute to CAD. In the present review different ApoAI-CIII-AIV gene clusters have been discussed.

Key words: ApoAI-CIII-AIV gene cluster; Haplotype analysis; Single nucleotide polymorphism; Candidate gene study; Genome wide association studies

Core tip: Cardiovascular disease analysis requires holistic approach using genomic, epigenomic and exposomic techniques to improve the quality of life of patients and contribution towards personalised medicine.

INTRODUCTION

Coronary artery disease (CAD), is mostly fatal if remain untreated result into atherosclerosis in the epicardial coronary arteries[1]. Atherosclerotic plaques progressively narrow the coronary artery lumen and impair antegrade myocardial blood flow. This reduction in coronary artery flow may lead to a myocardial infarction.

Cardiovascular disease is a multifarious disorder showing large diversity of phenotypes. The accurate, and analogous phenotypic evidences are crucial for detailed understanding of the affiliation between disease and genes, as well as understanding the role of various extrinsic factors on different component of various genotypes.
This complexity also contributes to difficulties in diagnosis and prognosis of the disease. Diagnostic difficulties also hamper the optimal and personalised treatment for patients. In recent years the role of genetic variability on the development of CAD has been extensively been studied\[1,2\] which is impacting upon our understanding of phenotypic outcomes and clinical complications. New developments in genomics, epigenomics and exposomics (environmental risk factors across the life span) would result into the improved understanding of the different phenotypes observed in CAD and would help in the better regimen of treatment. In the last century, there has been rapid increases in the global prevalence of CAD, which has become the important cause of cardiovascular mortality all over the world, is > 4.5 million deaths in the developing countries. By 2020, it is predictable that CAD will be the major source of disease burden universally\[3\]. The prevalence of CAD varies in different ethnic groups which may show higher/lower genetic and environmental susceptibilities. India has also witnessed consistent increases in the prevalence of CAD over the past few decades and could become the number one killer if appropriate interventions are not planned and implemented. In Table 1 the incidence of CAD is shown in different parts of India.

It has been reported that CAD is increasing in a linear fashion as it has increased from 4% in 1960 to 11% in 2001 i.e., almost every 25th individual in 1960 was having CAD, while in 2001 every 9th individual was having CAD. The CAD is declining internationally among Indians settled abroad, whereas, these rates are growing in the Indian subcontinent. Presently, 10%-12% of metropolitan Indians have CAD compared to 3% of the United States population. Many studies document that Asian Indians are at 3-4 times greater risk of CAD than white Americans/Europeans, 6 times higher than Chinese, and almost 20 times higher than Japanese\[4-7\]. CAD prevalence has increased from 3.5% in the 1960s to 9.5% in the 1990s in urban populations of India\[8\]. Current studies recognized occurrence of CAD to be 13.9% in the urban south Indians, 9.6% in urban north Indians\[9-11\].

Table 1 Prevalence of coronary artery disease in different Indian surveys

City	Prevalence	Ref.
Urban population		
Chandigarh	(6.60%)	Sarvatham et al\[49\]
Rohtak	(3.80%)	Gupta et al\[24\]
Jaipur	(7.60%)	Gupta et al\[51\]
Delhi	(9.70%)	Chada et al\[53\]
Rural population		
Jaipur	(3.50%)	Gupta et al\[24\]
Ludhiana	(5.08%)	Wender et al\[54\]
South Indians		
Tamil Nadu	(14.30%)	Ramachandran et al\[55\]
Tamil Nadu	(11.00%)	Mohan et al\[56\]
Migrant Indians		
London, United Kingdom	(17.00%)	Bahl et al\[57\]
Illinois, United States	(10.00%)	Eras et al\[58\]

and it is likely that deaths from non-communicable diseases such as CAD will increase two times higher i.e., 4.5 million in 1998 to 8 million in 2020 in India\[13\].

As CAD has a multifactorial nature and the occurrence of the familial clustering in CAD led investigators to start searching for susceptibility genes. In Figure 1 different risk factors involved in the causation of CAD are summarized.

It is vital to keep in mind that certain genes may show population specific effects. There are hundreds of genes known to have functional allelic variations that may be important for determining an individual’s vulnerability to CAD. There is much argument on results of published epidemiological studies until now. The differences may be due to differences in the techniques used or the population used to calculate the incidence, prevalence and other risks. It has been proposed that if multiple markers are used for assigning the risk, the results would be more conclusive clinically. Most important reason of concern in developing countries like India is the incomplete detection, treatment and control of CAD risk factors. The benefits of addressing the root cause of CAD, such as inflammation, smoking and cholesterol, together with preventive methodology will be useful in improving quality of life and saving lives. This in turn may be translated into preventive approaches to help reduce the risk of CAD using genetic and epigenetic approaches. Although CAD mortality in the Indians is highest than other populations\[14,15\], the reason for increased risk, which has been recorded in both the Asian immigrants and among Indians in urban India; are not yet clear hence more systematic and comprehensive studies are required to understand the spectrum of genetic and epigenetic influences on CAD.

GENETIC BASIS OF CAD

Atherosclerosis involves multiple factors, hence understanding the genetic and environmental basis of this complex disease requires holistic approaches\[16-18\].

A range of candidate genes (e.g., APOE, APOB, LPL, iNOS, ACE, COX2, CD4, P-Selectin, E-Selectin, MTHFR, PON1, TNFα) have been investigated in relation to initiation, development and progression of CAD\[16-18\]. A large number of studies using of candidate genes and genome-wide association analyses have shown some promising signals, but only a few have been confirmed to some extent which may be playing a role in CAD.

There are very few examples where single genes have played a role in causing atherosclerosis\[19,20\]. Mostly, CAD is caused by the environmental factors however the risk increases when some risk associated genes are also present. Research on identical twins consistently shows significant genetic effect in the development of CAD or its risk factors (Table 2). Heritability for CHD vary from 40% to 60\%\[21,22\], suggesting a strong role of genes in the development of the disease. A detailed analysis of the many known CAD susceptibility genes and studies is be-
yond the scope of this overview. This overview will focus on selected candidate genes in the ApoAI-CIII-AIV gene region.

SINGLE GENE DISORDERS AND CAD

Familial hypercholesterolemia

Familial hypercholesterolemia (FH) is a classic genetic disease in which increased cholesterol, tendon xanthomas, and early heart disease segregates together. Joseph Goldstein and Michael Brown showed that FH results from mutations in the low-density lipoprotein (LDL) receptor, which leads to impaired binding, internalization and degradation of LDL. Dose dependent relationship was observed; homozygotes patients had higher levels of cholesterol (> 600 mg/dL), whereas heterozygotes had levels of approximately 400 mg/dL. This variable penetrance is modified by genes and other risk factors such as diet, smoking, and physical activity level[23]. Heterozygote frequency for this disease relatively high, approximately 1 in 500[24] in most populations, however DNA screening and effective treatments are available now[25,26].

Familial defective apolipoprotein B causing hypercholesterolemia

This comparatively common hypercholesterolemia (approximately 1 in 800), results from mutations in the major protein of LDL called Apolipoprotein B (ApoB). The mutations in ApoB prevent LDL binding to the LDL receptor. The majority of patients of this disorder carry a dominant mutation (codon 3500) and have lower cholesterol levels compared to FH patients. Other single-gene CHD/CAD traits are rare and of lower clinical/population significance[25].

CANDIDATE GENES AND CAD

During last 30 years, there have been many advancements in molecular genetic technology, development of sophisticated statistical tools and analyses which have contributed to improvements in human genetic research. One of the early developments was positional cloning technique, which allowed genetic mapping of many Mendelian diseases and traits. However for complex diseases, which involve many genes and environmental influences, this technique did not provide any major insights into genetic basis. Majority of our understanding of the genetic basis of CAD/CHD has been gained from studies of “candidate genes,” and more recently genome wide association (GWA) studies. These population based studies have provided further insights into genetic susceptibilities/contributions to complex diseases. Some examples of these are given below.

APOLIPOPROTEIN E AND APOAI-CIII-AIV GENE CLUSTER

Apolipoprotein E (ApoE) is one of the extensively studied genetic locus as it plays a pivotal role in lipid metabolism and mediates the uptake of chylomicron and very low-density lipoprotein (VLDL) remnants. Utermann and colleagues[27] identified genetic polymorphism at ApoE locus and its association with cholesterol levels and type III hyperlipidemia. The polymorphism and its CAD associations have been replicated in many global populations. E3 allele is the most common (approximately 60%) followed by E4 allele (approximately 30%) and E2
ApoA1 is the main protein component of HDL-C, it functions in the activation of lecithin: cholesterol acyltransferase, and facilitates the reverse cholesterol transport from peripheral tissues to the liver. The major component of chylomicrons and VLDL. ApoC3 is a 79-amino-acid protein formed mainly in the liver, it is the major component of HDL-C, and ApoC5 prevents lipoprotein lipase and plays a key role in the catabolism of TG-rich lipoproteins. ApoA5 is detectable in very low-density lipoprotein, HDL, and chylomicrons and its concentration is low compared to other apolipoproteins. Human APOA1/C3A4A5 genes resides in the APOA1/C3A4A5 gene cluster on chromosome 11q23-q24[42-44]. The APOA1/C3A4A5 gene cluster has emerged as a significant risk factor for hypertriglyceridemia and atherosclerosis[45,46]. A number of studies have shown significant associations between single nucleotide polymorphisms (SNPs) in the APOA1/C3A4A5 gene cluster and plasma cholesterol levels in humans, while others have reported negative or inconsistent results[42-46]. In addition there are many other SNPs involved in the inflammation and cell signalling with CAD and/or MI, some of these are summarized in Table 3.

One of the limitations of case control studies is that many false positive or false negative associations may emerge between different genetic markers and complex diseases like CAD. The reason for such results are: (1) controls are not properly selected; (2) sample size of both controls and cases because of which accurate power of the study is not generated and replication of results is not possible; and (3) position of single-nucleotide polymorphisms (SNP’s) in terms of their effect on transcription of gene or protein expression. In general, results of small sample size studies (200-300 patients and control subjects) should be interpreted with caution and should be replicated with larger sample sizes. It is important to confirm that genotype distributions are not skewed, especially in the control group. Large deviations from the Hardy-Weinberg equilibrium, may suggest that the control group is not necessarily the representative of healthy and randomly sampled individuals. This departure may also highlight issues with genotype scoring.

Recent genome-wide sequencing research has revealed extensive level of variation and heterogeneity between individuals and populations, which should be considered when choosing SNPs and interpreting SNP data. Some of the early SNP association studies failed to include the effect of the polymorphism on gene expression or protein function and genotype-phenotype correlations. This information could reveal if an SNP is the actual cause or solely a marker which may be in linkage disequilibrium another causal variant. These analyses could provide significant clues for understanding the pathophysiologic mechanisms behind clinical outcomes. It is important to correct/control for the age, gender, ethnicity, and other confounders in heart disease genetic association studies. There should be a holistic approach to understand the role of genes, environment and life style factors in CAD susceptibilities and progression.

Recently, genetic analyses have expanded to whole genome sequence analysis and genome-wide association studies (GWAS) as these analyses eliminates biases in the selection of the candidate genes. A number of GWAS studies have identified new loci in previously unsuspected genomic regions. These analyses have shown, novel biological pathways involved in the disease states and development of novel therapies. Many recent studies have shown only limited evidences may exist where the genetic variants may be associated with MI or only with CAD. A care has to be taken in interpreting the GWAS data as large number of variant alleles may be found but one should consider only elegant systems genetics approach to Plaisier et al[47] used similar approach and found that FADS3 is a causal gene for familial combined hyperlipidemia (FCHL) and elevated triglycerides in Mexicans. The authors used network gene co-expression analysis and SNP data to assign a function to the genetic variants.
This overview has highlighted some of the important roles that cytokine and chemokine gene polymorphisms will play in understanding of pathophysiological mechanisms of diseases like CAD and MI.

CONCLUSION

This overview has highlighted some of the important roles that cytokine and chemokine gene polymorphisms will play in understanding of pathophysiological mechanisms of diseases like CAD and MI.

Table 3 Example of association studies of factors involved in inflammation and cell signalling with coronary artery disease and/or myocardial infarction

Gene	Polymorphism	Ref.	Suggested results
CRP	1059G/C	Zee et al[69]	No significant association with non-fatal MI, stroke or cardiovascular death
ICAM-I	Lys-499-glu	Jiang et al[70]	Association with MI and CAD
E-selectin	Ser-128-Arg, Leu-554-phe, G98T	Wenzel et al[71]	Associated with angiographic proof of severe CAD in patients < 50 yr
P-selectin	Ser-128-Arg, Pro715	Ye et al[72]	Association with early-onset CAD
TNF-α and β	C-212Gc, A-196Gc, Thr719Pro	Barbaux et al[73]	Possibly has a protective role from MI
TNF-α	-863C/A, -388G/A (TNF-α), 252G/A (TNF-β)	Koch et al[74]	Protective effect of the P715; S290N and N562D associated with MI, when carried by certain haplotype
IL-1RA VNTR	5 polymorphisms	Herrmann et al[75],	Polymorphisms associated with P-selectin levels but not with MI
IL-1β, IL-β-RA	1 polymorphism	Pavodani et al[76]	No association of TNF or IL-10 polymorphisms with MI or CAD
IL-6	IL-6 G (-174)C promoter polymorphism -174 G/C, -572 G/C, -596 G/C, -528 T/D	Nauck et al[77]	No association to old MI by autopsy or CAD
IL-10	3 IL-10 promoter polymorphisms (1082G/C, T - 819C/T and -972C/A) 7 polymorphisms	Koch et al[78]	No association with risk for CAD or MI
TGF-β	29 T/C, -597gt 7 polymorphisms	Donger et al[79]	No association with the risk for CAD or MI
Stromelysin	5A-117/6A promoter polymorphism (5A/6A)	Schwarz et al[80]	T allele is a risk factor for MI in middle-aged Japanese men
PECAM-1 (CD31)	Val 125Leu, Asn563Ser and Gly670Arg	Sasaoka et al[81]	No association with risk for MI or CAD
	Val 125Leu, Asn563Ser	Wenzel et al[82]	5A allele associated with stable angina
	Leu 125Val, Ser563Asn	Song et al[83]	5A allele associated with stable angina
	Val125Leu	Gardemann et al[84]	6A genotypes at greater risk for CAD related events in nonsmokers, 5A/6A genotypes amplifies risk in smokers
			Homozygosis for 6A associated with greater progression of angiographic CAD

CRP: C-reactive protein; DM: Diabetes mellitus; HTN: Hypertension; ICAM: Intercellular adhesion molecule; IL: Interleukin; MI: Myocardial infarction; MMP: Matrix metalloproteinase; PECAM: Platelet endothelial cell adhesion molecule; TGF: Transforming growth factor; TNF: Tumor necrosis factor; VNTR: Variable number of tandem repeats.

rs3737787 (1q21-q23) in USF1 gene, which was previously identified to be associated with FCHL. It is envisaged that new methods like Network medicine[46] will play an important role in these analyses and the advancement of our understanding of pathophysiological mechanisms.
challenges regarding the use of genetic approaches to investigate complex diseases. The recent research using genomic, epigenomics and exposomic approaches is providing a range of patient centric tools which will help better classification of phenotypes and personalised medicine for CAD patients. The mechanisms underlying the association of these loci to CAD/MI remain largely unknown and the effects are relatively small. Hence the future challenges are (1) discovering new genetic variants through large-scale meta-analyses, using pathway-based approaches, and high throughput sequencing; (2) illustrating the mechanisms for the identified loci to CAD; and (3) translating the findings from CAD- GWASs and epigenetic analyses to novel and optimized therapeutic strategies.

REFERENCES

1 Lopez AD, Mathers CD, Ezzati M, Jamison DT, Murray CJL. Measuring the Global Burden of Disease and Risk Factors, 1990–2001.In: Lopez AD, Mathers CD, Ezzati M, Jamison DT, Murray CJL, editors. Global Burden of Disease and Risk Factors. Washington (DC): World Bank, 2006: Chapter 1

2 World Health Organization. Facts and figures (The World Health report 2003–shaping the future). Available from: http://www.who.int/whr/2003/en/Facts_and_Figures-en.pdf

3 Enas EA, Garg A, Davidson MA, Nair VM, Huet BA, Yusuf S. Coronary heart disease and its risk factors in first-generation immigrant Asian Indians to the United States of America. Indian Heart J 1996; 48: 343-353 [PMID: 8908818]

4 Gupta R. Epidemiological evolution and rise of coronary heart disease in India. South Asian J Prev Cardiol 1997; 1: 14-20

5 Enas EA, Yusuf S. Third Meeting of the International Working Group on Coronary Artery Disease in South Asians. 29 March 1998, Atlanta, USA. Indian Heart J 1999; 51: 99-103 [PMID: 10327991]

6 Ghaflar A, Reddy KS, Singh M. Burden of non-communicable diseases in South Asia. BMJ 2004; 328: 807-810 [PMID: 15070638 DOI: 10.1136/bmj.328.7443.807]

7 Kanaya AM, Kandula N, Herrington D, Budoff MJ, Hulley S, Vittinghoff E, Liu K. Mediators of Atherosclerosis in South Asians Living in America (MASALA) Study: Objectives, Methods, and Cohort Description. Clin Cardiol 2013; 36: 713-720 [PMID: 24194499 DOI: 10.1002/clc.22219]

8 Gupta R, Goyle A, Kashyap S, Agarwal M, Consul R, Jain BK. Prevalence of atherosclerosis risk factors in adolescent school children. Indian Heart J 1999; 50: 511-515 [PMID: 10052274]

9 Gupta R, Misra A, Pais P, Rastogi P, Gupta VP. Correlation of regional cardiovascular disease mortality in India with lifestyle and nutritional factors. Int J Cardiol 2006; 108: 291-300 [PMID: 15976844 DOI: 10.1016/j.ijcard.2005.05.044]

10 Gupta R, Gupta KD. Coronary heart disease in low socio-economic status subjects in India: “an evolving epidemic”. Indian Heart J 2009; 61: 358-367 [PMID: 20635790]

11 Gupta R, Gupta HP, Keswani P, Sharma S, Gupta VP, Gupta KD. Coronary heart disease and coronary risk factor prevalence in rural Rajasthan. J Assoc Physicians India 1994; 42: 24-26 [PMID: 7836242]

12 Reddy KS. Rising burden of cardiovascular disease in India. In Sethi KK (ed). Coronary artery disease in Indians: a global perspective. Mumbai: Cardiological Society of India, 1998: 63–72

13 The world health report 1998 - Life in the 21st century: A vision for all. Available from: URL: http://www.who.int/whr/1998/en/

14 Enas EA, Singh V, Munjal YP, Bhandari S, Yadave RD, Manchanda SC. Reducing the burden of coronary artery disease in India: challenges and opportunities. Indian Heart J 2008; 60: 161-175 [PMID: 19218731]

15 Coronary Artery Disease (CAD) Genetics Consortium. A genome-wide association study in Europeans and South Asians identifies five new loci for coronary artery disease. Nat Genet 2011; 43: 339-344 [PMID: 21379898 DOI: 10.1038/ng.782]

16 Lewis AJ. Atherosclerosis. Nature 2000; 407: 233-241 [PMID: 11001066 DOI: 10.1038/3503520a]

17 Glass CK, Witztum JL. Atherosclerosis. the road ahead. Cell 2001; 104: 503-516 [PMID: 11239408 DOI: 10.1016/S0092-8674(01)00284-0]

18 Libby P. Inflammation in atherosclerosis. Nature 2002; 420: 868-874 [PMID: 12490960 DOI: 10.1038/nature01323]

19 Milewicz DM, Seidman CE. Genetics of cardiovascular disease. Circulation 2000; 102: IV103-IV111 [PMID: 11080139 DOI: 10.1161/01.CIR.102.suppl_4.IV-103]

20 Nabel EG. Cardiovascular disease. N Engl J Med 2003; 349: 60-72 [PMID: 12840094 DOI: 10.1056/NEJMra035098]

21 Lewis AJ, Weinreb A, Drake T. Genetics of atherosclerosis. In: Topol EJ, Califf RM, Isselbacher, eds. Textbook of Cardiovascular Medicine, Philadelphia, Pa: Lippincott Williams & Wilkins, 1998: 2389-2413

22 Motulsky AG, Brunzell JD. Genetics of coronary artery disease. In: King RA, Rotter JI, eds. The Genetic Basis of Common Disease. 2nd ed. New York, NY: Oxford University Press, 2002: 105–126

23 Sjibrand HS, Westendorp RG, Defesche JC, de Meirer PH, Smelt AH, Kastelein J. Mortality over two centuries in large pedigree with familial hypercholesterolemia: family tree mortality study. BMJ 2001; 322: 1019-1023 [PMID: 11325764 DOI: 10.1136/bmj.322.7293.1019]

24 Brown MS, Goldstein JL. A receptor-mediated pathway for cholesterol homeostasis. Science 1986; 232: 54-47 [PMID: 3513311 DOI: 10.1126/science.3513311]

25 Thorsson B, Kurgdsson G, Gudnason V. Systematic family screening for familial hypercholesterolemia in Iceland. Artic Topol Thromb Vasc Biol 2003; 23: 333-338 [PMID: 12588780 DOI: 10.1016/ijatv.2003.04.003]

26 Heath KE, Humphries SE, Middleton-Price H, Boxer M. A molecular genetic service for diagnosing individuals with familial hypercholesterolemia (FH) in the United Kingdom. Eur J Hum Genet 2001; 9: 244-252 [PMID: 11313767 DOI: 10.1038/sj ehj.5200637]

27 Utermann G, Prun N, Steinmetz A. Polyorphism of apolipoprotein E. III. Effect of a single polymorphic gene locus on plasma lipid levels in man. Clin Genet 1979; 15: 63-72 [PMID: 759055 DOI: 11011/j.1399-0004.1979-b0208s]

28 Sing CF, Davignon J. Role of the apolipoprotein E polymorphism in determining normal plasma lipid and lipoprotein variation. Ann Hum Genet 1985; 37: 268-285 [PMID: 3985008]

29 Mahley RW. Apolipoprotein E cholesterol transport protein with expanding role in cell biology. Science 1988; 240: 622-630 [PMID: 3283935 DOI: 10.1126/science.3283935]

30 Cohen JC, Vega GL, Grundy SM. Hepatic lipase: new insights from genetic and metabolic studies. Curr Opin Lipidol 1999; 10: 259-267 [PMID: 10431662 DOI: 10.1097/00004133-199906000-00008]

31 Talmud PJ, Haeve E, Martin S, Olivier M, Miller GJ, Rubin EM, Pennacchio LA, Humphries SE. Relative contribution of variation within the APOC3/A4/A5 gene cluster in determining plasma triglycerides. Hum Mol Genet 2002; 11: 3039-3046 [PMID: 12417325 DOI: 10.1093/hmg/11.24.3039]

32 Boerwinkle E, Levfert CC, Lin J, Lackner C, Chiesa G, Hobbs HH, Apolipoprotein(a) gene accounts for greater than 90% of the variation in plasma lipoprotein(a) concentrations. J Clin Invest 1992; 90: 52-60 [PMID: 13866087 DOI: 10.1172/JCI115855]

33 Lewis AJ, Iavicoli B, Castellani LW. Lipoprotein and lipid
metabolism. In: Rimon DL, Conner JM, Pyeritz RE, eds. Emery and Rimoin’s Principles and Practice of Medical Genetics. 4th ed. London, England: Churchill Livingstone, 2002: 1500–2537

34 Satko SG, Freedman BI, Moossavi S. Genetic factors in end-stage renal disease. Kidney Int Suppl 2005; (94): 546–549 [PMID: 15752239 DOI: 10.1111/j.1522-1755.2005.09411.x]

35 Watanakrit K, Coresh J, Muntner P, Marsh J, Folsom AR. Cardiovascular risk among adults with chronic kidney disease, with or without prior myocardial infarction. J Am Coll Cardiol 2006; 48: 1183–1189 [PMID: 16979003 DOI: 10.1016/j.jacc.2006.05.037]

36 Hsu CC, Kao WH, Coresh J, Pankow JS, Marsh-Manzi J, Ernst M, Rohde K, Baumann G, Speer A. DNA polymorphism in the human C-reactive protein (CRP) gene, plasma concentrations of CRP, and other causal candidate genes for familial combined hyperlipidemia. PLoS Genet 2009; 5: e1000642 [PMID: 19750004 DOI: 10.1371/journal.pgen.1000642]

37 Babásí AL, Gulsah NS, Loscalzo J. Network medicine: a network-based approach to human disease. Nat Rev Genet 2011; 12: 56–68 [PMID: 21164525 DOI: 10.1038/nrg2918]

38 Sarvatham SG, Berry N. Prevalence of coronary heart disease in an urban population in northern India. Circulation 1968; 37: 939–953 [PMID: 5653054 DOI: 10.1161/01.CIR.37.6.939]

39 Gupta SP, Malhotra KC. Urban–rural trends in the epidemiology of coronary heart disease. J Assoc Physicians India 1975; 23: 885–892 [PMID: 1228902]

40 Gupta R, Prakash H, Majumdar S, Sharma S, Gupta VP. Prevalence of coronary heart disease and coronary risk factors in an urban population of Rajasthan. Indian Heart J 1995; 47: 331–338 [PMID: 8557274]

41 Chadha SL, Gopinath N, Shekhawat S. Urban-rural differences in the prevalence of coronary heart disease and its risk factors in Delhi. Bull World Health Organ 1997; 75: 31–38 [PMID: 9141748]

42 Gupta R, Gupta VP, Ahuwalia NS. Educational status, coronary heart disease, and coronary risk factor prevalence in a rural population of India. BMJ 1994; 309: 1332–1336 [PMID: 7866081 DOI: 10.1136/bmj.309.6965.1332]

43 Wander GS, Khurana SB, Gulati R, Sachar RK, Gupta RK, Khurana S, Anand IS. Epidemiology of coronary heart disease in a rural Punjab population–prevalence and correlation with various risk factors. Indian Heart J 1994; 46: 319–323 [PMID: 7797219]

44 Ramachandran A, Snehatalha C, Latha E, Satyavani K, Vijay V. Clustering of cardiovascular risk factors in urban Asian Indians. Diabetes Care 1998; 21: 967–971 [PMID: 9614615 DOI: 10.2337/diacare.21.6.967]

45 Mohan V, Deepa R, Rani SS, Premalatha G. Prevalence of coronary artery disease and its relationship to lipids in a selected population in South India: The Chennai Urban Population Study (CUPS No. 5). J Am Coll Cardiol 2001; 38: 682–687 [PMID: 11527617 DOI: 10.1016/S0735-1097(01)01451-2]

46 Bahl VK, Prabakaran D, Karthikeyan G. Coronary artery disease in Indians. Indian Heart J 2001; 53: 707–713 [PMID: 11838923]

47 Lusis AJ, Fogelman AM, Fornarow GC. Genetic basis of atherosclerosis: part I: new genes and pathways. Circulation 2004; 110: 1868–1873 [PMID: 15451808 DOI: 10.1161/01.CIR.0000143041.58692.CC]

48 Zee CY, Rickard PM. Polymorphism in the human C-reactive protein (CRP) gene, plasma concentrations of CRP, and the risk of future arterial thrombosis. Atherosclerosis 2002; 162: 217–219 [PMID: 11947917 DOI: 10.1016/S0021-9150(01)00703-1]

49 Jiang H, Klein RM, Niederacher D, Du M, Marx R, Horlitz M, Boeniger G, Lapp H, Scheffold T, Krakau I, Gükler H. C/T polymorphism of the intracellular adhesion molecule-1 gene (exon 6, codon 469). A risk factor for coronary heart disease and myocardial infarction. Int J Cardiol 2002; 84: 171–177 [PMID: 12127369 DOI: 10.1016/S0167-5273(02)01388-9]

50 Wenzel K, Ernst M, Rohde K, Baumann G, Speer A. DNA polymorphisms in adhesion molecule genes—a new risk factor for early atherosclerosis. Hum Genet 1996; 97: 15–20 [PMID: 8557254 DOI: 10.1007/BF02028826]

51 Herrmann SM, Heyerdahl S, Nicolau V, Mallet C, Evans A, Ruidavets JB, Arveiler D, Luc G, Cambien F. The P-selectin gene is highly polymorphic: reduced frequency of the Pro715 allele carriers in patients with myocardial infarction. Hum Mol Genet 1998; 7: 1277–1284 [PMID: 9668170 DOI: 10.1093/hmg/7.8.1277]

52 Zheng F, Chevalier JA, Zhang LQ, Virgil D, Ye SQ, Kvitervich PO. An Hpol polymorphism in the E-selectin gene is associated with premature coronary arterial disease.
Agrawal S et al. Genetic contribution of apolipoproteins in CHD

Clin Genet 2001; 59: 58-64 [PMID: 11168027 DOI: 10.1034/ j.1399-0004.2001.590110.x]

Ye SQ, Usher D, Virgil D, Zhang LQ, Yochim SE, Gupta R. A 3'PstI polymorphism detects the mutation of ser121argin in CD 62E gene - a risk factor for coronary artery disease. J Biol Mol Biol 1999; 6: 18-21 [PMID: 9933738]

Herrmann SM, Ricard S, Nicau V, Mallet C, Arveiler D, Evans A, Ruidavets JB, Luc G, Bara L, Parra HJ, Poirier O, Cambian F. Polymorphisms of the tumour necrosis factor-alpha gene, coronary heart disease and obesity. Eur J Clin Invest 1998; 28: 59-66 [PMID: 9502188 DOI: 10.1046/j.1365-2362.1998.00244.x]

Kee F, Morrison C, Evans AE, McCrum E, McMaster D, Dal-longeville J, Nicau V, Poirier O, Cambian F. Polymorphisms of the P-selectin gene and risk of myocardial infarction in men and women in the ECTIM extension study. Etude cas-témoin de l'infarctus myocardique. Heart 2000; 84: 548-552 [PMID: 11040019 DOI: 10.1136/heart.84.5.548]

Tregouet DA, Barbaux S, Escolano S, Tahri N, Gomard JL, Treti L, Cambian F. Specific haplotypes of the P-selectin gene are associated with myocardial infarction. Hum Mol Genet 2002; 11: 2015-2023 [PMID: 12165563 DOI: 10.1093/hmg/11.17.2015]

Barbaux SC, Blankenberg S, Rupprecht HJ, Francomme C, Bickel C, Hafner G, Nicau V, Meyer J, Cambian F, Treti L. Association between P-selectin gene polymorphisms and soluble P-selectin levels and their related to coronary artery disease. Arterioscler Thromb Vasc Biol 2001; 21: 1668-1673 [PMID: 11597943 DOI: 10.1161/01.hyp.0000070222]

Koch W, Kastrati A, Böttiger C, Mehilli J, von Beckerat A, Schömig A. Interleukin-10 and tumour necrosis factor gene polymorphisms and risk of coronary artery disease and myocardial infarction. Atherosclerosis 2001; 159: 137-144 [PMID: 11689215 DOI: 10.1016/S0021-9150(01)00467-1]

Pavodani JC, Pazin-Filho A, Simões MV, Marín-Neto JA, Zago MA, Franco RF. Gene polymorphisms in the TNF locus and the risk of myocardial infarction. Thromb Res 2000; 100: 263-269 [PMID: 11113269 DOI: 10.1016/S0049-080X(00)03157-9]

Keso T, Perola M, Laippala P, Ilveskoski E, Kunnas TA, Mikkelsson J, Penttilä A, Hurme M, Karhunen PJ. Polymorphisms of the transforming growth factor-beta gene and susceptibility to myocardial infarction. J Mol Med 2001; 79: 507-513 [PMID: 12185451 DOI: 10.1007/s00109-002-0354-2]

Georges JL, Leontiadis GI, Poirier O, Evans A, Luc G, Arveiler D, Ruidavets JB, Cambian F, Treti L. Interleukin-6 gene polymorphisms and susceptibility to myocardial infarction: the ECTIM study. Etude Cas-Témoin de l'Infarctus du Myocarde. J Mol Med (Berl) 2002; 79: 300-305 [PMID: 11485024 DOI: 10.1007/s001090100209]

Donger C, Georges JL, Nicau V, Morrison C, Evans A, Kee F, Arveiler D, Treti L, Cambian F. New polymorphisms in the interleukin-10 gene–relationships to myocardial infarction. Eur J Clin Invest 2001; 31: 9-14 [PMID: 11168433 DOI: 10.1111/j.1365-2362.2001.00754.x]

Yokota M, Ichihara S, Lin TL, Nakashima N, Yamada Y. Association of a T299C polymorphism of the transforming growth factor-beta1 gene with genetic susceptibility to myocardial infarction in Japanese. Circulation 2000; 101: 2783-2787 [PMID: 10859292 DOI: 10.1161/01.CIR.101.24.2783]

Wang XI, Sim AS, Wilcken DE. A common polymorphism of the transforming growth factor-beta1 gene and coronary artery disease. Clin Sci (Lond) 1998; 95: 745-746 [PMID: 9831700 DOI: 10.1042/CS19980292]

Cambien F, Ricard S, Troesch A, Mallet C, Genéreux L, Evans A, Arveiler D, Luc G, Ruidavets JB, Poirier O. Polymorphisms of the transforming growth factor-beta 1 gene in relation to myocardial infarction and blood pressure. The Etude Cas-Témoin de l'Infarctus du Myocarde (ECTIM) Study. Hypertension 1996; 28: 881-887 [PMID: 9001899 DOI: 10.1161/01.HYP.28.5.881]

Syrris P, Carter ND, Metcalfe JC, Kemp PR, Grainger DJ, Kaski JC, Crossman DC, Francis SE, Gunn J, Jeffery S, Heathcote K. Transforming growth factor-beta1 gene polymorphisms and coronary artery disease. Clin Sci (Lond) 1998; 95: 659-667 [PMID: 9851690 DOI: 10.1042/CS19980154]

Schwarz A, Haberbosch W, Tillmanns H, Gardemann A. The polymorphism-1/SA -6A promoter polymorphism is a disease marker for the extent of coronary heart disease. Dis Markers 2002; 18: 121-128 [PMID: 12515907 DOI: 10.1155/2002/418383]

Terashima M, Akiha H, Kanazawa K, Inoue N, Yamada S, Ito K, Matsuda Y, Takai E, Iwai K, Kurogane H, Yoshida Y, Yokoyama M. Stromelysin promoter 5A/6A polymorphism is associated with acute myocardial infarction. Circulation 1999; 99: 2717-2719 [PMID: 10351963 DOI: 10.1161/01.CIR.99.21.2717]

Kim JS, Park HY, Kwon JH, Im EK, Choi DH, Jang YS, Cho SY. The roles of stromelysin-1 and the gelatinase B gene polymorphism in stable angina. Yonsei Med J 2002; 43: 473-481 [PMID: 12205736]

Humphries SE, Martin S, Cooper J, Miller G. Interaction between smoking and the stromelysin-1 (MMP3) gene SA/6A promoter polymorphism and risk of coronary heart disease in healthy men. Ann Hum Genet 2002; 66: 343-352 [PMID: 12485468 DOI: 10.1016/j.ajhg.1809.2002.00126.x]

Ye S, Watts GF, Mandala S, Humphries SE, Henney AM. Preliminary report: genetic variation in the human stromelysin promoter is associated with progression of coronary atherosclerosis. Br Heart J 1995; 73: 209-215 [PMID: 7727178 DOI: 10.1136/hrt.73.3.209]

Sasako T, Kimura A, Hohda SA, Fukuda N, Kurosawa T, Izumi T. Polymorphisms in the platelet-endothelial cell adhesion molecule-1 (PECAM-1) gene, Ann Med 2003; 7: 473-481 [PMID: 12205736]

Wenzel K, Baumann G, Felix SB. The homozygous combination of Leu125Val and Ser663Asn polymorphisms in the PECAM1 (CD31) gene is associated with early severe coro-
Agrawal S et al. Genetic contribution of apolipoproteins in CHD

Song FC, Chen AH, Tang XM, Zhang WX, Qian XX, Li JQ, Lu Q. Association of platelet endothelial cell adhesion molecule-1 gene polymorphism with coronary heart disease. *Diyi Junyi Daxue Xuebao* 2003; 23: 156-158 [PMID: 12581968]

Gardemann A, Knapp A, Katz N, Tillmanns H, Haberbosch W. No evidence for the CD31 C/G gene polymorphism as an independent risk factor of coronary heart disease. *Thromb Haemost* 2000; 83: 629 [PMID: 10780529]

- Reviewer: Iacoviello M, Ong HT
- Editor: Wen LL
- Editor: A
- Editor: Wu HL
