Supplement of Hydrol. Earth Syst. Sci., 24, 2505–2526, 2020
https://doi.org/10.5194/hess-24-2505-2020-supplement
© Author(s) 2020. This work is distributed under the Creative Commons Attribution 4.0 License.

Supplement of

Systematic comparison of five machine-learning models in classification and interpolation of soil particle size fractions using different transformed data

Mo Zhang et al.

Correspondence to: Wenjiao Shi (shiwj@lreis.ac.cn)

The copyright of individual parts of the supplement might differ from the CC BY 4.0 License.
This supplementary material consists of equations of methods, tables and prediction maps in the paper and in the following 6 sections. **Section S1** is the equation descriptions of machine-learning models. **Section S2** shows parameter adjustment and modeling of machine-learning methods. **Section S3** includes the uncertainty assessment of soil PSF interpolation. **Section S4** includes the prediction maps of silt and clay fractions. **Section S5** demonstrates the indirect classification maps using ALR and CLR transformation methods. **Section S6** demonstrates the SBP balances of ILR methods and the choice of construction of coordinates (so-called balances) in the SBPs.

Supplementary Material

Section S1 The equation descriptions of machine-learning models

For K-nearest neighbor (KNN), for a train set of observed data \(L = \{ (y_i, x_i), i = 1, \ldots, n_i \} \), class \(y_i \in \{1, \ldots, c \} \), and the predictor values \(x'_{i} = (x_{i1}, \ldots, x_{ip}) \). For a new observation \((y, x) \), the nearest neighbor \((y_{(1)}, x_{(1)}) \) is based on the distance function which is as follows:

\[
d(x, x_{(1)}) = \min_i (d(x, x_i)),
\]

and \(\hat{y} = y_{(1)} \) refers to the nearest neighbor, which is the prediction for \(y \). Value \(x_{(j)} \) and \(y_{(j)} \) are the \(j \)th nearest neighbor of \(x \) and class of training set, respectively.

For multilayer perceptron neural network (MLP), each neuron \(j \) sums input environmental covariate in our study \(x_i \) after multiplying them by the connection weights \(w_{ji} \) respectively, and calculates its output \(y_i \) (soil PSF components or texture types) as a function of the sum:

\[
y_j = f(\sum w_{ji} x_i),
\]

where \(f \) is the activation function, which can be a linear or logistic function. The sum of squared differences between the predicted values and observed values of the output results of neurons \(E \) is defined as follows:

\[
E = \frac{1}{2} \sum_j (y_{pj} - y_{oj})^2,
\]

where \(y_{pj} \) and \(y_{oj} \) is the predicted and observed value of output neuron \(j \), respectively. Each \(w_{ji} \) is adjusted to reduce \(E \) and the adjustment of \(w_{ji} \) depends on the training algorithm.

For random forest (RF), the equations for Gini index and minimizing the sum of the squares of the mean deviations (M) are as follows:

\[
Gini = 1 - \sum_{k=1}^{K} p_k^2,
\]

\[
Gini(D, A) = \frac{|D_1|}{|D|} Gini(D_1) + \frac{|D_2|}{|D|} Gini(D_2),
\]

\[
M = \min_a \left[\min_{c_1} \sum_{x_i \in D_1(a)} (y_i - c_1)^2 + \min_{c_2} \sum_{x_i \in D_2(a)} (y_i - c_2)^2 \right].
\]

where \(p_k \) refers to the proportion of \(k \)th class in the data set on the current node, for feature \(A = a \), data set \(D \) is divided into two parts \((D_1 \text{ and } D_2) \), \(D_1 \) describes the data set which meets the condition \(A = a \) and \(D_2 \) is the opposite of \(D_1 \); \(Gini(D, A) \) represents the uncertainty of set \(D \) after binary split; \(y_i \) is the predicted value of input value \(x_i \); \(c_1 \) and \(c_2 \) is the mean of data set \(D_1 \) and \(D_2 \), respectively.
In support vector machine (SVM), for a data set \(\{x_i, y_i\}, \ i = 1, \ldots, k, \ x \in R \) and \(x \) refers to an \(n \)-dimensional vector, \(y \in \{-1, +1\} \) is the class corresponding to \(x \), the equation for calculating a hyperplane of SVM is defined as follows:
\[
\min_{w,b,\xi} \frac{1}{2}w^T w + C \sum_{i=1}^{k} \xi_i,
\]
s.t. \(y_i(w^T x + b) \geq 1 - \xi_i, \ \xi_i \geq 0, \ i = 1, \ldots, k, \tag{S7} \)
where \(\phi(x_i) \) refers to the mapping from the input space to the feature space, \(C > 0 \) is penalty factor (cost), \(w, b, \) and \(\xi \) are the parameters need to be optimized during the process of model training, which can be determined by the Lagrange multipliers:
\[
f(x) = sgn(y_i a_i k(x_i, x) + b^*), \tag{S8} \]
where \(a_i \) refers to the support vector, \(k(x_i, x) \) refers to the kernel function, and \(b^* \) is the bias.

For extreme gradient boosting (XGB), the general prediction function at step \(t \) is defined as follows:
\[
f_i^{(t)} = \sum_{k=1}^{t} f_k(x_i) = f_i^{(t-1)} + f_i^{(t)}, \tag{S9} \]
where \(f_i(x_i) \) refers to the tree (learner) at step \(t \), \(f_i^{(t)} \) and \(f_i^{(t-1)} \) refer to the predicted values at steps \(t \) and \(t-1 \), and \(x_i \) is the input value.
\[
Obj^{(t)} = \sum_{i=1}^{n} (\overline{y}_i - y_i) + \sum_{k=1}^{t} \Omega(f_k), \tag{S10} \]
where \(Obj^{(t)} \) is the regularized objective, \(\overline{y_i} \) and \(y_i \) refer to the prediction value and observed value, \(l \) refers to the loss function, \(n \) is the number of data set, and \(\Omega \) refers to the regularization term, which equation is defined as follows:
\[
\Omega(f) = \gamma T + \frac{1}{2} \lambda \|\omega\|^2, \tag{S11} \]
where \(\omega \) refers to the weight vector, \(T \) denotes the total number of features, \(\lambda \) is the regularization term, and \(\gamma \) is the minimum loss.

Supplementary Material

Section S2 Parameter adjustment and modeling of machine-learning methods

For the parameter adjustment in Table S1, all variables (i.e., ‘sand, silt, clay, ilr1, ilr2, alr1, alr2, clr1, clr2, clr3’ for regression and “class” for classification) were trained independently to define the best-performance parameter combination of each machine-learning method using R packages mentioned in Section 2.4.6 ‘Parameters optimization’. Accuracy indicators (e.g., RMSEs) were based on Aitchison space and Euclidean space for the original data and log ratio transformed data, respectively. For KNN, the kmax was 15; the distance was 1; the kernel was rectangular. For MLP, the size ranged between 5 and 10. For RF, the ntree was 1000; the mtry fluctuated from 9 to 11. For SVM, the gamma was 0.01; the cost was 1. For XGB, the max_depth was 3 – 4; the eta was 0.05 – 0.1; the colsample_bytree was 0.6 – 0.8, the nrounds was 30; the subsample was 0.8 – 1; the gamma was 0 – 0.8; the min_child_weight was 0.6 – 0.8.
Table S1 Adjusted parameters for different machine-learning methods. “rectan” is short for rectangular, “opt” is short for optimal and “ep” is short for epanechnikov.

Models	Parameters	alr1	alr2	clr1	clr2	clr3	ilr1	ilr2	sand	silt	clay	class
KNN	kmax	13	13	14	14	15	15	14	14	15	15	15
	distance	1	1	1	1	1	1	1	1	1	1	1
	kernel	rectan	rectan	rectan	rectan	rectan	rectan	opt	rectan	rectan	ep	rectan
MLP	size	5	5	5	5	5	5	10	10	10	10	1000
	kernel	rectan	rectan	rectan	rectan	rectan	opt	rectan	rectan	ep	rectan	
RF	ntree	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000
	mtry	9	9	9	9	6	9	6	11	11	7	
SVM	gamma	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.01
	cost	1	1	1	1	1	1	1	1	1	1	
XGB	max_depth	3	3	3	3	3	3	3	4	3	4	
	eta	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
	colsample_bytree	0.6	0.6	1	0.8	0.6	0.6	1	0.6	0.6	0.6	0.8
	nrounds	20	30	40	40	40	40	30	30	30	30	30
	subsample	1	1	0.8	1	0.6	0.8	0.8	0.6	0.6	0.6	1
	gamma	0.6	1	0.7	0.4	0.7	0	0.3	0.8	0.8	0.8	0.1
	min_child_weight	0.6	0.8	0.6	1	0.6	1	1	0.8	0.8	0.8	0.6
For the independent modeling of soil PSF interpolation, each component in Table S1 was trained separately using five machine-learning methods except for ‘class’. For original method, three components, ‘sand’, ‘silt’ and ‘clay’ were applied separately to machine-learning methods with their own parameters. For log ratio transformation methods, 7 components were also applied separately, then the results of three log ratio transformation methods were back-transformed (alr1 and alr2 for ALR method, clr1, clr2, clr3 for CLR method, and ilr1, ilr2 for ILR method).

Supplementary Material
Section S3 Uncertainty assessment of soil PSF interpolation

For the uncertainty assessments of models, Table S2 showed that ORI delivered lower SDs than those of log ratio methods among five machine-learning models for sand, silt and clay. Moreover, the ranges of 95 % confidence interval (CI) of indicators were also computed, which indicated relatively low values compared with assessment indicators (Table S2). For KNN, MLP and RF, ORI method showed lower values of CI of RMSE, MAE and R\(^2\) than those of log ratio methods, and for SVM and XGB, SVM_CLR and XGB_CLR revealed slight better performance compared with ORI of sand (CI_RMSE: 0.49 %; CI_MAE: 0.33 %) and silt (CI_MAE: 0.44 %), respectively. For the values of the ranges of 95 % CI of AD and STRESS, all models generated the same results (CI_AD: 0.03, CI_STRESS: 0.01) aside from RF_ILR (CI_AD: 0.02), showing better performance. Thus, the estimators’ variabilities had reasonable order of magnitudes for the values of the estimates and these indicators were representative of the actual errors on independent test sets.
Table S2. The standard deviation of prediction, the ranges of 95 % confidence interval (CI) of indicators for different machine-learning models combined with original and transformed data.

Models	SD	CI_RMSE (%)	CI_MAE (%)	CI_R² (%)	CI_AD	CI_STRESS								
	Sand	Silt	Clay	Sand	Silt	Clay	Sand	Silt	Clay					
KNN_ALR	0.18	0.14	0.08	0.71	0.65	0.25	0.51	0.44	0.16	4.45	5.03	4.18	0.03	0.01
KNN_CLR	0.18	0.14	0.08	0.71	0.64	0.26	0.47	0.41	0.16	4.57	4.95	4.23	0.03	0.01
KNN_ILR	0.18	0.14	0.08	0.73	0.64	0.27	0.48	0.41	0.16	4.78	5.18	4.4	0.03	0.01
KNN_ORI	**0.15**	**0.11**	0.07	0.55	0.51	0.28	0.38	0.37	0.19	3.41	3.48	4	0.03	0.01
MLP_ALR	0.17	0.13	**0.06**	0.65	0.67	0.33	0.38	0.41	0.2	4.21	5.07	5.44	0.03	0.01
MLP_CLR	0.16	0.13	**0.06**	0.64	0.65	0.32	0.38	0.41	0.19	4.07	4.96	5.12	0.03	0.01
MLP_ILR	0.16	0.13	**0.06**	0.64	0.65	0.32	0.37	0.41	0.2	4.04	4.95	5.04	0.03	0.01
MLP_ORI	**0.15**	**0.11**	**0.06**	0.65	0.58	0.23	0.37	0.4	0.17	3.72	4.02	**2.72**	0.03	0.01
RF_ALR	0.18	0.15	0.08	0.62	0.54	0.25	0.42	0.38	0.17	4.03	3.91	4.03	0.03	0.01
RF_CLR	0.18	0.15	0.07	0.66	0.64	0.27	0.42	0.42	0.19	4.25	4.45	4.12	0.03	0.01
RF_ILR	0.18	0.15	0.08	0.69	0.66	0.27	0.44	0.42	0.18	4.34	4.75	4.31	**0.02**	0.01
RF_ORI	**0.15**	**0.12**	0.07	0.53	0.54	0.25	0.4	0.41	**0.16**	2.95	3.47	3.06	0.03	0.01
SVM_ALR	0.17	0.12	**0.06**	**0.45**	**0.49**	0.25	0.35	0.43	0.17	3.27	3.74	2.82	0.03	0.01
SVM_CLR	0.16	0.12	**0.06**	0.49	0.5	0.27	**0.33**	**0.35**	0.18	3.05	3.35	3.47	0.03	0.01
SVM_ILR	0.16	0.12	**0.06**	0.51	0.51	0.25	0.34	0.36	0.18	3.07	3.38	3.18	0.03	0.01
SVM_ORI	**0.15**	**0.11**	**0.06**	0.51	**0.49**	0.25	0.34	**0.35**	0.17	**2.92**	**3.14**	2.95	0.03	0.01
XGB_ALR	0.17	0.14	0.07	0.67	0.57	**0.23**	0.48	0.41	**0.16**	4.07	3.97	3.6	0.03	0.01
XGB_CLR	0.19	0.15	0.07	0.73	0.65	0.25	0.44	0.44	**0.16**	4.9	5	3.82	0.03	0.01
XGB_ILR	0.17	0.13	0.08	0.72	0.69	0.26	0.46	0.48	0.19	4.52	4.86	4.44	0.03	0.01
XGB_ORI	0.16	0.12	**0.06**	0.6	0.61	0.24	0.41	0.46	**0.16**	3.4	4.03	2.9	0.03	0.01
Supplementary Material

Section S4 Prediction maps of silt and clay fractions

Figure S1. The prediction maps of silt fraction using five machine-learning models with ORI and ILR data.
Figure S2. The prediction maps of clay fraction using five machine-learning models with ORI and ILR data.

Supplementary Material

Section S5 Indirect classification maps using ALR and CLR transformation methods
Figure S3. Soil texture classification prediction maps by soil PSF interpolation (ALR and CLR log ratio transformation methods) of KNN, MLP, RF, SVM and XGB.

Supplementary Material

Section S6 The SBP balances of ILR methods and the choice of construction of coordinates (so-called balances) in the SBPs

ILR transforms compositional data from the simplex S^D (simplex with respect to the Aitchison geometry) to the real space R^{D-1} (real space with respect to the Euclidean geometry), which is based on orthonormal coordinate systems (so-called balances) using sequential binary partition (SBP) (Egozcue and Pawlowsky-Glahn, 2005). These choices are not unique. For example, multiple sets of ILR transformed data can be generated by permutations of components (different SBPs) in compositional
data. The choice of a specific SBP for compositions is crucial for the intended interpretation of coordinates (Fiserova and Hron, 2011). Lloyd et al. (2012) proposed that the choice of SBP can be based on priori expert knowledge or using a compositional biplot. It has been proven in statistical science that different results were obtained using different choices of SBP balances (Fiserova and Hron, 2012). In the SBP, the choice of construction of coordinates (so-called balances) is:

1. First, the parts of the composition are divided into two groups: group coded by +1 and group coded by -1, and the first coordinate is obtained to describe the balance between the parts of +1 and -1 groups.

2. Second and following steps, previous +1 and -1 groups are divided into two new groups, respectively, coding by +1 and -1 similarly until the components not involved are coded with 0. The balance of each step remains the same as before and the total number of steps is D-1 (the dimension of S^D) (Fiserova and Hron, 2011), finally. Therefore, the equation for coordinates in the kth step is as follows:

$$z_k = \frac{r_k}{s_k + r_k} \ln \left(\frac{(x_{i_k} x_{i_k} - x_{j_k})^{1/r_k}}{(x_{i_k} x_{i_k} - x_{j_k})^{1/s_k}} \right), k = 1, \ldots, D - 1,$$

where z_k refers to the balance between two groups, $i_1, i_2, \ldots, i_{r_k}$ is the r_k parts of one group, and $j_1, j_2, \ldots, j_{s_k}$ is the s_k parts of the other group. The balances therefore contain stepwise all the relevant information of compositions in two groups. It also can be explained in a tabular form – such as soil PSF data (D = 3), all three choices of the balance of SBP is shown in Table S3. Notice that the first component of ILR contains all the information of soil PSFs, and the main difference of choice of balances for soil PSFs were the order of three components, i.e., the first order of soil PSF component was used as numerator of the first ILR equation. In our study, three balances of SBP – SBP1, SBP2 and SBP3 were transformed from original soil PSF data, and the orders of soil PSF data were $(sand, silt, clay)$, $(silt, clay, sand)$ and $(clay, sand, silt)$, respectively.

Table S3 All choices of SBP of soil PSF data (D = 3), the orders of soil PSF data are $(sand, silt, clay)$, $(silt, clay, sand)$ and $(clay, sand, silt)$.

Groups	Step	Sand	Silt	Clay	r	s	Balance
SBP1	1	+	-	-	1	2	Step1: $z_1 = \frac{1}{\sqrt{3}} \ln \frac{\text{sand}}{\text{silt} \times \text{clay}}$
	2	0	+	-	1	1	Step2: $z_2 = \frac{1}{\sqrt{2}} \ln \frac{\text{silt}}{\text{clay}}$
SBP2	1	-	+	-	2	1	Step1: $z_1 = \frac{1}{\sqrt{3}} \ln \frac{\text{silt}}{\text{clay} \times \text{sand}}$
	2	0	-	0	1	1	Step2: $z_2 = \frac{1}{\sqrt{2}} \ln \frac{\text{clay}}{\text{sand}}$
SBP3	1	-	-	+	1	2	Step1: $z_1 = \frac{1}{\sqrt{3}} \ln \frac{\text{clay}}{\text{sand} \times \text{silt}}$
	2	+	-	0	1	1	Step2: $z_2 = \frac{1}{\sqrt{2}} \ln \frac{\text{sand}}{\text{silt}}$

Reference

Egozcue, J. J., and Pawlowsky-Glahn, V.: Groups of parts and their balances in compositional data analysis, Math. Geol., 37, 795-828, 10.1007/s11004-005-7381-9, 2005.

Fiserova, E., and Hron, K.: On the interpretation of orthonormal coordinates for compositional data, Math Geosci., 43, 455-468, 10.1007/s11004-011-9333-x, 2011.
Fiserova, E., and Hron, K.: Statistical inference in orthogonal regression for three-part compositional data using a linear model with type-II constraints, Communications in Statistics-Theory and Methods, 41, 2367-2385, 10.1080/03610926.2011.604145, 2012.

Lloyd, C. D., Pawlowsky-Glahn, V., and Jose Egozcue, J.: Compositional data analysis in population studies, Annals of the Association of American Geographers, 102, 1251-1266, 10.1080/00045608.2011.652855, 2012.