City-Wide Perceptions of Neighbourhood Quality using Street View Images

Emily Muller
Imperial College London
UK
emily.muller@imperial.ac.uk

Emily Gemmell
University of British Columbia
Vancouver, Canada
emily.gemmell@ubc.ca

Ishmam Choudhury
University of British Columbia
Vancouver, Canada
ishmam1998@gmail.com

Ricky Nathvani
Imperial College London
UK
r.nathvani@imperial.ac.uk

Emily Denton
Google
New York, USA
dentone@google.com

Antje Barbara Metzler
Imperial College London
UK
antje.metzler18@imperial.ac.uk

Seth Flaxman
University of Oxford
UK
seth.flaxman@cs.ox.ac.uk

James Bennett
Imperial College London
UK
umahx99@imperial.ac.uk

Majid Ezzati
Imperial College London
UK
majid.ezzati@imperial.ac.uk

ABSTRACT

The interactions of individuals with city neighbourhoods is determined, in part, by the perceived quality of urban environments. Perceived neighbourhood quality is a core component of urban vitality, influencing social cohesion, sense of community, safety, activity and mental health of residents. Large-scale assessment of perceptions of neighbourhood quality was pioneered by the Place Pulse projects. Researchers demonstrated the efficacy of crowdsourcing perception ratings of image pairs across 56 cities and training a model to predict perceptions from street-view images. Variation across cities may limit Place Pulse’s usefulness for assessing within-city perceptions. In this paper, we set forth a protocol for city-specific dataset collection for the perception: ‘On which street would you prefer to walk?’. This paper describes our methodology, based in London, including collection of images and ratings, web development, model training and mapping. Assessment of within-city perceptions of neighbourhoods can identify inequities, inform planning priorities, and identify temporal dynamics. Code available: https://emilymuller1991.github.io/urban-perceptions/.

1 INTRODUCTION

Street quality refers to the overall quality of the street environment, including built and natural environments, human interactions, infrastructure and transport modes [24]. Street quality is relevant for various components of city life such as urban mobility, safety, social cohesion and economic productivity [26]. The call for a renewed livelihood of street space centres around human-oriented design [16], a critical perspective to enhance urban vitality and alleviate the environmental burdens faced by urban residents. UK initiatives to achieve these objectives include Better Streets London [11] and Low Traffic Neighbourhoods [52]. Within urban design, visual measures of urban physicality contribute to street quality, such as greenery, enclosures, openness, street wall continuity, accessibility, and scale [56]. Objective measures of street quality have been defined by combining these or other attributes to produce city scores [2, 47]. This approach, however, does not reveal the perceived quality of the street as experienced by the user. When viewed through the lens of environmental psychology, perception provides a meaningful interpretation for social behaviour [51]. For example, streets which were perceived as being safe were found to have lower associated crime rates [40]. As such, perceptions of
street quality goes beyond the aesthetic realm, often viewed as qualitative and idiosyncratic, to well defined measures that impact user experience. By integrating user perceptions in urban planning, we can inform design approaches which promote the health of urban residents.

The Image of the City, as formalised by Kevin Lynch [35], is ‘the product of both immediate sensation and the memory of past experience... each individual creates and bears their own image, but there seems agreement amongst members of the same group’. While Lynch refers to the mental image, photographic images have long been used to conduct visual surveys of street quality [14, 18, 45]. The ability to scale these measurements city-wide has become possible only in the last decade, due to increased urban surveillance in the form of street view and satellite imagery, and the accessibility of such data. Crowd-sourced pairwise image ratings have been used to collect perceptions on safety [46], beauty [44], scenic-ness [48] and overall street quality [56]. The large scale global project called Place Pulse 2.0 [9] has provided a dataset and methodology for measuring urban perceptions which has been adopted further to new and unseen cities [5, 40, 41, 63]. This dataset provides an extremely rich basis for generalisability, owing to its surveying across 56 countries and collecting over 1 million user perceptions globally. The trade-off for generalisability is that city-specific perceptions are diminished. Modern city street view images are the unique snapshots of historical, cultural and planning processes, and what may be perceived as apparently wealthy or safe in one city, does not necessarily translate to another city or the image held of wealth or safety for those citizens. Therefore, this work examines within-city perceptions of street quality by including images from only London. In this paper, we set forth a protocol for city-specific urban perception collection using the exemplar question ‘On which street would you prefer to walk?’ We test our method in London, UK. This paper describes our methodology, including web development for hosting image-based survey, data collection and deep learning model training. We present results and interpretations of model predictions, with mapping across London neighbourhoods.

2 BACKGROUND

Much of the work within the domain of street view images for measuring the urban environment takes a supervised learning approach, in which area-level outcomes, such as census data, are assigned to images and models are then trained to predict the outcome assignment. Notable studies use street view images to predict socio-economic status [53], air pollution [54], house prices [29] and urban greenery [32]. Other studies have attempted to interpretability by further image analysis. For example, vehicle types were extracted from street view images and found to predict voting preferences [15], semantic pixel-wise labels (such as sky, car, road, sidewalk) were extracted from images to predict air pollution [43] and metrics of blue and green space from images were found to be associated with geriatric depression [21]. While this work has received much attention, important limitations of supervised learning remain. That is, assignment of area-level attributes to image-level areas can smooth over interesting heterogeneity within a region which images capture on smaller scales. Furthermore, outcome labels may be scarce or unavailable. In the absence of image-level labels, one approach is to perform unsupervised learning. Seminal work using unsupervised learning clusters extracted features from images to identify architectural typologies of Paris [8]. Another approach employed similarity scores to build a platform where users can query aspects of the environment, such as the entry staircase of a New York Brownstone, and multiple similar images are returned along with their geo-tagged locations [38]. The latter example is especially interesting as it demonstrates use of a human-in-the-loop interface which can provide the validation difficult to accomplish in unsupervised learning. Image-level labeling can also be achieved using pre-trained models such as Places365 which predicts scenes such as highway, park and slum [64]. This is, however, constrained by the data sets and methods which are available for extracting features.

Data set creation provides the flexibility to label images in a way that is relevant to a given substantive research domain. This can be done by labeling a subset of images and inferring the predicted outcome classes on a city-wide scale, as in [34]. A more generalisable approach collects ratings of image pairs using crowd-sourcing [44, 46, 48, 56]. In this scenario, individuals are elicited to provide their perceptions by being shown an image pair side by side and asked to vote on one of the images. What is gained by casting the net of users wide, is a generalisable model of how individuals experience the city with respect to a given perception, and a meaningful proxy for social activity. For example, higher perceptions of safety were shown to be associated with more lively neighbourhoods for certain population groups [5], and better mental health and well-being [61], and perceptions of playability were negatively associated with high crime and traffic [27]. Discordance between objective and perceptive measures of the urban environment [14] can provide new information to guide sustainable city development.

In this work, we outline a methodology that enables researchers to collect city-specific image-level perception scores which can be used to provide proxy information on urban activity at small spatial scales. We analyse demographic differences in perceptive preferences, train a deep convolutional neural network to predict overall perception scores on a hold out test set, compare Place Pulse 2.0 model accuracy to the new perception of walkability. We then infer walkability and Place Pulse 2.0 perception scores on over 1 million London images, providing maps at small area-levels for each perception, and examine features which correspond to high and low perception scores.

3 METHODOLOGY

3.1 Images

This study uses images collected using the Google Street View API [17], an online image service with good street coverage in London. Metadata requests have as input latitude and longitude (lat, lon) pairs and return all images across all years found close to that point. We produced a sequence of input (lat, lon) pairs at 20 meter intervals arranged on a square grid across the Greater London Authority spatial extent [50]. When metadata was collected in 2019, the Street View API returned a total of 1,095,752 images taken in 2018 on Greater London streets. Points are sampled at 20 meter intervals on the London Street Network [55] resulting in 934,791 point locations. Images are then sampled based on nearest distance
to road point. The assumption is that this covers a contiguous visual representation of the street without repetition. The final database totals 633,419 unique images, covering 67% of London roads. Two images per street view location are selected perpendicular to the street to capture the building front, as in [30]. This is done in Python 3.7 [12] using the Unix software gnu parallel [57] to utilise CPU cores for fast implementation, Python package robolyst/streetview [31] to query Google Street View API, Qgis 3.27 [42] and postgres [20] for geo-spatial processing. Code is available here.

3.2 Survey design

We collected user-rated perceptions using an online, crowd-sourcing approach [9, 44, 56]. Users were shown two images side by side and asked to make a binary decision: ‘On which street would you prefer to walk?’ This differs from studies which explore gradients of scores [34, 48]. While these do offer more information, the additional time-cost impedes the scalability of crowd-sourcing. Accurately aggregating the information from these binary image tasks relies on the number of times that images are compared across the dataset, and the agreement between sets of pairs. Since our image dataset is very large, we take a stratified sample of ~ 25K images to be ranked. This reduces the required number of ratings (and raters) while ensuring we can train a deep learning model [23]. We stratify images based on similar groups of built environment characteristics such as vegetation, high-density, commercial and residential areas. Groups are defined using R-MAC feature extraction [59] followed by k-means clustering. Images pairs are shown with a weighting towards within group comparisons to better distinguish perceptions of similar streets. This is achieved by adding a mixing coefficient to sample the image pairs. The result is that on average, 20% of image pairs are within the same cluster.

3.3 Implementation

We have used Flask [19], a micro web framework written in Python, for the back-end. This uses the module psycopg [60] to connect to the postgres database which hosts image metadata, user perceptions and user demographics. We developed the front-end using React [37], a JavaScript library, which hosts the user interface as well as making GET and POST requests to the back-end.

We deployed the web app using a Kubernetes [28], after containerising the front and back end in Docker [36]. We established an endpoint for the postgres database to connect to the DigitalOcean droplet where the database is stored. Code is available here.

Data collection ran for two months from the end of April 2022 until June 2022, after receiving ethics approval. We used personal networks to disseminate the website, including mailing groups and social media. We used Amazon Mechanical Turk (AMT) to collect additional user-rated perceptions ensuring that workers were paid above minimum wage. In addition, we excluded workers which did not have a Masters qualification rating as given by the platform.

4 SURVEY RESULTS

4.1 Participant demographics

A total of 25,154 images were included in the database. Basic statistics for the image ratings are shown in Table 1. Of the total pairwise ratings, around 16% were recorded as not shown — the image is not loaded from the Google server. This could be because its unique address has been changed, or, an error exists in the API key. 1K images were rated as not comparable by the user. We removed all users who had greater than 90% bias to choosing one side (left or right) over the other, and removed games which were played by the same user within the same 1 minute interval. This indicated duplicate entries in the postgres database. A total of 25,987 ratings are included in the final analysis. Of those games, 4,040 were collected using personal network crowd-sourcing and the remaining 21,947 were collected using AMT. Of the 207 total individual raters, 59 are non-AMT and 148 are AMT workers. More than 86% of individuals provided their demographic information.

4.2 Quality assurance

For the 14 image pairs with more than 10 repeated games we calculated the proportion of users who voted on the same image from the pair including only left and right votes (i.e., not equal). We chose the majority vote (i.e., 80% and not 20%) to be the agreement between users and calculated the average across 14 image pairs. There is a 62% agreement amongst 149 users for one of the image pairs (see Table 1). For the same 14 image pairs, we stratified the raters into the following groups: AMT workers/non-AMT workers, London based/non-London based, female/male, high activity/low activity, where high activity is taking a walk at least twice a week. We observed the highest within group agreement for the low activity group, followed by the London group (see Table 2).

Table 1: Basic Descriptives

Pulse London Database	Images in database	Pairwise ratings	Not comparable	Not shown	One-sided clicks	Duplicate choices
	25,154	37,966	1,079	5,842	3,379	1,241

| Usable games | 25,987 | Users | 207 (180 demographic) | Images per user | 132 mean | Repeated image pairs (>10) | 14 | Games per repeated image pair | 60 mean | Repeated pairs agreement | 62%, 149 users |

Table 2: Agreement within user groups for repeated image pairs, %, and counts, n.

Group	Yes (n)	No (n)	Other (n)
AMT	56% (127)	63% (22)	
London	68% (17)	64% (83)	61% (43)
Female	62% (47)	66% (88)	55% (8)
H. Activity	60% (104)	70% (39)	

We built a multi-level logistic regression model to test whether individuals from different groups (e.g. London vs. not London) responded in significantly different ways to pairs of images. The model takes the form: \(\pi_{ij} = \sigma(\beta_0 + \delta|g_{ij}|) \) where for \(\pi_{ij} \) is the
probability of individual i choosing the right image of the pair of images j, i.e. the probability that $y_{ij} = 1$. $u_{gij} \sim N(0, \sigma_u^2)$, are random effects for each group g, modelling the effect of being in group g on the log-odds that $y_{ij} = 1$ for image pair j. σ is the standard logistic link function. For the baseline model without group differences, there are 4 image pairs which have a significant right or left leaning choice at a 95% confidence interval (see Figure 2a). Two of those image pairs (919 and 3111) are shown in Figure 3. For image pair 919, Londoners are more likely to choose the right image than non-Londoners (100% vs 82%), after controlling for the baseline effect of the image pair (86% choose right). Individuals with high activity are more likely to choose the left image compared to low activity (14% vs 0%), after controlling for the baseline effect. For image pair 3111, Londoners are more likely to choose the left image (100% vs 82%), after accounting for the baseline effect of the image pair (80% choose right), whereas high activity individuals are more likely to choose the right (100% vs 0%).

4.3 Ranking

In order to rank individual images based on pairwise games, we implemented the Microsoft Trueskill algorithm [22]. This algorithm initializes a score to each image from the normal distribution with $\mu = 25$ and $\sigma = 25/3$. μ is increased after a win and decreased after a loss. The extent of updates depends on each images’ σ, i.e., how surprising the outcome is, given the image’s existing score. These final scores were used to train the Convolutional Neural Network (CNN) in the next section.

5 DEEP CNN

We separately trained deep CNN models across the original Place Pulse and the Pulse London datasets to predict perceptions of walkability. The Place Pulse dataset includes 110K images and 6 different outcome labels (perceptions of safety, beauty, liveliness, boring, depressing and wealth). The Pulse London dataset contains 25K images with 1 outcome label: walkability perception. We split both datasets into 65 – 5 – 30, training, validation and test splits.

For all models, we separately trained a Resnet-101 model to predict perception scores using mean squared error (MSE) loss function. These models were pre-trained on ImageNet [6]. For the Adam optimizer, the initial learning rate was set to $1e^{-3}$ and allowed to decay over 16 epochs. We scaled the perception scores between 0 and 10 and oversampled the images such that each decile was represented equally. For the walkability perception, we compared fine-tuning the ImageNet pre-trained Resnet-101 model, as described previously, with the pre-trained Place Pulse models. The pre-trained beauty model achieves the highest accuracy when fine-tuned on walkability perception (see Table 3). Prediction scatter plots are shown in Figure 4. We experimented with freezing the pre-trained network to only perform parameter updates on the final fully connected layers, and performed training on a lower capacity Resnet-18 model pre-trained on ImageNet only. The resulting test
Table 3: Resnet101 Model accuracy

Perception	Safety	Lively	Depressing	Boring	Beauty	Wealth	Walkability
MSE test	1.10	1.40	1.82	1.89	1.87	1.92	2.58
PCC*	0.44	0.37	0.24	0.16	0.32	0.39	0.16
Transfer MSE Test	2.58	2.59	2.54	2.53	2.52	2.53	-
Transfer PCC	0.14	0.15	0.16	0.13	0.16	0.16	0.16

*Pearsons Correlation Coefficient.

Table 4: Model test errors and Games Multiplier=No. Games / No. Images

Perception	Safety	Lively	Depressing	Boring	Beauty	Wealth	Walkability
Games Multiplier	4.65	3.34	2.01	1.59	1.36	1.31	1.03
Mean σ TrueSkill	3.43	3.95	4.95	5.45	5.71	5.73	6.00
MSE test	1.10	1.40	1.82	1.89	1.87	1.92	2.52
PCC*	0.44	0.37	0.24	0.16	0.32	0.39	0.16

set MSE’s were 2.52 and 2.72 respectively, with Pearson’s correlation coefficients (PCC) of 0.15 and 0.16 between the predicted and true walkability scores. The low MSE of the frozen Resnet-101 model does not improve the correlation. We therefore used the pre-trained beauty Resnet-101 model for inference on the entire London dataset since it optimises both loss and correlation.

The relationship between the number of games played per image (i.e. the Games Multiplier=No. Games / No. Images), the variance of the predicted TrueSkill scores and the model accuracy and correlation are shown in Table 4. Safety predictions have the strongest correlation with the ground truth safety perception scores. Safety also has the largest number of games played, resulting in the lowest average variance for image scores, \(\bar{\sigma} \). This is not true for the perception wealth, which, although has a lower Games Multiplier, achieves a relatively strong correlation, albeit low CNN test accuracy. This is different from the boring perception, which has slightly improved MSE and Games multiplier and a large reduction in correlation. In Figure 4, we observe that the deep model for wealth perception has done better to capture the variance of the test distribution with little degradation of the MSE. This could indicate a more easily separable ground truth on what makes an image more or less wealthy, compared to what makes an image more or less boring. The performance of each model is a function of the number of games played per image, the variance associated with the ranked scores, and the ability of the network to disentangle features which have been perceived as high or low for a given perception score. For example, the presence of greenery may indicate a high score for walkability, whereas, greenery with no pavement may indicate a low score. In Section 5.2, we examine the features which are predictive of high and low perception scores.

5.1 Inference

Using the pre-trained beauty Resnet-101 model fine-tuned on perception of walkability, we performed walkability inference on the 2018 London image dataset containing a total of 1.2 million images. We averaged the perceived walkability score for all images in an Output Area (OA: the smallest administrative unit in London ~ 125 households, median 22 images per OA) and mapped deciles across the entire Greater London extent. In addition, we performed inference using the same image data set using the models trained on the 6 Place Pulse perceptions. All 7 maps are shown in Figure 5. Each perception shows a distinct pattern, suggesting that different features were used to predict each perception. The lowest areas of walkability are found towards the West and East including areas such as Southall, Brentford Hounslow, Harrow and Wembley on the West. Neighbouring districts with higher walkability are Edgware, Northolt and Ealing. On the East, smaller areas of Upminster, Upton and Eastham interrupt the lower perceived walkable areas. On the south side, Croydon and its neighbouring northern suburbs are generally perceived with low walkability, while Crystal Palace, Dulwich and Petts Wood are on the top end of the scale. Large areas of Central London are perceived as walkable and Enfield, Stoke Newington, Kilburn and West Hampstead stand out as highest in the North London area.

Although the pre-trained beauty model reduced the test error for walkability, liveliness has the greatest correlation, 0.20 (see Table 5). Much of what is rated as the least lively in outer London (note the change in colour scale) is also considered the least walkable. This is not true for beauty, which does have beautifully rated areas
Figure 5: Deciles of perception scores averaged over Output Areas in London.

Table 5: Image level correlations (Pearson) between inferred perception scores for 2018 London images.

Perception	Lively	Boring	Wealth	Depressing	Beauty	Safety	Walkability
Lively	1.00	-0.14	0.13	-0.09	0.64	0.23	0.20
Boring	-0.14	1.00	-0.06	-0.05	-0.03	-0.08	-0.10
Wealth	0.18	-0.06	1.00	-0.13	0.17	0.21	0.14
Depressing	-0.09	-0.05	-0.13	1.00	-0.15	-0.14	-0.11
Beauty	0.04	-0.03	0.17	-0.15	1.00	0.14	0.14
Safety	0.20	-0.08	0.21	-0.14	0.14	1.00	0.18
Walkability	0.20	-0.10	0.14	-0.11	0.14	0.19	1.00

Table 6: Model accuracies for predicting top and bottom decile perception scores. Random Forest (RF) and Logistic Regression (LR).

Perception	Random Forest	Logistic Regression
Safety	0.71	0.67
Lively	0.75	0.69
Depressing	0.64	0.63
Boring	0.63	0.62
Beauty	0.81	0.80
Wealth	0.68	0.69
Walkability	0.74	0.67

In Figure 6, the Logistic Regression coefficients are shown to provide a layer of interpretability for the features which contribute to high or low perception scores. For walkability; terrain, sidewalk, road and car have positive prediction values for high walkability. Truck, bus and sky segmentation contribute to a low walkability scores, as do fence and traffic sign to a lesser extent. The coefficient for sidewalk has the strongest impact on the walkability perception (compared to other perceptions) and it is reasonable that other proxies for walkable neighbourhoods (wealthy, safe, beautiful and lively) become unwalkable with the absence of a sidewalk. The presence of truck and bus are indicative of busier roads and contribute to a lower walkability score. This may well also be true for the presence of a traffic light, despite it offering a thoroughfare for pedestrians. That road and car predict walkability could be related to the co-occurrence of sidewalks and with greater points of interest. Fence as a predictor of low walkability is somewhat explained by fence also predicting low safety (PCC = 0.18), low wealth (PCC = 0.14) and low beauty (PCC = 0.14), potential proxies for walkability. The
We have built a web app to survey user perceptions of street view without access to a sidewalk, or terrain to walk on, may prove which is grass) appears to positively contribute to perceptions of beauty and wealth to a lesser extent, whereas vegetation has very little impact on walkability. As mentioned previously, vegetation without access to a sidewalk, or terrain to walk on, may prove unwalkable whereas the beauty perception remains intact. Interactions between variables could be further explored to understand these types of relationship.

6 DISCUSSION

6.1 Survey Collection

We have built a web app to survey user perceptions of street view images and made our code readily available. Our sampling approach allowed stratified representation of the urban environment, as opposed to area-level or spatial representation as in [9, 46]. We included a weighting coefficient to produce more within group image pairs. We chose this strategy to provide finer detailed perceptions on urban environments which might initially appear similar, but have a gradient of quality associated. This approach requires a greater number of ratings to reach a minimum number of games played per image, as we describe below. However, it can be used as a filtering approach to include or exclude images which are not of interest for a chosen research question.

The number of ratings per image influenced the performance on the ranking algorithm with a higher number of games achieving a lower mean standard deviation, as observed for the Place Pulse data set. The TrueSkill ranking algorithm is designed to accommodate a low number of games compared to Elo [10], for example. However, our results lead us to conclude that, employing these methods, researchers should seek a lower bound for the games multiplier of 3. We were not able to achieve this due to cost restraints. However, we showed that the deep learning model can leverage pre-trained information from the Place Pulse scores when fine-tuning. It is therefore possible to reduce the size of the dataset. Goodfellow et al. suggest a minimum of 5,000 images per class when training deep models [23]. Suel et al. find that when transferring models to predict socio-economic outcomes from London to Greater Manchester, just 10% of the target data set is needed to achieve comparable accuracy [53]. In order to justify the minimum number of images needed to collect a city-specific data set, a transferability analysis should be prepared which tests different data set sizes. Even so, this should be used as a guideline since cities have varying distributions for their image data sets which may require greater representation when model training. For example 40% of the cities represented in the Place Pulse data set are from Europe, while just 3 African cities are represented [9].

Unlike Place Pulse [9], we collected demographic information from our participants to estimate group differences in preferences. We ensured no personal information was collected. We found significant differences (at a 95% confidence interval) across those individuals who were from London versus not from London and the groups of high versus low activity. These differences were seen across 3 (London groups) and 5 image pairs (activity groups) out of a total of 14 image pairs which were repeated across users, while there were no significant differences between male and female group. Saelesses et al. found no significant effects for group differences of age, gender and US versus non-US based locations [46]. Their approach tests the differences in perception scores when ranked according to each group. Group-based differences may be smoothed over when considering the global image ranking as opposed to individual preferences for image pairs. Our approach allows for testing users group differences by injecting repeated samples across user-games. We randomly selected a subset of images to be repeated. To improve on this strategy, repeated image pairs should be carefully created to represent a broad set of perception decisions that are relevant for the research question.

We disseminated the platform through professional and personal networks to gather perceptions. We then consulted Amazon Mechanical Turk to further collect perception ratings, paying workers above the minimum wage. We were not able to show the differences between AMT/non-AMT since the same repeated image pairs were not delineated for these groups. This was due to an update in the database which meant that the repeated game images were mixed with other images. AMT workers have a low within group agreement score of 36%. AMT workers could have greater within group variability compared to participants from convenience sampling through personal networks, who we might assume are more socio-demographically similar. Future work should compare group differences between participation networks to validate AMT as method of data collection for urban perceptions.
6.2 Model training and Interpretability
Deep neural networks are capable of approximating arbitrarily complex functions. Leveraging large amounts of data, deep models learn patterns, features, color gradients and the combination of these and more, to predict outcomes. We found the perceptions scores to be weakly correlated, but largely, each model predicts a unique and different set of scores for each image. It can be that deep models learn spurious features which are correlated with the outcome, such as hospital-specific metal tokens in the chest X-ray scans for predicting pneumonia [62]. However, the probability of these spurious correlations over all 7 perceptions is unlikely. It is therefore reasonable to assume that the model has learnt a function for approximating human-based perception scores. We apply model-agnostic interpretability methods to assess features which correspond to high and low perception scores. Model-specific methods for interpretability of CNNs, such as pixel-attribution methods [39], assess the models decision making instead of mapping concepts to the outcome class. However, these methods are difficult to benchmark against expectation from a human observer without including user-based validation. Human interpretable features, such as objects and semantic pixel-wise labeling, are therefore more readily available for validation.

The image scores follow a normal distribution around the initialised \(\mu = 25 \). To provide more information to the CNN about the tails of the distribution, we oversampled images from the tails. Other approaches can use augmentation [49] or adjust the loss function [4] to manage imbalanced distributions.

6.3 Mapping
The maps of perceptions shown in Figure 5 differ from previous studies based on coverage, which is higher than other street-view mapping literature: 150K point locations in London [53] (compared to 630K used in our study), 50 meter intervals in Beijing and Shanghai [63] but only collecting 245K and 150K images respectively. We were able to achieve close to 70% street coverage by sampling points on the road at 20 meter intervals. Additional years can be used to cover a greater proportion of streets, or missing point locations can be gathered by augmenting different sources of data.

These maps could be added to city walk scores and made available online for citizens to have access to an additional layer of information when making decisions on activity or housing, for example.

6.4 Limitations
As mentioned in the previous sections, the study requires scaling user-based perceptions ratings which can be costly to acquire. Future work on transferability with lower amounts of data should help to guide thresholds for survey collection.

The use of crowd-sourcing and the embedded positivity of the survey participants can directly effect the outcome of interest [7]. While we do not assume that there is one correct answer in this work, we do assume that the average converges to a meaningful interpretation of images that can be considered more or less walkable over the survey population as in [9]. It is important to note, however, that our average may be taken from a skewed socio-demographic population based on preference or restriction to home-based work [25], as one example. Our paper is limited by not studying skewed annotator demographics in the crowd-sourced survey population.

The model accuracy for our newly collected perception of walkability is low, relative to other perceptions. We have discussed in the previous section on how this might be mitigated. Future work on city-wide mapping could include uncertainty estimates in the final spatial maps to reflect the performance of the model on this perception score.

7 CONCLUSION
In this study we have created a methodological toolkit for assessing city-wide perceptions of urban perceptions. This work is intended to equip researchers with a user-based metric for peoples experience of the urban environment and provide a meaningful interpretation for user activity. Future work on temporal analysis can identify the impact of urban interventions in modern cities. This method can be adopted within urban planning to identify proposal regions for urban investment and regeneration.

ACKNOWLEDGEMENTS
We thank Giulia Mangiameli for project management and coordination of activities. This work was supported by the MRC Centre for Environment and Health PhD Studentship and Pathways to Equitable Healthy Cities grant from the Wellcome Trust [209376/Z/17/Z].

REFERENCES
[1] Leo Breiman. 2001. Random forests. Machine learning 45 (October 2001), 5–32. https://doi.org/10.1023/A:1010934504324
[2] Tranquil City. 2022. Healthy Streets Index. Retrieved August 20, 2022 from https://tranquilcity.co.uk/
[3] Marius Cordts. 2021. The Cityscapes Dataset. Retrieved August 20, 2022 from https://github.com/mcordts/cityscapesScripts
[4] Yin Cui, Menglin Jia, Tsung-Yi Lin, Yang Song, and Serge Belongie. 2019. Class-Balanced Loss Based on Effective Number of Samples. In 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). 9260–9269. https://doi.org/10.1109/CVPR.2019.00949
[5] Marco De Nadai, Radu Laurentiu Vieriu, Gloria Zen, Stefan Dragicevic, Nikhil Naik, Michele Caravelli, Cesar Augusto Hidalgo, Nicu Sebe, and Bruno Leprri. 2016. Are safer looking neighborhoods more lively? A multimodal investigation into urban life. In Proceedings of the 24th ACM international conference on Multimedia. 1127–1135. https://doi.org/10.1145/2946284.2946312
[6] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. 2009. ImageNet: A large-scale hierarchical image database. In 2009 IEEE Conference on Computer Vision and Pattern Recognition. 248–255. https://doi.org/10.1109/CVPR.2009.5206848
[7] Mark Diaz, Ian Kivilcich, Rachel Rosen, Dylan Baker, Ravzan Amronesei, Vindodkumar Prabhakaran, and Emily Denton. 2022. CrowdWorkSheets: Accounting for Individual and Collective Identities Underlying Crowdsourced Dataset Annotation. In 2022 ACM Conference on Fairness, Accountability, and Transparency (FAccT ’22). 2342–2351. https://doi.org/10.1145/3531146.3534647
[8] Carlo Doersch, Saurabh Singh, Abhinav Gupta, Josef Sivic, and Alexei Efros. 2012. What Makes Paris Look like Paris? ACM Transactions on Graphics 31, 4 (July 2012). https://hal.inria.fr/hal-01053876
[9] Abhimanyu Dubey, Nikhil Naik, Devi Parikh, Ramesh Raskar, and César A. Hidalgo. 2016. Deep Learning the City: Quantifying Urban Perception at a Global Scale. In Computer Vision – ECCV. 196–212. https://doi.org/10.1007/978-3-319-46448-0_12
[10] Arpad E. Elo. 1967. The Proposed USCF Rating System, Its Development, Theory, and Applications. Chess Life 22, 8 (August 1967), 242–247.
[11] Transport for London. 2017. Better Streets London. Retrieved August 20, 2022 from https://content.tfl.gov.uk/better-streets-delivered-2.pdf
[12] Python Software Foundation. 2022. Python Language Reference, version 3.7. http://www.python.org
[13] Jerome H Friedman. 2001. Greedy function approximation: a gradient boosting machine. Annals of statistics 25, 5 (October 2001), 1189–1232.
[14] Klaus Gebel, Adrian Bauman, and Neville Owen. 2009. Correlates of non-concordance between perceived and objective measures of walkability. Annals of...
