Heat dissipation in atomic-scale junctions

Woochul Lee1*, Kyeongtae Kim1*, Wonho Jeong1, Linda Angela Zotti2, Fabian Pauly1, Juan Carlos Cuevas2 & Pramod Reddy1,4

Atomic and single-molecule junctions represent the ultimate limit to the miniaturization of electrical circuits1. They are also ideal platforms for testing quantum transport theories that are required to describe charge and energy transfer in novel functional nanometre-scale devices. Recent work has successfully probed electric and thermoelectric phenomena in atomic-scale junctions. However, heat dissipation and transport in atomic-scale devices remain poorly characterized owing to experimental challenges. Here we use custom-fabricated scanning probes with integrated nanoscale thermocouples to investigate heat dissipation in the electrodes of single-molecule (‘molecular’) junctions. We find that if the junctions have transmission characteristics that are strongly energy dependent, this heat dissipation is asymmetric—that is, unequal between the electrodes—and also dependent on both the bias polarity and the identity of the majority charge carriers (electrons versus holes). In contrast, junctions consisting of only a few gold atoms (‘atomic junctions’) whose transmission characteristics show weak energy dependence do not exhibit appreciable asymmetry. Our results unambiguously relate the electronic transmission characteristics of atomic-scale junctions to their heat dissipation properties, establishing a framework for understanding heat dissipation in a range of mesoscopic systems where transport is elastic—that is, without exchange of energy in the contact region. We anticipate that the techniques established here will enable the study of Peltier effects at the atomic scale, a field that remains poorly characterized owing to experimental challenges. Furthermore, the experimental advances described here are also expected to enable the study of heat transport in atomic and molecular junctions—an important and challenging scientific and technological goal that has remained elusive12,13.

Charge transport is always accompanied by heat dissipation (Joule heating). This process is well understood at the macroscale, where the power dissipation (heat dissipated per unit time) is volumetric and is given by \(P = j^2 \rho \), where \(j \) is the magnitude of the current density and \(\rho \) is the electrical resistivity. Heating in atomic-scale junctions is expected to be fundamentally different, as charge transport through such junctions is largely elastic14,15. Recent experiments have probed the local non-equilibrium electronic and phononic temperatures in molecular junctions16–18 to obtain insights into the effect of electron–electron and electron–phonon interactions on heat dissipation at the atomic scale. However, experimental challenges in quantitatively measuring atomic-scale heat dissipation have impeded the elucidation of a fundamental question: what is the relationship between the electronic transmission characteristics of atomic and molecular junctions (AMJs) and their heat dissipation properties?

In this work, we overcome this challenging experimental hurdle by using custom-fabricated nanoscale-thermocouple integrated scanning tunnelling probes (NTISTPs; Fig. 1a and b). The NTISTPs feature an outer gold (Au) electrode that is electrically isolated but thermally well connected to the integrated gold–chromium thermocouple via a thin (70 nm) silicon nitride film (see Supplementary Information for fabrication details). To probe heat dissipation, we first created a series of AMJs (Fig. 1c) between the outer Au electrode of the NTISTP and a flat Au substrate. Application of a voltage bias across such AMJs results in a temperature rise of the integrated thermocouple due to heat dissipation in the NTISTP’s apex on a length scale comparable to the inelastic mean free path of electrons in Au (ref. 19). The power dissipation in the probe (\(Q_P \)) and the temperature rise of the thermocouple (\(\Delta T_{TC} \)), located 300 nm away from the apex, are directly related by \(Q_P = \Delta T_{TC}/R_P \) (see Methods), where \(R_P \) is the thermal resistance of the NTISTP (see Fig. 1b). Further, \(\Delta T_{TC} \) is related to the thermoelectric voltage output of the thermocouple (\(\Delta V_{TC} \)) by \(\Delta V_{TC} = -S_{TC}\Delta T_{TC} \), where \(S_{TC} \) is the effective Seebeck coefficient of the thermocouple. We note that \(R_P \) and \(S_{TC} \) were experimentally determined to be 72,800 ± 500 K W\(^{-1}\) and 16.3 ± 0.2 \(\mu \)V K\(^{-1}\), respectively (Supplementary Information).

We began our experimental studies, at room temperature, by trapping single molecules of 1,4-benzenedithionitrile (BDNC; Fig. 1c) between the Au electrodes of the NTISTP and the substrate using a break junction technique5–20. We first obtained electrical conductance...
To probe heat dissipation, we created stable Au–BDNC–Au junctions with a conductance that is within 10% of the most probable conductance \(G_{\text{Au-BDNC-Au}} \) and is in good agreement with past work. We studied heat dissipation in 100 distinct Au–BDNC–Au junctions, at each bias, to obtain the time-averaged power dissipation in the junctions \(Q_{\text{Total,Avg}} \) for both positive and negative biases. Here, a positive (negative) bias corresponds to a scenario where the probe is grounded, while the substrate is at a higher (lower) potential. We note that a modulated voltage bias was applied to the junctions to obtain \(\Delta T_{\text{TC,Avg}} \)—with high resolution—for both positive and negative biases (see Methods and Supplementary Information). This modulation scheme enables rejection of broadband noise and plays a critical role in performing high-resolution thermometry.

The circles (triangles) in Fig. 2b represent the measured \(\Delta T_{\text{TC,Avg}} \) as well as the estimated \(Q_{\text{P,Avg}} \) for positive (negative) biases as a function of the magnitude of the applied voltage bias. Here, \(Q_{\text{Total,Avg}} \) represents the total power dissipated in the junction, at a given bias voltage, and can be readily obtained from the measured conductance \((I) \) and the known voltage bias \((V) \) applied to the junction (see Methods). We note that the current–voltage \((I–V)\) characteristics of Au–BDNC–Au junctions are nonlinear (Fig. 2c), therefore, in general \(Q_{\text{Total,Avg}} \neq G_{\text{Au-BDNC-Au}} V^2 \). The dotted line in Fig. 2b corresponds to the expected temperature rise of the probe if the heating was symmetric, that is, if half of the total power was dissipated in the probe \((\Delta T_{\text{Symmetric}} = Q_{\text{Total,Avg}}/2R_p) \). It can be clearly seen that for a given \(Q_{\text{Total,Avg}} \) the power dissipation in the probe is larger under a negative bias than a positive bias. We also conclude that the time-averaged power dissipation in the substrate, \(Q_{\text{S,Avg}} \), is smaller under a negative bias than under a positive bias, because \(Q_{\text{P,Avg}} + Q_{\text{S,Avg}} = Q_{\text{Total,Avg}} \). To clarify the voltage biases used in the experiments, we present (in the inset of Fig. 2b) \(\Delta T_{\text{TC,Avg}} \) as a function of the magnitude of the applied voltage bias. These results unambiguously demonstrate that heat dissipation in the electrodes of Au–BDNC–Au junctions is bias polarity dependent and unequal.

This observation raises an important question: why is the heat dissipation in the electrodes unequal in spite of the symmetric geometry of the molecular junctions? To address this question, we resort to the Landauer theory of quantum transport, which has successfully described charge transport in numerous nanostructures. In this theory, the power dissipated in the probe and the substrate, \(Q_p(V) \) and \(Q_s(V) \), respectively, is given by:

\[
Q_p(V) = \frac{2}{h} \int \left(\mu_p - E \right) \tau(E, V) \{ f_p - f_s \} dE
\]

(1)

Here \(\mu_p \) and \(\mu_s \) are the chemical potentials of the probe and substrate electrodes, respectively. \(f_p \) and \(f_s \) represent the Fermi-Dirac distribution of the probe/substrate electrodes, and \(\tau(E, V) \) is the energy \((E)\) and voltage bias \((V)\) dependent transmission function. Equation (1) suggests that the power dissipation in the two electrodes is, in general, unequal, that is, \(Q_p(V) \neq Q_s(V) \), and bias polarity dependent, that is, \(Q_{\text{P,S}}(V) \neq Q_{\text{S,P}}(-V) \). Specifically, it is straightforward to show that:

\[
Q_p(V) - Q_s(-V) \approx 2GTSV + O(V^2)
\]

(2)
Here, G is the low bias electrical conductance of the junction, T is the absolute temperature, and S is the Seebeck coefficient of the junction, whose sign is related to the first energy derivative of the zero-bias transmission $\tau'(E = E_F, V = 0)$ at the Fermi energy (E_F), resulting in a positive Seebeck coefficient for a negative first derivative and vice versa23. To test if the observed heating asymmetry can be understood within this framework, we computed $\tau(E, V = 0)$ for Au–BDNC–Au junctions using a transport method24 based on density functional theory (DFT; Methods). The computed transmission function (Fig. 2d) exhibits a positive slope at the Fermi energy, in agreement with past work25, indicating a negative Seebeck coefficient, which by virtue of equation (2) leads to higher power dissipation in the NTISTP when negative voltages are applied to the substrate. Further, the solid lines in Fig. 2b represent the relationship between Q_0 and Q_{Total} ($Q_0 = Q_{\text{Total}}$) as computed from equation (1) under the assumption that $\tau(E, V = 0)$ is well approximated by $\tau(E, V = 0)$. Notice that although our DFT approach overestimates the linear conductance, it describes correctly the relationship between Q_0 and Q_{Total}. The reasons for this agreement are discussed further in the Supplementary Information, where we show in particular that this relation is relatively insensitive to the details of the junction geometry. The good agreement of the computed and measured relation between power dissipations provides strong support to the applicability of the Landauer theory of heat dissipation at the atomic scale.

To prove conclusively the relationship between electronic structure and heat dissipation, we performed additional studies on 1,4-benzenediamine (BDA; Fig. 1c) junctions, which are expected to exhibit hole-dominated electrical transport, as suggested by our calculations (Fig. 3d) and past experiments26. Following a procedure similar to that described above, we first determined that the most probable low-bias conductance of Au–BDNC–Au junctions was $\sim 0.005 G_0$ (Fig. 3a), a value consistent with past work27. Measurements of heat dissipation in BDA junctions (Fig. 3b) show a remarkably different asymmetry. In particular, the BDA junctions show larger power dissipation in the probe for a positive bias than for a negative one—in strong contrast to that observed in BDNC junctions. To understand this important difference, we computed the transmission function of the Au–BDA–Au junction displayed in Fig. 3d, which shows that $\tau'(E = E_F, V = 0)$ is negative, resulting in a positive Seebeck coefficient. This, in turn, leads to larger power dissipation in the NTISTP at positive biases. Further, the computed relationship between Q_0 and Q_{Total} is in good agreement with our experimental observations (solid lines in Fig. 3b).

Finally, to prove that no appreciable asymmetries are obtained if the transmission is weakly dependent on energy, we studied heat dissipation in Au–Au atomic junctions. We began our analysis by studying the conductance of Au–Au atomic junctions, which were found to have a most probable conductance of $\sim G_0$ in agreement with past studies28 (Supplementary Information). Subsequently, we created 100 Au–Au atomic junctions with a low-bias conductance of $G_0 \pm 0.1 G_0$ and probed heating in them. The measured $\Delta T_{\text{TC,Avg}}$ (Fig. 4a) is seen to be proportional to $Q_{\text{Total,Avg}}$, and is identical for both positive and negative biases (within experimental uncertainty, ~ 0.1 mK), clearly demonstrating that there is no detectable asymmetry in the power dissipation. Further, additional experiments performed at larger values of $Q_{\text{Total,Avg}}$ also show no detectable asymmetry (Fig. 4a inset).

Symmetric heat dissipation is indeed expected in Au–Au atomic junctions because of the weak energy dependence of their transmission function29, which is reflected in the fact that their average thermopower vanishes6. In Fig. 4b we present the computed zero-bias transmission, corresponding to the Au–Au atomic junction shown in the left inset. The transmission is practically energy independent over 1 eV around the Fermi energy. This weak energy dependence results in symmetric power dissipation (from equations (1) and (2)) as well as linear I–V characteristics, as evidenced by the experimentally obtained I–V curves shown in the right inset of Fig. 4b.

The good agreement between the measured and computed asymmetries in the heat-dissipation characteristics of AMJs unambiguously confirms that heat dissipation is indeed intimately related to the transmission characteristics of the junctions, as predicted by the Landauer theory. We note that our results contradict recent claims30 of asymmetric heat dissipation in Au atomic junctions that are not in agreement with theoretical predictions. The insights obtained here regarding heat dissipation should hold for any mesoscopic system where charge transport is predominantly elastic. Such systems include semiconductor nanowires, two-dimensional electron gases, semiconductor heterostructures, carbon nanotubes and graphene.
METHODS SUMMARY

Single-molecule and atomic junctions were created by displacing the NTISTP towards a Au substrate at 5 nm s⁻¹ and withdrawing from the substrate at 0.1 nm s⁻¹ after contact formation (indicated by an electrical conductance greater than SG). The Au substrate was coated with the desired molecules for molecular experiments and was pristine for the atomic junction studies. To obtain the conductance traces, a voltage bias of 100 mV was applied and the current was monitored during the withdrawal process. The obtained traces were analysed by creating histograms to identify the most probable conductance of AMJs. Stable single-molecule junctions with a desired conductance were created by stopping the withdrawal when a conductance plateau with a conductance within 10% of the most probable conductance was obtained. All the experiments were performed in an ultrahigh-vacuum scanning probe microscope at ambient temperature. Further, high-resolution temperature measurements were enabled by a modulation scheme where a time-dependent voltage, V(t), consisting of a periodic series of three voltage pulses (+V(t), V(t), −V(t)). Supplementary Fig. 1) was applied to the AMJs while monitoring the thermoelectric voltage output of the NTISTP. The zero-bias transmission functions (Figs 2–4) were computed with the ab initio method described in ref. 24.

Full Methods and any associated references are available in the online version of the paper.

Received 18 December 2012; accepted 6 April 2013.

1. Cuevas, J. C. & Scheer, E. Molecular Electronics: An Introduction to Theory and Experiment (World Scientific, 2010).
2. Scheer, E. et al. The signature of chemical valence in the electrical conductance through a single-atom contact. Nature 394, 154–157 (1998).
3. Song, H. et al. Observation of molecular orbital gating. Nature 462, 1039–1043 (2009).
4. Venkataraman, L., Klaré, J. E., Nuckolls, C., Hybertsen, M. S. & Steigerwald, M. L. Dependence of single-molecule junction conductance on molecular conformation. Nature 442, 904–907 (2006).
5. Xu, B. Q. & Tao, N. J. Measurement of single-molecule resistance by repeated formation of molecular junctions. Science 301, 1221–1223 (2003).
6. Ludoph, B. & van Ruitenbeek, J. M. Thermopower of atomic-size metallic contacts. Phys. Rev. B 59, 12290–12293 (1999).
7. Reddy, P., Jang, S. Y., Segalman, R. A. & Majumdar, A. Thermoelectricity in molecular junctions. Science 315, 1568–1571 (2007).
8. Widawsky, J. R., Darancet, P., Neaton, J. B. & Venkataraman, L. Simultaneous determination of conductance and thermopower of single molecule junctions. Nano Lett. 12, 354–358 (2012).
9. Galperin, M., Salto, K., Balalatya, A. V. & Nitzan, A. Cooling mechanisms in molecular conduction junctions. Phys. Rev. B 80, 115427 (2009).
10. Dubi, Y. & Di Ventrà, M. Colloquium: Heat flow and thermoelectricity in atomic and molecular junctions. Rev. Mod. Phys. 83, 131–195 (2011).
11. Karlström, Ö., Linke, H., Karlström, G. & Wacker, A. Increasing thermoelectric performance using coherent transport. Phys. Rev. B 84, 113415 (2011).
12. Lepri, S., Livi, R. & Politi, A. Thermal conduction in classical low-dimensional lattices. Phys. Rep. 377, 1–80 (2003).
13. Li, N. B. & Lepri, S. Phononics: Manipulating heat flow with electronic analogs and beyond. Rev. Mod. Phys. 84, 1045–1066 (2012).
14. Agrait, N., Untiedt, C., Rubio-Bollinger, G. & Vieira, S. Onset of energy dissipation in ballistic atomic wires. Phys. Rev. Lett. 88, 216803 (2002).
15. Kim, Y., Pietcz, T., Erbe, A., Belzig, W. & Scheer, E. Benzeneedithiol: a broad-range single-channel molecular conductor. Nano Lett. 11, 3734–3738 (2011).
16. Huang, Z. F. et al. Local ionic and electron heating in single-molecule junctions. Nature Nanotechnol. 2, 698–703 (2007).
17. Ward, D. R., Corley, D. A., Tour, J. M. & Nefedov, D. Vibrational and electronic heating in nanoscale junctions. Nature Nanotechnol. 6, 38–38 (2011).
18. Ioffe, Z. et al. Detection of heating in current-carrying molecular junctions by Raman scattering. Nature Nanotechnol. 3, 727–732 (2008).
19. Datta, S. Electronic Transport in Mesoscopic Systems (Cambridge Univ. Press, 1995).
20. Lee, W. & Reddy, P. Creation of stable molecular junctions with a custom-designed scanning tunneling microscope. Nanotechnology 22, 485703 (2011).
21. Kiguchi, M., Miura, S., Hara, K., Sawamura, M. & Murakoshi, K. Conductance of a single molecule anchored by an isocyanide substituent to gold electrodes. Appl. Phys. Lett. 89, 213104 (2006).
22. Sivan, U. & Imry, Y. Multichannel Landauer formula for thermoelectric transport with application to thermopower near the mobility edge. Phys. Rev. B 73, 551–558 (2006).
23. Paulsson, M. & Datta, S. Thermoelectric effect in molecular electronics. Phys. Rev. B 67, 241403 (2003).
24. Pauly, F. et al. Cluster-based density-functional approach to quantum transport through molecular and atomic contacts. New J. Phys. 10, 125019 (2008).
25. Xue, Y. Q. & Ratner, M. A. End group effect on electrical transport through individual molecules: a microscopic study. Phys. Rev. B 69, 085403 (2004).
26. Malen, J. A. et al. Identifying the length dependence of orbital alignment and contact coupling in molecular heterojunctions. Nano Lett. 9, 1164–1169 (2009).
27. Venkataraman, L. et al. Single-molecule circuits with well-defined molecular conductance. Nano Lett. 6, 458–462 (2006).
28. Brandbyge, M. et al. Quantized conductance in atom-sized wires between two metals. Phys. Rev. B 52, 8499–8514 (1995).
29. Nielsen, S. K. et al. Current-voltage curves of atomic-sized transition metal contacts: an explanation of why Au is ohmic and Pt is not. Phys. Rev. Lett. 89, 066804 (2002).
30. Tsuboi, M., Kawai, T. & Taniguchi, M. Unsymmetrical hot electron heating in quasi-ballistic nanoswitches. Sci. Rep. 2, 217 (2012).

Supplementary Information is available in the online version of the paper.

Acknowledgements P.R. acknowledges support from the US Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering under award no. DE-SC0004871 (nanofabrication of novel scanning probes), from the National Science Foundation under award no. CBET 0844902 (instrumentation for real-time control) and from the Center for Solar and Thermal Energy conversion, an Energy Frontier Research Center funded by the US Department of Energy, Office of Science, Basic Energy Sciences under award no. DE-SC000957 (development of a scanning probe microscope). L.A.Z., acknowledges financial support from the Spanish MICINN through grant no. FIS2010-21833, F.P. acknowledges funding through the Carl Zeiss Stiftung, the DFG SFB 767, and the Baden-Württemberg Stiftung. P.R. thanks E. Mehoffer for discussions and comments, P.R. and J.C.C. thank A. Nitzan for discussions. J.C.C. is grateful for the hospitality provided by the Institute for Advanced Studies of the Hebrew University of Jerusalem, where part of this work was carried out.

Author Contributions The idea for the experiments was conceived by P.R. and J.C.C. The experiments were performed by W.L. and K.K. The custom-fabricated probes were designed and fabricated and characterized by K.K. and W.L. Ab initio charge transport calculations were performed by L.A.Z. and F.P. The manuscript was written by P.R. and J.C.C. with comments and inputs from all authors.

Author Information Reprints and permissions information is available at www.nature.com/reprints. The authors declare no competing financial interests. Readers are welcome to comment on the online version of the paper. Correspondence and requests for materials should be addressed to P.R. (pramodr@umich.edu) or J.C.C. (juancarlos.cuevas@uam.es).
METHODS

Creation of atomic and molecular junctions. All the AMJs were created between a NTISTP and a Au-coated substrate by displacing the NTISTP towards a Au substrate (which was coated with the desired molecules in molecular experiments and was pristine in atomic junction experiments) at 5 nm s⁻¹ and withdrawing from the substrate at 0.1 nm s⁻¹ after contact formation as indicated by an electrical conductance greater than 5G₀. To create the desired monolayers, 1 mM solutions of BDNC and BDA molecules, obtained commercially from Sigma Aldrich with a purity of ~99%, were created in toluene/ethanol. Subsequently, a Au-coated mica substrate (electron beam evaporation) was placed in one of the solutions to allow self-assembly of molecules on the Au surface. After exposing the substrates for 12 h in a glove box filled with nitrogen gas, they were rinsed in ethanol and dried in nitrogen gas. For the experiments involving Au–Au atomic junctions, the Au-coated substrates were cleaned in ultraviolet-radiation ozone to eliminate any organic contamination on the surface. The NTISTPs were also cleaned with ultraviolet-radiation ozone in all studies and loaded into the UHV scanning probe microscope instrument. The measurement of electrical current was performed using a current amplifier (Keithley 428), whereas thermoelectric voltage measurements were performed using a voltage amplifier (Stanford Research System 560). All the data were collected at a sampling frequency of 2 kHz using a data acquisition system (National Instruments 6281). The approach, withdraw, and hold sequences were accomplished by using a real-time controller (National Instruments PXI8110).

Measurement of ΔTTC,Avg using a modulation scheme. High-resolution temperature measurements are enabled by a modulation scheme in which a time-dependent voltage, V_M(t), consisting of a periodic series of three level voltage pulses +V_M, 0 V, −V_M (Supplementary Fig. 1), is applied. In all the experiments performed in this work, the period (T_P) of the voltage pulses was chosen to be −0.08 s (1/12.25 Hz). The selected modulation frequency is found to optimize the signal-to-noise ratio and is experimentally feasible owing to the small thermal time constants (~10 μs) of the micrometre-sized NTISTPs, which enable high-fidelity tracking of temperature changes. The applied V_M(t) results in both a modulated current (I_M(t); see Supplementary Fig. 1) and a modulated temperature change of the thermocouple (ΔTTC,M(t)) due to Joule heating. Using the equation at the bottom of Supplementary Fig. 1, the time-averaged temperature rise corresponding to a positive bias ΔTTC,Avg(+V_M) or a negative bias ΔTTC,Avg(−V_M) can be directly related to the modulated thermoelectric voltage output (ΔV_M(t)) of the thermocouple. In probing heat dissipation in AMJs we applied the modulated voltage signal with an appropriately chosen amplitude V_M for a period of ~5 s to each AMJ. The resulting thermoelectric voltage signal ΔV_M(t) was simultaneously recorded. This was repeated on ~100 junctions to collect data for ~500 s for each V_M. The obtained data were concatenated and analysed to estimate ΔTTC,Avg corresponding to positive and negative biases as described above. This modulation scheme enables temperature measurements with submillikelvin resolution, as described in the Supplementary Information. The time-averaged total power dissipation (Q_Total,Avg), at each bias, was obtained by using the 500-s-long data corresponding to each V_M. Specifically, the data (measured current and known applied bias) were used to first compute the total heat dissipated at positive and negative biases. Subsequently, Q_Total,Avg(+V_M(−V_M)) was obtained by dividing the estimated total heat dissipation (corresponding to a positive or a negative bias) by the total time during which a positive bias (+V_M) or negative bias (−V_M) was applied (~500/3 s). The amplitudes (V_M) of the three level voltage pulses used in our studies were chosen to be 30 mV, 43 mV, 52 mV, 60 mV and 67 mV for Au–Au junctions; 0.74 V, 0.95 V, 1.08 V, 1.18 V and 1.27 V for Au–BDNC–Au junctions; and 0.44 V, 0.58 V, 0.68 V, 0.76 V and 0.82 V for Au–BDA–Au junctions. Representative traces obtained in the experiments are shown in Supplementary Information section 6.3.

Estimating Q_P,Avg from the measured ΔTTC,Avg. To relate the temperature rise of the thermocouple to the time-averaged power dissipation in the probe Q_P,Avg, it is necessary to quantify the thermal resistance of the NTISTP. To elaborate, consider the resistance network shown in Fig. 1b, where the thermal resistances to heat flow in the probe (R_P), junction (R_J) and substrate (R_S) are identified. R_P was experimentally determined to be 72,800 ± 500 K W⁻¹ (see Supplementary Information). The thermal resistances of AMJs (R_J) are estimated to be at least 10³ K W⁻¹ for all the AMJs studied here (see Supplementary Information for more details). Thus, R_J ≫ R_P and therefore ΔTTC,Avg depends only on the power dissipated in the tip and is unaffected by the heating in the substrate. Thus, from a knowledge of ΔTTC,Avg and R_P, the time-averaged power dissipation, Q_P,Avg, can be estimated as Q_P,Avg = ΔTTC,Avg/R_P.

Computation of the transmission function. The zero-bias transmission function shown in the manuscript were computed with the ab initio method described in detail elsewhere. It is based on a combination of non-equilibrium Green’s function techniques and density functional theory (DFT) and was implemented in the quantum-chemistry software package Turbomole. More details can be found in the Supplementary Information.

Computing the relationship between Q_P and Q_Total. We computed the power dissipated in the probe Q_P(V) and the total power dissipated in the junction Q_Total(V) using equation (1) and the zero-bias transmission curves of the molecular junctions (shown in Figs 2d and 3d). Subsequently, Q_P was plotted as a function of Q_Total as the relationship between Q_P and Q_Total is robustly predicted by our calculations (see Supplementary Information for details).