Lower bounds for multicolor Ramsey numbers

David Conlon∗ Asaf Ferber†

Abstract

We give an exponential improvement to the lower bound on diagonal Ramsey numbers for any fixed number of colors greater than two.

1 Introduction

The Ramsey number \(r(t; \ell) \) is the smallest natural number \(n \) such that every \(\ell \)-coloring of the edges of the complete graph \(K_n \) contains a monochromatic \(K_t \). For \(\ell = 2 \), the problem of determining \(r(t) := r(t; 2) \) is arguably one of the most famous in combinatorics. The bounds

\[
\sqrt{2^t} < r(t) < 4^t
\]

have been known since the 1940s, but, despite considerable interest, only lower-order improvements [2, 7, 8] have been made to either bound. In particular, the lower bound \(r(t) > (1 + o(1)) \frac{t}{\sqrt{2^t}} \), proved by Erdős [3] as one of the earliest applications of the probabilistic method, has only been improved [8] by a factor of 2 in the intervening 70 years.

If we ignore lower-order terms, the best known upper bound for \(\ell \geq 3 \) is \(r(t; \ell) < \ell^t \), proved through a simple modification of the Erdős–Szemerédi neighborhood-chasing argument [4] that yields \(r(t) < 4^t \). For \(\ell = 3 \), the best lower bound, \(r(t; 3) > \sqrt[3]{3^t} \), again comes from the probabilistic method. For higher \(\ell \), the best lower bounds come from the simple observation of Lefmann [5] that

\[
r(t; \ell_1 + \ell_2) - 1 \geq (r(t; \ell_1) - 1)(r(t; \ell_2) - 1).
\]

To see this, we blow up an \(\ell_1 \)-coloring of \(K_{r(t; \ell_1) - 1} \) with no monochromatic \(K_t \) so that each vertex set has order \(r(t; \ell_2) - 1 \) and then color each of these copies of \(K_{r(t; \ell_2) - 1} \) separately with the remaining \(\ell_2 \) colors so that there is again no monochromatic \(K_t \). By using the bounds \(r(t; 2) - 1 \geq 2^{t/2} \) and \(r(t; 3) - 1 \geq 3^{t/2} \), we can repeatedly apply this observation to conclude that

\[
r(t; 3k) > 3^{kt/2}, \quad r(t; 3k + 1) > 2^{3^{(k-1)t/2}}, \quad r(t; 3k + 2) > 2^{t/2 \cdot 3^{kt/2}}.
\]

Our main result is an exponential improvement to all these lower bounds for three or more colors.

Our principal contribution is the following theorem, proved via a construction which is partly deterministic and partly random. The deterministic part shares some characteristics with a construction of Alon and Krivelevich [1], in that we consider a graph whose vertices are vectors over a finite field where adjacency is determined by the value of their scalar product, while randomness comes in through both random coloring and random sampling.

∗Department of Mathematics, California Institute of Technology, CA 91125, USA. Email: dconlon@caltech.edu.
†Department of Mathematics, University of California, Irvine, CA 92697, USA. Email: asaff@uci.edu. Research supported in part by NSF grants DMS-1954395 and DMS-1953799.
Theorem 1. For any prime q, $r(t; q + 1) > 2^{t/2} q^{3t/8 + o(t)}$.

In particular, the cases $q = 2$ and $q = 3$ yield exponential improvements over the previous bounds for $r(t; 3)$ and $r(t; 4)$, both of which came from the probabilistic method (in fact, Lefmann’s observation gives an additional polynomial factor in the four-color case, but this is of lower order than the exponential improvements that are our concern).

Corollary 2. $r(t; 3) > 2^{7t/8 + o(t)}$ and $r(t; 4) > 2^{7/2} 3^{t/8 + o(t)}$.

For the sake of comparison, we note that the improvement for three colors is from 1.732^t to 1.834^t, while, for four colors, it is from 2^t to 2.135^t. Improvements for all $\ell \geq 5$ now follow from repeated applications of Lefmann’s observation, yielding

$$r(t; 3k) > 2^{7kt/8 + o(t)}, \quad r(t; 3k + 1) > 2^{7(k-1)t/8 + t/2} 3^{t/8 + o(t)}, \quad r(t; 3k + 2) > 2^{7kt/8 + t/2 + o(t)},$$

where we used, for instance,

$$r(t; 3k + 1) - 1 \geq (r(t; 3(k-1)) - 1)(r(t; 4) - 1) \geq (r(t; 3) - 1)^{k-1}(r(t; 4) - 1).$$

2 Proof of Theorem 1

Let q be a prime. Suppose $t \neq 0 \mod q$ and let $V \subseteq \mathbb{F}_q^t$ be the set consisting of all vectors $v \in \mathbb{F}_q^t$ for which $\sum_{i=1}^t v_i^2 = 0 \mod q$, noting that $q^{t-2} \leq |V| \leq q^t$. Here the lower bound follows from observing that we may pick v_1, \ldots, v_{t-2} arbitrarily and, since every element in \mathbb{F}_q can be written as the sum of two squares, there must then exist at least one choice of v_{t-1} and v_t such that $v_{t-1}^2 + v_t^2 = -\sum_{i=1}^{t-2} v_i^2$.

We will first color all the pairs $\binom{V}{2}$ and then define a coloring of $E(K_n)$ by restricting our attention to a random sample of n vertices in V. Formally:

Coloring all pairs in $\binom{V}{2}$. For every pair $uv \in \binom{V}{2}$, we define its color $\chi(uv)$ according to the following rules:

- If $u \cdot v = i \mod q$ and $i \neq 0$, then set $\chi(uv) = i$.
- Otherwise, choose $\chi(uv) \in \{q, q + 1\}$ uniformly at random, independently of all other pairs.

Mapping $[n]$ into V. Take a random injective map $f : [n] \rightarrow V$ and define the color of every edge ij as $\chi(f(i)f(j))$.

Our goal is to upper bound the orders of the cliques in each color class.

Colors $1 \leq i \leq q-1$. There are no i-monochromatic cliques of order larger than t for any $1 \leq i \leq q-1$. Indeed, suppose that v_1, \ldots, v_s form an i-monochromatic clique. We will try to show that they are linearly independent and, therefore, that there are at most t of them. To this end, suppose that

$$u := \sum_{j=1}^s \alpha_j v_j = 0$$
and we wish to show that \(\alpha_j = 0 \mod q \) for all \(j \). Observe that since \(v_j \cdot v_j = 0 \mod q \) for all \(j \) (our ground set \(V \) consists only of such vectors) and \(v_k \cdot v_j = i \mod q \) for each \(k \neq j \), by considering all the products \(u \cdot v_j \), we obtain that the vector \(\bar{\alpha} = (\alpha_1, \ldots, \alpha_s) \) is a solution to

\[
M\bar{\alpha} = \bar{0}
\]

with \(M = iJ - iI \), where \(J \) is the \(s \times s \) all 1 matrix and \(I \) is the \(s \times s \) identity matrix. In particular, we obtain that the eigenvalues of \(M \) (over \(\mathbb{Z} \)) are \(is - i \) with multiplicity 1 and \(-i \) with multiplicity \(s - 1 \). Therefore, if \(s \neq 1 \mod q \), the matrix is also non-singular over \(\mathbb{Z}_q \), implying that \(\bar{\alpha} = 0 \), as required. On the other hand, if \(s = 1 \mod q \), we can apply the same argument with \(v_1, \ldots, v_{s-1} \) to conclude that \(s - 1 \leq t \). But, we cannot have \(s - 1 = t \), since this would imply that \(t = 0 \mod q \), contradicting our assumption. Therefore, we may also conclude that \(s \leq t \) in this case.

Colors \(q \) and \(q + 1 \). We call a subset \(X \subseteq V \) a potential clique if \(|X| = t \) and \(u \cdot v = 0 \mod q \) for all \(u, v \in X \). Given a potential clique \(X \), we let \(M_X \) be the \(t \times t \) matrix whose rows consist of all the vectors in \(X \). Observe that \(M_X \cdot M_X^T = 0 \), where we use the fact that each vector is self-orthogonal. First we wish to count the number of potential cliques and later we will calculate the expected number of cliques that survive after we color randomly and restrict to a random subset of order \(n \).

Suppose that \(X \) is a potential clique and let \(r := \text{rank}(X) \) be the rank of the vectors in this clique, noting that \(r \leq t/2 \), since the dimension of any isotropic subspace of \(F_q^t \) is at most \(t/2 \). By assuming that the first \(r \) elements are linearly independent, the number of ways to build a potential clique \(X \) of rank \(r \) is upper bounded by

\[
\left(\prod_{i=0}^{r-1} q^{t-i} \right) \cdot q^{(t-r)r} = q^{(t-r)q} = q^{2tr - \frac{3r^2}{2} + \frac{r}{2}}.
\]

Indeed, suppose that we have already chosen the vectors \(v_1, \ldots, v_s \in X \) for some \(s < r \). Then, letting \(M_s \) be the \(s \times t \) matrix with the \(v_i \) as its rows, we need to choose \(v_{s+1} \) such that \(M_s \cdot v_{s+1} = 0 \). Since the rank of \(M_s \) is assumed to be \(s \), there are exactly \(q^{t-s} \) choices for \(v_{s+1} + \mathbb{F}_q^t \) and, therefore, at most that many choices for \(v_{s+1} \in V \). If, instead, \(s \geq r \), then we need to choose a vector \(v_{s+1} \in \text{span}\{v_1, \ldots, v_r\} \) and there are at most \(q^r \) such choices in \(V \).

Now observe that the function \(2tr - \frac{3r^2}{2} + \frac{r}{2} \) appearing in the exponent of the expression above is increasing up to \(r = \frac{2t}{3} + \frac{1}{6} \), so the maximum occurs at \(t/2 \). Therefore, by plugging this into our estimate and summing over all possible ranks, we see that the number \(N_t \) of potential cliques in \(V \) is upper bounded by \(q^{\frac{3t^2}{2} + o(t^2)} \).

The probability that a potential clique becomes monochromatic after the random coloring is \(2^{1-\left(\frac{t}{2}\right)} \). Suppose now that \(p \) is such that \(p|\text{V} = 2n \) and observe that \(p = nq^{-t + O(1)} \). If we choose a random subset of \(V \) by picking each \(v \in V \) independently with probability \(p \), the expected number of monochromatic potential cliques in this subset is, for \(n = 2^{t/2}q^{3t/8 + o(t)} \),

\[
p^t 2^{1-\left(\frac{t}{2}\right)} N_t \leq q^{-t^2 + o(t^2)} n t^2 q^{-\frac{3t^2}{2} + o(t^2)} q^{\frac{3t^2}{2} + o(t^2)} = \left(2^{-\frac{t}{2} q^{-\frac{3t^2}{2} + o(t^2)} n} \right)^t < 1/2.
\]

Since our random subset will also contain more than \(n \) elements with probability at least 1/2, there exists a choice of coloring and a choice of subset of order \(n \) such that there is no monochromatic potential clique in this subset. This completes the proof.
Remark. Our method also gives a construction which matches Erdős’ bound $r(t) > \sqrt{2^t}$ up to lower-order terms. To see this, we set $V = \mathbb{F}_2^t$ and color edges red or blue depending on whether $u \cdot v = 0$ or $1 \mod 2$. If we then sample $2^{t/2+o(t)}$ vertices of V at random, we can show that w.h.p. the resulting set does not contain a monochromatic clique of order t. We believed this to be new, but, after the first version of this article was made public, we learned that such a construction was already discovered by Pudlák, Rödl and Savický [6] in 1988. It was also pointed out to us by Jacob Fox that one can achieve the same end by starting with any pseudorandom graph on n vertices for which the count of cliques and independent sets of order $2c \log_2 n$ is approximately the same as in $G(n, 1/2)$ and sampling n^c vertices. This can be applied, for instance, with the Paley graph.

Acknowledgements. We are extremely grateful to Vishesh Jain and Wojciech Samotij for reading an early draft of this paper and offering several suggestions which improved the presentation. We also owe a debt to Noga Alon and Anurag Bishnoi, both of whom pointed out the constraint on the dimension of isotropic subspaces, thereby improving the bound in our original posting.

References

[1] N. Alon and M. Krivelevich, Constructive bounds for a Ramsey-type problem, *Graphs Combin.* **13** (1997), 217–225.

[2] D. Conlon, A new upper bound for diagonal Ramsey numbers, *Ann. of Math.* **170** (2009), 941–960.

[3] P. Erdős, Some remarks on the theory of graphs, *Bull. Amer. Math. Soc.* **53** (1947), 292–294.

[4] P. Erdős and G. Szekeres, A combinatorial problem in geometry, *Compos. Math.* **2** (1935), 463–470.

[5] H. Lefmann, A note on Ramsey numbers, *Studia Sci. Math. Hungar.* **22** (1987), 445–446.

[6] P. Pudlák, V. Rödl and P. Savický, Graph complexity, *Acta Inform.* **25** (1988), 515–535.

[7] A. Sah, Diagonal Ramsey via effective quasirandomness, preprint available at arXiv:2005.09251 [math.CO].

[8] J. Spencer, Ramsey’s theorem — a new lower bound, *J. Combin. Theory Ser. A* **18** (1975), 108–115.