Congenital absence of the left atrial appendage

A 3-month-old male child was referred to our tertiary-care center for respiratory distress. He was in very poor general condition and expired within 2 hours of admission. Before this referral, the child had been hospitalized twice in the recent past for similar complaint and had been administered antibiotics and inotropes. There were 3 two-dimensional echocardiographic reports which had suggested ostium secundum atrial septal defect (ASD) and large muscular ventricular septal defect in a setting of transposition of great arteries. There was an additional finding of left atrio-ventricular valvular atresia with a discrepancy in the type of ventricular looping (d-loop versus l-loop). A complete autopsy was requested. All organs were in *situs solitus* with normal bronchial morphology (eparterial right bronchus and hyparterial left bronchus). The cause of death was related to adenoviral interstitial pneumonitis with superadded confluent bronchopneumonia and diffuse alveolar damage. Detailed cardiac examination showed a single ventricle of right ventricular morphology with a double outlet [Figures 1 and 2], along with a large ostium secundum ASD and mitral valvular atresia. The aorta and pulmonary trunk were situated side-by-side with a right and left positions, respectively. The pulmonary trunk was larger than the ascending aorta. A hypoplastic left ventricle was not demonstrated. Interestingly, the left atrial appendage (LAA) was absent [Figure 1].

The appendage of the left atrium is the only portion that develops from the left wall of the primitive atrium as muscular finger-like projection.[1] Though it functions to some extent as a decompression chamber and elaborates the atrial natriuretic peptide, it has attained importance in adults in situations of non-valvular and valvular atrial fibrillation (AF).[1] In such patients, since the LAA serves as a trigger for AF and the site for thrombus, it is a seat for percutaneous or surgical techniques for LAA exclusion.[2] However, in children, its characteristic morphology plays a crucial role in the sequential segmental analysis used in the assessment of congenital heart disease (CHD), particularly when one encounters complex anomalies,[3] as seen in our case of single ventricle; however, the LAA was absent.

Absence of the LAA at its normal anatomical location (to the left of the root of the pulmonary trunk) has 3 distinct possibilities. The first is the congenital anomaly of right juxtaposition of the atrial appendages, where the LAA is on the right side, flanked by the right atrial appendage and ascending aorta. This is associated with complex cardiac malformations but is less common than left juxtaposition.[4] Another reason is spontaneous inversion of the LAA,[5] which also occurs with complex CHD. The final possibility is a true congenital absence (seen in the present case), which very surprisingly is seen as isolated finding in adults with fewer than 20 reports in literature.[6] To the best of our knowledge, this is the first true congenital absence of LAA being reported in a child with complex CHD.

Declaration of patient consent
The authors certify that appropriate patient consent was obtained.

Financial support and sponsorship
Nil.

Conflicts of interest
Dr. Sunil Karande is the Editor of the Journal of Postgraduate Medicine.

Figure 1: Heart and lung block in the fresh state, shows moderate cardiomegaly with side-by-side relationship of the great arteries. Note presence of single ventricular chamber (absence of clear-cut delineation of the interventricular septum by left anterior descending artery) and absence of left atrial appendage (LAA)*. [AA, ascending aorta; DTA, descending thoracic aorta; LCCA, left common carotid artery; LSA, left subclavian artery; PT, pulmonary trunk; RAA, right atrial appendage; RBCA, right brachiocephalic artery]

Figure 2: Single ventricle of right ventricular (RV) morphology with double-outlet (a) The right-sided outflow leading to the ascending aorta (AA); and (b) The left-sided outflow leading to the pulmonary trunk (PT) [AV, aortic valve; PV, pulmonary valve; TV tricuspid valve]
Vaideeswar P, Karande S
Departments of Pathology (Cardiovascular and Thoracic Division) and ¹Pediatrics, Seth GS Medical College and KEM Hospital, Mumbai, Maharashtra, India.
E-mail: shreeprajai@yahoo.co.in
Received : 29-11-2019
Review completed : 19-12-2019
Accepted : 01-01-2020
Published : 01-04-2020

References

1. Al-Saady NM, Obel OA, Camm AJ. Left atrial appendage: Structure, function, and role in thromboembolism. Heart 1999;82;547-54.
2. Whisenant B, Weiss P. Left atrial appendage closure with transcatheter-delivered devices. Interv Cardiol Clin 2014;3:209-18.
3. Bierhals AJ, Rossini S, Woodard PK, Javidan-Nejad C, Billadello JJ, Bhalla S, et al. Segmental analysis of congenital heart disease: Putting the “puzzle” together with computed tomography. Int J Cardiovasc Imaging 2014;30:1161-72.
4. Frescura C, Thiene G. Juxtaposition of the atrial appendages. Cardiovasc Pathol 2012;21:169-79.
5. Fadia M, Vaideeswar P, Pandit SP. Spontaneous inversion of left atrial appendage. Cardiovasc Pathol 2008;15:231-2.
6. Pashun RA, Gannon MP, Tomasetti C, Rahmani N, Saba SG. Congenital absence of the left atrial appendage. J Cardiovasc Comput Tomogr 2019 Aug 6. doi: 10.1016/j.jcct.2019.07.009. [Epub ahead of print].

This is an open access journal, and articles are distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 License, which allows others to remix, tweak, and build upon the work non-commercially, as long as appropriate credit is given and the new creations are licensed under the identical terms.

Access this article online

Quick Response Code:
Website:
www.jspgmonline.com
DOI:
10.4103/jpgm.JPGM_671_19
PubMed ID:
32134007

How to cite this article: Vaideeswar P, Karande S. Congenital absence of the left atrial appendage. J Postgrad Med 2020;66:108-9.
© 2020 Journal of Postgraduate Medicine | Published by Wolters Kluwer - Medknow