Six-year experience with treatment of early donor-specific anti-HLA antibodies in pediatric lung transplantation using a human immunoglobulin-based protocol

Fabio Ius MD1 | Carsten Müller MD2 | Wiebke Sommer MD1,3 | Murielle Verboom MD4 | Michael Hallensleben MD4 | Jawad Salman MD1 | Thierry Siemeni MD1 | Christian Kühn MD1 | Murat Avsar MD1 | Dmitry Bobylev MD1 | Reza Poyanmehr MD1 | Caroline Erdfelder1 | Dietmar Böthig MD1 | Julia Carlen MD2 | Lale Bayir MD2 | Gesine Hansen MD2 | Rainer Blasczyk MD4 | Christine Falk MD3,5 | Andreas Tecklenburg MD6 | Axel Haverich MD1,3 | Igor Tudorache MD1 | Nicolaus Schwerk MD2,3 | Gregor Warnecke MD1,3

1Department of Cardiothoracic, Transplant and Vascular Surgery, Hannover Medical School, Hannover, Germany
2Clinic for Paediatric Pulmonology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany
3German Center for Lung Research (DZL/BREATHE), Hannover, Germany
4Institute of Transfusion Medicine, Hannover Medical School, Hannover, Germany
5Institute of Transplant Immunology, Hannover Medical School, Hannover, Germany
6Division of Patient Care, Hannover Medical School, Hannover, Germany

Correspondence
Fabio Ius, MD, Department of Cardiothoracic, Transplant and Vascular Surgery, Hannover Medical School, Carl-Neuberg Strasse 1, 30625 Hannover, Germany
Email: ius.fabio@mh-hannover.de.

Abstract
Objectives: Experience with the treatment of early donor-specific anti-HLA antibodies (eDSA) after lung transplantation in children is very limited. At our institution, we have treated patients with eDSA since 2013 with successive infusions of intravenous human immunoglobulins (IVIG), combined in some cases with a single dose of Rituximab and plasmapheresis (therapeutic plasma exchange [tPE]) or immunoabsorption. The aim of this study was to present the 6-year results of IVIG-based therapy in pediatric lung recipients.

Methods: Records of pediatric (<18 years old) patients transplanted at our institution between 01/2013 and 03/2019 were reviewed. Outcomes were compared between patients with eDSA treated with IVIG (IVIG group) and without eDSA (control group). Median (interquartile range [IQR]) follow-up amounted to 28 (12-52) months.

Results: During the study period, 66 lung-transplanted pediatric patients were included, of which 27 (41%) formed the IVIG group and 38 (57%) the control group. Among the IVIG patients, 14 (52%) patients showed concomitant graft dysfunction (possible clinical antibody-mediated rejection). The median time to eDSA detection...
The detection of early anti-HLA donor-specific antibodies (eDSA) after lung transplantation has been associated with poorer graft survival, antibody-mediated rejection (AMR), and later development of chronic lung allograft dysfunction (CLAD). Protocols have been developed to treat eDSA and suspected AMR, but the available case series are limited to nonrandomized, usually retrospective, studies. At our Institution, since 2013, a protocol based on successive infusions of intravenous human immunoglobulins (IVIG) has shown good eDSA clearance rates and similar outcomes in patients with vs without eDSA.2

Most of the studies on eDSA either included only adult patients or did not present the results separately for adult and pediatric (<18 years old) patients. Thus, the experience on eDSA and their treatment in pediatric lung-transplanted patients is very limited, and usually extrapolated from the results of adult case series. However, the results obtained in adult patients might not be simply transferred to pediatric patients, due to the different transplant indications and immunologic backgrounds.

In this study, in comparison to our previous publications, we focused only on pediatric lung-transplanted patients and compared outcomes between pediatric patients who showed eDSA after transplantation and were treated, and pediatric patients who did not develop eDSA.

2 MATERIALS AND METHODS

2.1 Patients

The in-hospital and outpatient clinic records of pediatric (<18 years old) patients who underwent lung transplantation at our institution between January 2013 and March 2019 were retrospectively reviewed.

Patients who showed eDSA after transplantation and were treated with IVIG formed the eDSA+/IVIG+ group (case group). Patients who did not show eDSA after transplantation (eDSA− patients) formed the control group. Follow-up ended on 1 March 2019 and was 100% complete.

The hospital ethical review board waived the need of patient’s consent to the study, since all patients and their parents had given consent to handle their personal data for research purposes at the time of listing to lung transplantation. Consent to eDSA treatment and to eDSA control after treatment end was not required, since treatment and eDSA monitoring are a routine procedure in the management of pediatric patients after lung transplantation at our institution. This study conforms to the declaration of Helsinki.

2.2 Variable definition

Early DSA (eDSA) were defined as either preformed or de novo DSA, which were detected during the first weeks after lung transplantation. eDSA clearance was defined as the absence of DSA in two consecutive Luminex-based SPA controls (LIFECODES; Immucor Transplant Diagnostics, Inc, Stamford, CT) after treatment initiation. DSA recurrence was defined as a renewed positivity of previously cleared DSA.

Graft survival was defined as freedom from mortality or retransplantation. Pulsed-steroid therapy-free survival was defined as freedom from steroid therapy for presumed acute rejection, that occurred at follow-up after the initial hospitalization for lung transplantation. CLAD was defined as an irreversible and persistent (lasting for 3 weeks) decline in graft function (FEV1 <80% of baseline), after exclusion of other reversible reasons explaining the fall of lung function tests. Finally, infection occurring at follow-up was defined as a bacterial, fungal or viral infection that required hospitalization for treatment.

2.3 Patient management

At our institution, pediatric patients did not receive any induction therapy. Posttransplant immunosuppressive therapy was based on a triple therapy: tacrolimus (initial through levels between 12 and...
15 µg/mL); mycophenolate mofetil (through levels between 1.2 and 3.5 µg/mL), that was later switched to everolimus (through levels of 3-5 µg/mL) in some patients; and prednisolone.

Infants, who received ABO-incompatible transplantation, underwent peritransplant sessions of therapeutic plasma exchange (tPE), repeated according to anti-A and anti-B antibody titers.

Contrarily to adult lung-transplanted patients, a surveillance protocol with transbronchial biopsies at 1, 3, and 6 months and 1 year after pediatric lung transplantation has only recently been introduced at our institution. Before 2018, only older children (>11 years old) underwent transbronchial biopsies, usually upon indication. Thus, acute rejection in most cases was a clinical diagnosis lacking histopathologic reconfirmation, and it was defined as a worsening of arterial oxygenation and/or lung function tests after the exclusion of other possible causes of graft dysfunction.

At our institution, all the blood products (packed red blood cells, platelet concentrates, and fresh frozen plasma) were leukocyte depleted.

2.4 | eDSA detection protocol

All patients were screened for DSA, immediately before lung transplantation, on Day 14 after lung transplantation, before hospital discharge, and at least every 3 months during follow-up as well as upon indication. In the Luminex analysis, a threshold of 1000 median fluorescence intensity (MFI) was used to detect eDSA. In eDSA+/IVIG− patients, Luminex-based DSA controls were additionally performed immediately before each IVIG treatment session and every 6 months after treatment end.19

In allosensitized recipients, the decision to proceed with transplantation was based on the results of the virtual crossmatch. In addition, a retrospective lymphocyte cytotoxicity test (LCT) crossmatch was performed in all patients immediately after transplantation.

Only in January 2019, we began to measure the eDSA complement-binding capacity in pediatric and adult patients, using the C3d Luminex Test (LIFECODES; Immucor Transplant Diagnostics, Inc).

2.5 | eDSA treatment protocol

In 2013, an IVIG-based treatment protocol replaced the previous eDSA treatment protocol which had been based on tPE and a single dose of anti-CD 20 antibody (Rituximab). Although different IVIG (Pentaglobin; Biotest AG, Dreieich Germany; Kiovig; Baxter AG, Vienna, Austria; and Prüfent; CSL Behring GmbH, Marburg, Germany) were employed, IgA− and IgM− enriched human immunoglobulins (Pentaglobin; IgGAM) were used in the majority of patients, due to the additional immunomodulatory and antimicrobial effects conferred by the IgA and IgM components. Therefore, in early 2014, IgGAM became the preferred IVIG prepare for treating eDSA in pediatric lung-transplanted patients at our institution.

Treatment was performed pre-emptively in pediatric patients with serologic evidence of eDSA (possible subclinical AMR). Patients, who showed eDSA and also graft dysfunction due to presumed acute rejection, were defined as having possible clinical AMR. Diagnosis of definite clinical AMR was usually not made, because, as aforementioned, transbronchial biopsies were not routinely performed, especially in younger (<11 years old) patients. Moreover, in comparison to heart and kidney transplantation, the available pathologic criteria for defining AMR in lung transplantation are still unspecific and not well-defined. While waiting for more specific pathologic criteria, we decided to base our treatment decision only on the presence of eDSA and graft dysfunction.

The eDSA treatment protocol was similar for adult and pediatric patients. Treatment was started as soon as eDSA were detected. The IVIG-based treatment protocol and its modifications over the study period have been previously reported. Briefly, successive IVIG infusions constituted the backbone of eDSA treatment. Until April 2017, all patients received an additional single dose of Rituximab after the first IVIG infusion. Since April 2017, we have limited the use of Rituximab to patients with concomitant graft dysfunction or positive retrospective LCT crossmatch.19

Thus, as of March 2019, therapy consisted of an initial infusion of 2 g/kg of IVIG followed by additional infusions of 0.5 g/kg of IVIG every 4 weeks in patients with possible subclinical AMR. In patients with possible clinical AMR or a positive retrospective, LCT crossmatch, additional 3 or 5 tPE sessions preceded the first IVIG infusion, and a single dose (375 mg/m²) of Rituximab followed the first IVIG infusion. In all patients, treatment with IVIG was continued until eDSA clearance was achieved, or for a maximum of 6 months.

Patients who did not clear eDSA by the end of treatment were carefully monitored in the outpatient clinic.

2.6 | Statistics

IBM SPSS 25.0 (IBM, NY) was used for data analysis. The study was a retrospective analysis of prospectively collected data.

Primary endpoints were graft survival and eDSA clearance at treatment end. Secondary endpoints were patient survival, pulsed-steroid therapy-free, CLAD-free, and infection-free survival, and the composite endpoint including mortality, CLAD, or retransplantation. Patients who died in-hospital were censored for analysis of pulsed-steroid therapy-free, CLAD-free and infection-free survival.

Categorical and continuous variables were summarized as percentages and median with interquartile range (IQR), respectively. The nonparametric Mann-Whitney test and the χ² test or the Fisher’s exact test were used for group comparisons of continuous and categorical variables, respectively.

Survival estimates were calculated by the product-limit method of Kaplan-Meier. Differences between groups were quantified using the log-rank test. In eDSA+/IVIG− patients, outcomes were stratified...
according to Rituximab use, cumulative MFI values higher than 5000, presence of eDSA against more than one HLA antigen, presence of possible clinical AMR, and presence of preformed eDSA (online supporting information).

$P \leq .05$ were considered significant.

3 | RESULTS

3.1 | Patient groups

Between January 2013 and March 2019, 66 (9%) out of the 765 lung-transplanted recipients were pediatric patients (Table 1). Twenty-seven (41%) patients showed eDSA and were treated with IVIG, while 38 (57%) patients did not develop eDSA. One (2%) patient showed eDSA but was treated only with tPE and Rituximab, and thus was excluded from the study (Figure 1). The patient, a 17-year-old girl, was transplanted in March 2013 for cystic fibrosis, developed eDSA 1 week after transplantation, and was still treated with the "old" tPE-based protocol. She developed CLAD 3 years after transplantation and she is still alive.

Pre-, intra-, and posttransplant recipient and donor characteristics were similar between eDSA$^+$/IVIG$^+$ and eDSA$^-$ patients (Tables 1-4). eDSA$^+$/IVIG$^+$ patients showed a higher median lung allocating score (LAS) score than eDSA$^-$ patients, due to their younger age and higher prevalence of idiopathic or secondary pulmonary arterial hypertension (Table 1). Three eDSA$^-$ patients died in-hospital after transplantation of disseminated aspergillosis, primary graft dysfunction, and acute hemorrhagic shock, respectively.

TABLE 1 Preoperative recipient data

Variable	eDSA$^+$/IVIG$^+$ (n = 27)	eDSA$^-$ (n = 38)	P
Number of pediatric lung transplantations per year			
2013 (n = 138a)	3 (11)	8 (21)	
2014 (n = 130a)	4 (15)	4 (11)	
2015 (n = 119a)	3 (11)	6 (16)	
2016 (n = 132a)	6 (22)	6 (16)	
2017 (n = 116a)	4 (15)	5 (13)	
2018 (n = 116a)	7 (26)	8 (21)	
2019 (until March, n = 13a)	0	1 (3)	
Female sex	17 (63)	17 (45)	.15
Age, y	12 (6-16)	14 (10-15)	.089
Age <11 y	9 (33)	10 (26)	.54
BSA, m2	1.17 (0.71-1.34)	1.18 (0.96-1.36)	.92
CMV risk profile			
Low	10 (37)	10 (26)	.36
Intermediate	10 (37)	12 (32)	.65
High	7 (26)	16 (42)	.18
Blood group			
A	15 (56)	21 (55)	.98
B	3 (11)	4 (11)	1.00
AB	0	2 (5)	.51
0	9 (33)	10 (26)	.54
Incompatible recipient-donor blood group transplantation	2 (7)	0	.17
Transplant indication			
Children’s interstitial lung disease	5 (19)	6 (16)	.51
Cystic fibrosis	12 (44)	22 (58)	.28
Pulmonary hypertension	9 (33)	7 (18)	.17
Retransplant	1 (4)	3 (8)	.64
Pulmonary arterial hypertension	10 (37)	7 (18)	.092
LAS score	83.7 (38.9-100)	44.2 (36-100)	.10
Preoperative mechanical ventilation	2 (7)	4 (11)	.51
Preoperative intensive care unit	11 (41)	15 (40)	.92
Preoperative ECMO	8 (30)	5 (13)	.10

Abbreviations: BSA, body surface area; CMV, cytomegalovirus; COPD, chronic obstructive pulmonary disease; ECMO, extracorporeal membrane oxygenation; LAS, lung allocating score.

Values are expressed as median (IQR, interquartile range) or N of patients (%).

aOverall number of lung transplantations performed per year at our institution.
In pediatric patients, eDSA were detected at a median of 24 (14–63) days after transplantation, significantly later than in our adult patients, where eDSA were detected at a median of 14 (11–19) days after transplantation ($P = .016$).

eDSA were preformed in 2 (7%) cases and de novo in the remaining 25 (93%) cases (Table 3). Both patients with preformed eDSA developed also de novo DSA against other HLA antigens after transplantation. Thirteen (48%) patients showed eDSA in the absence of graft dysfunction (possible subclinical AMR), while 14 (52%) showed eDSA and graft dysfunction (possible clinical AMR). In these 14 patients, eDSA were detected simultaneously with the diagnosis of graft dysfunction. As compared to our adult patients, pediatric patients showed a lower incidence of preformed eDSA ($P = .052$) and a higher incidence of possible clinical AMR ($P < .001$) (Figure 1).

3.3 Treatment of eDSA and AMR

Among the 27 eDSA+/IVIG+ patients, 23 (85%) patients received IgGAM (Pentaglobin), and the remaining 4 (5%) patients other IVIG. Treatment with IVIG was combined with tPE or immunoabsorption in 14 (52%) patients and with Rituximab in 25 (93%) patients.

All 14 patients with possible clinical AMR had received pulsed-steroid therapy before the eDSA positivity had been communicated by the HLA lab. Thereafter, specific eDSA treatment was begun immediately.

The overall number of IVIG infusions amounted to 99. Twenty-three (85%) patients required a median of 3 (1-4) additional 0.5 g/kg IVIG infusions. Treatment time amounted to a median of 2.4 (1.4–5.0) months.

eDSA were cleared successfully in 25 out of 26 (96%) patients who had completed treatment. Among these 25 patients, the same eDSA recurred in 3 (12%) patients. No new DSA were detected (Figure 2). Clearance did not differ in these 26 patients after stratification according to presence of eDSA against class I or II HLA antigens ($P = .77$), presence of preformed or de novo eDSA ($P = .077$), presence of eDSA against more than one HLA antigen ($P = .38$), to cumulative MFI values higher than 5000 ($P = .65$), to presence of possible clinical AMR ($P = .51$), and to Rituximab use ($P = .92$, Table S1).

Among the 27 eDSA+/IVIG+ patients, one (4%) patient showed an allergic reaction during treatment with Kiovig. After treatment end, eight (30%) eDSA+/IVIG+ vs seven (21%) eDSA− patients showed...
TABLE 2 Donor and intraoperative recipient characteristics

Variable	eDSA+ /IVIG+ (n = 27)	eDSA+ (n = 38)	P
Donor characteristics			
Female sex	19 (70)	21 (55)	0.22
Age, y	17 (8-38)	18 (11-43)	0.63
Age >70 y	1 (4)	0	0.41
BSA, m²	1.52 (0.98-1.81)	1.64 (1.33-1.75)	0.37
Ventilation time, d	4 (3-6)	3 (5-7)	0.81
pO₂ (100%, PEEP 5 mmHg)	445 (327-503)	399 (346-452)	0.27
Smoking history	3 (11)	7 (18)	0.50
Contusion	5 (19)	5 (13)	0.73
Aspiration	1 (4)	3 (8)	0.64
Lung Preservation			
Cold flush with Celsior	27 (100)	35 (92)	0.26
Portable EVLP	0	1 (3)	0.58
Intraoperative recipient			
characteristics			
Single lung transplantation	0	1 (3)	0.58
Bilateral lung transplantation	27 (100)	37 (97)	0.58
Cardiopulmonary bypass	4 (15)	2 (5)	0.22
Intraoperative ECMO	14 (52)	12 (32)	0.10
Postoperative extended ECMO	8 (30)	7 (18)	0.29
Ischemic time, min			
First lung	401 (300-463)	363 (274-434)	0.18
Second lung	486 (405-572)	482 (406-572)	1.00
Blood products, intraoperative			
PRBCs, units	2 (1-5)	2 (1-4)	0.76
PC, units	1 (0-2)	0 (0-1)	0.39
FFP, units	4 (2-6)	3 (2-6)	0.58

Abbreviations: BSA, body surface area; ECMO, extracorporeal membrane oxygenation; EVLP, ex-vivo lung perfusion; FFP, fresh frozen plasma; PC, platelet concentrate; PRBC, packed red blood cells.

Values are expressed as median (IQR, interquartile range) or N of patients (%).

hypogammaglobulinemia requiring IVIG substitution (P = .41). No eDSA+ /IVIG+ vs 4 (12%) eDSA+ patients developed a posttransplant lymphoproliferative disorder (PTLD, P = .089). At 1-year follow-up, the glomerular filtration rate (ml/min), calculated according to the equation of Cockroft-Gault, was 72 (56-92) vs 81 (61-93) in eDSA+ /IVIG+ and eDSA+ patients (P = .46).

3.4 Outcomes

Median follow-up amounted to 28 (12-52) months, and its length did not differ between groups (P = .68). Outcomes were similar in eDSA+ /IVIG+ vs eDSA+ patients (Table 5 and Figure 3A-D).

In particular, four eDSA+ /IVIG+ patients died during follow-up (Table 5). The first patient died of early CLAD 1 year after retransplantation, without showing new or recurrent DSA. The second patient died of sepsis 1 year after transplantation. The third patient showed an episode of definite clinical AMR with graft dysfunction, recurrence of previously cleared DSA, and transbronchial biopsy clearly suggestive for AMR. He was treated with tPE and alemtuzumab, but the graft function did not recover and the patient died. The fourth patient developed a fulminant graft dysfunction following several successfully treated infectious episodes. She did not show new or recurrent DSA, and the biopsy was not suggestive for AMR. Although she was treated with pulsed-steroid therapy, tPE and IVIG, the graft function did not recover, and the patient died 8 months after transplantation.

Three eDSA+ /IVIG+ vs five eDSA+ patients developed CLAD. Among the three eDSA+ /IVIG+ patients, one patient, who did not initially clear DSA, developed restrictive allograft syndrome, was again treated with tPE, IVIG, and Rituximab, but the graft function did not stabilize and she required retransplantation. Two patients developed bronchiolitis obliterans syndrome (BOS): in one patient the graft function stabilized, but in the other it did not, and the patient, as aforementioned, died.

Twelve (44%) eDSA+ /IVIG+ and 20 (54%) eDSA+ patients showed at least one episode of infection requiring hospitalization at follow-up, without any difference in the median number of hospital admissions between groups (2 vs 2 admissions, P = .63, respectively). Infection involved the lungs in 12 (100%) eDSA+ /IVIG+ and 19 (95%) eDSA+ patients (P = .62) and was viral or bacterial in 9 (75%) vs 16 (80%) and 7 (58%) vs 10 (50%) eDSA+ /IVIG+ and eDSA+ patients (P = .53 and P = .46) respectively.

Outcomes did not substantially differ in eDSA+ /IVIG+ patients after stratification according to Rituximab use (Table S2), cumulative MFI values higher than 5000 (Table S3), presence of eDSA against more than one HLA antigen (Table S4), presence of possible clinical AMR (Table S5), and presence of preformed eDSA (Table S6).

Median forced respiratory volume in 1 second (FEV₁) values (% predicted) did not differ between eDSA+ /IVIG+ vs eDSA+ patients at discharge (57 vs 52, P = .91), at 1-year follow-up (71 vs 78, P = .84),...
and at last outpatient assessment (66 vs 77, \(P = .39\)), performed at 30 (12-48) months after transplantation. FEV\(_1\) values did not differ in eDSA+/IVIG+ patients after stratification according to Rituximab use, cumulative MFI values higher than 5000, presence of eDSA against more than one HLA antigen, presence of possible clinical AMR, and presence of preformed eDSA (Table S7).

4 | DISCUSSION

In comparison to our previous published studies,\(^{15,16,19}\) this study focused only on pediatric lung-transplanted patients and showed that, in comparison to adult lung-transplanted patients, more than one-third of pediatric patients developed eDSA and, among these patients, more than half showed concomitant graft dysfunction without evidence of any other reason (possible clinical AMR). Nonetheless, after treatment with an IVIG-based protocol, patients with eDSA and possible AMR had outcomes similar to patients without eDSA.

Although our study is based on a retrospective nonrandomized case series, the results are relevant, because no previous study focused specifically on DSA and AMR in pediatric lung transplantation, partly due to the worldwide limited experience with pediatric lung transplantation, with only six centers performing more than five pediatric transplants per year.\(^{23}\) Thus, in most of the available studies, results were not reported separately for adult and pediatric patient.\(^{1-10}\) Evidence from pediatric kidney and heart transplantation showed that DSA is a risk factor for mortality and acute or chronic rejection.\(^{24-26}\) Dipchand et al\(^{24}\) have recently shown in a multicenter study including 237 pediatric heart-transplant patients that one-third of patients developed de novo DSA, usually within 6 weeks after transplantation, and that DSA were a risk factor for acute cellular rejection in the first year posttransplantation. Similarly, Irving et al\(^{25}\) showed that 40% of pediatric heart-transplant patients developed de novo DSA and that patients with persistent vs. transient DSA showed an increased incidence of CAV, rejection and graft loss. In a case series of 103 pediatric kidney transplant recipients, Engen et al\(^{26}\) showed that 32% of patients developed de novo DSA after transplantation and that patients with DSA and concomitant graft dysfunction fared worse than patients with the only evidence of DSA.

This evidence supports our strategy of treating DSA as soon as they are detected, independent of graft dysfunction. The conundrum, if the DSA detected in our patients represent a memory of previous alloantigen exposure or truly de novo recipient vs. donor

TABLE 3 Anti-HLA antibodies

Variable	eDSA+/IVIG+ (n = 27)	eDSA− (n = 38)	P
Preoperative anti-HLA antibodies			
Anti-HLA I	4 (15)	4 (11)	.71
Anti-HLA II	8 (30)	3 (8)	.041
Anti-HLA I + anti-HLA II	1 (4)	0	.41
Cumulative mismatches			
HLA A + B	3 (2-4)	3 (3-4)	.34
HLA A + B + DR	5 (4-6)	5 (4-5)	.010
Postoperative anti-HLA antibodies*			
Anti-HLA I	11 (41)	4 (11)	.004
Anti-HLA II	25 (93)	7 (18)	<.001
Anti-HLA I + anti-HLA II	10 (37)	2 (5)	.002
Postoperative anti-HLA eDSA			
HLA A	5 (19)		
HLA B	4 (15)		
HLA C	0		
HLA DR	3 (11)		
HLA DQ	23 (85)		
Positive retrospective crossmatch	1 (4)		
Preformed DSA	2 (7)		
MFI values before treatment	3143 (2015-5006)		
Cumulative MFI values before treatmentb	3879 (2066-6251)		
eDSA treatment			
IVIG	27 (100)		
tPE/immunoabsorption	14 (52)		
Rituximab	25 (93)		

Abbreviations: eDSA, early detectable donor-specific antibodies; HLA, human leukocyte antigen; MFI, median fluorescence intensity. Values are expressed as median (IQR) or N of patients (%).

*All patients who developed anti-HLA antibodies after lung transplantation were considered, independently of DSA positivity.

*bSum of the single MFI, in case a patient showed eDSA against more than one antigen.
sensitization remains unanswered, yet has no consequences for our treatment decision, since both preformed and de novo DSA are risk factors for adverse outcomes. Moreover, investigation of the DSA complement-binding capacity may further help to refine our treatment strategy in the future.

Furthermore, we think that in pediatric patients, every effort should be undertaken to preserve graft function as long as possible. In comparison to adult lung-transplant patients, pediatric patients show a worse 5-year CLAD-free survival according to the last ISHLT registry report (50.1% vs 45.8%, \(P = .028 \)).

Moreover, our study showed that more pediatric (52%) than adult (11%) patients showed graft dysfunction concomitantly with eDSA development (Figure 1).

In addition, our study showed that outcome-free survival was similar between patients who developed early possible clinical AMR and those who showed the only eDSA in the absence of clinical rejection. Thus, the treatment of eDSA and AMR in an early phase could reverse graft damage. In contrast, the two patients in our study who showed late possible or definite clinical AMR did not recover graft function.

TABLE 4 Postoperative data

Variable	eDSA⁺/IVIG⁺ (n = 27)	eDSA⁻ (n = 38)	\(P \)
PGD score grade 2 or 3			
24 h	6 (22)	7 (19)	.75
48 h	7 (26)	8 (22)	.69
72 h	9 (33)	6 (16)	.11
Blood products, overall			
PRBCs, units	6 (2-15)	4 (2-7)	.19
PC, units	1 (0-4)	1 (0-2)	.23
FFP, units	5 (2-9)	4 (2-6)	.12
Rethoracotomy for bleeding	2 (7)	2 (5)	.55
New dialysis	1 (4)	1 (3)	.66
Postoperative pulsed-steroid therapy	16 (59)	8 (21)	.002
Secondary ECMO	2 (7)	1 (3)	.56
Tracheostomy	6 (22)	4 (11)	.29
Mechanical ventilation time, d	1 (1-3)	1 (1-2)	.49
ICU stay, d	8 (2-19)	2 (1-7)	.061
Hospital stay, d	40 (27-49)	27 (21-39)	.015
In-hospital mortality	0	3 (8)	.13
Immunosuppressive therapy at discharge after transplantation \(a \)			
Cyclosporine	0	0	
Tacrolimus	27 (100)	38 (100)	1.0
Mycophenolate mofetil	27 (100)	38 (100)	1.0
Immunosuppressive therapy at last outpatient control \(b \)			
Cyclosporine	0	0	
Tacrolimus	27 (100)	35 (100)	1.00
Mycophenolate mofetil	26 (96)	32 (91)	.63
Everolimus	0	3 (9)	.25

Abbreviations: ECMO, extracorporeal membrane oxygenation; FFP, fresh frozen plasma; ICU, intensive care unit; PC, platelet concentrate; PGD, primary graft dysfunction; PRBC, packed red blood cells.

Values are expressed as median (IQR, interquartile range) or N of patients (%).

\(a \) In-hospital deaths (n = 3) are excluded.

\(b \) Switch was due to leukopenia under mycophenolate mofetil (n = 1) and to posttransplant lymphoproliferative disorder (PTLD, n = 2).

FIGURE 2 Figure 2 shows eDSA clearance, at treatment end and at last DSA control, and eDSA recurrence in eDSA⁺/IVIG⁺ pediatric patients. eDSA, DSA, early donor-specific anti-HLA antibodies.
function, and died or required retransplantation. Similarly, other studies confirmed the detrimental and therapy-refractory prognosis of late AMR.13,17

The pleiotropic mechanisms by which IVIG, tPE, and Rituximab inhibit DSA production have been reported elsewhere.28-32 Although other human immunoglobulin preparations are available, we chose IVIG and especially IgGAM, which contain IgG (76%), IgM (12%) and IgA (12%), because they have multiple beneficial immunomodulatory effects.28,29 DSA treatment was well tolerated by pediatric patients and the increased immunosuppression related to treatment did not translate into increased risk of infections (Figure 3D). This result might be due in part to the IgM component of IgGAM, which confers protection against infections through pathogen opsonization.22 In addition, we adopted some precautions to decrease the treatment side effects, such as the administration of antiallergic drugs before tPE and Rituximab and the stepwise increase of the IVIG infusion rate.

Finally, our study showed that eDSA+/IVIG+ patients did not develop PTLD, which remains a significant cause of morbidity and mortality after pediatric solid organ transplantation.33 The protective effect of eDSA treatment against PTLD might have been related to Rituximab, since studies have recently demonstrated the prophylactic protective effect of low-dose Rituximab therapy against Epstein-Barr virus-induced PTLD.34,35

TABLE 5 Outcomes at follow-up

Variable	eDSA+/IVIG+ (n = 27)	eDSA− (n = 38)	P
Patient survival (%)			
1. y	96 ± 4	92 ± 4	.45
3. y	80 ± 9	92 ± 4	
5. y	80 ± 9	92 ± 4	
Graft survival (%)			
1. y	96 ± 4	89 ± 5	.65
3. y	73 ± 10	85 ± 6	
5. y	73 ± 10	85 ± 6	
Causes of death after hospital dischargea			
CLAD	1 (4)	0	.43
Infection	0	0	
Malignancy	0	0	
Cardiac	0	0	
Other	3 (11)	0	.077
Biopsy-confirmed rejectionb (ISHLT Grade)a			
A1	6 (38)	2 (11)	.080
A2	2 (12)	1 (6)	.45
A3	1 (6)	1 (6)	1.0
Pulsed-steroid therapy-free survival (%)a			
6. mo	85 ± 7	63 ± 9	
1. y	71 ± 9	48 ± 9	
5. y	41 ± 12	22 ± 9	.074
CLAD-free survival (%)a			
1. y	100	100	
3. y	89 ± 7	78 ± 9	
5. y	67 ± 20	78 ± 9	.82
Retransplant-free survival (%)a			
1. y	100	94 ± 4	
3. y	92 ± 8	90 ± 5	
5. y	92 ± 8	90 ± 5	.48
Mortality-, CLAD-, retransplant-free survival (%)a			
1. y	96 ± 4	87 ± 6	
3. y	75 ± 10	76 ± 8	
5. y	56 ± 18	76 ± 8	.95
Infection-free survival (%)a			
1. y	68 ± 9	47 ± 9	
3. y	47 ± 11	31 ± 10	
5. y	47 ± 11	26 ± 9	.15

Abbreviations: CLAD, chronic lung allograft dysfunction; ISHLT, International Society for Heart and Lung Transplantation.

Values are expressed as mean ± SD (%) or N of patients (%).

*aPatients who died before hospital discharge (n = 3) were censored.

bAvailable for only 16 (59%) eDSA+/IVIG+ and 18 (47%) eDSA− patients.

5 STUDY LIMITATIONS

The retrospective design and the number of included patients may have confounded the results of this study. However, pediatric patients are rarely included in randomized trials. Moreover, a randomized multicenter trial on the treatment of eDSA and AMR might not be feasible in pediatric patients due to the limited number of transplant centers, which perform pediatric lung transplantation.

While a control group made up of eDSA+/no-treatment patients would have been more robust than a control group made of patients without DSA to demonstrate a treatment effect, leaving pediatric patients without treatment appeared unethical, especially since DSA are already a well-proven risk factor for worse graft survival. However, a spontaneous eDSA clearance might have been also possible without treatment.

The short median follow-up time and the few patients at risk after 3 years of follow-up (Figure 3) might have confounded the outcome-free survival analysis. Moreover, DSA were detected earlier in our study than elsewhere.3,4 However, this finding was not due to the low MFI cut-off for DSA positivity, but to the different frequency of DSA screening, follow-up time, and incidence of BOS.3,4

The definition of infection at follow-up might be arbitrary, but we aimed at including only the most important infectious episodes, that is, those leading to hospital admission, and not just all the infectious ones.

Finally, in eDSA+/IVIG+ patients, we did not analyze outcomes according to the used IVIG preparations, due to patient number imbalance between groups (n = 4 vs n = 23 with IgGAM).
6 | CONCLUSIONS

Following pediatric lung transplantation, an IVIG-based treatment for eDSA yielded high eDSA clearance. eDSA+/IVIG− and control patients showed similar graft and CLAD-free and graft survival.

CONFLICT OF INTERESTS

Fabio Ius and Gregor Warnecke report personal and congress fees paid from Biotest AG. The remaining authors report no conflict of interests concerning this manuscript.

ORCID

Fabio Ius http://orcid.org/0000-0002-8084-3360
Julia Carlens http://orcid.org/0000-0001-8578-864X

REFERENCES

1. Smith JD, Ibrahim MW, Newell H, et al. Pre-transplant donor HLA-specific antibodies: characteristics causing detrimental effects on survival after lung transplantation. J Heart Lung Transplant. 2014;33:1074-1082.

2. Ius F, Sommer W, Tudorache I, et al. Early-donor-specific antibodies in lung transplantation: risk factors and impact on survival. J Heart Lung Transplant. 2014;33:1255-1263.

3. Safavi S, Robinson DR, Soresi S, Carby M, Smith JD. De novo donor HLA-specific antibodies predict development of bronchiolitis obliterans syndrome after lung transplantation. J Heart Lung Transplant. 2014;33:1273-1281.

4. R. Morrell M, Pilewski JM, Gries CJ, et al. De novo donor-specific HLA antibodies are associated with early and high-grade bronchiolitis obliterans syndrome and death after lung transplantation. J Heart Lung Transplant. 2014;33:1288-1294.

5. Roux A, Bendif Le Lan I, Halfanjanjaina S, et al. Antibody-mediated rejection in lung transplantation: clinical outcomes and donor-specific antibody characteristics. Am J Transplant. 2016;16:1216-1228.

6. Le Pavec J, Suberbielle C, Lamrani L, et al. De-novo donor-specific anti-HLA antibodies 30 days after lung transplantation are associated with worse outcomes. J Heart Lung Transplant. 2016;35:1067-1077.

7. Tikkkanen JM, Singer LG, Kim SJ, et al. De novo OQ donor-specific antibodies are associated with chronic lung allograft dysfunction after lung transplantation. Am J Respir Crit Care Med. 2016;194:596-606.

8. Levine DJ, Glanville AR, Aboyoun C, et al. Antibody-mediated rejection of the lung: a consensus report of the International Society for Heart and Lung Transplantation. J Heart Lung Transplant. 2016;35:397-406.

9. Verleden SE, Vanaudenaarde BM, Emonds MP, et al. Donor-specific and –nonspecific HLA antibodies and outcome post lung transplantation. Eur Respir J. 2017;50(5):1701248. https://doi.org/10.1183/13993003.01248-2017

10. Hachem RR, Kamoun M, Budev MM, et al. Human Leukocyte antigens antibodies after lung transplantation: Primary results of the HALT study. Am J Transplant. 2018;37:1119-1130.

11. Tambur AR, Campbell P, Claas FH, et al. Sensitization in Transplantation: Assessment of Risk (STAR) 2017 Working Group Meeting Report. Am J Transplant. 2018;18(7):1604-1614.
12. Hachem RR, Yusen RD, Meyers BF, et al. Anti-HLA antibodies and preemptive antibody-directed therapy after lung transplantation. J Heart Lung Transplant. 2010;29:973-980.

13. Witt CA, Gault JP, Yusen RD, et al. Acute antibody-mediated rejection after lung transplantation: a retrospective, single center, case series. J Heart Lung Transplant. 2013;32:1034-1040.

14. Jackups R Jr., Canter C, Sweet SC, Mohanakumar T, Morris GP. Measurement of donor-specific HLA antibodies following plasma exchange therapy predicts clinical outcome in pediatric heart and lung transplant recipients with antibody-mediated rejection. J Clin Apher. 2013;28:301-308.

15. Ius F, Sommer W, Tudorache I, et al. Preemptive treatment with therapeutic plasma exchange and rituximab for early donor-specific antibodies after lung transplantation. J Heart Lung Transplant. 2015;34:50-58.

16. Ius F, Sommer W, Kiencke D, et al. IgM-enriched human intravenous immunoglobulin-based treatment of patients with early donor specific anti-HLA antibodies after lung transplantation. Transplantation. 2016;100:2682-2692.

17. Islam AK, Sinha N, DeVos JM, et al. Early clearance vs persistence of de novo donor-specific antibodies following lung transplantation. Clin Transplant. 2017;31(8):e13028.

18. Vacha M, Chery G, Hulbert A, et al. Antibody depletion strategy for the treatment of suspected antibody-mediated rejection in lung transplant recipients: Does it work? Clin Transplant. 2017;31(3): e12886.

19. Ius F, Verboom M, Sommer W, et al. Preemptive treatment of early donor-specific antibodies with IgA- and IgM-enriched intravenous human immunoglobulins in lung transplantation. Am J Transplant. 2018;18:2299-2304.

20. Hayes D Jr, Kopp BT, Sheikh SI, et al. Pretransplant panel reactive antibodies and lung transplant outcomes in children. Thorac Cardiovasc Surg. 2017;65:36-42.

21. Verleden SE, Todd JL, Sato M, et al. Impact of CLAD phenotype on survival after lung re-transplantation: a multicenter study. Am J Transplant. 2015;15:2223-2230.

22. Walpen AJ, Laumanier T, Aebi C, Mohacsi PJ, Rieben R. Immunoglobulin M-enriched intravenous immunoglobulin inhibits classical pathway complement activation, but not bactericidal activity of human serum. Xenotransplantation. 2004;11:141-148.

23. Goldfarb SB, Hayes D Jr, Levvey BJ, et al. International Society for Heart and Lung Transplantation. The Registry of the International Society for Heart and Lung Transplantation: Twenty-First Pediatric Lung and Heart-Lung Transplantation Report – 2018; Focus Theme: Multiorgan Transplantation. J Heart Lung Transplant. 2018;37:1196-1206.

24. Dipchand AI, Webber S, Mason K, et al. Incidence, characterization, and impact of newly detected donor-specific anti-HLA antibody in the first year after pediatric heart transplantation: a report from the CTOC-04 study. Am J Transplant. 2018;18:2163-2174.

25. Irving CA, Carter V, Genner AR, et al. Effect of persistent versus transient donor-specific HLA antibodies on graft outcomes in pediatric cardiac transplantation. J Heart Lung Transplant. 2015;34:1310-1317.

26. Engen RM, Park GE, Schumacher CS, et al. Donor-specific antibody surveillance and graft outcomes in pediatric kidney transplant recipients. Transplantation. 2018;102:2072-2079.

27. Brugière O, Roux A, Le Pavec J, et al. Role of C1q-binding anti-HLA antibodies as a predictor of lung allograft outcome. Eur Respir J. 2018;52(2):1701898.

28. Jordan SC, Toyota M, Kahuwaji J, Vo AA. Clinical aspects of intravenous immunoglobulin use in solid organ transplant recipients. Am J Transplant. 2011;11:196-202.

29. Tedla FM, Roche-Recinos A, Brar A. Intravenous immunoglobulin in kidney transplantation. Curr Opin Organ Transplant. 2015;20:630-637.

30. Koenig A, Mariat C, Mousson C, Wood KJ, Rifle G, Thaunat O. B cells and antibodies in transplantation. Transplantation. 2016;100:1460-1464.

31. Lobo PI. Role of natural autoantibodies and natural IgM anti-leucocyte autoantibodies in health and disease. Front Immunol. 2016;7:198. https://doi.org/10.3389/fimmu.2016.00198

32. Shevach EM. Mechanisms of foxp3+ T regulatory cell-mediated suppression. Immunity. 2009;30:636-645.

33. Haynes SE, Saini S, Schowengerdt KO. Post-transplant lymphoproliferative disease and other malignancies after pediatric cardiac transplantation: an evolving landscape. Curr Opin Organ Transplant. 2015;20:562-569.

34. Van Besien K, Bacher-Rodriguez L, Satlin M, et al. Prophylactic rituximab prevents EBV PTLD in haplo-cord transplant recipients at high risk. Leuk Lymphoma. 2019;1-4. https://doi.org/10.1080/10428194.2018

35. Delapierre B, Reman O, Dina J, et al. Low dose Rituximab for preemptive treatment of Epstein Barr virus reactivation after allogenic hematopoietic stem cell transplantation. Curr Res Transl Med. 2019;67:145-148.

SUPPORTING INFORMATION

Additional supporting information may be found online in the Supporting Information section.

How to cite this article: Ius F, Müller C, Sommer W, et al. Six-year experience with treatment of early donor-specific anti-HLA antibodies in pediatric lung transplantation using a human immunoglobulin-based protocol. Pediatric Pulmonology. 2020;55:754–764. https://doi.org/10.1002/ppul.24639