Synthesis of Binary k-Stage Machines

Elena Dubrova, Member, IEEE

Abstract—An algorithm for constructing a shortest binary k-stage machine generating a given binary sequence is presented. This algorithm can be considered as an extension of Berlekamp-Massey algorithm to the non-linear case.

Index Terms—Berlekamp-Massey algorithm, feedback shift register, nonlinear complexity

I. INTRODUCTION

In his seminal book [1], Golomb described an extended version of the traditional feedback shift register, shown in Figure 1. He called such a device binary k-stage machine. Each stage $i \in \{0,1,\ldots,k-1\}$ has its own next state function f_i. Both feedback and feedforward connections are allowed.

In this paper, we address the problem of constructing a binary k-stage machine with the minimum k generating a given binary sequence. We present a synthesis algorithm and derive the exact lower bound on k. Our work can be considered as an extension of Berlekamp-Massey algorithm [2] to the non-linear case.

For the traditional Non-Linear Feedback Shift Registers (NLFSRs), the problem of finding a shortest NLFSR generating a given binary sequence has been considered in [3], [4], [5] and [6].

II. PRELIMINARIES

A binary sequence A of length n is an n-tuple (a_0,a_1,\ldots,a_{n-1}) where $a_i \in \{0,1\}$ for $i \in \{0,1,\ldots,n-1\}$. The Hamming weight of a binary sequence A, denoted by $\text{wt}(A)$, is the number of 1s in A. A binary sequence A of length n is balanced if $\text{wt}(A) = n - \text{wt}(A)$.

For a Boolean function $f: \{0,1\}^n \to \{0,1\}$, the support of f is defined by

$$\Omega_f = \{x \in \{0,1\}^n : f(x) = 1\}.$$

The algebraic normal form (ANF) of a Boolean function f is a polynomial in $GF(2)$ of type

$$f(x_0,\ldots,x_{n-1}) = \sum_{i=0}^{2^n-1} r_i \cdot x_0^{i_0} \cdot x_1^{i_1} \cdots x_{n-1}^{i_{n-1}},$$

where $r_i \in \{0,1\}$ and $(i_{n-1} \ldots i_0)$ is the binary expansion of i with i_0 being the least significant bit.

The gate complexity [7] (or circuit-size complexity) of a Boolean function f is the smallest number of gates in any acyclic circuit computing f, given that the gates are restricted to have at most two inputs.

A state of a binary k-stage machine is a vector of values of its k stages.

E. Dubrova is with the Royal Institute of Technology (KTH), Stockholm, Sweden.

III. SYNTHESIS ALGORITHM

The algorithm presented in this section exploits the property of binary k-stage machines that any binary k-tuple can be the next state of a given current state. Note that, in a traditional NLFSR in the Fibonacci configuration [1], the next state overlaps with a current state in $k-1$ positions. The Galois configuration of NLFSRs, introduced in [8], is more flexible. However, since feedforward connections are not allowed in NLFSRs, the set of possible next states is still limited.

First, we show how to construct a sequence of integers whose least significant bits follow a given aperiodic binary sequence of length n.

Let $B = (0,2,4,\ldots)$ be an infinite vector of all even non-negative integers starting from 0. Let $C = (1,3,5,\ldots)$ be an infinite vector of all odd positive integers starting from 1. We denote by b_i and c_i be the ith elements of B and C, respectively, for $i \in \{0,1,2,\ldots\}$.

Let $N_0 = 0$ and $N_1 = 0$. Given an aperiodic binary sequence A of length n, for every i from 0 to $n-1$, we repeat the following:

If $a_i = 0$, then assign $s_i = b_{N_0}$ and increment N_0 by one. Otherwise, assign $s_i = c_{N_1}$ and increment N_1 by one.

The algorithm described above is summarized as Algorithm II. Its worst-case time complexity is $O(n)$.

Let $S = (s_0,s_1,\ldots,s_{n-1})$ be a sequence constructed by the Algorithm [II]. Each integer $s_i \in S$ can be represented as a binary expansion $(s_{k-1},s_{k-2},\ldots,s_0) \in \{0,1\}^k$ where k is the number of bits needed to represent the largest integer of S and s_0 is the least significant bit of the expansion. We interpret each k-tuple $(s_{k-1},s_{k-2},\ldots,s_0)$ as a state of a binary k-stage machine. By construction, $s_0 = a_i$ for all $i \in \{0,1,\ldots,n-1\}$.

Next, we define a mapping $s_i \mapsto s_{i+1}$, for all $i \in \{0,1,\ldots,n-1\}$, where "+" is modulo n. This mapping assigns s_{i+1} to be the next state of a current state s_i of a binary k-stage machine. Each of $2^k - n$ remaining states of the binary k-stage machine are mapped into the all-0 state. This implies that they do not contribute any 1s to the supports of the next state functions.
The supports of the next state functions implementing the resulting mapping are derived as follows. Initially $\Omega_j = \emptyset$, for all $j \in \{0,1,\ldots,k-1\}$. For every i from 0 to $n-1$, we repeat the following:

For every j from 0 to $k-1$: If $s_{(i+1)j} = 1$, where $n + n$ is modulo n, then

$$\Omega_j = \Omega_j \cup \{(s_{k-1}, s_{k-2}, \ldots, s_0)\}.$$

The algorithm described above is summarized as Algorithm 2. Its worst-case time complexity is $O(n \cdot k)$.

Theorem 1: The algorithm presented in this section constructs a binary k-stage machine generating a finite aperiodic binary sequence A where k is given by

$$k = \max\{\lceil \log_2 w(A) \rceil, \lceil \log_2 (n - w(A)) \rceil \} + 1,$$

where n is the length of A.

Proof: When the Algorithm 2 terminates, $N_I = w(A)$. Since A is aperiodic, we have $0 < w(A) < n$. Therefore, the largest odd integer used from C is $2w(A) - 1$. The binary expansion of this odd integer has $\lceil \log_2 (n - w(A)) \rceil + 1$ bits. Similarly, when the Algorithm 2 terminates, we have $N_0 = n - w(A)$. The largest even integer used from B is $2(n - w(A)) - 2$. The binary expansion of this even integer has $\lceil \log_2 (n - w(A)) \rceil + 1$ bits.

The following property trivially follows from the Theorem 1.

Lemma 1: If A is balanced, then 1 reduces to

$$k = \lceil \log_2 n \rceil.$$

As an example, consider the following sequence of length $n = 19$ taken from the Example V.1 in [6]:

$$A = (0011011100101110110).$$

It was shown in [6] that the shortest NLFSR generating this sequence has 7 stages. Below we show that the same sequence can be generated using a binary machine with 5 stages. This comes as no surprise, since a binary machine is more general than an NLFSR. Using the Algorithm 1 we construct the following sequence of integers whose least significant bits follow A:

$$S = (0, 2, 1, 3, 4, 5, 7, 9, 6, 8, 11, 10, 13, 15, 17, 12, 19, 21, 14).$$

By applying the Algorithm 2 to S, we get the following supports for the next state functions:

$$\Omega_{f_i} = \{(01100), (01111), (10011)\}$$

$$\Omega_{f_2} = \{(01110), (00011), (01000), (01010), (01011), (01101), (10001), (10101)\}$$

$$\Omega_{f_3} = \{(00011), (00100), (01001), (01010), (01011), (01101), (10011), (10101)\}$$

$$\Omega_{f_4} = \{(00001), (00010), (00100), (00101), (00110), (01001), (01110), (11101), (11111), (11111)\}$$

These supports have the following ANF expressions:

$$f_4 = x_0x_1x_3 \oplus x_1x_2x_3 \oplus x_1x_2x_4 \oplus x_0x_1x_4 \oplus x_0x_1x_2x_4 \oplus x_1x_2x_3 \oplus x_0x_1x_2x_4$$

$$f_3 = x_0x_2 \oplus x_1x_2 \oplus x_0x_1x_2 \oplus x_0x_3 \oplus x_1x_3 \oplus x_2x_3 \oplus x_0x_2x_3 \oplus x_1x_3 \oplus x_2x_3 \oplus x_0x_1x_2x_4 \oplus x_0x_1x_3 \oplus x_2x_3 \oplus x_2x_3 \oplus x_0x_1x_3 \oplus x_2x_3 \oplus x_2x_3 \oplus x_0x_1x_3 \oplus x_2x_3 \oplus x_2x_3$$

$$f_2 = x_1 \oplus x_2 \oplus x_0x_2 \oplus x_0x_1x_2 \oplus x_0x_1x_3 \oplus x_0x_1x_2x_3 \oplus x_2x_4 \oplus x_0x_4 \oplus x_1x_2x_4 \oplus x_2x_3x_4 \oplus x_2x_3x_4 \oplus x_1x_2x_3x_4$$

$$f_1 = 1 \oplus x_1 \oplus x_2 \oplus x_0x_2 \oplus x_1x_2 \oplus x_0x_1x_2 \oplus x_0x_1x_3 \oplus x_0x_2x_3 \oplus x_0x_2x_3 \oplus x_0x_3 \oplus x_1x_2x_3 \oplus x_0x_1x_2x_4 \oplus x_0x_1x_3x_4 \oplus x_0x_1x_2x_3x_4 \oplus x_0x_1x_2x_3x_4 \oplus x_0x_1x_2x_3x_4 \oplus x_0x_1x_2x_3x_4 \oplus x_0x_1x_2x_3x_4 \oplus x_0x_1x_2x_3x_4 \oplus x_0x_1x_2x_3x_4$$

As we can see, the resulting next state functions have a substantial gate complexity. We can potentially reduce the gate complexity as follows:
1) By using a different sequence of states to generate A. In general, any permutation of even integers from the set \{0, 2, 4, \ldots, 2(n - \text{wt}(A)) - 2\} and any permutation of odd integers from the set \{1, 3, 5, \ldots, 2\text{wt}(A) - 1\} can be used in the Algorithm \[\text{Algorithm} \] instead of vectors B and C, respectively, to construct a sequence of integers whose least significant bits follow A.

2) By mapping the remaining \(2^k - n\) states of the binary \(k\)-stage machine in a different way. For example, rather than being mapped into the all-0 state, these states can form another cycle of states. The resulting binary \(k\)-stage machine will be branchless.

In general, the problem of constructing a binary \(k\)-stage machine with the minimum gate complexity of next state functions is very hard. It is unlikely that there exists an exact algorithm for solving this problem which is feasible for large \(n\).

IV. Bound on the Size

The theorem below shows that the bound given by (1) is exact.

Theorem 2: Given a finite aperiodic binary sequence A of length \(n\), any binary machine which can generate A has at least \(k\) stages, where \(k\) is given by (1).

Proof: The existence of a binary machine with \(k\) stages which can generate A follows from the Theorem 1. It remains to prove that no binary \(k'-\)stage machine with \(k' < k\) can generate A.

Assume that \(k\) is given by (1) and that there exists a binary machine with \(k'\) stages, \(k' < k\), which can generate the same sequence A.

Let \(\text{wt}(A) \geq n/2\). One hand, from (1), we have \(k = \lceil \log_2 \text{wt}(A) \rceil + 1\). On the other hand, to be able to generate an aperiodic binary sequence A, a binary \(k'\)-stage machine must have at least \(\text{wt}(A)\) distinct states with the least significant bit 1. Therefore, it must have at least \(k' \geq \lceil \log_2 \text{wt}(A) \rceil + 1\) stages. This contradict the assumption \(k' < k\).

In a similar way, we can come to a contradiction for the case \(\text{wt}(A) < n/2\). Therefore, no binary machine with less than \(k\) stages can generate A.

V. Conclusion

We presented an algorithm for constructing a shortest binary \(k\)-stage machine generating a given binary sequence. Since binary \(k\)-stage machines are probably the most general extension of NLFSR, the lower bound given by the Theorem 2 might be useful for estimating non-linear complexity of sequences.

Future work includes finding a heuristic approach for choosing a sequence of states which minimizes the gate complexity of the next state functions.

REFERENCES

[1] S. Golomb, *Shift Register Sequences*. Aegean Park Press, 1982.
[2] J. Massey, “Shift-register synthesis and BCH decoding.” *IEEE Transactions on Information Theory*, vol. 15, pp. 122–127, 1969.
[3] C. J. A. Jansen, “The maximum order complexity of sequence ensembles,” *Lecture Notes in Computer Science*, vol. 547, pp. 153–159, 1991. Adv. Cryptology-Eurocrypt’91, Berlin, Germany.
[4] P. Rizomiliotis and N. Kalouptsidis, “Results on the nonlinear span of binary sequences,” *IEEE Transactions on Information Theory*, vol. 51, no. 4, pp. 1555–1563, 2005.
[5] P. Rizomiliotis, N. Kolokotronis, and N. Kalouptsidis, “On the quadratic span of binary sequences,” *IEEE Transactions on Information Theory*, vol. 51, no. 5, pp. 1840–1848, 2005.
[6] K. Limniotis, N. Kolokotronis, and N. Kalouptsidis, “On the nonlinear complexity and Lempel-Ziv complexity of finite length sequences,” *IEEE Transactions on Information Theory*, vol. 53, no. 11, pp. 4293–4302, 2009.
[7] J. Massey, “The difficulty with difficulty.” EUROCRYPT ’96 IACR Distinguished Lecture.
[8] E. Dubrova, “A transformation from the Fibonacci to the Galois NLFSRs.” *IEEE Transactions on Information Theory*, vol. 55, pp. 5263–5271, November 2009.