Ultra-Sparse Near-Additive Emulators

Michael Elkin1 and Shaked Matar1

1Department of Computer Science, Ben-Gurion University of the Negev, Beer-Sheva, Israel.
Email: elkinm@cs.bgu.ac.il, matars@post.bgu.ac.il

Abstract

Near-additive (aka $(1 + \epsilon, \beta)$-) emulators and spanners are a fundamental graph-algorithmic construct, with numerous applications for computing approximate shortest paths and related problems in distributed, streaming and dynamic settings.

Known constructions of near-additive emulators enable one to trade between their sparsity (i.e., number of edges) and the additive stretch β. Specifically, for any pair of parameters $\epsilon > 0$, $\kappa = 1, 2, \ldots$, one can have a $(1 + \epsilon, \beta)$-emulator with $O\left(n^{1 + \frac{1}{\kappa}}\right)$ edges, with $\beta = \left(\frac{\log n}{\epsilon}\right)^{\log n \kappa}$. At their sparsest, these emulators employ $c \cdot n$ edges, for some constant $c \geq 2$. We tighten this bound, and show that in fact precisely $n^{1 + \frac{1}{\kappa}}$ edges suffice.

In particular, our emulators can be ultra-sparse, i.e., we can have an emulator with $n + o(n)$ edges and $\beta = \left(\frac{\log \log n}{\epsilon}\right)^{\log \log n(1+o(1))}$.

We also devise a distributed deterministic algorithm in the CONGEST model that builds these emulators in low polynomial time (i.e., in $O(n^\rho)$ time, for an arbitrarily small constant parameter $\rho > 0$).

Finally, we also improve the state-of-the-art distributed deterministic CONGEST-model construction of $(1 + \epsilon, \beta)$-spanners devised in the PODC’19 paper [EM19]. Specifically, the spanners of [EM19] have $O\left(\beta \cdot n^{1 + \frac{1}{\kappa}}\right)$ edges, i.e., at their sparsest they employ $O\left(\frac{\log \log n}{\epsilon}\right)^{\log \log n} \cdot n$ edges.

In this paper, we devise an efficient distributed deterministic CONGEST-model algorithm that builds such spanners with $O(n^{1 + \frac{1}{\kappa}})$ edges for $\kappa = O\left(\frac{\log n}{\log^{3/4} n}\right)$. At their sparsest, these spanners employ only $O(n \cdot \log \log n)$ edges.

This research was supported by the ISF grant No. (2344/19).
1 Introduction

1.1 Background and Our Results

Given an unweighted undirected n-vertex graph $G = (V, E)$, and a pair of parameters $\alpha \geq 1$, $\beta \geq 0$, a graph $G' = (V', E')$, with $V \subseteq V'$ is called an (α, β)-emulator for G, if for every pair of vertices $u, v \in V$ it holds that

$$d_G(u, v) \leq d_{G'}(u, v) \leq \alpha d_G(u, v) + \beta.$$

If G' is a subgraph of G, it is called an (α, β)-spanner.

In STOC’01, Elkin and Peleg [EP01] showed that for any $\epsilon > 0$ and $\kappa = 1, 2, \ldots$, there exists a $\beta = \beta(\epsilon, \kappa)$ such that for any n-vertex graph G there exists a $(1 + \epsilon, \beta)$-emulator of size $O(\log \kappa n^{1 + \frac{1}{\kappa}})$ and a $(1 + \epsilon, \beta)$-spanner of size $O(\beta n^{1 + \frac{1}{\kappa}})$. Emulators and spanners with these parameters are called near-additive. The parameter β is called the additive stretch or error of the respective emulator or spanner. In [EP01] the additive stretch is $\beta \approx \left(\frac{\log \kappa}{\epsilon}\right)^{\log \kappa - 1}$, and this estimate stays the state-of-the-art. Based on [AB16], Abboud et al. [ABP18] showed a lower bound of $\beta = \Omega\left(\frac{1}{\log \kappa}\right)^{\log \kappa - 1}$.

In SODA’06, Thorup and Zwick [TZ06] devised another scale-free construction of near-additive emulators. Their size and additive stretch are similar to those in [EP01], but the same construction applies for all $\epsilon > 0$.

Near-additive emulators and spanners were a subject of intensive research in the last two decades [Elk01, EZ04, TP06, PET07, PET08, PET10, EN16a, EN17a, EN20, EP01, ABP18, HP18, EM19]. They found numerous applications for computing almost shortest paths and distance oracles in various computational settings [Elk01, EZ04, BR11, EP15, EN17a, ASZ20]. Moreover, a strong connection between them and hopsets was discovered in [EN16a, EN17a, HP17]. Hopsets are also extremely useful for dynamic and distributed algorithms [HKN18, Coh94, HKN16, LP15, EN16b, EN17b, CDKL19, DP20, LN20]. See also a recent survey [EN20] for an extensive discussion about the relationship between emulators, spanners and hopsets.

A significant research effort was put into decreasing the sparsity level of near-additive emulators and spanners [PET07, PET08, PET10, EN17a, ABP18]. Pettie [PET08] showed that one can efficiently construct near-additive spanners of size $O(n \cdot (\log \log n)^{\phi})$, where $\phi \approx 1.44$ (with $\kappa = \log n$ and $\beta = \left(\frac{\log \log n}{\epsilon}\right)^{\phi \log \log n}$). He then further improved the size bound to $O(n \cdot (\log^{(4)} n))$, where $\log^{(4)} n$ is the four-times iterated logarithm [PET10]. The latter construction is however less efficient. (By efficient construction, we mean here centralized running time of $O(|E| \cdot n^\rho)$, for an arbitrarily small constant $\rho > 0$, and a distributed CONGEST time of $O(n^\rho)$. We also call the latter low polynomial time.)

Elkin and Neiman [EN17a] devised an efficient construction of near-additive spanners with size $O(n \log n)$ and of linear-size emulators. In the same paper, they also came up with an efficient distributed construction of ultra-sparse (i.e., of size $n + o(n)$) multiplicative spanners.[1]

In the current paper we devise the first construction of ultra-sparse near-additive emulators. Specifically, we show that for any $\epsilon > 0$ and $\kappa = 1, 2, \ldots$, there exists $\beta = \beta(\epsilon, \kappa) \approx \left(\frac{\log \kappa}{\epsilon}\right)^{\log \kappa - 1}$, such that for any n-vertex graph $G = (V, E)$, there exists a $(1 + \epsilon, \beta)$-emulator of size at most $n^{1 + \frac{1}{\kappa}}$. (Note that the leading constant in front of $n^{1 + \frac{1}{\kappa}}$ is 1.) By substituting here $\kappa = \omega(\log n)$, one obtains a near-additive emulator with $\beta = \left(\frac{\log \log n}{\epsilon}\right)^{\log \log n (1 + o(1))}$ and size $n + o(n)$.

[1] A subgraph $G'(V, H)$ is said to be a multiplicative k-spanner of $G = (V, E)$ if for every pair of vertices $u, v \in V$, $d_{G'}(u, v) \leq k \cdot d_{G}(u, v)$. The ultra-sparse multiplicative spanners of [EN17a] have stretch $\log n \cdot f(n)$ for an arbitrary slow-growing function $f(n) = \omega(1)$.
We also devise efficient (in the above sense) centralized and distributed deterministic algorithms that construct ultra-sparse emulators. Specifically, for any arbitrarily small constant \(\rho > 0 \) (in addition to \(\epsilon > 0 \) and \(\kappa = 1, 2, \ldots \)), there exists \(\beta = \beta(\epsilon, \kappa, \rho) \) such that our distributed deterministic CONGEST-model algorithm (see Section 1.3.1 for the definition of CONGEST model) computes \((1 + \epsilon, \beta)\)-emulators with at most \(n^{1+\frac{\kappa}{\epsilon}} \) edges, for \(\beta = \left(\frac{\log \kappa \rho + 1}{\epsilon \rho} \right)^{\log \kappa \rho + 1/\rho} \) in time \(O(n^\rho) \). In particular, our algorithm can construct ultra-sparse emulators with \(\beta = \left(\frac{\rho \log \log n + 1}{\epsilon \rho} \right)^{\log \log n (1 + o(1))} \) in deterministic distributed low polynomial time.

A variant of our algorithm also constructs sparse near-additive spanners. Specifically, the state-of-the-art distributed CONGEST-model deterministic algorithm for building near-additive spanners is due to [EM19]. For any \(\epsilon > 0 \), \(\kappa = 1, 2, \ldots \), \(\rho > 0 \), there exists \(\beta = \beta(\epsilon, \kappa, \rho) = \left(\frac{\log \kappa \rho + 1}{\epsilon \rho} \right)^{\log \kappa \rho + 1/\rho} \), such that there for any \(n \)-vertex graph \(G = (V, E) \), the algorithm of [EM19] constructs a \((1 + \epsilon, \beta)\)-spanner with \(O(\beta \cdot n^{1+\frac{1}{\kappa}}) \) edges in low polynomial time \(O(n^\rho) \). At their sparsest, the spanners of [EM19] employ \(n \cdot \left(\frac{\log \log n + 1}{\epsilon \rho} \right)^{\log \log n + O(1)} \) edges. Improving upon this result, we devise a deterministic CONGEST-model algorithm with the same running time that constructs \((1 + \epsilon, \beta)\)-spanners with \(O(\log \kappa \cdot n^{1+\frac{1}{\kappa}}) \) edges. At their sparsest, these spanners employ just \(O(n \log n) \) edges.

1.2 Technical Overview

All known constructions of sparse near-additive emulators and spanners can be roughly divided into those that follow the superclustering-and-interconnection (henceforth, SAI) approach of [EP01] and those that follow its scale-free version [TZ06]. (The constructions of [Elk01, EZ04] follow a different approach, and result in emulators of size at least \(\Omega(n \log n) \).)

In the SAI approach, one starts with a partition \(P_0 = \{ \{v\} \mid v \in V \} \) of the vertex set into singleton clusters. Let \(\ell \approx \log \kappa \). There are \(\ell + 1 \) phases, numbered \(0, 1, \ldots, \ell \), and in all phases except the last one there are two steps: the superclustering and the interconnection. In the last phase, the superclustering step is skipped. The input to each phase \(i \in [0, \ell] \) is a partial partition \(P_i \) of \(V \). The phase also accepts as input two parameters, \(\delta_i \) and \(\deg_i \), where the distance threshold \(\delta_i \) determines which clusters of \(P_i \) are considered close or nearby (those whose centers are at distance at most \(\delta_i \) in \(G \) from one another), and \(\deg_i \) determines how many nearby clusters a cluster needs to have to be considered popular (at least \(\deg_i \)).

Intuitively, popular clusters \(C \) then create superclusters around them, which contain \(C \) and all the nearby clusters. Unpopular clusters are interconnected via emulator edges of weight equal to the distance between them. The set of superclusters is the partial partition \(P_{i+1} \) for the \((i + 1)\)st phase.

In Thorup-Zwick’s [TZ06] scale-free version of this construction, clusters of \(P_i \) are sampled independently at random, with probability \(\frac{1}{\deg_i} \), each, and each unsampled cluster joins the closest sampled cluster. In this way superclusters of \(P_{i+1} \) are created. In addition, for every unsampled cluster \(C \), it is connected via an emulator edge to every other unsampled cluster \(C' \) which is closer to it than the closest sampled cluster. The weight of this edge is equal to the distance in \(G \) between the respective cluster centers. This is an analogue of the interconnection step from [EP01].

In both these approaches, ultimately the number of edges in the emulator is analyzed as the sum over all phases \(i \) of the number of edges added to the emulator on phase \(i \). One notes that each superclustering step forms a forest and thus contributes \(O(n) \) edges. In addition, in [EP01], the

\footnote{A family \(A \) of pairwise disjoint subsets of a set \(B \) is called a partial partition of \(B \).}
degree sequence \(\text{deg}_i \) is designed in such a way that the interconnection step of each phase \(i \) contributes at most \(n^{1+\frac{1}{\kappa}} \) edges. As a result, the overall size of the emulator is \(O((\log \kappa)(n + n^{1+\frac{1}{\kappa}})) = O(\log \kappa \cdot n^{1+\frac{1}{\kappa}}) \). For \(\kappa = \log n \) this becomes \(O(n \cdot \log \log n) \). Subsequent improvements in the sparsity level of near-additive emulators and spanners [Pet08, Pet10, EN17a, ABP18, HP18, Pet07] optimized the degree sequence \(\text{deg}_0, \text{deg}_1, \ldots, \text{deg}_\ell \), so that the numbers of edges \(m_0, m_1, \ldots, m_\ell \) contributed on the interconnection steps of phases 0, 1, \ldots, \ell, respectively, decrease geometrically and the total number of edges sums up to \(O(n^{1+\frac{1}{\kappa}}) \).

In this way one can guarantee that the overall contribution of interconnection steps is \(O(n^{1+\frac{1}{\kappa}}) \), while the additive stretch \(\beta \) grows very little if at all. Elkin and Neiman [EN17a] argued also that the overall contribution of superclustering steps is \(O(n) \) (as opposed to the naive \(O(n \log \kappa) \)), and as a result derived an emulator of linear size.

Our main technical contribution is in a novel analysis. We adopt the original degree sequence of [EP01] as is, rather than using the optimized degree sequences from [Pet08, Pet10, EN17a]. We then argue that the overall contribution of all the superclustering and interconnection steps together is at most \(n^{1+\frac{1}{\kappa}} \). We achieve this by carefully charging edges inserted to the emulator during the entire algorithm to vertices, and arguing that no vertex is overloaded. By doing so we obtain a new structural understanding of this important construction, and derive the existence of ultra-sparse near-additive emulators.

We also show an efficient centralized implementation of this algorithm. Specifically, given parameters \(\epsilon > 0, \rho > 0 \) and \(\kappa = 1, 2, \ldots \), our algorithm constructs a \((1+\epsilon, \beta)\)-emulator with at most \(n^{1+\frac{1}{\kappa}} \) edges and \(\beta = \beta(\epsilon, \kappa, \rho) = \left(\frac{\log \kappa \rho + 1/\rho}{\epsilon} \right) \log \kappa \rho + 1/\rho \) in \(O(|E| \cdot n^\rho) \) deterministic time. This running time matches the state-of-the-art running time known for building denser near-additive emulators and spanners [Pet10, EN17a, EM19].

1.2.1 Distributed Implementation

Our distributed algorithm is deterministic, and at the end of it, every vertex \(v \in V \) knows about all emulator edges incident on it.

A large research effort was invested in implementing the SAI approach efficiently in the distributed CONGEST model in the context of near-additive spanners and hopsets [EP01, EN16a, EN17a, HP17, EM19]. Implementing this approach in the CONGEST model in the context of near-additive emulators presents a new challenge, since for every new emulator edge \(e = (u, v) \), both its endpoints need to be aware of its existence and weight. Specifically, the center of every supercluster needs to learn of all clusters that have joined its supercluster. Since the number of clusters that join a single supercluster might be very large, this causes congestion. This issue does not arise in the construction of near-additive spanners, as spanner edges can be added locally, and the center of the supercluster does not need to learn of all the clusters that have joined its supercluster. In the context of hopsets, this challenge was addressed by broadcasting messages along a BFS tree that spanned the entire graph. This approach results in running time which is at least linear in the graph’s diameter, which may be prohibitively large.

In the current paper, we devise a superclustering scheme that ensures that the number of messages each vertex has to send in every step is relatively small. This is done by splitting very large superclusters into many superclusters. Intuitively, such a splitting may result in an increased number of levels \(\ell \) of the construction, and therefore, in a higher additive term \(\beta \) and increased running time. We show that this is not the case for our algorithm.

To our knowledge, there are no known distributed deterministic algorithms for building near-additive emulators of linear size. The only existing algorithm with these properties is the random-
ized algorithm of Elkin and Neiman [EN16a]. However, the algorithm of [EN16a] does not ensure that for every emulator edge \((u,v)\), both endpoints know of its existence. (Our algorithm provides, in fact, ultra-sparse emulators, while that of [EN16a] guarantees just linear size.)

The only known distributed CONGEST deterministic algorithm for building near-additive spanners [EM19] constructs spanners of size \(O(\beta n^{1 + \frac{1}{\kappa}})\). The construction there can be adapted to build emulators of size \(O(\log \kappa \cdot n^{1 + \frac{1}{\kappa}})\) (i.e., of size \(\Omega(n \cdot \log \log n)\)), but, like the algorithm of [EN16a], it does not guarantee that for every emulator edge \(e = (u,v)\) both \(u\) and \(v\) will be aware of it.

1.3 Related Work

The problem of efficiently constructing ultra-sparse multiplicative spanners and emulators was extensively studied in [ADD+93, HZ96, RZ04, DMP+05, DMZ06, Pet07, Pet10, EN17a]. Spanners and emulators are known to be related to spectral sparsifiers [KP12, JS20]. Ultra-sparse sparsifiers, or shortly ultra-sparsifiers, play a key role in a variety of efficient algorithms. Spielman and Teng [ST04] used them for computing sequences of preconditioners. See also [CKM+14, KLOS14, KMST10, She13] for their applications to maximum flow and other fundamental problems.

We believe that the problem of devising ultra-sparse near-additive emulators is as fundamental as that of devising ultra-sparse multiplicative spanners and ultra-sparsifiers.

1.4 Outline

Section 1.5 provides basic definitions for this paper. In Section 2 we present a construction of ultra-sparse near-additive emulators in the centralized model. The properties of the construction are summarized in Corollaries 2.14 and 2.15. In Section 3 we show a distributed CONGEST implementation of our algorithm. The properties of the distributed construction are summarized in Corollaries 3.11 and 3.12. In Section 3.3 we provide an efficient centralized construction of ultra-sparse near-additive emulators, which is based on our distributed construction. The properties of the construction are summarized in Theorems 3.13 and 3.14. Section 4 contains an efficient, deterministic CONGEST-model construction of sparse near-additive spanners. The properties of the construction are summarized in Corollary 4.4.

1.5 Preliminaries

Throughout this paper, we denote by \(r_C\) the center of the cluster \(C\) and say that \(C\) is centered around \(r_C\). The center \(r_C\) is a designated vertex from \(C\), i.e., \(r_C \in C\). Throughout the paper, when the logarithm base is unspecified, it is equal to 2. For a pair of integers \(a, b\), where \(a \leq b\), the term \([a, b]\) stands for \(\{a, a + 1, \ldots, b\}\).

1.5.1 The Distributed CONGEST Model

In the distributed model [Pel00] we have processors residing in vertices of the graph. The processors communicate with their graph neighbors in synchronous rounds. In the CONGEST model, messages are limited to \(O(1)\) words, i.e., \(O(1)\) edge weights or ID numbers. The running time of an algorithm in the distributed model is the worst case number of communication rounds that the algorithm requires.

\[^{3}\text{In our case, the input graph is unweighted.}\]
1.5.2 Ruling Sets

Given a graph \(G = (V, E) \), a set of vertices \(W \subseteq V \) and parameters \(\alpha, \beta \geq 0 \), a set of vertices \(A \subseteq W \) is said to be an \((\alpha, \beta)\)-ruling set for \(W \) if for every pair of vertices \(u, v \in A \), the distance between them in \(G \) is at least \(\alpha \), and for every \(u \in W \) there exists a representative \(v \in A \) such that the distance between \(u, v \) is at most \(\beta \).

2 Centralized Construction

In this section we devise an algorithm that, given a graph \(G = (V, E) \) on \(n \) vertices and parameters \(\epsilon < 1 \) and \(\kappa \geq 2 \) constructs a \((1 + \epsilon, \beta)\)-emulator for \(G \) with at most \(n^{1 + \frac{1}{\kappa}} \) edges in polynomial time in the centralized model, where \(\beta = O \left(\frac{\log \kappa}{\epsilon} \right)^{\log \kappa - 1} \). In particular, by setting \(\kappa = \omega(\log n) \), we construct an emulator with \(n + o(n) \) edges with \(\beta = \left(\frac{\log \log n}{\epsilon} \right)^{\log \log n + O(1)} \).

Section 2.1 contains a general overview of the centralized construction. The properties of the resulting emulator and of the construction are analyzed in Section 2.2.

Our centralized construction is based on the centralized algorithm of Elkin and Peleg [EP01]. As was described in the introduction, both algorithms (of [EP01] and ours) follow the SAI approach to constructing near-additive emulators. There are, however, some important differences in both the algorithm and in its analysis. In the algorithm of [EP01] popular clusters \(C \) (see Section 1.5 for its definition) create superclusters \(\hat{C} \) around them, that contain only clusters that are close to the cluster \(C \). All unpopular clusters \(C'' \) that are not merged into one of the superclusters are then interconnected with other nearby unpopular clusters, but not with nearby superclusters. To guarantee connectivity (and small stretch) between the superclusters and nearby unpopular clusters, the algorithm of [EP01] employs a separate ground partition. The spanning forest of this ground partition contributes at most \(n - 1 \) additional edges to the emulator, which are swallowed by the overall size estimate of \(O(n^{1 + \frac{1}{\kappa}}) \).

On the other hand, in our current algorithm we aim at a size bound of exactly \(n^{1 + \frac{1}{\kappa}} \), and thus we cannot afford using a separate ground partition. Instead, once our algorithm creates a star-like supercluster \(\hat{C} \), it also inserts all unclustered clusters \(C'' \) that are nearby the supercluster \(\hat{C} \) into a set \(N_i \) of buffer clusters. These buffer clusters will not be allowed to create superclusters around them. They will be allowed to join other superclusters that will be constructed in future. However, if no future supercluster will incorporate them, the supercluster \(\hat{C} \) will do so. As a result, superclusters created in our algorithm may have larger radii in comparison to those constructed in [EP01]. This adaptation of the SAI approach of [EP01] takes care of the connectivity (and small stretch) between superclusters \(\hat{C} \) and their nearby unclustered clusters \(C'' \), \textit{without} paying an additional (additive) term of \(n - 1 \) edges in the size of the emulator.

In addition, the size analysis of [EP01] also analyzes separately contributions of different phases of the algorithm, and then sums them up. This is also the case in all subsequent works [TZ06, Pet09, EN17a, EM19]. As was discussed in the introduction, this naive summation (even with optimized degree sequences) is doomed to result in an emulator of size at least \(n^{1 + \frac{1}{\kappa}} + n - O(1) \geq 2n - O(1) \). Our size analysis carefully combines contributions of all different phases altogether, and thus results in the bound of exactly \(n^{1 + \frac{1}{\kappa}} \).

Finally, the adaptation that we discussed above induces some modifications of stretch analysis as well. This is since, as discussed earlier, the radii of clusters constructed by our algorithm may be larger than the radii of clusters constructed in [EP01]. Specifically, both in our result and in that of [EP01], \(\beta = O \left(\frac{\log \kappa}{\epsilon} \right)^{\log \kappa - 1} \), but the constant hidden by the \(O \) notation in our bound is...
slightly larger than that in [EP01].

Yet another variant of the construction of [EP01] was given in [EN17a]. In this variant of the construction, cluster centers are sampled, and clusters that are close to sampled clusters join them to create superclusters. As a result, the connectivity (and small stretch) between superclusters \(\hat{C} \) and nearby unclustered clusters \(C'' \) is ensured without employing a ground partition. On the other hand, this scheme requires randomization, while our approach is deterministic. Also, the size analysis of [EN17a], like that of [EP01], analyzes each phase separately, and as a result, it cannot be used to provide ultra-sparse emulators.

2.1 The Construction

Our algorithm initializes \(H = \emptyset \) and proceeds in phases. The input to each phase \(i \in [0, \ell] \) is a collection of clusters \(P_i \), a degree parameter \(\text{deg}_i \) and a distance threshold parameter \(\delta_i \). The parameters \(\ell, \{\text{deg}_i, \delta_i \mid i \in [0, \ell]\} \) are specified in Section 2.1.2. The set \(P_0 \) is initialized as the partition of \(V \) into singleton clusters, i.e., clusters containing one single vertex each.

Consider an index \(i \in [0, \ell] \), and let \(C, C'' \) be a pair of clusters in \(P_i \), centered around vertices \(r_C, r_{C''} \), respectively. We say that \(r_C, r_{C''} \) are neighboring cluster centers if \(d_G(r_C, r_{C''}) \leq \delta_i \). If \(r_C, r_{C''} \) are neighboring cluster centers, their respective clusters \(C, C'' \) are said to be neighboring clusters.

Intuitively, in each phase \(i \) the algorithm sequentially considers centers of clusters from \(P_i \) and connects them with their neighboring cluster centers, i.e., it adds to the emulator \(H \) an edge between them. The weight of each new edge is set to be the length of the shortest path in \(G \) between its endpoints. Each added edge is charged to a center of a cluster in \(P_i \). Centers of clusters that do not have many neighboring cluster centers are charged with all the edges that were added to the emulator when they were considered. However, cluster centers that have many neighboring cluster centers, i.e., popular cluster centers, require a different approach. They are still connected with their neighboring cluster centers, but they are not charged with these edges. Instead, their neighbors are required to share the burden.

Generally speaking, in each phase, we interconnect cluster centers that are not popular, and form superclusters around popular cluster centers. The set of superclusters formed in phase \(i \) is the input \(P_{i+1} \) for phase \(i + 1 \). This allows us to defer work on these dense areas of the graph to later phases of the algorithm.

2.1.1 Execution Details

We now describe the execution of a phase \(i \in [0, \ell] \) of the algorithm. At the beginning of phase \(i \), define \(S_i \) to be the set of centers of clusters \(C \in P_i \) and \(U_i, N_i = \emptyset \). \(U_i \) is the set of unclustered clusters during phase \(i \). \(N_i \) is an additional auxiliary set of cluster centers, which will be eventually superclustered. On the other hand, once a cluster \(C \) joins \(N_i \), it will not be allowed to create a supercluster around it.

The algorithm sequentially considers vertices from \(S_i \). While the set \(S_i \) is not empty, the algorithm removes a single vertex \(r_C \) from \(S_i \). A Dijkstra exploration is executed from \(r_C \) to depth \(\delta_i \). Let \(\Gamma(r_C) \) be the set of vertices \(r_{C'} \in S_i \cup N_i \) that were discovered by the exploration (note that \(r_C \notin S_i \cup N_i \), and so \(r_C \notin \Gamma(r_C) \)). For each vertex \(r_{C'} \in \Gamma(r_C) \), the edge \((r_C, r_{C'})\) is added to the emulator \(H \) with weight \(d_G(r_C, r_{C'}) \).

If \(|\Gamma(r_C)| < \text{deg}_i \), then the center \(r_C \) is charged with all edges added to \(H \) as a result of an exploration originated from it. See Figure 1 for an illustration. The cluster \(C \) of the vertex \(r_C \) is added to the set \(U_i \) of unclustered clusters.
However, if $|\Gamma(r_C)| \geq \text{deg}_i$, then r_C cannot be charged with these edges. A new supercluster \hat{C} is formed around r_C. The new supercluster contains the cluster $C \in P_i$ of r_C, and all clusters C' such that their centers are in $\Gamma(r_C)$. The vertex r_C becomes the center of the new supercluster \hat{C}. The new supercluster \hat{C} joins the set P_{i+1}, which is the input collection for the next phase. See Figure 2 for an illustration. The cluster centers in $\Gamma(r_C)$ are removed from S_i and from N_i. Thus, they will not be considered by the algorithm.

The algorithm described thus far is not sufficient. Consider a case where the algorithm has already formed some superclusters in phase i, and then it considers a cluster center r_C that has at least deg_i neighboring cluster centers, but many of them have been superclustered in this phase. See Figure 3 for an illustration. The cluster center r_C must be connected with its neighboring cluster centers. However, the center r_C cannot be charged with these edges, nor can we form a supercluster around it containing all of its neighbors, as many of them already belong to other superclusters.

To avoid such occurrences altogether, when a supercluster \hat{C} is formed around a vertex r_C in phase i, every cluster center $r_{C''} \in S_i$ with $\delta_i < d_G(r_C, r_{C''}) \leq 2\delta_i$ is removed from S_i, and is added to a set N_i.

Consider a vertex $r_{C''} \in N_i$. If at the end of phase i it has not been superclustered, it is added to the supercluster \hat{C} that was formed when $r_{C''}$ was added to N_i. Let r_C be the center of \hat{C}. The edge $(r_C, r_{C''})$ is added to H with weight $d_G(r_C, r_{C''})$. This edge is charged to $r_{C''}$. See Figure 4 for an illustration.

This completes the description of phase i. Observe that the designation of a cluster center as popular or unpopular depends on the order in which the algorithm removes cluster centers from S_i. For example, consider the star graph $G = (V, E)$ with $V = \{u_0, u_1, \ldots, u_n\}$ and $E = \{(u_0, u_i) | i \in [1, n]\}$. If in phase 0 the algorithm begins by considering the cluster center u_0, then it is designated as popular. However, if the algorithm considers the cluster center u_0 last, then it will not be designated as a popular cluster, since it does not have any neighbors from $S_i \cup N_i$ (as at this point the sets S_i, N_i are empty). Hence we cannot a-priori define a set of popular clusters.

This completes the description of the algorithm. The pseudocode of the algorithm is given in Algorithm 1.
Figure 3: The cluster \(C \) (depicted as white circle) can have many neighbors in \(P_i \) that have joined superclusters in phase \(i \) (the gray curved areas) before its center was considered. When we consider the center \(r_C \) of \(C \), we cannot connect it with its neighboring cluster centers, since we cannot charge \(r_C \) for the added edges, nor can we require its neighbors to be charged for them. In the figure, the solid and dotted lines represent emulator and graph edges, respectively.

Figure 4: Clusters from \(N_i \) join a neighboring supercluster. In the figure, the gray curved area represents a supercluster centered around \(C \). The dark gray circles represent neighbors of \(C \) that joined \(\hat{C} \) when it was formed. The stripped circles represent clusters that had centers in \(S_i \) when \(\hat{C} \) was formed, and remained in \(N_i \) until the end of phase \(i \). At the end of phase \(i \), they join the cluster \(\hat{C} \). Their cluster centers are charged with the edges that connect them with \(\hat{C} \).

Algorithm 1: Construction of a Near-Additive Emulator

\begin{algorithm}
\begin{algorithmic}
\State \textbf{Input:} Graph \(G = (V,E) \), a parameter \(\ell \in \mathbb{N} \), and sequences \(\langle \text{deg}_0, \ldots, \text{deg}_\ell \rangle, \langle \delta_0, \ldots, \delta_\ell \rangle \)
\State \(P_0 = \{ \{ v \} \mid v \in V \} \)
\For {\(i \in [0, \ell] \)}
\State \(S_i \leftarrow \) all centers of clusters from \(P_i \)
\State \(U_i, N_i, P_{i+1} \leftarrow \emptyset \)
\While {\(S_i \neq \emptyset \)}
\State remove a cluster center \(r_C \) from \(S_i \)
\For {all cluster centers \(r_{C'} \in S_i \cup N_i \) s.t. \(d_G(r_C, r_{C'}) \leq \delta_i \)}
\State add to the emulator \(H \) an edge \((r_C, r_{C'})\) with weight \(d_G(r_C, r_{C'})\)
\EndFor
\If {\(r_C \) has less than \(\text{deg}_i \) neighboring cluster centers in \(S_i \cup N_i \)}
\State add the cluster \(C \) of \(r_C \) to \(U_i \)
\Else
\State \(\hat{C} \leftarrow C \)
\State \(r_{\hat{C}} \leftarrow r_C \)
\For {all clusters \(r_{C''} \in S_i \cup N_i \) such that \(d_G(r_C, r_{C''}) \leq \delta_i \)}
\State remove \(r_{C''} \) from \(S_i \) or \(N_i \).
\State let \(C' \) be the cluster centered at \(r_{C''} \)
\State \(\hat{C} \leftarrow \hat{C} \cup \{C'\} \)
\EndFor
\For {all clusters \(r_{C'''} \in S_i \) such that \(d_G(r_C, r_{C'''}), \delta_i \)}
\State \(S_i = S_i \setminus \{r_{C'''}\} \)
\State \(N_i = N_i \cup \{r_{C'''}\} \)
\EndFor
\State \(P_{i+1} \leftarrow P_{i+1} \cup \{\hat{C}\} \)
\EndWhile
\State \(\text{for all cluster centers } r_{C'''} \in N_i \) do
\State \(\text{let } \hat{C} \text{ be the supercluster that was formed when } r_{C'''} \text{ joined } N_i, \) and let \(r_C \) be the center of \(\hat{C} \)
\State \(\text{let } C''' \text{ be the cluster centered at } r_{C'''} \)
\State \(\text{add to the emulator } H \text{ an edge } (r_C, r_{C''''}) \text{ with weight } d_G(r_C, r_{C''''}) \)
\State \(\hat{C} \leftarrow \hat{C} \cup \{C'''\} \)
\EndFor
\EndFor
\end{algorithmic}
\end{algorithm}
2.1.2 Setting Parameters

In this section we specify the selection of the parameters deg_i, ℓ and δ_i.

The degree parameter deg_i controls the number of edges added to the emulator, and also the number of phases required until we are left with a small number of clusters. For every $i \in [0, \ell]$, we set $\text{deg}_i = n^{\frac{i}{\kappa}}$.

Set $\ell = \lceil \log \frac{\kappa+1}{2} \rceil$. In Section 2.2.1 we show that $|P_\ell| \leq \text{deg}_\ell$. Therefore, there are no popular cluster centers in phase ℓ, and superclusters are not formed during this phase. It follows that $P_{\ell+1} = \emptyset$ and $U_\ell = P_\ell$.

Define recursively $R_0 = 0$, and for every $i \in [1, \ell]$ define $R_{i+1} = 2\delta_i + R_i$. The distance threshold parameter is defined by $\delta_i = \frac{1}{\epsilon^i} + 2R_i$, for every $i \in [0, \ell]$. Intuitively, R_i is an upper bound on the radii of clusters in P_i, i.e., the maximal distance in the emulator H between a center r_C of a cluster $C \in P_i$ and a vertex $u \in C$. In Lemma 2.5 we prove that this inequality indeed holds.

2.2 Analysis of the Construction

In Section 2.2.1 we analyze the size of the emulator. In Section 2.2.3 we show that the algorithm can be executed in polynomial time. Finally, in Section 2.2.2 we analyze the stretch of the emulator.

2.2.1 Analysis of the Number of Edges

In this section, we analyze the size of the emulator H. We will charge each edge in the emulator H to a single vertex. We begin by proving that in the concluding phase ℓ there are no popular clusters. To do so we show that the size of P_i is at most deg_i.

Lemma 2.1. For every index $i \in [0, \ell]$, each supercluster \hat{C} constructed in phase i consists of at least $\text{deg}_i + 1$ clusters from P_i.

Proof. Let $i \in [0, \ell]$, and let \hat{C} be a supercluster that was created around a cluster C in phase i. The algorithm added edges from C to at least deg_i clusters from $S_i \cup N_i$. These clusters, and C itself, all became superclustered into \hat{C}. Thus, \hat{C} contains at least $\text{deg}_i + 1$ clusters from P_i. \hfill \Box

In the next lemma, we argue that superclusters are disjoint, and thus Lemma 2.1 can be used to bound the number of superclusters formed during each phase.

Lemma 2.2. For $i \in [0, \ell - 1]$, all superclusters formed during phase i are pairwise disjoint.

Proof. Let \hat{C} be a supercluster formed during phase i. Recall that all centers of clusters that have joined \hat{C} were in $S_i \cup N_i$ until they joined \hat{C}. Also recall that once a cluster joins a supercluster, its center is removed from S_i and from N_i, and it is not added to S_i or N_i in the future.

On the one hand, this implies that all clusters that have joined \hat{C} did not join any other supercluster before they joined \hat{C}. On the other hand, once a cluster joined \hat{C}, its center is removed from S_i and N_i, and therefore it will not join another supercluster in future. Hence, we conclude that all superclusters formed during phase i are pairwise disjoint. \hfill \Box

In the next lemma we provide an upper bound in the size of P_i, for every index $i \in [0, \ell]$.

Lemma 2.3. For $i \in [0, \ell]$, we have $|P_i| \leq n^{1 - \frac{\log(1/\epsilon)}{\kappa}}$.

10
Proof. The proof is by induction on the index i. For $i = 0$, the right-hand side of the equation is equal to n. Thus the claim is trivial.

For the induction step, assume that the claim holds for some $i \in [0, \ell - 1]$. By Lemmas 2.1 and 2.2 and the induction hypothesis, we obtain:

$$|P_{i+1}| \leq n^{1-\frac{\ell-1}{\kappa}} \cdot (\deg_i + 1)^{-1} \leq n^{1-\frac{\ell-1}{\kappa}} \cdot n^{\frac{\ell}{\kappa}} \leq n^{1-\frac{\ell+1}{\kappa}}.$$

Hence the claim holds also for $i + 1$. \hfill \square

Recall that $\ell = \lceil \log \frac{\kappa+1}{2} \rceil$. Observe that Lemma 2.3 implies that

$$|P_{\ell}| \leq n^{1-\frac{\ell-1}{\kappa}} \leq n^{\frac{\ell}{\kappa}} = \deg_{\ell}. \quad (1)$$

Therefore, in phase ℓ there are no popular clusters. It follows that $P_{\ell+1}$ is an empty set, and that $U_{\ell} = P_{\ell}$.

Next, we examine the edges added by each phase i of the algorithm, and charge each edge to a center of a cluster $C \in P_{i}$. Recall that there are two types of edges in the emulator:

1. **Interconnection edges**, added when the algorithm considered an unpopular cluster center r_{C}.

 These edges are charged to r_{C}. See Figure 1.

2. **Superclustering edges**, added when a cluster C' joined a supercluster \hat{C} that was formed around a cluster C, where $C \neq C'$. See Figures 2, 3 for an illustration. These edges are charged to the centers of clusters C' that were superclustered into the new supercluster formed around C. For example, if for some $h \geq 1$, clusters C_1, C_2, \ldots, C_h, centered at vertices v_1, v_2, \ldots, v_h, respectively, are clustered into a supercluster rooted at a cluster C, then each of these centers v_1, v_2, \ldots, v_h is charged with a single edge. Note that the center of the cluster C is not charged with any edges in phase i.

Interconnection edges that were added in phase i are charged to centers of clusters $C \in U_{i}$. Observe that a cluster C has joined U_{i} only if its center has added less than \deg_i edges to the emulator H. Therefore, phase i adds at most $|U_{i}| \cdot \deg_i$ interconnection edges to the emulator H. (Note that U_{i} might be empty.)

Superclustering edges that were added in phase i are charged to centers of clusters that did not join U_{i}, and also that no supercluster was formed around them in phase i. Thus, phase i adds exactly $|P_{i}| - |U_{i}| - |P_{i+1}|$ superclustering edges.

Hence, in phase $i \in [0, \ell]$, the number of edges added to the emulator H is at most:

$$|U_i| \cdot \deg_i + |P_i| - |U_i| - |P_{i+1}| = |P_i| + |U_i| \cdot (\deg_i - 1) - |P_{i+1}|. \quad (2)$$

In particular, this bound applies to the last phase $i = \ell$. Recall that by eq. (1) we have $|P_{\ell}| = |U_{\ell}| \leq \deg_{\ell}$, and also $|P_{\ell+1}| = \emptyset$. Therefore the bound becomes just $|P_i| \cdot \deg_i$.

We will now use the size of P_{i+1} to bound the size of U_i. Observe that by Lemma 2.1 and because superclusters of P_{i+1} are disjoint, we have that for all $i \in [0, \ell]$,

$$|U_i| \leq |P_i| - |P_{i+1}| \cdot (\deg_i + 1). \quad (3)$$

By eqs. (2) and (3) we have that in phase i, the number of edges added to the emulator H is at most:

$$|P_i| + |U_i| \cdot (\deg_i - 1) - |P_{i+1}| \leq |P_i| + (|P_i| - |P_{i+1}| \cdot (\deg_i + 1)) \cdot (\deg_i - 1) - |P_{i+1}| = |P_i| \cdot \deg_i - |P_{i+1}| \cdot (\deg_i^2 - 1) - |P_{i+1}| = |P_i| \cdot \deg_i - |P_{i+1}| \cdot \deg_i^2. \quad (4)$$

We are now ready to bound the size of the emulator H.

11
Lemma 2.4. The number of edges in the emulator H satisfies $|H| \leq n^{1+\frac{1}{k}}$.

Proof. By eq. (4), and since P_{t+1} is an empty set, we obtain that the number of edges added by all phases of the algorithm is at most:

$$\sum_{i=0}^{\ell} (|P_i| \cdot \deg_i - |P_{i+1}| \cdot \deg^2_i) = |P_0| \cdot \deg_0 + \sum_{i=1}^{\ell} |P_i| \cdot (\deg_i - \deg^2_{i-1}).$$

Recall that for all $i \in [0, \ell]$ we have $\deg_i = n^{\frac{2^i}{k}}$ thus $\deg_i - \deg^2_{i-1} = 0$. Also, recall that $|P_0| = n$. Thus, the number of edges added to the emulator by all phases $i \in [0, \ell]$ is at most $n^{1+\frac{1}{k}}$. \hfill \square

2.2.2 Analysis of the Stretch

In this section we analyze the stretch of the emulator H. We begin by providing an upper bound on the radii of clusters in P_i.

For an index $i \in [0, \ell]$ and a cluster $C \in P_i$ centered around a vertex r_C, the radius of C is defined to be $\text{Rad}(C) = \max\{d_H(r_C, v) \mid v \in C\}$. The radius of the collection of clusters P_i is defined to be $\text{Rad}(P_i) = \max\{\text{Rad}(C) \mid C \in P_i\}$. We begin by proving that R_i is an upper bound on the radii of clusters in P_i, for all $i \in [0, \ell]$. Recall that $\delta_i = (1/e)^i + 2R_i$, for every $i \in [0, \ell]$. Also, recall that $R_0 = 0$, and for every $i \in [1, \ell]$, we have $R_{i+1} = 2\delta_i + R_i$.

Lemma 2.5. For every index $i \in [0, \ell]$, we have $\text{Rad}(P_i) \leq R_i$.

Proof. The proof is by induction on the index of the phase i. For $i = 0$, all clusters in P_i are singletons, and also $R_0 = 0$, and so the claim holds.

Assume the claim holds for some index $i \in [0, \ell - 1]$ and prove that it holds for $i + 1$. Consider a cluster $\hat{C} \in P_{i+1}$. This cluster was formed around a vertex r_C during phase i. Consider a vertex $u \in \hat{C}$.

Case 1: The vertex u belonged to the cluster of r_C in P_i. In this case, by the induction hypothesis we have $d_H(r_C, u) \leq R_i \leq R_{i+1}$.

Case 2: The vertex u belonged to a cluster $C' \in P_i$, where $r_C \notin C'$. Denote by $r_{C'}$ the center of the cluster C'. Since the center $r_{C'}$ joined the supercluster of r_C, we conclude that $d_G(r_C, r_{C'}) \leq 2\delta_i$. When $r_{C'}$ joined the supercluster \hat{C}, the edge $(r_{C'}, r_C)$ was added to the emulator H, with weight $d_G(r_{C'}, r_C)$. Thus, $d_H(r_C, r_{C'}) \leq 2\delta_i$. By the induction hypothesis, we also have $d_H(r_{C'}, u) \leq R_i$. Hence,

$$d_H(r_C, u) \leq d_H(r_C, r_{C'}) + d_H(r_{C'}, u) \leq 2\delta_i + R_i = R_{i+1}.$$ \hfill \square

We now provide an upper bound on R_i. Observe that for every $i \in [1, \ell]$, we have $R_{i+1} = 2\delta_i + R_i = 2(1/e)^i + 5R_i$.

Lemma 2.6. For every index $i \in [0, \ell]$, we have

$$R_i = 2 \sum_{j=0}^{i-1} e^{-j} \cdot 5^{i-1-j}.$$

Proof. The proof is by induction on the index i. For $i = 0$, both sides of the equation are equal to 0. So the base case holds.
Assume that the claim holds for some index \(i \in [0, \ell - 1] \), and prove that it holds for \(i + 1 \). By definition and the induction hypothesis we have:

\[
R_{i+1} = 2(1/\epsilon)^i + 5 \cdot 2 \cdot \sum_{j=0}^{i-1} \epsilon^{-j} \cdot 5^{i-1-j} = 2 \cdot \sum_{j=0}^{i} \epsilon^{-j} \cdot 5^{i-j}
\]

By Lemma 2.6 we derive the following explicit bound on \(R_i \), for all \(i \in [0, \ell] \).

\[
R_i = 2 \cdot 5^{i-1} \sum_{j=0}^{i-1} (5\epsilon)^{-j} \leq 2 \cdot 5^{i-1} \cdot \left(\frac{1}{5\epsilon} \right)^{i-1} \cdot \left(\frac{1}{1-5\epsilon} \right) = \frac{2}{1-5\epsilon} \cdot \left(\frac{1}{\epsilon} \right)^{i-1}.
\]

Assume that \(\epsilon \leq 1/10 \). It follows that

\[
R_i \leq 4 \left(\frac{1}{\epsilon} \right)^{i-1}. \tag{5}
\]

Next, we show that the emulator \(H \) contains edges that connect every center of a cluster in \(U_i \) with all its neighboring cluster centers.

Lemma 2.7. Let \(i \in [0, \ell] \) and let \(r_C \) be a center of a cluster \(C \in U_i \). Then, for every neighboring cluster center \(r_{C'} \) of \(r_C \), we have

\[
d_H(r_C, r_{C'}) = d_G(r_C, r_{C'}). \]

Proof. Let \(r_C \) be a center of a cluster \(C \in U_i \) and let \(r_{C'} \) be a neighboring cluster center of \(r_C \), such that \(r_{C'} \in C' \) and \(C' \in P_i \). By definition, \(d_G(r_C, r_{C'}) \leq \delta_i \). Since \(C \in U_i \), the algorithm has considered \(r_C \), and executed a Dijkstra exploration from it during phase \(i \).

Case 1: The cluster center \(r_{C'} \) was in \(S_i \cup \mathcal{N}_i \) when the cluster center \(r_C \) was considered by the algorithm. In this case, since \(d_G(r_C, r_{C'}) \leq \delta_i \), the edge \((r_C, r_{C'}) \) was added to \(H \) with weight \(d_G(r_C, r_{C'}) \).

Case 2: The cluster center \(r_{C'} \) was not in \(S_i \cup \mathcal{N}_i \) when the cluster center \(r_C \) was considered by the algorithm. Then, the cluster \(C' \) of \(r_{C'} \) has either joined \(U_i \) or became superclustered before the cluster center \(r_C \) was considered by the algorithm. Assume towards contradiction that \(C' \) became superclustered before \(r_C \) was considered. Therefore, a supercluster was grown around a cluster center \(r_{C''} \) with \(d_G(r_{C''}, r_C) \leq 2\delta_i \), and so \(r_C \) was removed from \(S_i \), contradiction (see line 19 of Algorithm 1). Therefore, we conclude that \(C' \) has joined \(U_i \) before \(r_C \) was considered by the algorithm. The algorithm has executed a Dijkstra exploration from \(r_{C''} \), and since \(d_G(r_C, r_{C'}) \leq \delta_i \), the emulator \(H \) contains the edge \((r_C, r_{C'})\) with weight \(d_G(r_C, r_{C'}) \).

We now show that for every vertex \(v \in V \) there exists an index \(i \in [0, \ell] \) such that \(v \) belongs to a cluster that joins the set \(U_i \). For notational purposes, define \(U_{-1} = \emptyset \), and \(U^{(i)} = \bigcup_{j=-1}^i U_i \) for all \(i \in [-1, \ell] \). We say that a vertex \(v \) is \(U^{(i)}\)-clustered for some \(i \in [0, \ell] \) if there exists a cluster \(C \in U^{(i)} \) such that \(v \in C \).

Lemma 2.8. For every index \(i \in [0, \ell] \), the set \(P_i \cup U^{(i-1)} \) is a partition of \(V \).

Proof. The proof is by induction on the index of the phase \(i \). For \(i = 0 \), the claim is trivial since \(P_0 \) is a partition of \(V \) into singleton clusters.

Assume the claim holds for some index \(i \in [0, \ell - 1] \). Let \(v \in V \). By the induction hypothesis, \(v \) belongs to a cluster \(C \in P_i \cup U^{(i-1)} \). If \(C \in U^{(i-1)} \), then, by definition, \(C \in U^{(i)} \). If \(C \in P_i \), then in phase \(i \), the cluster \(C \) has either been superclustered into a supercluster of \(P_{i+1} \), or it has joined \(U_i \). In any case, \(C \in P_{i+1} \cup U^{(i)} \), and so \(P_{i+1} \cup U^{(i)} \) is a partition of \(V \). Thus the claim holds for \(i + 1 \).
Recall that by eq. (1), we have that \(|P_\ell| \leq \deg \ell\) and thus, \(P_{\ell+1} = \emptyset\). Therefore, Lemma 2.8 implies that \(U^{(\ell)}\) is a partition of \(V\).

In the following lemma we argue that superclusters form a laminar family.

Lemma 2.9. Let \(0 \leq j \leq i \leq \ell\) be a pair of indices. Let \(C \in U_i\) be a cluster, and \(v \in C\) be a vertex. Then, there exists a cluster \(C' \in P_j\) such that \(v \in C'\).

Proof. The proof is by induction on \(i - j\). The induction base is \(i - j = 0\). Then, \(C' = C\), and we are done.

For the induction step, suppose that the assertion holds for some non-negative integer \(h\). We prove it for \(h + 1\).

By the induction hypothesis, there exists a cluster \(\tilde{C} \in P_{i-h}\) such that \(v \in \tilde{C}\). Also, the cluster \(\tilde{C}\) is a disjoint union of clusters from \(P_{(i-h)-1}\). Hence, in particular, there exists a cluster \(C' \in P_{i-h-1} = P_{i-(h+1)}\) such that \(v \in C'\).

We are now ready to bound the stretch of the emulator \(H\). The outline of the proof is as follows. Consider a pair of vertices \(u,v \in V\) and let \(\pi(u,v)\) be the shortest path between them in \(G\). We will show that \(\pi(u,v)\) can be divided into smaller segments, and that for each such segment there is a path in \(H\) between its endpoints \(u',v'\) that is not significantly longer than the distance between \(u',v'\) in the original graph \(G\).

Define recursively \(\beta_0 = 0\), \(\alpha_0 = 1\), and for \(i > 1\) define \(\beta_i = 2\beta_{i-1} + 6R_i\) and \(\alpha_i = \alpha_{i-1} + \frac{\epsilon^i}{1-\epsilon} \cdot \beta_i\).

Lemma 2.10. Let \(u,v \in V\) be a pair of vertices and let \(\pi(u,v)\) be a shortest path between them. Let \(i\) be the minimal index such that all vertices on the path \(\pi(u,v)\) are \(U^{(i)}\)-clustered. Then,

\[
d_H(u,v) \leq \alpha_i \cdot d_G(u,v) + \beta_i.
\]

Proof. The proof is by induction on the index \(i\). For \(i = 0\), all vertices on the path \(\pi(u,v)\) are \(U_0\)-clustered, thus they all added to the emulator \(H\) all edges that are incident to them. (Recall that \(\delta_0 = 1/\varepsilon^0 + 2R_0 = 1\). See also lines 7 to 10 of Algorithm 1) Therefore, the path \(\pi(u,v)\) itself is contained in the emulator \(H\).

Let \(i \in [1,\ell]\). Assume that the claim holds for \(i - 1\), and prove that it holds for \(i\). Let \((u,v)\) be a pair of vertices such that all vertices on a shortest path \(\pi(u,v)\) are \(U^{(i)}\)-clustered. Denote \(d = |\pi(u,v)|\). For convenience, we imagine that the vertices of \(\pi(u,v)\) appear from left to right, where \(u\) is the leftmost vertex and \(v\) is the rightmost vertex.

We divide the path \(\pi(u,v)\) into segments \(S_1,S_2,\ldots,S_q\), each of length exactly \([(1/\varepsilon)^i]\), except for the last segment that can be shorter than \([(1/\varepsilon)^i]\). Hence, \(q \leq \left\lceil \frac{d}{[(1/\varepsilon)^i]} \right\rceil \leq \left\lceil \frac{d}{(1/\varepsilon)^i - 1} \right\rceil = \left\lceil \frac{d\varepsilon^i}{1-\varepsilon} \right\rceil\).

Consider a single segment \(S\). Denote by \(x, y\) the left and the right endpoints of \(S\), and denote by \(S = \pi(x,y)\) the subpath of \(\pi(u,v)\) between them. (It is convenient to visualize the path \(\pi(u,v)\) as going from the leftmost vertex \(u\) to the rightmost vertex \(v\).)

Case 1: The segment \(S\) does not contain a \(U_{i-1}\)-clustered vertex. Then, all the vertices of the segment are \(U^{(i-1)}\)-clustered. Hence, by the induction hypothesis

\[
d_H(x,y) \leq \alpha_{i-1} \cdot d_G(x,y) + \beta_{i-1}.
\]

Case 2: Let \(z_1, z_2\) be the first and the last \(U_i\)-clustered vertices on the path \(\pi(x,y)\), respectively. Let \(C_1, C_2 \in U_i\) be the clusters such that \(z_1 \in C_1\) and \(z_2 \in C_2\). (Note that it is possible that \(C_1 = C_2\)). Both clusters intersect \(S = \pi(x,y)\), and the length of \(S\) is at most \((1/\varepsilon)^i\). In addition, by Lemma 2.5 we have that the radii of the clusters \(C_1, C_2\) are at most \(R_i\). Let \(r_1, r_2\) denote the centers of clusters \(C_1, C_2\), respectively. It follows that \(d_{G}(r_1, r_2) \leq (1/\varepsilon)^i + 2R_i = \delta_i\). Hence clusters
Figure 5: The analysis of the stretch of the emulator. For a pair $u, v \in V$ such that a shortest path $\pi(u, v)$ between them is $U^{(i)}$-clustered, we divide the path $\pi(u, v)$ into segments of length at most $(1/\varepsilon)^i$. For a single segment, denote by C_1, C_2 the first and the last U_j-clustered clusters on the path $\pi(u, v)$. The emulator H contains an edge between the centers r_1, r_2 of the clusters C_1, C_2 with weight $d_G(r_1, r_2)$.

C_1, C_2 are neighboring. By Lemma 2.7 we have that $d_H(r_1, r_2) = d_G(r_1, r_2)$. See Figure 5 for an illustration. As a result, by triangle inequality,

$$ d_H(r_1, r_2) = d_G(r_1, r_2) \leq R_i + d_G(z_1, z_2) + R_i. $$

Next, we bound the distances $d_H(x, r_1), d_H(r_2, y)$. Let w_1, w_2 be the predecessor and successor of z_1, z_2 on $\pi(x, y)$, respectively. See Figure 6 for an illustration. Observe that both w_1, w_2 are $U^{(i-1)}$-clustered.

We will show that there is a path of length at most $2R_i$ from w_1 to r_1. (This is also true for r_2, w_2, and the proof is analogous.)

Let $C' \in U_j$ be the cluster such that $w_1 \in C'$. Observe that $j < i$. Let $C'_1 \in P_j$ such that $z_1 \in C'_1$ (by Lemma 2.9, such a cluster exists). Denote r', r'_1 the centers of the clusters C', C'_1, respectively.

By Lemma 2.5 we have

$$ d_H(w_1, r') \leq R_j. \quad (6) $$

In phase j, the cluster C' joined U_j. Since there is an edge between the clusters C', C'_1, and since their radii are at most R_j, we have $d_G(r', r'_1) \leq 2R_j + 1 \leq \delta_j$. By Lemma 2.7 we have

$$ d_H(r', r'_1) = d_G(r', r'_1) \leq 2R_j + 1. \quad (7) $$

Since r'_1 belongs to the cluster C_1, we also have by Lemma 2.5 that

$$ d_H(r'_1, r_1) \leq R_i. \quad (8) $$

By eqs. (6) to (8) we have $d_H(w_1, r_1) \leq 3R_j + 1 + R_i$. Observe that $R_i = 2 \left(\frac{1}{\varepsilon} \right)^{i-1} + 5R_{i-1} \geq 2 + 5R_j$. It follows that

$$ d_H(w_1, r_1) \leq 2R_i. \quad (9) $$

Similarly, we have

$$ d_H(r_2, w_2) \leq 2R_i. \quad (10) $$

Recall that all vertices on the subpaths of $\pi(x, y)$ between x, w_1 and w_2, y, are $U^{(i-1)}$-clustered. Thus the induction hypothesis is applicable to them. It follows that:

$$ d_H(x, w_1) \leq \alpha_{i-1} \cdot d_G(x, w_1) + \beta_{i-1} \quad \text{and} \quad d_H(w_2, y) \leq \alpha_{i-1} \cdot d_G(w_2, y) + \beta_{i-1} \quad (11) $$
By eqs. (9) to (11) and section 2.2.2 we derive:

\[d_H(x, y) \leq d_H(x, w_1) + d_H(w_1, r_1) + d_H(r_1, r_2) + d_H(r_2, w_2) + d_H(w_2, y) \]
\[\leq d_H(x, w_1) + 2R_i + 2R_i + d_G(z_1, z_2) + 2R_i + 2R_i \]
\[\leq \alpha_{i-1} \cdot d_G(x, w_1) + d_G(z_1, z_2) + \alpha_{i-1} \cdot d_G(w_2, y) + 2\beta_{i-1} + 6R_i \]
\[\leq \alpha_{i-1} \cdot d_G(x, y) + 2\beta_{i-1} + 6R_i. \]

Since we divided the path \(\pi(u, v) \) into \(q \leq \lceil \frac{d(u,v)}{1-\epsilon} \rceil \) such segments, we obtain that for the pair \(u, v \), their distance in the emulator \(H \) satisfies:

\[d_H(u, v) \leq \sum_{j=1}^{q} (\alpha_{i-1} \cdot d_G(x_j, y_j) + 2\beta_{i-1} + 6R_i) \]
\[\leq \alpha_{i-1} \cdot d_G(u, v) + (d_G(u, v) \cdot \frac{\epsilon_i}{1-\epsilon} + 1) \cdot (2\beta_{i-1} + 6R_i) \]
\[\leq d_G(u, v) \cdot \left(\alpha_{i-1} + \frac{\epsilon_i}{1-\epsilon} \cdot (2\beta_{i-1} + 6R_i) \right) + 2\beta_{i-1} + 6R_i. \]

Recall that \(\beta_i = 2\beta_{i-1} + 6R_i \) and that \(\alpha_i = \alpha_{i-1} + \frac{\epsilon_i}{1-\epsilon} \cdot \beta_i \). It follows that:

\[d_H(u, v) \leq \left(\alpha_{i-1} + \frac{\epsilon_i}{1-\epsilon} \cdot \beta_i \right) \cdot d_G(u, v) + \beta_i = \alpha_i \cdot d_G(u, v) + \beta_i. \]

Recall that \(U(\ell) \) is a partition of \(V \). As a corollary to Lemma 2.10 we have:

Corollary 2.11. For every pair of vertices \(u, v \in V \), the distance between them in \(H \) satisfies:

\[d_H(u, v) \leq \alpha_\ell \cdot d_G(u, v) + \beta_\ell. \]

It is left to provide an upper bound on \(\alpha_\ell, \beta_\ell \). Recall that \(\beta_0 = 0, \alpha_0 = 1 \), and for \(i > 1 \) we have \(\beta_i = 2\beta_{i-1} + 6R_i \) and \(\alpha_i = \alpha_{i-1} + \frac{\epsilon_i}{1-\epsilon} \cdot \beta_i \).

Lemma 2.12. For all \(i \in [0, \ell] \), we have: \(\beta_i = \sum_{j=0}^{i} 2^{i-j} \cdot 6R_j \).

Proof. The proof is by induction on the index of the phase \(i \). For \(i = 0 \), since \(\beta_0 = 0 \) and \(R_0 = 0 \), both sides of the equation are equal to 0.

We assume that the claim holds for some \(i \in [0, \ell - 1] \), and prove that it holds for \(i + 1 \). By the induction hypothesis we obtain:

\[\beta_{i+1} = 2\beta_i + 6R_{i+1} = 6R_i + 2 \cdot \sum_{j=0}^{i} 2^{i-j} \cdot 6R_j = \sum_{j=0}^{i+1} 2^{i+1-j} \cdot 6R_j \]

We will now provide an explicit bound on \(\beta_i \). By eq. (5) for all \(i \in [1, \ell] \), we have that \(R_i \leq 4 \cdot \left(\frac{1}{\epsilon} \right)^{i-1} \). Recall also that \(R_0 = 0 \). Since we assume \(\epsilon \leq 1/10 \), we have

\[\beta_i \leq \sum_{j=1}^{i} 2^{i-j} \cdot 6R_j \leq \sum_{j=0}^{i} 2^{i-j} \cdot 24 \cdot \left(\frac{1}{1-\epsilon} \right)^{j-1} \leq \frac{24}{1-2\epsilon} \cdot \left(\frac{1}{\epsilon} \right)^{i-1} \leq 30 \left(\frac{1}{\epsilon} \right)^{i-1}. \]

For all \(i \in [1, \ell] \), we have \(\alpha_i = \alpha_{i-1} + \frac{\epsilon_i}{1-\epsilon} \cdot \beta_i \). Thus, \(\alpha_i \leq \alpha_{i-1} + \frac{30\epsilon_i}{1-\epsilon} \leq \alpha_{i-1} + 34\epsilon \). (Note that \(\epsilon \leq 1/10 \).) Since \(\alpha_0 = 1 \), we have:

\[\alpha_i = 1 + 34\epsilon \cdot i. \]

As a corollary to Corollary 2.11 and eqs. (12) and (13), we have:

Corollary 2.13. For every pair of vertices \(u, v \in V \) the distance between them in the emulator \(H \) satisfies:

\[d_H(u, v) \leq (1 + 34\epsilon \cdot \ell) \cdot d_G(u, v) + 30 \cdot \left(\frac{1}{\epsilon} \right)^{\ell-1}. \]
2.2.3 Analysis of the Running Time

The algorithm runs for $\ell + 1$ phases. Each phase $i \in [0, \ell]$ consists of executing at most $|P_i| \leq n$ Dijkstra explorations, each requires $O(|E| + n \log n)$ time. By 2.3 we have that $|P_i| \leq n^{1 - \frac{2^i + 1}{\kappa}}$ for all $i \in [0, \ell]$. Recall that $\ell = \lceil \log \frac{\kappa + 1}{2} \rceil$. Hence, the running time of the entire algorithm is bounded by

$$\sum_{i=0}^{\ell} O(|E| + n \log n) \cdot |P_i| \leq O(|E| + n \log n) \cdot \sum_{i=0}^{\ell} n^{1 - \frac{2^i + 1}{\kappa}} \tag{14}$$

2.2.4 Rescaling

Define $\epsilon' = 34 \epsilon \cdot \ell$. Observe that we have $\epsilon = \frac{\epsilon'}{34 \ell}$. We replace the condition $\epsilon < 1/10$ with the much stronger condition $\epsilon' < 1$.

Recall that $\ell = \lceil \log \frac{\kappa + 1}{2} \rceil$. Note that $\lceil \log \frac{\kappa + 1}{2} \rceil \leq \log \kappa$ for all $\kappa \geq 2$. The additive term β_ℓ now translates to:

$$\beta_\ell \leq 30 \cdot \left(\frac{1}{\epsilon} \right)^{\ell - 1} = 30 \cdot \left(\frac{1}{\epsilon'} \right)^{\ell - 1} = 30 \cdot \left(\frac{34 \log \kappa}{\epsilon'} \right)^{\log \kappa - 1}$$

Denote now $\epsilon = \epsilon'$.

Corollary 2.14. For any parameters $\epsilon < 1$ and $\kappa \geq 2$, and any n-vertex graph $G = (V,E)$, our algorithm constructs a $(1 + \epsilon, \beta)$-emulator with at most $n^{1 + \frac{1}{\ell}}$ edges in polynomial deterministic time in the centralized model, where

$$\beta = O \left(\frac{\log \kappa}{\epsilon} \right)^{\log \kappa - 1}.$$

Note that setting $\kappa = f(n) \cdot (\log n)$, for a function $f(n) = \omega(1)$, we obtain an emulator of size at most

$$n^{1 + \frac{1}{f(n) \log n}} = n \cdot 2^{\frac{1}{f(n)}} = n \left(1 + O \left(\frac{1}{f(n)} \right) \right) = n + o(n).$$

By Corollary 2.14, we derive:

Corollary 2.15. For any parameter $\epsilon < 1$ and any n-vertex graph $G = (V,E)$, our algorithm constructs a $(1 + \epsilon, \beta)$-emulator with $n + o(n)$ edges in polynomial deterministic time in the centralized model, where

$$\beta = \left(\frac{\log \log n}{\epsilon} \right)^{(1+o(1)) \log \log n}.$$

Using techniques discussed in Section 3, one can improve the running time in this result to $O(|E| \cdot n^\rho)$, for an arbitrarily small parameter $\rho > 0$, at the expense of increasing β to

$$\left(\frac{\log(\rho \log n) + \rho^{-1}}{\epsilon \rho} \right)^{\log(\rho \log n) + \rho^{-1} + O(1)}.$$
3 A Construction of Ultra-Sparse Near-Additive Emulators in the CONGEST Model

In this section we provide an implementation of the algorithm described in Section 2 in the distributed CONGEST model. Here we aim at a low polynomial time, i.e., $O(n^\rho)$ for an arbitrarily small constant parameter $1/\kappa < \rho < 1/2$. Recall that κ is a parameter that controls the size of the resulting emulator. We will show that for any parameters $\kappa \geq 2$, and $1/\kappa \leq \rho < 1/2$, and any n-vertex unweighted undirected graph $G = (V,E)$, our algorithm constructs a $(1 + \epsilon, \beta)$-emulator with at most $n^{1+\frac{\epsilon}{\kappa}}$ edges, in $O(n^\rho \cdot \beta)$ deterministic time in the CONGEST model, where $\beta = \left(\frac{\log \kappa + \rho^{-1}}{\epsilon \rho}\right) \log \kappa^\rho \rho^{-1} + O(1)$.

In particular, by setting $\kappa = \omega(\log n)$, we obtain a $(1 + \epsilon, \beta)$-emulator of size $n + o(n)$, with $\beta = \left(\frac{\log(\log n) + \rho^{-1}}{\epsilon \rho}\right) \log(\log n) + \rho^{-1} + O(1)$, in deterministic CONGEST model in low polynomial time.

From this point until the end of the paper, we assume that all vertices have unique IDs such that for all v, $v.ID \in [0, n-1]$, and all vertices know their respective IDs. Moreover, we assume that all vertices know the number of vertices n. In fact, our results apply even if vertices know an estimate \tilde{n} for n, where $n \leq \tilde{n} \leq poly(n)$, and have distinct ID numbers in the range $[1, \tilde{n}]$.

3.1 The Construction

As in the centralized variant of the algorithm, the distributed variant also initializes $H = \emptyset$ and proceeds in phases. The input to each phase $i \in [0, \ell]$ is a collection of clusters P_i, a degree parameter \deg_i and a distance threshold parameter δ_i. The parameters $\ell, \{\deg_i, \delta_i \mid i \in [0, \ell]\}$ are slightly different in the current variant of the algorithm, and are specified in Section 3.1.1. The set P_0 is initialized as the partition of V into singleton clusters.

In the distributed model, sequentially considering clusters requires too much time. Hence, the definition of popular clusters and cluster centers is slightly different in the distributed variant of the algorithm.

For every index $i \in [0, \ell]$, a pair of distinct clusters $C, C' \in P_i$ and their respective centers $r_C, r_{C'}$ are said to be neighboring clusters and neighboring cluster centers if $d_G((r_C, r_{C'}) \leq \delta_i$. A cluster C and its center r_C are said to be popular, if C has at least \deg_i neighboring clusters.

Intuitively, each phase is divided into two consecutive steps. The superclustering step of phase i begins by detecting popular clusters from P_i and clusters that have a neighboring popular cluster, and continues by grouping them into superclusters. When this step terminates, all clusters that have not been superclustered are not popular, and also, all of their neighboring clusters are not popular. Denote by U_i the set of clusters from P_i that did not join a supercluster during phase i. In the interconnection step, clusters from U_i are interconnected with their neighboring clusters. The details of the implementation of the superclustering step and the interconnection step are given in Sections 3.1.2 and 3.1.3 respectively.

As in the centralized version, we will show that in the last phase ℓ, we will have that $|P_\ell| \leq \deg_\ell$, and therefore there are no popular clusters. Hence, the superclustering step of this phase is skipped, and we move directly to the interconnection step.

3.1.1 Setting Parameters

Define recursively $R_0 = 0$, and for every $i \in [1, \ell]$ define $R_{i+1} = \left(\frac{\delta_i}{\kappa} + 2\right) \delta_i + R_i$. The distance threshold parameter is defined to be $\delta_i = (1/\epsilon)^i + 2R_i$, for every $i \in [0, \ell]$.
In our distributed implementation of the algorithm, the execution of each phase i requires $\Omega(\text{deg}_i)$ time. Recall that we aim at a low polynomial time. Therefore, we ensure that $\text{deg}_i \leq n^\rho$ for all phases $i \in [0, \ell]$. We divide the phases into two stages. In the exponential growth stage, that consists of phases $\{0, 1, \ldots, i_0 = \lfloor \log \kappa \rho \rfloor \}$, we set $\text{deg}_i = n^{\frac{\rho i}{\kappa}}$. For the fixed growth stage, that consists of phases $\{i_0 + 1, i_0 + 2, \ldots, \ell = i_0 + \frac{\kappa + 1}{\kappa \rho} - 1 \}$, we set $\text{deg}_i = n^\rho$.

3.1.2 Superclustering Step

In this section, we provide the execution details for the superclustering step of phase $i \in [0, \ell - 1]$. During this step, we complete three tasks. The first task is to detect the set of popular clusters. The second task is to select representatives around which superclusters will be constructed. The third and most complicated task is to construct the superclusters around the selected representatives, such that all popular clusters are superclustered.

Task 1: Detecting popular clusters. To detect popular clusters, we employ the modified Bellman-Ford exploration, devised in [EM19].

Generally speaking, we initiate a modified parallel Bellman-Ford exploration from the set of centers of clusters in P_i. The exploration consists of $\delta_i + 1$ strides. In stride 0, each vertex $v \in V$ initializes a list $L(v) = \emptyset$. Each center r_C of a cluster $C \in P_i$ writes the element $\langle r_C, 0 \rangle$ to its list $L(r_C)$. In every stride $j \in [1, \delta_i]$, each vertex $v \in V$ delivers to its neighbors in G messages regarding the (up to) $\text{deg}_i + 1$ cluster centers it has learnt about during stride $j - 1$. If a vertex has received messages regarding more than $\text{deg}_i + 1$ centers during some stride $j \in [0, \delta_i - 1]$, it arbitrarily chooses $\text{deg}_i + 1$ of these messages to forward during stride $j + 1$. Observe that stride 0 requires $O(1)$ time, and each one of the strides $j \in [1, \delta_i]$ require $O(\text{deg}_i)$ communication rounds. When the exploration terminates, each center r_C of a cluster $C \in P_i$ that has received messages regarding at least deg_i other cluster centers is defined popular. Denote by W_i the set of popular cluster centers.

For completeness, the pseudo-code of the algorithm appears below. Theorem 3.1 summarizes the properties of the algorithm. For its proof, see Theorem 2.1 in [EM19].

Algorithm 2 Detecting Popular Clusters

1: **Input:** graph $G = (V, E)$, a set of clusters P_i, parameters deg_i, δ_i

2: **Output:** a set W_i

3: Each vertex $v \in V$ initializes a list $L(v) = \emptyset$.

4: Each $r_C \in S_i$ adds $\langle r_C.\text{ID}, 0 \rangle$ to $L(r_C)$.

5: for $j = 1$ to δ_i do

6: \hspace{1em} for deg_i rounds do

7: \hspace{2em} if v received at most $\text{deg}_i + 1$ messages $\langle r_C, j-1 \rangle$ then

8: \hspace{3em} For each received messages $\langle r_C, j-1 \rangle$, v sends $\langle r_C, j \rangle$.

9: \hspace{2em} if v received more than $\text{deg}_i + 1$ messages $\langle r_C, j-1 \rangle$ then

10: \hspace{3em} For arbitrary $\text{deg}_i + 1$ received messages $\langle r_C, j-1 \rangle$, v sends $\langle r_C, j \rangle$.

11: Each $r_C \in S_i$ that has learned about at least deg_i other cluster centers joins W_i.

Theorem 3.1. Given a graph $G = (V, E)$, a collection of clusters P_i centered around cluster centers S_i and parameters δ_i, deg_i, Algorithm 2 returns a set W_i in $O(\text{deg}_i \cdot \delta_i)$ time such that:

1. W_i is the set of all centers of popular clusters from P_i.

2. Every cluster center \(r_C \in S_i \) that did not join \(W_i \) knows the identities of all the centers \(r_{C'} \in S_i \) such that \(d_G(r_C, r_{C'}) \leq \delta_i \). Furthermore, for each pair of such centers \(r_C, r_{C'} \), there is a shortest path \(\pi \) between them such that all vertices on \(\pi \) know their distance from \(r_{C'} \).

Alternatively, one can accomplish the task of Algorithm 2 even faster, in time \(O(\text{deg}_i + \delta_i) \), via the \((S, d, k)\)-source detection algorithm of Lenzen and Peleg [LPT13]. In the \((S, d, k)\)-source detection problem, one is given a subset \(S \) of sources, and two integers \(d \) and \(k \). The algorithm of [LPT13] computes for every vertex \(v \in V \) at most \(k \) sources \(s \in S \) that satisfy \(d_G(v, s) \leq d \). The running time of their (deterministic) algorithm is \(O(\min\{d, D\} + \min\{k, |S|\}) \). In our case, \(S = S_i \), \(d = \delta_i \), \(k = \text{deg}_i \), and as a result the running time is \(O(\text{deg}_i + \delta_i) \). The algorithm of [LPT13] can also produce the shortest path \(\pi \) between cluster centers \(r_C \) and \(r_{C'} \) as above, within the same running time. Our algorithm, however, has a number of other steps that require \(O(\text{deg}_i \cdot \delta_i) \) time, and thus using the (simpler) algorithm given in Algorithm 2 for detecting popular clusters is good enough for our purposes.

Task 2: Selecting representatives. To select a subset of the popular clusters, we compute a \((2\delta_i + 1, 2\delta_i/\rho)\)-ruling set for \(W_i \) w.r.t. the graph \(G \). See Section 1.5.2 for the definition of ruling sets. This is done using the algorithm of [SEW13, KMW18]. Theorem 3.2 summarizes the properties of the returned ruling set \(S_i \).

Theorem 3.2. [SEW13, KMW18] Given a graph \(G = (V, E) \), a set of vertices \(W_i \subseteq V \) and parameters \(q \in \{1, 2, \ldots\}, c > 1 \), one can compute a \((q + 1, cq)\)-ruling set for \(W_i \) in \(O(q \cdot c \cdot n^{\frac{1}{c}}) \) deterministic time, in the CONGEST model.

For the sake of brevity, denote \(\text{sep}_i = 2\delta_i + 1 \) and \(\text{rul}_i = (2/\rho) \cdot \delta_i \). By Theorem 3.2 the returned subset \(S_i \) is a \((\text{sep}_i, \text{rul}_i)\)-ruling set for the set of popular clusters \(W_i \).

Task 3: Constructing superclusters. First, a BFS exploration rooted at the ruling set \(S_i \) is executed to depth \(\text{rul}_i + \delta_i \) in \(G \). As a result, a forest \(F_i \) is constructed, rooted at vertices of \(S_i \).

Consider a cluster center \(r_C \in S_i \), and let \(T_C \) be its tree in the forest \(F_i \). A cluster \(C' \) is said to be spanned by \(T_C \) if its center \(r_{C'} \) is spanned by \(T_C \). Intuitively, we would like to form a new supercluster \(\widehat{C} \) centered around \(r_C \), which will contain all the clusters \(C' \) spanned by \(T_C \). This requires informing \(r_C \) of all the centers of clusters that are spanned by \(T_C \), which may cause significant congestion. Therefore, we use a different approach, that may form several superclusters that will cover all clusters spanned by \(T_C \).

To form superclusters, we backtrack the BFS exploration that has created \(T_C \). The backtracking procedure operates for \(\text{rul}_i + \delta_i \) strides, each consists of \([2\text{deg}_i] + 2 \) communication rounds. During each stride \(d \), each vertex \(v \in V \) that is spanned by \(T_C \) and has \(d_T_C(r_C, v) = \text{rul}_i + \delta_i - d \) sends messages to its parent in the tree \(T_C \). For \(d = 0 \), let \(M = \emptyset \). For \(d > 0 \), let \(M \) be the set of messages that \(v \) has received during stride \(d - 1 \) of the procedure. If \(v \) is a center of a cluster from \(P_i \), it adds the message \(m_v = \langle v, d_G(r_C, v) \rangle \) to \(M \). If the number of messages in \(M \) is smaller than \(2\text{deg}_i + 2 \), then \(v \) sends all the messages in \(M \) to its parent w.r.t. \(T_C \) during stride \(d \).

Consider the case where \(|M| \geq 2\text{deg}_i + 2 \). In this case, we say that \(v \) is a hub-vertex. Since it cannot send \(|M| \) messages to its parent in \(T_C \), the vertex \(v \) decides to split from \(T_C \) and form new superclusters. Note that the vertex \(v \) receives messages from its children in the tree \(T_C \) only during stride \(d - 1 \), where \(d = d_T_C(r_C, v) \).

If \(v \) is a center of a cluster from \(P_i \), it forms a single new supercluster \(\widehat{C}_v \), and \(v \) is set to be the center of the new supercluster \(\widehat{C}_v \). For every message \(m_{r_{C'}} = \langle r_{C'}, d_G(r_C, r_{C'}) \rangle \) in \(M \), it adds the edge \(\langle v, r_{C'} \rangle \) to the emulator with weight \(d_G(v, r_{C'}) = d_G(r_C, r_{C'}) - d_G(r_C, v) \). The vertex \(v \) informs...
of the new edge and its weight. This is done by sending the message \(\langle (v, r_{C'}), d_G(v, r_{C'}) \rangle \) along the same route that the message \(m_{r_{C'}} \) has traversed.

If \(v \) is not a center of a supercluster from \(P_i \), we do not allow it to be a center of a cluster of \(P_{i+1} \), and therefore it forms other superclusters. The vertex \(v \) partitions its children in \(T_C \) into sets \(V_1, V_2, \ldots, V_t \), such that for every \(j \in [1, t] \) the number of messages that \(v \) has received from all vertices in \(V_j \) is between \(2\deg_i + 2 \) and \(6\deg_i + 6 \). For every \(j \in [1, t] \), let \(Z_j \) be the set of vertices in \(T_C \) that have sent messages that have arrived \(v \) via a vertex in \(V_j \). Intuitively, a supercluster \(\hat{C}_j \) is formed for every \(j \in [1, t] \). This supercluster will contain every cluster \(C' \in P_i \) such that its centers \(r_{C'} \) is in \(Z_j \). See Figure 7 for an illustration.

Partitioning the children of \(v \) into \(t \) sets is done in the following way. For a set \(X \) of children of \(v \), denote by \(M(X) \) the set of messages that \(v \) has received from all vertices in \(X \). The vertex \(v \) greedily adds its children into sets \(V_1, V_2, \ldots, V_t \), such that each set \(V_j \) is filled until \(|M(V_j)| \) is at most \(4\deg_i + 4 \). Note that since the number of messages received by \(v \) from each one of its children is less than \(2\deg_i + 2 \), we have that \(|M(V_j)| \geq 2\deg_i + 2 \), for any \(j \in [1, t' - 1] \). If for the last set \(V_t \) we have \(|M(V_t)| < 2\deg_i + 2 \), we add the set \(V_t \) to the set \(V_{t-1} \). Let \(t \) be the number of sets formed by this process (i.e., if \(|M(V_t)| < 2\deg_i + 2 \) then \(t = t' - 1 \). Otherwise, \(t = t' \). Now we have that \(2\deg_i + 2 \leq |M(V_j)| \leq 6\deg_i + 6 \) for every \(j \in [1, t] \).

For every \(j \in [1, t] \), the vertex \(v \) selects a single vertex \(r \in Z_j \) to be the center of \(\hat{C}_j \). Then, \(v \) must inform all vertices in \(Z_j \) that their attempt to join \(\hat{C} \) has failed, and provide information regarding their new cluster center and superclustering edge. To this aim, we define the tree \(T_C^j \) to be the tree that contains all paths from \(T_C \) between a vertex in \(Z_j \) and \(v \). Observe that \(T_C^j \) does not contain any other hub-vertices.

The vertex \(v \) broadcasts the message \(\langle r \rangle \) in the tree \(T_C^j \). This informs all centers in \(Z_j \) that their attempt to join \(\hat{C} \) has failed, and that the center of their new supercluster is \(r \). In addition, for every \(r' \in Z_j \), the vertex \(v \) broadcasts the message \(\langle r', d_G(r', v) + d_G(v, r) \rangle \) to all vertices in \(T_C^j \). In particular, this step informs the vertices \(r, r' \) that the edge \((r, r') \) was added to the emulator \(H \) with weight \(d_G(r', v) + d_G(v, r) \). Observe that the vertex \(v \) knows \(d_G(r_{C'}, v) \), \(d_G(r_{C'}, r) \) and \(d_G(r_{C'}, r') \), and since it belongs to shortest \(r_{C'} - r \) and \(r_{C'} - r' \) paths, it can infer \(d_G(v, r) \) and \(d_G(v, r') \). In addition, by triangle inequality, these superclustering edges never shorten distances w.r.t. the graph \(G \).

After the \(\text{rul}_i + \delta_i \) strides terminate, for every message \(\langle r_{C'}, d_G(r_{C'}, r_{C'}) \rangle \) that arrives to \(r_{C'} \), the edge \((r_{C'}, r_{C'}) \) is added to the emulator \(H \) with weight \(d_G(r_{C'}, r_{C'}) \). All vertices that belong to the cluster \(C' \) centered around \(r_{C'} \) join the supercluster \(\hat{C} \). This completes the description of the procedure for forming superclusters.

In the following lemma, we analyze the running time of Task 3, and show that all computation terminate within the \(\text{rul}_i + \delta_i \) strides.

Lemma 3.3. For every index \(i \in [0, \ell - 1] \), Task 3 requires \(O(\frac{\delta_i}{\rho} \cdot \deg_i) \) communication rounds.

Proof. Consider an index \(i \in [0, \ell - 1] \). On our way to constructing superclusters, we execute a BFS exploration that forms the forest \(F_i \) and a backtracking procedure. In addition, we take care of hub-vertices.

The BFS exploration that forms the forest \(F_i \) is executed to depth \(\text{rul}_i + \delta_i \) from the set of vertices in \(S_i \). Thus, it requires \(O(\text{rul}_i + \delta_i) \) time. The backtracking procedure of phase \(i \) is done in \(\text{rul}_i + \delta_i \) strides, where each stride consists of \(O(\deg_i) \) communication rounds. Thus, its overall running time is \(O((\text{rul}_i + \delta_i)\deg_i) \).

It is left to analyze the time required to take care of hub-vertices. Let \(v \) be a hub-vertex in some tree \(T_C \in F_i \). If \(v \) is a center of a cluster of \(P_i \), it forms a new supercluster around itself. For every vertex \(r_{C'} \) such that \(v \) has received the message \(m_{r_{C'}} \) from \(r_{C'} \), the vertex \(v \) sends a message
Denote by U_m set to become the center of its respective supercluster.

In this section, we provide the execution details for the interconnection step of phase i.

3.1.3 Interconnection Step

In this section, we provide the execution details for the interconnection step of phase $i \in [0, \ell]$. Denote by U_i the set of clusters from P_i that have not been superclustered during the superclustering

\begin{align*}
\text{Lemma 3.4.} & \quad \text{Consider a cluster } C \in P_i. \text{ If } C \text{ is popular or it has a neighboring cluster that is popular, then } C \text{ belongs to a supercluster of } P_{i+1}.
\end{align*}

\textbf{Proof.} Recall that W_i is the set of centers of popular clusters from P_i and that S_i is a $(\text{sep}_i, \text{rul}_i)$-ruling set for W_i. Consider a cluster $C \in P_i$. If C is popular, then by definition of S_i there exists a vertex $v \in S_i$ such that the distance between v and the center of C is at most rul_i. Hence, the cluster C became superclustered during the superclustering step of phase i.

If C is not popular but it has a neighboring cluster C' that is popular, then there exists a vertex $v \in S_i$ such that the distance between v and the center of C' is at most rul_i. The distance between the centers of C, C' is at most δ_i. Therefore, there exists a vertex $v \in S_i$ with distance at most $\text{rul}_i + \delta_i$ from the center of C. Hence, the cluster C became superclustered during the superclustering step of phase i. \hfill \square

\subsection*{3.1.3 Interconnection Step}

In this section, we provide the execution details for the interconnection step of phase i. Denote by U_i the set of clusters from P_i that have not been superclustered during the superclustering

\begin{align*}
\text{Proof.} \quad \text{Recall that } W_i \text{ is the set of centers of popular clusters from } P_i \text{ and that } S_i \text{ is a } (\text{sep}_i, \text{rul}_i)\text{-ruling set for } W_i. \text{ Consider a cluster } C \in P_i. \text{ If } C \text{ is popular, then by definition of } S_i \text{ there exists a vertex } v \in S_i \text{ such that the distance between } v \text{ and the center of } C \text{ is at most } \text{rul}_i. \text{ Hence, the cluster } C \text{ became superclustered during the superclustering step of phase } i.
\end{align*}

\begin{align*}
\text{If } C \text{ is not popular but it has a neighboring cluster } C' \text{ that is popular, then there exists a vertex } v \in S_i \text{ such that the distance between } v \text{ and the center of } C' \text{ is at most } \text{rul}_i. \text{ The distance between the centers of } C, C' \text{ is at most } \delta_i. \text{ Therefore, there exists a vertex } v \in S_i \text{ with distance at most } \text{rul}_i + \delta_i \text{ from the center of } C. \text{ Hence, the cluster } C \text{ became superclustered during the superclustering step of phase } i. \hfill \square
\end{align*}
step of phase i. In the interconnection step of phase i, each cluster in U_i is connected with all its neighboring clusters from P_i.

For $i \in [0, \ell - 1]$, by Lemma 3.4, we have that every cluster $C \in U_i$ is not popular. By Theorem 3.1, the center r_C of the cluster C already knows the identities and distances to all its neighboring cluster centers, since Algorithm 2 was executed during the superclustering step. Hence, the center r_C knows which edges it needs to add to the emulator H, as well as their weights.

Let $r_{C'}$ be a neighboring cluster center of r_C. The center r_C must inform $r_{C'}$ that C has joined U_i, and therefore the edge $(r_C, r_{C'})$ is added to the emulator H. For this aim, we employ Algorithm 2 as in the superclustering step of phase i, from the centers of all clusters in U_i. Recall that by Lemma 3.4 we have that every cluster that has a neighboring cluster that is popular is superclustered. Since $C \in U_i$, we conclude that $r_{C'}$ is not popular. Hence, by Theorem 3.1 we have that during the current execution of Algorithm 2, the cluster $r_{C'}$ has received a message from r_C, and thus it knows the identity of r_C and the distance $d_G(r_C, r_{C'})$. Now, both endpoints of the edge $(r_C, r_{C'})$ know that it is added to the emulator H with weight $d_G(r_C, r_{C'})$.

The interconnection step of phase ℓ is slightly different. Recall that the superclustering step of phase ℓ is skipped. However, as we later show (eq. (17)), all clusters in P_{ℓ} are not popular. In the interconnection step of phase ℓ, we execute Algorithm 2 from the set P_{ℓ} with parameters $deg_{\ell}, \delta_{\ell}$. By Theorem 3.1, we are guaranteed that all centers of clusters in P_{ℓ} know the identities and distance to all their neighboring cluster centers. Therefore, each center of a cluster $C \in P_{\ell}$ can add to the emulator H edges to all its neighboring cluster centers. This completes the description of the interconnection step of phase i.

3.2 Analysis of the Construction

In this section, we analyze the size and stretch of the emulator, and the running time that is required to construct it. We begin by showing that in the final phase ℓ, we have $|P_{\ell}| \leq deg_{\ell}$. Thus, there are no popular clusters, and the superclustering step can be safely skipped. To do so, we show that the number of clusters in P_{i+1} is significantly smaller than the number of clusters in P_i.

Recall that during the superclustering step of every phase $i \in [0, \ell - 1]$, a BFS exploration is executed from the ruling set S_i, and that F_i is the ruling forest produced by this exploration.

Lemma 3.5. Let $i \in [0, \ell - 1]$. For every tree T_C in F_i, let x_C be the number of clusters of P_i that are spanned by T_C. Then, the number of superclusters formed around vertices of T_C is at most $x_C/(deg_{i} + 1)$.

Proof. Consider a tree T_C in F_i, and let $r_C \in S_i$ be the root of T_C. Recall that r_C is the center of a popular cluster r_C. Let s be the number of superclusters formed around vertices of T_C.

If $s = 1$, then we have that all clusters that are spanned by T_C belong to the supercluster formed around the center r_C. Recall that the set S_i is a (sep_i, rul_i)-ruling set, where $sep_i = 2\delta_i + 1$. Hence, for every neighboring cluster center $r_{C'}$ of r_C, we have that $d_G(r_C, r_{C'}) \leq \delta_i$ and thus, r_C is the closest vertex to $r_{C'}$ in S_i. Therefore, $r_{C'}$ is spanned by T_C. Since C is a popular cluster, it has at least deg_i neighbors. Note that C itself is also spanned by T_C. Hence, we have that $x_C \geq deg_i + 1$, and the claim holds.

Consider the case where $s \geq 2$. Every cluster formed around a vertex $v \in T_C$, where $v \neq r_C$ contains at least $2deg_i + 2$ clusters of P_i that are spanned by T_C. We conclude that

$$\frac{x_C}{deg_i + 1} \geq \frac{(s-1)(2deg_i + 2)}{deg_i + 1} = 2s - 2 \geq s.$$
Observe that Lemma 3.5 implies that for every $i \in [0, \ell - 1]$ we have that
\[|P_{i+1}| \leq |P_i| \cdot \deg_i^{-1}. \tag{15} \]

Next, we provide an explicit bound on the number of superclusters formed in phase i.

Lemma 3.6. For every $i \in [0, i_0 + 1]$, we have that $|P_i| \leq n^{1 - \frac{2^i - 1}{\kappa}}$.

Proof. The proof is by induction on the index of the phase i. For the base case, we have that $|P_0| = 0$, and also $n^{1 - (2^0 - 1)/\kappa} = n$. Assume that the claim holds for some $i_0 \in [0, i_0]$, and prove that it holds for $i + 1$. By the induction hypothesis and by eq. (15) we have
\[|P_i| \cdot \deg_i^{-1} < n^{1 - \frac{2^{i+1} - 1}{\kappa} \cdot n^{-\frac{2^i}{\kappa}} = n^{1 - \frac{2^{i+1} - 1}{\kappa}}. \]

\[|P_{i+1}| \leq |P_i| \cdot \deg_i^{-1} < n^{1 - \frac{2^{i+1} - 1}{\kappa} \cdot n^{-\frac{2^i}{\kappa}} = n^{1 - \frac{2^{i+1} - 1}{\kappa}}. \]

Lemma 3.7. For every $i \in [i_0 + 1, \ell]$, we have that $|P_i| \leq n^{1 - \frac{2^{i_0 + 1} - 1}{\kappa} - (i-i_0-1)\rho}$.

Proof. The proof is by induction on the index of the phase i. The base case ($i = i_0 + 1$) holds since by Lemma 3.6 we have
\[|P_{i_0+1}| \leq n^{1 - \frac{2^{i_0+1} - 1}{\kappa}}. \tag{16} \]

Assume the claim holds for some $i \in [i_0 + 1, \ell - 1]$, and prove that it holds for $i + 1$. By the induction hypothesis and by eq. (15) we have
\[|P_{i+1}| \leq |P_i| \cdot \deg_i^{-1} < n^{1 - \frac{2^{i_0 + 1} - 1}{\kappa} - (i-i_0-1)\rho} \cdot n^{-\rho} = n^{1 - \frac{2^{i_0 + 1} - 1}{\kappa} - (i-i_0)\rho}. \]

Recall that $i_0 = \lceil \log \kappa \rho \rceil$ and that $\ell = i_0 + \lceil \frac{\kappa+1}{\kappa \rho} \rceil - 1$. Note that $\rho \leq 1/2$, hence $\ell > i_0$, and so $\deg \ell = n^\rho$. By Lemma 3.7, the size of the set P_ℓ satisfies
\[|P_\ell| \leq n^{1 - \frac{2^{\lceil \log \kappa \rho \rceil + 1} - 1}{\kappa} - (\lceil \frac{\kappa+1}{\kappa \rho} \rceil - 2)\rho} \leq n^{1 - \frac{n^\rho - 1}{\kappa} - \frac{\kappa+1}{\kappa} + 2\rho} \leq n^\rho. \tag{17} \]

As a result, in the last phase ℓ we have $|P_\ell| \leq n^\rho = \deg_\ell$, and there are no popular clusters in P_ℓ.

3.2.1 Analysis of the Number of Edges

In this section, we analyze the number of edges added to the emulator H by the algorithm. The analysis follows the lines of the corresponding arguments in Section 2.2.1. As in the centralized construction, here we can also charge each edge that is added to the emulator H in some phase i of the algorithm to a center of a cluster in P_i.

Every superclustering edge added to the emulator during phase i can be charged to a center of a cluster $C \in P_i$ that neither joined U_i nor was it selected to grow a supercluster around it during this phase. Therefore, the number of superclustering edges added to the emulator H during phase i is exactly $|P_i| - |U_i| - |P_{i+1}|$. Every interconnection edge added to the emulator during some phase $i \in [0, \ell]$ is charged to a center of a cluster $C \in U_i$. Recall that for every cluster $C \in U_i$, its center r_C is charged with less than \deg_i edges. Hence, the number of interconnection edges added to the emulator during phase i of the algorithm is at most $|U_i| \cdot \deg_i$. (The equality is achieved
when \(U_i = \emptyset \). In addition, Lemma 3.5 implies that the number of clusters from \(P_i \) that belong to superclusters of \(P_{i+1} \) is at least \(|P_{i+1}| \cdot (deg_i + 1)\). Hence, the number of clusters in \(P_i \) that did not join a supercluster during phase \(i \) satisfies \(|U_i| \leq |P_i| - |P_{i+1}| \cdot (deg_i + 1)\). Thus, the number of edges added to the emulator by all phases of the algorithm is bounded by

\[
|H| \leq \sum_{i=0}^{\ell-1} (|P_i| - |U_i| - |P_{i+1}| + |U_i| \cdot deg_i) + |P_{\ell}| \cdot deg_{\ell}
\]

\[
= \sum_{i=0}^{\ell-1} (|P_i| - |P_{i+1}| + |U_i| \cdot (deg_i - 1) + |P_{\ell}| \cdot deg_{\ell}
\]

\[
\leq \sum_{i=0}^{\ell-1} (|P_i| - |P_{i+1}| + (|P_i| - |P_{i+1}| \cdot (deg_i + 1))(deg_i - 1) + |P_{\ell}| \cdot deg_{\ell}
\]

\[
= \sum_{i=0}^{\ell-1} (|P_i| \cdot deg_i - |P_{i+1}| \cdot deg_i^2) + |P_{\ell}| \cdot deg_{\ell}
\]

\[
= |P_0| \cdot deg_0 + \sum_{i=0}^{\ell-1} (|P_{i+1}| \cdot deg_{i+1} - |P_{i+1}| \cdot deg_i^2).
\]

We now show that for all \(i \in [0, \ell - 1] \), we have \(deg_{i+1} \leq deg_i^2 \). Recall that in the exponential growth stage, \(deg_i = n^{\frac{2}{\rho}} \), and so \(deg_{i+1} = deg_i^2 \) for any \(i \in [0, i_0 - 1] \). Recall that \(i_0 = \lceil \log \kappa \rho \rceil \), and so \(deg_{i_0}^2 = n \frac{2^{i_0+1}}{\rho} \geq n^\rho = deg_{i_0+1} \). In the fixed growth stage, \(deg_i = n^\rho \), and so \(deg_{i+1} < deg_i^2 \) for all \(i \in [i_0 + 1, \ell - 1] \). It follows that for all \(i \in [0, \ell - 1] \), we have \(deg_{i+1} \leq deg_i^2 \). Thus, by eq. (18), the size of the emulator \(H \) is at most

\[
|H| \leq |P_0| \cdot deg_0 = n^{1+1/\kappa}.
\]

3.2.2 Analysis of the Stretch

In this section we analyze the stretch of the emulator \(H \). We follow the lines of the analysis given in Section 2.2.2. We begin by proving that \(R_i \) is an upper bound on the radii of clusters in \(P_i \) for all \(i \in [0, \ell] \). Recall that \(R_0 = 0 \), and for every \(i \in [1, \ell] \), we have \(R_{i+1} = (\frac{2}{\rho} + 2)\delta_i + R_i \) (see Section 3.1.1). Also recall that for every phase \(i \in [0, \ell] \), a BFS ruling forest \(F_i \) was constructed by a BFS exploration that was executed to depth \(ru_i \) around \(i \). Hence the radius of each tree in \(F_i \) (i.e., the maximal distance between the root of the tree and a vertex spanned by the tree) is at most \((\frac{2}{\rho} + 1)\delta_i \) as well. For each tree \(T \in F_i \), let \(Rad(T) \) denote its radius, and \(Rad(F_i) = \max_{T \in F_i} Rad(T) \).

Lemma 3.8. For every index \(i \in [0, \ell] \), we have \(Rad(P_i) \leq R_i \).

Proof. The proof is by induction on the index of the phase \(i \). For \(i = 0 \), all clusters in \(P_i \) are singletons, and also \(R_0 = 0 \). Thus the claim holds.

Assume the claim holds for \(i \in [0, \ell - 1] \) and prove that it holds for \(i + 1 \). Consider a cluster \(\hat{C} \in P_{i+1} \). This cluster was formed around a vertex \(r_C \) during phase \(i \). Let \(C \in P_i \) be the cluster rooted at \(r_C \). Consider a vertex \(u \in \hat{C} \).

Case 1: The vertex \(u \) belongs to the cluster \(C \). Then, by the induction hypothesis, we have \(d_H(r_C, u) \leq R_i \leq R_{i+1} \).

Case 2: The vertex \(u \) belonged to a cluster \(C' \in P_i \), where \(C \neq C' \). Denote by \(r_{C'} \) the center of the cluster \(C' \). The centers \(r_C \) and \(r_{C'} \) are both spanned by the same tree \(T \) in \(F_i \). Therefore, we have \(d_T(r_C, r_{C'}) \leq 2Rad(T) \leq (\frac{2}{\rho} + 2)\delta_i \). When \(r_{C'} \) joined the supercluster \(\hat{C} \), the edge \((r_C, r_{C'})\) was added to the emulator \(H \), with weight \(d_T(r_C, r_{C'}) \leq (\frac{2}{\rho} + 2)\delta_i \).

In addition, by the induction hypothesis, we have \(d_H(u, r_{C'}) \leq R_i \). Hence,

\[
d_H(r_C, u) \leq (\frac{4}{\rho} + 2)\delta_i + R_i = R_{i+1}.
\]

\[\square\]
We now provide an explicit upper bound on \(R_i \). Recall that for every \(i \in [1, \ell] \), we have \(\delta_i = (1/\epsilon)^i + 2R_i \), and therefore

\[
R_{i+1} = \left(\frac{4}{\rho} + 2 \right) \delta_i + R_i = \left(\frac{4}{\rho} + 2 \right) (1/\epsilon)^i + \left(\frac{8}{\rho} + 5 \right) R_i.
\]

Lemma 3.9. For every index \(i \in [0, \ell] \), we have

\[
R_i = \left(\frac{4}{\rho} + 2 \right) \cdot \sum_{j=0}^{i-1} \left(\frac{1}{\epsilon} \right)^j \cdot \left(\frac{8}{\rho} + 5 \right)^{i-1-j}.
\]

Proof. The proof is by induction on the index \(i \). For \(i = 0 \), both sides of the equation are equal to 0, and so the base case holds.

Assume that the claim holds for some \(i \in [0, \ell - 1] \), and prove that it holds for \(i + 1 \). By definition and the induction hypothesis we have:

\[
R_{i+1} = \left(\frac{4}{\rho} + 2 \right) (1/\epsilon)^i + \left(\frac{8}{\rho} + 5 \right) \cdot \sum_{j=0}^{i-1} \left(\frac{1}{\epsilon} \right)^j \cdot \left(\frac{8}{\rho} + 5 \right)^{i-1-j}
\]

\[
= \left(\frac{4}{\rho} + 2 \right) \cdot \sum_{j=0}^{i} \left(\frac{1}{\epsilon} \right)^j \cdot \left(\frac{8}{\rho} + 5 \right)^{i-j}.
\]

By Lemma 3.9, we derive the following explicit bound on \(R_i \), for \(i \in [0, \ell] \).

\[
R_i = \left(\frac{4}{\rho} + 2 \right) \cdot \sum_{j=0}^{i-1} \left(\frac{1}{\epsilon} \right)^j \cdot \left(\frac{8}{\rho} + 5 \right)^{i-1-j}
\]

\[
= \left(\frac{4}{\rho} + 2 \right) \cdot \left(\frac{8}{\rho} + 5 \right)^{i-1} \cdot \sum_{j=0}^{i-1} \left(\frac{1}{\epsilon} \right)^j \cdot \left(\frac{4}{\rho} + 2 \right) \cdot \left(\frac{8}{\rho} + 5 \right)^{i-1-j}
\]

\[
\leq \left(\frac{4}{\rho} + 2 \right) \cdot \left(\frac{8}{\rho} + 5 \right)^{i-1} \cdot \left(\frac{\rho}{\rho(8+5\rho)} \cdot \left(\frac{1}{\epsilon} \right)^{i-1} \right)
\]

\[
= \left(\frac{4}{\rho} + 2 \right) \cdot \left(\frac{8+5\rho}{\rho} \right)^{i-1} \cdot \left(\frac{\rho}{\rho(8+5\rho)} \cdot \left(\frac{1}{\epsilon} \right) \right)^{i-1}.
\]

Recall that \(\rho < 1/2 \), and assume that \(\rho \geq 25\epsilon \). It follows that for all \(i \in [0, \ell] \):

\[
R_i \leq \frac{4 + 2\rho}{\rho - \epsilon(8 + 5\rho)} \cdot \left(\frac{1}{\epsilon} \right)^{i-1} \leq \frac{5}{\rho - 12.5\epsilon} \cdot \left(\frac{1}{\epsilon} \right)^{i-1} \leq \frac{10}{\rho} \cdot \left(\frac{1}{\epsilon} \right)^{i-1}.
\]

As in Section 2.2.2, define recursively \(\beta_0 = 0, \alpha_0 = 1 \), and for \(i > 1 \) define \(\beta_i = 2\beta_{i-1} + 6R_i \) and \(\alpha_i = \alpha_{i-1} + \frac{\epsilon^i}{1-\epsilon} \cdot \beta_i \).

Recall that when a cluster is added to \(U_i \), for some \(i \in [0, \ell] \), the algorithm adds edges from its center to the centers of all its neighboring clusters. The weight of each such edge is set to be the distance in \(G \) between its two endpoints. Therefore, the assertion of Lemma 2.7 also holds for the distributed construction. Thus, for every \(i \in [0, \ell] \) and a center \(C \) of a cluster \(C \in U_i \), for any every neighboring cluster center \(C' \) of \(r_C \), we have \(d_H(r_C, r_{C'}) = d_G(r_C, r_{C'}) \). As a result, Lemma 2.10 also holds for the distributed construction. In other words, for every pair of vertices \(u, v \in V \) such that all vertices on a shortest \(u - v \) path are \(U^{(i)} \) clustered, we have that

\[
d_H(u, v) \leq \alpha_i \cdot d_G(u, v) + \beta_i.
\]
Recall that $U_{-1} = \emptyset$, and $U^{(i)} = \bigcup_{j=-1}^{i} U_i$ for all $i \in [-1, \ell]$. As in the centralized construction, here we also have that the set $U^{(\ell)}$ is a partition of V. Hence, eq. (21) implies that for every pair of vertices $u, v \in V$ we have
\[
d_H(u, v) \leq \alpha_\ell \cdot d_G(u, v) + \beta_\ell.
\] (22)

By Lemma 2.12 we have that the recursion $\beta_0 = 0$ and $\beta_i = 2\beta_{i-1} + 6R_i$ for $i > 1$ solves to
\[
\beta_i = \sum_{j=0}^{i} 2^{i-j} \cdot 6R_j.
\] (23)

We will now provide an explicit bound on β_i. By eq. (20) for all $i \in [1, \ell]$, we have that $R_i \leq \frac{10}{\rho} \cdot \left(\frac{1}{\epsilon}\right)^{i-1}$. Since we assume $\epsilon < 1/10$, we have
\[
\beta_i \leq \sum_{j=0}^{i} 2^{i-j} \cdot 6R_j \leq \frac{60 \cdot 2^i}{\rho} \cdot \left[\frac{(\frac{1}{\epsilon})^{i+1}}{\frac{1}{\epsilon}}\right] = \frac{75}{\rho} \cdot \left(\frac{1}{\epsilon}\right)^{i-1}.
\] (24)

By eq. (24) and since $\epsilon \leq 1/10$, the recursion $\alpha_0 = 0$ and $\alpha_i = \alpha_{i-1} + \frac{\epsilon^i}{1-\epsilon} \cdot \beta_i$ for $i > 0$ solves to
\[
\alpha_i = 1 + \frac{90 \epsilon}{\rho} \cdot i.
\] (25)

By eqs. (22), (24) and (25) we derive the following corollary.

Corollary 3.10. For every pair of vertices $u, v \in V$ the distance between them in the emulator H satisfies:
\[
d_H(u, v) \leq \left(1 + \frac{90 \epsilon \cdot \ell}{\rho}\right) \cdot d_G(u, v) + \frac{75}{\rho} \cdot \left(\frac{1}{\epsilon}\right)^{\ell-1}.
\]

3.2.3 Analysis of the Running Time

In this section, we analyze the running time of the algorithm. We begin by analyzing the running time of a single phase $i \in [0, \ell - 1]$.

Superclustering Step. To detect the popular clusters, we execute Algorithm 2. By Theorem 3.1, the algorithm requires $O(\text{deg}_i \cdot \delta_i)$ time. By Theorem 3.2, constructing a ruling set for the popular clusters requires $O(\delta_i \cdot \frac{1}{\rho} \cdot n^\rho)$ time. By Lemma 3.3, Computing superclusters requires $O\left(\frac{\delta_i}{\rho} \cdot \text{deg}_i\right)$ time. Hence, the superclustering step of phase i can be executed in $O\left(\frac{\delta_i}{\rho} \cdot n^\rho\right)$ deterministic time in the CONGEST model.

Interconnection Step. The interconnection step consists of executing Algorithm 2 as in the superclustering step. Hence, the running time of the interconnection step is dominated by the running time of the superclustering step.

For the final phase ℓ, the superclustering step is skipped. The interconnection step of the final phase requires executing Algorithm 2 in $O(\text{deg}_\ell \cdot \delta_\ell)$ time. Recall that $\delta_i = (1/\epsilon) + 2R_i$, and also that by eq. (20) we have that $R_i \leq \frac{10}{\rho} \cdot \left(\frac{1}{\epsilon}\right)^{i-1}$, for every $i \in [0, \ell]$. In addition, recall that we assume $\rho > 25\epsilon$. Hence, for every $i \in [0, \ell]$ we have
\[
\delta_i = O((1/\epsilon)^i)
\] (26)

It follows that the running time of the entire algorithm is at most
\[
O(\text{deg}_\ell \cdot \delta_\ell) + \sum_{i=0}^{\ell-1} O\left(\frac{n^\rho \delta_i}{\rho}\right) = O\left(\frac{n^\rho}{\epsilon^\ell} + \frac{n^\rho}{\rho} \cdot \sum_{i=0}^{\ell-1} (1/\epsilon)^i\right) = O\left(\frac{n^\rho}{\epsilon^\ell}\right).
\] (27)
3.2.4 Rescaling

Define $\epsilon' = \frac{90\epsilon \ell}{\rho}$. Observe that we have $\epsilon = \frac{\epsilon' \rho}{90 \ell}$. We replace the condition $\epsilon < 1/10$ with the much stronger condition $\epsilon' < 1$. The assumption $\rho > 25\epsilon$ holds since $\epsilon' < 1$.

Recall that $\ell = \left\lceil \log \kappa \rho \right\rceil + \left\lceil \frac{\kappa + 1}{\kappa \rho} \right\rceil - 1$. Note that $\ell = \log \kappa \rho + \rho^{-1} + O(1)$ for all $\kappa \geq 2$. The additive term β_{ℓ} now translates to:

$$
\beta_{\ell} = \frac{75}{\rho} \cdot \left(\frac{1}{\epsilon} \right)^{\ell-1} = \frac{75}{\rho} \cdot \left(\frac{90 \ell}{\epsilon' \rho} \right)^{\ell-1} = \left(\log \kappa \rho + \rho^{-1} \right)^{\ell-1} \left(\frac{\log \kappa \rho + \rho^{-1}}{\epsilon' \rho} \right) + O(1).
$$

Denote

$$
\beta = \left(\frac{\log \kappa \rho + \rho^{-1}}{\epsilon \rho} \right)^{\ell-1} \left(\frac{\log \kappa \rho + \rho^{-1}}{\epsilon' \rho} \right) + O(1).
$$

By eq. [27], the running time of the algorithm is $O \left(\frac{n^\epsilon}{\epsilon} \right) = O \left(\beta n^\rho \right)$. Denote now $\epsilon = \epsilon'$.

Corollary 3.11. For any parameters $\epsilon < 1$, $\kappa \geq 2$ and $1/\kappa < \rho < 0.5$, and any n-vertex graph $G = (V, E)$, our algorithm constructs a $(1 + \epsilon, \beta)$-emulator with at most $n^{1+\frac{1}{\kappa}}$ edges in $O(\beta n^\rho)$ deterministic CONGEST time, where

$$
\beta = \left(\frac{\log \kappa \rho + \rho^{-1}}{\epsilon \rho} \right)^{\ell-1} \left(\frac{\log \kappa \rho + \rho^{-1}}{\epsilon' \rho} \right) + O(1).
$$

Note that by setting $\kappa = f(n) \cdot (\log n)$, for a function $f(n) = \omega(1)$, we obtain an emulator of size at most $n^{1+\frac{1}{\kappa} \log n} = n + o(n)$. By Corollary 2.14 we derive:

Corollary 3.12. For any parameters $\epsilon < 1$ and $\rho < 0.5$, and any n-vertex graph $G = (V, E)$, our algorithm constructs a $(1 + \epsilon, \beta)$-emulator with $n + o(n)$ edges in $O(\beta n^\rho)$ deterministic CONGEST time, where

$$
\beta = \left(\frac{\log(\rho \log n) + \rho^{-1}}{\epsilon' \rho} \right)^{\ell-1} \left(\frac{\log(\rho \log n) + \rho^{-1}}{\epsilon' \rho} \right) + O(1).
$$

3.3 Fast Centralized Construction

To devise an efficient construction of ultra-sparse near-additive emulators in the centralized model of computation, one can simulate the construction provided in Section 3.1 in the centralized model. Given an unweighted, undirected graph $G = (V, E)$ on n vertices, and parameters $\epsilon < 1$, $\kappa = 1, 2, \ldots$ and $\rho \in [1/\kappa, 1/2]$, our distributed algorithm runs in $O(\beta \cdot n^\rho)$ time. Note that in every communication round, at most one message of $O(\log n)$ bits is sent along each edge of the graph G. Thus, simulating this algorithm in the centralized model can be done in $O(|E| \cdot \beta \cdot n^\rho)$ time. In fact, such a centralized implementation is simpler than the distributed construction. This is because, in the centralized model, there is no need to inform both endpoints of every emulator edge (u, v) of the existence of the edge. Thus, constructing superclusters becomes much easier. Specifically, the execution of Task 3 is simpler, since there is no need to split trees of the forest F_i. The properties of the centralized construction are summarized in the following theorems.

Theorem 3.13. For any parameters $\epsilon < 1$, $\kappa \geq 2$ and $1/\kappa < \rho < 0.5$, and any n-vertex graph $G = (V, E)$, our algorithm deterministically constructs a $(1 + \epsilon, \beta)$-emulator with at most $n^{1+\frac{1}{\kappa}}$ edges in $O(|E| \cdot \beta n^\rho)$ time in the centralized model of computation, where

$$
\beta = \left(\frac{\log \kappa \rho + \rho^{-1}}{\epsilon \rho} \right)^{\ell-1} \left(\frac{\log \kappa \rho + \rho^{-1}}{\epsilon' \rho} \right) + O(1).
$$
Note that by setting $\kappa = f(n) \cdot (\log n)$, for a function $f(n) = \omega(1)$, we obtain an emulator of size at most $n^{1+\frac{1}{f(n)\log n}} = n + o(n)$. By Corollary 2.14 we derive:

Theorem 3.14. For any parameters $\epsilon < 1$ and $\rho < 0.5$, and any n-vertex graph $G = (V, E)$, our algorithm deterministically constructs a $(1 + \epsilon, \beta)$-emulator with $n + o(n)$ edges in $O(|E| \cdot \beta n^\rho)$ time in the centralized model of computation, where

$$\beta = \left(\frac{\log(\rho \log n) + \rho^{-1}}{\epsilon \rho}\right) \log(\rho \log n) + \rho^{-1} + O(1).$$

In fact, it is easy to see that the factor β can be shaved off from this running time. We omit the details in this version of the paper. (The same is true concerning both Theorems 3.13 and 3.14)

4 Near-Additive Spanners

In this section, we show how one can modify the construction given in Section 3 to obtain sparse near-additive spanners. Specifically, given an unweighted, undirected graph $G = (V, E)$, and parameters $\epsilon > 0$, $\kappa = 2, 3, \ldots$ and $\rho \in [1/k, 1/2]$, our current algorithm constructs a $(1 + \epsilon, \beta)$-spanner with $O(n^{1+\frac{\epsilon}{\kappa}})$ edges, in $O(\beta n^\rho)$ deterministic CONGEST time, where

$$\beta = \left(\frac{\log \kappa \rho + \rho^{-1}}{\epsilon \rho}\right) \log \kappa \rho + \rho^{-1} + O(1 + \log(3) \cdot \kappa).$$

(28)

We follow the construction described in Section 3.1. We define $H = \emptyset$ and proceed in phases. Throughout the algorithm, instead of adding to H, we will add to the spanner the entire path from u to v a message to v along a path from G, of weight at most d. In the current version of the algorithm, we will add to the spanner the entire path from u to v, along which u informs v of the new edge. As a result, the construction of superclusters becomes simpler, because the message sent from u to v contains only the details of v, and does not need to contain any information regarding u or the edge (u, v). Therefore, there is no need to define hub-vertices as in Task 3 of the superclustering step (see Section 3.1.2). Thus, a single supercluster \tilde{C} is formed from every tree T_i in the forest F_i. Observe that Lemma 3.5 (and as a result, eq. (15)) and Lemma 3.8 hold under this modification.

The distance threshold sequence remains as in Section 3.1. To obtain sparse spanners, we adopt the degree sequence used in [EN17a], and as a result, the number of phases of the algorithm slightly increases. The analysis of the number of edges in the current construction is closely related to the respective analysis in [EN17a].

Let $\gamma = \max\{2, \log \log \kappa\}$. Define $i_0 = \min\{\lfloor \log \gamma \rho \rfloor, \lfloor \kappa \rho \rfloor\}$. For the exponential growth stage, which consists of phases $i \in [0, i_0]$, we set $deg_i = n^{\frac{2}{i} - \frac{1}{\gamma} + \frac{1}{2}}$. Define $i_0 + 1$ as a transition phase, and set $deg_{i_0 + 1} = n^{\rho/2}$. For the fixed growth stage, which consists of phases $i \in [i_0 + 1, i' = i_0 + \lfloor 1/\rho - 1/2 \rfloor]$, set $deg_i = n^\rho$. We will show that $|P_{i'}| \leq n^\rho$. Therefore, there are no popular clusters in the last phase, and the superclustering step can be safely skipped.

By argument similar to those used in Section 3.2.2 and 3.2.4, one can show that the additive term β of such a construction is

$$\beta = \left(\frac{\log \kappa \rho + \rho^{-1}}{\epsilon \rho}\right) \log \kappa \rho + \rho^{-1} + O(1 + \log(3) \cdot \kappa).$$

(29)
In addition, by arguments similar to those used in Section 3.2.3 and 3.2.4, one can show that the running time of the algorithm can be upper-bounded by

\[O(\beta n^\rho) . \] (30)

4.1 Analysis of the Number of Edges

In this section, we analyze the number of edges added to the spanner \(H \) by every phase of the algorithm. We begin by analyzing the number of superclustering edges added to the spanner \(H \) by every phase \(i \in [0, \ell' - 1] \) of the algorithm.

Observe that during each phase \(i \), the superclustering edges added to the spanner \(H \) all belong to a forest \(F_i \). Hence, each phase contributes at most \(n \) superclustering edges. Since there are \(\ell' + 1 = O(\log \gamma \kappa \rho + 1/\rho) \) phases, this implies that the number of superclustering edges in the spanner \(H \) is at most

\[O(n(\log \gamma \kappa \rho + 1/\rho)) = O(n(\log \rho + 1/\rho)). \] (31)

Next, we analyze the number of interconnection edges added to the spanner \(H \) by every phase \(i \in [0, \ell'] \). Observe that interconnection edges are added only by centers \(r_C \) of clusters \(C \in U_i \). The center \(r_C \) is charged with paths to all its neighboring clusters. Since \(C \in U_i \), we know that \(C \) is not popular. Therefore, it is charged with at most \(\delta_i \) paths. In addition, by definition and by eq. (26), the length of each such path is at most \(\delta_i = O \left(\left(\frac{90\ell'}{\rho \epsilon} \right)^i \right) \). Hence, the number of edges charged to each center of a cluster in \(U_i \) can be upper-bounded by

\[O \left(\delta_i \cdot \left(\frac{90\ell'}{\rho \epsilon} \right)^i \right) . \]

We restrict ourselves to the case where \(\frac{90\ell'}{\rho \epsilon} \leq \frac{n^{1/2}}{2} \), which holds whenever \(\kappa \leq \frac{c' \log n}{\log(\ell'/\rho \epsilon)} \), for a sufficiently small constant \(c' \). Observe that \(U_i \subseteq P_i \). The number of interconnection edges added to the spanner \(H \) by each phase \(i \) can now be upper-bounded by

\[O \left(|P_i| \cdot \delta_i \cdot \left(\frac{90\ell'}{\rho \epsilon} \right)^i \right) . \] (32)

In the next three lemmas, we bound the size of \(P_i \) for the exponential growth stage, the transition phase, and the fixed growth stage, respectively.

Lemma 4.1. For \(i \in [0, i_0 + 1] \), we have \(|P_i| \leq n^{1 - \frac{2i - 1 - i - \frac{i}{\kappa}}{2\kappa}} \).

Proof. We will prove the lemma by induction on the index of the phase \(i \).

For \(i = 0 \), the right-hand side is \(n^{1 - \frac{2^0 - 1 - 0}{2\kappa}} = n \). Thus the claim is trivial.

Assume that the claim holds for some \(i \in [0, \ell' - 1] \) and prove it also holds for \(i + 1 \). By eq. (15) we have that \(|P_{i+1}| \leq |P_i| \cdot \delta_i^{-1} \).

Together with the induction hypothesis, and since for \(i, i \in [0, i_0] \), we have \(\delta_i = n^{\frac{2^i - 1 - i}{2\kappa} + \frac{1}{\kappa}} \), we have that

\[|P_{i+1}| \leq |P_i| \cdot \delta_i^{-1} \leq n^{1 - \frac{2^i - 1 - i}{2\kappa} - \frac{i}{\kappa}} \cdot n^{\frac{2^i - 1 - i}{2\kappa} - \frac{1}{\kappa}} = n^{1 - \frac{2^{i+1} - 1 - (i+1) - \frac{i+1}{\kappa}}{2\kappa}}. \]

\(\square \)
Recall that $\gamma \geq 2$. Observe that by eq. (32) and Lemma 4.1, we have that the number of edges added to the spanner H by every phase $i \in [0, i_0]$ is at most

$$O \left(|P_i| \cdot \deg_i \cdot \left(\frac{n^{1/2}}{\log n} / 2 \right)^i \right) = O \left(n^{1 - \frac{2^i - 1}{\gamma \kappa} \cdot \frac{1}{\kappa}} \cdot n^{\frac{2^i - 1}{\gamma \kappa} \cdot \frac{1}{\kappa}} \cdot n^{\frac{1}{2}} \cdot 2^{-i} \right) = O \left(2^{-i} n^{1 + \frac{1}{2}} \right).$$

(33)

Lemma 4.2. The size of the input collection P_{i_0+1} for the transition phase satisfies $|P_{i_0+1}| \leq n^{1-\rho}$.

Proof. By Lemma 4.1, we have

$$|P_{i_0+1}| \leq n^{1 - \frac{2^{i_0+1} - 1}{\gamma \kappa} \cdot \frac{i_0+1}{\kappa}} = n^{1 - \frac{2^{i_0+1} - 1}{\gamma \kappa} \cdot \frac{i_0+1}{\kappa}} = n^{1 - \frac{2^{i_0+1} - 1}{\gamma \kappa} \cdot \frac{i_0+1}{\kappa}} = n^{1 - \frac{2^{i_0+1} - 1}{\gamma \kappa} \cdot \frac{(i_0+1)(\gamma-1)}{\gamma \kappa}}.$$

Observe that since $i_0 > 0$ and $\gamma \geq 2$, we have $\frac{(i_0+1)(\gamma-1)}{\gamma \kappa} \geq \frac{1}{\gamma \kappa}$.

If $i_0 = \lfloor \log \gamma \kappa \rho \rfloor$, then

$$|P_{i_0+1}| \leq n^{1 - \frac{2^{i_0+1} - 1}{\gamma \kappa} \cdot \frac{\log \gamma \kappa \rho + 1}{\gamma \kappa}} \leq n^{1 - \frac{\gamma \kappa \rho - 1}{\gamma \kappa} + \frac{1}{\gamma \kappa}} = n^{1 - \rho}.$$

(34)

Otherwise, if $i_0 = \lfloor \kappa \rho \rfloor$, then

$$|P_{i_0+1}| \leq n^{1 - \frac{2^{i_0+1} - 1}{\gamma \kappa} \cdot \frac{\kappa \rho (\gamma-1) - \gamma \kappa \rho}{\gamma \kappa}} = n^{1 - \frac{2^{i_0+1} - 2}{\gamma \kappa} \cdot \frac{\kappa \rho}{\gamma \kappa}} \leq n^{1 - \rho}.$$

(35)

Recall that $i_0 \leq \lfloor \kappa \rho \rfloor$. Observe that by eq. (32) and Lemma 4.2, we have that the number of edges added to the spanner H by phase $i_0 + 1$ is at most

$$O \left(|P_{i_0+1}| \cdot \deg_{i_0+1} \cdot \left(\frac{n^{1/2}}{\log n} / 2 \right)^{i_0+1} \right) = O \left(2^{-(i_0+1)} n^{1 - \frac{1}{2} + \frac{\log \gamma \kappa \rho}{\gamma \kappa}} \right) = O \left(2^{-(i_0+1)} n^{\frac{1}{2}} \right).$$

(36)

Lemma 4.3. For every $j \in [2, \ell' - i_0]$ we have $|P_{i_0+j}| \leq n^{1-\rho/2 - (j-1)\rho}$.

Proof. The proof is by induction on the index j. For $j = 2$, by Lemma 4.2 we have $|P_{i_0+1}| \leq n^{1-\rho}$. In addition, by eq. (15) we have that $|P_{i_0+2}| \leq |P_{i_0+1}| \cdot \deg_{i_0+1}^{-1}$. Recall that $\deg_{i_0+1} = n^{\rho/2}$. Hence we have $|P_{i_0+1}| \leq n^{1-\rho-\rho/2}$ and so the claim holds.

Assume that the claim holds for some $j \in [2, \ell' - i_0 - 1]$ and prove it holds for $j+1$. Recall that $\deg_{i_0+j} = n^\rho$. By eq. (15) we have that $|P_{i_0+j+1}| \leq |P_{i_0+j}| \cdot \deg_{i_0+j}^{-1}$. Together with the induction hypothesis, we have

$$|P_{i_0+j}| \leq n^{1-\rho/2 - (j-1)\rho} \cdot n^{-\rho} = n^{1-\rho/2 - (j+1-1)\rho}.$$

(37)

Recall that $\ell' = i_0 + \lfloor 1/\rho - 1/2 \rfloor$. Hence, by Lemma 4.3 we have

$$|P_{\ell'}| \leq n^{1-\rho/2 - ((1/\rho - 1/2) - 1)\rho} \leq n^{1-\rho/2 - (3/2)\rho} = n^\rho.$$

Thus, there are no popular clusters during phase ℓ', and eq. (32) holds also for the last phase.
Recall that \(i_0 \leq \lceil \kappa \rho \rceil \), and therefore \(\frac{i_0}{\kappa n} \leq \frac{\rho}{2} \). It follows that

\[
\left(\frac{n^{1/2}}{2} \right)^{i_0} = 2^{-i_0 n^{i_0} \frac{1}{2\kappa}} \leq 2^{-i_0 n^{\frac{\rho}{2}}}.
\]

Also, recall that \(1/\kappa < \rho \). Observe that by eq. (32) and Lemma 4.3, we have that the number of edges added to the spanner \(H \) by every phase \(i_0 + j \), for \(j \in [2, \ell' - i_0] \) is at most

\[
O \left(|P_{i_0 + j}| \cdot \deg_{i_0 + j} \cdot \left(n^{1/2} / 2 \right)^{i_0 + j} \right) = O \left(n^{1-\rho/2 - (j-1) \rho} \cdot n^\rho \cdot n^{\rho/2} \cdot 2^{-i_0} \left(n^{1/2} / 2 \right)^j \right)
= O \left(2^{-i_0 - j} n^{1-(j-2) \frac{1}{\kappa} + \frac{j}{2\kappa}} \right)
= O \left(2^{-i_0 - j} n^{1 + \frac{1}{\kappa}} \right).
\]

By eqs. (31), (33), (36) and (38) we have that the overall number of edges added to the spanner \(H \) by all phases of the algorithm is

\[
O(n(\log \kappa \rho + \frac{1}{\rho})) + \sum_{i=0}^{i_0} O \left(2^{-i} n^{1 + \frac{1}{\kappa}} \right) + O \left(2^{-i_0} n^{1 + \frac{1}{\kappa}} \right) + \sum_{j=2}^{\ell' - i_0} O \left(2^{-i_0 - j} n^{1 + \frac{1}{\kappa}} \right) = O \left(n^{1 + \frac{1}{\kappa}} \right).
\]

Recall that we restrict ourselves to the case where \(\kappa \leq \frac{c' \log n}{\log((\ell' / (\rho \kappa))^2)} \), for a sufficiently small constant \(c' \). Also recall that \(\ell' \leq \lceil \log(\gamma \kappa) \rceil + \lceil 1/\rho - 1/2 \rceil \). Note that

\[
\frac{c' \log n}{\log((\ell' / (\rho \kappa))^2)} \geq \frac{\Omega(\log n)}{\log(1/\epsilon) + \log(1/\rho) + \log^{(3)} n},
\]

where \(\log^{(3)} n \) is the three-times iterated logarithm. The following corollary summarizes the properties of current construction.

Corollary 4.4. For any unweighted, undirected \(n \)-vertex graph \(G = (V, E) \), and any parameters \(\epsilon < 1, \kappa \in [2, \frac{\log(1/\epsilon) + \log(1/\rho) + \log^{(3)} n}{\log(1/\rho)}] \), for a constant \(c \) and \(\rho \in [1/\kappa, 1/2] \), our algorithm computes a \((1 + \epsilon, \beta)\)-spanner with \(O(n^{1 + \frac{1}{\kappa}}) \) edges in \(O(\beta n^\rho) \) deterministic CONGEST time, where

\[
\beta = \left(\frac{\log \kappa \rho + \rho^{-1}}{\epsilon \rho} \right)^{\log \kappa \rho + \rho^{-1} + O(1 + \log^{(3)} \kappa)}.
\]

To obtain the sparsest spanners that one can get with this construction, we set \(\epsilon > 0 \) to be an arbitrarily small constant, and \(\kappa = \frac{c' \log n}{\log^{(3)} n} \). Under this assignment of parameters, the size of the spanner is just \(O(n \log \log n) \), and the additive error is \(\beta = O \left(\frac{\log \log n + 1/\rho}{\rho} \log n + 1/\rho \right) \).

References

[AB16] Amir Abboud and Greg Bodwin. The 4/3 additive spanner exponent is tight. In Daniel Wichs and Yishay Mansour, editors, *Proceedings of the 48th Annual ACM SIGACT Symposium on Theory of Computing, STOC 2016, Cambridge, MA, USA, June 18-21, 2016*, pages 351–361. ACM, 2016.

[ABP18] Amir Abboud, Greg Bodwin, and Seth Pettie. A hierarchy of lower bounds for sublinear additive spanners. *SIAM J. Comput.*, 47(6):2203–2236, 2018.
Ingo Althöfer, Gautam Das, David P. Dobkin, Deborah Joseph, and José Soares. On sparse spanners of weighted graphs. *Discrete & Computational Geometry*, 9:81–100, 1993.

Alexandr Andoni, Clifford Stein, and Peilin Zhong. Parallel approximate undirected shortest paths via low hop emulators. In Konstantin Makarychev, Yury Makarychev, Madhur Tulsiani, Gautam Kamath, and Julia Chuzhoy, editors, *Proceedings of the 52nd Annual ACM SIGACT Symposium on Theory of Computing, STOC 2020, Chicago, IL, USA, June 22-26, 2020*, pages 322–335. ACM, 2020.

Aaron Bernstein and Liam Roditty. Improved dynamic algorithms for maintaining approximate shortest paths under deletions. In *Proceedings of the Twenty-Second Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2011, San Francisco, California, USA, January 23-25, 2011*, pages 1355–1365, 2011.

Keren Censor-Hillel, Michal Dory, Janne H. Korhonen, and Dean Leitersdorf. Fast approximate shortest paths in the congested clique. In *Proceedings of the 2019 ACM Symposium on Principles of Distributed Computing, PODC 2019, Toronto, ON, Canada, July 29 - August 2, 2019*, pages 74–83, 2019.

Michael B. Cohen, Rasmus Kyng, Gary L. Miller, Jakub W. Pachocki, Richard Peng, Anup B. Rao, and Shen Chen Xu. Solving SDD linear systems in nearly $m \log^{1/2} n$ time. In David B. Shmoys, editor, *Symposium on Theory of Computing, STOC 2014, New York, NY, USA, May 31 - June 03, 2014*, pages 343–352. ACM, 2014.

Edith Cohen. Polylog-time and near-linear work approximation scheme for undirected shortest paths. In *Proceedings of the Twenty-Sixth Annual ACM Symposium on Theory of Computing, 23-25 May 1994, Montréal, Québec, Canada*, pages 16–26, 1994.

Devdatt P. Dubhashi, Alessandro Mei, Alessandro Panconesi, Jaikumar Radhakrishnan, and Aravind Srinivasan. Fast distributed algorithms for (weakly) connected dominating sets and linear-size skeletons. *J. Comput. Syst. Sci.*, 71(4):467–479, 2005.

Bilel Derbel, Mohamed Mosbah, and Akka Zemmari. Fast distributed graph partition and application. In *20th International Parallel and Distributed Processing Symposium (IPDPS 2006), Proceedings, 25-29 April 2006, Rhodes Island, Greece*. IEEE, 2006.

Michal Dory and Merav Parter. Exponentially faster shortest paths in the congested clique. In Yuval Emek and Christian Cachin, editors, *PODC ’20: ACM Symposium on Principles of Distributed Computing, Virtual Event, Italy, August 3-7, 2020*, pages 59–68. ACM, 2020.

Michael Elkin. Computing almost shortest paths. In *Proceedings of the Twentieth Annual ACM Symposium on Principles of Distributed Computing, PODC 2001, Newport, Rhode Island, USA, August 26-29, 2001*, pages 53–62, 2001.

Michael Elkin and Shaked Matar. Near-additive spanners in low polynomial deterministic CONGEST time. In *Proceedings of the 2019 ACM Symposium on Principles of Distributed Computing, PODC 2019, Toronto, ON, Canada, July 29 - August 2, 2019.*, pages 531–540, 2019.
[EN16a] Michael Elkin and Ofer Neiman. Hopsets with constant hopbound, and applications to approximate shortest paths. In IEEE 57th Annual Symposium on Foundations of Computer Science, FOCS 2016, 9-11 October 2016, Hyatt Regency, New Brunswick, New Jersey, USA, pages 128–137, 2016.

[EN16b] Michael Elkin and Ofer Neiman. On efficient distributed construction of near optimal routing schemes: Extended abstract. In George Giakkoupis, editor, Proceedings of the 2016 ACM Symposium on Principles of Distributed Computing, PODC 2016, Chicago, IL, USA, July 25-28, 2016, pages 235–244. ACM, 2016.

[EN17a] Michael Elkin and Ofer Neiman. Efficient algorithms for constructing very sparse spanners and emulators. In Proceedings of the Twenty-Eighth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2017, Barcelona, Spain, Hotel Porta Fira, January 16-19, pages 652–669, 2017.

[EN17b] Michael Elkin and Ofer Neiman. Linear-size hopsets with small hopbound, and distributed routing with low memory. CoRR, abs/1704.08468, 2017.

[EN20] Michael Elkin and Ofer Neiman. Near-additive spanners and near-exact hopsets, A unified view. Bull. EATCS, 130, 2020.

[EP01] Michael Elkin and David Peleg. (1+epsilon, beta)-spanner constructions for general graphs. In Proceedings on 33rd Annual ACM Symposium on Theory of Computing, July 6-8, 2001, Heraklion, Crete, Greece, pages 173–182, 2001.

[EP15] Michael Elkin and Seth Pettie. A linear-size logarithmic stretch path-reporting distance oracle for general graphs. In Proceedings of the Twenty-Sixth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2015, San Diego, CA, USA, January 4-6, 2015, pages 805–821, 2015.

[EZ04] Michael Elkin and Jian Zhang. Efficient algorithms for constructing (1+, varepsilon;,-beta)-spanners in the distributed and streaming models. In Soma Chaudhuri and Shay Kutten, editors, Proceedings of the Twenty-Third Annual ACM Symposium on Principles of Distributed Computing, PODC 2004, St. John’s, Newfoundland, Canada, July 25-28, 2004, pages 160–168. ACM, 2004.

[HKN16] Monika Henzinger, Sebastian Krinninger, and Danupon Nanongkai. A deterministic almost-tight distributed algorithm for approximating single-source shortest paths. In Proceedings of the 48th Annual ACM SIGACT Symposium on Theory of Computing, STOC 2016, Cambridge, MA, USA, June 18-21, 2016, pages 489–498, 2016.

[HKN18] Monika Henzinger, Sebastian Krinninger, and Danupon Nanongkai. Decremental single-source shortest paths on undirected graphs in near-linear total update time. J. ACM, 65(6):36:1–36:40, 2018.

[HP17] Shang-En Huang and Seth Pettie. Thorup-zwick emulators are universally optimal hopsets. CoRR, abs/1705.00327, 2017.

[HP18] Shang-En Huang and Seth Pettie. Lower bounds on sparse spanners, emulators, and diameter-reducing shortcuts. In David Eppstein, editor, 16th Scandinavian Symposium and Workshops on Algorithm Theory, SWAT 2018, June 18-20, 2018, Malmö, Sweden, volume 101 of LIPIcs, pages 26:1–26:12. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2018.
Shay Halperin and Uri Zwick. Optimal randomized EREW PRAM algorithms for finding spanning forests and for other basic graph connectivity problems. In Éva Tardos, editor, *Proceedings of the Seventh Annual ACM-SIAM Symposium on Discrete Algorithms, 28-30 January 1996, Atlanta, Georgia, USA*, pages 438–447. ACM/SIAM, 1996.

Arun Jambulapati and Aaron Sidford. Ultrasparse ultrasparsifiers and faster laplacian system solvers. *CoRR*, abs/2011.08806, 2020.

Jonathan A. Kelner, Yin Tat Lee, Lorenzo Orecchia, and Aaron Sidford. An almost-linear-time algorithm for approximate max flow in undirected graphs, and its multicommodity generalizations. In Chandra Chekuri, editor, *Proceedings of the Twenty-Fifth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2014, Portland, Oregon, USA, January 5-7, 2014*, pages 217–226. SIAM, 2014.

Alexandra Kolla, Yury Makarychev, Amin Saberi, and Shang-Hua Teng. Subgraph sparsification and nearly optimal ultrasparsifiers. In *Proceedings of the 42nd ACM Symposium on Theory of Computing, STOC 2010, Cambridge, Massachusetts, USA, 5-8 June 2010*, pages 57–66, 2010.

Fabian Kuhn, Yannic Maus, and Simon Weidner. Deterministic distributed ruling sets of line graphs. In *Structural Information and Communication Complexity - 25th International Colloquium, SIROCCO 2018, Ma’ale HaHamisha, Israel, June 18-21, 2018, Revised Selected Papers*, pages 193–208, 2018.

Michael Kapralov and Rina Panigrahy. Spectral sparsification via random spanners. In Shafi Goldwasser, editor, *Innovations in Theoretical Computer Science 2012, Cambridge, MA, USA, January 8-10, 2012*, pages 393–398. ACM, 2012.

Jakub Lacki and Yasamin Nazari. Near-optimal decremental approximate multi-source shortest paths. *CoRR*, abs/2009.08416, 2020.

Christoph Lenzen and David Peleg. Efficient distributed source detection with limited bandwidth. In Panagiota Fatourou and Gadi Taubenfeld, editors, *ACM Symposium on Principles of Distributed Computing, PODC ’13, Montreal, QC, Canada, July 22-24, 2013*, pages 375–382. ACM, 2013.

Christoph Lenzen and Boaz Patt-Shamir. Fast partial distance estimation and applications. In Chryssis Georgiou and Paul G. Spirakis, editors, *Proceedings of the 2015 ACM Symposium on Principles of Distributed Computing, PODC 2015, Donostia-San Sebastián, Spain, July 21 - 23, 2015*, pages 153–162. ACM, 2015.

David Peleg. Distributed computing: A locality-sensitive approach. 01 2000.

Seth Pettie. Low distortion spanners. In Lars Arge, Christian Cachin, Tomasz Jurzdzinski, and Andrzej Tarlecki, editors, *Automata, Languages and Programming, 34th International Colloquium, ICALP 2007, Wroclaw, Poland, July 9-13, 2007, Proceedings*, volume 4596 of *Lecture Notes in Computer Science*, pages 78–89. Springer, 2007.

Seth Pettie. Distributed algorithms for ultrasparse spanners and linear size skeletons. In *Proceedings of the Twenty-Seventh Annual ACM Symposium on Principles of Distributed Computing, PODC 2008, Toronto, Canada, August 18-21, 2008*, pages 253–262, 2008.
[Pet09] Seth Pettie. Low distortion spanners. *ACM Trans. Algorithms*, 6(1):7:1–7:22, 2009.

[Pet10] Seth Pettie. Distributed algorithms for ultrasparse spanners and linear size skeletons. *Distributed Computing*, 22(3):147–166, 2010.

[RZ04] Liam Roditty and Uri Zwick. On dynamic shortest paths problems. In *Algorithms - ESA 2004, 12th Annual European Symposium, Bergen, Norway, September 14-17, 2004, Proceedings*, pages 580–591, 2004.

[SEW13] Johannes Schneider, Michael Elkin, and Roger Wattenhofer. Symmetry breaking depending on the chromatic number or the neighborhood growth. *Theor. Comput. Sci.*, 509:40–50, 2013.

[She13] Jonah Sherman. Nearly maximum flows in nearly linear time. In *54th Annual IEEE Symposium on Foundations of Computer Science, FOCS 2013, 26-29 October, 2013, Berkeley, CA, USA*, pages 263–269. IEEE Computer Society, 2013.

[ST04] Daniel A. Spielman and Shang-Hua Teng. Nearly-linear time algorithms for graph partitioning, graph sparsification, and solving linear systems. In László Babai, editor, *Proceedings of the 36th Annual ACM Symposium on Theory of Computing, Chicago, IL, USA, June 13-16, 2004*, pages 81–90. ACM, 2004.

[TZ06] Mikkel Thorup and Uri Zwick. Spanners and emulators with sublinear distance errors. In *Proceedings of the Seventeenth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2006, Miami, Florida, USA, January 22-26, 2006*, pages 802–809, 2006.