Case Report

Triple combination therapy for clinically nonmetastatic super-high-risk prostate cancer

Koji Yoshimura, Kei Muraoka, Michiko Fukasawa, Mika Fukushima, Masatoshi Kumagai, Ryo Yabusaki, Masakatsu Ueda, Yusuke Shiraishi and Masaaki Imamura

1Department of Urology, Shizuoka General Hospital, Shizuoka City, Shizuoka, Japan

Introduction: Patients with nonmetastatic but exceptionally high-risk prostate cancer are liable to have biochemical failure and may even die. Triple combination therapy, which consists of surgery, radiotherapy, and androgen-deprivation therapy, as first-line treatment, may control the disease for a long period.

Case presentation: We treated a patient with super-high-risk, nonmetastatic prostate cancer, with triple combination therapy. He was biochemical relapse free at 60 months after the initiation of treatment.

Conclusion: Triple combination therapy may be an option for super-high-risk, nonmetastatic prostate cancer.

Key words: androgen-deprivation therapy, prostate cancer, prostatectomy, radiation therapy.

Keynote message

Prostate cancer that is nonmetastatic but highly aggressive is liable for fatal recurrence, even after appropriate treatment. Here, we present a patient with super-high-risk, nonmetastatic prostate cancer who was successfully treated by a combination of prostatectomy with pelvic lymph node dissection, adjuvant radiotherapy, and continuous androgen deprivation. Triple combination therapy might be an option for super-high-risk prostate cancer.

Introduction

High-risk prostate cancer accounts for approximately one quarter of all cases.1 A subset of patients have recurrent fatal prostate cancer, despite appropriate treatment. Thus, consensus regarding the optimal treatment for high-risk, nonmetastatic prostate cancer has not been established. Among patients with high-risk, nonmetastatic prostate cancer, some have highly aggressive disease, and they are susceptible to early fatal recurrence. In this report, we present a patient with super-high-risk, nonmetastatic prostate cancer who was successfully treated by TCT, which comprises prostatectomy with pelvic lymph node dissection, adjuvant radiotherapy, and continuous androgen deprivation.

Case presentation

A 73-year-old man was referred to our department for further treatment of prostate cancer. His initial serum PSA level was 7.212 ng/mL, but 13 of his 14 prostate biopsy cores were totally occupied by adenocarcinoma with a Gleason score of 10. CT and bone scintigraphy showed no metastatic findings, but magnetic resonance imaging revealed invasion of the right seminal vesicle (Fig. 1). Clinical stage was cT3bN0M0, and he had already received CAB therapy (bicalutamide plus leuprorelin acetate) before consultation at our department. The cancer had no obvious sign of metastasis but was highly aggressive. Therefore, we decided that trimodal therapy comprising prostatectomy and PLND, adjuvant radiotherapy regardless of pathology, and continuous CAB, would be applied as first-line treatment. Three months after the initiation of CAB, he underwent RARP with PLND. PLND included the lymph nodes
surrounding the external and internal iliac vessels, those occupying the obturator fossae, and those located in the triangles of Mercille. Pathologically, the tumor was stage pT3b or more, with a Gleason score of 10. The surgical margin was positive over a wide area of the specimen surface (Fig. 2), and one lymph node from the right obturator area was positive for cancer (Fig. 3). Therapeutic degeneration caused by CAB was minimal. Three months after RARP, the patient underwent adjuvant external beam irradiation therapy (60 Gy in 30 fractions) of the prostatic bed. CAB continued during and after RARP and irradiation. Sixty months after RARP, he had no evidence of disease by CT, with the PSA level <0.02 ng/mL.

Discussion

Our case had cT3b prostate cancer with ISUP group 5 carcinoma occupying almost the whole gland. Although the term super-high-risk prostate cancer is not officially accepted, it would be acceptable to use for this case. Super-high-risk prostate cancer would be likely to have micrometastases, which cannot be detected by conventional imaging modalities, such as CT and bone scintigraphy. Our case had lymph node metastases that were not detected preoperatively by conventional CT. More sophisticated imaging modalities, such as 68-Ga prostate-specific membrane antigen positron emission tomography, could partially resolve this problem. However, even if micrometastasis, as far as classified as oligometastasis, is detected preoperatively, treatment of the local lesion could contribute to the outcome. Extensive reduction of cancer volume achieved by prostatectomy with PNLD could

![Fig. 1 Magnetic resonance imaging findings. (a) T2-weighted imaging demonstrated uniformly low intensity throughout the peripheral and transitional zones without a clear boundary between them. (b) Diffusion-weighted imaging suggested cancer invasion of the right seminal vesicle (arrows).](image1)

![Fig. 2 Pathology of the prostate. (a) Cancer cells occupied nearly the whole sectioned area of the prostate with substantial positive margins (blue dots). (b) Cancer cells were viable and classified as International Society of Urological Pathology (ISUP) group 5. (c) Cancer cells invaded the rhabdosphincter tissue around the prostate (arrows).](image2)
could not be eradicated. Despite the positive outcome of treatment of prostate cancer in these two cases, it might be probable that the disease is only controlled at present. Five- and 2-year follow-ups might be too short to judge the efficacy of TCT, and we should carefully observe these patients in the future.

As aforementioned, the clinical courses of our two patients alone are far from sufficient proof of the efficacy of the TCT; nevertheless, this treatment strategy might be one of the options in selected patients with super-high-risk prostate cancer.

Acknowledgment

We thank Cathel Kerr BSc, PhD, from Edanz (https://jp.edanz.com/ac) for editing a draft of this manuscript.

Author contributions

Koji Yoshimura: Conceptualization; writing – original draft. Kei Muraoka: Validation. Michiko Fukasawa: Validation. Mika Fukushima: Resources; validation. Masatoshi Kumagai: Validation. Ryo Yabusaki: Validation. Masakatsu Ueda: Supervision. Yusuke Shiraiishi: Supervision. Masaaki Imamura: Supervision.

Conflict of interest

The authors declare no conflict of interest.

Approval of the research protocol by an Institutional Reviewer Board

Not applicable.

Informed consent

Informed consent was obtained from the patient.

Registry and the Registration No. of the study/trial

Not applicable.

References

1 Punnen S, Cooperberg MR. The epidemiology of high-risk prostate cancer. Curr. Opin. Urol. 2013; 23: 331–6.
2 Hoffmann MA, Wieler HJ, Baues C, Kuntz NJ, Richadsen I, Schreckenberger M. The impact of 68Ga-PSMA PET/CT and PET/MRI on the management of prostate cancer. Urology 2019; 130: 1–12.
3 Tosoian JJ, Gorin MA, Ross AE, Pienta KJ, Tran PT, Schaeffer EM. Oligometastatic prostate cancer: definitions, clinical outcomes, and treatment considerations. Nat. Rev. Urol. 2017; 14: 15–25.
4 Pisansky TM, Thompson IM, Valicenti RK, D’Amico AV, Selvanajah S. Adjuvant and salvage radiation therapy after prostatectomy. ASTRO/AUA guideline amendment, executive summary 2018. Pract. Radiat. Oncol. 2018; 9: 208–13.
5 Kneebone A, Fraser-Browne C, Duchesne GM et al. Adjuvant radiotherapy versus early salvage radiotherapy following radical prostatectomy (TROG 08.03/ANZUP RAVES): a randomised, controlled, phase 3, non-inferiority trial. Lancet Oncol. 2020; 21: 1331–40.