The spectrum of dementia and its treatment

Clare J Galton MB BChir MRCP(UK), University of Neurology Unit, Addenbrooke's Hospital, Cambridge

John R Hodges MD FRCP, University Neurology Unit, Addenbrooke's Hospital, and MRC Cognition and Brain Sciences Unit, Cambridge

J R Coll Physicians Lond 1999;33:234-9

The concept of dementia has evolved over the last decade from one of progressive global intellectual deterioration to a syndrome of progressive impairment in memory and at least one other cognitive deficit (aphasia, apraxia, agnosia or disturbance in executive function), in the absence of another explanatory central nervous system disorder, depression or delirium (DSM-IV). However, even this concept is inadequate as researchers and clinicians become more aware of specific cognitive profiles of different dementia syndromes. For instance, in early Alzheimer's disease (AD) there may be isolated memory impairment for several years before progression, and in the frontotemporal dementia (FTDs) memory impairment may appear late in the disease. Accurate diagnosis is essential for patient advice and management. Early detection will become increasingly important with the advent of disease modifying treatments. If a treatment slows progression of dementia, it should be administered at the earliest stage possible.

This review summarises some recent developments, focusing on the common neurodegenerative dementias. The relative frequencies of the different causes of dementia change with the age of onset, are illustrated in Fig 1(a) and (b).

Alzheimer's disease

AD is the commonest cause of dementia. The earliest deficits involve...
episodic memory (day-to-day recall of events and acquisition of new information); this is thought to reflect the earliest site of pathology in the hippocampus and related medial temporal lobe structures. Deficits in attentional processes, and a loss of the knowledge base which underlies language and other cognitive processes (semantic memory), are also found early in the course of the disease. The cognitive characteristics of AD are shown in Table 1.

AD remains a pathological diagnosis, but attempts to improve the accuracy of early diagnosis have focused on two aspects:

- identification of the neuropsychological deficits, particularly the hallmark impairment in recall of verbal material (stories and word lists) after a delay; and
- detection of abnormalities on structural and functional neuroimaging.

Magnetic resonance imaging (MRI) scans show atrophy of the hippocampus and medial temporal lobe early in the disease (Fig 2(a)). Recent research techniques have enabled hippocampal and medial temporal lobe atrophy to be accurately quantified early in the disease process using volumetric and linear measures, but the variability in normal elderly subjects results in poor predictive value. Single photon emission computed tomography (SPECT) scans show reduced blood flow second-
profound loss in conceptual knowledge, causing anamia and impaired comprehension of words, objects or faces.

The characteristic findings are shown in Table 1. It is of note that the Mini Mental State Examination (MMSE) is insensitive at detecting frontal abnormalities, and patients presenting with FTD may perform within the normal range on the MMSE. MRI in these patients demonstrates frontal and/or temporal lobe atrophy. In contrast to AD, the changes involve the lateral temporal structures and spare the hippocampi (Figs 2(b) and 3). About 10% of cases of FTD are familial; in some of these cases, there is a mutation in the microtubule-associated protein tau gene on chromosome 17 (FTDP) (see below). Both sporadic and familial forms of FTD are associated with features of motor neuron disease, particularly bulbar palsy.

Dementia with Lewy bodies

Dementia with Lewy bodies (DLB) is an increasingly recognised cause of dementia in the elderly (Figure 1(b)). The clinical features are shown in Table 2. The neuropsychological profile of DLB is a mixture of subcortical and cortical features, with prominent cognitive slowing plus impairment of both executive (planning and organisational) and visuoperceptual abilities. Compared to AD, these patients tend to have greater deficits in attention and visuospatial processing. The marked cholinergic deficit is postulated to be the cause of the tendency to visual hallucinations.

Table 2. Clinical features of dementia with Lewy bodies (adapted from Ref 12).

Feature	Description
Dementia in association with:	
• fluctuations in cognition (especially attention and alertness)	
• visual hallucinations (typically well formed)	
• mild spontaneous parkinsonism	

Supportive features:	
• repeated or unexplained falls	
• syncope or transient loss of consciousness	
• neuroleptic sensitivity syndrome	
• hallucinations in other modalities	
• systematised delusions	
Subcortical dementia syndromes

The typical cognitive pattern in subcortical dementia (SCD) is that of mild changes in memory, cognitive slowing and executive dysfunction (Table 1). The neurodegenerative conditions associated with features of an SCD commonly have neurological signs of a movement disorder. Both the cognitive syndrome and the neurological features are thought to result from damage to the basal ganglia, midbrain and brainstem structures. Typical examples (Table 3) are:

- **Huntington’s disease**, in which the cognitive and behavioural symptoms and motor symptoms of chorea and inco-ordination worsen as the pathology in the caudate nucleus and putamen progresses.

- **Progressive supranuclear palsy (PSP)**. Although PSP is similar to Parkinson’s disease (PD), it does not respond well to levodopa. The differing pathology is reflected by the particular features of supranuclear gaze palsy, rigidity of axial muscles, bulbar symptoms and a marked tendency to falls.

Other causes of SCD include:

- **Parkinson’s disease**. In PD there is a subcortical dementia in one-third to one-half of patients.

- **Corticobasal degeneration** is an increasingly recognised cause of dementia, with an asymmetric akinetic rigid syndrome, marked limb apraxia, and the almost pathognomonic feature of alien limb phenomenon in which the hand(s) act as if ‘with a will of their own'\(^{14}\). Dementia is common in the later stages with a frontal emphasis. The pathology is focused in the frontal and parietal cortices plus the substantia nigra, basal ganglia and thalamus.

Neuropathology

Recent research in the molecular neuropathology of the neurodegenerative dementias has provided new insights into these conditions. Neuronal and glial inclusions have been found in a range of neurodegenerative dementias (Table 4). They are composed either of abnormal forms of the microtubule-associated tau protein or of \(\alpha\)-synuclein. The function of \(\alpha\)-synuclein remains unknown, but it may be a lipid-binding protein in the brain. Tau protein has six isoforms, and the proportion of these isoforms forming filamentous inclusions varies in the different diseases. The suggestion that neurons degenerate as a result of these abnormal inclusions is supported by the discovery of mutations in the tau gene (causing FTDP) and in the \(\alpha\)-synuclein gene in some early-onset familial PD cases\(^5\).

Table 3. Major causes of subcortical dementia.

Disease	Filamentous inclusion	Main component
Degenerative:		
- progressive supranuclear palsy	Neuromyelin lesions	Tau protein
- Huntington’s disease		
- Parkinson’s disease		
- corticobasal degeneration		
Vascular disorders:		
- multi-infarct dementia	Neuromyelin lesions	Tau protein
- subcortical		
-Binswanger’s disease	Neuromyelin lesions	Tau protein
Metabolic:		
- Wilson’s disease		
Demyelinating disease:		
- multiple sclerosis		
- leucodystrophies		
- AIDS dementia complex		
Miscellaneous:		
- normal pressure hydrocephalus		

Table 4. Intraneuronal inclusions in neurodegenerative diseases (adapted from Ref 10).

Disease	Filamentous inclusion	Main component
Alzheimer’s disease	Neurofibrillary lesions	Tau protein
Pick’s disease	Pick bodies	Tau protein
FTDP-17	Neurofibrillary lesions and glial fibrillary lesions	Tau protein
Progressive supranuclear palsy	Neurofibrillary lesions	Tau protein
Parkinson’s disease	Lewy bodies	\(\alpha\)-Synuclein
Dementia with Lewy bodies	Lewy bodies	\(\alpha\)-Synuclein
Multiple system atrophy	Glial and neuronal inclusions	\(\alpha\)-Synuclein

FTDP = frontotemporal dementia and Parkinsonism

The first priority is to exclude treatable causes of dementia (Table 5). Our recommended investigations in most cases should include...
Table 5. Treatable causes of dementia.

Category	Examples
Depressive pseudodementia	Infections: • AIDS dementia complex • syphilis
Benign tumours, especially subfrontal meningiomas	Vasculitides: • systemic lupus erythematosus • giant cell arthritis • polyarteritis nodosa
Normal pressure hydrocephalus	Alcoholic dementia
Subdural haematoma	Chronic intoxications: • heavy metals • drugs • carbon monoxide poisoning
Deficiency states:	Wilson’s disease
• B1, B12, B6	
Endocrine disease:	
• hypothyroidism	
• Cushing’s disease	
• Addison’s disease	

Table 6. Recommended investigations in dementia.

Routine:
• full blood count and ESR
• biochemical profile: urea or creatinine, electrolytes, calcium, liver function serum B12 and RBC folate
• thyroid function
• chest X-ray
• CT scan of brain (to exclude structural pathology)

Other tests which may be indicated in certain cases:

| • MRI (especially in presenile cases to look at pattern of disease) |
| • SPECT |
| • EEG (e.g., Creutzfeldt-Jakob disease, SSPE) |
| • CSF examination |
| • immunological tests for vasculitides |
| • screening for cardiac sources of emboli |
| • slit lamp examination for Kayser-Fleischer rings and caeruloplasmin estimation (Wilson’s disease) |
| • specific blood and/or urine tests for inherited metabolic disorders |
| (e.g., leucodystrophies, young-onset cases) |
| • screening for HIV infection |
| • genetic screening for HD mutation/specific AD mutations if familial dementia |
| • cerebral biopsy |

AD = Alzheimer’s disease; CSF = cerebrospinal fluid; CT = computed tomography; ESR = erythrocyte sedimentation rate; HD = Huntington’s disease; MRI = magnetic resonance imaging; RBC= red blood cell; SPECT = single-photon emission computed tomography; SSPE = subacute sclerosing panencephalitis.

Table 5. Treatable causes of dementia.

Table 6. Recommended investigations in dementia.

Cases of progressive cognitive impairment are listed in Table 6. In dementia syndromes for which there is no specific treatment, carer support and general common sense strategies can help in day-to-day management (see Box 1 for support groups). The cholinesterase inhibitors, donepezil hydrochloride (Aricept®) and rivastigmine (Exelon®) are licensed for symptomatic treatment in AD. Although these treatments improve cognitive performance in AD, their long-term impact on the course of the disease remains to be established. Vitamin E and selegiline, both less expensive than cholinesterase inhibitors, have shown some benefit in delaying functional deterioration in moderately severe AD patients.

Conclusions

Dementia syndromes are complicated by clinical and neuroimaging factors. However, in AD, treatment with donepezil (Aricept®) or rivastigmine (Exelon®) is associated with some improvement in cognitive performance. Although symptomatic treatment cannot improve cognitive function in AD, clinicians may find these treatments rewarding for their patients and their families.

References

1. Diagnostic and Statistical Manual of Mental Disorders (DSM–IV), 4th edn. Washington, DC: American Psychiatric Association, 1994.
2. Hodges JR. The amnestic prodrome of Alzheimer’s disease (editorial). *Brain* 1998;121:1601–2.
3. Garrard P, Perry R, Hodges JR. Disorders of semantic memory (editorial). *J Neurol Neurosurg Psychiatry* 1997;62:431–5.
4. Fox NC, Warrington EK, Freeborough PA, Hartikainen P, et al. Presymptomatic hippocampal atrophy in Alzheimer’s disease: a longitudinal study. *Brain* 1996;119:2001–7.
5. Smith AD, Jobst KA. Use of structural imaging to study the progression of Alzheimer’s disease. *Br Med Bull* 1996;52:575–86.
6. Craddock N. New susceptibility gene for Alzheimer’s disease on chromosome 12? *Lancet* 1998;352:1720–1.
7. Hardy J, Duff K, Hardy G, Perez-Tur J, Hutton M. Genetic dissection of Alzheimer’s disease and related dementia: amyloid and its relationship to tau. *Nat Neurosci* 1998;1:355–8.
8. Harvey RJ, Rossor MN, Skelton-Robinson M, Garralda E. *Young onset dementia:*
Box 1. Patient and carer support group addresses.

- Alzheimer’s Disease Society
 Gordon House
 10 Greencoat Place
 London SW1P 1PH
 Tel: 0171 306 0606

- CANDID (Counselling and Diagnosis in Demential)
 National Hospital for Neurology and Neurosurgery
 Queen Square
 London WC1N 3BG
 Tel: 0171 829 8772

- Huntington’s Disease Association
 108 Battersea High Street
 London SW11 3HP
 Tel: 0171 223 7000

- Parkinson’s Disease Society
 22 Upper Woburn Place
 London WC1H 0RA
 Tel: 0171383 3513

- Pick’s Disease Support Group
 Dementia Research Group
 National Hospital for Neurology and Neurosurgery
 Queen Square
 London WC1N 3BG
 Tel: 0171 829 8772

- Creutzfeldt-Jakob Disease Support
 Network
 Birchwood
 Heath Top
 Ashley Heath
 Market Drayton
 Salop TF9 4QR
 Tel: 01630 673 973

- Frontotemporal Dementia Carer Support Group
 MRC Cognition and Brain Sciences Unit
 15 Chaucer Road
 Cambridge CB2 2EF
 Tel: 01223 355 294 X 123

- The Progressive Supranuclear Palsy Association
 22 Upper Woburn Place
 London WC1H 0RA
 Tel: 0171 383 3513

- Pick’s Disease Support Group
 Dementia Research Group
 National Hospital for Neurology and Neurosurgery
 Queen Square
 London WC1N 3BG
 Tel: 0171 829 8772

epidemiology, clinical symptoms, family burden, support and outcome. London: National Hospital of Neurology and Neurosurgery. Dementia Group Publications, 1998.

9 Hodges JR, Patterson K, Oxbury S, Funnell M. Semantic dementia: progressive fluent aphasia with temporal lobe atrophy. Brain 1992; 115:1783–806.

10 Goedert M, Spillantini MG, Davies S. Filamentous nerve cell inclusions in neurodegenerative diseases. Curr Opin Neurobiol 1998; 8:619–32.

11 Rakowicz WP, Hodges JR. Dementia and aphasia in motor neuron disease: an under recognised association? J Neurol Neurosurg Psychiatry 1998; 65:881–9.

12 McKelth IG, Galasko D, Kosaka K, Perry UK, et al. Consensus guidelines for the clinical and pathologic diagnosis of dementia with Lewy bodies (DLB): report of the consortium on DLB International Workshop. Neurology 1996; 47: 1113–24.

13 Hansen L, Salmon D, Galasko D, Masliah E, et al. The Lewy body variant of Alzheimer’s disease: a clinical and pathological entity. Neurology 1990; 40: 1–8.

14 Rinne JO, Lee MS, Thompson PD, Marsden CD. Corticobasal degeneration: a clinical study of 36 cases. Brain 1994; 117: 1183–96.

15 Sano M, Ernesto C, Thomas R, Klauber M, et al, for the members of the Alzheimer’s Disease Cooperative Study. A controlled trial of selegiline, alpha-tocopherol, or both as treatment for Alzheimer’s disease. N Engl J Med 1997; 336: 1216–22.

16 Burns A, Levy R (eds). Dementia. London: Chapman and Hall Medical, 1994.