Metabolomics study of *Angelica sinensis* (Oliv.) Diels on the abnormal uterine bleeding rats by ultra-performance liquid chromatography–quadrupole–time-of-flight mass spectrometry analysis

Ting-Ting Chen1,2 | Liang Zou3 | Di Wang4 | Wei Li5 | Yong Yang5 | Xiao-Min Liu2 | Xin Cao5 | Jia-Rong Chen5 | Yan Zhang5 | Jia Fu1

Abstract
The objective of this study was to explore the effects and underlying intervention mechanisms of *Angelica* water extract (AWE) on abnormal uterine bleeding (AUB) based on serum metabolomics. Firstly, the concentration of main active substances in AWE was determined and the chemical components were identified by UPLC-Q-Exactive Orbitrap-MS/MS. A drug-induced abortion model was established by mifepristone and misoprostol. After administration AWE (2.16 g/kg) for 7 days, the coagulation function, serum hormone levels, H&E staining, and immunohistochemistry observation of uterus were detected. In addition, serum metabolites profiles were performed on ultra-performance liquid chromatography–quadrupole–time-of-flight mass spectrometry (UPLC-Q-TOF-MS). The contents of ferulic acid, senkyunolide A, and ligustilide in AWE were 0.7276, 0.0868, and 1.9908 mg/g, respectively. Twenty-six compounds were identified in AWE. It was found that AWE was effective in regulation of coagulation function and promoting endometrial recovery. Meanwhile, the levels of E2, Pg, and HCG and the expression of ERα, Erβ, and PR were down-regulated in AUB model and up-regulated by the treatment of AWE. Twenty-one potential biomarkers were eventually identified by multivariate statistical analysis. Study indicated that glycerophospholipid, sphingolipid, amino acids, retinol metabolism and primary bile acid biosynthesis were the main related metabolic pathways in involved for the treatment of AUB by AWE. The results showed that AWE has potential therapeutic effect on AUB by altering the metabolic aberrations.

KEYWORDS
abnormal uterine bleeding, Angelica water extract, metabolomics, UPLC-Q-TOF-MS
1 | INTRODUCTION

In the early 1970s and 1980s, medical abortion became an alternative way for early termination of pregnancy (Regina et al., 2011). Mifepristone combined with misoprostol is the preferred clinical approach for the induction of abortion (Klaira & Paul, 2020), but the severe side effects of incomplete medical abortion still reached 15% (Ma et al., 2016). Abnormal uterine bleeding (AUB) is a common characteristic in incomplete medical abortion, with an incidence of approximately 3%–30% among reproductive-aged women (Munro et al., 2018). The use of estrogen, tranexamic acid, multi-dose compound contraceptive, and multi-dose progesterone regimen are common clinically available non-surgical options for AUB (Bradley & Gueye, 2015), but these treatments may cause multiple side effects (Yujie et al., 2018).

Angelica sinensis (Oliv.) Diels (Danggui) was widely used as a functional food or a dietary supplement in Asia, Europe, and America. It is also a famous traditional Chinese medicine for the treatment of anemia, dysmenorrhea, premenstrual, menopausal syndrome, and other gynecological diseases (Ma et al., 2015). Previous research indicates that polysaccharides, volatile oils, and organic acids are the main bioactive ingredients of A. sinensis. (Jin et al., 2016; Wei et al. 2016). The results of pharmacological studies indicated that A. sinensis can replenish and invigorate blood, prevent pain, and moisten the intestines (Ma et al., 2016). In addition, A. sinensis also have anti-arrhythmic effects, enhanced immune function, cardioprotective effects, anti-atherosclerotic effects, and inhibiting platelet aggregation (Gu et al., 2016). However, few reports focus on the underlying therapeutic effects and mechanisms of A. sinensis for AUB.

Metabolomics is a technique to study the metabolites and their dynamic changes before and after being stimulated or disturbed for the biological system (e.g., after a specific gene variation or environmental change). Metabolomics has been widely used in plant molecular phenotype (Showkat et al., 2019), drug safety (Chen et al., 2021; Yu et al., 2018), molecular pathology (Yang & Lao, 2019), mechanism of drug action (Su et al., 2020), and disease diagnosis (Karakioulaki & Stolz, 2019). In addition, it was also used to evaluate the impact of storage environment on food quality (Guo et al., 2019). Metabolomics is considered to be a useful strategy to explain the underlying mechanisms of TCM for the treatment of diseases. It emphasizes the study objects (humans or animals) as a unified whole, which is in accordance with the principle of integrity and dynamics of Traditional Chinese Medicine (TCM). The analysis methods of metabolomics mainly include nuclear magnetic resonance spectroscopy (NMR), gas chromatography-mass spectrometry (GC-MS), and liquid chromatography-mass spectrometry (LC-MS). Among all of the analytical technologies, UPLC-Q-TOF-MS is becoming a key technology in biomarker discovery (Gika et al., 2014).

In the present study, the concentration of main active substances in AWE was determined and the chemical components were identified by UPLC-Q-Exact Orbitrap-MS/MS. The coagulation function, serum hormone levels, H&E staining, and immunohistochemistry observation of uterus were detected after the intervention of AWE. An UPLC-Q-TOF-MS method and multivariate analysis were applied to identify the potentially authentic biomarkers. The purpose of this study was to reveal the underlying mechanisms of AWE for the treatment of AUB and to provide a theoretical basis for clinical application.

2 | MATERIALS AND METHODS

2.1 | Chemicals and reagents

Angelica sinensis was harvested in Longxi County, Gansu Province in July 2019, and identified by Prof. Ying Liu (School of preclinical medicine, Chengdu University). Ferulic acid (batch No. MUST-20060511) was brought from Chengdu Mansite Biotechnology Co., Ltd. Senkyunolide A (batch No. wkq20050703) was brought from Sichuan Weikeqi Co., Ltd. Ligustilide (batch No. G01001909022) was brought from Chengdu Ruifensi Biotechnology Co., Ltd. Mifepristone and Misoprostol were brought from Zizhu Pharmaceutical Co. (Peking, China). Pg ELISA kit (batch No. VE3AZJHQ1W) and E2 ELISA kit (batch No. 441BV1FHE5) were brought from Elabscience Biotechnology Co., Ltd (Wuhan, China). HCG ELISA kit (batch No. 11/2019) was brought from Shanghai MLBIO Biotechnology Co., Ltd. (Shanghai, China). Antibody against ERα (batch No. 00,046,360), Antibody against ERβ (batch No. 00,053,760), and Antibody against PR (batch No. 00,235,360) were brought from Abcam Co., Ltd. (Shanghai, China). HRP (batch No. 20,200,528) was brought from Bloss Co., Ltd. (Peking, China). PBS (batch No. 20,190,307) was brought from Zsbio Co., Ltd. (Peking, China). DAB (batch No. 07,062,019) was brought from Baso Co., Ltd. (Zhuhai, China).

2.2 | Preparation of the water extract of Angelica sinensis

The water extract of A. sinensis (AWE) was extracted by heating reflux method. Thirty grams of crude herbal drugs were added to purified water ten times and extracted for twice (v/w), each extraction time was 30 min. The concentration of AWE was 0.6 g/ml after filtration (expressed by the weight per mL of crude drugs).

2.3 | UPLC-MS analysis of AWE

The analysis was performed in a Thermo Fisher Vanquish UPLC system with a Thermo Fisher Q Exactive (Iowa, USA). The mobile phase consisted of 0.1% formic acid in water (A) and acetonitrile (B). The elution program was as follows: 0–35 min, 95%–5% A; 35–35.01 min, 5%–95% A; and 35.01–40 min, 5% A. C18 column (4.6 × 100 mm, 2.7 μm) was maintained with the temperature of 30°C; flow rate, 0.4 ml/min; injection volume, 1 μl.

The MS operating parameters were as follows: the ion mode was positive; ion spray voltages, 3.5 kV; turbo spray temperature,
320°C; and m/z range, 100–1000. The main chemical constituents of *A. sinensis* were identified according to the exact molecular mass, the cleavage fragments of MS2, the mz cloud, mzVault 2.0 MS database, and literature review.

2.4 Determination of ferulic acid, senkyunolide A, and ligustilide in AWE by UPLC-MS

The AWE was mixed with 50% methanol (1:1) and filtered through a 0.22 µm membrane filter. The concentration of AWE was 0.022 g/ml after filtration (expressed by the weight per mL of crude drugs).

The analysis was performed using a Vanquish UPLC system with a TSQ Fortis triple quadrupole mass spectrometer (Thermo Fisher, USA), Accucore™ C18 column (2.1mm × 100mm, 2.6 µm, Thermo Fisher, USA). The mobile phase consisted of 0.1% formic acid in water (A) and acetonitrile (B). The UPLC elution program was as follows: 0–5 min, 85%-60% A; 5–10 min, 60%-55% A; 10–18 min, 55%-30% A; 18–18.01 min, 30%-85% A; and 18.01–23 min, 85% A, and Injection volume, 10 µl; flow rate, 0.2 ml/min; column temperature, 35 °C. The Mass operating parameters were as follows: The ion mode was positive; scan type, SRM; sheath gas flow rate, 35 arb; aux gas flow rate, 15 arb; aux gas heater temp, 350°C; spray voltage, 3.5 kV; and capillary temp, 350°C.

2.5 Animal experiments

Female Sprague–Dawley (SD) rats of specific pathogen-free (SPF) status, weighing 200–220 g; and male SD rats of SPF status, weighing 250–300 g (Certificate No. SCXK (Chuan) 2020-030) were brought from the Chengdu Dossy Experimental Animals CO.LTD. (Chengdu, China). All animals were kept under the same conditions. All experimental protocols were approved by the Animal Ethics Committee of the Chengdu University (20191209-lxsz003).

The AUB rat model was established by mifepristone and misoprostol according to the method of previous literature (Zuo et al., 2019). The pregnancy control group (P) and AUB model group (M) were given with sterile saline, and the AUB + AWE group was administrated with dosage of 2.16 g/kg AWE once a day for 7 days.

2.6 Histopathological examination

The uterine tissues were immediately dissected after the experiment, removed fat and connective tissue, and fixed in 4% paraformaldehyde solution. Then, the uterine tissues were dehydrated at 4°C for 24–48 hr, conventionally paraffin embedded, sectioned at 4 µm, and stained with hematoxylin–eosin (HE). Pathological changes of the endometrium were observed and photographed under a microscope.

2.7 Measurement of serum hormone levels

The serum levels of progesterone (Pg), estradiol (E₂), and human chorionic gonadotrophin (HCG) were measured according to the instructions of manufacturer of the ELISA kits, respectively.

2.8 Detection of plasma coagulation function

Collected blood (3 ml) from the abdominal aorta with sodium citrate at a mass concentration of 3.8 g/L (anticoagulant: blood = 1:9) was centrifuged to obtain plasma. Prothrombin time (PT), thrombin time (TT), activated partial thrombin activity time (APTT), and fibrinogen (FIB) were determined by a hemagglutination analyzer.

2.9 Protein distribution analyses by immunohistochemistry

The uterine tissues were dehydrated, defatted, and conventionally paraffin embedded. Then, the uterine tissues were sectioned at 4 µm, deparaffinized, and rehydrated. After that, the tissue sections were incubated with 3% H₂O₂, repaired in antigen recovery solution, and then sealed at room temperature for 20 min after drip-adding normal goat serum blocking solution. Then, the samples were incubated at 4℃ overnight with primary inhibitors (dilution 1:200): estrogen receptor α (ERα), estrogen receptor β (ERβ), and progesterone receptor (PR). One day after incubation, the cells were washed with PBS three times for 5 min each time, and then, drip-added and incubated the secondary antibody at room temperature for 1 hr. SABC was added and incubated at 37°C for 1 hr. Stained the proteins to dark-brown by immersion in diaminobenzidine. The slices were rinsed with deionized water for 10 min. Hematoxylin was used for counterstaining, and hydrochloric acid alcohol was differentiated. Routine dehydration, transparentizing, sealing, and microscopy were performed.

2.10 Serum sample preparation

Added 400 µl anhydrous acetonitrile containing internal standard into 100 µl serum sample and vortex mixed for 3 min. Then, centrifuged the mixture at 12,000 rpm for 10 min to obtain the supernatant and putted it into a sampling vial.

2.11 UPLC-Q-TOF-MS analysis conditions

An UPLC-Q-TOF-MS system (Agilent, USA) was used for analysis with a BEH C18 column (2.1 mm × 100 mm, 1.7 µm). 0.1% formic acid in water (A) and acetonitrile (B) was used as a mobile phase with the following elution program: 0–3 min, 10%-30% B, 3–25 min, and 30%-95% B. Column temperature, 35°C; flow rate, 0.35 ml/min. The full scan range was 50 to 1,200 m/z; sheath gas temperature, 320°C;
sheath gas flow, 12 L/min; drying gas temperature, 300°C; drying gas flow, 6 L/min; capillary voltage, 3.5 kV; and nebulizer pressure, 1.0 bar.

2.12 Data processing

The partial least-squares discriminant analysis (PLS-DA) and orthogonal partial least-squares discriminant analysis (OPLS-DA) were used for data analysis. The database used to identify the potential biomarkers was as follows: https://hmdb.ca/, http://www.lipidmaps.org/, http://www.genome.jp/kegg/, http://metlin.scripps.edu/. All results were described as the mean ± standard deviation (SD). One-way analysis of variance (ANOVA) was used to analyze study data for significance comparison.

3 RESULTS

3.1 Identification of major compounds in AWE

The representative chromatography was shown in Figure 1. Twenty-six constituents were identified by the accurate mass and relative ion abundance of the target peaks. The main constituents in AWE were γ-Aminobutyric acid (GABA), Nystose, l-Valine, Nicotinic acid, 4-Oxoproline, Guanosine, Succinic acid, l-Phenylalanine, dl-Tryptophan, 2-Anisic acid, Isophthalic acid, Caffeic acid, l-Histidine, N-Acetyl-o-alloisoleucine, Vanillin, Isofraxidin, Ferulic acid, Azelaic acid, Coniferyl aldehyde, Berberine, Jatrorrhizine, Coptisine chloride, Palmatine, Ligustilide, Senkyunolide A, and Levistilide A. The area percentage of the constituents is shown in Table 1.

3.2 Determination of ferulic acid, senkyunolide A, and ligustilide in AWE

The representative chromatography was shown in Figure 2. Ferulic acid was linear over a concentration range of 3.10–154.90 µg/ml, senkyunolide A was linear at 1.33–40.00 µg/ml, and ligustilide was linear at 2.04–254.65 µg/ml. The concentration of the mixed reference solution was taken as the abscissic coordinate, and the peak area was taken as the ordinate for linear regression. Typical equation of calibration curve for ferulic acid was $y = 14333x + 63,294$ ($r = 0.9970$); the curve of senkyunolide A was $y = 343389x−340450$ ($r = 0.9978$); and that of ligustilide was $y = 88,686x + 876,354$ ($r = 0.9953$). The contents of ferulic acid, senkyunolide A, and ligustilide were 0.7276, 0.0868, and 1.9908 mg/g, respectively.

3.3 AWE improved the histopathological damage

Microscopic examination explored that the endometrium of the P group was significantly thickened, the uterine cavity was small, the glands and blood vessels in the lamina propria were rich and dilated, and some of them were hyperemic (Figure 3a). Compared with the P group, the endometrium was thin, with local defects, and the lamina propria was mainly showed densely distributed blood vessels with slight congestion in the M group (Figure 3b). The endometrium in the AWE group was rich in blood vessels and loose in the stroma, but the symptoms were less severe than those in the model group (Figure 3c).

3.4 Measurement of serum hormone levels

Comparing with the P group, the E$_2$, Pg, and HCG levels were significantly decreased in the M group ($p < .01$). The E$_2$ and Pg levels were significantly increased with the treatment of AWE ($p < .05$) (Figure 4a–c).

3.5 Effects of AWE on blood coagulation function in rats

Compared with the P group, the APTT and TT levels were significantly longer and FIB level was significantly lower in the M group ($p < .05$). The APTT and TT levels were significantly lower, and FIB level was significantly longer with the treatment of AWE ($p < .05$). (Figure 5).
3.6 Effects of AWE on ERα, Erβ, and PR levels in rats

Expression of ERα, Erβ, and PR was reduced in the M group when compared to the P group ($p < .01$). The expression of ERα and ERβ was increased with the treatment of AWE ($p < .05$). (Figure 6a–c).

3.7 Data quality assurance of UPLC-Q-TOF-MS

The typical total ion current chromatograms of each group of serum samples were shown in Figure 7.

3.8 Differential metabolites between the AUB and the pregnancy rats

The PLS-DA and OPLS-DA analyses explored that there was an obvious separation between the P, M, and AWE groups (Figure 8a,b). The S-plots indicated the contribution of different metabolites variables between the P and M groups (Figure 8c). Fourteen significantly differential metabolites were shown in Table 2. LysoPC (20:5), Glycine, N-Acetyl-leukotriene E4, PC (18:1(9Z)/18:1(9Z)), LysoPC (18:3), LysoPC (18:0/0:0), Leukotriene D5, 20-Oxo-leukotriene E4, LysoPC (17:0), Sphinganine, LysoPC (18:2), LysoPC (16:0), L-Valine, and N-Lactoylleucine were significantly lower in the M group compared to the P group.
with the P group (Figure 9). The metabolism pathways of glycine, serine and threonine, glyoxylate and dicarboxylate, glycerophospholipid, primary bile acid biosynthesis, glutathione, and sphingolipid were significantly altered in the M group (Figure 10).

3.9 Differential metabolites between AUB and AWE treatment rats

There was a significant separation between the M and AWE groups in the OPLS-DA model (Figure 11a), indicating that AWE had an effect on the metabolic profile of AUB rats. The S-plots indicated the contribution of different metabolites variables between the M and AWE groups (Figure 11b). Twenty-one significantly differential metabolites were shown in Table 3, and there showed that the specific changes of the relative content in these specific metabolites (Figure 12). LysoPC (20:5), Glycine, N-Acetyl-leukotriene E4, PC (18:1(9Z)/18:1(9Z)), LysoPC (18:3), LysoPC (18:0/0:00), Leukotriene D5, 3-Hydroxybutyric acid, 20-Oxo-leukotriene E4, Hippuric acid, LysoPC (17:0), D-Leucine, and L-Valine were significantly higher in the AWE group compared with the M group. However, the other metabolites, including D-Glucuronic acid, All-trans-Retinoic acid, and
25-Hydroxyvitamin D3 were significantly lower in the AWE group compared with the M group. The metabolism pathways of primary bile acid biosynthesis, pentose and glucuronate interconversions, glycerophospholipid, glutathione, glyoxylate and dicarboxylate, sphingolipid, glycine, serine and threonine, retinol, ascorbate, and aldurate were significantly altered in the M group (Figure 13).
DISCUSSION

Angelica sinensis, as a medicinal food, has widely been used for the treatment of amenorrhea, dysmenorrheal, and premenstrual syndrome of gynecological disorders (Li et al., 2012). Studies have shown A. sinensis contains ferulic acid, senkyunolide A, ligustilide, etc., so it was speculated that AWE had a certain influence on the anti-inflammatory (Fang et al., 2020), blood replenishing (Tao

![Figure 8](image-url) The multivariate statistical analysis. (a) PLS-DA; (b) OPLS-DA; (c) OPLS-DA s-plot

Table 2	14 Differential metabolites in the serum of P and M groups				
Compound	Formula	Metabolites	M/Z	Rt (min)	VIP
A1	C_{28}H_{48}NO_{7}P	LysoPC (20:5)	542.3176	9.604	4.6232
A2	C_{28}H_{48}NO_{7}S	Glycine	546.3472	10.749	3.5524
A3	C_{28}H_{48}NO_{7}S	N-Acetyl-leukotriene E4	482.3185	11.836	1.7062
A4	C_{28}H_{48}NO_{7}P	PC (18:1(9Z)/18:1(9Z))	786.5852	16.334	2.3486
A5	C_{28}H_{48}NO_{7}P	LysoPC (18:3)	518.3189	9.676	3.8540
A6	C_{28}H_{48}NO_{7}P	LysoPC (18:0/0:0)	524.3638	12.447	1.2658
A7	C_{28}H_{48}NO_{7}P	Leukotriene D5	495.3220	9.898	2.3342
A8	C_{28}H_{48}NO_{7}P	20-Oxo-leukotriene E4	454.2870	10.300	1.2371
A9	C_{28}H_{48}NO_{7}P	LysoPC (17:0)	510.3476	11.330	1.8070
A10	C_{28}H_{48}NO_{7}P	Sphinganine	302.2703	8.897	1.3561
A11	C_{28}H_{48}NO_{7}P	LysoPC (18:2)	520.3303	11.049	3.1960
A12	C_{28}H_{48}NO_{7}P	LysoPC (16:0)	496.3338	10.884	10.917
A13	C_{28}H_{48}NO_{7}P	L-Valine	118.0849	0.937	2.9892
A14	C_{28}H_{48}NO_{7}P	N-Lactoylleucine	204.1198	1.003	5.7701
et al., 2016), liver lipid accumulation, and fatty regeneration (Ma et al., 2020). Peng Cao et al. found Angelica sinensis polysaccharide as a kind of “tonic foods,” which has potential to be used as a hepato-protective agent for Acetaminophen-induced hepatic damage (Cao et al., 2018). Yong li Hua et al. found that A. sinensis can promote hematopoiesis, enhance antiapoptotic effects, and regulate energy metabolism (Hua et al., 2017). Qin Fan et al. found that ferulic acid could scavenge PPH- and ABTS-free radicals, while ligustilide exhibited scavenging capacity for ABTS-free radicals (Fan et al., 2020). Zi-wen Yuan et al. found that A. sinensis intervention could significantly relieve blood stasis syndrome in rats (Yuan et al., 2019). In this study, APTT and TT levels were significantly lower in AWE group ($p < .05$), the APTT and TT levels were significantly lower, and FIB level was significantly longer with the treatment of AWE, indicating that A. sinensis can regulate blood coagulation function of AUB rats.

Metabolomics is a large-scale research technology that uses modern analytical method to assess the creature physiological status in different conditions (Wei et al., 2020). The metabolic profiles reflect an individual’s function state at a certain point, which

FIGURE 9 The relative intensities of the examined metabolites obtained from P and M groups. The results were presented as the mean ± SD, n = 6. *$p < .05$ versus pregnant group, **$p < .01$ versus pregnant group**

FIGURE 10 Summary of pathway analysis of P and M groups
is consistent with the integrality and systematicness of traditional Chinese medicine (Bao et al., 2017). This technique has been used to study the effects of Chinese medicine syndrome patterns (Fengxia et al., 2010; Li et al., 2016). As an important part of the human body, blood contains abundant information and is often used as the matrix for metabolomics research. Therefore, the UPLC-Q-TOF-MS metabolomics platform and multivariate statistical analysis method were used to assess the rats’ serum to reveal the mechanism of AWE in AUB caused by incomplete abortion. In our study, we identified 21 potential biomarkers that were directly or indirectly correlated for the therapeutic effects of AWE in AUB caused by incomplete abortion, mainly including amino acids, retinol, fatty acids, and lysophospholipids. We have found that the serum of the incomplete medical abortion rats showed altered metabolism mainly in amino acid, retinol, lipid metabolism and primary bile acid biosynthesis pathways.

Amino acids are necessary for embryonic growth and development. In our study, we found that the level of some amino acids including glycine, d-leucine, and l-valine was abnormal in the AWE...
Glycine was closely associated with inflammation among these amino metabolites (Angélica et al., 2014). Glycine promotes myelin phagocytosis and the production of NO and TNF-α, which may affect immunological processes of inflammatory diseases (Carmans et al., 2010). In the inflammation, the TNF-α induces protein decomposition and catabolism to up-regulate the urea synthesis (Louise et al., 2013). Yong-li Hua et al. found that volatile oil from A. sinensis can inhibit inflammation through down-regulating the synthesis...
of glycine, arachidonic acid, L-glutamate, pyruvate, and succinate (Angélica et al., 2014). D-Leucine and L-valine are branched chain amino acids (BCAAs), especially leucine, and can enhance protein synthesis through the mTOR signaling pathway to regulate energy balance, which plays a vital role in blastocyst development. Banerjee et al. found that the metabolites, including lysine, L-arginine, glutamine, threonine, histidine, phenylalanine, and tyrosine, were significantly increased in patients with idiopathic recurrent spontaneous miscarriage, which may be involved in vascular dysfunction associated with poor endometrial receptivity and excessive inflammatory reactions (Priyanka et al., 2014). Houghton et al. used reversed-phase high-performance liquid chromatography (RP-HPLC) and found that the content of leucine was significantly reduced after in vitro fertilization when the embryo developed into the cyst embryo culture medium, while the contents of valine and isoleucine were significantly reduced in the embryo culture medium that did not develop into the blastocyst. Valine and isoleucine have a definite influence on embryo development (Houghton et al., 2002). Zhang et al. found that BCAAs are closely involved in pregnancy outcome. The elevated BCAAs can clearly impair the development of diploids et al. found that BCAAs are closely involved in pregnancy outcome. Zhang et al. showed that chemical signaling induced by the use of retinoic acid can promote the differentiation of embryonic stem cells into neurons (Ueda et al., 2018). In our study, we found that the level of all-trans-retinoic acid was down-regulated in the AWE group. In summary, AWE could adjust the abnormal metabolism state of amino acid, retinol, and lipid metabolism with AUB induced by incomplete medical abortion.

5 | CONCLUSIONS

An UPLC-Q-TOF-MS-based serum metabolomic approach was applied to investigate the mechanisms of AWE for the treatment of AUB. Twenty-one potential biomarkers were eventually identified, related to leukotriene synthesis, is considered to be a key factor in tissue injury, inflammation, and vasoconstriction. Kim et al. found that the water extract of Angelica sinensis has an anti-inflammatory effect via the NO-burst/calcium-mediated JAK-STAT pathway (Young-Jin et al., 2018). Yao et al. found that the anti-inflammatory activity of the volatile oil of Angelica sinensis mainly through regulating glycine and arachidonic acid metabolic disorders (Yao et al., 2015). And in our study, after AWE intervention, the AWE group showed significant upregulation of N-Acetyl-leukotriene E4, 20-Oxo-leukotriene E4, and Leukotriene D5, which indicated that the effect of AWE on rats with AUB may involve the regulation of arachidonic acid metabolic network disorders. Lyso PC, a phospholipid, can regulate vascular tone and induce endothelial dysfunction. It is reported that saturated fatty acids can induce the expression of cyclooxygenase (Akito et al., 2009) and promote the synthesis of PGF2α (Helliwell et al.,). In this study, LysoPC (16:0), LysoPC (17:0), PC (18:1/9Z)/18:1(9Z)), LysoPC (18:2), LysoPC (18:3), LysoPC (20:5), and LysoPC (18:0/0:00) were up-regulated in the AWE group. These results indicate that glycerophospholipid metabolism was abnormal.

Sphinganine is a sphingolipid that is involved in the formation of cell membranes. It can be phosphorylated under the catalysis of sphingosine kinase to produce a potent signaling lipid molecule, sphingosine-1-phosphate (S1P). S1P can regulate the physiological functions of cell survival, growth, proliferation, and apoptosis from the extracellular receptor pathway and the intracellular second messengers. Roth et al. indicated that sphingosine-1-phosphate can promote the maturation of bovine oocytes and enhance the development of embryos (Roth & Hansen, 2004). Hannoun et al. indicated that the fragmentation rate of human preimplantation embryos medium with S1P was significantly lower and the embryos quality was better (Antoine et al., 2010). In our study, we found that the serum concentration of sphingosine in the AWE group was higher than that in the M group, which may be because AWE has a regulatory effect on sphingosine.

All-trans-retinoic acid belongs to vitamin A (retinol), which is a basic nutrient required for mammalian reproduction. This molecule plays a vital role in promoting the normal development of embryos, regulating cell proliferation and differentiation, and maintaining normal cell differentiation and immune system function integrity. Ueda et al. showed that chemical signaling induced by the use of retinoic acid can promote the differentiation of embryonic stem cells into neurons (Ueda et al., 2018). In our study, we found that the level of all-trans-retinoic acid was down-regulated in the AWE group. In summary, AWE could adjust the abnormal metabolism state of amino acid, retinol, and lipid metabolism with AUB induced by incomplete medical abortion.
which may be involved in the intervention mechanism of AWE for the treatment of AUB. Some metabolic pathways including primary bile acid biosynthesis, glycerophospholipid metabolism, pentose and glucuronate interconversions, glutathione metabolism, glyoxylate and dicarboxylate metabolism, sphingolipid metabolism, glycine, serine and threonine metabolism, retinol metabolism, ascorbate, and aldarate metabolism were altered by AWE treatment. The significantly reversed the metabolic aberrations in AUB group by AWE facilitates to support the therapeutic effect and potential mechanisms of AWE on AUB induced by incomplete medical abortion.

ACKNOWLEDGMENTS
This research was funded by Health and Family Planning Commission of Chengdu-Key disciplines of clinical pharmacy and Sichuan Medical Research Project (grant number: S18056, S19030).

CONFLICT OF INTEREST
The authors declare no conflict of interest.

DATA AVAILABILITY STATEMENT
The data that support the findings of this study are available from the corresponding author upon reasonable request.

ORCID
Yan Zhang https://orcid.org/0000-0002-5026-7446

REFERENCES
Akito, K., Yo, T., Hiroyasu, H., Hideki, K., & Makoto, K. (2009). Different impacts of saturated and unsaturated free fatty acids on COX-2 expression in C2C12 myotubes. American Journal of Physiology. Endocrinology and Metabolism, 297(6), E1291–E1303. https://doi.org/10.1152/ajpendo.00293.2009
Angélica, R. R., Ely, O. B., Guillermo, C. S., Eulises, D. D., & Mohammed, E. H. (2014). Glycine restores glutathione and protects against oxidative stress in vascular tissue from sucrose-fed rats. Clinical Science (London), 126(1), 19–29. https://doi.org/10.1042/CS20130164
Antoine, H., Ghina, G., Antoine, A. M., Tony, G. Z., Fatiha, H., & Johnny, A. (2010). Addition of sphingosine-1-phosphate to human oocyte culture medium decreases embryo fragmentation. Reproductive Biomedicine Online, 20(3), 328–334. https://doi.org/10.1016/j.rbmo.2009.11.020
Bao, Y., Wang, S., Yang, X., Li, T., Xia, Y., & Meng, X. (2017). Metabolic study of the intervention effects of Shuilinghuazhi Formula, a Traditional Chinese Medicinal Formula, on hepatocellular carcinoma (HCC) rats using performance HPLC/ESI-TOF-MS. Journal of Ethnopharmacology, 198, 468–478. https://doi.org/10.1016/j.jep.2017.01.029
Bradley, L. D., & Gueye, N. A. (2015). The medical management of abnormal uterine bleeding in reproductive age women. American Journal of Obstetrics & Gynecology, 50002937815008455, https://doi.org/10.1016/j.ajog.2015.07.044
Cao, P., Sun, J., Sullivan, M. A., Huang, X., Wang, H., Zhang, Y., Wang, N., & Wang, K. (2018). Corrigendum to “Angelica sinensis polysaccharide protects against acetaminophen-induced acute liver injury and cell death by suppressing oxidative stress and hepatic apoptosis in vivo and in vitro” [Int. J. Biol. Macromol. 111 (May 2018) 1133-1139]. International Journal of Biological Macromolecules, 115, 1269. https://doi.org/10.1016/j.ijbiomac.2018.04.168
Carmans, S., Hendriks, J. J. A., Thewissen, K., Van den Eynden, J., Stinissen, P., Rigo, J.-M., & Hellings, N. (2010). The inhibitory neurotransmitter glycine modulates macrophage activity by activation of neutral amino acid transporters. Journal of Neuroscience Research, 88(11), 2420–2430. https://doi.org/10.1002/jnr.22395
Chen, L., Jiang, E., Guan, Y., Xu, P., Shen, Q., Liu, Z., Zhu, W., Chen, L., Liu, H., & Dong, H. (2021). Safety of high-dose Puerariae Lobatae Radix in adolescent rats based on metabolomics. Food Sciences and Nutrition, 9(2), 794–810. https://doi.org/10.1002/fsn3.2044
Fan, Q., Yang, R., Yang, F., Xia, P., & Zhao, L. (2020). Spectrum-effect relationship between HPLC fingerprints and antioxidant activity of Angelica sinensis. Biomedical Chromatography, 34(2), e4707. https://doi.org/10.1002/bmc.e4707
Fang, C., Yu, Z., Qiang, L., Fang, Z., & Kaiping, W. (2020). Inhibition of dextran sodium sulfate-induced experimental colitis in mice by Angelica sinensis polysaccharide. Journal of Medicinal Food, 23(6), 584–592. https://doi.org/10.1089/jmf.2019.4607
Gika, H. G., Theodoridis, G. A., Plumb, R. S., & Wilson, I. D. (2014). Current practice of liquid chromatography–mass spectrometry in metabolomics and metabonomics. Journal of Pharmaceutical and Biomedical Analysis, 87, 12–25. https://doi.org/10.1016/j.jpba.2013.06.032
Guo, X., Luo, T., Han, D., & Wu, Z. (2019). Analysis of metabolomics associated with quality differences between room-temperature- and low-temperature-stored litchi pulps. Food Sciences and Nutrition, 7(11), 3560–3569. https://doi.org/10.1002/fsn3.1208
Hellwell, R. J. A., Adams, L. F., & Mitchell, M. D. (2004). Prostaglandin synthases: Recent developments and a novel hypothesis. Prostaglandins, Leukotrienes, and Essential Fatty Acids, 70(2), 101–113. https://doi.org/10.1016/j.pla.2003.04.002
Houghton, F. D., Hawkhead, J. A., Humpherson, P. G., Hogg, J. E., Balen, A. H., Rutherford, A. J., & Leese, H. J. (2002). Non-invasive amino acid turnover predicts human embryo developmental capacity. Human Reproduction, 17(4), 999–1005. https://doi.org/10.1093/humrep/17.4.999
Hua, Y., Yao, W., Ji, P., & Wei, Y. (2017). Integrated metabolomic–proteomic studies on blood enrichment effects of Angelica sinensis on a blood deficiency mice model. Pharmaceutical Biology, 55(1), 853–863. https://doi.org/10.1080/13880209.2017.1281969
Jin, Y., Qu, C., Tang, Y., Pang, H., Liu, L., Zhu, Z., Shang, E., Huang, S., Sun, D., & Duan, J.-A. (2016). Herb pairs containing Angelicae Sinensis Radix (Danggu): A review of bio-active constituents and compatibility effects. Journal of Ethnopharmacology, 181, 158–171. https://doi.org/10.1016/j.jep.2016.01.033
Karakioulaki, M., & Stolz, D. (2019). Biomarkers in pneumonia–beyond procalcitonin. International Journal of Molecular Ences, 20(8), 2004. https://doi.org/10.3390/ijms20082004
Klaira, L., & Paul, P. D. (2020). Current and potential methods for second trimester abortion. Best practice & research. Clinical Obstetrics & Gynaecology, 63, 24–36. https://doi.org/10.1016/j.bpobgyn.2019.05.006
Li, M., Shu, X., Xu, H., Zhang, C., Yang, L., Zhang, L., & Ji, G. (2016). Integrative analysis of metabolome and gut microbiota in diet-induced hyperlipidemic rats treated with berberine compounds. Journal of Translational Medicine, 14(1), 237. https://doi.org/10.1186/s12967-016-0987-5
Li, W., Guo, J., Tang, Y., Wang, H., Huang, M., Qian, D., & Duan, J.-A. (2012). Pharmacokinetic comparison of ferulic acid in normal and blood deficiency rats after oral administration of Angelica sinensis, Ligusticum chuanxiong and their combination. International Journal of Molecular Sciences, 13(3), 3583-3597. https://doi.org/10.3390/ijms13033583
Louise, T. K., Niels, J., Buch, M. A., Kristian, A. N., Henning, G., Juul, H. J., & Hendrik, V. (2013). Regulation of urea synthesis during the acute-phase response in rats. American Journal of Physiology.
Gastrointestinal and Liver Physiology, 304(7), G680–G686. https://doi.org/10.1152/ajpgi.00416.2012

Ma, C., Feng, W. H., Han, W. T., Lu, Y. P., Liu, W., Sui, Y., Zhao, N., Jye, S. J., & Li, J. X. (2016). Elevated mRNA expression of FGFR2 receptor splice variant 2 (FP-V2) in human decidua is associated with incomplete mifepristone-misoprostol-induced early medical abortion by regulation of interleukin-8. Journal of Maternal-Fetal & Neonatal Medicine, 29(21), 3472–3477. https://doi.org/10.3109/14767058.2015.1132692

Ma, J. P., Guo, Z. B., Jin, L., & Li, Y. D. (2015). Phytochemical progress made on Angelica sinesis (Oliv.) Diels. Chinese Journal of Natural Medicines, 13(4), 241–249. https://doi.org/10.1016/S1564-1500(15)30010-8

Ma, P., Sun, C., Li, W., Deng, W., Adu- Frimpong, M., Ju, X., & Xu, X. (2020). Extraction and structural analysis of Angelica sinesis polysaccharide with low molecular weight and its lipid-lowering effect on nonalcoholic fatty liver disease. Food Science & Nutrition, 8(7), 3212–3224. https://doi.org/10.1002/fsn3.1581

Miao, X., Xiao, B., Shui, S., Yang, J., Huang, R., & Dong, J. (2018). Metabolomics analysis of serum reveals the effect of Danggui Buxue Tang on fatigued mice induced by exhaustive physical exercise. Journal of Pharmaceutical and Biomedical Analysis, 151, 301–309. https://doi.org/10.1016/j.jpba.2018.01.028

Munro, M. G., Critchley, H. O. D., & Fraser, I. S. (2018). The two FIGO systems for normal and abnormal uterine bleeding symptoms and classification of causes of abnormal uterine bleeding in the reproductive years: 2018 revisions. International Journal of Gynecology & Obstetrics, 143(3), 393–408. https://doi.org/10.1002/ijgo.12666

Priyanka, B., Mainak, D., Sudha, S., Mamata, J., Baidyanath, C., & Koel, C. (2014). (1)H NMR serum metabolomics for understanding metabolic dysregulation in women with idiopathic recurrent spontaneous miscarriage during implantation window. Journal of Proteome Research, 13(6), 3100–3106. https://doi.org/10.1021/pr500379n

Regina, K., Nathalie, K., Metin, G. A., Justus, H. G., Linan, C., & Aldo, C. (2011). Medical methods for first trimester abortion. The Cochrane Database of Systematic Reviews, 11, CD002855. https://doi.org/10.1002/14651858.CD002855.pub4

Roth, Z., & Hansen, P. J. (2004). Sphingosine 1-phosphate protects bovine oocytes from heat shock during maturation. Biology of Reproduction, 71(6), 2072–2078. https://doi.org/10.1095/biolreprod.104.031989

Showkat, A. G., Kutubuddin, A. M., & Robert, H. (2019). Advances in understanding salt tolerance in rice. Theor Appl Genet, 132(4), 851–870. https://doi.org/10.1007/s00122-019-03301-8

Su, M., Cao, G., Wang, X., Daniel, R., Hong, Y., & Han, Y. (2020). Metabolomics study of dried ginger extract on serum and urine in blood stasis rats based on UPLC-Q-TOF/MS. Food Sciences and Nutrition, 8(12), 6401–6414. https://doi.org/10.1002/fsn3.1397

Tao, W., Hong-Guo, S., Yong-Li, H., Peng-Ling, L., & Yan-Ming, W. (2016). Urine metabolomic study for blood-replenishing mechanism of Angelica sinesis in a blood-deficient mouse model. Chinese Journal of Natural Medicines, 14(03), 210–219. https://doi.org/10.1016/S1875-5364(16)30018-8

Thuan, N. V., Harayama, H., & Miyake, M. (2002). Characteristics of preimplantational development of porcine parthenogenetic diploids relative to the existence of amino acids in vitro. Biology of Reproduction, 67(6), 1688–1698. https://doi.org/10.1095/biolreprod.102.004812

Ueda, K., Onishi, A., Ito, S.-I., Nakamura, M., & Takahashi, M. (2018). Generation of three-dimensional retinal organoids expressing rhodopsin and S- and M-cone opsins from mouse stem cells. Biochemical and Biophysical Research Communications, 495(4), 2595–2601. https://doi.org/10.1016/j.bbrc.2017.12.092

Wei, Q., Li, J., Zhan, Y., Zhong, Q., Xie, B., Chen, L., Chen, B., & Jiang, Y. (2020). Enhancement of glucose homeostasis through the PI3K/Akt signaling pathway by dietary with Agaricus blazei Murrill in STZ-induced diabetic rats. Food Science & Nutrition, 8(2), 1104–1114. https://doi.org/10.1002/fsn3.1397

Wei, W., Zeng, R., Gu, C., Qu, Y., & Huang, L. (2016). Angelica sinesis in China: A review of botanical profile, ethnopharmacology, phytochemistry and chemical analysis. Journal of Ethnopharmacology, 190, 116–141. https://doi.org/10.1016/j.jep.2016.05.023

Yang, M., & Lao, L. (2019). Emerging applications of metabolomics in traditional Chinese medicine treating hypertension: Biomarkers, pathways and more. Frontiers in Pharmacology, 10, 158. https://doi.org/10.3389/fphar.2019.00158

Yao, W., Zhang, L., Hua, Y., Ji, P., Li, P., Li, J., Zhong, L., Zhao, H., & Wei, Y. (2015). The investigation of anti-inflammatory activity of volatile oil of Angelica sinesis by plasma metabolomics approach. International Immunopharmacology, 29(2), 269–277. https://doi.org/10.1016/j.intimp.2015.11.006

Young-Jin, K., Young, L. J., Hyun-Ju, K., Do-Hoon, K., Hee, L. T., Suk, K. M., & Wansu, P. (2018). Anti-inflammatory effects of Angelica sinesis (Oliv.) diels water extract on RAW 264.7 induced with lipopolysaccharide. Nutrients, 10(5), 647. https://doi.org/10.3390/nu10050647

Yu, J., He-jian, L., & Cheng-qiang, F. (2018). Transcriptome-metabolomics analysis and its application in studying drug action mechanism. Biotechnology Bulletin, 34(12), 68–76.

Yuan, Z., Zong, L., Hua, Y., Ji, P., Yao, W., Ma, Q., Zhang, X., Wen, Y., Yang, L., & Wei, Y. (2019). Metabolomics study on promoting blood circulation and ameliorating blood stasis: Investigating the mechanism of Angelica sinesis and its processed products. Biomedical Chromatography, 33(4), e4457. https://doi.org/10.1002/bmc.4457

Yujie, S., Su, L., Yun, C., & Xiumei, S. (2018). Chinese herbal medicines for the treatment of non-structural abnormal uterine bleeding in perimenopause: A systematic review and a meta-analysis. Complementary Therapies in Medicine, 41, 252–260. https://doi.org/10.1016/j.ctim.2018.09.021

Zuo, C., Zhang, Y., Wang, J., Han, L., Peng, C., & Peng, D. (2019). Deciphering the intervention mechanism of Taohong Siwu Decoction following the abnormal uterine bleeding rats based on serum metabolic profiles. Journal of Pharmaceutical and Biomedical Analysis, 170, 204–214. https://doi.org/10.1016/j.jpba.2019.03.051

How to cite this article: Chen, T.-T., Zou, L., Wang, D., Li, W., Yang, Y., Liu, X.-M., Cao, X., Chen, J.-R., Zhang, Y., & Fu, J. (2021). Metabolomics study of Angelica sinesis (Oliv.) Diels on the abnormal uterine bleeding rats by ultra-performance liquid chromatography–quadrupole–time-of-flight mass spectrometry analysis. Food Science & Nutrition, 9, 6596–6609. https://doi.org/10.1002/fsn3.2605