NON-NEGATIVE SPECTRAL MEASURES AND INTEGRAL REPRESENTATIONS OF UNBOUNDED ∗-REPRESENTATIONS

ALJAŽ ZALAR

Abstract. Regular normalized $B(W_1, W_2)$-valued non-negative spectral measures introduced in [8] are in one-to-one correspondence with unital algebra homomorphisms $\rho : C(X, \mathbb{C}) \otimes W_1 \to W_2$ such that $\rho(F^*) = \rho(F^*)^*$ for every $F \in C(X, \mathbb{C}) \otimes W_1$, where X stands for a compact Hausdorff space and W_1, W_2 stand for von Neumann algebras. In this paper we show that for every realcompact and σ-compact space X, and a special algebra homomorphism $\rho : C(X, \mathbb{C}) \otimes A_1 \to L(K)$ there exists a unique representing $B(A_1, B(K))$-valued non-negative spectral measure, where A_1 stands for a C^*-algebra and K stands for a Hilbert space.

1. Introduction

Our main result is the following theorem on ∗-representations of the form $\rho : C(X, \mathbb{C}) \otimes A_1 \to L(K)$, where X is a realcompact and σ-compact space, $A_1 \subseteq B(H)$ a C^*-algebra, $B(H)$ the Banach space of bounded linear operators on a Hilbert space H and $L(K)$ is a vector space of all linear operators on a Hilbert space K (not necessarily everywhere defined). For a dense subspace D_0 in K we denote by $L(D_0, K)$ a vector space of all linear operators mapping D_0 into K.

Theorem 1.1. Let X, A_1, $L(K)$, D_0 and $L(D_0, K)$ be as above, $\text{Bor}(X)$ be a Borel σ-algebra on X and

\[\rho : C(X, \mathbb{C}) \otimes A_1 \to L(K) \]

a ∗-representation on a subspace D_0 of a Hilbert space K, such that for every function $f \in C(X, \mathbb{C})$ the map

\[\rho_f : A_1 \to L(D_0, K), \quad \rho_f(A) = \rho(f \otimes A) \]

is continuous relative to the operator topology on A_1 and the strong operator topology on $L(D_0, K)$. Then there exists a unique regular normalized non-negative spectral measure

\[M : \text{Bor}(X) \to B(A_1, B(K)) \]

such that

\[\rho(F)x = \left(\int_X F \, dM \right)x \]

holds for every $x \in D_0$ and every $F \in C(X, \mathbb{C}) \otimes A_1$.

Date: November 6, 2014.

Key words and phrases. ∗-representations, ∗-algebras, operator-valued measures.
Remark 1.2. The strong operator topology on $L(D_0, K)$, where D_0 is a dense subspace in a Hilbert space K, is a topology determined by the family of seminorms

$$L(D_0, K) \to [0, \infty), \quad T \mapsto \|Tx\|$$

for every $x \in D_0$.

Let $D(T)$ denote the domain of an operator $T \in L(K)$. A function $\alpha : C(X, \mathbb{C}) \to [0, \infty)$ is an absolute value if α is symmetric (i.e., $\alpha(\overline{f}) = \alpha(f)$), $\alpha(1) = 1$ and $\alpha(fg) \leq \alpha(f)\alpha(g)$ for all $f, g \in C(X, \mathbb{C})$. The family of all absolute values is denoted by $A(C(X, \mathbb{C}))$.

We call a map $\rho : C(X, \mathbb{C}) \otimes A_1 \to L(K)$ a *-representation on a subspace D_0 of a Hilbert space K, if for every $\alpha, \beta \in \mathbb{C}$, every $F, G \in C(X, \mathbb{C}) \otimes A_1$, every continuous functions $f, g \in C(X, \mathbb{C})$ and every hermitian projection $P \in A_1$, we have:

(i) D_0 is contained in the domain $D(\rho(F))$ and is a core for $\rho(F)$,
(ii) $\rho(1 \otimes \text{Id}_K) = \text{Id}_K$,
(iii) $\rho(F^*) \subseteq \rho(F)^*$,
(iv) $\rho(\alpha F + \beta G) \subseteq \alpha \rho(F) + \beta \rho(G)$,
(v) $\rho(FG) \subseteq \rho(F)\rho(G)$,
(vi) $\rho(f \otimes P)^* = \rho(\overline{f} \otimes P)$,
(vii) $\rho(f \otimes P)\rho(g \otimes P) \subseteq \rho(fg \otimes P)$ and
$$D(\rho(f \otimes P)\rho(g \otimes P)) = D(\rho(fg \otimes P)) \cap D(\rho(f \otimes P)),$$
(viii) $\rho(f \otimes P)\rho(g \otimes P) = \rho(fg \otimes P)$,
(ix) The subspace

$$D\rho := \bigcup_{\alpha \in A(C(X, \mathbb{C}))} \left\{ x \in \bigcap_{f \in C(X, \mathbb{C})} D(\rho(f \otimes \text{Id}_K)) : \|\rho(f \otimes \text{Id}_K)x\| \leq \alpha(f)\|x\| \text{ for all } f \in C(X, \mathbb{C}) \right\}.$$

is dense in K.

The definition of a *-representation and Theorem 1.1 are the non-commutative generalizations of the special case of [3] Definition 1.1 and [6] Theorem 1.2, i.e., instead of a commutative, unital semigroup $S = C(X, \mathbb{C})$ we take the non-commutative, unital algebra $S = C(X, \mathbb{C}) \otimes A_1$. Theorem 1.2 is also an extension of [3] Theorem 9.1. from the case of bounded *-representations $\rho : C(X, \mathbb{C}) \otimes W_1 \to W_2$, where X is a compact space and W_1, W_2 are von Neumann algebras, to the case of unbounded *-representations $\rho : C(X, \mathbb{C}) \otimes A_1 \to L(K)$, where X is a realcompact and σ-compact space and A_1 a C^*-algebra.

Non-negative spectral measure $M : \text{Bor}(X) \to B(A_1, B(K))$ is a set function, if for every hermitian projection $P \in A_1$ the set functions M_P are spectral measures and the equality

$$M_P(\Delta_1)M_Q(\Delta_2) = M_{PQ}(\Delta_1 \cap \Delta_2)$$

holds for all hermitian projections $P, Q \in A_1$ and all sets $\Delta_1, \Delta_2 \in \text{Bor}(X)$.

The paper is structured in the following way. In Subsection 2.1 we present the non-negative spectral measures, which we introduced in [8] to prove a theorem on the integral representation of the *-representation of a C^*-algebra (see Theorem 2.3). In Subsection 2.2 we present a spectral theory of unbounded functions on
a Hilbert space. In Subsection 2.3 we define a \(* \)-representation of a commutative semigroup with an involution and state a theorem on the integral representation of the \(* \)-representation of the commutative semigroup with an involution (see Theorem 2.8). In Section 3 we introduce an integral of an unbounded measurable function with respect to a non-negative spectral measure. In Section 4 we firstly define a \(* \)-representation of the algebra \(C(X, \mathbb{C}) \otimes \mathcal{A}_1 \) on a dense subspace in a Hilbert space, secondly prove that the non-negative spectral integral is a \(* \)-representation (see Theorem 4.2) and finally prove Theorem 1.1 (see Theorem 4.3).

2. Preliminaries

2.1. Non-negative Measures and \(* \)-Representations of \(C^* \)-algebras. Let \((X, \text{Bor}(X), \mathcal{A}_1, \mathcal{W}_2) \) be a measure space, i.e., \(X \) is a topological space, \(\text{Bor}(X) \) a \(\sigma \)-algebra on \(X \), \(\mathcal{A}_1 \subseteq \mathcal{B}(\mathcal{H}) \) a \(C^* \)-algebra and \(\mathcal{W}_2 \subseteq \mathcal{B}(\mathcal{K}) \) a von Neumann algebra, where \(\mathcal{B}(\mathcal{H}), \mathcal{B}(\mathcal{K}) \) denote the bounded linear operators on Hilbert spaces \(\mathcal{H}, \mathcal{K} \). We denote by \(\mathcal{A}_p, \mathcal{A}_+ \) the subsets of all hermitian projections and all positive operators of a \(C^* \)-algebra \(\mathcal{A} \). By a hermitian projection we mean an operator \(P \), which satisfies \(P = P^* = P^2 \) and by a positive operator we mean a hermitian operator \(A \), such that \(\langle Ah, h \rangle \geq 0 \) for every \(h \in \mathcal{H} \), where \(\mathcal{H} \) is a Hilbert space with an inner product \(\langle \cdot, \cdot \rangle \), such that \(A \subseteq \mathcal{B}(\mathcal{H}) \). Non-negative spectral measure \(M : \text{Bor}(X) \to \mathcal{B}(\mathcal{A}_1, \mathcal{W}_2) \) is a set function, if for every hermitian projection \(P \in (\mathcal{A}_1)_p \) the set functions \(M_P \) are spectral measures and the equality

\[
M_P(\Delta_1)M_Q(\Delta_2) = M_{PQ}(\Delta_1 \cap \Delta_2)
\]

holds for all hermitian projections \(P, Q \in (\mathcal{A}_1)_p \) and all sets \(\Delta_1, \Delta_2 \in \text{Bor}(X) \).

Theorem 8.1 is a characterization of non-negative spectral measures:

Theorem 2.1. Let \((X, \text{Bor}(X), \mathcal{A}_1, \mathcal{W}_2) \) be a measure space, \(\{F_P\}_{P \in (\mathcal{A}_1)_p} \) a family of spectral measures \(F_P : \text{Bor}(X) \to \mathcal{W}_2 \). There is a unique non-negative spectral measure \(M \) such that

\[
M_P = F_P
\]

for all hermitian projections \(P \in (\mathcal{A}_1)_p \), iff the following conditions hold.

(1) \[
\sum_{i=1}^n \lambda_i F_{P_i}(\Delta) = \sum_{j=1}^m \mu_j F_{Q_j}(\Delta)
\]

for all hermitian projections \(P_i, Q_j \in (\mathcal{A}_1)_p \), all real numbers \(\lambda_i, \mu_j \in \mathbb{R} \), and all sets \(\Delta \in \text{Bor}(X) \) such that \(\sum_{i=1}^n \lambda_i P_i = \sum_{j=1}^m \mu_j Q_j \), for each set \(\Delta \in \text{Bor}(X) \) there exists a constant \(k_\Delta \in \mathbb{R}^{>0} \) such that

(2) \[
\|F_P(\Delta)\| \leq k_\Delta
\]

for all hermitian projections \(P \in (\mathcal{A}_1)_p \), and for all hermitian projections \(P, Q \in (\mathcal{A}_1)_p \) and all sets \(\Delta_1, \Delta_2 \in \text{Bor}(X) \)

(3) \[
F_P(\Delta_1)F_Q(\Delta_2) = \lim_{\ell \to \infty} \sum_{k=1}^{n_\ell} \lambda_{k,\ell} R_{k,\ell}(\Delta_1 \cap \Delta_2)
\]

holds for every sequence \(T_\ell := \sum_{k=1}^{n_\ell} \lambda_{k,\ell} R_{k,\ell} \) such that \(\lim_{\ell \to \infty} \|PQ - T_\ell\| = 0 \), where \(\lambda_{k,\ell} \in \mathbb{R} \) are real numbers and \(R_{k,\ell} \in (\mathcal{A}_1)_p \) hermitian projections.
REMARK 2.2. [8] Theorem 8.1 deals with a measure space of the form \((X, \text{Bor}(X), \mathcal{W}_1, \mathcal{W}_2)\), where \(\mathcal{W}_1, \mathcal{W}_2\) are von Neumann algebras. Without any changes in the proof \(\mathcal{W}_1\) can be replaced by a \(C^\ast\)-algebra \(A_1\).

Let \(X\) be a topological space and \(\text{Bor}(X)\) a Borel algebra on \(X\). Non-negative spectral measure \(M\) is regular if the spectral measures \(M\rho\) are regular for every hermitian projection \(P \in (A_1)_p\), i.e., complex measures

\[
(M_P)_{k_1,k_2} : \text{Bor}(X) \to \mathbb{C}, \quad (M_P)_{k_1,k_2}(\Delta) := (M_P(\Delta))_{k_1,k_2}
\]

are regular for every \(k_1,k_2 \in \mathcal{K}\) and every \(P \in (A_1)_p\). \(M\) is normalized if \(M(X)(\text{Id}_H) = \text{Id}_K\), where \(\text{Id}_H, \text{Id}_K\) denote the identity operators on \(H, K\) respectively.

Let \(\mathcal{A}\) be a unital algebra with an involution \(*\). A \(*\)-representation \(\rho : \mathcal{A} \to \mathcal{W}_2\) is an algebra homomorphism, such that \(\rho(a^*) = \rho(a)^*\) for every \(a \in \mathcal{A}\). \(\rho\) is unital, if \(\rho(e) = \text{Id}_{\mathcal{K}}\), where \(e\) is a unit element of \(\mathcal{A}\). Non-negative spectral measures were introduced in [8] to prove the following result (see [8, Theorem 1.1.]).

THEOREM 2.3. Let \(X\) be a compact Hausdorff space, \(\text{Bor}(X)\) a Borel \(\sigma\)-algebra on \(X\), \(\mathcal{A}_1\) a \(C^\ast\) algebra, \(\mathcal{W}_2\) a von Neumann algebra and \(\rho : C(X, \mathcal{A}_1) \to \mathcal{W}_2\) a map. The following statements are equivalent.

1. \(\rho : C(X, \mathcal{A}_1) \to \mathcal{W}_2\) is a unital \(*\)-representation.
2. There exists a unique regular normalized non-negative spectral measure \(M : \text{Bor}(X) \to B(\mathcal{A}_1, \mathcal{W}_2)\) such that

\[
\rho(F) = \int_X F \, dM
\]

for every \(F \in C(X, \mathcal{A}_1)\).

REMARK 2.4. [8] Theorem 1.1.] deals with a map of the form \(\rho : C(X, \mathcal{W}_1) \to \mathcal{W}_2\), where \(\mathcal{W}_1, \mathcal{W}_2\) are von Neumann algebras. As in Theorem [24] (see Remark 2.2), \(\mathcal{W}_1\) can be replaced by a \(C^\ast\)-algebra \(A_1\). However, \(\mathcal{W}_2\) cannot be replaced by a \(C^\ast\)-algebra \(A_2\) (the representing measure \(M\) would then map into the von Neumann algebra generated by \(A_2\)).

2.2. Spectral Integral on a Hilbert Space. Let \(\Omega\) be a set, \(\text{Bor}(X)\) a \(\sigma\)-algebra on \(X\) and \(E : \text{Bor}(X) \to B(\mathcal{H})\) a spectral measure, where \(\mathcal{H}\) is a Hilbert space. Let \(\mathcal{U}\) denote the set of all \(\text{Bor}(X)\)-measurable functions \(f : \Omega \to \mathbb{C}\). A sequence \((\Delta_n)_{n \in \mathbb{N}}\) of sets \(\Delta_n \in \text{Bor}(X)\) is a bounding sequence for a subset \(\mathcal{F}\) of \(\mathcal{U}\) if each function \(f \in \mathcal{F}\) is bounded on \(\Delta_n\), \(\Delta_n \subseteq \Delta_{n+1}\) for \(n \in \mathbb{N}\), and \(E(\bigcup_{n=1}^\infty \Delta_n) = \text{Id}_\mathcal{H}\).

If \((\Delta_n)_{n \in \mathbb{N}}\) is any bounding sequence, then by the properties of the spectral measure,

\[
E(\Delta_n) \preceq E(\Delta_{n+1})\quad \text{for } n \in \mathbb{N}, \quad \lim_{n \to \infty} E(\Delta_n)x = x\quad \text{for } x \in \mathcal{H},
\]

and the set \(\bigcup_{n=1}^\infty E(\Delta_n)\mathcal{H}\) is dense in \(\mathcal{H}\). Each finite set of element \(f_1, f_2, \ldots, f_r \in \mathcal{U}\) has a bounding sequence

\[
\Delta_n := \{t \in X : |f_j(t)| \leq n \text{ for } j = 1, 2, \ldots, r\}.
\]

The spectral integral \(I(f) := \int_\Omega f \, dE\) of a function \(f \in \mathcal{U}\) is given by the following theorem (see [31] Theorem 4.13).

Theorem 2.5. Suppose that \(f \in \mathcal{U} \) and define
\[
\mathcal{D}(\mathbb{I}(f)) := \left\{ x \in \mathcal{H} : \int_X |f(t)|^2 \ dE(t)x, x < \infty \right\}.
\]

Let \((\Delta_n)_{n \in \mathbb{N}}\) be a bounding sequence for \(f \). Then we have:
(i) A vector \(x \in \mathcal{H} \) is in \(\mathcal{D}(\mathbb{I}(f)) \) iff the sequence \((\mathbb{I}(f\chi_{\Delta_n}))_{n \in \mathbb{N}} \) converges in \(\mathcal{H} \), or equivalently, if \(\sup_{n \in \mathbb{N}} \|\mathbb{I}(f\chi_{\Delta_n})x\| < \infty \).
(ii) For \(x \in \mathcal{D}(\mathbb{I}(f)) \), the limit of the sequence \((\mathbb{I}(f\chi_{\Delta_n})) \) does not depend on the bounding sequence \((\Delta_n)\). There is a linear operator \(\mathbb{I}(f) \) on \(\mathcal{D}(\mathbb{I}(f)) \) defined by
\[
\mathbb{I}(f)x = \lim_{n \to \infty} \mathbb{I}(f\chi_{\Delta_n})x \quad \text{for } x \in \mathcal{D}(\mathbb{I}(f)).
\]
(iii) \(\bigcup_{n=1}^\infty E(\Delta_n)\mathcal{K} \) is contained in \(\mathcal{D}(\mathbb{I}(f)) \) and is a core for \(\mathbb{I}(f) \). Further, \(E(\Delta_n)\mathbb{I}(f) \subseteq \mathbb{I}(f)E(\Delta_n) = \mathbb{I}(f\chi_{\Delta_n}). \)
\(\mathcal{D}(\mathbb{I}(f)) \) from Theorem 2.5 is the domain of the operator \(\mathbb{I}(f) \).

The main algebraic properties of the map \(f \to \mathbb{I}(f) \) are given in the following theorem (see [7, Theorem 4.16]).

Theorem 2.6. For \(f, g \in \mathcal{U} \) and \(\alpha, \beta \in \mathbb{C} \) we have:
(i) \(\mathbb{I}(f^*) = \mathbb{I}(f)^* \),
(ii) \(\mathbb{I}(\alpha f + \beta g) = \alpha \mathbb{I}(f) + \beta \mathbb{I}(g) \),
(iii) \(\mathbb{I}(fg) = \mathbb{I}(f)\mathbb{I}(g) \),
(iv) \(\mathbb{I}(f) \) is a closed normal operator on \(\mathcal{K} \), and
\((f^*)^*\mathbb{I}(f) = \mathbb{I}(f^*) = \mathbb{I}(f)\mathbb{I}(f)^* \),
(v) \(\mathcal{D}(\mathbb{I}(f)\mathbb{I}(g)) = \mathcal{D}(\mathbb{I}(g)) \cap \mathcal{D}(\mathbb{I}(fg)) \).

Remark 2.7. To emphasize with respect to which spectral measure we integrate, we will denote the integral \(\mathbb{I}(f) \) with respect to \(E \) by \(\mathbb{I}_E(f) \).

2.3. \(\ast \)-Representations of Commutative Semigroups with an Involution.
Let \(S \) be a commutative semigroup with a unit element \(e \) and an involution \(\ast \) (i.e., \((s^*)^* = s \) and \((st)^* = s^*t^* \) for all \(s, t \in S \)). A function \(\nu : S \to \mathbb{C} \) which satisfies \(\nu(e) = 1 \) and \(\nu(st^*) = \nu(s)\nu(t) \) for all \(s, t \in S \) is called a character of \(S \). By \(S^* \) we denote the set of all characters of \(S \). A function \(\alpha : S \to [0, \infty) \) is an absolute value if \(\alpha \) is symmetric (i.e., \(\alpha(s^*) = \alpha(s) \)), \(\alpha(e) = 1 \) and \(\alpha(st) \leq \alpha(s)\alpha(t) \) for all \(s, t \in S \). The family of all absolute values is denoted by \(\mathcal{A}(S) \). For a map \(\rho : S \to N(\mathcal{H}) \), where \(N(\mathcal{H}) \) is a vector space of all normal (not necessarily bounded) operators on a Hilbert space \(\mathcal{H} \) and \(\alpha \in S \), define
\[
D_\alpha := \left\{ x \in \bigcap_{s \in S} \mathcal{D}(\rho(s)) : \|\rho(s)x\| \leq \alpha(s) \|x\| \text{ for all } s \in S \right\},
\]
where \(\mathcal{D}(\rho(s)) \) denotes the domain of \(\rho(s) \). By [6, Definition 1.1.], a map \(\rho : S \to N(\mathcal{H}) \) is called a \(\ast \)-representation, if:
(i) \(\rho(e) = \operatorname{Id}_\mathcal{H} \), where \(\operatorname{Id}_\mathcal{H} \) is the identity operator on \(\mathcal{H} \).
(ii) \(\rho(s^*) = \rho(s)^* \), \(s \in S \).
(iii) \(\rho(t)\rho(s) \subseteq \rho(st) \) with \(\mathcal{D}(\rho(t)\rho(s)) = \mathcal{D}(\rho(st)) \cap \mathcal{D}(\rho(s)) \), \(s, t \in S \).
(iv) \(\rho(t)\rho(s) = \rho(st) \), \(s, t \in S \).
(v) $D_c := \bigcup_{\alpha \in \mathcal{A}(S)} D_\alpha$ is dense in \mathcal{H}.

The main result of [6] is the following theorem on the integral representation of the $*$-representation $\rho : S \to N(\mathcal{H})$ (see [6 Theorem 1.2]).

Theorem 2.8. Let $S, \rho, N(\mathcal{H})$ and S^* be as above. Let $\text{Bor}(S^*)$ be a Borel σ-algebra on S^*. Then there exists a unique regular normalized spectral measure $F : \text{Bor}(S^*) \to B(\mathcal{H})$ such that

$$\rho(s)x = \left(\int_{S^*} \hat{s}(\nu) \, dE(\nu)\right)x$$

for every $s \in S$ and every $x \in \mathcal{D}(\rho(s))$, where $\hat{s} : S^* \to \mathbb{C}$ is defined by $\hat{s}(\nu) = \nu(s)$.

3. **Integrals of Unbounded Measurable Functions with Respect to Non-negative Spectral Measures**

Let $(X, \text{Bor}(X), \mathcal{A}_1 \subseteq B(\mathcal{H}), B(\mathcal{K}), M)$ be a space with a non-negative spectral measure M, where X is a σ-compact topological space, $\text{Bor}(X)$ a Borel σ-algebra on X, $\mathcal{A}_1 \subseteq B(\mathcal{H})$ a C^*-algebra, $\mathcal{W}_2 \subseteq B(\mathcal{K})$ a von Neumann algebra and $B(\mathcal{H}), B(\mathcal{K})$ the bounded linear operators on Hilbert spaces \mathcal{H}, \mathcal{K}. The set $D_0 \subseteq \mathcal{K}$ is defined by

$$\mathcal{D}_0 := \bigcup_{K \text{ compact}} M(K)(\text{Id}_{\mathcal{H}})\mathcal{K}.$$

Proposition 3.1. D_0 is a linear subspace in \mathcal{K}.

Proof. Let $x_1, x_2 \in \mathcal{D}_0$ and $\lambda_1, \lambda_2 \in \mathbb{C}$. Then it holds that $x_1 = M(K_1)(\text{Id}_{\mathcal{H}})k_1$, $x_2 = M(K_2)(\text{Id}_{\mathcal{H}})k_2$ for some compact sets K_1, K_2 and some vectors $k_1, k_2 \in \mathcal{K}$. Since $M(\Delta)(\text{Id}_{\mathcal{H}})$ is a hermitian projection for every $\Delta \in \text{Bor}(X)$ and the inequality $M(\Delta_1)(\text{Id}_{\mathcal{H}}) \leq M(\Delta_2)(\text{Id}_{\mathcal{H}})$ is true if $\Delta_1 \subseteq \Delta_2$, we have $\lambda_1 x_1 + \lambda_2 x_2 = M(K_1 \cup K_2)(\text{Id}_{\mathcal{H}})(\lambda_1 x_1 + \lambda_2 x_2)$ and $K_1 \cup K_2$ is a compact set. Hence $\lambda_1 x_1 + \lambda_2 x_2 \in \mathcal{D}_0$ and \mathcal{D}_0 is a linear subspace in \mathcal{K}. \qed

Let \mathcal{U} denote the set of all $\text{Bor}(X)$-measurable functions $f : X \to \mathbb{C}$. The aim of this section is to extend the integration of bounded maps of the form $\sum_{i=1}^{n} f_i \otimes A_i$ with respect to the non-negative spectral measure M, where $f_i \in \mathcal{U}$ is bounded and $A_i \in \mathcal{A}_1$ for every $i = 1, 2, \ldots, n$, to all maps of the form $\sum_{i=1}^{n} f_i \otimes A_i$, where $f_i \in \mathcal{U}$ and $A_i \in \mathcal{A}_1$ for every $i = 1, 2, \ldots, n$.

For a map $f \otimes P$, where $f \in \mathcal{U}$ and $P \in (\mathcal{A}_1)_p$ is a hermitian projection, we define the non-negative spectral integral $\mathcal{I}(f \otimes P)$ by

$$\mathcal{I}(f \otimes P) := \int_{\Omega} f \, dM_P = \|M_P(f)\|.$$

Lemma 3.2. \mathcal{D}_0 is contained in the domain $\mathcal{D}(\|M_P(f)\|)$ and is a core for $\|M_P(f)\|$. Also,

$$M(K)(\text{Id}_{\mathcal{H}})\|M_P(f)\| M(K)(\text{Id}_{\mathcal{H}}) = \|M_P(f \chi_K)\|$$

for every compact set K.

Proof. Let K be a compact set and $x \in \mathcal{K}$. By the σ-compactness of X we can find a sequence K_n of compact sets, such that $K_1 := K, K_n \subseteq K_{n+1}$ for $n \in \mathbb{N}$ and...
\[\bigcup_{n \in \mathbb{N}} K_n = X. \] By the boundedness of the function \(f \chi_K, \chi_K \), and by [8, Proposition 7.2], we have
\[
\left(\int_X f \chi_K \otimes P \, dM \right) x = \left(\int_X f \chi_K \chi_K \otimes P \, dM \right) x \\
= \left(\int_X f \chi_K \otimes P \, dM \right) M(K_1)(\text{Id}_H)x \\
= M(K_1)(\text{Id}_H) \left(\int_X f \chi_K \otimes P \, dM \right) x.
\]
Hence, \(\sup_{n \in \mathbb{N}} \|\mathbb{I}_{M^p}(f \chi_K) M(K_1)(\text{Id}_H)x\| < \infty \) and by Theorem 2.5 (i),
\[M(K)(\text{Id}_H)x = M(K_1)(\text{Id}_H)x \in \mathcal{D}(\mathbb{I}_{M^p}(f)). \]
That is, \(D_0 \subseteq \mathcal{D}(\mathbb{I}_{M^p}(f)) \).

Let \(x \in K \) be arbitrary. By the same reasoning as above we have
\[
\left(\int_X f \chi_K \otimes P \, dM \right) x = \left(\int_X f \otimes P \, dM \right) M(K_n)(\text{Id}_H)x \\
= \left(\int_X f \chi_K \otimes P \, dM \right) M(K_n)(\text{Id}_H) \left(\int_X f \otimes P \, dM \right) x.
\]
where \(m \geq n \). Letting \(m \to \infty \), we get
\[\left(\int_X f \chi_K \otimes P \, dM \right) x = \left(\int_X f \otimes P \, dM \right) M(K_n)(\text{Id}_H)x. \]
For \(x \in \mathcal{D}(\mathbb{I}_{M^p}(f)) \), letting \(m \to \infty \), we get
\[\left(\int_X f \otimes P \, dM \right) M(K_n)(\text{Id}_H)x = M(K_n)(\text{Id}_H) \left(\int_X f \otimes P \, dM \right) x. \]
Since \(M(K_n)(\text{Id}_H)x \to x \) and
\[\mathbb{I}_{M^p}(f) M(K_n)(\text{Id}_H)x = M(K_n)(\text{Id}_H) \mathbb{I}_{M^p}(f)x \to \mathbb{I}_{M^p}(f)x \]
for \(x \in \mathcal{D}(\mathbb{I}_{M^p}(f)) \), the linear subspace \(\bigcup_{n=1}^{\infty} M(K_n)(\text{Id}_H)K \subseteq D_0 \) is a core for \(\mathbb{I}_{M^p}(f) \). Hence \(D_0 \) is a core for \(\mathbb{I}_{M^p}(f) \). \(\square \)

Lemma 3.3. For \(f \in \mathcal{U} \) and \(P, Q \in (A_1)_p \) orthogonal hermitian projections it is true that:

(i) \(\mathcal{I}(f \otimes (P + Q)) = \mathcal{I}(f \otimes P) + \mathcal{I}(f \otimes Q) \).

(ii) \(\text{Im} \left(\mathcal{I}(f \otimes P) \right) \perp \text{Im} \left(\mathcal{I}(f \otimes Q) \right) \),

where \(\text{Im}(T) \) denotes the image of the operator \(T \) on \(K \).

Proof. Since \(P, Q \) are orthogonal hermitian projections, \(P + Q \) is also a hermitian projection. Since \(M \) is a non-negative spectral measure, \(\text{Im}(M_P) \) and \(\text{Im}(M_Q) \) are orthogonal (Here \(\text{Im}(M_P), \text{Im}(M_Q) \) denote the images of \(M_P, M_Q \), i.e., \(\text{Im}(M_P) := \bigcup_{\Delta \in \text{Bor}(X)} M_P(\Delta)K \) and analogously for \(M_Q \)). Therefore by the definition of \(\mathcal{D}(\mathbb{I}(f)) \) (see Theorem 2.5),
\[\mathcal{D}(\mathbb{I}_{M_P+Q}(f)) = \mathcal{D}(\mathbb{I}_{M_P}(f)) \cap \mathcal{D}(\mathbb{I}_{M_Q}(f)). \]
Let K_n be an increasing sequence of compact sets, such that $X = \cup_{n \in \mathbb{N}} K_n$. Since $f\chi_{K_n}$ is a bounded measurable function, by [8 Proposition 3.5],
\[
\|M_{P+Q}(f\chi_{K_n})\| = \|M_P(f\chi_{K_n})\| + \|M_Q(f\chi_{K_n})\|.
\]
Hence by
\[
\|M_{P+Q}(f)x\| = \lim_{n \to \infty} \|M_{P+Q}(f\chi_{K_n})x\| = \lim_{n \to \infty} (\|M_P(f\chi_{K_n})x\| + \|M_Q(f\chi_{K_n})x\|)
\]
\[
= \lim_{n \to \infty} \|M_P(f\chi_{K_n})x\| + \lim_{n \to \infty} \|M_Q(f\chi_{K_n})x\|
\]
\[
= \|M_P(f)x\| + \|M_Q(f)x\|
\]
for every $x \in D(M_{P+Q}(f))$, it follows that
\[
\|M_{P+Q}(f)\| = \|M_P(f)\| + \|M_Q(f)\|
\]
and by the definition of I also
\[
I(f \otimes (P + Q)) = I(f \otimes P) + I(f \otimes Q).
\]
Since M is a non-negative spectral measure, $M_P(\Delta)M_Q(\Delta') = 0$ for every $\Delta, \Delta' \in \text{Bor}(X)$ such that $\Delta \cap \Delta' = \emptyset$, and hence also $\text{Im} (I(f \otimes P) \perp \text{Im} (I(f \otimes Q))$.

In what follows we extend the integral I to all maps of the form $U \otimes A_1$. But first we introduce the preintegral ψ, which is needed to assure the well-definedness. For $f \in U$, $\lambda, \mu \in \mathbb{C}$, P, Q orthogonal hermitian projections (i.e., $PQ = 0$) and $x \in D_0$, we define
\[
\psi(f, \lambda P + \mu Q)x := \lambda I(f \otimes P)x + \mu I(f \otimes Q)x.
\]
Before extending ψ to the pairs (f, A), where $f \in U$ is a function and $A \in A_1$ an arbitrary operator, we state the following lemma, which will be used often in what follows.

Lemma 3.4. Let $A \in A_+^+$ be a positive operator in a C^*-algebra $A \subseteq B(H)$, where H is a Hilbert space. Then there is a sequence $S_t(A)$ of the form
\[
S_t(A) = \sum_{k=1}^{n_t} \zeta_{k,t} P_{k,t},
\]
converging to A in norm, where $\zeta_{k,t} \geq 0$ are non-negative and $P_{k,t}$ are orthogonal hermitian projections.

Proof. For the sequence $S_t(A)$ we can take a Riemann sum given by the resolution of unity belonging to A, where $S_{t+1}(A)$ is a refinement of $S_t(A)$ (see [8 equality (7.1)] and [7 p. 63-64] for details).

We will now extend ψ to the pairs (f, A), where $f \in U$ is a function and $A \in (A_1)_+$ is a positive operator. Let $x \in D_0$. We separate two possibilities:

(i) If A has a finite spectral decomposition $\sum_{k=1}^{n} \lambda_k P_k$, where $\lambda_k \geq 0$ are non-negative and P_k are mutually orthogonal hermitian projections (i.e., $P_iP_j = 0$ for every $i \neq j$), then we define
\[
\psi(f, A)x := \sum_{k=1}^{n} \lambda_k I(f \otimes P_k)x.
\]
If A does not have a finite spectral decomposition, then we define

$$\psi(f, A) x := \lim_{\ell \to \infty} \psi(f, S_\ell(A)) x,$$

where $S_\ell(A)$ is a sequence from Lemma 3.4.

Proposition 3.5. For $f \in \mathcal{U}$ and a positive operator $A \in (A_1)_+$ without a finite spectral decomposition, the definition of $\psi(f, A)$:

(i) is well-defined,

(ii) does not depend on the choice of the sequence $S_\ell(A)$.

Proof. Let us first prove that $(\psi(f, S_\ell(A)) x)_{\ell \in \mathbb{N}}$ is a Cauchy sequence. For $\ell' > \ell$, we have $S_\ell(A) - S_{\ell'}(A) = \sum_{i=1}^{m_{\ell'}} \lambda_i P_i$ for some $\lambda_i \in \mathbb{R}$, mutually orthogonal hermitian projections P_i and $m_{\ell'} \in \mathbb{N}$. Given $\epsilon > 0$ and choosing ℓ great enough we can achieve $|\lambda_i| < \epsilon$ for every $i = 1, \ldots, m$. Since $\text{Id}_H = P + (\text{Id}_H - P)$, where P, $\text{Id}_H - P$ are mutually orthogonal hermitian projections, it follows that $\|\psi(f, P)x\| \leq \|\psi(f, \text{Id}_H)x\|$ for every $x \in D_0$. We have

$$\left\| \sum_{i=1}^{m} \lambda_i \psi(f, P_i)x \right\| \leq \max_{i} |\lambda_i| \left\| \sum_{i=1}^{m} \psi(f, P_i)x \right\| \leq \max_{i} |\lambda_i| \|\psi(f, \text{Id}_H)x\| \leq \epsilon \|\psi(f, \text{Id}_H)x\|,$$

where the first inequality follows by the fact that $\text{Im}(\psi(f, P_i)) \perp \text{Im}(\psi(f, P_j))$ for $i \neq j$ (see Lemma 3.3(ii)) and the second by the fact that $\sum_{i=1}^{m} P_i$ is a hermitian projection. Since $\epsilon > 0$ was arbitrary, $(\psi(f, S_\ell(A)) x)_{\ell \in \mathbb{N}}$ is a Cauchy sequence and hence $\lim_{\ell \to \infty} \psi(f, S_\ell(A)) x$ exists. This proves (i).

Now we will prove the independence from the sequence $S_\ell(A)$. Let $S'_\ell(A) := \sum_{k=1}^{m} \zeta'_{k,\ell} P'_{k,\ell}$ be another sequence converging to A in norm, where $\zeta'_{k,\ell} \geq 0$ are non-negative and $P'_{k,\ell}$ are mutually orthogonal hermitian projections. We will prove that

$$(\psi(f, S_\ell(A)) x - \psi(f, S'_\ell(A)) x)_{\ell \in \mathbb{N}}$$

converges to 0. We have

$$S_\ell(A) - S'_\ell(A) = \sum_{i=1}^{p} \mu_i Q_i =: h_\ell(x),$$

where $\mu_i \in \mathbb{R}$ and Q_i are mutually orthogonal hermitian projections. Therefore

$$\psi(f, S_\ell(A)) x - \psi(f, S'_\ell(A)) x = \sum_{i=1}^{p} \mu_i \psi(f, Q_i)x.$$

Given $\epsilon > 0$ and choosing ℓ great enough we can achieve $|\mu_i| < \epsilon$ for every $i = 1, \ldots, p$. As for part (i) we estimate

$$\left\| \sum_{i=1}^{p} \mu_i \psi(f, Q_i)x \right\| \leq \epsilon \|\psi(f, \text{Id}_H)x\|.$$

Therefore $\psi(f, S_\ell(A)) x - \psi(f, S'_\ell(A)) x$ converges to 0 which proves (ii). \hfill \Box

Lemma 3.6. For a function $f \in \mathcal{U}$, a positive operator $A \in (A_1)_+$ and $x \in D_0$, we have

$$\psi(f, A) x = \lim_{n \to \infty} \psi(f \chi_{\Delta_n}, A)x,$$
where \((\Delta_n)_{n \in \mathbb{N}}\) is a bounding sequence of \(f\) with respect to the spectral measure \(M(\cdot)(\operatorname{Id}_H)\) (see Subsection 2.2).

Proof. For \(f \in \mathcal{U}\), a positive operator \(A \in \mathcal{A}_1\) and \(x \in \mathcal{D}_0\), it holds by the definition that \(\psi(f, A)x = \lim_{n \to \infty} \psi(f, S_{\lambda}(A))x\), where \((S_{\lambda}(A))_{\lambda \in \mathbb{N}}\) is a sequence from Lemma 3.4. By the equality (11), \(\psi(f, P)x = \lim_{n \to \infty} \psi(f \Delta_n, P)x\) holds for every hermitian projection \(P \in (\mathcal{A}_1)_p\), every bounding sequence \((\Delta_n)_n\) for \(f\) with respect to the spectral measure \(M(\cdot)(\operatorname{Id}_H)\) and every \(x \in \mathcal{D}_0\). Using Lemma 3.3 it is also true that for every hermitian projection \(P \in (\mathcal{A}_1)_p\),

\[
\|\psi(f, P)x - \psi(f \Delta_n, P)x\| \leq \|\psi(f, \operatorname{Id}_H)x - \psi(f \Delta_n, \operatorname{Id}_H)x\|,
\]

and hence by an analogous estimate as in the proof of Proposition 3.5

\[
\|\psi(f, S_{\lambda}(A))x - \psi(f \Delta_n, S_{\lambda}(A))x\| \leq \|A\| \|\psi(f, \operatorname{Id}_H)x - \psi(f \Delta_n, \operatorname{Id}_H)x\|.
\]

Therefore

\[
\psi(f, A)x = \lim_{\ell \to \infty} \psi(f, S_{\lambda}(A))x = \lim_{\ell \to \infty} \lim_{n \to \infty} \psi(f \Delta_n, S_{\lambda}(A))x = \lim_{n \to \infty} \lim_{\ell \to \infty} \psi(f \Delta_n, S_{\lambda}(A))x,
\]

where we used 11 in the third equality. \(\square\)

Let now \(A \in \mathcal{A}_1\) be arbitrary operator, \(f \in \mathcal{U}\) and \(x \in \mathcal{D}_0\). We define \(\psi(f, A)x\) by

\[
\psi(f, \operatorname{Re}(A)_+)x - \psi(f, \operatorname{Re}(A)_-)x + i \cdot \psi(f, \operatorname{Im}(A)_+)x - i \cdot \psi(f, \operatorname{Im}(A)_-)x,
\]

where \(\operatorname{Re}(A), \operatorname{Im}(A)\) denote the real and the imaginary part of the operator \(A\) and \(A_+, A_-\) the positive and the negative part of the hermitian operator \(A\).

Proposition 3.7. For a function \(f \in \mathcal{U}\), an operator \(A \in \mathcal{A}_1\) and \(x \in \mathcal{D}_0\), we have

\[
\psi(f, A)x = \lim_{n \to \infty} \psi(f \Delta_n, A)x,
\]

where \((\Delta_n)_{n \in \mathbb{N}}\) is a bounding sequence of \(f\) with respect to the spectral measure \(M(\cdot)(\operatorname{Id}_H)\).

Proof. By the definition of \(\psi(f, A)\) for an arbitrary operator \(A \in \mathcal{A}_1\), it is enough to prove the proposition for a positive operator \(A\). But this is just the statement of Lemma 3.6 \(\square\)

We have constructed the map

\[
\psi: \mathcal{U} \times \mathcal{A}_1 \to L(\mathcal{D}_0, \mathcal{K}),
\]

where \(L(\mathcal{D}_0, \mathcal{K})\) denotes the vector space of linear operators mapping \(\mathcal{D}_0\) into \(\mathcal{K}\).

Proposition 3.8. The map \(\psi\) is bilinear.

Proof. We will first prove the linearity in the first factor. For \(f, g \in \mathcal{U}, \lambda, \mu \in \mathbb{C}\) and \(A \in \mathcal{A}_1\), we have to show that \(\psi(\lambda f + \mu g, A) = \lambda \psi(f, A) + \mu \psi(g, A)\). We may
assume \(A \) is positive. Let \(S_\ell(A) \) be a sequence as in Lemma 3.4. We have

\[
\psi(\lambda f + \mu g, A) = \lim_{\ell \to \infty} \psi(\lambda f + \mu g, S_\ell(A)) = \lim_{\ell \to \infty} \sum_{k=1}^{n_\ell} \zeta_{k,\ell} \psi(\lambda f + \mu g, P_{k,\ell}) = \lambda \lim_{\ell \to \infty} \sum_{k=1}^{n_\ell} \zeta_{k,\ell} P_{k,\ell}
\]

where in the third equality we used the linearity of the integration with respect to the spectral measure \(M \) (see Theorem 2.6.(ii)).

Now we will prove the linearity in the second factor. For \(f \in \mathcal{U} \), \(\lambda, \mu \in \mathbb{C} \) and \(A, B \in A_1 \), we have to show that

\[
\psi(f, \lambda A + \mu B, A) = \lambda \psi(f, A, A) + \mu \psi(f, B, A)
\]

By the usual decomposition of \(\lambda, \mu, A, B \) into the linear combination of four positive parts and since the domain \(D(\psi(f \otimes A)) \) is dense in \(K \), we may assume, by [7, Proposition 3.5.(3.1)] that \(\lambda = \mu = 1 \). For \(x \in D_0 \) and a bounding sequence \(\Delta_n \) for \(f \) with respect to the spectral measure \(M \), we have

\[
\psi(f, A + B) x = \lim_{n \to \infty} \psi(f \chi_{\Delta_n}, A + B) x = \lim_{n \to \infty} \left(\psi(f \chi_{\Delta_n}, A) + \psi(f \chi_{\Delta_n}, B) \right) x = \psi(f, A) x + \psi(f, B) x,
\]

where in the first equality we used Lemma 3.6 and in the second equality we used the linearity of integration of bounded functions with respect to the non-negative spectral measures (see [8, Proposition 3.5.(3.1)]).

By the universal property of tensor products, the bilinear form \(\psi \) extends to the linear map

\[
\overline{\psi} : \mathcal{U} \otimes A_1 \to L(D_0, K), \quad \overline{\psi} \left(\sum_{i=1}^{n} f_i \otimes A_i \right) = \sum_{i=1}^{n} \psi(f_i, A_i).
\]

Now we extend \(\overline{\psi} \) to the integral \(\mathcal{I} \) defined by

\[
\mathcal{I} : \mathcal{U} \otimes A_1 \to L(K), \quad \mathcal{I} \left(\sum_{i=1}^{n} f_i \otimes A_i \right) = \overline{\psi} \left(\sum_{i=1}^{n} f_i \otimes A_i \right),
\]

where \(L(K) \) denotes the vector space of all linear operators on \(K \) (Here we do not demand that \(T \in L(K) \) is defined on all \(K \).) and \(\mathcal{T} \) denotes the closure of a densely defined operator \(T \in L(K) \).

Lemma 3.9. For \(f \in \mathcal{U} \) and \(A \in A_1 \), we have \(D_0 \subseteq \mathcal{D} \left(\overline{\psi}(f \otimes A)^* \right) \) and

\[
\overline{\psi}(f \otimes A)^* x = \overline{\psi}(f \otimes A^*) x
\]

for every \(x \in D_0 \).

Proof. By the decomposition of \(A \) into the linear combination of four positive parts and since the domain \(D_0 \) of \(\mathcal{D}(\overline{\psi}(f \otimes A)) \) is dense in \(K \), we may assume, by \[7\]
Proposition 1.6(vi)], that A is a positive operator. For $x, y \in \mathcal{D}_0$ and a sequence $S_{\ell}(A)$ as in Lemma 3.4 we have
\[
\langle \overline{v}(f \otimes A)x, y \rangle = \left\langle \lim_{\ell \to \infty} \overline{v}(f \otimes S_{\ell}(A))x, y \right\rangle = \lim_{\ell \to \infty} \langle \overline{v}(f \otimes S_{\ell}(A))x, y \rangle = \lim_{\ell \to \infty} \langle x, \overline{v}(f \otimes S_{\ell}(A))y \rangle = \langle x, \overline{v}(f \otimes A)y \rangle,
\]
where we used Theorem 2.6(i) and [7 Proposition 1.6(vi)] in the fourth equality.

(12) \mathcal{A}

Therefore $y \in \mathcal{D}(\overline{v}(f \otimes A))^*$ and $\overline{v}(f \otimes A)^*y = \overline{v}(f \otimes A)y$.

\[\square\]

Proposition 3.10. The map \mathcal{I} is well-defined.

Proof. For \mathcal{I} to be well-defined $\overline{v}(\sum_{i=1}^n f_i \otimes A_i)$ must be closable for every functions $f_1, \ldots, f_n \in \mathcal{U}$ and every $A_1, \ldots, A_n \in A_1$. By [7 Theorem 1.8(i)], it suffices to show that the domain $\mathcal{D} \left(\overline{v}(\sum_{i=1}^n f_i \otimes A_i) \right)$ is dense in \mathcal{K}. Since the domain $\mathcal{D} \left(\overline{v}(\sum_{i=1}^n f_i \otimes A_i) \right)$ is dense, by [7 Proposition 1.6(vi)], $\overline{v}(\sum_{i=1}^n f_i \otimes A_i)$ is dense. Therefore it suffices to show that $\sum_{i=1}^n \overline{v}(f_i \otimes A_i)^*$ is densely defined. Further on, it suffices to prove that every operator $\overline{v}(f \otimes A)^*$, where $f \in \mathcal{U}$ and $A \in A_1$, is defined on \mathcal{D}_0. But this is the statement of Lemma 3.9, which concludes the proof.

Remark 3.11. In the equality (12) we introduced the integral of $f \otimes P$ for $f \in \mathcal{U}$ and a hermitian projection P by $\mathcal{I}(f \otimes P) = \mathbb{I}_{M_P}(f)$. [7] is another definition of the integral $\mathcal{I}(f \otimes P)$. Since \mathcal{D}_0 is a core for $\mathbb{I}_{M_P}(f)$ (by Lemma 3.2), both definitions coincide.

Let $\mathcal{D}(T)$ denotes the domain of the linear operator T on \mathcal{K}. The following proposition summarizes some properties of the integral \mathcal{I}.

Proposition 3.12. For functions $f, f_1, f_2, \ldots, f_n \in \mathcal{U}$, operators $A_1, A_2, \ldots, A_n \in A_1$, a hermitian operator $P \in (A_1)_+$, a positive operator $A \in (A_1)_+$, $S_{\ell}(A)$ a sequence as in Lemma 3.4, and a map $F \in \mathcal{U} \otimes A_1$, we have:

(i) $\mathcal{D}_0 := \bigcup_{K \text{ compact}} \mathbb{M}(K)(\mathbb{I}_{\mathcal{H}})K \subseteq \mathcal{D} \left(\mathcal{I} \left(\sum_{i=1}^n f_i \otimes A_i \right) \right)$.

(ii) $\mathcal{I}(f \otimes P) = \mathbb{I}_{M_P}(f)$.

(iii) If $(\Delta_m)_m$ is a bounding sequence for every f_i in $\sum_{i=1}^n f_i \otimes A_i$ with respect to the spectral measure $\mathbb{M}(\cdot)(\mathbb{I}_{\mathcal{H}})$, then

\[
\mathcal{I} \left(\sum_{i=1}^n f_i \otimes P_i \right) x = \lim_{m \to \infty} \mathcal{I} \left(\sum_{i=1}^n f_i \chi_{\Delta_m} \otimes P_i \right) x
\]

for every $x \in \bigcap_{i=1}^n \mathcal{D}(\mathbb{I}_{M_P}(f_i))$.

(iv) For every vector $x \in \mathcal{D}_0$ the following holds

\[
\mathcal{I}(f \otimes A)x = \lim_{\ell \to \infty} \mathcal{I}(f \otimes S_{\ell}(A))x = \lim_{m \to \infty} \lim_{\ell \to \infty} \mathcal{I}(f \chi_{\Delta_m} \otimes S_{\ell}(A))x.
\]
(v) $\mathcal{I}(F)$ is closed.

Proof. Part (i), the first equality of part (iv) and part (v) are true by the construction of the integral \mathcal{I}. Part (ii) is true by Remark 3.11. Since D_0 is a core for $l_{M^P}(f)$ for every hermitian projection P and every $f \in \mathcal{U}$, we have $\cap_{i=1}^n D(l_{M^P}(f_i)) \subseteq \mathcal{D}(\mathcal{I}(\sum_{i=1}^n f_i \otimes P_i))$. Hence by Theorem 2.5(ii), part (iii) is true. The second equality of part (iv) is the statement of Lemma 3.6. □

Lemma 3.13. For every map $F \in \mathcal{U} \otimes A_1$ and every compact K we have

$$M(K)(\text{Id}_H)\overline{\psi}(F) \subseteq \overline{\psi}(F)M(K)(\text{Id}_H) = \overline{\psi}(F \chi_K).$$

Proof. Let K be a compact set. By the linearity of $\overline{\psi}$ and the boundedness of $M(K)(\text{Id}_H)$, we may assume $F = f \otimes A$, where $f \in \mathcal{U}$, $A \in A_1$. With the same argument we can further assume that A is positive operator. For $x \in D_0$ and $S_\ell(A)$ a sequence as in Lemma 3.4, we have

$$M(K)(\text{Id}_H)\overline{\psi}(f \otimes A)x = \lim_{\ell \to \infty} M(K)(\text{Id}_H)\overline{\psi}(f \otimes S_\ell(A))x$$

$$= \lim_{\ell \to \infty} M(K)(\text{Id}_H) \sum_{k=1}^{n_\ell} \zeta_{k,\ell} \overline{\psi}(f \otimes P_{k,\ell})x$$

$$= \lim_{\ell \to \infty} \sum_{k=1}^{n_\ell} \zeta_{k,\ell} \overline{\psi}(f \otimes P_{k,\ell})M(K)(\text{Id}_H)x$$

$$= \lim_{\ell \to \infty} \overline{\psi}(f \otimes S_\ell(A))M(K)(\text{Id}_H)x = \overline{\psi}(f \otimes A)M(K)(\text{Id}_H)x,$$

where the first and the fifth equality follow by the construction of the map $\overline{\psi}$, the second and the fourth by the linearity of the map $\overline{\psi}$ and the third equality follows by Lemma 3.2. This proves the inclusion part of the lemma. Since by Lemma 3.2

$$\lim_{\ell \to \infty} \sum_{k=1}^{n_\ell} \zeta_{k,\ell} \overline{\psi}(f \otimes P_{k,\ell})M(K)(\text{Id}_H)x = \lim_{\ell \to \infty} \sum_{k=1}^{n_\ell} \zeta_{k,\ell} \overline{\psi}(f \chi_K \otimes P_{k,\ell})x$$

$$= \overline{\psi}(f \chi_K \otimes A)x,$$

the equality part of the lemma also holds. □

Lemma 3.14. For every $F, G \in \mathcal{U} \otimes A_1$, D_0 is contained in the domain of the operator $\mathcal{I}(F)\mathcal{I}(G)$.

Proof. Let K be a compact set. We have

$$\mathcal{I}(F) \circ M(K)(\text{Id}_H) \circ \mathcal{I}(G) \circ M(K)(\text{Id}_H)x$$

$$= \overline{\psi}(F) \circ M(K)(\text{Id}_H) \circ \overline{\psi}(G) \circ M(K)(\text{Id}_H)x$$

$$= \overline{\psi}(F) \circ \overline{\psi}(G) \circ (M(K)(\text{Id}_H))^2x$$

$$= \overline{\psi}(F) \circ \overline{\psi}(G) \circ M(K)(\text{Id}_H)x$$

$$= \mathcal{I}(F)\mathcal{I}(G) \circ M(K)(\text{Id}_H)x,$$

where we used Proposition 3.12(i) for the well-definedness of the first line, the definition of $\overline{\psi}$ and \mathcal{I} in the first and the forth equality, Lemma 3.13 in the second equality and the fact that $M(K)(\text{Id}_H)$ is a hermitian projection in the third equality. Hence $D_0 = \bigcup_{K \text{ compact}} M(K)(\text{Id}_H)K$ is contained in the domain of $\mathcal{I}(F)\mathcal{I}(G)$. □
Lemma 3.15. For $F, G \in \mathcal{U} \otimes A_1$ we have
\[\overline{\psi}(FG) = \overline{\psi}(F)\overline{\psi}(G). \]

Proof. By the linearity of $\overline{\psi}$, we may assume $F = f \otimes A, G = g \otimes B$, where $f, g \in \mathcal{U}$ and $A, B \in A_1$. Let K be a compact set. By the σ-compactness of K_n of compact sets, such that $K_1 = K, K_n \subseteq K_{n+1}$ for every $n \in \mathbb{N}$ and $X = \bigcup_{n \in \mathbb{N}} K_n$. For $y = M(K)(\text{Id}_H)x, x \in \mathcal{K}$ and a fixed $n \in \mathbb{N}$, we have
\[\overline{\psi}(fg \otimes AB)y = \lim_{m \to \infty} \overline{\psi}(fg\chi_{K_m} \otimes AB)y \]
\[= \lim_{m \to \infty} \overline{\psi}(f\chi_{K_m} \otimes A) \circ \overline{\psi}(g\chi_{K_m} \otimes B)y \]
\[= \lim_{m \to \infty} \overline{\psi}(f\chi_{K_m} \otimes A) \circ \overline{\psi}(g\chi_{K_m} \otimes B) \circ M(K_n)(\text{Id}_H) \circ M(K)(\text{Id}_H)x \]
\[= \lim_{m \to \infty} \overline{\psi}(f\chi_{K_m} \otimes A) \circ \overline{\psi}(g\chi_{K_m} \chi_{K_n} \otimes A) \circ M(K)(\text{Id}_H)x \]
\[= \overline{\psi}(f \otimes A) \circ \overline{\psi}(g\chi_{K_n} \otimes B) \circ M(K)(\text{Id}_H)x \]
where we used Proposition 3.7 in the first and the fifth equality, [Proposition 7.2.] in the second equality, the fact that M is a non-negative spectral measure in the third inequality (and $K_n \supseteq K$) and the equality part of Lemma 3.15 in the fourth equality. As $n \to \infty$, we get (by the use of Proposition 3.7)
\[\overline{\psi}(fg \otimes AB)y = \overline{\psi}(f \otimes A)\overline{\psi}(g \otimes B)y. \]

This concludes the proof. \(\square\)

The main algebraic properties of the integral \mathcal{I} are collected in the following theorem.

Theorem 3.16. For $F, G \in \mathcal{U} \otimes A_1, \alpha, \beta \in \mathbb{C}, f, g \in \mathcal{U}$ and a hermitian projection $P \in (A_1)_p$, we have:

(i) $\mathcal{I}(F^*) \subseteq \mathcal{I}(F)^*$,
(ii) $\mathcal{I}(\alpha F + \beta G) \subseteq \alpha \mathcal{I}(F) + \beta \mathcal{I}(G)$,
(iii) $\mathcal{I}(FG) \subseteq \mathcal{I}(F)\mathcal{I}(G)$,
(iv) $\mathcal{D}(\mathcal{I}(g \otimes P)) \cap \mathcal{D}(\mathcal{I}(f \otimes P)) \subseteq \mathcal{D}(\mathcal{I}(f \otimes P)\mathcal{I}(g \otimes P))$.

Proof. For $x \in \mathcal{D}_0$ and $F := \sum_{i=1}^{n} f_i \otimes A_i$, where $f_1, \ldots, f_n \in \mathcal{U}, A_1, \ldots, A_n \in A_1$, we have
\[\mathcal{I}(F^*)x = \overline{\psi}(F^*)x = \sum_{i=1}^{n} \overline{\psi}(f_i \otimes A_i^*)x = \sum_{i=1}^{n} \overline{\psi}(f_i \otimes A_i)^*x \]
\[= \left(\sum_{i=1}^{n} \overline{\psi}(f_i \otimes A_i) \right)^*x = \overline{\psi}(F^*)x = \mathcal{I}(F)^*x, \]
where the first and the sixth equality follow by the definition of $\overline{\psi}$ and \mathcal{I}, the second and the fifth by the linearity of $\overline{\psi}$, the third equality follows by Lemma 3.9 and in the forth equality we used [Proposition 1.6(vi)] $(\mathcal{D}_0 = \mathcal{D}(\sum_{i=1}^{n} \overline{\psi}(f_i \otimes A_i))$ is dense in \mathcal{K}). Since $\mathcal{I}(F)^*$ is the closed extension of the operator $\overline{\psi}(F^*)$, and $\mathcal{I}(F^*)$ is its closure, part (i) is true.

It suffices to prove that $\mathcal{I}(F + G) \subseteq \mathcal{I}(F) + \mathcal{I}(G)$. Using part (i), we have
\[\mathcal{D}(\mathcal{I}(F + G)) \supseteq \mathcal{D}(\mathcal{I}(F)^* + \mathcal{I}(G)^*) \supseteq \mathcal{D}(\mathcal{I}(F^*) + \mathcal{I}(G^*)) \supseteq \mathcal{D}_0. \]
Since D_0 is dense, $\mathcal{I}(F) + \mathcal{I}(G)$ is closable (by [7] Proposition 1.8(i)). Since $\mathcal{I}(F+G)$ is the closure of $\mathcal{I}(F+G)|_{D_0}$ and $\mathcal{I}(F) + \mathcal{I}(G)$ is the closed extension of $\mathcal{I}(F+G)|_{D_0}$, part (ii) is true.

By Lemma 5.14, D_0 is contained in the domain of $(\mathcal{I}(F)\mathcal{I}(G))^*$. Since we have $(\mathcal{I}(F)\mathcal{I}(G))^* \supseteq (\mathcal{I}(G))^*\mathcal{I}(F)^*$ (by [7] Proposition 1.7(ii)) and $(\mathcal{I}(G))^*\mathcal{I}(F)^* \supseteq \mathcal{I}(G)^*\mathcal{I}(F)^*$ by part (i), the operator $\mathcal{I}(F)\mathcal{I}(G)$ is closable (by [7] Proposition 1.8(i)). For $x \in D_0$, $\mathcal{I}(FG)x = \mathcal{I}(F)\mathcal{I}(G)x$ (by Lemma 5.15). Since $\mathcal{I}(FG)$ is the closure for $\overline{\mathcal{I}}(FG)$ and $\overline{\mathcal{I}(F)\mathcal{I}(G)}$ is the closed extension for $\overline{\mathcal{I}}(FG)$, part (iii) follows.

Since $\mathcal{I}(f \otimes P) = \mathbb{1}_{\mathcal{M}_p}(f)$ for every $f \in \mathcal{U}$ and every hermitian projection $P \in (\mathcal{A}_1)_p$, part (iv) follows by Theorem 2.3(v).

4. Extension of Theorem 2.3 to Unbounded *-Representations

Let $(X,\text{Bor}(X),\mathcal{A}_1 \subseteq B(\mathcal{H}),B(K),M)$ be a space with a non-negative spectral measure $M : \text{Bor}(X) \rightarrow B(\mathcal{A}_1,B(K))$, where $\text{Bor}(X)$ is a Borel σ-algebra on a σ-compact topological space X, $\mathcal{A}_1 \subseteq B(\mathcal{H})$ is a C^*-algebra, $\mathcal{W}_2 \subseteq B(\mathcal{K})$ is a von Neumann algebra, and \mathcal{H},\mathcal{K} Hilbert spaces.

The aim of this Section is to extend Theorem 2.3 from the bounded *-representations $\rho : C(X,\mathcal{A}_1) \rightarrow B(K)$ to the unbounded *-representations $\rho : C(X,\mathcal{C}) \otimes \mathcal{A}_1 \rightarrow L(\mathcal{K})$, where $L(\mathcal{K})$ is the algebra of all linear operators of \mathcal{K} (Here we do not demand that a linear operator is defined on all \mathcal{K}.)

Let D_0 be a dense subspace in \mathcal{K} and \mathcal{V} a subalgebra of the algebra \mathcal{U} of all measurable functions. For a map $\rho : \mathcal{V} \otimes \mathcal{A}_1 \rightarrow L(\mathcal{K})$, $\alpha \in \mathcal{A}(\mathcal{V})$ (see Subsection 2.3 for the definition of α and \mathcal{A}) and a hermitian projection $P \in (\mathcal{A}_1)_p$, we define the set

$$D_{\alpha,P} := \left\{ x \in \bigcap_{f \in \mathcal{V}} D(\rho(f \otimes P)) : \|\rho(f \otimes P)x\| \leq \alpha(f)\|x\| \text{ for all } f \in \mathcal{V} \right\}.$$

The map ρ is a *-representation on a subspace D_0, if for every $\alpha,\beta \in \mathcal{C}$, every $F,G \in \mathcal{V} \otimes \mathcal{A}_1$, every $f,g \in \mathcal{V}$ and every hermitian projection $P \in (\mathcal{A}_1)_p$, we have

\begin{enumerate}
 \item D_0 is contained in the domain $D(\rho(F))$ and is a core for $\rho(F)$,
 \item $\rho(1 \otimes \text{Id}_\mathcal{K}) = \text{Id}_\mathcal{K}$,
 \item $\rho(F^*) \subseteq \rho(F)^*$, \hspace{1cm} (i)
 \item $\rho(\alpha F + \beta G) \subseteq \alpha \rho(F) + \beta \rho(G)$, \hspace{1cm} (ii)
 \item $\rho(FG) \subseteq \rho(F)\rho(G)$, \hspace{1cm} (iv)
 \item $\rho(f \otimes P)^* = \rho(f \otimes P)$, \hspace{1cm} (v)
 \item $\rho(f \otimes P)\rho(g \otimes P) \subseteq \rho(fg \otimes P)$ and
 \begin{equation*}
 D(\rho(f \otimes P)\rho(g \otimes P)) = D(\rho(g \otimes P)) \cap D(\rho(fg \otimes P)),
 \end{equation*}
 \item $\rho(f \otimes P)\rho(g \otimes P) = \rho(fg \otimes P)$, \hspace{1cm} (vii)
 \item $D_{\alpha,\text{Id}_\mathcal{K}} := \cup_{\alpha \in \mathcal{A}(\mathcal{V})} D_{\alpha,\text{Id}_\mathcal{K}}$ is dense in \mathcal{K}.
\end{enumerate}

Remark 4.1. From the condition (ix) it follows that

\begin{enumerate}
 \item $D_{\alpha,P} := \cup_{\alpha \in \mathcal{A}(\mathcal{V})} D_{\alpha,P}$ is dense in \mathcal{K} for every hermitian projection $P \in (\mathcal{A}_1)_p$.
\end{enumerate}
Indeed, let \(f, g \in \mathcal{V} \) be arbitrary functions and \(P \in (A_1)_p \) a hermitian projection. By (vii) we have
\[
\rho(\overline{f} \otimes P)\rho(g \otimes (\text{Id}_\mathcal{H} - P)) \subseteq \rho((\overline{f} \otimes P)(g \otimes (\text{Id}_\mathcal{H} - P))) = \rho(0) = 0.
\]
Hence
\[
\text{Im}(\rho(g \otimes (\text{Id}_\mathcal{H} - P))) \subseteq \text{Ker}(\rho(\overline{f} \otimes P)) = \text{Ker}(\rho(f \otimes P)^*),
\]
where we used (vi) for the equality. By [7, Proposition 1.6(ii)], \(\text{Ker}(\rho(f \otimes P)^*) = \text{Im}(\rho(f \otimes P))^\perp \). Therefore \(\text{Im}(\rho(g \otimes (\text{Id}_\mathcal{H} - P))) \perp \text{Im}(\rho(f \otimes P)) \). Hence the inequality \(\|\rho(f \otimes P)x\| \leq \|\rho(f \otimes \text{Id}_\mathcal{H})x\| \) holds and \(D_{\text{e,Id}_\mathcal{H}} \subseteq D_{\text{e,P}} \).

Let \(\mathcal{U} \) be the algebra of measurable complex functions \(f : X \to \mathbb{C} \). The non-negative spectral integral is a \(*\)-representation on the space \(\mathcal{U} \otimes A_1 \) by the following theorem.

Theorem 4.2. The non-negative spectral integral
\[
\mathcal{I} : \mathcal{U} \otimes A_1 \to L(\mathcal{K}),
\]
defined by [4], is a \(*\)-representation on the subspace
\[
\mathcal{D}_0 = \bigcup_{K \text{ compact}} M(K)(\text{Id}_\mathcal{H})\mathcal{K}.
\]

Proof. We will check that all parts in the definition of the \(*\)-representation on \(\mathcal{D}_0 = \bigcup_{K \text{ compact}} M(K)(\text{Id}_\mathcal{H})\mathcal{K} \) hold for the non-negative spectral integral \(\mathcal{I} \). Part (i) follows by the construction of the integral \(\mathcal{I} \). Parts (ii)-(v) follow by Theorem 3.10. Parts (vi)-(viii) follow by the equality \(\mathcal{I}(f \otimes P) = \mathbb{1}_{M_P}(f) \) and Theorem 2.6 where \(f \in \mathcal{U} \) is a measurable function and \(P \in (A_1)_p \) is a hermitian projection. Let now \(K \) be a compact set. By the \(\sigma\)-compactness of \(X \), there is an increasing sequence \(K_n \) of compact sets, such that \(K_1 = K \) and \(X = \bigcup_{n \in \mathbb{N}} K_n \). To prove part (ix) we first note that for \(x = M(K)(\text{Id}_\mathcal{H})y, \) where \(y \in \mathcal{K} \), following holds:
\[
\mathcal{I}(f \otimes \text{Id}_\mathcal{H})x = \left(\int_X f \ dM_{\text{Id}_\mathcal{H}} \right) y = \left(\int_X f \ dM_{\text{Id}_\mathcal{H}} \right) M(K)(\text{Id}_\mathcal{H})^2 y = \left(\int_X f \chi_K \ dM_{\text{Id}_\mathcal{H}} \right) y = \left(\int_X f \chi_K \ dM_{\text{Id}_\mathcal{H}} \right) x,
\]
where we used Lemma 3.13 for the third equality. Therefore, using the fact that \(M_{\text{Id}_\mathcal{H}} : \text{Bor}(X) \to B(\mathcal{K}) \) is a spectral measure and [7 Proposition 4.12(iv)], we have
\[
\|\mathcal{I}(f \otimes \text{Id}_\mathcal{H})x\| = \left(\int_X f \chi_K \ dM_{\text{Id}_\mathcal{H}} \right) x \leq \|f\|_{\infty, \mathcal{K}} \|x\| = \alpha_K(f)\|x\|,
\]
where \(\|f\|_{\infty, \mathcal{K}} := \sup_{t \in K} \{|f(t)|\} \) and
\[
\alpha_K : C(X, \mathbb{C}) \to [0, \infty), \quad \alpha_K(f) := \|f\|_{\infty, \mathcal{D}_n}
\]
is an absolute value. Hence \(x \in D_{\text{K,Id}_\mathcal{H}} \) and so
\[
D_{\text{e,Id}_\mathcal{H}} \supseteq \bigcup_{K \text{ compact}} D_{\text{K,Id}_\mathcal{H}} \supseteq D_0.
\]
Since \(D_0 \) is dense in \(\mathcal{K} \), part (ix) holds.
Conversely, for realcompact and \(\sigma\)-compact spaces, equipped with a Borel \(\sigma\)-algebra, \(*\)-representations of the algebra \(C(X, \mathbb{C}) \otimes A_1\) have integral representations on \(X\) by the following theorem.

Theorem 4.3. Let \(X\) be a realcompact and \(\sigma\)-compact space, \(\text{Bor}(X)\) be a Borel \(\sigma\)-algebra on \(X\), \(A_1\) a \(C^*\)-algebra, \(L(K)\) a vector space of all linear operators on a Hilbert space \(K\) (not necessarily everywhere defined), \(D_0\) a dense subspace in \(K\), \(L(D_0, K)\) a vector space of all linear operators of \(D_0\) into \(K\) and

\[
\rho : C(X, \mathbb{C}) \otimes A_1 \rightarrow L(K)
\]
a \(*\)-representation on a subspace \(D_0\) of a Hilbert space \(K\), such that for every function \(f \in C(X, \mathbb{C})\) the map

\[
\rho_f : A_1 \rightarrow L(D_0, K), \quad \rho_f(A) = \rho(f \otimes A)
\]
is continuous relative to the operator topology on \(A_1\) and the strong operator topology on \(L(D_0, K)\). Then there exists a unique regular normalized non-negative spectral measure

\[
M : \text{Bor}(X) \rightarrow B(\mathcal{B}(A_1, B(K))
\]
such that

\[
\rho(F)x = \left(\int_X F \, dM\right)x
\]
holds for every \(x \in \mathcal{D}(\rho(f))\) and every \(F \in C(X, \mathbb{C}) \otimes A_1\).

In the proof we will use the following result, which is a special case of Theorem \ref{thm:representations}.

Proposition 4.4. Let \(X\) be a realcompact space, \(\text{Bor}(X)\) a Borel \(\sigma\)-algebra on \(X\), \(N(K)\) a vector space of all (not necessarily bounded and everywhere defined) normal operators on \(K\) and \(\rho : C(X, \mathbb{C}) \rightarrow N(K)\) a map. The following statements are equivalent.

1. \(\rho : C(X, \mathbb{C}) \rightarrow N(K)\) is a \(*\)-representation.
2. There exists a unique regular normalized spectral measure \(F : \text{Bor}(X) \rightarrow B(K)\) such that

\[
\rho(f)x = \left(\int_X f \, dF\right)x
\]
holds for every \(x \in \mathcal{D}(\rho(f))\) and every \(f \in C(X, \mathbb{C})\).

Proof. First we will prove the direction 2. \(\Rightarrow\) 1. Parts (i)-(iv) in the definition of a \(*\)-representation \(\rho : C(X, \mathbb{C}) \rightarrow N(K)\) (see Subsection \ref{subsection:representations}) follow by Theorem \ref{thm:representations}. Let \(x \in F(K_n)K\), where \(X = \cup_{n \in \mathbb{N}} K_n\), \(K_n \subseteq K_{n+1}\) and \(K_n\) is compact for every \(n \in \mathbb{N}\). Hence

\[
\left(\int_X f \, dF\right)x = \left(\int_X f \, dF\right)F(K_n)x = \left(\int_X f_{XK_n} \, dF\right)x,
\]
where the first equality follows by \(F(K_n)\) being a hermitian projection and the second equality follows by Theorem \ref{thm:representations} (iii). So

\[
\left\|\left(\int_X f \, dF\right)x\right\| = \left\|\left(\int_X f \, dF\right)F(K_n)x\right\| \leq \|f\|_{\infty, K_n}\|x\|
\]
where \(\|f\|_{\infty, K_n} := \sup_{t \in K_n} \{|f(t)|\}, \quad \alpha_n : C(X, \mathbb{C}) \rightarrow [0, \infty), \quad \alpha_n(f) := \|f\|_{\infty, K_n}\).
is an absolute value and the second inequality follows by [7] Lemma 4.11. Hence $x \in D_{\alpha_n}$ and so

$$D_c \supseteq \bigcup_{n \in \mathbb{N}} D_{\alpha_n} \supseteq \bigcup_{n \in \mathbb{N}} F(K_n)\mathcal{K}.$$

Since $\bigcup_{n \in \mathbb{N}} F(K_n)\mathcal{K}$ is dense in \mathcal{K} (see [4]), part (v) in the definition of a $*$-representation $\rho : C(X, \mathbb{C}) \rightarrow \mathcal{N}(\mathcal{K})$ holds.

Now we will prove the direction $1. \Rightarrow 2.$ In particular, $C(X, \mathbb{C})$ is a commutative, unital semigroup, having a conjugation as an involution. By Theorem 2.8 there exists a unique regular normalized spectral measure $\tilde{F} : \text{Bor}(C(X, \mathbb{C})^*) \rightarrow B(\mathcal{K})$ such that

$$\rho(f)x = \left(\int_{C(X, \mathbb{C})^*} \nu(f) \, d\tilde{F}(\nu)\right)x,$$

for every $f \in C(X, \mathbb{C})$ and every $x \in D(\rho(f))$. Since $C(X, \mathbb{C})$ is also an algebra, \tilde{F}-almost every $\nu \in C(X, \mathbb{C})^*$ is linear (see [5] Proof of Theorem 1, p. 2953 and [6] Proof of Theorem 1.2, p. 230]). Since X is a realcompact space, by [4] Section 3.11, all the linear characters on $C(X, \mathbb{C})$ are evaluations in points. Therefore the topological subspace of all linear characters in $C(X, \mathbb{C})$ is homeomorphic to X and hence $\rho(f) = \int_X f \, dF$ for every $f \in C(X, \mathbb{C})$, where $F : \text{Bor}(X) \rightarrow B(\mathcal{K})$ is a unique regular normalized spectral measure representing ρ.

\begin{proof}[Proof of Theorem 4.3] The proof is analogous to the proof of [8] Theorem 9.1, with some modifications. The idea is to construct a family $\{F_p\}_{p \in (A_1)_p}$ of spectral measures $F_p : \text{Bor}(X) \rightarrow B(\mathcal{K})$ which satisfies the conditions of Theorem 2.1 to obtain a non-negative spectral measure M representing ρ. The proofs of the conditions (1) and (3) are the same as in [8] Theorem 9.1, for the bounded Borel sets, but for the arbitrary Borel sets we have to use the countable additivity of the spectral measures and the σ-compactness of X (every realcompact space is σ-compact). For M to be the representing measure of ρ we have to use the continuity of the maps ρ_f. Precisely, the proof is the following.

Since ρ is a $*$-representation on D_0, the maps $\rho_p : C(X, \mathbb{C}) \rightarrow B(\mathcal{K})$, $\rho_p(f) := \rho(f \otimes P)$ are $*$-representations for every hermitian projection $P \in (A_1)_p$. By Proposition 4.1 there exist unique spectral measures $F_p : \text{Bor}(X) \rightarrow B(\mathcal{K})$ such that $\rho_p(f) := \rho(f \otimes P) = \int_X f \, dF_p$ holds for every $f \in C(X, \mathbb{C})$ and every hermitian projection $P \in (A_1)_p$. We will show that the family $\{F_p\}_{p \in (A_1)_p}$ satisfies the conditions of Theorem 2.1.

The family $\{F_p\}_{p \in (A_1)_p}$ satisfies the condition (1) of Theorem 2.1: Let $P_i, Q_j \in (A_1)_p$ be hermitian projections and $\lambda_i, \mu_j \in \mathbb{R}$ real numbers, such that $\sum_{i=1}^{n} \lambda_i P_i = \sum_{j=1}^{m} \mu_j Q_j$. We have to show that for every set $\Delta \in \text{Bor}(X)$, the following equality $\sum_{i=1}^{n} \lambda_i F_{P_i}(\Delta) = \sum_{j=1}^{m} \mu_j F_{Q_j}(\Delta)$ holds. For bounded sets $\Delta \in \text{Bor}(X)$ the proof is the same as in the proof of [8] Theorem 9.1. Let $\Delta \in \text{Bor}(X)$ be arbitrary. By the σ-compactness of X, there exists a sequence Δ_n of bounded Borel sets, such that $\Delta = \bigcup_n \Delta_n$. By the above, $\sum_{i=1}^{n} \lambda_i F_{P_i}(\Delta_n) = \sum_{j=1}^{m} \mu_j F_{Q_j}(\Delta_n)$ holds for every $n \in \mathbb{N}$. By the countable additivity of the spectral measures F_{P_i}, F_{Q_j}, we conclude that

$$\sum_{i=1}^{n} \lambda_i F_{P_i}(\Delta) = \sum_{j=1}^{m} \mu_j F_{Q_j}(\Delta).$$
The family \(\{F_p\}_{p \in (A_1)_p}\) satisfies the condition (2) of Theorem 2.1. Let \(P \in (A_1)_p\) be a hermitian projection and \(\Delta \in \text{Bor}(X)\) a Borel set. We have to find a constant \(k_\Delta \in \mathbb{R}^+\) such that \(\|F_p(\Delta)\| \leq k_\Delta\). We know that

\[
\|F_p(X)\| = \left\| \int_X 1 \, dF_p \right\| = \|\rho_p(1)\| = \|\rho(1 \otimes P)\|.
\]

By the finite additivity of \(F_p\), it follows that \(\|F_p(\Delta)\| \leq \|\rho(1 \otimes P)\|\) for every \(\Delta \in \text{Bor}(X)\).

The family \(\{F_p\}_{p \in (A_1)_p}\) satisfies the condition (3) of Theorem 2.1. Let \(P, Q \in (A_1)_p\) be hermitian projections and \(\Delta_1, \Delta_2 \in \text{Bor}(X)\) Borel sets. It is equivalent to show that \(M_P(\Delta_1)M_Q(\Delta_2) = M_{PQ}(\Delta_1 \cap \Delta_2)\). For bounded sets \(\Delta_1, \Delta_2 \in \text{Bor}(X)\) the proof is the same as in the proof of [8, Theorem 9.1.]. Let \(\Delta_1 \in \text{Bor}(X)\) be a bounded fixed set. There exists a sequence \(\Delta_{1,n}\) of bounded Borel sets, such that \(\Delta_1 = \bigcup_n \Delta_{1,n}\). By the above, \(M_P(\Delta_{1,n})M_Q(\Delta_2) = M_{PQ}(\Delta_{1,n} \cap \Delta_2)\) holds for every \(n \in \mathbb{N}\). By the countable additivity of the spectral measures \(M_P, M_Q\), we conclude that \(M_P(\Delta_1)M_Q(\Delta_2) = M_{PQ}(\Delta_1 \cap \Delta_2)\). Let now \(\Delta_2 \in \text{Bor}(X)\) be arbitrary and \(\Delta_1 \in \text{Bor}(X)\) a bounded fixed set. By the compactness of \(X\), there exists a sequence \(\Delta_{2,n}\) of bounded Borel sets, such that \(\Delta_2 = \bigcup_n \Delta_{2,n}\). By the above, \(M_P(\Delta_1)M_Q(\Delta_{2,n}) = M_{PQ}(\Delta_1 \cap \Delta_{2,n})\) holds for every \(n \in \mathbb{N}\).

By the countable additivity of the spectral measures \(M_P, M_Q\), we conclude that \(M_P(\Delta_1)M_Q(\Delta_2) = M_{PQ}(\Delta_1 \cap \Delta_2)\).

\(M\) is the representing measure of \(\rho\): We first consider the elements \(F \in C(X, \mathbb{C}) \otimes A_1\) of the form \(f \otimes P\), where \(f \in C(X, \mathbb{C})\) and \(P\) is a hermitian projection. By the construction of the measures \(F_p\), we have \(\rho(f \otimes P) = \int_X f \, dF_p = \int_X (f \otimes P) \, dM\). Let now \(f \in C(X, \mathbb{C})\) and \(A \in (A_1)_+\) be a positive operator. Since \(\rho(f \otimes P) = \int_X (f \otimes P) \, dM\) holds for every \(P \in (A_1)_p\), we have \(\rho(f \otimes S_t(A)) = \int_X (f \otimes S_t(A)) \, dM\), where \(S_t(A)\) is a sequence as in Lemma 3.1. By the continuity of the maps \(\rho_f\) relative to the operator topology on \(A_1\) and the strong operator topology on \(L(D_0, K)\), we have

\[
\rho(f \otimes A)x = \rho_f(A)x = \lim_{t \to \infty} \rho_f(S_t(A))x = \lim_{t \to \infty} \rho(f \otimes S_t(A))x,
\]

for every \(x \in D_0\). By the construction of the non-negative spectral integral,

\[
\left(\int_X (f \otimes A) \, dM\right)x = \lim_{t \to \infty} \left(\int_X (f \otimes S_t(A)) \, dM\right)x
\]

for every \(x \in D_0\). Hence

\[
\rho(f \otimes A)x = \left(\int_X (f \otimes A) \, dM\right)x
\]

for every \(x \in D_0\). Since \(D_0\) is a core for \(\rho(f \otimes A)\) and \(\int_X (f \otimes A) \, dM\) is closed, we conclude that

\[
\rho(f \otimes A)x = \left(\int_X (f \otimes A) \, dM\right)x
\]

holds for every \(f \in C(X, \mathbb{C})\), every \(A \in (A_1)_+\) and every \(x \in D(\rho(f \otimes A))\).

By the usual decompositions of \(A\) into the linear combination of four positive parts, we conclude that \(\rho(f \otimes A)x = \left(\int_X (f \otimes A) \, dM\right)x\) holds for every \(f \in C(X, \mathbb{C})\), every \(A \in A_1\) and every \(x \in D(\rho(f \otimes A))\). By the linearity of \(\rho\) and \(f\) on \(D_0, D_0\)
being a core for \(\rho(F) \) and \(\int_X F \, dM \) being closed for every \(F \in C(X, \mathbb{C}) \otimes A_1 \), we finally get
\[
\rho(F)x = \left(\int_X F \, dM \right)x
\]
for every \(x \in D(\rho(F)) \).

\(M \) is unique, regular and normalized: This follows from the uniqueness and the regularity of each \(F_P \) and the unitality of \(\rho \). \qed

REFERENCES

[1] Cimprič, J., Zalar, A.: Moment problems for operator polynomials. J. Math. Anal. Appl. 401 (2013) 307–316.
[2] Conway, J.: A Course in Functional Analysis. Springer-Verlag, New York, 1990.
[3] S. Dierolf, K.-H. Schröder, J. Wengenroth, Characters on certain function algebras, Funct. Approx. Comment. Math. 26 (1998) 53–58.
[4] R. Engelking, General Topology. Heldermann, Berlin 1989.
[5] P. Ressel, W. J. Ricker: Semigroup representations, positive definite functions and abelian \(C^* \)-algebras, Proc. Amer. Math. Soc. 126 (1998) 2949–2955.
[6] P. Ressel and W. J. Ricker: An integral representation for semigroups of unbounded normal operators, J. Operator Theory 47 (2002) 219–243.
[7] Schmüdgen, K.: Unbounded Self-Adjoint Operators on Hilbert Spaces. Springer, Netherlands, 2012.
[8] Zalar, A.: Non-negative spectral measures and representations of \(C^* \)-algebras, Integr. Equ. Oper. Theory 79 (2) (2014) 219–242.

UNIVERSITY OF LJUBLJANA, FACULTY OF MATH. AND PHYS., DEPT. OF MATH., JADRANSKA 19, SI-1000 LJUBLJANA, SLOVENIA
E-mail address: aljaz.zalar@imfm.si