RESEARCH ARTICLE

Lens fluorescence and skin fluorescence in the Copenhagen Twin Cohort Eye Study: Covariates and heritability

Jakob Bjerager1,1*, Sami Dabbah1, Mohamed Belmouhand1, Simon P. Rothenbuehler1,2, Birgit Sander1, Michael Larsen1,3

1 Department of Ophthalmology, Rigshospitalet, Glostrup, Denmark, 2 Department of Ophthalmology, University Hospital Basel, Basel, Switzerland, 3 Faculty of Health and Medical Sciences, Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark

* jakob.kondras.bjerager.02@regionh.dk

Abstract

Lens and skin fluorescence are related to the systemic accumulation of advanced glycation end products, which is accelerated in diabetes. We have examined lens fluorescence and skin fluorescence in healthy adult twins. The study enrolled twins aged median 59 years from a national population-based registry. Diabetic individuals were excluded from analysis. The interrelatedness between fluorescence parameters and relations between fluorescence and age, current HbA1c and smoking pack years were examined using correlation tests and mixed model linear regression analyses. Broad-sense heritability was analyzed and compared for lens fluorescence, skin fluorescence and HbA1c. Lens fluorescence and skin fluorescence were crudely interrelated (R = 0.38). In linear regression analyses, age explained a larger fraction of the variance in lens fluorescence (R² = 32%) than in skin fluorescence (R² = 20%), whereas HbA1c explained smaller variance fractions (R² = 3% and 8%, respectively) followed by smoking pack years (4% and 3%, respectively). In multivariate analyses, age, HbA1c and smoking pack years combined explained more of the variance in lens fluorescence (R² = 35%) than in skin fluorescence (R² = 21%), but the influence of HbA1c on lens fluorescence was not statistically significant (p = .2). Age-adjusted broad-sense heritability was 85% for lens fluorescence, 53% for skin fluorescence and 71% for HbA1c in best fitting heritability models. Both fluorescence parameters increased with age, current glycemia and cumulative smoking. Lens fluorescence was found to be a predominantly heritable trait, whereas skin fluorescence was more influenced by environmental factors and closer related to current glycemia. The results suggest that skin fluorophores have a faster turnover than lens fluorophores.

Introduction

The fluorescence of various tissues with high proportions of long-lived proteins increase with age as the result of denaturation of various constituent molecules and accumulation of
Funding: This work was supported by THE VELUX FOUNDATIONS (JB, grant no. 00028975, https://veluxfoundations.dk/en), Rigshospitalets Forskningsudvalg (MB, grant no. E-23334-02, https://www.rigshospitalet.dk/forskningsom-forsknings/videnskab/forskningsudvalget.aspx), P. Carl Petersens Fond (MB, grant no. 19102, https://www.pcarlp-fond.dk/), Helsefonden (MB, grant no. 19-B-0063, https://helsefonden.dk/), Aase og Ejnar Danielsens Fond (MB, grant no. 18-10-0698, https://danielsensfond.dk/), Beckett Fonden (MB, grant no. 19-2-3490, https://beckett-fonden.dk/) and Einar Willumsens Mindelegat (MB, grant no. 500028, https://www.legatbo gen.dk/fabrikan- einar-willumsens-mindelegat/stoetteomraade/7684). This work was also supported by Horizon 2020, the European Union’s Framework Programme for Research and Innovation, under grant agreements no. 732613 (GALAHAD) and no. 780989 (MERLIN). The funding organization had no role in the design or conduct of this research.

Competing interests: The authors have declared that no competing interests exist.
Data sources

Lens fluorescence was measured in the right eye of phakic subjects using a commercial ocular fluorometer (Fluortron Master TM-2 with Windows software, revision B.17, OcuMetrics, Mountain View, California, USA), approximately 1 hour after dilation with tropicamide 1% eye drops. The device measures blue-green fluorescence at incremental steps of 0.125 mm along the optical axis of the eye using excitation light at 430–490 nm and detection at 530–630 nm with results reported in units of equivalent fluorescein concentration in water (ng/mL). Measurements were performed under scotopic lighting conditions. Absorption-corrected anterior lens peak fluorescence was calculated using the manufacturer’s software. Lens fluorescence peak values were corrected for ambient light in the examination room by subtraction of the lowest fluorescence readings in each scan (averaged from the fluorescence intensities of the 15/148 steps with the lowest intensities). Subjects were scanned up to six times in order to achieve three successful scans. Individuals were excluded from the study if six scan attempts could not provide three successful scans. Unsuccessful scans counted scans with ambient background light values above 30% of the posterior absorption-corrected lens peak fluorescence, as recommended by the manufacturer, and if blinking had occurred at critical points during the scan. Lens fluorescence values used for data analysis were based on the average absorption-corrected anterior peak value of three successful scans. Study subjects with intraocular lens implants were excluded.

Skin fluorescence was measured on the anterior forearm with a designated commercial device (Diagnoptics AGE Reader, Diagnoptics Technologies B.V., Groningen, Netherlands). The instrument emits light at 300–420 nm, with peak intensity at 370 nm, on a 4 cm² skin area and measures emission at 300–600 nm. Data output is a double-digit arbitrary unit (AU) index of 420–600 nm fluorescence relative to reflected 300–420 nm emission multiplied by 100 [6]. The average of three readings per subject was used for analyses. According to the manufacturer’s guidelines, subjects with excessive sweating, tattoos, recently applied skin cream or recent intensive sunbathing affecting the skin region of interest were excluded from analysis. The first measurement after device start-up was routinely discarded, as recommended by the manufacturer.

We choose to include three lens fluorescence and three skin fluorescence readings per subject for analyses since three are enough to evaluate reproducibility of measurements and the maximum to which one can reasonably expose a study participant in a study that also includes other procedures. Also, unilateral measurements only do not require statistical adjustments for paired organ data clustering.

Blood samples obtained during the examinations were analyzed for HbA₁c.

Data on accumulated smoking pack years were obtained by interview. Participants who reported <1 pack year were categorized as non-smokers.

Outcome measures and covariates

Lens and skin fluorescence data were tested for interrelatedness and relation to age, HbA₁c and smoking pack years using correlation tests and linear regression analyses. Broad-sense heritability analyses were conducted for fluorescence parameters and HbA₁c with outcome variables being the heritability coefficients A (additive genetics, often referred to as a²), D (dominant genetics, d²), C (shared environment, c²) and E (non-shared environment, e²) and the broad-sense heritability coefficient h² (A + D). Heritability coefficients were examined in the following combinatory heritability models: ACE, ADE, AE, DE and CE.

Statistical analyses

Microsoft Excel 360 for Windows 10 was used for demographic statistics, GraphPad Prism v9.0.0.121 for reproducibility of measurements analyses and R-Studio v1.2.5001 for Windows.
10 was used for all other statistical analyses. Normality was tested by Shapiro-Wilk normality tests. Fluorescence parameters were transformed by log10 to obtain normal distributions in parametric tests. All fluorescence values reported have been back-transformed to geometric mean values with 95% confidence intervals. Parametric parameters were reported in means and standard deviations (SD) while non-parametric parameters were reported in medians and inter-quartile ranges (IQR). Reproducibility of fluorescence measurements were assessed by three-group one-way ANOVA analyses. Pearson’s correlation tests were used in case of normal distributions and Spearman’s rank correlation tests were used for non-normally distributed parameters. Univariate and multivariate log-level linear mixed model regression analyses adjusted for twin-pair clustering were performed with the R functions ‘lmer()’ (lme4 v.1.1.26 package) and ‘modelTest ()’ (Wileymisc v. 1.2.0 package). Reported coefficient estimates from linear regression analyses were transformed by antilog to designate percentage increase in fluorescence per unit increase in either age (years), smoking (pack years) or HbA1c (mmol/mol). Broad-sense heritability was calculated for lens fluorescence, skin fluorescence and HbA1c by a linear regression model of each parameter as a function of age using the R function ‘twinlm()’ (mets v. 1.2.8.1 package). Best fitting heritability models were found by Akaike’s information criterion (AIC). The lowest AIC-value defined the best fitting model for lens fluorescence, skin fluorescence and HbA1c, but models with AIC-values between the value of the best fitting model and the value of the best model plus two AIC-units were considered non-inferior to true best fitting models.

Results

This study included 239 subjects with lens fluorescence measurements and 177 individuals with skin fluorescence measurements (Fig 1, for demographics see Table 1). 163 individuals provided both lens and skin fluorescence data (median age 59 (IQR 13), median HbA1c 37 (IQR 4)). 318 non-diabetic paired twins from the cohort study (85 monozygotic and 74 dizygotic pairs) presented HbA1c data (Median age 60 (IQR 12), median HbA1c 37 mmol/mol (IQR 4)).

Mean lens fluorescence averaged from three measurements per subject was 554 ng/mL [95% CI 530–579] (n = 239). Mean skin fluorescence averaged from three measurements per subject was 2.05 AU [95% CI 1.99–2.11] (n = 177). We found both measurements of lens and skin fluorescence to have a high repeatability (S1 File).

Linear mixed model regression analysis of skin fluorescence as a function of lens fluorescence adjusted for twin-pair clustering found a marginal, positive relationship (adjusted $R^2 = 0.15$ (p < .001)) (Fig 2). In correlation testing, the correlation between lens fluorescence and skin fluorescence was $R = 0.38$ (p < .001). Positive correlations were found between fluorescence parameters and examined covariates (Table 2).

In univariate linear regression analyses, age was the parameter that explained the most variance in lens fluorescence and skin fluorescence (31.9% and 15.4% respectively based on R^2 values, both p < .001)). The multivariate regressions incorporating both age, HbA1c, and smoking pack years were found to explain 35.0% and 20.8% of the variances in lens fluorescence and skin fluorescence, respectively. The influence of all covariates where statistically significant (all p ≤.036), except for HbA1c in multivariate analysis of lens fluorescence (p = .204) (Table 3).

Heritability of fluorescence parameters and HbA1c

Broad-sense heritability analyses showed that the best fitting heritability model for lens fluorescence was the AE-model ($h^2 = 85%$), although the ACE-, ADE- and DE-models were all statistically non-inferior according to AIC criteria. The best fitting skin fluorescence model was
the DE-model ($h^2 = 53\%$), with the ADE- and AE-models being statistically non-inferior (Table 4). For HbA$_{1c}$, the best fitting heritability model was the AE-model (AIC: 1554.847) with the ACE- and ADE-models being non-inferior (AIC: 1555.083 and 1556.847, respectively).

Broad-sense heritability (h^2) of best fitting models was 85% for lens fluorescence, 53% for skin fluorescence and 71% for HbA$_{1c}$. Lens fluorescence had the highest h^2 across all models, skin fluorescence had the lowest h^2 in 3/4 models whereas HbA$_{1c}$ ranked in the middle between lens and skin fluorescence in 3/4 models. The exceptions to the trend were the ACE-models, where HbA$_{1c}$ had the lowest h^2 and skin fluorescence ranked in-between lens fluorescence and HbA$_{1c}$ (Table 4, Fig 3).

Discussion

In our middle-aged, non-diabetic study population, age was the co-variate studied that explained the largest proportion of variance in both lens and skin fluorescence, and the influence was stronger on lens fluorescence. Lesser roles, statistically, were found for HbA$_{1c}$ and accumulated smoking. Combined, these covariates could only explain modest amounts of the
variation in lens and skin fluorescence. As our fluorescence measurements were highly repeatable with no statistically significant difference between measurements of individuals, the considerable residual variance in fluorescence parameters left unexplained cannot be meaningfully attributed to a lack of precision in the fluorometric methods used, and it is likely better explained by genetical influences or environmental factors unaccounted for in the present study.

![Image](https://doi.org/10.1371/journal.pone.0256975.g002)

Fig 2. The relationship between lens fluorescence and skin fluorescence (n = 163). Fluorescence values was transformed by log10. Linear regression line with 95% confidence intervals shown. AU: Artificial Units.

Table 1. Demographics of lens and skin fluorescence study populations.

	Total population	Paired MZ twins	Paired DZ twins
Lens fluorescence			
n	239	108 (54 pairs)	100 (50 pairs)
Lens fluorescence, ng/mL, [95% CI]	554 [530–579]	536 [499–575]	576 [540–614]
Sex (females)	55%	59%	46%
Age, years, (IQR)	59 (11)	58 (12)	60 (12)
HbA1c, mmol/mol, (IQR)	37 (4)	37 (4)	37 (4)
Smokers, "yes" or "previous" (%)	45%	47%	41%
Smoking pack years if smoking "yes" or "previous", (IQR)	11 (13)	11 (12)	11 (15)

Skin fluorescence			
n	177	72 (36 pairs)	86 (43 pairs)
Skin fluorescence, AU, [95% CI]	2.05 [1.99–2.11]	2.02 [1.92–2.12]	2.04 [1.95–2.13]
Sex (females)	49%	53%	44%
Age, years, (IQR)	59 (14)	58 (16)	60 (14)
HbA1c, mmol/mol, (IQR)	37 (4)	37 (4)	37 (4)
Smokers, "yes" or "previous" (%)	44%	42%	52%
Smoking pack years if smoking "yes" or "previous", (IQR)	12 (13)	11 (12)	11 (15)

There was no statistically significant difference between MZ and DZ subjects for any study parameters (all p > .05, determined by Mann-Whitney U tests). AU: Artificial Units, CI: Confidence interval, DZ: Dizygotic, IQR: Inter-quantile range, MZ: Monozygotic, n: Number of subjects.
As would be expected, the more long-term glycemia indices that are embedded in the lens and skin fluorophore concentrations correlated better with each other than with HbA\textsubscript{1c}, as the latter marker of glycemia-related protein denaturation reflects glycemia levels over no more than approximately 90 day. Cross-sectional glycemia levels may change considerably over a lifetime. Another factor to consider is that HbA\textsubscript{1c} is formed as early as in the second stage of the common chain of biochemical reactions that produce glycemia-related protein denaturation, whereas fluorescent AGEs that accumulate in long-lived tissues are formed with higher latency [45]. HbA\textsubscript{1c} therefore both concentrate and degenerate more rapidly than tissue-accumulated fluorescent AGEs.

We found correlations between lens fluorescence, skin fluorescence and covariates to be considerably lower than those found in a previous comparative study of lens and skin fluorescence among non-diabetic individuals by Januszewski et al. (e.g. correlations between lens and skin fluorescence of R = 0.38 compared to R = 0.58) [34]. Minor methodological discrepancies between the two studies may have contributed to differences in findings. More importantly, differences in sample sizes (n = 163 in the present study compared to n = 60 in Januszewski et al) and age groups (median age 59 years (IQR 11–14) in the present study compared to mean age 36 years ± SD 13 in the former study) may explain why the curve fit was more convincingly achieved by the former group of investigators, since the inter-individual variation in

Table 2. Correlations between study parameters.

	Correlation	p-value
LF (n = 239)		
Age	0.55 S	p < .001
HbA\textsubscript{1c}	0.21 S	p = .001
Smoking	0.11 S	p = .100
SF (n = 177)		
Age	0.35 S	p < .001
HbA\textsubscript{1c}	0.31 S	p < .001
Smoking	0.15 S	p = .048
LF\textsubscript{log10} and SF\textsubscript{log10} (n = 163)	0.38 P	p < .001

S: Spearman rank correlation
P: Pearson correlation

DZ: Dizygotic, LF: Lens fluorescence, MZ: Monozygotic

Table 3. Multivariate and univariate mixed model linear regression analyses.

	Univariate analyses		Multivariate analyses			
	Estimate (%)	p-value	R2 (%)	Estimate (%)	p-value	R2 (%)
Lens fluorescence\textsubscript{log10} (n = 239)						
Age, years	2.4	p < .001	31.9	2.3	p < .001	35.0
HbA\textsubscript{1c}, mmol/mol	2.0	p = .002	3.3	0.7	p = .204	-
Smoking, pack years	0.6	p < .001	4.1	0.6	p < .001	-
Skin fluorescence\textsubscript{log10} (n = 177)						
Age, years	0.8	p < .001	15.4	0.6	p < .001	20.8
HbA\textsubscript{1c}, mmol/mol	1.8	p < .001	8.1	1.0	p = .036	-
Smoking, pack years	0.3	p = .023	2.8	0.3	p = .009	-

Estimates indicate the percentage increase in fluorescence by a one unit increase in either age (years), HbA\textsubscript{1c} (mmol/mol) or smoking pack years (years).

https://doi.org/10.1371/journal.pone.0256975.t003
Fluorescence parameters and age were statistically significant in all regression models (all p < .001). Heritability coefficient results denote the relative contribution to variance within each fluorescence parameter (i.e. 0.85 = 85%). A: Variance attributable to additive genetics, ADE/AE/CE/DE: Different combinatorial heritability models. AIC = Akaike information criterion, C: Variance attributable to shared environment, coeff.: Coefficient, corr.: Correlation, D: Variance attributable to dominant genetics, DZ: Dizygotic, E: Variance attributable to non-shared environment, h²: Broad sense heritability (A + D), LF: Lens fluorescence, SF: Skin fluorescence

†: Best fitting model within each tissue fluorescence type according to AIC criteria
‡: Statistically non-inferior models compared to best fitting model within each tissue fluorescence type according to AIC criteria.

https://doi.org/10.1371/journal.pone.0256975.t004

Table 4. Broad-sense heritability analyses of lens and skin fluorescence adjusted for age.

Model	coeff.	MZ corr.	DZ corr.	A	C	D	E	h²	AIC
LF₉₀ (54 MZ pairs; 50 DZ pairs)									
ACE	0.85 [0.77–0.90]	0.42 [0.39–0.46]	0.85 [0.80–0.91]	0.00 [0.00–0.00]	-	0.15 [0.09–0.22]	0.85 [0.78–0.91]	-338.78 ‡	
ADE	0.85 [0.77–0.90]	0.33 [0.05–0.57]	0.49 [-0.57–1.55]	-	0.36 [-0.70–1.42]	0.15 [0.09–0.22]	0.85 [0.78–0.91]	-339.26 ‡	
AE	0.85 [0.77–0.90]	0.42 [0.39–0.46]	0.85 [0.78–0.91]	-	-	0.16 [0.09–0.22]	0.85 [0.78–0.91]	-340.78 †	
CE	0.64 [0.51–0.74]	0.64 [0.51–0.74]	-	0.64 [0.52–0.75]	-	0.36 [0.25–0.48]	-	-314.52	
DE	0.84 [0.77–0.90]	0.21 [0.19–0.23]	-	-	0.84 [0.78–0.91]	0.16 [0.09–0.22]	0.84 [0.78–0.91]	-340.58 ‡	
SF₉₀ (36 MZ pairs; 43 DZ pairs)									
ACE	0.51 [0.28–0.69]	0.26 [0.15–0.36]	0.51 [0.30–0.72]	0.00 [0.00–0.00]	-	0.49 [0.28–0.70]	0.41 [0.30–0.72]	-365.81	
ADE	0.53 [0.30–0.70]	0.15 [-0.16–0.43]	0.07 [-1.16–1.29]	-	0.46 [-0.80–1.72]	0.47 [0.27–0.67]	0.53 [0.33–0.73]	-366.25 ‡	
AE	0.51 [0.28–0.69]	0.26 [0.15–0.36]	0.51 [0.30–0.72]	-	-	0.49 [0.28–0.70]	0.51 [0.30–0.72]	-367.81 †	
CE	0.37 [0.17–0.55]	0.47 [0.17–0.55]	-	0.37 [0.18–0.57]	-	0.63 [0.43–0.82]	-	-364.25	
DE	0.53 [0.30–0.70]	0.13 [0.08–0.18]	-	-	0.53 [0.33–0.73]	0.47 [0.27–0.67]	0.53 [0.33–0.73]	-368.24 †	

lens fluorescence has consistently been found to increase with age and corresponding findings have been made for some skin fluorophores [11,12,20,37,46–50]. The variance in lens fluorescence explained by age in our univariate analysis (R² = 32%) was roughly comparable to that found by an earlier study (R² = 25%) of 59 subjects aged 8–91 years [38]. However, age explained considerably less of the variance in skin fluorescence in our study (R² = 15%) compared to that of another previous investigation (R² = 29%) conducted by van Waalteringe et al. [42]. This discrepancy may in part be due to a much larger sample size or differences in demographics in the latter study (n = 8695, mean age 49 years ± SD 11) compared to our study population (n = 177, median age 59 (IQR 14)).

In heritability analyses, lens fluorescence was predominantly a heritable trait, whereas genetic and environmental influences were roughly balanced for skin fluorescence. It is presently unknown whether this notable difference in heritability depends on variations in glycosylation rates, factors that inhibit glycation or processes that lead to the degradation of glycation products in the two types of tissue examined by fluorescence in this study. The fact that we found only a crude association between fluorescence of the lens and skin also points to notable intrinsic differences in the accumulation and turnover of AGEs in the two tissues.
Being the parameter influenced the most by environmental factors, skin fluorescence could capture more of the variation in systemic AGE loads attributable to immediate lifestyle influences relative to fluorescence of the lens. The influences of accumulated, more long-term measures of life-style factors, however, may be better embedded in lens fluorescence, as we found the variance in fluorescence explained by life-time smoking pack years to be marginally higher for lens than skin fluorescence. Conversely, we found that current normoglycemia examined by HbA\textsubscript{1c} explained a higher proportion of the variance in skin fluorescence than in lens fluorescence. These findings suggest that skin fluorophores may have a shorter turnover than lens fluorophores, which may make fluorescence of the skin more indicative of recent systemic AGE loads compared to that of the lens.

The prominent heritability of lens fluorescence of 85% compared to the weaker heritability of HbA\textsubscript{1c} of 71% and type 2 diabetes of 20–80% [51] may explain why lens fluorometry is of limited value in screening for and monitoring of type 2 diabetes. It is likely that the reflection of very long-term AGE accumulation embedded in lens fluorescence is of limited relevance in assessing the current maintenance condition of diabetic individuals. Of the two types of tissue fluorescence presently examined, skin fluorescence was found to be more strongly associated with current glucose metabolism. Skin fluorometry was also less contaminated by genetics, which may be more practical in diabetes management, as development of type 2 diabetes is a product of complex interactions between not only genes but also, to a considerable degree, environmental factors [52]. Associations between skin fluorescence and a wide variety of type 2 diabetes markers and long-term diabetes complications have been reported [53]. Assessing risks of diabetes complications is arguably of higher clinical interest than simply diagnosing diabetes [54]. For this purpose, skin fluorescence may potentially supplement Hb\textsubscript{1c} as a biomarker in diabetes management.
Strengths and limitations
Strengths of the study include the twin design and, for a twin study, the number of participants. To our knowledge, this is presently the largest comparative study of lens and skin fluorescence and the first to compare the heritability of lens fluorescence and skin fluorescence. Limitations include that smoking was quantitated solely based on interview so that data may have been subjected to interviewer or recall biases. Ideally, broad-sense heritability analyses should be performed on groups consisting of only men or only women, but we choose to include both sexes to increase statistical power.

Supporting information
S1 File. Supplementary materials.
(DOCX)

Acknowledgments
Clinical Research Associate Professor, MD, Ph.D, Line Kessel at the Department of Ophthalmology, Rigshospitalet Glostrup and president of Ocumetrics Bruce M. Ishimoto were helpful with practical guidance regarding lens fluorometry. MD Mustafa Al-Hamdani contributed with data collection.

Author Contributions
Conceptualization: Jakob Bjerager, Mohamed Belmouhand, Simon P. Rothenbuehler, Birgit Sander, Michael Larsen.
Data curation: Jakob Bjerager, Sami Dabbah, Mohamed Belmouhand.
Formal analysis: Jakob Bjerager, Birgit Sander, Michael Larsen.
Funding acquisition: Jakob Bjerager, Mohamed Belmouhand, Simon P. Rothenbuehler, Birgit Sander, Michael Larsen.
Investigation: Jakob Bjerager, Simon P. Rothenbuehler, Birgit Sander, Michael Larsen.
Methodology: Jakob Bjerager, Simon P. Rothenbuehler, Birgit Sander, Michael Larsen.
Project administration: Jakob Bjerager, Sami Dabbah, Mohamed Belmouhand, Simon P. Rothenbuehler, Michael Larsen.
Resources: Jakob Bjerager, Sami Dabbah, Mohamed Belmouhand, Simon P. Rothenbuehler, Michael Larsen.
Software: Jakob Bjerager, Birgit Sander, Michael Larsen.
Supervision: Jakob Bjerager, Sami Dabbah, Mohamed Belmouhand, Birgit Sander, Michael Larsen.
Validation: Jakob Bjerager, Birgit Sander, Michael Larsen.
Visualization: Jakob Bjerager, Birgit Sander, Michael Larsen.
Writing – original draft: Jakob Bjerager, Birgit Sander, Michael Larsen.
Writing – review & editing: Jakob Bjerager, Sami Dabbah, Mohamed Belmouhand, Birgit Sander, Michael Larsen.
References

1. Ulrich P, Cerami A. Protein glycation, diabetes, and aging. Recent Progress in Hormone Research. 2001.

2. Helou C, Marier D, Jacolot P, Abdennebi-Najar L, Niquet-Leridon C, Tessier FJ, et al. Microorganisms and Maillard reaction products: a review of the literature and recent findings. Amino Acids. 2014 Feb; 46(2):267–77. https://doi.org/10.1007/s00726-013-1496-y PMID: 23988491

3. Monnier VM, Nagaraj RH, Portero-Otin M, Giomb M, Elgawish AH, Sell DR, et al. Structure of advanced Maillard reaction products and their pathological role. Nephrol Dial Transplant. 1996; 11 Suppl 5:20–6. https://doi.org/10.1093/ndt/11.sup5.20 PMID: 9044302

4. Mota MC, Carvalho P, Ramalho JS, Cardoso E, Gaspar AM, Abreu G. Protein glycation and in vivo distribution of human lens fluorescence. Int Ophthalmol. 1994. https://doi.org/10.1007/BF00951795 PMID: 7797380

5. Genuith S, Sun W, Cleary P, Sell DR, Dahms W, Malone J, et al. Glycation and carboxymethyllysine levels in skin collagen predict the risk of future 10-year progression of diabetic retinopathy and nephropathy in the diabetes control and complications trials and epidemiology of diabetes interventions and complications. Diabetes. 2005.

6. Meerwaldt R, Graaff R, Oomen PHN, Links TP, Jager JJ, Alderson NL, et al. Simple non-invasive assessment of advanced glycation endproduct accumulation. Diabetologia. 2004 Jul; 47(7):1324–30. https://doi.org/10.1007/s00125-004-1451-2 PMID: 15243705

7. Monnier VM, Bautista O, Kenny D, Sell DR, Fogarty J, Dahms W, et al. Skin collagen glycation, glycoxidation, and crosslinking are lower in subjects with long-term intensive versus conventional therapy of type 1 diabetes: relevance of glycated collagen products versus HbA1c as markers of diabetic complications. DCCT Skin C. Diabetes. 1999 Apr; 48(4):870–80. https://doi.org/10.2337/diabetes.48.4.870 PMID: 10102706

8. Kessel L, Kalinin S, Nagaraj RH, Larsen M, Johansson LB. Time-resolved and steady-state fluorescence spectroscopic studies of the human lens with comparison to argpyrimidine, pentosidine and 3-OH-kynurenine. Photochem Photobiol. 2002/12/05. 2002; 76(5):549–54. https://doi.org/10.1562/0031-8655(2002)076<0549:trassf.2.co;2 PMID: 12462652

9. Singh R, Barden A, Mori T, Beilin L. Advanced glycation end-products: a review. Diabetologia [Internet]. 2001; 44(2):129–46. Available from: https://doi.org/10.1007/s001250051591 PMID: 11270668

10. Singh VP, Bafi A, Singh N, Jaggi AS. Advanced glycation end products and diabetic complications. Korean J Physiol Pharmacol [Internet]. 2014/02/13. 2014 Feb; 18(1):1–14. Available from: https://www.ncbi.nlm.nih.gov/pubmed/24634591. https://doi.org/10.4196/kjpp.2014.18.1.1 PMID: 24634591

11. Bleeker JC, van Best JA, Vrij I, van der Velde EA, Oosterhuis JA. Autofluorescence of the lens in diabetic and healthy subjects by fluorophotometry. Invest Ophthalmol Vis Sci. 1986 May 1; 27(5):791–4. PMID: 30460578

12. Kessel L, Jørgensen T, Glümer C, Larsen M. Early lens aging is accelerated in subjects with a high risk of ischemic heart disease: An epidemiologic study. BMC Ophthalmol. 2006.

13. van Waateringe RP, Fokkens BT, Slagter SN, van der Klauw MM, van Vliet-Ostapchouk J V., Graaff R, et al. Skin autofluorescence predicts incident type 2 diabetes, cardiovascular disease and mortality in the general population. Diabetologia. 2019. https://doi.org/10.1007/s00125-018-4769-x PMID: 30460578

14. Abiko T, Abiko A, Ishiko S, Takeda M, Horiiuchi S, Yoshida A. Relationship between autofluorescence and advanced glycation end products in diabetic lenses. Exp Eye Res. 1999/03/18. 1999; 68(3):361–6. https://doi.org/10.1006/exer.1998.0615 PMID: 10079144

15. Pehlivanoglu S, Acar N, Albayrak S, Karakaya M, Ofluoglu A. The assessment of autofluorescence of the crystalline lens in diabetic patients and healthy controls: can it be used as a screening test? Clin Ophthalmol. 2018/07/10. 2018; 12:1163–70. https://doi.org/10.2147/OPTH.S164960 PMID: 29983542

16. Bron AJ, Sparrow J, Brown NAP, Harding JJ, Blakbytny R. The lens in diabetes. Eye. 1993. https://doi.org/10.1038/eye.1993.60 PMID: 7607346

17. Sparrow JM, Bron AJ, Brown NA, Neil HA. Autofluorescence of the crystalline lens in early and late onset diabetes. Br J Ophthalmol. 1992/01/01. 1992; 76(1):25–31. https://doi.org/10.1136/bjo.76.1.25 PMID: 1739687

18. Koefoed Theil P, Hansen T, Larsen M, Pedersen O, Lund-Andersen H. Lens autofluorescence is increased in newly diagnosed patients with NIDDM. Diabetologia [Internet]. 1996 Dec [cited 2019 Jul 14]; 39(12):1524–7. Available from: http://www.ncbi.nlm.nih.gov/pubmed/8960836. https://doi.org/10.1007/s001250050608 PMID: 8960836
Comparison of lens fluorescence and skin fluorescence in healthy Danish twins

19. Bordat B, Arnaud C, Guirgis IR, Laudeo A. Fluorophotometric study of lens autofluorescence and the blood-retinal barrier in 56 diabetic patients. Eur J Ophthalmol [Internet]. 2019; 31(1):13–8. Available from: http://www.ncbi.nlm.nih.gov/pubmed/7795396. PMID: 7795396

20. Burd J, Lum S, Cahn F, Ignotz K. Simultaneous noninvasive clinical measurement of lens autofluorescence and rayleigh scattering using a fluorescence biomicroscope. J Diabetes Sci Technol. 2013/01/09. 2012;6(6):1251–9. https://doi.org/10.1177/193229681200600603 PMID: 23294769

21. Bordat B, Laudeo A, Guirgis IR, Arnaud C. [Study of the crystalline lens by fluorophotometry in 60 control subjects and 56 diabetics]. J Fr Ophthalm. 1992. PMID: 1640064

22. Larsen M, Kjer B, Bendtson I, Dalgaard P, Lund-Andersen H. Lens fluorescence in relation to nephropathy in insulin-dependent diabetes mellitus. Graefes Arch Clin Exp Ophthalmol. 1992; 230(1):6–10. https://doi.org/10.1007/BF00166755 PMID: 1547969

23. Munch IC, Larsen M, Borch-Johnsen K, Glumer C, Lund-Andersen H, Kessel L. Cumulative glycaemia as measured by lens fluorometry: association with retinopathy in type 2 diabetes. Diabetologia. 2010/12/31. 2011; 54(4):757–61. https://doi.org/10.1007/s00125-010-2023-2 PMID: 21190013

24. Sertbas M, Sertbas Y, Uner OE, Elarslan S, Okuroglu N, Ak F, et al. Lens autofluorescence ratio as a noninvasive marker of peripheral diabetic neuropathy. Polish Arch Intern Med. 2019. https://doi.org/10.20452/pamw.4449 PMID: 30762026

25. Meerwaldt R, Hartog JWL, Graaff R, Huisman RJ, Links TP, Den Hолander NC, et al. Skin autofluorescence, a measure of cumulative metabolic stress and advanced glycation end products, predicts mortality in hemodialysis patients. J Am Soc Nephrol. 2005. https://doi.org/10.1681/ASN.2005020144 PMID: 16280473

26. Kirkman MS, Kendall DM. Hemoglobin A1c to diagnose diabetes: Why the controversy over adding a new tool? Clinical Chemistry. 2011. https://doi.org/10.1373/clinchem.2010.148213 PMID: 20844061

27. Heinemann L, Freckmann G. Quality of HbA1c measurement in the practice: The German perspective. J Diabetes Sci Technol. 2015; https://doi.org/10.1177/1932296815572254 PMID: 25691655

28. Shephard JG, Airee A, Dake AW, McFarland MS, Vora A. Limitations of A1c Interpretation. Southern Medical Journal. 2015. https://doi.org/10.14423/SMJ.0000000000000381 PMID: 26630892

29. Kilpatrick E, Winocour P. ABCD position statement on haemoglobin A1c for the diagnosis of diabetes. Pract Diabetes Int. 2010.

30. Kohner K-D. Utility of different glycemic control metrics for optimizing management of diabetes. World J Diabetes. 2015. https://doi.org/10.4239/wjd.v6.i17 PMID: 25685275

31. Ceriello A, Ihnat MA, Thorpe JE. The “Metabolic Memory”: Is More Than Just Tight Glucose Control Necessary to Prevent Diabetic Complications? J Clin Endocrinol Metab [Internet]. 2009 Feb 1; 94(2):410–5. Available from: https://doi.org/10.1210/jc.2008-1824 PMID: 19066300

32. Giacco F, Du X, Carratu A, Gerfen GJ, D’Apolito M, Giardino I, et al. GLP-1 cleavage product reverses persistent ROS generation after transient hyperglycemia by disrupting an ROS-generating feedback loop. Diabetes. 2015. https://doi.org/10.2337/db15-0084 PMID: 26294429

33. The relationship of glycemic exposure (HbA(1c)) to the risk of development and progression of retinopathy in the diabetes control and complications trial. Diabetes. 1995.

34. Januszewski AS, Sachithanandan N, Karchshimkus C, O’Neal DN, Yeung CK, Alkatib N, et al. Non-invasive measures of tissue autofluorescence are increased in Type 1 diabetes complications and correlate with a non-invasive measure of vascular dysfunction. Diabet Med. 2012; https://doi.org/10.1111/j.1464-5491.2011.03562.x PMID: 22211881

35. Simó-Servat O, Planas A, Cidain A, Simó R, Hernández C. Assessment of advanced glycation end-products as a biomarker of diabetic outcomes. Endocrinologia, Diabetes y Nutricion. 2018.

36. Klang G. Measurements and studies of the fluorescence of the human lens in vivo. Acta ophthalmologica. 1948; (31):suppl. pp. 1–152.

37. Occhipinti JR, Mosier MA, Burstein NL. Autofluorescence and light transmission in the aging crystalline lens. Ophthalmologica. 1986. https://doi.org/10.1159/000309647 PMID: 3748553

38. Van Best JA, Van Delft JL, Keunen JE. Long term follow-up of lenticular autofluorescence and transmittance in healthy volunteers. Exp Eye Res [Internet]. 1998 Jan; 66(1):17–23. Available from: https://www.ncbi.nlm.nih.gov/pubmed/9533837. PMID: 9533837

39. Silk S, Chylack LT, Friend J, Wolfe J, Teikari J, Nieminen H, et al. Lens autofluorescence and light scatter in relation to the lens opacities classification system, LOCS III. Acta Ophthalmol Scand. 1999. https://doi.org/10.1034/j.1600-0420.1999.770504.x PMID: 10551289

40. Kessel L, Hougaard JL, Sander B, Kylvik KO, Sorensen TI, Larsen M. Lens ageing as an indicator of tissue damage associated with smoking and non-enzymatic glycation—a twin study. Diabetologia. 2002/10/16. 2002; 45(10):1457–62. https://doi.org/10.1007/s00125-002-0925-3 PMID: 12378399
41. Rajaobelina K, Farges B, Nov S, Maury E, Cephise-Velayoudom FL, Gin H, et al. Skin autofluorescence and peripheral neuropathy four years later in type 1 diabetes. Diabetes Metab Res Rev. 2016/05/29. 2017; 33(2). https://doi.org/10.1002/dmrr.2832 PMID: 27235334

42. van Waatering RP, Slagter SN, van der Klauw MM, van Vliet-Ostaptchouk J V, Graaff R, Paterson AD, et al. Lifestyle and clinical determinants of skin autofluorescence in a population-based cohort study. Eur J Clin Invest. 2016/03/24. 2016; 46(5):481–90. https://doi.org/10.1111/eci.12627 PMID: 27002914

43. Van Waateringe RP, Slagter AP, Van Beek AP, Van der Klauw MM, Van Vliet-Ostaptchouk J V., Graaff R, et al. Skin autofluorescence, a non-invasive biomarker for advanced glycation end products, is associated with the metabolic syndrome and its individual components. Diabetol Metab Syndr. 2017. https://doi.org/10.1186/s13098-017-0241-1 PMID: 28572855

44. Stirban A. Measurement of Lens Autofluorescence for Diabetes Screening. J Diabetes Sci Technol. 2014/05/31. 2014; 8(1):50–3. https://doi.org/10.1177/1932296813514501 PMID: 24876537

45. Sherwani SI, Khan HA, Ekhzaimy A, Masood A, Sakharkar MK. Significance of HbA1c test in diagnosis and prognosis of diabetic patients. Biomarker Insights. 2016. https://doi.org/10.4137/BMI.S38440 PMID: 27398023

46. Cahn F, Burd J, Ignotz K, Mishra S. Measurement of Lens Autofluorescence Can Distinguish Subjects With Diabetes From Those Without. J Diabetes Sci Technol. 2014/05/31. 2014; 8(1):43–9. https://doi.org/10.1177/1932296813516955 PMID: 24876536

47. Koefoed Theil P, Kessel L, Hansen T, Lund-Andersen H, Pedersen O, Larsen M. Lens fluorescence in relation to glucose tolerance and genetic predisposition to type 2 diabetes mellitus in a population-based study. Curr Eye Res. 2006/09/13. 2006; 31(9):733–8. https://doi.org/10.1080/02713680600850971 PMID: 16966146

48. Kessel L, Kofoed PK, Zubieta-Calleja G, Larsen M. Lens autofluorescence is not increased at high altitude. Acta Ophthalmol. 2009/05/07. 2010; 88(2):235–40. https://doi.org/10.1111/j.1755-3768.2008.01488.x PMID: 19416110

49. Chang J, Tan R, Luu CD, Sadigh S, Stambolian D, Guymer RH, et al. Imaging Lenticular Autofluorescence in Older Subjects. Invest Ophthalmol Vis Sci. 2017 Oct; 58(12):4940–7. https://doi.org/10.1167/iovs.17-22540 PMID: 28973367

50. Stamatas GN, Estanislao RB, Suero M, Rivera ZS, Li J, Khialt A, et al. Facial skin fluorescence as a marker of the skin’s response to chronic environmental insults and its dependence on age. Br J Dermatol. 2006. https://doi.org/10.1111/j.1365-2133.2005.08949.x PMID: 16403105

51. Ali O. Genetics of type 2 diabetes. World J Diabetes [Internet]. 2013 Aug 15; 4(4):114–23. Available from: https://pubmed.ncbi.nlm.nih.gov/23961321. https://doi.org/10.4239/wjd.v4.i4.114 PMID: 23961321

52. Kaul N, Ali S. Genes, Genetics, and Environment in Type 2 Diabetes: Implication in Personalized Medicine. DNA and Cell Biology. 2016.

53. Fokkens BT, Smit AJ. Skin fluorescence as a clinical tool for non-invasive assessment of advanced glycation and long-term complications of diabetes. Glycocon J. 2016. https://doi.org/10.1007/s10719-016-9683-1 PMID: 27287226

54. Florkowski C. HbA1c as a diagnostic test for diabetes mellitus—Reviewing the evidence. Clin Biochem Rev. 2013. PMID: 24151343