SEMIANNIHILATOR SMALL SUBMODULES WITH RESPECT TO AN ARBITRARY SUBMODULE

S. RAJAEE ∗, F. FARZALIPOUR, AND M. POYAN

Abstract. In this paper we introduce a new concept namely T-semiannihilator small (T-sa-small for short) submodules of an R-module M with respect to an arbitrary submodule T of M which is a generalization of the concept of semiannihilator small submodules. We say that a submodule N of M is T-sa-small in M provided for each submodule X of M such that $T \subseteq N + X$ implies that $\text{Ann}(X) \ll (T : M)$. We investigate some new results concerning to this class of submodules. Among various results we prove that for a prime module M over a semisimple ring R, if N is a sa-small submodule of M, then for every submodule T of M such that $N \subsetneq T$, N is also a T-sa-small submodule of M. For a faithful finitely generated multiplication module M, we prove that N is a T-sa-small submodule of M if and only if $(N : M)$ is a $(T : M)$-sa-small ideal of R.

1. Introduction

Throughout this paper, R will denote a commutative ring with identity $1 \neq 0$ and M a nonzero unital R-module. We use the notations \subseteq and \leq to denote inclusion and submodule. A nonempty subset S of R is said to be a multiplicatively closed set (briefly, m.c.s) of R if $0 \notin S$, $1 \in S$ and $st \in S$ for each $s, t \in S$. For an R-module M, the set of all submodules of M, denoted by $\text{L}(M)$ and also $\text{L}^*(M) = \text{L}(M) \setminus \{M\}$. As usual, the rings of integers and integers modulo n will be denoted by \mathbb{Z} and \mathbb{Z}_n, respectively. A module M on a ring R (not necessarily commutative) is called prime if for every nonzero submodule K of M, $\text{Ann}(K) = \text{Ann}(M)$. An R-module M is called a multiplication module, if every submodule N of M has the form $N = IM$ for some ideal I of R, and in this case, $N = (N :_R M)M$, see [5]. A submodule N of M is called small (superfluous) which is denoted by $N \ll M$, if for every submodule L of M, $N + L = M$, implies that $L = M$. Clearly, the

MSC(2010): Primary:13C13, 13C99, 16D80.
Keywords: Small submodule; annihilator small submodule; semiannihilator small submodule.
∗Corresponding author.

1
zero submodule of every nonzero module is superfluous. The Jacobson radical of M, denoted by $J(M)$, is the intersection of all maximal submodules of M and also it is the sum of all small submodules of M, i.e., $J(M) = \cap_{N \in \text{Max}(M)} N = \sum_{N \ll M} N$. If M does not have maximal submodules, we put $J(M) = M$. Consequently, if $J(M)$ is a small submodule of M, then $J(M)$ is the largest small submodule of M. We refer the reader to [3, 11] for the basic properties and more information on small submodules. We know that if M is a semisimple module, then the zero submodule is the only small submodule of M and M is the only essential submodule of M.

Gilmer [7, p.60] has defined the concept of cancellation ideal to be the ideal I of R which satisfies the following: Whenever $AI = BI$ with A and B are ideals of R implies $A = B$. Mijbass in [10] has generalized this concept to modules. An R-module M is called a cancellation module whenever $IM = JM$ with I and J are ideals of R implies $I = J$.

We recall that R is a von Neumann regular ring (associative, with 1, not necessarily commutative) if for every element a of R, there is an element $b \in R$ with $a = aba$. These rings are characterized by the fact that every left R-module is flat.

2. Preliminaries and Notations

In [2], the authors introduced the concept of annihilator-small submodules of any right R-module M. For an unitary right R-module M on an associative ring R with identity they called a submodule K of M_R annihilator-small if $K + T = M$, such that T is a submodule of M_R, implies that $\ell_S(T) = 0$, where $\ell_S(T)$ indicates the left annihilator of T over $S = \text{End}(M_R)$.

A submodule N of M is called an R-annihilator-small (breifly R-a-small) submodule of M, if $N + X = M$ for some submodule X of M, implies that Ann(X) = 0, see [1]. We use the notation $N \ll^a M$ to indicate this concept. In [12], the author introduced the concept of a semiannihilator small submodule N of a module M on a commutative ring R with identity $1 \neq 0$ such that N is called semiannihilator small (sa-small for short), denoted by $N \ll^a M$, if for every submodule L of M with $N + L = M$ implies that Ann(L) $\ll R$. It is clear that every R-a-small submodule is sa-small, but the converse is not true. Also a sa-small submodule need not be small, for example consider $M = \mathbb{Z}$ as a \mathbb{Z}-module, every proper submodule of \mathbb{Z} is a sa-small submodule whereas the zero submodule of \mathbb{Z} is the only small submodule of \mathbb{Z}. Let M be a faithful R-module, then clearly every small submodule is
an R-a-small submodule and hence it is a sa-small submodule. The converse is not true, because consider the \(\mathbb{Z}_8 \)-module \(M = \mathbb{Z}_8 \), then \(\mathbb{Z}_8 = \mathbb{Z}_8 + \langle 2 \rangle \) and \(\text{Ann}(\langle 2 \rangle) = \langle 4 \rangle \neq \langle 0 \rangle \), whereas \(\text{Ann}(\langle 2 \rangle) \ll \mathbb{Z}_8 \).

Similarly, an ideal \(I \) is a sa-small ideal of a ring \(R \), if it is a sa-small submodule of \(R \) as an \(R \)-module, see [12, Definition 2.1]. We know that an ideal \(I \) of \(R \) is small in \(R \) if and only if \(I \subseteq J(R) \). Therefore a submodule \(N \) of a module \(M \) is sa-small in \(M \) if \(N + X = M \) for a submodule \(X \) of \(M \), implies that \(\text{Ann}(X) \ll J(R) \), see [12, Proposition 2.3]. A non-trivial \(R \)-module \(M \) is called a semiannihilator hollow (sa-hollow for short) module if every proper submodule of \(M \) is sa-small in \(M \), see [12, Definition 3.1]. An \(R \)-epimorphism \(f : M \to N \) is called a sa-small epimorphism whenever \(\text{Ker}(f) \ll_{sa} M \).

An \(R \)-module \(M \) is said to be a comultiplication module if for every submodule \(N \) of \(M \) there exists an ideal \(I \) of \(R \) such that \(N = \text{Ann}_M(I) \). An \(R \)-module \(M \) satisfies the double annihilator condition (DAC for short), if for each ideal \(I \) of \(R \), \(I = \text{Ann}_R(\text{Ann}_M(I)) \). Also \(M \) is said to be a strong comultiplication module, if \(M \) is a comultiplication module which satisfies DAC, see [4].

3. Sa-small submodules w.r.t. an arbitrary submodule

In this section we generalize the concept of sa-small submodules to the \(T \)-sa-small submodules of \(M \) with respect to an arbitrary submodule \(T \) of \(M \). Moreover, we investigate some new other properties of the sa-small submodules of an \(R \)-module \(M \) and we will generalize these properties to this new class of submodules of \(M \).

Definition 3.1. Let \(M \) be an \(R \)-module and let \(T \) be an arbitrary submodule of \(M \).

(i) We say that a submodule \(N \) of \(M \) is a \(T \)-semiannihilator small (berifly, \(T \)-sa-small) submodule of \(M \), denoted by \(N \ll_{sa} T \ M \), provided for every nonzero submodule \(X \leq M \) such that \(T \subseteq N + X \) implies that \(\text{Ann}(X) \ll (T :_R M) = \text{Ann}_R(M/T) \). Equivalently, if for a submodule \(X \) of \(M \), \(\text{Ann}(X) \) is not small in \((T :_R M) \), then \(T \nsubseteq N + X \).

(ii) We say that \(M \) is a \(T \)-sa-small hollow module if every submodule \(N \) of \(M \) is a \(T \)-sa-small submodule of \(M \). In particular, for an arbitrary ideal \(A \) of \(R \), we say that an ideal \(I \) of \(R \) is an \(A \)-sa-small ideal of \(R \) if \(I \) is an \(A \)-sa-small submodule of \(R \) as an \(R \)-module. We shall denote the sum of all \(T \)-sa-small submodules of \(M \) by \(J_{T}^{sa}(M) \).
(iii) Let $f : M \to N$ be an R-epimorphism and let T be an arbitrary submodule of M, we say that f is a T-sa-small epimorphism in case $\ker(f) \ll_{T}^{sa} M$.

We denote the set of all small (resp. sa-small, T-sa-small) submodules of M by $S(M)$ (resp. $S^{sa}(M)$, $S_{T}^{sa}(M)$).

Note 3.2. Let M be an R-module and let T be an arbitrary submodule of M.

(i) If we take $T = M$, then the notions of T-sa-small submodules and sa-small submodules are equal.
(ii) Let $T = 0$, then for submodules N, X of M, since $0 \subseteq N + X$ hence $N \ll_{0}^{sa} M$ implies that $\text{Ann}(X) \ll \text{Ann}(M)$. Now since $\text{Ann}(M) \subseteq \text{Ann}(X)$ therefore $\text{Ann}(X) = \text{Ann}(M)$. This is impossible because a nonzero module M is never small in itself. It concludes that a nonzero module M has no any 0-sa-small submodule.
(iii) If $T \neq 0$, then $N \ll_{T}^{sa} M$ implies that $T \not\subseteq N$, otherwise, $T \subseteq N + 0$ conclude that $R = \text{Ann}(0) \ll (T : M)$ which is impossible. Let M be a finitely generated R-module and let T be a nonzero proper arbitrary submodule of M then by Zorn’s lemma there exists a maximal submodule N of M such that $T \subseteq N$. This implies that N is not a T-sa-small submodule of M.

Theorem 3.3. Let M be an R-module and let T be a submodule of M.

The following assertions hold.

(i) Every T-sa-small submodule of M is a sa-small submodule of M.
(ii) If M is a faithful prime R-module, then M is a T-sa-small hollow module.
(iii) If M is a prime module on a semisimple ring R and $N \ll^{sa} M$, then for every submodule $T \supseteq N$ of M, $N \ll_{T}^{sa} M$.

Proof. (i) Assume that $N \ll_{T}^{sa} M$ and $N + K = M$ for some module K of M. Since $T \subseteq N + K$ and $N \ll_{T}^{sa} M$ hence $\text{Ann}(K) \ll (T : M) \leq R$. By virtue of [11, Remark 2.8, (2)], $\text{Ann}(K) \ll R$ this implies that $N \ll_{T}^{sa} M$.

(ii) By hypothesis, $T \subseteq N + X$ implies that $0 = \text{Ann}(X) = \text{Ann}(M)$ which is small in $(T : M)$.

(iii) By [11, Proposition 3.5], M is a semisimple module, hence $M = T + T'$ for some submodule T' of M. Suppose that $N \ll^{sa} M$ and $T \subseteq N + K$ for some submodule K of M. This implies that $M = T + T' \subseteq N + K + T'$ and so $N + K + T' = M$. Since $N \ll^{sa} M$ hence
Ann($K + T'$) $\ll R$. Since M is prime hence

$$\text{Ann}(K + T') = \text{Ann}(K) \subseteq (T : M) \subseteq (T : N) = R.$$

By virtue of [11, Remark 2.8, (3)], $\text{Ann}(K) \ll (T : M)$ since R is semisimple and the proof is complete.

The following example shows that in general the concepts of small submodules and sa-small submodules are independent of each other. In (iii) we show that the converse of Theorem 3.3 is not true in general and also in (iv) we show that for R-modules M, M', if $f : M \to M'$ is an R-epimorphism, then the image of a T-sa-small submodule of M need not be an $f(T)$-sa-small submodule in M'.

Example 3.4. Let Z and Z_n be the rings of integers and integers modulo n, respectively.

(i) Consider $M = Z_6$ as a Z-module. Since $\text{Ann}(Z_6) = 6Z$ is not a small ideal of Z, hence $(0) \notin S^{sa}(Z_6)$ whereas $(0) \in S(Z_6)$. We note that the only nonzero proper submodules of Z_6 are $N = (2)$ and $L = (3)$ where $N + L = Z_6$ and both of $\text{Ann}(N) = 3Z$ and $\text{Ann}(L) = 2Z$ are not small ideals of Z. It concludes that $S^{sa}(Z_6) = \emptyset$ whereas $S(Z_6) = \{ (0) \}$.

(ii) Take $M = Z$ as a Z-module. We know that $kZ + sZ = Z$ if and only if $(k, s) = 1$. Since for every submodule sZ of Z, $\text{Ann}_Z(Z) = \text{Ann}_Z(sZ) = 0 \ll Z$ hence $kZ \ll^{sa} Z$ for every proper submodule kZ of Z. It concludes that $S^{sa}(Z) = L^*(Z)$ whereas $S(Z) = \{ 0 \}$.

(iii) We take the Z-module $M = 2Z \times Z_8$. Then $N = \langle (0, 0) \rangle$ is a sa-small submodule of M but N is not a T-sa-small submodule of M for submodule $T = \langle (0, 4) \rangle$ of M since $T \subseteq N + \langle (0, 2) \rangle$ whereas $\text{Ann}(\langle (0, 2) \rangle) = 4Z$ is not small in $(T : M) = 0$.

(iv) Consider the natural Z-epimorphism $\pi : Z \to Z_8$ where $\pi(n) = \bar{n}$. Take $N = 0$ and $T = 2Z$. Clearly $0 \ll^{sa}_{2Z} Z$, because we have $2Z \subseteq 0 + 2Z$ and also $2Z \subseteq 0 + Z$ and then

$$0 = \text{Ann}(2Z) \ll (2Z :_Z 2Z) = 2Z,$$

$$0 = \text{Ann}(Z) \ll (2Z :_Z 2Z) = 2Z.$$

But $\pi(N) = \pi(0) = \langle 0 \rangle$ is not $\pi(T)$-sa-small submodule of Z_8 since $\pi(T) = \langle \bar{2} \rangle$ and $\langle \bar{2} \rangle \subseteq \langle 0 \rangle + Z_8$ whereas $\text{Ann}(Z_8) = 8Z$ is not small in $(\langle \bar{2} \rangle : Z_8) = 2Z$.

Note 3.5. Let M be an R-module and let T be an arbitrary submodule of M. For every submodule K of M, $K \ll^{sa}_T M$ if and only if R-epimorphism $p_K : M \to M/K$ is a T-sa-small epimorphism.
A submodule N of an R-module M is said to be completely irreducible if $N = \bigcap_{i \in I} N_i$ where $\{N_i\}_{i \in I}$ is a family of submodules of M, then $N = N_i$ for some $i \in I$. It is easy to see that every submodule of M is an intersection of completely irreducible submodules of M.

Theorem 3.6. Let M be an R-module and $N \leq M$.

(i) Let $T \leq T' \leq M$. If $N \trianglelefteq_{T'}^s M$, then $N \trianglelefteq_{T'}^s M$.

(ii) If $T = T_1 \cap \cdots \cap T_s$ and $N \trianglelefteq_{T_i}^s M$ for any $1 \leq i \leq s$. Conversely, if T is a completely irreducible submodule and for any $1 \leq i \leq s$, $N \trianglelefteq_{T_i}^s M$, then $N \trianglelefteq_{T}^s M$.

(iii) If $T = K$ and $N \trianglelefteq_{T}^s M$, then $N \trianglelefteq_{T}^s K$.

(iv) If $T = T_1 + \cdots + T_n$ for some submodules T_i of M and $N \leq T_i^s M$ for some $1 \leq i \leq n$, then $N \leq T_i^s M$.

Proof.

(i) Assume that $T' \subseteq N + X$ for some submodule X of M, then $T \subseteq N + X$ and so $\text{Ann}(X) \trianglelefteq (T : M) \leq (T' : M)$. By [11, Remark 2.8, (2)], $\text{Ann}(X) \trianglelefteq (T' : M)$ as we needed.

(ii) It is clear by (i). Conversely, since T is a completely irreducible submodule hence there exists $1 \leq i \leq s$ such that $T_i = T$ and the proof is complete again using by (i).

(iii) Assume that $T \subseteq N + L$ for some submodule L of K. Then $\text{Ann}(L) \trianglelefteq (T : M) \leq (T : K)$ and this implies that $\text{Ann}(L) \trianglelefteq (T : K)$ and therefore $N \trianglelefteq_{T}^s K$.

(iv) The proof is straightforward by (i). \qed

Theorem 3.7. The following assertions hold.

(i) $S(R) \subseteq S^{sa}(R)$.

(ii) If R is an Artinian ring and $I \trianglelefteq_{J(R)}^s R$, then for every maximal ideal m of R, $I \trianglelefteq_{m}^s R$.

(iii) Let $M = N \oplus K$ be a multiplication module such that N, K are finitely generated submodules of M. Then N and K are not sa-small in M.

Proof.

(i) Let $I \in S(R)$ and $I + J = R$ for some ideal J of R. Then $J = R$ and hence $\text{Ann}(J) = \text{Ann}(R) = 0$ which is a small ideal of R. Therefore $I \in S^{sa}(R)$.

(ii) Assume that $\text{Max}(R) = \{m_1, \ldots, m_s\}$, then $J(R) = \cap_{i=1}^s m_i$. The proof is clear by Theorem 3.6 (i).

(iii) By [6, Corollary 2.3], $\text{Ann}(N) + \text{Ann}(K) = R$. If $N \trianglelefteq_{M}^s$, then since $M = N + K$ hence $\text{Ann}(K) \trianglelefteq R$ and so $\text{Ann}(N) = R$. It concludes that $N = 0$ which is impossible. \qed

Theorem 3.8. Let M be an R-module. The following assertions hold.

(i) $M \notin S^{sa}(M)$.

(ii) If M is a completely irreducible submodule of M, then $M = R$.
(ii) $0 \in S^{sa}(M)$ if and only if $\text{Ann}(M) \ll R$.

(iii) If R is a simple ring, then $L^*(M) = S^{sa}(M)$.

(iv) Let $m \in \text{Max}(R) \cap S^{sa}(R)$. If $x \notin m$, then $\text{Ann}(Rx) \subseteq J(R)$.

(v) If M is a prime module with $\text{Ann}(M) \ll R$, then $L^*(M) = S^{sa}(M)$. Moreover, in this case, $S(M) \subseteq S^{sa}(M)$.

Proof. (i) Assume that $M \in S^{sa}(M)$, then the equality $M + 0 = M$ implies that $\text{Ann}(0) = R$ is a small ideal of R which is impossible.

(ii) The proof is straightforward.

(iii) Let R be a simple ring and let N be a proper submodule of M such that $N + X = M$ for some submodule X of M. If $\text{Ann}(X) = 0$, then $\text{Ann}(X) \ll R$ and the proof is complete. If $\text{Ann}(X) = R$, then $X = 0$ and hence $N = M$ which is contradiction.

(iv) Suppose that $x \in R - m$, then $m + Rx = R$ hence $\text{Ann}(Rx) \ll R$ since $m \in S^{sa}(R)$. This implies that $\text{Ann}(Rx) \subseteq J(R)$.

(v) It is clear. □

Corollary 3.9. Every proper submodule of a faithful prime module M is a sa-small submodule of M.

Theorem 3.10. Let R be a commutative ring. The following statements are true.

(i) If R has a nonzero comaximal sa-small ideal, then R is not semisimple.

(ii) Every sa-small hollow semisimple ring is simple.

(iii) Let R be a sa-small hollow ring. If $x \in Z(R)$, then $R \neq Rx + Ry$ for some element $y \in R$ and also 1 is the only nonzero idempotent element of R.

(iv) If R is a von Neumann regular ring, then none of the finitely generated ideals of R is a sa-small ideal of R.

(v) Let R be an integral domain and let M be a faithful multiplication module, then $L^*(M) = S^{sa}(M)$.

Proof. (i) Suppose that I is a nonzero comaximal sa-small ideal of R, then there exists an ideal J of R with $I + J = R$. We claim that $I \cap J \neq 0$. Assume $I \cap J = 0$ and so $IJ = 0$. Hence $R = I + J \subseteq \text{Ann}(J) + \text{Ann}(I)$, then $\text{Ann}(I) + \text{Ann}(J) = R$. Now $I \ll^{sa} R$, implies that $\text{Ann}(J) \ll R$ and thus $\text{Ann}(I) = R$. It concludes that $I = 0$ which is a contradiction. We infer that I is not a direct summand of R and so R is not semisimple.

(ii) Suppose that I is a nonzero ideal of R, then I is a direct summand of R since R is semisimple. By (i), I is not a sa-small ideal of R and this is contradiction because R is a sa-small hollow ring. It concludes that R has no any nonzero ideal and so R is a simple ring.
(iii) Assume that \(x \in \mathbb{Z}(R) \), then there exists an element \(0 \neq y \in R \) such that \(xy = 0 \). Let \(R = Rx + Ry \), then \(Ry \subseteq \text{Ann}(Rx) \ll R \). This implies that \(Ry \ll R \) hence \(Rx = R \) and so \(x \in U(R) \) which is contradiction.

Now let \(e \) be an idempotent element of \(R \). Since \(R(1 - e) + Re = R \) therefore \(R(1 - e) \subseteq \text{Ann}(Re) \ll R \). This implies that \(R(1 - e) \ll R \) and so \(Re = R \). It concludes that \(e = 1 \).

(iv) The proof follows from the fact that since \(R \) is a von Neumann regular ring hence every finitely generated ideal \(I \) of \(R \) is a direct summand of \(R \) such that \(I \) is generated by an idempotent. Suppose that \(R = I \oplus J \), then \(IJ = 0 \) and by (i) \(I \) can not be a \(sa \)-small ideal.

(v) Take \(N = 0 \), then \(0 + M = M \) and so \(\text{Ann}(M) = 0 \) is small in \(R \). Now assume that \(N \) is a nonzero submodule of \(M \), then \(N = IM \) for some nonzero ideal \(I \) of \(R \). Let \(r \in \text{Ann}(N) \), then \(r(IM) = 0 \) and so \(rI = 0 \). It concludes that \(r = 0 \) since \(R \) is an integral domain and so \(\text{Ann}(N) = 0 \) which is a small ideal of \(R \).

Proposition 3.11. Let \(M \) be an \(R \)-module with \(N \leq K \leq M \) and let \(T \) be an arbitrary submodule of \(M \). The following statements are true.

(i) Let \(M \) be a strong comultiplication module and \(N \ll^{sa} M \). Then for every nonzero submodule \(L \) of \(M \) with \(N + L = M \), \(L \leq_{e} M \).

(ii) If \(K \ll^{sa} T \ M \), then \(N \ll^{sa} T \ M \).

(iii) Assume \(\{N_{\lambda}\}_{\lambda \in \Lambda} \) be a family of submodules of \(M \). If \(N_{t} \ll^{sa} T \ M \) for some \(t \in \Lambda \), then \(\cap_{\lambda \in \Lambda} N_{\lambda} \ll^{sa} T \ M \).

(iv) Let \(T \subseteq K \) and \(N \ll^{sa} T \ K \), then \(N \ll^{sa} T \ M \).

(v) Suppose that \(M \) is a multiplication module. If \(N \ll^{sa} M \) (resp. \(N \ll^{sa} T \ M \)), then \((N : M) \ll^{sa} R \) (resp. \((N : M) \ll^{sa} (T : M) \ R \)). The converse is true if \(M \) is also a finitely generated faithful module. Furthermore, in this case, \(J^{sa}_{T}(M) = J^{sa}_{T(M)}(R)M \).

(vi) Assume that \(M \) and \(M' \) are \(R \)-modules and \(f : M \to M' \) is an \(R \)-epimorphism. If \(N' \ll^{sa} T \ M' \) for some submodule \(T' \) of \(M' \), then \(f^{-1}(N') \ll^{sa} T^{-1}(T') \ M \).

(vii) Assume that \(T \supseteq N \) is an arbitrary submodule of \(M \). If \(K/N \ll^{sa} T/N \ M/N \), then \(K \ll^{sa} T M \) and \(N \ll^{sa} T M \).

(viii) Let \(M \) be a Noetherian \(R \)-module. If \(S \) is a m.c.s. of \(R \) and \(S^{-1}N \) is an \(S^{-1}T \)-sa-small submodule of \(S^{-1}R \)-module \(S^{-1}M \), then \(N \) is a \(T \)-sa-small submodule of \(M \).

Proof. (i) Since \(N \ll^{sa} M \) and \(N + L = M \) hence \(\text{Ann}(L) \ll R \). By virtue of \([13, \text{Theorem 2.5}]\), \(L = (0 :_{M} \text{Ann}_{R}(L)) \) is an essential submodule of \(M \).

(ii) Assume that \(T \subseteq N + X \) for some submodule \(X \) of \(M \). Therefore
$T \subseteq K + X$ and since $K \ll_{T}^{sa} M$ hence $\text{Ann}(X) \ll (T : M)$ and the proof is complete.

(iii) It is clear by (ii).

(iv) Let $L \subseteq M$ and $T \subseteq N + L$, then by the modular law $T \subseteq (N + L) \cap K = N + (L \cap K)$. Since $N \ll_{T}^{sa} K$, hence $\text{Ann}(L) \subseteq \text{Ann}(L \cap K) \ll (T :_R M)$ and this implies that $\text{Ann}(L) \ll (T :_R M)$ and the proof is complete.

(v) (\Rightarrow) Let $(N : M) + J = R$ for some ideal J of R, then $(N : M)M + JM = M$. Since M is multiplication hence $N + JM = M$ and so $\text{Ann}(JM) \ll R$. From $\text{Ann}(J) \subseteq \text{Ann}(JM)$ we infer that $\text{Ann}(J) \ll R$ and so $(N : M) \ll^{sa} R$.

(\Leftarrow) Suppose that $(N : M) \ll^{sa} R$ and $N + K = M$ for some submodule K of M. Thus $(N : M)M + (K : M)M = RM$ and since M is a finitely generated faithful multiplication module hence M is a cancellation module and so $(N : M) + (K : M) = R$. It concludes that $\text{Ann}(K : M) \ll R$. By hypothesis, since M is a faithful module hence $\text{Ann}(K : M) = \text{Ann}(K) \ll R$ and the proof is complete.

Now assume that $N \ll_{T}^{sa} M$ and $(T : M) \subseteq (N : M) + J$ for some ideal J of R. We show that $\text{Ann}(J) \ll ((T :_R M) :_R R) = (T :_R M)$. Since M is a multiplication module hence $T = (T : M)M \subseteq (N : M)M + JM = N + JM$. Now the hypothesis $N \ll_{T}^{sa} M$ implies that $\text{Ann}(J) \subseteq \text{Ann}(JM) \ll (T :_R M)$ and so $\text{Ann}(J) \ll (T :_R M)$ as we needed. Conversely, let $(N : M) \ll^{sa}_{(T,M)} R$ and $T \subseteq N + K$ for some submodules N, K of M. Since M is multiplication there exist ideals I, J of M such that $N = IM = (N : M)M$ and $K = JM = (K : M)M$. Therefore $T = (T : M)M \subseteq (N : M)M + JM = ((N : M) + J)M$ and so $(T : M) \subseteq (N : M) + J$, because M is a cancellation module. From the hypothesis $(N : M) \ll^{sa}_{(T,M)} R$, we infer that $\text{Ann}(J) \ll (T : M)$. Since M is faithful hence $\text{Ann}(J) = \text{Ann}(JM) \ll (T : M)$ and the proof is complete. For the second part we note that

$$J_{T}^{sa}(M) := \sum_{N \ll_{T}^{sa} M} N = \sum_{N \ll_{T}^{sa} M} (N : M)M$$

$$:= \left(\sum_{(N: M) \ll^{sa}_{(T,M)} R} (N : M) \right) M = J_{(T,M)}^{sa}(R)M.$$

(vi) Suppose that $f^{-1}(T') \subseteq f^{-1}(N') + L$ for some submodule L of M. Then since f is an R-epimorphism hence

$$T' = f(f^{-1}(T')) \subseteq f(f^{-1}(N') + L) \subseteq N' + f(L).$$
Since $N' \ll^{sa} T'$, M' hence $\text{Ann}(f(L)) \ll (T' : M')$ and therefore

$$\text{Ann}(L) \subseteq \text{Ann}(f(L)) \ll (T' : R M') = (f^{-1}(T') : R M).$$

It implies that $\text{Ann}(L) \ll (f^{-1}(T') : R M)$ and the proof is complete.

(vii) Assume that $K/N \ll^{sa} T/N M/N$ and also $T \subseteq K + L$ for some submodule L of M. Then $T/N \subseteq (K + L)/N = K/N + L/N$ implies that $\text{Ann}(L/N) \ll (T/N : M/N) = (T : M)$. Since $\text{Ann}(L) \subseteq \text{Ann}(L/N) \ll (T : M)$ hence $\text{Ann}(L) \ll (T : M)$. It conclude that $K \leq^{sa} M$ and by (ii), $N \leq^{sa} M$.

(viii) We recall that if X is a finitely generated submodule of M, then $S^{-1}(0 : R X) = (S^{-1}0 :_{S^{-1}R} S^{-1}X)$. Suppose that $T \subseteq N + X$ we show that $\text{Ann}_R(X) \ll (T : R M)$. Then we have

$$S^{-1}T \subseteq S^{-1}(N + X) = S^{-1}N + S^{-1}X.$$

By hypothesis $\text{Ann}_{S^{-1}R}(S^{-1}X) \ll (S^{-1}T :_{S^{-1}R} S^{-1}M)$. Therefore

$$\text{Ann}_{S^{-1}R}(S^{-1}X) : = (S^{-1}0 :_{S^{-1}R} S^{-1}X) = S^{-1}(0 : R X) \ll S^{-1}(T : R M) = (S^{-1}T :_{S^{-1}R} S^{-1}M).$$

This implies that $\text{Ann}_R(X) \ll (T : R M)$ and the proof is complete.

Corollary 3.12. Let M be a faithful finitely generated multiplication R-module and let T be an arbitrary submodule of M. Then M is a T-sa-hollow module if and only if R is a $(T : M)$-sa-hollow ring.

Proof. The proof is straightforward by Proposition 3.11 (v). □

Corollary 3.13. Let (R, m) be a local ring and let A be an arbitrary ideal of R. If $m \in S_0^{sa}(R)$, then $I \in S_0^{sa}(R)$ for every ideal I of R.

Proof. The proof is straightforward by Proposition 3.11 (ii). □

Theorem 3.14. Let $f : M \rightarrow M'$ be an R-epimorphism and let T' be a submodule of M'. If M' is a T'-sa-hollow module, then M is an $f^{-1}(T')$-sa-hollow module.

Proof. Assume that K is a submodule of M. Then $f(K) \leq_{T'}^{sa} M'$ since M' is a T'-sa-hollow module. By Proposition 3.11 (vi), $f^{-1}(f(K))$ is an $f^{-1}(T')$-sa-small submodule of M. Since $K \subseteq f^{-1}(f(K))$, so by Proposition 3.11 (ii), K is also an $f^{-1}(T')$-sa-small submodule of M. □

The following example shows that the converse of Proposition 3.11 (vii), is not true.
Proof. (i) It is clear by Proposition 3.16 that if $2\mathbb{Z}$ is a submodule of \mathbb{Z}, then either $(k, 8) = 2$ or $(k, 8) = 1$. In any case, $0 = \text{Ann}(\mathbb{Z}) \leq (2\mathbb{Z} : \mathbb{Z}) = 2\mathbb{Z}$, but $K/N = 4\mathbb{Z}/8\mathbb{Z}$ is not a submodule of $\mathbb{Z}/8\mathbb{Z}$, because if $2\mathbb{Z} \subseteq 8\mathbb{Z} + k\mathbb{Z}$ for some submodule $k\mathbb{Z}$ of \mathbb{Z}, then either $(k, 8) = 2$ or $(k, 8) = 1$. Let K/N be a submodule of $\mathbb{Z}/8\mathbb{Z}$, then $2\mathbb{Z} \subseteq 4\mathbb{Z} + k\mathbb{Z} = (4, k)\mathbb{Z}$. If $k = 2$, then $\text{Ann}(2\mathbb{Z}/8\mathbb{Z}) = 4\mathbb{Z}$ is not small in $(2\mathbb{Z}/8\mathbb{Z} : \mathbb{Z}/8\mathbb{Z}) = 2\mathbb{Z}$. If $k = 1$, then $\text{Ann}(\mathbb{Z}/8\mathbb{Z}) = 8\mathbb{Z}$ is not small in $(2\mathbb{Z}/8\mathbb{Z} : \mathbb{Z}/8\mathbb{Z}) = 2\mathbb{Z}$.

We recall that for an ideal I of a ring R the radical of I is defined by $\text{rad}(I) = \{x \in R \mid x^n \in I \text{ for some } n \in \mathbb{N}\}$. Let N be a proper submodule of M. Then, the prime radical of N, denoted by $\text{rad}(N)$ is defined to be the intersection of all prime submodules of M containing N, and in case N is not contained in any prime submodule then $\text{rad}(N)$ is defined to be M.

Lemma 3.16. If $I \llsa R$, then $\text{rad}(I) \llsa R$.

Proof. Let $\text{rad}(I) + J = R$ for some ideal J of R. Since $\text{rad}(I) + J \subseteq \text{rad}(I) + \text{rad}(J)$, so $\text{rad}(I) + \text{rad}(J) = R$. This implies that $\text{rad}(I + J) = R$ and so $I + J = R$. Hence $\text{Ann}(J) \ll R$ since $I \llsa R$ and so $\text{rad}(I) \llsa R$.

Proposition 3.17. Let M be a finitely generated faithful multiplication R-module. If $N \llsa M$, then $\text{rad}(N) \llsa M$.

Proof. By virtue of [9, Theorem 4], $\text{rad}(N) = \text{rad}(N : M) M$ and so $(\text{rad}(N) : M) = \text{rad}(N : M)$. Since $N \llsa M$, then by Proposition 3.11 (v), $(N : M) \llsa R$ and by Lemma 3.16, $\text{rad}(N : M) \llsa R$. It concludes that $(\text{rad}(N) : M) \llsa R$. Again using Proposition 3.11 (v) we find that $\text{rad}(N) \llsa M$.

Theorem 3.18. Let N be a nonzero sa-small submodule of M and $K \leq M$ with $(N : K) + (K : N) = R$, then $N \cap K \neq 0$.

Proof. Suppose that $N \cap K = 0$, then $(N : K) + (K : N) = \text{Ann}(K) + \text{Ann}(N) = R$. Since $N \in S^{sa}(M)$ hence $\text{Ann}(K) \ll R$ and so $\text{Ann}(N) = R$ which is contradiction.

Theorem 3.19. Let K, H be submodules of M.

(i) If $K + H \llsa T M$, then $K \llsa T M$ and $H \llsa T M$.

(ii) If M is a prime module and $K \llsa T M$ and $K + H \neq M$, then $K + H \llsa T M$.

Proof. (i) It is clear by Proposition 3.11 (ii). (ii) Let $T \subseteq K + H + X$ for some submodule X of M. Since $K \llsa T M$ hence $\text{Ann}(X) = \text{Ann}(H + X) \ll (T : M)$.
Theorem 3.20. Let R be a semisimple hollow ring and let M_1, M_2 be R-modules. Suppose that $N_1 \ll_{\tau_1} M_1$ and $N_2 \ll_{\tau_2} M_2$ for submodules $T_1 \leq M_1$ and $T_2 \leq M_2$, then $N_1 \oplus N_2 \ll_{\tau_1 \oplus \tau_2} M_1 \oplus M_2$.

Proof. Suppose that

$$T_1 \oplus T_2 \subseteq (N_1 \oplus N_2) + (L_1 \oplus L_2) = (N_1 + L_1) \oplus (N_2 + L_2).$$

Then $T_1 \subseteq N_1 + L_1$ and $T_2 \subseteq N_2 + L_2$ hence $\text{Ann}(L_1) \ll (T_1 : M_1)$ and $\text{Ann}(L_2) \ll (T_2 : M_2)$. By [8, Lemma 2], if $S \subseteq E \subseteq F$ and $S \ll F$ such that E is a direct summand of F, then $S \ll E$. Take $S = \text{Ann}(L_1) \cap \text{Ann}(L_2)$ and $F = (T_1 : M_1) \cap (T_2 : M_2)$, then

$$\text{Ann}(L_1 \oplus L_2) = \text{Ann}(L_1) \cap \text{Ann}(L_2) \ll (T_1 : M_1) \cap (T_2 : M_2)$$

$$= (T_1 \oplus T_2 : M_1 \oplus M_2).$$

\[\square \]

Theorem 3.21. Let $f : M \rightarrow N$ be a monomorphism and let T be an arbitrary submodule of M. If $K \ll_{f(T)} M$, then $f(K) \ll_{f(T)} f(M)$.

Proof. Assume that $f(T) \subseteq f(K) + L$ for some submodule L of $f(M)$. We show that $\text{Ann}(L) \ll (f(T) : R f(M))$. We have

$$T = f^{-1}(f(T)) \subseteq f^{-1}(f(K) + L) = K + f^{-1}(L) \leq M.$$

Then $\text{Ann}(L) \subseteq \text{Ann}(f^{-1}(L)) \ll (T : R M) = (f(T) : R f(M))$. \[\square \]

Theorem 3.22. Let $f : N \rightarrow K$ be a monomorphism and let T be an arbitrary submodule of N. If $g : K \rightarrow M$ is an $f(T)$-sa-small epimorphism, then $g \circ f : N \rightarrow M$ is also a T-sa-small epimorphism.

Proof. Assume that $T \subseteq \text{Ker}(g \circ f) + X$ for some submodule X of N. We show that $\text{Ann}(X) \ll (T : N)$. Since $\text{Ker}(g \circ f) = f^{-1}(\text{Ker}g)$ hence

$$f(T) \subseteq f(\text{Ker}(g \circ f)) + f(X) \subseteq \text{Ker}g + f(X).$$

Since $\text{Ker}g \ll_{f(T)} K$, hence

$$\text{Ann}(X) \subseteq \text{Ann}(f(X)) \ll (f(T) : R K).$$

We have $(f(T) : R K) \subseteq (T : R N)$, because if $r \in (f(T) : R K)$ and $x \in N$, then $rf(x) = f(rx) \in f(T)$. Since f is monomorphism hence $r x \in f^{-1}(f(T)) = T$. It concludes that $r \in (T : N)$. Therefore $\text{Ann}(X) \subseteq \text{Ann}(f(X)) \ll (T : R N)$ and the proof is complete. \[\square \]

We recall that an R-module F is called flat if whenever $N \rightarrow K \rightarrow L$ is an exact sequence of R-modules, then $F \otimes N \rightarrow F \otimes K \rightarrow F \otimes L$ is an exact sequence as well. An R-module F is called faithfully flat, whenever $N \rightarrow K \rightarrow L$ is an exact sequence of R-modules if and only if $F \otimes N \rightarrow F \otimes K \rightarrow F \otimes L$ is an exact sequence.
Theorem 3.23. Let F be a faithfully flat R-module and let M be an R-module. Assume that $N \leq M$ and T is an arbitrary submodule of M. Then the following statements hold.

(i) N is a sa-small submodule of M if and only if $F \otimes N$ is a sa-small submodule of $F \otimes M$.

(ii) N is a T-sa-small submodule of M if and only if $F \otimes N$ is a $F \otimes T$-sa-small submodule of $F \otimes M$.

Proof. (i) (\Rightarrow) Let $N \leq^sa M$ and $F \otimes N + F \otimes K = F \otimes M$ for some submodule $F \otimes K$ of $F \otimes M$. Then $F \otimes (N + K) = F \otimes N + F \otimes K = F \otimes M$. Thus $0 \to F \otimes (N + K) \to F \otimes M \to 0$ is an exact sequence. Since F is faithfully flat, so $0 \to N + K \to M \to 0$ is an exact sequence. Therefore $N + K = M$ and this implies that $\text{Ann}(K) \ll R$ since $N \leq^sa M$. We have $\text{Ann}(K) = \text{Ann}(F \otimes K)$, because if $r \in \text{Ann}(K)$, then $rK = 0$. Thus $r(F \otimes K) = F \otimes rK = 0$ and so $r \in \text{Ann}(F \otimes K)$. If $r \in \text{Ann}(F \otimes K)$, then $0 \to F \otimes rK \to 0$ is an exact sequence and so $0 \to rK \to 0$ is exact since F is a faithfully flat R-module. Therefore $rK = 0$ and so $r \in \text{Ann}(K)$. It concludes that $\text{Ann}(F \otimes K) \ll R$, so $F \otimes N \leq^sa F \otimes M$.

(\Leftarrow) Let $N + K = M$ for some submodule K of M. Then $F \otimes (N + K) = F \otimes N + F \otimes K = F \otimes M$. Hence $\text{Ann}(K) = \text{Ann}(F \otimes K) \ll R$. Therefore $N \leq^sa M$, as needed.

(ii) (\Rightarrow) Let $F \otimes T \subseteq F \otimes N + F \otimes K$ for some submodule $F \otimes K$ of $F \otimes M$. Thus $F \otimes T \subseteq F \otimes (N + K)$ and so $0 \to F \otimes T \to F \otimes (N + K)$ is exact. Therefore $0 \to T \to N + K$ is also exact since F is a faithfully flat R-module. This implies that $T \subseteq N + K$ and since $N \leq^sa T M$ hence $\text{Ann}(K) \ll (T :_R M)$. It is easy to see that $(T :_R M) = (F \otimes T :_R F \otimes M)$ since F is faithfully flat. Hence $\text{Ann}(F \otimes K) \ll (F \otimes T :_R F \otimes M)$ and so $F \otimes N \leq^sa F \otimes T$. ($\Leftarrow$) Let $T \subseteq N + K$. Then $F \otimes T \subseteq F \otimes (N + K) = F \otimes N + F \otimes K$. Now since $F \otimes N \leq^sa F \otimes T M$ hence $\text{Ann}(F \otimes K) \ll (F \otimes T :_R F \otimes M)$. It concludes that $\text{Ann}(K) \ll (T :_R M)$ and so $N \leq^sa T M$. □

References

[1] Al-Hurmuzy H. and AL-Bahrany B., R-Anihilator-small submodules, Msc thesis, College of Science, Baghdad University, Baghdad, Iraq, 2016.
[2] Amouzegar-Kalati, T., Keskin-Tütüncü, D., Annihilator-small submodules, Bull. Iran. Math. Soc. 39 (6) (2013), 1053-1063.
[3] Anderson, F. W., Fuller, K. R., Rings and categories of modules, Springer-Verlag Berlin Heidelberg New York, 1992.
[4] Ansari-Toroghy, H., Farshadifar, F., *Strong comultiplication modules*, CMU. J. Nat. Sci. 8 (1) (2009), 105-113.
[5] Barnard, A., Multiplication modules, J. Algebra 71 (1981), 74-178.
[6] El-Bast, Z.A., Smith, P.F., Multiplication modules, Comm. Algebra 16 (1988), 755-779.
[7] Gilmer, R. W., Multiplicative Ideal Theory, Marcel Dekker, New York, 1972.
[8] Leonard, W. W., *Small modules*, 1960.
[9] McCasland, R. L., Moore, M. E., *On radicals of submodules of finitely generated modules*, Canad. Math. Bull., 29 (1) (1986), 37-39.
[10] Mijbass, A. S., *Cancellation Modules*, M.Sc. Thesis, Department of Mathematics, College of Science, University of Baghdad, Baghdad, Iraq, 1992.
[11] Tuganbaev, A., Rings Close to Regular, Kluwer Academic, 2002.
[12] Yaseen, S. M., *Semiannihilator small submodules*, Int. J. Sci. Res. (IJSR), (2016), 955-958.
[13] Wang, Y., Liu, Y., *A note on comultiplication modules*, Algebra Colloq. 21 (1) (2014), 147-150.

Saeed Rajaee
Department of Mathematics, Payame Noor University, P.O.Box 19395-3697, Tehran, Iran.
Email: saeed_rajaee@pnu.ac.ir

Farkhondeh Farzalipour
Department of Mathematics, Payame Noor University, P.O.Box 19395-3697, Tehran, Iran.
Email: f_farzalipour@pnu.ac.ir

Marzieh Poyan
Department of Mathematics, PhD student of Mathematical Sciences, Payame Noor University, P.O.Box 19395-3697, Tehran, Iran.
Email: r_poyan@pnu.ac.ir