Phenotypic and molecular characterization of Hessian fly resistance in diploid wheat, *Aegilops tauschii*

Jill A. Nemacheck 1,2, Brandon J. Schemerhorn 1,2, Steven R. Scofield 1,3 and Subhashree Subramanyam 1,3*

Abstract

Background: The Hessian fly (*Mayetiola destructor*), belonging to the gall midge family (*Cecidomyiidae*), is a devastating pest of wheat (*Triticum aestivum*) causing significant yield losses. Despite identification and characterization of numerous Hessian fly-responsive genes and associated biological pathways involved in wheat defense against this dipteran pest, their functional validation has been challenging. This is largely attributed to the large genome, polyploidy, repetitive DNA, and limited genetic resources in hexaploid wheat. The diploid progenitor *Aegilops tauschii*, D-genome donor of modern-day hexaploid wheat, offers an ideal surrogate eliminating the need to target all three homeologous chromosomes (A, B and D) individually, and thereby making the functional validation of candidate Hessian fly-responsive genes plausible. Furthermore, the well-annotated sequence of *Ae. tauschii* genome and availability of genetic resources amenable to manipulations makes the functional assays less tedious and time-consuming. However, prior to utilization of this diploid genome for downstream studies, it is imperative to characterize its physical and molecular responses to Hessian fly.

Results: In this study we screened five *Ae. tauschii* accessions for their response to the Hessian fly biotypes L and vH13. Two lines were identified that exhibited a homozygous resistance response to feeding by both Hessian fly biotypes. Studies using physical measurements and neutral red staining showed that the resistant *Ae. tauschii* accessions resembled hexaploid wheat in their phenotypic responses to Hessian fly, that included similarities in larval developmental stages, leaf and plant growth, and cell wall permeability. Furthermore, molecular responses, characterized by gene expression profiling using quantitative real-time PCR, in select resistant *Ae. tauschii* lines also revealed similarities with resistant hexaploid wheat.

Conclusions: Phenotypic and molecular characterization of *Ae. tauschii* to Hessian fly infestation revealed resistant accessions that shared similarities to hexaploid wheat. Resembling the resistant hexaploid wheat, the *Ae. tauschii* accessions mount an early defense strategy involving defense proteins including lectins, secondary metabolites and reactive oxygen species (ROS) radicals. Our results reveal the suitability of the diploid progenitor for use as an ideal tool for functional genomics research in deciphering the wheat-Hessian fly molecular interactions.

Keywords: Insect resistance, Biotic stress, qRT-PCR, Surrogate, Functional genomics, Permeability, Oxidative stress, Secondary metabolites, Lectins
Background

The Hessian fly, Mayetiola destructor (Say), belonging to the gall midge family Cecidomyiidae (order: Diptera), is a destructive pest of hexaploid bread wheat (Triticum aestivum L.) in the United States and other parts of the world [1, 2], causing significant economic damage [3]. Being an obligate parasite, the Hessian fly receives all of its nutrition from the plant. The adult females lay eggs primarily on the adaxial surface of the leaves where they hatch. The newly hatched 1st-instar larvae (neonates) crawl towards the base of the plant, where they establish sustained feeding sites. Probing of the host plant by the Hessian fly larvae yields either an incompatible (avirulent larva; resistant wheat) or compatible (virulent larva; susceptible wheat) interaction. On resistant wheat, the larvae die within 4–5 days after egg hatch (DAH) appearing as dead, red larvae; however, on susceptible wheat the larvae go through two more instars before they pupate to adults, thus completing their development (see review, [4]).

The wheat-Hessian fly interaction fits the gene-for-gene model with the recognition of the larval avirulence gene product by the host-resistance product [5]. The most effective, and economical way to manage this insect pest is by deploying resistant wheat cultivars harboring Hessian fly resistance (H) genes [2, 6], with 35 genes (H1 to H34 plus Hdic) being documented so far [7–9]. However, deployment of resistant cultivars with high level of antibiotics to the larvae exerts strong selection pressure on Hessian fly populations, favoring the selection of virulent biotypes [10] that can overcome deployed resistance, posing a threat to long-term production of wheat.

An alternate strategy to enhance and complement native or introgressed H gene resistance is by employing forward genetics to develop wheat lines overexpressing candidate defense-response genes or negatively regulating genes involved in wheat susceptibility to Hessian fly. Despite characterization of several candidate Hessian fly-responsive genes in hexaploid wheat cultivars, their functional validation through supplementation and/or mutational approaches are challenging due to: (i) large genome size (~17 Gb), (ii) allohexaploid genome (AABBDD), (iii) 85% repetitive DNA, and (iv) limited availability of genetic and genomic resources [11, 12]. We recently proposed the suitability of Brachypodium distachyon as an alternate surrogate for undertaking functional analysis of Hessian fly-responsive genes [13]. However, unlike wheat, B. distachyon is a non-host exhibiting molecular responses intermediate to resistance and susceptibility [13, 14], therefore making the functional genomics of Hessian fly-responsive genes limited in scope. Another approach would be the utilization of diploid wheat Aegilops tauschii (goat grass) genome, which shares a close relationship with hexaploid wheat, for cloning and manipulating candidate Hessian fly-responsive genes via modern biotechnological tools, as an alternative model system for bread wheat.

Ae. tauschii Coss. (2n = 2x = 14, genome DD) is the diploid progenitor of the D-genome donor of modern-day hexaploid bread wheat (T. aestivum, 2n = 6x = 42, genome AABBDD). It is an important genetic resource for wheat and harbors useful genes against several biotic stressors [15–18]. In fact, several of the Hessian fly resistance genes including H13, H22, H23, H24, H26, and H32 have been introgressed into hexaploid wheat from Ae. tauschii [19]. Furthermore, several of the Hessian fly-responsive defense genes are mapped to the D-genome [20, 21]. The recent sequencing of Ae. tauschii, provides insight into the structure and organization of this diploid genome [22]. Additionally, a Till-D (Targeting Induced Local Lesions in Genomes, TILLING) population for Ae. tauschii has been developed recently [23] that offers a powerful genetic approach for functional analysis of wheat genes.

A first step towards utilization of this diploid genome for further genomics research in wheat-Hessian interactions requires evaluation and identification of Hessian fly resistant and susceptible Ae. tauschii accessions and deciphering their response to larval feeding. In the current study we have characterized the phenotypic and molecular responses of five Ae. tauschii accessions to two Hessian fly stocks, field-collected biotype L, which is the most virulent Hessian fly biotype [24], and lab-cultured vH13 stock. A previous study documented the responses of several Ae. tauschii accessions to Hessian fly larval feeding [15], using biotype D, to identify new genetic sources of resistance that could be potentially transferred to synthetic hexaploid wheat for developing Hessian fly-resistant cultivars. However, unlike our study, this work did not attempt to dissect molecular pathways associated with the resistance. We undertook transcript profiling studies for genes that serve as biomarkers for compatible and incompatible interactions in hexaploid wheat, as well as genes involved in key defense responses during biotic stress, including secondary metabolites and oxidative stress. Our results identified two and four Ae. tauschii accessions that were homozygous resistant to vH13 and biotype L Hessian fly stocks, respectively. Further, transcript profiling studies of Hessian fly-responsive genes in these resistant Ae. tauschii accessions revealed similarities to expression patterns observed in hexaploid T. aestivum wheat, thereby suggesting the suitability of this diploid genome as an alternate model for functional genomics research in deciphering the wheat-Hessian fly molecular interactions.
Results

Phenotypic response of *Ae. tauschii* to Hessian fly larval feeding

Reaction to Hessian fly infestation

Five *Ae. tauschii* accessions, TA2452 (H13), TA1644 (H22), TA2473 (H26), TA1651 (H32), and TA1642 (H23), that are donors to known Hessian fly resistance genes, were selected to evaluate their reaction to infestation by two biotypes, L and *vH13* (Table 1). Plants from the accessions TA2473 and TA1651 were homozygous resistant (where all larvae die in the 1st-instar developmental stage) to both Hessian fly biotypes used in the current study (Table 1). By 7 DAH larvae on all plants were avirulent, appearing as dead, red larvae (Fig. 1a). By 17 DAH, these larvae had rapidly shriveled, decomposed and disappeared. However, plants of TA2452 exhibited a mixed response comprising of resistant plants (homozygous), as well as plants having dead (avirulent, red) and live 2nd-instar (virulent, white) larvae on the same leaf sheath (classified as heterozygous), by 7 DAH following infestation with both biotype L and *vH13* flies (Table 1). At 7 DAH, 40% of the TA2452 plants were homozygous resistant (having only avirulent larvae) and 60% plants were heterozygous as they harbored both dead and virulent 2nd-instar larvae on the same leaf sheath (Fig. 1b) in response to biotype L infestation (Table 1). In response to *vH13* flies, 86.7% of TA2452 plants were heterozygous with live and dead larvae and only 13.3% plants were homozygous resistant (Table 1). The live 2nd-instar virulent biotype L and *vH13* larvae were present on the heterozygous plants even at 17 DAH. Around 11.6% of the biotype L larvae successfully pupated, while *vH13* larvae were still in the 2nd-instar stage, by 17 DAH. By 24 DAH around 6.9% of *vH13* larvae pupated (Fig. 1c, d). Plants for TA1644 and TA1642 were also homozygous resistant in response to biotype L attack with all larvae dying by 7 DAH. However, these accessions showed a mixed response to feeding by *vH13* (Table 1). At 7 DAH, 86.7 and 37.5% of TA1644 and TA1642 plants, respectively, were homozygous resistant and 13.3% of TA1644 and 62.5% of TA1642 plants were heterozygous with both live and dead larvae on the same plant (Table 1). Similar to TA2452, several of the *H13* larvae also survived on TA1644 (20.5%) and TA1642 (11.1%) plants till 24 DAH. While the surviving *vH13* 2nd-instar larvae on TA1642 plants pupated, the 2nd-instar larvae on TA1644 plants failed to pupate.

The five *Ae. tauschii* accessions were evaluated for their ability to produce lesions as an indication of hypersensitive response (HR) to Hessian fly larval attack. Visible lesions (dark necrotic patches) were observed only in accessions that showed a mixed response to Hessian fly infestation (Table 1). In the accessions exhibiting a mixed response, lesions were present mostly on heterozygous plants having both live and dead larvae, while very few of the resistant plants (all larvae dead) showed necrotic lesions. In TA2452, 40 and 27% of plants showed lesions in response to biotype L (Fig. 2a) and *vH13* larval feeding (Fig. 2b), respectively. Such necrotic lesions were also observed in lines TA1644 (33%) and TA1651 (38%) showing mixed responses to feeding by *vH13* larvae (Table 1). Furthermore, several of the live larvae and pupae were also observed at the sites of these necrotic patches (Fig. 2c). Interestingly, none of the

Accession No.	H gene*/* chromosome	No. of plants evaluated	No. of dead:live larvae	Mean no. larvae/ plant	No. of homo:het plants	Necrotic lesions
a) Response to biotype L						
TA2452	H13/6D	15	302:73	25	6.9	P (40%)
TA1644	H22/1D	15	367:0	24	15:0	A
TA2473	H26/3D	15	284:0	19	15:0	A
TA1651	H32/3D	15	218:0	15	15:0	A
TA1642	H23/6D	15	210:0	14	15:0	A
b) Response to biotype vH13						
TA2452	H13/6D	15	162:119	19	2:13	P (27%)
TA1644	H22/1D	15	205:20	15	13:2	P (33%)
TA2473	H26/3D	10	174:0	17	10:0	A
TA1651	H32/3D	15	186:0	12	15:0	A
TA1642	H23/6D	8	97:31	16	3:5	P (38%)

homo homozygous resistant, het heterozygous, P present, A absent
*donor for Hessian fly resistance (*H* gene and chromosome mapped to)
plants were counted as het if they had both dead and live larvae
Numbers in parentheses represent percent plants showing presence of necrotic lesions on leaf surface
Bold font indicates 100% homozygous resistant lines
Fig. 1 Phenotypic response of *Ae. tauschii* to Hessian fly larval feeding. *Ae. tauschii* accessions showed homozygous resistance response or mixed response to feeding by biotype L and vH13 Hessian fly larvae. **a** Representative resistance response plant having only dead 1st-instar larvae at the base of the crown tissue (the larval feeding site); **b** Mix of dead, red 1st-instar larvae and white 2nd-instar larvae removed from a representative heterozygous plant (TA2452) at 7 DAH; **c** Mix of 2nd-instar white larvae and pupae removed from a representative heterozygous plant (TA2452); **d** Representative mixed response (TA2452) biotype L-infested plant showing presence of white 2nd-instar larva and pupae by 17 DAH.

Fig. 2 Necrotic lesions on Hessian fly infested *Ae. tauschii* accessions. Representative TA2452 heterozygous plants showing presence of lesions, visible as dark necrotic patches, in response to feeding by **a** biotype L and **b** vH13 Hessian fly larvae. **c** Larvae and pupae inhabiting the sites of necrotic lesions. **d** Representative TA2473 resistant plant lacking development of necrotic lesions in response to Hessian fly larval feeding.
homogenous resistant *Ae. tauschii* accessions exhibited similar necrotic lesions on the leaf sheath (Table 1, Fig. 2d).

Leaf and plant growth

Leaf growth was measured in *Ae. tauschii* accessions following Hessian fly infestations 17 DAH for biotype L, and 24 DAH for *vh13*-infested plants (Fig. 3). Accessions TA2473 and TA1651 exhibited a resistance response to both the Hessian fly biotypes, with stunting observed in leaf 2 and/or 3 followed by a recovery in growth of leaf 4 (Fig. 3a, b, c, d). Similar growth patterns were also observed in TA1644 showing a resistance response to biotype L (Fig. 3e). However, the mixed response plants of TA1644 showed stunting of only leaf 3 in response to *vh13* (Fig. 3f). Plants from accession TA1642, contrary to other resistance response accessions, did not show stunting of leaves 2 and 3, but did have accelerated growth of leaf 4, compared to the uninfested controls, in response to biotype L feeding (Fig. 3g). In contrast, TA1642 showed stunting of both leaves 3 and 4 in the mixed response plants infested with *vh13* (Fig. 3h). The mixed response plants from accession TA2452 showed stunting of only leaf 3 in response to feeding by biotype L (Fig. 3i), but both leaves 3 and 4 in response to *vh13* attack (Fig. 3j). Therefore, while the resistant homozygous *Ae. tauschii* plants showed leaf growth comparable to the uninfested control plants (Fig. 4a), the accessions showing mixed response (heterozygous) contained some plants that were stunted (Fig. 4b).

Cell wall permeability

To assess the cell wall permeability levels in *Ae. tauschii* accessions in response to larval feeding, biotype L-infested plants from TA2473 and TA1651 (resistance response accessions) and TA2452 (mixed response accession) were stained with neutral red (NR) and their scores compared with those obtained for resistant and susceptible hexaploid wheat lines documented previously [25]. Similar to hexaploid wheat, NR stain was absorbed only by infested *Ae. tauschii* plants but not by uninfested plants unless wounded by piercing with a minuten pin, as positive controls (Fig. 5a). Although increased permeability was observed in the resistant and mixed response *Ae. tauschii* accessions, the NR scores for heterozygous plants with live and dead larvae (TA2452) were higher on average as compared to the resistant lines (Table 2). While the NR staining appeared as blush and solid lines, spreading and covering the entire length of crown tissue in TA2452 (Fig. 5b), it was restricted to the larval feeding site at the base of the crown tissue in TA2473 (Fig. 5c) and TA1651 (Fig. 5d). The Hessian fly-resistant lines, TA2473 (Fig. 5c) and TA1651 (Fig. 5d), showed a far less intense NR staining score that resembled the hexaploid resistant wheat.

Molecular response of resistant *Ae. tauschii* to Hessian fly larval feeding

Expression profiles of Hessian fly-responsive biomarker genes

Transcript profiling studies were undertaken with a set of genes that serve as key biomarkers for wheat incompatible and compatible interactions. These included *Hfr-1* (Hessian fly response gene 1), *Hfr-3* (Hessian fly response gene 3), *Cer4* (Coenzyme A reductase), and *Mds-1* (Mayetiola destructor susceptibility 1) genes. Both *Hfr-1* and *Hfr-3* genes showed increased transcript accumulation in the two resistant TA2473 and TA1651 lines infested with biotype L compared to their uninfested controls at 1 and 3 DAH time-points (Fig. 6a, b). Transcripts of *Hfr-1* at 1 DAH were 9.8- (*p < 0.01) and 5.0-fold (*p < 0.001) higher in TA2473 and TA1651, respectively (Fig. 6a). Increased transcript levels of *Hfr-3*, as high as 40- to 114-fold (*p < 0.0001) by 1 DAH, and 32- to 38-fold (*p < 0.001) by 3 DAH, were observed in the *Ae. tauschii* accessions (Fig. 6b). Transcript levels of *Cer4* increased in TA2473 (2.1 fold, *p < 0.001) and TA1651 (2.4 fold, *p < 0.001) as compared to their uninfested control plants at 1 DAH (Fig. 6c). *Mds-1* did not show significant expression in either TA2473 or TA1651 (Fig. 6d).

Oxidative burst is involved in *Ae. tauschii* defense against hessian fly

To determine if reactive oxygen species (ROS) were involved in defense against Hessian fly attack in *Ae. tauschii*, despite the lack of a visible HR, we investigated the transcript profiles of genes involved in ROS production and scavenging (Fig. 7). Hessian fly-infested *Ae. tauschii* accessions showed up-regulation of the ROS-producing gene, *Prx*, encoding class III peroxidase but not of the NADPH-dependent oxidase-encoding gene, *Nox* (Fig. 7). While transcripts for *Prx* increased significantly in TA 2473 (10 fold, *p < 0.0001) and TA1651 (14.9 fold, *p < 0.0001) as compared to their uninfested control plants (Fig. 7a), the transcripts for *Nox* were either down-regulated or not significantly expressed (Fig. 7b) by 1 and 3 DAH in the *Ae. tauschii* accessions. The mRNA levels for *Gst* gene encoding glutathione S-transferase (Fig. 7c), a ROS-scavenging enzyme also increased by 1 DAH (2.2- and 3.1-fold up-regulation).

Phenylpropanoids as a defense strategy in *Ae. tauschii* resistance

Transcripts for three key genes encoding PAL (phenylalanine-ammonia lyase), 4CL (4-coumarate-CoA ligase) and CCR (cinnamoyl-CoA reductase), involved in the phenylpropanoid biosynthetic pathway, were induced in both resistant *Ae. tauschii* accessions (Fig. 8). The transcripts for *Pal* and *4Cl* increased only moderately (Fig. 8a, b) as...
Fig. 3 (See legend on next page.)
compared to transcripts of Ccr (Fig. 8c), that showed a much higher level of expression. The transcripts for Ccr, increased dramatically to 35.0- (p < 0.0001) and 14.8-fold (p < 0.00001) by 1 DAH (Fig. 8c) as compared to transcripts for 4Cl, which increased only 4.8- and 2.2-fold (p < 0.01) by 1 DAH (Fig. 8b) for TA2473 and TA1651, respectively. The high levels of Ccr transcripts were maintained even at 3 DAH (24- and 7.3-fold; Fig. 8c). At 1 DAH, HfrDrd (Hessian fly-responsive disease resistance dirigent-like protein-encoding gene) transcripts increased by 77-fold in TA2473 and 114-fold in TA1651 compared to the uninfested plants. Elevated levels (81- and 48-fold; Fig. 8c) of HfrDrd transcripts were main-

Discussion
The complex genome of hexaploid wheat has rendered functional genomics of candidate Hessian fly-responsive genes [26–33] challenging [34]. The use of diploid Ae. tauschii wheat could overcome this problem by eliminating the need to individually target all three homeologous loci (A, B and D), thereby making the process less tedious and time-consuming [23, 35]. Keeping this in view, the current work investigates the phenotypic and molecular responses of Ae. tauschii accessions to feeding by Hessian fly larvae. This study differs from Ae. tauschii screening work done previously [15] as the evaluations here were done using: (i) two different Hessian fly biotypes, L and vH13; (ii) additional Ae. tauschii accessions, TA2452 and TA2473, used in the phenotypic response evaluation experiments; and (iii) characterization of molecular responses. Identification of Ae. tauschii lines that exhibit responses comparable to that of hexaploid wheat could serve as potential surrogates for genetic manipulations to decipher molecular wheat-Hessian fly interactions.

The five Ae. tauschii accessions selected for phenotypic screening to Hessian fly biotypes are donors of various, well-documented Hessian fly resistance genes that have been introgressed into modern-day hexaploid wheat cultivars (Table 1). Screening revealed plants of TA2473 and TA1651 to be homozygous resistant where all the larvae die in the 1st-instar developmental stage resembling the incompatible (resistant) hexaploid wheat-Hessian fly interaction [14]. However, plants of TA2452 exhibited a mixed response to Hessian fly larval attack comprising of both resistant plants with all larvae dead by 7 DAH, as well as plants having both dead and live 2nd-instar larvae on the same leaf sheath. While plants for TA1644 and TA1642 were also homozygous resistant in response to biotype L attack, these accessions showed a mixed response to feeding by vH13. Therefore, unlike the susceptible hexaploid wheat where all larvae are in 2nd-instar stage by 7 DAH and pupate between 17 and 20 DAH [14], the heterozygous Ae. tauschii accessions showed presence of both dead larvae and 2nd-instar live larvae (Fig. 1b) by 7 DAH, and some biotype L and vH13 larvae successfully pupated while others failed to pupate (Fig. 1c, d). Presence of both virulent and avirulent larvae in the mixed response, heterozygous plants of Ae. tauschii accessions appears to mimic some form of
systemic induced susceptibility, maybe due to obviation of resistance [36]. Although occurrence of systemic induced susceptibility has been well-documented in plant-microbe interactions [37, 38] it is uncommon in plant-insect interactions [36]. It is proposed that using a highly specific and intimate relationship, a single Hessian fly larva has the ability to induce resistance or susceptibility in host plant [39]; and avirulent larvae are able to survive in the presence of virulent Hessian fly larvae [40, 41]. It is conceivable that the *Ae. tauschii* accessions showing a mixed response start out being resistant. However, due to some unknown mechanism a single larva becomes virulent and is able to breakdown resistance, in the process rescuing some of the avirulent larvae residing on the same plant. The plants exhibiting mixed response could plausibly be Hessian fly-tolerant lines, and additional studies are needed to prove the breakdown of resistance that allows some larvae to grow and pupate.

Thus, the phenotypic evaluation results revealed conclusively that four of the five *Ae. tauschii* accessions used in the current study were homozygous resistant to biotype L, and two accessions were resistant to *vH13* flies. The accessions TA1642 and TA1644 were previously shown to exhibit a homozygous resistance response to feeding by biotype D larvae [15]. Based on phenotypic screening, from the current and the previous study [15] it is amply clear that the TA1651 accession exhibits a resistance response to all three larval biotypes (L, D, and *vH13*). These newly identified resistant *Ae. tauschii* accessions could serve as potential proxies to undertake functional analyses of candidate Hessian fly-responsive/resistance genes. None of the accessions resembled a true compatible interaction (susceptible plant) comparable to hexaploid wheat cultivars, where all plants are susceptible in response to the Hessian fly biotypes used in the current study.

Hypersensitive response (HR) is a defense reaction observed in plants at the pathogen attack site as a result of rapid production of reactive oxygen species (ROS) radicals leading to cell death, visible as necrotic lesions on the leaf surface. While some resistant wheat lines do develop HR-like lesions ([42], S. Subramanyam & J. Nemacheck unpublished data), they are not present in most resistant wheat lines [43, 44]. We evaluated the five *Ae. tauschii* accessions for their ability to produce lesions as an indication of HR to Hessian fly larval attack. Dark necrotic lesions were observed only in accessions that

![Fig. 5](image_url) Changes in plant cell wall permeability in *Ae. tauschii* accessions. The crown, harboring the Hessian fly larvae, of plants from lines showing mixed heterozygous (TA2452) and homozygous resistant (TA2473 and TA1651) response to larval feeding were stained with neutral red (NR) to reveal intensity of cell permeability at 3 DAH. a Representative uninfested control TA2452 plant was pin pricked and stained to distinguish staining caused by larval feeding from that caused by physical damage; b NR stained TA2452 plant showing solid lines and blush around the entire length of the stem tissue; c NR stained TA2473 plant showing a blush restricted to the larval feeding site; d NR stained TA1651 plant showing solid lines restricted to the larval feeding site.

Table 2
Neutral Red scoring of Hessian fly-infested *Ae. tauschii* plants

Plant#	TA2452	TA2473	TA1651
1	4	3	2
2	3	2	0
3	3	3	3
4	5	1	2
5	3	4	1
6	6	na	1
Average	4.0 ± 0.5	2.6 ± 0.5	1.5 ± 0.4

*Plants were dissected to expose the feeding sites, stained with Neutral Red, and the intensity of red stain was scored on a scale of 0–7, according to Williams et al. [25]. Each individual plant score is shown along with the average score and standard error.

na not available
showed a mixed response and mostly on heterozygous plants having both live and dead larvae. The role of HR as a resistance-associated trait in plant-insect interactions, including the wheat-Hessian fly interactions, is still unclear [45, 46]. A few studies document HR as observed necrosis and cell wall collapse at sites where the larvae are found on the plants during gall midge (Orseolia oryzae) interactions with rice plants [47], and in response to sucking/piercing insects [48]. However, it is often difficult to determine if plant cell death is a result of disrupted feeding once the insects are killed by certain defense products or the cause for insect mortality [46]. Our results indicate that resistant *Ae. tauschii* accessions lacking HR-like lesions resemble several of the other resistant hexaploid *T. aestivum* cultivars that do not exhibit HR-like response following Hessian fly larval attack. Our results further suggest that HR-like responses in *Ae. tauschii* are not associated with resistance. Further biochemical and molecular studies will be necessary to determine if these lesions are some kind of persistent defense response to counter stress from the surviving larvae, and/or to prevent some 2nd-instar larvae from pupating and completing their life cycle.

Injury caused by Hessian fly larval feeding on susceptible hexaploid wheat cultivars manifests itself in the form of darker leaves along with stunted growth [2]. In such susceptible plants, the larvae rapidly inhibit leaf elongation with the newly formed leaf 3 being significantly shorter than the uninfested control by 3 DAH [14]. At 10 DAH, leaf 4 of susceptible plants are also very stunted and no longer elongating, even though larvae did not reside on this leaf [14]. Plausibly, resources in the susceptible wheat, by this time, are reallocated from leaf growth to development of a nutritive tissue in susceptible wheat, as reported for many other gall forming insects [49]. In contrast, although leaves on the resistant hexaploid wheat do exhibit some measure of leaf stunting, it is observed only for leaves that are actively growing while the larvae are attempting to feed. Once the larvae die by 5 DAH, as compensation for leaf stunting, the plants undergo precocious initiation, accelerated growth of upper leaves, and end up having the same leaf length as compared to the uninfested controls [14]. Leaf
growth trends in plants exhibiting homozygous resistance response (TA2473, TA1651, and TA1644) resembled those observed in resistant hexaploid wheat with leaf 2 and 3 showing stunting and recovery in growth of leaf 4 (Fig. 3a, c, e). In plants from mixed response TA2452 accession only leaf 3 was stunted in response to feeding by biotype L (Fig. 3i), but both leaves 3 and 4 were stunted in response to vH13 attack (Fig. 3j). It is possible that stress caused by larval probing is responsible for the initial stunting observed (leaves 2 and 3), in general, in the resistant plants, irrespective of the biotype used. This is followed by countering of the stress by the plant’s defenses that results in regaining leaf growth comparable to that of the uninfested controls (Fig. 4a).

Compatible (susceptible) hexaploid wheat-Hessian fly interactions show a dramatic stunting as compared to resistant or uninfested plants [14]. However, although TA1642 and TA2452 contained some plants displaying stunting of the upper leaf (Fig. 4b) and pupated larvae, they do not resemble a true compatible interaction where none of the plants are resistant.

Salivary secretions from Hessian fly larvae target the cell walls in the epidermal layer of both host [25] and nonhost [13] plants, which is considered as the first line of defense against herbivory [50, 51]. Permeability studies via staining with neutral red (NR) revealed a two-way exchange of molecules during plant-Hessian fly interactions [13, 25]. Sustained increased permeability during compatible interactions indicates effective delivery of salivary effectors resulting in physiological and metabolic changes in the susceptible plant, leading to a nutritionally rich environment conducive for larval establishment [25]. Transient and limited permeability at early time-points during incompatible interactions are required for the delivery of defense toxins and proteins to the larvae, preventing them from establishing permanent feeding sites and completing their development [25]. In a wounded plant NR stain enters the cell wall and spreads mainly in the major vasculature. Resembling the hexaploid wheat, NR stain was absorbed only by infested Ae. tauschii plants but not by uninfested plants (Fig. 5). Although the NR scores in the mixed response accession (4.0 ± 0.5) were higher than the resistant accessions (Table 2), they were not comparable with the scores of 6 to 7 observed in susceptible hexaploid wheat [25]. The relatively increased staining in the heterozygous Ae. tauschii (TA2452) plants (Fig. 5b) could be due to the presence of live larvae that are attempting to make the plant tissue more permeable for increased flow and delivery of nutrients for the developing larvae. The far less intense NR staining score for Hessian fly-resistant Ae. tauschii accessions, TA2473 (Fig. 5c) and TA1651 (Fig. 5d) resembled the hexaploid resistant wheat suggesting that only a limited area of permeability is induced to
possibly deliver host defense molecules to the larvae and prevent them from establishing permanent feeding sites [25].

Phenotypic characterization identified two accessions, TA2473 and TA1651, which exhibited a homozygous resistance response to both biotype L and vH13 feeding (Table 1), having traits resembling the resistant hexaploid wheat documented previously. We hypothesized that resistant *Ae. tauschii* accessions would also resemble the resistant hexaploid wheat at the molecular level. To test our hypothesis, we carried out transcript profiling of Hessian fly-responsive biomarker genes. *Hfr-1* (Hessian fly response gene 1) and *Hfr-3* (Hessian fly response gene 3) are genes encoding a mannose- and chitin-binding lectin, respectively, that were chosen because these two defense response genes: (i) show increased transcript accumulation in resistant wheat within 2 DAH as compared to susceptible wheat and uninfested control plants [33, 52]; and (ii) possess antifeedant and insecticidal properties that play a significant role in plant defense [53, 54]. As expected, similar trends in up-regulation for these genes were observed in the two resistant accessions, TA2473 and TA1651, resembling the resistant hexaploid wheat. *Hfr-3*, is the most responsive gene in resistant hexaploid wheat to Hessian fly larval attack, with transcripts as high as 100-fold [52]. Similar to hexaploid resistant wheat, *Hfr-3* transcript levels were also high in the *Ae. tauschii* accessions. These results indicate the possible involvement of lectins as key components of an early defense strategy in *Ae. tauschii* lines against Hessian fly larvae, probably by disrupting the midgut microvilli and blocking nutrient absorption as observed previously in hexaploid resistant wheat [33, 53, 55]. *Cer4* encodes an alcohol-forming fatty acyl-Coenzyme A reductase and is involved in the production of protective cuticular waxes [56]. Earlier studies demonstrated an increase in *Cer4* transcripts (3-fold) during incompatible wheat-Hessian fly interactions as compared to the compatible interactions and uninfested control plants at 1 DAH [57].

Resembling the trends in resistant hexaploid wheat, transcript levels of *Cer4* also increased in the resistant *Ae. tauschii* accessions (Fig. 6c). Another key biomarker
Hessian fly-responsive gene is *Mds-1* (*Mayetiola destructor* susceptibility 1) that encodes for a heat shock protein and governs wheat susceptibility to this dipteran pest [30]. *Mds-1* is not significantly expressed in resistant wheat genotypes and RNAi-mediated silencing of the gene confers immunity against several Hessian fly biotypes in susceptible wheat cultivars [30]. Similar to other resistant hexaploid wheat genotypes, *Mds-1* was not differentially expressed in *Ae. tauschii* resistant accessions. Thus, the transcript profiles of all tested Hessian fly-responsive biomarker genes indicate that molecular responses in the *Ae. tauschii* resistant accessions resemble those observed in hexaploid resistant wheat, making them an ideal model system for genetic manipulations and functional characterization of candidate defense-response and resistance genes.

A key defense strategy in plants, to counter biotic stress, is the production of ROS radicals, causing an oxidative burst and resulting in a zone of cell death (necrotic lesions) around the stress area [58]. Although visible necrotic lesions are associated with traditional HR, it is not a conclusive indication of oxidative burst at the molecular level. This is especially true with Hessian fly-resistant genotypes that show no signs of visible HR but exhibit increased transcripts of genes involved in ROS-production [44]. Another indication of oxidative burst in the Hessian fly-resistant wheat lacking HR, is the elevated transcripts of ROS-scavenging enzymes, which deplete the ROS radicals [44]. As we discussed earlier, similar to several HR-lacking Hessian fly-resistant wheat lines, resistant accessions TA2473 and TA1651 also lacked necrotic lesions in response to feeding by biotype L and vH13 larvae (Table 1). Hessian fly-infested accessions showed increased transcripts for both ROS-producing (*Prx*) and scavenging (*Gst*) genes (Fig. 7). *Nox*, another ROS-producing gene did not show significant expression in *Ae. tauschii* resistant plants. Our result suggests the involvement of class III peroxidase in resistance to Hessian fly instead of the classical *Nox*-mediated oxidative burst mechanism in *Ae. tauschii*. Class III peroxidases have been implicated to be one of the likely sources of elevated ROS-production, instead of NADPH-dependent oxidase, during incompatible hexaploid wheat-Hessian fly interactions [44]. Increase in mRNA levels for ROS-scavenging *Gst* gene as early as 1 DAH further corroborates the involvement of ROS in resistant *Ae. tauschii* in response to larval attack. While the role of ROS and HR in plant defense against pathogens is well-investigated [59], their putative role in plant defense against insects is still unclear [13, 43, 60–62]. It is amply clear from transcript profiling studies that there is no correlation between a physical HR (in the form of necrotic lesions) and resistance despite the presence of a strong oxidative burst in the resistant *Ae. tauschii* accessions and the increased ROS-generation could plausibly be playing a direct role in larval death.

Plant secondary metabolites such as phenylpropanoids are induced in response to insect herbivory and play an important role in plant defense [63–66]. These are produced through the shikimate pathway and their biosynthesis starts with the formation of phenylalanine that is catalyzed to coumaric acid via *Pal* and subsequently catalyzed via *4Cl* and *Ccr* to flavonols or lignins, respectively [67]. Transcripts for these three key genes encoding *PAL*, *4CL* and *CCR* were induced in both resistant *Ae. tauschii* accessions (Fig. 8). The expression profiles for these genes are similar to transcript patterns observed in host hexaploid wheat and nonhost *B. distachyon* responses to Hessian fly [13, 27]. The transcripts for *Pal* and *4Cl* increased only moderately as compared to transcripts of *Ccr* that increased dramatically as early as 1 DAH and maintained at high levels even by 3 DAH in the resistant *Ae. tauschii* plants. *Ccr* is the first committed enzyme of the lignin branch biosynthetic pathway [68]. These results indicate the possible significant involvement of lignins in *Ae. tauschii* defense against Hessian fly larval attack. Lignins, a phenolic heteropolymer, defend plants from herbivory by increasing leaf toughness and decreasing leaf nutritional content, thereby hampering insect feeding and reducing fecundity [69]. Liu et al. [27] observed strong up-regulation of genes involved in lignin biosynthesis during incompatible interactions and down-regulation in the compatible interactions. Elevated abundance of *HfrDrd* transcripts, a gene encoding a dirigent-like protein, was observed in resistant *Ae. tauschii* accessions (Fig. 8d) similar to resistant hexaploid wheat [28] in response to Hessian fly larval attack. Dirigent proteins mediate free radical coupling of monolignol plant phenols to yield the cell wall polymers lignins and lignans [70, 71]. Increased *HfrDrd* mRNA mediates lignin formation leading to wall fortification and reinforcement, making the host plant cell wall a barrier against larval attack and preventing the pest from hijacking the host cellular machinery [28]. Additionally, a strong correlation has been documented between elevated transcripts of *Pal*, other phenylpropanoid biosynthesis enzymes, and peroxidases leading to increase in phenylpropanoids and lignin precursors in hypersensitive plants, and resistance to fungi [72]. Participation of class III plant peroxidases in lignin synthesis has been studied in many plant species [73]. The increased transcripts of *Prx* (Fig. 7a) may be directed towards increased lignification in the resistant *Ae. tauschii*, in addition to ROS-generation, as an added defense strategy.

Conclusions

With recent advances in whole-genome sequencing and gene-editing tools, manipulations to express or silence
target genes for functional genomics have become extremely feasible in several less complex monocots and dicots. However, modification of gene targets in modern day hexaploid wheat requires a greater degree of optimization due to the complexity of the genome [74]. In the current study we have identified Hessian fly-resistant *Ae. tauschii* accessions that share similarities to hexaploid wheat in their phenotypic and molecular responses to larval feeding. Resembling the resistant hexaploid host wheat, Hessian fly-resistant *Ae. tauschii* accessions mount an early defense strategy involving the production of antifeedant proteins (lectins), secondary metabolites and ROS radicals that potentially counter larval extra-oral salivary plant cell-degrading proteases, fortify the cell wall and prevent the Hessian fly larvae from establishing permanent feeding sites. The characterizations carried out here have amply validated the suitability of *Ae. tauschii* as an ideal tool for functional genomics of candidate Hessian fly-responsive genes that are of immense importance in crop improvement strategies.

Methods

Insect material

Two Hessian fly (*Mayetiola destructor*) stocks, biotype L and *vH13*, were used for infestations in the current study. Biotype L stocks were field populations collected from Posey county, Indiana, while *vH13* stocks were lab cultured. Both stocks were maintained in diapause at 4°C at the USDA-ARS Crop Production and Pest Control Research Unit in West Lafayette, IN, following the methods described by Sosa and Gallun [75]. The purity of biotype L stock was tested by infesting wheat lines ‘Monon’, ‘Magnum’, ‘Calderwood’ and ‘Semen’ harboring *H3*, *H5*, *H6* and *H7H8* resistance genes, respectively, resulting in compatible interactions, as expected. Purity of *vH13* stocks was assessed by infesting wheat lines ‘Iris’ (harboring *H9*) and ‘Molly’ (harboring *H13*) and, as expected, yielded incompatible and compatible interactions, respectively.

Plant material

Five accessions of *Aegilops tauschii*, were used in the current study to evaluate for resistance to biotype L and *vH13* Hessian flies. Seeds for *Ae. tauschii* accessions TA2452 (*H13*) [76], TA1644 (*H22*) [77], and TA2473 (*H26*) [78] were obtained from the Wheat Genetics Resource Center, Kansas State University (Manhattan, KS), and seeds for TA1651 (*H32*) [7] and TA1642 (*H23*) [76] were procured from the USDA-ARS National Small Grains Collection (Aberdeen, ID).

Plant growth and infestation

Fifteen seeds of each wheat line per pot were planted in 4-in. pots containing Pro-Line growing mix (Jolly Gardener Products Inc., Poland Spring, ME), with a layer of Fertilome time-release fertilizer (19–6-12; Voluntary Purchasing Groups Inc., Bonham, TX) and covered with Vermiculite (Perlite Vermiculite Packaging Industries, North Bloomfield, OH). The pots were watered thoroughly and placed at 4°C for 1 week (to allow for uniform germination) and then moved to a Conviron growth chamber (Controlled Environment Lt d., Winnipeg, Manitoba, Canada) set at 18°C with 60% humidity with a photoperiod of either 16/8 h day/night cycle for screening resistance to Hessian fly, or 24 h photoperiod for gene expression tissue collections. At the 2-leaf stage, all pots were covered with vented cups and wheat seedlings were infested with 6 female and 2 male Hessian flies per pot.

Evaluation of Hessian fly resistance

For evaluating Hessian fly resistance in the *Ae. tauschii* accessions, 3 pots of each wheat line were infested with biotype L or with *vH13* Hessian fly stocks. One additional pot for each plant-insect interaction was left as an uninfested control. For each line 8–15 infested plants per interaction were dissected 7 days after egg hatch (DAH) and 17 (for biotype L-infested plants) or 24 (for *vH13*-infested plants) DAH, and were scored for number of dead (avirulent insect phenotype with red, dead larvae) or live larvae (virulent insect phenotype with white larvae, or larvae with green guts, or pupated larvae), presence/absence of necrotic lesions (as an indication of a potential hypersensitive response) on the leaf sheath, and stunting (susceptible plant phenotype). Larvae from representative plants for each line were placed on double-sided tape (3 M, Maplewood, MN) on a glass slide and whole leaf sheaths harboring larvae were photographed using the DP21 camera system on a SZX2 stereomicroscope (Olympus, Center Valley, PA).

Leaf measurements

Leaf measurements (from soil level to leaf blade tips) were taken for a set of 8–15 plants (per interaction including uninfested controls) at 17 (for biotype L-infested plants) or 24 (for *vH13*-infested plants) DAH time-points. Significant differences in leaf growth between infested and uninfested plants for each wheat line were determined by analysis of variance (ANOVA) using SAS. Multiple comparisons with Tukey’s HSD test were performed to identify significant differences in the group means among treatments. Differences were considered statistically significant if the *p* value associated with the contrast was *p* < 0.05.

Transcript profiling

For gene expression studies, 15 seeds (per pot) for accessions TA2452 and TA1651 were planted in 4-in. pots (11 pots per wheat line) as described above. Six pots for
each line were infested at the 2-leaf stage with 6 female and 2 male biotype L flies, per pot. Five pots for each line were left as uninfested controls. Tissues were collected at 1 and 3 DAH time-points for both accessions. For tissue collections, the 1st leaf was gently removed. After visually confirming for presence of larvae, the bottom 1.5 cm of infested crown tissue (feeding site) for all younger leaves were collected from 10 infested plants per time-point per biological replicate. Tissue collections from 10 uninfested plants were also performed in the same manner for the corresponding time-points. Tissues were harvested from three biological replicates. Harvested tissues were immediately frozen in liquid nitrogen and stored at –80 °C until further use.

Frozen harvested tissues were crushed to a fine powder and used for RNA isolation with TRIzol reagent (Life Technologies Corporation, Carlsbad, CA). Total RNA from each sample was quantified using a Nanodrop (NanoDrop One, ThermoFisher Scientific, Waltham, MA) and was used as the template for the first-strand cDNA synthesis (Tetro cDNA synthesis kit, Bioline, Taunton, MA). Quantitative real-time reverse transcription PCR (qRT-PCR) was performed to quantify mRNA abundance for a selected set of biomarker genes previously documented to be associated with either resistance or susceptibility of wheat to Hessian fly larval attack. Gene-specific primers for Hessian fly biomarker genes, and genes encoding enzymes involved in secondary metabolite biosynthesis and oxidative stress pathway were designed using Primer Express 3.0 software (Applied Biosystems, Foster City, CA) and are given in Table 3. The qRT-PCR was carried out on a LightCycler 480 II instrument (Roche Diagnostics Corporation, Indianapolis, IN). Each reaction volume contained 5 μl of 2X SensiFAST SYBR No-ROX (Bioline), primers at a final concentration of 0.4 μM each, and 20 ng of cDNA template in a final volume of 10 μl. PCR parameters were as follows: 95 °C for 2 min, 40 cycles of 95 °C for 5 s, 60 °C for 10 s, and 72 °C for 20 s. Each sample was amplified in triplicate, giving three technical replicates for each of the three biological replicates at each time-point. Amplification of single product for each target was confirmed through melt-curve analysis. Additionally, mRNA levels of a gene encoding the housekeeping enzyme ubiquitin (Table 3) were used as endogenous control to normalize cDNA levels. Relative standard curve method (User Bulletin 2: ABI PRISM 7700 Sequence) was used to quantify transcript abundance as described in Subramanyam et al. [33]. Significant differences in the logarithm-transformed values were determined by analysis of variance (ANOVA) using the PROC Mixed procedure of SAS Software version 9.4 as described in Subramanyam et al. [31]. The ANOVA model included treatments, time-points, biological replicates, and the interaction between treatments and time-points as fixed effects. Data from the three biological and three technical replicates were combined and included as a random effect in the analysis model. Orthogonal contrasts were used to evaluate differences in treatments at each time-point and differences were considered statistically significant if the p value associated with the contrast was p < 0.05. All p values were adjusted using Bonferroni correction. Transcript levels in infested plants were compared to levels in uninfested controls at the same time-point.

Table 3 qRT-PCR primers for transcript profiling in *Ae. tauschii* accessions

Gene	Forward Primer	Reverse Primer
Ubq (Ubiquitin)	ggtgtctccggtatctctcaa	tgctccacaccagcagagaagtt
Hfr-1 (Hessian fly-response gene 1)	cttagacctctgtcttccttagtgta	gatgtgtatgcgtctctaaacg
Hfr-3 (Hessian fly-response gene 3)	gttcctgtggtcgtatctc	tccgtcctagggccacagta
Mds-1 (Mayetiola destructor susceptibility 1)	ccaaaagcagacagcaaccccaacc	gtcgcaaggggtcgaacac
Cer4 (Fatty acyl CoA reductase)	ccattccgcattcaacattt	gcaccagggtgtggacctt
Prx (Class III peroxidase)	aggggcgcctcttcctcagag	aggtgctcattgtctcatcttg
Nox (NADPH-dependent oxidase)	atgtctgcaaatgggctact	cgtctgctctaaagacaccactttaa
Gst (Glutathione S-transferase)	gtgcctggtctgatcca	ggcaaaagccctctcgtgat
Pat (Phenylalanine-ammonia lyase)	gcgtgtaagacagctggctagga	gcgtgctgtgtggctgatag
4Cl (4-coumarate-CoA ligase)	gcgaagcagcagtagttgttacct	ggtatgacgtctacgaagggag
Ccr (Cinnamoyl-CoA reductase)	gttggtcctctgtctcagaga	caccagcagctgcacagatac
HfrDrd (Hessian fly-responsive disease resistance dirigent-like gene)	tgcaccagctccacgcgaca	atcacaagtgtcttgagagac

Gene used as endogenous control
Neutral red staining
To determine whether Hessian fly larvae disrupt the integrity of epidermal cell wall layer, neutral red (NR) staining of crown tissue was carried out to assess permeability at 3 DAH for 6 plants from each of the accessions TA2452, TA2473, and TA1651 as per the method described in Williams et al. [25]. The 1st leaf from Hessian fly-infested wheat seedlings was carefully peeled off to avoid wounding during the dissection process and expose the crown tissue (feeding site). Uninfested seedlings were also dissected in the same manner and pooled with a 0.2 mm minuten pin prior to staining, as positive controls, to mimic wounding. Tissue samples were soaked in aqueous 0.1% (w/v) NR stain (Sigma-Aldrich, St. Louis, MO) for 10 min, and then washed thoroughly in water. Overall intensity of red staining was scored for all plants according to the scale established in Williams et al. [25] with a score of 0 indicating no stain and 7 being a completely red crown. Following staining, photomicrographs were taken for representative plants using a DP21 camera system on SZX2 stereomicroscope (Olympus).

Abbreviations
ANOVA: Analysis of variance; DAH: Days after egg hatch; Het: Heterozygous; Homo: Homozygous resistant; HR: Hypersensitive response; IWGSC: International Wheat Genome Sequencing Consortium; NR: Neutral red; qRT-PCR: quantitative real-time reverse transcription PCR; ROS: Reactive oxygen species; SAS: Statistical analysis system

Acknowledgements
The authors thank Sue Cambron (USDA-ARS) for maintaining Hessian fly stocks. Mention of a commercial or a proprietary product does not constitute endorsement or recommendation for its use by the USDA.

Authors’ contributions
SS conceived and designed the experiments, analyzed the data, and wrote the manuscript. JAN carried out the experiments, collected and analyzed the data. BJS and SRS provided intellectual input and contributed to writing of the manuscript. All authors read and approved the final manuscript.

Funding
This research was funded by USDA-CRIS Number 5020–22000-022-00D. The funding body had no role in the design of the study and collection, analysis, and interpretation of data and in writing the manuscript.

Availability of data and materials
The data and materials generated or analyzed in this study are included in this published article and available from the corresponding author on reasonable request.

Ethics approval and consent to participate
Not applicable

Consent for publication
Not applicable

Competing interests
The authors declare that they have no competing interests.

Received: 24 June 2019 Accepted: 27 September 2019
Published online: 22 October 2019

References
1. Flanders KL, Reisig DD, Buntin GD, Winslow M, Herbert Jr. DA, Johnson DW. Biology and management of Hessian fly in the southeast. Alabama Cooperative Extension System 2013;ANR1069.
2. Schmid RB, Knutson A, Giles KL, McCormack BP. Hessian fly (Diptera: Cecidomyiidae) biology and management in wheat. J Integra Pest Manag. 2018:9:1–12.
3. Smiley RW, Gourlie JA, Whittaker RG, Easley SA, Kidwell KK. Economic impact of hessian fly (Diptera: Cecidomyiidae) on spring wheat in Oregon and additive yield losses with Fusarium crown rot and lesion nematode. J Econ Entomol. 2004;97:397–408.
4. Stuart JL, Chen MS, Shukle RS, Harris MO. Gall midges (hessian flies) as plant pathogens. Annu Rev Phytopathol. 2012;50:339–57.
5. Hatchett JH, Gallun RL. Genetics of the ability of the hessian fly, Mayetiola destructor, to survive on wheats having different genes for resistance. Ann Entomol Soc Am. 1970;63:1400–7.
6. Berzonsky WA, Ding H, Haley SD, Harris MO, Lamb RJ, McKenzie RH, Ohm HW, Patterson FL, Pears FB, Porter DR, Ratcliffe RH, Shanower TG. Breeding wheat for resistance to insects. Plant Breed Rev. 2002;22:221–96.
7. Sardesi N, Nemacheck JA, Subramanyam S, Williams CE. Identification and mapping of H32, a new wheat gene conferring resistance to hessian fly. Theor Appl Genet. 2005;111:167–73.
8. Liu X, Brown-Guedira GL, Hatchett JH, Oluwaseye JO, Chen MS. Genetic characterization and molecular mapping of a hessian fly-resistance gene transferred from T. turgidum ssp. dicoccum to common wheat. Theor Appl Genet. 2005;111:1308–15.
9. Subramanyam S, Nemacheck JA, Xiao X, McDonald MJ, Williams CE. Targeted discovery of single-nucleotide polymorphisms in an unmarked wheat chromosomal region containing the hessian fly resistance gene H33. Crop Sci. 2016;56:1106–14.
10. Johnson AJ, Monierm HEMA, Flanders KL, Reay-Jones FPF, Reisig DD, Johnson DW, Buntin GD. Breeding for resistance to insects. Plant Breed Rev. 2002;22:221–96.
11. Hargarten AM, Nemacheck JA, Subramanyam S, Shukle RH, Schermheron BJ. A novel, economical way to assess virulence in field populations of hessian fly (Diptera: Cecidomyiidae) utilizing wheat resistance gene H13 as a model. J Econ Entomol. 2017;110:1863–8.
12. International Wheat Genome Sequencing Consortium (IWGSC). Shifting the limits in wheat research and breeding using a fully annotated reference genome. Science. 2018;361:661.
13. Akpinar BA, Budak H. Dissecting miRNAs in wheat D genome progenitor, Aegilops tauschii. Front Plant Sci. 2016;7:606.
14. Hargarten AM, Nemacheck JA, Sardesi N, Schermheron BJ, Williams CE. Multiple molecular defense strategies in Brachypodium distachyon surmount hessian fly (Mayetiola destructor) larva-induced susceptibility for plant survival. Sci Rep. 2019;9:2598.
15. Hargarten AM, Nemacheck JA, Subramanyam S, Xiao X, Schermheron BJ, Williams CE. Physical and metabolic consequences of hessian fly infestation are more severe on nonhost Brachypodium distachyon than on host-plant resistant wheat. Arthropod-Plant Interact. 2017;11:767–83.
16. Hatchett JH, Gill BS. D-genome sources of resistance in Triticum tauschii to hessian fly. J Hered. 1981;72:126–7.
17. Arsefa S, Fehrhammer H. Evaluation of Aegilops tauschi Coss. For resistance to wheat stem rust and inheritance of resistance genes in hexaploid wheat. Genet Resource Crop Evol. 2004;51:663–9.
18. Rouse MN, Olson EL, Gill BS, Pumphrey MO, Jin Y. Stem rust resistance in Aegilops tauschi germplasm. Crop Sci. 2011;51:2074–8.
19. Kalia B, Wilson DL, Bowden RL, Singh RP, Gill BS. Adult plant resistance to Puccinia triticina in a geographically diverse collection of Aegilops tauschi. J Genet Resour Crop Evol. 2017;64:913–25.
20. Miranda LM, Bland DE, Cambron SE, Lyerly JH, Johnson J, Buntin GD, Murphy JP. Genetic mapping of an Aegilops tauschi-derived hessian fly resistance gene in common wheat. Crop Sci. 2010;50:612–6.
21. Tan M-K, El-Bouhssini M, Emebrit L, Wildman O, Tadesse W, Ogbonnaya FC. A SNP marker for the selection of HfrDrd, a hessian fly-resistance gene in wheat. Mol Breeds. 2015;35:216.
22. Tan M-K, El-Bouhssini M, Wildman O, Tadesse W, Chambers G, Luo S, Emebrit L. Development of SNP assays for hessian fly response genes, Hfr-1 and Hfr-2, for marker-assisted selection in wheat breeding. BMC Genet. 2018;19:50.
22. Luo MC, Gu YQ, Puiu D, Wang H, Twardziok SO, Deal KR, Huo N, Zhu T, Wang L, Wang Y, PE MG, Liu S, Long H, Ramasamy RK, Rodriguez JC, Van SL, Yi L, Wang Z, Xia Z, Xiao L, Anderson OD, Ouyang S, Liang Y, Zimin AV, Peresta QP, Pires N, Bennetzen JL, Dai X, Dawson MW, Müller H-G, Kegler K, Rivarola-Duarte L, Spannagl M, RFX M, Lu F-H, Bevan MW, Lenoy L, Pi L, You FM, Sun Q, Li Z, Lyons E, Wicker T, Salzberg SL, Devos KM, Dvorský J. Genome sequence of the progenitor of the wheat D genome Aegilops tauschii. Nature. 2017;551:498–502.

23. Rawat N, Schoen A, Singh L, Mahlandt A, Wilson DL, Liu S, Lin G, Gill BS, Tiwari VK. TILL-D: an Aegilops tauschii TILLING resource for wheat improvement. Front Plant Sci. 2018;9:1665.

24. Subramanyam S, Shreve JT, Nemacheck JA, Williams CE. Obviation of wheat resistance to hessian fly (Diptera: Cecidomyiidae) resistance in the southeastern United States. J Econ Entomol. 2016;109:399–405.

25. Williams CE, Nemacheck JA, Shukle JT, Subramanyam S, Saltzmann KD, Shukle RH. Induced cuticular permeability modulates resistance and susceptibility of wheat seedlings to herbivory by hessian fly larvae. J Exp. Bot. 2011;62:4521–30.

26. Sardeasi N, Subramanyam S, Nemacheck JA, Williams CE. Modulation of defense-response gene expression in wheat during hessian fly larval feeding. J Plant Physiol. 2005;162:139–50.

27. Liu X, Bai J, Huang L, Zhu L, Liu X, Weng N, Reece JC, Harris M, Stuart JJ, Chen MS. Gene expression of different wheat genotypes during attack by virulent and avirulent hessian fly (Maytioeta destructor) larvae. J Chem Ecol. 2007;33:71–94.

28. Subramaniam S, Zheng C, Shukle JT, Williams CE. Hessian fly larval attack triggers elevated expression of defense resistance dirigent-like protein-encoding gene, HfrDd1, in resistant wheat. Arthropod-Plant Interact. 2013;7:389–402.

29. Puthoff DP, Sardesai N, Subramaniam S, Nemacheck JA, Williams CE. HFR-2, a wheat cytotoxic toxin-like gene, is up-regulated by virulent hessian fly larval feeding. Mol Plant Pathol. 2005;6:411–23.

30. Liu X, Khajuria C, Li J, Trick HN, Huang L, Gill BS, Reekc GR, Antoiey G, White FF, Chen MS. Wheat Mid-1 encodes a heat-shock protein and governs susceptibility towards the hessian fly gall midge. Nat Commun. 2013;4:2070.

31. Subramaniam S, Sardesai N, Minocha S, Zheng C, Shukle RH, Williams CE. Hessian fly larval feeding triggers enhanced polyamine levels in susceptible but not resistant wheat. BMC Plant Biol. 2015;15:3.

32. Subramaniam S, Shreve JT, Nemacheck JA, Johnson AJ, Schemeron BH, Shukle RH, Williams CE. Modulation of nonessential amino acid biosynthetic pathways in virulent hessian fly larvae (Maytioeta destructor), feeding on susceptible host wheat (Triticum aestivum). J Insect Physiol. 2018;105:54–63.

33. Subramaniam S, Sardeasi N, Puthoff DP, Meyer JM, Nemacheck JA, Gonzalez M, Williams CE. Expression of two wheat defense-response genes, HFR-1 and Wc-1, under biotic and abiotic stresses. Plant Sci. 2006;170:903–13.

34. Gupta PK, Mir RR, Mohan A, Kumar J. Wheat genomics: present status and future prospects. Int J Plant Genom. 2008;2008:896451.

35. Cartwright WB, Caldwell RM, Compton LE. Response of resistant and susceptible wheat to hessian fly attack. Agron J. 1995;95:529–31.

36. Hollay ME. Survival of biotype C hessian fly Maytioeta destructor (say) larvae on Monson wheat seedlings in the presence of biotype B. MS thesis, Purdue University, West Lafayette, IN 1980.

37. Grover PBJ, Shukle RH, Foster JE. Interactions of hessian fly (Diptera: Cecidomyiidae) biotypes on resistant wheat. Environ Entomol. 1989;18:687–90.

38. Grover PBJ. Hypersensitive response of wheat to hessian fly. Enontol Exp App. 1995;74:283–94.

39. Giovanini MP, Puthoff DP, Nemacheck JA, Mittapalli O, Saltzmann KD, Ohm HW, Shukle RH, Williams CE. Gene-for-gene defense of wheat against hessian fly lacks a classical oxidative burst. Mol Plant-Microbe Interact. 2006;19:1023–31.

40. Liu X, Williams CE, Nemacheck JA, Wang H, Subramanym S, Zheng C, Chen MS. Reactive oxygen species are involved in plant defense against a gall midge. Plant Physiol. 2010;152:985–99.

41. Harris MO, Stuart JJ, Mohan M, Nair S, Lamb RJ, Rohrfrisch O. Grasses and gall midges plant defense and insect adaptation. Annu Rev Entomol. 2003;48:549–77.

42. Holslund S, Larsson S, Winglee G. Both hypersensitive and nonhypersensitive responses are associated with resistance in Solx viminalis against the gall midge Dasineura marginentorquens. J Exp Bot. 2005;56:3215–22.

43. Bentur J, Kalode MB. Hypersensitive reaction and induced resistance in rice against the Asian rice gall midge Orseolia oryzae. Entomol Exp App. 1996;78:77–81.

44. Walling LL. The myriad plant responses to herbivores. J Plant Growth Regul. 2000;19:195–216.

45. Lanson KC, Whitham TG. Manipulation of food resources by a gall-forming aphid: the physiology of sink-source interactions. Oecologia. 1991;88:15–21.

46. Schönher J. Resistance of plant surfaces to water loss: transport properties of cutin, suberin and associated lipids. In: Lange OL, Nobes PS, Osmond CB, Ziegler H, editors. Physiological plant ecology. II. Encyclopedia of plant physiology, vol. 12B. Berlin: Springer; 1982. p. 153–79.

47. Javelle M, Vernoud Y, Rogowsky PM, Ingram GC. Epidermis: the formation and functions of a fundamental plant tissue. New Phytol. 2011;189:137–49.

48. Giovannini MP, Saltzmann KD, Puthoff DP, Gonzalez M, Ohm HW, Williams CE. A novel wheat gene encoding a putative chitin-binding lectin is associated with resistance against hessian fly. Mol Plant Pathol. 2007;8:69–82.

49. Subramanym S, Smith DF, Sardesai N, Williams CE. Functional characterization of HFR1, a high-mannose N-glycan-specific wheat lectin induced by hessian fly larvae. Plant Physiol. 2008;147:1412–26.

50. Paty A, Chellamuthu A, Gatehouse AM, Fitches E, Gatehouse JA. Insecticidal activity of wheat hessian fly responsive proteins HFR-1 and HFR-3 towards a non-target wheat pest, cereal aphid (Sitobion avenae F.). J Insect Physiol. 2012;58:991–9.

51. Shukle RH, Subramanym S, Saltzmann KA, Williams CE. Ultrastructural changes in the midguts of hessian fly larvae feeding on resistant wheat. J Insect Physiol. 2010;56:754–60.

52. Rowland Q, Zheng H, Hepworth SR, Lam P, Jetter R, Kunst L. CPR4 encodes an alcohol-forming fatty acyl-coenzyme a reductase involved in cuticular wax production in Arabidopsis. Plant Physiol. 2006;142:866–77.

53. Kosma DK, Nemacheck JA, Jenks WA, Williams CE. Changes in properties of wheat leaf cuticle during interactions with hessian fly. Plant J. 2010;63:51–43.

54. Gechev TS, Van Beusegem F, Stone JM, Deneve J, Loloi C. Reactive oxygen species as signals that modulate plant stress responses and programmed cell death. Bioessays. 2006;28:1091–101.

55. Mittler R, Vanderauwera S, Gollery M, Van Beusegem F. Reactive oxygen gene network of plants. Trend Plant Sci. 2004;9:490–8.

56. Chen M-S. Inducible direct plant defense against insect herbivores: a review. Insect Sci. 2008;15:101–14.

57. Moloi MJ, van der Westhuizen AI. The reactive oxygen species are involved in resistance responses of wheat to the Russian wheat aphid. J Plant Physiol. 2016;193:118–25.

58. Santos JC, Silveira FAO, Fernandes GW. Long term oviposition preference and larval performance of Schizomyia macrocapillata (Diptera: Cecidomyiidae) on larger shoots of its host plant Bauhinia brevis (Fabaceae). Evol Ecol. 2008;22:123–37.

59. War AR, Paulraj MG, Ahmad T, Buhroo AA, Hussain B, Ignacimuthu S, Sharma HC. Mechanisms of plant defense against insect herbivores. Plant Signal Behav. 2012;7:1306–20.

60. Gols R. Direct and indirect chemical defenses against insects in a multitrophic framework. Plant Cell Environ. 2014;37:1741–52.

61. Ehling J, Chowria SG, Mattheus N, Aeschliman DS, Arimura G, Bohlmann J. Comparative transcriptome analysis of Arabidopsis thaliana infected by diamond back moth (Plutella xylostella) larvae reveals signatures of stress response, secondary metabolism, and signaling. BMC Genomics. 2008;9:1515.

62. Huang XZ, Chen JY, Xiao HJ, Xiao YT, Wu J, Wu JX, Zhou JJ, Zhang YJ, Guo YJ. Dynamic transcriptome analysis and volatile profiling of Gossypium hirsutum.
hirsutum in response to the cotton bollworm Helicoverpa armigera. Sci Rep. 2015;5:11867.

67. Zhao S, Tuan PA, Li X, Kim YB, Kim HR, Park CG, Yan J, Li CH, Park SU. Identification of phenylpropanoid biosynthetic genes and phenylpropanoid accumulation by transcriptome analysis of Lycium chinense. BMC Genomics. 2013;14:802.

68. Lacombe E, Hawkins S, Van Doorselaere J, Piquemal J, Goffner D, Poeydomenge O, Boudet AM, Grima-Pettenati J. Cinnamoyl CoA reductase, the first committed enzyme of the lignin branch biosynthetic pathway: cloning, expression and phylogenetic relationships. Plant J. 1997;11:429–41.

69. Johnson MTJ, Smith SD, Rausher MD. Plant sex and the evolution of plant defenses against herbivores. Proc Natl Acad Sci U S A. 2000;96:18079–84.

70. Davin LB, Wang H-B, Crowell AL, Bedgar DL, Martin DM, Sarkansen S, Lewis NG. Stereoselective bimolecular phenoxyl radical coupling by an auxiliary (dirigent) protein without an active center. Science. 1997;275:362–6.

71. Burlat V, Kwon M, Davin LB, Lewis NG. Dirigent proteins and dirigent sites in lignifying tissues. Phytochemistry. 2001;57:883–97.

72. Bennett RN, Wallsgrove RM. Secondary metabolites in plant defense mechanisms. New Phytol. 1994;127:617–33.

73. Marjamäki K, Kukkola EM, Fagerstedt KV. The role of xylem class III peroxidases in lignification. J Exp Bot. 2009;60:367–76.

74. Howells RH, Craze M, Bowden S, Wallington EJ. Efficient generation of stable, heritable gene edits in wheat using CRISPR/Cas9. BMC Plant Biol. 2018;18:215.

75. Sosa O, Gallun RL. Purification of races B and C of the hessian fly by genetic manipulation. Ann Entomol Soc Am. 1973;66:1065–70.

76. Gill BS, Wilson DL, Raupp WJ, Hatchett JH, Cox TS, Amri A, Sears RG. Registration of KS89WGRC3 and KS89WGRC6 hessian fly-resistant hard winter wheat germplasm. Crop Sci. 1991;31:245.

77. Gill BS, Hatchett JH, Cox TS, Raupp WJ, Sears RG, Martin TJ. Registration of KS85WGRC01 hessian fly-resistant hard red winter wheat germplasm. Crop Sci. 1986;26:1266–7.

78. Cox TS, Hatchett JH, Sears RG, Gill BS. Registration of KS92WGRC26, hessian fly-resistant hard red winter wheat germplasm. Crop Sci. 1994;34:1138–9.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.