DIURNAL FEEDING BEHAVIOUR OF CRAB-EATING RACCOON UPON A PARADOXAL FROG, WITH A REVIEW OF ITS DIET

Alimentación diurna del mapache cangrejero sobre una rana paradoxal, con una revisión de su dieta

Karoline CERON1*, Priscila S. CARVALHO2, Lydia MÖCKLINGHOFF3, Diego José SANTANA1,2

1Universidade Federal de Mato Grosso do Sul, Cidade Universitária, CEP 79070-900, Campo Grande, Mato Grosso do Sul, Brazil
2Programa de Pós-Graduação em Biologia Animal, Universidade Estadual Paulista (UNESP), 15054-000, São José do Rio Preto, São Paulo, Brazil
3Zoologisches Forschungsmuseum Koenig, AG Tropenökologie, Prof. Dr. Schuchmann, Adenauerallee 160, 53113 Bonn, Germany

*For correspondence: adenomera@gmail.com

Received: 16th May 2019, Returned for revision: 05th July 2019, Accepted: 15th August 2019.
Associate Editor: Sonia Gallina Tessaro.

Citation/Citar este artículo como: Ceron K, Carvalho PS, Möcklinghoff L, Santana DJ. Diurnal feeding behaviour of crab-eating raccoon upon a paradoxal frog, with a review of its diet. Acta biol. Colomb. 2020;25(2):359-367. DOI: http://dx.doi.org/10.15446/abc.v25n2.79721

ABSTRACT
The crab-eating raccoon (Procyon cancrivorus) is considered one of the less-studied Neotropical carnivores. Observations about its behavior are difficult as it is mainly nocturnal, shy, and inconspicuous. This species is considered opportunistic, with a frugivorous-omnivorous diet. It is known to feed on fruits and invertebrates as well as small mammals and lizards. Herein, we describe a first direct observation of a crab-eating raccoon hunting for frogs during the daytime. It is also a first record of predation on a paradoxal frog (Pseudis platensis) by P. cancrivorus. We further present a detailed literature review about its diet. We compiled a total of 14 papers published from 1986 to 2019, including eight studies that characterize the diet of P. cancrivorus. According to these studies, the diet of P. cancrivorus constitutes of 35 vegetal taxa and 96 animal taxa. Thus, the here presented record of predation on a frog by P. cancrivorus is not only the first visual description of this behavior, it also reinforces the knowledge about its generalist and opportunistic diet. It is further the first evidence of the daytime behavior for the crab-eating raccoon in the Pantanal.

Keywords: Pantanal, Procyon cancrivorus, Pseudis platensis, trophic ecology.

RESUMEN
El mapache cangrejero es considerado uno de los carnívoros neotropicales menos estudiados, debido a sus hábitos nocturnos y discretos que dificultan las observaciones sobre su comportamiento. Esta especie es considerada una especie frugívora-omnívora, con hábitos oportunistas, que se alimenta desde invertebrados hasta otros mamíferos y lagartos. En este documento, proporcionamos un nuevo informe de depredación por un mapache cangrejero sobre una rana paradójica (Pseudis platensis) y presentamos una revisión bibliográfica detallada sobre su dieta. Recopilamos un total de 14 artículos publicados de 1986 a 2019, de los cuales se utilizaron ocho estudios para caracterizar la dieta de P. cancrivorus. La dieta de P. cancrivorus estuvo constituida por 96 taxones animales y 35 vegetales. Nuestro registro de depredación sobre una rana refuerza la dieta generalista y oportunista conocida de P. cancrivorus y es además la primera evidencia de actividad diurna para el mapache cangrejero en el Pantanal y el primer informe de depredación sobre P. platensis por parte de un mamífero.

Palabras clave: Ecología trófica, Pantanal, Procyon cancrivorus, Pseudis platensis.
The crab-eating raccoon (*Procyon cancrivorus*) is a medium-sized nocturnal carnivore widely distributed in the Neotropics, from Costa Rica to Uruguay. It inhabits forested and open areas, generally associated with limnic systems (González et al., 2010). Due to its nocturnal and inconspicuous behavior, the crab-eating raccoon is considered one of the less-studied Neotropical carnivores. The species is opportunistic, and its omnivorous diet (Paglia et al., 2012) includes fruits and invertebrates as well as small mammals and lizards (e.g., Gatti et al., 2006; Quintela et al., 2014; Dias and Bocchiglieri, 2015). In this paper, we investigate the diet of *P. cancrivorus* and report a predation event by *P. cancrivorus* upon a paradoxal frog (*Pseudis platensis*) in the Southern Pantanal.

We searched for studies in the Web of Science (<https://webofknowledge.com/>) and Scopus (<https://www.scopus.com/>) databases, using the keywords ‘*Procyon cancrivorus*’ AND ‘*Diet*’ OR ‘*Feed*’ OR ‘*Trophic ecology*’ up to 2019. Besides, we gather all data from direct searches of references in Google Scholar (<https://scholar.google.com.br/>). Among these compiled references, we selected only studies presenting absolute data on the diet of *P. cancrivorus*.

We compiled a total of 14 papers published from 1986 to 2019, with eight publications characterizing the diet of *P. cancrivorus*. Seven studies were performed in Brazil, distributed in Northeast, Southeast, and South, and only one study was performed in Venezuela with multiple localities. These studies accessed *P. cancrivorus* diet, analyzing fecal samples and stomach content. According to these studies, the diet incorporates 96 animal taxa and 35 vegetal taxa (Supplementary material. *Aratus* sp. (*Brachyura: Decapoda*) and *Syagrus romanzoffiana* (*Arecaceae*) were reported to be the animal and plant most abundant in the diet of *P. cancrivorus*. Coleoptera and Orthoptera were the items most frequent among six of the eight studies compiled.

Besides this information from existing literature, we here report a direct observation on *P. cancrivorus* foraging in a freshwater lake at Fazenda Barranco Alto Lodge in the Southern Pantanal, municipality of Aquidauana, Mato Grosso do Sul (19°34’S, 56°4’W, 114 m.a.s.l.). The observation occurred by chance during fieldwork on 4 Jun 2011 from 07:10 am to 07:19 am. An adult *P. cancrivorus* was observed while it was catching anurans in a lagoon. The species was foraging among aquatic macrophytes, moving its hands quickly back and forth to feel possible catch underneath the water plants. It was hunting exclusively haptic and did not try to move the plants to the side to visualize possible prey in the water. In this manner, the raccoon captured and ate six anurans during nine minutes of observation. Only one of these anurans preayed by *P. cancrivorus* could be identified as the paradoxal frog (*Pseudis platensis*) (Fig. 1), an aquatic diurnal/nocturnal hylid that occurs in permanent and semi-permanent ponds (Dixon et al., 1995). Paradoxal frog could be identified by its medium size (greater than *Lysapsus limmellum*, another aquatic hylid) and by the coloration of its thigh, with thick dark lines (Garda et al., 2010) (Fig.1c). This is the first visual record of *P. cancrivorus* feeding upon an anuran and the first report of predation upon *P. platensis* by a mammal.

Despite the wide distribution of *P. cancrivorus*, dietary studies were concentrated in Brazil, mainly in Protected Areas (e.g., Santos and Hartz, 1999; Gatti et al., 2016). The elevate abundance of *Aratus* sp. (*n* = 114) can be related to the mangrove environment where this species is common (Novaes, 2002). *Syagrus romanzoffiana* is a common palm in a semideciduous forest in South Brazil and frequently is reported in dietary studies of mammals like squirrels, tapirs, peccary, brown-nosed coatis and maned wolfs (e.g., Bueno and Motta-Junior, 2004; Keuroghlian and Eaton, 2008; Giombini et al., 2009). Fruits are produced throughout the year, showing ovoid shape (ca. 2.5 cm diameter), with a soft exocarp and woody endocarp (Galetti et al., 1992). The elevated frequency of Coleoptera and Orthoptera in *P. cancrivorus* diet is related to wide distribution and the great abundance of these orders in the environment, which facilitate their visualization and capture (Rafael et al., 2012).

Earlier studies on *P. cancrivorus* diet show an elevated number of aquatic preys (e.g., *Aratus* sp.), confirming that this species forages next to water (Trolle, 2003). In these analyses, on the diet of *P. cancrivorus*, anurans were identified only to the family level, with Bufonidae, Hylidae, and Leptodactylidae being cited. Thus, our record of *P. cancrivorus* preying on *P. platensis* was the first one to analyze the preyed anuran to species level.

![Figure 1. (a-c) An adult crab-eating racoon (*Procyon cancrivorus*) searching and preying an adult paradoxal frog (*Pseudis platensis*) in a lagoon in Pantanal, Mato Grosso do Sul, Brazil. (Photos: Lydia Möcklinghoff)](image)
Paradoxal frog has diurnal and nocturnal habits, vocalizing on the water surface, among macrophytes (Dixon et al., 1995). Information on P. platensis natural history is scarce, with the majority being related to the diet of its giant tadpoles and on parasites (e.g., Emerson, 1988; Arias et al., 2002; Campiño et al., 2010; Ceron et al., 2017; Landgref Filho et al., 2019). Reports of animals preying on adults of P. platensis include five bird species, another frog species, snakes, fishes, and caimans (Landgref-Filho et al., 2019). Until now it was not known that also mammals hunt for this frog species. Our observation shows that the ability of the crab-eating raccoon to catch frogs in the water without visual reference, as recorded here, is possible due to the well-developed tactile abilities, using their forepaws skilfully, and other sensory skills of the species (Nowak and Walker, 1999). This tactile way of hunting might be of interest when hunting in the dark as P. cancrivorus is known to be a nocturnal creature, such as its congeners Procyon lotor (Greenwood, 1982). However, the observations here presented of diurnal foraging activity of P. cancrivorus are rare, also shows that the animal hunts in a tactile and not visual way during daytime and that this hunting strategy enables the animal to hunt in water with limited visibility and catch the frogs under the floating vegetation.

Few studies have reported diurnal habits to P. cancrivorus (Brooks, 1993; Carrillo and Vaughan, 1993; Gómez et al., 2005). For the Pantanal, this is even the first evidence of a crab-eating raccoon being active during the daytime. Several factors may affect on activity times of raccoons, such as the hunting success in the previous night and individual fitness (Gehrt and Fritzell, 1998). Due to the difficulty to observe predatory events in nature, these records are an important source, as they directly contribute to the knowledge of a species’ natural history. Our observation reinforces the known generalist and opportunistic diet of P. cancrivorus, gives new insights about the hunting strategy of this mammal species, and it is the first record of predation on P. platensis by a mammal.

ACKNOWLEDGMENT

KC is grateful to Fundect (Fundaçao de Apoio ao Desenvolvimento de Ensino, Ciência e Tecnologia do Mato Grosso do Sul) for her scholarship (# 71/700.146/2017). PSC thanks Coordenação de Aperfeiçoamento de Pessoal de Nível Superior-Brasil (CAPES) – Finance Code 001. DJJS is grateful to CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico) for his research fellowship (311492/2017-7). LM is grateful for her scholarship at the Studienstiftung des Deutschen Volkes Foundation, Bonn, Germany; the National Institute of Science and Technology for Wetland Research INAU/INCT/UFMT, Cuiaba, Brazil, and the Brazilian Science without Borders Program (SISBO Research Permit No. 5331241).

CONFLICT OF INTEREST

The authors declare that there is no conflict of interest.

REFERENCES

Aguiar LM, Moro-Rios RF, Silvestre T, Silva-Pereira JE, Bilski DR, Passos FP, et al. Diet of brown-nosed coatis and crab-eating raccoons from a mosaic landscape with exotic plantations in southern Brazil. Stud. Neotropical Fauna Environ. 2011;46(3):153-161. Doi: https://doi.org/10.1080/01650521.2011.640567

Arias MM, Peltzer PM, Lajmanovich, RC. Diet of the giant tadpole Pseudis paradoxa platensis (Anura, Pseudidae) from Argentina. Phylomedusa J. Herpetol. 2002;1(2):97-100. Doi: https://doi.org/10.11606/issn.2316-9079.v1i2p97-100

Bisbal E. Food habits of some neotropical carnivores in Venezuela (Mammalia, Carnivora). Mammalia. 1986;50(3):329-339. Doi: https://doi.org/10.1515/mamm.1986.50.3.329

Brooks D. Observations on procyonids in Paraguay and adjacent regions. Small Carniv Conserv. 1993; 8:3-4.

Bueno ADA, Motta-Junior JC. Food habits of two sympatric canids, the maned wolf (Chrysogon brachyurus) and the crab-eating fox (Cerdocyon thous), in southeastern Brazil. Rev Chil Hist Nat. 2004;77(1):5-14. Doi: http://dx.doi.org/10.4067/S0716-078X20040000100002

Magalhães Campiño K, da Silva RJ, Ferreira VL. Helminth component community of the paradoxal frog Pseudis platensis Gallardo, 1961 (Anura: Hylidae) from southeastern Pantanal, Brazil. Parasitol Res. 2010;106(3):747-751. Doi: https://doi.org/10.1007/s00436-009-1718-0

Carrillo E, Vaughan C. Behavioral change in Procyon spp. (Carnivora: Procyonidae) caused by tourist visitation in a Costa Rican wildlife area. Rev Biol Trop. 1993;41(3):843-848.

Ceron K, Ferreira VL, Tomas V, Santana DJ. Battle of giants: Predation on giant tadpole of Pseudis platensis (Anura: Hylidae) by a giant water bug (Hemiptera: Belostomatidae). Herpetol Notes. 2017;10: 263-265.

Dias DM, Bocchiiglieri A. Dieta de carnívoros (Mammalia, Carnivora) em um remanescente de Caatinga, Nordeste do Brasil. Bioikos. 2015;29(1):13-19.

Dixon JR, Mercollci C, Yanosky AA. Some aspects of the ecology of Procyon cancrivorus at the Parque Nacional Barro Colorado Island, Panama. Herpetol Rev. 1995;26:183-184.

Dos Santos M, Hartz S. The food habits of Procyon cancrivorus (Carnivora, Procyonidae) in the Lami Biological Reserve, Port Alegre, Southern Brazil. Mammalia. 1999;63:525-530.

Emerson SB. The giant tadpole of Pseudis paradoxa from northeastern Argentina. Herpetol Rev. 1995;26:183-184.

Galetti M, Paschoal M, Pedroni F. Predation on palm nuts (Syagrus romanzoffiana) by squirrels (Sciurus ingrami) in southeastern Brazil. J Trop Ecol. 1992;8(1):121-123. Doi: https://doi.org/10.1017/S0266467400006210

Acta biol. Colomb., 25(2):359-367, Mayo - Julio 2020 - 361
Garda AA, Santana DJ, São-Pedro VDA. Taxonomic characterization of Paradoxical frogs (Anura, Hylidae, Pseudae): geographic distribution, external morphology, and morphometry. Zootaxa. 2010; 2666(1):1-28. Doi: http://dx.doi.org/10.11646/zootaxa.2666.1.1

Gatti A, Bianchi R, Rosa CRX, Mendes SL. Diet of two sympatric carnivores, Cerdocyon thous and Procyon cancrivorus, in a restinga area of Espirito Santo State, Brazil. J. Trop. Ecol. 2006;22(2):227-230. Doi: https://doi.org/10.1017/S0266474050002956

Gehrt SD, Fritzell EK. Duration of familial bonds and dispersal patterns for raccoons in South Texas. J Mammal. 1998;79(3):859-872. Doi: https://doi.org/10.2307/1383094

Giombini MI, Bravo SP, Martinez MF. Seed dispersal of the palm Syagrus romanzoffiana by tapirs in the semi-deciduous Atlantic Forest of Argentina. Biotropica. 2009;41(4):408-413. Doi: https://doi.org/10.1111/j.1744-7429.2009.00526.x

Gómez H, Wallace RB, Ayala G, Tejada R. Dry season activity periods of some Amazonian mammals. Stud Neotrop. Fauna Environ. 2005;40(2):91-95. Doi: https://doi.org/10.1080/0165052050129638

González EM, Lanfranco M, Andrés J. Mamíferos de Uruguay: guía de campo e introducción a su estudio y conservación. Montevideo: Museo Nacional de Historia Natural, Vida Silvestre Uruguay, 2010. 463 p.

Greenwood RJ. Nocturnal activity and foraging of prairie raccoons (Procyon lotor) in North Dakota. Am Midl Nat. 1982;107(2):238-243. Doi: https://doi.org/10.2307/2425374

Keuroghlian A, Eaton DP. Fruit availability and peccary frugivory in an isolated Atlantic Forest fragment: effects on peccary ranging behavior and habitat use. Biotropica. 2008; 40(1):62-70. Doi: https://doi.org/10.1111/j.1744-7429.2007.00351.x

Landgref Filho P, Aoki C, de Sousa DLH, Souza EO, Brandão RA, Ávila RW, et al. Escape or be preyed: new records and current knowledge on predators of Pseudinae frogs (Anura: Hylidae) in South America. Acta Biolo Colomb. 2019;24(2):397-402. Doi: https://doi.org/10.15446/abc.v24n2.74650

Martinelli MM, Volpi TA. Diet of raccoon Procyon cancrivorus (Carnivora, Procyonidae) in a mangrove and restinga area in Espirito Santo state, Brazil. Nat Line. 2010;8(3):150-151.

Novaes DM. Dieta e uso do hábitat no guaxinim, Procyon cancrivorus, na Baixada Santista, São Paulo (Carnivora: Procyonidae) (Master’s thesis). São Paulo: Zoology Department, Universidade de São Paulo; 2002. 110 p.

Nowak RM, Walker EP. Walker’s Mammals of the World. Baltimore: JHU Press; 1999, 793 p.

Paglia AP, Fonseca GAB da, Rylands AB, Herrmann G, Aguiar LMS, Chiarello AG, et al. Lista Anotada dos Mamíferos do Brasil 2a Edição/Annotated Checklist of Brazilian Mammals. Occas Pap Conserv Biol. 2012;6:1-82.

Quintela FM, Iob G, Artioli LGS. Diet of Procyon cancrivorus (Carnivora, Procyonidae) in restinga and estuarine environments of southern Brazil. Iheringia Sér. Zool. 2014;104(2):143-149. Doi: http://dx.doi.org/10.1590/1678-476620141042143149

Rafael JA, Melo GAR, Carvalho CD, Casari SA, Constantino R.Insetos do Brasil: diversidade e taxonomia. Ribeirão Preto (SP): Holos; 2012. 810 p.

Trolle M. Mammal survey in the southeastern Pantanal, Brazil. Biodivers Conserv. 2003; 12: 823-836. Doi: https://doi.org/10.1023/A:1022489426920
Table. Items reported in the diet of the crab eating racoon (*Procyon cancrivorus*) reported in the literature between 1986 and 2019.

Taxon	Number of individuals	Reference
Animals		
Arthropoda	14	Quintela *et al.*, 2014
Araneae	2	Aguiar *et al.*, 2011; Bisbal, 1986
Belostomatidae	16	Quintela *et al.*, 2014
Blattodea	1	Aguiar *et al.*, 2011; Bisbal, 1986; Gatti *et al.*, 2006; Aguiar *et al.*, 2011; Martinelli and Volpi, 2010; Quintela *et al.*, 2014; Dias and Bocchiglieri, 2015
Coleoptera	90	Bisbal, 1986; Dos Santos and Hartz, 1999; Gatti *et al.*, 2006; Aguiar *et al.*, 2011; Martinelli and Volpi, 2010; Quintela *et al.*, 2014; Dias and Bocchiglieri, 2015
Decapoda	3	Bisbal, 1986
Parastacus sp.	1	Dos Santos and Hartz, 1999
Brachyura	39	Quintela *et al.*, 2014
Aegla castro Schmitt, 1942	1	Aguiar *et al.*, 2011
Aegla sp.	2	Dos Santos and Hartz, 1999
Aratus sp.	114	Novaes, 2002
Armases sp.	28	Novaes, 2002
Callinectes sp.	17	Novaes, 2002
Cardisoma sp.	4	Novaes, 2002
Chasmognathus sp.	100	Novaes, 2002
Dilocarcinus dentatus (Randall, 1840)	2	Bisbal, 1986
Coniopsis sp.	29	Novaes, 2002
Metasesarma sp.	35	Novaes, 2002
Sesarma sp.	48	Novaes, 2002
Ocypodidae	67	Martinelli and Volpi, 2010
Ocypode quadrata (Fabricius, 1787)	13	Gatti *et al.*, 2006
Ucides sp.	33	Novaes, 2002
Diplopoda	4	Quintela *et al.*, 2014
Hymenoptera	29	Quintela *et al.*, 2014; Dias and Bocchiglieri, 2015
Insecta Ni	23	Gatti *et al.*, 2006; Dos Santos and Hartz, 1999; Aguiar *et al.*, 2011
Isopoda	6	Quintela *et al.*, 2014
Isoptera	14	Dias and Bocchiglieri, 2015
Odonata	11	Dos Santos and Hartz, 1999; Aguiar *et al.*, 2011; Quintela *et al.*, 2014
Orthoptera	35	Bisbal, 1986; Dos Santos and Hartz, 1999; Gatti *et al.*, 2006; Aguiar *et al.*, 2011; Quintela *et al.*, 2014; Dias and Bocchiglieri, 2015
Scorpionida NI	10	Dias and Bocchiglieri, 2015

(Continued)
Taxon	Number of individuals	Reference
Bothriurus bonarrensis (L. C. Koch, 1842)	1	Quintela et al., 2014
Molluscs NI	1	Gatti et al., 2006
Pomacea glauca (Linnaeus, 1758)	3	Bisbal, 1986
Pomacea sp.	46	Quintela et al., 2014
Planorbidae	6	Quintela et al., 2014
Mammalia NI	51	Dos Santos and Hartz, 1999; Quintela et al., 2014
Artibeus sp.	1	Novaes, 2002
Sus scrofa Linnaeus, 1758	1	Quintela et al., 2014
Dasyypodidae	2	Quintela et al., 2014
Didelphimorphia	1	Gatti et al., 2006
Didelphis albiventris (Lund, 1840)	7	Quintela et al., 2014
Didelphis sp.	9	Novaes, 2002
Metachira sp.	5	Novaes, 2002
Rodentia	4	Dos Santos and Hartz, 1999; Gatti et al., 2006; Aguiar et al., 2011
Akodon sp.	5	Novaes, 2002
Cavia fulgida Wagler, 1831	3	Gatti et al., 2006; Martinelli and Volpi, 2010
Cavia sp.	38	Novaes, 2002; Quintela et al., 2014
Ctenomys sp.	1	Quintela et al., 2014
Dasyopus sp.	1	Gatti et al., 2006
Myocaster coyus (Molina, 1782)	2	Quintela et al., 2014
Nectomys sp.	11	Novaes, 2002
Oryzomys sp.	1	Gatti et al., 2006
Rattus rattus (Linnaeus, 1758)	1	Gatti et al., 2006
Scapteromys tumidus (Waterhouse, 1837)	3	Quintela et al., 2014
Wiedomys pyrrhorhinus (Wied-Neuwied, 1821)	2	Dias and Bocchiglieri, 2015
Cricetidae	15	Quintela et al., 2014
Holochilus brasiliensis (Desmarest, 1819)	3	Quintela et al., 2014
Amphibia NI	3	Bisbal, 1986; Gatti et al., 2006; Aguiar et al., 2011
Anura	7	Quintela et al., 2014
Bufonidae	5	Novaes, 2002
Hylidae NI	2	Novaes ,2002
Pseudis platensis Gallardo, 1961	1	This study
Leptodactyliidae	3	Novaes, 2002
Reptil NI	1	Dos Santos and Hartz, 1999
Trachemys dorbigni (Duménil & Bibron, 1835)	2	Dos Santos and Hartz, 1999
Lizard NI	6	Gatti et al., 2006; Dias and Bocchiglieri, 2015

(Continued)
Crab-eating raccoon diet

Taxon	Number of individuals	Reference
Brasiliscincus agilis (Raddi, 1823)	2	Gatti et al., 2006
Tropidurus gr. turquetus	4	Gatti et al., 2006
Tropidurus hispidus (Spix, 1825)	4	Dias and Bocchiglieri, 2015
Tropidurus semitaeniatus (Spix, 1825)	1	Dias and Bocchiglieri, 2015
Teiidae NI	1	Bisbal, 1986
Ameiva ameiva (Linnaeus, 1758)	3	Gatti et al., 2006
Salvator merianae Duméril & Bibron, 1839	1	Quintela et al., 2014
Snake NI	1	Gatti et al., 2006
Bothrops jararaca (Wied, 1824)	1	Gatti et al., 2006
Colubridae NI	7	Gatti et al., 2006
Dipsadidae NI	11	Quintela et al., 2014
Erythrolamprus semiaureus (Cope, 1862)	34	Quintela et al., 2014
Erythrolamprus jaegeri (Günther, 1858)	1	Quintela et al., 2014
Erythrolamprus sp.	5	Novaes, 2002
Phiodryas patagoniensis (Girard, 1858)	5	Quintela et al., 2014
Birds NI	15	Dos Santos and Hartz, 1999; Gatti et al., 2006; Dias and Bocchiglieri, 2015
Aramides sp.	11	Novaes, 2002
Butorides sp.	24	Novaes, 2002
Casmerodius sp.	17	Novaes, 2002
Fishes NI	8	Bisbal, 1986; Gatti et al., 2006; Aguiar et al., 2011; Quintela et al., 2014
Centropomus sp.	12	Novaes, 2002
Geophagus sp.	3	Novaes, 2002
Mugil sp.	14	Novaes, 2002
Sardinella sp.	16	Novaes, 2002
Synbranchus marmoratus Bloch, 1795	1	Quintela et al., 2014
Characidae	1	Dos Santos and Hartz, 1999
Siluriformes	5	Quintela et al., 2014
Tachysurus sp.	5	Novaes, 2002
Vertebrates NI	12	Gatti et al., 2006; Martinelli and Volpi, 2010; Quintela et al., 2014
Egg shell (embryo)	1	Dias and Bocchiglieri, 2015

Vegetal

Anacardiaceae		
Anacardium occidentale L.	1	Dias and Bocchiglieri, 2015
Schinus terebinthifolius Raddi	3	Gatti et al., 2006

(Continued)
Taxon	Number of individuals	Reference
Arecaceae		
Allagoptera arenaria (Gomes) Kuntze	101	Gatti et al., 2006; Martinelli and Volpi, 2010
Butia capitata (Mart.) Becc.	5	Santos and Hartz, 1999
Syagrus romanzoffiana (Cham.) Glassman	127	Santos and Hartz, 1999; Aguiar et al., 2011; Quintela et al., 2014
Bromeliaceae		
Bromelia antiochana Bertol.	54	Dos Santos and Hartz, 1999; Quintela et al., 2014
Cactaceae		
Cereus ferrambucensis Lem.	11	Gatti et al., 2006
Pilosocereus gounellei (F.A.C.Weber) Byles & Rowley	3	Dias and Bocchiglieri, 2015
Pilosocereus pachycladus F.Ritter	1	Dias and Bocchiglieri, 2015
Ebenaceae		
Diospyros inconstans Jacq.	1	Quintela et al., 2014
Fabaceae	5	Dias and Bocchiglieri, 2015
Prosopis L.	5	Dias and Bocchiglieri, 2015
Goodeniaceae		
Scaevola plumieri (L.) Vahl	4	Gatti et al., 2006
Moraceae		
Ficus L.	5	Dias and Bocchiglieri, 2015
Ficus organensis (Miq.) Miq.	6	Dos Santos and Hartz, 1999
Myrtaceae	3	Dos Santos and Hartz, 1999; Dias and Bocchiglieri, 2015
Eugenia L.	2	Gatti et al., 2006
Marlierea neuwiedeana (O.Berg) Nied.	4	Gatti et al., 2006
Neomitrantes obscura (DC.) N.Silveira	6	Gatti et al., 2006
Psidium cattleianum Sabine	1	Gatti et al., 2006
Psidium guajava L.	3	Dos Santos and Hartz, 1999
Psidium cf. cattleianum	23	Quintela et al., 2014
Rhamnaceae		
Hovenia dulcis Thunb.	2	Dos Santos and Hartz, 1999
Poaceae	1	Aguiar et al., 2011
Polygonaceae	1	Dias and Bocchiglieri, 2015
Rosaceae		
Eriobotrya japonica (Thunb.) Lindl.	1	Aguiar et al., 2011
Rubiaceae		
Tocoyena bullata (Vell.) Mart.	4	Gatti et al., 2006
Sapotaceae		
Sideroxylon obtusifolium (Roem. & Schult.) T.D.Penn.	2	Dias and Bocchiglieri, 2015

(Continued)
Crab-eating raccoon diet

Taxon	Number of individuals	Reference
Smilacaceae		
Smilax L.	2	Quintela *et al.*, 2014
Solanaceae NI	3	Quintela *et al.*, 2014
Solanum L.	5	Quintela *et al.*, 2014
Miscellaneous (grass and fibers)	10	Dias and Bocchiglieri, 2015
Fruit NI	3	Dos Santos and Hartz, 1999
Seeds NI	24	Gatti *et al.*, 2006; Martinelli and Volpi, 2010; Dias and Bocchiglieri, 2015
Metaphyta NI	2	Aguiar *et al.*, 2011