The G Protein-Coupled Receptor UT of the Neuropeptide Urotensin II Displays Structural and Functional Chemokine Features

Hélène Castel, Laurence Desrues, Jane-Eileen Joubert, Marie-Christine Tonon, Laurent Prézeau, Fabrice Morin, Pierrick Gandolfo, Marie Chabbert

To cite this version:
Hélène Castel, Laurence Desrues, Jane-Eileen Joubert, Marie-Christine Tonon, Laurent Prézeau, et al.. The G Protein-Coupled Receptor UT of the Neuropeptide Urotensin II Displays Structural and Functional Chemokine Features. Frontiers in Endocrinology, Frontiers, 2017, 8, pp.76. 10.3389/fendo.2017.00076 . hal-02280590

HAL Id: hal-02280590
https://hal-normandie-univ.archives-ouvertes.fr/hal-02280590

Submitted on 27 May 2021
The G Protein-Coupled Receptor UT of the Neuropeptide Urotensin II Displays Structural and Functional Chemokine Features

Hélène Castel1,2*,†, Laurence Desrues1,2†, Jane-Eileen Joubert1,2, Marie-Christine Tonon1,2, Laurent Prézeau3, Marie Chabbert4, Fabrice Morin1,2 and Pierrick Gandolfo1,2

1Normandie University, UNIROUEN, INSERM, DC2N, Rouen, France, 2Institute for Research and Innovation in Biomedicine (IRIB), Rouen, France, 3CNRS UMR 5203, INSERM U661, Institute of Functional Genomic (IGF), University of Montpellier 1 and 2, Montpellier, France, 4UMR CNRS 6214, INSERM 1083, Faculté de Médecine 3, Angers, France

The urotensinergic system was previously considered as being linked to numerous pathophysiological states, including atherosclerosis, heart failure, hypertension, pre-eclampsia, diabetes, renal disease, as well as brain vascular lesions. Based on this expectation, validation of urotensin II (UII)/G protein-coupled receptor UT system in animal models are currently not predictive enough in regard to their effects in human clinical trials and that UII analogs, established to target UT, were not as beneficial as expected in pathological situations. Thus, many questions remain regarding the overall signaling profiles of UT leading to complex involvement in cardiovascular and inflammatory responses as well as cancer. We address the potential UT chemotactic structural and functional definition under an evolutionary angle, by the existence of a common conserved structural feature among chemokine receptors opioidergic receptors and UT, i.e., a specific proline position in the transmembrane domain-2 TM2 (P2.58) likely responsible for a kink helical structure that would play a key role in chemokine functions. Even if the last decade was devoted to the elucidation of the cardiovascular control by the urotensinergic system, we also attempt here to discuss the role of UII in inflammation and migration, likely providing a peptide chemokine status for UII. Indeed, our recent work established that activation of UT by a gradient concentration of UII recruits Gαi/o and Gα13 couplings in a spatiotemporal way, controlling key signaling events leading to chemotaxis. We think that this new vision of the urotensinergic system should help considering UT as a chemotactic therapeutic target in pathological situations involving cell chemoattraction.

Keywords: G protein-coupled receptor, UT, urotensin II, proline, chemokine, migration

INTRODUCTION

The urotensinergic system was previously considered as being linked to numerous pathophysiological states, including atherosclerosis, heart failure, hypertension, pre-eclampsia, diabetes, renal disease, as well as brain vascular lesions. Based on this expectation, validation of urotensin II (UII) receptor (UT) antagonism in cell lines expressing rat or human UT, observations in animal models, and even clinical results were not as beneficial as expected, probably because of the complex effects of the urotensinergic system depending on the vascular bed, the studied animal species, and/or
the C-terminal CFWKYC hexapeptide portion formed by the amino acids in the mouse and shows remarkable conservation from Homo sapiens to 17 and human (Table 1) (4, 5). The neuropeptide UII is composed of 11 amino acids in primates (including Homo sapiens) to 17 amino acids in the mouse and shows remarkable conservation of the C-terminal CFWKYC hexapeptide portion formed by the amino acids but differ at their N-terminal end exhibiting the signal peptide. The mature peptide UII results from the proteolysis of prepropeptide UII at the tribasic site KKR by a specific urotensin converting enzyme (UCE), which is not still identified (4, 5). Study on the conversion of a 25 amino acid C-terminal fragment of prepropeptide to mature peptide revealed that the endoprotease Furin and the serine protease trypsin, may act, respectively, as intracellular and extracellular UCE (12). This enzymatic cleavage appears necessary to confer biological activity (13).

In comparison with primate prepro-UII, precursors of rat and mouse UII markedly diverge by the amino acid composition of the N-flanking domain of the cyclic hexapeptide and by the absence of a typical cleavage site (KKR) for pro-hormone converting enzymes in the upstream region of UII sequence (10). These observations led Sugo and collaborators to characterize UII immunoreactivity detected in the brain of the two rodent species and to isolate, in 2003, a peptide similar to UII, the covalent disulfide bridge (Table 1) during evolution, suggesting a crucial importance of the cycle in biological activity. To date, UII has been characterized in a single species of invertebrates, the Aplysia californica (6), in a form composed of 20 amino acids and whose cyclic hexapeptide differs from vertebrates by only two residues (F→L and Y→V) (7).

All the amino acid sequences of UII identified so far are mostly deduced from cDNAs and correspond to the C-terminal part of its precursor. In human, the deduced sequence of prepro-UII, cloned from colon tumor or placental library, evolved from alternative splicing of the human UTS2 gene, yielding a 124 (isoform b, NP_006777) and 139 (isoform a, NP_068835.1) amino acid variants. The two encoded isoforms are identical for the last 97 amino acids but differ at their N-terminal end exhibiting the signal peptide. The mature peptide UII results from the proteolysis of prepropeptide UII at the tribasic site KKR by a specific urotensin converting enzyme (UCE), which is not still identified (4, 5). Study on the conversion of a 25 amino acid C-terminal fragment of prepropeptide to mature peptide revealed that the endoprotease Furin and the serine protease trypsin, may act, respectively, as intracellular and extracellular UCE (12). This enzymatic cleavage appears necessary to confer biological activity (13).

In comparison with primate prepro-UII, precursors of rat and mouse UII markedly diverge by the amino acid composition of the N-flanking domain of the cyclic hexapeptide and by the absence of a typical cleavage site (KKR) for pro-hormone converting enzymes in the upstream region of UII sequence (10). These observations led Sugo and collaborators to characterize UII immunoreactivity detected in the brain of the two rodent species and to isolate, in 2003, a peptide similar to UII, the

THE UII PEPTIDE SYSTEM

Endogenous Urotensinergic Peptide Ligands, from Gene to Sequence

At the end of the 1960s, Drs. Bern and Lederis attributed the name “urotensins” to a series of biologically active peptides isolated from the urophysis neurosecretory system of the teleost fish Gillichthys mirabilis. Among those, UII was characterized through its ability to stimulate smooth muscle cells (1). Then, the amino acid sequence of UII was subsequently identified in a number of other fish species, and the presence of the UII peptide was discovered in the brain of a tetrapod, the frog Rana ridibunda (2, 3) two decades later (Table 1). Based on these observations, the gene encoding UII has been the subject of more research and was successfully identified in various mammalian species including in monkey and human (Table 1) (4, 5). The neuropeptide UII is composed of 11 amino acids in primates (including Homo sapiens) to 17 amino acids in the mouse and shows remarkable conservation of the C-terminal CFWKYC hexapeptide portion formed by the amino acids but differ at their N-terminal end exhibiting the signal peptide. The mature peptide UII results from the proteolysis of prepropeptide UII at the tribasic site KKR by a specific urotensin converting enzyme (UCE), which is not still identified (4, 5). Study on the conversion of a 25 amino acid C-terminal fragment of prepropeptide to mature peptide revealed that the endoprotease Furin and the serine protease trypsin, may act, respectively, as intracellular and extracellular UCE (12). This enzymatic cleavage appears necessary to confer biological activity (13).

In comparison with primate prepro-UII, precursors of rat and mouse UII markedly diverge by the amino acid composition of the N-flanking domain of the cyclic hexapeptide and by the absence of a typical cleavage site (KKR) for pro-hormone converting enzymes in the upstream region of UII sequence (10). These observations led Sugo and collaborators to characterize UII immunoreactivity detected in the brain of the two rodent species and to isolate, in 2003, a peptide similar to UII, the

TABLE 1 | Comparison of the sequences of urotensin II (UII) and urotensin II-related peptide (URP) in different species of tetrapods.

Family	Scientific names	Species	Common names	UII	Peptide sequences
Tetrapods	Pelophylax ridibundus	Frog	AGLNLSECFWKYCVC(2)		
	Hyla arborea	Tree frog	AGLNLSECFWKYCVC(2)		
	Xenopus laevis	Xenope	GNLSECFWKYCVC		
	Gallus gallus	Chicken	GNLSECFWKYCVC		
	Taeniopygia guttata	Zebra finch	GNLSECFWKYCVC		
	Felis catus	Cat	GSPSECFWKYCVC		
	Sus scrofa	Pig	GFPSECFWKYCVC(8)		
	Ovis aries	Sheep	GPSSECFWKVC		
	Bos taurus	Cattle	GPSSECFWKVC		
	Rattus norvegicus	Rat	GHTGTAPECFWKYCVC(5)		
	Mus musculus	Mouse	GHTKQHGAAPECFWKYCVC(10)		
	Otolemur garnettii	Galago	GPSSECFWKVC		
	Callithrix jacchus	Marmoset	GPSSECFWKVC		
	Papio anubis	Baboon	GPSSECFWKVC		
	Macaca mulatta	Rhesus monkey	GPSSECFWKVC		
	Macaca fascicularis	Macaque	GPSSECFWKVC		
	Nomascus leucogenys	Gibbon	GPSSECFWKVC		
	Pongo abelii	Orangutan	GPSSECFWKVC		
	Gorilla gorilla	Gorilla	GPSSECFWKVC		
	Homo sapiens	Human	GPSSECFWKVC		
	Pan paniscus	Bonobo	GPSSECFWKVC		
	Pan troglodytes	Chimpanzee	GPSSECFWKVC		

The biologically active sequence of the peptides, highlighted in red, is conserved in all tetrapods.
Urotensin II-related peptide (URP) (9). Later on, the cloning of the prepro-URP cDNAs, in human, mouse, and rat revealed 54% homology between human and rat vs 47% homology between human and mouse (1-4). However, the URP sequence is identical in all mammals and corresponds to human Ala1–UII4–11. Finally, although URP was initially thought to exist only in tetrapods, its gene has been identified in the genome of several teleost fishes (15, 16). Together, the sequences of UII, URP, and somastostatin display high homology in particular at the level of the cyclic hexapeptide sequence and it was established that URP is a peptide paralog of UII (17).

General Distribution of UII and Urotensin II-Related Peptide

Urotensin II and URP are widely distributed in the cardiovascular, renal, and endocrine systems. In humans, high expression levels of UII are found in the myocardium (18), the atria, and the ventricles (19–21). UII has also been detected in the heart of rats (4, 9, 20) and mice (11, 22). At the vascular level, the presence of mRNA for prepro-UII has been demonstrated in the arterial network, primarily in the thoracic aorta, pulmonary arteries, and arterioles. In contrast, it is almost absent in the venous network, with the exception of the saphenous and umbilical veins (19–21).

Several studies show that kidney is a major site of production of circulating UII in humans (9, 20, 21, 23, 24). The peptide is particularly abundant in glomerular epithelial cells, convoluted tubules, and collecting ducts (20, 25). Surprisingly, the level of expression of UII in the kidney of monkey and mice is weak (11), stressing some important differences between species. UII is also expressed in endocrine glands, such as pancreas or adrenal gland, in humans and rats (5, 23, 26). Nevertheless, the mRNA for UII is undetectable in these tissues in monkey and mice (11, 22), again raising the question of the occurrence of a conserved cardiovascular and/or endocrine role of UII among the different species.

Even though the identification of URP has been done more than 10 years ago, data concerning this peptide are considerably much more incomplete. Nevertheless, it is worth noting that the expression of prepro-URP is predominant in the gonads and placenta of humans and in the testis of rats (9). URP and its mRNA are also expressed in kidney (8, 9) and in the ventricles and myocardium of the rat heart (27, 28). The expression of the two peptides extends to the spleen, thymus, liver, stomach, and intestines (5, 9, 11, 20, 22, 23, 29, 30).

Within the central nervous system (CNS), UII immunoreactivity is mainly associated with motoneurons of the hypoglossal nucleus of the brainstem and the ventral horn of the spinal cord. This neuronal subpopulation also strongly expresses UII in the nuclei of the abducens, facial, trigeminal, and hypoglossal cranial nerves in rats (10, 31) and those of the caudal part of the spinal cord in mice (10, 32), rats (10, 31), and humans (4, 5). Surprisingly, UII is apparently absent from the brainstem of monkey (4, 11). URP mRNAs are localized in the spinal cord of humans and rats, at expression levels considerably lower than those of UII (9). In mice, URP mRNA is found in the brainstem and in motoneurons of the anterior horn of the spinal cord (22). Finally, URP is present in neuronal cell bodies of the preoptic region and in fibers of the median eminence and the organum vasculosum of the lamina terminalis, which is involved in thermoregulation (33).

Thus, UII and URP are not ubiquitously expressed within the peripheral and central nervous systems and likely show key expression levels in heart, arterial networks, and kidney with discrepancies between species, suggesting a non-conserved role in the vasomotor tone regulation.

UII RECEPTOR UT RECONSIDERED IN LIGHT OF CONSERVED STRUCTURAL PROPERTIES

The UT receptor was initially discovered and cloned in 1995 from rat sensory tissue extracts (34) and a rat genomic library (35). At this stage, this G protein-coupled receptor (GPCR) was named sensory epithelial neuropeptide-like by Tal et al. (34) and GPR14 (according to the current nomenclature) by Marchese et al. (35). Whereas Ames et al. identified the UII peptide as the endogenous ligand of the human receptor homologous to GPR14 by reverse pharmacology (4), other research teams in the same year corroborate the existence of the UII/GPR14 system in various species (8, 36, 37). It is on the basis of these studies that the receptor was renamed UII receptor or UT, by the International Union of Basic and Clinical Pharmacology (IUPHAR).

Distribution of UT Varies Depending on Species and Systems

The presence of substantial amounts of UII in the cardiovascular system has led several groups to investigate the expression of UT mRNA in different component tissues in rat (37–39) and mouse (36). In human and monkey, high levels of mRNA-encoding UT have been detected in the myocardium (18), the atria (4, 11, 21, 23), and the ventricles (4, 20, 23). At the vascular level, the presence of UT has been detected in the thoracic aorta (4, 21, 40) as well as in the pulmonary and coronary arteries (41). In addition, UT, like UII, is strongly expressed in kidney from rat (27, 38, 42–46) and human (21, 23, 24, 41, 47), although it is only moderately expressed in monkey (44). UT is also present in the endocrine system, notably in the pituitary, pancreas, and adrenal gland in human (4, 23), monkey, and mice (11). Other peripheral tissues show significant levels of UT expression, which varies according to the species studied. The CNS shows widespread expression of UT mRNA, which is particularly abundant in the brainstem and spinal cord (23, 24, 36, 38, 48).

Other regions of the CNS, e.g., the cortex, hypothalamus, and thalamus, display relatively weak expression levels that vary between species. UT is also associated with cerebral blood vessels and is expressed mainly in the endothelial cells of microvessels (49). Finally, the expression of the receptor has been detected both in neurons (48) and in a subpopulation of astrocytes in the brainstem and hypothalamus (50) and in cultured cortical astrocytes (51).

Together, this UT distribution highly resembles the UII/URP distribution in cardiovascular endocrine and also nervous tissues, naturally leading several groups to investigate the effects of UT on the cardiovascular system, even if the data remain...
multiple and complex. In human, circulating levels of UII and/or UR P (“UII-like”) are higher in patients with heart failure (52, 53), systemic (54) or portal hypertension (55, 56), or atherosclerosis (57), than in plasma of healthy volunteers. In fact, the UT-related mechanisms appear associated with tissue remodeling processes during the course of the disease (58), including cardiac hypertrophy and fibrosis (59). Thus, we here question whether UT may play an alternative chemokine-like function in primates than vasomotor regulatory activities as previously proposed in rats.

The UT Positioning Depends on the Different GPCR Classifications

Although GPCRs share a common structure, certain characteristics make it possible to distinguish and to classify them in different families. However, based on the homology of sequence, structure, ligand binding mode, or phylogenetic relationships, the large number of GPCRs makes it difficult to develop a global classification system. The human UT receptor was shown to belong to the class A (Rhodopsin) GPCR family (60) according to the widely used structural classification in the past, based on the identification, by analysis of protein sequences of the TMs of the GPCRs listed in vertebrates and invertebrates, of fingerprints preserved within certain GPCR groups (61). GPCR members of class A (the largest family of GPCRs with 80% of GPCRs listed) share homologies of sequence, structure, and ligand-binding mode. The homologies of sequence between the receptors of class A can be very low since they rely on the conservation of a few residues mainly located in the TMs, which would play a primordial role in their structure and functionality. Within this classification, UT displays sequence homology not only with certain somatostatin receptors (SST), in particular with SST4 (27%), but also opioïergic receptors (MOR: 26%, DOR: 26%, and KOR: 25%) (35), which are now crystallized (62, 63) and would constitute the best prototypes for UT modeling.

More recently, Fredriksson et al. (64) proposed from the GPCR sequences a yet commonly used systematic classification system named GRAFS formed by the five distinct families of Glutamate (G), Rhodopsin-like (R), Adhesion (A), Frizzled/Taste (F), and Secretin (S). The Rhodopsin-like family showed a clear evolutionary success since containing around 90% of the GPCRs and is divided into four (α, β, γ, and δ) subclasses in Fredriksson’s classification. The crystallographic structures of Rhodopsin-like family indicate a common firm core corresponding to high conserved sequence motifs, i.e., E/DRY in TM3, NPXXY on TM7, WXP on TM6, D2.50 in TM2 (X.50, according to the Ballesteros classification: X, numbering of TM; 50, the most conserved residue in the concerned TM) (65), and a water network that can be seen in the binding pocket mediating ligand interactions with the receptor (66). It can be noticed that the γ group includes 59 GPCRs, divided into three different clusters, i.e., SOG (15 GPCRs like SST, OR or GPR54 receptor also named KISS1R), melanin-concentrating hormone receptors (MCHR) (2 GPCRs), and CHEM (42 GPCRs including chemokine receptors, such as the CXCR4, angiotensin (ANG), and bradykinin (BK) receptors, as well as a large number of orphan receptors. However, the neighbor-joining and maximum parsimony method used in sequence analysis failed to affect 23 receptors into one family/group/cluster, and this is the case for UT (named GPR14 in this study). These difficulties were due to an unusual part of the GPCR gene sequence in question [usually coding for intra- (i) or extracellular (e) loops] that would result from a chimeric origin of the receptor and/or progressive pressure not shared by neighboring receptors (64). However, UT shares the sequence pattern characteristic of Rhodopsin-like GPCRs. When comparing different sub-families of GPCRs from the conserved ligand binding pocket or from conserved endogenous agonist ligands (67), UT can be found near GPR109A or purinergic P2Y receptors listed in orphan receptors from the SOG or PUR cluster group by Fredriksson et al. (64, 67). In light of these results, we suggest that UT possesses specific structures and functions related to the chemokine receptors of the SOG and PUR families.

Thus, as members of the Rhodopsin SOG and PUR family, UT has a relatively short N-terminal domain with two N-glycosylation sites (N29 and N33), an NLxxxxD2.50 motif within its TM2, a disulfide bridge between cysteine residues in the extracellular end of TM3 and the e2 loop, a ER3.50Y motif at the cytoplasmic end of the TM3, a CFXP6.50 motif within the TM6, the highly conserved NP7.50xxY motif at the TM7 level, and a palmitoylation site at the C-terminal tail (C334) (68). Other specific motifs are observed, namely (i) a KRARR nuclear localization motif at the i3 loop (69), (ii) potential sites of phosphorylation by protein kinases A and C, kinase I, and glycogen synthase kinase 3 at i2 and i3 loops (35, 68, 70), (iii) serine potential phosphorylation sites at the C-terminal end involved in β-arrestin interaction and internalization of the receptor (71, 72), and (iv) polyproline type I and II motifs within the C-terminal tail potentially allowing the interaction with proteins harboring src homology 3 type domains (Figure 1).

UT Shares a Structural Feature with Chemotactic GPCRs: An Evolutionary Lighting

These human GPCR classifications were proposed from constructions of phylogenetic trees, which require the use of several methods to assess the robustness of the obtained results. However, other strategies should be used when a position dependency hypothesis is questioned, the size of the dataset becomes large, and/or the relationships between proteins of the same family but of different genomes must be compared. Thus, to address some ambiguities concerning GPCRs classification, as highlighted for UT, analyses of gene sequences by the metric multidimensional scaling (MDS) were conducted. MDS is also called “principal coordinates analysis” and corresponds to an exploratory multivariate procedure designed to identify patterns, within proteins for example, in a distance matrix (73, 74). With MDS, protein sequences can be considered all at once, and individually represented in a low-dimensional space whose respective distances best approximate the original distances. In addition, MDS allows the projection of supplementary information allowing a straightforward comparison of the active and supplementary data. Therefore, MDS was used to explore the sequence space of GPCR families and to interpret patterns in relation with evolution, with projection of GPCR...
sequences from distant species onto the active space of human GPCRs (75, 76), based on the assumption that GPCR evolution could follow a radial rather than bifurcated path (represented by the classical phylogenetic tree system). The phylogenetic links between GPCRs of the same species were represented in three dimensions, and the results were shown superimposed between several species (75). By means of this evolutionary-based classification, the work of the Chabbert’s group succeeded in identifying GPCRs of the Rhodopsin class in the same clusters as those found by Fredriksson et al. (76), but some differences at the margin were also identified and likely stressed the way how some GPCRs may be activated and function. The differences are as follows: galanin receptors and Kiss1R belonging to the SOG cluster in the Fredriksson et al. classification, are likely rather connected to the PEP cluster according to Chabbert et al., and then SOG becomes SO cluster. In addition, the MCHR and UT appeared in this new classification, grouped in this SO cluster (76).

This is probably the evolutionary point of view that gives the best indications about UT membership and structural characteristics. Indeed, MDS analysis of GPCRs of the Rhodopsin family allowed the receptors to be sorted into four groups (G0–G3) comprising different clusters (76). The group G0 represents the central group and includes the clusters PEP, OPN, and MRN, the group G1 includes the cluster SO (SST, OR, and UT), CHEM, and PUR (Table 2), the group G2 contained AMIN and AD clusters and finally G3 involves LGR, MEC, PTG, and MRG clusters (Table 2). It is interesting to note that in C. intestinalis, the CHEM cluster only slightly differs from the SO cluster, thus suggesting that this SO/CHEM group gave rise, in vertebrates, to SO, CHEM, and PUR clusters, suggesting a common origin. Moreover, the cluster SO and PEP are close in the most distant ancestral species from human and their distance increases during evolution (75). These observations argue in favor of a common origin between PEP and SO, CHEM, and PUR clusters (76) and allow the repositioning of UT from a “peptide family (PEP)” group to a chemokine receptor family.

Sequence comparison of the different groups (G0–G3) shows that the main characteristic of the G1 group receptors, including UT is a proline within the TM2 in position 2.58 (P2.58), often preceded by an aliphatic residue whereas G0 group mainly comprises...
Table 2 | Assignment of the 13 non-olfactory human G protein-coupled receptor clusters from the rhodopsin class into four groups, G0, G1, G2, and G3, in addition to an UC.

Group	Family	Pattern	Homo sapiens
G0	PEP	P2.58	MTLR, GHSR
	Peptide	P2.59	NMUR1, NMUR2, NTR1, NTR2, GPR93, EDNRA, EDNRB, ETBR2, GPR37, PKR1, PKR2, NPY1R, NPY2R, NPY4R, NPY5R, BR3, GPR3, NMBS, COKAR, GASR, QIFPR, OX1R, OX2R, NIFF1, NIFF2, PRLHR, GRNR2, GRNR3, GALR1, GALR2, GALR3, KISSR, GP151, GP173, GP19R, GP27, GP84, GP85
		P2.60	V1AR, V1BR, V2R, OX1R, TRFR
	NoP		NCK1R, NCK2R, NCK3R, GP150
	OPN	P2.59	OPN4, OPSX
Opsi n		P2.60	OPSB
	NoP		OPN3, OPN5, RGR, OPSR, OPSD
	MTN	P2.59	MTR1A, MTR1B, MTR1L
	Melatonin		
G1	SO	P2.58	OPRM, OPRD, OPRK, OPRX, SSR1, SSR2, SSR3, SSR4, SSR5, NPBW1, NPBW2, UT, MCHR1, MCHR2
	CHEM	P2.58	CCR5, CCR2, CCR3, CCR1, CCR4, CCR8, CX3C1, CCR2L2, CCRBP2, XCR1, CCR9, CCR7, CCR8, CCR1L, CCR4, CCR2, CCR1, CCR5, CCR10, CCR3, CCR6, CXCR7, RLR3R1, RLR3R2, ADMR, AGTR1, AGTR2, BKRB1, BKRB2, APJ, GPR25, GPR15, CSARL, CSAR, CSAR, GPR44, FPRF1, FPRF2, FPRF1, LT4R1, LT4R2, CML1, GPR32, GPR33, GPR1
		P2.59	GP152
		P2.60	
	PUR	P2.58	P2RY1, P2RY2, P2RY4, P2RY5, P2RY6, P2RY8, P2RY9, P2Y10, P2Y12, P2Y13, P2Y14, PTAFR, SUCR1, OXER1, OXER1, G1O9A, PSYR, SPR, CLR1, CLR2, PAR1, PAR2, PAR3, EB2, FFAFR, FFAFR, FFAFR, FFAFR, GPR4, GPR17, GPR18, GPR20, GPR31, GPR34, GPR35, GPR55, GPR81, GPR87, GPR92, GP132, GP141, GP174, GP171, QSKU21, GP82
		P2.59	GP172, GP173, GP182
		P2.58P2.59	P2Y11, PAR4
G2	AMIN	P2.59	SHT1B, SHT1D, SHT1E, SHT1F, SHT1A, SHT7R, SHT4R, SHT2A, SHT2B, SHT5A, HRH1, HRH2, HRH3, HRH4, DRD1, DRD2, DRD3, DRD4, DRD5, ADA1A, ADA1B, ADA2A, ADA2B, ADA2C, ADRB1, ADRB2, TAAR1, TAAR2, TAAR3, TAAR5, TAAR6, TAAR9
		P2.58P2.60	SHTBR, ADRB3
	NoP		TAAR8, ACM1, ACM2, ACM3, ACM4, ACM5
G3	LGR	NoP	LGR4, LGR5, LGR6, RXP1, RXP2, TSHR, LSHR, FSHR
	Glycoproteins		
	MEC	NoP	ACTHR, MSHR, MC3R, MC4R, MC5R, CNR1, CNR2, EDG1, EDG2, EDG3, EDG4, EGR2, GPR1, GPR6, GPR12
	Melanocortin		
	Cannabinoid		
	PTGR	P2.59	PE2R2, PE2R3, PE2R4, PD2R, P2R
	NoP		TA2R, PF2R, PE2R
	MRG	NoP	MAS, MAS1L, MRGRF, MRGX1, MRGX2, MRGX3, MRGX4, MRGRD, MRGRF
	Mas-related		
UC	UC	P2.58	GPBAR, GP120, Q5KU14, GP146
		P2.59	GPR22, GPR26, GPR45, GPR61, GPR62, GPR63, GPR75, GPR78, GPR88, GP101, GP135, GP161, GP176
		P2.60	GPR21, GPR52

Abbreviations of the SO, CHEM, and PUR clusters of the G1 group displaying a P2.58 are in bold. The SO family containing UT is shown in red. The receptors with their most common abbreviations belonging to each of the clusters in the G0–4 and unclassified group (UC) groups are listed [from Pelé et al. (76)].

Receptors harboring a proline in position 2.59. Together, only the G1 group, which includes the SO containing UT, CHEM, and PUR clusters, is therefore characterized by a proline P2.58 (75, 76) (Figure 2A). Given the phylogenetic links between the PEP, SO, CHEM, and PUR clusters, it is proposed that the position of the proline in 2.58 for the SO, CHEM, and PUR clusters results from a codon deletion in the TM2 of receptors of the PEP family. This proline in TM2 either on P2.58 or P2.59 induces a typical elbow observable by modeling (77, 78) and confirmed by crystallographic studies (79–81), yielding bulge and kink structures, in P2.59 and P2.58 receptors, respectively (Figures 2A,B). In fact, by plotting the curvature and flexibility of the TM2, the position
of the proline could affect the degree of opening of the GPCR-binding pocket and their activation mechanisms (82). Thus, the change in conformation of the TM2, following the deletion of a residue within the TM2 helix, would contribute to the emergence of activation mechanisms specific to SO, CHEM, and PUR cluster receptors.

As many CHEM and PUR receptors are widely recognized as mediating chemotaxis and chemoattractant behaviors, we propose that the P2.58 and kink feature the TM2 of UT, has allowed the capacity of UII gradient sensitivity and chemotactic behavior, leading to cell migration and invasion.

UII/UT SYSTEM, FROM CARDIOVASCULAR FUNCTIONS TO CHEMOKINE PROPERTIES

Physiological and Pathophysiological Effects of the Urotensinergic System on the Cardiovascular Functions

The distribution of UT and its endogenous ligands has naturally led several groups to investigate the effects of UT on the cardiovascular system. When applied to de-endothelialized aortic rings from
rats (4, 36, 83, 84), rabbits (85), macaques (4), or humans (20, 41, 42, 86–88), UII induces dose-dependent constriction. This effect is observed at doses so low that this neuropeptide was considered the most potent naturally occurring vasoactive compound (4, 20). For example, in a murine model, UII is 660 and 16 times as powerful as serotonin and endothelin, respectively (4). This vasoconstrictive activity is primarily relayed by the mobilization of cytosolic calcium (4, 36). Calcium recruited by UT is derived partly from an intracellular pool via the activation of channel receptors sensitive to inositol triphosphate (IP$_3$) and partly from the extracellular pool via L-type calcium channels (89–92). Calcium activates calmodulin, whose blockade inhibits the effects of UII on the contraction of rat aortic rings (89). Calmodulin in turn activates myosine light-chain kinase, responsible for the phosphorylation of MLC-2 and the contraction of actomyosin (93, 94). In the sidelines of this principal intracellular signaling pathway, other pathways involved in the contractile activity of UII, such as the PKC/ERK and the RhoA/ROCK pathways, have also been identified (92–95).

However, when injected as an intravenous bolus in anesthetized or conscious rats, UII and URP provoke a slow and prolonged decrease in arterial pressure due to vasodilatation (9, 96–98). In contrast, chronic administration of UII to these animals has no effect (99). In primates, intravenous administration of UII exerts a strong vasodilatation, responsible for cardiovascular collapse and cardiac arrest at high doses (4, 100). However, results in humans are more controversial, since the intravenous injection of UII leads to local vasoconstriction (101) or has no apparent effect (102–104). Studies investigating skin microcirculation even showed that UII infusion through iontophoresis induces a dose-dependent vasodilatation in healthy volunteers but a dose-dependent vasoconstriction in patients with chronic heart failure, systemic hypertension, cirrhosis, or diabetes without cardiovascular pathology (54, 105–107). Finally, endothelium alterations observed in these pathologies could alter vasodilator properties of UII and explain, at least in part, the differences between patients and healthy volunteers.

Overexpression of UII, URP, and UT in the heart of rats and humans with heart failure has also been demonstrated (13, 28) with a correlation between UII plasma level and the cardiac dysfunction (108). A strong “UII-like” immunoreactivity was seen in coronary artery endothelial cells from patients with atherosclerosis (20, 109), associated with a significant effect of UII on the proliferation of vascular smooth muscle cells (95, 110) or the formation of foam cells (111, 112). Moreover, in rat models, treatment by a UT antagonist reduces mortality and improves cardiac function after myocardial infarction (113), decreases coronary angioplasty restenosis (114), pulmonary arterial hypertension (115) and aortic inflammation, and atherosclerosis (116).

Taken together, these data suggest that this peptide could participate rather in tissue remodeling processes during the course of the vascular disease (58) than in tonic vasculo-motor functions. This hypothesis is reinforced by the absence of modification of the vascular tone, and the appearance of a reduced metabolic syndrome and atherosclerotic lesions in UII knockout in comparison with wild-type mice (117).

Effects of UII on Cell Proliferation, Survival, and Hypertrophy

More related to tissue remodeling, the urotensinergic system exerts promitogenic effects on a number of native and recombinant cell types and hypertrophic functions only on cardiomyocytes (Table 3). The activation of ERK is a central element of these effects, either in cell lines transfected with cDNA encoding human UT (118) or in native cells expressing the receptor, i.e., pig renal epithelial cells (119) or rat smooth muscle cells (120). Several signaling pathways leading to the activation of ERK and cell proliferation, survival, or hypertrophy have been described in the literature. One of these pathways involves the transactivation of the epidermal growth factor receptor (EGFR) (121–123). This is often dependent on the production of reactive oxygen species (ROS) by an NADPH oxidase activated by UT (124). The ROS relieve the inhibition exerted by src homology 2-containing tyrosine phosphatase (SHP-2) on EGFR, allowing the transduction of the mitogenic signal (123, 125). This phenomenon of transactivation can also be underpinned by the activation of a disintegrin and metalloproteinase (ADAM) which cleaves the precursor of EGF, the heparin-binding EGF-like growth factor, and releases the active ligand EGFR accordingly (122, 126) (Table 3). The promising effects of UT are also relayed by other second messengers than previously described (PLC and PI3K), via receptor coupling to a pertussis toxin-sensitive G$_i$proteins in native (45, 118, 127, 128), tumoral human rhabdomyosarcoma (129), or recombinant cell lines (130). These last observations suggest that the ability of UT to coupled G$_i$ proteins in addition to G$_o$ may have provided acquisition of specific skills important for other activities than cardiovascular tone regulation.

Effects of UII on the Immune System, Relevant to Chemokine-Like Activity

There are few data concerning the link between urotensinergic and immune systems. Some studies have demonstrated the presence of UT on the surface of selected immune cells, i.e., B and NK lymphocytes, monocytes, and macrophages (145, 156), which infiltrate zones displaying high levels of immunoreactivity for UII (20). UII acts as a chemoattractant for human monocytes (145), and induces the extravasation of plasma in mice (157) and rats (158) (Table 3). Pro-inflammatory signals, such as tumor necrosis factor-α (TNF-α), lipopolysaccharide (LPS), or interferon-γ (IFN-γ), promote the expression of UT (145), while UII induces the secretion of cytokines, such as interleukine-6 (IL-6), in UT transfected human cardiomyocytes and lung adenocarcinoma cells (159, 160). Moreover, UII favors acetyl-coenzyme A acetyltransferase 1 activity in human monocyte (112). On coronary smooth muscle cells or endothelial cells in culture, UII increases the synthesis of inflammatory and pro-thrombotic markers like the plasminogen activator inhibitor-1, the inter-cellular adhesion molecule-1, and the tissue factor through activation of the necrosis factor NF-κB, a pro-inflammatory transcription factor (124, 161). Finally, expression of UT in human leukocytes, especially monocytes and NK cells, is strongly stimulated after exposure to LPS and requires NF-κB (145). In addition, in a mouse model of inflammatory acute liver failure, the expression of UII and...
TABLE 3 | Transduction pathways associated with UT receptor activation and involved mitogenic and chemokine functions other than cardiovascular tone regulation.

Effect	Cell type	Species	Transduction pathways	Reference
Proliferation	Arterial SMC	Rabbit	PKC, src, MAPK	(110)
	CHO-UT	Hamster	Gαs, PI3K, PLC, calmodulin, MEK, extracellular Ca2+	(118)
Renal epithelial cells	Pig	Gαs, PI3K, PLC	Ca2+ (voltage-dependent channels), PKC, MAPK, ERK, c-myc	(119)
Airway SMC	Rat	GαS, RhoA, ROCK	Ca2+ (voltage-dependent channels), PKC, MAPK, Ca2+, calcineurin	(131)
Cardiac fibroblasts			EGFR transactivation, ERK, ROS	(121)
Renal tubular cell line	SMC		ROS, inhibition of SHP-2, EGFP transactivation via HB-EGF	(122)
Endothelial precursors	ERK, p38MAPK		(133)	
Airway SMC			ERK, TGFβ	(120)
Renal epithelial cells	Pig		NOX, ROS, p38MAPK, c-Jun, Akt, expression of PAI-1	(124)
			NOX4, ROS, FoxO3, JNK, MOMP	(134)
Fibroblasts	Rat		Ca2+ (voltage-dependent channels), PKC, MAPK, ERK, c-myc	(128)
Aortic SMC			EGFR transactivation, ERK, ROS	(126)
Renal tubular cell line	SMC		ROS, SHP-2 inhibition, EGFR transactivation	(125)
HUVEC			p38MAPK, ERK	(136)
Cardiac precursors			JNK, LRP6	(137)
Survival	Vascular SMC	Rat	N. D.	(138)
Cardiomyocytes			P3K, ERK	(139)
Hypertrophy	Cardiomyocytes-UT	Rat	Gαs, Ras	(59)
Cardiomyocytes			EGFR transactivation via HB-EGF, ERK, p38MAPK	(128)
Angiogenesis	HUVEC	Human	PLC, Ca2+; PKC, PI3K, ERK1/2, FAK	(142)
			VEGF, endothelin-1 and adrenomedullin expression	(143)
			HIF-1, ROS, NOX-2	(144)
Migration, motility, adhesion	HEK293	Human	N. D.	(130)
Monocytes			N. D.	(145)
Endothelial progenitors	Rat	Human	P3K, ROCK, calcineurin, MAPK	(147)
Prostatic adenocarcinoma	LNCaP	Human	MEK	(148)
Vascular SMC			P3K, ROCK, calcineurin, MAPK	(149)
Bladder cancer			N. D.	(153)
Globlasticoma cell line			Gαs/RhoA/ROCK, Gαs/P3K	(154)

Akt, protein kinase B; CaMK, calmodulin kinase; CHO-UT, Chinese hamster ovary line transfected with the human form of the UT receptor; EGFR, epidermal growth factor receptor; ERK, extracellular signal-regulated kinase; FAK, focal adhesion kinase; FoxOs, forkhead box Os; Gα, Gβ, Gγ, G proteins type α, β, and γ; GSK-3β, glycogen synthase kinase 3β; HB-EGF, heparin-binding EGF-like growth factor; HIF-1, hypoxia inducible factor-1; HUVEC, human umbilical vein endothelial cells; IP3, inositol triphosphate; LRP6, low density lipoprotein receptor-related protein 6; JNK, c-Jun N-terminal kinase; MAPK, mitogen-activated protein kinase; MEK, extracellular signal-regulated kinase; MLC, myosin light chain; MMP-2, matrix metalloprotease type 2; NOX, NADPH oxidase; p38MAPK, p38 mitogen-activated protein kinase; PAI-1, plasminogen activator inhibitor-1; P3K, phosphatidylinositol-3-kinase; PKC, protein kinase C; PKD, protein kinase D; PLC, phospholipase C; PTEN, phosphatase and tensin homolog; Ras, small GTPases; RhoA, Ras homolog gene family, member A; ROCK, rho-associated protein kinase; ROS, reactive oxygen species; SHP-2, src-homology 2-containing tyrosine phosphatase; SMC, smooth muscle cells; TGFβ, transforming growth factor-β; VEGF, vascular endothelial growth factor; N.D., not determined.

UT was significantly increased in liver endothelial cells, and a pretreatment by the UT biased ligand (130) urantide decreased NF-κB activation and inflammatory cytokine (TNF-α, IL-1β, IFN-γ) expression (162).

These data indicate that Ull is involved in the immune response and, notably, participates in the production of cytokines and the promotion of immune cell infiltration, suggestive of a chemokine functional activity relayed by the peptide Ull, raising a more conserved role in chemotactic attraction of immune cells in pathological situations.

Chemokine Activity of Ull in the Context of Tissue Remodeling and Cancer

Chemotaxis is currently known as the fundamental phenomenon highly conserved from bacteria to eukaryotic cells, implying cell directed migration along an extracellular chemical gradient (163–165), a mechanism essential for a number of physiological and pathological processes including embryogenesis and wiring of the CNS (166, 167), the immune system inflammatory response (168), angiogenesis and cancer cell metastasis, and invasion.
The “professional” players of chemotaxis, chemokines, are subdivided into C, CC, CXC, and CX3C families, based on the number and spacing of the conserved cysteine residues in their amino termini. Members of the CXC, containing CXCL12 (stromal derived factor-1 or SDF-1) and CC including CCL2 (monocyte chemoattractant protein-1, MCP-1) or CCL5 (regulated upon activation normal T cell, RANTES) chemokine families are known to chemoattract neutrophils, T/B lymphocytes, or natural killer cells and monocytes, macrophages, or T lymphocytes, respectively (170). Through activation of chemotaxis, CXCL12, CCL2, CCL5, or CXCL1 chemokines were shown to stimulate growth, migration/invasion/metastasis as well as angiogenesis and tube formation (171, 172). The CXCL12 and its CXCR4 have long been shown to constitute a promising therapeutic based-system in pre-clinical models and in early clinical trials, but other prototypic chemokines emerge as new potential players in cancer. CCI2 together with its cognate CCR2 play key roles in cancer metastasis by sustaining cancer cell proliferation and survival, stimulating cancer cell migration and invasion, and inducing deleterious inflammation and angiogenesis (173, 174). In addition, various cancer cells produced CCI5 but also expressed CCR1, CCR3, and CCR5, suggesting autocrine/paracrine mechanisms, associated with metalloproteinase activation and invasion (175, 176).

Consistent with this, a growing number of independent studies show that UUI exerts a stimulatory effect on cell migration (Table 3). The Rho/ROCK signaling pathway appears to play a major role in the effects of UUI on the migration of rat fibroblasts (149) and endothelial progenitor cells (146) as well as human monocytes (145). In the latter case, the authors consider UUI to be a chemotactic factor that acts on the reorganization of the actin cytoskeleton (Figure 3).

The expression of UT at the endothelial level associated with the pro-migration- and mitotic effects of UUI, suggested the

![Chemotactic directional migration](image-url)
involvement of the urotensinergic system in angiogenesis. The first evidence for a proangiogenic effect of UII was obtained by Spinazzi et al., demonstrating that UII leads to the reorganization or tubulogenesis of endothelial cells derived from rat brain microvessels, and stimulates in vitro angiogenesis (49). Application of UII in a gelatin implant to the chorioallantoic membrane of chick embryos evokes an increased number of blood vessels (49). Accordingly, studies on human umbilical vein endothelial cells confirmed these data (142, 144, 177) and converge toward the chemoattraction of cultured endothelial cells by UII.

The major demonstration of the chemotactic role of the UII/UT system comes from studies on cancer cell lines. The expression of UII and UT is observed in numerous cell lines and tumor samples (Table 3), notably in extracts of adrenal gland tumors, such as adrenocortical carcinomas or pheochromocytomas (178, 179), or tumors of muscular tissue, such as rhabdomyosarcomas (129, 182). To date, few isolated studies have investigated the role of the urotensinergic system in tumorigenesis. For example, UII has been shown to stimulate the proliferation of cells of a pulmonary adenocarcinoma cell line in vitro and in vivo in a xenograft model in immunodeficient nude mice (183). The same team has more recently shown that UII stimulates the release of pro-inflammatory cytokines, such as IL-6, TNF-α, or matrix metalloproteinase-9 and participates in macrophage infiltration of the tumor (160). In human cell lines derived from prostatic or colorectal tumors, application of urantide, Rho pathway inhibitor, or shRNA against UT leads to a decrease in their motility and invasiveness (147, 152). More recently, the expression of UII and UT was also observed in other solid tumors from colon, bladder, and breast (152, 153, 184). The activation of UT with the agonist UII4-11 in colon cancer cell lines resulted in stimulation of cell growth whereas the treatment with three biased ligand/antagonists (urantide, UPG83 and UPG85) induced growth inhibition (152). As macrophages have been associated with tumor progression, metastasis, and resistance to treatments (185), these results suggested an important role of UII in chemokine functions associated with tumor development (Table 3).

Definitely, the urotensinergic system appears to be involved in cancer cell motility and invasion. Indeed, our recent work demonstrated in glioma cell lines and in recombinant HEK293 cells, that activation of UT by UII involves a signaling switch through the couplings to Gα13/Rho/ROCK kinases and Gαi/o/P13K pathways, involved in actin stress fibers, lamellipodia formation and vinculin-stained focal adhesions to initiate directional migration and cell adhesion, sequential mechanisms in tumor invasion (154). This type of mixed couplings were thus proposed for the CCL2/CCR2 system in human bone marrow stem cells in which activation of CCR2 regulates P13K likely contributing to cell polarity and migration and Rho/ROCK leading to cell retraction (186). Moreover, we provide evidence that UT-induced inhibition of the autophagic process is also a key element in the migration of HEK293 cells expressing UT or CXCR4 as well as U87 glioblastoma cells. Autophagy inhibition after activation of UT or CXCR4 at the leading edge may also locally protect proteins involved in actin remodeling and adhesion assembly, whereas autophagy could remain active at distance from chemotactic GPCRs in order to participate in the disassembly of large focal adhesions (155). Together, the more recent pro-migratory, pro-inflammatory and invasiveness role of the urotensinergic system bring it closer to the chemokine systems, such as CXCL12/CXCR4 or the CCL2/CCR2 pair, widening the therapeutic field of pathologies characterized by cellular migratory events, such development, inflammation, invasion and metastasis.

CONCLUSION

In this review, we address the putative UT chemotactic structural and functional definition under an evolutionary angle. According to the postulated evolutionary mechanism, a deletion in TM2 of an ancestral PEP receptor with the P2.59 pattern led by divergence to receptors of the G1 groups with the P2.58 pattern, including UT and chemokine receptors, such as CXCR4. In view of the evolutionary history and chemotaxic properties of UT, we propose that UII/UT may rather be considered as a new chemokine system. Indeed, even if the last decade was mainly devoted to the elucidation of the cardiovascular control by the urotensinergic system, interesting investigations on the pro-inflammatory and pro-migratory properties of UII lead us to stipulate that urotensinergic system must be now considered in a new chemokine therapeutic target in pathological situations involving cell chemoattraction.

AUTHOR CONTRIBUTIONS

HC and LD wrote the review and prepared the figures and tables. J-EJ, M-CT, FM, and PG made the bibliography to build the review and constructed the tables and figures. LP and MC participated in the clarification of the UT classification and the establishment of the UT couplings.

ACKNOWLEDGMENTS

The authors thank INSERM, The French Agence National pour la Recherche ANR Chemot-xProG, the Normandie Rouen Université, Géfluc and ligue régionale contre le Cancer charities that aided the efforts of the authors.

FUNDING

Some of the original works cited in the manuscript are supported by INSERM, ANR, Normandie Rouen University, Géfluc and Ligue Régionale contre le Cancer.
REFERENCES

1. Bern HA, Lederis K. A reference preparation for the study of active substances in the caudal neurosecretory system of teleosts. J Endocrinol (1969) 45:Sulai-11.

2. Conlon JM, O’Harte F, Smith DD, Tonon MC, Vaudry H. Isolation and primary structure of urotensin II from the brain of a tetrapod, the frog Rana ridibunda. Biochem Biophys Res Commun (1992) 188:578–83. doi:10.1016/0006-291X(92)91095-8

3. Pearson D, Shively JE, Clark BR, Geschwind II, Barkley M, Nishioka RS, et al. Urotensin II: a somatostatin-like peptide in the caudal neurosecretory system of fishes. Proc Natl Acad Sci U S A (1980) 77:5021–4. doi:10.1073/pnas.77.8.5021

4. Ames RS, Sarau HM, Chambers JK, Willette RN, Aiyar NV, Romanic AM, et al. Comparative genomics provides evidence for close evolutionary relationships between the urotensin II and somatostatin gene families. Proc Natl Acad Sci U S A (2006) 103:2237–42. doi:10.1073/pnas.0510700103

5. Coulouarn Y, Lihrmann I, Jegou S, Anouar Y, Tostivint H, Beauvillain JC, et al. Urotensin II-immunoreactive molecule in the rat brain. J Comp Neurol (2003) 510:860–8. doi:10.1002/cne.2003.09.102

6. Gonzalez GC, Martinez-Padrón M, Lederis K, Lukowiak K. Distribution and coexistence of urotensin I and urotensin II peptides in the cerebral ganglia of Aplysia californica. Peptides (1992) 13:695–703. doi:10.1016/0196-9781(92)90175-3

7. Romanova EV, Sasaki K, Alexeev V, Vilm FS, Jing J, Richmond TA, et al. Urotensin II in invertebrates: to structure from function in Aplysia californica. PLoS One (2012) 7:e48764. doi:10.1371/journal.pone.0048764

8. Mori M, Sugo T, Abe M, Shimomura Y, Kurihara M, Kitada C, et al. Urotensin II is the endogenous ligand of a G-protein-coupled orphan receptor, SENR (GPR14). Biochem Biophys Res Commun (1999) 265:123–9. doi:10.1006/bbrc.1999.1640

9. Sugo T, Murakami Y, Shimomura Y, Harada M, Abe M, Ishibashi Y, et al. Identification of urotensin II-related peptide as the urotensin II-immunoreactive molecule in the rat brain. Biochem Biophys Res Commun (2003) 310:860–8. doi:10.1016/j.bbrc.2003.09.102

10. Coulouarn Y, Jegou S, Tostivint H, Vaudry H, Lihrmann I, Cloning, sequence analysis and tissue distribution of the mouse and rat urotensin II precursors. FEBS Lett (1999) 457:28–32. doi:10.1016/S0014-5793(99)01003-0

11. Elshourbagy NA, Douglas SA, Shabon U, Harrison S, Duddy G, Sechler JL, et al. Molecular and pharmacological characterization of genes encoding urotensin-II peptides and their cognate G-protein-coupled receptors from the mouse and monkey. Br J Pharmacol (2012) 165:396–422. doi:10.1038/bj.2012.30

12. Russell FD, Kearns P, Toth I, Molenear P. Urotensin-II-converting enzyme activity of furin and trypsin in human cells in vitro. J Pharmacol Exp Ther (2004) 309:209–14. doi:10.1124/jpet.104.065425

13. Russell FD, Meyers D, Chartrel N, Montero-Hadadje M, et al. Characterization of urotensin II, distribution of urotensin II, urotensin II-related peptide and UT receptor mRNAs in mouse: evidence of urotensin II at the neuromuscular junction. J Neurochem (2008) 107:361–74. doi:10.1111/j.1471-4159.2008.05624.x

14. Totsune K, Takahashi K, Arihara Z, Sone M, Satoh F, Ito S, et al. Role of urotensin II in patients on dialysis. Lancet (2001) 358:810–1. doi:10.1016/S0140-6736(01)06002-0

15. Totsune K, Takahashi K, Arihara Z, Sone M, Ito S, Murakami O. Increased plasma urotensin II levels in patients with diabetes mellitus. Clin Sci (Lond) (2003) 104:1–5. doi:10.1042/cs0410001

16. Shenouda A, Douglas SA, Ohlstein EH, Giaid A. Localization of urotensin-II immunoreactivity in normal human kidneys and renal carcinoma. J Histochem Cytochem (2002) 50:885–91. doi:10.1369/jhc.5001.001541

17. Hirose T, Takahashi K, Mori N, Nakayama T, Kikuya M, Ohkubo T, et al. Increased expression of urotensin II in patients on dialysis. J Hypertens (2001) 19:2185–90. doi:10.1097/00004872-200112000-00011

18. Liu Q, Pong SS, Zeng Z, Zhang Q, Howard AD, Williams DL, et al. Identification of urotensin II as the endogenous ligand for the orphan UT Structural and Functional Chemokine Feature
G-protein-coupled receptor GPR14. *Biochem Biophys Res Commun* (1999) 266:174–8. doi:10.1006/bbrc.1999.1796

37. Noshacker H-P, Wang Z, McNeill AM, Saito Y, Merten S, O'Dowd B, et al. Identification of the natural ligand of an orphan G-protein-coupled receptor involved in the regulation of vasoconstriction. *Nat Cell Biol* (1999) 1:383–5. doi:10.1038/14081

39. Gong H, Wang Y-X, Zhu Y-Z, Wang W-W, Wang M-J, Yao T, et al. Cellular distribution of GPR14 and the positive inotropic role of urotensin II in the myocardium in adult rat. *J Appl Physiol* (2004) 97:2228–35. doi:10.1152/japplphysiol.00540.2004

40. Leonard AD, Thompson JP, Hutchinson EL, Young SP, McDonald J, Swanevelder J, et al. Urotensin II receptor expression in human right atrium and aorta: effects of ischaemic heart disease. *Br J Anaesth* (2009) 102:477–84. doi:10.1093/bja/aep011

41. Maguire JJ, Kuc RE, Davenport AP. Orphan-receptor ligand human 39. Gong H, Wang Y-X, Zhu Y-Z, Wang W-W, Wang M-J, Yao T, et al. Cellular distribution of GPR14 and the positive inotropic role of urotensin II in the myocardium in adult rat. *J Appl Physiol* (2004) 97:2228–35. doi:10.1152/japplphysiol.00540.2004

42. Maguire JJ, Kuc RE, Kleinz MJ, Davenport AP. Immunocytochemical localisation of the urotensin-II- receptor, UT, to rat and human tissues: relevance to function. *Peptides* (2008) 29:735–42. doi:10.1016/j.peptides.2007.08.021

43. Mori N, Hirose T, Nakayama T, Ito O, Kanazawa M, Imam Y, et al. Increased expression of urotensin II-related peptide and its receptor in kidney with hypertension or renal failure. *Peptides* (2009) 30:400–8. doi:10.1016/j.peptides.2009.09.021

44. Nguyen T-TM, Létourneau M, Chatenet D, Fournier A. Presence of urotensin-II receptors at the cell nucleus: specific tissue distribution and hypoxia-induced modulation. *Int J Biochem Cell Biol* (2012) 44:639–47. doi:10.1016/j.biocel.2011.12.022

45. Maguire JJ, Kuc RE, Klein DJ, Davenport AP, Immunocytochemical localisation of the urotensin-II receptor, UT, to rat and human tissues: relevance to function. *Peptides* (2008) 29:735–42. doi:10.1016/j.peptides.2007.08.021

46. Tian L, Li C, Qi J, Fu P, Yu X, Li X, et al. Diabetes-induced upregulation of urotensin II and its receptor plays an important role in TGF-beta1-mediated renal fibrosis and dysfunction. *Am J Physiol Endocrinol Metab* (2008) 294:E260–6. doi:10.1152/ajpendo.00630.2007

47. Langham RG, Kelly DJ, Gow RM, Zhang Y, Dowling JK, Thomson NM, et al. Central cardiovascular action of urotensin II in spontaneously hypertensive rats. *Hypertens* (2003) 28:639–45. doi:10.1219/jht.2003.0627

48. Jégou S, Cartier D, Dubessy C, Gonzalez BJ, Chatenet D, Tostivint H, et al. Cell and tissue responses of a range of Urotensin II analogs at cloned and native urotensin II receptors. Evidence for coupling promiscuity. *Naunyn Schmiedebergs Arch Pharmacol* (2006) 373:148–57. doi:10.1007/s00210-006-0057-2

49. Jégou S, Cartier D, Dubessy C, Gonzalez BJ, Chatenet D, Tostivint H, et al. Localization of the urotensin II receptor in the rat central nervous system. *J Comp Neurol* (2006) 495:21–36. doi:10.1002/cne.20845

50. Spinazzi R, Albertini G, Nico B, Guidolin D, Di Liddo R, Rossi GP, et al. Urotensin-II and its receptor (UT-R) are expressed in rat brain endothelial cells, and urotensin-II via UT-R stimulates angiogenesis in vivo and in vitro. *Int J Mol Med* (2008) 21:1869–72. doi:10.3892/ijmm.18.6.1107

51. Lin Y, Tsuchihashi T, Matsumura K, Fukuhara M, Ohyu Y, Fujii K, et al. Central cardiovascular action of urotensin II in spontaneously hypertensive rats. *Hypertens* (2003) 26:839–45. doi:10.1219/jhtres.2003.68.839

52. Castel H, Diallo M, Chatenet D, Leprince J, Desrues L, Schoultz M-T, et al. Biochemical and functional characterization of high-affinity urotensin II receptors in rat cardiomyocytes. *J Neurochem* (1996) 69:582–95. doi:10.1111/j.1471-4159.2006.04130.x

53. Castel H, Diallo M, Chatenet D, Leprince J, Desrues L, Schoultz M-T, et al. Biochemical and functional characterization of high-affinity urotensin II receptors in rat cardiomyocytes. *J Neurochem* (1996) 69:582–95. doi:10.1111/j.1471-4159.2006.04130.x

54. Jani PP, Narayana H, Ng LL. The differential extraction and immunolumino- metric assay of urotensin II and urotensin-related peptide in heart failure. *Peptides* (2013) 40:72–6. doi:10.1016/j.peptides.2012.12.014

55. Kemp W, Roberts S, Krum H. Increased circulating urotensin II in cirrhotic: potential implications in liver disease. *Peptides* (2008) 29:868–72. doi:10.1016/j.peptides.2007.08.020
77. Deville J, Roy J, Chabbert M. An indel in transmembrane helix 2 helps to trace the molecular evolution of class A G-protein-coupled receptors. *J Mol Evol* (2009) 68:475–89. doi:10.1007/s00239-009-9214-9

78. Visiers I, Ballesteros JA, Weinstein H. Three-dimensional representations of G protein-coupled receptor structures and mechanisms. *Methods Enzymol* (2002) 343:329–71. doi:10.1016/S0076-6879(02)43145-X

79. Palczewski K, Kumakasa T, Hori T, Behnke CA, Motoshima H, Fox BA, et al. Crystal structure of rhodopsin: a G protein-coupled receptor. *Science* (2000) 289:739–45. doi:10.1126/science.289.5480.739

80. Rasmussen SG, Choi H-J, Rosenberg DM, Kobilka BS, Thian FS, Edwards PC, et al. Crystal structure of the human β2 adrenergic G protein-coupled receptor. *Nature* (2007) 450:383–7. doi:10.1038/nature06325

81. Wu B, Chien EYT, Mol CD, Fenalti G, Liu W, Katritch V, et al. Structures of the CXCR4 chemokine GPCR with small-molecule and cyclic peptide antagonists. *Science* (2010) 330:1066–71. doi:10.1126/science.1194396

82. Yohannan S, Faham S, Yang D, Whitelegge JP, Bowie JU. The evolution of transmembrane helix kinks and the structural diversity of G protein-coupled receptors. *Proc Natl Acad Sci U S A* (2004) 101:959–63. doi:10.1073/pnas.0306771101

83. Chatenet D, Dubessy C, Leprince J, Boularan C, Carlier L, Ségalas-Milazzo V, et al. Structure-activity relationships of human urotensin II and related analogues on rat aortic ring contraction. *J Enzyme Inhib Med Chem* (2003) 18:77–88. doi:10.1016/S1079-8994(03)00395-7

84. Opgaard O, Nothacker H-P, Ehlert FJ, Krause DN. Human urotensin II antagonists. *Science* (2003) 299:739–45. doi:10.1126/science.299.5597.739

85. Itoh H, Itoh Y, Rivier J, Lederis K. Contraction of major artery segments in response to angiotensin II and urotensin II. *Circ Res* (2000) 87:739–45. doi:10.1161/01.RES.87.4.739

86. Russel FD, Molenaar P, O'Brien DM. Cardiostimulant effects of urotensin-II in ischemic cardiomyopathy. *J Hypertens* (2000) 18:1195–9. doi:10.1097/00001842.200010000-00006

87. MacLean MR, Alexander D, Stirrat A, Gallagher EH, Douglas SA, Ohlstein EH, et al. The effects of urotensin II and urantide on forearm blood flow and systemic haemodynamics in humans. *Br J Pharmacol* (2009) 156:437–46. doi:10.1111/j.1476-5381.2008.05645.x

88. Hassan GS, Chouiali F, Saito T, Hu F, Douglas SA, Ao Z, et al. Effect of human urotensin-II infusion on hemodynamics and cardiac function. *Can J Physiol Pharmacol* (2003) 81:125–8. doi:10.1139/y03-004

89. Kompa AR, Thomas WG, See F, Transidis A, Hannan RD, Krum H. Cardiovascular role of urotensin II: effect of chronic infusion in the rat. *Peptides* (2004) 25:1783–8. doi:10.1016/j.peptides.2004.03.029

90. Zhu YZ, Wang ZJ, Zhu YC, Zhang L, Oakley RME, Chung CW, et al. Urotensin II causes fatal circulatory collapse in anesthetized monkeys in vivo: a “vasoconstrictor” with a unique hemodynamic profile. *Am J Physiol Heart Circ Physiol* (2004) 286:H380–6. doi:10.1152/ajpheart.00406.2003

91. Bohn F, Pornw J. Urotensin II evokes potent vasconstriction in humans in vivo. *Br J Pharmacol* (2002) 135:25–7. doi:10.1038/sj.bjp.0704448

92. Affolter JT, Newby DE, Wilkinson IB, Winter MJ, Balment RJ, Webb DJ. No effect on central or peripheral blood pressure of systemic urotensin II infusion in humans. *Br J Clin Pharmacol* (2002) 54:617–21. doi:10.1046/j.1365-2125.2002.01-1074X

93. Cherijian, Burton TJ, Bradley TJ, Wallace SML, Maki-Petajä KMK, Mackenzie IS, et al. The effects of urotensin II and urantide on forearm and subclavian blood flow and systemic haemodynamics in humans. *Br J Pharmacol* (2009) 68:518–23. doi:10.1016/j.bjp.2009.03.0475.x

94. Wilkinson IB, Affolter JT, de Haas SL, Pellegrini MP, Boyd J, Winter MJ, et al. High plasma concentrations of human urotensin II do not alter local or systemic hemodynamics in man. *Cardiovasc Res* (2002) 53:34–71. doi:10.1016/S0009-8363(01)00485-0

95. Lim M, Honisett S, Sparks CD, Komesaroff P, Kompa A, Krum H. Differential effect of urotensin II on vascular tone in normal subjects and patients with chronic heart failure. *Circulation* (2004) 109:1212–4. doi:10.1161/01.CIR.0000121326.69153.98

96. Sondermeijer B, Kompa A, Komesaroff P, Krum H. Effect of exogenous urotensin-II on vascular tone in skin microcirculation of patients with essential hypertension. *Am J Hypertens* (2005) 18:1195–9. doi:10.1016/j.amjhyph.2005.03.748

97. Zomer E, de Ridder I, Kompa A, Komesaroff P, Gilbert R, Krum H. Effect of urotensin II on skin microvessel tone in diabetic patients without heart failure or essential hypertension. *Clin Exp Pharmacol Physiol* (2008) 35:1147–50. doi:10.1111/j.1440-1681.2008.04960.x

98. Lapp H, Boerrigter G, Costello-Boerrigter LC, Jacell K, Schefold T, Krakau I, et al. Elevated plasma human urotensin-II-like immunoreactivity in ischemic cardiomyopathy. *Int J Cardiol* (2004) 94:93–7. doi:10.1016/j.ijcard.2003.05.008

99. Hassan GS, Douglas SA, Ohlstein EH, Giaid A. Expression of urotensin-II in human coronary atherosclerosis. *Peptides* (2005) 26:2464–72. doi:10.1016/j.peptides.2005.05.028

100. Watanabe T, Pakala R, Katagiri T, Benedict CR. Synergistic effect of urotensin II with serotonin on vascular smooth muscle cell proliferation. *J Hypertens* (2001) 19:2191–6. doi:10.1097/00001842.200112000-00012

101. Shiraiishi Y, Watanabe T, Sugito T, Nagashima M, Kato R, Hongoo S, et al. Chronic urotensin II infusion enhances macrophage foam cell formation and atherosclerosis in apolipoprotein E-knockout mice. *J Hypertens* (2008) 26:1955–65. doi:10.1097/HJH.0b013e3282b61d8

102. Watanabe T, Sugito T, Kanome T, Sakamoto Y-L, Kodate S, Hagiwara T, et al. Human urotensin II accelerates foam cell formation in human monocytic-derived macrophages. *Hypertension* (2005) 47:203–10. doi:10.1161/01.HYP.0000184226.99196.b5

103. Bousset N, Giaid A. Urotensin-II and cardiovascular diseases. *Curr Hypertens Rep* (2006) 8:479–83. doi:10.1007/s11906-006-0026-7

104. Rakowski E, Hassan GS, Dhanak D, Ohlstein EH, Douglas SA, Giaid A. A role for urotensin II in restenosis following balloon angioplasty: use of a selective UT receptor blocker. *J Mol Cell Cardiol* (2005) 39:785–91. doi:10.1016/j.yjmcc.2005.07.002

105. Pehlivan Y, Dokuyucu R, Demir T, Kaplan DS, Koc I, Orkmez M, et al. Palosuran treatment effective as bosentan in the treatment model of pulmonary arterial hypertension. *Inflammation* (2014) 37:1280–8. doi:10.1007/s10753-014-9855-8

106. Zhao J, Xia L-D, Song C-J, Mao X-X, Yu H-R, Yu Q-X, et al. Urantide improves atherosclerosis by controlling C-reactive protein, monocyte chemotactic protein-1 and transforming growth factor-β expression in rats. *Exp Ther Med* (2014) 7:1647–52. doi:10.3892/etm.2014.1654
117. You Z, Genest J, Barrette P-O, Hafiane A, Behm DJ, D'Orleans-Juste P, et al. Genetic and pharmacological manipulation of urotensin II ameliorate the metabolic and atherosclerosis sequelae in mice. Arterioscler Thromb Vasc Biol (2012) 32:1809–16. doi:10.1161/ATVBAHA.112.253973

118. Ziltener P, Mueller C, Haenig B, Scherz MW, Naylor O. Urotensin II mediates Erk1/2 phosphorylation and proliferation in GPR14-transfected cell lines. J Recept Signal Transduct Res (2002) 22:155–68. doi:10.1081/RRS-120014593

119. Matsushita M, Shichiri M, Fukai N, Ozawa N, Yoshimoto T, Takasu N, et al. Urotensin II is an autocrine/paracrine growth factor for the porcine renal epithelial cell line, LLC-PK1. Endocrinology (2003) 144:1825–31. doi:10.1210/en.2003-0029

120. Zhang W-X, Liang Y-F, Wang X-M, Nie Y, Chong L, Lin L, et al. Urotensin II upregulates transforming growth factor-β1 expression of asthma airway smooth muscle cells through ERK-dependent pathway. Mol Cell Biochem (2012) 364:291–8. doi:10.1007/s10140-012-1229-7

121. Chen Y-L, Liu J-C, Loh S-H, Chen C-H, Hong C-Y, Chen J-I, et al. Involvement of reactive oxygen species in urotensin II-induced proliferation of cardiac fibroblasts. Eur J Pharmacol (2008) 593:24–9. doi:10.1016/j.ejphar.2008.07.025

122. Sue Y-M, Chen C-H, Hsu Y-H, Hou C-C, Chen Y-C, et al. Urotensin II induces transactivation of the epidermal growth factor receptor via transient oxidation of SHP-2 in the rat renal tubular cell line NRK-52E. Growth Factors (2009) 27:155–62. doi:10.1007/s10717-009-0279-866

123. Tsai C-S, Loh S-H, Liu J-C, Lin J-W, Chen Y-L, Chen C-H, et al. Urotensin II induces endothelin-1 expression and cell proliferation via epidermal growth factor receptor transactivation in rat aortic smooth muscle cells. Atherosclerosis (2009) 206:86–94. doi:10.1016/j.atherosclerosis.2009.02.013

124. Djordjevic T, BelAiba RS, Bonello S, Pfeilschifter J, Hess J, Görlach A. Human urotensin II receptors in rhabdomyosarcoma cell lines. Br J Pharmacol (2012) 162:1809–16. doi:10.1111/j.1476-5381.2012.02164.x

125. Luo J-C, Chen C-H, Chen J-J, Cheng T-H. Urotensin II induces transactivation of the epidermal growth factor receptor and upregulates transforming growth factor-beta-containing tyrosine phosphatase and transactivation of epidermal growth factor receptor-expressing monocytes. J Immunol (2009) 183:956–64. doi:10.4049/jimmunol.183.1.956

126. Desrues L, Lefebvre T, Diallo M, Gandolfo P, Leprince J, Chatenet D, et al. Urotensin II promotes cardiovascular effects of cardiac hypertrophy. Basic Res Cardiol (2011) 106:577–89. doi:10.1007/s00395-011-0163-2

127. Chen L, Jin L, Zhou N. An update of novel screening methods for GPCR drug discovery. Expert Opin Drug Discov (2012) 7:791–806. doi:10.1517/17460441.2012.699036

128. Gruson D, Ginion A, Decrolly N, Lause P, Vanoverschelde JL, Ketelslegers JM, et al. Urotensin II induction of adult cardiomyocytes hypertrophy involves the Akt/GSK-3beta signaling pathway. Peptides (2010) 31:3326–33. doi:10.1016/j.peptides.2010.04.009

129. Liu J-C, Chen C-H, Hsu Y-H, Hou C-C, Chen Y-C, Chen J-I, Cheng T-H. Lycopene inhibits urotensin-II-induced cardiomyocyte hypertrophy in neonatal rat cardiomyocytes. Evid Based Complement Alternat Med (2014) 2014:724670. doi:10.1155/2014/724670

130. Guidolin D, Albertin G, Ribatti D. Urotensin-II as an angiogenic factor. Peptides (2010) 31:1219–24. doi:10.1016/j.peptides.2010.03.022

131. Albertin G, Guidolin D, Sorato E, Osselladore B, Tortorella C, Ribatti D. Urotensin-II-stimulated expression of pro-angiogenic factors in human vascular endothelial cells. Regul Pept (2011) 172:16–22. doi:10.1016/j.regpep.2011.08.001

132. Diebold I, Petry A, Sabrane K, Djordjevic T, Hess J, Görlach A. The HIF1 target gene NOX2 promotes angiogenesis through urotensin-II. J Cell Sci (2012) 125:956–64. doi:10.1242/jcs.094060

133. Segain J-P, Rolli-Derkerden M, Gervois N, Rainear P de la Blétière D, Loirand G, Pacaud P. Urotensin II is a new chemotactic factor for UT receptor-expressing monocytes. J Immunol (2007) 177:1909–1. doi:10.4049/jimmunol.177.2.901

134. Yi K, Yu M, Wu L, Tan X. Effects of urotensin II on functional activity of bladder cancer regulating gene FoxO3a and matrix metalloproteinase-2 expression by urotensin-II. Mol Med Rep (2012) 6:197–200. doi:10.3892/mmr.2012.899

135. Franco R, Zappavigna S, Gigantino V, Luce A, Cantile M, Cerrone M, et al. Urotensin II receptor determines prognosis of bladder cancer regulating gene FoxO3a and matrix metalloproteinase-2 expression by urotensin-II. Expert Opin Drug Discov (2014) 9:982. doi:10.15171/journal.pone.0098231

136. Song N, Ding W, Chen Y, Wang J, Jiang L, Xi D, et al. Urotensin II stimulates vascular endothelial growth factor secretion from adventitial fibroblasts in synergy with angiogenin. Circ J (2012) 76:1267–73. doi:10.1253/circ.j.2011.12231

137. Lee S-J, Jung YH, Oh SY, Yun SP, Han HJ. Melatonin enhances the human mesenchymal stem cells motility via metelinon receptor 2 coupling with GqG in skin wound healing. J Pineal Res (2014) 57:393–407. doi:10.1111/j.1756-9966-2014-0724670

138. Zhang W, Meng S, Zhang L, Wang W, Jiang Z, et al. CXC chemokine CXCL12 and its receptor CXCR4 in tree shrews (Tupaia belangeri): structure, expression and function. PLoS One (2014) 9:e98231. doi:10.1371/journal.pone.0098231

139. Desrues L, Lefebvre T, Diallo M, Gandolfo P, Leprince J, Chatenet D, et al. Urotensin II Structural and Functional Chemokine Feature
Lecointre C, Desrues L, Joubert JE, Perzo N, Guichet P-O, Le Joncour V, et al. Signaling switch of the urotensin II vasoactive peptide GPCR: prototypic chemotactic mechanism in glioma. Oncogene (2015) 34:5080–94. doi:10.1038/onc.2014.433

Coly P-M, Perzo N, Le Joncour V, Lecointre C, Schouft M-T, Desrues L, et al. Chemotactic G protein-coupled receptors control cell migration by repressing autophagosome biogenesis. Autophagy (2016) 12(12):2344–62. doi:10.1080/15548627.2016.1235125

Bousette N, Patel I, Douglas SA, Ohlstein EH, Giaid A. Increased expression of urotensin II and its cognate receptor GPR14 in atherosclerotic lesions of the human aorta. Atherosclerosis (2004) 176:117–23. doi:10.1016/j.atherosclerosis.2004.03.023

Vergura R, Camarda V, Rizzi A, Spagnoletti, Guerini R, Calo' G, et al. Urotensin II stimulates plasma extravasation in mice via UT receptor activation. Naunyn Schmiedebergs Arch Pharmacol (2004) 370:347–52. doi:10.1007/s00210-004-0991-9

Gendron G, Simard B, Gobeil F, Sirois P, D'Orléans-Juste P, Regoli D. Human urotensin-II enhances plasma extravasation in specific vascular districts in Wistar rats. Can J Physiol Pharmacol (2004) 82:16–21. doi:10.1139/y03-122

Johns DG, Ao Z, Naselsky D, Herold CL, Maniscalco K, Sarov-Blat L, et al. Urotensin-II-mediated cardiomyocyte hypertrophy: effect of receptor antagonism and role of inflammatory mediators. Naunyn Schmiedebergs Arch Pharmacol (2004) 369:338–50. doi:10.1007/s00210-004-0990-0

Zhau C-H, Wan Y-Y, Chu X-H, Song Z, Xing S-H, Wu Y-Q, et al. Urotensin II contributes to the formation of lung adenocarcinoma inflammatory microenvironment through the NF-κB pathway in tumor-bearing nude mice. Oncol Lett (2012) 4:1259–63. doi:10.3892/ol.2012.932

Cirillo P, De Rosa S, Pacileo M, Gargiulo A, Angri V, Fiorentino I, et al. Theveneau E, Mayor R. Neural crest migration: interplay between chemotactic signaling in Dictyostelium and classical mechanisms of chemotactic signaling in mammals. Curr Opin Cell Biol (2011) 23:37–49. doi:10.1016/j.ceb.2011.12.004

Morimoto R, Satoh F, Murakami O, Totsune K, Arai Y, Suzuki T, et al. Immunolocalization of urotensin II and its receptor in human adrenal tumors and attached non-neoplastic adrenal tissues. Peptides (2008) 29:873–80. doi:10.1016/j.peptides.2007.06.023

Takahashi K, Totsune K, Murakami O, Arakawa A, Arakawa K, Nishihori T, Hayashi Y, et al. Expression of urotensin II and its receptor in adrenal tumors and stimulation of proliferation of cultured tumor cells by urotensin II. Peptides (2003) 24:301–6. doi:10.1016/j.peptides.2003.03.003

Desrues I, Lefebvre T, Lecointre C, Schouft M-T, Leprince J, Compère V, et al. Down-regulation of GABA(A) receptor via promiscuity with the vasoactive peptide urotensin II receptor. Potential involvement in astrocyte plasticity. PLoS One (2012) 7:e36319. doi:10.1371/journal.pone.0036319

Takahashi K, Totsune K, Murakami O, Shibaura S. Expression of urotensin II and urotensin II receptor mRNAs in various human tumor cell lines and secretion of urotensin II-like immunoreactivity by SW-13 adenocarcinoma cells. Peptides (2003) 24:1175–9. doi:10.1016/S0191-9718(03)00441-7

Birker-Robaczewska M, Bokhadvad C, Studer R, Mueller C, Binkert C, Nayler O. The expression of urotensin II receptor (U2R) is up-regulated by interferon-gamma. J Recept Signal Transduct Res (2003) 23:289–305. doi:10.1081/RRS-120026972

Wu Y-Q, Song Z, Zhou C-H, Xing S-H, Pei D-S, Zheng J-N. Expression of urotensin II receptor in human lung adenocarcinoma A549 cells and the effect of urotensin II on lung adenocarcinoma growth in vitro and in vivo. Oncol Lett (2010) 24:1179–84.

Balakan O, Kalender ME, Suner A, Cengiz B, Ozturcu S, Rayraktar R, et al. The relationship between urotensin II and its receptor and the clinicopathological parameters of breast cancer. Med Sci Monit (2014) 20:1419–25. doi:10.12659/MSM.890459

Cook J, Hagemann T. Tumour-associated macrophages and cancer. Curr Opin Pharmacol (2013) 13:595–601. doi:10.1016/j.coph.2013.05.017

Ryan CM, Brown JL, Bourke E, Predergast AM, Kavanagh C, Liu Z, et al. ROCK activity and the Gβγ complex mediate chemotactic migration of mouse bone marrow-derived stromal cells. Stem Cell Res Ther (2015) 6:1436. doi:10.1186/s13287-015-0125-y

Disclaimer: All appropriate permissions have been obtained from the copyright holders of any work that has been reproduced in this manuscript.

Conflict of Interest Statement: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.