Observation of s-Channel Production of Single Top Quarks at the Tevatron

The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters.

Citation	Aaltonen, T., V. M. Abazov, B. Abbott, B. S. Acharya, M. Adams, T. Adams, J. P. Agnew, et al. “Observation of s-Channel Production of Single Top Quarks at the Tevatron.” Physical Review Letters 112, no. 23 (June 2014). © 2014 American Physical Society
As Published	http://dx.doi.org/10.1103/PhysRevLett.112.231803
Publisher	American Physical Society
Version	Final published version
Citable link	http://hdl.handle.net/1721.1/92304
Terms of Use	Article is made available in accordance with the publisher’s policy and may be subject to US copyright law. Please refer to the publisher’s site for terms of use.

MIT Open Access Articles
Observation of σ-Channel Production of Single Top Quarks at the Tevatron

T. Aaltonen, B. Abbott, B. S. Acharya, M. Adams, T. Adams, J. P. Agnew, G. D. Alexeev, G. Alkhazov, A. Alton, S. Amerio, D. Amidei, A. Anastassov, A. Amnovi, J. Antos, G. Appolinari, J. A. Appel, A. Arisawa, A. Artikov, J. A. Asaad, W. Ashmanksas, A. Askew, S. Atkins, B. Auerbach, K. Augsten, A. Aurisano, C. Avila, F. Azfar, F. Badau, W. Badgett, T. Bae, L. Bagby, B. Baldin, D. V. Bandurin, S. Banerjee, A. Barbaro-Galtieri, E. Barberis, P. Baringer, V. E. Barnes, B. A. Barnett, P. Barria, J. F. Bartlett, L. Bastos, M. Bautz, V. Bautista, A. Bean, F. Bedeschi, M. Begalli, S. Behari, L. Bellantoni, G. Bellettini, J. Bellinger, D. Benjamin, S. Ben, G. Bernardi, R. Bernhard, I. Bertram, M. Besançon, R. Beuselinck, P. Bhat, S. Bhatia, V. Bhatnagar, A. Bhatti, K. R. Bland, G. Blazey, S. Blessing, K. Bloom, B. Blumenfeld, A. Bocci, A. Bodek, A. Bohein, D. Boline, E. Boos, G. Borissov, D. Bortoletto, M. Borysova, J. Boudreau, A. Boveia, A. Brandi, O. Brandt, L. Brigliadori, R. Brock, C. Bromberg, A. Bross, D. Brown, E. Brucken, X. B. Bu, J. Budagov, B. Bunichev, S. Burdin, K. Burkett, G. Busetto, P. Bussey, C. P. Buszello, P. Butti, A. Buzza, A. Calamba, E. Camacho-Pérez, S. Camarda, M. Campanelli, F. Candelì, B. Carls, D. Carlsmith, R. Carosi, S. Carrillo, B. Casal, M. Casarsa, B. C. K. Casey, H. Castilla-Valdez, A. Castro, P. Catastini, S. Cauchi, D. Cauz, G. Cavaliere, M. Cavalli-Sforza, A. Cerri, L. Cerrito, S. Chakraborti, K. M. Chan, A. Chandra, E. Chapon, G. Chen, T. Chimento, G. Chirelli, G. Chlachidze, K. Choi, S. Cho, D. Chokheli, B. Choudhary, S. Chihangir, D. Claes, A. Cola, C. Clarke, J. Clutter, M. E. Convery, J. Conway, M. Cooke, W. E. Cooper, M. Corbo, M. Corcoran, M. Cordelli, F. Couderc, M.-C. Cousinou, C. A. Cox, J. D. Cox, M. Cremonesi, D. Cruz, J. Cuevas, R. Cubertson, R. C. Dunk, A. Das, N. d’Ascanzo, M. Datta, G. Davies, P. de Barbo, J. J. de Jong, E. De La Cruz-Burelo, F. Déliot, R. Demina, L. Démortier, M. Deninno, D. Denisov, M. D’Errico, S. Desai, C. Deterre, K. DeVaughn, F. Devoto, A. Di Canto, B. Di Ruza, H. T. Diehl, M. Diesburg, J. R. Dittmann, A. Dominguez, S. Donati, M. D’Onofrio, M. Dorigo, A. Dubri, E. Dubey, L. V. Dudko, A. Duperrin, S. Dutt, M. Eads, K. Ebina, R. Edgar, D. Edmonds, A. Elagin, J. Ellison, V. D. Elvira, Y. Enari, R. Erbacher, S. Errede, B. Esham, H. Evans, V. N. Evdokimov, S. Farrington, L. Fang, F. Ferb, S. Fernández Ramos, F. Fiedler, R. Field, F. Filthaut, W. Fisher, H. E. Fisk, G. Flanagan, R. Forrest, M. Fortner, H. Fox, M. Franklin, J. C. Freeman, F. Frisch, S. Fuess, Y. Funakoshi, C. Galloni, P. Garbincius, J. García-Bellido, J. A. García-González, A. Garfinkel, P. Garosi, V. Gavrilov, W. Ges, C. E. Gerber, H. Gerberich, E. Gerstein, Y. Gershtein, S. Giagu, V. Giakoumopoulos, K. Gibson, C. M. Ginsburg, G. Ginther, N. Giokaris, P. Giommi, G. Giorgi, V. Glagolev, D. Glinzinski, M. Gold, D. Goldin, G. Golossanov, G. Gomez, G. Gomez-Ceballos, M. Goncharov, O. González López, K. Goulianos, E. Gramelini, P. D. Grannis, S. Greder, H. Greenlee, G. Grenier, S. Grinstein, Ph. Gris, F. J. Grivaz, A. Grohsjean, G. Grossop-Pichler, R. C. Group, S. Grünendahl, M. Grünewald, T. Guillemin, J. Guimaraes da Costa, G. Gutierrez, P. Gutierrez, S. R. Hahn, J. Haley, J. Y. Han, L. Han, F. Happacher, K. Har, K. Harde, M. Hare, A. Harel, R. F. Harr, T. Harrington-Taber, K. Hatakeyama, J. M. Hauptman, C. Hays, J. Hays, T. Head, T. Hebbeker, D. Hedrin, H. Hegab, J. Heinrich, A. P. Heinson, U. Heintz, C. Hensel, I. Heredia-De La Cruz, M. Herndon, K. Herner, G. Hesketh, M. D. Hildreth, R. Hirosky, T. Hoang, J. D. Hobbs, A. Hoeker, J. Hoeneis, J. Hogan, M. Hohlfeld, J. L. Holzbauer, Z. Hong, W. Hopkins, S. Hou, I. Howley, Z. Hubacek, R. E. Hughes, U. Husemann, M. Hussein, J. Huston, V. Hynek, I. Iashvili, Y. Ilchenko, R. Illingworth, G. Introtto, M. Iori, A. S. Itó, A. Ivanov, S. Jaouen, M. Jaffré, E. James, J. Jang, A. Jayasinghe, B. Jayatilaka, E. J. Jeon, M. S. Jeong, R. Jesik, P. Jiang, S. Jindariani, K. Johns, E. Johnson,
G. Volpi,1,17 P. Wagner,1,40 H. D. Wahl,1,97 R. Wallny,1,15,1 D. Waters,1,28 G. Watts,1,122 M. Wayne,1,103 J. Weichert,1,76 L. Welty-Rieger,1,100 W. C. Wester III,1,15 D. Whiteson,1,40,c A. B. Wicklund,1,2 S. Wilbur,1,7 H. H. Williams,1,40 M. R. J. Williams,1,101 G. W. Wilson,1,105 J. S. Wilson,1,31 P. Wilson,1,15 B. L. Winer,1,35 P. Wittich,1,15,3 M. Wobisch,1,106 S. Wolbers,1,15 H. Wolfe,1,35 D. R. Wood,1,107 T. Wright,1,31 X. Wu,1,18 Z. Wu,1,5 T. R. Wyatt,1,94 X. Xie,1,15 R. Yamada,1,15 K. Yamamoto,1,37 D. Yamato,1,7 Yang,5,99 T. Yang,1,15 U. K. Yang,1,25 Y. C. Yang,1,25 W-M. Yao,1,126 T. Yasuda,1,15 Y. A. Yatsunenko,1,13 W. Ye,1,113 Z. Ye,1,15 G. P. Yeh,1,15 K. Yi,1,15,m H. Yin,1,15 K. Yip,1,14 J. Yoh,1,15 K. Yorita,1,52 T. Yoshida,1,37,k S. W. Youn,1,15 G. B. Yu,1,14 I. Yu,1,25 J. M. Yu,1,31 A. M. Zanetti,1,48 Y. Zeng,1,14 J. Zennamo,1,112 T. G. Zhao,1,94 B. Zhou,1,31 C. Zhu,1,14 J. Zhu,1,31 M. Zielinski,1,44 D. Ziembinska,1,101 L. Zivkovic,1,69 and S. Zucchelli1 (CDF Collaboration)1

1Institute of Physics, Academia Sinica, Taipei, Taiwan 11529, Republic of China

2Argonne National Laboratory, Argonne, Illinois 60439, USA

3University of Athens, 157 71 Athens, Greece

4Institut de Fisica d’Altes Energies, ICREA, Universitat Autonoma de Barcelona, E-08193 Bellaterra (Barcelona), Spain

5Baylor University, Waco, Texas 76798, USA

6aIstituto Nazionale di Fisica Nucleare Bologna, I-40127 Bologna, Italy

6bUniversity of Bologna, I-40127 Bologna, Italy

7University of California, Davis, Davis, California 95616, USA

8University of California, Los Angeles, Los Angeles, California 90024, USA

9Istituto de Fisica de Cantabria, CSIC-University of Cantabria, 39005 Santander, Spain

10Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA

11Enrico Fermi Institute, University of Chicago, Chicago, Illinois 60637, USA

12Comenius University, 842 48 Bratislava, Slovakia; Institute of Experimental Physics, 040 01 Kosice, Slovakia

13Joint Institute for Nuclear Research, RU-141980 Dubna, Russia

14Duke University, Durham, North Carolina 27708, USA

15Fermi National Accelerator Laboratory, Batavia, Illinois 60510, USA

16University of Florida, Gainesville, Florida 32611, USA

17Laboratori Nazionali di Frascati, Istituto Nazionale di Fisica Nucleare, I-00044 Frascati, Italy

18University of Geneva, CH-1211 Geneva 4, Switzerland

19Glasgow University, Glasgow G12 8QQ, United Kingdom

20Harvard University, Cambridge, Massachusetts 02138, USA

21Division of High Energy Physics, Department of Physics, University of Helsinki, FIN-00014, Helsinki, Finland; Helsinki Institute of Physics, FIN-00014 Helsinki, Finland

22University of Illinois, Urbana, Illinois 61801, USA

23The Johns Hopkins University, Baltimore, Maryland 21218, USA

24Institut für Experimentelle Kernphysik, Karlsruhe Institute of Technology, D-76131 Karlsruhe, Germany

25Center for High Energy Physics: Kyungpook National University, Daegu 702-701, Korea; Seoul National University, Seoul 151-742, Korea; Sungkyunkwan University, Suwon 440-746, Korea; Korea Institute of Science and Technology Information, Daejeon 305-806, Korea; Chonnam National University, Gwangju 500-757, Korea; Chonbuk National University, Jeonju 561-756, Korea; Ewha Womans University, Seoul 120-750, Korea

26Ernest Orlando Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA

27University of Liverpool, Liverpool L69 7ZE, United Kingdom

28University College London, London WC1E 6BT, United Kingdom

29Centro de Investigaciones Energéticas Medioambientales y Tecnológicas, E-28040 Madrid, Spain

30Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA

31University of Michigan, Ann Arbor, Michigan 48109, USA

32Michigan State University, East Lansing, Michigan 48824, USA

33Institution for Theoretical and Experimental Physics, ITEP, Moscow 117259, Russia

34University of New Mexico, Albuquerque, New Mexico 87131, USA

35The Ohio State University, Columbus, Ohio 43210, USA

36University of Oxford, Oxford OX1 3RH, United Kingdom

37Osaka City University, Osaka 558-8585, Japan

38University of Oxford, Oxford OX1 3RH, United Kingdom

39Istituto Nazionale di Fisica Nucleare, Sezione di Padova, I-35131 Padova, Italy

231803-3
The single-top-quark production cross section is expected to be proportional to the square of the magnitude of the quark-mixing Cabibbo-Kobayashi-Maskawa matrix element V_{tb}, and consequently sensitive to potential contributions from a fourth generation of quarks [5,6], as well as flavor-changing neutral currents [7–10], anomalous top-quark couplings [11–13], heavy W bosons [14–17], charged Higgs bosons [18,19], or other new phenomena [20,21].

At the Tevatron, there are two important processes in which a single top quark is produced in association with other quarks. The dominant channel proceeds through the exchange of a spacelike virtual W boson between a light quark and a bottom quark (b quark) in the t channel [22–24]. A second mode occurs through the exchange of a
timelike virtual W boson in the s channel, which produces a top quark and a b quark \cite{25}. Figure 1 shows the leading Feynman diagrams for the s- and t-channel production modes. Independent measurements of s-channel and t-channel production are important, since BSM contributions could have different effects on the two modes \cite{20}.

Single-top-quark production, independent of channel, was reported by the CDF and D0 Collaborations in Refs. \cite{26,27} and \cite{28,29}, respectively. The D0 Collaboration subsequently measured with larger data sets the production cross section for the combined s and t channels \cite{30}, and obtained $\sigma_{s+t} = 4.11^{+0.60}_{-0.55}$ fb using a data set of 9.7 fb$^{-1}$ in agreement with the SM prediction of 3.15 ± 0.19 pb ($m_t = 172.5$ GeV) \cite{24,31}.

After establishing the $s + t$ process, the cross sections of the individual production modes were measured independently. Several differences in the properties of s- and t-channel events can be used to distinguish them from one another. Events originating from t-channel production typically contain one light-flavor jet in the forward detector region (at large pseudorapidity), which is useful for distinguishing them from events associated with s-channel production and other SM background processes. Moreover, events from the s-channel process are more likely to contain two jets originating from b quarks (b jets) within the central region of the detector where they can be identified. Hence, single-top-like events with two identified b jets are more likely to have originated from s-channel production. Exploiting these differences, the D0 Collaboration observed the t-channel process \cite{32}, and measured its cross section to be $\sigma_t = 3.07^{+0.54}_{-0.55}$ pb using a data set of 9.7 fb$^{-1}$ \cite{30}. This compares to the SM prediction of 2.10 ± 0.13 pb ($m_t = 172.5$ GeV) \cite{24}. At the CERN LHC proton-proton (pp) collider, t-channel production was also observed by the ATLAS and CMS Collaborations \cite{33,34}.

Observing the s-channel process is more difficult, since the expected cross section is smaller than that of the t channel and its kinematic features are less distinct from the background. However, the Tevatron has an advantage over the LHC in this mode, since valence quarks ($q\bar{q}'$ from $p\bar{p}$) generally initiate s-channel single-top-quark production, leading to a larger signal-to-background ratio at the Tevatron than at the LHC. Due to this advantage, the CDF and D0 Collaborations have reported evidence for s-channel production independently of each other \cite{30,35}, while the LHC experiments have to date reported only unpublished upper limits on the cross section in pp collisions.

In this Letter, we report a combination of s-channel cross section analyses performed by the CDF \cite{35,36} and D0 \cite{30} Collaborations. The CDF and D0 detectors are central magnetic spectrometers surrounded by electromagnetic and hadronic calorimeters and muon detectors \cite{37–39}. The combined measurement utilizes the full Tevatron Run II data sets corresponding to up to 9.7 fb$^{-1}$ of integrated luminosity per experiment.

The data are selected using a logical OR of many online selection requirements, which preserve high signal efficiency for offline analysis. Since the magnitude of the W-top-bottom quark coupling is much larger than the W-top-down and W-top-strange quark couplings \cite{40}, each top quark decays almost exclusively to a W boson and a b quark. The selection is split into two distinct final-state topologies, both designed to select single-top-quark events in which the W boson decays leptonically.

One final-state topology ($\ell' + \text{jets}$, $\ell' = e$ or μ), analyzed by both collaborations, contains single-top-quark events in which the W boson decays leptonically producing an electron or a muon. We select events that (i) contain only one isolated lepton ℓ' with large transverse momentum p_T, (ii) have large missing transverse energy E_T \cite{39}, (iii) have either two jets (CDF analysis) or two or three jets (D0 analysis) with large p_T, and (iv) have one or two b jets. To identify b jets, multivariate techniques are used that discriminate b jets from jets originating from light quarks and gluons \cite{41,42}. Additional selection criteria are applied to exclude kinematic regions that are difficult to model, and to minimize the quantum chromodynamics (QCD) multijet background where one jet is misreconstructed as a lepton and spurious E_T arises from jet energy mismeasurements.

The other final-state topology, analyzed by the CDF Collaboration, involves E_T and jets, but no reconstructed isolated charged leptons ($E_T + \text{jets}$). The CDF analysis avoids overlap with the $\ell' + \text{jets}$ sample by explicitly vetoing events with identified leptons \cite{36}. Large missing transverse energy is required and events with two or three reconstructed jets are accepted. This additional sample increases the acceptance for s-channel signal events by encompassing those in which the W-boson decay produces a muon or electron that is either not reconstructed or not isolated, or a hadronically decaying tau lepton that is reconstructed as a third jet. After the basic event selection, QCD multijet events dominate the $E_T + \text{jets}$ event sample. To reduce this multijet background, a neural-network event selection is optimized to preferentially select signallike events.

Events passing the $\ell' + \text{jets}$ and $E_T + \text{jets}$ selections are further separated into independent analysis channels based on the number of reconstructed jets as well as the number...
and quality of b-tagged jets. Each of the analyzed channels has a different background composition and signal (s) to background (b) ratio. Analyzing them separately enhances the sensitivity to single-top-quark production \cite{30,35,36}.

Both collaborations use Monte Carlo (MC) generators to simulate the kinematic properties of signal and background events, except in the case of multijet production, for which the model is derived from data. The CDF analysis models single-top-quark signal events at next-to-leading-order (NLO) accuracy in the strong coupling constant α_s using the POWHEG \cite{43} generator. The D0 analysis uses the SINGLETOP \cite{44} event generator, based on NLO COMPHEP calculations that match the event kinematic features predicted by NLO calculations \cite{45,46}. Spin information in the decays of the top quark and the W boson is preserved for both POWHEG and SINGLETOP.

Kinematic properties of background events associated with the $W +$ jets and $Z +$ jets processes are simulated using the ALPGEN leading-order MC generator \cite{47}, and those of diboson processes (WW, WZ, and ZZ) are modeled using PYTHIA \cite{48}. The $t\bar{t}$ process is modeled using PYTHIA in the CDF analysis and by ALPGEN in the D0 analysis. Higgs-boson processes are modeled using simulated events generated with PYTHIA for a Higgs-boson mass of $m_H = 125$ GeV. In all cases, PYTHIA is used to model proton remnants and simulate the hadronization of all generated partons. The mass of the top quark in simulated events is set to $m_t = 172.5$ GeV, which is consistent with the current Tevatron average value \cite{1}. All MC events are processed through GEANT-based detector simulations \cite{49} and reconstructed by the same software packages used for the collider data.

Predictions for the normalization of simulated background-process contributions are estimated using both simulation and data. Data are used to normalize the W plus light-flavor and heavy-flavor jet contributions using enriched $W +$ jets data samples that have negligible signal content \cite{27,30,36}. All other simulated background samples are normalized to the theoretical cross sections at NLO combined with next-to-next-to-leading log (NNLL) resummation \cite{24} for t-channel single-top-quark production, at next-to-NLO \cite{50} for $t\bar{t}$, at NLO \cite{51} for $Z +$ jets and diboson production, and including all relevant higher-order QCD and electroweak corrections for Higgs-boson production \cite{52}. Differences observed between simulated events and data in lepton and jet reconstruction efficiencies, resolutions, jet-energy scale (JES), and b-tagging efficiencies are adjusted in the simulation to match the data, through correction functions obtained from measurements in independent data samples.

We form multivariate discriminants, optimized for separating the s-channel single-top-quark signal events in each of the analysis samples from the larger background contributions, to extract the cross section measurements \cite{53}. The combined cross section measurement is obtained using a Bayesian statistical analysis of each bin of the observed discriminant distribution from each sample, comparing data to the modeled distributions for each of the contributing signal and background processes \cite{54}.

A complete list of systematic uncertainties for the $\ell^+ +$ jets analyses is given in Table I. These can arise from uncertainties on differential distributions (Dist) and their normalizations (Norm). The CDF $E_T +$ jets analysis has a similar set of systematic uncertainties that are fully correlated with the CDF $\ell^+ +$ jets analysis except for the uncertainty related to the data-based background. Sources of systematic uncertainty common to measurements of both collaborations are assumed to be 100% correlated, while other uncertainties are assumed to be uncorrelated. The dependence of the results on the correlation assumptions has been found to be negligible. The categories of uncertainty correspond generally to those in Refs. \cite{1,3}, and can be summarized as follows.

Detector-specific luminosity uncertainty: The component of the uncertainty on integrated luminosity that comes from the uncertainty on the acceptance and efficiency of the luminosity detector is taken as uncorrelated between the CDF \cite{55} and D0 \cite{56} measurements.

Luminosity from cross section: The portion of the uncertainty in integrated luminosity that comes from uncertainties on the inelastic and diffractive cross sections is fully correlated between the CDF and D0 measurements.

Signal modeling: The systematic uncertainty associated with uncertainties in the modeling of the single-top-quark signal, including uncertainties from the choice of the description of initial- and final-state QCD radiation, and proton and antiproton parton density functions, also covering uncertainties in the applied hadronization models, is taken as fully correlated between the CDF and D0 measurements.

Systematic uncertainty	CDF Norm(%)	Dist	D0 Norm(%)	Dist	Correlated
Lumi from detector	4.5	4.5	No		
Lumi from cross section	4.0	4.0	Yes		
Signal modeling	2–10	✓ 3–8	Yes		
Background (simulation)	2–12	✓ 2–11	Yes		
Background (data)	15–40	✓ 19–50	No		
Detector modeling	2–10	✓ 1–5	No		
b-jet-tagging	10–30	✓ 5–40	No		
JES	0–20	✓ 0–40	No		
Background from simulation: The systematic uncertainty associated with uncertainties in the modeling of various background contributions is taken as fully correlated between the CDF and D0 measurements. This includes uncertainties in \(\bar{t}t \) and diboson process normalizations originating from theoretical calculations.

Background based on data: The systematic uncertainty associated with the modeling of various background sources obtained using data-driven methods is uncorrelated between the CDF and D0 measurements. This includes uncertainties on the normalization of \(W + \text{jets} \), \(Wb\bar{b} \), and \(Wc\bar{c} \) events as well as uncertainties on the modeling of the contributions and discriminant-variable shapes for the \(W + \text{jets} \) and QCD multijet production processes.

Detector modeling: The systematic uncertainty on efficiencies for identifying reconstructed objects and to cover observed mismodeling of the data from the simulations is uncorrelated between the CDF and D0 measurements.

\(b \)-jet tagging: The systematic uncertainty associated with the modeling of \(b \)-jet tagging efficiencies and associated mistag rates is uncorrelated between the CDF and D0 measurements.

Jet energy scale: This systematic uncertainty originates from using calibration-data samples to establish the JES. For the CDF analyses, this corresponds to uncertainties associated with the \(\eta \)-dependent JES corrections, which are estimated using dijet events in data. For the D0 analysis, this includes uncertainties in calorimeter response for light jets, uncertainties from \(\eta \) - and \(p_T \)-dependent JES corrections, and other small contributions. This uncertainty is assumed to be uncorrelated between the CDF and D0 measurements.

The Bayesian posterior probability density as a function of the \(s \)-channel signal cross section \(\sigma_s \) is given by

\[
p(\sigma_s) = \int L(\sigma_s, \{\theta\}|\text{data}) \pi(\sigma_s) \Pi(\{\theta\}) d\{\theta\},
\]

where \(L \) is the joint binned likelihood function for all channels

\[
L = \prod_{i=\text{bins, channels}} \frac{(s_i + b_i)^{n_i} e^{-(s_i + b_i)}}{n_i!}.
\]

The posterior probability distribution for the combination of the CDF and D0 analysis channels compared with the NLO + NNLL theoretical prediction.

![Graph](image-url)
The number of observed events in bin i is n_i, $\{\theta\}$ is the set of nuisance parameters representing the systematic uncertainties (assuming priors following a Gaussian probability density function), and $\Pi(\{\theta\})$ is the product of the prior probability densities encoding the systematic uncertainties on $\{\theta\}$. The predictions for the number of signal events s_i and background events b_i depend on the values of the nuisance parameters that are integrated over in Eq. (1). The prior density for the signal cross section, $\pi(\sigma_s)$, is taken to be a uniform prior for non-negative cross sections. We quote the measured cross section as the value that maximizes its posterior likelihood, and the uncertainty as the smallest interval that contains 68% of the integrated area of the posterior density.

Figure 2 shows the signal and background expectations and the data as a function of $\log_{10}(s/b)$ of the collected bins, for the combined CDF and D0 analyses. The respective background-subtracted $\log_{10}(s/b)$ discriminant distribution using the most likely values for the signal and background yields derived from the likelihood fit is shown in Fig. 3. The extracted posterior probability distribution for σ_s is presented in Fig. 4, and Fig. 5 gives a graphical presentation of the individual and combined measurements. All measurements agree within their uncertainties with the SM prediction $\sigma_{SM}^S = 1.05 \pm 0.06 \text{ pb}$ ($m_t = 172.5$ GeV) [31]. The most probable value for the combined cross section is $\sigma_s = 1.29^{+0.26}_{-0.24} \text{ pb}$ for a top-quark mass of 172.5 GeV. The total expected uncertainty is 20%, and the expected uncertainty without considering systematic uncertainties is 14%. The dependence of the measured value on the assumed value of the top-quark mass is negligible compared to the uncertainty on the measurement [27,30].
PRL 112, 231803 (2014)

PHYSICAL REVIEW LETTERS

week ending 13 JUNE 2014

Programa Consolider-Ingenio 2010 (Spain), The Swedish Research Council (Sweden), SNSF (Switzerland), STFC and the Royal Society (United Kingdom), the A. P. Sloan Foundation (U.S.), and the EU community Marie Curie Fellowship Contract No. 302103.

*Deceased.

Visitor from University of British Columbia, Vancouver, BC V6T 1Z1, Canada.

Visitor from Istituto Nazionale di Fisica Nucleare, Sezione di Cagliari, 09042 Monserrato (Cagliari), Italy.

Visitor from University of California Irvine, Irvine, California 92697, USA.

Visitor from Institute of Physics, Academy of Sciences of the Czech Republic, 182 21, Czech Republic.

Visitor from CERN, CH-1211 Geneva, Switzerland.

Visitor from Cornell University, Ithaca, New York 14853, USA.

Visitor from University of Cyprus, Nicosia CY-1678, Cyprus.

Visitor from Office of Science, U.S. Department of Energy, Washington, DC 20585, USA.

Visitor from University College Dublin, Dublin 4, Ireland.

Visitor from ETH, 8092 Zürich, Switzerland.

Visitor from University of Fukui, Fukui City, Fukui Prefecture, Japan 910-0017.

Visitor from Universidad Iberoamericana, Lomas de Santa Fe, México, C.P. 01219, Distrito Federal.

Visitor from Kinki University, Higashi-Osaka City, Japan 577-8502.

Visitor from Kansas State University, Manhattan, Kansas 66506, USA.

Visitor from Brookhaven National Laboratory, Upton, New York 11973, USA.

Visitor from Queen Mary, University of London, London, E1 4NS, United Kingdom.

Visitor from University of Melbourne, Victoria 3010, Australia.

Visitor from Muons, Inc., Batavia, Illinois 60510, USA.

Visitor from Nagasaki Institute of Applied Science, Nagasaki 851-0193, Japan.

Visitor from National Research Nuclear University, Moscow 115409, Russia.

Visitor from Northwestern University, Evanston, Illinois 60208, USA.

Visitor from University of Notre Dame, Notre Dame, Indiana 46556, USA.

Visitor from Universidad de Oviedo, E-33007 Oviedo, Spain.

Visitor from CNRS-IN2P3, Paris, F-75205 France.

Visitor from Universidad Tecnica Federico Santa Maria, 110v Valparaiso, Chile.

Visitor from The University of Jordan, Amman 11942, Jordan.

Visitor from Universite catholique de Louvain, 1348 Louvain-La-Neuve, Belgium.

Visitor from University of Zürich, 8006 Zürich, Switzerland.

Visitor from Massachusetts General Hospital, Boston, Massachusetts 02114, USA.

Visitor from Harvard Medical School, Boston, Massachusetts 02114, USA.

Visitor from Hampton University, Hampton, Virginia 23668, USA.

Visitor from Los Alamos National Laboratory, Los Alamos, New Mexico 87544, USA.

Visitor from Università degli Studi di Napoli Federico I, I-80138 Napoli, Italy.

Visitor from Augustana College, Sioux Falls, South Dakota, USA.

Visitor from The University of Liverpool, Liverpool, United Kingdom.

Visitor from DESY, Hamburg, Germany.

Visitor from Universidad Michoacana de San Nicolas de Hidalgo, Morelia, Mexico.

Visitor from SLAC, Menlo Park, California, USA.

Visitor from University College London, London, United Kingdom.

Visitor from Centro de Investigacion en Computacion - IPN, Mexico City, Mexico.

Visitor from Universidade Estadual Paulista, São Paulo, Brazil.

Visitor from Karlsruher Institut für Technologie (KIT) - Steinbuch Centre for Computing (SCC).

Visitor from Office of Science, U.S. Department of Energy, Washington, D.C. 20585, USA.

Visitor from American Association for the Advancement of Science, Washington, D.C. 20005, USA.

Visitor from National Academy of Science of Ukraine (NASU) - Kiev Institute for Nuclear Research (KINR).

1 T. Aaltonen et al. (CDF and D0 Collaborations), Phys. Rev. D 86, 092003 (2012); arXiv:1305.3929.

2 C. T. Hill and S. J. Parke, Phys. Rev. D 49, 4454 (1994).

3 T. Aaltonen et al. (CDF and D0 Collaborations), Phys. Rev. D 89, 072001 (2014).

4 N. Cabibbo, Phys. Rev. Lett. 10, 531 (1963); M. Kobayashi and T. Maskawa, Prog. Theor. Phys. 49, 652 (1973).

5 M. S. Chanowitz, Phys. Rev. D 79, 113008 (2009).

6 J. Alwall, R. Frederix, J.-M. Gerard, A. Giammanco, M. Herquet, S. Kalinin, E. Kou, V. Lemaire, and F. Maltoni, Eur. Phys. J. C 49, 791 (2007).

7 T. M. P. Tait and C. P. Yuan, Phys. Rev. D 55, 7300 (1997).

8 M. E. Luke and M. J. Savage, Phys. Lett. B 307, 387 (1993).

9 T. Aaltonen et al. (CDF Collaboration), Phys. Rev. Lett. 102, 151801 (2009).

10 V. M. Abazov et al. (D0 Collaboration), Phys. Lett. B 693, 81 (2010).

11 A. P. Heinson, A. S. Belyaev, and E. E. Boos, Phys. Rev. D 56, 3114 (1997).

12 V. M. Abazov et al. (D0 Collaboration), Phys. Lett. B 708, 21 (2012).

13 V. M. Abazov et al. (D0 Collaboration), Phys. Lett. B 713, 165 (2012).

14 E. H. Simmons, Phys. Rev. D 55, 5494 (1997).

15 A. Datta, P. J. O’Donnell, Z. H. Lin, X. Zhang, and T. Huang, Phys. Lett. B 483, 203 (2000).

16 T. Aaltonen et al. (CDF Collaboration), Phys. Rev. Lett. 103, 041801 (2009).
be energy, as measured by the calorimeter, is defined to be $E_T = E \sin \theta$. The missing E_T (E_T^*) is defined by $E_T = \sum E_T \hat{n}_i$, $i =$ calorimeter tower number, where \hat{n}_i is a unit vector perpendicular to the beam axis and pointing at the ith calorimeter tower. E_T is corrected for high-energy muons and for mismeasurements of jet energies. We define $E_T = |E_T^*|$. The transverse momentum p_T is defined to be $p \sin \theta$.

[40] J. Beringer et al. [Particle Data Group Collaboration], Phys. Rev. D 86, 010001 (2012).

[41] J. Freeman, T. Junk, M. Kirby, Y. Oksuzian, T. Phillips, F. Snider, M. Trovato, J. Vizan, and W. Yao, Nucl. Instrum. Methods Phys. Res., Sect. A 697, 64 (2013).

[42] V. M. Abazov et al. (D0 Collaboration), Nucl. Instrum. Methods Phys. Res., Sect. A 620, 490 (2010); V. M. Abazov et al. (D0 Collaboration), arXiv:1312.7623.

[43] S. Alioli, P. Nason, C. Oleari, and E. Re, J. High Energy Phys. 09 (2009) 111.

[44] E. E. Boos, V. E. Bunichev, L. V. Dudko, V. I. Savrin, and V. V. Sherstnev, Phys. At. Nucl. 69, 1317 (2006). We use SINGLETOP version 4.2p1.

[45] Z. Sullivan, Phys. Rev. D 70, 114012 (2004).

[46] J. M. Campbell, R. Frederix, F. Maltoni, and F. Tramontano, Phys. Rev. Lett. 102, 182003 (2009).

[47] M. L. Mangano, M. Moretti, F. Piccinini, R. Pittau, and A. D. Polosa, J. High Energy Phys. 07 (2003) 001. We use ALPGEN version 2.11.

[48] T. Sjöstrand, S. Mrenna, and P. Skands, J. High Energy Phys. 05 (2006) 026. We use PYTHIA version 6.409.

[49] R. Brun and F. Carminati, CERN Program Library Long Writeup, Report No. W5013, 1993.

[50] S. Moch and P. Uwer, Phys. Rev. D 78, 034003 (2008). The top-quark-pair cross section is $7.46 \pm 0.75 \text{ pb}$ ($m_t = 172.5 \text{ GeV}$).

[51] R. K. Ellis, Nucl. Phys. B, Proc. Suppl. 160, 170 (2006). We use MG5 \text{ aMC} version 5.1.

[52] J. Baglio and A. Djouadi, J. High Energy Phys. 10 (2010) 064.

[53] For the D0 Collaboration this is different from Ref. [30], where a combined s- and t-channel discriminant was used to measure both single top quark channels separately, without assuming their SM cross sections. In this Letter, we use a discriminant where the s channel is the only signal and the t channel is considered as background normalized to its SM cross section.

[54] I. Bertram et al., Report No. FERMILAB-TM-2104 (2000).

[55] S. Klimenko, J. Konigsberg, and T. M. Liss, Report No FERMILAB-FN-0741.

[56] T. Andeen et al., Report No FERMILAB-TM-2365 (2007).

[57] A. Bhatti et al., Nucl. Instrum. Methods Phys. Res., Sect. A 566, 375 (2006).

[58] V. M. Abazov et al. (D0 Collaboration), Phys. Rev. D 85, 052006 (2012).

[59] G. Cowan, K. Cranmer, E. Gross, and O. Vitells, Eur. Phys. J. C 71, 1554 (2011).