On the Origin of the Trigger-Angle Dependence of the Ridge Structure

Yogiro Hama1,\textdagger, Rone P.G. Andrade1, Frédérique Grassi1 and Wei-Liang Qian2

1Instituto de Física, Universidade de São Paulo, São Paulo, Brazil
2Departamento de Física, Universidade Federal de Ouro Preto, Ouro Preto-MG, Brazil

The origin of the trigger-angle dependence of the ridge structure in two-hadron long-range correlations, as observed at RHIC, is discussed as due to an interplay between the elliptic flow caused by the initial state global geometry and flow produced by fluctuations.

\section{1. Introduction}

One of the most striking results in relativistic heavy-ion collisions at RHIC and LHC, is the existence of structures in the two-particle correlations1--6 plotted as function of the pseudorapidity difference $\Delta \eta$ and the angular spacing $\Delta \phi$. The so-called ridge has a narrow $\Delta \phi$ located around zero and a long $\Delta \eta$ extent. The other structure located opposite has a single or double hump in $\Delta \phi$.

In a previous work,7 we got the ridge structure in a purely hydrodynamic model. What is essential to producing ridges in hydrodynamic approach are: i) Event-by-event fluctuating initial conditions (IC); and besides, ii) Very bumpy tubular structure in the IC. Our code NeXSPheRIO uses this kind of IC, produced by NEXUS event generator,8 connected to SPheRIO hydro code.9 In our previous studies on ridge, by using 3D NeXSPheRIO code, we obtained some of the experimentally known properties such as

- centrality dependence,10)--12)
- trigger-direction dependence in non-central windows,10)--13)
- p_T dependence,11), 12)

However, \textit{what is the origin of ridges?} In order to understand the dynamics of ridge formation, we studied carefully what happens in the neighborhood of a peripheral high-energy tube, introducing what we call \textit{boost-invariant one-tube model}.10)

\section{2. In-plane/out-of-plane effect}

In non-central collisions (20-60\% centrality), data have been obtained, fixing the azimuthal angle of the trigger (ϕ_S) with respect to the event plane.15), 16) As shown in Fig. 1, the ridge structure in $\Delta \phi$ depends on the trigger direction, especially on the away-side. It changes continuously from one-broad-peak structure at $\phi_S = 0$ (in-plane trigger), to double-peak structure at $\phi_S = \pi/2$ (out-of-plane trigger). The change is particularly manifest for larger transverse momentum of the associated particle. We tried to see whether this behavior can be obtained with our NeXSPhe...
RIO code. The results are shown in Fig. 1, with solid lines. Here, we emphasize that these are results of no-parameter computations, having been all the parameters fitted previously using the single-particle η and p_T distributions. So, we think NeXSPheRIO code can reproduce the data quite reasonably.

Now, how this effect is produced? Trying to clarify the origin of the effect, we again used the boost-invariant one-tube model, now adapted to non-central collisions. In Ref. 17), we took as the background the average energy-density distribution obtained with NeXSPheRIO, which now has an elliptical shape. A randomly distributed peripheral tube is put on top of this as our initial conditions. As shown there the two-particle correlation obtained with this model does reproduce the in-plane/out-of-plane effect, as shown by data.\(^\ast\)

However, the mechanism of this effect is still not transparent. In order to make it clearer, we try the following analytical model, which is valid if the amplitude of fluctuations is small enough:

$$
\frac{dN}{d\phi}(\phi, \phi_t) = \frac{dN_{bgd}}{d\phi}(\phi) + \frac{dN_{\text{tube}}}{d\phi}(\phi, \phi_t),
$$

where

$$
\frac{dN_{bgd}}{d\phi}(\phi) = \frac{N_b}{2\pi} (1 + 2v_b^2 \cos(2\phi)) \quad \text{and}
$$

$$
\frac{dN_{\text{tube}}}{d\phi}(\phi, \phi_t) = \frac{N_t}{2\pi} \sum_{n=2,3} 2v_n^t \cos(n[\phi - \phi_t]).
$$

The azimuthal angle ϕ is measured with respect to the event plane and ϕ_t is the location of the randomly distributed tube.

\(^\ast\) See more details in Ref. 17).
The two-particle correlation is given by

\[
\langle \frac{dN_{\text{pair}}}{d\Delta \phi}(\phi_s) \rangle = \langle \frac{dN_{\text{pair}}}{d\Delta \phi}(\phi_s) \rangle_{\text{proper}} - \langle \frac{dN_{\text{pair}}}{d\Delta \phi}(\phi_s) \rangle_{\text{mixed}},
\]

(2.4)

where, in one-tube model,

\[
\langle \frac{dN_{\text{pair}}}{d\Delta \phi} \rangle_{\text{proper}} = \int \frac{d\phi_t}{2\pi} f(\phi_t) \frac{dN}{d\phi}(\phi_s, \phi_t) \frac{dN}{d\phi}(\phi_s + \Delta \phi, \phi_t)
\]

and

\[
\langle \frac{dN_{\text{pair}}}{d\Delta \phi} \rangle_{\text{mixed}} = \int \frac{d\phi_t}{2\pi} f(\phi_t) \int \frac{d\phi_t}{2\pi} f(\phi_t) \frac{dN}{d\phi}(\phi_s, \phi_t) \frac{dN}{d\phi}(\phi_s + \Delta \phi, \phi_t').
\]

(2.5)

Here, \(\phi_s \) is the trigger angle (\(\phi_s = 0 \) for in-plane and \(\phi_s = \frac{\pi}{2} \) for out-of-plane trigger) and \(f(\phi_t) \) is the distribution function of the tube. We will take \(f(\phi_t) = 1 \), for simplicity. Notice that in the mixed events, integrations both over \(\phi_t \) and \(\phi_t' \) are required, whereas only one integration, over \(\phi_t \) is enough for proper events in the averaging procedure. This difference becomes essential.

Using our simplified parametrization, (2.1), (2.2), (2.3) and, by averaging over events, the two-particle correlation for the in-plane trigger is given as

\[
\langle \frac{dN_{\text{pair}}}{d\Delta \phi} \rangle_{\text{in-plane}} = \frac{< N^2_b >}{(2\pi)^2} (1 + 2v_2^b)(1 + 2v_2^b \cos(2\Delta \phi)) + \frac{< N_t >^2}{2\pi} \sum_{n=2,3} 2(v_n^t)^2 \cos(n\Delta \phi)
\]

(2.7)

and

\[
\langle \frac{dN_{\text{pair}}}{d\Delta \phi} \rangle_{\text{mixed}} = \frac{< N_b >^2}{(2\pi)^2} (1 + 2v_2^b)(1 + 2v_2^b \cos(2\Delta \phi))
\]

(2.8)

Observe the difference between the factors multiplying the background terms of the proper- and the mixed-event correlations. So, by subtracting (2.8) from (2.7), the resultant in-plane correlation is

\[
\langle \frac{dN_{\text{pair}}}{d\Delta \phi} \rangle_{\text{in-plane}} = \frac{< N^2_b > - < N_b >^2}{(2\pi)^2} (1 + 2v_2^b)(1 + 2v_2^b \cos(2\Delta \phi)) + \frac{< N_t >^2}{2\pi} \sum_{n=2,3} 2(v_n^t)^2 \cos(n\Delta \phi),
\]

(2.9)

i.e., if the multiplicity fluctuates the background elliptic flow does contribute to the correlation.

Similarly, the out-of-plane correlation is given as

\[
\langle \frac{dN_{\text{pair}}}{d\Delta \phi} \rangle_{\text{out-of-plane}} = \frac{< N^2_b > - < N_b >^2}{(2\pi)^2} (1 - 2v_2^b)(1 - 2v_2^b \cos(2\Delta \phi)) + \frac{< N_t >^2}{2\pi} \sum_{n=2,3} 2(v_n^t)^2 \cos(n\Delta \phi).
\]

(2.10)

One sees that, because of the change in the trigger angle \(\phi_s \) (\(0 \to \pi/2 \)), the cosine dependence of the background contribution has an opposite sign, as compared to the in-plane correlation. We found the in-plane/out-of-plane effect! To illustrate these results, plots are shown in Fig. 2, with an appropriate choice of parameters.
§3. Conclusions

In conclusion, the NeXSPheRIO code gives correct qualitative behavior of the in-plane/out-of-plane effect. A simplified analytical one-tube model shows that this effect appears because, besides the contribution coming from the peripheral tube, additional contribution arises from the background elliptical flow, due to the multiplicity fluctuation. The latter is back-to-back ($\Delta\phi = 0, \pi$) in the case of in-plane triggers ($\phi_S \sim 0$) and rotated by $\pi/2$ ($\Delta\phi = -\pi/2, \pi/2$) in the case of out-of-plane triggers ($\phi_S \sim \pi/2$).

Acknowledgements

We acknowledge funding from FAPESP and CNPq.

References

1) PHENIX Collab., A. Adare et al., Phys. Rev. C 78 (2008), 014901.
2) STAR Collab., B.I. Abelev et al., Phys. Rev. Lett. 102 (2009), 052302.
3) PHOBOS Collab., B. Alver et al., Phys. Rev. C 81 (2010), 024904.
4) ALICE Collab., K. Aamodt et al., Phys. Rev. Lett. 107 (2011), 032301.
5) B. Wyslouch for the CMS Collab., arXiv:1107.2895.
6) P. Steinberg for the ATLAS Collab., arXiv:1107.2182.
7) J. Takahashi, et al., Phys. Rev. Lett. 103 (2009), 242301.
8) H.J. Drescher et al., Phys. Rev. C 65 (2002), 054902.
9) C.E. Aguiar et al., J. Phys. G 27 (2001), 75.
10) Y. Hama, et al., Nonlin. Phenom. Complex Sys. 12 (2010), 466.
11) R.P.G. Andrade, et al., J. Phys. G 37 (2010), 094043.
12) R.P.G. Andrade, et al., Nucl. Phys. A 854 (2011), 81.
13) R.P.G. Andrade, et al., arXiv:1012.5275 [hep/ph].
14) Y. Hama, et al., arXiv:1012.1342 [hep/ph].
15) STAR Collab., A. Feng et al., J.Phys. G 35 (2008), 104082.
16) STAR Collab., H. Agakishiev et al., arXiv:1010.0690 [nucl-ex].
17) R. Andrade, F. Grassi, Y. Hama, W.-L. Qian, arXiv:1012.5275 [hep-ph].