Test of CP invariance in vector-boson fusion production of the Higgs boson using the Optimal Observable method in the ditau decay channel with the ATLAS detector

The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters.

Citation
Aad, G., B. Abbott, O. Abdinov, J. Abdallah, B. Abeloos, R. Aben, M. Abolins, et al. 2016. “Test of CP invariance in vector-boson fusion production of the Higgs boson using the Optimal Observable method in the ditau decay channel with the ATLAS detector.” The European Physical Journal. C, Particles and Fields 76 (12): 658. doi:10.1140/epjc/s10052-016-4499-5. http://dx.doi.org/10.1140/epjc/s10052-016-4499-5.

Published Version
doi:10.1140/epjc/s10052-016-4499-5

Accessed
July 24, 2018 7:36:44 AM EDT

Citable Link
http://nrs.harvard.edu/urn-3:HUL.InstRepos:32072165

Terms of Use
This article was downloaded from Harvard University's DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA

(Article begins on next page)
Test of CP invariance in vector-boson fusion production of the Higgs boson using the Optimal Observable method in the ditau decay channel with the ATLAS detector

ATLAS Collaboration∗

CERN, 1211 Geneva 23, Switzerland

Received: 16 February 2016 / Accepted: 8 November 2016 / Published online: 29 November 2016

© CERN for the benefit of the ATLAS collaboration 2016. This article is published with open access at Springerlink.com

Abstract A test of CP invariance in Higgs boson production via vector-boson fusion using the method of the Optimal Observable is presented. The analysis exploits the decay mode of the Higgs boson into a pair of τ leptons and is based on 20.3 fb$^{-1}$ of proton–proton collision data at $\sqrt{s}=8$ TeV collected by the ATLAS experiment at the LHC. Contributions from CP-violating interactions between the Higgs boson and electroweak gauge bosons are described in an effective field theory framework, in which the strength of CP violation is governed by a single parameter \tilde{d}. The mean values and distributions of CP-odd observables agree with the expectation in the Standard Model and show no sign of CP violation. The CP-mixing parameter \tilde{d} is constrained to the interval ($-0.11, 0.05$) at 68% confidence level, consistent with the Standard Model expectation of $\tilde{d}=0$.

Contents

1 Introduction .. 1
2 Effective Lagrangian framework 2
3 Test of CP invariance and Optimal Observable 3
4 The ATLAS detector 4
5 Simulated samples 4
6 Analysis .. 6
7 Fitting procedure 8
8 Results .. 9
9 Conclusions ... 10
References .. 11

1 Introduction

The discovery of a Higgs boson by the ATLAS and CMS experiments [1,2] at the LHC [3] offers a novel opportunity to search for new sources of CP violation in the interaction of the Higgs boson with other Standard Model (SM) particles. CP violation is one of the three Sakharov conditions [4–6] needed to explain the observed baryon asymmetry of the universe. In the SM with massless neutrinos the only source of CP violation is the complex phase in the quark mixing (CKM) matrix [7,8]. The measured size of the complex phase and the derived magnitude of CP violation in the early universe is insufficient to explain the observed value of the baryon asymmetry [9] within the SM [10,11] and, most probably, new sources of CP violation beyond the SM need to be introduced. No observable effect of CP violation is expected in the production or decay of the SM Higgs boson. Hence any observation of CP violation involving the observed Higgs boson would be an unequivocal sign of physics beyond the SM.

The measured Higgs boson production cross sections, branching ratios and derived constraints on coupling-strength modifiers, assuming the tensor structure of the SM, agree with the SM predictions [12,13]. Investigations of spin and CP quantum numbers in bosonic decay modes and measurements of anomalous couplings including CP-violating ones in the decay into a pair of massive electroweak gauge bosons show no hints of deviations from the tensor structure of the SM Higgs boson [14,15]. Differential cross-section measurements in the decay $H \rightarrow \gamma\gamma$ have been used to set limits on couplings including CP-violating ones in vector-boson fusion production in an effective field theory [16]. However, the observables, including absolute event rates, used in that analysis were CP-even and hence not sensitive to the possible interference between the SM and CP-odd couplings and did not directly test CP invariance. The observables used in this analysis are CP-odd and therefore sensitive to this interference and the measurement is designed as a direct test of CP invariance.

In this paper, a first direct test of CP invariance in Higgs boson production via vector-boson fusion (VBF) is presented, based on proton–proton collision data corresponding
to an integrated luminosity of 20.3 fb^{-1} collected with the ATLAS detector at $\sqrt{s} = 8 \text{ TeV}$ in 2012. A CP-odd Optimal Observable [17–19] is employed. The Optimal Observable combines the information from the multi-dimensional phase space in a single quantity calculated from leading-order matrix elements for VBF production. Hence it does not depend on the decay mode of the Higgs boson. A direct test of CP invariance is possible measuring the mean value of the CP-odd Optimal Observable. Moreover, as described in Sect. 2, an ansatz in the framework of an effective field theory is utilised, in which all CP-violating effects corresponding to operators with dimensions up to six in the couplings between a Higgs boson and an electroweak gauge boson can be described in terms of a single parameter d. Limits on d are derived by analysing the shape of spectra of the Optimal Observable measured in $H \rightarrow \tau\tau$ candidate events that also have two jets tagging VBF production. The event selection, estimation of background contributions and of systematic uncertainties follows the analysis used to establish 4.5σ evidence for the $H \rightarrow \tau\tau$ decay [20]. Only events selected in the VBF category are analysed, and only fully leptonic $\tau\ell\ell$ or semileptonic $\tau\ell\pi$ decays of the τ-lepton pair are considered.

The theoretical framework in the context of effective field theories is discussed in Sect. 2 and the methodology of testing CP invariance and the concept of the Optimal Observable are introduced in Sect. 3. After a brief description of the ATLAS detector in Sect. 4, the simulated samples used are summarised in Sect. 5. The experimental analysis is presented in Sect. 6, followed by a description of the statistical method used to determine confidence intervals for \tilde{d} in Sect. 7. The results are discussed in Sect. 8, following which conclusions are given.

2 Effective Lagrangian framework

The effective Lagrangian considered is the SM Lagrangian augmented by CP-violating operators of mass dimension six, which can be constructed from the Higgs doublet Φ and the U(1)$_Y$ and SU(2)$_{L,\tau}$ electroweak gauge fields B^a and $W^{a,\mu}$ ($a = 1, 2, 3$), respectively. No CP-conserving dimension-six operators built from these fields are taken into account. All interactions between the Higgs boson and other SM particles (fermions and gluons) are assumed to be as predicted in the SM; i.e. the coupling structure in gluon fusion production and in the decay into a pair of τ-leptons is considered to be the same as in the SM.

The effective U(1)$_Y$- and SU(2)$_{L,\tau}$-invariant Lagrangian is then given by (following Refs. [21,22]):

$$\mathcal{L}_{\text{eff}} = \mathcal{L}_{\text{SM}} + \frac{f_{\tilde{B}B}}{\Lambda^2} \mathcal{O}_{\tilde{B}B} + \frac{f_{\tilde{W}W}}{\Lambda^2} \mathcal{O}_{\tilde{W}W} + \frac{f_B}{\Lambda^2} \mathcal{O}_B$$

with the three dimension-six operators $\mathcal{O}_{\tilde{B}B} = \Phi^+ \tilde{B}_\mu \tilde{B}^{\mu\nu} \Phi$, $\mathcal{O}_{\tilde{W}W} = \Phi^+ \tilde{W}_\mu \tilde{W}^{\mu\nu} \Phi$, $\mathcal{O}_B = (D_\mu \Phi)^+ \tilde{B}^{\mu\nu} D^\nu \Phi$. and three dimensionless Wilson coefficients $f_{\tilde{B}B}$, $f_{\tilde{W}W}$ and f_B; Λ is the scale of new physics.

Hence in general $D_\mu \Phi$ and $f_B e_\nu$ are independent due to constraints imposed by U(1)$_Y$ and SU(2)$_{L,\tau}$ invariance.
The parameter \(\hat{d} \) is related to the parameter \(\hat{k}_W = \hat{k}_W / \kappa_{\text{SM}} \tan \alpha \) used in the investigation of CP properties in the decay \(H \to WW \) [15] via \(\hat{d} = - \hat{k}_W \). The choice \(\hat{d} = \hat{d}_b \) yields \(\hat{k}_W = \hat{k}_Z \) as assumed in the combination of the \(H \to WW \) and \(H \to ZZ \) decay analyses [15].

The effective Lagrangian yields the following Lorentz structure for each vertex in the Higgs bosons coupling to two identical or charge-conjugated electroweak gauge bosons \(HV(p_1)V(p_2) (V = W^{\pm}, Z, \gamma) \), with \(p_{1,2} \) denoting the momenta of the gauge bosons:

\[
T^{\mu\nu}(p_1, p_2) = \sum_{V=W^{\pm},Z} \frac{2m_V^2}{v} g^{\mu\nu} + \sum_{V=W^{\pm},Z,\gamma} \frac{2\hat{d}}{m_W} \varepsilon^{\mu\nu\rho\sigma} p_\rho p_{2\sigma}.
\]

The first terms \((\propto g^{\mu\nu}) \) are CP-even and describe the SM coupling structure, while the second terms \((\propto \varepsilon^{\mu\nu\rho\sigma} p_\rho p_{2\sigma}) \) are CP-odd and arise from the CP-odd dimension-six operators. The choice \(\hat{d} = \hat{d}_b \) gives the same coefficients multiplying the CP-odd structure for \(HV(p_1)V(p_2) \) and a vanishing coupling for the CP-even contribution \(M \) for the two tagging jets, where \(p_+ (p_-) \) points into the same detector hemisphere as \(b_+ (b_-) \). This ordering of the tagging jets by hemispheres removes the sign ambiguity in the standard definition of \(\Delta \phi_{jj} \).

The final state consisting of the Higgs boson and the two tagging jets can be characterised by seven phase-space variables while assuming the mass of the Higgs boson, neglecting jet masses and exploiting momentum conservation in the plane transverse to the beam line. The concept of the Optimal Observable combines the information of the high-dimensional phase space in a single observable, which can be shown to have the highest sensitivity for small values of the parameter of interest and neglects contributions proportional to \(\hat{d}^2 \) in the matrix element. The method was first suggested for the estimation of a single parameter using the mean value only [17] and via a maximum-likelihood fit to the full distribution [18] using the so-called Optimal Observable of first order. The extension to several parameters and also exploiting the matrix-element contributions quadratic in the parameters by adding an Optimal Observable of second order was introduced in Refs. [19,27,28]. The technique has been applied in various experimental analyses, e.g. Refs. [15,29–39].

The analysis presented here uses only the first-order Optimal Observable \(\mathcal{O}_O \) (called Optimal Observable below) for the measurement of \(\hat{d} \) via a maximum-likelihood fit to the full distribution. It is defined as the ratio of the interference term in the matrix element to the SM contribution:

\[
\mathcal{O}_O = \frac{2\Re(M_{\text{SM}}^*M_{\text{CP-odd}})}{|M_{\text{SM}}|^2}.
\]

Figure 1 shows the distribution of the Optimal Observable, at parton level both for the SM case and for two non-zero \(\hat{d} \) values, which introduce an asymmetry into the distribution and yield a non-vanishing mean value.

The values of the leading-order matrix elements needed for the calculation of the Optimal Observable are extracted from HAWK [41–43]. The evaluation requires the four-momenta of the Higgs boson and the two tagging jets. The momentum fraction \(x_1 (x_2) \) of the initial-state parton from the proton moving in the positive (negative) \(z \)-direction can be derived by exploiting energy–momentum conservation from

3 Test of CP invariance and Optimal Observable

Tests of CP invariance can be performed in a completely model-independent way by measuring the mean value of a CP-odd observable \(\langle \mathcal{O}_{\text{CP}} \rangle \). If CP invariance holds, the mean value has to vanish \(\langle \mathcal{O}_{\text{CP}} \rangle = 0 \). An observation of a non-vanishing mean value would be a clear sign of CP violation. A simple CP-odd observable for Higgs boson production in VBF, the “signed” difference in the azimuthal angle between the two tagging jets \(\Delta \phi_{jj} \), was suggested in Ref. [22] and is formally defined as:

\[
\epsilon_{\mu\nu\rho\sigma} b_+^\mu b_+^\nu b_-^\rho b_-^\sigma = 2p_+ p_- \sin(\phi_+ - \phi_-) = 2p_+ p_- \sin \Delta \phi_{jj}.
\]

Here \(b_+^\mu \) and \(b_-^\mu \) denote the normalised four-momenta of the two proton beams, circulating clockwise and anti-clockwise, and \(p_+ \) (\(p_- \)) and \(p^\mu_+ \) (\(p^\mu_- \)) denote the four-momenta (azimuthal angles) of the two tagging jets, where \(p_+ (p_-) \) points into the same detector hemisphere as \(b_+ (b_-) \). This ordering of the tagging jets by hemispheres removes the sign ambiguity in the standard definition of \(\Delta \phi_{jj} \).
the Higgs boson and tagging jet four-momenta as:

\[x_{1/2} = \frac{m_{Hjj}}{\sqrt{5}} e^{\pm \eta_{Hjj}} \]

where \(m_{Hjj} \) (\(\eta_{Hjj} \)) is the invariant mass (rapidity) obtained from the vectorially summed four-momenta of the tagging jets and the Higgs boson. Since the flavour of the initial- and final-state partons cannot be determined experimentally, the sum over all possible flavour configurations \(ij \rightarrow kH \) weighted by the CT10 leading-order parton distribution functions (PDFs) \([44]\) is calculated separately for the matrix elements in the numerator and denominator:

\[2 \text{Re}(\mathcal{M}_{\text{SM}}^e \mathcal{M}_{\text{CP-odd}}) = \sum_{i,j,k,l} f_i(x_1) f_j(x_2) \]

\[\times 2 \text{Re}((\mathcal{M}_{\text{SM}}^{ij \rightarrow kH})^* \mathcal{M}_{\text{CP-odd}}^{ij \rightarrow kH}) \]

\[|\mathcal{M}_{\text{SM}}|^2 = \sum_{i,j,k,l} f_i(x_1) f_j(x_2) |\mathcal{M}_{\text{SM}}^{ij \rightarrow kH}|^2. \]

4 The ATLAS detector

The ATLAS detector \([45]\) is a multi-purpose detector with a cylindrical geometry.\(^1\) It comprises an inner detector (ID) surrounded by a thin superconducting solenoid, a calorimeter system and an extensive muon spectrometer in a toroidal magnetic field. The ID tracking system consists of a silicon pixel detector, a silicon microstrip detector, and a transition radiation tracker. It provides precise position and momentum measurements for charged particles and allows efficient identification of jets containing \(b \)-hadrons (\(b \)-jets) in the pseudorapidity range \(|\eta| < 2.5 \). The ID is immersed in a 2 T axial magnetic field and is surrounded by high-granularity lead/liquid-argon sampling electromagnetic calorimeters which cover the pseudorapidity range \(|\eta| > 2.8\). A steel/scintillator tile calorimeter provides hadronic energy measurements in the central pseudorapidity range \(|\eta| < 1.7\). In the forward regions \((1.5 < |\eta| < 4.9)\), the system is complemented by two end-cap calorimeters using liquid argon as active material and copper or tungsten as absorbers. The muon spectrometer surrounds the calorimeters and consists of three large superconducting eight-coil toroids, a system of tracking chambers, and detectors for triggering. The deflection of muons is measured in the region \(|\eta| < 2.7\) by three layers of precision drift tubes, and cathode strip chambers in the innermost layer for \(|\eta| > 2.0\). The trigger chambers consist of resistive plate chambers in the barrel \((|\eta| < 1.05)\) and thin-gap chambers in the end-cap regions \((1.05 < |\eta| < 2.4)\).

A three-level trigger system \([46]\) is used to select events. A hardware-based Level-1 trigger uses a subset of detector information to reduce the event rate to 75 kHz or less. The rate of accepted events is then reduced to about 400 Hz by two software-based trigger levels, named Level-2 and the Event Filter.

5 Simulated samples

Background and signal events are simulated using various Monte Carlo (MC) event generators, as summarised in Table 1. The generators used for the simulation of the hard-scattering process and the model used for the simulation of the parton shower, hadronisation and underlying-event activity are listed. In addition, the cross-section values to which the simulation is normalised and the perturbative order in QCD of the respective calculations are provided.

All the background samples used in this analysis are the same as those employed in Ref. [20], except the ones used to simulate events with the Higgs boson produced via gluon fusion and decaying into the \(\tau \tau \) final state. The Higgs-plus-one-jet process is simulated at NLO accuracy in QCD with PowHeG-Box \([47–49,73]\), with the MINLO feature \([74]\) applied to include Higgs-plus-zero-jet events at NLO accuracy. This sample is referred to as HJ MINLO. The PowHeG-Box event generator is interfaced to PyTHIA8 \([51]\), and the CT10 \([44]\) parameterisation of the PDFs is used. Higgs boson events produced via gluon fusion and decay-

\(^1\) ATLAS uses a right-handed coordinate system with its origin at the nominal interaction point (IP) in the centre of the detector and the \(z \)-axis along the beam pipe. The \(x \)-axis points from the IP to the centre of the LHC ring, and the \(y \)-axis points upward. Cylindrical coordinates \((r, \phi)\) are used in the transverse plane, \(\phi \) being the azimuthal angle around the \(z \)-axis. The pseudorapidity is defined in terms of the polar angle \(\theta \) as \(\eta = -\ln \tan(\theta/2) \).
The NLO EW corrections for VBF production depend on the with an approximate NNLO QCD correction applied [53]. The NLO EW corrections for VBF production depend on the with an approximately NNLO QCD calculation and the HAWK [41–43] calculation which includes these corrections.

In the case of VBF-produced Higgs boson events in the presence of anomalous couplings in the \(HVV\) vertex, the simulated samples are obtained by applying a matrix element (ME) reweighting method to the VBF SM signal sample. The weight is defined as the ratio of the squared ME calculation to the VBF SM signal sample. The inputs needed for the ME evaluation are the flavour of the incoming partons, the four-momenta and the flavour of the incoming partons, the four-momenta and the flavour of the incoming partons.

Production by VBF is normalised to a cross section calculated with full NLO QCD and EW corrections [41,42,52] with an approximate NNLO QCD correction applied [53]. The NLO EW corrections for VBF production depend on the \(p_T\) of the Higgs boson, and vary from a few percent at low \(p_T\) to \(\sim 20\%\) at \(p_T = 300\) GeV [88]. The \(p_T\) spectrum of the VBF-produced Higgs boson is therefore reweighted, based on the difference between the POWHEG-BOX+PYTHIA calculation and the HAWK [41–43] calculation which includes these corrections.

Table 1

Signal	MC generator	\(\sigma \times B\) [pb]	\(\sqrt{s} = 8\) TeV
VBF, \(H \rightarrow \tau\tau\)	POWHEG-BOX [47–50] + PYTHIA8 [51]	0.100	(N)NLO [41,42,52–54]
VBF, \(H \rightarrow WW\)	same as for \(H \rightarrow \tau\tau\) signal	0.34	(N)NLO [41,42,52–54]
Background	MC generator	\(\sigma \times B\) [pb]	\(\sqrt{s} = 8\) TeV
\(W(\rightarrow \ell\nu), (\ell = e, \mu, \tau)\)	ALPGEN [55] + PYTHIA8	36,800	NNLO [56,57]
\(Z/\gamma^*(\rightarrow \ell\ell)\), \(60\) GeV \(< m_{\ell\ell} < 2\) TeV	ALPGEN + PYTHIA8	3910	NNLO [56,57]
\(Z/\gamma^*(\rightarrow \ell\ell)\), \(10\) GeV \(< m_{\ell\ell} < 60\) GeV	ALPGEN + HERWIG [58]	13,000	NNLO [56,57]
VBF \(Z/\gamma^*(\rightarrow \ell\ell)\)	SHERPA [59]	1.1	LO [59]
Single top : \(Wt\)	POWHEG-BOX + PYTHIA8	253†	NNLO + NNLL [60–65]
Single top : s-channel	POWHEG-BOX + PYTHIA8	5.6†	NNLO [67]
Single top : t-channel	AcerMC [68] + PYTHIA6 [69]	87.8†	NNLO [70]
\(q\bar{q} \rightarrow WW\)	ALPGEN + HERWIG	54†	NLO [71]
\(gg \rightarrow WW\)	gg2WW [72] + HERWIG	1.4†	NLO [72]
\(WZ, ZZ\)	HERWIG	30†	NLO [71]
ggF, \(H \rightarrow \tau\tau\)	HJ MINLO [73,74] + PYTHIA8	1.22	NNLO + NNLL [54,75–80]
ggF, \(H \rightarrow WW\)	POWHEG-BOX [81] + PYTHIA8	4.16	NNLO + NNLL [54,75–80]

All Higgs boson events are generated assuming \(m_H = 125\) GeV. The cross sections times branching fractions \((\sigma \times B)\) used for the normalisation of some processes (many of these are subsequently normalised to data) are included in the last column together with the perturbative order of the QCD calculation. For the signal processes the \(H \rightarrow \tau\tau\) and \(H \rightarrow WW\) SM branching ratios are included, and for the \(WZ\) and \(ZZ\) background processes the branching ratios for leptonic decays \((\ell = e, \mu, \tau)\) of the bosons are included. For all other background processes, inclusive cross sections are quoted (marked with a †).
In the case of the $H \rightarrow WW$ sample, if CP violation exists in the HVV coupling, it would affect both the VBF production and the HWW decay vertex. It was verified that the shape of the Optimal Observable distribution is independent of any possible CP violation in the $H \rightarrow WW$ decay vertex and that it is identical for $H \rightarrow WW$ and $H \rightarrow \tau\tau$ decays. Hence the same reweighting is applied for VBF-produced events with $H \rightarrow WW$ and $H \rightarrow \tau\tau$ decays.

For all samples, a full simulation of the ATLAS detector response [90] using the GEANT4 program [91] was performed. In addition, multiple simultaneous minimum-bias interactions are simulated using the AU2 [92] parameter tuning of PYTHIA8. They are overlaid on the simulated signal and background events according to the luminosity profile of the recorded data. The contributions from these pile-up interactions are simulated both within the same bunch crossing as the hard-scattering process and in neighbouring bunch crossings. Finally, the resulting simulated events are processed through the same reconstruction programs as the data.

6 Analysis

After data quality requirements, the integrated luminosity of the $\sqrt{s} = 8$ TeV dataset used is 20.3 fb$^{-1}$. The triggers, event selection, estimation of background contributions and systematic uncertainties closely follow the analysis in Ref. [20]. In the following a short description of the analysis strategy is given; more details are given in that reference.

Depending on the reconstructed decay modes of the two τ leptons (leptonic or hadronic), events are separated into the dileptonic ($\tau_{\text{lep}}\tau_{\text{lep}}$) and semileptonic ($\tau_{\text{lep}}\tau_{\text{had}}$) channels. Following a channel-specific preselection, a VBF region is selected by requiring at least two jets with $p_T^{j1} > 40$ GeV (50 GeV) and $p_T^{j2} > 30$ GeV and a pseudorapidity separation $\Delta y(j_1, j_2) > 2.2$ (3.0) in the $\tau_{\text{lep}}\tau_{\text{lep}}$ ($\tau_{\text{lep}}\tau_{\text{had}}$) channel. Events with b-tagged jets are removed to suppress top-quark backgrounds.

Inside the VBF region, boosted decision trees (BDT)2 are utilised for separating Higgs boson events produced via VBF from the background (including other Higgs boson production modes). The final signal region in each channel is defined by the events with a BDT score value above a threshold of 0.68 for $\tau_{\text{lep}}\tau_{\text{lep}}$ and 0.3 for $\tau_{\text{lep}}\tau_{\text{had}}$. The efficiency of this selection, with respect to the full VBF region, is 49% (51%) for the signal and 3.6% (2.1%) for the sum of background processes for the $\tau_{\text{lep}}\tau_{\text{lep}}$ ($\tau_{\text{lep}}\tau_{\text{had}}$) channel. A non-negligible number of events from VBF-produced $H \rightarrow WW$ events survive the $\tau_{\text{lep}}\tau_{\text{lep}}$ selection: they amount to 17% of the overall VBF signal in the signal region. Their contribution is entirely negligible in the $\tau_{\text{lep}}\tau_{\text{had}}$ Selection. Inside each signal region, the Optimal Observable is then used as the variable with which to probe for CP violation. The BDT score does not affect the mean of the Optimal Observable, as can be seen in Fig. 2.

The modelling of the Optimal Observable distribution for various background processes is validated in dedicated control regions. The top-quark control regions are defined by the same cuts as the corresponding signal region, but inverting the veto on b-tagged jets and not applying the selection on the BDT score (in the $\tau_{\text{lep}}\tau_{\text{had}}$ channel a requirement of the transverse mass3 $m_T > 40$ GeV is also applied). In the $\tau_{\text{lep}}\tau_{\text{lep}}$ channel a $Z \rightarrow \ell\ell$ control region is obtained by requiring two same-flavour opposite-charge leptons, the invariant mass of the two leptons to be $80 < m_{\ell\ell} < 100$ GeV, and no BDT score

2 The same BDTs trained in the context of the analysis in Ref. [20] are used here, unchanged.

3 The transverse mass is defined as $m_T = \sqrt{2p_T^{\ell}\cdot E_{\text{T miss}}^{\ell}(1 - \cos \Delta \phi)}$, where $\Delta \phi$ is the azimuthal separation between the directions of the lepton and the missing transverse momentum.
requirement, but otherwise applying the same requirements as for the signal region. These regions are also used to normalise the respective background estimates using a global fit described in the next section. Finally, an additional region is defined for each channel, called the low-BDT_{score} control region, where a background-dominated region orthogonal to the signal region is selected by requiring the BDT_{score} to be less than 0.05 for τ_{lep}τ_{lep} and less than 0.3 for τ_{lep}τ_{had}. The distribution of the Optimal Observable in these regions is shown in Figs. 3 and 4, demonstrating the good description of the data by the background estimates.

The effect of systematic uncertainties on the yields in signal region and on the shape of the Optimal Observable is evaluated following the procedures and prescriptions described in Ref. [20]. An additional theoretical uncertainty in the shape of the Optimal Observable is included to account for the signal reweighting procedure described in Sect. 5. This is obtained from the small difference between the Optimal Observable distribution in reweighted samples, compared to samples with anomalous couplings directly generated with MadGraph5_AMC@NLO. While the analysis is statistically limited, the most important systematic uncertainties are found to arise from effects on the jet, hadronically decaying τ and electron energy scales; the most important theoretical uncertainty is due to the description of the underlying event and parton shower in the VBF signal sample.
7 Fitting procedure

The best estimate of \tilde{d} is obtained using a maximum-likelihood fit performed on the Optimal Observable distribution in the signal region for each decay channel simultaneously, with information from different control regions included to constrain background normalisations and nuisance parameters. The normalisation of the VBF $H \rightarrow \tau \tau$ and $H \rightarrow WW$ signal sample is left free in the fit, i.e. this analysis only exploits the shape of the Optimal Observable and does not depend on any possibly model-dependent information about the cross section of CP-mixing scenarios. The relative proportion of the two Higgs boson decay modes is assumed to be as in the SM. All other Higgs boson production modes are treated as background in this study and normalised to their SM expectation, accounting for the corresponding theoretical uncertainties.

A binned likelihood function $L(x; \mu, \theta)$ is employed, which is a function of the data x, the free-floating signal strength μ, defined as the ratio of the measured cross section times branching ratio to the Standard Model prediction, and further nuisance parameters θ. It relies on an underlying model of signal plus background, and it is defined as the product of Poisson probability terms for each bin in the distribution of the Optimal Observable. A set of signal templates corresponding to different values of the CP-mixing parameter \tilde{d} is created by reweighting the SM VBF $H \rightarrow \tau \tau$ and $H \rightarrow WW$ signal samples, as described in Sect. 5. The likelihood function is then evaluated for each \tilde{d} hypothesis using the corresponding signal template, while keeping the same background model. The calculation profiles the nuisance parameters to the best-fit values $\hat{\theta}$, including information about systematic uncertainties and normalisation factors, both of which affect the expected numbers of signal and background events.

After constructing the negative log-likelihood (NLL) curve by calculating the NLL value for each \tilde{d} hypothesis, the approximate central confidence interval at 68% confidence level (CL) is determined from the best estimator \tilde{d}, at which the NLL curve has its minimum value, by reading off the points at which $\Delta NLL = NLL - NLL_{\text{min}} = 0.5$. The expected sensitivity is determined using an Asimov dataset, i.e. a pseudo-data distribution equal to the signal-plus-background expectation for given values of \tilde{d} and the parameters of the fit, in particular the signal strength μ, and not including statistical fluctuations [93].

In both channels, a region of low BDT score is obtained as described in the preceding section. The distribution of the BDT score itself is fitted in this region, which has a much larger number of background events than the signal region, allowing the nuisance parameters to be constrained by the data. This region provides the main constraint on the $Z \rightarrow \tau \tau$ normalisation, which is free to float in the fit. The event yields from the top-quark (in $\tau_{\text{lep}}\tau_{\text{lep}}$ and $\tau_{\text{lep}}\tau_{\text{had}}$) and $Z \rightarrow \ell \ell$ (in $\tau_{\text{lep}}\tau_{\text{lep}}$ only) control regions defined in the previous section are also included in the fit, to constrain the respective background normalisations, which are also left free in the fit.

The distributions of the Optimal Observable in each channel are shown in Fig. 5, with the nuisance parameters, background and signal normalisation adjusted by the global fit performed for the $\tilde{d} = 0$ hypothesis. Table 2 provides the fitted yields of signal and background events, split into the various contributions, in each channel. The number of events observed in data is also provided.
The observed distribution of \(\Delta \text{NLL} \) as a function of the \(\hat{d} \) values defining the underlying signal hypothesis, for \(\tau_{\text{lep}} \tau_{\text{lep}} \) (green), \(\tau_{\text{lep}} \tau_{\text{had}} \) (red) and their combination (black). The best-fit values of all nuisance parameters from the combined fit at each \(\hat{d} \) point were used in all cases. An Asimov dataset with SM backgrounds plus pure CP-even VBF signal (\(\hat{d} = 0 \)), scaled to the best-fit signal-strength value, was used to calculate the expected values, shown in blue. The markers indicate the points where an evaluation was made – the lines are only meant to guide the eye.

As described in the previous section, the observed limit on CP-odd couplings is estimated using a global maximum-likelihood fit to the \(\text{Optimal Observable} \) distributions in data. The observed distribution of \(\Delta \text{NLL} \) as a function of the CP-mixing parameter \(\hat{d} \) for the individual channels separately, and for their combination, is shown in Fig. 6. The \(\tau_{\text{lep}} \tau_{\text{lep}} \) and \(\tau_{\text{lep}} \tau_{\text{had}} \) curves use the best-fit values of all nuisance parameters from the combined fit at each \(\hat{d} \) point. The expected curve is calculated assuming no CP-odd coupling, with the \(H \to \tau \tau \) signal scaled to the signal-strength value (\(\mu = 1.55^{+0.87}_{-0.76} \)) determined from the fit for \(\hat{d} = 0 \). In the absence of CP violation the curve is expected to have a minimum at \(\hat{d} = 0 \). Since the first-order \(\text{Optimal Observable} \) used in the present analysis is only sensitive to small variations in the considered variable, for large \(\hat{d} \) values there is no further
discrimination power and thus the ΔNLL curve is expected to flatten out. The observed curve follows this behaviour and is consistent with no CP violation. The regions \(\hat{d} < -0.11 \) and \(\hat{d} > 0.05 \) are excluded at 68% CL. The expected confidence intervals are \([-0.08, 0.08]\) \([-0.18, 0.18]\) for an assumed signal strength of \(\mu = 1.55 \) \(1.0 \). The constraints on the CP-mixing parameter \(\hat{d} \) based on VBF production can be directly compared to those obtained by studying the Higgs boson decays into vector bosons, as the same relation between the \(HWW \) and \(HZZ \) couplings as in Refs. [14, 15] is assumed. The 68% CL interval presented in this work is a factor 10 better than the one obtained in Ref. [15].

As a comparison, the same procedure for extracting the CP-mixing parameter \(\hat{d} \) was applied using the \(\Delta \phi_{jj} \) observable, previously proposed for this measurement and defined in Eq. 11, rather than the Optimal Observable. The expected ΔNLL curves for a SM Higgs boson signal from the combination of both channels for the two CP-odd observables are shown in Fig. 7, allowing a direct comparison, and clearly indicate the better sensitivity of the Optimal Observable. The observed ΔNLL curve derived from the \(\Delta \phi_{jj} \) distribution is also consistent with \(\hat{d} = 0 \), as shown in Fig. 8, along with the expectation for a signal with \(\hat{d} = 0 \) scaled to the best-fit signal-strength value (\(\mu = 2.02^{+0.87}_{-0.77} \)).

9 Conclusions

A test of CP invariance in the Higgs boson coupling to vector bosons has been performed using the vector-boson fusion production mode and the \(H \rightarrow \tau \tau \) decay. The dataset corresponds to \(20.3 \text{ fb}^{-1} \) of \(\sqrt{s} = 8 \text{ TeV} \) proton–proton collisions recorded by the ATLAS detector at the LHC. Event selection, background estimation and evaluation of systematic uncertainties are all very similar to the ATLAS analysis that provided evidence of the \(H \rightarrow \tau \tau \) decay. An Optimal Observable is constructed and utilised, and is shown to provide a substantially better sensitivity than the variable traditionally proposed for this kind of study, \(\Delta \phi_{jj}^{\text{sign}} \). No sign of CP violation is observed. Using only the dileptonic and semileptonic \(H \rightarrow \tau \tau \) channels, and under the assumption \(\hat{d} = \hat{d}_B \), values of \(\hat{d} \) less than \(-0.11 \) and greater than \(0.05 \) are excluded at 68% CL.

This 68% CL interval is a factor of 10 better than the one previously obtained by the ATLAS experiment from Higgs boson decays into vector bosons. In contrast, the present analysis has no sensitivity to constrain a 95% CL interval with the dataset currently available – however larger data samples in the future and consideration of additional Higgs boson decay channels should make this approach highly competitive.

Acknowledgements We thank CERN for the very successful operation of the LHC, as well as the support staff from our institutions without whom ATLAS could not be operated efficiently. We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWFW and FWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC and CFI, Canada; CERN; CONICYT, Chile; CAS, MOST and NSFC, China; COLCIENCIAS, Colombia; M individual funding agencies, DNSRC, Denmark; IN2P3-CNRS, CEA-DSM/IRFU, France; GNSF, Georgia; BMBF, HGF, and MPG, Germany; GSRT, Greece; RGC, Hong
Kong SAR, China; IFIS, I-CORE and Benziroy Center, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRS, Morocco; FOM and NWO, Netherlands; RCN, Norway; MNI SW and NCN, Poland; FCT, Portugal; MINE/IFA, Romania; MES of Russia and NRC KI, Russian Federation; JINR; MESTD, Serbia; MSSL, Slovakia; ARRS and MIZŠ, Slovenia; DSTN/RFN, South Africa; MINECO, Spain; SRC and Wallenberg Foundation, Sweden; SERI, SNSF and Cantons of Bern and Geneva, Switzerland; MOST, Taiwan; TAEK, Turkey; STFC, United Kingdom; DOE and NSF, United States of America. In addition, individual groups and members have received support from BCKDF, the Canada Council, CANARIE, CRC, Compute Canada, FQRNT, and the Ontario Innovation Trust, Canada; EPLANET, ERC, FP7, Horizon 2020 and Marie Skłodowska-Curie Actions, European Union; Investissements d’Avenir Labex and Idex, ANR, Région Auvergne and Fondation Partager le Savoir, France; DFG and AvH Foundation, Germany; Herakleitos, Thales and Aristeia programmes co-financed by EU-ESF and the Greek NSRF; BSF, GIF and Minerva, Israel; BRF, Norway; Generalitat de Catalunya, Generalitat Valenciana, Spain; the Royal Society and Leverhulme Trust, United Kingdom. The crucial computing support from all WLCG partners is acknowledged gratefully, in particular from CERN and the ATLAS Tier-1 facilities at TRIUMF (Canada), NDGF (Denmark, Norway, Sweden), CC-IN2P3 (France), KIT/GridKA (Germany), INFN-CNAF (Italy), NL-T1 (Netherlands), PIC (Spain), ASGC (Taiwan), RAL (UK) and BNL (USA) and in the Tier-2 facilities worldwide.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit and indicate if changes were made. Funded by SCOAP3.

References
1. ATLAS Collaboration, Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC. Phys. Lett. B. 716, 1–29 (2012). arXiv:1207.7214 [hep-ex]
2. CMS Collaboration, Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC. Phys. Lett. B. 716, 30–61 (2012). arXiv:1207.7235 [hep-ex]
3. L. Evans, P. Bryant, L.H.C. Machine, JINST 3, S08001 (2008)
4. A.D. Sakharov, Violation of CP Invariance, c Asymmetry, and Baryon Asymmetry of the Universe, Pisma Zh. Eksp. Teor. Fiz. 5, 32–35 (1967). [Usp. Fiz. Nauk161,61(1991)]
5. A. D. Sakharov, Baryonic asymmetry of the universe. Sov. Phys. JETP 49, 594–599 (1979). [Zh. Eksp. Teor. Fiz.76,1172(1979)]
6. A.D. Sakharov, Baryon asymmetry of the universe. Sov. Phys. Usp. 34, 417–421 (1991)
7. N. Cabibbo, Unitary symmetry and leptonic decays. Phys. Rev. Lett. 10, 531–533 (1963)
8. M. Kobayashi, T. Maskawa, CP violation in the renormalizable theory of weak interaction. Prog. Theor. Phys. 49, 652–657 (1973)
9. P.A.R. Ade et al., Planck 2015 results. XIII. Cosmological parameters, (2015). arXiv:1502.01589 [astro-ph.CO]
10. P. Huet, E. Sather, Electroweak baryogenesis and standard model CP violation. Phys. Rev. D. 51, 379–394 (1995). arXiv:hep-ph/9404302 [hep-ph]
11. M.B. Gavela et al., Standard model CP violation and baryon asymmetry. Mod. Phys. Lett. A. 9, 795–810 (1994). arXiv:hep-ph/9312215 [hep-ph]
12. CMS Collaboration, Precise determination of the mass of the Higgs boson and tests of compatibility of its couplings with the standard model predictions using proton collisions at 7 and 8 TeV. Eur. Phys. J. C. 75, 212 (2015). arXiv:1412.8662 [hep-ex]
13. ATLAS Collaboration, Measurements of the Higgs boson production and decay rates and coupling strengths using pp collision data at \(\sqrt{s} = 7 \) and 8 TeV in the ATLAS experiment. Eur. Phys. J. C. 76, 6 (2016). arXiv:1507.04548 [hep-ex]
14. CMS Collaboration, Constraints on the spin-parity and anomalous HVV couplings of the Higgs boson. Eur. Phys. J. C. 76, 6 (2016). arXiv:1501.04943 [hep-ex]
15. ATLAS Collaboration, Study of the spin and parity of the Higgs boson in diboson decays with the ATLAS detector. Eur. Phys. J. C. 75, 476 (2015). arXiv:1506.05669 [hep-ex]
16. ATLAS Collaboration, Constraints on non-Standard Model Higgs boson interactions in an effective Lagrangian using differential cross sections measured in the \(H \rightarrow \gamma \gamma \) decay channel at \(\sqrt{s} = 8 \) TeV with the ATLAS detector. Phys. Lett. B 753, 69–85 (2016). arXiv:1508.02507 [hep-ex]
17. D. Atwood, A. Soni, Analysis for magnetic moment and electric dipole moment, form-factors of the top quark via \(e^+ e^- \rightarrow t \bar{t} f \). Phys. Rev. D 45, 2405–2413 (1992)
18. M. Davier et al., The optimal method for the measurement of tau polarization. Phys. Lett. B. 306, 411–417 (1993)
19. M. Diehl, O. Nachtmann, Optimal observables for the measurement of three gauge boson couplings in \(e^+ e^- \rightarrow W^+ W^- \). Z. Phys. C 62, 397–412 (1994)
20. ATLAS Collaboration, Evidence for the Higgs-boson Yukawa coupling to tau leptons with the ATLAS detector. JHEP 04, 117 (2015). arXiv:1501.04943 [hep-ex]
21. V. Hankele et al., Anomalous Higgs boson couplings in vector boson fusion at the CERN LHC. Phys. Rev. D. 79, 059001 (2009). arXiv:hep-ph/0609075 [hep-ph]
22. ALEPH Collaboration, G. Abbiendi et al., Measurement of W boson polarizations and CP violating triple gauge couplings from W⁺W⁻ production at LEP. Eur. Phys. J. C. 19, 229–240 (2001). arXiv:hep-ex/0009021 [hep-ex]
23. DELPHI Collaboration, J. Abdallah et al., Study of W boson polarisations and Triple Gauge Boson Couplings in the reaction \(e^+ e^- \rightarrow W^+ W^- \) at LEP 2. Eur. Phys. J. C. 54, 345–364 (2008). arXiv:0801.1235 [hep-ex]
24. L3 Collaboration, P. Achard et al., Search for anomalous couplings in the Higgs sector at LEP. Phys. Lett. B 589, 89–102 (2004). arXiv:hep-ex/0403037 [hep-ex]
25. M. Diehl, O. Nachtmann, Anomalous three gauge couplings in \(e^+ e^- \rightarrow t \bar{t} f \) and ‘optimal’ strategies for their measurement. Eur. Phys. J. C 1, 177–190 (1998). arXiv:hep-ph/9702208 [hep-ph]
26. M. Diehl, O. Nachtmann, F. Nagel, Triple gauge couplings in polarized \(e^+ e^- \rightarrow t \bar{t} f \) and their measurement using optimal observables. Eur. Phys. J. C 27, 375–397 (2003). arXiv:hep-ph/0209229 [hep-ph]
(a) Faculté des Sciences Ain Chock, Réseau Universitaire de Physique des Hautes Energies-Université Hassan II, Casablanca, Morocco; (b) Centre National de l’Energie des Sciences Techniques Nucléaires, Rabat, Morocco; (c) Faculté des Sciences Semlalia, Université Cadi Ayyad, LPHEA-Marrakech, Marrakech, Morocco; (d) Faculté des Sciences, Université Mohamed Premier and LPTPM, Oujda, Morocco; (e) Faculté des Sciences, Université Mohammed V, Rabat, Morocco

137 DSM/IRFU (Institut de Recherches sur les Lois Fondamentales de l’Univers), CEA Saclay (Commissariat à l’Energie Atomique et aux Energies Alternatives), Gif-sur-Yvette, France

138 Santa Cruz Institute for Particle Physics, University of California Santa Cruz, Santa Cruz, CA, USA

139 Department of Physics, University of Washington, Seattle, WA, USA

140 Department of Physics and Astronomy, University of Sheffield, Sheffield, UK

141 Department of Physics, Shinshu University, Nagano, Japan

142 Fachbereich Physik, Universität Siegen, Siegen, Germany

143 Department of Physics, Simon Fraser University, Burnaby, BC, Canada

144 SLAC National Accelerator Laboratory, Stanford, CA, USA

145 (a) Faculty of Mathematics, Physics and Informatics, Comenius University, Bratislava, Slovak Republic; (b) Department of Subnuclear Physics, Institute of Experimental Physics of the Slovak Academy of Sciences, Kosice, Slovak Republic

146 (a) Department of Physics, University of Cape Town, Cape Town, South Africa; (b) Department of Physics, University of Johannesburg, Johannesburg, South Africa; (c) School of Physics, University of the Witwatersrand, Johannesburg, South Africa

147 (a) Department of Physics, Stockholm University, Stockholm, Sweden; (b) The Oskar Klein Centre, Stockholm, Sweden

148 Physics Department, Royal Institute of Technology, Stockholm, Sweden

149 Departments of Physics and Astronomy and Chemistry, Stony Brook University, Stony Brook, NY, USA

150 Department of Physics and Astronomy, University of Sussex, Brighton, UK

151 School of Physics, University of Sydney, Sydney, Australia

152 Institute of Physics, Academia Sinica, Taipei, Taiwan

153 Department of Physics, Technion: Israel Institute of Technology, Haifa, Israel

154 Raymond and Beverly Sackler School of Physics and Astronomy, Tel Aviv University, Tel Aviv, Israel

155 Department of Physics, Aristotle University of Thessaloniki, Thessaloniki, Greece

156 International Center for Elementary Particle Physics and Department of Physics, The University of Tokyo, Tokyo, Japan

157 Graduate School of Science and Technology, Tokyo Metropolitan University, Tokyo, Japan

158 Department of Physics, Tokyo Institute of Technology, Tokyo, Japan

159 Department of Physics, University of Toronto, Toronto, ON, Canada

160 (a) TRIUMF, Vancouver, BC, Canada; (b) Department of Physics and Astronomy, York University, Toronto, ON, Canada

161 Faculty of Pure and Applied Sciences, and Center for Integrated Research in Fundamental Science and Engineering, University of Tsukuba, Tsukuba, Japan

162 Department of Physics and Astronomy, Tufts University, Medford, MA, USA

163 (a) INFN Gruppo Collegato di Udine, Sezione di Trieste, Udine, Italy; (b) ICTP, Trieste, Italy; (c) Dipartimento di Chimica Fisica e Ambiente, Università di Udine, Udine, Italy

164 Department of Physics and Astronomy, University of Uppsala, Uppsala, Sweden

165 Department of Physics, University of Illinois, Urbana, IL, USA

166 Instituto de Física Corpuscular (IFIC) and Departamento de Física Atómica, Molecular y Nuclear and Departamento de Ingeniería Electrónica and Instituto de Microelectrónica de Barcelona (IMB-CNM), University of Valencia and CSIC, Valencia, Spain

167 Department of Physics, University of British Columbia, Vancouver, BC, Canada

168 Department of Physics and Astronomy, University of Victoria, Victoria, BC, Canada

169 Department of Physics, University of Warwick, Coventry, UK

170 Waseda University, Tokyo, Japan

171 Department of Particle Physics, The Weizmann Institute of Science, Rehovot, Israel

172 Department of Physics, University of Wisconsin, Madison, WI, USA

173 Fakultät für Physik und Astronomie, Julius-Maximilians-Universität, Würzburg, Germany

174 Fakultät für Mathematik und Naturwissenschaften, Fachgruppe Physik, Bergische Universität Wuppertal, Wuppertal, Germany

175 Department of Physics, Yale University, New Haven, CT, USA
