PÓLYA CONJECTURE FOR THE NEUMANN EIGENVALUES

GENQIAN LIU

Department of Mathematics, Beijing Institute of Technology, Beijing 100081, the People’s Republic of China. E-mail address: liugqz@bit.edu.cn

Abstract. For a given bounded domain $\Omega \subset \mathbb{R}^n$ with C^1-smooth boundary, we prove the Pólya conjecture for the Neumann eigenvalues. In other words, we prove that

$$\mu_{k+1} \leq \frac{(2\pi)^2 k^{2/n}}{(\omega_n \cdot \text{vol}(\Omega))^{2/n}}$$

for all $k = 0, 1, 2, 3, \ldots$, where μ_k is the k-th Neumann eigenvalue of the Laplacian for Ω.

1. Introduction

Let $\Omega \subset \mathbb{R}^n$ $(n \geq 2)$ be a bounded domain with smooth boundary $\partial \Omega$. We consider the following Neumann eigenvalue problem:

\[
\begin{cases}
- \Delta v = \mu v & \text{in } \Omega, \\
\frac{\partial v}{\partial \nu} = 0 & \text{on } \partial \Omega,
\end{cases}
\]

where ν denotes the outward unit normal vector to $\partial \Omega$. As is well-known, the spectrum of the Neumann problem is discrete and consists of a sequence $\{\mu_k\}_{k=1}^{\infty}$ of eigenvalues (with finite multiplicity) written in increasing order according to their multiplicity:

$$0 = \mu_1 < \mu_2 \leq \cdots \leq \mu_k \leq \cdots \nearrow +\infty.$$ (1.2)

Weyl’s asymptotic formula (see [19] or [20]) says that

$$\mu_{k+1} \sim \frac{(2\pi)^2 k^{2/n}}{(\omega_n \cdot \text{vol}(\Omega))^{2/n}}$$ as $k \to \infty$, (1.3)

where ω_n is the volume of the unit ball in \mathbb{R}^n and vol(Ω) is the volume of Ω. In 1961, G. Pólya [13] showed that for any regularly plane-covering domain (a plane-covering domain is one which can be used to tile the plane without gaps or overlaps but allowing rotations, and reflections of the fundamental domain)

$$\mu_{k+1} \leq \frac{(2\pi)^2 k^{2/n}}{(\omega_n \cdot \text{vol}(\Omega))^{2/n}},$$ for $k = 0, 1, 2, 3, \ldots$, (1.4)

(see also Kellner [6] for the complete proof of (1.4) for plane-covering domain). In [13], Pólya went on to conjecture that these inequalities hold for all domains.

1991 Mathematics Subject Classification. 35P15, 58J50.

Key words and phrases. Neumann eigenvalue, Pólya conjecture.
Despite a great deal of attention (see Payne’s review articles [11], [12], Yau’s problem list [21] and other works [22], [23], [24], Protter’s review article [15], [16] and even Pólya popular book [14]), this conjecture remain unsolved (see [1]). The only case of (1.4) that is known for arbitrary domains is \(k = 1 \) (using P. Szegő-Weinberger inequality (see [17] and [18]) for \((\text{vol}(\Omega))^{2/n} \mu_2 \)).

More information on this problem can be found in the literatures [8], [1], [24], [11] and [12].

In this paper, by considering an equivalent eigenvalue problem of multi-Laplacian \((-\Delta)^m\) and by applying Kröger’s technique (see [7]), and finally by letting \(m \to +\infty \), we prove the Pólya conjecture for the Neumann eigenvalues. Our main result is the following:

Theorem 1.1. Let \(\Omega \subset \mathbb{R}^n \ (n \geq 2) \) be a bounded domain with \(C^1 \)-smooth boundary \(\partial \Omega \), and let \(0 = \mu_1 < \mu_2 \leq \mu_3 \leq \cdots \leq \mu_k \leq \cdots \) be the Neumann eigenvalues of the Laplacian on \(\Omega \). Then

\[
\mu_{k+1} \leq \frac{(2\pi)^{k/2}}{(\omega_n \cdot \text{vol}(\Omega))^{2/n}} \quad \text{for all } k = 0, 1, 2, 3, \cdots .
\]

2. Proof of main theorem

Proof of theorem 1.1. (i) We first assume that \(\Omega \) is a bounded domain with smooth boundary. In this case, the eigenvalue problem (1.1) is equivalent to the following eigenvalue problem of the multi-Laplacian:

\[
\begin{align*}
(-\Delta)^m \phi &= \mu^m \phi & \text{in } \Omega, \\
\frac{\partial ((-\Delta)^{m-1} \phi)}{\partial \nu} &= 0 & \text{on } \partial \Omega, \ l = 1, 2, \cdots, m.
\end{align*}
\]

In other words, if \(\phi_k \) is the eigenfunction corresponding to the \(k \)-th Neumann eigenvalue \(\mu_k \), then \(\mu_k \) (respectively, eigenfunction \(\phi_k \)) must be the \(k \)-th eigenvalue (respectively, eigenfunction \(\phi_k \)) of problem (2.1). The converse is still true.

Applying Green’s formula, we see that the eigenvalues \(\mu_k \) is given by the following variational formulas:

\[
\mu_1 = 0 \quad \text{and } \phi_1 \equiv 1,
\]

\[
\mu_k = \frac{\int_{\Omega} |(-\Delta)^{m/2} \phi_k(x)|^2 \, dx}{\int_{\Omega} |\phi_k(x)|^2 \, dx} = \inf_{\phi \in C^\infty(\Omega), \frac{\partial \phi}{\partial \nu}|_{\partial \Omega} = \cdots = \frac{\partial((-\Delta)^{m-1} \phi)}{\partial \nu}|_{\partial \Omega} = 0} \frac{\int_{\Omega} |(-\Delta)^{m/2} \phi(x)|^2 \, dx}{\int_{\Omega} |\phi(x)|^2 \, dx}, \quad k = 2, 3, \cdots,
\]

where

\[
|(-\Delta)^{m/2} \phi|^2 = \begin{cases} |\Delta^{m/2} \phi|^2 & \text{if } m \text{ is even,} \\ \frac{1}{2} |\nabla ((-\Delta)^{(m-1)/2} \phi)|^2 & \text{if } m \text{ is odd.}
\end{cases}
\]

Let \(\{\phi_j\}_{j=1}^k \) be the set of orthonormal eigenfunctions corresponding to the Neumann eigenvalues \(\{\mu_j\}_{j=1}^k \). By the regularity of elliptic equations, we known that \(\phi_j \in C^\infty(\Omega) \) for every \(j \geq 1 \). Following from Li-Yau’s method (see [9] or [7]), we consider the function defined by

\[
\Phi(x, y) = \sum_{j=1}^k \phi_j(x) \phi_j(y) \quad x, y \in \Omega.
\]
The projection of $h_z(y) \equiv e^{i(y,z)}$ onto the subspace of $L^2(\Omega)$ spanned by ϕ_1, \ldots, ϕ_k can be written in terms of the Fourier transform $\hat{\Phi}$ of Φ with respect to the x-variable:

$$\int_\Omega \Phi(x,y) e^{i(x,z)} \, dx = (2\pi)^{-n/2} \hat{\Phi}(z,y).$$

Since $\phi_k \in C^\infty(\Omega)$ is the k-th eigenfunction corresponding to μ_k^m for (2.1), we obtain an upper bound for μ_{k+1}^m is given by

$$\inf_r \frac{\int_{B_r} \int_\Omega |\Delta_y^{m/2}(h_z(y) - (2\pi)^{n/2} \hat{\Phi}(z,y))|^2 \, dy \, dz}{\int_{B_r} \int_\Omega |h_z(y) - (2\pi)^{n/2} \hat{\Phi}(z,y)|^2 \, dy \, dz},$$

where B_r denotes the ball with radius r and center 0 in \mathbb{R}^n for an arbitrary r with

$$r > 2\pi \left(\frac{k}{\omega_n \cdot \text{vol}(\Omega)} \right)^{1/n}.$$

Thus, we have

$$\int_{B_r} \int_\Omega |\Delta_y^{m/2}(h_z(y) - (2\pi)^{n/2} \hat{\Phi}(z,y))|^2 \, dy \, dz$$

$$= \int_{B_r} \int_\Omega |\Delta_y^{m/2}h_z(y)|^2 \, dy \, dz$$

$$- 2 \, \text{Re} \int_{B_r} \int_\Omega \langle (-\Delta_y)^{m/2}(h_z(y) - (2\pi)^{n/2} \hat{\Phi}(z,y)), (-\Delta_y)^{m/2}((2\pi)^{n/2} \hat{\Phi}(z,y)) \rangle \, dy \, dz$$

$$- (2\pi)^n \int_{B_r} \int_\Omega |\Delta_y^{m/2}\hat{\Phi}(z,y)|^2 \, dy \, dz.$$

Firstly, in view of the boundary conditions, we find by applying Green’s formula that

$$\int_{B_r} \int_\Omega \langle (-\Delta_y)^{m/2}(h_z(y) - (2\pi)^{n/2} \hat{\Phi}(z,y)), (-\Delta_y)^{m/2}(\hat{\phi}_j(z)\phi_j(y)) \rangle \, dy \, dz$$

$$= \int_{B_r} \int_\Omega (h_z(y) - (2\pi)^{n/2} \hat{\Phi}(z,y)) \mu_j^m \hat{\phi}_j(z)\phi_j(y) \, dy \, dz = 0,$$

so that

$$-2 \, \text{Re} \int_{B_r} \int_\Omega \langle (-\Delta_y)^{m/2}(h_z(y) - (2\pi)^{n/2} \hat{\Phi}(z,y)), (-\Delta_y)^{m/2}((2\pi)^{n/2} \hat{\Phi}(z,y)) \rangle \, dy \, dz = 0.$$

Next, from a direct calculation we obtain

$$\int_{B_r} \int_\Omega |\Delta_y^{m/2}h_z(y)|^2 \, dy \, dz = \int_{B_r} |z|^{2m} \text{vol}(\Omega) \, dz = \frac{r^{n+2m}}{n+2m} \left(n\omega_n \cdot \text{vol}(\Omega) \right),$$
where \(n\omega_n\) is the \((n-1)\)-dimensional volume of \(\partial B_1 = \{x \mid x \in \mathbb{R}^n, \sqrt{x_1^2 + \cdots + x_n^2} = 1\}\). Finally, we have

\[
(2.5) \quad (2\pi)^n \int_{B_r} \int_{\Omega} |\Delta^{m/2}_y \hat{\Phi}_k(z, y)|^2 \, dy \, dz
\]

\[
= (2\pi)^n \int_{B_r} \int_{\Omega} |(-\Delta_y)^{m/2} \hat{\Phi}_k(z, y)|^2 \, dy \, dz
\]

\[
= (2\pi)^n \int_{B_r} \int_{\Omega} \left(\sum_{j=1}^k \hat{\phi}_j(z) \phi_j(y) \right) \left(\sum_{j=1}^k (-\Delta_y)^m \phi_j(z) \phi_j(y) \right) \, dy \, dz
\]

\[
= (2\pi)^n \sum_{j=1}^k \mu_j^m \int_{B_r} |\hat{\phi}_j(z)|^2 \, dz.
\]

Combining (2.2) - (2.6), we obtain

\[
(2.7) \quad \mu_{k+1}^m \leq \frac{n+2}{n} \left(n\omega_n \cdot \text{vol}(\Omega) \right) - \frac{(2\pi)^n \sum_{j=1}^k \mu_j^m \int_{B_r} |\hat{\phi}_j(z)|^2 \, dz}{(2\pi)^n \sum_{j=1}^k \int_{B_r} |\hat{\phi}_j(z)|^2 \, dz}.
\]

Similar to [7], by the induction assumption

\[
(2.8) \quad \mu_k^m \leq \frac{(r^{n+2m}/(n+2m)) \left(n\omega_n \cdot \text{vol}(\Omega) \right) - \sum_{j=1}^{k-1} \mu_j^m}{(r^n/n) \left(n\omega_n \cdot \text{vol}(\Omega) \right) - (k-1)},
\]

we ready to prove the following claim that

\[
(2.9) \quad \mu_{k+1}^m \leq \inf_{r > 2^n (k/(\omega_n \cdot \text{vol}(\Omega)))^{1/n}} \frac{(r^{n+2m}/(n+2m))(n\omega_n \cdot \text{vol}(\Omega)) - (2\pi)^n \sum_{j=1}^k \mu_j^m}{(r^n/n)(n\omega_n \cdot \text{vol}(\Omega)) - (2\pi)^n k}.
\]

From (2.8), we have

\[
(2.10) \quad \mu_k^m \leq \frac{\left((r^{n+2m}/(n+2m)) \left(n\omega_n \cdot \text{vol}(\Omega) \right) - \sum_{j=1}^{k-1} \mu_j^m \right) - \mu_k^m}{\left((r^n/n) \left(n\omega_n \cdot \text{vol}(\Omega) \right) - (k-1) \right) - 1}
\]

Noticing that \(0 \leq \int_{B_r} |\hat{\phi}_k(z)|^2 \, dz < 1\), we find by (2.10) that

\[
(2.11) \quad \frac{\sum_{j=1}^k \mu_j^m (1 - \int_{B_r} |\hat{\phi}_j(z)|^2 \, dz)}{\sum_{j=1}^k (1 - \int_{B_r} |\hat{\phi}_j(z)|^2 \, dz)} \leq \frac{(r^{n+2m}/(n+2m)) \left(n\omega_n \cdot \text{vol}(\Omega) \right) - \sum_{j=1}^k \mu_j^m}{(r^n/n) \left(n\omega_n \cdot \text{vol}(\Omega) \right) - k},
\]
which implies
\[
\frac{(r^{n+2m}/(n + 2m)) \frac{n \omega \cdot \text{vol}(\Omega)}{(2\pi)^m} - \sum_{j=1}^{k} \mu_j^m}{((r^n/n) \frac{n \omega \cdot \text{vol}(\Omega)}{(2\pi)^n} - k) + \sum_{j=1}^{k} (1 - \int_{B_r} |\hat{\phi}_j(z)|^2 dz)}

\leq \frac{(r^{n+2m}/(n + 2m)) \frac{n \omega \cdot \text{vol}(\Omega)}{(2\pi)^m} - \sum_{j=1}^{k} \mu_j^m}{(r^n/n) \frac{n \omega \cdot \text{vol}(\Omega)}{(2\pi)^n} - k}.
\]

Combining this and (2.7), we obtain that the claim (2.9) is true.

In (2.9), if we estimate \(\sum_{j=1}^{k} \mu_j^m \) below by 0 and if we put
\[
r = (2\pi) \left(\frac{(1 + \frac{1}{m}) k}{\omega_n \cdot \text{vol}(\Omega)} \right)^{\frac{1}{n}},
\]
then
\[
\mu_{k+1} \leq \frac{n(m+1)}{n + 2m} (1 + \frac{1}{m})^2 (2\pi)^2 \frac{1}{(\omega_n \cdot \text{vol}(\Omega))} \left(\frac{2m}{k} \right)^{2/n}, \quad \text{for all } m \geq 1.
\]
That is,
\[
\mu_{k+1} \leq \left(\frac{n(m+1)}{n + 2m} \right)^{\frac{1}{n}} (1 + \frac{1}{m})^2 (2\pi)^2 \left(\frac{1}{\omega_n \cdot \text{vol}(\Omega)} \right)^{2/n} k^{2/n}, \quad \text{for all } m \geq 1.
\]
Note that
\[
\lim_{m \to +\infty} \left(\frac{n(m+1)}{n + 2m} \right)^{\frac{1}{n}} (1 + \frac{1}{m})^2 = 1.
\]
In inequality (2.12), by letting \(m \to +\infty \) we conclude that
\[
\mu_{k+1} \leq (2\pi)^2 \left(\frac{1}{\omega_n \cdot \text{vol}(\Omega)} \right)^{2/n} k^{2/n}.
\]

(ii) For any bounded domain with \(C^1 \)-smooth boundary, we can choose a sequence \(\{\Omega_p\}_{p=1}^{\infty} \) of bounded domains with smooth boundaries such that \(\Omega_1 \subset \Omega_2 \subset \cdots \subset \Omega_p \subset \cdots \subset \Omega \) and \(\Omega_p \) converge to \(\Omega \) as \(p \to +\infty \). By this property and inequality (2.13), we have inequality (1.4) for arbitrary bounded domain with \(C^1 \)-smooth boundary. \(\square \)

Remark 2.1. (a) Let \(\Omega \) be bounded domain in \(\mathbb{R}^n \) \((n \geq 2) \), and let \(0 \leq \lambda_1 \leq \lambda_2 \leq \cdots \leq \lambda_k \leq \cdots \) be the eigenvalues of the Dirichlet boundary problem for the Laplace operator:
\[
\begin{cases}
-\Delta u = \lambda u & \text{in } \Omega, \\
u = 0 & \text{on } \partial \Omega.
\end{cases}
\]
In 1912, Weyl [19] or [20] established the asymptotic formula
\[
\lambda_k \sim (2\pi)^2 \left(\frac{1}{\omega_n \cdot \text{vol}(\Omega)} \right)^{2/n} k^{2/n} \quad \text{as } k \to +\infty.
\]
Pólya [13] in 1961 conjectured that
\[
\lambda_k \geq (2\pi)^2 \left(\frac{1}{\omega_n \cdot \text{vol}(\Omega)} \right)^{2/n} k^{2/n} \quad \text{for all } k.
\]
Li and Yau [9] proved that the eigenvalues λ_k satisfy the inequality

$$\lambda_k \geq \frac{n}{n+2} \frac{(2\pi)^2}{(\omega_n \text{vol}(\Omega))^{2/n}} k^{2/n} \quad \text{for all } k,$$

which gave a partial answer for the Pólya conjecture with a factor. In fact, Li and Yau in [9] established a sharp inequality concerning the sum of the first eigenvalues

$$\sum_{j=1}^{k} \lambda_j \geq \frac{n}{n+2} (2\pi)^2 \left(\frac{n}{\omega_n \text{vol}(\Omega)} \right)^{2/n} k^{1+\frac{2}{n}} \quad \text{for all } k.$$

If we add an assumption $\partial \Omega \in C^\infty$ for the bounded domain Ω, and if we consider the equivalent multi-Laplacian eigenvalue problem:

$$\begin{cases}
(-\Delta)^m u = \lambda^m u & \text{in } \Omega, \\
(-\Delta)^{l-1} u = 0 & \text{on } \partial \Omega,
\end{cases}$$

for $l = 1, \ldots, m,$

(2.16)

then by completely similar to Li-Yau’s method (see [9]) for the above operator $(-\Delta)^m$ with the corresponding Dirichlet boundary conditions one can immediately get that

$$\lambda^m_k \geq \left(\frac{n}{n+2m} \right) \frac{(2\pi)^{2m} k^{2m}}{(\omega_n \cdot \text{vol}(\Omega))^{(2m)/n}}.$$

(2.17)

This inequality implies the Pólya conjecture for the Dirichlet eigenvalues by letting $m \to +\infty$ (see [5]). Finally, using a sequence $\{\Omega_p\}_{p=1}^\infty$ of bounded domains with smooth boundaries such that Ω_p converge to Ω as $p \to +\infty$, it follows that the Pólya conjecture for the Dirichlet eigenvalues is true for arbitrary bounded domain Ω.

(b) From (1.5) and (2.15), we immediately get that for every bounded domain $\Omega \subset \mathbb{R}^n$ with C^1-smooth boundary, the following inequality holds

$$\mu_{k+1} \leq \lambda_k \quad \text{for } k = 1, 2, 3, \ldots$$

(2.18)

which is a famous inequality and has been proved by Friedlander in [4] (see also Mazzeo [10]).

Acknowledgments

This research was supported by SRF for ROCS, SEM (No. 2004307D01) and NNSF of China (11171023/A010801).

References

1. M. S. Ashbaugh and R. D. Benguria, *Isoperimetric inequalities*, in: Partial differential equations of elliptic type, Edited by Angelo Alvine, Eugene Fabers and Giorgio, Talenti, Cambridge University Press, 1994.
2. R. Courant and D. Hilbert, *Methods of mathematical physics*, vol. I, Interscience, New York, 1953.
3. I. Chavel, *Eigenvalues in Riemannian geometry*, Academic, New York, 1984.
4. L. Friedlander, *Some inequalities between Dirichlet and Neumann eigenvalues*, Arch. Ration. Mech. Anal. 116 (1991) 153-160.
5. Y. He, *Proof of the conjecture Pólya*, arXiv. 1411.1135v1. [math.DG], Nov 5, 2014.
6. R. Kellner, *On a theorem of Pólya*, Amer. Math. Monthly, 73(1966), 856-858.
7. P. Kröger, Upper bounds for the Neumann eigenvalues on a bounded domains in Euclidean space, J. Funct. Anal. 106 (1992), 353-357.
8. A. Laptev, Dirichlet and Neumann eigenvalue Problems on domains in Euclidean spaces, J. Funct. Anal. 151 (1997), no. 2, 531-545.
9. P. Li and S. T. Yau, On the Schrödinger equation and the eigenvalue problem, Comm. Math. Phys. 88 (1983), 309-318.
10. R. Mazzeo, Remarks on a paper of Friedlander concerning inequalities between Neumann and Dirichlet eigenvalues, Int. Math. Res. Not. 4 (1991) 41-48.
11. L. E. Payne, Isoperimetric inequalities and their applications, SIAM Rev. 9(3) (1967), 453-488.
12. L. E. Payne, Some comments on the past fifty years of isometric inequalities, pp. 143-161 in Inequalities: Fifty Years on from Hardy, Littlewood, and Pólya, W. N. Everitt, Editor, Marcel Dekker, New York, 1991.
13. G. Pólya, On the eigenvalues of vibrating membranes, Proc. Lond. Math. Soc. (3) 11 (1961) 419-433.
14. G. Pólya, Mathematics and plausible reasoning, vol. II: Patterns of Plausible inference, Princeton Univ. Press, Princeton, New Jersey, 1954.
15. M. H. Protter, Can one hear the shape of a drum? revisited, SIAM Review 29 (1987),185-197.
16. M. H. Protter, The asymptotic of eigenvalues, pp. 178-188 in: Maximum principle and eigenvalue problems in partial differential equations, Philip W. Schaefer, editor, Pitman Research Notes in Mathematics Series, vol.175, Longman Scientific and Technical, Harlow, Essex, United Kingdom, 1988.
17. G. Szegő, Inequalities for certain eigenvalues of a membrane of given area, J. Rational Mech. Anal. 3(1954), 343-356.
18. H. F. Weinberger, An isoperimetric inequality for the n-dimensional free membrane problem, J. Rational Mech. Anal., 5(1956), 633-636.
19. H. Weyl, Über die Abhängigkeit der Eigenschwingungen einer Membran und deren Begrenzung, J. Reine Angew. Math., 141(1912), 1-11.
20. H. Weyl, Des asymptotische Verteilungsgesetz der Eigenwerte linearer partieller Differentialgleichungen, Math. Ann., 71(1912), 441-479.
21. S.-T. Yau, Problem section, in: S.-T. Yau (Ed.), Seminar on Differential Geometry, in: Ann. of Math. Stud., vol. 102, Princeton Univ. Press, Princeton, 1982, pp. 669-706. See problem 78 on p. 687, in particular.
22. S.-T. Yau, Survey on partial differential equations in differential geometry, pp. 3-71 in Seminar on Differential Geometry, S.-T. Yau, editor, Princeton Univ. Press, Princeton, 1982 (Annals of Mathematics Studies, No. 102).
23. S.-T. Yau, Nonlinear Analysis in Geometry, L’Enseignement Mathématique, Université de Genève, Genève, 1986.
24. S.-T. Yau, and R. Schoen, Differential Geometry, Scientific Publication, Beijing, 1988 (in Chinese).