Determinants of pre-lacteal feeding practices among mothers having children aged less than 36 months in Ethiopia: Evidence from 2016 Ethiopian demographic and health survey

Bedasa Taye Merga, Bikila Balis, Gelana Fekadu, Abdi Birhanu, Addisu Alemu and Ebisa Tur"i

Abstract

Background: Pre-lacteal feeding is associated with infant morbidity and mortality especially during the neonatal period. About 96% infant deaths in developing countries are attributable to inappropriate feeding practice during the first 6 months of life. This study assessed determinants of pre-lacteal feeding practices in Ethiopia using the data from nationally representative survey.

Methods: Data were extracted from the 2016 Ethiopian Demographic and Health Survey to assess determinants of pre-lacteal feeding practices in Ethiopia. The analysis included a weighted sample of 5303 mothers having children aged 0–36 months. A multivariable logistic regression analysis was conducted and the results were presented with adjusted odds ratio at 95% confidence interval, declaring statistical significance at a p-value < 0.05 in all analyses.

Results: From a total of 5303 mothers having children aged 0–36 months, 423 (8%, 95% confidence interval, 7.06%, 8.99%) had given pre-lacteal foods to their newborn baby. Being from agrarian region (adjusted odds ratio = 0.15, 95% confidence interval, 0.11, 0.20), poorest wealth status (adjusted odds ratio = 1.50, 95% confidence interval, 1.02, 2.22), home delivery (adjusted odds ratio = 1.35, 95% confidence interval, 1.01, 1.79), late initiation of breast feeding (adjusted odds ratio = 4.52, 95% confidence interval, 3.62, 5.64), having no counseling on breast feeding (adjusted odds ratio = 1.33, 95% confidence interval, 1.01, 1.75), and cesarean delivery (adjusted odds ratio = 2.47, 95% confidence interval, 1.45, 4.20) were factors significantly associated with pre-lacteal feeding practice.

Conclusion: A significant proportion of Ethiopian mothers had given pre-lacteal foods to their newborn babies. Poorest wealth index, region, late initiation of breast feeding, not counseled on breast feeding, home delivery, and cesarean delivery were identified as determinants of pre-lacteal feeding. Thus, emphasis should be given to improve mothers’ Infant and Young Child Feeding practice through counseling and utilization of institutional delivery. Moreover, special attention should be given to mothers from pastoralist regions and poor socio-economic status to reduce pre-lacteal feeding practice.

Keywords

Breastfeeding, infant and young child feeding pre-lacteal, Ethiopia

Introduction

Exclusive breastfeeding (EBF) given to newborn from birth through 6 months of age has long-term health and emotional benefits for both child and mother and is related with lower neonatal morbidity and mortality. Proper breastfeeding contributes in increased cognitive and physical development and also has contraceptive importance for mother.1–4 Furthermore, provision of mother’s breast milk to newborns within 1 h of birth ensures that the neonates receives colostrum which is rich in immunoglobulin (Ig) for passive immunity, hormones, and nutrients that a baby needs to thrive.2,4–6 Improving breastfeeding rates around the world could save the lives of more than 820,000 children under age 5 every year, the majority (87%) under 6 months of age.7
Pre-lacteal feeding is associated with increased mortality, serious morbidity, and other long-term adverse health outcomes; however, efforts at national level to minimize pre-lacteal feeding had only modest effect. In 2017, about 59% of infants aged less than 6 months globally had given pre-lacteal feedings. In Ethiopia, its prevalence ranges from 6.1% to 75.8%. Pre-lacteal feeds are of any solid, semi-solid, or liquid food other than breast milk given to newborns before breast feeding is established or within 3 days after delivery. The commonest pre-lacteals given by Ethiopian women are butter, plain water, cow milk, sugar with water, and formula milk. Global risk assessment of suboptimal breastfeeding indicates that 96% of all infant deaths in developing countries are attributable to inappropriate feeding occurring during the first 6 months of life. Pre-lacteal feeds interfering with EBF delays breast feeding initiation, disrupts the mother-baby bonding, interfering with sucking, and can also cause allergy to the infant. Moreover, pre-lacteal feeding exposes the baby to risk of infection, pneumonia, diarrhea, meningitis, HIV transmission, ear infections, and have fewer nutrients which lead to child malnutrition. In 2016, from a total of 667 million under five children, 155 million and 52 million were stunted and wasted, respectively, across the globe; of this, 59 million stunted and 14 million wasted were from Africa. Many studies documented that maternal age, place of residence, parity, antenatal care, wealth index regions, occupation, educational status, sex of child, place of delivery, and poor feeding knowledge associated with pre-lacteal feeding practices. In addition, mode of delivery, counseling on breast feeding, late initiation of breastfeeding, and colostrum avoidance were found to be factors associated with pre-lacteal feeding.

Since 2004, Ethiopia has been implementing the Infant and Young Child Feeding (IYCF) strategy as a key component of child survival approach. However, suboptimal breastfeeding practices including pre-lacteal feeding has been continued as challenges. In the past two decades, although there is reduction of child mortality in Ethiopia, half of the prevailing mortality happens during neonatal period. Thus, investigating the burden and determinants of this problem is vital to promote implementation of IYCF thereby reducing neonatal mortality. Moreover, understanding of factors associated with pre-lacteal feeding is important in the promotion of early initiation of breast feeding and EBF.

In Ethiopia, studies have been conducted assessing pre-lacteal feeding practices. However, these studies are conducted at pocket level and also show variations in prevalence and determinant factors. Therefore, this study assessed the prevalence and determinants of pre-lacteal feeding in Ethiopia using nationally representative data which covers the nine regions and two city administrations.

Methods

Data sources

The data were extracted from the 2016 Ethiopian Demographic and Health Survey (EDHS), a nationally representative survey that collected data on basic health, demographic, and socio-economic indicators. The Central Statistical Agency (CSA) together with the Ministry of Health (MoH) and the Ethiopian Public Health Institute conducted the survey from 18 January 2016 to 27 June 2016 and The United States Agency for International Development (USAID) funded the survey.

Population and sample size

Among 16,583 eligible women, the interview was completed for 15,683 women (15–49 years) across the nine administrative regions and two city administrations. We extracted data for all mothers who had child birth in the last 3 years prior to the survey, and a weighted sample of 5303 mothers with a children of 0–36 months age were included in the study for the purpose of this analysis. Details about the DHS sampling techniques and sample size are available at http://www.dhsprogram.com/. The EDHS research protocol complies with the National Health Research Ethics Committee and Institutional Review Board guidelines.

Study variables

Dependent variable. The outcome variable was pre-lacteal feeds. The mothers were asked two questions to assess if the child was provided with any pre-lacteal feeds: In the first 3 days after delivery, was the child given anything to drink other than breast milk? What was the child given to drink? (Options were milk (other than breast milk); plain water; sugar or glucose water, gripe water, sugar salt water solution; fruit juice; baby formula; tea infusion; coffee, honey; and others). The main outcome variable (provided pre-lacteal feeds = 1 and did not provide pre-lacteal feeds = 0) was derived from the response to the first question. The types of pre-lacteal feeds were reported as a frequency.

Independent variables. This study included place of residence (urban and rural), religion, maternal education (no education, primary education, secondary, and higher education), age of the mother (15–24, 25–34, 35–49 years), sex of the child (male, female), and access to media was recorded as frequency of reading newspaper, listening to radio and watching TV (categorized as Yes or No). The number of antenatal clinic (ANC) visits was also categorized into no ANC visits, one to three ANC visits, and four or more ANC visits. Counseling on breast feeding (Yes or No), timing of breastfeeding initiation categorized as timely if initiated within 1 h of delivery and late if initiated after 1 h after...
delivery. Mode of delivery (vaginal or cesarean), and places of delivery (categorized as institutional or home). Number of children was also categorized into one child, two children, and three or more children.

The 11 regions of Ethiopia are delineated for administrative purposes, and in this study, they were categorized into three contextual regions: pastoralist, agrarian, and city (which were defined on the basis of the cultural and socio-economic backgrounds of their populations).29

Household wealth is represented by wealth index (in five categories: poorest, poorer, middle, richer, and richest). Wealth index was constructed using data on a households’ ownership of selected assets, such as television and bicycles, materials used for housing construction, and types of water access and sanitation facilities. The index placed individual households on a continuous scale relative to their wealth status.28

Statistical analysis

Extracted data were weighted so that the sample was representative of 15- to 49-year-old respondents in 2016 EDHS. Analyses were performed using STATA version 14. To assess the association between socio-demographic characteristics and other explanatory variables, and pre-lacteal feeding practices of mothers with children aged 0–36 months, a logistic regression model was employed.

First, each variable was entered into a binary logistic regression model. Second, variables which were significant at a p-value of less than or equal to 0.25 were fitted into a multivariable logistic regression model to identify independent factors of pre-lacteal feeding practices among mothers with children aged 0–36 months, a logistic regression model was employed.

Results

Socio-demographic characteristics of the study participants

A total of 5303 of mothers were included in the analysis. The mean age of respondents were 28.39 (± SD 6.49) and ranged from 15 to 49 years. Majority (67.4%) of the mothers were in the 25–34 years age group. Three-fifth (62%) of the respondents had no formal education. Islam was the dominant religion accounting for 39.7%. Nine out of 10 (90.6%) were from agrarians region (Table 1).

Breastfeeding practices and obstetric factors

Of the total mothers, 423 (8%, 95% CI: 7.06%, 8.99%) gave pre-lacteal foods to their children. The most common pre-lacteal foods were plain water (56.5%) and powdered/cow milk (30.5%), Juice (8.1%), and baby formula (4.9%). More than four out of five (83.6%) had initiated breast feeding in less than 1 h. Less than half (42.9%) of the mothers had counseling on breast feeding. Two-thirds (31.5%) of the mothers had no antenatal care visit. Majority (64.3%) of the mothers were delivered at home. Almost all (97.6%) of the mothers were delivered through vaginal mode of delivery (Table 2).

Factors associated with pre-lacteal feeding practices

In bivariate analysis, maternal age, maternal education, place of residence, number of children, place of delivery, mode of delivery, counseling on breast feeding, breast feeding initiation, antenatal care, wealth index, regions, sex of the child, and access to mass media were associated with pre-lacteal feeding at p-value < 0.05. In multivariate logistic regression analysis, the odds of pre-lacteal feeding practice was 1.5 times higher among mothers who were from the poorest wealth status compared to those from richest wealth status (AOR = 1.50, 95% CI, 1.02, 2.22). The odds of pre-lacteal feeding practice was reduced by 85% among mothers who were from the agrarians region compared to those from the pastoralist regions (AOR = 0.15, 95% CI, 0.11, 0.20).
Table 2. Breastfeeding practices and obstetric factors among mothers of children aged 0–36 months or less in Ethiopia, 2016.

Breastfeeding practices	Characteristics	Frequency	%
Timely initiation of BF	Yes	4434	83.6
	No	869	16.4
Counseling on BF	Yes	2274	42.9
	No	3029	57.1
Pre-lacteal feeding	Yes	423	8
	No	4880	92
Types of pre-lacteal feeding (N = 865)			
Plain water	Yes	239	56.5
	No	184	44.5
Powdered or cow milk	Yes	129	30.5
	No	294	69.5
Juice	Yes	34	8.1
	No	389	91.9
Baby formula	Yes	21	4.9
	No	402	95.1
ANC visit	None	1882	35.5
	1–3 times	1673	31.5
	≥4 times	1748	33
Place of delivery	Health facility	1895	35.7
	Home	3408	64.3
Mode of delivery	Cesarean section	126	2.4
	Vaginal delivery	5177	97.6

BF: breastfeeding; ANC: antenatal clinic.

The odds of pre-lacteal feeding practice was 1.35 times higher among mothers who had home delivery compared to those who had delivered at health facility (AOR = 1.35, 95% CI, 1.01, 1.79). The odds of pre-lacteal feeding practice was 1.33 times higher among mothers who had no counseling on breast feeding compared to those who had counseling on breast feeding (AOR = 1.33, 95% CI, 1.01, 1.75). The odds of pre-lacteal feeding practice was 4.52 times higher among mothers who lately initiated breast feeding compared to those who initiated the breast feeding early (AOR = 4.52, 95% CI = 3.62, 5.64). The odds of pre-lacteal feeding practice was 2.47 times higher among mothers who had cesarean delivery compared to those who had vaginal delivery (AOR = 2.47, 95% CI, 1.45, 4.20; see Table 3).

Discussion

This study reveals that 8% (95% CI: 7.06%, 8.99%) of mothers gave pre-lacteal foods to their children. This proportion is comparable with findings from east Wollega zone (5.9%), Ambo district (9.7%), and Gonder town (8.2%) Ethiopia. However, the current finding is lower than study results done in different parts of Ethiopia, 15% in Bahirdar city, 15.9% in Benishangul-gumuz region, 17.2% in Axum town, and 16.8% in Debre birhan town. The study results from low- and middle-income countries also report higher magnitude of pre-lacteal feeding, Nigeria (49.8% in urban and 66.4% in rural), Kenya (26.8%), in south Sudan (53%), and in Himachal Pradesh, India (49.5%). Such discordance may be linked with sample size, study design, and socio-economic and cultural variations.

In this study, we observed that poor wealth status is associated with pre-lacteal feeding practice. This is in consonance with study finding from northwest Ethiopia and Mansur, Egypt. This could be related with the fact that mothers with poor wealth status may not access health service and counseling from health care providers on infant feeding practice. Contrary to this, studies evidenced that being in poor wealth status is the preventive for pre-lacteal feeding. Because those in low socio-economic status could not afford the expensive pre-lacteal food like honey and ghee so the only available option to them is EBF. Similarly, Parashar et al. reported that mothers with higher socio-economic status were more likely to give pre-lacteal food to their child. Even though butter and plain water are typically practiced in most low-income countries, those women of high socio-economic status may have the ability to pay and feed extra foods to their children.

Regional disparity on breastfeeding and newborn care practices could be in part a function of access to service, inequitable distribution of service, information, resources, and geographic variations. Our study finding established being from agrarian region is a preventive for pre-lacteal breast feeding compared to mothers from pastoralist area. This could be justified by the differences in ethnic composition of regions and their respective cultural practices that may have an impact on pre-lacteal feeding practices.

Mothers who gave birth at home were more likely to give pre-lacteal food for their new born child as compared to those who delivered at health facility. This is supported by the study result from demographic and health survey data of Nigeria, where the odds of pre-lacteal feeding increase among mothers delivered at home. Similarly, Bekele et al. pointed out that mothers who deliver at home were more likely to give their child pre-lacteal feeding than mothers delivered at health facility. The reason for this could be the fact that mothers who gave a birth on the hands of health care providers were more likely to receive an advice and counseling on optimal infant and young child feeding. In addition, mothers who gave birth at health facility would have better ANC visits and antenatal counseling which includes proper breastfeeding practices and the risks associated with pre-lacteal feeds.

Evidences suggested that peer or providers’ counseling and social support are very effective to improve optimal breast feeding practice. According to this study, mothers who have not received counseling from health care providers concerning the breast feeding were more likely to give pre-lacteal feeding for their children than those mothers who received appropriate counseling. In agreement to this, Nguyen and his colleagues found that counseling from...
health care providers and volunteers encourage the mothers to breastfeed their children. Study finding from south Sudan also revealed that antenatal counseling on breast feeding decrease the odds of pre-lacteal feeding. Postnatal counseling and advice for the mother concerning infant care is must to do intervention by health care providers.

Timing of breastfeeding initiation was found to be independent determinant of pre-lacteal feeding practices. Mothers who lately (after 1 h of delivery) initiated breastfeeding were more likely to practice pre-lacteal feedings. This result is supported by other study findings from Ethiopia. There is a close relationship between early initiation and avoiding pre-lacteal feeds.

Our study finding showed that mode of delivery is important determinant of pre-lacteal feeding. The odds of pre-lacteal feeding practice among mothers delivered through cesarean section is higher compared to those mothers who gave birth through spontaneous vaginal delivery. This is consistent with findings from studies conducted in Uganda, Egypt, India, and Vietnam. This may be associated with the fact that mothers’ common concern that the antibiotics and other medications such as anti-pain and anesthesia that they receive during their perioperative care could harm their infants, which discourages them from breastfeeding. In the post cesarean period, insufficiency of breast milk may also be a concern of mothers. In addition, the effect of anesthesia, the pain, and discomfort due to cesarean section may delay

Table 3. Factors associated with pre-lacteal feeding practices among mothers of children aged 0–36 months in Ethiopia, 2016.

Variables	Characteristics	Pre-lacteal feeding	COR (95% CI)	AOR (95% CI)	
		No (%)	Yes (%)		
Maternal age	16–24	536 (89.8)	61 (10.2)	1	1
	25–34	3303 (92.4)	273 (7.6)	0.73 (0.59, 0.91)*	0.74 (0.52, 1.11)
	34–49	1041 (92.1)	89 (7.9)	0.69 (0.54, 0.89)*	0.71 (0.45, 1.13)
Maternal education	No education	3013 (91.7)	273 (8.3)	1	1
	Primary	1462 (92.9)	112 (7.1)	0.53 (0.44, 0.64)**	1.02 (0.78, 1.33)
	Secondary and above	406 (91.6)	37 (8.4)	0.71 (0.56, 0.90)**	1.21 (0.65, 1.82)
Place of residence	Rural	4264 (92.1)	367 (7.9)	1.09 (0.91, 1.32)*	1.29 (0.85, 1.97)
	Urban	616 (91.7)	56 (8.3)	1	1
Wealth index	Poorest	1032 (87.2)	152 (12.8)	2.65 (2.07, 3.39)**	1.50 (1.02, 2.22)*
	Poorer	1112 (94.1)	69 (5.9)	0.85 (0.63, 1.15)	0.99 (0.66, 1.48)
	Middle	1024 (92.8)	79 (7.2)	0.92 (0.67, 1.25)	1.31 (0.90, 1.93)
	Richer	883 (92.6)	70 (7.4)	0.94 (0.68, 1.29)	1.34 (0.91, 1.97)
Contextual region	Pastoralists	223 (68)	105 (32)	1	1
	Agrarians	4519 (94)	288 (6)	0.18 (0.14, 0.21)**	0.15 (0.11, 0.20)**
Access to mass media	Yes	1611 (92.7)	226 (7.3)	1.26 (1.08, 1.48)*	1.05 (0.80, 1.36)
	No	3269 (91.7)	297 (8.3)	1.26 (0.73, 0.98)*	0.82 (0.67, 1.01)
Sex of the child	Male	2418 (91.2)	234 (8.8)	1	1
	Female	2462 (92.9)	189 (7.1)	0.85 (0.73, 0.98)*	0.82 (0.67, 1.01)
Number of the children	1 child	1052 (91.3)	100 (8.7)	1	1
	2 children	865 (92.8)	67 (7.2)	0.78 (0.62, 0.98)*	0.94 (0.66, 1.34)
	≥3 children	2963 (92.9)	256 (7.2)	0.93 (0.78, 1.11)	1.09 (0.77, 1.54)
ANC visit	No visits	1714 (91.1)	168 (8.9)	1	1
	1–3 visits	1534 (91.7)	139 (8.3)	0.73 (0.62, 0.87)**	1.25 (0.93, 1.67)
	≥4 visits	1632 (93.4)	116 (6.6)	0.47 (0.39, 0.56)**	0.96 (0.68, 1.34)
Place of delivery	Health facility	1769 (93.3)	126 (6.7)	1	1
	Home	3111 (91.3)	297 (8.7)	1.78 (1.52, 2.08)	1.35 (1.01, 1.79)*
Counseling on breastfeeding	No	2755 (91)	274 (9)	1.75 (1.50, 2.04)**	1.33 (1.01, 1.75)*
	Yes	2125 (93.4)	149 (6.6)	1	1
Timing of breastfeeding initiation	Late (> 1 h)	689 (79.3)	180 (20.7)	5.09 (4.35, 5.97)**	4.52 (3.62, 5.64)**
	Timely (≤1 h)	4191 (94.5)	243 (5.5)	1	1
Mode of delivery	Cesarean delivery	100 (79.4)	26 (20.6)	1.90 (1.35, 2.67)**	2.47 (1.45, 4.20)**
	Vaginal delivery	4780 (91.7)	397 (8.3)	1	1

COR: crude odds ratio; CI: confidence interval; AOR: adjusted odds ratio; ANC: antenatal care.
the early initiation of breast feeding and the family may provide an infant pre-lacteal feeding.49

Strengths and limitations
The study utilized data from a nationwide survey, which could be considered as strength and could increase representativeness. However, this study may suffer from a recall bias as a pre-lacteal feeding practice was a self-reported event. The other limitation is that the cross-sectional study design cannot establish temporal relationship between the outcome and response variables.

Conclusion
In summary, about 1 out of 12 Ethiopian mothers had given pre-lacteal food to their newborn babies. Poorest wealth index, region, late initiation of breast feeding, not counseled on breast feeding, home delivery, and cesarean delivery were identified as determinants of pre-lacteal feeding. Thus, emphasis should be given to improve mothers’ Infant and Young Child Feeding (IYCF) practices through counseling focusing on optimum breastfeeding during antenatal care and delivery service. Improving utilization of institutional delivery would help to reduce the prevalence of pre-lacteal feeding. Mothers who delivered by cesarean section should also be counseled and supported to not give pre-lacteal feeds to her newborn baby. Moreover, strategies that consider disadvantaged population segments should be devised to reduce pre-lacteal practices of mothers from pastoralists regions and poor socio-economic status to reduce pre-lacteal feeding practice.

Acknowledgements
We would like to express our deepest gratitude to measure DHS, ICF International, Rockville, Maryland, USA, for providing the data for the analysis.

Author contributions
B.T.M. and B.B. initiated the research and drafted the manuscript, and the other authors contributed to the manuscript writing, data extraction, and analysis. All authors read and approved the final version of the manuscript.

Declaration of conflicting interests
The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

Ethical approval
The original survey was conducted after being ethically approved by the National Research Ethics Review Committee (NRERC) of Ethiopia (Ref. No: 3.10/114/2016). Prior to analysis, we obtained permission from the Demographic and Health Survey program to access the dataset.

Funding
The author(s) received no financial support for the research, authorship, and/or publication of this article.

Informed consent
In the original survey, written informed consent was obtained from all subjects before the study.

Data availability
All data analyzed are available from corresponding author up on reasonable request.

ORCID iDs
Bedasa Taye Merga https://orcid.org/0000-0002-8178-6484
Ebisa Turi https://orcid.org/0000-0001-7951-0844

References
1. PAHO; WHO. World Breastfeeding Week, 2019. Available at: https://www.paho.org/hq/index.php?option=com_docman&view=download&category_slug=technical-briefs-breastfeeding&alias=49528-protect-breastfeeding-in-the-workplace-wbw-2019&Itemid=270
2. UNICEF. Infant and Young Child Feeding, 2012. Available at: https://sites.unicef.org/nutrition/files/Final_IYCF_programming_guide_June_2012.pdf
3. WHO. Guideline: Counseling of Women to Improve Breastfeeding Practices, 2018. Available at. https://www.who.int/nutrition/publications/guidelines/counselling-women-improve-bf-practices/en/ (accessed October 25 2020)
4. Centers for Disease Control and Prevention. Strategies to prevent obesity and other chronic diseases: The CDC guide to strategies to support breastfeeding mothers and babies, 2013. Available at: https://www.cdc.gov/breastfeeding/pdf/BF-Guide-508.PDF (accessed 25 October 2020).
5. UNICEF. From the first hour to life: making the case for improved infant and young child feeding everywhere. Available at: https://data.unicef.org/wp-content/uploads/2016/10/From-the-first-hour-of-life-1.pdf (accessed 25 October 2020).
6. UNICEF. Global Breastfeeding Advocacy Initiative, ADVOCACY BRIEF: breastfeeding and early childhood development, 2018. Available at. https://www.unicef.org/nutrition/files/BAI_bf_ecd_brief_final.pdf (accessed 25 October 2020).
7. Victora CG, Bahl R, Barros AJ, et al. Breastfeeding in the 21st century: epidemiology, mechanisms, and lifelong effect. Lancet 2016; 387(10017): 475–490.
8. Amele EA, Demissie BW, Desta KW, et al. Prelacteal feeding practice and its associated factors among mothers of children age less than 24 months old in Southern Ethiopia. Ital J Pediatr 2019; 45(1): 15.
9. Bayih WA, Mekonen DK and Kebede SD. Prevalence and associated factors of prelacteal feeding among neonates admitted to neonatal intensive care units, North central Ethiopia, 2019. BMC Public Health 2020; 20(1): 1457.
10. Chea N and Asefa A. Prelacteal feeding and associated factors among newborns in rural Sidama, south Ethiopia: a community based cross-sectional survey. Int Breastfeed J 2018; 13: 7.
11. Tekaly G, Kassa M, Belete T, et al. Pre-lacteal feeding practice and associated factors among mothers having children less than two years of age in Aksum town, Tigray, Ethiopia, 2017: a cross-sectional study. *BMC Pediatr.* 2018; 18(1): 310.

12. Temesgen H, Negesse A, Woyraw W, et al. Pre-lacteal feeding and associated factors in Ethiopia: systematic review and meta-analysis. *Int Breastfeed J* 2018; 13: 49.

13. Wolde TF, Ayele AD and Takele WW. Prelacteal feeding and associated factors among mothers having children less than 24 months of age, in Mettu district, Southwest Ethiopia: a community based cross-sectional study. *BMCR Res Notes* 2019; 12(1): 9.

14. Khanal V, Adhikari M, Sauer K, et al. Factors associated with the introduction of prelacteal feeds in Nepal: findings from the Nepal demographic and health survey 2011. *Int Breast J* 2013; 8(1): 9.

15. EDHS. Ethiopia demographic and health survey, 2016. Available at: https://dhsprogram.com/pubs/pdf/fr328/fr328.pdf (accessed 21 October 2020).

16. Lauer JA, Betran AP, Barros AJ, et al. Deaths and years of life lost due to suboptimal breast-feeding among children in the developing world: a global ecological risk assessment. *Public Health Nutr* 2006; 9(6): 673–685.

17. Sorrie MB, Amaje E and Gebremeskel F. Pre-lacteal feeding practices and associated factors among mothers of children aged less than 12 months in Jinka Town, South Ethiopia, 2018/19. *PLoS ONE* 2020; 15(10): e0240583.

18. UNICEF. World Bank Group. Levels and trends in child malnutrition. UNICEF/WHO/World Bank Group joint child nutrition estimates: Key findings of the 2017 Edition. New York, Geneva and Washington, DC: UNICEF/WHO/World Bank, 2017.

19. Berde AS and Ozcebe H. Risk factors for prelacteal feeding in sub-Saharan Africa: a multilevel analysis of population data from twenty-two countries. *Public Health Nutr* 2017; 20(11): 1953–1962.

20. Tariku A, Bikis GA, Wassie MM, et al. Factors associated with prelacteal feeding in the rural population of northwest Ethiopia: a community cross-sectional study. *Int Breastfeed J* 2016; 11: 14.

21. Argaw MD, Asfaw MM, Ayalew MB, et al. Factors associated with prelacteal feeding practices in Debre Berhan district, North Shoa, Central Ethiopia: a cross-sectional, community-based study. *BMCR Nutr* 2019; 5: 14.

22. Bililign N, Kumsa H, Mulugeta M, et al. Factors associated with prelacteal feeding in North Eastern Ethiopia: a community based cross-sectional study. *Int Breastfeed J* 2016; 11: 13.

23. Federal M. National strategy for infant and young child feeding. Ethiopia: Addis Ababa, 2004.

24. FMOH. Federal Ministry of Health Family Health Department Ethiopia. National Strategy for Infant and Young Child Feeding, 2004. Available at: https://motherchildnutrition.org/nutrition-protection-promotion/pdf/mcn-national-strategy-for-infant-and-young-child-feeding-ethiopia.pdf (accessed 25 October 2020).

25. EDHS. Ethiopia demographic and health survey, 2011. Available at: https://dhsprogram.com/pubs/pdf/fr255/fr255.pdf (accessed 21 October 2020).

26. Bekele Y, Mengistie B and Mesfin F. Prelacteal feeding practice and associated factors among mothers attending immunization clinic in Harari region public health facilities, Eastern Ethiopia. *Open J Prev Med* 2014; 4: 529–534.

27. Bililign N, Kumsa H, Mulugeta M, et al. Factors associated with prelacteal feeding in north eastern Ethiopia: a community based cross-sectional study. *Int Breastfeed J* 2016; 11: 13.

28. Central Statistical Agency Ethiopia. Ethiopia Demographic and Health Survey 2016. ICF; 2016Addis Ababa, Ethiopia, and Rockville, MD: Central Statistical Agency Ethiopia.

29. FMOH. Health system special support, 2015. Available at: http://www.moh.gov.et/ejcc/en/healthsystem

30. Hailermariam TW, Adeba E and Sufa A. Predictors of early breastfeeding initiation among mothers of children under 24 months of age in rural part of West Ethiopia. *BMCR Public Health* 2015; 15(1): 1076.

31. Bayissa ZB, Gelaw BK, Geletaw E, et al. Knowledge and practice of mothers towards exclusive breastfeeding and its associated factors in Ambo Woreda West Shoa Zone Oromia Region, Ethiopia. *Int J Res Develop Pharmaceut Life Sci* 2015; 4(3): 1590–1597.

32. Abebe Z, Zelalem Anlay D, Biadgo B, et al. High prevalence of undernutrition among children in Gondar town, Northwest Ethiopia: a community-based cross-sectional study. *Int J Pediatr* 2017; 2017: 5367070.

33. Demilew YM, Tafere TE and Abitew DB. Infant and young child feeding practice among mothers with 0–24 months old children in Slum areas of Bahir Dar City, Ethiopia. *Int Breastfeed J* 2017; 12: 26.

34. Ayana D, Tariku A, Feleke A, et al. Complementary feeding practices among children in Benishangul Gumuz Region, Ethiopia. *BMCR Research Notes* 2017; 10(1): 335.

35. Alemayehu M, Abreha K, Yebo H, et al. Factors associated with timely initiation and exclusive breastfeeding among mothers of Axum town, Northern Ethiopia. *Sci J Public Health* 2014; 2(5): 394–401.

36. Tilahun G, Dego G, Azale T, et al. Prevalence and associated factors of timely initiation of breastfeeding among mothers at Debre Berhan town, Ethiopia: a cross-sectional study. *Int Breastfeed J* 2016; 11: 27.

37. Berde AS, Yalcin SS, Ozcebe H, et al. Determinants of pre-lacteal feeding practices in urban and rural Nigeria: a population-based cross-sectional study using the 2013 Nigeria demographic and health survey data. *Afr Health Sci* 2017; 17(3): 690–699.

38. Lakati A, Makokha O, Binns C, et al. The effect of pre-lacteal feeding on full breastfeeding in Nairobi, Kenya. *East African Journal of Public Health* 2011; 7(3): 258–262.

39. Tongun JB, Sebit MB, Ndeezi G, et al. Prevalence and determinants of pre-lacteal feeding in South Sudan: a community-based survey. *Glob Health Action* 2018; 11(1): 1523304.

40. Parashar A, Sharma D, Gupta A, et al. Pre-lacteal feeding practices and associated factors in Himachal Pradesh. *Int J Health Allied Sci* 2017; 6(1): 30.

41. EL-Gilany A-H and Abdel-Hady DM. Newborn first feed and prelacteal feeds in Mansoura, Egypt. *Biomed Res Int* 2014; 2014: 258470.

42. Afera K. Infant and young child feeding practices among mothers living in Harar, Ethiopia. *Harar Bullet Health Sci* 2012; 4: 66–78.

43. Hendrickson JL, Dearden K, Pachón H, et al. Empowerment in rural Viet Nam: exploring changes in mothers and health
volunteers in the context of an integrated nutrition project. Food Nutr Bull 2002; 23(4Suppl): 86–94.

44. Nguyen PH, Keithly SC, Nguyen NT, et al. Prelacteal feeding practices in Vietnam: challenges and associated factors. BMC Public Health 2013; 13(1): 932.

45. Chaimiso AN, Lodebo TM, Gebretsadik MT, et al. Compliance to National infant and young child feeding recommendation and associated factor among mothers of children 6-23 months-of-age in Gombora District, Southern Ethiopia: community based cross sectional study. Int J Clin Experiment Med Sci 2017; 3(1): 5.

46. Ogah A, Ajayi A, Akib S, et al. A cross-sectional study of pre-lacteal feeding practice among women attending Kampala International University teaching hospital maternal and child health clinic, Bushenyi, Western Uganda. Asian J Med Sci 2012; 4(3): 79–85.

47. Patel A, Banerjee A and Kaletwad A. Factors associated with prelacteal feeding and timely initiation of breastfeeding in hospital-delivered infants in India. J Hum Lact 2013; 29(4): 572–578.

48. Nguyen PH, Menon P, Keithly SC, et al. Program impact pathway analysis of a social franchise model shows potential to improve infant and young child feeding practices in Vietnam. J Nutr 2014; 144(10): 1627–1636.

49. Duong DV, Binns CW and Lee AH. Breast-feeding initiation and exclusive breast-feeding in rural Vietnam. Public Health Nutr 2004; 7(6): 795–799.