ICP-OES: An Advance Tool in Biological Research

Iti Sharma*

Birla Institute of Technology and Science (BITS), Pilani, Rajasthan 333031, India

Abstract

Spectroscopic analysis has been considered as a promising tool for the quantitative detection of elements in a biological sample. Inductively coupled plasma optical emission spectrometry (ICP-OES) is an advanced trace element analysis technique that uses the emission spectrum of an excited atom to detect and quantify the element present in the sample. The samples are introduced in the instrument in a fine liquid form and the conversion and extraction of pure inorganic components of a solid sample is known as sample preparation. The method of sample preparation is determined on the basis of chemical and structural differences between non-biotic and biotic samples. The environmental safety, bio-remediation, food quality check, diagnostic and biological research laboratories have been frequently using ICP-OES techniques because comparatively high throughput, simultaneous multi-element analysis, high precision, massive dynamic linear range, high throughput and low cost are major advantages of the technique. Many reports are available considering the use of ICP-OES in the field of environmental, petrochemical, metallurgical, geological and nano-technological studies but a collective review report is unavailable on the applications of ICP-OES specifically in biological samples.

Present review is a collection of reports available on types of biological samples, variation in sample preparation and advantages of ICP-OES over other methods. The report will develop a detailed understanding of the applications of ICP-OES in element analysis of biological samples.

Introduction

The metal contamination in soil water and air has become a serious concern to the health, farming and food safety [1]. Therefore, metal analysis in plants, animals and microorganisms is essential for eco-toxicological studies. Several diagnostic and therapeutic studies of health issues for instance decline in the immunological efficiency, cardiac disorders, fetal abnormalities, gastrointestinal cancer, redox reactions; cellular energetic and abnormal neurological activity patterns are also required to quantify the accumulation of trace metal in biological tissues [2]. The study of metals is an essential part of research in genetics, environmental toxicology, bioremediation, host–parasite relationship, nanotechnology, microbiology, structural biology, cytology, physiology, biomedicines and clinical biology. The interdisciplinary intrusion of metal study in biological science demands to build up more advanced, efficient and sophisticated analytical tools and techniques of metal analysis. A combination of biochemical and spectroscopic techniques has been used to study the mechanism of metal metabolism in biological material. In biological science laboratories ICP-MS, ICP-OES (Inductively Coupled Plasma Optical Emission Spectroscopy), Flame Atomic Emission, Flame Atomic Absorption, Graphite Furnace Atomic Absorption and Atomic Absorption (cold vapor/ hydride generation) spectrometry techniques have been used for quantitative and qualitative analysis of metals. The selection of method for metal analysis depends on the range of element concentration in the sample. The ICP–MS is suitable if the range is part per trillion (ppt), furnace–AAS is used if the range is part per billion (ppb) for less than 5 elements as low dissolved solids in a sample. The flame–AAS is a good choice for analysis of fewer than 5 elements of part per million (ppm) and ICP–OES is selected for ppb as well as ppm high dissolved solid more than 5 multi–elements in a sample. Among them, ICP–OES is the most sophisticated multi–element analysis technique. The technique is widely used in official testing of drinking water, trace elements attached with proteins, food, field soil, solid–sediments, fossil fuel, bio–fuel and medicines in national and international testing laboratories [3]. A vast literature is available on the role of ICP–OES in soil, sediments, oil and other non–biological sample analysis but the application of the instrument in biological research warrant more critical analysis and compilation of research reports. The present review is an up–to–date collection of reports showing metal analysis in biological samples by ICP–OES.

Working principal of ICP-OES

ICP–OES is a method of optical emission spectrometry that...
uses the emission spectra of sample molecules to identify and quantify the elements present. The instrument has two parts. One is inductively coupled plasma and another one is an optical emission spectrometer. The major components of the ICP-OES instrument are sampler, pump, nebulizer, spray chamber, ICP torch, monochromator/polychromator, and detector arranged in a definite order.

The argon gas is supplied to the torch tube and simultaneously an electromagnetic field is generated by high frequency electric current in work coil positioned on the pointed end of the torch tube. The strong magnetic field induces the ionization of argon in torch tube. The ionized gas produced plasma with high electron density, temperature (10,000K) and energy. The newly produced bulk of the energy is used for excitation and emission of molecules in a test sample. The plasma provides a higher degree of sensitivity and stability by restrained formation of stable complex compounds that leads to simultaneous excitation of many elements.

The pretreated or digested liquid sample is introduced with a peristaltic pump into the nebulizer and then into the torch. The nebulizer turns the sample into tiny droplets like a fine mist. The larger droplets of the sample are going down in the drain but fine droplets are directed into the high plasma. The sample is introduced into the plasma in an atomized state through the narrow tube in the center of the torch tube. The sample goes to the plasma and hot plasma atomizes the molecules and excites them to a higher state. When the excited atoms return to low energy position, emission rays (spectrum rays) are released and the emission rays that correspond to the photon wavelength of each metal. The light is transferred to high resolution no purge seal optical system or spectrometer (OES). A radiofrequency generator (RF) produced a directed current in an induction coil located in plasma tube. The tube develops an oscillating magnetic field in the sample ions during exposure to plasma gas. The prisms separate the light into the specific wavelength for the elements to be measured. This wavelength tracks the detector ray and the light intensity for each different wavelength is quantified by sophisticated analytical software that can convert them into concentration units [4]. The software also provides calibration, accuracy and precision limits after internal calculations. Thus ICP-OES is used to rapid and simultaneous analysis of elements present in the samples.

Biological sample preparation

The analysis of water, oil or non-living samples is differed from biological sample due to presence of organic and inorganic substances. The removal of organic matter and extraction of pure metal from a crude sample is known as the process of sample preparation. A fine homogeneous solution of sample is essential to eliminate interference and choking of the nebulizer. Prior to sample preparation, the glassware is washed with non-ionic detergents (Tween or Triton), soaked in 10% HNO₃ for 24 hours and subsequent oven-dried (750°C) to circumvent ionic contamination during analysis. The procedure of sample preparation purely depends on the nature of the source material. The biological samples have a high amount of organic content, salts or complex structures that can obstruct metal analysis so, acid digestion is used for the extraction of pure metals from the cell and cellular structure [5]. Three basic steps for sample preparation for ICP-OES analysis are digestion, evaporation and extraction. Table 1 illustrates the different methods of sample preparation reported for specific biological samples. Nitric acid (HNO₃) is used for acid digestion because hydrochloric (HCl) or sulfuric acid (H₂SO₄) can develop chlorides and sulfates of metal ions [5]. Acid digestion with sample-specific thermal treatment or sonication is used for the isolation of metal elements from organic substances. Digestion of biological samples with individual acid or combination of HCl and HNO₃ or H₂SO₄ and HF, with an oxidizing agent (hydrogen peroxide), is suggested by various researchers [6]. HF is specific for the total dissolution of silicon–rich plant material [7]. Researcher [8] has used strong alkaline substances (pH 13.4–14.7) tetramethylammonium hydroxide (TMAH) with EDTA for digestion of fatty acids, lignin and humic element in plant samples for ICP-OES analysis. Alkaline treatment reduces the time for digestion and facilitates the long–time storage of digested samples but at the same time, some reports show that alkaline digestion of organic substances may produce a high amount of organic residue which can cause an error in ICP-OES [6]. Enzymatic pretreatment for the hydrolysis of algal samples is also suggested by [9].

Metal analysis in prepared samples by ICP-OES

Preparation of standards: The verification of detection limit, instrument performance check, selection of wavelength and view are essential steps for metal analysis. The reference or pure metal standards are prepared in acidic matrix such as 5% HNO₃, 10% HCl, 0.8% HF solutions. A calibration curve is prepared by measuring intensity for the standard metal solution. The commercially available standard metal solution is used for calibration. Verification of detection limit is essential prior to formation of standard curve. The ideal correlation coefficient should be 1.0 which shows perfect fit curve.

Semiquantitative analysis: Prior to analysis of main element, semiquantitative analysis is also perform to find out accurate quantity of test metal at highest precision level. The semiquantitative analysis includes study of all elements at a time this information is useful to detect all elements and interference present in the sample. The ICP-OES is equipped with echellogram which allows detection of intensities and all peaks suggested in the method (38).

Preparation of instrument

Prior to the sample introduction, the instrument is standardized with software and model–specific protocol. The different temperature zone of plasma and ionization process gives slightly different signals. The intensity of signals can be emphasized by changing the view position. ICP-OES user has liberty to access radial, axial and dual view. The radial view or vertical view or side on view shows view from RF coil to tip of the plasma. It has wide dynamic range from low to high concentration of elements. The view is appropriate due to high tolerance to dissolved solids, and compatible to torch.
Table 1: Source Specific Methods of Sample Preparations for Metal Analysis by ICP-OES.

Biological Samples	Methods	Reference
Plants	Digestion and Evaporation	
Take a 50 ml digestion bottle with a screw. Put 0.5 g dried plant sample with concentrated HNO₃ (8ml) to destroy organic substances and keep it for 12 hours at ±25°C in a fume hood. After the addition of 2 ml H₂O₂ digest the mixture at 95-110°C on a hot plate.		
After evaporation at high temperature, the remaining dry mixture is left in the digestion bottle.		
Extraction:		
Add 5 ml of deionized water in dry material and keep it for heating till yellow fumes are formed. Again add 5 ml deionized water and maintain it to cool at room temperature. Filter the extract with Whatman no 2-filter paper. Makeup 50 ml volume of the extract with 0.1 M HNO₃. The sample is ready for metal analysis.	[10]	
Plants	Digestion and Extraction	
The 0.5 g dried sample mixed with 10 ml of HNO₃-HCl-H₂O₂ (8:1:1, v/v/v) in a digestion bottle and place it in the heating element at 120°C till the solid is completely converted in a fine solution.		
Make up the final volume (50 ml) of a fine extract with ultra-pure water. Samples can be stored in polyethylene containers.	[11]	
Antarctic macro algae	Digestion and Extraction	
Take a 0.5 g oven-dried sample (80°C) with 2 ml H₂O₂, 8 ml HNO₃ and 2 ml HF and left the mixture for 24 hours. Add 2 ml HNO₃ and 2 ml HClO₄ and set it for microwave digestion cycles (250W-600 W).		
Extraction		
Digests are allowed to evaporate on hot plate. Add 2.5 ml of HNO₃ and 47.5 ml deionized water to the residue and store the clear solution for ICP-OES.	[7]	
Fucus and Sargasso	Digestion and Evaporation	
Take 0.2 g of grounded algae with pepsin (prepared in 1% NaCl at pH1.0). Place the mixture on sonicator for 30 min at 37°C.		
Extraction		
Centrifuge the mixture at 3000 rpm for 15 min. Take supernatant and made up the final volume with deionized water.	[9]	
Fungi	Digestion and Evaporation	
Fungi samples dried at 110°C for 90 hours and ground it with the mill. Take a 0.5 gm sample with HNO3 and keep them in the microwave for digestion.		
Extraction:		
The digest is filtered with filter paper and the final volume (15 ml) is made with deionized water.	[12]	
Mushroom	Digestion	
A 0.31 gm mushroom sample is mixed with phosphoric acid and digested in an ultrasonic bath.		
Extraction:		
Filter the sample and make a final volume of 15.0 ml with deionized water.	[12]	
Algae	Digestion	
A 50mg of the dried sample (at 85°C for 4h) is mixed into a vial having a mixture of 25% TMAH (1ml) and 0.2 mol EDTA. After 10 minutes continuous shaking vials are capped and placed in a thermostat oven set at 120 0C. Add 2 ml of water to the remaining solution and set the pH 8-9 with HCl.		
Extraction		
Add water to a final volume up to 5 ml. Centrifuge the solution at 1500 rpm for 3 min and the supernatant is used for metal analysis by ICP-OES.	[8]	
Blood, Serum, Urine, Tissue	Digestion	
Take 0.5 ml of the blood sample with a freshly prepared solution of hydrochloric acid and nitric acid (1:2 v/v) and left for 12 minutes. Digest the solution at 60 OC for 30 min.		
Add 2ml HNO and 0.5 ml H₂O₂ and again heat the solution at 78 °C till complete evaporation. The final volume (110 ml) is made up with Milli-Q water.	[15]	
Pork liver, Bovine liver, Bovine muscle	Digestion	
Take 100 mg animal tissue sample and add 25% TMAH and 2.5 ml distilled water. Place it on an ultrasonic bath for half-hour than in microwave for 30 minutes. After cooling the digest final volume (20 ml) is made-up by deionized water. | [16] |
Introduction of prepared samples

The prepared liquid samples are taken up by sampler and introduced into the system by peristaltic pump than optical analysis of metal spectrum, the study of spike recovery and checking of spectral interference provides detailed information of metal present in the biological sample. The samples should accompany with reagent blank, a negative control, a positive control of metal to be analyzed. The concentration of metal in prepared sample is calculated by formula $C_E = \frac{C \times VE \times D}{W}$ where C_E = Analyte concentration in final extract(μg/L) V_E = Final sample extract volume in milliliters (ml) D = Dilution factor (Diluted volume/aliquot volume) W = Weight of the sample in grams. The recoveries of fortified controls and samples can be analyzed by calculation of percentage recovery (%REC) using formula %Rec = (C - CB) x 100/ VFS x CFS Where C = Metal concentration in a fortified sample, CB = Metal concentration in a blank tissue from which it was prepared, in ppb (ng/g) W = Weight of fortified control, in grams, VFS = Volume of fortification standard added, in ml. CFS = Concentration of fortification standard, in μg/L [19].

Advantages and limitations Of ICP-OES

The ICP-OES has following advantages which make it most accurate and promising than other analytical techniques:

1) Multi-element analysis: Simultaneous, sequential analysis of multiple elements by a combination of Charge Coupling Device (CCD) chip detector and echelle cross disperser is a unique character of ICP-OES. The speed of the instrument results in information of 72 elements within the least time range. Among them Zirconium (Zr), Tantalum (Ta), rare earth elements are highly suitable for ecotoxicological studies. The samples with high dissolved solids (TDS) or suspended solids such as water, industrial effluents, soil, groundwater and metal-enriched water from mines are analyzed in high regulatory limits with ICP-OES [20].

2) Large analytical range with High sensitivity: Low detection limits ranging from parts per million (ppm) to parts per billion (ppb) is the main advantage of the ICP-OES technique.

3) High sample throughput: The system can deal with a large amount of data due to the automation of experiments in a small period of time.

5 Essay sample preparation: The solution of solid samples is prepared by dissolved or digested in solvents such as nitric acid, hydrochloric acid, Milli-Q water or specific organic solvents.

6) Higher Tolerance for TDS (Up To 30%): This instrument is highly suitable for ecotoxicological studies. The samples with high dissolved solids (TDS) or suspended solids such as water, industrial effluents, soil, groundwater and metal-enriched water from mines are analyzed in high regulatory limits with ICP-OES.

Citation: Sharma I (2020) ICP-OES: An Advance Tool in Biological Research. Open J Environ Biol 5(1): 027-033. DOI: https://dx.doi.org/10.17352/ojeb.000018
Table 3: A comparative analysis of ICP-MS and ICP-OES: Two frequently used metal analysis techniques in biological research.

S.No.	ICP-MS	ICP-OES
1	ICP-MS can detect 82 elements as it is also used for isotope ratio investigations.	ICP-OES is used to detect 73 elements of periodic table except radioactive elements, and halogen groups.
2	The metal detection limit is parts trillion (ppt).	The lower limit of element concentration in parts per billion (ppb).
3	The tolerance for total dissolved solid is about 0.2% therefore it has low regulatory limits.	The tolerance for high total dissolved solids (TDS) or suspended solids is up to 30% with high regulatory limits.
4	A limited range of samples can be analyzed by ICP-MS. Useful for analysis of drinking water and less complex components of laboratory samples.	Multi-element analysis in a wide range of samples from soil, polluted water, soil waste, drinking water to complex biological samples can be done with ICP-OES.
5	It has dynamic linear range 10^8 so the sample dilution is essential before the analysis with ICP-MS.	Sample dilution is not required because it has 10^8 dynamic linear ranges for the detection of the multi-element present with a wide concentration difference.
6	An ICP–MS system is costly due to the high consumption of argon.	ICP-OES is cheaper due to the lesser requirement of argon for study.
7	The installing, operating and maintaining cost of ICP-MS system is higher than ICP-OES.	ICP-OES is two to three times cheaper than ICP-MS system
8	Efficiently remove polyatomic spectral interferences using collision cell technology.	Spectral interference is removed by using Fast Automated Curve-fitting Technique
9	Rapid semi-quantitative analysis is done by a separate method for high precision.	Rapid semi-quantitative analysis is done by using the echellogram which allows users to view the relative intensity of all peaks.
10	Sample enter in the instrument for ionization and passing of ions through plasma. Therefore, there are chances for sample deposition.	Only photons are measured from the sample after passing through the plasma. Therefore, the system is more stable than ICP-MS.
11	Each time new internal standards and new calibration curve required for accurate results.	The ICP-OES is a stable system therefore, various types of semi quantities analysis may be done using previously stored calibration curves.
12	A combination of HPLC/ICP-MS is used for speciation of elements.	Advanced version of ICP-OES is suitable for speciation analysis of sample element.
7) Low sample volume and High Detection limit: ICP-OES is equipped with a detector that can detect the lowest amount of analyte in a sample with acceptable precision under the stated operating conditions of the methods. A small volume of samples can provide a large amount of data and information [41].

High detection limit, inter-element interference, cost of equipment, and lab setups with expert technical staff are some limitations but ICP-OES is the most promising technology for metal detection in biological researches.

Conclusion

Inductively Coupled Plasma Optical Emission Spectroscopy (ICP-OES Analysis) is a trace-level, elemental analysis technique that uses the emission spectra of a sample to identify and quantify the elements present. The major limitation is inter-element interference which is overcome by high resolutions chip and mathematical manipulation in data. Competitively low cost, simple operation, high stability, easy method development, capacity to evaluate refractory element, high throughput, high sensitivity and dealing with large samples per day and per run make it an excellent selection for biological laboratories.

Acknowledgments

The author is highly grateful to the department of biological science, Birla Institute of Technology and Science, Pilani (BITS), Pilani campus for providing me the facility of ICP-OES and encourages writing the present review article.

References

1. Khan MA, Khan S, Khan A, Alam M (2017) Soil contamination with cadmium, consequences and remediation using organic amendments. Sci Total Environ 601-602: 1591-1605. Link: https://bit.ly/2WKKUSc
2. Alrobaian M, Arida H (2019) Assessment of Heavy and Toxic Metals in the Blood and Hair of Saudi Arabia Smokers Using Modern Analytical Techniques. International Journal of Analytical Chemistry. Link: https://bit.ly/3rUdCHu
3. Benramdane L, Bressolle F, Vallon JJ (1999) Arsenic speciation in humans and food products: a review’. J Chromatogr Sci 37: 330-344. Link: https://bit.ly/37LwB11
4. Khan KF (2019) Application, principle and operation of ICP-OES in pharmaceutical analysis. 8: 281-282. Link: https://bit.ly/3lycTKX
5. Chard V, Prasad S (2013) ICP-OES assessment of heavy metal contamination in tropical marine sediments: A comparative study of two digestion techniques. Microchemical Journal 111: 53-61. Link: https://bit.ly/3spWqIk
6. Usman K, Al-Ghouti MA, Abu-Dieyeh MH (2019) The assessment of cadmium, chromium, copper, and nickel tolerance and bioaccumulation by shrub plant Tetraena qataranse. Sci Rep 9: 3658. Link: https://bit.ly/34IWvo8
7. Nóbbrega JA, Santos MC, de Sousa RA, Cadore S, Barnes RM, et al. (2006) Sample preparation in alkaline media. Spectrochimica Acta Part B: Atomic Spectroscopy 61: 465-495. Link: https://bit.ly/37JP2zy
8. Ferias S, Arisnabarreta SP, Vodopivez C, Smichowski P (2002) Levels of essential and potentially toxic trace metals in Antarctic macro algae Spectrochim. Spectrochimica Acta Part B Atomic Spectroscopy 57: 2133-2140. Link: https://bit.ly/3rr3Jsw
9. Uchida T, Isoyama H, Yamada K, Oguchi K, Nakagawa G, et al. (1992) Determination of twelve elements in botanical samples with inductively coupled plasma atomic emission spectrometry after leaching with tetramethylammonium hydroxide and ethylenediaminetetraacetic acid. Analytica Chimica Acta 256: 277–284. Link: https://bit.ly/3nQ5Z6G
10. Peña-Faral C, Moreira-Piñeiro A, Bermejo-Barrera A, Bermejo-Barrera P, Pinochet-Cancino H, et al. (2005) Speeding up enzymatic hydrolysis procedures for the multi-element determination in edible seaweed Anal. Chim Acta 548: 183-191. Link: https://bit.ly/37HWWG6
11. Maghrabi IA (2014) Determination of some mineral and heavy metals in Saudi Arabia popular herbal drugs using modern techniques. African Journal of Pharmacy and Pharmacology 8: 893-898. Link: https://bit.ly/3aMHZZA
12. Okem A, Southway C, Nδhlala AR, Staden JV (2012) Determination of total and bioavailable heavy and trace metals in South African commercial herbal concoctions using ICP-OES. South African Journal of Botany 82: 75-82. Link: https://bit.ly/3m5U6ub
13. Siwulski M, Mleczek M, Rzymkis P, Budka J, Jasiriska A, et al. (2017) Screening the multi-element content of Pleurotus mushroom species using inductively coupled plasma optical emission spectrometry (ICP-OES). Food Analytical Methods 10: 487-496. Link: https://bit.ly/3hAdj
14. Ramyakrishna K, Sudhamani M (2017) The metal binding potential of a dairy isolate. Journal of Water Reuse and Desalination 7: 429-441. Link: https://bit.ly/3aET1G0
15. Dickinson AW, Power Hansen MG, Brandt KK, Piliposian G, Appleby P, O’Neill PA, et al. (2019) Heavy metal pollution and co-selection for antibiotic resistance: A microbial paleoecology approach. Environ Int 132: 105117. Link: https://bit.ly/2QK75VV
16. Memon AU, Kazi TG, Afridi HI, Jamali MK, Arain MB, et al. (2007) Evaluation of Zinc status in whole blood and scalp hair of female cancer patients. Clin Chim Acta 379: 66-70. Link: https://bit.ly/38hiyfK
17. Hauptkom S, Pavel J, Seltner H (2001) Determination of silicon in biological samples by ICP-OES after non-oxidative decomposition under alkaline conditions. Fresenius Journal of Analytical Chemistry 370: 246–250. Link: https://bit.ly/37KWD8R
18. Pal P, Banat F (2015) Removal of metal ions and heat stable salts from industrial lean amine solvent using polymeric hydrogels from gas sweetening unit Editor(s): Mohammed J. Al-Mari, Fawda T. Eljack, In Advances in Gas Processing, Proceedings of the 4th International Gas Processing Symposium, Elsevier 173-184.
19. Poirier L, Nelson J, Leong D, Berhane L, Hajdu P, et al. (2016) Application of ICP-MS and ICP-OES on the Determination of Nickel, Vanadium, Iron, and Calcium in Petroleum Crude Oils via Direct Dilution. Energy Fuels 30: 3783-3790. Link: https://bit.ly/38vJzcM
20. Determination of Metals by ICP-MS and ICP-OES (Optical Emission Spectrometry) (2018) United States Department of Agriculture Food Safety and Inspection Service, Office of Public Health Science 1-20. Link: https://bit.ly/37Q9y9h
21. Wilschefski SC, Baxter MR (2019) Inductively Coupled Plasma Mass Spectrometry: Introduction to Analytical Aspects. Clin Biochem Rev 40: 115-133. Link: https://bit.ly/3hGPPG
22. Tschinkel PFS, Melo ESP, Pereira HS, Silva KRN, Arakaki DG, et al. (2020) The Hazardous Level of Heavy Metals in Different Medicinal Plants and Their Decocations in Water: A Public Health Problem in Brazil. Biomed Research International 1465051. Link: https://bit.ly/2KNTp8b
23. Lanciková V, Tomka M, Ziarovská J, Gažo J, Hricová A (2020) Morphological Responses and Gene Expression of Grain Amaranth (Amaranthus spp.) Growing under Cd. Plants 9: 572. Link: https://bit.ly/3He0wAM

Citation: Sharma I (2020) ICP-OES: An Advance Tool in Biological Research. Open J Environ Biol 5(1): 027-033. DOI: https://dx.doi.org/10.17352/ojeb.000018
24. Alhogbi BG (2018) Trace Metal Determination in Herbal Plants by Acid Digestion From Jeddah Market in Saudi Arabia. International Journal of Chemistry 10. Link: https://bit.ly/2KyoNfF

25. Karaboduk K, Hasdemir E, Aksu ML (2017) Consideration of Heavy Metals Contamination in Turkish Foodstuffs. Çemen (Fenugreek Paste) and Hot Spicy Tomato Dip and Human Health Risk Assessment. Gazi University Journal of Science 30: 215-221. Link: https://bit.ly/3mKpo

26. Michalak I, Marycz K, Basiańska K, Chojnacka K (2014) Using SEM-EDX and ICP-OES to investigate the elemental composition of green macroalga Vaucheria sessilis. Scientific World Journal 891928. Link: https://bit.ly/3aDq31

27. Larrea Marino MT, Pomares-Alfonso MS, Gomez-Juaristi M, Sanchez-Muniz FJ, de la Rocha SR (2010) Validation of an ICP-OES method for macro and trace element determination in Laminaria and Porphyra seaweeds from four different countries. J Food Compos Anal 23: 814-820. Link: https://bit.ly/3pdDBx4

28. Rzyszmi P, Niedzielski P, Siwulski M, Budzyńska S, et al. (2017) Lithium biofortification of medicinal mushrooms Agrocybe cylindracea and Hericium erinaceus. J Food Sci Technol 54: 2387-2393. Link: https://bit.ly/2JnesmA

29. Waheed KN, Hayat S (2015) The quantitative trace level analysis of heavy metals through inductively coupled plasma optical emission spectrometry (ICP-OES) in fish samples collected from fresh water aquaculture. International Conference on Aquaculture & Fisheries. Link: https://bit.ly/37M3iBi

30. Lech T (2013) Application of ICP-OES to the determination of barium in blood and urine in clinical and forensic analysis. J Anal Toxicol 37: 222-226. Link: https://bit.ly/3mUud8J

31. Moss JC, Hardaway CJ, Richert JC, Sneddon J (2010) Determination of cadmium copper, iron, nickel, lead and zinc in crawfish (Procambarus clarkii) by inductively coupled plasma optical emission spectrometry: a study over the 2009 season in southwest Louisiana. Microchemical Journal 95: 5-10. Link: https://bit.ly/3hHwsg

32. Liu XX, Hu X, Cao Y, Wen-jing P, Jin-yu H, et al. (2019) Biodegradation of Phenanthrene and Heavy Metal Removal by Acid-Tolerant Burkholderia fungorum FM-2. Frontiers in Microbiology 408. Link: https://bit.ly/2KvCABD

33. Umar ZD, Abd NA, Zulkifli SZ, Mustafa M (2018) Efficiency Of Polycyclic Aromatic Hydrocarbons (Pahs) Degrading Consortium In Resisting Heavy Metals During PAHs Degradation. International Journal of Environment 7: 14-27. Link: https://bit.ly/37MEMQI

34. Afzal AM, Rasool MM, Waseem M, Aslam B (2017) Assessment of heavy metal tolerance and biosorptive potential of Klebsiella variicola isolated from industrial effluents. AMB Expr 7: 184. Link: https://bit.ly/2Kpdtms

35. Senoro DB, Godezano JB, Meng-Wei W, Tayo LI, Sauli Z, et al. (2017) Effects of pH and concentration on the capability of E. coli and S. epidermis with bentonite clay as biosorbent for the removal of Copper, Nickel and Lead from polluted water. EPJ Web of Conferences 162: 01081. Link: https://bit.ly/3mLR9QX

36. Syed S, Chinthala P (2015) Heavy Metal Detoxification by Different Bacillus Species Isolated from Solar Saltmarshes. Scientificia (Cairo). 2015: 319760. Link: https://bit.ly/2WEJzgt

37. Suriya J, Bharathiraja S, Rajasekaran R (2013) Biosorption of Heavy Metals By Biomass Of Enterobacter cloacae Isolated From Metal-Polluted Soils. International Journal of ChemTech Research 5: 1329-1338. Link: https://bit.ly/3ByyEdv

38. François F, Lombard C, Guigner JM, Soreau P, Brian-Jaisson F, et al. (2012) Isolation and Characterization of Environmental Bacteria Capable of Extracellular Biosorption of Mercury. Appl Environ Microbiol 78: 1097-1106. Link: https://bit.ly/3aRKOBl

39. Panwchian S, Kantachote D, Wittayaweerasak B, Mallavarapu M (2011) Removal of heavy metals by exopolymeric substances produced by resistant purple nonsulfur bacteria isolated from contaminated shrimp ponds. Electronic Journal of Biotechnology 14: 4.

40. Pontes FV, Mendes BA, de Souza EM, Ferreira FN, da Silva LID, et al. (2010) Determination of metals in coal fly ashes using ultrasound-assisted digestion followed by inductively coupled plasma optical emission spectrometry. Anal Chim Acta 659: 55-59. Link: https://bit.ly/3mm0hNM

41. Neubauer K, Laura Thompson L (2011) Atomic Perspectives Close Enough: The Value of Semiquantitative Analysis. Spectroscopy 26: 31.