SOME COMPLETELY MONOTONIC PROPERTIES FOR THE \((p,q)\)-GAMMA FUNCTION

VALMIR KRASNIQI AND FATON MEROVCI

Abstract. It is defined \(\Gamma_{p,q}\) function, a generalize of \(\Gamma\) function. Also, we defined \(\psi_{p,q}\)-analogue of the psi function as the log derivative of \(\Gamma_{p,q}\). For the \(\Gamma_{p,q}\)-function, are given some properties related to convexity, log-convexity and completely monotonic function. Also, some properties of \(\psi_{p,q}\) analog of the \(\psi\) function have been established. As an application, when \(p \to \infty, q \to 1\), we obtain all result of \([12]\) and \([21]\).

1. **Introduction**

The Euler gamma function \(\Gamma(x)\) is defined for \(x > 0\) by
\[
\Gamma(x) = \int_0^\infty t^{x-1}e^{-t}dt.
\]

The digamma (or psi) function is defined for positive real numbers \(x\) as the logarithmic derivative of Euler’s gamma function, that is \(\psi(x) = \frac{d}{dx} \ln \Gamma(x) = \frac{\Gamma'(x)}{\Gamma(x)}\). The following integral and series representations are valid (see \([3]\)):
\[
\psi(x) = -\gamma + \int_0^\infty \frac{e^{-t} - e^{-xt}}{1 - e^{-t}} dt = -\gamma - \frac{1}{x} + \sum_{n \geq 1} \frac{x}{n(n + x)},
\]

where \(\gamma = 0.57721 \cdots\) denotes Euler’s constant.

Euler, gave another equivalent definition for the \(\Gamma(x)\) (see \([2]\), \([19]\))
\[
\Gamma_p(x) = \frac{p!p^x}{x(x+1)\cdots(x+p)} = \frac{p^x}{x(1+\frac{a}{p})\cdots(1+\frac{a}{p})}, \quad x > 0,
\]

where \(p\) is positive integer, and
\[
\Gamma(x) = \lim_{p \to \infty} \Gamma_p(x).
\]

2010 Mathematics Subject Classification. MSC 2010: 33B15; 26A51; 26A48.

Key words and phrases. Completely monotonic function, logarithmically completely monotonic function, \((p,q)\)-Gamma function, \((p,q)\)-psi function, generalization inequality.
The \(p \)-analogue of the psi function as the logarithmic derivative of the \(\Gamma_p \) function (see [12]), that is

\[
\psi_p(x) = \frac{d}{dx} \ln \Gamma_p(x) = \frac{\Gamma'_p(x)}{\Gamma_p(x)}.
\]

The following representations are valid:

\[
\Gamma_p(x) = \int_0^p \left(1 - \frac{t}{p}\right)^p t^{x-1} dt,
\]

\[
\psi_p(x) = \ln p - \int_0^\infty \frac{e^{-xt}(1 - e^{-(p+1)t})}{1 - e^{-t}} dt
\]

and

\[
\psi_p^{(m)}(x) = (-1)^{m+1} \int_0^\infty t^m \cdot \frac{e^{-xt}}{1 - e^{-t}} (1 - e^{-(p+1)t}) dt.
\]

Jackson (see [8–10, 20]) defined the \(q \)-analogue of the gamma function as

\[
\Gamma_q(x) = \frac{(q; q)_\infty}{(q^x; q)_\infty} (1 - q)^{1-x}, \quad 0 < q < 1,
\]

and

\[
\Gamma_q(x) = \frac{(q^{-1}; q^{-1})_\infty}{(q^{-x}; q^{-1})_\infty} (q^{-1})^{1-x} q^2(x), \quad q > 1,
\]

where \((a; q)_\infty = \prod_{j \geq 0} (1 - aq^j)\).

The \(q \)-gamma function has the following integral representation (see [4])

\[
\Gamma_q(t) = \int_0^\infty t^{t-1} E_q^{-qt} d_q x,
\]

where \(E_q^x = \sum_{j=0}^\infty \frac{q^j (x)_j}{j!} = (1 + (1 - q)x)_q^\infty \), which is the \(q \)-analogue of the classical exponential function. The \(q \)-analogue of the psi function is defined for \(0 < q < 1 \) as the logarithmic derivative of the \(q \)-gamma function, that is, \(\psi_q(x) = \frac{d}{dx} \log \Gamma_q(x) \). Many properties of the \(q \)-gamma function were derived by Askey [4]. It is well known that \(\Gamma_q(x) \rightarrow \Gamma(x) \) and \(\psi_q(x) \rightarrow \psi(x) \) as \(q \rightarrow 1^- \). From [8], for \(0 < q < 1 \) and \(x > 0 \) we get

\[
\psi_q(x) = - \log(1 - q) + \log q \sum_{n \geq 0} \frac{q^{n+x}}{1 - q^{n+x}} = - \log(1 - q) + \log q \sum_{n \geq 1} \frac{q^{nx}}{1 - q^n},
\]

and from (9) for \(q > 1 \) and \(x > 0 \) we obtain

\[
\psi_q(x) = - \log(q - 1) + \log q \left(x - \frac{1}{2} - \sum_{n \geq 0} \frac{q^{-n-x}}{1 - q^{-n-x}} \right)
\]

\[
= - \log(q - 1) + \log q \left(x - \frac{1}{2} - \sum_{n \geq 1} \frac{q^{-n-x}}{1 - q^{-n}} \right).
\]
A Stieltjes integral representation for $\psi_q(x)$ with $0 < q < 1$ is given in [16]. It is well-known that ψ' is strictly completely monotonic on $(0, \infty)$, that is,

$$(-1)^n(\psi'(x))^{(n)} > 0 \quad \text{for } x > 0 \text{ and } n \geq 0,$$

see [3, Page 260]. From (10) and (11) we conclude that ψ_q' has the same property for any $q > 0$,

$$(-1)^n(\psi_q'(x))^{(n)} > 0 \quad \text{for } x > 0 \text{ and } n \geq 0.$$

If $q \in (0, 1)$, using the second representation of $\psi_q(x)$ given in (10) can be shown that

$$\psi_q^{(k)}(x) = \log^{k+1} q \sum_{n \geq 1} \frac{n^k \cdot q^{nx}}{1 - q^n},$$

and hence $(-1)^{k-1}\psi_q^{(k)}(x) > 0$ with $x > 1$, for all $k \geq 1$. If $q > 1$, from the second representation of $\psi_q(x)$ given in (11) we obtain

$$\psi_q'(x) = \log q \left(1 + \sum_{n \geq 1} \frac{nq^{-nx}}{1 - q^{-nx}}\right),$$

and for $k \geq 2$,

$$\psi_q^{(k)}(x) = (-1)^{k-1} \log q \sum_{n \geq 1} \frac{n^k q^{-nx}}{1 - q^{-nx}}.$$

Hence, $(-1)^{k-1}\psi_q^{(k)}(x) > 0$ with $x > 0$, for all $q > 1$.

Definition 1.1. For $x > 0$, $p \in \mathbb{N}$ and for $q \in (0, 1)$

$$\Gamma_{p,q}(x) = \frac{[p]_q^x [p]_q^1}{{[x]_q}[x+1]_q \cdots [x+p]_q},$$

where $[p]_q = \frac{1-q^p}{1-q}$.

It is easy to see than $\Gamma_{p,q}(x)$ fit into the following commutative diagrams:

$$\begin{align*}
\Gamma_{p,q}(x) \xrightarrow{p \to \infty} \Gamma_q(x) \\
\downarrow_{q \to 1} & \quad \downarrow_{q \to 1} \\
\Gamma_p(x) \xrightarrow{p \to \infty} \Gamma(x)
\end{align*}$$

We define (p, q)-analogue of the psi function as the logarithmic derivative of the p, q-gamma function, that is,

$$\psi_{p,q}(x) = \frac{d}{dx} \log \Gamma_{p,q}(x).$$
Definition 1.2. The function f is called log-convex if for all $\alpha, \beta > 0$ such that $\alpha + \beta = 1$ and for all $x, y > 0$ the following inequality holds
\[
\log f(\alpha x + \beta y) \leq \alpha \log f(x) + \beta \log f(y),
\]
or equivalently
\[
f(\alpha x + \beta y) \leq (f(x))^\alpha \cdot (f(y))^\beta.
\]

Now, we will give some definitions about completely monotonic function:
A function f is said to be completely monotonic on an open interval I, if f has derivatives of all orders on I and satisfies
\[
(-1)^n f^{(n)}(x) \geq 0, (x \in I, n = 0, 1, 2, \ldots).
\]
If the inequality (17) is strict, then f is said to be strictly completely monotonic on I.
A positive function f is said to be logarithmically completely monotonic (see [18]) on an open interval I, if f satisfies
\[
(-1)^n [\ln f(x)]^{(n)} \geq 0, (x \in I, n = 1, 2, \ldots).
\]
If the inequality (18) is strict, then f is said to be strictly logarithmically completely monotonic.

Let C and L denote the set of completely monotonic functions and the set of logarithmically completely monotonic functions, respectively. The relationship between completely monotonic functions and logarithmically completely monotonic functions can be presented (see [2]) by $L \subset C$.

The following theorem gives an integral characterization of completely monotone functions.

Theorem 1.1. (Hausdorff- Bernstein- Widder Theorem) A function $\varphi : [0, \infty) \to \mathbb{R}$ is completely monotone on $[0, \infty)$ if and only if it is the Laplace transform of a finite non-negative Borel measure μ on $[0, \infty)$, i.e., φ is of the form
\[
\varphi(r) = \int_0^\infty e^{-rt}d\mu(t).
\]

- A non-negative finite linear combination of completely monotone functions is completely monotone.
- The product of two completely monotone functions is completely monotone.

2. Main results

Lemma 2.1. For $\alpha, \beta \geq 0$ such that $\alpha + \beta = 1$ we have:
\[
[1 + x]^\alpha_q [1 + y]^\beta_q \leq [1 + \alpha x + \beta y]_q.
\]
Proof. From Youngs inequality
\[
[x]_q^\alpha [y]_q^\beta \leq \alpha [x]_q + \beta [y]_q,
\]
we have:
\[
[1 + x]^\alpha [1 + y]^\beta \leq \alpha [1 + x]_q + \beta [1 + y]_q
= \alpha \left(\frac{1 - q^{1+x}}{1 - q} \right) + \beta \left(\frac{1 - q^{1+y}}{1 - q} \right)
= \frac{1}{1 - q} \left[1 - (\alpha q^{1+x} + \beta q^{1+y}) \right]
\]
We have to prove:
\[
\alpha q^{1+x} + \beta q^{1+y} \geq q^{1+\alpha x + \beta y}.
\]
From Youngs inequality we have:
\[
q^{1+\alpha x + \beta y} = q((q^x)^\alpha (q^y)^\beta) \leq q(\alpha q^x + \beta q^y) = \alpha q^{1+x} + \beta q^{1+y}.
\]

\[\square\]

Theorem 2.2. The function
\[
\Gamma_{p,q}(x) = \frac{[p]_q^x [p]_q!}{[x]_q [x+1]_q \cdots [x+p]_q}
\]
is log-convex.

Proof. We have to prove that for all \(\alpha, \beta > 0, \alpha + \beta = 1, x, y > 0\)
\[
\log \Gamma_{p,q}(\alpha x + \beta y) \leq \alpha \log \Gamma_{p,q}(x) + \beta \log \Gamma_{p,q}(y),
\]
which is equivalent to
\[
\Gamma_{p,q}(\alpha x + \beta y) \leq (\Gamma_{p,q}(x))^\alpha \cdot (\Gamma_{p,q}(y))^\beta.
\]
By lemma 2.1 we obtain:
\[
\left[1 + \frac{x}{k} \right]_q^\alpha \cdot \left[1 + \frac{y}{k} \right]_q^\beta \leq \alpha \left[1 + \frac{x}{k} \right]_q + \beta \left[1 + \frac{y}{k} \right]_q = \left[1 + \frac{\alpha x + \beta y}{k} \right]_q
\]
for all \(k \geq 1, k \in \mathbb{N}\).

Multiplying (25) for \(k = 1, 2, \ldots, p\) one obtains
\[
\left[1 + \frac{x}{1} \right]_q^\alpha \cdots \left[1 + \frac{x}{p-1} \right]_q^\alpha \cdot \left[1 + \frac{y}{1} \right]_q^\beta \cdots \left[1 + \frac{y}{p-1} \right]_q^\beta \leq \left[1 + \frac{\alpha x + \beta y}{1} \right]_q \cdots \left[1 + \frac{\alpha x + \beta y}{p} \right]_q
\]
Now, taking the reciprocal values and multiplying by \([p]_q^{\alpha x + \beta y}\) one obtains (24) and thus the proof is completed. \(\square\)
Lemma 2.3. a) The function $\psi_{p,q}$ defined by (16) has the following series representation and integral representation

$$\psi_{p,q}(x) = \ln[p]_q + \log q \sum_{k=0}^{p} \frac{q^{x+k}}{1-q^{x+k}},$$

$$\psi_{p,q}(x) = \ln[p]_q - \int_0^{\infty} \frac{e^{-xt}}{1-e^{-t}} (1-e^{-pt})d\gamma_q(t).$$

where $\gamma_q(t)$ is a discrete measure with positive masses $-\log q$ at the positive points $-k \log q, k = 1, 2, \ldots$, i.e.

$$\gamma_q(t) = -\log q \sum_{k=1}^{\infty} \delta(t + k \log q), \quad 0 < q < 1.$$

b) The function $\psi_{p,q}$ is increasing on $(0, \infty)$.

c) The function $\psi'_{p,q}$ is strictly completely monotonic on $(0, \infty)$.

Proof. a) After logarithmical and derivative of (15) we take (26). Using

$$\int_0^{\infty} e^{-xt} d\gamma_q(t) = -\frac{q^x \log q}{1-q^x}, 0 < q < 1 \text{ (see [7])}$$

we take (27).

b) Let $0 < x < y$. Using (26) we obtain

$$\psi_{p,q}(x) - \psi_{p,q}(y) = \log q \sum_{k=0}^{p} \left(\frac{1 - q^{y+k}}{q^{y+k}} - \frac{1 - q^{y+k}}{q^{y+k}} \right)$$

$$= \log q \sum_{k=0}^{p} \left(\frac{q^x - q^{y+k} - q^y + q^{x+y+k}}{q^{x+y+k}} \right)$$

$$= \log q \sum_{k=0}^{p} \left(\frac{q^x - q^y}{q^{x+y+k}} \right) < 0.$$

c) Deriving n times the relation (26) one finds that:

$$\psi_{p,q}^{(n)}(x) = (-1)^{n+1} \int_0^{\infty} t^n e^{-xt} (1-e^{-(p+1)t}) d\gamma_q(t).$$

Hence $(-1)^{n}(\psi'_{p,q}(x))^{(n)} > 0$, for $x > 0, n \geq 0$.

Remark 2.4. $\psi_{p,q}(x)$ fit into the following commutative diagrams

$$\begin{array}{ccc}
\psi_{p,q}(x) & \xrightarrow{p \to \infty} & \psi_q(x) \\
\downarrow q \to 1 & & \downarrow q \to 1 \\
\psi_p(x) & \xrightarrow{p \to \infty} & \psi(x)
\end{array}$$
3. Logarithmically completely monotonic function

Theorem 3.1. The function $G_{p,q}(x; a_1, b_1, \ldots, a_n, b_n)$ given by

$$G_{p,q}(x) = G_{p,q}(x; a_1, b_1, \ldots, a_n, b_n) = \prod_{i=1}^{n} \frac{\Gamma_{p,q}(x + a_i)}{\Gamma_{p,q}(x + b_i)}, q \in (0, 1)$$

is a completely monotonic function on $(0, \infty)$, for any real numbers a_i and b_i, $i = 1, 2, \ldots, n$ such that $0 < a_1 \leq \cdots \leq a_n$, $0 < b_1 \leq b_2 \leq \cdots \leq b_n$ and $\sum_{i=1}^{k} a_i \leq \sum_{i=1}^{k} b_i$ for $k = 1, 2, \ldots, n$.

Proof. Let $h(x) = \sum_{i=1}^{n} (\log \Gamma_{p,q}(x + b_i) - \log \Gamma_{p,q}(x + a_i))$. Then for $k \geq 0$ we have

$$(-1)^k (h'(x))^{(k)} = (-1)^k \sum_{i=1}^{n} (\psi_{p,q}^{(k)}(x + b_i) - \psi_{p,q}^{(k)}(x + a_i))$$

$$= (-1)^k \sum_{i=1}^{n} (-1)^{k+1} \int_{0}^{\infty} \frac{tk e^{-xt}}{1 - e^{-t}}(1 - e^{-(p+1)t})(e^{-bi} - e^{-ai}) d\gamma_q(t)$$

$$= (-1)^{2k+1} \int_{0}^{\infty} \frac{tk e^{-xt}}{1 - e^{-t}}(1 - e^{-(p+1)t}) \sum_{i=1}^{n} (e^{-bi} - e^{-ai}) d\gamma_q(t).$$

Alzer [1] showed that if f is a decreasing and convex function on R, then holds

$$\sum_{i=1}^{n} f(b_i) \leq \sum_{i=1}^{n} f(a_i).$$

Thus, since the function $z \mapsto e^{-z}, z > 0$ is decreasing and convex on R, we have that $\sum_{i=1}^{n} (e^{-a_i} - e^{-b_i}) \geq 0$, so $(-1)^k (G_{p,q}''(x))^{(k)} \geq 0$ for $k \geq 0$. Hence h' is completely monotonic on $(0, \infty)$. Using the fact that if h' is completely monotonic function on $(0, \infty)$, then $\exp(-h)$ is also completely monotonic function on $(0, \infty)$ (see [5]), we get the desired result. \(\square\)

Theorem 3.2. The function

$$f(x) = \frac{1}{\left(\left[\frac{p}{p+1}\right]_{0}^{1} \Gamma_{p,q}(x)\right)^{\frac{1}{p}}}$$

is logarithmically completely monotonic in $(0, \infty)$.

Proof. Using Leibnitz rule

$$[u(x)v(x)]^{(n)} = \sum_{k=0}^{n} \begin{pmatrix} n \end{pmatrix}^{(k)} u^{(k)}(x)v^{(n-k)}(x),$$
we obtain

\[
[\ln f(x)]^{(n)} = \sum_{k=0}^{n} \binom{n}{k} \left(\frac{1}{x} \right)^{(k)} \left(-\ln \Gamma_{p,q}(x+1) \right)^{(n-k)}
\]

\[
= -\frac{1}{x^{n+1}} \sum_{k=0}^{n} \binom{n}{k} (-1)^k k! x^{n-k} \psi_{p,q}^{(n-k-1)}(x+1)
\]

\[
= -\frac{1}{x^{n+1}} g(x)
\]

and

\[
g'(x) = \sum_{k=0}^{n} \binom{n}{k} (-1)^k k! (n-k) x^{n-k-1} \psi_{p,q}^{(n-k-1)}(x+1) +
\]

\[
+ \sum_{k=0}^{n} \binom{n}{k} (-1)^k k! x^{n-k} \psi_{p,q}^{(n-k)}(x+1)
\]

\[
= \sum_{k=0}^{n-1} \binom{n}{k} (-1)^k k! (n-k) x^{n-k-1} \psi_{p,q}^{(n-k-1)}(x+1) +
\]

\[
+ x^n \psi_{p,q}^{(n)}(x+1) + \sum_{k=0}^{n} \binom{n}{k} (-1)^k k! x^{n-k} \psi_{p,q}^{(n-k)}(x+1)
\]

\[
= \sum_{k=0}^{n-1} \binom{n}{k} (-1)^k k! (n-k) x^{n-k-1} \psi_{p,q}^{(n-k-1)}(x+1) +
\]

\[
+ x^n \psi_{p,q}^{(n)}(x+1) + \sum_{k=0}^{n-1} \binom{n}{k+1} (-1)^{k+1} (k+1)! x^{n-k-1} \psi_{p,q}^{(n-k-1)}(x+1)
\]

\[
= \sum_{k=0}^{n-1} \left[\binom{n}{k} (n-k) - \binom{n}{k+1} (k+1) \right] (-1)^k k! x^{n-k-1} \psi_{p,q}^{(n-k-1)}(x+1)
\]

\[
+ x^n \psi_{p,q}^{(n)}(x+1) = x^n \psi_{p,q}^{(n)}(x+1).
\]

If \(n \) is odd, then for \(x > 0 \),

\[
g'(x) > 0 \Rightarrow g(x) > g(0) = 0 \Rightarrow (\ln f(x))^{(n)} < 0 \Rightarrow
\]

\[
\Rightarrow (-1)^n (\ln f(x))^{(n)} > 0.
\]

If \(n \) is even, then for \(x > 0 \),

\[
g'(x) < 0 \Rightarrow g(x) < g(0) = 0 \Rightarrow (\ln f(x))^{(n)} > 0 \Rightarrow
\]

\[
\Rightarrow (-1)^n (\ln f(x))^{(n)} > 0.
\]

Hence,

\[
(-1)^n (\ln f(x))^{(n)} > 0
\]
for all real $x \in (0, \infty)$ and all integers $n \geq 1$. The proof is completed. □

Remark 3.3. Let p tend to ∞, then we obtain Theorem 1 of [6]. Let q tend to 1, then we obtain Theorem 2.1 of [14].

Let s and t be two real numbers with $s \neq t$, $\alpha = \min\{s, t\}$ and $\beta \geq -\alpha$, for $x \in (-\alpha, \alpha)$, define

$$h_{\beta,p,q}(x) = \begin{cases}
\left[\frac{\Gamma_{p,q}(\beta+t)}{\Gamma_{p,q}(\beta+s)} \cdot \frac{\Gamma_{p,q}(x+s)}{\Gamma_{p,q}(x+t)} \right]^{1/x-\beta} & x \neq \beta \\
\exp[\psi_{p,q}(\beta+s) - \psi_{p,q}(eta+t)] & x = \beta
\end{cases}$$

The following theorem is a generalization of a result of [15].

Theorem 3.4. The function $h_{\beta,p,q}(x)$ is logarithmically completely monotonic on $(-\alpha, +\infty)$ if $s > t$.

Proof. For $x \neq \beta$, taking logarithm of the function $h_{\beta,p}(x)$ gives

$$\ln h_{\beta,p,q}(x) = \frac{1}{x - \beta} \left[\ln \frac{\Gamma_{p,q}(\beta+t)}{\Gamma_{p,q}(\beta+s)} - \ln \frac{\Gamma_{p,q}(x+s)}{\Gamma_{p,q}(x+t)} \right]$$

$$= \frac{\ln \Gamma_{p,q}(x+s) - \ln \Gamma_{p,q}(\beta+s) - \ln \Gamma_{p,q}(x+t) + \ln \Gamma_{p,q}(\beta+t)}{x - \beta}$$

$$= \frac{1}{x - \beta} \int_{\beta}^{x} \psi_{p,q}(u+s)du - \frac{1}{x - \beta} \int_{\beta}^{x} \psi_{p,q}(u+t)du$$

$$= \frac{1}{x - \beta} \int_{\beta}^{x} [\psi_{p,q}(u+s) - \psi_{p,q}(u+t)]du$$

$$= \frac{1}{x - \beta} \int_{\beta}^{x} \int_{\beta}^{s} \psi_{p,q}'(u+v)dvdv$$

$$= \frac{1}{x - \beta} \int_{\beta}^{x} \varphi_{p,q,s,t}(u)du$$

$$= \frac{1}{x - \beta} \int_{0}^{x} \varphi_{p,q,s,t}((x - \beta)u + \beta)du,$$

and by differentiating $\ln h_{\beta,p,q}(x)$ with respect to x,

$$[\ln h_{\beta,p,q}(x)]^{(k)} = \int_{0}^{1} u^{k-1} \varphi_{p,q,s,t}^{(k)}((x - \beta)u + \beta)du.$$
If \(x = \beta \) formula (33) is valid. Since functions \(\psi_{p,q}' \) and \(\varphi_{p,q,s,t} \) are completely monotonic in \((0, \infty)\) and \((-t, \infty)\) respectively, then \((-1)^i[\varphi_{p,q,s,t}(x)]^{(i)} \geq 0\) holds for \(n \in (-t, \infty) \) for any nonnegative integer \(i \). Thus

\[
(-1)^k[\ln h_{\beta,p,q}(x)]^{(k)} = \int_0^1 u^k(-1)^k\varphi_{p,q,s,t}^{(k)}((x - \beta)u + \beta)du \geq 0
\]

in \((-t, \infty)\) for \(k \in N \). The proof is completed. \(\square \)

4. Application of \(\Gamma_{p,q}(x) \) function

In the following, we give the \(\Gamma_{p,q} \) analogue of results from [21]. Since the proofs are almost similar, we omit them.

Lemma 4.1. Let \(a, b, c, d, e \) be real numbers such that \(a + bx > 0, \ d + ex > 0 \) and \(a + bx \leq d + ex \). Then

\[
\psi_{p,q}(a + bx) - \psi_{p,q}(d + ex) \leq 0.
\]

Lemma 4.2. Let \(a, b, c, d, e, f \) be real numbers such that \(a + bx > 0, \ d + ex > 0, \ a + bx \leq d + ex \) and \(ef \geq bc > 0 \). If

(i) \(\psi_{p,q}(a + bx) > 0 \) or

(ii) \(\psi_{p,q}(d + ex) > 0 \) then

\[
bc\psi_{p,q}(a + bx) - ef\psi_{p,q}(d + ex) \leq 0.
\]

Lemma 4.3. Let \(a, b, c, d, e, f \) be real numbers such that \(a + bx > 0, \ d + ex > 0, \ a + bx \leq d + ex \) and \(bc \geq ef > 0 \). If

(i) \(\psi_{p,q}(d + ex) < 0 \) or

(ii) \(\psi_{p,q}(a + bx) < 0 \) then

\[
bc\psi_{p,q}(a + bx) - ef\psi_{p,q}(d + ex) \leq 0.
\]

Theorem 4.4. Let \(f_1 \) be a function defined by

\[
f_1(x) = \frac{\Gamma_{p,q}(a + bx)^c}{\Gamma_{p,q}(d + ex)^f}, \quad x \geq 0
\]

where \(a, b, c, d, e, f \) are real numbers such that: \(a + bx > 0, \ d + ex > 0, \ a + bx \leq d + ex, \ ef \geq bc > 0 \). If \(\psi_{p,q}(a + bx) > 0 \) or \(\psi_{p,q}(d + ex) > 0 \) then the function \(f_1 \) is decreasing for \(x \geq 0 \) and for \(x \in [0, 1] \) the following double inequality holds:

\[
\frac{\Gamma_{p,q}(a + b)^c}{\Gamma_{p,q}(d + e)^f} \leq \frac{\Gamma_{p,q}(a + bx)^c}{\Gamma_{p,q}(d + ex)^f} \leq \frac{\Gamma_{p,q}(a)^c}{\Gamma_{p,q}(d)^f}.
\]

In a similar way, using Lemma 4.3, it is easy to prove the following Theorem.
Theorem 4.5. Let f_1 be a function defined by

$$f_1(x) = \frac{\Gamma_{p,q}(a + bx)^c}{\Gamma_{p,q}(d + ex)^f}, \quad x \geq 0,$$

where a, b, c, d, e, f are real numbers such that: $a + bx > 0, d + ex > 0, a + bx \leq d + ex, bc \geq ef > 0$. If $\psi_{p,q}(d + ex) < 0$ or $\psi_{p,q}(a + bx) < 0$ then the function f_1 is decreasing for $x \geq 0$ and for $x \in [0, 1]$ the inequality (38) holds.

Acknowledgements. We would like to thank Feng Qi and Armend Shabani for several corrections and suggestions.

REFERENCES

[1] H. Alzer, On some inequalities for the gamma and psi function, Math. Comp. 66 (1997) 373-389.
[2] T.M. Apostol, Introduction to Analytic Number Theory, Springer, 1976.
[3] M. Abramowitz and I.A. Stegun, Handbook of Mathematical Functions with Formulas and Mathematical Tables, Dover, New York, 1965.
[4] R. Askey, The q-gamma and q-beta functions, Applicable Anal. 8(2) (1978/79) 125–141.
[5] S. Bocher, Harmonic Analysis and the theory of Probability, Dover Books, 2005.
[6] Ch.-P. Chen and F. Qi, Logarithmically completely monotonic functions relating to the gamma functions, J. Math. Anal. Appl. 321 (2006), 405-411.
[7] M.E.H. Ismail and M.E. Muldoon, Inequalities and monotonicity properties for gamma and q-gamma functions, ISNM Approximation and computation 119 (1994), 309-323.
[8] T. Kim, On a q-analogue of the p-adic log gamma functions and related integrals, J. Number Theory 76 (1999) 320-329.
[9] T. Kim, A note on the q-multiple zeta functions, Advan. Stud. Contemp. Math. 8 (2004) 111-113.
[10] T. Kim and S.H. Rim, A note on the q-integral and q-series, Advanced Stud. Contemp. Math. 2 (2000) 37–45.
[11] V. Krasniqi and S. Guo, Logarithmically Completely monotonic functions involving generalized gamma and q-gamma functions, J. Inequal. Spec. Funct., 1 (2010), 8 - 16.
[12] V. Krasniqi and A. Shabani, Convexity properties and inequalities for a generalized gamma functions, Appl. Math. E-Notes, 10(2010), 27-35.
[13] V. Krasniqi, T. Mansour and A.Sh. Shabani, Some Monotonicity Properties and Inequalities for the Gamma and Riman Zeta Functions, Math. Commun. Vol. 15, No. 2, pp. 365-376 (2010).
[14] V. Krasniqi and F. Merović, Logarithmically completely monotonic functions involving the Generalized Gamma Function, Le Matematiche Vol. LXV (2010) Fasc. II, pp. 15-23.
[15] F. Qi, Three class of logarithmically completely monotonic functions involving the gamma and psi functions, Integral Transform Spec. Funct. 18 (2007), 503-509.
[16] M.E.H. Ismail and M.E. Muldoon, Inequalities and monotonicity properties for gamma and q-gamma functions, in: R.V.M. Zahar (Ed.), Approximation and Computation, International Series of Numerical Mathematics, vol. 119, Birkhäuser, Boston, MA, 1994, 309–323.
[17] G.H. Hardy, J.E. Littlewood and G. Pólya, Inequalities, Cambridge University Press, 1988.
[18] F. Qi and Ch.-P. Chen, A complete monotonicity property of the Gamma function, J. Math. Anal. Appl. 296 (2004), 603-607.
[19] J. Sandor, Selected Chapters of Geometry, Analysis and Number Theory, RGMIA Monographs, Victoria University, 2005.
[20] H.M. Srivastava, T. Kim and Y. Simsek, q-Bernoulli numbers and polynomials associated with multiple q-zeta functions and basic L-series, Russian J. Math. Phys. 12 (2005) 241–268.
[21] A.Sh. Shabani, Generalization of some inequalities for the Gamma function, *Mathematical Communications*, 13(2008), 271–275.

Department of Mathematics and Computer Sciences, University of Prishtina, Republic of Kosovo

E-mail address: vali.99@hotmail.com

Department of Mathematics, University of Prishtina, Republic of Kosovo

E-mail address: fmerovci@yahoo.com