RESEARCH ARTICLE

OPERATIONS ON M-STRONG FUZZY GRAPHS.

M. Rostamy Malkhalifeh¹, H. Saleh² and F. Falahati Nezhad³.
1. Department of Mathematics, Science and Research Branch, Islamic Azad University, Tehran, Iran.
2. Department of Mathematics, Central Tehran Branch, Islamic Azad University, Tehran, Iran.
3. Young Researchers and Elite Club, Safadasht Branch, Islamic Azad University, Tehran, Iran.

Abstract
In current paper, deleted lexicographical product, disjunction and symmetric difference on fuzzy graphs are defined and some of their properties are discussed. Moreover, the concept of M-strong fuzzy graphs are investigated for mentioned operations. These results also are illustrated with some examples.

Introduction:
In 1965, Lotfi A. Zade established Fuzzy set for representing uncertainty [6]. Fuzzy set has numerous applications in different branches of modern sciences consisting operations research, transportation, information theory and neural networks [7, 8].

A graph G is an ordered pair (V, E), where V = V(G) is the set of vertices of G and E = E(G) is the set of edges of G where \(E \subseteq V \times V \). Graph theory has been used to study modern science such as operations research, transportation and cluster analysis.

In 1975, Rosenfeld introduced fuzzy graphs [5] based on fuzzy set. Fuzzy graph theory plays essential roles in various disciplines including information theory, neural networks, clustering problems and control theory, etc. Fuzzy models are more compatible to the system in comparison with classical models [9, 10].

Bhutani and Rosenfeld introduced the notion of M-strong fuzzy graphs and studied some of their properties. [1, 4] Many interesting graphs are obtained from composing simpler graphs via several operations. For more information on graph operations see [3].

In this paper, we define deleted lexicographical product, disjunction and symmetric difference of two fuzzy graphs and prove that new graphs constructed from mentioned operations are fuzzy graph. Also we show that deleted lexicographical product, disjunction and symmetric difference of two M-strong fuzzy graphs are also M-strong fuzzy graph. Finally we prove that if \(G_1 \times G_2, G_1 \lor G_2 \) and \(G_1 \bigoplus G_2 \) are M-strong fuzzy graphs, then at least one factor must be M-strong fuzzy graph. All properties are illustrated with examples.

Corresponding Author:- H. Saleh.
Address:- Department of Mathematics, Central Tehran Branch, Islamic Azad University, Tehran, Iran.
Preliminaries:
In this section, we list some necessary definitions as follows:

Definition 2.1[6]. A fuzzy set is a set of ordered pairs \(\{(x, \mu(x)) | x \in X \} \) where \(X \) is universal set. \(\mu(x) \) is a map from \(X \) to \([0, 1]\) which is called a membership function or degree of membership of \(x \) in \(A \).

Definition 2.2[5]. A fuzzy graph \(G \) is a pair of functions \((\mu, \rho) \) where \(\mu \) is a fuzzy subset of \(X \) and \(\rho: X \times X \rightarrow [0,1] \) is symmetric fuzzy relation on \(\mu \) such that \(\rho(x, y) \leq \min\{\mu(x), \mu(y)\} \).

Throughout the paper, we use \(xy \) instead of \((x, y) \) for an element of \(E(G) \).

Definition 2.3[2]. The deleted lexicographical product of two graphs \(G_1 \) and \(G_2 \) is defined as a graph \(G_1 \times G_2 \) with the vertex set \(V(G_1) \times V(G_2) \) and vertex \((x_1, x_2)\) is adjacent with vertex \((y_1, y_2)\) whenever \(x_1 \) is adjacent with \(y_1 \) in \(G_1 \) and \(x_2 \neq y_2 \) or \(x_1 = y_1 \) and \(x_2 \) is adjacent with \(y_2 \) in \(G_2 \).

Definition 2.4[3]. The disjunction of two fuzzy graphs \(G_1 \) and \(G_2 \) is defined as a fuzzy graph \(G_1 \uplus G_2 \) with the vertex set \(V(G_1) \times V(G_2) \) and vertex \((x_1, x_2)\) is adjacent with vertex \((y_1, y_2)\) whenever \(x_1 \) is adjacent with \(y_1 \) or \(x_2 \) is adjacent with \(y_2 \) in \(G_2 \) or both of them.

Definition 2.5[3]. The symmetric difference of two fuzzy graphs \(G_1 \) and \(G_2 \) is defined as a fuzzy graph \(G_1 \ominus G_2 \) with the vertex set \(V(G_1) \times V(G_2) \) and vertex \((x_1, x_2)\) is adjacent with vertex \((y_1, y_2)\) whenever \(x_1 \) is adjacent with \(y_1 \) in \(G_1 \) or \(x_2 \) is adjacent with \(y_2 \) in \(G_2 \) but not both.

Definition 2.6[1]. A fuzzy subgraph \((\mu, \rho)\) of \(G \) is called a \(M \)-strong fuzzy subgraph if \(\rho(xy) = \min\{\mu(x), \mu(y)\} \) for all \(xy \in E(G) \).

Some operations on fuzzy graphs:
In this section, we present new definitions for some fuzzy graph operations and prove that new graphs are also fuzzy graphs.

Definition 3.1. The deleted lexicographical product of two fuzzy graphs \(G_1 \) and \(G_2 \) is defined as a fuzzy graph \(G_1 \times G_2 \) with the vertex set \(V(G_1) \times V(G_2) \) and vertex \((x_1, x_2)\) is adjacent with vertex \((y_1, y_2)\) whenever \(x_1 \) is adjacent with \(y_1 \) in \(G_1 \) and \(x_2 \neq y_2 \) or \(x_1 = y_1 \) and \(x_2 \) is adjacent with \(y_2 \) in \(G_2 \) with \((\mu_1 \times \mu_2)(x_1, x_2) = \min\{\mu_1(x_1), \mu_2(x_2)\}\) for all \((x_1, x_2) \in V(G_1 \times G_2)\) and
\[
(\rho_1 \times \rho_2)((x_1, x_2)(y_1, y_2)) = \min\{\rho_1(x_1 y_1), \mu_2(x_2)\} \quad x_1 = y_1 \in V(G_1), \quad x_2 y_2 \in E(G_2)
\]

Theorem 3.1. Let \(G \) be a deleted lexicographical product of two fuzzy graphs \(G_1 \) and \(G_2 \) and \((\mu, \rho)\) be a fuzzy subgraph of \(G \) where \(i \in \{1,2\} \), then \((\mu_1 \times \mu_2), (\rho_1 \times \rho_2)\) be a fuzzy subgraph of \(G \).

Proof. Let \(G = G_1 \times G_2 \), we have:
\[
(\rho_1 \times \rho_2)((x_1, x_2)(y_1, y_2)) = \min\{\rho_1(x_1 y_1), \mu_2(x_2)\}
\]
and also,
\[
(\rho_1 \times \rho_2)((x_1, x_2)(y_1, y_2)) = \min\{\mu_1(x_1), \mu_2(x_2)\}
\]

Definition 3.2. The disjunction of two fuzzy graphs \(G_1 \) and \(G_2 \) is defined as a fuzzy graph \(G_1 \uplus G_2 \) with the vertex set \(V(G_1) \times V(G_2) \) and vertex \((x_1, x_2)\) is adjacent with vertex \((y_1, y_2)\) whenever \(x_1 \) is adjacent with \(y_1 \) in \(G_1 \) or \(x_2 \) is adjacent with \(y_2 \) in \(G_2 \) or both of them with \((\mu_1 \uplus \mu_2)(x_1, x_2) = \min\{\mu_1(x_1), \mu_2(x_2)\}\) for all \((x_1, x_2) \in V(G_1 \uplus G_2)\) and
\[
(\rho_1 \uplus \rho_2)((x_1, x_2)(y_1, y_2)) = \min\{\rho_1(x_1 y_1), \mu_2(x_2)\} \quad x_1 y_1 \in E(G_1), \quad x_2 y_2 \in V(G_2)
\]

Theorem 3.2. Let \(G \) be a disjunction of two fuzzy graphs \(G_1 \) and \(G_2 \) and \((\mu, \rho)\) be a fuzzy subgraph of \(G \) where \(i \in \{1,2\} \), then \((\mu_1 \uplus \mu_2), (\rho_1 \uplus \rho_2)\) be a fuzzy subgraph of \(G \).

Proof. Let \(G = G_1 \uplus G_2 \), we have:
Definition 3.3. The symmetric difference of two fuzzy graphs G_1 and G_2 is defined as a fuzzy graph $G_1 \oplus G_2$ with the vertex set $V(G_1) \times V(G_2)$ and vertex (x_1, x_2) is adjacent with vertex (y_1, y_2) whenever x_1 is adjacent with y_1 in G_1 or x_2 is adjacent with y_2 in G_2 but not both with

\[
(p_1 \oplus p_2)((x_1, x_2)(y_1, y_2)) = \min\{p_1(x_1y_1), p_2(x_2y_2)\}
\]

and also

\[
(p_1 \oplus p_2)((x_1, x_2)(y_1, y_2)) = \min\{p_1(x_1y_1), p_2(x_2y_2)\}
\]

Theorem 3.3. Let G be a symmetric difference of two fuzzy graphs G_1 and G_2 and (μ_i, ρ_i) be a fuzzy subgraph of G where $i \in \{1, 2\}$, then $((\mu_1 \oplus \mu_2), (p_1 \oplus p_2))$ is a fuzzy subgraph of G.

Proof. Using Theorem 3.2, we can get the desired result.

M-strong fuzzy graphs:

In this section, we prove some theorems to show that if G_1 and G_2 are M-strong fuzzy graphs, then new fuzzy graph constructed from them are M-strong fuzzy graph too.

Also, if $G_1 \times G_2, G_1 \lor G_2$ and $G_1 \oplus G_2$ are M-strong fuzzy graphs, then at least one factor must be M-strong fuzzy graph. All computations are illustrated with examples.

Theorem 4.1. Let G be a deleted lexicographical product of two M-strong fuzzy graphs G_1 and G_2, then G is a M-strong fuzzy graph.

Proof. The first part is taken over all edges $(x_1, x_2)(y_1, y_2) \in E(G)$ such that $x_2y_2 \in E(G_2)$ and $x_1 = y_1$. Using the fact that G_2 is a M-strong fuzzy graph, we have

\[
(p_1 \times p_2)((x_1, x_2)(y_1, y_2)) = \min\{p_1(x_1), p_2(x_2y_2)\}
\]

and also

\[
(p_1 \times p_2)((x_1, x_2)(y_1, y_2)) = \min\{p_1(x_1), p_2(x_2y_2)\}
\]

The second part is taken over all edges $(x_1, x_2)(y_1, y_2) \in E(G)$ such that $x_1 \lor y_1 \in E(G_1)$ and $x_2, y_2 \in E(G_2)$. Using the fact that G_1 is a M-strong fuzzy graph, we have

\[
(p_1 \times p_2)((x_1, x_2)(y_1, y_2)) = \min\{p_1(x_1), p_2(x_2)\}
\]

and also

\[
(p_1 \times p_2)((x_1, x_2)(y_1, y_2)) = \min\{p_1(x_1), p_2(x_2)\}
\]

Example 4.1. Let \square_1 and \square_2 be two fuzzy graphs illustrated in figure 1:

![Figure 1: Two M-strong fuzzy graphs \square_1 and \square_2.](image-url)
According to definition 3.1, deleted lexicographical product of two fuzzy graphs \square_1 and \square_2 is presented in figure 2:

![Figure 2](image)

Figure 2: The deleted lexicographical product of two graphs \square_1 and G_2 and it is easy to see that it is a M-strong fuzzy graph.

Remark. The opposite is not necessarily true.

Example 4.2. Two fuzzy graphs G_1 and G_2 and deleted lexicographical product of them are considered in figure 3 and 4, respectively.

![Figure 3](image)

Figure 3: Two fuzzy graphs G_1 and G_2

![Figure 4](image)

Figure 4: The graph $G_1 \times G_2$ formed by G_1 and G_2
It is easy to see that $G_1 \times G_2$ and G_2 are strong fuzzy graphs but G_1 is not.

Theorem 4.2. If $G = G_1 \times G_2$ is M-strong fuzzy graph, then at least G_1 or G_2 must be M-strong fuzzy graph.

Proof. Suppose that both G_1 and G_2 are not M-strong fuzzy graphs. Then there exist $x_1, y_1 \in E(G_1)$ and $x_2, y_2 \in E(G_2)$ such that

$$\square_1(x_1, y_1) < \square_1\{\mu_1(x_1), \mu_1(y_1)\} \text{ and } \square_2(x_2, y_2) < \square_2\{\mu_2(x_2), \mu_2(y_2)\}$$

According to the definition 3.1,

$$(\rho_1 \times \rho_2)((x_1, x_2)(y_1, y_2)) = \square_1\{\mu_1(x_1), \mu_2(x_2)\} \text{ and } (\mu_1 \times \mu_2)(x_1, x_2) = \square_2\{\mu_1(y_1), \mu_2(x_2)\}$$

Since

$$\rho_1 \times \rho_2)((x_1, x_2)(y_1, y_2)) = \square_1\{\mu_1(x_1), \mu_2(x_2), \mu_2(y_1)\} < \square_2\{\mu_2(x_2), \mu_2(y_2), \mu_1(x_1)\}$$

and

$$\text{min}\{(\mu_1 \times \mu_2)(x_1, x_2), (\mu_1 \times \mu_2)(x_1, y_2)\} = \square_2\{\mu_1(x_1), \mu_2(x_2), \mu_2(y_2)\}$$

So

$$(\rho_1 \times \rho_2)((x_1, x_2)(y_1, y_2)) < \square_1\{\mu_1 \times \mu_2)(x_1, x_2), (\mu_1 \times \mu_2)(y_1, x_2)\}$$

Which is in contradiction to $G = G_1 \times G_2$ as M-strong fuzzy graph. Hence if $G = G_1 \times G_2$ is M-strong fuzzy graph, then at least G_1 or G_2 must be M-strong fuzzy graph.

Using definition 3.2, we can easily arrive at:

Theorem 4.3. Let G be a disjunction of two M-strong fuzzy graphs G_1 and G_2, then G is a M-strong fuzzy graph.

Example 4.3. Consider two fuzzy graphs G_1 and G_2 in figure 5:

![Figure 5](image1)

It is obvious that G_1 and G_2 are strong fuzzy graphs.

Based on definition 3.2, the graph $G_1 \lor G_2$ is illustrated in figure 6 as follows:

![Figure 6](image2)
It is easy to see that the disjunction of G_1 and G_2 is a strong fuzzy graph.

Theorem 4.4. If $G = G_1 \lor G_2$ is M-strong fuzzy graph, then at least G_1 or G_2 must be M-strong fuzzy graph.

Proof. Suppose that both G_1 and G_2 are not M-strong fuzzy graphs, then there exist $x_1y_1 \in E(G_1)$ and $x_2y_2 \in E(G_2)$ such that

$$\square_1(x_1, y_1) < \square_2\{\mu_1(x_1), \mu_1(y_1)\} \text{ and } \square_2(x_2, y_2) < \square_1\{\mu_2(x_2), \mu_2(y_2)\}$$

According to the definition 3.2,

$$(\square_1 \lor \square_2)((x_1, x_2)(y_1, y_2)) = \square_1\{\mu_1(x_1), \mu_2(x_2), \mu_2(y_2)\} \text{ and } \square_2\{\mu_1(x_1), \mu_1(y_1), \mu_2(x_2), \mu_2(y_2)\}$$

Since

$$(\square_1 \lor \square_2)((x_1, x_2)(y_1, y_2)) = \square_1\{\mu_1(x_1), \mu_2(x_2), \mu_2(y_2)\}$$

Therefore

$$\min\{\mu_1 \lor \mu_2\}(x_1, x_2)(y_1, y_2) < \square_1\{\mu_1 \lor \mu_2\}(x_1, x_2), (\mu_1 \lor \mu_2)(y_1, y_2) \}$$

Which is in contradiction to $G = G_1 \lor G_2$ as M-strong fuzzy graph. Hence if $G = G_1 \lor G_2$ is M-strong fuzzy graph, then at least G_1 or G_2 must be M-strong fuzzy graph.

Theorem 4.5. If $G = G_1 \lor G_2$ be M-strong fuzzy graph, then at least G_1 or G_2 must be M-strong fuzzy graph.

Proof. It is straightforward.

Theorem 4.6. Let G be a symmetric difference of two M-strong fuzzy graphs G_1 and G_2, then G is a M-strong fuzzy graph.

Proof. It is straightforward.

In next example, we will illustrate that the opposite is not necessarily true.

Example 4.4. Two fuzzy graphs G_1 and G_2 are illustrated in figure 7 and symmetric difference of $G_1 \oplus G_2$ is presented in figure 8.

![Figure 7](image_url)

Figure 7: Two fuzzy graphs G_1 and G_2.

$G_1 \oplus G_2$ and G_2 are strong fuzzy graphs, but G_1 is not strong fuzzy graph.
Conclusion:
In present paper, specific operations on fuzzy graphs have been introduced and some theorems are discussed. Some properties of M-strong fuzzy graphs are investigated.

Fuzzy graph theory is highly utilized in various areas. In future work, we can focus on Intuitionistic, bipolar and hyperfuzzy graphs and attempt to investigate many properties on them.

References:
1. K.R. Bhutani, A. Rosenfeld, Strong arcs in fuzzy graphs, Information Sciences 152 (2003) 319-322.
2. B. Frelih, S. Miklavčič, Edge regular graph products, the electronic journal of combinatorics, 20 (2013) 62-66.
3. W. Imrich, S. Klavžar, Product Graphs: Structure and Recognition, Wiley, New York (2000).
4. J.N. Mordeson, Fuzzy line graphs, Pattern Recognition Letters 14 (1993) 381–384.
5. Rosenfeld, Fuzzy graphs, in: L.A. Zadeh, K.S. Fu, M. Shimura (Eds.), Fuzzy Sets and their Applications to Cognitive and Decision Processes, Academic Press, New York, 1975, pp. 77–95.
6. L.A. Zadeh, Fuzzy sets, Information and Control 8 (1965) 338–353.
7. L.A. Zadeh, Toward a generalized theory of uncertainty (GTU) an outline, Information Sciences 172 (1–2) (2005) 1–40.
8. L.A. Zadeh, Is there a need for fuzzy logic?, Information Sciences 178 (13) (2008) 2751–2779.
9. J. Zhang, X. Yang, Some properties of fuzzy reasoning in propositional fuzzy logic systems, Inf. Sci. 180 (2010) 4661-4671.
10. W.-R. Zhang, Bipolar fuzzy sets and relations: a computational framework for cognitive modeling and multi agent decision analysis, in: Proceedings of IEEE 706 Conf., 1994, pp. 305–309.