Supersymmetric Adjoint SU(5)

Pavel Fileviez Pérez
Centro de Física Teórica de Partículas
Departamento de Física. Instituto Superior Técnico
Avenida Rovisco Pais 1, 1049-001 Lisboa, Portugal

Recently we have proposed a renormalizable grand unified theory, based on the SU(5) gauge symmetry, where the neutrino masses are generated through the type I and type III seesaw mechanisms. In this letter we study the supersymmetric version of this theory. As in the non-susy version it is possible to generate all fermion masses with the minimal number of Higgses, the theory predicts one massless neutrino and the leptogenesis mechanism can be realized. All contributions to the decay of the proton and the properties of neutralinos are discussed. This theory can be considered as the simplest renormalizable supersymmetric grand unified theory based on the SU(5) gauge symmetry since it has the minimal number of superfields and free parameters.

I. INTRODUCTION

The so-called Grand Unified Theories (GUTs) can be considered as one of the most appealing candidates for physics beyond the Standard Model (SM). These theories predict the unification of the electromagnetic, weak and strong interactions at the high scale, $M_{\text{GUT}} \approx 10^{14-16}$ GeV, the quantization of the electric charge, the value of $\sin^2 \theta_W (M_{\text{GUT}}) = 3/8$ at the GUT scale, the decay of the proton and the existence of vector and scalar leptoquarks. The simplest grand unified theory was proposed in reference [1]. This theory is based on SU(5) gauge symmetry and one Standard Model family is partially unified in reference [1]. This theory is ruled out since the relation between the proton and the properties of neutralinos are discussed. This theory can be considered as the simplest renormalizable supersymmetric grand unified theory based on the SU(5) gauge symmetry since it has the minimal number of superfields and free parameters.

As is well-known the renormalizable version of this theory is ruled out with the minimal set of Higgs bosons, 5_H and 45_H. The neutrino masses are generated through the type I Σ and type III $\bar{\Sigma}$ seesaw mechanisms. We conclude that if we want R-parity as a symmetry of the theory we have to introduce one matter chiral superfield 24. We refer to this model as “Supersymmetric Adjoint SU(5)”. As in the non-supersymmetric version the theory predicts one massless neutrino and the leptogenesis mechanism can be realized. We discuss the LLLL and RRRR contributions to proton decay and the properties of neutralinos. This theory can be considered as the simplest renormalizable grand unified theory based on SU(5) since it has the minimal number of chiral superfields and free parameters.

II. SUSY ADJOINT SU(5)

Recently, a realistic renormalizable grand unified theory based on SU(5) gauge symmetry has been proposed, where the Higgs sector is composed of 5_H, 24_H, and 45_H. In this case an extra matter multiplet in the adjoint representation has been added in order to generate neutrino masses through the type I and type III seesaw mechanisms. This model is consistent with all constraints coming from proton decay, predicts one massless neutrino at tree level, and the leptogenesis mechanism can be realized [2]. Let us discuss in this section the supersymmetric version of this model.

As is well-known in the minimal supersymmetric SU(5) [3] the MSSM chiral superfields are unified in $\hat{5}_H$, $\hat{5}_H$, and 24_H. Now, in order to write down the supersymmetric

\[\hat{5}_H = (\hat{d}^C, \hat{L}) \text{ and } \hat{10} = (\hat{u}^C, \hat{Q}, \hat{e}^C), \]

while the Higgs sector is composed of $\hat{5}_H = (\hat{T}, \hat{H}_1)$, $\hat{\bar{5}}_H = (\hat{\bar{T}}, \bar{\hat{F}}_1)$, and $\hat{24}_H$. In our notation the SM decomposition of the adjoint Higgs superfield reads as $\hat{24}_H = (\hat{\Sigma}_8, \hat{\Sigma}_3, \hat{\Sigma}_{(3,2)}, \hat{\Sigma}_{(3,2)}, \hat{\Sigma}_{24}) = (8, 1, 0) \oplus (1, 3, 0) \oplus (3, 2, 5/6) \oplus (\bar{3}, 2, 5/6) \oplus (1, 1, 0)$. As is well-known the renormalizable version of this theory is ruled out since the relation between Y_E and Y_D, $Y_E = Y_D^T$, is in disagreement with the experimental values of the fermion masses at the low scale and the neutrinos are massless if the so-called R-parity is conserved. See reference [3] for the most general constraints coming from unification and [4] for all possible dimension five contributions to the decay of the proton in this context.
version of the realistic grand unified theory proposed in reference \[4\] we have to introduce three extra chiral superfields, \(45_H\), \(\overline{45}_H\) and \(24\). Therefore, our Higgs sector will be composed of \(\tilde{5}_H\), \(\overline{5}_H\), \(24_H\), \(45_H = (\Phi_1, \Phi_2, \Phi_3, \Phi_4, \Phi_5, H_2) = (8, 2, 1/2) \oplus (5, 1, -1/3) \oplus (3, 3, -1/3) \oplus (\overline{3}, 2, -7/6) \oplus (3, 1, -1/3) \oplus (\overline{3}, 1, 4/3) \oplus (1, 2, 1/2)\), and \(\overline{45}_H = (\overline{\Phi}_1, \overline{\Phi}_2, \overline{\Phi}_3, \overline{\Phi}_4, \overline{\Phi}_5, \overline{H}_2) = (8, 2, -1/2) \oplus (6, 1, 1/3) \oplus (\overline{3}, 3, 1/3) \oplus (\overline{3}, 2, 7/6) \oplus \overline{\Phi}(3, 1, 1/3) \oplus (\overline{3}, 1, -4/3) \oplus (1, 2, -1/2)\). The fields in the \(45\) representation satisfy the following conditions: \(v_{45}^\delta = -v_{45}^\alpha + \sum_{n=1}^{\delta} (45)_{\alpha n}^\beta = 0\), \(v_{\overline{45}}^\delta = (45_H)_{15}^\delta = (45_H)_{35}^\delta = (45_H)_{35}^\delta\), and \(v_{\overline{45}} = (45_H)_{15} = (45_H)_{25} = (45_H)_{35}\).

In this model the Yakuwa superpotential for charged fermions reads as:

\[
W_0 = 10 \tilde{\Phi}_1 \tilde{\Phi}_2 \tilde{\Phi}_3 \tilde{\Phi}_4 \tilde{\Phi}_5 \tilde{\Phi}_6 + 10 \tilde{\Phi}_1 \tilde{\Phi}_2 \tilde{\Phi}_3 \tilde{\Phi}_4 \tilde{\Phi}_5 \tilde{\Phi}_6
\]

and the relation between the masses for charged leptons and down quarks is given by:

\[
M_D - M_E = 8 Y_2 v_{\overline{45}}
\]

where \(Y_2\) is an arbitrary \(3 \times 3\) matrix. As is well-known the relation between the masses of \(\tau\) lepton and \(b\) quark, \(m_\tau(M_{\text{GUT}}) = m_b(M_{\text{GUT}})\), is in agreement with the experiment. Therefore, the \(Y_2\) matrix only must modify the relation between the masses of quarks and leptons of the first and second generation. See reference \[10\] for a recent study of the relation between fermion masses in supersymmetric scenarios.

There are three different possibilities to generate the neutrino masses at tree level in the context of SUSY \(SU(5)\) models:

* We can add at least two fermionic superfields for the singlets and generate neutrino masses through the type I seesaw \[8\] mechanism.

* We can add two Higgs chiral superfields \(15_H\) and \(\overline{15}_H\) to generate neutrino masses through type II seesaw \[11\] mechanism.

* One can generate neutrino masses through the type III \[9\] and type I seesaw mechanisms adding just one fermionic \(24\) chiral superfield. The last possibility has been realized at the renormalizable level in the model proposed in reference \[4\]. Therefore, in order to realize the mechanism a new chiral supermultiplet: \(24 = (\tilde{\rho}_5, \tilde{\rho}_6, \tilde{\rho}_{(3,2)}, \tilde{\rho}_{(3,2)}) = (8, 1, 0) \oplus (1, 3, 0) \oplus (3, 2, -5/6) \oplus \overline{\Phi}(2, 5/6) \oplus (1, 1, 0)\) has to be introduced \[13\].

The idea of using extra matter in the adjoint representation to generate neutrino masses through the type I and type III seesaw mechanisms was pointed out for the first time in reference \[12\] in the context of SUSY \(SU(5)\) and in reference \[3\] in the context of non-SUSY \(SU(5)\). It is important to say that this possibility is very appealing since we have to introduce only one extra chiral matter superfield and there is no need to introduce \(SU(5)\) singlets.

Since in this letter we are interested in the supersymmetric version of the model proposed in reference \[4\] a new matter chiral superfield has to be introduced only if we want to have the so-called matter parity as a symmetry of the theory. Matter parity is defined as \(M = (-1)^{3(B - L)} = (-1)_{2S} R\), where \(M = -1\) for all matter superfields and \(M = 1\) for the Higgs and gauge superfields. In the case that matter parity is not conserved the neutrino masses can be generated through the \(M\)-parity violating interactions \(\epsilon_i \tilde{\Phi}_i H\) and \(\eta_i \tilde{\Phi}_i \overline{24} H\). Particularly, in the second term we have an \(SU(2)\) fermionic triplet needed for type III seesaw mechanism. In this letter we want to keep matter-parity as a symmetry of the theory to avoid the dimension four contributions to the decay of proton coming from \(\lambda_{ijk} 10 \tilde{\Phi}_i \tilde{\Phi}_j 24\) and have the lightest neutralino as a good candidate for the cold dark matter of the universe.

The new superpotential relevant for neutrino masses in this context is given by:

\[
W_1 = c_i \tilde{\Phi}_i \tilde{\Phi}_i \tilde{\Phi}_i H + p_i \tilde{\Phi}_i \tilde{\Phi}_i \overline{24} 45_H
\]

Notice from Eq. (1) and Eq. (3) the possibility to generate all fermion masses, including the neutrino masses, with the Higgs chiral superfields \(5_H\), \(\overline{5}_H\), \(45_H\) and \(\overline{45}_H\). As in the non-susy model the Higgses in the \(45\) representation play a crucial role to generate masses for charged fermions and neutrinos as well.

There are also new relevant interactions between \(24\) and \(24_H\) in this model:

\[
W_2 = m_\Sigma Tr 24_H^2 + \lambda_\Sigma Tr 24_H^3 + m Tr 24^2 + \lambda Tr (24^* 24_H)
\]

Notice that there are only two extra terms since matter parity is conserved. Once \(24_H\) gets the expectation value, \(\langle 24_H \rangle = 2m_\Sigma \text{diag}(2, 2, 2, -3, -3)/3\lambda_\Sigma\), the masses of the fields living in \(24\) are given by:

\[
M_{\rho_0} = m - \frac{2m_\Sigma \lambda}{3\lambda_\Sigma},
\]

\[
M_{\rho_1} = m - \frac{2 \lambda m_\Sigma}{\lambda_\Sigma},
\]

\[
M_{\rho_2} = m + \frac{4 \lambda m_\Sigma}{3\lambda_\Sigma},
\]

and

\[
M_{\rho_{(3,2)}} = M_{\rho_{(3,2)}} = m - \frac{\lambda m_\Sigma}{3\lambda_\Sigma}.
\]
From the above equations we can see that when the fermionic triplet ρ_3, responsible for type III seesaw mechanism, is very light the rest of the fields living in 24 have to be heavy if we do not assume a very small value for the λ parameter. The GUT symmetry is broken as usual and 24 does not get expectation value.

Since our Higgs sector is composed of 5_H, $\tilde{5}_H$, 45_H, and 24_H there are also additional interactions between the different Higgs chiral superfields in the theory:

$$W_3 = m_H \tilde{5}_H 5_H + \lambda_H \tilde{5}_H 24_H 5_H + c_H \tilde{5}_H 24_H 45_H + b_H \tilde{5}_H 24_H \tilde{5}_H + m_{45} \tilde{45}_H 45_H + a_H \tilde{45}_H 45_H 24_H$$ \hspace{1cm} (9)

Notice the simplicity of the model. Unfortunately, the scalar sector of the non-supersymmetric grand unified theory proposed in reference [4] is not very simple since there are many possible interactions between 5_H, 24_H and 45_H. We have the same problem in any renormalizable non-supersymmetric grand unified model. Supersymmetric Adjoint $SU(5)$, the model proposed in this letter, can be considered as the simplest supersymmetric grand unified theory based on $SU(5)$ since it has the minimal number of chiral superfields and free parameters.

III. PHENOMENOLOGICAL ASPECTS: PROTON DECAY, NEUTRINO MASSES, NEUTRALINOS AND LEPTOGENESIS

In this section we will discuss the most relevant phenomenological and cosmological aspects of this proposal. However, the detailed analysis of those issues is beyond the scope of this letter. As is well known the most important prediction coming from the unification of fundamental forces is proton decay. See reference [13] for a review and [14] for future proton decay experiments. In this model there are several multiplets that mediate proton decay. We have the usual gauge $d = 6$ contributions, mediated by the superheavy gauge bosons $V = (3, 2, -5/6) \bigoplus (3, 2, 5/6)$, and Higgs $d = 6$ contributions mediated by the fields $T, \tilde{T}, \Phi_3, \tilde{\Phi}_3, \Phi_5, \tilde{\Phi}_5, \Phi_6,$ and $\tilde{\Phi}_6$. The most important contributions to the decay of the proton in supersymmetric scenarios are the dimension five contributions if the so-called matter parity is conserved. In our model the most important proton decay contributions are mediated by the superpartners of the above fields: $\tilde{T}, \tilde{\tilde{T}}, \tilde{\Phi}_3, \tilde{\tilde{\Phi}}_3, \tilde{\Phi}_5,$ and $\tilde{\tilde{\Phi}}_6$. Let us discuss the different LLLL and RRRR contributions. The so-called LLLL effective operators, $\tilde{Q} \tilde{Q} \tilde{Q} \tilde{L}$, are generated once we integrate out the fields $\tilde{T}, \tilde{\tilde{T}}, \tilde{\Phi}_3, \tilde{\tilde{\Phi}}_3, \tilde{\Phi}_5$, and $\tilde{\tilde{\Phi}}_6$. The RRRR contributions, $\tilde{U}^C \tilde{E}^C \tilde{U}^C \tilde{D}^C$, are due to the presence of the fields $\tilde{T}, \tilde{\tilde{T}}, \tilde{\Phi}_3, \tilde{\tilde{\Phi}}_3, \tilde{\Phi}_5$, and $\tilde{\tilde{\Phi}}_6$. As is well-known those fields have to be very heavy in order to satisfy the experimental bounds on the proton decay lifetime. There are also new contributions to nucleon decay in this context. Once we compute the F-terms of the fields in the adjoint representation we find new dimension five contributions. However, these contributions are suppressed since they are proportional to m_W/M_W^2 [15].

Let us analyze how we could suppress the LLLL and RRRR contributions mentioned above. The different dimension five contributions are obtained through the mixings between $\tilde{5}_H$ and $\tilde{\tilde{5}}_H$ (the usual contributions in minimal $SU(5)$), $\tilde{5}_H$ and $\tilde{\tilde{\Phi}}_H$ (proportional to b_H), $\tilde{\tilde{5}}_H$ and $\tilde{\Phi}_H$ (proportional to Y_4), and through the mixing between 45_H and $\tilde{\tilde{\Phi}}_H$ (proportional to Y_4). Notice that in the case when Y_4 and b_H are very small the only relevant LLLL and RRRR contributions to the decay of the proton are due to the mixing between $\tilde{5}_H$ and $\tilde{\tilde{5}}_H$ since all others are suppressed. Now, without assuming large masses for sfermions one can satisfy the experimental bounds on the proton decay lifetime if the unification scale and the mass of the triplets \tilde{T} and $\tilde{\tilde{T}}$ is around 10^{17} GeV. In this model it is easy to realize this scenario. The complete numerical analysis of the proton decay issue in this model is beyond the scope of this letter and will be studied in detail in a future publication [15].

As in the non-supersymmetric version of the model [4], integrating out the singlet ρ_3 and the neutral component of the $SU(2)$ fermionic triplet ρ_3 in 24, the neutrino mass matrix reads as

$$M_{ij}^\nu = \frac{a_i a_j}{M_{\rho_3}} + \frac{b_i b_j}{M_{\rho_0}}$$ \hspace{1cm} (10)

with

$$a_i = c_i v_5 - 3p_i v_{45},$$ \hspace{1cm} (11)

and

$$b_i = \frac{\sqrt{15}}{2} \left(\frac{c_i v_5}{5} + p_i v_{45} \right).$$ \hspace{1cm} (12)

The theory predicts one massless neutrino at tree level, this is one of the main predictions. Therefore, we could have a normal neutrino mass hierarchy: $m_1 = 0, m_2 = \sqrt{\Delta m^2_{\sun}}$ and $m_3 = \sqrt{\Delta m^2_{\sun} + \Delta m^2_{\atm}}$ or the inverted neutrino mass hierarchy: $m_3 = 0, m_2 = \sqrt{\Delta m^2_{\atm}}$ and $m_1 = \sqrt{\Delta m^2_{\atm} - \Delta m^2_{\sun}}$. $\Delta m^2_{\sun} \approx 8 \times 10^{-5}$ eV2 and $\Delta m^2_{\atm} \approx 2.5 \times 10^{-3}$ eV2 are the mass-squared differences of solar and atmospheric neutrino oscillations, respectively. The Higgs sector is composed of two pairs of Higgs chiral superfields, $\tilde{H}_1, \tilde{\tilde{H}}_1, \tilde{H}_2$ and $\tilde{\tilde{H}}_2$. See reference [10] for phenomenological aspects of supersymmetric models with several chiral Higgs superfields.

In this model the neutralino states are defined as $\tilde{\Psi}^0_i = N_{i1} \tilde{B} + N_{i2} \tilde{W}_3^0 + N_{i3} \tilde{H}_1^0 + N_{i4} \tilde{H}_2^0 + N_{i5} \tilde{\tilde{H}}_1^0 + N_{i6} \tilde{H}_2^0$ and the mass matrix for them reads as:
where \(v_5 = \langle 5_H \rangle \), and \(v_5 = \langle \bar{5}_H \rangle \). The \(\mu_i \) parameters in the above matrix are given by: \(\mu_1 = -m_H + 2m_\Sigma \lambda_H/\lambda_\Sigma \), \(\mu_2 = -10 c_H m_\Sigma/\lambda_\Sigma \), \(\mu_3 = 10 b_H m_\Sigma/\lambda_\Sigma \), and \(\mu_4 = 12 m_{45} + 22 a_H m_\Sigma/\lambda_\Sigma \). At low energy we have just one pair of light Higgsinos with mass \(\mu_{\tilde{t}f} \).

Also as in the non-supersymmetric version of the model it is possible to realize the leptogenesis mechanism in this context (For a review see [12]). In this case a net B-L asymmetry can be generated through the out of equilibrium decays of the fields \(\tilde{\rho}_0 \) and \(\tilde{\rho}_3 \) and their superpartners in the adjoint representation.

Let us now compare our model with the unrealistic minimal renormalizable SUSY SU(5). In our model we have three extra chiral superfields, two Higgs chiral superfields \(4\bar{5}_H \) and \(\bar{4}5_H \), and one matter chiral superfield \(24 \). All those fields could modify the predictions coming from the unification of gauge couplings. In \(24 \) we have four superfields, \(\bar{\rho}_8, \tilde{\rho}_3, \bar{\rho}(3,2), \) and \(\tilde{\rho}(3,2) \), which contribute to the running of gauge couplings. However, only \(\bar{\rho}_3 \) could help us to improve the unification in agreement with the values of \(\alpha_s(M_Z), \alpha_{em}(M_Z) \) and \(\sin \theta_W(M_Z) \) since it has positive (negative) contribution to \(b_2 - b_3 \) \((b_1 - b_2)\). Here \(b_i \) stands for the different beta functions. Notice that in the limit when \(\lambda \to 0 \), see Eq. (4), the mass splitting between the fields in the adjoint representation is very small, they do not modify the running of the gauge couplings at one-loop level and still we can generate mass for two neutrinos. In the case of the \(4\bar{5}_H \) and \(\bar{4}5_H \) there are four fields, \(\bar{\Phi}_3, \tilde{\Phi}_3, \bar{H}_2 \) and \(\tilde{H}_2 \) with positive (negative) contributions to \(b_2 - b_3 \) \((b_1 - b_2)\). However, as we have discussed above the fields in \(\Phi_3 \) and \(\bar{\Phi}_3 \) mediate proton decay, therefore they have to be at the GUT scale if we do not suppress their contributions. A detailed numerical analysis of the unification of gauge couplings in this model is beyond the scope of this letter. All the phenomenological and cosmological aspects mentioned above will be studied in detail in a future publication [13].

IV. Summary and Outlook

In this letter we have written and studied the minimal supersymmetric version of the renormalizable grand unified theory based on the SU(5) gauge symmetry with extra matter in the adjoint representation proposed in reference [3]. We refer to this model as “Supersymmetric Adjoint SU(5)” As in the non-susy version of the theory it is possible to generate all fermion masses, including the neutrino masses, with the minimal number of Higgses. The theory predicts one massless neutrino at tree level and a net \(B - L \) asymmetry can be generated in the early universe through the out of equilibrium decays of the fermions responsible for type I and type III seesaw mechanisms and their superpartners in the adjoint matter chiral superfield. The LLLL and RRRR contributions to proton decay and the properties of neutralinos have been discussed. A detailed analysis of the predictions for neutrino masses, the constraints coming from leptogenesis, the numerical analysis for proton decay and the unification of gauge couplings will be published in a future publication. The theory presented in this work can be considered as the simplest renormalizable supersymmetric grand unified theory based on the SU(5) gauge symmetry since it has the minimal number of superfields.

Acknowledgments. I would like to thank M. Drees, P. Nath and M. N. Rebelo for the careful reading of the manuscript and very useful comments. I thank G. Walsch for comments on the manuscript. This work has been supported by Fundação para a Ciência e a Tecnologia (FCT, Portugal) through the projects CFTP, POCTI-SFA-2-777, PDCT/FP/63914/2005, PDCT/FP/63912/2005 and a fellowship under project POCTI/FNU/44409/2002. I would like to thank the theory division at CERN for support and hospitality.

* Electronic address: fileviez@cftp.ist.utl.pt

[1] H. Georgi and S. L. Glashow, “Unity Of All Elementary Particle Forces,” Phys. Rev. Lett. 32 (1974) 438.

[2] I. Dorsner and P. Fileviez Pérez, “Unification without out supersymmetry: Neutrino mass, proton decay and light leptoparks,” Nucl. Phys. B 723 (2005) 53 [arXiv:hep-ph/0504276]. See also: I. Dorsner, P. Fileviez Pérez and R. González Felipe, “Phenomenological and cosmological aspects of a minimal GUT scenario,” Nucl. Phys. B 747 (2006) 312 [arXiv:hep-ph/0512068]. I. Dorsner, P. Fileviez Pérez and G. Rodrigo, “Fermion masses and the UV cutoff of the minimal realistic SU(5),” Phys. Rev. D 75 (2007) 125007 [arXiv:hep-ph/0607208].

[3] B. Bajc and G. Senjanović, “Seesaw at LHC,” arXiv:hep-ph/0611209. See also: I. Dorsner and P. Fileviez Pérez, “Upper Bound on the Mass of the Type III Seesaw Triplet in an SU(5) Model,” JHEP 0706 (2007) 029 [arXiv:hep-ph/0612216]. B. Bajc, M. Nemyssek and G. Senjanović, “Probing seesaw at LHC,” arXiv:hep-ph/0703080.

[4] P. Fileviez Pérez, “Renormalizable Adjoint SU(5),” arXiv:hep-ph/0702287.

[5] S. Dimopoulos and H. Georgi, “Softly Broken Supersymmetry And SU(5),” Nucl. Phys. B 193 (1981) 150; N. Sakai, “Naturalness In Supersymmetric ‘Guts’,” Z...
[6] I. Dorsner, P. Fileviez Pérez and G. Rodrigo, “On Unification and Nucleon Decay in Supersymmetric Grand Unified Theories Based on SU(5),” Phys. Lett. B 649 (2007) 197 [arXiv:hep-ph/0610034].

[7] B. Bajc, P. Fileviez Pérez and G. Senjanović, “Proton decay in minimal supersymmetric SU(5),” Phys. Rev. D 66 (2002) 075005 [arXiv:hep-ph/0204311]; arXiv:hep-ph/0210374.

[8] P. Minkowski, “Mu → E Gamma At A Rate Of One Out Of 1-Billion Muon Decays?,” Phys. Lett. B 67 (1977) 421; T. Yanagida, in Proceedings of the Workshop on the Unified Theory and the Baryon Number in the Universe, eds. O. Sawada et al., (KEK Report 79-18, Tsukuba, 1979), p. 95; M. Gell-Mann, P. Ramond and R. Slansky, in Supergravity, eds. P. van Nieuwenhuizen et al., (North-Holland, 1979), p. 315; S.L. Glashow, in Quarks and Leptons, Cargèse, eds. M. Lévy et al., (Plenum, 1980), p. 707; R. N. Mohapatra and G. Senjanović, “Neutrino Mass And Spontaneous Parity Nonconservation,” Phys. Rev. Lett. 44 (1980) 912.

[9] R. Foot, H. Lew, X. G. He and G. C. Joshi, “Seesaw neutrino masses induced by a triplet of leptons,” Z. Phys. C 44 (1989) 441.

[10] G. Ross and M. Serna, arXiv:0704.1248 [hep-ph].

[11] G. Lazarides, Q. Shafi and C. Wetterich, “Proton Lifetime And Fermion Masses In An SO(10) Model,” Nucl. Phys. B 181 (1981) 287; J. Schechter and J. W. F. Valle, “Neutrino Masses In SU(2) X U(1) Theories,” Phys. Rev. D 22 (1980) 2227; R. N. Mohapatra and G. Senjanović, “Neutrino Masses And Mixings In Gauge Models With Spontaneous Parity Violation,” Phys. Rev. D 23 (1981) 165.

[12] E. Ma, “Pathways to naturally small neutrino masses,” Phys. Rev. Lett. 81 (1998) 1171 [arXiv:hep-ph/9805219].

[13] P. Nath and P. Fileviez Pérez, “Proton stability in grand unified theories, in strings, and in branes,” Phys. Rept. 441 (2007) 191 [arXiv:hep-ph/0601023].

[14] J. Aysto et al., “Large underground, liquid based detectors for astro-particle physics in Europe: Scientific case and prospects,” arXiv:0705.0116 [hep-ph]; A. Bueno et al., “Nucleon decay searches with large liquid argon TPC detectors at shallow depths: Atmospheric neutrinos and cosmogenic backgrounds,” JHEP 0704 (2007) 041 [arXiv:hep-ph/0701101]; T. M. Undagoitia et al., “Search for the proton decay p to K+ anti-nu in the large liquid scintillator low energy neutrino astronomy detector LENA,” Phys. Rev. D 72 (2005) 075014 [arXiv:hep-ph/0511230]; A. de Bellefon et al., “MEM-PHYS: A large scale water Cerenkov detector at Frejus,” arXiv:hep-ex/0607026.

[15] in preparation.

[16] M. Drees, “Supersymmetric Models with Extended Higgs Sector,” Int. J. Mod. Phys. A 4 (1989) 3635.

[17] W. Buchmuller, R. D. Peccei and T. Yanagida, “Leptogenesis as the origin of matter,” Ann. Rev. Nucl. Part. Sci. 55 (2005) 311 [arXiv:hep-ph/0502169].