Comments on the Three-Slit Experiment and Quantum Mechanics

Bo-Sture K. Skagerstam

Department of Physics
Norwegian University of Science and Technology, NTNU
N-7491 Trondheim, Norway

Abstract
It has been suggested by Sorkin that a three-slit Young experiment could reveal the validity a fundamental ingredient in the foundations of one of the cornerstones in modern physics namely quantum mechanics. In terms of a certain parameter κ_S, it was argued that a non-zero value could imply a breakdown of the fundamental Born’s rule as well as the superposition principle. Here we argue that a physical realization of such arguments could lead to an erroneous conclusion and contradict the basic rules of quantum mechanics. In fact, we argue that a proper interpretation of the procedures involved in a physical determination of κ_S does not necessarily lead to $\kappa_S = 0$. In order to show this we consider a mono-chromatic source of photons prepared in an arbitrary quantum state and a simple version of the well-established photon detection theory of Glauber which, by construction, obeys all the rules of quantum mechanics. It is, however, also argued that after a proper identification of the relevant quantum-mechanical probability amplitudes one can be reach $\kappa_S = 0$. As long as one only consider a single photon detector, it is verified that, in this context, there is no fundamental difference between quantum-mechanical interference and interference as expressed in terms of classical electro-magnetic waves.

1Email address: bo-sture.skagerstam@ntnu.no
1. Introduction

Some time ago Sorkin [1] introduced a parameter κ_S defined for arbitrary complex numbers α, β, and γ,

$$\kappa_S \equiv \frac{1}{P} (P_{\alpha\beta\gamma} - P_{\alpha\beta} - P_{\alpha\gamma} - P_{\beta\gamma} + P_{\alpha} + P_{\beta} + P_{\gamma}) ,$$

with $P_{\alpha\beta\gamma} = |\alpha + \beta + \gamma|^2$, $P_{\alpha\beta} = |\alpha + \beta|^2$, and $P_{\alpha} = |\alpha|^2$ and similarly for other combinations. P is a suitably chosen normalization in order to factor out possible unimportant constants. Here we put $P = 1$ but include it when convenient. Sorkin observed that $\kappa_S = 0$ as a mathematical identity for the arbitrary complex numbers α, β, and γ. Since the complex numbers in the definition of κ_S can be interpreted as quantum-mechanical probability amplitudes for physical events, it was, nevertheless, argued that a non-zero value of κ_S could be used as test of some of the fundamental ingredients of quantum mechanics, namely the superposition principle and Born’s rule for obtaining measurable probabilities from quantum mechanical probability amplitudes. A physical realization corresponding to the symbol $P_{\alpha\beta\gamma}$ could, e.g., correspond to the detection probability in a three-slit Young interferometer as illustrated in Fig.1. With one of the slits (γ) closed, $P_{\alpha\beta}$ should then be identified with the corresponding detection probability, and P_{α} should correspond to two slits (β and γ) closed and similarly for other combinations of the probability amplitudes α, β, and γ. Various theoretical and experimental oriented considerations of these ideas of Sorkin have recently been under investigation [2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12].

It is now of crucial importance to specify the identification above in a clear physical manner when making use of one and the same experimental setup with a given source and detector system. It is, e.g., then not obvious that closing one slit in a three-slit Young interferometer is physically equivalent to a two-slit situation to be used in the experimental determination of κ_S. By imposing proper boundary conditions for the various Young interferometer configurations, it has actually been argued that a non-zero value of κ_S quite naturally emerges [4, 7, 8, 12]. In very elementary terms, and focusing on a purely quantum field theoretical treatment, we will confirm that this is the case. Furthermore, one may raise questions on the quantum-mechanical nature of the prepared source state. We will verify, what has been known for a long period of time, that the interference pattern in all the cases we consider does not depend on the quantum nature of state of the source, at least if we consider mono-chromatic sources and a single photon detector. Apart from an overall factor, the interference pattern will therefore be the same for a source prepared in, e.g., a quantum-mechanical Fock-state of photons or for a conventional coherent state. As is well-known, the use of coherent states naturally leads to the interference of classical electro-magnetic fields.
(see, e.g., Ref. [13] and references cited therein). The observation of a non-zero value of κ_S is therefore not exclusively related to quantum-mechanical interference effects.

2. The Photon Detector

We first recall a simple quantum field theoretical treatment of quantum interference effects in a two-slit Young interferometer (see, e.g., Refs. [14, 15]), illustrated in Fig. 1 for a mono-chromatic source with wave-number k and angular frequency $\omega = ck$. The Glauber theory of quantum coherence [16] is then used in order to find the corresponding probability for single photon-detection. Below this analysis will be extended to a three-slit Young interferometer configuration. For a prepared quantum state $|\psi\rangle$ of the source S, and for a properly designed detector, the detection probability of one photon, with the port c closed, is related to the absorption of a photon in the detector described by the process

$$|\psi\rangle \rightarrow E^{(+)}(r, t)|\psi\rangle.$$ (2)

Here

$$E^{(+)}(r, t) = \mathcal{E}\left(a\frac{e^{i\phi_a}}{r_a} + b\frac{e^{i\phi_b}}{r_b}\right),$$ (3)

is the positive frequency part of one of the components of the second-quantized electric field observable $E^{(+)}(r, t)$ at the position r and time t at the detector far from the interferometer. The field $E^{(+)}(r, t)$ is expressed in terms of outgoing normal-mode annihilation operators a and b. In a more rigorous setting one should make use of appropriate Greens functions for system which, however, would make the points we are addressing less transparent. Furthermore, $\phi_a = \omega(t - \tau_a)$ and $\phi_b = \omega(t - \tau_b)$ are suitable phases expressed in terms of time-delays τ_a and τ_b. \mathcal{E} is a common amplitude for the a and b modes and r_a, r_b are the in-plane distances from the various openings of the interferometer to the detector D. According to the fundamental Born’s rule, the probability for single photon detection at the detector D is then, apart from unimportant constants, proportional to P_{ab} given by

$$P_{ab} = \sum_f |\langle f|E^{(+)}(r, t)|\psi\rangle|^2 = \langle \psi|E^{(-)}(r, t)E^{(+)}(r, t)|\psi\rangle,$$ (4)

where we sum over all possible photon states $|f\rangle$. The probability P_{ab} may therefore be written in a well-known general form using Eq. (3), i.e.,

$$P_{ab} = |\mathcal{E}|^2 \langle \psi| \left(a^*a + a^*be^{-i(\phi_a - \phi_b)} + ab^*e^{i(\phi_a - \phi_b)} + b^*b\right)|\psi\rangle.$$ (5)

We now consider a prepared Fock state $|\psi\rangle$ for the source, i.e.,

$$|\psi\rangle = \frac{s^n}{\sqrt{n!}}|0\rangle = \frac{(a^* + b^*)^n}{\sqrt{2^n n!}}|0\rangle = \frac{1}{\sqrt{2^n}} \sum_{k=0}^{n} \left(\frac{n!}{k!(n-k)!}\right)^{1/2} |k\rangle_a \otimes |n-k\rangle_b,$$ (6)
Figure 1: A three-slit Young interference setup. The normal mode annihilation operators a, b, and c also denote the various thin-slits. The source-mode annihilation operator is s. The inter-slit distance is l and d denotes the position of the detectors. The distance D between the Young interferometer and the detection plane is supposed to be large compared to any other length-scale.

where $|k\rangle_a$ and $|n-k\rangle_b$ represent the Fock states of photons emerging from the slits a and b. Here we expressed the initial state $|\psi\rangle$ in the a and b modes using a boundary condition at the two identical thin-slits, i.e.,

$$s = \frac{1}{\sqrt{2}} (a + b).$$

(7)

This relation does not represent the result of a unitary transformation. However, by including an additional local source, with a mode operator $s_V = (a - b)/\sqrt{2}$, we have a unitary $U(2)$ transformation connecting the pair of independent mode operators (s, s_V) and the independent mode operators (a, b) [17]. The number operator of photons will then be conserved. Expressed in a somewhat different manner, fundamental commutation relations for mode operators applied to a completely symmetric Young interferometer naturally leads to the condition Eq.(7). In the discussion below on the three-slit Young interferometer two easily constructed local source operators have to be included in a similar manner and a corresponding unitary $U(3)$ transformation can easily be found preserving the number of photons. If quantum states of such local modes are present with, e.g., random phases, the visibility of interference patterns will in general be diminished. In all of the considerations below we, however, assume that the quantum states of such local modes are the vacuum state. We can therefore suppress their presence in the considerations below.

The state vectors in Eq.(6) describe the superposition of all possible combinations that can occur with appropriate weights, for photons passing through the various slits at the same
time. We stress again that we only need the asymptotic form of the field \(E^{(+)}(r, t) \) at the
detector and a relation like Eq.(7) for the mode operators in order to complete the analysis
for all relevant detection probabilities. It now follows that

\[
\langle \psi | a^* a | \psi \rangle = \langle \psi | b^* b | \psi \rangle = \langle \psi | a^* b | \psi \rangle = \langle \psi | b^* a | \psi \rangle = \frac{n}{2},
\]

and therefore

\[
P_{ab} = |\mathcal{E}|^2 \frac{n}{2} \left(\frac{1}{r_a^2} + \frac{1}{r_b^2} + \frac{2 \cos(\phi_a - \phi_b)}{r_a r_b} \right). \tag{9}
\]

Similar expressions can be obtained for the probabilities \(P_{ac} \) and \(P_{bc} \). For the one-slit case the
approximations used above lead to \(P_a = |\mathcal{E}|^2 n/r_a^2 \) and similarly for \(P_b \) and \(P_c \).

With all slits open in Fig.1, we extend the discussion above with the asymptotic field
\(E^{(+)}(r, t) \) in Eq.(3) replaced by

\[
E^{(+)}(r, t) = \mathcal{E} \left(a \frac{e^{i\phi_a}}{r_a} + b \frac{e^{i\phi_a}}{r_b} + c \frac{e^{i\phi_c}}{r_c} \right). \tag{10}
\]

Correspondingly, the initial state \(|\psi\rangle\) is expressed in terms of the \(a, b, \) and \(c \) mode operators,
i.e.,

\[
|\psi\rangle = \frac{(a^* + b^* + c^*)^n}{\sqrt{3^n n!}} |0\rangle = \frac{1}{\sqrt{3^n}} \sum_{k=0}^{n} \sum_{l=0}^{n} \left(\frac{n!}{k! l! (n-k-l)!} \right)^{1/2} |k\rangle_a \otimes |l\rangle_b \otimes |n-k-l\rangle_c, \tag{11}
\]

where we have made use of the multi-nomial theorem. As in the two-slit case, Eq.(11)
describes the superposition of the possible combinations that can occur with appropriate
weights, for photons passing through different slits at the same time. It is straightforward
to verify that the extension of Eq.(8) is given by

\[
\langle \psi | a^* a | \psi \rangle = \langle \psi | b^* b | \psi \rangle = \langle \psi | c^* c | \psi \rangle = \langle \psi | a^* b | \psi \rangle = \langle \psi | b^* a | \psi \rangle
= \langle \psi | a^* c | \psi \rangle = \langle \psi | c^* a | \psi \rangle = \langle \psi | b^* c | \psi \rangle = \langle \psi | c^* b | \psi \rangle = \frac{n}{3}. \tag{12}
\]

The three-slit probability \(P_{abc} \) is therefore given by

\[
P_{abc} = |\mathcal{E}|^2 \frac{n}{3} \left(\frac{1}{r_a^2} + \frac{1}{r_b^2} + \frac{1}{r_c^2} + \frac{2 \cos(\phi_a - \phi_b)}{r_a r_b} + \frac{2 \cos(\phi_b - \phi_c)}{r_b r_c} + \frac{2 \cos(\phi_a - \phi_c)}{r_a r_c} \right). \tag{13}
\]

The various detection probabilities discussed above are all proportional to the number
of photons \(n \) of the initial state \(|\psi\rangle\). In general all the results above will actually remain
the same for any mono-chromatic initial quantum state, pure or mixed, by replacing \(n \) with
the corresponding mean value \(\langle n \rangle \). In order to verify this fact we make use of Glaubers
Figure 2: The Sorkin parameter $\kappa_s \rightarrow \kappa(d)$, as defined in Eq.(18) normalized by $P = P_{abc}(d = 0)$, as a function of d/D. The parameter used are as in Ref.[12] with $\lambda = 0.05$ m, $l = 0.13$ m and $D = 1.25$ m. For reasons of simplicity we neglect the width of the slots. The figures illustrates the sensitivity in reaching the degeneracy value $\kappa(d) = 0$ for a small range of the normalization constants n_1 and n_2 in Eq.(18). Here we make use of $n_2 = 2/3 + 1.3\%$. The upper curve corresponds to $n_1 = 1/3 + 1.3\%$ and the lower curve to $n_1 = 1/3 + 1.2\%$.

The representation [16, 18] for a general single-mode quantum state in terms of conventional coherent states $|\alpha\rangle$ [19] namely

$$\rho = \int d^2 \alpha \mathcal{P}(\alpha, \alpha^*) |\alpha\rangle \langle \alpha| . \quad (14)$$

A detection probability P_D is then evaluated according to

$$P_D \equiv \text{Tr} \left[\rho E^{(-)}(r,t)E^{(+)}(r,t) \right] = \int d^2 \alpha \mathcal{P}(\alpha, \alpha^*) \langle \alpha| E^{(-)}(r,t)E^{(+)}(r,t)|\alpha\rangle . \quad (15)$$

We illustrate the procedure in terms of the two-slit slit configuration with $P_D = P_{ab}$. Expressing coherent state $|\alpha\rangle = D(\alpha)|0\rangle$ in terms of the displacement operator $D(\alpha) = \exp(\alpha s^* - \alpha^* s)$, and by making use of the mode operator relationship Eq.(7), it is clear that

$$|\alpha\rangle = \left| \frac{\alpha}{\sqrt{2}} \right>_a \otimes \left| \frac{\alpha}{\sqrt{2}} \right>_b . \quad (16)$$
Since $|\alpha\rangle$ is an eigenstate of the observable $E^{(+)}(r,t)$, one easily finds the same expression for P_{ab} as in Eq.(9) with n replaced by $\langle n \rangle \equiv \langle s^*s \rangle$ using

$$\frac{1}{2} \langle n \rangle \equiv \frac{1}{2} \text{Tr}[s^*s] = \frac{1}{2} \int d^2\alpha \, \mathcal{P}(\alpha, \alpha^*) |\alpha|^2 = \langle a^*a \rangle = \langle b^*b \rangle = \langle a^*b \rangle = \langle ab^* \rangle.$$ (17)

Apart from the replacement of n with $\langle n \rangle$, the interference pattern exhibited by P_{ab} then stays the same and does not depend on the details of the initially prepared quantum states of the source. The same reasoning applies to all detection probabilities considered above.

We now introduce the combination $\kappa(d)$, motivated by Eq.(1), as defined by

$$\kappa(d) \equiv P_{abc} - n_2(P_{ab} + P_{ac} + P_{bc}) + n_1(P_a + P_b + P_c),$$ (18)

where we have introduced two normalization parameters n_1 and n_2. With $n_1 = n_2 = 1$, the Sorkin parameter κ_S and $\kappa(d)$ are, at least symbolically, identical. But then

$$\kappa(d) = |E|^2 \frac{\langle n \rangle}{3} \left(\frac{1}{r_a^2} + \frac{1}{r_b^2} + \frac{1}{r_c^2} - \frac{\cos(\phi_a - \phi_b)}{r_a r_b} - \frac{\cos(\phi_b - \phi_c)}{r_b r_c} - \frac{\cos(\phi_a - \phi_c)}{r_a r_c} \right),$$ (19)

is in general non-zero as a function of the position d of the photon detector. Due to the two-slit conditions Eq.(8) and three-slit conditions Eq.(12) it is, however, clear that the parameters n_1 and n_2 has to be adjusted in order to have the same average number of photons passing through the various slit combinations under consideration. Without loss of generality, we should therefore use $n_1 = 1/3$ and $n_2 = 2/3$. The physical conditions are then the same for the various slit configurations and one then finds that $\kappa(d) = 0$. As an example, we illustrate in Fig.2 the sensitivity in the approach to the degeneracy point, defined by $\kappa(d) = 0$, for various choices of the normalization parameters n_1 and n_2. Other parameters used correspond to a recent experiment by Rengaraj et al. [12]. We find it remarkable that we can reproduce some features of Ref.[12] in view of the simplicity of the arguments put forward in these comments.

3. Remarks

In accordance with other considerations, as in Refs. [4, 7, 8, 12], we have argued that one cannot make a straightforward physical identification of the quantum-mechanical probability amplitudes to be used in the definition of the Sorkin parameter k_S. As we have seen in the case of the one-, two-, and three-slit Young interferometer configurations, the intensity of the source considered has to be adjusted in order to describe the same physical conditions. It then follows that the corresponding identification of the Sorkin parameter κ_S is naturally zero. If not properly adjusted a non-zero value emerges without any contradiction with the basic rules of quantum mechanics.
For a mono-chromatic source, the interference patterns discussed in these comments do not depend on the nature of the quantum state of the source and only the mean number of photons is of importance. This has the consequence that there is no fundamental difference between classical and quantum-mechanical interference when making use of a single photon detector, a fact that is well established \[20\]. Even though the concept of a photon has been disputed \[21\], the interference pattern as built up by single-photon events can, with current technology, rather easily be demonstrated (see, e.g., Ref.\[22\]) and, of course, agrees with the interference pattern as obtained in terms of classical optics.

The Feynman-path integral approach to quantum interference and the notion of non-classical paths for photons appears to play an important role in many of the current discussions on the Sorkin parameter κ_S. For a non-relativistic particle the notion of a, not necessarily classical, path expressed in terms of co-ordinates makes much sense even though this has to be used with care (see, e.g., Ref.\[23\]). For highly relativistic particles the notion of a co-ordinate needs clarification since one can argue that the components of a position observable for a massless particle with non-zero helicity, like a photon, are, due to topological reasons, non-commuting \[24\]. In the quantum field theoretical approach to interference phenomena as discussed in these comments, such considerations do, however, not play any role.

REFERENCES

For the convenience of the readers we have attached a capital R to those references which are reprinted in Ref.\[19\].

[1] R. D. Sorkin, ‘Quantum Mechanics as Quantum Measure Theory ’, Mod. Phys. Lett. A9, 3119 (1994).

[2] U. Sinha, C. Couteau, T. Jennewein, R. Laflamme, and G. Weihs, “Ruling Out Multi-Order interference in Quantum Mechanics ”, Science 329, 418 (2010).

[3] D. Park, K. Moussa, and R. Laflamme “Three Path Interference Using Nuclear Magnetic Resonance: A Test of the Consistency of Born’s Rule ”, New J. Phys. 14, 113025 (2012).

[4] H. De Raedt, K. Michielsen, and K. Hess, “Analysis of Multipath Interference in Three-Slit Experiments ”, Phys. Rev. A 85, 012101 (2012).

[5] I. Söllner et al., “Testing Borns Rule in Quantum Mechanics for Three Mutually Exclusive Events ”, Found Phys. 42, 742 (2012).

[6] E. Gagnon, C. D. Brown, and A. L. Lytle, “Effects of Detector Size and Position on a Test of Born’s rule Using a Three-Slit Experiment ”, Phys. Rev. A90, 013832 (2014).
[7] R. Sawant, J. Samuel, A. Sinha, S. Sinha, and U. Sinha, “Nonclassical Paths in Quantum Interference Experiments”, Phys. Rev. Lett. 113, 120406 (2014).

[8] A. Sinha, A. H. Vijay, and U. Sinha, “On the Superposition Principle in Interference Experiments”, Scientific Reports 5, 10304 (2015).

[9] O. S. Magaña-Loaiza et al., “Exotic Looped Trajectories of Photons in Three-Slit Interference”, Nat. Commun. 7, 13987 (2016).

[10] T. Kauten, R. Keil, T. Kaufmann, B. Pressl, Č. Brukner, and G. Weihs, “Obtaining Tight Bounds on Higher-Order Interferences with a 5-Path Interferometer”, New J. Phys. 19, 033017 (2017).

[11] J. P. Cotter, C. Brand, C. Knobloch, Y. Lilach, O. Cheshnovsky, and M. Arndt, “In Search of Multipath Interference Using Large Molecules” Sci. Adv. 3, 1602478 (2017).

[12] G. Rengaraj, U. Prathwiraj, S. N. Sahoo, R. Somashekhar, and U. Sinha, “Measuring the Deviation from the Superposition Principle in Interference Experiments”, New J. Phys. 20, 063049 (2018).

[13] B.-S. K. Skagerstam, K. E. Eriksson, and P. K. Rekdal, “Causality in Quantum Field Theory with Classical Sources - Quantum Electrodynamics”, arXiv:1801.09947v1 [quant-ph] 30 Jan 2018.

[14] D. F. Walls, ”A Simple Field Theoretic Description of Photon Interference”, Am. J. Phys. 45, 952 (1977).

[15] L. Mandel, “Quantum Effects in One-Photon and Two-Photon Interference”, Rev. Mod. Phys. 71, S274 (1999).

[16] R. J. Glauber, “Photon Correlations”, Phys. Rev. Lett. 10, 84 (1963) (R); “The Quantum Theory of Optical Coherence”, Phys. Rev. 130, 252 (1963) (R); “Coherent and Incoherent States of the Radiation Field”, ibid. 131, 2766 (1963) (R), ”Optical Coherence and Photon Statistics” in: C. DeWitt, A. Blandin, C. C.-T. (Ed.), ”Quantum Optics and Electronics”, Les Houches, p. 621, Gordon and Breach (New York, 1965); ”Quantum Theory of Optical Coherence”, Wiley-VCH (Weinheim, 2017).

[17] See, e.g., Section 5.3 in C. C. Gerry and P. L. Knight, ”Introductory Quantum Optics”, Cambridge University Press (Cambridge, 2005).

[18] E. C. G. Sudarshan, “Equivalence of Semiclassical and Quantum Mechanical Descriptions of Statistical Light”, Phys. Rev. Lett. 10, 277 (1963) (R); J. R. Klauder, J. McKenna, and D. G. Currie, “On Diagonal Coherent-State Representations for Quantum-
Mechanical Density Matrices”, J. Math. Phys. 6, 734 (1965); C. L. Metha and E. C. G. Sudarshan, “Relation Between Quantum and Semi-Classical Description of Optical Coherence”, Phys. Rev. 138, B274 (1965); J. R. Klauder, “Improved Version of Optical Equivalence Theorem”, Phys. Rev. Lett. 16, 534 (1966); J. R. Klauder and B.-S. K. Skagerstam, “Generalized Phasespace Representation of Operators”, J. Phys. A 40, 2093 (2007).

[19] J. R. Klauder and B.-S. K. Skagerstam, “Coherent States - Applications in Physics and Mathematical Physics”, World Scientific (Singapore, 1985 and Beijing 1988); B.-S. K. Skagerstam, “Coherent States - Some Applications in Quantum Field Theory and Particle Physics” in “Coherent States: Past, Present, and the Future”, p. 469, Eds. D. H. Feng, J. R. Klauder, and M. R. Strayer, World Scientific (Singapore, 1994); J. R. Klauder, ”The Current State of Coherent States”, contribution to the 7th ICSSUR Conference, Boston, 2001 (arXiv:quant-ph/0110108).

[20] P. Grangier, G. Roger, and A. Aspect, ”Experimental Evidence for a Photon Anticorrelation Effect on a Beam Splitter: A New Light on Single-Photon Interference”, Europhys. Lett. 1, 173 (1986); A. Aspect and P. Grangier, “Wave-Particle Duality for Single Photons”, Hyperfine Interactions 37, 3 (1987); P. Grangier, G. Roger and A. Aspect, “Experimental Evidence for a Photon Anticorrelation Effect on a Beam Splitter: A New Light on Single-Photon Interferences”, Europhys. Lett., 1, 173 (1986).

[21] W. E. Lamb, Jr., “Anti-Photon”, Appl. Phys. B 60, 77 (1995).

[22] E. J. Galvez, “Resource letter SPE-1: Single-Photon Experiments in the Undergraduate Laboratory”, Am. J. Phys. 82, 1018 (2014); R. S. Aspden, M. J. Padgett, and G. C. Spalding, “Video Recording True Single-Photon Double-Slit Interference”, Am. J. Phys. 84, 671 (2016).

[23] J. R. Klauder, C. B. Lang, P. Salomonson, and B.-S. K. Skagerstam, “Universality of the Continuum Limit of Lattice Quantum Field Theories”, Z. Phys. C 26, 149 (1984); A. L. Grimsmo, J. R. Klauder, and B.-S. K. Skagerstam, “Anomalous Paths in Quantum Mechanical Path-Integrals”, Phys. Lett. B 727, 330 (2013).

[24] A. P. Balachandran, G. Marmo, and A. Stern, and B.-S. K Skagerstam, “Gauge Symmetries and Fibre Bundles - Applications to Particle Dynamics”, Lecture Notes in Physics 188, Springer Verlag (Berlin 1983); B.-S. Skagerstam, “Localization of Massless Spinning Particles and the Berry Phase”, invited paper in “On Klauders Path: A Field Trip - Festschrift for John R. Klauder on Occasion of His 60th Birthday”, p. 209, Eds. G. G. Emch, G. C. Hegerfeldt, and L. Streit (World Scientific, 1994).