Division in Associative D-Algebra

Aleks Kleyn

Abstract. From the symmetry between definitions of left and right divisors in associative D-algebra A, the possibility to define quotient as $A \otimes A$-number follows. In the paper, I considered division and division with remainder. I considered also definition of prime A-number.

Contents

1. Preface ... 1
2. Conventions .. 2
3. Geometry of Quotients ... 3
4. Division in D-Algebra .. 4
5. Division with Remainder .. 5
6. Highest Common Factor ... 9
7. Prime A-number .. 9
8. References .. 10
9. Index .. 11
10. Special Symbols and Notations 12

1. Preface

Let D be commutative ring. Let D-algebra A be associative.

Definition 1.1. A-number a is left divisor of A-number b, if there exists A-number c such that

\[(1.1) \quad ac = b \]

Definition 1.2. A-number a is right divisor of A-number b, if there exists A-number c such that

\[(1.2) \quad ca = b \]
It is evident that there is symmetry between definitions 1.1 and 1.2. The difference between left and right divisors is also evident since the product is noncommutative. However we can consider a definition generalizing definitions 1.1 and 1.2.

We may consider quotient of b divided by a as tuple of numbers c, d such that
\[cad = b \]

However we may consider division from another point of view.

Equations (1.1), (1.2) are examples of linear maps of D-algebra A. For commutative product, the equation (1.1) is only definition of linear map. For noncommutative product, $A \otimes A$-number generates linear map of D-algebra A. For instance, the tensor $c \otimes d$ is $A \otimes A$-number. Thus, we get the following definition.

Definition 1.3. A-number a is divisor of A-number b, if there exists $A \otimes A$-number c such that
\[c \circ a = b \]

$A \otimes A$-number c is called quotient of A-number b divided by A-number a. □

In the paper [2], I considered equation
\[c \circ x = b \]

In this paper, I consider equation
\[x \circ a = b \]

D-algebra A is called division algebra, if for any A-number $a \neq 0$ there exists A-number a^{-1}.

2. Conventions

Convention 2.1. Element of D-algebra A is called A-number. For instance, complex number is also called C-number, and quaternion is called H-number. □

Convention 2.2. Let A be Ω_1-algebra. Let B be Ω_2-algebra. Notation
\[A \rightarrow B \]

means that there is representation of Ω_1-algebra A in Ω_2-algebra B. □

1Here somebody can argue that division is the inverse operation of multiplication. If product is commutative, then it follows from expression
\[ca = b \]

that

- c is factor; the product of c and a is equal to b.
- c is quotient of b divided by a.

Thus, for commutative product, definitions of factor and quotient coincide. For noncommutative product, we distinguish right and left divisors; therefore, we distinguish left and right quotient.

2Since the map
\[a \rightarrow cad \]

is bilinear, then, according to the theorem [3]-3.6.4, we may consider the map
\[a \rightarrow (c \otimes d) \circ a \]

instead of the map (1.3)
Convention 2.3. Let A be associative D-algebra. The representation

$$\begin{align*}A \otimes A & \xrightarrow{f} A \\ f(p) : a \to p \circ a\end{align*}$$

of D-module $A \otimes A$ generates the set of linear maps. This representation generates product \circ in D-module $A \otimes A$ according to rule

$$(p \circ q) \circ a = p \circ (q \circ a)$$

Without a doubt, the reader may have questions, comments, objections. I will appreciate any response.

3. Geometry of Quotients

Theorem 3.1. Let real field R be subfield of the center $Z(D)$ of the ring D. Then, for any A-numbers a, b, the set of quotients is convex.

Proof. Let $A \otimes A$-number c be quotient of A-number b divided by A-number a

$$c \circ a = b$$ \hspace{1cm} (3.1)

Let $A \otimes A$-number d be quotient of A-number b divided by A-number a

$$d \circ a = b$$ \hspace{1cm} (3.2)

Then, for any $t \in R$, $0 \leq t \leq 1$, from (3.1), (3.2), it follows that

$$(tc + (1-t)d) \circ a = (tc) \circ a + ((1-t)d) \circ a$$

$$= t(c \circ a) + (1-t)(d \circ a) = tb + (1-t)b = b$$

Therefore, $A \otimes A$-number $tc + (1-t)d$ is quotient of A-number b divided by A-number a.

Theorem 3.2. Let $A \otimes A$-numbers c, d be quotients of A-number b divided by A-number a

$$c \circ a = b$$ \hspace{1cm} (3.3)

$$d \circ a = b$$ \hspace{1cm} (3.4)

Then $A \otimes A$-number $c - d$ is quotient of A-number 0 divided by A-number a

$$c \circ a - d \circ a = 0$$ \hspace{1cm} (3.5)

Proof. From (3.3), (3.4), it follows that

$$(c - d) \circ a = c \circ a - d \circ a = b - b = 0$$ \hspace{1cm} (3.6)

From (3.6), it follows that A-number $c - d$ is quotient of A-number 0 divided by A-number a.

Remark 3.3. This point in the paper is interesting since it is easy to make mistake here and this mistake can be proved as a theorem. After we proved theorems 3.1, 3.2, the following question arises. If the difference of two quotients of A-number b divided by A-number a is quotient of A-number 0 divided by A-number a, then what is the structure of the set of quotient A-number 0 divided by any A-number? Or, equivalently, what is the structure of the set of quotients of A-number b divided by A-number a?

Initially I wanted to prove the following statement.
Let A-number a be neither a left nor right zero divisor. Then the quotient of A-number 0 divided by A-number a has either the form $0ac$, or the form $ca0$.

The proof is very simple. Since $c \neq 0$ in the expression cad, then $d = 0$.

When I decided to write down the quotient as $c \otimes 0 + 0 \otimes d$ I asked myself whether I was right. Indeed, according to theorems \[1\]-13.2.2, \[5\]-9.2.2, there exists nontrivial representation of zero tensor.

\[\square \]

4. Division in D-Algebra

Theorem 4.1. Let D-algebra A be division algebra. Then, for any A-numbers a, b, there exist A-numbers c, d such that

$$ cad = b $$

Proof. To prove the theorem it suffices to put

$$ c = ba^{-1} \quad d = c $$

or

$$ c = e \quad d = a^{-1}b $$

\[\square \]

Theorem 4.2. Let A-number a divide A-number b. Let A-number b divide A-number c. Then A-number a divides A-number c.

Proof. According to the definition 1.3, since A-number a divides A-number b, then there exists $A \otimes A$-number p such that

$$ (4.1) \quad b = p \circ a $$

According to the definition 1.3, since A-number b divides A-number c, then there exists $A \otimes A$-number q such that

$$ (4.2) \quad c = q \circ b $$

From equations (4.1), (4.2), it follows that

$$ (4.3) \quad c = q \circ (p \circ a) = (q \circ p) \circ a $$

According to the definition 1.3, from the equation (4.3), it follows that A-number a divides A-number c.

\[\square \]

Theorem 4.3. Let A-number a divide A-number b. Let A-number a divide A-number c. Then A-number a divides A-number $b + c$.

Proof. According to the definition 1.3, since A-number a divides A-number b, then there exists $A \otimes A$-number p such that

$$ (4.4) \quad b = p \circ a $$

According to the definition 1.3, since A-number a divides A-number c, then there exists $A \otimes A$-number q such that

$$ (4.5) \quad c = q \circ a $$

From equations (4.4), (4.5), it follows that

$$ (4.6) \quad b + c = p \circ a + q \circ a = (p + q) \circ a $$
According to the definition 1.3, from the equation (4.6), it follows that A-number a divides A-number $b + c$.

Theorem 4.4. Let A-number a divide A-number b. Let c be $A \otimes A$-number. Then A-number a divides A-number $c \circ b$.

Proof. According to the definition 1.3, since A-number a divides A-number b, then there exists $A \otimes A$-number p such that

(4.7) \quad b = p \circ a

From the equation (4.7), it follows that

(4.8) \quad c \circ b = c \circ (p \circ a) = (c \circ p) \circ a

According to the definition 1.3, from the equation (4.8), it follows that A-number a divides A-number $c \circ b$.

5. Division with Remainder

Definition 5.1. Let division in the D-algebra A is not always defined. A-number a divides A-number b with remainder, if the following equation is true

(5.1) \quad c \circ a + f = b

$A \otimes A$-number c is called quotient of A-number b divided by A-number a. A-number f is called remainder of the division of A-number b by A-number a.

Theorem 5.2. For any A-numbers a, b, there exist quotient and remainder of the division of A-number b by A-number a.

Proof. To prove the theorem, it is enough to assume that

\begin{align*}
 c &= a \otimes a \\
 f &= b - (a \otimes a) \circ a = b - aaa
\end{align*}

From the theorem 5.2, it follows that, for given A-numbers a, b, a representation (5.1) is not unique. If we divide with remainder A-number f by A-number a, then we get

(5.2) \quad c' \circ a + f' = f

From (5.1), (5.2), it follows that

(5.3) \quad c \circ a + c' \circ a + f' = (c + c') \circ a + f' = b

How can we compare representations (5.1), (5.3), when order is not defined in D-algebra A?

Therefore, the set of remainders of the division of A-number b by A-number a has form

(5.4) \quad A\{b, a\} = \{ f \in A : f = b - c \circ a, c \in A \otimes A \}

If $0 \in A\{b, a\}$, then choice of remainder and corresponding quotient is evident. In general, a choice of a representative of the set $A\{b, a\}$ depends on properties of the algebra. In the algebra N of integers, we choose the smallest positive number. In the algebra $A[x]$ of polynomials, we choose polynomial which has the power less then
power of divisor. If there is norm in algebra A, (for instance, the algebra of integer quaternions), then we can chose A-number with the smallest norm as remainder.

Theorem 5.3. Since

\[(5.5)\]
$A\{b, a\} \cap A\{c, a\} \neq \emptyset$

then

5.3.1: A-number a divides A-number $b - c$ without remainder.

5.3.2: $A\{b, a\} = A\{c, a\}$

Proof. From the statement (5.5), it follows that there exists A-number

\[(5.6)\]
d $\in A\{b, a\} \cap A\{c, a\}$

From the statement (5.6) and from the definition (5.4), it follows that there exist $A \otimes A$-numbers f, g such that

\[(5.7)\]
b = f \circ a + d\]

\[(5.8)\]
c = g \circ a + d\]

From equations (5.7), (5.8), it follows that

\[(5.9)\]
b - c = f \circ a - g \circ a = (f - g) \circ a\]

The statement 5.3.1 follows from the equation (5.9).

Let $m \in A\{b, a\}$. From the definition (5.4), it follows that there exist $A \otimes A$-number n such that

\[(5.10)\]
b = n \circ a + m\]

From equations (5.7), (5.10), it follows that

\[(5.11)\]
f \circ a + d = n \circ a + m\]

From the equation (5.11), it follows that

\[(5.12)\]
d = n \circ a - f \circ a + m = (n - f) \circ a + m\]

From equations (5.8), (5.12), it follows that

\[(5.13)\]
c = g \circ a + (n - f) \circ a + m = (g + n - f) \circ a + m\]

From the definition (5.4) and the equation (5.13), it follows that there exist $m \in A\{c, a\}$. Therefore,

\[(5.14)\]
A\{b, a\} \subseteq A\{c, a\}\]

The same way, we prove the statement

\[(5.15)\]
A\{c, a\} \subseteq A\{b, a\}\]

The statement 5.3.2 follows from statements (5.14), (5.15).

From the theorem 5.3, it follows that, for given A-number a, the family of sets $A\{b, a\}$ generates equivalence mod a.

Definition 5.4. We define canonical remainder $b \mod a$ of the division of A-number b by A-number a as selected element of the set $A\{b, a\}$. The representation $c \circ a + (b \mod a) = b$ of division with remainder is called canonical.
At first glance, the choice of A-number $b \mod a$ is arbitrary. However we can define the natural constrains of the arbitrary choice.

Theorem 5.5. If we define sum on the set $A/\mod a$ according to the rule

$$b \mod a + c \mod a = (b + c) \mod a$$

then the set $A/\mod a$ is Abelian group.

Proof. According to the definition 5.4, there exist $A \otimes A$-numbers p, q such that

$$b = p \circ a + b \mod a$$
$$c = q \circ a + c \mod a$$

From (5.17), it follows that

$$b + c = p \circ a + b \mod a + q \circ a + c \mod a$$
$$= (p + q) \circ a + b \mod a + c \mod a$$

From equations (5.4), (5.18), it follows that

$$b \mod a + c \mod a \in A\{b + c, a\}$$

From the statement (5.19) and from the definition 5.4, it follows that sum (5.16) is well defined.

We verify commutativity of the sum (5.16) directly. □

Theorem 5.6. The representation

$$D \longrightarrow A/\mod a$$

of ring D in Abelian group $A/\mod a$ defined by the equation

$$d(b \mod a) = (db) \mod a$$

generates D-module $A/\mod a$.

Proof. According to the definition 5.4, there exist $A \otimes A$-number p such that

$$b = p \circ a + b \mod a$$

From (5.21), it follows that

$$db = d(p \circ a) + d(b \mod a) = (dp) \circ a + d(b \mod a)$$

From equations (5.4), (5.22), it follows that

$$d(b \mod a) \in A\{db, a\}$$

From the statement (5.23) and from the definition 5.4, it follows that representation (5.20) is well defined. □

Theorem 5.7. If we define product in D-module $A/\mod a$ according to the rule

$$b \mod a)(c \mod a) = (bc) \mod a$$

then D-module $A/\mod a$ is D-algebra.
Proof. According to the definition 5.4, there exist $A \otimes A$-numbers p, q such that
\begin{align*}
 b &= p \circ a + b \mod a \\
 c &= q \circ a + c \mod a
\end{align*}
From (5.25), it follows that
\begin{align*}
 bc &= (p \circ a + b \mod a)(q \circ a + c \mod a) \\
 &= (p \circ a)(q \circ a + c \mod a) + (b \mod a)(q \circ a + c \mod a) \\
 &= ((1 \otimes b) \circ p) \circ a + ((b \mod a) \otimes 1) \circ q \circ a + (b \mod a)(c \mod a)
\end{align*}
From equations (5.4), (5.26), it follows that
\begin{equation}
 (b \mod a)(c \mod a) \in A\{bc, a\}
\end{equation}
From the statement (5.27) and from the definition 5.4, it follows that product (5.24) is well defined.

Theorem 5.8. Let
\begin{align*}
 p \circ b + q &= a \\
 t \circ c + s &= b
\end{align*}
be canonical representation of division with remainder of A-number a by A-number b. Let
\begin{align*}
 t \circ c + s &= b
\end{align*}
be canonical representation of division with remainder of A-number b by A-number c.
5.8.1: Let
\begin{equation}
 u \circ c + v = p \circ s + q
\end{equation}
be canonical representation of division with remainder of A-number $p \circ s + q$ by A-number c.
5.8.2: Then the canonical representation of division with remainder of A-number a by A-number c has form
\begin{equation}
 (p \circ t + u) \circ c + v = a
\end{equation}
Proof. From equations (5.28), (5.29), it follows that
\begin{equation}
 a = p \circ (t \circ c + s) + q = p \circ t \circ c + p \circ s + q
\end{equation}
The equation (5.32) is representation of division with remainder of A-number a by A-number c. From equations (5.30), (5.32), it follows that
\begin{equation}
 a = p \circ t \circ c + u \circ c + v
\end{equation}
The equation (5.31) follows from the equation (5.33). From the statement 5.8.1 and from the definition 5.4, it follows that
\begin{equation}
 v = (p \circ s + q) \mod c
\end{equation}
From equations (5.4), (5.31), it follows that
\begin{equation}
 v \in A\{a, c\}
From the statement (5.35) and from the definition 5.4, it follows that
\[v = a \mod c \]
The statement 5.8.2 follows from the statement (5.36) and from the definition 5.4. □

6. Highest Common Factor

Definition 6.1. A-number \(c \) is called common factor of A-numbers \(a \) and \(b \), if A-number \(c \) divides each of A-numbers \(a \) and \(b \). If A-numbers \(a \) and \(b \) are not unit divisors and any common factor of A-numbers \(a \) and \(b \) is not unit divisor, then A-numbers \(a \) and \(b \) are called relatively prime. □

Definition 6.2. A-number \(c \) is called highest common factor of A-numbers \(a \) and \(b \), if A-number \(c \) is common factor of A-numbers \(a \) and \(b \) and any common factor \(d \) of A-numbers \(a \) and \(b \) divides A-number \(c \). □

7. Prime A-number

Definition 7.1. Let A-number \(b \) be not unit divisor of D-algebra \(A \). A-number \(b \) is called prime, if any divisor \(a \) of A-number \(b \) satisfies one of the following conditions.

7.1.1: A-number \(a \) is unit divisor.
7.1.2: Quotient of A-number \(b \) divided by A-number \(a \) is unit divisor of D-algebra \(A \otimes A \).

Theorem 7.2. Let D-algebra \(A \) is division algebra. Let \(A[x] \) be algebra of polynomials over D-algebra \(A \). Polynomial of power 1 is prime \(A[x] \)-number.

Proof. Let \(p \) be polynomial of power 1. Let \(q \) be polynomial. Let
\[p = (r_1 \otimes r_2) \circ q = r_1 q r_2 \]
be canonical representation of division with remainder of polynomial \(p \) over polynomial \(q \). Here \(r_1, r_2 \) are polynomials. According to the theorems [4]-5.9, [6]-20,
\[\deg r_1 + \deg q + \deg r_2 = \deg p = 1 \]
From the equation (7.2), it follows that only one polynomial \(q, r_1, r_2 \) has power 1, and other two polynomials are A-numbers.

- Since the polynomial \(q \) is A-number, then the polynomial \(q \) is unit divisor and satisfies the condition 7.1.1.
- Since \(q \) is polynomial of power 1, then, according to the theorems [4]-6.10,
\[p = r \circ q \]
where \(r \) is \(A \otimes A \)-number. Since \(p \) and \(q \) are polynomials of power 1, then, according to the theorems [6]-28, [4]-6.10,
\[q = r' \circ p + s \]
where \(r' \) is \(A \otimes A \)-number and \(s \) is A-number. From equations (7.3), (7.4), it follows that
\[p = r \circ r' \circ p + r \circ s \]
From the equation \((7.5)\), it follows that
\[
(7.6) \quad r \circ r' = 1 \otimes 1 \quad r \circ s = 0
\]
From the equation \((7.6)\), it follows that \(A \otimes A\)-number \(r\) is unit divisor and \(s = 0\). Therefore, the polynomial \(q\) satisfies the condition 7.1.2.

According to the definition 7.1, the polynomial \(p\) is prime \(A[x]\)-number. □

8. References

[1] Aleks Kleyn, Lectures on Linear Algebra over Division Ring, eprint arXiv:math.GM/0701238 (2010)
[2] Aleks Kleyn, Linear Equation in Finite Dimensional Algebra, eprint arXiv:0912.4061 (2010)
[3] Aleks Kleyn, Linear Maps of Free Algebra, eprint arXiv:1003.1544 (2010)
[4] Aleks Kleyn, Polynomial over Associative \(D\)-Algebra, eprint arXiv:1302.7204 (2013)
[5] Aleks Kleyn.
Linear Algebra over Division Ring: Vector Space.
CreateSpace, 2014; ISBN-13: 978-1499324006
[6] Aleks Kleyn, Polynomial over Associative \(D\)-Algebra.
Clifford Analysis, Clifford Algebras and their applications, Vol 2, Issue 2, pages 97 - 115, 2013
9. INDEX

A-number 2

canonical remainder of the division 6
canonical representation of division with remainder 6
common factor 9

division algebra 2
division with remainder 5
division without remainder 6

highest common factor 9

prime A-number 9

quotient 2, 5

relatively prime A-numbers 9
remainder of the division 5
10. Special Symbols and Notations

\[b \mod a \quad \text{canonical remainder of the division} \]
Деление в ассоциативной D-алгебре

Александр Клейн

Аннотация. Из симметрии между определениями левого и правого делителей в ассоциативной D-алгебре A следует возможность определять частное как $A \otimes A$-число. В статье рассмотрены деление и деление с остатком. Я рассмотрел также понятие простого A-числа.

Содержание

1. Предисловие 1
2. Соглашения 2
3. Геометрия частных 3
4. Деление в D-алгебре 4
5. Деление с остатком 5
6. Наибольший общий делитель 9
7. Простое A-число 9
8. Список литературы 10
9. Предметный указатель 11
10. Специальные символы и обозначения 12

1. Предисловие

Пусть D - коммутативное кольцо. Мы будем предполагать, что D-алгебра A ассоциативна.

Определение 1.1. A-число a называется левым делителем A-числа b, если существует A-число c такое, что

\[ac = b \]

Определение 1.2. A-число a называется правым делителем A-числа b, если существует A-число c такое, что

\[ca = b \]
Симметрия между определениями 1.1 и 1.2 очевидна. Также как очевидно различие между левым и правым делителями в связи с некоммутативностью произведения. Однако мы можем рассмотреть определение, обобщающее определения 1.1 и 1.2.

Мы можем рассматривать частное от деления b на a как пару чисел c, d таких, что

$$cad = b$$

Однако мы можем рассмотреть операцию деления с другой точки зрения.

Равенства (1.1), (1.2) являются примерами линейных отображений D-алгебры A. В коммутативном случае равенство (1.1) является единственным определением линейного отображения. В некоммутативном случае, линейное отображение D-алгебры A порождается $A \otimes A$-числом. Например, тензор $c \otimes d$ является $A \otimes A$-числом. Таким образом, мы получаем следующее определение.

Определение 1.3. A-число a называется делителем A-числа b, если существует $A \otimes A$-число c такое, что

$$c \circ a = b$$

$A \otimes A$-число c называется частным от деления A-числа b на A-число a.

В статье [2] я рассмотрел уравнение

$$c \circ x = b$$

В этой статье я рассматривал уравнение

$$x \circ a = b$$

D-алгебра A называется алгеброй с делением, если для любого A-числа $a \neq 0$ существует A-число a^{-1}.

2. Соглашения

Соглашение 2.1. Элемент D-алгебры A называется A-числом. Например, комплексное число также называется C-числом, а кватернйон называется H-числом.

1 Здесь можно возразить, что деление - это операция, обратная умножению. В коммутативном случае, из выражения

$$ca = b$$

следует, что

- c является множителем, произведение c и a равно b.
- c является частным деления b на a.

Таким образом, в коммутативном случае определения множителя и частного совпадают. В некоммутативном случае, мы различаем правый и левый делители; следовательно, мы различаем левое и правое частное.

2 Так как отображение

$$(1.3) \quad a \rightarrow cad$$

бilinearное, то, согласно теореме [3]-3.6.4, мы можем рассматривать отображение

$$a \rightarrow (c \otimes d) \circ a$$

вместо отображения (1.3).
Соглашение 2.2. Пусть A - Ω_1-алгебра. Пусть B - Ω_2-алгебра. Запись $A \rightarrow B$ означает, что определено представление Ω_1-алгебры A в Ω_2-алгебре B.

Соглашение 2.3. Пусть A ассоциативная D-алгебра. Представление $A \otimes A \rightarrow A$ порождает множество линейных отображений. Это представление порождает произведение \circ в D-модуле $A \otimes A$ согласно правилу

$$(p \circ q) \circ a = p \circ (q \circ a)$$

Без сомнения, у читателя могут быть вопросы, замечания, возражения. Я буду признателен любому отзыву.

3. Геометрия частных

Теорема 3.1. Пусть поле действительных чисел R является подполем центра $Z(D)$ кольца D. Тогда для любых A-чисел a, b множество частных выпукло.

Доказательство. Пусть $A \otimes A$-число c является частным от деления A-числа b на A-число a

(3.1) $$c \circ a = b$$

Пусть $A \otimes A$-число d является частным от деления A-числа b на A-число a

(3.2) $$d \circ a = b$$

Тогда для любого $t \in R$, $0 \leq t \leq 1$, из (3.1), (3.2) следует, что

$$(tc + (1 - t)d) \circ a = (tc) \circ a + ((1 - t)d) \circ a = t(c \circ a) + (1 - t)(d \circ a) = tb + (1 - t)b = b$$

Следовательно, $A \otimes A$-число $tc + (1 - t)d$ является частным от деления A-числа b на A-число a.

Теорема 3.2. Пусть $A \otimes A$-числа c, d являются частными от деления A-числа b на A-число a

(3.3) $$c \circ a = b$$

(3.4) $$d \circ a = b$$

Тогда $A \otimes A$-число $c - d$ является частным от деления A-числа 0 на A-число a

(3.5) $$(c - d) \circ a = 0$$

Доказательство. Из (3.3), (3.4) следует, что

(3.6) $$(c - d) \circ a = c \circ a - d \circ a = b - b = 0$$

Из (3.6) следует, что A-число $c - d$ является частным от деления A-числа 0 на A-число a. □
Замечание 3.3. Это место в статье очень интересно тем, что здесь очень легко совершить ошибку, которую легко доказать как теорему. После доказательства теорем 3.1, 3.2, естественно возникает следующий вопрос. Если разность двух частных от деления A-числа b на A-число a является частным от деления A-числа 0 на A-число a, то какова структура множества частных от деления A-числа 0? Или, что тоже самое, какова структура множества частных от деления A-числа b на A-число a?

Вначале я хотел доказать следующее утверждение.

Пусть A-число a не является ни левым, ни правым делителем нуля. Тогда частное от деления A-числа 0 на A-число a имеет либо вид $0a$, либо вид $ca0$. Докажательство очень просто. Если $c \neq 0$ в выражении cad, то $d = 0$.

Когда я решил записать частное в виде

$$c \otimes 0 + 0 \otimes d$$

я подумал прав ли я. Действительно, согласно теоремам [1]-13.2.2, [5]-9.2.2, существует нетривиальная запись нулевого тензора. □

4. ДЕЛЕНИЕ В D-АЛГЕБРЕ

Теорема 4.1. Если D-алгебра A является алгеброй с делением, то для любых A-чисел a, b существуют A-числа c, d такие, что

$$cad = b$$

Доказательство. Для доказательства теоремы достаточно положить

$$c = ba^{-1} \quad d = e$$

или

$$c = e \quad d = a^{-1}b$$

□

Теорема 4.2. Пусть A-число a делит A-число b. Пусть A-число b делит A-число c. Тогда A-число a делит A-число c.

Доказательство. Согласно определению 1.3, так как A-число a делит A-число b, то существует $A \otimes A$-число p такое, что

(4.1)\[b = p \circ a \]

Согласно определению 1.3, так как A-число b делит A-число c, то существует $A \otimes A$-число q такое, что

(4.2)\[c = q \circ b \]

Из равенств (4.1), (4.2) следует, что

(4.3)\[c = q \circ (p \circ a) = (q \circ p) \circ a \]

Согласно определению 1.3, из равенства (4.3) следует, что A-число a делит A-число c. □

Теорема 4.3. Пусть A-число a делит A-число b. Пусть A-число a делит A-число c. Тогда A-число a делит A-число $b + c$. 4
Доказательство. Согласно определению 1.3, так как A-число a делит A-число b, то существует $A \otimes A$-число p такое, что
\begin{equation}
 b = p \circ a
\end{equation}
Согласно определению 1.3, так как A-число a делит A-число c, то существует $A \otimes A$-число q такое, что
\begin{equation}
 c = q \circ a
\end{equation}
Из равенств (4.4), (4.5) следует, что
\begin{equation}
 b + c = p \circ a + q \circ a = (p + q) \circ a
\end{equation}
Согласно определению 1.3, из равенства (4.6) следует, что A-число a делит A-число $b + c$. \hfill \Box

Теорема 4.4. Пусть A-число a делит A-число b. Пусть c является $A \otimes A$-числом. Тогда A-число a делит A-число $c \circ b$.

Доказательство. Согласно определению 1.3, так как A-число a делит A-число b, то существует $A \otimes A$-число p такое, что
\begin{equation}
 b = p \circ a
\end{equation}
Из равенств (4.7) следует, что
\begin{equation}
 c \circ b = c \circ (p \circ a) = (c \circ p) \circ a
\end{equation}
Согласно определению 1.3, из равенства (4.8) следует, что A-число a делит A-число $c \circ b$. \hfill \Box

5. Деление с остатком

Определение 5.1. Пусть деление в D-алгебре A не всегда определено. A-число a делит A-число b с остатком, если следующее равенство верно
\begin{equation}
 c \circ a + f = b
\end{equation}
$A \otimes A$-число c называется частным от деления A-числа b на A-число a. A-число d называется остатком от деления A-числа b на A-число a. \hfill \Box

Теорема 5.2. Для любых A-чисел a, b, существует частное и остаток от деления A-числа b на A-число a.

Доказательство. Для доказательства теоремы достаточно положить
\begin{align*}
 c &= a \otimes a \\
 f &= b - (a \otimes a) \circ a = b - aaa
\end{align*}
Из теоремы 5.2 следует, что для заданных A-чисел a, b представление (5.1) определено не однозначно. Если мы поделим с остатком A-число f на A-число a, то мы получим
\begin{equation}
 c' \circ a + f' = f
\end{equation}
Из (5.1), (5.2) следует, что
\begin{equation}
 c \circ a + c' \circ a + f' = (c + c') \circ a + f' = b
\end{equation}
Как мы можем сравнить представления (5.1), (5.3), если отношение порядка не определено в D-алгебре A?

Следовательно, множество остатков от деления A-числа b на A-число a имеет вид

\begin{equation}
A\{b, a\} = \{ f \in A : f = b - c \circ a, c \in A \otimes A \}
\end{equation}

Если $0 \in A\{b, a\}$, то выбор остатка и соответствующего частного очевиден. Вообще говоря, выбор представителя множества $A\{b, a\}$ зависит от свойств алгебры. В алгебре \mathbb{N} целых чисел мы выбираем наименьшее положительное число. В алгебре $A[x]$ многочленов мы выбираем многочлен степени меньше степени делителя. Если в алгебре A определена норма (например, алгебра целых кватернионов), то в качестве остатка мы можем выбрать A-число с наименьшей нормой.

Теорема 5.3. Если

\begin{equation}
A\{b, a\} \cap A\{c, a\} \neq \emptyset
\end{equation}

то

5.3.1: A-число a делит A-число $b - c$ без остатка.

5.3.2: $A\{b, a\} = A\{c, a\}$

Доказательство. Из утверждения (5.5) следует, что существует A-число

\begin{equation}
d \in A\{b, a\} \cap A\{c, a\}
\end{equation}

Из утверждения (5.6) и определения (5.4) следует, что существуют $A \otimes A$-числа f, g такие, что

\begin{align}
b &= f \circ a + d \\
c &= g \circ a + d
\end{align}

Из равенств (5.7), (5.8) следует, что

\begin{equation}
b - c = f \circ a - g \circ a = (f - g) \circ a
\end{equation}

Утверждение 5.3.1 является следствием равенства (5.9).

Пусть $m \in A\{b, a\}$. Из определения (5.4) следует, что существует $A \otimes A$-число n такие, что

\begin{equation}
b = n \circ a + m
\end{equation}

Из равенств (5.7), (5.10) следует, что

\begin{equation}
f \circ a + d = n \circ a + m
\end{equation}

Из равенства (5.11) следует, что

\begin{equation}
d = n \circ a - f \circ a + m = (n - f) \circ a + m
\end{equation}

Из равенств (5.8), (5.12) следует, что

\begin{equation}
c = g \circ a + (n - f) \circ a + m = (g + n - f) \circ a + m
\end{equation}

Из определения (5.4) и равенства (5.13) следует, что существует $m \in A\{c, a\}$.

Следовательно,

\begin{equation}
A\{b, a\} \subseteq A\{c, a\}
\end{equation}
Аналогичным образом мы доказываем утверждение
(5.15) \[A\{c, a\} \subseteq A\{b, a\} \]
Утверждение 5.3.2 является следствием утверждений (5.14), (5.15).

Из теоремы 5.3 следует, что для данного \(A \)-числа \(a \) семейство множеств \(A\{b, a\} \) порождает отношение эквивалентности \(\text{mod } a \).

Определение 5.4. Определим каноническое частное \(b \mod a \) от деления \(A \)-числа \(b \) на \(A \)-число \(a \) как выбранный элемент множества \(A\{b, a\} \). Представление
\[c \circ a + (b \mod a) = b \]
dеления с остатком называется каноническим.

На первый взгляд, выбор \(A \)-числа \(b \mod a \) произволен. Однако мы можем определить естественные границы этого произвола.

Теорема 5.5. Если мы определим сложение на множестве \(A/\text{mod } a \) согласно правилу
(5.16) \[b \mod a + c \mod a = (b + c) \mod a \]
то множество \(A/\text{mod } a \) является абелевой группой.

Доказательство. Согласно определению 5.4, существуют \(A \otimes A \)-числа \(p, q \) такие, что
(5.17) \[b = p \circ a + b \mod a \]
\[c = q \circ a + c \mod a \]
Из (5.17) следует, что
(5.18) \[b + c = p \circ a + b \mod a + q \circ a + c \mod a \]
\[= (p + q) \circ a + b \mod a + c \mod a \]
Из равенств (5.4), (5.18) следует, что
(5.19) \[b \mod a + c \mod a \in A\{b + c, a\} \]
Из утверждения (5.19) и определения 5.4 следует корректность определения (5.16) суммы.

Коммутативность суммы (5.16) доказывается непосредственной проверкой.

Теорема 5.6. Представление
\[D \twoheadrightarrow A/\text{mod } a \]
кольца \(D \) в абелевой группе \(A/\text{mod } a \) определённое равенством
(5.20) \[d(b \mod a) = (db) \mod a \]
порождает \(D \)-модуль \(A/\text{mod } a \).
Доказательство. Согласно определению 5.4, существует $A \otimes A$-число p такое, что
\begin{equation}
(5.21) \quad b = p \circ a + b \mod a
\end{equation}
Из (5.21) следует, что
\begin{equation}
(5.22) \quad db = d(p \circ a) + d(b \mod a) = (dp) \circ a + d(b \mod a)
\end{equation}
Из равенств (5.4), (5.22) следует, что
\begin{equation}
(5.23) \quad d(b \mod a) \in A\{db, a\}
\end{equation}
Из утверждения (5.23) и определения 5.4 следует корректность определения (5.20) представления.

Teorema 5.7. Если мы определим умножение в D-модуле $A/ \mod a$ согласно правилу
\begin{equation}
(5.24) \quad (b \mod a)(c \mod a) = (bc) \mod a
\end{equation}
то D-модуль $A/ \mod a$ является D-алгеброй.

Доказательство. Согласно определению 5.4, существуют $A \otimes A$-числа p, q такие, что
\begin{equation}
(5.25) \quad b = p \circ a + b \mod a \quad c = q \circ a + c \mod a
\end{equation}
Из (5.25) следует, что
\begin{equation}
bc = (p \circ a + b \mod a)(q \circ a + c \mod a)
= (p \circ a)(q \circ a + c \mod a) + (b \mod a)(q \circ a + c \mod a)
= (p \circ a)b + (b \mod a)(q \circ a) + (b \mod a)(c \mod a)
= ((1 \otimes b) \circ p) \circ a + ((b \mod a) \otimes 1) \circ q \circ a + (b \mod a)(c \mod a)
\end{equation}
Из равенств (5.4), (5.26) следует, что
\begin{equation}
(5.27) \quad (b \mod a)(c \mod a) \in A\{bc, a\}
\end{equation}
Из утверждения (5.27) и определения 5.4 следует корректность определения (5.24) произведения.

Teorema 5.8. Пусть
\begin{equation}
(5.28) \quad p \circ b + q = a
\end{equation}
является каноническим представлением деления с остатком A-числа a на A-число b. Пусть
\begin{equation}
(5.29) \quad t \circ c + s = b
\end{equation}
является каноническим представлением деления с остатком A-числа b на A-число c.

5.8.1: Пусть
\begin{equation}
(5.30) \quad u \circ c + v = p \circ s + q
\end{equation}
является каноническим представлением деления с остатком A-числа $p \circ s + q$ на A-число c.
5.8.2: Тогда каноническое представление деления с остатком A-числа a на A-число с имеет вид
\[(p \circ t + u) \circ c + v = a\]

Доказательство. Из равенств (5.28), (5.29) следует, что
\[a = p \circ (t \circ c + s) + q = p \circ t \circ c + p \circ s + q \]
Равенство (5.32) является представлением деления с остатком A-числа a на A-число c. Из равенств (5.30), (5.32) следует, что
\[a = p \circ t \circ c + u \circ c + v \]
Равенство (5.31) является следствием равенства (5.33). Из утверждения 5.8.1 и определения 5.4 следует, что
\[v = (p \circ s + q) \mod c \]
Из равенств (5.4), (5.31) следует, что
\[v \in A\{a, c\} \]
Из утверждения (5.35) и определения 5.4 следует, что
\[v = a \mod c \]
Утверждение 5.8.2 является следствием утверждения (5.36) и определения 5.4.

6. Наибольший общий делитель

Определение 6.1. A-число c называется общим делителем A-чисел a и b, если A-число c делит каждое из A-чисел a и b. Если A-числа a и b не являются делителями единицы и любой общий делитель A-чисел a и b не является делителем единицы, то A-числа a и b называются взаимно простыми.

Определение 6.2. A-число c называется наибольшим общим делителем A-чисел a и b, если A-число c является общим делителем A-чисел a и b и любой общий делитель d A-чисел a и b делит A-число c.

7. Простое A-число

Определение 7.1. Пусть A-число b не является делителем единицы D-алгебры A. A-число b называется простым, если любой делитель a A-числа b удовлетворяет одному из следующих условий.

7.1.1: A-число a является делителем единицы.
7.1.2: Частное от деления A-числа b на A-число a является делителем единицы D-алгебры A ⊗ A.

Теорема 7.2. Пусть D-алгебра A является алгеброй с делением. Рассмотрим алгебру многочленов A[x] над D-алгеброй A. Многочлен степени 1 является простым A[x]-числом.
Доказательство. Пусть \(p \) - многочлен степени 1. Пусть \(q \) - многочлен. Пусть
\[
p = (r_1 \otimes r_2) \circ q = r_1 q r_2
\]
каноническая форма деления с остатком многочлена \(p \) на многочлен \(q \). Здесь \(r_1, r_2 \) - многочлены. Согласно теоремам [4]-5.9, [6]-20,
\[
\text{deg} r_1 + \text{deg} q + \text{deg} r_2 = \text{deg} p = 1
\]
Из равенства (7.2) следует, что только один многочлен \(q, r_1, r_2 \) имеет степень 1, и остальные два многочлена являются \(A \)-числами.

• Если многочлен \(q \) является \(A \)-числом, то многочлен \(q \) является делителем единицы и удовлетворяет условию 7.1.1.
• Если степень многочлена \(q \) равна 1, то, согласно теоремам [4]-6.10, [6]-28,
\[
p = r \circ q
\]
где \(r \) является \(A \otimes A \)-числом. Так как \(p, q \) - многочлены степени 1, то, согласно теоремам [4]-6.10, [6]-28,
\[
q = r' \circ p + s
\]
где \(r' \) является \(A \otimes A \)-числом и \(s \) является \(A \)-числом. Из равенств (7.3), (7.4) следует, что
\[
p = r \circ r' \circ p + r \circ s
\]
Из равенства (7.5) следует, что
\[
r \circ r' = 1 \otimes 1 \quad r \circ s = 0
\]
Из равенства (7.6) следует, что \(A \otimes A \)-число \(r \) является делителем единицы и \(s = 0 \). Следовательно, многочлен \(q \) удовлетворяет условию 7.1.2.

Согласно определению 7.1, многочлен \(p \) является простым \(A[x] \)-числом. □

8. Список литературы

[1] Александр Клейн, Лекции по линейной алгебре над телом, eprint arXiv:math.GM/0701238 (2010)
[2] Александр Клейн, Линейное уравнение в конечномерной алгебре, eprint arXiv:0912.4061 (2010)
[3] Александр Клейн, Линейные отображения свободной алгебры, eprint arXiv:1003.1544 (2010)
[4] Александр Клейн, Многочлен над ассоциативной \(D \)-алгеброй, eprint arXiv:1302.7204 (2013)
[5] Александр Клейн. Линейная алгебра над телом: Векторное пространство. CreateSpace, 2014; ISBN-13: 978-1499323948
[6] Aleks Kleyn, Polynomial over Associative \(D \)-Algebra. Clifford Analysis, Clifford Algebras and their applications, Vol 2, Issue 2, pages 97 - 115, 2013
9. ПРЕДМЕТНЫЙ УКАЗАТЕЛЬ

- A-число 2
- алгебра с делением 2
- взаимно простые A-числа 9
- деление без остатка 6
- деление с остатком 5
- каноническое представление деления с остатком 7
- наибольший общий делитель 9
- общий делитель 9
- остаток от деления 5
- простое A-число 9
- частное от деления 2, 5
Специальные символы и обозначения

\[b \mod a \] каноническое частное от деления 7