ON THE IWAHORI WEYL GROUP

BY TIMO RICHARZ

Let F be a discretely valued complete field with valuation ring \mathcal{O}_F and perfect residue field k of cohomological dimension ≤ 1. In this paper, we generalize the Bruhat decomposition in Bruhat and Tits [3] from the case of simply connected F-groups to the case of arbitrary connected reductive F-groups. If k is algebraically closed, Haines and Rapoport [4] define the Iwahori-Weyl group, and use it to solve this problem. Here we define the Iwahori-Weyl group in general, and relate our definition of the Iwahori-Weyl group to that of [4]. Furthermore, we study the length function on the Iwahori-Weyl group, and use it to determine the number of points in a Bruhat cell, when k is a finite field. Except for Lemma 1.3 below, the results are independent of [4], and are directly based on the work of Bruhat and Tits [2], [3].

Acknowledgement. I thank my advisor M. Rapoport for his steady encouragement and advice during the process of writing. I am grateful to the stimulating working atmosphere in Bonn and for the funding by the Max-Planck society.

Let \bar{F} be the completion of a separable closure of F. Let \hat{F} be the completion of the maximal unramified subextension with valuation ring $\mathcal{O}_\hat{F}$ and residue field \bar{k}. Let $I = \text{Gal}(\hat{F}/\bar{F})$ be the inertia group of \hat{F}, and let $\Sigma = \text{Gal}(\hat{F}/F)$.

Let G be a connected reductive group over F, and denote by $B = B(G, F)$ the enlarged Bruhat-Tits building. Fix a maximal F-split torus A. Let $A = A(G, A, F)$ be the apartment of B corresponding to A.

1.1. Definition of the Iwahori-Weyl group. Let $M = Z_G(A)$ be the centralizer of A, an anisotropic group, and let $N = N_G(A)$ be the normalizer of A. Denote by $W_0 = N(F)/M(F)$ the relative Weyl group.

Definition 1.1. i) The Iwahori-Weyl group $W = W(G, A, F)$ is the group

$$ W \overset{\text{def}}{=} \frac{N(F)}{M_1}, $$

where M_1 is the unique parahoric subgroup of $M(F)$.

ii) Let $a \subset A$ be a facet and P_a the associated parahoric subgroup. The subgroup W_a of the Iwahori-Weyl group corresponding to a is the group

$$ W_a \overset{\text{def}}{=} \frac{P_a \cap N(F)}{M_1}. $$

The group $N(F)$ operates on \mathcal{A} by affine transformations

$$ \nu : N(F) \rightarrow \text{Aff}(\mathcal{A}). \tag{1.1} $$

The kernel $\ker(\nu)$ is the unique maximal compact subgroup of $M(F)$ and contains the compact group M_1. Hence, the morphism (1.1) induces an action of W on \mathcal{A}.

Let G_1 be the subgroup of \mathcal{A} generated by all parahoric subgroups, and define $N_1 = G_1 \cap N(\hat{F})$. Fix an alcove $a_C \subset \mathcal{A}$, and denote by B the associated Iwahori subgroup. Let \mathcal{S} be the set of simple reflections at the walls of a_C. By Bruhat and Tits [5] Prop. 5.2.12, the quadruple

$$ (G_1, B, N_1, \mathcal{S}) \tag{1.2} $$

is a (double) Tits system with affine Weyl group $W_{af} = N_1/N_1 \cap B$, and the inclusion $G_1 \subset G(K)$ is B-N-adapted of connected type.
Lemma 1.2. i) There is an equality $N_1 \cap B = M_1$.

ii) The inclusion $N(F) \subset G(F)$ induces a group isomorphism $N(F)/N_1 \cong G(F)/G_1$.

Proof. The group $N_1 \cap B$ operates trivially on \mathcal{A} and so is contained in $\ker(\nu) \subset M(F)$. In particular, $N_1 \cap B = M(F) \cap B$. But $M(F) \cap B$ is a parahoric subgroup of $M(F)$ and therefore equal to M_1. The group morphism $N(F)/N_1 \to G(F)/G_1$ is injective by definition. We have to show that $G(F) = N(F) \cdot G_1$. This follows from the fact that the inclusion $G_1 \subset G(F)$ is B-N-adapted, cf. [2, 4.1.2].

Kottwitz defines in [5, §7] a surjective group morphism

(1.3) \[\kappa_G : G(F) \longrightarrow X^*(Z(\hat{G})^I)^\Sigma. \]

Note that in [loc. cit.] the residue field k is assumed to be finite, but the arguments extend to the general case.

Lemma 1.3. There is an equality $G_1 = \ker(\kappa_G)$ as subgroups of $G(F)$.

Proof. For any facet a, let $\text{Fix}(a)$ be the subgroup of $G(F)$ which fixes a pointwise. The intersection $\text{Fix}(a) \cap \ker(\kappa_G)$ is the parahoric subgroup associated to a, cf. [4, Proposition 3]. This implies $G_1 \subset \ker(\kappa_G)$. For any facet a, let $\text{Stab}(a)$ be the subgroup of $G(F)$ which stabilizes a. Fix an alcove a_C. There is an equality

(1.4) \[\text{Fix}(a_C) \cap G_1 = \text{Stab}(a_C) \cap G_1, \]

and (1.4) holds with G_1 replaced by $\ker(\kappa_G)$, cf. [4, Lemma 17]. Assume that the inclusion $G_1 \subset \ker(\kappa_G)$ is strict, and let $\tau \in \ker(\kappa_G) \setminus G_1$. By Lemma 1.2(ii), there exists $g \in G_1$ such that $\tau' = \tau \cdot g$ stabilizes a_C, and hence τ' is an element of the Iwahori subgroup $\text{Stab}(a_C) \cap \ker(\kappa_G)$. This is a contradiction, and proves the lemma.

By Lemma 1.2 there is an exact sequence

(1.5) \[1 \longrightarrow W_{af} \longrightarrow W \xrightarrow{\kappa_G} X^*(Z(\hat{G})^I)^\Sigma \longrightarrow 1. \]

The stabilizer of the alcove a_C in W maps isomorphically onto $X^*(Z(\hat{G})^I)^\Sigma$ and presents W as a semidirect product

(1.6) \[W = X^*(Z(\hat{G})^I)^\Sigma \rtimes W_{af}. \]

For a facet a contained in the closure of a_C, the group W_a is the parabolic subgroup of W_{af} generated by the reflections at the walls of a_C which contain a.

Theorem 1.4. Let a (resp. a') be a facet contained in the closure of a_C, and let P_a (resp. P_a') be the associated parahoric subgroup. There is a bijection

\[W_a \backslash W/W_a' \xrightarrow{\sim} P_a \backslash G(F)/P_a', \]

\[W_a \backslash W_a' \longrightarrow P_a n_w P_a', \]

where n_w denotes a representative of w in $N(F)$.

Proof. Conjugating with elements of $N(F)$ which stabilize the alcove a_C, we are reduced to proving that

(1.7) \[W_a \backslash W_{af}/W_a' \longrightarrow P_a \backslash G_1/P_a', \]

is a bijection. But (1.7) is a consequence of the fact that the quadruple (1.2) is a Tits system, cf. [1] Chap. IV, §2, n° 5, Remark. 2).
Remark 1.5. Let $G_{sc} \to G_{der}$ be the simply connected cover of the derived group G_{der} of G, and denote by A_{sc} the preimage of the connected component $(A \cap G_{der})^0$ in G_{sc}. Then A_{sc} is a maximal F-split torus of G_{sc}. Let $W_{sc} = W(G_{sc}, A_{sc})$ be the associated Iwahori-Weyl group. Consider the group morphism $\varphi: G_{sc}(F) \to G_{der}(F) \subset G(F)$. Then $G_1 = \varphi(G_{sc}(F)) \cdot M_1$ by the discussion above [3, Proposition 5.2.12], and this yields an injective morphism of groups
\[W_{sc} \to W \]
which identifies W_{sc} with W_{af}.

1.2. Passage to \breve{F}. Let S be a maximal \breve{F}-split torus which is defined over F and contains A, cf. [3]. Denote by $\mathcal{A}^\text{nr} = \mathcal{A}(G, S, \breve{F})$ the apartment corresponding to S over \breve{F}. The group Σ acts on \mathcal{A}^nr, and there is a natural Σ-equivariant embedding
\[\mathcal{A} \to \mathcal{A}^\text{nr}, \]
which identifies \mathcal{A} with the Σ-fixpoints $(\mathcal{A}^\text{nr})^\Sigma$, cf. [3, 5.1.20]. The facets of \mathcal{A} correspond to the Σ-invariant facets of \mathcal{A}^nr.

Let $T = Z_{G}(S)$ (a maximal torus) be the centralizer of S, and let $N_{S} = N_{G}(S)$ be the normalizer of S. Let T_{1}^nr be the unique parahoric subgroup of $T(\breve{F})$. Denote by $W^\text{nr} = W(G, S, \breve{F})$ the Iwahori-Weyl group
\[W^\text{nr} = N_{S}(\breve{F})/T_{1}^\text{nr} \]
over \breve{F}. The group Σ acts on W^nr, and the group of fixed points $(W^\text{nr})^\Sigma$ acts on \mathcal{A} by (1.8).

We have
\[(W^\text{nr})^\Sigma = N_{S}(F)/T_{1}, \]
since $H^1(\Sigma, T_{1}^\text{nr})$ is trivial. For an element $n \in N_{S}(F)$ the tori A and nAn^{-1} are both maximal F-split tori of S and hence are equal. This shows $N_{S}(F) \subset N(F)$, and we obtain a group morphism
\[(W^\text{nr})^\Sigma = N_{S}(F)/T_{1} \to N(F)/M_1 = W, \]
which is compatible with the actions on \mathcal{A}.

Lemma 1.6. The morphism (1.9) is an isomorphism, i.e. $(W^\text{nr})^\Sigma \cong W$.

Proof. Let a_C be a Σ-invariant alcove of \mathcal{A}^nr. The morphism (1.9) is compatible with the semidirect product decomposition (1.6) given by a_C. We are reduced to proving that the morphism
\[(W^\text{nr})^\Sigma \to W_{af} \]
is an isomorphism. It is enough to show that $(W^\text{nr})^\Sigma$ acts simply transitively on the set of alcoves of \mathcal{A}. Let $a_{C'}$ another Σ-invariant alcove of \mathcal{A}^nr. Then there is a unique $w \in W^\text{nr}_{af}$ such that $w \cdot a_{C'} = a_{C'}$. The uniqueness implies $w \in (W^\text{nr})^\Sigma$. \qed

Corollary 1.7. Let $a \subset \mathcal{A}$ be a facet, and denote by $a^\text{nr} \subset \mathcal{A}^\text{nr}$ the unique facet containing a. Then $W_a = (W^\text{nr})^a$ under the inclusion $W \hookrightarrow W^\text{nr}$.

1.3. The length function on W. Let $\mathcal{R} = \mathcal{R}(G, A, F)$ be the set of affine roots. We regard \mathcal{R} as a subset of the affine functions on \mathcal{A}. The Iwahori-Weyl group W acts on \mathcal{R} by the formula
\[(w \cdot \alpha)(x) = \alpha(w^{-1} \cdot x) \]
for $w \in W$, $\alpha \in \mathcal{R}$ and $x \in \mathcal{A}$. This action preserves non-divisible roots.

Fix an alcove a_C in \mathcal{A}. By (1.6), W is the semidirect product of W_{af} with the stabilizer of the alcove a_C in W. Hence, W is a quasi-Coxeter system and is thus equipped with a Bruhat-Chevalley partial order \leq and a length function l.

\[^1 \text{An element } \alpha \in \mathcal{A} \text{ is called non-divisible, if } \frac{1}{4} \alpha \notin \mathcal{A}. \]
For $\alpha \in \mathcal{R}$, we write $\alpha > 0$ (resp. $\alpha < 0$), if α takes positive (resp. negative) values on a_C. For $w \in W$, define
\begin{equation}
(1.11) \quad \mathcal{R}(w) \overset{\text{def}}{=} \{ \alpha \in \mathcal{R} \mid \alpha > 0 \text{ and } w\alpha < 0 \}.
\end{equation}
We have $\mathcal{R}(w) = \mathcal{R}(\tau w)$ for any τ in the stabilizer of a_C. Let S be the reflections at the walls of a_C. These are exactly the elements in W_{af} of length 1. For any $s \in S$, there exists a unique non-divisible root $\alpha_s \in \mathcal{R}(s)$. In particular, $\mathcal{R}(s)$ has cardinality ≤ 2.

Lemma 1.8. Let $w \in W$ and $s \in S$. If $\alpha \in \mathcal{R}(s)$, then $w\alpha > 0$ if and only if $w \leq ws$.

Proof. We may assume that $w \in W_{\text{af}}$ and that α_s is non-divisible. We show that $w\alpha_s < 0$ if and only if $ws \leq w$. If $w\alpha_s < 0$, then fix a reduced decomposition $w = s_1 \cdots s_n$ with $s_i \in S$. There exists an index i such that
\[s_{i+1} \cdots s_n \alpha_s > 0 \quad \text{and} \quad s_i \cdot s_{i+1} \cdots s_n \alpha_s < 0, \]
i.e. $s_{i+1} \cdots s_n \alpha_s = \alpha_{s_i}$ is the unique non-divisible root in $\mathcal{R}(s_i)$. Hence,
\[s_{i+1} \cdots s_n \cdot s \cdot s_{n-1} \cdots s_{i+1} = s_i, \]
and $ws \leq w$ holds true. Conversely, if $ws \leq w$, then $w \leq (ws)s$. This implies that $(ws)\alpha_s > 0$ by what we have already shown. But $s\alpha_s = -\alpha_s$, and $w\alpha_s < 0$ holds true. \hfill \Box

Lemma 1.9. Let $w, v \in W$. Then
\[\mathcal{R}(wv) \subset \mathcal{R}(v) \sqcup v^{-1} \mathcal{R}(w), \]
and equality holds if and only if $l(wv) = l(w) + l(v)$.

Proof. We may assume that $w, v \in W_{\text{af}}$. Assume that $s = v \in S$, which will imply the general case by induction on $l(v)$. The inclusion
\begin{equation}
(1.12) \quad \mathcal{R}(ws) \subset \mathcal{R}(s) \sqcup s \mathcal{R}(w)
\end{equation}
is easy to see. If in (1.12) equality holds, then we have to show that $l(ws) = l(w) + 1$, i.e. $w \leq ws$. In view of Lemma 1.8 it is enough to show that $w\alpha > 0$ for $\alpha \in \mathcal{R}(s)$. But this is equivalent to $\mathcal{R}(s) \subset \mathcal{R}(ws)$, and we are done. Conversely, if $w \leq ws$, then equality in (1.12) also follows from Lemma 1.8. \hfill \Box

Corollary 1.10. If every root in \mathcal{R} is non-divisible, then $l(w) = |\mathcal{R}(w)|$ for every $w \in W$. \hfill \Box

1.4. The length function on W_{nr}. In this section, the residue field k is finite of cardinality q. Let $\mathcal{R}_{\text{nr}} = \mathcal{R}(G, S, F)$ be the set of affine roots over F. Note that every root of \mathcal{R}_{nr} is non-divisible, since $G \otimes \hat{F}$ is residually split. Let W_{nr} be the Iwahori-Weyl group over F_{nr}. Denote by \mathcal{A}_C^Σ the unique Σ-invariant facet of \mathcal{A}_{nr} containing a_C. Let \leq_{nr} be the corresponding Bruhat order and l_{nr} the corresponding length function on W_{nr}. By Lemma 1.8 we may regard W as the subgroup of W_{nr} whose elements are fixed by Σ.

Let $w \in W$. If $\alpha \in \mathcal{R}_{\text{nr}}(w)$, then its restriction to \mathcal{R} is non-constant, and hence $\alpha \in \mathcal{R}$ by [6 1.10.1]. We obtain a restriction map
\begin{equation}
(1.13) \quad \mathcal{R}_{\text{nr}}(w) \longrightarrow \mathcal{R}(w)
\end{equation}
$\alpha \mapsto \alpha|_{\mathcal{R}_{\text{nr}}}$.

Proposition 1.11. The inclusion $W \subset W_{\text{nr}}$ is compatible with the Bruhat orders in the sense that for $w, w' \in W$ we have $w \leq w'$ if and only if $w \leq_{\text{nr}} w'$, and $l(w) = 0$ if and only if $l_{\text{nr}}(w) = 0$. For $w \in W$, there is the equality
\[|BwB/B| = q^{l_{\text{nr}}(w)}, \]
where B is the Iwahori subgroup in $G(F)$ attached to a_C.

Proof. We need some preparation. Let $w \in W$, $s \in S$ with $w \leq ws$. \hfill \Box
Sublemma 1.12. There is an equality
\[\mathcal{R}^{nr}(ws) = \mathcal{R}^{nr}(s) \cup s\mathcal{R}^{nr}(w). \]

In particular, \(I^{nr}(ws) - I^{nr}(w) + I^{nr}(s). \)

Proof. By Lemma 1.9 applied to \(\mathcal{R}^{nr} \), the inclusion ‘\(\subset \)’ holds for general \(w, s \in W^{nr} \).

There is the inclusion \(\mathcal{R}^{nr}(s) \subset \mathcal{R}^{nr}(ws) \): If \(\alpha \in \mathcal{R}^{nr}(s) \), then \(\alpha|_{df} \in \mathcal{R}(s) \) by (1.13). Since \(w \leq ws \), we have \(w \cdot \alpha|_{df} > 0 \) by Lemma 1.8. So \(ws \cdot \alpha < 0 \) which shows that \(ws \cdot \alpha < 0 \).

The inclusion \(s\mathcal{R}^{nr}(w) \subset \mathcal{R}^{nr}(ws) \) follows similarly.

Sublemma 1.12 implies that the inclusion \(W \subset W^{nr} \) is compatible with the Bruhat orders.

To show the rest of the proposition, we may assume that \(\bar{w} \in W_{af} \). Fix a reduced decomposition \(w = s_1 \cdot \ldots \cdot s_n \) with \(s_i \in S \). By standard facts on Tits systems, the multiplication map
\[(1.14) \quad BsB \times B \cdots \times B \bar{B} \rightarrow B_{af}B \]

is bijective. In view of Sublemma 1.12, we reduce to the case that \(n = 1 \), i.e. \(s = w \in S \) is a simple reflection. Let \(B \) be the Iwahori group scheme over \(O_F \) corresponding to the Iwahori subgroup \(B \), and denote by \(\mathcal{P} \) the parahoric group scheme corresponding to the parahoric subgroup \(B \cup BsB \). Let \(\mathcal{P}_{red} \) be the maximal reductive quotient of \(P \otimes k \). This is a connected reductive group over \(k \) of semisimple \(k \)-rank 1. The image of the natural morphism
\[B \otimes k \rightarrow \mathcal{P} \otimes k \rightarrow \mathcal{P}_{red}, \]

is a Borel subgroup \(\mathcal{B} \) of \(\mathcal{P}_{red} \). This induces a bijection
\[(1.15) \quad P/B \rightarrow \mathcal{P}_{red}(k)/\mathcal{B}(k). \]

By Lang’s Lemma, we have \(\mathcal{P}_{red}(k)/B(k) = (\mathcal{P}_{red}/\mathcal{B})(k) \). Let \(\bar{s} \) be the image of \(s \) under (1.15), and denote by \(C_{\bar{s}} \) the \(\mathcal{B} \)-orbit of \(\bar{s} \) in the flag variety \(\mathcal{P}_{red}/\mathcal{B} \). It follows that the image of \(BsB/B \) under (1.15) identifies with the \(k \)-points \(C_{\bar{s}}(k) \). Note that \((\bar{s}) \) is the relative Weyl group of \(\mathcal{P}_{red} \) with respect to the reduction to \(k \) of the natural \(O_F \)-structure on \(A \). Then \(C_{\bar{s}} \simeq \bar{U} \) where \(\bar{U} \) denotes the unipotent radical of \(\mathcal{B} \). But \(\bar{U} \) is an affine space and hence \(|C_{\bar{s}}(k)| = q^{\dim(\bar{U})} \).

On the other hand,
\[I^{nr}(s) = |\mathcal{R}^{nr}(s)| = \dim(\bar{U}), \]

where the last equality holds because \(\mathcal{R}^{nr}(s) \) may be identified with the positive roots of \(\mathcal{P}_{red} \otimes \bar{k} \) with respect to \(\mathcal{B} \otimes \bar{k} \).

Remark 1.13. i) If \(G \) is residually split, then \(l(w) = l^{nr}(w) \) for all \(w \in W \).

ii) Tits attaches in [5, 1.8] to every vertex \(v \) of the local Dynkin diagram a positive integer \(d(v) \).

To the vertex \(v \), there corresponds a non-divisible affine root \(\alpha_v \in \mathcal{R} \), and a simple reflection \(s_v \in S \). Then Proposition 1.11 shows that \(d(v) = l^{nr}(s_v) \), cf. [5, 3.3.1].

References

[1] N. Bourbaki: Éléments de Mathématique. Fasc. XXXIV. Groupes et algèbres de Lie. Chapitre: IV: Groupes de Coxeter et système de Tits. Chapitre V: Groupes engendrés par des réflexions. Chapitre VI: Systèmes de racines, in: Actualités Scientifiques et Industrielles, vol. 1337, Hermann, Paris, 1968, 288 pp.
[2] F. Bruhat and J. Tits: Groupes réductifs sur un corps local. I. Données radicielles valuées, Inst. Hautes Études Sci. Publ. Math. 41 (1972), 5-251.
[3] F. Bruhat and J. Tits: Groupes réductifs sur un corps local. II. Schémas en groupes. Existence d’une donnée radicielle valuée, Inst. Hautes Études Sci. Publ. Math. 60 (1984), 197-376.
[4] T. Haines and M. Rapoport: On parahoric subgroups, Adv. Math. 219 (2008), 188-198.
[5] R. Kottwitz: Isocrystals with additional structures II, Compos. Math. 109 (1997) 255-339.
[6] J. Tits: Reductive groups over local fields, Automorphic forms, representations and \(L \)-functions, in: Proc. Sympos. Pure Math., Part 1, Oregon State Univ., Corvallis, OR, 1977, in: Proc. Sympos. Pure Math., vol. XXXIII, Amer. Math. Soc., Providence, RI, 1979, pp. 29-69.

Timo Richarz: Mathematisches Institut der Universität Bonn, Endenicher Allee 60, 53115 Bonn, Germany

E-mail address: richarz@math.uni-bonn.de