Molecular characterization of Cardinium, Rickettsia, Spiroplasma and Wolbachia in mite species from citrus orchards

Tatiana Pina1,2 · Beatriz Sabater-Muñoz3,4 · Marc Cabedo-López1 · Joaquín Cruz-Miralles1 · Josep A. Jaques1 · Mónica A. Hurtado-Ruiz1

Received: 19 November 2019 / Accepted: 29 May 2020 / Published online: 11 June 2020
© Springer Nature Switzerland AG 2020

Abstract
Tetranychidae spider mites are considered key citrus pests in some production areas, especially Tetranychus urticae Koch. Over the past decades, pesticide overuse seems to have promoted T. urticae population selection in citrus orchards. However, the microbiota has also been pointed out as a plausible explanation for population structure or plant host specialisation observed in several arthropod species. In this work, we have determined the incidence of Cardinium, Rickettsia, Spiroplasma and Wolbachia as representatives of major distorter bacteria genera in Aplonobia histricina (Berlese), Eutetranychus banksi (McGregor), Eutetranychus orientalis (Klein), Panonychus citri (McGregor), Tetranychus evansi Baker and Pritchard, Tetranychus turkestani Ugarov and Nikolskii, and T. urticae populations from Spanish citrus orchards. Only Wolbachia was detected by PCR. The multilocus alignment approach and phylogenetic inference indicated that all detected Wolbachia belong to supergroup B. The deep analysis of each 16S rDNA, ftsZ and wsp gene sequences allowed identifying several phylogenetically different Wolbachia sequences. It probably indicates the presence of several different races or strains, all of them belonging to supergroup B. The wsp sequence typing analysis unveiled the presence of the two already identified alleles (61 and 370) and allowed to contribute with five new alleles, supporting the presence of different but related B-races in the studied mite populations. The results are discussed and related to T. urticae population structure, previously observed in Spanish citrus orchards.

Keywords 16S rDNA · Multilocus alignment approach · Phylogeny · Supergroup B · Tetranychidae · Wolbachia

Electronic supplementary material The online version of this article (https://doi.org/10.1007/s10493-020-00508-z) contains supplementary material, which is available to authorized users.

✉ Mónica A. Hurtado-Ruiz mhurtado@uji.es

Extended author information available on the last page of the article
Introduction

Spider mites of the family Tetranychidae comprise more than 1300 phytophagous species, out of which about 10% are considered agricultural pests and approximately 10 are key pests of economically important crops (Migeon and Dorkeld 2019). *Tetranychus urticae* Koch is the most widespread mite, considered one of the citrus key pests, together with the Mediterranean medfly *Ceratitis capitata* (Wiedemann) and the diaspidid scale *Aonidiella aurantii* (Maskell) (Jaques et al. 2015). Phytoseiidae mites—either naturally present in the tree canopy or/and ground cover, or introduced—are the natural enemies providing the biological control of these Tetranychidae, which in integrated pest management can be complemented with a rational application of pesticides (Iacas et al. 2010). However, due to past abuse of pesticides, *T. urticae* populations in Mediterranean citrus orchards have shown a genetic structuring, which could be attributed to pesticide-driven selection (Pascual-Ruiz et al. 2014). Besides, other studies indicated the presence of selective mating forces or maternal factors that link *T. urticae* populations’ genetic structure to plant host species, which could explain the genetic structuring observed (Marinosci et al. 2015; Aguilar-Fenollosa et al. 2016; Sato et al. 2016). Such forces/factors have remained unsolved in citrus mites of Spain.

By the mid-1960s, bacterial and yeast symbionts of arthropods and nematodes were highlighted as maternal factors affecting the ecology, evolution and reproductive biology of their hosts (Buchner 1965). Over the past 2 decades, this microbiota has become the focus of numerous studies, going from an ecological to a genomic perspective. More recently, the outcomes of these studies are being devised as a new form of biological control, by inducing reproductive barriers with the natural populations mediated by bacterial species (Zabalou et al. 2004; Atyame et al. 2011; Zhou and Li 2016). For example, cytoplasmic incompatibility (CI), a reproductive modification caused by some bacteria, can be used as a population suppression strategy, analogous to the sterile insect technique (SIT) that reduces or eliminates the population, or/and as population replacement, using the bacteria as a vehicle to drive desired phenotypes into natural populations (Breulsfoard and Dobson 2009).

Cardinium, *Rickettsia*, *Spiroplasma* and *Wolbachia* are the representative genera of these bacterial distorters that infect many arthropod species (Jeyaprakash and Hoy 2000; Zchori-Fein and Perlman 2004; Engelstadter and Hurst 2009; Duron and Hurst 2013). *Cardinium* encompasses a bacterial genus of Bacteroidetes that induces reproductive alterations in its hosts such as CI, parthenogenesis and feminisation (Zchori-Fein and Perlman 2004; Zchori-Fein et al. 2004; Gotoh et al. 2007a; Zhu et al. 2012). *Rickettsia* and *Wolbachia* genera belong to Rickettsiales (within alpha-proteobacteria), forming two isolated clades that also induce reproductive alterations (as male feminisation, thelytokous parthenogenesis, CI and male death) and have also been related to pesticide resistance development (Werren 1997; Stouthamer et al. 1999; Stevens et al. 2001; Perlman et al. 2006; Hosokawa et al. 2010; Liu and Guo 2019). *Spiroplasma* belongs to the Mollicutes (within Firmicutes) and is also involved in the protection of its host against biotic and abiotic stresses (Bolanos et al. 2015; Heyworth and Ferrari 2015; Frago et al. 2017; Guidolin et al. 2018). Recent estimations of arthropod bacterial infestation reached up to 13% for *Cardinium*, 24% for *Rickettsia*, 5–10% for *Spiroplasma* and to 52% for *Wolbachia* (Duron et al. 2008; Weinert et al. 2015; Mathé-Hubert et al. 2019).

These four genera are transmitted mainly vertically, from mother to offspring, by transovarial infection of eggs. Horizontal transfer has also been reported, either plant-mediated or transmitted by some parasitoid species (Russell et al. 2003; Sintupachee
et al. 2006; Oliver et al. 2010; Ahmed et al. 2015; Li et al. 2017). Due to their intracellular lifestyle (except for some Spiroplasma species), most of these bacteria cannot be grown outside their arthropod host and their identification depends on the application of molecular methods. Whereas bacterial species’ identification relies on the positive amplification with species-specific primers, located mainly in the multicopy 16S rDNA locus, the Wolbachia incompatibility strain assignment is performed by multiple-loci sequence alignment analysis (MLSA) and phylogenetic inference against reference strains (Russell et al. 2003; Ros et al. 2009). To date, 16 Wolbachia supergroups (named with letters from A to Q, with some recombination events) have been established based on these MLSA analyses (Lo et al. 2002, 2007; Bordenstein and Rosengaus 2005; Ros et al. 2009; Augustinos et al. 2011; Pascar and Chandler 2018).

As indicated previously, some of these bacterial species are involved in CI (being able to modulate population genetic structure), pesticide resistance and biotic/abiotic stress resistance (water and temperature). Therefore, the determination of their presence in the natural populations of Tetranychidae is important to ascertain how they may affect the host population structure.

In this work, we studied the incidence and frequency of infection of Cardinium, Rickettsia, Spiroplasma and Wolbachia in various Spanish populations of citrus mites of economic importance, focusing mainly on T. urticae. The other mite species studied were Panonychus citri (McGregor), Aplonobia histricina (Berlese), Eutetranychus banksi (McGregor), Eutetranychus orientalis (Klein), Tetranychus evansi Baker and Pritchard, Tetranychus turkestani Ugarov and Nikolskii and the tarsonemid mite Polyphagotarsonemus latus (Banks).

Material and methods

Specimen collection

Table 1 lists the mites (mainly Tetranychidae) collected mainly from Spanish citrus orchards or from laboratory rearing colonies, and the insect species used as positive controls for PCR. The numbers of specimens per species or population are also included in Table 1.

DNA extraction and verification

Total DNA was extracted from isolated, ethanol-washed specimens following a modified ‘salting out’ protocol (Pérez-Sayas et al. 2015). Briefly, each surface-disinfected specimen was air-dried, isolated in a 1.5-ml Eppendorf tube and crushed in TNS + Prot-K solution at 60 °C; proteins were precipitated with 5 M NaCl by centrifugation and the nucleic acid fraction was precipitated with 2-propanol. The extracted DNA from non-Acari specimens was quantified with Nanodrop 2000 (Thermo Scientific, Wilmington, DE, USA). The Acari specimens’ DNA extractions were subjected to PCR with 18SrDNA primers (see Table 2) to ascertain the presence of DNA, as previously done with minute specimens (Pérez-Sayas et al. 2015).
Order	Species	Collection locality	Collection host plant (or source; known bacteria; collector)	No. individuals tested
Diptera	*Drosophila melanogaster* Meigen	Valencia	UV lab rearing, OrR strain; *Spiroplasma*; C Garcia	8
	Drosophila neotecestae Grimaldi et al.	Canada	lab rearing; *Spiroplasma*; S Perlman	8
Hemiptera	*Bemisia tabaci* (Gennadius)	Israel	lab rearing Q2 and B biotypes; *Rickettsia*; D Santos-Garcia & S Morin	7
		Perelló	*Phaseolus vulgaris* L.; *Cardinium*; FJ Beitia	8
	Myzus persicae (Sulzer)	Tunisia	DNA sample; *Cardinium*; R Gil	
Prostigmata	*Aplonobia histricina* (Berlese)	Montcada	*Oxalis pes-caprae* L.	10
	Eutetranychus banksi (McGregor)	Huelva	*Citrus lemon* L.	9
	Eutetranychus orientalis (Klein)	Málaga	*Citrus sp.*	15
	Panonychus citri (McGregor)	Betxí	*Citrus sinensis* L.	7
		Canet	*C. sinensis*	10
		Castelló	*C. sinensis*	10
		Godelleta	*C. sinensis*	25
		Mallorca	*C. sinensis*	10
		Moncofa	*C. sinensis*	10
		Montcada	*C. sinensis*	23
		Picassent	*C. lemon*	10
		Xeraco	*C. sinensis*	10
	Polyphagotarsonemus latus (Banks)	Belgium	*Rhododendron simsii* L.	80
	Tetranychus evansi Baker and Pritchard	Argentina	*Solanum nigrum* L.	10
		Brazil	*S. nigrum*	15
		Murcia	*S. nigrum*	11
	Tetranychus turkestani Ugarov and Nikolskii	Almenara	*Cannabis sativa* L.	12
		Castelló	*Convolvulus arvensis* L.	14
	Tetranychus urticae Koch	Algímia	*Citrus clementina* L.	15
		Almecora	*C. clementina*	10
Order	Species	Collection locality	Collection host plant (or source; known bacteria; collector)	No. individuals tested
---------	---------	---------------------	---	------------------------
		Les Alqueries	C. clementina	11
		Benicàssim	C. clementina	12
		Benifairó	C. clementina	3
		Betxí	C. clementina	3
		Castelló	C. clementina	3
		Castelló	C. lemon	3
		Castelló	Festuca arundinacea L.	38
		Gandia	C. clementina	10
		Godella	C. clementina	41
		Llíria	C. clementina	19
		Mallorca	C. clementina	19
		Moncofa	C. clementina	8
		Montcada	C. sinensis	24
		Montcada	Festuca arundinacea L.	14
		Onda	C. clementina	8
		Quartell	C. clementina	7
		Vila-real	C. clementina	19
		Vinaròs	C. clementina	52

*a Used as positive control for PCR

*b Spanish localities, unless another country is indicated
Table 2 Universal and bacterial diagnostic primer pairs sequence, amplicon size, annealing temperature (T_A), reaction volume (V_R), magnesium concentration ($C_{Mg^{2+}}$) and references, used to determine the incidence of bacterial symbionts in our samples

Target	Primer name	Sequence (5′→3′)	Amplicon size (pb)	T_A (°C)	V_R (µl)	$C_{Mg^{2+}}$ (mM)	Primers references
18SrDNA	18Sup_1060	AGT TAG AGG TTC GAA GGC GAT CAG	233	55	25	2.5	Monzó et al. (2010)
	18Slo_1270	TGG TAA GTT TTC CCG TGT TGA GTC					
16SrDNA	Univ_16S_8F	AGA GTT TGA TCM TGG CTC AGA TGT	1200	60	25	1.5	van Ham et al. (1997)
	Univ_16S_1507R	TAC CTT GTT AYG ACT TCA CCC CAG					
Cardinium (16S rDNA)	CLO_F1_16S	GGA ACC TTA CCT GGG CTA GAA GGT ATT	450	57	20	1.5	Zhao et al. (2013)
	CLO_R1_16S	GCC ACT GTC TCC AAG CTC TAC CAA C					
Rickettsia (16S rDNA)	Rb_F	GCT CAG AAC GAA CGC TAT C	880	58	25	2.5	Gottlieb et al. (2006)
	Rb_R	GAA GGA AAG CAT CTC GTC					Kliot et al. (2014)
Spiroplasma (16S rDNA)	Spoul-F	GCT TAA CTC CAG TCC GCC	450	55	25	2.5	Montenegro et al. (2000)
	Spoul-R	CCT GTC AAT GTC AAG CTC					Osaka et al. (2013)
Wolbachia (16S rDNA)	99F	TTG TAG CCT GCT ATG GTA TAA CT	900	52	25	1.5	O’Neill et al. (1992)
	994R	GAA TAG GTA TGA TTT TCA TGT					
fisZ (Wolbachia)	Wo_FtsZuniF	GGY AAR GGT GCR GCA GAA GA	770	54	20	1.5	Lo et al. (2002)
	Wo_FtsZuniR	ATC RAT RCC AGT TGC AAG					
wsp (Wolbachia)	81F	TGG TCC AAT AAG TGA TGA AGA AAC	610	55	25	1.2	Braig et al. (1998)
Cardinium, Rickettsia, Spiroplasma and Wolbachia diagnostic PCR

The incidence of each bacterial symbiont was determined by positive PCR reactions with specific primers (listed in Table 2), targeting the 16S rDNA in each specimen collected. Due to the limiting factor of Acari source DNA, a secondary specific amplification was devised over a first (primary) amplification of whole 16S rDNA fragment, using the universal primers listed in Table 2, as devised for other insect-bacteria groups (van Ham et al. 1997; Russell et al. 2003). The primary PCR was performed using 1 µl of DNA extraction, whereas the specific secondary and diagnostic PCR was performed with 1–2 µl of the primary PCR. Amplification conditions varied slightly between bacterial species (see Table 2 for reaction volume, magnesium concentration and annealing temperatures), using 1 U of FIREPol polymerase (Solis BioDyne, Tartu, Estonia) with the appropriate 1× buffer, with 0.2 mM dNTPs and 0.4 mM of each primer. Amplification was performed in a C1000 BioRad thermocycler (Applied Biosystems, Foster City, CA, USA) under the following amplification conditions: a first denaturing step at 92–95 ºC for 2–5 min, followed by 30–40 cycles of 92–95 ºC for 30 s, 52–58 ºC for 30 s and 72 ºC for 30–60 s, with a final extension at 72 ºC for 5 min (see Supplementary information). For each amplification run, at least one negative control (ultrapure water added instead of DNA sample) and one positive specimen (of the species listed in Table 1; at least one per symbiont species to be determined) were included to ascertain the false positives (either due to contaminated reagents or environmental contamination) and negatives (due to failure of amplification or low DNA concentration), respectively. Amplification was verified by agarose gel (2% low EEO DA Agarose, Pronadisa, Sumilab, Madrid, Spain) electrophoresis in 1× TAE, stained with GelRed (Biotium, Hayward, CA, USA). Single, expected-size PCR fragments were considered positive when matching the size of the positive controls. Each specimen was considered harbouring Cardinium, Rickettsia, Spiroplasma or Wolbachia, when at least two PCR reactions give positive results of the three performed.

Positive PCR fragments were independently purified with Illustra ExoStar (GE Healthcare Life Sciences, Chalfont St. Giles, UK) following the manufacturer’s recommendations. Bidirectional Sanger sequencing using Bigdye terminator v.3.1 cycle sequencing kit (Thermo Fisher Scientific, Vilnius, Lithuania) with each amplification primer was performed at the Sequencing service of the University of Valencia (Servei Central de Suport a la Investigació Experimental [SCSIE], Universitat de València, Spain), following the manufacturer’s instructions. Reactions were run in an ABI 3730XL DNA analyser (Thermo Fisher Scientific, Carlsbad, CA, USA) following the manufacturer’s instructions.

Wolbachia wsp and ftsZ amplification and sequencing

To assign Wolbachia into the established supergroups, we used the MLSA approach by amplifying and sequencing the genes corresponding to cell division protein FtsZ (ftsZ) and the Wolbachia surface protein (wsp), in addition to the 16S rDNA described above (Braig et al. 1998; Zhou et al. 1998; Lo et al. 2002; Casiraghi et al. 2005; Baldo et al. 2006). PCRs were conducted independently using 1–2 µl of undiluted specimen DNAs with primers and conditions, as listed in Table 2, using 1 U of FIREPol polymerase with 0.2 mM dNTPs and 0.4 mM of each primer for the 16S rDNA amplification. Amplifications were performed in a Bio-Rad thermal cycler with the following amplification conditions: a first denaturing step at 94–95 ºC for 2–5 min, followed by 36–40 cycles of 94–95 ºC for 30 s, 54–55 ºC for
45–60 s, and 72 °C for 60–90 s, with a final extension at 72 °C for 5 min (see Supplementary information). Similarly, positive (other arthropods specimens harbouring known types of Wolbachia and/or Wolbachia positive T. urticae samples) and negative (DNA-free PCR mixture) controls were included in each amplification run. Positive PCR fragments were purified as described above and sequenced bidirectionally with amplification primers, at the same SCSIE sequencing service.

Sequence analysis

The consensus sequence for each PCR product was obtained using the programme STADEN Package (Staden 1996). Consensus sequences were blasted against the non-redundant database to confirm fragment identity prior to alignment construction (BLAST; Altschul et al. 1997).

16S ribosomal DNA, *ftsZ* and *wsp* obtained consensus sequences and those retrieved from databases were independently aligned using CLUSTALW (as in MEGA X; Kumar et al. 2018) (for 16S rDNA) or with GENEDOC (Nicholas and Nicholas 1994–1998). In GENEDOC, we used Blosum62 score table for coding regions *ftsZ* and *wsp*, whereas for 16S rDNA we used PAM 65 score table, setting alignment cost at 20 for constant length, 8 for gap opening and 4 for gap extension (for *ftsZ* and *wsp*, alignment was performed with translated sequences, re-gapping the nucleotide alignments). Moreover, 16S rDNA, *ftsZ* and *wsp* consensus sequences were concatenated in a single FASTA file previously to perform the multilocus sequence alignment (MLSA). Outgroups were retrieved from the databases and sequences corresponding to the same species were concatenated in the same order as the MLSA (Table S1).

The *wsp* sequences were assigned to the corresponding allelic profile by comparing the four hypervariable regions (HVRs) against the *Wolbachia wsp* multilocus sequence typing (MLST) database (https://pubmlst.org/wolbachia/ [last accessed 10/March/2020]; Baldo et al. 2005). Novel allele sequences were submitted to the database curators for their inclusion as new alleles after they registered as new sequences in NCBI.

Gene tree inference was conducted in MEGA X, after determining the best-fit evolutionary distance model (GTR) for each gene alignment and for the MLSA, as implemented in MEGA X. Bayesian phylogenies were obtained using a Markov Chain Monte Carlo (MCMC) method implemented in BEAST v.1.10.4 programme (Suchard et al. 2018). BEAST output was analysed using TRACER v.1.7.1, applying values of more than 200 of the effective sample size (ESS) (Rambaut et al. 2018). A maximum clade credibility tree was generated after burning 10% samples with posterior probability limit > 0.5 using TreeAnnotator, as implemented in BEAST. Species phylogroups were defined by a posterior probability > 0.95 using referenced strains, known to belong to these groups. The final trees were visualised with FigTree v.1.4.3 (http://tree.bio.ed.ac.uk/software/figtree/ [last accessed 10/March/2020]).

Data availability

All new sequences have been deposited in GenBank from MN123012 to MN123230 for 16S rDNA, MN187577–MN187703 for *wsp* gene region, and MN187704–MN187866 for *ftsZ* gene region (see Table S1 for the complete list).
Results and discussion

Incidence of Cardinium, Rickettsia, Spiroplasma and Wolbachia in mite populations

Cardinium, Rickettsia and Spiroplasma species-specific primer pairs gave negative results in all the mite species and populations tested, despite their amplification efficacy being positive with the corresponding arthropod control samples. All samples were tested for DNA presence, as routinely done with such minute specimens, by amplification of 18S rDNA (Pérez-Sayas et al. 2015). Only the 16S universal and Wolbachia-specific primers (either 16S rDNA, ftsZ or wsp) rendered positive results. Wolbachia was present in almost all the mite species and/or populations tested with a prevalence ranging from 10 to 100% (Fig. 1), as previously reported (Zug and Hammerstein 2012; Weinert et al. 2015; Zhu et al. 2018). The exception was P. citri, which showed a prevalence of 0–10%. This is the first time that Wolbachia is reported in this mite species (Zélé et al. 2018a, b; Zhu et al. 2018).

Other authors have detected double infections in Tetranychus species; two of them were included in our study, namely T. urticae and T. evansi (Enigl and Schausberger 2007; Weinert et al. 2009; Xie et al. 2016; Staudacher et al. 2017; Zélé et al. 2018a, b). These studies found that Tetranychus truncatus Ehara showed the combinations Wolbachia and Cardinium or Spiroplasma and Rickettsia, whereas T. evansi, Tetranychus ludeni Zacher and T. urticae showed only the Wolbachia and Cardinium combinations (Zhang et al. 2013, 2016; Zélé et al. 2018a). Indeed, the double infection Wolbachia and Cardinium (W + C) is the most common in Tetranychidae (Zélé et al. 2018a, b). All these studies used two specific primer pairs: one pair targeting the 16S rDNA in Cardinium and Spiroplasma and the second one targeting a species-specific gene (i.e., gyrB for Cardinium, rpoB for

![Graph showing the incidence of Wolbachia in various mite species.](image)

Fig. 1 Wolbachia incidence, as the percentage of individuals who tested positive from the total, per species. Note that only one population of Panonychus citri showed Wolbachia infection (0.87%). The total number of individuals tested are, in order of species appearance and from left to right: 10, 9, 15, 115, 80, 36, 26 and 368.
 Spiroplasma and gltA for Rickettsia). As indicated, the diagnostic primers used, except the Cardinium ones, differ from other mite working groups but render positive results with arthropod species used as positive controls (see Table 2 for references of each primer pair).

Our aim was to detect each bacterial species based on the same target gene to include all of them in a phylogenetic study to determine the presence of more than one strain, for which our primer selection based on previous works targeting the multicopy gene 16S rDNA. In previous studies, we have observed a population structure in T. urticae within Spanish populations (by microsatellite analyses), that may be attributed to different Wolbachia operational taxonomic units, as noticed in the present study (operational taxonomic units as described for 16S rDNA sequences diverging more than 3–5% as in microbiome analyses; see below) (Aguilar-Fenollosa et al. 2012; Pascual-Ruiz et al. 2014). However, as Wolbachia was the only bacterial reproductive distorter detected in our study, a deep analysis of the Wolbachia sequences obtained was required to clarify the situation.

Phylogeny of Wolbachia and strain identification

Wolbachia is a group of bacterial strains that can be assigned to supergroups following a multilocus phylogeny approach, as indicated previously (Ros et al. 2009). The sequence of coding genes of the cell division protein FtsZ (ftsZ gene) or the Wolbachia surface protein (wsp) are routinely used for placement of Wolbachia strains into the established supergroups A to K (Zhou et al. 1998; Gotoh et al. 2003; Casiraghi et al. 2005; Baldo et al. 2007), whereas the 16S rDNA, is routinely used to determine bacterial species identity in microbiome studies.

Here, we have estimated the tree phylogeny of Wolbachia from several mite species with a multilocus alignment (MLSA) of concatenated 16S rDNA, wsp and ftsZ, and then analysed each locus independently by different tree-reconstruction methods (Maximum Parsimony [MP], Maximum Likelihood [ML] and Bayesian). Using the MLSA approach, either by MP (MP was used to compare against precedent work by Zhang et al. 2013), ML or by Bayesian inference, almost all the mites’ new Wolbachia sequences clustered within the supergroup B, except the ones from the Brazilian population of T. evansi (TeBr45 and TeBr70) that clustered either basal in the B group (Bayesian inference; Fig. 2a) or between A-, K-, C-Wolbachia supergroups (ML) (Fig. 2b).

Due to the scarcity of DNA material obtained from these minute mites, it was impossible to obtain a sequencing grade wsp fragment for some samples, which limited the number of samples used for this MLSA to 90 individuals. Consequently, the power of MLSA to determine the presence of more than one Wolbachia strain in our samples was limited. When we analysed the MLSA solely composed by 16S rDNA + ftsZ fragments, we increased the figure to 121 newly concatenated sequences, despite that for the tree inference 100% identical sequences from the same mite population were removed to reduce the computing time (Fig. 3). Limiting data and samples reduced the resolution of the trees and improved deep branching in some cases, whereas in others, and due to positive selection
detected in some wsp lineages, clustering of sequences belonging to the same supergroups did not match previous works (Schulenburg et al. 2000; Ros et al. 2009). In this case (16S rDNA + ftsZ), all Tetranychidae sequences clustered together within the supergroup B, not showing any structuring between the Brazilian population of T. evansi nor the already characterised as different members of supergroup B (including in this last group all the B-Wolbachia from various insect species with different reproductive modes) (Ros et al. 2009, 2012).

Further, when each gene fragment was independently analysed, we could observe a supported differentiation that depends on the fragment type (coding or non-coding). Our limiting sequence (by the number of samples and available supergroups), wsp, gave different tree inferences (Fig. 4 and Fig. S1), keeping in both cases supergroups A, C and E as basal with high posterior probabilities or bootstrap values. While the B-supergroup was split into three clusters (B1, B2 and B3; Fig. 4), the first two, B1 and B2, included many of the outgroup sequences. Some of them were linked but not completely isolating species with feminisation or thelytoky reproductive specialisations. Group B3 included many species (from outgroup) with identified CI, with all of our sequences (van Meer et al. 1999). Despite this, group B3 seemed to also show an internal split into three other groups with posterior probabilities higher than 0.96; the results did not find any relationship between Wolbachia taxonomic unit (B-sub-sub-strain; sequences that show high-sequence divergence, conforming differential taxonomic units) and host plant or mite populations, as previously found with microsatellites. Further, ftsZ phylogenies placed A-supergroup sequences in a basal cluster to B-supergroup, which is subdivided into three subgroups (B1-B3 in Fig. 5 and Fig. S2), on which again sequences of T. evansi from Brazil roots in the most basal subgroup (B1). The 16S rDNA phylogenies were most resolute, supporting the clustering of supergroups, as previously published (Fig. 6 and Fig. S3) (Gotoh et al. 2003, 2007b; Ros et al. 2009, 2012; Suh et al. 2015). With this marker, supergroup B was split into five subgroups (B1–B5 in Fig. 6), with T. evansi Brazil population sequences mostly concentrated within subgroup B3. In this phylogenetic reconstruction, B-Wolbachia from vector insects like Bactericera cockerelli (Šulc) (Hemiptera: Triozidae) (EF372596) and Diaphorina citri Kuwayama (Hemiptera: Psyllidae) (GU563892) or other pests like Naupactus cervinus Boheman (Coleoptera: Curculionidae) (GQ402143) or mites like Bryobia spp. (i.e., EU499318) were clustered together in a well-supported clade B2. However, the T. urticae T2 reference sequence (EU499319) clustered within subgroup B5, which contained some populations of T. urticae, including those from our previous studies on which a genetic structure was devised (Aguilar-Fenollosa et al. 2012). Group B3 contained samples of T. turkestani and the majority of T. evansi Brazil population sequences. The sequence divergence of 16S rDNA among these subgroups was sometimes higher than the reference 3% used in microbiome analysis, indicating that this clustering reflects the diversity of Wolbachia races within Tetranychidae mites (Zhang et al. 2013).

In addition to these phylogeny-based classification methods (MLSA or 16S rDNA barcoding), other methods to identify Wolbachia strains have been developed in other studies.
One of them is the MLST system, based on allele assignment of *gatB*, *coxA*, *hcpA*, *fbpA* and *ftsZ* genes (allele assignment was per single nucleotide difference with reference strain in a concatenated sequence of these five genes) (Baldo et al. 2006; Jolley and Maiden 2010). As we only sequenced gene *ftsZ*, we could not use the whole MLST approach; however, based on this kind of study, all *T. urticae* specimens (ours and some already characterised as different) were assigned to the *ftsZ* locus 23. Whereas the Brazilian population of *T. evansi* presented the *ftsZ* locus 179. Recently, the same authors included the allele typing with only *wsp* gene due to its key features (single-copy gene, present in all Rickettsiales order, with evidence of strong stabilising selection and generally used as phylogenetic marker) and matching one of our sequenced genes (Baldo et al. 2006; Jolley and Maiden 2010). Following this *wsp* sequence typing, we were able to assign our B-*Wolbachia* sequences to different *wsp* alleles, including the description of five new *wsp* loci (submitted to the MLST database on 9 March 2020, three presented here as X1 to X3). The *wsp* locus 61 (HVR1:18; HVR2:16; HVR3:23; HVR4:16) was the predominant one in almost all *T. urticae* feeding in citrus (54%; 66 out of 122), followed by *wsp* locus X1 (24%, HVR1:18; HVR2:16; HVR3:23; HVR4:274) in samples from *Festuca arundinacea* cover and other populations (24%). *Tetranychus urticae* feeding

Fig. 4 Phylogenetic inference, using only the *wsp* gene of 145 *Wolbachia* specimens (indicated with the corresponding species name, sample code and GenBank accession number), was performed using the Bayesian analysis under the GTR+I+Γ model of DNA substitution. *Wolbachia* supergroups are indicated in the krone section outside with different patterns.
in *F. arundinacea* cover showed also three other *wsp* loci (locus 370 (2.45%) = HVR1:18; HVR2:162; HVR3:23; HVR4:274; locus X2 (2.45%) = HVR1:18; HVR2:162; HVR3:23; HVR4:16; locus X3 (0.8%) = HVR1:18; HVR2:162; HVR3:23; HVR4:157), with the Mallorca population the groups with the highest diversity (each individual showed a different *wsp* allele). Due to the reduced number of individuals per population tested, we were not able to conduct a proper analysis of diversity. However, we were able to clearly identify different alleles, indicating that there exists more than one strain of *Wolbachia* in some of our populations.

Considering phylogenies and *wsp* MLST, we can conclude that *T. urticae* populations show different B-*Wolbachia* strains. Their involvement in mite reproduction could explain the *T. urticae* population structure previously established in Spanish citrus orchards, deserving further research to determine the link between each strain and reproductive isolation (Aguilar-Fenollosa et al. 2012, 2016; Zhang et al. 2013; Pascual-Ruiz et al. 2014). This result is in line with other studies in which *D. citri*, one of the vectors of Huanglongbing (HLB), seems to be infected by two B-*Wolbachia* races, affecting their population structure and differential transmission of *Candidatus Liberobacter*, the plant pathogenic bacterium causing HLB (Chu et al. 2019). Similarly, *T. urticae* populations from Korean greenhouses

Fig. 5 Phylogenetic inference, using only the *FtsZ* gene of 112 *Wolbachia* specimens (indicated with the corresponding species name, sample code and GenBank accession number), was performed using the Bayesian analysis under the GTR + I + Γ model of DNA substitution. *Wolbachia* supergroups are indicated in the krone section outside with different patterns.
have been reported to harbour two Wolbachia races based on their wsp sequences, showing diverse patterns of CI that matched the host plant as the main phenotypic effect, similar to the population structuration previously devised due to CI in Chinese and Japanese T. urticae populations or in recent invasive events in Europe (Gotoh et al. 2007b; Boubou et al. 2011, 2012; Xie et al. 2011; Zhang et al. 2013; Suh et al. 2015). However, with the samples analysed, we could not relate each identified B-Wolbachia strain (or race) with a specific genome structuration, derived either by pest management, host plant specificity or even by its reproductive alteration pattern, which deserves further study.

Final remarks

We have identified only one bacterial species, Wolbachia, of the four manipulative tenant bacteria tested in our mite target populations. This bacterial species was assigned by phylogenetic analysis to the B-supergroup, highlighting the existence of several races or strains within them. Sequence typing of wsp gene allowed the assignment to several alleles (mainly alleles 61 and 370) and the description of five new alleles. The presence of several strains could be explained by the biology of Wolbachia, either by an effect in
the host reproductive strategy (population isolation) or by recent invasive events. Both hypotheses require further study.

Acknowledgements

We would like to acknowledge F.J. Beitia (Valencian Institute of Agricultural Research (IVIA), Spain), C. García and R. Gil (University of Valencia (UV), Spain), S. Perlman and M. Ballinger (University of Victoria, Canada), and D. Santos-García, S. Morin and Y. Gottlieb-Dror (The Hebrew University of Jerusalem, Israel) for providing insects with known infections by Cardinium, Rickettsia, Spiroplasma or Wolbachia, used as positive controls. *Polyphagotarsonemus latus* specimens were obtained from D. Peris (University Jaume I (UJI), Spain) rearing colony. We would like to acknowledge the help of the undergraduate students P. Ruiz Guillem and P. Bonilla Villamil (UV), E. Pallarés Gual and M. López-Martínez (UJI), in DNA extractions and PCRs, and to B. Hurtado for graphical design support. Furthermore, we want to express our gratitude to the three anonymous reviewers and the editor for their insightful comments and suggestions that improved the manuscript. This work was partially funded by the Spanish Ministerio de Economía y Competitividad (MINECO) through project AGL2014-55616-C3-3-R and by the UJI through project UJI-B2017-24. T. Pina was the recipient of a postdoctoral grant (PICD) from UJI, and M. Cabedo-López holds a PhD grant from MINECO (grant FPI BES-2015-074570). Funding agencies have no role in the design or analysis of the experiments. All authors of this manuscript declare no conflicts of interest.

References

Aguilar-Fenollosa E, Pina T, Gómez-Martínez MA, Hurtado MA, Jacas JA (2012) Does host adaptation of *Tetranychus urticae* populations in clementine orchards with a *Festuca arundinacea* cover contribute to a better natural regulation of this pest mite? Entomol Exp Appl 144(2):181–190

Aguilar-Fenollosa E, Rey-Caballero J, Blasco JM, Segarra-Moragues JG, Hurtado MA, Jacas JA (2016) Patterns of ambulatory dispersal in *Tetranychus urticae* can be associated with host plant specialization. Exp Appl Acarol 68:1–20

Ahmed MZ, Li S-L, Xue X, Yin Y-J, Ren S-X, Jiggins FM, Greeff JM, Qiu B-L (2015) The intracellular bacterium Wolbachia uses parasitoid wasps as phoretic vectors for efficient horizontal transmission. PLoS Pathog 10(2):e1004672–e1004672. https://doi.org/10.1371/journal.ppat.1004672

Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25(17):3389–3402

Atyame CM, Pasteur N, Dumas E, Tortosa P, Tantley ML, Pocquet N, Licciardi S, Bheecarry A, Zumbo B, Weill M, Duron O (2011) Cytoplasmic incompatibility as a means of controlling *Culex pipiens quinquefasciatus* mosquito in the islands of the South-Western Indian ocean. PLoS Negl Trop Dis 5(12):e1440. https://doi.org/10.1371/journal.pntd.0001440

Augustinos AA, Santos-Garcia D, Dionyssopoulou E, Moreira M, Papapanagiotou A, Scarvelakis M, Doudoumis V, Ramos S, Aguiar AF, Borges PAV, Khadem M, Latorre A, Tsiamis G, Bourtzis K (2011) Detection and characterization of Wolbachia infections in natural populations of aphids: is the hidden diversity fully unraveled? PloS ONE 6(12):e28695. https://doi.org/10.1371/journal.pone.0028695

Baldo L, Lo N, Werren JH (2005) Mosaic nature of the Wolbachia surface protein. J Bacteriol 187(5):5406–5418. doi:https://doi.org/10.1128/JB.187.5.5406-5418.2005

Baldo L, Hotopp JCD, Jolley KA, Bordenstein SR, Biber SA, Choudhury RR, Hayashi C, Maiden MCJ, Tettelin H, Werren JH (2006) Multilocus sequence typing systems for endosymbiont Wolbachia pipientis. Appl Environ Microbiol 72:7098–7110

Baldo L, Prendini L, Corthals A, Werren JH (2007) Wolbachia are present in Southern African scorpions and cluster with supergroup F. Curr Microbiol 55:367–373

Bleidorn C, Gerth M (2018) A critical re-evaluation of multilocus sequence typing (MLST) efforts in Wolbachia. FEMS Microbiol Ecol 94(1):fix163. https://doi.org/10.1093/femsec/fix163

Bolanos LM, Servin-Garcidueñas LE, Martinez-Romero E (2015) Arthropod–Spiroplasma relationship in the genomic era. FEMS Microbiol Ecol 91(2):1–8

Bordenstein S, Rosengaus RB (2005) Discovery of a novel *Wolbachia* supergroup in Isoptera. Curr Microbiol 51:393–398
Boubou A, Migeon A, Roderick GK, Navajas M (2011) Recent emergence and worldwide spread of the red tomato spider mite, *Tetranychus evansi*: genetic variation and multiple cryptic invasions. Biol Invas 13(1):81–92. https://doi.org/10.1007/s10530-010-9791-y

Boubou A, Migeon A, Roderick GK, Auger P, Cornuet JM, Magalhães S, Navajas M (2012) Test of colonisation scenarios reveals complex invasion history of the red tomato spider mite *Tetranychus evansi*. PLoS ONE 7(4):e35601. https://doi.org/10.1371/journal.pone.0035601

Braig HR, Zhou W, Dobson SL, O’Neill SL (1998) Cloning and characterization of a gene encoding the major surface protein of the bacterial endosymbiont *Wolbachia pipientis*. J Bacteriol 180(9):2373–2378

Brelofoord CL, Dobson SL (2009) *Wolbachia*-based strategies to control insect pests and disease vectors. Asia Pac J Mol Biotechnol 17(3):55–63

Buchner P (1965) Endosymbiosis of animals with plant microorganisms. Wiley, New York

Casiraghi M, Bordenstein SR, Baldo L, Lo N, Beninati T et al (2005) Phylogeny of *Wolbachia pipientis* based on *gltA*, *groEL* and *ftsZ* gene sequences: clustering of arthropod and nematode symbionts in the F supergroup, and evidence for further diversity in the *Wolbachia* tree. Microbiol 151:4015–4022

Chu C-C, Hoffmann M, Braswell WE, Pelz-Stelinski KS (2019) Genetic variation and potential coinfection of *Wolbachia* among widespread Asian citrus psyllid (*Diaphorina citri* Kuwayama) populations. Insect Sci 26:671–682

Duron O, Bouchon D, Boutin S, Bellamy L, Zhou L, Engelstädter J, Hurst GD (2008) The diversity of reproductive parasites among arthropods: *Wolbachia* do not walk alone. BMC Biol 6:27

Duron O, Hurst GD (2013) Arthropods and inherited bacteria: from counting the symbionts to understanding how symbionts count. BMC Biol 11(1):45

Engelstädter J, Hurst GDD (2009) The ecology and evolution of microbes that manipulate host reproduction. Ann Rev Ecol Evol Syst 40:127–149

Enigl M, Schausberger P (2007) Incidence of the endosymbionts *Wolbachia, Cardinium* and *Spiroplasma* in phytoseiid mites and associated prey. Exp Appl Acarol 42(2):75–85

Frage E, Mala M, Weldegergis BT, Yang C, McLean A, Godfray HJC, Gols R, Dicke M (2017) Symbionts protect aphids from parasitic wasps by attenuating herbivore-induced plant volatiles. Nat Commun 8(1):1860

Gottho T, Noda H, Hong XY (2003) *Wolbachia* distribution and cytoplasmic incompatibility based on a survey of 42 spider mite species (Acari: Tetranychidae) in Japan. Heredity 91:208–216

Gottho T, Noda H, Ito S (2007a) *Cardinium* symbionts cause cytoplasmic incompatibility in spider mites. Heredity 98(1):13–20

Gottho T, Sugasawa J, Noda H, Kitashima Y (2007b) *Wolbachia*-induced cytoplasmic incompatibility in Japanese populations of *Tetranychus urticae* (Acari: Tetranychidae). Exp Appl Acarol 42:1–16

Gottlieb Y, Ghanim M, Chiel E, Gerling D, Portnoy V, Steinberg S, Tzuri G, Horowitz AR, Belausov E, Mozes-Daube N, Kontsedalov S, Gershon M, Gal S, Katzir N, Zchori-Fein E (2006) Identification and localization of a *Rickettsia* sp. in *Bemisia tabaci* (Homoptera: Aleyrodidae). Appl Environ Microbiol 72(5):3646–3652

Guidolin AS, Cataldi TR, Labate CA, Francis F, Cónsoli FL (2018) *Spiroplasma* affects host aphid proteomics feeding on two nutritional resources. Sci Rep 8(1):2466

Heyworth ER, Ferrari J (2015) A facultative endosymbiont in aphids can provide diverse ecological benefits. J Evol Biol Res 28(10):1753–1760

Hosokawa T, Koga R, Kikuchi Y, Meng XY, Fukatsu T (2010) *Wolbachia* as a bacteriocyte-associated nutritional mutualist. Proc Natl Acad Sci USA 107:769–774

Jacas JA, Karamaouna F, Vercher R, Zappalà L (2010) Citrus pest management in the Northern Mediterranean basin: Spain, Italy and Greece. In: Ciancia A, Mukerji KG (eds) Integrated management of arthropod pests and insect borne diseases, vol 5. Springer, The Netherlands, pp 3–26

Jaques JA, Aguilar-Fenollosa E, Hurtado-Ruiz MA, Pina T (2015) Food web engineering to enhance biological control of *tetranychus urticae* by phytoseiid mites (*Tetranychidae: Phytoseidae*) in Citrus. In: Carrillo D, de Moraes G, Peña J (eds) Prospects for biological control of plant feeding mites and other harmful organisms. Progress in biological control. Springer, Cham, pp 251–269

Jeyaprakash A, Hoy MA (2000) Long PCR improves *Wolbachia* DNA amplifications: *wsp* sequences found in 76% of sixty-three arthropod species. Insect Mol Biol 9:393–405

Jolley KA, Maiden MJC (2010) BIGSdb: Scalable analysis of bacterial genome variation at the population level. BMC Bioinf 11:595

Kliot A, Cilia M, Czosnek H, Ghanim M (2014) Implication of the bacterial endosymbiont *Rickettsia* spp. in interactions of the whitefly *Bemisia tabaci* with tomato yellow leaf curl virus. J Virol 88(10):5652–5660

Kumar S, Stecher G, Li M, Knyaz C, Tamura K (2018) MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol 35:1547–1549
Li S-J, Ahmed MZ, Lv N, Shi P-Q, Wang X-M, Huang J-L, Qiu B-L (2017) Plant-mediated horizontal transmission of Wolbachia between whiteflies. ISME J 11:1019–1028

Liu X-D, Guo H-F (2019) Importance of endosymbionts Wolbachia and Rickettsia in insect resistance development. Curr Opin Insect Sci 33:84–90

Lo N, Casiraghi M, Salati E, Bazzocchi C, Bandi C (2002) How many Wolbachia supergroups exist? Mol Biol Evol 19(3):341–346

Lo N, Paraskevopoulos C, Bourtzis K, O’Neill SL, Werren JH, Bordenstein SR, Bandi C (2007) Taxonomic status of the intracellular bacterium Wolbachia pipiens. Int J Syst Evol Micro 57(3):654–657

Marinacci C, Magalhaes S, Macke E, Navajas M, Carbonell D, Devaux C, Olivieri I (2015) Effects of host plant on life-history traits in the polyphagous spider mite Tetramychus urticae. Ecol Evol 5(15):3151–3158

Mathé-Hubert H, Kaech H, Ganesanandamoorthy P, Vorburger C (2019) Evolutionary costs and benefits of infection with diverse strains of Spiroplasma in pea aphids. Evolution 73(7):1466–1481

Migeon A, Dorkeld F (2019) Spider Mites Web: a comprehensive database for the Tetranychidae. http://www1.montpellier.inra.fr/CBGP/spwweb/. Accessed 20 Oct 2019

Montenegro H, Souza WN, Leite DS, Klaczko LB (2000) Male-killing selfish cytoplasmic element causes sex-ratio distortion in Drosophila melanogaster. Heredity 85:465–470

Monzó C, Sabater-Muñoz B, Urbaneja A, Castañera P (2010) Tracking medfly predation by the wolf spider, Pardosa cribata Simon, in citrus orchards using PCR-based gut-content analysis. Bull Entomol Res 100(2):145–152

Nicholas KB, Nicholas HB (1994–1998) GENEDOC: a tool for editing and annotation multiple sequence alignments. www.psc.edu/biomed/genedoc

Osaka R, Ichizono T, Kageyama D, Nomura M, Watada M (2013) Natural variation in population densities and vertical transmission of a Sporoplasma endosymbiont in Drosophila hydei. Symbiosis 60:73–78

Oliver KM, Degnan PH, Burke GR, Moran NA (2010) Facultative symbionts in aphids and the horizontal transfer of ecologically important traits. Annu Rev Entomol 55:247–266

O’Neill S, Giordano R, Colbert AME, Karr TL, Robertson HM (1992) 16S rRNA phylogenetic analysis of the genus Wolbachia. Microb Ecol 23:225–231

Oliver KM, Degnan PH, Burke GR, Moran NA (2010) Facultative symbionts in aphids and the horizontal transfer of ecologically important traits. Annu Rev Entomol 55:247–266

Pérez-Sayas C, Pina T, Gómez-Martínez MA, Camañes G, Ibáñez-Gual MV, Jaques JA, Hurtado MA (2015) Closely related strains Wolbachia infecting a Mediterranean herbaceous plant. Disentangling field mite predator-prey relationships by multiplex PCR. Mol Ecol Res 15(6):1330–1345

Perlman SJ, Hunter MS, Zchori-Fein E (2006) The emerging diversity of Rickettsia. Proc R Soc Lond B Biol Sci 273(1589):2097–2106

Pascual-Ruiz S, Gómez-Martínez MA, Ansaloni T, Segarra-Moragues JG, Sabater-Muñoz B, Jacas JA, Hurtado-Ruiz MA (2014) Genetic structure of a phytophagous mite species affected by crop practices: the case of Tetramychus urticae in clementine mandarins. Exp Appl Acarol 68(1):21–31

Pérez-Sayas C, Pina T, Gómez-Martínez MA, Camañes G, Ibáñez-Gual MV, Jaques JA, Hurtado MA (2015) Closely related strains Wolbachia infecting a Mediterranean herbaceous plant. Disentangling field mite predator-prey relationships by multiplex PCR. Mol Ecol Res 15(6):1330–1345

Perlman SJ, Hunter MS, Zchori-Fein E (2006) The emerging diversity of Rickettsia. Proc R Soc Lond B Biol Sci 273(1589):2097–2106

Perlman SJ, Hunter MS, Zchori-Fein E (2006) The emerging diversity of Rickettsia. Proc R Soc Lond B Biol Sci 273(1589):2097–2106

Rambaut A, Drummond AJ, Xie D, Baele G, Suchard MA (2018) Posterior summarisation in Bayesian phylogenetics using Tracer 1.7. Syst Biol 67(5):901–904. https://doi.org/10.1093/sysbio/syy032

Ros VID, Fleming VM, Feil EJ, Breeuwer JAJ (2009) How diverse is the genus Wolbachia? Multiple-gene sequencing reveal a putatively new Wolbachia supergroup recovered from spider mites (Acari: Tetranychidae). Appl Environ Microbiol 75:1036–1043

Ros VID, Fleming VM, Feil EJ, Breeuwer JAJ (2012) Diversity and recombination in Wolbachia and Cardinium from Bryobia spider mites. BMC Microbiol 12(S1):S13. https://doi.org/10.1186/1471-2180-12-S1-S13

Russell JA, Latorre A, Sabater-Munoz B, Moya A, Moran NA (2003) Side-stepping secondary symbionts: widespread horizontal transfer across and beyond the Aphidoidea. Mol Ecol 12(4):1061–1075

Sato Y, Staudacher H, Sabelis MW (2016) Why do males choose heterospecific females in the red spider mite? Evolutionary costs and benefits of infection with diverse strains of Spiroplasma in pea aphids. Evolution 73(7):1466–1481

Sintupachee S, Milne JR, Poonchaisri S, Baimai V, Kittayapong P (2006) Closely related strains Wolbachia infecting a Mediterranean herbaceous plant. Disentangling field mite predator-prey relationships by multiplex PCR. Mol Ecol Res 15(6):1330–1345

Staden R (1996) The Staden sequence analysis package. Mol Biotechnol 5(3):233

Staudacher H, Schimmel BCJ, Lamers MM, Wybouw N, Groot AT, Kant MR (2017) Independent effects of a herbivore’s bacterial symbionts on its performance and induced plant defences. Int J Mol Sci 18:182. https://doi.org/10.3390/ijms18010182

Stevens L, Giordano R, Fialho RF (2001) Male-killing, nematode infections, bacteriophage infection, and virulence of cytoplasmic bacteria in the genus Wolbachia. Annu Rev Ecol Syst 32:519–545

Stevens L, Giordano R, Fialho RF (2001) Male-killing, nematode infections, bacteriophage infection, and virulence of cytoplasmic bacteria in the genus Wolbachia. Annu Rev Ecol Syst 32:519–545
Stouthamer R, Breeuwer JA, Hurst GD (1999) Wolbachia pipientis: microbial manipulator of arthropod reproduction. Annu Rev Microbiol 53:71–102

Suchard MA, Lemey P, Baele G, Ayres DL, Drummond AJ, Ramhaut A (2018) Bayesian phylogenetic and phylo-dynamic data integration using BEAST 1.10. Virus Evol 4:vey016

Suh E, Sim C, Park JJ, Cho K (2015) Inter-population variation for Wolbachia induced reproductive incompatibility in the haplodiploid mite Tetranychus urticae. Exp Appl Acarol 65:55–71

van Ham RC, Moya A, Latorre A (1997) Putative evolutionary origin of plasmids carrying the genes involved in leucine biosynthesis in Buchnera aphidicola (endosymbiont of aphids). J Bacteriol 179(15):4768–4777

van Meer MMM, Witteveldt J, Stouthamer R (1999) Phylogeny of the arthropod endosymbiont Wolbachia based on the wsp gene. Insect Mol Biol 8(3):399–408

Weinert LA, Werren JH, Aebi A, Stone GN, Jiggins FM (2009) Evolution and diversity of Rickettsia bacteria. BMC Biol 7:6. https://doi.org/10.1098/rsbp.2013.0249

Weinert LA, Araujo-Jnr EV, Ahmed MZ, Welch JJ (2015) The incidence of bacterial endosymbionts in terrestrial arthropods. Proc R Soc Lond B Biol Sci 282(1807):20150249. https://doi.org/10.1098/rspb.2015.0249

Werren JH (1997) Biology of Wolbachia. Annu Rev Entomol 42(1):587–609

Xie RR, Chen XL, Hong XY (2011) Variable fitness and reproductive effects of Wolbachia infection in populations of the two-spotted spider mite Tetranychus urticae Koch in China. Appl Entomol Zool 46:95–102

Xie RR, Sun JT, Xue XF, Hong XY (2016) Cytoplasmic incompatibility and fitness benefits in the two-spotted spider mite Tetranychus urticae (red form) doubly infected with Wolbachia and Cardinium. Syst Appl Acarol 21(9):1161–1174

Zabalou S, Riegler M, Theodorakopoulou M, Stauffer C, Savakis C (2004) Wolbachia-induced cytoplasmic incompatibility as a means for insect pest population control. Proc Natl Acad Sci USA 101(42):15042–15045

Zchori-Fein E, Perlman SJ (2004) Distribution of the bacterial symbiont Cardinium in arthropods. Mol Ecol 13(7):2009–2016

Zchori-Fein E, Perlman SJ, Kelly SE, Katzir N, Hunter MS (2004) Characterization of a Bacteroidetes symbiont in Encarsia wasps (Hymenoptera: Aphelinidae): proposal of ‘Candidatus cardinium hertigii’. Int J Syst Evol Microbiol 54:961–968. https://doi.org/10.1099/ijs.0.02957-0

Zéle F, Weill M, Magalhães S (2018a) Identification of spider mite species and their endosymbionts using multiplex PCR. Exp Appl Acarol 74(2):123–138

Zéle F, Santos I, Olivier I, Weill M, Duron O, Magalhães S (2018b) Endosymbiont diversity and prevalence in herbivorous spider mite populations in South-Western Europe. FEMS Microbiol Ecol 94(4):fiy015. https://doi.org/10.1093/femsec/fiy015

Zhang YK, Zhang KJ, Sun JT, Yang XM, Ge C, Hong XY (2013) Diversity of Wolbachia in natural populations of spider mites (genus Tetranychus): evidence for complex infection history and disequilibrium distribution. Microb Ecol 65(3):731–739

Zhang YK, Chen YT, Yang K, Qiao GX, Hong XY (2016) Screening of spider mites (Acar: Tetranychidae) for reproductive endosymbionts reveals links between co-infection and evolutionary history. Sci Rep 6:27900. https://doi.org/10.1038/srep27900

Zhao DX, Zhang XF, Hong XY (2013) Host-symbiont interactions in spider mite Tetranychus truncatus doubly infected with Wolbachia and Cardinium. Environ Entomol 42(3):445–452

Zhou W, Rousset F, O’Neill S (1998) Phylogeny and PCR-based classification of Wolbachia strains using wsp gene sequences. Proc R Soc Lond B 265:509–515

Zhou X-F, Li Z-X (2016) Establishment of the cytoplasmic incompatibility-inducing Wolbachia strain wMel in an important agricultural pest insect. Sci Rep 6:39200. https://doi.org/10.1038/srep39200

Zhu LY, Zhang KJ, Ge C, Gotoh T, Hong XY (2012) Wolbachia strengthens Cardinium-induced cytoplasmic incompatibility in the spider mite Tetranychus perezi McGregor. Curr Microbiol 65:516–523

Zhu YX, Song YL, Zhang YK, Hoffmann AA, Zhou JC, Sun JT, Hong XY (2018) Incidence of facultative bacterial endosymbionts in spider mites associated with local environments and host plants. Appl Environ Microbiol 84(6):e02546–e02517

Zug R, Hammerstein P (2012) Still a host of hosts for Wolbachia: analysis of recent data suggests that 40% of terrestrial arthropod species are infected. PLoS ONE 7:e38544. https://doi.org/10.1371/journal.pone.0038544
Affiliations

Tatiana Pina1,2 · Beatriz Sabater-Muñoz3,4 · Marc Cabedo-López1 · Joaquín Cruz-Miralles1 · Josep A. Jaques1 · Mónica A. Hurtado-Ruiz1

1 Departament de Ciències Agràries i del Medi Natural, Universitat Jaume I (UJI), Campus del Riu Sec, 12071 Castellón de la Plana, Spain
2 Departament de Didàctica de les Ciències Experimentals i Socials, Universitat de València, Avda. Tarongers, 46022 Valencia, Spain
3 Smurfit Institute of Genetics, Trinity College Dublin, University of Dublin, College Green, Dublin 2, Ireland
4 Integrative and Systems Biology Group, Dpt. Molecular Mechanisms of Stress in Plants, Institute for Plant Molecular and Cell Biology (IBMCP), Spanish National Research Council (CSIC) - Polytechnic University of Valencia (UPV), Ingeniero Fausto Elio, 46022 Valencia, Spain