Dynamin 1 Is Required for Memory Formation

Mauro Fa`, Agnieszka Staniszewski, Faisal Saeed, Yitshak I. Francis, Ottavio Arancio*

Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University, New York, New York, United States of America

Abstract

Dynamin 1–3 isoforms are known to be involved in endocytotic processes occurring during synaptic transmission. No data has directly linked dynamin yet with normal animal behavior. Here we show that dynamin pharmacologic inhibition markedly impairs hippocampal-dependent associative memory. Memory loss was associated with changes in synaptic function occurring during repetitive stimulation that is thought to be linked with memory induction. Synaptic fatigue was accentuated by dynamin inhibition. Moreover, dynamin inhibition markedly reduced long-term potentiation, post-tetanic potentiation, and neurotransmitter released during repetitive stimulation. Most importantly, the effect of dynamin inhibition onto memory and synaptic plasticity was due to a specific involvement of the dynamin 1 isoform, as demonstrated through a genetic approach with siRNA against this isoform to temporally block it. Taken together, these findings identify dynamin 1 as a key protein for modulation of memory and release evoked by repetitive activity.

Introduction

The role of dynamin in modulating synaptic activity has been widely debated since its discovery [1]. Dynamin is key in controlling various endocytotic pathways during neurotransmission [2], including the classical clathrin-mediated pathway [3]. Studies on dynamin and exocytosis have shown a block of exocytosis in the dynamin-impaired shibire Drosophila model [3]. Recent studies have demonstrated that inhibition of dynamin activity impairs evoked exocytosis occurring during low frequency stimulation without affecting spontaneous exocytosis in the mammalian brain [4–8]. Despite the intense research activity around the role of dynamin in synaptic transmission, it is not yet clear whether this involvement translates to normal animal behavior. Here we have investigated the effect of both pharmacologic and genetic block of dynamin function on memory formation. Furthermore, we have explored how blocking dynamin activity can affect neurotransmitter release evoked through repetitive activity that is known to underlie forms of synaptic plasticity that are, in turn, likely to be linked with memory formation.

Materials and Methods

Ethics Statement

All animals (C57BL/6J mice) were used and handled in strict accordance with good animal practice as defined by the Ethical Guidelines for Treatment of Laboratory Animals of Columbia University and specifically approved by Columbia University IACUC (protocol #AC-AAAB8674). Specific Pathogen Free, male mice, aged 4–5 months, were obtained from Jackson Laboratories. Mice were housed under a 12-h (8.00–20.00) light/dark cycle in a climate-controlled room (23°C±1) with ad libitum access to food and water. All efforts were made to minimize the number of animals used and their suffering. Animals were housed 4–5 per cage after weaning.

Drugs and treatments

Dynasore, kindly provided by Tomas Kirchhausen (Harvard Medical School, Boston, USA) was dissolved in anhydrous DMSO to obtain a 200 mM stock concentration and then stored at −80°C. Working solutions were obtained by diluting, in dim light environment, aliquots of stock solutions in artificial cerebro-spinal fluid (ACSF) containing NaCl 124 mM, KCl 4.4 mM, Na2HPO4 1 mM, NaHCO3 25 mM, Glucose 10 mM, CaCl2 2 mM, MgCl2 2 mM, supplemented with 0.3% DMSO. Drug solution was then either perfused for 20 minutes onto hippocampal slice preparations or injected into dorsal hippocampi.

siRNA duplexes with a 5’ thiol on the sense strand were synthesized (Thermo Scientific Dharmacon, CA). The siRNA sequence against Mus musculus dynamin 1 was: “5’(S-S) UAU GUG UGA AUC UGG CUC C dTdT 3’” while the siRNA sequence for the control siRNA was “5’(S-S) CGU ACG CGG AUU ACU UGC AUU dTdT 3’”. Annealed siRNA duplexes were re-suspended in K+ buffer, incubated at 90°C and then treated with an equimolar mixture of TCEP (#20490, Thermo Scientific, USA), a strong reducing agent, at 20°C for 15 min. An equimolar ratio of monomeric Penetratin1 (#11PENA0500, MPI Biomedicals, USA) was then incubated at 65°C for 15 min with the siRNA mixture, followed by a further incubation at 37°C for 1 hr, as previously described [9]. 5’-siRNA/Penetratin1 linking was assessed by Tris-Borate PAGE, visualized with SyBrGold (#20490, Thermo Scientific, USA), a strong reducing agent, at 20°C for 15 min. An equimolar ratio of monomeric Penetratin1 (#11PENA0500, MPI Biomedicals, USA) was then incubated at 65°C for 15 min with the siRNA mixture, followed by a further incubation at 37°C for 1 hr, as previously described [9]. 5’-siRNA/Penetratin1 linking was assessed by Tris-Borate PAGE, visualized with SyBrGold (#20490, Thermo Scientific, USA). The efficacy of the siRNA to block endogenous dynamin 1 was previously validated on primary hippocampal neuronal cultures, prepared as previously described [9]. Dynamin detection was assessed by harvesting cell cultures upon extensive washing with fresh medium and then with cold Hank’s Balanced Salt Solution. Tissue lysis was carried out in cold
performed after behavioral testing, using a solution of 4%

diffusion. Histological localization of infusion cannulas was

After infusion, the needle was left in place for 1 minute to allow

During infusion, animals were handled gently to minimize stress.

were handled once a day for 3 days before behavioral experiments.

however, mice were treated with either vehicle or siRNA against

20 minutes prior to the electric shock. For the siRNA experiments,

with vehicle (ACSF artificial cerebrospinal fluid. The injected substances were either

sterility of the infused substances, drugs were diluted in filtered

and marcaine injection at the time of anesthesia induction. Local

Anesthesia at the implantation site was obtained by subcutaneous

infiltration of marcaine at 2 mg/Kg post op. Analgesia was

anesthesia at 29°C. CA3–CA1 field excitatory post-synaptic

potentials (fEPSP) were recorded by placing the stimulating electrode on CA3 fibers projecting to CA1 stratum radiatum where the recording electrode was placed [10]. Basal synaptic transmission was assayed by plotting the stimulus voltages (V) against the slope of fEPSPs to generate input-output relations before each experiment. For the long-term potentiation (LTP) experiments, a 30-minute baseline was recorded every minute at an intensity that evokes a response approximately 35–40% of the maximum evoked response. In most of the experiments LTP was induced using a theta-burst stimulation (4 pulses at 100 Hz, with the bursts repeated at 5 Hz and each tetanus including 3 ten-burst trains separated by 15 seconds). In a few experiments, LTP was induced through a different protocol (three tetani at 50 Hz, 1 sec each, 20 second interval between tetani) that is known to solely involve post-synaptic mechanisms [11]. Post-Tetanic Potentiation (PTP) was induced through the same theta burst tetanus used to induce LTP. Within the same slice, PTP was first recorded in absence of dynasore, then in its presence, and finally after its washout. In Synaptic Fatigue (SF) experiments, the slope of the evoked responses during a single 100 Hz-1 second stimulus train was measured every 10 stimuli and compared with the one associated with the first stimulus of the train. Similar to PTF, SF was first recorded in absence of dynasore, then in its presence, and finally after its washout within the same slice. SF experiments were also carried out in presence ofGabAA (picrotoxin, 30 μM) and

Behavioral Studies

All behavioral studies were performed by an observer who did not know the treatment group of the mice until the entire test had been completed, and conducted during the light phase (between 13:30–18:00) of the light/dark cycle (lights on 8:00–20:00).

Contextual and cued learning were assessed using the fear conditioning test, as previously described [10]. Briefly, mice were placed in a novel context (fear conditioning box) and exposed to a mild foot electric shock (2 s, 0.45 mA) together with a tone (30 s, 85 dB sound at 2800 Hz). The electric shock was delivered during the last two seconds of the auditory tone. Freezing was scored by using FreezeView software (SD Instruments, USA.) Learning was assessed 24 hours later by measuring freezing behavior for 5 minutes in the chamber in which the mice were trained in response to representation of the context (chamber) without auditory cue. Cued fear responses were assessed 48 hours after the shock by exposing the mice to the tone in a novel environment. Baseline behavior was monitored during the training phase. In separate experiments, sensory perception of the shock was determined through threshold assessment, as previously described [10]. The threshold to flinching (first visible response to shock), jumping (first extreme motor response), and screaming (first vocalized distress) was quantified for each animal by averaging of the shock intensity at which each animal manifested a behavioral response of that type to the foot shock (0.1 mA for 1 s). Shock intensity was increased at 30 s interval by 0.1 mA to 0.7 mA. Experiments were repeated in three different cohorts, grouped and analyzed together, in which controls and dynasore or siRNA treated mice were equally distributed.

Slice Preparation and Electrophysiology

Mice were sacrificed by cervical dislocation followed by decapitation. Transverse hippocampal slices (400 μm) were obtained by using a tissue-chopper and maintained in an interface chamber at 29°C. CA3–CA1 field excitatory post-synaptic potentials (fEPSP) were recorded by placing the stimulating electrode on CA3 fibers projecting to CA1 stratum radiatum where the recording electrode was placed [10]. Basal synaptic transmission was assayed by plotting the stimulus voltages (V) against the slope of fEPSPs to generate input-output relations before each experiment. For the long-term potentiation (LTP) experiments, a 30-minute baseline was recorded every minute at an intensity that evokes a response approximately 35–40% of the maximum evoked response. In most of the experiments LTP was induced using a theta-burst stimulation (4 pulses at 100 Hz, with the bursts repeated at 5 Hz and each tetanus including 3 ten-burst trains separated by 15 seconds). In a few experiments, LTP was induced through a different protocol (three tetani at 50 Hz, 1 sec each, 20 second interval between tetani) that is known to solely involve post-synaptic mechanisms [11]. Post-Tetanic Potentiation (PTP) was induced through the same theta burst tetanus used to induce LTP. Within the same slice, PTP was first recorded in absence of dynasore, then in its presence, and finally after its washout. In Synaptic Fatigue (SF) experiments, the slope of the evoked responses during a single 100 Hz-1 second stimulus train was measured every 10 stimuli and compared with the one associated with the first stimulus of the train. Similar to PTF, SF was first recorded in absence of dynasore, then in its presence, and finally after its washout within the same slice. SF experiments were also carried out in presence of GabAA (picrotoxin, 30 μM) and GabAB (SCH50911, 100 μM) receptor blockers, or in the presence of an AMPA receptor desensitization blocker (cyclothiazide, 100 μM). For both PTP measurement and SF assessment, the tetanic stimulation was applied in the constant presence of 100 μM D-APV, a competitive NMDA receptor antagonist. PPF analysis was carried out by providing a double stimulation delivered at different interstimulus intervals (10–1000 ms) and then comparing the ratio between the slope of the evoked response after the second stimulus (S2) vs. the slope of the evoked response obtained for the first stimulus (S1). Tetanic efficiency as an evaluation of the facilitation induced throughout the tetanus (an indirect index of neurotransmitter release) was evaluated through intra-burst analysis [12]. Briefly, the area of successive burst responses (charge) was expressed as a percentage fraction of the area of the first burst response. In these measurements each burst...
Dynamin 1 Activity and Memory

Statistical analysis

All data are shown as mean ± SEM. Statistical tests included two-way ANOVA with repeated measures for multiple comparisons or two-tails Mann-Whitney test when appropriate.

Results

Dynamin is required for memory formation

In a first series of experiments, we checked whether memory is affected by dynasore, a synthetic non-peptidic inhibitor of dynamins [13]. The compound blocks both dynamin-dependent endocytosis [4] and dynamin-dependent evoked release [7] while it generates branched tubular membrane networks, capped by clathrin-coated pits upon intense exocytosis [14], similar to those observed in the neurons of dynamin 1-null mice [5]. We analyzed the effects of dynasore on contextual fear memory [15], a form of associative, hippocampal-dependent memory in which mice have to associate the environment they are exposed to with the occurrence of an aversive stimulus that is delivered during the training phase. Memory is then assessed via observation of freezing behavior upon re-exposure to the same context. Either dynasore or vehicle was administered via intrahippocampal bilateral injection to avoid any systemic side effect (Fig. 1A). Interestingly, dynasore infusion (80 μM, 20 minutes prior to the electric shock) reduced the amount of freezing compared to vehicle (Fig. 1B). By contrast, cued conditioning, a hippocampus-independent task [15] that was assessed 24 hours after contextual memory by exposing the animals to the tone in a novel environment, was not affected by dynasore (Fig. 1C). Similarly, assessment of the sensory threshold did not reveal any difference between dynasore- and vehicle-infused mice (Fig. 1D) suggesting that treatment with dynasore does not affect perception of the electric shock. Taken together, these data strongly support the possibility that dynamin inhibition impairs contextual fear memory.

Dynamin is involved in synaptic fatigue evoked by high-frequency stimulation

Memories are stored in the brain as short- and long-term changes in synaptic strength [16]. Because of this link, we next analyzed the effects of dynamin inhibition on synaptic functioning during high frequency stimulation, a type of sustained activity that is known to reinforce synapses. Prolonged, repetitive stimulation is known to cause synaptic fatigue (SF), a form of short-term plasticity generally reflecting a depletion of a readily releasable vesicle pool within the presynaptic terminal [17]. Perfusion of hippocampal slices with dynasore (80 μM for 20 minutes) accelerated SF evoked by a 100 Hz, 1 second, high frequency stimulation (Fig. 2A). These experiments were performed in the presence of the N-methyl-D-aspartate (NMDA) receptor blocker D-aminoephosphovaleric acid (D-APV) (100 μM), leaving intact 2-amino-3-(5-methyl-3-oxo-1,2-oxazol-4-yl)-propanoic acid (AMPA) receptor-mediated events [17]. Perfusion with cyclothiazide (100 μM), to antagonize AMPA receptor desensitization and exclude the possibility that the cause of the heightened fatigue was a desensitization of postsynaptic receptors [18,19], did not modify the decay rate produced by dynasore alone (Fig. 2B). Furthermore, perfusion with both picrotoxin (30 μM), a GABA_A receptor antagonist, and SCH 50911 (100 μM), a GABA_B receptor antagonist, applied to antagonize the GABAergic input, was not capable of protecting from the further decay rate induced by dynasore (Fig. 2C). Interestingly, the presence of the two antagonists slowed down the decay of the SF, as previously demonstrated [20]. Additionally, the effect of dynasore on SF in the presence of the two antagonists was weaker than in the other two conditions, probably due to augmentation in vesicle reuse produced by picrotoxin [20]. Taken together, these findings support the hypothesis that dynamin regulates release evoked by repetitive activity through presynaptic mechanisms.

Dynamin inhibition reduces hippocampal long-term potentiation

Since long-term potentiation (LTP) is an activity-dependent phenomenon widely proposed as a cellular model for learning and memory [21], we aimed to see whether mice display any LTP deficit in evoked hippocampal responses following dynamin inhibition. Dynasore perfusion (80 μM for 20 minutes) before (Fig. 3A) - but not after (Fig. 3B) a theta-burst stimulation (4 pulses at 100 Hz, with the bursts repeated at 5 Hz and each tetanus consisting of 4 pulses at 100 Hz with bursts repeated at 5 Hz. This different stimulation protocol used in the experiments reported above is known to produce a compound LTP involving both pre- and post-synaptic mechanisms [11]. As our data shown on Fig. 2 support the hypothesis that dynamin inhibition may regulate release evoked by repetitive activity through presynaptic mechanisms, we investigated whether dynamin inhibition may also reduce a form of LTP that does not require a strong presynaptic input for its induction (three tetani at 50 Hz, 1 sec each, 20 seconds interval between tetani) [11]. This different stimulation protocol was indeed able to produce a weaker LTP in vehicle-treated slices (Fig. 3D). However, no difference was observed in LTP between dynasore-treated (80 μM for 20 minutes) and vehicle-treated slices (Fig. 3D), indicating that dynasore yielded no apparent modification of LTP propensity at lower stimulation frequency.

Dynamin inhibition reduces synaptic plasticity by impinging on pre-synaptic mechanisms evoked by high-frequency stimulation

To test whether a possible decrease of neurotransmitter vesicle availability produced by dynamin inhibition would decrease tetanic stimulation efficacy in inducing plasticity, we measured the depolarization occurring during the tetanus [12]. We found a marked reduction in the area under the curve of depolarization after dynasore treatment (80 μM for 20 minutes) compared to vehicle-treated slices (Fig. 4A-B), suggesting a reduction of presynaptic input along the tetanus. Interestingly, the reduction in area was present within the first burst of 4 pulses at 100 Hz (Fig. 4C) and became statistically significant along the burst set with the third group (Mann-Whitney U₁₅ = 0.00001, p = 0.0043). This indicates that the efficacy of the theta-burst stimulation in triggering the compound LTP is not conserved.

References

[1] A. B. Schwartz, L. M. B. G. and A. T. N. T. (2013) Dynamin 1 Activity and Memory.

PLOS ONE | www.plosone.org 3 March 2014 | Volume 9 | Issue 3 | e91954
upon dynamin inhibition, and supports the possibility that dynamin block reduces presynaptic input.

An additional evidence in favor of a dynamin inhibition-induced impairment of neurotransmitter released during sustained activity derived from studies on post-tetanic potentiation (PTP). This is a type of short-term synaptic plasticity dependent upon Ca2+ elevation within the presynaptic terminal during high frequency stimulation [17]. Theta-burst stimulation in slices treated with dynasore (80 \textmu M for 20 minutes; in the presence of D-APV to block NMDA receptors, leaving intact AMPA receptor-mediated events) produced less PTP (Fig. 4D). Thus, similar to the SF and LTP experiments, the reduced potentiation upon dynasore treatment suggests a presynaptic deficit produced by dynamin inhibition during sustained activity.

Dynamin inhibition does not affect paired-pulse facilitation evoked by a paired stimulation

Paired-pulse facilitation (PPF) is a short-term plasticity phenomenon that, differently than SF, PTP and LTP, is not due to sustained release. It occurs when a synaptic response is enhanced by a preceding stimulation of similar intensity, presumably elevating the Ca2+ concentration for a very short time [17]. We found that dynamin inhibition with dynasore (80 \textmu M for 20 minutes) did not modify PPF (Fig. 5). This finding suggests that dynamin does not control short-term plasticity phenomena unless they are related to sustained/prolonged activity such as PTP or SF. The dissociation between effects of dynamin inhibition onto SF, PTP, LTP, and tetanus efficacy on one side and PPF on the other side is very interesting as it indicates that dynamin intervenes in different and mechanistically separated release phases. Such a phenomenon has already been described for SF, PPF and PTP which are known to have different intracellular mechanisms [22]. Indeed, KO animals for different types of synapsin, as well as other presynaptic proteins such as synaptogyrin I and synaptophysin, display a dissociation between different forms of short-term plasticity [23,24].
Figure 2. Dynamin inhibition by dynasore increases synaptic fatigue following sustained activity in hippocampus. A, Dynasore treatment (80 μM, open triangles) increases SF in slices that were previously treated with vehicle (black circles) \((F_{1,12} = 6.395, p = 0.026) \). The increase is already present at the 10th pulse during the stimulation (Mann-Whitney \(U_{69,36} = 8.00, p = 0.0379 \)). The effect was reversed by washout with vehicle (open squares). SF was induced by high frequency stimulation in the presence of D-APV (100 μM). B, SF was induced by high frequency stimulation (100 Hz, 1 second) in slices containing both D-APV (100 μM) and cyclothiazide (100 μM). Dynasore (80 μM, open triangles) further increases SF compared to fatigue of the same slices in the presence of vehicle (black circles) \((F_{1,12} = 6.395, p = 0.026) \). SF increases in dynasore-treated slices already at the 10th pulse during the tetanus (Mann-Whitney \(U_{35,10} = 0.0001, p = 0.0159 \)). The effect is reversed by washout with vehicle (open squares), re-establishing SF to the values obtained prior to dynasore perfusion. C, SF is induced by high frequency stimulation (100 Hz, 1 second) in vehicle-treated slices (black circles) containing both D-APV (100 μM), the GABAA receptor blocker picrotoxin (30 μM), the GABAB receptor blocker SCH 50911 (100 μM). Dynasore (80 μM, open triangles) further increases SF compared to fatigue of the same slices in the presence of vehicle (black circles) \((F_{1,12} = 6.395, p = 0.026) \). SF increases in dynasore-treated slices already at the 10th pulse during the tetanus (Mann-Whitney \(U_{159,94} = 28.00, p = 0.0356 \)). The effect is reversed by washout with vehicle (open squares), re-establishing SF to the values obtained prior to dynasore perfusion. Data shows dynasore-induced increase in SF is not associated to AMPA receptor desensitization or changes in GABAA/B responsiveness. Error bars indicate SEM. doi:10.1371/journal.pone.0091954.g002

Figure 3. Dynamin inhibition by dynasore affects LTP, a type of synaptic plasticity due to sustained activity in hippocampus. A, Dynasore (80 μM, 20 minute perfusion, open triangles) decreases LTP induced by theta-burst stimulation in CA3–CA1 synapses compared to vehicle-treated slices (black circles) \((F_{1,10} = 9.081, p = 0.013) \). The horizontal bar indicates the period of perfusion with dynasore before tetanic stimulation. B, Post-tetanus dynamin inhibition by dynasore (80 μM, 20 minute perfusion after the tetanus delivery, open triangle) induced by theta-burst stimulation in CA3–CA1 synapses compared to vehicle-treated slices (black circles) \((F_{1,7} = 0.209, p = 0.662) \). The horizontal bar indicates the period of perfusion with dynasore after tetanic stimulation. C, Basal synaptic transmission is unmodified by dynamin inhibition with dynasore. Averaged evoked field potential slopes as a function of stimulation intensity measured in volts (V) at CA3–CA1 synapses in slices do not show significant differences between vehicle-treated slices (black circles; \(F_{1,7} = 0.209, p = 0.662 \)) and dynasore (80 μM, open triangles) treated slices \((F_{1,7} = 40.81, p = 0.0213) \). D, Dynamin inhibition by dynasore (open triangles; 80 μM, 20 minute perfusion before the tetanus) does not produce changes in solely post-synaptic LTP induced by three tetani at 50 Hz for 1 second, each tetani separated by 20 seconds, at the CA3–CA1 synapse compared to vehicle-treated slices (black circles; \(F_{1,8} = 1.538, p = 0.250 \)). The horizontal bar indicates the period of perfusion with dynasore before tetanic stimulation. Error bars indicate SEM. doi:10.1371/journal.pone.0091954.g003
Synaptic plasticity and memory rely upon the dynamin 1 isoform

Dynamin has three different isoforms, dynamin 1–3. Given that dynasore is not selective toward a specific dynamin isoform [13] and to address concerns related to the specificity of pharmacological tools [7], we next examined both synaptic plasticity and associative memory upon knocking down dynamin. Dynamin 1 is pre-synaptically located and highly-expressed in neurons, whereas dynamin 2 is located both pre- and post-synaptically and dynamin 3 is localized mostly post-synaptically [25]. Therefore, we decided to block dynamin 1. Dynamin 1 knockouts are lethal at 2 weeks of age [5]. Thus, we used a different genetic approach in which we conjugated a small interfering RNA (siRNA) against dynamin 1 with penetratin [26]. In preliminary experiments, we demonstrated by quantitative Western blot analysis that dynamin 1 was reduced by approximately 90% in primary hippocampal cultures that were exposed to Penetratin1-conjugated dynamin 1-siRNA (80 nM) for 48 hours prior to cell collection (Fig. 6A), whereas a control siRNA did not affect dynamin 1 expression. Next, we infused Penetratin1-conjugated dynamin 1-siRNA (80 nM in a final volume of 1.5 μl over 1 minute, bilateral intrahippocampal infusions twice a day for 3 days prior to electrophysiology or behavior). We found a reduction in both contextual fear memory and LTP (Fig. 6B–D). By contrast, controls, treated with intrahippocampal infusion of Penetratin 1-conjugated siRNA against luciferase, did not reveal any effect on memory and LTP. These findings suggest a prominent role for dynamin 1 in associative fear memory and synaptic plasticity phenomena associated with sustained activity.

Discussion

The main finding of the present work is that dynamin 1 is important for the formation of associative memory in hippocampus. An additional finding is that both short- and long-term plasticity phenomena caused by fast and prolonged activity and
thought to be linked to memory formation, depend upon dynamin function. Specifically, we have demonstrated that SF, LTP, PTP, and tetanus efficacy, all phenomena due to sustained release, are markedly reduced following dynamin inhibition.

The involvement of dynamin 1 in memory function opens new perspectives to studies on the function of the protein. Specifically, it translates effects of inhibition of this isoform into animal behavior, and memory in particular. These data are consistent with the observation that shibire	extsuperscript{ts1}, a temperature-sensitive dynamin mutant gene in 	extit{Drosophila melanogaster}, alters neuronal mechanisms that are thought to be linked to learning and memory [27]. Similar to dynamin, two other synaptic proteins, the t-SNARE proteins SNAP-25 and syntaxin-1, are also required for memory formation [28,29]. Interestingly, long-term memory formation in fresh water pond snail 	extit{Lymnaea stagnalis} is associated with increased expression of syntaxin 1 and dynamin 1 coincident with elevated CREB 1 levels, and knockdown of CREB1 prevented memory consolidation and reduced expression of both syntaxin and dynamin 1 [30]. Moreover, hippocampal dynamin-binding protein mRNA expression is reduced with aging in rats undergoing an inhibitory avoidance task [31]. Finally, a relationship between dynamin 1 and memory was hypothesized in a manuscript in which Btd/9 knock-out mice displayed an increase in dynamin 1 expression together with enhanced synaptic plasticity and memory [32]. Taken together, these observations support the hypothesis that dynamin is activated during memory processes concurrently with other proteins acting in the presynaptic terminal.

The role of different forms of plasticity involving dynamin in evoked release during sustained activity is also very interesting. It is noteworthy to remark the fact that memory formation is not a priori linked with sustained activity. Dynamin activity becomes essential for memory and plasticity phenomena, while our data on basal synaptic transmission confirm that synaptic potentials not evoked by either PKA or L-voltage-gated calcium channels inhibition. Moreover, this form of LTP induced with a weaker tetanic stimulation is not accompanied by changes in signal decay rate of markers used to monitor presynaptic functions (either FM 1–43 staining or sH fluorescence) [11,41], indicating that it is not sensitive to presynaptic changes. In our studies, we found that LTP induced through a weak tetanic stimulation was not affected by the dynasore treatment. This finding together with the lack of modification in basal evoked post-synaptic responses indicates that a brief application of dynasore does not interfere with presynaptic mechanisms. Thus, it is likely that dynamin regulates LTP induced at high (theta-burst at 100 Hz)rather than at low frequency (50 Hz) stimulation. Moreover, these data further support the idea that dynamin functions in plasticity phenomena consist of modulating vesicle release efficiency.

Recent evaluations of vesicle dynamics [7,42,43] might provide an explanation for the memory and plasticity impairment following dynamin inhibition. When dynamin is unable to contribute to the endocytotic processes, whether by affecting the vesicle pools or by disrupting the release machinery activity, decreased vesicle availability may affect the neuron capability for an effective synaptic release sustaining memory phenomena. This effect might be particularly evident when assessing synaptic plasticity during the high frequency tetanic stimulation, as highlighted by the reduced evoked potential during tetanus in the presence of dynamin blockade and by the lack of any effect of dynasore when administered after the tetanic stimulation suggesting, in turn, that dynamin inhibition affects memory acquisition. Dynamin activity becomes essential for memory and plasticity induced by high frequency stimulations, such as theta burst stimulation, in line with the independent findings of Ferguson et al [5] and Bartolomé-Martín et al [14] showing that dynamin inhibition generates branched tubular membrane networks or intense clustering of vesicles, capped by clathrin-coated pits upon intense exocytosis, limiting de facto the vesicle availability for prompt release. This suggests that, at least at high frequency stimulation, even the slow vesicle recovery due to the classic clathrin-dependent/dynamin-dependent endocytosis is necessary to compensate the intense vesicle use for rapid release due to tetanic stimulation. Our data on contextual fear conditioning and LTP are novel because they correlate the possible efficiency of dynamin-dependent vesicle availability selectively with memory and plasticity phenomena, while our data on basal synaptic transmission confirm that synaptic potentials not evoked by sustained release are not affected by residual vesicle availability upon dynamin inhibition. Further investigations, beyond the scope of this work, are required to discern whether solely the classical or any alternative endocytotic pathways or even non endocytotic-

![Figure 5. Dynamin inhibition with dynasore does not affect paired-pulse facilitation, a type of synaptic plasticity that is not linked with sustained activity.](image-url)
related mechanisms are critical for dynamin-dependent memory and synaptic plasticity.

In our studies, we provide both pharmacologic and genetic proof of the involvement of dynamin in memory formation. There are several advantages with using a genetic approach in addition to a pharmacologic one. The experiments with dynamin 1 siRNA provide an independent genetic validation of the findings with dynasore. Furthermore, they demonstrate that the isoform 1 of dynamin is active in memory and synaptic plasticity. Finally, they offer precious insight into the complementarity of the three major dynamin isoforms. Neither dynamin 2 nor dynamin 3 were capable of compensating for the detrimental effect exerted on cognition and plasticity by selective dynamin 1 knockdown obtained through siRNA technique. Similarly, the presence of dynamin 2 and 3 was not able to avoid death in dynamin 1-knockout mice at two weeks of age [3]. Interestingly, dynamin 2 is involved in slower forms of endocytosis than dynamin 1 [44]. By contrast, dynamin 1, whose over-expression triggers recruitment of clathrin–independent and dynamin-dependent vesicles, regulates both fast and slow endocytosis [45]. Therefore, the differential ability of the dynamin isoforms in modulating the neurotransmitter vesicle availability over time may be relevant in terms of release during fast stimulation [46] and controlling plasticity underlying the onset of associative memory.

Figure 6. Selective dynamin 1 inhibition through siRNA impairs both synaptic plasticity and associative memory. A. siRNA specific for murine dynamin 1 reduces protein expression. An example of western blot showing that Penetratin 1- conjugated dynamin 1 siRNA reduces protein expression. Cells are lysed 48 hours after the treatment with siRNA. Dynamin 1 is detected using a rabbit polyclonal anti-dynamin1 antibody. Penetratin 1- conjugated Control siRNA, that does not affect dynamin 1 expression, does not change protein levels. n = 3 for each group. B. Penetratin 1- conjugated dynamin 1 siRNA (open bars) (80 nM in a final volume of 1.5 ml over 1 minute, bilateral injections twice a day for 3 days) impairs contextual fear memory compared to control siRNA infused mice (grey bars) (Mann-Whitney U150, 126 = 21.00, p = 0.0089). Moreover, control siRNA infused mice show similar amount of freezing as vehicle-infused animals (black bars). C. Penetratin 1- conjugated dynamin 1 siRNA (open bars) does not modify cued fear memory compared to Penetratin 1- conjugated Control siRNA (grey bars) (Mann-Whitney U99, 90 = 44.50, p = 1.00) in mice previously tested for contextual fear conditioning at 24 hours after the shock. D. Bilateral infusions of Penetratin 1- conjugated dynamin 1 siRNA (open triangles) (80 nM in a final volume of 1.5 ml over 1 minute, repeated 2 times a day for three days) into dorsal hippocampi decrease LTP compared to Penetratin 1- conjugated Control siRNA treatment (grey squares) (F1,9 = 5.578, p = 0.001). As an internal control, slices from vehicle-infused animals (black circles) show similar amounts of potentiation as those from Penetratin 1- conjugated Control siRNA treated animals. Error bars indicate SEM.

doi:10.1371/journal.pone.0091954.g006
Generic ablation of dynamin 1 produced a less marked effect onto synaptic plasticity than the pharmacologic block with dynasore. Possible explanations for the incomplete block of LTP by the siRNA are likely to be linked to the fact that dynasore inhibits multiple dynamin isoforms whereas the siRNA blocks selectively dynamin-1, and/or that dynasore affects substrates other than dynamins [47]. Interestingly, astrocytic dynamin 2 controls the recycling of the tissue plasminogen activator, a factor regulating NMDA functions and glutamate release and regulated itself by ambient glutamate [48]. Along this direction, dynamin 2 in glia might cooperate with dynamins in neurons to modulate synaptic plasticity. Additionally, dynamin 3 but not dynamin 2, when overexpressed, partially rescues the dynamin 1 knock-out phenotype. Consistent with this observation, dynamin 1 and 3 conserve phosphorylation sites on key residues that are controlling protein-protein interactions. Instead, phospho-sites on dynamin 2 are important for other functions [48]. Nevertheless, one should keep in mind that dynamin 1 is the major dynamin isof orm in neurons [5] and levels of dynamin 2 and 3, as well as many other proteins involved in synaptic transmission and endocytosis, are not changed in dynamin 1 knock-out mice [49].

As previously reported, the level of neurotransmitter release during ongoing activity may be regulated by the availability of release-ready vesicles and, therefore, depends on the speed of vesicle recruitment. In that sense, synaptic vesicles need to undergo fast recycling to prevent depletion of the synaptic vesicle pool [50]. Interfering with the endocytosis produces a fast, stimulation-frequency-dependent depression of exocytosis [6]. This would prompt the likely idea that lack of release-prone vesicles is actually due to the absence of recycled vesicles following synaptic release-ready vesicles and, therefore, depends on the speed of vesicle recycling producing, in turn, a reduction of synaptic vesicles through exocytosis and slowed vesicle recruitment. In that sense, synaptic vesicles need to undergo fast recycling to prevent depletion of the synaptic vesicle pool [50]. Interfering with the endocytosis produces a fast, stimulation-frequency-dependent depression of exocytosis [6]. This would prompt the likely idea that lack of release-prone vesicles is actually due to the absence of recycled vesicles following consumption of synaptic vesicles through exocytosis and slowed rates of vesicle recycling producing, in turn, a reduction of synaptic vesicles in the readily releasable pool [4,6]. However, this idea has been confuted several times. For instance, both rapid and slow endocytosis do not recycle vesicles within the readily releasable pool [42]. Moreover, the exocytosis and endocytosis are thought to be functionally independent of each other and therefore the endocytosis block does not immediately affect subsequent exocytosis [4,6]. Furthermore, the inhibition of vesicle replenishment by fomycin [limiting de facto the number of vesicle recovered and ready to be reused] does not mimic the clear stimulation-frequency-dependent release depression after treatment with dynasore or a clathrin inhibitor treatment, while it efficiently blocks vesicular refilling [50]. Instead, these results suggest that dynasore would interfere with the process of rapid clearance of exocytosed vesicle components from the synaptic release sites [50], as previously postulated [6,51]. These components include synaptotagmin 1, a calcium sensor protein involved in both exo- and endocytosis [52–54], and calmodulin [53]. If this interpretation of dynasore effect is conceivable, this means that dynamin, along with other endocytic proteins, is essential for sustained synaptic transmission well beyond its well-established role in endocytosis [50].

Acknowledgments
We would like to thank Kelvin Pau (Columbia University, New York, USA) for technical assistance; Dr. Tomas Kirchhausen (Harvard Medical School, Boston, USA) for the generous gift of dynasore; Dr. Carol Troy (Columbia University, New York, USA) for the helpful assistance in designing the RNAi experiments.

Author Contributions
Conceived and designed the experiments: MF. Performed the experiments: MF AS FS YIF. Analyzed the data: MF. Contributed reagents/materials/analysis tools: OA. Wrote the paper: MF OA.

References
1. Shpetner HS, Vallee RB (1989) Identification of dynamin, a novel mechano-chemical enzyme that mediates interactions between microtubules. Cell 59: 421–432.
2. Doherty GJ, McMahon HT (2009) Mechanisms of endocytosis. Annu Rev Biochem 78: 857–902.
3. Murthy VN, De Camilli P (2005) Cell biology of the presynaptic terminal. Annu Rev Neurosci 28: 701–728.
4. Newton AJ, Kirchhausen T, Murthy VN (2006) Inhibition of dynamin complexes blocks compensatory synaptic vesicle endocytosis. Proc Natl Acad Sci U S A 103: 17950-17960.
5. Ferguson SM, Bresnig J, Hayashi M, Wolfle M, Collesi C, et al. (2007) A selective activity-dependent requirement for dynamin 1 in synaptic vesicle endocytosis. Science 316: 570–574.
6. Hoso N, Hok M, Sakah T (2009) Calcium dependence of exo- and endocytotic coupling at a glutamatergic synapse. Neuron 63: 216–229.
7. Chung C, Barylko B, Leita J, Liu X, Kavalali ET (2010) Acute dynamin inhibition disrupts synaptic vesicle recycling pathways that drive spontaneous and evoked neurotransmission. J Neurosci 30: 1363-1376.
8. Clayton EL, Cousin MA (2009) The molecular physiology of activity-dependent bulk endocytosis of synaptic vesicles. J Neurochem 111: 901–914.
9. Puzzo D, Privitera I, Fa M, Staniszewski A, Hashimoto G, et al. (2011) Endogenous amyloid-beta is necessary for hippocampal synaptic plasticity and memory. Ann Neurol 69: 819–930.
10. Puzzo D, Privitera I, Lenzk E, Fa M, Staniszewski A, et al. (2008) Pimocar amyloid-beta positively modulates synaptic plasticity and memory in hippocampal slices. J Neurosci 28: 14537–14545.
11. Buxton ET, Richardson RJ, Fricker RG, Zakharenko SS (2007) Slow presynaptic and fast postsynaptic components of compound long-term potentiation. J Neurosci 27: 11510–11521.
12. Kramar EA, Lin B, Lin CY, Arai AC, Gall CM, et al. (2004) A novel mechanism for the facilitation of theta-induced long-term potentiation by brain-derived neurotrophic factor. J Neurosci 24: 5154–5161.
13. Macias E, Ehrlich M, Mass R, Boucroft E, Brunner C, et al. (2006) Dynasore, a cell-permeable inhibitor of dynamin. Dev Cell 10: 839–850.
14. Bartosz-Didier M, Ramirez-Erazo J, Castro E, Sanchez-Prieto J, Torres M (2012) Efficient synaptic vesicle recycling after intense exocytosis concomitant with the accumulation of non-releasable endosomes at early developmental stages. J Cell Sci 125: 422–434.
15. Phillips RG, LeDoux JE (1992) Differential contribution of amygdala and hippocampus to cued and contextual fear conditioning. Behav Neurosci 106: 274–285.
16. Owen GR, Brenner EA (2012) Mapping molecular memory: navigating the cellular pathways of learning. Cell Mol Neurobiol 32: 919–941.
17. Zucker RS, Regge V (2002) Short-term synaptic plasticity. Annu Rev Physiol 64: 355–405.
18. Oris T, Zhang S, Trussell LO (1996) Direct measurement of AMPA receptor desensitization induced by glutamatergic synaptic transmission. J Neurosci 16: 7496–7504.
19. Neher E, Sakahara T (2001) Estimating transmitter release rates from postsynaptic current fluctuations. J Neurosci 21: 9638–9643.
20. Vinirna T, Atasoy D, Kavalali ET (2006) Synaptic vesicle recycling adapts to chronic changes in activity. J Neurosci 26: 2197–2206.
21. Bliss TV, Lomo T (1973) Long-lasting potentiation of synaptic transmission in the dentate area of the anaesthetized rabbit following stimulation of the perforant path. J Physiol 232: 331–356.
22. Zucker RS (1989) Short-term synaptic plasticity. Annu Rev Neurosci 12: 13–31.
23. Janz R, Sudhof TC, Hammer RE, Umn V, Siegelbaum SA, et al. (1999) Essential roles in synaptic plasticity for synaptotagmin I and synaptophysin I. Neuron 24: 687–700.
24. Rouah TW, Spillane D, Misler M, Herz J, Selig DK, et al. (1995) Essential functions of synapsins I and II in synaptic vesicle regulation. Nature 375: 498–499.
25. Ferguson SM, De Camilli P (2012) Dynamin, a membrane-remodelling GTPase. Nat Rev Mol Cell Biol 13: 75–81.
26. Davidson TJ, Harel S, Arboleda VA, Prunell GF, Shelanski ML, et al. (2004) Highly efficient small interfering RNA delivery to primary mammalian neurons induces MicroRNA-like effects before mRNA degradation. J Neurosci 24: 10040–10046.
27. Kasuya J, Ishimoto H, Kitamoto T (2009) Neuronal mechanisms of learning and memory revealed by spatial and temporal suppression of neurotransmission. J Neurosci 29: 10040–10046.
35. Daly C, Ziff EB (2002) Ca$^{2+}$
34. Kamal A, Al Shaibani T, Ramakers G (2011) Erythropoietin decreases the
33. Adamcio B, Sargin D, Stradomska A, Medrihan L, Gertler C, et al. (2008)
32. DeAndrade MP, Zhang L, Doroodchi A, Yokoi F, Cheetham CC, et al. (2012)
31. Casoli T, Di Stefano G, Fattoretti P, Giorgetti B, Balietti M, et al. (2012)
30. Guo CH, Senzel A, Li K, Feng ZP (2010) De novo protein synthesis of syntaxin-
29. Hou Q, Gao X, Zhang X, Kong L, Wang X, et al. (2004) SNAP-25 in
28. Fujiwara T, Mishima T, Kojiyi T, Chiba T, Tanaka K, et al. (2006) Analysis of
27. Fujiwara T, Mishima T, Kojiyi T, Chiba T, Tanaka K, et al. (2006) Analysis of
26. Fujiwara T, Kojiyi T, Chiba T, Tanaka K, et al. (2006) Analysis of
25. Fujiwara T, Mishima T, Kojiyi T, Chiba T, Tanaka K, et al. (2006) Analysis of
24. Fujiwara T, Kojiyi T, Chiba T, Tanaka K, et al. (2006) Analysis of
23. Fujiwara T, Kojiyi T, Chiba T, Tanaka K, et al. (2006) Analysis of
22. Fujiwara T, Mishima T, Kojiyi T, Chiba T, Tanaka K, et al. (2006) Analysis of
21. Fujiwara T, Kojiyi T, Chiba T, Tanaka K, et al. (2006) Analysis of
20. Fujiwara T, Kojiyi T, Chiba T, Tanaka K, et al. (2006) Analysis of
19. Fujiwara T, Kojiyi T, Chiba T, Tanaka K, et al. (2006) Analysis of
18. Fujiwara T, Kojiyi T, Chiba T, Tanaka K, et al. (2006) Analysis of
17. Fujiwara T, Kojiyi T, Chiba T, Tanaka K, et al. (2006) Analysis of
16. Fujiwara T, Mishima T, Kojiyi T, Chiba T, Tanaka K, et al. (2006) Analysis of
15. Fujiwara T, Mishima T, Kojiyi T, Chiba T, Tanaka K, et al. (2006) Analysis of
14. Fujiwara T, Mishima T, Kojiyi T, Chiba T, Tanaka K, et al. (2006) Analysis of
13. Fujiwara T, Mishima T, Kojiyi T, Chiba T, Tanaka K, et al. (2006) Analysis of
12. Fujiwara T, Mishima T, Kojiyi T, Chiba T, Tanaka K, et al. (2006) Analysis of
11. Fujiwara T, Mishima T, Kojiyi T, Chiba T, Tanaka K, et al. (2006) Analysis of
10. Fujiwara T, Mishima T, Kojiyi T, Chiba T, Tanaka K, et al. (2006) Analysis of
9. Fujiwara T, Kojiyi T, Chiba T, Tanaka K, et al. (2006) Analysis of
8. Fujiwara T, Kojiyi T, Chiba T, Tanaka K, et al. (2006) Analysis of
7. Fujiwara T, Kojiyi T, Chiba T, Tanaka K, et al. (2006) Analysis of
6. Fujiwara T, Kojiyi T, Chiba T, Tanaka K, et al. (2006) Analysis of
5. Fujiwara T, Mishima T, Kojiyi T, Chiba T, Tanaka K, et al. (2006) Analysis of
4. Fujiwara T, Kojiyi T, Chiba T, Tanaka K, et al. (2006) Analysis of
3. Fujiwara T, Kojiyi T, Chiba T, Tanaka K, et al. (2006) Analysis of
2. Fujiwara T, Kojiyi T, Chiba T, Tanaka K, et al. (2006) Analysis of
1. Fujiwara T, Kojiyi T, Chiba T, Tanaka K, et al. (2006) Analysis of

Dynamin 1 Activity and Memory