RESEARCH ARTICLE

PHYTOCHEMICAL ANALYSIS OF LEPIDIUM SATIVUM USING UV-VIS AND GC-MS.

Jency Malar .M.S1, J. Shifa Vanmathi 2 and K.Chairman3.

1. Research scholar, Department of Zoology, Manonmaniam Sundaranar University, Abishekpattpi.
2. Guest faculty, PG and Research Department of Zoology, St.John’s College, Palayamkottai, Tirunelveli. Manonmaniam Sundaranar University, Abishekpattpi.
3. Guest faculty, UG and PG Department of Microbiology, Kamarajar Govt. Arts College, Surandai, Manonmaniam Sundaranar University, Abishekpattpi.

Manuscript Info

Abstract

The present study was carried out to characterize the bioactive constituents present in seed and whole plant extracts of Lepidium sativum using UV-VIS and GC-MS. The crude extracts were scanned in the wavelength ranging from 200 to 800 nm by using Perkin Elmer spectrophotometer and the characteristic peaks were detected. For GC-MS analysis about 25g of powdered plant material was uniformly packed into a thimble and extracted with 150ml of ethanol as solvent using this plant extract was prepared. Helium gas (99.999%) was used as the carrier gas at constant flow rate 1ml/min and an injection volume of 2μl was employed (split ratio of 10:1); Injector temperature 80°C; Ion-source temperature 250°C. The oven temperature was programmed from 110°C (isothermal for 2 min.), with an increase of 10°C/min, to 200°C, then 5°C/min to 250°C, ending with a 9min isothermal at 280°C. Mass spectra were taken at 70 eV; a scan interval of 0.5seconds and fragments from 45 to 450 Da. The UV-VIS profile showed different peaks ranging from 280 and 290 nm with absorbance values of 0.26 and 3.98 respectively. The spectra for phenolic compounds (tannins) and flavonoids typically lie in the range of 230-290 nm. The results of the GC-MS analysis provide different peaks determining the presence of 28 phytochemical compounds in seed extract and the major phyto constituents were (Peak area 16.23%), o-ethyl S-2-Dimethylaminoethyl Ethylphos, (14.37%) Oleoyl chloride and (12.50%) cis-9-Hexadecenal (8.97%). Phytochemical compounds present in whole plant extract was 79 and the major phyto constituents were Eugenol (7.69 %); Hexadecanoic Acid, Ethyl Ester (7.50%) and Stigmast-5-EN-3-OL, (3.BETA.) (7.14 %) were reported by GC-MS analysis. The results revealed the major compounds are fatty acid esters and alkaloids which showed antioxidant, antimicrobial and anticancer activities.

Corresponding Author:- Jency Malar.
Address:- Research scholar, Department of Zoology, Manonmaniam Sundaranar University, Abishekapattpi.
Introduction:
Herbal medicines are in great demand in both developed and the developing countries in primary healthcare because of their great efficacy and little or no side effects. In India, the indigenous system of medicine namely Ayurvedic, Siddha and Unani have been in existence for several centuries. These traditional systems of medicine together with homoeopathy and folklore medicine continue to play a significant role largely in the health care system of the population (Yadav et al., 2011,). The tribals and rural population of India are highly dependent on medicinal plant therapy for meeting their health care needs. This attracted the attention of several botanist and plant scientists of several medicinal plants and there was a spurt of scientific literature. (Cerutti, 1991).

Plants are the best sources for chemical ingredients or phytochemical agents for cure of different disease. Medicinal plants are an inexhaustible source of molecules with very different biological and pharmacological activities(Kshitij Chauhan et al, 2012). Lepidium sativum Linn (Brassicaceae) commonly known as Asaliyo, is an erect, glabrous annual herb cultivated as a salad plant throughout India, Europe and United States. The seeds are used in chronic enlargement of liver and spleen, as carminative adjunct to purgatives, in skin diseases, dysentery, diarrhea, asthma and in liver complaints (shukla et al., 2015).

Lepidium sativum, Family Brassicaceae, is a fast-growing, edible plant botanically related to watercress and mustard and known to share their peppery, tangy flavour and aroma (Prajapati et al., 2014). In some regions, garden cress is known as garden pepper cress, pepper grass or pepperwort. Cress is one of the easiest vegetables to grow as it can grow just about anywhere. The plant isued as an antiasthmatic; anti-scorbutic; aperient; diuretic; galactogogue; poultice and stimulant (Cassidy, 2002).

The total glucosinolates of the seeds of Lepidium sativum revealed the presence of two glucosinolates, glucotropaeolin and gluconasturin. On the other hand, four glucosinolates were isolated from the fresh herb and were identified as 2 – ethyl butyl glucosinolate, methyl glucosinolate (glucocapparin), butyl glucosinolate in addition to the glucotropaeolin which was isolated also from the seeds. The glucosinolates were identified by (UV, MS). The individual corresponding isothiocyanates (aglucose) which was obtained by enzymatic hydrolysis of the individual glucosinolates were identified using GC / MS technique (Radwan et al., 2007).

Materials and Methods:-
Collection of plant materials
Fresh materials of Lepidium sativum was grown in the laboratory of Sri Paramakalyani College, Alwarkurichi, Tamilnadu, India. The plant was dried in shade and was pulverized using mortar and pestle separately and stored in a closed vessel for further use.

Preparation of plant extracts - Solvent extraction
Crude plant extract was prepared by Soxhlet extraction method. About 25g of powdered plant material was uniformly packed into a thimble and extracted with 150ml of ethanol as solvent. The process of extraction was continued for 24h till the solvent in siphon tube of an extractor become colourless. After that the extract was taken in a beaker and kept on hot plate and heated at 30-40ºC till the solvent got evaporated. Dried extract was kept in refrigerator at 4ºC for their future use in phytochemical analysis (Martins et al., 2001).

Ultraviolet–visible spectroscopy analysis:
The extracts of L.sativum were examined under visible and UV light for proximate analysis. For UV-VIS spectrophotometer analysis, the extracts were centrifuged at 3000 rpm for 10 min and filtered through Whatmann No. 1filter paper by using high pressure vacuum pump. The sample is diluted to 1:10 with the ethanol. The extracts were scanned in the wavelength ranging from 200-800 nm using Spectrophotometer and the characteristic peaks were detected. The peak values of the UV-VIS were recorded. Each and every analysis was repeated twice for the spectrum confirmation (AH and Aysel 2003).

Gas Chromatography Mass Spectrum (GC-MS) Analysis:
GC-MS analysis of the extract was performed using a Thermo GC –Trace ultra Ver: 5.0 system and Gas chromatograph interfaced to a Mass spectrometer (GC-MS)(Perkin-Elmer GC Clarus 500 system) equipped with TR 5 – MS capillary standard non-polar column (30mmX0.25mm 1D X 1 μMdf). For GC-MS detection, an electron ionization system with ionizing energy of 70 eV was used. Helium gas (99.999%) was used as the carrier gas at
constant flow rate 1ml/min and an injection volume of 2μl was employed (split ratio of 10:1); Injector temperature 80°C; Ion-source temperature 250°C. The oven temperature was programmed from 110°C (isothermal for 2 min.), with an increase of 10°C/min, to 200°C, then 5°C/min to 250°C, ending with a 9min isothermal at 280°C. Mass spectra were taken at 70 eV; a scan interval of 0.5seconds and fragments from 45 to 450 Da. Relative quantities of the chemical compounds present in each of the extracts of *L. sativum* was expressed as percentage based on peak area produced in the chromatogram. (Merlin et al., 2001).

Results and Discussion:

UV-visible spectrographic analysis:

The UV-VIS profile of the plant extract was studied at a wavelength range of 200 to 800 nm. Two major peaks were recorded at 280 and 290 nm with absorbance values of 0.26 and 3.98 respectively. (Table 2.4 and Figure 2.2) The spectra for phenolic compounds (tannins) and flavonoids typically lie in the range of 230-290 nm. The result of UV-VIS spectroscopic analysis confirms the presence of tannins and flavonoids in the ethanolic extract of *L. sativum*.

The phenolic contents of methanolic extract of *Lepidium sativum* was determined by UV spectrophotometric method. The total content of phenolic compounds was found to be 46.0 mg GAE/100 g in methanolic extract of *Lepidium sativum*. The flavonoids content was determined by UV spectrophotometric method. The total content of flavonoids was found to be 4.28 mg QE/100 g in methanolic extract of *Lepidium sativum* respectively (RizwanAhamadet al., 2015).

Gas Chromatography Mass Spectrum (GC-MS) Analysis:

Bioactive compounds are chemical compounds often referred to as secondary metabolites. The identification of bioactive chemical compounds is based on the peak area, retention time molecular weight and molecular formula are presented in table 2.5 and figure 2.3 and 2.5.1. Eleven major bioactive compounds were identified in the ethanol seed extract of *Lepidium sativum*. GC-MS analysis of *Lepidium sativum* seed extracts revealed the existence of Benzyl nitrile (Peak area 16.23%), o-ethyl S-2-DIMETHYLAMINOETHYL ETHYLPHOS (14.37%), Oleoyl chloride (12.50%), cis-9-Hexadecenal (8.97%), 3',5'-Dimethoxyacetophenone (7.93%), Gamma-Sitosterol (7.39%), ETHYL (9Z,12Z)-9,12-OCTADECADIENOATE (4.96%) n-Hexadecanoic acid (4.19%) gamma-Tocopherol (4.01%) Benzene, (isothiocyanatomethyl)- (3.89%) and ERGOST-5-EN-3-OL, (3.BETA.,24R)- (2.23%) and also the minor compounds were HEXADECANOIC ACID, ETHYL ESTER (1.87%), Fumaric acid, 2-Dodecanoic acid, (isothiocyanatomethyl) ester (1.30%), Hexadecanoic acid, 2-hydroxy-1-(hydroxymethyl) ethyl ester (1.14%) and STIGMAST-5-24(28)-DIEN-3-OL, (3.BETA)- respectively.

The bioactive compounds in ethanol extract of *Lepidium sativum* of whole plant by GC-MS report was reported in Table 2.6 and Figure 2.4 and 2.6.1. The chromatogram of GC-MS analysis showed the presence of 26 major constituents are m Eugenol (7.69%); HEXADECANOIC ACID, ETHYL ESTER (7.50%); STIGMAST-5-EN-3-OI, (3.BETA), (7.14%), Dichloroacetic acid, tridecyl alcohol (6.70%); Stigmastane-3,6-dione, (5.alpha.) (5.05%); 9,12-Octadecadienoyl chloride, (4.51%); gamma-Sitostenone (4.10%); Cholestan-3-one, 4,4-dimethyl- (5.alpha.) (3.58%); n-Hexadecanoic acid (3.15%); Stigmasterol (2.86%); trans, trans-9,12-Octadecadienoic acid, propyl ester (2.54%); ERGOST-5-EN-3-OL, (3.BETA,24R)- (2.38%); CYCLODODECANONE, 2-(HYDROXY BUTYL)-2-NIT (2.35%) and along with other minor constituents were Benzyl nitrite (1.32%), Benzoc acid (1.47%), Dodecanoic acid (1.01%), (E)-9-Octadecenoic acid ethyl ester (1.98%), OCTADECANOIC ACID, ETHYL ESTER (1.50%), (E)-9-Octadecenoic acid ethyl ester (1.67%), Behenic alcohol (1.35%), Hexacosylethapfluoro butyrate(1.52%), Ethyl tetra cosanoate (1.52%), Cyclohexyldimethylsiloxyl butane, 1-Heptacosanol, Cholesterol, 4-Campesten-3-one, 4,22-Stigmastadiene-3-one (1.40%) were reported by GC-S analysis. The results revealed the major compounds are fatty acid esters and alkaloids which showed antioxidant, antimicrobial and anticancer activities.

Lepidium sativum contained several flavonoids, including two quercetin-hexosidesthat shared [M–H] at m/z 463, identified through the loss of sugar moieties (probably glucose and galactose units) and resultant ionization of quercetin at m/z 301. More phenolics have been identified in *L. sativum*. The chromatographic profile of some polyphenols identified in *L. sativum* is reported. At least three isomers of caffeoylquinic acid were identified in the seeds of *L. sativum* (Muhammad Zia-Ul-Haqet al., 2012). The GC-MS result of the *L. sativum* oil revealed that total 17 fatty acid methyl esters were determined in the esterified oil. The major component of *L. sativum* seed oil was docosatetraenoic acid (C22:3; 47.66%) followed by linoleic acid (C18:2; 11.51%), eicosenoic acid (C20:1; 10.63%), palmitic acid (C16:0; 10.13%), arachidonic acid.
(C20:4; 4.70%), eruic acid (C22:1; 4.40%), stearic acid (C18:0; 3.34%), and arachidic acid (C20:0; 3.23%). L. sativium seed oil was composed of total mono-unsaturated fatty acids (16.32%), poly-unsaturated fatty acids (65.35%), and saturated fatty acid (18.31%). This study was supported by Al-Jasass and Al-Jasser (2012) research works in which the percentages of total saturated and unsaturated fatty acids was reported as 16.76% and 83.24%, respectively (Solomon et al., 2015).

GC-MS analysis determined the 15 compounds in total alkaloid extract of Lepidium sativum seeds. The compounds are methyl (Z)-5,11,14,17-eicosatetraenoate (10.24%), guanosine (9.29%), dodecanamide, n-(2-hydroxyethyl) (7.48%), hexadecanoic acid, 2-hydroxy-1-(hydroxymethyl) ethyl ester (7.13%), 1-(1-adamantyl)-3-(1-piperidiny1)-1-propanone (6%), hexadecanoic acid (5.33%), 3-butylindolizidine (4.80%), 9,12-octadecadienoic acid (Z,Z)-, 2-hydroxy-1-hydroxymethyl (4.79%), 3- methyl alpha.,d-glucopyranoside (1.81%), stigmast-5-en-3-ol, (3.beta.) (3.58%), soyasapogenol B (1.15%), stigmasterol (1.07%), fucosterol (3.29%), gamma.-tocopherol (5.04%) and squalene (3.44%). The results revealed the major compounds are fatty acid esters and alkaloids which showed antioxidant, antimicrobial, anticancer, antineuropathic, anti-inflammatory activities (Akash et al., 2017). The most effective ingredient present in LS is isothiocyanates, which is formed with glucosinolates (Kassie et al., 2002).

The Chromatogram GC-MS analysis of the methanol extract of Lepidium sativum showed the presence of thirty one major peaks and the components corresponding to the peaks were determined to be Glycerin, Monoethanolamine, 1-Deoxy-d-mannitol, 1-Nitro-2-propanol, 2-Butanamine, (S)-, Furfural, Allylisothiocyanate, Paromomycin, 2-Hydroxy-2-(5-methylfuran-2-y1)-1-phenylethanone, 3,6-Diazahomoadamantan-9-one Hydrazone, 2,3,4-Trimethoxycinnamic acid, 2-Naphthalenol, 2,3,4,4a,5,6,7-octahydro-1,4a-dimethyl-7-(2)-, cis-Vaccenic acid, 9-Octadecenamide, γ-Toopherol, Phthalic acid, decyl oct-3-y1 ester, Ergosta-5,22-dien-3-01,acetate, (3β,22E)-, Campesterol and Cholest-5-en-3-01,24-propylidene-(3β). (Hussein et al., 2017).

In recent years GC-MS studies have been increasingly applied for the analysis of medicinal plants as this technique has proved to be a valuable method for the analysis of non-polar components and volatile essential oil, fatty acids, lipids and alkaloids.

The GC-MS chromatogram shows the peak area separation of the components. The above mentioned isolated compounds from the ethanol extract of Lepidium sativum seem to possess the reported biological activity and further study of these phytoconstituents may prove the medicinal importance in future.

Fig. 2.2:- Uv-vis spectra of ethanolic extract of Lepidium sativum

![Uv-vis spectra of ethanolic extract of Lepidium sativum](image-url)
Table: 2.5: Phytocomponents identified in the ethanol seed extracts of Lepidium sativum by GCMS analysis.

Sl.No	Name of compounds	Retention time (min)	Molecular formula	Molecular weight	Peak area %
1.	Benzyl nitrile	8.636	C₆H₇N	117	16.23
2.	Benzene, (isothiocyanatomethyl)-	13.533	C₆H₇NS	149	3.89
3.	Benzoic acid, 2-(dimethylamino)ethyl ester	15.654	C₁₁H₁₃NO₂	193	0.67
4.	3',5'-Dimethoxyacetophenone	17.199	C₁₀H₁₂O₃	180	7.93
5.	n-Hexadecanoic acid	23.446	C₁₆H₃₂O₂	256	4.19
6.	HEXADECANOIC ACID, ETHYL ESTER	23.801	C₁₈H₃₆O₃	284	1.87
7.	cis-9-Hexadecenal	25.885	C₁₆H₃₀O	238	8.97
No.	Compound Name	Molecular Formula	Mass (m/z)	Retention Time (s)	Comments
-----	---	-------------------	------------	--------------------	----------
8.	ETHYL OCTADECADIENOATE # (9Z,12Z)-9,12-Octa-	C₂₀H₃₆O₂	26.038	308	0.83
9.	ETHYL OCTADECADIENOATE # (9Z,12Z)-9,12-Octa-	C₂₀H₃₆O₂	26.124	308	4.96
10.	Octadecanoic acid, ethyl ester	C₂₀H₄₀O₂	26.460	312	0.40
11.	3-Cyclopentylpropionic acid, 2-dimethylaminooxy	C₁₂H₂₃NO₂	27.585	213	0.44
12.	Glycidyloleate	C₁₀H₁₆O₃	27.738	312	0.30
13.	(E)-9-Octadecenoic acid ethyl ester	C₁₈H₃₄O₂	28.588	282	0.95
14.	Eicosanoic acid, ethyl ester	C₂₂H₄₄O₂	28.871	340	0.26
15.	3-Cyclopentylpropionic acid, 2-dimethylaminooxy	C₁₂H₂₃NO₂	29.467	213	0.36
16.	Fumaric acid, 2-dimethylaminooxyethyl nonyl ester	C₁₇H₃₃O₄	29.522	313	1.30
17.	Glycidyloleate	C₁₈H₃₃C₃O	29.672	298	0.70
18.	O-ETHYL S-2-DIMETHYLAMINOETHYL ETHYLPHOS	C₆H₂₀NO₂PS	29.893	225	14.37
19.	Hexadecanoic acid, 2-hydroxy-1-(hydroxymethyl)ethyl ester	C₁₀H₁₈O₄	30.038	330	1.14
20.	Erucic acid	C₂₂H₄₂O₂	30.462	338	0.55
21.	Oleoyl chloride	C₁₈H₃₃C₃O	31.627	300	12.50
22.	(Z)-18-Octadec-9-enolide	C₁₈H₃₂O₂	32.145	280	0.46
23.	.gamma.-Tocopherol	C₂₅H₄₉O₂	36.128	416	4.01
24.	Cholesterol	C₂₅H₴₆O	37.473	386	0.67
25.	ERGOST-5-EN-3-OL, (3.BETA.,24R)-	C₂₈H₄₈O	39.763	400	2.23
26.	Stigmasterol	C₂₉H₄₈O	40.380	412	0.85
27.	.gamma.-Sitosterol	C₂₉H₅₀O	42.028	414	7.39
28.	STIGMASTA-5,24(28)-DIEN-3-OL, (3.BETA.)-	C₂₀H₄₈O	42.454	412	1.59

Structure Of Compounds Isolated In *Lepidium Sativum* Seed Extract

![Fig 2.5.1: Mass Spectrum of Benzyl nitrile](image1)

![Fig 2.5.2: Mass Spectrum of Benzene, (isothiocyanatomethyl)](image2)
Fig 2.5.3: Mass Spectrum of 3',5'-Dimethoxyacetophenone

Fig 2.5.4: Mass Spectrum of n-Hexadecanoic acid

Fig 2.5.6: Mass Spectrum of cis-9-Hexadecenal

Fig 2.5.7: Mass Spectrum of Ethyl (9Z,12Z)-9,12-Octadecadienoate #

Fig 2.5.8: Mass Spectrum of O-Ethyl S-2-Dimethylaminoethyl Ethylphos
Fig 2.5.9: Mass Spectrum of Oleoyl chloride

Fig 2.5.10: Mass Spectrum of \(\gamma \)-Tocopherol

Fig 2.5.11: Mass Spectrum of Ergost-5-EN-3-OL, (3.Beta.,24R)

Fig 2.5.12: Mass Spectrum of \(\gamma \)-Sitosterol

Table 2.6: Phytocomponents identified in the ethanol whole plant extracts of *Lepidium sativum* using GC-MS analysis

Sl.No	Name of compounds	Retention time (min)	Molecular formula	Molecular weight	Peak area %
1.	Eucalyptol	6.100	\(\text{C}_{10}\text{H}_{15}\text{O} \)	154	0.32
2.	Linalool	7.650	\(\text{C}_{10}\text{H}_{14}\text{O} \)	154	0.17
3.	Benzyl isocyanate	8.187	\(\text{C}_{8}\text{H}_{7}\text{NO} \)	133	0.36
4.	Benzyl nitrile	8.581	\(\text{C}_{8}\text{H}_{7}\text{N} \)	117	1.32
5.	Benzoic acid	9.486	\(\text{C}_{7}\text{H}_{6}\text{O}_{2} \)	122	1.47
6.	2,6-Octadienal, 3,7-dimethyl- , (Z)	10.852	\(\text{C}_{10}\text{H}_{16}\text{O} \)	152	0.23
7.	Carvone	11.021	\(\text{C}_{10}\text{H}_{14}\text{O} \)	150	0.12
8.	Linalyl acetate	11.063	\(\text{C}_{12}\text{H}_{20}\text{O}_{2} \)	196	0.11
9.	Geraniol	11.122	\(\text{C}_{10}\text{H}_{16}\text{O} \)	154	0.54
10.	Citral	11.488	\(\text{C}_{10}\text{H}_{16}\text{O} \)	152	0.28
11.	3-CYCLOHEXENE-1-METHANOL, . \(\text{ALPHA...ALPHA...} \)	13.153	\(\text{C}_{12}\text{H}_{20}\text{O}_{2} \)	196	0.29
No.	Compound	分子式	Molecular Weight	Density	
-----	--	--------	------------------	---------	
12	Eugenol	C10H15O	164	0.76	
13	Geranyl acetate	C16H20O2	196	0.17	
14	Methylgenyl	C11H10O2	178	0.30	
15	1H-Cyclopentyle[1]azulene, 1a,2,3,4,5,6,7b-octahydro-1,1,4-	C14H24	204	0.16	
16	Caryophyllene	C14H24	204	0.84	
17	Phénon, 2,4-Bis(1,1-dimethylethyl)-	C14H19O	206	0.17	
18	Dodecanoic acid	C12H24O2	200	1.01	
19	Ethyl PentaDecanoate	C15H30O2	270	0.29	
20	Tetradecanoic acid	C14H28O2	228	0.71	
21	TETRADECANOIC ACID, ETHYL ESTER	C16H32O2	256	0.41	
22	PENTADECANOIC ACID	C15H30O2	242	0.29	
23	Neophytadiene	C20H38	278	0.96	
24	2-PentaDecane, 6.10.14-trimethyl-	C18H30O2	268	0.56	
25	Ethyl PentaDecanoate	C15H30O2	270	0.23	
26	Pentadecanoic acid	C15H30O2	242	0.69	
27	3.7,11,15-Tetramethyl-2-hexadecen-1-ol	C20H36O	296	0.32	
28	Pentadecanoic acid, ethyl ester	C15H30O2	270	0.38	
29	Hexadecanoic acid, methyl ester	C15H30O2	270	0.22	
30	9-Hexadecanoic acid	C16H34O2	254	0.37	
31	n-Hexadecanoic acid	C16H32O2	256	3.15	
32	Ethyl 9-hexadecenoate	C16H32O2	282	0.38	
33	HEXADECANOIC ACID, ETHYL ESTER	C16H32O2	284	7.50	
34	(E)-9-Octadecenoic acid ethyl ester	C20H38O2	310	0.28	
35	Heptadecanoic acid, ethyl ester	C20H38O2	298	0.33	
36	8,11,14-Eicosatrienoic acid, methyl ester	C22H44O2	320	0.22	
37	2-Hexadecen-1-OL, 3,7,11,15-Tetramethyl-	C23H40O2	296	0.59	
38	9,12-Octadecadienyl chloride, (Z,Z)-trans,trans-9,12-Octadecadienoic acid, propyl ester	C20H36O2	298	4.51	
39	Dichloroacetic acid, tridec-2-ynyl ester	C16H24C12O2	306	6.70	
40	(E)-9-Octadecenoic acid ethyl ester	C20H38O2	310	1.98	
41	OCTADECANOIC ACID, ETHYL ESTER	C20H38O2	312	1.50	
42	ETHYL (9Z,12Z)-9,12-Octadecadienoate #	C20H38O2	308	0.45	
43	(R)-(-)-14-Methyl-8-hexadecyn-1-ol	C16H25O2	252	0.18	
44	9-Octadecenal, (Z)-	C20H38O2	266	0.22	
45	1,5-Pent-2-ene-3-Methyl-5-(2,6-dimethylhept	C15H26O2	238	0.82	
46	4,8,12,16-Tetramethylheptadecan-4-olide	C21H40O2	324	0.35	
47	(E)-9-Octadecenoic acid ethyl ester	C20H38O2	310	1.67	
48	HEPTADECANOIC ACID, ETHYL ESTER	C20H38O2	298	0.70	
49	1.3-Cyclopentadiene, 5-[3-(dimethylamino)propyl]-	C20H38O2	151	0.10	
50	1.2-15,16-Diepoxyhexadecane	C20H38O2	254	0.48	
51	Behenic alcohol	C26H44O	326	1.36	
No.	Compound Description	CAS No.	Molecular Formula	Molecular Weight	Percentage
-----	--	---------	------------------	------------------	------------
54.	1,2-BENZENEDICARBOXYLIC ACID	30.171	C₉H₁₀O₄	190	0.25
55.	(E)-9-Octadecenoic acid ethyl ester	30.465	C₂₃H₄₀O₂	310	0.68
56.	Docosanoic acid, ethyl ester	30.671	C₂₃H₄₀O₂	368	0.51
57.	1-Cyclohexyldimethylisiloxoxybutane	30.728	C₁₄H₃₅OSi	214	0.48
58.	Fumaric acid, 2-dimethylaminoethyl octadecyl ester	31.270	C₂₀H₃₈NO	439	0.09
59.	Hexacosylheptafluorobutyrate	31.613	C₁₆H₄₀F₇O₂	578	1.57
60.	(E)-9-Octadecenoic acid ethyl ester	32.317	C₂₀H₃₈O₂	310	0.32
61.	Ethyl tetraacetoate	32.564	C₂₀H₄₀O₂	396	1.52
62.	1-Cyclohexyldimethylisiloxoxybutane	32.645	C₁₄H₃₅OSi	214	1.25
63.	Squalene	32.784	C₂₀H₄₀	410	0.20
64.	Benzenepropanoic acid, octadecyl ester	33.392	C₂₇H₄₆O₂	402	0.33
65.	1-Heptacosanol	33.844	C₂₀H₄₀	396	1.18
66.	OCTADECANOIC ACID, ETHYL ESTER	35.146	C₂₀H₄₀O₂	312	0.88
67.	Stigmast-5,22-dien-3-ol, acetate, (3.beta.)-	36.558	C₁₃H₃₀O₂	454	0.53
68.	Stigmast-5-en-3-ol, oleate	36.936	C₂₀H₄₀O₂	678	0.29
69.	1-Heptacosanol	37.075	C₂₀H₄₀O₂	396	0.65
70.	Cholesterol	37.474	C₂₀H₄₀O₂	386	1.25
71.	ERGOST-5-EN-3-OL, (3.BETA.,24R)-	39.753	C₁₃H₃₀O₂	400	2.38
72.	Stigmasterol	40.394	C₂₀H₄₀O₂	412	2.86
73.	STIGMAST-5-EN-3-OL, (3.BETA.)-	42.018	C₂₀H₄₀O₂	414	7.14
74.	4-Campestene-3-one	43.145	C₂₀H₄₀O₂	398	1.90
75.	4,22-Stigmastadiene-3-one	43.920	C₂₀H₄₀O₂	410	1.40
76.	STIGMAST-5-EN-3-OL, (3.BETA.,24R)-	46.035	C₂₀H₄₀O₂	412	4.10
77.	Cholest-3-one, 4,4-dimethyl, (5.alpha.)-	48.559	C₂₀H₄₀O₂	414	3.58
78.	CYCLODODECANONE, 2-(3-HYDROXYBUTYL)-2-NIT	49.648	C₁₈H₂₉NO₄	299	2.35
79.	STIGMAST-5-EN-3-OL, (3.BETA.,24R)-	52.559	C₂₀H₄₀O₂	428	5.05

Figure :2.6. Structure Of Compounds Isolated In *Lepidium sativum* Whole Plant Extract

![Mass Spectrum of Eugenol](image1)

![Mass Spectrum of n-Hexadecanoic acid](image2)
Fig 2.6.3: Mass Spectrum of Hexadecanoic Acid, Ethyl Ester

Fig 2.6.4: Mass Spectrum of 9,12-Octadecadienoyl chloride, (Z,Z)-

Fig 2.6.5: Mass Spectrum of trans,trans-9,12-Octadecadienoic acid, propyl ester

Fig 2.6.6: Mass Spectrum of Dichloroacetic acid, tridec-2-ynyl ester

Fig 2.6.7: Mass Spectrum of ERGOST-5-EN-3-OL, (3.BETA.,24R)-
Fig 2.6.8: Mass Spectrum of Stigmasterol

Fig 2.6.9: Mass Spectrum of Stigmast-5-EN-3-OL, (3.BETA.)

Fig 2.6.10: Mass Spectrum of gamma.-Sitostenone

Fig 2.6.11: Mass Spectrum of Cholestan-3-one, 4,4-dimethyl-, (5.alpha.)

Fig 2.6.12: Mass Spectrum of Cyclododecanone, 2-(3-Hydroxybutyl)-2-NIT
Fig 2.6.12 :- Mass Spectrum of Stigmastane-3,6-dione, (5.alpha.)-

References:-
1. Cerutti, PA 1991, ‘Oxidant stress and carcinogenesis’ European Journal of Clinical Investigation, vol. 21, no. 1, pp. 1-5.
2. Shukla, AK, Bigoniya, P & Soni, P 2015, ‘Hypolipidemic Activity of Lepidium Sativum Linn. Seed in Rats’, Journal of Pharmacy and Biological Sciences, vol. 10, pp. 13-22.
3. Cassidy, Frederic Gomes, Hall & Joan Houston 2002, ‘Dictionary of American regional English’, Harvard University Press, pp. 97.
4. Radwan, HM, El-Missiry, MM, Al-Said, WM, Ismail, AS, Abdel-Shafeek, KA & Seif-El-Nasr, MM 2007, Research Journal of Medicine and Pharmaceutical Sciences, vol. 2, pp. 127–132.
5. Martins, AP, Salgueiro, L & Goncalves, MJ 2001, ‘Essential oil composition and antimicrobial activity of three Zingiberaceae from S. Tome e Principe’, PlantaMedica, vol. 67, pp. 580-584.
6. AH, N & Aysel, U. 2003, ‘Investigation of the Antimicrobial Activity of Some Streptomyces Isolates’, Turkish Journal of Biology, vol. 27, pp. 79-84.
7. Solomon Girmay Berehe & Aman Dekebo Boru 2014, ‘Phytochemical Screening and Antimicrobial activities of Crude Extract of Lepidium Sativum Seeds Grown in Ethiopia’, International Journal of Pharmaceutical Sciences and Research, vol. 5, no. 10, pp. 4182-4187.
8. Rizwan Ahmad, Mohd Mujeeb, Firoz Anwar & Aftab Ahmad 2015, ‘Phytochemical analysis and evaluation of anti-oxidant activity of methanolic extract of Lepidium sativum L. seeds’, Der Pharmacia Lettre, vol. 7, no. 7, pp. 427-434.
9. Muhammad Rizwan-ul-Haq, Mei Ying Hu, Muhammad Afzal & Muhammad Hamid 2012, Journal of Natural Products, vol. 52, no. 2, pp. 325-331.
10. Akash, MS, Rehman, K, Tariq, M, Chen, S 2017, ‘Zingiber officinale and type 2 diabetes mellitus: Evidence from experimental studies’, Critical Reviews in Eukaryotic Gene Expression, vol. 25, no. 2.
11. Kassie, F, Rabot, S, Uhl, M, Huber, W, Qin, HM, Helma, C, Hermann, RS & Knasmuller, S 2002, ‘Chemoprotective effects of gardencress (Lepidium sativum) and its constituents towards 2-amino-3-methylimidazo[4, 5-f]quinoline (IQ)-induced genotoxic effects and colonic preneoplastic lesions’, Carcinogenesis, vol. 23, pp. 1155–1161.
12. Hussein, HM, Hameed, IH & Ibraheem, OA 2017, ‘Antimicrobial Activity and spectral chemical analysis of methanolic leaves extract of Adiantum Capillus Veneris using GC-MS and FT-IR spectroscopy’, International Journal of Pharmacognosy and Phytochemical Research, vol. 8, no. 3, pp. 369-385.
13. Kshitij Chauhan, Nishteswar, K & Chauhan, MG 2012, ‘Pharmacognostical Evaluation of Seeds of Lepidium sativum Linn’, International Journal of Pharmaceutical & Biological Archives, vol. 3, no. 3, pp. 627-631.
14. Yadav, YC, Srivastava, DN, Saini, V, Seth, AK, Ghelani, TK, Malik, A & Kumar S 2011, ‘In vitro antioxidant activities of ethanolic extract of Lepidium sativum L. seeds’, International Journal of Pharma Sciences, vol. 1, pp. 965-974.
15. Prajapati, VD, Maheriya, PM, Jani, GK, Patil, PD & Patel, BN 2014, ‘Lepidium sativum Linn.: a current addition to the family of mucilage and its applications’, International Journal of Biological Macromolecules, vol. 65, pp. 72-80.