ON THE FIRST-ORDER DIFFERENTIAL SUBORDINATION AND SUPERORDINATION RESULTS FOR p-VALENT FUNCTIONS

VALI SOLTANI MASIH, ALI EBADIAN, SHAHRAM NAJAFZADEH

Abstract. In this paper, we obtain some applications of first-order differential subordination, superordination and sandwich-type results involving operator for certain normalized p-valent analytic functions. Further, properties of p-valent functions such as; λ-spirallike and λ-Robertson of complex order are considered.

1. Introduction

Let $\mathcal{H}(U)$ denote the class of holomorphic functions in the open unit disc $U := \{ z \in \mathbb{C} : |z| < 1 \}$ on the complex plane \mathbb{C}, and let $\mathcal{H}[a, n]$ denote the subclass of the functions $p \in \mathcal{H}(U)$ of the form:

$$ p(z) = a + a_n z^n + \cdots ; \quad (a \in \mathbb{C}, \ n \in \mathbb{N} := \{1, 2, \ldots \}) . $$

Let \mathcal{A}_p denote the class of all p-valent functions $f \in \mathcal{H}$ of the following form:

$$ f(z) = z^p + \sum_{k=p+1}^{\infty} a_k z^k , \quad (1.1) $$

which are analytic in the open unit disk U. The class \mathcal{A}_1 denoted by \mathcal{A}.

Let g and h be analytic in U. We say that the function g is subordinate to h, or the function h is superordinate to g, and express it by $g \prec h$ or conventionally by $g(z) \prec h(z)$ if $g = h \circ \omega$ for some analytic map $\omega : U \to U$ with $\omega(0) = 0$. When h is univalent, the condition $g \prec h$ is equivalent to $g(U) \subset h(U)$ and $g(0) = h(0)$.

For some non-zero complex numbers b and real $\lambda; \ (|\lambda| < \frac{\pi}{2})$, we define classes $\mathcal{S}_p^\lambda(\alpha, b)$ and $\mathcal{K}_p^\lambda(\alpha, b)$ as follows:

$$ \mathcal{S}_p^\lambda(\alpha, b) := \left\{ f \in \mathcal{A}_p : \text{Re} \left(\frac{1}{b \cos \lambda} \left[e^{i\lambda} \frac{zf'(z)}{pf(z)} - (1 - b) \cos \lambda - i \sin \lambda \right] \right) > \alpha \right\} , $$

and

$$ \mathcal{K}_p^\lambda(\alpha, b) := \left\{ f \in \mathcal{A}_p : \text{Re} \left(\frac{1}{b \cos \lambda} \left[\frac{e^{i\lambda} z f''(z)}{pf'(z)} - (1 - b) \cos \lambda - i \sin \lambda \right] \right) > \alpha \right\} . $$

For a function f belonging to the class $\mathcal{S}_p^\lambda(\alpha, b)$, we say that f is multivalent λ-spirallike of complex order b and type $\alpha; \ (0 \leq \alpha < 1)$ in U. Also for a function f belonging to...
the class \(\mathcal{K}_a^\lambda(x, b) \), we say that \(f \) is multivalent \(\lambda \)-Robertson of complex order \(b \) and type \(\alpha; (0 \leq \alpha < 1) \) in \(\mathbb{U} \). This classes for \(\alpha = 0 \) were introduced and studied by Al-Oboudi and Haidan [2].

In particular for \(p = b = 1 \), we denote
\[
\mathcal{S}^\lambda(\alpha) := \mathcal{S}_1^\lambda(\alpha, 1),
\]
is the class of \(\lambda \)-spirallike functions of order \(\alpha \) with \(0 \leq \alpha < 1 \) and
\[
\mathcal{K}^\lambda(\alpha) := \mathcal{K}_1^\lambda(\alpha, 1),
\]
is the class of \(\lambda \)-Robertson functions of order \(\alpha \) with \(0 \leq \alpha < 1 \).

Let \(\eta \) and \(\mu \) be complex numbers not both equal to zero and \(f \in \mathcal{A}_p \) given by (1.1). Define the differential operator \(\mathcal{F}^{\eta, \mu}_{p} : \mathcal{A}_p \rightarrow \mathcal{H}[1, 1] \) as follows:
\[
\mathcal{F}^{\eta, \mu}_{p}[f](z) := \left[\frac{f'(z)}{p z^{p-1}} \right]^\eta \left[\frac{z^p}{f(z)} \right]^\mu = 1 + \left(\eta - \mu + \frac{\eta}{\mu} \right) a_{p+1} z + \cdots; \quad (z \in \mathbb{U}), \quad (1.2)
\]
with \(\mathcal{F}^{\eta, \mu}_{p}[f](z) \big|_{z=0} = 1 \). Here, all powers are mean as principal values (see [8]).

2. Definitions and Preliminaries

In order to achieve our aim in this section, we recall some definitions and preliminary results from the theory of differential subordination and superordination.

Definition 1 ([11][12]). Let \(\psi : \mathbb{C}^2 \times \mathbb{U} \rightarrow \mathbb{C} \) and the function \(h(z) \) be univalent in \(\mathbb{U} \). If the function \(p(z) \) is analytic in \(\mathbb{U} \) and satisfies the following first-order differential subordination
\[
\psi(p(z), z p'(z); z) \prec h(z); \quad (z \in \mathbb{U}), \quad (2.1)
\]
then \(p(z) \) is called a solution of the differential subordination.

A function \(q \in \mathcal{H} \) is said to be a dominant of the differential subordination (2.1) if \(p \prec q \) for all \(p \) satisfying (2.1). An univalent dominant that satisfies \(\tilde{q} \prec q \) for all dominants \(q \) of (2.1), is said to be best dominant of the differential subordination.

Definition 2 ([13]). Let \(\varphi : \mathbb{C}^2 \times \mathbb{U} \rightarrow \mathbb{C} \) and the function \(h(z) \) be univalent in \(\mathbb{U} \). If the function \(p(z) \) and \(\varphi(p(z), z p'(z); z) \) are univalent in \(\mathbb{U} \) and satisfies the following first-order differential superordination
\[
h(z) \prec \varphi(p(z), z p'(z); z); \quad (z \in \mathbb{U}), \quad (2.2)
\]
then \(h(z) \) is called a solution of the differential superordination.

An analytic function \(q \in \mathcal{H} \) is called a subordinant of the solution of the differential superordination (2.2), or more simply a subordinant if \(q \prec p \) for all the functions \(p \) satisfying (2.2). An univalent subordinant that satisfies \(q \prec \tilde{q} \) for all of the subordinants \(q \) of (2.2), is said to be the best subordinant.

Miller and Mocanu [13] obtained sufficient condition on the functions \(p \) and \(q \) for which the following implication holds:
\[
h(z) \prec \varphi(p(z), z p'(z); z) \Rightarrow q(z) \prec p(z).
\]
Using these results, in [5] were obtained sufficient conditions for certain normalized analytic function f to satisfy

$$q_1(z) < \frac{zf'(z)}{f(z)} < q_2(z),$$

where $q_1(z)$ and $q_2(z)$ are given univalent normalized function in U.

Definition 3 (cf. Miller and Mocanu[10, Definition 2.2b, p.21]). Denote by Q, the set of all functions $f(z)$ that are analytic and injective on $\mathbb{C} \setminus E(f)$, where

$$E(f) := \left\{ \zeta \in \partial U \text{ and } \lim_{z \to \zeta} f(z) = \infty \right\},$$

and are such that $\min |f'(\zeta)| = \rho > 0 \text{ for } \zeta \in \partial U \setminus E(f)$.

Lemma 2.1 (cf. Miller and Mocanu[10, Theorem 3.4h, p.132]). Let q be univalent in U, and let φ and θ be analytic in a domain Ω containing $q(U)$, with $\varphi(w) \neq 0$ when $w \in q(U)$. Set $Q(z) := z\varphi'(z)\varphi(q(z)); h(z) := \theta(q(z)) + Q(z)$ and suppose that

(i) $Q(z)$ is starlike function in U,

(ii) $\Re \left\{ \frac{zh'(z)}{Q(z)} \right\} = \Re \left\{ \frac{\varphi'(q(z))}{\varphi(q(z))} + \frac{zQ'(z)}{Q(z)} \right\} > 0 \text{ for } z \in U$.

If $p(z)$ is analytic in U, with $p(0) = q(0)$, and $p(U) \subset \Omega$ and

$$\theta(p(z)) + zp'(z)\varphi(p(z)) \prec \theta(q(z)) + zq'(z)\varphi(q(z)) = h(z); \quad z \in U, \quad (2.3)$$

then $p(z) \prec q(z)$ and q is the best dominant of Eq. (2.3).

Lemma 2.2 ([17]). Let $q(z)$ be convex function in U and $\gamma \in \mathbb{C}$ with $\Re \{ \gamma \} > 0$. If $p(z) \in H[q(0), 1] \cap Q$ and $p(z) + \gamma zp'(z)$ is univalent in U, then

$$q(z) + \gamma zq'(z) \prec p(z) + \gamma zp'(z) \quad (2.4)$$

implies $q(z) \prec p(z)$ and $q(z)$ is the best subordinant of Eq. (2.4).

Lemma 2.3 ([14]). The function

$$q_\lambda(z) := (1 - z)^\lambda \equiv e^{\lambda \log(1 - z)} = 1 - \lambda z + \frac{\lambda(\lambda - 1)}{2} z^2 - \frac{\lambda(\lambda - 1)(\lambda - 2)}{6} z^3 + \ldots$$

for some $\lambda \in \mathbb{C}^* := \mathbb{C} \setminus \{0\}, z \in U$ is univalent in U if and only if λ is either in the closed disk $|\lambda + 1| \leq 1$ or $|\lambda - 1| \leq 1$.

Lemma 2.4. For the univalent functions

$$(UF.1) \quad q(z) = (1 + Bz)^\lambda \text{ with } -1 \leq B \leq 1; B \neq 0 \quad \text{ and } \quad \lambda \in \mathbb{C}^* \text{ with } |\lambda + 1| \leq 1 \text{ or } |\lambda - 1| \leq 1,$$

$$(UF.2) \quad \text{and}$$

$$q(z) = \frac{1 + Az}{1 + Bz}; \quad (-1 \leq B < A \leq 1, z \in U),$$

we have

$$\Re \left\{ 1 + \frac{zq''(z)}{q'(z)} - \frac{zq'(z)}{q(z)} \right\} > 0; \quad (z \in U). \quad (2.5)$$
Lemma 2.5. Let \(q(z) = (1 + A z) / (1 + B z) \); \((-1 \leq B < A \leq 1, z \in \mathbb{U}) \), then we have
\[
\Re \left\{ 1 + \frac{2q''(z)}{q'(z)} - \frac{2q'(z)}{q(z)} \right\} = \Re \left\{ \frac{1}{1 + B z} \right\} > \frac{1}{1 + |B|} > 0.
\]

UF.2. Let \(q(z) = (1 + A z) / (1 + B z) \); \((-1 \leq B < A \leq 1, z \in \mathbb{U}) \), then we have
\[
\Re \left\{ 1 + \frac{2q''(z)}{q'(z)} - \frac{2q'(z)}{q(z)} \right\} = \Re \left\{ \frac{1 - AB z^2}{(1 + A z)(1 + B z)} \right\}.
\]

The function
\[
p_{A,B}(z) = \frac{1 - AB z^2}{(1 + A z)(1 + B z)}; \quad (-1 \leq B < A \leq 1),
\]
does not have any poles in \(\mathbb{U} \) and is analytic in \(\mathbb{U} \). Then
\[
\min \{ \Re \{ p_{A,B}(z) \}; \ |z| < 1 \}
\]
attains its minimum value on the boundary \(\{ z \in \mathbb{C} : |z| = 1 \} \). If take \(z = e^{i\theta} \) with \(\theta \in (-\pi, \pi] \), then
\[
\Re \left\{ \frac{1 - AB e^{2i\theta}}{(1 + A e^{i\theta})(1 + B e^{i\theta})} \right\} = \frac{(1 - AB)[1 + AB + (A + B) \cos \theta]}{|1 + A e^{i\theta}|^2 |1 + B e^{i\theta}|^2}. \tag{2.6}
\]
If \(A + B \geq 0 \), it follows that \(1 + AB + (A + B) \cos \theta \geq (1 - A)(1 - B) \geq 0 \), and if \(A + B \leq 0 \), it follows that \(1 + AB + (A + B) \cos \theta \geq (1 + A)(1 + B) \geq 0 \). Therefore, the minimum value of expression (2.6) is equal to 0. \(\square \)

Lemma 2.5 \((7)\). Let \(q \) be function in \(\mathbb{U} \) with \(q(0) \neq 0 \). If \(q \) satisfy the condition (2.5), then for all \(z \in \mathbb{U} \), \(q(z) \neq 0 \).

Lemma 2.6. For the function \(q(z) = (1 + A z) / (1 + B z); -1 \leq B < A \leq 1, z \in \mathbb{U} \) the condition
\[
\Re \left\{ 1 + \frac{2q''(z)}{q'(z)} \right\} > \max \{ 0, -\Re(\zeta) \}; \quad (z \in \mathbb{U}, \zeta \in \mathbb{C}), \tag{2.7}
\]
equivalent to \(\Re \{ \zeta \} \geq \frac{|B|-1}{|B|+1} \).

Proof. The function \(\omega(z) = 1 + \frac{2q''(z)}{q'(z)} = 1 + B z^2 / (1 + B z); (-1 \leq B < A \leq 1, B \neq 0) \), maps unit disk \(\mathbb{U} \) onto the disk
\[
\left| \omega(z) - \frac{1 + B^2}{1 - B^2} \right| < \frac{2|B|}{1 - B^2}; \quad (z \in \mathbb{U}),
\]
which implies that
\[
\Re \{ \omega(z) \} > \frac{1 - |B|}{1 + |B|}; \quad (z \in \mathbb{U}).
\]
From (2.4) we have
\[
\frac{1 - |B|}{1 + |B|} \geq \max \{ 0, -\Re(\zeta) \}
\]
and this is equivalent to \(\Re \{ \zeta \} \geq ((|B| - 1) /(|B| + 1)) \). \(\square \)
Lemma 2.7. Let
\[\omega(z) = \frac{u + vz}{1 + Bz}; \quad (u, v \in \mathbb{C}; \text{ with } (u, v) \neq (0, 0), \quad -1 < B < 1, \quad z \in \mathbb{U}). \]

Suppose that \(\text{Re}\{u - vB\} \geq |v - uB| \), then \(\text{Re}\{\omega(z)\} > 0; \quad (z \in \mathbb{U}). \)

Proof. The function \(\omega(z) = \frac{u + vz}{1 + Bz} \) maps \(\mathbb{U} \) onto the disk
\[\left| \omega(z) - \frac{u - vB}{1 - B^2} \right| < \frac{|v - uB|}{1 - B^2}; \quad (z \in \mathbb{U}), \]
which implies that
\[\text{Re}\{\omega(z)\} > \text{Re}\{u - vB\} - \frac{|v - uB|}{1 - B^2} \geq 0; \quad (z \in \mathbb{U}). \] \(\square \)

Some interesting results of differential subordination and superordination were obtained recently (for example) Bulboacă [4, 5, 6], Shammugam et al. [16], Zayed et al. [18], Ebadian and Sokál [9] and Aouf et al. [3].

In this paper, we will derive several subordination, superordination and sandwich results involving the operator \(\mathcal{F}_p^{n, \mu}. \)

3. Subordination Results

For convenience, let
\[\mathcal{A}_0 := \left\{ f \in \mathcal{A}_p : \mathcal{F}_p^{n, \mu}[f](z) \bigg|_{z=0} = 1, \quad \eta, \mu \in \mathbb{C}; \quad (\eta, \mu) \neq (0, 0) \right\}. \]
\[\mathcal{B} := \{ z \in \mathbb{C} : |z + 1| \leq 1 \quad \text{or} \quad |z - 1| \leq 1 \}. \]

We assume in the remainder of this paper that \(\sigma \) be complex number, \(\gamma \in \mathbb{C}^* \), \(\alpha, \lambda \) are real numbers with \(0 \leq \alpha < 1, \quad -\frac{\pi}{2} < \lambda < \frac{\pi}{2} \), respectively, and all the powers are principal ones.

Theorem 3.1. Let \(q \) be univalent in \(\mathbb{U} \) with \(q(0) = 1 \), and \(q \) satisfy the condition (2.3). If the function \(f \in \mathcal{A}_0 \) with \(\mathcal{F}_p^{n, \mu}[f](z) \neq 0; \quad (z \in \mathbb{U}) \) satisfies the following subordination condition:
\[1 + \gamma \left[\frac{1}{n} \left(1 - p + \frac{zf''(z)}{f'(z)} \right) + \mu \left(p - \frac{zf'(z)}{f(z)} \right) \right] < 1 + \gamma \frac{zq'(z)}{q(z)}; \quad (z \in \mathbb{U}), \] (3.1)
then
\[\mathcal{F}_p^{n, \mu}[f](z) \prec q(z); \quad (z \in \mathbb{U}), \]
and \(q \) is the best dominant of Eq. (3.1).

Proof. If we choose \(\theta(w) = 1 \) and \(\varphi(w) = \frac{w}{w} \), then \(\theta, \varphi \in \mathcal{H}(\Omega); \quad (\Omega := \mathbb{C}^*). \) The condition \(q(\mathbb{U}) \subset \Omega \) from Lemma 2.1 is equivalent to \(q(z) \neq 0 \) for all \(z \in \mathbb{U} \). For \(w \in q(\mathbb{U}) \), we have \(\varphi(w) \neq 0 \). Define
\[Q(z) := zq'(z)q(z) = \gamma \frac{zq'(z)}{q(z)}; \quad (z \in \mathbb{U}). \]
From Lemma 2.5, \(q(z) \neq 0 \) for all \(z \in U \), then \(Q \in \mathcal{H}(U) \). Further, \(q \) is an univalent function, implies \(q'(z) \neq 0 \) for all \(z \in U \), \(Q(0) = 0 \) and \(Q'(0) = \gamma \frac{q''(0)}{q'(0)} \neq 0 \), and

\[
\Re \left\{ \frac{zQ'(z)}{Q(z)} \right\} = \Re \left\{ 1 + \frac{zq''(z)}{q'(z)} - \frac{2q'(z)}{q(z)} \right\} > 0; \quad (z \in U),
\]

hence \(Q \) is a starlike function in \(U \). Moreover, if \(h(z) := \theta(q(z)) + Q(z) = 1 + \gamma \frac{zq'(z)}{q(z)} \),

we also have

\[
\Re \left\{ \frac{zh'(z)}{Q(z)} \right\} = \Re \left\{ \frac{zQ'(z)}{Q(z)} \right\} > 0; \quad (z \in U).
\]

For \(f \in A_0 \), the function \(F_{\eta, \mu} \left[f \right] (z) \) given by (1.2), we have \(F_{\eta, \mu} \left[f \right] (U) \subset \Omega \) and the subordinations (2.3) and (3.1) are equivalent, then all the conditions of Lemma 2.1 are satisfied and the function \(q \) is the best dominant of (3.1). \(\square \)

Taking \(\eta = 0 \), \(\gamma = 1 \) and \(q(z) = (1 + Az)/(1 + Bz); \ (-1 \leq A < B \leq 1, z \in U) \) in Theorem 3.1 and applying item (UF.2), we get the following result:

Corollary 3.1.1. Let \(-1 \leq A < B \leq 1, \mu \neq 0 \) and \(f \in A_p \) satisfy the conditions

\[
\left[\frac{z^p}{f(z)} \right]^\mu = 1 \quad \text{and} \quad \frac{z^p}{f(z)} \neq 0; \quad (z \in U).
\]

If the function \(f \) satisfies the following subordination condition:

\[
1 + \mu \left(p - \frac{zf'(z)}{f(z)} \right) < \frac{(A - B) z}{(1 + Az)(1 + Bz)}; \quad (z \in U), \tag{3.2}
\]

then

\[
\left(\frac{z^p}{f(z)} \right)^\mu \approx \frac{1 + Az}{1 + Bz}; \quad (z \in U),
\]

and \((1 + Az)/(1 + Bz)\) is the best dominant of Eq. (3.2).

Taking \(\mu = 0 \), \(\gamma = 1 \) and \(q(z) = (1 + Az)/(1 + Bz); \ (-1 \leq A < B \leq 1, z \in U) \) in Theorem 3.1 and applying item (UF.2), we get the following result:

Corollary 3.1.2. Let \(-1 \leq A < B \leq 1, \eta \neq 0 \) and \(f \in A_p \) satisfy the conditions

\[
\left[\frac{f'(z)}{(p + p^{-1})} \right]^\eta = 1 \quad \text{and} \quad \frac{f'(z)}{(p + p^{-1})} \neq 0; \quad (z \in U).
\]

If the function \(f \) satisfies the following subordination condition:

\[
1 + \eta \left[1 - p + \frac{zf''(z)}{f'(z)} \right] < \frac{(A - B) z}{(1 + Az)(1 + Bz)}; \quad (z \in U), \tag{3.3}
\]
then
\[
\left[\frac{f'(z)}{pz^{p-1}} \right]^n < \frac{1 + Az}{1 + Bz}; \quad (z \in \mathbb{U}),
\]
and \((1 + Az)/(1 + Bz)\) is the best dominant of [3.3]

Taking \(\gamma = \frac{e^{i\lambda}}{pab \cos \lambda}, \mu = -a, \eta = 0\) and \(q(z) = (1 - z)^{-2pab(1-\alpha)e^{-i\lambda} \cos \lambda}\) in Theorem 3.1 and combining this together with item [(UF.1)] we obtain the following result:

Corollary 3.1.3. Let \(f \in S^\lambda_p(\alpha, b).\) Then
\[
\left[\frac{f(z)}{z^p} \right]^a < \frac{1}{(1 - z)^{2pab(1-\alpha)e^{-i\lambda} \cos \lambda}}; \quad (a \in \mathbb{C}^*, \ z \in \mathbb{U}).
\]
or, equivalently
\[
1 + \frac{e^{i\lambda} f(z)'}{b \cos \lambda \left(1 + \frac{zf(z')}{pf(z')} - 1 \right)} < \frac{1 + (1 - 2\alpha)z}{1 - z} \implies \left[\frac{f(z)}{z^p} \right]^a < \frac{1}{(1 - z)^{2pab(1-\alpha)e^{-i\lambda} \cos \lambda}},
\]
where \(2pab(1-\alpha)e^{-i\lambda} \cos \lambda \in \mathbb{B} \) and \(q(z) = (1 - z)^{-2pab(1-\alpha)e^{-i\lambda} \cos \lambda}\) is the best dominant.

For example, for \(a = \frac{1}{2}\) and \(p = b = 1\) we get
\[
f \in S^\lambda_p(\alpha) \implies \sqrt{\frac{f(z)}{z}} < \frac{1}{(1 - z)^{(1-\alpha)e^{-i\lambda} \cos \lambda}}; \quad (z \in \mathbb{U}).
\]

Remark 1. A special case of Corollary 3.1.3 when \(p = 1, \alpha = 0\) and \(f \in \mathcal{A}\) was given by Aouf et al. [1 Theorem 1].

Taking \(\gamma = \frac{e^{i\lambda}}{pab \cos \lambda}, \mu = 0, \eta = a\) and \(q(z) = (1 - z)^{-2pab(1-\alpha)e^{-i\lambda} \cos \lambda}\) in Theorem 3.3 and combining this together with item [(UF.1)] we obtain the following result:

Corollary 3.1.4. Let \(f \in K^\lambda_p(\alpha, b).\) Then
\[
\left[\frac{f'(z)}{pz^{p-1}} \right]^a < \frac{1}{(1 - z)^{2pab(1-\alpha)e^{-i\lambda} \cos \lambda}}; \quad (z \in \mathbb{U}),
\]
or, equivalently
\[
1 + \frac{e^{i\lambda} f(z)''}{b \cos \lambda \left(1 + \frac{zf''(z)}{f'(z)} - 1 \right)} < \frac{1 + (1 - 2\alpha)z}{1 - z} \implies \left[\frac{f'(z)}{pz^{p-1}} \right]^a < \frac{1}{(1 - z)^{2pab(1-\alpha)e^{-i\lambda} \cos \lambda}},
\]
where \(2pab(1-\alpha)e^{-i\lambda} \cos \lambda \in \mathbb{B} \) and \(q(z) = (1 - z)^{-2pab(1-\alpha)e^{-i\lambda} \cos \lambda}\) is the best dominant.

For example, for \(a = \frac{1}{2}\) and \(p = b = 1\) we get
\[
f \in K^\lambda_p(\alpha) \implies \sqrt{f'(z)} < \frac{1}{(1 - z)^{(1-\alpha)e^{-i\lambda} \cos \lambda}}; \quad (z \in \mathbb{U}).
\]
Remark 2. A special case of Corollary 3.1.4 when \(p = 1, \alpha = 0 \) and \(f \in \mathcal{A} \) was given by Aouf et al. [1, Corollary 1].

Theorem 3.2. Let \(q \) be univalent in \(U \) with \(q(0) = 1 \). Further, assume that \(f \in \mathcal{A}_0 \) and \(q \) satisfy the condition

\[
\Re \left\{ 1 + \frac{zq''(z)}{q'(z)} \right\} > \max \left\{ 0, -\Re \left(\frac{\sigma}{\gamma} \right) \right\}; \quad (z \in U). \tag{3.4}
\]

If the function \(\Psi \) defined by

\[
\Psi(z) := \left[\frac{f'(z)}{p z^{p-1}} \right]^{n} \left[\frac{z^{p}}{f(z)} \right]^{\mu} \left\{ \sigma + \gamma \left[\eta \left(1 - p + \frac{zf''(z)}{f'(z)} \right) + \mu \left(p - \frac{zf'(z)}{f(z)} \right) \right] \right\}, \tag{3.5}
\]

satisfies the following subordination condition:

\[
\Psi(z) < \sigma q(z) + \gamma z q'(z); \quad (z \in U). \tag{3.6}
\]

Then

\[
\mathcal{F}^n_{p, \mu} f(z) < q(z); \quad (z \in U).
\]

and \(q \) is the best dominant of Eq. (3.6).

Proof. If we choose \(\theta(w) = \sigma w \) and \(\varphi(w) = \gamma \), then \(\theta, \varphi \in \mathcal{H}(\Omega); (\Omega := \mathbb{C}) \). Also, for all \(w \in q(U) \), \(\varphi(w) \neq 0 \). Define

\[
Q(z) := z q'(z) \varphi(q(z)) = \gamma z q'(z),
\]

The function \(q \) is an univalent, then \(q'(z) \neq 0 \) for all \(z \in U \), \(Q(0) = 0 \) and \(Q'(0) = \gamma q'(0) \neq 0 \), and from condition (3.4)

\[
\Re \left\{ \frac{zQ'(z)}{Q(z)} \right\} = \Re \left\{ 1 + \frac{zq''(z)}{q'(z)} \right\} > 0; \quad (z \in U).
\]

Thus \(Q \) is a starlike function in \(U \). Moreover, if

\[
h(z) := \theta(q(z)) + Q(z) = \sigma q(z) + \gamma z q'(z),
\]

then from condition (3.4), we deduce

\[
\Re \left\{ \frac{zh'(z)}{Q(z)} \right\} = \Re \left\{ 1 + \frac{zq''(z)}{q'(z)} + \frac{\sigma}{\gamma} \right\} > 0; \quad (z \in U).
\]

For \(f \in \mathcal{A}_0 \), the function \(\mathcal{F}^n_{p, \mu} f(z) \) given by (1.2), we have \(\mathcal{F}^n_{p, \mu} f(U) \subset \Omega \) and the subordinations (2.3) and (3.4) are equivalent, then all the conditions of Lemma 2.1 are satisfied and the function \(q \) is the best dominant of (3.1). \(\square \)

Taking \(q(z) = (1 + Az)/(1 + Bz); \) \((-1 \leq B < A \leq 1, z \in U) \) in Theorem 3.2, and then applying Lemma 2.6, we obtain the following result:

Corollary 3.2.1. Let \(-1 \leq B < A \leq 1 \) and

\[
\Re \left(\frac{\sigma}{\gamma} \right) \geq \frac{|B| - 1}{|B| + 1}.
\]
If \(f \in A_0 \) and the function \(\Psi \) given by (3.5) satisfies the subordination
\[
\Psi(z) \prec \sigma \left(\frac{1 + Az}{1 + Bz} \right) + \frac{\gamma(A - B)z}{(1 + Bz)^2}; \quad (z \in \mathbb{U}),
\]
(3.7)
then
\[
\mathcal{F}_p^{\eta, \mu}[f](z) \prec \frac{1 + Az}{1 + Bz}; \quad (z \in \mathbb{U}).
\]
and \((1 + Az)/(1 + Bz)\) is the best dominant of Eq. (3.7).

For \(q(z) = e^{Cz}; \quad (|C| < \pi) \) in Theorem 3.2, we obtain the following corollary.

Corollary 3.2.2. Let
\[
\text{Re} \left\{ \frac{\sigma}{\gamma} \right\} \geq |C| - 1; \quad (|C| < \pi).
\]
If \(f \in A_0 \) and the function \(\Psi \) given by (3.5) satisfies the subordination
\[
\Psi(z) \prec (\sigma + \gamma Cz)e^{Cz}; \quad (z \in \mathbb{U}),
\]
(3.8)
then
\[
\mathcal{F}_p^{\eta, \mu}[f](z) \prec e^{Cz}; \quad (z \in \mathbb{U}),
\]
and \(e^{Cz} \) is the best dominant of Eq. (3.8).

Taking \(q(z) = (1 + Az)/(1 + Bz); \quad (-1 < B < A \leq 1, \ z \in \mathbb{U}) \) in Theorem 3.2, we obtain the following result:

Corollary 3.2.3. Let \(-1 < B < A \leq 1\) and \(\text{Re} \{u - vB\} \geq |v - uB| \) where \(u = 1 + \frac{\sigma}{\gamma} \) and \(v = \frac{B(\sigma - \gamma)}{\gamma} \). If \(f \in A_0 \) and the function \(\Psi \) given by (3.5) satisfies the subordination
\[
\Psi(z) \prec \sigma \left(\frac{1 + Az}{1 + Bz} \right) + \frac{(A - B)\gamma z}{(1 + Bz)^2}; \quad (z \in \mathbb{U}),
\]
(3.9)
then
\[
\mathcal{F}_p^{\eta, \mu}[f](z) \prec \frac{1 + Az}{1 + Bz}; \quad (z \in \mathbb{U}),
\]
and \((1 + Az)/(1 + Bz)\) is the best dominant of Eq. (3.9).

Proof. Let \(q(z) = (1 + Az)/(1 + Bz) \), then we have
\[
zq'(z) = \frac{(A - B)z}{(1 + Bz)^2} \quad \text{and} \quad 1 + \frac{zq''(z)}{q'(z)} = \frac{1 - Bz}{1 + Bz}.
\]
Thus
\[
\frac{\sigma}{\gamma} + 1 + \frac{zq''(z)}{q'(z)} = \frac{u + vz}{1 + Bz},
\]
where \(u = 1 + \frac{\sigma}{\gamma} \) and \(v = \frac{B(\sigma - \gamma)}{\gamma} \). According to Lemma 2.7, it follows that
\[
\text{Re} \left\{ \frac{\sigma}{\gamma} + 1 + \frac{zq''(z)}{q'(z)} \right\} > \frac{\text{Re} \{u - vB\} - |v - uB|}{1 - B^2} \geq 0.
\]
By using Theorem 3.2 we obtain the required result. \qed

4. Superordination Results

Theorem 4.1. Let q be a convex function in U with $q(0) = 1$. Further, assume that $\text{Re}\left\{\frac{a}{g}\right\} > 0$ and the functions $f \in A_0$ and q satisfy the conditions

$$F_{\eta, \mu}^p[f](z) \in H[q(0), 1] \cap Q; \quad (z \in U).$$

If the function Ψ given by (3.5) is univalent in U, and satisfies the following subordination condition:

$$\sigma q(z) + \gamma z q'(z) < \Psi(z); \quad (z \in U). \quad (4.1)$$

Then

$$q(z) < F_{\eta, \mu}^p[f](z); \quad (z \in U),$$

and q is the best subordinant of Eq. (4.1).

Proof. Let $f \in A_0$. Define the function g by

$$g(z) := F_{\eta, \mu}^p[f](z) = \left[\frac{f'(z)}{pz^p - 1}\right]^{\eta} \left[\frac{z^p}{f(z)}\right]^\mu; \quad (z \in U).$$

Differentiating $g(z)$ logarithmically with respect to z, we get

$$\frac{z g'(z)}{g(z)} = \eta \left(1 - \frac{zf''(z)}{f'(z)}\right) + \mu \left(p - \frac{zf'(z)}{f(z)}\right); \quad (z \in U),$$

hence the subordination (4.1) is equivalent to

$$\sigma q(z) + \gamma z q'(z) < \sigma g(z) + \gamma z g'(z).$$

By using Lemma 2.2 we obtain the required result. \qed

Taking $\eta = 1$ and $\mu = 0$ in Theorem 4.1, we obtain the following result:

Corollary 4.1. Let q be a convex function in U with $q(0) = 1$. Further, assume that the functions $f \in A_p$ and q satisfy the conditions

$$\frac{f''(z)}{pz^p - 1} \in H[q(0), 1] \cap Q; \quad (z \in U).$$

If the function

$$\phi(z) := \frac{f'(z)}{pz^p - 1} \left[2 - p + \frac{zf''(z)}{f'(z)}\right] = \left[\frac{zf'(z)}{pz^p - 1}\right]',$$

is univalent in U, and satisfies the following subordination condition:

$$[z q(z)]' < \left[\frac{zf'(z)}{pz^p - 1}\right]'; \quad (z \in U). \quad (4.2)$$

Then

$$q(z) < \frac{f'(z)}{pz^p - 1}; \quad (z \in U),$$

and q is the best subordinant of (4.2).
Taking $\mu = \eta = 1$ in Theorem 4.1, we obtain the following result:

Corollary 4.1.2. Let q be convex function in U with $q(0) = 1$. Further, assume that the functions $f \in A_p$ and q satisfy the conditions

$$\frac{1}{p} \frac{zf''(z)}{f''(z)} \in H[q(0), 1] \cap Q; \quad (z \in \mathbb{U}).$$

If the function

$$\Psi(z) := \frac{1}{p} [2 + \frac{zf''(z)}{f''(z)} - \frac{zf'(z)}{f(z)}] \frac{zf'(z)}{f(z)} = \left[\frac{1}{p} \frac{zf'(z)}{f(z)} \right]'$$

is univalent in U, and satisfies the following subordination condition:

$$[zq(z)]' \preceq \left[\frac{1}{p} \frac{zf'(z)}{f(z)} \right]'; \quad (z \in \mathbb{U}). \quad (4.3)$$

Then

$$q(z) \preceq \frac{1}{p} \frac{zf'(z)}{f(z)}; \quad (z \in \mathbb{U}),$$

and q is the best subordinant of Eq. (4.3).

Combining Theorem 3.2 with Theorem 4.1, we obtain the following “sandwich result”.

Theorem 4.2. Let q_1 and q_2 be convex and convex (univalent) functions in U with $q_1(0) = q_2(0) = 1$ respectively. Further, assume that $\text{Re} \left\{ \frac{\sigma}{\gamma} \right\} > 0$ and function $f \in A_0$ satisfy the condition

$$F_{\eta, \mu}^\eta f(z) \in H[1, 1] \cap Q; \quad (z \in \mathbb{U}).$$

If the function Ψ given by (3.5) is univalent in U, and satisfies the following subordination condition:

$$\sigma q_1(z) + \gamma zq_1'(z) \prec \Psi(z) \prec \sigma q_2(z) + \gamma zq_2'(z); \quad (z \in \mathbb{U}). \quad (4.4)$$

Then

$$q_1(z) \prec F_{\eta, \mu}^\eta f(z) \prec q_2(z); \quad (z \in \mathbb{U}),$$

and q_1 and q_2 are respectively the best subordinant and best dominant of Eq. (4.4).

References

[1] M. K. Aouf, F. M. Al-Oboudi and M. M. Haidan, On some results for λ-spirallike and λ-Robertson functions of complex order, *Publ. Inst. Math.* **77** (2005), no. 91, 93–98.

[2] F. M. Al-Oboudi and M. M. Haidan, Spirallike functions of complex order, *J. Natural Geom.* **19** (2000), 53–72.

[3] M. K. Aouf, A. O. Mostafa and H. M. Zayed, Subordination and superordination properties of p-valent functions defined by a generalized fractional differintegral operator, *Quaest. Math.* **39** (2016), no. 4, 545–560.

[4] T. Bulboaca, Differential Subordinations and Superordinations: Recent Results, *Casa Cărţii de Știință* (2005).
[5] T. Bulboacă, Classes of first-order differential superordinations, *Demonstratio Math.* 35 (2002), no.2, 287–292.
[6] S. Z. H. Bukhari, T. Bulboacă and M. S. Shabbir, Subordination and superordination results for analytic functions with respect to symmetrical points, *Quaest. Math.* 41 (2018), no. 1, 65–79.
[7] T. Bulboacă and N. Tuneski, Sufficient conditions for bounded turning of analytic functions, *Ukrains’kyi Matematychnyi Zhurnal* 70 (2018), no. 08, 1118–1127.
[8] A. Ebadian, V. S. Masih and Sh. Najafzadeh, Some extension results concerning analytic and meromorphic multivalent functions *Bull. Korean Math. Soc.* (Accepted).
[9] A. Ebadian and J. Sokół, *On the subordination and superordination of strongly starlike functions*, Math. Slovaca, 66 (2016), 815–822.
[10] S. S. Miller and P. T. Mocanu, Differential Subordinations: Theory and Applications, Series on monographs and textbooks in pure and appl. math., vol. 255. Marcel Dekker, Inc., New York (2000).
[11] S. S. Miller and P. T. Mocanu, On some classes of first-order differential subordinations, *Michigan Math. J.* 32 (1985), 185–195.
[12] S. S. Miller and P. T. Mocanu, Differential subordinations and univalent functions, *Michigan Math. J.* 28 (1981), no. 2, 157–172.
[13] S. S. Miller and P. T. Mocanu, Subordinants of differential superordinations, *Complex variables* 48 (2003), no. 10, 815–826.
[14] W. C. Royster, On the univalence of a certain integral, *Michigan Math. J.* (1965), no. 4, 385–387.
[15] R. M. Ali and V. Ravichandran, Integral operators on Ma–Minda type starlike and convex functions, *Math. Comput. Model.* 53 (2011), no. 5-6, 581–586.
[16] N. Shammugam, C. D. Ramachandran, M. Darus and S. Sivasubramanian, Differential sandwich theorems for some subclasses of analytic functions involving a linear operator, *Acta Math. Univ. Comenianae* 76 (2007), 287–294.
[17] T. N. Shanmugam, V. Ravichandran and S. Sivasubramanian, Differential sandwich theorems for some subclasses of analytic functions, *Austral. J. Math. Anal. Appl.* 3 (2006), no. 1, 1–11.
[18] H. M. Zayed, S. A. Mohamadein and M. K. Aouf, Sandwich results of p-valent functions defined by a generalized fractional derivative operator with application to vortex motion, *Revista de la Real Academia de Ciencias Exactas, Fisicas y Naturales. Serie A. Matemáticas* (2018), 1–16.

Vali Soltani Masih, DEPARTMENT OF MATHEMATICS
PYAME NOOR UNIVERSITY(PNU)
P.O. Box: 19395-3697
TEHRAN, IRAN
E-mail address: masihvali@gmail.com; v_soltani@pnu.ac.ir

Ali Ebadian, DEPARTMENT OF MATHEMATICS
FACULTY OF SCIENCE
URMIA UNIVERSITY
URMIA, IRAN
E-mail address: ebadian.ali@gmail.com

Shahram Najafzadeh, DEPARTMENT OF MATHEMATICS
PYAME NOOR UNIVERSITY(PNU)
P.O. Box: 19395-3697
TEHRAN, IRAN
E-mail address: najafzadeh1234@yahoo.ie