Anatomic & metabolic brain markers of the m.3243A > G mutation: A multi-parametric 7T MRI study

Roy A.M. Haast,⁎ Dimo Ivanov, Rutger J.T. IJsselstein, Suzanne C.E.H. Sallevelt, Jacobus F.A. Jansen, Hubert J.M. Smeets, Irenaeus F.M. de Coo, Elia Formisano, Keyur A. Patel, Kâmil Uludag

⁎ Corresponding authors at: Department of Cognitive Neuroscience, Faculty of Psychology & Neuroscience, Maastricht University, PO Box 616, 6200MD Maastricht, Netherlands.

E-mail addresses: roy.haast@maastrichtuniversity.nl (R.A.M. Haast), kamil.uludag@maastrichtuniversity.nl (K. Uludag).

ARTICLE INFO

Keywords:
7T MRI
Brain
Quantitative
m.3243A > G
Mitochondrial

ABSTRACT

One of the most common mitochondrial DNA (mtDNA) mutations, the A to G transition at base pair 3243, has been linked to changes in the brain, in addition to commonly observed hearing problems, diabetes and myopathy. However, a detailed quantitative description of m.3243A > G patients' brains has not been provided so far. In this study, ultra-high field MRI at 7T and volume-based data analyses approaches were used to highlight morphology (i.e. atrophy), microstructure (i.e. myelin and iron concentration)- and metabolism (i.e. cerebral blood flow)-related differences between patients (N = 22) and healthy controls (N = 15). The use of quantitative MRI at 7T allowed us to detect subtle changes of biophysical processes in the brain with high accuracy and sensitivity, in addition to typically assessed lesions and atrophy. Furthermore, the effect of m.3243A > G mutation load in blood and urine epithelial cells on these MRI measures was assessed within the patient population and revealed that blood levels were most indicative of the brain's state and disease severity, based on MRI as well as on neuropsychological data. Morphometry MRI data showed a wide-spread reduction of cortical, subcortical and cerebellar gray matter volume, in addition to significantly enlarged ventricles. Moreover, surface-based analyses revealed brain area-specific changes in cortical thickness (e.g. of the auditory cortex), and in T1, T2 and cerebral blood flow as a function of mutation load, which can be linked to typically m.3243A > G-related clinical symptoms (e.g. hearing impairment). In addition, several regions linked to attentional control (e.g. middle frontal gyrus), the sensorimotor network (e.g. banks of central sulcus) and the default mode network (e.g. precuneus) were characterized by alterations in cortical thickness, T1, T2 and/or cerebral blood flow, which has not been described in previous MRI studies. Finally, several hypotheses, based either on vascular, metabolic or astroglial implications of the m.3243A > G mutation, are discussed that potentially explain the underlying pathobiology. To conclude, this is the first 7T and also the largest MRI study on this patient population that provides macroscopic brain correlates of the m.3243A > G mutation indicating potential MRI biomarkers of mitochondrial diseases and might guide future (longitudinal) studies to extensively track neuropathological and clinical changes.

Abbreviations: 15-WLT, 15-Words Learning Task; ADL, Activities daily life; ASL, Arterial spin labeling; CBF, Cerebral blood flow; cGM, Cortical gray matter; CSF, Cerebral spinal fluid; CN, Caudate nucleus; CNR, Contrast-to-noise ratio; DN, Dentate nucleus; EPI, Echo planar imaging; eTIV, Estimated total intracranial volume; FWHM, Full-width half maximum; GP, Globus pallidus; GM, Gray matter; IQR, Interquartile range; LeU, Leucine; LDST, Letter-Digit Substitution test; NMDAS, Newcastle Mitochondrial Disease Adult Scale; MANOVA, Multivariate analysis of variance; MELAS, Mitochondrial encephalomyopathy lactic acidosis and stroke-like episodes; MIDD, Mitochondrial inherited deafness and diabetes; mtDNA, Mitochondrial DNA; OXPHOS, Oxidative phosphorylation; Pa, Putamen; RF, Radio frequency; BN, Red nucleus; ROI, Region of interest; SLEs, Stroke-like cortical episodes; SN, Substantia nigra; SNR, Signal-to-noise ratio; T, Tesla; UECs, Urine epithelial cells; UHF, Ultra-high field; WM, White matter; WMLs, White matter lesions

Available online 31 January 2018

https://doi.org/10.1016/j.nicl.2018.01.017

Received 27 September 2017; Received in revised form 13 December 2017; Accepted 15 January 2018

© 2018 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/BY-NC-ND/4.0/).
1. Introduction

The brain contributes to about 20% of the human body’s energy consumption (Magistretti and Allaman, 2015; Sokoloff et al., 1977). Mitochondria serve as the biological units that utilize oxygen and glucose through oxidative phosphorylation to produce ATP from ADP (adenosine diphosphate). Approximately 4.7 billion ATP molecules per second are used by a single cortical neuron in a resting human brain, illustrating the extremely high energy demand of the brain (Zhu et al., 2012). As a result, a reduced energy production due to mitochondrial dysfunctioning may affect neuronal and glial integrity, leading to changes in the brain’s structure and functioning (Keogh and Chinnery, 2015). For example, using MRI, qualitative cortical, white matter, brainstem and cerebellar morphological changes were observed in patients with respiratory energy chain defects (Saneto et al., 2008). In addition, changes are observed related to the homeostasis of biochemical compounds (such as iron, myelin and calcium), as particularly highlighted by deep grey matter MRI signal intensity changes (Dinopoulos et al., 2005).

Mitochondrial dysfunctioning can be caused by mutations in the mtDNA. Germline mutations can either occur de novo or be inherited from the mother. These mutations can be either homoplasmic, i.e. all mtDNA copies mutated, or heteroplasmatic, i.e. a mixture of mutated and wild-type mtDNA. For heteroplasmatic mutations, the mutation load may differ among different tissue types. As mitochondria are present in most eukaryotic cell types, mitochondrial mutations lead to a wide-range of symptoms, affecting multiple systems in the body, especially those with a high energy requirement, including the central nervous system (Lightowlers et al., 2015).

One of the most common mtDNA mutations is the m.3243A > G mutation within the mtDNA-encoded rRNA leucine 1 (MTTL1) gene (Goto et al., 1990), affecting proper incorporation of the amino acid leucine in mtDNA encoded proteins. The m.3243A > G mutation causes a broad variety of clinical manifestations, of which the MELAS or MIDD syndromes are the most common (i.e. 10% and 38% of m.3243A > G carriers, respectively). These patients are characterized by a wide range of phenotypic expressions, but most often suffer from sensorineural (due to dysfunctioning cochlear hair cells or nerve) hearing loss (51%), diabetes (42%) and proximal myopathy (27%) (Nesbitt et al., 2013). m.3243A > G specific brain symptoms are (transient) SLEs, visible as T2 MRI signal hyperintensities and characterized by an increased CBF, colocalising with the morphological changes in patients (Iizuka et al., 2002). Since SLEs are an important feature of the brain pathology in m.3243A > G patients, several studies have attempted to characterize the pathogenesis, as well as the temporal and spatial progression of these lesions. For example, these studies have shown locally increased lactate levels (Tsujikawa et al., 2010), but also a reduced apparent diffusion coefficient and cortical laminar necrosis (Iizuka et al., 2003). In addition, increased baseline CBF was observed in m.3243A > G patients without SLEs (Rodan et al., 2015).

However, not all patients fall within the ‘standard’ disease criteria, leading to sub-optimal and delayed diagnosis and prognosis. Several attempts have been made to link m.3243A > G mutation load in different tissue types (e.g. skeletal muscle, blood leukocytes and urine) with disease severity (based on, for example, number of symptoms or severity scores) to predict clinical prognosis (Chinnery et al., 1997; de Laat et al., 2012; Whittaker et al., 2009). Mutation load in UECs was preferred, based on its (1) strong correlation with clinical parameters, (2) stability throughout life and (3) non-invasive assessment. Based on the above criteria, it is evident that the m.3243A > G mutation induces a large diversity of symptoms, including different types of brain changes. While the severity of the phenotype may depend on mutation load, no previous study focussed on the mutation load-brain relationship in m.3243A > G patients. Thus, it is not clear how the mutation load is associated with cortical, subcortical and cerebellar pathologies on microscopic and macroscopic levels and how those relate to the individual’s clinical symptoms.

In the present neuroimaging study, we aim to quantify the relationship between the m.3243A > G mutation load percentage and brain phenotype in a large group of patients (N = 22) and healthy controls (N = 15) using UHF 7T MRI. State-of-the-art quantitative brain imaging and analysis approaches are utilized that enable a direct comparison between groups and within patients, with a focus on the brain’s morphological (e.g. brain volume and cortical thickness), micro-structural-related (T1 and T2* relaxometry) and metabolism-related (CBF) properties. More specifically, we investigate (1) the relationship between (sub-)cortical and cerebellar atrophy with the m.3243A > G genotype (i.e. no mutation vs. low to high mutation load) and (2) the potential differences in myelin- and iron-sensitive T1, T2*, as well as CBF, colocalising with the morphological changes in patients.

The relative gain in SNR at 7T compared to clinical 1.5 T and 3 T depends on the MRI contrast used (Norris, 2003; Pohmann et al., 2016; Vaughan et al., 2001). For CBF using ASL the gain is approximately linear for high-resolution studies (e.g. below 2 mm isotropic). For example, in the study of Ivanov et al. (2017a), 7T outperformed 3 T by a factor of ~1.75 at 1.5 mm in-plane resolution for CBF data. For susceptibility contrasts, such as T2* and functional MRI, the gain can be more than linear. Uludag and Blinder (2017) have theoretically estimated that the SNR of fMRI at high spatial resolution scales approximately quadratically with magnetic field strength. For T1 contrast, however, a signal gain is only expected for very high resolution, higher than typically utilized in in vivo human studies.

Several studies already provided clear evidence of the enhanced detection of disease-specific morphological changes in the brains of, for example, multiple sclerosis and Alzheimer’s disease patients using 7T compared to 3 T (Kollia et al., 2009; Nakada et al., 2008). Studies, comparing lower to UHF-MRI for a wide range of clinical applications, have been discussed recently by Trattnig et al. (2016). Here, the improved SNR for 7T enriches the images with spatial details not visible at lower field strengths due to the possibility to acquire data with a higher resolution and CNR, but without increasing the scan time (Dyyn et al., 2007). As a result, 7T imaging exhibits increased diagnostic power due to enhanced sensitivity to detect fine-scale structural (Keuk en et al., 2017; Stuber et al., 2014), perfusion (Gardener et al., 2009; Ivanov et al., 2017a) and functional (Pfeuffer et al., 2002; Uludag and Blinder, 2017; Yacoub et al., 2008) properties and changes in the brain, see also recent reviews by van der Zwaag et al. (2016) and Ugurbil (2017). As such, the current results contribute to a better understanding of the disease patholgy and classification of m.3243A > G patients, in particular, and mitochondrial disease patients, in general.

2. Materials & methods

2.1. Participants

Twenty-two m.3243A > G patients and fifteen healthy age-, gender- and education-matched controls were included in this study after providing written informed consent in accordance with the Declaration of Helsinki. The protocol was approved by the ethics review board of the MUMC+ in Maastricht, The Netherlands. We included patients only when they were ADL-independent, as measured using the Barthel disability index and had a score < 30 on the NMDAS (Schaef er et al., 2006). We used three (current function, system specific involvement, and current clinical assessment) out of the four NMDAS sections, which resulted in a spectrum with less severe phenotypes to demonstrate the usefulness of quantitative MRI at 7T for detecting brain changes beyond lesions and atrophy, as it is typically assessed in imaging studies. For this reason, patients in the acute phase and/or with a history of SLEs were excluded. For severe phenotypes (i.e. Barthel index < 15 and/or NMDAS > 30), the brains of m.3243A > G patients strongly deviate
from those of age-matched controls, already detectable with standard MRI methods at 1.5 and 3 T. Patients were only eligible for inclusion after evaluation of the clinically-relevant symptoms by an experienced clinician (I.F.M.d.C, see Fig. 1c for an overview of the symptoms). Patients with metallic implants (e.g. cochlear or stents) were excluded, as these would interfere with the magnetic field of the MRI scanner. Assessed parameters were: (1) m.3243A > G mutation loads (%) in blood and UECs following the procedure described in (Sallevelt et al., 2013), (2) fasting blood glucose (mmol/L) and HbA1c (% and IFCC) levels measured using standard procedures and (3) cognitive performance scores. Several cognitive domains were assessed using the visual 15-WLT to test memory, recall and recognition (Van der Elst et al., 2005), the Stroop colour-word test to test attention (Van der Elst et al., 2006b) and the LDST to test information processing speed (Van der Elst et al., 2006a). Raw test scores were Z-scored based on the average control scores for each cognitive task (see Table 1).

2.2. Data acquisition

MRI data were acquired using a whole-body 7T magnet (Siemens Medical Systems, Erlangen, Germany) and a 32-channel phased-array head coil (Nova Medical, Wilmington, MA, USA). High resolution (0.7 mm isotropic nominal voxel size) whole-brain quantitative T1 and T2* images were obtained with MP2RAGE (Marques et al., 2010) and ME-GRE sequences, respectively. The SA2RAGE (Eggenschwiler et al., 2012) sequence was used to map B1+ across the brain. In addition to the anatomical scans, baseline partial-brain (excluding cerebellum and lower temporal lobes) perfusion was quantified using FAIR QUIPSS II ASL (Ivanov et al., 2017b). The eye centers were taken as reference for the magnet isocenter position to improve the ASL labelling efficiency. See Supplementary Table 1 for the relevant sequence parameters. In addition, a standard dual-echo field map was acquired to correct the ASL data for EPI readout-related geometrical distortions. Dielectric pads containing a 25% suspension of barium titanate in deuterated water were placed proximal to the temporal lobe areas to locally increase the transmit B1+ field and to improve its homogeneity across the brain (Teeuwisse et al., 2012).

2.3. Surface-based analyses

Images were pre-processed to improve subsequent automatic volume- and surface-based processing. An extensive description of the pipeline can be found in the Supplementary Methods 1. The pre-processing included brain masking, post-hoc T1 correction and computation of T2* and ASL maps. Cortical reconstruction and submillimeter volumetric segmentation was then performed with the FreeSurfer (v6.0, http://surfer.nmr.mgh.harvard.edu/) image analysis suite using the pre-processed MP2RAGE UNI images as input (Dale et al., 1999). Manual corrections of the tissue classifications were performed when necessary. Boundary-based registration (i.e. ‘bbregister’) was used to co-register the T2* and CBF maps to the MP2RAGE data with a 6 DOF transformation and spline interpolation. In addition, the fieldmap was used to correct for EPI readout geometrical distortions and improve the co-registration of the CBF map, particularly near the sinuses. Co-registered CBF maps were then corrected for partial volume effects by dividing it with a GM probability map obtained using SPM12 (http://
www.fil.ion.ucl.ac.uk/spm). For each subject, all modalities were projected onto the surface using FreeSurfer’s mri_vol2surf function by averaging between 20 and 80% of the cortical thickness (with steps of 0.05%) to reduce potential partial voluming with WM and CSF. In addition, WM surface maps were computed by averaging between 20 and 80% of the cortical thickness (with stepped distance of 0.05 mm) from the WM-GM boundary. All surface maps, including surface-based morphology metrics generated by FreeSurfer (e.g. cortical volume and thickness), were coregistered to the ‘fsaverage’ subject using sphere-based alignment (Fischl et al., 1999) and smoothed with FWHM = 2 mm distance (with steps of 0.05 mm) from the WM-GM boundary. "fsaverage" subject was selected to be representative of the study population. This was based on pragmatic reasons (i.e. to have equal sub-group sizes with comparable statistical power) in order to perform group-wise analyses (besides correlation). In addition, linear regression analysis was used to explore the relationship between mutation load and the structures volumes, T1, T2* and CBF, and was further statistical analyses. Final subcortical and cerebellar labels were used to export volume (mm3) and average T1, T2* and CBF values for each of the structures to MATLAB and/or SPSS for further statistical analyses.

2.5. Statistical analyses

Descriptive participants’ characteristics are reported as mean ± standard deviation (S.D.), while the median and IQR (25th and 75th percentiles) are shown for the NMDAS. Between-group (controls vs. m.3243A > G) demographic characteristics were tested by use of independent 2-sample t-tests (continuous data) or Pearson χ²-tests (categorical data) with SPSS (Statistical Package for Social Sciences, version 23, IBM Corp., USA) and α = 0.05. For the volumetric data, a MANOVA test with Bonferroni correction was conducted to compare cGM, WM, subcortical GM (global or per tissue) and cerebellar GM and WM volumes, T1, T2* and CBF between groups. Each patient was assigned to one of two groups based on mutation load. However, due to differences in mutation load across tissue types (and, in blood, also with age, see for example de Laat et al. (2012)), it is difficult to predefined the pathogenic threshold level (Chomyn et al., 1992) for brain tissue based on the blood and/or UEC data. Therefore, the median was used as classifier within the entire patient population. This was based on pragmatic reasons (i.e. to have equal sub-group sizes with comparable statistical power) in order to perform group-wise analyses (besides correlation). In addition, linear regression analysis was used to explore the relationship between mutation load and the structures volumes, T1, T2* and CBF, and was
therefore restricted to m.3243A > G patients. All tests were corrected for age, gender and eTIV.

For the cortical surface data, a two-step analysis approach was used, due to the high clinical variability between the m.3243A > G patients, for detection of (1) within- and (2) between-group brain differences. First, a whole-brain vertex-wise linear regression analysis was performed to detect clusters of vertices, for which cortical thickness (as measure of cortical atrophy), T_1, T_2^* and CBF are significantly negatively or positively correlated with mutation load (in blood) in m.3243A > G patients. Here, age and gender were used as nuisance variables and corrected for multiple comparisons (i.e. number of vertices in left and right hemispheres) using Monte Carlo Null-Z simulation with a voxel-wise threshold of 2.0 (cluster-wise p-value of < 0.01). A more lenient cluster-wise p-value of < 0.05 was used for T_1, T_2^* and CBF in a separate, additional analysis to also highlight subtle, but still significant, changes as a function of mutation load. This was motivated by the hypothesis that T_1, T_2^* and CBF differences do not per se have to concur with, but can also pre- and/or proceed cortical thickness alterations. Second, significant clusters (per parameter) were then used to compare between groups using an ANOVA test, corrected for age and gender.

3. Results

The healthy control subjects ($N = 15$) were matched to the m.3243A > G patients ($N = 22$) on the basis of age (χ^2 test, $p = 0.487$), gender ($p = 0.538$) and educational level ($p = 0.838$), see Table 1. Significant higher fasting glucose (ANOVA, $F_{1,32} = 11.14$, $p = 0.002$) and HbA1c ($F_{1,32} = 12.75$, $p = 0.001$) levels were detected in m.3243A > G patients compared to controls, after accounting for age, gender and BMI (body mass index). The Barthel index was, except for one patient with a score of 16 (i.e. moderate to good self-supporting), maximal. Scores for the NMDAS ranged between 0 and 26 with a median score of 8.5 ($IQR = 4–13$).

3.1. m.3243A > G clinical characteristics

The mutation load in blood was significantly correlated with the mutation load in UECs (Pearson correlation, $r_{18} = 0.757$, $p < 0.001$, see Fig. 1A) and was on average 2.95 (± 1.40) times lower than in UECs. The median m.3243A > G percentage in blood of 23% was used to subdivide patients in P_{low} (< 23%, filled dots in Fig. 1A) or P_{high} (≥ 23%, empty dots). Correlation analyses revealed that both the mutation loads in blood ($r_{18} = 0.473$, $p = 0.035$, see Fig. 1B) and UECs ($r_{18} = 0.550$, $p = 0.012$, not shown) are positively correlated (after correcting for age and gender) with the NMDAS score. Increasing mutation load in blood, not UECs, was correlated with worse cognitive test performances for the LDST (Pearson correlation, $r_{18} = -0.745$, $p = 0.005$) and Stroop tasks ($r_{18} = 0.599$, $p = 0.025$, not shown), corrected for age, gender and education.

Hearing loss was the most prevalent observed symptom within the m.3243A > G patient group (P_{low} vs. P_{high}: 50 vs. 75%), as can be observed in Fig. 1C. This was followed by diabetes mellitus (60 vs. 58.3%), exercise intolerance (30 vs. 75%) and tiredness (40 vs. 66.7%). Migraine (30 vs. 41.7%) and muscle cramps (10 vs. 41.7%) are moderately observed, while cardiomyopathy (10 vs. 25%), underweight (0 vs. 33.3%), cognitive decline (10 vs. 16.7%), epilepsy (10 vs. 8.3%), swallowing problems and SLEs (both 0 vs. 8.3%) are only observed in few patients. There was a significantly higher prevalence of exercise intolerance (Pearson χ^2 test, $p = 0.035$) in the P_{high} group compared to the P_{low} group.

3.2. Global brain morphology

Example quantitative T_1, T_2^* and CBF maps for a control subject and an m.3243A > G patient of comparable age (66 vs. 67 yrs. old) are depicted in Fig. 2 across several axial slices. Note that, because we acquired quantitative MRI parameters, we can choose the same absolute scale for all subjects allowing us to examine quantitative MRI differences in addition to local contrast differences, typically indicative of lesions and atrophy. Clear signs of WMIs (see dashed blue box) were visible in both the patient’s T_1, T_2^* maps and were characterized by increased T_1 and T_2^* relaxation times. In addition, a larger subcerebrospinal fluid volume (i.e. increased space between neighboring gyri) was visible for the patient, suggesting gray and/or white matter volume loss. In addition, with respect to the cerebellum, larger inter-folial spaces were visible for several patients (not shown). Possible differences regarding (sub)cortical perfusion (bottom row) were more difficult to detect visually and needed quantitative analysis. Therefore, we examined the normalized T_1, T_2^* and CBF distributions for both cGM and WM tissue. Both cGM and WM T_1 showed a significant increase as a function of mutation load (see Supplementary Fig. 1).

The total volume (in mm3, including left and right hemispheres, corrected for eTIV) was computed for each structure (cGM, ventricles, subcortical GM and cerebellar GM, see Figs. 3A-D, respectively) to characterize the morphological differences between groups. WM and cerebellar WM volumes are shown in Supplementary Fig. 2A and B, respectively. Significantly different brain volumes were detected across groups (MANOVA, Wilks’ Lambda = 0.438, $F_{12,54} = 2.298$, $p = 0.019$).

Here, the cGM as well as the WM volume were significantly different between groups ($F_{2,32} = 7.783$, $p = 0.002$ and $F_{2,32} = 5.090$, $p = 0.012$, respectively). Similarly, group differences were observed for the ventricles ($F_{2,32} = 4.101$, $p = 0.026$) and subcortical ($F_{2,32} = 5.670$, $p = 0.008$) and cerebellar GM ($F_{2,32} = 8.506$, $p = 0.001$) volumes, but not for the cerebellar WM volume. Significant differences were only found when comparing the control subjects with the P_{high} group (p = 0.002 for cGM, $p = 0.010$ for WM, $p = 0.024$ for the ventricles, $p = 0.035$ for subcortical GM, $p = 0.001$ for cerebellar GM) but not with the P_{low} group, except for the subcortical GM ($p = 0.021$). Significant correlations were observed between mutation load and each structure’s volume (Pearson correlation, $r_{18} = -0.282$, $p = 0.005$ for cGM, $r_{18} = -0.228$, $p = 0.024$ for WM, $r_{18} = -0.604$, $p = 0.008$ for the ventricles and $r_{18} = -0.074$, $p = 0.008$ for cerebellar GM) across patients, except for the subcortical GM and cerebellar WM. Note that we did not correct for fasting glucose status, as this did not significantly affect the structures’ volume within the patient group. Finally, no differences were observed across groups with regards to eTIV.

3.3. Fine-scale cortical morphology, microstructure and perfusion

Several cortical ROI clusters of vertices showed a significant (cluster-wise p-value of < 0.01) negative correlation between cortical thickness and mutation load in blood, see Fig. 4A (delineated by yellow lines). In general, the clusters encompassed regions predominantly within (relative to the FreeSurfer’s annotation) the middle frontal gyrus, parietal (including preunecus) and superior temporal lobes. Strikingly, no significantly correlated clusters remained after multiple comparison correction when repeating the same analyses using mutation load in UECs. Similar analyses were performed using T_1, T_2^* or CBF instead of cortical thickness (see Fig. 4B-D, respectively). T_1 and T_2^* increased as a function of mutation load (cluster-wise p-value of < 0.05) in pre- and post-central sulci, as well as in the occipital lobes, preunecus and insula for T_2^*. Increasing CBF was found in the superior frontal sulci. To visualize the overlap of the findings using the different MRI modalities, significant clusters (vertex-value = 1) were summed and color-coded, ranging between 1 (green)-4 (purple), see Fig. 4E. Most overlap was observed near the central sulci, frontal gyri, occipital lobes and preunecus.

Z-scores were computed per cluster for each parameter and subsequently averaged to compare across groups. Group-wise averages revealed a significant lower cortical thickness in the m.3243A > G
Fig. 2. Example MRI data. T_1 (msec, A), T_2^* (msec, B) and CBF (ml/100 g/min, overlaid onto T_1 map, C) maps are shown for a single control subject (left, age = 66 yr, M) and m.3243A > G patient (right, age = 67 yr, F). White matter lesions are highlighted by the dashed blue box and z-coordinates are shown (MNI-space) as reference.
Fig. 3. Between and within (i.e. mutation load effect) group comparison of the brain structure's volumes. Bar plots display unadjusted mean (± S.D.) volumes for total gray matter (A), ventricles (B), subcortical (C) and cerebellar (D) gray matter volumes for controls (black) and P_low (filled red) and P_high (dashed red bars) mutation load in blood. Boldface p-values indicate a significant difference between groups after correction for age, gender and multiple comparisons. Scatterplots show the correlation between volume and mutation load in blood for m.3243A > G patients (P_low: filled and P_high: empty red dots), adjusted for age and gender. Mean volume for each control subject (black dots) are displayed for reference and red solid lines represent the best fit ± 95% CIs. Boldface p-values indicate a significant correlation between mutation load in blood and volume after correcting for age and gender. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
patients (including both P_{low} and P_{high} patients, ANOVA, $F_{1,33} = 5.646$, $p = 0.023$) compared to controls (see Fig. 5A). No significant differences were observed across groups for the T_1, T_2^* and CBF data (see Fig. 5B–D), but compared to the controls, lower T_1 was observed for P_{low}, while a slightly higher T_1 is observed for P_{high}. A similar, but less apparent, pattern was observed for the T_2^* and CBF data.

Analogous to cGM, subcortical (i.e. alongside the cGM clusters) WM T_1 and T_2^* were compared across groups (see Supplementary Fig. 2A). WM T_1 and T_2^* were not significantly different across groups. However, WM T_2^* increased with mutation load in blood within the m.3243A > G patients (Pearson correlation, $r_{18} = 0.454$, $p = 0.044$). A similar, but less apparent, pattern was observed for the T_2^* and CBF data.

3.4. Subcortical and cerebellar morphology, microstructure and perfusion

Reduced subcortical GM volume was observed for both the P_{low} and P_{high} groups compared to the controls, but no effect of mutation load (see Fig. 3D). Group-averaged volumes for each subcortical structure (see Fig. 6A) individually are plotted (see Fig. 6B) and highlights significantly reduced volume in the m.3243A > G patients compared to controls (MANOVA, Wilks’ Lambda = 0.616, $p = 0.025$) for the Pu ($F_{1,33} = 8.959$, $p = 0.005$) and GP ($F_{1,33} = 4.621$, $p = 0.039$). No clear microstructural changes, i.e. between groups or as function of mutation load, in the subcortical structures were present. However, several patients showed signs of spongiotic lesions in the Pu and GP that were characterized by high T_1 and T_2^*, locally (see for example Fig. 6A for one subject). CBF increased with mutation load (Pearson correlation, $r_{18} = 0.489$, $p = 0.029$).

More pronounced effects were observed for cerebellar GM (see Fig. 7). Here, T_1 was significantly higher for m.3243A > G (ANOVA, $F_{1,33} = 12.947$, $p = 0.001$) and especially for the P_{high} group compared to controls ($F_{2,32} = 9.915$, $p < 0.001$, see Fig. 7A, top row). Moreover, T_1 increases as a function of mutation load ($r_{18} = 0.485$, $p = 0.030$, see Fig. 7B). In contrast, T_2^* was comparable across groups and did not correlate with mutation load. Similar but fewer significant findings were shown for cerebellar WM (see Supp. Fig. 2B).

4. Discussion

Mitochondrial dysfunctioning, either induced by acquired damage
throughout life (such as by nucleases and reactive oxygen species) and/or by de novo or maternally inherited germline variations of the mtDNA, has been consistently linked to neurodegeneration (Keogh and Chinnery, 2015). While several mtDNA mutations are known to affect the brain (Reeve et al., 2008), the current study focussed on the effects of the m.3243A > G genotype (i.e. mutation load) on the brain tissue using multiple parametric maps acquired with 7T MRI and compared these data to values obtained on healthy controls.

4.1. Mutation load and clinical characteristics

In the current study, we assessed mutation loads in both UECs and blood. Despite the mutation load in blood (leukocytes) being significantly lower compared to that in UECs, albeit comparable to that observed in earlier studies (Fayssoil et al., 2017; Shanske et al., 2004; Whittaker et al., 2009), both measures strongly correlated (de Laat et al., 2012; Frederiksen et al., 2006). It is known that the mutation load in blood decreases over lifetime with a constant rate of 1.4% per year (Rahman et al., 2001), while the mutation load in UECs is considered to be more consistent with age. Here, the loss of the m.3243A > G mutation in blood presumably originates from a selection against pathogenic mtDNA mutations in a stem cell population (Rajasimha et al., 2008).

Hearing loss was the most prevalent symptom within the current study population, followed by exercise intolerance and diabetes mellitus. This matches with the MELAS and MIDD-like phenotypes associated with the m.3243A > G mutation and is in line with previous findings, reporting comparable numbers across their study cohorts (de Laat et al., 2012; Fayssoil et al., 2017; Nesbitt et al., 2013). In addition, we found a significant correlation between mutation load (in blood and UECs) and NMDAS score, as also shown in previous studies (de Laat et al., 2012; Whittaker et al., 2009). The observed differences between the P_{low} and P_{high} groups in terms of symptoms prevalence, especially in the myopathy-related symptoms (e.g. exercise intolerance), can partly be explained by the “mitochondrial threshold effect” (Rossignol et al., 2003). The significant correlation between the proportion of apoptotic muscle fibers and the proportion of mutant mtDNA exemplifies this hypothesis (Aure et al., 2006). It is known that the mitochondrial copy number can compensate and can be increased by physical exercise, implying the mutation load is not the only factor involved. Like muscle cells, neurons are post-mitotic and therefore are likely to behave similarly. Comparable mutation loads were detected across several brain regions to those in skeletal muscle. However, it is not known how the mutation load in neurons develops over lifetime (Betts et al., 2006). We have found that the mutation load in blood is a better marker for cognitive performances and brain functioning in m.3243A > G patients than the mutation load in UECs, even though both mutation loads are correlated to each other. The reason for this discrepancy is unknown, but may be specific to the age-range of the current patient population.

4.2. Brain morphological markers of the m.3243A > G mutation

The current results present strong evidence of a mutation load effect within the patient population on global brain volume, in addition to widespread lower brain volume in the patients compared to controls. While patients with a low mutation load are characterized by normal-appearing brains, stronger brain atrophy is observed in patients with higher mutation load. This was especially apparent in the cortical and...
cerebellar GM, but not for the subcortical structures, which is in accordance with biochemical analyses of post-mortem brains (Sparaco et al., 2003). Strongest local cGM atrophy and reduced cortical thickness as a function of m.3243A > G mutation load was observed in regions linked to: (i) auditory processing (superior temporal cortices), (ii) attentional control (middle frontal and parietal gyri and anterior cingulate cortices), (iii) sensorimotor network (central sulci and neighboring gyri) and (iv) default mode network (precuneus). These latter two structures were also observed by a recent study that used voxel-based morphometry to characterize morphological differences between

Fig. 6. Between and within group comparison of subcortical structures. ROIs (1 = RN, 2 = SN, 3 = CN, 4 = Pu, 5 = GP and 6 = DN) are displayed schematically in A. Mean subcortical gray matter volume (B) and T_1, T_2^* and CBF (C) are compared across groups (controls: filled black, P_{low}: filled red and P_{high}: dashed red bars) per ROI. Scatterplots display the correlation between mean (z-scored relative to controls and averaged across ROIs) T_1, T_2^* and CBF vs. mutation load in blood (D). Mean values for controls (black dots) are displayed for reference and red solid lines represent the best fit ± 95% CIs. Boldface p-values indicate a significant correlation between mutation load in blood and cortical thickness, T_1, T_2^* or CBF after correction for age and gender. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
m.3243A > G patients and healthy controls (Tsujikawa et al., 2016). Notably, significant local correlations, after correction for multiple comparisons, between cortical thickness and mutation load were only found for values from the blood.

The neuropathological effects of the mutation load in some brain areas, but not in others, signify the differential abilities of neurons to survive respiratory chain deficiencies (Betts et al., 2006). More work has to be performed, particularly using invasive cellular methods, to establish the link between mitochondrial dysfunction and macroscopic brain changes, as detected with non-invasive MRI. Nevertheless, the observed brain patterns can be readily related to the different clinical symptoms often observed in m.3243A > G patients, such as the currently high prevalence of hearing impairment. Since auditory brainstem responses are often preserved, it is likely of cochlear origin (Kullar et al., 2016). In addition, the severity of the hearing loss correlates with the mutation load, being worse in patients with a higher mutation load (Chinnery et al., 2000). Therefore, decreasing cortical thickness and atrophy in the regions linked to auditory processing (auditory cortex, planum temporale and superior temporal sulcus and gyrus) with increasing m.3243A > G mutation load, are most likely caused by impaired cochlear functioning (Eckert et al., 2012; Formisano et al., 2008; Syka, 2002).

Even though the cortical thinning in the auditory regions may predominantly occur after cochlear damage, the morphological differences in the other affected brain regions may be induced through direct interferences of the mutation on neuronal integrity through, for example, neuronal hyperexcitability (Iizuka et al., 2003; Iizuka et al., 2002). Impaired mitochondrial protein (i.e. OXPHOS subunits) synthesis due to a defective tRNALeu(UUR) has been shown in the cerebral and cerebellar cortex of post-mortem m.3243A > G brains (Sparaco et al.,

![Fig. 7. Between and within group comparison of cerebellar GM. Dot plots in A display unadjusted mean (± S.D.) cerebellar GM T_1 (top) or T_2^* (bottom) values for controls (black), P_{low} (filled red) and P_{high} (empty red dots). Boldface p-values indicate a significant difference between groups after correction for age, gender and multiple comparisons. Scatterplots in B show the correlation between T_1 or T_2^* and mutation load in blood for m.3243A > G patients (P_{low}: filled and P_{high}: empty red dots), adjusted for age and gender. Mean T_1 or T_2^* for each control subject (black dots) are displayed for reference and red solid lines represent the best fit ± 95% CIs. Boldface p-values indicate a significant correlation between mutation load in blood and cerebellar T_1 or T_2^* after correction for age and gender. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)](image)
2003). Here, changes were mostly found in the intermediate layers of cGM regions, with a higher degree of cellular dependence on oxidative metabolism, and in the cerebellar Purkinje cells, respectively. As such, neuronal changes may occur especially in brain regions characterized by a high (baseline) energy demand and/or functional connectivity or cerebellum (i.e. metabolic hypothesis), depending on the mutation load similar to that observed in skeletal muscle cells (Aure et al., 2006). These high energy consuming brain areas include regions related to the default mode, dorsal attention and sensorimotor networks (Tomasi et al., 2013), in agreement with our findings of atrophy in these regions, such as in the precuneus, middle frontal gyrus and central sulcus (somatosensory and motor cortices), respectively. The cortical thinning observed in regions associated with attentional control/executive functioning, such as the middle frontal and parietal gyri and anterior cingulate cortices (Milham et al., 2002), are consistent with behavioral symptoms, e.g. patients with a higher mutation load performed worse on the Stroop task. In particular, OXPHOS deficits-susceptible inhibitory interneurons may play a prominent role in the cognitive dysfunctioning observed in mitochondrial disease patients (Finsterer, 2012; Lax et al., 2016).

Comparable to the cGM atrophy, cerebellar GM atrophy was most pronounced in the high mutation load group compared to patients with a lower mutation load, quantified by a volume loss or illustrated by larger inter-folial spaces. Previously, studies have shown that the cerebellum is highly vulnerable to mitochondrial dysfunctioning (Scaglia et al., 2005) due to respiratory chain deficiencies of complex I and IV, leading to cerebellar atrophy by Purkinje and granule cell loss (Lax et al., 2012; Sparaco et al., 2003). This is consistent with the fact that cerebellar ataxia is commonly described in mtDNA patients (de Laat et al., 2012; Lax et al., 2012). As for cerebellar GM, smaller subcortical volume was observed for the patients compared to the healthy controls, in particular in the Pu and GP (i.e. lentiform nucleus), structures especially involved in motor execution (Middleton and Strick, 2000). The volume loss correlates with the described neuronal vacuolization (i.e. spongiosis) in both these structures for several patients, potentially resulting from abnormalities within the vascular smooth muscle and endothelial cells (i.e. vascular hypothesis, Betts et al. (2006)) or from astroglial pathogenesis (Bugiani et al., 2017; van der Knaap et al., 2012). However, in contrast to the cortical and cerebellar GM, the mutation load did not affect the degree of subcortical atrophy. This may imply that the causal mechanism is different compared to that underlyng cortical atrophy (e.g. vascular vs. metabolic hypotheses). Generally, by taking together the cortical atrophy in sensorimotor regions, subcortical (i.e. lentiform nucleus) and cerebellar GM volume losses, the current results suggest a global brain-wide impaired motor functioning (Seidler et al., 2015). These changes are excellent brain functioning observed in mitochondrial disease patients (de Laat et al., 2012).

4.3. Cortical microstructure- and metabolic-related markers of the m.3243A > G mutation

Besides macroscopic morphological differences, T1, T2* and CBF significantly varied (i.e. increased) as a function of mutation load in several cGM regions. Differences in quantitative T1 and T2* across the brain are predominantly attributed to varying myelin and iron content between brain structures and regions (Stuber et al., 2014). In line with earlier work that showed delayed or decreased myelination in patients affected by respiratory chain defects (Dinopoulos et al., 2005; Lax et al., 2016; Sofou et al., 2013), positive correlations between T1 and T2* values with mutation load within the patient population were observed, in particular in the primary- and heavily-myelinated regions of the cGM, including the somatosensory- and motor cortices (Haast et al., 2016), but also in cerebellar GM. In general, increased T1 and T2* implicate lower levels of myelin (Stuber et al., 2014). Decreased myelin synthesis, due to the defective cellular energy production during the critical time of myelin development in early life, may have resulted in the increasing T1 and T2* with mutation load. Furthermore, we observed higher CBF in the subcortical structures as well as in the superior frontal gyrus, for patients with a higher mutation load. These effects could be induced (i) by the altered vascular functionality (e.g. related to the subcortical spongiosis and vascular abnormalities), (ii) by a compensatory mechanism for the impaired neuronal energy production or (iii) as an attempt to reduce the increased brain lactate (or other potentially harmful compounds) levels, as argued by Rodan et al. (2015).

However, when the patient populations are compared against controls, surprisingly, the metabolic-, but also microstructural-related characteristics do not follow the expected linear change as a function of mutation load, but a U-shaped dependency across groups. That is, MRI values over the entire cortex of Phigh patients and healthy subjects are similarly different than those of the Plow patients. Two hypotheses could explain this observed pattern: i) the dip in cortical CBF, T1 and T2* values for the Plow patients may signify that certain compensatory mechanisms are initiated only in the Phigh patients (i.e. mitochondrial threshold effect). That is, for the Plow group, there is only a mild loss in e.g. myelination, which does not evoke/necessitate activation of local molecular pathways to compensate for this loss. However, for the Phigh group, compensatory mechanisms are necessary to maintain functioning of the respective brain area. In fact, delayed myelination in the Phigh group, as described above, may have led to global myelination levels similar to control ranges, as suggested by the correspondence between the range of T1 and T2* values observed in the group-wise comparison between controls and patients, confirming earlier claims (Dinopoulos et al., 2005; Sofou et al., 2013). Alternatively, ii) T1, T2* and brain metabolic changes have many biochemical and microscopic contributions, which do not have to follow the same dependency on mutation load. For example, T1 increases as a function of both myelin and iron. That is, a decrease in myelin has an opposing effect on the resulting T1 values than an increase in iron content, and the latter change is a common observation in many neurodegenerative diseases. Thus, it is reasonable to assume that myelination decreases and iron content increases as a function of mutation load but they have different dependencies on the m.3243A > G mutation load, leading to the U-shape function observed pattern for T1. In contrast to the observed cortical pattern, the increased cerebellar GM T1 observed in patients compared to controls, in addition to the unchanged T2*, may implicate predominantly myelin loss secondary to neuronal and axonal loss (Lax et al., 2012; Virtanen et al., 2011).

Interestingly, T1 and T2* differences in the subcortical structures were absent, which is indicative for subcortical biochemical changes that may be more specific for certain mtDNA mutations (Barragan-Campos et al., 2005; Bindu et al., 2015). This is in sharp contrast to previously observed subcortical T1w and T2w changes (Tschampa et al., 2013). However, it is important to note that most of the available MRI studies on mitochondrial diseases, if not all, employed data acquired using conventional clinical, non-quantitative MRI approaches, such as FLAIR. These do not provide quantitative markers of the underlying biochemical composition of the tissue, as the MRI signal intensity are additionally influenced by MRI sequence parameters and the hardware setup (such as transmit and receive imaging coils) (Bock et al., 2013; Lorio et al., 2016). Moreover, clinical scans typically have anisotropic voxel sizes, increasing partial voluming effects and mixing signals originating from WM and GM or spongiotic tissue and subcortical GM. Therefore, quantitative interpretation of data acquired for diagnostic purposes is challenging, as interpretations of such data contributions are confounded by many other MRI acquisition and physiological parameters (e.g. transmit and receive RF fields, proton density, relaxation rates, macromolecule concentrations (Haast et al., 2016)). In summary, these results exemplify the benefits of a multi-parametric MRI protocol, as they allow discerning the biochemical causes of brain changes in disease and reliable intra- and inter-subject comparisons.
5. Conclusions

In conclusion, the current work utilized high-resolution MRI data acquired using 7T MRI to quantify brain changes in a representative population of m.3243A > G patients. The data revealed neuroradiological (i.e. morphology, microstructure- and metabolism-related) changes in patients with varying levels of mutation load, including those with a mutation load lower than previously observed threshold levels, compared to healthy controls (see Supplementary Table 2 for an overview). Interestingly, mutation load in blood compared to UECs provides a better estimate of the brain changes. The observed changes are widespread, but mainly affect GM, and are consistent with the different clinical symptoms. However, the underlying biological mechanisms and timing may vary across brain structures/regions. Our results, thus, indicate the value of quantitative MRI at 7T to determine pathophysiological effects of the m.3243A > G mutation on brain structure and function for various mutation loads. Future longitudinal quantitative MRI but also in vitro studies are necessary to track the progression of the detected MRI-based biomarkers to improve the understanding of the disease pathogenesis and clinical symptoms development.

Acknowledgments

The authors are indebted to Prof. Dr. Andrew Webb (Leiden University Medical Centre, Leiden, Netherlands), Dr. José Marques (Donders Institute for Brain, Cognition and Behaviour, Nijmegen, Netherlands) and Dr. Florence van Tienen for providing the dielectric pads, the MATLAB code to perform the T1 correction and help with the genetic analyses used in this study, respectively. This work was supported by Maastricht University, the Netherlands Organization for Scientific Research (NWO; VIDI grant 452-11-002 to K.U.), Technology Foundation STW (12724 to E.F.) and Ride4Kids, Join4Energy and Nederlandse Vereniging对 MELAS and MERRF. The relationship between mutation load and clinical phenotypes in MELAS syndrome: a molecular clinicopathological study. J. Neuropathol. Exp. Neurol. 71, 1069–1081.

References

Aure, K., Fayet, G., Leroy, J.P., Lacene, E., Romero, N.B., Lombe, A., 2006. Apoptosis in mitochondrial myopathies is linked to mitochondrial proliferation. Brain 129, 1249–1259.

Barragan-Campos, H.M., Vallejo, J.N., Lo, D., Barragan-Campos, H., Vallee, J.N., Lo, D., Barrera-Ramirez, C.F., Argote-Greene, M., 2012. Optimization of simultaneous multislice EPI for concurrent functional perfusion and BOLD signal arterial spin-labeling perfusion MRI in MELAS patients. Mitochondrion 13, 676–684.

Ikawa, M., Yoneda, M., Muramatsu, T., Matsunaga, A., Tsujikawa, T., Yamamoto, T., Iizuka, T., Sakai, F., Suzuki, N., Hata, T., Tsukahara, S., Fukuda, M., Takiyama, Y., 2002. Slowly progressive spread of the stroke-like disease: a molecular clinicopathological study. J. Neuropathol. Exp. Neurol. 71, 1069–1081.

Keefe, M.J., Chimney, P.F., 2015. Mitochondrial DNA mutations in neurodegeneration. Biochim. Biophys. Acta 1847, 1401–1411.

Keenren, M., Bazin, P.L., Backhouse, K., Beehuizenes, S., Himmer, L., Kandola, A., Lafeber, J.J., Prochazkova, L., Trutt, A., Schafer, A., Turner, R., Forstmann, B.U., 2017. Effects of aging on T1, T2, and QSM MRI values in the subcortex. Brain Struct. Func. 222, 2487–2505.

van der Knaap, M.S., Boor, I., Estevé, R., 2012. Megalencephalic leuкоencephalopathy with subcortical cysts: chronic white matter oedema due to a defect in brain iron and water homeostasis. Lancet Neurol. 11, 973–985.

Kollé, K., Madewald, S., Putzki, N., Schlemann, M., Threysohm, J.M., Kräf, O., Ladd, M.E., Forsting, M., Wanke, I., 2009. First clinical study on ultra-high-field MR imaging in patients with multiple sclerosis: comparison of 1.5T and 7T. AJNR Am. J. Neuroradiol. 30, 699–702.

Kullar, P.J., Quaill, J., Lindsey, P., Wilson, J.A., Horvath, R., Yu-Wai-Man, P., Gorman, G.S., Taylor, R.W., Ng, Y., McFarland, R., Moore, B.C., Chinnery, P.F., 2016. Both mitochondrial DNA and mitonuclear gene mutations cause hearing loss through co-transport effects of aging on T1, T2, and QSM MRI values in the subcortex. Brain Struct. Func. 222, 2487–2505.

van der Knaap, M.S., Boor, I., Estevé, R., 2012. Megalencephalic leuкоencephalopathy with subcortical cysts: chronic white matter oedema due to a defect in brain iron and water homeostasis. Lancet Neurol. 11, 973–985.

Kollé, K., Madewald, S., Putzki, N., Schlemann, M., Threysohm, J.M., Kräf, O., Ladd, M.E., Forsting, M., Wanke, I., 2009. First clinical study on ultra-high-field MR imaging in patients with multiple sclerosis: comparison of 1.5T and 7T. AJNR Am. J. Neuroradiol. 30, 699–702.

Kullar, P.J., Quaill, J., Lindsey, P., Wilson, J.A., Horvath, R., Yu-Wai-Man, P., Gorman, G.S., Taylor, R.W., Ng, Y., McFarland, R., Moore, B.C., Chinnery, P.F., 2016. Both mitochondrial DNA and mitonuclear gene mutations cause hearing loss through co-transport effects of aging on T1, T2, and QSM MRI values in the subcortex. Brain Struct. Func. 222, 2487–2505.

van der Knaap, M.S., Boor, I., Estevé, R., 2012. Megalencephalic leuкоencephalopathy with subcortical cysts: chronic white matter oedema due to a defect in brain iron and water homeostasis. Lancet Neurol. 11, 973–985.

Kollé, K., Madewald, S., Putzki, N., Schlemann, M., Threysohm, J.M., Kräf, O., Ladd, M.E., Forsting, M., Wanke, I., 2009. First clinical study on ultra-high-field MR imaging in patients with multiple sclerosis: comparison of 1.5T and 7T. AJNR Am. J. Neuroradiol. 30, 699–702.

Kullar, P.J., Quaill, J., Lindsey, P., Wilson, J.A., Horvath, R., Yu-Wai-Man, P., Gorman, G.S., Taylor, R.W., Ng, Y., McFarland, R., Moore, B.C., Chinnery, P.F., 2016. Both mitochondrial DNA and mitonuclear gene mutations cause hearing loss through co-transport effects of aging on T1, T2, and QSM MRI values in the subcortex. Brain Struct. Func. 222, 2487–2505.

van der Knaap, M.S., Boor, I., Estevé, R., 2012. Megalencephalic leuкоencephalopathy with subcortical cysts: chronic white matter oedema due to a defect in brain iron and water homeostasis. Lancet Neurol. 11, 973–985.

Kollé, K., Madewald, S., Putzki, N., Schlemann, M., Threysohm, J.M., Kräf, O., Ladd, M.E., Forsting, M., Wanke, I., 2009. First clinical study on ultra-high-field MR imaging in patients with multiple sclerosis: comparison of 1.5T and 7T. AJNR Am. J. Neuroradiol. 30, 699–702.

Kullar, P.J., Quaill, J., Lindsey, P., Wilson, J.A., Horvath, R., Yu-Wai-Man, P., Gorman, G.S., Taylor, R.W., Ng, Y., McFarland, R., Moore, B.C., Chinnery, P.F., 2016. Both mitochondrial DNA and mitonuclear gene mutations cause hearing loss through co-transport effects of aging on T1, T2, and QSM MRI values in the subcortex. Brain Struct. Func. 222, 2487–2505.

van der Knaap, M.S., Boor, I., Estevé, R., 2012. Megalencephalic leuкоencephalopathy with subcortical cysts: chronic white matter oedema due to a defect in brain iron and water homeostasis. Lancet Neurol. 11, 973–985.

Kollé, K., Madewald, S., Putzki, N., Schlemann, M., Threysohm, J.M., Kräf, O., Ladd, M.E., Forsting, M., Wanke, I., 2009. First clinical study on ultra-high-field MR imaging in patients with multiple sclerosis: comparison of 1.5T and 7T. AJNR Am. J. Neuroradiol. 30, 699–702.

Kullar, P.J., Quaill, J., Lindsey, P., Wilson, J.A., Horvath, R., Yu-Wai-Man, P., Gorman, G.S., Taylor, R.W., Ng, Y., McFarland, R., Moore, B.C., Chinnery, P.F., 2016. Both mitochondrial DNA and mitonuclear gene mutations cause hearing loss through co-transport effects of aging on T1, T2, and QSM MRI values in the subcortex. Brain Struct. Func. 222, 2487–2505.

van der Knaap, M.S., Boor, I., Estevé, R., 2012. Megalencephalic leuкоencephalopathy with subcortical cysts: chronic white matter oedema due to a defect in brain iron and water homeostasis. Lancet Neurol. 11, 973–985.

Kollé, K., Madewald, S., Putzki, N., Schlemann, M., Threysohm, J.M., Kräf, O., Ladd, M.E., Forsting, M., Wanke, I., 2009. First clinical study on ultra-high-field MR imaging in patients with multiple sclerosis: comparison of 1.5T and 7T. AJNR Am. J. Neuroradiol. 30, 699–702.

Kullar, P.J., Quaill, J., Lindsey, P., Wilson, J.A., Horvath, R., Yu-Wai-Man, P., Gorman, G.S., Taylor, R.W., Ng, Y., McFarland, R., Moore, B.C., Chinnery, P.F., 2016. Both mitochondrial DNA and mitonuclear gene mutations cause hearing loss through co-transport effects of aging on T1, T2, and QSM MRI values in the subcortex. Brain Struct. Func. 222, 2487–2505.
