In orthodontic treatment, it is critical to apply the optimal force to the brackets on each tooth to ensure effective tooth movement and reduce discomfort due to the biological reaction of the periodontal tissue. Treatment using contemporary edgewise appliances is widely accepted in orthodontics. For the initial and alignment phases of orthodontic treatment using contemporary edgewise appliances, the shape memory and super-elastic properties of nickel-titanium alloy archwires are thought to correspond with physical properties to provide light continuous force for tooth movement; therefore, these wires have become widely accepted.

The following factors are thought to affect the force magnitude at each tooth: the ligation method used for the archwire; the diameter of the archwire; and the inter-bracket distance.

In traditional or standard edgewise brackets, the archwire is ligated to the bracket using stainless steel ligature wires. However, ligation using wires requires longer chair time, and requires greater investment in staff training. As clinicians generally prefer a simplified treatment method that reduces chair time, the ligation method using elastic module became popular with the increasing use of contemporary preadjusted edgewise brackets. Further attempts to reduce chair time for ligating wire have been made. The first self-ligating bracket, the Russel attachment, was invented in the 1930s. Several kinds of self-ligating brackets became commercially available during the 1980s and 1990s, and have become used in clinical practice today, however, the clinical advantages of using self-ligating brackets is still controversial despite the fact that they significantly reduce ligating time. Recently, force magnitudes of nickel-titanium alloy archwires with different ligation methods have been compared using a modified three-point bending test. Brackets were bonded to a metal block or resin formed model and the force from the ligated and deflected nickel-titanium alloy archwires were measured at a single point. Significant differences in the force magnitude from the archwire were found when using a stainless steel ligature, elastic module, and the self-ligating method.

Nickel-titanium alloy archwires of 0.014 or 0.016 inch (0.36 or 0.41 mm) diameters are frequently used for the initial stage of orthodontic treatment since these smaller diameters provide lighter force, thus reducing patients’ discomfort. However, the selection of an archwire and archwire size depends on the type of the patient’s original malocclusion, the clinician’s educational background, and the appliance system being used. Although variation exists, Lombardo et al. compared the force magnitude of 5 sizes of nickel-titanium alloy round archwires and observed an approximately 50% increase in the force magnitude when the diameter increases 0.002 inch. Since they measured the force at a point of an archwire, the magnitude of force at several different points as force delivery could not be clarified. In addition, changes in force delivery by the effect of different archwire sizes also remain unclear.

The present study investigated the influence of archwire size and ligation method on the force magnitude delivered by nickel-titanium alloy archwires to 4 incisor brackets (42, 41, 31, and 32) in a simulation of mandibular right lateral incisor linguoversion. The force delivered by 0.014 and 0.016 inch nickel-titanium alloy archwires was measured using a newly developed multi-sensor measuring system and the mean force magnitudes were compared between different archwire sizes when using conventional ligation (CL) with elastic modules or self-ligating (SL) brackets by three-way ANOVA and post-hoc Bonferroni’s tests. The mean force magnitudes for the brackets were significantly decreased in the order of 42, 41, 31, and 32 (p<0.01). The force magnitude was significantly larger in CL than SL at 42, 31, and 32 (p<0.05). In conclusion, the ligation method affected the force magnitude at 4 incisor brackets. Despite the ligation method, archwire size affected the force magnitude from 42 to 31.

Keywords: Nickel-titanium alloy wire, Orthodontics, Ligation, Force
Badawi et al.10 incorporated 6-axis force sensors into a new measurement device called the Orthodontic Simulator (OSIM). This device uses metal blocks as simulated teeth that are aligned into a model of a maxillary dental arch. Each metal block can be moved horizontally and vertically to simulate tooth displacement, thus allowing the measurement of the force from a nickel-titanium alloy archwire delivered to several metal blocks. Fok et al.11,12 also used OSIM to simulate maxillary high canine malocclusion and compared the force from a nickel-titanium alloy archwire delivered to several when using elastic ligation and self-ligation. However, to date, no study has determined the force distribution in the mandibular arch.

Inter-bracket distance is generally much smaller in the mandibular arch than in the maxillary arch, and this may affect the force magnitude. Although various crowding patterns can be observed in clinical cases of malocclusion, crowding of the mandibular anterior teeth is a common problem in orthodontic patients. In particular, mandibular lateral incisor linguoversion is reported to be a major pattern encountered in Japanese orthodontic patients19.

Even in a single tooth displacement, such as mandibular lateral incisor linguoversion, continuous archwires are ligated to the edgewise brackets, and the archwire provides force to not only the displaced lateral incisor bracket, but also to the other incisor brackets. Therefore, to clarify the force magnitudes delivered to the 4 mandibular incisors, it is necessary to perform measurements with a multi-sensor device.

The present study used a multi-sensor measuring system to compare the force magnitude delivered by nickel-titanium alloy archwires to each mandibular incisor bracket using two ligation methods and two archwire sizes in a simulation of mandibular right lateral incisor linguoversion.

MATERIALS AND METHODS

A newly developed multi-sensor measuring system (Fig. 1) was used to measure the force delivered to the 4 incisor brackets20. In this system, 14 metal blocks were aligned to coincide with the averaged mandibular arch form of the Japanese normal occlusion21. Four six-axis force sensors (Fig. 1a) were connected to four incisor metal blocks that represented the 4 mandibular incisors: the right lateral (42), the right central (41), the left central (31), and the left lateral (32) incisors. Micrometers (Fig. 1b) were used to adjust the position of the metal blocks in a labio/buccolingual direction, and a laser sensor fixed to the system allowed the amount of displacement of each metal block to be determined with a resolution of 0.001 mm, thus the operator was able to consistently create simulations of a labially or lingually displaced tooth by adjusting position of the metal blocks. Orthodontic brackets made of 17-4 stainless steel with a 0.022×0.027 inch slot (Damon Q, Ormco, Orange, CA, USA) and molar tubes (peerless cast buccal tube, Ormco, Orange, CA, USA) were then welded onto the labial/buccal surface of the blocks. The system is maintained at a consistent temperature of 37°C in a chamber.

The coordinate system of each tooth is as follows. The X-axis shows the labio/buccolingual direction (lingual: positive, labial/buccal: negative). The Y-axis shows the horizontal direction (right: positive, left: negative), while the Z-axis shows the extrusion/intrusion direction (extrusion: positive, intrusion: negative). The values of the X, Y, and Z coordinates could also be exported from the system in Comma Separated Values (CSV) format for analysis.

A perfectly aligned arch form was initially created using a guide wire. Then, the position of the metal blocks was adjusted until the force of the X, Y, and Z coordinates from the 0.017×0.025 inch stainless-steel guide wire
ligated to the brackets was less than 0.2 N. The same procedure was then repeated using a 0.019×0.025 inch stainless-steel guide wire. In a previously published study with three-point bending test⁶, displaced maxillary lateral incisor and the adjacent incisor and canine would be simulated. In this method, the amount of displacement of 2 mm were expected to be the most adequate clinical setting for measuring super-elasticity of nickel-titanium alloy archwire, and this setting have been the most commonly used⁴,⁵,⁶. In addition, lingually displaced mandibular lateral incisor were frequently seen in orthodontic patient with crowding⁷. Therefore, the mandibular right lateral block (42) was moved 2.0 mm lingually to achieve a simulation of mandibular right lateral incisor linguoversion (Fig. 1c).

Two sizes of nickel-titanium alloy archwires with a diameter of 0.014 (014NT) and 0.016 (016NT) inches (Sentalloy Medium, Tomy/GAC International, Tokyo, Japan) were inserted to the brackets and tubes for testing. Two different methods were used to ligate the archwires to the brackets. In conventional ligation (CL), archwires were ligated by an elastic module (Power O 110, Ormco, Glandol, CA, USA) using a needle holder. In self-ligation (SL), the slides built into the brackets were closed to hold the archwire in the slot. In the present study, force magnitudes were measured 10 times for two archwire sizes (0.014 and 0.016 inches) and for two ligation methods (SL and CL), and a total of 40 measurements were made. The order of measurements with those factors of archwire sizes, ligation methods were randomized using random number list.

All data were analyzed using the Statistical Package for the Social Science Version 21.0 (SPSS Inc., Chicago, USA). The level of significance was set at 5% (p<0.05). The force of the X, Y, and Z coordinates were summed and calculated as the force magnitude using the equation: force magnitude=$\sqrt{F_x^2+F_y^2+F_z^2}$. Means and standard deviations were calculated for the force magnitude in the 014NT and 016NT archwires using SL or CL methods on each bracket. The effects of archwire size (014NT and 016NT), ligation method (CL and SL), and bracket (42, 41, 31, and 32) on the means of force magnitudes were analyzed by 3-way analysis of variance (ANOVA) and the Bonferroni’s multiple comparison tests (p<0.05).

To detect the reliability of measurement by six-axis force sensors, the standardized stainless steel weights with 50 g and 100 g were put onto each sensor and forces of Fx, Fy and Fz direction to the sensors were measured. Force magnitudes were calculated and the following equation was used to calculate the error of measurement:

\[
\text{Error (\%)} = \frac{\text{FMW} - \text{W}}{\text{W}} \times 100,
\]

Where W is the amount of standard test weight, FMW is force magnitude calculated from the measurement by the sensor using the weight. Mean of the error was 2.8%, and the range was from 1.2% to 5.0%, although these results could not be simply compared to the reliability of Badawi’s OSIM, these are similar to the range of the manufacturer’s estimate and it is considered as acceptable reliability for this study.

To evaluate the influence of intra-operator error, a single operator (K.T.) repeated the same measurements more than 24 h after the first measurements. The error obtained by Dahlberg’s formula²²) was 0.16 N in CL and 0.06 N in SL, respectively, which are considered to be acceptable.

The same measurement procedures were also performed by another operator after more than 24 h from the first measurements to detect inter-operator reliability. The difference between the 2 measurements was evaluated by Dahlberg’s formula²²). The error was 0.15 N in CL and 0.05 N in SL, which are considered to be acceptable for the purposes of this study.

RESULTS

The results of the 3-way ANOVA revealed significant effects of archwire size, ligation method, and bracket, however, no interaction was found between archwire size (014NT and 016NT), ligation method (CL and SL), and bracket (42, 41, 31, and 32) on the means of force magnitudes were analyzed by 3-way analysis of variance (ANOVA) and the Bonferroni’s multiple comparison tests (p<0.05).

Table 1	Effect of the archwire size, ligation method, and bracket on the force magnitude compared by three-way ANOVA				
Source	Type III Sum of square	df	Mean square	F	p value
Archwire size	12.606	1	12.606	1181.421	0.000
Ligation method	1.813	1	1.813	169.882	0.000
Bracket	166.218	3	55.406	5192.736	0.000
Archwire size vs. Ligation method	0.005	1	0.005	0.443	0.507
Archwire size vs. Bracket	9.993	3	3.331	312.193	0.000
Ligation method vs. Bracket	2.874	3	0.958	89.791	0.000
Archwire size vs. Ligation method vs. Bracket	0.206	3	0.069	6.442	0.000
Residual	1.536	144	0.011	—	—
Total	417.965	160	—	—	—
size and ligation method (Table 1).

The mean force magnitudes for each incisor bracket significantly decreased in the order of 42, 41, 31, and 32 (p<0.01, Fig. 2). For 014NT, the mean force magnitudes were significantly larger in CL than in SL at all 4 incisor brackets (p<0.05) except 41; however, the mean force magnitude at 41 was significantly smaller in CL than in SL (p<0.01, Fig. 3). For 016NT, the mean force magnitude was significantly larger in CL than in SL at all 4 incisor brackets, except 41 (p<0.05). Statistically significant differences in the mean force magnitude at 32 were observed between the ligation methods. In SL, the mean force magnitude at 32 was 0.01 N in 014NT and 0.01 N in 016NT. However, in CL, the mean force magnitude at 32 was 0.57 N in 014NT and 0.53 N in 016NT (Table 2). Although the mean force magnitude of 016NT was larger than that of 014NT (p<0.01), archwire size did not significantly affect the mean force magnitude at 32 in both CL and SL (Fig. 3).

Fig. 2 Pooled means and standard deviations of the 40 measurements of force magnitudes for each mandibular incisor bracket were calculated and compared each other by using Bonferroni’s multiple comparison test. Significant differences were observed from 42 to 32 (**p<0.01**).

Fig. 3 Means and standard deviations of the force magnitude of 014NT and 016NT archwires using the SL and CL methods, and the results of a 3-way ANOVA with Bonferroni’s multiple comparison test (a) to (d). (a): At 42, the mean force magnitude was significantly larger in CL than in SL (p<0.01). The mean force magnitudes were significantly larger in 016NT than in 014NT using both ligation methods (p<0.01). (b): At 41, the mean force magnitude was significantly smaller in CL than in SL for 014NT (p<0.01); however, no significant difference between SL and CL was observed for 016NT. The mean force magnitudes in 016NT were significantly larger than those in 014NT with both ligation methods (p<0.01). (c): At 31, the mean force magnitude was significantly larger in CL than in SL (p<0.05). The mean force magnitudes were significantly larger in 016NT than in 014NT using both ligation methods (p<0.01). (d): At 32, the mean force magnitude was significantly larger in CL than in SL (p<0.01). No significant differences were observed between 014NT and 016NT. (**p<0.01, *p<0.05, N.S: not significant)**
Table 2 Means and standard deviations of the force magnitude from 42 to 32 using 014NT and 016NT archwires with different ligation methods

Archwire	Ligation method	42 Mean (SD)	41 Mean (SD)	31 Mean (SD)	32 Mean (SD)
014NT	SL	2.00 (0.08)	0.88 (0.05)	0.26 (0.02)	0.01 (0.01)
	CL	2.44 (0.11)	0.60 (0.13)	0.43 (0.07)	0.57 (0.13)
016NT	SL	3.40 (0.08)	1.55 (0.08)	0.49 (0.04)	0.01 (0.01)
	CL	3.61 (0.19)	1.44 (0.18)	0.67 (0.16)	0.53 (0.07)

DISCUSSION

The mean force magnitude at the right lateral incisor bracket observed in present study is similar to the force magnitude observed in the study by Montasser et al.9). Regarding the optimal force, Proffit1) stated that during initial alignment it is better to tip crowns than displace the root apices, and that to produce the most efficient tipping movement, the archwires should provide light, continuous force of approximately 50 g (approximately 0.5 N). The results of the present study suggest that the force magnitude delivered by 0.014 inch nickel-titanium alloy archwires, which are initially used in the alignment phase to lingually displace teeth, may exceed the optimal level suggested by Proffit. However, the optimal force magnitude for 4 incisor teeth in alignment phase to lingually displace teeth, may exceed the optimal level suggested by Proffit. Therefore, further research should be conducted to determine the optimal force magnitude for the initial phase of orthodontic treatment.

In the present study, the mean force magnitude at 42, 31, and 32 was significantly higher in CL than in SL (Fig. 3). Since elastic modules were tied to each bracket in CL, the force from the stretched elastomer used to push the archwire into the bracket slot might have been delivered to the bracket; therefore, the magnitude may coincide with the difference of 0.17 to 0.56 N in the force between CL and SL, which represents approximately 20–50 g in the clinical setting.

The mean force magnitude delivered at 41, which represented the tooth adjacent to the displaced lateral incisor, ranged from 0.88 to 1.55 N in SL, and from 0.60 to 1.44 N in CL, and the mean force magnitude in CL was significantly smaller than that in SL when the 014NT wire was used. This result may also be associated with the two ligation method compared. In both CL and SL, 41 would receive the force to the lingual direction from the archwire deflected by the displacement of 42. In SL, there would be sufficient play between the archwire and the bracket slot since the passive slide built into the bracket would not press the archwire to the bottom of the slot. Therefore, 41 in SL would only receive the force to the lingual direction from the archwire deflected. While in CL, the archwire would not be perfectly and precisely seat to the bracket slot of 41 until it was ligated. When elastic modules were used to ligate the archwire to the bracket, the archwire would be primarily pressed to the bottom of the slot. At this ligation, the archwire at 41 would be deflected lingually. But soon after this deflection, the archwire would produce another force to the opposite labial direction. This opposite direction of force can be inferred to reduce the force magnitude at 41. As a result, the force magnitude at 41 in CL would be lower than that in SL. In this study, differences in the force magnitude between CL and SL at 41 were; 0.28 N in 014NT, and 0.11 N in 016NT, respectively. Fok et al.11,12) also examined the force distribution of .014 round copper nickel-titanium archwires in the simulation of the maxillary arch using OSIM and reported that significantly smaller force at the bracket adjacent to the displaced canine was observed in conventional ligation when compared to self-ligation.

Since the 6-axis force sensors fixed to the multi-sensor measuring system used in present study can measure the three-dimensional force applied to the 4 incisor brackets, analyzing these forces clarifies the biomechanics of the alignment phase of orthodontic treatment. However, since the primary objective of this research was to determine the mean force magnitude of nickel-titanium alloy archwires to the 4 incisor brackets, an equation was used to calculate the sum of the force of the X, Y, and Z axes, and therefore, the direction of the force at the 4 incisor brackets could not be clarified. To more thoroughly clarify the direction and magnitude of the force delivery from nickel-titanium alloy archwires, future studies should analyze the force in the X, Y, and Z axes.

Furthermore, the mean force magnitude at 31 and 32 were significantly larger in CL than in SL. This indicates that in conventional ligation, a greater number of teeth may be influenced by deflecting archwires compared to self-ligation.

On the other hand, the mean force magnitude at 32 observed in SL was 0.01 N. The present simulation of the mandibular arch also showed that the range of the mean force magnitude produced by nickel-titanium alloy archwires with self-ligating brackets was narrower than the range produced with conventional ligation, which was similar to the results of Fok’s simulations of the maxillary arch11,12).
The multi-sensor measuring system used in the present study does not include the simulation for root of teeth and alveolar bone to analyze the force magnitude to these structures. However, orthodontic force on fixed appliances can clinically be controlled by archwires, or auxiliary materials such as coil springs and elastomeric chains. These materials are directly fixed to a bracket or tube on a tooth crown. Clinical significance of clarifying adequate orthodontic force may be determined by measuring force magnitude at bracket and tube. Therefore, the multi-sensor measuring system was developed to measure the force at the brackets on the simulated mandibular arch.

In the present study, when the archwire size was changed from 0.014 inch to 0.016 inch, the mean force magnitude at 42 increased by 48% to 70%. This result is consistent with the observation that the mean force magnitude at 41 and 31 brackets indicates that diameter of nickel-titanium archwires affects not only the lingually displaced right lateral incisor bracket, but also affects the adjacent right central incisors and the left central incisors in mandibular right lateral incisor linguoversion.

CONCLUSIONS

The force magnitude delivered by nickel-titanium alloy archwires and brackets using a conventional ligation method with an elastic module was higher than the force magnitude delivered when self-ligation with a slide.

In the simulation of mandibular right lateral incisor linguoversion, the range of the force distribution to 4 incisor brackets was narrower in self-ligating brackets than the range in conventional ligation brackets.

The minimum increase in the diameter of the tested nickel-titanium alloy archwires showed significant increases in force magnitude in two adjacent teeth despite the use of different ligation methods.

ACKNOWLEDGMENTS

The authors wish to thank Dr. Taira MIYASAKA (Prof, The Nippon Dental University School of Life Dentistry at Tokyo) and Dr. OTSUBO Kunihiko (Ohtsubo Orthodontic Clinic) for technical advice regarding the research design. This study was supported by a grant from The Nippon Dental University School of Life Dentistry at Tokyo.

REFERENCES

1) Profit WR, Fields HW, Sarver DM. Contemporary orthodontics. 5th ed. St. Louis: Mosby; 2013.
2) Miura F, Mogi M, Ohura Y, Hamanaka H. The super-elastic property of the Japanese NiTi alloy wire for use in orthodontics. Am J Orthod Dentofacial Orthop 1986; 90: 1-10.
3) Burstone CJ, Qin B, Morton JY. Chinese NiTi wire — a new orthodontic alloy. Am J Orthod. 1985; 87: 445-452.
4) Otsu K, Yoneyama T, Hamanaka H, Soma K. Influence of temperature on the force level of super-erastic Ni-Ti alloy wire under strain. J J Dent Mater 1993; 12: 521-527.
5) Nakano H, Satoh K, Norris R, Jin T, Kamegai T, Ishikawa F, Katsura H. Mechanical properties of several nickel-titanium alloy wires in three-point bending tests. Am J Orthod Dentofacial Orthop 1999; 115: 390-395.
6) Kasuya S, Nagasaka S, Hanyuda A, Ishimura S, Hiroshita A. The effect of ligation on the load deflection characteristics of nickel titanium orthodontic wire. Eur J Orthod 2007; 29: 578-582.
7) Adams DM, Powers JM, Agsar K. Effects of brackets and ties on stiffness of an arch wire. Am J Orthod Dentofacial Orthop 1987; 91: 131-136.
8) Elayyan F, Silikas N, Bearn D. Mechanical properties of coated superelastic archwires in conventional and self-ligating orthodontic brackets. Am J Orthod Dentofacial Orthop 2010; 137: 213-217.
9) Montasser MA, El-Bialy T, Keilig L, Reimann S, Jager A, Bouraoul C. Force levels in complex tooth alignment with conventional and self-ligating brackets. Am J Orthod Dentofacial Orthop 2013; 143: 507-514.
10) Badawi HM, Toogood RW, Carey JP, Heo G, Major PW. Three-dimensional orthodontic force measurements. Am J Orthod Dentofacial Orthop 2009; 136: 518-528.
11) Fok J, Toogood RW, Badawi H, Carey JP, Major PW. Analysis of maxillary arch force/curve systems for a simulated high canine malocclusion: Part 1. Passive ligation. Angle Orthod 2011; 81: 953-959.
12) Fok J, Toogood RW, Badawi H, Carey JP, Major PW. Analysis of maxillary arch force/curve couples systems for a simulated high canine malocclusion: Part 2. Elastic ligation. Angle Orthod 2011; 81: 960-965.
13) Lombardo L, Marafioti M, Stefanoni F, Mollica F, Siciliani G. Load deflection characteristics and force level of nickel titanium initial archwires. Angle Orthod 2012; 82: 507-521.
14) Berger J, Byloff FK. The clinical efficiency of self-ligated brackets. J Clin Orthod 2001; 35: 304-308.
15) Stolzenberg J. The Russell attachment and its improved advantages. Int J Orthod Child 1935; 21: 837-840.
16) Damon DH. The rationale, evolution and clinical application of the self-ligating bracket. Clin Orthod Res 1998; 1: 52-61.
17) Hansen GH. The SPEED system: a report on the development of a new edgewise appliance. Am J Orthod 1980; 78: 245-265.
18) Keim RG, Gottlieb EL, Nelson AH, Vogels DS, 3rd. 2008 JCO study of orthodontic diagnosis and treatment procedures, part 1: results and trends. J Clin Orthod 2008; 42: 625-640.
19) Shigenobu N, Hisano M, Shima S, Matsubara N, Soma K. Patterns of dental crowding in the lower arch and contributing factors. A statistical study. Angle Orthod 2007; 77: 303-310.
20) Tocchi K, Arai K, Otsu K, Oda S, Miyasaka T. Bilateral symmetry in a new three-dimensional multi-sensor measuring system. J Dent Res 2013, #1509 https://iadr.confex.com/iadr/13iags/webprogram/Paper175360.html.
21) Oda S, Arai K, Nakahara R. Commercially available archwire forms compared with normal dental arch forms in a Japanese population. Am J Orthod Dentofacial Orthop 2010; 137: 520-527.
22) Dahlberg G. Statistical methods for medical and biological students. London: George Alien and Unwin, Ltd.; 1940.