High saturation magnetization of γ-Fe_2O_3 nano-particles by a facile one-step synthesis approach

Derang Cao1, Hao Li2, Lining Pan1, Jianan Li1, Xicheng Wang2, Panpan Jing1, Xiaohong Cheng1, Wenjie Wang3, Jianbo Wang1,2 & Qingfang Liu1

We have demonstrated the synthesis of γ-Fe_2O_3 nano-particles through a facile and novel calcination process in the air. There is no pH regulation, gas atmosphere, additive, centrifugation or other complicated procedures during the preparing process. A detailed formation process of the nanoparticles is proposed, and DMF as a polar solvent may slow the reaction process of calcination. The structures, morphologies, and magnetic properties of γ-Fe_2O_3 nano-particles were investigated systematically, and the pure γ-Fe_2O_3 nano-particles obtained at 200 °C display uniform morphology and good magnetic property. The saturation magnetization of obtained pure γ-Fe_2O_3 is about 74 emu/g, which is comparable with bulk material (76 emu/g) and larger than other results. In addition, the photocatalytic activity for degradation of methylene blue is also studied, which shows proper photocatalytic activity.

Magnetic nanomaterials have attracted much interest gradually, since these materials have many potential applications such as information storage, color imaging, magnetic refrigeration, gas sensors, ferrofluids, and photocatalysis etc.1-7 Recently, researches of magnetic nanomaterials are fascinating due to its powerful usefulness for a variety of biomedical8-9 and chemical engineering applications10. Among the magnetic nanomaterials, maghemite (γ-Fe_2O_3) is considered as one of the most desirable materials for various applications due to its inherent biocompatible nature and stability of oxidation as well as its good magnetic properties.1-3, γ-Fe_2O_3 also exhibits modest photocatalytic activity and separability.7-9 It can be used associated with ZnO or TiO$_2$ to enhance the visible light adsorption and increase the electron/hole separation.10-13 High magnetization of γ-Fe_2O_3 has potential applications for cleaning polluted water with the help of magnetic separation. As a result, magnetic properties, as an important symbolic characteristic of γ-Fe_2O_3 nano-particles, are noticeable for study.

Therefore, new approaches for the synthesis of γ-Fe_2O_3 particles as well as the investigation on their properties are of fundamental importance for the development of science and technology. The basic and conventional route of these methods or processes for the synthesis of γ-Fe_2O_3 nano-particles are controlling the oxidation of Fe$_3$O$_4$.$^{17-20}$ and the total preparation process is shown as follows:

$$\text{Fe}^{2+}/\text{Fe}^{3+} \rightarrow \alpha$\text{-Fe}_2\text{O}_3/\alpha$\text{-FeOOH} \rightarrow \text{Fe}_3\text{O}_4 \rightarrow \gamma$\text{-Fe}_2\text{O}_3$$

Various methods have been reported for the synthesis of γ-Fe_2O_3 nano-particles, such as coprecipitation.12,21 hydrothermal22, microemulsions23,24, thermal decomposition24,25, aerosol pyrolysis26, sole-gel27, hydrosol chemical reaction28, combustion synthesis7, Massart method29,30, solvothermal method29,30, wet chemical method11,32, sonochemical route33, ultrasonic decomposition34, high-temperature solution reaction1, chemical reaction6, and other chemical processes.$^{35-39}$ These synthesis processes or methods are the important routes for the synthesis of γ-Fe_2O_3 nano-particles and its composite materials. However, suitable pH value, long reaction time, and definite additives or surfactants are indispensable for obtaining pure γ-Fe_2O_3 nano-particles with controllable morphology during those synthesis processes. Furthermore, centrifugation and purification are the vital factor for nano-particles with single products and good dispersity. Those preparation processes were totally complicated and cumbersome.

1Key Laboratory for Magnetism and Magnetic Materials of the Ministry of Education, Lanzhou University, Lanzhou 730000, People’s Republic of China. 2Key Laboratory of Special Function Materials and Structure Design, Ministry of Education, Lanzhou University, Lanzhou 730000, People’s Republic of China. 3Key Laboratory of nonferrous metals chemistry and resources utilization, Lanzhou University, Lanzhou 730000, People’s Republic of China. Correspondence and requests for materials should be addressed to Q.L. (email: liuqf@lzu.edu.cn)
Significantly, the saturation magnetization of γ-Fe$_2$O$_3$ nano-particles of the most methods mentioned above is still dissatisfied. Herein, we report a unified approach for the synthesis of γ-Fe$_2$O$_3$ nano-particles in the air via a facile and novel calcination process. The method is different from the earlier approaches, and there is no pH regulation, gas atmosphere, centrifugation and other supplementary reagents during the preparing process. Various characterizations were measured to perform the obtained pure γ-Fe$_2$O$_3$ nano-particles, and γ-Fe$_2$O$_3$ nano-particles show a high saturation magnetization. In addition, the photocatalytic activity of γ-Fe$_2$O$_3$ nano-particles was also studied.

Methods
A unified method was provided using a simple and convenient route to assemble γ-Fe$_2$O$_3$ nano-particles. Ferric nitrate was dissolved in Dimethyl Formamide (DMF), the precursor was 0.6 mol/L, and calcined at different temperature ($100\,^{\circ}\mathrm{C}$~$400\,^{\circ}\mathrm{C}$, the interval is $50\,^{\circ}\mathrm{C}$) for 2 hours in the air. The heating rate was 1 $^{\circ}\mathrm{C}$/min. The schematic diagram of experiment is shown in Fig. 1.

The crystal structure of samples were measured by X-ray diffraction (XRD, PANalytical X'Pert) equipped with Cu-K$_\alpha$ radiation ($\lambda = 1.5406\,\text{Å}$). The morphology of all samples was observed by using field emission scanning electron microscopy (FESEM, Hitachi S-4800) and transmission electron microscopy (TEM, Tecnai™ G² F30, FEI) equipped with an energy-dispersive spectrometer (EDS). The X-ray photoelectron spectroscopy (XPS, PHI-5702, Physical Electronics) were performed using a monochromatic Al-K$_\alpha$ irradiation and a charge neutralizer. All binding energies were referred to the C1 s peak at 284.6 eV of the surface adventitious carbon. The magnetic properties of the samples were measured by a vibrating sample magnetometer (VSM, Lakeshore 7304). The measurement process of surface areas and photocatalytic activity of the sample were shown in the Supporting Information (SI).

Results and Discussion
On the basis of the below experiments and results, a formation mechanism of the nano-particles in this work is proposed, which is outlined in Fig. 2. It is suggested that the following reactions occur during the calcination process:

$\text{Fe(NO}_3\text{)}_3\cdot 9\text{H}_2\text{O} \rightarrow \text{Fe(NO}_3\text{)}_3 + 9\text{H}_2\text{O}$

(1)
As shown in Fig. 2(a), the precursor is composed of DMF and iron nitrate. The solvents begin to volatilize at the beginning of the heating process (Fig. 2b). DMF in precursors plays a role of solvent, which helps the diffusion and contact of the reactant molecules in the course of volatilization. When calcination temperature (CT) is increased (Fig. 2c), DMF is exhausted gradually, and the iron nitrite nonahydrate (Fe(NO₃)₃·9H₂O) loses its water of hydration. The processes of Fig. 2(a–c) reveal that the surface morphology of sample seems not to be changed.

\[
\text{2Fe(NO₃)₃} \rightarrow \gamma\text{-Fe₂O₃} + \text{NO}_x
\] \hspace{1cm} (2)

\[
\gamma\text{-Fe₂O₃} \rightarrow \alpha\text{-Fe₂O₃}
\] \hspace{1cm} (3)

Figure 3. SEM images of nano-particles of different calcinations temperature (a) 100°C, (b) 150°C, (c) 200°C, (d) 250°C, (e) 300°C, (f) 350°C, and (g) 400°C, respectively. The inset of (c) is the size distributions of nano-particles at 200°C.

Figure 4. XRD patterns of γ-Fe₂O₃ nano-particles at different calcinations temperature.
from their nature. The corresponding SEM picture and XRD pattern at 100 °C show bulk grains, suggesting an amorphous structure. The non-magnetic results (VSM loop) also confirm the amorphous structure. When the specimen is calcined at a moderate temperature (Fig. 2d), Fe(NO₃)₃ decomposes into γ-Fe₂O₃, and the nucleation process is observed (See SEM image and XRD spectrum at 150 °C). When CT then increases, a large area of γ-Fe₂O₃ nucleation is crystallized to the uniform nano-particles, which can be demonstrated by SEM image and XRD spectrum of 200 °C. Thereafter, when CT is about 220~400 °C (Fig. 2e), γ-Fe₂O₃ nano-particles begin to engulf its surrounded crystals, and various sizes of α-Fe₂O₃ particles are formed. This can be supported by

Figure 5. XPS patterns of γ-Fe₂O₃ nano-particles under 200 °C. (a) Full scanned XPS spectra, (b) XPS spectra of Fe 2p core-level.

Figure 6. Typical TEM images (a,b), SAED (c), HRTEM image (d,e), EDX (f), and grain size distributions of γ-Fe₂O₃ nano-particles of 200 °C.
SEM images and XRD spectra of 250–300 °C. As CT is further improved, more γ-Fe$_2$O$_3$ particles are transformed to α-Fe$_2$O$_3$, and the morphologies and structures of samples are mainly composed of α-Fe$_2$O$_3$ particles (see SEM images and XRD spectra of 350–400 °C). Finally, when CT exceeds 500 °C, all γ-Fe$_2$O$_3$ is disappeared, and plenty of α-Fe$_2$O$_3$ nano-particles are achieved. The result can be confirmed by the previous phase transformation studies.2,38,40

To sum up, combining all results of γ-Fe$_2$O$_3$ nano-granules, the detailed formation processes are discussed below. DMF is a commendable solvent when compared with water, and DMF is associated well with the cation.41,42 As a solvent, DMF could disperse the ions, and coats each ion during the calcination process. As shown in Figure S1–S2 of SI, α-Fe$_2$O$_3$ particles are produced in the water but it cannot generate in DMF under the same experiment condition (1 °C/min, 200 °C). This indicates DMF may slower the reaction process of calcination, which restrains the transformation process of γ-Fe$_2$O$_3$ to α-Fe$_2$O$_3$. When CT or heating rates is increased, this restraint will be weakened.

Figure 3 shows SEM images of the samples of different CT. It can be seen that the morphologies change obviously with the increased CT. The sample of 100 °C (Fig. 3a) presents a number of disorderly bulk particles, and the shape of particles changes to compact and well-regulated nano-particles at 150 °C (Fig. 3b). Especially when CT is 200 °C (Fig. 3c), a large quantity of uniform nano-particles with the size about 60 nm are achieved. However, when CT is further improved (250–400 °C of Fig. 3d–g), the particles display an increased grain growth (Fig. 3d,e). The particle size becomes nonuniform, and strong piece of reunited particles are observed with the improvement of CT (Fig. 3f,g). These results are detailedly studied by the following techniques.

XRD data were used to determine the structural parameters of all the samples. Figure 4 shows XRD patterns of all the samples at different CT. It can be observed that when CT is 100 °C (Fig. 3a) presents a number of disorderly bulk particles, and the shape of particles changes to compact and well-regulated nano-particles at 150 °C (Fig. 3b). Especially when CT is 200 °C (Fig. 3c), a large quantity of uniform nano-particles with the size about 60 nm are achieved. However, when CT is further improved (250–400 °C of Fig. 3d–g), the particles display an increased grain growth (Fig. 3d,e). The particle size becomes nonuniform, and strong piece of reunited particles are observed with the improvement of CT (Fig. 3f,g). These results are detailedly studied by the following techniques.

XRD data were used to determine the structural parameters of all the samples. Figure 4 shows XRD patterns of all the samples at different CT. It can be observed that when CT is 100 °C, the sample is not crystallized due to the slow evaporation of DMF. Thus, there are no peaks could be seen in XRD pattern. Afterwards, the diffraction spectra of samples reveal the good single γ-Fe$_2$O$_3$ phases (150 °C and 200 °C) with the cubic crystal system (JCPDS#39-1346), and all the diffraction peaks can be well indexed. It can be confirmed that the particles are γ-Fe$_2$O$_3$, rather than α-Fe$_2$O$_3$, due to the different XRD pattern of α-Fe$_2$O$_3$ (JCPDS#80-2377) and γ-Fe$_2$O$_3$. The average crystalline size estimated from Scherrer analysis is about 36 nm (150 °C) and 32 nm (200 °C) for γ-Fe$_2$O$_3$. In addition, the peak intensity of γ-Fe$_2$O$_3$ calcined at 200 °C is stronger than that of 150 °C, which indicates that the nano-particles present higher crystallization at 200 °C. However, the samples display α-Fe$_2$O$_3$ phases when CT exceeds to 250 °C. The emergence of additional impurity phase, i.e., α-Fe$_2$O$_3$, is more obvious with the enhanced temperature (300–400 °C). These XRD results indicate that the oxide of iron cannot be formed when CT is 100 °C.
Table 1. Compare the typical methods or processes with ours. These methods or processes are not confined to the literatures we list.

When CT is increased to 150–200 °C, γ-Fe₂O₃ nano-particles can be achieved, and α-form is observed as CT exceeds 250 °C. It is well-known that γ-Fe₂O₃ can be further transformed into α-Fe₂O₃ at higher temperature, and the phase transformation temperature in our research (250 °C) is similar to the previous literature.

In order to distinguish the chemical composition of γ-Fe₂O₃ as opposed to Fe₃O₄, XPS measurement of pure γ-Fe₂O₃ nano-particles is further performed, which is displayed in Fig. 5. The full scanned XPS spectra of γ-Fe₂O₃ sample of 200 °C in the range of 0–1200 eV were shown in Fig. 5(a). Except for Fe 2p, O 1s, and C 1s peaks in the spectra, no redundant peaks appear together in Fe₂O₃ nano-particles, and the granules present a low dispersity, which may be due to the reuniting of the Fe₂O₃ nano-particles, and C element belongs to the carbon contaminants absorbed on the surface of the tested samples. In particular, Fe 2p₃/2 spectra (Fig. 5b) exhibit two characteristic peaks of the Fe₂O₃ nano-particles, and α-form is observed as CT exceeds 250 °C. It is well-known that Fe₂O₃ can be further transformed into α-Fe₂O₃ at higher temperature, and the phase transformation temperature in our research (250 °C) is similar to the previous literature.

As a representative, the morphology and structure of the pure γ-Fe₂O₃ nano-particles (200 °C) are further characterized by TEM. As shown in the Fig. 6(a,b), the results indicate large and black areas of near-spherical γ-Fe₂O₃ nano-particles, and the granules present a low dispersity, which may be due to the reuniting of the Fe₂O₃ nano-particles. HRTEM characterizations show the lattice fringes of the obtained ferrites, and the interfringe distance shown in Fig. 6(d,e) are 0.252 nm and 0.295 nm, which are correspond well to {311} and {220} planar nano-particles. HRTEM characterizations show the lattice fringes of the obtained ferrites, and the interfringe distance shown in Fig. 6(d,e) are 0.252 nm and 0.295 nm, which are correspond well to {311} and {220} planar nano-particles. Both the lattice fringes and SAED (Fig. 6c) clearly presents a group of atomic planes within each particle, revealing the highly crystalline nature of these nano-particles. Meanwhile, Fig. 6(f) gives EDX data of γ-Fe₂O₃ nano-particles, and the appearance of Cu peaks results from copper net used in the experiment. The element ratio of Fe:O is calculated to be 17.9:30.8, which is very close to the stoichiometry of γ-Fe₂O₃, and there is no signal or shoulder at smaller binding energies as would be expected for the presence of the Fe²⁺ ion (~708 eV). Furthermore, an additional peak at about 718.7 eV is the shakeup satellite peak, which also indicates the absence of the Fe²⁺ ion. XPS results are consistent with the judgment of XRD spectra.

As a representative, the morphology and structure of the pure γ-Fe₂O₃ nano-particles (200 °C) are further characterized by TEM. As shown in the Fig. 6(a,b), the results indicate large and black areas of near-spherical γ-Fe₂O₃ nano-particles, and the granules present a low dispersity, which may be due to the reuniting of the Fe₂O₃ nano-particles. HRTEM characterizations show the lattice fringes of the obtained ferrites, and the interfringe distance shown in Fig. 6(d,e) are 0.252 nm and 0.295 nm, which are correspond well to {311} and {220} planar nano-particles. Both the lattice fringes and SAED (Fig. 6c) clearly presents a group of atomic planes within each particle, revealing the highly crystalline nature of these nano-particles. Meanwhile, Fig. 6(f) gives EDX data of γ-Fe₂O₃ nano-particles, and the appearance of Cu peaks results from copper net used in the experiment. The element ratio of Fe:O is calculated to be 17.9:30.8, which is very close to the stoichiometry of γ-Fe₂O₃, and there is no signal or shoulder at smaller binding energies as would be expected for the presence of the Fe²⁺ ion (~708 eV). Furthermore, an additional peak at about 718.7 eV is the shakeup satellite peak, which also indicates the absence of the Fe²⁺ ion. XPS results are consistent with the judgment of XRD spectra.

As a representative, the morphology and structure of the pure γ-Fe₂O₃ nano-particles (200 °C) are further characterized by TEM. As shown in the Fig. 6(a,b), the results indicate large and black areas of near-spherical γ-Fe₂O₃ nano-particles, and the granules present a low dispersity, which may be due to the reuniting of the Fe₂O₃ nano-particles. HRTEM characterizations show the lattice fringes of the obtained ferrites, and the interfringe distance shown in Fig. 6(d,e) are 0.252 nm and 0.295 nm, which are correspond well to {311} and {220} planar nano-particles. Both the lattice fringes and SAED (Fig. 6c) clearly presents a group of atomic planes within each particle, revealing the highly crystalline nature of these nano-particles. Meanwhile, Fig. 6(f) gives EDX data of γ-Fe₂O₃ nano-particles, and the appearance of Cu peaks results from copper net used in the experiment. The element ratio of Fe:O is calculated to be 17.9:30.8, which is very close to the stoichiometry of γ-Fe₂O₃, and there is no signal or shoulder at smaller binding energies as would be expected for the presence of the Fe²⁺ ion (~708 eV). Furthermore, an additional peak at about 718.7 eV is the shakeup satellite peak, which also indicates the absence of the Fe²⁺ ion. XPS results are consistent with the judgment of XRD spectra.
On the base of good understanding of the microstructure and chemical phase of nano-particles, the room temperature magnetic performance of products is discussed below. As shown in Fig. 7(a), the non-crystalline sample (100 °C) has no magnetism. When CT is 150 °C, i.e. γ-Fe2O3 appears, the nano-particles emerge strong magnetism immediately, and the saturation magnetization (Ms) is about 61 emu/g. Particularly, when CT reaches to 200 °C, Ms increases to 74 emu/g, which is comparable with bulk γ-Fe2O3 sample (Ms = 76 emu/g)[33,49] but larger than other γ-Fe2O3 nanoparticles[11,13,30]. The higher values of Ms are due to the better crystals of the nano-particles, consistent with both the XRD and HRTEM data. A recent work also shows that the higher crystallinity is benefited to enhanced Ms of the sample[21]. Typical comparative results of variable quantity of Ms are shown in Fig. 7(d). It can be seen Ms of this work is higher than other nanoparticles, but less when compared with nanoplate and nanocloud. However, when CT exceeds 250 °C, Ms is decreased monotonously. That is because that the presence of non-magnetic α-Fe2O3 leads to the relative reduction of magnetic γ-Fe2O3, and the magnetic moments total quality drop. When CT is further increased to 250–400 °C, the impurity α-Fe2O3 appears more obviously (which can be confirmed by XRD results), and Ms is reduced gradually. Furthermore, low temperature hysteresis loops of γ-Fe2O3 (200 °C) have also been carried out at 80 K, 180 K, and 300 K, which are shown in Fig. 7(c). The low temperature is realized by the liquid nitrogen. As expected, Ms and coercivity are also enhanced at low temperature. It is well-known that the coercivity and Ms will increase when the temperature decreases[13,50].

The degradation of methylene blue (MB) was performed as a model reaction to investigate the photocatalytic activity of the sample, which was shown in Figure S3. The results reveal that γ-Fe2O3 has a little adsorption ability of MB with proper photocatalytic activity, which can degrade 16% MB dye in 60 min under UV irradiation. The photocatalytic activity of this work is comparable with the previous report[52]. As a result, the products provide the fabrication of Fe-based nanocomposites as proper performance photocatalysts, and high magnetization of γ-Fe2O3 leads to the relative reduction of magnetic γ-Fe2O3, and the magnetic moments total quality drop. When CT is further increased to 250–400 °C, the impurity α-Fe2O3 appears more obviously (which can be confirmed by XRD results), and Ms is reduced gradually. Furthermore, low temperature hysteresis loops of γ-Fe2O3 (200 °C) have also been carried out at 80 K, 180 K, and 300 K, which are shown in Fig. 7(c). The low temperature is realized by the liquid nitrogen. As expected, Ms and coercivity are also enhanced at low temperature. It is well-known that the coercivity and Ms will increase when the temperature decreases[13,50].

The degradation of methylene blue (MB) was performed as a model reaction to investigate the photocatalytic activity of the sample, which was shown in Figure S3. The results reveal that γ-Fe2O3 has a little adsorption ability of MB with proper photocatalytic activity, which can degrade 16% MB dye in 60 min under UV irradiation. The photocatalytic activity of this work is comparable with the previous report[52]. As a result, the results provide the fabrication of Fe-based nanocomposites as proper performance photocatalysts, and high magnetization of γ-Fe2O3 leads to the relative reduction of magnetic γ-Fe2O3, and the magnetic moments total quality drop. When CT is further increased to 250–400 °C, the impurity α-Fe2O3 appears more obviously (which can be confirmed by XRD results), and Ms is reduced gradually. Furthermore, low temperature hysteresis loops of γ-Fe2O3 (200 °C) have also been carried out at 80 K, 180 K, and 300 K, which are shown in Fig. 7(c). The low temperature is realized by the liquid nitrogen. As expected, Ms and coercivity are also enhanced at low temperature. It is well-known that the coercivity and Ms will increase when the temperature decreases[13,50].

Various above investigations have demonstrated that a number of uniform and smooth γ-Fe2O3 nano-particles are obtained using calcination process in the air. Significantly, some typical methods or processes as the comparative results are discussed, and the comparative data are presented in Table 1. Except for the iron source of the preparing process, Table 1 detailedly shows the experiment parameters of solvent, additive or surfactant, pH, reaction time, centrifugation, and other parts of various methods. These methods or processes are not limited to the literatures we provided. As a result, although the dispersity and size of nano-particles in our research are not good with some of the previous reports, this technique only needs one solvent during the preparing process, and other additional processes are omitted. The mehtod realizes a simple, rapid and convenient route for assembling γ-Fe2O3 nano-particles when compared with others.

Conclusions
We reported a unified approach for the synthesis of γ-Fe2O3 nano-particles via a facile and novel calcination process in the air. The process is no H2 regulation, gas atmosphere, additive, centrifugation or other procedure during the experiment. The obtained pure γ-Fe2O3 nano-particles at 200 °C display good uniformity, and α-Fe2O3 will be observed when CT exceeds 250 °C. As a result, DMF is a commendable solvent when compared with water, which could well disperse the ions, and coats each ion during the calcination process. DMF may slower the reaction process of calcination, which restrains the transformation process of γ-Fe2O3 to α-Fe2O3. The saturation magnetization pure γ-Fe2O3 is about 74 emu/g, which is comparable with bulk material. In addition, the photocatalytic activity of the obtained nano-particles for the degradation of methylene blue shows proper photocatalytic properties.

References
1. Capone, S. et al. Fe3O4/γ-Fe2O3 Nanoparticle Multilayers Deposited by the Langmuir–Blodgett Technique for Gas Sensors Application. Langmuir 30, 1190–1197 (2014).
2. Vichery, C., Maurin, L., Bonville, P., Boilot, J.-P. & Gacoin, T. Influence of Protected Annealing on the Magnetic Properties of γ-Fe2O3 Nanoparticles. J. Phys. Chem. C 116, 16311–16318 (2012).
3. Rao, P. M. & Zheng, X. Unique Magnetic Properties of Single Crystal γ-Fe2O3 Nanowires Synthesized by Flame Vapor Deposition. Nano Lett. 11, 2390–2395 (2011).
4. Zhu, H.-Y., Jiang, R., Xiao, L. & Li, W. A novel magnetically separable gamma-Fe2O3/crosslinked chitosan adsorbent: Preparation, characterization and adsorption application for removal of hazardous azo dye. J. Hazard. Mater. 179, 251–257 (2010).
5. Kostina, M. A. et al. Hierarchical Self-Assembly and Optical Disassembly for Controlled Switching of Magnetoferritin Nanoparticle Magnetism. ACS Nano 5, 6394–6402 (2011).
6. Park, J. et al. Ultra-large-scale syntheses of monodisperse nanocrystals. Nat. Mater. 3, 891–895 (2004).
7. Apte, S., Naik, S., Sonawane, R., Kale, B. & Bavg, J. Synthesis of Nanosize‐Necked Structure α- and γ-Fe2O3 and its Photocatalytic Activity. J. Am. Ceram. Soc. 90, 412–414 (2007).
8. Nemati, Z., Alonso, J., Khurshid, H., Phan, M. H. & Srikanth, H. Core/shell iron/iron oxide nanoparticles: are they promising for magnetic hyperthermia? RSC Adv. 6, 38697–38702 (2016).
9. Tseng, P., Judy, J. W. & Di Carlo, D. Magnetic nanoparticle-mediated massively parallel mechanical modulation of single-cell behavior. Nat. Meth. 9, 1113–1119 (2012).
10. Zywietz, U., Evlyukhin, A. B., Reinhardt, C. & Chichkov, B. N. Laser printing of silicon nanoparticles with resonant optical and magnetic responses. Nat. Commun. 5, 1–7 (2014).
11. Lu, J., Jiao, X., Chen, D. & Li, W. Solvothermal Synthesis and Characterization of Fe3O4 and γ-Fe2O3 Nanoplates. J. Phys. Chem. C 113, 4012–4017 (2009).
12. Singh, K., Ohlan, A., Khotnala, R. K., Bakhshi, A. K. & Dhawan, S. K. Dielectric and magnetic properties of conducting ferromagnetic composite of polyaniline with gamma-Fe2O3 nanoparticles. Mater. Chem. Phys. 112, 651–658 (2008).
13. Hu, J. S., Zhong, L. S., Song, W. G. & Wan, L. J. Synthesis of hierarchically structured metal oxides and their application in heavy metal ion removal. Adv. Mater. 20, 2977–2982 (2008).

14. Wang, C. et al. Magnetic (γ-Fe2O3@SiO2)/TiO2 Functional Hybrid Nanoparticles with Actived Photocatalytic Ability. J. Phys. Chem. C 113, 4008–4011 (2009).

15. Zhou, W. et al. Mesoporous TiO2/α-Fe2O3: Bifunctional Composites for Effective Elimination of Arsenite Contamination through Simultaneous Photocatalytic Oxidation and Adsorption. J. Phys. Chem. C 112, 19584–19589 (2008).

16. Achour, F. et al. Aqueous synthesis and enhanced photocatalytic activity of ZnO/Fe2O3 heterostructures. J. Phys. Chem. Solids 75, 1081–1087 (2014).

17. Zhong, L. S. et al. Self-Assembled 3D flowerlike iron oxide nanostructures and their application in water treatment. Adv. Mater. 18, 2426–2431 (2006).

18. Ni, Y., Ge, X., Zhang, Z. & Ye, Q. Fabrication and Characterization of the Plate-Shaped γ-Fe2O3 Nanocrystals. Chem. Mater. 14, 1048–1052 (2002).

19. Zhang, Y. et al. Two-in-one Strategy for Effective Enrichment of Phosphopeptides Using Magnetic Mesoporous γ-Fe2O3 Nanoclay Clusters. ACS Appl. Mater. Interfaces 5, 614–621 (2013).

20. Kang, Y. S., Rusbud, S., Raboli, F. & Stroeve, P. Synthesis and characterization of nanometer-size Fe2O3 and gamma-Fe2O3 particles. Chem. Mater. 8, 2209–2211 (1996).

21. Lin, S., Lu, D. & Liu, Z. Removal of arsenic contaminants with magnetic γ-Fe2O3 nanoparticles. Chem. Eng. J. 211–212, 46–52 (2012).

22. Chen, D. & Xu, R. Hydrothermal Synthesis and Characterization of Nanocrystalline γ-Fe2O3 Particles. J. Solid State Chem. 137, 185–190 (1998).

23. Hyeon, T., Lee, S. S., Park, J., Chung, Y. & Na, H. B. Synthesis of highly crystalline and monodisperse maghemite nanocrystals without a size-selection process. J. Am. Chem. Soc. 123, 12798–12801 (2001).

24. Asuha, S., Zhao, Y. M., Zhao, S. & Deligeer, W. Synthesis of mesoporous maghemite with high surface area and its adsorptive properties. Solid State Sci. 14, 833–839 (2012).

25. Asuha, S., Zhao, S., Wu, H. Y., Song, L. & Tegus, O. One step synthesis of maghemite nanoparticles by direct thermal decomposition of Fe-urea complex and their properties. J. Alloys Compd. 472, L23–L25 (2009).

26. Basak, S., Rane, K. S. & Biswas, P. Hydrazine-Assisted, Low-Temperature Aerosol Pyrolysis Method to Synthesize γ-Fe2O3. Chem. Mater. 20, 4906–4914 (2008).

27. Silva, M. F. et al. Optimization of maghemite-loaded PLGA nanospheres for biomedical applications. Eur. J. Pharm. Sci. 49, 343–351 (2013).

28. El Mendili, Y., Bardeau, J.-F., Randrianantoandro, N., Grasset, F. & Greneche, J.-M. Insights into the Mechanism Related to the Phase Transition from gamma-Fe2O3 to alpha-Fe2O3 Nanoparticles Induced by Thermal Treatment and Laser Irradiation. J. Phys. Chem. C 116, 23785–23792 (2012).

29. Xu, J.-S. & Zhu, Y.-J. Monodisperse Fe3O4 and γ-Fe2O3 magnetic mesoporous microspheres as anode materials for lithium-ion batteries. ACS Appl. Mater. Interfaces 4, 4752–4757 (2012).

30. Janos, K., Taculescu, E.-A., Pucuraru, C. & Niznansky, D. gamma-Fe2O3 nanoparticles prepared by combustion synthesis, followed by chemical oxidation of residual carbon with H2O2. Mater. Chem. Phys. 148, 705–711 (2014).

31. Pour, Z. S. & Ghaemy, M. Fabrication and characterization of superparamagnetic nanocomposites based on epoxy resin and surface-modified gamma-Fe2O3 by epoxide functionalization. J. Mater. Sci. 49, 4191–4201 (2014).

32. Darezereshki, E., Ranjbar, M. & Bahktiari, F. One-step synthesis of maghemite (γ-Fe2O3) nano-particles by wet chemical method. J. Alloys Compd. 502, 257–260 (2010).

33. Lai, J. et al. Dopant γ-Fe2O3 Nanoparticles with Mn(III) Suppresses the Transition to the α-Fe2O3 Structure. J. Am. Chem. Soc. 125, 11470–11471 (2003).

34. Shaft, K. V. P. M. et al. Magnetic Enhancement of γ-Fe2O3 Nanoparticles by Sonochemoical Coating. Chem. Mater. 14, 1778–1787 (2002).

35. Boal, A. K., Das, K., Gray, M. & Rotello, V. M. Monolayer Exchange Chemistry of γ-Fe2O3 Nanoparticles. Chem. Mater. 14, 2628–2636 (2002).

36. Andersen, H. L., Jensen, K. M., Tyrdsted, C., Bøjesen, E. D. & Christensen, M. Size and Size Distribution Control of γ-Fe2O3 Nanocrystallites: An in situ Study. Cryst. Growth Des. 14, 1307–1313 (2014).

37. Sakurai, S., Namai, A., Hashimoto, K. & Ohkishi, S.-I. First Observation of Phase Transformation of All Four Fe2O3 Phases (gamma -> epsilon -> beta -> alpha-Phase). J. Am. Chem. Soc. 131, 18299–18303 (2009).

38. Laurent, S. et al. Magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications. Chem. Rev. 108, 2064–2110 (2008).

39. Synke, P. et al. Plasmachemical synthesis of maghemite nanoparticles in atmospheric pressure microwave torch. Mater. Lett. 65, 982–984 (2011).

40. Yen, F. S., Chen, W. C., Yang, J. M. & Hong, C. T. Crystalline Size Variations of Nanosized Fe2O3 Powders during γ- to α-Phase Transformation. Nano Lett. 2, 245–252 (2002).

41. Pastoriza-Santos, I. & Liz-Marzán, L. M. N,N-Dimethylformamide as a Reaction Medium for Metal Nanoparticle Synthesis. Adv. Funct. Mater. 19, 679–688 (2009).

42. Muzart, J. N. N-Dimethylformamide: much more than a solvent. Tetrahedron 65, 8313–8323 (2009).

43. Gallagher, K. Mechanism of oxidation of magnetite to gamma-Fe2O3. Nature 217, 1118–1121 (1968).

44. Fujii, T. et al. In situ XPS analysis of various iron oxide films grown by NO2-assisted molecular-beam epitaxy. Phys. Rev. B 59, 3195–3202 (2001).

45. Gao, Y. & Chambers, S. A. Heteroepitaxial growth of alpha-Fe2O3, gamma-Fe2O3 and Fe3O4 thin films by oxygen-plasma-assisted molecular beam epitaxy. J. Cryst. Growth 174, 446–454 (1997).

46. Sadhu, A. & Bhattacharyya, S. Enhanced Low-Field Magnetoresponse in La0.7Sr0.3MnO3 Nanoparticles Synthesized by the Nonaqueous Sol–Gel Route. Chem. Mater. 26, 1702–1710 (2014).

47. Gao, P. et al. Facile Synthesis of ZnFe2O4 Nanoparticles with Tunable Magnetic and Sensing Properties. Langmuir 29, 8997–9003 (2013).

48. Wang, J., Ma, Y. & Watanabe, K. Magnetic-Field-Induced Synthesis of Magnetic γ-Fe2O3 Nanotubes. Chem. Mater. 20, 20–22 (2008).

49. Berkowitz, A. E., Schuele, W. J. & Flanders, P. J. Influence of Crystallite Size on the Magnetic Properties of Accicular γ-Fe2O3 Particles. J. Appl. Phys. 39, 1261–1263 (1968).

50. Park, K. et al. Structural and Magnetic Properties of Gold and Silica Doubly Coated γ-Fe2O3 Nanoparticles. J. Phys. Chem. C 111, 18512–18519 (2007).

51. Das, R. et al. Tunable High Aspect Ratio Iron Oxide Nanorods for Enhanced Hyperthermia. J. Phys. Chem. C 120, 10086–10093 (2016).

52. Chen, F. & Zhao, J. Preparation and photocatalytic properties of a novel kind of loaded photocatalyst of TiO2/SiO2/γ-Fe2O3. Catal. Lett. 58, 246–247 (1999).
Acknowledgements
This work is supported by National Basic Research Program of China (Grant No. 2012CB933101), National Science Fund of China (11574121, 51371092), PCSIRT (Grant No. IRT1251).

Author Contributions
The manuscript was written through contributions of all authors. D.C. prepared the samples and wrote the main manuscript text; D.C., H.L., L.P., P.J., J.L., X.W. and X.C. processed data; D.C., H.L., J.W. and Q.L. discussed the synthesis mechanism and magnetic properties of samples. All authors reviewed the manuscript.

Additional Information
Supplementary information accompanies this paper at http://www.nature.com/srep

Competing financial interests: The authors declare no competing financial interests.

How to cite this article: Cao, D. et al. High saturation magnetization of γ-Fe₂O₃ nano-particles by a facile one-step synthesis approach. Sci. Rep. 6, 32360; doi: 10.1038/srep32360 (2016).

This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

© The Author(s) 2016