General balance functions of identified charged hadron pairs of \((\pi, K, p)\) in Pb–Pb collisions at \(\sqrt{s_{NN}} = 2.76\) TeV

ALICE Collaboration

Abstract

First measurements of balance functions (BFs) of all combinations of identified charged hadron \((\pi, K, p)\) pairs in Pb–Pb collisions at \(\sqrt{s_{NN}} = 2.76\) TeV recorded by the ALICE detector are presented. The BF measurements are carried out as two-dimensional differential correlators versus the relative rapidity \((\Delta y)\) and azimuthal angle \((\Delta \phi)\) of hadron pairs, and studied as a function of collision centrality. The \(\Delta \phi\) dependence of BFs is expected to be sensitive to the light quark diffusivity in the quark–gluon plasma. While the BF azimuthal widths of all pairs substantially decrease from peripheral to central collisions, the longitudinal widths exhibit mixed behaviors: BFs of \(\pi \pi\) and cross-species pairs narrow significantly in more central collisions, whereas those of KK and pp are found to be independent of collision centrality. This dichotomy is qualitatively consistent with the presence of strong radial flow effects and the existence of two stages of quark production in relativistic heavy-ion collisions. Finally, the first measurements of the collision centrality evolution of BF integrals are presented, with the observation that charge balancing fractions are nearly independent of collision centrality in Pb–Pb collisions. Overall, the results presented provide new and challenging constraints for theoretical models of hadron production and transport in relativistic heavy-ion collisions.

*See Appendix A for the list of collaboration members
Convincing evidence for the production of strongly interacting quark–gluon plasma (QGP) in heavy-ion (AA) collisions has been reported from a variety of measurements at the Relativistic Heavy Ion Collider (RHIC) and the Large Hadron Collider (LHC) [1–4], including observations of strong elliptic flow [5–7], suppression of high transverse momentum (p_T) hadron production [8–13], suppression of quarkonium states [14–19], as well as dihadron correlation functions [20, 21]. Many of these findings are quantitatively explained by hydrodynamic calculations in which the QGP matter undergoes radial and azimuthally anisotropic collective motion. The existence of the latter is well established based on measurements of flow coefficients with finite pseudorapidity (η) gap and multi-particle cumulants, whereas the presence of the former is inferred in part from the increase of average transverse momenta with the mass of hadrons [22], the centrality dependence of event-by-event p_T fluctuations [23, 24], as well as the observed narrowing of the near-side peak of balance functions (BFs) in central collisions relative to that observed in peripheral collisions [25–30]. Balance functions essentially amount to differences of correlation functions of like-sign and unlike-sign charges. They are measured, typically, as functions of particle pair separation in azimuth angle and rapidity. They indicate the degree to which the production of a positive charge is accompanied by the production of a negative charge somewhere in phase space. As such, BFs probe the balancing of charge distributions in momentum space and theoretical studies show they are sensitive to the details of the time (i.e., whether particles are produced early or late), production mechanisms, and transport of balancing charges.

Measurements of BFs were originally proposed as a tool to investigate the delayed hadronization and two stages of quark production in the QGP formed in AA collisions [31]. These terms refer to the notion that quark production occurs in two distinct stages, the first at the onset, and the second at the very end (just before hadronization and freeze-out) of AA collisions. The two stages are posited to be separated by a period of isentropic expansion whose duration depends on the multiplicity of produced quarks and gluons and thus the collision impact parameter. Hadron pairs produced at the onset of collisions feature large longitudinal separation (i.e., rapidity differences Δy) whereas pairs produced after the expansion have smaller Δy separations determined by the smaller temperature of the system at that time. AA collisions with smaller impact parameters are expected to produce larger systems with a longer isentropic stage in which late particle production dominates. The longitudinal and azimuthal widths of BFs are thus expected to progressively decrease from peripheral to central collisions as the fraction of late particle production increases. BFs could also provide a precise probe of balancing particle production [32–35], the hadrochemistry of particle production [34–36], as well as the collision dynamics [37, 38]. Recent studies also indicate that the BF dependence on pair separation in azimuth is sensitive to the diffusivity of light quarks, a measure of the diffusion and scattering of quarks within the QGP, which has thus far received only limited attention [36, 39]. Finally, BFs also provide a tool to calibrate measurements of the Chiral Magnetic Effect [40, 41] and net charge/baryon fluctuations deemed essential for the determination of QGP susceptibilities [42, 43].

Few measurements of BFs of identified hadrons have been reported to date. At RHIC, these include BF measurements of charged hadrons, pion pairs, kaon pairs, as well as proton/antiproton pairs [25–27], whereas at the LHC, only charged hadron BFs have been reported [28, 29]. Of these, only the results published by ALICE were fully corrected for detector acceptance and particle losses (efficiency). Integrals of measured BFs have not been considered and no cross-species BFs have been published. Theoretical analyses of measured BFs have consequently focused mainly on the interpretation of the narrowing with collision centrality of charged hadron BFs. The full potential of BFs as a probe of the evolution dynamics and chemistry of the QGP has thus so far been underexploited. In this paper, general balance functions of identified charged hadron species (π, K, p) are reported for the first time. These general BFs are corrected for efficiency and non uniform acceptance effects and it becomes possible to study the effects of two-stage quark production, light quark diffusivity, and relative balancing fractions using BFs of nine distinct identified pairs of charged hadron species.
The BF of a species of interest, \(\alpha \), and an associated species, \(\beta \), was originally defined in terms of conditional densities \([31]\) but it is convenient to compute BFs in terms of normalized cumulants \(R_2 \) according to

\[
B_{\alpha\beta}(\vec{p}_\alpha,\vec{p}_\beta) = \frac{1}{2} \left\{ \rho_1^\beta(\vec{p}_\beta) \left[R^\alpha_{\beta\beta}(\vec{p}_\alpha,\vec{p}_\beta) - R^\alpha_{\beta\beta}(\vec{p}_\alpha,\vec{p}_\beta) \right] + \rho_1^\beta(\vec{p}_\beta) \left[R^\alpha_{\beta\beta}(\vec{p}_\alpha,\vec{p}_\beta) - R^\alpha_{\beta\beta}(\vec{p}_\alpha,\vec{p}_\beta) \right] \right\} \quad (1)
\]

with

\[
R^\alpha_{\beta\beta}(\vec{p}_\alpha,\vec{p}_\beta) \equiv \frac{\rho_2^{\alpha\beta}(\vec{p}_\alpha,\vec{p}_\beta)}{\rho_1^\alpha(\vec{p}_\alpha)\rho_1^\beta(\vec{p}_\beta)} - 1 \quad (2)
\]

where \(\rho_1^\alpha(\vec{p}_\alpha) \equiv \frac{dN}{d\vec{p}_\alpha} \) and \(\rho_2^{\alpha\beta}(\vec{p}_\alpha,\vec{p}_\beta) \equiv \frac{dN_{\text{pair}}}{d\vec{p}_\alpha d\vec{p}_\beta} \) are single- and particle-pair densities of species \(\alpha \) and \(\beta \) measured at momenta \(\vec{p}_\alpha \) and \(\vec{p}_\beta \), respectively, while labels + and − stand for positive and negative charges. Normalized cumulants \(R_2 \) are robust observables, i.e., independent to first order of measurement efficiencies. They are sensitive to the strength of correlation between species \(\alpha \) and \(\beta \). Their properties were described in several publications \([44, 47]\). The combination of \(R_2 \) correlation functions, normalized by single particle densities, as per Eq. (1), is strictly equivalent to the balance function introduced in Ref. \([31, 32]\) and measures the correlation between positive and negative particles of species \(\alpha \) and \(\beta \) constrained by charge conservation. Integrals of inclusive charge balance functions, \(I^{\alpha\beta}_B(\Omega) \equiv \int_{\Omega} B^+ d\Delta \eta \), are expected to lie within the range \(0 < I^{\alpha\beta}_B(\Omega) \leq 1 \) for limited acceptance \(\Omega \). However, they converge to unity for full acceptance coverage. Furthermore, fractions \(I^{\alpha\beta}_B(\Omega)/I^{\beta\beta}_B(\Omega) \) are determined by the hadrochemistry of the QGP and transport properties of the medium. In the full acceptance coverage limit, the denominator of this fraction must satisfy \(I^{\beta\beta}_B(\Omega) \equiv \sum_{\beta} I^{\beta\beta}_B(\Omega) \to 1 \) \([43]\).

In this paper, the identified particle BFs of nine pairs of charged hadrons \((\pi^\pm, K^\pm, p/\bar{p}) \otimes (\pi^\pm, K^\pm, p/\bar{p})\) are reported as joint functions of the relative rapidity \(\Delta y \) and azimuthal angle \(\Delta \phi \) and studied as a function of collision centrality. Measurements of \(R^\alpha_{\beta\beta}(\vec{p}_\alpha,\vec{p}_\beta) \) are carried out in terms of the rapidity and azimuthal angle \(y_\alpha, \phi_\alpha, y_\beta, \) and \(\phi_\beta \) for fixed \(p_T \) ranges, and averaged across the pair acceptance to yield correlation functions \(R^\alpha_{\beta\beta}(\Delta y, \Delta \phi) \) with \(\Delta y = y_\alpha - y_\beta \) and \(\Delta \phi = \phi_\alpha - \phi_\beta \) following the procedure used in Ref. \([44]\). The densities of associated particles, \(\rho_1^\beta(\vec{p}_\beta) \), used in Eq. (1), are integrated from \(p_T \)-dependent densities reported in prior ALICE measurements \([22]\) to match the \(p_T \) ranges used in measurements of the normalized cumulants \(R_2 \). The correlators \(R^\alpha_{\beta\beta} \) and densities \(\rho_1^\beta \) are corrected for \(p_T \)-dependent particle losses and non uniform acceptance. Densities \(\rho_1^\beta \) were additionally corrected for minor contamination effects as per the procedure described in \([22]\). The measured BFs thus feature absolute normalization which enables meaningful determination of their integrals and collision centrality dependence.

As already mentioned, the shape of the BFs vs. \(\Delta y \) and \(\Delta \phi \) is sensitive to the timescales at which particles are produced during the system evolution. Early emission occurs at large effective collisional energy \(\sqrt{s} \) and is thus expected to yield broad BFs in \(\Delta y \) and \(\Delta \phi \), whereas late emission, at collisional energy commensurate with the system temperature, is expected to produce much narrower near side peak correlations vs. \(\Delta y \) and \(\Delta \phi \) \([31]\). Additionally, the integral of the BFs shall also provide increased sensitivity to the hadrochemistry of the collisions. Indeed whereas contributions to single-particle spectra from hadronic resonance decays must be inferred from models, integrals of the BFs are directly sensitive to the magnitude of (hadronic) feeddown contributions. For instance, by comparing the integrals of \(\pi^+\pi^- \) and \(\pi^\pm K^\mp \) BFs, sensitivity to the relative strengths of processes that lead to such correlated pairs of particles is acquired. It becomes possible to better probe the role of hadronic resonance decay contributions and increased sensitivity to the hadrochemistry of the QGP and its susceptibilities is gained \([36]\).
The BFs presented are based on 1×10^7 minimum bias (MB) Pb–Pb collisions at $\sqrt{s_{NN}} = 2.76$ TeV collected in 2010 by the ALICE collaboration. Descriptions of the ALICE detector and its performance have been reported elsewhere [48, 49]. The minimum bias trigger required a combination of hits in the V0 detectors and layers of the SPD detector. The V0 detectors, which cover the full azimuth and the pseudorapidity ranges $-3.7 < \eta < -1.7$ and $2.8 < \eta < 5.1$, also provided a measurement of the charged particle multiplicity used to classify collisions into centrality classes corresponding to 0–5% (most central) to 80–90% (most peripheral) of the Pb–Pb hadronic cross section [50]. Some centrality classes have been combined to optimize the statistical accuracy of the BFs reported. Particle momenta were determined based on Kalman fits of charged particle tracks reconstructed in the Time Projection Chamber (TPC). The particle identification (PID) of charged hadrons was performed based on specific energy loss (dE/dx) measured in the TPC and particle velocities measured in the Time-of-Flight detector (TOF). Track quality criteria based on the number of space points, the distance of closest approach to the collision primary vertex, and the χ^2 of the Kalman fits were used to restrict the measurements to primary particles produced by the Pb–Pb collisions and suppress contamination from tracks resulting from weak decays and interactions of particles with the apparatus. Additionally, PID selection criteria based on deviations of dE/dx and TOF from their respective expectation values, at a given momentum, and for each species of interest, were used to optimize the species purity. These and other selection criteria are reported in detail below in the context of a discussion of systematic uncertainties. The analysis focused on the low p_T range, commonly known as the “bulk” physics regime. Slightly different p_T ranges were used for each species to optimize yields and species purity. Charged pions and kaons were selected in the range $0.2 \leq p_T \leq 2.0$ GeV/c, whereas (anti-)protons are within $0.5 \leq p_T \leq 2.5$ GeV/c. The selected rapidity range, largely determined by the TOF coverage, was set to $|y_\pi| \leq 0.8$ and $|y_p| \leq 0.6$ for measurements of $B^{\pi\pi}$ and B^{pp}, respectively, and set to $|y| \leq 0.7$ for all other BFs reported.

Track reconstruction efficiencies and PID purity were studied with Monte Carlo simulations of Pb–Pb collisions produced with the HIJING generator [51] and propagated through a model of the ALICE detector with GEANT3 [52]. Selected track quality and PID criteria yield purities of 97%, 95%, and 94% for π^\pm, K^\pm, and p/\bar{p}, respectively, thereby minimizing species contamination and its impact on correlation functions. Corrections for track losses were carried out using a weighting technique [46]. Weights are calculated independently for positive and negative tracks of each species considered, for each centrality range, both magnetic field polarities used in the measurements, versus γ, ϕ, p_T, as well as the longitudinal position of the primary vertex (PV) of each event, z_{vtx}. Various selection criteria were applied to minimize residual instrumental effects while optimizing particle yields. The PV is required to be in the range $|z_{vtx}| \leq 6$ cm of the nominal interaction point. Tracks are required to have a minimum of 70 reconstructed TPC space points (hits), out of a maximum of 159, and a track fit with χ^2 value per degree of freedom smaller than 2.0 to ensure good track quality. Contamination of BFs by secondary particles (i.e., weak decays or particles scattered within the detector) is suppressed by requiring distances of closest approach (DCA) to PV chosen as $DCA_x \leq 2.0$ cm in the longitudinal direction and $DCA_{xy} \leq 0.04, 0.04, 2.0$ cm in the transverse plane for π^\pm, p/\bar{p}, and K^\pm, respectively. Contamination by e^+e^- pairs from photon conversion is suppressed by removing tracks closer than $1\sigma_{dE/dx}$ to the TPC Bethe-Bloch median, at a given momentum, for electrons.

Systematic uncertainties on the amplitudes of $B^{\alpha\beta}$ and their integrals were calculated as quadratic sums of systematic uncertainties of the correlation function $R^{\alpha\beta}$ and the systematic uncertainties on the published single particle densities [22] used in the computation of the BFs. Uncertainties on $R^{\alpha\beta}$ were assessed based on variations of conditions and selection parameters employed in the analysis. A statistical test [53] was used to identify potential biases introduced by those variations and determine their statistical significance. Systematic uncertainties, corresponding to a relative deviation at the maximum of $B^{\alpha\beta}$ associated with operation with two solenoidal magnetic field polarities, are smaller than 4%. Potential biases associated with track selection criteria are up to 3%, whereas the presence of misidentified and secondary particles contribute up to 4%, while kinematic dependencies of the detection efficiency
are estimated to be 1%. Systematic uncertainties on the single particle densities \[22\] are species and collision centrality dependent and typically range from 5 to 10%.

In order to obtain BF for all nine combinations of π^\pm, K^\pm, and p/\bar{p} species pairs, $R^{s\text{A}}_1(\Delta y, \Delta \phi)$ correlators were first measured, in each centrality class, for all 36 $\alpha\beta$ permutations of positive and negative π, K, and p. These correlators were then combined according to Eq. (1) and multiplied by the single particle densities $\rho_1^{s\text{A}}$ in the $|y| \leq 0.5$ rapidity range \[22\]. Figure 1 shows the $B^{\alpha\beta}(\Delta y, \Delta \phi)$ of $\pi\pi$, KK, and pp pairs in semicentral collisions for illustrative purposes. The nine measured BFs exhibit common features, including prominent near-side peaks centered at $(\Delta y, \Delta \phi) = (0, 0)$ and relatively flat and featureless away-sides. The flat away-side arises from the fact that positive and negative particles of a given species feature essentially equal azimuthal anisotropy relative to the collision symmetry plane. It is also an indicator of the fast radial flow profile of the emitting sources, which manifests as strong focusing on the near-side.

The evolution with collision centrality of $B^{s\alpha\beta}$ for all nine combinations $\alpha, \beta = \pi, K, p$, is examined by considering their projections onto the Δy and $\Delta \phi$ axes in Figs. 2 and 3 respectively. The shape and amplitude of $B^{s\pi\pi}$ projections onto Δy exhibit the strongest centrality dependence, whereas those of B^{sKK}, B^{spp}, $B^{s\pi\pi}$, and $B^{sK\pi}$ display significantly smaller dependence on centrality. Uncertainties on the rest of the Δy projections do not make it possible to claim any centrality dependence albeit some hints are visible in the cases of B^{sKK} and B^{spp}. The evolution with collision centrality of the measured BFs is further characterized in terms of their longitudinal and azimuthal standard deviation (σ) widths, noted $\sigma_{\Delta y}$ and $\sigma_{\Delta \phi}$, respectively, as well as their integral, $I^{s\alpha\beta}_0$, as shown in Fig. 4. In the longitudinal direction, the widths $\sigma_{\Delta y}$ of all species pairs, except those of KK and pp pairs, exhibit a significant narrowing from peripheral to central collisions. In contrast, B^{sKK} is essentially independent in both shape and width $\sigma_{\Delta y}$ with changing collision centrality, whereas the width $\sigma_{\Delta y}$ of B^{spp} features little centrality dependence even though this balance function exhibits some shape dependence on centrality.

Figure 1: Balance functions $B^{\alpha\beta}(\Delta y, \Delta \phi)$ of pairs $\alpha\beta = \pi\pi$ (left), KK (center), and pp (right) measured in semicentral Pb-Pb collisions at $\sqrt{s_{\text{NN}}} = 2.76$ TeV.

Differences in the evolution of the longitudinal σ of pions and kaons BFs were already observed in Au–Au collisions at RHIC \[26\] and were then interpreted as resulting in part from strong radial flow profiles...
and two-stage emission [31,32]. The independence of the width $\sigma_{\Delta y}$ of the B^{KK} relative to the narrowing BFs of all other pairs observed in this work suggests two-stage quark production might also be at play at the TeV collision scale. Indeed, pions might be predominantly formed from the light u, \bar{u}, d, \bar{d} and K quarks most abundantly produced in the second quark production stage, whereas kaon production would largely result from $s\bar{s}$ pairs predominantly created during the early stages of collisions [31,32].

Several distinct models have had success in describing the yield of produced hadrons, and more specifically baryons. Such models invoke a range of production mechanisms including parton fragmentation, effective mostly at high-p_T, as well as parton coalescence and recombination, playing a predominant role at low and intermediate p_T [54,56]. Statistical thermal models and production models involving color transparency [57] and baryon junctions [58] have also had a good measure of success. Single particle spectra of baryons thus do not provide sufficiently discriminating constraints to fully identify baryon production mechanisms. The added information provided by cross-species BFs shall thus contribute by adding new constraints for models of particle production and transport. In particular, given that neutrons, protons, and their excited states are composed of light u and d quarks, believed to be copiously produced in late stage emission (within the context of the two-stage quark production model), it is conceivable that these baryons are predominantly produced by coalescence (recombination) of light quarks in the late stage of the collisions. However, baryons (B) and antibaryons (\bar{B}) have a relatively large mass and carry a conserved baryonic charge. The question then arises as to whether $B\bar{B}$ correlated pairs might originate before the formation of thermalized QGP, during the early stages of AA collisions. Late $B\bar{B}$ production is expected to be characterized by narrow longitudinal BFs while early stage emissions would produce pairs with a much wider Δy range [31,32]. It is clear from Fig. 2 that B^{pp} must extend beyond the acceptance of the measurement reported in this paper. This suggests that pp pairs have rather wide

Figure 2: Balance function of species pairs $(\pi, K, p) \otimes (\pi, K, p)$ projected onto the Δy axis for particle pairs within the full range $|\Delta \phi| \leq \pi$. Vertical bars and open boxes represent statistical and systematic uncertainties, respectively.
Figure 3: Balance function projections of species pairs \((\pi, K, p) \otimes (\pi, K, p)\) onto the \(\Delta \varphi\) axis for the different particle pairs. Vertical bars and open boxes represent statistical and systematic uncertainties, respectively.

Figure 4: Longitudinal \((\Delta y)\) \(\sigma\) widths (left), azimuthal \((\Delta \varphi)\) \(\sigma\) widths (center), and integrals (right) of balance functions of the full species matrix of \(\pi^+, K^\pm\), and \(p/\bar{p}\) with centrality. For \(\Delta y\) and \(\Delta \varphi\) widths, \(K\pi, p\pi\), and \(pK\) have the same values with \(\pi K, p\bar{p}\), and \(Kp\), respectively. For the longitudinal widths, the relative azimuthal angle range for all the species pairs is the full azimuth range \(|\Delta \varphi| \leq \pi\). For the azimuthal widths, the relative rapidity range used for all species pairs is \(|\Delta y| \leq 1.2\), with the exception of \(|\Delta y| \leq 1.4\) for \(\pi\pi\) and \(|\Delta y| \leq 1.0\) for \(pp\). Vertical bars represent statistical uncertainties while systematic uncertainties are displayed as dash line bands.

Balance functions that might result from early B\(\bar{B}\) pair separation. Detailed models of B\(\bar{B}\) production and transport that account for (strong) decays from resonant states are required, evidently, to firmly establish this conclusion.
Figure 4 shows that the $\sigma_{\Delta \phi}$ widths of the nine BFs exhibit narrowing trends from peripheral to central collisions. The widths $\sigma_{\Delta \phi}$ feature a wide spread of values at a given collision centrality, with those of KK pairs being the largest and those of πK the smallest. The widths also exhibit similar reductions with increasing collision centrality. These observations are in agreement with azimuthal BFs already reported from observations at RHIC for unidentified charged particle and identified increasing collision centrality. These observations are in agreement with azimuthal BFs already reported [59]. It competes with an opposing trend associated with light quark diffusivity, expected understood as resulting from the larger estimated transverse expansion velocity present in more central AA collisions [59]. It competes with an opposing trend associated with light quark diffusivity, expected understood as resulting from the larger estimated transverse expansion velocity present in more central AA collisions [59]. Given the radial boost profile and contributions from resonance decays can be largely neglected possible contributions from the fragmentation of jets but these are anticipated to be small in the p_T range of this measurement. Quantitative estimates of such contributions would need to be accounted for in theoretical modeling of balance functions reported in this work for the purpose of determining the diffusivity of light quarks.

Contributions of $\phi \rightarrow K^+ + K^-$ decays to B^{KK} were studied using simulated events from the HIJING generator [51]. The amplitude of the near-side peak of B^{KK} is reduced by about 30% when contributions from ϕ-meson decays are explicitly excluded, while the correlator Δy and $\Delta \phi$ widths increase by about 7–8%. Effects associated with radial flow, not present in HIJING, could reduce this broadening effect and possibly induce a narrowing of the Δy width of B^{KK} in more central collisions. However, no such narrowing is observed thereby signaling a more intricate production and transport evolution with competing contributions from ϕ produced at hadronization of the QGP and by coalescence of kaons within a hadron phase.

The evolution with the collision centrality of the integrals $I_{B}^{\alpha \beta}$ of the nine species-pairs $B^{\alpha \beta}(\Delta y, \Delta \phi)$ shown in the right panel of Fig. 4 is also of considerable interest. By definition, a balance function $B^{\alpha \beta}(\Delta y, \Delta \phi, \Delta p_T)$ measures the “likelihood” of finding a charge balancing particle of a type β, e.g., π^+, with a pair separation Δy, $\Delta \phi$, Δp_T away from a reference particle of type α, e.g., π^-. But charge balancing can be accomplished, on average, by distinct species, e.g., p, K$,+,$ and more rarely produced heavier particles, in additions to π^+. The integral, $I_{B}^{\alpha \beta}(4\pi)$, of $B^{\alpha \beta}(\Delta y, \Delta \phi, \Delta p_T)$ over the full phase space is thus proportional to the average fraction (and probability in the full phase space limit) of balancing partners of species β. Indeed, neglecting contributions from species other than pions, kaons, and protons, one expects the sum, $I_{B}^{\alpha \beta}(4\pi) \equiv I_{B}^{\alpha \pi}(4\pi) + I_{B}^{\alpha K}(4\pi) + I_{B}^{\alpha p}(4\pi)$ to converge to unity, $I_{B}^{\alpha \beta}(4\pi) \approx 1$, in the full acceptance limit [43]. Integrals $I_{B}^{\alpha \beta}(4\pi)$ thus amount to probabilities $I_{B}^{\alpha \beta}(4\pi)/I_{B}^{\alpha \pi}(4\pi)$ of having charge balancing of a species α by a species of type β and are indicators of the hadronization chemistry of the QGP, that is, what fraction of species α are accompanied (balanced), on average, by a species β [43]. However, when measured in a limited acceptance, integrals $I_{B}^{\alpha \beta}(\Omega < 4\pi)$ cannot, strictly speaking, be considered charge balancing probabilities. They nonetheless provide useful indicators of the hadrochemistry as well as the flavor and baryon number transport in AA collisions. As such, integrals $I_{B}^{\alpha \beta}$ shown in Fig. 4 as a function of collision centrality are surprising on two accounts. First, they show that the balance fractions are all, but one, approximately independent of collision centrality. The notable exception is the $\pi \pi$ integral which increases by about 20% from peripheral to central collisions. Second, close examination of these pairing fractions shows they are rather different than inclusive probabilities of observing π, K, and p/\bar{p} in Pb–Pb collisions. For instance, $I_{B}^{K \pi}$ is not larger than I_{B}^{KK} by the $\pi/K \sim 6.7$ ratio of inclusive single particle yields and I_{B}^{pp} is larger than I_{B}^{pp} in contrast to observed K/p ~ 3 yield ratios [22]. Hadron species charge balancing pairing fractions are thus indeed very different than the relative probabilities of single hadrons, and as such, provide new and useful information to further probe the
hadronization of the QGP. This difference arises because the set of processes P_2 that lead to a specific balancing pair $\alpha\beta$ (e.g., $P_2 \rightarrow \alpha^\pm + \beta^\mp + X$) is, by construction, far smaller than the set of processes P_1 leading to a given particle species α or β (e.g., $P_1 \rightarrow \alpha^\pm + X$ or $P_1 \rightarrow \beta^\mp + Y$). It is remarkable, nonetheless, that the pairing fractions $I_{\alpha\beta}^{B}$ exhibit essentially no collision centrality dependence while single particle yield ratios are known to exhibit a weak dependence on collision centrality \[60\]. Note that the observed rise of $I_{\pi\pi}^{B}$ in more central collisions may artificially result from increased kinematic focusing of pions with centrality in the p_T and Δy acceptance of this measurement. The higher velocity flow fields encountered in more central Pb–Pb collisions could indeed shift and focus the yield of associated pions. Why such a shift is not as important for other charge balancing pairs remains to be elucidated with a comprehensive model accounting for the flow velocity profile and appropriate sets of charge conserving processes yielding balancing charges in the final state of collisions. Recent deployments of hydrodynamic models feature the former but lack the latter \[61-63\]. Further theoretical work is thus required to interpret the observed collision centrality dependence of the pairing probabilities displayed in Fig. 4. As such calculations become available, the data reported in this work, and specifically the integral $I_{\alpha\beta}^{B}$ shown in Fig. 4, shall provide increased sensitivity to the hadrochemistry of the QGP and its susceptibilities.

In summary, this paper presents the first measurements of the collision centrality evolution of same and cross-species balance functions of identified π^\pm, K^\pm and $p/pbar$ at the LHC. Measured as functions of particle pair separation in rapidity (Δy) and azimuth ($\Delta \phi$), the BFs exhibit prominent near-side peaks centered at ($\Delta y, \Delta \phi$) = (0, 0) which feature different shapes, amplitudes, and widths, and varied dependencies on collision centrality. The BFs of species-pairs measured in this work feature narrowing $\Delta \phi$ widths in more central collisions, owing to the strong radial flow field present in central Pb–Pb collisions. Theoretical studies beyond the scope of this work shall use this data to put upper limits on the diffusivity coefficients of light quarks. In the longitudinal direction, the σ widths of BFs of all species pairs decrease with centrality except for those of KK and pp pairs. The shape and width of KK BFs are independent of collision centrality, while the pp BFs peak shapes depend only minimally on centrality. The observed centrality independence of the KK and narrowing σ of other species in the longitudinal direction are qualitatively consistent with effects associated with radial flow and the two-stage quark production scenario, which posits that quark production occurs predominantly in early and late stages separated by a period of isentropic expansion. Integrals $I_{\alpha\beta}^{B}$ constitute an important finding of this study as they indicate that pairing fractions $I_{\alpha\beta}^{B}$ are nearly independent of collision centrality, and provide a valuable quantitative characterization of the hadronization of the QGP.

Acknowledgements

The ALICE Collaboration would like to thank all its engineers and technicians for their invaluable contributions to the construction of the experiment and the CERN accelerator teams for the outstanding performance of the LHC complex. The ALICE Collaboration gratefully acknowledges the resources and support provided by all Grid centres and the Worldwide LHC Computing Grid (WLCG) collaboration. The ALICE Collaboration acknowledges the following funding agencies for their support in building and running the ALICE detector: A. I. Alikhanyan National Science Laboratory (Yerevan Physics Institute) Foundation (ANSL), State Committee of Science and World Federation of Scientists (WFS), Armenia; Austrian Academy of Sciences, Austrian Science Fund (FWF); [M 2467-N36] and National-stiftung für Forschung, Technologie und Entwicklung, Austria; Ministry of Communications and High Technologies, National Nuclear Research Center, Azerbaijan; Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Financiadora de Estudos e Projetos (Finep), Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) and Universidade Federal do Rio Grande do Sul (UFRGS), Brazil; Ministry of Education of China (MOEC), Ministry of Science & Technology of China (MSTC) and National Natural Science Foundation of China (NSFC), China; Ministry of Science and Education
and Croatian Science Foundation, Croatia; Centro de Aplicaciones Tecnológicas y Desarrollo Nuclear (CEADEN), Cubaenergía, Cuba; Ministry of Education, Youth and Sports of the Czech Republic, Czech Republic; The Danish Council for Independent Research | Natural Sciences, the VILLUM FONDEN and Danish National Research Foundation (DNRF), Denmark; Helsinki Institute of Physics (HIP), Finland; Commissariat à l’Energie Atomique (CEA) and Institut National de Physique Nucléaire et de Physique des Particules (IN2P3) and Centre National de la Recherche Scientifique (CNRS), France; Bundesministerium für Bildung und Forschung (BMBF) and GSI Helmholtzzentrum für Schwerionenforschung GmbH, Germany; General Secretariat for Research and Technology, Ministry of Education, Research and Religions, Greece; National Research, Development and Innovation Office, Hungary; Department of Atomic Energy Government of India (DAE), Department of Science and Technology, Government of India (DST), University Grants Commission, Government of India (UGC) and Council of Scientific and Industrial Research (CSIR), India; Indonesian Institute of Science, Indonesia; Istituto Nazionale di Fisica Nucleare (INFN), Italy; Japanese Ministry of Education, Culture, Sports, Science and Technology (MEXT), Japan Society for the Promotion of Science (JSPS) KAKENHI and Japanese Ministry of Education, Culture, Sports, Science and Technology (MEXT) of Applied Science (IIST), Japan; Consejo Nacional de Ciencia (CONACYT) y Tecnología, through Fondo de Cooperación Internacional en Ciencia y Tecnología (FONCICYT) and Dirección General de Asuntos del Personal Académico (DGAPA), Mexico; Nederlandse Organisatie voor Wetenschappelijk Onderzoek (NWO), Netherlands; The Research Council of Norway, Norway; Commission on Science and Technology for Sustainable Development in the South (COMSATS), Pakistan; Pontificia Universidad Católica del Perú, Peru; Ministry of Education and Science, National Science Centre and WUT ID-UB, Poland; Korea Institute of Science and Technology Information and National Research Foundation of Korea (NRF), Republic of Korea; Ministry of Education and Scientific Research, Institute of Atomic Physics and Ministry of Research and Innovation and Institute of Atomic Physics, Romania; Joint Institute for Nuclear Research (JINR), Ministry of Education and Science of the Russian Federation, National Research Centre Kurchatov Institute, Russian Science Foundation and Russian Foundation for Basic Research, Russia; Ministry of Education, Science, Research and Sport of the Slovak Republic, Slovakia; National Research Foundation of South Africa, South Africa; Swedish Research Council (VR) and Knut & Alice Wallenberg Foundation (KAW), Sweden; European Organization for Nuclear Research, Switzerland; Suranaree University of Technology (SUT), National Science and Technology Development Agency (NSTDA) and Office of the Higher Education Commission under NRU project of Thailand, Thailand; Turkish Energy, Nuclear and Mineral Research Agency (TENMAK), Turkey; National Academy of Sciences of Ukraine, Ukraine; Science and Technology Facilities Council (STFC), United Kingdom; National Science Foundation of the United States of America (NSF) and United States Department of Energy, Office of Nuclear Physics (DOE NP), United States of America.

References

[1] **STAR** Collaboration, J. Adams et al., “Experimental and theoretical challenges in the search for the quark gluon plasma: The STAR’s critical assessment of the evidence from RHIC collisions”. *Nucl. Phys.* **A757** (2005) 102–183, [arXiv:nucl-ex/0501009 [nucl-ex]].

[2] **PHENIX** Collaboration, K. Adcox et al., “Formation of dense partonic matter in relativistic nucleus-nucleus collisions at RHIC: Experimental evaluation by the PHENIX”. *Nucl. Phys.* **A757** (2005) 184–283, [arXiv:nucl-ex/0410003 [nucl-ex]].

[3] **BRAHMS** Collaboration, I. Arsene et al., “Quark gluon plasma and color glass condensate at RHIC? The perspective from the BRAHMS experiment”, *Nuclear Physics A 757* (2005) 1 – 27.

First Three Years of Operation of RHIC.
[4] PHOBOS Collaboration, B. B. Back et al., “The PHOBOS perspective on discoveries at RHIC”, *Nucl. Phys. A757* (2005) 28–101, arXiv:nucl-ex/0410022 [nucl-ex]

[5] STAR Collaboration, J. Adams et al., “Azimuthal anisotropy in Au–Au collisions at $\sqrt{s_{NN}} = 200$ GeV”, *Phys. Rev. C 72* (2005) 014904.

[6] U. Heinz and R. Snellings, “Collective flow and viscosity in relativistic heavy-ion collisions”, *Ann. Rev. Nucl. Part. Sci. 63* (2013) 123–151, arXiv:1301.2826 [nucl-th]

[7] ALICE Collaboration, K. Aamodt et al., “Elliptic flow of charged particles in Pb-Pb collisions at 2.76 TeV”, *Phys. Rev. Lett. 105* (2010) 252302, arXiv:1011.3914 [nucl-ex]

[8] STAR Collaboration, J. Adams et al., “Evidence from d + Au measurements for final state suppression of high p_T hadrons in Au–Au collisions at RHIC”, *Phys. Rev. Lett. 91* (2003) 072304, arXiv:nucl-ex/0306024 [nucl-ex]

[9] ALICE Collaboration, S. Acharya et al., “Production of charged pions, kaons, and (anti-)protons in Pb-Pb and inelastic pp collisions at $\sqrt{s_{NN}} = 5.02$ TeV”, *Phys. Rev. C 101* (2020) 044907, arXiv:1910.07678 [nucl-ex]

[10] STAR Collaboration, J. Adams et al., “Transverse-Momentum and Collision-Energy Dependence of High-p_T Hadron Suppression in Au–Au Collisions at Ultrarelativistic Energies”, *Phys. Rev. Lett. 91* (Oct, 2003) 172302.

[11] PHENIX Collaboration, S. S. Adler et al., “High-p_T charged hadron suppression in Au–Au collisions at $\sqrt{s_{NN}} = 200$ GeV”, *Phys. Rev. C 69* (2004) 034910.

[12] STAR Collaboration, B. I. Abelev et al., “Identified Baryon and Meson Distributions at Large Transverse Momenta from Au–Au Collisions at $\sqrt{s_{NN}} = 200$ GeV”, *Phys. Rev. Lett. 97* (Oct, 2006) 152301.

[13] ALICE Collaboration, J. Adam et al., “Measurement of jet suppression in central Pb-Pb collisions at $\sqrt{s_{NN}} = 2.76$ TeV”, *Phys. Lett. B 746* (2015) 1–14, arXiv:1502.01689 [nucl-ex].

[14] ALICE Collaboration, B. B. Abelev et al., “Centrality, rapidity and transverse momentum dependence of J/ψ suppression in Pb-Pb collisions at $\sqrt{s_{NN}} = 2.76$ TeV”, *Phys. Lett. B 734* (2014) 314–327, arXiv:1311.0214 [nucl-ex].

[15] CMS Collaboration, A. M. Sirunyan et al., “Measurement of prompt and nonprompt charmonium suppression in PbPb collisions at 5.02 TeV”, *Eur. Phys. J. C 78* (2018) 509, arXiv:1712.08959 [nucl-ex].

[16] CMS Collaboration, A. M. Sirunyan et al., “Measurement of nuclear modification factors of $\Upsilon(1S)$, $\Upsilon(2S)$, and $\Upsilon(3S)$ mesons in PbPb collisions at $\sqrt{s_{NN}} = 5.02$ TeV”, *Phys. Lett. B 790* (2019) 270–293, arXiv:1805.09215 [hep-ex].

[17] ALICE Collaboration, S. Acharya et al., “Measurement of nuclear effects on $\Upsilon(2S)$ production in p-Pb collisions at $\sqrt{s_{NN}} = 8.16$ TeV”, *JHEP 07* (2020) 237, arXiv:2003.06053 [nucl-ex].

[18] ALICE Collaboration, S. Acharya et al., “Centrality and transverse momentum dependence of inclusive J/ψ production at midrapidity in Pb–Pb collisions at sNN=5.02 TeV”, *Phys. Lett. B 805* (2020) 135434, arXiv:1910.14404 [nucl-ex].

[19] ALICE Collaboration, J. Adam et al., “J/ψ suppression at forward rapidity in Pb-Pb collisions at $\sqrt{s_{NN}} = 5.02$ TeV”, *Phys. Lett. B 766* (2017) 212–224, arXiv:1606.08197 [nucl-ex].
[20] **STAR** Collaboration, B. I. Abelev *et al.*, “System size dependence of associated yields in hadron-triggered jets”, *Phys. Lett. B* **B683** (2010) 123–128 [arXiv:0904.1722 [nucl-ex]]

[21] **ALICE** Collaboration, K. Aamodt *et al.*, “Particle-yield modification in jet-like azimuthal di-hadron correlations in Pb-Pb collisions at $\sqrt{s_{NN}} = 2.76$ TeV”, *Phys. Rev. Lett.* **108** (2012) 092301 [arXiv:1110.0121 [nucl-ex]]

[22] **ALICE** Collaboration, K. Aamodt *et al.*, “Particle-yield modification in jet-like azimuthal di-hadron correlations in Pb-Pb collisions at $\sqrt{s_{NN}} = 2.76$ TeV”, *Phys. Rev. Lett.* **108** (2012) 092301 [arXiv:1110.0121 [nucl-ex]]

[23] **ALICE** Collaboration, B. Abelev *et al.*, “Centrality dependence of π, K, and p production in Pb-Pb collisions at $\sqrt{s_{NN}} = 2.76$ TeV”, *Phys. Rev. C* **88** (2013) 044910

[24] S. Basu *et al.*, “Specific Heat of Matter Formed in Relativistic Nuclear Collisions”, *Phys. Rev. C* **94** (2016) 044901 [arXiv:1601.05631 [nucl-ex]].

[25] **STAR** Collaboration, J. Adams *et al.*, “Narrowing of the balance function with centrality in Au – Au collisions at $\sqrt{s_{NN}} = 130$ GeV”, *Phys. Rev. Lett.* **90** (2003) 172301 [arXiv:nucl-ex/0301014]

[26] **STAR** Collaboration, M. M. Aggarwal *et al.*, “Balance Functions from Au+Au, d+Au, and p+p Collisions at $\sqrt{s_{NN}} = 200$ GeV”, *Phys. Rev. C* **82** (2010) 024905 [arXiv:1005.2307 [nucl-ex]]

[27] **STAR** Collaboration, L. Adamczyk *et al.*, “Beam-energy dependence of charge balance functions from Au + Au collisions at energies available at the BNL Relativistic Heavy Ion Collider”, *Phys. Rev. C* **94** (2016) 024909 [arXiv:1507.03539 [nucl-ex]]

[28] **ALICE** Collaboration, B. Abelev *et al.*, “Charge correlations using the balance function in Pb-Pb collisions at $\sqrt{s_{NN}} = 2.76$ TeV”, *Phys. Lett. B723* (2013) 267–279 [arXiv:1301.3756 [nucl-ex]]

[29] **ALICE** Collaboration, J. Adam *et al.*, “Multiplicity and transverse momentum evolution of charge-dependent correlations in pp, p–Pb, and Pb–Pb collisions at the LHC”, *Eur. Phys. J. C* **76** (2016) 86 [arXiv:1509.07255 [nucl-ex]]

[30] S. Basu, V. Gonzalez, J. Pan, A. Knospe, A. Marin, C. Markert, and C. Pruneau, “Differential two-particle number and momentum correlations with the AMPT, UrQMD, and EPOS models in Pb-Pb collisions at $\sqrt{s_{NN}} = 2.76$ TeV”, *Phys. Rev. C* **104** (2021) 064902 [arXiv:2001.07167 [nucl-ex]].

[31] S. Pratt, “Balance functions: A signal of late-stage hadronization”, *Nucl. Phys. A* **698** (2002) 531–534

[32] S. Jeon and S. Pratt, “Balance functions, correlations, charge fluctuations and interferometry”, *Phys. Rev. C* **65** (2002) 044902 [arXiv:hep-ph/0110043]

[33] S. Pratt, “Balance functions: A signal of late-stage hadronization”, *Nucl. Phys. A* **698** (2002) 531–534

[34] S. Pratt, W. P. McCormack, and C. Ratti, “Production of Charge in Heavy Ion Collisions”, *Phys. Rev. C* **92** (2015) 064905 [arXiv:1508.07031 [nucl-th]]

[35] A. Bialas, “Balance functions in coalescence model”, *Phys. Lett. B* **579** (2004) 31–38 [arXiv:hep-ph/0308245].
[36] S. Pratt and C. Plumberg, “Evolving Charge Correlations in a Hybrid Model with both Hydrodynamics and Hadronic Boltzmann Descriptions”, *Phys. Rev. C* **99** (2019) 044916, arXiv:1812.05649 [nucl-th].

[37] S. A. Voloshin, “Transverse radial expansion in nuclear collisions and two particle correlations”, *Phys. Lett. B* **632** (2006) 490–494, arXiv:nucl-th/0312065.

[38] P. Bozek, “The Balance functions in azimuthal angle is a measure of the transverse flow”, *Phys. Rev. C* **102** (2020) 044909, arXiv:1904.11459 [nucl-th].

[39] Y. Ye, Y. Ma, A. Tang, and G. Wang, “Effect of magnetic fields on pairs of oppositely charged particles in ultrarelativistic heavy-ion collisions”, *Phys. Rev. C* **99** (2019) 044901, arXiv:1810.04600 [nucl-ex].

[40] S. N. Alam and S. Chattopadhyay, “Effect of simulating parity-odd observables in high energy heavy ion collisions on Balance Functions of charged particles and elliptic flow of pions”, *Nucl. Phys. A* **977** (2018) 208–216, arXiv:1801.02316 [nucl-th].

[41] F. Karsch and K. Redlich, “Probing freeze-out conditions in heavy ion collisions with moments of charge fluctuations”, *Phys. Lett. B* **695** (2011) 136–142, arXiv:1007.2581 [hep-ph].

[42] S. Ravan, P. Pujahari, S. Prasad, and C. A. Pruneau, “Correcting Correlation Function Measurements”, *Phys. Rev. C* **89** (2014) 024906, arXiv:1311.3915 [nucl-ex].

[43] V. Gonzalez, A. Marin, P. Ladron De Guevara, J. Pan, S. Basu, and C. Pruneau, “Effect of centrality bin width corrections on two-particle number and transverse momentum differential correlation functions”, *Phys. Rev. C* **99** (2019) 034907, arXiv:1809.04962 [physics.data-an].

[44] ALICE Collaboration, S. Acharya et al., “Two-particle differential transverse momentum and number density correlations in p–Pb collisions at 5.02 TeV and Pb-Pb collisions at 2.76 TeV at the CERN Large Hadron Collider”, *Phys. Rev. C* **100** (2019) 034905, arXiv:1903.04591 [nucl-th].

[45] ALICE Collaboration, J. Adam et al., “Flow dominance and factorization of transverse momentum correlations in Pb-Pb collisions at the LHC”, *Phys. Rev. Lett.* **118** (2017) 162302, arXiv:1702.02665 [nucl-ex].

[46] X.-N. Wang and M. Gyulassy, “HIJING: A Monte Carlo model for multiple jet production in p p, p A and A A collisions”, *Phys. Rev. D* **44** (1991) 3501–3516.
[52] R. Brun, F. Bruyant, F. Carminati, S. Giani, M. Maire, A. McPherson, G. Patrick, and L. Urban, *GEANT: Detector Description and Simulation Tool; Oct 1994* CERN Program Library. CERN, Geneva, 1993. Long Writeup W5013.

[53] R. Barlow, “Systematic errors: Facts and fictions”, in *Advanced Statistical Techniques in Particle Physics. Proceedings, Conference, Durham, UK, March 18-22, 2002*, pp. 134–144. 2002. arXiv:hep-ex/0207026 [hep-ex]

[54] R. J. Fries, B. Muller, C. Nonaka, and S. A. Bass, “Hadron production in heavy ion collisions: Fragmentation and recombination from a dense parton phase”, *Phys. Rev. C* 68 (2003) 044902. arXiv:nucl-th/0306027.

[55] V. Minissale, F. Scardina, and V. Greco, “Hadrons from coalescence plus fragmentation in AA collisions at energies available at the BNL Relativistic Heavy Ion Collider to the CERN Large Hadron Collider”, *Phys. Rev. C* 92 (2015) 054904. arXiv:1502.06213 [nucl-th].

[56] V. Greco, C. M. Ko, and P. Levai, “Parton coalescence and anti-proton / pion anomaly at RHIC”, *Phys. Rev. Lett.* 90 (2003) 202302. arXiv:nucl-th/0301093.

[57] S. J. Brodsky and A. Sickles, “The Baryon Anomaly: Evidence for Color Transparency and Direct Hadron Production at RHIC”, *Phys. Lett. B* 668 (2008) 111–115. arXiv:0804.4608 [hep-ph].

[58] V. Topor Pop, M. Gyulassy, J. Barrette, C. Gale, X. N. Wang, and N. Xu, “Baryon junction loops in HIJING / B anti-B v2.0 and the baryon /meson anomaly at RHIC”, *Phys. Rev. C* 70 (2004) 064906. arXiv:nucl-th/0407095.

[59] ALICE Collaboration, B. Abelev et al., “Centrality dependence of π, K, p production in Pb-Pb collisions at \(\sqrt{s_{NN}} = 2.76 \) TeV”, *Phys. Rev. C* 88 (2013) 044910. arXiv:1303.0737 [hep-ex].

[60] STAR Collaboration, B. I. Abelev et al., “Energy dependence of π\(^\pm\), p and \(\bar{p} \) transverse momentum spectra for Au–Au collisions at \(\sqrt{s_{NN}} = 62.4 \) and 200-GeV”, *Phys. Lett. B* 655 (2007) 104–113. arXiv:nucl-ex/0703040.

[61] D. Oliinychenko, S. Shi, and V. Koch, “Effects of local event-by-event conservation laws in ultrarelativistic heavy-ion collisions at particlization”, *Phys. Rev. C* 102 (2020) 034904. arXiv:2001.08176 [hep-ph].

[62] V. Vovchenko and V. Koch, “Particlization of an interacting hadron resonance gas with global conservation laws for event-by-event fluctuations in heavy-ion collisions”, *Phys. Rev. C* 103 (2021) 044903. arXiv:2012.09954 [hep-ph].

[63] D. Oliinychenko and V. Koch, “Microcanonical Particlization with Local Conservation Laws”, *Phys. Rev. Lett.* 123 (2019) 182302. arXiv:1902.09775 [hep-ph].
8 Centro de Aplicaciones Tecnológicas y Desarrollo Nuclear (CEADEN), Havana, Cuba
9 Centro de Investigación y de Estudios Avanzados (CINVESTAV), Mexico City and Mérida, Mexico
10 Chicago State University, Chicago, Illinois, United States
11 China Institute of Atomic Energy, Beijing, China
12 Chungbuk National University, Cheongju, Republic of Korea
13 Comenius University Bratislava, Faculty of Mathematics, Physics and Informatics, Bratislava, Slovakia
14 COMSATS University Islamabad, Islamabad, Pakistan
15 Creighton University, Omaha, Nebraska, United States
16 Department of Physics, Aligarh Muslim University, Aligarh, India
17 Department of Physics, Pusan National University, Pusan, Republic of Korea
18 Department of Physics, Sejong University, Seoul, Republic of Korea
19 Department of Physics, University of California, Berkeley, California, United States
20 Department of Physics, University of Oslo, Oslo, Norway
21 Department of Physics and Technology, University of Bergen, Bergen, Norway
22 Dipartimento di Fisica dell’Università and Sezione INFN, Cagliari, Italy
23 Dipartimento di Fisica dell’Università and Sezione INFN, Trieste, Italy
24 Dipartimento di Fisica dell’Università and Sezione INFN, Turin, Italy
25 Dipartimento di Fisica e Astronomia dell’Università and Sezione INFN, Bologna, Italy
26 Dipartimento di Fisica e Astronomia dell’Università and Sezione INFN, Catania, Italy
27 Dipartimento di Fisica e Astronomia dell’Università and Sezione INFN, Padova, Italy
28 Dipartimento di Fisica e Nucleare e Teorica, Università di Pavia, Pavia, Italy
29 Dipartimento di Fisica ‘E.R. Caianiello’ dell’Università and Gruppo Collegato INFN, Salerno, Italy
30 Dipartimento DISAT del Politecnico and Sezione INFN, Turin, Italy
31 Dipartimento di Scienze e Innovazione Tecnologica dell’Università del Piemonte Orientale and INFN Sezione di Torino, Alessandria, Italy
32 Dipartimento di Scienze MIFT, Università di Messina, Messina, Italy
33 Dipartimento Interateneo di Fisica ‘M. Merlin’ and Sezione INFN, Bari, Italy
34 European Organization for Nuclear Research (CERN), Geneva, Switzerland
35 Faculty of Electrical Engineering, Mechanical Engineering and Naval Architecture, University of Split, Split, Croatia
36 Faculty of Engineering and Science, Western Norway University of Applied Sciences, Bergen, Norway
37 Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague, Prague, Czech Republic
38 Faculty of Science, P.J. Šafárik University, Košice, Slovakia
39 Frankfurt Institute for Advanced Studies, Johann Wolfgang Goethe-Universität Frankfurt, Frankfurt, Germany
40 Fudan University, Shanghai, China
41 Gangneung-Wonju National University, Gangneung, Republic of Korea
42 Gauhati University, Department of Physics, Guwahati, India
43 Helmholtz-Institut für Strahlen- und Kernphysik, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
44 Helsinki Institute of Physics (HIP), Helsinki, Finland
45 High Energy Physics Group, Universidad Autónoma de Puebla, Puebla, Mexico
46 Hiroshima University, Hiroshima, Japan
47 Hochschule Worms, Zentrum für Technologietransfer und Telekommunikation (ZTT), Worms, Germany
48 Horia Hulubei National Institute of Physics and Nuclear Engineering, Bucharest, Romania
49 Indian Institute of Technology Bombay (IIT), Mumbai, India
50 Indian Institute of Technology Indore, Indore, India
51 Indonesian Institute of Sciences, Jakarta, Indonesia
52 INFN, Laboratori Nazionali di Frascati, Frascati, Italy
53 INFN, Sezione di Bari, Bari, Italy
54 INFN, Sezione di Bologna, Bologna, Italy
55 INFN, Sezione di Cagliari, Cagliari, Italy
56 INFN, Sezione di Catania, Catania, Italy
57 INFN, Sezione di Padova, Padova, Italy
58 INFN, Sezione di Pavia, Pavia, Italy
59 INFN, Sezione di Roma, Rome, Italy
