Wake Deflection Measurement in a Wind Tunnel with a Lidar WindScanner

Paul Hulsman¹, Vlaho Petrović¹, Martin Wosnik², Michael Hölling¹ and Martin Kühn¹

1) ForWind – University of Oldenburg, Germany
2) University of New Hampshire, United States
20.06.2019

Wind Energy Science Conference
17ᵗʰ June – 20ᵗʰ June 2019
Cork, Ireland
Overview

• Measurement Setup
• Measurement Cases
• Results
• Conclusion & Future Work
Measurement Setup

- Pitot Tube
- Wind Turbine Model
- WindScanner
Measurement Setup

• Position of the wind turbine model and the pitot tube
Measurement Setup

- Position of the wind turbine model and the pitot tube
Measurement Cases

	Empty nozzle	Uniform passive grid	Boundary layer passive grid
TI [%]	0.5	2.6	1.5
α	0	0	0.314

Operational Conditions
- $\psi = -30^\circ, 0^\circ, 30^\circ$
- $U_{hub} = 7.5$ m/s

With and without the turbine
Measurement Cases

Wind Turbine model
- $D=0.58m$
- $h=0.77m$
- $c_T =0.83$
- 1.17D in front of the nozzle
- Blockage 2.7%

Pitot Tube
- 1.17D in front of the nozzle at hub height
- 1.82D next to the turbine (from the rotor axis)
Measurement Cases

WindScanner: V_{LOS}
- Vertical plane (10min, 7-8s per scan)
 - $S = 0D$ (no turbine) 1D, 2D, 3D, 5D, 7D, 10D
- Staring mode (10min) at hub height
 - $S = 0D$ (no turbine), 1D, 2D, 3D, 5D, 7D, 10D
- Horizontal plane (30min, 22s per scan)
Measurement Cases

- Data interpolated onto a vertical grid with a spacing of 7x7cm
Results

Vertical and horizontal scan with a boundary layer

- With turbine, $\psi = 30^\circ$
- Without turbine
Results: Inflow conditions

- TI at multiple downstream distances
Results: Inflow conditions

- u_{mean} at multiple downstream distances

Empty nozzle

Uniform passive grid

Boundary layer passive grid
Results: Vertical scan
- 2D

Empty nozzle

Uniform passive grid

Boundary layer passive grid
Results: Vertical scan
-7D

Empty nozzle

Uniform passive grid

Boundary layer passive grid

$\psi = -30^\circ$ $\psi = 0^\circ$ $\psi = 30^\circ$
Results: Vertical scan

\(\psi = -30^\circ \) \hspace{1cm} \(\psi = 0^\circ \) \hspace{1cm} \(\psi = 30^\circ \)

Empty nozzle

Uniform passive grid

Boundary layer passive grid
Results: Vertical scan

- $\psi = -30^\circ$ with an empty nozzle

1D

2D

3D

5D

7D

10D
Results: Vertical scan

- $\psi = -30^\circ$ with a boundary layer passive grid
Results: Wake deflections

- Wake center determined by calculating the potential power of a downstream turbine as described by Schottler et al. (2017b).
Results: Wake deflections

- Wake center determined by calculating the potential power of a downstream turbine as described by Schottler et al. (2017b).

![Graph showing wake deflections](chart.png)
Results: Wake deflections

- Wake center determined by calculating the potential power of a downstream turbine as described by Schottler et al. (2017b).
Results: Wake deflections

- Wake center determined by calculating the potential power of a downstream turbine as described by Schottler et al. (2017b).
Results: Wake deflections

- Wake center determined by calculating the potential power of a downstream turbine as described by Schottler et al. (2017b).
Conclusion & Future Work

Conclusion

• High spatial resolution obtained with the WindScanner
 • Development of the curled wake
 • Development of the boundary layer
• Slight wake asymmetry detected with a boundary layer
• Wake of the tower might be deflected due to the counter-vortex-pair
• Development of the kidney shaped wake starts sooner at an inflow condition with a boundary layer

Future Work

• Uncertainty analysis
• Analyze the spatial turbulence within the wake
• Validate measurements with numerical simulation
• Compare measurement data and numerical results with current existing yaw-control model (FLORIS model)
Acknowledgement

• This work is partly funded by the Federal Ministry for Economic Affairs and Energy according to a resolution by the German Federal Parliament in the scope of research project »CompactWindII« (Ref. Nr. 0325 492H).

Contact details:
Paul Hulsman
Tel.: +49(0) 441 798 5069
E-mail: paul.hulsman1@uni-odenburg.de
References

Fleming, Paul A., et al. "Evaluating techniques for redirecting turbine wakes using SOWFA." Renewable Energy 70 (2014): 211-218.

Campagnolo, Filippo, et al. "Wind tunnel testing of wake control strategies." 2016 American Control Conference (ACC). IEEE, 2016.

Neunaber, Ingrid, "Stochastic investigation of the evolution of small-scale turbulence in the wake of a wind turbine exposed to different inflow conditions “, Ph.D Thesis, University of Oldenburg, 2019

Schottler, Jannik, et al. "Wind tunnel tests on controllable model wind turbines in yaw." 34th Wind Energy Symposium. 2016.