C. difficile infection is the main cause of nosocomial diarrhea in the world. In our hospital, there was no standardized protocol for diagnosis and treatment of this infection. The aim of this study was to measure the impact of implementing a multimodal strategy for surveillance, diagnosis and adequate treatment, reduced mortality related to C. difficile infection, recurrence, and achieved greater clinical cure.

Methods. Observational, retrospective, and analytical study that compared a multimodal strategy for the treatment of C. difficile infection against a traditional strategy, which consisted of treatment with either metronidazole or vancomycin with variable duration of therapy depending on the physician’s choice. The multimodal strategy consisted of active surveillance of cases of nosocomial diarrhea, timely diagnosis (<12 hours), and standard treatment with oral vancomycin for a minimum of 10 days (125 mg po qid in mild and moderate illness, and 250 mg qid in severe disease). Patients with a confirmed diagnosis of C. difficile infection (PCR: Gene Xpert Cepheid) and inflammatory diarrhea were included. The study was carried out in a third-level hospital, in the period between September 2017 and December 2018.

Results. In 15 month study period, 92 cases of C. difficile infection were documented. All cases were caused by strain NAP1 / B1 / 027. Twenty-three patients (25%) had mild disease, 28 (30.4%) moderate illness and 41 (44.56%) complicated illness. Thirty-four patients were evaluated with multimodal strategy and 58 according to the traditional treatment. Only 24 patients (41%) in the traditional treatment group received treatment with oral vancomycin. The clinical outcomes of patients in the multimodal strategy against patients with the traditional strategy were: clinical cure 85.3% vs 37.9% (P = 0.02), recurrence 2.9% vs 17.2% (p < 0.05) and death 11.8% vs 44.8%(p < 0.05), respectively.

Conclusion. Unfortunately, in our country, there are no guidelines for the management of C. difficile infection, and in many hospitals, metronidazole is the most prescribed treatment. In this study, we documented that implementing a standardized strategy of surveillance, diagnosis and adequate treatment, reduced mortality related to C. difficile infection, recurrence, and achieved greater clinical cure.

Cases and deaths related to C. difficile infection before and after implementation of multimodal strategy.

Delays. All authors: No reported disclosures.

Table 1: Demographics

Table 2: PTZ Multivariate Regression Model

Table 3: FEP/CTZ Multivariate Regression Model

Disclosures. All authors: No reported disclosures.

2386. Mortality reduction with implementation of a standardized approach of surveillance, diagnosis and treatment of Clostridioides difficile infections.

Aaron Molina, MD1; Alejandro Olmedo-Reneaum, MD2; YANELLY GARFIAS, MD3; Paulette A. Carmona, Médico interno de pregrado 1; Andrea Constantino1; Mariana Piñera, 1 ISSSTE, Mexico City, District Federal, Mexico; 2 IM resident @ Médica Sur, Mexico City, Mexico; 3 Universidad Tomás Navarro, Mexico, Mexico; 4 Universidad la Salle, Mexico City, District Federal, Mexico

Session: 251. HAI: C. difficile - Epidemiology
Saturday, October 5, 2019; 12:15 PM

Background. Healthcare-associated Clostridioides difficile infection (C diff infection, or CDI) imposes a substantial burden on the healthcare system. The impact of an individual C diff infection on onward transmission is not well understood. We developed a model of incident infections using self-exciting stochastic processes, known as Hawkes processes. These models can be used to improve our understanding of the factors that affect the likelihood of new infections to result in additional infections.

Methods. All patients admitted to a large urban hospital between January 2013 and June 2014 were included. We used Hawkes processes to model the influence of each new CDR case (index infection) on transmission to other patients resulting in additional CDI. We developed separate Hawkes processes for each unit in the hospital to understand the differential impact of a C diff case across units. Units included both semi- and private-room wards, intensive care units, an emergency department, and specialty units such as oncology.

Results. The magnitude of influence of an index infection on additional infections in the 2 days prior to a C diff test being sent varied across units. Results for an oncology unit, the emergency department, and an all private-room unit are provided (Table 1). An index infection in the emergency department demonstrated the greatest influence, leading to the largest number of additional infections, and increasing in the days leading up to the C diff test being sent. The impact 2 days prior to sample collection was similar across all unit types, and remained constant for oncology unit patients.

Conclusion. We used Hawkes processes to model the impact of an index C diff infection on onward transmission. We identified differential impacts associated with the unit where the index patient was located in the days leading up to diagnosis. These differences, which could relate to unit-specific factors such as cleaning practices, patient turnover rates, use of portable medical equipment, antibiotic use, and other factors that vary across units, suggest that interventions aimed at controlling CDI may need to consider unit-specific approaches.

Table 2: PTZ Multivariate Regression Model

Table 3: FEP/CTZ Multivariate Regression Model

Disclosures. All authors: No reported disclosures.

2387. Learning the Influence of Individual Clostridioides difficile Infections

Emily Mu1; Maggie Makar, PhD2; Lauren R. West, MPH3; John Guttag, PhD4; David C. Rosenberg, MD5; Erica S. Shenoy, MD, PhD6; Massachusetts Institute of Technology, Naperville, Illinois; 2 MIT, Cambridge, Massachusetts; 3 Massachusetts General Hospital, Boston, Massachusetts

Session: 251. HAI: C. difficile - Epidemiology
Saturday, October 5, 2019; 12:15 PM

Background. Clostridioides difficile (C. difficile) infection is the main cause of nosocomial diarrhea in the world. In our hospital, there was no standardized protocol for diagnosis and treatment of this infection. The aim of this study was to measure the impact of implementing a multimodal strategy of active surveillance, diagnosis and treatment in the clinical outcome of patients with C. difficile infection.

Methods. We used a traditional treatment strategy consisting of the traditional treatment group received treatment with oral vancomycin. The clinical outcomes of patients in the multimodal strategy against patients with the traditional strategy were: clinical cure 85.3% vs 37.9% (P = 0.02), recurrence 2.9% vs 17.2% (p < 0.05) and death 11.8% vs 44.8%(p < 0.05), respectively.

Conclusion. Unfortunately, in our country, there are no guidelines for the management of C. difficile infection, and in many hospitals, metronidazole is the most prescribed treatment. In this study, we documented that implementing a standardized strategy of surveillance, diagnosis and adequate treatment, reduced mortality related to C. difficile infection, recurrence, and achieved greater clinical cure.

Cases and deaths related to C. difficile infection before and after implementation of multimodal strategy.

Table 1: Increase in expected number of infections per 1000 patient-days.

Table 2: PTZ Multivariate Regression Model

Table 3: FEP/CTZ Multivariate Regression Model

Disclosures. All authors: No reported disclosures.