Review Article

CYP1B1 as a therapeutic target in cardio-oncology

Alexa N. Carrera¹,²,*, Marianne K.O. Grant¹,* and Beshay N. Zordoky¹

¹Department of Experimental and Clinical Pharmacology, College of Pharmacy, University of Minnesota, Minneapolis, MN, United States of America; ²Augsburg University, Minneapolis, MN, United States of America

Correspondence: Beshay N. Zordoky (zordo001@umn.edu)

Cardiovascular complications have been frequently reported in cancer patients and survivors, mainly because of various cardiotoxic cancer treatments. Despite the known cardiovascular toxic effects of these treatments, they are still clinically used because of their effectiveness as anti-cancer agents. In this review, we discuss the growing body of evidence suggesting that inhibition of the cytochrome P450 1B1 enzyme (CYP1B1) can be a promising therapeutic strategy that has the potential to prevent cancer treatment-induced cardiovascular complications without reducing their anti-cancer effects. CYP1B1 is an extrahepatic enzyme that is expressed in cardiovascular tissues and overexpressed in different types of cancers. A growing body of evidence is demonstrating a detrimental role of CYP1B1 in both cardiovascular diseases and cancer, via perturbed metabolism of endogenous compounds, production of carcinogenic metabolites, DNA adduct formation, and generation of reactive oxygen species (ROS). Several chemotherapeutic agents have been shown to induce CYP1B1 in cardiovascular and cancer cells, possibly via activating the Aryl hydrocarbon Receptor (AhR), ROS generation, and inflammatory cytokines. Induction of CYP1B1 is detrimental in many ways. First, it can induce or exacerbate cancer treatment-induced cardiovascular complications. Second, it may lead to significant chemo/radio-resistance, undermining both the safety and effectiveness of cancer treatments. Therefore, numerous preclinical studies demonstrate that inhibition of CYP1B1 protects against chemotherapy-induced cardiotoxicity and prevents chemo- and radio-resistance. Most of these studies have utilized phytochemicals to inhibit CYP1B1. Since phytochemicals have multiple targets, future studies are needed to discern the specific contribution of CYP1B1 to the cardioprotective and chemo/radio-sensitizing effects of these phytochemicals.

Introduction

Cancer survivorship has significantly increased over the past two decades, thanks to advanced diagnosis and treatment of different types of cancers. Currently, there are more than 15 million cancer survivors in the United States and this number is expected to increase due to the continued improvement of diagnostics, therapeutics, and care models [1]. Although the increased survivorship is a cause for celebration, two-thirds of cancer survivors experience at least one late adverse effect [2]. Cardiovascular disease is the second highest cause of mortality in cancer survivors, after secondary malignancy. The cardiovascular toxicity of cancer treatments has been increasingly recognized as a critical issue in the care of cancer survivors. Therefore, cardio-oncology has emerged as a clinical subspecialty with an ultimate goal to mitigate cardiovascular complications in cancer patients and survivors [3,4]. Cardiovascular complications have been reported in cancer patients and survivors who received different types of cancer treatments including anthracyclines, monoclonal antibodies, alkylating agents, tyrosine kinase inhibitors, immune checkpoint inhibitors, proteasome inhibitors, and radiation, as reviewed in [5]. Despite the known cardiovascular toxic effects of these treatments, they are still clinically used because of their effectiveness as anti-cancer agents. Protection against cancer treatment-induced cardiotoxicity is challenging, because shared mechanistic pathways may contribute to both the tumor suppressive and the cardiotoxic effects.
of cancer treatments. For instance, anthracycline-induced apoptotic cell death is a shared pathway for the anti-cancer and cardiotoxic effects of anthracyclines [6]. Cardioprotective agents that have non-selective anti-apoptotic effects will likely inhibit the anti-cancer effects of anthracyclines. Likewise, novel immune checkpoint inhibitors activate the immune system to fight the cancer; however, this may lead to immune-mediated myocarditis [7]. In this scenario, indiscriminate immunosuppression may protect the heart, but will likely undermine the anti-cancer effects of these agents. Therefore, there is a critical need to identify therapeutic targets that have the potential to prevent cancer treatment-induced cardiovascular complications without reducing their anti-cancer effects.

Cytochrome P450 1B1 (CYP1B1) is a monooxygenase enzyme involved in the metabolism of a variety of xenobiotics and endogenous compounds [8]. In this review, we will discuss the growing body of evidence suggesting that CYP1B1 can be a promising therapeutic target in cardio-oncology. First, we will give a brief overview of the expression, regulation, and metabolic activity of CYP1B1. Second, we will briefly discuss the role of CYP1B1 in both cardiovascular diseases and cancer. Then, we will summarize the existing literature showing how CYP1B1 is involved in the cardiovascular toxicity of different cancer treatments and the potential cardiovascular protective effects of CYP1B1 inhibitors. In parallel, we will also discuss the role of CYP1B1 inhibitors in preventing resistance to cancer treatments to highlight that CYP1B1 inhibition may not only prevent cardiovascular toxicity, but also augment the anti-cancer effects of different cancer treatments. Importantly, we will discuss how CYP1B1-mediated signaling pathways may have divergent effects of the cardiovascular tissues and the cancer. At last, we will comment on the challenges that face clinically targeting CYP1B1 and highlight future research directions.

CYP1B1

CYP1B1 is a member of the CYP1 gene family which also includes CYP1A1 and CYP1A2. A novel cytochrome P450 enzyme (P450-EF) was first purified from 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD)-treated mouse embryonic fibroblasts [9]. In 1994, P450-EF was identified and cloned as the mouse Cyp1b1 [10]. In parallel, human CYP1B1 was first cloned from TCDD-treated human epidermal keratinocytes [11]. CYP1B1 showed approximately 40% homology with both CYP1A1 and CYP1A2 [12]. The human CYP1B1 gene is located on chromosome 2 and contains three exons and two introns [13]. Mouse and rat orthologs of CYP1B1 have also been cloned and characterized [12]. Although each of these orthologs has an mRNA of 5.2 kb and a predicted protein of 543 amino acids [12], they show significant species differences in their regulation, metabolic activity, and tissue-specific distribution [10,12–14].

Expression

Unlike most cytochrome P450 enzymes, CYP1B1 expression has not been detected in the human liver; however, it is expressed primarily in extrahepatic tissues [8]. Of importance in cardio-oncology, CYP1B1 has been shown to be expressed in cardiovascular tissues and overexpressed in malignant tumors. Indeed, CYP1B1 has been detected at the mRNA and protein levels in cardiovascular tissues of human and experimental animals [15]. CYP1B1 mRNA and protein have been detected in the heart and mouse heart and in the cardiac-derived H9c2 cells [16–19]. In addition to the myocardial tissues, CYP1B1 has been detected in the vasculature in both vascular smooth muscle cells and endothelial cells [20–25]. Intriguingly, CYP1B1 has been shown to be overexpressed in malignant tumor tissues [26], particularly in hormone-responsive tissues such as prostate [27], breast [28], and ovarian cancers [29,30]. Additional immunohistochemical studies showed that CYP1B1 protein expressions were detected in 53 out of 62 samples of the extrahepatic tissue. Among these 62 samples include human brain cortex tissues, kidney tissues, and lymphoid, prostate, cervix, uterus, oocytes, bone marrow, epithelial, smooth muscle cells, and ovary cells [22,31–33].

Regulation

The CYP1B1 gene is transcriptionally induced by polycyclic aromatic hydrocarbons (e.g. TCDD) via the Aryl hydrocarbon Receptor (AhR) complex, which is a transcriptional factor that regulates CYP1A1 and CYP1B1 [11,12]. Xenobiotic-responsive elements (XREs) have been identified in the 5′ regulatory region of the CYP1B1 gene [34]. Induction of the human, rat and mouse CYP1B1 gene expression by AhR agonists has been well-documented in a variety of cell types [35–39]. In addition, the AhR is highly expressed in the heart [40], and activation of the AhR has been shown to induce CYP1B1 in cardiovascular tissues. For instance, concentrated ambient particles induce CYP1B1 mRNA in rat hearts [41]. Similarly, benzo(a)pyrene, a component of cigarette smoke, has been shown to induce CYP1B1 in the rat heart [42]. Conversely, AhR antagonists inhibit constitutive CYP1B1 expression [43]. Interestingly, CYP1B1 has been shown to be constitutively expressed in the hearts of both control and AhR-deficient mice, which implies the involvement of other pathways that regulate cardiac CYP1B1 [44].
AhR-independent up-regulation of CYP1B1 may be mediated by inflammation, estrogen signaling or other endogenous compounds. Inflammation has been shown to down-regulate most cytochrome P450 enzymes of the CYP1, CYP2, and CYP3 families [45,46]. In contrast, a few isoforms are up-regulated by inflammation such as CYP4F enzymes and CYP1B1 [46,47]. Specifically, the inflammatory cytokine interleukin-6 (IL-6) has been shown to induce CYP1B1 via miR27b in colorectal and breast cancer cells [48,49]. Tumor necrosis factor-α (TNF-α) has also been shown to up-regulate CYP1B1 via a p38-mediated mechanism in rat liver epithelial cells [32,50]. CYP1B1 is also up-regulated by 17β-estradiol through Estrogen Receptor α (ERα) [51]. G protein estrogen receptor (GPER) is also involved in CYP1B1 regulation [52]. Leptin and prostaglandin E2 have also been shown to up-regulate CYP1B1 expression through ligand-independent activation of the ERα pathway in MCF-7 breast cancer cells [53,54]. Other pathways that may play a role in CYP1B1 regulation include: the peroxisome proliferator-activated α (PPARα) in MCF-7 and HCT116 cells [55,56], the Wnt/β-catenin signaling pathway in endothelial cells and adreno-corticotropic hormone (ACTH) via cAMP in adrenal cells [36,57–59].

Metabolic activity

CYP1B1 has been shown to metabolize both endogenous (Figure 1) and exogenous compounds. CYP1B1 plays an important role in steroid metabolism, as reviewed in [60]. Estradiol is the preferred substrate for CYP1B1, followed by progesterone, then testosterone [61]. CYP1B1 metabolizes estradiol and estrone to their respective 4-hydroxy and 2-hydroxy metabolites [62–64]. Although at a lower activity, CYP1B1 has also been found to metabolize estradiol to 15α-, 6α-, 16α-, and 6β-hydroxy metabolites [61]. The 4-hydroxy-estradiol can be transformed to semiquinones and quinones that can form DNA adducts resulting in oncogenic effects [65,66] and undergo redox cycling to generate reactive oxygen species (ROS) [67]. Intriguingly, 4-hydroxyestradiol has been shown to up-regulate CYP1B1 in human mammary epithelial MCF-10A cells in a positive feedback loop [68]. Regarding androgen metabolism, CYP1B1 catalyzes the 6β-hydroxylation and 16α-hydroxylation of testosterone [61,63].

CYP1B1 is also involved in arachidonic acid metabolism. Arachidonic acid is metabolized by cytochrome P450 monooxygenases to different regioisomers of epoxycosatrienoic acids (EETs) and hydroxyeicosatetraenoic acids.
Role of CYP1B1 in cardiovascular diseases

We and others have demonstrated a significant role of CYP1B1 in the pathogenesis of cardiovascular diseases, most remarkably in cardiac hypertrophy and hypertension (Table 1). El-Kadi and colleagues demonstrated that cardiac CYP1B1 expression was up-regulated in different models of cardiac hypertrophy induced by isoproterenol [82–84], pressure overload [85,86], angiotensin II [73], and polycyclic aromatic hydrocarbons [42,87]. Additionally, heavy metal-induced cardiotoxicity has been associated with up-regulation of cardiac CYP1B1 [88–90]. The induction of CYP1B1 in these studies was associated with a perturbation in cardiac arachidonic acid metabolism with generation of more terminal and mid-chain HETEs. Importantly, inhibition of CYP1B1-mediated mid-chain HETEs production has been shown to prevent cardiac hypertrophy in male rats [73,86]. Confirming the causative role of CYP1B1 in developing cardiac hypertrophy, overexpression of CYP1B1 using CRISPR technology has been shown to induce cellular hypertrophy in the cardiac-derived RL-14 cells [72]. Inhibition of CYP1B1 has also been recently shown to prevent uremic toxins-induced cardiac hypertrophy [91]. Additionally, 2-methoxyestradiol, a specific CYP1B1 inhibitor, protected against pressure overload-induced cardiac hypertrophy via antioxidant and anti-inflammatory properties [86]. Similarly, Malik and colleagues have demonstrated an important role of CYP1B1 in hypertension and hypertension-associated pathophysiology [92]. Intriguingly, they have shown a sexually dimorphic role of CYP1B1 where CYP1B1 played a detrimental role in male rodents [93–95], while it had a protective effect in females [96,97]. The detrimental effects of CYP1B1 in male rodents have been attributed to CYP1B1-mediated production of 6β-hydroxytestosterone which was shown to exacerbate angiotensin II–induced hypertension [93], renal dysfunction [94], and vascular changes [95]. On the other hand, the protective effects of CYP1B1 in female rodents have been attributed to CYP1B1-mediated metabolism of estrogen to 2-methoxyestradiol [96,97]. Furthermore, CYP1B1 has been shown to contribute to the development of atherosclerosis, hypertension, and angiotensin II–induced aortic aneurysm in male apolipoprotein E–deficient mice [98,99]. In vitro studies have suggested the contribution of CYP1B1-mediated formation of genotoxic metabolites and DNA adducts in the development of atherosclerosis by polyaromatic hydrocarbons [100,101].

Several studies have reported the expression of other cytochrome P450 enzymes in cardiovascular tissues including human heart, aorta, and coronary arteries [16,102,103], as previously reviewed [15,104]. CYP2J2 is the most highly expressed cytochrome P450 enzyme in human cardiovascular tissues [103]. CYP2J2 metabolizes arachidonic acid to EETs which exhibit cardioprotective and anti-inflammatory properties [105,106]. Although overexpression of CYP2J2 has been shown to protect against anthracycline-induced cardiotoxicity in transgenic mice [107], CYP2J2–mediated EETs may promote tumor progression and metastasis [108,109]. Therefore, CYP2J2 may not be a reasonable therapeutic target in cardio-oncology. On the other hand, CYP1A1 has been shown to contribute to both anthracycline-induced cardiotoxicity [110–113] and tumor progression and survival of cancer cells [114,115]. Therefore, similar to CYP1B1, CYP1A1 may also be a reasonable therapeutic target in cardio-oncology. Taken together, isoform-specific targeting of cytochrome P450 enzymes is critical in cardio-oncology, since different isoforms may have opposing effects on the cancer or the cardiovascular system.

Role of CYP1B1 in cancer

The human CYP1B1 enzyme is overexpressed in numerous tumors compared with normal tissues [124]. For instance, immunohistochemistry reports showed high CYP1B1 mRNA and protein levels in prostate tumors, mammary tumors and peritumor benign tissues, and ovarian cancer tissues [30]. Similarly, CYP1B1 was shown to be expressed in eight different cell lines that represent four tumor tissues, with the highest expression levels manifested in HeLa, SKOV-3, and MDA-MB-231 cells, respectively [124]. CYP1B1 overexpression has been associated with the increase in cancer risk via pro-inflammatory cytokines, metastasis, and disturbance in the regulation of cell proliferation, migration, and differentiation [125–128]. Additionally, CYP1B1 overexpression is also associated with increased tumor size, a higher...
CYP1B1 is particularly overexpressed in hormone-related or estrogen-dependent cancers, such as breast, ovarian, and prostate. In breast cancer, CYP1B1 was observed to promote endothelial nitric oxide synthase (eNOS) expression as well as nitric oxide release, which is crucial for cancer progression and angiogenesis [129,130]. The detrimental effects of CYP1B1 have been demonstrated not to play a role in the bioactivation of xenobiotics, metabolism of steroid hormones, and the production of multiple pro-inflammatory factors [26]. The detrimental effects of CYP1B1 have been demonstrated not to play a role in the bioactivation of xenobiotics, metabolism of steroid hormones, and the production of multiple pro-inflammatory factors [26].

Table 1 Role of CYP1B1 in cardiovascular diseases

Cardiovascular pathology	Model	Effect on CYP1B1 expression	Effect of CYP1B1 inhibition	References
Cardiac hypertrophy	Isoproterenol-induced cardiac hypertrophy in male SD rats	Up-regulation of CYP1B1 gene and protein expression in the heart	Not reported	[72,83]
	Isoproterenol-induced cellular hypertrophy in RL-14 cells	Induction of CYP1B1 gene expression	Inhibition of CYP1B1 by TMS or siRNA	[72]
Abdominal aortic constriction in male SD rats	Increase in the protein expression of CYP1B1	2-ME inhibited left ventricular hypertrophy via antioxidant and anti-inflammatory mechanisms	[85,86]	
Angiotensin II-induced cellular hypertrophy in RL-14 and H9c2 cells	Induction of the protein expression of CYP1B1 and increased formation of its associated mid-chain HETEs	Inhibition of CYP1B1 by TMS, resveratrol, fluconazole or 19-HETE attenuated angiotensin II-induced cellular hypertrophy	[73,116–118]	
Angiotensin II-induced cellular hypertrophy in male SD rats	Induction of CYP1B1 protein expression, but no effect on CYP1B1 gene expression	Inhibition of CYP1B1 by TMS or 19-HETE ameliorated angiotensin II-induced cardiac hypertrophy	[73,118]	
Hypertension	DOCA salt-induced hypertension in male Sprague–Dawley rats	No significant effect on CYP1B1 expression or activity	Inhibition of CYP1B1 by TMS reduced blood pressure, ameliorated cardiovascular and renal hypertrophy, and prevented vascular reactivity and endothelial dysfunction	[119]
	Male SHR rats	Higher CYP1B1 activity in the aorta, heart and kidney of SHRs as compared with control WKY rats	Inhibition of CYP1B1 by TMS reduced blood pressure, cardiovascular hypertrophy, endothelial and renal dysfunction, and cardiac and renal fibrosis	[120]
	Angiotensin II-induced hypertension in intact male and OXV female mice	Not reported	Inhibition of CYP1b1 with 2-ME reduced blood pressure in ovariectomized female and intact male mice	[121]
	Angiotensin II-induced hypertension in male mice	Increased renal Cyp1b1 activity, increased 12-HETE and 20-HETE metabolites	Cyp1b1 gene disruption reduced blood pressure and renal damage	[122]
	Angiotensin II-induced hypertension in female mice	Increased cardiac Cyp1b1 protein expression and catalytic activity	Cyp1b1 gene disruption exacerbated hypertension and renal damage	[97,123]
	Angiotensin II-induced hypertension in male mice	Increased cardiac cytochrome P450 1B1 activity and plasma levels of 6β-hydroxytestosterone	CyP1b1 gene disruption mitigated angiotensin II-induced increase in systolic blood pressure and associated cardiac hypertrophy and fibrosis	[99]
Atherosclerosis	ApoE-deficient male mice on atherogenic diet	Increased cardiac Cyp1b1 activity	Cyp1b1 inhibition by TMS or gene disruption ameliorated atherosclerosis, and reduced blood pressure, endothelial dysfunction, oxidative stress and plasma lipids	[98]
Aortic aneurysm	Angiotensin II-induced aortic aneurysm in male ApoE-deficient mice	Not reported	Cyp1b1 inhibition by TMS or Cyp1b1 gene disruption minimized aortic aneurysms via reduction in oxidative stress and inflammation	[98]
	Acute arsenic toxicity in male C57Bl/6 mice	Induction of CYP1B1 gene expression	Not reported	[99]
	Acute mercury toxicity in male C57Bl/6 mice	Induction of cardiac CYP1b1 gene expression	Not reported	[89]
	Cadmium-induced toxicity in newborn chicks	Increase in total CYP1B1 expression	Not reported	[88]

Abbreviations: ApoE, apolipoprotein E; DOCA, deoxycorticosterone acetate; SHR, spontaneously hypertensive rat; TMS, 2,4,3’,5’-tetramethoxystilbene; WKY, Wistar–Kyoto rat; 2-ME, 2-methoxyestradiol.

In cancer cells, CYP1B1 is thought to play a role in the bioactivation of xenobiotics, metabolism of steroid hormones, and the production of multiple pro-inflammatory and pro-angiogenic factors [26]. The detrimental effects of CYP1B1 have been demonstrated not only on cancer cells, but also in other cell types, including fibroblasts, endothelial cells, pericytes, and immune cells which constitute the tumor micro-environment, as reviewed in [26]. This is especially important, considering the crucial role of the tumor micro-environment in cancer progression and metastasis [26]. For instance, in endothelial cells, CYP1B1 was observed to promote endothelial nitric oxide synthase (eNOS) expression as well as nitric oxide levels, responsible for the many inflammatory and angiogenesis effects important for cancer progression [129,130].

The exact mechanisms of CYP1B1 overexpression in cancer cells and tumors are not fully elucidated. However, CYP1B1 is particularly overexpressed in hormone-related or estrogen-dependent cancers, such as breast, ovarian,
and prostate cancers [126,131]. This can be attributed to CYP1B1 involvement in the metabolism of estrogen, progesterone, testosterone, and other steroid-related hormones. CYP1B1-mediated metabolism of these hormones can result in the generation of genotoxic metabolites and oxidative damage [30,132]. Additionally, pro-inflammatory cytokines such as TNF-α and IL-6 have been especially known to induce the expression of CYP1B1 [49,133]. The mRNA and protein levels of the AhR and CYP1B1 are higher in inflammatory breast cancer tissues [126]. CYP1B1 role in carcinogenesis may be attributed to its ability to metabolize polycyclic aromatic hydrocarbons and activate pro-carcinogens into DNA-reactive metabolites [134]. Additionally, CYP1B1 converts melatonin into N-acetylserotonin which then activates tyrosine receptor kinase B (TrkB), eventually leading to breast cancer cell survival and migration [77]. WY-14643, a PPARα agonist, has been shown to increase the protein and mRNA levels of CYP1B1 in MCF-7 cells via PPARα-dependent mechanism, playing a critical role in the progression of human breast cancer [55]. Another way in which CYP1B1 has been shown to play a role in cancer development is by enhancing the invasion of MCF-7 and MCF-10A cells. CYP1B1 has been shown to induce epithelial–mesenchymal transition (EMT) and up-regulates several transcription factors involved in cell growth and metastasis via Sp1 induction [126]. A major metabolite generated by CYP1B1, 4-hydroxyestradiol, also mediates many oncogenic events in cells via the formation of DNA adducts [126,128]. Intriguingly, overexpression of CYP1B1 in tumors can also be attributed to its induction by chemotherapeutic agents and radiation therapy, as summarized in Table 2 and discussed in more detail in subsequent sections of the review.

The association between CYP1B1 polymorphisms and increased cancer risk has been extensively studied [30]. For instance, in 2015, Li and colleagues conducted a meta-analysis to carry a comprehensive and quantitative analysis on the role of CYP1B1 in cancer [127]. This analysis specifically focused on A453G and G119T, which are two critical polymorphisms that have been associated with the replacement of important amino acids that play a crucial role in catalytic activity. This extensive analysis found a significant association between G119T and A453G with prostate, lung, colorectal, endometrial, breast, bladder, and several other cancer risks [127]. Its polymorphisms, Val453Leu, Arg48Gly, Ala119Ser, and Asn453Ser specifically, have been linked to increasing estrogen metabolism responsible for genotoxic metabolites that eventually result in hormone-induced cancers [30]. Additionally, a different meta-analysis focused on several other CYP1B1 polymorphisms. The analysis found that Leu453Val polymorphism is associated with ovarian, lung, and endometrial cancer risks. It also found that Asn453Ser and Arg48Gly are associated with endometrial cancer risks, and Ala119Ser is associated with breast cancer risk [135]. In contrast, another analysis found that the CYP1B1 polymorphisms Arg48Gly, Ala119Ser, and Asn453Ser are not associated with breast cancer risk [136]. The mechanisms by which CYP1B1 polymorphisms increase cancer risk include enhanced estrogen and progesterone receptor signaling, also known to influence cancer treatment response [30]. When studying the effect of polymorphisms on chemotherapeutic drug treatments, it was found that polymorphisms induce a slower response to anthracycline agents, whereas low polymorphism levels were shown to improve chemotherapy response [128]. Therefore, the presence of homozygous variant genotype (GG) and variant allele (G) of CYP1B1 4326C>T polymorphism of CYP1B1 was associated with lower response rates, shorter progression-free survival, and an overall decrease in patient survival among patients with triple-negative breast cancer [128]. This study shows the ability of CYP1B1 to interfere with cancer treatments. In an era of precision medicine, cancers with high-activity CYP1B1 variants may better respond to the beneficial effects of CYP1B1 inhibitors.

CYP1B1 inhibitors

The detrimental role of CYP1B1 in the pathogenesis of cancer and cardiovascular diseases, among other pathologies, has stimulated active research programs to identify and synthesize potent and selective CYP1B1 inhibitors. The medicinal chemistry, classification, and relative potency and selectivity of these inhibitors have been discussed in previously published excellent review articles [137–140]. Phytochemicals, which are chemicals derived from natural plants, have gained great popularity in the pharmaceutical and medicinal applications as potential cardioprotective and chemopreventive compounds due to their anti-inflammatory, antioxidant, anti-angiogenic, anti-mutagenic, and anti-proliferative properties [141–145]. Although not highly selective, phytochemicals have been the most common source for CYP1B1 inhibitors. Phytochemical groups that show strong inhibitory activity and relative selectivity toward CYP1B1 include stilbenes, flavonoids, coumarins, anthraquinones, and alkaloids [26,137]. More selective CYP1B1 inhibitors have been developed, including: 2,4,3′,5′-tetramethoxystilbene which is a highly potent and selective competitive inhibitor of CYP1B1 [146]. Phytochemicals are also of great interest as chemopreventive compounds due to their low toxicity, no apparent side effects, their regulatory role in cell signaling and gene expression, and high tolerance demonstrated in both *in vivo* and *in vitro* studies [142,147]. Flavonoids are among the most common phytochemicals, approximately 6000 different...
types existing today, found in fruits, vegetables, grains, teas, and wine as well as other beverages [142]. Flavonoids have been suggested for chemoprevention, which may be attributed to their ability to inhibit CYP1B1 expression and activity [26,142,148]. Aside from their potential chemopreventive role in cancer, flavonoids and polyphenolic compounds have also been shown to prevent various other diseases such as obesity, hypertension, and atherosclerosis, possibly via CYP1B1 inhibition [143,144,149]. For instance, a previous study focused on coronary heart disease found that flavonoids provide protective effects such as anti-inflammatory, antithrombotic, anti-ischemic, antioxidant, and vasorelaxant [150]. Moreover, flavonoids have been shown to decrease the risk of coronary heart disease through an improvement of coronary vasodilatation, a decrease in blood clotting in platelets, and a prevention of low-density lipoprotein (LDLs) oxidation [150,151].

Table 2 Effect of cancer treatments on CYP1B1 expression

Agent	Model	Dose/concentration	Effect on CYP1B1	References
Cyclophosphamide	HL-60S and HL-60R human promyelocytic leukemia sensitive (S) and resistant (R) cell lines	100 and 500 μg/ml, 1, 2, 3 days	Concentration-dependent inhibition of gene expression	[175]
Doxorubicin (DOX)	Zebrafish	100 μM, 40 h	Induction of gene and protein expression	[113]
	CS7Bl/6 male and female mice	20 mg/kg single dose, 1 day, 6 day	Induction of gene expression in the heart of male mice only	[19]
	Sprague-Dawley rats	3 mg/kg × 5 doses (over 2-week-period), 1 day post	Induction of gene expression in the heart Increased mid-chain HETEs	[74]
	Sprague-Dawley male rats	2.5 mg/kg × 6 doses (over 2-week-period), 14 days post	Induction of gene expression in the liver and kidney	[168]
	Sprague-Dawley male rats	15 mg/kg single dose, 1 day post	Induction of gene expression in the liver and kidney	[167]
	Sprague-Dawley male rats	15 mg/kg single dose, 1 day post	Induction of gene and protein expression in the heart	[110]
	RL-14 human cardiac-derived cells	10 μM, 12 h	Induction of gene and protein expression and catalytic activity	[74]
	RL-14 human cardiac-derived cells	10 μM, 24 h	Induction gene and protein expression and catalytic activity	[176]
	H9c2 rat cardiac-derived cells	1–10 μM, 2 h	Concentration-dependent induction of CYP1B1 gene expression	[111]
Daunorubicin	Sprague-Dawley male rats	5 mg/kg single dose, 1 day post	No change in gene or protein expression in the heart	[169]
Dasatinib	H9c2 rat cardiac-derived cells	0–160 μM for 24 h	Induction of gene expression	[177]
Docetaxel	MDA-453 and BT-20 MCF-7 (breast carcinoma)	8 ng/ml, 4 h	Induction of gene expression in MDA-453 and BT-20 cells, No change in MCF-7	[178]
Sunitinib	Wistar albino male rats	25, 50, and 100 mg/kg daily for 4 weeks, 1 day post	Dose-dependent induction of gene and protein expression in the liver and kidney	[179]
Radiation	Human skin Ultrasound	Ultraviolet B, 0–4 minimal erythema doses for 0–48 h	Induction of gene and protein expression in skin biopsies	[180]
Peripheral blood mononuclear cells	Solar radiation Measured in (W/m²) 1 m above the ground for 24 h and given as daily duration (minutes) of the radiation effect exceeding 120 W/m²	Significant correlation between solar radiation and CYP1B1 mRNA levels	[181]	
Zebrasfish embryos	Ultraviolet B, 8.9, 17.9, and 26.8 kJ/m² for 2, 4, and 6 h daily for two consecutive days	Induction of gene expression	[182]	
HaCaT human keratinocytes	Ultraviolet B, Dose 20 μl/cm² for 0–24 h	Induction of CYP1B1 gene transcript	[183]	
HaCaT human keratinocytes	Ultraviolet 0–6.6 mJ/cm² and cultured for 6 h before cell harvest	Induction of protein expression and DNA adduct formation	[184]	
Recent efforts have been exerted to discover the CYP1B1 inhibitory activity of commonly used drugs. Intriguingly, the anti-fungal drug fluconazole has been shown to inhibit CYP1B1 and protect against angiotensin II-induced cardiac hypertrophy [152]. Similarly, the clinically relevant β-blocker carvedilol has been found to inhibit CYP1B1 through a systematic drug repurposing approach [153]. Metformin, a medication usually given to treat diabetes, has also been shown to inhibit CYP1B1 expression, specifically in breast cancer cells [154]. Nevertheless, the mechanistic role of CYP1B1 inhibition in mediating the pharmacological effects of these agents is still poorly understood. In addition, almost all inhibitors of CYP1B1 have inhibitory activity toward other members of the CYP1 family, particularly CYP1A1 [155]. Although this lack of selectivity toward CYP1B1 may be undesirable from a mechanistic point of view, it may offer a therapeutic advantage since CYP1A1 is also a reasonable target in cardio-oncology as discussed earlier. Indeed, a number of studies have reported a protective effect of CYP1 inhibitors without discerning the protective effects to either CYP1A1 or CYP1B1 [112,113]. That being said, 2,4,3′,5′-tetramethoxystilbene (TMS) exhibited 50-fold selectivity for CYP1B1 over CYP1A1 and 500-fold selectivity for CYP1B1 over CYP1A2 [146]. Therefore, selective pharmacological inhibition of CYP1B1 can be achieved by using TMS in mechanistic studies. Genetic approaches using Cyp1b1 knockout mice may also be employed to mechanistically discern the exact role of Cyp1b1 [156].

Anthracycline-induced cardiotoxicity

Anthracyclines (e.g. DOX) are a group of chemotherapeutic agents used to treat hematologic malignancies and solid tumors in both pediatric and adult cancer patients. However, the clinical utility of anthracyclines is limited by a significant anthracycline-induced cardiotoxicity which may progress to end-stage heart failure [157,158]. Indeed, the cardiotoxic effects of anthracyclines were reported in cancer patients as early as the 1970s [159,160]. Anthracyclines have both acute and chronic cardiovascular toxic effects. Acute cardiotoxicity occurs in up to 11% of patients during or soon after the administration of anthracyclines and include various arrhythmias, hypotension, and acute heart failure [161,162]. On the other hand, chronic anthracycline-induced cardiotoxicity is dose-dependent and results in irreversible cardiomyopathic changes that affect approximately 2% of anthracycline-treated patients [163]. The precise mechanism of anthracycline-induced cardiotoxicity has not been fully elucidated yet, despite more than 40 years of research. There are different proposed mechanisms including: increased ROS, mitochondrial dysfunction, apoptotic cell death, altered molecular signaling, and perturbed myocardial energy metabolism [161,164–166].

Effect of anthracyclines on CYP1B1 expression

In vitro and *in vivo* studies have demonstrated the induction of CYP1B1 by DOX (Table 2). We first reported that DOX induced CYP1B1 gene expression in H9c2 cardiomyoblasts [111], an effect that was confirmed in RL-15 human cardiomyocytes at the gene, protein, and catalytic activity levels [74]. We were also the first to report that acute DOX administration induced CYP1B1 in the heart, liver, and kidney of male Sprague–Dawley rats [110,167]. Chronic DOX toxicity has also been shown to induce CYP1B1 in the heart, liver, and kidney [74,168]. Importantly, DOX-mediated induction of CYP1B1 was associated with a significant increase in mid-chain HETEs metabolites in the heart of male rats [74]. Intriguingly, we have recently demonstrated a sex-dependent induction of Cyp1b1 gene expression by acute DOX administration in male C57Bl/6 mice, but not in female mice [19]. This male-specific induction of Cyp1b1 was associated with a significant sexual dimorphism with male-specific cardiotoxicity [19]. While DOX has been shown to induce CYP1B1 expression *in vivo* and *in vitro*, a study using another anthracycline, daunorubicin, showed no changes in CYP1B1 gene or protein expression in the heart of male Sprague–Dawley rats [169].

Nevertheless, the aforementioned studies have not precisely defined the mechanism of CYP1B1 induction by DOX. Studying the general mechanisms of CYP1B1 induction, we can speculate that DOX may induce CYP1B1 via AhR activation, ROS generation, and/or inflammatory cytokines production (Figure 2). DOX has been shown to activate the AhR in hearts of C57Bl/6 mice, leading to an induction of Cyp1a1 [170]. Although the effect of DOX-induced AhR activation on Cyp1b1 expression was not reported in that study, it is inferred that DOX induced CYP1B1 since it is an AhR-dependent gene, similar to Cyp1a1. The authors have attributed the DOX-induced AhR activation to binding of DOX to the AhR due to its planar structure that resembles polyaromatic hydrocarbon receptors [170]. Counterintuitively, DOX-induced cardiotoxicity was exacerbated in AhR knock-out mice [171]. DOX has also been shown to generate a copious amount of ROS, particularly in the heart [172]. These ROS have been shown to induce CYP1B1 as well [173]. At last, DOX has been shown to provoke a strong inflammatory response which may lead to CYP1B1 induction, particularly through IL-6 and TNFα-mediated signaling [167,174]. Intriguingly, DOX-induced inflammation in the heart...
Figure 2. Possible mechanisms of DOX-mediated induction of CYP1B1
DOX may induce CYP1B1 via different mechanisms. First, DOX may directly or indirectly activate the AhR. Upon its nuclear translocation and binding to the AhR Nuclear Translocator (ARNT), the AhR–ARNT heterodimer activates the XRE to induce CYP1B1 gene transcription. DOX may also induce CYP1B1 by generating ROS and eliciting an inflammatory response via IL-6 and TNF-α. Estrogen can also induce CYP1B1 gene expression via ERα; however, the role of DOX in this pathway is not known. Induction of CYP1B1 leads to both cardiovascular toxicity and increased chemoresistance.

Cardioprotective effects of CYP1B1 inhibitors
Protection from anthracycline-induced cardiotoxicity has been provided by several natural compounds with CYP1B1 inhibitory activity both in vitro and in vivo (Table 3). It is important to mention that these compounds are not selective inhibitors to CYP1B1 and they have multiple other targets that may mediate their cardioprotective effects. Nevertheless, the CYP1B1 selective inhibitor TMS has been shown to protect from chronic DOX-induced cardiotoxicity in male Sprague–Dawley rats in vivo and in RL-1 cardiomyocyte-like cells in vitro [74]. As summarized in Table 3, the cardioprotective effects of CYP1B1 inhibitors have been shown to be mediated by reduction in oxidative stress and apoptosis [185–188], improving mitochondrial function [189], reversing altered energy metabolism [190], protection from DOX-induced senescence in vascular smooth muscle cells [191], and reducing mid-chain HETEs concentration [74].

Chemosensitizing effects of CYP1B1 inhibitors
CYP1B1 inhibitors have also been shown to enhance the chemotherapeutic effects of DOX in several cancer cell lines including lung cancer [192–194], breast cancer [195–201], liver cancer [201–204], glioblastoma [205], prostate cancer [206], colorectal cancer [207,208], gastric cancer [209], and leukemia [210,211]. Importantly, several inhibitors have also been shown to overcome DOX resistance in DOX-resistant cancer cell lines [209,210,212–217]. Although all these compounds (Table 3) are known inhibitors of CYP1B1, the role of CYP1B1 in mediating the chemosensitizing effects of these compounds have not been determined in the summarized studies. The chemosensitizing effects of these compounds have been attributed to other mechanisms including: AMPK activation to promote cell apoptosis [192], regulating miR-520b/ATG7 axis [204], miR-101/Nrf2 pathway [218], FZD7/β-catenin pathway [202], down-regulating P-glycoprotein (P-gp) expression [200], and the PTEN/Akt pathway [197]. Inhibition of CYP1B1 may interplay with these pathways leading to the chemosensitizing effects.

© 2020 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons Attribution License 4.0 (CC BY).
Table 3 Cardioprotective and chemosensitizing effects of CYP1B1 inhibitors toward anthracyclines

Inhibitor	Inhibition IC\textsubscript{50} (nM)	Cardioprotective effects	Chemosensitizing effects
Acacetin	7–14 [219–221]	Not reported	Enhances the chemotherapeutic effect of DOX in non-small-cell lung carcinoma cells [194]
Isoharnetin	17 [219]	Protection from chronic DOX-induced cardiomyocyte toxicity in vivo in rats and in vitro in H9c2 cells [201]	Potentiates DOX-induced toxicity in MCF-7, HepG2, and Hep2 cancer cells [201]
Chrysins	24–270 [219,220]	Protection from acute and chronic DOX-induced cardiomyocyte toxicity in vivo in rats [222,223]	Enhanced cytotoxicity of DOX in a spheroid culture model of human lung squamous cell carcinoma [224], BEL-7402/ADM [225], lung cancer A549 cells [192], and human non-small-cell lung cancer cell lines [193]
Apigenin	25 [219]	Attenuated chronic DOX-induced cardiomyocyte toxicity in vivo in rats and in vitro in rat cardiomyocytes [186–188]	Augmented the cytotoxic effect of DOX against HepG2 cells [203], and DOX-resistant hepatocellular carcinoma cell line BEL-7402/ADM [204,218,226]
Kaempferol	47 [219]	Protected from chronic DOX-induced cardiomyocyte toxicity in vivo in rats and in vitro in H9c2 cells [227]	Reversed chemo-resistance to DOX in DOX-resistant breast cancer cells (MCF-7/ADR) [198]
Quercetin	77 [219]	Protected rat and human cardiomyocytes and H9c2 cells from DOX-induced toxicity in vitro [176,188,189,199,228]	Enhanced DOX anti-cancer effects in xenografts of leukemia P388 cells [195], liver cancer cells [231], 4T1 breast cancer cells [232,233]
Genistein	IC\textsubscript{50} = 2100 nm [239]	Protected from chronic DOX toxicity in vivo [243,244]	Reversed chemoresistance to DOX in hepatocellular carcinoma cell lines [202], breast cancer cell lines [200,212], prostate cancer cell lines [206], multidrug-resistant leukemia K562 cells [210]
Resveratrol, reviewed in [250]	1400–400000 [251,252]	Protection from DOX-induced cardiomyocyte toxicity in H9c2 cells [253–258], rat primary cardiomyocytes [259–261], and human cardiac progenitor cells [262] in vitro. Protection from acute and chronic DOX-induced cardiomyocyte toxicity [255,263–267] and chronic DOX-induced cardiomyocyte toxicity in vivo [258,259,262,268–276]	Potentiates DOX-induced cytotoxicity in U373MG glioblastoma, MCF-7 breast cancer cells, LNCaP prostate cancer cells, OVCAR-3 and uterine (Ishikawa) cells, Human hepatocellular carcinoma cell line (HepG2), Cervical cancer cell line (HeLa), MDA-MB-231 cells, HT-29 human colon carcinoma cells, Hela and Caski cells, HCT 116 and SW620, and human lung carcinoma A549 cells [238] to DOX
Berberine	IC\textsubscript{50} = 44, IC\textsubscript{90} = 90–190 [288,289]	Protection from acute DOX-induced cardiomyocyte toxicity [291–294] and chronic DOX-induced cardiomyocyte toxicity [295] in vivo	Potentiates DOX-induced cytotoxicity in U373MG glioblastoma, MCF-7 breast cancer cells, LNCaP prostate cancer cells, OVCAR-3 and uterine (Ishikawa) cells, Human hepatocellular carcinoma cell line (HepG2), Cervical cancer cell line (HeLa), MDA-MB-231 cells, HT-29 human colon carcinoma cells, Hela and Caski cells, HCT 116 and HT-29, Lymphoblastic leukemia cell line (MOLT-4), Human multiple myeloma cell line (U266B1), Burkitt’s lymphoma cell line (Raji cell), canine hemangiosarcoma cells [259,277–286]
2,4,3′,5′-tetramethoxy-stilbene	IC\textsubscript{50} = 6 [146]	Protection from chronic DOX-induced cardiomyocyte toxicity in rats in vivo and in RL-14 cardiomyocyte-like cells in vitro via decreasing the formation of cardiac mid-chain HETEs [74]	Enhanced sensitivity to DOX in Jurkat, HeLa, and lung cancer cells in vitro and in leukemia mouse model in vivo [211,297,298]. Reversed DOX resistance in resistant human breast cancer MCF-7/MDR cell in vitro and in vivo [299]. Berberine in combination with DOX suppresses growth of murine melanoma B16F10 cells in culture and xenograft [300]

Downloaded from http://biochemicalsociety.org.uk/content/134/21/2897.full.pdf+html on 14 November 2020
Radiation therapy

Radiation therapy is a highly effective treatment for many types of cancers including lymphoma, breast, lung, neck, and head cancers [5,301]. However, radiation-based cancer treatments can also result in serious cardiotoxic side effects, including pericardial fibrosis, pericardial effusion, and diffuse myocardial fibrosis, all of which can lead to heart failure [302]. Restrictive cardiomyopathy, valvular abnormalities, coronary disease, peripheral vascular disease, and arrhythmias can also occur following radiation therapy [303]. It has been clearly shown that the risk of heart failure following radiation therapy for various cancers is dose-dependent [304]. In fact, several studies showed a correlation between an increase in radiation dose with an increase in incidence of major coronary events, associating these with cardiac mortality [305,306]. The cardiotoxic effects of radiation therapy may be exhibited 5–30 years following treatment [5,302]. These late-onset cardiac effects are especially observed in patients that have been treated for breast carcinoma, Hodgkin’s lymphoma, lung carcinoma, and other thoracic malignancies, likely due to the incidental irradiation of the heart [304].

Effect of radiation on CYP1B1 expression

Although there is limited evidence regarding the effect of radiation therapy on CYP1B1 expression, exposure to ultraviolet (UV) and solar radiation have been shown to induce CYP1B1 (Table 2). In a longitudinal study, levels of CYP1B1 mRNA isolated from human peripheral blood mononuclear cells were compared with yearly solar radiation records, and a significant correlation was found [181]. However, this study had several limitations including small sample size and lack of individual radiation exposure levels. Exposure to UV and UV-B radiation induces CYP1B1 mRNA in human keratinocytes, HaCaT cells, zebrafish, and human skin biopsies (Table 2).

Protective effects of CYP1B1 inhibitors against radiation-induced toxicity

There is a paucity of research showing the protective effects of CYP1B1 inhibitors against radiation therapy-induced cardiovascular toxicity. However, inhibition of CYP1B1 has been shown to protect from other radiation-induced toxicities in non-cardiovascular tissues and organs, including: protection from macromolecular damage, hemorrhage, and fibrosis in HaCaT cells and ovarian tissues by isorhamnetin [219,307], protection against follicular loss and destruction of ovarian histoarchitecture in ovarian tissues by chrysin [308], protection against nuclear DNA damage in HaCaT cells by apigenin [309]. Similarly, resveratrol has been shown to protect experimental animals from radiation-induced erectile dysfunction, immune-suppression, intestinal injury, hepatotoxicity, and ovarian toxicity [310–312]. Berberine has also been shown to reduce the incidence and severity of acute intestinal symptoms in patients receiving pelvic radiation [313]. In vivo studies in mice showed the protective effects of berberine against radiation-induced intestinal injury by decreasing inflammation markers, lipid peroxidation, and mucosal injury in the intestinal tissue [314,315]. Moreover, berberine decreased markers of endothelial dysfunction and reduced the incidence of lung injury induced by radiation therapy in patients with non-small cell lung cancer [316]. Several phytochemicals, such as isorhamnetin, chrysin, apigenin, luteolin, berberine, and luteolin have all been shown to protect human keratinocytes from radiation-induced damage through reduction in ROS production [309,317–319].

Radiosensitizing effects of CYP1B1 inhibitors

While there is limited evidence of the cardiovascular protective effects of CYP1B1 inhibitor against radiation-induced cardiovascular toxicity, there is a plethora of preclinical studies showing the radiosensitizing effects of phytochemicals with CYP1B1 inhibitory activity. While these phytochemicals have been shown to target multiple pathways, they exhibit strong inhibitory activity toward CYP1B1, with IC_{50} values in the nanomolar to micromolar range (Table 3). When combined with radiation therapy, resveratrol has been shown to augment the anti-cancer effects of radiation in both in vitro and in vivo studies [320–324], as reviewed in [250]. For instance, resveratrol has proven in the past to offer radiosensitizing effects in nasopharyngeal cancer cells via inhibition of E2F transcription factor, colony-forming activities, and the induction of G_{1} phase cell cycle arrest [325]. Apigenin has been shown to enhance the apoptotic effects of radiation in SQ-5 human lung carcinoma cells by increasing the protein expression of WAF1/p21 while decreasing protein levels of Bcl-2 [326]. Moreover, apigenin alongside genistein and quercetin enhanced radiation-induced cell death by decreasing DNA damage renewal and cell repopulation, demonstrating higher antitumor activities [327]. Additional in vivo studies also demonstrated the radiosensitizing effects of apigenin in Ehrlich carcinoma-bearing mice exposed to whole body γ irradiation via the down-regulation of angiogenic regulators such as vascular endothelial growth factor-C (VEGF-C), down-regulation of matrix metalloproteinase-2 (MMP2), and the enhancement of apoptosis [328]. The radiosensitizing effects of quercetin have also been demonstrated in DLD-1 human colorectal cancer xenograft model in vivo and in HeLa and MCF-7 cells in vitro [329,330].
Similarly, berberine has been shown to radiosensitize human esophageal cancer cells (ESCC) at doses lower than 15 μM [331] through down-regulation of RAD51, an important factor whose down-regulation is crucial, as it is found in excessive amounts in ESCCs [331]. Berberine has also been demonstrated to radiosensitize human colon cancer cells via induction of AMPK activation, a protein responsible for the regulation of tumor progression and metastasis and also via decreasing migration of SW480 and HCT 116 cells [332]. Berberine has been shown to radiosensitize human liver cancer cell lines SMMC-7221 exposed to radiation, in which decreased cell viability and tumor growth inhibition were observed in nude mice xenograft [315]. At last, nasopharyngeal carcinoma cells CNE-2, hepatocellular HCC cells, and non-small cell lung cancer cell LLC and A549 are some other cell lines in which berberine has shown to enhance radiosensitivity effects through reduction in proliferation and viability, induction of apoptosis and cell cycle arrest in G0 and G1 phases, decrease in protein expressions of Sp1, and inhibition of growth factor transforming growth factor-beta (TGF-B) and vimentin proteins [333–335].

Other cardiotoxic cancer treatments

Cisplatin

Cisplatin is a chemotherapeutic alkylation agent mostly used to treat ovarian, testicular, lung, and bladder cancers [336,337]. The two most common adverse effects of cisplatin are nephrotoxicity and ototoxicity; nevertheless, cisplatin treatment may also result in severe cardiotoxic effects including electrocardiographic changes in the heart, acute coronary ischemia [338], arrhythmias, myocarditis, cardiomyopathy, and congestive heart failure [339]. The protective effects of CYP1B1 inhibitors against cisplatin-induced cardiovascular damage are not well-studied. However, protection from other cisplatin-induced toxicities have been reported. For instance, chrysanthemic offers protection against cisplatin-induced hepatotoxicity and kidney toxicity [340]. Luteolin, kaempferol, chrysophanol, and quercetin also prevent otoxicity and nephrotoxicity damage induced by cisplatin [340–345]. Resveratrol offered protection against cisplatin-induced epidemic toxicities, testicular toxicity, and toxicity in ovarian and cavity cancer cells [346,347]. At last, berberine has been shown to reverse the nephrotoxic and hepatotoxic effects caused by cisplatin [348].

Not only do these phytochemicals offer protection against cisplatin-induced toxicity, but they also augment the chemotherapeutic effects of cisplatin by enhancing cell death via induction of apoptosis and/or necroptosis [340,348–356]. For instance, apigenin, specifically targets mTOR/PI3K/Akt signaling pathways to promote the cytotoxic effect of cisplatin by increasing the inhibitory effects on cell migration [354]. Berberine also has the potential to down-regulate the overexpressed genes in squamous cell carcinoma [357]. Isorhamnetin has been shown to trigger microtubule distortion and depolymerization and inhibit cancer cell migration [349]. Since these phytochemicals have multiple molecular targets, the evidence of CYP1B1 involvement in these effects is anecdotal. However, other studies have offered more direct evidence of CYP1B1 in chemoresistance to cisplatin therapy. Immunohistochemistry showed CYP1B1 to be up-regulated in non-small cell lung cancer tissues of cisplatin-resistant patients, and CYP1B1 silencing significantly decreased CXCR4 expression levels and overall cisplatin resistance [358]. To further support these findings, a study using human HEK293 kidney cells found that two potent CYP1B1 inhibitors, 7k (DMU2105) and 6j (DMU2139) with IC50 values of 10 and 9 nM, were shown to overcome cisplatin resistance in CYP1B1-overexpressing lines [359]. A third study using Glycyrrhiza glabra extract and quercetin, both showing CYP1B1 inhibitory activity, reversed cisplatin resistance in triple-negative MDA-MB-468 breast cancer cells via inhibition of cytochrome P450 1B1 enzyme (CYP1B1) [358,360].

Cyclophosphamide

Cyclophosphamide is another alkylating chemotherapeutic agent used to treat a variety of cancers. At high doses, cyclophosphamide has been reported to cause cardiotoxic effects [361] that are usually manifested in the forms of myocardial damage, edema, and hemorrhagic necrotic perimyocarditis [362,363]. In contrast with other chemotherapeutic agents, cyclophosphamide has been shown to inhibit CYP1B1 gene expression in HL-6 human acute promyelocytic leukemia cell line [175]. Studies using the flavonoids chrysophanol and resveratrol proved their ability to exhibit ameliorative effects against brain, heart, liver, testis, kidney, and hepatorenal toxicities induced by cyclophosphamide [364,365]. Similarly, apigenin exhibits great inhibitory effects on genotoxicity of antitumor agents. Moreover, cardiotoxicity, hepatoxicity, gentotoxicity, urotoxicity, and ovarian toxicity effects all seemed to be reduced by quercetin, berberine, and genestein treatment, generally through antioxidant and anti-inflammatory activities [366–368].

Carfilzomib

Carfilzomib is a chemotherapeutic agent used primarily for the treatment of multiple myeloma [369]. Carfilzomib has been shown to cause cardiotoxic effects such as congestive heart failure, hypertension, coronary artery disease,
ischemic heart disease, arrhythmia, and cardiorespiratory arrest [370–372]. Currently, there is no published research that shows the effect of carfilzomib on CYP1B1 expression. There is also a paucity of research describing the cardio-protective effects by CYP1B1 inhibitors. However, there is one study that reported the anti-cancer effect of carfilzomib when used in combination with resveratrol. Resveratrol enhanced the effects of carfilzomib in multiple myeloma cell lines showing higher anti-proliferative and apoptotic effects in a dose-dependent manner [373].

Dasatinib
Dasatinib, an orally administered chemotherapeutic drug, is an inhibitor of many tyrosine kinases, and is an effective agent for treating chronic myeloid leukemia [374]. Dasatinib has been shown to induce several adverse effects including pulmonary and cardiovascular toxicities. Dasatinib-induced cardiovascular toxicity may lead to heart failure, pericardial effusion, left ventricular dysfunction, pulmonary artery disease, myocardial ischemia–reperfusion injury, and pulmonary artery disease [375,376]. Intriguingly, dasatinib has been shown to induce CYP1B1 expression in H9c2 cells, an effect that was associated with an induction of cardiac hypertrophy markers such as B-type natriuretic peptide (BNP) and β-MHC [177]. However, co-treatment with resveratrol did not ameliorate dasatinib-induced expression of these hypertrophic markers [177].

Sunitinib
Sunitinib is a tyrosine kinase inhibitor commonly used to treat stromal tumors, renal carcinoma, and pancreatic neuroendocrine tumors [377]. Sunitinib-induced cardiotoxic effects have been reported in patients including hypertension, left ventricular systolic dysfunction, and congestive heart failure [378,379]. The mRNA and protein expression levels of CYP1B1 in rat renal and hepatic tissues were induced by sunitinib [179]. Sunitinib has also been shown to activate the AhR/CYP1A1 pathway in rat heart and the cardiac-derived H9c2 cells [380]. Similar to CYP1A1, CYP1B1 is an AhR-regulated gene, so it is expected that CYP1B1 is also induced by sunitinib, although the effect of sunitinib on CYP1B1 was not reported in this particular study. Importantly, resveratrol has been shown to protect from sunitinib-induced cardiac hypertrophy in rats [380]. In contrast with the presumably protective effect of phytochemical inhibitors of CYP1B1, genistein, the most prevalent phytoestrogen in soy, increased sunitinib-induced apoptosis in neonatal rat ventricular myocytes and exacerbated sunitinib-induced lethality in mice [381]. The detrimental effect of phytoestrogens in sunitinib-induced cardiotoxicity can be attributed to the fact that estrogen exacerbates sunitinib-induced cardiotoxicity in female mice [382], in contrast with DOX-induced cardiotoxicity which preferentially affect male mice, as reviewed in [383].

Immunotherapy
Cancer immunotherapy has emerged as a novel and effective approach to combat incurable cancers by activating the host's immune system to recognize and destroy the tumor cells [384,385]. Expectedly, activation of the immune system leads to several immune-related adverse effects, including cardiovascular toxicity [386]. Immunotherapy-induced cardiovascular toxicity is mostly inflammatory in nature and includes myocarditis, pericarditis, and vasculitis [387]. Although there are no published reports describing the effect of cancer immunotherapy on CYP1B1 expression, immunotherapy-induced inflammatory reaction is expected to up-regulate CYP1B1. Likewise, there are no published studies reporting the potential protective effects of CYP1B1 inhibitors on immunotherapy-induced cardiovascular toxicity. Nevertheless, natural comounds with CYP1B1 inhibitory activity have demonstrated immunomodulatory functions in vitro and in vivo, which may contribute to their anti-cancer effects, as recently reviewed [388,389]. Therefore, more research is needed to understand the potential interplay between CYP1B1 inhibitors and cancer immunotherapy in the context of cardio-oncology.

Conclusions
CYP1B1 has been described as "a unique gene with unique characteristics" because it is implicated in a wide variety of pathological conditions [390]. CYP1B1 plays a central role in the metabolism of several biologically active endogenous compounds (Figure 1). It is also capable of generating carcinogenic metabolites leading to DNA adduct formation, in addition to its role in generating ROS. Therefore, the biological significance of CYP1B1 has been the focus of scientific research of several research groups all over the world. The detrimental role of CYP1B1 in the four phases of carcinogenesis, the initiation, promotion, progression, and metastasis, has been recognized for almost two decades [391,392]. More recently, the contribution of CYP1B1 to the pathogenesis of cardiometabolic diseases has also been increasingly appreciated [8,92,393]. Since we first reported the induction of CYP1B1 by DOX, the most cardiotoxic chemotherapeutic drug [111], a growing body of evidence has strongly suggested the contribution of
CYP1B1 to chemotherapy-induced cardiovascular toxicity. All the studied cardiotoxic chemotherapies, with the notable exception of cyclophosphamide, have been shown to induce CYP1B1 in different experimental conditions (Table 2). Induction of CYP1B1 can be detrimental in many ways. First, it can induce or exacerbate therapy-induced cardiovascular complications. Second, it can also lead to significant chemo- and radio-resistance, undermining both the safety and effectiveness of cancer treatment.

It is intriguing that the same enzyme may have divergent effects on the cardiovascular system and the malignant tumors (Figure 3). Several CYP1B1-mediated signaling pathways may lead to these divergent effects. For instance, while mid-chain and terminal HETEs are detrimental to the cardiovascular system [72,73], they enhance survival, proliferation, and metastasis of cancer cells [394–398]. Likewise, CYP1B1-mediated formation of genotoxic metabolites and DNA adducts lead to atherosclerosis and cardiovascular disease [100,101], and may also contribute to CYP1B1-mediated carcinogenesis [134]. CYP1B1 has also been shown to induce EMT which is involved in cardiac fibrosis [399,400] and in cancer progression [126,401]. CYP1B1-mediated inflammation, which has deleterious effects on the cardiovascular system [19,85,86], can also contribute to carcinogenesis and tumor progression [126,402]. Therefore, inhibitors of CYP1B1 are poised to optimize the benefit and reduce the cardiovascular risk of cancer treatments by interfering with these divergent signaling pathways. Nevertheless, there are no studies that systemically compare these divergent effects within the same model. Indeed, the use of tumor-bearing animal models is strongly needed to discern these divergent signaling pathways underpinning the cardioprotective and the chemo/radio-sensitizing effects of CYP1B1 inhibitors in the same animal model. A plethora of phytochemicals have demonstrated significant CYP1B1 inhibitory activity with varying degrees of potency and selectivity. Although these phytochemicals have shown promising cardioprotective, chemosensitizing, and radiosensitizing properties in preclinical studies, as reviewed in [250,403,404]; the specific role of CYP1B1 inhibition in these effects has been rarely investigated. Since phytochemicals have multiple targets, the identification of a specific molecular mechanism that mediates their effects is very challenging. Therefore, future studies need to discern the role of CYP1B1 by using more selective inhibitors, such as 2,4,3′,5′-tetramethoxystilbene, in addition to CYP1b1 knockout mouse models.
The translation of these promising preclinical findings to the care of cardio-oncology patients is another challenge. A large number of phytochemicals with CYP1B1 inhibitory activity have been tested in clinical trials in healthy individuals, cancer patients, and patients with cardiovascular diseases. The results of these clinical trials are generally mixed and do not provide a strong evidence of a clear clinical benefit. A clinical trial of resveratrol in 20 patients with colorectal cancer has shown a promising anti-cancer effect. Eight doses of 0.5 or 1.0 gram of resveratrol given before surgical resection was well-tolerated and resulted in 5% reduction in tumor proliferation [405]. Likewise, the recurrence rate of neoplasia after colon cancer resection was 7% in patients treated with a flavonoid mixture and 47% in the control [406]. Oral genistein given 14–21 days before urothelial bladder cancer surgery was well-tolerated and reduced bladder cancer tissue phosphorylated-epidermal growth factor receptor (EGFR), which contributes to the proliferation and survival of cancer cells [407]. Although these studies, among others, have shown that phytochemicals are well-tolerated by cancer patients, a Phase II clinical trial of bortezomib with and without high-dose resveratrol (5 grams daily) in multiple myeloma patients was terminated early due to unexpected renal toxicity in the resveratrol arm [408]. Although this safety concern may be specific to multiple myeloma patients who are at an increased risk for renal failure, these results hindered the advancement of resveratrol and probably other phytochemicals to more clinical trials in cancer patients.

In addition, since several agents which had shown promising cardioprotective effects in preclinical studies failed in subsequent clinical trials (e.g. vitamin E and N-acetyl cysteine [409,410]), the clinical community has become more critical of translating preclinical findings to patient care. Indeed, oncologists are usually very concerned about the possibility that cardioprotective agents may undermine the anti-cancer effects of chemotherapy and/or lead to increased incidence of secondary malignancy. This concern is heightened in case of phytochemicals which have multiple targets and exhibit a high probability of significant drug interactions [411–413]. In addition, there has been a concern that phytochemicals with antioxidant properties may scavenge ROS and negatively impact the outcome of ROS-dependent cancer treatments, as reviewed in [414]. Therefore, elucidating the molecular mechanism of the cardioprotective and chemo/radio-sensitizing properties of phytochemicals is pivotal to the design of specific therapeutic agents that are both safe and effective. As discussed in this review, there is growing evidence that CYP1B1 is an attractive target wherein its inhibition may offer protection against cancer treatment-induced cardiovascular toxicity and prevent chemo/radio-resistance at the same time.

Competing Interests
The authors declare that there are no competing interests associated with the manuscript.

Funding
This work was supported by the National Heart, Lung, and Blood Institute [grant number 1R01HL151740 (to B.N.Z.); the St. Baldrick’s Foundation for Childhood Cancer [grant number 638335 (to B.N.Z.); and the National Institutes of Health’s National Center for Advancing Translational Sciences [grant number UL1TR002494 (to B.N.Z. and A.N.C.)]. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health. The funders had no role in in the writing of the manuscript, or in the decision to publish.

Open Access
Open access for this article was enabled by the participation of University of Minnesota in an all-inclusive Read & Publish pilot with Portland Press and the Biochemical Society.

Abbreviations
AhR, Aryl hydrocarbon receptor; CYP1B1, cytochrome P450 1B1; DOX, doxorubicin; EET, epoxyeicosatrienoic acid; EMT, epithelial–mesenchymal transition; ERα, estrogen receptor α; ESCC, esophageal cancer cell; HETE, hydroxyeicosatetraenoic acid; IL-6, interleukin-6; PPARα, peroxisome proliferator-activated receptor α; ROS, reactive oxygen species; TCDD, 2,3,7,8-tetrachlorodibenzo-p-dioxin; TMS, 2,4,3′,5′-tetramethoxystilbene; UV, ultraviolet.

References
1 (2019) Study cancer survivors. Nature 568, 143, https://doi.org/10.1038/d41586-019-01095-9
2 Ponisch, W. and Niederwieser, D. (2006) Late effects after chemotherapy. Internist (Berl.) 47, 266–268
3 Tajiri, K., Aonuma, K. and Sekine, I. (2017) Cardio-oncology: a multidisciplinary approach for detection, prevention and management of cardiac dysfunction in cancer patients. Jpn. J. Clin. Oncol. 47, 678–682, https://doi.org/10.1093/jjco/hyx068
4 Coviello, J.S. (2018) Cardio-oncology: a subspecialty in its infancy. J. Adv. Pract. Oncol. 9, 154–155
32 Umannova, L., Machala, M., Topinka, J., Novakova, Z., Milcova, A., Kozubik, A. et al. (2008) Tumor necrosis factor-alpha potentiates genotoxic effects of benzo(a)pyrene in rat liver epithelial cells through upregulation of cytochrome P450 1B1 expression. *Mutat. Res.* **640**, 162–169, https://doi.org/10.1016/j.mrfmmm.2008.02.001

33 Heidel, S.M., Hoist, K., Buters, J.T., Gonzalez, F.J., Jefcoate, C.R. and Czuprynski, C.J. (1999) Bone marrow stromal cell cytochrome P4501B1 is required for pre-B cell apoptosis induced by 7,12-dimethylbenzo[a]anthracene. *Mol. Pharmacol.* **56**, 1317–1323, https://doi.org/10.1124/mol.56.6.1317

34 Wö, Y.Y., Stewart, J. and Greenlee, W.F. (1997) Functional analysis of the promoter for the human CYP1B1 gene. *J. Biol. Chem.* **272**, 26702–26707, https://doi.org/10.1074/jbc.272.42.26702

35 Alexander, D.I., Elton, S.E. and Jefcoate, C.R. (1997) Ah receptor regulation of CYP1B1 expression in primary mouse embryo-derived cells. *Cancer Res.* **57**, 4498–4506

36 Brake, P.B. and Jefcoate, C.R. (1995) Regulation of cytochrome P4501B1 in cultured rat adrenocortical cells by cyclic adenosine 3',5'-monophosphate and 2,3,7,8- tetrachlorodibenzo-p-dioxin. *Endocrinology* **136**, 5034–5041, https://doi.org/10.1210/endo.136.11.7588239

37 Terashima, J., Jimma, Y., Jimma, K., Hakata, S., Yachi, M., Habano, W. et al. (2018) The regulation mechanism of AhR activated by benzo(a)pyrene for CYP expression are different between 2D and 3D culture of human lung cancer cells. *Drug Metab. Pharmacokinet.* **33**, 211–214, https://doi.org/10.1016/j.dmpk.2018.04.002

38 Ociapa-Zawal, M., Rubis, B., Lacinski, M. and Trzeciak, W.H. (2007) The effect of indole-3-carbinol on the expression of CYP1A1, CYP1B1 and AhR genes and proliferation of MCF-7 cells. *Acta Biochim. Pol.* **54**, 113–117, https://doi.org/10.2478/s11518-007-0046-x

39 Hankinson, O. (2016) The role of AHR-inducible cytochrome P450s in metabolism of polyunsaturated fatty acids. *Drug Metab. Rev.* **48**, 342–350, https://doi.org/10.1080/03602532.2016.1197240

40 Korashy, H.M. and El-Kadi, A.O. (2006) The role of aryl hydrocarbon receptor in the pathogenesis of cardiovascular diseases. *Drug Metab. Rev.* **38**, 411–450, https://doi.org/10.1080/03602530600632063

41 Ito, T., Suzuki, T., Tamura, K., Nezu, T., Honda, K. and Kobayashi, T. (2008) Examination of mRNA expression in rat hearts and lungs for analysis of effects of exposure to concentrated ambient particles on cardiovascular function. *Toxicology* **243**, 271–283, https://doi.org/10.1016/j.tox.2007.10.013

42 Aboutabl, M.E., Zordoky, B.N. and El-Kadi, A.O. (2009) 3-methylcholanthrene and benzo(a)pyrene modulate cardiac cytochrome P450 gene expression and arachidonic acid metabolism in male Sprague Dawley rats. *Br. J. Pharmacol.* **158**, 1808–1819, https://doi.org/10.1111/j.1476-5381.2009.00461.x

43 Roblin, S., Okey, A.B. and Harper, P.A. (2004) AH receptor antagonist inhibits constitutive CYP1A1 and CYP1B1 expression in rat BP8 cells. *Acta Biochim. Pol.* **51**, 142–148, https://doi.org/10.2478/s11518-004-0031-4

44 Shimada, T., Sugie, A., Shindo, M., Nakajima, T., Azuma, E., Hashimoto, M. et al. (2003) Tissue-specific induction of cytochromes P450 1A1 and 1B1 by polymeric aromatic hydrocarbons and polychlorinated biphenyls in engineered C57BL/6J mice of arylhydrocarbon receptor gene. *Toxicol. Appl. Pharmacol.* **187**, 1–10, https://doi.org/10.1006/toxap.2001.0051

45 Ziegler, N., Awwad, K., Fisslthaler, B., Reis, M., Devraj, K., Corada, M. et al. (2016) beta-Catenin is required for endothelial Cyp1b1 regulation influencing metabolic barrier function. *J. Neurosci.* **36**, 8921–8935, https://doi.org/10.1523/JNEUROSCI.0148-16.2016

© 2020 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons Attribution License 4.0 (CC BY).
58 Zheng, W., Brake, P.B., Bhattacharyya, K.K., Zhang, L., Zhao, D. and Jefcoate, C.R. (2003) Cell selective cAMP induction of rat CYP1B1 in adrenal and testis cells. Identification of a novel cAMP-responsive far upstream enhancer and a second Ah receptor-dependent mechanism. Arch. Biochem. Biophys. 416, 53–67, https://doi.org/10.1016/S0003-8869(03)00282-0
59 Zheng, W. and Jefcoate, C.R. (2005) Steroidogenic factor-1 interacts with cAMP response element-binding protein to mediate cAMP stimulation of CYP1B1 via a far upstream enhancer. Mol. Pharmacol. 67, 499–512, https://doi.org/10.1124/mol.104.005504
60 Niwa, T., Murayama, N., Imagawa, Y. and Yamazaki, H. (2015) Regioselective hydroxylation of steroid hormones by human cytochromes P450. Drug Metab. Rev. 47, 89–110, https://doi.org/10.3109/03602532.2015.1011658
61 Jansson, I., Stoilov, I., Sarfarazi, M. and Schenkman, J.B. (2001) Effect of two mutations of human CYP1B1, G61E and R469W, on stability and endogenous steroid substrate metabolism. Pharmacogenetics 11, 793–801, https://doi.org/10.1039/pns.93.18.7976
62 Hayes, C.L., Spink, D.C., Spink, B.C., Cao, J.D., Walker, N.J. and Sutter, T.R. (1996) 17 beta-estradiol hydroxylation catalyzed by human cytochrome P450 1A1 variants. Carcinogenesis 20, 1607–1613, https://doi.org/10.1039/carin.20.8.1607
63 Shimada, T., Watanabe, J., Kawajiri, K., Sutter, T.R., Guengerich, F.P., Gillam, E.M. et al. (1999) Catalytic properties of polymorphic human cytochrome P450 1A1 variants. Pharmacogenetics 9, 345–356, https://doi.org/10.1039/pns.93.18.7976
64 Lee, A.J., Cai, M.X., Thomas, P.E., Conney, A.H. and Zhu, B.T. (2003) Characterization of the oxidative metabolites of 17beta-estradiol and estrone formed by 15 selectively expressed human cytochrome p450 isoforms. Endocrinology 144, 3382–3398, https://doi.org/10.1210/en.2003-0192
65 Markushin, Y., Zhong, W., Cavilleri, E.L., Ragon, E.G., Small, G.J., Yeung, E.S. et al. (2003) Spectral characterization of catechol estrogen quinone (CEQ)-derived DNA adducts and their identification in human breast tissue extract. Chem. Res. Toxicol. 16, 1107–1117, https://doi.org/10.1201/bx340854
66 Embrechts, J., Lemiere, F., Van Dongen, W., Esmans, E.L., Buylaert, P., Van Marck, E. et al. (2003) Detection of estrogen DNA-adducts in human breast tumor tissue and healthy tissue by combined nano LC-nano ES tandem mass spectrometry. J. Am. Soc. Mass Spectrom. 14, 482–491, https://doi.org/10.1016/S1044-0305(03)00130-2
67 Chen, Z.H., Hurth, Y.J., Na, H.K., Kim, J.H., Chung, Y.J., Kim, D.H. et al. (2004) Resveratrol inhibits TCDD-induced expression of CYP1A1 and CYP1B1 and catechol estrogen-mediated oxidative DNA damage in cultured human mammary epithelial cells. Carcinogenesis 25, 2005–2013, https://doi.org/10.1039/carcin/bgh183
68 Lanxiang, W., Bin, W., Ge, X., Yutang, H., Chunjie, W. and Honghao, Z. (2019) Long-term exposure of 4-hydroxyestradiol induces the cancer cell characteristics via upregulating CYP1B1 in MCF-10A cells. Toxicol. Mech. Methods 29, 686–692, https://doi.org/10.1080/15376516.2019.1650146
69 Capdevila, J.H. and Falck, J.R. (2001) The CYP 450 arachidonic acid monooxygenases: from cell signaling to blood pressure regulation. Biochem. Biophys. Res. Commun. 285, 571–576, https://doi.org/10.1016/S0006-291X(01)00316-4
70 El-Sherbeni, A.A.,Aboutabl, M.E.,Zordoky, B.N.,Anwar-Mohamed, A. and El-Kadi, A.O. (2016) Inhibition of mid-chain HETEs protects against isoprenaline-induced cardiac hypertrophy. J. Pharmacol. Exp. Ther. 357, 537–541, https://doi.org/10.1124/jpet.116.252511
71 Elkhatali, S., Maayah, Z.H., El-Sherbeni, A.A.,Elshenawy, O.H.,Abdelhamid, G.,Shoieb, S.M. et al. (2017) Inhibition of mid-chain HETEs protects against angiotensin II-induced cardiac hypertrophy. J. Pharmacol. Exp. Ther. 360, 2277–2286, https://doi.org/10.1124/dmd.108.023077
72 Zordoky, B.N.,Aboutabl, M.E. and El-Kadi, A.O. (2013) Soluble epoxide hydrolase inhibitor, TUPS, protects against isoproterenol-induced cardiac hypertrophy. Br. J. Pharmacol. 168, 1794–1807, https://doi.org/10.1111/bph.12066
73 Zheng, W. and Jefcoate, C.R. (2001) Steroidogenic factor-1 interacts with cAMP response element-binding protein to mediate cAMP stimulation of CYP1B1 via a far upstream enhancer. Mol. Pharmacol. 67, 499–512, https://doi.org/10.1124/mol.104.005504
84 Tse, M.M., Aboutabl, M.E., Althurwi, H.N., Elshenawy, O.H., Abdelhamid, G. and El-Kadi, A.O. (2013) Cytochrome P450 epoxygenase metabolite, 14,15-EEt, protects against isoproterenol-induced cellular hypertrophy in H9c2 rat cell line. *Vascul. Pharmacol.* **58**, 363–373, https://doi.org/10.1016/j.vph.2013.02.004

85 El-Sherbini, A.A. and El-Kadi, A.O. (2014) Alterations in cytochrome P450-derived arachidonic acid metabolism during pressure overload-induced cardiac hypertrophy. *Biochem. Pharmacol.* **87**, 456–466, https://doi.org/10.1016/j.bcp.2013.11.015

86 Maayah, Z.H., Levasseur, J., Siva Piragasam, R., Abdelhamid, G., Dyck, J.R.B., Fahliman, R.P. et al. (2018) 2-Methoxyestradiol protects against pressure overload-induced left ventricular hypertrophy. *Sci. Rep.* **8**, 2780, https://doi.org/10.1038/s41598-018-20613-9

87 Zordoky, B.N. and El-Kadi, A.O. (2010) 2,3,7,8-Tetrachlorodibenzo-p-dioxin and beta-naphthoflavone induce cellular hypertrophy in H9c2 cells by an aryl hydrocarbon receptor-dependent mechanism. *Toxicol. In Vitro* **24**, 863–871, https://doi.org/10.1016/j.tiv.2009.12.002

88 Guo, K., Ge, J., Zhang, C., Lv, M.W., Zhang, Q., Talukder, M. et al. (2020) Cadmium induced cardiac inflammation in chicken (Gallus gallus) via modulating cytochrome P450 systems and Nrf2 mediated antioxidant defense. *Chemosphere* **249**, 125858, https://doi.org/10.1016/j.chemosphere.2020.125858

89 Amara, I.E., Elshenawy, O.H., Abdelrady, M. and El-Kadi, A.O. (2014) Acute mercury toxicity modulates cytochrome P450, soluble epoxide hydrolase and their associated arachidonic acid metabolism in C57Bl/6 mouse heart. *Toxicol. Lett.* **226**, 53–62, https://doi.org/10.1016/j.toxlet.2014.01.025

90 Anwar-Mohamed, A., El-Sherbini, A.A., Kim, S.H., Althurwi, H.N., Zordoky, B.N. and El-Kadi, A.O. (2012) Acute arsenic toxicity alters cytochrome P450 and soluble epoxide hydrolase and their associated arachidonic acid metabolism in C57Bl/6 mouse heart. *Xenobiotica* **42**, 1235–1247, https://doi.org/10.3109/00498254.2012.693971

91 Zhang, Y., Wang, S., Huang, Y., Yang, K., Liu, Y., Bi, X. et al. (2020) Inhibition of CYP1B1 ameliorates cardiac hypertrophy induced by uremic toxin. *Mol. Med. Rep.* **21**, 393–404

92 Malik, K.U., Jennings, B.L., Yaghini, F.A., Sahan-Firat, S., Song, C.Y., Estes, A.M. et al. (2012) Contribution of cytochrome P450 1B1 to hypertension and associated pathophysiology: a novel target for antihypertensive agents. *Prostaglandins Other Lipid Mediat.* **98**, 69–74, https://doi.org/10.1016/j.prostaglandins.2011.12.003

93 Pingili, A.K., Kara, M., Khan, N.S., Estes, A.M., Lin, Z., Li, W. et al. (2015) 6beta-hydroxytestosterone, a cytochrome P450 1B1 metabolite of testosterone, contributes to angiotensin II-induced hypertension and its pathogenesis in male mice. *Hypertension* **65**, 1279–1287, https://doi.org/10.1161/HYPERTENSIONAHA.115.05396

94 Pingili, A.K., Thirunavukkarasu, S., Kara, M., Brand, D.D., Katsursada, A., Majid, D.S. et al. (2016) 6beta-Hydroxytestosterone, a cytochrome P450 1B1-testosterone-metabolite, mediates angiotensin II-induced renal dysfunction in male mice. *Hypertension* **67**, 916–926, https://doi.org/10.1161/HYPERTENSIONAHA.115.06936

95 Pingili, A.K., Jennings, B.L., Mukherjee, K., Akroush, W., Gonzalez, F.J. and Malik, K.U. (2020) Metabolite generated by CYP1B1, contributes to vascular changes in angiotensin II-induced hypertension in male mice. *Biol. Sex Differ.* **11**, 4, https://doi.org/10.1186/s13293-019-0290-4

96 Singh, P., Song, C.Y., Dutta, S.R., Gonzalez, F.J. and Malik, K.U. (2020) Central CYP1B1 (cytochrome P450 1B1)-estradiol metabolite 2-methoxyestradiol protects from hypertension and neuroinflammation in female mice. *Hypertension* **75**, 1054–1062, https://doi.org/10.1161/HYPERTENSIONAHA.119.14548

97 Jennings, B.L., Moore, J.A., Pingili, A.K., Estes, A.M., Fang, X.R., Kanu, A. et al. (2015) Disruption of the cytochrome P-450 1B1 gene exacerbates renal dysfunction and damage associated with angiotensin II-induced hypertension in female mice. *Am. J. Physiol. Renal Physiol.* **308**, F981–F992, https://doi.org/10.1152/ajprenal.00597.2014

98 Thirunavukkarasu, S., Khan, N.S., Song, C.Y., Ghafoor, H.U., Brand, D.D., Gonzalez, F.J. et al. (2016) Cytochrome P450 1B1 contributes to the development of angiotensin II-induced aortic aneurysm in male Apoe(-/-) mice. *Am. J. Pathol.* **186**, 2204–2219, https://doi.org/10.1016/j.ajpath.2016.04.005

99 Song, C.Y., Ghafoor, K., Ghafoor, H.U., Khan, N.S., Thirunavukkarasu, S., Jennings, B.L. et al. (2016) Cytochrome P450 1B1 contributes to the development of atherosclerosis and hypertension in apolipoprotein E-deficient mice. *Hypertension* **67**, 206–213, https://doi.org/10.1161/HYPERTENSIONAHA.115.06427

100 Moorby, B., Miller, K.P., Jiang, W., Williams, E.S., Kondraganti, S.R. and Ramos, K.S. (2003) Role of cytochrome P450 1B1 in benzo[a]pyrene bioactivation to DNA-binding metabolites in mouse vascular smooth muscle cells: evidence from 32P-postlabeling for formation of 3-hydroxybenzo[a]pyrene and benzo[a]pyrene-3,6-quinone as major proximate genotoxic intermediates. *J. Pharmacol. Exp. Ther.* **305**, 394–401

101 Moorby, B., Miller, K.P., Jiang, W. and Ramos, K.S. (2002) The atherogen 3-methylcholanthrene induces multiple DNA adducts in mouse aortic smooth muscle cells: role of cytochrome P450 1B1. *Cardiovasc. Res.* **53**, 1002–1009, https://doi.org/10.1016/S0008-6363(01)00536-3

102 Michaud, V., Frappier, M., Dumas, M.C. and Turgeon, J. (2010) Metabolic activity and mRNA levels of human cardiac CYP450s involved in drug metabolism. *PLoS ONE* **5**, e15666, https://doi.org/10.1371/journal.pone.0015666

103 Delozier, T.C., Kissling, G.E., Coulter, S.J., Dai, D., Foley, J.F., Bradbury, J.A. et al. (2007) Detection of human CYP2C8, CYP2C9, and CYP2J2 in cardiovascular tissues. *Drug Metab. Dispos.* **35**, 682–688, https://doi.org/10.1124/dmd.106.012823

104 Zordoky, B.N. and El-Kadi, A.O. (2008) Modulation of cardiac and hepatic cytochrome P450 enzymes during heart failure. *Biol. Sex Differ.* **9**, 122–128

105 Deng, Y., Theken, K.N. and Lee, C.R. (2010) Cytochrome P450 epoxygenases, soluble epoxide hydrolase, and the regulation of cardiovascular inflammation. *J. Mol. Cell Cardiol.* **48**, 331–341, https://doi.org/10.1016/j.yjmcc.2009.10.022

106 Evangelista, E.A., Lemaitre, R.N., Sotoodehnia, N., Gharib, S.A. and Totah, R.A. (2018) CYP2J2 expression in adult ventricular myocytes protects against reactive oxygen species toxicity. *Drug Metab. Dispos.* **46**, 380–386, https://doi.org/10.1124/dmd.117.078840

107 Zhang, Y., El-Sikhy, H., Chaudhary, K.R., Batchu, S.N., Shayeeganpour, A., Jukar, T.O. et al. (2009) Overexpression of CYP2J2 provides protection against doxorubicin-induced cardiotoxicity. *Am. J. Physiol. Heart Circ. Physiol.* **297**, H37–H46, https://doi.org/10.1152/ajpheart.00983.2008

© 2020 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons Attribution License 4.0 (CC BY).
Lee, K.Y., Kim, J.R. and Choi, H.C. (2016) Genistein-induced LKB1-AMPK activation inhibits senescence of VSMC through autophagy induction. *Vasc. Pharmacol.* 81, 75–82, https://doi.org/10.1016/j.vph.2016.02.007

Shao, J.J., Zhang, A.P., Qin, W., Zheng, L., Zhu, Y.F. and Chen, X. (2012) AMP-activated protein kinase (AMPK) activation is involved in chrysian-induced growth inhibition and apoptosis in cultured A549 lung cancer cells. *Biochem. Biophys. Res. Commun.* 423, 448–453, https://doi.org/10.1016/j.bbrc.2012.05.123

Brechbühl, H.M., Kachadourian, R., Min, E., Chan, D. and Day, B.J. (2012) Chrysian enhances doxorubicin-induced cytotoxicity in human lung epithelial cancer cell lines: the role of glutathione. *Toxicol. Appl. Pharmacol.* 258, 1–9, https://doi.org/10.1016/j.taap.2011.08.004

Punia, R., Raina, K., Agarwai, R. and Singh, R.P. (2017) Acatinacin enhances the therapeutic efficacy of doxorubicin in non-small-cell lung carcinoma cells. *PLoS ONE* 12, e0182870, https://doi.org/10.1371/journal.pone.0182870

Li, S.Z., Li, K., Zhang, J.H. and Dong, Z. (2013) The effect of quercetin on doxorubicin cytotoxicity in human breast cancer cells. *Anticancer Agents Med. Chem.* 13, 352–355, https://doi.org/10.2174/187152061399915030020020

Staedler, D., Idrizi, E., Kenzaoui, B.H. and Juilferat-Jeanneret, L. (2011) Drug combinations with quercetin: doxorubicin plus quercetin in human breast cancer cells. *Cancer Chemother. Pharmacol.* 68, 1161–1172, https://doi.org/10.1007/s00280-011-1506-x

Li, S.Z., Qiao, S.F., Zhang, J.H. and Li, K. (2015) Quercetin increases the chemosensitivity of breast cancer cells to doxorubicin via PTEN/Akt pathway. *Anticancer Agents Med. Chem.* 15, 1185–1189, https://doi.org/10.2174/1871520615999150121121708

Seo, H.S., Ku, J.M., Choi, H.S., Woo, J.K., Lee, B.H., Kim, D.S. et al. (2017) Apigenin overcomes drug resistance by blocking the signal transducer and activator of transcription 3 signaling in breast cancer cells. *Oncol. Rep.* 38, 715–724, https://doi.org/10.3892/or.2017.5752

Li, S., Yuan, S., Zhao, W., Wang, B., Wang, X. and Li, K. (2018) Quercetin enhances chemotherapeutic effect of doxorubicin against breast cancer cells while reducing toxic side effects of it. *Biomed. Pharmacother.* 100, 441–447, https://doi.org/10.1016/j.biopha.2018.02.055

Li, S., Zhao, Q., Wang, B., Yuan, S., Wang, X. and Li, K. (2018) Quercetin reversed MDR in breast cancer cells through down-regulating P-gp expression and eliminating cancer stem cells mediated by YB-1 nuclear translocation. *Phytother. Res.* 32, 1530–1536, https://doi.org/10.1002/ptr.6081

Sun, J., Sun, G., Meng, X., Wang, H., Luo, Y., Qin, M. et al. (2013) Isoxhamnetin protects against doxorubicin-induced cardiotoxicity in vivo and in vitro. *PLoS ONE* 8, e64526, https://doi.org/10.1371/journal.pone.0064526

Chen, Z., Huang, C., Ma, T., Jiang, L., Tang, L., Shi, T. et al. (2018) Reversal effect of quercetin on multidrug resistance via FZD7/beta-catenin pathway in hepatocellular carcinoma cells. *Phytomedicine* 43, 37–45, https://doi.org/10.1016/j.phymed.2018.03.040

Korga, A., Ostrowska, M., Jozefczuk, A., Iwan, M., Wojcik, R., Zgora, G. et al. (2019) Apigenin and hesperidin augment the toxic effect of doxorubicin against HepG2 cells. *BMC Pharmacol. Toxicol.* 20, 22, https://doi.org/10.1186/s40360-019-0301-2

Gao, A.M., Zhang, X.Y., Hu, J.N. and Ke, Z.P. (2018) Apigenin sensitizes hepatocellular carcinoma cells to doxorubicin through regulating miR-520b/ATG7 axis. *Chem. Biol. Interact.* 260, 45–50, https://doi.org/10.1016/j.cbi.2017.11.020

Sharma, V., Joseph, C., Ghosh, S., Agarwai, A., Mishra, M.K. and Sen, E. (2007) Kämpferol induces apoptosis in glioblastoma cells through oxidative stress. *Mol. Cancer Ther.* 6, 2544–2553, https://doi.org/10.1158/1535-7163.MCT-06-0788

Shu, Y., Xie, B., Liang, Z. and Chen, J. (2019) Quercetin reverses the doxorubicin resistance of prostate cancer cells by downregulating the expression of c-met. *Onct. Lett.* 15, 2252–2258

Chian, S., Li, Y.Y., Wang, X.J. and Tang, X.W. (2014) Luteolin sensitizes two oxaliplatin-resistant colorectal cancer cell lines to chemotherapeutic drugs via inhibition of the Nrf2 pathway. *Asian Pac. J. Cancer Prev.* 15, 2911–2916, https://doi.org/10.7314/APJCP.2014.15.6.2911

Atashpour, S., Fouладdel, S., Movahhed, T.K., Barzegar, E., Ghahremani, M.H., Șostă, S.N. et al. (2015) Quercetin induces cell cycle arrest and apoptosis in CD133(+)/cancer stem cells of human colorectal HT29 cancer cell line and enhances anticancer effects of doxorubicin. *Iran. J. Basic Med. Sci.* 18, 635–643

Shao, Y., Liu, X., Niu, H., Zhu, G., Du, X., Li, Y. and Wu, D. (2017) Resveratrol reverses doxorubicin resistance by inhibiting epithelial-mesenchymal transition (EMT) through modulating PTEN/Akt signaling pathway in gastric cancer. *J. Exp. Clin. Cancer Res.* 36, 19, https://doi.org/10.1186/s13046-016-0487-8

Chen, F.Y., Cao, L.F., Wan, H.X., Zhang, M.Y., Cai, J.Y., Shen, L.J. et al. (2015) Quercetin enhances adriamycin cytotoxicity through induction of apoptosis and regulation of mitogen-activated protein kinase/extracellular signal-regulated kinase/c-Jun N-terminal kinase signaling in multidrug-resistant leukemia K562 cells. *Mol. Med. Rep.* 11, 341–348, https://doi.org/10.3892/mmr.2014.2734

Liu, J., Zhu, Z., Liu, Y., Wei, L., Li, B., Mao, F. et al. (2020) MDM2 inhibition-mediated autophagy contributes to the pro-apoptotic effect of berberine in p53-null leukemic cells. *Life Sci.* 242, 117228, https://doi.org/10.1016/j.lfs.2019.117228

Scambia, G., Ranelletti, F.O., Panici, P.B., De Vincenzo, R., Bonanno, G., Ferrandina, G. et al. (1994) Quercetin potentiates the effect of adriamycin in a multidrug-resistant MCF-7 human breast-cancer cell line: P-glycoprotein as a possible target. *Cancer Chemother. Pharmacol.* 34, 459–464, https://doi.org/10.1007/BF00685655

Kum, T.H., Shin, Y.J., Abe, A., Lee, B.M., Choi, W.S., Jung, J.H. et al. (2014) Resveratrol reverses multidrug resistance in human breast cancer cells via increased cellular influx of DOX. *Biochim. Biophys. Acta* 1840, 615–625, https://doi.org/10.1016/j.bbadis.2013.10.023

Huang, F., Wu, X.N., Chen, J., Wang, W.X. and Lu, Z.F. (2014) Resveratrol reverses multidrug resistance in human breast cancer doxorubicin-resistant cells. *Exp. Ther. Med.* 7, 1611–1616, https://doi.org/10.3892/etm.2014.1662
217 Chen, J.M., Bai, J.Y. and Yang, K.K. (2018) Effect of resveratrol on doxorubicin resistance in breast neoplasm cells by modulating PI3K/Akt signaling pathway. *J. Biomech.* 70, 491–500, https://doi.org/10.1016/j.jbiomech.1749

218 Gao, A.M., Zhang, X.Y. and Ke, Z.P. (2017) Apigenin sensitizes BEL-7402/ADM cells to doxorubicin through inhibiting miR-101/Nrf2 pathway. *Oncotarget* 8, 82085–82091, https://doi.org/10.18632/oncotarget.18294

219 Takemura, H., Itoh, T., Yamamoto, K., Sakakibara, H. and Shimoi, K. (2010) Selective inhibition of methoxyflavonoids on human CYP1B1 activity. *Biol. Pharm. Bull.* 33, 6310–6315, https://doi.org/10.1248/bph.2010.6.20

220 Shimada, T., Tanaka, K., Takenaka, S., Murayama, N., Martin, M.V., Foroozesh, M.K. et al. (2010) Structure-function relationships of inhibition of human cytochromes P450 1A1, 1A2, 1B1, 2C3, and 3A4 by 33 flavonoid derivatives. *Chem. Res. Toxicol.* 23, 1921–1935, https://doi.org/10.1021/fc100296d

221 Doostdar, H., Burke, M.D. and Mayer, R.T. (2000) Bioflavonoids: selective substrates and inhibitors for cytochrome P450 CYP1A and CYP1B1. *Toxicology* 144, 31–38, https://doi.org/10.1016/S0300-483X(99)00215-2

222 Mantonawy, E.M., Esmat, A., El-Bakly, W.M., Salih ElDin, R.A. and El-Demerdash, E. (2017) Mechanistic clues to the protective effect of apigenin against doxorubicin-induced cardiomyopathy: plausible roles of p53, MAPK and AKT pathways. *Sci. Rep.* 7, 4795, https://doi.org/10.1038/s41598-017-05005-9

223 Mantonawy, E.M., El-Bakly, W.M., Esmat, A., Badr, A.M. and El-Demerdash, E. (2014) Chrysophan alleviates acute doxorubicin cardiotoxicity in rats via suppression of oxidative stress, inflammation and apoptosis. *Eur. J. Pharmacol.* 728, 107–118, https://doi.org/10.1016/j.ejphar.2014.01.065

224 Maruhashi, R., Eguchi, H., Akizuki, R., Hamada, S., Furuta, T., Matsunaga, T. et al. (2019) Chrysophan enhances anticancer drug-induced toxicity mediated by the reduction of claudin-1 and 11 expression in a spheroid culture model of lung squamous cell carcinoma cells. *Sci. Rep.* 9, 13753, https://doi.org/10.1038/s41598-019-50276-z

225 Gao, A.M., Ke, Z.P., Shi, F., Sun, G.C. and Chen, H. (2013) Chrysophan enhances sensitivity of BEL-7402/ADM cells to doxorubicin by suppressing PI3K/Akt/Nrf2 and ERK/Nrf2 pathway. *Chem. Biol. Interact.* 206, 100–108, https://doi.org/10.1016/j.cbi.2013.08.008

226 Gao, A.M., Ke, Z.P., Wang, J.N., Yang, J.Y., Chen, S.Y. and Chen, H. (2013) Apigenin sensitizes doxorubin-resistant hepatocellular carcinoma BEL-7402/ADM cells to doxorubicin via inhibiting PI3K/Akt/Nrf2 pathway. *Carcinogenesis* 34, 1806–1814, https://doi.org/10.1093/carcin/bgt108

227 Xiao, J., Sun, G.B., Sun, B., Wu, Y., He, L., Wang, X. et al. (2012) Kaempferol protects against doxorubicin-induced cardiotoxicity in vivo and in vitro. *Toxicology* 292, 53–62, https://doi.org/10.1016/j.tox.2011.11.018

228 Dong, Q., Chen, L., Lu, Q., Sharma, S., Li, L., Morimoto, S. et al. (2014) Quercetin attenuates doxorubicin cardiotoxicity by modulating Bmi-1 expression. *Br. J. Pharmacol.* 171, 4440–4454, https://doi.org/10.1111/bph.12795

229 Bartekova, M., Simoncikova, P., Fegarassyova, M., Ivanova, M., Okuhilcov, L., Tribulova, N. et al. (2015) Quercetin improves postischemic recovery of heart function in doxorubicin-treated rats and prevents doxorubicin-induced matrix metalloproteinase-2 activation and apoptosis induction. *Int. J. Mol. Sci.* 16, 8168–8185, https://doi.org/10.3390/ijms16040816

230 Matouk, A.I., Taye, A., Heeba, G.H. and El-Moselhy, M.A. (2013) Quercetin augments the protective effect of losartan against chronic doxorubicin cardiotoxicity in rats. *Environ. Toxicol. Pharmacol.* 36, 443–450, https://doi.org/10.1016/j.etap.2013.05.006

231 Wang, G., Zhang, J., Liu, L., Sharma, S. and Dong, Q. (2012) Quercetin potentiates doxorubicin mediated antitumor effects against liver cancer through p53/Bcl-xl. *PLoS ONE* 7, e51764, https://doi.org/10.1371/journal.pone.0051764

232 Du, G., Lin, H., Yang, Y., Zhang, S., Wu, X., Wang, M. et al. (2010) Dietary quercetin combining intratumoral doxorubicin injection synergistically induces rejection of established breast cancer in mice. *Int. Immunopharmacol.* 10, 819–826, https://doi.org/10.1016/j.intimp.2010.04.018

233 Du, G., Lin, H., Wang, M., Zhang, S., Wu, X., Lu, L. et al. (2010) Quercetin greatly improved therapeutic index of doxorubicin against 4T1 breast cancer by its opposing effects on HIF-1alpha in tumor and normal cells. *Cancer Chemother. Pharmacol.* 27, 287–297, https://doi.org/10.1007/s00280-009-0322-7

234 Scambia, G., Ranilette, F.O., Benedetti Panici, P., Piantelli, M., Bonanno, G., De Vincenzo, R. et al. (1991) Quercetin inhibits the growth of a multidrug-resistant estrogen-receptor-negative MCF-7 human breast-cancer cell line expressing type II estrogen-binding sites. *Cancer Chemother. Pharmacol.* 28, 255–258, https://doi.org/10.1007/BF00685531

235 Zanini, C., Giribaldi, G., Manildi, G., Carta, F., Crescenzi, N., Bisaro, B. et al. (2007) Inhibition of heat shock proteins (HSP) expression by quercetin and differential quercetin sensitization in neuroblastoma and Ewing’s sarcoma cell lines. *J. Neurochem.* 103, 1344–1354, https://doi.org/10.1111/j.1471-4159.2007.04835.x

236 Sadzuka, Y., Sugiyama, T., Shimoi, K., Kinae, N. and Hirotta, S. (1997) Protective effect of flavonoids on doxorubicin-induced cardiotoxicity. *Toxicol. Lett.* 92, 1–7, https://doi.org/10.1016/S0378-4274(97)00028-3

237 Sato, Y., Sasaki, N., Saito, M., Endo, N., Kugawa, F. and Ueno, A. (2015) Luteolin attenuates doxorubicin-induced cytotoxicity to MCF-7 human breast cancer cells. *Biol. Pharm. Bull.* 38, 703–709, https://doi.org/10.1248/bpb.b14-00780

238 Tang, X., Wang, H., Fan, L., Wu, X., Xin, A., Ren, H. et al. (2011) Luteolin inhibits Nrf2 leading to negative regulation of the Nrf2/ARE pathway and sensitization of human lung carcinoma A549 cells to therapeutic drugs. *Free Radic. Biol. Med.* 50, 1599–1609, https://doi.org/10.1016/j.freeradbiomed.2011.03.008

239 Scott, L.M., Durant, P., Leone-Kabler, S., Wood, C.E., Register, T.C., Townsend, A. et al. (2008) Effects of prior oral contraceptive use and soy isoflavonoids on estrogen-metabolizing cytochrome P450 enzymes. *J. Steroid Biochem. Mol. Biol.* 112, 179–185, https://doi.org/10.1016/j.jsbmb.2008.10.001

240 Roberts, D.W., Doerge, D.R., Churchwell, M.T., Gamboa da Costa, G., Marques, M.M. and Tolleson, W.H. (2004) Inhibition of extrahepatic human cytochromes P450 1A1 and 1B1 by metabolism of isoflavones found in Trifolium pratense (red clover). *J. Agric. Food Chem.* 52, 6623–6632, https://doi.org/10.1021/jf040418x
241 Lepri, S.R., Sartori, D., Sempereon, S.C., Baranosi, A., Coatti, G.C. and Mantovani, M.S. (2018) Genistein affects expression of cytochrome P450 (CYP450) genes in hepatocellular carcinoma (HEP2/3A) cell line. Drug Metab. Lett. 12, 138–144, https://doi.org/10.2174/187231281266180709150440

242 Wei, Y.K., Gama, I., Davenport, A., Lester, R., Zhao, L. and Wei, Y. (2015) Genistein induces cytochrome P450 1B1 gene expression and cell proliferation in human breast cancer MCF-7 cells. J. Environ. Pathol. Toxicol. Oncol. 34, 153–159, https://doi.org/10.1615/JEnvironPatholToxicolOncol.2015013315

243 Chen, M., Samuel, V.P., Wu, Y., Dang, M., Lin, Y., Sirimaneedi, R. et al. (2019) Nrf2/HO-1 mediated protective activity of genistein against doxorubicin-induced cardiac toxicity. J. Environ. Pathol. Toxicol. Oncol. 38, 143–152, https://doi.org/10.1615/JEnvironPatholToxicolOncol.2019023941

244 Bai, Z. and Wang, Z. (2019) Genistein protects against doxorubicin-induced cardiotoxicity through Nrf-2/HO-1 signaling in mice model. Environ. Toxicol. 34, 645–651, https://doi.org/10.1007/s00604-019-01172-1

245 Li, Y., Ahmed, F., Ali, S., Philip, P.A., Kucuk, O. and Sarkar, F.H. (2005) Inactivation of nuclear factor kappaB by isoflavone genistein contributes to increased apoptosis induced by chemotherapeutic agents in human cancer cells. Cancer Res. 65, 6934–6942, https://doi.org/10.1158/0008-5472.CAN-04-4604

246 Satoh, H., Nishikawa, K., Suzuki, K., Asano, R., Virgona, N., Ichikawa, T. et al. (2003) Genistein, a soy isoflavone, enhances necrotic-like cell death in a breast cancer cell treated with a chemotherapeutic agent. Res. Commun. Mol. Pathol. Pharmacol. 113-114, 149–158

247 Monti, E. and Sinha, B.K. (1994) Antiproliferative effect of genistein and adriamycin against estrogen-dependent- and -independent human breast carcinoma cells. Anticancer Res. 14, 1221–1226

248 Rigalli, J.P., Tocchetti, G.N., Arana, M.R., Villanueva, S.S., Catania, V.A., Theile, D. et al. (2016) The phytoestrogen genistein enhances multidrug resistance in breast cancer cell lines by translational regulation of ABC transporters. Cancer Lett. 376, 165–172, https://doi.org/10.1016/j.canlet.2016.03.040

249 Mohammad, R.M., Al-Katib, A., Aboukameel, A., Doerge, D.R., Sarkar, F. and Kucuk, O. (2003) Genistein sensitizes diffuse large cell lymphoma to chemotherapy. J. Environ. Pathol. Toxicol. Oncol. 22, 225–231

250 Abdelgawad, I.Y., Grant, M.K.O. and Zordoky, B.N. (2019) Leveraging the cardio-protective and anticancer properties of resveratrol in cardio-oncology. Biochem. Biophys. Acta. 1868, 1–10, https://doi.org/10.1016/j.bbalip.2018.12.006

251 Monti, E. and Sinha, B.K. (1994) Antiproliferative effect of genistein and adriamycin against estrogen-dependent and -independent human breast carcinoma cells. Anticancer Res. 14, 1221–1226

252 Piver, B., Berthou, F., Dreano, Y. and Lucas, D. (2003) Differential inhibition of human cytochrome P450 enzymes by epsilon-viniferin, the dimer of resveratrol: comparison with resveratrol and polyphenols from alcoholized beverages. Life Sci. 73, 1199–1213, https://doi.org/10.1016/S0024-3205(03)01036-2

253 Chen, M., Samuel, V.P., Wu, Y., Dang, M., Lin, Y., Sirimaneedi, R. et al. (2019) Nrf2/HO-1 mediated protective activity of genistein against doxorubicin-induced cardiac toxicity through the AMPK/P53 pathway. Int. J. Mol. Med. 43, 1455–1460, https://doi.org/10.3892/mmr.2014.2384

254 Bai, Z. and Wang, Z. (2019) Genistein protects against doxorubicin-induced cardiotoxicity through Nrf-2/HO-1 signaling in mice model. Environ. Toxicol. 34, 645–651, https://doi.org/10.1007/s00604-019-01172-1

255 Gu, J., Hu, W., Song, Z.P., Chen, Y.G., Zhang, D.D. and Wang, C.Q. (2016) Resveratrol-induced autophagy promotes survival and attenuates doxorubicin-induced cardiotoxicity. Int. Immunopharmacol. 32, 1–7, https://doi.org/10.1016/j.intimp.2016.01.002

256 Liu, M.H., Lin, X.L., Guo, D.M., Zhang, Y., Yuan, C., Tan, T.P. et al. (2016) Resveratrol protects cardiomyocytes from doxorubicin-induced apoptosis through the AMPK/P53 pathway. Mol. Med. Rep. 13, 1261–1266, https://doi.org/10.3892/mmr.2015.4665

257 Liu, M.H., Shan, J., Li, J., Zhang, Y. and Lin, X.L. (2016) Resveratrol inhibits doxorubicin-induced cardiotoxicity via sirtuin 1 activation in H9c2 cardiomyocytes. Exp. Ther. Med. 12, 1113–1118, https://doi.org/10.3892/etm.2016.3437

258 Gu, J., Fan, Y.O., Zhang, H.L., Pan, J.A., Yu, J.Y., Zhang, J.F. et al. (2018) Resveratrol suppresses doxorubicin-induced cardiotoxicity by disrupting E2F1 mediated autophagy inhibition and apoptosis promotion. Biochem. Pharmacol. 150, 202–213, https://doi.org/10.1016/j.bcp.2018.02.025

259 Rezk, Y.A., Balalud, S.S., Keller, R.S. and Bennett, J.A. (2006) Use of resveratrol to improve the effectiveness of cisplatin and doxorubicin: study in human gynecologic cancer cell lines and in rodent. Am. J. Obstet. Gynecol. 194, e23–e26, https://doi.org/10.1016/j.ajog.2005.11.030

260 Danz, E.D., Skramstedt, J., Henry, N., Bennett, J.A. and Keller, R.S. (2009) Resveratrol prevents doxorubicin cardiotoxicity through mitochondrial stabilization and the Sirt1 pathway. Free Radic. Biol. Med. 46, 1589–1597, https://doi.org/10.1016/j.freeradbiomed.2009.03.011

261 Xu, X., Chen, K., Kobayashi, S., Timm, D. and Liang, Q. (2012) Resveratrol attenuates doxorubicin-induced cardiomyocyte death via inhibition of p70 S6 kinase 1-mediated autophagy. J. Pharmacol. Exp. Ther. 341, 183–195, https://doi.org/10.1124/jpet.111.189589

262 De Angelis, A., Piegari, E., Cappetta, D., Russo, R., Esposito, G., Ciuffreda, L.P. et al. (2015) SIRT1 activation rescues doxorubicin-induced loss of functional competence of human cardiac progenitor cells. Int. J. Cardiol. 189, 30–44, https://doi.org/10.1016/j.ijcard.2015.03.438

263 Wang, G.Y., Wang, Y.M., Zhang, L.N., Li, Q., Yue, H., Song, C.M. et al. (2007) Effect of resveratrol on heart function of rats with adriamycin-induced heart failure. Zhongguo Zhong Yao Za Zhi 32, 1563–1565

264 Osman, A.M., Al-Harthi, S.E., AlArabi, O.M., Elshaf, M.F., Ramadan, W.S., Alaama, M.N. et al. (2013) Chemosensitizing and cardioprotective effects of resveratrol in doxorubicin-treated animals. Cancer Cell Int. 13, 52, https://doi.org/10.1186/1475-2763-13-52

265 Al-Harthi, S.E., AlArabi, O.M., Ramadan, W.S., Alaama, M.N., Al-Kreathy, H.M., Damanhouri, Z.A. et al. (2014) Amelioration of doxorubicin-induced cardiotoxicity by resveratrol. Mol. Med. Rep. 10, 1455–1460, https://doi.org/10.3892/mmr.2014.2384

266 Ruan, Y., Dong, C., Patel, J., Duan, C., Wang, X., Wu, X. et al. (2015) SIRT1 suppresses doxorubicin-induced cardiotoxicity by regulating the oxidative stress and p38MAPK pathways. Cell. Physiol. Biochem. 35, 1116–1124, https://doi.org/10.1159/000373937
2924

© 2020 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons Attribution License 4.0 (CC BY).

https://doi.org/10.1042/CS20200310
378 Mueller, E.W., Rockey, M.L. and Rashkin, M.C. (2008) Sunitinib-related fulminant hepatic failure: case report and review of the literature. Pharmacotherapy 28, 1066–1070, https://doi.org/10.1592/phco.28.8.1066

379 Di Lorenzo, G., Autorino, R., Bruni, G., Carteni, G., Ricevuto, E., Tudini, M. et al. (2009) Cardiovascular toxicity following sunitinib therapy in metastatic renal cell carcinoma: a multicenter analysis. Ann. Oncol. 20, 1535–1542, https://doi.org/10.1093/annonc/mdp025

380 Maayah, Z.H., Ansari, M.A., El Gendi, M.A., Al-Arif, M.N. and Korashy, H.M. (2014) Development of cardiac hypertrophy by sunitinib in vivo and in vitro cardiomyocytes is influenced by the aryl hydrocarbon receptor signaling pathway. Arch. Toxicol. 88, 725–738

381 Harvey, P.A. and Leinwand, L.A. (2015) Dietary phytoestrogens present in soy dramatically increase cardiotoxicity in male mice receiving a chemotherapeutic tyrosine kinase inhibitor. Mol. Cell. Endocrinol. 399, 330–335, https://doi.org/10.1016/j.mce.2014.10.011

382 Harvey, P.A. and Leinwand, L.A. (2015) Oestrogen enhances cardiotoxicity induced by Sunitinib by regulation of drug transport and metabolism. Cardiovasc. Res. 107, 66–77, https://doi.org/10.1093/cvr/cvu152

383 Meiners, B., Shenoy, C. and Zordoky, B.N. (2018) Clinical and preclinical evidence of sex-related differences in anthracycline-induced cardiotoxicity. Biol. Sex Differ. 9, 38, https://doi.org/10.1186/s13293-018-0198-2

384 Wei, S.C., Duffy, C.R. and Allison, J.P. (2018) Fundamental mechanisms of immune checkpoint blockade therapy. Cancer Discov. 8, 1069–1086, https://doi.org/10.1158/2159-8290.CD-18-0036

385 Yang, Y. (2015) Cancer immunotherapy: harnessing the immune system to battle cancer. J. Clin. Invest. 125, 3335–3337, https://doi.org/10.1172/JCI83871

386 Postow, M.A., Sidlow, R. and Hellmann, M.D. (2018) Immune-related adverse events associated with immune checkpoint blockade. N. Engl. J. Med. 378, 158–168, https://doi.org/10.1056/NEJMra1703481

387 Khunger, A., Battel, L., Jaworowski, A., Kapoor, A. and Agrawal, N. (2020) New insights into mechanisms of immune checkpoint inhibitor-induced cardiovascular toxicity. Curr. Oncol. Rep. 22, 65, https://doi.org/10.1007/s11912-020-00925-8

388 Moody, R., Wilson, K., Jaworowski, A. and Plebanski, M. (2020) Natural compounds with potential to modulate cancer therapies and self-reactive immune cells. Cancers (Basel) 12, 673, https://doi.org/10.3390/cancers12030673

389 Dung, L.J., Ok, M., Li, N., Lei, Y.H., Zhang, D.M. and Chen, J.X. (2020) Natural products and their derivatives: promising modulators of tumor immunity. J. Leukoc. Biol. 108, 493–508, https://doi.org/10.1002/JLB.3MR0320-444R

390 Faiq, M.A., Dada, R., Sharma, R., Saluja, D. and Dada, T. (2014) CYP1B1: a unique gene with unique characteristics. Arch. Toxicol. 88, 1066–1070, https://doi.org/10.1007/s00204-014-1212-0

391 Anderson, G. and Mazzoccoli, G. (2019) Left ventricular hypertrophy: roles of mitochondria CYP1B1 and melatonergic pathways in co-ordinating wider pathophysiology. Int. J. Mol. Sci. 20, 4068, https://doi.org/10.3390/ijms20164068

392 Cancers (Basel) 12, 360–369, https://doi.org/10.3390/cancers12010145

393 Daidone, M.G., Colombo, C., Panei, L., Dakarapu, R., Falck, J.R., Costas, M.A. et al. (2020) GPR75 receptor mediates 20-HETE-signaling and metastatic features of androgen-insensitive prostate cancer cells. Biochim. Biophys. Acta. Mol. Cell Biol. Lipids 1865, 158573, https://doi.org/10.1016/j.bbalip.2019.158573

394 Borin, T.F., Shankar, A., Angara, K., Rashid, M.H., Jain, M., Iskander, A. et al. (2017) BET0016 decreases lung metastasis from breast cancer in immune-competent mouse model. PLoS ONE 12, e0178830, https://doi.org/10.1371/journal.pone.0178830

395 Liu, Q., Tan, W., Che, J., Yuan, D., Zhang, L., Sun, Y. et al. (2018) 12-HETE facilitates cell survival by activating the integrin-linked kinase/NF-kappaB pathway in ovarian cancer. Cancer Manag. Res. 10, 583–588, https://doi.org/10.2174/1389200216666150206130058

396 Leng, J., Li, D., Li, Z., Zhang, L., Li, F., Zhang, C. et al. (2018) 15-Lipoxygenase-2/12-lipoxygenase-signaling and metastatic features of aromadendrines-insensitive prostate cancer cells. Biochim. Biophys. Acta. Mol. Cell Biol. Lipids 1865, 158573, https://doi.org/10.1016/j.bbalip.2019.158573

397 Zeng, J., Li, D., Li, Z., Zhang, J. and Zhao, X. (2020) Dendrobiom officinale attenuates myocardial fibrosis via inhibiting EMT signaling pathway in HFD/STZ-induced diabetic mice. Biol. Pharm. Bull. 43, 864–872, https://doi.org/10.1248/bpb.b19-01073

398 Kovacic, J.C., Mercader, N., Torres, M., Boehm, M. and Fuster, V. (2012) Epithelial-to-mesenchymal and endothelial-to-mesenchymal transition: from cardiovascular development to disease Circulation 125, 1795–1808, https://doi.org/10.1161/CIRCULATIONAHA.111.043052

399 Moretti, S., Nucci, N., Menicali, E., Morelli, S., Bini, V., Coella, R. et al. (2020) The aryl hydrocarbon receptor is expressed in thyroid carcinoma and appears to mediate epithelial-mesenchymal transition. Cancers (Basel) 12, https://doi.org/10.3390/cancers12010145

300 Scobie, M.R., Houke, H.R. and Rice, C.D. (2019) Modulation of gliala-inflammation crosstalk profiles in human glioblastoma cells by indirubin-3′-(2,3 dihydroxypropyl)-oximether (E804) and 7-bromoindirubin-3′-oxime (7BIO). Chem. Biol. Interact. 312, 108816, https://doi.org/10.1016/j.cbi.2019.108816

301 Liu, C., Ma, X., Zhuang, J., Liu, L. and Sun, C. (2020) Cardiotoxicity of doxorubicin-based cancer treatment: what is the protective cognition that phytochemicals provide us? Pharmacol. Res. 160, 105062, https://doi.org/10.1016/j.phrs.2020.105062

302 Tiwari, P. and Mishra, K.P. (2020) Flavonoids sensitize tumor cells to radiation: molecular mechanisms and relevance to cancer radiotherapy. Int. J. Radiat. Biol. 96, 360–369, https://doi.org/10.1080/09553002.2020.1694193

303 Patel, K.R., Brown, V.A., Jones, D.J., Britton, R.G., Hemmingsway, D., Miller, A.S. et al. (2010) Clinical pharmacology of resveratrol and its metabolites in colorectal cancer patients. Cancer Res. 70, 7392–7399, https://doi.org/10.1158/0008-5472.CAN-10-2027
406 Hoensch, H., Groh, B., Edler, L. and Kirch, W. (2008) Prospective cohort comparison of flavonoid treatment in patients with resected colorectal cancer to prevent recurrence. *World J. Gastroenterol.* **14**, 2187–2193, https://doi.org/10.3748/wjg.14.2187

407 Messing, E., Gee, J.R., Saltzstein, D.R., Kim, K., diSant’Agnese, A., Kolesar, J. et al. (2012) A phase 2 cancer chemoprevention biomarker trial of isoflavone G-2535 (genistein) in presurgical bladder cancer patients. *Cancer Prev. Res. (Phila.)* **5**, 621–630, https://doi.org/10.1158/1940-6207.CAPR-11-0455

408 Popat, R., Plesner, T., Davies, F., Cook, G., Cook, M., Elliott, P. et al. (2013) A phase 2 study of SRT501 (resveratrol) with bortezomib for patients with relapsed and or refractory multiple myeloma. *Br. J. Haematol.* **160**, 714–717, https://doi.org/10.1111/bjh.12154

409 Whittaker, J.A. and Al-Ismail, S.A. (1984) Effect of digoxin and vitamin E in preventing cardiac damage caused by doxorubicin in acute myeloid leukaemia. *Br. Med. J. (Clin. Res. Ed.)* **288**, 283–284, https://doi.org/10.1136/bmj.288.6413.283-a

410 Dresdale, A.R., Barr, L.H., Bonow, R.O., Mathisen, D.J., Myers, C.E., Schwartz, D.E. et al. (1982) Prospective randomized study of the role of N-acetyl cysteine in reversing doxorubicin-induced cardiomyopathy. *Am. J. Clin. Oncol.* **5**, 657–663, https://doi.org/10.1097/00000421-198212000-00015

411 Hao, D.C. and Xiao, P.G. (2019) Impact of drug metabolism/pharmacokinetics and their relevance upon traditional medicine-based cardiovascular drug research. *Curr. Drug Metab.* **20**, 556–574, https://doi.org/10.2174/1389200220666190618101526

412 Li, Y., Revalde, J. and Paxton, J.W. (2017) The effects of dietary and herbal phytochemicals on drug transporters. *Adv. Drug Deliv. Rev.* **116**, 45–62, https://doi.org/10.1016/j.addr.2016.09.004

413 Cho, H.J. and Yoon, I.S. (2015) Pharmacokinetic interactions of herbs with cytochrome p450 and p-glycoprotein. *Evid. Based Complement. Alternat. Med.* **2015**, 736431, https://doi.org/10.1155/2015/736431

414 Fernando, W., Rupasinghe, H.P.V. and Hoskin, D.W. (2019) Dietary phytochemicals with anti-oxidant and pro-oxidant activities: a double-edged sword in relation to adjuvant chemotherapy and radiotherapy? *Cancer Lett.* **452**, 168–177, https://doi.org/10.1016/j.canlet.2019.03.022