A Proof of Correctness for the Tardis Cache Coherence Protocol

Xiangyao Yu, Muralidaran Vijayaraghavan, Srinivas Devadas

{yxy, vmurali, devadas}@mit.edu

Massachusetts Institute of Technology

Abstract

We prove the correctness of a recently-proposed cache coherence protocol, Tardis, which is simple, yet scalable to high processor counts, because it only requires \(O(\log N)\) storage per cacheline for an \(N\)-processor system. We prove that Tardis follows the sequential consistency model and is both deadlock- and livelock-free. Our proof is based on simple and intuitive invariants of the system and thus applies to any system scale and many variants of Tardis.

1 Introduction

Tardis \cite{37} is a recently proposed cache coherence protocol that is able to scale to a large number of cores. Unlike full-map directory protocols \cite{7,35}, Tardis does not keep the \(O(N)\) (\(N\) is the core count) sharer information for each cacheline. In Tardis, only the owner ID of each cacheline (\(O(\log N)\)) and logical timestamps (\(O(1)\)) for each cacheline are maintained. Unlike the snoopy bus coherence protocol \cite{15}, or limited directory protocols such as ACKwise \cite{20}, Tardis does not broadcast messages to maintain coherence.

In Tardis, each load or store is assigned a logical timestamp which may not agree with the physical time. The global memory order then simply becomes the timestamp order which is explicit in the protocol. This makes it much simpler to reason about the correctness of Tardis. Despite its simplicity, however, no proof of correctness has yet been published. We provide a simple and straightforward proof in Section 3; our proof is simpler than existing proofs for snoopy and directory protocols such as \cite{32,36}.

In this paper, we formally prove the correctness of the Tardis protocol by showing that an execution of a program using Tardis strictly follows Sequential Consistency (SC). We also prove that the Tardis protocol can never deadlock or livelock.

The original Tardis protocol \cite{37} was designed for a shared memory multicore processor. A number of optimization techniques were applied for performance improvement. These optimizations, however, may not be desirable in other kinds of shared memory systems. Therefore, in this paper we first extract the core algorithm of Tardis and prove its correctness. We then focus on correctness of generalizations of the base protocol.

We prove the correctness of Tardis by developing simple and intuitive system invariants. Compared to the popular model checking \cite{12,18,28} verification techniques, our proof technique is able to scale to high processor counts. More important, the invariants we developed are more intuitive to system designers and thus provide more guidance for system implementation.

The rest of the paper is organized as follows. The Tardis protocol is formally defined in Section 2. It is proven to obey sequential consistency in Section 3 and to be deadlock-free and livelock-free in Section 4. In Section 5, we generalize the proofs to systems with main memory. Section 6 describes related work and Section 7 concludes the paper.
2 Tardis Coherence Protocol

We first present the model of the shared memory system we use, along with our assumptions, in Section 2.1. Then, we introduce system components of the Tardis protocol in Section 2.2 and formally specify the protocol in Section 2.3.

2.1 System Description

Fig. 1 shows the architecture of a shared memory system based on which Tardis will be defined. The processors can execute instructions in-order or out-of-order but always commit instructions in order. A processor talks to the memory subsystem through a pair of local buffers (LB). Load and store requests are inserted into the memory request buffer (mRq) and responses from the memory subsystem are in the memory response buffer (mRp).

We model a two-level memory subsystem with all the data fitting into the L2 caches. The network between L1 and L2 caches is modeled as buffers. c2pRq contains requests from L1 (child) to L2 (parent), c2pRp contains responses from L1 to L2, and p2c contains messages (both requests and responses) from L2 to L1. For simplicity, all the buffers are modeled as FIFOs and get_msg() returns the head message in the buffer. However, the protocol also works if the buffers only have the FIFO property for the same address. Each L1 cache has a unique id from 1 to N and each associated buffer has the same id. An L1 cacheline or a message in a buffer has the same id as the L1 cache or the buffer it is in.

2.2 System Components in Tardis

The Tardis protocol is built around the concept of logical timestamps. Each memory operation in Tardis has a corresponding timestamp which indicates its global memory order. The memory dependency is expressed using timestamps and no sharer information is maintained. For simplicity, we assume the timestamps to be large enough that they never overflow (e.g., 64-bits). Timestamp compression algorithms are able to achieve much smaller timestamps (e.g., 16-bits) in practice [37].

At a high level, if a load observes the value of a previous store, then the load should be ordered after the store in the logical time (and thus global memory order). Similarly, a store should be ordered after a load if the load does not observe the stored value. To keep track of the timestamps of each operation, every cacheline in Tardis has a read timestamp (rts) and a write timestamp (wts). The wts is the timestamp of the last store and rts is the timestamp of the last (potential) load to the cacheline (wts ≤ rts). Similar to a directory protocol, a cacheline can be cached in L1 in either M or S states. Only one L1 can obtain the M state at any time to modify the cacheline, and multiple L1s can share the line in the S state. Timestamps are also required for messages in the buffers. Table 1 summarizes the format of caches and buffers modeled in the system. The differences between Tardis and a directory protocol are highlighted in red.

An L1 cacheline contains five fields: state, data, busy, wts and rts. The state can be M, S or I. For ease of discussion, we define a total ordering among the three states I < S < M. A cacheline has busy = True if a request to L2 is outstanding. This prevents duplicated requests. An L2 cacheline contains one more field
Table 1: System Components

Component	Format	Message Types
L1	L1[addr] = (state, data, busy, wts, rts)	-
L2	L2[addr] = (state, data, busy, owner, wts, rts)	-
mRq	mRq.entry = (type, addr, data, pts)	-
mRp	mRp.entry = (type, addr, data, pts)	-
c2pRq	c2pRq.entry = (id, type, addr, pts)	GetS, GetM
c2pRp	c2pRp.entry = (id, addr, data, wts, rts)	WBRp
p2c	p2c.entry = (id, msg, addr, state, data, wts, rts)	ToS, ToM, WBRq

Table 2: State Transition Rules for L1.

Rules and Condition	Action	
LoadHit	mRq.deq()	
	mRp.enq(type, addr, data, max(pts, wts))	
	If (state = M)	rts := max(pts, wts)
	let pts' = max(pts, wts + 1)	
	mRq.deq()	
	mRp.enq(type, addr, ¬ pts')	
	wts := pts'	
	rts := pts'	
L1Miss	c2pRq.enq(id, type, addr, pts)	
	busy := True	
L2Resp	p2c.deq()	
	l1state := state	
	l1data := data	
	busy := False	
	l1wts := wts	
	l1rts := rts	
Downgrade	If (state = M)	
	c2pRp.enq(id, addr, data, wts, rts)	
	state := state'	
WriteBackReq	p2c.deq()	
	If (state = M)	
	c2pRp.enq(id, addr, data, wts, rts)	
	state := S	

owner, which is the id of the L1 that exclusively owns the cacheline in the M state. As in L1, busy in L2 is set when a write back request (WBRq) to an L1 is outstanding.

Each entry in mRq contains four fields: type, addr, data and pts. The type can be S or M corresponding to a load or store request, respectively. The pts is a timestamp specified by the processor and the timestamp of the memory operation should be no less than pts. mRp has the same format as mRq, but pts here is the actual timestamp of the memory operation.

The format of the messages in the network buffers (c2pRq, c2pRp and p2c) is shown in Table 1 where the meaning of the fields are as in the cachelines or the messages in mRq. All network messages have a field id which is the id of the L1 cache that the message comes from or goes to. Messages in p2c have a field msg, which can be either Req or Resp; p2c may contain both requests and responses from L2 to L1 and msg differentiates the two types.

2.3 Protocol Specification

We now formally define the core algorithm of the Tardis protocol. The state transition rules for L1 and L2 caches are summarized in Table 2 and Table 3 respectively, with the differences between Tardis and a directory protocol highlighted in red. For all rules where a message is enqueued to a buffer, the rule can only fire if the buffer is not full.
An important concept in Tardis is the lease. For a cacheline shared in an L1 cache, it also contains a lease which expires at the current \(rts \). The data is only valid if the lease has not expired, i.e., \(pts \) from the request is less than or equal to \(rts \). The \(rts \) in the L2 cache is the maximum of the \(rts \) of all the sharing L1 caches. When a shared cacheline in L2 cache gets a GetM request, it does not send invalidations as in a directory protocol, rather, it immediately returns exclusive ownership to the requesting processor, which will jump ahead in logical time and perform the store operation at \(rts + 1 \). If we consider logical time, the store happens after all the loads that do not observe its value, although in physical time, the store and the loads may happen simultaneously.

Specifically, the following six transition rules may fire in an L1 cache.

1. LoadHit
LoadHit can fire if the requested cacheline is in the \(M \) state or is in the \(S \) state and the lease has not expired. If it is in the \(M \) state, then \(rts \) is updated to reflect the latest load timestamp. The \(pts \) returned to the processor is no less than the cacheline’s \(wts \), which orders the load after the previous store in logical time.

2. StoreHit
StoreHit can only fire if the requested cacheline is in the \(M \) state in the L1 cache. Both \(wts \) and \(rts \) are updated to the timestamp of the store operation which is at least \(rts + 1 \). The store is thus logically ordered after all concurrent loads on the same address in other L1s.

3. L1Miss
If neither LoadHit nor StoreHit can fire for a request and the cacheline is not busy, it is an L1 miss and the request (GetS or GetM) is forwarded to the L2 cache. The cacheline is then marked as busy to prevent sending duplicated requests.

4. L2Resp
A response from L2 sets all the fields in the L1 cacheline. The \(busy \) flag is reset to False and the cacheline can serve the next request in the \(mRq \).

5. Downgrade
A cacheline in the \(M \) or \(S \) states may downgrade if the cacheline is not busy and LoadHit and StoreHit cannot fire. For \(M \) to \(S \) or \(I \) downgrade, the cacheline should be written back to the L2 in a WBRp message. \(S \) to \(I \) downgrade, however, is silent, i.e., no message is sent.

6. WriteBackReq
When a cacheline in \(M \) state receives a write back request, the cacheline is returned to L2 in a WBRp message and the L1 state becomes \(S \). If the request is to a cacheline in \(S \) or \(I \) state, the request is simply ignored. This corresponds to the case where the line self downgrades after the write back request (WBRp) is sent from the L2.

The following four rules may fire in the L2 cache.

7. ShReq
When a cacheline in the \(S \) state receives a shared request (i.e., GetS), both the \(rts \) and the returned \(pts \) are set to \(pts' \) which can be any timestamp greater than or equal to the current \(rts \) and \(pts \). The \(pts' \) indicates the end of the lease for the cacheline. And the cacheline may be loaded at any logical time between \(wts \) and \(pts' \). The returned message is a ToS message.

Rules and Condition	Action
ShReq.S let \((id, type, addr, pts) = c2pRq.get_msg()\) let \((state, data, busy, owner, wts, rts) = L2[addr]\) condition: \(type = S \land state = S \land \exists \, pts', pts' \geq rts \land pts' \geq pts \)	\(c2pRq.deq() \) \(rts := pts' \) \(p2c.enq(id, Resp, addr, S, data, wts, pts') \)
ExReq.S let \((id, type, addr, pts) = c2pRq.get_msg()\) let \((state, data, busy, owner, wts, rts) = L2[addr]\) condition: \(type = M \land state = S \)	\(c2pRq.deq() \) \(state := M \) \(owner := id \) \(p2c.enq(id, Resp, addr, M, data, wts, rts) \)
Req_M let \((id, type, addr, pts) = c2pRq.get_msg()\) let \((state, data, busy, owner, wts, rts) = L2[addr]\) condition: \(state = M \land \sim busy \)	\(p2c.enq(owner, Req, addr, \sim \sim \sim) \) \(busy := True \)
WriteBackResp let \((id, addr, data, wts, rts) = c2Rp.get_msg()\) let \((state, l2data, busy, owner, l2wts, l2rts) = L2[addr]\)	\(c2Rp.deq() \) \(state := S \) \(l2data := data \) \(busy := False \) \(l2wts := wts \) \(l2rts := rts \)
8. **ExReq.S.** When a cacheline in the S state receives an exclusive request (i.e., GetM), the cacheline is instantly returned in a ToM message. Unlike in a directory protocol, no invalidations are sent to the sharers. The sharing processors may still load their local copies of the cacheline and such loads have smaller timestamps than the store from the new owner processor.

9. **Req.M.** When a cacheline in the M state receives a request and is not busy, a write back request (i.e., WBRq) is sent to the current owner. busy is set to True to prevent sending duplicated WBRq requests.

10. **WriteBackResp.** Upon receiving a write back response (i.e., WBRp), data and timestamps are written to the L2 cacheline. The state becomes S and busy is reset to False.

3 Proof of Correctness

We now prove the correctness of the Tardis protocol specified in Section 2.3 by proving that it strictly follows sequential consistency. We first give the definition of sequential consistency in Section 3.1 and then introduce lemmas and theorems in Section 3.2 that are used for the correctness proof.

Most of the lemmas and theorems in the rest of the paper are proven through induction. For each lemma or theorem, we first prove that it is true for the initial system state (base case) and then prove that it is still true after any possible state transition assuming that it was true before the transition.

In the initial system state, all the L1 cachelines are in the I state, all the L2 cachelines are in the S state and all the network buffers are empty. For all cachelines in L1 or L2, $wts = rts = 0$ and $busy = False$. Requests from the processors may exist in the mRq buffers. For ease of discussion, we assume that each initial value in L2 was set before the system starts at timestamp 0 through a store operation.

3.1 Sequential Consistency

According to Lamport [22], a parallel program is sequentially consistent if “the result of any execution is the same as if the operations of all processors were executed in some sequential order, and the operations of each individual processor appear in this sequence in the order specified by its program”. Using $<_m$ and $<_p$ to represent the global memory order and program order per processor respectively, sequential consistency (SC) is defined as follows [34].

Definition 1 (Sequential Consistency). An execution of a program is sequentially consistent iff

- **Rule 1:** $\forall X, Y \in \{Ld, St\}$ from the same processor, $X <_p Y \Rightarrow X <_m Y$.
- **Rule 2:** Value of $L(a) = Value of Max_{<_m}\{S(a)|S(a) <_m L(a)\}$, where $L(a)$ and $S(a)$ are a load and a store to address a, respectively, and $Max_{<_m}$ selects the most recent operation in the global memory order.

In Tardis, the global memory order of sequential consistency is expressed using timestamps. Specifically, Theorem 1 states the invariants in Tardis that correspond to the two rules of sequential consistency. Here, we use $<_ts$ and $<_pt$ to represent (logical) timestamp order that is assigned by Tardis and physical time order that represents the order of events, respectively.

Theorem 1 (SC on Tardis). An execution on Tardis has the following invariants.

- **Invariant 1:** Value of $L(a) = Value of Max_{<_ts}\{S(a)|S(a) <_ts L(a)\}$.
- **Invariant 2:** $\forall S_1(a), S_2(a), S_1(a) \neq ts S_2(a)$.
- **Invariant 3:** $\forall S(a), L(a), S(a) = _ts L(a) \Rightarrow S(a) <_pt L(a)$.

Theorem 1 itself is not enough to guarantee sequential consistency; we also need the processor model described in Definition 2. The processor should commit instructions in the program order, which implies physical time order and monotonically increasing timestamp order. Both in-order and out-of-order processors fit this model.

Definition 2 (In-order Commit Processor). $\forall X, Y \in \{Ld, St\}$ from the same processor, $X <_p Y \Rightarrow X <_ts Y \land X <_pt Y$.

Now we prove that given Theorem 1 and our processor model, an execution obeys sequential consistency per Definition 1. We first introduce the following definition of the global memory order in Tardis.
Definition 3 (Global Memory Order in Tardis).

\[X <_m Y \iff X <_{ts} Y \lor X =_{ts} Y \land X <_{pt} Y. \]

Theorem 2. Tardis with in-order commit processors implements Sequential Consistency.

Proof. According to Definitions 2 and 3, \(X <_p Y \Rightarrow X <_{ts} Y \land X <_{pt} Y \Rightarrow X <_m Y \). So Rule 1 in Definition 1 is obeyed.

\[S(a) <_{ts} L(a) \Rightarrow S(a) <_{ts} L(a) \lor S(a) =_{ts} L(a). \] By Invariant 3 in Theorem 1, this implies \(S(a) <_{ts} L(a) \Rightarrow S(a) <_{ts} L(a) \lor S(a) =_{ts} L(a) \land S(a) <_{pt} L(a) \). Thus, from Definition 3, \(S(a) <_{ts} L(a) \Rightarrow S(a) <_{ts} L(a) \). We also have \(S(a) <_m L(a) \Rightarrow S(a) <_{ts} L(a) \) from Definition 3. So \(\{S(a)|S(a) <_{ts} L(a)\} = \{S(a)|S(a) <_m L(a)\} \). According to Invariant 2 in Theorem 1, all the elements in \(\{S(a)|S(a) <_m L(a)\} \) have different timestamps, which means \(<_m \) and \(<_{ts} \) indicate the same ordering. Finally, Invariant 1 in Theorem 1 becomes Rule 2 in Definition 1.

In the following two sections, we focus on the proof of Theorem 1.

3.2 Basic Lemma

We first give the definition of a clean block for ease of discussion.

Definition 4 (Clean Block). A clean block can be an L2 cacheline in S state, or an L1 cacheline in M state, or a ToM or WBRp message in a network buffer.

Lemma 1. \(\forall \) address \(a \), at most one clean block exists.

The basic lemma is an invariant about the cacheline states and the messages in network buffers. No timestamps are involved.

A visualization of Lemma 1 is shown in Fig. 2 where a solid line represents a clean block. When the L2 state for an address is S, no L1 can have that address in M state, and no ToM and WBRp may exist. Otherwise if the L2 state is M, either a ToM response exists, or an L1 has the address in M state, or a WBRp exists. Intuitively, Lemma 1 says only one block in the system can represent the latest data value.

Lemma 1 Proof. For the base case, the lemma is trivially true since exactly one clean block exists for each address and the block is an L2 cacheline in S state. We now consider all the possible transition rules that may create a new clean block.

Only the ExReq_S rule can create a ToM response. However, the rule changes the state of the L2 cacheline from S to M and thus removes a clean block. Only the L2Resp rule can change an L1 cacheline state to M. However, it removes a ToM response from the p2c buffer. Both Downgrade and WriteBackReq can enqueue WBRp messages and both will change the L1 cacheline state from M to S or I. Only WriteBackResp changes the L2 cacheline to S state but it also dequeues a WBRp from the buffer.

In all of these transitions, a clean block is created and another one is removed. By the induction hypothesis, at most one clean block per address exists before the current transition, and still at most one clean block for the address exists after the transition. For other transitions not listed above, no clean block can be created so at most one clean block per address exists after any transition, proving the lemma.

3.3 Timestamp Lemmas

Lemma 2. At the current physical time, a clean block has the following invariants.

Invariant 1 Its rts is no less than the rts of all the other blocks (in caches and messages) with respect to the same address.

Invariant 2 Till the current physical time, no store has happened to the address at timestamp ts such that ts > rts.
Proof. We prove the lemma by induction on the transition sequence. For the base case, only one block exists per address so Invariant 1 is true. All the stores so far happened at timestamp 0 which equals the \(rts \) of all the clean blocks, proving Invariant 2.

According to Lemma 1, for an address, exactly one clean block exists. By the induction hypothesis, if no timestamp changes and no clean block is generated, Invariant 1 is still true after the transition. By the transition rules, \(wts \) or \(rts \) can only be increased if the block is an L2 cacheline in the \(S \) state or an L1 cacheline in the \(M \) state. In both cases the block is clean. After the transition, the \(rts \) of the clean block increases and is still no less than the \(rts \) of other cachelines with the same address.

Similarly, by the induction hypothesis, Invariant 2 is true after the transition if no store happens and no clean block is generated. Only \(StoreHit \) can perform a store to a clean block, which changes both \(wts \) and \(rts \) to be \(\max(pts, rts + 1) \). For the stored cacheline, since no store has happened with timestamp \(ts \) such that \(ts > old.rts \) (induction hypothesis), after the transition, no store, including the current one, has happened with timestamp \(ts \) such that \(ts > \max(pts, old.rts + 1) > old.rts \).

Consider the last case where a clean block is generated at the current transition. Here, according to Lemma 1, another clean block disappears. In all the transitions, the \(rts \) of the new clean block equals the \(rts \) of the old block. Thus, both invariants are still true after the transition.

Lemma 3. For any block \(B \) in a cache or a message (WBRp, ToS and ToM), the data value associated with the block comes from a store \(St \) which has happened before the current physical time, and no other store \(St' \) has happened such that \(St.ts < St'.ts \leq B.rts \), where \(St.ts \) is the timestamp of the store \(St \) and \(B.rts \) is the \(rts \) of block \(B \).

Proof. We prove the lemma by induction on the transition sequence. For the base case, each block has a corresponding store which happened before the system started and is thus before the current physical time. It is also the only store happened per address. Therefore the hypothesis is true.

We first prove that after a transition, for each block, there exists a store \(St \) which creates the data of the block and \(St \) happened before the current physical time. Consider the case where the data of a block does not change or comes from another block. Then, by the induction hypothesis, \(St \) must exist for the block after the transition. The only transition that changes the data of a block is \(StoreHit \). After the store, however, the data stored in the cacheline comes from the current store which has just happened in physical time.

We now prove the second part of the lemma, that for any block \(B \), no store \(St' \neq St \) has happened such that \(St.ts < St'.ts \leq B.rts \). By the induction hypothesis, for the current transition, if no data or \(rts \) is changed in any block or if a block copies data and \(rts \) from an existing block, then the hypothesis is still true after the transition. The only cases in which the hypothesis may be violated are when the current transition changes \(rts \) or data for some block, which is only possible for \(LoadHit \), \(StoreHit \) and \(ShReq.S \).

For \(LoadHit \), if the cacheline is in the \(S \) state, then \(rts \) remains unchanged. Otherwise, the cacheline must be a clean block, in which case \(rts \) is increased. Similarly, \(ShReq.S \) increases the \(rts \) and the cacheline must be a clean block again. By Invariant 2 in Lemma 2, no store has happened to the address with timestamp greater than \(rts \). And thus after the \(rts \) is increased, no store can have happened with timestamp between the old \(rts \) to the new \(rts \). By the induction hypothesis, we also have that no store \(St' \) could have happened such that \(St.ts < St'.ts \leq old.rts \). These two inequalities together prove the hypothesis.

For \(StoreHit \), both \(rts \) and data are modified. For the stored cacheline, after the transition, \(St.ts = wts = rts = \max(pts, old.rts + 1) \). Thus, no \(St' \) may exist in this situation. For all the other cachelines, by Invariant 1 in Lemma 2, their \(rts \) is no greater than the old \(rts \) of the stored cacheline and is thus smaller than the timestamp of the current store. By the induction hypothesis, no store \(St' \) exists for those blocks before the transition. Thus, in the overall system, no such store \(St' \) can exist, proving the lemma.

Finally, we prove Theorem 1.

Theorem 1 Proof. According to Lemma 3, for each \(L(a) \), the loaded data is provided by an \(S(a) \) and no other store \(S'(a) \) has happened between the timestamp of \(S(a) \) and the \(rts \). And thus no \(S'(a) \) has happened between the timestamp of \(S(a) \) and the timestamp of the load which is no greater than \(rts \) by the transition rules. Therefore, Invariant 1 in Theorem 1 is true.
By the transition rules, a new store can only happen to a clean block and the timestamp of the store is \(\max(\text{pts}, \text{rts} + 1) \). By Invariant 2 in Lemma 2, for a clean block at the current physical time, no store to the same address has happened with timestamp greater than the old \(\text{rts} \) of the cacheline. Therefore, for each new store, no store to the same address so far has the same timestamp as the new store, because the new store’s timestamp is strictly greater than the old \(\text{rts} \). And thus no two stores to the same address may have the same timestamp, proving Invariant 2.

Finally, we prove Invariant 3. If \(S(a) =_{ts} L(a) \), by Invariant 1 in Theorem 1, \(L(a) \) returns the data stored by \(S(a) \). Then by Lemma 3 the store \(S(a) \) must have happened before \(L(a) \) in the physical time.

4 Deadlock and Livelock Freedom

In this section, we prove that the Tardis protocol specified in Section 2 is both deadlock-free (Section 4.1) and livelock-free (Section 4.2).

4.1 Deadlock Freedom

Theorem 3 (Deadlock Freedom). After any sequence of transitions, if there is a pending request from any processor, then at least one transition rule (other than the Downgrade rule) can fire.

Before proving the theorem, we first introduce and prove several lemmas.

Lemma 4. If an L1 cacheline is busy, either a GetS or GetM request exists in its c2pRq buffer or a ToS or ToM response exists in its p2c buffer.

Proof. This can be proven through induction on the transition sequence. In the base case, all the L1 cachelines are non-busy and the hypothesis is true. An L1 cacheline can only become busy through the \(L1\text{Miss} \) rule, which enqueues a request to its c2pRq buffer. A request can only be dequeued from c2pRq through the ShReqS or ExReqS rule, which enqueues a response into the same L1’s p2c buffer. Finally, whenever a message is dequeued from the p2c buffer (L2Resp rule), the L1 cacheline becomes non-busy, proving the lemma.

Lemma 5. If an L2 cacheline is busy, the cacheline must be in state M.

Proof. This lemma can be proven by induction on the transition sequence. For the base case, no cachelines are busy and the hypothesis is true. Only \(\text{ReqM} \) makes an L2 cacheline busy but the cacheline must be in the M state. Only WriteBackResp downgrades an L2 cacheline from the M state but it also makes the cacheline non-busy.

Lemma 6. For an L2 cacheline in the M state, the id of the clean block for the address equals the owner of the L2 cacheline.

Proof. According to Lemma 1 exactly one clean block exists for the address. If the L2 state is M, the clean block can be a ToM response, an L1 cacheline in the M state or a WBRp. We prove the lemma by induction on the transition sequence.

The base case is true since no L2 cachelines are in the M state. We only need to consider cases wherein a clean block is created. When \(\text{ToM} \) is created (ExReqS rule), its \(\text{id} \) equals the owner in the L2 cacheline. When an L1 cacheline in the M state is created (L2Resp rule), its \(\text{id} \) equals the \(\text{id} \) of the ToM response. When a WBRp is created (WriteBackReq or Downgrade rule), its \(\text{id} \) equals the \(\text{id} \) of the L1 cacheline. By the induction hypothesis, the \(\text{id} \) of a newly created clean block always equals the owner in the L2 cacheline which does not change as long as the L2 cacheline is in the M state.

Lemma 7. For a busy cacheline in L2, either a WBRq or a WBRp exists for the address with \(\text{id} \) matching the owner of the L2 cacheline.
Proof. We prove the lemma by induction on the transition sequence. For the base case, no cacheline is busy and thus the hypothesis is true. We only need to consider the cases where an L2 cacheline is busy after the current transition, i.e., \(\neg \text{busy} \Rightarrow \text{busy} \) and \(\text{busy} \Rightarrow \text{busy} \).

Only the Req,M rule can cause a \(\neg \text{busy} \Rightarrow \text{busy} \) transition and the rule enqueues a WBRq into \(p2c \) with \(id \) matching the \text{owner} and therefore the hypothesis is true.

For \(\text{busy} \Rightarrow \text{busy} \), the lemma can only be violated if a WBRq or WBRp with matching \(id \) is dequeued. However, when a WBRp is dequeued, the cacheline becomes non-busy in L2 (WriteBackResp rule). If a WBRq is dequeued and the L1 cacheline is in the M state, a WBRp is created with a matching \(id \). So the only case to consider is when the WBRq with matching \(id \) is dequeued, and the L1 cacheline is in the S or I states, and no other WBRq exists in the same \(p2c \) buffer and no WBRp exists in the \(c2pRq \) buffer.

The L2 cacheline can only become \text{busy} by sending a WBRq. The fact that the dequeued WBRq is the only WBRq in the \(c2pRq \) means that the L2 cacheline has been busy since the dequeued WBRq was sent (otherwise another WBRq will be sent when the L2 cacheline becomes busy again). Since \(p2c \) is a FIFO, when the WBRq is dequeued, the messages in the \(p2c \) buffer must be sent after the WBRq was sent. By transition rules, the L2 cacheline cannot send ToM while being busy, so no ToM may exist in the \(p2c \) buffer when WBRq dequeues. As a result, no clean block exists with \(id = \text{owner} \). Then, by Lemma 6, no clean block exists for the address (L2 is in the M state because of Lemma 5) which contradicts Lemma 1.

Theorem 4. Proof. If any message exists in the \(c2pRq \) buffer, the WriteBackResp rule can fire. Consider the case where no message exists in \(c2pRq \) buffer. If any message exists in the \(p2c \) buffer’s head, the L2Resp rule can fire, or the WriteBackReq, LoadHit or StoreHit rule can fire. For the theorem to be violated, no messages can exist in the \(c2pRq \) or \(p2c \) buffer. Then, according to Lemma 7, all cachelines in L2 are non-busy.

Now consider the case when no message exists in \(c2pRq \) buffer or \(p2c \) buffer and a GetS or GetM request exists in \(c2pRq \) for an L1 cache. Since the L2 is not busy, one of ShReq,S, EzReq,S and Req,M can fire, which enqueues a message into the \(p2c \) buffer.

Consider the last case where there is no message in any network buffer. By Lemma 4, all L1 cachelines are non-busy. By the hypothesis, there must be a request in \(mRq \) for some processor. Now if the request is a hit, the corresponding hit rule (LoadHit or StoreHit) can fire. Otherwise, the L1Miss rule can fire, sending a message to \(c2pRq \).

4.2 Livelock Freedom

Even though the Tardis protocol correctly follows sequential consistency and is deadlock-free, livelock may still occur if the protocol is not well designed. For example, for an L1 miss, the Downgrade rule may fire immediately after the L2Resp but before any LoadHit or StoreHit rule fires. As a result, the L1Miss needs to be fired again but the Downgrade always happens after the response comes back, leading to livelock. We avoid this possibility by only allowing Downgrade to fire when neither LoadHit nor StoreHit can fire.

To rigorously prove livelock freedom, we need to guarantee that some transition rule should eventually make forward progress and no transition rule can make backward progress. We give the following definition of livelock freedom.

Theorem 4. After any sequence of transitions, if there exists a pending request from any processor, then within a finite number of transitions, some request at some processor will dequeue.
Table 4: Lattice for a request. For a load request, \(L1.miss \equiv (L1.state = I \lor L1.state = S \land \text{pts} > L1.rts)\). For a store request, \(L1.miss \equiv (L1.state < M)\). \(bufferName.exist\) means a message exists in the buffer and \(bufferName.rdy\) means that the message is the head of the buffer. \(bufferName.rdy\) implies \(bufferName.exist\).

1. \(L1.miss \land \neg L1.busy\)
2. \(L1.miss \land L1.busy \land c2pRq.exist \land \neg c2pRq.rdy\)
3. \(L1.miss \land L1.busy \land c2pRq.rdy \land L2.state = M \land \neg L2.busy\)
4. \(L1.miss \land L1.busy \land c2pRq.rdy \land L2.state = M \land L2.busy \land p2cRq.exist \land \neg p2cRq.rdy\)
5. \(L1.miss \land L1.busy \land c2pRq.rdy \land L2.state = M \land L2.busy \land p2cRq.rdy \land ownerL1.state = M\)
6. \(L1.miss \land L1.busy \land c2pRq.rdy \land L2.state = M \land L2.busy \land p2cRq.rdy \land ownerL1.state < M\)
7. \(L1.miss \land L1.busy \land c2pRq.rdy \land L2.state = M \land L2.busy \land \neg p2cRq.exist\)
8. \(L1.miss \land L1.busy \land c2pRq.rdy \land L2.state = S\)
9. \(L1.miss \land L1.busy \land p2cRp.exist \land \neg p2cRp.rdy\)
10. \(L1.miss \land L1.busy \land p2cRp.rdy\)
11. \(\neg L1.miss\)

Lemma 8. For a state transition except Downgrade, WriteBackReq and WriteBackResp, either a request de-queues from the mRq or at least one request will move down its lattice. For all the state transitions, no request will move up its lattice. Further, the system can only fire Downgrade, WriteBackReq and WriteBackResp for a finite number of times without firing other transitions.

We need the following lemmas before proving Lemma 8.

Lemma 9. If an L1 cacheline is busy, then exactly one request (GetS or GetM in c2pRq) or response (ToS or ToM in p2c) exists for the address and the L1 cache. If the L1 cacheline is non-busy, then no request or response can exist in its c2pRq and p2c.

Proof. This lemma is a stronger lemma than Lemma 4. We prove this by the induction on the transition sequence. For the base case, all the L1 cachelines are non-busy and no message exists and thus the lemma is true.

We only need to consider the cases where the busy flag changes or any request or response is enqueued or dequeued. Only the L1Miss, L2Resp, ShReq_S and ExReq_S rules need to be considered.

For L1Miss, a request is enqueued to c2pRq and the L1 cacheline becomes busy. For L2Resp, a response is dequeued and the L1 cacheline becomes non-busy. For ShReq_S and ExReq_S, a request is dequeued but a response is enqueued. By the induction hypothesis, after the current transition, the hypothesis is still true for all the cases above, proving the lemma.

Lemma 10. If an L1 cacheline is busy, there must exist a request at the head of the mRq buffer for the address and the request misses in the L1.

Proof. For the base case, all L1 cachelines are non-busy and the lemma is true.

We consider cases where the L1 cacheline is busy after the transition. Only L1Miss can make an L1 cacheline busy from non-busy and the rule requires a request to be waiting at the head of the mRq buffer. If the L1 cacheline stays busy, then no rule can remove the request from the mRq buffer. By the induction hypothesis, the lemma is true after any transition.

Lemma 11. If an L2 cacheline is busy, there must exist a request with the same address at the head of the c2pRq buffer in L2.

Proof. The proof follows the same structure as the previous proof for Lemma 10.

Lemma 12. For a memory request in a c2pRq buffer, its type and pts equal the type and pts of a pending processor request to the same address at the head of the mRq at the L1 cache.

Proof. By Lemmas 9 and 10, the L1 cacheline with the same address must be busy and a pending processor request exists at the head of the mRq buffer. Only the L1Miss rule sets the type and pts of a memory request in a c2pRq buffer and they equal the type and pts from the processor request.
Lemma 13. For a memory response in a p2c buffer, its type equals the type of a pending processor request to the same address at the L1 cache and if the type = S, its rts is no less than the pts of that processor request.

Proof. Similar to the proof of Lemma 12, the processor request must exist. Only the ShReq_S and ExReq_S rules set the type and rts of the response, and type equals the type of a memory request and if type = S, rts is no less than the memory request. Then the lemma is true by Lemma 12.

Lemma 14. When the L2Resp rule fires, a request with the same address at the head of mRq will transition from an L1 miss to an L1 hit.

Proof. Before the transition of L2Resp, the L1 cacheline is busy, and a response is at the head of the p2c buffer. By Lemma 13, if the pending processor request has type = M, then the memory response also has type = M and thus it is an L1 hit. If the pending processor has type = S, also by Lemma 13, the memory response has type = S and the rts of the response is no less than the pts of the pending request. Therefore, it is also an L1 hit.

Lemma 15 (Coverage). The union of all the entries in Table 4 is True.

Proof. By Lemma 4 if L1.busy we can prove that c2pRq_exist ∨ p2cRq_exist ⇒ True.

Then it becomes obvious that the union of all the entries is true.

Lemma 16 (Mutually Exclusive). The intersection of any two entries in Table 4 is False.

Proof. For most pairs of entries, we can trivially check that the intersection is False. The only tricky cases are the intersection of entry 9 or 10 with an entry from 3 to 8. These cases can be proven False using Lemma 9, which implies that c2pRq_exist ∧ p2cRp_exist ⇒ False.

Lemma 8 Proof. We need to prove two goals. First, for each transition rule except Downgrade, WriteBackReq and WriteBackResp, at least one request will dequeue or move down the lattice. Second, for all transition rules no request will move up the lattice.

We first prove that a transition with respect to address a1 never moves a request with address a2 (≠ a1) up its lattice. The only possible way that the transition affects the request with a2 is by dequeuing from a buffer which may make a request with a2 being the head of the buffer and thus becomes ready. However, this can only move the request with a2 down the lattice.

Also note that each processor can only serve one request per address at a time, because the mRq is a FIFO. Therefore, for the second goal we only need to prove that requests with the same address in other processors do not move up the lattice. We prove both goals for each transition rule.

For LoadHit and StoreHit, a request always dequeues from the mRq and the lemma is satisfied.

For the L1Miss rule, a request must exist and be in entry 1 in a table before the transition. And since busy = True after the transition, it must move down the lattice to one of entries from 2 to 10. Since the L1 cacheline state does not change, no other requests in other processors move in their lattice.

For the L2Resp rule, according to Lemma 14, a request will move from L1.miss to L1.hit. In the lattice, this corresponds to moving from entry 10 to entry 11, which is a forward movement. For another request to the same address, the only entries that might be affected are entry 4, 5 and 6. However, since p2c is a FIFO and the response is ready in the p2c buffer before the transition, no WBRq can be ready in this p2c buffer for other requests with the same address and thus they cannot be in entry 5 or 6. If another request is in entry 4, the transition removes the response from the p2c and this may make the WBRq ready in p2c and thus the request moves down the lattice. In all cases, no other requests move up the lattice.

For the ShReq_S or ExReq_S rule to fire, there exists a request in the c2pRq buffer which means the address must be busy in the corresponding L1 (Lemma 9) and thus a request exists in its mRq and misses the L1 (Lemma 10). This request, therefore, must be in entry 8 in Table 4. The transition will dequeue the request and enqueue a response to p2c and thus moves the request down to entry 9 or 10. For all the other requests with the same address, they cannot be ready in the c2pRq buffer since the current request blocks them, and thus they are not in entry 3 to 8 in the lattice. For the other entries, they can only possibly be affected by the transition if the current request is dequeued and one of them becomes ready. This, however, only moves the request down the lattice.
Table 5: System Components required for main memory.

Component	Format	Message Types
MemRq	MemRq.entry = (type, addr, data)	MemRq
MemRp	MemRp.entry = (addr, data)	MemRp
Mem	Mem[addr] = (data)	-
mts	-	-

The Req.R rule can only fire if a request is ready in c2pRq and the L2 is in the M state. According to Lemma 9 and Lemma 10, there exists a request in one mRq that is in entry 3 in a table. After the transition, this request will move to entry 4 or 5 or 6 and thus down the lattice. For all the other requests, similar to the discussion of ShReq.S and ExReq.S, they either stay in the same entry or move down the lattice.

Finally, we talk about the Downgrade, WriteBackReq and WriteBackResp rules. The Downgrade rule can only fire when the L1 cacheline is non-busy, corresponding to entry 1 and 11 if the request is from the same L1 as the cacheline being downgraded. Entry 1 cannot move up since it is the first entry. If a request is in entry 11, since it is an L1 hit now, the Downgrade rule does not fire. For a request from a different L1, the Downgrade rule may affect entry 5 and 6. However, it can only move the request from entry 5 to 6 rather than the opposite direction.

For the WriteBackReq rule, if the L1 cacheline is in the S state, then nothing changes but a message is dequeued from the p2c buffer which can only move other requests down the lattice. If the L1 cacheline has M state, then if a request to the same address exists in the current L1, the request must be a hit and thus WriteBackReq cannot fire. For requests from other L1s, they can only be affected if they are in entry 4. Then, the current transition can only move them down the lattice.

For the WriteBackResp rule, the L2 cacheline moves from the M to the S state. All the other requests can only move down their lattice due to this transition.

Finally, we prove that Downgrade, WriteBackReq and WriteBackResp can only fire a finite number of times without other transitions being fired. Each time Downgrade is fired, an L1 cacheline’s state goes down. Since there are only a finite number of L1 cachelines and a finite number of states, Downgrade can only be fired a finite number of times. Similarly, each WriteBackReq transition consumes a WBRq message which can only be replenished by the Req.R rule. And each WriteBackResp transition consumes a WBRp which is replenished by Downgrade and WriteBackReq and thus only has finite count.

Theorem 4 Proof. If there exists a pending request from any processor, by Lemma 9 some pending request will eventually dequeue or move down the lattice which only has a finite number of states. For a finite number of processors, since the mRq is a FIFO, only a finite number of pending requests can exist. Therefore, some pending request will eventually reach the end of the lattice and dequeue, proving the theorem.

5 Main Memory

For ease of discussion, we have assumed that all the data fit in the L2 cache, which is not realistic for some shared memory systems. A multicore processor, for example, has an offchip main memory which does not contain timestamps. For these systems, the components in Table 5 and transition rules in Table 6 need to be added. And for the initial system state, all the data should be in main memory with all L2 cachelines in I state, and mts = 0.

Most of the extra components and rules are handling main memory requests and responses and the I state in the L2. However, mts is a special timestamp added to represent the largest rts of the cachelines stored in the main memory. The mts guarantees that cachelines loaded from the main memory have proper timestamps and thus can be properly ordered.

Due to limited space, we only prove that the Tardis protocol with main memory still obeys sequential consistency (SC). The system can also be shown to be deadlock- and livelock-free using proofs similar to Section 4. For the SC proof, we only need to show that Lemma 12 and 3 are true after the main memory is added.

In order to prove these lemmas, we need the following simple lemma.
Rules and Condition	Action
L2Miss let \((id, type, addr, pts) = c2pRq.get.msg()\) condition: \(L2.[addr].state = I\)	MemRq.enq\((S, addr, _)\) \(busy := True\)
MemResp let \((addr, data) = MemRp\) let \((state, l2data busy, owner, wts, rts) = L2.[addr]\)	state := \(S\) l2data := \(data\) \(busy := False\) \(wts := mts\) \(rts := mts\)
L2Downgrade let \((state, data, busy, owner, wts, rts) = L2.[addr]\) condition: state = \(M \land busy = False\)	p2c.enq(owner, Req. addr, _, _, _) \(busy := True\)
L2Evict let \((state, data, busy, owner, wts, rts) = L2.[addr]\) condition: state = \(S\)	MemRq.enq\((M, addr, data)\) state := \(I\) \(mts := \text{max}(rts, mts)\)

Lemma 17. If an L2 cacheline is in the I state, no clean block exists for the address.

Proof. We prove by induction on the transition sequence. The hypothesis is true for the base case since no clean block exists. If an L2 cacheline moves from \(S\) to \(I\) (through the L2Evict rule), the clean block (L2 cacheline in \(S\) state) is removed and no clean block exists for that address. By the transition rules, while the L2 line stays in the \(I\) state, no clean block can be created. By the induction hypothesis, if an L2 cacheline is in the \(I\) state after a transition, then no clean block can exist for that address.

For Lemma 1, we only need to include Lemma 17 in the original proof. For Lemmas 2 and 3, we need to show the following properties of \(mts\).

Lemma 18. If an L2 cacheline is in the I state, then the following statements are true.

- \(mts\) is no less than the \(rts\) of all the copies of the block.
- No store has happened to the address at \(ts\) such that \(ts > mts\).
- The data value of the cacheline in main memory comes from a store \(St\) which happened before the current physical time. And no other store \(St'\) has happened such that \(St.ts < St'.ts \leq mts\).

Proof. All the statements can be easily proven by induction on the transition sequence. For \(S \rightarrow I\) of an L2 cacheline, since the end \(mts\) is no less than the \(rts\), by Lemmas 2 and 3, all three statements are true after the transition.

Consider the other case where the L2 cacheline stays in \(I\) state. Since no clean block exists (Lemma 17), the copies of the cacheline cannot change their timestamps and no store can happen. By the transition rules, the \(mts\) never decreases after the transition. So the hypothesis must be true after the transition.

To finish the original proof, we need to consider the final case where the L2 cacheline moves from \(I\) to \(S\) state (MemResp rule). In this case, both \(wts\) and \(rts\) are set to \(mts\). By Lemma 18, both Lemma 2 and Lemma 3 are true after the current transition.

6 Related Work

Snoopy [15] and directory [7, 35] cache coherence are both popular coherence protocols and are widely adopted in multicore processors [1, 10], multi-socket systems [3, 40] and distributed shared memory systems [19, 24]. The Tardis protocol [37] is a different yet as powerful coherence protocol. Tardis is conceptually simpler than a directory protocol and has excellent scalability. Some other timestamp based coherence protocols have also been proposed in the literature [13, 25, 30, 33] but none of them are as simple and high performant as Tardis.

Both model checking and formal proofs are popular in proving the correctness of cache coherence protocols. Model checking based verification [4, 5, 8, 9, 11, 12, 14, 16, 18, 23, 27, 29, 32, 39] is a commonly used technique, but even with several optimizations, it does not scale to automatically verify real-world systems.
Many other works prove the correctness of a cache coherence protocol by proving invariants as we did in this paper. Our invariants are in general simpler than what they had partly because Tardis is simpler than a directory coherence protocol. Finally, our proofs can be machine-checked along the lines of the proofs for a hierarchical cache coherence protocol.

7 Conclusion

We provided simple, yet rigorous proofs of correctness for a recently-proposed scalable cache coherence protocol. Future work includes generalizing the protocol to relaxed memory consistency models and proving correctness, and machine-checking the proofs.

References

[1] Tile-gx family of multicore processors. http://www.tilera.com.
[2] Y. Afek, G. Brown, and M. Merritt. Lazy caching. ACM Transactions on Programming Languages and Systems (TOPLAS), 15(1):182–205, 1993.
[3] D. Anderson and J. Trodden. Hypertransport system architecture. Addison-Wesley Professional, 2003.
[4] R. Bhattacharya, S. German, and G. Gopalakrishnan. Symbolic partial order reduction for rule based transition systems. In D. Borrione and W. Paul, editors, Correct Hardware Design and Verification Methods, volume 3725 of Lecture Notes in Computer Science, pages 332–335. Springer Berlin Heidelberg, 2005.
[5] R. Bhattacharya, S. M. German, and G. Gopalakrishnan. Exploiting symmetry and transactions for partial order reduction of rule based specifications. In In Antti Valmari, editor, SPIN, volume 3925 of Lecture Notes in Computer Science, pages 252–270. Springer, 2006.
[6] G. M. Brown. Asynchronous multicaches. Distributed Computing, 4(1):31–36, 1990.
[7] L. M. Censier and P. Feautrier. A new solution to coherence problems in multicache systems. Computers, IEEE Transactions on, 100(12):1112–1118, 1978.
[8] X. Chen, Y. Yang, G. Gopalakrishnan, and C.-T. Chou. Efficient methods for formally verifying safety properties of hierarchical cache coherence protocols. Form. Methods Syst. Des., 36(1):37–64, Feb. 2010.
[9] C.-T. Chou, P. K. Mannava, and S. Park. A simple method for parameterized verification of cache coherence protocols. In in Formal Methods in Computer Aided Design, pages 382–398. Springer, 2004.
[10] G. Chrysos and S. P. Engineer. Intel xeon phi coprocessor (codename knights corner). In Proceedings of the 24th Hot Chips Symposium, HC, 2012.
[11] G. Delzanno. Automatic verification of parameterized cache coherence protocols. In E. Emerson and A. Sistla, editors, Computer Aided Verification, volume 1855 of Lecture Notes in Computer Science, pages 53–68. Springer Berlin Heidelberg, 2000.
[12] D. Dill, A. Drexler, A. Hu, and C. Yang. Protocol verification as a hardware design aid. In Computer Design: VLSI in Computers and Processors, 1992. ICCD '92. Proceedings, IEEE 1992 International Conference on, pages 522–525, Oct 1992.
[13] M. Elver and V. Nagarajan. TSO-CC: Consistency directed cache coherence for TSO. In International Symposium on High Performance Computer Architecture, pages 165–176, 2014.
[14] E. A. Emerson and V. Kahlon. Exact and efficient verification of parameterized cache coherence protocols. In Correct Hardware Design and Verification Methods, 12th IFIP WG 10.5 Advanced Research Working Conference, CHARME 2003, L’Aquila, Italy, October 21-24, 2003, Proceedings, pages 247–262, 2003.
[15] J. R. Goodman. Using cache memory to reduce processor-memory traffic. In ACM SIGARCH Computer Architecture News, volume 11, pages 124–131. ACM, 1983.

[16] C.-W. N. Ip, D. L. Dill, and J. C. Mitchell. State reduction methods for automatic formal verification, 1996.

[17] R. Jhala and K. L. McMillan. Microarchitecture verification by compositional model checking. In CAV, pages 396–410. Springer-Verlag, 2001.

[18] R. Joshi, L. Lamport, J. Matthews, S. Tasiran, M. R. Tuttle, and Y. Yu. Checking cache-coherence protocols with TLA+. Formal Methods in System Design, 22(2):125–131, 2003.

[19] P. Keleher, A. L. Cox, S. Dwarkadas, and W. Zwaenepoel. Treadmarks: Distributed shared memory on standard workstations and operating systems. In USENIX Winter, volume 1994, 1994.

[20] G. Kurian, J. Miller, J. Psota, J. Eastep, J. Liu, J. Michel, L. Kimerling, and A. Agarwal. ATAC: A 1000-Core Cache-Coherent Processor with On-Chip Optical Network. In International Conference on Parallel Architectures and Compilation Techniques, 2010.

[21] E. Ladan-Mozes and C. E. Leiserson. A consistency architecture for hierarchical shared caches. In Proceedings of the twentieth annual symposium on Parallelism in algorithms and architectures, pages 11–22. ACM, 2008.

[22] L. Lamport. How to make a multiprocessor computer that correctly executes multiprocess programs. Computers, IEEE Transactions on, 100(9):690–691, 1979.

[23] L. Lamport. Specifying Systems: The TLA+ Language and Tools for Hardware and Software Engineers. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 2002.

[24] K. Li and P. Hudak. Memory coherence in shared virtual memory systems. ACM Transactions on Computer Systems (TOCS), 7(4):321–359, 1989.

[25] M. Lis, K. S. Shim, M. H. Cho, and S. Devadas. Memory coherence in the age of multicores. In Computer Design (ICCD), 2011 IEEE 29th International Conference on, pages 1–8. IEEE, 2011.

[26] M. M. Martin, M. D. Hill, and D. A. Wood. Token coherence: Decoupling performance and correctness. In Computer Architecture, 2003. Proceedings. 30th Annual International Symposium on, pages 182–193. IEEE, 2003.

[27] K. McMillan. Verification of infinite state systems by compositional model checking. In L. Pierre and T. Kropf, editors, Correct Hardware Design and Verification Methods, volume 1703 of Lecture Notes in Computer Science, pages 219–237. Springer Berlin Heidelberg, 1999.

[28] K. McMillan and J. Schwalbe. Formal verification of the Gigamax cache consistency protocol. In Proceedings of the International Symposium on Shared Memory Multiprocessing, pages 111–134, 1992.

[29] K. L. McMillan. Parameterized verification of the FLASH cache coherence protocol by compositional model checking. In In CHARME 01: IFIP Working Conference on Correct Hardware Design and Verification Methods, Lecture Notes in Computer Science 2144, pages 179–195. Springer, 2001.

[30] S. Nandy and R. Narayan. An incessantly coherent cache scheme for shared memory multithreaded systems. Citeseer, 1994.

[31] S. Park and D. L. Dill. Verification of FLASH cache coherence protocol by aggregation of distributed transactions. In Proceedings of the 8th Annual ACM Symposium on Parallel Algorithms and Architectures, pages 288–296. ACM Press, 1996.

[32] M. Plakal, D. J. Sorin, A. E. Condon, and M. D. Hill. Lamport clocks: verifying a directory cache-coherence protocol. In Proceedings of the tenth annual ACM symposium on Parallel algorithms and architectures, pages 67–76. ACM, 1998.
[33] I. Singh, A. Shriraman, W. W. L. Fung, M. O’Connor, and T. M. Aamodt. Cache coherence for gpu architectures. pages 578–590, 2013.

[34] D. J. Sorin, M. D. Hill, and D. A. Wood. A primer on memory consistency and cache coherence. Synthesis Lectures on Computer Architecture, 6(3):1–212, 2011.

[35] C. Tang. Cache system design in the tightly coupled multiprocessor system. In Proceedings of the June 7-10, 1976, national computer conference and exposition, pages 749–753. ACM, 1976.

[36] M. Vijayaraghavan, A. Chlipala, Arvind, and N. Dave. Modular deductive verification of multiprocessor hardware designs. In 27th International Conference on Computer Aided Verification, 2015. Accepted paper.

[37] X. Yu and S. Devadas. TARDIS: timestamp based coherence algorithm for distributed shared memory. CoRR, abs/1501.04504, 2015.

[38] M. Zhang, J. D. Bingham, J. Erickson, and D. J. Sorin. Pvcoherence: Designing flat coherence protocols for scalable verification. In 20th IEEE International Symposium on High Performance Computer Architecture, HPCA 2014, Orlando, FL, USA, February 15-19, 2014, pages 392–403. IEEE Computer Society, 2014.

[39] M. Zhang, A. R. Lebeck, and D. J. Sorin. Fractal coherence: Scalably verifiable cache coherence. In Proceedings of the 2010 43rd Annual IEEE/ACM International Symposium on Microarchitecture, MICRO ’10, pages 471–482, Washington, DC, USA, 2010. IEEE Computer Society.

[40] D. Ziakas, A. Baum, R. A. Maddox, and R. J. Safranek. Intel® quickpath interconnect architectural features supporting scalable system architectures. In High Performance Interconnects (HOTI), 2010 IEEE 18th Annual Symposium on, pages 1–6. IEEE, 2010.