Supplement of

Exclusively heteronuclear NMR experiments for the investigation of intrinsically disordered proteins: focusing on proline residues

Isabella C. Felli et al.

Correspondence to: Isabella C. Felli (felli@cem.unifi.it) and Roberta Pierattelli (roberta.pierattelli@unifi.it)

The copyright of individual parts of the supplement might differ from the article licence.
Supplementary information

The pulse sequences used to acquire the 3D experiments to focus on proline residues are reported hereafter:

1. Pulse sequence 1 – 3D (H)CBCACON_pro
2. Pulse sequence 2 – 3D (H)CCCCON_pro
3. Pulse sequence 3 – 3D (H)CBCANCO_pro
4. Pulse sequence 4 – 3D (H)CACOCON_pro
Pulse sequence 1 – 3D (H)CBCACON_pro

; c_hcbcacon_ia3d_pro
; avance-version (20/07/28)
; (H)CbCaCON
; 3D sequence with
; 13C detected correlation for triple resonance using
; multiple inept transfer steps
;
; F2(Ha/b) -> F1(Ca/b,t1) -> F1(Ca) -> F1(C=O)
; -> F3(N,t2) -> F1(C=O,t3)
;
; on/off resonance 13C pulses using shaped pulses
; phase sensitive (t1)
; phase sensitive (t2)
; using constant time in t1
; using IPAP scheme for virtual decoupling
; using selective N pulse for Pro
; (use parameterset)
;
; M.G. Murrali, A. Piai, W. Bermel, I.C. Felli & R. Pierattelli,
; ChemBioChem 19, 1625-1629 (2018)
; W. Bermel, I. Bertini, V. Csizmok, I. C. Felli, R. Pierattelli &
; P. Tompa, J. Magn. Reson. 198, 275-281 (2009)
; W. Bermel, I. Bertini, I.C. Felli, R. Kuemmerle
; & R. Pierattelli, J. Magn. Reson. 178, 56-64 (2006)
; (W. Bermel, I. Bertini, L. Duma, I.C. Felli, L. Emsley, R. Pierattelli,
; P.R. Vasos, Angew. Chem. Int. Ed. 44, 3089-3092 (2005)
; (L. Duma, S. Hediger, A. Lesage & L. Emsley,
; J. Magn. Reson. 164, 187-195 (2003)
;
; $CLASS=HighRes
; $DIM=3D
; $TYPE=
; $SUBTYPE=
; $COMMENT=

prosol relations=<triple_c>

#include <Avance.incl>
#include <Grad.incl>
#include <Delay.incl>

"p4=p3*2"
"p22=p21*2"
"d11=30m"
"d12=20u"
"d3=1.1m"
"d4=1.8m"
"d22=4.5m"
"d23=16.6m"
"d25=4.0m"
"d0=3u"
"d10=3u"
"d20=d25-p12-4u"
in0=inf1/2
in10=inf2/2
in20=in0
td1=tdmax(td1,d20*2,in20)
DELTA=d10*2+larger(p4,p8)
DELTA1=d25-d0-larger(p12,p22)-d3-p4
DELTA2=d23-d22-p12
DELTA3=d23-p12-larger(p12,p59)/2-4u
DELTA4=d23/2-p12/2
DELTA5=d25-p12-4u
DELTA6=d23-d22-p12-larger(p12,p59)/2
l0=1
spoff13=bf1*((cnst22/2-cnst21/2)/1000000)
spoff23=0
spoff24=0
spoff25=0
spoff26=bf1*((cnst21-cnst23)/1000000)
spoff27=bf1*((cnst22-cnst21)/1000000)
o1_F1=bf1*cnst23/1000000
aqseq 321
1 ze
d11 pl12:f2 pl16:f3
d1 do:f2 do:f3
d1 fq=cnst23(bf ppm):f1
d12 pl2:f2 pl3:f3
50u UNBLKGRAD
d11 (p3 ph1):f2
d4
center (p12:sp24 ph1) (p4 ph1):f2
d4
(p3 ph2):f2
p16:gp1
d16
(p11:sp23 ph3)
d0
center (p12:sp26 ph6) (p22 ph1):f3
d3
(p4 ph6):f2
DELTA1
(p12:sp24 ph1)
d20
(p12:sp26 ph1)
4u
(p11:sp25 ph1)
4u
(p12:sp26 ph1)
DELTA5
(p12:sp24 ph1)
4u
(p12:sp26 ph1)
DELTA5
(p11:sp23 ph1)
p16:gp2
d16 fq=cnst21(bf ppm):f1
(p11:sp23 ph5)
d22
(p12:sp27 ph1)
DELTA6
center (p12:sp24 ph1) (p59:sp46 ph1):f3
DELTA3
(p12:sp27 ph1)
4u
(p11:sp25 ph1)
p16:gp3
d16 pl3:f3
d10
(center (p8:sp13 ph6) (p4 ph6):f2)
d10
(p22 ph1):f3
DELTA
(p21 ph1):f3

if "l0 %2 == 1"
{
 (p11:sp23 ph1)
 DELTA4
 (p12:sp27 ph1)
 DELTA4
 (center (p12:sp24 ph1) (p22 ph1):f3)
 DELTA4
 (p12:sp27 ph1)
 DELTA4 pl16:f3
}
else
{
 (p11:sp23 ph7)
 d22
 (p12:sp27 ph1)
 DELTA4
 (center (p12:sp24 ph1) (p22 ph1):f3)
 DELTA4
 DELTA4 pl16:f3
 (p12:sp27 ph1)
}
4u BLKGRAD
go=2 ph31 cpd2:f2 cpd3:f3
d11 do:f2 do:f3 mc #0 to 2

#ifdef LABEL_F1
F1(iu0, 2)
#else
F2(iu0, 2)
#endif /*LABEL_F1*/
F1PH(calph(ph3, +90), caldel(d0, +in0) & caldel(d20, -in20))
F2PH(calph(ph4, +90), caldel(d10, +in10))
exit
ph1=0
ph2=1
ph3=0
ph4=0 0 2 2
ph5=0 0 0 2 2 2 2 2
ph6=0 0 0 0 0 0 2 2 2 2 2
ph7=3
ph31=0 2 2 0 2 0 2

;pl1 : f1 channel - power level for pulse (default)
;pl2 : f2 channel - power level for pulse (default)
;pl3 : f3 channel - power level for pulse (default)
;pl12: f2 channel - power level for CPD/BB decoupling
;pl16: f3 channel - power level for CPD/BB decoupling
;sp13: f1 channel - shaped pulse 180 degree (adiabatic)
;sp23: f1 channel - shaped pulse 90 degree (on resonance)
;sp24: f1 channel - shaped pulse 180 degree (on resonance)
;sp25: f1 channel - shaped pulse 90 degree (on resonance) for time reversed pulse
;sp26: f1 channel - shaped pulse 180 degree (C=O off resonance)
;sp27: f1 channel - shaped pulse 180 degree (Ca off resonance)
;sp46: f3 channel - shaped pulse 180 degree (N, selective for Pro)
;p3 : f2 channel - 90 degree high power pulse
;p4 : f2 channel - 180 degree high power pulse
;p8 : f1 channel - 180 degree shaped pulse for inversion (adiabatic)
;p11: f1 channel - 90 degree shaped pulse
;p12: f1 channel - 180 degree shaped pulse
;p16: homospoil/gradient pulse [1 msec]
;p21: f3 channel - 90 degree high power pulse
;p22: f3 channel - 180 degree high power pulse
;p59: f3 channel - 180 degree shaped pulse (N, selective for Pro)
;d0 : incremented delay (F1 in 3D) [3 usec]
d1 : relaxation delay; 1-5 * T1
d3 : 1/(6J(HCa)) [1.1 msec]
d4 : 1/(4J(HCa)) [1.8 msec]
d10: incremented delay (F2 in 3D) [3 usec]
d11: delay for disk I/O [30 msec]
d12: delay for power switching [20 usec]
d16: delay for homospoil/gradient recovery
d20: decremented delay (F1 in 3D) = d25+d0-p12-4u
;d22: 1/(4J(COCa)) [4.5 msec]
d23: 1/(4J(NCO)) [16.6 msec]
;d25: 1/(8J(CaCb)) [4.0 msec]
;cnst21: CO chemical shift (offset, in ppm)
;cnst22: Calpha chemical shift (offset, in ppm)
;cnst23: Caliphatic chemical shift (offset, in ppm)
;o1p: CO chemical shift (cnst21)
;l0: flag to switch between inphase and antiphase
;in0: 1/(2 * SW(Ca/b)) = DW(Ca/b)
;nd0: 2
;in10: 1/(2 * SW(N)) = DW(N)
;nd10: 2
;in20: = in0
;ns: 16 * n
;ds: >= 32
;td1: number of experiments in F1
;td2: number of experiments in F2
;FnMODE: States-TPPI (or TPPI) in F1 td1 max = n * d20 / in20 (n = 4 or = 2 with LABEL_F2)
;FnMODE: States-TPPI (or TPPI) in F2
;cpd2: decoupling according to sequence defined by cpdprg2
;cpd3: decoupling according to sequence defined by cpdprg3
;pcpd2: f2 channel - 90 degree pulse for decoupling sequence
;pcpd3: f3 channel - 90 degree pulse for decoupling sequence

;for z-only gradients:
;gpz1: 50%
;gpz2: 30%
;gpz3: 19%
;gpz4: 13%

;use gradient files:
;gpnam1: SMSQ10.100
;gpnam2: SMSQ10.100
;gpnam3: SMSQ10.100
;gpnam4: SMSQ10.100

;preprocessor-flags-start
;LABEL_F2: to do ipap in F2 start experiment with
; option -DLABEL_F2 (eda: ZGOPTNS)
;preprocessor-flags-end

;use AU-program splitcomb [ipap 2] (F1 or F2 with LABEL_F2) to process data

;$Id:$
Pulse sequence 2 – 3D (H)CCON_pro

; c_hcccon_ia3d_pro
; advance-version (20/07/28)
;(H)CC(CO)N
; 3D sequence with
; 13C detected correlation for triple resonance using
; multiple inept transfer steps and
; C-C FLOPSY16 spinlock
; F1(Ca,t1) -> F1(Ca) -> F1(C=O)
; -> F3(N,t2) -> F1(C=O,t3)
; on/off resonance 13C pulses using shaped pulses
; phase sensitive (t1)
; phase sensitive (t2)
; using IPAP scheme for virtual decoupling
; using selective N pulse for Pro
; (use parameter set)
; M.G. Murrali, A. Piai, W. Bermel, I.C. Felli & R. Pierattelli,
; ChemBioChem 19, 1625-1629 (2018)
; W. Bermel, I. Bertini, I.C. Felli, R. Kuemmerle
; & R. Pierattelli, J. Magn. Reson. 178, 56-64 (2006)

$CLASS=HighRes
$DIM=3D
$TYPE=
$SUBTYPE=
$COMMENT=
prosol relations=<triple_c>

#include <Avance.incl>
#include <Delay.incl>
#include <Grad.incl>

"p4=p3*2"
"p22=p21*2"
"d11=30m"
"d12=20u"
"d3=0.95m"
"d4=1.8m"
"d22=4.5m"
"d23=16.6m"

"d0=3u"
"d10=3u"

"in0=inf1/2"
"in10=inf2/2"

"DELTA=d10*2+p8"
"DELTA1=d3/2"
"DELTA2=d3/2+p22+p4+d0*2"
"DELTA3=d23-d22-p12"
"DELTA4=d23-p12-larger(p12,p59)/2-4u"
"DELTA5=d23/2-p12/2"

"FACTOR2=(d9/(p6*188.448))"
"l1=FACTOR2"

"l0=1"

"spoff13=bf1*((cnst22/2-cnst21/2)/1000000)"
"spoff22=bf1*((cnst21-cnst22)/1000000)"
"spoff23=0"
"spoff24=0"
"spoff25=0"
"spoff26=bf1*((cnst21-cnst23)/1000000)"
"spoff27=bf1*((cnst22-cnst21)/1000000)"
"spoff28=0"

"o1_F1=bf1*cnst23/1000000"

aqseq 321

1 ze
d11 pl12:f2 pl16:f3
d21 do:f2 do:f3
d1 fq=cnst23(bf ppm):f1
d12 pl2:f2 pl3:f3
50u UNBLKGRAD
d4
(p3 ph1):f2
d4
(center (p12:sp24 ph1) (p4 ph1):f2)
d4
(p3 ph8):f2
d0
(p22 ph1):f3
DELTA1
(p12:sp26 ph1)
DELTA1
(p4 ph1):f2
d0
(p12:sp24 ph1)
DELTA1
(p12:sp26 ph1)
DELTA1
(p11:sp25 ph1)
p19:gp1
d16 pl10:f1
;begin FLOPSY16
4 p6*0.511 ph11
p6*1.067 ph12
p6*1.822 ph13
p6*1.767 ph14
p6*1.444 ph15
p6*1.767 ph14
p6*1.822 ph13
p6*1.067 ph12
p6*0.511 ph11
p6*0.511 ph21
p6*1.067 ph22
p6*1.822 ph23
p6*1.767 ph24
p6*1.444 ph25
p6*1.767 ph24
p6*1.822 ph23
p6*1.067 ph22
p6*0.511 ph21
p6*1.067 ph22
p6*0.511 ph21

p6*0.511 ph21
p6*1.067 ph22
p6*1.822 ph23
p6*1.767 ph24
p6*1.444 ph25
p6*1.767 ph24
p6*1.822 ph23
p6*1.067 ph22
p6*0.511 ph21

p6*0.511 ph21
p6*1.067 ph22
p6*1.822 ph23
p6*1.767 ph24
p6*1.444 ph25
p6*1.767 ph24
p6*1.822 ph23
p6*1.067 ph22
p6*0.511 ph21

p6*0.511 ph11
p6*1.067 ph12
p6*1.822 ph13
p6*1.767 ph14
p6*1.444 ph15
p6*1.767 ph14
p6*1.822 ph13
p6*1.067 ph12
p6*0.511 ph11

p6*0.511 ph11
p6*1.067 ph12
p6*1.822 ph13
p6*1.767 ph14
p6*1.444 ph15
p6*1.767 ph14
p6*1.822 ph13
p6*1.067 ph12
p6*0.511 ph11

lo to 4 times l1
;end FLOPSY16

4u
p19:gp2
d16 fq=cnst22(bf ppm):f1
20u pl12:f2
20u cpd2:f2
(p11:sp23 ph1)
d22
(p12:sp22 ph1)
4u
(p25:sp28 ph1)
d22
(p12:sp22 ph1)
4u
(p11:sp25 ph2)
4u do:f2
p16:gp3
d16 fq=cnst21(bf ppm):f1
20u cpd2:f2
(p11:sp23 ph1)
d22
(p12:sp27 ph1)
DELTA6
(center (p12:sp24 ph1) (p59:sp46 ph1):f3)
DELTA4
(p12:sp27 ph1)
4u
(p11:sp25 ph1)
4u do:f2
p16:gp4
d16 pl3:f3
20u cpd2:f2
(p21 ph4):f3
d10
(p8:sp13 ph6)
d10
(p22 ph1):f3
DELTA
(p21 ph5):f3
DELTA
if "!0 %2 == 1"
{
(p11:sp23 ph1)
DELTA5
(p12:sp27 ph1)
DELTA5
(center (p12:sp24 ph1) (p22 ph1):f3)
DELTA5
DELTA5 pl16:f3
}
else
{
 (p11:sp23 ph7)
d22
 (p12:sp27 ph1)
DELTA3
 (center (p12:sp24 ph1) (p22 ph1):f3)
DELTA5
 DELTA5 pl16:f3
 (p12:sp27 ph1)
}

4u BLKGRAD
go=2 ph31 cpd3:f3
d11 do:f2 do:f3 mc #0 to 2

ifdef LABEL_F1
 F1I(iu0, 2)
else
 F2I(iu0, 2)
#else /*LABEL_F1*/
 F1PH(calph(ph3, +90), caldel(d0, +in0))
 F2PH(calph(ph4, +90), caldel(d10, +in10))
exit

ph1=0
ph2=1
ph3=1 3
ph4=0 0 0 0 2 2 2 2
ph5=0 0 0 0 0 0 0 0 2 2 2 2 2 2 2
ph6=0
ph7=3
ph8=1 1 3 3
ph11=(720) 0
ph12=(720) 90
ph13=(720) 135
ph14=(720) 630
ph15=(720) 45
ph21=(720) 360
ph22=(720) 450
ph23=(720) 495
ph24=(720) 270
ph25=(720) 405
ph31=0 2 2 0 0 2 2 0 2 0 2 0

;pl1 : f1 channel - power level for pulse (default)
;pl2 : f2 channel - power level for pulse (default)
;pl3 : f3 channel - power level for pulse (default)
;pl10: f1 channel - power level for TOCSY-spinlock
;pl12: f2 channel - power level for CPD/BB decoupling
;pl16: f3 channel - power level for CPD/BB decoupling
;sp13: f1 channel - shaped pulse 180 degree (adiabatic)
;sp22: f1 channel - shaped pulse 180 degree (C=O off resonance)
;sp23: f1 channel - shaped pulse 90 degree (on resonance)
;sp24: f1 channel - shaped pulse 180 degree (on resonance)
;sp25: f1 channel - shaped pulse 90 degree (on resonance)
;sp10: f1 channel - shaped pulse 180 degree (Ca, sp28)
;sp11: f1 channel - 90 degree shaped pulse
;sp12: f1 channel - 180 degree shaped pulse
;p3 : f2 channel - 90 degree high power pulse
;p4 : f2 channel - 180 degree high power pulse
;p6 : f1 channel - 90 degree low power pulse
;p8 : f1 channel - 180 degree shaped pulse for inversion (adiabatic)
;p11: f1 channel - 90 degree shaped pulse
;p12: f1 channel - 180 degree shaped pulse
;p16: homospoil/gradient pulse [1 msec]
p19: gradient pulse 2 [500 usec]
p21: f3 channel - 90 degree high power pulse
;p22: f3 channel - 180 degree high power pulse
;p25: f1 channel - 180 degree shaped pulse (Ca, sp28)
p59: f3 channel - 180 degree shaped pulse (N, selective for Pro)
;d0 : incremented delay (F1 in 3D) [3 usec]
d1 : relaxation delay; 1-5 * T1
;d3 : 1/(6J(HCa)) [950 usec]
d4 : 1/(4J(HCa)) [1.8 msec]
d9 : TOCSY mixing time [12 msec]
d10: incremented delay (F2 in 3D) [3 usec]
d11: delay for disk I/O [30 msec]
d12: delay for power switching [20 usec]
d16: delay for homospoil/gradient recovery [150 usec]
d22: 1/(4J(COCa)) [4.5 msec]
d23: 1/(4J(NCO)) [16.6 msec]
cnst21: CO chemical shift (offset, in ppm)
cnst22: Calpha chemical shift (offset, in ppm)
;cnst23: Caliphatic chemical shift (offset, in ppm)
;o1p: CO chemical shift (cnst21)
;i0: flag to switch between inphase and antiphase
;i1: loop for FLOPSY16 cycle: ((p6*188.448) * l1) = mixing time
;inf1: 1/SW(Cali) = 2 * DW(Cali)
;inf2: 1/SW(N) = 2 * DW(N)
;in0: 1/(2 * SW(Cali)) = DW(Cali)
;nd0: 2
;in10: 1/(2 * SW(N)) = DW(N)
;nd10: 2
;ns: 16 * n
;ds: >= 32
;td1: number of experiments in F1
;td2: number of experiments in F2
;FnMODE: States-TPPI (or TPPI) in F1
;FnMODE: States-TPPI (or TPPI) in F2
;cpd2: decoupling according to sequence defined by cpdprg2
;cpd3: decoupling according to sequence defined by cpdprg3
;pcpd2: f2 channel - 90 degree pulse for decoupling sequence
;pcpd3: f3 channel - 90 degree pulse for decoupling sequence

;for z-only gradients:
;gpz1: 60%
;gpz2: 50%
;gpz3: 19%
;gpz4: 11%

;use gradient files:
;gpnam1: SMSQ10.100
;gpnam2: SMSQ10.100
;gpnam3: SMSQ10.100
;gpnam4: SMSQ10.100

;preprocessor-flags-start
;LABEL_F2: to do ipap in F2 start experiment with
;option -DLABEL_F2 (eda: ZGOPTNS)
;preprocessor-flags-end

;use AU-program splitcomb [ipap 2] (F1 or F2 with LABEL_F2) to process data

;$Id: $
Pulse sequence 3 – 3D (H)CBCANCO__pro

:c_hcbcanco_ia3d_pro
;avance-version (20/07/28)
;(H)CbCaNCO
;3D sequence with
; 13C detected correlation for triple resonance using
; multiple inept transfer steps
;
; F2(Ha/b) -> F1(Ca/b,t1) -> F1(Ca)
; -> F3(N,t2) -> F1(C=O,t3)
;
;on/off resonance 13C pulses using shaped pulses
;phase sensitive (t1)
;phase sensitive (t2)
;using constant time in t1
;using constant time in t2
;using IPAP scheme for virtual decoupling
;using selective N pulse for Pro
;(use parameterset)
;
;M.G. Murrali, A. Piai, W. Bermel, I.C. Felli & R. Pierattelli,
; ChemBioChem 19, 1625-1629 (2018)
; W. Bermel, I. Bertini, V. Csizmok, I. C. Felli, R. Pierattelli &
; P. Tompa, J. Magn. Reson. 198, 275-281 (2009)
;(W. Bermel, I. Bertini, I.C. Felli, R. Kuemmerle
; & R. Pierattelli, J. Magn. Reson. 178, 56-64 (2006))
;
;CLASS=HighRes
;DIM=3D
;TYPE=
;SUBTYPE=
;COMMENT=

prosol relations=<triple_c>

#include <Avance.incl>
#include <Grad.incl>
#include <Delay.incl>

"p4=p3*2"
"p22=p21*2"
"d11=30m"
"d12=20u"
"d3=1.1m"
"d4=1.8m"
"d22=4.5m"
"d23=11.0m"
"d25=4.0m"
"d27=16.0m"

"d0=3u"
"d10=d23"
"d20=d25-p12-4u"
"d30=d27-larger(p12,p59)/2"

"in0=inf1/2"
"in10=inf2/2"

"in20=in0"
"in30=in10"

"td1=tdmax(td1,d20*2,in20)"
"td2=tdmax(td2,d30*2,in30)"

"DELTA1=d25-d0-larger(p12,p22)-d3-p4"
"DELTA2=d27-d10-p12-larger(p12,p59)/2"
"DELTA3=d27/2-p12/2"
"DELTA4=d27-d22-p12"

"l0=1"

"spoff23=0"
"spoff24=0"
"spoff25=0"

"spoff26=bf1*((cnst21-cnst23)/1000000)"
"spoff27=bf1*((cnst22-cnst21)/1000000)"

"o1_F1=bf1*cnst23/1000000"
d11 pl12:f2 pl16:f3
d11 do:f2 do:f3
d12 fq=cnst23(bf ppm):f1
d12 pl2:f2 pl3:f3
50u UNBLKGRAD

(p3 ph1):f2
d4
(center (p12:sp24 ph1) (p4 ph1):f2)
d4
(p3 ph2):f2

p16:gp1
d16

(p11:sp23 ph3)
do
(center (p12:sp26 ph6) (p22 ph1):f3)
d3
(p4 ph1):f2
DELTA1
(p12:sp24 ph1)
d20
(p12:sp26 ph1)
4u
(p11:sp25 ph1)

(d23
(center (p12:sp24 ph1) (p22 ph1):f3)
d23 pl12:f2
(p11:sp23 ph1)

p16:gp2
d16 fq=cnst21(bf ppm):f1
20u cpd2:f2
(p21 ph4):f3
d10
(p12:sp27 ph6)
DELTA2
(center (p12:sp24 ph6) (p59:sp46 ph1):f3)
d30 pl3:f3
(p21 ph1):f3
4u do:f2
p16:gp3
d16
20u cpd2:f2

if "l0 %2 == 1"
{
 (p11:sp23 ph5)
 DELTA3
 (p12:sp27 ph1)
 DELTA3
 (center (p12:sp24 ph1) (p22 ph1):f3)
 DELTA3
 (p12:sp27 ph1)
 DELTA3 pl16:f3
}
else
{
 (p11:sp23 ph7)
 d22
 (p12:sp27 ph1)
 DELTA4
 (center (p12:sp24 ph1) (p22 ph1):f3)
 DELTA3
 DELTA3 pl16:f3
 (p12:sp27 ph1)
}

4u BLKGRAD

go=2 ph31 cpd3:f3
d11 do:f2 do:f3 mc #0 to 2

ifdef LABEL_F1
F1l(iu0, 2)
else
F2l(iu0, 2)
endif /*LABEL_F1*/

F1PH(calph(ph3, +90), caldel(d0, +in0) & caldel(d20, -in20))
F2PH(calph(ph4, +90), caldel(d10, +in10) & caldel(d30, -in30))
exit

ph1=0
ph2=1
ph3=0 2
ph4=0 0 2 2
ph5=0 0 0 2 2 2 2
ph6=0 0 0 0 0 0 0 2 2 2 2 2 2 2 2
ph7=3 3 3 1 1 1 1
ph31=0 2 2 0 0 0 2

;pl1 : f1 channel - power level for pulse (default)
;pl2 : f2 channel - power level for pulse (default)
;pl3 : f3 channel - power level for pulse (default)
;pl12: f2 channel - power level for CPD/BB decoupling
;pl16: f3 channel - power level for CPD/BB decoupling
;sp23: f1 channel - shaped pulse 90 degree (on resonance)
;sp24: f1 channel - shaped pulse 180 degree (on resonance)
;sp25: f1 channel - shaped pulse 90 degree (on resonance) for time reversed pulse
;sp26: f1 channel - shaped pulse 180 degree (C=O off resonance)
;sp27: f1 channel - shaped pulse 180 degree (Ca off resonance)
;sp46: f3 channel - shaped pulse 180 degree (N, selective for Pro)
;p3 : f2 channel - 90 degree high power pulse
;p4 : f2 channel - 180 degree high power pulse
;p11: f1 channel - 90 degree shaped pulse
;p12: f1 channel - 180 degree shaped pulse
;p16: homospoil/gradient pulse [1 msec]
;p21: f3 channel - 90 degree high power pulse
;p22: f3 channel - 180 degree high power pulse
;p59: f3 channel - 180 degree shaped pulse (N, selective for Pro)
;d0 : incremented delay (F1 in 3D) [3 usec]
;d1 : relaxation delay; 1-5 * T1
;d3 : 1/(6J(HCa)) [1.1 msec]
;d4 : 1/(4J(HCa)) [1.8 msec]
;d10: incremented delay (F2 in 3D) = d23
;d11: delay for disk I/O [30 msec]
;d12: delay for power switching [20 usec]
;d16: delay for homospoil/gradient recovery
;d20: decremented delay (F1 in 3D) = d25-p12-4u
;d21: 1/(4J(COCa)) [4.5 msec]
;d23: 1/(4J(NCa)) [11.0 msec]
;d25: 1/(8J(CaCb)) [4.0 msec]
;d27: 1/(4J(NCO)) [16.0 msec]
;d30: decremented delay (F2 in 3D) = d27-larger(p12,p59)/2
;cnst21: CO chemical shift (offset, in ppm)
;cnst22: Calpha chemical shift (offset, in ppm)
;cnst23: Caliphatic chemical shift (offset, in ppm)
;o1p: CO chemical shift (cnst21)
;l0: flag to switch between inphase and antiphase
;inf1: 1/SW(Ca) = 2 * DW(Ca)
;inf2: 1/SW(N) = 2 * DW(N)
;in0: 1/(2 * SW(Ca)) = DW(Ca)
;nd0: 2
;in10: 1/(2 * SW(N)) = DW(N)
;nd10: 2
;in20: = in0
;in30: = in10
;ns: 16 * n
;ds: >= 32
;td1: number of experiments in F1
;td2: number of experiments in F2
;FnMODE: States-TPPI (or TPPI) in F1
;FnMODE: States-TPPI (or TPPI) in F2
;cpd2: decoupling according to sequence defined by cpdprg2
;pcpd2: f2 channel - 90 degree pulse for decoupling sequence
;cpd3: decoupling according to sequence defined by cpdprg3
;pcpd3: f3 channel - 90 degree pulse for decoupling sequence

;for z-only gradients:
;gpz1: 50%
;gpz2: 30%
;gpz3: 19%

;use gradient files:
;gpnam1: SMSQ10.100
;gpnam2: SMSQ10.100
;gpnam3: SMSQ10.100

;preprocessor-flags-start
;LABEL_F2: to do ipap in F2 start experiment with
; option -DLABEL_F2 (eda: ZGOPTNS)
;preprocessor-flags-end

;use AU-program splitcomb [ipap 2] (F1 or F2 with LABEL_F2) to process data
;$Id: $
Pulse sequence 4 – 3D (H)CACOCON_pro

; c_hcacocon_ia3d_pro
; avance-version (20/07/28)
; (HCa)COCON-TOCSY
; 3D sequence with
; homonuclear Hartman-Hahn transfer using MOCCA-XY16
; sequence for mixing
; F2(H) -> F1(Ca) -> F1(C=O,t1, MOCCA) -> F3(N,t2) -> F1(C=O,t3)
; on/off resonance 13C pulses using hard and shaped pulses
; phase sensitive (t1)
; phase sensitive (t2)
; using semi-constant time in t1
; using IPAP scheme for virtual decoupling
; using selective N pulse for Pro
; (use parameter set)
;
; M.G. Murrali, A. Piai, W. Bermel, I.C. Felli & R. Pierattelli,
; ChemBioChem 19, 1625-1629 (2018)
; I.C. Felli, R. Pierattelli, S.J. Glaser & B. Luy,
; J. Biomol. NMR 43, 187-196 (2009)
; W. Bermel, I. Bertini, I.C. Felli, Y.-M. Lee, C. Luchinat & R.
; Pierattelli,
; J. Am. Chem. Soc. 128, 3918-3919
; S. Balayssac, B. Jimenez & M. Piccioli,
; J. Magn. Reson. 182, 325-329 (2006)
;
; $CLASS=HighRes
; $DIM=3D
; $TYPE=
; $SUBTYPE=
; $COMMENT=

prosol relations=<triple_c>

#include <Avance.incl>
#include <Delay.incl>
#include <Grad.incl>

"p22=p21*2"
"d11=30m"
"d12=20u"
"d3=1.1m"
"d4=1.8m"
"d22=4.5m"
"d23=16.6m"
"d21=300u"
"d10=3u"
"d28=3u"
"d0=d22"
"d20=d22+d28-4u"
"in0=inf1/2"
"in10=inf2/2"
"FACTOR1=d20*10000000*2/td1"
"INCR1=FACTOR1/1000000"
"if (INCR1 > in0) { in20 = in0; } else { in20 = INCR1; }
"if (INCR1 > in0) { in28 = 0; } else { in28=in0-INCR1; }
"TAU=d21/2"
"FACTOR2=(d9/((d21+p14))*16)"
"l1=FACTOR2*16"
"d31=(d21+p14)*l1"
"DELTA=d10*2+p8"
"DELTA1=d4-larger(p4,p25)/2"
"DELTA2=d22-d3-p4"
"DELTA3=d23/2-p12/2"
"DELTA4=d23-d22-p12"
"DELTA5=d23-larger(p12,p59)/2"
"l0=0"
"spoff13=bf1*((cnst21/2+cnst22/2)/1000000)-o1"
"spoff23=0"
"spoff24=0"
"spoff25=0"
"spoff26=bf1*((cnst22-cnst21)/1000000)"
"spoff27=bf1*((cnst21-cnst22)/1000000)"
"o1_F1=bf1*cnst21/1000000"
aqseq 321
1 ze
d11 p112:f2 p116:f3
2 d11 do:f2 do:f3
4u BLKGRAD
1151 d1 pl1:f1 pl2:f2
1152 20u rpp11
1153 50u UNBLKGRAD
1154 d12 cpd3:f3
1155 20u fq=cnst22(bf ppm):f1
1156
1157 (p3 ph1):f2
1158 DELTA1
1159 (center (p25:sp28 ph1) (p4 ph1):f2)
1160 DELTA1
1161 (p3 ph2):f2
1162
1163 (p11:sp23 ph1)
1164 d3
1165 (p4 ph1):f2
1166 DELTA2
1167 (p12:sp27 ph1)
1168 4u
1169 (p25:sp28 ph1)
1170 d22
1171 (p12:sp27 ph1)
1172 4u
1173 (p11:sp25 ph5)
1174
1175 p16:gp4
1176 d16 fq=cnst21(bf ppm):f1
1177
1178 (p11:sp23 ph3)
1179 d0
1180 (p12:sp26 ph1)
1181 d28
1182 (p12:sp24 ph1)
1183 d20
1184 (p12:sp26 ph1)
1185 4u
1186 (p11:sp25 ph4)
1187
1188 4u do:f3
1189 p16:gp1
1190 d16 pl20:f1
1191
1192 ;begin MOCCA-XY16
1193 4 TAU
1194 (p14 ph11)
1195 TAU ipp11
1196 10 to 4 times 11
1197 ;end MOCCA-XY16
1198
1199 p16:gp2
1200 d16 pl12:f2 pl3:f3
1201 20u cpd2:f2
if "%2 == 0"
{
 (p11:sp23 ph1)
 DELTA3
 (p12:sp26 ph1)
 DELTA3
 (center (p12:sp24 ph1) (p22 ph1):f3)
 DELTA3
 (p12:sp26 ph1)
 DELTA3 p116:f3
}
else
{
 (p11:sp23 ph7)
 d22
 (p12:sp26 ph1)
 DELTA4
 (center (p12:sp24 ph1) (p22 ph1):f3)
 DELTA3
 DELTA3 p116:f3
 (p12:sp26 ph1)
}
4u BLKGRAD

#ifdef LABEL_F1
 F1I(iu0, 2)
#endif

F2I(iu0, 2)
#endif /*LABEL_F1*/
F1PH(calph(ph3, +90), caldel(d0, +in0) & caldel(d20, -in20) &
calph(d28, +in28))
F2PH(calph(ph6, +90), caldel(d10, +in10))
d31
exit

ph1=0
ph2=1
ph3=0 2
ph4=1 1 1 1 1 1 1 3 3 3 3 3 3
ph5=0 0 0 0 2 2 2 2
ph6=0 0 2 2
ph7=3
ph11=0 1 0 1 1 0 1 0 2 3 2 3 2 3 2
ph31=0 2 2 0 2 0 0 2 2 0 0 2 0 2 2 0

;pl1 : f1 channel - power level for pulse (default)
;pl2 : f2 channel - power level for pulse (default)
;pl3 : f3 channel - power level for pulse (default)
;pl12: f2 channel - power level for CPD/BB decoupling
;pl16: f3 channel - power level for CPD/BB decoupling
;pl120: f1 channel - power level for TOCSY (high sel.)
;sp13: f1 channel - shaped pulse 180 degree (adiabatic)
;sp23: f1 channel - shaped pulse 90 degree (on resonance)
;sp24: f1 channel - shaped pulse 180 degree (on resonance)
;sp25: f1 channel - shaped pulse 90 degree (on resonance)
;sp28: f1 channel - shaped pulse 180 degree (Ca off resonance)
;sp29: f1 channel - shaped pulse 180 degree (C=O off resonance)
;sp28: f1 channel - shaped pulse 180 degree (Ca on resonance)
;sp46: f3 channel - shaped pulse 180 degree (N, selective for Pro)
;p3 : f2 channel - 90 degree high power pulse
;p4 : f2 channel - 180 degree high power pulse
;p8 : f2 channel - 180 degree shaped pulse for inversion (adiabatic)
;p11: f1 channel - 90 degree shaped pulse
;p12: f1 channel - 180 degree shaped pulse
;p14: f1 channel - 180 degree low power pulse at p120
;p16: homospoil/gradient pulse [1 msec]
p21: f3 channel - 90 degree high power pulse
;p22: f3 channel - 180 degree high power pulse
;p25: f1 channel - 180 degree shaped pulse (Ca, sp28)
p59: f3 channel - 180 degree shaped pulse (N, selective for Pro)
d0 : incremented delay (F1 in 3D): = d22
d1 : relaxation delay; 1-5 * T1
d3 : 1/(6J(HCa)) [1.1 msec]
;d4 : 1/(4J(HCa)) [1.8 msec]
;d9 : TOCSY mixing time
;d10: incremented delay (F2 in 3D) [3 usec]
;d11: delay for disk I/O [30 msec]
;d12: delay for power switching [20 usec]
;d16: delay for homospoil/gradient recovery
;d20: decremented delay (F1 in 3D) = d22+d28-4u
;d21: delay for MOCCA sequence [300 usec]
;d22: 1/(4J(COCa)) [4.5 msec]
;d23: 1/(4J(NCO)) [15.0 msec]
;d28: incremented delay (F1 in 3D) [3 usec]
;d31: total mixing time as executed
;cnst21: CO chemical shift (offset, in ppm)
;cnst22: Calpha chemical shift (offset, in ppm)
;olp: CO chemical shift (cnst21)
;l0: flag to switch between inphase and antiphase
;l1: loop for MOCCA-XY16 cycle: ((TAU*2+p14)*16 * l1) = mixing time
;inf1: 1/SW(CO) = 2 * DW(CO)
;inf2: 1/SW(N) = 2 * DW(N)
;in0: 1/(2 * SW(CO)) = DW(CO)
;nd0: 2
;in10: 1/(2 * SW(N)) = DW(N)
;nd10: 2
;in20: = k * in0
;in28: = (1 - k) * in0
;ns: 8 * n
;ds: >= 32
;td1: number of experiments in F1
;td2: number of experiments in F2
;FnMODE: States-TPPI (or TPPI) in F1
;FnMODE: States-TPPI (or TPPI) in F2
;cpd2: decoupling according to sequence defined by cpdprg2
;cpd3: decoupling according to sequence defined by cpdprg3
;pcpd2: f2 channel - 90 degree pulse for decoupling sequence
;pcpd3: f3 channel - 90 degree pulse for decoupling sequence
;for z-only gradients:
;gpz1: 80%
;gpz2: 70%
;gpz3: 30%
;gpz4: 50%
;use gradient files:
;gpnam1: SMSQ10.100
;gpnam2: SMSQ10.100
;gpnam3: SMSQ10.100
;gpnam4: SMSQ10.100
;use AU-program splitcomb [ipap 2] to process data
;$Id: $