An Ore-type condition for hamiltonicity in tough graphs and the extremal examples

Songling Shan∗
Illinois State University, Normal, IL 61790
sshan12@ilstu.edu

November 1, 2022

Abstract. Let G be a t-tough graph on $n \geq 3$ vertices for some $t > 0$. It was shown by Bauer et al. in 1995 that if the minimum degree of G is greater than $\frac{2n}{t+1} - 1$, then G is hamiltonian. In terms of Ore-type hamiltonicity conditions, the problem was only studied when t is between 1 and 2, and recently the author proved a general result. The result states that if the degree sum of any two nonadjacent vertices of G is greater than $2n\frac{t}{t+1} + t - 2$, then G is hamiltonian. It was conjectured in the same paper that the “$+t$” in the bound $2n\frac{t}{t+1} + t - 2$ can be removed. Here we confirm the conjecture. The result generalizes the result by Bauer et al.. Furthermore, we characterize all t-tough graphs G on $n \geq 3$ vertices for which $\sigma_2(G) = 2\frac{n}{t+1} - 2$ but G is non-hamiltonian.

Keywords. Ore-type condition; toughness; hamiltonian cycle.

1 Introduction

We consider only simple graphs. Let G be a graph. Denote by $V(G)$ and $E(G)$ the vertex set and edge set of G, respectively. Let $v \in V(G)$, $S \subseteq V(G)$, and $H \subseteq G$. Then $N_G(v)$ denotes the set of neighbors of v in G, $d_G(v) := |N_G(v)|$ is the degree of v in G, and $\delta(G) := \min \{d_G(v) : v \in V(G)\}$ is the minimum degree of G. Define $\text{deg}_G(v, H) = |N_G(v) \cap V(H)|$, $N_G(S) = (\bigcup_{x \in S} N_G(x)) \setminus S$, and we write $N_G(H)$ for $N_G(V(H))$. Let $N_H(v) = N_G(v) \cap V(H)$ and $N_H(S) = N_G(S) \cap V(H)$. Again, we write $N_H(R)$ for $N_H(V(R))$ for any subgraph R of G. We use $G[S]$ and $G - S$ to denote the subgraphs of G induced by S and $V(G) \setminus S$, respectively. For notational simplicity we write $G - x$ for $G - \{x\}$. Let $V_1, V_2 \subseteq V(G)$ be two disjoint vertex sets. Then $E_G(V_1, V_2)$ is the set of edges in G with one endvertex in V_1 and the other endvertex in V_2. For two integers a and b, let $[a, b] = \{i \in \mathbb{Z} : a \leq i \leq b\}$.

∗Partially supported by NSF grant DMS-2153938.
Throughout this paper, if not specified, we will assume t to be a nonnegative real number. The number of components of a graph G is denoted by $c(G)$. The graph G is said to be t-tough if $|S| \geq t \cdot c(G - S)$ for each $S \subseteq V(G)$ with $c(G - S) \geq 2$. The toughness $\tau(G)$ is the largest real number t for which G is t-tough, or is ∞ if G is complete. This concept was introduced by Chvátal [7] in 1973. It is easy to see that if G has a hamiltonian cycle then G is 1-tough. Conversely, Chvátal [7] conjectured that there exists a constant t_0 such that every t_0-tough graph is hamiltonian. Bauer, Broersma and Veldman [1] have constructed t-tough graphs that are not hamiltonian for all $t < \frac{9}{4}$, so t_0 must be at least $\frac{9}{4}$ if Chvátal’s toughness conjecture is true.

Chvátal’s toughness conjecture has been verified for certain classes of graphs including planar graphs, claw-free graphs, co-comparability graphs, and chordal graphs [2]. The classes also include 2K_2-free graphs [6, 14, 12], ($P_2 \cup P_3$)-free graphs [15], and R-free graphs for $R \in \{P_2 \cup P_3, P_3 \cup 2P_1, P_2 \cup kP_1\}$ [9, 15, 16], where $k \geq 4$ is an integer. In general, the conjecture is still wide open. In finding hamiltonian cycles in graphs, sufficient conditions such as Dirac-type and Ore-type conditions are the most classic ones.

Theorem 1.1 (Dirac’s Theorem [8]). If G is a graph on $n \geq 3$ vertices with $\delta(G) \geq \frac{n}{2}$, then G is hamiltonian.

Define $\sigma_2(G) = \min\{d_G(u) + d_G(v) : u, v \in V(G) \text{ and they are nonadjacent}\}$ if G is noncomplete, and define $\sigma_2(G) = \infty$ otherwise. Ore’s Theorem, as a generalization of Dirac’s Theorem, is stated below.

Theorem 1.2 (Ore’s Theorem [11]). If G is a graph on $n \geq 3$ vertices with $\sigma_2(G) \geq n$, then G is hamiltonian.

Analogous to Dirac’s Theorem, Bauer, Broersma, van den Heuvel, and Veldman [4] proved the following result by incorporating the toughness of the graph.

Theorem 1.3 (Bauer et al. [4]). Let G be a t-tough graph on $n \geq 3$ vertices. If $\delta(G) > \frac{n}{t+1} - 1$, then G is hamiltonian.

A natural question here is whether we can find an Ore-type condition involving the toughness of G that generalizes Theorem 1.3. Various theorems were proved prior to Theorem 1.3 by only taking $\tau(G)$ between 1 and 2 [10, 3, 5]. Let G be a t-tough graph on $n \geq 3$ vertices. The author in [13] showed that if $\sigma_2(G) > \frac{2n}{t+1} + t - 2$, then G is hamiltonian. It was also conjectured in [13] that $\sigma_2(G) > \frac{2n}{t+1} - 2$ is the right bound. In this paper, we confirm the conjecture. For any odd integer $n \geq 3$, the complete bipartite graph $G := K_{\frac{n-1}{2}, \frac{n-1}{2}}$ is $\frac{n-1}{n+1}$-tough and satisfies $\sigma_2(G) = n - 1 = \frac{2n}{1+\frac{2}{n+1}} - 2$. However, G is not hamiltonian. Thus, the degree sum condition that $\sigma_2(G) > \frac{2n}{t+1} - 2$ is best possible for a t-tough graph on at least three vertices to be hamiltonian. In fact, for any odd integers $n \geq 3$, any graph from the family $\mathcal{H} = \{H_{\frac{n-1}{2}} + \overline{K}_{\frac{n+1}{2}} : H_{\frac{n-1}{2}} \text{ is any graph on } \frac{n-1}{2} \text{ vertices}\}$ is an extremal graph, where “+” represents the join of two graphs. We also show that \mathcal{H} is the only family of extremal graphs.
Theorem 1. Let G be a t-tough graph on $n \geq 3$ vertices. Then the following statements hold.

(a) If $\sigma_2(G) > \frac{2n}{t+1} - 2$, then G is hamiltonian.

(b) If $\sigma_2(G) = \frac{2n}{t+1} - 2$ and G is not hamiltonian, then $G \in \mathcal{H}$.

The remainder of this paper is organized as follows: in Section 2, we introduce some notation and preliminary results, and in Section 3, we prove Theorem 1.

2 Preliminary results

Let G be a graph and λ be a positive integer. Following [17], a cycle C of G is a D_λ-cycle if every component of $G - V(C)$ has order less than λ. Clearly, a D_1-cycle is just a hamiltonian cycle. We denote by $c_\lambda(G)$ the number of components of G with order at least λ, and write $c_1(G)$ just as $c(G)$. Two subgraphs H_1 and H_2 of G are remote if they are disjoint and there is no edge of G joining a vertex of H_1 with a vertex of H_2. For a subgraph H of G, let $d_G(H) = |N_G(H)|$ be the degree of H in G. We denote by $\delta_\lambda(G)$ the minimum degree of a connected subgraph of order λ in G. Again $\delta_1(G)$ is just $\delta(G)$.

Lemma 1 ([15]). Let $t > 0$ and G be a non-complete n-vertex t-tough graph. Then $|W| \leq \frac{n}{t+1}$ for every independent set W in G.

The following lemma provides a way of extending a cycle C provided that the vertices outside C have many neighbors on C. The proof follows from Lemma 1 and is very similar to the proof of Lemma 10 in [15].

Lemma 2. Let $t > 0$ and G be an n-vertex t-tough graph, and let C be a non-hamiltonian cycle of G. If $x \in V(G) \setminus V(C)$ satisfies $d_G(x, C) > \frac{n}{t+1} - 1$, then G has a cycle C' such that $V(C') = V(C) \cup \{x\}$.

Let C be an oriented cycle. We assume that the orientation is clockwise throughout the rest of this paper. For $x \in V(C)$, denote the immediate successor of x on C by x^+ and the immediate predecessor of x on C by x^-. For $u, v \in V(C)$, $u \overset{C}{\rightarrow} v$ denotes the segment of C starting at u, following C in the orientation, and ending at v. Likewise, $u \overset{C}{\leftarrow} v$ is the opposite segment of C with endpoints as u and v. Let dist$_C(u, v)$ denote the length of the path $u \overset{C}{\rightarrow} v$. For any vertex $u \in V(C)$ and any positive integer k, define

$$L^+_u(k) = \{v \in V(C) : \text{dist}_C(u, v) \in [1, k]\}$$

to be the set of k consecutive successors of u. Hereafter, all cycles under consideration are oriented.
A path P connecting two vertices u and v is called a (u, v)-path, and we write uPv or vPu in order to specify the two endvertices of P. Let uPv and xQy be two paths. If uv is an edge, we write $uPuvQy$ as the concatenation of P and Q through the edge uv.

For an integer $\lambda \geq 1$, if a graph G contains a $D_{\lambda+1}$-cycle C but no D_{λ}-cycle, then $V(G) \setminus V(C) \neq \emptyset$. Furthermore, $G - V(C)$ has a component of order λ. The result below with $d_G(H)$ replaced by $\delta(G)$ and H replaced by any component of $G - V(C)$ with order λ was proved in [4, Corollary 7(a)].

Lemma 3 ([13]). Let G be a t-tough 2-connected graph of order n. Suppose G has a D_{s+1}-cycle but no D_s-cycle for some integer $s \geq 1$. Let C be a D_{s+1}-cycle of G such that C minimizes $c_p(G - V(C))$ prior to minimizing $c_q(G - V(C))$ for any $p, q \in \{1, s\}$ with $p > q$. Then $n \geq (t + |V(H)|)(d_G(H) + 1)$ for any component H of $G - V(C)$.

The lemma below is the key to get rid of the “+t” in the lower bound $\frac{2n}{t+1} + t - 2$ on $\sigma_2(G)$ as proved in Theorem 4 from [13].

Lemma 4. Let G be a t-tough 2-connected graph of order n. Suppose that G has a $D_{\lambda+1}$-cycle but no D_{λ}-cycle for some integer $\lambda \geq 1$. Let C be a cycle of G. Suppose each component of $G - V(C)$ either has order at most $\lambda - 1$ or is a path of order at least λ. Then $G - V(C)$ has a path-component H with order at least λ such that $\deg_G(x,C) \leq \frac{n}{t+1} - \lambda$ for some $x \in V(H)$.

Proof. Since G has no D_{λ}-cycle, it is clear that $G - V(C)$ has a path-component of order at least λ. We suppose to the contrary that for each path-component P with order at least λ of $G - V(C)$ and each $x \in V(P)$, we have $\deg_G(x,C) > \frac{n}{t+1} - \lambda$. Among all cycles C' of G that satisfies the two conditions below, we may assume that C is one that minimizes $c_p(G - V(C))$ prior to minimizing $c_q(G - V(C))$ for any $p \geq \lambda$ and any q with $q < p$.

1. each component of $G - V(C)$ either has order at most $\lambda - 1$, or
2. the component is a path P of order at least λ such that for each $x \in V(P)$, we have $\deg_G(x,C) > \frac{n}{t+1} - \lambda$.

We take a path-component P with order at least λ and assume that $N_C(P)$ has size k for some integer $k \geq 2$, and that the k neighbors are v_1, \ldots, v_k and appear in the same order along C. Note that $k > \frac{n}{t+1} - \lambda$ by our assumption. For each $i \in [1, k]$, and each $v \in V(v_i^+\overrightarrow{C}v_{i+1}^-)$, where $v_{k+1} := v_1$, we let $\mathcal{C}(v)$ be the set of components of $G - V(C)$ that have a vertex joining to v by an edge in G. As $N_C(P) \cap V(v_i^+\overrightarrow{C}v_{i+1}^-) = \emptyset$, we have $P \notin \mathcal{C}(v)$. Let $w_i^* \in V(v_i^+\overrightarrow{C}w_{i+1}^-)$ be the vertex with $\dist_{\overrightarrow{C}}(v_i, w_i^*)$ minimum such that

$$
\sum_{D \in \bigcup_{v \in V(v_i^+\overrightarrow{C}w_{i+1}^-)} \mathcal{C}(v)} |V(D)| + |V(v_i^+\overrightarrow{C}w_i^*)| \geq \lambda.
$$
If such a vertex \(w^*_i \) exists, let \(L^*_v(\lambda) \) be the union of the vertex set \(V(v^+_i \mathrel{\overset{\sim}{\rightarrow}} C w^*_i) \) and all those vertex sets of graphs in \(\bigcup_{v \in V(v^+_i \mathrel{\overset{\sim}{\rightarrow}} C w^*_i)} \mathcal{C}(v) \); if such a vertex \(w^*_i \) does not exist, let \(L^*_v(\lambda) = L^+_v(\lambda) \). Note that when \(w^*_i \) exists, by its definition, \(w^*_i \in V(v^+_i \mathrel{\overset{\sim}{\rightarrow}} C v^*_{i+1}) \). Thus \(V(v^+_i \mathrel{\overset{\sim}{\rightarrow}} C w^*_i) \cap V(v^+_i \mathrel{\overset{\sim}{\rightarrow}} C w^*_j) = \emptyset \) if both \(w^*_i \) and \(w^*_j \) exist for distinct \(i, j \in [1, k] \).

We will show that we can make the following assumptions:

(a) If for some \(i \in [1, k] \), it holds that \(L^*_v(\lambda) = L^+_v(\lambda) \), then dist\(_C^-(v_i, v_j) \geq \lambda + 1 \) for any \(j \in [1, k] \) with \(j \neq i \); and

(b) For distinct \(i, j \in [1, k] \), \(v \in L^*_v(\lambda) \cap V(v^+_i \mathrel{\overset{\sim}{\rightarrow}} C v^*_{i+1}) \) and \(u \in L^*_v(\lambda) \cap V(v^+_j \mathrel{\overset{\sim}{\rightarrow}} C v^*_{j+1}) \), we have \(\mathcal{C}(v) \cap \mathcal{C}(u) = \emptyset \).

(c) \(L^*_v(\lambda) \) and \(L^*_v(\lambda) \) are pairwise remote for any distinct \(i, j \in [1, k] \).

With Assumptions (a), (b) and (c), we can reach a contradiction as follows: note that \(L^*_v(\lambda) \) and \(L^*_v(\lambda) \) are remote for any distinct \(i, j \in [1, k] \) and \(P \) and \(L^*_v(\lambda) \) are remote for any \(i \in [1, k] \). Let \(S = V(G) \setminus \left(\left(\bigcup_{i=1}^k L^*_v(\lambda) \right) \cup V(P) \right) \). Then \(|S| \leq n - (k + \lambda) \) and \(c(G - S) = k + 1 \). As \(G \) is \(t \)-tough, we get

\[
n - (k + 1) \lambda \geq |S| \geq t \cdot c(G - S) = t(k + 1),
\]
giving \(k \leq \frac{n}{t+\lambda} - 1 \). Since \(n \geq \lambda + (t + 1) \) by Lemma 3 \((G \) has a \(D_{\lambda+1} \)-cycle \(C' \) such that \(G - V(C') \) has a component \(H \) of order \(\lambda \) and \(d_C(H) \geq 2t \) by \(G \) being \(t \)-tough), we get \(k \leq \frac{n}{t+\lambda} - 1 \leq \frac{n}{t+1} - \lambda \). This gives a contradiction to \(k > \frac{n}{t+1} - \lambda \). Thus we are only left to show Assumptions (a), (b) and (c). We show that if any one of the assumptions is violated, then we can decrease \(c_p(G - V(C)) \) for some \(p \geq \lambda \).

For Assumption (a), if \(L^*_v(\lambda) = L^+_v(\lambda) \) for some \(i \in [1, k] \) but dist\(_C^-(v_i, v_j) \leq \lambda \) for some \(v_j \in NC(P) \) with \(j \neq i \), then there must exist two consecutive indices \(i, j \in [1, k] \) such that dist\(_C^-(v_i, v_j) \leq \lambda \). Thus we may just assume \(j = i+1 \), where the index is taken modulo \(k \). Let \(v^*_i, v^*_i \in V(P) \) such that \(v_i v^*_i, v_{i+1} v^*_i \in E(G) \). Let \(C_1 = v_i \mathrel{\overset{\sim}{\rightarrow}} C v^*_i \mathrel{\overset{\sim}{\rightarrow}} C v_{i+1} \mathrel{\overset{\sim}{\rightarrow}} C v^*_i \mathrel{\overset{\sim}{\rightarrow}} C v_i \). Note that the component of \(G - V(C_1) \) containing \(v^*_i \mathrel{\overset{\sim}{\rightarrow}} C v^*_{i+1} \) has order at most \(\lambda - 1 \) by the assumption that \(L^*_v(\lambda) = L^+_v(\lambda) \) and dist\(_C(v_i, v_{i+1}) \leq \lambda \). Thus any vertex from a component of \(G - V(C) \) with order at least \(\lambda \) is not adjacent in \(G \) to any vertex from \(v^*_i \mathrel{\overset{\sim}{\rightarrow}} C v^*_{i+1} \). Furthermore, any vertex from each component of \(P - V(v^*_i \mathrel{\overset{\sim}{\rightarrow}} C v^*_{i+1}) \) is not adjacent in \(G \) to any vertex from \(v^*_i \mathrel{\overset{\sim}{\rightarrow}} C v^*_{i+1} \). Hence each component of \(G - V(C_1) \) either has order at most \(\lambda - 1 \) or is a path-component of order at least \(\lambda \) such that each vertex from the component has in \(G \) more than \(\frac{n}{t+1} - \lambda \) neighbors on \(C_1 \). Furthermore, for any \(w \in V(P - V(v^*_i \mathrel{\overset{\sim}{\rightarrow}} C v^*_{i+1})) \), \(\deg_G(w, C_1) > \frac{n}{t+1} - \lambda \). However, \(c_{P}(G - V(C_1)) < c_{P}(G - V(C)) \) and \(c_{q}(G - V(C_1)) = c_{q}(G - V(C)) \) for any \(q > |V(P)| \), contradicting the choice of \(C \). Therefore we have Assumption (a).
For Assumption (b), if for some distinct \(i, j \in [1, k]\), \(v \in L_{v_i}(\lambda) \cap V(v_j^+Cv_{i+1})\) and \(u \in L_{v_j}(\lambda) \cap V(v_j^+Cv_{j+1})\), we have \(C(v) \cap C(u) \neq \emptyset\), we then further choose \(v\) closest to \(v_i\) and \(u\) closest to \(v_j\) along \(\tilde{C}\) with the property. Thus for any \(w_i \in V(v_i^+Cv^-)\) and any \(w_j \in V(v_j^+Cu^-)\), it holds that \(C(w_i) \cap C(w_j) = \emptyset\). Let \(D \in C(v) \cap C(u)\) and \(v', u' \in V(D)\) such that \(v', u' \in E(G)\), and \(P'\) be a \((v', u')\)-path of \(D\). Let \(v_i^*, v_j^* \in V(P)\) such that \(v_iv_i^*, v_jv_j^* \in E(G)\). Then \(C_1 = v_iv_i^*Pu_j^*v_jPu'v'\) is a cycle. Since each of \(V(v_i^+Cv^-)\) and \(V(v_j^+Cu^-)\) contain at most \(\lambda - 1\) vertices and they are proper subsets of \(L_{v_i}(\lambda) \cap V(v_i^+Cv_{i+1})\) and \(L_{v_j}(\lambda) \cap V(v_j^+Cu_{j+1})\) respectively, by Assumption (a) above, we have \(N_C(P) \cap (V(v_i^+Cv^-) \cup V(v_j^+Cu^-)) = \emptyset\). By the choices of \(v\) and \(u\), the components of \(G - V(C_1)\) that respectively contain \(v_i^+Cv^-\) and \(v_j^+Cu^-\) are disjoint. Since \(V(v_i^+Cv^-)\) is a proper subset of \(L_{v_i}(\lambda) \cap V(v_i^+Cv_{i+1})\) and \(V(v_j^+Cu^-)\) is a proper subset of \(L_{v_j}(\lambda) \cap V(v_j^+Cu_{j+1})\), it follows by the definitions of \(L_{v_i}\) and \(L_{v_j}\) that the components of \(G - V(C_1)\) that respectively contain \(v_i^+Cv^-\) and \(v_j^+Cu^-\) have order at most \(\lambda - 1\). By the same reasoning as in proving Assumption (a), we know that each component of \(G - V(C_1)\) has order at most \(\lambda - 1\) or is a path-component such that each vertex from the component has in \(G\) more than \(\frac{\lambda}{\lambda + 1} - \lambda\) neighbors on \(C_1\). However, \(c_{V(P)}(G - V(C_1)) < c_{V(P)}(G - V(C))\) and \(c_{q}(G - V(C_1)) = c_{q}(G - V(C))\) for any \(q \geq |V(P)|\), contradicting the choice of \(C\). Thus we have Assumption (b).

For Assumption (c), assume to the contrary that \(E_G(L_{v_i}(\lambda), L_{v_j}(\lambda)) \neq \emptyset\) for some distinct \(i, j \in [1, k]\). Applying Assumption (b), we know that \(L_{v_i}(\lambda) \cap L_{v_j}(\lambda) = \emptyset\). Since there is no edge between any two components of \(G - V(C)\), \(E_G(L_{v_i}(\lambda), L_{v_j}(\lambda)) \neq \emptyset\) implies that there exist \(y \in L_{v_i}(\lambda) \cap V(v_i^+Cv_{i+1})\) and \(z \in L_{v_j}(\lambda) \cap V(v_j^+Cu_{j+1})\) such that \(yz \in E(G)\). We choose \(y \in L_{v_i}(\lambda) \cap V(v_i^+Cv_{i+1})\) with dist\(_G\)(\(v_i, y\)) minimum and \(z \in L_{v_j}(\lambda) \cap V(v_j^+Cu_{j+1})\) with dist\(_G\)(\(v_j, z\)) minimum such that \(yz \in E(G)\). By this choice of \(y\) and \(z\), it follows that \(E_G(V(y_i^+Cy^-), V(y_j^+Cz^-)) = \emptyset\). Let \(v_i^*, v_j^* \in V(P)\) such that \(v_i^*v_i^*, v_j^*v_j^* \in E(G)\), and let \(C_1 = v_i^*Cyzv_j^*Pu_j^*v_j^*\). Note that no vertex of \(P\) is adjacent in \(G\) to any vertex of \(v_i^+Cy^-\) or \(v_j^+Cz^-\) by the fact that \(V(v_i^+Cy^-) \subseteq L_{v_i}(\lambda) \cap V(v_i^+Cv_{i+1})\) and \(V(v_j^+Cz^-) \subseteq L_{v_j}(\lambda) \cap V(v_j^+Cu_{j+1})\) and Assumption (a). By Assumption (b) and the definitions of \(L_{v_i}(\lambda)\) and \(L_{v_j}(\lambda)\), we know that \(v_i^+Cy^-\) and \(v_j^+Cz^-\) are respectively contained in distinct components of \(G - V(C_1)\) that each of order at most \(\lambda - 1\). By the same reasoning as in proving Assumption (a), we know that each component of \(G - V(C_1)\) has order at most \(\lambda - 1\) or is a path-component such that each vertex from the component has in \(G\) more than \(\frac{\lambda}{\lambda + 1} - \lambda\) neighbors on \(C_1\). However, \(c_{V(P)}(G - V(C_1)) < c_{V(P)}(G - V(C))\) and \(c_{q}(G - V(C_1)) = c_{q}(G - V(C))\) for any \(q \geq |V(P)|\), contradicting the choice of \(C\). Thus we have Assumption (c).

The proof is now completed. \(\square\)
3 Proof of Theorem 1

We may assume that G is not a complete graph. Thus G is $2\lceil t \rceil$-connected as it is t-tough. Suppose to the contrary that G is not hamiltonian. By Theorem 1.3, we have $\delta(G) \leq \frac{n}{t+1} - 1$. Since $\delta(G) \geq 2\lceil t \rceil$, we get

$$n \geq (t + 1)(2\lceil t \rceil + 1).$$

Claim 1. We may assume that G is 2-connected.

Proof. Since $t > 0$, G is connected. Assume to the contrary that G has a cutvertex x. By considering the degree sum of two vertices respectively from two components of $G - x$, we know that $\sigma_2(G) \leq n - 1$. On the other hand, G has a cutvertex implies $t \leq \frac{1}{2}$ and so $\sigma_2(G) \geq \frac{4n}{3} - 2$. If $\sigma_2(G) > \frac{4n}{3} - 2$, then we get a contradiction to $\sigma_2(G) \leq n - 1$ as $n \geq 3$. Thus we assume $\sigma_2(G) = \frac{4n}{3} - 2$, which contradicts $\sigma_2(G) \leq n - 1$ if $n \geq 4$. Thus $n = 3$ and so $G = P_3$, but this implies $G \in \mathcal{H}$.

Since G is 2-connected, G contains cycles. We choose $\lambda \geq 0$ to be a smallest integer such that G admits no D_λ-cycle but a $D_{\lambda+1}$-cycle. Then we choose C to be a longest $D_{\lambda+1}$-cycle that minimizes $c_p(G - V(C))$ prior to minimizing $c_q(G - V(C))$ for any $p, q \in [1, \lambda]$ with $p > q$. As G is not hamiltonian, we have $\lambda \geq 1$. Thus $V(G) \setminus V(C) \neq \emptyset$. Since λ is taken to be minimum, $G - V(C)$ has a component H of order λ. Let

$$W = N_C(H) \quad \text{and} \quad \omega = |W|.$$

Since G is a connected t-tough graph, it follows that $\omega \geq 2\lceil t \rceil$. On the other hand, Lemma 3 implies that $\omega \leq \frac{n}{t+\lambda} - 1$.

Claim 2.

$$\begin{cases}
\lambda + \omega < \frac{n}{t+1} & \text{if } \lambda \geq 2, \\
\lambda + \omega \leq \frac{n}{t+1} & \text{if } \lambda = 1.
\end{cases}$$

Proof. Assume to the contrary that the statement does not hold. If $\lambda = 1$, then $\lambda + \omega > \frac{n}{t+1}$ gives $\omega > \frac{n}{t+1} - 1$. By Lemma 2, we can find a cycle C' with $V(C') = V(C) \cup V(H)$, contradicting the choice of C.

Thus $\lambda \geq 2$ and $\lambda + \omega \geq \frac{n}{t+1}$. Since $2t \leq \omega \leq \frac{n}{t+\lambda} - 1 \leq \frac{n}{t+2} - 1$, we have $n \geq (t+2)(2t+1)$.

7
By Lemma 3, we have
\[n \geq (\lambda + t)(\omega + 1) \geq \left(\frac{n}{t+1} - \omega + t \right)(\omega + 1) = \left(\frac{n}{t+1} \right)(\omega + 1) - \omega - t \geq \frac{n}{t+1} \lambda + \omega \geq \frac{n}{t+1} \quad \text{by our assumption.} \]

\[\geq \begin{cases}
\left(\frac{n}{t+1} - 2t + t \right)(2t + 1), & \text{if } f(\omega) = (\frac{n}{t+1} - \omega + t)(\omega + 1) \text{ is increasing;} \\
\left(\frac{n}{t+1} - \frac{n}{t+1} - 1 + t \right) \frac{n}{t+1}, & \text{if } f(\omega) = (\frac{n}{t+1} - \omega + t)(\omega + 1) \text{ is decreasing;} \\
n + \frac{tn}{t+1} - 2t^2 - t \geq n + t(2t + 1) - 2t^2 - t > n + t(2t + 1) - 2t^2 - t = n, \\
\frac{n}{(t+1)(t+2)} \frac{n}{t+2} + \frac{(t+1)n}{t+2} \geq \frac{n}{(t+1)(t+2)} \frac{(t+2)(2t+1)}{t+2} + \frac{(t+1)n}{t+2} > \frac{n}{t+2} + \frac{(t+1)n}{t+2} = n,
\end{cases} \]

reaching a contradiction. □

Claim 3. If \(\sigma_2(G) \geq \frac{2n}{t+1} - 2 \), then \(H \) is the only component of \(G - V(C) \).

Proof. Suppose \(H^* \neq H \) is another component of \(G - V(C) \). Since \(\sigma_2(G) \geq \frac{2n}{t+1} - 2 \), Claim 2 implies that \(|V(H^*)| + |N_C(V(H^*))| > \sigma_2(G) - (\frac{n}{t+1} - 1) + 1 \geq \frac{n}{t+1} \) if \(\lambda \geq 2 \).

Repeating exactly the same argument for \(|V(H^*)| + |N_C(V(H^*))| \) as in the proof of Claim 2 leads to a contradiction.

Thus we assume \(\lambda = 1 \). We get the same contradiction as above if \(\sigma_2(G) > \frac{2n}{t+1} - 2 \) or \(\lambda + \omega < \frac{n}{t+1} \). Thus we have \(\sigma_2(G) = \frac{2n}{t+1} - 2 \) and \(\omega = \frac{n}{t+1} - 1 \) by Claim 2. Then \(H^* \) contains also only one vertex, say \(y \). We first claim that the vertex \(y \) is adjacent in \(G \) to at most one vertex from \(W^+ \). For otherwise, suppose there are distinct \(u, v \in W^+ \) such that \(uv, vy \in E(G) \). Let \(V(H) = \{ x \} \). Then \(C^* = u \vec{C}v \vec{C}u \vec{C}v \vec{x} \vec{u} \) is a \(D_{\lambda+1} \)-cycle of \(G \) with \(c_\lambda(G - V(C^*)) < c_\lambda(G - V(C)) \). This contradicts the choice of \(C \).

We then claim that the set \(W^+ \) is an independent set in \(G \). For otherwise, suppose there are distinct \(u, v \in W^+ \) such that \(uv \in E(G) \). Let \(V(H) = \{ x \} \). Then \(C^* = u \vec{C}v \vec{C}u \vec{C}v \vec{x} \vec{u} \) is a \(D_{\lambda+1} \)-cycle of \(G \) with \(c_\lambda(G - V(C^*)) < c_\lambda(G - V(C)) \). This contradicts the choice of \(C \).

Now let \(S = V(G) \setminus (W^+ \cup V(H) \cup V(H^*)) \). Then \(c(G - S) \geq \omega + 1 \). However
\[
\frac{|S|}{c(G - S)} \leq \frac{n - \omega - 2}{\omega + 1} = \frac{n}{t+1} - 1 < t,
\]
a contradiction.

Therefore, \(H \) is the only component of \(G - V(C) \). □

Since \(H \) is the only component of \(G - V(C) \), every vertex \(v \in V(C) \setminus W \) is only adjacent in \(G \) to vertices on \(C \). As vertices from \(V(C) \setminus W \) are nonadjacent in \(G \) with vertices from \(H \), we have
\[\deg_C(v, C) \geq \sigma_2(G) - (\omega + \lambda - 1) \quad \text{for any } v \in V(C) \setminus W. \]
(1)

We construct the vertex sets \(L_u^+ \left(\frac{n}{t+1} - \omega \right) \) for each \(u \in W \). For notation simplicity, we use \(L_u^+ \) for \(L_u^+ \left(\frac{n}{t+1} - \omega \right) \).
Claim 4. (a) If \(\sigma_2(G) \geq \frac{2n}{t+1} - 2 \), then for any two distinct vertices \(u, v \in W \), we have \(\text{dist}_C^-(u, v) \geq \frac{n}{t+1} - \omega + 1 \) and \(E_G(L_u^+, L_v^+) = \emptyset \).

(b) If \(\sigma_2(G) > \frac{2n}{t+1} - 2 \), then for any two distinct vertices \(u, v \in W \), we have \(\text{dist}_C^-(u, v) > \frac{n}{t+1} - \omega + 1 \) and \(E_G(L_u^+, L_v^+) = \emptyset \).

Proof. We only show Claim 4(a), as the proof for Claim 4(b) follows the same argument by just using the strict inequality. Let \(u^* \in N_H(u) \), \(v^* \in N_H(v) \) and \(P \) be a \((u^*, v^*)\)-path of \(H \). For the first part of the statement, it suffices to show that when we arrange the vertices of \(W \) along \(C \), for any two consecutive vertices \(u \) and \(v \) from the arrangement, we have \(\text{dist}_C^-(u, v) \geq \frac{n}{t+1} - \omega + 1 \). Note that \(V(u^+ \text{C} v^-) \cap W = \emptyset \) for such pairs of \(u \) and \(v \). Assume to the contrary that there are distinct \(u, v \in W \) with \(V(u^+ \text{C} v^-) \cap W = \emptyset \) and \(\text{dist}_C^-(u, v) < \frac{n}{t+1} - \omega + 1 \). Let \(C^* = u \text{C} vv^* Pu^*u \). Since \(H \) has order \(\lambda \) and \(V(u^+ \text{C} v^-) \cap W = \emptyset \), \(H - V(P) \) is a union of components of \(G - V(C^*) \) that each is of order at most \(\lambda - 1 \) and \(u^+ \text{C} v^- \) is a path-component of \(G - V(C^*) \) of order less than \(\frac{n}{t+1} - \omega \) but at least \(\lambda \) (\(G \) has no \(D_\lambda \)-cycle). By (1), for each vertex \(x \in V(u^+ \text{C} v^-) \), \(\text{deg}_G(x, C^*) > \sigma_2(G) - \omega - 1 - \frac{n}{t+1} - \lambda \). This shows a contradiction to Lemma 4.

For the second part of the statement, we assume to the contrary that \(E_G(L_u^+, L_v^+) \neq \emptyset \). Applying the first part, we know that \(\text{dist}_C^-(u, v) \geq \frac{n}{t+1} - \omega + 1 \) and \(\text{dist}_C^-(v, u) \geq \frac{n}{t+1} - \omega + 1 \) (exchanging the role of \(u \) and \(v \)). Thus \(L_u^+ \cap L_v^+ = \emptyset \). We choose \(x \in L_u^+ \) with \(\text{dist}_C^-(u, x) \) minimum and \(y \in L_v^+ \) with \(\text{dist}_C^-(v, y) \) minimum such that \(xy \in E(G) \). By this choice of \(x \) and \(y \), it follows that \(E_G(V(u^+ \text{C} x^-), V(v^+ \text{C} y^-)) = \emptyset \). Let \(C^* = u \text{C} yx \text{C} vv^* Pu^*u \). Since \(H \) is of order \(\lambda \) and no vertex of \(H \) is adjacent in \(G \) to any vertex of \(u^+ \text{C} x^- \) or \(v^+ \text{C} y^- \) by the first part of the statement, \(H - V(P) \) is a union of components of \(G - V(C^*) \) that each is of order at most \(\lambda - 1 \). Also \(u^+ \text{C} x^- \) and \(v^+ \text{C} y^- \) are path-components of \(G - V(C^*) \) that each is of order less than \(\frac{n}{t+1} - \omega \) but at least one of them has order at least \(\lambda \).

Since \(E_G(V(u^+ \text{C} x^-), V(v^+ \text{C} y^-)) = \emptyset \), by (1), for each vertex \(w \in V(u^+ \text{C} x^-) \cup V(v^+ \text{C} y^-) \), \(\text{deg}_G(w, C^*) \geq \frac{n}{t+1} - \lambda \). This shows a contradiction to Lemma 4. \(\square \)

By Claim 4, \(L_u^+ \) and \(L_v^+ \) are remote for any two distinct \(u, v \in W \). Furthermore, \(H \) is remote with \(L_u^+ \) for any \(u \in W \). Let \(S = V(G) \setminus (\bigcup_{u \in W} L_u^+ \cup V(H)) \). Then \(e(G - S) = \omega + 1 \) and

\[
|S| < n - \omega \left(\frac{n}{t+1} - \omega \right) - \lambda \quad \text{if} \quad \sigma_2(G) > \frac{2n}{t+1} - 2,
\]

\[
|S| \leq n - \omega \left(\frac{n}{t+1} - \omega \right) - \lambda \quad \text{if} \quad \sigma_2(G) \geq \frac{2n}{t+1} - 2.
\]
As G is t-tough and so $|S| \geq tc(G - S) = t(\omega + 1)$, we get

$$
\begin{align*}
\begin{cases}
n > \omega \left(\frac{n}{t + 1} - \omega + t \right) + \lambda + t & \text{if } \sigma_2(G) > \frac{2n}{t+1} - 2, \\
n \geq \omega \left(\frac{n}{t + 1} - \omega + t \right) + \lambda + t & \text{if } \sigma_2(G) \geq \frac{2n}{t+1} - 2.
\end{cases}
\end{align*}
$$

(2) \quad (3)

Claim 5. It holds that $\sigma_2(G) = \frac{2n}{t+1} - 2$, $\lambda = 1$, and $\omega = \frac{n}{t+1} - 1$.

Proof. Suppose to the contrary that $\sigma_2(G) > \frac{2n}{t+1} - 2$, $\lambda \geq 2$, or $\omega < \frac{n}{t+1} - 1$. Assume first that the function $f(\omega) = \omega \left(\frac{n}{t+1} - \omega + t \right) + \lambda + t$ is increasing. Then as $\omega \geq 2t$ and $n \geq (t + \lambda)(\omega + 1) \geq (t + \lambda)(2t + 1)$ by Lemma 3, we have

$$
\begin{align*}
\begin{cases}
n > f(\omega) \geq f(2t) = \frac{2tn}{t+1} - 2t^2 + \lambda + t \geq n & \text{if } \sigma_2(G) > \frac{2n}{t+1} - 2, \\
n \geq f(\omega) \geq f(2t) = \frac{2tn}{t+1} - 2t^2 + \lambda + t > n & \text{if } \sigma_2(G) = \frac{2n}{t+1} - 2 \text{ and } \lambda \geq 2, \\
n \geq f(\omega) \geq f(2t) = \frac{2tn}{t+1} - 2t^2 + \lambda + t > n & \text{if } \sigma_2(G) = \frac{2n}{t+1} - 2, \lambda = 1, \text{ and } \omega < \frac{n}{t+1} - 1,
\end{cases}
\end{align*}
$$

where note that $\omega < \frac{n}{t+1} - 1$ implies $n > (t + 1)(\omega + 1) \geq (t + 1)(2t + 1)$. The above inequalities give a contradiction.

Thus $f(\omega)$ is decreasing. Note by Claim 2 that $\omega < \frac{n}{t+1} - \lambda$ when $\lambda \geq 2$ and $\omega \leq \frac{n}{t+1} - \lambda$ when $\lambda = 1$. Then as $n \geq (t + \lambda)(\omega + 1) \geq (t + \lambda)(2t + 1)$ by Lemma 3, we have

$$
f\left(\frac{n}{t+1} - \lambda \right) = \left(\frac{n}{t+1} - \lambda \right)(\lambda + t) + \lambda + t \geq n.
$$

Thus

$$
\begin{align*}
\begin{cases}
n > f(\omega) \geq f\left(\frac{n}{t+1} - \lambda \right) \geq n & \text{if } \sigma_2(G) > \frac{2n}{t+1} - 2, \\
n \geq f(\omega) > f\left(\frac{n}{t+1} - \lambda \right) \geq n & \text{if } \sigma_2(G) = \frac{2n}{t+1} - 2 \text{ and } \lambda \geq 2, \\
n \geq f(\omega) > f\left(\frac{n}{t+1} - \lambda \right) \geq n & \text{if } \sigma_2(G) = \frac{2n}{t+1} - 2, \lambda = 1, \text{ and } \omega < \frac{n}{t+1} - 1.
\end{cases}
\end{align*}
$$

The inequalities above again give a contradiction.

By Claim 5, Theorem 1(a) holds. In the rest of the proof, we show Theorem 1(b). Let $W^* = W^+ \cup V(H)$.

Since $u^+ \in L_u^+$ for each $u \in W$, Claim 4 implies that W^* is an independent set in G.

Claim 6. Every vertex in $V(G) - W^*$ is adjacent in G to at least two vertices from W^*.

Proof. Suppose to the contrary that there exists $x \in V(G) - W^*$ such that x is adjacent in G to at most one vertex from W^*. Let $S = V(G) \setminus (W^* \cup \{x\})$. Then $c(G - S) \geq \omega + 1$. However

$$
\frac{|S|}{c(G - S)} \leq \frac{n - \omega - 2}{\omega + 1} = \frac{\frac{tn}{t+1} - 1}{n+1} < t,
$$

a contradiction.

10
Claim 7. For every $v \in W^+$, we have $\deg_G(v, C) = \frac{n}{t+1} - 1$ and v is not adjacent in G to any two consecutive vertices on C.

Proof. Since $\sigma_2(G) = \frac{2n}{t+1} - 2$, we have $\deg_G(v, C) \geq \frac{n}{t+1} - 1$ for every $v \in W^+$. As W^* is an independent set in G, $v^* \not\in W^*$. By Claim 6, v^* is adjacent in G to another vertex u from W^*. If $\{u\} = V(H)$, then $C^* = v^*Cv^+uv^-$ is a $D_{\lambda+1}$-cycle of G with v being the only component of $G - V(C^*)$. Assume then that $u \in W^+$. Let $V(H) = \{x\}$. Then $C^* = v^+uCu^-Cv^+$ is a $D_{\lambda+1}$-cycle of G with v being the only component of $G - V(C^*)$.

Again, since G has no D_{λ}-cycle, it follows that $\deg_G(v, C^*) = \frac{n}{t+1} - 1$ and v is not adjacent in G to any two consecutive vertices on C^*. The claim follows as $\deg_G(v, C) = \deg_G(v, C^*)$ and two neighbors v that are consecutive on C will also be consecutive on C^*.

Our goal is to show that $N_C(W^+) = N_C(H)$. To do so, we investigate how vertices in $N_C(W^+)$ are located along C. We start with some definitions. A chord of C is an edge uv with $u, v \in V(C)$ and $uv \not\in E(C)$. Two chords ux and vy of C that do not share any endvertices are crossing if the four vertices u, v, x, y appear along C in the order u, v, x, y or u, y, x, v. For two distinct vertices $x, y \in N_C(W^+)$, we say x and y form a crossing if there exist distinct vertices $u, v \in W^+$ such that ux and vy are crossing chords of C.

Claim 8. For any two distinct $x, y \in N_C(W^+)$ with $xy \in E(C)$, it follows that x and y do not form any crossing.

Proof. Suppose to the contrary that for some distinct $x, y \in N_C(W^+)$ with $xy \in E(C)$, the two vertices x and y form a crossing. Let $u, v \in W^+$ such that $yu, yv \in E(G)$. Assume, without loss of generality, that the four vertices u, v, x, y appear in the order u, v, x, y along C. Let $V(H) = \{w\}$. Then $uxCyCu^-wv^-Cu$ is a hamiltonian cycle of G, a contradiction to our assumption that G is not hamiltonian.

Claim 9. For any vertex $v \in W^+$ and any two distinct $x, y \in N_C(v)$, xCy contains a vertex from W^+.

Proof. By Claim 7, xCy has at least three vertices. Suppose to the contrary that xCy contains no vertex from W^+. We furthermore choose x and y so that xCy contains no other vertex from $N_C(v) \setminus \{x, y\}$. Assume that the three vertices v, x, y appear in the order v, x, y along C. By Claim 6, each internal vertex of xCy is adjacent in G to a vertex from W^+. Then by our selection of x and y, we know that each internal vertex of xCy is adjacent in G to a vertex from $W^+ \setminus \{v\}$. Applying Claim 8, x^+ does not form a crossing with x, and so forms a crossing with y. Similarly, x^{++} does not form a crossing with x^+, and so forms a crossing with y. Continuing this argument for all the internal vertices of $x^{++}Cy$, we know that y^- forms a crossing with y, a contradiction to Claim 8.
We assume that the ω neighbors of the vertex from $V(H)$ on C are v_1, \ldots, v_ω and they appear in the same order along C. For each $i \in [1, \omega]$, let $I_i = V(v_iCv_{i+1}) \setminus \{v_{i+1}\}$, where $v_{\omega+1} := v_1$.

Claim 10. For every $v \in W^+$, it holds that $N_C(v) = W$.

Proof. Since $\deg_G(v, C) = \omega = |W^+|$ by Claim 7 and $xC y$ contains a vertex from W^+ for any two distinct $x, y \in N_C(v)$, it follows that v is adjacent in G to exactly one vertex from I_i for each $i \in [1, \omega]$.

Assume to the contrary that $N_C(v) \neq W$. Let $i \in [1, \omega]$ be the index such that dist$_C(v, v_i)$ is largest and $vv_i \notin E(G)$. By the choice of i, we have $vv_{i+1} \in E(G)$. Note that the index i exists since $vv^- \in E(G)$, where $v^- \in \{v_1, \ldots, v_\omega\}$ and dist$_C(v, v^-) > $ dist$_C(v, v_i)$ for any $v_i \neq v^-$. As v is adjacent to one vertex from I_i and $vv_i \notin E(G)$, it follows that v is adjacent to a vertex from $v_i^{++}Cv_{i+1}$. As $vv_{i+1} \in E(G)$, we then know that v is adjacent in G to at least two vertices from $v_i^{++}Cv_{i+1}$. However, since $v_i^{++}Cv_{i+1}$ contains no vertex from W^+, we get a contradiction to Claim 9.

Claim 10 implies that $N_C(W^*) = W$. Thus every vertex from W^* is adjacent in G to every vertex from W. Therefore $t \leq \tau(G) \leq \frac{|W|}{|W^*|}$. Consequently, $|W| \geq t|W^*| = \frac{n}{t+1}$ and so $W = V(G) \setminus W^*$ by noticing $|W^*| = \frac{n}{t+1}$. Thus G contains a spanning complete bipartite graph between W^* and W. On the other hand, since $|W^*| = |W| = \frac{n}{t+1} - 1$ and $V(G) = W^* \cup W = (W^* \cup V(H)) \cup W$, we know that $2(\frac{n}{t+1} - 1) + 1 = n$ and so $t = \frac{n-1}{2}$. Thus $|W| = \frac{n-1}{2}$ and $|W^*| = \frac{n-1}{2} + 1 = \frac{n+1}{2}$. Therefore, $G \in \mathcal{H}$. The proof of Theorem 1 is now complete. \hfill \Box

References

[1] D. Bauer, H. J. Broersma, and H. J. Veldman. Not every 2-tough graph is Hamiltonian. *Discret. Appl. Math.*, 99(1-3):317-321, 2000.

[2] D. Bauer, H. J. Broersma, and E. Schmeichel. Toughness in graphs – a survey. *Graphs Combin.*, 22(1):1–35, 2006.

[3] D. Bauer, G. Chen, and L. Lasser. A degree condition for hamilton cycles in t-tough graphs with $t > 1$. *Advances in graph theory, Vishwa Int. Publ.*, 20–33, 1991.

[4] D. Bauer, H. J. Broersma, J. van den Heuvel, and H. J. Veldman. Long cycles in graphs with prescribed toughness and minimum degree. *Discrete Math.*, 141(1-3):1–10, 1995.

[5] Douglas Bauer, H. J. Veldman, A. Morgana, and E. F. Schmeichel. Long cycles in graphs with large degree sums. *Discrete Math.*, 79(1):59–70, 1989/90.

[6] H. Broersma, V. Patel, and A. Pyatkin. On toughness and Hamiltonicity of $2K_2$-free graphs. *J. Graph Theory*, 75(3):244–255, 2014.
[7] V. Chvátal. Tough graphs and Hamiltonian circuits. *Discrete Math.*, 5(3):215–228, 1973.

[8] G. A. Dirac. Some theorems on abstract graphs. *Proc. London Math. Soc.*, s3-2(1):69–81, 1952.

[9] Y. Gao and S. Shan. Hamiltonian cycles in 7-tough ($P_3 \cup 2P_1$)-free graphs. *Discrete Math.*, 345(12):113069, 2022.

[10] H. A. Jung. On maximal circuits in finite graphs. *Ann. Discrete Math.*, 3:129–144, 1978.

[11] O. Ore. Arc coverings of graphs. *Ann. Mat. Pura Appl.*, 55:315–321, 1961.

[12] K. Ota and M. Sanka. Toughness, 2-factors and hamiltonian cycles in $2K_2$-free graphs. *J. Graph Theory*, 101(4): 769-781, 2022.

[13] S. Shan. An Ore-type condition for hamiltonicity in tough graphs. *Electron. J. Combin.*, 29(1):P1.5, 2022.

[14] S. Shan. Hamiltonian cycles in 3-tough 2k2-free graphs. *J. Graph Theory*, 94(3): 349-363, 2020.

[15] S. Shan. Hamiltonian Cycles in Tough $P_2 \cup P_3$-Free Graphs. *Electron. J. Combin.*, 28(1):P1.36, 2021.

[16] L. Shi and S. Shan. A note on hamiltonian cycles in 4-tough ($P_2 \cup kP_1$)-free graphs. *Discrete Math.*, 345(12):113081, 2022.

[17] H. J. Veldman. Existence of D_λ-cycles and D_λ-paths. *Discrete Math.*, 44(3):309–316, 1983.