DeORFanizing Candida albicans Genes using Co-Expression

Teresa R. O'Meara1*, Matthew J. O'Meara2*

1Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
2Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, 48109, USA

Corresponding Authors:

*Teresa R. O’Meara
Department of Microbiology and Immunology
University of Michigan Medical School
1150 W. Medical Center Dr
Medical Sciences Building II, Room 6751 Ann Arbor, MI, 48109, USA
Phone: 734-647-1853
Fax: 734-764-3562
Email: tromeara@umich.edu

*Matthew J. O’Meara
Department of Computational Medicine and Bioinformatics
University of Michigan Medical School
1150 W. Medical Center Dr
Palmer Commons, 100 Washtenaw Ave #2017, Ann Arbor, MI 48109, USA
Phone: 734-764-5247
Email: maom@umich.edu
Abstract

Functional characterization of open reading frames in non-model organisms, such as the common opportunistic fungal pathogen *Candida albicans*, can be labor intensive. To meet this challenge, we built a comprehensive and unbiased co-expression network for *C. albicans*, which we call CalCEN, from data collected from 853 RNA sequencing runs from 18 large scale studies deposited in the NCBI Sequence Read Archive. Retrospectively, CalCEN is highly predictive of known gene function annotations and can be synergistically combined with sequence similarity and interaction networks in *Saccharomyces cerevisiae* through orthology for additional accuracy in gene function prediction. To prospectively demonstrate the utility of the co-expression network in *C. albicans*, we predicted the function of under-annotated open reading frames (ORFs) and identified *CCJ1* as a novel cell cycle regulator in *C. albicans*. This study provides a tool for future systems biology analyses of gene function in *C. albicans*. We provide a computational pipeline for building and analyzing the co-expression network and CalCEN itself at (http://github.com/momeara/CalCEN).

Importance

Candida albicans is a common and deadly fungal pathogen of humans, yet the genome of this organism contains many genes of unknown function. By determining gene function, we can help identify essential genes, new virulence factors, or new regulators of drug resistance, and thereby give new targets for antifungal development. Here, we use information from large scale RNAseq studies and generate a *C. albicans* co-expression network (CalCEN) that is robust and able to predict gene function. We demonstrate the utility of this network in both retrospective and prospective testing, and use CalCEN to predict a role for C4_06590W/CCJ1 in cell cycle. This tool will allow for a better characterization of under-annotated genes in pathogenic yeasts.

Introduction

Co-expression analysis is based on the hypothesis that genes that are coordinately expressed under multiple diverse conditions and perturbations are likely to function in the same biological process (1). Co-expression networks are built from transcriptomic studies across a range of conditions, incorporating broad and unbiased analyses of gene expression at a global scale. The gene-by-condition matrix found in most transcriptomic studies can be used for differential gene expression analysis, where the effects of a perturbation or a mutation can be compared to a background or wildtype. In contrast, a co-expression network transforms the gene-by-condition matrix into a gene-by-gene matrix, or equivalently, a gene network, where the edge weight defines the degree of co-expression. To estimate this co-expression, several methods have been proposed, including the Pearson correlation coefficient, the Spearman correlation coefficient, or a partial correlation coefficient (2). Although co-expression approaches to identify gene function have been used extensively in the model yeast *S. cerevisiae* and humans (1, 3, 4), it has only recently been applied to full effect in other fungi, as in the recent work from Meyer and colleagues (5, 6). Not only does co-expression have high predictive accuracy for gene function annotations, it also captures evolutionary-scale changes in cell identity (7). For non-model organisms such as *Candida albicans*, two important questions are 1) is there utility in building a species-specific co-expression network, or are all the relevant co-expression signatures available through orthology with a model organism (e.g., *S. cerevisiae*); and 2) how extensive does the transcriptional profiling need to be to generate useful co-expression networks? The second question is particularly relevant for emerging infectious diseases, as broad transcriptional profiling takes significant research investment to generate.
Candida albicans is a common opportunistic pathogen of humans; it is both an asymptomatic colonizer of the mucosal surface of healthy individuals and a deadly invasive pathogen in immunocompromised patients. There is significant effort in determining gene function for C. albicans, with the goal of identifying essential genes, virulence factors, or regulators of drug resistance and thus expanding the target space for future antifungal development. Gene Ontology (GO) term annotation is one framework for describing gene function. For a gene to be fully annotated, it requires an understanding of the molecular function (MF), biological process (BP), and the cellular component (CC). The C. albicans genome consists of 6,468 ORFs, and approximately 70% of these remain under-characterized (8). As an extreme set, 1,801 ORFs have no Biological Process GO term annotation in the Candida Genome Database (9). In many cases, gene annotation information comes from inferred orthology with the model yeast S. cerevisiae, but these organisms diverged approximately 150 MYA (10), and even gene essentiality is not necessarily conserved across these species (8, 11). Current high-throughput approaches for gene function analysis include transposon insertion screens (11, 12), functional genomic screens of mutant libraries (8, 13–16), genetic interaction screens (17), yeast-two-hybrid approaches (18), and other protein-protein interaction screens (19). However, there are also many transcriptomic analyses of C. albicans available through NCBI SRA, suggesting that it is now feasible to create a co-expression network for C. albicans as a complementary approach for predicting gene function.

Here, we generated a robust co-expression network from 853 sequencing runs from 18 available transcriptomic datasets for C. albicans, using rank-correlation through the EGAD R package to build the network. We then added information from other modalities, including sequence similarity and S. cerevisiae protein-protein interactions from BIOGRID, as incorporation of orthogonal information allows for better gene function prediction (20). Retrospective analysis of the clustering identified high network connectivity of histone proteins and ribosomal proteins, validating the efficacy of this approach. We also demonstrate that there are distinct sub-networks for different GPI-anchored cell wall proteins. We then applied this co-expression network to examining genes of unknown function in C. albicans and identified Ccj1 as a DnaJ-containing protein that acts as a regulator of cell cycle. This co-expression resource can be used by the research community for examination of gene function and network connectivity in C. albicans.

Results:

Co-expression networks in Candida albicans

A co-expression network is built by through three stages: 1) collecting transcriptome data over multiple environmental conditions to generate a gene-by-condition expression matrix, 2) measuring the correlation between all pairs of gene expression profiles to generate a gene-by-gene correlation matrix, and 3) interpreting the correlation matrix as a network where the nodes represent genes and the edge weights represent the degree of co-expression. To build the Candida albicans co-expression network (CalCEN), we identified RNA sequencing (RNAseq) studies from the NCBI Sequence Read Archives (SRA), which we then filtered for studies with at least 20 C. albicans samples based on the guidelines from Ballouz and colleagues (20–22), yielding 12 unpaired and 6 paired end studies, listed in Supplemental Table 1. The conditions for these experiments included differences in carbon source, co-culture with host cells or bacteria, treatment with chemical perturbations, or differences in mutations, highlighting the diversity in conditions covered by these studies. To ensure that all studies were processed consistently, we collected the raw reads from SRA and re-aligned all of the data to the C. albicans SC5314 genome Assembly 22 coding transcripts using RSEM with bowtie2 (21–23) and generated a heatmap combining of all of the RNAseq reads (Figure 1A). Since RNAseq of co-cultured samples can lead
to low coverage depth, we removed runs where greater than 50% percent of the genes had zero expression (Supplemental Figure 1), yielding 853 runs in total. To control for the bias that more reads will map to longer genes, we used the fragments per kilobase of transcript per million mapped reads (FPKM) as the estimated expression for each gene under each condition. Because the primary aim of our study is to evaluate the utility of co-expression as a data source, we used the simple yet robust Spearman-rank correlation to measure the correlation between gene expression profiles, as implemented in the EGAD R package (24) (Figure 1B). Thus, for each pair of genes, we have a value between 0 and 1 representing the rank of co-expression among all pairs of genes.

To visualize the co-expression network, we projected the network to two dimensions using UMAP (25), which aims to keep co-expressed genes closer together than non-co-expressed genes. Interestingly, we identify 18 clusters distinct clusters (Supplemental Table 2). Using Gene Set Enrichment Analysis (26) and GO term enrichment of the genes in each cluster, we can observe clear functional signatures (Figure 1C), including cluster 9 which is enriched for cell cycle proteins, or cluster 18, which is enriched for proteins encoded on the mitochondrial genome.

Predicting gene function using multiple modalities

There are many networks that can be built for predicting gene function, and each can provide information about currently under-annotated genes, and the different modalities can be combined for greater coverage and accuracy (20). To measure the information in CalCEN that is not already captured by other modalities, we compared the co-expression network to the BlastP, SacGene, SacPhys, and YeastNet genome-scale networks. Filtering the co-expression network for the top 1% of co-expressed genes shows substantial coverage of the information captured in other networks, while also having information on over 550 genes that are not included in any other network (Figure 2A).

To benchmark the utility of our co-expression network to predict gene function, we first performed a retrospective prediction of GO term annotations collected from the Candida Genome Database and FungiDB (9, 27). Guilt by Association (GBA) is a method to predict gene function by propagating annotation labels through a given network. We implement GBA prediction through neighbor voting, where the strength of a term predicted for a gene is determined by the fraction of neighbors in the network having the term. For each term, we constructed a ranked list of genes by the strength of the prediction and compared it to the known set of annotations using the area under the receiver operating characteristic curve (AUROC) score and averaging over a 10-fold cross validation.

We began by measuring the predictive accuracy of the network relative to uninformative baselines. The null baseline predictor that randomly predicts genes for each term yields an AUROC of on average 0.5. However, a stronger but also non-informative baseline for a network sorts the genes by their number of neighbors and predicts this single sorted list for every term. This degree null predictor is often a surprisingly strong predictor for retrospective gene function prediction because multifunctional genes, such as well studied signaling hubs, tend to be both well connected and annotated for many functions. However, this predictor has low utility for prospective gene function prediction as it cannot find new genes for a function of interest, and it cannot find a new function for a gene of interest. If a network has a high degree null predictor relative to its neighbor voting predictor, it suggests that the neighbor voting predictor may be biased towards multifunctional genes (28, 29). The BlastP network, derived from whole gene sequence similarity (BlastP) has an average degree null AUROC of 0.55 ± 0.045 and network AUROC of 0.69 ± 0.037. Orthology networks from S. cerevisiae, derived from physical protein-protein interactions (SacPhys), genetic interactions (SacGene) curated from BioGRID have average degree null AUROCs of 0.60 ± 0.042 and 0.59 ± 0.042 and average network AUROCs of 0.78 ±
0.054 and 0.75 ± 0.039. The integrated *S. cerevisiae* network (YeastNet) that includes literature co-annotations has an average degree null AUROC of 0.61 ± 0.046 and an average network AUROC of 0.63 ± 0.044. We find that the CalCEN network has an average degree null AUROC of 0.51 ± 0.034 and a neighbor voting AUROC of 0.75 ± 0.026, indicating that the network has low multifunctionality bias relative to other networks (Figure 2B, C and Supplemental Figure 2).

When comparing the predictive accuracy of co-expression (Co-Exp) to the other networks, we see that the Co-Exp network has predictivity comparable to SacGene and SacPhys, and significantly better than BlastP and YeastNet. When the networks are combined additively, we see that adding Co-Exp improves the predictive accuracy of each other network, with Co-Exp and YeastNet being particularly predictive (Figure 2C). Together, this demonstrates that we are capturing information with the CalCEN that is not included in previous networks, and that addition of the CalCEN can improve gene function predictions.

A challenge in building the CalCEN was determining whether the number of RNAseq studies was sufficient to generate a robust network. To assess this, we asked how the predictive accuracy of the CalCEN changes based on the number of RNA-seq studies used for generating the network. Embedding each RNAseq run based on the expression pattern for each gene (Supplemental Figure 3), we see that the runs cluster by study, suggesting the between-study condition differences are greater than the within-study condition differences, and that additional studies would increase coverage of the expression topology. To assess the impact of study diversity on retrospective gene function prediction, we sampled subsets of studies and re-computed the network and GBA performance. We found that the mean performance increased from ~.675 to .75 from 1 to 18 studies, suggesting that a minimum of 10 RNAseq studies is needed for competitive performance compared with previous predictive methods, but that even at 18 studies, the performance of the co-expression network for GBA predictions has not yet saturated and may be improved when additional studies are added.

Retrospective Identification of Conserved Gene Clusters.

We then examined our co-expression network for its ability to identify specific gene clusters that have been previously identified in other organisms. Previous work in *S. cerevisiae* described a co-expression cluster of ribosomal proteins and other proteins involved in translation, as these proteins are coordinately regulated in response to nutrient conditions (1, 4). We used a set of known ribosomal proteins to seed the network, identified all of the first neighbors in the network, and then identified the co-expression edges for all of the genes in this set. This resulted in a densely connected cluster for many known ribosomal and proteasomal proteins in *C. albicans* (Figure 3A). However, we also identified some known ribosomal proteins that were not contained within the main cluster, suggesting potentially differential regulation patterns.

Another well-known cluster of proteins are the histone proteins, which are transcriptionally regulated with the cell cycle. In *S. cerevisiae*, this cluster is composed of 8 histone proteins (1), but in *C. albicans*, we observed that 10 histone proteins cluster with each other (Figure 3B). Both H2A variant proteins (H2A.1 and H2A.2) are present in the *C. albicans* histone cluster cluster (30); however, the H3 variant gene, *H3.A / HHT1*, is not connected with this cluster. This is consistent with the recent reports of a decreased abundance of *HHT1* compared with the canonical H3 proteins *HHT2* and *HHT21*, and the co-expression of *HHT1* with *IFF4* and *CPS1* is consistent with a potential transcriptional connection between *HHT1* and the biofilm circuit described by Rai et al. (31). In the main histone cluster, we also observed *NTF2*, a
Nuclear envelope protein, and NHP6A, a High-mobility group (HMG) protein that binds to and remodels nucleosomes, as connected with multiple histone proteins. Intriguingly, C5_01550C, a protein of unknown function, was also connected with both H2B.1 and H2A.1; however, this protein is also co-expressed with ribosomal proteins. Hsp90 is a conserved and essential molecular chaperone that physically interacts with many C. albicans proteins to regulate their folding and function (19). The co-expression network for Hsp90 was able to identify 5 Hsp90 co-chaperones (Figure 3C) and 7 additional chaperone proteins. However, it also identified clusters of genes involved in many core aspects of cell biology, including protein translation and degradation, consistent with the pleiotropic role of Hsp90 in the cell. In addition to proteins that act in a complex, we hypothesized that our network would identify genes that act in a single biosynthetic cascade. To test this, we examined our network for genes that co-express with Erg11, the major target of theazole antifungals and part of the ergosterol biosynthetic cascade (32). By using just Erg11 as the seed, we identified 8 additional genes in the ergosterol biosynthetic cascade that were co-expressed with Erg11 (Figure 3D). Moreover, we identified Upc2, the transcription factor that regulates ergosterol biosynthesis, as part of this cluster. Notably, this approach also identified multiple genes involved in heme uptake, as well as others that are involved in general metabolism.

GPI-anchored proteins form multiple, distinct co-expression clusters. In C. albicans, the fungal cell wall plays an essential role in regulating interactions with host cells and tissues (33–36). The outer layer of the cell wall has many glycosylated proteins that are anchored into the cell wall via GPI motifs (37), and many of these proteins are not fully characterized. We selected a set of 27 GPI-anchored proteins as seeds and examined their co-expression networks (Figure 4A). This revealed that while there was a subset of GPI-anchored proteins that cluster with known cell wall biogenesis proteins, such as Pga38 and Pga54, there were also distinct and non-overlapping co-expression networks that did not include cell wall related processes. For example, Pga10 was most associated with proteins involved in metabolism, such as the Eno1 enolase, the Cdc19 pyruvate kinase, and the Pfk1 and Pfk2 phosphofructokinases, consistent with the role of Pga10 in using heme and hemoglobin as iron sources (38). Pga63, which is proposed to be a component of the COPII vesicle coat, is co-expressed with other secretion proteins (Sec61, Sec23, Sec24) and proteins involved in N-glycosylation. In contrast, Pga27, which is currently un-annotated, is co-expressed with multiple transcription factors and the Rim21 and Sln1 signal transduction proteins that regulate cell wall remodeling in response to stress, which suggests that Pga27 may play a role in sensing or responding to stress. Similarly, the unannotated protein Pga59 is co-expressed with multiple proteins involved in RNA metabolism, including tRNA synthetases, while Pga57 is co-expressed with mitochondrial proteins. This highlights the potentially diverse biological functions of GPI-anchored proteins in C. albicans biology.

Prospective testing of the co-expression network identifies a new role in cell cycle regulation for uncharacterized gene C4_06590W/CCJ1. Many genes in the C. albicans genome do not have an assigned GO term annotation. The co-expression network can provide insight into genes without current annotation, suggesting functions that can then be tested experimentally. The gene C4_06590W is an uncharacterized protein that is present in the CTG clade but not in the model yeast S. cerevisiae. We generated a model for the N-termini of the C4_06590W structure using TrRosetta (39) and compared it with the crystal structure of the Sis1 DnaJ-containing protein from S. cerevisiae (40), which highlighted the conservation
of the DnaJ domain (Figure 5A). To investigate the function of C4_06590W, we examined the co-expression network
using C4_06590W as the seed protein. This identified multiple genes involved in C. albicans cell cycle as clustering with
C4_06590W (Figure 5B), which led us to hypothesize that C4_06590W may be involved in cell cycle. In C. albicans,
mutants in cell cycle often result in aberrant filamentation in the absence of an inducing cue (8, 41–44). Therefore, we
examined the phenotype of the tetO-C4_06590W/C4_06590W mutant strain in the presence or absence of doxycycline to
repress target gene transcription (Figure 5B). When C4_06590W was repressed, the majority of the cells showed aberrant
germ tube formation (Figure 5C). However, nuclear division appeared normal, with each cell containing just one nuclei
(Figure 5C). We then tested growth in the presence of hydroxyurea, a DNA synthesis inhibitor that induces S-phase arrest
(44). Depletion of C4_06590W resulted in hypersensitivity to hydroxyurea, as observed by a decrease in growth (Figure
5D) and a striking increase in the number of filaments at subinhibitory concentrations of the drug (Figure 5E). Together,
these data suggest that C4_06590W is involved in cell cycle control in C. albicans, and we have therefore proposed
CCJ1, for Cell Cycle DnaJ, as the new gene name for C4_06590W.

Discussion:
Co-expression has been shown to be a reliable means of identifying genes that share function in a variety of
contexts. Genome scale co-expression networks built from bulk RNAseq studies have been used extensively for gene
function prediction using guilt by association (1, 2, 45). Recently, co-expression networks have been built for non-model
organisms, including Aspergillus (5, 6). Here, we develop the CalCEN, a co-expression network for C. albicans from
available large-scale, publicly available RNAseq studies. We show that this the network is built from sufficient data to
meaningfully organize genes into functional modules and retrospectively predict gene annotations. We demonstrate the
utility of this network to predict functional networks around several classes of genes, including ribosomal proteins and the
ergosterol biosynthetic cascade. Moreover, the CalCEN analysis of histone proteins accurately identified a separation of
the non-canonical Hht1 histone H3 protein (31) from the canonical histone protein complex, whereas both H2A variants
are highly co-expressed. Co-expression analysis of GPI-anchored proteins in C. albicans showed a variety of clusters
with different enrichments for biological functions, highlighting that not all cell wall associated proteins are involved in
cell wall biosynthesis. Additionally, we used the CalCEN to identify a new regulator of cell cycle, CCJ1, which we verify
contains a DnaJ domain using de novo structure prediction. We propose that the CalCEN will provide a method for
predicting gene function for the C. albicans research community.

A limitation of this study is that we use simplistic methods for generating and analyzing the network. For
example, we used Spearman rank correlation for building the network, we defined arbitrary thresholds when needed (such
as the top 1% to compare network overlap), we combined networks by adding network weights, performed guilt by
association using neighbor voting, and evaluated retrospective enrichment by using the area under the ROC curve. While
more sophisticated methods may give higher predictive accuracy, an advantage of these simplistic methods is that they
transparently show how the data lead to the predictions, without complex global normalization. Further, the predictive
accuracy of the simple methods gives a lower bound on the utility of the data. Thus, in demonstrating the utility of the
CalCEN, and making the methods and networks available, we hope to enable their wider use in the fungal pathogenesis
community, where the methods can be refined and integrated with additional data sources for gene function prediction.
Methods

Network Construction

CalCEN - RNA expression was estimated by aligning reads to *Candida albicans* SC5314, Assembly 22 (46) coding transcripts by converting from SRA to FASTQ format using fastq-dump from the NCBI SRA tools package and then aligned using the RSEM package v1.2.31 (47) with bowtie2 (47) using the default settings. Reads that did not map or mapped multiple times were discarded, and the percent that mapped exactly once are shown in (Figure S1), plotted using the ggplot2 package (48) for R. The CalCEN network over genes was estimated by the Spearman-Rank correlation coefficients of the FPKM values across all runs using the EGAD R package (45).

BlastP - A sequence similarity network was created comparing all pairs of protein transcripts from *Candida albicans* SC5314, Assembly 22 using Protein-Protein (51), yielding 103,400 associations. Protein-protein interaction networks were created from data collected from BioGRID build (3.4.161) (48) for, yielding 110,991 orthologous physical interactions between 3,953 *Candida albicans* genes (*SacPhys*) and 395,437 orthologous genetic interactions between 3942 *C. albicans* genes (*SacGene*). These protein protein networks were then extended to include indirect associations with weights inverse of the shortest path (52). **YeastNet v3**, which is an integrative network for *S. cerevisiae* built from co-citation, co-expression, co-occurrence of protein domains, genomic context, genetic interactions, high and low throughput protein-protein interactions, phylogenetic profiles between yeast genes and 3D structure of interacting orthologues (49). The overlap of the genes and interactions of these networks is shown in (Figure 2) using the UpSetR R package (50).

To assess the biological relevance of the co-expression network, functional annotations for curated by the Candida Genome Database (http://www.candidagenome.org/download/go/gene_association.cgd.gz) were collected on 12-Jun-2018, filtering for terms with qualifier != "NOT" and propagating up "is_a" and "part_of" term relationships using the GO.db R package (51). Terms were then filtered for those having at least 20 and at most 1000 annotations, yielding 9,144 annotations for 169 biological process (BP) terms, 19,672 annotations for 215 cellular component (CC) terms, and 4,741 annotations for 85 molecular function (MF) terms. By evidence ~73% annotations were inferred from electronic annotation (IEA), ~11% were inferred from a mutant phenotype (IMP), ~8% were inferred from direct assay (IDA) and less than one percent annotations for other evidence codes.

Embedding of the Co-Exp network

To embed the CalCEN genes, we used Monocle 3 (52) to preprocess the 6226 x 853 expression matrix using principal component analysis from 853 dimensions to 100 dimensions and then applied the UMAP algorithm to reduce the dimensions from 100 to 2. UMAP was used with parameters a = 50, b = 0.5, n_neighbors = 30, n_epochs = 2000, negative_sample_rate = 50, and repulsion_strength = 3, which builds on the R implementation of UMAP, uwot, ([54](https://github.com/jlmelville/uwot)), and the Approximate Nearest Neighbors Oh Yeah library (https://github.com/spotify/annoy). Clusters were identified using Leiden community detection algorithm (53) with parameters k = 30, num_iter = 10, resolution = 0.1 and plotted with ggplot2 (54).

Gene set construction

6468 *Candida albicans* open reading frames were identified in the SC5314 Assembly 22 (21) database and downloaded from FungiDB (54) (Supplemental Table 3). 1801 ORFs in this set did not contain a computed or curated GO...
term annotation for Biological Process. 27 GPI-anchored proteins were identified in the Candida Genome Database.

Ribosomal proteins were identified by curated GO term annotation, and the first neighbors of the seed network were identified using the CalCEN.

Protein structure prediction for CCJ1

To predict the structure of the CCJ1 DnaJ domain, the sequence for residues 9-96 were submitted to the TrRosetta de novo structure prediction server (38), which built a deep multiple sequence alignment of 19,612 sequences and used a machine learning model to estimate the distances and relative angles of each pair of residues. These contact maps were then used to sample coarse-grain and full-atom protein folding conformation spaces to optimize a molecular mechanics forcefield to find low-energy conformations. The top resulting conformations were highly consistent with pairwise full atom RMSD 0.15 Å, and when structurally aligned with 4RWU, a 1.25 Å X-ray crystal structure of the DnaJ containing protein Sis1 from in *Saccharomyces cerevisiae*, it has a full-atom RMSD of 1.6 Å (Figure 5A), confirming the Interpro and Pfam sequence-based DnaJ domain annotation.

CalCEN computational workflow

Computational methods implemented here are available as an R package (github.com/momeara/CalCEN).

Network Visualization

All network visualizations were generated in Cytoscape (55).

Strains, reagents, and culture conditions.

All *C. albicans* strains were archived in 25% glycerol and stored at -80°C. Overnight cultures were grown in YPD (1% yeast extract, 2% bacto peptone, 2% dextrose) at 30°C with rotation. The tetO-C4_06590W/C4_06590W strain and the associated parental wild type strain used in this study were created as part of the GRACE tetracycline-repressible mutant collection (8, 56). Doxycycline (Fisher MP219504410) was dissolved in water and used at the indicated concentrations. To repress gene expression, overnight cultures of the relevant strains and controls were subcultured in the presence or absence of 5 μg/mL DOX before use. Hydroxyurea (ThermoFisher A10831-06) was dissolved in water and used at the indicated concentrations. Hoechst (Cayman Chemical 15547) was dissolved in water and used at 1 μg/mL.

MIC assays.

Drug tolerance assays were performed in flat bottom 96-well plates (Alkali Scientific) using a modified broth microdilution protocol, as previously described (19). The assays were performed in a total volume of 0.2 mL/well with 2-fold dilutions of the drug in YPD. Plates were incubated in the dark at 30C for 24 hours before reading OD600 values on a spectrophotometer (Synergy H1). Each strain was tested in technical and biological duplicate. Data at a single concentration of drug (the highest concentration where growth of the wild type strain was not inhibited) is displayed.

Microscopy.

To monitor *C. albicans* morphology, we used differential interference contrast (DIC) microscopy on an Olympus IX70 inverted microscope and a Hamamatsu FLASH4 CMOS camera at 40X magnification. For fluorescence
microscopy, we used an X-cite series 120 light source with a DAPI filter set. To monitor nuclei, cells were fixed and
permeabilized with methanol before addition of 1 ug/mL Hoechst and imaging. Representative images from two
biological replicates are shown.

List of Figures and Supplemental Information:

Figure 1: Generating a co-expression network for C. albicans
Figure 2: Overlap between networks and annotations
Figure 3: Retrospective analysis identifies functional clusters of genes in C. albicans.
Figure 4: GPI-anchored proteins in C. albicans show distinct co-expression clusters
Figure 5: Identification of CCJ1 as a novel cell cycle regulator.

Table S1: RNA-Seq studies for Candida albicans co-expression analysis
Table S2: Co-expression clusters from UMAP

Networks: CalCEN, BlastP, SacGene, SacPhys, YeastNet

References

1. Eisen MB, Spellman PT, Brown PO, Botstein D. 1998. Cluster analysis and display of genome-wide expression
patterns. Proc Natl Acad Sci U S A 95:14863–14868.
2. Ballouz S, Verleyen W, Gillis J. 2015. Guidance for RNA-seq co-expression network construction and analysis:
safety in numbers. Bioinformatics 31:2123–2130.
3. Lee J, Shah M, Ballouz S, Crow M, Gillis J. 2020. CoCoCoNet: conserved and comparative co-expression across a
diverse set of species. Nucleic Acids Res 48:W566–W571.
4. Hughes TR, Marton MJ, Jones AR, Roberts CJ, Stoughton R, Armour CD, Bennett HA, Coffey E, Dai H, He YD,
Kidd MJ, King AM, Meyer MR, Slade D, Lum PY, Stepaniants SB, Shoemaker DD, Gachotte D, Chakrabortty K,
Simon J, Bard M, Friend SH. 2000. Functional discovery via a compendium of expression profiles. Cell 102:109–
126.
5. Cairns TC, Feurstein C, Zheng X, Zhang LH, Zheng P, Sun J, Meyer V. 2019. Functional exploration of co-
expression networks identifies a nexus for modulating protein and citric acid titres in Aspergillus niger submerged
culture. Fungal Biol Biotechnol 6:18.
6. Schäpe P, Kwon MJ, Baumann B, Gutschmann B, Jung S, Lenz S, Nitsche B, Paege N, Schütze T, Cairns TC,
Meyer V. 2019. Updating genome annotation for the microbial cell factory Aspergillus niger using gene co-
expression networks. Nucleic Acids Res 47:559–569.
7. Crow M, Suresh H, Lee J, Gillis J. 2020. Coexpression reveals conserved mechanisms of transcriptional cell identity. bioRxiv.

8. O’Meara TR, Veri AO, Ketela T, Jiang B, Roemer T, Cowen LE. 2015. Global analysis of fungal morphology exposes mechanisms of host cell escape. Nat Commun 6:6741.

9. Skrzypek MS, Binkley J, Binkley G, Miyasato SR, Simison M, Sherlock G. 2017. The Candida Genome Database (CGD): incorporation of Assembly 22, systematic identifiers and visualization of high throughput sequencing data. Nucleic Acids Res 45:D592–D596.

10. Lott TJ, Fundyga RE, Kuykendall RJ, Arnold J. 2005. The human commensal yeast, Candida albicans, has an ancient origin. Fungal Genet Biol 42:444–451.

11. Segal ES, Gritsenko V, Levitan A, Yadav D, Dror N, Steenwyk JL, Silberberg Y, Mielich K, Rokas A, Gow NAR, Kunze R, Sharan R, Berman J. 2017. Gene Essentiality Analyzed by In Vivo Transposon Mutagenesis and Machine Learning in a Stable Haploid Isolate of Candida albicans. MBio 9.

12. Oh J, Fung E, Schlecht U, Davis RW, Giaever G, St Onge RP, Deutschbauer A, Nislow C. 2010. Gene annotation and drug target discovery in Candida albicans with a tagged transposon mutant collection. PLoS Pathog 6:e1001140–18.

13. Xu D, Jiang B, Ketela T, Lemieux S, Veillette K, Martel N, Davison J, Sillaots S, Trosok S, Bachewich C, Bussey H, Youngman P, Roemer T. 2007. Genome-wide fitness test and mechanism-of-action studies of inhibitory compounds in Candida albicans. PLoS Pathog 3:e92-14.

14. Ryan O, Shapiro RS, Kurat CF, Mayhew D, Baryshnikova A, Chin B, Lin Z-Y, Cox MJ, Vizeacoumar F, Cheung D, Bahr S, Tsui K, Tebbji F, Sellam A, Iset F, Schwarzmüller T, Reynolds TB, Kuchler K, Gifford DK, Whiteway M, Giaever G, Nislow C, Costanzo M, Gingras A-C, Mitra RD, Andrews B, Fink GR, Cowen LE, Boone C. 2012. Global gene deletion analysis exploring yeast filamentous growth. Science 337:1353–1356.

15. Witchley JN, Penumetcha P, Abon NV, Woolford CA, Mitchell AP, Noble SM. 2019. Candida albicans Morphogenesis Programs Control the Balance between Gut Commensalism and Invasive Infection. Cell Host Microbe 25:432-443.e6.

16. Noble SM, French S, Kohn LA, Chen V, Johnson AD. 2010. Systematic screens of a Candida albicans homozygous deletion library decouple morphogenetic switching and pathogenicity. Nat Genet 42:590–598.

17. O’Meara TR, Veri AO, Polvi EJ, Li X, Valaei SF, Diezmann S, Cowen LE. 2016. Mapping the HSP90 genetic network reveals ergosterol biosynthesis and phosphatidylinositol-4-kinase signaling as core circuitry governing cellular stress. PLoS Genet 12:e1006142.

18. Schoeters F, Munro CA, d’Enfert C, Van Dijck P. 2018. A High-Throughput Candida albicans Two-Hybrid System. mSphere 3.

19. O’Meara TR, O’Meara MJ, Polvi EJ, Pourhaghighi MR, Liston SD, Lin Z-Y, Veri AO, Emili A, Gingras A-C, Cowen LE. 2019. Global proteomic analyses define an environmentally contingent Hsp90 interactome and reveal
chaperone-dependent regulation of stress granule proteins and the R2TP complex in a fungal pathogen. PLoS Biol 17:e3000358.

20. O’Meara MJ, Ballouz S, Shoichet BK, Gillis J. 2016. Ligand similarity complements sequence, physical interaction, and co-expression for gene function prediction. PLoS One 11:e0160098.

21. Muzzey D, Schwartz K, Weissman JS, Sherlock G. 2013. Assembly of a phased diploid Candida albicans genome facilitates allele-specific measurements and provides a simple model for repeat and indel structure. Genome Biol 14:R97.

22. Li B, Dewey CN. 2011. RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinformatics 12:323.

23. Langmead B, Salzberg SL. 2012. Fast gapped-read alignment with Bowtie 2. Nat Methods 9:357–359.

24. Ballouz S, Weber M, Pavlidis P, Gillis J. 2017. EGAD: ultra-fast functional analysis of gene networks. Bioinformatics 33:612–614.

25. McInnes L, Healy J, Melville J. 2018. UMAP: Uniform Manifold Approximation and Projection for Dimension Reduction. arXiv [statML].

26. Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, Paulovich A, Pomeroy SL, Golub TR, Lander ES, Mesirov JP. 2005. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci U S A 102:15545–15550.

27. Basenko EY, Pulman JA, Shannugasundram A, Harb OS, Crouch K, Starns D, Warrenfeltz S, Aurrerecoechea C, Stoeckert CJ Jr, Kissinger JC, Roos DS, Hertz-Fowler C. 2018. FungiDB: An Integrated Bioinformatic Resource for Fungi and Oomycetes. J Fungi (Basel) 4.

28. Gillis J, Pavlidis P. 2012. “Guilt by Association” Is the Exception Rather Than the Rule in Gene Networks. PLoS Comput Biol 8:e1002444.

29. Gillis J, Pavlidis P. 2011. The impact of multifunctional genes on “guilt by association” analysis. PLoS Comput Biol 6:e1002444.

30. Brimacombe CA, Burke JE, Parsa J-Y, Catania S, O’Meara TR, Witchley JN, Burrack LS, Madhani HD, Noble SM. 2019. A natural histone H2A variant lacking the Bub1 phosphorylation site and regulated depletion of centromeric histone CENP-A foster evolvability in Candida albicans. PLOS Biology.

31. Rai LS, Singha R, Sanchez H, Chakraborty T, Chand B, Bachellier-Bassi S, Chowdhury S, d’Enfert C, Andes DR, Sanyal K. 2019. The Candida albicans biofilm gene circuit modulated at the chromatin level by a recent molecular histone innovation. PLoS Biol 17:e3000422.

32. Revie NM, Iyer KR, Robbins N, Cowen LE. 2018. Antifungal drug resistance: evolution, mechanisms and impact. Curr Opin Microbiol 45:70–76.

33. O’Meara TR, Duah K, Guo CX, Maxson ME, Gaudet RG, Koselnky K, Wellington M, Powers ME, MacAlpine J,
O'Meara MJ, Veri AO, Grinstein S, Noble SM, Krysan D, Gray-Owen SD, Cowen LE. 2018. High-Throughput Screening Identifies Genes Required for Candida albicans Induction of Macrophage Pyroptosis. MBio 9:a019620.

Pradhan A, Avelar GM, Bain JM, Childers DS, Larcombe DE, Netea MG, Shekhova E, Munro CA, Brown GD, Erwig LP, Gow NAR, Brown AJP. 2018. Hypoxia Promotes Immune Evasion by Triggering β-Glucan Masking on the Candida albicans Cell Surface via Mitochondrial and cAMP-Protein Kinase A Signaling. MBio 9.

Cottier F, Sherrington S, Cockerill S, Del Olmo Toledo V, Kissane S, Tournu H, Orsini L, Palmer GE, Pérez JC, Hall RA. 2019. Remasking of Candida albicans β-Glucan in Response to Environmental pH Is Regulated by Quorum Sensing. MBio 10.

Wheeler RT, Kombe D, Agarwala SD, Fink GR. 2008. Dynamic, morphotype-specific Candida albicans β-Glucan exposure during infection and drug treatment. PLoS Pathog 4:e1000227-12.

Plaine A, Walker L, Da Costa G, Mora-Montes HM, McKinnon A, Gow NAR, Gaillardin C, Munro CA, Richard ML. 2008. Functional analysis of Candida albicans GPI-anchored proteins: Roles in cell wall integrity and caspofungin sensitivity. Fungal Genet Biol 45:1404–1414.

Weissman Z, Kornitzer D. 2004. A family of Candida cell surface haem-binding proteins involved in haemin and haemoglobin-iron utilization. Mol Microbiol 53:1209–1220.

Yang J, Anishchenko I, Park H, Peng Z, Ovchinnikov S, Baker D. 2020. Improved protein structure prediction using predicted inter-residue orientations. Proc Natl Acad Sci U S A https://doi.org/10.1101/846279.

Yu HY, Ziegelhoffer T, Osiipuk J, Ciesielski SJ, Baranowski M, Zhou M, Joachimiak A, Craig EA. 2015. Roles of Intramolecular and Intermolecular Interactions in Functional Regulation of the Hsp70 J-protein Co-Chaperone Sis1. J Mol Biol 427:1632–1643.

Senn H, Shapiro RS, Cowen LE. 2012. Cdc28 provides a molecular link between Hsp90, morphogenesis, and cell cycle progression in Candida albicans. Mol Biol Cell 23:268–283.

Bishop A, Lane R, Beniston R, Chapa-y-Lazo B, Smythe C, Sudbery P. 2010. Hyphal growth in Candida albicans requires the phosphorylation of Sec2 by the Cdc28-Ccn1/Hgc1 kinase. EMBO J 29:2930–2942.

Kim SH, Iyer KR, Pardeshi L, Muñoz JF, Robbins N, Cuomo CA, Wong KH, Cowen LE. 2019. Genetic Analysis of Candida auris Implicates Hsp90 in Morphogenesis and Azole Tolerance and Cdr1 in Azole Resistance. MBio 10:e02529-18.

Bachewich C, Thomas DY, Whiteway M. 2003. Depletion of a polo-like kinase in Candida albicans activates cyclase-dependent hyphal-like growth. Mol Biol Cell 14:2163–2180.

Gillis J, Pavlidis P. 2011. The role of indirect connections in gene networks in predicting function. Bioinformatics 27:1860–1866.

Wickham H. 2016. ggplot2: Elegant Graphics for Data Analysis. Springer.

Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J, Bealer K, Madden TL. 2009. BLAST+: architecture
and applications. BMC Bioinformatics 10:421.

478 48. Stark C, Breitkreutz B-J, Reguly T, Boucher L, Breitkreutz A, Tyers M. 2006. BioGRID: a general repository for
interaction datasets. Nucleic Acids Res 34:D535-9.

479 49. Kim H, Shin J, Kim E, Kim H, Hwang S, Shim JE, Lee I. 2014. YeastNet v3: a public database of data-specific and
integrated functional gene networks for Saccharomyces cerevisiae. Nucleic Acids Res 42:D731-6.

480 50. Conway JR, Lex A, Gehlenborg N. 2017. UpSetR: an R package for the visualization of intersecting sets and their
properties. Bioinformatics 33:2938–2940.

481 51. Carlson M. 2013. GO. db: A set of annotation maps describing the entire Gene Ontology. 2015. R package version 3.

482 52. Cao J, Spielmann M, Qiu X, Huang X, Ibrahim DM, Hill AJ, Zhang F, Mundlos S, Christiansen L, Steemers FJ,
Trapnell C, Shendure J. 2019. The single-cell transcriptional landscape of mammalian organogenesis. Nature
566:496–502.

483 53. Traag VA, Waltman L, van Eck NJ. 2019. From Louvain to Leiden: guaranteeing well-connected communities. Sci
Rep 9:5233.

484 54. Wickham H. 2016. Ggplot2: elegrant graphics for data analysis.

485 55. Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, Schwikowski B, Ideker T. 2003.
Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res
13:2498–2504.

486 56. Roemer T, Jiang B, Davison J, Ketela T, Veillette K, Breton A, Tandia F, Linteau A, Sillaots S, Marta C, Martel N,
Veronneau S, Lemieux S, Kauffman S, Becker J, Storms R, Boone C, Bussey H. 2003. Large-scale essential gene
identification in Candida albicans and applications to antifungal drug discovery. Mol Microbiol 50:167–181.
Figures and Legends:

Figure 1: Generating a co-expression network for *C. albicans*. A) A gene-by-environment heatmap generated from collected *C. albicans* RNAseq experiments from the SRA. The *C. albicans* genes are on the Y-axis and conditions are on the X-axis. B) A gene-by-gene heatmap generated from Spearman rank correlation. C) UMAP embedding reveals functional clusters. Annotations were determined by GO term enrichment of genes in each cluster.
Figure 2: CalCEN provides a robust orthogonal approach to identifying gene function. A) UpSet plot of network overlap. BlastP network is thresholded at Evalue < 1e-5, CalCEN thresholded at top 1%. Each bar in the upper region shows the number of gene-nodes in the intersection of the set of networks indicated by the rows with filled circles in the lower region. B) For each annotated GO term colored by ontology biological process (BP), cellular component (CC) or molecular function (MF), the CalCEN neighbor-voting guilt-by-association (GBA) area under the ROC curve (AUROC) is plotted as a function of the degree-null (genes predicted based on their network degree) AUROC. C) Mean neighbor-voting GBA performance for individual and combined networks, indicted by the rows with filled circles in the lower region, for sub-ontology terms (colored dots), all terms (black) with error bars representing the standard error in the mean over 10-fold cross validation replicas. Degree-null predictive accuracy for each network is shown in grey. D) Mean neighbor-voting GBA performance for the CalCEN built over random subsets of RNAseq studies. The blue curve represents a mean of a non-parametric LOESS fit with standard deviation in dark grey. As the number of studies increases, the performance increases.
Figure 3: Retrospective analysis identifies functional clusters of genes in *C. albicans*. A) Ribosomal proteins form a densely connected co-expression cluster. B) Histone proteins are highly connected, except for the HHT1 variant histone protein. C) Hsp90 is co-expressed with Hsp90 co-chaperones, as well as multiple other functional classes of proteins. D) Erg11 is co-expressed with other components of the ergosterol biosynthetic cascade. Nodes represent the genes, and the edge width corresponds to the degree of co-expression.

Figure 4: GPI-anchored proteins in *C. albicans* show distinct co-expression clusters. 27 GPI-anchored proteins were used as seeds to generate co-expression clusters. Genes were included as co-expressed if they passed the top 2% cutoff.
Figure 5: Identification of C4_06590W, or CCJ1, as a novel cell cycle regulator. A) Ccj1 contains a J domain. TrRosetta was used to generate a de novo fold for the Ccj1 protein, and the structure was overlaid on the S. cerevisiae Sis1 DnaJ protein crystal structure. B) The co-expression network for Ccj1 identifies multiple cell cycle proteins. C) Repression of CCJ1 with 5 μg/mL DOX results in aberrant filamentation in the absence of an inducing cue. Nuclei were stained using Hoechst. D) Repression of CCJ1 with 5 μg/mL DOX results in hypersensitivity to 12.5 mM hydroxyurea. Data from two biological replicates, with two technical replicates each. E) Repression of Ccj1 results in hyperfilamentation in response to 12.5 mM hydroxyurea. Cells were incubated in YPD with 12.5 mM hydroxyurea and the presence or absence of 5 μg/mL of doxycycline overnight before imaging.
Figure S1: A) 1399 RNA-seq runs from 18 identified studies are scatter-plotted as the number of genes with non-zero expression vs. the fraction transcripts that map exactly once. B) The 853 runs that have non-zero expression for at least half of the genes (3113), which are used to construct the CaICEN network, are shown in black.
Figure S2: For each annotated GO term colored by ontology biological process (BP), cellular component (CC) or molecular function (MF), the indicated network neighbor-voting guilt-by-association (GBA) area under the ROC curve (AUROC) is plotted as a function of the degree-null (genes predicted based on their network degree) AUROC.

Figure S3: The 853 RNA-seq runs are embedded by reducing the 6226 dimension gene-expression profiles to 100 dimensions using principal component analysis and then to 2 dimensions using UMAP using min_dist=0.5 and n_neighbors=30. Runs were then labeled by their study accession and plotted using ggplot2.
Conflicts of interest:

The authors declare no conflicts of interest.

Acknowledgements:

This research was supported in part through computational resources and services provided by Advanced Research Computing at the University of Michigan, Ann Arbor. TRO was supported by the University of Michigan Biological Sciences Scholars Program (BSSP). We thank Merck and the University of Toronto for making the GRACE *C. albicans* mutant collection available.
A

![Image of protein structure](image)

- Ccj1
- ScSis1 (PDB: 4RWU)

B

![Gene interaction network](image)

- Biological process unknown
- Nucleotide metabolism
- Cell cycle

C

DIC	WT	tetO-CCJ1/ccj1Δ
HOECHST	-DOX	+DOX

D

	-DOX	+DOX
% growth in 12.5 mM HU		****
WT		
tetO-CCJ1/ccj1Δ		

E

- 12.5 mM Hydroxyurea

	WT	tetO-CCJ1/ ccj1Δ
-DOX		
+DOX		

CC-BY-NC-ND 4.0 International license

The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under a