Two-loop corrections to W and Z boson production at high p_T

Nikolaos Kidonakisa and Richard J. Gonsalvesb
a Kennesaw State University, Physics #1202, Kennesaw, GA 30144, USA and
b Department of Physics, University at Buffalo, The State University of New York, Buffalo, NY 14260-1500, USA

We present new results for the complete two-loop corrections in the soft approximation for W and Z boson production at large transverse momentum. Analytical expressions for the NNLO approximate corrections are used to calculate transverse momentum distributions. Results for the W boson p_T distribution at Tevatron and LHC energies are presented.

1. Introduction

The production of W and Z bosons in hadron colliders is important in testing the Standard Model and in the search for new physics, as it is a background to Higgs production and new gauge bosons. Here we present new results for the theoretical calculation of the differential cross section at large transverse momentum. We begin in Section 2 by presenting the leading-order (LO) partonic production channels and presenting some numerical LO results for the W p_T distribution. In Section 3 we discuss the structure of the NLO corrections and identify an important subset, the soft-gluon corrections. In Section 4, we discuss NNLL resummation of these corrections via two-loop calculations. In Section 5 we present the approximate NNLO p_T distribution for W production at the LHC and the Tevatron. We conclude in Section 6 with a summary.

2. Partonic channels at LO

The LO partonic processes for W (or Z) production at large p_T are

$$q(p_a) + g(p_b) \to W(Q) + q(p_c)$$

and

$$q(p_a) + \bar{q}(p_b) \to W(Q) + g(p_c).$$

We define $s = (p_a + p_b)^2$, $t = (p_a - Q)^2$, $u = (p_b - Q)^2$, and $s_4 = s + t + u - Q^2$. At the partonic threshold $s_4 \to 0$. As we will see later, the soft-gluon corrections are of the form $[\ln(s_4/p_T^2)/s_4]$ while the virtual corrections are $\delta(s_4)$ terms.

In all numerical results below we use the MSTW2008 NNLO pdfs \cite{1}. We begin with leading-order results for W production at the Tevatron. In Fig. \ref{fig1} we show results for the LO p_T distribution, $d\sigma/dp_T^2$, for W production at the Tevatron. Here we have set the factorization scale μ_F equal to the renormalization scale μ_R, and in the numerical results in Fig. \ref{fig1} we set this common scale, denoted as μ, equal to p_T. We show separate results for the two LO channels as well as for their sum. We note that the qq and $q\bar{q}$ channels are equally important. The p_T distribution falls rapidly as p_T increases.

Leading-order results for W production at the LHC at 7 TeV energy are shown in Fig. \ref{fig2} again with $\mu = p_T$. The qq channel is numerically dominant at this energy for all p_T values shown in the plot.

The corresponding leading-order results for W production at the LHC at 14 TeV energy are shown in Fig. \ref{fig3}. Again the qq channel is numerically dominant.

In Fig. \ref{fig4} we show the LO scale dependence for W production at the LHC at 14 TeV. We have chosen $p_T = 80$ GeV and plot the p_T distribution as a function of μ/p_T. We show three curves. One has the common scale $\mu = \mu_F = \mu_R$ varied by two orders of magnitude. Another sets $\mu = \mu_F$ and varies this scale while keeping μ_R fixed, $\mu_R = p_T$. The third sets $\mu = \mu_R$ and varies this scale while fixing $\mu_F = p_T$. At LO the factorization scale, μ_F, and renormalization scale, μ_R, dependence largely cancel each other, so that the $\mu = \mu_F = \mu_R$ line shows relatively mild variation.

In Fig. \ref{fig5} we show the corresponding LO scale dependence at 7 TeV energy at the LHC. Comparisons Figs. \ref{fig4} and \ref{fig5} we note a somewhat different scale dependence at 7 and 14 TeV.
3. NLO corrections

The complete NLO corrections were derived in [2, 3]. The NLO cross section can be written as

\[
E_Q \frac{d\hat{\sigma}_{f_s f_h \rightarrow W(Q)+X}}{d^3Q} = \delta(s_4)\alpha_s(\mu_R^2) \left[A(s, t, u) + \alpha_s(\mu_R^2) B(s, t, u, \mu_R) \right] + \alpha_s^2(\mu_F^2) C(s, t, u, s_4, \mu_F)
\]

The coefficient functions \(A, B, \) and \(C \) depend on the parton flavors. The coefficient \(A(s, t, u) \) arises from the LO processes. \(B(s, t, u, \mu_R) \) is the sum of virtual corrections and of singular terms \(\sim \delta(s_4) \) in the real radiative corrections. \(C(s, t, u, s_4, \mu_F) \) is from real emission processes away from \(s_4 = 0 \).

The NLO corrections are crucial in reducing theoretical uncertainties and thus making more meaningful comparisons with experimental data for \(W \) production [4–6] and \(Z \) production [7–9] at large transverse momentum.
W production at LHC $S^{1/2}=14$ TeV $\mu=p_T$

Figure 3: LO p_T distribution for W production at the LHC at 14 TeV.

W production at LHC $S^{1/2}=14$ TeV $p_T=80$ GeV

Figure 4: Scale dependence of the LO p_T distribution for W production at the LHC at 14 TeV.

At NLO and higher orders terms appear that arise from soft-gluon emission. These soft-gluon corrections are of the form

$$D_l(s_4) \equiv \left[\frac{\ln^l(s_4/p_T^2)}{s_4} \right]_+$$

and are numerically dominant for processes near partonic threshold, such as W or Z production at large p_T. For the order α_s^n corrections $l \leq 2n - 1$. At NLO, we have $D_1(s_4)$ and $D_0(s_4)$ terms, which appear in the analytical expressions for the exact NLO corrections. At NNLO, we have $D_3(s_4)$, $D_2(s_4)$, $D_1(s_4)$, and $D_0(s_4)$ terms.
4. Two-loop soft-gluon resummation

We can formally resum these soft logarithms for W and Z production at large p_T to all orders in α_s. This resummation was derived at NLL accuracy in \cite{10} and has been applied to W production at the Tevatron \cite{11} and the LHC at 14 TeV \cite{12}. In \cite{11} approximate NNLO cross sections were derived from the NLL resummed cross section. After matching with the exact NLO corrections, the NNLO $D_3(s_4)$, $D_2(s_4)$, and $D_1(s_4)$ terms were completely determined. However, only an approximate form of the NNLO $D_0(s_4)$ terms was provided. New two-loop results for the soft anomalous dimensions for W and Z production \cite{13} now allow us to determine the NNLO $D_0(s_4)$ terms fully. We note that recently a different resummation approach, based on Soft Collinear Effective Theory, has also been applied to W and Z production at large p_T \cite{14}.

Soft-gluon resummation follows from factorization properties of the cross section, performed in moment space. The resummed cross section is

$$\hat{\sigma}^{\text{res}}(N) = \exp \left[\sum_i E_i(N_i) \right] \exp \left[E'_i(N') \right] \exp \left[\sum_{i=1,2} 2 \int_{\mu_F}^{\sqrt{s}} \frac{d\mu}{\mu} \left(\tilde{N}_i, \alpha_s(\mu) \right) \right]$$

$$\times H(\alpha_s) S \left(\alpha_s \left(\frac{\sqrt{s}}{N'} \right) \right) \exp \left[\int_{\sqrt{s}}^{\sqrt{s}/N'} \frac{d\mu}{\mu} \frac{2 \text{Re} \Gamma_S(\alpha_s(\mu))}{\pi} \right]$$

where the first exponential resums the collinear and soft-gluon radiation from the initial-state partons, the second exponential resums corresponding terms from the final state, H is the hard-scattering function, S is the soft-gluon function and Γ_S is the soft anomalous dimension.

We expand Γ_S as

$$\Gamma_S = \frac{\alpha_s}{\pi} \Gamma_S^{(1)} + \frac{\alpha_s^2}{\pi^2} \Gamma_S^{(2)} + \cdots$$

The one-loop result, $\Gamma_S^{(1)}$, is obtained from the UV poles of one-loop eikonal diagrams, and was first derived in \cite{10}.

We determine $\Gamma_S^{(2)}$ from the UV poles of two-loop dimensionally regularized integrals for the eikonal diagrams shown in Figs. 4, 7, 8.

For $qg \rightarrow Wq$ (or $qg \rightarrow Zq$) the one-loop soft anomalous dimension is

$$\Gamma_{S,qg \rightarrow Wq}^{(1)} = C_F \ln \left(\frac{-u}{s} \right) + \frac{C_A}{2} \ln \left(\frac{t}{u} \right)$$
and the two-loop soft anomalous dimension is

\[\Gamma^{(2)}_{S, qg \rightarrow Wq} = \frac{K}{2} \Gamma^{(1)}_{S, qg \rightarrow Wq}, \]

where \(K = C_A(67/18 - \zeta_3) - 5n_f/9. \)

For \(\bar{q}q \rightarrow Wg \) (or \(q\bar{q} \rightarrow Zg \)) the corresponding results are

\[\Gamma^{(1)}_{S, q\bar{q} \rightarrow Wg} = \frac{C_A}{2} \ln \left(\frac{tu}{s^2} \right) \]
and

\[\Gamma^{(2)}_{S, q\bar{q} \to W g} = \frac{K}{2} \Gamma^{(1)}_{S, q\bar{q} \to W g}. \]

5. \textit{W} production at the Tevatron and the LHC

![Graph showing W production at Tevatron](image)

Figure 9: NNLO approximate \(p_T \) distribution at the Tevatron.

In Fig. 9 we plot LO, NLO, and approximate NNLO results for the \(W \)-boson \(p_T \) distribution at the Tevatron. We have set \(\mu = \mu_F = \mu_R = p_T \). We note that the NLO corrections are large and the NNLO approximate
corrections are significant.

In Fig. 10 we plot LO, NLO, and approximate NNLO results for the W-boson p_T distribution at the LHC at 7 TeV. We note that the NLO corrections are even larger than at the Tevatron and the NNLO approximate corrections are again significant.

The corresponding results at 14 TeV energy at the LHC are shown in Fig. 11 with similar conclusions for the size of the higher-order corrections.
6. Summary

We have presented new theoretical results for W and Z production at large p_T. We have discussed LO and NLO results and identified the soft-gluon threshold corrections as an important set of corrections. We employed two-loop resummation to calculate NNLO threshold corrections. These corrections are significant and must be included for greater theoretical accuracy. New results for the approximate NNLO p_T distribution in W production at the Tevatron and LHC were presented. More work is under way.

Acknowledgments

This work was supported by the National Science Foundation under Grant No. PHY 0855421.

References

1 A.D. Martin, W.J. Stirling, R.S. Thorne, and G. Watt, Eur. Phys. J. C 63, 189 (2009) [arXiv:0901.0002 [hep-ph]].
2 P.B. Arnold and M.H. Reno, Nucl. Phys. B 319, 37 (1989); (E) B 330, 284 (1990).
3 R.J. Gonsalves, J. Pawlowski, and C.-F. Wai, Phys. Rev. D 40, 2245 (1989); Phys. Lett. B 252, 663 (1990).
4 CDF Collaboration, Phys. Rev. Lett. 66, 2951 (1991).
5 D0 Collaboration, Phys. Rev. Lett. 80, 5498 (1998) [hep-ex/9803003]; Phys. Lett. B 513, 292 (2001) [hep-ex/0010026].
6 ATLAS Collaboration, arXiv:1108.6308 [hep-ex].
7 CDF Collaboration, Phys. Rev. Lett. 84, 845 (2000) [hep-ex/0001021].
8 D0 Collaboration, Phys. Rev. Lett. 100, 102002 (2008) [arXiv:0712.0803 [hep-ex]]; Phys. Lett. B 693, 522 (2010) [arXiv:1006.0618 [hep-ex]].
9 ATLAS Collaboration, arXiv:1107.2381 [hep-ex].
10 N. Kidonakis and V. Del Duca, Phys. Lett. B 480, 87 (2000) [hep-ph/9911460].
11 N. Kidonakis and A. Sabio Vera, JHEP 02, 027 (2004) [hep-ph/0311266].
12 R.J. Gonsalves, N. Kidonakis, and A. Sabio Vera, Phys. Rev. Lett. 95, 222001 (2005) [hep-ph/0507317].
13 N. Kidonakis, in DIS 2011, arXiv:1105.4267 [hep-ph]; in DPF-2011, arXiv:1109.1578 [hep-ph].
14 T. Becher, C. Lorentzen, and M.D. Schwartz, arXiv:1106.4310 [hep-ph].