Ancestry inference and grouping from principal component analysis of genetic data

Florian Privé1,*

1National Centre for Register-Based Research, Aarhus University, Aarhus, 8210, Denmark.
*To whom correspondence should be addressed.

Contact:
• \texttt{florian.prive.21@gmail.com}

Abstract

Here we propose a simple, robust and effective method for global ancestry inference and grouping from Principal Component Analysis (PCA) of genetic data. The proposed approach is particularly useful for methods that need to be applied in homogeneous samples. First, we show that Euclidean distances in the PCA space are proportional to F_{ST} between populations. Then, we show how to use this PCA-based distance to infer ancestry in the UK Biobank and the POPRES datasets. We propose two solutions, either relying on projection of PCs to reference populations such as from the 1000 Genomes Project, or by directly using the internal data. Finally, we conclude that our method and the community would benefit from having an easy access to a reference dataset with an even better coverage of the worldwide genetic diversity than the 1000 Genomes Project.
Introduction

Principal Component Analysis (PCA) has been widely used to correct for population structure in association studies and has been shown to mirror geography in Europe (Price et al. 2006; Novembre et al. 2008). Due to its popularity, many methods have been developed for efficiently performing PCA (Abraham et al. 2017; Privé et al. 2020) as well as appropriately projecting samples onto a reference PCA space (Zhang et al. 2020; Privé et al. 2020), making possible to perform these analyses for ever increasing datasets in human genetics. Naturally, PCA has also been used for ancestry inference. However, among all studies where we have seen PCA used for ancestry inference, we have found there was no consensus on what is the most appropriate method for inferring ancestry using PCA. For example, there may be divergences on which distance metric to use and the number of PCs to use to compute these distances.

Here, we first compare several distance metrics with the popular F_{ST} statistic between populations. We show that the simple Euclidean distance on PC scores is the most appropriate distance to use, then we show how to use it to infer global ancestry and to group individuals in homogeneous sub-populations. We do not provide a method to infer admixture coefficients nor local ancestry, which are different problems for which there are several existing methods (Alexander et al. 2009; Frichot et al. 2014; Raj et al. 2014; Padhukasahasram 2014). However, inferring global ancestry in non-admixed individuals is still a very important problem since there are methods that specifically need to be applied in samples of homogeneous ancestry. This is the case e.g. for polygenic score methods that have been shown to underperform when applied to populations not homogeneous to the population used for training (Martin et al. 2017).

† Further defined in supplementary section “Definitions”.

Measures of genetic dissimilarity between populations

We first compare four measures of genetic dissimilarity using populations of the 1000 Genomes Project (1000G, 1000 Genomes Project Consortium et al. 2015). The F_{ST} is an ubiquitous measure of genetic dissimilarity between populations and the first measure we use in this comparison. We report F_{ST} between the 26 1000G populations in tables S1-S5 and the clustering of these populations based on F_{ST} in figure S1. The other three measures compared are distances applied to the PC scores of the genetic data: 1) the Bhattacharyya distance; 2) the distance between the centers (geometric medians) of the two populations; 3) the shortest distance between pairs of PC scores from the two populations. The (squared) Euclidean distance between population centers appears to be an appropriate PCA-based distance as it is approximately proportional to the F_{ST} (Figure 1) and provides an appropriate clustering of populations (Figure S4). In contrast, the two other Bhattacharyya and shortest distances do not provide as satisfactory results (Figures S2, S3, S6 and S7). For example, African Caribbeans in Barbados (ACB) and Americans of African Ancestry in SW USA (ASW) and the four admixed American (AMR) populations are close to all European (EUR), South Asian (SAS) and African (AFR) populations when using the Bhattacharyya distance (Figure S2). Using the shortest distance between pairs of individuals in two different populations is very sensitive to outliers. We also vary the number of PCs used for computing the Euclidean distances and how they compare with F_{ST} in figure S5. With 2 to 4 PCs, we are able to adequately separate distant populations, but
not the closest ones. For example, when using 4 PCs, there are pairs of populations with an F_{ST} of ≈ 0.02 while their PC centers are superimposed (Figure S5). When using more PCs (8, 16 or 25) to compute the distances, results remain similar.

![Figure 1: Comparing F_{ST} to the squared Euclidean distance on the PCA space between centers of pairs of the 26 1000G populations.](image)

PCA-based ancestry inference

We project the dataset of interest onto the PCA space of the 1000G data using the fast tools developed in Privé et al. (2020). We recall that this uses an automatic removal of LD when computing PCA and a correction for shrinkage in projected PC scores, which has been shown to be particularly important when using PC scores for ancestry estimation (Zhang et al., 2020). Based on the results from the previous section, we propose to assign individual ancestry to one of the 26 1000G populations based on the Euclidean distance to these reference population centers (geometric medians1) in the PCA space. Since we showed previously that (squared) distances in the PCA space are proportional to F_{ST}, we can set a threshold on these distances that would correspond approximately to an F_{ST} of e.g. 0.002. This threshold is close to the dissimilarity between Spanish and Italian people (F_{ST}(IBS, TSI) of 0.0015). When an individual is not close enough to any of the 26 1000G populations, we leave its ancestry inference as unknown, otherwise we assign this individual to the closest reference population center.

We first perform ancestry estimation for the individuals in the UK Biobank1. These individuals seem to originate from many parts of the world when we project onto the PCA space of the 1000G (Figure S8). Self-reported ancestry (Field 21000) is available for almost all individuals, with only 1.6% with unknown
or mixed ancestry. When using the threshold defined before, we could not infer ancestry for 4.6% of all 488,371 individuals. More precisely, among “British”, “Irish” and “White” ancestries, this represented respectively 2.2%, 3.3% and 7.9% (Tables 1 and S7). This also represented 3.3% for “Chinese”, 13.8% for “Indian” and 17.8% for “African” ancestries. Finally, mixed ancestries were particularly difficult to match to any of the 1000G populations, e.g. 97.3% unmatched within “White and Black Africa” and 93.0% within “White and Asian” ancestries. Only 47 individuals were misclassified in “super” population of the 1000G; e.g. six “British” were classified as South Asians, one “Chinese” as European and 25 “Caribbean” as South Asian by our method (Table 1). However, when comparing the location of these mismatched individuals to the rest of individuals on the PCA space computed within the UK Biobank (Bycroft et al. 2018), it seems more probable that our genetic ancestry estimate is exact while the self-reported ancestry is not matching the underlying genetic ancestry for these individuals (Figure S9). This possible discrepancy between self-reported ancestry and genetic ancestry has been reported before (Mersha and Abebe 2015).

We also test the approach proposed in Zhang et al. (2020) which consists in finding the 20 nearest neighbors in 1000G and computing the frequency of (super) population membership, weighted by the inverse distance to these 20 closest 1000G individuals. When this probability is less than 0.875, they leave the ancestry as unknown, aiming at discarding admixed individuals. Less than 0.5% could not be matched by their method (Table S6). Of note, they could match much more admixed individuals, whereas they set a high probability threshold aiming at discarding such admixed individuals. Moreover, there are many more discrepancies between their method and the self-reported ancestry in the UK Biobank (Table S6) compared to the previous results with our method (Table 1). Finally, our method is able to accurately differentiate between sub-continental populations such as differentiating between Pakistani, Bangladeshi and Chinese people (Table S7). We also applied our ancestry detection technique to the European individuals of the POPRES data (Nelson et al. 2008). Only 16 out of the 1385 individuals (1.2%) could not be matched, of which 11 were from East or South-East Europe (Table S8). Note that all individuals that we could match were identified as of European ancestry. We could also identify accurately sub-regions of Europe; e.g. 261 out of 264 Spanish and Portugese individuals were identified as “Iberian Population in Spain” (EUR_IBS, Table S8).

PCA-based ancestry grouping

Finally, we show several ways how to use our ancestry inference method for grouping genetically homogeneous individuals. One first possible approach is to simply match individuals that are close enough to one of the 1000G populations, as described previously. Alternatively, one could use the internal PC scores and the self-reported ancestries or countries of birth, e.g. available in the UK Biobank (Fields 21000 and 20115). This solution does not require projecting individuals to the 1000G, but does require computing PC scores within the dataset instead. In the UK Biobank data, we can define centers of the seven self-reported ancestry groups: British, Indian, Pakistani, Bangladeshi, Chinese, Caribbean and African; then match all individuals to one of these centers (or none if an individual is far from all centers). This enables e.g. to capture a larger set of individuals who are close enough to British people (e.g. Irish people), while discarding individuals whose genetic ancestry is not matching the self-reported ancestry (Table S9). Only 3.7% of all individuals
Table 1: Self-reported ancestry (left) of UKBB individuals and their matching to 1000G continental populations (top) by our method. See the description of 1000G populations at https://www.internationalgenome.org/category/population/

	AFR	AMR	EAS	EUR	SAS	Not matched
British	2	1	421457	6	9548	
Irish	1			12328		425
White	1	1	499	43		
Other White			11334	1	4440	
Indian		5		4922	789	
Pakistani				1421	327	
Bangladeshi				217	4	
Chinese		1453	1		50	
Other Asian	1	279		939	528	
Caribbean	3848		25	424		
African	2633			570		
Other Black	74			42		
Asian or Asian British	20		20	20		
Black or Black British	24	1	2	1	563	
White and Black Caribbean	5		6	1	391	
White and Black African						
White and Asian			27	26	746	
Unknown	835	173	576	2296	633	3307

could not be matched. The resulting clusters are presented in the PCA space in figure 2.

One could do the same using the countries of birth instead of the self-reported ancestries. Again, the country of birth may sometime not reflect the ancestral origin. Therefore, we first compute the robust centers (geometric medians) of all countries with at least 300 individuals. Then, we cluster these countries based on their distance in the PCA space to make sure of their validity as proxies for genetic ancestry and to choose a small subset of centers with good coverage of the overall dissimilarities (Figure S10). Based on the previous clustering and the available sample sizes, we chosed to use the centers from the following eight countries as reference: the United Kingdom, Poland, Iran, Italy, India, China, “Caribbean” and Nigeria. Only 2.8% of all individuals could not be matched (Table S10). The resulting clusters are presented in the PCA space in figure S11. Note that these clusters probably include individuals from nearby countries as well.

Finally, when we know that the data is composed of a predominant ancestry, we can define a single homogeneous cluster by simply restricting to individuals who are close enough to the overall center of all individuals (Figure S12). When doing so, we can cluster 91% of the data into one cluster composed of 421,871 British, 12,039 Irish, 8351 “Other White”, 1814 individuals of unknown ancestry, 467 “White” and 41 individuals of other self-reported ancestries. This is made possible because we use the geometric median which is robust to outliers.
Figure 2: The first eight PC scores computed from the UK Biobank (Field 22009) colored by the homogeneous ancestry group we infer for these individuals.

Discussion

Here we propose a PCA-based method for ancestry inference and grouping individuals into genetically homogeneous clusters. We show how the PCA-based distance is related to the F_{ST}, which allows to compute distances based on PC scores directly. This relation between F_{ST} and (squared) Euclidean distances in the PCA space has been previously shown for two populations only (McVean 2009). Previously, we and others proposed to use (robust) Mahalanobis distances to infer ancestry or identify a single homogeneous group of individuals (Peterson *et al.*, 2017; Privé *et al.*, 2020). When looking at distances between two populations, this corresponds to using the Bhattacharyya distance, which appears suboptimal here compared to using a simple Euclidean distance. We hypothesize that the main issue with this approach is that an admixed population covers a large volume in the PCA space, therefore all distances to this population cluster are small because of the covariance component from the Mahalanobis distance. In contrast, here we propose to directly use the global scale of the PC scores, which is invariant from the cluster scattering. This global scale makes it also more robust to infer ancestry with our method as compared to using relative proportions from k=20 nearest neighbors (kNN, Zhang *et al.*, 2020). Indeed, consider e.g. an admixed individual of say 25% European ancestry and 75% African ancestry. The kNN-based method is likely to identify this individual as of African ancestry, while our method will probably be unable to match it, which is a beneficial feature when we are
interested in defining genetically homogeneous groups. We also believe our proposed method to be more robust than machine learning methods, because a machine learning method would try e.g. to differentiate between GBR and CEU 1000G populations, which are two very close populations of Northwest Europe (F_{ST} of 0.0002). In other words, our distance-based method should benefit from the inclusion of any new reference population while it would make it increasingly complex to apply machine learning methods.

Yet, our proposed method also has limitations. First, since we match target individuals to 1000G populations, if individuals are far from all 26 1000G populations, then they would not be matched. When looking at the POPRES data, more individuals from East Europe could not be matched. This is not surprising because there are no East European population in the 1000G data. Moreover, if we look at the location of the 1000G populations on a map, we can see that it lacks representation of many parts of the world (Figure 3). This issue has also been reported e.g. for Asian populations (Lu and Xu 2013). Therefore more diverse populations should be aggregated to better cover the worldwide genome diversity, which would also improve our proposed method. Nevertheless, we also show how to define homogeneous ancestry groups without using the 1000G data, either by using self-reported ancestries or countries of birth. When a predominant genetic ancestry is present in the data, such as British in the UK Biobank (Bycroft et al. 2018) or Danish in the iPSYCH data (Pedersen et al. 2018), we also show how to directly restrict to a homogeneous subset of the data.

A second potential limitation of our method is that it has two hyper-parameters: the number of PCs used to compute the distances and the threshold on the minimum distance to any cluster center above which the ancestry is not matched. Several studies have used only the first two PCs for ancestry inference. We have shown here that using two PCs (or even four) is not enough for distinguishing between populations at the sub-continental level (Figure S5). As in Privé et al. (2020), we recommend to use all PCs that visually separate some populations. Moreover, we believe our proposed method to be robust to increasing the number of PCs used because contribution to the Euclidean distance is smaller for later PCs than for first PCs. As for the distance limit, we have shown here how to define it to approximately correspond to an F_{ST} of 0.002. Alternatively, a threshold can be chosen based on the visual inspection of the histogram of distances (on a log scale). This threshold can also be adjusted depending on how homogeneous one want each cluster to be.

In conclusion, we believe our proposed approach to be a simple and robust way to infer global ancestry and to define groups of homogeneous ancestry. It is also very fast, allowing to infer ancestry for 488,371 individuals in 20 minutes using 16 cores.
Figure 3: Percentage of individuals from the UK Biobank that could not been matched to any of the 26 1000G populations using our method, per country of birth (Field 20115). Countries in grey contain less than 30 individuals, therefore their percentages are not represented. Red points represent the locations of the 1000G populations, accessed from https://www.internationalgenome.org/data-portal/population. Note that “Gujarati Indian from Houston, Texas” were manually moved to Gujarat (22.309425, 72.136230), “Sri Lankan Tamil from the UK” to Sri Lanka (6.927079, 79.861244), and “Indian Telugu from the UK” to (16.5, 79.5) to better reflect the location of their ancestors. Also note that “Utah Residents with Northern and Western European Ancestry”, “Americans of African Ancestry in SW USA”, “African Caribbeans in Barbados” and “Mexican Ancestry from Los Angeles USA” are probably not located at their ancestral location.
Software and code availability

The newest version of R package bigsnpr can be installed from GitHub (see https://github.com/privefl/bigsnpr). The code used in this paper is available at https://github.com/privefl/paper-ancestry-matching/tree/master/code.

Acknowledgements

Authors thank Alex Diaz-Papkovich, Clive Hoggart and others for their useful feedback. This research has been conducted using the UK Biobank Resource under Application Number 41181.

Funding

F.P. is supported by the Danish National Research Foundation (Niels Bohr Professorship to John McGrath).

Declaration of Interests

The authors declare no competing interests.

References

1000 Genomes Project Consortium *et al.* (2015). A global reference for human genetic variation. *Nature, 526*(7571), 68.

Abraham, G., Qiu, Y., and Inouye, M. (2017). FlashPCA2: principal component analysis of biobank-scale genotype datasets. *Bioinformatics*.

Alexander, D. H., Novembre, J., and Lange, K. (2009). Fast model-based estimation of ancestry in unrelated individuals. *Genome research, 19*(9), 1655–1664.

Bhattacharyya, A. (1943). On a measure of divergence between two statistical populations defined by their probability distributions. *Bull. Calcutta Math. Soc.*, 35, 99–109.

Bycroft, C., Freeman, C., Petkova, D., Band, G., Elliott, L. T., Sharp, K., Motyer, A., Vukcevic, D., Delaneau, O., O’Connell, J., *et al.* (2018). The UK Biobank resource with deep phenotyping and genomic data. *Nature, 562*(7726), 203.

Frichot, E., Mathieu, F., Trouillon, T., Bouchard, G., and François, O. (2014). Fast and efficient estimation of individual ancestry coefficients. *Genetics, 196*(4), 973–983.

Fukunaga, K. (1990). Introduction to statistical pattern recognition, ser. *Computer science and scientific computing. Boston: Academic Press*.

Lu, D. and Xu, S. (2013). Principal component analysis reveals the 1000 Genomes Project does not sufficiently cover the human genetic diversity in Asia. *Frontiers in genetics, 4*, 127.
Martin, A. R., Gignoux, C. R., Walters, R. K., Wojcik, G. L., Neale, B. M., Gravel, S., Daly, M. J., Bustamante, C. D., and Kenny, E. E. (2017). Human demographic history impacts genetic risk prediction across diverse populations. *The American Journal of Human Genetics, 100*(4), 635–649.

McVean, G. (2009). A genealogical interpretation of principal components analysis. *PLoS Genet, 5*(10), e1000686.

Mersha, T. B. and Abebe, T. (2015). Self-reported race/ethnicity in the age of genomic research: its potential impact on understanding health disparities. *Human genomics, 9*(1), 1.

Nelson, M. R., Bryc, K., King, K. S., Indap, A., Boyko, A. R., Novembre, J., Briley, L. P., Maruyama, Y., Waterworth, D. M., Waerber, G., *et al.* (2008). The population reference sample, POPRES: a resource for population, disease, and pharmacological genetics research. *The American Journal of Human Genetics, 83*(3), 347–358.

Novembre, J., Johnson, T., Bryc, K., Kutalik, Z., Boyko, A. R., Auton, A., Indap, A., King, K. S., Bergmann, S., Nelson, M. R., *et al.* (2008). Genes mirror geography within Europe. *Nature, 456*(7218), 98–101.

Padhukasahasram, B. (2014). Inferring ancestry from population genomic data and its applications. *Frontiers in genetics, 5*, 204.

Pedersen, C. B., Bybjerg-Grauholm, J., Pedersen, M. G., Grove, J., Agerbo, E., Baekvd-Hansen, M., Poulsen, J. B., Hansen, C. S., McGrath, J. J., Als, T. D., *et al.* (2018). The iPSYCH2012 case–cohort sample: new directions for unravelling genetic and environmental architectures of severe mental disorders. *Molecular psychiatry, 23*(1), 6–14.

Peterson, R. E., Edwards, A. C., Bacanu, S.-A., Dick, D. M., Kendler, K. S., and Webb, B. T. (2017). The utility of empirically assigning ancestry groups in cross-population genetic studies of addiction. *The American journal on addictions, 26*(5), 494–501.

Price, A. L., Patterson, N. J., Plenge, R. M., Weinblatt, M. E., Shadick, N. A., and Reich, D. (2006). Principal components analysis corrects for stratification in genome-wide association studies. *Nature genetics, 38*(8), 904–909.

Privé, F., Aschard, H., Ziyatdinov, A., and Blum, M. G. B. (2018). Efficient analysis of large-scale genome-wide data with two R packages: bigstatsr and bigsnpr. *Bioinformatics, 34*(16), 2781–2787.

Privé, F., Luu, K., Blum, M. G. B., McGrath, J. J., and Vilhjalmsson, B. J. (2020). Efficient toolkit implementing best practices for principal component analysis of population genetic data. *Bioinformatics*. btaa520.

Raj, A., Stephens, M., and Pritchard, J. K. (2014). fastSTRUCTURE: variational inference of population structure in large SNP data sets. *Genetics, 197*(2), 573–589.

Weir, B. S. and Cockerham, C. C. (1984). Estimating F-statistics for the analysis of population structure. *Evolution*, pages 1358–1370.

Wright, S. (1965). The interpretation of population structure by F-statistics with special regard to systems of mating. *Evolution*, pages 395–420.

Zhang, D., Dey, R., and Lee, S. (2020). Fast and robust ancestry prediction using principal component analysis. *Bioinformatics, 36*(11), 3439–3446.
Supplementary Materials

Definitions † and methods

- The **1000 Genomes Project (1000G)** data is composed of approximately 100 individuals for each of 26 populations worldwide (described at https://www.internationalgenome.org/category/population/, including 7 African (AFR), 5 East Asian (EAS), 5 South Asian (SAS), 5 European (EUR) and 4 admixed American (AMR) populations. Here we used the transformed data in PLINK format provided in Privé et al. (2020).

- The F_{ST} measures the relative amount of genetic variance between populations compared to the total genetic variance within these populations (Wright 1965). We use the weighted average formula proposed in Weir and Cockerham (1984), which we now implement in our package bigsnpr (Privé et al. 2018).

- The **Principal Component (PC) scores** are defined as $U \Delta V^T$, where $U \Delta V^T$ is the singular value decomposition of the (scaled) genotype matrix (Privé et al. 2020). They are usually truncated, e.g. corresponding to the first 20 principal dimensions only.

- The **Bhattacharyya distance** between two multivariate normal distributions $N(\mu_1, \Sigma_1)$ and $N(\mu_2, \Sigma_2)$ is defined as $D_B = \frac{1}{2}(\mu_2 - \mu_1)^T \Sigma^{-1}(\mu_2 - \mu_1) + \frac{1}{2} \log \left(\frac{|\Sigma|}{\sqrt{|\Sigma_1||\Sigma_2|}} \right)$, where $\Sigma = \Sigma_1 + \Sigma_2$ and $|M|$ is the absolute value of the determinant of matrix M (Bhattacharyya 1943; Fukunaga 1990). The mean and covariance parameters for each population are computed using the robust location and covariance parameters as proposed in Privé et al. (2020).

- The **geometric median** of points is the point that minimizes the sum of all Euclidean distances to these points. We now implement this as function `geometric_median` in our R package bigutilsr.

- The **UK Biobank** is a large cohort of half a million individuals from the UK, for which we have access to both genotypes and multiple phenotypes (https://www.ukbiobank.ac.uk/). We apply some quality control filters to the genotyped data; we remove individuals with more than 10% missing values, variants with more than 1% missing values, variants having a minor allele frequency < 0.01, variants with P-value of the Hardy-Weinberg exact test $< 10^{-50}$, and non-autosomal variants. This results in 488,371 individuals and 504,139 genetic variants.
Measures of genetic dissimilarity between populations

Table S1: F_{ST} values between African populations of the 1000G and all 26 1000G populations.

	LWK	ESN	YRI	ACB	ASW	GWD	MSL
LWK	0.0000						
ESN	0.0077	0.0000					
YRI	0.0064	0.0033	0.0008				
ACB	0.0090	0.0025	0.0000	0.0000			
ASW	0.0108	0.0062	0.0002	0.0008	0.0000		
GWD	0.0093	0.0039	0.0044	0.0094	0.0000		
MSL	0.1475	0.1507	0.1304	0.1154	0.1479	0.1535	
JPT	0.1466	0.1526	0.1324	0.1178	0.1498	0.1555	
CHB	0.1456	0.1555	0.1335	0.1186	0.1509	0.1565	
CHS	0.1456	0.1555	0.1335	0.1186	0.1509	0.1565	
CDX	0.1456	0.1555	0.1335	0.1186	0.1509	0.1565	
KHV	0.1435	0.1525	0.1307	0.1154	0.1479	0.1535	
GIH	0.1011	0.1200	0.0954	0.0773	0.1156	0.1200	
PTL	0.1036	0.1167	0.0920	0.0735	0.1124	0.1167	
BEB	0.1077	0.1174	0.0934	0.0755	0.1131	0.1174	
ITU	0.1096	0.1195	0.0954	0.0778	0.1151	0.1195	
STU	0.1091	0.1189	0.0949	0.0774	0.1145	0.1189	
PEL	0.1472	0.1559	0.1325	0.1144	0.1515	0.1567	
MXL	0.1125	0.1219	0.0972	0.0772	0.1175	0.1218	
CLM	0.0970	0.1063	0.0816	0.0620	0.1021	0.1061	
PUR	0.0849	0.0938	0.0699	0.0515	0.0898	0.0935	
FIN	0.1219	0.1319	0.1044	0.0837	0.1272	0.1319	
CEU	0.1189	0.1291	0.1014	0.0805	0.1244	0.1290	
GBR	0.1193	0.1295	0.1017	0.0808	0.1248	0.1294	
IBS	0.1145	0.1247	0.0975	0.0772	0.1199	0.1247	
TSI	0.1154	0.1258	0.0986	0.0783	0.1210	0.1258	
Table S2: F_{ST} values between admixed American populations of the 1000G and all 26 1000G populations.

	PEL	MXL	CLM	PUR
LWK	0.1472	0.1125	0.0970	0.0849
ESN	0.1559	0.1219	0.1063	0.0938
YRI	0.1541	0.1205	0.1051	0.0927
ACB	0.1325	0.0972	0.0816	0.0699
ASW	0.1144	0.0772	0.0620	0.0515
GWD	0.1515	0.1175	0.1021	0.0898
MSL	0.1567	0.1218	0.1061	0.0935
JPT	0.0795	0.0643	0.0707	0.0773
CHB	0.0786	0.0628	0.0689	0.0752
CHS	0.0811	0.0650	0.0708	0.0769
CDX	0.0849	0.0675	0.0719	0.0773
KHV	0.0817	0.0643	0.0689	0.0744
GIH	0.0725	0.0370	0.0278	0.0269
PJL	0.0688	0.0327	0.0230	0.0220
BEB	0.0669	0.0344	0.0278	0.0282
ITU	0.0732	0.0391	0.0308	0.0303
STU	0.0728	0.0390	0.0309	0.0305
PEL	0.0000	0.0170	0.0380	0.0548
MXL	0.0170	0.0000	0.0090	0.0180
CLM	0.0380	0.0090	0.0000	0.0056
PUR	0.0548	0.0180	0.0056	0.0000
FIN	0.0772	0.0338	0.0178	0.0149
CEU	0.0804	0.0334	0.0143	0.0100
GBR	0.0809	0.0338	0.0146	0.0102
IBS	0.0820	0.0339	0.0134	0.0081
TSI	0.0825	0.0345	0.0143	0.0090
Table S3: F_{ST} values between East Asian populations of the 1000G and all 26 1000G populations.

	JPT	CHB	CHS	CDX	KHV
LWK	0.1475	0.1456	0.1466	0.1456	0.1435
ESN	0.1564	0.1546	0.1555	0.1544	0.1525
YRI	0.1545	0.1527	0.1536	0.1526	0.1507
ACB	0.1344	0.1324	0.1335	0.1324	0.1304
ASW	0.1194	0.1174	0.1186	0.1178	0.1154
GWD	0.1517	0.1499	0.1509	0.1498	0.1479
MSL	0.1574	0.1556	0.1565	0.1555	0.1535
JPT	0.0000	0.0068	0.0086	0.0166	0.0140
CHB	0.0068	0.0000	0.0010	0.0084	0.0062
CHS	0.0086	0.0010	0.0000	0.0047	0.0031
CDX	0.0166	0.0084	0.0047	0.0000	0.0016
KHV	0.0140	0.0062	0.0031	0.0016	0.0000
GIH	0.0693	0.0673	0.0685	0.0685	0.0650
PJL	0.0669	0.0647	0.0660	0.0660	0.0626
BEB	0.0542	0.0518	0.0528	0.0527	0.0494
ITU	0.0656	0.0636	0.0647	0.0646	0.0611
STU	0.0642	0.0623	0.0634	0.0633	0.0598
PEL	0.0795	0.0786	0.0811	0.0849	0.0817
MXL	0.0643	0.0628	0.0650	0.0675	0.0643
CLM	0.0707	0.0689	0.0708	0.0719	0.0689
PUR	0.0773	0.0752	0.0769	0.0773	0.0744
FIN	0.0924	0.0901	0.0920	0.0925	0.0893
CEU	0.0985	0.0960	0.0977	0.0978	0.0946
GBR	0.0993	0.0968	0.0985	0.0985	0.0953
IBS	0.0981	0.0957	0.0973	0.0973	0.0942
TSI	0.0981	0.0956	0.0972	0.0972	0.0940
Table S4: F_{ST} values between European populations of the 1000G and all 26 1000G populations.

	FIN	CEU	GBR	IBS	TSI
LWK	0.1219	0.1189	0.1193	0.1145	0.1154
ESN	0.1319	0.1291	0.1295	0.1247	0.1258
YRI	0.1306	0.1278	0.1282	0.1234	0.1245
ACB	0.1044	0.1014	0.1017	0.0975	0.0986
ASW	0.0837	0.0805	0.0808	0.0772	0.0783
GWD	0.1272	0.1244	0.1248	0.1199	0.1210
MSL	0.1319	0.1290	0.1294	0.1247	0.1258
JPT	0.0924	0.0985	0.0993	0.0981	0.0981
CHB	0.0901	0.0960	0.0968	0.0957	0.0956
CHS	0.0920	0.0977	0.0985	0.0973	0.0972
CDX	0.0925	0.0978	0.0985	0.0973	0.0972
KHV	0.0893	0.0946	0.0953	0.0942	0.0940
GIH	0.0343	0.0325	0.0328	0.0334	0.0317
PJL	0.0289	0.0269	0.0272	0.0278	0.0262
BEB	0.0372	0.0368	0.0372	0.0375	0.0362
ITU	0.0393	0.0380	0.0384	0.0384	0.0367
STU	0.0398	0.0385	0.0389	0.0389	0.0373
PEL	0.0772	0.0804	0.0809	0.0820	0.0825
MXL	0.0338	0.0334	0.0338	0.0339	0.0345
CLM	0.0178	0.0143	0.0146	0.0134	0.0143
PUR	0.0149	0.0100	0.0102	0.0081	0.0090
FIN	0.0000	0.0062	0.0066	0.0101	0.0116
CEU	0.0062	0.0000	0.0002	0.0022	0.0034
GBR	0.0066	0.0002	0.0000	0.0024	0.0037
IBS	0.0101	0.0022	0.0024	0.0000	0.0015
TSI	0.0116	0.0034	0.0037	0.0015	0.0000
Table S5: F_{ST} values between South Asian populations of the 1000G and all 26 1000G populations.

	GIH	PJL	BEB	ITU	STU
LWK	0.1101	0.1069	0.1077	0.1096	0.1091
ESN	0.1200	0.1167	0.1174	0.1195	0.1189
YRI	0.1186	0.1154	0.1161	0.1181	0.1175
ACB	0.0954	0.0920	0.0934	0.0954	0.0949
ASW	0.0773	0.0735	0.0755	0.0778	0.0774
GWD	0.1156	0.1124	0.1131	0.1151	0.1145
MSL	0.1200	0.1167	0.1174	0.1195	0.1189
JPT	0.0693	0.0669	0.0542	0.0656	0.0642
CHB	0.0673	0.0647	0.0518	0.0636	0.0623
CHS	0.0685	0.0660	0.0528	0.0647	0.0634
CDX	0.0685	0.0660	0.0527	0.0646	0.0633
KHV	0.0650	0.0626	0.0494	0.0611	0.0598
GIH	0.0000	0.0035	0.0042	0.0039	0.0043
PJL	0.0035	0.0000	0.0035	0.0033	0.0036
BEB	0.0042	0.0035	0.0000	0.0022	0.0021
ITU	0.0039	0.0033	0.0022	0.0000	0.0013
STU	0.0043	0.0036	0.0021	0.0013	0.0000
PEL	0.0725	0.0688	0.0669	0.0732	0.0728
MXL	0.0370	0.0327	0.0344	0.0391	0.0390
CLM	0.0278	0.0230	0.0278	0.0308	0.0309
PUR	0.0269	0.0220	0.0282	0.0303	0.0305
FIN	0.0343	0.0289	0.0372	0.0393	0.0398
CEU	0.0325	0.0269	0.0368	0.0380	0.0385
GBR	0.0328	0.0272	0.0372	0.0384	0.0389
IBS	0.0334	0.0278	0.0375	0.0384	0.0389
TSI	0.0317	0.0262	0.0367	0.0367	0.0373
Figure S1: Heatmap with clustering based on the F_{ST} between pairs of the 26 1000G populations. Corresponding values are reported in tables S1-S5.
Figure S2: Heatmap with clustering based on the Bhattacharyya distances between pairs of the 26 1000G populations.
Figure S3: Comparing F_{ST} to the Bhattacharyya distance on the PCA space between pairs of the 26 1000G populations.
Figure S4: Heatmap with clustering based on the Euclidean distances between centers of pairs of the 26 1000G populations.
Figure S5: Comparing F_{ST} to the squared Euclidean distances on the PCA space between centers of pairs of the 26 1000G populations. Distances are computed using different numbers of Principal Components (PCs).
Figure S6: Heatmap with clustering based on the shortest distances between individuals in pairs of the 26 1000G populations.
Figure S7: Comparing F_{ST} to the shortest distances between individuals in pairs of the 26 1000G populations.
PCA-based ancestry inference

Table S6: Self-reported ancestry (left) of UKBB individuals and their matching to 1000G continental populations (top) using 20-wNN. See the description of 1000G populations at https://www.internationalgenome.org/category/population/.

	AFR	AMR	EAS	EUR	SAS	Not matched
British	4	50	6	430696	95	163
Irish				12748	3	2
White	1	2	1	540	1	
Other White	170	1	15533	18	93	
Indian				21	5680	15
Pakistani				3	1742	3
Bangladeshi				220	1	
Chinese	7	1483	3	3	3	8
Other Asian	1	1	359	216	1138	32
Caribbean	4117	1		36	143	
African	3000		1	2	2	199
Other Black	90	1		1	5	21
Asian or Asian British				2	4	34
Black or Black British	23			2	4	2
White and Black Caribbean	93	16	74	11	403	
White and Black African	102	13	52	4	231	
White and Asian	42	10	242	349	159	
Unknown	1024	541	712	3774	1020	749
Table S7: Self-reported ancestry (top) of UKBB individuals and their matching to 1000G populations (left) by our method. See the description of 1000G populations at https://www.internationalgenome.org/category/population/.

	British	Irish	White	Other White	Indian	Pakistani	Bangladeshi	Chinese	Other Asian	Caribbean	African	Other Black	Unknown
AFR_ACB	2									2024	1072	31	11
AFR_ASW										1	270	1	47
AFR_ESN										42	9		
AFR_GWD										284	1	69	
AFR_LWK										3	144	3	23
AFR_MSL										748	1796	24	404
AFR_YRI													
AMR_CLM													
AMR_MXL		18								27		117	
AMR_PEL										30		30	
AMR_PUR			21							1		1	
EAS_CDX										4	15	10	
EAS_CHB										218	23	33	
EAS_CHS										907	17	42	
EAS_JPT	1									10	53	221	
EAS_KHV	1	1								314	171	274	
EUR_CEU										183646	854	127	181
EUR_FIN										235579	11461	294	1
EUR_GBR	213379	14781	22							49	9	209	1
EUR_IBS	68	13	17							2163	17	215	1
EUR_TSI	1	229	17							12	416	3	8
SAS_BEB										229	17	209	1
SAS_GIH	1	813	12							1332	132	135	2
SAS_ITU	5	3332	1392							203	16	238	94
SAS_PJL										424	16	204	3
SAS_STU										13	1	5031	
Not matched		9548	425	4440	789	327	4	50	528	424	570	5031	

Table S8: Ancestry (left) of POPRES individuals and their matching to 1000G populations (top) by our method. See the description of 1000G populations at https://www.internationalgenome.org/category/population/.

	EUR_CEU	EUR_FIN	EUR_GBR	EUR_IBS	EUR_TSI	Not matched
Anglo-Irish Isles	136	127	2	1		
Belgium	43					
Central Europe	47					
Eastern Europe	27					
France	49	3	35	2		
Germany	67	3		1		
Italy	1	11	204	3		
Netherlands	13	4				
Scandinavia	13	1	1			
SE Europe	12	3	70	9		
SW Europe	1	261	1			
Switzerland	179					
Figure S8: First 18 PC scores of the 1000G data (in black), onto which the UK Biobank data has been projected (in red).
Figure S9: PC scores (computed in the UK Biobank) colored by self-reported ancestry. On the left, these are 50,000 random individuals. On the right, these are the 47 individuals with some discrepancy between their self-reported-ancestry and our ancestry estimation.
PCA-based ancestry grouping

Table S9: Self-reported ancestry (left) of UKBB individuals and their matching to ancestry groups (top) by our method.

	British	Indian	Pakistani	Bangladeshi	Chinese	Caribbean	African	Not matched
British	426210	6	4	1	1	2		4790
Irish	12712							41
White	492	1	1	1				52
Other White	10932	1	1	1				4880
Indian	6	1764	2488	1321				137
Pakistani	1	362	1299	63				23
Bangladeshi	3			215				3
Chinese	1	1		1437				65
Other Asian	4	113	169	745	62			1

	Caribbean	African	Asian or Asian British	Black or Black British	White and Black Caribbean	White and Black African	White and Asian	Unknown
British	2	1	7	16	3	3	3	2008
Irish								129
White								189
Other White								421
Indian								114
Pakistani								214
Bangladeshi								505
Chinese								4240

	2325	1148	799	11	9	4	578	686
	36	33	46					
	15							
Figure S10: Heatmap with clustering based on the distances in the PCA space between centers of pairs of the countries of birth in the UK Biobank.
Table S10: Self-reported ancestry (left) of UKBB individuals and their matching to country groups (top) by our method.

	United Kingdom	Poland	Iran	Italy	India	China	Caribbean	Nigeria	Not matched
British	423509	1412	30	3152	18	1	2	2890	27
Irish	12683	14	29						13
White	472	13	8	38		1			1459
Other White	8102	2754	239	3259	2				
Indian	6	33	4296					1381	
Pakistani	1	2	1672					73	
Bangladeshi	1	4			4296				
Chinese	6	2754	239	3259	2				
Other Asian	4	1	226	3	299	93		1	1120
Caribbean	3	2	2306	1245					743
African	1	2	71	2281				849	
Other Black	1	2	36	34	46				
Asian or Asian British	4	23	2	11	9	4			
Black or Black British	2	3	13	1	573	4			
White and Black Caribbean	6	4	1	2	389	1			
White and Black African	56	12	30	54					
Unknown	1827	116	680	462	345	315	215	513	3347
Figure S11: The first eight PC scores computed from the UK Biobank (Field 22009) colored by the homogeneous ancestry group we infer for these individuals.
Figure S12: Histogram of (log) squared distances from the UK Biobank PC scores to the geometric median of the all UKBB individuals. Here we use a threshold at 7, based on visual inspection. Alternatively, a more stringent threshold at 6 could also be used.