Parameterization of the Density Component in the Composite Wave Curve in a Fluid Flow Model in a Tube with Variable Cross-Section

Tran Dang Hung

1Department of Academic Affairs, Ho Chi Minh City University of Food Industry (HUFI), Ho Chi Minh City, Viet Nam

DOI: 10.36348/sjejt.2022.7(3).004

Received: 01.02.2022 | Accepted: 07.03.2022 | Published: 12.03.2022

*Corresponding author: Tran Dang Hung
Department of Academic Affairs, Ho Chi Minh City University of Food Industry (HUFI), Ho Chi Minh City, Viet Nam

I. INTRODUCTION

The curves of composite waves in the fluid flow model in a tube of variable cross-section plays an essential role in the solution of the Riemann problem. However, the variation of the curve shape has not been demonstrated, partly due to the complexity of the waves arising in one characteristic wave group along the curves of the waves in another characteristic wave group. This gives us an incentive to research. Precisely, the model is given by

\[\begin{align*}
\frac{\partial}{\partial x} (a \rho) + \frac{\partial}{\partial x} (a \rho u) &= 0, \\
\frac{\partial}{\partial x} (a \rho u) + \frac{\partial}{\partial x} (a(u^2 + p(\rho))) &= p(\rho)\frac{\partial}{\partial x} a, \\
\frac{\partial}{\partial x} a &= 0.
\end{align*} \tag{1.1} \]

Where the cross-sectional area of the pipe are denoted by \(a = a(x) \) (with \(x \in \mathbb{R} \)). Here, \(\rho \) stand for the density, \(u \) stand for the particle velocity of the fluid under consideration, and the pressure function \(p = p(\rho) \) is given by (for simplicity we assume that the pressure given by the ideal gas equation is isentrope)

\[p = p(\rho) = \kappa \rho^\gamma, \quad \kappa > 0, \quad 1 < \gamma < 5/3. \tag{1.2} \]

Observe that the third equation in (1.1) is a trivial equation, the function \(a \) depends only on \(x \).

Consider the function

\[h(\rho) := \frac{\kappa \gamma}{\gamma - 1} \rho^{\gamma-1}. \]

The function \(h \) is defined by \(h'(\rho) = p'(\rho) / \rho \)

The system (1.1) is equivalent to the following three conservation laws, when the smooth solutions \((x, t) \rightarrow (\rho, u, a) \):

\[\begin{align*}
\frac{\partial}{\partial x} (a \rho) + \frac{\partial}{\partial x} (a \rho u) &= 0, \\
\frac{\partial}{\partial x} (u) + \frac{\partial}{\partial x} \left(\frac{u^2}{2} + h(\rho) \right) &= 0, \\
\frac{\partial}{\partial x} a &= 0.
\end{align*} \tag{1.3} \]
The system (1.3) can be re-written as a nonconservative system as
\[\partial_t U + A(U)\partial_x U = 0, \quad \ldots \ldots \quad (1.4) \]

Where
\[
U = \begin{pmatrix} \rho \\ u \\ a \end{pmatrix}, \quad A(U) = \begin{pmatrix} \rho \\ u \\ 0 \\ 0 \end{pmatrix} \begin{pmatrix} \rho \\ \rho u/a \end{pmatrix}
\]

The matrix \(A = A(U) \) has three real eigenvalues
\[
\lambda_1(U) := u - \sqrt{p'(\rho)}, \quad \lambda_2(U) := 0, \quad \lambda_3(U) := u + \sqrt{p'(\rho)}, \quad \ldots \ldots \quad (1.5)
\]

Together with the corresponding eigenvectors which can be chosen as
\[
r_1(U) = \begin{pmatrix} \rho \\ -\sqrt{p'(\rho)} \\ 0 \end{pmatrix}, \quad r_2(U) = \begin{pmatrix} \rho u \\ -p'(\rho) \\ 0 \end{pmatrix}, \quad r_3(U) = \begin{pmatrix} \rho \\ \sqrt{p'(\rho)} \\ 0 \end{pmatrix} \quad \ldots \ldots \quad (1.6)
\]

Thus, the system (1.1) is hyperbolic.

We call: \(C^+ := \{ (\rho, u, a) \mid u = \pm \sqrt{p'(\rho)} = \pm \sqrt{\gamma \rho^{\gamma-1}} \} \) is the sonic surface \((\rho, u)\).

Moreover, the first and the third characteristic speeds can coincide, i.e.,
\[
\lambda_1(U) = \lambda_3(U) = 0
\]

On the surface
\[
C^+ = \left\{ (\rho, u, a) \mid u = \sqrt{\gamma \rho^{\gamma-1}} \right\}, \quad \ldots \ldots \quad (1.7)
\]

And the second and the third characteristic speeds can coincide, i.e.,
\[
\lambda_2(U) = \lambda_3(U) = 0
\]
On the surface
\[C^- = \left\{ (\rho, u, a) \mid u = -\sqrt{\gamma \rho \frac{\gamma - 1}{2}} \right\} \] (1.8)

It means that the system (1.1) is hyperbolic, but is not strictly hyperbolic.

The system (1.1) is strictly hyperbolic on regions:

\[G_1 := \left\{ (\rho, u) \mid u < -\sqrt{p'(\rho)} \right\}, \]
\[G_2 = \left\{ (\rho, u) \mid |u| < \sqrt{p'(\rho)} \right\}, \]
\[G_3 = \left\{ (\rho, u) \mid u > \sqrt{p'(\rho)} \right\}, \] (1.9)
\[G_2^+ = \left\{ (\rho, u) \in G_2 : u > 0 \right\}, \]
\[G_2^- = \left\{ (\rho, u) \in G_2 : u < 0 \right\}. \]

In each of these regions, we have
\[\lambda_1 < \lambda_3 < \lambda_2, \text{ in } G_1, \]
\[\lambda_1 < \lambda_2 < \lambda_3, \text{ in } G_2, \]
\[\lambda_2 < \lambda_1 < \lambda_3, \text{ in } G_3. \]

The 1- and the 3- characteristic families are genuinely nonlinear:
\[-\nabla \lambda_1 r_1 = \nabla \lambda_2 r_2 = \frac{1}{2 \sqrt{p'(\rho)}} (\rho p''(\rho) + 2 p'(\rho)) \neq 0. \]

And the second characteristic family is linearly degenerate
\[\nabla \lambda_2 r_2 = 0. \]

A shock wave (from 1- and 3-families) connecting a given left-hand state \(U_0 \) to a right-hand state \(U \) must satisfy the Lax shock inequalities [8].
\[\lambda_i(U) < \overline{\lambda}_i(U, U_0) < \lambda_i(U_0), \quad i = 1, 3 \] (1.10)

Where \(\overline{\lambda}_i(U, U_0) \) is the shock speed.

Shock waves from 1- and 3-families are constrained by the jump conditions [10]. The so-called Hugoniot set is determined:
\[(u - u_0)^2 = \kappa \left(\frac{1}{\rho_0} - \frac{1}{\rho} \right) (\rho^\gamma - \rho_0^\gamma) \]

Since the 1-Hugoniot curve starts from \(U_0 \) and has the direction vector of the tangent at \(U_0 \) as \(\tilde{r}_1(U_0) \), we can determine the 1-Hugoniot curve:
\[H_1(U_0) : u = \begin{cases} u_0 - \left(\kappa \left(\frac{1}{\rho_0} - \frac{1}{\rho} \right) (\rho^\gamma - \rho_0^\gamma) \right)^{1/2}, & \rho > \rho_0, \\ u_0 + \left(\kappa \left(\frac{1}{\rho_0} - \frac{1}{\rho} \right) (\rho^\gamma - \rho_0^\gamma) \right)^{1/2}, & \rho < \rho_0. \end{cases} \]
Similar arguments lead to 3-Hugoniot curve:

\[
H_3(U_0) : u = \begin{cases}
 u_0 + \left(\kappa \left(\frac{1}{\rho_0} - \frac{1}{\rho} \right) (\rho^\gamma - \rho_0^\gamma) \right)^{1/2}, & \rho > \rho_0, \\
 u_0 - \left(\kappa \left(\frac{1}{\rho_0} - \frac{1}{\rho} \right) (\rho^\gamma - \rho_0^\gamma) \right)^{1/2}, & \rho < \rho_0.
\end{cases}
\]

Using Lax shock inequalities (1.10), we can define the 1-wave and a 3-wave (left-to-right) shock curve \(S_1(U_0), S_3(U_0) \) consisting of all right-hand states \(U \) that can be connected to \(U_0 \) by a shock by 1-wave and a 3-wave shock:

\[
S_1(U_0) : \omega_1(\rho; U_0) := u_0 - \left(\kappa \left(\frac{1}{\rho_0} - \frac{1}{\rho} \right) (\rho^\gamma - \rho_0^\gamma) \right)^{1/2}, \quad \rho > \rho_0, \quad \ldots \ldots \quad (1.11)
\]

\[
S_3(U_0) : \omega_3(\rho) := u_0 - \left(\kappa \left(\frac{1}{\rho_0} - \frac{1}{\rho} \right) (\rho^\gamma - \rho_0^\gamma) \right)^{1/2}, \quad \rho < \rho_0.
\]

Similarly, the 1-wave and 3-wave (right-to-left) shock curve \(S_1^R(U_0), S_3^R(U_0) \) consisting of all left-hand states \(U \) that can be connected to \(U_0 \) by a Lax shock are

\[
S_1^R(U_0) : u = u_0 + \left(\kappa \left(\frac{1}{\rho_0} - \frac{1}{\rho} \right) (\rho^\gamma - \rho_0^\gamma) \right)^{1/2}, \quad \rho < \rho_0, \quad \ldots \ldots \quad (1.12)
\]

\[
S_3^R(U_0) : u = u_0 + \left(\kappa \left(\frac{1}{\rho_0} - \frac{1}{\rho} \right) (\rho^\gamma - \rho_0^\gamma) \right)^{1/2}, \quad \rho > \rho_0.
\]

Next, we search for rarefaction waves, i.e., smooth self-similar solutions to the system (1.3). As usual, we consider for ordinary differential equations

\[
\frac{dU}{d\xi} = \frac{r_i(U)}{\sqrt{\lambda_i r_i(U)}}, \quad i = 1, 3, \quad (1.13)
\]

\[
U(\xi_0) = U_0. \quad \ldots \ldots
\]

Therefore, we can determine the 1-wave (consisting of all right-hand states \(U \) that can be connected to \(U_0 \)) rarefaction curve \(R_1(U_0) \) by

\[
R_1(U_0) : \omega_1(\rho) = u_0 - \int_{\rho_0}^{\rho} \frac{\rho^\gamma}{\sqrt{\gamma \rho^\gamma - 1}} d\rho
\]

\[
= u_0 - \frac{2}{\sqrt{\gamma \rho^\gamma - 1}} \left(\rho^\gamma (\rho - 1)^{\gamma/2} - \rho_0^\gamma (\rho_0 - 1)^{\gamma/2} \right), \quad \rho \leq \rho_0, \quad \ldots \ldots \quad (1.14)
\]

\[
\rho^{\gamma/2} (\xi) = \rho_0^{\gamma/2} - \frac{\gamma - 1}{\sqrt{\gamma \rho^\gamma - 1}} \left(\xi - \xi_0 \right), \quad \xi \geq \xi_0.
\]

And the 3-wave (right-to-left) rarefaction curve \(R_3(U_0) \) by
\[R_j(U_0) : \omega_j(\rho) = u_0 + \int_{\rho_0}^{\rho} \frac{\sqrt{p(\rho)}}{\rho} d\rho, \rho \leq \rho_0 \]
\[\rho^{\gamma-1} \left(\xi \right) = \rho_0^{\gamma-1} + \frac{\gamma-1}{\sqrt{\kappa \gamma (\gamma + 1)}} (\xi - \xi_0), \xi \leq \xi_0 \]
\text{................. (1.15)}

The 1-wave (consisting of all left-hand states \(U \) that can be connected to \(U_0 \)) rarefaction curve \(R_1(\U_0) \) by
\[R_1(\U_0) : \omega_j^B(\rho) = u_0 - \int_{\rho_0}^{\rho} \frac{\sqrt{p(\rho)}}{\rho} d\rho \]
\[= u_0 - \frac{2\sqrt{\kappa \gamma}}{\gamma - 1} \left(\rho^{(\gamma-1)/2} - \rho_0^{(\gamma-1)/2} \right), \rho \geq \rho_0, \text{............... (1.16)} \]
\[\rho^{\gamma-1} \left(\xi \right) = \rho_0^{\gamma-1} - \frac{\gamma-1}{\sqrt{\kappa \gamma (\gamma + 1)}} (\xi - \xi_0), \xi \leq \xi_0 \]
\text{................. (1.17)}

And the 3-wave (consisting of all left-hand states \(U \) that can be connected to \(U_0 \)) rarefaction curve \(R_3(\U_0) \) by
\[R_3(\U_0) : \omega_j^B(\rho) = u_0 + \int_{\rho_0}^{\rho} \frac{\sqrt{p(\rho)}}{\rho} d\rho \]
\[= u_0 + \frac{2\sqrt{\kappa \gamma}}{\gamma - 1} \left(\rho^{(\gamma-1)/2} - \rho_0^{(\gamma-1)/2} \right), \rho \geq \rho_0, \text{............... (1.16)} \]
\[\rho^{\gamma-1} \left(\xi \right) = \rho_0^{\gamma-1} + \frac{\gamma-1}{\sqrt{\kappa \gamma (\gamma + 1)}} (\xi - \xi_0), \xi \leq \xi_0 \]
\text{................. (1.17)}

In conclusion, we can define the wave curves
\[W_1(\U_0) := S_1(\U_0) \cup R_1(\U_0), \]
\[W_1^B(\U_0) := S_1^B(\U_0) \cup R_1^B(\U_0), \]
\[W_3(\U_0) := S_3(\U_0) \cup R_3(\U_0), \text{............... (1.18)} \]
\[W_3^B(\U_0) := S_3^B(\U_0) \cup R_3^B(\U_0). \]

From (1.11), (1.13), (1.14), (1.15), (1.16), (1.17) and (1.18) we have equations of wave curves
\[W_1(\U_0) : u = \omega_1(\U_0; \rho) = \begin{cases} \rho \leq \rho_0, \\ 0 \leq \rho \leq \rho_0 \end{cases} \text{................. (1.19)} \]
\[W_1^B(\U_0) : u = \omega_1^B(\U_0; \rho) = \begin{cases} \rho \leq \rho_0, \\ 0 \leq \rho \leq \rho_0 \end{cases} \text{................. (1.19a)} \]
\[W_3(\U_0) : u = \omega_3(\U_0; \rho) = \begin{cases} \rho \leq \rho_0, \\ 0 \leq \rho \leq \rho_0 \end{cases} \text{................. (1.19b)} \]
Lemma 1.1 (1- and 3-wave curves) The $W_i(U_0, a)$ and $W_i^\beta(U_0, a)$ are strictly convex and strictly decreasing functions of a, while $W_2(U_0, a)$ and $W_2^\beta(U_0, a)$ are strictly concave and strictly increasing functions of $a \geq 0$.

It is clearly that the function $W_3(U_0, a)$, $a \geq 0$, is strictly convex and strictly decreasing for $u_0 > 0$, and strictly concave and strictly increasing for $u_0 < 0$.

Lemma 1.2
i. If U_0 is located above the curve C_+, then the curve $W_i(U_0)$ has a unique intersection with each curve C_+, C_-, C'. If U_0 is located below C_+, no such an intersection is available.

ii. If U_0 is located below or on the curve C', then the curve $W_i(U_0)$ has a unique intersection with each curve C_-, C_+, C'. If U_0 is located above C', no such an intersection is available.

Let us investigate properties of the wave curves. It follows from (1.12) that

$$
\frac{d\omega_i(U_0, \rho)}{d\rho} = -\kappa \left[\frac{1}{\rho^2} (\rho^\gamma - \rho_0^\gamma) + \left(\frac{1}{\rho_0^2} - \frac{1}{\rho^2} \right) \rho^\gamma \right] 2|\omega_i(U_0, \rho) - u_0| < 0, \quad \rho > \rho_0 \quad (1.20)
$$

And, clearly,

$$
\frac{d\omega_i(U_0, \rho)}{d\rho} = -\sqrt{\kappa} \rho^\gamma \frac{\gamma - 1}{2} < 0, \quad \rho \leq \rho_0 \quad (1.21)
$$

Similar calculations show that

$$
\frac{d\omega_i(U_0, \rho)}{d\rho} > 0, \quad \rho > 0. \quad (1.22)
$$

It is interesting that the shock speeds in the nonlinear characteristic fields may coincide with the characteristic speed of the linearly degenerate field as stated in the following properties.

II. PARAMETERIZATION OF THE DENSITY COMPONENT OF THE COMPOSITE WAVE CURVE

Solution curves of the Riemann problem for (1.1) are understood to be either wave curves that were already defined in the previous section or sets of composite waves $W_{1-2}(U_0, a)$, $W_{1+2}^\beta(U_0, a)$ (for 1- and 2-wave families) or $W_{2-3}(U_0, a)$, $W_{2+3}^\beta(U_0, a)$ (for 2- and 3-wave families). For simplicity, we restrict our attention in this section to the situation that there is only one stationary shock in each composite wave. Two stationary shocks in a composite wave is also possible and this will be covered in another paper.

Definition 2.1. The composite curve $W_{i=2}^U(U_0, a)$ is the set of all states $U = (\rho, u, a)$ such that there exists a state $U' \in W_i(U_0)$ and the 1-wave from U' to U can be followed by the stationary shock from U' to U by using $\varphi_i(U', a)$, $i = 1, 2$. The composite curve $W_{i=2}^U(U_0, a)$ is the set of all the states $U = (\rho, u, a)$ such that the (fixed) stationary jump from U' to some U (using $\varphi_i(U', a)$, $i = 1, 2$) can be followed by the 1-waves from U' to U, $i = 1, 2$. Under the transformation

$$
W_{1-2}^U(U_0, a, \rho) \rightarrow U' \rightarrow U, \quad \rho \rightarrow -\rho, \quad (2.1)
$$

© 2022 | Published by Scholars Middle East Publishers, Dubai, United Arab Emirates
a right-hand state $U = (\rho, u, a)$ becomes a left-hand state of the form $(\rho, -u, a)$. In generality, we can always assume from now on that $a_0 < a$ (2.2)

We need only construct $W_{i=2}(U_0, a)$, as similar arguments can be used for other cases. Set $U_\pm := W_i(U_0) \cap C^\pm$, $Z(U_0) = W_i(U_0) \cap \{ u = 0 \}$... (2.3)

Case 1

We assume that U_0 is below or on the curve C_* (Figure 1). The curve $W_i(U_0)$ always remains in G_i and does not cross the strict hyperbolicity boundary C^\pm. Therefore, all the 1-waves have negative speeds. Consequently, the 2-waves can not be followed by 1-waves. The only way is that the 1-waves are followed by 2-waves. Thus, we have in this case

\[W_{i=2}(U_0, a) \supset W_{i=2}^1(U_0, a) \cup W_{i=2}^2(U_0, a) \] (2.4)

Case 2

U_0 is between C_* and C^* or on the curve C^* (Figure 2). The construction can be a 1-wave from U_0 to $U = (\rho, u) \in W_i(U_0)$ as long as U do not belong to G_3, followed by a stationary jump by either using $\varphi_1(U_0, a)$ to a state U_1 with

\[U_1 \in G_1, \text{ if } u \leq 0 \]

\[U_1 \in G_3, \text{ if } u \geq 0 \] (2.5)

or using $\varphi_2(U_0, a)$ to a state $U_2 \in G_2$. Such states U_2 form $W_{i=2}(U_0, a)$. The states $U_1 \in G_3$ form the set \(W_1 \rightarrow 2(U_0, a) \). In the case $U_1 \in G_3$ reached by a stationary jump from $U \in G_2^+$. Because of $U_1 \in G_3$, we have

\[\lambda_i(U_1) > 0 \] (2.6)

The construction can therefore be continued with $W_i(U_1)$ as long as the 1-shock speed from U_1 is non-negative. Hence, we have composite wave of two curves $W_{i=2}^1(U_0, a)$, $W_{i=2}^2(U_0, a)$ in this case and a one-parameter family of solutions described by

\[W_{i=2}(U_0, a) \supset W_{i=2}^1(U_0, a) \cup W_{i=2}^2(U_0, a) \] (2.7)

$U \in W_i(U_0)$, U between U_+ and $Z(U_0)$.

Figure 1: U_0 is below or on the curve $C_*
Finally, assume that U_0 is above C^+, i.e., $U_0 \in G_3$ (Figure 3).

In a neighborhood of U_0, the shock speed and the characteristic speed are positive, so that stationary shocks can be followed by 1-waves, only: using $\varphi(U_0, a)$, the solution can begin with a stationary shock to a state $U_1 \in G_3$, followed by using $W_i(U_1)$ as long as the shock speed is non-negative, i.e., $U \in W_i(U_1): \rho \leq \psi_i(U_1)$ \ldots \ldots \ldots (2.8)$

This is the curve $W_{i-1}(U_0, a)$. Clearly, this curve crosses the curve C^+. If the solution jumps by a stationary shock using $\varphi(U_0, a)$ to a state U_2, then we know by Lemma 1.2 that $U_2 \in G_2$ in which 1-wave speeds are always negative so that 1-waves can not follow. In other words, $W_{i-1}(U_0, a)$ is empty.

$W_{i-2}(U_0, a) \supseteq W_{i-2}(U_0, a) \cup W_{i-2}^2(U_0, a) \cup W_{i-1}(U_0, a) \cup W_{i-1}(U_0, a) \ldots \ldots (2.9)$

On the other hand, from U_0, the construction can begin with a non-positive shock from U_0 to some state U with $\rho \geq \psi_i(U_0)$, followed by a stationary shock using either $\varphi(U_0, a)$ to a state U_1 with

$U_1 \in G_1, \text{ if } u \leq 0$

$U_1 \in G_3, \text{ if } u \geq 0$

or using $\varphi(U_0, a)$ to a state $U_2 \in G_2$. These two ways determine two composite curves $W_{i-2}(U_0, a)$, $W_{i-2}^2(U_0, a)$. When using $\varphi(U_0, a)$ to attain a point $U_1 \in G_3$, similarly, by virtue of (13.6) the construction can be continued by using $W_i(U_1)$ as much as 1-shock speeds from U_1 are non-negative. In this case, the composite wave set consists of three curves and a one-parameter family of solutions:

$W_{i-2}(U_0, a), W_{i-2}^2(U_0, a)$

Where $U_0 := (\psi_i(U_0), W_i(U_0, \psi_i(U_0)))$ the point at which the 1-shock from U_0 has zero speed. The construction is completed.
Figure 3: U_0 is about C^+

Obviously, the curve $W_{1-2}^i(U_0, a)$ is monotone, as a part of $W_i(U_i)$ for some U_1.

\[\rho \mapsto \left(\varphi_i(\rho, w_1(U_0, \rho)); a \right) \text{ for } i = 1, 2, \ldots, \ldots, (2.10) \]

Moreover, it is derived from the above construction that the two curves $W_{1-2}^i(U_0, a)$, $W_{1-2}^2(U_0, a)$ can be parameterized by ρ:

\[\sum ((\rho, w_1(U_0, \rho)), \varphi_i(\rho, w_1(U_0, \rho)); a) = 0 \]

Where $\rho < \rho^*$ is defined by the implicit equation:

III. CONCLUSION

Hyperbolic systems of balance laws in nonconservative form possess very interesting but rather complicated phenomena. In particular, characteristic speeds $\bar{\lambda}_2$ may coincide or less than $\bar{\lambda}_1$, $\bar{\lambda}_3$ and the order in Riemann solutions of elementary waves such as shocks, rarefaction waves, and stationary contacts may be changed from one region to another. This can be dealt with when solving the Riemann problem by building up the curves of composite waves. In this paper we first establish the monotonicity property of these curves of composite waves and this composite waves can be parameterized by density component ρ.

REFERENCES

- Warnecke, G., & Andrianov, N. (2004). On the solution to the Riemann problem for the compressible duct flow. *SIAM Journal on Applied Mathematics*, 64(3), 878-901.
- Andrianov, N., & Warnecke, G. (2004). The Riemann problem for the Baer–Nunziato two-phase flow model. *Journal of Computational Physics*, 195(2), 434-464.
- Botchorishvili, R., Perthame, B., & Vasseur, A. (2002). Equilibrium schemes for scalar conservation laws with stiff sources, INRIA preprint.
- Bouchut, F. (2002). An introduction to finite volume methods for hyperbolic systems of conservation laws with source, INRIA Rocquencourt report.
- Courant, R., & Friedrichs, K. O. (1948). *Supersonic Flow and Shock Waves*, John Wiley, New York.
- Kröner, D., LeFloch, P. G., & Thanh, M. D. (2008). The minimum entropy principle for compressible fluid flows in a nozzle with discontinuous cross-section. *ESAIM: Mathematical Modelling and Numerical Analysis*, 42(3), 425-442.
- LeFloch, P. G., & Thanh, M. D. (2011). A Godunov-type method for the shallow water equations with discontinuous topography in the resonant regime. *Journal of Computational Physics*, 230(20), 7631-7660.
- Lax, P. D. (1971). Shock wave and entropy, in “Contributions to Functional Analysis”, ed. EA Zarantonello, 603–634, Academic Press, New York.
- Marchesin, D., & Paes-Leme, P. J. (1986). A Riemann problem in gas dynamics with bifurcation. In *Hyperbolic Partial Differential Equations* (pp. 433-455). Pergamon.
- Thanh, M. D. (2009). The Riemann problem for a nonsentropic fluid in a nozzle with discontinuous...
cross-sectional area. *SIAM Journal on Applied Mathematics*, 69(6), 1501-1519.

- Thanh, M. D. (2014). A phase decomposition approach and the Riemann problem for a model of two-phase flows. *Journal of Mathematical Analysis and Applications*, 418(2), 569-594.

- Thanh, M. D. (2012). Existence of traveling waves of conservation laws with singular diffusion and nonlinear dispersion. *Bull. Malays. Math. Sci. Soc.*(2), 35(2), 383-398.