INTRODUCTION

The rotation of the earth around its axis, combined with the earth orbiting the sun causes both daily and seasonal changes in photoperiod, light intensity, temperature, and food availability. Many organisms have evolved an intrinsic clock that produces circadian rhythms that help anticipate these changes in the environment. In mammals, the central circadian clock resides in the suprachiasmatic nucleus (SCN) of the ventral hypothalamus and provides daily signals to downstream tissues.1,2 Individual SCN neurons generate autonomous circadian rhythms by a genetic feedback loop of clock genes and their protein products.3 Intercellular interactions synchronize and stabilize the rhythms of cells within the network4 and cause the SCN to produce a coherent signal of the ensemble. This signal is in turn synchronized to the ambient light-dark cycle through light information perceived by the retina and projects to the SCN via the retinohypothalamic tract. The SCN adapts to photoperiodic changes in day length, and thereby acts not only as a daily pacemaker, but also as a seasonal pacemaker. Seasonal encoding is achieved by a compression of the distribution of single-cell patterns of electrical activity encoded by the unique phase relationships of the oscillating neurons.5,6

Abbreviations: Bmal, brain muscle ARNT-like; CT, circadian time; E/I ratio, excitatory/inhibitory ratio; GABA, γ-Aminobutyric acid; LD, light-dark; LP, long photoperiod; MUA, multiunit electrical activity; Per1, period1; PER2, period 2 circadian protein homology; Per2, period2; SCN, suprachiasmatic nucleus; SP, short photoperiod.

Stephan Michel and Johanna H. Meijer are shared senior authors.

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes.

© 2020 The Authors. The FASEB Journal published by Wiley Periodicals LLC on behalf of Federation of American Societies for Experimental Biology.
activity in short winter days, and decompression in long sum-
mer days. The readjustment of phases within the SCN leads
to an alteration in the ensemble waveform of SCN electrical
activity (MUA) with a wider peak width in long days and a
more narrow peak width in short days. This SCN waveform
is thus an internal representation of the length of the day and
leads to the proper seasonal adjustments in mammals.

The studies on seasonal encoding by the SCN have been an
excellent example of the ability of integrated networks to perform
tasks that exceed the ability of individual neurons within the net-
work; while individual SCN neurons have the cell-autonomous
ability to produce circadian rhythms, they require a functioning
network to recognize and encode the length of the day. Proper
recognition of the season by the SCN is, therefore, an emerging
property of the network, rather than a single-cell property.

However, there has been a major shortcoming in the study
on seasonal encoding. In laboratory conditions, nocturnal
animals are routinely exposed to light for the full length of
the day. In contrast, in nature these animals experience envi-
ronmental light conditions that are far from that: they spend
most of their days in dark burrows and see the light usually
only during dusk and dawn. We have, therefore, undertaken
an investigation in which we question whether the reception
of the full photoperiod is necessary to achieve the cellular
reorganization within the SCN. Early studies have shown that
these “skeleton” photoperiods are sufficient for adaptation of
behavioral activity in nocturnal rodents, with shorter duration
of activity during short summer nights and longer activity
duration during the winter nights. Whether skeleton pho-
toperiods will also affect the phase-shifting responses to light
pulses—clearly present in full photoperiod—and are suffi-
cient to evoke the molecular and electrophysiological adapta-
tions of the central circadian clock has not been studied.

In this study, we use skeleton photoperiods consisting of
30 minutes light exposure at the beginning and end of each
day to mimic long days of 16 hours and short days of 8 hours.
Exposure to the skeleton photoperiod affected the circadian
clock in a strikingly similar manner as a full photoperiod. At
different levels ranging from behavioral to electrophysiological
(spike impulse frequency) and molecular rhythms (single-cell
PER2 expression), neurotransmitter function (GABA-action)
and phase-shifting capacity, the characteristic responses of ad-
aptation to photoperiod could be reproduced with exposure to
light pulses marking the beginning and end of the day.

2 | MATERIALS AND METHODS

2.1 | Animals and behavioral activity recordings

All experiments were performed using either male wild-
type mice of 2-5 months old (C57BL/6J, Envigo, Horst, the
Netherlands) or male homozygous PERIOD2::LUCIFERASE
(Per2::Luc) mice of 3-6 months old, the latter were back-
crossed to C57bl/6 and bred at the Leiden University Medical
Center animal facility. All animals were housed in climate-
controlled cabinets with full-spectrum diffused lighting with
an intensity between 50 and 100 lux (Osram truelight TL), and
ad libitum access to food and water throughout the experiment.
The mice were entrained to either a skeleton long or short pho-
toperiod according to the following protocol (see Figure 1A):
all animals were first placed in 12 hours light-12 hours dark
(LD 12:12) for at least 1 week, and then 1 week in a skeleton
photoperiod 12:12 (LDLD 0.5:11/0.5:12). For the skeleton
long photoperiod, mice were thereafter exposed for 7-10 days
to a skeleton photoperiod 14:10 (LDLD 0.5:13/0.5:10), and
subsequently for at least 4 weeks to a skeleton photoperiod
16:8 (LDLD 0.5:15/0.5:8). For the skeleton short photoperiod,
mice were exposed for 7 days to a skeleton photoperiod 10:14
(LDLD 0.5:9/0.5:14), and finally at least 4 weeks to a skel-
eton photoperiod 8:16 (LDLD 0.5:7/0.5:16). Not all animals
were able to entrain to a skeleton long photoperiod. It is a well-
known phenomenon in the skeleton long photoperiod entrain-
ment that the final reduction in “night” length to 8 hours can
lead to unstable entrainment, and the mice then “phase-jump”
to a more stable phase angle of entrainment, which then rep-
resents entrainment to a short skeleton photoperiod. We
excluded all data from this study from animals with unstable
entrainment leading to a phase jump. During entrainment to the
skelton photoperiod, mice were housed individually and their
cages were equipped with a running wheel and a passive infra-
red sensor (Pir) for recording locomotor and home-cage ac-
tivity, respectively. Both the number of wheel revolutions and
Pir data were recorded using ClockLab software (ClockLab;
Actemrics, Wilmette, IL). The Pir data were used as an extra
control, in addition to the running wheel recordings, for the
determination of entrainment. Activity onsets and offsets were
determined during the last 14 days of each photoperiod by
visual inspection of the actogram by three investigators inde-
pendently. The average onset and offset as well as the duration
of activity (alpha) were calculated in ClockLab. All animal ex-
periments were performed in accordance with the regulations
of the Dutch law on animal welfare, and the institutional eth-
ics committee for animal procedures of the Leiden University
Medical Center (Leiden, The Netherlands) approved the pro-
tocol (DEC 13198 and PE.18.113.004).

2.2 | Behavioral experiments

For the phase-shifting experiments, mice were either en-
trained to skeleton long or short photoperiod as described
above or for at least 28 days to full long (LD 16:8) or short
(LD 8:16) photoperiod after which the animals were released
into constant darkness (DD). On day 4 in DD, the animals
received a 30 minutes white light pulse around circadian time 15 (CT15). CT12 was routinely defined as the time of the onset of activity. From each animal in the cabinet, the onset of activity was calculated at day 4 in DD, and the timing of the light pulse was determined such that most animals would receive the light pulse closest to CT15 (CT15 ± 1 h). The behavioral activity was recorded for another week after the light pulse. The phase shifts in the locomotor activity rhythm were calculated in ClockLab from the wheel running data by measuring the difference between fitted lines through the activity onsets in DD before and after the light pulse.

2.3 | Bioluminescence imaging

PER2::LUC mice were entrained to skeleton long or short photoperiod as described above and were taken for experimentation after at least 28 days in the final photoperiod. Slice cultures of the SCN were prepared as previously described. In brief, mice were killed by decapitation within one to three hours before the projected night of the skeleton photoperiod. Decapitation and subsequent dissection of the brain took place in dim red light until the optic nerves were cut. The brain was dissected and placed in modified ice-cold artificial cerebrospinal fluid (ACSF), containing (in mM): NaCl 116.4, KCl 5.4, NaH2PO4 1.0, MgSO4 0.8, CaCl2 1, MgCl2 4, NaHCO3 23.8, glucose 15.1, and 5 mg/L of gentamycin (Sigma Aldrich, Munich, Germany) and saturated with 95% O2-5% CO2. From each brain, two consecutive coronal slices (200 µm thick) of the hypothalamus containing the SCN were made with a vibrating microtome (VT 1000S, Leica Microsystems, Wetzlar, Germany). The slice containing the anterior SCN was optically identified, the subsequent slice was considered to
contain the posterior SCN. From these slices, the SCN was isolated and two explant cultures were maintained on a Millicel membrane insert (PICMORG50, Merck—Millipore, Burlington, MA, USA) in a 35 mm dish containing 1.2 mL of Dulbecco’s Modified Eagle’s Medium supplemented with 10 mM HEPES buffer (Sigma-Aldrich, Munich, Germany), 2% B-27 (Gibco, Landsmeer, The Netherlands), 5 U/mL of penicillin, 5 µg/mL of streptomycin (0.1% penicillin-streptomycin; Sigma-Aldrich, Munich, Germany), and 0.2 mM D-luciferin sodium salt (Promega, Madison, WI). Each dish was sealed with a glass cover slip and transferred to a temperature-controlled (37°C) and light-tight chamber (Life Imaging Services, Reinach, Switzerland), equipped with an upright microscope and a cooled CCD camera (ORCA–UU-BT-1024, Hamamatsu Photonics Europe, Herrsching am Ammersee, Germany). Bioluminescence images from the anterior and posterior SCN explants were acquired consecutively with an exposure time of 29 minutes resulting in image series with 1 hour time resolution.

2.3.1 Data analysis

The image time series were analyzed using a custom-made, MATLAB-based (Mathworks, Natick, MA, USA) program. As described in Buijink et al., groups of pixels that showed characteristics of single-cells were identified and these regions of interest (ROIs) will be referred to as single-cells. Single cells were only used if the time series contained at least three cycles with periods between 18 and 30 hours and with peaks above and troughs below the trend line. The processed intensity traces from the single-cell rhythms were evaluated on sustained PER2::LUC signal and circadian rhythm characteristics, like peak time and period. Phase distribution was defined as the standard deviation (SD) of the peak time from all cells per explant, of the first cycle in vitro. Single-cell period variability was defined as the cycle-to-cycle time difference between the half-maximum of the rising edge of the PER2::LUC expression rhythm. The variability in period is defined as the standard deviation (SD) of the cycle interval of individual cells, calculated for the first three cycles in vitro, and averaged per slice.

2.4 Ex vivo electrophysiology

Mice were entrained to skeleton long or short photoperiod as described above and were taken for experimentation after at least 28 days in the final photoperiod. The SCN slices were prepared during the light pulse that marks the end of the day. Coronal brain slices (~450 µm thick) were prepared using a tissue chopper, and the slice containing the SCN was transferred to a laminar flow chamber. The slice was submerged into and continuously perfused (1.5 mL/min) with oxygenated regular ACSF (CaCl2 increased to 2 mM and without MgCl2, compared to modified ACSF, 35°C, 95% O2 and 5% CO2). The slice was stabilized using an insulated tungsten fork and settled in the recording chamber for ~1 hour before the electrodes were placed in the center of the left and right SCN to obtain multiunit neuronal activity recordings from both nuclei. Action potentials were recorded using 75 µm 90% platinum/10% iridium electrodes. The signals were amplified (x10000) by a high impedance amplifier (5112, Signal Recovery, Bracknell, UK) and bandpass filtered (0.3 Hz low-pass, 3 kHz high-pass). Action potentials were selected by a window discriminator and the ones that exceeded a predetermined threshold well above the noise (~5 µV) were counted in 10 seconds bins using a custom-made automated computer program.

2.4.1 Data analysis

The electrophysiological data were analyzed using a custom-made program in MATLAB as described previously. The time of maximum activity was used as a marker of the phase of the SCN and was determined as the first peak in multiunit activity. Multiunit recordings of at least 24 hours in duration that expressed a clear peak in multiunit activity were moderately smoothed using a least-squares algorithm. Subsequently, the SCN peak time, the peak width, and the relative peak amplitude (peak-to-trough ratio) of the first cycle ex vivo were determined.

2.5 Ca2+ imaging

Mice were entrained to skeleton long or short photoperiod as described above and were taken for experimentation after at least 28 days in the final photoperiod. Decapitation and subsequent dissection of the brain were similar as described above for the bioluminescence experiments, with the exception that the slices made for Ca2+ imaging were 250 µm thick. Slices were sequentially maintained in regular, oxygenated ACSF. The slices were incubated in a water bath (37°C) for 30 minutes and were then maintained at room temperature until the start of the recordings. Recordings were performed within a 4 hours interval centered around the middle of the projected day, referring to the previous light regime of the animal. Neurons in brain slices were bulk-loaded with the ratiometric, membrane-permeable
Ca²⁺ indicator dye fura-2-acetoxymethyl ester (Fura-2-AM) as described previously. Briefly, the slices were submerged into a mix of regular ACSF containing 7 μM Fura-2-AM for 10 minutes at 37°C. The slices were then rinsed four times with fresh ACSF before being transferred to a recording chamber (RC-26G, Warner Instruments, Hamden, CT, USA) mounted on the fixed stage of an upright fluorescence microscope (Axioskop 2-FS Plus, Carl Zeiss Microimaging, Oberkochen, Germany) and constantly perfused with oxygenated ACSF (2.5 mL/min) at room temperature. The indicator dye was excited alternatively at wavelengths of 340 and 380 nm by means of a monochromator (Polychrome V, TILL Photonics; now FEI Munich GmbH, Munich, Germany). Emitted light (505 nm) was detected by a cooled CCD camera (Sensicam, TILL Photonics; now FEI Munich GmbH, Munich, Germany), and images were acquired at 2 seconds intervals. Using an eight-channel pressurized focal application system (ALA-VM8, ALA scientific instruments, NY, USA), GABA (200 μM, 15 s) was applied locally and neuronal responses were recorded as Ca²⁺ transients. After two GABA pulses, which were separated by 1-minute baseline recording, ACSF containing elevated levels of K⁺ (20 mM, 15 s) was applied locally and neuronal responses were recorded as Ca²⁺ transients. After two GABA pulses, which were separated by 1-minute baseline recording, ACSF containing elevated levels of K⁺ (20 mM, 15 s) was applied to identify healthy, responding neurons. Cells with at least a 10% increase in [Ca²⁺], in response to high levels of K⁺ were considered healthy cells. Both experiments and analysis were accomplished using imaging software (TILLvision, TILL Photonics; now FEI Munich GmbH, Munich, Germany).

2.5.1 Data analysis

Single-wavelength images were background subtracted, and ratio images (340/380) were generated. Region of interest-defined cells and mean ratio values were determined, from which the intracellular Ca²⁺ concentration was calculated. Neuronal Ca²⁺ responses were further analyzed using IGOR Pro (WaveMetrics, Portland, OR, USA). The transient responses in Ca²⁺ concentration within the first seconds after the stimulation were evaluated, with responses smaller than ± 10% of baseline values defined as non-responding cells. GABA-evoked responses showing Ca²⁺ transients with a decrease in amplitude lower than 10% from baseline were considered inhibitory and responses with an increase higher than 10% from baseline were defined as excitatory. Cells that showed both excitatory and inhibitory responses after one GABA stimulation were defined as biphasic. Per animal, two to three SCN slices were analyzed and the Ca²⁺ responses to GABA application were measured in 50-80 cells. For each animal, the distribution of the different types of responses and the E/I ratio were determined. To calculate the E/I ratio, the number of cells that responded excitatory was divided by the number of cells that responded inhibitory for each animal and averaged per group.

2.6 Statistics

Statistical analysis was performed using GraphPad Prism (San Diego, CA, USA) and RStudio (RStudio Team (2020). RStudio: Integrated Development Environment for R. RStudio, PBC, Boston, MA, USA). The behavioral data on alpha and phase shifts and the electrophysiological data were analyzed with two-tailed student's t-tests. The effect of the skeleton long and short photoperiod on the distribution of GABAergic responses was tested using chi-square tests. E/I ratio was tested with a two-tailed student's t-test. The bioluminescence data were analyzed using two-way ANOVAs with factors “photoperiod” (long or short) and “type” (full or skeleton) and in case of significance followed by a Sidak’s correction for multiple comparisons. Last, the differences between the skeleton photoperiod and full photoperiod for the alpha, phase shifts, peak width, and PER2::LUC peak time SD were analyzed using two-way ANOVAs, type III, with factors “photoperiod” (long or short) and “type” (full or skeleton) and in case of significance followed by a Bonferroni correction for multiple comparisons. Differences with P ≤ .05 were considered significant. All data are shown as mean ± SEM.

3 RESULTS

3.1 Exposure to a skeleton photoperiod changes behavioral activity patterns

We investigated whether C57BL/6 mice are able to adapt to different day lengths using only 30 minutes light pulses presented at the beginning and end of the day, so-called skeleton photoperiod. Wild-type mice were exposed to an entrainment paradigm in which they first were exposed to a 12:12 light-dark cycle, then to a 12:12 skeleton photoperiod, and next, the timing of the morning and evening light pulses shifted gradually until they were either representing a long (LD 16:8) or a short (LD 8:16) photoperiod. Exposure to skeleton photoperiods had a clear differential effect on the behavioral patterns of wheel-running activity in mice (Figure 1A,B). In both groups, mice continued to be active during the dark interval between the two light pulses in accordance with their previous night. Compressed and expanded durations of the active phase (α) were observed under skeleton long and short photoperiods, respectively (Figure 1A,B, LP: α = 8.21 ± 0.16 h,
of the ensemble electrical activity. Therefore, we next performed ex vivo experiments to test whether exposure to the skeleton photoperiod would suffice to encode day length in the SCN.

3.3 Waveform multiunit electrical activity (MUA) broadens under a skeleton long photoperiod

We measured the waveform and determined the peak width of the ensemble circadian MUA rhythm in SCN slices of mice entrained to a skeleton long or short photoperiod. A broader peak width corresponds with a wider phase distribution. Electrical recordings revealed high discharge rates during the projected day and low during the night, for both skeleton photoperiods. Peak time occurred about 1.5 hours before "midday", at circadian time (CT) 6.60 ± 0.51 h (n = 7) for a skeleton short photoperiod and CT 2.74 ± 0.87 (n = 7) for a skeleton long photoperiod. The waveform of SCN ensemble electrical activity showed a significantly broader peak when mice were entrained to a skeleton long photoperiod compared to a short photoperiod (Figure 2, LP: 12.48 ± 0.49 h, n = 7, SP: 10.03 ± 0.77 h, n = 7, P < .05). These results show a photoperiodic effect on the waveform, that is, peak width, of electrical activity that is similar for the skeleton and full photoperiod.

3.4 Less GABAergic inhibition in mice entrained to a skeleton long photoperiod

We next investigated the effect of different skeleton photoperiods on GABAergic activity, by recording GABA-induced single-cell Ca^{2+} transients in SCN slices from mice adapted to either skeleton long or short photoperiod (Figure 3A). Ca^{2+} transients were categorized as inhibitory, excitatory, biphasic, or non-responder. The distribution of the different response types varied between recordings from animals entrained to skeleton long and short photoperiod. Adaptation to a skeleton long photoperiod decreased the GABA-induced inhibitory responses compared to short photoperiod (Figure 3B, 30% vs 37%, respectively; P < .05). Also, the percentage of GABAergic excitatory responses was higher than inhibitory responses in slices from a skeleton long photoperiod (Figure 3B, 39% vs 30%, respectively; P < .05). The mean excitatory/inhibitory (E/I) ratio was not significantly different between the skeleton photoperiods (Figure 3C, n.s.), but especially following a skeleton long photoperiod, the E/I balance was remarkably high (increased excitation), similar to full long photoperiod. Thus, our results show that just the timing of two light pulses affects the polarity of responses to GABA.
To test whether a skeleton photoperiod leads to changes in phase synchrony as under full photoperiod, we next performed ex vivo experiments to establish the phase distribution of SCN neurons. We performed PER2::LUC bioluminescence imaging experiments and measured single-cell PER2::LUC expression rhythms over multiple days in cultured anterior and posterior SCN explants from mice entrained to either skeleton long or short photoperiod (Figure 4A). We determined peak time and period of PER2::LUC rhythms from smoothed bioluminescence intensity traces of single SCN neurons. After adaptation to a skeleton long photoperiod, both the anterior and posterior part of the SCN showed a wider phase distribution of peak times compared to a skeleton short photoperiod. Moreover, the anterior part of the SCN of mice entrained to a skeleton long photoperiod showed a higher peak time dispersion when compared to the posterior part (Figure 4B, LP: anterior: 3.23 ± 0.20 h, posterior: 1.76 ± 0.22 h, n = 6, SP: anterior: 1.08 ± 0.03 h, posterior: 1.12 ± 0.08 h, n = 7, \(P < .05 \)). Furthermore, single-cell period variability—measured as the standard deviation (SD) of the cycle intervals of the first three cycles—was higher in both the anterior and posterior part of the SCN of mice entrained to a skeleton long photoperiod, compared to short photoperiod (Figure 4C, LP: anterior: 1.42 ± 0.08 h, posterior: 0.97 ± 0.10 h, n = 6, SP: anterior: 0.94 ± 0.03 h, posterior: 0.75 ± 0.02 h, n = 7, \(P < .05 \)). This suggests that the increase in phase distribution was achieved by an increase in period variability of single neurons. Distribution of PER2::LUC rhythms were remarkably similar in the SCN of mice entrained to skeleton and full long photoperiod.11

4 | DISCUSSION

Here, we show that exposure to a skeleton photoperiod affects the circadian clock in a similar manner as complete light exposure under a full photoperiod. At different levels ranging from behavioral to cellular and molecular, strikingly, nearly all characteristic responses to full photoperiod could be mimicked by just two 30 minutes pulses of light (Figure S1).6,11,17,19 Exposure to a skeleton long photoperiod results in (a) complete adaptation of the behavioral activity pattern, (b) a reduction in the magnitude of phase delays in response to light pulses, (c) a broadening of the ensemble electrical activity pattern produced by the SCN ex vivo, (d) less GABAergic inhibitory responses in SCN neurons, and (e) desynchronization among oscillatory neurons, as revealed by single cells per2 clock gene expression. Moreover, the differences between a skeleton long photoperiod and skeleton short photoperiod were, for all parameters, concordant to the full photoperiods (see also Figure S1).

We entrained mice to full and skeleton long and short photoperiods and measured the extent to which animals compressed or expanded their duration of locomotor activity. The duration of wheel-running activity after adaptation to skeleton photoperiods is almost identical to our results obtained

FIGURE 2 Skeleton long photoperiod causes broadening of the ensemble electrical activity pattern of the SCN. A, Example traces of ensemble electrical activity of the SCN in a slice from a mouse entrained to skeleton short (upper panel) and long (lower panel) photoperiod. The x-axis represents circadian time (CT 12 = onset of activity). Grey areas represent darkness, yellow areas represent light. B, The mean peak width of the ensemble electrical activity signal is higher in slices from mice entrained to a skeleton long photoperiod compared to slices from mice entrained to a skeleton short photoperiod. *\(P < .05 \), t-test. Error bars, mean ± SEM

3.5 Phase distribution of PER2::LUC rhythms is higher in mice entrained to a skeleton long photoperiod

To test whether a skeleton photoperiod leads to changes in phase synchrony as under full photoperiod, we next performed
under full photoperiod (Figure S1A). Moreover, these results correspond qualitatively with those obtained in other rodent species and in Drosophilae.8-10,20 As under full photoperiod, we found that following adaptation to a skeleton photoperiod, the phase-shifting capacity is similarly reduced in short compared to long photoperiod (Figure S1B).

Behavioral adaptation to full photoperiods relies on a change in the degree of synchrony between the individual neurons.18,21,22 Small neuronal subpopulations or single units in the SCN express only short durations of increased electrical activity and differ from one another in phase. The ensemble circadian waveform in electrical activity is composed of the sum of these neuronal activities.5,7,18 In full long photoperiod, the peak times in electrical activity in SCN neurons are more distributed over 24 hours, whereas the activity patterns from animals entrained to full short photoperiod are more synchronized.5,6 Both in vivo and ex vivo, this results in a broad or narrow SCN multiunit activity pattern under long and short photoperiod, respectively.6,7,18 We found that under skeleton photoperiods significant differences existed in the waveform of the SCN rhythm, with a compressed peak in a skeleton short photoperiod and a decompressed peak under a skeleton long photoperiod. As compared to results from previously published effects of a full long and short photoperiod on peak width, we show that the waveform of electrical activity is similarly affected by a skeleton and full photoperiod (skeleton LP: 12.48 ± 0.49 h, full LP: 11.76 ± 0.37 h, skeleton SP: 10.03 ± 0.77 h, full SP: 8.14 ± 0.33 h, factor “photoperiod” was significant: $P < .05$ for the skeleton and $P < .0001$ for full photoperiod, factor “type” [skeleton vs full] was ns both for LP and SP, two-way ANOVA followed by Bonferroni test).6 Our data on waveform alterations suggest an underlying change in the phase distribution of SCN neurons.

We confirmed this by performing single-cell PER2::LUC bioluminescence recordings. A desynchronization of PER2 peak times was observed following a skeleton long
photoperiod and more clustering in the phase following a skeleton short photoperiod. Responses of molecular rhythms to full photoperiodic exposure have also been shown for the clock genes bmall, per1, and per2.11,23-27 It is well known that photoperiodic encoding at the molecular level relies on a different response of the anterior and the posterior SCN.11,25,28 We, therefore, tested whether a skeleton photoperiod leads to the same differential molecular response within the SCN. Indeed, we observed that the anterior SCN shows a significant higher phase dispersal under a skeleton long photoperiod compared to the posterior SCN, consistent with what we have shown earlier under full long photoperiod (skeleton LP: anterior: 3.23 ± 0.20 h, posterior: 1.76 ± 0.22 h, full LP: anterior: 3.42 ± 0.19 h, posterior: 1.81 ± 0.15 h, skeleton SP: anterior: 1.08 ± 0.03 h, posterior: 1.12 ± 0.08 h, full SP: anterior: 1.42 ± 0.04 h, posterior: 1.40 ± 0.13 h, factor “photoperiod” was significant: $P < .0001$ for skeleton and $P < .01$ for full photoperiod, factor “type” [skeleton vs full] was ns both for LP and SP, two-way ANOVAs followed by Bonferroni test).11 Specifically, we found a broad phase dispersal in the anterior SCN in response to light pulses at dawn and dusk similar to the responses measured in per1 and PER2 after full long photoperiods.11,25

The mechanisms that regulate neuronal phase distribution are still unknown, but the main neurotransmitter in the SCN—γ-Aminobutyric acid (GABA)—plays a role in phase adjustment and synchronization of the SCN neuronal network.23,24,29-31 Besides its classical inhibitory function, GABA has shown to also act as an excitatory neurotransmitter within the SCN.19,29,32-35 When exposed to full long photoperiod, the GABAergic E/I ratio shifts toward more excitation, suggesting a role for the E/I ratio in phase synchronization of individual SCN neurons.19,36 Adaptation to a skeleton long photoperiod decreased the GABA-induced inhibitory responses compared to a skeleton short photoperiod and the percentage of GABAergic excitatory responses was higher than inhibitory responses in slices from a skeleton long photoperiod compared to short photoperiod. $**P < .01$, $***P < .0001$, two-way ANOVAs with Sidak multiple comparisons tests. Error bars, mean ± SEM.
could be argued that the observed E/I balance and associated state of neuronal network is closer to their natural physiological conditions.

We conclude from our results that the continuous light-evoked neurotransmitter (ie, glutamate) release during the day is not required for coding photoperiod. Rather, we consider that the effects of light at the beginning and end of the animals’ active period can be sufficient for photoperiodic adaptation by the SCN—from behavioral to cellular and molecular levels. This was unanticipated, because it is assumed that the characteristic of the SCN to respond tonically to light would be a prerequisite to adapt to the length of the day, thus requiring a full photoperiod. On the basis of the present results, our new hypothesis is that the phase delaying effect of light during dusk together with the phase advancing effect of light during dawn is sufficient to align the activity of SCN cells over the span of the day. This would agree with the concept of non-parametric entrainment, meaning that entrainment occurs on the basis of discrete phase shifts in response to pulses of light. The difference in the phase-shifting response that we observed between skeleton long and short photoperiod can accordingly be explained. Under a short photoperiod, when neurons are more synchronized in phase, a light pulse reaches all the single-cell oscillators at a similar phase leading the neurons to respond more coherent and resulting in a larger overall shift. In long day length, neurons are more desynchronized with a larger phase distribution, resulting in divergent phase-shifting responses and, as a consequence, a small overall shift.

The obvious question emerges whether the used skeleton light regime is merely an exotic paradigm used in laboratory research to unravel formal properties of clock cells, or whether there is also functional relevance. We argue that at least for nocturnal rodents the current protocol is possibly closer to the natural situation than full day light exposure. The behavior of many nocturnal animals sleeping underground during the day may already lead to a self-selected skeleton photoperiod with light exposures at the beginning and end of their active phase to mark the actual duration of the day. And thus, exposure to full photoperiod, as is a general protocol in laboratory studies, may actually be less natural than exposure to a skeleton photoperiod. The results underscore the powerful effect of just brief pulses of light to achieve the full adjustment of the function of the SCN as a seasonal pacemaker.

Our findings are furthermore important given the use of electrical light at night, which is nowadays so abundantly present, especially in (sub)urban areas. This is particularly the case as the effects of long photoperiod can be completely mimicked by short pulses of light in the morning and evening, in about every single attribute of SCN organization and temporal behavior that we investigated. Even brief exposure to light, when animals get out of their burrows, can thus erroneously be interpreted as a sign for summer during winter time, leading to maladaptive physiological adaptation (such as the production of offspring at the wrong time of the year). There is mounting evidence that light at night disturbs the activity of nocturnal animal species including insects, showing the broad scale at which light pollution may be detrimental. The fact that even brief light exposure can have physiological effects should be taken into consideration in light management programs aimed to preserve biodiversity.

ACKNOWLEDGMENTS
We thank Gabriella Lundkvist for providing PER2::LUC knock-in mice and Mayke Tersteeg for her technical assistance and help with animal caretaking. We also thank Ruben Schalk and Tom de Boer for their help with the statistics. This study was supported by funding from Velux Stiftung (project grant 1029 to SM) and by funding from ERC (adv grant 834513 to JHM).

CONFLICT OF INTEREST
The authors declare no financial and non-financial competing conflicts of interest.

AUTHOR CONTRIBUTIONS
A.H.O. Olde Engberink, S. Michel, and J.H. Meijer designed the studies. A.H.O. Olde Engberink performed and analyzed all behavioral and ex vivo experiments. A.H.O. Olde Engberink, J. Huisman and S. Michel performed and analyzed MUA experiments. A.H.O. Olde Engberink, S. Michel, and J.H. Meijer wrote the manuscript.

REFERENCES
1. Hastings MH, Maywood ES, Brancaccio M. Generation of circadian rhythms in the suprachiasmatic nucleus. Nat Rev Neurosci. 2018;19:453-469.
2. Ralph MR, Foster RG, Davis FC, Menaker M. Transplanted suprachiasmatic nucleus determines circadian period. Science. 1990;247:975-978.
3. Buhr ED, Takahashi JS. Molecular components of the mammalian circadian clock. In: Kramer A, Merrow M, eds. Circadian Clocks. Berlin, Heidelberg: Springer; 2013:3-27.
4. Mohawk JA, Takahashi JS. Cell autonomy and synchrony of suprachiasmatic nucleus circadian oscillators. Trends Neurosci. 2011;34:349-358.
5. Brown TM, Piggins HD. Spatiotemporal heterogeneity in the electrical activity of suprachiasmatic nuclei neurons and their response to photoperiod. J Biol Rhythms. 2009;24:44-54.
6. VanderLeest HT, Houwen T, Michel S, et al. Seasonal encoding by the circadian pacemaker of the SCN. Curr Biol. 2007;17:468-473.
7. Mrugala M, Zlomanczuk P, Jagota A, Schwartz WJ. Rhythmic multiunit neural activity in slices of hamster suprachiasmatic nucleus reflect prior photoperiod. Am J Physiol Regul Integr Comp Physiol. 2000;278:R987-994.
8. Pittendrigh CS, Daan S. A functional analysis of circadian pacemakers in nocturnal rodents. J Comp Physiol. 1976;106:291-331.
9. Rosenwasser AM, Boulos Z, Terman M. Circadian feeding and drinking rhythms in the rat under complete and skeleton photoperiods. Physiol Behav. 1983;30:353-359.
10. Stephan FK. Circadian rhythms in the rat: constant darkness, entrainment to T cycles and to skeleton photoperiods. Physiol Behav. 1983;30:451-462.

11. Bijjink MR, Almog A, Wit CB, et al. Evidence for weakened intercellular coupling in the mammalian circadian clock under long photoperiod. PLoS One. 2016;11:e0168954.

12. Eilers PH. A perfect smoother. Anal Chem. 2003;75:3631-3636.

13. Michel S, Marek R, Vanderleest HT, et al. Mechanism of bilateral communication in the suprachiasmatic nucleus. Eur J Neurosci. 2013;37:964-971.

14. Refinetti R. Compression and expansion of circadian rhythm in mice under long and short photoperiods. Integr Physiol Behav Sci. 2002;37:114-127.

15. Refinetti R. Daily activity patterns of a nocturnal and a diurnal rodent in a seminatural environment. Physiol Behav. 2004;82:285-294.

16. Evans JA, Elliott JA, Gorman MR. Photoperiod differentially modulates photic and nonphotic phase response curves of hamsters. Am J Physiol Regul Integr Comp Physiol. 2004;286:R539-546.

17. VanderLeest HT, Rohling JHT, Michel S, Meijer JH. Phase shifting capacity of the circadian pacemaker determined by the SCN neuronal network organization. PLoS One. 2009;4:e0004976.

18. Schaap J, Albus H, Vanderleest HT, Eilers PH, Detari L, Meijer JH. Heterogeneity of rhythmic suprachiasmatic nucleus neurons: implications for circadian waveform and photoperiodic encoding. Proc Natl Acad Sci U S A. 2003;10:15994-15999.

19. Farajnia S, van Westering TLE, Meijer JH, Michel S. Seasonal induction of GABAergic excitation in the central mammalian clock. Proc Natl Acad Sci U S A. 2014;111:9627-9632.

20. Pittendrigh CS, Minis DH. The entrainment of circadian oscillations by light and their role as photoperiodic clocks. Am Nat. 1964;98:261-294.

21. Quintero JE, Kuhlman SJ, McMahon DG. The biological clock nucleus: a multiphasic oscillator network regulated by light. J Neurosci. 2003;23:8070-8076.

22. Yamaguchi S, Isejima H, Matsuo T, et al. Synchronization of cellular clocks in the suprachiasmatic nucleus. Science. 2003;302:1408-1412.

23. Evans JA, Leise TL, Castanon-Cervantes O, Davidson AJ. Dynamic interactions mediated by nonredundant signaling mechanisms coupled circadian clock neurons. Neuron. 2013;80:973-983.

24. Myung J, Hong S, DeWoskin D, De Schutter E, Forger DB, Takumi T. GABA-mediated repulsive coupling between circadian clock neurons in the SCN encodes seasonal time. Proc Natl Acad Sci U S A. 2015;112:E3920-E3929.

25. Inagaki N, Homma S, Ono D, Tanahashi Y, Homma K-I. Separate oscillating cell groups in mouse suprachiasmatic nucleus coupled photoperiodically to the onset and end of daily activity. Proc Natl Acad Sci U S A. 2007;104:7664-7669.

26. Sumova A, Bendova Z, Sladek M, Kovacikova Z, Illnerova H. Seasonal molecular timekeeping within the rat circadian clock. Physiol Res. 2004;53(Suppl 1):S167-176.

27. Naito E, Watanabe T, Tei H, Yoshimura T, Ebihara S. Reorganization of the suprachiasmatic nucleus coding for day length. J Biol Rhythms. 2008;23:140-149.

28. Hazlerigg DG, Ebling FJP, Johnston JD. Photoperiod differentially regulates gene expression rhythms in the rostral and caudal SCN. Curr Biol. 2005;15:R449-R450.

29. Albus H, Vansteensel MJ, Michel S, Block GD, Meijer JH. A GABAergic mechanism is necessary for coupling dissociable ventral and dorsal regional oscillators within the circadian clock. Curr Biol. 2005;15:886-893.

30. Liu C, Reppert SM. GABA synchronizes clock cells within the suprachiasmatic circadian clock. Neuron. 2000;25:123-128.

31. DeWoskin D, Myung J, Belle MD, Piggins HD, Takumi T, Forger DB. Distinct roles for GABA across multiple timescales in mammalian circadian timekeeping. Proc Natl Acad Sci U S A. 2015;112:E3911-3919.

32. Wagner S, Castel M, Gainer H, Yarom Y. GABA in the mammalian suprachiasmatic nucleus and its role in diurnal rhythmicity. Nature. 1997;387:598-603.

33. De Jeu M, Pennartz C. Circadian modulation of GABA function in the rat suprachiasmatic nucleus: excitatory effects during the night phase. J Neurophysiol. 2002;87:834-844.

34. Choi HJ, Lee CJ, Schroeder A, et al. Excitatory actions of GABA in the suprachiasmatic nucleus. J Neurosci. 2008;28:5450-5459.

35. Irwin RP, Allen CN. GABAergic signaling induces divergent neuronal Ca2+ responses in the suprachiasmatic nucleus. Eur J Neurosci. 2009;30:1462-1475.

36. Rohr KE, Pancholi H, Haider S, et al. Seasonal plasticity in GABAA signaling is necessary for restoring phase synchrony in the master circadian clock network. eLife. 2019;8:e49578.

37. Yan L, Silver R. Day-length encoding through tonic photic effects in the retinorecipient SCN region. Eur J Neurosci. 2008;28:2108-2115.

38. Falchi F, Cinzano P, Duriscoe D, et al. The new world atlas of artificial night sky brightness. Sci Adv. 2016;2:e1600377.

39. Russart KLG, Nelson RJ. Artificial light at night alters behavior in laboratory and wild animals. J Exp Zool A Ecol Integr Physiol. 2018;329:401-408.

40. Sanders D, Gaston KJ. How ecological communities respond to artificial light at night. J Exp Zool A Ecol Integr Physiol. 2018;329:394-400.

41. Knop E, Zoller L, Ryser R, Gerpe C, Hozler M, Fontaine C. Artificial light at night as a new threat to pollination. Nature. 2017;548:206-209.

42. Dominoni DM, Borniger JC, Nelson RJ. Light at night, clocks and health: from humans to wild organisms. Biol Lett. 2016;12:20160015.

43. Niepow N, Ke G, de Roode JC, Groot AT. Comparing behavior and clock gene expression between caterpillars, butterflies, and moths. J Biol Rhythms. 2018;33:52-64.

SUPPORTING INFORMATION
Additional Supporting Information may be found online in the Supporting Information section.

How to cite this article: Olde Engberink AHO, Huismans J, Michel S, Meijer JH. Brief light exposure at dawn and dusk can encode day-length in the neuronal network of the mammalian circadian pacemaker. The FASEB Journal. 2020;34:13685–13695. https://doi.org/10.1096/fj.202001133RR