OPTIMAL CHOICE UNDER SHORT SELL LIMIT WITH SHARPE RATIO AS CRITERION AMONG MULTIPLE ASSETS

Ruokun HUANG*, Yiran SHENG**

Abstract:
This article is the term paper of the course Investments. We mainly focus on modeling long-term investment decisions of a typical utility-maximizing individual, with features of Chinese stock market in perspective. We adopt an OR based methodology with market information as input parameters to carry out the solution. Two main features of this article are: first, we take the no short-sell constraint in Chinese stock market into consideration and use an approach otherwise identical to Markowitz to work out the optimal portfolio choice; this method has critical and practical implication to Chinese investors. Second, we incorporate the benefits of multiple assets into one single well-defined utility function and use a MIQP procedure to derive the optimal allocation of funds upon each of them along the time-line.

* Ruokun HUANG, 2006012402, huangrk.06@sem.tsinghua.edu.cn, http://learn.tsinghua.edu.cn:8080/2006012402/index
** Yiran SHENG, 2006012400, shengyr.06@sem.tsinghua.edu.cn, http://learn.tsinghua.edu.cn:8080/2006012400/index
Contents

I. Background .. 3

II. Introduction ... 3

III. Our Model-Overall View ... 4

IV. Determination of Insurance value via Monte-Carlo Stimulation .. 7

V. Our Model-Stock Market Optimal Choice under Short Sell Limit .. 8

VI. Computing Process and Numerical Result .. 9

VII. Conclusion ... 11

Appendix A - Stock to be Selected .. 12

Appendix B - R code .. 13

Appendix C – R result .. 16

Reference ... 17
I. Background

This article is for a problem described as follows:

- Suppose you are an investor
 - Just graduated
 - 200,000 annual salary
 - 500,000 saving
- How to allocate your assets into:
 - Bank deposit
 - Treasures
 - Stocks
 - Mutual funds
 - Real estate
 - Others

The optimal choice of investment has long been a difficult problem for investors. The structure of people’s utility with respect to time and risk influences behaviors of various people. Along with the mainstream method used by scholars, we use well defined utility function to describe investor’s attitude toward risk and return.

As we know, there are some existing theories describing the optimal investment choice, i.e. Markowitz method. However, most existing theories are based on relatively complete/perfect market, where short selling of assets is allowed. In our opinion, we must consider this short sell limit in order to avoid discrepancy, which may be large in a market with short sell limit. As a result, we are going to put forward our analysis under short sell limit on stock market.

II. Introduction

In section III, we show the basic structure of our model and integrate strategy for different investment categories into one universal maximization problem. In section
IV, we further discuss the Monte-Carlo simulation procedure of parameters used in section III. In section V, we give a detailed analysis on stock market with short sell constraint, using an approach otherwise identical to Markowitz. In section VI, we apply some data into our model and compute the results. Section VII concludes.

III. Our Model-Overall View

To adequately characterize the long-run investment decision of a utility maximizing individual, we need to set up a discrete, multi-period model. We assume that the individual lives for M years, and that his lifetime well-being is determined by the yearend consumption of each period. Furthermore, we assume that he or she has time-additive and state-independent utilities. Thus, the maximization problem can be stated as follows:

\[
\max \{ E \left(\sum_{k=1}^{M} U_k(D_k) \right) \}
\]

subject to feasible set of \(\Theta_k \)

Where \(D_k \) is his yearend consumption at \(k^{th} \) period, \(U_k \) is his corresponding utility in \(k^{th} \) year, and vector \(\Theta_k \) is our investment strategy. For simplicity, we assume \(U_k \) has uniform structure and a discount factor \(r \) along the timeline, that is:

\[
U_k = e^{-rk}u(D_k)
\]

Next, we will specify the investment strategy \(\Theta_k \). We classify our investments into four categories: risky assets, riskless asset (borrow), riskless asset (lend/save), house purchase and insurance product. Denote the money invested on each category in the \(k^{th} \) year is \(\theta_k \). Notice insurance is invested only at time 0, we will simplify its purchased amount as \(\theta_0 \). Here we denote housing expense every year to be \(H_k \).

However, since the strike event for insurance happens on an unpredictable date in some future time and may not be exactly the same yearend consumption realization
date. Therefore we need to make a little modification in the model, introducing a continuous random variable \(T \) called survive time which is the interval starts from time 0 until the strike event happens. We assume \(T \) follows some distribution \(F(t) \). Once the strike event happens, the person’s annual income drops from \(I_H \) to \(I_L \). The expected utility gain from insurance is, \(L \) is the lump sum payment once the strike event happens:

\[
V = E(e^{-t\theta}(\theta L)) = \int_0^M e^{-ru}u(\theta_j L) \Pr[T \in du]
\]

With this factor included, the full model is:

\[
\max_{(\theta_k, H_k)} \left\{ E\left[\sum_{k=1}^M e^{-rk}u(D_k) + \int_0^M e^{-ru}u(\theta_j L) \Pr(T \in du) + u(House) \right] \right\}
\]

\[
D_k = I_L + (I_H - I_L)\delta(T > k) - \sum\limits_{j=1}^3 \theta_{jk} + \sum\limits_{j=1}^3 \theta_{j,k-1}(1 + \bar{R}_j) - s\theta_4\delta(T > k) - H_k
\]

where \(\delta(T > k) = \begin{cases} 1, & T > k \\ 0, & T \leq k \end{cases} \)

s.t.

\[
D_k \geq D
\]

\[
\theta_{jM} = 0, j=1,2,3
\]

Where \(I_H \) and \(I_L \) are the given annual income, \(\bar{R}_i \) is the random return on risky portfolio, \(\bar{R}_2 = \bar{r} \) is the risk free (borrow) rate, \(\bar{R}_3 = \bar{r} \) is the risk free (lend/save) rate, \(s \) is the yearly spread payment of insurance. \(D \) is the survival level annual consumption.

Now suppose \(E(u(D)) = aE(D) + b \text{var}(D) \), the above equation becomes, assuming different category of assets are independent with each other:
Optimal Choice under Short Sell Limit with Sharpe Ratio as Criterion Among Multiple Assets

Ruokun HUANG, Yiran SHENG

6 / 17 January 4, 2010

\[
\max_{(\Theta_k, H_k)} \left\{ \sum_{k=1}^{M} e^{-rk} aE(D_k) + b \var{D_k} + V + u(\text{House}) \right\}
\]

\[E(D_k) = I_L + (I_H - I_L)(1 - F(k)) - \sum_{j=1}^{3} \theta_{j,k} + \sum_{j=1}^{3} \theta_{j,k-1}(1 + E(\tilde{R}_j)) - s\theta_{k}(1 - F(k))\]

\[\var{D_k} = (I_H - I_L)^2 F(k)(1 - F(k)) + \theta_{k,k-1}^2 \var{\tilde{R}_k} + s^2 \theta_{k}^2 F(k)(1 - F(k))\]

The value of \(V \) can be derived from Monte-Carlo stimulation, we will discuss this later.

Next, we are going to discuss the term \(H_k \). In order to make our planning applicable for computer, we set up a binary vector \(B_k \), where

\[
B_k = \begin{cases} 0, & \text{not buy house at all} \\ 1, & \text{buy house (pay init)} \end{cases}
\]

We can easily reach the result that:

\[
H = \begin{pmatrix} Ip & Ip \\ Ap & Ip \\ \vdots & \vdots \\ 0 & \ldots & Ap & Ip \end{pmatrix}
\]

We denote the transformation matrix as \(P \)

Note that the optimization problem is just a quadratic problem like:

\[
\max \left\{ \frac{1}{2} x^T \Sigma x + c^T x \right\}
\]

s.t. \(Ax \geq b \)

with \(x = (\theta_{1,1}, \theta_{1,2}, \ldots, \theta_{1,M}, \theta_{2,1}, \ldots, \theta_{2,M}, \theta_{3,1}, \ldots, \theta_{3,M}, H_1, \ldots, H_M, \theta_4)^T \)

This problem is equivalent to:

\[
\max \left\{ \frac{1}{2} y^T \Sigma y + d^T y \right\}
\]

s.t. \(Dx \geq e \)

with \(y = (\theta_{1,1}, \theta_{1,2}, \ldots, \theta_{1,M}, \theta_{2,1}, \ldots, \theta_{2,M}, \theta_{3,1}, \ldots, \theta_{3,M}, B_1, \ldots, B_M, \theta_4)^T \)
and \(\mathbf{d}^T = \mathbf{e}^T \)

\[
\begin{pmatrix}
1 & 0 & 0 & 0 \\
\vdots & \vdots & \vdots & \vdots \\
0 & 1 & 0 & 0 \\
0 & \ldots & 0 & \mathbf{P} \\
0 & \ldots & 0 & 1
\end{pmatrix}
\]

This is always applicable since \(|\mathbf{P}| \neq 0 \).

IV. Determination of Insurance value via Monte-Carlo Stimulation

In order to specify the mechanism of insurance product in a sense of its contribution to life-time utilities, we introduce a latent variable model. Suppose \(Y \) is a latent variable follows standard normal distribution. When \(Y \) falls below a critical value, the strike event in insurance contract happens, \textit{id est}:

\[
\Pr[T \leq t] = F(t) = \Pr[Y \leq y] = \Phi(y)
\]

Therefore there is a one-to-one mapping between \(Y \) and \(T \):

\[
T = F^{-1}(\Phi(Y))
\]

Since \(T \) is a rv in nature, we need to carry out a Monte-Carlo Stimulation to determine the expected utility gain from insurance products. Throughout this session we assume \(F(t) = 1 - e^{-ht} \); where \(h \) is a constant hazard rate, its mathematical meaning is the strike event conditional probability density at any time.

\[
T = \frac{-\log(1 - \Phi(Y))}{h}
\]

The following table gives input parameters for the stimulation:

Parameters	Input value
Hazard rate: \(h \)	0.06
Lump sum payments: \(L \)	30000
Spread payment: \(s \)	500

For \(h = 0.06 \), the probability that the strike event will not happen within 30 years
is about 17%.

After 10000 stimulation runs over Y, we have $V = 0.6629 u(0, L)$

V. Our Model-Stock Market Optimal Choice under Short Sell Limit

Firstly, in classical model, where short selling of assets is allowed, the optimal problem has simple solution as follows:

$$w = \frac{\Sigma^{-1} e \left[E \left(\tilde{r}_M \right) - r_f \right]}{H}$$

Where

$$E \left(\tilde{r}_M \right) = \frac{A}{C} - \frac{D}{C^2 \left(r_f - \frac{A}{C} \right)}$$

$$A = 1^T \Sigma^{-1} e$$

$$B = e^T \Sigma^{-1} e$$

$$C = 1^T \Sigma^{-1} 1$$

$$D = BC - A^2$$

$$H = B - 2Ar_f + Cr_f^2$$

Actually under Markowitz’s world, it is the solution of the maximizing Sharpe Ratio. Here in our analysis, we also use Sharpe Ratio as a criterion of portfolio evaluation. However, we assume that short sell is limited, as in Chinese stock market.

The mathematical description of our analysis is as follows:

$$\max_w \left\{ \frac{E \left[\tilde{r}_w \right] - r_f}{\sigma_w} \right\}$$

subject to

$$1^T w = 1,$$

$$w_i \geq 0, \forall i$$

There is no simple solution to this non-linear planning problem as that of Markowitz. Hereby we use software R (R Development Core Team, 2008), package
Rdonlp2 to solve this problem.

Secondly, there are too many stocks in the market, specifically more than 1600 in A share market. From a general view these stocks are to some extent homogeneous, since they are often highly related. In our analysis, for the convenience of computing, we choose several stocks from the same industry, *id est* 深发展 A (000001) from Financial Institution industry, *et cetera*. Hereby we choose 143 stocks from the 1600+ stocks in A share market, listed in Appendix A (page 12).

VI. Computing Process and Numerical Result

The data we choose are as follows:

Stock: 143 A stocks as in Appendix A (page 12).

Utility discount rate: 3%

Risk free rate (Borrow): 6.5%

Risk free rate (Lend/save): 2.5%

House initial payment: $1,800,000

House annual payment: $150,000

(other input data are in Appendix B-R code)

The numerical result is:

Choose these stocks as a *mutual fund*.

变量 No.	股票号码	股票名称	比例
2	000002	万科 A	0.142771581
13	000400	许继电气	0.0105711138
22	000515	攀渝钛业	0.0230618999
25	000538	云南白药	0.2125265671
35	000661	长春高新	0.0240573083
40	000792	盐湖钾肥	0.2222784446
46	000816	江淮动力	0.0147827086
53	000895	双汇发展	0.0642883098
75	600038	哈飞股份	0.010492248
83	600096	云天化	0.070783097
Invest in stock market by buying following pieces of mutual fund:

Year	Amount	Year	Amount
1	0.02688647	16	0.00929332
2	0.02524552	17	0.00901866
3	0.02462977	18	0.00875212
4	0.02402905	19	0.00849345
5	0.02344297	20	0.00824243
6	-0.00029566	21	0.00799883
7	0.01273575	22	0.00776243
8	0.01236226	23	0.00753302
9	0.01146496	24	0.00731038
10	0.01112612	25	0.00709433
11	0.0107973	26	0.00688466
12	0.01047819	27	0.00668119
13	0.01016851	28	0.00648373
14	0.009867986	29	0.00629211
15	0.009576343	30	0

The borrowing behavior is:

Borrow 25.41707 pieces = $25,417.07 at year 6, zero otherwise.

The saving behavior is: (zero otherwise)

Year	Amount
1	$ 689,222.7
2	$ 895,705.3
3	$1,107,349
4	$1,324,284
5	$1,546,643

Buy house at year 6.

Besides, the mutual fund has the frontier like:
The ‘straight line’ in the graph above is the original frontier without short sell limit, which appears to be much larger than our frontier. Note that that frontier is a parabolic curve at a proper scale.

VII. Conclusion

a) Short sell limit plays an important role in Chinese stock market

From the graph we showed above, we can see that with limit of short sell, the feasible set shrinks much compared to situation without short sell constraint. So, we must consider short sell limit in Chinese stock market.

b) Stock market as an asset of investment should be careful considered

In our optimal solution, mutual fund is invested at relatively a very low level. This implies one should better choose other investment assets other than stock.

c) House purchase is the core of life due to large amount of utility it brings

All the financing method in our analysis, including borrowing and saving, contribute to the ‘final target’ of buying a house. The optimal choice indicates one
should save money for 5 years, and as long as he has enough or near to enough money, he purchases a house with small amount of loan. This solution is very close to modern Chinese young people.

d) **Further work to be done**

The overall utility assumption also has its limitations. The state independent assumption tends to be invalid since the insurance is introduced in this model. The utility of house can be decided by more factors. Besides, the period of house payment and/or payment structure should be flexible.

Appendix A - Stock to be Selected

No	股票号码	股票名称	No	股票号码	股票名称	No	股票号码	股票名称
1	000001	深发展 A	51	000860	顺鑫农业	101	600299	蓝星新材
2	000002	万科 A	52	000878	云南铜业	102	600300	维维股份
3	000009	中国宝安	53	000895	双汇发展	103	600305	恒顺醋业
4	00012	南玻 A	54	000911	南宁糖业	104	600313	ST 中农
5	000031	中粮地产	55	000931	中关村	105	600315	上海家化
6	000034	ST 深泰	56	000933	神火股份	106	600320	振华港机
7	000040	深鸿基	57	000936	汇西村	107	600333	长春燃气
8	000043	中航地产	58	000938	紫光股份	108	600350	山东高速
9	000049	燕京啤酒	59	000951	中国重汽	109	600356	恒丰纸业
10	000060	中金岭南	60	000962	东方锆业	110	600382	广东明珠
11	000061	农产品	61	000968	煤气化	111	600416	湘电股份
12	000089	深圳机场	62	000972	新中基	112	600418	江淮汽车
13	000400	许继电气	63	000988	华工科技	113	600519	贵州茅台
14	000401	翼东水泥	64	000990	诚志股份	114	600528	中铁二局
15	000402	金融街	65	000998	隆平高科	115	600530	交大昂立
16	000410	沈阳机床	66	000999	三九医药	116	600559	老白干酒
17	000420	吉林化纤	67	600001	邯郸钢铁	117	600585	海螺水泥
18	000423	东阿阿胶	68	600007	中国国贸	118	600587	新华医疗
19	000425	桂工科技	69	600008	首创股份	119	600597	光明乳业
20	000426	富龙热电	70	600011	华能国际	120	600598	北大荒
21	000509	SST 华塑	71	600026	中海发展	121	600611	大众交通
22	000515	潍柴动力	72	600028	中国石化	122	600631	北京股份
23	000518	四环生物	73	600036	招商银行	123	600633	*ST 白猫
24	000527	美的电器	74	600037	歌华有线	124	600655	豫园商城
25	000538	云南白药	75	600038	哈飞股份	125	600661	交大南洋

Note: The table is a snapshot of stock selection criteria with some stock codes and company names.
Appendix B - R code

library("Rcplex")
library("Matrix")
library("xlsReadWrite")
library("Rdonlp2")

#Read libraries

#Parameters, ‘1’=$1000
MonteCarloNumber=10000 #Times of experiment in Monte-Carlo
InitialSaving=500 #Initial saving
years=30 #Total Years
HouseInitial=1800 #House Initial payment
HouseAnnual=150 #House annual payment
HouseY=10 #House payment years
r=0.03 #Utility Discount rate
Optimal Choice under Short Sell Limit with Sharpe Ratio as Criterion Among Multiple Assets
Ruokun HUANG, Yiran SHENG

rbottom=0.025 #Risk free (lend,save) rate
rtop=0.065 #Risk free (Borrow) rate
L=30 #Insurance lamp-sum payment
HouseUtil=3500 #utility of House, in money sense
h=0.06 #hazard rate
s=.5 #spread of Insurance
Dbottom=10 #lowest living expense
Ih=200 #Annual Salary
Il=100 #Annual salary after losing job
B=3 #risk averse
rhousine=0.0 #House price growth rate

yy=rnorm(MonteCarloNumber,0,1)
tt=-log(1-pnorm(yy))/h
vv=exp(-r*tt)
V=mean(vv) #Calculate V using Monte Carlo
kstart=ceiling(mean(tt))
Fk<-function(x){
 tst=1-exp(-x*h)
 tst
}
#Define Fk

#start to optimize stock
fn <- function(x){
 -(expectret%*%x - rbottom/12)/ sqrt(+/x%*%sigma%*%x) #Min fn.}
inmat=read.xls("s2ok.xls",sheet=1,type="double")
n=ncol(inmat)
sigma=cov(inmat);expectret=apply(inmat,MARGIN=2,FUN=mean)
p <- rep((1/n),n) #initial value
par.l <- rep(0,n); par.u <- rep(1,n) #Parameter range
lin.u <- 1; lin.l <- 1
A <- t(rep(1,n))
ret <- donlp2(p, fn, par.lower=par.l, par.upper=par.u,
 A=A, lin.u=lin.u, lin.l=lin.l, name="stockopl")
rstock<-expectret%*%(ret$par)
sigma2stock=t(ret$par)%*%sigma%*%(ret$par)*12
sigma2stock=as.numeric(sigma2stock)
rstock=as.numeric(rstock)

#vector=(stock1,stock2...stock30,borrow1,borrow2..borrow30,save1...save30,B1...B30,Insurance)
tempm=diag(HouseInitial,years)
for (i in 1:years){
 for (j in (i+1):(i+HouseY)){
 if (j<=years) tempm[j,i]=HouseAnnual
 tempm[i,j]=HouseInitial*exp(i*rhouse)
 }
}
term1_v1=matrix(0,1,4*years+1)
for (i in 1:years){
 if (i<years) term1_v1[i]=-exp(-i*r)+exp(-(i+1)*r)*(1+rstock) else
 term1_v1[i]=-exp(-i*r)
}#coefficient of stock
for (i in 1:years){
 if (i<years) term1_v1[i+years]=+exp(-i*r)-exp(-(i+1)*r)*(1+rtop) else
 term1_v1[i+years]=-exp(-i*r)
}#coefficient of borrow
for (i in 1:years){
 if (i<years)
 term1_v1[i+2*years]=-exp(-i*r)+exp(-(i+1)*r)*(1+rbottom) else
 term1_v1[i+2*years]=-exp(-i*r)
}#coefficient of save
for (i in 1:years){
 term1_v1[i+3*years]=-exp(-i*r)
}#coefficient of house
mysum=0
for (i in 1:years){mysum=mysum+1-Fk(i)}
term1_v1[1+4*years]=V*L-s*mysum
term1_v2=matrix(0,1,4*years+1)
for (i in 1:years){
 term1_v2[i+3*years]=exp(-i*r)*HouseUtil
}term1=term1_v1%*%transform_mat_q+term1_v2
myc=t(term1)
#first order ok.
mysum=0
for (i in 1:years){mysum=mysum+(1-Fk(i))*Fk(i)}
Q=as.matrix(bdiag(diag(sigma2stock,years),diag(0,3*years),s*s*mysum))
#second order ok.
a1=diag(-1,years)
 for (i in 2:years){ a1[i,i-1]=1+rstock}
a3=diag(-1,years)
 for (i in 2:years){ a3[i,i-1]=1+rbottom}
a2=diag(1,years)
 for (i in 2:years){ a2[i,i-1]=-1-rtop}
a4=diag(-1,years); a4=a4%*%tempm
a5=rep(-s,years)
 for (i in kstart:years){a5[i]=0}
a=cbind(a1,a2,a3,a4,a5)
a1=t(rep(0,4*years+1))
 for (i in (3*years+1):(4*years)){a1[i]=1}
a=cbind(a,a1)
#Amat ok

January 4, 2010
Optimal Choice under Short Sell Limit with Sharpe Ratio as Criterion Among Multiple Assets

Ruokun HUANG, Yiran SHENG

\[b = \text{rep}(D_{\text{bottom}} - \text{I}_h, \text{years}+1) \]
\[\text{for } (i \text{ in } \text{kstart:years}) \{ b[i] = D_{\text{bottom}} - \text{I}_l \} \]
\[b[\text{years}+1] = -1 \]
\[b[1] = b[1] - \text{InitialSaving} \]
\[# \text{bvec ok.} \]
\[Q = Q \ast (-2) \ast B \]
\[\text{myvtype} = \text{rep}("C", 4 \ast \text{years} + 1) \]
\[\text{for } (i \text{ in } (3 \ast \text{years} + 1):(4 \ast \text{years})) \{ \text{myvtype}[i] = "$B" \} \]
\[\text{ub} = \text{rep}(\text{Inf}, 4 \ast \text{years}) \]
\[\text{for } (i \text{ in } (4 \ast \text{years} - \text{HouseY} + 1):(4 \ast \text{years})) \{ \text{ub}[i] = 0 \} \]
\[\text{myresult} = \text{Rcplex}(\text{cvec=}\text{myc}, \text{Amat=}\text{a}, \text{bvec=}\text{b}, \text{Qmat=}\text{Q}, \text{lb}=0, \text{ub} = \text{ub}, \text{objsense}="\text{max}" \]
\[\text{sense}="\text{G}" , \text{vtype} = \text{myvtype} \]
\[\text{print}(\text{myresult}) \]

Appendix C – R result

The optimal choice of stocks under short sell limit, whose parameter is not zero:

变量No.	股票号码	股票名称	比例
2	000002	万科 A	0.142771581
13	000400	许继电气	0.0105711138
22	000515	擎海钛业	0.0230618999
25	000538	云南白药	0.2125265671
35	000661	长春高新	0.0240573083
40	000792	盐湖钾肥	0.2222784446
46	000816	江淮动力	0.0147827086
53	000895	双汇发展	0.0642883098
75	600038	陕汽股份	0.010492248
83	600096	云天化	0.070783097
113	600519	东方电梯	0.1458883638
139	600875	贵州茅台	0.058498358

Final MIQP result is: (total years=30)

1	2.688647e-02	2.524552e-02	2.462977e-02	2.402905e-02	2.344297e-02
6	-2.956562e-04	1.273575e-02	1.236226e-02	1.146496e-02	1.112612e-02
11	1.079730e-02	1.047819e-02	1.016851e-02	0.9867986e-03	0.956343e-03
16	9.293319e-03	9.018660e-03	8.752118e-03	8.493454e-03	8.242434e-03
21	7.998834e-03	7.762432e-03	7.530188e-03	7.310389e-03	7.093292e-03
26	6.884660e-03	6.681889e-03	6.483729e-03	6.292105e-03	0.000000e+00
31	0.000000e+00	-3.409720e-04	0.000000e+00	0.000000e+00	0.000000e+00
36	2.541707e+01	0.000000e+00	0.000000e+00	0.000000e+00	0.000000e+00
41	0.000000e+00	0.000000e+00	0.000000e+00	0.000000e+00	0.000000e+00
46	0.000000e+00	0.000000e+00	0.000000e+00	0.000000e+00	0.000000e+00
51	0.000000e+00	0.000000e+00	0.000000e+00	0.000000e+00	0.000000e+00
Reference

Huang, Chi-fu and Litzenberger, Robert H. 1989. Valuation of Comlex Securities with Preference Restrictions. Foundations for Financial Economics. s.l.: Prentice Hall, 1989, 6.

Hull, John. 2009. Options, Futures and Other Derivatives. s.l.: Pearson Education Ltd., 2009. ISBN 0-13-500994-4.

P. Spellucci, TAMURA Ryuichi. Rdonlp2. R package. [Online] http://arumat.net/Rdonlp2/.

R Development Core Team. 2008. R: A Language and Environment for Statistical Computing. [Online] R Foundation for Statistical Computing, 2008. Vienna, Austria. http://www.R-project.org. 3-900051-07-0.

Schmidt, Wolfgang. 2008. Monte-Carlo Variance Reduction-A new universal method for multivariate problems. 2008. working paper.

Sharpe, W. 1964. Capital asset prices: A theory of market equilibrium under conditions of risk. Journal of Finance. 1964, 19, pp. 425-442.