Epidemiology of Accidental Radiation Exposures

Elisabeth Cardis
Programme on Radiation and Cancer, International Agency for Research on Cancer, Lyon, France

Much of the information on the health effects of radiation exposure available to date comes from long-term studies of the atomic bombings in Hiroshima and Nagasaki. Accidental exposures, such as those resulting from the Chernobyl and Kyshtym accidents, have as yet provided little information concerning health effects of ionizing radiation. This paper will present the current state of our knowledge concerning radiation effects, review major large-scale accidental radiation exposures, and discuss information that could be obtained from studies of accidental exposures and the types of studies that are needed. — Environ Health Perspect 104(Suppl 3):643–649 (1996)

Key words: radiation, cancer, risk estimation, accidents, low-dose, atomic bomb survivors, nuclear workers, Chernobyl

Introduction

Ionizing radiation is one of the agents in our environment for which genetic and cancer risks have been best studied and characterized to date. This is mainly due to two facts: large populations have been exposed and followed for decades and, compared to many other environmental agents, radiation exposures are relatively easy to reconstruct on an individual level, at least for exposures received at high exposure rates and high levels.

The information available to date on radiation risks comes from several sources. Epidemiological studies of large populations that have received relatively high doses of \(\gamma \) or X radiation at a high dose rate (atomic bomb survivors, patients treated by radiotherapy for malignant or benign diseases, occupational exposures in the early years of medical exposures) or high doses of \(\alpha \) particles in a protracted fashion over many years (hard rock, particularly uranium, miners) have been carried out (1–3). More recently, there have also been large-scale epidemiological studies of populations that have received low doses in a protracted fashion as a result of occupation, mainly in the nuclear industry (4,5). Large-scale animal experiments have been carried out in order to understand the effects of different radiation types, exposure levels, patterns of exposure, and modifying factors (1–3). There have also been cytogenetic, molecular, and genetic studies aimed at understanding the mechanisms of radiation-induced carcinogenesis (1,6).

Nonroutine environmental exposure to ionizing radiation of large populations has occurred through accidents but also through acts of war and war-related activities. Such exposures can be divided into two types: those that affect only a limited number of persons (mainly workers at the location of the accident) and those that involve large groups of the general population. Accidents limited to a few exposed persons are much more frequent than those yielding global environmental contamination and may go unreported. Most of the known accidents resulted in relatively high doses to small numbers of persons (7). Table 1 summarizes the main events that have resulted in large-scale radiation exposures. They vary substantially in terms of the size of the populations exposed and the level and type of exposures. Most of these have as yet provided little information concerning the carcinogenic and genetic effects of ionizing radiation. The exception is the study of survivors of the atomic bombings in Hiroshima and Nagasaki, which is the primary basis for radiation protection for X and \(\gamma \) radiation today.

Current Basis for Radiation Risk Estimates—The Atomic Bomb Survivors Study

Background

On 6 August and 9 August 1945, respectively, atomic bombs were dropped on the cities of Hiroshima and Nagasaki in Japan, bringing about, in a matter of days, the end of the Second World War in the Pacific. The bombs, by today's standards, were small, with yields between 10 and 20 kT of trinitrotoluene (TNT). Most of the resulting exposure was to \(\gamma \) rays and to some neutrons, and most of the dose to those who were in the cities at the time of the bombing was almost instantaneous (8). Follow-up of the health of the survivors started soon after the bombings; however, it was not until 1950, at the time of the national census, that an exhaustive list of the survivors was made by introducing a question in the census questionnaire concerning presence in Hiroshima or Nagasaki at the time of the bombings (12). Among the 195,000 survivors thus identified, a random sample of approximately 99,000, stratified on distance from the epicenter, and a sample of 26,000 who were not in the city were drawn in the early 1950s—the Life Span Study sample—and have been followed since then for mortality and cancer incidence. Subsamples of this population were drawn for clinical and reproductive history follow-up, and a sample of the offspring of the survivors was drawn for genetic follow-up.

Individual radiation dose was reconstructed for members of the Life Span Study and for children in utero at the time of the bombing, taking into account the location and position of the subjects at the moment of the bombing, the shielding situation, the weather, and results of atmospheric weapons tests and leakage experiments.
Doses among the study subjects ranged from 0 up to 6 Gy; the distribution of doses was skewed, with the majority of survivors receiving less than 200 mGy. In all, about 12,500 persons received doses of 1 Gy or above (9), and those tended to be the subjects who were closest to the epicenters. Several versions of the dose estimates have been derived over time. Those currently used are based on the Dosimetry System 86 (DS86) (8). The neutron component of the dose is currently being reevaluated (13), but this is unlikely to have a substantial impact on the risk estimates (14).

Because of the size of the exposed population, the availability of individual dose estimates, and the distribution of ages and sexes in the population of survivors, the Life Span Study is at present the most informative single study of radiation effects; it is the main basis for radiation risk estimates and radiation protection standards today (1,2,15,16).

Table 1. Characteristics of main large-scale accidental or nonroutine radiation exposures.

Name (reference)	Location	Exposure circumstances	Date	Number of exposed persons	Exposure type	Dose estimate
Hiroshima and Nagasaki (9,10)	Japan	War, atomic bombing	1945	195,000	Whole body to \(\gamma\) and neutrons	Range = 0–6 Gy
Average = 0.16 Gy						
2,500 persons, > 1 Gy						
Marshall Islands, Bikini atoll (6)	Pacific Ocean	Accidental exposures from thermonuclear test	1954	267 on atolls	Whole body, to \(\gamma\) and \(\beta\)	
Thyroid to \(^{131}\)I						
Whole body	Range = 1–2 Gy					
Range = 3–15 Gy						
Range = 2–6 Gy						
Kyshtym (6,10)	Southern Urals: Chelyabinsk, Sverdlovsk, and Tyumensk Provinces	Explosion of radioactive waste storage tank	1957	270,000	Whole body \(\gamma\) rays	
Internal	Range = 0–600 mSv					
Range = 0–520 mSv						
Average CEDE = 5–600 mSv						
7,300 persons, = 600 mSv						
Techa River, Lake Karachay (6,10)	Southern Urals	Routine discharge of radio-chemical production waste in river basin and lake	1949–1956	124,000 on river banks	Whole body to \(\gamma\)	
Internal to \(^{85}\)Sr, \(^{137}\)Cs	Total average marrow dose:					
Range = 0–4 Gy						
2,000 > 1 Gy						
Range AEDE = 35–1,700 mSv						
Range = 0–4,000 mSv						
Rest = 7 mSv						
Hanford†	Washington State	Release of radioactive iodine	1944–1947	270,000		
1,400 most exposed‡	Marrow					
External	Thyroid to \(^{131}\)I					
95% < 0.3 Gy						
Range = 0.15–6.5 Gy						
Median = 0.7 Gy						
Juarez (6)	Mexico	\(^{60}\)Co radiotherapy head opened	1983–1984	4,000	700 persons, 0.005–0.25 Gy	
80 persons, 0.25+ Gy						
5 persons, 3–7 Gy						
< 1 mSv						
100–2500 \(\mu\)Sv						
Windscale (6)	United Kingdom	Fire in reactor opened	1957	135,000 evacuees from 30 km zone	Whole body to \(\gamma\) rays	
Children	Range = 30–500 mSv					
Average = 120 mSv						
Average = 0.3 Gy						
Range = 0.1–2.5 Gy						
Average = 60 mSv						
4%, > 100 mSv						
800 persons, > 200 mSv						
Range = 0.1–10 Gy						
Chernobyl (6,11)	Ukraine	Destruction of reactor core	1986	270,000 in strict control zones	Thyroid to \(^{131}\)I,	
children
CEDE from \(\gamma\) rays
children | 600,000 clean-up workers
75 million in European part of USSR
200 evacuated
128 exposed
Whole body to \(\gamma\)
Range = 0–5.3 Sv |

AEDE, annual effective dose equivalent. †Life Span Study cohort with DS86 dose estimates (9). ‡Committed effective dose equivalent estimated for the 30 years after the accident. §Personal communication. ¶Infants and children drinking milk from cows in pasture.
Results
The early effects of the bombings have been extensively described: they included thermal, mechanical, and radiation (in particular radiation-induced bone-marrow depletion) injuries (17). Late effects observed among the survivors were cataracts (18) and increased cancer risk (9), as well as microcephalus and mental retardation in those exposed in utero (19). There was no apparent effect on life shortening and aging (20) and on the incidence of most noncancerous diseases (21). There was also no evidence of genetic effects (22,23).

Among cancers, the first increase was observed in leukemia mortality, which peaked in the period between 1950 and 1954 (9). Increases were observed for all leukemia subtypes except chronic lymphocytic leukemia (CLL) (24), a disease virtually unknown in Japan, and adult T-cell leukemia. Although the relative risk has decreased since then, it is still significantly elevated (24). The increased leukemia risk was the main long-term effect of radiation observed until 1970. Leukemia mortality is best described by a linear excess relative risk model of the form:

$$RR = 1 + \beta \alpha d$$

where \(d\) denotes the radiation dose, \(t\) attained age, \(e\) the age at exposure and \(s\) the sex of the subject (25,27). In this model, the cancer mortality among the exposed is proportional to that of the nonexposed and the latent period is independent of dose and age at exposure.

It is noteworthy that the total number of cancer deaths attributable to radiation among the atomic bomb survivors is relatively small: about 10% of the 6,000 solid cancer deaths and 55% of the 200 leukemia deaths observed to the end of 1985 (9). In the higher dose categories, however, most of the cancer deaths are attributable to radiation exposure. Despite this fact, this study is the most informative single study on radiation effects in humans. If no effort had been made to carry out a complete and systematic individual follow-up of the Life Span Study cohort with individual dose reconstruction, it may have been very difficult to detect the excess cancer risk.

Open Questions in Radiation Protection: What Can Be Learned from Other Exposure Circumstances?

Radiation protection today is primarily concerned with low-dose protracted exposures to ionizing radiation (such as are received by the general population from environmental sources or by occupational groups from their work with radiation), with host and environmental factors that may modify radiation-induced risks and with the effect of different types of radiation. The study of atomic bomb survivors alone cannot provide information to answer these questions for several reasons:

- Because of the nature of the exposure, the follow-up of the atomic bomb survivors provides little information on the risk related to low doses—of the order of 0.1 to 0.2 Gy—and no information on the effect of exposure protraction.
- The study population may be a selected sample of all survivors present in Hiroshima and Nagasaki at the time of the bombings because it was identified from a list of those alive in 1950. How large an impact this initial selection effect may have on the estimation of cancer risk 40 to 50 years after the bombing is a subject of debate.
- The study subjects are Japanese, exposed during wartime. It is possible that host and environmental factors modify the risk of radiation-induced cancer; thus, the choice of model to extrapolate risk estimates to populations with different background incidence and mortality rates of cancer is uncertain.
- The size of the study population is still small for the study of relatively rare malignancies.

It is therefore important to obtain complementary information on radiation risks from the study of other populations with different patterns of radiation exposure and different host and environmental characteristics. Studies of large numbers of patients irradiated for therapeutic purposes (for cancer or benign diseases) in Western Europe, North America and Israel have been carried out [for a detailed review, see (1,2)]. Overall, the results of these studies are consistent with those of the atomic bomb survivors, although studies of second cancer risk among patients having received radiotherapy for a first cancer appear to indicate a slightly lower risk of cancer per unit of radiation dose (28).

To extrapolate risks to exposure situations resulting in low doses received in a protracted fashion, most committees and regulatory bodies have chosen to divide estimates derived by linear extrapolation from atomic bomb survivors data by a factor ranging from 2 to 5, the dose/dose-rate effectiveness factor (DDREF), to account for the sparing effect of exposure protraction (1,2,15,16). There is much controversy about the appropriateness of this approach, however, with some scientists claiming that risks are in fact much higher and others that protracted low-dose exposures may reduce the risk of cancer. Studies of populations having received low-dose, low dose-rate exposures are now providing direct estimates of risk from such exposures.

Direct Estimates of the Effects of Low Doses and Dose Rates—Studies of Nuclear Workers

Studies of cancer risk among workers in the nuclear industry around the world are particularly well suited for the direct estimation of the effects of low doses and dose rates of ionizing radiation. This is because large numbers of workers have been employed by this industry since its beginning in the early to mid-1940s, because these populations are relatively stable, and because, by law, individual real-time monitoring of potentially exposed personnel has been carried out in most countries, at least for external higher energy exposures, and the measurements have been kept.

Published studies have covered cohorts of nuclear industry workers in the United
States, the United Kingdom, and Canada (29–54). Most of these studies have provided little evidence of dose-related increases in all cancer mortality, although statistically significant associations between mortality from all cancers combined and cumulative radiation dose were observed in two studies of Oak Ridge National Laboratory employees in the United States (49) and of the employees of the Atomic Weapons Establishment in the United Kingdom (40). The statistical power of individual studies was, however, low and in most cohorts the confidence intervals of the risk estimates were compatible with a range of possibilities, from negative effects to risks an order of magnitude greater than those on which current radiation protection recommendations are based. Combined analyses of data from some of these studies have therefore been carried out at the national and international levels (4,5,55–57) specifically to test the adequacy of existing risk extrapolations.

Table 2 presents the results of the International Agency for Research on Cancer (IARC) international combined analyses (5), carried out on 96,000 workers, and compares them to estimates obtained from IARC reanalyses of the atomic bomb survivors data. As in the latter study, a dose-related increase in leukemia mortality has been observed among nuclear industry workers; the estimate of risk per unit of radiation dose is intermediate between the linear and linear-quadratic extrapolations from atomic bomb survivors data (the latter estimate is one of the bases for current radiation protection recommendations). Given the width of the confidence interval, however, the workers' estimate is also compatible with a reduction of risk and with risks twice the linear extrapolation from atomic bomb survivors. The estimate for all other cancers combined is close to zero, but, like the leukemia estimate, the confidence interval includes the extrapolation from atomic bomb survivors.

The size of the estimated risk for low-dose protracted exposures is relatively small: the excessive relative risk (ERR) of 2.18/Sv for leukemia corresponds to a 22% increased risk of dying from leukemia for a dose of 100 mSv received in a protracted fashion. For comparison, although the current recommendations of the International Commission for Radiation Protection (15) are to limit doses to 100 mSv over 5 years for workers (and 1 mSv/year for the public), only 8% of the 96,000 workers in the combined data set received 100 mSv over their entire careers. The estimated number of leukemia deaths attributed to radiation exposure in this study was 9.7 (i.e., 8% of all leukemia deaths).

The estimates presented here from the combined analyses of worker studies (5) are the most comprehensive and precise direct estimates obtained to date. Although they are lower than the linear estimates obtained from studies of atomic bomb survivors, they are compatible with a range of possibilities, from a reduction of risk at low doses to risks twice those on which current radiation protection recommendations are based. Overall, however, the results of this study do not suggest that current radiation risk estimates for cancer at low levels of exposure are appreciably in error.

There remains uncertainty concerning the exact size of this risk, as indicated by the width of the confidence intervals presented. Further follow-up of these cohorts and careful studies of additional cohorts, such as those underway currently in 14 countries as part of the International Collaborative Study of Cancer Risk among Radiation Workers in the Nuclear Industry (58,59), are needed to reduce the uncertainty further.

Studies of Accidental and Nonroutine Exposures

Studies of other exposed populations, particularly the populations exposed accidentally, could also provide important information to answer the outstanding scientific and radiation protection questions. The effects of protracted exposures could be examined in studies of Chernobyl emergency accident workers and in populations living along the Techa River or exposed as a result of the Kyshtym accident. The effects of relatively low doses, such as those resulting from environmental exposures in areas contaminated by the Chernobyl accident; effects of exposure to different radionuclides and different types of radiation; and effects of factors that may modify radiation induced risks could also be studied.

To be informative, studies of accidentally exposed populations must, like the atomic bomb survivor and the nuclear worker studies, fulfill several important criteria: they must cover very large numbers of exposed subjects, the follow-up must be complete and nonselective, and precise and accurate individual dose estimates (or markers of exposure that are sensitive and specific) must be available.

Several papers in the current session cover aspects of the Chernobyl follow-up. Given the levels of environmental exposure of the general population (Table 1), the population movements that have taken place since the accident, and in the absence of systematic individual exposure estimates, it is unlikely that a follow-up of the general population living in contaminated territories will be very informative for radiation risk estimation.

The observation of an early and dramatic increase in the number of thyroid cancer cases in children (Table 3) in Belarus, Ukraine and, more recently, in Russia (60), however, may give important information about host and environmental factors that may modify the risk of radiation-induced cancer, in particular a possible genetic predisposition and stable iodine status (61). Studies are being set up to investigate this hypothesis.

Another potentially informative population exposed to radiation as a result of the Chernobyl accident is that of the clean-up or emergency accident workers (Table 1). Provided adequate estimates of individual exposure can be derived, either by questionnaire from official dosimetry records or by sensitive and specific biological markers, studies of emergency accident workers could provide important information on the effect of exposure rate and of different radionuclides (62). Large-scale analytic epidemiological studies of cancer risk

Table 2. Comparison of estimates of excess relative risk (ERR) per Sv (and 90% CI) between nuclear workers and atomic bomb survivors.

Population	All cancers except leukemia	Leukemia excluding CLL	
ERR/Sv	90% CI	ERR/Sv	90% CI
Nuclear workers data	-0.07 (-0.39,0.30)	2.18 (0.13,5.7)	
Atomic bomb, linear	0.18 (0.05,0.34)	3.67 (2.0,5.5)	
Atomic bomb, L-Q	—	1.42 (<0.65)	

Data from Cardis et al. (5). *Adjusted for age, socioeconomic status, facility, and calendar time. *Simulated confidence interval. *Atomic bomb survivors data adjusted for age, city, and calendar time; analyses carried out at IARC (5). *Based on the linear term of a linear-quadratic (L-Q) dose–response model in the atomic bomb survivors data.

646 Environmental Health Perspectives • Vol 104, Supplement 3 • May 1996
among these workers are now under way in Baltic countries and are starting in Belarus, Russia, and in the Ukraine.

Studies of populations environmentally exposed in the southern Urals (Table 1) are also underway (63,64). Given the size of the exposed populations and levels of exposures, if cohort ascertainment and follow-up can be systematic and complete and if reliable individual dose estimates can be obtained, these studies will provide very valuable information on the effects of dose protraction at different exposure levels and for different radionuclides.

References

1. National Academy of Sciences Committee on the Biological Effects of Ionizing Radiation. Health Effects on Populations of Exposure to Low Levels of Ionizing Radiation. BEIR V Report. Washington: National Academy of Sciences, 1990.

2. United Nations Scientific Committee on the Effects of Atomic Radiation. Sources and Effects of Ionizing Radiation. UNSCEAR 1994 Report. New York: United Nations, 1994.

3. National Academy of Sciences Committee on the Biological Effects of Ionizing Radiation. Health Effects of Radon and Other Internally Deposited Alpha-Emitters. BEIR IV Report. Washington: National Academy of Sciences, 1988.

4. IARC Study Group on Cancer Risk Among Nuclear Industry Workers. Direct estimates of cancer mortality due to low doses of ionizing radiation: an international study. Lancet 344:1039–1043 (1994)

5. Cardis E, Gilbert ES, Carpenter L, Howe G, Kato I, Armstrong BK, Beran V, Coster G, Douglas A, Fix J, Fry SA, Kaldor J, Lave C, Salmon L, Smith PG, Voelz GL, Wiggins LD. Effects of low doses and low dose rates of external ionizing radiation: cancer mortality among nuclear industry workers in three countries. Radiat Res 142:117–132 (1995).

6. United Nations Scientific Committee on the Effects of Atomic Radiation. Sources and Effects of Ionizing Radiation. UNSCEAR 1993 Report. New York: United Nations, 1993.

7. Nenot JC. Overview of the radiological accidents in the world, updated December 1989. Int J Radiat Biol 57:1073–1085 (1990).

8. Ellett WH. An Assessment of the New Dosimetry for A-bomb Survivors. Washington: National Academy Press, 1987.

9. Shimizu Y, Kato H, Schull WJ. Studies of the mortality of A-bomb survivors. 9. Mortality, 1950–1985: Part 2. Cancer mortality based on the recently revised doses (DS86). Radiat Res 121:120–141 (1990).

10. Akleyev AV, Lyubchansky ER. Environmental and medical effects of nuclear weapons production in the southern Urals. Sci Total Environ 142:1–8 (1994).

11. Ilyin LA, Balonov MI, Buldakov LA, Buryak VN, Gordeev KI, Dement’ev SI, Zhakov IG, Zubovsky GA, Kondrusev AI, Konstantinov YO, Linge IF, Likharev IA, Lyaginskaya AM, Matyuhin VA, Pavlovsky OA, Potapov AI, Prsyazhnyuk AE, Ramsay PV, Romanenko AE, Savkin MN, Starkova NT, Tron’ko ND, Tsyb AF. Radiocontamination patterns and possible health consequences of the accident at the Chernobyl nuclear power station. J Radiol Prot 10:3–29 (1990).

12. Beebe GW, Usagawa M. The Major ACBC Samples. RERF TR 12–68. Hiroshima: Radiation Effects Research Foundation, 1968.

13. Straume T. Neutron Discrepancies in the Dosimetry System 1986 Have Implications for Radiation Risk Estimates. RERF Update 4:3–4 (1993).

14. Preston DL, Pierce DA, Vaeth M. Neutrons and Radiation Risk: A Commentary. RERF Update 6:1 (1991).

15. International Commission on Radiological Protection. Recommendations of the International Commission on Radiological Protection. ICRP Report 60. Oxford:Pergamon Press, 1991.

16. United Nations Scientific Committee on the Effects of Atomic Radiation. Sources and Effects of Ionizing Radiation. UNSCEAR 1993 Report. New York: United Nations, 1993.

17. Ohkita T. A review of thirty years study of Hiroshima and Nagasaki atomic bomb survivors. II. Biological effects. A. Acute effects. J Radiat Res 16:49–66 (1975).

18. Orake M, Schull WJ. A review of forty-five years study of Hiroshima and Nagasaki atomic bomb survivors. II. Biological effects. K. Radiation cataract. J Radiat Res 32:283–293 (1991).

19. Orake M, Schull WJ, Yoshimaru H. A review of forty-five years study of Hiroshima and Nagasaki atomic bomb survivors. II. Biological effects. I. Microcephalus, mental retardation and intelligence. J Radiat Res 32:249–264 (1991).

20. Sasaki H, Kodama K, Yamada M. A review of forty-five years study of Hiroshima and Nagasaki atomic bomb survivors. II. Biological effects. N. Aging issue. J Radiat Res 32:310–326 (1991).

21. Shimizu Y, Kato H, Schull WJ, Hoel DG. Studies of the mortality of A-bomb survivors. 9. Mortality, 1950–1985: Part 3. Noncancer mortality based on the revised doses (DS86). Radiat Res 130:249–266 (1992).

22. Schull WJ, Orake M, Neel JV. Genetic effects of the atomic bombs: a reappraisal. Science 213:1220–1227 (1981).

23. Neel JV, Schull WJ, Awa AA, Satoh C, Kato H, Orake M, Yoshimoto Y. A review of forty-five years study of Hiroshima and Nagasaki atomic bomb survivors. II. Biological effects. Q. Genetic effects. J Radiat Res 32:347–374 (1991).
24. Preston DL, Kusumi S, Tominga M, Izumi S, Ron E, Kuramoto A, Kamada N, Dohy H, Matsui T, Nonaka H, Thompson DE, Soda M, Mabuchi K. Cancer incidence in atomic bomb survivors. Part III. Leukemia, lymphoma and multiple myeloma, 1950–1987. Radiat Res 137:568–97 (1994).

25. Preston DL, Pierce DA. The effects of changes in dosimetry on cancer mortality risk estimates in the atomic bomb survivors. Radiat Res 114:437–466 (1988).

26. Thompson DE, Mabuchi K, Ron E, Soda M, Tokunaga M, Ochikubo S, Sugimoto S, Iikeda T, Terasaki M, Izumi S, Preston DL. Cancer incidence in atomic bomb survivors. Part II: Solid tumors, 1958–1987. Radiat Res 137(Suppl 2):S17–S67 (1994).

27. Pierce DA, Preston DL. Joint analyses of site-specific cancer risks for the atomic bomb survivors. Radiat Res 134:134–142 (1993).

28. Boice JD Jr, Engholm G, Kleinerman RA, Blettner M, Stovall M, Lisco H, Moloney WC, Austin DF, Bosch A, Cookfair DL, Kremenz ET, Latourette HB, Merrill JA, Peters JI, Schulz MD, Storm HH, Bjorkholm E, Pettersson F, Bell CMJ, Coleman MP, Fraser P, Neal FE, Prior P, WonChoi N, Hilsog TG, Koch K, Kreiger N, Robb D, Robson D, Thomson H, Loehmuller H, von Fournier D, Frischkorn R, Kjongstad KE, Rimpela A, Pejovic MH, Pompe Kirn V, Stankusova H, Bergano F, Sigurdsson K, H. Food & Nutrition, 2001;6:1–10 (1981).

29. Polednak AP, Frome EL. Mortality among men employed between 1943 and 1947 at a uranium-processing plant. J Occup Med 23:169–178 (1981).

30. Rinsky RA, Zumwalde RD, Waxweiler RJ, Murray WE Jr, Bierbaum PJ, Landrigan PJ, Terplik M, Cox C. Cancer mortality at a naval nuclear shipyard. Lancet 1:231–235 (1981).

31. Hadjimichael OC, Ostfeld AM, D’Ari DA, Brubaker RE. Mortality and cancer incidence experience of employees in a nuclear fuels fabrication plant. J Occup Med 25:48–61 (1983).

32. Acquavella JF, Wiggins LD, Waxweiler RJ, Macdonell DG, Tierjen GL, Wilkinson GS. Mortality among workers at the Pantex weapons facility. Health Phys 48:735–746 (1985).

33. Beral V, Inskip H, Fraser P, Booth M, Coleman D, Rose G. Mortality of employees of the United Kingdom Atomic Energy Authority, 1946–1979. BMJ 291:440–447 (1985).

34. Checkoway H, Mathew RM, Shy CM, Winston JE Jr, Tankersley WG, Wolf SH, Smith JC, Fry SA. Radiation, work experience, and cause specific mortality among workers at an energy research laboratory. Br J Ind Med 42:525–533 (1985).

35. Smith PG, Douglas AJ. Mortality of workers at the Sellafield plant of British Nuclear Fuels. Br Med J Clin Res Ed 293:845–854 (1986).

36. Stern FB, Waxweiler RA, Beaumont JJ, Lee ST, Rinsky RA, Zumwalde RD, Halperin WE, Bierbaum PJ, Landrigan PJ, Murray WE. A case–control study of leukemia at a naval nuclear shipyard. Am J Epidemiol 123:980–992 (1986).

37. Dupree EA, Cradle DL, McLain RW, Crawford-Brown DJ, Teta MJ. Mortality among workers at a uranium processing facility, the Linde Air Products Company Ceramics Plant, 1943–1949. Scan J Work Environ Health 13:100–107 (1987).

38. Howe GR, Weeks JL, Miller AB, Chiarelli AM, Ettedazi-Amoli J. A study of the health of the employees of Atomic Energy of Canada Limited: IV. Analysis of mortality during the period 1950–1981. AECRL-9442, Chalk River, Ontario:Atomic Energy of Canada Ltd., 1987.

39. Wilkinson GS, Tierjen GL, Wiggins LD, Galke WA, Acquavella JF, Reyes M, Voelz GL, Waxweiler RJ. Mortality among plutonium and other radiation workers at a plutonium weapons facility. Am J Epidemiol 125:231–250 (1987).

40. Beral V, Fraser P, Carpenter L, Booth M, Brown A, Rose G. Mortality of employees of the Atomic Weapons Establishment, 1951–82. BMJ 297:757–770 (1988).

41. Checkoway H, Pearce N, Crawford-Brown DJ, Cradle DL. Radiation doses and cause-specific mortality among workers at a nuclear materials fabrication plant. Am J Epidemiol 127:255–266 (1988).

42. Cradle DL, McLain RW, Quarters JR, Hickey JL, Wilkinson GS, Tankersley WG, Lushbaugh CC. Mortality among workers at a nuclear fuels production facility. Am J Ind Med 14:379–401 (1988).

43. Rinsky RA, Melius J, Hornung RW, Zumwalde RD, Waxweiler RJ, Landrigan PJ, Bierbaum PJ, Murray WE. Case-control study of lung cancer in civilian employees at the Portsmouth Naval Shipyard, Kittery, Maine. Am J Epidemiol 127:55–64 (1988).

44. Binks K, Thomas DI, McElvenny D. Mortality of workers at Chapelcross Plant of British Nuclear Fuels. In: Radiation Protection—Theory and Practice. Proceedings of the 4th International Symposium, Malvern, June 1989. Radiat Prot 49–52 (1989).

45. Gilbert ES, Petersen GR, Buchanan JA. Mortality of workers at the Hanford site: 1945–1981. Health Phys 56:11–25 (1989).

46. Matanoski GM. Health Effects of Low-Level Radiation in Shipyard Workers. Report to U.S. DOE, 1991. Washington:Department of Energy, 1991.

47. Wiggins LD, Cox-de-Vore CA, Voelz GL. Mortality among a cohort of workers monitored for 239Po exposure: 1944–1972. Health Phys 51:551–557 (1986).

48. Wiggins LD, Cox-de-Vore CA, Voelz GL, Reyes M. Mortality among workers exposed to external ionizing radiation at a nuclear facility in Ohio. J Occup Med 33:632–637 (1991).

49. Wing S, Shy CM, Wood JL, Wood S, Cradle DL, Frome EL. Mortality among workers of Oak Ridge National Laboratories—evidence of radiation effects in follow-up through 1984. J Am Med Assoc 265:1397–1402 (1991).

50. Kendall GM, Muirhead CR, MacGibbon BH, O’Hagan JA, Conquest AJ, Goodill AA, Butland BK, Fell TP, Jackson DA, Webb MA, Haylock RGE, Thomas JM, Silk TJ. Mortality and occupational exposure to radiation: first analysis of the National Registry for Radiation Workers. BMJ 304:220–225 (1992).

51. Fraser P, Carpenter L, Macnachnie N, Higgins C, Booth M, Beral V. Cancer mortality and morbidity in employees of the United Kingdom Atomic Energy Authority, 1946–86. Br J Cancer 67:615–624 (1993).

52. Gilbert ES, Omohundro E, Buchanan JA, Holter NA. Mortality of workers at the Hanford site: 1945–1986. Health Phys 64:577–590 (1993).

53. Gribbin MA, Weeks JL, Howe GR. Cancer mortality (1956–1985) among male employees of Atomic Energy of Canada Limited with respect to occupational exposure to external low-linear-energy-transfer ionizing radiation. Radiat Res 133:375–380 (1993).

54. Douglas AJ, Omar RZ, Smith PG. Cancer mortality and morbidity among workers at the Sellafield plant of British Nuclear. Br J Cancer 70:1232–1243 (1994).

55. Carpenter L, Higgins C, Douglas A, Fraser P, Beral V, Smith P. Combined analysis of mortality in three United Kingdom nuclear industry workforces, 1946–1988. Radiat Res 138:224–238 (1994).

56. Gilbert ES, Cradle DL, Wiggins LD. Updated analyses of combined mortality data for workers at the Hanford Site, Oak Ridge National Laboratory, and Rocky Flats Weapons Plant. Radiat Res 136:408–421 (1993).

57. Gilbert ES, Fry SA, Wiggins LD, Voelz GL, Cradle DL, Petersen GR. Analysis of combined mortality data on workers at the Hanford Site, Oak Ridge National Laboratory and Rocky Flats Nuclear Weapons Plant. Radiat Res 120:19–35 (1989).

58. Cardis E, Estève J. International Collaborative Study of Cancer Risk Among Nuclear Industry Workers, I-Protocol 92/001. Lyon:International Agency for Research on Cancer, 1992.

59. Cardis E, Estève J, Armstrong BK. Meeting recommends international study of nuclear industry workers. Health Phys 63:465–466 (1992).
60. Stsjazhko VA, Tsyb AF, Tronko ND, Souchkevitch G, Baoverstock KF. Childhood thyroid cancer since accident at Chernobyl [letter]. BMJ 310:801 (1995).
61. Astakhova LN, Cardis E, Shafarenko LV, Gorobets LN, Nalivko SA, Baoverstock, KF, Okeanov AE. Additional Documentation of Thyroid Cancer Cases (Belarus): Report of a Survey, International Thyroid Project. Report No. 95/001. Lyon: International Agency for Research on Cancer, 1995.
62. Okeanov AE, Ivanov VC, Cardis E, Rastopchin E, Sobolev A, Lavé C, Renard H, Mylvaganam M, Guo D. Study of Cancer Risk among Liquidators, Report of EU Experimental Collaboration Project 7: Epidemiologic Investigations Including Dose Assessment and Dose Reconstruction. Report No 95/002. Lyon: International Agency for Research on Cancer, 1995.
63. Kossenko MM, Degteva MO. Cancer mortality and radiation risk evaluation for the Techa river population. Sci Total Environ 142:73–89 (1994).
64. Kostynchenko VA, Krestitina LY. First results from the follow-up of persons exposed to the Kyshtym fallout. Sci Total Environ 142:119–125 (1994).