Cigarette Smoking and Liver Cancer Risk: An Evaluation Based on a Systematic Review of Epidemiologic Evidence among Japanese

Keitaro Tanaka1, Ichiro Tsuji2, Kenji Wakai2, Chisato Nagata4, Tetsuya Mizoue5, Manami Inoue6 and Shoichiro Tsugane6 for the Research Group for the Development and Evaluation of Cancer Prevention Strategies in Japan*

Received January 31, 2006; accepted March 22, 2006; published online June 16, 2006

Background: Emerging epidemiologic data suggest that cigarette smoking may increase the risk of primary liver cancer. We evaluated this association based on a systematic review of epidemiologic evidence among Japanese populations.

Methods: Original data were obtained from MEDLINE searches using PubMed, complemented with manual searches. The evaluation was performed in terms of the magnitude of association ('strong', 'moderate', 'weak' or 'no association') in each study and the strength of evidence ('convincing', 'probable', 'possible' or 'insufficient'), together with biological plausibility as previously done by the International Agency for Research on Cancer.

Results: A total of 12 cohort studies and 11 case–control studies were identified. Nine cohort studies (two with adjustment for hepatitis B and C virus infections and seven without it) reported weak to strong positive associations between smoking and liver cancer, with dose–response relationships shown in three studies. Five case–controls studies (three with the virus adjustment and two without it) demonstrated such positive associations, with a dose–response relationship shown in only one study, while in six case–control studies, the observed associations were judged to be of the lowest magnitude or inverse due to the lack of any dose–response relationship.

Conclusion: We conclude that cigarette smoking ‘probably’ increases the risk of primary liver cancer among the Japanese. Potential confounding by hepatitis virus infection and virus–smoking interactions need to be addressed in future studies.

Key words: systematic review – epidemiology – smoking – liver cancer – Japanese

INTRODUCTION

Primary liver cancer is one of the most common cancers in Japan (1). Its primary prevention remains to be a major concern for both clinicians and epidemiologists, since patients with this tumor still present poor prognosis (1,2). More than 90% of primary liver cancers in Japan are known to be hepatocellular carcinomas (2), which are mostly attributable to chronic infection with hepatitis C virus (HCV) and hepatitis B virus (HBV) (2,3). However, emerging evidence suggests that hepatocarcinogenesis is a multistage process, in which environmental factors other than hepatitis viruses may play additional roles (4). One of such candidates is cigarette smoking, which has not yet attracted much attention of clinicians or the public. Recently, the International Agency for Research on Cancer listed liver cancer as a tobacco-related malignancy (5). In this context, the objective of the present study was to review and summarize epidemiological findings on cigarette smoking and liver cancer among Japanese populations. This work was...
CONDUCTED AS PART OF A PROJECT OF SYSTEMATIC EVALUATION OF THE EPIDEMIOLOGICAL EVIDENCE REGARDING LIFESTYLES AND CANCERS IN JAPAN (6).

METHODS

The details of the evaluation method have been described elsewhere (6). In brief, original data for this review were identified by MEDLINE searches using PubMed, complemented by manual searches of references from relevant articles where necessary. All epidemiologic studies on the association between cigarette smoking and liver cancer incidence or mortality from the Japanese from 1963 to 2005, including papers in press if available, were identified using the search terms ‘smoking’, ‘liver’, ‘hepatocellular’, ‘cohort’, ‘follow-up’, ‘case–control’, ‘Japan’ and ‘Japanese’ as keywords. Papers written in either English or Japanese were reviewed, and only studies on Japanese populations living in Japan were included. The individual results were summarized in the tables separately by a study design as cohort or case–control studies.

The evaluation was made based on the magnitude of association and the strength of evidence. First, the former was assessed by classifying relative risk (RR) in each study into the following four categories, while considering statistical significance (SS) or no statistical significance (NS): (i) ‘strong’ (symbol \[\text{\textup{\textdagger\textdagger\textdagger}} \] or \[\text{\textup{\textdagger\textdagger}} \] or \[\text{\textup{\textdagger}} \] or \[\text{\textup{\textdagger}} \] when RR < 0.5 (SS) or RR > 2.0 (SS); (ii) ‘moderate’ (symbol \[\text{\textup{\textdagger\textdagger}} \] or \[\text{\textup{\textdagger}} \] or \[\text{\textup{\textdagger}} \] or \[\text{\textup{\textdagger}} \] when RR < 0.5 (NS), 0.5 \leq RR < 0.67 (SS), 1.5 \leq RR \leq 2.0 (SS) or RR > 2.0 (NS); (iii) ‘weak’ (symbol \[\text{\textup{\textdagger\textdagger}} \] or \[\text{\textup{\textdagger}} \] or \[\text{\textup{\textdagger}} \] or \[\text{\textup{\textdagger}} \] when 0.5 \leq RR < 0.67 (NS), 0.67 \leq RR \leq 1.5 (SS) or 1.5 \leq RR \leq 2.0 (NS) and (iv) ‘no association’ (symbol \[\text{\textup{\textdagger\textdagger}} \] or \[\text{\textup{\textdagger}} \] or \[\text{\textup{\textdagger}} \] or \[\text{\textup{\textdagger}} \] when 0.67 \leq RR \leq 1.5 (NS). When RRs for three or more exposure levels were reported, that for the highest level was employed for this classification. In the case of multiple publications of analyses of the same or overlapping datasets, only data from the largest or most updated results were included. After this process, the strength of evidence was evaluated in a similar manner to that used in the WHO/FAO Expert Consultation Report (7), in which evidence was classified as ‘convincing’, ‘probable’, ‘possible’ and ‘insufficient’. We assumed that biological plausibility corresponded to the judgment of the most recent evaluation from the International Agency for Research on Cancer (5). Notwithstanding the use of this quantitative assessment rule, an arbitrary assessment cannot be avoided when considerable variation exists in the magnitude of association between the results of each study. The final judgment, therefore, was made based on a consensus of the research group members, and it was therefore not necessarily objective. When we reach a conclusion that there is ‘convincing’ or ‘probable’ evidence of an association, we conduct a meta-analysis to obtain summary estimates for the overall magnitude of association.

MAIN FEATURES AND COMMENTS

We identified a total of 12 cohort studies (8–19) (Table 1) and 11 case–control studies (20–30) (Table 2). Of the cohort studies, three presented results by sex (9,14,19), four for men only (8,10,11,18) and five only for men and women combined (12,13,15–17). The respective numbers for the case–control studies are one (29), five (20,24–27) and five (21–23,28,30). One cohort study showed results separately in two different areas (11), and two case–control studies reported results separately based on hospital controls and community controls (25,29).

Study populations in the cohort studies were classified as two different types: mostly healthy subjects (n = 7) such as local residents (9,11,17–19), physicians (8) and atomic bomb survivors (14) versus patients with chronic liver disease (10,12,13,15,16) (n = 9) (Table 1). Chronic infections with both HCV and HBV were taken into account in only three studies, all of which followed patients with chronic liver disease (13,15,16). In the case–control studies, a similar classification was possible based on the type of controls: hospital or community controls (21–25,27–30) (n = 9) versus HBV carriers (20) or patients with chronic liver disease without liver cancer (26) (n = 2) (Table 2). In only two case–control studies, both HCV and HBV infections were controlled for (26,28).

A summary of the magnitude of association for the cohort studies and case–control studies is shown in Tables 3 and 4, respectively. Among all 12 cohort studies, five (9,13–15,19) reported strong positive associations of cigarette smoking with liver cancer in either sex or for both sexes combined (Tables 1 and 3); of the five studies, three (9,13,15) demonstrated clear dose–response relationships. Moderate, but not strong, positive associations were found in three cohort studies (10,11,18), and a weak association in one cohort study (17), without any presentation of dose–response relation. In the remaining three (8,12,16), virtually no association was observed. Among the seven cohort studies in which mostly healthy subjects were followed, six (9,11,14,17–19) revealed at least weak positive associations, whereas three (10,13,15) out of the five follow-up studies of patients with chronic liver disease showed such positive associations.

Among all 11 case–control studies, five (20,26–29) reported weak to strong positive associations with cigarette smoking, with a dose–response relationship presented in only one study (20) (Tables 2 and 4). In the remaining six studies (21–25,30), the observed associations were judged to be null or inverse due to the lack of dose–response relationship, although around 2- to 4-fold risk excess in light to moderate exposure categories was observed in five of them (21–25). In the nine case–control studies employing hospital or community controls, three (27–29) demonstrated at least weak positive associations, whereas both case–control studies using controls of HBV carriers or patients with chronic liver disease (20,26) afforded such positive associations.

In the cohort studies, cigarette smoking was almost consistently associated with elevated liver cancer risk. Information and selection biases may not be serious issues in those studies. However, potential confounding by chronic HBV and HCV...
Table 1. Cohort studies on cigarette smoking and liver cancer among Japanese

Reference	Study period	Study population	Category	Number of cases	Relative risk (95% CI or P)	P for trend	Confounding variables considered	Comments		
Kono et al. (8)	1965–1983	5130 men	Male physicians in western Japan	Death 51 men (primary 9, unspecified 42)	Never/past 1.00	1.14 (0.59–2.20)	Age, drinking	HBsAg and anti-HCV were not tested		
Akiba and Hirayama (9)	1966–1981	265 118 (122 261 men and 142 857 women)	95% of the census population in 29 health-center-covered areas in 6 prefectures	Death 1050 (652 men and 398 women)	For men					
Inaba et al. (10)	1973–1988	270 men	Patients with liver cirrhosis at the Juntendo University Hospital	Death 46 men	Never 1.00	1.0	0.002	Age, prefecture, occupation, observation period	HBsAg and anti-HCV were not tested. Adjustment for alcohol consumption only slightly changed the relative risks	
Shibata et al. (11)	1958–1986	639 men in a farming area and 677 men in a fishing area	Residents in a farming or a fishing area in Kyushu	Death 11 men (farming area) and 22 men (fishing area)	Farming area	Non-smoker 2	1.0	>0.1	Age	HBsAg and anti-HCV were not tested
					Current smoker 8	1.1 (0.2–4.7)				
					1–9/day 1	0.6 (0.1–3.7)				
					10–19/day 7	1.2 (0.2–5.7)				
					20–29/day 0	–				
					>30/day 0	–				
					Fishing area	Non-smoker 1	1.0	>0.1	Age	
					Ex-smoker 2	2.9 (0.3–9.0)				

Downloaded from https://academic.oup.com/jjco/article-abstract/36/7/445/792531 by guest on 27 July 2018
Reference	Study period	Number of subjects for analysis	Source of subjects	Event followed	Event	Number of incident cases or deaths	Number among cases	Relative risk (95% CI or \(P \))	\(P \) for trend	Confounding variables considered	Comments
Kato et al. (12)	1987–1990	1784	Patients with decompensated liver cirrhosis or post-transfusion hepatitis	Incidence	122	Current smoker	19	3.6 (0.6–22.3)			
						1–9/day	7	11.9 (1.5–96.8)			
						10–19/day	3	1.1 (0.1–10.6)			
						20–29/day	7	2.7 (0.4–19.2)			
						\(\geq 30 \)/day	2	3.2 (0.4–23.7)			
						Fishing area					
						Non/ex-smoker	3	1.00		Age, drinking	
						1–19/day	10	2.10 (0.44–9.95)			
						\(\geq 20 \)/day	9	1.86 (0.37–9.40)			
Tsukuma et al. (13)	1987–1991	917 (548 men and 369 women)	Patients with chronic hepatitis or compensated cirrhosis at the Center for Adult Diseases, Osaka	Incidence	54	Never smoker	39	1.00		Sex, age	HBsAg and anti-HCV status was unknown
						Past smoker	10	0.94 (0.44–2.02)			
						Current smoker	23	0.96 (0.53–1.75)			
						Smoking index	0	1.00	0.82	Age, sex, stage of disease, serum alpha-fetoprotein, HBsAg, anti-HBc, anti-HCV, drinking	
						1–599	11	0.83 (0.40–1.74)			
						\(\geq 600 \)	14	0.94 (0.47–1.89)			
Goodman et al. (14)	1980–1989	36 133	Atomic bomb survivors	Incidence	242	For men	213	4.36 (1.93–9.36)		Sex, city, age at the time of bombing, radiation dose to the liver	HBsAg and anti-HCV was not tested
						Never-smoker	6	1.00			
						Ever-smoker	146	4.36 (1.93–9.36)			
						Ex-smoker	46	4.56 (1.95–10.7)			
						Quit \(\geq 24 \) years ago	14	4.04 (1.54–10.6)			
						Quit 14–23 years ago	14	4.11 (1.58–10.7)			
						Quit <14 years ago	14	5.60 (2.15–14.6)			
						Present smoker	100	4.26 (1.87–9.72)			
						1–22 pack-years	38	6.47 (2.74–15.3)			
Study	Year	Convenience Sample Size	Study Type	Subjects	Incidence	Smoking Index	History of Cigarette Smoking	History of Cigarette Smoking	Study Summary		
------------------	------------	--------------------------	------------	----------	-----------	---------------	-------------------------------	-------------------------------	----------------		
Chiba et al. (15)	1977–1993	412 (249 men and 163 women)	Patients with HCV-associated chronic hepatitis or compensated cirrhosis at the Tsukuba University Hospital	63 (54 men and 9 women)	23–40 pack-years 39	>41 pack-years 41	Never-smoker 61	Ever-smoker 20	For women		
							Ever-smoker 20	Ex-smoker 7	Quit ≥25 years ago 3		
							Quit 10–24 years ago 2	Quit <10 years ago 2	Present smoker 13		
							≥16 pack-years 8				
							Non-smoker 1.00	Smoking index <400 1.67 (0.75–3.73)	Smoking index ≥400 2.46 (1.11–5.49)		
Tanaka et al. (16)	1985–1995	96 (62 men and 34 women)	Patients with liver cirrhosis at the Kyushu University Hospital	37 (27 men and 10 women)		Never smoker 12	Past smoker 12	Current smoker <20 cigarettes/day 9	≥20 cigarettes/day 4		
Mori et al. (17)	1992–1997	3052 (974 men and 2078 women)	Residents in a town in Saga prefecture	22 (14 men and 8 women)	History of cigarette smoking No 10	1.00	2.10 (0.61–7.23)	3.26 (0.38–28.2)	Smoking index <200		
Mizoue et al. (18)	1986–1996	4050 men	Residents in 4 municipalities in Fukuoka prefecture	Death 59 men	Yes 22	Never-smoker 10	1.00	0.30	Smoking index ≥200 11	1.97 (0.57–6.87)	
Ogimoto et al. (19)	1988–1999	65,528 (28,287 men and 37,241 women)	Residents in 45 areas throughout Japan	Death 186 (number by sex not described)	Men (40–59 years) Never smoker 1.00	Ex-smoker 1.00	Collaborating institutes HBsAg and anti-HCV were not tested				
							Age, study area, drinking	HBsAg and anti-HCV were not tested	HBsAg and anti-HCV status was available, but not adjusted for		

All subjects were anti-HCV-positive and HBsAg-negative. The relative risks were not described in the original paper, and were re-estimated by one of the authors (KT). HBsAg and anti-HCV status was adjusted for past smoking. HBsAg and anti-HCV status was not tested.
Reference Study period	Study population	Category	Number among cases	Relative risk (95% CI or P)	P for trend	Confounding variables considered	Comments
		Current smoker	1.96 (0.75–5.14)	Men (60–79 years)			
		Never smoker	1.00				
		Ex-smoker	2.72 (1.21–6.11)				
		Current smoker	2.62 (1.18–5.84)	Women (40–59 years)			
		Never smoker	1.00				
		Ex-smoker	–				
		Current smoker	2.82 (0.61–13.09)	Women (60–79 years)			
		Never smoker	1.00				
		Ex-smoker	1.18 (0.16–8.67)				
		Current smoker	1.49 (0.46–4.87)				

CI, confidence interval; HBsAg, hepatitis B surface antigen; anti-HCV, antibody to hepatitis C virus; anti-HBc, antibody to hepatitis B core antigen; anti-HBs, antibody to hepatitis B surface antigen; LC, liver cirrhosis; AST, aspartate aminotransferase.
Reference	Study period	Study subjects	Type and source	Definition	Number of cases	Number of controls	Category	Relative risk (95%CI or P)	P for trend	Confounding variables considered	Comments
Oshima et al.	1972–1980	Nested case–control (HBsAg-positive blood donors at the Osaka Red Cross Blood Center)	Cases: confirmed by record linkage with the Osaka Cancer Registry; Controls: healthy HBV carriers	19 men 38 men	None or <10/day 1.0 < 10/day 1.2 ≥30/day 6.3	0.10 Matched (1:2) for birth year Adjusted for drinking	All subjects were HBsAg-positive. Anti-HCV was not tested				
Tsukuma et al.	1983–1987	Hospital-based (Center for Adult Diseases, Osaka)	Cases: histologically confirmed as HCC; Controls: inpatients with gastrointestinal disease, or examinees for health checkups or gastroendoscopy; no liver disease, cancer, or smoking/alcohol-related disease	229 (192 men and 37 women) 266 (192 men and 74 women)	Never 1.0 Ex-smoker 0.7 (0.3–1.9) Current smoker 2.5 (1.4–4.5) 1–19/day 4.2 20–39/day 2.2 ≥40/day 1.1	Frequency matched for sex and age Adjusted for sex, age, HBsAg, history of blood transfusion, drinking, and family history of liver cancer	Anti-HCV was not tested				
Tanaka et al.	1985–1989	Hospital-based (Kyushu University Hospital)	Cases: 40% were histologically confirmed as HCC; Controls: health examinees at a public health center	204 (168 men and 36 women) 410 (291 men and 119 women)	Non-smoker 1.0 Ex-smoker 1.5 (0.8–2.8) Current smoker 1.5 (0.8–2.7)	Frequency matched for sex and age Adjusted for sex, age, HBsAg, history of transfusion, drinking, and family history of liver disease	Anti-HCV status was available for part of the subjects, but not adjusted for				
Fukuda et al.	1986–1992	Hospital-based (Kurume University Hospital)	Cases: 77% were histologically confirmed as HCC; Controls: inpatients without chronic hepatitis or cirrhosis in two general hospitals in Kurume	368 (287 men and 81 women) 485 (287 men and 198 women)	Never 1.0 Ex-smoker 1.3 (0.8–2.2) Current smoker 1.8 (1.1–3.1)	Matched (1:1 for men and 1:4 for women) for sex, age (≥55 years), residence, and time of hospitalization. Adjusted for sex	The odds ratios (and 95% CIs) and P value for trend were not described in the original paper, and were estimated by one of the authors (KT), based on the Mantel–Haenszel and Mantel Extension methods				

Table 2. Case–control studies on cigarette smoking and liver cancer among Japanese
Table 2. Continued

Reference	Study period	Type and source	Study subjects	Category	Relative risk (95%CI or P)	P for trend	Confounding variables considered	Comments	
Murata et al. (24)	1984–1993	Nested case-control (male participants in a gastric mass screening by the Chiba Cancer Association)	Cases: confirmed by record linkage with the Chiba Cancer Registry; Controls: participants in the screening without liver cancer	Cigarettes/day Matched (1:2) for sex, birth year (±2 years), and the first digit of the address code.	Anti-HCV and HBsAg were not tested				
Shibata et al. (25)	1992–1995	Hospital-based (Kurume University Hospital)	Cases: confirmed as HCC by histological, angiographical, and/or other findings; Hospital controls (HCs): inpatients without chronic hepatitis or cirrhosis in 2 general hospitals in Kurume; Community controls (CCs): randomly sampled citizens of Kurume	Cigarette index Matched (1:1) for sex, age (±5 years for HCs and ±3 years for CCs), residence (for HCs) and time of hospitalization (for HCs). Anti-HCV and HBsAg status was available, but not adjusted for.	Adjusted for matching factors				
Mukaiya et al. (26)	1991–1993	Hospital-based (Sapporo Medical University Hospital)	Cases: histologically and/or clinically confirmed as HCC; Controls: chronic liver disease (hepatitis or cirrhosis) without HCC	Non-smoker Matched (1:1) for age (±3 years).	Additional adjustment for drinking and HBV and HCV infections did not materially alter the results				
Takeshita et al. (27)	1993–1996	Hospital-based (20 major hospitals in the southern part of Hyogo prefecture)	Cases: 64% were histologically confirmed as HCC; Controls: outpatients or inpatients with various diseases, but without liver disease positive for HBsAg and/or anti-HCV	Men Frequency matched for hospital, sex, age, and living area Adjusted for age and drinking	All the controls were HBsAg-negative and anti-HCV-negative by definition				
Koide et al. (28)	1994	Hospital-based (Nagoya City University Hospital)	Cases: clinically and/or histologically confirmed as HCC; community controls: selected from the same resident community as cases, with no signs of hepatic diseases or HCC	84 (64 men and 20 women)	84 (64 men and 20 women)	Never 1.00	Matched (1:1) for sex and age (±2 years)	Adjusted for sex, age, history of blood transfusion, anti-HBc, anti-HCV, and CYP2E1	
------------------	------	---	------------------	----------------	----------------	--------------	----------------	-----------------	
Matsuo et al. (29)	1995–2000	Hospital-based (Kurume University Hospital)	Cases: confirmed as HCC by histological, angiographical, and/or other findings; hospital controls (HCs): inpatients without chronic hepatitis or cirrhosis in 2 general hospitals in Kurume; Community controls (CCs): randomly sampled citizens of Kurume	222 (177 men and 45 women)	326 HCs (177 men and 149 women) and 222 CCs (177 men and 45 women)	Men based on HCs	Non-smoker 1.00	Matched for sex (1:4 for female HCs and 1:1 for other controls), age (±5 years for HCs and ±3 years for CCs), residence (for HCs), and time of hospitalization (for HCs)	Adjusted for matching factors
						Current + former	5.41 (1.10–26.70)		
Munaka et al. (30)	1997–1998	Hospital-based (University of Occupational and Environmental Health Hospital)	Cases: no detailed description; controls: no evidence of cancer in any organ	78 (61 men and 17 women)	139 (94 men and 44 women)	Cigarette index	Never 1.00	Anti-HCV and HBsAg status was available except for CCs, but not adjusted for	
							1 = 400 1.14 (0.58–2.25)		
							400 < 800 1.09 (0.56–2.14)		
							≥800 1.09 (0.56–2.15)		

CI, confidence interval; HBsAg, hepatitis B surface antigen; HBV, hepatitis B virus; anti-HCV, antibody to hepatitis C virus; HCC, hepatocellular carcinoma; HCs, hospital controls; CCs, community controls; HCV, hepatitis C virus; anti-HBc, antibody to hepatitis B core antigen; CYP2E1, cytochrome P450 2E1.
Table 3. Summary of cohort studies on cigarette smoking and liver cancer among Japanese

Reference	Study period	Study population	Magnitude of association
Kono et al. (8)	1965–1983	Men 5130, Not specified	Death 51, –
Akiba and Hirayama (9)	1966–1981	Men 122 261, ≥40	Death 652, ↑↑
Inaba et al. (10)	1973–1988	Men 270 (liver cirrhosis), Not specified	Death 46, ↑↑
Shibata et al. (11)	1958–1986	Men 639 (farming area), 40–69	Death 11, –
		Women 677 (fishing area), 40–69	Death 22, ↑↑
Kato et al. (12)	1987–1990	Men and women 1784 (cirrhosis and post-transfusion hepatitis), ≥16	Incidence 122, –
Tsukuma et al. (13)	1987–1991	Men and women 917 (chronic liver disease), 40–69	Incidence 54, ↑↑↑
Goodman et al. (14)	1980–1989	Men 36 133 (men and women), Not specified	Incidence 156, ↑↑↑
		Women, Not specified	Incidence 86, ↑↑
Chiba et al. (15)	1977–1993	Men and women 412 (HCV-associated chronic liver disease), 40–72	Incidence 63, ↑↑↑
Tanaka et al. (16)	1985–1995	Men and women 96 (liver cirrhosis), 40–69	Incidence 37, –
Mori et al. (17)	1992–1997	Men and women 3052, ≥30	Incidence 22, ↑↑
Mizoue et al. (18)	1986–1996	Men 4050, 40–75	Death 59, ↑↑
Ogimoto et al. (19)	1988–1999	Men 28 287, 40–79	Death 186 (number by sex not described), ↑↑↑
		Women 37 241, 40–79	Death, ↑↑

HCV, hepatitis C virus; ↑↑↑, strongly positive; ↑↑, moderately positive; ↑, weakly positive; –, no association.

Table 4. Summary of case–control studies on cigarette smoking and liver cancer among Japanese

Reference	Study period	Study subjects	Magnitude of association
Oshima et al. (20)	1972–1980	Men, Not specified 19	38, ↑↑
Tsukuma et al. (21)	1983–1987	Men and women, ≤74, 229	266, –
Tanaka et al. (22)	1985–1989	Men and women, 40–69, 204	410, –
Fukuda et al. (23)	1986–1992	Men and women, 40–69, 368	485, ↑↑
Murata et al. (24)	1984–1993	Men, Not specified 66	132, ↑↑↑
Shibata et al. (25)	1992–1995	Men, 40–69, 115	115 hospital controls, –
			115 community controls, –
Mukaiya et al. (26)	1991–1993	Men, Not specified 104	104 (chronic liver disease), ↑↑↑
Takeshita et al. (27)	1993–1996	Men, Not specified 85	101, ↑↑↑
Koide et al. (28)	1994	Men and women, 46–79, 84	84, ↑↑↑
Matsuo et al. (29)	1995–2000	Men, 40–75, 177	177 hospital controls, –
			177 community controls, ↑↑↑
			149 hospital controls, –
			149 community controls, ↑↑
Munaka et al. (30)	1997–1998	Men and women, 34–92, 78	138, –

↑↑↑, strongly positive; ↑↑, moderately positive; ↑, weakly positive; –, no association; ↑↑, weakly inverse; ↑↑↑, moderately inverse.
infections was not addressed in most studies. Since, in Japan, individuals with either or both infections may have more than 100 times higher risk than those without either (3,31), only a slight change in smoking habit among such infected individuals could result in a substantial distortion of associated RRs. Alcohol consumption, another potential confounder, was not adequately controlled in some studies. In addition, the lack of dose–response relationship in three-quarters of the cohort studies has made our conclusion more conservative.

As for the case–control studies, the data have been controversial. In some studies, the recruitment of hospital controls, which possibly included those with smoking-related diseases, may have biased the RRs towards unity. Confounding issues by hepatitis virus infection and alcohol drinking were the same as those in the cohort studies. The absence of dose–response relation in majority of the case–control studies appears very perplexing. Among cases, symptoms resulting from pre-existing liver disease or physicians’ advice on their health can lead to lifestyle changes including a reduction in number of cigarettes smoked per day. This might be responsible for elevated risks among light to moderate smokers observed in most case–control studies. However, the situation was similar in the cohort studies where smoking habit many years before the development of liver cancer was evaluated. Some unknown biological implications might exist in these non-linear relations.

An interaction issue between hepatitis viruses and cigarette smoking (i.e. possible difference in risk increase due to smoking according to hepatitis virus infection) should also be considered. Since the great majority of patients with hepatocellular carcinoma in Japan is known to be chronically infected with HBV or HCV (2,3), the following question naturally arises: ‘Does smoking increase the risk of hepatocellular carcinoma among people without either HBV or HCV infection?’ This question has not fully been addressed, probably due to the difficulty in conducting epidemiologic studies on this subject and its low practical implication in the prevention of liver cancer. It seems biologically implausible that cigarette smoking, without any hepatitis virus infection or heavy alcohol consumption, causes chronic liver disease, thereby playing a major role in hepatocarcinogenesis. On the other hand, the evaluation of the risk for smoking among people infected with HBV or HCV will be easier to be performed and will provide more practical information. It is noteworthy that, based on such evaluations, a limited number of cohort or case–control studies demonstrated clear dose–response relationships between smoking and liver cancer risk (13,15,20).

Finally, the authors consider that it will be problematic to perform a meta-analysis to obtain a summary estimate for the overall magnitude of association, since such an estimate may not be applicable to general populations of the Japanese due to the above interaction issue. Therefore, the planned meta-analysis was not conducted in this particular evaluation. In addition, the authors cannot exclude the possibility of publication bias and missing relevant epidemiologic studies, although they have long been knowledgeable about the situation of such studies in Japan.

EVALUATION OF THE EVIDENCE ON CIGARETTE SMOKING AND LIVER CANCER RISK AMONG JAPANESE

From these results and based on assumed biological plausibility as previously done by the International Agency for Research on Cancer (5), we conclude that cigarette smoking ‘probably’ increases the risk of primary liver cancer among the Japanese. Potential confounding by hepatitis virus infection and virus–smoking interactions need to be addressed in future studies.

Acknowledgments

The authors gratefully acknowledge the assistance of Ms Izumi Suenega and Mr Tomohiro Shintani in this review. This work was supported by the Third Term Comprehensive 10-year Strategy for Cancer Control from the Ministry of Health, Labour and Welfare, Japan.
14. Goodman MT, Moriwaki H, Vaeth M, Akiba S, Hayabuchi H, Mabuchi K. Prospective cohort study of risk factors for primary liver cancer in Hiroshima and Nagasaki, Japan. *Epidemiology* 1995;6:36–41.

15. Chiba T, Matsuzaki Y, Abei M, Shoda J, Tanaka N, Osuga T, et al. The role of previous hepatitis B virus infection and heavy smoking in hepatitis C virus-related hepatocellular carcinoma. *Am J Gastroenterol* 1996;91:1195–203.

16. Tanaka K, Saka H, Hashizume M, Hirohuta T. A long-term follow-up study on risk factors for hepatocellular carcinoma among Japanese patients with liver cirrhosis. *Jpn J Cancer Res* 1998;89:1241–50.

17. Mori M, Hara M, Wada I, Hara T, Yamamoto K, Honda M, et al. Prospective study of hepatitis B and C viral infections, cigarette smoking, alcohol consumption, and other factors associated with hepatocellular carcinoma risk in Japan. *Am J Epidemiol* 2000;151:131–9.

18. Mizoue T, Tokui N, Nishisaka K, Nishisaka S, Ogimoto I, Ikeda M, et al. Prospective study on the relation of cigarette smoking with cancer of the liver and stomach in an endemic region. *Int J Epidemiol* 2000;29:232–7.

19. Ogimoto I, Shibata A, Kurozawa Y, Nose T, Yoshimura T, Suzuki H, et al. Risk of death due to hepatocellular carcinoma among smokers and ex-smokers. Univariate analysis of JACC study data. *Kurume Med J* 2004;51:71–81.

20. Oshima A, Tsukuma H, Hiyama T, Fujimoto I, Yamano H, Tanaka M. Follow-up study of HBs Ag-positive blood donors with special reference to effect of drinking and smoking on development of liver cancer. *Int J Cancer* 1984;34:775–9.

21. Tsukuma H, Hiyama T, Oshima A, Kobayashi T, Fujimoto I, Kasuga H, et al. A case-control study of hepatocellular carcinoma in Osaka, Japan. *Int J Cancer* 1990;45:231–6.

22. Tanaka K, Hirohuta T, Takeshita S, Hirohuta I, Koga S, Sugimachi K, et al. Hepatitis B virus, cigarette smoking and alcohol consumption in the development of hepatocellular carcinoma: a case–control study in Fukuoka, Japan. *Int J Cancer* 1992;51:509–14.

23. Fukuda K, Shibata A, Hirohuta I, Tanikawa K, Yamaguchi G, Ishii M. A hospital-based case–control study on hepatocellular carcinoma in Fukuoka and Saga Prefectures, northern Kyushu, Japan. *Jpn J Cancer Res* 1993;84:708–14.

24. Murata M, Takayama K, Choi BC, Pak AW. A nested case–control study on alcohol drinking, tobacco smoking, and cancer. *Cancer Detect Prev* 1996;20:557–65.

25. Shibata A, Fukuda K, Nishiyori A, Ogimoto I, Sakata R, Tanikawa K. A case–control study on male hepatocellular carcinoma based on hospital and community controls. *J Epidemiol* 1998;8:1–5.

26. Mukaiya M, Nishi M, Miyake H, Hirata K. Chronic liver diseases for the risk of hepatocellular carcinoma: a case–control study in Japan. Etiologic association of alcohol consumption, cigarette smoking and the development of chronic liver diseases. *Hepatogastroenterology* 1998;45:2328–32.

27. Takeshita T, Yang X, Inoue Y, Sato S, Morimoto K. Relationship between alcohol drinking, ADH2 and ALDH2 genotypes, and risk for hepatocellular carcinoma in Japanese, *Cancer Lett* 2000;149:69–76.

28. Koide T, Ohno T, Huang XE, Iijima Y, Sugihara K, Mizokami M, et al. HBV/HCV Infection, Alcohol, Tobacco and Genetic Polymorphisms for Hepatocellular Carcinoma in Nagoya, Japan. *Asian Pac J Cancer Prev* 2000;1:237–43.

29. Matsuo M. Association between diabetes mellitus and hepatocellular carcinoma: results of a hospital- and community-based case–control study. *Kurume Med J* 2003;50:91–8.

30. Mukaiya M, Nishi M, Miyake H, Hirata K. Chronic liver diseases for the risk of hepatocellular carcinoma: a case–control study in Japan. Etiologic association of alcohol consumption, cigarette smoking and the development of chronic liver diseases. *Hepatogastroenterology* 1998;45:2328–32.

31. Tanaka H, Tsukuma H, Yamano H, Oshima A, Shibata H. Prospective study on the risk of hepatocellular carcinoma among hepatitis C virus-positive blood donors focusing on demographic factors, alanine aminotransferase level at donation and interaction with hepatitis B virus. *Int J Cancer* 2004;112:1075–80.