Oligomerization of NTRC at the glnA enhancer is required for transcriptional activation

Susan C. Porter, Anne K. North, Andrew B. Wedel, and Sydney Kustu

Department of Plant Biology and Department of Molecular and Cell Biology, University of California, Berkeley, California 94720 USA

To activate transcription of the glnA gene, the dimeric NTRC protein (nitrogen regulatory protein C) of enteric bacteria binds to an enhancer located ~100 bp upstream of the promoter. The enhancer is composed of two binding sites for NTRC that are three turns of the DNA helix apart. One role of the enhancer is to tether NTRC in high local concentration near the promoter to allow for its frequent interaction with σ44 holoenzyme by DNA looping. We have found that a second role of the enhancer is to ensure oligomerization of NTRC into a complex of at least two dimers that is required for transcriptional activation. Formation of this complex is greatly facilitated by a protein–protein interaction between NTRC dimers that is increased when the protein is phosphorylated.

[Key Words: NTRC; NTRA; enhancer; cooperativity; transcriptional regulation; oligomerization]

Received July 6, 1993; revised version accepted August 26, 1993.

The nitrogen regulatory protein C [NTRC] of enteric bacteria [also called NRI; Reitzer and Magasanik 1983] is a prokaryotic enhancer-binding protein that activates transcription by the σ44 holoenzyme form of RNA polymerase [Reitzer and Magasanik 1987; D.S. Weiss et al. 1992]. The mechanism of activation has been studied most intensively at the major promoter for the glnA gene, which encodes glutamine synthetase. To activate transcription from the glnA promoter, NTRC binds to an enhancer that is composed of two binding sites centered at −108 and −140 with respect to the start site of transcription [Reitzer and Magasanik 1986; positions for binding sites in Salmonella typhimurium]. These two binding sites, which are approximately three turns of the DNA helix apart, behave like a eukaryotic transcriptional enhancer in that they function efficiently at distances of kilobases from the promoter and downstream as well as upstream of it [Reitzer and Magasanik 1986; Ninfa et al. 1987]. We have shown previously that NTRC bound to the enhancer interacts directly with σ44 holoenzyme at the promoter by means of DNA loop formation [Su et al. 1990; Wedel et al. 1990]. NTRC activates transcription by catalyzing isomerization of closed complexes between polymerase and the promoter to open complexes in a reaction that requires hydrolysis of ATP [Sasse-Dwight and Gralla 1988; Popham et al. 1989]. To hydrolyze ATP and catalyze open complex formation, NTRC must be phosphorylated on an aspartate residue in its amino-terminal regulatory domain [Ninfa and Magasanik 1986; Keener and Kustu 1988; Weiss and Magasanik 1988; Weiss et al. 1991; Sanders et al. 1992]. This phosphorylation, which proceeds via the autokinase NTRB, is increased when combined nitrogen is limiting, conditions under which glnA transcription is high. Phosphorylation of NTRC is not required for its specific binding to DNA, which is mediated by a helix–turn–helix motif in its carboxy-terminal region [Contreras and Drummond 1987].

One function of the glnA enhancer is to tether NTRC in high local concentration near the promoter and thereby increase its frequency of contact with σ44 holoenzyme [Su et al. 1990; Wedel et al. 1990]. A tethering function has also been demonstrated for several eukaryotic enhancers, including the rRNA enhancer of Xenopus laevis [Dunaway and Droge 1989] and the SV40 enhancer [Mueller-Storm et al. 1989]. We now show that a second role of the glnA enhancer is to facilitate formation of a complex containing at least two dimers of NTRC that is required for transcriptional activation. Formation of this complex depends on protein–protein interaction between NTRC dimers, an interaction that is increased upon phosphorylation of NTRC and is mediated by residues outside its carboxy-terminal DNA-binding region.

Results

Unphosphorylated NTRC binds a dyad-symmetrical site as a dimer and binds the glnA enhancer as two dimers

We have studied three natural binding sites for NTRC:
sites 1 and 2 in the glnA promoter regulatory region of S. typhimurium, which compose the enhancer, and a site in the ntrBC promoter region, which we call the strong site [Fig. 1]. Each is composed of dyad-symmetrical half-sites (imperfect) of 6 bp and a 5-bp AT-rich center. To determine the oligomeric nature of specifically bound NTRC, we analyzed protein–DNA complexes formed between NTRC and these sites with a gel mobility-shift assay [Fried and Crothers 1981; Garner and Revzin 1981; see Materials and methods]. A single shifted species was formed between NTRC and a fragment carrying the single strong site (Fig. 2B, lanes 2–5). We demonstrated that a dimer of NTRC from S. typhimurium bound a single site by making mixed dimers of the full-length protein and a 90-amino-acid carboxy-terminal fragment of NTRC, which contains its helix-turn-helix DNA-binding motif. Characteristic of a single bound dimer, there were three shifted bands, one for each homodimer complex with DNA and a band of intermediate mobility containing the heterodimer complex [Fig. 2A, lane 4]. [We had determined previously that NTRC was a dimer at high concentrations in solution (~1 μM) by gel-filtration chromatography at 4°C [J. Keener and S. Kustu, unpubl.], and Reitzer and Magasanik (1983) had established the same for NTRC from Escherichia coli.]

Surprisingly, there was only one shifted species with NTRC and a fragment carrying the glnA enhancer (sites 1 and 2 together; Fig. 2B, lanes 7–10) or a fragment carrying all five binding sites from the glnA promoter regulatory region [not shown]. We determined the number of NTRC dimers bound to these multisite fragments relative to the number bound to a single-site fragment by using 35S-labeled NTRC and 32P-labeled DNA, calculating the ratio of 35S/pmol of DNA in the shifted bands and normalizing this ratio to one for the single-site probe [Table 1]. Each of the multisite probes formed only a single complex, which contained two dimers of NTRC [Table 1]. As expected, if two dimers were bound, there were five shifted species in the gel assay with a mixture of NTRC protein and a larger, maltose-binding protein fusion to NTRC [not shown].

NTRC dimers bind to the enhancer cooperatively

Because we obtained only a single shifted species in the gel mobility-shift assay with probes carrying the glnA enhancer [sites 1 and 2 together], we tested the possibility that NTRC bound cooperatively to the enhancer by separating the sites that constitute it. Probes carrying either site alone did not yield stable shifted complexes, although the probe carrying site 2 showed smearing characteristic of the formation of an unstable complex [not shown]. We therefore concluded that NTRC bound cooperatively to the two sites that constitute the glnA enhancer. Although the carboxy-terminal fragment of NTRC bound stably to the single strong site, it did not

Figure 1. The natural glnA enhancer and variants of it. [A] The glnA promoter regulatory region in pJES463. The restriction sites downstream of -195 were introduced into the glnA promoter regulatory region of S. typhimurium by site-directed mutagenesis as described in Materials and methods. In addition to NTRC-binding sites 1 and 2 (denoted 1 and 2), which constitute the glnA enhancer, pJES463 carries binding sites 3, 4, and 5 (between positions -95 and -37), which are not shown. [B] The sequence of the natural glnA enhancer. Binding sites 1 and 2 are shown in bold, and half-sites are underlined. [C] The sequence of the strong enhancer in pJES500 and pJES534 (used for transcription). Natural binding sites 1 and 2 for NTRC were replaced with the same strong site (from the ntrBC promoter region), the spacing between the sites was preserved, and binding sites 3, 4, and 5 were removed. [D] The sequence of the weak enhancer in pJES635. The site at position 2 of the glnA enhancer was replaced with a site that lacked dyad symmetry, and binding sites 3, 4, and 5 were removed. [E] The sequence of the symmetrical site in pJES601 and pJES640 (used for transcription). This site has 6-bp half-sites with perfect dyad symmetry. It differs from the strong site by 1 bp (*). Transcription templates carrying the above NTRC-binding sites were constructed by inserting 403 bp of DNA in place of the BclI–NcoI fragment to separate NTRC-binding sites from the glnA promoter and adding a synthetic transcription module and termination sequence at the BstXI site, as described in Materials and methods.
Porter et al.

To examine cooperative binding more quantitatively, we precisely replaced both sites 1 and 2 at glnA with the strong site to create what we call the strong enhancer [Fig. 1C]. As assessed by competition experiments, NTRC has an ~13-fold higher affinity for the strong site than site 2 and an ~48-fold higher affinity for the strong site than site 1 (data not shown, but see Materials and methods). We verified that NTRC had the same affinity for the strong site at positions 1 and 2 of our new construct by separating the two sites at these positions with restriction cleavage and demonstrating that they competed equally against a labeled probe carrying a single binding site [data not shown, but see Materials and methods]. With the strong enhancer we were able to quantitate the intermediate species carrying a single dimer of NTRC in a gel-mobility shift assay and thereby quantitate the degree of cooperative binding of two dimers of NTRC using calculations that are independent of the concentration of the protein and its affinity for the site. When NTRC was titrated on a probe carrying the strong enhancer, the fractional maximum of the intermediate species carrying a single dimer was ~0.18 [Figs. 3A and 4A at 6 pm probe and two additional experiments at 0.6 and 300 pm probes, respectively [not shown]], indicating that the presence of one bound dimer of NTRC stimulates the binding of a second dimer to the adjacent site by ~20-fold [Tsai et al. 1989; see Materials and methods for equation]. [For noncooperative binding the fractional maximum of the intermediate species is theoretically 0.5.] At NTRC concentrations around that yielding the fractional maximum of the intermediate species, the relative amounts of the three species—free probe, intermediate, and fully shifted species carrying two dimers—indicated an average value for the cooperativity factor of 20 ± 6 [Hudson and Fried 1990, 1991, see Materials and methods for equation].

The carboxy-terminal domain of NTRC showed little cooperative binding to a probe carrying the strong enhancer: The fractional maximum of the intermediate species carrying a single dimer was 0.4, corresponding to a cooperativity factor of 2.2 [Figs. 3D and 4C at 0.3 nM DNA and an additional experiment at the same DNA concentration [not shown]]. Relative amounts of the three species at concentrations of carboxy-terminal domain around that yielding the fractional maximum of the intermediate species indicated an average value of 2.8 ± 1.2. Although the cooperativity factor was different from the theoretical value of 1, we think it indicates noncooperative binding, because it was unchanged when the sites constituting the strong enhancer were placed on opposite sides of the DNA helix at ~2.5 turns apart [not shown].

Phosphorylation of NTRC increases interaction between dimers

In the presence of ATP and the NTRB protein, NTRC is phosphorylated to a transcriptionally active form [NTRC-P]. Phosphorylated NTRC binds at least 12-fold more protein than the others. Shifted bands were excised from the gel, and both isotopes were counted as described in Materials and methods. Relative amounts of the six species at different NTRC concentrations indicated that phosphorylated NTRC binds protein to a maximum of 13 fold higher than unphosphorylated NTRC. The relative proportion of the shifted species was similar for the different NTRC-ATP complexes, indicating that the interaction between the carboxy-terminal domain and the phosphorylated protein is cooperative in nature. The same result was obtained with the strong enhancer, indicating that phosphorylation increases the interaction between dimers of NTRC.

Figure 2. Stoichiometry of NTRC-DNA complexes. [A] The oligomerization state of NTRC bound to a single site was evaluated in a gel mobility-shift assay [described in Materials and methods] with a mixture of full-length NTRC and the 90-amino-acid carboxy-terminal domain. Full-length NTRC [lane 2], the carboxy-terminal domain [lane 3], or a mixture of the two [lane 4] was incubated with a 73-bp 32P-labeled DNA fragment [lane 1] carrying the symmetrical binding site from pIES601 [PCR product using primers 1 and 2]; a portion of each reaction mixture was then run on a polyacrylamide gel. Before incubation with the DNA fragment, full-length NTRC and carboxy-terminal domain were incubated together for 20 min at 37° to promote rapid subunit exchange. Positions of each homodimer and of the heterodimer between full-length protein and the carboxy-terminal domain are noted. [B] The stoichiometry of NTRC-binding to the glnA enhancer was evaluated in a gel mobility-shift assay using 35S-labeled NTRC and the following 32P-labeled DNA fragments: [1] a 411-bp BamHI-NruI fragment from pIES132 carrying the strong NTRC-binding site [lanes 1–5] and [2] a 117-bp BclI-EcoRI fragment from pIES463 carrying the glnA enhancer [NTRC-binding sites 1 and 2], lanes 6–10].

To assess cooperative binding in the presence of ATP and the NTRB protein, NTRC was phosphorylated to a transcriptionally active form [NTRC-P]. Phosphorylated NTRC binds at least 12-fold more protein than the others. Shifted bands were excised from the gel, and both isotopes were counted as described in Materials and methods [data in Table 1]. No protein was present in reaction mixtures in lanes 1 or 6.

Form a stable shifted species with a probe carrying the glnA enhancer [not shown], indicating that unlike full-length NTRC, it does not bind to the enhancer cooperatively. We therefore conclude that cooperative binding is not the result of a conformational change in the DNA upon binding of a single dimer of NTRC, but is the result of protein–protein interaction between dimers of NTRC, which is mediated primarily outside the carboxy-terminal 90 amino acids.
Transcriptional activation by NTRC oligomers

Table 1. Stoichiometry of NTRC–DNA complexes

NTRC-binding sites	DNA shifted [pmole]	Protein shifted [35S]	Average ratio protein/DNA [35S/pmole]	Mol NTRC dimer [mol DNA]
Single strong site	0.24	1244	5409 ± 459	(1.0)
	0.21	1048		
	0.36	1949		
	0.33	1996		
glnA enhancer	0.15	1499	9906 ± 1778	1.8
	0.12	1353		
	0.08	879		
	0.10	737		
glnA promoter–regulatory region	0.11	1187	10,483 ± 700	1.9
	0.12	1188		
	0.13	1289		
	0.11	1246		

Data for the single strong site and the glnA enhancer were taken from the experiment shown in Fig. 2B [lanes 2–5 and 7–10, respectively] and quantitated as described in Materials and methods. As was the case for the glnA enhancer, only a single shifted species was observed with a DNA fragment [a 249-bp HindIII–EcoRI fragment from pES125] carrying the entire glnA promoter regulatory region [five binding sites as assessed by DNase I footprinting or methylation protection; not shown]. 35S/pmole DNA was normalized to 1.0 for the shifted species obtained with the fragment carrying a single strong NTRC-binding site. This corresponds to one dimer of NTRC [Fig. 2A]. Results similar to those shown were obtained in three additional experiments.

more cooperatively to the strong enhancer than does unmodified NTRC: For NTRC-P the fractional maximum of the intermediate species was 0.06 [Figs. 3B and 4A at 6 pm DNA and an additional experiment at this DNA concentration [not shown]], which corresponds to a cooperativity factor of 245. Analysis of data at NTRC concentrations around that yielding the fractional maximum of the intermediate species indicated an average cooperativity factor of 230 ± 137. We give a 12-fold increase in cooperativity as a minimum estimate because NTRC has an autophosphatase activity; hence, NTRC-P is actually a mixed population of phosphorylated and unphosphorylated forms. [Because of the low concentrations of NTRC used in these experiments, we were unable to measure the degree of phosphorylation directly.] We attempted to increase the degree of phosphorylation of NTRC by increasing the concentration of NTRB from 20 nm [Figs. 3B and 4A] to 200 nm [not shown]. In addition, we used several concentrations of probe [0.6 pm [not shown], 6 pm [Figs. 3B and 4A], 30 pm [not shown], and 300 pm [not shown]], anticipating that low amounts of probe could be bound exclusively by NTRC-P. Neither change in protocol yielded a further increase in the apparent cooperativity.

To demonstrate in an independent way that phosphorylation of NTRC increases its cooperativity of binding to the strong enhancer, we showed that it decreased the dissociation rate of the protein from this configuration of sites. The half-life of a complex containing two unphosphorylated dimers of NTRC and a probe carrying the strong enhancer was 1.1 min at 37°C [Fig. 4D]. In the presence of NTRB under conditions in which the amount of NTRC-P would have reached steady state, the half-life increased to 13 min. [ATP was present in both cases.]

A constitutive mutant form of NTRC shows increased interaction between dimers

The NTRC-S160F protein, a "constitutive" form that has some ability to activate transcription and hydrolyze ATP without being phosphorylated (Weiss et al. 1991; Austin and Dixon 1992) is often employed to study transcriptional activation because, unlike NTRC-P, it is composed of a homogeneous population of active molecules. Unphosphorylated NTRC-S160F protein binds approxi- mately twofold more cooperatively to the strong enhancer than does unphosphorylated wild-type NTRC. For NTRC-S160F the fractional maximum of the intermediate species carrying a single dimer was 0.12, which corresponds to a cooperativity factor of 54; analysis of data at several concentrations of NTRC-S160F around that which yielded the fractional maximum indicated an average value of 52 ± 20 [Figs. 3C and 4B at 6 pm DNA and two additional experiments [not shown]]. In accordance with its increased cooperativity of binding, the unphosphorylated mutant protein showed about a twofold slower rate of dissociation from the strong enhancer at 37°C [t1/2 = 1.8 min] than did unphosphorylated wild-type NTRC [Fig. 4D].

Phosphorylation does not affect the protein–DNA interaction

We infer that phosphorylation does not change the affinity of a dimer of NTRC for a single binding site because the rate of dissociation of NTRC from a probe carrying the strong site was the same in the presence or absence of the NTRB protein. [ATP was present in both cases.] Because the rate of dissociation of complexes between
NTRC and a single strong site was too rapid to be measured accurately at 37°C, we phosphorylated the protein at 37°C, allowing time for the amount of NTRC-P to reach steady state at this temperature, and then lowered the temperature to 4°C to measure the dissociation rate of complexes. [Lowering the temperature from 37°C to 4°C had the added advantage that the autophosphatase activity of NTRC-P was slowed approximately eightfold [Keener and Kustu 1988]]. Decay of complexes was first order and occurred with a $t_{1/2}$ of 1 min for both phosphorylated NTRC and unmodified protein [not shown]. Even if phosphorylation was not complete, we assume that the decay rate for phosphorylated NTRC would have been biphasic if NTRC-P did have a different affinity for DNA. Hence, we conclude that phosphorylation of NTRC does not change its interaction with DNA and probably does not increase monomer–monomer interactions. The latter is also indicated by the fact that phosphorylation does not affect the rate of monomer exchange between NTRC dimers [K. Klose and S. Kustu, unpubl.].

Activation of transcription requires more than one dimer of NTRC

Transcriptional activation at the glnA promoter was
Transcriptional activation by NTRC oligomers

Figure 4. Quantitation of cooperative binding to the strong enhancer (A–C) and rates of dissociation from this enhancer (D). Data for A–C were taken from Fig. 3. (A) The fraction of DNA carrying one dimer of NTRC (○), two dimers of NTRC (△), one dimer of NTRC-P (●), or two dimers of NTRC-P (▲) is plotted as a function of NTRC concentration. Data for the two lowest concentrations of NTRC and NTRC-P were taken from lanes not shown. The fractional maximum of DNA carrying one dimer of NTRC was 0.18, and the fractional maximum of DNA carrying one dimer of NTRC-P was 0.06. (B) The fraction of DNA carrying one dimer of NTRC S160F (○) or two dimers (△) is plotted as a function of concentration of this protein. The fractional maximum of DNA carrying one dimer of NTRC S160F was 0.12. (C) The fraction of DNA carrying one dimer of the carboxy-terminal domain of NTRC (○) or two dimers (△) is plotted as a function of the concentration of this domain. The fractional maximum of DNA carrying one dimer of the carboxy-terminal domain was 0.4. (D) The rates of dissociation of NTRC (○), NTRC-P (●), and NTRC S160F (▲) from the strong enhancer at glnA were determined and quantitated as described in Materials and methods, and the natural logarithm (ln) of the shifted species carrying two dimers of NTRC [ln (% doubly-bound species)] is plotted.

much higher from the glnA enhancer (sites 1 and 2 together) than from a single strong binding site (not shown). Each was placed at a distance of ~400 bp upstream of the promoter so that its orientation on the DNA helix with respect to the promoter was not a concern. We considered that the observed synergy of two binding sites indicated that more than one dimer of NTRC was required for activation. However, because occupancy of the glnA enhancer by NTRC S160F, the protein employed for these studies, was slightly better than that of the single strong site, we could not exclude the possibility that the observed synergistic effect of two binding sites, although of great magnitude, was due solely to better tethering of NTRC.

To demonstrate rigorously that synergistic activation from an enhancer consisting of two binding sites for NTRC could not be accounted for by occupancy of the sites, we constructed a “weak enhancer” (Fig. 1D) that would specifically bind two dimers of NTRC poorly relative to the binding of a single dimer to a “symmetrical site” (Fig. 1E). [As assessed by rates of dissociation at 4°C, NTRC has an approximately threefold higher affinity for the symmetrical site, our highest affinity site, than for the strong site [not shown, but see Materials and methods].] We then compared occupancy of the weak enhancer and the single symmetrical site with their ability to stimulate transcriptional activation. Preliminary gel mobility-shift assays indicated that the NTRC S160F protein formed complexes with the symmetrical site at 0.2 nm dimer, the lowest concentration tested, whereas it formed fewer complexes with the weak enhancer even at 1.6 nm [Fig. 5A]. [As was the case for the natural glnA
Figure 5. NTRC binding to the weak enhancer at glnA and a single symmetrical binding site (A–C) and NTRC-mediated activation of transcription from each (D). (A) Affinity of NTRC for the weak enhancer (Fig. 1D) and the single symmetrical site (Fig. 1E) was assessed at low DNA concentrations by a gel mobility-shift assay. Binding of NTRCs16~ (concentrations indicated above the lanes) to the weak enhancer (lanes 6–14) and the single symmetrical site (lanes 1–5) was carried out as described in Materials and methods. The weak enhancer was carried on a 111-bp labeled probe (~0.3 nM) made by PCR amplification from pJES635 using primers 1 and 5. The shifted species formed on this probe carries two NTRC dimers (see Results). The single symmetrical site was carried on a 73-bp labeled probe (~0.3 nM) made by PCR amplification from pJES601 using primers 1 and 2. (B) Occupancy of the weak enhancer and the single symmetrical site by NTRCs16~ (concentrations indicated above the lanes) was assessed by DNase 1 footprinting on the top (nontemplate) strand. Reaction mixtures contained all components present for open complex formation in Figure 4, and the DNA concentration was 2 nM (75% of this was the appropriate fragment used in D and 25% was probe made by PCR amplification with primers 3 and 4). Protected regions are indicated by brackets to the right. Lanes labeled G and GA are Maxam–Gilbert sequencing lanes. (C) Occupancy of the sites at positions 1 (□) and 2 (○) of the weak enhancer and of the symmetrical site (○) was assessed from data in B. The 32p label in several contiguous bands in a protected region was determined with a PhosphorImager and normalized to the label in bands outside protected regions to correct for differences in loading of different lanes. Normalized data were then expressed as a percentage of the 32p label in the corresponding group of bands in the absence of NTRCs16~ (percent residual intensity). It is plotted as percent occupancy, which is the same as percent protection [100% – percent residual intensity]. (D) The rate of open complex formation (fmole/10 min) was assessed in a single-cycle transcription assay at 37°C on two linear templates (2 nM): (1) an ~700-bp Kpnl–PstI fragment from pJES635 that carries the weak enhancer 455 bp upstream of the glnA promoter (□), and (2) an ~700-bp Kpnl–PstI fragment from pJES640 that carries a single symmetrical NTRC-binding site 455 bp upstream of the glnA promoter (○). The NTRCs16~ protein was used at the concentrations indicated, and reactions were started by addition of ATP to 2 nM. Formation of open complexes was stopped after 10 min by addition of heparin (Popham et al. 1989). The rate of open complex formation (transcriptional activation) from the template carrying the weak enhancer was maximal at 55 nM NTRCs16~. Under the conditions employed (i.e., in the absence of polyethylene glycol), transcription from a linear template carrying the glnA promoter but lacking NTRC-binding sites (from pJES535) was undetectable below 100 nM NTRCs16~ (not shown).
of the weak enhancer for a pair of dimers. [Unphosphorylated wild-type NTRC, which binds less cooperatively than NTRC5160F (see above] failed to shift the weak enhancer even at a concentration of 25 nM (not shown).] DNase I protection assays performed at the same high DNA concentration used for transcriptional activation [2 nM rather than the 0.3 nM used for gel mobility-shift assays] indicated that NTRC5160F yielded full occupancy of the single symmetrical site at 3.5 nM [Fig. 5B,C]. In contrast, higher concentrations of NTRC were required for occupancy of the weak enhancer: Half-maximal occupancy of the sites at positions 1 and 2 occurred at ~3 and 10 nM, respectively [Fig. 5B,C].

Transcriptional activation [the rate of open complex formation] from the weak enhancer tracked its occupancy by two dimers [Fig. 5C,D]. Moreover, activation from the weak enhancer was more than twice that from the single symmetrical site at all concentrations of NTRC5160F ~30 nM, indicating that activation from the enhancer was synergistic with respect to that from a single site. For example, at 7 nM NTRC5160F—a concentration at which the symmetrical site was fully occupied by a dimer but the enhancer was not yet fully occupied by a pair of dimers (a tetramer)—activation from the enhancer was nevertheless 24-fold higher than that from the symmetrical site. At 7 nM, activation from the symmetrical site was only twofold above background, indicating that occupancy of this site by a dimer was not sufficient for transcriptional activation.

Demonstration that activation from a single binding site also requires more than one dimer of NTRC

At concentrations of NTRC5160F >7 nM, there was increasing transcriptional activation from the single symmetrical site. To demonstrate that this activation also required formation of a tetramer or higher-order oligomer of NTRC [formed by interaction of an additional dimer [or dimers] with the one that was specifically bound], we demonstrated that forms of NTRC that have little, if any, residual ability to bind to DNA can nevertheless activate transcription synergistically in combination with low concentrations of DNA-binding forms [Fig. 6].

The nonbinding forms of NTRC that we employed contain alanines in place of three hydrophilic residues in the second ["recognition"] helix of the DNA-binding motif [see Materials and methods] and are designated NTRC3ala and NTRC$^{5160F, 3ala}$. They fail to yield a footprint at the symmetrical site, fail to bind both the strong enhancer and nonspecific DNA in an affinity coelectrophoresis assay that detects weak DNA–protein interactions [Lim et al. 1991], and behave in transcription assays as if they are incapable of DNA binding [A. North and S. Kustu, unpubl.]. These mutant proteins activate transcription only at very high concentrations, presumably by interacting with σ^{34} holoenzyme from solution.

On a supercoiled template carrying the symmetrical site, activation by the DNA-binding form NTRC5160F at 5 nM was very low [only twofold above background].

Figure 6. Transcriptional activation from a single NTRC-binding site is stimulated by NTRC3ala proteins, which cannot bind to DNA. Formation of open complexes at the glnA promoter was assessed in a single-cycle transcription assay using as template plasmid pJES640 (20 nM, supercoiled), which carries a single symmetrical binding site for NTRC. The concentrations of σ^{34} and RNA polymerase core were 180 and 90 nM, respectively. [A] Stimulation of open complex formation by the NTRC5160F, 3ala protein [concentrations indicated on the x axis] at 5 nM NTRC5160F [●] or in the absence of NTRC5160F [○]. Reactions were performed as described in Materials and methods under conditions that minimized subunit exchange between dimers. [B] Stimulation of open complex formation by the NTRC3ala protein [concentrations indicated on the x axis] at 5 nM wild-type NTRC [●] or in the absence of wild-type NTRC [○]. NTRB was present at 100 nM to phosphorylate the NTRC proteins. [Note the differences in scale with respect to A.]

Likewise, at concentrations <320 nM, activation by the NTRC$^{5160F, 3ala}$ protein, which cannot contribute to occupancy of the symmetrical site, was slight. In contrast, activation by a mixture of NTRC5160F at 5 nM and the NTRC$^{5160F, 3ala}$ protein at different concentrations was considerably greater than the sum of the activities of the individual proteins [i.e., it was synergistic; Fig. 6A]. The maximum measurable degree of synergy was sixfold [observed at 240 nM NTRC$^{5160F, 3ala}$; the lowest concentration at which activation by this protein alone could be detected]. Presumably, synergistic activation is the result of the formation of mixed oligomers by means of
protein–protein interaction between dimers, with the DNA-binding form \([\text{NTRC}^{S160F}]\) serving as tether.

The results were even more striking for phosphorylated wild-type NTRC. Again, activation by 5 nm NTRC-P on a template carrying the symmetrical site was only twofold above background, and activation by phosphorylated NTRC\(^{3ala}\) was slight at concentrations below 75 nm. Activation by a mixture of phosphorylated wild-type NTRC at 5 nm and phosphorylated NTRC\(^{3ala}\) at different concentrations was synergistic (Fig. 6B). The maximum measurable degree of synergy was 40-fold (at 40 nm phosphorylated NTRC\(^{3ala}\)). As expected, synergistic activation was greatly decreased under conditions that facilitated subunit exchange between dimers (not shown), presumably because the ability of the DNA-binding form \([\text{NTRC-P}]\) to serve as tether was diminished in heterodimers.

In agreement with data indicating that activation of transcription from a single NTRC-binding site requires a complex of more than one dimer of active NTRC, phosphorylated NTRC forms a large structure at a single strong binding site in electron micrographs. In the absence of ATP, \([\text{NTRC}^{S160F}]\) [105,000 m.w. dimer] formed a small structure at a single strong site (Fig. 7b, c), whereas when ATP was added to allow phosphorylation, it formed a larger structure (Fig. 7d; NTRB was present in both cases). Comparison of the size of the larger structure with that of \(\sigma^{44}\) holoenzyme (~450,000 m.w.) suggests that it contains at least two and possibly more dimers of NTRC. \(\sigma^{44}\) Holoenzyme, which shadows darker with tungsten than NTRC [Su et al. 1990], is visible in Figure 7c bound to the ends of the DNA fragment and in the background and in Figure 7d at the \(\text{glnA}\) promoter in open complexes.

Discussion

The glnA enhancer facilitates formation of an active oligomer of NTRC-P

The enhancer upstream of the \(\text{glnA}\) gene of enteric bacteria maintains the NTRC activator protein in high local concentration to increase the frequency with which it contacts \(\sigma^{44}\) holoenzyme bound at the promoter. We have now shown that a second role of the enhancer is to organize an oligomer of NTRC-P that is required for transcriptional activation.

NTRC dimers bound at the \(\text{glnA}\) enhancer interact to form an oligomer at low solution concentrations of the protein. NTRC dimers bind cooperatively to the enhancer (Figs. 3A and 4A), which consists of two specific binding sites approximately three turns of the DNA helix apart. We have demonstrated that cooperative binding results from interaction between NTRC dimers rather than conformational change of the DNA by showing that the carboxy-terminal domain of NTRC, its DNA-binding domain, does not bind cooperatively to the enhancer (Figs. 3D and 4C). This also demonstrates that determinants of the cooperative interaction lie outside the DNA-binding domain. As expected for interacting dimers, the cooperativity of binding of NTRC was influenced by the spacing between the sites that constitute the enhancer, being decreased when these sites were placed on opposite sides of the helix (~2.5, 3.5, or 4.5 turns apart) and partly restored when they were returned to the same side (~4 turns apart) [S. Porter and S. Kustu, unpubl.].

Phosphorylation of NTRC, which is absolutely required for its function as a transcriptional activator, increases the cooperativity of binding to the \(\text{glnA}\) enhancer at least 12-fold (Figs. 3B and 4A) but does not affect the affinity of a dimer for a single DNA-binding site. Congruent with its effect on cooperativity, phosphorylation decreases the dissociation rate of NTRC from the enhancer by approximately the same factor (Fig. 4D). Thus, under activating conditions, the combination of strong protein–protein interaction between dimers and the ar-
Transcriptional activation by NTRC oligomers

rangement of binding sites in the glnA enhancer ensures formation of at least a specifically bound tetramer of NTRC-P. As yet, we are unable to determine whether this specifically bound tetramer is sufficient for transcriptional activation or whether a higher-order oligomer is required.

We present two compelling lines of evidence that multimerization of NTRC is required for transcriptional activation. (1) Activation from an enhancer—two binding sites for NTRC—that was engineered to be a worse tether than a single symmetrical site was greater than that from the single site at all NTRC concentrations (Fig. 5). At NTRC concentrations below 30 nm, activation from the weak enhancer was synergistic with respect to that from the single site, that is, >2-fold greater than that from the single site, even though the affinity of a dimer for the single site is at least 15-fold better than the affinity of a tetramer for the enhancer (Fig. 5). Synergism was most apparent between 4 and 14 nm NTRC, concentrations at which activation from the enhancer was as much as 24-fold better than that from the single site, even though the single site was filled at 4 nm and the enhancer was not fully occupied even at 14 nm. These results indicate that a single dimer is not sufficient for activation and that an important role of the enhancer is to organize an active multimer of NTRC. (2) Activation of transcription from a single site requires higher concentrations of NTRC than are needed for occupancy, and mutant forms of NTRC that are unable to bind the site or to activate well by themselves dramatically stimulate activation at low concentrations of DNA-binding forms (Fig. 6). Because the mutant forms cannot contribute to occupancy, they must stimulate by means of protein–protein interaction with specifically bound dimers to form active oligomeric species at the single site.

As expected, if the active species of NTRC-P is an oligomer, the rate of activation varies with the spacing between the two binding sites that constitute an enhancer [S. Porter and S. Kustu, unpubl.]. At saturating concentrations of NTRC, activation is poor when sites are located on opposite sides of the helix (similar to activation from a single site); this is congruent with the view that bound dimers of NTRC must interact and that simply tethering two dimers near a promoter is not sufficient for activation. Moreover, activation is two- to threefold less rapid when sites are separated by four turns of the DNA helix rather than three, even though NTRC binds cooperatively in both cases. It is our working hypothesis that the decrease in rate of activation at four turns results from reduced ability of bound dimers of NTRC to interact with one another appropriately.

While this work was in progress, V. Weiss et al. [1992] provided evidence that NTRC binds cooperatively to the glnA enhancer of E. coli and that cooperativity is greatly increased upon phosphorylation. On the basis of results of filter-binding assays, they reported that phosphorylation of NTRC increased its cooperativity constant for binding to the glnA enhancer by 50,000-fold, whereas we observed an increase of ~12-fold for binding to the strong enhancer that we constructed. Factors that may contrib-
positions in the vicinity of a promoter and possibly from solution [Magasanik 1989].]

In addition to restricting activation of transcription to the correct promoters, a second possible advantage of a requirement for oligomerization of NTRC-P is that different enhancers for this protein can facilitate the formation of oligomers with different catalytic efficiencies. As mentioned above, the NTRC multimer formed when two strong binding sites are separated by four turns of the DNA helix rather than three activates transcription from the glnA promoter two- to threefold less rapidly than the multimer formed when these sites are three turns apart. As noted by V. Weiss et al. (1992), the three best studied natural enhancers for NTRC are all composed of two binding sites. Interestingly, the spacing between these sites is different in each case; three turns of the helix at glnA, two turns at nifLA [the nitrogen fixation regulatory operon (Wong et al. 1987; Minchin et al. 1988)], and approximately one turn at glnH [the glutamine transport operon (Claverie-Martin and Magasanik 1991)].

NTRC as a molecular machine

NTRC is an example of a simple molecular machine, it must hydrolyze ATP to activate transcription by σ54 holoenzyme. As is true for other molecular machines, the gross aspects of NTRC function are understood and several laboratories are working out what have been called “the details” (Alberts and Miake-Ly 1992). We consider the requirement for oligomerization of NTRC-P in view of what is currently known about its function in transcriptional activation.

It is known that NTRC-P must hydrolyze a nucleotide to allow isomerization of closed complexes between σ54 holoenzyme and a promoter to open complexes; we infer that ATP hydrolysis is required after NTRC has contacted the polymerase by means of DNA loop formation. Presumably, successful formation of open complexes depends on two functions of NTRC in addition to its ability to hydrolyze ATP: the ability to engage σ54 holoenzyme and the ability to couple ATP hydrolysis to a change in configuration of this polymerase at a promoter. Nothing is known about the latter two functions. Because oligomerization of NTRC is required for transcriptional activation, it is presumably required for one or more of these steps. As discussed below, oligomerization has been shown to stimulate ATP hydrolysis.

We demonstrated previously that phosphorylation of NTRC was required for its ATPase activity and proposed that oligomerization might also be required because the ATPase activity of the protein in solution showed a steep dependence on the concentration of phosphorylated NTRC (Weiss et al. 1991). Austin and Dixon (1992) demonstrated that the ATPase activity of NTRC-P in solution was stimulated by its binding to an enhancer (the nifLA enhancer), but much less so by binding to a single site, again indicative of the need for oligomerization. We have extended their study by showing that stimulation of ATPase activity by a DNA fragment carrying a single binding site is also the result of oligomerization of NTRC rather than allosteric activation of a single dimer (K. Klose and S. Kustu, unpubl.). Moreover, it appears that all dimers of NTRC within an oligomer must have a functional ATPase for transcriptional activation to occur: Stimulation of activation by non-DNA-binding forms of NTRC does not occur if the form specifically bound to a single site on DNA carries the G173N lesion in its nucleotide-binding motif (“glycine-rich” or “phosphate” loop) and is therefore incapable of ATP hydrolysis (Weiss et al. 1991; S. Porter and S. Kustu, unpubl.). We speculate that a requirement for multiple active dimers of NTRC may be due to the need for simultaneous hydrolysis of at least two ATP molecules to allow a change in configuration of polymerase-promoter complexes. The sensitivity of transcriptional activation to low concentrations of the competitive inhibitor ATPγS is accommodated by this view (Weiss et al. 1991).

Synergistic activation by eukaryotic enhancer-binding proteins

Many eukaryotic enhancer-binding proteins show synergistic effects on activation of transcription by RNA polymerase II [B]. As is the case for NTRC, the ability of these proteins to activate from multiple binding sites is greater than additive and cannot be accounted for by occupancy of the sites [e.g., Courey et al. 1989; Carey et al. 1990, 1992]. Moreover, activation by DNA-binding forms of the Sp1 protein from a single site can be stimulated by nonbinding forms, which themselves have no capacity to activate [Courey and Tjian 1988; Courey et al. 1989; Pascale and Tjian 1991]. This phenomenon, referred to as superactivation, indicates that oligomeric forms of the enhancer-binding protein are more active than the monomeric form.

Unlike NTRC, eukaryotic enhancer-binding proteins are not known to have an enzymatic activity that is required for their function. Synergistic activation by several molecules of one such protein, or by two or more different enhancer-binding proteins, is thought to be mediated by multiple contacts with downstream targets [e.g., Lin et al. 1990; examples cited in Herschlag and Johnson 1993], which have not yet been precisely defined. As discussed above, appropriate oligomerization of NTRC-P greatly stimulates its required ATPase activity. We do not know whether oligomerization also stimulates the ability of NTRC-P to contact σ54 holoenzyme or to couple ATP hydrolysis to a change in configuration of this polymerase at a promoter.

Materials and methods

Construction of plasmids for studies of DNA binding and transcription (open complex formation)

All plasmids constructed for this study were derived from pLES463 (Fig. 1A,B), which was made by cutting pTZ 19U [Mead et al. 1986] with BamHI, inserting a 219-bp Sau3A–Sau3A fragment from pLES125 (P. Wong and S. Kustu, unpubl.) carrying the glnA promoter regulatory region from *S. typhimurium*, and
then introducing restriction sites into this fragment as described below. The glnA promoter fragment carries the glnA enhancer, which is composed of binding sites 1 and 2 for NTRC, the center of the enhancer is at position -124 and lies 107 bp from the center of the glnA promoter at -17. On the basis of DNase I footprinting and methylation protection studies, the fragment also carries three additional binding sites for NTRC, which lie between -95 and -37 [Hirschman et al 1985], but these sites are not involved in transcriptional activation [Reitzer and Magasanik 1986; Reitzer et al 1989, A. North and S. Kustu, unpubl.]. Oligonucleotide site-directed mutagenesis [Kunkel 1989, Bio-Rad] was used to create the following restriction sites within the glnA promoter regulatory region [Fig. 1A]: (1) a BgIII site at position -155 with respect to the start site of transcription [17 bp upstream from the center of binding site 1 for NTRC]; (2) a HpaI site at -124 [17 bp upstream from the center of binding site 2 for NTRC]; (3) a BclI site at -95 [12 bp downstream from the center of site 2]; (4) an NcoI site at -37; and (5) a BstXI site at +28. The oligonucleotide used to create the BstXI site also changed additional bases downstream to Ts to create a T-rich region that would function in termination of transcription [see below]. The presence of restriction sites was confirmed by DNA sequencing, as was the correctness of all changes introduced into the glnA promoter regulatory region in other constructs.

The following plasmids were used to make probes to study DNA binding. pJES499 was made from pJES463 by using site-directed mutagenesis to replace binding site 1 and binding site 2 for NTRC with the same strong binding site from the ntrBC promoter region to create the strong enhancer [refer to Fig. 1 for sequences]. pJES500 [Fig. 1C] was made by digesting pJES499 with BclI and NcoI, filling both ends with the Klenow fragment of DNA polymerase I and religating to eliminate NTRC-binding sites 3, 4, and 5 (the NcoI site is recreated at this junction).

Plasmid pJES523, which has a single strong binding site for NTRC at position 1, was made by removing the strong binding site at position 2 from pJES500 on a 33-bp HpaI–NcoI fragment. Plasmid pJES601, which has a single symmetrical NTRC-binding site at position 1 [Fig. 1E], was constructed from pJES523 by using a PCR primer that overlapped position 1 and changed it to a symmetrical site.

Transcription templates, which carried a 403-bp spacer between NTRC-binding sites and the glnA promoter and yielded a synthetic transcript lacking U residues, were constructed from the plasmids described above as follows. Plasmid pJES534 was made by replacing the 58-bp BclI–NcoI fragment of pJES499 with a 403-bp BclI–NcoI fragment from pACYC184 [Chang and Cohen 1978, Rose 1988] to move the enhancer farther from the promoter. In addition, a synthetic module of six directly repeated double-stranded oligonucleotides lacking T residues [21 bp each; AGACACCCAGACCCACACAG] was inserted into the BstXI site, which is located at +28 and is immediately followed by a T-rich sequence that functions in termination of transcription [TTTTTTTTTTTACACTTGAGCGATG]. Plasmid pJES534 yields an ~155-base transcript from the glnA promoter that contains no uracil. Plasmid pJES635 carries a weak enhancer [Fig. 1D] in place of the strong enhancer [Fig. 1C] in pJES534 and has an EcoRV site 7 bp upstream of the BclI site.

Plasmid pJES520 is a transcription plasmid with a single strong NTRC-binding site, it is identical to pJES534 except that it lacks the strong NTRC-binding site at position 1, which was removed on a 68-bp Smal–HpaI fragment. Plasmid pJES640, a transcription plasmid with a single symmetrical binding site at position 1, was constructed in the following steps: (1) PCR was used to amplify a 180-bp region of pJES500. One of the primers, which overlapped the strong binding site for NTRC at position 1, made a single base change to create a symmetrical binding site and simultaneously created a BgIII site 15 bp upstream [5'] from the center of position 1; (2) the PCR product was digested with BgIII and HpaI to produce a 30-bp fragment carrying the symmetrical site, which was used to replace the BgIII–EcoRV fragment of pJES635.

Plasmid pJESS35, which lacks specific binding sites for NTRC, is identical to pJES34 except that the enhancer was removed on a 60-bp BgIII–BclI fragment [ends are compatible].

Construction of plasmids for overproduction of mutant NTRC proteins

The mutant protein that we designate NTRC3ala contains alanine residues at three positions in the second helix of the helix-turn-helix DNA-binding motif and is fully designated NTRC-R456A, N457A, R461A. The plasmid used for overproduction of this protein was constructed by oligonucleotide site-directed mutagenesis as follows: A 1.7-kb EcoRV–HindIII fragment from pJES311 [Weiss et al 1991], which is used to overproduce wild-type NTRC, was cloned into the HindIII site of the promoter region in other constructs.

The correctness of the construction was confirmed by sequencing.

Transcriptional activation by NTRC oligomers

Probes were prepared by end-labeling restriction fragments from plasmids with polynucleotide kinase [5' label] or the Klenow fragment of DNA polymerase I [3' label] by using end-labeled primers for PCR amplification of fragments from plasmids [Krummel 1990]. Primers for PCR amplification were primer 1, 5'-GGCGTATACCCCGGTGCC-3', which is a top-strand primer that begins 22 bp upstream of the BgIII site in Figure 1A,
primer 2, 5'-TCTGTGCCAATTTCCCA-3', which is a bottom-strand primer that begins within the *glnA* promoter, primer 3, 5'-GTTTTCCCAGTCACGAC-3', which is a top-strand primer that begins 38 bp upstream of the EcoRI site in Figure 1A, primer 4, 5'-AGGGAAAGCTTGCATGCCTG-3', which is a bottom-strand primer that begins downstream of the *glnA* promoter sequences, and primer 5, 5'-CTGGTCGAGCATTAAATTG-3', which is a bottom-strand primer that begins 31 bp downstream of the *BclI* site (Fig. 1A) in transcription vectors. To label probes to high specific activity, both ends were labeled and several labeled nucleotides were used to fill in 3'-ends with Klenow fragment. Alternatively, PCR products were internally labeled. Labeled fragments were purified on polyacrylamide gels, eluted by diffusion, and precipitated with spermine as described (Hoopes and McClure 1981). The concentration of probes was determined by absorbance at 260 nm.

Purification of proteins

Wild-type NTRC, the NTRCs160F mutant form, s4 and NTRB were purified as described [Keener and Kustu 1988; Popham et al. 1991; Weiss et al. 1991]. The NTRCsl60F, NTRCsl60F, s160F and NTRCsl60F, s360F proteins were overexpressed and purified as was wild-type NTRC, except that the mutant proteins did not bind to heparin-agarose. The carboxy-terminal domain of NTRC was overexpressed in strain NCM629, which carries the gene for T7 RNA polymerase under control of a *lac* promoter, induction was with IPTG. The carboxy-terminal domain was purified as was full-length NTRC, except that the initial ammonium sulfate precipitation occurred at 35–50% [wt/vol]. Core RNA polymerase from *E. coli* was a kind gift from D. Hager and R. Burgess (University of Wisconsin, Madison).

The amount of active wild-type NTRC was determined by titrating a fixed concentration of protein with a probe carrying a single symmetrical binding site for NTRC (from plasmid pES61) in a gel mobility-shift assay [not shown]. Titrating a dyad-symmetrical site shifts the equilibrium toward formation of NTRC dimers and should therefore allow us to detect all active dimers. Concentrations of wild-type NTRC are reported in terms of active binding dimer [as detected at high concentrations of the binding site]. The concentrations of mutant NTRC proteins and of the carboxy-terminal domain were determined by Bradford assays [Bradford 1976].

Labeling of NTRC

NTRC was labeled with [35S]methionine using a variation of the method described by Tabor [1990]. [1] Cells (100 ml culture) were grown to an OD600 of 0.5 in M9 minimal medium supplemented with all amino acids (to 0.1 mg/ml) except methionine and cysteine. [2] NTRC production was then induced by addition of IPTG and an m13 phage that carries T7 RNA polymerase under control of the *lac* promoter. NTRC was expressed from the T7-7 overexpression plasmid pES311 in strain NCM790 (NCM724/pES311) as described [Weiss et al. 1991]. [3] Thirty minutes after induction, rifampicin (to 0.2 mg/ml) and 1.5 mM of [35S]methionine were added. [4] Sixty minutes after induction, cells were harvested and disrupted by sonication in B buffer (see below). Cell extracts were subjected to low-speed centrifugation, and NTRC protein was precipitated with ammonium sulfate (0–35%), dialyzed into B buffer, and purified on a heparin-agarose column (1 ml) using stepwise elution. NTRC eluted at 100 mM potassium chloride.

Gel mobility-shift assay for DNA binding

Mobility-shift assay and DNA binding were based on the methods of Fried and Crothers [1981] and Garner and Revzin [1981]. Reaction mixtures for binding assays contained 10 mM Tris- acetate (pH 8.0 at 25°C), 100 mM potassium acetate, 8 mM magnesium acetate, 1 mM DTT, 27 mM ammonium acetate (the same buffer used for transcription), and added to reaction mixtures at the same temperature. Reactions were then started immediately by transfer to 37°C—the same temperature used for transcription—and reaction mixtures were incubated at this temperature for 20 min. Glycerol was then added to 5%, and 10 μl of the reaction mixture was loaded on a running gel [5% polyacrylamide, 0.06% bis-acrylamide in Tris-glycine buffer (380 mM glycine, 50 mM Tris, pH 8.6 at 25°C) at 4°C and subjected to electrophoresis at 16 V/cm for 1 hr.

For unphosphorylated wild-type NTRC and NTRCs160F, binding to all configurations of sites was at equilibrium after 20 min; this is at least 10 times the t1/2 for dissociation of these forms from the strong enhancer (see Results). Even though binding of phosphorylated NTRC to the strong enhancer was not at equilibrium after 20 min (t1/2 for dissociation of 13 min), we used this time to ensure the stability of NTRB and NTRC.

Calculations of cooperativity of binding

The degree of cooperativity of binding of NTRC to the strong enhancer at *glnA* was estimated from data obtained with the gel mobility-shift assay using equations derived by Hudson and Fried [1990, 1991] and by Tsai et al. [1989], which do not involve the concentration of NTRC or its affinity for a binding site. (The assumption that the distribution of species in the gel reflects the distribution in solution is implicit.) It was important to use calculations independent of the concentration of NTRC dimer for two reasons: (1) Comparison of the cooperativity of binding of wild-type and mutant forms of NTRC did not depend on determining the active concentration (with respect to DNA binding) for each preparation of protein, and (2) the fact that NTRC dimers undergo rapid subunit exchange at 37°C suggests that there may be a significant amount of monomer at low protein concentrations (K. Klose and S. Kustu, unpubl.).

In the method of Hudson and Fried [1990], the cooperativity factor K_{ai}/K_{ii} is calculated using the equation

$$K_{ai}/K_{ii} = 4 \left(\frac{P/I}{F} \right)$$

where K_{ai} is the apparent dissociation constant for binding of a dimer of NTRC to one site in the strong enhancer (intrinsic dissociation constant), K_{ii} is the apparent dissociation constant for binding of a second dimer to the adjacent site, F is the amount of free DNA, I is the amount of the fully shifted species carrying two dimers of NTRC, and L is the amount of the intermediate species carrying a single dimer. The equation, which is a simplified form of that given by Hudson and Fried [1990], pertains to the special case in which the two binding sites that constitute the enhancer are equivalent. Theoretically, noncooperative binding results in a binomial distribution of the three species, whereas positive cooperative binding skews the distribution toward the species carrying two dimers.

At the concentration of NTRC at which the fraction of L, the intermediate species, reaches a maximum, the fraction of F and...
the fraction of \(I \) are equal and a simplification of the Hudson–Fried equation pertains (Tsai et al. 1989):

\[
\frac{K_{\text{RI}}}{K_{\text{RR}}} = \left(\frac{1}{\text{fractional maximum of } I} - 1 \right)^2
\]

Theoretically, noncooperative binding yields a fractional maximum of \(I = 0.5 \).

Relative affinities of NTRC for different binding sites

The relative affinities of NTRC for the strong site, site 1 of the natural glnA enhancer, and site 2 of the glnA enhancer were determined by using unlabeled DNA fragments carrying these sites to compete for NTRC binding to a labeled probe carrying a single symmetrical site. Different amounts of a 53-bp unlabeled DNA fragment carrying the site to be tested (site 1 or site 2 of the glnA enhancer or the strong binding site in position 1 or position 2 of the strong enhancer) were added to reaction mixtures containing a fixed concentration of probe and 2 nM wild-type NTRC. The ratios of concentrations of competitor fragments required to inhibit binding of NTRC to the probe by 50% are inversely proportional to the relative binding affinities of the protein for these fragments.

Stoichiometry of binding

Binding reactions contained \(^{35}S \)-labeled NTRC and 0.5–0.8 pmole of one of the following \(^{32}P \)-labeled probes: a 411-bp BamHI–NruI fragment from pJES132, which carries a single strong binding site for NTRC (promoter regulatory region for the ntrBC operon), P. Wong and S. Kustu, unpubl.], a 117-bp BclI–EcoRI fragment from pJES463, which carries the natural glnA enhancer (binding sites 1 and 2, Fig. 1B), or a 249-bp HindIII–EcoRI fragment from pJES125, which carries the entire glnA promoter regulatory region (five binding sites for NTRC as assessed by DNase I foot-printing or protection of G residues from methylation, Hirschman et al. 1985; P. Wong and S. Kustu, unpubl.). Protein was incubated with DNA for 15 min at 37°C and then loaded on a running gel as described above. Bands were visualized by autoradiography, excised, and dissolved as described (Popham et al. 1989). Samples were prepared for scintillation counting with constant quench in Aquasol scintillation fluid (DuPont) and counted in two channels of a Beckman LS101 counter. One channel counted 80% of the \(^{32}P \) and the other counted \(\sim 80\% \) of the \(^{35}S \). \(^{35}S \) counts were corrected by subtracting "spilled" \(^{32}P \), which was \(\sim 9\% \) of total \(^{32}P \) in the sample. To determine the specific activity of the labeled DNA, a standard was counted with the same quench and in the same channel as the experimental DNA and sample concentrations was determined by spectrophotometry at 260 nm. The specific activity of the protein was not determined. Relative ratios of protein to DNA were determined by normalizing the ratio of \(^{35}S \) to pmoles of shifted DNA fragment to 1.0 for the fragment carrying a single NTRC-binding site.

Dissociation rates

Binding of NTRC (7 nM) to probes carrying one or two binding sites (\(\sim 0.3–1 \text{nM} \)) was carried out as described above at 37°C in the presence of 30 ng/\(\mu \)l of poly[dI–dC]. To generate NTRC-P, NTRB was present at 20 nm. After 20 min, a 500-fold molar excess of an unlabeled 30 bp fragment carrying the single strong NTRC-binding site from the ntrBC promoter region was added, and 10 \(\mu \)l samples were withdrawn at various times and loaded on a running gel as described above. For measurements of the dissociation rate at 4°C, binding was carried out at 37°C for 20 min, and reaction mixtures were then cooled to 4°C before addition of excess unlabeled 30-bp fragment.

Open complex formation

Formation of open complexes at the glnA promoter was carried out at 37°C in the same buffer used for binding, and open complexes were detected in a single cycle transcription assay as described (Popham et al. 1989). The concentrations of \(^{32}P \), RNA polymerase core, and NTRB were 90, 45, and 100 nM, respectively, unless specified otherwise. Transcripts were run on denaturing gels and quantitated using a PhosphorImager. In experiments for which occupancy of NTRC-binding sites was established by DNase I footprinting, 2 nm CaCl\(_2\) was added to the other buffer components for open complex formation. The rate of open complex formation [Klose et al. 1993] was assessed on linear templates (2 nM, as for footprinting), after digestion of plasmids pJES635 and pJES640 with appropriate restriction enzymes, templates of 700 bp were isolated on agarose gels. For studies of stimulation of activation by the NTRC\(^{3\text{ala}}\) and the NTRC\(^{5\text{I6OF}, 3\text{ala}}\) proteins, open complex formation was studied on supercoiled template (plasmid pJES640 at 20 nm). Wild-type NTRC or NTRC\(^{5\text{I6OF}}\) (5 nm) was added to the template and allowed to bind for 20 min at 0°C. The corresponding "3-ala-nine" protein was then added. Reactions were started with the addition of ATP to 2 mM and immediately transferred to 37°C for 5 min to allow formation of open complexes, which were detected in the single cycle transcription assay. To achieve complete subunit mixing between wild-type NTRC and NTRC\(^{3\text{ala}}\) in control experiments, these proteins were mixed and incubated for 20 min at 37°C before being added to the template DNA.

Footprinting

Footprinting was based on the method of Galas and Schmitz [1978]. Reaction mixtures were identical to those used for measuring the rate of open complex formation on linear templates [they contained \(^{32}P \) holoenzyme as well as the other components; see above], except that the template (2 nm) consisted of 75% unlabeled DNA and 25% end-labeled probe. Digestion with DNase I (0.3 ng/\(\mu \)l for 15 sec) and analysis by denaturing gel electrophoresis were as described (Popham et al. 1989).

Electron microscopy

Binding reactions were performed as described above with the proteins specified [see legend to Fig. 7]. After incubation at 37°C, reaction mixtures were diluted 20-fold into the same buffer, prepared for microscopy as described [Williams 1977], and photographed at \(\sim 30K \) magnification.

Acknowledgments

We thank D. Hager and R. Burgess for their kind gift of E. coli core RNAP, S.Y. Tsai and M.-J. Tsai for helpful discussion, and E.M. Lee for help in construction of transcription plasmids. This work was supported by U.S. Public Health Service grant GM-38361 from the National Institutes of Health to S.K.

The publication costs of this article were defrayed in part by payment of page charges. This article must therefore be hereby marked "advertisement" in accordance with 18 USC section 1734 solely to indicate this fact.

References

Alberts, B. and R. Miah-Lye. 1992. Unscrambling the puzzle of
biological machines: The importance of the details. Cell 68: 415–420.

Austin, S. and R. Dixon. 1992. The prokaryotic enhancer binding protein NTRC has an ATPase activity which is phosphorylation and DNA dependent. EMBO J. 11: 2219–2228.

Bradford, M.M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248–254.

Carey, M., Y-S. Lin, M.R. Green, and M. Ptashne. 1990. A mechanism for synergistic activation of a mammalian gene by GAL4 derivatives. Nature 345: 361–364.

Carey, M., J. Rolman, D.A. Katz, L. Gradoville, L. Barberis, and G. Miller. 1992. Transcriptional synergy by the Epstein-Barr virus transactivator ZEBRA. J. Virol. 66: 4803–4813.

Chang, A.C.Y. and S.N. Cohen. 1978. Construction and characterization of amplifiable multicyc DNA cloning vehicles derived from the P15A cryptic mini plasmid. J. Bacteriol. 134: 1141–1156.

Claverie-Martin, F. and B. Magasanik. 1991. Role of integration host factor in the regulation of the glnHp2 promoter of Escherichia coli. Proc. Natl. Acad. Sci. 88: 1631–1635.

Contreras, A. and M. Drummond. 1987. The effect on the function of transcriptional activator NTRC from Klebsiella pneumoniae of mutations in the DNA recognition helix. Nucleic Acids Res. 16: 4025–4039.

Courey, A.J. and R. Tjian. 1988. Analysis of Sp1 in vivo reveals multiple domains, including a novel glutamine-rich activation motif. Cell 55: 887–898.

Courey, A.J., D.A. Holtzman, S.P. Jackson, and R. Tjian. 1989. Synergistic activation by the glutamine-rich domains of human transcription factor Sp1. Cell 59: 827–836.

Drummond, M.H., A. Contreras, and L.A. Mitchellall. 1990. The function of isolated domains and chimaeric proteins constructed from the transcriptional activators NilA and NtcC of Klebsiella pneumoniae. Mol. Microbiol. 4: 29–37.

Dunaway, M. and P. Droge. 1989. Transactivation of the Xenopus rRNA gene promoter by its enhancer. Nature 341: 657–659.

Fried, M. and D.M. Cothers. 1981. Equilibria and kinetics of lac repressor-operator interactions by polyacrylamide gel electrophoresis. Nucleic Acids Res. 9: 6505–6525.

Galas, D.J. and A. Schmitz. 1978. DNase footprinting: A simple method for the detection of protein-DNA binding specificity. Nucleic Acids Res. 5: 3157–3170.

Garner, M.M. and A. Revzin. 1981. A gel electrophoresis method for quantifying the binding of proteins to specific DNA regions: Application to components of the Escherichia coli lactose operon regulatory system. Nucleic Acids Res. 9: 3047–3060.

Herschlag, D. and F.B. Johnson. 1993. Synergism in transcriptional activation: A kinetic view. Genes & Dev. 7: 173–179.

Hirschman, J., P.-K. Wong, K. Sei, J. Keener, and S. Kustu. 1985. Products of nitrogen regulatory genes ntrA and ntrC of enteric bacterium activate glnA transcription in vitro: Evidence that the ntrA product is a sigma factor. Proc. Natl. Acad. Sci. 82: 7525–7529.

Hoopers, B.C. and W.R. McClure. 1981. Studies on the selectivity of DNA precipitation by spermine. Nucleic Acids Res. 9: 5493–5504.

Hudson, J.M. and M.G. Fried. 1990. Co-operative Interactions between the catabolite gene activator protein and the lac repressor at the lactose promoter. J. Mol. Biol. 214: 381–396.

———. 1991. The binding of cyclic AMP receptor protein to two lactose promoter sites is not cooperative in vitro. J. Bacteriol. 173: 59–66.

Innis, M.A. and D.H. Gelfand. 1990. Optimization of PCRs. In PCR protocols: A guide to methods and applications (ed. M.A. Innis, D.H. Gelfand, J.J. Sninsky, and T.J. White), pp. 3–11. Academic Press, Inc., San Diego, CA.

Keener, J. and S. Kustu. 1988. Protein kinase and phosphoprotein phosphatase activities of nitrogen regulatory proteins NTRB and NTRC of enteric bacteria: Roles of the conserved amino-terminal domain of NTRC. Proc. Natl. Acad. Sci. 85: 4976–4980.

Klose, K.E., D.S. Weiss, and S. Kustu. 1993. Glutamate at the site of phosphorylation of nitrogen-regulatory protein NTRC mimics aspartyl-phosphate and activates the protein. J. Mol. Biol. 232: 67–68.

Krummel, B. 1990. DNase I footprinting. In PCR protocols: A guide to methods and applications (ed. M.A. Innis, D.H. Gelfand, J.J. Sninsky, and T.J. White), pp. 184–188. Academic Press, Inc., San Diego, CA.

Kunkel, T.A. 1985 Rapid and efficient site-specific mutagenesis without phenotypic selection. Proc. Natl. Acad. Sci. 82: 488–492.

Kustu, S., E. Santero, J. Keener, D. Popham, and D. Weiss. 1989. Expression of ntrA-dependent genes is probably united by a common mechanism. Microbiol. Rev. 53: 367–376.

Lin, Y.-S., R.T. Sauer, and A.P. Lander. 1991. Analysis of DNA-protein interactions by affinity coelectrophoresis. Methods Enzymol. 208: 196–210.

Lin, Y.-S., M. Carey, M. Ptashne, and M.R. Green. 1990. How different eukaryotic transcriptional activators can cooperate promiscuously. Nature 345: 359–364.

Magasanik, B. 1989. Gene regulation from sites near and far. New Biol. 1: 247–251.

Mead, D.A., E. Szczesna-Skorupa, and B. Kemper. 1986. Single-stranded DNA “blue” T7 promoter plasmids: A versatile tandem promoter system for cloning and protein engineering. Protein Eng. 1: 67–74.

Minchin, S.D., S. Austin, and R.A. Dixon. 1988. The role of activator binding sites in transcriptional control of the divergently transcribed nifD and nifLA promoters from Klebsiella pneumoniae. Mol. Microbiol. 2: 433–442.

Mueller-Storrn, H., J.M. Sturg, and W. Schaffner. 1989. An enhancer stimulates transcription in trans when attached to the promoter via a protein bridge. Cell 58: 767–777.

Ninfa, A.J. and B. Magasanik. 1986. Covalent modification of the glnG product NRI, by the glnL product, NRII, regulates the transcription of the glnA ALG operon in Escherichia coli. Proc. Natl. Acad. Sci. 83: 5909–5913.

Ninfa, A.J., L.I. Reitzer, and B. Magasanik. 1987. Initiation of transcription at the bacterial glnP2 promoter by purified E. coli components is facilitated by enhancers. Cell 50: 1039–1046.

Pascal, E. and R. Tjian. 1991. Different activation domains of SpI govern formation of multimers and mediate transcriptional synergism. Genes & Dev. 5: 1646–1656.

Popham, D.L., D. Szeto, J. Keener, and S. Kustu. 1989. Function of a bacterial activator protein that binds to transcriptional enhancers. Science 243: 629–635.

Popham, D., J. Keener, and S. Kustu. 1991. Purification of the alternative s factor, s24, from Salmonella typhimurium and characterization of s24-holoenzyme. J. Biol. Chem. 266: 19510–19518.

Reitzer, L.I. and B. Magasanik. 1983. Isolation of the nitrogen assimilation regulator NRI, the product of the glnG gene of Escherichia coli. Proc. Natl. Acad. Sci. 80: 5554–5558.

———. 1986. Transcription of glnA in E. coli is stimulated by activator bound to sites far from the promoter. Cell 45: 785–792.
Ammonia assimilation and the biosynthesis of glutamine, glutamate, asparagine, L-alanine, and D-alanine. In Escherichia coli and Salmonella typhimurium: Cellular and molecular biology (ed. F.C. Neidhardt, J.L. Ingraham, K.B. Low, B. Magasanik, M. Schaechter, and H.E. Umbarger), pp. 302–320. American Society for Microbiology, Washington D.C.

Reitzer, L.J., B. Mopsas, and B. Magasanik. 1989. Activation of glnA transcription by Nitrogen Regulator I (NRI)-phosphate in Escherichia coli: Evidence for a long range physical interaction between NRI-phosphate and RNA polymerase. J. Bacteriol. 171: 5512–5522.

Rose, R.E. 1988. The nucleotide sequence of pACYC184. Nucleic Acids Res. 16: 355.

Sanders, D.A., B.L. Gillece-Castro, A.L. Burlingame, and D.E. Kosland Jr. 1992. Phosphorylation site of NTRC, a protein phosphatase whose covalent intermediate activates transcription. J. Bacteriol. 174: 5117–5122.

Santero, E., T.R. Hoover, A.K. North, D.K. Berger, S.C. Porter, and S. Kustu. 1992. Role of integration host factor in stimulating transcription from the ρ4-dependent nifH promoter. J. Mol. Biol. 227: 602–620.

Sasse-Dwight, S. and J.D. Gralla. 1988. Probing the Escherichia coli glnALG upstream activation mechanism in vivo. Proc. Natl. Acad. Sci. 85: 8934–8938.

Su, W., S. Porter, S. Kustu, and H. Echols. 1990. DNA-looping and enhancer activity: Association between DNA-bound NTRC activator and RNA polymerase at the bacterial glnA promoter. Proc. Natl. Acad. Sci. 87: 5504–5508.

Tabor, S. 1990. Expression using the T7 RNA polymerase/promoter system. In Current protocols in molecular biology (ed. F.A. Ausubel, R. Brent, R.E. Kingston, D.D. Moore, J.G. Seidman, J.A. Smith, and K. Struhl), pp. 16.2.1–16.2.11. Greene Publishing/Wiley-Interscience, New York.

Thony, B. and H. Hennecke. 1989. The −24/−12 promoter comes of age. FEMS Microbiol. Rev. 63: 341–358.

Tsai, S.Y., M.-J. Tsai, and B.W. O'Malley. 1989. Cooperative binding of steroid hormone receptors contributes to transcriptional synergism at target enhancer elements. Cell 57: 443–448.

Wedel, A., D.S. Weiss, D. Popham, P. Droge, and S. Kustu. 1990. A bacterial enhancer functions to tether a transcriptional activator near a promoter. Science 248: 486–490.

Weiss, D.S., J. Batut, K.E. Klose, J. Keener, and S. Kustu. 1991. The phosphorylated form of the enhancer-binding protein NTRC has an ATPase activity that is essential for activation of transcription. Cell 67: 155–167.

Weiss, D.S., K.E. Klose, T.R. Hoover, A.K. North, S.C. Porter, A.B. Wedel, and S. Kustu. 1992. Prokaryotic transcriptional enhancers. In Transcriptional regulation (ed. S.L. McKnight and K.R. Yamamoto), pp. 667–694. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York.

Weiss, V. and B. Magasanik. 1988. Phosphorylation of nitrogen regulator I [NRI] of Escherichia coli. Proc. Natl. Acad. Sci. 85: 8919–8923.

Williams, R.C. 1977. Use of polylysine for adsorption of nucleic acids and enzymes to electron microscope specimen films. Proc. Natl. Acad. Sci. 74: 2311–2315.

Wong, P.-K., D. Popham, J. Keener, and S. Kustu 1987. In vitro transcription of the nitrogen fixation regulatory operon nifLA of Klebsiella pneumoniae. J. Bacteriol. 169: 2876–2880.
Oligomerization of NTRC at the glnA enhancer is required for transcriptional activation.

S C Porter, A K North, A B Wedel, et al.

Genes Dev. 1993, 7:
Access the most recent version at doi: 10.1101/gad.7.11.2258

References
This article cites 51 articles, 23 of which can be accessed free at:
http://genesdev.cshlp.org/content/7/11/2258.full.html#ref-list-1

License

Email Alerting Service
Receive free email alerts when new articles cite this article - sign up in the box at the top right corner of the article or click here.