The luminal domain of the ER stress sensor protein PERK binds misfolded proteins and thereby triggers PERK oligomerization

Peng Wang \(^{1,2}\#\), Jingzhi Li \(^{1}\#\), Jiahui Tao \(^{1}\) and Bingdong Sha \(^{1}*)

1. Department of Cell, Developmental and Integrative Biology (CDIB), University of Alabama at Birmingham, Birmingham, AL 35294
2. Institute of Molecular Biology and Biotechnology, College of Life Sciences, Anhui Normal University, Wuhu, China, 241000

these authors contribute equally to this study

Running title: Structure of PERK LD complexed with peptide substrate

* Corresponding author

Email: BDSHA@UAB.EDU
Telephone: 205-934-6446 Fax: 205-975-5648
Mailing address:
MCLM 364, 1918 Univ. Blvd.
Department of Cell, Developmental and Integrative Biology (CDIB), University of Alabama at Birmingham, Birmingham, AL 35294-0005, USA

Keywords: PERK, ER stress activation, unfolded protein response, crystal structure, stress response, EIF2AK3, eukaryotic translation initiation factor 2 alpha kinase 3, ER stress sensor, sensor protein
Abstract

PRKR-like endoplasmic reticulum kinase (PERK) is one of the major sensor proteins that detect protein folding imbalances during endoplasmic reticulum (ER) stress. However, it remains unclear how ER stress activates PERK to initiate a downstream unfolded protein response (UPR). Here, we found that PERK’s luminal domain can recognize and selectively interact with misfolded proteins but not with native proteins. Screening a phage-display library, we identified a peptide substrate, P16, of the PERK luminal domain and confirmed that P16 efficiently competes with misfolded proteins for binding this domain. To unravel the mechanism by which the PERK luminal domain interacts with misfolded proteins, we determined the crystal structure of the bovine PERK luminal domain complexed with P16 to 2.8 Å resolution. The structure revealed that PERK’s luminal domain binds the peptide through a conserved hydrophobic groove. Substitutions within hydrophobic regions of the PERK luminal domain abolished the binding between PERK and misfolded proteins. We also noted that peptide binding results in major conformational changes in the PERK luminal domain which may favor PERK oligomerization. The structure of the PERK luminal domain–P16 complex suggested stacking of the luminal domain that leads to PERK oligomerization and activation via autophosphorylation after ligand binding. Collectively, our structural and biochemical results strongly support a ligand-driven model in which the PERK luminal domain interacts directly with misfolded proteins to induce PERK oligomerization and activation, resulting in ER stress signaling and the UPR.

Introductions

A number of exogenous and endogenous factors such as UV radiation, reactive oxygen species, hypoxia, protein mutations and nutrient starvation may disturb the protein maturation in ER and lead to ER stress. To resolve the imbalance in protein folding homeostasis, eukaryotic cells develop the evolutionarily conserved, ER specific unfolded protein response (UPR)(1-5). This delicate UPR signaling cascade relies on three independent ER resident stress sensors: PERK (double-stranded RNA-dependent protein kinase (PRK)-like ER kinase), IRE1 (inositol requiring 1) and ATF6 (activating transcription factor 6). The mechanism remains unclear how the sensor proteins are activated during ER stress, particularly for PERK. It was proposed that under non-stressed conditions, these ER sensor proteins are inactivated by binding to BiP. During ER stress, the increasing amounts of misfolded proteins cause the dissociation of BiP from the sensor proteins(6-8). Other data suggested the ligand-driven model that the misfolded protein may interact directly with the sensor proteins PERK and IRE1 to induce the protein oligomerizations, which can lead to the activations of PERK and IRE1(1,9-12).

The UPR may alleviate the ER stress by regulating a number of transcription pathways. The activation of PERK can shut down the global protein translations in order to reduce the ER protein input(1,13). The activations of IRE1 may promote protein folding by over-expressing ER molecular chaperones(14,15). ATF6, when activated, will undergo the proteolytic cleavage in Golgi apparatus(3). Collectively, activation of UPR may restore the homeostasis of the ER. If UPR fails to rescue the ER stress, the cell may go through apoptosis(16). Both PERK and IRE1 are type I ER transmembrane proteins. During ER stress, the misfolded protein may induce the
oligomerizations of the N-terminal ER luminal domains of PERK and IRE1. The cytosolic kinase domain of PERK, upon oligomerization, can be activated by auto-phosphorylation. The PERK cytosolic kinase domain will then recruit and phosphorylate the substrate protein eIF2α. The phosphorylation of eIF2α by PERK will shut off the overall protein translation (17).

It remains unclear how ER stress induces the oligomerizations of PERK luminal domains. Our data have indicated that PERK luminal domain can selectively interact with misfolded proteins but not native proteins, which support the ligand-driven hypothesis that the binding of the PERK to the misfolded proteins will induce the oligomerizations of these ER stress sensor proteins and initiate the UPR signaling (18,19). The crystal structure of PERK luminal domains is available (19,20). However, the structure of PERK luminal domains can not provide a clear picture to explain how PERK interacts with misfolded proteins. In this study, we have identified a peptide substrate P16 for PERK luminal domain. The peptide substrate P16 can compete with the denatured model proteins to bind with PERK luminal domain, which indicates this peptide may represent a genuine peptide substrate for PERK luminal domain. We determined the crystal structure for PERK luminal domain complexed with its peptide substrate P16 to 2.8Å resolution. The structure showed that PERK luminal domain utilized a conserved hydrophobic groove located at the C-terminal domain to recognize and interact with a broad range of misfolded proteins. Structure-based mutagenesis studies demonstrated that mutations of the conserved hydrophobic residues within the groove significantly reduced the interactions between PERK and the misfolded proteins. The complex structure of PERK luminal domain and the peptide substrate further demonstrates that the peptide binding to the PERK luminal domain may prime PERK luminal domain into the conformation which is favorable for oligomerization. The complex structure also suggests a stacking model for PERK luminal domains to oligomerize. Taken together, the data provided solid evidences for the ligand-driven hypothesis that the misfolded protein can directly bind PERK luminal domain to activate the ER stress signaling.

Results and discussions

PERK luminal domain can selectively bind the denatured proteins and suppress protein aggregations

As an ER stress sensor protein, PERK has been proposed to be directly activated by ER misfolded proteins (9,18,19). To examine PERK’s ability to interact with the misfolded proteins, we have established an ELISA assay using model proteins Rhodanese. To detect the bound PERK luminal domain in the ELISA assays, we have produced an N-terminal His-tagged recombinant bovine PERK luminal domain. In the ELISA assay, the chemically denatured model proteins were coated on the plate and the bound PERK luminal domain can be detected by anti-His-tag antibody. We have also generated a pull-down assay to confirm the direct binding between PERK luminal domain and the denatured Rhodanese. In the assay, the GST-PERK luminal domain fusion protein was immobilized on the beads and the bound denatured Rhodanese can be detected by Western blotting. The data from both assays clearly showed that PERK luminal domain can selectively recognize and bind the misfolded proteins but not native proteins (Fig. 1a and b).

A common feature for molecular chaperones is the ability to suppress the misfolded protein aggregations induced by heat or
chemical denaturing (21,22). Because PERK luminal domain can selectively bind misfolded proteins but not native proteins, it would be interesting to examine whether PERK luminal domain can function to suppress protein aggregations. Here the data from the protein aggregation suppression assay demonstrate that PERK luminal domain can efficiently protect denatured model proteins Alcohol dehydrogenase (ADH) and Insulin from aggregating (Fig. 1c and d). In the assay, the aggregation of ADH was heat induced and the aggregation of Insulin was caused by addition of DTT. PERK luminal domain suppresses the protein aggregations while the control protein BSA has little effect (Fig. 1c). The data indicated that PERK luminal domain acts as a molecular chaperone to suppress the model protein aggregations independently of BiP. It is highly likely that PERK luminal domain functions to suppress protein aggregations by direct binding to the exposed hydrophobic stretches in the denatured proteins. Our data suggest the ligand-driven activation model for PERK, in which the direct binding of the misfolded proteins with PERK luminal domain may induce the oligomerization and activation of PERK signaling pathway.

Identification of the peptide substrate for PERK luminal domain

To identify a peptide substrate for PERK luminal domain, we have screened the 12-mer phage display library (PhD-12 phage display library, New England Biolabs). After three cycles of bio-panning, twenty colonies of the bound phages by PERK luminal domain were randomly chosen for subsequent DNA extraction and sequencing. Table 1 lists the sequences of the peptide substrate candidates of PERK luminal domain revealed by peptide library screenings. The affinities between these peptide substrate candidates and PERK luminal domain were then measured by utilizing isothermal titration calorimetry (ITC) technique. These peptide substrate candidates for PERK luminal domain were synthesized and purified to more than 95% homogeneity (GenScript). The ITC experiments were carried out by injecting the peptide solutions into the buffers containing purified bovine PERK luminal domains. Out of the six peptide substrate candidates obtained from screening peptide display library, one peptide with the sequences of ADPQPWRFYAPR showed significant binding affinity to PERK luminal domain with the dissociation constant K_d of \sim0.2 μM (Fig. 2a). The ITC studies also indicated that one PERK luminal domain monomer can bind one peptide substrate molecules. The ITC studies did not show that other peptides had measurable affinities to PERK luminal domain. ITC data also showed that purified recombinant human and mouse PERK luminal domain can interact with the identified peptide substrate P16 with similar affinities (supplemental Fig. S1a and S1b).

To confirm that the identified peptide substrate P16 of PERK luminal domain interacts with PERK luminal domain through the same binding sites as the misfolded polypeptides do, we have tested whether the peptide P16 could compete with the denatured Rhodanese to bind PERK luminal domain by using the ELISA assay. The chemically denatured Rhodanese was coated on the plate, purified recombinant bovine PERK luminal domain and the peptide substrate P16 was mixed at various molar ratios and incubated in the wells. The bound PERK luminal domain was detected by antibody. The data from this ELISA competition assays revealed that the identified peptide substrate P16 can inhibit the binding capability of PERK luminal domain to the denatured model proteins luciferase and rhodanese in a dose-dependent
manner (Fig. 2b). The control 12-mer peptide GGGSGGGSGGGS with undetectable binding affinity to PERK luminal domain by ITC studies showed no apparent competition.

To further examine whether the identified peptide P16 functions as the peptide substrate for PERK luminal domain, we labeled the synthetic peptide P16 at the N-terminus by FITC (GenScript) and carried out a competition experiment by use of the fluorescence polarization assay. The data clearly indicated that the fluorescently labeled peptide P16 can readily interact with the PERK luminal domain. Addition of the denatured model protein rhodanese into the reaction can effectively reduce the binding between PERK luminal domain and the fluorescently labeled peptide P16, presumably the denatured rhodanese can compete with P16 to interact with PERK luminal domain (Fig. 2c).

The data from two competition assays strongly suggest that the identified peptide P16 may bind PERK luminal domain in a similar fashion as the denatured proteins. Therefore, by utilizing the combination of peptide display library screening, ITC studies and the competition assays, we have successfully identified a peptide substrate P16 for PERK luminal domain.

The crystal structure of PERK luminal domain complexed with its peptide substrate

We have determined the crystal structure of bovine PERK luminal domain complexed with the peptide substrate P16 to 2.8Å resolution. The complex structure was determined by use of molecular replacement method using human PERK luminal domain as the searching model (Table 2) (19). The bovine PERK luminal domain forms a homodimer in the crystal structure and two PERK dimers are present in each asymmetric unit.

Total of 24 β-strands (named as B1-B24 from N-ter to C-ter) and one short α-helix can be found in one complex monomer. The bovine PERK luminal domain monomer contains primarily two domains, a dimerization domain and a peptide-binding domain (Fig. 3a). The peptide-binding domain in complex molecule is further composed of a β-sandwich sub-domain and β-hairpin sub-domain. Three layers of β-sheets are present in the β-sandwich sub-domain. B1, B2, B3, B18 and B19 form the first layer, B14, B15, B16 and B17 constitute the second layer and B20, B21 and B24 construct the third layer.

In the electron density map, eleven residues of the bound 12mer peptide substrate P16 can be identified in a large groove located in the peptide-binding domain of PERK. The peptide substrate forms a U-shaped loop in the peptide-binding groove that is constituted by the β-hairpins formed by B6 and B7, B22 and B23 from the β-hairpin sub-domain (Fig. 3a). B20 and the loop between B15 and B16 from the β-sandwich subdomain are also involved in constituting the peptide-binding groove. The peptide substrate P16 binds the PERK luminal domain primarily through hydrophobic interactions. The bulky sidechains of residues W6, F8 and Y9 from the peptide P16 are positioned towards the bottom of the peptide-binding groove and mediate the hydrophobic interactions (Fig. 3b, supplemental Fig. S2). W6 of peptide substrate P16 is inserted into a hydrophobic pocket formed by residues A316, W318, Y388, L389 and M391. F8 from P16 interacts with the side chain of Y388 and PERK luminal domain. The side chain of Y9 is folded in the center of the U-shaped loop of P16 and makes close contact with L389 and W165 of PERK luminal domain. The polar residues Q4 and R7 from P16 face the opening of the peptide-binding groove. The electron density map for the side chains of the solvent exposed residues Q4 and R7 of P16
are not as well defined in the refined structure, indicating that these residues may exhibit certain flexibility in the complex structure (Fig. S2).

It is well known that molecular chaperones bind with misfolded proteins through hydrophobic interactions (23-26). Our complex crystal structure showed that PERK luminal domain contained a large hydrophobic peptide-binding groove that can accommodate a stretch of peptide of about ten residues. The peptide-binding groove of PERK luminal domain is formed by residues W165, A316, W318, Y388, L389 and M391. These residues are very well conserved in sequence alignment among multiple species (supplemental Fig. S3). It is highly likely that PERK luminal domain could utilize this peptide-binding groove to interact with the misfolded proteins to suppress protein aggregations. The direct binding of misfolded proteins to the PERK luminal domain may induce the oligomerization of PERK and activate the ER stress signaling.

Conformational changes of PERK luminal domain upon ligand binding

The complex structure of PERK luminal domain and the peptide substrate P16 indicated that PERK luminal domain undergoes major conformational changes upon peptide binding. Two PERK luminal domain homo-dimers are present in one asymmetric unit. Interestingly, three PERK monomers are complexed with P16 while the other monomer is not. This provides us an excellent opportunity to compare the ligand-free and ligand-bound structures of PERK luminal domain (Fig. 4a). In the ligand-free PERK luminal domain monomer, a large portion of the peptide-binding groove is not visible in the electron density map due to high flexibility. The peptide substrate binding apparently stabilizes the PERK peptide-binding domain and the complete peptide-binding groove can be identified in the structure. In the β-sandwich subdomain, the third layer of β-sheet formed by B20, B21 and B24 is completely missing in the ligand-free monomer while it is clearly present in the substrate-bound monomer. The β-strands B14 and B17 in the second layer of the β-sandwich subdomain are missing in the ligand-free monomer and they are visible in the ligand-bound monomer. In the β-hairpin subdomain, the loop between B6 and B7 is flexible in the ligand-free monomer and it is stabilized and visible in the ligand-bound monomer. Out of the six conserved hydrophobic residues located at bottom of the peptide-binding groove which are important for peptide substrate binding, four (W165, A316, W318 and Y388) are missing in the ligand-free conformation.

The crystal structure of the PERK luminal domain complexed with the peptide substrate suggests an induced fit model for PERK to interact with the misfolded proteins. The peptide-binding groove exhibits high flexibility as the peptide substrate free conformation while peptide substrate binding can stabilize the peptide-binding groove to accommodate the peptide ligand. The complex structure reveals that PERK luminal domain directly interacts with misfolded proteins via hydrophobic interactions. As an ER stress sensor protein, it is reasonable that PERK can recognize and interact with a wide range of misfolded proteins. The flexible nature of the peptide-binding groove for PERK luminal domain may be important for PERK to interact with various misfolded proteins. A number of molecular chaperones including trigger factor, Hsp90, GroEL, Hsp40 and sHsp have been reported to contain flexible regions to interact with the client proteins (23, 26-32). It is likely that PERK peptide-binding groove may adopt significant plasticity depending on the size of...
its peptide ligand. This cleaver mechanism may enable PERK luminal domain to sense, recognize and interact with a broad range of misfolded protein.

Structural implications for ligand-driven PERK oligomerization

Biochemical and structural data have clearly shown that PERK luminal domain has the capability to interact with the misfolded proteins. The direct binding between PERK and the misfolded protein may tether the PERK homo-dimers to oligomerize and initiate the ER stress signaling (18). The complex structure of PERK luminal domain and the peptide substrate P16 further demonstrates that the peptide binding to the PERK luminal domain may prime PERK luminal domain in the conformation which is favorable for oligomerization. The peptide substrate binding to the PERK luminal domain stabilize the third layer of β-sheet formed by B20, B21 and B24 in the β-sandwich subdomain, which is otherwise completely flexible. In the crystal packing, the stabilized B21 establishes β-strand formation with B3 from the neighbor PERK luminal homo-dimer (Fig. 4b and c). In addition, residues 297-301 from the complex monomer extend away and form a β-strand B13 with the B17 from the other PERK luminal homo-dimer. B13 is also completely missing in the ligand-free PERK monomer. Very interestingly, in the crystal structure, one complexed PERK luminal domain is sandwiched by two PERK complexes which are translated by one unit cell along the α axis (Fig. 4b and c). This leads to the stacking of the PERK luminal domains in the crystal. All the molecules that are involved in the stacking are complexed with the peptide substrates. In contrast, the ligand-free monomer in the complex structure is not involved in any major molecular contact in the crystal packing. It is reasonable to postulate that the stacking format of the PERK luminal domain complexes revealed in the crystal structure may mimic the oligomerization of the activated PERK molecules in ER stress signaling.

Therefore, the peptide binding to PERK luminal domain may facilitate the oligomerization of PERK through two mechanisms. 1. The exposed hydrophobic stretches of the misfolded proteins may provide multiple binding sites for PERK luminal domain and the direct binding of PERK to the misfolded protein can cause PERK to oligomerize. 2. The peptide substrate binding to the PERK luminal domain results in a stabilized complex structure conformation which is more likely to form oligomers via the stacking format shown in the crystal structure. The combined mechanisms may allow PERK to stack on each other along the misfolded proteins to initiate ER stress signaling.

Structure-based mutagenesis

The complex structure of PERK luminal domain and the peptide substrate P16 indicates that the conserved hydrophobic peptide-binding groove may play central roles in mediating the interactions between PERK and misfolded proteins. To further confirm this observation, we have generated mis-sense mutations W165S, Y388S/L389S/M391S and W165S/Y388S/L389S/M391S to alter the hydrophobic surface at the peptide-binding groove. The recombinant wild type and mutant bovine PERK luminal domain protein were produced and purified. All of the proteins existed as homo-dimers in solution as showed by gel filtration profiles and the CD spectrums of these proteins were very similar (supplemental Fig. S4), indicating that the proteins were probably correctly folded.
First, we measured the binding affinities between the PERK luminal domain mutants and the peptide substrate P16 by use of ITC technique. All three mutants exhibited much reduced abilities to interact with P16 (supplemental Fig. S5). Due to low heat release signals, none of the data fitting can generate reliable dissociation constants for these mutants. Secondly, the abilities of these proteins to interact with denatured model protein Rhodanese were examined by use of ELISA assay. The abilities of PERK luminal domain mutants W165S, Y388S/L389S/M391S and W165S/Y388S/L389S/M391S to bind the denatured proteins were reduced by ~70-80% (Fig. 5a). The data clearly showed that the mutations at the conserved hydrophobic residues located at the bottom of the peptide-binding groove of PERK luminal domain compromised the ability of PERK to interact with the denatured model protein. We have also constructed the mutations V310A, L345A and F357S to change the hydrophobic residues located on other part of the surface of the β-sandwich domain. None of these mutants showed reduced binding ability to the peptide substrate P16 and the denatured Rhodanese compared with the wild type PERK luminal domain (data not shown).

Next, we examined the in vivo activity of the PERK mutant to sense the ER stress by use of a PERK knockout cell line. We have constructed the mouse PERK mutation W165S/Y383S/L384S/M386S which corresponds to the bovine PERK mutation W165S/Y388S/L389S/M391S based on the sequence alignment. The wild type full-length mouse PERK and PERK mutant W165S/Y383S/L384S/M386S were transfected into the PERK knockout cell line and ER stress was induced by addition of 5μg/ml tunicamycin. The data showed that the phosphorylation levels of PERK and eIF2α were reduced by ~50% for the PERK mutant W165S/Y383S/L384S/M386S during ER stress (Fig. 5b). The mutagenesis data from biochemical and cell line studies strongly suggest that the identified peptide-binding groove in the complex structure of the PERK luminal domain and the peptide substrate P16 represents the binding site for PERK to interact with misfolded proteins. Changes at the critical sites within the peptide-binding groove of PERK may result in loss of function of PERK to interact with misfolded proteins and to initiate the ER stress signaling.

Interestingly, in the human PERK luminal domain structure, the peptide-binding groove is occupied by a short C-terminal helix from another PERK homo-dimer, which mediates the tetramerization of PERK luminal domain in the crystal structure (20). Our complex structure and mutagenesis data argue that the physiological role of the peptide-binding groove of PERK luminal domain is to interact with misfolded proteins to induce oligomerization, but not to directly mediate tetramerization. Several lines of evidences support our hypothesis. 1. The mutagenesis data strongly support that the conserved hydrophobic residues in the peptide-binding groove of PERK are responsible for interacting with denatured proteins. 2. In ligand-free mouse and bovine PERK luminal domain structures, the peptide-binding groove is empty and the tetramer formation is not observed (Fig. 3a and unpublished data for mouse PERK luminal domain structure) (20). If the peptide-binding groove serves to mediate tetramerization of PERK luminal domain, one would imagine the mechanism should be conserved among species. 3. In the ligand-free human PERK luminal domain structure, the tetramer is formed by domain swapping between two homo-dimers. This format excludes the possibility for other types of oligomerization except tetramers. Our bovine complex structure of PERK
luminal domain and peptide substrate suggests a stacking format for PERK oligomerization along the misfolded proteins, which allows any type of oligomer formation.

Experimental procedures

Protein expression and purification

Bovine PERK luminal domain (bPERK-LD) (residues 105-421) was cloned into the pET28b and pET41b, generating pET28b-bPERK-LD (His-tagged bPERK-LD) and pET41b-bPERK-LD (GST-bPERK-LD fusion protein). Protein expressions were induced by 0.5 mM IPTG when the *E. coli* Rosetta (DE3) cells reached OD_{600} of 0.6. Cells were harvested, washed in 100 ml binding buffer (10 mM Tris-Cl pH 7.9, 0.5 M NaCl, 60 mM imidazole) and then lysed by sonication on ice. The lysates were clarified by centrifugation and then the supernatant was loaded onto the Ni^{2+}-NTA column pre-equilibrated with binding buffer. The resin was washed with ice-cold washing buffer (20 mM Tris-Cl pH 7.9, 0.5 M NaCl, 60 mM imidazole) and the His-tagged bPERK-LD was eluted by elution buffer (20 mM Tris-Cl buffer pH 7.9, 0.5 M NaCl and 400 mM EDTA). The final elute was subsequently loaded onto a Superdex 200 column (Amersham Biosciences) pre-equilibrated with 10 mM Tris-Cl pH 7.5 and 150 mM NaCl for further purification. The GST-bPERK-LD was purified using the Glutathione Sepharose 4B beads following the protocol (GE Healthcare).

Mutations were introduced into bPERK-LD by using NEBuilder HiFi DNA Assembly Cloning Kit (New England Biolabs, Beverly, MA). All mutant proteins were expressed and purified as the wild-type bPERK-LD.

ELISA assay

The abilities of the bovine PERK luminal domain and its mutations to interact with denatured model proteins tested by the ELISA assay. The model protein such as rhodanese was denatured at 1mg/ml by use of the denaturing buffer (50 mM Tris-HCl pH 8.0, 6 M Guanidine, 0.1% (v/v) 2-Mercaptoethanol). The denatured rhodanase was then diluted to 1-20 μg/ml and immobilized on the EIA/RIA plate (Corning Incorporated, Corning, NY) for one hour at room temperature. The coated plate was washed three times by using 200 μl PBST (PBS with 0.2% Tween-20). To block the wells, 200 μl of 1% BSA in PBS was incubated in wells for one hour at room temperature. The His-tagged bPERK-LD (or the mutants) (35 μg/ml) was then applied onto the wells for one hour. After extensive washing by PBST, the bound bPERK-LD (or the mutant) can be detected by HRP-conjugated 6xHis epitope tag antibody (Thermal Fisher Scientific, Madison, WI). OD_{450} readings were measured after TMP was added into the wells as HRP substrates.

ELISA assay was also utilized to examine whether the peptide substrate P16 can compete with the denatured model protein to bind the bPERK-LD. The denatured rhodanase at the concentration of 10 μg/ml was coated on the plate. The wells were then washed three times by 200 μl PBST. 200 μl of 1% BSA in PBS was used to block the uncoated surface. The bPERK-LD at the concentration of 35μg/ml (1μM) was firstly mixed with various amount of the peptide substrate P16, and then applied onto the wells. After extensive washing by PBST, the bound bPERK-LD was detected by HRP-conjugated 6xHis epitope tag antibody. OD_{450} readings were measured after TMP was added into the wells as HRP substrates.

Pull-down assay

The direct binding between PERK luminal domain and denatured protein was determined by the pull-down assay. Purified GST-bPERK-LD (100μg total) was mixed with 20μl glutathione Sepharose beads in
PBS buffer and incubated for 10 min. The mixture was centrifuged at 1000 g for 1 min. After washing with 500 μl PBS buffer, the beads were resuspended with 1 ml PBS buffer. The denatured or native Rhodanese at different amounts were mixed with the beads. After incubation for 10 min at room temperature, the mixture was centrifuged at 1000 g for 1 min and then the supernatant was removed. The beads were washed three times with PBS and proteins were then eluted by 50 μl elution buffer containing 50 mM Tris-HCl pH 8.0 and 10 mM reduced glutathione.

In order to determine whether the denatured Rhodanese can bind to the GST or the beads, two control experiments were performed. 1) GST (100 μg) was used to saturate the beads, then the denatured Rhodanese was applied accordingly; and 2) the denatured Rhodanese was mixed with the naked beads directly.

Eluted protein samples were resolved by SDS-PAGE and then electrophoretically transferred to the PVDF (Millipore). The membrane was blocked in 10 ml of Odyssey blocking buffer (LI-COR Biosciences) for 1 h at room temperature. The anti-rhodanese goat polyclonal IgG was diluted 1:2000 in 10 ml of Odyssey blocking buffer containing 0.2% Tween 20 (v/v) and incubated for 1 h at room temperature. Blots were then incubated with a 1:10,000 dilution of donkey anti-goat IRDye 800CW (LI-COR Biosciences) in 10 ml of Odyssey blocking buffer for 1 h at room temperature. The membranes were imaged with an Odyssey infrared imaging system (LI-COR Biosciences).

Aggregation suppression assay

The aggregation suppression activity of PERK luminal domain was determined by monitoring the heat-induced aggregation of alcohol dehydrogenase (ADH) and Insulin in the presence or absence of bPERK-LD. ADH (10 μM) was pre-mixed with bPERK-LD (5 μM). The mixtures were incubated at 55 °C and the heat-induced protein aggregation was monitored by light scattering at OD_{320}. ADH in PBS was used as the negative control. BSA 5 μM mixed with ADH 10 μM was used as another control.

The insulin aggregation assay was carried out in PBS buffer. Insulin (100 μM) was preincubated at 25 °C with bPERK-LD (10 μM). The aggregation reaction was started by the addition of dithiothreitol (DTT) to a final concentration of 20 mM and the turbidity was monitored at 320 nm. Insulin in PBS was used as the control.

Phage Peptide Display Library Screening

The peptide substrates of bPERK-LD were screened by using the Ph.D.™-12 phage display peptide library (New England Biolabs, Beverly, MA). The bPERK-LD was firstly coated on the sterile polystyrene petri dish. Then 10 μl original phage library in 1 ml of TBS buffer (50 mM Tris-HCl pH 7.5, 150 mM NaCl) with 0.1% Tween-20 was added to the dish and incubated for 1 hr at room temperature. The dish was then extensively washed 10 times with TBS buffer with 0.1% Tween-20 to minimize the nonspecific interactions between bPERK-LD and the phage library. The bound phages were then eluted by 1 ml TBS buffer with 0.25 mg/ml bPERK-LD protein. The eluted phages were amplified by infecting E. coli host strain ER2738. In the next three rounds of panning, approximately 2x10^{11} pfu was put in the incubation with bPERK-LD. The Tween-20 concentration in the washing buffer was raised to 0.5% in the fourth panning. After the fourth panning, 20 phages were randomly selected and their DNA encoding the peptide substrate were sequenced.

Isothermal titration calorimetry (ITC)

Measurement of direct binding between bPERK-LD (or the mutants) and the peptide substrate was performed by use of a MicroCal ITC calorimeter (MicroCal, Northampton, MA) at 25 °C. bPERK-LD (or the mutants) and the peptide were dialyzed against the same buffer (10 mM Tris-HCl pH
7.5, 100 mM NaCl). The reaction cell contained 400 μl of 0.1 mM bPERK-LD (or the mutants), and the injection syringe was filled with 140 μl of 1 mM peptide substrate. Each titration experiment was performed by using 20 injections of 2μl with 4 second duration and a 150 second interval between injections. All data were analyzed by using the MicroCal ITC analysis software. Peptide substrate was injected into the buffer as control experiments. The heat releases from the control experiments were subtracted from the experimental data before the data were utilized for K_d fitting.

Fluorescence polarization assay

The fluorescence polarization assay was established to measure the direct binding between PERK luminal domain and the 5-FAM labeled peptide substrate P16. The N-terminally 5-FAM labeled peptide P16 was synthesized (GeneScript). 10nM labeled P16 (final concentration) was added into PERK luminal domains in Hepes 20mM, pH 7.2, NaCl 150mM. The concentrations of PERK luminal domain ranged from 1nM to 1000nM. After 15min incubation, the fluorescence polarization signals were recorded by use of the Envision plate reader (Perkin Elmer). To test whether the denatured model protein rhodanese can compete with the peptide substrate P16 to bind with bovine PERK luminal domain, 10nM and 100nM denatured rhodanese were added into the reaction respectively and the fluorescence polarization signals were measured.

Cell culture treatments and ER stress detections

The mouse PERK knockout cell line PERK-KO-DR was purchased from ATCC and cultured at 37°C with 5% CO_2 in DMEM medium, 0.1mM NEAA and 10% FCS. The full-length mouse PERK and mouse PERK mutation W165S/Y383S/L384S/M386S were cloned into vector CD510B (System Biosciences) by using the Gibson assembly kit (New England Biolabs). The PERK protein expressions were under the control of CMV promoters in CD510B. The cells were grown to 80% confluence by use of the 6-well plate. The transient expressions of PERK proteins in PERK-KO-DR cells were performed by use of the Fugene6 transfection reagents (Promega). Two days after transfections, the ER stress was induced by addition of 5μg/ml tunicamycin. Six hours later, the cells were lysed by using lysis buffer containing 20 mM Tris-HCl (pH7.6), 80 mM KCl, 5 mM EDTA, 1 mM EGTA, 0.5% NP-40, and protease inhibitors. Protein lysates were centrifuged at 17,000 rpm for 10 min at 4°C and supernatants were taken for protein quantification by use of BCA assay. Equal amounts of proteins (10 μg) were analyzed in SDS-PAGE and Western blotting. The phosphorylated PERK (p-PERK), total PERK, phosphorylated eIF2α (p-eIF2α) and total eIF2α after ER stress were detected by Western blot using Rabbit mAb from Cell Signaling Technologies. The IRDye 680RD goat anti-rabbit secondary antibody (Li-cor) was utilized to develop the PVDF membrane after blotting. The experiments were carried out twice and the representative data were shown in Fig. 5b.

Crystallization and structure determination

The bPERK-LD and its peptide substrate P16 were mixed together in an approximately 1:6.5 molar ratio in Tris buffer (10 mM Tris-HCl pH 7.5, 100 mM NaCl) to produce the bPERK-LD-peptide substrate complex. The complex was concentrated to 10 mg/ml. Crystals were successfully obtained by the vapor diffusion using the mother liquid of 0.1 M MES pH6.0 and 1% PEG4000, and then were flash frozen at 100 K in a nitrogen gas stream in the cryoprotectant consisting of mother solution supplemented with 30% ethylene glycol. The crystals diffracted X-ray to 2.8 Å using synchrotron beamline SER-CAT at APS. The atomic coordinates of the human PERK
luminal domain structure (PDB ID 5SV7) were used as the searching model for the molecular replacement method by program PHASER (33). The model was manually built by use of COOT (34). The structure refinement was carried out by use of Phenix (35). The structure was refined by simulated annealing protocol starting from annealing temperature of 3000K. The model was manually examined and adjusted after each cycle of refinement. In the final cycles of refinement, we tightened up the geometry restraints and ADP restraints by reducing the scale factors of X-ray/stereochemistry weight and X-ray/ADP weight. The water molecules were manually examined individually. The crystal is heavily twinned as indicated by Xtriage of Phenix program. The twin fraction is 0.46 with the twin operator of h,-k,-h,l. The final coordinates and structure factors of bPERK-LD complexed with the peptide substrate P16 have been deposited to Protein Data Bank with an accession number of 5V1D.
Acknowledgements
We would like to thank Dr. David Ron for very helpful discussions and suggestions. We are grateful to the staff scientists in APS beamline SER-CAT for their help in data collection. This work was supported by grant from NIH (R01 GM080261).

Conflict of interest
The authors claim no competing financial interests.

Author contributions
P.W. and J.L determined the crystal structure for the PERK luminal domain complex. J.L and J.T. participate in the phage display screening. P.W. carried out the mutagenesis studies. B.D.S performed the experimental designs and drafted the manuscript.
References

1. Ron, D., and Walter, P. (2007) Signal integration in the endoplasmic reticulum unfolded protein response. Nat Rev Mol Cell Biol 8, 519-529
2. Schroder, M., and Kaufman, R. J. (2005) The mammalian unfolded protein response. Annu Rev Biochem 74, 739-789
3. Rutkowski, D. T., and Kaufman, R. J. (2007) That which does not kill me makes me stronger: adapting to chronic ER stress. Trends Biochem Sci 32, 469-476
4. Wek, R. C., Jiang, H. Y., and Anthony, T. G. (2006) Coping with stress: eIF2 kinases and translational control. Biochem Soc Trans 34, 7-11
5. Walter, P., and Ron, D. The unfolded protein response: from stress pathway to homeostatic regulation. Science 334, 1081-1086
6. Bertolotti, A., Zhang, Y., Hendershot, L. M., Harding, H. P., and Ron, D. (2000) Dynamic interaction of BiP and ER stress transducers in the unfolded-protein response. Nat Cell Biol 2, 326-332
7. Ma, K., Vattem, K. M., and Wek, R. C. (2002) Dimerization and release of molecular chaperone inhibition facilitate activation of eukaryotic initiation factor-2 kinase in response to endoplasmic reticulum stress. J Biol Chem 277, 18728-18735
8. Amin-Wetzel, N., Saunders, R. A., Kamphuis, M. J., Rato, C., Preissler, S., Harding, H. P., and Ron, D. (2017) A J-Protein Co-chaperone Recruits BiP to Monomerize IRE1 and Repress the Unfolded Protein Response. Cell 171, 1625-1637 e1613
9. Credle, J. J., Finer-Moore, J. S., Papa, F. R., Stroud, R. M., and Walter, P. (2005) On the mechanism of sensing unfolded protein in the endoplasmic reticulum. Proc Natl Acad Sci U S A 102, 18773-18784
10. Zhou, J., Liu, C. Y., Back, S. H., Clark, R. L., Peisach, D., Xu, Z., and Kaufman, R. J. (2006) The crystal structure of human IRE1 luminal domain reveals a conserved dimerization interface required for activation of the unfolded protein response. Proc Natl Acad Sci U S A 103, 14343-14348
11. Gardner, B. M., and Walter, P. (2011) Unfolded proteins are Ire1-activating ligands that directly induce the unfolded protein response. Science 333, 1891-1894
12. Karagoz, G. E., Acosta-Alvear, D., Nguyen, H. T., Lee, C. P., Chu, F., and Walter, P. (2017) An unfolded protein-induced conformational switch activates mammalian IRE1. Elife 6
13. Wang, M., and Kaufman, R. J. (2014) The impact of the endoplasmic reticulum protein-folding environment on cancer development. Nat Rev Cancer 14, 581-597
14. Kang, S. W., Rane, N. S., Kim, S. J., Garrison, J. L., Taunton, J., and Hegde, R. S. (2006) Substrate-specific translocational attenuation during ER stress defines a pre-emptive quality control pathway. Cell 127, 999-1013
15. Hollien, J., and Weissman, J. S. (2006) Decay of endoplasmic reticulum-localized mRNAs during the unfolded protein response. Science 313, 104-107
16. Lin, J. H., Li, H., Yasumura, D., Cohen, H. R., Zhang, C., Panning, B., Shokat, K. M., Lavail, M. M., and Walter, P. (2007) IRE1 signaling affects cell fate during the unfolded protein response. Science 318, 944-949
17. Harding, H. P., Zhang, Y., and Ron, D. (1999) Protein translation and folding are coupled by an endoplasmic-creticulum-resident kinase. Nature 397, 271-274
18. Cui, W., Li, J., Ron, D., and Sha, B. The structure of the PERK kinase domain suggests the mechanism for its activation. Acta Crystallogr D Biol Crystallogr 67, 423-428
19. Wang, P., Li, J., and Sha, B. (2016) The ER stress sensor PERK luminal domain functions as a molecular chaperone to interact with misfolded proteins. *Acta crystallographica. Section D, Structural biology* 72, 1290-1297

20. Carrara, M., Prischi, F., Nowak, P. R., and Ali, M. M. (2015) Crystal structures reveal transient PERK luminal domain tetramerization in endoplasmic reticulum stress signaling. *EMBO J* 34, 1589-1600

21. Tao, J., Petrova, K., Ron, D., and Sha, B. (2010) Crystal structure of P58(IPK) TPR fragment reveals the mechanism for its molecular chaperone activity in UPR. *J Mol Biol* 397, 1307-1315

22. Li, J., and Sha, B. (2005) Structure-based mutagenesis studies of the peptide substrate binding fragment of type I heat-shock protein 40. *Biochem J* 386, 453-460

23. Li, J., Qian, X., and Sha, B. (2003) The crystal structure of the yeast Hsp40 Ydj1 complexed with its peptide substrate. *Structure* 11, 1475-1483

24. Chen, L., and Sigler, P. B. (1999) The crystal structure of a GroEL/peptide complex: plasticity as a basis for substrate diversity. *Cell* 99, 757-768

25. Zhu, X., Zhao, X., Burkholder, W. F., Gragerov, A., Ogata, C. M., Gottesman, M. E., and Hendrickson, W. A. (1996) Structural analysis of substrate binding by the molecular chaperone DnaK. *Science* 272, 1606-1614

26. Sha, B., Lee, S., and Cyr, D. M. (2000) The crystal structure of the peptide-binding fragment from the yeast Hsp40 protein Sis1. *Structure Fold Des* 8, 799-807

27. Kaiser, C. M., Chang, H. C., Agashe, V. R., Lakshmipathy, S. K., Etchells, S. A., Hayer-Hartl, M., Hartl, F. U., and Barral, J. M. (2006) Real-time observation of trigger factor function on translating ribosomes. *Nature* 444, 455-460

28. Lakshmipathy, S. K., Gupta, R., Pinkert, S., Etchells, S. A., and Hartl, F. U. (2010) Versatility of trigger factor interactions with ribosome-nascent chain complexes. *J Biol Chem* 285, 27911-27923

29. Horwich, A. L., Fenton, W. A., Chapman, E., and Farr, G. W. (2007) Two families of chaperonin: physiology and mechanism. *Annual review of cell and developmental biology* 23, 115-145

30. Southworth, D. R., and Agard, D. A. (2011) Client-loading conformation of the Hsp90 molecular chaperone revealed in the cryo-EM structure of the human Hsp90:Hop complex. *Mol Cell* 42, 771-781

31. Taipale, M., Jarosz, D. F., and Lindquist, S. (2010) HSP90 at the hub of protein homeostasis: emerging mechanistic insights. *Nat Rev Mol Cell Biol* 11, 515-528

32. Jaya, N., Garcia, V., and Vierling, E. (2009) Substrate binding site flexibility of the small heat shock protein molecular chaperones. *Proc Natl Acad Sci U S A* 106, 15604-15609

33. McCoy, A. J., Grosse-Kunstleve, R. W., Adams, P. D., Winn, M. D., Storoni, L. C., and Read, R. J. (2007) Phaser crystallographic software. *J Appl Crystallogr* 40, 658-674

34. Emsley, P., and Cowtan, K. (2004) Coot: model-building tools for molecular graphics. *Acta Crystallogr D Biol Crystallogr* 60, 2126-2132

35. Adams, P. D., Afonine, P. V., Bunkoczi, G., Chen, V. B., Davis, I. W., Echols, N., Headd, J. J., Hung, L. W., Kapral, G. J., Grosse-Kunstleve, R. W., McCoy, A. J., Moriarty, N. W., Oeffner, R., Read, R. J., Richardson, D. C., Richardson, J. S., Terwilliger, T. C., and Zwart, P. H. (2010) PHENIX: a comprehensive Python-based system for macromolecular structure solution. *Acta Crystallogr D Biol Crystallogr* 66, 213-221
Table 1 Peptide substrate candidate sequences for bovine PERK luminal domain identified by 12-mer phage peptide library screening. The numbers following the sequences indicate the redundancy of the peptide sequence from the screening. The underlined sequence P16 represents a genuine peptide substrate for PERK luminal domain.

Peptide	Sequence	Redundancy
P16	ADPQPWFYAPR	X9
P22	NLGYDTASRYKN	X3
P19	QPYNIKFAWST	X2
P11	MGGVSAAVWST	X2
P3	YNKIKTLQDYT	X2
P25	SWSTSGQQSPP	X2
Table 2 Data collection and structure determination of bovine PERK luminal domain complexed with the peptide substrate P16

Data collection	Native
Space group	P2₁
Cell dimensions	
a, b, c (Å)	60.75 161.55 104.78
α, β, γ (°)	90.00 106.84 90.00
Wavelength(Å)	1.000
Resolution (Å)	43.31-2.80 (2.85 – 2.80)
R_{sym} or R_{merge}	0.081 (0.437)
I / sigmaI	20.8(2.1)
Completeness (%)	91.5 (94.5)
Redundancy	3.0 (2.9)

Refinement	
Resolution (Å)	2.80
No. reflections	43538 (3090)
R_{work} / R_{free}	0.242 (0.325)/0.293(0.313)
No. atoms	
Protein	7268
Ligand/ion	
Water	173
B-factors	
Protein	55.05
Ligand/ion	
Water	58.35
R.m.s deviations	
Bond lengths (Å)	0.005
Bond angles (°)	0.710

Highest-resolution shell is shown in parentheses.
Figure legends

Fig. 1. Bovine PERK luminal domain (bPERK-LD) can directly interact with the denatured model proteins and suppress the heat or chemical induced protein aggregations.

a) The direct binding between bovine PERK luminal domain and the denatured Rhodanese shown by ELISA assay. The chemical denatured Rhodanese (labeled as dRho) at various concentrations (0 in background, 3 μg/ml and 10 μg/ml) were coated on the plate. Native Rhodanese (labeled as nRho) was coated on the plate as well. Blank well was utilized as control (labeled as background). After blocking the plate by BSA, bovine PERK luminal domain at 35 μg/ml was added into the wells. After washing, the bound PERK luminal domain was detected by using anti-His-tag antibody (see methods for details). The OD$_{450}$ readings of the individual experiments are shown in scattered dots.

b) The direct binding between bovine PERK luminal domain and the denatured Rhodanese shown by pull-down assay. 100μg GST-bPERK-LD was mixed with 20μl glutathione Sepharose 4B beads. By washing the beads with PBS buffer, different amount of the native Rhodanese (nRho) or denatured Rhodanese (dRho) was applied. The beads were thoroughly washed with PBST, and then treated with the elution buffer. The eluted samples were resolved by SDS-PAGE and western immunoblotted with antibodies against Rhodanese. Naked beads with denatured Rhodanese (lane 1) and purified GST (100μg total) with denatured Rhodanese (lane 2) were utilized as controls. The bands were quantified using the very right one as a reference of 100%.

c) The protein aggregation suppression assay for bovine PERK luminal domain by using Alcohol dehydrogenase (ADH) as the model protein. 5μM PERK LD and 10μM ADH were utilized in this reaction. Heat-induced ADH aggregation was monitored by light scattering at OD$_{320}$ at five minute interval. The OD$_{320}$ readings are shown in vertical axis (as the percentage of the maximum value of buffer controls) and time in minutes is indicated in horizontal axis. ADH only and bPERK-LD only in PBS were used as the negative controls. BSA 5μM mixed with ADH 10μM was used as another control.

d) The protein aggregation suppression assay for PERK luminal domain by using Insulin (Ins) as the model protein. Insulin (100 μM) was mixed at 25 °C with bPERK-LD (10 μM). The aggregation was induced by addition of 20mM DTT and the turbidity was monitored at 320 nm. Insulin only and bPERK-LD only were used as the negative controls. The standard derivations of three independent experiments are indicated in the bars.

Fig. 2. Identification of the peptide substrate P16 for bovine PERK luminal domain.

a) Isothermal titration calorimetry (ITC) data of bovine PERK luminal domain with the peptide P16. The top panel shows the heat release data for injecting the buffer containing the peptide P16 in the buffer containing PERK luminal domain. Twenty injections were performed. The lower panel shows the data fitting for the released heat from the reactions with the standard model curve.

b) The ELISA competition assays showing the identified peptide substrate P16 can inhibit the binding capability of PERK luminal domain to the denatured model proteins luciferase (top panel) and rhodanese (lower panel) in a dose-dependent manner. 100 μl denatured model proteins at 20μg/ml was used to coat the plate. After washing, 100μl PERK luminal domain (labeled as PERK in the figure) at 1 μM was mixed with the peptide substrate P16 at 0μM, 10μM and 100μM, and added into the wells. The bound PERK luminal domain can be detected using anti-Histag antibody. The control 12-mer peptide GGGSGGGSGGGS (labeled as ctl peptide) showed no apparent inhibition for the binding.

c) The fluorescence polarization assay to measure the direct binding / Downloaded from http://www.jbc.org/ by guest on July 26, 2018
between PERK luminal domain and the peptide substrate P16. 10nM 5-FAM-labeled P16 (final concentration) was added into PERK luminal domains in Hepes 20mM, pH 7.2, NaCl 150mM. The concentrations of PERK luminal domain ranged from 1nM to 1000nM. After 15min incubation, the fluorescence polarization signals were measured. To test whether the denatured model protein rhodanese can compete with the peptide substrate P16 to bind with bovine PERK luminal domain, 10nM and 100nM denatured rhodanese were added into the reaction respectively and the fluorescence polarization signals were measured.

Fig. 3. The crystal structure of bovine PERK luminal domain complexed with the peptide substrate P16 determined to 2.8Å resolution. a) The PERK luminal domain homo-dimer structure. One of the monomer is ligand-free (in green) and the other one is complexed with the peptide substrate P16 (in cyan). The peptide substrate P16 is shown in red. The N-terminus and C-terminus of the protein are labeled. The 24 β-strands in the complex monomer are labeled as B1-B24. The dimerization domain, β-sandwich sub-domain and β-hairpin subdomain are circled and labeled. b) The surface drawing for the PERK luminal domain complexed with the peptide substrate P16. The PERK luminal domain is shown in surface drawing and the peptide substrate P16 is shown in stick mode. The hydrophobic patches within the peptide-binding groove of PERK luminal domain is shown in gold. The conserved residues from the peptide-binding grooves that are involved in binding the peptide substrate are labeled in black. Residues W165, Y388, L389 and M391 of PERK luminal domain are shown under the semi-transparent surface. The residues from the peptide substrate P16 that make major contacts with the PERK luminal domain are labeled in white.

Fig. 4. The conformational changes of PERK luminal domain after peptide substrate binding that mediate the PERK oligomerization. a) The superimposition of the peptide-binding domains for the ligand-free monomer (in green) and the peptide-binding monomer (in cyan). The peptide substrate is in red. The β-strands where major conformational changes occur after the peptide binding are labeled. The orientation of this panel is similar to that in Fig. 3b. b) The stacking format revealed by the crystal packing for the PERK luminal domains complexed with peptide substrates. The middle PERK luminal domain complex monomer (cyan) is stacked by two neighboring complex monomers that are translated by one unit cell along a axis. The stacking interactions involve two β-strand formations on either side of middle monomer complex. On the left side, B3 and B17 (underlined) from the middle monomer form β-strands with B21 and B13 from the left monomer complex (in gold). On the right side, B13 and B21 (underlined) from the middle monomer complex form β-strands with B17 and B3 from the right monomer complex (in silver). This stacking format will allow PERK molecules to oligomerize along the stacking direction (shown in double-ended line) to both ends by any number. The orientation for the middle monomer in this panel is similar to that in Fig. 3b and Fig. 4a. c) This panel is generate by rotating Fig. 4b by ~90º along the horizontal axis.

Fig. 5. The structure-based mutagenesis studies. a) The mutations within the conserved hydrophobic peptide-binding groove of PERK luminal domain comprimise the abilities for PERK luminal domain to interact with the denatured Rhodanese as shown by the ELISA
assay. The chemical denatured Rhodanese at 2μg/ml was coated on the plate. Blank well
was utilized as control (labeled as background). After blocking the plate by BSA, bovine
PERK luminal domain and its mutants at 1μM (35μg/ml) was added into the wells. After
washing, the bound PERK luminal domain was detected by using anti-His-tag antibody
(see methods for details). The OD_{450} readings are shown in bars. The standard derivations
of three independent experiments are indicated in the bars. b) The mouse PERK mutation
W165S/Y383S/L384S/M386S exhibited reduced capability to sense the ER stress by use
of the PERK knockout cell line. The mouse wtPERK and PERK
W165S/Y383S/L384S/M386S were transiently transfected into the PERK knockout cell
line and ER stress was induced by addition of 5ug/ml tunicamycin. The phosphorylated
PERK (p-PERK), total PERK, phosphorylated eIF2α (p-eIF2α) and total eIF2α after ER
stress were detected by Western blot. The bands were quantified using the wild type data
as a reference of 100%. The data showed that the phosphorylation levels of PERK and
eIF2α were reduced by ~50% for the PERK mutant W165S/Y383S/L384S/M386S during
ER stress.
Fig. 1
Fig. 3
Fig. 5

5a

wtPERK W165S/Y383S/L384S/M386S

150kD → p-PERK 100% 42.9%

150kD → total PERK 100% 106.8%

37kD → p-eIF2α 100% 52.1%

37kD → total eIF2α 100% 108.1%

37kD → β-actin 100% 102.7%

5b

Fig. 5
The luminal domain of the ER stress sensor protein PERK binds misfolded proteins and thereby triggers PERK oligomerization

Peng Wang, Jingzhi Li, Jiahui Tao and Bingdong Sha

J. Biol. Chem. published online January 31, 2018

Access the most updated version of this article at doi: 10.1074/jbc.RA117.001294

Alerts:
- When this article is cited
- When a correction for this article is posted

Click here to choose from all of JBC's e-mail alerts