Solutions of Higher Order Linear Differential Equations

Dinesh Kumar, Sanjay Kumar and Manisha Saini

Abstract. We show that the higher order linear differential equation possesses all solutions of infinite order under certain conditions by extending the work of authors about second order differential equation [7].

1. Introduction

For entire functions $A_{m-1}(z), \ldots, A_0(z)$ and $H(z)$, the differential equation

$$f^{(m)} + A_{m-1}(z)f^{(m-1)} + \ldots + A_0(z)f = H(z), m \geq 3$$

has entire functions as its solutions, where $A_0(z), H(z) \neq 0$. If functions $A_{m-1}(z), \ldots, A_0(z)$ are polynomials and $H(z)$ is an entire function of finite order then all solutions of equation (1) have finite order. Therefore, if at least one of the coefficients is transcendental entire then a solution of infinite order of equation (1) exists. The associated homogeneous linear differential equation

$$f^{(m)} + A_{m-1}(z)f^{(m-1)} + \ldots + A_0(z)f = 0$$

has all non-trivial solutions of finite order if and only if all coefficients are polynomials [9]. It is well known that a solution of equation (1) is related to solution of equation (2). The aim of this article is to find a necessary condition for the non-existence of solutions of finite order of equation (1). Wang and Laine [11] proved that solutions of equation (1) are of infinite order when orders of coefficients $A_{m-1}(z), \ldots, A_0(z)$ are all equal. The authors have established certain conditions under which the associated homogeneous differential equation of (1) possesses all solutions having infinite order [5]. The main result of this paper is a generalization of Theorem 2 in [7] to higher order linear differential equations which we state below. We follow the notations $\rho(f)$, $\lambda(f)$ and $\rho_2(f)$ for order of growth, exponent of convergence and hyper-order of growth of entire function f respectively, as used in [4, 5, 6, 7].

Theorem 1. Suppose that there exists a fixed integer $j \in \{1, 2, \ldots, m - 1\}$ such that $\lambda(A_j) < \rho(A_j)$, $A_0(z)$ is a transcendental entire function satisfying $\rho(A_0) \neq \rho(A_j)$ and $\max\{\rho(A_k) : k = 1, 2, \ldots, m - 1, k \neq j\} < \rho(A_0)$. Also, suppose that $H(z)$ is an entire function. If $\lambda(A_j) < \rho(A_j)$ and $A_0(z)$ is a transcendental entire function satisfying $\rho(A_0) \neq \rho(A_j)$ and $\max\{\rho(A_k) : k = 1, 2, \ldots, m - 1, k \neq j\} < \rho(A_0)$. Also, suppose that $H(z)$ is an entire function.
function with \(\rho(H) < \max\{\rho(A_0), \rho(A_j)\} \). Then all transcendental solutions \(f \) of equation (1) satisfies

(a) \(\rho(f) = \infty \)
(b) \(\lambda(f) = \infty \)
(c) \(\rho_2(f) = \max\{\rho(A_0), \rho(A_j)\} \) where \(\max\{\rho(A_0), \rho(A_j)\} \) is a finite quantity.
(d) For every \(c \in \mathbb{C} \), \(\delta(c, f) = 0 \) and therefore, \(f \) has no finite deficient value.

Remark 1. Under the hypothesis of Theorem 1, equation (1) may possesses non-constant polynomial solutions. Also, by order consideration of an entire function, we obtain that all non-constant polynomial solutions of equation (1) are of degree less than \(j \), where \(j \in \{1, 2, \ldots, m - 1\} \) is fixed in Theorem 1. However, when \(j = 1 \), then equation (1) has no polynomial solution.

The following examples justify that the conditions in the hypothesis of Theorem 1(a) cannot be relaxed.

Example 1. The finite order function \(f(z) = e^{-z^2} \) satisfies the linear differential equation

\[
f''' + e^z f'' - f' - (e^z - 1)f = e^{-z^2}
\]

Here we have, \(\rho(A_k) < \rho(A_0) = \rho(A_j) \) and \(\rho(H) = \max\{\rho(A_0), \rho(A_j)\} \) for \(k = 1 \) and \(j = 2 \), which shows that hypothesis in Theorem 1 are necessary.

Example 2. The differential equation

\[
f''' - 2z f'' + e^z f' - (2ze^z - 1)f = (8z + 1)e^{z^2}
\]
is satisfied by the finite order function \(f(z) = e^{z^2} \).

Here we have, \(\rho(A_k) < \rho(A_0) = \rho(A_j) \) and \(\rho(H) > \max\{\rho(A_0), \rho(A_j)\} \) for \(k = 2 \) and \(j = 1 \), which also implies that hypothesis of Theorem 1 are necessary.

Example 3. The linear differential equation

\[
f^{(iv)} + f''' - e^z f'' - f' + (2e^z - 1)f = 1
\]
has a finite order solution \(f(z) = e^{-z^2} \), where \(\rho(A_k) < \rho(A_0) = \rho(A_j) \) and \(\rho(H) < \max\{\rho(A_0), \rho(A_j)\} \) for \(k = 1, 3 \) and \(j = 2 \).

Example 4. The finite order function \(f(z) = e^{-z^2} \) is a solution of linear differential equation

\[
f''' + (e^z - 1)f'' + e^z f' + e^z f = 1 - e^{z^2 - z}
\]
where \(\rho(A_j) \neq \rho(A_0) = \rho(A_k) \) and \(\rho(H) = \max\{\rho(A_0), \rho(A_j)\} \) for \(k = 2 \) and \(j = 1 \).

Example 5. The differential equation

\[
f''' + (e^{z^2} + 1)f'' - e^z f' - (e^{z^2} - e^z)f = 2
\]
has a finite order solution \(f(z) = e^{-z^2} \), where \(\rho(A_j) \neq \rho(A_0) = \rho(A_k) \) and \(\rho(H) < \max\{\rho(A_0), \rho(A_j)\} \) for \(k = 2 \) and \(j = 1 \).

Example 6. The differential equation

\[
f''' + f'' + e^z f' + \cos z^2 f = (6 + 6z + 3z^2 e^z + z^3 \cos z^2)
\]
is satisfied by the polynomial \(f(z) = z^2 \) and \(\rho(A_k) < \rho(A_0) \) for \(k = 2 \) and \(\rho(A_0) \neq \rho(A_j) \) and \(\rho(H) = \max\{\rho(A_0), \rho(A_j)\} \) for \(j = 1 \).
Example 7. The function \(f(z) = e^{z^2} \) is a finite order solution of the differential equation

\[
 f''' + e^{-z} f'' + f' - (4z^2 + 2)e^{-z} f = (14z + 8z^3)e^{z^2}
\]

where \(\rho(A_k) < \rho(A_0) = \rho(A_j) \) and \(\rho(H) > \max\{\rho(A_0), \rho(A_j)\} \) for \(k = 1 \) and \(j = 2 \).

2. Auxiliary Results

This section is devoted to the known results which will be useful in proving the main theorem. For a subset \(E \subset (1, \infty) \), \(m(E), m_l(E), \log \text{dens}(E) \) and \(\log \text{dens}_{\alpha}(E) \) denotes the linear measure, logarithmic measure, upper logarithmic density and lower logarithmic density respectively.

The following lemma of Gundersen [3] provides estimates for a meromorphic function outside a set of finite logarithmic measure.

Lemma 1. Let \(f \) be a meromorphic function and let \(\Gamma = \{(k_1, j_1), \ldots, (k_p, j_p)\} \) be the set of distinct pairs of integers such that \(k_i > j_i \geq 0 \) for \(t = 1, 2, \ldots, p \). Let \(\alpha > 1 \) and \(\epsilon > 0 \) be given real constants. Then there exists \(E \subset (1, \infty) \) satisfying \(m_l(E) < \infty \) and a constant \(c > 0 \) depending on \(\alpha \) and \(\Gamma \) such that

\[
 \left| \frac{f^{(k)}(z)}{f^{(j)}(z)} \right| \leq c \left(\frac{T(\alpha r, f)}{r} \right)^{(k-j)} - \log^\alpha r \log T(\alpha r, f)
\]

Moreover, if \(f(z) \) is of finite order then \(f(z) \) satisfies:

\[
 \left| \frac{f^{(k)}(z)}{f^{(j)}(z)} \right| \leq |z|^{(k-j)(\rho(f)-1+\epsilon)}
\]

for all \(z \) satisfying \(|z| \notin E \cup [0,1] \) and \(|z| \geq R_0 \) and for all \((k, j) \in \Gamma \).

The next lemma is used to establish estimates for a transcendental entire function.

Lemma 2. [1] Let \(A(z) = v(z)e^{P(z)} \) be an entire function, where \(P(z) \) is a polynomial of degree \(n \) and \(v(z) \) is an entire function of order less than \(n \). Then for every \(\epsilon > 0 \) there exists \(E \subset [0, 2\pi) \) of linear measure zero such that

(i) for \(\theta \in [0, 2\pi) \) with \(\delta(P, \theta) > 0 \), there exists \(R > 1 \) satisfying

\[
 \exp\{(1-\epsilon)\delta(P, \theta)r^n\} \leq |A(re^{\theta})| \leq \exp\{(1+\epsilon)\delta(P, \theta)r^n\}
\]

for \(r > R \);

(ii) for \(\theta \in [0, 2\pi) \) with \(\delta(P, \theta) < 0 \), there exists \(R > 1 \) satisfying

\[
 \exp\{(1+\epsilon)\delta(P, \theta)r^n\} \leq |A(re^{\theta})| \leq \exp\{(1-\epsilon)\delta(P, \theta)r^n\}
\]

for \(r > R \).

The following lemma gives upper bound for solutions of equation (2).

Lemma 3. [2] Suppose that \(\rho(A_k) \leq \rho' < \infty \) for all \(k = 0, 1, \ldots, m-1 \). If \(f \) is a solution of equation (2) then \(\rho_z(f) \leq \rho' \).

The next lemma provides a lower bound for modulus of an entire function in a neighborhood of a particular \(\theta \in [0, 2\pi) \).

Lemma 4. [10] Suppose \(f(z) \) is an entire function of finite order \(\rho(f) \) and \(M(r, f) = |f(re^{i\theta})| \) for every \(r \). Given \(\zeta > 0 \) and \(0 < C(\rho(f), \zeta) < 1 \) there exists \(0 < l_0 < 1/2 \) and a
set $S \subset (1, \infty)$ with $\log \text{dens}(S) \geq 1 - \zeta$ such that

$$e^{-5\pi} M(r, f)^{1-C} \leq |f(re^{i\theta})|$$

for all sufficiently large $r \in S$ and for all θ satisfying $|\theta - \theta_r| \leq l_0$.

The following result is from [9] and includes the central index of an entire function.

Lemma 5. Let f be a transcendental entire function, $\delta \in (0, 1/4)$ and z be such that $|z| = r$ and that

$$|f(z)| > M(r, f)\nu(r, f)^{-\frac{1}{2} + \delta}$$

holds. Then there exists a set $F \subset (1, \infty)$ with $m_1(F) < \infty$ such that

$$f^{(p)}(z) = \left(\frac{\nu(r, f)}{z}\right)^p (1 + o(1)) f(z)$$

holds for all non-negative integers p and for all $r \notin F$.

Remark 2. If $|f(re^{i\theta})| = M(r, f)$ then equation [8] holds and there exists $F \subset (1, \infty)$ with $m_1(F) < \infty$ such that

$$\left|\frac{f^{(p)}(re^{i\theta})}{f(re^{i\theta})}\right| = \left(\frac{\nu(r, f)}{r}\right)^p (1 + o(1))$$

for all non-negative integers p and for all $r \notin F$. We know that the central index of a transcendental entire function f satisfies $\nu(r, f) \geq 1$, as a result we have

$$\left|\frac{f^{(p)}(re^{i\theta})}{f(re^{i\theta})}\right| \geq \frac{1}{rp}(1 + o(1))$$

holds for all non-negative integers p and $r \notin F$.

The following result [9, Proposition 9.3.2] provides relation between the proximity function of $1/(f - c)$ and characteristic function of f.

Proposition 1. Let $P(z, f)$ be a polynomial in f and its derivatives with meromorphic coefficients $a_\kappa, \kappa \in I$. Suppose that f is a transcendental meromorphic function solution of $P(z, f) = 0$ and c is a complex number. If $P(z, c) \neq 0$ then

$$m\left(r, \frac{1}{f - c}\right) = O\left(\sum_{\kappa \in I} T(r, a_\kappa)\right) + S(r, f).$$

The next three lemmas provides relation between maximum modulus and characteristic functions of two entire functions under certain conditions.

Lemma 6. [7] Suppose $f(z)$ is an entire function with $\rho(f) \in (0, \infty)$. Then for each $\epsilon > 0$, there exists a set $S \subset (1, \infty)$ that satisfies $\log \text{dens}(S) > 0$ and

$$M(r, f) \geq \exp\{\rho(f) - \epsilon\}$$

for all r sufficiently large and $r \in S$.

Lemma 7. [7] Let $f(z)$ and $g(z)$ be two meromorphic functions satisfying $\rho(g) < \rho(f)$. Then there exists a set $S \subset (1, \infty)$ with $\log \text{dens}(S) > 0$ such that

$$T(r, g) = o(T(r, f))$$

for sufficiently large $r \in S$.
Lemma 8. Suppose \(f(z) \) and \(g(z) \) be two entire functions satisfying \(\rho(g) \leq \rho(f) \). Then for \(0 < \epsilon \leq \min\{3\rho(f)/4, (\rho(f) - \rho(g))/2\} \), there exists \(S \subset (1, \infty) \) with \(\log \text{dens}(S) = 1 \) satisfying

\[
|g(z)| = o(M(|z|, f))
\]

for sufficiently large \(|z| \in S \).

3. Proof of Main Theorem

We state and prove a lemma which will be used in the proof of Theorem 1.

Lemma 9. Suppose \(A_{m-1}(z), \ldots, A_0(z) \) and \(H(z) \) are entire functions and there is an integer \(j \in \{1, 2, \ldots, m - 1\} \) such that \(\rho(A_j) \neq \rho(A_0) \), \(\max\{\rho(A_k) : k = 1, 2, \ldots, m - 1, k \neq j\} \) and \(\rho(H) < \max\{\rho(A_j), \rho(A_0)\} \). Then all transcendental solutions \(f \) of equation (11) of finite order satisfies \(\rho(f) \geq \max\{\rho(A_j), \rho(A_0)\} \).

Proof. Suppose that \(\rho(A_j) < \rho(A_0) \). Then using equation (11), first fundamental theorem of Nevanlinna theory, lemma of logarithmic derivatives and Lemma 7 we have

\[
m(r, A_0) \leq m \left(r, \frac{f^{(m)}}{f} \right) + m \left(r, \frac{f^{(m-1)}}{f} \right) + \ldots + m \left(r, \frac{f^1}{f} \right) + m \left(r, \frac{A_{m-1}}{f} \right) + \ldots + m \left(r, A_1 \right) + m \left(r, \frac{H}{f} \right)
\]

\[
T(r, A_0) \leq O(\log r) + T(r, A_{m-1}) + \ldots + T(r, A_1) + T(r, f) + T(r, H) = O(\log r) + o(T(r, A_0)) + T(r, f)
\]

for all \(r \geq R \) and \(r \in S \) where \(\log \text{dens}(S) > 0 \). Combining the equations, we obtain \(\rho(A_0) \leq \rho(f) \). Similarly, when \(\rho(A_0) < \rho(A_j) \) then using equation (11) we have

\[
|A_j(z)| \leq \left| \frac{f^{(m)}}{f(z)} \right| + \left| A_{m-1}(z) \right| \left| \frac{f^{(m-1)}}{f(z)} \right| + \ldots + \left| A_1(z) \right| \left| \frac{f^{(1)}}{f(z)} \right| + \left| A_{j-1}(z) \right| \left| \frac{f^{(j-1)}}{f(z)} \right| + \ldots \left| A_0(z) \right| \left| \frac{f^0}{f(z)} \right| + \left| A_{j+1}(z) \right| \left| \frac{f^{(j+1)}}{f(z)} \right|
\]

This will imply

\[
m(r, A_j) \leq m \left(r, \frac{f^{(m)}}{f} \right) + m \left(r, \frac{f^{(m-1)}}{f} \right) + \ldots + m \left(r, \frac{f^{(j+1)}}{f} \right) + m \left(r, \frac{f^j}{f} \right) + \ldots
\]

\[
+ m \left(r, A_{m-1} \right) + \ldots + m \left(r, A_0 \right) + m \left(r, \frac{H}{f} \right)
\]
Now using first fundamental theorem of Nevanlinna theory, lemma of logarithmic derivatives, Lemma 5 and 7 we obtain

\[T(r, A_j) \leq O(\log r) + o(1) + \sum_{k=0, k \neq j}^{m-1} T(r, A_k) + T(r, H) + T(r, f) \]

\[= O(\log r) + o(1) + o(T(r, A_j)) + T(r, f) \]

for sufficiently large \(r \in S \setminus F \). This will imply that \(\rho(A_j) \leq \rho(f) \).

\[\square \]

It is to be noted that hypothesis of Lemma 9 are only necessary and not sufficient. Examples 1, 2 and 7 justifies that hypothesis of Lemma 9 are not sufficient. Also, Examples 4 - 6 justifies that hypothesis of Lemma 9 are necessary.

Proof of Theorem 1: (a) Suppose there is a transcendental solution \(f \) of equation (1) having finite order. From Lemma 1 there exists a set \(E \subset (1, \infty) \) satisfying \(m_1(E) < \infty \) such that

\[\left| \frac{f^{(k)}(z)}{f^{(l)}(z)} \right| \leq |z|^{|\rho(f)|, l < k = 1, 2, \ldots, m - 1} \quad (13) \]

for all \(z \) satisfying \(|z| = r \notin E \cup [0, 1] \) and \(|z| \geq R \). Then Lemma 6 implies that there exists \(S_1 \subset (1, \infty) \) satisfying \(0 < \log \text{dens}(S_1) = \delta \) such that

\[M(r, A_0) \geq \exp \left(r^{\rho(A_0) - \epsilon} \right) \quad (14) \]

for all \(r \in S_1 \) and \(r > R \). We suppose that \(|f(re^{\theta r})| = M(r, f) \) for each \(r \). From Lemma 4 for \(\delta > 0 \) and \(C \in (0, 1) \), there exists \(l_0 \in (0, 1/2) \) and \(S_2 \subset (1, \infty) \) with \(\log \text{dens}(S_2) \geq 1 - \delta/2 \) such that

\[e^{-5\pi} M(r, f)^{(1-C)} \leq |f(re^{\theta r})| \]

for all sufficiently large \(r \in S_2 \) and \(\theta \) such that \(|\theta - \theta_0| \leq l_0 \). Using Lemma 5, \(\rho(f) \geq \max\{\rho(A_j), \rho(A_0)\} \) and hence Lemma 6 implies

\[\frac{|H(z)|}{M(r, f)} \to 0 \quad (15) \]

as \(r \to \infty \) where \(r \in S_3 \subset (1, \infty) \) and \(\log \text{dens}(S_3) = 1 \). We know that

\[\chi_{S_1 \cap S_2} = \chi_{S_1} + \chi_{S_2} - \chi_{S_1 \cup S_2} \]

and \(\log \text{dens}(S_1 \cup S_2) \leq 1 \) therefore,

\[\log \text{dens}(S_1 \cap S_2) \geq \log \text{dens}(S_1) + \log \text{dens}(S_2) - \log \text{dens}(S_1 \cup S_2) \]

\[\geq \delta + 1 - \frac{\delta}{2} - 1 = \frac{\delta}{2} \]

Also,

\[\log \text{dens}(S_1 \cap S_2 \cap S_3) \geq \log \text{dens}(S_1 \cap S_2) + \log \text{dens}(S_3) - \log \text{dens}(S_1 \cup S_2 \cup S_3) \]

\[\geq \frac{\delta}{2} + 1 - 1 = \frac{\delta}{2} > 0. \]
As $n_0(E) < \infty$, this gives $\log \text{dens}(S_1 \cap S_2 \cap S_3 \setminus E) > 0$. Hence we can choose $z_q = r_q e^{\theta_q}$ with $r_q \to \infty$ such that
\[
r_q \in (S_1 \cap S_2 \cap S_3 \setminus E), \quad |f(r_q e^{\theta_q})| = M(r_q, f).
\]
We may suppose that there exists a subsequence (θ_q) such that
\[
\lim_{q \to \infty} \theta_q = \theta_0.
\]
We have $\lambda(A_j) < \rho(A_j)$ therefore, $A_j(z) = v(z)e^{P(z)}$, where $v(z) < \rho(e^{P(z)}) = n \in \mathbb{N}$.

First we consider $\rho(\lambda)$.

(i) if $\delta(P, \theta_0) > 0$, then since $\delta(P, \theta)$ is a continuous function we have,

\[
\frac{1}{2}\delta(P, \theta_0) < \delta(P, \theta_m) < \frac{3}{2}\delta(P, \theta_0)
\]

for all sufficiently large $m \in \mathbb{N}$. From part (i) of Lemma 2 we have

\[
\exp \left((1 - \epsilon)\frac{1}{2}\delta(P, \theta_0)r_q^m\right) \leq |A_j(z)| \leq \exp \left((1 + \epsilon)\frac{3}{2}\delta(P, \theta_0)r_q^m\right)
\]

for sufficiently large $m \in \mathbb{N}$. Using equations (1), (13), (14), (15) and (17) we get

\[
\exp \left(r_q^{\rho(A_0) - \epsilon}\right) \leq M(r, A_0)
\]

\[
\leq \frac{|f^{(m)}(z)|}{f(z)} + |A_{m-1}(z)| \frac{|f^{(m-1)}(z)|}{f(z)} + \cdots + |A_1(z)| \frac{|f'(z)|}{f(z)} + \frac{H(z)}{f(z)}
\]

\[
\leq r^{m\rho(f)}q (1 + |A_{m-1}(z)| + \cdots + |A_j(z)| + \cdots + |A_1(z)|) + o(1)
\]

\[
\leq r^{m\rho(f)}q \left(1 + \exp \left((1 + \epsilon)\frac{3}{2}\delta(P, \theta_0)r_q^m\right) + (m - 2) \exp r_q^m\right) + o(1)
\]

where $\max\{\rho(A_k) : k = 1, 2, \ldots, m - 1, k \neq j\} < \eta < \rho(A_0)$. But this is a contradiction for sufficiently large r_q, as $\rho(A_0) > \rho(A_j) = n$.

(ii) If $\delta(P, \theta_0) < 0$, then since $\delta(P, \theta)$ is a continuous function therefore,

\[
\frac{3}{2}\delta(P, \theta_0) < \delta(P, \theta_0) < \frac{1}{2}\delta(P, \theta_0)
\]

for sufficiently large $q \in \mathbb{N}$. Using part (ii) of Lemma 2 we get

\[
\exp \left((1 + \epsilon)\frac{3}{2}\delta(P, \theta_0)r_q^m\right) \leq |A(z)| \leq \exp \left((1 - \epsilon)\frac{1}{2}\delta(P, \theta_0)r_q^m\right)
\]

for sufficiently large $m \in \mathbb{N}$. From equations (1), (13), (14), (15) and (18) we have

\[
\exp \left(r_q^{\rho(A_0) - \epsilon}\right) \leq M(r, A_0)
\]

\[
\leq \frac{|f^{(m)}(z)|}{f(z)} + |A_{m-1}(z)| \frac{|f^{(m-1)}(z)|}{f(z)} + \cdots + |A_1(z)| \frac{|f'(z)|}{f(z)} + \frac{H(z)}{f(z)}
\]

\[
\leq r^{m\rho(f)}q (1 + |A_{m-1}(z)| + \cdots + |A_j(z)| + \cdots + |A_1(z)|) + o(1)
\]

\[
\leq r^{m\rho(f)}q \left(1 + \exp \left((1 - \epsilon)\frac{1}{2}\delta(P, \theta_0)r_q^m\right) + (m - 2) \exp r_q^m\right) + o(1)
\]

which will be a contradiction to the fact that $\rho(A_0) > 1$.

(iii) Finally, suppose \(\delta(P, \theta_0) = 0 \). We know that \(|\theta_q - \theta_0| \leq l_0\) for sufficiently large \(q \in \mathbb{N} \). Choose \(\theta^*_q \) such that \(l_0/3 \leq \theta^*_q - \theta_q \leq l_0 \) and \(\theta^*_q \to \theta_0 \) as \(q \to \infty \), we have

\[
\theta_q + \frac{l_0}{3} \leq \theta^*_q \leq \theta_q + l_0
\]

which implies \(\theta_0 + \frac{l_0}{3} \leq \theta^*_q \leq \theta_0 + l_0 \)

as \(q \to \infty \). We may assume without loss of generality that \(\delta(P, \theta^*_0) > 0 \) then as done in case (a), we obtain

\[
\exp \left((1 - \epsilon)\frac{1}{2}\delta(P, \theta^*_0)r_q^n \right) \leq |A_j(z^*_q)| \leq \exp \left((1 + \epsilon)\frac{3}{2}\delta(P, \theta^*_0)r_q^n \right).
\]

for sufficiently large \(q \in \mathbb{N} \). Using equations (11), (13), (14), (15) and (19) we get a contradiction as in case (a). Similarly if \(\delta(P, \theta^*_0) < 0 \) then we get contradiction as in case (a).

Now consider \(\rho(A_0) < \rho(A_j) \) and following cases:

(I) if \(\delta(P, \theta_0) > 0 \) then using equation (11), (10), (13), (15) and (17) we have

\[
\exp \left((1 - \epsilon)\frac{1}{2}\delta(P, \theta_0)r_q^n \right) \leq |A_j(z_q)|
\]

\[
\leq \left| \frac{f^{(m)}(z_q)}{f^{(j)}(z_q)} \right| + |A_{m-1}(z_q)| \left| \frac{f^{(m-1)}(z_q)}{f^{(j)}(z_q)} \right| + \ldots
\]

\[
+ |A_{j-1}(z_q)| \left| \frac{f^{(j-1)}(z_q)}{f^{(j)}(z_q)} \right| + |A_{j+1}(z_q)| \left| \frac{f^{(j+1)}(z_q)}{f^{(j)}(z_q)} \right|
\]

\[
+ \ldots + |A_0(z_q)| \left| \frac{f(z_q)}{f^{(j)}(z_q)} \right| + \frac{H(z_q)}{f^{(j)}(z_q)}
\]

\[
\leq \left| \frac{f^{(m)}(z_q)}{f^{(j)}(z_q)} \right| + |A_{m-1}(z_q)| \left| \frac{f^{(m-1)}(z_q)}{f^{(j)}(z_q)} \right| + \ldots
\]

\[
+ \left| \frac{f(z_q)}{f^{(j)}(z_q)} \right| \left| \frac{f^{(j-1)}(z_q)}{f(z_q)} \right| + \ldots + |A_{j-1}(z_q)| \left| \frac{f^{(j-1)}(z_q)}{f(z_q)} \right|
\]

\[
+ |A_{j+1}(z_q)| \left| \frac{f^{(j+1)}(z_q)}{f(z_q)} \right| + \ldots + |A_0(z_q)| + \frac{H(z_q)}{f(z_q)}\}
\]

\[
\leq r^{mp(f)} + |A_{m-1}(z_q)|r^{mp(f)} + \ldots + r^{mp(f)}(1 + o(1)) \}
\]

\[
(|A_{j-1}|r^{mp(f)} + |A_{j+1}|r^{mp(f)} + \ldots + |A_0(z_q)| + o(1)) \}
\]

\[
\leq r^{2mp(f)}(1 + o(1)) ((m - 1) \exp (r^n) + o(1))
\]

where \(\max\{\rho(A_k) : k = 1, 2, \ldots, m - 1, k \neq j\} < \rho(A_0) < \eta < \rho(A_j) \). But this gives a contradiction to the fact that \(\rho(A_j) > \rho(A_0) \).

(II) When \(\delta(P, \theta_0) < 0 \) or \(\delta(P, \theta_0) = 0 \), then as done in earlier cases, we obtain a contradiction.

Thus all solutions of equation (11) are of infinite order.

(b) Now, from equation (11) we have

\[
\frac{1}{f} = -\frac{1}{H} \left(\frac{f^{(m)}}{f} + A_{m-1} \frac{f^{(m-1)}}{f} + \ldots + A_1 \frac{f'}{f} + A_0 \right)
\]
As a consequence of lemma of logarithmic derivatives and first fundamental theorem of Nevanlinna theory we have

\[m\left(r, \frac{1}{f}\right) \leq m\left(r, \frac{f^{(m)}}{f}\right) + \ldots + m\left(r, \frac{f'}{f}\right) + m\left(r, A_{m-1}\right) + \ldots + m\left(r, A_1\right) + m\left(r, A_0\right) + m\left(r, \frac{1}{H}\right) \]

\[\leq S(r, f) + o(T(r, f)) + m(r, H) + O(1) \]

\[= S(r, f) + o(T(r, f)) + O(1) \]

Again applying first fundamental theorem of Nevanlinna theory, we get

\[T(r, f) + O(1) = m\left(r, \frac{1}{f}\right) + N\left(r, \frac{1}{f}\right) \]

\[\leq S(r, f) + N\left(r, \frac{1}{f}\right) + o(T(r, f)) + O(1) \]

From here, it is easy to conclude that \(\lambda(f) = \infty \).

(c) Using Lemma 1 there exists \(E \subset (1, \infty) \) satisfying \(m_1(E) < \infty \) such that

\[\left| \frac{f^{(l)}(z)}{f^{(p)}(z)} \right| \leq c[T(2r, f)]^{2(l-p)} \quad (20) \]

where \(p < l \) are non-negative integers, \(c > 0 \) is a constant and \(z \) satisfies \(|z| = r \notin E \cup [0, 1] \). Let us suppose that \(\rho(A_j) < \rho(A_0) \). Then as in case (a), using equations (11), (14), (15) and (20) we get

\[\exp\left(r^{\rho(A_0)-\epsilon}\right) \leq M(r, A_0) \]

\[\leq \left| \frac{f^{(m)}(z_q)}{f(z_q)} \right| + |A_{m-1}(z_q)| \left| \frac{f^{(m-1)}(z_q)}{f(z_q)} \right| + \ldots + |A_1(z_q)| \left| \frac{f'(z_q)}{f(z_q)} \right| + \frac{H(z_q)}{f(z_q)} \]

\[\leq c[T(2r, f)]^{m\rho(f)} (1 + |A_{m-1}(z_q)| + \ldots + |A_1(z_q)| + \ldots + |A_1(z_q)|) + o(1) \]

\[\leq c[T(2r, f)]^{m\rho(f)} (1 + (m-1) \exp r^\eta) + o(1) \]

where \(\rho(A_k) < \eta < \rho(A_0) \) for all \(k = 1, 2, \ldots, m-1 \). This will imply that \(\rho_2(f) \geq \rho(A_0) \).

Now, if \(\rho(A_0) < \rho(A_j) \) then as done in case (a), using equations (11), (11), (14), (15) and (20) we conclude from here that \(\rho_2(f) \geq \rho(A_j) \).

We know that if \(f \) is a solution of equation (11) then

\[f(z) = c_1(z)f_1(z) + \ldots + c_m(z)f_m(z) \quad (21) \]

where \(f_1, \ldots, f_m \) are linearly independent solutions of equation (22) and \(c'_i = \frac{H G_i(f_1, f_2, \ldots, f_m)}{W(f_1, f_2, \ldots, f_m)} \)

with \(G_i(f_1, f_2, \ldots, f_m) \) being a polynomial in \(f_1, f_2, \ldots, f_m \) and their derivatives and \(W(f_1, f_2, \ldots, f_m) \) being Wronskian of \(f_1, f_2, \ldots, f_m \). From equation (21) we obtain

\[T(r, f) \leq d_1T(r, f_1) + d_2T(r, f_2) + \ldots + d_mT(r, f_m) + dT(r, H) + O(1) \quad (22) \]

where \(d, d_1, d_2, \ldots, d_m \) are positive integers. From equation (22) and Lemma 8 we conclude that \(\rho_2(f) \leq \rho = \max\{\rho(A_0), \rho(A_j)\} \).
(d) For every complex number c, we know that $f \equiv c$ is not a solution of (1) therefore, using Proposition 1 and Lemma 7 we have

$$m \left(r, \frac{1}{f - c} \right) = S(r, f)$$

for $r \in S$. Thus

$$\delta(c, f) = \lim_{r \to \infty} \frac{m \left(r, \frac{1}{f - c} \right)}{T(r, f)} = 0.$$

Therefore, f has no finite deficient value.

References

[1] S. Bank, I. Laine and J. Langley, *On the frequency of zeros of solutions of second order linear differential equation*, Results Math. 10 (1986), no. 1-2, 8-24.

[2] L. G. Bernal, *On growth of k-order of solutions of a complex homogeneous linear differential equations*, Proc. Amer. Math. Soc. 101 (1987), 317-322.

[3] G. G. Gundersen, *Estimates for the logarithmic derivative of a meromorphic function*, J. Lond. Math. Soc. (2) 37 (1988), no. 1, 88-104.

[4] D. Kumar, S. Kumar and M. Saini, *On solutions of second order complex differential equations*, Bull. Calcutta Math. Soc. 111 (2019), no. 4, 331-340.

[5] S. Kumar and M. Saini, *On zeros and growth of solutions of second order linear differential equations*, Commun. Korean Math. Soc. 35 (2020), no. 1, 229-241.

[6] S. Kumar and M. Saini, *Order and hyper-order of solutions of Second Order Linear Differential Equations*, Communicated, [arxiv:1812.09712].

[7] D. Kumar, S. Kumar and M. Saini, *Non-Existence of finite order solution of non-homogeneous second order linear differential equations*, Communicated, [arxiv:1910.03615].

[8] K. H. Kwon, *On the growth of entire functions satisfying second order linear differential equations*, Bull. Korean Math. Soc. 33 (1996), 487-496.

[9] I. Laine, *Nevanlinna Theory and Complex Differential Equations*, Walter de Gruyter, Berlin, New York, 1993.

[10] J. Wang and I. Laine, *Growth of solutions of second order linear differential equations*, J. Math. Anal. Appl. 342 (2008), 39-51.

[11] J. Wang and I. Laine, *Growth of Solutions of Nonhomogeneous Linear Differential Equations*, Abstr. Appl. Anal. 2009, 11 pp.

DEPARTMENT OF MATHEMATICS, DEEN DAYAL UPADHYAYA COLLEGE, UNIVERSITY OF DELHI, NEW DELHI-110078, INDIA.

E-mail address: dinukumar680@gmail.com

DEPARTMENT OF MATHEMATICS, DEEN DAYAL UPADHYAYA COLLEGE, UNIVERSITY OF DELHI, NEW DELHI-110078, INDIA.

E-mail address: skpant@ddu.du.ac.in

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF DELHI, DELHI-110007, INDIA.

E-mail address: sainimanisha210@gmail.com, msaini@maths.du.ac.in