Conformal Perturbations of Twisted Dirac Operators and Noncommutative residue

Sining Weia, Jian Wangb, Yong Wangc,*

aSchool of Data Science and Artificial Intelligence, Dongbei University of Finance and Economics, Dalian, 116025, P.R.China
bSchool of Science, Tianjin University of Technology and Education, Tianjin, 300222, P.R.China
cSchool of Mathematics and Statistics, Northeast Normal University, Changchun, 130024, P.R.China

Abstract

In this paper, we obtain two kinds of Kastler-Kalau-Walze type theorems for conformal perturbations of twisted Dirac operators and conformal perturbations of signature operators by a vector bundle with a non-unitary connection on six-dimensional manifolds with (respectively without)boundary.

Keywords: Conformal perturbations of twisted Dirac operators; conformal perturbations of twisted signature operators; noncommutative residue; non-unitary connection.

1. Introduction

The noncommutative residue found in \cite{1,2} plays a prominent role in noncommutative geometry. For one-dimensional manifolds, the noncommutative residue was discovered by Adler \cite{3} in connection with geometric aspects of nonlinear partial differential equations. For arbitrary closed compact n-dimensional manifolds, the noncommutative residue was introduced by Wodzicki in \cite{2} using the theory of zeta functions of elliptic pseudodifferential operators. In \cite{4}, Connes used the noncommutative residue to derive a conformal 4-dimensional Polyakov action analogy. Furthermore, Connes made a challenging observation that the noncommutative residue of the square of the inverse of the Dirac operator was proportional to the Einstein-Hilbert action in \cite{5}. In \cite{6}, Kastler gave a brute-force proof of this theorem. In \cite{7}, Kalau and Walze proved this theorem in the normal coordinates system simultaneously. And then, Ackermann proved that the Wodzicki residue of the square of the inverse of the Dirac operator $\text{Wres}(D^{-2})$ in turn is essentially the second coefficient of the heat kernel expansion of D^2 in \cite{8}.

In \cite{9}, Ponge defined lower dimensional volumes of Riemannian manifolds by the Wodzicki residue. Fedosov et al. defined a noncommutative residue on Boutet de Monvel’s algebra and proved that it was a unique continuous trace in \cite{10}. In \cite{11}, Schrohe gave the relation between the Dixmier trace and the noncommutative residue for manifolds with boundary. In \cite{12}, Wang generalized the Kastler-Kalau-Walze type theorem to the cases of 3, 4-dimensional spin manifolds with boundary and proved a Kastler-Kalau-Walze type theorem. In \cite{12,13,14,15,16}, Y. Wang and his coauthors computed the lower dimensional volumes for 5, 6, 7-dimensional spin manifolds with boundary and also got some Kastler-Kalau-Walze type theorems. In \cite{17}, authors computed $\text{Wres}[(\pi^+D^{-2}) \circ (\pi^+D^{-n+2})]$ for any-dimensional manifolds with boundary, and proved a general Kastler-Kalau-Walze type theorem.

In \cite{18}, J. Wang and Y. Wang proved two kinds of Kastler-Kalau-Walze type theorems for conformal perturbations of twisted Dirac operators and conformal perturbations of signature operators by a vector bundle with a non-unitary connection on four-dimensional manifolds with (respectively without)boundary.

*Corresponding author.

Email addresses: weisn835@nenu.edu.cn (Sining Wei), wangj484@nenu.edu.cn (Jian Wang), wangy581@nenu.edu.cn (Yong Wang)
The motivation of this paper is to establish two Kastler-Kalau-Walze type theorems for conformal perturbations of twisted Dirac operators and conformal perturbations of signature operators with non-unitary connections on six-dimensional manifolds with boundary. We know that the leading symbol of conformal perturbations of twisted Dirac operators is not $\sqrt{-\text{Im}}(\xi)$. This is the reason that we study the residue of conformal perturbations of twisted Dirac operators.

This paper is organized as follows: In Section 2, we recall some basic facts and formulas about Boutet de Monvel’s calculus. In Section 3, we give a Kastler-Kalau-Walze type theorems for conformal perturbations of twisted Dirac operators on six-dimensional manifolds with boundary. In Section 4 and Section 5, we recall the definition of conformal perturbations of signature operators and compute their symbols, and we give a Kastler-Kalau-Walze type theorems for conformal perturbations of signature operators on six-dimensional manifolds with boundary.

2. Boutet de Monvel’s calculus and noncommutative residue

In this section, we shall recall some basic facts and formulas about Boutet de Monvel’s calculus. Let

$$F : L^2(\mathbb{R}_t) \to L^2(\mathbb{R}_v); \ F(u)(v) = \int e^{-ivt}u(t)dt$$

denote the Fourier transformation and $\varphi(\mathbb{R}^+)$ (similarly define $\varphi(\mathbb{R}^-)$), where $\varphi(\mathbb{R})$ denotes the Schwartz space and

$$r^+ : C^\infty(\mathbb{R}) \to C^\infty(\mathbb{R}^+); \ f \to f|_{\mathbb{R}^+}; \ \mathbb{R}^+ = \{x \geq 0; x \in \mathbb{R}\}. \quad (2.1)$$

We define $H^+ = F(\varphi(\mathbb{R}^+)); \ H^- = F(\varphi(\mathbb{R}^-))$ which are orthogonal to each other. We have the following property: $h \in H^+ (H^-)$ if and only if $h \in C^\infty(\mathbb{R})$ which has an analytic extension to the lower (upper) complex half-plane $\{\text{Im}\xi < 0\} (\{\text{Im}\xi > 0\})$ such that for all nonnegative integer l,

$$\frac{d^lh}{dx^l}(\xi) \sim \sum_{k=1}^\infty \frac{d^l}{dx^l}(c_k \xi^k) \quad (2.2)$$

as $|\xi| \to +\infty, \text{Im}\xi \leq 0 (\text{Im}\xi \geq 0)$.

Let H' be the space of all polynomials and $H'' = H_0' \bigoplus H'; \ H = H^+ \bigoplus H^-$. Denote by $\pi^+ (\pi^-)$ respectively the projection on $H^+ (H^-)$. For calculations, we take $H = \tilde{H} = \{\text{rational functions having no poles on the real axis}\}$ (\tilde{H} is a dense set in the topology of H). Then on \tilde{H},

$$\pi^+ h(\xi_0) = \frac{1}{2\pi i} \lim_{u \to 0} \int_{\Gamma^+} \frac{h(\xi)}{\xi_0 + iu - \xi} d\xi, \quad (2.3)$$

where Γ^+ is a Jordan close curve included $\text{Im}\xi > 0$ surrounding all the singularities of h in the upper half-plane and $\xi_0 \in \mathbb{R}$. Similarly, define π^- on \tilde{H},

$$\pi^- h = \frac{1}{2\pi} \int_{\Gamma^-} h(\xi) d\xi. \quad (2.4)$$

So, $\pi^-(H^-) = 0$. For $h \in H \bigcap L^1(R)$, $\pi^+ h = \frac{1}{2\pi} \int_{R} h(v) dv$ and for $h \in H^+ \bigcap L^1(R)$, $\pi^- h = 0$. Denote by B Boutet de Monvel’s algebra (for more details, see Section 2 of [14]).

An operator of order $m \in \mathbb{Z}$ and type d is a matrix

$$A = \begin{pmatrix} \pi^+ P + G & K \\ T & S \end{pmatrix} : \begin{array}{c} C^\infty(X,E_1) \bigoplus C^\infty(\partial X,F_1) \\ \longrightarrow \bigoplus C^\infty(X,E_2) \bigoplus C^\infty(\partial X,F_2) \end{array},$$

2
where X is a manifold with boundary ∂X and $E_1, E_2 (F_1, F_2)$ are vector bundles over $X (\partial X)$. Here, $P : C^\infty_0 (\Omega, E_1) \to C^\infty (\Omega, E_2)$ is a classical pseudodifferential operator of order m on Ω, where Ω is an open neighborhood of X and $E_i|X = E_i (i = 1, 2)$. P has an extension: $\mathcal{E}' (\Omega, E_1) \to \mathcal{D}' (\Omega, E_2)$, where $\mathcal{E}' (\Omega, E_1) (\mathcal{D}' (\Omega, E_2))$ is the dual space of $C^\infty (\Omega, E_1) (C^\infty (\Omega, E_2))$. Let $e^+: C^\infty (X, E_1) \to \mathcal{E}' (\Omega, E_1)$ denote extension by zero from X to Ω and $r^+: \mathcal{D}' (\Omega, E_2) \to \mathcal{D}' (\Omega, E_2)$ denote the restriction from Ω to X, then define

$$\pi^+ P = r^+ P e^+ : C^\infty (X, E_1) \to \mathcal{D}' (\Omega, E_2).$$

In addition, P is supposed to have the transmission property; this means that, for all j, k, α, the homogeneous component p_j of order j in the asymptotic expansion of the symbol p of P in local coordinates near the boundary satisfies:

$$\partial_{x_n}^j \partial^\alpha_x p_j (x', 0, 0, +1) = (-1)^{\nu_j} \partial^\alpha_x \partial_{x_n}^j p_j (x', 0, 0, -1),$$

then $\pi^+ P : C^\infty (X, E_1) \to C^\infty (X, E_2)$ by Section 2.1 of [14].

In the following, write $\pi^+ D^{-1} = \left(\begin{array}{cc} \pi^+ D^{-1} & 0 \\ 0 & 0 \end{array} \right)$. Let M be a compact manifold with boundary ∂M. We assume that the metric g^M on M has the following form near the boundary

$$g^M = \frac{1}{h(x_n)} g^{\partial M} + dx_n^2, \quad (2.5)$$

where $g^{\partial M}$ is the metric on ∂M. Let $U \subset M$ be a collar neighborhood of ∂M which is diffeomorphic $\partial M \times [0, 1)$. By the definition of $h(x_n) \in C^\infty (\Omega, 0, 1)$ and $h(x_n) > 0$, there exists $\tilde{h} \in C^\infty (\Omega, 1)$ such that $\tilde{h}|_{(0, 1)} = h$ and $\tilde{h} > 0$ for some sufficiently small $\varepsilon > 0$. Then there exists a metric \tilde{g} on $\tilde{M} = M \cup_{\partial M} \partial M \times (-\varepsilon, 0]$ which has the form on $U \cup_{\partial M} \partial M \times (-\varepsilon, 0]$

$$\tilde{g} = \frac{1}{\tilde{h}(x_n)} g^{\partial M} + dx_n^2, \quad (2.6)$$

such that $\tilde{g}|_M = g$. We fix a metric \tilde{g} on \tilde{M} such that $\tilde{g}|_M = g$. Note \tilde{D}_F is the twisted Dirac operator on the spinor bundle $S(TM) \otimes F$ corresponding to the connection $\tilde{\nabla}$.

Now we recall the main theorem in [10].

Theorem 2.1. (Fedosov-Golse-Leichtnam-Schröhe) Let X and ∂X be connected, $\dim X = n \geq 3$, $A = \begin{pmatrix} \pi^+ P + G & K \\ T & S \end{pmatrix} \in \mathcal{B}$, and denote by p, b and s the local symbols of P, G and S respectively. Define:

$$\overline{\mathrm{Wres}}(A) = \int_X \int_S \mathrm{tr}_F [p_{-n} (x, \xi)] \sigma (\xi) dx + 2\pi \int_{\partial X} \int_S \{ \mathrm{tr} E [\mathrm{tr} b_{-n} (x', \xi')] + \mathrm{tr} F [s_{1-n} (x', \xi')] \} \sigma (\xi') dx', \quad (2.7)$$

Then

a) $\overline{\mathrm{Wres}}([A, B]) = 0$, for any $A, B \in \mathcal{B}$;

b) It is a unique continuous trace on $\mathcal{B}/\mathcal{B}^{-\infty}$.

3. Conformal perturbations of twisted Dirac operator and Noncommutative residue

In this section we consider a n-dimensional oriented Riemannian manifold (M, g^M) equipped with a fixed spin structure. Let $S(TM)$ be the spinors bundle and F be an additional smooth vector bundle equipped with a non-unitary connection ∇^F. Let $S_1, S_2 \in \Gamma (F)$, g^F be a metric on F. We define the dual connection $\nabla^{F,*}$ by

$$g^F (\nabla^{F,*}_{S_1} S_2) + g^F (S_1, \nabla^{F,*}_{S_2}) = X (g^F (S_1, S_2))$$

3
for \(X \in \Gamma(TM) \) and define
\[
\nabla^F = \frac{\nabla F + \nabla F^*}{2}, \quad A = \frac{\nabla F - \nabla F^*}{2},
\]
then \(\nabla^F \) is a metric connection and \(\Phi \) is an endomorphism of \(F \) with a 1-form coefficient. We consider the tensor product vector bundle \(S(TM) \otimes F \), which becomes a Clifford module via the definition:
\[
c(a) = c(a) \otimes \text{id}_F, \quad a \in TM,
\]
and which we equip with the compound connection:
\[
\nabla^{S(TM) \otimes F} = \nabla^{S(TM)} \otimes \text{id}_F + \text{id}_{S(TM)} \otimes \nabla^F.
\]
Let
\[
\nabla^{S(TM) \otimes F} = \nabla^{S(TM)} \otimes \text{id}_F + \text{id}_{S(TM)} \otimes \nabla^F,
\]
then the spinor connection \(\tilde{\nabla} \) induced by \(\nabla^{S(TM) \otimes F} \) is locally given by
\[
\tilde{\nabla}^{S(TM) \otimes F} = \nabla^{S(TM)} \otimes \text{id}_F + \text{id}_{S(TM)} \otimes \nabla^F + \text{id}_{S(TM)} \otimes \Lambda.
\]
Let \(\{ e_i \}_{1 \leq i, j \leq n} \) (\(\{ \partial_i \} \) be the orthonormal frames (natural frames respectively) on \(TM \),
\[
D_F = \sum_{i,j=1}^n g^{ij} c(\partial_i) \nabla^{S(TM) \otimes F}_{\partial_j} = \sum_{j=1}^n c(e_j) \nabla^{S(TM) \otimes F}_{e_j},
\]
where \(\nabla^{S(TM) \otimes F}_{\partial_j} = \partial_j + \sigma_j^* + \sigma_j^F \) and \(\sigma_j^* = \frac{4}{3} \sum_{j,k=1}^n (\nabla^{S(TM)}_{\partial_k} e_j) c(e_j)c(e_k) \), \(\sigma_j^F \) is the connection matrix of \(\nabla^F \), then the twisted Dirac operators \(\tilde{D}_F, \tilde{D}_F^* \) associated to the connection \(\tilde{\nabla} \) as follows.
For \(\psi \otimes \chi \in S(TM) \otimes F \), we have
\[
\tilde{D}_F(\psi \otimes \chi) = D_F(\psi \otimes \chi) + c(A)(\psi \otimes \chi),
\]
\[
\tilde{D}_F^*(\psi \otimes \chi) = D_F(\psi \otimes \chi) - c(A^*)(\psi \otimes \chi),
\]
where \(c(A) = \sum_{i=1}^n c(e_i) \otimes A(e_i) \) and \(c(A^*) = \sum_{i=1}^n c(e_i) \otimes A^*(e_i) \), \(A^*(e_i) \) denotes the adjoint of \(A(e_i) \).
Then, we have obtain
\[
\tilde{D}_F = \sum_{j=1}^n c(e_j) \nabla^{S(TM) \otimes F}_{e_j} + c(A),
\]
\[
\tilde{D}_F^* = \sum_{j=1}^n c(e_j) \nabla^{S(TM) \otimes F}_{e_j} - c(A^*).
\]
Let \(\nabla^TM \) denote the Levi-civita connection about \(g^M \). In the local coordinates \(\{ x_i : 1 \leq i \leq n \} \) and the fixed orthonormal frame \(\{ \tilde{e}_1, \cdots, \tilde{e}_n \} \), the connection matrix \((\omega_{a,t}) \) is defined by
\[
\nabla^TM(\tilde{e}_1, \cdots, \tilde{e}_n) = (\tilde{e}_1, \cdots, \tilde{e}_n)(\omega_{a,t}).
\]
Let \(c(\tilde{e}_i) \) denote the Clifford action, \(g^{ij} = g(dx_i,dx_j) \nabla^{TM}_{\partial_i} \partial_j = \sum_k \Gamma_{ij}^k \partial_k \), \(\Gamma^k = g^{ij} \Gamma^k_{ij} \) and the cotangent vector \(\xi = \sum \xi_j dx_j \) and \(\xi^i = g^{ij} \xi_i \), by Lemma 1 in [12] and Lemma 2.1 in [12], for any fixed point \(x_0 \in \partial M \), we can choose the normal coordinates \(U \) of \(x_0 \) in \(\partial M \) (not in \(M \)), by the composition formula and (2.2.11) in [12], we obtain in [19],
Lemma 3.1. Let \tilde{D}_F, \tilde{D}_F be the twisted Dirac operators on $\Gamma(S(TM) \otimes F)$, then

$$\sigma^{-1}(\tilde{D}_F)^{-1} = \sigma^{-1}(\tilde{D}_F)^{-1} = \frac{\sqrt{-\gamma}}{|\xi|^2};$$

$$\sigma^{-2}(\tilde{D}_F)^{-1} = \frac{c(\xi)\sigma_0(\tilde{D}_F^*\xi)}{|\xi|^2} + \frac{c(\xi)}{|\xi|^2} \sum_j c(dx_j) \left[\partial_j [c(\xi)] |\xi|^2 - c(\xi) \partial_j |\xi|^2 \right];$$

$$\sigma^{-2}(\tilde{D}_F)^{-1} = \frac{c(\xi)\sigma_0(\tilde{D}_F^*\xi)}{|\xi|^2} + \frac{c(\xi)}{|\xi|^2} \sum_j c(dx_j) \left[\partial_j [c(\xi)] |\xi|^2 - c(\xi) \partial_j |\xi|^2 \right];$$

where

$$\sigma_0(\tilde{D}_F) = -\frac{1}{4} \sum_{s,t} \omega_{s,t}(e_l) c(e_i) c(e_s) c(e_i) + \sum_{j=1}^n c(e_j)(\sigma_j^F - A^*(e_j));$$

$$\sigma_0(\tilde{D}_F) = -\frac{1}{4} \sum_{s,t} \omega_{s,t}(e_l) c(e_i) c(e_s) c(e_i) + \sum_{j=1}^n c(e_j)(\sigma_j^F + A(e_j)).$$

For convenience, let $\lambda = \sum_{j=1}^n c(e_j)(\sigma_j^F - A^*(e_j))$, $\mu = \sum_{j=1}^n c(e_j)(\sigma_j^F + A(e_j))$. In the following, we will compute the more general case $\text{Wres}[\pi^+(f \tilde{D}_F^{-1}) \circ \pi^+ (f^{-1}(\tilde{D}_F^{-1}) \cdot f \tilde{D}_F^{-1} \cdot f^{-1}(\tilde{D}_F^{-1})^{-1})]$ for nonzero smooth functions f, f^{-1}. Denote by $\sigma_l(P)$ the l-order symbol of an operator P. An application of (3.5) and (3.6) in [14] shows that

$$\text{Wres}[\pi^+(f \tilde{D}_F^{-1}) \circ \pi^+ (f^{-1}(\tilde{D}_F^{-1}) \cdot f \tilde{D}_F^{-1} \cdot f^{-1}(\tilde{D}_F^{-1})^{-1})] = \int_M \int_{|\xi|=1} \text{trace}_{S(TM) \otimes F} [\sigma_{-n}(f \tilde{D}_F \cdot \tilde{D}_F f^{-1} \cdot f^{-1}(\tilde{D}_F^{-1})^{-1})] \sigma(\xi)dx + \int_{\partial M} \Phi,$$

where

$$\Phi = \int_{|\xi|=1} \int_{-\infty}^{\infty} \sum_{j,k=0}^{\infty} \frac{(-i)^{a+j+k+\ell}}{a! j! k!(j+k+1)!} \text{trace}_{S(TM) \otimes F} \left[\partial_{x_n}^j \partial_{\xi_n}^k \sigma_1^F(f \tilde{D}_F^{-1})(x',0, \xi', \xi_n) \right] \times \partial_{\xi_n}^\alpha \partial_{\xi_n}^{\beta+1} \partial_{x_n}^\lambda \sigma_l \left(f^{-1}(\tilde{D}_F^{-1}) \cdot f \tilde{D}_F^{-1} \cdot f^{-1}(\tilde{D}_F^{-1}) \right)(x',0, \xi', \xi_n) dx' \xi_n \sigma(\xi')dx',$$

and the sum is taken over $r - k + |a| + \ell - j - 1 = -n = -6$, $r \leq -1$, $\ell \leq -3$.

Note that

$$f^{-1}(\tilde{D}_F^{-1}) \cdot f \tilde{D}_F^{-1} \cdot f^{-1}(\tilde{D}_F^{-1})^{-1}$$

$$= (\tilde{D}_F \cdot f \tilde{D}_F f^{-1} \cdot f^{-1}(\tilde{D}_F^{-1})^{-1})$$

$$= \left(\tilde{D}_F \cdot f \tilde{D}_F f^{-1} \cdot f - \tilde{D}_F \cdot f \tilde{D}_F f^{-1} \cdot f \right)^{-1}$$

$$= \left(f \tilde{D}_F \tilde{D}_F f^{-1} \cdot f \right)^{-1}$$

$$= \left(f \tilde{D}_F \tilde{D}_F f^{-1} \cdot f \right)^{-1}$$

$$= \left(f \tilde{D}_F \tilde{D}_F f^{-1} \cdot f \right)^{-1}$$

$$= \left(f \tilde{D}_F \tilde{D}_F f^{-1} \cdot f \right)^{-1}$$

$$= \left(f \tilde{D}_F \tilde{D}_F f^{-1} \cdot f \right)^{-1}.$$
In order to get the symbol of operators \(\tilde{D}_F f \cdot \tilde{D}_F f^{-1} \cdot \tilde{D}_F f \). We first give the specification of \(\tilde{D}_F^* \tilde{D}_F \tilde{D}_F^* \), \(\tilde{D}_F^* \tilde{D}_F \) and \(\tilde{D}_F \tilde{D}_F^* \). By (3.9) and (3.10), we have

\[
\tilde{D}_F^* \tilde{D}_F = D_F^2 - c(A)D_F - c(A)c(A^*)
\]

\[
= -g^{ij} \partial_i \partial_j - 2\sigma_j^{(T \otimes F)} \partial_j + \Gamma^k \partial_k + \sum_{j=1}^n \left[c(A)c(e_j) - c(A^*)c(e_j) \right] e_j - \sum_{j=1}^n c(e_j) \sigma_j^{(T \otimes F)} c(A^*)
\]

\[
- g^{ij} \left[(\partial_i \sigma_j^{(T \otimes F)}) + \sigma_j^{(T \otimes F)} \sigma_j^{(T \otimes F)} - \Gamma_{ij}^{k} \sigma_k^{(T \otimes F)} \right] + \frac{1}{4}s + \frac{1}{2} \sum_{i \neq j} R^F (e_i, e_j) c(e_i)c(e_j)
\]

\[+
\sum_{j=1}^n \left[c(A)c(e_j) \right] \sigma_j^{(T \otimes F)} - \sum_{j=1}^n c(e_j) c_j (c(A^*)) - c(A)c(A^*)
\]

(3.20)

and

\[
\tilde{D}_F \tilde{D}_F^* = D_F^2 - c(A^*)D_F + D_Fc(A) - c(A)c(A^*)
\]

\[
= -g^{ij} \partial_i \partial_j - 2\sigma_j^{(T \otimes F)} \partial_j + \Gamma^k \partial_k + \sum_{j=1}^n \left[c(e_j)c(A) - c(A^*)c(e_j) \right] e_j + \sum_{j=1}^n c(e_j) \sigma_j^{(T \otimes F)} c(A)
\]

\[
- g^{ij} \left[(\partial_i \sigma_j^{(T \otimes F)}) + \sigma_j^{(T \otimes F)} \sigma_j^{(T \otimes F)} - \Gamma_{ij}^{k} \sigma_k^{(T \otimes F)} \right] + \frac{1}{4}s + \frac{1}{2} \sum_{i \neq j} R^F (e_i, e_j) c(e_i)c(e_j)
\]

\[-\sum_{j=1}^n \left[c(A^*)c(e_j) \right] \sigma_j^{(T \otimes F)} + \sum_{j=1}^n c(e_j) c_j (c(A)) - c(A^*)c(A).
\]

(3.21)
Combining (3.10) and (3.20), we obtain

\[
\tilde{D}_F^* \tilde{D}_F \tilde{D}_F^* = \begin{align*}
\sum_{i,j,l=1}^n c(e_r)(e_r, dx_l) \left(-g^{ij} \partial_i \partial_j + \sum_{r,l=1}^n c(e_r)(e_r, dx_l) \right) & - \sum_{i,j,k=1}^n (\partial g^{ij}) \partial_i \partial_j - \sum_{i,j,k=1}^n g^{ij} \\
\times (4 \sigma_i^{S(TM)\otimes F} \partial_j - 2 \Gamma^{k}_{ij} \partial_k) & + \sum_{r,l=1}^n c(e_r)(e_r, dx_l) - 2 \sum_{i,j=1}^n (\partial g^{ij}) \sigma_i^{S(TM)\otimes F} \partial_j \\
+ \sum_{i,j,k=1}^n g^{ij} (\partial_i \Gamma^{k}_{ij}) \partial_k - 2 \sum_{i,j,k=1}^n g^{ij} (\partial_i \sigma_i^{S(TM)\otimes F} \partial_j) + \sum_{i,j,k=1}^n (\partial g^{ij}) \Gamma^{k}_{ij} \partial_k & + \sum_{r,l=1}^n c(e_r)(e_r, dx_l) \\
\times \partial_i \left\{ - \sum_{i,j,k=1}^n g^{ij} (\partial_i \sigma_i^{S(TM)\otimes F} - \sigma_i^{S(TM)\otimes F} \Gamma^{k}_{ij}) \partial_k - \sum_{r,l=1}^n c(e_r)(e_r, dx_l) \right\} + \sum_{i,j=1}^n c(e_r)(e_r, dx_l) \\
\times c(e_l)(c(e_j)) + \sigma_0 (\tilde{D}_F^*) \sum_{j,l=1}^n (-g^{ij} \partial_i \partial_j) & + \sum_{r,l=1}^n c(e_r)(e_r, dx_l) \left\{ 2 \sum_{j,k=1}^n c(A)(c(e_j)) - c(e_j) c(A^*) \right\} \\
\sum_{j,l=1}^n c(e_l)(c(e_j)) \partial_l \partial_k + \sigma_0 (\tilde{D}_F^*) & - 2 \sigma_i^{S(TM)\otimes F} \partial_j + \Gamma^{k}_{ij} \partial_k + \sum_{j,l=1}^n c(A)(c(e_j)) - c(e_j) c(A^*) \right\} e_j - \sum_{j=1}^n c(e_j) \\
\sum_{j=1}^n \left[c(A)(c(e_j)) \right] \sigma_j^{S(TM)\otimes F} - \sum_{j=1}^n c(e_j) \sigma_j^{S(TM)\otimes F} c(A^*) & + \frac{1}{2} \sum_{i \neq j} R^{F}(e_i, e_j) c(e_i) c(e_j) \right}\end{align*}
\]

(3.22)

Thus, using (3.19)-(3.22), we get the specification of \(\tilde{D}_F^* \cdot \tilde{D}_F f^{-1} \cdot \tilde{D}_F f \).
\[
\begin{aligned}
\dot{D}_F f \cdot \dot{D}_F f^{-1} & \cdot \dot{D}_F f \\
&= f \cdot \dot{D}_F \dot{D}_F \dot{D}_F + c(df) \dot{D}_F \dot{D}_F - \dot{D}_F \dot{D}_F f \cdot c(df^{-1}) \cdot f + \dot{D}_F \cdot c(df) c(df^{-1}) f \\
&= f \cdot \left\{ \begin{array}{l}
\sum_{i,j,l=1}^{n} c(e_r)(e_r, dx_l)(-g^{ij} \partial_l \partial_j) + \sum_{r,l=1}^{n} c(e_r)(e_r, dx_l) \left\{ -2 \sum_{i,j=1}^{n} (\partial_l g^{ij}) \partial_l \partial_j - \sum_{i,j,k=1}^{n} g^{ij} \right.\\
\times \left(4 \sigma^2_i D \right) \partial_j - 2 \Gamma^k_{ij} \partial_k \right\} \\
+ \sum_{r,l=1}^{n} c(e_r)(e_r, dx_l) \left\{ -2 \sum_{i,j=1}^{n} (\partial_l g^{ij}) \sigma_i D \partial_j + \sum_{i,j,k=1}^{n} g^{ij} \right. \\
\times \left(\partial_l \Gamma^k_{ij} \right) \partial_k - 2 \sum_{i,j=1}^{n} g^{ij} (\partial_l \sigma_i D) \partial_j + \sum_{i,j,k=1}^{n} \sigma_i D \left(\partial_l \Gamma^k_{ij} \partial_k + \sum_{k,l=1}^{n} \left[\partial_l \left(c(A) c(e_j) - c(e_j) \right) \right] \partial_k \right) \\
+ \sum_{i,j=1}^{n} c(A) \left[\partial_l \partial_j + \sum_{k=1}^{n} \left(c(A) c(e_j) - c(e_j) c(A^*) \right) \right] \partial_k \right) + \sum_{i,j=1}^{n} \left[\partial_l \left(c(A) c(e_j) - c(e_j) c(A^*) \right) \right] \\
\times \sum_{j=1}^{n} \left\{ \begin{array}{l}
\sum_{j=1}^{n} \left[c(A) c(e_j) \sigma_j \sigma_j D c(A^*) - \sum_{i,j=1}^{n} c(e_j) \sigma_j \sigma_j D c(A^*) \right] + \frac{1}{2} \sum_{i,j=1}^{n} R^F (e_i, e_j) \\
+ \sum_{j=1}^{n} \left[c(A) c(e_j) \sigma_j \sigma_j D c(A^*) - \sum_{i,j=1}^{n} c(e_j) \sigma_j \sigma_j D c(A^*) \right] + \frac{1}{2} \sum_{i,j=1}^{n} R^F (e_i, e_j) \\
\end{array} \right\} \\
\left\{ - g^{ij} \partial_l \partial_j - 2 \sigma_j \sigma_j D \partial_j + \Gamma^k \partial_k \right\} + \sum_{j=1}^{n} \left[c(A) c(e_j) - c(e_j) c(A^*) \right] e_j - \sum_{j=1}^{n} c(e_j) \right) \\
\times c(A^*) - g^{ij} \left[(\partial_l \sigma_i \sigma_j D) + \sigma_i \sigma_j D \sigma_j D \sigma_i D - \Gamma^k \sigma_i \sigma_j D \sigma_i D \right] + \frac{1}{4} s + \frac{1}{2} \sum_{i,j=1}^{n} R^F (e_i, e_j) \\
\times c(e_i) c(e_j) + \sum_{j=1}^{n} \left[c(A) c(e_j) \sigma_j \sigma_j D c(A^*) - \sum_{i,j=1}^{n} c(e_j) \sigma_j \sigma_j D c(A^*) \right] \right) \right\} \\
\left\{ - g^{ij} \partial_l \partial_j - 2 \sigma_j \sigma_j D \partial_j + \Gamma^k \partial_k \right\} + \sum_{j=1}^{n} \left[c(e_j) c(A) - c(A^*) c(e_j) \right] e_j + \sum_{j=1}^{n} c(e_j) \sigma_j \sigma_j D c(A) \\
- g^{ij} \left[(\partial_l \sigma_i \sigma_j D) + \sigma_i \sigma_j D \sigma_j D \sigma_i D - \Gamma^k \sigma_i \sigma_j D \sigma_i D \right] + \frac{1}{4} s + \frac{1}{2} \sum_{i,j=1}^{n} R^F (e_i, e_j) \\
\times c(e_i) - \sum_{j=1}^{n} \left[c(A^*) c(e_j) \right] \sigma_j \sigma_j D c(A^*) + \sum_{j=1}^{n} c(e_j) c(A) - c(A^*) c(A) \right) \right\} \right) f \cdot c(df^{-1}) \cdot f \\
+ \left\{ \sum_{i,j=1}^{n} g^{ij} (\partial_l \sigma_i \sigma_j D) \partial_j + \sum_{i,j=1}^{n} c(e_j) c(A) - c(A^*) c(A) \right) \right\} \cdot c(df) c(df^{-1}) f.
\end{array} \right\}
\end{aligned}
\]
Let $\partial^i = g^{ij} \partial_j$, $\sigma^j = g^{ij} \sigma_j$, by the above formulas, then we obtain:

Lemma 3.2. Let $\tilde{D}_f^*, \tilde{D}_F$ be the twisted Dirac operators on $\Gamma(S(TM) \otimes F)$,

\[
\begin{align*}
\sigma_3(\tilde{D}_f^* \cdot \tilde{D}_f f^{-1} \cdot \tilde{D}_f f) &= f \sigma_3(\tilde{D}_f^* \tilde{D}_f \tilde{D}_f) = \frac{\sqrt{-1}c(\xi)}{\xi^2}; \\
\sigma_2(\tilde{D}_f^* \cdot \tilde{D}_f f^{-1} \cdot \tilde{D}_f f) &= f \sigma_2(\tilde{D}_f^* \tilde{D}_f \tilde{D}_f) + 2c(df)[\xi^2],
\end{align*}
\]

(3.24) (3.25)

where $\sigma_2(\tilde{D}_f^* \tilde{D}_f \tilde{D}_f) = c(\xi) (4\sigma^k - 2\Gamma^k) \xi_k - \frac{1}{4} \xi^2 h'(0) c(dx_n) + \lambda \xi^2 - 2c(\xi)c(A)c(\xi) - 2[\xi^2 c(A^*)].$

For convenience, we write that $\sigma_2(\tilde{D}_f \tilde{D}_F \tilde{D}_f) = G + \lambda \xi^2 - 2c(\xi)c(A)c(\xi) - 2[\xi^2 c(A^*)]$. In order to get the symbol of operators $\tilde{D}_f f^{-1} \cdot \tilde{D}_f f$. We first give the following formulas:

\[
\tilde{D}_f^0 = (\sqrt{-1})^|\alpha| \partial^\alpha; \quad \sigma(\tilde{D}_f f^{-1} \cdot \tilde{D}_f f) = p_3 + p_2 + p_1 + p_0;
\]

\[
\sigma((\tilde{D}_f f^{-1} \cdot \tilde{D}_f f)^{-1}) = \sum_{j=3}^{\infty} q_j.
\]

(3.26)

By the composition formula of pseudodifferential operators, we have

\[
1 = \sigma(\tilde{D}_f f^{-1} \cdot \tilde{D}_f f) \circ (\tilde{D}_f f^{-1} \cdot \tilde{D}_f f)^{-1}
\]

\[
= (p_3 + p_2 + p_1 + p_0)(q_3 + q_4 + q_5 + \cdots)
\]

\[
+ \sum_j \partial_{\xi_j} p_3 + p_2 + \partial_{\xi_j} p_1 + \partial_{\xi_j} p_0)(D_{x_j} q_3 + D_{x_j} q_4 + D_{x_j} q_5 + \cdots)
\]

\[
= p_3 q_3 + (p_3 q_4 + p_2 q_4 + \sum_j \partial_{\xi_j} p_3 D_{x_j} q_3) + \cdots.
\]

(3.27)

Then

\[
q_3 = p_3^{-1}; \quad q_4 = -p_3^{-1}[p_2 p_3^{-1} + \sum_j \partial_{\xi_j} p_3 D_{x_j} (p_3^{-1})].
\]

(3.28)

By Lemma 2.1 in [12] and (3.24), (3.25), we obtain:

Lemma 3.3. Let $\tilde{D}_f^*, \tilde{D}_F$ be the twisted Dirac operators on $\Gamma(S(TM) \otimes F)$, then

\[
\begin{align*}
\sigma_{-3}(\tilde{D}_f^* \cdot \tilde{D}_f f^{-1} \cdot \tilde{D}_f f)^{-1} &= f^{-1} \sigma_{-3}(\tilde{D}_f^* \tilde{D}_f \tilde{D}_f)^{-1} = \frac{\sqrt{-1}c(\xi)}{\xi^4};
\end{align*}
\]

(3.29)

\[
\begin{align*}
\sigma_{-4}(\tilde{D}_f^* \cdot \tilde{D}_f f^{-1} \cdot \tilde{D}_f f)^{-1} &= f^{-1} \sigma_{-4}(\tilde{D}_f^* \tilde{D}_f \tilde{D}_f)^{-1} + \frac{2c(\xi) c(df) c(\xi)}{\xi^6} \
&+ \frac{ic(\xi) \sum_j [c(dx_j) \xi^2 + 2\xi_j c(\xi)] D_{x_j} (f^{-1}) c(\xi)}{\xi^8}.
\end{align*}
\]

(3.30)

where

\[
\begin{align*}
\sigma_{-4}(\tilde{D}_f^* \tilde{D}_f \tilde{D}_f)^{-1} &= \frac{c(\xi) \sigma_2(\tilde{D}_f^* \tilde{D}_f \tilde{D}_f) c(\xi)}{\xi^8} \sum_j [c(dx_j) \xi^2 + 2\xi_j c(\xi)] \left[\partial_{x_j} [c(\xi)] \xi^2 - 2c(\xi) \partial_{x_j} (|\xi|^2)\right] \\
&= \frac{c(\xi) G c(\xi)}{\xi^8} + \frac{c(\xi) c(\xi)}{\xi^4} \sum_j [c(dx_j) \xi^2 + 2\xi_j c(\xi)] \left[\partial_{x_j} [c(\xi)] \xi^2 - 2c(\xi) \partial_{x_j} (|\xi|^2)\right] \\
&- 2c(\xi) \partial_{x_j} (|\xi|^2)
\end{align*}
\]

(3.31)
Locally we can use Theorem 2.5 in [19] to compute the interior term of (3.17), then

\[
\int_M \int_{|\xi|=1} \text{traces}_{(TM)\otimes F}[\sigma_{-n}\left((\tilde{D}_F^* f \cdot \tilde{D}_F f^{-1})^{-2}\right)]\sigma(\xi) \, d\xi \\
= 8\pi^3 \int_M \left\{ \text{traces}\left[-(\frac{s}{12} + c(A^*) c(A) - \frac{1}{4} \sum_i [c(A^*) c(e_i) - c(e_i) c(A)]^2 \\
- \frac{1}{2} \sum_j \nabla_j^F (c(A^*) c(e_j) - \frac{1}{2} \sum_j c(e_j) \nabla_j^F (c(A))] - 2f^{-1} \Delta(f) \\
+ 4f^{-1} \text{traces}\left[A(\text{grad}_M f) - f^2 \left| \text{grad}_M(f)^2 + 2\Delta(f) \right| \right] \right\} \, d\text{vol}_M. \tag{3.32}
\]

So we only need to compute \(\int_{\partial M} \Phi \).

From the formula (3.18) for the definition of \(\Phi \), now we can compute \(\Phi \). Since the sum is taken over \(r + \ell - k - j - |\alpha| - 1 = -6 \), \(r \leq -1 \), \(\ell \leq -3 \), then we have the \(\int_{\partial M} \Phi \) is the sum of the following five cases:

case (a) (I) \(r = -1, \ell = -3, j = k = 0, |\alpha| = 1 \).

By (3.18), we get

\[
\text{case (a) (I)} = - \int_{|\xi|=1} \int_{-\infty}^{+\infty} \sum_{|\alpha|=1} \text{traces}\left[\partial_{\xi^+} \sigma_{-1}(f \tilde{D}_F^{-1}) \times \partial_{\xi^+} \sigma_{-1}(f^{-1}(\tilde{D}_F^{-1}) \cdot f \tilde{D}_F^{-1}) \\
\cdot f^{-1}(\tilde{D}_F^{-1}) \right](x_0) d\xi_n \sigma(\xi') \, dx' \\
= - \int_{|\xi|=1} \int_{-\infty}^{+\infty} \sum_{|\alpha|=1} \text{traces}\left[\partial_{\xi^+} \sigma_{-1}(f \tilde{D}_F^{-1}) \times \partial_{\xi^+} \sigma_{-1}(f^{-1}(\tilde{D}_F^{-1}) \cdot f \tilde{D}_F^{-1}) \\
\times d\xi_n \sigma(\xi') \right] dx' \\
= - \int_{|\xi|=1} \int_{-\infty}^{+\infty} \sum_{|\alpha|=1} \text{traces}\left[\partial_{\xi^+} \sigma_{-1}(f \tilde{D}_F^{-1}) \times \partial_{\xi^+} \sigma_{-1}(f^{-1}(\tilde{D}_F^{-1}) \cdot f \tilde{D}_F^{-1}) \\
\times d\xi_n \sigma(\xi') \right] dx' \tag{3.33}
\]

By Lemma 2.2 in [12] and (3.29), for \(i < n \), we have

\[
\partial_{\xi_i} \sigma_{-3}\left((\tilde{D}_F^* \tilde{D}_F \tilde{D}_F^*)^{-1}\right)(x_0) = \partial_{\xi_i} \left[\frac{\sqrt{1 - c(\xi)}}{|\xi|^4} \right](x_0) = \sqrt{1 - c(\xi)} |\xi|^{-4}(x_0) - 2\sqrt{1 - c(\xi)} \partial_{\xi_i} \left[|\xi|^2 \right]|\xi|^{-6}(x_0) = 0. \tag{3.34}
\]

Thus we have

\[
- \int_{|\xi|=1} \int_{-\infty}^{+\infty} \sum_{|\alpha|=1} \text{traces}\left[\partial_{\xi^+} \sigma_{-1}(f \tilde{D}_F^{-1}) \times \partial_{\xi^+} \sigma_{-1}(f^{-1}(\tilde{D}_F^{-1}) \cdot f \tilde{D}_F^{-1}) \\
\times d\xi_n \sigma(\xi') \right] dx' = 0. \tag{3.35}
\]

By (3.12) and direct calculations, for \(i < n \), we obtain

\[
\frac{\partial_{\xi_i} \pi_{\xi_n}^+ \sigma_{-1}(\tilde{D}_F^{-1})(x_0)|_{|\xi'|=1} = \partial_{\xi_i} \pi_{\xi_n}^+ \sigma_{-1}(\tilde{D}_F^{-1})(x_0)|_{|\xi'|=1}}{2(\xi_n - \sqrt{-1})} = \frac{c(dx_i)}{2(\xi_n - \sqrt{-1})} - \frac{\xi_i c(\xi_n - 2\sqrt{-1}c(\xi') + \xi_i c(dx_n))}{2(\xi_n - \sqrt{-1})^2} \tag{3.36}
\]
and we get
\[
\partial_{\xi_n} \sigma_{-3}(\tilde{D}_F^* \tilde{D}_F \tilde{D}_F^*)^{-1} = \frac{\sqrt{-1}c(dx_n)}{[\xi]^4} - \frac{4\sqrt{-1}[\xi_n c(\xi') + \xi_n^2 c(dx_n)]}{[\xi]^6}.
\] (3.37)

Then for \(i < n \), we have
\[
\text{trace} \left[\partial^2_{\xi_n} \pi^+_{\xi_n} \sigma_{-1}(\tilde{D}_F^{-1}) \times \partial_{\xi_n} \sigma_{-3}(\tilde{D}_F^* \tilde{D}_F \tilde{D}_F^*)^{-1} \right](x_0)
\]
\[
= -\xi_i \text{trace} \left[\frac{c(dx_n)^2}{2(\xi_n - \sqrt{-1})^2} \right] - 4\sqrt{-1}\xi_i \text{trace} \left[\frac{c(dx_n)^2}{2(\xi_n - \sqrt{-1})[\xi]^6} \right] + 4\sqrt{-1}\xi_i \xi_i (\xi_n - 2\sqrt{-1})
\times \text{trace} \left[\frac{c(\xi')^2}{2(\xi_n - \sqrt{-1})^2[\xi]^6} \right] + 4\sqrt{-1}\xi_i \xi_i \text{trace} \left[\frac{c(dx_n)^2}{2(\xi_n - \sqrt{-1})^2[\xi]^6} \right].
\] (3.38)

We note that \(i < n \), \(\int_{|\xi'|=1} \xi_i \sigma(\xi') = 0 \), so
\[
-f \sum_{j<n} \partial_j (f^{-1}) \int_{|\xi'|=1} \int_{-\infty}^{+\infty} \sum_{|\alpha|=1} \text{trace} \left[\partial^2_{\xi_i} \pi^+_{\xi_n} \sigma_{-1}(\tilde{D}_F^{-1}) \times \partial_{\xi_n} \sigma_{-3}(\tilde{D}_F^* \tilde{D}_F \tilde{D}_F^*)^{-1} \right](x_0) d\xi_n \sigma(\xi') dx'
\]
\[
= 0.
\] (3.39)

Then we have case (a) (I) = 0.

case (a) (II) \(r = -1, l = -3, |\alpha| = k = 0, j = 1 \).

By (3.18), we have
\[
\text{case (a) (II)} = -\frac{1}{2} \int_{|\xi'|=1} \int_{-\infty}^{+\infty} \text{trace} \left[\partial_{\xi_n} \pi^+_{\xi_n} \sigma_{-1}(f \tilde{D}_F^{-1}) \times \partial_{\xi_n} \sigma_{-3}(f^{-1}(\tilde{D}_F^*)^{-1} \cdot f \tilde{D}_F^{-1}).
\]
\[
f^{-1}(\tilde{D}_F^{-1})^{-1} \right](x_0) d\xi_n \sigma(\xi') dx'
\]
\[
= -\frac{1}{2} \int_{|\xi'|=1} \int_{-\infty}^{+\infty} \text{trace} \left[\partial_{\xi_n} \pi^+_{\xi_n} \sigma_{-1}(\tilde{D}_F^{-1}) \times \partial_{\xi_n} \sigma_{-3}(\tilde{D}_F^* \tilde{D}_F \tilde{D}_F^*)^{-1} \right](x_0) d\xi_n \sigma(\xi') dx'
\]
\[
-\frac{1}{2} \int_{|\xi'|=1} \int_{-\infty}^{+\infty} \text{trace} \left[\pi^+_{\xi_n} \sigma_{-1}(\tilde{D}_F^{-1}) \times \partial_{\xi_n} \sigma_{-3}(\tilde{D}_F^* \tilde{D}_F \tilde{D}_F^*)^{-1} \right](x_0) dx'
\]
\[
\times d\xi_n \sigma(\xi') dx'.
\] (3.40)

By (2.2.23) in \[12\] and (3.12), we have
\[
\pi^+_{\xi_n} \partial_{\xi_n} \sigma_{-1}(\tilde{D}_F^{-1})(x_0)|_{|\xi'|=1} = \frac{\partial_{\xi_n} c(\xi')(x_0)}{2(\xi_n - \sqrt{-1})} + \sqrt{-1}h'(0) \left[\frac{\sqrt{-1}c(\xi')}{4(\xi_n - \sqrt{-1})} + \frac{c(\xi') + \sqrt{-1}c(dx_n)}{4(\xi_n - \sqrt{-1})^2} \right].
\] (3.41)

By (3.29) and direct calculations, we have
\[
\partial_{\xi_n} \sigma_{-3}(\tilde{D}_F^* \tilde{D}_F \tilde{D}_F^*)^{-1} = -\frac{4\sqrt{-1}\xi_n c(\xi') + \sqrt{-1}(1 - 3\xi_n^2)c(dx_n)}{(1 + \xi_n^2)^3}
\] (3.42)

and
\[
\partial^2_{\xi_n} \sigma_{-3}(\tilde{D}_F^* \tilde{D}_F \tilde{D}_F^*)^{-1} = \sqrt{-1} \left[\frac{(20\xi_n^2 - 4)c(\xi') + 12(\xi_n^2 - \xi_n)c(dx_n)}{(1 + \xi_n^2)^4} \right].
\] (3.43)

Since \(n = 6 \), \(\text{trace}_{S(TM) \otimes F} [\text{id}] = -8\text{dim} F \). By the relation of the Clifford action and \(\text{trace} PQ = \text{trace}QP \), then
\[
\text{trace}[c(\xi')(c(dx_n))] = 0; \text{trace}[c(dx_n)^2] = -8\text{dim} F; \text{trace}[c(\xi')^2](x_0)|_{|\xi'|=1} = -8\text{dim} F; \text{trace}[\partial_{\xi_n} c(\xi')(c(dx_n))] = 0; \text{trace}[\partial_{\xi_n} c(\xi')(c(dx_n))(x_0)|_{|\xi'|=1} = -4h'(0)\text{dim} F.
\] (3.44)
By (3.41)-(3.44), we get
\[
\text{trace} \left[\partial_{\xi_n} \pi^+_{\xi_n} \sigma_{-1}(\tilde{D}_F^{-1}) \times \partial^2_{\xi_n} \sigma_{-3}((\tilde{D}_F^* \tilde{D}_F \tilde{D}_F^*)^{-1}) \right](x_0) = h'(0) \dim F \frac{-8 - 24 \xi_n \sqrt{-1} + 40 \xi_n^2 + 24 \sqrt{-1} \xi_n^3}{(\xi_n - \sqrt{-1})^6 (\xi_n + \sqrt{-1})^4}.
\]
(3.45)

Then we obtain
\[
\frac{1}{2} \int_{|\xi'|=1}^{\infty} \int_{-\infty}^{\infty} \text{trace} \left[\partial_{\xi_n} \pi^+_{\xi_n} \sigma_{-1}(\tilde{D}_F^{-1}) \times \partial^2_{\xi_n} \sigma_{-3}((\tilde{D}_F^* \tilde{D}_F \tilde{D}_F^*)^{-1}) \right](x_0) d\xi_n \sigma(\xi') d\xi' = -\frac{15}{16} \pi h'(0) \Omega_4 \dim F d\xi'.
\]
(3.46)

On the other hand, by calculations, we have
\[
\pi^+_{\xi_n} \sigma_{-1}(\tilde{D}_F^{-1})(x_0) |_{|\xi'|=1} = \frac{c(\xi') + \sqrt{-1} e(d\xi_n)}{2 (\xi_n - \sqrt{-1})^6}.
\]
(3.47)

By (3.42), (3.44) and (3.47), we get
\[
\text{trace} \left[\pi^+_{\xi_n} \sigma_{-1}(\tilde{D}_F^{-1}) \times \partial^2_{\xi_n} \sigma_{-3}((\tilde{D}_F^* \tilde{D}_F \tilde{D}_F^*)^{-1}) \right](x_0) = -16 \dim F \frac{5 \xi_n^2 \sqrt{-1} - \sqrt{-1} - 3 \xi_n^3 + 3 \xi_n}{(\xi_n - \sqrt{-1})^4 (\xi_n + \sqrt{-1})^4}.
\]
(3.48)

Then we obtain
\[
\frac{-1}{2} f^{-1} \partial_{x_n}(f) \int_{|\xi'|=1}^{\infty} \int_{-\infty}^{\infty} \text{trace} \left[\pi^+_{\xi_n} \sigma_{-1}(\tilde{D}_F^{-1}) \times \partial^2_{\xi_n} \sigma_{-3}((\tilde{D}_F^* \tilde{D}_F \tilde{D}_F^*)^{-1}) \right](x_0) d\xi_n \sigma(\xi') d\xi' = \frac{5 \sqrt{-1} + 44}{4} \pi f^{-1} \partial_{x_n}(f) \cdot \dim F \Omega_4 d\xi'.
\]
(3.49)

where \(\Omega_4 \) is the canonical volume of \(S_4 \).

Combining (3.40), (3.46) and (3.49), we obtain
\[
\text{case (a) II} = -\frac{15}{16} \pi h'(0) \Omega_4 \dim F d\xi' + \frac{5 \sqrt{-1} + 44}{4} \pi f^{-1} \partial_{x_n}(f) \cdot \Omega_4 \dim F d\xi'.
\]
(3.50)

\text{case (a) (III)} \quad r = -1, l = -3, |\alpha| = j = 0, k = 1.

By (3.18), we have
\[
\text{case (a) (III)} = \frac{-1}{2} \int_{|\xi'|=1}^{\infty} \int_{-\infty}^{\infty} \text{trace} \left[\partial_{\xi_n} \pi^+_{\xi_n} \sigma_{-1}(f \tilde{D}_F^{-1}) \times \partial_{x_n} \partial_{\xi_n} \sigma_{-3}(f^{-1}(\tilde{D}_F)^{-1}) \cdot f \tilde{D}_F^{-1} \right](x_0) d\xi_n \sigma(\xi') d\xi'.
\]
\[
= -\frac{1}{2} \int_{|\xi'|=1}^{\infty} \int_{-\infty}^{\infty} \text{trace} \left[\partial_{\xi_n} \pi^+_{\xi_n} (\sigma_{-1}(\tilde{D}_F^{-1})) \times \partial_{x_n} \partial_{\xi_n} \sigma_{-3}(\tilde{D}_F \tilde{D}_F \tilde{D}_F^*)^{-1} \right](x_0) d\xi_n \sigma(\xi') d\xi' -\frac{1}{2} f \partial_{x_n}(f^{-1}) \int_{|\xi'|=1}^{\infty} \int_{-\infty}^{\infty} \text{trace} \left[\partial_{\xi_n} \pi^+_{\xi_n} \sigma_{-1}(\tilde{D}_F^{-1}) \times \partial_{x_n} \sigma_{-3}(\tilde{D}_F \tilde{D}_F \tilde{D}_F^*)^{-1} \right](x_0) d\xi_n \sigma(\xi') d\xi'.
\]
(3.51)

By (2.2.29) in [12], we have
\[
\partial_{\xi_n} \pi^+_{\xi_n} \sigma_{-1}(\tilde{D}_F^{-1})(x_0) |_{|\xi'|=1} = \frac{c(\xi') + \sqrt{-1} e(d\xi_n)}{2 (\xi_n - \sqrt{-1})^2}.
\]
(3.52)
By (3.29) and direct calculations, we have
\[
\partial_{\xi_0} \partial_{x_n} \sigma^{-3}((\bar{D}_F^* \bar{D}_F \bar{D}_F^*)^{-1}) = \frac{-4 \sqrt{-1} \xi_0 \partial_{\xi_0} c(\xi')(x_0)}{(1 + \xi_0^2)^3} + \frac{12 \sqrt{-1} h'(0) \xi_0 c(\xi')}{(1 + \xi_0^2)^4} - \frac{\sqrt{-1}(2 - 10 \xi_0^2) h'(0) c(dx_n)}{(1 + \xi_0^2)^4}.
\]
(3.53)

Combining (3.44), (3.52) and (3.53), we have
\[
\text{trace} \left[\partial_{\xi_0} \pi_{\xi_0} \sigma^{-1}(\bar{D}_F^{-1}) \times \partial_{\xi_0} \partial_{x_n} \sigma^{-3}(\bar{D}_F^* \bar{D}_F \bar{D}_F^*)^{-1}) \right] (x_0)|_{\xi'|=1} = h'(0) \text{dim} F \frac{8 \sqrt{-1} - 32 \xi_n - 8 \sqrt{-1} \xi_n^2}{(\xi_n - \sqrt{-1})^6(\xi_n + \sqrt{-1})^4},
\]
(3.54)
and
\[
\text{trace} \left[\partial_{\xi_0} \pi_{\xi_0} \sigma^{-1}(\bar{D}_F^{-1}) \times \partial_{\xi_0} \sigma^{-3}(\bar{D}_F^* \bar{D}_F \bar{D}_F^*)^{-1}) \right] (x_0)|_{\xi'|=1} = -4 \text{dim} F \frac{4 \sqrt{-1} \xi_n + 1 - 3 \xi_n^2}{(\xi_n - \sqrt{-1})^6(\xi_n + \sqrt{-1})^3}.
\]
(3.55)

Then
\[
- \frac{1}{2} \int_{|\xi'|=1} \int_{-\infty}^{+\infty} \text{trace} \left[\partial_{\xi_0} \pi_{\xi_0} \sigma^{-1}(\bar{D}_F^{-1}) \times \partial_{\xi_0} \partial_{x_n} \sigma^{-3}(\bar{D}_F^* \bar{D}_F \bar{D}_F^*)^{-1}) \right] (x_0) d\xi_n \sigma(\xi') dx' = \frac{25}{16} \pi h'(0) \Omega_4 \text{dim} F dx',
\]
(3.56)
and
\[
- \frac{1}{2} f \partial_{x_n} (f^{-1}) \int_{|\xi'|=1} \int_{-\infty}^{+\infty} \text{trace} \left[\partial_{\xi_0} \pi_{\xi_0} \sigma^{-1}(\bar{D}_F^{-1}) \times \partial_{\xi_0} \sigma^{-3}(\bar{D}_F^* \bar{D}_F \bar{D}_F^*)^{-1}) \right] (x_0) d\xi_n \sigma(\xi') dx' = \frac{\pi \sqrt{-1}}{16} \cdot f \cdot \partial_{x_n} (f^{-1}) \Omega_4 \text{dim} F dx',
\]
(3.57)
where \(\Omega_4 \) is the canonical volume of \(S_4 \).

Then
\[
\text{case (a) III} = \left[\frac{25}{16} \pi h'(0) + \frac{\pi \sqrt{-1}}{16} \cdot f \cdot \partial_{x_n} (f^{-1}) \right] \Omega_4 \text{dim} F dx'.
\]
(3.58)

\text{case (b) } r = -1, l = -4, |\alpha| = j = k = 0.
By (3.18), we have
\[
\text{case (b)} = -i \int_{|\xi'|=1}^{+\infty} \int_{-\infty}^{+\infty} \text{trace} \left[\pi_{\xi_n}^+ \sigma_{-1} (f \tilde{D}_F^{-1}) \times \partial_{\xi_n} \sigma_{-4} (f^{-1} \tilde{D}_F^{-1} \cdot f \tilde{D}_F^{-1} \cdot f^{-1} \tilde{D}_F^{-1}) \right] (x_0) \\
\times d\xi_n \sigma(\xi') dx'
\]
\[
= -i \int_{|\xi'|=1}^{+\infty} \int_{-\infty}^{+\infty} \text{trace} \left[\pi_{\xi_n}^+ \sigma_{-1} (f \tilde{D}_F^{-1}) \times \partial_{\xi_n} \left(f^{-1} \sigma_{-4} (\tilde{D}_F^{-1} \tilde{D}_F \tilde{D}_F^{-1})^{-1} + \frac{2 c(\xi) c(df) c(\xi)}{f^2 |\xi|^6} \right) \right] (x_0) d\xi_n \sigma(\xi') dx'
\]
\[
-2i f^{-1} \int_{|\xi'|=1}^{+\infty} \int_{-\infty}^{+\infty} \text{trace} \left[\pi_{\xi_n}^+ \sigma_{-1} (\tilde{D}_F^{-1}) \times \partial_{\xi_n} \left(\frac{c(\xi) c(df) c(\xi)}{|\xi|^6} \right) \right] (x_0) d\xi_n \sigma(\xi') dx'
\]
\[
-6i f^{-1} \int_{|\xi'|=1}^{+\infty} \int_{-\infty}^{+\infty} \text{trace} \left[\pi_{\xi_n}^+ \sigma_{-1} (\tilde{D}_F^{-1}) \times \partial_{\xi_n} \left(\frac{c(\xi) \sum_j [c(dx_j)] |\xi|^2 + 2 \xi_j c(\xi)] D_{x_j} (f^{-1}) c(\xi)}{|\xi|^8} \right) \right] (x_0) d\xi_n \sigma(\xi') dx'
\]
\[
\times (x_0) d\xi_n \sigma(\xi') dx',
\]
(3.59)

In the normal coordinate, \(g^j(x_0) = \delta^j_i \) and \(\partial_{x_j} (g^a \omega)(x_0) = 0 \), if \(j < n; \partial_{x_j} (g^a \omega)(x_0) = h'(0) \delta_{ij} \), if \(j = n \). So by Lemma A.2 in [12], we have \(\Gamma^a(x_0) = \frac{1}{2} h'(0) \) and \(\Gamma^b(x_0) = 0 \) for \(k < n \). By the definition of \(\delta^k \) and Lemma 2.3 in [12], we have \(\delta^a(x_0) = 0 \) and \(\delta^b = \frac{1}{2} h'(0) c(\tilde{c}_a) c(\tilde{c}_n) \) for \(k < n \). By (3.30), we obtain
\[
\sigma_{-4} (\tilde{D}_F^{-1} \tilde{D}_F \tilde{D}_F^{-1})^{-1} = \frac{-17 - 9 \xi_n^3}{4(1 + \xi_n^4)^3} h'(0) c(\xi') c(dx_n) c(\xi') + \frac{33 \xi_n + 17 \xi_n^3}{2(1 + \xi_n^4)^4} h'(0) c(\xi') + \frac{49 \xi_n + 25 \xi_n^3}{2(1 + \xi_n^4)^4} h'(0) c(dx_n)
\]
\[
+ \frac{1}{(1 + \xi_n^4)^3} c(\xi') c(dx_n) \partial_{x_n} [c(\xi')](x_0) - \frac{3 \xi_n}{(1 + \xi_n^4)^3} \partial_{x_n} [c(\xi')](x_0) - \frac{2 \xi_n}{(1 + \xi_n^4)^3} h'(0) c(dx_n)
\]
\[
+ \frac{1 - 2 \xi_n^2}{(1 + \xi_n^4)^3} h'(0) c(dx_n)(x_0) + \frac{c(\xi) \lambda c(\xi)}{|\xi|^6} - \frac{2 c(\xi) c(A^*) c(\xi)}{|\xi|^4} - \frac{2 c(A)}{|\xi|^4}.
\]
(3.60)

Then
\[
\partial_{\xi_n} \left(\sigma_{-4} (\tilde{D}_F^{-1} \tilde{D}_F \tilde{D}_F^{-1})^{-1} \right) (x_0)
\]
\[
= \frac{59 \xi_n + 27 \xi_n^3}{2(1 + \xi_n^4)^3} h'(0) c(\xi') c(dx_n) c(\xi') + \frac{33 - 180 \xi_n^2 - 85 \xi_n^4}{2(1 + \xi_n^4)^5} h'(0) c(\xi') + \frac{49 \xi_n - 97 \xi_n^3 - 50 \xi_n^5}{2(1 + \xi_n^4)^5} h'(0) c(dx_n)
\]
\[
- \frac{6 \xi_n}{(1 + \xi_n^4)^4} c(\xi') c(dx_n) \partial_{x_n} [c(\xi')](x_0) - \frac{3 - 15 \xi_n^2}{(1 + \xi_n^4)^4} \partial_{x_n} [c(\xi')](x_0) + \frac{4 \xi_n^3 - 8 \xi_n^5}{(1 + \xi_n^4)^4} h'(0) c(dx_n)
\]
\[
+ \frac{2 - 10 \xi_n^2}{(1 + \xi_n^4)^4} h'(0) c(\xi') + \frac{c(dx_n) \lambda c(\xi') + c(\xi') \lambda c(dx_n) + 2 \xi_n c(dx_n) \lambda c(dx_n)}{(1 + \xi_n^4)^3} - \frac{6 \xi_n c(\xi) c(A^*) c(\xi)}{(1 + \xi_n^4)^4} - \frac{2 \xi_n c(A)}{(1 + \xi_n^4)^3}.
\]
(3.61)
By (3.47) and (3.61), we obtain
\[
\text{trace}\left[\pi^+_n \sigma_{-1}(\tilde{D}^{-1}_F) \times \partial_{\xi_n} \sigma_{-4}(\tilde{D}^{-1}_F \tilde{D}_F \tilde{D}_F^{-1})^{-1}\right](x_0)|_{|\xi'|=1} = h'(0) \text{dim} F \frac{4i(-17 - 42\xi_n + 50\xi_n^2 - 16\xi_n^3 + 29\xi_n^4)}{\xi_n^3(\xi + i)^5}
\]
\[
+ \frac{4\xi_n i}{2(\xi_n + i)(1 + \xi_n^2)^3} \text{trace}[c(\xi') \lambda] + \frac{4\xi_n i}{2(\xi_n + i)(1 + \xi_n^2)^3} \text{trace}[c(dx_n) \lambda]
\]
\[
+ \frac{2(\xi_n + i)(1 + \xi_n^2)^3}{2(\xi_n + i)(1 + \xi_n^2)^3} \text{trace}[c(\xi') c(A^*)] + \frac{2(\xi_n + i)(1 + \xi_n^2)^3}{2(\xi_n + i)(1 + \xi_n^2)^3} \text{trace}[c(dx_n) c(A^*)]
\]
\[
+ \frac{2(\xi_n - i)(1 + \xi_n^2)^3}{2(\xi_n - i)(1 + \xi_n^2)^3} \text{trace}[c(\xi') c(A)] + \frac{2(\xi_n - i)(1 + \xi_n^2)^3}{2(\xi_n - i)(1 + \xi_n^2)^3} \text{trace}[c(dx_n) c(A)].
\]

By the relation of the Clifford action and \(\text{trace}QP = \text{trace}QP\), then we have the following equalities
\[
\text{trace}[c(dx_n) \lambda] = \text{trace}[c(dx_n) \sum_{j=1}^n c(e_j)(\sigma_j^F - A^*(e_j))] = \text{trace}[- \text{id} \otimes (\sigma^F_n - A^*(e_n))];
\]
\[
\text{trace}[c(\xi') \lambda] = \text{trace}[c(\xi') \sum_{j=1}^n c(e_j)(\sigma_j^F - A^*(e_j))] = \text{trace}[- \sum_{j=1}^{n-1} \xi_j (\sigma_j^F - A^*(e_j))];
\]
\[
\text{trace}[c(dx_n) c(A^*)] = \text{trace}[c(dx_n) \sum_{j=1}^n c(e_j) \otimes A^*(e_j)] = \text{trace}[- \text{id} \otimes A^*(e_n)];
\]
\[
\text{trace}[c(dx_n) c(A)] = \text{trace}[c(dx_n) \sum_{j=1}^n c(e_j) \otimes A(e_j)] = \text{trace}[- \text{id} \otimes A(e_n)];
\]
\[
\text{trace}[c(\xi') c(A^*)] = \text{trace}[c(\xi') \sum_{j=1}^n c(e_j) \otimes A^*(e_j)] = \text{trace}[- \sum_{j=1}^{n-1} \xi_j A^*(e_j)];
\]
\[
\text{trace}[c(\xi') c(A)] = \text{trace}[c(\xi') \sum_{j=1}^n c(e_j) \otimes A(e_j)] = \text{trace}[- \sum_{j=1}^{n-1} \xi_j A(e_j)].
\]

We note that \(i < n\), \(\int_{|\xi'|=1} \xi_i \sigma(\xi') = 0\), so \(\text{trace}[c(\xi') c(A^*)]\) has no contribution for computing case (b).

By (3.24), then
\[
-i \int_{|\xi'|=1}^{+\infty} \int_{-\infty}^{+\infty} \text{trace}\left[\pi^+_n \sigma_{-1}(\tilde{D}^{-1}_F) \times \partial_{\xi_n} \sigma_{-4}(\tilde{D}^{-1}_F \tilde{D}_F \tilde{D}_F^{-1})^{-1}\right](x_0) d\xi_n \sigma(\xi') dx'
\]
\[
- \frac{129}{16} h'(0) + \frac{3}{2} \text{trace}[\sigma^F_n - A^*(e_n)] - 3\text{trace}[A^*(e_n)] - \text{trace}[A(e_n)] \pi \text{dim} \Omega_4 dx'.
\]

Since
\[
\partial_{\xi_n} \left(\frac{c(\xi)c(df)c(\xi)}{|\xi|^6}\right) = \frac{c(dx_n)c(df)c(\xi') + c(\xi')c(df)c(dx_n) + 2\xi_n c(dx_n)c(df)c(dx_n)}{(1 + \xi_n^2)^3}
\]
\[
- 6\xi_n c(\xi)c(df)c(\xi) \frac{1}{(1 + \xi_n^2)^3}
\]

15
and
\[
\frac{i c(\xi) \sum_j [c(dx_j)|\xi|^2 + 2\xi_j c(\xi)] D_{x_j}(f^{-1})c(\xi)}{\xi^8}
\]
\[
= i \left\{ c(dx_n) \sum_j [c(dx_j)|\xi|^2 + 2\xi_j c(\xi)] D_{x_j}(f^{-1})c(\xi') + c(\xi') \sum_j [c(dx_j)|\xi|^2 + 2\xi_j c(\xi)] D_{x_j}(f^{-1})c(dx_n) \\
+ 2\xi_n c(dx_n) \sum_j \left[c(dx_j)|\xi|^2 + 2\xi_j c(\xi)\right] D_{x_j}(f^{-1})c(dx_n)\right\}(1 + \xi_n^2)^{-4} - i \left\{ 8\xi_n c(\xi) \sum_j [c(dx_j)|\xi|^2 \\
+ 2\xi_j c(\xi)] D_{x_j}(f^{-1})c(\xi)\right\}(1 + \xi_n^2)^{-5},
\]
then
\[\text{trace}\left[\pi_{\xi_n}^+ \sigma_{-1}(\tilde{D}_F^{-1}) \times \partial_{\xi_n} \left(\frac{c(\xi)c(df)c(\xi)}{|\xi|^8}\right)\right](x_0) \]
\[= \frac{(4\xi_n i + 2)i}{2(\xi_n + i)(1 + \xi_n^2)^3} \text{trace}[c(\xi')c(df)] + \frac{4\xi_n i + 2}{2(\xi_n + i)(1 + \xi_n^2)^3} \text{trace}[c(dx_n)c(df)].\]
and
\[\text{trace}\left[\pi_{\xi_n}^+ \sigma_{-1}(\tilde{D}_F^{-1}) \times \partial_{\xi_n} \left(\frac{i c(\xi) \sum_j [c(dx_j)|\xi|^2 + 2\xi_j c(\xi)] D_{x_j}(f^{-1})c(\xi)}{|\xi|^8}\right)\right](x_0) \]
\[= \frac{(3\xi_n - i)i}{(\xi_n + i)(1 + \xi_n^2)^4} \text{trace}\left[c(\xi') \sum_j \left[c(dx_j)|\xi|^2 + 2\xi_j c(\xi)\right] D_{x_j}(f^{-1})\right] \\
+ \frac{3\xi_n - i}{(\xi_n + i)(1 + \xi_n^2)^4} \text{trace}\left[c(dx_n) \sum_j \left[c(dx_j)|\xi|^2 + 2\xi_j c(\xi)\right] D_{x_j}(f^{-1})\right].\]

By the relation of the Clifford action and trace\(QP = \text{trace}PQ\), then we have the following equalities
\[\text{trace}\left[c(dx_n)c(df)\right] = -g(dx_n, df);\]
and
\[\text{trace}\left[c(dx_n) \sum_j \left[c(dx_j)|\xi|^2 + 2\xi_j c(\xi)\right] D_{x_j}(f^{-1})\right] \]
\[= \text{trace}(-id)|\xi|^2 \left(i \partial_{x_n}(f)f^{-1}\right) + 2 \sum_j \xi_j \xi_n \text{trace}(-id) \left(i \partial_{x_j}(f)f^{-1}\right) \\
= -8\dim F|\xi|^2 \left(i \partial_{x_n}(f)f^{-1}\right) + 2 \sum_j \xi_j \xi_n \text{trace}(-id) \left(i \partial_{x_j}(f)f^{-1}\right).\]

We note that \(i < n, \int_{|\xi|=1} \xi_i \sigma(\xi') = 0\), so \(\text{trace}\left[c(\xi')c(df)\right], \text{trace}\left[c(\xi') \sum_j \left[c(dx_j)|\xi|^2 + 2\xi_j c(\xi)\right] D_{x_j}(f^{-1})\right]\)
and \(2i \sum_{j} \xi_{j}\partial_{x_{j}}(f)^{-1} \text{tr}[-\text{id}]\) have no contribution for computing case (b). Then we obtain

\[
-2if^{-1} \int_{[\xi'=1]}^{+\infty} \int_{-\infty}^{\infty} \text{tr}\left[\pi_{\xi_{n}}^{+}\sigma_{-1}(\tilde{D}_{F}^{-1}) \times \partial_{\xi_{n}} \left(\frac{c(\xi)c(df)c(\xi)}{|\xi|^6} \right) \right] (x_{0})d\xi_{n}\sigma(\xi')dx',
\]

\[
= \frac{3}{8f} \pi g(dx_{n}, df)\Omega_{4}dx'.
\]

and

\[
-fi \int_{[\xi'=1]}^{+\infty} \int_{-\infty}^{\infty} \text{tr}\left[\pi_{\xi_{n}}^{+}\sigma_{-1}(\tilde{D}_{F}^{-1}) \times \partial_{\xi_{n}} \left(\frac{ic(\xi)\sum_{j} c(dx_{j})|\xi|^2 + 2\xi_{j}c(\xi)}{|\xi|^8} \right) \right]
\times (x_{0})d\xi_{n}\sigma(\xi')dx',
\]

\[
= -\frac{15i}{2} \partial_{x_{n}}(f)\pi \dim F\Omega_{4}dx'.
\]

Thus we have

\[
\text{case (b)} = \left\{ -\frac{129}{16} h'(0) + \frac{3}{2} \text{trace}\left[\sigma_{n}^{F} - A^{*}(e_{n}) \right] - 3\text{trace}\left[A^{*}(e_{n}) \right] - \text{trace}\left[A(e_{n}) \right] \right\} \pi \dim F\Omega_{4}dx'
+ \frac{3}{8f} \pi g(dx_{n}, df)\Omega_{4}dx' - \frac{15i}{2} \partial_{x_{n}}(f)\pi \dim F\Omega_{4}dx'.
\]

\[
\text{case (c)} r = -2, l = -3, |\alpha| = j = k = 0.
\]

By (3.18), we have

\[
\text{case (c)} = -i \int_{[\xi'=1]}^{+\infty} \int_{-\infty}^{\infty} \text{tr}\left[\pi_{\xi_{n}}^{+}\sigma_{-2}(f\tilde{D}_{F}^{-1}) \times \partial_{\xi_{n}} \left(f^{-1}(\tilde{D}_{F}^{-1} \cdot f\tilde{D}_{F}^{-1} \cdot f^{-1}(\tilde{D}_{F}^{-1}) \right) \right] (x_{0})
\times d\xi_{n}\sigma(\xi')dx',
\]

\[
= -i \int_{[\xi'=1]}^{+\infty} \int_{-\infty}^{\infty} \text{tr}\left[\pi_{\xi_{n}}^{+}\sigma_{-2}(\tilde{D}_{F}^{-1}) \times \partial_{\xi_{n}} \left((\tilde{D}_{F}^{-1} \cdot f\tilde{D}_{F}^{-1} \cdot f^{-1}(\tilde{D}_{F}^{-1}) \right) \right] (x_{0})d\xi_{n}\sigma(\xi')dx'.
\]

By (3.14), we have

\[
\pi_{\xi_{n}}^{+}\sigma_{-2}(\tilde{D}_{F}^{-1}) = \pi_{\xi_{n}}^{+}\left(\frac{c(\xi)\sigma_{0}(\tilde{D}_{F})c(\xi)}{|\xi|^4} + \frac{c(\xi)}{|\xi|^8} \sum_{j} c(dx_{j}) \left[\partial_{x_{j}}[c(\xi)]|\xi|^2 - c(\xi)\partial_{x_{j}}(|\xi|^2) \right] \right),
\]

where

\[
T_{1} = -\frac{1}{4(\xi_{n} - i)^2} \left[(2 + i\xi_{n})c(\xi')\sigma_{0}(\tilde{D}_{F})c(\xi') + i\xi_{n}c(dx_{n})\sigma_{0}(\tilde{D}_{F})c(dx_{n}) + (2 + i\xi_{n})c(\xi')c(dx_{n}) \times \partial_{x_{n}}[c(\xi')] + ic(dx_{n})\sigma_{0}(\tilde{D}_{F})c(\xi') + ic(\xi')\sigma_{0}(\tilde{D}_{F})c(dx_{n}) - i\partial_{x_{n}}[c(\xi')] \right],
\]

\[
T_{2} = \frac{h'(0)}{2} \left[\frac{c(dx_{n})}{4i(\xi_{n} - i)} + \frac{c(dx_{n})}{8(\xi_{n} - i)^2} + \frac{3\xi_{n} - 7i}{8(\xi_{n} - i)^2} \left(ic(\xi') - c(dx_{n}) \right) \right].
\]
On the other hand,
\[\pi_{\xi}^+(\frac{e(\xi)\mu(\xi)}{|\xi|^2})(x_0)|_{|\xi'|=1}\]
\[= \frac{-i\xi_n - 2e(\xi')\mu(\xi') - i\int e(dx_n)\mu(\xi') + c(\xi')\mu(\xi dx_n) - i\xi_n e(dx_n)\mu(\xi dx_n)}{4(\xi_n - i)^2}. \tag{3.79}\]

By (3.42) (3.44) and (3.76), then we have
\[\text{tr}\left[T_1 \times \partial_{\xi_n}\sigma_{\lambda-3}(\tilde{D}_F^*\tilde{D}_F\tilde{D}_F)^{-1}\right]|_{|\xi'|=1}\]
\[= \text{tr}\left\{ \frac{1}{4(\xi_n - i)^2}\left[\frac{5}{2} h'(0)c(dx_n) - \frac{5i}{2} h'(0)c(\xi') - (2 + i\xi_n)c(\xi')e(dx_n)\sigma_{\xi, c(\xi')} + i\partial_{\xi_n}c(\xi') \right] \right\}
\[\times \frac{-4i\xi_n c(\xi') + (i - 3i\xi_n^2) c(dx_n)}{(1 + \xi_n^2)^3} \right\}
\[= h'(0)\dim F\frac{3 + 12i\xi_n + 3\xi_n^2}{(\xi_n - i)^4(\xi_n + i)^4}. \tag{3.80}\]

Similarly, we have
\[\text{trace}\left[T_2 \times \partial_{\xi_n}\sigma_{\lambda-3}(\tilde{D}_F^*\tilde{D}_F\tilde{D}_F)^{-1}\right]|_{|\xi'|=1}\]
\[= \text{trace}\left\{ \frac{h'(0)}{2} \left[\frac{c(dx_n)}{4i(\xi_n - i)} + \frac{c(dx_n) - ic(\xi')}{8(\xi_n - i)^2} + \frac{3\xi_n - 7i}{8(\xi_n - i)^3} \left(ic(\xi') - c(dx_n) \right) \right] \right\}
\[\times \frac{-4i\xi_n c(\xi') + (i - 3i\xi_n^2) c(dx_n)}{(1 + \xi_n^2)^3} \right\}
\[= h'(0)\dim F\frac{4i - 11\xi_n - 6i\xi_n^2 + 3\xi_n^3}{(\xi_n - i)^4(\xi_n + i)^4}. \tag{3.81}\]

By (3.79) and (3.80), we obtain
\[-i \int_{|\xi'|=1}^{\pm\infty} \int_{-\infty}^{\infty} \text{trace}\left[\left(T_1 - T_2 \right) \times \partial_{\xi_n}\sigma_{\lambda-3}(\tilde{D}_F^*\tilde{D}_F\tilde{D}_F)^{-1}\right] |x_0| d\xi_n \sigma(\xi') dx'
\[= -i\dim F h'(0) \int_{|\xi'|=1}^{\pm\infty} \int_{-\infty}^{\infty} \frac{-7i + 26\xi_n + 15i\xi_n^2}{(\xi_n - i)^4(\xi_n + i)^3} d\xi_n \sigma(\xi') dx'
\[= -i\dim F h'(0) \frac{2\pi i}{4!} \left[\frac{-7i + 26\xi_n + 15i\xi_n^2}{(\xi_n + i)^3} \right] |_{\xi_n=\Omega_4} dx'
\[= \frac{55}{16} \dim F \pi h'(0) \Omega_4 dx'. \tag{3.82}\]

By (3.55) and (3.56), we have
\[\text{trace}\left[\pi_{\xi}^+(\frac{e(\xi)\mu(\xi)}{|\xi|^2}) \times \partial_{\xi_n}\sigma_{\lambda-3}(\tilde{D}_F^*\tilde{D}_F\tilde{D}_F)^{-1}\right](x_0)
\[= \frac{(3\xi_n - i)i}{2(\xi_n - i)(1 + \xi_n^2)^3} \text{trace}[e(dx_n)\mu] + \frac{3\xi_n - i}{2(\xi_n - i)(1 + \xi_n^2)^3} \text{trace}[c(\xi')\mu]. \tag{3.83}\]

By the relation of the Clifford action and trace $PQ = \text{trace}QP$, then we have the equalities
\[\text{trace}[e(dx_n)\mu] = \text{trace}\left[e(dx_n) \sum_{j=1}^{n} e(e_j)(\sigma_j^F + A(e_j)) \right] = \text{trace}\left[-\text{id} \otimes (\sigma_n^F + A(e_n)) \right]; \tag{3.84}\]
\[\text{trace}[c(\xi')\mu] = \text{trace}\left[c(\xi') \sum_{j=1}^{n} e(e_j)(\sigma_j^F + A(e_j)) \right] = \text{trace}\left[-\sum_{j=1}^{n-1} \xi_j(\sigma_j^F + A(e_j)) \right]. \tag{3.85}\]
We note that $i < n$, \(\int_{|\xi'|=1} \xi_i \sigma(\xi') = 0 \), so trace\(c(\xi')\mu\) has no contribution for computing case (c).

Then, we obtain

\[
- i \int_{|\xi'|=1} \int_{-\infty}^{+\infty} \text{trace} \left[\pi_{\xi_n}^+ \left(\frac{c(\xi')e(\xi)}{|\xi'|^4} \right) \right] \times \partial_{\xi_n} \sigma_{-3} \left(\left(\tilde{D}_F \tilde{D}_{F'} \tilde{D}_{F''}^{-1} \right) \right) (x_0) d\xi_n \sigma(\xi') dx'
\]

\[
= - i \int_{|\xi'|=1} \int_{-\infty}^{+\infty} \frac{(3 \xi_n - i)^3}{2(\xi_n - i)(1 + \xi_n^2)^3} c(\xi') \mu \mid \partial_{\xi_n} \sigma(\xi') dx'
\]

\[
= - 2 \pi \dim F \text{trace} [\sigma_n^F + A(e_n)] \Omega_4 dx'.
\]

(3.86)

Then

\[
\text{case (c)} = \frac{55}{16} \dim F \pi h'(0) \Omega_4 dx' = 2 \pi \dim F h'(0) \text{trace} [\sigma_n^F + A(e_n)] \Omega_4 dx'.
\]

(3.87)

Now \(\Phi \) is the sum of the case (a), case (b) and case (c), then

\[
\Phi = \left[- 4 h'(0) - \text{trace} \left(A(e_n) \right) - 3 \text{trace} \left(A^*(e_n) \right) \right] + \frac{3}{2} \text{trace} \left(\sigma_n^F - A^*(e_n) \right)
\]

\[
- 2 \text{trace} \left(\sigma_n^F + A(e_n) \right) + \left(\frac{19 i}{16} + 11 \right)
\]

\[
- \frac{15 i}{2} \partial_{\xi_n} (f) \pi \dim F \Omega_4 dx'.
\]

(3.88)

By (4.2) in [12], we have

\[
K = \sum_{1 \leq i, j \leq n-1} K_{i, j} \gamma_{\tilde{M}}^{i, j}; K_{i, j} = - \Gamma_{i, j}^n,
\]

and \(K_{i, j} \) is the second fundamental form, or extrinsic curvature. For \(n = 6 \), then

\[
K(x_0) = \sum_{1 \leq i, j \leq n-1} K_{i, j} (x_0) \gamma_{\tilde{M}}^{i, j} (x_0) = \sum_{i=1}^{5} K_{i, i} (x_0) = - \frac{5}{2} h'(0).
\]

(3.89)

Hence we conclude that

Theorem 3.4. Let \(M \) be a 6-dimensional compact spin manifolds with the boundary \(\partial M \). Then

\[
\text{Wres} \left[\pi^+(f \tilde{D}_F^{-1}) \circ \pi^+ \left(f^{-1}(\tilde{D}_F^{-1}) \circ \tilde{D}_{F'}^{-1} \cdot f^{-1}(\tilde{D}_{F''}^{-1}) \right) \right]
\]

\[
= 8 \pi^3 \int_M \left[\text{trace} \left[- \frac{s}{12} + c(A^*) c(A) - \frac{1}{4} \sum_i [c(A^*) c(e_i) - c(e_i) c(A)] \right] \right.
\]

\[
- \frac{1}{2} \sum_j \left[c(e_j) \nabla^2_{\xi_j} (c(A)) \right] - \frac{4 \Delta(f)}{f} + \frac{2 \text{trace} \left(A(\text{grad}_M f) \right)}{f} - f^2 \left[(\text{grad}_M f)^2 + 2 \Delta(f) \right]
\]

\[
+ \int_{\partial M} \left(\frac{3}{2} \text{trace} \left(\sigma_n^F - A^*(e_n) \right) - 4 h'(0) - \text{trace} \left(A(e_n) \right) - 3 \text{trace} \left(A^*(e_n) \right) - 2 \text{trace} \left(\sigma_n^F \right)
\]

\[
+ A(e_n) \right) + \left(\frac{19 i}{16} + 11 \right) \partial_{\xi_n} (f) \right] \pi \dim F \Omega_4 + \frac{3 \pi g(dx_n, df)}{8 f} \Omega_4 \right]
\]

\[
\left. \text{dvol}_M \right. \). \quad (3.90)
\]

where \(s \) is the scalar curvature.
4. Twisted signature operator and its symbol

Let us recall the definition of twisted signature operators. We consider a n-dimensional oriented Riemannian manifold (M, g^M). Let F be a real vector bundle over M, let g^F be an Euclidean metric on F. Let

$$\bigwedge^*(T^*M) = \bigoplus_{i=0}^{n} \bigwedge^i(T^*M)$$ \hspace{1cm} (4.1)

be the real exterior algebra bundle of T^*M. Let

$$\Omega^*(M, F) = \bigoplus_{i=0}^{n} \Omega^i(M, F) = \bigoplus_{i=0}^{n} C^\infty(M, \bigwedge^i(T^*M) \otimes F)$$ \hspace{1cm} (4.2)

be the set of smooth sections of $\bigwedge^*(T^*M) \otimes F$. Let $*$ be the Hodge star operator of g^{TM}. It extends on $\bigwedge^*(T^*M) \otimes F$ by acting on F as identity. Then $\Omega^*(M, F)$ inherits the following standardly induced inner product

$$\langle \zeta, \eta \rangle_F = \int_M \langle \zeta \wedge *\eta \rangle_F, \quad \zeta, \eta \in \Omega^*(M, F).$$ \hspace{1cm} (4.3)

Let $\hat{\nabla}^F$ be the non-Euclidean connection on F. Let d^F be the obvious extension of ∇^F on $\Omega^*(M, F)$. Let $\delta^F = d^F*$ be the formal adjoint operator of d^F with respect to the inner product. Let \hat{D}^F be the differential operator acting on $\Omega^*(M, F)$ defined by

$$\hat{D}^F = d^F + \delta^F.$$ \hspace{1cm} (4.4)

Let $\omega(F, g^F) = \hat{\nabla}^{F,*} - \hat{\nabla}^F$, $\nabla^{F,*} = \nabla^F + \frac{1}{2} \omega(F, g^F)$. \hspace{1cm} (4.5)

Then $\nabla^{F,*}$ is an Euclidean connection on (F, g^F).

Let $\nabla^{\bigwedge^*(T^*M)}$ be the Euclidean connection on $\bigwedge^*(T^*M)$ induced canonically by the Levi-Civita connection ∇^{TM} of g^{TM}. Let ∇^e be the Euclidean connection on $\bigwedge^*(T^*M) \otimes F$ obtained from the tensor product of $\nabla^{\bigwedge^*(T^*M)}$ and $\nabla^{F,*}$. Let $\{e_1, \cdots, e_n\}$ be an oriented (local) orthonormal basis of TM. The following result was proved by Proposition in [20].

The following identity holds

$$d^F + \delta^F = \sum_{i=1}^{n} c(e_i) \nabla^e_{e_i} - \frac{1}{2} \sum_{i=1}^{n} \tilde{c}(e_i) \omega(F, g^F)(e_i).$$ \hspace{1cm} (4.6)

Let $\hat{D}^F = \sum_{i=1}^{n} c(e_i) \nabla^e_{e_i}$ and $\omega(F, g^F)$ be any element in $\Omega(M, EndF)$, then we define the generalized twisted signature operators \hat{D}_F, \hat{D}^*_F as follows.

For sections $\psi \otimes \chi \in \bigwedge^*(T^*M) \otimes F$,

$$\hat{D}_F(\psi \otimes \chi) = D_F(\psi \otimes \chi) - \frac{1}{2} \sum_{i=1}^{n} \tilde{c}(e_i) \omega(F, g^F)(e_i)(\psi \otimes \chi),$$ \hspace{1cm} (4.7)

$$\hat{D}^*_F(\psi \otimes \chi) = D^*_F(\psi \otimes \chi) - \frac{1}{2} \sum_{i=1}^{n} \tilde{c}(e_i) \omega^*(F, g^F)(e_i)(\psi \otimes \chi).$$ \hspace{1cm} (4.8)

Here $\omega^*(F, g^F)(e_i)$ denotes the adjoint of $\omega(F, g^F)(e_i)$.

In the local coordinates $\{x_i; 1 \leq i \leq n\}$ and the fixed orthonormal frame $\{\tilde{e}_1, \cdots, \tilde{e}_n\}$, the connection matrix $c_{s,t} \ (\omega_{s,t})$ is defined by

$$\tilde{\nabla}(\tilde{e}_1, \cdots, \tilde{e}_n) = (\tilde{e}_1, \cdots, \tilde{e}_n)(\omega_{s,t}).$$ \hspace{1cm} (4.9)

Let M be a 6-dimensional compact oriented Riemannian manifold with boundary ∂M. We define that $\hat{D}_F: C^\infty(M, \bigwedge^*(T^*M) \otimes F) \to C^\infty(M, \bigwedge^*(T^*M) \otimes F)$ is the generalized twisted signature operator. Take
the coordinates and the orthonormal frame as in Section 3. Let $\epsilon(\hat{e}_j^*)$, $\iota(\hat{e}_j^*)$ be the exterior and interior multiplications respectively. Write
\begin{equation}
\epsilon(\hat{e}_j) = \epsilon(\hat{e}_j^*) - \iota(\hat{e}_j^*), \quad \iota(\hat{e}_j) = \epsilon(\hat{e}_j^*) + \iota(\hat{e}_j^*).
\end{equation}

(4.10)

We’ll compute $\text{tr} \lambda^*(T^*M) \otimes F$ in the frame $\{\hat{e}_{i_1}^* \wedge \cdots \wedge \hat{e}_{i_k}^* \mid 1 \leq i_1 < \cdots < i_k \leq 6\}$. By (3.2) and (4.8) in [12], we have
\begin{align*}
\hat{D}_F &= \sum_{i=1}^n c(e_i) \nabla_e e_i - \frac{1}{2} \sum_{i=1}^n \hat{c}(e_i) \omega(F, g^F)(e_i) \\
&= \sum_{i=1}^n c(e_i) \left(\nabla^\gamma_\epsilon(T^*M) \otimes \text{id}_F + \text{id}_{\lambda^*(T^*M)} \otimes \nabla^F \right) - \frac{1}{2} \sum_{i=1}^n \hat{c}(e_i) \omega(F, g^F)(e_i) \\
&= \sum_{i=1}^n c(\hat{e}_i) \left[\hat{c}_i + \frac{1}{4} \sum_{s,t} \omega_{s,t}(\hat{e}_i) \hat{c}(\hat{e}_s) \hat{c}(\hat{e}_t) - c(\hat{e}_s) c(\hat{e}_t) \right] \otimes \text{id}_F + \text{id}_{\lambda^*(T^*M)} \otimes \sigma^F \omega \\
&- \frac{1}{2} \sum_{i=1}^n \hat{c}(e_i) \omega(F, g^F)(e_i),
\end{align*}

(4.11)

Similarly, we have
\begin{align*}
\hat{D}_F^* &= \sum_{i=1}^n c(\hat{e}_i) \left[\hat{c}_i + \frac{1}{4} \sum_{s,t} \omega_{s,t}(\hat{e}_i) \hat{c}(\hat{e}_s) \hat{c}(\hat{e}_t) - c(\hat{e}_s) c(\hat{e}_t) \right] \otimes \text{id}_F + \text{id}_{\lambda^*(T^*M)} \otimes \sigma^F \omega \\
&- \frac{1}{2} \sum_{i=1}^n \hat{c}(e_i) \omega(F, g^F)(e_i).
\end{align*}

(4.12)

For convenience, let $\hat{c}(\omega) = \sum_i \hat{c}(e_i) \omega(F, g^F)(e_i)$ and $\hat{c}(\omega^*) = \sum_i \hat{c}(e_i) \omega^*(F, g^F)(e_i)$, by the composition formula and (2.2.11) in [12], we obtain in [19],

Lemma 4.1. Let \hat{D}_F^*, \hat{D}_F be the twisted signature operators on $\Gamma(\wedge^*(T^*M) \otimes F)$, then
\begin{align}
\sigma_1(\hat{D}_F) &= \sigma_1(\hat{D}_F^*) = \sqrt{-1} c(\xi); \\
\sigma_0(\hat{D}_F) &= \sum_{i=1}^n c(\hat{e}_i) \left[\frac{1}{4} \sum_{s,t} \omega_{s,t}(\hat{e}_i) \hat{c}(\hat{e}_s) \hat{c}(\hat{e}_t) - c(\hat{e}_s) c(\hat{e}_t) \right] \otimes \text{id}_F + \text{id}_{\lambda^*(T^*M)} \otimes \sigma^F \omega \\
&- \frac{1}{2} \sum_{i=1}^n \hat{c}(e_i) \omega(F, g^F)(e_i),
\end{align}

(4.13)
(4.14)

By the composition formula of pseudodifferential operators in Section 2.2.1 of [12], we have

Lemma 4.2. The symbol of the twisted signature operators \hat{D}_F^*, \hat{D}_F as follows:
\begin{align}
\sigma_{-1}(\hat{D}_F^{-1}) &= \sigma_{-1}((\hat{D}_F^*)^{-1}) = \sqrt{-1} c(\xi) \frac{1}{|\xi|^2}; \\
\sigma_{-2}(\hat{D}_F^{-1}) &= \frac{c(\xi) \sigma_0(\hat{D}_F) c(\xi)}{|\xi|^4} + \frac{c(\xi)}{|\xi|^6} \sum_j c(dx_j) \left[\partial_{x_j}(c(\xi)) |\xi|^2 - c(\xi) \partial_{x_j} |\xi|^2 \right]; \\
\sigma_{-2}(\hat{D}_F^{-1}) &= \frac{c(\xi) \sigma_0(\hat{D}_F^*) c(\xi)}{|\xi|^4} + \frac{c(\xi)}{|\xi|^6} \sum_j c(dx_j) \left[\partial_{x_j}(c(\xi)) |\xi|^2 - c(\xi) \partial_{x_j} |\xi|^2 \right].
\end{align}

(4.15)
Since Ψ is a global form on ∂M, so for any fixed point $x_0 \in \partial M$, we can choose the normal coordinates U of x_0 in ∂M (not in M) and compute $\Psi(x_0)$ in the coordinates $\hat{U} = U \times [0,1)$ and the metric $\frac{1}{h(x_0)} g^{\partial M} + dx_n^2$. The dual metric of $g^{\partial M}$ on \hat{U} is $\frac{1}{h(x_0)} g^{\partial M} + dx_n^2$. Write $g_{ij}^M = g^M(\frac{\partial}{\partial x_i}, \frac{\partial}{\partial x_j})$; $g_{ij}^\partial M = g^\partial M(dx_i, dx_j)$, then

$$[g_{ij}^M] = \begin{bmatrix} \frac{1}{h(x_0)} g_{ij}^\partial M & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} \frac{1}{h(x_0)} g_{ij}^\partial M & 0 \\ 0 & 1 \end{bmatrix},$$ \hspace{0.5cm} (4.19)

and

$$\partial_{x_j} g_{ij}^\partial M(x_0) = 0, \hspace{0.5cm} 1 \leq i, j \leq n-1; \hspace{0.5cm} g_{ij}^\partial M(x_0) = \delta_{ij}.$$

(4.20)

Let $\{e_1, \ldots, e_{n-1}\}$ be an orthonormal frame field in U about $g^{\partial M}$ which is parallel along geodesics and $e_i = \frac{\partial}{\partial x_i}(x_0)$, then $\{\tilde{e}_1 = \sqrt{h(x_0)} e_1, \ldots, \tilde{e}_{n-1} = \sqrt{h(x_0)} e_{n-1}, \tilde{e}_n = dx_n\}$ is the orthonormal frame field in \hat{U} about $g^{\partial M}$. Locally $\Lambda^*(T^*M)\mid \hat{U} \cong \Lambda^\partial C(\frac{\partial}{\partial x_i})$. Let $\{f_1, \ldots, f_n\}$ be the orthonormal basis of $\Lambda^\partial C(\partial M)$. Take a spin frame field $\sigma : \hat{U} \to Spin(M)$ such that $\pi \sigma = \{\tilde{e}_1, \ldots, \tilde{e}_n\}$ where $\pi : Spin(M) \to O(M)$ is a double covering, then $\{[\sigma, f_i], 1 \leq i \leq 4\}$ is an orthonormal frame of $\Lambda^*(T^*M)\mid \hat{U}$. In the following, since the global form Ψ is independent of the choice of the local frame, so we can compute trace $\Lambda^\partial C(\partial M)$ in the frame $\{[\sigma, f_i], 1 \leq i \leq 4\}$. Let $\{E_1, \ldots, E_n\}$ be the canonical basis of R^n and $c(E_i) \in \Lambda C(n) \cong \text{Hom}(\Lambda^\partial C(\partial M), \Lambda^\partial C(\partial M))$ be the Clifford action. By [12], then

$$c'(\tilde{e}_i) = \left(\sigma, c(E_i)\right); \hspace{0.5cm} c'(\tilde{e}_i)[[\sigma, f_i]] = [\sigma, c(E_i)f_i]; \hspace{0.5cm} \partial_{x_i} = [(\sigma, \frac{\partial}{\partial x_i})],$$ \hspace{0.5cm} (4.21)

then we have $\frac{\partial}{\partial x_i} c'(\tilde{e}_i) = 0$ in the above frame. By Lemma 2.2 in [12], we have

Lemma 4.3.

$$\partial_{x_j} (\xi^2 \mid g^{\partial M})(x_0) = \begin{cases} 0, & \text{if } j < n; \\ h'(0) \xi^2 \mid g^{\partial M}, & \text{if } j = n, \end{cases}$$

(4.22)

$$\partial_{x_j} (c(\xi))(x_0) = \begin{cases} 0, & \text{if } j < n; \\ \partial_{x_n}(c(\xi))(x_0), & \text{if } j = n, \end{cases}$$

(4.23)

where $\xi = \xi' + \xi_n dx_n$.

Then an application of Lemma 2.3 in [12] shows

Lemma 4.4. The symbol of the twisted signature operators \hat{D}_F, \hat{D}_f as follows:

$$\sigma_0(\hat{D}_F) = \theta + \theta^*; \hspace{0.5cm} \sigma_0(\hat{D}_f) = \theta + \bar{\theta},$$

(4.24)

(4.25)

where

$$\theta = -\frac{5}{4} h'(0)c(dx_n) + \frac{1}{4} h'(0) \frac{n-1}{n} \sum_{i=1}^{n-1} c(\tilde{e}_i)\tilde{c}(\tilde{e}_n)\tilde{c}(\tilde{e}_i)(x_0) \otimes \text{id}_F;$$

$$\bar{\theta}^* = \sum_{i=1}^{n} c(\tilde{e}_i)\sigma^{F,e}_i - \frac{1}{2} \sum_{i=1}^{n} c(\tilde{e}_i)\omega^*(F; g^F)(e_i);$$

$$\bar{\theta} = \sum_{i=1}^{n} c(\tilde{e}_i)\sigma^{F,e}_i - \frac{1}{2} \sum_{i=1}^{n} c(\tilde{e}_i)\omega(F; g^F)(e_i).$$

(4.26)

In order to get the symbol of operators $\hat{D}_F f \cdot \hat{D}_f f^{-1} \cdot \hat{D}_F f$. Similar to (3.19)-(3.23), we give the specification of $\hat{D}_F f \cdot \hat{D}_f f^{-1} \cdot \hat{D}_F f$.

22
Combining (4.11) and (4.12), we have
\[
\hat{D}_F f \cdot \hat{D}_F f^{-1} \cdot \hat{D}_F f
\]
\[
= f \cdot \left\{ \sum_{i,j,l=1}^{n} \sum_{r=1}^{n} c(e_r) \langle e_r, dx_i \rangle (-g^{ij} \partial_h \partial_i \partial_j) + \sum_{r,s=1}^{n} c(e_r) \langle e_r, dx_i \rangle \right\} - \sum_{i,j=1}^{n} (\partial_h g^{ij}) \partial_i \partial_j - \sum_{i,k,j=1}^{n} g^{ij}
\]
\[
\times (4 \sigma^\wedge_\Lambda^{(T^*M) \otimes F} \partial_j - 2 \Gamma^k_{ij} \partial_k) \bigg\} + \sigma_0(\hat{D}_F^*) \left\{ - 2 \sigma^\wedge_\Lambda^{(T^*M) \otimes F} \partial_j + \Gamma^k \partial_k - \frac{1}{2} \sum_{j=1}^{n} \left[\hat{c}(\omega) c(e_j) + c(e_j) \hat{c}(\omega^*) \right] \right\}
\]
\[
\times e_j - g^{ij} \left[(\partial_i \sigma^\wedge_\Lambda^{(T^*M) \otimes F}) + \sigma^\wedge_\Lambda^{(T^*M) \otimes F} \sigma^\wedge_\Lambda^{(T^*M) \otimes F} \right] + \frac{1}{4} \hat{c}(\omega) c(e^*)
\]
\[
- \frac{1}{2} \sum_{j=1}^{n} \hat{c}(\omega) c(e_j) \sigma^\wedge_\Lambda^{(T^*M) \otimes F} c(e_j) - \frac{1}{2} \sum_{j=1}^{n} c(e_j) e_j \left[\hat{c}(\omega^*) \right] - \frac{1}{2} \sum_{j=1}^{n} \sigma^\wedge_\Lambda^{(T^*M) \otimes F} c(e_j) \langle e_j, dx_i \rangle \bigg\} \right\} + \frac{1}{2} \sum_{j=1}^{n} \left[\hat{c}(\omega) c(e_j) + c(e_j) \hat{c}(\omega^*) \right] \langle e_j, dx^k \rangle \partial_k
\]
\[
\times \partial_j - 2 \sum_{i,j=1}^{n} (\partial_h g^{ij}) \sigma^\wedge_\Lambda^{(T^*M) \otimes F} \partial_j - \frac{1}{2} \sum_{j,k=1}^{n} \left[\partial_j \left(\hat{c}(\omega) c(e_j) + c(e_j) \hat{c}(\omega^*) \right) \right] \langle e_j, dx^k \rangle \partial_k
\]
\[
- \frac{1}{2} \sum_{i,j=1}^{n} \left[\partial_j \left(\hat{c}(\omega) c(e_j) + c(e_j) \hat{c}(\omega^*) \right) \right] \langle e_j, dx^k \rangle \partial_k
\]
Lemma 4.6. By the above composition formulas, then we obtain:

\[
\sigma_j^{k,e} \Gamma^{k} \partial_j \partial_k - \frac{1}{2} \sum_{j,k=1}^n \left(\hat{c}(w)c(e_j) + c(e_j)\hat{c}(\omega^*) \right) [\partial_k (e_j, dz^k)] \partial_j \right) + c(df) \left\{ -g^{ij} \partial_i \partial_j \right.
\]

\[
-2 \sigma_j^{k,e} \sigma_j^{k,e} \Gamma^{k} \partial_j - \frac{1}{2} \sum_j \hat{c}(\omega)c(e_j) + c(e_j)\hat{c}(\omega^*) \right\} e_j - g^{ij} \left(\partial_i \sigma_j^{k,e} \right) + \frac{1}{2} \sum_j \left(c(e_j) C(e_j) + \frac{1}{4}s \hat{c}(\omega) \right)
\]

\[
+ \frac{1}{4} \hat{c}(\omega)\hat{c}(\omega^*) - \frac{1}{2} \sum_j c(e_j) \sigma_j^{k,e} \hat{c}(\omega^*) + \frac{1}{2} \sum_{i \neq j} R_{ij}^{e} c(e_i, e_j) c(e_j) \right\} \left\{ f \cdot c(df)^{-1} \cdot f + \left\{ \frac{1}{4} g^{ij} \hat{c}(\partial_i) \left[\partial_j \left(\frac{1}{4} \sum_{s \neq t} \hat{c}(e_s) \hat{c}(e_t) - c(e_s) c(e_t) \right) \right] \right. \right\}
\]

\[-\frac{\hat{c}(\omega)}{2} \right\} c(df) c(df)^{-1} f.
\]

By the above composition formulas, then we obtain:

Lemma 4.5. Let \(\hat{D}_F, \hat{D}_F \) be the twisted signature operators on \(\Gamma(\Lambda^*(T^* M) \otimes F) \), then

\[
s_i (\hat{D}_F f \cdot \hat{D}_F f^{-1} \cdot \hat{D}_F f) = f \sigma_i (\hat{D}_F \hat{D}_F \hat{D}_F) = f \sqrt{-1} c(\xi) |\xi|^2;
\]

(4.28)

\[
s_i (\hat{D}_F f \cdot \hat{D}_F f^{-1} \cdot \hat{D}_F f) = f \sigma_i (\hat{D}_F \hat{D}_F \hat{D}_F) + 2c(df) \left| \xi \right|^2
\]

(4.29)

where \(\sigma_2 (\hat{D}_F \hat{D}_F \hat{D}_F) = c(\xi)(4\sigma^k - 2\Gamma^k) \partial_k - \frac{1}{4}|\xi|^2 h'(0)c(dx_n) + |\xi|^2 \left(\frac{1}{4} h'(0) \sum_{i=1}^5 (c_0 c_0^* c_0^0\xi) (x_0) + \theta^* - \hat{c}(\omega^*) \right) + c(\xi) c(\omega) c(\xi).

For convenience, we write that \(\sigma_2 (\hat{D}_F \hat{D}_F \hat{D}_F) = G + |\xi|^2 \left(p + \theta^* - \hat{c}(\omega^*) \right) + c(\xi) c(\omega) c(\xi). \) By (4.28), (4.29), Lemma 2.1 in [12] and the composition formula of pseudodifferential operators, similar to (3.26)-(3.28), we obtain

Lemma 4.6. Let \(\hat{D}_F, \hat{D}_F \) be the generalized twisted signature operators on \(\Gamma(\Lambda^*(T^* M) \otimes F) \), then

\[
s_{-3} (\hat{D}_F f \cdot \hat{D}_F f^{-1} \cdot \hat{D}_F f) = \frac{\sqrt{-1} c(\xi)}{f |\xi|^4};
\]

(4.30)

\[
s_{-4} (\hat{D}_F f \cdot \hat{D}_F f^{-1} \cdot \hat{D}_F f) = f^{-1} s_{-4} ((\hat{D}_F \hat{D}_F \hat{D}_F) f^{-1}) + \frac{2c(\xi) c(df) c(\xi)}{f^2 |\xi|^6} + \frac{ic(\xi) \sum_j c(df_j) |\xi|^2 + 2\xi c(\xi) D_{dx_j} (f^{-1}) c(\xi)}{|\xi|^8},
\]

(4.31)
where
\[
\sigma_4((\hat{D}_F^* \hat{D}_F \hat{D}_F^*)^{-1}) = \frac{c(\xi)\sigma_2(\hat{D}_F^* \hat{D}_F \hat{D}_F^*)c(\xi)}{|\xi|^8} + \frac{c(\xi)}{|\xi|^{10}} \sum_j \left[c(dx_j)|\xi|^2 - 2c(\xi)_j c(\xi) \right] \left[2c(\xi)_j c(\xi) - 2c(\xi)_j |\xi|^2 \right]
\]
\[
= \frac{c(\xi)Gc(\xi)}{|\xi|^8} + \frac{c(\xi)(p + \partial^* - \hat{c}(\omega^*))c(\xi)}{|\xi|^6} + \frac{\hat{c}(w)}{|\xi|^4} + \frac{c(\xi)}{|\xi|^{10}} \sum_j \left[c(dx_j)|\xi|^2 - 2c(\xi)_j c(\xi) \right] \left[-2c(\xi)_j |\xi|^2 \right].
\]

Hence we cite that

Theorem 4.7. [19] For even n-dimensional oriented compact Riemannian manifolds without boundary, the following equality holds:

\[
\text{Wres(}\hat{D}_F f \cdot \hat{D}_F f^{-1}(\hat{\omega})) = \frac{(2\pi)^{\frac{n}{2}}}{(\frac{n}{2} - 2)!} \int_M \left\{ \text{trace} \left[-\frac{8}{12} + \frac{n}{16} \left[\hat{c}(\omega^*) - \hat{c}(\omega) \right]^2 - \frac{1}{4} \hat{c}(\omega^*) \hat{c}(\omega) + \frac{1}{4} \sum_j \nabla^F_{e_j} (\hat{c}(\omega^*)) e_j \\
+ \frac{1}{4} \sum_j \hat{c}(e_j) \nabla^F_{e_j} (\hat{c}(\omega))^2 + 4f^{-1}\Delta(f) + 8(\text{grad}_M f, \text{grad}_M (f^{-1})) - 5f^{-2} |\text{grad}_M f|^2 \\
+ 2\Delta(f) \right\} \text{dvol}_M.
\]

(4.32)

(4.33)

5. Conformal perturbations of twisted Signature Operators and Noncommutative residue

In the following, we will compute the more general case \(\text{Wres}[\pi^+(f \hat{D}_F^{-1}) \circ \pi^+(f^{-1}(\hat{D}_F^*)) \cdot \hat{D}_F^{-1} \cdot f^{-1}(\hat{D}_F^*)^{-1}]\) for nonzero smooth functions \(f, f^{-1}\). An application of (2.1.4) in [14] shows that

\[
\text{Wres}[\pi^+(f \hat{D}_F^{-1}) \circ \pi^+(f^{-1}(\hat{D}_F^*)) \cdot \hat{D}_F^{-1} \cdot f^{-1}(\hat{D}_F^*)^{-1}] = \int_M \int_{|\xi| = 1} \text{trace}_{\Lambda^*(T^* M) \otimes F} (\hat{D}_F f \cdot \hat{D}_F f^{-1}) \sigma(\xi) dx + \int_{\partial M} \Psi,
\]

(5.1)

where

\[
\Psi = \int_{|\xi'| = 1} \int_{-\infty}^{+\infty} \sum_{j,k=0}^{+\infty} (-1)^{|\alpha|+j+k+\ell} \alpha! (j+k+1)! \text{trace}_{\Lambda^*(T^* M) \otimes F} \left[\partial_{\xi_n} \partial_{\xi_n} \partial_{\xi_n} \sigma(\hat{D}_F^{-1})(x', 0, \xi', \xi_n) \right. \\
\left. \times \partial_{\xi_n} \partial_{\xi_n} \sigma(\hat{D}_F^{-1})(x', 0, \xi', \xi_n) \right] d\xi_n \sigma(\xi') dx',
\]

(5.2)

and the sum is taken over \(r - k + |\alpha| + \ell - j - 1 = -n, r \leq -1, \ell \leq -1\).
Locally we can use Theorem 4.7 to compute the interior term of (5.1), then

\[
\int_M \int_{|\xi|=1} \text{trace}_{\Lambda^* (T^* M) \otimes F} [\sigma_{-4}((\hat{D}_F^* f \cdot \hat{D}_F f^{-1})^{-2})] \sigma(\xi) \, dx
\]

\[
= 8\pi^4 \int_M \left\{ \text{trace} \left[\frac{-8}{12} + \frac{3}{8} (\hat{c}(\omega^*) - \hat{c}(\omega))^2 - \frac{1}{4} \hat{c}(\omega^*) \hat{c}(\omega) - \frac{1}{4} \sum_j \nabla_{e_j}^F (\hat{c}(\omega^*)) c(e_j) \right.
ight.
\]

\[
+ \frac{1}{4} \sum_{j} c(e_j) \nabla_{e_j}^F (\hat{c}(\omega)) \left.] + 4f^{-1} \Delta(f) + 8 \langle \text{grad}_M(f), \text{grad}_M(f^{-1}) \rangle - 5f^{-2} \| \text{grad}_M(f) \|^2
\]

\[
+ 2 \Delta(f) \right\} \, dvol_M.
\]

(5.3)

So we only need to compute \(\int_{\partial M} \Psi \). From the remark above, now we can compute \(\Psi \) (see formula (5.2) for the definition of \(\Psi \)). Since the sum is taken over \(r + \ell - k - j - |\alpha| - 1 = -6, \ r \leq -1, \ell \leq -3 \), then we have the \(\int_{\partial M} \Psi \) is the sum of the following five cases:

case (a) \((1)\) \(r = -1, \ell = -3, j = k = 0, |\alpha| = 1 \).

By (5.2), we get

\[
\text{case (a) (1) } = - \int_{|\xi'|=1} \int_{-\infty}^{+\infty} \sum_{|\alpha|=1} \text{trace} \left[\delta^\alpha_{\xi'} \sigma_{-1}(f \hat{D}_F^{-1}) \times \partial^\alpha_{\xi'} \partial_{\xi} \sigma_{-3}(f^{-1}(\hat{D}_F^*)^{-1} \cdot f \hat{D}_F^{-1}) \cdot f^{-1}(\hat{D}_F^*)^{-1} \right](x_0) d\xi_n \sigma(\xi') \, dx'\]

\[
= - \int_{|\xi'|=1} \int_{-\infty}^{+\infty} \sum_{|\alpha|=1} \text{trace} \left[\delta^\alpha_{\xi'} \sigma_{-1}(\hat{D}_F^{-1}) \times \partial^\alpha_{\xi'} \partial_{\xi} \sigma_{-3}(\hat{D}_F^* \hat{D}_F \hat{D}_F^{-1})^{-1} \right](x_0) d\xi_n \sigma(\xi') \, dx' - f \sum_{j<n} \partial_j (f^{-1}) \int\int_{|\xi'|=1} \int_{-\infty}^{+\infty} \sum_{|\alpha|=1} \text{trace} \left[\delta^\alpha_{\xi'} \sigma_{-1}(\hat{D}_F^{-1}) \times \partial_{\xi} \sigma_{-3}(\hat{D}_F^* \hat{D}_F \hat{D}_F^{-1})^{-1} \right](x_0) \, dx' \times d\xi_n \sigma(\xi') \, dx'.
\]

(5.4)

By (3.24) and (4.29), we have \(\sigma_{-3}(\hat{D}_F^* \hat{D}_F \hat{D}_F^{-1})^{-1} = \sigma_{-3}(\hat{D}_F^* \hat{D}_F \hat{D}_F^{-1})^{-1} \).

By (3.34) and Lemma 2.2 in [12], for \(i < n \) we have

\[
\partial_{\xi} \sigma_{-3}(\hat{D}_F^* \hat{D}_F \hat{D}_F^{-1})^{-1}(x_0) = 0.
\]

(5.5)

Thus we have

\[
- \int_{|\xi'|=1} \int_{-\infty}^{+\infty} \sum_{|\alpha|=1} \text{trace} \left[\delta^\alpha_{\xi'} \sigma_{-1}(\hat{D}_F^{-1}) \times \partial^\alpha_{\xi'} \partial_{\xi} \sigma_{-3}(\hat{D}_F^* \hat{D}_F \hat{D}_F^{-1})^{-1} \right](x_0) d\xi_n \sigma(\xi') \, dx' = 0.
\]

(5.6)

By (3.12) and (4.16), we have \(\sigma_{-1}(\hat{D}_F)^{-1} = \sigma_{-1}(\hat{D}_F)^{-1} \). Similar to (3.36)-(3.38), for \(i < n \), we have

\[
\text{trace} \left[\delta^\alpha_{\xi'} \sigma_{-1}(\hat{D}_F^{-1}) \times \partial_{\xi} \sigma_{-3}(\hat{D}_F^* \hat{D}_F \hat{D}_F^{-1})^{-1} \right](x_0)
\]

\[
= -\xi \text{trace} \left[\frac{c(\text{d}x_n)^2}{2(\xi_n - \sqrt{-1})^2} \right] - 4\sqrt{-1} \xi_n \xi \text{trace} \left[\frac{c(\text{d}x_n)^2}{2(\xi_n - \sqrt{-1})^2|\xi|^6} \right] + 4\sqrt{-1} \xi_n \xi_n \text{trace} \left[\frac{c(\text{d}x_n)^2}{2(\xi_n - \sqrt{-1})^2|\xi|^6} \right] - 2\sqrt{-1} \text{trace} \left[\frac{c(\xi')^2}{2(\xi_n - \sqrt{-1})^2|\xi|^6} \right] + 4\sqrt{-1} \xi_n \xi_n \text{trace} \left[\frac{c(\text{d}x_n)^2}{2(\xi_n - \sqrt{-1})^2|\xi|^6} \right]
\]

(5.7)

26
We note that \(i < n \), \(\int_{|\xi'|=1} \xi_i \sigma(\xi') = 0 \), so
\[
-f \sum_{j<n} \partial_j(f^{-1}) \int_{|\xi'|=1}^{+\infty} \sum_{|\alpha|=1} \text{trace} \left[\partial^2_i \pi_{\xi_n}^+ \sigma_{-1}(D_F^{-1}) \times \partial^2_{\xi_n} \sigma_{-3}(D_F^* D_F D_F^* D_F^{-1}) \right] (x_0) d\xi_n \sigma(\xi') dx' = 0. \tag{5.8}
\]
Then we have case (a) (I) = 0.

case (a) (II) \(r = -1, l = -3, |\alpha| = k = 0, j = 1 \).

By (5.2), we have
\[
\text{case (a) (II)} = -\frac{1}{2} \int_{|\xi'|=1}^{+\infty} \text{trace} \left[\partial_{x_n} \pi_{\xi_n}^+ \sigma_{-1}(f D_F^{-1}) \times \partial^2_{\xi_n} \sigma_{-3}(f^{-1}(D_F^*)^{-1} \cdot f D_F^{-1}) \right] (x_0) d\xi_n \sigma(\xi') dx' = 0. \tag{5.9}
\]
Since \(n = 6 \), \(\text{trace}_{\pi \ast (T \cdot M)}[-\text{id}] = -64\text{dim}F \). By the relation of the Clifford action and \(\text{trace} PQ = \text{trace} QP \), then
\[
\begin{align*}
\text{trace}[c(\xi')c(dx_n)] &= 0; \text{trace}[c(dx_n)^2] = -64\text{dim}F; \text{trace}[c(\xi')^2](x_0)|_{|\xi'|=1} = -64\text{dim}F; \\
\text{trace}[\partial_{x_n} c(\xi')c(dx_n)] &= 0; \text{trace}[\partial_{x_n} c(\xi')(\xi')](x_0)|_{|\xi'|=1} = -32h'(0)\text{dim}F. \tag{5.10}
\end{align*}
\]
Similar to (3.41)-(3.45), then we obtain
\[
\begin{align*}
&\frac{1}{2} \int_{|\xi'|=1}^{+\infty} \text{trace} \left[\partial_{x_n} \pi_{\xi_n}^+ \sigma_{-1}(D_F^{-1}) \times \partial^2_{\xi_n} \sigma_{-3}(D_F^* D_F D_F^* D_F^{-1}) \right] (x_0) d\xi_n \sigma(\xi') dx' \\
&= -\frac{1}{2} \int_{|\xi'|=1}^{+\infty} 8h'(0)\text{dim}F \frac{8 - 24\xi_n i + 40\xi_n^2 + 24i\xi_n^3}{(\xi_n - i)^6 (\xi_n + i)^4} d\xi_n \sigma(\xi') dx' \\
&= 8h'(0)\text{dim}F \Omega_4 \frac{\pi i}{3!} \left[\frac{8 + 24\xi_n i - 40\xi_n^2 - 24i\xi_n^3}{(\xi_n + i)^4} \right] (5) |_{\xi_n=i} dx' \\
&= -\frac{15}{2} \pi h'(0)\Omega_4 \text{dim}F dx'. \tag{5.11}
\end{align*}
\]
Similar to (3.47) and (3.48), then we obtain
\[
\begin{align*}
-\frac{1}{2} f^{-1} \partial_{x_n} (f) \int_{|\xi'|=1}^{+\infty} \text{trace} \left[\pi_{\xi_n}^+ \sigma_{-1}(D_F^{-1}) \times \partial^2_{\xi_n} \sigma_{-3}(D_F^* D_F D_F^* D_F^{-1}) \right] (x_0) d\xi_n \sigma(\xi') dx' \\
&= (10\pi i + 88\pi)\Omega_4 \text{dim}F \cdot f^{-1} \partial_{x_n} (f) dx', \tag{5.12}
\end{align*}
\]
where \(\Omega_4 \) is the canonical volume of \(S_4 \). Then
\[
\text{case (a) (II)} = -\frac{15}{2} \pi h'(0)\Omega_4 \text{dim}F dx' + (10\pi i + 88\pi)\Omega_4 \text{dim}F \cdot f^{-1} \partial_{x_n} (f) dx', \tag{5.13}
\]

(5.13)
where Ω_4 is the canonical volume of S_4.

case (a) (III) $r = -1, l = -3, |\alpha| = j = 0, k = 1.$

By (5.2) and an integration by parts, we have

$$
case (a) (III) = -\frac{1}{2} \int_{|\xi'| = 1}^{\infty} \int_{-\infty}^{\infty} \text{trace} \left[\partial_{\xi_n} \pi_{\xi_n}^+ \sigma_{-1}(f\hat{D}_F^{-1}) \times \partial_{\xi_n} \partial_{x_n} \sigma_{-3}(f^{-1}(\hat{D}_F)^{-1}) \right](x_0) d\xi_n \sigma(\xi') dx'
$$

$$= -\frac{1}{2} \int_{|\xi'| = 1}^{\infty} \int_{-\infty}^{\infty} \text{trace} \left[\partial_{\xi_n} \pi_{\xi_n}^+ (\sigma_{-1}(D_F^{-1})) \times \partial_{\xi_n} \partial_{x_n} \sigma_{-3}(D_F^{-1}) \right](x_0) d\xi_n \sigma(\xi') dx'

- \frac{1}{2} f\partial_{x_n}(f^{-1}) \int_{|\xi'| = 1}^{\infty} \int_{-\infty}^{\infty} \text{trace} \left[\partial_{\xi_n} \pi_{\xi_n}^+ \sigma_{-1}(\hat{D}_F^{-1}) \times \partial_{\xi_n} \sigma_{-3}(\hat{D}_F^{-1}) \right](x_0) d\xi_n \sigma(\xi') dx'.
$$

(5.14)

Similar to (3.52), (3.53) and combining (5.10), we have

$$
\text{trace} \left[\partial_{\xi_n} \pi_{\xi_n}^+ \sigma_{-1}(D_F^{-1}) \times \partial_{\xi_n} \partial_{x_n} \sigma_{-3}(D_F^{-1}) \right](x_0)|_{|\xi'| = 1} = 8h'(0)\text{dim}F \frac{8i - 32\xi_n - 8i\xi_n^2}{(\xi_n - i)^3(\xi + i)^2}.
$$

(5.15)

Then

$$
-\frac{1}{2} \int_{|\xi'| = 1}^{\infty} \int_{-\infty}^{\infty} \text{trace} \left[\partial_{\xi_n} \pi_{\xi_n}^+ (\sigma_{-1}(D_F^{-1})) \times \partial_{\xi_n} \partial_{x_n} \sigma_{-3}(D_F^{-1}) \right](x_0) d\xi_n \sigma(\xi') dx'

= -\frac{1}{2} \int_{|\xi'| = 1}^{\infty} \int_{-\infty}^{\infty} 8h'(0)\text{dim}F \frac{8i - 32\xi_n - 8i\xi_n^2}{(\xi_n - i)^3(\xi + i)^2} d\xi_n \sigma(\xi') dx'

= -8h'(0)\text{dim}F \Omega_4 \frac{\pi i}{4} \frac{8i - 32\xi_n - 8i\xi_n^2}{(\xi + i)^2}|_{|\xi'| = 1} dx'

= \frac{25}{2} \pi h'(0)\Omega_4 \text{dim}F dx',
$$

(5.16)

and

$$
-\frac{1}{2} f\partial_{x_n}(f^{-1}) \int_{|\xi'| = 1}^{\infty} \int_{-\infty}^{\infty} \text{trace} \left[\partial_{\xi_n} \pi_{\xi_n}^+ \sigma_{-1}(\hat{D}_F^{-1}) \times \partial_{\xi_n} \sigma_{-3}(\hat{D}_F^{-1}) \right](x_0) d\xi_n \sigma(\xi') dx'

= \frac{\pi i}{2} f \cdot \partial_{x_n}(f^{-1}) \Omega_4 \text{dim}F dx',
$$

(5.17)

where Ω_4 is the canonical volume of S_4. Then

case (a) (III) $= \frac{25}{2} \pi h'(0)\Omega_4 \text{dim}F dx' + \frac{\pi i}{2} f \cdot \partial_{x_n}(f^{-1}) \Omega_4 \text{dim}F dx'$.

(5.18)

case (b) $r = -2, l = -3, |\alpha| = j = k = 0.$

By (5.2) and an integration by parts, we have
Hence, then an application of Lemma 4.3 shows

\[\text{trace}\left[\pi_{\xi_n}^+ \sigma_{-2}(fD_F^{-1}) \times \partial_{\xi_n} \sigma_{-3}\left(f^{-1}(D_F^{-1}) \cdot fD_F^{-1} \cdot f^{-1}(D_F^{-1})^{-1}\right) \right](x_0) \times d\xi_n \sigma(\xi') dx'. \]

Then an application of Lemma 4.3 shows

\[\sigma_{-2}(D_F^{-1})(x_0) = \frac{c(\xi)\sigma_0(\tilde{D}_F)(x_0)c(\xi)}{|\xi|^4} + \frac{c(\xi)}{|\xi|^4} \sum_j c(dx_j) \left[\partial_x (c(\xi))|\xi|^2 - c(\xi)\partial_x (|\xi|^2) \right](x_0) \]

\[= \frac{c(\xi)\sigma_0(\tilde{D}_F)(x_0)c(\xi)}{|\xi|^4} + \frac{c(\xi)}{|\xi|^4} (dx_n) \left[\partial_x (c(\xi))(x_0) - c(\xi)h'(0)|\xi'|^2 \right]. \]

Hence,

\[\pi_{\xi_n}^+ \sigma_{-2}(\tilde{D}_F^{-1})(x_0) := B_1 + B_2 + B_3 + B_4, \]

where

\[B_1 = -\frac{1}{4(\xi_n - i)^2} \left[(2 + i \xi_n)c(\xi') \left(-\frac{5}{4} h'(0)c(dx_n)c(\xi') + i\xi_n c(dx_n) \left(-\frac{5}{4} h'(0)c(dx_n) \right)c(dx_n) \right) \right. \]

\[+ \left. \left((2 + i \xi_n)c(\xi')c(dx_n) \partial_x c(\xi') + ic(dx_n) \left(-\frac{5}{4} h'(0)c(dx_n) \right)c(\xi') + ic(\xi') \left(-\frac{5}{4} h'(0)c(dx_n) \right) \right) \times c(dx_n) - i\partial_x c(\xi') \right] \]

\[= -\frac{1}{4(\xi_n - i)^2} \left[\frac{5}{2} h'(0)c(dx_n) - \frac{5i}{2} h'(0)c(\xi') - (2 + i \xi_n)c(\xi')c(dx_n) \partial_x c(\xi') + i\partial_x c(\xi') \right]; \]

\[B_2 = -\frac{h'(0)}{2} \left[\frac{c(dx_n)}{4i(\xi_n - i)} + \frac{i\partial_x (c(\xi'))}{8(\xi_n - i)^2} + \frac{3x_n - 7i}{8(\xi_n - i)^3} \right][ic(\xi') - c(dx_n)] \]

\[B_3 = -\frac{1}{4(\xi_n - i)^2} \left[(2 + i \xi_n)c(\xi')pc(\xi') + i\xi_n c(dx_n) pc(dx_n) + (2 + i \xi_n)c(\xi')c(dx_n) \partial_x c(\xi') \right. \]

\[+ \left. ic(dx_n)pc(\xi') + ic(\xi')pc(dx_n) - i\partial_x c(\xi') \right]; \]

\[B_4 = -\frac{1}{4(\xi_n - i)^2} \left[(2 + i \xi_n)c(\xi')vdxn + i\xi_n c(dx_n) vdxn + ic(dx_n) uc(\xi') + ic(\xi') vdxn \right]. \]

On the other hand,

\[\partial_{\xi_n} \sigma_{-3}(\tilde{D}_F^{-1} \cdot \tilde{D}_F \cdot \tilde{D}_F^{-1}) = -\frac{4i\xi_n c(\xi')}{(1 + \xi_n^2)^3} + \frac{i(1 - 3\xi_n^2)c(dx_n)}{(1 + \xi_n^2)^3}. \]

From (5.22) and (5.26), we have

\[\text{trace}[B_1 \times \partial_{\xi_n} \sigma_{-3}(\tilde{D}_F^{-1} \cdot \tilde{D}_F \cdot \tilde{D}_F^{-1})(x_0)]|_{|\xi'|=1} \]

\[= \text{tr} \left\{ \frac{1}{4(\xi_n - i)^2} \left[\frac{5}{2} h'(0)c(dx_n) - \frac{5i}{2} h'(0)c(\xi') - (2 + i \xi_n)c(\xi')c(dx_n) \partial_x c(\xi') + i\partial_x c(\xi') \right] \right. \]

\[\times \left. \left[\frac{4i\xi_n c(\xi') + (i - 3\xi_n^2)c(dx_n)}{(1 + \xi_n^2)^3} \right] \right\} \]

\[= 8h'(0) \frac{3 + 12i\xi_n + 3\xi_n^2}{(\xi_n - i)^4(\xi_n + i)^3}. \]
Similarly, we obtain
\[
\text{trace}\{B_2 \times \partial_{\xi_n} \sigma_{-3}((\hat{D}_F^* \hat{D}_F \hat{D}_F)^{-1})(x)\}\big|_{|\xi'|=1} = \text{tr}\left\{ -\frac{h'(0)}{2} \left[\frac{c(dx_n)}{4i(\xi_n - i)} + \frac{c(dx_n) - ic(\xi')}{8(\xi_n - i)^2} + \frac{3\xi_n - 7i}{8(\xi_n - i)^3}[ic(\xi') - c(dx_n)] \right] \right. \\
\times \left. \frac{-4i\xi_n c(\xi') + (i - 3i\xi_n^2) c(dx_n)}{(1 + \xi_n^2)^3} \right\} = -8h'(0)\frac{4i - 11\xi_n - 6i\xi_n^2 + 3\xi_n^3}{(\xi_n - i)^2(\xi_n + i)^3}. \quad (5.28)
\]

For the signature operator case,
\[
\text{trace}[c(\xi') p c(\xi') c(dx_n)](x_0) = \text{trace}[pc(\xi') c(dx_n) c(\xi')](x_0) = |\xi'|^2 \text{trace}[p(x_0) c(dx_n)], \quad (5.29)
\]
and
\[
c(dx_n)p(x_0) = -\frac{1}{4} h'(0) \sum_{i=1}^{n-1} c(\xi_i) c(\xi_i^*) c(\xi_n) = -\frac{1}{4} h'(0) \sum_{i=1}^{n-1} [c(\xi_i) c(\xi_i^*) - i c(\xi_i) c(\xi_i^*)] [c(\xi_n) c(\xi_n^*) - i c(\xi_n^*) c(\xi_n^*)]. \quad (5.30)
\]

By Section 3 in [12], then
\[
\text{trace}_{\lambda=(T^* \cdot M)} \{ [c(\xi_i) c(\xi_i^*) - i c(\xi_i) c(\xi_i^*)] [c(\xi_n) c(\xi_n^*) - i c(\xi_n^*) c(\xi_n^*)] \} = a_{n,m}(e_i^*, e_n^*)^2 + b_{n,m} |e_n^*|^2 = b_{n,m}, \quad (5.31)
\]
where
\[
b_{n,m} = \left(\frac{4}{m - 2} \right) + \left(\frac{4}{m} \right) - 2 \left(\frac{4}{m - 1} \right).
\]

Then
\[
\text{tr}_{\lambda=(T^* \cdot M)} \{ [c(\xi_i) c(\xi_i^*) - i c(\xi_i) c(\xi_i^*)] [c(\xi_n) c(\xi_n^*) - i c(\xi_n^*) c(\xi_n^*)] \} = \sum_{m=0}^{6} b_{n,m} = 0. \quad (5.32)
\]

Hence in this case,
\[
\text{trace}_{\lambda=(T^* \cdot M)}[c(dx_n)p(x_0)] = 0. \quad (5.33)
\]

We note that \(\int_{|\xi'|=1} \xi_1 \cdots \xi_{2q+1} \sigma(\xi') = 0\), then \(\text{trace}_{\lambda=(T^* \cdot M)}[c(\xi') p(x_0)]\) has no contribution for computing case (b).

So, we obtain
\[
\text{trace}\left[B_1 \times \partial_{\xi_n} \sigma_{-3}((\hat{D}_F^* \hat{D}_F \hat{D}_F)^{-1})(x)\right|_{|\xi'|=1} = \text{tr}\left\{ -\frac{1}{4(\xi_n - i)^2} \left[(2 + i\xi_n)c(\xi') p c(\xi') + i\xi_n c(dx_n) p c(dx_n) + (2 + i\xi_n)c(\xi') c(dx_n) \partial_{\xi_n} c(\xi') \right. \\
+ i c(dx_n) p c(\xi') + ic(dx_n) c(\xi') p(dx_n) - i \partial_{\xi_n} c(\xi') \right] \times \frac{-4i\xi_n c(\xi') + (i - 3i\xi_n^2) c(dx_n)}{(1 + \xi_n^2)^3} \right\} = 8h'(0) \text{dim}F\frac{3\xi_n^2 - 3i\xi_n - 2}{(\xi_n - i)^4(\xi_n + i)^3}. \quad (5.34)
\]

Then, we have
\[
\text{trace}\left[(B_1 + B_2 + B_3) \times \partial_{\xi_n} \sigma_{-3}((\hat{D}_F^* \hat{D}_F \hat{D}_F)^{-1}) \right](x_0) = \text{dim}F \frac{3\xi_n^3 + 9i\xi_n^2 + 21\xi_n - 5i}{(\xi_n - i)^3(\xi_n + i)^3}. \quad (5.35)
\]
By the relation of the Clifford action and trace $PQ = \text{trace}QP$, then we have the equalities
\[
\text{trace}[c(\tilde{c})c(dx_n)] = 0, i < n; \quad \text{trace}[c(\tilde{c})c(dx_n)] = -64\dim F, i = n;
\]
(5.36)
\[
\text{trace}[c(\tilde{c})c(\xi')] = \text{trace}[\tilde{c}(c(dx_n))] = 0.
\]
(5.37)
Then $\text{trace}[\vartheta c(\xi')]$ has no contribution for computing case (b).

Then, we have
\[
\text{trace}[B_4 \times \partial_{\xi_n} \sigma_{-3}((\hat{D}_F^* \hat{D}_F \hat{D}_F^*)^{-1})]|_{\xi' = 1} = \text{trace}\left\{ \frac{-1}{4(\xi_n - i)^2} \left[(2 + i\xi_n)c(\xi') \vartheta c(\xi') + i\xi_n c(dx_n) \vartheta c(dx_n) + ic(dx_n) \vartheta c(\xi') \right] \right\} \\
\times \frac{-4i\xi_n c(\xi') + (i - 3i\xi_n^2)c(dx_n)}{(1 + \xi_n^2)^3} \\
= \frac{i(3\xi_n - i)}{2(\xi_n - i)^4(\xi_n + i)^3} \text{trace}[c(dx_n)\vartheta] \\
= -32\dim F \frac{1 + 3\xi_n i}{(\xi_n - i)^4} \text{trace}[\sigma_n^{F,e}].
\]
(5.38)

From (5.35), we obtain
\[
-i \int_{|\xi'| = 1}^{+\infty} \text{trace} \left[(B_4 + B_2 + B_3) \times \partial_{\xi_n} \sigma_{-3}((\hat{D}_F^* \hat{D}_F \hat{D}_F^*)^{-1}) \right] (x_0) d\xi_n \sigma(\xi') dx' \\
= -8\dim F h'(0) \int_{|\xi'| = 1}^{+\infty} \int_{-\infty}^{+\infty} \frac{3\xi_n^4 + 9\xi_n^2 i + 21\xi_n - 5i}{(\xi_n - i)^4(\xi_n + i)^3} d\xi_n \sigma(\xi') dx' \\
= -8\dim F h'(0) \frac{2\pi i}{4!} \left[\frac{3\xi_n^4 + 9\xi_n^2 i + 21\xi_n - 5i}{(\xi_n + i)^3} \right]^{(4)} |_{\xi_n = i} \Omega_4 dx' \\
= \frac{45}{2} \dim F \pi h'(0) \Omega_4 dx'.
\]
(5.39)

From (5.38), we obtain
\[
-i \int_{|\xi'| = 1}^{+\infty} \text{trace} \left[B_4 \times \partial_{\xi_n} \sigma_{-3}((\hat{D}_F^* \hat{D}_F \hat{D}_F^*)^{-1}) \right] (x_0) d\xi_n \sigma(\xi') dx' \\
= 32\dim F \text{trace}[\sigma_n^{F,e}] \int_{|\xi'| = 1}^{+\infty} \int_{-\infty}^{+\infty} \frac{1 + 3\xi_n}{(\xi_n - i)^4(\xi_n + i)^3} d\xi_n \sigma(\xi') dx' \\
= 32\dim F \text{trace}[\sigma_n^{F,e}] \left[\frac{2\pi i}{3!} \left[\frac{1 + 3\xi_n}{(\xi_n + i)^3} \right]^{(4)} \right] |_{\xi_n = i} \Omega_4 dx' \\
= -16\dim F \text{trace}[\sigma_n^{F,e}] \Omega_4 dx'.
\]
(5.40)

Combining (5.19), (5.39) and (5.40), we have
\[
\text{case (b)} = \left[\frac{45}{2} h'(0) - 16\text{trace}(\sigma_n^{F,e}) \right] \pi \dim F \Omega_4 dx'.
\]
(5.41)

\[
\text{case (c)} r = -1, l = -4, |\alpha| = j = k = 0.
\]

31
By (5.2) and an integration by parts, we have

\[
\text{case (c)} = -i \int_{|\xi'|=1}^{\infty} \int_{-\infty}^{\infty} \text{trace} \left[\pi_{\xi_n}^+ \sigma_{-1}(f\tilde{D}_F^{-1}) \times \partial_{\xi_n} \sigma_{-4} \left(f^{-1}(\tilde{D}_F^*)^{-1} \cdot f \tilde{D}_F^{-1} \cdot f^{-1}(\tilde{D}_F^*)^{-1} \right) \right](x_0) \\
\times d\xi_n \sigma(\xi') dx'
\]

\[
= -i \int_{|\xi'|=1}^{\infty} \int_{-\infty}^{\infty} \text{trace} \left[\pi_{\xi_n}^+ \sigma_{-1}(\tilde{D}_F^{-1}) \times \partial_{\xi_n} \left(\sigma_{-4}(\tilde{D}_F^* \tilde{D}_F \tilde{D}_F^*)^{-1} \right) \right](x_0) d\xi_n \sigma(\xi') dx'
\]

\[
+ 2i f^{-1} \int_{|\xi'|=1}^{\infty} \int_{-\infty}^{\infty} \text{trace} \left[\pi_{\xi_n}^+ \sigma_{-1}(\tilde{D}_F^{-1}) \times \partial_{\xi_n} \left(\frac{c(\xi)c(df)c(\xi)}{|\xi|^6} \right) \right](x_0) d\xi_n \sigma(\xi') dx',
\]

(5.42)

By direct calculations, we have

\[
\pi_{\xi_n}^+ \sigma_{-1}(\tilde{D}_F^{-1}) = -\frac{c(\xi') + ic(dx_n)}{2(\xi_n - i)}.
\]

(5.43)

In the normal coordinate, \(g^{ij}(x_0) = \delta^i_j\) and \(\partial_{x_j}(g^{ij})(x_0) = h'(0)\delta^j_0\), if \(j < n; \partial_{x_j}(g^{kn})(x_0) = h'(0)\delta^j_0\), if \(j = n\). So by Lemma 2.2 in [12], we have \(\Gamma^k(x_0) = \frac{1}{2}h'(0)\) and \(\Gamma^k(x_0) = 0 \) for \(k < n\). By the definition of \(\hat{\delta}^k\) and Lemma 2.3 in [12], we have \(\sigma^k(x_0) = 0\) and \(\hat{\delta}^k = \frac{1}{2}h'(0)c(\hat{\epsilon}_k)c(\sigma_n)\) for \(k < n\). By (3.15) in [19], we obtain

\[
\sigma_{-4}(\tilde{D}_F^* \tilde{D}_F \tilde{D}_F^*)^{-1}(x_0)
\]

\[
= \frac{-17 - 9\xi_n^2}{4(1 + \xi_n^2)} h'(0)c(\xi')c(dx_n) c(\xi') + \frac{33\xi_n^2 + 17\xi_n^3}{2(1 + \xi_n^2)^3} h'(0)c(\xi') + \frac{49\xi_n^2 + 25\xi_n^4}{2(1 + \xi_n^2)^4} h'(0)c(dx_n)
\]

\[
+ \frac{1}{1 + \xi_n^2} c(\xi') c(dx_n) \partial_{x_n}[c(\xi')(x_0)] - \frac{3\xi_n^2}{(1 + \xi_n^2)^3} \partial_{x_n}[c(\xi')(x_0)] - \frac{2\xi_n^2}{(1 + \xi_n^2)^3} h'(0)\xi_n c(\xi')
\]

\[
+ \frac{1 - \xi_n^2}{(1 + \xi_n^2)^3} h'(0) c(dx_n) + \frac{\xi_n d(\xi')}{\xi_n^6} + \frac{\xi_n d(\xi')}{\xi_n^6} + \frac{\xi_n d(\xi')}{\xi_n^6}.
\]

(5.44)

Then

\[
-i \int_{|\xi'|=1}^{\infty} \int_{-\infty}^{\infty} \text{trace} \left[\pi_{\xi_n}^+ \sigma_{-1}(\tilde{D}_F^{-1}) \times \partial_{\xi_n} \left(\sigma_{-4}(\tilde{D}_F^* \tilde{D}_F \tilde{D}_F^*)^{-1} \right) \right](x_0) d\xi_n \sigma(\xi') dx'
\]

\[
- \frac{i}{2\pi} h'(0) \text{dim} F \Omega_4 dx' + 12\pi \text{trace} \left[\sigma_{-4} c \right] \text{dim} F \Omega_4 dx' + 4\pi \text{trace} \left[w(F, g^F)(e_n) \right] \text{dim} F \Omega_4 dx'
\]

\[
- 12\pi \text{trace} \left[w(F, g^F)(e_n) \right] \text{dim} F \Omega_4 dx'.
\]

(5.45)

By \(\sigma_{-1}(\tilde{D}_F^{-1}) = \sigma_{-1}(\tilde{D}_F^{-1})\), similar to case (b) in Section 3, and we get

\[
\text{trace} \left[\pi_{\xi_n}^+ \sigma_{-1}(\tilde{D}_F^{-1}) \times \partial_{\xi_n} \left(\frac{c(\xi)c(df)c(\xi)}{|\xi|^6} \right) \right](x_0)
\]

\[
= \frac{(4\xi_n i + 2)i}{2(\xi_n + i)(1 + \xi_n^2)^3} \text{trace}[c(\xi')c(df)] + \frac{4\xi_n i + 2}{2(\xi_n + i)(1 + \xi_n^2)^3} \text{trace}[c(dx_n)c(df)].
\]

32
and

\[
\text{trace}\left[\pi^+_{\xi_n} \sigma_{-1}(\hat{D}_F^{-1}) \times \partial_{\xi_n} \left(\frac{ic(\xi) \sum_j [c(dx_j) |\xi|^2 + 2\xi_j c(\xi)] D_{x_j}(f^{-1})c(\xi)}{|\xi|^6} \right) \right] (x_0)
\]

\[
= \frac{(3\xi_n - i)i}{(\xi_n + i)(1 + \xi_n)^4} \text{trace} \left[c(\xi') \sum_j [c(dx_j) |\xi|^2 + 2\xi_j c(\xi)] D_{x_j}(f^{-1}) \right] + \frac{3\xi_n - i}{(\xi_n + i)(1 + \xi_n)^4} \text{trace} \left[c(dx_n) \sum_j [c(dx_j) |\xi|^2 + 2\xi_j c(\xi)] D_{x_j}(f^{-1}) \right].
\]

(5.46)

By the relation of the Clifford action and \(\text{trace}QP = \text{trace}PQ\), then we have the following equalities

\[
\text{trace} \left[c(dx_n)c(df) \right] = -g(dx_n, df);
\]

and

\[
\text{trace} \left[c(dx_n) \sum_j [c(dx_j) |\xi|^2 + 2\xi_j c(\xi)] D_{x_j}(f^{-1}) \right] = \text{trace}(\text{id})|\xi|^2 \left(-i\partial_{x_n}(f)f^{-1} \right) + 2 \sum_j \xi_j \xi_n \text{trace}(\text{id}) \left(-i\partial_{x_j}(f)f^{-1} \right) = -64\text{dim}F |\xi|^2 \left(-i\partial_{x_n}(f)f^{-1} \right) + 2 \sum_j \xi_j \xi_n \text{trace}(\text{id}) \left(-i\partial_{x_j}(f)f^{-1} \right).
\]

We note that \(i < n\), \(\int_{|\xi'|=1} \xi_n \sigma(\xi') = 0\), so \(\text{trace} [c(\xi')c(df)]\), \(\text{trace} \left[c(\xi') \sum_j [c(dx_j) |\xi|^2 + 2\xi_j c(\xi)] D_{x_j}(f^{-1}) \right]\) and \(2i \sum_j \xi_j \xi_n \partial_{x_j}(f)f^{-1} \text{trace}[\text{id}]\) have no contribution for computing case (b). Then we obtain

\[
-2if^{-1} \int_{|\xi'|=1}^{+\infty} \int_{-\infty}^{+\infty} \text{trace} \left[\pi^+_{\xi_n} \sigma_{-1}(\hat{D}_F^{-1}) \times \partial_{\xi_n} \left(\frac{ic(\xi) \sum_j [c(dx_j) |\xi|^2 + 2\xi_j c(\xi)] D_{x_j}(f^{-1})c(\xi)}{|\xi|^6} \right) \right] (x_0) d\xi_n \sigma(\xi') dx'
\]

\[
= \frac{3}{8f} \pi g(dx_n, df) \Omega_4 dx'.
\]

(5.47)

and

\[
-f \int_{|\xi'|=1}^{+\infty} \int_{-\infty}^{+\infty} \text{trace} \left[\pi^+_{\xi_n} \sigma_{-1}(\hat{D}_F^{-1}) \times \partial_{\xi_n} \left(\frac{ic(\xi) \sum_j [c(dx_j) |\xi|^2 + 2\xi_j c(\xi)] D_{x_j}(f^{-1})c(\xi)}{|\xi|^6} \right) \right]
\]

\[
\times (x_0) d\xi_n \sigma(\xi') dx'
\]

\[
= -60i\partial_{x_n}(f) \pi \text{dim}F \Omega_4 dx'.
\]

(5.48)

Then we have

\[
\text{case (c)} = \left\{ 12\text{trace} \left[\sigma^F_n c \right] - \frac{129}{2} h''(0) + 4\text{trace} \left[w(F, g^F)(e_n) \right] - 12\text{trace} \left[w^*(F, g^F)(e_n) \right] - 60i\partial_{x_n}(f) \right\} \pi \text{dim}F \Omega_4 dx' + \frac{3}{8f} g(dx_n, df) \pi \Omega_4 dx'.
\]

(5.49)
Now Ψ is the sum of the case (a), case (b) and case (c), then

$$\Psi = \left\{ 4\text{trace}\left[w(F, g^F)(e_n) \right] - 37h'(0) - 4\text{trace}\left[\sigma^{F, e}_n \right] - 12\text{trace}\left[w^*(F, g^F)(e_n) \right] \right. $$

$$+ \left(\frac{19i}{22} + \frac{88}{f} - 60i \right) \partial_{x_n}(f) \right\} \pi \Omega_4 \dim F \, dx' + \frac{3}{8f} g(dx_n, df) \pi \Omega_4 \, dx'. \tag{5.50}$$

By (4.2) in [12], we have

$$K = \sum_{1 \leq i,j \leq n-1} K_{i,j}g_{\partial M}; K_{i,j} = -\Gamma^i_{i,j},$$

and $K_{i,j}$ is the second fundamental form, or extrinsic curvature. For $n = 6$, then

$$K(x_0) = \sum_{1 \leq i,j \leq n-1} K_{i,j}(x_0)g^{i,j}_{\partial M}(x_0) = \sum_{i=1}^5 K_{i,i}(x_0) = -\frac{5}{2} h'(0). \tag{5.51}$$

Hence we conclude that

Theorem 5.1. Let M be a 6-dimensional compact manifolds with the boundary ∂M. Then

$$\text{Wres} \left[\frac{\pi^+ (f \hat{D}_F^{-1}) \circ \pi^+ (f^{-1}(\hat{D}_F)^{-1}) \cdot f \hat{D}_F^{-1} \cdot f^{-1}(\hat{D}_F)^{-1})}{} \right]$$

$$= 8\pi^3 \int_M \left\{ \text{trace} \left[-\frac{s}{12} + \frac{3}{8} \hat{c}(\omega^*) - \hat{c}(\omega) \right] - \frac{1}{4} \hat{c}(\omega^*) \hat{c}(\omega) - \frac{1}{4} \sum_j \nabla_{\epsilon_j} \left(\hat{c}(\omega^*) \right) \hat{c}(\epsilon_j) \right.$$

$$+ \left. \frac{1}{4} \sum_j \hat{c}(\epsilon_j) \nabla_{\epsilon_j} \left(\hat{c}(\omega) \right) \right\} + 4f^{-1}\Delta(f) + 8 \langle \text{grad}_M(f), \text{grad}_M(f^{-1}) \rangle + 5f^{-2} \left[|\text{grad}_M(f)|^2 \right. $$

$$+ 2\Delta(f) \right\} \text{dvol}_M + \int_{\partial M} \left\{ 4\text{trace}\left[w(F, g^F)(e_n) \right] - 4\text{trace}\left[\sigma^{F, e}_n \right] - 12\text{trace}\left[w^*(F, g^F)(e_n) \right] $$

$$- 37h'(0) + \left(\frac{19i}{22} + \frac{88}{f} - 60i \right) \partial_{x_n}(f) \right\} \text{dim F} + \frac{3}{8f} g(dx_n, df) \right\} \pi \Omega_4 \text{dvol}_M. \tag{5.52}$$

where s is the scalar curvature.

Acknowledgements

The first author is supported by DUGE202159. The partial research of the corresponding author was supported by NSFC. 11771070.

References

[1] V. W. Guillemin: A new proof of Weyl's formula on the asymptotic distribution of eigenvalues. Adv. Math. 55(2), 131-160, (1985).

[2] M. Wodzicki: local invariants of spectral asymmetry. Invent. Math. 75(1), 143-178, (1995).

[3] M. Adler: On a trace functional for formal pseudo-differential operators and the symplectic structure of Korteweg-de Vries type equations. Invent. Math. 50, 219-248,(1979).

[4] A. Connes: Quantized calculus and applications. XIth International Congress of Mathematical Physics(Paris,1994), Internat Press, Cambridge, MA. 15-36, (1995).

[5] A. Connes: The action functional in Noncommutative geometry. Comm. Math. Phys. 117, 673-683, (1998).

[6] D. Kastler: The Dirac Operator and Gravitation. Comm. Math. Phys. 166, 633-643, (1995).

[7] W. Kalau, M. Walze: Gravity, Noncommutative geometry and the Wodzicki residue. J. Geom. Physics. 16, 327-344,(1995).

[8] T. Ackermann: A note on the Wodzicki residue. J. Geom. Phys. 20, 404-406, (1996).
[9] R. Ponge.: Noncommutative Geometry and lower dimensional volumes in Riemannian geometry, Lett. Math. Phys. 83, 1-19, (2008).
[10] B. V. Fedosov, F. Golse, E. Leichtnam, E. Schrohe: The noncommutative residue for manifolds with boundary. J. Funct. Anal. 142, 1-31, (1996).
[11] E. Schrohe: Noncommutative residue, Dixmier’s trace, and heat trace expansions on manifolds with boundary. Contemp. Math. 242, 161-186, (1999).
[12] Y. Wang: Gravity and the Noncommutative Residue for Manifolds with Boundary. Letters in Mathematical Physics. 80, 37-56, (2007).
[13] Y. Wang: Lower-Dimensional Volumes and Kastler-kalau-Walze Type Theorem for Manifolds with Boundary. Commun. Theor. Phys. 54, 38-42, (2010).
[14] Y. Wang: Differential forms and the Wodzicki residue for manifolds with boundary. J. Geom. Phys. 56, 731-753, (2006).
[15] J. Wang, Y. Wang: A Kastler-Kalau-Walze Type Theorem for 7-Dimensional Manifolds with Boundary. Abstr. Appl. Anal. Art. ID 465782, 1-18, (2014).
[16] J. Wang, Y. Wang: A Kastler-Kalau-Walze Type Theorem for five-dimensional manifolds with boundary[J]. Int. J. Geom. Methods M. 12(05): 1550064, (2015).
[17] J. Wang, Y. Wang: The Kastler-Kalau-Walze type theorem for 6-dimensional manifolds with boundary. J. Math. Phys. 56(ID 052501), 1-14, (2015).
[18] J. Wang, Y. Wang: A general A Kastler-Kalau-Walze type theorem for manifolds with boundary. Int. J. Geom. Methods M. Vol. 13(1): 1650003, (2016).
[19] J. Wang, Y. Wang: On K-K-W Type Theorems for Conformal Perturbations of Twisted Dirac Operators. arXiv: 2108.03149.
[20] J. M. Bismut, W. Zhang: An Extension of a theorem by Cheeger and Müller, Astérisque, No. 205, paris, (1992).