Boosted Saturation Bound in Colliding Nuclei

B. Z. Kopeliovich

Departamento de Física, Universidad Técnica Federico Santa María, Instituto de Estudios Avanzados en Ciencias e Ingeniería, Centro Científico-Tecnológico de Valparaíso, Casilla 110-V, Valparaíso, Chile

Interaction with a nucleus in pA collisions enhances the higher Fock components in the projectile proton. Effectively, this corresponds to an increase of the hard scale of the process by the saturation momentum $Q^2 \Rightarrow Q^2 + Q^2_{sA}$, which leads to an increased gluon distribution function at small x (but suppressed at $x \rightarrow 1$) compared to that in pp collisions. In the case of AA collisions the gluon distributions of bound nucleons in both nuclei turn out to be enhanced, i.e. to be boosted to higher saturation scales compared to pA collisions. A set of bootstrap equations relating the saturation scales in the colliding nuclei is derived and solved [B. Z. Kopeliovich, H. J. Pirner, I. K. Potashnikova and I. Schmidt, Phys. Lett. B 697 (2011), 333]. The boosting effect has a moderate magnitude at the energies of RHIC, but becomes significant at LHC.

§ 1. Modification of the gluon distribution functions in pA and AA collisions

Due to the effect of broadening a nuclear target probes the parton distribution in the beam hadron with a higher resolution, compared to a proton target, so in a hard reaction the effective scale Q^2 for the beam parton distribution function (PDF) drifts towards higher values, $Q^2 \Rightarrow Q^2 + Q^2_{sA}$, 1 where Q_{sA} is the saturation momentum in the nucleus. 2 The projectile PDF is modified due to the selection of higher Fock states by multiple interactions. The modified gluon distribution turns out to be suppressed at large $x \rightarrow 1$, 2 but enhanced at small x. This is a higher twist effect. Examples of pA to pp ratios of the gluon densities in the beam proton, $g(x, Q^2 + Q^2_{sA})/g(x, Q^2)$, are presented in Fig. 1 for a hard reaction (high-p_T, heavy flavor production, etc.) at different hard scales.

Apparently, there is an asymmetry in the properties of colliding nucleons in pA collisions: the PDF of the beam proton is modified to a state with a higher hard scale and a larger gluon density at small x than in NN collisions. At the same time, the properties of the target bound nucleons remain unchanged, because they do not undergo multiple interactions. This feature is illustrated pictorially in the upper part of Fig. 2. The picture in the bottom part of this figure demonstrates that in the case of a nuclear collision, the PDFs of bound nucleons in both nuclei are drifting towards higher parton multiplicities. The new scales depend on each other: the higher is the saturation scale in the nucleus A, the more is the shift of the saturation scale in the nucleus B, and vice versa.

1 We assume that the coherence time of gluon radiation substantially exceeds the nuclear size.
Fig. 1. Ratio of the gluon distribution functions in the proton in pA and pp collisions calculated with MSTW2008. The saturation momentum $Q^2_{sA} = 2\text{GeV}^2$ and hard scale $Q^2 = 2, 3, 5, 10\text{GeV}^2$.

Fig. 2. (color online) Top: pA collision in which the colliding proton is excited by multiple interactions to higher Fock states which have more small-x gluons. Bottom: nuclear collision in which participating nucleons on both sides are boosted to a higher saturation scale.

Such a mutual influence of the scales can be described by bootstrap equations,

$$\begin{align*}
\tilde{Q}^2_{sB}(x_B) &= \frac{3\pi^2}{2} \alpha_s(\tilde{Q}^2_{sA} + Q^2_0) x_B g_{N}(x_B, \tilde{Q}^2_{sA} + Q^2_0) T_B, \\
\tilde{Q}^2_{sA}(x_A) &= \frac{3\pi^2}{2} \alpha_s(\tilde{Q}^2_{sB} + Q^2_0) x_A g_{N}(x_A, \tilde{Q}^2_{sB} + Q^2_0) T_A.
\end{align*}$$

(1.1)

Here $x_{A,B}$ are the fractional light-cone momenta of the radiated gluon relative to the colliding nuclei, $x_A x_B = k_T^2/s$; $Q^2_0 = 1.7\text{GeV}^2$ is chosen to get the correct infrared behavior. These equations lead to a larger nuclear saturation scale \tilde{Q}^2_{sA} in AA compared to Q^2_{sA} in pA collisions.

The solution of Eq. (1.1) for \tilde{Q}^2_{sA} in a central lead-lead collision at the mid rapidity is plotted as function of nuclear thickness $T_A = T_B$ in the upper panel of Fig. 3 at the energies of RHIC and LHC, and the ratio $\tilde{Q}^2_{sA}/Q^2_{sA}$ is shown in the bottom panel. While the magnitude of the boosting effect is moderately large, about 20% at the energy of RHIC, it becomes significant at LHC.

In non-central collisions $T_A \neq T_B$ and the solution of equations (1.1) is presented in Fig. 4 separately for $\tilde{Q}^2_{sA}/Q^2_{sA}$ (solid curves) and $\tilde{Q}^2_{sB}/Q^2_{sB}$ (dashed curves). For each set of curves T_A is fixed at 0.5, 1 and 2 fm$^{-2}$ from bottom to top.

§2. Observables for the boosting effect

Since the nuclear medium in AA collisions has an enriched gluon density at small x, it is more opaque for color dipoles compared to what one could expect extrapolating from pA. In particular, charmonium suppression by initial state interactions (ISI) should be stronger. The modified dipole-nucleon cross section is also subject to the boosting effect,

$$\tilde{\sigma}_{dip}(r_T) = \frac{\tilde{Q}^2_{sA}}{Q^2_{sA}} \sigma_{dip}(r_T).$$

(2.1)
Fig. 3. Top panel: The boosted values of the saturation momentum squared \tilde{Q}^2_{sA} calculated at the energies of RHIC and LHC as function of nuclear thickness $T_A = T_B$. Bottom panel: the ratio $\tilde{Q}^2_{sA}/Q^2_{sA}$ as function of $T_A = T_B$.

Fig. 4. (color online) Solutions of the reciprocity equations (1.1) for non-central collision of identical nuclei A and B at $x_A = x_B = 0$. Dashed curves correspond to $\tilde{Q}^2_{sA}/Q^2_{sA}$, the solid curve to $\tilde{Q}^2_{sB}/Q^2_{sB}$ as function of T_B. In both cases T_A is fixed at 0.5, 1.0 and 2.0 fm$^{-2}$ from bottom to top.

Fig. 5. (color online) Initial state suppression of J/Ψ produced in central $Au-Au$ collisions at the mid rapidity, $y = 0$, as function of transverse distance τ relative to the collision axis. The upper and bottom sets of curves correspond to $\sqrt{s} = 200$ GeV and 5.5 TeV respectively, calculated excluding (dashed) and including (solid) the boosting effect.

Fig. 6. (color online) Data8)–10) for the nuclear modification factor R_{AA} for J/Ψ production in central $Cu-Cu$ collisions (closed points) and $Au-Au$ (open circles) at $y = 0$ and $\sqrt{s} = 200$ GeV (RHIC). The bottom set of curves is predicted for $\sqrt{s} = 5.5$ TeV (LHC). Dashed and solid curve are calculated excluding, or including the boosting effect.

The magnitude of the ISI suppression of J/Ψ in central $Pb-Pb$ collisions as function of impact parameter τ is presented in Fig. 5 by dashed (no boosting) and solid (magnified by boosting) curves. Again, the boosting effect is rather small at RHIC, but is significant at the energy of LHC.

Unfortunately, most of the effects related to ISI are masked by final state interactions (FSI) of the J/Ψ with the created dense medium. So it is very difficult to approve or disprove the boosting effect at the energies of RHIC, at least with the current precision of J/Ψ data. However, the large magnitude of the boosting
effect, expected at the energies of LHC, makes it plausible to single out the effect from J/Ψ data. As far as the broadening of the mean transverse momentum squared, which is given by the saturation momentum,5 increases from Q_{sA}^2 to \tilde{Q}_{sA}^2, the Cronin effect should become much more pronounced. This is demonstrated in Fig. 6 on the example of the p_T dependent nuclear ratio $R_{AA}(p_T)$ predicted for J/Ψ produced in gold-gold collisions at RHIC,6 and in lead-lead at LHC.7 The result of calculation either with, or without the boosting effect, agree with data8–10 at $\sqrt{s} = 200$ GeV. The suppression of J/Ψ by FSI is calculated with the transport coefficient $\hat{q}_0 = 0.6$ GeV2/fm, which was adjusted6,7 to describe the data. At $\sqrt{s} = 2.7$ TeV, the nuclear ratio for lead-lead is predicted using the value of the transport coefficient $\hat{q}_0 = 0.8$ GeV2/fm, found in the analysis11 of data on suppression of high-p_T hadrons. The boosting effect at $p_T > 5$ GeV is strong, so may be seen even without a very high statistics.

Another sensitive probe for the boosting effect would be an observation of different magnitudes of broadening of J/Ψ in pA and AA collisions at the same path length in the nuclear matter.1 Indeed, broadening is related to the dipole cross section,12 which is enhanced by the boosting effect, Eq. (2.1). While RHIC data are not able so far to discriminate this weak effect, this task looks solvable at LHC.

Also the hadron multiplicity is expected13 to correlate with the saturation scale, so we expect a mismatch between the hadron multiplicities measured at the mid rapidity as function of centrality. Indeed, an indication at such a break was observed at RHIC,14 but the effect is rather small, more precise data are required.

Acknowledgements

I am grateful to Hans-Jürgen Pirner, Irina Potashnikova and Ivan Schmidt for our longstanding and fruitful collaboration. I also thank the Galileo Galilei Institute for Theoretical Physics for the hospitality and the INFN for the partial support during the completion of this work. This work was supported in part by Fondecyt (Chile) grant 1090291, and by Conicyt-DFG grant No. 084-2009.

References

1) B. Z. Kopeliovich, H. J. Pirner, I. K. Potashnikova and I. Schmidt, Phys. Lett. B 697 (2011), 333.
2) J.-W. Qiu and I. Vitev, Phys. Lett. B 632 (2006), 507.
3) A. D. Martin, W. J. Stirling, R. S. Thorne and G. Watt, Eur. Phys. J. C 64 (2009), 653.
4) B. Z. Kopeliovich, I. K. Potashnikova, H. J. Pirner and I. Schmidt, Phys. Rev. C 83 (2011), 014912.
5) B. Z. Kopeliovich, I. K. Potashnikova and I. Schmidt, Phys. Rev. C 81 (2010), 035204.
6) B. Z. Kopeliovich, I. K. Potashnikova and I. Schmidt, Phys. Rev. C 82 (2010), 024901.
7) B. Z. Kopeliovich, I. K. Potashnikova and Ivan Schmidt, Nucl. Phys. A 864 (2011), 203.
8) A. Adare et al. (PHENIX Collaboration), Phys. Rev. Lett. 98 (2007), 232301.
9) A. Adare et al. (PHENIX Collaboration), Phys. Rev. Lett. 101 (2008), 122301.
10) B. I. Abelev et al. (STAR Collaboration), Phys. Rev. C 80 (2009), 041902.
11) B. Z. Kopeliovich, I. K. Potashnikova and I. Schmidt, Phys. Rev. C 83 (2011), 021901.
12) M. B. Johnson, B. Z. Kopeliovich and A. V. Tarasov, Phys. Rev. C 63 (2001), 035203.
13) D. Kharzeev, E. Levin and M. Nardi, Nucl. Phys. A 747 (2005), 609.
14) B. Alver et al. (PHOBOS Collaboration), Phys. Rev. Lett. 102 (2009), 142301.