Noncototients and Nonaliquots

WILLIAM D. BANKS
Department of Mathematics, University of Missouri
Columbia, MO 65211, USA
bbanks@math.missouri.edu

FLORIAN LUCA
Instituto de Matemáticas
Universidad Nacional Autónoma de México
C.P. 58180, Morelia, Michoacán, México
fluca@matmor.unam.mx

March 29, 2022

Abstract

Let \(\varphi(\cdot) \) and \(\sigma(\cdot) \) denote the Euler function and the sum of divisors function, respectively. In this paper, we give a lower bound for the number of positive integers \(m \leq x \) for which the equation \(m = n - \varphi(n) \) has no solution. We also give a lower bound for the number of \(m \leq x \) for which the equation \(m = \sigma(n) - n \) has no solution. Finally, we show the set of positive integers \(m \) not of the form \((p - 1)/2 - \varphi(p - 1) \) for some prime number \(p \) has a positive lower asymptotic density.
1 Introduction

Let $\varphi(\cdot)$ denote the Euler function, whose value at the positive integer n is

$$\varphi(n) = n \prod_{p|n} \left(1 - \frac{1}{p}\right).$$

An integer of the form $\varphi(n)$ is called a totient; a cototient is an integer in the image of the function $f_c(n) = n - \varphi(n)$. If m is a positive integer for which the equation $f_c(n) = m$ has no solution, then m is called a noncototient. An old conjecture of Erdős and Sierpiński (see B36 in [7]) asserts the existence of infinitely many noncototients. This conjecture has been settled by Browkin and Schinzel [1], who showed that if $w \geq 3$ is an odd integer satisfying certain arithmetic properties, then $m = 2^\ell w$ is a noncototient for every positive integer ℓ; they also showed that the integer $w = 509203$ is one such integer. Flammenkamp and Luca [6] later found six more integers w satisfying the same properties. These results, however, imply only the weak lower bound

$$\#N_c(x) \gg \log x$$

for the cardinality of the set

$$N_c(x) = \{1 \leq m \leq x : m \neq f_c(n) \text{ for every positive integer } n\}.$$

In Theorem 1 (Section 2), we show that 2^p is a noncototient for almost every prime p (that is, for all p in a set of primes of relative asymptotic density one), which implies the following unconditional lower bound for the number of noncototients $m \leq x$:

$$\#N_c(x) \geq \frac{x}{2 \log x} (1 + o(1)).$$

Next, let $\sigma(\cdot)$ denote the sum of divisors function, whose value at the positive integer n is

$$\sigma(n) = \sum_{d|n} d = \prod_{p^n|n} \frac{p^{n+1} - 1}{p - 1}.$$

An integer in the image of the function $f_a(n) = \sigma(n) - n$ is called an aliquot number. If m is a positive integer for which the equation $f_a(n) = m$ has no solution, then m is said to be nonaliquot. Erdős [3] showed that the collection of nonaliquot numbers has a positive lower asymptotic density,
but no numerical lower bound on this density was given. In Theorem 2 (Section 3), we show that the lower bound \(\#N_a(x) \geq \frac{1}{48}x (1 + o(1)) \) holds, where

\[
N_a(x) = \{ 1 \leq m \leq x : m \neq f_a(n) \text{ for every positive integer } n \}.
\]

Finally, for an odd prime \(p \), let \(f_r(p) = (p - 1)/2 - \varphi(p - 1) \). Note that \(f_r(p) \) counts the number of quadratic nonresidues modulo \(p \) which are not primitive roots. At the 2002 Western Number Theory Conference in San Francisco, Neville Robbins asked whether there exist infinitely many positive integers \(m \) for which \(f_r(p) = m \) has no solution; let us refer to such integers as Robbins numbers. The existence of infinitely many Robbins numbers has been shown recently by Luca and Walsh [11], who proved that for every odd integer \(w \geq 3 \), there exist infinitely many integers \(\ell \geq 1 \) such that \(2^\ell w \) is a Robbins number. In Theorem 3 (Section 4), we show that the set of Robbins numbers has a positive density; more precisely, if

\[
N_r(x) = \{ 1 \leq m \leq x : m \neq f_r(p) \text{ for every odd prime } p \},
\]

then the lower bound \(\#N_r(x) \geq \frac{1}{3}x (1 + o(1)) \) holds.

Notation. Throughout the paper, the letters \(p, q \) and \(r \) are always used to denote prime numbers. For an integer \(n \geq 2 \), we write \(P(n) \) for the largest prime factor of \(n \), and we put \(P(1) = 1 \). As usual, \(\pi(x) \) denotes the number of primes \(p \leq x \), and if \(a, b > 0 \) are coprime integers, \(\pi(x; b, a) \) denotes the number of primes \(p \leq x \) such that \(p \equiv a \pmod b \). For any set \(A \) and real number \(x \geq 1 \), we denote by \(A(x) \) the set \(A \cap [1, x] \). For a positive integer \(k \), we write \(\log_k(\cdot) \) for the function given recursively by \(\log_1 x = \max\{\log x, 1\} \) and \(\log_k x = \log_1(\log_{k-1} x) \), where \(x > 0 \) is a real number and \(\log(\cdot) \) denotes the natural logarithm. When \(k = 1 \), we omit the subscript in order to simplify the notation, with the continued understanding that \(\log x \geq 1 \) for all \(x > 0 \). We use the Vinogradov symbols \(\ll \) and \(\gg \), as well as the Landau symbols \(O \) and \(o \), with their usual meanings. Finally, we use \(c_1, c_2, \ldots \) to denote constants that are positive and absolute.

Acknowledgements. Most of this work was done during a visit by the second author to the University of Missouri–Columbia; the hospitality and support of this institution are gratefully acknowledged. During the preparation of this paper, W. B. was supported in part by NSF grant DMS-0070628, and F. L. was supported in part by grants SEP–CONACYT 37259-E and 37260-E.
2 Noncototients

We begin this section with some technical results that are needed for the proof of Theorem 1 below.

Lemma 1. The following estimate holds:

\[
\sum_{x^{1-1/t} \leq n \leq x^{1/(t+1)}} \frac{1}{n} \ll \log x \left\{ \begin{array}{ll}
\exp(-0.5t \log t) & \text{if } t \leq (\log x)/(3 \log x); \\
\exp(-0.5t) & \text{otherwise.}
\end{array} \right.
\]

Proof. For all \(x \geq y \geq 2\), let

\[
\Psi(x, y) = \#\{n \leq x : P(n) \leq y\},
\]

and put \(u = (\log x)/(\log y)\). If \(u \leq y^{1/2}\), the estimate

\[
\Psi(x, y) = xu^{-u+o(u)}
\]

holds (see Corollary 1.3 of \([9]\), or \([2]\)), while the upper bound

\[
\Psi(x, y) \ll xe^{-u/2}
\]

holds for arbitrary \(u \geq 1\) (see, for example, Theorem 1 in Chapter III.5 of \([13]\)). Since

\[
\sum_{x^{1-1/t} \leq n \leq x^{1/(t+1)}} 1 \leq \Psi\left(x^{1-1/(t+1)}, x^{1/t}\right),
\]

the result follows from (1) and (2) by partial summation. \(\square\)

For every integer \(n \geq 3\) and real number \(y > 2\), let

\[
h_y(n) = \sum_{p \mid (2n - \varphi(n))} \frac{1}{p^r}.
\]

Lemma 2. Let \(A\) be the set of integers \(n \geq 3\) for which \(\gcd(n, \varphi(n)) = 1\), and let

\[
A(x, y) = \{n \in A(x) : h_y(n) > 1\}.
\]

Then, uniformly for \(2 < y \leq (\log x)^{1/4}\), the following estimate holds:

\[
\sum_{n \in A(x, y)} \frac{1}{n} \ll \log x \frac{\log x}{y \log_2 y}.
\]
Proof. Our proof follows closely the proof of Lemma 3 from [10].

We first determine an upper bound on the cardinality \(\#A(x, y)\) of the set \(A(x, y)\) in the case that \(2 < y \leq (\log x)^{1/2}\). Let

\[
z = \exp\left(\frac{\log x \log_2 y}{2 \log y}\right) \quad \text{and} \quad u = \frac{\log x}{\log z} = \frac{2 \log y}{\log_2 y}.
\]

Then

\[
u \log u = 2(1 + o(1)) \log y.
\]

Let \(A_1(x, y) = \{n \in A(x) : P(n) \leq z\}\). Since \(y \leq (\log x)^{1/2}\), it follows that \(u \leq z^{1/2}\); therefore, using (1) we derive that

\[
\#A_1(x, y) \leq \Psi(x, z) = x \exp((1 + o(1))u \log u) = x \exp((1 + o(1))u) \ll \frac{x}{y \log_2 y}. \tag{3}
\]

For each \(n \in A(x, y)\setminus A_1(x, y)\), write \(n\) in the form \(n = P^k\), where \(P > z\) is prime, and \(k < x/z\). Note that \(n\) is squarefree since \(\gcd(n, \varphi(n)) = 1\). Let \(A_2(x, y)\) be the set of those integers \(n \in A(x, y)\setminus A_1(x, y)\) for which \(k \leq 2\). Clearly,

\[
\#A_2(x, y) \leq \pi(x) + \pi(x/2) \ll \frac{x}{\log x} \leq \frac{x}{y \log_2 y}. \tag{4}
\]

Now let \(A_3(x, y) = A(x, y)\setminus (A_1(x, y) \cup A_2(x, y))\), and suppose that \(n\) lies in \(A_3(x, y)\). For a fixed prime \(p > y\), if \(p|\varphi(n)[2n] - \varphi(n)[2k])\), then

\[
P(2k - \varphi(k)) + \varphi(k) \equiv 0 \pmod{p}. \tag{5}
\]

Fixing \(k\) as well, we see that \(p \neq P\) (otherwise, \(P|\varphi(k)|\varphi(n)\) and \(P|n\), which contradicts the fact that \(n \in A\), and \(p \nmid (2k - \varphi(k))\) (otherwise, it follows that \(p|\gcd(k, \varphi(k))|\gcd(n, \varphi(n)) = 1\)). Let \(a_k\) be the congruence class modulo \(p\) determined for \(P\) by the congruence (4); then the number of possibilities for \(n\) (with \(p\) and \(k\) fixed) is at most \(\pi(x/k; p, a_k)\).

In the case that \(pk \leq x/z^{1/2}\), we use a well known result of Montgomery and Vaughan [12] to conclude that

\[
\pi(x/k; p, a_k) \leq \frac{2x}{\varphi(p)k \log(x/kp)} \leq \frac{4x}{(p - 1)k \log z} \leq \frac{12x \log y}{pk \log x \log_2 y}.
\]

In the case that \(x/z^{1/2} < pk < x\), since \(k < x/z\), we see that \(p > z^{1/2}\). Here, we use the trivial estimate

\[
\pi(x/k; p, a_k) \leq \frac{x}{pk}.
\]
Finally, if \(pk \geq x \), then \(p > z \), and we have
\[
\pi(x/k; p, a_k) \leq 1.
\]

Now, for fixed \(p > y \), let
\[
A_3(p, x, y) = \{ n \in A_3(x, y) : p|(2n − \varphi(n)) \}.
\]

When \(p \leq z^{1/2} \), we have
\[
\#A_3(p, x, y) \leq \frac{12x \log y}{p \log x \log y} \sum_{k < x/z} \frac{1}{k} \ll \frac{x \log y}{p \log y}.
\]

If \(z^{1/2} < p \leq z \), then
\[
\#A_3(p, x, y) \leq \frac{12x \log y}{p \log x \log y} \sum_{k < x/z} \frac{1}{k} + \frac{x}{p} \sum_{k < x/z} \frac{1}{k} \ll \frac{x \log y}{p \log y} + \frac{x \log x}{p} \ll \frac{x \log x}{p}.
\]

Finally, if \(p > z \), it follows that
\[
\#A_3(p, x, y) \leq \frac{12x \log y}{p \log x \log y} \sum_{k < x/z} \frac{1}{k} + \frac{x}{p} \sum_{k < x/z} \frac{1}{k} + \sum_{k < x/z} \frac{1}{k} \ll \frac{x \log y}{p \log y} + \frac{x \log x}{p} + \frac{x}{z} \ll \frac{x \log x}{z}.
\]

Consequently,
\[
\#A_3(x, y) = \sum_{n \in A_3(x, y)} 1 < \sum_{n \in A_3(x, y)} h_y(n)
\]
\[
= \sum_{n \in A_3(x, y)} \sum_{p|(2n − \varphi(n))} \frac{1}{p} = \sum_{p > y} \frac{1}{p} \#A_3(p, x, y)
\]
\[
\ll \frac{x \log y}{\log_2 y} \sum_{y < p \leq z^{1/2}} \frac{1}{p^2} + x \log x \sum_{z^{1/2} < p \leq z} \frac{1}{p^2} + \frac{x \log x}{z} \sum_{z < p \leq 2x} \frac{1}{p}
\]
\[
\ll \frac{x}{y \log_2 y} + \frac{x \log x}{z^{1/2} \log z} + \frac{x \log x \log_2 x}{z} \ll \frac{x}{y \log_2 y}, \quad (6)
\]
where the last estimates follows (if x is sufficiently large) from the bound $y \leq (\log x)^{1/2}$ and our choice of z. Thus, by the inequalities (3), (4), and (6), we obtain that $\#A(x, y) \ll \frac{x}{y \log_2 y}$.

Now, for all $y \leq (\log x)^{1/4}$, we have by partial summation (using the fact that $y \leq (\log t)^{1/2}$ if $\exp(y^2) \leq t \leq x$):

$$
\sum_{n \in A(x, y)} \frac{1}{n} \leq \sum_{n \leq \exp(y^2)} \frac{1}{n} + \sum_{\exp(y^2) \leq n \leq x} \frac{1}{n} \n \ll y^2 + \int_{\exp(y^2)}^{x} \frac{dA(t, y)}{t} \n \ll y^2 + \frac{1}{y \log_2 y} \int_{1}^{x} \frac{dt}{t} = y^2 + \frac{\log x}{y \log_2 y} \ll \frac{\log x}{y \log_2 y},
$$

which completes the proof.\square

Lemma 3. For some absolute constant $c_1 > 0$, the set B defined by

$$
B = \{ n : p \nmid \varphi(n) \text{ for some prime } p \leq c_1(\log_2 n)/(\log_3 n) \}
$$

satisfies

$$
\sum_{n \in B(x)} \frac{1}{n} \ll \frac{\log x}{(\log_2 x)^2}.
$$

Proof. By Theorem 3.4 in [5], there exist positive constants c_0, c_2, x_0 such that for all $x \geq x_0$, the bound

$$
S'(x, p) = \sum_{q \leq x, p \nmid (q-1)} \frac{1}{q} \geq \frac{c_2 \log_2 x}{p},
$$

where the dash indicates that the prime q is omitted from the sum if there exists a real primitive character χ modulo q for which $L(s, \chi)$ has a real root $\beta \geq 1 - c_0/\log q$. From the proof of Theorem 4.1 in [5], we also have the estimate

$$
\sum_{n \leq x, p \nmid \varphi(n)} 1 \ll \frac{x}{\exp(S'(x, p))},
$$

7
uniformly in \(p \). Thus, if \(c_1 = c_2/3 \), \(g(x) = c_1(\log_2 x)/(\log_3 x) \), and \(p \leq g(x) \), then
\[
\sum_{n \leq x \atop p \nmid \phi(n)} 1 \ll \frac{x}{(\log_2 x)^3}.
\]
Therefore,
\[
\sum_{p \leq g(x)} \sum_{n \leq x \atop p \nmid \phi(n)} 1 \ll \frac{x \pi(g(x))}{(\log_2 x)^3} \ll \frac{x}{(\log_2 x)^2}.
\]
This argument shows that the inequality
\[
\# B(x) \ll \frac{x}{(\log_2 x)^2}
\]
holds uniformly in \(x \), and the result follows by partial summation.

The following lemma is a consequence of well known estimates for the number of integers \(n \leq x \) free of prime factors \(p \leq y \). In particular, the result follows immediately, using partial summation, from Theorem 3 and Corollary 3.1 in Chapter III.6 of [13]; the proof is omitted.

Lemma 4. Let
\[
C(x; y) = \{ n \leq x : p \nmid n \text{ for all } p \leq y \}.
\]
Then, uniformly for \(2 \leq y \leq (\log x)^{1/2} \), we have
\[
\sum_{n \in C(x; y)} \frac{1}{n} \ll \frac{\log x}{\log y}.
\]

We now come to the main result of this section.

Theorem 1. For almost all primes \(p \) (that is, for all primes \(p \) in a set of relative asymptotic density 1), the number \(2p \) is a noncototient: \(2p \in \mathcal{N}_c \). In particular, the inequality
\[
\# \mathcal{N}_c(x) \geq \frac{x}{2\log x}(1 + o(1))
\]
holds as \(x \to \infty \).
Proof. Suppose that
\[f_c(n) = n - \varphi(n) = 2p \]
holds, where \(p \leq x/2 \) is an odd prime. We can assume that \(p > x/\log x \), since the number of primes \(p \leq x/\log x \) is \(\pi(x/\log x) = o(\pi(x/2)) \). Then \(n \geq 3 \), and \(\varphi(n) \) is even; hence, \(n \) is also even. If \(4 \mid n \), then \(2 \parallel \varphi(n) \), and the only possibility is \(n = 4 \), which is not possible. Thus, \(2 \parallel n \). Writing \(n = 2m \), with \(m \) odd, the equation above becomes
\[f_c(2m) = 2m - \varphi(m) = 2p. \] (7)
Clearly, \(x \geq 2p \geq 2m - \varphi(m) \geq m \). Now observe that \(\gcd(m, \varphi(m)) = 1 \). Indeed, if \(q \mid \gcd(m, \varphi(m)) \) for an odd prime \(q \), it must be the case that \(q = p \). Then, either \(p^2 \mid m \), or \(pr \mid m \) for some prime \(r \equiv 1 \pmod{p} \). In both cases, we see that \(x \geq m \geq p^2 \geq (x/\log x)^2 \), which is not possible since \(m \leq x \).

In particular, \(m \) lies in the set \(\mathcal{A}(x) \) defined in Lemma 2. Finally, we can assume that \(m \) is not prime, for otherwise (7) becomes \(m = 2p - 1 \), which is well known to have at most \(O(x/(\log x)^2) = o(\pi(x/2)) \) solutions with primes \(m, p \) such that \(p \leq x/2 \).

Let \(\mathcal{M}(x) \) be the set of (squarefree odd) integers \(m \) for which (7) holds for some prime \(p > x/\log x \). To prove the theorem, it suffices to show that \(\#\mathcal{M}(x) = o(x/\log x) \).

Let \(m \in \mathcal{M}(x) \), and write \(m = Pk \), where \(P = P(m) > P(k) \) and \(k \geq 3 \). Since \(m > p > x/\log x \) is squarefree, it follows that \(P \gg \log x \). Equation (7) now becomes
\[P(k - \varphi(k)/2) - \varphi(k) = p. \]
For fixed \(k \), we apply the sieve (see, for example, Theorem 5.7 of [8]) to conclude that the number of possibilities for \(P \) (or \(p \)) is
\[\ll \frac{x}{\varphi(k - \varphi(k)/2)} \cdot \frac{1}{(\log (x/(k - \varphi(k)/2)))^2} \]
\[\ll \frac{x}{\varphi(k - \varphi(k)/2)} \cdot \frac{1}{(\log(x/k))^2}. \] (8)

Now put
\[y_1 = \exp \left(\frac{\log x \log_4 x}{3 \log_3 x} \right), \]
and let \(\mathcal{M}_1(x) = \{ m \in \mathcal{M}(x) : P \leq y_1 \} \). For \(m \in \mathcal{M}_1(x) \), we have
\[k > \frac{x}{P \log x} \geq \frac{x}{y_1 \log x}. \]
In particular, if \(x \) is sufficiently large, and \(t_1 = 4(\log_3 x)/(\log_4 x) \), then every integer \(k \) belongs to an interval of the form \(\mathcal{I}_j = [x^{1-1/(t_1+j)}, x^{1-1/(t_1+j+1)}] \) for some nonnegative integer \(j \) such that \(t_1 + j + 1 \leq \log x \). For fixed \(j \), we have
\[
\log(x/k) \gg (\log x)/(t_1 + j),
\]
and therefore
\[
\frac{1}{(\log(x/k))^2} \ll \frac{(t_1 + j)^2}{(\log x)^2}.
\]
Using the fact that \(\varphi(n) \gg n/\log_2 n \), we see that for each fixed \(k \in \mathcal{I}_j \), the number of choices for \(P \) is
\[
\ll \frac{x \log_2 x}{(\log x)^2} \cdot \frac{(t_1 + j)^2}{2k - \varphi(k)} < \frac{x \log_2 x}{(\log x)^2} \cdot \frac{(t_1 + j)^2}{k}.
\]
Summing first over \(k \), then \(j \), and applying Lemma 1, we derive that
\[
\# \mathcal{M}_1(x) \ll \frac{x \log_2 x}{(\log x)^2} \sum_{0 \leq j \leq \log x - t_1} \frac{(t_1 + j)^2}{\sum_{k \in \mathcal{I}_j} \frac{1}{k}}
\]
\[
< \frac{x \log_2 x}{\log x} \sum_{0 \leq j \leq (\log x)/(3 \log_2 x) - t_1} \frac{(t_1 + j)^2}{\exp (0.5(t_1 + j) \log(t_1 + j))}
\]
\[
+ \frac{x \log_2 x}{\log x} \sum_{j > (\log x)/(3 \log_2 x) - t_1} \frac{(t_1 + j)^2}{\exp (0.5(t_1 + j))}
\]
\[
< \frac{x \log_2 x}{\log x} \cdot \frac{t_1^2}{\exp(0.5t_1 \log t_1)} + \frac{x \log x}{\log_2 x} \cdot \exp \left(- \frac{\log x}{6 \log_2 x} \right)
\]
\[
< \frac{x \log_2 x}{\log x} \cdot \frac{(\log_3 x)^2}{(\log_4 x)^2} \cdot \exp (-2(1 + o(1)) \log_3 x) + o \left(\frac{x}{\log x} \right)
\]
\[
= o \left(\frac{x}{\log x} \right). \tag{9}
\]

Hence, from now on, we need only consider numbers \(m \in \mathcal{M}(x) \setminus \mathcal{M}_1(x) \). For such integers, we have \(x/k \geq P > y_1 \); thus,
\[
\frac{1}{(\log(x/k))^2} \ll \frac{1}{(\log y_1)^2} \ll \frac{(\log_3 x)^2}{(\log x \log_4 x)^2}.
\]
For fixed \(k \), the number of choices (8) for the prime \(P \) is
\[
\ll \frac{x(\log_3 x)^2}{(\log x \log_4 x)^2} \cdot \frac{1}{\varphi(k - \varphi(k/2))}.
\]
Put \(y_2 = \exp(\sqrt{\log x}) \), and let

\[
\mathcal{M}_2(x) = \{ m \in \mathcal{M}(x) \setminus \mathcal{M}_1(x) : k \in \mathcal{A}(x, y_2) \},
\]

where \(\mathcal{A}(x, y_2) \) is defined as in Lemma 2. Using once more the inequality \(\varphi(n) \gg n / \log_2 n \), the fact that \(k - \varphi(k)/2 \geq k/2 \), and Lemma 2, we have

\[
\#\mathcal{M}_2(x) \ll \frac{x(\log_3 x)^2 \log_2 x}{(\log x \log_4 x)^2} \sum_{k \in \mathcal{A}(x, y_2)} \frac{1}{k}
\ll \frac{x(\log_2 x)^2}{y_2 \log x} = o\left(\frac{x}{\log x}\right) \tag{10}
\]

since \((\log_2 x)^2 = o(y_2)\).

Next, we consider numbers \(m \in \mathcal{M}(x) \) that do not lie in \(\mathcal{M}_1(x) \cup \mathcal{M}_2(x) \).

For such integers, we have

\[
\sum_{\substack{p \mid (2k - \varphi(k)) \leq y_2 \leq y_3}} \frac{1}{p} \leq \sum_{p \leq y_2} \frac{1}{p} + 1 = \log_2 y_2 + O(1) = \sqrt{\log_3 x} + O(1).
\]

Therefore,

\[
\frac{1}{\varphi(k - \varphi(k)/2)} = \frac{1}{k - \varphi(k)/2} \cdot \frac{k - \varphi(k)/2}{\varphi(k - \varphi(k)/2)} \leq \frac{1}{k} \prod_{p \mid (2k - \varphi(k))} \left(1 + \frac{1}{p - 1}\right) \leq \frac{1}{k} \exp \left(\sum_{p \mid (2k - \varphi(k))} \frac{1}{p}\right) \ll \exp \left(\sqrt{\log_3 x}\right)
\]

Now put

\[
y_3 = \exp \left(\log x \left(\frac{\log_4 x}{\log_3 x}\right)^{1/2}\right),
\]

and let

\[
\mathcal{M}_3(x) = \{ m \in \mathcal{M}(x) \setminus (\mathcal{M}_1(x) \cup \mathcal{M}_2(x)) : P(m) \leq y_3 \}.
\]

In this case,

\[
k > \frac{x}{P \log x} > \frac{x}{y_3 \log x}.
\]
In particular, if \(x \) is sufficiently large, and \(t_2 = 2((\log_3 x)/(\log_4 x))^{1/2} \), every such \(k \) belongs to an interval of the form \(\mathcal{J}_j = [x^{1-1/(t_2+j)} , x^{1-1/(t_2+j+1)}] \) for some nonnegative integer \(j \) such that \(t_2 + j + 1 \leq \log x \). For fixed \(j \), we have \(\log(x/k) \gg (\log x)/(t_2 + j) \), and therefore

\[
\frac{1}{(\log(x/k))^2} \ll \frac{(t_2 + j)^2}{(\log x)^2}.
\]

Using the fact that \(\varphi(n) \gg n/\exp(\sqrt{\log_3 x}) \) for \(n = k - \varphi(k)/2 \), it follows that for any fixed \(k \in \mathcal{J}_j \), the number of choices for \(P \) is

\[
\ll \frac{x \exp(\sqrt{\log_3 x})}{(\log x)^2} \cdot \frac{(t_2 + j)^2}{2k - \varphi(k)} \ll \frac{x \exp(\sqrt{\log_3 x})}{(\log x)^2} \cdot \frac{(t_2 + j)^2}{k}.
\]

Summing up first over \(k \), then over \(j \), and using Lemma 1 again, we obtain that

\[
\#\mathcal{M}_3(x) \ll \frac{x \exp(\sqrt{\log_3 x})}{(\log x)^2} \sum_{0 \leq j \leq \log x - t_2} (t_2 + j)^2 \sum_{k \in \mathcal{J}_j} \frac{1}{k} \exp(0.5(t_2 + j)\log(t_2 + j))
\]

\[
+ \frac{x \exp(\sqrt{\log_3 x})}{\log x} \sum_{j > (\log x)/(3\log_2 x) - t_2} (t_2 + j)^2 \exp(0.5(t_2 + j))
\]

\[
\ll \frac{x \exp(\sqrt{\log_3 x})}{\log x} \cdot \left(\frac{t_2^2}{\exp(0.5t_2 \log t_2)} + \exp \left(-\frac{\log x}{6\log_2 x} \right) \right)
\]

\(= o \left(\frac{x}{\log x} \right) \). \hspace{1cm} (11)

Hence, we can now restrict our attention to numbers \(m \in \mathcal{M}(x) \) which do not lie in \(\cup_{i=1}^3 \mathcal{M}_i(x) \). For such numbers, we have \(x/k \geq P > y_3 \); thus,

\[
\frac{1}{(\log(x/k))^2} \ll \frac{1}{(\log y_3)^2} \ll \frac{\log_3 x}{(\log x)^2 \log_4 x},
\]

and the number of choices (10) for \(P \), for fixed \(k \), is

\[
\ll \frac{x \log_3 x}{(\log x)^2 \log_4 x} \cdot \frac{1}{\varphi(k - \varphi(k)/2)}. \hspace{1cm} (12)
\]
Let
\[M_4(x) = \left\{ m \in M(x) \setminus \left(\bigcup_{i=1}^{3} M_i(x) \right) : k \leq \exp \left(\sqrt{\log x} \right) \right\}. \]

Clearly, by (12), we have
\[\#M_4(x) \ll \frac{x \log_2 x \log_3 x}{(\log x)^2 \log_4 x} \sum_{k \leq \exp(\sqrt{\log x})} \frac{1}{k} \ll \frac{x \log_2 x \log_3 x}{(\log x)^{3/2} \log_4 x} = o \left(\frac{x}{\log x} \right). \quad (13) \]

Now let \(B \) be the set defined in Lemma 3 and let
\[M_5(x) = \left\{ m \in M(x) \setminus \left(\bigcup_{i=1}^{4} M_i(x) \right) : k \in B \right\}. \]

Using (12) and Lemma 3, we derive that
\[\#M_5(x) \ll \frac{x \log_2 x \log_3 x}{(\log x)^2 \log_4 x} \sum_{k \in B(x)} \frac{1}{k} \ll \frac{x \log_3 x}{\log x \log_2 x \log_4 x} = o \left(\frac{x}{\log x} \right). \quad (14) \]

For integers \(m \in M(x) \setminus \left(\bigcup_{i=1}^{5} M_i(x) \right) \), the totient \(\varphi(k) \) is divisible by every prime
\[p \leq c_1 \frac{\log_2 k}{\log_3 k}. \]

Since \(k > \exp(\sqrt{\log x}) \), we have
\[c_1 \frac{\log_2 k}{\log_3 k} \geq \frac{c_1}{2} \left(1 + o(1) \right) \frac{\log_2 x}{\log_3 x}. \]

Thus, if \(x \) is sufficiently large, \(p \mid \varphi(k) \) for all \(p \leq y_4 = c_2(\log_2 x)/(\log_3 x) \), where \(c_2 = \min\{c_1/3, 1\} \). Since \(k \) and \(\varphi(k) \) are coprime, it follows that \(p \nmid k \) for all primes \(p \leq y_4 \).

Now put \(y_5 = \log_2 x \log_3 x \), and let
\[M_6(x) = \left\{ m \in M(x) \setminus \left(\bigcup_{i=1}^{5} M_i(x) \right) : k \in A(x, y_5) \right\}. \]
Using Lemma 2 and the estimate (12), we obtain that

\[\#M_6(x) \ll \frac{x \log_2 x \log_3 x}{(\log x)^2 \log_4 x} \sum_{k \in \mathcal{A}(x; y_5)} \frac{1}{k} \]

\[\ll \frac{x \log_2 x \log_3 x}{y_5 \log x \log_4 x \log_2 y_5} = o \left(\frac{x}{\log x} \right). \quad (15) \]

If \(m \in \mathcal{M}(x) \setminus (\cup_{i=1}^{6} \mathcal{M}_i(x)) \), then \(k \) satisfies

\[\sum_{p \mid (2k - \varphi(k))} \frac{1}{p} \leq 1. \]

Note that, since \(p \mid \varphi(k) \) for every prime \(p \leq y_4 \), and \(p \nmid k \) for any such prime, it follows that \(p \nmid (k - \varphi(k)/2) \) for all \(p \leq y_4 \). Therefore,

\[\sum_{p \mid (k - \varphi(k)/2)} \frac{1}{p} \leq \sum_{\substack{y_4 < p \leq y_5}} \frac{1}{p} + 1 = \log \left(\frac{\log y_4}{\log y_5} \right) + O(1) \]

\[= \log \left(\frac{\log_3 x + \log_4 x + O(1)}{\log_3 x + \log_4 x} \right) + O(1) \ll 1, \]

which immediately implies that

\[\frac{1}{\varphi(k - \varphi(k)/2)} = \frac{1}{k - \varphi(k)/2} \cdot \frac{k - \varphi(k)/2}{\varphi(k - \varphi(k)/2)} \]

\[\ll \frac{1}{k} \prod_{p \mid (2k - \varphi(k))} \left(1 + \frac{1}{p - 1} \right) \]

\[\leq \frac{1}{k} \exp \left(\sum_{p \mid (2k - \varphi(k))} \frac{1}{p} \right) = \frac{\exp(O(1))}{k} \ll \frac{1}{k}. \quad (16) \]

Let \(\mathcal{M}_7(x) = \mathcal{M}(x) \setminus (\cup_{i=1}^{6} \mathcal{M}_i(x)) \). Note that, for every \(m \in \mathcal{M}_7(x) \), the integer \(k \) lies in the set \(\mathcal{C}(x; y_4) \) defined in Lemma 4 Using estimates (12) and (16), together with Lemma 4 we derive that

\[\#\mathcal{M}_7(x) \ll \frac{x \log_3 x}{(\log x)^2 \log_4 x} \sum_{k \in \mathcal{C}(x; y_4)} \frac{1}{k} \]

\[\ll \frac{x \log_3 x}{\log x \log_4 x \log y_4} = o \left(\frac{x}{\log x} \right). \quad (17) \]
The assertion of the theorem now follows from estimates (9), (10), (11), (13), (14), (15), and (17).

Corollary 1. The infinite series
\[\sum_{m \in \mathbb{N}} \frac{1}{m} \]

is divergent.

3 Nonaliquots

Theorem 2. The inequality
\[\#\mathcal{N}_a(x) \geq \frac{x}{48}(1 + o(1)) \]

holds as \(x \to \infty \).

Proof. Let \(\mathcal{K} \) be the set of positive integers \(k \equiv 0 \pmod{12} \). Clearly,
\[\#\mathcal{K}(x) = \frac{x}{12} + O(1) \quad (18) \]

We first determine an upper bound for the cardinality of \((\mathcal{K}\setminus\mathcal{N}_a)(x)\). Let \(k \in (\mathcal{K}\setminus\mathcal{N}_a)(x) \); then there exists a positive integer \(n \) such that
\[f_a(n) = \sigma(n) - n = k. \]

Since \(k \in \mathcal{K} \), it follows that
\[n \equiv \sigma(n) \pmod{12}. \quad (19) \]

Assume first that \(n \) is odd. Then \(\sigma(n) \) is odd as well, and therefore \(n \) is a perfect square. If \(n = p^2 \) holds for some prime \(p \), then
\[x \geq k = \sigma(p^2) - p^2 = p + 1; \]

hence, the number of such integers \(k \) is at most \(\pi(x-1) = o(x) \). On the other hand, if \(n \) is not the square of a prime, then \(n \) has at least four prime
factors (counted with multiplicity). Let p_1 be the smallest prime dividing n; then $p_1 \leq n^{1/4}$, and therefore

$$n^{3/4} \leq \frac{n}{p_1} \leq \sigma(n) - n = k \leq x;$$

hence, $n \leq x^{4/3}$. Since n is a perfect square, the number of integers k is at most $x^{2/3} = o(x)$ in this case.

The above arguments show that all but $o(x)$ integers $k \in (\mathcal{K}\setminus\mathcal{N}_a)(x)$ satisfy an equation of the form

$$f_a(n) = \sigma(n) - n = k$$

for some even positive integer n. For such k, we have

$$\frac{n}{2} \leq \sigma(n) - n = k \leq x;$$

that is, $n \leq 2x$. It follows from the work of [4] (see, for example, the discussion on page 196 of [3]) that $12|\sigma(n)$ for all but at most $o(x)$ positive integers $n \leq 2x$. Hence, using [19], we see that every integer $k \in (\mathcal{K}\setminus\mathcal{N}_a)(x)$, with at most $o(x)$ exceptions, can be represented in the form $k = f_a(n)$ for some $n \equiv 0 \pmod{12}$. For such k, we have

$$x \geq k = \sigma(n) - n = n\left(\frac{\sigma(n)}{n} - 1\right) \geq n\left(\frac{\sigma(12)}{12} - 1\right) = \frac{4n}{3},$$

therefore $n \leq \frac{3}{4}x$. Since n is a multiple of 12, it follows that

$$\#(\mathcal{K}\setminus\mathcal{N}_a)(x) \leq \frac{x}{16}(1 + o(1)).$$

Combining this estimate with (18), we derive that

$$\#\mathcal{N}_a(x) \geq \#(\mathcal{K} \cap \mathcal{N}_a)(x) = \#\mathcal{K}(x) - \#(\mathcal{K}\setminus\mathcal{N}_a)(x) \geq \left(\frac{x}{12} - \frac{x}{16}\right)(1 + o(1)) = \frac{x}{48}(1 + o(1)),$$

which completes the proof. \qed
4 Robbins numbers

Theorem 3. The inequality
\[\#\mathcal{N}_r(x) \geq \frac{x}{3}(1 + o(1)) \]
holds as \(x \to \infty \).

Proof. Let
\[M_1 = \{2^\alpha k : k \equiv 3 \pmod{6} \text{ and } \alpha \equiv 0 \pmod{2}\}, \]
\[M_2 = \{2^\alpha k : k \equiv 5 \pmod{6} \text{ and } \alpha \equiv 1 \pmod{2}\}, \]
and let \(M \) be the (disjoint) union \(M_1 \cup M_2 \). It is easy to see that
\[\#M_1(x) = \frac{2x}{9}(1 + o(1)) \quad \text{and} \quad \#M_2(x) = \frac{x}{9}(1 + o(1)) \]
as \(x \to \infty \); therefore,
\[\#M(x) = \frac{x}{3}(1 + o(1)). \]
Hence, it suffices to show that all but \(o(x) \) numbers in \(M(x) \) also lie in \(\mathcal{N}_r(x) \).

Let \(m \in M(x) \), and suppose that \(f_r(p) = m \) for some odd prime \(p \). If \(m = 2^\alpha k \) and \(p - 1 = 2^\beta w \), where \(k \) and \(w \) are positive and odd, then
\[2^{\beta-1}(w - \varphi(w)) = \frac{p - 1}{2} - \varphi(p - 1) = f_r(p) = m = 2^\alpha k. \]
If \(w = 1 \), then \(w - \varphi(w) = 0 \), and thus \(m = 0 \), which is not possible. Hence, \(w \geq 3 \), which implies that \(\varphi(w) \) is even, and \(w - \varphi(w) \) is odd. We conclude that \(\beta = \alpha + 1 \) and \(w - \varphi(w) = k \).

Let us first treat the case that \(q^2 | w \) for some odd prime \(q \). In this case, we have
\[k = w - \varphi(w) \geq \frac{w}{q}, \]
and therefore \(w \leq qk \leq qm \leq qx \). Since \(q^2 | w \) and \(w | (p - 1) \), it follows that \(p \equiv 1 \pmod{q^2} \). Note that \(q^2 \leq w \leq qx \); hence, \(q \leq x \). Since
\[p = 2^{\alpha+1}w + 1 \leq 2^{\alpha+1}qk + 1 = 2qm + 1 \leq 3qx, \]
the number of such primes \(p \) is at most \(\pi(3qx; q^2, 1) \). Put \(y = \exp\left(\sqrt{\log x}\right) \).
If \(q < x/y \), we use again the result of Montgomery and Vaughan \([12]\) to derive that
\[
\pi(3qx; q^2, 1) \leq \frac{6qx}{\varphi(q^2) \log(3x/q)} < \frac{6x}{q(q - 1) \log y} < \frac{4x}{q \sqrt{\log x}}
\]
(in the last step, we used the fact that \(q \geq 3 \)), while for \(q \geq x/y \), we have the trivial estimate
\[
\pi(3qx; q^2, 1) \leq \frac{3qx}{q^2} = \frac{3x}{q}.
\]

Summing over \(q \), we see that the total number of possibilities for the prime \(p \) is at most
\[
\frac{4x}{\sqrt{\log x}} \sum_{q < x/y} \frac{1}{q} + 3x \sum_{x/y \leq q \leq x} \frac{1}{q}.
\]
Since
\[
\sum_{q < x/y} \frac{1}{q} \ll \log_2(x/y) \leq \log_2 x,
\]
and
\[
\sum_{x/y \leq q \leq x} \frac{1}{q} = \log_2 x - \log_2(x/y) + O\left(\frac{1}{\log x}\right)
\]
\[
= \log\left(1 + \frac{\log y}{\log x - \log y}\right) + O\left(\frac{1}{\log x}\right) \ll \frac{1}{\sqrt{\log x}},
\]
the number of possibilities for \(p \) (hence also for \(m = f_r(p) \)) is at most
\[
O\left(\frac{x \log_2 x}{\sqrt{\log x}}\right) = o(x).
\]
Thus, for the remainder of the proof, we can assume that \(w \) is squarefree.

We claim that \(3 \mid w \). Indeed, suppose that this is not the case. As \(w \) is squarefree and coprime to 3, it follows that \(\varphi(w) \not\equiv 2 \pmod{3} \) (if \(q \mid w \) for some prime \(q \equiv 1 \pmod{3} \), then \(3 \mid (q - 1) \mid \varphi(w) \); otherwise \(q \equiv 2 \pmod{3} \) for all \(q \mid w \); hence, \(\varphi(w) = \prod_{q \mid w} (q - 1) \equiv 1 \pmod{3} \)). In the case that \(m \in \mathcal{M}_1 \), we have \(p = 2^{a+1}w + 1 \equiv 2w + 1 \pmod{3} \), thus \(w \not\equiv 1 \pmod{3} \) (otherwise, \(p = 3 \) and \(m = 0 \); then \(w \equiv 2 \pmod{3} \)). However, since \(\varphi(w) \not\equiv 2 \pmod{3} \), it follows that 3 cannot divide \(k = w - \varphi(w) \), which contradicts the fact that
\[k \equiv 3 \pmod{6}. \] Similarly, in the case that \(m \in \mathcal{M}_2 \), we have \(p = 2^{a+1}w + 1 \equiv w + 1 \pmod{3} \), thus \(w \not\equiv 2 \pmod{3} \); then \(w \equiv 1 \pmod{3} \). However, since \(\varphi(w) \not\equiv 2 \pmod{3} \), it follows that \(k = w - \varphi(w) \equiv 0 \text{ or } 1 \pmod{3} \), which contradicts the fact that \(k \equiv 5 \pmod{6} \). These contradictions establish our claim that \(3 \mid w \).

From the preceding result, we have

\[k = w - \varphi(w) \geq \frac{w}{3}, \]

which implies that \(p = 2^{a+1}w + 1 = 2^{a+1} \cdot 3k + 1 \leq 6m + 1 \leq 7x \). As \(\pi(7x) \ll x/\log x \), the number of integers \(m \in \mathcal{M}(x) \) such that \(m = f_r(p) \) for some prime \(p \) of this form is at most \(o(x) \), and this completes the proof. \(\square \)

5 Remarks

Flammenkamp and Luca \cite{6} have shown that for every prime \(p \) satisfying the properties:

(i) \(p \) is not Mersenne;

(ii) \(p \) is Riesel; i.e., \(2^n p - 1 \) is not prime for any \(n \geq 1 \);

(iii) \(2p \) is a noncototient;

the number \(2^\ell p \) is a noncototient for every integer \(\ell \geq 0 \). Moreover, they showed that the number of primes \(p \leq x \) satisfying (i) and (ii) is \(\gg x/\log x \). Our Theorem \(\square \) shows that for almost every prime \(p \) satisfying (i) and (ii), \(2^\ell p \) is a noncototient for every integer \(\ell \geq 0 \). In particular, these results imply that \(\mathcal{N}_c(x) \geq c(1 + o(1))x/\log x \) for some constant \(c > 1/2 \).

It would be interesting to see whether our proof of Theorem \(\square \) can be adapted to show that \(\# \mathcal{N}_c(x) \gg x \), or to obtain results for the set of positive integers \(m \) which are not in the image of the function \(n - \lambda(n) \), where \(\lambda(\cdot) \) is the Carmichael function.

References

[1] J. Browkin and A. Schinzel, On integers not of the form \(n - \varphi(n) \), \textit{Colloq. Math.} \textbf{68} (1995), 55–58.
[2] E. R. Canfield, P. Erdős and C. Pomerance, On a problem of Oppenheim concerning “Factorisatio Numerorum”, *J. Number Theory*, 17 (1983), 1–28.

[3] P. Erdős, Über die Zahlen der Form $\sigma(n) - n$ und $n - \varphi(n)$, *Elem. Math.* 28 (1973), 83–86.

[4] P. Erdős, On asymptotic properties of aliquot sequences, *Math. Comp.* 30 (1976), 641–645.

[5] P. Erdős, A. Granville, C. Pomerance and C. Spiro, On the normal behavior of the iterates of some arithmetic functions, in: *Analytic Number Theory, Proc. Conf. in Honor of P. T. Bateman*, Birkhäuser, Boston, 1990, 165–204.

[6] A. Flammenkamp and F. Luca, Infinite families of noncototients, *Colloq. Math.* 86 (2000), 37–41.

[7] R. K. Guy, *Unsolved problems in number theory*, Springer, 2004.

[8] H. Halberstam and H.-E. Richert, *Sieve methods*, Academic Press, London, UK, 1974.

[9] A. Hildebrand and G. Tenenbaum, Integers without large prime factors, *J. de Théorie des Nombres de Bordeaux*, 5 (1993), 411–484.

[10] F. Luca and C. Pomerance, On some problems of Mąkowski-Schinzel and Erdős concerning the arithmetical functions φ and σ, *Colloq. Math.* 92 (2002), 111–130.

[11] F. Luca and P.G. Walsh, On the number of nonquadratic residues which are not primitive roots, *Colloq. Math.* 100 (2004), 91–93.

[12] H.L. Montgomery and R.C. Vaughan, The large sieve, *Mathematika* 20 (1973), 119–134.

[13] G. Tenenbaum, *Introduction to analytic and probabilistic number theory*, University Press, Cambridge, UK, 1995.