Possible Test of the GUT Relation between M_1 and M_2 in Electron-Photon Scattering

Claus Blöchinger1, Hans Fraas2

Institut für Theoretische Physik, Universität Würzburg, Am Hubland, D-97074 Würzburg, Germany

Abstract

We investigate associated production of selectrons and the lightest neutralino (LSP) in the process $e^-\gamma \rightarrow \tilde{\chi}_1^0 \tilde{e}_{L/R}$ with the selectron subsequently decaying into an electron and the LSP. Total cross sections and various polarization asymmetries are calculated for photons produced by Compton backscattering of a polarized laser beam at an e^+e^- linear collider with CMS energy $\sqrt{s_{ee}} = 500$ GeV and with polarized beams. The total cross section and in particular the polarization asymmetries show a characteristic dependence on the gaugino mass parameter M_1. Therefore this process is suitable for testing the GUT relation $M_1 = M_2 \cdot \frac{5}{3} \tan^2 \theta_W$.

1 Introduction

The search for supersymmetry (SUSY) \cite{I} is one of the most important goals of a future e^+e^- linear collider (LC) in the energy range between 500 GeV and 1000 GeV \cite{II}. In addition to the e^+e^- option the $e^-\gamma$ mode is also technically realizable with high luminosity polarized photon beams obtained by backscattering of intensive laser pulses off the electron beam \cite{III, IV, V}. Associated production of selectrons with the lightest neutralino $\tilde{\chi}_1^0$ (assumed to be the LSP) in $e^-\gamma$ collisions allows to probe heavy selectrons beyond the kinematical limit of selectron pair production in e^+e^- annihilation. Further associated production of selectrons and gaugino-like neutralinos provides us with the possibility to study the electron-selectron-neutralino couplings complementary to e^+e^- annihilation.

In the present paper we study the associated production $e^-\gamma \rightarrow \tilde{\chi}_1^0 \tilde{e}_{L/R}$ with polarized beams and the subsequent direct leptonic decay $\tilde{e}_{L/R} \rightarrow \tilde{\chi}_1^0 e^-$. The beam polarization is chosen suitably to optimize cross sections and polarization asymmetries. The signal is a single electron with high transverse momentum p_T. We do not consider cascade decays of heavy selectrons, which may yield a similar single electron signal with, however, a less pronounced p_T \cite{VI}. We also refrain from a discussion of the background.

The calculations are done in the Minimal Supersymmetric Standard Model (MSSM). The masses and couplings of the neutralinos depend on the gaugino mass

1e-mail: bloechi@physik.uni-wuerzburg.de
2e-mail: fraas@physik.uni-wuerzburg.de
parameters \(M_1\) and \(M_2\), the higgsino mass parameter \(\mu\) and the ratio \(\tan\beta\) of the two Higgs vacuum expectation values. The parameters \(M_2\), \(\mu\) and \(\tan\beta\) can in principle be determined by chargino production alone [6]. For the gaugino mass parameters usually the GUT relation \(M_1 = M_2 \cdot \frac{5}{3} \tan^2 \theta_W\) is assumed. A precise determination of \(M_1\) is, however, only possible in the neutralino sector [7].

In the present paper we investigate if associated production of selectrons and the LSP \(\tilde{\chi}_1^0\) is suitable as a test for this relation. We therefore study the influence of the gaugino mass parameter \(M_1\) on the total cross section and on polarization asymmetries for different selectron masses.

2 Cross Sections and Polarization Asymmetries

The production cross section \(\sigma^{L/R}_{\ell P} (s_{e\gamma})\) for the process \(e^-\gamma \rightarrow \tilde{\chi}_1^0 \tilde{\ell}_{L/R}^-\) proceeds via electron exchange in the s-channel and selectron exchange in the t-channel. The electron-selectron-LSP couplings

\[
f_{e1}^L = -\sqrt{2} \left[\frac{1}{\cos \theta_W} \left(-\frac{1}{2} + \sin^2 \theta_W \right) N_{12} - \sin \theta_W N_{11} \right],
\]

\[
f_{e1}^R = \sqrt{2} \sin \theta_W \left[\tan \theta_W N_{12}^* - N_{11}^* \right]
\]

for left and right selectrons with masses \(m_{\tilde{\ell}_L}\) and \(m_{\tilde{\ell}_R}\) depend on the photino component \(N_{11}\) and the zino component \(N_{12}\) of the LSP [1]. For an electron beam with longitudinal polarization \(P_e\) the cross sections \(\sigma_P^L\) and \(\sigma_P^R\) are proportional to \((1 - P_e)\) and \((1 + P_e)\), respectively. For special cases the cross sections are given in [5] and [8], the complete analytical expressions for the differential and the total cross section for polarized beams will be given in a forthcoming paper [9].

In the narrow width approximation one obtains the total cross section \(\sigma_{e\gamma}^{L/R}\) for the combined process of \(\tilde{\ell}_{L/R}^-\tilde{\chi}_1^0\) production and the subsequent leptonic decay \(\tilde{\ell}_{L/R}^- \rightarrow e^-\tilde{\chi}_1^0\) by multiplying the production cross section with the leptonic branching ratio:

\[
\sigma_{e\gamma}^{L/R} (s_{e\gamma}) = \sigma_{e\ell}^{L/R} (s_{e\gamma}) \cdot \text{Br} \left(\tilde{\ell}_{L/R}^- \rightarrow e^-\tilde{\chi}_1^0 \right).
\]

The LSP-selectron-electron coupling \(f_{e1}^{L/R}\) appears in the production amplitudes as well as in the decay amplitude, so that the total cross section \(\sigma_{e\gamma}^{L/R} (s_{e\gamma})\) is proportional to \(\left(f_{e1}^{L/R} \right)^4\).

The photon beam is assumed to be produced by Compton backscattering of circularly polarized laser photons (polarization \(\lambda_L\)) off longitudinally polarized electrons (polarization \(\lambda_e\)). The energy spectrum \(P(y)\) and the mean helicity \(\lambda(y)\) of the high energy photons are given in [4, 5, 10]. The ratio \(y = E_\gamma/E_e\) of the photon energy \(E_\gamma\) and the energy of the converted electron beam \(E_e\) is confined to \(y \lesssim 0.83\) [3]. For \(y > 0.83\) \(e^+e^-\) pairs can be produced via scattering of laser photons and backscattered photons, so that the flux of high energetic photons drops considerably. To obtain the total cross section \(\sigma_{e\gamma}^{L/R} (s_{e\gamma}, P_e, \lambda_e, \lambda_L)\) for the combined process in the laboratory frame \((e^+e^-\text{ CMS})\) one has to convolute the total cross section
\(\sigma_{e\gamma}^{L/R} \) in the \(e\gamma \) CMS with the energy distribution \(P(y) \) and the mean helicity \(\lambda(y) \) of the backscattered photon beam [11]:

\[
\sigma_{ee}^{L/R} = \int dy P(y) \hat{\sigma}_{e\gamma}^{L/R}(S_{e\gamma} = ys_{ee}),
\]

\[
\hat{\sigma}_{e\gamma}^{L/R} = \frac{1}{2} \left(1 + \lambda(y) \right) \left(\sigma_{e\gamma}^{L/R} \right)^+ + \frac{1}{2} \left(1 - \lambda(y) \right) \left(\sigma_{e\gamma}^{L/R} \right)^- = \sigma_{e\gamma}^{L/R} \left(1 + \lambda(y) A_{c}^{L/R} \right).
\]

In eq. (3) \(\left(\sigma_{e\gamma}^{L/R} \right)^{+/-} \) are the total cross sections for a completely right (left) circular polarized photon beam whereas \(\sigma_{e\gamma}^{L/R} \) is the cross section for unpolarized photons.

\[
A_{c}^{L/R} = \frac{\left(\sigma_{e\gamma}^{L/R} \right)^+ - \left(\sigma_{e\gamma}^{L/R} \right)^-}{\left(\sigma_{e\gamma}^{L/R} \right)^+ + \left(\sigma_{e\gamma}^{L/R} \right)^-}
\]

is the polarization asymmetry for circular polarized photons.

Since the production and decay of right and left selectrons lead to the same final state we add both cross sections and obtain

\[
\sigma_{ee} = \sigma_{ee}^{L} + \sigma_{ee}^{R}.
\]

We consider two types of polarization asymmetries of the convoluted cross section. For the first one we flip the electron polarization \(P_e \) and fix the polarization \(\lambda_L \) of the laser beam and the polarization \(\lambda_e \) of the converted electron beam:

\[
A_{P_e} = \frac{\sigma_{ee} \left(s_{ee}, P_e, \lambda_e, \lambda_L \right) - \sigma_{ee} \left(s_{ee}, -P_e, \lambda_e, \lambda_L \right)}{\sigma_{ee} \left(s_{ee}, P_e, \lambda_e, \lambda_L \right) + \sigma_{ee} \left(s_{ee}, -P_e, \lambda_e, \lambda_L \right)}.
\]

If we split off from \(\sigma_{ee}^{L/R} \) the dependence of beam polarization \((1 \mp P_e) \)

\[
\sigma_{ee} \left(s_{ee}, P_e, \lambda_e, \lambda_L \right) = (1 - P_e) \hat{\sigma}_{ee}^{L} + (1 + P_e) \hat{\sigma}_{ee}^{R},
\]

we obtain

\[
A_{P_e} = P_e \cdot \frac{\hat{\sigma}_{ee}^{R} - \hat{\sigma}_{ee}^{L}}{\hat{\sigma}_{ee}^{R} + \hat{\sigma}_{ee}^{L}}.
\]

Here \(\hat{\sigma}_{ee}^{R} \) (\(\hat{\sigma}_{ee}^{L} \)) is the cross section for production of right (left) selectrons with an unpolarized electron beam \((P_e = 0) \) and their subsequent leptonic decay.

As a second asymmetry we discuss that with respect to the polarization \(\lambda_L \) of the laser beam:

\[
A_{\lambda_L} = \frac{\sigma_{ee} \left(s_{ee}, P_e, \lambda_e, \lambda_L \right) - \sigma_{ee} \left(s_{ee}, P_e, \lambda_e, -\lambda_L \right)}{\sigma_{ee} \left(s_{ee}, P_e, \lambda_e, \lambda_L \right) + \sigma_{ee} \left(s_{ee}, P_e, \lambda_e, -\lambda_L \right)}.
\]
3 Numerical Results

In the following numerical analysis we study the total cross section $\sigma^{(L/R)}_{ee}$ and the polarization asymmetries $A_{P,e}$ and A_{λ_L} for $\sqrt{s_{ee}} = 500$ GeV. For the MSSM parameters we choose $M_2 = 152$ GeV, $\mu = 316$ GeV, $\tan \beta = 3$ with M_1 varying between $M_1 = 40$ GeV and $M_1 = 300$ GeV. The region $M_1 < 40$ GeV is excluded by assuming a lower limit of 35 GeV for the LSP mass $m_{\tilde{\chi}_1^0}$. In the figures the excluded region is shaded. For $M_1 = 78.7$ GeV this corresponds to the DESY/ECFA reference scenario for the Linear Collider [12], which implies the GUT relation $M_1 = M_2 \cdot \frac{5}{3} \tan^2 \theta_W$.

![Graphs showing M1-dependence of the LSP mass m_\tilde{\chi}_1^0, N_{11}, N_{12}, (f^{L/R}_{e1})^4](image)

Figure 1: (a) M_1-dependence of the LSP mass $m_{\tilde{\chi}_1^0}$; (b) M_1-dependence of the photino component N_{11} (solid line) and of the zino component N_{12} (dashed line) of the LSP; (c) M_1-dependence of the couplings $(f^{L}_{e1})^4$ (solid line) and $(f^{R}_{e1})^4$ (dashed line).

For this set of parameters one has 35 GeV < $m_{\tilde{\chi}_1^0}$ < $m_{\tilde{\chi}_1^\pm}$ < 128 GeV. Fig. 1a shows that in the region 40 GeV < M_1 < 150 GeV the LSP mass depends very strongly on M_1, varying between $m_{\tilde{\chi}_1^0} = 35$ GeV for $M_1 = 40$ GeV and $m_{\tilde{\chi}_1^0} = 121$ GeV for $M_1 = 150$ GeV whereas for $M_1 > 150$ GeV the mass of the LSP is practically independent of M_1. In the whole M_1 region the LSP is gaugino-like (fig. 1b). At $M_1 = M_2$ the photino component N_{11} changes its sign which leads to completely different strength of the couplings $f^{L/R}_{e1}$ in the regions $M_1 > 150$ GeV and $M_1 < 150$ GeV (fig. 1c). For the selectron masses we choose two examples: $m_{\tilde{e}_L} = 179.3$ GeV, $m_{\tilde{e}_R} = 137.7$ GeV corresponding to the value $m_0 = 110$ GeV of the common scalar.
mass at the GUT scale and $m_{\tilde{e}_L} = 350.0$ GeV, $m_{\tilde{e}_R} = 330.5$ GeV corresponding to $m_0 = 320$ GeV. In the second case selectron pair production at an e^+e^- collider with $\sqrt{s_{ee}} = 500$ GeV is kinematically forbidden.

For the integrated luminosity of the $e\gamma$ machine we assume $\int L = 100$ fb$^{-1}$ so that cross sections of a few fb should be measurable.

Fig. 1c shows that in our scenario also the electron-selectron-LSP couplings strongly depend on M_1. For $M_1 < 150$ GeV the coupling of the right selectron $f^R_{e_1}$ dominates whereas for $M_1 > 150$ GeV that of the left selectron $f^L_{e_1}$ is the stronger one. Similarly the total cross sections $\sigma^{L/R}_{ee}$ depicted in fig. 2a for a CMS energy $\sqrt{s_{ee}} = 500$ GeV and for unpolarized beams ($P_e = \lambda_L = \lambda_e = 0$) have a pronounced M_1-dependence. Comparing fig. 2a for the cross sections with fig. 1c for the couplings f^L/R_{e_1} one can see that even in the region 40 GeV $< M_1 < 150$ GeV the influence of the additional M_1-dependence of the LSP mass (fig. 1a) is weak so that the total cross sections reflect essentially the M_1-dependence of the couplings.

As a consequence of the somewhat higher mass the cross section for production and decay of \tilde{e}_L is additionally suppressed compared to that for \tilde{e}_R. Therefore in fig. 2a the crossing of the cross sections is at a somewhat higher value of $M_1 \sim 175$ GeV than that of the couplings at $M_1 \sim 150$ GeV in fig. 1c. For $M_1 < 175$ GeV

![Figure 2](image-url)
the production of \tilde{e}_R dominates whereas for $M_1 > 175$ GeV that of \tilde{e}_L dominates with, however, much smaller cross sections. Fig. 2a shows the strong variation of the cross section σ_{ee}^R with M_1. If we assume that a cross section $\sigma_{ee}^R = 100$ fb has been measured with an error of $\pm 5\%$ this is compatible with M_1 between 122 GeV and 126 GeV.

For an unpolarized electron beam ($P_e = 0$) polarization of the laser beam and of the converted electrons essentially changes only the magnitude of the cross sections by a maximal factor between 0.7 and 1.3. As we have checked numerically the M_1 dependence is very similar to that given in fig. 2a.

Fig. 2b - 2d exhibit the energy dependence of the total cross section for three different values of M_1: the GUT value $M_1 = 78.7$ GeV (fig. 2b) and two higher values $M_1 = 170$ GeV (fig. 2c) and $M_1 = 250$ GeV (fig. 2d). For a polarization of the electron beam $P_e = +0.9$ ($P_e = -0.9$) the cross section for production and decay of left (right) selectrons is reduced and that for right (left) selectrons is enhanced.

In fig. 3a the asymmetry A_{P_e} defined in eq. (10) is shown for unpolarized converted electrons ($\lambda_e = 0$), unpolarized laser photons ($\lambda_L = 0$) and electron polarization $P_e = \pm 0.9$. In our scenario the dependence of A_{P_e} on λ_L and on λ_e turns out to be negligible. The M_1-dependence of A_{P_e} is as expected from that of the cross sections (fig. 2). Since for $M_1 < 175$ GeV ($M_1 > 175$ GeV) the production of \tilde{e}_R (\tilde{e}_L) dominates we obtain large positive asymmetries (large negative asymmetries) for $M_1 < 175$ GeV ($M_1 > 175$ GeV). For 40 GeV $< M_1 < 142$ GeV the asymmetry A_{P_e} is larger than 0.85 and nearly independent of M_1. In this region, however, the LSP mass (fig. 1a) and the total cross section (fig. 2) depend strongly on M_1. For $M_1 > 205$ GeV the asymmetry increases up to large negative values between $A_{P_e} = -0.5$ for $M_1 = 205$ GeV and $A_{P_e} = -0.82$ for $M_1 = 300$ GeV with, however, rather small cross sections < 38 fb. For 142 GeV $< M_1 < 205$ GeV the asymmetry A_{P_e} shows a strong variation with M_1. If we assume that for instance an asymmetry $A_{P_e} = 0.5 \pm 5\%$ has been measured this is compatible with M_1 in the narrow region between 158 GeV and 160 GeV.

Additional informations on the value of M_1 can be obtained if the laser beam and the converted electrons are polarized. In fig. 3b we show the M_1-dependence of the total cross section σ_{ee} for $P_e = 0.9$ and $\lambda_e = +1$. For $\lambda_L = -1$ ambiguities exist in the region 40 GeV $< M_1 < 120$ GeV and for $M_1 > 180$ GeV the dependence on M_1 is rather weak. For 120 GeV $< M_1 < 180$ GeV however this cross section shows a strong variation with M_1. For $\lambda_L = +1$ the cross section again shows ambiguities in the region 40 GeV $< M_1 < 108$ GeV and is nearly independent on M_1 for $M_1 > 180$ GeV. The interval 108 GeV $< M_1 < 180$ GeV, where the cross section is sensitive to M_1 is however larger than for $\lambda_L = -1$. If we assume that a cross section $\sigma_{ee} = 250$ fb $\pm 5\%$ has been measured this is compatible with M_1 between 122 GeV and 127 GeV. In the region 60 GeV $< M_1 < 300$ GeV the asymmetry A_{λ_L} (eq. (11)) depicted in fig. 3c for $P_e = 0.9$ and $\lambda_e = +1$ is nearly linearly dependent on M_1 so that it should be possible to determine M_1 uniquely in the region 60 GeV $< M_1 < 190$ GeV. An asymmetry $A_{\lambda_L} = 0.25 \pm 5\%$ would be compatible with M_1 between 116 GeV and 132 GeV according to fig. 3c. In the region $M_1 > 190$ GeV the cross sections are smaller than 16 fb.
The cross section σ_{ee} and the asymmetry A_{λ_L} are depicted in fig. 3d, e for the polarization configuration $P_e = -0.9$ and $\lambda_e = -1$. For $\lambda_L = -1$ the total cross section has ambiguities in the region $40 \text{ GeV} < M_1 < 167 \text{ GeV}$ and for $\lambda_L = +1$ in the region $40 \text{ GeV} < M_1 < 173 \text{ GeV}$. For $M_1 > 173 \text{ GeV}$ one notices a strong variation of the cross section for $\lambda_L = \pm 1$. As can be seen from fig. 3d with $\lambda_L = +1$
a cross section $\sigma_{ee} = 35 \text{ fb} \pm 5\%$ is compatible with M_1 between 193 GeV and 209 GeV. For this polarization configuration the asymmetry A_{L_L} (fig. 3e) grows practically linearly between $M_1 = 40 \text{ GeV}$ and $M_1 = 126 \text{ GeV}$ and is very sensitive on M_1 but shows ambiguities between $M_1 = 40 \text{ GeV}$ and $M_1 = 150 \text{ GeV}$. If we assume that an asymmetry $A_{L_L} = 0.15 \pm 5\%$ has been measured this is compatible with M_1 between 89 GeV and 94 GeV or between 138 GeV and 140 GeV according to fig. 3e. One can distinguish between these two regions via the cross section for $\lambda_L = +1$ depicted in fig. 3d because one expects 18-19 fb for M_1 between 89 GeV and 94 GeV and 7-8 fb for M_1 between 138 GeV and 140 GeV. For $M_1 > 170 \text{ GeV}$ the asymmetry is nearly constant $A_{L_L} \sim -0.07$.

To sum up: for unpolarized laser beams ($\lambda_L = 0$) and converted electrons ($\lambda_e = 0$) the polarization asymmetry A_{L_L} exhibits a pronounced M_1 dependence in the region $142 \text{ GeV} < M_1 < 205 \text{ GeV}$. For the polarization configuration $P_e = 0.9$, $\lambda_e = +1$ and $\lambda_L = \pm 1$ the cross sections σ_{ee} and the polarization asymmetry A_{L_L} are sensitive to M_1 in the region $60 \text{ GeV} < M_1 < 190 \text{ GeV}$. Finally for $P_e = -0.9$, $\lambda_e = -1$ and $\lambda_L = \pm 1$ these observables show a strong M_1 dependence in the region $40 \text{ GeV} < M_1 < 300 \text{ GeV}$.

Figure 4: Total cross section $\sigma_{ee} = \sigma_{ee}^L + \sigma_{ee}^R$ and polarization asymmetry A_{L_L} for $m_{\tilde{e}_L} = 330.5 \text{ GeV}$ and $m_{\tilde{e}_R} = 350.0 \text{ GeV}$; (a) M_1-dependence of σ_{ee} for $P_e = 0.9$, $\lambda_e = 1$, $\lambda_L = +1$ (solid line) and $P_e = 0.9$, $\lambda_e = 1$, $\lambda_L = -1$ (dashed line); (b) M_1-dependence of A_{L_L} for $P_e = 0.9$, $\lambda_e = +1$ and $\lambda_L = \pm 1$.

We choose as a second example higher selectron masses $m_{\tilde{e}_L} = 350.0 \text{ GeV}$ and $m_{\tilde{e}_R} = 330.5 \text{ GeV}$ corresponding to $m_0 = 320 \text{ GeV}$. Then for $\sqrt{s_{ee}} = 500 \text{ GeV}$ selectron pair production in e^+e^- annihilation is forbidden, whereas single selectron production in $e^-\gamma \rightarrow \chi_1^0 \tilde{e}_{L/R}$ is still possible, provided that $\sqrt{s_{ee}} > m_{\tilde{e}_{L/R}} + m_{\chi_1^0}$ where $\sqrt{s_{ee}} \sim 0.91 \cdot \sqrt{s_{ee}}$ is the energy of the hardest photon obtained by Compton backscattering [11]. Now the kinematical accessible M_1 region is confined to $M_1 < 184 \text{ GeV}$ ($m_{\chi_1^0} < 124.6 \text{ GeV}$). In fig. 4a,b we show the total cross section and the asymmetry A_{L_L} for $P_e = 0.9$, $\lambda_e = +1$ and $\lambda_L = \pm 1$. For $\lambda_L = +1$ the cross section depends nearly linearly on M_1 in the region $40 \text{ GeV} < M_1 < 115 \text{ GeV}$. For $M_1 > 115 \text{ GeV}$ the cross section is smaller than 2 fb. The cross section for $\lambda_L = -1$ is higher and more sensitive to M_1 between $40 \text{ GeV} < M_1 < 135 \text{ GeV}$. If
we assume for example that a cross section $\sigma_{ee} = 45 \text{ fb} \pm 5\%$ has been measured
this is compatible with M_1 between 80 GeV and 88 GeV. Also the polarization asymmetry $A_{\lambda L}$ strongly
depends on M_1 in the whole region. According to fig. 4b an asymmetry $A_{\lambda L} = -0.7 \pm 5\%$ would be compatible with M_1
between 99 GeV and 109 GeV. The polarization asymmetry A_{P_e} for this scenario is between 0.85 and 0.9
and depends only weakly on M_1. Also the polarization configuration $P_e = -0.9$, $\lambda_e = -1$ and $\lambda_L = \pm 1$
is not shown because the cross sections are smaller than 2 fb. Thus for the case of high selectron masses and polarization
configuration $P_e = 0.9$, $\lambda_e = +1$ and $\lambda_L = \pm 1$ both the cross section and the asymmetry $A_{\lambda L}$
can be helpful for determining M_1 in the greatest part $(40 \text{ GeV} < M_1 < 135 \text{ GeV})$ of the
kinematical accessible region $M_1 < 184 \text{ GeV}$.

4 Conclusion

We have demonstrated that associated selectron - LSP production with subsequent
leptonic decay of the electron $e^{-} \rightarrow \tilde{\chi}_1^{0} \tilde{e}_{L/R}^{\pm} \rightarrow e^{-} \tilde{\chi}_1^{0} \tilde{\chi}_1^{0}$
at a $\sqrt{s}_{ee} = 500 \text{ GeV}$ linear collider in the $e\gamma$ mode should allow to test for a gaugino-like LSP the GUT
relation $M_1 = M_2 \cdot \frac{5}{3} \tan^2 \theta_W$ between the MSSM gaugino mass parameters. The
polarization P_e of the electron beam helps to enlarge the production cross section
for left or right selectrons. For suitably polarized electron beams and laser photons
the total cross section σ_{ee} and the polarization asymmetries A_{P_e} and $A_{\lambda L}$ are very
sensitive to the gaugino mass parameter M_1 in the whole investigated region between
40 GeV and 300 GeV. For high selectron masses $m_{\tilde{e}_{L/R}}$ the accessible M_1 region is
kinematically constrained. The optimal polarization configuration depends on the
values of the selectron masses. For realistic predictions a complete MC study with
inclusion of background processes and experimental cuts would be indispensable.

5 Acknowledgements

We are grateful to Gudrid Moortgat-Pick and Stefan Hesselbach for valuable dis-
cussions. This work was supported by the Deutsche Forschungsgemeinschaft under
contract no. FR 1064/4-1 and the Bundesministerium für Bildung und Forschung
(BMBF) under contract number 05 HT9WWA 9.

References

[1] H. E. Haber, G. L. Kane, Phys. Rep. 117 (1985) 75.
M. F. Sohnius Phys. Rep. 128 (1985) 39.

[2] JLC Group, JLC-1, KEK Report No. 92-16 (1992).
Desy-Reports, DESY 92-123 A,B; DESY 93-123 C; DESY 96-123 D; DESY 97-123 E.
SLAC-Report 485, submitted to Snowmass 1996.
[3] I. F. Ginzburg, G. L. Kotkin, V. G. Serbo, V. I. Telnov, Nucl. Inst. Meth. 205 (1983) 47.
V. I. Telnov, Proceedings of the First Arctic Workshop on Future Physics and Accelerators, Saariselka 1994, eds. M. Chaichian, K. Huitu and R. Orava, World Scientific, 1995.
R. Brinkmann, I. F. Ginzburg, N. Holtkamp, G. Jikia, O. Napoly, E. Salsin, E. Schneidmiller, V. Serbo, G. Silvestrov, V. Telnov, A. Undrus, M. Yurkov, Nucl. Inst. Meth. A406 (1998) 13.

[4] I. F. Ginzburg, G. L. Kotkin, S. L. Panfil, V. G. Serbo, V. I. Telnov, Nucl. Inst. Meth. 219 (1984) 5.
D. L. Borden, D. A. Bauer, D. O. Caldwell, Phys. Rev. D48 (1993) 4018.
D. L. Borden, D. A. Bauer, D. O. Caldwell, SLAC-PUB-5715, 1992 (unpublished), UCSB-HEP-92-01, 1992 (unpublished).

[5] F. Cuypers, G. J. van Oldenborgh, R. Rückl, Nucl. Phys. B383 (1992) 45.
F. Cuypers, G. J. van Oldenborgh, R. Rückl, MPI-Ph/93-70, LMU-93/12.

[6] S. Y. Choi, A. Djouadi, H. Dreiner, J. Kalinowski, P. Zerwas, Eur. Phys. J. C 7 (1999) 123.
S. Y. Choi, A. Djouadi, H. S. Song, P. Zerwas, Eur. Phys. J. C 8 (1999) 669.
G. Moortgat-Pick, H. Fraas, A. Bartl, W. Majerotto, Eur. Phys. J. C 7 (1999) 113.

[7] J. Kalinowski, Acta Phys. Polon. B30 (1999) 1921.
J. L. Kneur, G. Moulta, Talk presented at the Intern. Workshop on Linear Colliders (LCWS99), Sitges, Apr. 1999, to be published in the proceedings, hep-ph/9910267.
J. L. Feng, M. J. Strassler, Phys. Rev. D55 (1997) 1326.
J. L. Feng, M. J. Strassler, Phys. Rev. D51 (1995) 4661.
G. Moortgat-Pick, H. Fraas, A. Bartl, W. Majerotto, Eur. Phys. J. C 9 (1999) 521.

[8] J. A. Grifols, R. Pascual, Phys. Lett. B135 (1984) 319.

[9] C. Blöchinger, H. Fraas, in preparation.

[10] F. Cuypers, G. J. van Oldenborgh, R. Rückl, in e^+e^- Collisions at 500 GeV: The Physics Potential, Part B, Proceedings of the Workshop, Munich, Annecy, Hamburg, Germany, 1993, edited by P. M. Zerwas (DESY Report No. 93-123C, Hamburg, 1993), p. 475.

[11] S. Hesselbach, H. Fraas, Phys. Rev. D55 (1997) 1343.

[12] S. Ambrosanio, G. A. Blair, P. Zerwas, ECFA-DESY Linear Collider Workshop, 1998, http://www.desy.de/conferences/ecfa-desy-le98.html.