Prediction of pneumoconiosis by serum and urinary biomarkers in workers exposed to asbestos-contaminated minerals

PLOS One

Hsiao-Yu Yang
National Taiwan University

This protocol requires R-3.5.2 for Windows (32/64 bit) (https://cran.r-project.org/bin/windows/base/)

Download the dataset and store at ‘C:\r’.

Cpoy the R script of six machine learning algorithms on R consol.

library(rattle) # Access the weather dataset and utilities.
library(magrittr) # Utilise %> and %<> pipeline operators.

building <- TRUE
scoring <- ! building

A pre-defined value is used to reset the random seed
so that results are repeatable.

crv$seed <- 42

Load a dataset from file.

fname <- "file:///C:/r/PLoS One Excel Main Raw Datafile.csv"

Crs$dataset <- read.csv(fname,
na.strings=c("","NA","","?"),
strip.white=TRUE, encoding="UTF-8")

This is an open access protocol distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Action the user selections from the Data tab.

The following variable selections have been noted.

crs$input <- c("Age", "Sex", "CEA", "SMRP", "Fibulin3", "OhdG")

crs$numeric <- c("Age", "Sex", "CEA", "SMRP", "Fibulin3", "OhdG")

crs$categoric <- NULL

crs$target <- "Pneumoconiosis"

crs$risk <- NULL

crs$ident <- NULL

crs$ignore <- c("FeNO", "FVC", "FEV1", "Smoking")

crs$weights <- NULL

#==

Decision Tree

The 'rpart' package provides the 'rpart' function.

library(rpart, quietly=TRUE)

Reset the random number seed to obtain the same results each time.

set.seed(crv$seed)

Build the Decision Tree model.

crs$rpart <- rpart(Pneumoconiosis ~ .,
 data=crs$dataset[, c(crs$input, crs$target)],
 method="class",
 parms=list(split="information"),
 control=rpart.control(usesurrogate=0,
 maxsurrogate=0),
 model=TRUE)

Generate a textual view of the Decision Tree model.

print(crs$rpart)
printcp(crs$rpart)
cat("\n")

#==

Extreme Boost

The `xgboost' package implements the extreme gradient boost algorithm.

Build the Extreme Boost model.

set.seed(crv$seed)
crs$ada <- xgboost(Pneumoconiosis ~ .,
 data = crs$dataset[,c(crs$input, crs$target)],
 max_depth = 6,
 eta = 0.3,
 num_parallel_tree = 1,
 nthread = 2,
 nround = 50,
 metrics = 'error',
 objective = 'binary:logistic')

Print the results of the modelling.
print(crs$ada)

cat('Final iteration error rate:
')
print(round(crsadaevaluation_log[crsadaniter,], 2))

cat('Importance/Frequency of variables actually used:
')
print(crs$imp <- importance(crs$ada, crs$dataset[,c(crs$input, crs$target)]))

#==
Build a Random Forest model using the traditional approach.

set.seed(crv$seed)

crs$rf <- randomForest::randomForest(as.factor(Pneumoconiosis) ~ .,
 data=crs$dataset[, c(crs$input, crs$target)],
 ntree=500,
 mtry=2,
 importance=TRUE,
 na.action=randomForest::na.roughfix,
 replace=FALSE)

Generate textual output of the 'Random Forest' model.

print(crs$rf)

The `pROC' package implements various AUC functions.

Calculate the Area Under the Curve (AUC).

pROC::roc(crsrfy, as.numeric(crsrfpredicted))

Calculate the AUC Confidence Interval.

pROC::ci.auc(crsrfy, as.numeric(crsrfpredicted))

List the importance of the variables.

rn <- round(randomForest::importance(crs$rf), 2)
rn[order(rn[,3], decreasing=TRUE),]
Support vector machine.

The 'kernlab' package provides the 'ksvm' function.

library(kernlab, quietly=TRUE)

Build a Support Vector Machine model.

set.seed(crv$seed)
crs$ksvm <- ksvm(as.factor(Pneumoconiosis) ~ .,
 data=crs$dataset[,c(crs$input, crs$target)],
 kernel="rbfdot",
 prob.model=TRUE)

Generate a textual view of the SVM model.

crs$ksvm

Regression model

Build a Regression model.

crs$glm <- glm(Pneumoconiosis ~ .,
 data=crs$dataset[, c(crs$input, crs$target)],
 family=binomial(link="logit"))

Generate a textual view of the Linear model.

print(summary(crs$glm))

cat(sprintf("Log likelihood: %.3f (%d df)\n",
 logLik(crs$glm)[1],
 attr(logLik(crs$glm), "df")))

cat(sprintf("Null/Residual deviance difference: %.3f (%d df)\n",
 crsglmnull.deviance-crsglmdeviance,
 crsglmdf.null-crsglmdf.residual))

cat(sprintf("Chi-square p-value: %.8f\n",
 dchisq(crsglmnull.deviance-crsglmdeviance,
 crsglmdf.null-crsglmdf.residual)))

cat(sprintf("Pseudo R-Square (optimistic): %.8f\n",
 cor(crsglmy, crsglmfitted.values)))

cat("\n==== ANOVA ====

")

print(anova(crs$glm, test="Chisq"))
cat("\n")
Neural Network

Build a neural network model using the nnet package.

library(nnet, quietly=TRUE)

Build the NNet model.

set.seed(199)
crs$nnet <- nnet(as.factor(Pneumoconiosis) ~ .,
 data=crs$dataset[,c(crs$input, crs$target)],
 size=10, skip=TRUE, MaxNWts=10000, trace=FALSE, maxit=100)

Print the results of the modelling.

cat(sprintf("A %s network with %d weights.\n",
 paste(crs$nnet$n, collapse="-"),
 length(crs$nnet$wts)))
cat(sprintf("Inputs: %s.\n",
 paste(crs$nnet$coefnames, collapse=" ", "\n")))
cat(sprintf("Output: %s.\n",
 names(attr(crs$nnet$terms, "dataClasses"))[1]))
cat(sprintf("Sum of Squares Residuals: %.4f.\n",
 sum(residuals(crs$nnet) ^ 2)))
cat("\n")
print(summary(crs$nnet))
cat('
')

#==

Evaluate model performance on the training dataset.

Sensitivity/Specificity Plot: requires the ROCR package

library(ROCR)

Generate Sensitivity/Specificity Plot for rpart model on PLoS One Excel Main Raw Datafile.csv [**train**].

crs$pr <- predict(crs$rpart, newdata=crs$dataset[,c(crs$input, crs$target)],2)

Remove observations with missing target.

no.miss <- na.omit(crs$dataset[,c(crs$input, crs$target)]$Pneumoconiosis)
miss.list <- attr(no.miss, "na.action")
attributes(no.miss) <- NULL

if (length(miss.list))
{
 pred <- prediction(crs$pr[-miss.list], no.miss)
} else
{
 pred <- prediction(crs$pr, no.miss)
}

ROCR::plot(performance(pred, "sens", "spec"), col="#CC0000FF", lty=1, add=FALSE)
Sensitivity/Specificity Plot: requires the ROCR package

```r
library(ROCR)
```

Generate Sensitivity/Specificity Plot for xgb model on PLoS One Excel Main Raw Datafile.csv [**train**].

```r
crs$pr <- predict(crs$ada, crs$dataset[,c(crs$input, crs$target)])
# Remove observations with missing target.
no.miss <- na.omit(crs$dataset[,c(crs$input, crs$target)]$Pneumoconiosis)
mmiss.list <- attr(no.miss, "na.action")
attributes(no.miss) <- NULL

if (length(miss.list))
    {
        pred <- prediction(crs$pr[-miss.list], no.miss)
    } else
    {
        pred <- prediction(crs$pr, no.miss)
    }
ROCR::plot(performance(pred, "sens", "spec"), col="#CCCC00FF", lty=2, add=TRUE)
```

Sensitivity/Specificity Plot: requires the ROCR package

```r
library(ROCR)
```

Generate Sensitivity/Specificity Plot for rf model on PLoS One Excel Main Raw Datafile.csv [**train**].

```r
crs$pr <- predict(crs$rf, newdata=na.omit(crs$dataset[,c(crs$input, crs$target)]),
    type = "prob")[,2]
# Remove observations with missing target.
no.miss <- na.omit(na.omit(crs$dataset[,c(crs$input, crs$target)])$Pneumoconiosis)
mmiss.list <- attr(no.miss, "na.action")
attributes(no.miss) <- NULL

if (length(miss.list))
    {
        pred <- prediction(crs$pr[-miss.list], no.miss)
    } else
    {
        pred <- prediction(crs$pr, no.miss)
    }
ROCR::plot(performance(pred, "sens", "spec"), col="#00CC00FF", lty=3, add=TRUE)
```
library(ROCR)

Generate Sensitivity/Specificity Plot for ksvm model on PLoS One Excel Main Raw Datafile.csv [**train**].

crs$pr <- kernlab::predict(crs$ksvm, newdata=na.omit(crs$dataset[,c(crs$input, crs$target)]),
 type = "probabilities")[,2]

Remove observations with missing target.

no.miss <- na.omit(na.omit(crs$dataset[,c(crs$input, crs$target)])$Pneumoconiosis)
miss.list <- attr(no.miss, "na.action")
attributes(no.miss) <- NULL

if (length(miss.list))
{
 pred <- prediction(crs$pr[-miss.list], no.miss)
} else
{
 pred <- prediction(crs$pr, no.miss)
}

ROCR::plot(performance(pred, "sens", "spec"), col="#00CCCCFF", lty=4, add=TRUE)

Sensitivity/Specificity Plot: requires the ROCR package

library(ROCR)

Generate Sensitivity/Specificity Plot for glm model on PLoS One Excel Main Raw Datafile.csv [**train**].

crs$pr <- predict(crs$glm, type = "response",
 newdata = crs$dataset[,c(crs$input, crs$target)])

Remove observations with missing target.

no.miss <- na.omit(crs$dataset[,c(crs$input, crs$target)])$Pneumoconiosis
miss.list <- attr(no.miss, "na.action")
attributes(no.miss) <- NULL

if (length(miss.list))
{
 pred <- prediction(crs$pr[-miss.list], no.miss)
} else
{
 pred <- prediction(crs$pr, no.miss)
}

ROCR::plot(performance(pred, "sens", "spec"), col="#0000CCFF", lty=5, add=TRUE)

Sensitivity/Specificity Plot: requires the ROCR package

library(ROCR)
Generate Sensitivity/Specificity Plot for nnet model on PLoS One Excel Main Raw Datafile.csv [**train**].

crs$pr <- predict(crs$nnet, newdata=crs$dataset[,c(crs$input, crs$target)])

Remove observations with missing target.

no.miss <- na.omit(crs$dataset[,c(crs$input, crs$target)]['$Pneumoconiosis'])
miss.list <- attr(no.miss, "na.action")
attributes(no.miss) <- NULL

if (length(miss.list))
{
 pred <- prediction(crs$pr[-miss.list], no.miss)
} else
{
 pred <- prediction(crs$pr, no.miss)
}

ROCR::plot(performance(pred, "sens", "spec"), col="#CC00CCFF", lty=6, add=TRUE)

Add a legend to the plot.

legend("bottomleft", c("rpart","xgb","rf","ksvm","glm","nnet"), col=rainbow(6, 1, .8), lty=1:6, title="Models", inset=c(0.05, 0.05))

Add decorations to the plot.

title(main="Sensitivity/Specificity (tpr/tnr) PLoS One Excel Main Raw Datafile.csv [**train**]",
sub=paste("Rattle", format(Sys.time(), "%Y-%b-%d %H:%M:%S"), Sys.info()["user"])
grid()