Eigenvalue Ratios for vibrating string equations with single-well densities

Jihed Hedhly *

Abstract
In this paper, we prove the optimal upper bound \(\frac{\lambda_n}{\lambda_m} \leq (\frac{n}{m})^2 \) of vibrating string
\[-y'' = \lambda \rho(x) y,\]
with Dirichlet boundary conditions for single-well densities. The proof is based on the inequality \(\frac{\lambda_n(\rho)}{\lambda_m(\rho)} \leq \frac{\lambda_n(L)}{\lambda_m(L)}, \) with \(L \) must be a stepfunction. We also prove the same result for the Dirichlet Sturm-Liouville problems.

2000 Mathematics Subject Classification. Primary 34L15, 34B24.
Key words and phrases. Sturm-Liouville Problems, eigenvalue ratio, single-barrier, single-well, Prüfer substitution.

1 Introduction
We consider the Sturm-Liouville equation acting on \([0, 1]\)
\[-(p(x)y')' + q(x)y = \lambda \rho(x)y, \tag{1.1}\]
with Dirichlet boundary conditions
\[y(0) = y(1) = 0, \tag{1.2}\]
where \(p > 0, \rho > 0 \) and \(q \) (may change sign) are continuous coefficients on \([0, 1]\). Here we limit ourselves to the case \(\rho > 0 \). The case \(\rho < 0 \) has been considered for related problems providing different results, we refer to pioneering works \([5, 6]\) and some refer therein.

As is well-known (see \([13]\)), there exist two countable sequences of eigenvalues
\[\lambda_1 < \lambda_2 < \cdots < \lambda_n \cdots \infty.\]

*Faculté des Sciences de Tunis, Université El-Manar, Laboratoire Equations aux Dérivées Partielles, jihed.hedhly@fst.utm.tn
The issues of optimal estimates for the eigenvalue ratios $\frac{\lambda_n}{\lambda_m}$ have attracted a lot of attention (cf. [1, 3, 4, 7, 8, 9, 10, 11, 13]) and references therein. Ashbaugh and Benguria proved in [3] that if $q \geq 0$ and $0 < k \leq p \rho(x) \leq K$, then the eigenvalues of (1.1)-(1.2) satisfy

$$\frac{\lambda_n}{\lambda_1} \leq \frac{Kn^2}{k}.$$

They also established the following ratio estimate (of two arbitrary eigenvalues)

$$\frac{\lambda_n}{\lambda_m} \leq \frac{Kn^2}{km^2}, \quad n > m \geq 1,$$

with $q \equiv 0$ and $0 < k \leq p \rho(x) \leq K$. Later, Huang and Law [9] extended the results in [3] to more general boundary conditions.

In the case where $p \equiv 1$ and $q \equiv 0$, Huang proved in [7] that the eigenvalues for the string equation

$$-y'' = \lambda \rho(x)y, \quad (1.3)$$

with Dirichlet boundary conditions (1.2) satisfy $\frac{\lambda_2}{\lambda_1} \leq 4$ for symmetric single-well density ρ and $\frac{\lambda_2}{\lambda_1} \geq 4$ for symmetric single-barrier density ρ. The later one has been extended by Horváth [10] for single-barrier (not necessarily symmetric) density ρ. In 2006, Kiss [13] showed that $\frac{\lambda_n}{\lambda_1} \leq n^2$ for symmetric single-well densities and $\frac{\lambda_n}{\lambda_1} \geq n^2$ for symmetric single-barrier densities.

Recall that f is a single-barrier (resp. single-well) function on $[0, 1]$ if there is a point $x_0 \in [0, 1]$ such that f is increasing (resp. decreasing) on $[0, x_0]$ and decreasing (resp. increasing) on $[x_0, 1]$ (see [2]).

In this paper, we prove the optimal upper bound $\frac{\lambda_n}{\lambda_m} \leq (\frac{n}{m})^2$ of (1.3)-(1.2) for single-well density ρ (not necessarily symmetric). The main step to prove this result is the inequality $\frac{\lambda_n}{\lambda_m} \leq \frac{\lambda_n(L)}{\lambda_m(L)}$, with L being a stepfunction. We also prove an result for the Dirichlet Sturm-Liouville problems (1.1)-(1.2). More precisely, we show that $\frac{\lambda_n}{\lambda_m} \leq (\frac{n}{m})^2$ for q is single-barrier and pp is single-well with transition point $x_0 = \frac{1}{2}$ such that $0 < \min(\hat{\mu}_1, \tilde{\mu}_1)$, where $\hat{\mu}_1$ and $\tilde{\mu}_1$ are the first eigenvalues of the Neumann boundary problems defined on $[0, \frac{1}{2}]$ and $[\frac{1}{2}, 1]$, respectively.

For this result, we modify the inverse Liouville substitution (e.g., see [16] pp. 51], [3]) in order to transform Equation (1.1) into (1.3), whose the density is single-well. Therefore, we can use the result of section 2 on the ratio of eigenvalues $\frac{\lambda_n}{\lambda_m}$ for the string equations with single-well densities.
2 Eigenvalue ratio for the vibrating string equations

Denote by \(u_n(x) \) be the \(n-th \) eigenfunction of (1.3) corresponding to \(\lambda_n \), normalized so that

\[
\int_0^1 \rho(x) u_n^2(x) \, dx = 1.
\]

It is well known that the \(u_n(x) \) has exactly \((n-1) \) zeros in the open interval \((0, 1)\). The zeros of the \(n-th \) and \((n+1)st\) eigenfunctions interlace, i.e. between any two successive zeros of the \(n-th \) eigenfunction lies a zero of the \((n+1)st\) eigenfunction. We denote by \((y_i)\), the zeros of \(u_n \) and \((z_i)\), the zeros of \(u_{n-1} \), then in view of the comparison theorem (see [15, Chap.1]), we have \(y_i < z_i \). We may assume that \(u_n(x) > 0 \) and \(u_{n-1}(x) > 0 \) on \((0, y_i)\), then we have \(\frac{u_n(x)}{u_{n-1}(x)} \) is strictly decreasing on \((0, 1)\). Indeed,

\[
\left(\frac{u_n(x)}{u_{n-1}(x)} \right)' = \frac{u_n'(x)u_{n-1}(x) - u_n(x)u_{n-1}'(x)}{u_{n-1}^2(x)} = \frac{w(x)}{u_{n-1}^2(x)}.
\]

We find

\[
w'(x) = u''_n(x)u_{n-1}(x) - u''_{n-1}(x)u_n(x) = (\lambda_{n-1} - \lambda_n)\rho(x)u_n(x)u_{n-1}(x),
\]

this implies that \(w(x) < 0 \) on \((0, 1)\). Hence \(\frac{u_n(x)}{u_{n-1}(x)} \) is strictly decreasing on \((0, 1)\).

From this, there are points \(x_i \in (y_i, z_i) \) such that

\[
\begin{cases}
 u^2_n(x) > u^2_{n-1}(x), & x \in (x_{2i}, x_{2i+1}), \\
 u^2_n(x) < u^2_{n-1}(x), & x \in (x_{2i+1}, x_{2i+2}).
\end{cases}
\]

Let \(\rho(., \tau) \) is a one-parameter family of piecewise continuous densities such that \(\frac{\partial \rho(., \tau)}{\partial \tau} \) exists, and let \(u_n(x, \tau) \) be the \(n-th \) eigenfunction of (1.3) corresponding to \(\lambda_n(\tau) \) of the corresponding String equation (1.3) with \(\rho = \rho(., \tau) \). From Keller in [12], we get

\[
\frac{d}{d\tau} \lambda_n(\tau) = -\lambda_n(\tau) \int_0^1 \frac{\partial \rho}{\partial \tau}(x, \tau)u^2_n(x, \tau) \, d\tau.
\]

By straightforward computation that, yields

\[
\frac{d}{d\tau} \left[\frac{\lambda_n(\tau)}{\lambda_m(\tau)} \right] = \frac{\lambda_n(\tau)}{\lambda_m(\tau)} \int_0^1 \frac{\partial \rho}{\partial \tau}(x, \tau)(u^2_m(x, \tau) - u^2_n(x, \tau)) \, d\tau.
\]

We first prove.

Proposition 1 Let \(\rho > 0 \) be monotone decreasing in \([0, 1]\) and let \(L(x) = \rho(x_{2i+1}) \) (where \(x_i \) the points such that \(u^2_n(x_i) = u^2_{n-1}(x_i) \)), then

\[
\frac{\lambda_n(\rho)}{\lambda_m(\rho)} \leq \frac{\lambda_n(L)}{\lambda_m(L)}.
\]

with equality if and only if \(\rho \equiv L \).
Proof Define $\hat{\rho}(x, \tau) = \tau \rho(x) + (1 - \tau)L(x)$. Using (2.1), one gets
\[
\frac{d}{d\tau} \left[\frac{\lambda_n(\tau)}{\lambda_{n-1}(\tau)} \right] = \frac{\lambda_n(\tau)}{\lambda_{n-1}(\tau)} \int_0^1 \frac{\partial}{\partial \tau}(x, \tau)(u_{n-1}^2(x, \tau) - u_n^2(x, \tau))d\tau
\]
\[= \frac{\lambda_n(\tau)}{\lambda_{n-1}(\tau)} \sum_{i=0}^{x_{2i+2}} (\rho(x) - L(x))(u_{n-1}^2(x, \tau) - u_n^2(x, \tau))d\tau. \tag{2.3}\]

We notice that
\[
\int_{x_{2i}}^{x_{2i+2}} (\rho(x) - L(x))(u_{n-1}^2(x, \tau) - u_n^2(x, \tau))d\tau \leq 0.
\]
It then follows that $\frac{d}{d\tau} \left[\frac{\lambda_n(\tau)}{\lambda_{n-1}(\tau)} \right] \leq 0$. Thus, by the continuity of eigenvalues, we obtain
\[
\frac{\lambda_n(\rho)}{\lambda_{n-1}(\rho)} = \frac{\lambda_n(1)}{\lambda_{n-1}(1)} \leq \frac{\lambda_n(0)}{\lambda_{n-1}(0)} = \frac{\lambda_n(L)}{\lambda_{n-1}(L)}.
\]
And hence
\[
\frac{\lambda_n(\rho)}{\lambda_m(\rho)} \leq \frac{\lambda_n(L)}{\lambda_m(L)}.
\]
Equality holds iff $\rho = L$. \qed

We are now in position to state our main result.

Theorem 1 Let ρ be a single-well density on $[0, 1]$. Then the eigenvalues of the Dirichlet problem (1.3) - (1.2) satisfy
\[
\frac{\lambda_n}{\lambda_m} \leq \left(\frac{n}{m}\right)^2, \tag{2.4}
\]
with equality if and only if ρ is constant.

The proof of Theorem 1 will be given in section 3.

3 Proof of Theorems 1

Corollary 1 Consider equation (1.3) with the Dirichlet boundary conditions (1.2). If the density ρ is decreasing in $[0, 1]$, then the m - th and n - th eigenvalues with $m < n$ satisfy
\[
\frac{\lambda_n}{\lambda_m} \leq \left(\frac{n}{m}\right)^2.
\]
Equality holds iff ρ is constant.
In order to prove Corollary 1 we need some preliminary results. Let \(y(x, z) \) be the unique solution of the initial value problem

\[
\begin{aligned}
-\ddot{y} &= z^2 \rho(x) y, \quad x \in [0, 1], \quad z > 0, \\
y(0) &= 0, \quad \dot{y}(0) = \rho_{\frac{1}{4}}(0).
\end{aligned}
\]

(3.1)

We shall apply to System (3.1), the modified Prüfer substitution as introduced in [13].

\[
\begin{align*}
y(x, z) &= r(x, z) \frac{1}{z} \rho_{\frac{1}{4}} \sin \varphi(x, z), \\
\dot{y}(x, z) &= r(x, z) \rho_{\frac{1}{4}} \cos \varphi(x, z), \\
\varphi(0, z) &= 0,
\end{align*}
\]

(3.2)

where \(r(x, z) > 0 \), and then let \(\theta(x, z) = \frac{\varphi(x, z)}{z} \). We denote by prime (resp. dot) the derivative with respect to \(x \) (resp. \(z \)).

Using Equation (1.3) together with (3.2), one finds the following differential equations for \(r(x, z) \) and \(\varphi(x, z) \):

\[
\begin{align*}
\varphi' &= z \rho_{\frac{1}{4}} + \frac{1}{4} \frac{\rho'}{\rho} \sin(2\varphi), \\
\frac{r'}{r} &= -\frac{1}{4} \frac{\rho'}{\rho} \cos(2\varphi).
\end{align*}
\]

(3.3)

(3.4)

Lemma 1

\[
\dot{\varphi} = \int_0^x \frac{1}{\rho(t)} \frac{r^2(t, z)}{r^2(x, z)} dt.
\]

(3.5)

Proof Differentiate equation (3.3) with respect to \(z \):

\[
\dot{\varphi}' = \rho_{\frac{1}{4}} + \frac{1}{4} \frac{2 \varphi'}{\rho} \frac{\rho'}{\rho} \cos(2\varphi).
\]

(3.6)

Multiplying both sides by \(e^{\int_0^x \frac{r'(t)}{r(t)} dt} \), yields

\[
\dot{\varphi} = \int_0^x \rho_{\frac{1}{4}}(t) \frac{r^2(t, z)}{r^2(x, z)} dt.
\]

Corollary 2

\[
\dot{\theta}(x, z) = \frac{1}{z^2 r^2(x)} \int_0^x r^2(t) \left[2z \rho_{\frac{1}{4}}(t) + \frac{1}{4} \frac{\rho'(t)}{\rho(t)} \left(\sin(2\varphi(t)) + 2\varphi(t) \cos(2\varphi) \right) \right] dt.
\]

(3.7)
Proof

\[\dot{\theta}(x, z) = \frac{\dot{\varphi}(x, z)}{\varphi(x, z)} = \frac{1}{z} \int_0^x \rho^2(t) \frac{r^2(t, z)}{r^2(x, z)} dt - \frac{\varphi(x, z)}{z^2} \]

\[= \frac{1}{z^2 r^2(x, z)} \left[\int_0^x z \rho^2(t) r^2(t, z) dt - r^2(x, z) \varphi(x, z) \right] \]

\[= \frac{1}{z^2 r^2(x, z)} \left[\int_0^x r^2(t, z) z \rho^2(t) dt - 2 \int_0^x r(t) r'(t) \varphi(t, z) dt + \int_0^x r^2(t) \varphi'(t, z) dt \right] \]

\[= \frac{1}{z^2 r^2(x, z)} \left[\int_0^x r^2(t, z) z \rho^2(t) + \varphi'(t, z) dt - 2 \int_0^x r(t) r'(t) \varphi(t, z) dt \right] \]

\[= \frac{1}{z^2 r^2(x, z)} \left[\int_0^x r^2(t, z) z [2 z \rho^2(t) + \varphi'(t, z)] dt + 2 \int_0^x r^2(t, z) [r(t, z) \varphi(t, z) + \varphi(t, z) \cos(2 \varphi)] dt \right] \]

\[= \frac{1}{z^2 r^2(x)} \int_0^x r^2(t) \left[2 z \rho^2(t) + \frac{1}{4} \rho(t) \left(\sin(2 \varphi(t)) + 2 \varphi(t) \cos(2 \varphi) \right) \right] dt. \]

\[\square \]

We can now prove Corollary \[1\[Int]

Proof Let \(L(x) = \rho(x_{2i+1}) \), for all \(x \in (x_{2i}, x_{2i+2}) \), then \(L' \equiv 0 \) for all \(x \in (x_{2i}, x_{2i+2}) \). Using Corollary \[2\[Int]\ we obtain

\[\dot{\theta}(x, z) = \frac{2}{z r^2(x)} \int_0^x r^2(t) L'(t) dt \geq 0. \]

Therefore, \(\dot{\theta}(x, z) \geq 0 \). Let \(m \) be less than \(n \). Then \(\frac{m}{z_m} = \theta(z_m) \leq \frac{n}{z_n} = \theta(z_n) \), and thus \(\frac{m}{z_m} \leq \frac{n}{m} \) and \(\frac{\lambda_n(t)}{\lambda_m(t)} \leq \left(\frac{m}{n} \right)^2 \). Then from Proposition \[1\[Int]\ we get

\[\frac{\lambda_n}{\lambda_m} \leq \left(\frac{n}{m} \right)^2. \]

The equality iff \(\frac{\lambda_n(t)}{\lambda_m(t)} \) is a constant. From \((3.3) \), \(\dot{\theta}(x, z) = 0 \), which implies that \(\rho \equiv \dot{\rho} \equiv cte \). This completes the proof of the theorem. \(\square \)

Proof of Theorem \[1\[Int]\ We define \(\ddot{\rho}(x) = \rho(1-x) \), then \(\ddot{\rho}(x) \) is monotone decreasing in \([0, 1-x_0]\) and monotone increasing in \([1-x_0, 1]\). According to Proposition \[1\[Int]\ together with Corollary \[1\[Int]\ yields

\[\frac{\lambda_n}{\lambda_m} = \frac{\lambda_n(\rho)}{\lambda_m(\rho)} \leq \frac{\lambda_n(L)}{\lambda_m(L)} \leq \left(\frac{n}{m} \right)^2. \]

The equality holds, if \(\rho \) is a constant. \(\square \)
4 Eigenvalue ratios for Sturm-Liouville problems

In this section, we modify the inverse Liouville substitution (e.g., see \cite{16, pp. 51, 3}) in order to transform Equation (1.1) into (1.3), whose the density is single-well. Therefore, we can use the result of section 2 on the ratio of eigenvalues $\frac{\lambda_n}{\lambda_m}$ for the string equations with single-well densities.

Theorem 2 Let q be a single-barrier potential and pp be a single-well function with transition point $x_0 = \frac{1}{2}$ such that $0 < \min(\hat{\mu_1}, \tilde{\mu_1})$ where $\hat{\mu_1}$ and $\tilde{\mu_1}$ are the first eigenvalues of the Neumann boundary problems defined on $[0, \frac{1}{2}]$ and $[\frac{1}{2}, 1]$, respectively. Then the eigenvalues of Problem (1.1)-(1.2) satisfy

$$\frac{\lambda_n}{\lambda_m} \leq \left(\frac{n}{m}\right)^2. \quad (4.1)$$

Equality holds iff $q \equiv 0$ and pp is constant in $[0, 1]$.

The following result is stated without assumptions on the monotonicity on the potential q.

Corollary 3 If q is nonnegative and pp is single-well with transition point $x_0 = \frac{1}{2}$, then

$$\frac{\lambda_n}{\lambda_m} \leq \left(\frac{n}{m}\right)^2. \quad (4.1)$$

Equality holds iff $q \equiv 0$ and pp is constant on $[0, 1]$.

For the proof of Theorem 2, we need some preliminary results.

Let $h(x, \lambda)$ be the unique solution of Equation (1.1) satisfying the initial conditions

$$h(1/2) = 1, \quad h'(1/2) = 0. \quad (4.2)$$

We introduce the meromorphic function

$$F(x, \lambda) = \frac{ph'(x, \lambda)}{h(x, \lambda)}. \quad (4.3)$$

Let $\hat{\eta}_1$ and $\tilde{\eta}_1$ be the first eigenvalues of the problems determined by Equation (1.1) and the boundary conditions

$$y(0) = y'(1/2) = 0, \quad (4.4)$$

$$y'(1/2) = y(1) = 0, \quad (4.5)$$

respectively.
Lemma 2

- The function \(F(0, \lambda) \) is increasing along the interval \((-\infty, \hat{\eta}_1)\).
- The function \(F(1, \lambda) \) is decreasing along the interval \((-\infty, \tilde{\eta}_1)\).

Proof The proof is similar to that of Lemma 3 in [4]. □

We are now ready to prove Theorem 2.

Proof Firstly, if \(q \equiv 0 \) then by use the Legendre substitution [14, pp. 227-228]

\[
t(x) = \frac{1}{\sigma} \int_0^x \frac{1}{p(z)} dz, \quad \sigma = \int_0^1 \frac{1}{p(z)} dz,
\]

Equation (1.1) can be rewritten in the string equation

\[-\ddot{y} = \lambda \sigma^2 \tilde{p}(t) \tilde{\rho}(t) y,\]

where \(\tilde{p}(t) = p(x) \) and \(\tilde{\rho}(t) = \rho(x) \). Thus the estimate (1.1) is direct consequence of Theorem 1. In the sequel we suppose that \(q \not\equiv 0 \). Assume that \(\hat{\mu}_1 = \min(\hat{\mu}_1, \tilde{\mu}_1) \) and let \(h \) be the unique solution of the second-order equation

\[
(p(x)y')' = q(x)y,
\]

satisfying the initial conditions (4.2). Hence, by the hypothesis and the variational principle,

\[0 < \hat{\mu}_1 < \hat{\eta}_1.\]

It is known that \(h(x, \hat{\eta}_1) > 0 \) on \((0, \frac{1}{2}]\), by Sturm comparison theorem (see [15, Chap. 1]), we have \(h(x) > 0 \) on \([0, \frac{1}{2}]\).

On the other hand, since \(F(0, \hat{\mu}_1) = 0 \), then in view of Lemma 2 \(F(0, \lambda) \leq 0 \) on \((-\infty, \hat{\mu}_1)\). Hence, from the condition \(0 < \hat{\mu}_1 \), together with \(h(0) > 0 \), we get \(h'(0) \leq 0 \).

Taking into account that \(q \) is increasing on \([0, \frac{1}{2}]\), then it may vanish at most once, say at \(a_0 \in [0, \frac{1}{2}] \). From this and (4.7), we have \((ph')' \leq 0\) on \([0, a_0]\) and \((ph')' \geq 0\) on \([a_0, \frac{1}{2}]\), and consequently \(ph' \) is increasing on \([0, a_0]\) and increasing on \([a_0, \frac{1}{2}]\). Since \(h'(\frac{1}{2}) = 0 \) and \(h'(0) \leq 0 \), then \(h'(x) \leq 0 \) on \([0, \frac{1}{2}]\]. Using similar arguments, it can be shown that \(h'(x) \geq 0 \) on \([\frac{1}{2}, 1]\). Therefore, \(h \) is a single-well function on \([0, 1]\).

We introduce the modified inverse Liouville substitution (e.g., see [16, pp. 51], [3])

\[
z(x) = \frac{1}{c} \int_0^x \frac{1}{h^2(s)} ds, \quad \text{where} \quad c = \int_0^1 \frac{1}{h^2(s)} ds,
\]

which transforms Problem (1.1)-(1.2) into the system

\[
\begin{cases}
-(p(z)u')' = \tilde{\lambda} \tilde{h}^4(z) \rho(z) u, & z \in (0, 1), \\
u(0) = u(1) = 0,
\end{cases}
\]

\[\text{(4.9)}\]
where \(y = uh, \tilde{h}(z) = h(x) \) and \(\tilde{\lambda} = c^2 \lambda \). Using the Legendre substitution (4.6), the System (4.9), becomes a string equation

\[
-\ddot{u} = \sigma^2 \tilde{\lambda} \tilde{h}^4(t) \dot{p}(t) \dot{\rho}(t) u, \ t \in (0, 1),
\]

with Dirichlet boundary conditions

\[
u(0) = u(1) = 0,
\]

where \(\dot{p}(t) = p(x), \dot{\rho}(t) = \rho(x) \) and \(\tilde{h}(t) = h(x) \). Taking into account that \(\tilde{h} \) is a single-well on \([0, 1]\), then in view of Theorem 1, we have

\[
\tilde{\lambda}_n \tilde{\lambda}_m \leq (\frac{n}{m})^2.
\]

Since \(\tilde{\lambda}_n = c^2 \sigma^2 (\lambda_n - \mu_1) \), then \(\frac{\tilde{\lambda}_n}{\tilde{\lambda}_m} \leq (\frac{n}{m})^2 \).

Assume that there exist \(q(x), p(x) \) and \(\rho(x) \) such that \(\frac{\tilde{\lambda}_n}{\tilde{\lambda}_m} = (\frac{n}{m})^2 \), where \(q(x) \neq 0 \) or \(pp\rho(x) \) is not constant on \([0, 1]\). It is clear that the density in equation (4.10) is constant iff \(\tilde{h}^4 = \frac{\alpha}{pp} \) on \([0, 1]\) for some \(\alpha > 0 \), which is not possible from the monotonicity of \(\tilde{h}^4pp \). This is in contradiction with Theorem 1. The proof of the theorem is complete.

we can now prove Corollary 3.

Proof Following the proof of Theorem 2, let \(h \) be the solution of Problem (4.7)-(4.2). As before \(\min(\tilde{\eta}_1, \tilde{\eta}_1) > 0 \), we have \(h(x) > 0 \) on \([0, 1]\). Since \(q(x) \geq 0 \) on \([0, 1]\), then by (4.7) and (4.2), \(h'(x) \leq 0 \) on \([0, \frac{1}{2}]\) and \(h'(x) \geq 0 \) on \([\frac{1}{2}, 1]\). Therefore \(h \) is a single-well function on \([0, 1]\). The rest of the proof is similar to that of Theorem 2.

Remark 1 The method used in the proof of Theorem 1 cannot be applied in the case of single-barrier densities. More precisely, we have

\[
\frac{\lambda_n(\rho)}{\lambda_m(\rho)} \geq \frac{\lambda_n(\tilde{\rho})}{\lambda_m(\tilde{\rho})}
\]

on the other hand,

\[
\frac{\lambda_n(L)}{\lambda_m(L)} \leq (\frac{n}{m})^2.
\]

I believe that different techniques are needed to deal with the case of single barrier densities.

Acknowledgement. Research supported by Partial differential equations laboratory (LR03ES04), at the Faculty of Sciences of Tunis, University of Tunis El Manar, 2092, Tunis, Tunisia.
References

[1] M. S. Ashbaugh and R. D. Benguria, Optimal bounds for ratios of eigenvalues of one dimensional Schrödinger operators with Dirichlet boundary conditions and positive potentials, Comm. Math. Phys., 124, (1989), 403 – 415.

[2] M. Ashbaugh and R. Benguria, Optimal lower bound for the gap between the first two eigenvalues of one-dimensional Schrödinger operators with symmetric single-well potentials, Proc. Amer. Math. Soc., 105, (1989), 419 – 424.

[3] M. S. Ashbaugh and R. D. Benguria, Eigenvalue ratios for Sturm-Liouville operators, J. Differential Equations, 103, (1993), 205 – 219.

[4] J. Ben Amara and Jihed Hedhly, Eigenvalue ratios for Schrödinger operators with indefinite potentials, Applied Mathematics Letters, 76, (2018), 96 – 102.

[5] A. Constantin, A general-weighted Sturm-Liouville problem, Annali della Scuola Normale Superiore di Pisa, Classe di Scienze, 24, (1997), 767 – 782.

[6] A. Constantin, On the Inverse Spectral Problem for the Camassa-Holm Equation, journal of functional analysis, 155, (1998), 352 – 363.

[7] M-J. Huang, On The Eigenvalue Ratio For Vibrating Strings, Proc. Amer. Math. Soc., 127, (2006), 1805 – 1813.

[8] M. J. Huang, The eigenvalue ratio for a class of densities, J. Math. Anal. Appl., 435, (2016), 944 – 954.

[9] Y. L. Huang and C. K. Law, Eigenvalue ratios for the regular Sturm-Liouville system, Proc. Amer. Math. Soc., 124, (1996), 1427 – 1436.

[10] M. Horváth, on the first two eigenvalues of Sturm-Liouville operators, Proc. Amer. Math. Soc., 131, (2002), 1215 – 1224.

[11] M. Horváth and M. Kiss, A bound for ratios of eigenvalues of Schrödinger operators with single-well potentials, Proc. Amer. Math. Soc., 134, (2005), 1425 – 1434.

[12] J. B. Keller, The minimum ratio of two eigenvalues, SIAM J. Appl. Math., 31, (1976), 485 – 491.

[13] M. Kiss, Eigenvalue ratios of vibrating strings, Acta Math. Hungar., 110, 2006, 253 – 259.

[14] W. Leighton, Ordinary Differential Equations. 3rd ed. Wadsworth, Belmont. CA., 1970.
[15] B.M. Levitan and I. S. Sargsyan, Introduction to spectral theory: Selfadjoint Ordinary Differential Operators, American Mathematical Society, Translation of Mathematical Monographs, 39, (1975).

[16] W. Magnus and S. Winkler, Hill’s Equation. Wiley. New York. 1966, reprinted by by Dover. New York 1979. , AMS, 1975.