Ultrasound-assisted extraction of metals from Lithium-ion batteries using natural organic acids

Xiong Xiao, a Billy W. Hoogendoorn, a Yiqian Ma, b Suchithra Ashoka Sahadevan, c James M. Gardner, c Kerstin Forsberg, b and Richard T. Olsson* a

a Department of Fiber and Polymer Technology, KTH Royal Institute of Technology, Teknikringen 56, 11428 Stockholm, Sweden.
b Department of Chemical Engineering, KTH Royal Institute of Technology, Teknikringen 42, 11428 Stockholm, Sweden.
c Department of Chemistry, KTH Royal Institute of Technology, Teknikringen 30, 11428 Stockholm, Sweden.
Acid	Battery type	pre-treatment	Optimum treatment condition	Leached percentage	ref					
			Reductant	Acid conc.	Temp.	time	S/L	assistant		
Citric acid	LiCo$_{1/3}$Ni$_{1/3}$Mn$_{1/3}$O$_2$	none	D-glucose	1.5 M	353 K	2 h	20 g/L	none	99% Li, 91% Ni, 92% Co, 94% Mn	51
Acetic acid	LiCo$_{1/3}$Ni$_{1/3}$Mn$_{1/3}$O$_2$	none	4.0 vol% H$_2$O$_2$	3.5 M	353 K	c.a. 1 h	40 g/L	none	99.97% Li, 92.67% Ni, 93.62% Co, 96.32% Mn	52
Acetic acid	LiCo$_{1/3}$Ni$_{1/3}$Mn$_{1/3}$O$_2$	2 M NaOH solution, 1 h	4.0 vol% H$_2$O$_2$	6.0 M	353 K	10 min	33 g/L	none	ca. 99%	53
lactic acid	LiCo$_{1/3}$Ni$_{1/3}$Mn$_{1/3}$O$_2$	NaOH treatment, 883 K, 5 h, air	0.5 vol% H$_2$O$_2$	1.5 M	353 K	20 min	20 g/L	none	97.7% Li, 98.2% Ni, 98.9% Co, 98.4% Mn	54
L-Tartaric Acid	LiCo$_{1/3}$Ni$_{1/3}$Mn$_{1/3}$O$_2$	Ultrasonic cleaning	4 vol% H$_2$O$_2$	2 M	353 K	0.5 h	17 g/L	none	99.3% Ni, 98.6% Co, 98.3% Mn, 99.1% Li	55
TCA	LiNi$_{1/3}$Co$_{1/3}$Mn$_{1/3}$O$_2$	none	4 vol% H$_2$O$_2$	3 M	353 K	0.5 h	50 g/L	none	ca. 93.0% Ni, 91.8% Co, 89.8% Mn, 99.7% Li	56
Formic acid	LiNi$_{1/3}$Co$_{1/3}$Mn$_{1/3}$O$_2$	none	6 vol% H$_2$O$_2$	2 M	353 K	-	50 g/L	none	ca. 85% Ni, ca. 85% Co, ca. 85% Mn, 99.93% Li	57
DL-malic acid	LiNi$_{1/3}$Co$_{1/3}$Mn$_{1/3}$O$_2$	NMP immersion, thermal treatment (973 K, 2 h, air)	1.25 vol% H$_2$O$_2$	1.2 M	353 K	0.5 h	40 g/L	none	98.9% Li, 94.3% Co, 95.1% Ni, 96.4% Mn	58
Table S2. pKₐ values and prices for various organic acids with related purity

Acid	pKₐ values	Price	All the data is from sigma Aldrich website, date of access: 2021-07-22
Citric acid (99%)	pKₐ₁ = 3.13, pKₐ₂ = 4.76, pKₐ₃ = 6.40	33.4 €/kg	https://www.sigmaaldrich.com/SE/en/product/sial/c0759?context=product
Acetic acid (≥ 99%)	4.76	44.8 €/L	https://www.sigmaaldrich.com/SE/en/product/sigald/a6283?context=product
Formic acid (97.5-98.5%)	3.75	113.6 €/L	https://www.sigmaaldrich.com/SE/en/product/supelco/00940?context=product
Lactic acid (≥ 85%)	3.86	94.0 €/kg	https://www.sigmaaldrich.com/SE/en/product/sial/252476?context=product
Glycolic acid (99%)	3.83	159.8 €/kg	https://www.sigmaaldrich.com/SE/en/product/sial/124737?context=product
DL-malic acid(≥ 99%)	pKₐ₁ = 3.40, pKₐ₂ = 5.20	359.6 €/kg	https://www.sigmaaldrich.com/SE/en/product/aldrich/240176?context=product
Tartaric acid (≥99.5%)	pKₐ₁ = 3.22, pKₐ₂ = 4.85	132.0 €/kg	https://www.sigmaaldrich.com/SE/en/product/aldrich/251380?context=product
Oxalic acid dihydrate (≥99%)	pKₐ₁ = 1.2, pKₐ₂ = 4.2	70.4 €/kg	https://www.sigmaaldrich.com/SE/en/product/sial/247537?context=product
Ascorbic acid (99%)	pKₐ₁ = 4.17, pKₐ₂ = 11.6	151.5 €/kg	https://www.sigmaaldrich.com/SE/en/product/sial/a92902

Fig S1. Effect of citric acid concentration (left) and S/L ratio (right) on metal extraction from the fine ground LIBs powder. Conditions: H₂O₂, 0 vol%; ultrasonic bath temperature, 323 K.
Fig. S2 photograph of (a) the fine ground and (b) the coarse ground LiBs powder.

Fig. S3 SEM image of a) residue after aqua regia treatment, and EDS maps for b) C, c) O, d) F, e) P, f) Ni, g) Co, h) Mn, i) Al, and j) Cu was taken from a).
Fig. S4 Effect of leaching method (ultrasound vs. oil bath) on metal extraction from the fine ground LiBs powder. Conditions: citric acid, 1.5 mol L-1; S/L, 25 g L-1; H\textsubscript{2}O\textsubscript{2}, 0 vol\%; ultrasonic bath temperature, 323 K; temperature for oil bath, 343 K; stirring speed for oil bath, 500 rpm.
Fig. S5 XRD patterns of residues with respect to different leaching time (a) with/ (b) without ultrasound at 323 K.

Scheme S1 Schematic diagram of shrinking core model. Shrinking core (non-degraded NMC 111) and a shell (released metal ions and their related complex with citrate) on the core surface.
Fig. S6 Kinetics analysis during the leaching of the fine ground LIBs powder with/without ultrasound by (left) X vs. t, (right) $1-(1-X)^{1/3}$ vs. t.

Conditions: citric acid, 1.5 mol L$^{-1}$; S/L, 25 g L$^{-1}$, H_2O_2, 0 vol%; temperature, 323 K; stirring speed for oil bath, 500 rpm.
Fig. S7 Scanning electron micrographs of the pristine LIBs powder before (a), and after (b-g) citric acid leaching treatment. The bottom row shows the ultrasound assisted leaching while the top row shows the oil bath leaching for different leaching times, where (b, c) is 1.5 h, (d, e) 3 h, and (f, g) 6 h.

Fig. S8 (a) \(X \), (b) \(1 - (1 - X)^{1/3} \), and (c) \(1 - 3(1 - X)^{2/3} + 2(1 - X) \) vs. \(t \) at various oil bath temperatures. Conditions: fine ground LIBs powder; citric acid, 1.5 mol L\(^{-1}\); S/L, 25 g L\(^{-1}\); \(H_2O \), 0 vol%; stirring speed for oil bath, 500 rpm.

Based on the curves shown in Fig. 8 and shrinking core model, \(X \), \(1 - (1 - X)^{1/3} \), and \(1 - 3(1 - X)^{2/3} + 2(1 - X) \) vs. \(t \) was plotted for all temperatures, shown in Fig. S8. The fitting of the data showed that the leaching of Ni, Co, Mn, and Al was always in agreement with the residue layer diffusion (see section 3.3 in main text), demonstrating a linear relationship with higher \(R^2 \) (≥ 0.9939) with the exception of Al (\(R^2 \) ≥ 0.9404). At the same time, all of the \(k_3 \) values of metals ions were increased with the increasing temperature. The lithium leaching was separated into two stages as mentioned in section 3.3. The \(k_3 \) values of Li leaching at the first stage were ca. 2-4 times higher than those of its second stage as well as the \(k_3 \) values for Co, Ni, and Mn, regardless of the temperature. This was further discussed in correlation to Fig. 5 and Table 4.

Moreover, Fig. S9 shows the \(k_1 \) values of metal ions vs. temperature based on Fig. S8 and Table S3. The increasing rate of \(k_3 \) of Li (1st stage) is ca. 3 times higher than the rate of Co, Ni, Mn, and Li (2nd stage), which indicated that the 1st stage Li leaching was more sensitive with the temperature compared to Co, Ni, Mn, and Li (2nd stage).

For the leaching of Cu, all the fitting lines based on different temperatures fitted well by the reaction contribution with the highest \(R^2 \) (≥ 0.9810), which was in agreement with the discussion in the last section, i.e., the Cu leaching in the oil bath were controlled by the reaction control model. The kinetic constants (\(k_2 \) or \(k_3 \)) obtained at various temperatures through the slope analysis were used to draw the Arrhenius plots (Eq. 9) of the respective metals.
Fig. S9 The effect of temperature on k_3 values obtained from fitting slopes of residue layer diffusion control model.
Table S3 Kinetic parameters during the leaching process of valuable metals from the fine ground spent battery powder at different oil bath temperature by residue layer diffusion control model except Cu which fitted better by reaction control model. (Conditions: citric acid, 1.5 mol L\(^{-1}\); S/L, 25 g L\(^{-1}\); \(\text{H}_2\text{O}_2\), 0 vol%; stirring speed for oil bath, 500 rpm)

T (K)	Li (1\(^{\text{st}}\) stage)	Li (2\(^{\text{nd}}\) stage)	Mn	Co	Ni	Al	Cu							
	\(k_3\times10^4\) (min\(^{-1}\))	\(R^2\)												
303	2.51	0.9961	-	-	1.01	0.9968	0.89	0.978	0.98	0.9939	0.29	0.9404	1.02	0.9960
313	5.86	0.9979	2.33	0.9690	2.08	0.9943	1.71	0.9934	1.99	0.9942	0.38	0.9617	1.60	0.9817
323	15.3	0.9888	3.52	0.9750	4.41	0.9980	3.81	0.9981	4.36	0.9981	0.79	0.9866	3.03	0.9859
333	26.4	0.9841	5.82	0.9716	7.14	0.9988	5.92	0.9990	6.95	0.9976	1.08	0.9917	3.59	0.9877
343	40.3	0.9618	10.3	0.9752	13.7	0.9932	12.6	0.9995	14.4	0.9946	2.11	0.9974	4.46	0.9810
Fig. S10 Arrhenius plots for Al and Cu leaching using the k values obtained from fitting slopes of residue layer diffusion control model and reaction control model, respectively. Conditions: citric acid, 1.5 mol L\(^{-1}\); S/L, 25 g L\(^{-1}\); H\(_2\)O\(_2\), 0 vol%; stirring speed for oil bath, 500 rpm.

Table S4 Fitting results of Arrhenius plots in Fig. S5 and Fig. S9. Conditions: citric acid, 1.5 mol L\(^{-1}\); S/L, 25 g L\(^{-1}\); H\(_2\)O\(_2\), 0 vol%; stirring speed for oil bath, 500 rpm

Metal	Slope	\(R^2\)	\(E_a\) (KJ mol\(^{-1}\))	comment
Li (1\(^{st}\) stage)	-8167.128	0.9804	67.9	
Li (2\(^{nd}\) stage)	-4766.326	0.9968	39.6	
Mn	-6703.941	0.9966	55.7	
Co	-6809.893	0.9928	56.6	
Ni	-6880.301	0.9949	57.2	
Al	-5187.134	0.9630	43.1	Except the point at 343 K
Cu	-4469.372	0.9481	37.2	
Fig. S11 Effect of leaching method (ultrasound vs. oil bath) on metal extraction from the fine ground LiBs powder. Conditions: acetic acid, 4.5 mol L\(^{-1}\); S/L, 25 g L\(^{-1}\); H\(_2\)O\(_2\), 0 vol%; temperature for oil bath, 323 K; stirring speed for oil bath, 500 rpm.
Fig. S12 Effect of organic acid species on extraction of metal ions from the fine ground LiBs powder with ultrasound. Conditions: citric acid, 1.5 mol L$^{-1}$; acetic acid, 4.5 mol L$^{-1}$; 0 vol% H$_2$O$_2$; S/L, 25 g L$^{-1}$; ultrasonic bath temperature, 323 K.
Fig. S13 Effect of oil bath temperature on leaching behaviour of metals from the fine ground LiBs powder depending on leaching time. Conditions: acetic acid, 4.5 mol L$^{-1}$; S/L, 25 g L$^{-1}$; H$_2$O$_2$, 0 vol%; stirring speed for oil bath, 500 rpm.

Fig. S14 (a) X, (b) $1-(1-X)^{1/3}$, and (c) $1-3(1-X)^{1/2}+2(1-X)$ vs. t at various oil bath temperatures. Conditions: fine ground powder; acetic acid, 4.5 mol L$^{-1}$; S/L, 25 g L$^{-1}$; H$_2$O$_2$, 0 vol%; stirring speed for oil bath, 500 rpm.
Fig. S15 Arrhenius plots for Li, Ni, Co, Mn, Al and Cu leaching using the k values obtained from fitting slopes of residue layer diffusion control model and reaction control model, respectively. Conditions: acetic acid, 4.5 mol L$^{-1}$; S/L, 25 g L$^{-1}$; H$_2$O$_2$, 0 vol%; stirring speed for oil bath, 500 rpm.
Table S5 Kinetic parameters during the leaching process of metals from the fine LiBs powder at different oil bath temperature by residue layer diffusion control model except Cu which fitted better by reaction control model. Conditions: acetic acid, 4.5 mol L\(^{-1}\); S/L, 25 g L\(^{-1}\), \(\text{H}_2\text{O}_2\), 0 vol%; stirring speed for oil bath, 500 rpm

T (K)	Li (1\(^{st}\) stage) \(k_3 \times 10^4\) (min\(^{-1}\))	Li (2\(^{nd}\) stage) \(k_3 \times 10^4\) (min\(^{-1}\))	Mn \(k_3 \times 10^4\) (min\(^{-1}\))	Co \(k_3 \times 10^4\) (min\(^{-1}\))	Ni \(k_3 \times 10^4\) (min\(^{-1}\))	Al \(k_3 \times 10^4\) (min\(^{-1}\))	Cu \(k_3 \times 10^4\) (min\(^{-1}\))	\(R^2\)
303	2.45 0.9902 - - 1.25 0.9932 1.06 0.9936 1.21 0.9958 0.22 0.9207 2.18 0.9947	313 3.66 0.9933 1.40 0.9110 2.12 0.9935 1.78 0.9990 1.82 0.9925 0.23 0.9533 4.44 0.9902	318 9.11 0.9961 3.26 0.9877 3.01 0.9981 2.57 0.9978 2.88 0.9978 0.49 0.9856 6.03 0.9822	323 13.4 0.9985 3.59 0.9755 3.07 0.9938 2.92 0.9958 3.21 0.9944 0.60 0.9936 6.09 0.9938	333 14.8 0.9689 2.95 0.9153 6.31 0.9796 5.23 0.9745 5.63 0.9819 1.45 0.9880 9.51 0.9796	343 15.2 0.9551 2.56 0.9407 5.89 0.9739 4.61 0.9754 5.38 0.9752 1.66 0.9812 9.51 0.9796		

Table S6 Fitting results of Arrhenius plots in Fig. S14. Conditions: acetic acid, 4.5 mol L\(^{-1}\); S/L, 25 g L\(^{-1}\), \(\text{H}_2\text{O}_2\), 0 vol%; stirring speed for oil bath, 500 rpm

Metal (1\(^{st}\) stage)	Slope	\(R^2\)	\(E_a\) (KJ mol\(^{-1}\))
Li	-8435.590	0.9848	70.1
Li (2\(^{nd}\) stage)	-4992.210	0.9421	41.5
Mn	-5362.208	0.9709	44.4
Co	-5396.712	0.9894	45.1
Ni	-5237.012	0.9801	44.1
Al	-7216.710	0.9822	60.0
Cu	-5003.685	0.9735	41.4
Fig. S16 Effect of H$_2$O$_2$ concentration on extraction of metal ions from the fine ground LiBs powder. Conditions: Ultrasound; citric acid, 1.5 mol L$^{-1}$; S/L, 25 g L$^{-1}$; oil bath temperature, 323 K; stirring speed, 500 rpm. The lines between measurement points serve as the guide to the eye.
Fig. S17 XRD patterns of residues depending on H$_2$O$_2$ concentration. Conditions: citric acid, 1.5 mol L$^{-1}$; S/L, 25 g L$^{-1}$; oil bath temperature, 323 K; stirring speed, 500 rpm; leaching time, 24 h.
Fig. S18 $1-3(1-X)^{(2/3)}=2(1-X)$ vs. t with various H_2O_2 concentration. Conditions: citric acid, 1.5 mol L$^{-1}$; S/L, 25 g L$^{-1}$; temperature, 323 K; stirring speed, 500 rpm.
Table S7: Kinetic parameters during the leaching process of valuable metals from the fine ground LiBs powder with different H₂O₂ concentration by residue layer diffusion control model. Conditions: citric acid, 1.5 mol L⁻¹; S/L, 25 g L⁻¹; temperature, 323 K; stirring speed for oil bath, 500 rpm.

H₂O₂ (vol%)	Li 1st stage	Li 2nd stage	Mn 1st stage	Mn 2nd stage	Co 1st stage	Co 2nd stage	Ni 1st stage	Ni 2nd stage								
	k3 × 10⁻⁴ (min⁻¹)	R²														
0	15.3	0.9916	3.52	0.9913	5.42	0.9929	4.32	0.9994	4.60	0.9939	3.68	0.9993	5.25	0.9933	4.25	0.9984
0.5	12.9	0.9977	3.99	0.9765	7.11	0.9976	4.19	0.9894	6.68	0.9979	3.69	0.9958	6.66	0.9971	3.99	0.9975
1	13.9	0.9885	3.51	0.9773	9.08	0.9897	4.77	0.9911	8.96	0.9837	4.44	0.9952	8.56	0.9891	4.70	0.9952
1.5	17.5	0.9418	3.53	0.9744	12.2	0.9988	4.81	0.9789	12.6	0.9560	4.57	0.9957	12.1	0.9521	4.87	0.9906
2	-	-	3.10	0.9694	-	-	4.21	0.9443	-	-	5.56	0.9817	-	-	4.72	0.9759

S20
Reference
S1 X. Chen, B. Fan, L. Xu, T. Zhou and J. Kong, *I. Clean. Prod.*, 2016, **112**, 3562–3570.
S2 W. Gao, J. Song, H. Cao, X. Lin, X. Zhang, X. Zheng, Y. Zhang and Z. Sun, *I. Clean. Prod.*, 2018, **178**, 833–845.
S3 Y. Zheng, S. Wang, Y. Gao, T. Yang, Q. Zhou, W. Song, C. Zeng, H. Wu, C. Feng and J. Liu, *ACS Appl. Energy Mater.*, 2019, **2**, 6952–6959.
S4 L. Li, E. Fan, Y. Guan, X. Zhang, Q. Xue, L. Wei, F. Wu and R. Chen, *ACS Sustain. Chem. Eng.*, 2017, **5**, 5224–5233.
S5 L. P. He, S. Y. Sun, Y. Y. Mu, X. F. Song and J. G. Yu, *ACS Sustain. Chem. Eng.*, 2017, **5**, 714–721.
S6 X. Zhang, H. Cao, Y. Xie, P. Ning, H. An, H. You and F. Nawaz, *Sep. Purif. Technol.*, 2015, **150**, 186–195.
S7 W. Gao, X. Zhang, X. Zheng, X. Lin, H. Cao, Y. Zhang and Z. Sun, *Environ. Sci. Technol.*, 2017, **51**, 1662–1669.
S8 C. Sun, L. Xu, X. Chen, T. Qiu and T. Zhou, *Waste Manag. Res.*, 2018, **36**, 113–120.
S9 D. D. Perrin, B. Dempsey and E. P. Serjeant, *pKα Prediction for Organic Acids and Bases*, 1981.