Disruption of miRNA Sequences by TALENs and CRISPR/Cas9 Induces Varied Lengths of miRNA Production

Honghao Bi$^{1,\psi}$, Qili Fei$^{2,5,#,\psi}$, Riqing Li1,3, Bo Liu1,3, Rui Xia4, Si Nian Char1, Blake C. Meyers3,5, Bing Yang1,3,5,*

1 Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA 50011, USA

2 Department of Plant and Soil Sciences, Delaware Biotechnology Institute, University of Delaware, Newark, DE 19711, USA

3 Division of Plant Sciences, University of Missouri, Columbia, MO 65201, USA

4 State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Horticulture, South China Agricultural University, Guangzhou, Guangdong 510642, China

5 Donald Danforth Plant Science Center, St. Louis, MO 63132, USA

$^#$ Current affiliation: Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, the Chinese Academy of Agricultural Sciences, Shenzhen, China.

$^\psi$ These authors contributed equally to this work

*Correspondence: yangbi@missouri.edu

Supplementary Information
(Figures S1 to S3, Table S1 and S2)
Supplementary Figure S1. Analysis of the mir160a mutants by CRIPSR/Cas9 with single guide RNA. a. Sanger sequencing results for T1 and T2 plants. Sequencing confirmed homozygous single “T” insertions and the biallelic Line 13 in T1. Sequencing results of the T2 plants of Line 13 confirmed single “T” insertion (T2-1) and 5-bp deletion (T2-2). b. Genome browser views of small RNAs generated from ARF10, ARF16 and ARF17 in wild type and mir160a*+1 plants.
Supplementary Figure S2. Characterization of the mir160a mutant with 5-bp deletion.

a. The 2-3 week wild type, mir160a*+1, and mir160a*-Δ5 plants; scale bars represent 1 cm. b. qPCR analysis of ARF10, ARF16, ARF17, and PRI-MIR160A transcript levels in wild type mir160a*+1, and mir160a*-Δ5 plants. c. Flower phenotypes of the mir160a*-Δ5 mutants. d. Developing seeds of the wild type and mir160a*-Δ5 mutants. Blue arrows indicate delayed or aborted developing seeds; white arrows indicate unfertilized ovules.
Supplementary Figure S3. Agarose gel analysis of the PCR products from CRISPR/Cas9-transformed plants with double guide RNAs. Genomic DNA of the T1 plants were extracted for PCR analysis with primers (Supplemental Table S1) to amplify the region surrounding the edit sites.
Table S1. Primers and synthesized DNA sequences used in this study

Primer name	Sequence (5’ to 3’)	Usage
Rice (*Oryza sativa*)		
MIR390-F	ATGGGATCCTAGAGCAAGAGGCACCACCTG	PCR-amplification of *miR390* genomic region for mutant detection
MIR390-R	CATTCTAGATGCCCATCTCATGGACAGTAG	
miR390-F1	AATGAATCTCTGACTGACTACAAACATCCACTG	PCR-amplification of *miR390* gene for complementation
miR390-R1	TGGGAATCCAGGTACCTGACTGATAAACAGGCTTC	Forward primers for 2-step PCR-amplification of edited *miR390*
MIR390-F2	AATCCCTGAAGCTCAGGAGGG	
MIR390-F3	AATCCCTGAAGCTCAGGAGAT	
MIR159b-F1	ATGAATTCTCAGATGCCTGTAGTGC	Genotyping of MIR159b mutants
MIR159b-R1	CATTCTAGATCCCATGAAATGCTGCT	
MIR408-F1	ATGGGAATCTCAGAGCAAGCAGGACAT	Genotyping of MIR408 mutants
MIR408-R1	TCAATCAGACAGCCCCACGAGTGCA	
MIR394-F1	ATGAATTCTCAGATGCCTGTAGTGC	Genotyping of MIR394 mutants
MIR394-R1	TACTCTAGACAGCCCCACGAGTGCA	
MIR398b-F1	TCAATCAGACAGCCCCACGAGTGCA	Genotyping of MIR398b mutants
MIR398b-R1	AGGTGTCATGTGTCGTTAC	
Arabidopsis (*Arabidopsis thaliana*)		
MIR160a-q-F	TGTCATGACGCATATCATATGAGATG	qRT-PCR primers for *ath-MIR160a*
MIR160a-q-R	CTCATCAACACAAATCATTGGTACC	
MIR160a-F	GATGAGGCAATGAAAGCAAGACAGAC	Genotype the T1 plants edited by CRISPR/Cas9 with double guide RNA
MIR160a-R	CACCAGCGAATTTAGTTTCTTACATA	
ARF10-F	CATTCTGAGCTTGGATTCC	qPCR primers for *ARF10*
ARF10-R	ACAAAGAGGGAGATGGTGC	
ARF16-F	CAACTGGATCAATCCAGATC	qPCR primers for *ARF16*
ARF16-R	GAAGATCGAAGATGATAACCC	
ARF17-F	GTTGACTGTCTAGTGACAG	qPCR primers for *ARF17*
ARF17-R	TATTTGTGATAGCTGCGGGAG	
sgRNA	GTTAAGACCTTTTCTGTTGAAACACGGAACTTCTGACCTG	Synthesized DNA fragment for CRISPR/Cas9 vector construction. PmeI sites are highlighted in blue. The target-specific sequence of the guide RNA is highlighted in red.

PmeI sites are highlighted in blue.

The target-specific sequence of the guide RNA is highlighted in red.
Table S2. **Small RNA library data for miRNA mutants.** (please see the Excel file)

Each mutant sRNA library was screened against both wt and mutant miRNA sequence. In **miR390** mutant, heterozygous **miR390** mutant was used as control since wt rice does not contain mutant **miR390**. The result from heterozygous **miR390** mutant shows that wt allele produces significant more miRNA than mutant allele, while homozygous mutant **miR390** produces more mutant **miR390** than heterozygous mutant.