The Regularized Trace Formula Of A Second Order Differential Equation Given With Anti-Periodic Boundary Conditions

Seda KIZILBUDAK ÇALIŞKAN\(^1\) \textit{\&} Leyla ÖZEN\(^1\)

\(^1\) Yıldız Technical University, Faculty of Arts and Science, Department of Mathematics, (34210), Davutpaşa, İstanbul, TURKEY

Received: 09.11.2018; Accepted: 24.10.2019

http://dx.doi.org/10.17776/csj.480810

\begin{abstract}
In this study, we examined the formula of the regularized trace of the self-adjoint operator which is formed by
\[\ell(y) = -y'' + p(x)y \]
differential expression and
\[y(0) + y(\pi) = 0 \]
\[y'(0) + y'(-\pi) = 0 \]
anti-periodic boundary condition.

\textbf{Keywords}: Regularized trace, Eigenvalues, Eigen functions.
\end{abstract}

\section{INTRODUCTION}

\(p(x) \) is a real valued, continuous function in \([0, \pi]\), \(L_0 \) and \(L \) get two self-adjoint operators generated by the following expressions

\[\ell_0(y) = -y'' \]

and

\[\ell(y) = -y'' + p(x)y \] \hfill (1)
with the same boundary conditions
\[
y(0) + y(\pi) = 0
\]
\[
y'(0) + y' (\pi) = 0
\] (2)
respectively, in the space \(L_2[0, \pi] \). The spectrum of operator \(L_0 \) coincides with the set \(\{(2n + 1)^2\}_{n=0}^{\infty} \). Every point of the spectrum is an eigenvalue with multiplicity two.

Let
\[
\mu_k = \begin{cases}
k^2, & \text{if } k \text{ is odd} \\
(k-1)^2, & \text{if } k \text{ is even}
\end{cases} \quad (k = 1, 2, \ldots)
\]
is the eigenvalues of operator \(L_0 \) and
\[
\psi_1 = \frac{2}{\sqrt{\pi}} \sin x, \psi_2 = \frac{2}{\sqrt{\pi}} \cos x, \psi_3 = \frac{2}{\sqrt{\pi}} \sin 3x, \psi_4 = \frac{2}{\sqrt{\pi}} \cos 3x, \ldots
\]
are the orthonormal eigenfunctions corresponding to this eigenvalues.

Also we showed the eigenvalues of operator \(L \) by \(\lambda_1 \leq \lambda_2 \leq \lambda_3 \leq \cdots \leq \lambda_k \leq \cdots \) and corresponding orthonormal eigenfunctions by \(\varphi_0, \varphi_1, \varphi_2, \ldots, \varphi_k, \ldots \)

In this study, we obtained a formula for the sum of series by Dikii’s method,
\[
\sum_{n=1}^{\infty} (\lambda_n - \mu_n)
\]
which is called the formula of regularized trace of operator \(L \).

The regularized trace theory, which was first examined by Gelfand and Levitan and they derived the formula of regularized trace for the Sturm-Liouville operator [1], attracted the attention of many authors. Dikii [2] provided and developed Gelfand and Levitan’s formulas by their own method. Later, Levitan [6] suggested one more method for computing the traces of the Sturm–Liouville operator. There are numerous investigations on the calculation of the regularized trace of differential operator equations [3-17].

2. CALCULATION

Let us show the following equation
\[
\lim_{N \to \infty} \sum_{n=1}^{N} \left[(\varphi_n, L\varphi_n) - (\psi_n, L\psi_n) \right] = 0 \quad (3)
\]
which will be used later. For this we consider the transfer matrix \((u_{ik})_{i,k=1}^{\infty} \) from the orthonormal basis \{\varphi_k\} to orthonormal basis \{\psi_k\} as in [2]:
\[
\psi_k = \sum_{i=1}^{\infty} u_{ik} \varphi_i \quad (k = 1, 2, \ldots)
\]
where \(u_{ik} = (\varphi_i, \psi_k) \) and \((u_{ik})_{l,k=1}^{\infty}\) are the unitary matrix, that is
\[
\sum_{l=1}^{\infty} u_{lk}^2 = 1 \quad (k = 1, 2, \ldots)
\]

Let us give some limitations for \(u_{ik} \). It is clear that
\[
L\psi_k = \mu_k \psi_k + p \psi_k \tag{4}
\]
If we multiply both side of equality (4) by \(\varphi_i \) we obtain
\[
(L\psi_k, \varphi_i) = (\mu_k \psi_k, \varphi_i) + (p \psi_k, \varphi_i)
\]
Or
\[
\lambda_i (\psi_k, \varphi_i) = \mu_k (\psi_k, \varphi_i) + (p \psi_k, \varphi_i)
\]
and
\[
(\lambda_i - \mu_k)(\psi_k, \varphi_i) = (p \psi_k, \varphi_i)
\]

With respect to [2] taking the square of both sides of the last equality and summing from 1 to \(\infty \) respect to \(i \) we obtain
\[
\sum_{i=1}^{\infty} (\lambda_i - \mu_k)^2 (\psi_k, \varphi_i)^2 = \sum_{i=1}^{\infty} (p \psi_k, \varphi_i)^2 = \|p \psi_k\|^2 = \int_0^\pi [p(x) \psi_k(x)]^2 dx \leq p_0^2 \tag{5}
\]
where \(p_0 = \max_{0 \leq x \leq \pi} |p(x)| \).

Suppose that the following conditions hold:

1. For the eigenvalues and the eigenfunctions of the \(L \) operator holds the asymptotic formulas
 \[
 \lambda_k = \mu_k + O \left(\frac{1}{k} \right), \quad \varphi_k = \psi_k + O \left(\frac{1}{k} \right) \quad [10].
 \]

2. \(\int_0^\pi p(x) \, dx = 0 \).

Hence
\[
\sum_{i=N+1}^{\infty} (\lambda_i - \mu_k)^2 u_{ik}^2 < C \quad (C = \text{const.}) \quad (k < N) \tag{6}
\]

We will use condition 1 in the inequalities we will obtain.

Obviously,
\[
\sum_{i=N+1}^{\infty} (\lambda_i - \mu_k) u_{ik}^2 < C \Rightarrow \sum_{i=N+1}^{\infty} (\lambda_i - \mu_k)(\lambda_i - \lambda_k) u_{ik}^2 < C
\]
\[
\Rightarrow \sum_{i=N+1}^{\infty} (\lambda_i - \lambda_k)^2 u_{ik}^2 < C
\]
is obtained for all integer N from equation (6)

And we obtain

$$\sum_{i=N+1}^{\infty} (\lambda_i - \lambda_k) u_{ik}^2 \leq \frac{C}{\lambda_{N+1} - \mu_k} \quad (k < N). \quad (7)$$

Now let us prove the equation (3).

$$\sum_{i=1}^{N} (\psi_k, L \psi_k) = \left(\sum_{i=1}^{\infty} u_{ik} \phi_i, \sum_{i=1}^{\infty} \lambda_i u_{ik} \phi_i \right) = \sum_{i=1}^{\infty} \lambda_i u_{ik}^2$$

If we take the sum on k from 1 to N on both sides of this equation we get

$$\sum_{k=1}^{N} (\psi_k, L \psi_k) = \sum_{k=1}^{N} \sum_{i=1}^{\infty} \lambda_i u_{ik}^2.$$

Since $\sum_{i=1}^{\infty} u_{kl}^2 = 1$ we get

$$\sum_{k=1}^{N} (\varphi_k, L \varphi_k) = \sum_{k=1}^{N} \lambda_k = \sum_{k=1}^{N} \sum_{i=1}^{\infty} \lambda_k u_{kl}^2.$$

So now we need to prove

$$\lim_{N \to \infty} \left(\sum_{k=1}^{N} \sum_{i=1}^{\infty} \lambda_i u_{ik}^2 - \sum_{k=1}^{N} \sum_{i=1}^{\infty} \lambda_k u_{kl}^2 \right) = 0. \quad (8)$$

$$\sum_{k=1}^{N} \sum_{i=1}^{\infty} \lambda_i u_{ik}^2 - \sum_{k=1}^{N} \sum_{i=1}^{\infty} \lambda_k u_{kl}^2 = \sum_{k=1}^{N} \sum_{i=N+1}^{\infty} (\lambda_i - \lambda_k) u_{ik}^2 + \sum_{k=1}^{N} \sum_{i=N+1}^{\infty} \lambda_k (u_{ik}^2 - u_{kl}^2). \quad (9)$$

Let us calculate first sum on the right side of equality (9). For convenience while let $N + 1$ be even number then we have

$$\sum_{k=1}^{N} \sum_{i=N+1}^{\infty} (\lambda_i - \lambda_k) u_{ik}^2 = \sum_{k=1}^{N-1} \sum_{i=N+1}^{\infty} (\lambda_i - \lambda_k) u_{ik}^2 + (\lambda_{N+1} - \lambda_N) u_{(N+1)N}^2 + \sum_{i=N+2}^{\infty} (\lambda_i - \lambda_N) u_{iN}^2 \quad (10)$$

Let us calculate first and third sum on the right side of equality (10) by inequality (7), for $N \to \infty$

$$\sum_{k=1}^{N} \sum_{i=N+1}^{\infty} (\lambda_i - \lambda_k) u_{ik}^2 < \frac{1}{4N} + \frac{1}{2(N+1)} \left[\ln \frac{N^2 + N}{N - 1} \right] \to 0 \quad (11)$$

and
\[
\sum_{i=1}^{\infty} (\lambda_i - \lambda_N) u_{iN}^2 \leq \frac{C}{\lambda_{N+2} - \mu_N} \leq \frac{C}{4N + 4} \to 0
\]
(12)

Now we shall calculate the second term on the right side of equality (10) when \(N \to \infty \). Suppose that \(N + 1 \) is even, we have

\[
(\lambda_{N+1} - \lambda_N) u_{(N+1)N}^2 \leq N^2 + O\left(\frac{1}{N+1}\right) - N^2 - O\left(\frac{1}{N}\right) \to 0 \quad (N \to \infty)
\]
(13)

In this way, for even number \(N + 1 \) from the expressions (10), (11), (12) and (13) we have

\[
\lim_{N \to \infty} \sum_{k=1}^{N} \sum_{i=N+1}^{\infty} (\lambda_i - \lambda_k) u_{ik}^2 = 0.
\]
(14)

Formula (14) can also calculated for odd number \(N + 1 \).

Now we shall calculate second sum on the right side of equality (9).

\[
u_{ik} + u_{ki} = (\varphi_i, \psi_k) + (\varphi_k, \psi_i) = -(\varphi_i - \psi_i, \varphi_k - \psi_k)
\]
(15)

By equality (15) and condition 1., we have

\[
|u_{ik} + u_{ki}| \leq \|\varphi_i - \psi_i\| \|\varphi_k - \psi_k\| < \frac{C}{ik}.
\]
(16)

According to Cauchy-Schwarz inequality we have

\[
\sum_{i=N+1}^{\infty} (\lambda_i - \mu_k) |u_{ik}^2 - u_{ki}^2| = \sum_{i=N+1}^{\infty} (\lambda_i - \mu_k) |u_{ik} - u_{ki}| |u_{ik} + u_{ki}|
\]

\[
\leq \sqrt{\sum_{i=N+1}^{\infty} |u_{ik} - u_{ki}|^2} \sqrt{\sum_{i=N+1}^{\infty} (\lambda_i - \mu_k)^2 |u_{ik} - u_{ki}|^2}
\]

\[
< \frac{C}{(k-1)\sqrt{N+1}}.
\]
(17)

Hence

\[
\sum_{i=N+1}^{\infty} |u_{ik}^2 - u_{ki}^2| < \frac{C}{(k-1)\sqrt{N+1}[N^2 - (k-1)^2]}
\]
(18)

Now we shall evaluate the second sum on the right side of equality (9),

\[
\sum_{k=1}^{N} \lambda_k \sum_{i=N+1}^{\infty} |u_{ik}^2 - u_{ki}^2| = \lambda_N \sum_{i=N+1}^{\infty} |u_{iN}^2 - u_{Ni}^2| + \sum_{k=1}^{N-1} \lambda_k \sum_{i=N+1}^{\infty} |u_{ik}^2 - u_{ki}^2|
\]
\begin{align*}
&= \lambda_N \left| u_{N+1N}^2 - u_{NN+1}^2 \right| + \lambda_N \sum_{i=N+2}^{\infty} \left| u_i^2 - u_{Ni}^2 \right| + \sum_{k=1}^{N-1} \lambda_k \sum_{i=N+1}^{\infty} \left| u_{ik}^2 - u_{ki}^2 \right| \\
&\text{(19)}
\end{align*}

By inequality (16) we have

\begin{align*}
\lambda_N \left| u_{N+1N}^2 - u_{NN+1}^2 \right| &= \lambda_N \left| u_{N+1N} - u_{NN+1} \right| \left| u_{N+1N} + u_{NN+1} \right| \\
&\leq \frac{CN^2}{N^2(N + 1)^2} \left| u_{N+1N} - u_{NN+1} \right| \to 0 \quad (N \to \infty) \\
&\text{(20)}
\end{align*}

By the expression (18) we evaluate the second and third sum on the right side of equality (19)

\begin{align*}
\lambda_N \sum_{i=N+2}^{\infty} \left| u_i^2 - u_{Ni}^2 \right| &< \frac{CN^2}{(N - 1)\sqrt{N} + 2[(N + 2)^2 - (N + 1)^2]} \to \infty \quad (N \to \infty) \\
&\text{(21)}
\end{align*}

and

\begin{align*}
\sum_{k=1}^{N-1} \lambda_k \sum_{i=N+1}^{\infty} \left| u_{ik}^2 - u_{ki}^2 \right| &< \frac{CN}{\sqrt{N} + 1} \sum_{k=2}^{N} \frac{1}{N^2 - (k - 1)^2} \sim \frac{\ln N}{\sqrt{N}} \to 0 \quad (N \to \infty). \\
&\text{(22)}
\end{align*}

From the expressions (19), (20),(21) and (22) we have

\begin{align*}
\lim_{N \to \infty} \sum_{k=1}^{N} \sum_{i=N+1}^{\infty} \lambda_k (u_{ik}^2 - u_{ki}^2) = 0 \\
&\text{(23)}
\end{align*}

Thus from the expressions (9), (14), and (23) we obtain formula (8). Therefore formula (3) have proved.

3. CONCLUSION

\begin{align*}
(\varphi_k, L\varphi_k) = \lambda_k \quad \text{and} \quad (\psi_k, L\psi_k) = \mu_k + (\psi_k, p\psi_k).
\end{align*}

If we use these into formula (3) then we obtain

\begin{align*}
\sum_{k=1}^{N} [(\psi_k, L\psi_k) - (\varphi_k, L\varphi_k)] = \sum_{k=1}^{N} (\mu_k - \lambda_k) + \sum_{k=1}^{N} (\psi_k, p\psi_k) \to 0, \quad (N \to \infty). \\
&\text{(24)}
\end{align*}

Now we shall calculate

\begin{align*}
\lim_{N \to \infty} \sum_{k=1}^{N} (\psi_k, p\psi_k).
\end{align*}

According to condition 2. we have for even number \(N \)
\[
\sum_{k=1}^{N} (\psi_k, p\psi_k) = \frac{1}{\pi} \int_0^{\pi} p(x) \, dx + \frac{N}{\pi} \int_0^{\pi} p(x) \, dx = 0
\] (25)

Similarly we have for odd number \(N \)
\[
\sum_{k=1}^{N} (\psi_k, p\psi_k) = -\frac{1}{\pi} \int_0^{\pi} p(x) \cos 2Nx \, dx \to 0 \quad (N \to \infty).
\] (26)

From the expressions (25) and (26) we have
\[
\lim_{N \to \infty} \sum_{k=1}^{N} (\psi_k, p\psi_k) = 0
\]

Hence from the expressions (24) and (26) we have
\[
\lim_{N \to \infty} \sum_{k=1}^{N} (\lambda_k - \mu_k) = 0.
\]

So we have proved the following theorem.

THEOREM : The following formula is true when we considered \(p(x) \) is a continuous function and conditions 1.,2. are fulfilled
\[
\sum_{n=1}^{\infty} (\lambda_n - \mu_n) = 0.
\] (27)

REFERENCES

[1] Gelfand, I. M. and Levitan, B. M., On a formula for eigenvalues of a differential operator of second order. Dokl. Akad. Nauk SSSR, 88-4 (1953) 593-596.

[2] Dikii, L. A., On a Formula of Gelfand–Levitan. Usp. Mat. Nauk, 8-2 (1953) 119-123.

[3] Gelfand, I. M., About an identity for eigenvalues of a differential operator of second order. Usp. Mat. Nauk, 11(67) (1956) 191-198.

[4] Fadeev, L.D., On the Expression for the Trace of the Difference of Two Singular Differential Operators of the Sturm–Liouville Type. Dokl. Akad. Nauk SSSR, 115-5 (1957) 878–881.

[5] Dikii, L. A., Trace formulas for differential operators of Sturm- Liouville. Uspek Matem. Nauk, 13-3 (1958) 111-143.

[6] Levitan, B.M., Calculation of the Regularized Trace for the Sturm–Liouville Operator. Uspekhi Mat. Nauk, 19-1 (1964) 161–165.

[7] Sadovnichii, V.A., On the trace of the difference of two high-order ordinary differential operators. Differents, Uravneniya, 2-12 (1966) 1611-1624.

[8] Cao, C.W. and Zhuang, D.W., Some trace formulas for the Schrödinger equation with energy-dependent potential, Acta Math. Sci.(in Chinese), 5 (1985) 233-236.
[9] Bayramoğlu, M., On the regularized trace formula of th differential equation with unbounded Coefficient. Spectral Theory and Its Applications, 7 (1987) 15-40.
[10] Lax P. D., Trace formulas for the Schroeding operator. Commun. Pure Appl. Math., 47- 4 (1994) 503-512.
[11] Papanicolaou, V.G., Trace formulas and the behavior of large eigenvalues, SIAM J. Math. Anal., 26 (1995), 218-237.
[12] Adıgüzelov, E. E., Baykal, O. and Bayramov, A., On the spectrum and regularized trace of the Sturm-Liouville problem with spectral parameter on the boundary condition and with the operator coefficient. International Journal of Differential Equations and Applications, 2-3 (2001) 317-333.
[13] Savchuk, A.M., Shkalikov, A.A., Trace formula for Sturm-Liouville Operators with Singular Potentials. Mathematical Notes, 69-3 (2001).
[14] Bayramov, A., Öztürk Uslu, S. and Kızılbudak Çalışkan, S., On the trace formula of second order differential equation given with non-seperable boundary conditions. Sigma Journal of Engineering and Natural Sciences, 4 (2005) 57-64.
[15] Guliyev, N.J., The regularized trace formula for the Sturm-Liouville equation with spectral parameter in the boundary condition. Proceedins of IMM of NAS of Azerbaijan, 22 (2005) 99-102.
[16] Sadovnichii, V.A. and Podol’skii, V.E., Traces of Differential Operators. Differential Equations, 45- 4 (2009) 477-493
[17] Wang, Y.P., Koyunbakan H. and Yang, C.F., A Trace Formula for Integro-differential Operators on the Finite Interval, Acta Mathematicae Applicatæ Sinica (English Series) 33-1 (2017) 141-146.