Congenital Diaphragmatic Hernia
Juan A Tovar

Abstract
Congenital Diaphragmatic Hernia (CDH) is defined by the presence of an orifice in the diaphragm, more often left and posterolateral that permits the herniation of abdominal contents into the thorax. The lungs are hypoplastic and have abnormal vessels that cause respiratory insufficiency and persistent pulmonary hypertension with high mortality. About one third of cases have cardiovascular malformations and lesser proportions have skeletal, neural, genitourinary, gastrointestinal or other defects. CDH can be a component of Pallister-Killian, Fryns, Ghersoni-Baruch, WAGR, Denys-Drash, Brachman-De Lange, Donnai-Barrow or Wolf-Hirschhorn syndromes. Some chromosomal anomalies involve CDH as well. The incidence is < 5 in 10,000 live-births. The etiology is unknown although clinical, genetic and experimental evidence points to disturbances in the retinoid-signaling pathway during organogenesis.

Antenatal diagnosis is often made and this allows prenatal management (open correction of the hernia in the past and reversible fetoscopic tracheal obstruction nowadays) that may be indicated in cases with severe lung hypoplasia and grim prognosis. Treatment after birth requires all the refinements of critical care including extracorporeal membrane oxygenation prior to surgical correction. The best hospital series report 80% survival but it remains around 50% in population-based studies. Chronic respiratory tract disease, neurodevelopmental problems, neurosensorial hearing loss and gastroesophageal reflux are common problems in survivors. Much more research on several aspects of this severe condition is warranted.

Keywords: Congenital, Diaphragm, Hernia, Retinoids, Lung, Hypoplasia, Pulmonary, Hypertension, Surgery, Fetoscopy

Disease name/synonyms
Congenital Diaphragmatic Hernia (CDH), ORPHA2140, OMIM 142340, 610187, 306950 and 222400

Definition
CDH consists of a posterolateral defect of the diaphragm, generally located on the left side, that allows passage of the abdominal viscera into the thorax. The mediastinum is displaced to the contralateral side, the lungs are hypoplastic (Figure 1) and their arterioles are abnormal causing pulmonary hypertension. Respiratory and cardiovascular functions are severely compromised at birth and this, together with the frequently associated malformations, cause considerable mortality and morbidity. CDH was described many years ago [1,2] but survival after repair was not achieved until the 20th century. Pioneers of pediatric surgery [3] reported amazingly low mortalities until the actual severity of the condition surfaced when abortions, stillbirths and pre-hospital deaths were considered, adding a “hidden mortality” to operative and postoperative demises [4]. The pathophysiology of lung insufficiency and persistent pulmonary hypertension that threaten survival are currently better understood, but the results remain disappointing since mortalities near 50% are still reported when all deaths are taken into account in population-based series [5]. CDH management indeed remains one of the major challenges of perinatal medicine and surgery and active research on its mechanisms is warranted.

Epidemiology
CDH is a rare condition that occurs in < 1-5:10000 births [6]. It seems to be slightly more frequent in males and less frequent in blacks [7,8].

Clinical features
CDH can be detected during fetal life when screening ultrasonography demonstrates herniation of the intestine and/or the liver into the thorax. Polyhydramnios may lead to antenatal diagnosis in some severe cases [9].
Neonatal symptoms of CDH are heralded by respiratory distress with insufficient oxygenation, excavated abdomen with sternal protrusion and displacement of the heart sounds to the contralateral side. In severe cases, APGAR scores at 1 and 5 minutes are low [10,11]. Respiratory bruits are absent or decreased on the affected side. Unless energetic treatment is undertaken, respiratory condition deteriorates rapidly until the patient dies. The symptoms of insufficient gas exchange are associated with those of persistent pulmonary hypertension [12,13] caused by arteriolar constriction and closure of the pulmonary arterial bed that forces maintenance of a pattern of persistent fetal circulation in which the blood from the right ventricle is shunted to the left heart preventing effective gas exchange. In some cases, this pulmonary hypertension intervenes after some hours during which adaptation to a post-natal circulatory pattern with patent pulmonary circulation had taken place. Hypoxia, acidosis, stress or other causes may bring this “honeymoon” period to an end and re-establish the fetal pattern [14].

In some cases without neonatal symptoms, CDH may manifest itself at any age by mild respiratory distress or it can even be an unexpected finding during a medical check-up for other reasons [15]. In these cases, a hernial sac is more often present [16].

Other organs may be involved in CDH [17] because associated malformations are frequent [18]. The heart and great vessels are often abnormal in CDH patients. Cardiovascular defects like peri-membranous ventricular septal defect, cardiac outflow anomalies (tetralogy of Fallot, double outlet right ventricle, transposition of the great vessels and others) and abnormal great vessels (right aortic arch, double aortic arch, truncus arteriosus, abnormal subclavian arteries and others) are found in about one third of CDH patients [19,20]. Heart hypoplasia, particularly of the left side [21], has also been described [22] but its participation in the clinical picture is still unclear.

Musculoskeletal defects like anomalies of the limbs or of the number and shape of the vertebral bodies and/or ribs [18,23-25], neural tube defects [18,26], abdominal wall defects [27], craniofacial defects [28] or urinary tract anomalies [29] are also found. The parafollicular C-cells [30] and enteric innervation are deficient and might account for some dysfunctions [31]. Finally, the presence of the intestine in the thorax during late fetal development causes malrotation and/or malfixation [32] that can further complicate the disease [33].

Etiology
The causes of CDH are largely unknown. Most cases are isolated, but associated malformations are often
observed [34], sometimes as components of Pallister-Killian and Fryns [35], Ghersoni-Baruch [36], WAGR and Denys-Drash [29,37], Brachman-De Lange [38], Donnai-Barrow [39] or Wolf-Hirschhorn [40] syndromes. CDH is also observed in some chromosomal anomalies whether related or not to these syndromes like 9p tetrasomy [41], 11q23-qter duplication [42], 15q24-26 [43], 15q26 [44], 1q41-q42.12 [39,45] and 8p23.1 [46] deletions. Null-mice for several genes, like shh transcription factors Gli 2 and Gli3 [47], Slit3 [48,49], COUP-TFII [50], Fog2 [51], Wt1 [52] and FGFR-L1 [53] have CDH.

The orifice in the diaphragm is caused by delayed or disturbed separation of the thoracic and abdominal compartments of the body by closure of embryonic pleuroperitoneal canals effected by growth of the post-hepatic mesenchymal plate and of the pleuroperitoneal folds [54-57].

CDH occurs more often on the left side (4:1) [58]. In some rare instances [59], the defect is a true agenesis of the hemidiaphragm [60], but in most cases it is limited to the posterolateral area. Less often, there is a hernial sac devoid of muscular fibers [16]. When the defect is located on the left side, the thorax may contain small and large bowel, the spleen, the stomach, the left lobe of the liver and, occasionally, the kidney. Right-sided CDHs usually contain part of the right lobe of the liver and sometimes the bowel and/or the kidney.

The lung is obviously hypoplastic on the side of the hernia, but the contralateral one is also affected to a variable extent. Lung weight is decreased and the number of alveoli is reduced due to insufficient branching [61]. Respiratory epithelial maturity is delayed with hyaline membrane disease patterns similar to those found in prematures [62]. Surfactant deficiency has been shown [63-65] although this issue is controversial [66]. The distal bronchiolar arteries have muscularized walls and the wall thickness is increased particularly at the expense of the media and adventitial layers [67,68].

The lung hypoplasia, immaturity and arteriolar thickening that accompany human CDH can be due to pre-natal compression of the lung by the herniated viscera. All these lesions can be reproduced by surgically creating a CDH in rabbits [69-71] lambs [72-74] and primates [75]. These models were used for investigating various aspects of CDH and also for developing fetal surgery [76-81]. However, the associated malformations are absent in these mechanical or surgical models and this limits to some extent their validity as research tools. In fact, the assumption that lung hypoplasia is purely mechanical is probably incorrect because it is already present in teratogenic models of CDH before any herniation has taken place. A “dual hit” pathogenesis [82], in which abnormal development followed by compression cause lung hypoplasia is widely accepted. Regardless of the origin of the lung lesions, these consist of insufficient airway branching [61,63,83], reduced gas exchange surface, abnormal sacculo-alveolar maturation [64,84] and abnormal, muscularized distal arterioles [68,85].

Pharmacologic or teratogenic models of CDH have been crucial for unveiling some pathogenic mechanisms. Prenatal administration of oxidant chemicals like the herbicide nitrofen (2,4-dichloro-phenyl-p-nitrophenyl ether), 4-biphenyl carboxylic acid, bisdiamine, and SB-210661, induce CDH in rodent fetuses. These chemicals inhibit in vitro retinol-dehydrogenase-2 (RALDH-2) a key enzyme for the production of retinoic acid (RA) [86]. Among these agents, nitrofen has been the more extensively used [54-56,87-97] because of the striking resemblance of the diaphragmatic, pulmonary and other associated defects to those of the human condition (Figure 2). Proliferation of the pleuroperitoneal folds is arrested in rats with CDH [98] and the timing of this arrest probably conditions the laterality of the defect. Fibroblast growth factor (FGF) receptor-like 1 (FGFR-L1) [99] and WT1 [97] are downregulated in these diaphragms.

Figure 2 Experimental CDH in rats. Administration of 100 mg of the herbicide nitrofen on gestational day 9.5 to pregnant rats induced the malformation in 40 to 80% of the offspring. On the left, neonatal autopsy of an untreated, wild-type rat shows an intact diaphragm (above) that can also be seen in the frontal section of the trunk (below). On the right, similar preparations of a rat with nitrofen-induced CDH show a large postero-lateral diaphragmatic orifice, herniation of the liver into the thorax, displacement of the mediastinum to the contralateral side and lung hypoplasia.
Although the mechanism by which CDH is induced in these models is not well known, disturbances of the retinoic signalling pathway, a key regulator of embryonic morphogenesis, are likely [90]. Vitamin A deficient-rats give birth to pups with CDH [100]. RA metabolism perturbations caused by nitrogen can be alleviated by addition of either vitamin A or RA [95,101-103]. Hypoplastic lungs from rats with nitrogen-induced CDH show decreased RA synthesis [104] and deficient retinol transportation [105], whereas RA rescues lung hypoplasia [93] probably by upregulating COUP-TFI, FOG2, and GATA4 [106] that are known to be necessary for both pulmonary and diaphragmatic development [39,50]. On the other hand, compound knock-out mice for retinoic acid receptors (RAR) have phenotypes involving CDH and several of the associated malformations seen in this condition [107] whereas blockade of RAR with BMS493 induces CDH [108] and administration of BMS-189453, a RA antagonist, to pregnant mice reproduces the phenotype of CDH [109].

A similar involvement of the retinoid signaling pathway is likely in human CDH because retinol and retinol-binding protein were decreased in the blood of a group of newborns with this malformation [110]. This has recently been confirmed in a larger case-control study [111]. Moreover, some of the genes involved in the pathogenesis of human CDH are tightly related to retinoid signaling [112-115].

Another factor that might contribute to lung hypoplasia in CDH is decreased airway pressure during fetal life. Fetuses with tracheal atresia have large lungs [116,117] whereas fetal tracheostomy induces lung hypoplasia [118]. It has been shown that airway peristalsis is abnormal in lung explants from rat embryos treated with nitrogen and it is likely that decreased airway pressure could contribute to hypoplasia [92,119].

Diagnosis
As mentioned before, CDH is often ultrasonographically diagnosed before birth [120,121]. The intestine and/or the liver may be in the thorax and the lungs are small. US scan allows detailed assessment of the heart. Lung growth is measured as a proportion of head growth. This lung-to-head ratio (LHR) has some prognostic value [122-127] because when it is below 1, survival is compromised [125,128,129]. However, the accuracy of these measurements is questionable [130] and other alternatives like lung/thorax (L/T) transverse area ratio [126,131] or volumetry by MRI have been developed [132-136]. The observed-to-expected LHR (o/e LHR) seems to be a reliable predictor of severity (patch requirement, ECMO) and survival [127,137]. The position of the liver is also of unquestionable value, since liver-up cases more often require ECMO support and have worse survival [138-140]. The intra-thoracic position of the stomach has less value for this purpose [141,142]. When diagnosis is made in utero, amniocentesis is often performed for detecting chromosomal aberrations [143] and may help to estimate lung maturity [64].

After birth, the diagnosis is readily made on the basis of symptoms and physical signs. A plain X-ray of the thorax and abdomen informs of the position of the herniated viscera. Blood gases and pH status reflect the efficiency of gas exchange and other derived indexes refine this assessment [144,145]. Ultrasonography of the heart is necessary for ruling-out associated malformations, for measuring the right-to-left shunt and for estimating the severity of pulmonary hypertension [146-148]. Measurements of the pulmonary artery diameters and the use of some indexes derived from them may facilitate this task [149-151]. Cardiac U.S. is one of the more reliable methods for determining when the patient is “stabilized”.

Differential diagnosis
It is rarely necessary to rule out other conditions because CDH is often detected before birth and because diagnosis is easy. Physical exam may suffice but passing a naso-gastric catheter into the stomach before a plain X-ray of the thorax and abdomen may help to locate it or to detect esophageal displacement. In some rare instances, X-rays may suggest a cystic malformation of the lung but again the position of the stomach and the contour of the intra-abdominal gas bubbles facilitate distinction of both conditions.

Treatment before birth
Since the introduction of routine prenatal U.S. screening, a large proportion of fetuses with CDH are diagnosed in utero. Termination of gestation is sometimes preferred, particularly when chromosomal aberrations and syndromes are present [5,152-154]. The possibility of fetal instrumentation directed to alleviate the consequences of the herniation is becoming a progressively more acceptable alternative. Thirty years ago Harrison and coll. started pioneer work in San Francisco aimed at developing animal models of CDH on which to test the effects of prenatal manipulation. After demonstrating in fetal lambs that lung compression led to lung hypoplasia [73] and that prenatal decompression reversed this condition [72], this group undertook the surgical creation of CDH [74] and later on, the demonstration of reversal of lung hypoplasia and arteriolar thickening when the diaphragmatic defect was repaired before birth [155]. Clinical application of this rationale led, with close consideration of all the ethical and technical issues involved, to the first attempts at prenatal repair of CDH.
in human fetuses [120,156,157]. The position of the fetal liver [138] and the demonstration of the lethal effect of umbilical vein compression during fetal reduction of the left lobe of the liver into the abdomen during surgery [74], limited considerably the number of cases suitable for this approach. Furthermore, a randomized study demonstrated that fetal repair did not produce better outcomes than optimal postnatal treatment [158]. The trial was discontinued and a new approach, based on the observation of lung hyperplasia in congenital tracheal obstruction, was developed. The evidence that airway pressure had something to do with lung development led to assume that tracheal occlusion during fetal life could counteract the effects of lung compression in fetuses with CDH. This was tested in the fetal lamb [77,78,159-161] and then in the human fetus [162,163]. Another randomized trial was discontinued when a significant shortening of gestation was observed in fetuses treated in this manner [164]. However, the effects of tracheal occlusion were indeed very positive in terms of alveolar size and histology [159]. Maturation and surfactant function were apparently not so much improved, unless the plug was reversed before delivery [165].

The concurrent development of minimally invasive surgery had the immediate effect of making fetendoscopic balloon tracheal occlusion possible [75,163]. Considerable experience rapidly accumulated and randomized trials are currently underway concentrating these efforts in fetuses with LHR below 1 considered otherwise unviable [166]. Survivals approaching 50% in this group are encouraging [139] and much information has already accumulated on the structure, maturity and tracheal pathology of survivors.

Experimental and clinical evidence suggest that biochemical lung maturation is delayed in fetuses with CDH [65,167-169] and this led to the proposal that this process be accelerated by administration of maternal corticosteroids as it is done for premature deliveries. The evidence of the benefits of this medication is not totally convincing [170,171] and therefore, a multicenter trial could be necessary [172].

Treatment after birth
Whenever prenatal diagnosis is made, it is advisable to direct the mother to a tertiary perinatal center in which all the necessary obstetric, neonatal and surgical skills are concentrated [173]. Gestation should be prolonged until near term if possible [174] (this can be hard to achieve in cases with polyhydramnios) and, although it is often preferred [175], there is no evidence of the benefits of delivery by Cesarean section [174,176,177].

When CDH becomes symptomatic after birth and in all cases diagnosed prenatally, a careful protocol of respiratory assistance should be implemented. Immediate postnatal intubation avoiding mask ventilation should be carried out, and small-volume, high frequency and reduced peak pressure mechanical ventilation should be started. Oxygen delivery has to be tailored for maintaining pre-established gasometric goals. Surfactant has been used in an attempt to compensate for biochemical immaturity in CDH babies [178,179], but this has not been beneficial [180,181]. The stomach is emptied through a nasogastric tube and vascular accesses (peripheral and central veins, umbilical artery) are secured for infusion of fluids, drug administration and blood sampling. A bladder catheter is inserted and urine output is monitored. Then, a period of assessment of the chances of adequate gas exchange is started adapting all actions to the clinical findings. If arterial oxygenation is maintained above a preset minimum, the lung will probably be capable of adequate gas exchange. Pre-ductal and post-ductal percutaneous oxygen saturation measurements help in the assessment of both the adequacy of the lungs to sustain life and of the magnitude of right-to-left shunting. Inotropic drugs are used as necessary and cardiac function and heart anomalies are carefully evaluated. Persistent pulmonary hypertension may cause right ventricle dysfunction and in these cases, maintenance of the patency of the ductus arteriosus is indicated [182].

After years of frustrating results of application of respiratory assistance goals usually applied to other conditions, it was realized that the hypoplastic and probably immature lung of CDH was severely damaged by excessive oxygen delivery and, particularly by excessive airway pressure that led to pneumothorax, barotrauma and volutrauma [183,184]. Mortality decreased drastically and all these untoward consequences of ventilator assistance became milder when a policy of “gentle ventilation” was implemented [185]. Spontaneous ventilation when possible or high frequency, low pressure ventilation (< 20-25 cm H2O), no relaxation, alkalisation and adoption of modest gasometric goals (pre-ductal saturation of 80-95%, PaO2 around 60 mmHg and “permissive” hypercapnia of up to 60 mmHg) drastically changed the results [186]. This policy progressively gained adepts and it is nowadays the standard in most developed countries [187-189].

High-frequency, oscillatory ventilation is also widely used in these patients [190-192] in whom it allows adequate oxygenation and CO2 elimination with very low airway pressures [193]. Lung damage is apparently minimized while attaining the modest gasometric objectives set. A multicenter European trial is currently underway [194].

For how long time these treatments are necessary varies widely from one patient to another depending on the
degree of lung hypoplasia, on the arteriolar reactivity and therefore on the duration of persistent pulmonary hypertension and on the associated malformations, particularly the cardiovascular ones.

The treatment of pulmonary hypertension is of particular concern because it determines shunting of non-oxygenated blood out of the lungs. Several medications have been used: tolazoline [67,195,196] and prostacyclins [197,198] were tried first but they did not produce good enough results. Prostaglandin 1E is occasionally used [199]. Inhaled nitric oxide, a well known smooth muscle relaxant is, in turn, widely used [200-203] with variable results although there is no strong evidence of its benefits [204]. Inhibitors of phospho-diesterase like sildenafil, known for their vasodilator action, are currently used in some cases [205] but, again, there is only anecdotal evidence of their benefits. These medications are coupled with inotropic agents, like dobutamine (up to 20 mg/kg/min), dopamine (< 10 mg/kg/min) [206] and also, sometimes with peripheral vasoconstrictors, like adrenaline at low doses, aimed at reducing the shunting by increasing pressure in the systemic circulation.

ECMO
Extra-corpooreal membrane oxygenation (ECMO) may be a useful adjunct in the treatment of CDH. Cannulation of both the right carotid artery and jugular vein and connection to a circuit with a membrane gas exchange chamber allows oxygenation and CO2 disposal without participation of the lung which is preserved from any pressure insult [207]. Alternatively, veno-venous ECMO avoids cannulation of the carotid artery while permitting adequate gas exchange [208-210].

ECMO can be seen as a safety net maintained until proper gas exchange is demonstrated at weaning test periods. The fact that institutions, particularly in the US, which used ECMO liberally [10] had results comparable to Canadian institutions [211] that rarely, if ever, used it, casted some doubt on the actual need for this complicated and risky procedure [12,212]. The criteria for ECMO indication are variable, but they can be summarized as follows: Inability to reach pre-ductal SatO2 > 85% or post-ductal SatO2 > 70%, oxygenation index (mean airway pressure × FiO2 × 100/PaO2) ≥ 40 or need for high peak inspiratory pressures or a-AdO2 greater than 600 for 6 to 8 hours [213]. The main contraindication is, of course, the inability to obtain SatO2 > 80% at any moment of the initial treatment under FiO2 of 1. In fact, ECMO registries showed that the worst results were obtained precisely in the CDH group of patients [214,215]. This, together with the limitations of the technique (required weight above 2000 g, need for heparinisation), somewhat tempered the initial enthusiasm and the proportion of patients so treated decreased everywhere to more reasonable figures. There is only weak evidence of the benefits of ECMO in this particular group of patients [216] because only non-randomized trials have been carried out on them [171,212] and the only RCT reported in the UK was not specifically directed to babies with CDH [217]. This technique is probably a good adjunct in a limited number of patients in which predicted severe lung hypoplasia would make adequate gas exchange impossible or in those in whom reversal to the fetal pattern of circulation becomes unmanageable.

Surgical repair
Surgical repair of CDH used to be in the past a life-saving emergency. It is presently accepted that it should be undertaken only after cardio-respiratory functions are stable. A policy of “delayed” surgery coupled with gentle ventilation and occasionally ECMO support yields the best results recorded. For how long surgery has to be delayed is unclear, but a few days and even weeks may be beneficial. The goal of all preoperative treatments is to obtain “stabilization” of the patient and this means acceptable oxygenation (PaO2 > 40 mmHg) and CO2 disposal (PaCO2 < 60 mmHg) with stable pulmonary pressures (< 50% of systemic pressure), tolerable shunting, good myocardial function and adequate renal clearance with reduced or withdrawn inotropic drugs. Obviously, there are no magic indicators of stabilization (this may also be impossible) and a decision to operate is only made after a consensus among all the actors of these treatments has been reached. Once again, when critically reviewed, even the alleged benefits of delayed repair are not consistently documented [218].

In many institutions, the operation is carried out in the neonatal ICU in order to minimize changes that might increase stress [219-221]. Under general anesthesia, a subcostal or transverse abdominal incision is made, the herniated viscera are carefully reduced into the abdomen and the diaphragmatic orifice is closed with interrupted sutures without leaving an intercostal tube. A tube was routinely used in the past [58,222] until it was realized that underwater seals cause increased respiratory work and overdistension of the hypoplastic lung that may further reduce ventilation. A tubeless policy was then advised [185,223]. When the defect is too large, a prosthetic patch is used to achieve closure [224,225]. It is sutured to the rims of the orifice with interrupted sutures and, to avoid excessive tension and enlargement of the hemi-thorax, cone-shaping of the patch can be beneficial [226]. The use of a patch seems to increase the risk of re-herniation [227-230] although it should be acknowledged that patients requiring a patch have larger defects which entail higher
morbidity [59]. Abdominal wall or latissimus dorsi muscle flaps have also been used for CDH repair [231-234].

Malrotation or non-rotation is usually present but this is rarely a problem in the newborn and the main concern of the surgeon after repair of the hernia is abdominal wall closure without excessive pressure [235,236]. In some cases, another abdominal wall prosthetic patch is necessary to avoid abdominal compartment syndrome [237-239].

Since the advent of minimally invasive surgery (MIS), thorascopic [240-246] or laparoscopic [247] approaches have been proposed for CDH repair. Both are indeed possible (with or without patch insertion), although it should never be disregarded that this repair comes only after stable conditions have been secured. Probably, MIS is a good approach in cases diagnosed during infancy or in outborns with less severe symptoms. Nevertheless, some concerns about this particular approach in the newborn period have been expressed on the basis of excessive perioperative hypercapnia and prolonged postoperative low brain oxygenation [248]. The risk of recurrence after a minimally invasive approach has been found to be similar to that of open surgery by some reports [246] but it was indeed increased in other series [248,249].

Prognosis

The main outcome endpoint is, of course, survival and the wide range of figures reported is puzzling. When only hospital, postoperative results were reported, survival approached 70% [250] or more [189,251,252]. However, those institutions with attached maternity facilities that treated mostly inborns, reported higher mortalities. The introduction of ECMO, in parallel with advances in other aspects of treatment, improved the results and the top institutions reported survivals approaching 90% although, sometimes, their statistics excluded chromosomal aberrations, multiple malformations and even some patients that did not reach surgery. The truth is that still nowadays, if terminations of pregnancy, spontaneous abortions, stillborns, pre-hospital and/or preoperative deaths and surgical mortality are taken into account, real mortality is still between 50% and 60%. But if only hospital statistics are considered, there has been indeed a clearcut progress in the results. Many institutions and the multi-institutional registries report 70% to 80% survival with some institutions peaking at 90%. Right-sided hernias seem to have a worse prognosis than left-sided ones and may require more ECMO support [253-255].

Other in-hospital complications can occur after CDH repair. Pleural effusions and chylothorax may require nutritional treatment, medication and drainage [256-260]. Chronic respiratory tract disease is frequent in these patients. Lung hypoplasia can be caught up only in part during the first months of life and oxygen toxicity, baro-trauma and volutrauma may occur even after gentle ventilation. True broncho-pulmonary dysplasia is relatively frequent in survivors [250,261], and a number of them require oxygen at home for long periods of time [228,251]. Restrictive [262-264] and obstructive [263-265] lung diseases have been reported in CDH survivors many years after operation and diaphragmatic rigidity and thoracic deformities can also play a minor role in chronic lung disease [266-268].

Gastroesophageal reflux is frequent in CDH survivors. The diaphragmatic sling may be malformed or absent and the repair changes the anatomy of the region. In addition, mal-rotation may delay gastric emptying, and the abnormal balance of pressures in the thorax and abdomen in the course of the respiratory cycle facilitates retrograde passage of gastric contents to the esophagus [269]. Finally, there is evidence of abnormal enteric innervation in CDH and it is likely for esophago-gastric peristalsis to be abnormal [96,270]. Reflux can complicate the pre-existing respiratory disease and, for all these reasons, a considerable proportion of these patients [271,272] respond poorly to medical treatment and ultimately require anti-reflux surgery [227,273-276]. Prophylactic fundoplication during surgical repair has been proposed in patients with CDH [277].

Neurodevelopmental deficits are always possible in these patients in whom brain oxygenation was marginal for long periods of time and particularly when ECMO required major vascular occlusion [228,278-283]. Neurosensory deafness occurs in a small proportion of children surviving CDH [283-290]. This is progressive [287,291] and it is generally considered to be accounted for by prolonged antibiotic treatments [288]. However, other newborns with similar treatments suffer this deafness more rarely and it should be acknowledged that perhaps CDH patients have a particular sensitivity or a developmental defect of the inner ear.

Other sequelae are possible in this particular group of patients. This, and the frequent associated malformations, require long-term follow-up and permanent support.

Genetic counseling

Most cases are sporadic but there are some reports of familial clusters that suggest multifactorial [292-296] rather than autosomal recessive [297,298] patterns of inheritance. Genetic aspects of CDH were recently addressed [299-302]. Two thirds of these cases were males and the risk of recurrence in sibs is 2% [294].
Unresolved questions
CDH remains one of the most difficult problems of perinatology and neonatal surgery. Its mechanisms are beginning to be unveiled, but the severity of the lung and other lesions require the use of the entire armamentarium of sophisticated neonatal care. This, together with the rarity of the condition, make the setting of solid evidence-based protocols of management very difficult. The perspectives of fetal manipulation or even of prophylactic drug treatment remain still at an embryonal stage and, most probably, this condition will remain a hot topic of research in the coming years.

Conclusions
CDH is a complex condition probably caused by disturbed molecular signaling during organogenesis. The diaphragmatic oriﬁce is invariably accompanied by pulmonary hypoplasia with vascular hyper-reactivity that causes deﬁcient gas exchange and persistent pulmonary hypertension. In addition, other malformations that further complicate the clinical course may be present. All efforts are directed at enhancing antenatal lung growth in prenatally diagnosed cases and at protecting the lung during the intensive care pre and post-operative phases in all cases. Fetoscopic reversible tracheal obstruction seems promising before birth and gentle ventilation with occasional ECMO use yields the best results post-natally. Nevertheless, many aspects of the disease are still unknown and, given that the incidence is relatively high, that the expenses involved in the current treatments are overwhelming and that the sequelae are frequent, more research efforts into causation, prevention and treatment are warranted.

Competing interests
The author declares that they have no competing interests.

Received: 24 March 2011 Accepted: 3 January 2012
Published: 3 January 2012

References
1. Irish WS, Holm BA, Glick PL: Congenital diaphragmatic hernia. A historical review. Clin Perinatol 1996, 23:625-653.
2. Golombok SG: The history of congenital diaphragmatic hernia from 1850s to the present. J Pediatr 2002, 2:224-246.
3. McNamara JJ, Erakis AJ, Gross RE: Congenital posterolateral diaphragmatic hernia in the newborn. J Thorac Cardiovasc Surg 1968, 55:55-59.
4. Harrison MR, Bjordal RL, Langmark F, Knutrud O: Congenital diaphragmatic hernia: the hidden mortality. J Pediatr Surg 1978, 13:227-230.
5. Stiege G, Fenton A, Laffay B: Nihism in the 1990s: the true mortality of congenital diaphragmatic hernia. Pediatrics 2003, 112:532-533.
6. Gallot D, Boda C, Ughetto S, Perthus I, Robert-Gnansia E, Francannet C, Lauchesse-Delmas H, Jari J, Coste K, Deprest J, et al: Prenatal detection and outcome of congenital diaphragmatic hernia: a French registry-based study. Ultrasound Obstet Gynecol 2007, 29:276-283.
7. Torfs CP, Curry CI, Bateson TF, Honore LH: A population-based study of congenital diaphragmatic hernia. Teratology 1992, 46:555-565.
8. Yang W, Carmichael SL, Harris JA, Shaw GM: Epidemiologic characteristics of congenital diaphragmatic hernia among 2.5 million California births, 1989-1997. Birth Defects Res A Clin Mol Teratol 2006, 76:170-174.
9. Sinha CK, Islam S, Patel S, Niccolados K, Greenough A, Davenport M: Congenital diaphragmatic hernia: prognostic indices in the fetal endoluminal tracheal occlusion era. J Pediatr Surg 2009, 44:312-316.
10. Wilson JM, Lund DP, Liliehei CW, Vacanti JP: Congenital diaphragmatic hernia—a tale of two cities: the Boston experience. J Pediatr Surg 1997, 32:401-405.
11. Beddow JK, Blackwell SC, Treadwell MC, Johnson A, Klein MD: Congenital diaphragmatic hernia: associated anomalies and antenatal diagnosis. Outcome-related variables at two Detroit hospitals. Pediatr Surg Int 2004, 20:170-176.
12. de Buys Roessingh AS, Dinh-Xuan AT: Congenital diaphragmatic hernia: current status and review of the literature. Eur J Pediatr 2009, 168:393-406.
13. Keijer R, Pun P: Congenital diaphragmatic hernia. Semin Pediatr Surg 2010, 19:180-185.
14. Johnston PW, Liberman R, Gangitano E, Vargh J: Ventilation parameters and arterial blood gases as a prediction of hypoplasia in congenital diaphragmatic hernia. J Pediatr Surg 1990, 25:496-499.
15. Ehalaby EA, Abou Sikeena MH: Delayed presentation of congenital diaphragmatic hernia. Pediatr Surg Int 2002, 18:480-485.
16. Numanoglu A, Steiner Z, Millar A, Crosses S: Delayed presentation of congenital diaphragmatic hernia. S Afr J Surg 1997, 35:47-46.
17. Stoll C, Alembik Y, Dott B, Roth MP: Associated malformations in cases with congenital diaphragmatic hernia. Genet Couns 2008, 19:331-339.
18. Sweed Y, Pun P: Congenital diaphragmatic hernia: influence of associated malformations on survival. Arch Dis Child 1992, 67:68-70.
19. Migliazza L, Otten C, Xia H, Rodriguez J, Diez-Pardo JA, Tovar JA: Cardiovascular malformations in congenital diaphragmatic hernia: human and experimental studies. J Pediatr Surg 1999, 34:1352-1358.
20. Lin AE, Poer BR, Adasta I: Congenital diaphragmatic hernia and associated cardiovascular malformations: type, frequency, and impact on management. Am J Med Genet C Semin Med Genet 2007, 145C:201-216.
21. Siebert JR, Haas JE, Beckwith JB: Left ventricular hypoplasia in congenital diaphragmatic hernia. J Pediatr Surg 1984, 19:567-571.
22. Baumgart S, Paul JJ, Huhta JC: Left heart hypoplasia in neonates having congenital diaphragmatic hernia and treated with ECMO. J Pediatr Surg 1998, 33:1848.
23. Boldmann R, Kalache K, Mau H, Chau D, Tennstedt C: Associated malformations and chromosomal defects in congenital diaphragmatic hernia. Fetal Diagn Ther 1995, 10:52-59.
24. Migliazza L, Xia H, Diez-Pardo JA, Tovar JA: Skeletal malformations associated with congenital diaphragmatic hernia: experimental and human studies. J Pediatr Surg 1999, 34:1624-1629.
25. van Dooren MF, Goemaere NN, de Klein A, Tibboel D, de Krijger RR: Postmortem ﬁndings and clinicopathological correlation in congenital diaphragmatic hernia. Pediatr Dev Pathol 2004, 7:459-467.
26. Sahinavali AJ, Davis CF, Howatson AG: Post-mortem ﬁndings in fetal and neonatal congenital diaphragmatic hernia. Eur J Pediatr Surg 2000, 10:96-99.
27. Brownlee EM, Howatson AG, Davis CF, Sahinavali AJ: The hidden mortality of congenital diaphragmatic hernia: a 20-year review. J Pediatr Surg 2009, 44:317-320.
28. Slavotinek AM: Fryns syndrome: a review of the phenotype and diagnostic guidelines. Am J Med Genet A 2004, 124A:427-433.
29. Scott DA, Cooper ML, Stankiewicz P, Patel A, Potocki L, Cheung SW: Congenital diaphragmatic hernia in WAGR syndrome. Am J Med Genet A 2005, 134A:430-433.
30. Luis AL, Pederiva F, Encinas JL, Ruiz E, Rodriguez J, Martinez L, Tovar JA: Paraffollicular C-Cells of the Thyroid are Decreased in Patients with Congenital Diaphragmatic Hernia. Eur J Pediatr Surg 2011, 21:246-249.
31. Pederiva F, Rodriguez J, Ruiz-Bravo E, Martinez L, Tovar JA: Abnormal intrinsic esophageal innervation in congenital diaphragmatic hernia: a likely cause of motor dysfunction. J Pediatr Surg 2009, 44:496-499.
32. Baqouan Q, Diez-Pardo JA, Tovar JA: Intestinal rotation in experimental congenital diaphragmatic hernia. J Pediatr Surg 1995, 30:1457-1462.
33. Ford EG, Senac MO Jr, Srikanth MS, Weitzman JJ: Malrotation of the intestine in children. Ann Surg 1992, 215:172-178.
34. Zais J, Keilh S, Link K, Neff W, Schablle T, Sutterlin M, Siemer J. Associated Malformations in Congenital Diaphragmatic Hernia. Arn J Pediatr 2010.
35. McPherson EW, Ketterm DM, Saliburey DJ. Pallister-Killian and Fransy syndromes: nosology. Am J Med Genet 1993, 47:241-245.
36. Franceschini P, Gualda A, Lotta D, Botta G, Flora F, Angeli G, Di Carla G, Franceschini D. Gershoni-Baruch syndrome: report of a new family confirming autosomal recessive inheritance. Am J Med Genet A 2003, 122A:174-179.
37. Cho HY, Lee BS, Kang CH, Kim WH, Ha IS, Cheong HI, Choi Y. Hydrothorax in a patient with Denys-Drash syndrome associated with a diaphragmatic defect. Pediatr Nephrol 2006, 21:1909-1912.
38. Martínez-Frias ML, Bermejo E, Felix V, Jimenez N, Gomez-Ullate J, Lopez JA, Aparicio P, Ayala A, Gain JM, Galian E, et al. [Brachmann-de-Lange syndrome in our population: clinical and epidemiological characteristics]. An Esp Pediatr 1998, 49:293-298.
39. Kantarci S, Donahoe PK. Congenital diaphragmatic hernia (CDH) etiology as revealed by pathway genetics. Am J Gen Cem Semin Med Genet 2007, 145C:271-276.
40. van Dooren MF, Brooks AS, Hoogeboom AJ, van den Hoonaard TL, de Vries J. Candidate gene DISP1, in patients with CDH.
41. Blancato JK, Hunt M, George J, Katz J, Meck JM. Prenatal diagnosis of tetrasomy 12p by in situ hybridization: varying levels of mosaicism in different fetal tissues. Prenat Diagn 1992, 12:979-983.
42. Klaasen M, Scott DA, van Dooren M, Hochstenbach R, Eussen HJ, Cai WW, Gaaljaa RD, Wouters CJ, Poot M, Laudy J, et al. Congenital diaphragmatic hernia associated with duplication of 11q23-qter. Am J Med Genet A 2004, 120:1580-1586.
43. Schlembach D, Zenker M, Trautmann U, Ulmer R, Beinder E. Deletion 15q24-26 in prenatally detected diaphragmatic hernia: increasing evidence of a candidate region for diaphragmatic development. Prenat Diagn 2001, 21:289-292.
44. Biggio JR Jr, Descentes MD, Carroll AJ, Holf RL. Congenital diaphragmatic hernia: is 15q26.1-26.2 a candidate locus? Am J Med Genet A 2004, 124A:183-185.
45. Kantarci S, Ackerman KG, Russel MK, Longoni M, Sougnez C, Noonan KM, Hatchwell E, Zhang X, Pertieter Vannarckke R, Anyane-Yeboa K, et al. Characterization of the chromosome 1q41q42.12 region, and the candidate gene DSP1, in patients with CDH. Am J Med Genet A 2010, 152A:2493-2504.
46. Wat MJ, Shchelochkov QA, Holder AM, Breman AM, Dagli A, Bacino C, Kantarci S, Ackerman KG, Russell MK, Longoni M, Sougnez C, Noonan KM, Biggio JR Jr, Descartes MD, Carroll AJ, Holt RL, Blancato JK, Hunt M, George J, Katz J, Meck JM. Prenatal confirmation of autosomal recessive inheritance in patients with diaphragmatic hernia.
47. Yuan W, Rao Y, Babiuk RP, Greer JJ, Wu JY, Ornitz DM. Mouse lacking COUP-TFII as an animal model of Bochdalek-type congenital diaphragmatic hernia in mice have reduced expression of Tpm3, sarcomere genes and Lrtm1 in the diaphragm. Hum Genet 2009, 127:325-336.
48. Kuth D, Keijzer R, Hertl M, Tibboel D: Embryology of congenital diaphragmatic hernia. Semin Pediatr Surg 1996, 5:224-233.
49. Allan DW, Greer JJ. Pathogenesis of nitrofen-induced congenital diaphragmatic hernia in fetal rats. J Appl Physiol 1997, 83:338-347.
50. Greer JJ, Allan DW, Babuik RP, Lemke RP. Recent advances in understanding the pathogenesis of nitrofen-induced congenital diaphragmatic hernia. Pediatr Pulmonol 2000, 29:394-399.
51. Babuik RP, Zhang W, Clugston R, Allan DW, Greer JJ: Embryological origins and development of the rat diaphragm. J Comp Neurol 2003, 455:477-487.
52. Clark RH, Hardin WD Jr, Hirsch RB, Jaksic T, Lally KP, Langham MR Jr, Wilson JM. Current surgical management of congenital diaphragmatic hernia: a report from the Congenital Diaphragmatic Hernia Study Group. J Pediatr Surg 1998, 33:1004-1009.
53. Lally KP, Lally PA, Lasky RE, Tibboel D, Jaksic T, Wilson JM, Frencniker B, Van Meurs KP, Bohn DJ, Davis CF, Hirschl RB. Defect size determines survival in infants with congenital diaphragmatic hernia. Pediatrics 2007, 120:e651-e657.
54. Tsang TM, Tam PK, Dudley NE, Stevens J: Diaphragmatic agenesis as a distinct clinical entity. J Pediatr Surg 1994, 29:1439-1441.
55. Schnitjer JJ. Control and regulation of pulmonary hypoplasia associated with congenital diaphragmatic hernia. Semin Pediatr Surg 2004, 13:37-43.
56. George DR, Cooney TP, Chiu BK, Thurbell WH. Hypoplasia and immaturity of the terminating lung unit (acinus) in congenital diaphragmatic hernia. Am Rev Respir Dis 1987, 136:947-950.
57. Wigglesworth JS, Desai R, Guerrini P. Fetal lung hypoplasia: biochemical and structural variations and their possible significance. Arch Dis Child 1981, 56:606-615.
58. Moya FR, Thomas VL, Romuagea J, Mysore MR, Maberny M, Berardt A, Freund M: Fetal lung maturation in congenital diaphragmatic hernia. Am J Obstet Gynecol 1995, 173:1401-1405.
59. Valls-Soler A, Alfonso LF, Amaz A, Alvarez FJ, Tovar JA. Pulmonary surfactant dysfunction in congenital diaphragmatic hernia: experimental and clinical findings. Biol Neonate 1996, 69:318-326.
60. Bouchot O, Benach A, Challely-Heu B, Franco-Montoya ML, Elle C, Martinovic J, Bourbon JR. Surfactant maturation is not delayed in human fetuses with diaphragmatic hernia. PLoS Med 2007, 4:e237.
61. Shocat SJ, Naeeye RL, Ford WD, Whitman V, Maises MJ. Congenital diaphragmatic hernia. New concept in management. Ann Surg 1979, 190:332-341.
62. Yamataka T, Pur R. Pulmonary artery structural changes in pulmonary hypertension complicating congenital diaphragmatic hernia. J Pediatr Surg 1997, 32:387-390.
63. Ohi R, Suzuki H, Kato T, Kasi M. Development of the lung in fetal rabbits with experimental diaphragmatic hernia. J Pediatr Surg 1976, 11:955-959.
64. Fauza DO, Tannuri U, Ayoub AA, Capelozzi VL, Saldiva PH, Maksoud JG. Surgical propensity congenital diaphragmatic hernia in fetal rabbits. J Pediatr Surg 1999, 34:858-866.
65. Wu W, Yamamoto K, Geto S, Haney PK, Nakamura K, Isono K, Kaneda Y, Haniu M, Clements PJ. Defective microvascularization in fetal lungs from mice with diaphragmatic hernia. PLoS Med 2007, 4:e237.
66. Hedrick MH, Estes JM, Sullivan KM, Bealer JF, Kitterman JA, Flake AW, Adzick NS, Harrison MR. Plug the lung until it grows (PLUG): a new
method to treat congenital diaphragmatic hernia in utero. J Pediatr Surg 1994, 29:612-617.
79. Benach A, Demorgues M, Delezoide AL, Boubon J, Dumet Y, Brunelle F: Tracheal obstruction in experimental diaphragmatic hernia: an endoscopic approach in the fetal lamb. Prenat Diagn 1997, 17:629-634.
80. Luks FJ, Wild YK, Pasecki GJ, De Paepe ME: Short-term tracheal occlusion corrects pulmonary vascular anomalies in the fetal lamb with diaphragmatic hernia. Surgery 2000, 128:266-272.
81. Brutu I, Fageole H, Laberge JM, Kovacs L, Faucher D, Piedboeuf B: Lung function in lambs with diaphragmatic hernia after reversible fetal tracheal occlusion. J Pediatr Surg 2004, 39:1324-1331.
82. Keijzer R, Liu J, Deimling J, Tibboel D, Post M: Dual-hit hypothesis explains pulmonary hypoplasia in the nitrofen model of congenital diaphragmatic hernia. Am J Pathol 2000, 156:1299-1306.
83. Nose K, Kamata S, Sawai T, Tazuke Y, Usui N, Kawahara H, Okada A: Airway anomalies in patients with congenital diaphragmatic hernia. J Pediatr Surg 2003, 38:1562-1565.
84. Alfonso LF, Arnaiz A, Alvarez FJ, Qi B, Diez-Pardo JA, Vallis-i-Soler A, Tovar VA: Pulmonary surfactant protein A, B, and C mRNA and protein expression in rats with a nitrofen-induced diaphragmatic hernia. J Pediatr Surg 2004, 39:1324-1331.
85. Geggel RL, Murphy JD, Langeneb D, Crone RK, Vacanti JP, Reid LM: Congenital diaphragmatic hernia: arterial structural changes and persistent pulmonary hypertension after surgical repair. J Pediatr Surg 1985, 20:475-44.
86. Mey J, Babiuk RP, Clugston R, Zhang W, Greer JJ: Retinol dehydrogenase-2 is inhibited by compounds that induce congenital diaphragmatic hernias in rodents. Am J Pathol 2003, 162:673-679.
87. Kluth D, Kangah R, Reich P, Tenbrinck R, Tibboel D, Lammbeck W: Nitrogen- induced diaphragmatic hernias in rats: an animal model. J Pediatr 1990, 25:850-854.
88. Tenbrinck R, Tibboel D, Gaillard JL, Kluth D, Bos AP, Lachmann B, Molenar JC: Experimentally induced congenital diaphragmatic hernia in rats. J Pediatr Surg 1990, 25:426-429.
89. Alfonso LF, Vilanova J, Alzadabal P, Lopez de Torre B, Tovar VA: Lung growth and maturation in the rat model of experimentally induced congenital diaphragmatic hernia. Eur J Pediatr Surg 1993, 3:6-11.
90. Greer JJ, Babiuk RP, Thebaud B: Etiology of congenital diaphragmatic hernia: the retinoid hypothesis. Pediatr Res 2003, 53:726-730.
91. Van Tuyt M, Blommaart PE, Keijzer R, Wierse LM, Lammers WH, Tibboel D: Pulmonary surfactant protein A, B, and C mRNA and protein expression in the nitrofen-induced congenital diaphragmatic hernia rat model. Pediatr Res 2003, 54:641-652.
92. Jesudason EC, Smith NP, Connell MG, Spiller DG, White MR, Fernig DG, Dongenmann J, Doi T, Ruttenstock EM, Puri P: Downregulation of FGFR1 contributes to the development of the Diaphragmatic Defect in the Nitrofen Model of Congenital Diaphragmatic Hernia. Eur J Pediatr Surg .
93. Andersen DE: Effect of diet during pregnancy upon the incidence of congenital hereditary diaphragmatic hernia in the rat; failure to produce cystic fibrosis of the pancreas by maternal vitamin A deficiency. Am J Pathol 1949, 25:163-185.
94. Thebaud B, Tibboel D, Rambaud C, Mercer JC, Boubon JR, Dinh-Xuan AT, Archer SL: Vitamin A decreases the incidence and severity of nitrofen-induced congenital diaphragmatic hernia in rats. Am J Physiol 1999, 277: L423-429.
95. Thebaud B, Barlier-Mur AM, Challey-Heus B, Henrion-Caudin A, Tibboel D, Dinh-Xuan AT, Boubon JR: Restoring effects of vitamin A on surfactant synthesis in nitrofen-induced congenital diaphragmatic hernia in rats. Am J Respir Crit Care Med 2001, 164:1083-1089.
96. Babiuk RP, Thebaud B, Greer JJ: Reductions in the incidence of nitrofen-induced diaphragmatic hernia by vitamin A and retinoic acid. Am J Physiol Lung Cell Mol Physiol 2004, 286:L970-973.
97. Nakazawa N, Takayasu H, Montedonico S, Puri P: Altered regulation of retinoic acid synthesis in nitrofen-induced hypoplastic lung. Pediatr Surg Int 2007, 23:391-396.
98. Nakazawa N, Montedonico S, Takayasu H, Paradisi F, Puri P: Disturbance of retino transport causes nitrofen-induced hypoplastic lung. J Pediatr Surg 2007, 42:345-349.
99. Doi T, Sugimoto K, Puri P: Prenatal retinoic acid up-regulates pulmonary gene expression of COUP-TFI, FOG2, and GATA4 in pulmonary hypoplasia. J Pediatr Surg 2009, 44:1933-1937.
100. Mendelsohn C, Lohnes D, Decimo D, Lufkin T, LeMeur M, Chambon P, Mark M: Function of the retinoic acid receptors (RARs) during development (II). Multiple abnormalities at various stages of organogenesis in RAR double mutants. Development 1994, 120:2749-2771.
101. Clugston RD, Zhang W, Alvarez S, de Lera AR, Greer JJ: Understanding abnormal retinoid signaling as a causative mechanism in congenital diaphragmatic hernia. Am J Respir Crit Care Biol 2009, 42:276-285.
102. Cipollone D, Cozzi DA, Bussino R, Martinon B: Congenital diaphragmatic hernia after exposure to a triple retinoic acid antagonist during pregnancy. J Cardiovasc Med (Hagerstown) 2010.
103. Major D, Cadenas M, Fournier L, Leclerc S, Lefebvre M, Cloutier R: Retinol status of newborn infants with congenital diaphragmatic hernia. Pediatr Surg Int 1998, 13:547-549.
104. Beurskens LW, Tibboel D, Lindemans J, Duvekot JJ, Cohen-Overbeek TE, Veemman DC, de Klein A, Greer JJ, Steegers-Theunissen RP: Retinol status of newborn infants is associated with congenital diaphragmatic hernia. Pediatrics 2010, 126:712-720.
105. Goury C, Goua L, Marceau G, Coste K, Veronese L, Gallot D, Sapin V, Vago P, Tchekov A: Retinoid pathway and congenital diaphragmatic hernia: hypothesis from the analysis of chromosomal abnormalities. Fetal Diagn Ther 2010, 28:129-139.
106. Gallot D, Marceau G, Coste K, Haddan H, Robert-Gnanse E, Laurchesse H, Dechelotte PJ, Labbe A, Dastugue B, Lemery D, Sapin V: Congenital diaphragmatic hernia: a retinoid-signaling pathway disruption during lung development? Birth Defects Res A Clin Mol Teratol 2005, 73:523-531.
107. Holder AM, Kaassen M, Tibboel D, de Klein A, Lee B, Scott DA: Genetic factors in congenital diaphragmatic hernia. Am J Hum Genet 2007, 80:825-845.
108. Montedonico S, Nakazawa N, Puri P: Congenital diaphragmatic hernia and retinoids: searching for an etiology. Pediatr Surg Int 2008, 24:755-761.
109. Krato Y, Filew AW, Quinn TM, Kanai M, Davies P, Sabich TJ, Schneider C, Adzick NS, von Allmen D: Lung growth induced by tracheal occlusion in the sheep is augmented by airway pressurization. J Pediatr Surg 2000, 35:216-221.
110. Krato Y, Kanai M, Davies P, von Allmen D, Yang Y, Radu A, Adzick NS, Filew AW: BAPS-prize-1999: Lung growth induced by prenatal tracheal occlusion and its modifying factors: a study in the rat model of congenital diaphragmatic hernia. J Pediatr Surg 2001, 36:251-259.
111. Fewell JE, Hislop AA, Kitterman JA, Johnson P: Effect of tracheostomy on lung development in fetal lambs. J Appl Physiol 1983, 55:1103-1108.
112. Jesudason EC: Exploiting mechanical stimuli to rescue growth of the hypoplastic lung. Pediatr Surg Int 2007, 23:827-836.
Nakayama DK, Harrison MR, Chinn DH, Callen PW, Filly RA, Golbus MS, De Lormier AA. Prenatal diagnosis and natural history of the fetus with a congenital diaphragmatic hernia: initial clinical experience. J Pediatr Surg 1985, 20:118-124.

Adzick NS, Vacare, JP, Lillehei CW, O'Rourke PP, Crome RK, Wilson JM. Fetal diaphragmatic hernia: ultrasound diagnosis and clinical outcome in 38 cases. J Pediatr Surg 1989, 24:654-657.

Knox E, Issar-D, Khan K, Kilby M. Prenatal detection of pulmonary hypoplasia in fetuses with congenital diaphragmatic hernia: a systematic review and meta-analysis of diagnostic studies. J Matern Fetal Neonatal Med 2010, 23:579-585.

Sandate I, Claus F, De Keyzer FA, Filly RA, Albanese CT, Feldstein VA, Jennings RW, Housley HT, Beech R, Tsukimori K, Masumoto K, Morokuma S, Yoshimura T, Taguchi T, Hara T, Usui N, Okuyama H, Sawai T, Kamiyama M, Kamata S, Fukuzawa M: Fetoscopic temporary tracheal occlusion for congenital diaphragmatic hernia: prelude to a randomized, controlled trial. J Pediatr Surg 2003, 38:1012-1020.

Jani J, Peralta C, Van Schoubroek D, Deprest J, Nicolaides KH. Relationship between lung-to-head ratio and lung volume in normal fetuses and fetuses with diaphragmatic hernia. Ultrasound Obstet Gynecol 2006, 27:545-550.

Usui N, Okuyama H, Sawa T, Kamyama M, Kamata S, Fukuzawa M. Relationship between L/R ratio and LHR in the prenatal assessment of pulmonary hypoplasia in congenital diaphragmatic hernia. Pediatr Surg Int 2007, 23:971-976.

Jani JC, Benachi A, Nicolaides KH, Allegaert K, Gratacos E, Mazkereth R, Matsi J, Tibbald V, De Heijt A, Storme L, et al. Prenatal prediction of neonatal morbidity in survivors with congenital diaphragmatic hernia: a multicenter study. Ultrasound Obstet Gynecol 2009, 33:64-69.

Mektus AP, Filly RA, Stringer MD, Harrison MR, Adzick NS. Sonographic predictors of survival in fetal diaphragmatic hernia. J Pediatr Surg 1996, 31:148-151.

Lipshutz GS, Albanese CT, Feldstein VA, Jennings RW, Hosuley HT, Beech R, Farrell JA, Harrison MR. Prospective analysis of lung-to-head ratio predicts survival for patients with prenatally diagnosed congenital diaphragmatic hernia. J Pediatr Surg 1997, 32:1634-1636.

Heiling KS, Wauer RR, Hammer H, Bollmann R, Chaouli R. Reliability of the lung-to-thorax ratio in predicting outcome and neonatal ventilation parameters in fetuses with diaphragmatic hernia. Ultrasound Obstet Gynecol 2005, 25:112-118.

Tsukimori K, Masumoto K, Morokuma S, Yoshimura T, Taguchi T, Hara T, Sakaguchi Y, Takahashi S, Wake N, Saita S. The lung-to-thorax transverse area ratio at term and near term correlates with survival in isolated congenital diaphragmatic hernia. J Pediatr Surg 2008, 27:707-713.

Maiuri-Caputo DA, Sonigo P, Dommergues M, Fournet JC, Thalabard JC, Abbara C, Benachi A, Brunelle F, Dumez Y. Fetal lung volume measurement by magnetic resonance imaging in congenital diaphragmatic hernia. BJOG 2001, 108:863-868.

Gorincour G, Bouvenot J, Mouriut MG, Sonigo P, Chaumoitre K, Garel C, Guibaud L, Rypens F, Avni F, Cassart M, et al. Prenatal diagnosis of congenital diaphragmatic hernia using magnetic resonance imaging: measurement of fetal lung volume, Ultrasound Obstet Gynecol 2005, 26:738-744.

Jani J, Breysem L, Maes F, Bouvain M, Roubilova X, Lewi L, Vaast P, Baird JM, Cannie M, Deprest J. Accuracy of magnetic resonance imaging for measuring fetal sheep lungs and other organs. Ultrasound Obstet Gynecol 2005, 25:270-276.

Cannie M, Jani JC, De Keyzer F, Devleger R, Van Schoubroek D, Witters I, Marchal G, Dymarkowski S, Deprest JA. Fetal body volume: use at MR imaging to quantify relative lung volume in fetuses suspected of having pulmonary hypoplasia. Radiology 2006, 241:847-853.

Khan AK, Schabli T, Hoffmann V, Brade J, Neff KW, Busing KA. Congenital diaphragmatic hernia: predictive value of MRI relative lung-to-head ratio compared with MRI fetal lung volume and sonographic lung-to-head ratio. Am J Roentgenol 2009, 192:153-158.

Done E, Guccciardo L, Van Mieghem T, Jani J, Cannie M, Van Schoubroek D, Devleger R, Catte LD, Klansch P, Mayer S, et al. Prenatal diagnosis, prediction of outcome and in utero therapy of isolated congenital diaphragmatic hernia. Prenat Diag 2008, 28:581-591.

Albanese CT, Lopoo J, Goldstein RB, Filly RA, Feldstein VA, Calen PW, Jennings RW, Farrell JA, Harrison MR. Fetal liver position and perinatal outcome for congenital diaphragmatic hernia. Prenat Diagn 1998, 18:1138-1142.

Deprest J, Jani J, Gratacos E, Vandenbroucke N, Naulaers G, Delgado J, Greenough A, Nicolaides K. Fetal intervention for congenital diaphragmatic hernia: the European experience. Semin Perinatol 2005, 29:94-103.

Hedrick HL, Danzer E, Merchant A, Bebbington MW, Zhao H, Flake AW, Johnson MP, Liechty KW, Howell LL, Wilson RD, Adzick NS. Liver position and lung-to-head ratio for prediction of extracorporeal membrane oxygenation and survival in isolated left congenital diaphragmatic hernia. Am J Obstet Gynecol 2007, 197:422, e421-424.

Goodfellow T, Hyde I, Burge DW, Freeman N. Congenital diaphragmatic hernia: the prognostic significance of the site of the stomach. Br J Radiol 1987, 60:999-995.

Laudy JA, Van Gucht M, Van Dooren MF, Wladimiroff JW, Tibboel D. Congenital diaphragmatic hernia: an evaluation of the prognostic value of the lung-to-head ratio and other prenatal parameters. Prenat Diagn 2003, 23:654-639.

Takahashi H, Hayashi S, Miura Y, Tsukamoto K, Kosaki R, Toh Y, Sago H. Trisomy 9 mosaicism diagnosed in utero. Obstet Gynecol Int 2010.

Bohn D, Tamura M, Perrin D, Barker G, Rabinovitch M. Ventilatory predictors of pulmonary hypoplasia in congenital diaphragmatic hernia, confirmed by morphologic assessment. J Pediatr 1987, 111:423-431.

Wilson JM, Lund DP, Lillehei CW, Vacanti JP. Congenital diaphragmatic hernia: predictors of severity in the ECMO era. J Pediatr Surg 1991, 26:1028-1033.

Haegen SE, Linker D, El-Keswes S, Kuusas T, Tilk T, Eggen BM, Brubakk AM. Congenital diaphragmatic hernia: determination of the optimal time for operation by echocardiographic monitoring of the pulmonary arterial pressure. J Pediatr Surg 1991, 26:560-562.

Tanabe M, Yoshida H, Iwai J, Takahashi H, Ohnuma N, Terai M. Doppler flow patterns through the ductus arteriosus in patients with congenital diaphragmatic hernia. Eur J Pediatr Surg 2000, 10:92-95.

Okazaki T, Kohno S, Hasigawa S, Ushihata N, Yoshida A, Kawanoh S, Saito A, Tanaka Y. Congenital diaphragmatic hernia: efficacy of ultrasound examination in its management. Pediatr Surg Int 2003, 19:176-179.

Suda K, Biglas JL, Bohn D, Homburger LK, McCrindle BW. Echocardiographic predictors of outcome in newborns with congenital diaphragmatic hernia. Pediatrics 2000, 105:1106-1109.

Takahashi S, Oishi Y, Ito N, Nanba Y, Tsukamoto K, Nakamura T, Ito Y, Hayashi S, Sago H, Kurada T, Homma T: Evaluating mortality and disease severity in congenital diaphragmatic hernia using the McGoon and pulmonary artery indices. J Pediatr Surg 2009, 44:2101-2106.

Okamoto S, Iwakawa H, Fukumoto H, Masuyama H, Konuma K, Kohno M, Nakamura T, Takahashi H. Patent ductus arteriosus flow patterns in the treatment of congenital diaphragmatic hernia. Pediatr Int 2009, 51:535-538.

Gagne E, Haeusler M, Bariss I, Gjeriga R, Stoll C, Clements M. Congenital diaphragmatic hernia: evaluation of prenatal diagnosis in 20 European regions. Ultrasound Obstet Gynecol 2002, 19:229-333.

Colvin J, Bower C, Dickinson JE, Sokol J. Outcomes of congenital diaphragmatic hernia: a population-based study in Western Australia. Pediatr Surg 2005, 116:e356-363.

Richmond S, Atkins J. A population-based study of the prenatal diagnosis of congenital malformation over 16 years. Br J Radiol 2005, 112:1349-1357.

Adzick NS, Outwater KM, Harrison MR, Davies P, Blick PL, deloorser AM, Reid LM. Correction of congenital diaphragmatic hernia in utero. IV. An early gestational fetal lamb model for pulmonary vascular morphometric analysis. J Pediatr Surg 1985, 20:673-680.

Harrison MR, Langer JC, Adzick NS, Golbus MS, Filly RA, Anderson RL, Rosen MA, Callen PW, Goldstein RB, deloorser AA. Correction of congenital diaphragmatic hernia in utero. V. Initial clinical experience. J Pediatr Surg 1990, 25:47-55.

Harrison MR, Adzick NS. The fetus as a patient. Surgical considerations. Ann Surg 1991, 213:279-291.
Corticosteroids for fetuses with congenital diaphragmatic pulmonary immaturity in experimentally induced congenital diaphragmatic hernia. J Pediatr Surg 1993, 28:471-475.

Sueh HC, Catlin EA, Ryan DP, Wain JC, Donahoe PK: Fetal endoscopic tracheal occlusion (\textit{Fetendo-PLUG}) for congenital diaphragmatic hernia. J Pediatr Surg 1996, 31:1335-1338.

Van Meurs KJ, Bruch SW, Meuli M, Kohli T, Stabio Z, Adzick NS, Harrison MR: Fetal endoscopic (\textit{Fetendo}) tracheal clip. J Pediatr Surg 1996, 31:1101-1103.

VanderWall KJ, Skargard ED, Filly RA, Eckert J, Harrison MR: \textit{Fetendo-clip: a fetal endoscopic tracheal clip procedure in a human fetus}. J Pediatr Surg 1997, 32:970-972.

Lee H, Filly RA, Farrell JA, Albanese CT: Hormonal modulation of fetal pulmonary maturation in the fetal lamb model. J Pediatr Surg 1998, 33:299-303.

Cannie MM, Jani JC, De Keijzer F, Allegra K, Dymarkowski S, Deprest J: Evidence and patterns in lung response after fetal tracheal occlusion: a clinical controlled study. Radiology 2000, 252:S36-S33.

Sueh HC, Catlin EA, Ryan DP, Wain JC, Donahoe PK: Biochemical immaturity of lungs in congenital diaphragmatic hernia. J Pediatr Surg 1993, 28:471-475.

Sueh HC, Bloch KD, Donahoe PK: Antenatal glucocorticoid corrects pulmonary immaturity in experimentally induced congenital diaphragmatic hernia in rats. Pediatr Res 1994, 35:523-529.

Losty PD, Suen HC, Manganaro TF, Donahoe PK, Schnitzer JJ: Prenatal hormonal therapy improves pulmonary compliance in the nitrogen-induced CDH rat model. J Pediatr Surg 1995, 30:420-426.

Lally KP, Bagolan P, Hosie S, Lally PA, Stewart M, Cotten CM, Van Meurs KP, Alexander G: Corticosteroids for fetuses with congenital diaphragmatic hernia: can we show benefit? J Pediatr Surg 2006, 41:668-674.

Logan JW, Rice HE, Goldberg RN, Cotten CM: Congenital diaphragmatic hernia: a systematic review and summary of best-evidence practice strategies. J Perinatol 2007, 27:535-549.

Bos AP, Tibboel D, Hazebroek FW, Molenaar JC: Morphological modulation of fetal pulmonary development: relevance for the fetus with diaphragmatic hernia. Eur J Obstet Gynecol Reprod Biol 2000, 92:127-133.

Shaw KS, Filattraut D, Yazebeck S, St-Vil D: Improved survival for congenital diaphragmatic hernia, based on prenatal ultrasound diagnosis and referral to a combined obstetric-pediatric surgical center. J Pediatr Surg 1994, 29:1268-1269.

Stevens TP, van Wijngaarden E, Ackerman KG, Lally PA, Lally KP: Timing of delivery and survival rates for infants with prenatal diagnoses of congenital diaphragmatic hernia. Pediatrics 2009, 123:494-502.

Betremieux P, Gaillot T, de la Pintere A, Beucheau A, Pasquier L, Hubomann E, E Bouar G, Branger B, Milon J, Fremont B, et al: Congenital diaphragmatic hernia: prenatal diagnosis permits immediate intensive care with high survival rate in isolated cases. A population-based study. Prenat Diagn 2004, 24:487-493.

Frenckner BP, Lally PA, Hintz SR, Lally KP: Prenatal diagnosis of congenital diaphragmatic hernia: how should the babies be delivered? J Pediatr Surg 2007, 42:1533-1538.

Safavi A, Lally PA, Skargard ED: Perinatal management of congenital diaphragmatic hernia: when and how should babies be delivered? Results from the Canadian Pediatric Surgery Network. J Pediatr Surg 2010, 45:2334-2339.

Glick PL, Leach CL, Besner GE, Egan EA, Monin FC, Malanowska-Kantoch A, Robinson LK, Brody A, Lele AS, McDonnell M, et al: Pathophysiology of congenital diaphragmatic hernia. Ill: Exogenous surfactant therapy for the high-risk neonate with CDH. J Pediatr Surg 1992, 27:866-869.

Bae CW, Jang CK, Chung SJ, Choi YM, Oh SM, Lee TS, Shin OY: Exogenous pulmonary surfactant replacement therapy in a neonate with pulmonary hypoplasia accompanying congenital diaphragmatic hernia—a case report. J Korean Med Sci 1996, 11:265-270.

Collye CE, Lally KP, Hintz SR, Lally PA, Tibboel D, Moya FR, VanMeurs KP: Surfactant replacement therapy on ECMO does not improve outcome in neonates with congenital diaphragmatic hernia. J Pediatr Surg 2004, 39:1632-1637.

van Meurs KJ, \textit{f} surfactant therapy beneficial in the treatment of the term newborn infant with congenital diaphragmatic hernia? J Pediatr 2004, 145:312-316.

Mohseni-Bod H, Bohn D: Pulmonary hypertension in congenital diaphragmatic hernia. Semin Pediatr Surg 2007, 16:126-133.

Sakurai T, Azarow K, Cuziz E, Messineo A, Pearl R, Bohn D: Pulmonary barotrauma in congenital diaphragmatic hernia: a clinicopathological correlation. J Pediatr Surg 1999, 34:1813-1817.

Langham MR Jr, Kays DW, Beierle EA, Chen MK, Mulfet TC, Rieger K, Wood CE, Talbert JL: Twenty years of progress in congenital diaphragmatic hernia at the University of Florida. Am Surg 2003, 69:45-52.

Wung JT, Sahnri R, Moffitt ST, Lipsett E, Stolar CJ: Congenital diaphragmatic hernia: survival treated with very delayed surgery, spontaneous respiration, and no chest tube. J Pediatr Surg 1995, 30:406-409.

Boloker J, Bateman DA, Wung JT, Stolar CJ: Congenital diaphragmatic hernia in 120 infants treated consecutively with permissive hypercapnea/spontaneous respiration/elective repair. J Pediatr Surg 2002, 37:357-366.

Frenckner B, Ehren H, Granholm T, Linden V, Palmer K: Improved results in patients who have congenital diaphragmatic hernia using preoperative stabilization, extracorporeal membrane oxygenation, and delayed surgery. J Pediatr Surg 1997, 32:1185-1189.

Bagolan P, Casaccia G, Crescenzi F, Nahom A, Trucchi A, Gorlandino C: Impact of a current treatment protocol on outcome of high-risk congenital diaphragmatic hernia. J Pediatr Surg 2004, 39:313-318.

Waag KL, Loff S, Zahn K, Ab M, Henn S, Kratz M, Noff W, Scheffelder R, Schable T: Congenital diaphragmatic hernia: a modern day approach. Semin Pediatr Surg 2008, 17:244-254.

Kar SR, Ballantine TV, Snider MT: High-frequency ventilation at rates of 375 to 1800 cycles per minute in four neonates with congenital diaphragmatic hernia. J Pediatr Surg 1999, 34:67-79.

Tamura M, Tsuchida Y, Kawano T, Homma T, Ishibashi R, Inawaka T, Mony T, Hashimoto H, Tada H, Miyasaka K: Piston-pump-type high frequency oscillatory ventilation for neonates with congenital diaphragmatic hernia: a new protocol. J Pediatr Surg 1998, 23:478-482.

Fujino Y, Takezawa J, Nishimura M, Imanaka H, Taenaka N, Yoshihisa I: High-frequency oscillation for persistent fetal circulation after repair of congenital diaphragmatic hernia. Crit Care Med 2003, 31:376-377.

Schnitzer JJ, Thompson JE, Hedrick HL: A new ventilator improves CO2 removal in newborn lambs with congenital diaphragmatic hernia. Crit Care Med 1999, 27:109-112.

Reiss I, Schable T, van den Hout L, Capulopulo I, Allegra K, van Heijst A, Goretta Silva M, Greenough A, Tibboel D: Standardized postnatal management of infants with congenital diaphragmatic hernia in Europe: the CDH EURO Consortium consensus. Neonatology 2010, 98:354-364.

Collins DL, Pomerance JJ, Travis KW, Turner SW, Pappelbaum SJ: A new approach to congenital posterolateral diaphragmatic hernia. J Pediatr Surg 1977, 12:149-156.

Sumner E, Frank JD: Tolazoline in the treatment of congenital diaphragmatic hernias. Arch Dis Child 1981, 56:350-353.

Bos AP, Tibboel D, Koot VC, Hazebroek FW, Molenaar JC: Persistent pulmonary hypertension in high-risk congenital diaphragmatic hernia patients: incidence and vasodilator therapy. J Pediatr Surg 1993, 28:1463-1465.

Weinberger B, Weiss K, Heck DE, Laskin DL, Laskin JD: Pharmacologic therapy of persistent pulmonary hypertension of the newborn. Pharmacol Ther 2001, 89:67-79.

Buss M, Williams G, Dilley A, Jones O: Prevention of heart failure in the management of congenital diaphragmatic hernia by maintaining ductal patency. A case report. J Pediatr Surg 2006, 41:e9-11.
The split abdominal wall flap: a simple, mesh-free approach to repair of concurrent congenital diaphragmatic hernia. J Pediatr Surg 2003, 38:1748-1751.

Syzdorak RM, Hoffman W, Lee H, Yingling CD, Longaker M, Chang J, Smith B, Harrison MR, Albanese CT: Reversed latissimus dorsi muscle flap for repair of recurrent congenital diaphragmatic hernia. J Pediatr Surg 2003, 38:396-399.

Joshi SB, Sen S, Chacko J, Thomas G, Karl S: Abdominal muscle flap repair for large defects of the diaphragm. Pediatr Surg Int 2005, 21:677-680.

Hoigors M, Karaca I, Karkiner A, Ucan B, Temir G, Erdag G, Fesekoglu O: Associated malformations in delayed presentation of congenital diaphragmatic hernia. J Pediatr Surg 2004, 39:1073-1076.

Imamoğlu M, Cay A, Kosucu P, Ozdemir O, Orhan F, Sapan L, Saruhan H: Congenital paraesophageal hiatal hernia: pitfalls in the diagnosis and treatment. J Pediatr Surg 2005, 40:1128-1133.

Schnitzer JJ, Kikiros CS, Short BL, O'Brien A, Anderson KD, Newman KD: Experience with abdominal wall closure for patients with congenital diaphragmatic hernia repaired on ECMO. J Pediatr Surg 1995, 30:191-22.

Hasegawa T, Yoshioka Y, Sasaki T, Iwasaki T, Tazuke Y, Sumimura J, Ban H, Dazaia T: Abdominal wall plasty for a premature infant with congenital diaphragmatic hernia. Pediatr Surg Int 1998, 13:48-51.

Kyzer S, Sirotta L, Chaimoff C: Abdominal wall closure with a silastic patch after repair of congenital diaphragmatic hernia. Arch Surg 2004, 139:296-298.

Nguyen TL, Le AD: Thoracoscopic repair for congenital diaphragmatic hernia: lessons from 45 cases. J Pediatr Surg 2005, 40:1735-1738.

Beemster B, Reiberg O, Dimitriu C, Moog R, Philipppe P: Thoracoscopic repair of congenital diaphragmatic hernia in children. Semin Pediatr Surg 2007, 16:238-244.

Shalaby R, Gabir AI, Saied G, Ibrahim M, Shams AM, Dorgham A, Ismail M: Thoracoscopic repair of diaphragmatic hernia in neonates and children: a new simplified technique. J Pediatr Surg 2008, 43:543-547.

Cho SD, Krishnaswami S, Mckeel JC, Zallen G, Silen ML, Bliss DW: Analysis of 29 consecutive thoracoscopic repairs of congenital diaphragmatic hernia in neonates compared to historical controls. J Pediatr Surg 2009, 44:80-86.
288. Fligor BJ, Neault MW, Mullen CH, Feldman HA, Jones DT: Factors associated with sensorineural hearing loss among survivors of extracorporeal membrane oxygenation therapy. Pediatrics 2005, 115:1519-1528.

289. Masumoto K, Nagata K, Uesugi T, Yamada T, Taguchi T: Risk factors for sensorineural hearing loss in survivors with severe congenital diaphragmatic hernia. Eur J Pediatr 2007, 166:607-612.

290. Morini F, Capolupo I, Maisi R, Ronchetti MP, Locatelli M, Corchia C, Bagolan P: Hearing impairment in congenital diaphragmatic hernia: the inaudible and noiseless foot of time. J Pediatr Surg 2008, 43:380-384.

291. Javidnia H, Vaccani JP: Progression of progressive sensorineural hearing loss in children with congenital diaphragmatic hernias. J Otolaryngol Head Neck Surg 2009, 38:29-31.

292. Crane JP: Familial congenital diaphragmatic hernia: prenatal diagnostic approach and analysis of twelve families. Clin Genet 1979, 16:244-252.

293. Wolff G: Familial congenital diaphragmatic defect: review and conclusions. Hum Genet 1980, 54:1-5.

294. Norio R, Kaariainen H, Rapola J, Herva R, Kekomaki M: Familial congenital diaphragmatic defects: aspects of etiology, prenatal diagnosis, and treatment. Am J Med Genet 1984, 17:471-483.

295. Mishalany H, Gordo J: Congenital diaphragmatic hernia in monozygotic twins. J Pediatr Surg 1986, 21:372-374.

296. Frey P, Glanzmann R, Nars P, Herzig B: Familial congenital diaphragmatic defect: transmission from father to daughter. J Pediatr Surg 1991, 26:1396-1398.

297. Hitch DC, Carson JA, Smith EI, Sarale DC, Rennett OM: Familial congenital diaphragmatic hernia is an autosomal recessive variant. J Pediatr Surg 1989, 24:860-864.

298. Gibbs DL, Rice HE, Farrell JA, Adzick NS, Harrison MR: Familial diaphragmatic agenesis: an autosomal-recessive syndrome with a poor prognosis. J Pediatr Surg 1997, 32:366-368.

299. Pober BR, Lin A, Russell M, Ackerman KG, Chakravorty S, Strauss B, Westgate MN, Wilson J, Donahoe PK, Holmes LB: Infants with Bochdalek diaphragmatic hernia: sibling precurance and monozygotic twin discordance in a hospital-based malformation surveillance program. Am J Med Genet A 2005, 138A:81-88.

300. Pober BR: Overview of epidemiology, genetics, birth defects, and chromosome abnormalities associated with CDH. Am J Med Genet C Semin Med Genet 2007, 145C:158-171.

301. Bielinska M, Jay PY, Erlich JM, Mannisto S, Urban Z, Heikinheimo M, Wilson DB: Molecular genetics of congenital diaphragmatic defects. Ann Med 2007, 39:261-274.

302. Pober BR: Genetic aspects of human congenital diaphragmatic hernia. Clin Genet 2008, 74:1-15.

Cite this article as: Tovar: Congenital Diaphragmatic Hernia. Orphanet Journal of Rare Diseases 2012, 7:1.