A cohomological proof that real representations of semisimple Lie algebras have \mathbb{Q}-forms

Dave Witte MORRIS

Department of Mathematics and Computer Science, University of Lethbridge, Lethbridge, Alberta, T1K 3M4, Canada
E-mail: Dave.Morris@uleth.ca
URL: http://people.uleth.ca/~dave.morris/

Abstract. A Lie algebra $\mathfrak{g}_\mathbb{Q}$ over \mathbb{Q} is said to be \mathbb{R}-universal if every homomorphism from $\mathfrak{g}_\mathbb{Q}$ to $\mathfrak{gl}(n, \mathbb{R})$ is conjugate to a homomorphism into $\mathfrak{gl}(n, \mathbb{Q})$ (for every n). By using Galois cohomology, we provide a short proof of the known fact that every real semisimple Lie algebra has an \mathbb{R}-universal \mathbb{Q}-form. We also provide a description of the \mathbb{R}-universal \mathbb{Q}-forms of each compact, simple real Lie algebra.

Key words: semisimple Lie algebra; finite-dimensional representation; global field; Galois cohomology; linear algebraic group; Tits algebra

2010 Mathematics Subject Classification: 17B10; 17B20; 11E72; 20G30

1 Introduction

Definition 1.1. Let \mathfrak{g} be a Lie algebra over \mathbb{Q}. (All Lie algebras and all representations are assumed to be finite-dimensional.)

1. \mathfrak{g} is universal for real representations (or \mathbb{R}-universal, for short) if every real representation of \mathfrak{g} has a \mathbb{Q}-form [6, Defn. 7.1]. This means that if $\rho: \mathfrak{g} \to \mathfrak{gl}(n, \mathbb{R})$ is any (Q-linear) Lie algebra homomorphism, then there exists $M \in \text{GL}(n, \mathbb{R})$, such that $M \rho(x) M^{-1} \in \mathfrak{gl}(n, \mathbb{Q})$, for every $x \in \mathfrak{g}$.

2. \mathfrak{g} is a \mathbb{Q}-form of a real Lie algebra $\mathfrak{g}_\mathbb{R}$ if $\mathfrak{g} \otimes_\mathbb{Q} \mathbb{R} \cong \mathfrak{g}_\mathbb{R}$.

This note uses Galois cohomology to present a short proof of the following known result, which was first obtained by M.S. Raghunathan [9, §3] in the important special case where $\mathfrak{g}_\mathbb{R}$ is compact.

Proposition 1.2 ([6, Thm. 1.2]). Every real semisimple Lie algebra has a \mathbb{Q}-form that is \mathbb{R}-universal.

The proof in [6] constructs an \mathbb{R}-universal \mathbb{Q}-form explicitly, and is rather tedious, but a much nicer proof was given by G. Prasad and A. Rapinchuk [8, Prop. 3 and Rem. 3]. Assuming some fundamental results of J. Tits [11], our proof in Section 2 is a bit shorter and more direct. (On the other hand, we provide less information about the \mathbb{Q}-form than is supplied in [8].)

Section 3 gives an explicit characterization of the \mathbb{R}-universal \mathbb{Q}-forms of every compact, simple, real Lie algebra.

Due to the well-known correspondence between \mathbb{Q}-forms and arithmetic subgroups [11, Defn. 7.11, p. 49], Proposition 1.2 has the following consequence in the theory of discrete subgroups:
Corollary 1.3. Let G be a connected, semisimple Lie group with finite center. Then there is a discrete subgroup Γ of G, such that

1. G/Γ has finite volume (so Γ is a “lattice” in G), and

2. if $\rho: G \to \text{GL}(n, \mathbb{R})$ is any finite-dimensional representation of G, then $\rho(\Gamma)$ is conjugate to a subgroup of $\text{GL}(n, \mathbb{Z})$.

2 Proof of the main result

We begin by recalling a result of J. Tits that uses Galois cohomology to characterize the irreducible representations of semisimple algebraic groups over fields that are not algebraically closed.

Definition 2.1 ([11, §4.2]). Suppose g is a semisimple Lie algebra over a subfield F of \mathbb{C}, and let G be the corresponding simply connected, semisimple algebraic group over F. It is well known that there is a (unique) quasi-split algebraic group G^q over F, and a 1-cocycle $\xi: \text{Gal}(\overline{F}/F) \to \overline{G}^q$, where \overline{G}^q is the adjoint group of G^q, such that G is F-isomorphic to the Galois twist ξG^q. Although the cocycle ξ is not unique, it represents a well-defined cohomology class $[\xi] \in H^1(F; \overline{G}^q)$.

Letting $Z(G^q)$ be the center of G^q, the short exact sequence $e \to Z(G^q) \to G^q \to \overline{G}^q \to e$ yields a corresponding long exact sequence of Galois cohomology sets, including a connecting map $\delta_*: H^1(F; G^q) \to H^2(F; Z(G^q))$. Hence, we have a cohomology class $\delta_*[\xi] \in H^2(F; Z(G^q))$.

Now, fix a maximal F-torus T of G^q that contains a maximal F-split torus, and suppose λ is a weight of T that is invariant under the $*$-action of the Galois group $\text{Gal}(\overline{F}/F)$. Then the restriction of λ to $Z(G^q)$ is a $\text{Gal}(\overline{F}/F)$-equivariant homomorphism from $Z(G^q)$ to the group μ of roots of unity in \mathbb{C}, so it induces a homomorphism $\lambda_*: H^2(F; Z(G^q)) \to H^2(F; \mu)$. Therefore, we may define

$$\beta_{\rho,F}(\lambda) = \lambda_* \delta_*[\xi] \in H^2(F; \mu).$$

Proposition 2.2 (Tits [11, Thm. 7.2 and Lem. 7.4]). Suppose g is a semisimple Lie algebra over a subfield F of \mathbb{C}, and λ is a dominant weight. Then:

1. There is an irreducible representation $F_{\rho,\lambda}: g \to \mathfrak{gl}(n, F)$, for some n, such that $F_{\rho,\lambda} \otimes_F \mathbb{C}$ has an irreducible summand with highest weight λ. Furthermore, $F_{\rho,\lambda}$ is unique up to isomorphism.

2. $F_{\rho,\lambda_1} \cong F_{\rho,\lambda_2}$ if and only if λ_1 and λ_2 are in the same orbit of the $*$-action of $\text{Gal}(\overline{F}/F)$.

3. $F_{\rho,\lambda} \otimes_F \mathbb{C}$ is irreducible if and only if:

 (a) λ is invariant under the $*$-action of $\text{Gal}(\overline{F}/F)$, and

 (b) $\beta_{\rho,F}(\lambda)$ is the trivial element of $H^2(F; \mu)$.

Corollary 2.3. Suppose \(g \) is a semisimple Lie algebra over \(\mathbb{Q} \), such that \(g \) splits over a quadratic extension of \(\mathbb{Q} \). Let \(T \) be a maximal \(\mathbb{Q} \)-torus of the corresponding simply connected algebraic group \(G \), such that \(T \) contains both a maximal \(\mathbb{Q} \)-split torus and a maximal \(\mathbb{R} \)-split torus. Then \(g \) is \(\mathbb{R} \)-universal if and only if, for every dominant weight \(\lambda \) of \(T \):

\[
\begin{align*}
\text{if } \lambda &\text{ is invariant under the } *\text{-action of } \text{Gal}(\mathbb{C}/\mathbb{R}), \text{ and } \beta_{g,\mathbb{R}}(\lambda) = 0, \\
\text{then } \lambda &\text{ is also invariant under the } *\text{-action of } \text{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}), \text{ and } \beta_{g,\mathbb{Q}}(\lambda) = 0.
\end{align*}
\]

(2.4)

Proof. We prove only (\(\Leftarrow \)), but the argument is reversible. We wish to show that \(\mathbb{Q}g_\lambda \) is a \(\mathbb{Q} \)-form of \(\mathbb{R}g_\lambda \), for every dominant weight \(\lambda \). By combining (2.4) with Proposition 2.2(3), we see that \(\mathbb{Q}g_\lambda \otimes \mathbb{C} \) is irreducible if and only if \(\mathbb{R}g_\lambda \otimes \mathbb{C} \) is irreducible. Furthermore, since \(g_\mathbb{Q} \) splits over a quadratic extension, we know that \(\mathbb{Q}g_\lambda \otimes \mathbb{C} \) is either irreducible or the direct sum of two irreducibles \([6]\) Cor. 3.2(2)]. Therefore, \(\mathbb{Q}g_\lambda \otimes \mathbb{C} \) and \(\mathbb{R}g_\lambda \otimes \mathbb{C} \) have the same number of irreducible constituents. (Namely, either they are both irreducible, or they are both the direct sum of 2 irreducibles.) Since \(\mathbb{R}g_\lambda \) is a summand of \(\mathbb{Q}g_\lambda \otimes \mathbb{R} \), this implies that \(\mathbb{R}g_\lambda \cong \mathbb{Q}g_\lambda \otimes \mathbb{R} \), so \(\mathbb{Q}g_\lambda \) is a \(\mathbb{Q} \)-form of \(\mathbb{R}g_\lambda \). \(\Box \)

We will also use the following (weak form of an) important fact in the theory of Galois cohomology:

Proposition 2.5 (Kneser [3] Thm. 5.1b, p. 77, [7] Prop. 6.17, p. 337]). If \(G \) is a connected, semisimple algebraic group over an algebraic number field \(F \subset \mathbb{R} \), and \(G \) splits over a finite, Galois extension \(L \) of \(F \), with \(L \subset \mathbb{C} \), but \(L \not\subset \mathbb{R} \), then the restriction map

\[
H^1(L/F; G(L)) \to H^1(\mathbb{R}; G)
\]

is surjective.

Proof of Proposition 1.2. Suppose \(g_\mathbb{R} \) is a real semisimple Lie algebra, and let \(G \) be the simply connected, semisimple \(\mathbb{R} \)-algebraic group whose Lie algebra is \(g_\mathbb{R} \). Write \(G = G^\mathbb{C} \), where \(\xi : \text{Gal}(\mathbb{C}/\mathbb{R}) \to G^\mathbb{C} \) is a 1-cocycle and \(G^\mathbb{C} \) is quasi-split. Let \(L = \mathbb{Q}[\bar{\xi}] \). By choosing an appropriate \(\mathbb{Q} \)-form, we may assume that \(G^\mathbb{Q} \) is a quasi-split \(\mathbb{Q} \)-group that splits over \(L \), and that the \(* \)-action of \(\text{Gal}(L/\mathbb{Q}) \) is the same as the \(* \)-action of \(\text{Gal}(\mathbb{C}/\mathbb{R}) \).

Let \(\sigma \) be the nontrivial element of \(\text{Gal}(\mathbb{C}/\mathbb{R}) \), fix a representative \(a \in G^\mathbb{Q} \) of \(\xi(\sigma) \in G^\mathbb{Q} \), and let \(z = a^\sigma a \). Since \(a^2 \) is trivial and \(\xi \) is a 1-cocycle, we know that \(z \) is trivial in \(G^\mathbb{Q} \), which means \(z \in Z(G^\mathbb{Q}) \). This implies that \(a \) commutes with \(\sigma \), so \(\sigma \) fixes \(z \), which means \(z \in Z(G^\mathbb{Q})(\mathbb{R}) \).

Let \(H \) be the product of the almost simple factors of \(G^\mathbb{Q} \) that are absolutely almost simple and of type \(^2A_n \) (more concretely, \(H \) is the product of the factors that are isomorphic to \(\text{SU}(k, \ell) \), for some \(k \) and \(\ell \)), let \(Z(H)^2 = \langle w^2 \mid w \in Z(H) \rangle \), let \(G^\mathbb{Q} = G^\mathbb{Q}/Z(H)^2 \), and let \(\bar{z} \) be the image of \(z \) in \(G^\mathbb{Q} \). Note that \(G^\mathbb{Q} \) is a \(\mathbb{Q} \)-group (since \(Z(H)^2 \) is a \(\mathbb{Q} \)-subgroup of \(G^\mathbb{Q} \)).

We claim that we may assume \(\bar{z} \in Z(G^\mathbb{Q})(\mathbb{Q}) \). While proving this, we may consider each simple factor individually, so there is no harm in assuming \(G^\mathbb{Q} \) is almost simple. This allows us to furthermore assume that \(G^\mathbb{Q} \) is absolutely almost simple. (Otherwise, since every \(\mathbb{C} \)-group is split, we could assume \(\xi \) is trivial.) Also, since \(|\text{Gal}(\mathbb{C}/\mathbb{R})| = 2 \), we may assume, by replacing \(a \) with \(aw \) for an appropriately chosen \(w \in \langle z \rangle \), that \(|\bar{z}| \) is a power of 2. Assuming, as we may, that \(\bar{z} \) is nontrivial, this implies that \(G^\mathbb{Q} \) is not of type \(^{1,2}E_6 \).
Then \(Z(G^q)(\mathbb{R}) = Z(G^q)(\mathbb{Q})\): if \(G^q\) is not of type \(^2A_n\), then this can be seen from the table on page 332 of [7], but if not, then the definition of \(G^q\) implies \(|Z(G^q)| \leq 2\), so every element of \(Z(G^q)\) is defined over \(\mathbb{Q}\). This completes the proof of the claim.

The claim of the preceding paragraph implies that the cyclic subgroup \((z)\) generated by \(z\) is defined over \(\mathbb{Q}\). Hence, the quotient \(G^q = G^q/\langle z, Z(H)^2 \rangle\) is a semisimple \(\mathbb{Q}\)-group. Now, since \(a^\omega = z\) is trivial in \(G^q\), we know that \(\xi\) lifts to a 1-cocycle \(\tilde{\xi}: \text{Gal}(\mathbb{C}/\mathbb{R}) \rightarrow \tilde{G}^q\). Then Proposition 2.3 implies that, after replacing \(\tilde{\xi}\) with a cohomologous cocycle, we may assume \(\tilde{\xi}\) is the restriction of a 1-cocycle \(\zeta: \text{Gal}(L/\mathbb{Q}) \rightarrow G^q(L)\). Let \(G^q = \zeta G^q\), so \(G^q\) is a \(\mathbb{Q}\)-group that is \(L\)-split, and is isomorphic to \(G\) over \(\mathbb{R}\). Also, let \(g\) be the Lie algebra of \(G^q\).

To complete the proof, we show that \(g\) is \(\mathbb{R}\)-universal, by verifying (2.4). To this end, let \(\lambda\) be a \(\text{Gal}(\mathbb{C}/\mathbb{R})\)-invariant dominant weight, such that \(\beta_{g, \mathbb{R}}(\lambda) = 0\). Since \(G^q\) is \(L\)-split and the \(*\)-action of \(\text{Gal}(L/\mathbb{Q})\) is the same as the \(*\)-action of \(\text{Gal}(\mathbb{C}/\mathbb{R})\) (by the choice of the \(\mathbb{Q}\)-form of \(G^q\)), we know that \(\lambda\) is invariant under \(\text{Gal}(\mathbb{C}/\mathbb{R})\).

Since \(\zeta\) is a 1-cocycle into \(\tilde{G}^q = G^q/\langle z, Z(H)^2 \rangle\), we know that, in the notation of Definition 2.1 with \(F = \mathbb{Q}\), we have \(\delta_\omega[\zeta] \in H^2(\mathbb{Q}; \langle z, Z(H)^2 \rangle)\). Therefore, in order to show that \(\beta_{g, \mathbb{Q}}(\lambda) = \lambda_\omega \delta_\omega[\zeta] = 0\), it suffices to show that \(\lambda\) is trivial on both \(z\) and \(Z(H)^2\). Note that, in the notation of Definition 2.1 with \(F = \mathbb{R}\), we have \(\lambda_\omega \delta_\omega[\zeta] = \beta_{g, \mathbb{R}}(\lambda) = 0\).

Under the natural identification of \(H^2(\mathbb{R}; Z(G^q))\) with \(\{ w \in Z(G^q) \mid \omega w = w \}/\{ w \omega w \mid w \in Z(G^q) \}\), we have \(\delta_\omega[\zeta] = [z]\), so this means \(\lambda(z) = 1\) (since \(\omega \bar{w} = 1\) for all \(\omega \in \mu\)). Furthermore, since the restriction of \(\lambda\) to \(Z(G^q)\) is a \(\text{Gal}(\mathbb{C}/\mathbb{R})\)-equivariant homomorphism, and \(Z(H)(\mathbb{R}) = Z(H)\) (cf. [7] p. 332)), we have \(\lambda(Z(H)) \subseteq \mu(\mathbb{R}) = \{\pm 1\}\), so \(\lambda\) is also trivial on \(Z(H)^2\).

\section{\(\mathbb{R}\)-universal \(\mathbb{Q}\)-forms of compact, simple Lie algebras}

This section describes the \(\mathbb{R}\)-universal \(\mathbb{Q}\)-forms of each compact, simple Lie algebra. (This problem was proposed by the author in [6, p. 485].) Many cases (including most of the exceptional types) are handled by the corollary of the following observation.

Proposition 3.1 (cf. [6, §7]). Suppose \(g_\mathbb{R}\) is a compact, simple Lie algebra over \(\mathbb{R}\). There is a \(\mathbb{Q}\)-form \(g_\mathbb{Q}\) of \(g_\mathbb{R}\) such that \(g_\mathbb{Q}\) splits over some quadratic extension of \(\mathbb{Q}\), but is not \(\mathbb{R}\)-universal, if and only if either

\begin{enumerate}
 \item \(g_\mathbb{R} \cong \text{su}(n)\), for some \(n\) that is divisible by 4, or
 \item \(g_\mathbb{R} \cong \text{so}(n)\), for some \(n \neq 3, 5 \pmod{8}\) (with \(n \geq 6\)).
\end{enumerate}

Erratum 3.2. Proposition 3.1 is stated incorrectly in [6, §7]. The error is in Prop. 7.3(a), where \(\ell\) is required to only be odd, whereas it actually needs to be \(\equiv 3 \pmod{4}\). This means that \(g\), the compact real form of type \(A_\ell\), is isomorphic to \(\text{su}(n)\), for some \(n\) that is divisible by 4. In [6, §7], it is incorrectly stated that \(n\) only needs to be even, not divisible by 4.

Corollary 3.3. Suppose \(g_\mathbb{R}\) is a compact, simple Lie algebra over \(\mathbb{R}\). If \(g_\mathbb{R}\) is of type \(C_n\), \(E_7\), \(E_8\), \(F_4\), or \(G_2\), then every \(\mathbb{Q}\)-form of \(g_\mathbb{R}\) is \(\mathbb{R}\)-universal.
Proof. Every Lie algebra of any of these types (over an algebraic number field) splits over an appropriate quadratic extension \([7, \text{Prop. 6.16, p. 335}]\), and \(g_5\) does not appear in Proposition 3.1. (Lie algebras of type \(B_n\) also split over a quadratic extension, but they are the Lie algebras in 3.1(b) with \(n\) odd.)

In the remainder of this section, we determine exactly which \(\mathbb{Q}\)-forms are \(\mathbb{R}\)-universal for each of the other types of compact simple Lie algebras: \(\mathfrak{su}(n)\) (Proposition 3.7), \(\mathfrak{so}(n)\) (Proposition 3.9), \(\mathfrak{so}(n,1)\) (Lemma 3.12 and Proposition 3.13), and \(\mathfrak{e}_6\) (Proposition 3.14). The results for classical groups can be obtained quite easily from the calculations of \(\beta_g,F(\lambda)\) in \([4, \S 27.B, \text{pp. 378–379}]\), and the answer for \(\mathfrak{e}_6\) is immediate from observations of Tits \([11, \S 6.4]\).

We will use the following concrete interpretation of \(\beta_g,F(\lambda)\):

Proposition 3.4 (Tits \([11, \text{Cor. 3.5, \S 4.2, and Lem. 7.4}]\)). Suppose \(g\) is a semisimple Lie algebra over a field \(F\) of characteristic 0, and \(\lambda\) is a dominant weight. Let \(L\) be the center of \(D_{g,F}(\lambda) = \text{End}_g(F^\lambda)\) (which, by Schur's Lemma, is a division algebra). Then:

1. \(\lambda\) is invariant under the \(*\)-action of \(\text{Gal}(\overline{L}/L)\), and
2. \(\beta_{g,L}(\lambda) = [D_{g,F}(\lambda)]\), after identifying \(H^2(L; \mu)\) with the Brauer group of \(L\).

Since every root of \(G^q\) is trivial on the center, the following observation is immediate from Definition 2.1.

Lemma 3.5 (Tits \([11, \text{Thm. 3.3}]\)). Suppose \(\lambda\) is a dominant weight of a semisimple Lie algebra \(g\) over a field \(F\) of characteristic zero. If \(\lambda\) is in the root lattice, then \(\beta_{g,F}(\lambda) = 0\).

3A Q-forms of \(\mathfrak{su}(n)\)

Lemma 3.6. Suppose \(g = \mathfrak{su}_n(A; L, \tau)\), where

- \(L\) is a quadratic extension of a field \(F\) of characteristic zero,
- \(\tau\) is the nontrivial element of \(\text{Gal}(L/F)\),
- \(A\) is a \(\tau\)-Hermitian matrix in \(\text{GL}_n(L)\), and
- \(n\) is divisible by 4.

Then, for any \(\text{Gal}(L/F)\)-invariant weight \(\lambda\) of \(g\), we have \(\beta_{g,F}(\lambda) = 0\) if and only if either
\(\text{det} A = 0\) is a norm in \(L\), or \(\lambda\) is in the root lattice.

Proof. We may assume that \(\lambda\) is not in the root lattice, for otherwise Lemma 3.5 tells us that \(\beta_{g,F}(\lambda) = 0\).

Let \(L = F[\sqrt{a}]\) and \(b = \text{det} A\). Since \(n\) is divisible by 4, we have \(b = (-1)^{n(n-1)/2} \text{det} A\), so \([4, \text{SU}(B, \tau)\) on p. 378, and Cor. 10.35 on p. 131] (and Proposition 3.4) tells us that \(\beta_{g,F}(\lambda)\) is represented by the quaternion algebra \((a,b)_F\). This is trivial in the Brauer group if and only if it is split, which means that \(b\) is a norm in \(L = F[\sqrt{a}]\).

Proposition 3.7. Suppose \(g\) is a \(\mathbb{Q}\)-form of \(\mathfrak{su}(n)\), for some \(n \geq 2\), so \(g = \mathfrak{su}_k(A; D, \tau)\), where
• \(D \) is a central division algebra of some degree \(d \) over an imaginary quadratic extension \(L \) of \(\mathbb{Q} \),

• \(\tau \) is an involution of \(D \), such that the restriction of \(\tau \) to \(L \) is nontrivial, and

• \(A \) is a \(\tau \)-Hermitian matrix in \(\text{GL}_k(D) \), where \(n = kd \).

Then \(g \) is \(\mathbb{R} \)-universal if and only if

1. \(D = \mathbb{R} \) is a field, so \(A \) is a \(\tau \)-Hermitian matrix in \(\text{GL}_n(L) \), and

2. either \(n \) is not divisible by 4, or \(\det A \) is the norm of some element of \(L \).

Proof. \((\Leftarrow \) From (1), we see that \(g = \mathfrak{su}_n(A; L, \tau) \), so \(g \) is \(L \)-split. Hence, we may assume \(n \) is divisible by 4, for otherwise Proposition 3.1 implies the desired conclusion that \(g \) is \(\mathbb{R} \)-universal. Then, since \(\text{Gal}(\mathbb{C}/\mathbb{R}) \) and \(\text{Gal}(L/\mathbb{Q}) \) have the same \(* \)-action (and \(\det A \) is a norm in \(L \)), Lemma 3.6 implies that \(\beta_{g, \mathbb{Q}}(\lambda) = 0 \) for every \(\text{Gal}(\mathbb{C}/\mathbb{R}) \)-invariant weight \(\lambda \). This establishes (2.4), so \(g \) is \(\mathbb{R} \)-universal.

\((\Rightarrow \) The natural representation \(\rho \colon g \hookrightarrow \text{Mat}_{k \times k}(D) \) is irreducible over \(\mathbb{Q} \). Since \(g \) is \(\mathbb{R} \)-universal, this representation must remain irreducible over \(\mathbb{R} \). By Schur’s Lemma, this implies that \(D \otimes_{\mathbb{Q}} \mathbb{R} \) has no zero divisors. On the other hand, \(D \otimes_{\mathbb{Q}} \mathbb{R} \) is split (since its center is \(\mathbb{L} \otimes_{\mathbb{Q}} \mathbb{R} = \mathbb{C} \)). Therefore \(D \) must be a field, so \(D = \mathbb{R} \). This establishes (1).

Let \(\lambda \) be a \(\text{Gal}(\mathbb{C}/\mathbb{R}) \)-invariant weight that is not in the root lattice. If \(n \) is divisible by 4, then \((-1)^{n(n-1)/2} \det I = 1 \) is a square in \(\mathbb{R} \), so Lemma 3.6 tells us that \(\beta_{g, \mathbb{R}}(\lambda) = 0 \). Then, since \(g \) is \(\mathbb{R} \)-universal, we must have \(\beta_{g, Q}(\lambda) = 0 \). So Lemma 3.6 tells us that \(\det A \) must be a norm in \(L \). This establishes (2). \(\blacksquare \)

3B \(\mathbb{Q} \)-forms of \(\mathfrak{so}(n) \)

Notation 3.8. Any symmetric matrix \(A \in \text{GL}_k(\mathbb{Q}) \) determines a nondegenerate quadratic form on \(\mathbb{Q}^k \). We use \(\text{Cliff}^0_\mathbb{Q}(A) \) to denote the corresponding even Clifford algebra [5, p. 104].

It is well known that \(\text{Cliff}^0_\mathbb{Q}(A) \) is either a simple algebra or the direct sum of two isomorphic simple algebras over \(\mathbb{Q} \) [5, Thms. 2.4 and 2.5, p. 110]. If \(A \) has been diagonalized, then it is straightforward to determine whether this simple algebra is split (in which case, we also say that \(\text{Cliff}^0_\mathbb{Q}(A) \) is split). Namely, the simple algebra is Brauer equivalent to a quaternion algebra that can be calculated from the eigenvalues of \(A \) (cf. [5, Cor. 3.14, p. 117]).

Proposition 3.9. \(\text{Suppose } g \text{ is a } \mathbb{Q} \text{-form of } \mathfrak{so}(n), \text{ for some odd } n \geq 5, \text{ so } g = \mathfrak{so}_n(A; \mathbb{Q}), \text{ where } A \text{ is a symmetric matrix in } \text{GL}_n(\mathbb{Q}). \text{ Then } g \text{ is } \mathbb{R} \text{-universal if and only if either } n \equiv \pm 3 \pmod{8} \text{ or } \text{Cliff}^0_\mathbb{Q}(A) \text{ is split.} \)

Proof. Since \(g \) is of type \(B_k \) (where \(2k + 1 = n \)), we know that it splits over a quadratic extension \(L \) of \(\mathbb{Q} \) [7, Prop. 6.16(2), p. 335]. Hence, we may assume \(n \equiv \pm 1 \pmod{8} \), for otherwise Proposition 3.1 implies that \(g \) is \(\mathbb{R} \)-universal.

If \(\lambda \) is any dominant weight of \(g \) that is not in the root lattice, then the proof of Proposition 3.1 tells us that \(\beta_{g, \mathbb{R}}(\lambda) = 0 \). (This can also be deduced from [4, §27B, type \(B_n \), p. 378].) Furthermore, [4, §27B, type \(B_n \), p. 378] shows that \(\beta_{g, \mathbb{Q}}(\lambda) \) is Brauer equivalent to \(\text{Cliff}^0_\mathbb{Q}(A) \). Hence, we conclude from (2.4) that \(g \) is \(\mathbb{R} \)-universal if and only if \(\text{Cliff}^0_\mathbb{Q}(A) \) is split. \(\blacksquare \)
Before discussing the \mathbb{Q}-forms of $\mathfrak{so}(n)$ when n is even, we record a few simple observations.

Lemma 3.10. The following are equivalent:

1. \mathfrak{g} is \mathbb{R}-universal.
2. $\mathbb{Q} \rho_\lambda \otimes_\mathbb{Q} \mathbb{R}$ is irreducible, for every dominant weight λ.
3. $D_{\mathfrak{g},\mathbb{Q}}(\lambda) \otimes_\mathbb{Q} \mathbb{R} \cong D_{\mathfrak{g},\mathbb{R}}(\lambda)$, for every dominant weight λ.
4. $\dim_\mathbb{Q} D_{\mathfrak{g},\mathbb{Q}}(\lambda) = \dim_\mathbb{R} D_{\mathfrak{g},\mathbb{R}}(\lambda)$, for every dominant weight λ.

Proof. (1)\iff(2) \mathfrak{g} is \mathbb{R}-universal if and only if $\mathbb{Q} \rho_\lambda$ is a \mathbb{Q}-form of $\mathbb{R} \rho_\lambda$, for every dominant weight λ.

(2)\iff(3) We have $\text{End}_\mathfrak{g}(\mathbb{Q} \rho_\lambda \otimes_\mathbb{Q} \mathbb{R}) = D_{\mathfrak{g},\mathbb{Q}}(\lambda) \otimes_\mathbb{Q} \mathbb{R}$. This is a division algebra if and only if $\mathbb{Q} \rho_\lambda \otimes_\mathbb{Q} \mathbb{R}$ is irreducible (and hence equal to $\mathbb{R} \rho_\lambda$).

(3)\iff(4) $D_{\mathfrak{g},\mathbb{Q}}(\lambda) \otimes_\mathbb{Q} \mathbb{R}$ is a matrix algebra over $D_{\mathfrak{g},\mathbb{R}}(\lambda)$.

Lemma 3.11. If \mathfrak{g} is \mathbb{R}-universal, then every $\text{Gal}(\mathbb{C}/\mathbb{R})$-invariant dominant weight is also $\text{Gal}(\overline{\mathbb{Q}}/\mathbb{Q})$-invariant.

Proof. Suppose λ is invariant under the \ast-action of $\text{Gal}(\mathbb{C}/\mathbb{R})$, but not the \ast-action of $\text{Gal}(\overline{\mathbb{Q}}/\mathbb{Q})$. By replacing λ with an appropriate positive integer multiple, we may assume that λ is in the root lattice, so $\beta_\lambda(\mathbb{R}) = 0$ (see Lemma 3.5). Therefore $\beta_\lambda(\mathbb{Q})$ must also be trivial, which means that $D_{\mathfrak{g},\mathbb{Q}}(\lambda) = \mathbb{Q}$. However, this contradicts Proposition 3.4(1), since λ is not $\text{Gal}(\overline{\mathbb{Q}}/\mathbb{Q})$-invariant.

Lemma 3.12. If \mathfrak{g} is an \mathbb{R}-universal \mathbb{Q}-form of $\mathfrak{so}(2k)$, with $k \geq 3$, then $\mathfrak{g} \cong \mathfrak{so}_{2k}(A; \mathbb{Q})$, for some symmetric $A \in \text{GL}_{2k}(\mathbb{Q})$.

Proof. Lemma 3.11 implies that triality forms are not \mathbb{R}-universal. Therefore, if \mathfrak{g} is not as described, then $\mathfrak{g} = \mathfrak{su}_k(A; D, \tau_r)$, where

- D is a quaternion division algebra over \mathbb{Q},
- τ_r is the reversion anti-involution, and
- A is a τ_r-Hermitian matrix in $\text{GL}_k(D)$.

We know that $\mathfrak{g} \otimes_\mathbb{Q} \mathbb{R}$ is not isomorphic to $\mathfrak{so}_k(\mathbb{H})$ (since, by assumption, it is isomorphic to $\mathfrak{so}(2k)$. Therefore, D splits over \mathbb{R}.

We can now argue as in the proof of Proposition 3.7(\Rightarrow). The natural representation $\rho: \mathfrak{g} \to \text{Mat}_{4\times k}(D)$ is irreducible over \mathbb{Q}, and it is obvious that $D \subseteq D_{\mathfrak{g},\mathbb{Q}}(\lambda)$. So the division algebra $D_{\mathfrak{g},\mathbb{R}}(\lambda) = D_{\mathfrak{g},\mathbb{Q}}(\lambda) \otimes_\mathbb{Q} \mathbb{R}$ contains contains $D \otimes_\mathbb{Q} \mathbb{R}$, which is split, and therefore has zero divisors. This is a contradiction.

With Lemma 3.12 in hand, the following proposition characterizes the \mathbb{R}-universal \mathbb{Q}-forms of $\mathfrak{so}(n)$ when n is even.

Proposition 3.13. Let $\mathfrak{g} = \mathfrak{so}_{2k}(A; \mathbb{Q})$, with $k \geq 3$, for some symmetric $A \in \text{GL}_{2k}(\mathbb{Q})$ that is positive-definite over \mathbb{R}. Then \mathfrak{g} is \mathbb{R}-universal if and only if either
1. \(k \) is odd and \(\text{Cliff}^0_{\mathbb{Q}}(A) \) is split, or

2. \(k \equiv 2 \pmod{4} \), and \(\det A \) is a square in \(\mathbb{Q} \), or

3. \(k \) is divisible by 4, \(\det A \) is a square in \(\mathbb{Q} \), and \(\text{Cliff}^0_{\mathbb{Q}}(A) \) is split.

Proof. As in [4, §27B, type \(D_n \), p. 379], let \(\lambda, \lambda_+, \lambda_- \) be dominant weights that represent the three nonzero classes modulo the root lattice. The weight \(\lambda \) corresponds to the natural representation of \(g \) on \(\mathbb{Q}^{2k} \), so \(\beta_{g,\mathbb{Q}}(\lambda) = [\mathbb{Q}] = 0 \).

Suppose, first, that \(k \) is even. Then \(\text{so}(2k) \) is an inner form, which means that \(\text{Gal}(\mathbb{C}/\mathbb{R}) \) acts trivially on \(\Lambda_+ \). Hence, Lemma 3.11 tells us that if \(g \) is \(\mathbb{R} \)-universal, then \(g \) must be inner, which (since \(k \) is even) means that \(\det A \) is a square in \(\mathbb{Q} \). Therefore, \(\text{Cliff}^0_{\mathbb{Q}}(A) \) is a direct sum of two algebras \(C^+ \) and \(C^- \) that are Brauer equivalent to the full Clifford algebra [5, Thm. 2.5(3), p. 110]. Furthermore, from [4, §27B, type \(D_n \), p. 379], we know that \(\beta_{g,\mathbb{Q}}(\lambda_+) = [C^\pm] \). Since \(k \) is even, the Clifford algebra of \(\text{so}(2k) \) is split if and only if \(k \) is divisible by 4 [5, p. 123]. Therefore, Lemma 3.11 shows that an inner form \(g \) is:

- automatically \(\mathbb{R} \)-universal, when \(k \equiv 2 \pmod{4} \), but
- \(\mathbb{R} \)-universal if and only if \(\text{Cliff}^0_{\mathbb{Q}}(A) \) is split, when \(k \) is divisible by 4.

Assume, now, that \(k \) is odd. This means that \(\text{so}(2k) \) is an outer form (so \(g \) is obviously also outer). Then \(\text{Gal}(\mathbb{C}/\mathbb{R}) \) interchanges \(\lambda_+ \) and \(\lambda_- \), so Proposition 3.4(1) implies \(D_{g,\mathbb{R}}(\lambda_\pm) = \mathbb{C} \). Let \(L \) be the (unique, imaginary) quadratic extension of \(\mathbb{Q} \) over which \(g \) becomes inner. From [4, §27B, type \(D_n \), p. 379], we see that \(D_{g,\mathbb{Q}}(\lambda_\pm) \) is Brauer equivalent to \(\text{Cliff}^0_{\mathbb{Q}}(A) \), which is central simple over \(L \). Hence, Lemma 3.10 implies that \(g \) is \(\mathbb{R} \)-universal if and only if \(\text{Cliff}^0_{\mathbb{Q}}(A) \) is split. \(\blacksquare \)

3C \(\mathbb{Q} \)-forms of \(^2E_6 \)

Proposition 3.14. Suppose \(g \) is a \(\mathbb{Q} \)-form of the compact real Lie algebra of type \(^2E_6 \), and let \(L \) be the unique quadratic extension of \(\mathbb{Q} \) over which \(g \) is inner. Then \(g \) is \(\mathbb{R} \)-universal if and only if it splits over \(L \).

Proof. Let \(\lambda \) be a weight that is not in the root lattice. Then \(\lambda \) is not fixed by the \(*\)-action of \(\text{Gal}(\mathbb{C}/\mathbb{R}) \), so \(\rho_\lambda^g \otimes_{\mathbb{R}} \mathbb{C} \) is the direct sum of two irreducible representations [11, Lem. 7.4]. Hence, \(g \) is \(\mathbb{R} \)-universal if and only if \(\rho_\lambda^g \otimes_{\mathbb{R}} \mathbb{C} \) is also the direct sum of only two irreducible representations; in other words, \(\beta_{g,L}(\lambda) = 0 \). This obviously holds if \(g \) splits over \(L \).

Now, assume \(g \) does not split over \(L \). Since \(g \) is outer over \(\mathbb{R} \), but inner over \(L \), we know that \(L \) is an imaginary extension, so \(g \) obviously splits at the infinite place of \(L \). Then, by inspection of the possible Tits indices of type \(^1E_6 \) over a nonarchimedean local field [10, p. 58], we see that the central vertex of the Tits index is circled at every place, so it must be circled over \(L \) [2, Satz 4.3.3]. Therefore, \(g \) must be of type \(^1E_{6,2}^{16} \) over \(L \) (since it is not split). From [11, 6.4.5], we see that this implies \(\beta_{g,L}(\lambda) \neq 0 \). So \(g \) is not \(\mathbb{R} \)-universal. \(\blacksquare \)

Acknowledgements

It is a pleasure to thank V. Chernousov for a very helpful discussion about Tits algebras of special orthogonal groups.
Real representations have \mathbb{Q}-forms

References

[1] Borel A., Introduction aux groupes arithmétiques, Hermann, Paris, 1969. ISBN 978-2705613419, MR 0244260.

[2] Harder G., Bericht über neuere Resultate der Galoiskohomologie halbeinfacher Gruppen, *Jber. Deutsch. Math.-Verein.* 70 (1968), 182–216. MR 0242838. http://www.digizeitschriften.de/en/dms/toc/?PPN=PPN37721857X_0070

[3] Kneser M., Lectures on Galois cohomology of classical groups, Tata Institute of Fundamental Research, Bombay, 1969. MR 0340440. http://www.math.tifr.res.in/~publ/ln/tifr47.pdf

[4] Knus M., Merkurjev A., Rost M., Tignol J.-P., The book of involutions, American Mathematical Society, Providence, RI, 1998. ISBN 0-8218-0904-0, MR 1632779.

[5] Lam T.Y., Introduction to quadratic forms over fields, American Mathematical Society, Providence, RI, 2005. ISBN 0-8218-1095-2, MR 2104929.

[6] Morris D., Real representations of semisimple Lie algebras have \mathbb{Q}-forms, in Algebraic groups and arithmetic, Editors S.G. Dani, G. Prasad, Narosa, New Delhi, 2004, 469–490. MR 2094121, arXiv:math/0205289.

[7] Platonov V., Rapinchuk A., Algebraic groups and number theory, Academic Press, Boston, 1994. ISBN 0-12-558180-7, MR 1278263.

[8] Prasad G., Rapinchuk A.S., On the existence of isotropic forms of semi-simple algebraic groups over number fields with prescribed local behavior, *Adv. Math.* 207 (2006), no. 2, 646–660. MR 2271021. http://dx.doi.org/10.1016/j.aim.2006.01.001

[9] Raghunathan M.S., Arithmetic lattices in semisimple groups, *Proc. Indian Acad. Sci. (Math. Sci.)* 91 (1982), 133–138. MR 0682519. http://www.ias.ac.in/j_archive/mathsci/91/2/133-138/viewpage.html

[10] Tits J., Classification of algebraic semisimple groups, in Algebraic groups and discontinuous subgroups (Boulder, Colo., 1965), Editors A. Borel, G.D. Mostow, American Mathematical Society, Providence, RI, 1966, 33–62. MR 0224710.

[11] Tits J., Représentations linéaires irréductibles d’un groupe réductif sur un corps quelconque, *J. Reine Angew. Math.* 247 (1971), 196–220. MR 0277536. http://dx.doi.org/10.1515/crll.1971.247.196