Oncogetic Benefits of Neoadjuvant Treatment versus Upfront Surgery in Borderline Resectable Pancreatic Cancer: A Systematic Review and Meta-Analysis

Hye-Sol Jung 1, Hyeong Seok Kim 1, Jae Seung Kang 1,2, Yoon Hyung Kang 1, Hee Ju Sohn 3, Yoonhyeong Byun 4, Youngmin Han 1, Won-Gun Yun 1, Young Jae Cho 1, Mirang Lee 1, Woil Kwon 1 and Jin-Young Jang 1,*

1 Department of Surgery and Cancer Research Institute, College of Medicine, Seoul National University, Seoul 03080, Korea
2 Department of Surgery, Korea University Medical Center, Seoul 136-701, Korea
3 Department of Surgery, Chung-Ang University Gwang-Myeong Hospital, Gwangmyeong 14335, Korea
4 Department of Surgery, Uijeongbu Eulji Medical Center, School of Medicine, Eulji University, Daejeon 34824, Korea
* Correspondence: jangjy4@snu.ac.kr; Tel.: +82-2-2072-2194

Simple Summary: Borderline resectable pancreatic cancer (BRPC) has been primarily indicated for neoadjuvant treatment (NAT) in the last decade. This study is the updated meta-analysis for only patients with BRPC including recent NAT regimens such as FOLFIRINOX. The OS, R0 resection rate, and node-negativity rate was improved in NAT group compared with upfront surgery. Providing high-quality evidence is important to standardize the treatment protocol and help physicians decide the appropriate pancreatic cancer treatment.

Abstract: Neoadjuvant treatment (NAT) followed by surgery is the primary treatment for borderline resectable pancreatic cancer (BRPC). However, there is limited high-level evidence supporting the efficacy of NAT in BRPC. PubMed was searched to identify studies that compared the survival between BRPC patients who underwent NAT and those who underwent upfront surgery (UFS). The overall survival (OS) was compared using intention-to-treat (ITT) analysis. A total of 1204 publications were identified, and 19 publications with 21 data sets (2906 patients; NAT, 1516; UFS, 1390) were analyzed. Two randomized controlled trials and two prospective studies were included. Thirteen studies performed an ITT analysis, while six presented the data of resected patients. The NAT group had significantly better OS than the UFS group in the ITT analyses (HR: 0.63, 95% CI = 0.53–0.76) and resected patients (HR: 0.68, 95% CI = 0.60–0.78). Neoadjuvant chemotherapy with gemcitabine or S-1 and FOLFIRINOX improved the survival outcomes. Among the resected patients, the R0 resection and node-negativity rates were significantly higher in the NAT group. NAT improved the OS, R0 resection rate, and node-negativity rate compared with UFS. Standardizing treatment regimens based on high-quality evidence is fundamental for developing an optimal protocol.

Keywords: meta-analysis; pancreatic cancer; borderline resectable; neoadjuvant; prognosis

1. Introduction

Pancreatic cancer is the seventh-leading cause of cancer-related death worldwide, and has a poor prognosis and low resection rate [1,2]. Surgical resection with adjuvant chemotherapy is the standard treatment for pancreatic cancer [3]. However, even if a patient undergoes surgery with curative intent, their survival is not dramatically improved. Although microscopically margin-negative resection (R0 resection) is achieved, early recurrence develops through micrometastases that occurred prior to surgery without being detected [4–7]. These clinical experiences and theoretical backgrounds imply that PC is a systemic disease [8].
A new therapeutic approach known as neoadjuvant treatment (NAT), which consists of chemotherapy alone or chemotherapy with radiotherapy, was proposed to improve patients’ survival by obtaining systemic control of the disease and R0 resection, which is recognized as one of the strongest prognostic factors for early disease recurrence. Borderline resectable pancreatic cancer (BRPC) has been primarily indicated for NAT to achieve an improved R0 resection rate, as it has a high potential for R1 resection despite being technically resectable.

The National Comprehensive Cancer Network guidelines recommend NAT for BRPC, although high-quality evidence is still lacking. Most studies had retrospective designs [9,10]; a few studies only evaluated patients with BRPC [10,11], or in some studies the sample size was too small in one randomized controlled trial (RCT) involving only BRPC patients [12]. Moreover, a few meta-analyses compared the treatment outcomes of BRPC patients who underwent NAT with those of patients who underwent upfront surgery (UFS).

Most meta-analyses examining the efficacy of NAT for BRPC included patients with resectable pancreatic cancer, but did not distinguish BRPC from resectable pancreatic cancer (RPC), even though the definitions, current standard care, and purposes of NAT differed from each other [13,14]. A pooled analysis that included 24 studies with 313 patients provided the patient-level outcome of NAT for BRPC patients. The patient-level median overall survival was 22.2 months and the resection rate was 67.8% in this study. However, the anti-cancer agents used for neoadjuvant chemotherapy in this study included folinic acid (leucovorin), fluorouracil (5-FU), irinotecan, and oxaliplatin (FOLFIRINOX) only [15]. Furthermore, previous investigations did not provide a comprehensive analysis according to the NAT protocol or the chemotherapy regimen.

In the last decade, NAT has become an accepted approach, particularly for patients with BRPC. Providing high-quality evidence is important to standardize the treatment protocol and help physicians decide the appropriate pancreatic cancer treatment. Therefore, this study aimed to compare the oncologic benefits of neoadjuvant chemotherapy, with or without radiotherapy, with upfront resection in patients with BRPC only.

2. Materials and Methods

2.1. Literature Search

A systematic literature search was performed in Medline (PubMed), in order to identify published articles reporting the oncological outcomes of BRPC patients treated with NAT or UFS up to 11 February 2022. A combination of heading terms, including “borderline”, “resectable”, and “pancreatic neoplasms”, were used during the database search. The relevant keywords were “neoadjuvant”, “surgery”, and “pancreatic cancer”. This systematic review was performed in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses Standard Guidelines. This systematic review was registered with the Research Registry (identifying number: reviewregistry1433).

2.2. Selection Criteria

Only publications written in English were eligible for inclusion. Case reports, case series with a sample size of less than five, review articles, editorials, and consensus proceedings were considered ineligible. The following were included in the analysis: (1) studies reporting patients with BRPC according the standard guidelines; (2) RCTs or observational studies that compared the clinical outcomes of BRPC patients who underwent NAT and those of patients who underwent UFS; and (3) studies that provided sufficient data to reveal the survival outcomes. By contrast, (1) studies that did not show the survival outcomes of patients with BRPC alone, (2) studies that did not clarify the resectability status, (3) studies that did not specify the NAT regimens used, (4) studies that lacked data for analysis, and (5) studies with overlapping data, were not included. Moreover, when a study included RPC or locally advanced pancreatic cancer (LAPC) as well as BRPC, it was excluded if it did not provide a comparison of the survival outcomes of BRPC patients alone.
2.3. Definition and Study Endpoint

Only patients with “borderline resectable PDAC” were included in this study. Results of the assessment of the resectability status of PC patients in each study are summarized in Table 1. The primary endpoint of this study was OS. The hazard ratios (HR) with the corresponding 95% confidence intervals (CI) for OS from the multivariate Cox proportional hazards regression models were obtained by directly describing the included publications. If the study did not provide the HRs and 95% CIs, the HRs that were calculated from the Kaplan–Meier curves according to Tierney et al. [16] were used. The secondary outcomes were resection rate, R0 resection rate, and lymph node positivity rate. The survival outcomes in the intention-to-treat (ITT) analysis and the resected group were compared. The OS was compared in subgroups according to the NAT protocol (chemotherapy or chemoradiotherapy) and neoadjuvant chemotherapy regimen (gemcitabine/S-1 based or FOLFIRINOX) that were used.

Table 1. General characteristics of included studies.

Author	Country	Year	Study Period	Study Design	Resectability	Definition	Analysis	NAT Regimen
Chun [17]	US	2010	1990–2009	Retrospective	BR	Ishikawa classification	Resected	Gemcitabine-based CRT S-FU based CRT
Cho [18]	Korea	2013	2002–2011	Retrospective	BR	MDACC	Resected	Gemcitabine-based CCRT Capcitabine in some patients
Sho [19]	Japan	2015	2006–2013	Retrospective	R+BR	NCCN	Resected	Gemcitabine-based CCRT
Hirono [9]	Japan	2016	2000–2013	Retrospective	BR	NCCN	Resected	S-1-based CCRT S-1 + Gemcitabine
Masui [10]	Japan	2016	2005–2010	Prospective	BR	Modified criteria of the study group	ITT	Gemcitabine + S-1
Fujii-Artery [20]	Japan	2017	2001–2013	Retrospective	R+BR	NCCN	ITT	S-1-based CCRT
Fujii-PV [20]	Japan	2017	2001–2013	Retrospective	R+BR	NCCN	ITT	S-1-based CCRT
Ielpo [6]	Spain	2017	2007–2016	Retrospective	R+BR	NCCN	ITT	Gemcitabine + Nab-paclitaxel IMRT since 2013
Murakami [21]	Japan	2017	2002–2015	Retrospective	BR	NCCN	ITT	Gemcitabine + S-1
Jang [12]	Korea	2018	2012–2014	RCT	BR	NCCN	ITT	Gemcitabine-based CCRT
Lee [22]	Korea	2018	2007–2014	Retrospective	R+BR+LA+M	NCCN	Resected	Gemcitabine- or S-FU-based CCRT FOLFIRINOX
Kurahara [23]	Japan	2019	2010–2014	Retrospective	BR	NCCN	ITT	Gemcitabine- or S-1-based chemotherapy S-1-based CCRT
Miyasaka [24]	Japan	2019	2010–2017	Retrospective	BR	NCCN	ITT	Gemcitabine + Nab-paclitaxel
Nagakawa [25]	Japan	2019	2011–2013	Retrospective	BR	Japanese Classification of Pancreatic Carcinoma	ITT	Gemcitabine and/or S-1 RT (n = 319)
Versteijne [26]	Netherland	2020	2013–2017	RCT	R+BR	Dutch pancreatic cancer group criteria	ITT	Gemcitabine + Nab-paclitaxel
Inoue [27]	Japan	2021	2008–2017	Retrospective	BR	NCCN	ITT	Gemcitabine + Nab-paclitaxel
Chaudhary [28]	India	2021	2007–2019	Retrospective	BR	AHPBA/SSAO/SSO	ITT	FOLFIRINOX Gemcitabine-based RT (n = 89)
Kimura-A [29]	Japan	2021	2002–2018	Retrospective	BR	Japanese Classification of Pancreatic Carcinoma	ITT	GnP FOLFIRINOX Gemcitabine + S-1 and/or RT
Kimura-PV [29]	Japan	2021	2002–2018	Retrospective	BR	Japanese Classification of Pancreatic Carcinoma	ITT	GnP FOLFIRINOX Gemcitabine + S-1 and/or RT
Ren [30]	US	2021	2008–2018	Retrospective	BR+LA	AHPBA/SSAO/SSO	Resected	FOLFIRINOX and/or RT
Terlizzi [31]	France	2021	2010–2017	Retrospective	BR	NCCN	ITT	FOLFIRINOX and/or RT

R, resectable; BR, borderline resectable; LA, locally advanced; NAT, neoadjuvant therapy; A, artery; PV, portal vein; ITT, intention-to-treat analysis; MDACC, MD Anderson Cancer Center; AHPBA/SSAO/SSO, American Hepato-Pancreato-Biliary Association/Society for Surgery of the Alimentary Tract/Society of Surgical Oncology; CRT, chemoradiation therapy; CCRT, concurrent chemoradiation therapy; GnP, gemcitabine plus nab-paclitaxel.
2.4. Quality Assessment and Data Extraction

Relevant studies were screened and assessed according to the inclusion and exclusion criteria by two independent reviewers (H.S.J. and H.K.). RCTs and retrospective studies were included. The following data were collected: title, first author, and publication year. Any disagreement regarding the data extraction was resolved by discussion with another investigator (J.Y.J.). The choice of the articles included in this review were in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses statement (PRISMA). Quality assessment of the included studies was performed using the Cochrane collaboration’s tool for RCTs (Supplementary Figure S1A) and the Risk of Bias Assessment Tool for Nonrandomized Studies (RoBANS) (Supplementary Figure S1B) for non-randomized controlled studies by two reviewers (H.S.J. and H.K.) [32].

2.5. Data Synthesis and Statistical Analysis

For the primary outcome, the HRs and 95% CIs for OS were estimated using an inverse variance model to synthesize the data. A random-effects model was used for the analysis of OS. The resection, R0, and LN metastasis rates among the resected patients from each included study were pooled using the inverse variance method, in order to obtain the odds ratios (ORs) with the corresponding 95% CIs. The heterogeneity between the studies was quantified using the I^2 metric. The I^2 values of 25%, 50%, and 75% correspond to low, moderate, and high degrees of heterogeneity, respectively. A random-effects model was used to compare the survival and resection rate, since the inherent heterogeneity of participants was due to the various definitions of the term “borderline resectable” and its treatment protocol. Meanwhile, a fixed-effects model was used to analyze the pathological outcomes. Publication bias was detected using funnel plots. All statistical analyses were performed using Review Manager (RevMan) (version 5.4; The Cochrane Collaboration, Nordic Cochrane Center, Copenhagen, Denmark).

3. Results

3.1. Study Selection

A total of 1204 publications were identified after searching the Medline database. A total of 1170 studies were excluded after screening the titles and abstracts, and 34 publications were assessed for eligibility. After a full-text assessment of 34 studies, 15 were excluded according to the exclusion criteria. Finally, 19 publications with 21 data sets were included in the analysis, involving a total of 2906 patients (NAT, 1516; UFS, 1390) (Figure 1) [6,9,10,12,17–31].

Figure 1. Flow diagram for selection of relevant clinical studies.
3.2. Study Characteristics

The baseline study characteristics are summarized in Tables 1 and 2. Two RCTs [12,26] and two prospective study designs [6,10] were included in the analysis. Five studies included resectable pancreatic cancer patients [6,19,20,22,26], while one study [21,22] included patients with locally advanced and metastatic pancreatic cancer. When the study included patients with other types of pancreatic cancer and BRPC, only the BRPC patient pool was analyzed in this study. Thirteen studies (15 data sets) performed ITT analyses, [6,10,12,20,21,23–31], while six studies presented the data of resected patients [9,17–19,22,30]. With regard to the chemotherapy regimen in the neoadjuvant setting, 16 studies used gemcitabine [6,9,10,12,17–19,21–29] and 4 of those used gemcitabine plus nab-paclitaxel [6,24,26,27]. Five studies described the FOLFIRINOX-including regimen [22,28–31]. Ren et al. and Terlizzi et al. only investigated the FOLFIRINOX regimen [30,31]. As a part of NAT, radiotherapy was administered in 14 of 19 studies [6,9,12,17–20,22,23,25,28–31], while 7 studies used concurrent chemoradiation therapy (CCRT) [9,12,18–20,22,23].

Table 2. Clinical outcomes of included studies.

Author	No. of Patients	ITT OS (Month)	Resected OS (Month)	Resection Rate	R0 Rate	LN Metastasis
Chun [17]	NAT 74	NA	23.0	74/74 (100.0%)	44/74 (59.5%)	20/74 (27.0%)
	UFS 35		15.0	35/35 (100.0%)	4/35 (11.4%)	30/35 (85.7%)
Cho [18]	NAT 30	NA	45.0	30/30 (100.0%)	29/30 (96.7%)	9/30 (30.0%)
	UFS 21		23.5	21/21 (100.0%)	20/21 (95.2%)	9/21 (42.9%)
Sho [19]	NAT 50	NA	24.8	50/50 (100.0%)	46/50 (92.0%)	15/50 (30.0%)
	UFS 41		16.4	41/41 (100.0%)	28/41 (68.3%)	31/41 (75.6%)
Hirono [9]	NAT 40	NA	19.3	40/40 (100.0%)	32/40 (80.0%)	31/40 (77.5%)
	UFS 103		13.7	103/103 (100.0%)	64/103 (62.1%)	77/103 (74.8%)
Masui [10]	NAT 18	21.7	NA	15/18 (83.3%)	12/15 (80.0%)	5/15 (33.3%)
	UFS 19	21.1		19/19 (100.0%)	10/19 (52.6%)	5/19 (26.3%)
Fuji-Artery [20]	NAT 21	18.1	NA	14/21 (66.7%)	10/14 (71.4%)	2/14 (14.3%)
	UFS 81	10.0		55/81 (67.9%)	17/55 (30.9%)	51/55 (92.7%)
Fuji-PV [20]	NAT 27	28.4	NA	25/27 (92.6%)	24/25 (96.0%)	11/25 (44.0%)
	UFS 102	20.1		84/102 (82.4%)	51/84 (60.7%)	70/84 (83.3%)
Ielpo [6]	NAT 26	18.9	43.6	16/26 (61.5%)	NA	
	UFS 19	13.5	13.5	19/19 (100.0%)	NA	
Murakami [21]	NAT 52	27.1	27.2	47/52 (90.4%)	34/47 (72.3%)	34/47 (72.3%)
	UFS 25	11.6	11.6	23/25 (92.0%)	4/23 (17.4%)	18/23 (78.3%)
Jang [12]	NAT 30	21.0	22.0	17/27 (63.0%)	14/17 (82.4%)	5/17 (29.4%)
	UFS 28	12.0	19.5	18/23 (78.3%)	6/18 (33.3%)	15/18 (83.3%)
Lee [22]	NAT 28	22.0	53.7	26/58 (44.8%)	NA	
	UFS 45	16.7	17.8	104/107 (97.2%)	NA	
Kurahara [23]	NAT 58	22.0	38.7	26/58 (44.8%)	NA	
	UFS 107	16.7	17.8	104/107 (97.2%)	NA	
Miyasaka [24]	NAT 31	27.9	12.4	27/31 (87.1%)	27/27 (100.0%)	18/27 (66.7%)
	UFS 26			26/26 (100.0%)	20/26 (76.9%)	23/26 (88.5%)
Nagakawa [25]	NAT 530	25.7	19.0	390/530 (73.6%)	329/390 (84.4%)	206/390 (52.8%)
	UFS 354	21.5	21.5	325/354 (91.8%)	227/325 (69.8%)	261/325 (80.3%)
Versteijne [26]	NAT 54	17.6	13.2	28/54 (51.9%)	22/28 (78.6%)	NA
	UFS 59			38/59 (64.4%)	5/38 (13.2%)	NA
Inoue [27]	NAT 55	31.9	38.4	43/55 (78.2%)	40/43 (93.0%)	28/43 (65%)
	UFS 96	18.1	18.8	73/96 (76.0%)	46/73 (63.0%)	57/73 (78%)
Chaudhari [28]	NAT 148	15.0	22	63/148 (42.6%)	47/63 (74.6%)	20/63 (31.7%)
	UFS 53	18	19	40/53 (75.5%)	17/40 (42.5%)	24/40 (60%)
Kimura-A [29]	NAT 63	35.4	14.3	39/63 (61.9%)	31/39 (79.5%)	17/39 (43.6%)
	UFS 48			48/48 (100.0%)	18/48 (37.5%)	41/48 (85.4%)
Table 2. Cont.

Author	No. of Patients	ITT OS (Month)	Resected OS (Month)	Resection Rate	R0 Rate	LN Metastasis
Kimura-PV [29]	NAT 42, UFS 46	22.8, NA	36/42 (85.7%), 46/46 (100.0%)	31/36 (86.1%), 28/46 (60.8%)	37/36 (80.4%)	
Ren [30]	NAT 76, UFS 66	NA, 35.8, 27.8	76/76 (100.0%), 66/66 (100.0%)	51/76 (67.1%), 28/66 (42.4%)	50/66 (75.8%)	
Terlizzi [31]	NAT 63, UFS 16	29.0, 27.2	39/63 (61.9%), 16/16 (100.0%)	37/39 (94.9%), 11/16 (68.8%)	8/39 (20.5%)	
Total	NAT 1516, UFS 1390	-, -	NAT 67.9%, UFS 81.4%	UFS 81.7%, NAT 58.7%	NAT 46.4%, UFS 78.0%	

Total proportions of resection rate, R0 rate, and LN metastasis rate were calculated as number of events divided by number of patients by intention-to-treat. ITT, intention-to-treat; OS, overall survival; NAT, neoadjuvant therapy; UFS, upfront surgery; NA, not applicable; A, artery; PV, portal vein.

3.3. Survival Difference between NAT and UFS Groups

The NAT group had significantly better OS than the UFS group in the ITT analyses (HR: 0.63, 95% CI = 0.53–0.76, I² = 58%) and in resected patients (HR: 0.68, 95% CI = 0.60–0.78, I² = 0%) (Figure 2A,B).

The OS of NAT and UFS was also compared in subgroups according to the chemotherapy regimen used (gemcitabine- or S-1-based and FOLFIRINOX). Patients treated with both neoadjuvant gemcitabine- or S-1-based chemotherapy and neoadjuvant FOLFIRINOX showed improved OS in the ITT analysis (gemcitabine, HR: 0.66, 95% CI = 0.56–0.78, I² = 41%; FOLFIRINOX, HR: 0.56, 95% CI = 0.29–1.06, I² = 82%) (Figure 3A) and in resected patients (gemcitabine, HR: 0.70, 95% CI = 0.60–0.80, I² = 0%; FOLFIRINOX, HR: 0.54, 95% CI = 0.31–0.96, I² = 65%) (Figure 3B).

In another subgroup analysis according to whether the NAT protocol included radiotherapy, OS did not significantly differ among the subgroups (p = 0.14) (Supplementary Figure S2).

Figure 2. Overall survival of NAT versus UFS (A) in intention-to-treat analysis [6,10,12,20,21,23–29,31]; (B) in resected group [6,9,12,17–19,21–23,25,27,28,30,31]. Red squares correspond to individual studies. Squares size is proportional to the weight of the study while black diamonds shapes correspond to pooled studies.

The OS of NAT and UFS was also compared in subgroups according to the chemotherapy regimen used (gemcitabine- or S-1-based and FOLFIRINOX). Patients treated with
both neoadjuvant gemcitabine- or S-1-based chemotherapy and neoadjuvant FOLFIRINOX showed improved OS in the ITT analysis (gemcitabine, HR: 0.66, 95% CI = 0.56–0.78, I² = 41%; FOLFIRINOX, HR: 0.56, 95% CI = 0.29–1.06, I² = 82%) (Figure 3A) and in resected patients (gemcitabine, HR: 0.70, 95% CI = 0.60–0.80, I² = 0%; FOLFIRINOX, HR: 0.54, 95% CI = 0.31–0.96, I² = 65%) (Figure 3B).

Figure 3. Overall survival of NAT versus UFS according to chemotherapy regimen (A) in intention-to-treat analysis; (1.10.1) gemcitabine- or S-1-based [6,10,12,20,21,23–27]; (1.10.2) FOLFIRINOX [28,29,31]; (B) in resected group; (1.8.1) gemcitabine- or S-1-based [6,9,12,17–19,21–23,25,27]; (1.10.2) FOLFIRINOX [28,30,31]. Red squares correspond to individual studies. Squares size is proportional to the weight of the study while black diamonds shapes correspond to pooled studies.

In another subgroup analysis according to whether the NAT protocol included radiotherapy, OS did not significantly differ among the subgroups (p = 0.14) (Supplementary Figure S2).
3.4. Survival Difference between NAT and UFS Groups

The resection rate (NAT, 67.9%; UFS, 81.4%), R0 rate (NAT, 81.7%; UFS, 58.7%), and LN positivity rate (NAT, 46.4%; UFS, 78.0%) by intention-to-treat are described in Table 2. The resection rate was higher in the UFS group in the ITT analysis (OR: 0.29, 95% CI = 0.23–0.36; \(I^2 = 75\%\)) (Figure 4A). The studies showed high heterogeneity. The R0 resection and lymph node positivity rates were obtained in 16 studies (originally reported; 14, additionally obtained; 2) and in 15 studies (originally reported; 13, additionally obtained; 2), respectively. The R0 resection rate among the resected patients in the NAT group was significantly improved (OR: 4.16, 95% CI = 3.35–5.17, \(I^2 = 48\%\)) (Figure 4B). The lymph node positivity rate among the resected patients in the NAT group was relatively lower (OR: 0.26, 95% CI = 0.21–0.32; \(I^2 = 68\%\)) (Figure 4C).

Table 2: Summary of Resection Rate, R0 Rate, and LN Positivity Rate

Study or Subgroup	NAT Events	UFS Events	Total Events	Weight	M.H. Random, 95% CI	Year
Masui 2016	15	18	19	3.2%	0.01 (0.01, 2.37)	2016
Fujii-A 2017	14	21	55	81.9%	0.95 (0.34, 2.62)	2017
Fujii-PV 2017	25	27	84	102.7%	2.68 (0.56, 12.34)	2017
Jeppe 2017	13	17	21	19.2%	0.04 (0.00, 0.74)	2017
Murakami 2017	20	22	47	23.9%	0.02 (0.15, 0.54)	2017
Jung 2011	19	27	45	8.0%	0.01 (0.13, 1.87)	2018
Kurahara 2019	26	58	104	107.0%	0.02 (0.01, 0.08)	2019
Miyasaka 2018	27	31	58	26.3%	0.12 (0.01, 2.25)	2019
Nagakawa 2018	39	50	320	354.11%	0.25 (0.16, 0.38)	2019
Versteegen 2020	28	26	54	28.1%	0.60 (0.28, 1.27)	2020
Chaudhuri 2021	63	148	405	53.10%	0.24 (0.12, 0.48)	2021
Inoue 2021	43	55	78	9.9%	1.13 (0.51, 2.50)	2021
Kimura 2021	39	63	102	48.3%	0.02 (0.00, 0.28)	2021
Kimura-PV 2021	39	48	87	48.3%	0.06 (0.00, 0.11)	2021
Terlizzi 2021	39	63	102	3.5%	0.05 (0.00, 0.85)	2021

Total (95% CI): 1215 / 1074 = 100% (0.29 [0.15, 0.65])
Total events: 825 / 934

Heterogeneity: Tau^2 = 0.92; Chi^2 = 55.33, df = 14 (P < 0.00001); \(I^2 = 75\%\)
Test for overall effect: Z = 3.82 (P = 0.0001)

Figure 4. Cont.
was included in the NAT protocol. The resection, R0 resection, and negative lymph node rates among the resected patients in the NAT group were higher. Since the chemotherapy regimen and NAT protocol vary at the study level, there was inherent heterogeneity in those with BRPC alone. The NAT group showed improved OS compared with the UFS group in the ITT analysis and in resected patients. No significant differences were observed in the OS according to the chemotherapy regimen or according to whether radiotherapy was included in the NAT protocol. The resection, R0 resection, and negative lymph node rates among the resected patients in the NAT group were higher.

In the present study, a comparison of OS was reported using ITT analysis, in order to reduce various types of biases according to the treatment effect. A single-arm meta-analysis that performed ITT analysis showed that NAT improved the median OS of BRPC patients (19.2 vs. 12.8 months) [13]. In our meta-analysis, comparative studies that described the survival outcomes of NAT and UFS groups only included BRPC patients, in order to perform a direct comparison. Pan et al., a recently published meta-analysis that only included comparative trials, reported a higher OS in the NAT group in the ITT analysis (HR: 0.48, \(p < 0.001 \)) and in resected patients (HR: 0.66, \(p = 0.001 \)), which is consistent with the primary outcome of this study [14].

Patients administered with neoadjuvant chemotherapy plus gemcitabine or S-1 and FOLFIRINOX both showed better survival outcomes in all and in resected patients in the present study. Subgroup differences according to the chemotherapy regimen used were not significant in this study. However, a relatively small number of trials and participants in the FOLFIRINOX group were included, which may have resulted in the lack of survival differences from the gemcitabine- or S-1-based subgroup. Since the chemotherapy regimen and NAT protocol vary at the study level, there was inherent heterogeneity in our study. FOLFIRINOX is the most effective regimen for patients with metastatic pancreatic cancer [33]. Furthermore, a favorable median OS with FOLFIRINOX has been reported in LAPC (24.0 months) and in BRPC (22.2 months) patients in the patient-level meta-analyses. [15,34] The PREOPANC trial revealed that NAT plus gemcitabine improved
the OS compared with surgery in BRPC patients in the predefined subgroup analysis. The efficacy of multiagent use is expected to outweigh that of a single agent. The ongoing PREOPANC-2 trial, which directly compared two neoadjuvant regimens (FOLFIRINOX versus gemcitabine-based), would provide convincing evidence supporting the efficacy of a standard chemotherapy regimen in a neoadjuvant setting [35].

In this systematic review, neoadjuvant chemoradiotherapy did not improve patients’ survival compared with neoadjuvant chemotherapy alone. The patient-level meta-analysis regarding the effect of neoadjuvant FOLFIRINOX did not find an association between the percentage of patients who underwent neoadjuvant (chemo)radiation and the median OS [15]. Additional neoadjuvant radiotherapy had little effect on the OS in the ITT analysis and in resected patients, based on the results of the meta-regression analysis [14]. Due to the heterogeneity of the NAT protocol, which was attributed to the radiotherapy regimen, radiation dose, and chemotherapy schedules, this result should be interpreted with caution, considering the theoretical influence on R0 resection and other pathologic advantages of radiotherapy. The recent Alliance A021501 trial that compared mFOLFORINOX with or without stereotactic body radiation therapy, reported that mFOLFORINOX with hypofractionated radiotherapy did not improve the OS of patients with BRPC [36].

The resection rate was lower in the NAT group (NAT, 67.9%; UFS, 81.4%). Previous meta-analyses also showed similar resection rates for each group and substantial heterogeneity across studies [13,14,37]. This may be explained by relatively low response rates to chemotherapy of pancreatic cancer compared with other gastrointestinal cancers, and lack of reliable criteria to select patients who are suitable to undergo surgical resection in terms of technical and biological aspects. Additionally, the low rate to complete chemotherapy cycles due to various adverse effects from anti-cancer agents might result in difficulty in disease control for potential micrometastases [38]. However, the modified chemotheraputic used in current practice, accumulated experience of treating and operating on BRPC patients, and improved surgical techniques may contribute to increased resection rates in patients who undergo NAT in the future.

The R0 resection rate (NAT, 81.7%; UFS, 58.7%) and lymph node positivity rate (NAT, 46.4%; UFS, 78.0%) were found to be significantly improved in patients with BRPC who underwent NAT. This systematic review presented the benefit of neoadjuvant therapy for the downstaging of tumors or facilitation of R0 resection. The better negative lymph node rate among patients who underwent pancreatic resection in the NAT group may be due to the effect of NAT, causing regression of the tumor and metastatic lymph nodes.

Meanwhile, several negative surgical outcomes also exist for BRPC patients. When a patient receives upfront surgery, the R0 resection rate is lower despite the higher resection rate. Furthermore, the rate of postoperative pancreatic fistula is considered to be higher in patients with upfront resection [39,40]. The greater lymph node positivity rate and diminished tumor down-staging effect might also cause a high risk of systemic recurrence after upfront surgery. For patients who undergo NAT, the lower resection rate due to disease progression during NAT, or due to complications followed by chemoradiation and the delayed recovery after surgery, may affect the surgical outcomes. Given the remaining debate on the role of NAT for BRPC patients, well-controlled RCTs with ITT analyses are needed to investigate surgical outcomes with minimal biases in the era of NAT for BRPC.

This systematic review has several limitations. Firstly, most of the publications included in this study were retrospective in nature, which caused a high risk of bias. Only two RCTs and prospective studies were included, and the remaining articles were retrospective studies. One of the two RCTs was terminated early, as it already reported the significance of the effect of NAT. Secondly, substantial heterogeneity was found in the analysis of the resection rate, R0 rate, and pathological lymph node rate, owing to the clinically varying definitions of BRPC. Thirdly, head-to-head comparisons among different types of neoadjuvant chemotherapy regimens could not be performed due to the small numbers of included trials.
5. Conclusions

In conclusion, our meta-analysis, which only focused on BRPC patients, demonstrated that NAT provides survival benefits compared with UFS. Standardizing treatment regimens based on high-quality evidence is fundamental for developing an optimal protocol to improve patients’ survival. Furthermore, the efficacy of NAT should be prospectively explored in resectable or locally advanced PDAC, considering the dramatic advantages of preoperative chemoradiotherapy.

Supplementary Materials: The following supporting information can be downloaded at: https://www.mdpi.com/article/10.3390/cancers14184360/s1, Figure S1: Risk of bias summary using the Cochrane Collaboration’s tool for the randomized controlled trial (A) and the Risk of Bias Assessment Tool for Nonrandomized Studies (RoBANS) (B), Figure S2: Overall survival of NAT versus UFS according to NAT protocol (chemotherapy only and chemoradiotherapy), Figure S3: Funnel plots for publication bias in comparison of survival outcome in ITT analysis.

Author Contributions: Conceptualization, W.K. and J.-Y.J.; methodology, H.-S.J.; software, H.-S.J.; formal analysis, H.-S.J. and H.S.K.; investigation, H.-S.J. and H.S.K.; resources, Y.H., W.-G.Y., Y.J.C., and M.L.; data curation, H.-S.J., H.S.K., J.S.K., Y.H.K., H.J.S., and Y.B.; writing—original draft preparation, H.-S.J.; writing—review and editing, W.K. and J.-Y.J.; visualization, H.-S.J.; supervision, J.-Y.J.; project administration, J.-Y.J.; funding acquisition, J.-Y.J. All authors have read and agreed to the published version of the manuscript.

Funding: This research was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No. 2022R1A2C2011122). *MSIT: Ministry of Science and ICT.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are available on request from the corresponding author.

Acknowledgments: The authors thank the members of the Medical Research Collaborating Center (MRCC) at Seoul National University Hospital for assistance with the statistical analysis.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Rawla, P.; Sunkara, T.; Gaduputi, V. Epidemiology of Pancreatic Cancer: Global Trends, Etiology and Risk Factors. World J. Oncol. 2019, 10, 10–27. [CrossRef]
2. Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics, 2020. CA Cancer J. Clin. 2020, 70, 7–30. [CrossRef] [PubMed]
3. Neoptolemos, J.P.; Palmer, D.H.; Ghaneh, P.; Psarelli, E.E.; Valle, J.W.; Halloran, C.M.; Faluyi, O.; O’Reilly, D.A.; Cunningham, D.; Wadsley, J.; et al. Comparison of adjuvant gemcitabine and capecitabine with gemcitabine monotherapy in patients with resected pancreatic cancer (ESPAC-4): A multicentre, open-label, randomised, phase 3 trial. Lancet 2017, 389, 1011–1024. [CrossRef]
4. Shaib, Y.; Davila, J.; Naumann, C.; El-Serag, H. The impact of curative intent surgery on the survival of pancreatic cancer patients: A U.S. Population-based study. Am. J. Gastroenterol. 2007, 102, 1377–1382. [CrossRef] [PubMed]
5. Shrikhande, S.V.; Barreto, S.G. Surgery for pancreatic carcinoma: State of the art. Indian J. Surg. 2012, 74, 79–86. [CrossRef]
6. Ielpo, B.; Caruso, R.; Duran, H.; Diaz, E.; Fabra, I.; Malave, L.; Ferri, V.; Alvarez, R.; Cubillo, A.; Plaza, C.; et al. A comparative study of neoadjuvant treatment with gemcitabine plus nab-paclitaxel versus surgery first for pancreatic adenocarcinoma. Surg. Oncol. 2017, 26, 402–410. [CrossRef] [PubMed]
7. Oettle, H.; Neuhaus, P.; Hochhaus, A.; Hartmann, J.T.; Gellert, K.; Ridwelski, K.; Niedergethmann, M.; Zulke, C.; Fahlke, J.; Arning, M.B.; et al. Adjuvant chemotherapy with gemcitabine and long-term outcomes among patients with resected pancreatic cancer: The CONKO-001 randomized trial. JAMA 2013, 310, 1473–1481. [CrossRef]
8. Sohal, D.P.; Walsh, R.M.; Ramanathan, R.K.; Khorana, A.A. Pancreatic adenocarcinoma: Treating a systemic disease with systemic therapy. J. Natl. Cancer Inst. 2014, 106, dju011. [CrossRef] [PubMed]
9. Hirono, S.; Kawai, M.; Okada, K.I.; Miyazawa, M.; Shimizu, A.; Kitahata, Y.; Ueno, M.; Yamaue, H. Treatment Strategy for Borderline Resectable Pancreatic Cancer With Radiographic Artery Involvement. Pancreas 2016, 45, 1438–1446. [CrossRef] [PubMed]
10. Masui, T.; Doi, R.; Kawaguchi, Y.; Sato, A.; Nakano, K.; Ito, T.; Anazawa, T.; Takaori, K.; Uemoto, S. Concurrent gemcitabine+S-1 neoadjuvant chemotherapy contributes to the improved survival of patients with small borderline-resectable pancreatic cancer tumors. Surg. Today 2016, 46, 1228–1299. [CrossRef]

11. Lee, J.H.; Kang, C.M.; Bang, S.M.; Choi, J.Y.; Seong, J.S.; Hwang, H.K.; Choi, S.H.; Lee, W.J. The Role of Neoadjuvant Chemoradiation Therapy in Patients With Borderline Resectable Pancreatic Cancer With Isolated Venous Vascular Involvement. Medicine 2015, 94, e1233. [CrossRef] [PubMed]

12. Jang, J.Y.; Han, Y.; Lee, H.; Kim, S.W.; Kwon, W.; Lee, K.H.; Oh, D.Y.; Chie, E.K.; Lee, J.M.; Heo, J.S.; et al. Oncological Benefits of Neoadjuvant Chemoradiation With Gemcitabine Versus Upfront Surgery in Patients With Borderline Resectable Pancreatic Cancer: A Prospective, Randomized, Open-label, Multicenter Phase 2/3 Trial. Ann. Surg. 2018, 268, 215–222. [CrossRef] [PubMed]

13. Versteijne, E.; Vogel, J.A.; Besselin, M.G.; Busch, O.R.C.; Wilmink, J.W.; Daams, J.G.; van Eijck, C.H.J.; Groot Koerkamp, B.; Rasch, C.R.N.; van Tienhoven, G.; et al. Meta-analysis comparing upfront surgery with neoadjuvant treatment in patients with resectable or borderline resectable pancreatic cancer. Br. J. Surg. 2018, 105, 946–958. [CrossRef]

14. Pan, L.; Fang, J.; Tong, C.; Chen, M.; Zhang, B.; Juengpanich, S.; Wang, Y.; Cai, X. Survival benefits of neoadjuvant chemoradiotherapy versus surgery first in patients with resectable or borderline resectable pancreatic cancer: A systematic review and meta-analysis. World J. Surg. Oncol. 2019, 18, 1. [CrossRef] [PubMed]

15. Janssen, Q.P.; Buettner, S.; Suken, M.; Beumer, B.R.; Addeo, P.; Bachellier, P.; Bahary, N.; Bekaii-Saab, T.; Bali, M.A.; Besselin, M.G.; et al. Neoadjuvant FOLFIRINOX in Patients With Borderline Resectable Pancreatic Cancer: A Systematic Review and Patient-Level Meta-Analysis. J. Natl. Cancer Inst. 2019, 111, 782–794. [CrossRef] [PubMed]

16. Tierney, J.F.; Stewart, L.A.; Ghersi, D.; Burdett, S.; Sydes, M.R. Practical methods for incorporating summary time-to-event data into meta-analysis. Trials 2007, 8, 16. [CrossRef] [PubMed]

17. Chun, Y.S.; Milestone, B.N.; Watson, J.C.; Cohen, S.J.; Burtness, B.; Engstrom, P.F.; Haluszka, O.; Tokar, J.L.; Hall, M.J.; Denlinger, C.S.; et al. Defining venous involvement in borderline resectable pancreatic cancer. Ann. Surg. Oncol. 2010, 17, 2832–2838. [CrossRef]

18. Cho, I.R.; Chung, M.J.; Bang, S.; Park, S.W.; Chung, J.B.; Song, S.Y.; Seong, J.; Hwang, H.K.; Kang, C.M.; Lee, W.J.; et al. Gemcitabine-based neoadjuvant chemoradiotherapy in patients with borderline resectable pancreatic cancer. Pancreatology 2013, 13, 539–543. [CrossRef]

19. Sho, M.; Akahori, T.; Tanaka, T.; Kinoshita, S.; Nagai, M.; Nishiwada, S.; Tamamoto, T.; Nishiofuku, H.; Ohbayashi, C.; Hasegawa, M.; et al. Optimal indication of neoadjuvant chemoradiotherapy for pancreatic cancer. Langenbecks Arch. Surg. 2015, 400, 477–485. [CrossRef] [PubMed]

20. Fuji, T.; Sato, S.; Yamada, S.; Murotani, K.; Yanagimoto, H.; Takami, H.; Yamamoto, T.; Kanda, M.; Yamaki, S.; Hirooka, S.; et al. Clinical benefits of neoadjuvant chemoradiotherapy for adenocarcinoma of the pancreatic head: An observational study using inverse probability of treatment weighting. J. Gastroenterol. 2017, 52, 81–93. [CrossRef] [PubMed]

21. Murakami, Y.; Uemura, K.; Sudo, T.; Hashimoto, Y.; Kondo, N.; Nakagawa, N.; Takahashi, S.; Sueda, T. Survival impact of neoadjuvant gemcitabine plus S-1 chemotherapy for patients with borderline resectable pancreatic carcinoma with arterial contact. Cancer Chemother. Pharmacol. 2017, 79, 37–47. [CrossRef] [PubMed]

22. Lee, D.H.; Jang, J.Y.; Kang, J.S.; Kim, J.R.; Han, Y.; Kim, E.; Kwon, W.; Kim, S.W. Recent treatment patterns and survival outcomes in pancreatic cancer according to clinical stage based on single-center large-cohort data. Ann. Hepatobiliary Pancreat Surg. 2018, 22, 386–396. [CrossRef] [PubMed]

23. Kurahara, H.; Shinchi, H.; Ohtsuka, T.; Miyasaka, Y.; Matsunaga, T.; Noshiro, H.; Adachi, T.; Eguchi, S.; Imamura, N.; Nanashima, A.; et al. Significance of neoadjuvant therapy for borderline resectable pancreatic cancer: A multicenter retrospective study. Langenbecks Arch. Surg. 2019, 404, 167–174. [CrossRef] [PubMed]

24. Miyasaka, Y.; Ohtsuka, T.; Kimura, R.; Matsuda, R.; Mori, Y.; Nakata, K.; Kakihara, D.; Fujimori, N.; Ohno, T.; Oda, Y.; et al. Neoadjuvant Chemotherapy with Gemcitabine Plus Nab-Paclitaxel for Borderline Resectable Pancreatic Cancer Potentially Improves Survival and Facilities Surgery. Ann. Surg. Oncol. 2019, 26, 1528–1534. [CrossRef]

25. Nagakawa, Y.; Sahara, Y.; Hosokawa, Y.; Murakami, Y.; Yamaue, H.; Sato, S.; Unno, M.; Isaji, S.; Endo, I.; Sho, M.; et al. Clinical Impact of Neoadjuvant Chemotherapy and Chemoradiotherapy in Borderline Resectable Pancreatic Cancer: Analysis of 884 Patients at Facilities Specializing in Pancreatic Surgery. Ann. Surg. Oncol. 2019, 26, 1629–1636. [CrossRef] [PubMed]

26. Versteijne, E.; Suken, M.; Groothuis, K.; Akkermans-Vogelaar, J.M.; Besselin, M.G.; Bonsing, B.A.; Buissen, J.; Busch, O.R.; Creemers, G.M.; van Dam, R.M.; et al. Preoperative Chemoradiotherapy Versus Immediate Surgery for Resectable and Borderline Resectable Pancreatic Cancer: Results of the Dutch Randomized Phase III PREOPANC Trial. J. Clin. Oncol. 2020, 38, 1763–1773. [CrossRef]

27. Inoue, Y.; Saiura, A.; Oba, A.; Ono, Y.; Mise, Y.; Ito, H.; Sasaki, T.; Ozaka, M.; Sasahira, N.; Takahashi, Y. Neoadjuvant gemcitabine and nab-paclitaxel for borderline resectable pancreatic cancers: Intention-to-treat analysis compared with upfront surgery. J. Hepatobiliary Pancreat Sci. 2021, 28, 143–155. [CrossRef] [PubMed]

28. Chaudhari, V.A.; Mitra, A.; Gupta, V.; Ostwal, V.; Ramaswamy, A.; Engineer, R.; Sirohi, B.; Shetty, N.; Bal, M.; DeSouza, A.; et al. Neoadjuvant therapy in borderline resectable pancreatic cancer: Outcomes in the era of changing practices and evolving evidence. Surgery 2021, 171, 1388–1395. [CrossRef] [PubMed]
29. Kimura, N.; Yamada, S.; Takami, H.; Murotani, K.; Yoshioka, I.; Shibuya, K.; Sonohara, F.; Hoshino, Y.; Hirano, K.; Watanabe, T.; et al. Optimal Preoperative Multidisciplinary Treatment in Borderline Resectable Pancreatic Cancer. *Cancers* 2020, 13, 36. [CrossRef] [PubMed]

30. Ren, W.; Xourafas, D.; Ashley, S.W.; Clancy, T.E. Prognostic Factors in Patients With Borderline Resectable Pancreatic Ductal Adenocarcinoma Undergoing Resection. *Am. Surg.* 2022, 88, 1172–1180. [CrossRef]

31. Terlizzi, M.; Buscail, E.; Boussari, O.; Adgie, S.; Leduc, N.; Terrebonne, E.; Smith, D.; Blanc, J.F.; Lapuyade, B.; Laurent, C.; et al. Neoadjuvant treatment for borderline resectable pancreatic adenocarcinoma is associated with higher R0 rate compared to upfront surgery. *Acta Oncol.* 2021, 60, 1114–1121. [CrossRef]

32. Kim, S.Y.; Park, J.E.; Lee, Y.J.; Seo, H.-J.; Sheen, S.-S.; Hahn, S.; Jang, B.-H.; Son, H.-J. Testing a tool for assessing the risk of bias for nonrandomized studies showed moderate reliability and promising validity. *J. Clin. Epidemiol.* 2013, 66, 408–414. [CrossRef]

33. Conroy, T.; Desseigne, F.; Ychou, M.; Bouche, O.; Guimbaud, R.; Becouarn, Y.; Adenis, A.; Raoul, J.L.; Gourgou-Bourgade, S.; de la Fouchardiere, C.; et al. FOLFIRINOX versus gemcitabine for metastatic pancreatic cancer. *N. Engl. J. Med.* 2011, 364, 1817–1825. [CrossRef]

34. Suker, M.; Beumer, B.R.; Sadot, E.; Marthey, L.; Faris, J.E.; Mellon, E.A.; El-Rayes, B.F.; Wang-Gillam, A.; Lacy, J.; Hosein, P.J.; et al. FOLFIRINOX for locally advanced pancreatic cancer: A systematic review and patient-level meta-analysis. *J. Clin. Oncol.* 2013, 66, 408–414. [CrossRef] [PubMed]

35. Janssen, Q.P.; van Dam, J.L.; Bonsing, B.A.; Bos, H.; Bosscha, K.P.; Coene, P.; van Eijck, C.H.J.; de Hingh, I.; Karsten, T.M.; van der Kolk, M.B.; et al. Total neoadjuvant FOLFIRINOX versus neoadjuvant gemcitabine-based chemoradiotherapy and adjuvant gemcitabine for resectable and borderline resectable pancreatic cancer (PREOPANC-2 trial): Study protocol for a nationwide multicenter randomized controlled trial. *BMC Cancer* 2021, 21, 300. [CrossRef]

36. Katz, M.H.G.; Shi, Q.; Meyers, J.P.; Herman, J.M.; Cheung, M.; Wolpin, B.M.; Ahmad, S.; Marsh, R.d.W.; Schwartz, L.H.; Behr, S.; et al. Alliance A021501: Preoperative mFOLFIRINOX or mFOLFIRINOX plus hypofractionated radiation therapy (RT) for borderline resectable (BR) adenocarcinoma of the pancreas. *J. Clin. Oncol.* 2021, 39, 377. [CrossRef]

37. Cloyd, J.M.; Heh, V.; Pawlik, T.M.; Eejaz, A.; Dillhoff, M.; Tsung, A.; Williams, T.; Abushahin, L.; Bridges, J.F.P.; Santry, H. Neoadjuvant Therapy for Resectable and Borderline Resectable Pancreatic Cancer: A Meta-Analysis of Randomized Controlled Trials. *J. Clin. Med.* 2020, 9, 1129. [CrossRef] [PubMed]

38. Del Chiario, M.; Rangelova, E.; Halimi, A.; Ateeb, Z.; Scandavini, C.; Valente, R.; Segersvärd, R.; Arnello, U.; Verbeke, C.S. Pancreatectomy with arterial resection is superior to palliation in patients with borderline resectable or locally advanced pancreatic cancer. *HPB* 2019, 21, 219–225. [CrossRef]

39. Hank, T.; Sandini, M.; Ferrone, C.R.; Rodrigues, C.; Weniger, M.; Qadan, M.; Warshaw, A.L.; Lillemoe, K.D.; Fernández-del Castillo, C. Association Between Pancreatic Fistula and Long-term Survival in the Era of Neoadjuvant Chemotherapy. *JAMA Surg.* 2019, 154, 943–951. [CrossRef] [PubMed]

40. Uchida, Y.; Masui, T.; Nagai, K.; Anazawa, T.; Yoshimura, M.; Uza, N.; Takaori, K.; Mizowaki, T.; Uemoto, S. Postoperative pancreatic fistulas decrease the survival of pancreatic cancer patients treated with surgery after neoadjuvant chemoradiotherapy: A retrospective analysis. *Surg. Oncol.* 2020, 35, 527–532. [CrossRef]