Evaluating individual performance in team sports: A network analysis of Batsmen and Bowlers in Cricket

Satyam Mukherjee

Kellogg School of Management, Northwestern University, Evanston, Illinois 60208 USA

Abstract

Quantifying individual performance in team activity is critical in team selection in international sports. We explore the application of Social Network Analysis (SNA) to rate individuals in a team activity. We choose the game of Cricket as an example. The number runs scored by batsmen and wickets taken by bowlers serves as a natural way of quantifying the performance of a cricketer. Traditionally the batsmen and bowlers are rated on their batting or bowling average respectively. However in a game like cricket it is always important the manner in which one scores the runs or takes a wicket. Scoring runs against a strong bowling line-up or delivering a brilliant performance against a team with strong batting line-up deserves more credit. A player’s average is not able to capture this aspect of the game. In this paper we present a refined method to quantify the ‘quality’ of runs scored by a batsman or wickets taken by a bowler. We apply tools of Social Network Analysis (SNA) to judge a cricketer’s performance. We generate directed and weighted network of batsmen-bowlers using the player-vs-player information available for Test cricket and ODI cricket. Additionally we generate network of batsmen and bowlers based on the dismissal record of batsmen in the history of cricket - Test (1877 – 2011) and ODI (1971 – 2011). Our results show that SNA approach could provide a refined rating of batsmen and bowlers in history of cricket. Our approach could potentially be applied in domestic cricket to judge a player’s performance which in turn pave the way for a balanced team selection for International matches.

Keywords: Social network analysis, in-strength, sports, cricket.
1. Introduction

Quantifying the individual performance or ‘quality’ of a player in any sport is a matter of great importance for the selection of team members in international competitions and is a topic of recent interest. A lot of negotiations are involved in the process of team-selection. We take the case of individual performance of batsmen and bowlers in International cricket matches. Cricket is a game played in most of the Commonwealth countries. The International Cricket Council (ICC) is the government body which controls the cricketing events around the globe. Although ICC includes 120 member countries, only ten countries with ‘Test’ status - Australia, England, India, South Africa, New Zealand, West Indies, Bangladesh, Zimbabwe, Pakistan and Sri Lanka play the game extensively. There are three versions of the game - ‘Test’, One Day International (ODI) and Twenty20 (T20) formats. Test cricket is the longest format of the game dating back to 1877. Usually it lasts for five days involving 30 – 35 hours. Shorter formats, lasting almost 8 hours like ODI started in 1971 and during late 2000 ICC introduced the shortest format called T20 cricket which lasts approximately 3 hours.

Batsmen and Bowlers in cricket are traditionally ranked according to their batting and bowling average respectively. Judged by the batting average, Sir Donald Bradman (with an average of 99.94) is regarded as the greatest batsman of all times. The next best batting average of 60.9 is held by Graeme Pollock. Even though most of the records held by Bradman has been eclipsed by modern day batsmen like Sachin Tendulkar, Brian Lara, Graham Gooch, Mohammad Yusuf, Bradman’s legacy still survives and generates debate among fans about his greatness relative to recent players like Sir Vivian Richards, Brian Lara or Sachin Tendulkar. The question thus naturally arises is whether batting average of batsmen (or
bowling average of bowlers) are the best measure for judging the worth of a batsman. It was shown that rankings based on average suffer from two defects - i) Consistency of scores across innings and ii) Value of runs scored by the player [1]. However one should also consider the quality of bowling as well. For example according to Bradman himself, the greatest innings he ever witnessed was that of McCabe’s innings of 187 at Sydney in 1932. The reason being it came against Douglas Jardine’s body-line attack, widely regarded as one of the fiercest bowling attacks. Similarly runs scored against West Indian bowlers like Michael Holding, Joel Garner, Malcom Marshall and Andy Roberts deserve more credit than runs scored against low bowling attack of Bangaldesh or Zimbabwe. On similar arguments the wicket of top-order batsman is valued more than the wicket of a lower-order batsman. Hence if a bowler dismiss Bradman, Lara, Richards or Tendulkar, he gets more credit than if he dismiss any lower-order batsman. Under the usual ranking scheme based on bowling average, George Lohmann of England has the lowest (best) bowling average (10.75) in Test cricket. However bowlers like George Lohmann played under pitch conditions favoring fast bowlers. Hence batting (or bowling) average does not serve as an efficient gauge for a batsman’s (or bowler’s) ability [2]. Against, this background, we propose a network based approach to quantify the ‘quality’ of a batsman or bowler.

In recent years there has been an increase in study of quantitative analysis of individual performance involving team sports. Time series analysis have been applied to football [3, 4], baseball [5, 6], basketball [7, 8, 9] and soccer [10, 11]. Studies have focussed on non-linear modeling techniques like neural networks to rate an individual’s performance. For example, neural networks techniques were used to predict the performance of individual cricketer’s based on their past performance [12]. Again, a model-free approach was developed to extract the outcome of a soccer match [13]. In recent years, the study of complex networks have attracted a lot of research interests [14]. The tools of complex network analysis have previously been applied to quantify individual brilliance in sports and also to rank the
individuals based on their performance. For example, a network approach was developed to quantify the performance of individual players in soccer [15]. Network analysis tools have been applied to football [16] and Brazilian soccer players [17]. Successful and un-successful performance in water polo have been quantified using a network-based approach [18]. Head-to-head matchups between Major League Baseball pitchers and batters was studied as a bipartite network [19]. More recently a network-based approach was developed to rank US college football teams [20], tennis players [21] and cricket teams and captains [22].

The complex features of numerous social systems are embedded in the inherent connectivity among system components [14, 18]. Social network analysis (SNA) provides insight about the pattern of interaction among players and how it affects the success of a team [23]. This article points out that how topological relations between players help better understanding of individuals who play for their teams and thus elucidate the individual importance and impact of a player. In this paper we apply the tools of network analysis to batsmen and bowlers in cricket and quantify the ‘quality’ of an individual player. The advantage of network based approach is that it provides a different perspective for judging the excellence of a player. The rest of the paper is presented as follows : In Section 2 we propose the methods of link formation among the batsmen and bowlers. In section 3 we discuss the results and we conclude in Section 4.

2. Methodology

We obtained data from the cricinfo website [24]. The website holds the information of proceedings of all Test matches played since 1877 and all ODI matches from 1971 onwards. These include the runs scored by batsmen, wickets taken by bowlers, outcome of a game and also the information of the mode of dismissal of a batsman. We collect the data of player-vs-player for Test cricket (2001 – 2011), ODI cricket (1999 – 2011) from the cricinfo website. The data of player-vs-player contains the information of runs scored by a batsman
against every bowler he faced and also how many times he was dismissed by the bowlers he faced. No information of player-vs-player is available for games played earlier than 2001. We also collect the batting and bowling averages of players from the player’s profile available in the cricinfo website. Batting average of a batsman is defined as the total number of runs scored by the batsman divided by the number of times he was dismissed. Thus higher batting average reflects higher ‘quality’ of a batsman. Similarly, bowling average is defined as the number of runs given by the bowler divided by the number of wickets claimed by him. Thus lower bowling average indicates higher ability of the bowler. These informations are used to generate the network of interaction among bowlers and batsmen in cricket matches.

2.1. Weighted and Directed Network

Cricket is a bat-and-ball game played between two teams of 11 players each. The team batting first tries to score as many runs as possible, while the other team bowls and fields, trying to dismiss the batsmen. At the end of an innings, the teams switch between batting and fielding. This can be represented as a directed network of interaction of batsmen (B_a) and bowlers (B_o). Every node in B_o has a directed link to all nodes in B_a, provided the batsman and bowler face each other. The performance of a batsman is judged by the ‘quality’ of runs scored and not the number of runs scored. Hence runs scored against a bowler with lower bowling average carries more credit than runs scored against a bowler of less importance. We introduce a performance index of a batsman (PIB) against a bowler given by the following equation

$$PIB = \frac{A_{Ba}}{C_{Bo}}$$ \hspace{1cm} (1)

where, A_{Ba} is the batting average of the batsman against the bowler he faced and C_{Bo} refers to the career bowling average of the bowler. Mathematically, batting average of the batsman (A_{Ba}) is given by the ratio $\frac{R}{d}$ where R is the number of runs scored against a bowler and d
is the number of times he was dismissed by the bowler. Hence if the career bowling average of a bowler is low (indicating a good bowler), PIB increases indicating that the batsman scored runs against quality opposition. We generate weighted and directed network of bowlers to batsmen where weight of the link is given by PIB. The network generated is thus based on the directed interaction of B_o and B_a. For the weighted network the in-strength s_i^{in} is defined as

$$s_i^{in} = \sum_{j \neq i} W_{ji}$$ \hspace{1cm} (2)$$

where W_{ji} is given by the weight of the directed link.

So far we have concentrated on the performance index of batsmen since 2001. Although the data for player-vs-player is not available for dates earlier than 2001, one could quantify the overall performance of a bowler based on the dismissal record of batsmen. For example, the wicket of a top-order batsman always deserve more credit than the wicket of a tail-ender. Thus the 'quality' of dismissal serves as a measure for the greatness of a bowler. We define the quality index of bowler (QIB) as

$$QIB = D \frac{C_{Ba}}{C_{Bo}}$$ \hspace{1cm} (3)$$

where D is defined as the number of times a batsman was dismissed by a particular bowler, C_{Ba} refers to the career batting average of a batsman and C_{Bo} indicates the career bowling average of a bowler. Thus greater the value of QIB, better is the rank of a bowler. As before we construct weighted and directed networks, this time the directed link pointing towards the bowlers. We evaluate the in-strength of the bowlers, which serves as a quantification of the ‘quality’ of a bowler.
Figure 1: (Color online) (A) Subgraph of the substrate network of batsmen and bowlers in ODI (1971 – 2011). The thickness of the directed link is proportional to the QIB. (B) The resultant gradient network of bowlers is constructed if the bowlers dismiss the same batsman (here it is *Wasim Akram*). The direction and weights of the links are applied according to the gradient scheme of link formation.
2.2. Gradient Network

The manner in which the game is played doesn’t allow us to compare the relative dominance of one batsman over another batsman or one bowler over another bowler. Unlike in tennis, where each player has to compete directly with the opponent, in cricket a batsman is pitted against a bowler. Hence it is very difficult to judge the relative superiority of a batsman (bowler) over another batsman (bowler). In this section we introduce gradient links between batsmen who face the same bowler. Recent studies have shown that transport efficiencies are often driven by local gradients of a scalar [25]. It has been seen that a gradient network based on a random graph topology tends to get easily congested, in the large network limit. If the substrate network is scale-free [26], then the corresponding gradient network is the least prone to congestion [27]. Traditionally a gradient network is constructed as follows. Consider a substrate network S. Each node i in the network is assigned with a random number h_i which describes the ‘potential’ of the node. Gradient network is constructed by directed links that point from each node to the nearest neighbor with highest potential [27]. Here we take a slightly different route to construct the weighted-gradient network.

We evaluate the in-strength s_{i}^{in} of the nodes of the substrate network (See Figure 1(A)). The in-strength acts a ‘potential’ for each node (batsman or bowler). We construct gradient links between two batsmen along the steepest ascent, where the weight of the directed link is the difference of the in-strength of two nodes. Thus weighted and directed links are formed between two bowlers if they dismiss the same batsman. Additionally we introduce a constraint, in which two bowlers are linked only if they are contemporary (See Figure 1(B)). Thus the weight ω_{ij} of a link is given as

$$\omega_{ij} = |s^{\text{in}}_i - s^{\text{in}}_j|$$

1R and d are evaluated for Test matches played between 2001 and 2011 and ODI (1999 – 2011)
where s_{ij}^{in} are the in-strength of two nodes i and j. The gradient network thus highlights the relative importance of a player over other. Next we apply the PageRank algorithm on the resultant gradient network and evaluate the importance of each player.

2.2.1. PageRank algorithm

We quantify the importance or ‘popularity’ of a player with the use of a complex network approach and evaluating the PageRank score. Mathematically, the process is described by the system of coupled equations

$$p_i = (1 - q) \sum_j p_j \frac{\omega_{ij}}{s_j^{out}} + \frac{q}{N} + \frac{1-q}{N} \sum_j \delta \left(s_j^{out} \right),$$

(5)

where ω_{ij} is the weight of a link and $s_j^{out} = \Sigma_i \omega_{ij}$ is the out-strength of a link. p_i is the PageRank score assigned to team i and represents the fraction of the overall “influence” sitting in the steady state of the diffusion process on vertex i [21]. $q \in [0, 1]$ is a control parameter that awards a ‘free’ popularity to each player and N is the total number of players in the network. The term $(1 - q) \sum_j p_j \frac{\omega_{ij}}{s_j^{out}}$ represents the portion of the score received by node i in the diffusion process obeying the hypothesis that nodes redistribute their entire credit to neighboring nodes. The term $\frac{q}{N}$ stands for a uniform redistribution of credit among all nodes. The term $\frac{1-q}{N} \sum_j p_j \delta \left(s_j^{out} \right)$ serves as a correction in the case of the existence of nodes with null out-degree, which otherwise would behave as sinks in the diffusion process. It is to be noted that the PageRank score of a player depends on the scores of all other players and needs to be evaluated at the same time. To implement the PageRank algorithm in the directed and weighted network, we start with a uniform probability density equal to $\frac{1}{N}$ at each node of the network. Next we iterate through Eq. (5) and obtain a steady-state set of PageRank scores for each node of the network. Finally, the values of the PageRank score are sorted to determine the rank of each player. According to tradition, we use a uniform value of $q = 0.15$. This choice of q ensures a higher value of PageRank scores [21].
3. Results

In this section, we explore the in-strength distribution of the weighted and directed networks. The in-strength of a node is an indication of the performance of an individual against the opponent team member. Thus higher the in-strength, better the performance. In Fig 2 we plot the cumulative in-strength distribution of batsmen and bowlers in Test cricket and ODI cricket. As we can see, the in-strength distributions do not display power-law or normal distribution.

As mentioned above the in-strength of a batsman reflects the performance of a batsman in terms of quality of runs scored. In Table 1 we list the top 50 batsmen in Test cricket between 2001 and 2011. The batsmen are ranked according to their in-strength. We observe that K. C. Sangakkara of Sri Lanka occupies the top spot followed by India’s S. R. Tendulkar with Australia’s R. T. Ponting and South Africa’s J. H. Kallis occupying the third and fourth spot respectively. R. Dravid of India occupies the fifth position. We compare the in-strength rank with the PageRank score and batting average of batsmen for runs scored between 2001 and 2011. Additionally we list the best ever cricket rating received by a batsman between...
2001 and 2011. Judged by the batting average and the ICC points we observe that B. C. Lara of West Indies emerge as the most successful batsman in Test cricket between 2001 and 2011. Similarly Australia’s R. T. Ponting averages more than S. R. Tendulkar and K. C. Sangakkara. However both K. C. Sangakkara and S. R. Tendulkar accumulated runs against better bowling attack. In Table 2 we list the top 50 batsmen in ODI cricket (1999 – 2011). This time too K. C. Sangakkara emerge as the most successful batsman followed by Australia’s R. T. Ponting and India’s S. R. Tendulkar. Even though S. R. Tendulkar averages more than his predecessors and also received the highest ICC points, both K. C. Sangakkara and R. T. Ponting scored runs against better bowling attack. In Figure 3 we compare the correlation of ranks obtained from in-strength and batting average. We observe that both the ranking schemes show strong correlation. Please note that this ranking is sensitive to change in information of player-vs-player once the information prior to the year 2000 is available in the cricinfo website.

We provide the historical ranking of bowlers for Test cricket in Table 3. We observe that the bowlers ranked by the average are different from that obtained from SNA. Finally we rank the performance of all bowlers in Test cricket (1877–2011), and identify bowlers with highest influence. We observe that according to in-strength values Sri Lanka’s M. Muralitharan emerge as the most successful bowler in the history of Test cricket (1877 – 2011) followed by S. K. Warne (AUS), G. D. McGrath (AUS), A. Kumble (IND) and C. A. Walsh (WI) (See Table 3). As before we generate gradient network of bowlers and apply the PageRank algorithm. It is interesting to note that the top five bowlers according to PageRank score are M. Muralitharan (SL), S. K. Warne (AUS), G. D. McGrath (AUS), F. S. Trueman (ENG) and C. A. Walsh (WI) (See Table 3). Thus according to quality of ‘dismissal’ and relative ‘popularity’ of bowlers M. Muralitharan emerge as the most successful bowler in Test cricket. Interestingly, M. Muralitharan is the highest wicket-taker in Test cricket. His success could be a posteriori justified by his long and successful career spanning 18 years.
(between 1992 and 2010). During his entire career M. Muralitharan dismissed 800 batsmen (highest in Test cricket) which included the likes of S. R. Tendulkar (dismissed 14 times), R. Dravid (dismissed 12 times) and B. C. Lara (dismissed 9 times). In addition to this he holds the record of maximum number of five wickets in an innings (67 times) and ten wickets in a match (22 times). We also observe that S. K. Warne, the second best bowler in Test cricket has second highest number of dismissals (708) to his credit. Both these bowlers had extremely long and successful careers spanning almost two decades. Australia’s G. D. McGrath, who has been considered one of the best fast bowlers in cricket holds a better average than that of his immediate predecessors. However his in-strength rank and PageRank score indicates that his quality of dismissal were not better than Muralitharan or Warne. This leads to the possible question - are bowling averages the best indicator of a bowler’s ability?. In our all time top 50 list we observe that England’s S. F. Barnes has the best bowling average of 16.43 and highest ICC points of 932 among all the bowlers (as listed in Table 3). However like George Lohmann, S. F. Barnes too enjoyed favorable pitch conditions. The batsmen playing in such pitches usually averaged lower than the recent batsmen. Hence for players like S. F. Barnes, the QIB is low which in turn affects his in-strength. However, his PageRank score his higher than most of the modern age bowlers indicating his relative ‘popularity’ or supremacy over other bowlers. A similar situation is seen with Pakistan’s Imran Khan. Although his in-strength is lower than that of Wasim Akram or D. K. Lillee, his PageRank score is higher than most of his predecessors. Rankings based on SNA show little agreement with traditional methods of performance evaluation. This is supported by the low positive correlation between different ranking schemes (See Figure 3(A, B)).

In ODI history (1971 – 2011) too, Sri Lanka’s M. Muralitharan leads the list of top 50 bowlers, followed by Pakistan’s Wasim Akram, Australia’s G. D. McGrath, Pakistan’s Waqar Younis and South Africa’s S. M. Pollock. PageRank scores reveal that M. Muralitharan is
the most successful bowler followed by Wasim Akram (PAK), Waqar Younis (PAK), G. D. McGrath (AUS) and B. Lee (AUS). Although G. D. McGrath has a slightly better average than M. Muralitharan, he falls short of the latter in terms of in-strength, PageRank score and ICC points. Again, judged by the number of dismissals, M. Muralitharan heads the list with 534 wickets, with Wasim Akram and Waqar Younis occupying the second and third position respectively. There are few surprises in the list. India’s A. B. Agarkar is placed above in comparison to N. Kapil Dev (IND), C. E. L. Ambrose (WI) or C. A. Walsh (WI) whom cricket experts consider as better bowlers. However, what goes in favor of A. B. Agarkar is the ‘quality’ of wickets he took. Thus even though he went for runs and didn’t have a long career, he was able to dismiss most of the batsmen with good average.

We observe the ranks obtained from in-strength (or PageRank) and bowling average are anti-correlated (See Figure 4(B,C)). This is not surprising in the sense that bowling average is not a proper way of judging a player’s performance. Also in the ODIs, there has been a practice of bringing in part-time bowlers who have low-averages. This is paradoxical in the sense that it indicates part-time bowlers are better than the regular bowlers. We find that our scheme provides sensible results that are in agreement with the points provided by ICC2. We also observe strong correlation between ranks obtained by network based tools and that provided by ICC3 (Figure 5). This demonstrates that our network based approach captures the consensus opinions.

4. Conclusion

To summarize, we quantified the performance of batsmen and bowlers in the history of cricket by studying the network structure of cricket players. Under the usual qualification of

2The rankings provided by ICC take in account several factors like runs scored, quality of pitch and opposition, match result etc. However, due to its opaqueness, ICC’s methodology is incomprehensible. Our approach is both novel and transparent.

3Since the information of ICC points is not consistent we choose the information of top 200 bowlers.
Table 1: Ranking of top 50 batsmen in Test cricket (2001 – 2011). We compare the rank of the batsmen according to their In-strength and compare them with the corresponding PageRank score, Batting average and best ever points according to ICC ratings.

Rank	Batsman	Country	In-strength	PageRank Score	Batting Average	ICC Points
1	K. C. Sangakkara	Sri Lanka	131.520	0.189813	59.43	938
2	S. R. Tendulkar	India	115.460	0.065442	55.13	898
3	R. T. Ponting	Australia	113.582	0.049806	59.93	942
4	J. H. Kallis	South Africa	103.545	0.030825	66.66	935
5	R. Dravid	India	100.344	0.023313	54.31	892
6	V. Sehwag	India	100.076	0.022345	55.41	883
7	D. P. M. D. Jayawardene	Sri Lanka	99.131	0.022345	55.41	883
8	V. V. S. Laxman	Sri Lanka	97.555	0.020722	66.66	935
9	S. Chanderpaul	Sri Lanka	96.319	0.019905	56.40	901
10	G. C. Smith	South Africa	88.943	0.014527	50.28	843
11	M. L. Hayden	Australia	85.628	0.012232	57.15	880
12	Younis Khan	Pakistan	83.255	0.011589	57.15	880
13	R. C. Lara	West Indies	82.112	0.011589	57.15	880
14	A. N. Cook	England	80.407	0.008708	48.69	836
15	A. J. Strauss	England	78.447	0.008470	41.60	769
16	K. P. Pietersen	England	77.312	0.007912	50.79	909
17	C. H. Gayle	West Indies	74.070	0.007991	43.27	755
18	A. B. de Villiers	South Africa	73.922	0.007441	43.27	755
19	M. E. K. Hussey	Australia	70.899	0.006557	51.29	921
20	M. P. Vaughan	England	65.216	0.005795	44.28	876
21	T. T. Samarasekera	Sri Lanka	64.221	0.006355	60.08	750
22	J. L. Langer	Australia	62.221	0.005165	50.69	780
23	R. R. Sarwan	West Indies	58.056	0.005216	41.94	767
24	B. R. McCullum	New Zealand	57.958	0.004427	36.90	673
25	D. L. Vettori	New Zealand	57.919	0.004179	35.70	672
26	M. J. Clarke	Australia	57.830	0.004501	50.43	855
27	H. H. Gibbs	South Africa	57.566	0.004485	46.67	825
28	I. R. Bell	England	57.356	0.004460	47.80	822
29	M. E. Trescothic	England	55.499	0.003753	45.83	818
30	T. M. Dilhara	Sri Lanka	54.190	0.005119	44.37	700
31	A. C. Gilchrist	Australia	53.751	0.003999	48.16	874
32	D. R. Martyn	Australia	53.141	0.003723	48.32	848
33	H. M. Amla	South Africa	52.579	0.003863	48.52	842
34	A. Flintoff	England	48.845	0.003620	34.06	645
35	Imran Khan al Haq	Pakistan	46.838	0.003417	57.37	970
36	S. T. Jayawardena	Sri Lanka	46.401	0.003044	42.66	770
37	S. M. Katich	Australia	45.676	0.003037	46.01	807
38	S. C. Ganguly	India	45.418	0.002945	42.26	713
39	M. V. Boucher	South Africa	44.699	0.004131	31.78	566
40	L. R. P. L. Taylor	New Zealand	44.060	0.002538	45.72	775
41	G. Gambhir	India	43.806	0.002713	47.51	886
42	P. D. Collingwood	England	43.739	0.002763	40.57	730
43	S. P. Fleming	New Zealand	43.874	0.002823	44.15	725
44	M. S. Dhoni	India	43.344	0.002406	37.84	662
45	M. S. Atapattu	Sri Lanka	40.912	0.002540	44.72	670
46	A. G. Prince	South Africa	40.704	0.002530	43.12	756
47	Habibul Baqar	Bangladesh	40.702	0.002456	31.03	656
48	Mohammad Ashraful	Bangladesh	38.937	0.002442	22.62	491
49	M. J. Prior	England	38.594	0.001972	46.75	679
50	Imran Farhat	Pakistan	37.910	0.002399	33.03	575
Table 2: Ranking of top 50 batsmen in ODI cricket (1999 – 2011). We compare the rank of the batsmen according to their In-strength and compare them with the corresponding PageRank score, Batting average and best ever points according to ICC ratings.

Rank	Batsman	Country	In-strength	PageRank Score	Batting Average	ICC Points
1	K. C. Sangakkara	Sri Lanka	128.075	0.165704	42.59	863
2	R. T. Ponting	Australia	127.058	0.095677	46.94	829
3	S. R. Tendulkar	India	120.251	0.052469	50.90	898
4	D. M. J. Jayawardene	Sri Lanka	115.475	0.040357	38.33	738
5	Yuvraj Singh	India	109.620	0.027228	40.48	787
6	V. Sehwag	India	104.183	0.022008	40.48	787
7	J. H. Kallis	South Africa	97.150	0.014652	49.89	817
8	M. S. Dhoni	India	96.639	0.014579	56.44	836
9	Younis Khan	Pakistan	90.378	0.013467	37.19	659
10	S. T. Jayaseeni	Sri Lanka	89.352	0.012719	36.13	838
11	G. C. Smith	South Africa	88.873	0.011473	40.25	784
12	M. J. Clarke	Australia	86.790	0.010249	51.50	750
13	R. Dravid	India	85.407	0.009736	48.95	749
14	A. C. Gilchrist	Australia	79.554	0.008268	49.89	867
15	C. H. Gayle	West Indies	78.427	0.008227	48.10	776
16	R. Dravid	India	77.276	0.006517	53.15	857
17	M. L. Hayden	Australia	76.883	0.006100	46.95	850
18	T. M. Dilshan	Sri Lanka	71.624	0.005514	31.98	664
19	M. J. Clarke	Australia	71.192	0.004333	31.98	664
20	M. E. K. Hussey	Australia	71.192	0.004333	31.98	664
21	S. M. Trescothick	England	64.758	0.004741	39.50	697
22	S. S. Ganguly	India	64.623	0.004680	39.50	697
23	K. P. Pietersen	England	64.623	0.004680	39.50	697
24	A. B. de Villiers	South Africa	64.623	0.004680	39.50	697
25	S. M. Trescothick	England	64.623	0.004680	39.50	697
26	K. P. Pietersen	England	64.623	0.004680	39.50	697
27	A. B. de Villiers	South Africa	64.623	0.004680	39.50	697
28	A. B. de Villiers	South Africa	64.623	0.004680	39.50	697
29	W. U. Tharanga	Sri Lanka	60.773	0.003835	37.38	663
30	A. J. Strauss	England	60.650	0.003818	37.29	664
31	M. S. Atapattu	Sri Lanka	60.328	0.003837	47.77	738
32	S. F. Fleming	New Zealand	54.770	0.003231	36.20	697
33	I. A. S. Colomin	New Zealand	54.770	0.003231	36.20	697
34	A. S. Colomin	New Zealand	54.770	0.003231	36.20	697
35	A. S. Colomin	New Zealand	54.770	0.003231	36.20	697
36	Yousuf Youhana	Pakistan	53.965	0.003072	40.68	801
37	M. E. Trescothick	Pakistan	53.965	0.003072	40.68	801
38	M. E. Trescothick	Pakistan	53.965	0.003072	40.68	801
39	M. E. Trescothick	Pakistan	53.965	0.003072	40.68	801
40	M. E. Trescothick	Pakistan	53.965	0.003072	40.68	801
41	M. E. Trescothick	Pakistan	53.965	0.003072	40.68	801
42	M. E. Trescothick	Pakistan	53.965	0.003072	40.68	801
43	M. E. Trescothick	Pakistan	53.965	0.003072	40.68	801
44	M. E. Trescothick	Pakistan	53.965	0.003072	40.68	801
45	M. E. Trescothick	Pakistan	53.965	0.003072	40.68	801
46	M. E. Trescothick	Pakistan	53.965	0.003072	40.68	801
47	M. E. Trescothick	Pakistan	53.965	0.003072	40.68	801
48	M. E. Trescothick	Pakistan	53.965	0.003072	40.68	801
49	M. E. Trescothick	Pakistan	53.965	0.003072	40.68	801
50	M. E. Trescothick	Pakistan	53.965	0.003072	40.68	801
Table 3: Ranking of top 50 bowlers in the history of Test cricket (1877 – 2011). We compare the rank of the bowlers according to their In-strength and compare them with the corresponding PageRank score, Batting average and best ever points according to ICC ratings.

Rank	Bowler	Country	In-strength	PageRank Score	Bowling Average	ICC Points
1	M. Muralitharan	Sri Lanka	1838.727	0.081376	22.72	920
2	S. K. Warne	Australia	1600.098	0.037871	25.41	905
3	G. D. McGrath	Australia	1581.467	0.035376	21.64	914
4	A. Kumble	India	1207.115	0.028108	29.65	859
5	C. A. Walsh	West Indies	1206.669	0.028407	24.44	867
6	C. E. L. Ambrose	West Indies	1118.653	0.014483	20.99	912
7	M. D. Marshall	West Indies	1077.349	0.027349	20.94	910
8	S. M. Pollock	South Africa	1060.700	0.008220	23.11	909
9	D. K. Lillee	Australia	907.015	0.011724	23.92	884
10	Wasim Akram	Pakistan	906.455	0.007559	23.62	830
11	Imran Khan	Pakistan	891.679	0.012749	22.81	922
12	A. A. Donald	South Africa	842.499	0.039000	22.25	885
13	M. Ntini	South Africa	836.285	0.004674	28.82	863
14	Waqar Younis	Pakistan	832.86	0.004918	28.62	863
15	F. R. Trueman	England	791.479	0.034600	21.57	898
16	N Kapil Dev	India	778.960	0.006425	29.64	877
17	Harbhajan Singh	India	761.382	0.004886	32.22	765
18	I. T. Botham	England	720.371	0.003157	28.40	911
19	R. G. D. Willis	England	719.321	0.005895	25.20	837
20	D. L. Underwood	England	697.050	0.008028	25.83	902
21	W. P. U. J. Vaas	Sri Lanka	668.274	0.004674	28.62	911
22	J. Garner	West Indies	647.740	0.002903	20.97	896
23	B. Lee	Australia	624.158	0.002937	30.81	811
24	M. A. Holding	West Indies	615.905	0.003025	23.68	860
25	L. R. Gibbs	West Indies	607.816	0.010326	29.09	897
26	R. R. Lindwall	Australia	593.348	0.008941	23.03	897
27	C. J. McDermott	Australia	590.881	0.003218	28.63	794
28	J. N. Gillespie	Australia	585.951	0.002121	26.13	812
29	J. B. Statham	England	577.871	0.007935	24.84	810
30	S. F. Barnes	England	575.551	0.011649	16.43	932
31	Z Khan	India	574.541	0.002255	31.78	752
32	A. V. Bedser	England	573.140	0.001847	24.89	903
33	D. L. Vettori	New Zealand	558.336	0.003616	33.65	681
34	A. H. Davidson	Australia	531.048	0.004510	26.01	908
35	M. J. Hoggard	England	530.846	0.006146	30.56	795
36	J. C. Laker	England	522.186	0.004533	21.24	897
37	G. D. McKenzie	Australia	518.735	0.003349	29.78	846
38	Saqlain Mushtaq	Pakistan	513.114	0.001625	29.83	771
39	R. Benaud	Australia	512.066	0.003863	27.03	863
40	C. V. Grimmett	Australia	509.586	0.024239	24.21	901
41	J. H. Kallis	South Africa	500.176	0.001848	32.51	742
42	Mohammad Asif	Pakistan	499.581	0.001268	24.36	818
43	R. B. Bedi	India	488.933	0.002868	28.71	804
44	J. M. Anderson	England	486.732	0.002245	30.46	813
45	A. R. Caddick	England	483.088	0.001447	29.91	732
46	K. R. Miller	Australia	476.808	0.003903	22.97	862
47	J. A. Snow	Australia	468.051	0.002138	26.66	832
48	D. Gough	England	457.295	0.001287	28.39	794
49	W. W. Hall	West Indies	455.804	0.003022	26.38	898
Table 4: Ranking of top 50 bowlers in the history of ODI cricket (1971 – 2011). We compare the rank of the bowlers according to their In-strength and compare them with the corresponding PageRank score, Batting average and best ever points according to ICC ratings.

Rank	Bowlers	Country	In-strength	PageRank Score	Bowling Average	ICC Points
1	M. Muralitharan	Sri Lanka	607.375	0.170207	23.08	913
2	Wasim Akram	Pakistan	601.274	0.111784	23.52	850
3	G. D. McGrath	Australia	473.596	0.029389	22.02	903
4	Waqar Younis	Pakistan	471.019	0.030567	23.84	778
5	S. M. Pollock	South Africa	440.701	0.018813	24.50	917
6	B. Lee	Australia	437.882	0.020709	23.18	852
7	W. P. U. J. C. Vaas	Sri Lanka	426.065	0.019129	27.53	860
8	Saqlain Mushtaq	Pakistan	381.207	0.011187	21.78	804
9	A. A. Donald	South Africa	331.312	0.011041	21.78	794
10	M. Ntini	South Africa	305.877	0.007624	24.65	783
11	J. Srinath	India	305.067	0.008372	28.08	742
12	S. K. Warne	Australia	296.573	0.007119	23.84	786
13	A. Kumble	India	293.592	0.009605	30.89	797
14	A. B. Agarkar	India	283.160	0.011041	27.45	845
15	Shahid Afridi	Pakistan	266.683	0.007999	33.37	623
16	D. L. Vettori	New Zealand	261.937	0.005727	31.48	788
17	Z. Khan	India	262.253	0.006112	20.03	709
18	Harbhajan Singh	India	261.937	0.005727	31.48	788
19	C. E. L. Ambrose	West Indies	259.694	0.007000	24.12	877
20	D. Gough	England	247.125	0.004335	26.42	767
21	S. T. Jayasuriya	Sri Lanka	236.641	0.006771	36.75	591
22	N. Kapil Dev	India	234.427	0.009609	27.45	845
23	J. H. Kallis	South Africa	234.421	0.005161	31.69	788
24	Abdul Razzaq	Pakistan	234.380	0.004718	31.83	678
25	K. D. Mills	New Zealand	218.920	0.003573	25.94	722
26	C. J. McDermott	Australia	212.171	0.003862	24.71	808
27	H. H. Streak	Zimbabwe	211.962	0.003212	29.82	717
28	J. Garner	West Indies	209.613	0.006778	18.84	940
29	S. E. Bond	New Zealand	208.962	0.002790	20.88	809
30	C. A. Walsh	West Indies	203.122	0.004218	30.47	801
31	N. W. Bracken	Australia	202.785	0.002428	24.36	805
32	C. L. Cairns	New Zealand	197.498	0.004749	32.80	784
33	A. Flintoff	England	192.269	0.002707	24.38	755
34	J. M. Anderson	England	191.432	0.003190	30.83	687
35	M. G. Johnson	Australia	187.358	0.002149	27.45	724
36	C. R. D. Fernando	Sri Lanka	186.151	0.003019	30.20	624
37	B. K. V. Prasad	India	177.538	0.003449	32.30	692
38	Inzam Khan	Pakistan	174.633	0.003972	26.61	780
39	L. Kluasner	South Africa	174.271	0.000558	29.95	657
40	Abdur Raazak	Bangladesh	173.970	0.002919	28.12	675
41	M. A. Holding	West Indies	160.662	0.004294	21.36	875
42	C. Z. Harris	New Zealand	159.101	0.002170	37.56	659
43	M. D. Marshall	West Indies	158.326	0.003466	26.96	891
44	S. C. J. Broad	England	158.194	0.000867	26.95	701
45	C. L. Hooper	West Indies	154.591	0.002299	36.05	679
46	S. L. Malinga	Sri Lanka	154.017	0.002022	26.35	674
47	J. N. Gillespie	Australia	150.864	0.001211	25.42	823
48	G. B. Hogg	Australia	149.910	0.002216	28.84	688
49	I. K. Pathan	India	148.536	0.000352	29.89	722
50	S. R. Waugh	Australia	147.948	0.002199	34.67	680
Figure 3: (Color online) (A) Scatter plot of between the rank positions obtained according to batting average rank and In-strength rank for Test cricket (2001 – 2011) ; Spearman correlation $\rho = 0.71$. (B) Scatter plot of between the rank positions obtained according to batting average rank and PageRank score for Test cricket (2001 – 2011) ; Spearman correlation $\rho = 0.62$. (C) Scatter plot of between the rank positions obtained according to batting average rank and In-strength rank for ODI cricket (1999 – 2011) ; Spearman correlation $\rho = 0.69$. (D) Scatter plot of between the rank positions obtained according to batting average rank and PageRank score in ODI cricket (1999 – 2011) ; Spearman correlation $\rho = 0.61$.
Figure 4: (Color online) (A) Scatter plot of between the rank positions obtained according to bowling average rank and In-strength rank for Test cricket (1877 – 2011) ; Spearman correlation $\rho = 0.53$. (B) Scatter plot of between the rank positions obtained according to bowling average rank and PageRank score for Test cricket (1877 – 2011) ; Spearman correlation $\rho = 0.46$. (C) Scatter plot of between the rank positions obtained according to bowling average rank and In-strength rank for ODI cricket (1971 – 2011) ; Spearman correlation $\rho = -0.44$. (D) Scatter plot of between the rank positions obtained according to bowling average rank and PageRank score in ODI cricket (1971 – 2011) ; Spearman correlation $\rho = -0.34$.

19
Figure 5: (Color online) (A) Scatter plot of between the rank positions obtained according to ICC points and In-strength rank for Test cricket (1877 – 2011) ; Spearman correlation $\rho = 0.69$. (B) Scatter plot of between the rank positions obtained according to ICC points and PageRank score for Test cricket (1877 – 2011) ; Spearman correlation $\rho = 0.71$. (C) Scatter plot of between the rank positions obtained according to ICC points and In-strength rank for ODI cricket (1971 – 2011) ; Spearman correlation $\rho = 0.58$. (D) Scatter plot of between the rank positions obtained according to ICC points and PageRank score in ODI cricket (1971 – 2011) ; Spearman correlation $\rho = 0.59$.
2000 balls bowled, George Lohmann emerge as the best bowler. Again, if we apply the qualification of at least 10 dismissals, then C. S. Marriott is the best bowler. These constraints are arbitrary and hence gauging bowler’s potential according to bowling average is not robust. The advantage of network analysis is that it doesn’t introduce these ‘constraints’ and yet provides consistent results. In such situation, in-strength and PageRank score stands out as an efficient measure of a bowler’s ability. We would like to mention that although our study includes the ‘quality’ of bowling attack or ‘quality’ of dismissal of a batsman, we don’t consider the fielding abilities or wicket-keeping abilities of the fielders. It is not possible to quantify the fielding ability of a fielder, other than by the number of catches, which is not a true measure of a fielder’s ability. Some fielders are more athletic than others. Slip fielders always have a higher chance of taking a catch than others. Again, a batsman deserves more credit if he is able to beat athletic fielders like Jonty Rhodes, Ricky Ponting or Yuvraj Singh. Secondly, a bowler’s ability is also judged by the nature of wicket. An excellent bowling performance on a batsman-friendly pitch holds greater merit than that on pitches which help bowlers. Similarly, scoring runs on difficult tracks always gets more attention than scoring runs on good batting tracks. In our analysis, due to non-availability of these informations, we didn’t include these ‘external factors’ in our analysis.

Nevertheless a network based approach could address the issue of relative performance of one player against other. Our study shows that SNA can indeed classify bowlers and batsmen based on the ‘quality’ of wickets taken or runs scored and not on the averages alone. Team selection is extremely important for any nation. SNA could be used as an objective way to aid the selection committee. A proper analysis of a player’s domestic performance would help his(her) selection in the national squad. Additionally, owners of the cash rich Indian Premier League (IPL) teams spend lots of money to hire players on a contract basis. The owners along with the coaches can identify talents based on the past ‘performance’ of a player. Potentially our study could identify the greatest batsman of all
time, based on a complete player-vs-player information, which at present we are unable to identify due to non-availability of data. Our analysis doesn’t aim at replacing the existing system of ICC player ranking, which are based on expert opinions and has been optimized and almost perfected for many years. It serves as an alternate method to refine the existing ranking scheme of players and quantify the performance of a player.

There are many additional features that could be included in the networks. For example, the networks in our analysis are static. A dynamic version of the network can be constructed following the ball-by-ball commentary and obtain a detailed analysis. Again, for batsmen there are players who score differently in different innings. There are leadership effects as well. Some players perform well under different skippers. Bowlers are categorized into different categories based on their bowling style - pacers, medium pacers and spinners. Quantifying the ‘style’ of bowling and effect of pitch conditions thus remains an open area of research. A rigorous analysis backed by a complete dataset of player-vs-player could very well answer the question - Was Sir Don Bradman the greatest ever? In our quest to judge the most successful bowler in the history of cricket, one fact stands out: M. Muralitharan remains il capo dei capi.

Acknowledgements

The author thanks the cricinfo website and icc-cricket website for public availability of data. We also gratefully acknowledge helpful discussions with R. Mukogo and R. K. Pan as well.

References

[1] Borooah, V. K. and J. E. Mangan Journal of Quantitative Analysis in Sports, 6. (2010)

The 1981 Ashes series where Ian Botham displayed tremendous performance under the inspiring leadership of Mike Brearley
[2] Lemmer, H. H. *Journal of Sports Sciences and Medicine*, 10, 630 (2011)
[3] Ben-Naim, E., F. Vazquez, and S. Redner *J. Korean Phys. Soc.*, 50, 124. (2007)
[4] Bittner E, Nussbaumer A, Janke W, Weigel M *European Physical Journal B* 67, 459 (2009)
[5] Petersen, A. M., W. S. Jung, and H. E. Stanley *EPL*, 83, 50010. (2008)
[6] Sire, C. and S. Redner, 67, 473–481 *Eur. Phys. J. B* (2009)
[7] Ben-Naim, E., S. Redner, and F. Vazquez *EPL*, 77, 30005. (2007)
[8] Skinner, B. *Journal of Quantitative Analysis in Sports*, 6, 3. (2010)
[9] Guerra YD, Gonzalez JMM, Montesdeoca SS, Ruiz DR, Garcia-Rodriguez A, GarciaManso JM *Physica A* 391, 2997 (2012)
[10] Heuer A, Rubner O *European Physical Journal B* 67, 445 (2009)
[11] Ribeiro HV, Mendes RS, Malacarne LC, Picoli S, Santoro PA *European Physical Journal B* 75, 327 (2010)
[12] S. R. Iyer, and R. Sharda *Expert Systems with Applications*, 36, 5510 (2009)
[13] Heuer, A., C. Müller, and O. Rubner *EPL*, 89, 38007. (2010)
[14] R. Albert and A. Barabasi, *Reviews of Modern Physics* 74 (2002), B. Tadic, G.J. Rodgers, S. Thurner, Int. J. Bifurcation and Chaos 17, 7, 2363 (2007)
[15] Duch, J., J. S. Waitzman, and L. A. N. Amaral *PLoS ONE*, 5, e10937. (2010)
[16] Yamamoto, Y., and Yokoyama, K. *PLoS ONE*, 6(12), (2011)
[17] Onody, R. N. and P. A. de Castro *Phys. Rev. E*, 70, 037103. (2004)
[18] P. Passos, K. Davids, D. Araujo, N. Paz, J. Minguens and J. Mendes *Journal of Science and Medicine in Sport*, 14, 170 (2011)
[19] Saavedra, S., S. Powers, T. McCotter, M. A. Porter, and P. J. Mucha *Physica A*. (2009)
[20] Park, J. and M. E. J. Newman *Journal of Statistical Mechanics : Theory and Experiment*, 10. (2005)
[21] Radicchi, F. *PLoS ONE*, 6, e17249. (2011)
[22] S. Mukherjee, *Physica A* (2012) 10.1016/j.physa.2012.06.052
[23] D. Lusher, G. Robins & P. Kremer *Measurement in Physical Education and Exercise Science*, 14, 211 (2010)
[24] www.espncricinfo.com
[25] B. Danila, Y. Yu, S. Earl, J. A. Marsh, Z. Toroczkai and K. E. Bassler, *Phys. Rev. E*, 74, 046114 (2006)
[26] Albert-Laszlo Barabasi, Reka Albert, and Hawoong jeong, *Physica A* 272, 173 (1999)
[27] Z. Toroczkai, K. E.Bassler, *Nature*, 428 (2004)