Retinopatia diabética: uma neuropatia

Diabetic retinopathy: a neuropathy

Thiago Gonçalves dos Santos Martins¹

¹ Universidade de Coimbra, Coimbra, Portugal.

DOI: 10.31744/einstein_journal/2021ED6110

A retinopatia diabética é a principal causa de cegueira na faixa etária de trabalho no mundo ocidental. Classicamente é descrita como uma doença microcirculatória, mas evidências demonstram que há manifestações de neurodegeneração que precedem as manifestações vasculares, ocorrendo alterações nervosas, mesmo na ausência de lesão de pericitos, antes considerado o primeiro sinal da retinopatia diabética.(¹) As principais alterações da neurodegeneração incluem apoptose e ativação glial, encontradas em retinas de doadores diabéticos sem alterações vasculares documentadas antes dos exames oftalmológicos.(²) Assim, a documentação de pacientes apenas com exames de retinografia e fundoscopia pode não detectar alterações precoces da retinopatia diabética.

Neurodegeneração

A fisiopatologia da retinopatia diabética está relacionada com a apotose de células ganglionares, amácrinas e células de Müller da retina, devido a um acúmulo de glutamato, que leva a um quadro de neurodegeneração e redução da camada de fibras nervosas e células ganglionares.(³)

A fisiopatologia do acúmulo de glutamato está relacionada com a disfunção da enzima glutamina-sintetase das células de Müller, que reduz sua capacidade de oxidar o glutamato e a retirada reduzida de glutamato retiniano pelas células gliais. O aumento da concentração de glutamato leva à morte celular, devido a um aumento intracelular de cálcio. O diabetes também induz a ativação de células microgliais, localizadas na parte interna da retina, que migram para o espaço sub-retiniano e liberam citocinas que contribuem para a morte celular neuronal.(⁴)

A hiperiglicemia desencadeia a glicosilação de proteínas e lipídios, que levam a um quadro de neurodegeneração, junto com alterações isquêmicas que diminuem o suprimento sanguíneo dos nervos.

Também se descobriu que o fluxo está associado a áreas de neuropatia. Alterações neurodegenerativas em locais sem vascularização, como a córnea, comprovadas com exames de microscopia confocal em pacientes diabéticos, caracterizam o mecanismo independente da alteração neurodegenerativa da alteração vascular.(⁵)

Contudo, as alterações microcirculatórias podem estar relacionadas com as alterações neurológicas, já que alterações endoteliais na membrana basal vascular podem levar a apotose de pericito, além da oclusão capilar dos capilares do nervo óptico.(⁶)
Pesquisas sobre neurodegeneração do diabetes podem explicar por que a retinopatia diabética proliferativa e outras complicações podem se desenvolver em 20% dos pacientes diabéticos mantidos com rigoroso controle metabólico, demonstrando que é provável que existam outros fatores de risco que precisam ser controlados. É importante, contudo, reforçar que existe uma perda de camada de fibras nervosas maior em pacientes alto míopes e idosos.

Perspectivas
A pesquisa de tratamento neuroprotetor pode ser útil na conduta da retinopatia diabética. O uso tópico de colírios de tartrato de brimonidina e somatostatina causou uma vasodilatação local na retina, que, por aumentar o fluxo sanguíneo na retina, pode evitar a progressão da retinopatia diabética. A somatostatina costuma estar reduzida em pacientes diabéticos com lesão das células ganglionares, podendo ter uma ação na prevenção de neurodegeneração, reduzindo o acúmulo celular de glicatamo. Também atua prevenindo a neovascularização e inibindo a produção de fator de crescimento endotelial vascular (VEGF).

O fator derivado do epitélio pigmentar (PEDF) é outro potente fator neuroprotetor e antiangiogênico que está diminuído na retinopatia diabética e protege os neurônios da neurodegeneração mediada pelo glicatamo. Outros fatores neuroprotetores, como insulina, neuroprotectina D1, fator neurotrófico derivado do cérebro, fator neurotrófico derivado da linha celular glial, fator neurotrófico ciliar, fator de crescimento nervoso, e adrenomedulina, também podem estar envolvidos no processo neurodegenerativo que ocorre na retinopatia diabética, mas outros estudos específicos precisam ser realizados.

Isso poderia impedir um tratamento mais invasivo nos estágios finais da retinopatia diabética, usando injeções antiangiogênicas intravítreas e fotocoagulação a laser na retina. Também o estudo da camada de células ganglionares da retina de pacientes diabéticos poderia ser método de controle precoce da progressão da doença. A confirmação de uma doença neurodegenerativa pode começar novas perspectivas de diagnóstico e tratamento do diabetes.

CONCLUSÃO
A neurodegeneração pode ser demonstrada em estudos com documentação da espessura da camada de fibras nervosas e células ganglionares como um evento que precede alterações vasculares na retinopatia diabética. Avanços nesses estudos e no tratamento de drogas neuroprotetoras podem melhorar o diagnóstico e o tratamento da retinopatia diabética.

INFORMAÇÃO DO AUTOR
Martins TG: http://orcid.org/0000-0002-3878-8564

REFERÊNCIAS
1. Grauslund J, Green A, Siple AK. Prevalence and 25 year incidence of proliferative retinopathy among Danish type 1 diabetic patients. Diabetologia. 2009;52(9):1829-35.
2. Carraço E, Herrández C, de Torres I, Farrés J, Simó R. Lowered cortisam expression is an early event in the human diabetic retina and is associated with apoptosis and glial activation. Mol Vis. 2008;14:1496-502.
3. van Dijk HV, Verbraak FD, Stehouwer M, Kok PH, Garvin MK, Sonka M, et al. Association of visual function and ganglion cell layer thickness in patients with diabetes mellitus type 1 and no or minimal diabetic retinopathy. Vision Res. 2011;51(2):224-8.
4. Zhang Y, Bhavnani BR. Glutamate-induced apoptosis in neuronal cells is mediated via caspase-dependent and independent mechanisms involving calpain and caspase-3 proteases as well as apoptosis inducing factor (AIF) and this process is inhibited by equine estrogens. BMC Neurosci. 2006;7:49.
5. Bitrigen G, Ozkagnici A, Malik RA, Kerimoglu H. Corneal nerve fibre damage precedes diabetic retinopathy in patients with type 2 diabetes mellitus. Diabet Med. 2014;31(4):431-8.
6. Bandello F, Tejerina AN, Vujosevic S, Varano M, Egan C, Sivaprasad S, Menon G, Massin P, Verbraak FD, Lund-Andersen H, Martinez JP, Jürgens I, Smets RM, Coriat C, Wiedemann P, Agos V, Queques G, Holz FG, Nunes S, Alves D, Noves C, Santos T, Ribeiro L, Cunha-Vaz J; EVICR.net. Retinal layer location of increased retinal thickness in eyes with subclinical and clinical macular edema in diabetes type 2. Ophthalmic Res. 2015;54(3):112-7.
7. Diabetes Control and Complications Trial/Epidemiology of Diabetes Interventions and Complications (DCCT/EDIC) Research Group, Nathan DM, Zinman B, Clegg PA, Backlund JY, Gennuth S, Miller R, Orchard TJ. Modern-day clinical course of type 1 diabetes mellitus after 30 years’ duration: the diabetes control and complications trial/epidemiology of diabetes interventions and complications and Pittsburgh epidemiology of diabetes complications experience (1983-2005). Arch Intern Med. 2009;169(14):1307-16.
8. Srinivasan S, Pritchard N, Sampson GP, Edwards K, Vagenas D, Russell AW, et al. Retinal thickness profile of individuals with diabetes. Ophthalmic Physiol Opt. 2016;36(2):158-66.
9. Grauslund J, Frydkaer-Olsen U, Pete T, Fernandez-Carneado J, Ponsati B, Hernández C, Cunha-Vaz J, Simó R; EUROCONDOR. Topical treatment with brimonidine and somatostatin causes retinal vascular dilation in patients with Early diabetic retinopathy from the EUROCONDOR. Invest Ophthalmol Vis Sci. 2019;60(6):2257-62.
10. Barba I, Garcia-Ramirez M, Hernandez C, Alonso MA, Masmiqlel M, Garcia-Dorado D, et al. Metabolic fingerprints of proliferative diabetic retinopathy: an 1H-NMR-based metabonomic approach using vitreous humor. Invest Ophthalmol Vis Sci. 2010;51(9):4116-21.
11. Shen X, Xie B, Cheng Y, Jiao Q, Zhong Y. Effect of pigment epithelium derived factor on the expression of glutamine synthetase in early phase of experimental diabetic retinopathy. Ocul Immunol Inflamm. 2011;19(4):246-54.