Supplementary Information

Silver Complex of an N-Heterocyclic Carbene Ligand with Bulky Thiocarbamate Groups

Elvis Robles-Marín, Alexander Mondragón, Marcos Flores-Alamo and Ivan Castillo*

Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior, CU, 04510 Ciudad de México, México

Universidad del Valle, Ciudad Universitaria Meléndez, Calle 13 No. 100-00, 76001 Cali, Colombia

Facultad de Química, División de Estudios de Posgrado, Universidad Nacional Autónoma de México, CU, 04510 Ciudad de México, México

Spectroscopic data

Figure S1. 1H NMR spectrum (300 MHz, CDCl$_3$) of 1, inset: detail of resonances between 3.4–2.8 ppm.

*e-mail: joseivan@unam.mx
Figure S2. FAB$^+$ MS of 1 and its most important fragments.

Figure S3. 1H NMR spectrum (300 MHz, CDCl$_3$) of chloride 2 at room temperature.
Figure S4. 13C NMR spectrum (75 MHz, CDCl$_3$) of proligand 3 at room temperature.

Figure S5. 13C DEPT-135 NMR spectrum (75 MHz, CDCl$_3$) of proligand 3 at room temperature.
Figure S6. 19F NMR spectrum (282 MHz, CDCl$_3$) of proligand 3 at room temperature.

Figure S7. FAB$^+$ MS of 3 and its most important fragments.
Figure S8. IR (KBr) spectrum of 3.

Figure S9. 13C NMR spectrum (75 MHz, CDCl$_3$) of 5 at room temperature.
Figure S10. 13C DEPT-135 NMR spectrum (75 MHz, CDCl$_3$) of 5 at room temperature.
Crystallographic data

Table S1. Crystal data and structure refinement for 1

Parameter	Value		
Identification code	1		
Empirical formula	C_{19}H_{17}F_{6}NO_{2}S		
Formula weight	437.40		
Temperature / K	130(2)		
Wavelength / Å	0.71073		
Crystal system	triclinic		
Space group	P-1		
Unit cell dimensions	a = 5.134(2) Å		
	b = 10.620(4) Å		
	c = 17.878(4) Å		
	α = 99.45(2)°		
	β = 96.43(3)°		
	γ = 93.37(3)°		
Volume / Å³	952.6(6)		
Z	2		
Density (calculated) / (mg m⁻³)	1.525		
Absorption coefficient / mm⁻¹	0.242		
F(000)	448		
Crystal size / mm³	0.54 × 0.07 × 0.06		
Theta range for data collection / degree	3.49-25.03		
Index ranges	−6 ≤ h ≤ 6, −12 ≤ k ≤ 11, −21 ≤ l ≤ 20		
Reflections collected	6227		
Independent reflections	3362 [R(int) = 0.0469]		
Completeness to theta = 25.03° / %	99.7		
Refinement method	full-matrix least-squares on F²		
Data / restraints / parameters	3362 / 1 / 268		
Goodness-of-fit on F²	1.059		
Final R indices [I > 2σ(I)]	R₁ = 0.0583, wR₂ = 0.1281		
R indices (all data)	R₁ = 0.0972, wR₂ = 0.1594		
Largest diff. peak and hole / e.Å⁻³	0.340 and −0.344		
	Bond length / Å	C(17)-S(1)	1.811(4)
------	----------------	------------	----------
C(1)-C(2)	1.388(5)	C(18)-N(1)	1.471(5)
C(1)-C(6)	1.391(5)	C(18)-H(18A)	0.9800
C(1)-C(9)	1.502(5)	C(18)-H(18B)	0.9800
C(2)-C(3)	1.393(5)	C(18)-H(18C)	0.9800
C(2)-H(2)	0.9500	C(19)-N(1)	1.459(5)
C(3)-C(4)	1.390(5)	C(19)-H(19A)	0.9800
C(3)-C(7)	1.494(5)	C(19)-H(19B)	0.9800
C(4)-C(5)	1.387(5)	C(19)-H(19C)	0.9800
C(4)-H(4)	0.9500	O(2)-H(2D)	0.876(19)
C(5)-C(6)	1.385(5)	C(2)-C(1)-C(6)	118.9(3)
C(5)-C(8)	1.495(5)	C(2)-C(1)-C(9)	119.7(3)
C(6)-H(6)	0.9500	C(6)-C(1)-C(9)	121.5(3)
C(7)-F(3)	1.328(4)	C(1)-C(2)-C(3)	120.8(3)
C(7)-F(2)	1.336(5)	C(1)-C(2)-H(2)	119.6
C(7)-F(1)	1.342(4)	C(3)-C(2)-H(2)	119.6
C(8)-F(4)	1.325(5)	C(4)-C(3)-C(2)	120.3(3)
C(8)-F(6)	1.334(5)	C(4)-C(3)-C(7)	120.7(3)
C(9)-C(10)	1.382(5)	C(2)-C(3)-C(7)	119.0(3)
C(9)-C(14)	1.408(5)	C(5)-C(4)-C(3)	118.5(3)
C(10)-C(11)	1.386(5)	C(5)-C(4)-H(4)	120.7
C(10)-H(10)	0.9500	C(3)-C(4)-H(4)	120.7
C(11)-C(12)	1.397(5)	C(6)-C(5)-C(4)	121.4(3)
C(11)-C(15)	1.496(5)	C(6)-C(5)-C(8)	119.1(3)
C(12)-C(13)	1.400(5)	C(4)-C(5)-C(8)	119.5(3)
C(12)-H(12)	0.9500	C(5)-C(6)-C(1)	120.1(3)
C(13)-C(14)	1.393(5)	C(5)-C(6)-H(6)	119.9
C(13)-C(16)	1.514(5)	C(1)-C(6)-H(6)	119.9
C(14)-S(1)	1.787(4)	F(3)-C(7)-F(2)	106.7(3)
C(15)-H(15A)	0.9800	F(3)-C(7)-F(1)	106.3(3)
C(15)-H(15B)	0.9800	F(2)-C(7)-F(1)	104.9(3)
C(15)-H(15C)	0.9800	F(3)-C(7)-C(3)	113.5(3)
C(16)-O(2)	1.432(4)	F(2)-C(7)-C(3)	112.4(3)
C(16)-H(16A)	0.9900	F(1)-C(7)-C(3)	112.5(3)
C(16)-H(16B)	0.9900	F(4)-C(8)-F(6)	106.4(4)
C(17)-O(1)	1.228(4)	F(4)-C(8)-F(5)	105.4(3)
C(17)-N(1)	1.346(4)	F(6)-C(8)-F(5)	105.3(3)
Bond	Angle (°)		
----------------------	------------		
F(4)-C(8)-C(5)	113.7(3)		
F(6)-C(8)-C(5)	113.5(3)		
F(5)-C(8)-C(5)	111.8(4)		
C(10)-C(9)-C(14)	119.3(3)		
C(10)-C(9)-C(1)	119.2(3)		
C(14)-C(9)-C(1)	121.5(3)		
C(9)-C(10)-C(11)	122.4(3)		
C(11)-C(10)-H(10)	118.8		
C(10)-C(11)-C(12)	117.4(3)		
C(10)-C(11)-C(15)	121.3(3)		
C(12)-C(11)-C(15)	121.3(3)		
C(11)-C(12)-C(13)	122.2(3)		
C(11)-C(12)-H(12)	118.9		
C(13)-C(12)-H(12)	118.9		
C(14)-C(13)-C(12)	118.7(3)		
C(14)-C(13)-C(16)	122.9(3)		
C(12)-C(13)-C(16)	118.3(3)		
C(13)-C(14)-C(9)	120.0(3)		
C(13)-C(14)-S(1)	121.7(3)		
C(9)-C(14)-S(1)	118.2(3)		
C(11)-C(15)-H(15A)	109.5		
C(11)-C(15)-H(15B)	109.5		
H(15A)-C(15)-H(15B)	109.5		
C(15)-C(15)-H(15C)	109.5		
H(15B)-C(15)-H(15C)	109.5		
O(2)-C(16)-C(13)	111.7(3)		
O(2)-C(16)-H(16A)	109.3		
C(13)-C(16)-H(16A)	109.3		
O(2)-C(16)-H(16B)	109.3		
C(13)-C(16)-H(16B)	109.3		
H(16A)-C(16)-H(16B)	107.9		
O(1)-C(17)-N(1)	123.5(3)		
N(1)-C(17)-S(1)	121.2(3)		
N(1)-C(18)-H(18A)	109.5		
N(1)-C(18)-H(18B)	109.5		
H(18A)-C(18)-H(18B)	109.5		
N(1)-C(18)-H(18C)	109.5		
H(18A)-C(18)-H(18C)	109.5		
O(1)-C(17)-N(1)	115.3(3)		
O(1)-C(17)-S(1)	115.3(3)		
N(1)-C(18)-H(18A)	109.5		
N(1)-C(18)-H(18B)	109.5		
H(18A)-C(18)-H(18B)	109.5		
N(1)-C(18)-H(18C)	109.5		
H(18A)-C(18)-H(18C)	109.5		
N(1)-C(19)-H(19A)	109.5		
N(1)-C(19)-H(19B)	109.5		
H(19A)-C(19)-H(19B)	109.5		
N(1)-C(19)-H(19C)	109.5		
H(19A)-C(19)-H(19C)	109.5		
H(19B)-C(19)-H(19C)	109.5		
C(16)-O(2)-H(2D)	102.3		
C(14)-S(1)-C(17)	99.13(17)		
C(17)-N(1)-C(19)	123.1(3)		
C(17)-N(1)-C(18)	119.4(3)		
C(19)-N(1)-C(18)	117.5(3)		
Table S3. Crystal data and structure refinement for 3

	3		
Identification code	C41H35F12IN3O2S2		
Empirical formula	C41H35F12IN3O2S2		
Formula weight	1034.75		
Temperature / K	130(2)		
Wavelength / Å	0.71073		
Crystal system	monoclinic		
Space group	P 21/c		
Unit cell dimensions	a = 38.551(2) Å, α = 90°		
	b = 5.1209(2) Å, β = 90.316(5)°		
	c = 22.0176(10) Å, γ = 90°		
Volume / Å³	4346.6(3)		
Z	4		
Density (calculated) / (mg m³)	1.581		
Absorption coefficient / mm⁻¹	0.925		
F(000)	2072		
Crystal size / mm³	0.540 × 0.070 × 0.060		
Theta range for data collection / degree	3.663-25.349		
Index ranges	-46 ≤ h ≤ 46, -6 ≤ k ≤ 6, -26 ≤ l ≤ 26		
Reflections collected	93543		
Independent reflections	7949 [R(int) = 0.1367]		
Completeness to theta = 25.242° / %	99.8		
Refinement method	full-matrix least-squares on F²		
Data / restraints / parameters	7949 / 0 / 572		
Goodness-of-fit on F²	1.122		
Final R indices [I > 2σ(I)]	R₁ = 0.0963, wR₂ = 0.1832		
R indices (all data)	R₁ = 0.1084, wR₂ = 0.1894		
Extinction coefficient	n/a		
Largest diff. peak and hole / e.Å⁻³	1.223 and -2.568		
Bond length / Å	C(11)-H(11A)	0.9800	
----------------	---------------	---------	
S(1)-C(10)	1.777(7)		
S(1)-C(20)	1.820(9)		
S(2)-C(25)	1.781(8)		
S(2)-C(39)	1.814(8)		
F(1)-C(18)	1.333(13)		
F(2)-C(18)	1.329(10)		
F(3)-C(18)	1.344(10)		
F(4)-C(19)	1.332(10)		
F(5)-C(19)	1.348(9)		
F(6)-C(19)	1.325(11)		
F(7)-C(37)	1.328(12)		
F(8)-C(37)	1.316(11)		
F(9)-C(37)	1.309(13)		
O(2)-C(39)	1.221(9)		
N(1)-C(3)	1.346(10)		
N(1)-C(23)	1.461(9)		
N(2)-C(3)	1.331(9)		
N(2)-C(2)	1.371(10)		
N(2)-C(4)	1.463(9)		
C(1)-C(2)	1.350(11)		
C(1)-H(1)	0.9500		
C(2)-H(2)	0.9500		
C(3)-H(3)	0.9500		
C(4)-C(5)	1.524(9)		
C(4)-H(4A)	0.9900		
C(4)-H(4B)	0.9900		
C(5)-C(6)	1.384(10)		
C(5)-C(10)	1.413(9)		
C(6)-C(7)	1.380(10)		
C(6)-H(6)	0.9500		
C(7)-C(8)	1.404(10)		
C(7)-C(11)	1.515(11)		
C(8)-C(9)	1.391(10)		
C(8)-H(8)	0.9500		
C(9)-C(10)	1.417(9)		
C(9)-C(10)	1.478(9)		
C(11)-H(11B)	0.9800		
C(11)-H(11C)	0.9800		
C(12)-C(13)	1.386(10)		
C(12)-C(17)	1.393(10)		
C(13)-C(14)	1.390(10)		
C(13)-H(13)	0.9500		
C(14)-C(15)	1.382(11)		
C(14)-C(18)	1.491(11)		
C(15)-C(16)	1.379(10)		
C(15)-H(15)	0.9500		
C(16)-C(17)	1.383(10)		
C(16)-C(19)	1.501(11)		
C(17)-H(17)	0.9500		
C(20)-O(1)	1.113(18)		
C(20)-N(4P)	1.33(2)		
C(20)-N(4)	1.34(2)		
C(20)-O(1P)	1.34(2)		
C(23)-C(24)	1.516(11)		
C(23)-H(23A)	0.9900		
C(23)-H(23B)	0.9900		
C(24)-C(29)	1.383(12)		
C(24)-C(25)	1.407(10)		
C(25)-C(26)	1.390(11)		
C(26)-C(27)	1.394(11)		
C(26)-C(31)	1.482(10)		
C(27)-C(28)	1.390(12)		
C(27)-H(27)	0.9500		
C(28)-C(29)	1.404(13)		
C(28)-C(30)	1.506(12)		
C(29)-H(29)	0.9500		
C(30)-H(30A)	0.9800		
C(30)-H(30B)	0.9800		
C(30)-H(30C)	0.9800		
C(31)-C(32)	1.382(11)		
C(31)-C(36)	1.393(11)		
C(32)-C(33)	1.385(11)		
C(32)-H(32)	0.9500		
Bond	Distance	Bond	Distance
---------------	-----------	---------------	-----------
C(33)-C(34)	1.394(12)	C(25)-S(2)-C(39)	98.8(4)
C(33)-C(37)	1.495(13)	C(3)-N(1)-C(1)	108.2(6)
C(34)-C(35)	1.371(13)	C(3)-N(1)-C(23)	125.2(7)
C(34)-H(34)	0.9500	C(1)-N(1)-C(23)	126.5(7)
C(35)-C(36)	1.384(12)	C(3)-N(2)-C(2)	109.5(6)
C(35)-C(38)	1.501(15)	C(3)-N(2)-C(4)	124.9(6)
C(36)-H(36)	0.9500	C(2)-N(2)-C(4)	125.6(6)
C(38)-F(12P)	1.28(2)	C(2)-C(1)-N(1)	108.2(7)
C(38)-F(10)	1.31(4)	C(2)-C(1)-H(1)	125.9
C(38)-F(12)	1.35(4)	N(1)-C(1)-H(1)	125.9
C(38)-F(11P)	1.35(2)	C(1)-C(2)-N(2)	106.4(7)
C(38)-F(10P)	1.351(18)	C(1)-C(2)-H(2)	126.8
C(38)-F(11)	1.56(3)	N(2)-C(2)-H(2)	126.8
C(39)-N(3)	1.333(10)	N(2)-C(3)-N(1)	107.8(7)
N(4)-C(22)	1.47(3)	N(2)-C(3)-H(3)	126.1
N(4)-C(21)	1.49(2)	N(1)-C(3)-H(3)	126.1
C(21)-H(21A)	0.9800	N(2)-C(4)-C(5)	110.8(6)
C(21)-H(21B)	0.9800	N(2)-C(4)-H(4A)	109.5
C(21)-H(21C)	0.9800	C(5)-C(4)-H(4A)	109.5
C(22)-H(22A)	0.9800	N(2)-C(4)-H(4B)	109.5
C(22)-H(22B)	0.9800	C(5)-C(4)-H(4B)	109.5
C(22)-H(22C)	0.9800	H(4A)-C(4)-H(4B)	108.1
N(3)-C(40)	1.464(12)	C(6)-C(5)-C(10)	120.3(6)
N(3)-C(41)	1.472(12)	C(6)-C(5)-C(4)	118.5(6)
C(40)-H(40A)	0.9800	C(10)-C(5)-C(4)	121.2(6)
C(40)-H(40B)	0.9800	C(7)-C(6)-C(5)	121.9(6)
C(40)-H(40C)	0.9800	C(7)-C(6)-H(6)	119.1
C(41)-H(41A)	0.9800	C(5)-C(6)-H(6)	119.1
C(41)-H(41B)	0.9800	C(6)-C(7)-C(8)	117.8(7)
C(41)-H(41C)	0.9800	C(6)-C(7)-C(11)	121.4(7)
N(4P)-C(21P)	1.45(3)	C(8)-C(7)-C(11)	120.8(7)
N(4P)-C(22P)	1.48(3)	C(9)-C(8)-C(7)	122.4(7)
C(21P)-H(21D)	0.9800	C(9)-C(8)-H(8)	118.8
C(21P)-H(21E)	0.9800	C(7)-C(8)-H(8)	118.8
C(21P)-H(21F)	0.9800	C(8)-C(9)-C(10)	118.7(6)
C(22P)-H(22D)	0.9800	C(8)-C(9)-C(12)	118.8(6)
C(22P)-H(22E)	0.9800	C(10)-C(9)-C(12)	122.4(6)
C(22P)-H(22F)	0.9800	C(5)-C(10)-C(9)	118.8(6)

Bond angle / degree
Bond
C(10)-S(1)-C(20)
C(9)-C(10)-S(1)
C(9)-C(10)-S(1)
Bond

C(7)-C(11)-H(11A)
C(7)-C(11)-H(11B)
H(11A)-C(11)-H(11B)
C(7)-C(11)-H(11C)
H(11A)-C(11)-H(11C)
H(11B)-C(11)-H(11C)
C(13)-C(12)-C(17)
C(13)-C(12)-C(9)
C(17)-C(12)-C(9)
C(12)-C(13)-C(14)
C(12)-C(13)-H(13)
C(14)-C(13)-H(13)
C(15)-C(14)-C(13)
C(15)-C(14)-C(18)
C(13)-C(14)-C(18)
C(16)-C(15)-C(14)
C(16)-C(15)-H(15)
C(14)-C(15)-H(15)
C(15)-C(16)-C(17)
C(15)-C(16)-C(19)
C(17)-C(16)-C(19)
C(16)-C(17)-C(12)
C(16)-C(17)-H(17)
C(12)-C(17)-H(17)
F(2)-C(18)-F(1)
F(2)-C(18)-F(3)
F(1)-C(18)-F(3)
F(2)-C(18)-C(14)
F(1)-C(18)-C(14)
F(3)-C(18)-C(14)
F(6)-C(19)-F(4)
F(6)-C(19)-F(5)
F(4)-C(19)-F(5)
F(6)-C(19)-C(16)
F(4)-C(19)-C(16)
F(5)-C(19)-C(16)
O(1)-C(20)-N(4)
N(4P)-C(20)-O(1P)
O(1)-C(20)-S(1)
N(4P)-C(20)-S(1)
Bond

C(34)-C(33)-C(37)
C(35)-C(34)-C(33)
C(35)-C(34)-H(34)
C(33)-C(34)-H(34)
C(34)-C(35)-C(36)
C(34)-C(35)-C(38)
C(36)-C(35)-C(38)
C(35)-C(36)-C(31)
C(35)-C(36)-H(36)
C(31)-C(36)-H(36)
F(9)-C(37)-F(8)
F(9)-C(37)-F(7)
F(8)-C(37)-F(7)
F(9)-C(37)-C(33)
F(8)-C(37)-C(33)
F(7)-C(37)-C(33)
F(10)-C(38)-F(12)
F(12P)-C(38)-F(11P)
F(12P)-C(38)-F(10P)
F(11P)-C(38)-F(10P)
F(12P)-C(38)-C(35)
F(10)-C(38)-C(35)
F(11P)-C(38)-C(35)
F(10P)-C(38)-C(35)
F(10P)-C(38)-C(35)
F(10)-C(38)-F(11)
F(12)-C(38)-F(11)
C(35)-C(38)-F(11)
O(2)-C(39)-N(3)
O(2)-C(39)-S(2)
N(3)-C(39)-S(2)
C(20)-N(4)-C(22)
C(20)-N(4)-C(21)
C(22)-N(4)-C(21)
N(4)-C(21)-H(21A)
N(4)-C(21)-H(21B)
H(21A)-C(21)-H(21B)
N(4)-C(21)-H(21C)
H(21A)-C(21)-H(21C)

Bond	Angle		
H(21B)-C(21)-H(21C)	109.5		
N(4)-C(22)-H(22A)	109.5		
N(4)-C(22)-H(22B)	109.5		
H(22A)-C(22)-H(22B)	109.5		
N(4)-C(22)-H(22C)	109.5		
H(22B)-C(22)-H(22C)	109.5		
C(39)-N(3)-C(40)	122.8(8)		
C(39)-N(3)-C(41)	119.5(8)		
C(40)-N(3)-C(41)	117.5(8)		
N(3)-C(40)-H(40A)	109.5		
N(3)-C(40)-H(40B)	109.5		
H(40A)-C(40)-H(40B)	109.5		
N(3)-C(40)-H(40C)	109.5		
H(40A)-C(40)-H(40C)	109.5		
H(40B)-C(40)-H(40C)	109.5		
N(3)-C(41)-H(41A)	109.5		
N(3)-C(41)-H(41B)	109.5		
H(41A)-C(41)-H(41B)	109.5		
N(3)-C(41)-H(41C)	109.5		
H(41A)-C(41)-H(41C)	109.5		
H(41B)-C(41)-H(41C)	109.5		
C(20)-N(4P)-C(21P)	121.4(17)		
C(20)-N(4P)-C(22P)	123(2)		
C(21P)-N(4P)-C(22P)	114.8(19)		
H(21D)-C(21P)-H(21E)	109.5		
H(21D)-C(21P)-H(21E)	109.5		
N(4P)-C(21P)-H(21F)	109.5		
H(21D)-C(21P)-H(21F)	109.5		
H(21E)-C(21P)-H(21F)	109.5		
N(4P)-C(22P)-H(22D)	109.5		
N(4P)-C(22P)-H(22E)	109.5		
H(22D)-C(22P)-H(22E)	109.5		
N(4P)-C(22P)-H(22F)	109.5		
H(22D)-C(22P)-H(22F)	109.5		
H(22E)-C(22P)-H(22F)	109.5		
Identification code	4		
---------------------	---		
Empirical formula	C_{44}H_{44}F_{12}N_{4}O_{6}S_{2}		
Formula weight	1016.95		
Temperature / K	130(2)		
Wavelength / Å	0.71073		
Crystal system	triclinic		
Space group	P-1		
Unit cell dimensions	a = 8.6705(12) Å, α = 97.743(8)°		
	b = 12.6456(13) Å, β = 100.116(10)°		
	c = 22.103(2) Å, γ = 100.020(10)°		
Volume / Å³	2315.0(5)		
Z	2		
Density (calculated) / (mg m⁻³)	1.459		
Absorption coefficient / mm⁻¹	0.215		
F(000)	1048		
Crystal size / mm³	0.380 × 0.300 × 0.160		
Theta range for data collection / degree	3.389-25.350		
Index ranges	−10 ≤ h ≤ 10, −15 ≤ k ≤ 15, −26 ≤ l ≤ 26		
Reflections collected	22856		
Independent reflections	8467 [R(int) = 0.0332]		
Completeness to theta = 25.242° / %	99.7		
Refinement method	Full-matrix least-squares on F²		
Data / restraints / parameters	8467 / 102 / 597		
Goodness-of-fit on F²	1.326		
Final R indices [I > 2σ(I)]	R₁ = 0.1001, wR₂ = 0.2620		
R indices (all data)	R₁ = 0.1275, wR₂ = 0.2845		
Extinction coefficient	n/a		
Largest diff. peak and hole / e.Å⁻³	1.077 and −0.886		
Bond	Length [Å]	Bond	Length [Å]
---------------	------------	---------------	------------
C(1)-O(1)	1.209(7)	C(11)-H(11A)	0.9800
C(1)-N(1)	1.346(7)	C(11)-H(11B)	0.9800
C(1)-S(1)	1.803(5)	C(11)-H(11C)	0.9800
C(1M)-O(1M)	1.365(11)	C(12)-N(3)	1.455(6)
C(1M)-H(1MA)	0.9800	C(12)-C(13)	1.512(7)
C(1M)-H(1MB)	0.9800	C(12)-H(12A)	0.9900
C(1M)-H(1MC)	0.9800	C(12)-H(12B)	0.9900
C(2)-N(1)	1.456(8)	C(13)-C(29)	1.397(7)
C(2)-H(2A)	0.9800	C(13)-C(14)	1.399(6)
C(2)-H(2B)	0.9800	C(14)-C(18)	1.404(6)
C(2)-H(2C)	0.9800	C(14)-S(2)	1.781(4)
C(3)-N(1)	1.445(9)	C(15)-O(5)	1.201(7)
C(3)-H(3A)	0.9800	C(15)-N(4)	1.333(7)
C(3)-H(3B)	0.9800	C(15)-S(2)	1.791(6)
C(3)-H(3C)	0.9800	C(16)-N(4)	1.428(10)
C(4)-C(5)	1.395(6)	C(16)-H(16A)	0.9800
C(4)-C(34)	1.401(6)	C(16)-H(16B)	0.9800
C(4)-S(1)	1.781(4)	C(16)-H(16C)	0.9800
C(5)-C(31)	1.385(7)	C(17)-N(4)	1.470(9)
C(5)-C(6)	1.515(7)	C(17)-H(17A)	0.9800
C(6)-N(2)	1.452(6)	C(17)-H(17B)	0.9800
C(6)-H(6A)	0.9900	C(17)-H(17C)	0.9800
C(6)-H(6B)	0.9900	C(18)-C(27)	1.396(6)
C(7)-O(2)	1.199(7)	C(18)-C(19)	1.494(6)
C(7)-N(3)	1.373(7)	C(19)-C(26)	1.384(7)
C(7)-N(2)	1.378(6)	C(19)-C(20)	1.390(7)
C(8)-N(3)	1.394(8)	C(20)-C(21)	1.386(7)
C(8)-O(3)	1.477(8)	C(20)-H(20)	0.9500
C(8)-C(10)	1.536(8)	C(21)-C(23)	1.380(7)
C(8)-H(8)	1.0000	C(21)-C(22)	1.480(7)
C(9)-O(3)	1.410(10)	C(22)-F(1P)	1.278(9)
C(9)-H(9A)	0.9800	C(22)-F(2)	1.281(9)
C(9)-H(9B)	0.9800	C(22)-F(2P)	1.284(11)
C(9)-H(9C)	0.9800	C(22)-F(3)	1.382(10)
C(10)-O(4)	1.389(8)	C(22)-F(1)	1.399(9)
C(10)-N(2)	1.412(8)	C(22)-F(3P)	1.412(10)
C(10)-H(10)	1.0000	C(23)-C(24)	1.378(7)
C(11)-O(4)	1.422(8)	C(23)-H(23)	0.9500
C(24)-C(26) 1.396(7) C(41)-F(10P) 1.140(18)			
C(24)-C(25) 1.474(7) C(41)-F(12) 1.290(8)			
C(25)-F(6) 1.266(11) C(41)-F(11) 1.358(9)			
C(25)-F(5P) 1.346(12) C(41)-F(10) 1.390(9)			
C(25)-F(6P) 1.388(12) C(41)-F(12P) 1.410(15)			
C(25)-F(4) 1.390(10) C(41)-F(11P) 1.610(16)			
C(25)-F(5) 1.347(12) C(42)-H(42) 0.9500			
C(26)-H(26) 0.9500 C(43)-H(43A) 0.9800			
C(27)-C(28) 1.391(6) C(43)-H(43B) 0.9800			
C(27)-H(27) 0.9500 C(43)-H(43C) 0.9800			
C(28)-C(29) 1.387(7) O(1M)-H(1M) 0.8400			
C(28)-C(30) 1.500(7) O(1)-C(1)-N(1) 124.7(5)			
C(29)-H(29) 0.9500 O(1)-C(1)-S(1) 121.4(4)			
C(30)-H(30A) 0.9800 N(1)-C(1)-S(1) 113.9(4)			
C(30)-H(30B) 0.9800 O(1M)-C(1M)-H(1MA) 109.5			
C(30)-H(30C) 0.9800 O(1M)-C(1M)-H(1MB) 109.5			
C(31)-C(32) 1.382(8) H(1MA)-C(1M)-H(1MB) 109.5			
C(31)-H(31) 0.9500 O(1M)-C(1M)-H(1MC) 109.5			
C(32)-C(33) 1.389(7) H(1MA)-C(1M)-H(1MC) 109.5			
C(32)-C(43) 1.510(7) H(1MB)-C(1M)-H(1MC) 109.5			
C(33)-C(34) 1.393(7) N(1)-C(2)-H(2A) 109.5			
C(33)-H(33) 0.9500 N(1)-C(2)-H(2B) 109.5			
C(34)-C(35) 1.495(6) H(2A)-C(2)-H(2B) 109.5			
C(35)-C(42) 1.385(7) N(1)-C(2)-H(2C) 109.5			
C(35)-C(36) 1.391(6) H(2A)-C(2)-H(2C) 109.5			
C(36)-C(37) 1.386(7) H(2B)-C(2)-H(2C) 109.5			
C(36)-H(36) 0.9500 N(1)-C(3)-H(3A) 109.5			
C(37)-C(39) 1.379(8) N(1)-C(3)-H(3B) 109.5			
C(37)-C(38) 1.484(8) H(3A)-C(3)-H(3B) 109.5			
C(38)-F(8) 1.248(10) N(1)-C(3)-H(3C) 109.5			
C(38)-F(7) 1.352(11) H(3A)-C(3)-H(3C) 109.5			
C(38)-F(8P) 1.331(9) H(3B)-C(3)-H(3C) 109.5			
C(38)-F(9P) 1.403(10) C(5)-C(4)-C(34) 120.4(4)			
C(38)-F(7P) 1.321(10) C(5)-C(4)-S(1) 119.4(4)			
C(38)-F(9) 1.392(12) C(34)-C(4)-S(1) 119.9(3)			
C(39)-C(40) 1.381(8) C(31)-C(5)-C(4) 119.0(4)			
C(39)-H(39) 0.9500 C(31)-C(5)-C(6) 121.4(4)			
C(40)-C(42) 1.391(7) C(4)-C(5)-C(6) 119.5(4)			
C(40)-C(41) 1.483(8) N(2)-C(6)-C(5) 114.1(4)			
Bond	Angle (°)	Bond	Angle (°)
----------------------	------------	----------------------	------------
N(2)-C(6)-H(6A)	108.7	C(14)-C(13)-C(12)	120.9(4)
C(5)-C(6)-H(6A)	108.7	C(13)-C(14)-C(18)	120.2(4)
N(2)-C(6)-H(6B)	108.7	C(13)-C(14)-S(2)	118.8(4)
C(5)-C(6)-H(6B)	108.7	C(18)-C(14)-S(2)	120.3(3)
H(6A)-C(6)-H(6B)	107.6	O(5)-C(15)-N(4)	124.9(6)
O(2)-C(7)-N(3)	127.3(5)	O(5)-C(15)-S(2)	121.2(5)
O(2)-C(7)-N(2)	126.5(5)	N(4)-C(15)-S(2)	113.9(5)
N(3)-C(7)-N(2)	106.1(5)	N(4)-C(16)-H(16A)	109.5
N(3)-C(8)-O(3)	105.1(5)	N(4)-C(16)-H(16B)	109.5
N(3)-C(8)-C(10)	103.8(5)	H(16A)-C(16)-H(16B)	109.5
O(3)-C(8)-C(10)	110.9(5)	N(4)-C(16)-H(16C)	109.5
N(3)-C(8)-H(8)	112.2	H(16A)-C(16)-H(16C)	109.5
O(3)-C(8)-H(8)	112.2	H(16B)-C(16)-H(16C)	109.5
C(10)-C(8)-H(8)	112.2	N(4)-C(17)-H(17A)	109.5
O(3)-C(9)-H(9A)	109.5	N(4)-C(17)-H(17B)	109.5
O(3)-C(9)-H(9B)	109.5	H(17A)-C(17)-H(17B)	109.5
H(9A)-C(9)-H(9B)	109.5	N(4)-C(17)-H(17C)	109.5
O(3)-C(9)-H(9C)	109.5	H(17A)-C(17)-H(17C)	109.5
H(9A)-C(9)-H(9C)	109.5	H(17B)-C(17)-H(17C)	109.5
H(9B)-C(9)-H(9C)	109.5	C(27)-C(18)-C(14)	119.0(4)
O(4)-C(10)-N(2)	117.4(5)	C(27)-C(18)-C(19)	117.9(4)
O(4)-C(10)-C(8)	107.3(5)	C(14)-C(18)-C(19)	123.0(4)
N(2)-C(10)-C(8)	101.7(5)	C(26)-C(19)-C(20)	118.5(4)
O(4)-C(10)-H(10)	110.0	C(26)-C(19)-C(18)	119.7(4)
N(2)-C(10)-H(10)	110.0	C(21)-C(20)-C(19)	121.8(4)
C(8)-C(10)-H(10)	110.0	C(21)-C(20)-C(19)	120.4(4)
O(4)-C(11)-H(11A)	109.5	C(21)-C(20)-H(20)	119.8
O(4)-C(11)-H(11B)	109.5	C(19)-C(20)-H(20)	119.8
H(11A)-C(11)-H(11B)	109.5	C(23)-C(21)-C(20)	120.6(5)
O(4)-C(11)-H(11C)	109.5	C(23)-C(21)-C(22)	119.4(4)
H(11A)-C(11)-H(11C)	109.5	C(20)-C(21)-C(22)	119.9(5)
H(11B)-C(11)-H(11C)	109.5	F(1P)-C(22)-F(2P)	112.1(7)
N(3)-C(12)-C(13)	113.5(4)	F(2)-C(22)-F(3)	107.3(6)
N(3)-C(12)-H(12A)	108.9	F(2)-C(22)-F(1)	102.9(6)
C(13)-C(12)-H(12A)	108.9	F(3)-C(22)-F(1)	102.7(6)
N(3)-C(12)-H(12B)	108.9	F(1P)-C(22)-F(3P)	104.6(7)
C(13)-C(12)-H(12B)	108.9	F(2P)-C(22)-F(3P)	105.5(6)
H(12A)-C(12)-H(12B)	107.7	F(1P)-C(22)-C(21)	112.2(5)
C(29)-C(13)-C(14)	118.8(4)	F(2)-C(22)-C(21)	116.5(6)
C(29)-C(13)-C(12)	120.2(4)	F(2P)-C(22)-C(21)	113.5(6)
Bond	Angle (°)		
--------------	-----------		
F(3)-C(22)-C(21)	111.6(5)		
F(1)-C(22)-C(21)	114.5(5)		
F(3P)-C(22)-C(21)	108.3(5)		
C(24)-C(23)-C(21)	119.7(4)		
C(24)-C(23)-H(23)	120.1		
C(21)-C(23)-H(23)	120.1		
C(23)-C(24)-C(26)	119.5(5)		
C(23)-C(24)-C(25)	120.3(5)		
C(26)-C(24)-C(25)	120.2(5)		
F(5P)-C(25)-F(6P)	107.1(6)		
F(6)-C(25)-F(4)	107.5(6)		
F(6)-C(25)-F(5)	107.6(7)		
F(4)-C(25)-F(5)	106.9(6)		
F(5P)-C(25)-F(4P)	105.7(6)		
F(6P)-C(25)-F(4P)	102.9(7)		
F(6)-C(25)-C(24)	113.0(6)		
F(5P)-C(25)-C(24)	110.9(6)		
F(4)-C(25)-C(24)	108.5(6)		
F(5)-C(25)-C(24)	113.0(6)		
F(4P)-C(25)-C(24)	115.8(6)		
C(19)-C(26)-C(24)	121.2(5)		
C(19)-C(26)-H(26)	119.4		
C(24)-C(26)-H(26)	119.4		
C(28)-C(27)-C(18)	121.8(4)		
C(28)-C(27)-H(27)	119.1		
C(18)-C(27)-H(27)	119.1		
C(29)-C(28)-C(27)	118.1(4)		
C(29)-C(28)-C(30)	121.5(4)		
C(27)-C(28)-C(30)	120.4(4)		
C(28)-C(29)-C(13)	122.1(4)		
C(28)-C(29)-H(29)	119.0		
C(13)-C(29)-H(29)	119.0		
C(28)-C(30)-H(30A)	109.5		
C(28)-C(30)-H(30B)	109.5		
H(30A)-C(30)-H(30B)	109.5		
C(28)-C(30)-H(30C)	109.5		
H(30A)-C(30)-H(30C)	109.5		
C(32)-C(31)-C(5)	121.9(4)		
C(32)-C(31)-H(31)	119.1		
C(5)-C(31)-H(31)	119.1		
C(31)-C(32)-C(33)	118.5(4)		
C(31)-C(32)-C(43)	120.9(5)		
C(33)-C(32)-C(43)	120.5(5)		
C(32)-C(33)-C(34)	121.5(5)		
C(32)-C(33)-H(33)	119.3		
C(34)-C(33)-H(33)	119.3		
C(33)-C(34)-C(4)	118.6(4)		
C(33)-C(34)-C(35)	117.7(4)		
C(4)-C(34)-C(35)	123.4(4)		
C(42)-C(35)-C(36)	118.3(4)		
C(42)-C(35)-C(34)	120.9(4)		
C(36)-C(35)-C(34)	120.5(4)		
C(37)-C(36)-C(35)	120.6(5)		
C(37)-C(36)-H(36)	119.7		
C(35)-C(36)-H(36)	120.8(5)		
C(39)-C(37)-C(38)	119.9(5)		
C(36)-C(37)-C(38)	119.2(5)		
F(8)-C(38)-F(7)	111.4(7)		
F(8P)-C(38)-F(9P)	110.0(6)		
F(8P)-C(38)-F(7P)	104.5(7)		
F(9P)-C(38)-F(7P)	104.5(6)		
F(8)-C(38)-F(9)	100.1(7)		
F(7)-C(38)-F(9)	107.4(7)		
F(8)-C(38)-C(37)	117.7(6)		
F(7)-C(38)-C(37)	110.6(6)		
F(8P)-C(38)-C(37)	114.8(5)		
F(9P)-C(38)-C(37)	111.0(6)		
F(7P)-C(38)-C(37)	111.4(6)		
F(9)-C(38)-C(37)	110.6(6)		
C(37)-C(39)-C(40)	119.0(5)		
C(37)-C(39)-H(39)	120.5		
C(40)-C(39)-H(39)	120.5		
C(39)-C(40)-C(42)	120.4(5)		
C(39)-C(40)-C(41)	119.8(5)		
C(42)-C(40)-C(41)	119.8(5)		
F(12)-C(41)-F(11)	108.1(6)		
F(12)-C(41)-F(10)	104.5(5)		
Bond/Angle	Value		
-----------	-------		
F(11)-C(41)-F(10)	103.2(6)		
F(10P)-C(41)-F(12P)	133.0(12)		
F(10P)-C(41)-C(40)	117.5(10)		
F(12)-C(41)-C(40)	114.4(6)		
F(11)-C(41)-C(40)	114.1(5)		
F(10)-C(41)-C(40)	111.5(5)		
F(12P)-C(41)-C(40)	109.4(7)		
F(10P)-C(41)-F(11P)	92.2(11)		
F(12P)-C(41)-F(11P)	75.7(9)		
C(40)-C(41)-F(11P)	101.1(7)		
C(40)-C(42)-C(35)	120.9(5)		
C(40)-C(42)-H(42)	119.6		
C(35)-C(42)-H(42)	119.6		
C(32)-C(43)-H(43A)	109.5		
C(32)-C(43)-H(43B)	109.5		
H(43A)-C(43)-H(43B)	109.5		
C(32)-C(43)-H(43C)	109.5		
H(43A)-C(43)-H(43C)	109.5		
H(43B)-C(43)-H(43C)	109.5		
C(1)-N(1)-C(3)	124.3(5)		
C(1)-N(1)-C(2)	117.2(6)		
C(3)-N(1)-C(2)	118.0(5)		
C(7)-N(2)-C(10)	112.7(4)		
C(7)-N(2)-C(6)	121.6(4)		
C(10)-N(2)-C(6)	124.8(4)		
C(7)-N(3)-C(8)	110.7(4)		
C(7)-N(3)-C(12)	122.0(5)		
C(8)-N(3)-C(12)	121.6(5)		
C(15)-N(4)-C(16)	124.3(6)		
C(15)-N(4)-C(17)	118.2(6)		
C(16)-N(4)-C(17)	117.5(6)		
C(1M)-O(1M)-H(1M)	109.5		
C(9)-O(3)-C(8)	112.8(7)		
C(10)-O(4)-C(11)	115.6(5)		
C(4)-S(1)-C(1)	100.4(2)		
C(14)-S(2)-C(15)	101.5(2)		
checkCIF/PLATON report

You have not supplied any structure factors. As a result the full set of tests cannot be run.

THIS REPORT IS FOR GUIDANCE ONLY. IF USED AS PART OF A REVIEW PROCEDURE FOR PUBLICATION, IT SHOULD NOT REPLACE THE EXPERTISE OF AN EXPERIENCED CRYSTALLOGRAPHIC REFEREE.

No syntax errors found. CIF dictionary Interpreting this report

Datablock: I

Bond precision: C-C = 0.0050 Å Wavelength=0.71073 Å

Cell:
a=5.134(2) Å b=10.620(4) Å c=17.878(4) Å
alpha=99.45(2) degrees beta=96.43(3) degrees gamma=93.37(3) degrees

Temperature: 130 K

Volume 952.5(6) Å³ 952.6(6) Å³
Space group P -1 P -1
Hall group -P 1 -P 1
Moiety formula C19 H17 F6 N O2 S C19 H17 F6 N O2
S1 Sum formula C19 H17 F6 N O2 S C19 H17 F6 N O2
Mr 437.40 437.40
Dx,g cm⁻³ 1.525 1.525
Z 2 2
Mu (mm⁻¹) 0.242 0.242
F000 448.0 448.0
F000' 448.58
h,k,lmax 6,12,21 6,12,21
Nref 3371 3362
Tmin,Tmax 0.976,0.981 0.950,0.982
Tmin’ 0.927

Correction method= # Reported T Limits: Tmin=0.950 Tmax=0.982 AbsCorr = ANALYTICAL

Data completeness= 0.997 Θ(max)= 25.030
R(reflections)= 0.0583(2244) wr2(reflections)= 0.1594(3362)
S = 1.059 Npar= 268

The following ALERTS were generated. Each ALERT has the format
 test-name_ALERT_alert-type_alert-level
Click on the hyperlinks for more details of the test.
Alert level C
Low Bond Precision on C-C Bonds 0.005 Ang.

Alert level G
Number of Distance or Angle Restraints on AtSite 2
Note No Embedded Refinement Details Found in the CIF Please Do ! Low 'MainMol' Ueq as Compared to Neighbors of C7 Check Low 'MainMol' Ueq as Compared to Neighbors of C8 Check Number of Least-Squares Restraints 1

0 ALERT level A = Most likely a serious problem - resolve or explain
0 ALERT level B = A potentially serious problem, consider carefully
1 ALERT level C = Check. Ensure it is not caused by an omission or oversight
5 ALERT level G = General information/check it is not something unexpected

0 ALERT type 1 CIF construction/syntax error, inconsistent or missing data
3 ALERT type 2 Indicator that the structure model may be wrong or deficient
2 ALERT type 3 Indicator that the structure quality may be low
0 ALERT type 4 Improvement, methodology, query or suggestion
1 ALERT type 5 Informative message, check

checkCIF publication errors

Alert level A
PUBL012_ALERT_1_A _publ_section_abstract is missing.
Abstract of paper in English.

1 ALERT level A = Data missing that is essential or data in wrong format
0 ALERT level G = General alerts. Data that may be required is missing

Publication of your CIF

You should attempt to resolve as many as possible of the alerts in all categories. Often the minor alerts point to easily fixed oversights, errors and omissions in your CIF or refinement strategy, so attention to these fine details can be worthwhile. In order to resolve some of the more serious problems it may be necessary to carry out additional measurements or structure refinements.

However, the nature of your study may justify the reported deviations from journal submission requirements and the more serious of these should be commented upon in the discussion or experimental section of a paper or in the "special_details" fields of the CIF. checkCIF was carefully designed to identify outliers and unusual parameters, but every test has its limitations and alerts that are not important in a particular case may appear. Conversely, the absence of alerts does not guarantee there are no aspects of the results needing attention. It is up to the individual to critically assess their own results and, if necessary, seek expert advice.

If level A alerts remain, which you believe to be justified deviations, and you intend to submit this CIF for publication in a journal, you should additionally insert an explanation in your CIF using the Validation Reply Form (VRF) below. This will allow your explanation to be considered as part of the review process.
Validation response form

Please find below a validation response form (VRF) that can be filled in and pasted into your CIF.

start Validation Reply Form
 _vrf_PUBL012_GLOBAL
 ;
 PROBLEM: _publ_section_abstract is missing.
 RESPONSE: ...
 ;
 # end Validation Reply Form

If you wish to submit your CIF for publication in Acta Crystallographica Section C or E, you should upload your CIF via the web. If you wish to submit your CIF for publication in IUCrData you should upload your CIF via the web. If your CIF is to form part of a submission to another IUCr journal, you will be asked, either during electronic submission or by the Co-editor handling your paper, to upload your CIF via our web site.

PLATON version of 09/11/2017; check.def file version of 08/11/2017
checkCIF/PLATON report

You have not supplied any structure factors. As a result the full set of tests cannot be run.

THIS REPORT IS FOR GUIDANCE ONLY. IF USED AS PART OF A REVIEW PROCEDURE FOR PUBLICATION, IT SHOULD NOT REPLACE THE EXPERTISE OF AN EXPERIENCED CRYSTALLOGRAPHIC REFEREE.

No syntax errors found.

Datablock: I

Bond precision: C-C = 0.0111 A	Wavelength=0.71073	
Cell:		
a=38.551(2)	b=5.1209(2)	c=22.0176(10)
alpha=90	beta=90.316(5)	gamma=90
Temperature:		
130 K		

Volume	4346.6(3)	4346.6(3)
Space group	P 21/c	P 21/c
Hall group	-P 2ybc	-P 2ybc
Moiety formula	C41 H35 F12 N4 O2 S2, I	C41 H35 F12 N4 O2 S2, I
Sum formula	C41 H35 F12 I N4 O2 S2	C41 H35 F12 I N4 O2 S2
Mr	1034.75	1034.75
Dxm, g cm⁻³	1.581	1.581
Z	4	4
Mu (mm⁻¹)	0.925	0.925
F000	2072.0	2072.0
F000’	2072.40	
h,k,lmax	46,6,26	46,6,26
Nref	7966	7949
Tmin, Tmax	0.925,0.946	0.533,0.876
Tmin’	0.607	

Correction method= # Reported T Limits: Tmin=0.533 Tmax=0.876 AbsCorr = ANALYTICAL

Data completeness= 0.998 Theta(max)= 25.349

R(reflections)= 0.0963(6714) wr2(reflections)= 0.1894(7949)

S = 1.122 Npar= 572

The following ALERTS were generated. Each ALERT has the format **test-name_ALERT_alert-type_alert-level**.

Click on the hyperlinks for more details of the test.
Alert level C

The value of Rint is greater than 0.12

Rint given 0.137

The Value of Rint is Greater Than 0.12 0.137 Report

Atom F2 has ADP max/min Ratio 3.1 prolat
Atom F3 has ADP max/min Ratio 3.1 prolat

Non-Solvent Resd 1 C Ueq(max)/Ueq(min) Range 5.1 Ratio

Large Hirshfeld Difference F10 -- C38 0.19 Ang.
Single Bonded Oxygen (C-O > 1.3 Ang) 0IP Check
Low Bond Precision on C-C Bonds 0.01114 Ang.

Long H...A H-Bond Reported H4B ..I1 3.09 Ang.
Long H...A H-Bond Reported H21B ..F2 2.65 Ang.
Long H...A H-Bond Reported H22B ..I1 3.09 Ang.

Alert level G

No Embedded Refinement Details Foundin the CIF Please Do !

SHELXL Second Parameter in WGH T Unusually Large 68.88

Why ? Hirshfeld Test Diff for F12P --C38 ..
7.8 s.u. Hirshfeld Test Diff forF12P --C38 ..
6.7 s.u. Hirshfeld Test

Diff for F12 --C38 .. 6.6

s.u. Low 'MainMol' Ueq as Compared to Neighbors of
C18 Check Low 'MainMol' Ueq as Compared to Neighbors of
C19 Check Low 'MainMol' Ueq as Compared to Neighbors of
C37
Check Main Residue Disorder(Resd 1)
11% Note Short Inter HL..HL Contact
F8 ..F12 2.75 Ang.

Centre of Gravity not Within Unit Cell: Resd. # 2
Note I

0 ALERT level A = Most likely a serious problem - resolve or explain
11 ALERT level C = Check. Ensure it is not caused by an omission or oversight
11 ALERT level G = General information/check it is not something unexpected

0 ALERT type 1 CIF construction/syntax error, inconsistent or missing data
12 ALERT type 2 Indicator that the structure model may be wrong or deficient
4 ALERT type 3 Indicator that the structure quality may be low
1 ALERT type 4 Improvement, methodology, query or suggestion
1 ALERT type 5 Informative message, check

checkCIF publication errors

Alert level A

PLAT205_ALERT_3_C
PLAT213_ALERT_2_C
PLAT213_ALERT_2_C
PLAT220_ALERT_2_C
PLAT234_ALERT_4_C
PLAT309_ALERT_2_C
PLAT301_ALERT_3_G
PLAT234_ALERT_4_C
PLAT242_ALERT_2_G
PLAT301_ALERT_3_G
PLAT342_ALERT_3_C
PLAT480_ALERT_4_C
PLAT480_ALERT_4_C
PLAT480_ALERT_4_C
PLAT005_ALERT_5_G
PLAT083_ALERT_2_G
PLAT230_ALERT_2_G
PLAT230_ALERT_2_G
PLAT230_ALERT_2_G
PLAT242_ALERT_2_G
PLAT242_ALERT_2_G
PLAT242_ALERT_2_G
PLAT301_ALERT_3_G
PLAT434_ALERT_2_G
PLAT790_ALERT_4_G

Alert level A

PUBL012_ALERT_1_A_publ_section_abstract is missing.
Abstract of paper in English.

3 ALERT level A = Data missing that is essential or data in wrong format
0 ALERT level G = General alerts. Data that may be required is missing
Publication of your CIF

You should attempt to resolve as many as possible of the alerts in all categories. Often the minor alerts point to easily fixed oversights, errors and omissions in your CIF or refinement strategy, so attention to these fine details can be worthwhile. In order to resolve some of the more serious problems it may be necessary to carry out additional measurements or structure refinements. However, the nature of your study may justify the reported deviations from journal submission requirements and the more serious of these should be commented upon in the discussion or experimental section of a paper or in the "special_details" fields of the CIF. checkCIF was carefully designed to identify outliers and unusual parameters, but every test has its limitations and alerts that are not important in a particular case may appear. Conversely, the absence of alerts does not guarantee there are no aspects of the results needing attention. It is up to the individual to critically assess their own results and, if necessary, seek expert advice.

If level A alerts remain, which you believe to be justified deviations, and you intend to submit this CIF for publication in a journal, you should additionally insert an explanation in your CIF using the Validation Reply Form (VRF) below. This will allow your explanation to be considered as part of the review process.

Validation response form

Please find below a validation response form (VRF) that can be filled in and pasted into your CIF.

```plaintext
# start Validation Reply Form
_vrf_PUBL012_GLOBAL
;
PROBLEM: _publ_section_abstract is missing.
RESPONSE: ...
;
# end Validation Reply Form
```

If you wish to submit your CIF for publication in Acta Crystallographica Section C or E, you should upload your CIF via the web. If you wish to submit your CIF for publication in IUCrData you should upload your CIF via the web. If your CIF is to form part of a submission to another IUCr journal, you will be asked, either during electronic submission or by the Co-editor handling your paper, to upload your CIF via our web site.

PLATON version of 09/11/2017; check.def file version of 08/11/2017
checkCIF/PLATON report

You have not supplied any structure factors. As a result the full set of tests cannot be run.

THIS REPORT IS FOR GUIDANCE ONLY. IF USED AS PART OF A REVIEW PROCEDURE FOR PUBLICATION, IT SHOULD NOT REPLACE THE EXPERTISE OF AN EXPERIENCED CRYSTALLOGRAPHIC REFEREE.

No syntax errors found.

Datablock: I

Bond precision:	C-C = 0.0070 Å	Wavelength=0.71073
Cell:	a=8.6705(12)	b=12.6456(13)
	c=22.103(2)	
	alpha=97.743(8)	beta=100.116(10)
	gamma=100.02(1)	
Temperature:	130 K	
Volume	Calculated	Reported
	2315.0(5)	2315.0(5)
Space group	P -1	P -1
Hall group	-P 1	-P 1
Moiety formula	C43 H40 F12 N4 O5 S2, C H4 O	
Sum formula	C44 H44 F12 N4 O6 S2	C44 H44 F12 N4 O6 S2
Mr	1016.95	1016.95
Dx, g cm⁻³	1.459	1.459
Z	2	2
Mu (mm⁻¹)	0.215	0.215
F000	1048.0	1048.0
F000'	1049.23	
h,k,l max	10,15,26	10,15,26
Nref	8492	8467
Tmin,Tmax	0.926, 0.966	0.937, 0.968
Tmin'	0.922	

Correction method= # Reported T Limits: Tmin=0.937 Tmax=0.968
AbsCorr = ANALYTICAL

Data completeness= 0.997
Theta(max)= 25.350
R(reflections)= 0.1001(6318)
wr2(reflections)= 0.2845(8467)
S = 1.326
Npar= 597
The following ALERTS were generated. Each ALERT has the format
\[\text{test-name}_\text{_ALERT}_\text{_alert-type}_\text{_alert-level}\]
Click on the hyperlinks for more details of the test.

Alert level C

PLAT048_ALERT_1_C
PLAT084_ALERT_3_C
PLAT220_ALERT_2_C
PLAT222_ALERT_3_C
PLAT242_ALERT_2_C
PLAT340_ALERT_3_C

Alert level G

PLAT003_ALERT_2_G
PLAT005_ALERT_5_G
PLAT007_ALERT_5_G
PLAT072_ALERT_2_G
PLAT230_ALERT_2_G
PLAT230_ALERT_2_G
PLAT230_ALERT_2_G
PLAT230_ALERT_2_G
PLAT230_ALERT_2_G
PLAT230_ALERT_2_G
PLAT230_ALERT_2_G
PLAT230_ALERT_2_G
PLAT230_ALERT_2_G
PLAT242_ALERT_2_G
PLAT242_ALERT_2_G
PLAT301_ALERT_3_G
PLAT432_ALERT_2_G
PLAT720_ALERT_4_G
PLAT790_ALERT_4_G

0 ALERT level A = Most likely a serious problem - resolve or explain
0 ALERT level B = A potentially serious problem, consider carefully
6 ALERT level C = Check. Ensure it is not caused by an omission or oversight
23 ALERT level G = General information/check it is not something unexpected

1 ALERT type 1 CIF construction/syntax error, inconsistent or missing data
17 ALERT type 2 Indicator that the structure model may be wrong or deficient
5 ALERT type 3 Indicator that the structure quality may be low
4 ALERT type 4 Improvement, methodology, query or suggestion
2 ALERT type 5 Informative message, check

checkCIF publication errors
Publication of your CIF

You should attempt to resolve as many as possible of the alerts in all categories. Often the minor alerts point to easily fixed oversights, errors and omissions in your CIF or refinement strategy, so attention to these fine details can be worthwhile. In order to resolve some of the more serious problems it may be necessary to carry out additional measurements or structure refinements. However, the nature of your study may justify the reported deviations from journal submission requirements and the more serious of these should be commented upon in the discussion or experimental section of a paper or in the "special_details" fields of the CIF. checkCIF was carefully designed to identify outliers and unusual parameters, but every test has its limitations and alerts that are not important in a particular case may appear. Conversely, the absence of alerts does not guarantee there are no aspects of the results needing attention. It is up to the individual to critically assess their own results and, if necessary, seek expert advice.

If level A alerts remain, which you believe to be justified deviations, and you intend to submit this CIF for publication in a journal, you should additionally insert an explanation in your CIF using the Validation Reply Form (VRF) below. This will allow your explanation to be considered as part of the review process.

Validation response form

Please find below a validation response form (VRF) that can be filled in and pasted into your CIF.

```
# start Validation Reply Form
_vrf_PUBL012_GLOBAL;
PROBLEM: _publ_section_abstract is missing.
RESPONSE: ...
;
# end Validation Reply Form
```

If you wish to submit your CIF for publication in Acta Crystallographica Section C or E, you should upload your CIF via the web. If you wish to submit your CIF for publication in IUCrData you should upload your CIF via the web. If your CIF is to form part of a submission to another IUCr journal, you will be asked, either during electronic submission or by the Co-editor handling your paper, to upload your CIF via our web site.

PLATON version of 09/11/2017; check.def file version of 08/11/2017
