HPV-vaccination and cancer cervical screening in 53 WHO European Countries: An update on prevention programs according to income level

Emma Altobelli1,2 | Leonardo Rapacchietta3 | Valerio F. Profeta4 | Roberto Fagnano4

1Department of Life, Health and Environmental Sciences, University of L’Aquila, L’Aquila, Italy
2Epidemiology and Biostatistics Unit, Local Health Unit- Teramo, University of L’Aquila, L’Aquila, Italy
3Epidemiology and Biostatistics Unit, Local Health Unit, Teramo, Italy
4Local Health Unit, Teramo, Italy

Correspondence
Emma Altobelli, Piazzale Salvatore Tommassi 1, 67100, Coppito, Italy.
Email: emma.altobelli@cc.univaq.it

Abstract
Human papillomavirus (HPV) is the most common sexually transmitted disease in the world. The aim of our study is to describe the differences in HPV-vaccination coverage and screening programs in WHO European Countries notably according to income levels. Multiple correspondence analysis was applied to examine the association among the following variables: Gross National Income (GNI) levels (Lower-Middle Income, LMI; Upper-Middle Income, UMI; and High Income, HI); type of CC screening program (coverage; opportunistic/organized); vaccination payment policies (free or partial or total charge); mortality rates/100 000 (≤3; >3-6; >6-9; >9); incidence rates/100 000 (≤7; >7-15; >15-21; >21). Data HPV-vaccination start (years) (2006-2008; 2009-2011; 2012-2014; >2014; no program); coverage HPV-vaccination percentage (≤25; 26-50; 51-75; >75); data screening start (years) (<1960; 1960-1980; 1981-2000; >2000); primary screening test (HPV, cytology), and screening coverage percentage (≤25; >25-50; >50-75; >75). A high income is associated with: start of screening before 1960, medium-high screening coverage, organized screening, start of vaccination in the periods 2009-2011 and 2012-2014 and high immunization coverage. On the other hand, lower-middle income is associated with: late start of vaccination and screening programs with cytology as primary test, high mortality and incidence rates and lower-medium vaccination coverage. Our results show a useful scenario for crucial support to public health decision-makers. Public health authorities should monitor the HPV-vaccinated population in order to determine more precisely the effects on short- and long-term incidence and mortality rates. In fact, the greater the vaccination coverage, the greater will be the efficacy of the program for the prevention of CC and other HPV-related diseases.

KEYWORDS
cervical cancer, coverage, HPV vaccination, income level, screening programs, surveillance

1 INTRODUCTION

Human papillomavirus (HPV) is the most common sexually transmitted disease in the world.1 The persistent infection with high-risk HPV causes Cervical Cancer (CC).2 In female population it is the fourth cancer and the second most common from 25 to 40 years of age.3 Strategies against HPV infection are vaccination and safe sex education.4 Countries...
that have performed HPV-vaccination programs have showed a decrease in the prevalence in the population of the HPV 16, 18 genotypes. HPV-related disease incidence and mortality are the most common measures used to evaluate the impact of vaccination in European Countries. In Europe, HPV-vaccination coverage rates vary from 30% to 80% with school-based programs. Information campaigns of health interventions are closely linked to the success of a vaccination program. In fact, the greater the vaccination coverage, the greater will be the efficacy of the program for the prevention of CC and other HPV-related diseases. In 2006, the European Medicines Agency (EMA) endorsed the quadrivalent HPV vaccine, in 2007 the bivalent, while in June 2015 a 9-valent vaccine was recommended.

It is important to underline that the two primary (HPV vaccination) and secondary strategies (screening, early diagnosis) will lead to the reduction of incidence and mortality for CC. Relatively to Europe, with regard to CC, vaccination and screening programs show differences among Countries; indeed, relatively to screening, there are organized and nonorganized (opportunistic) programs. Knowledge of the onset of CC, new technologies, HPV test as primary screening test along with home self-sampling modified screening programs in many European Countries.

Cervical cancer screening programs together with primary prevention could contribute to reducing social inequalities between central and eastern European Countries.

The aim of the study was to describe the differences in HPV-vaccination coverage and screening programs in WHO European Countries notably according to income levels.

2 MATERIALS AND METHODS

2.1 Gross national income (GNI)

According to the World Bank, economies can be divided into low income (LI), lower-middle income (LMI), upper-middle income (UMI), and high income (HI) in relation to GNI per capita (Figure 1). In this study, the 53 WHO ER Countries were thus divided into: LMI, $1026-4035 (Armenia, Georgia, Kyrgyzstan, Moldova, Tajikistan, Ukraine, and Uzbekistan); UMI, $4036-12,475 (Albania, Azerbaijan, Belarus, Bosnia and Herzegovina, Bulgaria, Kazakhstan, FYR of Macedonia [FM], Hungary, Montenegro, Romania, Serbia, Turkey, and Turkmenistan); and HI, $12,476 (Austria, Belgium, Czech Republic, Denmark, Estonia, Finland, France, Germany, Greece, Iceland, Ireland, Israel, Italy, Luxembourg, Norway, Poland, Portugal, Slovakia Republic, Slovenia, Spain, Sweden, Switzerland, the Netherlands, and the United Kingdom, Andorra, Croatia, Cyprus, Malta, Monaco, Latvia, Lithuania, Russian Federation, and San Marino) (World Bank and Lending Groups 2016) (Table 1).
Country	2008	2012	2008	2012	Date start	Age at beginning	Policy payment	Organization Start date	Region	Coverage % (year)	Year	500.000	Year	Cancer screening	
	Incidence	National immunization	Mortality	Cancer screening											
	100.000	100.000	Mortality	Regions Coverage % (year)	Primary Test	Age target	Screening Interval Years	Payment Policy							
Austria	5.7	5.8	2.2	2.6	2014	9-12	Fully covered by patient health authorities	Opportunistic 1970	National	86.6 (2014)	Cytology PAP	>18	1	Free of Charge	
Andorra	NR	NR	NR	NR	2014	12	Opportunistic NR	Opportunistic NR	NR	61.4 (2011)	Cytology PAP	>18	1	NR	
Belgium	8.4	8.6	2.5	2.3	2007	12	75% supported by national health authorities	Opportunistic 1965	Regional	68.7 (2013)	Cytology PAP	25-64	3	Free of Charge	
Croatia	11.8	10.0	4.2	3.4	2016	NR	Fully covered by national health authorities	Opportunistic 1960	National	65.3 (2003)	Cytology PAP	25-64	3	Free of Charge	
Cyprus	4.5	4.1	2.6	1.3	2016	11-12	Opportunistic NR	Opportunistic NR	NR	67.4 (2012)	Cytology PAP	24-65	NR	NR	
Czech Republic	14.0	14.1	4.6	4.8	2012	13	Covered by general health insurance for routine	Opportunistic 1947	National	87.2 (2014)	Cytology PAP	25-60	1	Free of Charge	
Denmark	12.1	10.6	3.1	2.6	2009	12	Fully covered by national health authorities	Opportunistic 1962	National	57.7 (2014)	Cytology PAP	30-59	5	Free of Charge	
Estonia	15.8	19.9	7.3	7.5	No program	-	Organized 2006	Organized 2006	National	69.0 (2015)	HPV PAP	4-64	3	5-64 HPV	Free of Charge
Finland	4.5	4.3	1.5	1.3	2013	11-12	Fully covered by national health authorities	Organized 1963	National	69.0 (2015)	HPV PAP	30-64	5	Free of Charge	
France	7.1	6.8	1.9	1.8	2007	11-14	65% supported by national health authorities	Organized 1991	Regional 75.4 (2014)	Cytology PAP	25-65	3	Insurance Copayment		
Germany	6.9	8.2	2.6	2.6	2007	9-14	Fully covered by national health authorities	Organized 1971 (west)	National	80.4 (2014)	Cytology PAP	>20	1	Free of Charge	
Greece	4.1	5.2	1.4	1.9	2008	11-15	Fully covered by national health authorities	Opportunistic 1991	National	75.5 (2014)	Cytology PAP	>20	1	NR	

(Continues)
Country	2008	2012	Date start	Age at beginning	Policy payment	Coverage% (year)	Organization Start date	Regions Coverage % (year)	Primary Test	Age target Age	Screening Interval Years	Payment Policy
Hungary	16.6	18.0	6.6	2014	NR	NR	Opportunistic 1950	National 40.1 (2015)	Cytology PAP	25-65	3	Free of Charge
Iceland	8.4	7.9	0.8	2011	Fully covered by national health authorities 84.0 (2013)	NR	Organized 1964	National 71.0 (2015)	Cytology PAP	20-69	2 (20-39) 4 (40-69)	NR
Ireland	10.9	13.6	3.6	2010	Fully covered by national health authorities 849 (2014)	Organized 2008	National 78.7 (2015)	Cytology PAP	25-60	3 (25-44) 5 (45-60)	Free of Charge	
Israel	NR	4.6	2.4	NR	NR	NR	Opportunistic NR	Regional 32.0 (2008)	Cytology PAP	25-65	3	Free of Charge
Latvia	12.4	17.3	6.9	2010	Fully covered by national health authorities 65.0 (2011)	Organized 1960	National 25.2 (2016)	Cytology PAP	25-70	3	Free of Charge	
Lithuania	21.0	26.1	10.6	2016	NR	NR	Organized 2004	National 74.0 (2014)	Cytology PAP	25-60	3	Free of Charge
Luxembourg	6.3	4.9	5.6	2008	Fully covered by national health authorities 17.0 (2009)	Organized 1962	National 83.6 (2014)	Cytology PAP	>15	1	NR	
Malta	2.1	3.8	2.1	2012	Fully covered by national health authorities NR	Organopportunistic NR	National 49.3 (2008)	HPV Cytology PAP	>30 HPV 25-50 Cytol.	5 HPV 3 Cytology	Free of Charge	
Monaco	NR	NR	NR	2011	NR	NR	Opportunistic NR	National 74.0 (2015)	Cytology PAP	25-69	3	NR
Norway	9.4	9.8	3.0	2009	Fully covered by national health authorities 63.0 (2011)	Organopportunistic 1970	National 74.1 (2015)	HPV Cytology PAP	25-69	3	NR	
Poland	11.6	12.2	7.3	No Program	Opportunistic 1970	Organized 2006	National 21.2 (2013)	Cytology PAP	25-59	3	Free of Charge	

(Continues)
Country	National immunization	Cancer screening	Screening Interval Years	Payment Policy							
	Incidence 100,000	Mortality 100,000									
	2008 2012	2008 2012	Date start Age at beginning	Policy payment Coverage % (year)	Organization Start date	Regions Coverage % (year)	Primary Test	Age target	Year	Screening Interval Years	Payment Policy
Portugal	12.2 9.0	3.4 2.8	2008 13	Fully covered by national health authorities 84.0 (2011)	Organized Central Region 1990 Akentejo Region 2008	Regional 70.7 (2014)	Cytology PAP	25-64	3		Free of Charge
Russian Federation Outside European institutions	13.3 15.3	6.6 6.9	Partial program 2009 12-13	NR NR	Organized NR	NR 72.0 (2012)	Cytology PAP	>18	1		NR
San Marino	NR NR NR	2008 11-14	Fully covered by national health authorities NR	Opportunistic 1968 Organized 2006	National 82.0 (2017)	HPV Cytology PAP	30-65 HPV 25-30 Cytol.	5 HPV 3 Cytology	NR		
Slovakia Republic	15.8 16.1	6.5 6.9	2014 12	NR 55.0 (2012)	Opportunistic 1980 Organized 2008	National 69.0 (2014)	Cytology PAP	23-64	1		Free of Charge
Slovenia	11.1 10.5	3.1 2.9	2009 11	Fully covered by national health authorities 70.8 (2012)	Opportunistic 1960 Organized 2003	National 71.9 (2016)	Cytology PAP	20-64	3		Free of Charge
Spain	6.3 7.8	2.1 2.1	2007 11-14	Fully covered by national health authorities 78.5 (2010)	Organized 1993	National 72.7 (2014)	HPV Cytology PAP	30-65 HPV 25-65 Cytol.	5 HPV 3 Cytology	Free of Charge	
Sweden 4,100,000	7.8 7.4	2.2 2.8	2010 10-12	Fully covered by national health authorities 82.0 (2012)	Opportunistic 1950 Organized 1967	National 81.7 (2015)	HPV Cytol. PAP	30-64 HPV 23-29 Cytol.	3 (30-50) HPV 7 (51-64) 3 (23-29) Cytology	Free of Charge	
Switzerland	4.0 3.6	1.4 1.5	2008 11-14	NR NR	Opportunistic NR	NR 74.5 (2012)	Cytology PAP	>20	3		Insurance Copayment
Netherlands	6.8 6.8	2.3 1.9	2010 12	Fully covered by national health authorities 79.5 (2014)	Opportunistic 1970 Organized 1980	National 64.4 (2015)	HPV Cytology PAP	30-60	5 HPV 5 Cytology	Free of Charge	
United Kingdom	7.2 7.1	2.4 2.2	2008 12-13	Fully covered by national health authorities 91.4 (2013)	Opportunistic 1964 Organized 1988	National 77.5 (2016)	Cytology PAP	25-64	3 (25-49); 5 (50-64)	Free of Charge	
Albania	7.1 5.0	1.5 1.8	No Program	NR NR	Opportunistic NR	NR 2.7 (2002)	Cytology PAP	>20	2-3		NR

(Continues)
Country	Regions	Primary Test	Age target	Screening Interval Years	Payment Policy						
Azerbaijan Outside European institutions	NR	Acetic acid visualization VIA	NR	11	NR						
Belarus Outside European institutions	NR	Cytology PAP	>18	1	NR						
Bosnia and Herzegovina	Organized	National	21-70	1	NR						
Bulgaria	Opportunistic NR	National	30-59	3	NR						
Kazakhstan Outside European institutions	Organized NR	National	30-60	5	NR						
FRY of Macedonia	Organized 2015	National	30-55	3	NR						
Montenegro	Opportunistic NR	National	25-64	3	NR						
Romania	Opportunistic 1965 Organized 2012	National	25-64	5	Free of Charge						
Serbia	Opportunistic 1960 Organized 2011	National	25-65	3	Free of Charge						
Turkey	Opportunistic 1985 Organized 2004	National	30-65	5	NR						
Turkmenistan Outside European institutions	Opportunistic NR	National	>20	1	NR						
Country	Incidence 100.000	Mortality 100.000	Date start	Policy payment	Coverage % (year)	Organization Start date	Regions Coverage % (year)	Primary Test	Age target	Screening Interval Years	Payment Policy
---------	-------------------	------------------	------------	----------------	-------------------	-------------------------	---------------------------	--------------	------------	--------------------------	----------------
Armenia	NR 13.8	3.7 5.5	No Program	NR NR	Opportunistic NR	NR 9.3 (2010)	Cytology PAP	30-60	3	NR	
Georgia	NR 14.2	NR 5.7	NR NR	NR NR	Opportunistic NR	NR 9.0 (2011)	Cytology PAP²	25-60	3	Free of Charge	
Kyrgyzstan Outside European institutions	NR 23.7	12.6 11.4	No Program	NR 53.4	Opportunistic NR	NR 10-50 (2015)	Cytology PAP	NR	5	NR	
Republic of Moldova	17.1 19.6	8.6 7.5	NR NR	Organized NR	National 70.0 (2015)	Cytology PAP	>20	2	NR		
Tajikistan Outside European institutions	NR 9.9	NR 4.9	NR	Opportunistic NR	NR 65.0 (2012)	Cytology PAP	>20	NR	NR		
Ukraine	NR 16.6	7.4 7.5	No Program	NR 86.7 (2014)	Opportunistic NR	NR 73.7 (2003)	Cytology PAP	18-65	1	NR	
Uzbekistan Outside European institutions	NR 13.5	NR 6.4	Announced 12	NR NR	Opportunistic NR	NR	Cytology PAP	25-49	NR	NR	

R: Not Reported.

aAcetic acid visualization VIA HPV secondary test as a triage to borderline cytology and as a follow-up after treatment of severe cervical lesions.

bInterval between negative screens is three years for women aged 23-49 and five years for women aged 50-64. The primary screening test is cytology for women aged 23-59 with HPV as a triage test. HPV DNA test is primary screening for women aged 60-64 years.

cPrimary screening test is predominantly cytology but can also be HPV. The sample is examined for cell changes (the traditional Pap test) or the Human Papillomavirus. If there is cancer-related HPV, the screening sample is checked for possible cervical cell changes (Pap test).

dHPV testing is not reimbursed.

eScreening ages: Above 25 (cytology), Above 30 (HPV test). Screening interval: Cytology every 3 years (ages 25-50), VIA every 5 years (above 50). HPV test every 5 years.

f1, 3 after 2 consecutive annual negative Cytology test.

ghReflex testing with HPV is done for cytology positive test (ASCUS/LSIL or worse) below the age of 30 and reflex testing with cytology for HR HPV positive test above the age of 30. A double test (cytology and HPV) is recommended for women at age 41. Women with HPV positive/cytology negative tests should repeat screening after 3 years. Women with ASCUS/LSIL (regardless of HPV status) below the age of 28 are not referred to colposcopy, but repeat cytology.

iReplace Pap-test with hrHPV DNA test as primary screening test (since 2016).

jIf slightly abnormal cells are present, the human papillomavirus (HPV) will be tested.

kHPV test since 2015.
lHPV test undergoing project.
(1960; 1960–1980; 1981–2000; ≥2000); primary screening test (HPV, cytology); screening coverage percentage (≤25; >25–50; >50–75; >75).

These variables were coded as ordinal, nominal or dummy, as appropriate, and incorporated into the model.

3 | RESULTS

3.1 | Multiple correspondence analysis

The results of MCA are shown in Figures 2 and 3. We identified two dimensions that explain 82% of the variance: the first is 49% and the second being 33%.

The first quadrant (top right) identified the following variables: an early initiation of vaccination programs based on HPV screening as primary test; a high-screening coverage and low incidence and mortality rates. In addition,
and screening with cytology as primary test, medium-high mortality and incidence rates, and medium vaccination coverage (Figure 2). It is important to highlight that most EU-28 Countries are mainly located between the first and fourth quadrants with high income. On the contrary, the Countries outside of the EU-28 are located between the second and third quadrant with upper-middle income and lower-middle income (Figure 3).

4 | DISCUSSION

In 2015, 526,000 women developed CC worldwide and caused 239,000 deaths.39 The pap-test screening programs, allowing an early diagnosis of precancerous lesions and a timely treatment of the same, have allowed to reduce the incidence of cervical cancer. Vaccination prevents precancerous lesions, reduces cancer and related treatments to eliminate precancerous lesions. Vaccination, acting much earlier in the history of disease development, prevents chronic infection resulting in pre-cancerous lesions. Vaccination and screening programs are fundamental because they are potentially cost-effective and allow decreasing incidence and mortality rates of CC.40 Screening, however, will remain fundamental for prevention of CC despite HPV vaccines.41 In fact, a factor that determines the differences in the incidence of CC among Countries is the screening coverage of the population.7

Monitoring HPV-vaccination coverage is important to evaluate the performance of vaccination programs and the potential impact of HPV vaccine on cervical cancer. In fact, cervical cancer screening programs will need to be adjusted to the number of vaccinated people eligible for screening. However, despite the documented effectiveness of HPV vaccine, there is still an incomplete availability to this prevention action in the world population. Bruni et al42 showed high differences in number of women vaccinated according to gross income level countries; in fact, high-quality primary and secondary cancer prevention is nearly always available in wealthy countries with gross national income (GNI) level.42 Moreover, higher income allows access to better resources and living standards and can increase the ability to maintain healthy behaviors.43 Syse and Lyngstand showed that high income is also related to higher survival rate.44

Our study shows that European Countries with higher income have higher screening and immunization coverage probably due to organized screenings starting before 1960 that determined low incidence and mortality rates, respect to those with lower-middle income. High-income countries have HPV screening test as the primary test and total or free partial charge HPV vaccination.

Eastern European and Asian Countries have lower-middle income and show high incidence and mortality rates. These countries have an opportunistic screening with lower-screening coverage and lower-immunization coverage probably because HPV vaccine was introduced later. Globally, the coverage of vaccination is higher in countries with high income; by 2016, 71% of HI countries, 35% UMI countries, 8% of LMI countries, and 6% of LI countries had introduced the HPV vaccine.45

Only eight of the 70 countries who reported HPV vaccine introduction by the end of 2016, made the vaccine available to boys in addiction to girls (Australia, Austria, Barbados, Brazil, Canada, Italy, Switzerland, and the United States).46 According to Brisson et al,47 greater benefits can be acquired for both female and male by increasing HPV-vaccination coverage among girls. In addition, vaccination of both sexes would be more equitable.48

In light of this, we would like to point out that: first, the strategy of including males in vaccination campaigns has, without a doubt, the function of reducing the circulation of the virus (herd-effect) and the transmission of infection between the two sexes. It has also the advantage of countering the occurrence of HPV-related diseases affecting male anatomic sites, such as the penis. Second, it is important to stress that both sexes have the same right to benefit from the advantages of anti-HPV vaccination. In fact, according to European regulations, it is a right of every citizen to take advantage of disease prevention programs, where there is an effective means of prevention like the anti-HPV vaccine. Third, a universal anti-HPV vaccination program reduces the prejudices created around a female-only vaccination, helping to reduce sociocultural barriers and thereby increasing acceptability and vaccination coverage.

Public health authorities should monitor the HPV-vaccinated population in order to determine more precisely the effects on short- and long-term incidence and mortality rates.

A useful scenario for crucial support to public health decision-makers is the strength of our paper. On the other hand, a limitation could be that the data that came from low-income countries must be considered with caution, both because they come from local registries (rather than the population-based cancer registries used for the other countries) and because the International Classification Disease, 9th revision, codes are not always accurate.

CONFLICT OF INTEREST

The authors declare no conflict of interest.

ORCID

Emma Altobelli http://orcid.org/0000-0002-0287-8859

REFERENCES

1. Harper DM, DeMars LR. HPV vaccines – a review of the first decade. Gynecol Oncol. 2017;146:196-204.
2. Walboomers JM, Jacobs MV, Manos MM, et al. Human papillomavirus is a necessary cause of invasive cervical cancer worldwide. J Pathol. 1999;189(1):12-19.

3. Ferlay J, Soerjomataram I, Dikshit R, et al. Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer. 2015;136(5):E359-386.

4. Zur Hausen H. Papillomaviruses and cancer: from basic studies to clinical application. Nat Rev Cancer. 2002;2:342-350.

5. Castle PE, Maza M. Prophylactic HPV vaccination: past, present, and future. Epidemiol Infect. 2016;144(3):449-468.

6. Elfström KM, Dillner J, Arnhem-Dahlström L. Organization and quality of HPV vaccination programs in Europe. Vaccine. 2015;33(14):1673-1681.

7. Hilleman MS, Soergel P, Hertel H, Jentschke M. Epidemiology and early detection of cervical cancer. Oncol Res Treat. 2016;39:501-506.

8. Bray F, Loos AH, McCarron P, et al. Trends in cervical squamous cell carcinoma incidence in 13 European countries: changing risk and the effects of screening. Cancer Epidemiol Biomarkers Prev. 2005 Mar;14(3):677-686.

9. Joura EA, Giuliano AR, Iversen OE, et al. A 9-valent HPV vaccine against infection and intraepithelial neoplasia in women. N Engl J Med. 2015;372:711-723.

10. Arbyn M, Castellsagué X, de Sanjosé S. Worldwide burden of cervical cancer in 2008. Ann Oncol. 2011;22:2675-2686.

11. Altobelli E, Scarselli G, Lattanzi A, Fortunato C, Profeta VF. A comparison between Pap and HPV screening tests and screening methods. Mol Clin Oncol. 2016;5(2):348-354.

12. Del Mistro A, Frayle H, Ferro A, Fantin G, Altobelli E, Giorgi Rossi P. Efficacy of self-sampling in promoting participation to cervical cancer screening also in subsequent round. Prev Med Rep. 2016;5:166-168.

13. Del Mistro A, Frayle H, Rizzi M, et al. Methylation analysis and HPV genotyping of self-collected cervical samples from women not responding to screening invitation and review of the literature. PLoS ONE. 2017;12(3):e0172226.

14. Giorgi Rossi P, Fortunato C, Barbarino P, et al. HPV Self-sampling Italian Working Group Self-sampling to increase participation in cervical cancer screening: an RCT comparing home mailing, distribution in pharmacies, and recall letter. Br J Cancer. 2015;112(4):667-675.

15. Altobelli E, Lattanzi A. Cervical carcinoma in the European Union. An update on disease burden, screening program state of activation, and coverage as of March 2004. Int J Gynecol Cancer. 2015;25:474-483.

16. Altobelli E. Improving cervical cancer screening in Baltic, central, and eastern European countries. Lancet Oncol. 2016;17:1349-1350.

17. World Bank Country and Lending Groups for July 2016. https://datahelpdesk.worldbank.org/knowledgebase/articles/906519.

18. Kesic V, Poljak M, Rogovskaya S. Cervical cancer burden and prevention activities in Europe. Cancer Epidemiol Biomarkers Prevention. 2012;21(9):1423-1433.

19. https://dw.euro.who.int/api/v3/export?code=HFA_144

20. GLOBOCAN. 2012. http://globocan.iarc.fr/Default.aspx; https://nccd.cdc.gov/uscs/cancersrankedbystate.aspx

21. WHO cancer country profile. http://www.who.int/cancer/country-profiles/en/. Last accessed March 23, 2018.

22. Against Cancer. Cancer Screening in the European Union. Report on the Implementation of the Council Recommendation on Cancer Screening. 2017. Reprint May 2017. https://ec.europa.eu/health/sites/health/files/major_chronic_diseases/docs/2017_cancerscreening_2ndreportimplementation_en.pdf

23. http://www.hpvcentre.net/statistics/reports/XWX.pdf

24. OECD.STAT. http://stats.oecd.org/index.aspx?queryxml&id=30159.

25. https://gateway.euro.who.int/en/indicators/cah_63-hpv-vaccine-coverage/

26. Bruni L, Diaz M, Barrionuevo-Rosas L, et al. Global estimates of human papillomavirus vaccination coverage by region and income level: a pooled analysis. Lancet Glob Health. 2016;4(7):e453-e463.

27. ECDC. Introduction of HPV Vaccines in European Countries – An Update. https://ecdc.europa.eu/sites/portal/files/media/en/publications/Publications/20120905_GUI_HPV_vaccine_update.pdf

28. http://nordscreen.org. Last accessed March 23, 2018. http://nordscreen.org/wp-content/uploads/2017/07/cervix-fact-sheet-iceland-2017.pdf; http://nordscreen.org/wp-content/uploads/2017/08/cervix-fact-sheet-denmark-2017.pdf; http://nordscreen.org/wp-content/uploads/2017/07/cervix-fact-sheet-estonia-2017.pdf; http://nordscreen.org/wp-content/uploads/2017/07/cervix-fact-sheet-finland-2017.pdf; http://nordscreen.org/wp-content/uploads/2017/07/cervix-fact-sheet-norway-2017.pdf; http://nordscreen.org/wp-content/uploads/2017/07/cervix-fact-sheet-sweeden-2017.pdf

29. Hamers FF, Duport N, Beltzer N. Population-based organized cervical cancer screening pilot program in France. Eur J Cancer Prev. 2018;27(5):486-492.

30. National Cancer Institute. International Screening Cancer Network. Cervical Cancer Screening Programs in 19 ICSN Countries. Organization, Policies, and Program Reach; 2012. https://www.cancer.gov/about-nci/organization/cgb/research/iscn

31. http://www.hpvcentre.net. Last accessed March 23, 2018 http://www.hpvcentre.net/statistics/reports/AUT.pdf http://www.hpvcentre.net/statistics/reports/CYP.pdf http://www.hpvcentre.net/statistics/reports/CZE.pdf http://www.hpvcentre.net/statistics/reports/DNK.pdf http://www.hpvcentre.net/statistics/reports/EST.pdf http://www.hpvcentre.net/statistics/reports/FIN.pdf http://www.hpvcentre.net/statistics/reports/FRA.pdf http://www.hpvcentre.net/statistics/reports/DEU.pdf http://www.hpvcentre.net/statistics/reports/GRC.pdf http://www.hpvcentre.net/statistics/reports/HUN.pdf http://www.hpvcentre.net/statistics/reports/ISL.pdf http://www.hpvcentre.net/statistics/reports/IRL.pdf http://www.hpvcentre.net/statistics/reports/ISR.pdf http://www.hpvcentre.net/statistics/reports/ITA.pdf http://www.hpvcentre.net/statistics/reports/LVA.pdf http://www.hpvcentre.net/statistics/reports/LTU.pdf http://www.hpvcentre.net/statistics/reports/LUX.pdf http://www.hpvcentre.net/statistics/reports/MLT.pdf http://www.hpvcentre.net/statistics/reports/MCO.pdf http://www.hpvcentre.net/statistics/reports/NOR.pdf http://www.hpvcentre.net/statistics/reports/POL.pdf http://www.hpvcentre.net/statistics/reports/PLD.pdf http://www.hpvcentre.net/statistics/reports/RUS.pdf http://www.hpvcentre.net/statistics/reports/SMD.pdf http://www.hpvcentre.net/statistics/reports/SRM.pdf http://www.hpvcentre.net/statistics/reports/SVK.pdf http://www.hpvcentre.net/statistics/reports/SVN.pdf http://www.hpvcentre.net/statistics/reports/ESP.pdf http://www.hpvcentre.net/statistics/reports/SWE.pdf http://www.hpvcentre.net/statistics/reports/CHE.pdf http://www.hpvcentre.net/statistics/reports/NLD.pdf
http://www.hpvcentre.net/statistics/reports/ALB.pdf http://www.hpvcentre.net/statistics/reports/AZE.pdf http://www.hpvcentre.net/statistics/reports/BGR.pdf http://www.hpvcentre.net/statistics/reports/MKD.pdf http://www.hpvcentre.net/statistics/reports/MNE.pdf http://www.hpvcentre.net/statistics/reports/ROU.pdf http://www.hpvcentre.net/statistics/reports/SRB.pdf http://www.hpvcentre.net/statistics/reports/TUR.pdf http://www.hpvcentre.net/statistics/reports/TKM.pdf http://www.hpvcentre.net/statistics/reports/ARM.pdf http://www.hpvcentre.net/statistics/reports/AZ.pdf http://www.hpvcentre.net/statistics/reports/BLR.pdf http://www.hpvcentre.net/statistics/reports/BIH.pdf http://www.hpvcentre.net/statistics/reports/KAZ.pdf http://www.hpvcentre.net/statistics/reports/TJK.pdf http://www.hpvcentre.net/statistics/reports/UKR.pdf http://www.hpvcentre.net/statistics/reports/UGA.pdf http://www.hpvcentre.net/statistics/reports/UKR.pdf http://www.hpvcentre.net/statistics/reports/UES.pdf

32. European Guidelines for Quality Assurance in Cervical Cancer Screening, Second edition. Supplements.pdf. https://www.gisci.it/documenti/news/EW0115451ENN_002.pdf

33. Schenck U, von Karsa L. Cervical cancer screening in Germany. Eur J Cancer. 2000;36(17):2221‐2226.

34. Vīberga I, Poljak M. Cervical cancer screening in Latvia: a brief history and recent improvements (2009‐2011). Acta Dermatovenerol Alp Pannonica Adriat. 2013;22(1):27‐30.

35. Seme K, Maver PJ, Korać T, et al. Current status of human papillomavirus vaccination implementation in central and eastern Europe. Acta Dermatovenerol Alp Pannonica Adriat. 2013;22(1):21‐25.

36. http://www.euro.who.int/en/health-topics/disease-prevention/vaccines-and-immunization/news/news/2016/12/public-debate-on-hpv-immunization-in-serbian-parliament. Last accessed March 23, 2018.

37. Periši Z, Plešinac‐Karapandži V, Džini M, Zamurov M, Periši N. Cervical cancer screening in Serbia. Vojnosanit Pregl. 2013;70(1):86‐89.

38. Gultekin M, Zayifoglu Karaca M, Kucukyildiz I, et al. Initial results of population based cervical cancer screening program using HPV testing in one million Turkish women. Int J Cancer. 2018;142(9):1952‐1958.

39. Ferlay J, Soerjomataram I, Dikshit R, et al. GLOBOCAN 2012 Cancer Incidence and Mortality Worldwide: IARC Cancer Base No. 11. Lyon, France: International Agency for Research on Cancer; 2013. https://globocan.iarc.fr.

40. Fitzmaurice C, Allen C, Barber RM, et al. Global, regional, and national cancer incidence, mortality, years of life lost, years lived with disability, and disability‐adjusted life‐years for 32 cancer groups, 1990 to 2015: a systematic analysis for the global burden of disease study. JAMA Oncol. 2017;3(4):524‐548.

41. Klemp Gjertsen M, Neilson AR, de Freiesleben Blasio B. Cost‐Effectiveness of Human Papillomavirus (HPV) Vaccination in Norway [Internet]. Oslo, Norway: Knowledge Centre for the Health Services at The Norwegian Institute of Public Health (NIPH); 2007. http://www.ncbi.nlm.nih.gov/books/NBK464826/.

42. Wright TC, Stoler MH, Behrens CM, et al. Primary cervical cancer screening with human papillomaviruses: end of study results from the ATHENA study using HPV as the first‐line screening test. Gynecol Oncol. 2015;136:189‐197.

43. Bruni L, Diaz M, Barrionuevo‐Rosas L, et al. Global estimates of human papillomavirus vaccination coverage by region and income level: a pooled analysis. Lancet Global Health. 2016;4:e453‐e463.

44. Kawachi I, Adler NE, Dow WH. Money, schooling, and health: mechanisms and causal evidence. Annals of New York Academy of Sciences. 2010;1186(1):56‐58.

45. Syse A, Lyngstad TH. In sickness and in health: the role of marital partners in cancer survival. SSM Popul Health. 2016;3:99‐110.

46. Bloem P, Ogbuanu O. Vaccination to prevent human papillomavirus infections: from promise to practice. PLoS Med. 2017;14(6):e1002325.

47. Brotherton J, Zuber P, Bloem P. Primary prevention of HPV through vaccination: update on the current global status. Curr Obst Gynecol Reports. 2016;5:210‐224.

48. Brisson M, Bénard É, Drolet M, et al. Population‐level impact, herd immunity, and elimination after human papillomavirus vaccination: a systematic review and meta‐analysis of predictions from transmission‐dynamic models. Lancet Public Health. 2016;1:e8‐e17.

49. Brisson M, Van de Velde N, Boily MC. Economic evaluation of human papillomavirus vaccination in developed countries. Public Health Genomics. 2009;12:343‐351.

How to cite this article: Altobelli E, Rapacchietta L, Profeta VF, Fagnano R. HPV‐vaccination and cancer cervical screening in 53 WHO European Countries: An update on prevention programs according to income level. Cancer Med. 2019;8:2524‐2534. https://doi.org/10.1002/cam4.2048