A NOTE ON ENDMORPHISMS AND C*-ALGEBRAS OF GRAPHS

PHILIP M. GIPSON

Abstract. It is a well-known fact, first noted by Arveson [1], that endomorphisms of $B(H)$ are intimately connected with families of mutually orthogonal isometries, i.e. with representations of the so-called Toeplitz C*-algebras. In this paper we consider a natural generalization of this connection between the representation theory of certain C*-algebras associated to graphs and endomorphisms of certain subalgebras of $B(H)$.

In [3], Laca determines that given a normal *-endomorphism α of $B(H)$ there exists an $n \leq \infty$ and *-representation $\pi : \mathcal{E}_n \to B(H)$, where \mathcal{E}_n denotes the Toeplitz algebra for n orthogonal isometries v_1, \ldots, v_n, such that

$$\alpha(T) = \sum_{i=1}^{n} \pi(v_i)T\pi(v_i)^*$$

for each $T \in B(H)$. The n value is unique but the representation π may differ by automorphisms of \mathcal{E}_n which arise from unitary transformations of the Hilbert space $\ell^2(\{v_1, \ldots, v_n\}) \subseteq \mathcal{E}_n$ [3 Proposition 2.2].

Our goal is to extend the connection between endomorphisms and representations to a class of C*-algebras termed “Toeplitz algebras for C*-correspondences” which include the classical Toeplitz algebras. Why we are considering this class of C*-algebras and not the perhaps more natural “graph C*-algebras” will be made apparent in due time.

1. Preliminaries

First we will establish our terminology and notation.

Definition 1.1. A graph is a tuple $E = (E^0, E^1, r, s)$ consisting of a vertex set E^0, an edge set E^1, and range and source maps $r, s : E^1 \to E^0$.

We will only consider graphs where E^0 and E^1 are at most countable.

Definition 1.2. Let A be a C*-algebra. A set X is a C*-correspondence over A provided that it is a right Hilbert A-module and there is a *-homomorphism $\phi : A \to L(X)$, where $L(X)$ denotes the space of adjointable A-module homomorphisms from X to itself.

Given X a C*-correspondence over A, we will denote the A-valued inner product on X by $\langle x, y \rangle_A$ (perhaps omitting the A) and the right action will be written as “$x \cdot a$”. The map ϕ may sometimes be written as ϕ_X for clarity.

2000 Mathematics Subject Classification. 46L05, 46L08, 46L55.

Key words and phrases. Toeplitz Algebras, Endomorphisms, C*-correspondences, Graphs.
Our primary objects of study will be certain C^*-correspondences which arise from graphs. The following construction is due originally to Fowler and Raeburn [2, Example 1.2].

Definition 1.3. Given a graph E, the graph correspondence $X(E)$ is the set of all functions $x : E^1 \to \mathbb{C}$ for which $\hat{x}(v) := \sum_{e \in s^{-1}(v)} |x(e)|^2$ extends to a function $\hat{x} \in C_0(E^0)$. We give $X(E)$ the structure of a C^*-correspondence over $C_0(E^0)$ as follows:

$$x \cdot a : e \mapsto x(e)a(s(e)),$$

$$\phi(a)x : e \mapsto a(r(e))x(e),$$

$$\langle x, y \rangle : v \mapsto \sum_{e \in s^{-1}(v)} \overline{x(e)}y(e).$$

which is to say that $a \in C_0(E^0)$ acts on the right of $X(E)$ as multiplication by $a \circ s$ and acts on the left as multiplication by $a \circ r$.

Note that this structure reverses the roles of r and s as in [2]. The sets $\{\delta_e : e \in E^1\}$ and $\{\delta_v : v \in E^0\}$ are dense in $X(E)$ and $C_0(E^0)$, respectively, in the appropriate senses. For $e \in E^1$ and $v \in E^0$ we have the following useful relations:

$$\langle \delta_e, \delta_e \rangle = \delta_{s(e)}, \delta_e \cdot \delta_v = \delta_e \text{ if } v = s(e) \text{ and is 0 otherwise, and } \phi(\delta_v)\delta_e = \delta_e \text{ if } v = r(e) \text{ and is 0 otherwise.}$$

Definition 1.4. [2, Example 1.2] Given a C^*-correspondence X over A and given another C^*-algebra B, a Toeplitz representation of X in B is a pair (σ, π) consisting a linear map $\sigma : X \to B$ and a $*$-homomorphism $\pi : A \to B$ such that for all $x, y \in X$ and $a \in A$

1. $\sigma(x \cdot a) = \sigma(x)\pi(a),$
2. $\sigma(\phi(a)x) = \pi(a)\sigma(x)$, and
3. $\pi(\langle x, y \rangle) = \sigma(x)^* \sigma(y).$

For a graph correspondence $X(E)$ a Toeplitz representation (σ, π) is determined entirely by the values $\{\sigma(\delta_e) : e \in E^1\}$ and $\{\pi(\delta_v) : v \in E^0\}$. Property (3) of a Toeplitz representation guarantees that $\sigma(\delta_e)$ is a partial isometry with source projection $\pi(\delta_{s(e)})$.

Definition 1.5. [2, Proposition 1.3] Given a C^*-correspondence X over A, the Toeplitz algebra of X is the C^*-algebra, denoted T_X, which is universal in the following sense: there exists a Toeplitz representation (σ_u, π_u) of X in T_X such that if (σ, π) is another Toeplitz representation of X in a C^*-algebra B then there exists a unique $*$-homomorphism $\rho_{\sigma, \pi} : T_X \to B$ such that $\sigma = \rho_{\sigma, \pi} \circ \sigma_u$ and $\pi = \rho_{\sigma, \pi} \circ \pi_u$.

That T_X exists was proven by Pimnser in [5].

Given a graph E we may consider the Toeplitz algebra of its graph correspondence, cumbersomely denoted $T_X(E)$. Unless there is danger of confusion, we will abuse notation and make no distinction between elements of $X(E)$ and $C_0(E^0)$ and their images in $T_X(E)$ under the universal maps σ_u and π_u.

If $r : T_X(E) \to B(H)$ is a $*$-representation then, for each $v \in E^1$, $\tau(\delta_v)$ is a partial isometry with source projection $\tau(\delta_{s(v)})$ and range projection contained in $\tau(\delta_{r(v)})$.
If \(E \) is the graph with but a single vertex and \(n \) edges then \(X(E) \) is a Hilbert space of dimension \(n \) and \(T_X(E) \) is isomorphic to the classical Toeplitz algebra \(\mathcal{E}_n \). In this case the elements \(\{ \delta_e : e \in E^1 \} \) are precisely the generating isometries of \(\mathcal{E}_n \). The space \(X(E) \) plays a significant role in Laca’s analysis of endomorphisms of \(B(H) \), and it is for this reason that we are considering the generalized Toeplitz algebras \(T_X(E) \) in our investigations.

2. Coherent Unitary Equivalence

Two graphs \(E \) and \(F \) are isomorphic if there are two bijections \(\psi^0 : E^0 \to F^0 \) and \(\psi^1 : E^1 \to F^1 \) for which \(r_F \circ \psi^1 = \psi^0 \circ r_E \) and \(s_F \circ \psi^1 = \psi^0 \circ s_E \). In order to encode such an isomorphism at the level of the graph correspondences \(X(E) \) and \(X(F) \), we offer the following definition.

Definition 2.1. Let \(X \) and \(Y \) be \(C^* \)-correspondences over \(A \) and \(B \), respectively. A coherent unitary equivalence between \(X \) and \(Y \) is a pair \((U, \alpha)\) consisting of a bijective linear map \(U : X \to Y \) and a \(* \)-isomorphism \(\alpha : A \to B \) for which

1. \(U(x \cdot a) = (Ux) \cdot \alpha(a) \) for all \(x \in X \) and \(a \in A \),
2. \(U(\phi_X(a)x) = \phi_Y(\alpha(a))Ux \) for all \(x \in X \) and \(a \in A \), and
3. \(\langle Ux, y \rangle_Y = \alpha(\langle x, U^{-1}y \rangle_x) \) for all \(x \in X \) and \(y \in Y \).

Routine calculations will verify that coherent unitary equivalence is an equivalence relation.

Proposition 2.2. If \(E \) and \(F \) are isomorphic graphs then \(X(E) \) and \(X(F) \) are coherently unitarily equivalent.

Proof. We’ll assume \((\psi^0, \psi^1)\) to be an isomorphism from \(F \) to \(E \).

For \(a \in C_0(E^0) \), \(\alpha(a) := a \circ \psi^0 \) clearly defines a \(* \)-isomorphism \(\alpha : C_0(E^0) \to C_0(F^0) \). For \(x \in X(E) \) define \(Ux := x \circ \psi^1 \). For \(v \in F^1 \) we have

\[
\sum_{e \in s_E^{-1}(v)} |Ux(e)|^2 = \sum_{e \in s_E^{-1}(v)} |x(\psi^1(e))|^2 = \sum_{f \in s_E^{-1}(\psi^0(v))} |x(f)|^2
\]

(using the fact that if \(s_E(v) = v \) then \(s_F(\psi^1(v)) = \psi^0(v) \)) and so \(\hat{U}x = \hat{x}(\psi^1(v)) \).

As \(\hat{x} \in C_0(E^0) \) it follows immediately that \(\hat{U}x \in C_0(F^0) \), i.e. \(Ux \in X(F) \). Identical arguments show that \(U^{-1}y := y \circ (\psi^1)^{-1} \) is a map from \(X(F) \) to \(X(E) \) which is a two-sided inverse for \(U \). Hence \(U : X(E) \to X(F) \) is a bijection which is naturally linear.

Given \(x \in X(E), \ a \in C_0(E^0), \) and \(e \in E^1 \) we have

\[
U(x \cdot a) = (x(a \circ s_E)) \circ \psi^1 = (x \circ \psi^1)(a \circ s_E \circ \psi^1) = (Ux)(a \circ \psi^0 \circ s_E) = Ux \cdot \alpha(a)
\]

\[
U(\phi_E(a)x) = ((a \circ r_E)x) \circ \psi^1 = (a \circ r_E \circ \psi^1)(x \circ \psi^1) = (a \circ \psi^0 \circ r_F)(Ux) = \phi_F(\alpha(a))Ux
\]

and, given \(v \in F^0 \),

\[
\langle Ux, y \rangle(v) = \sum_{e \in s_E^{-1}(v)} \overline{Ux(e)}y(e) = \sum_{e \in s_E^{-1}(v)} \overline{x(\psi^1(e))}y(e) = \sum_{f \in s_E^{-1}(\psi^0(v))} \overline{x(f)}y((\psi^1)^{-1}(f))
\]

\[
= \sum_{f \in s_E^{-1}(\psi^0(v))} \overline{x(f)}U^{-1}y(f) = \langle x, U^{-1}y \rangle(\psi^0(v)) = \alpha(\langle x, U^{-1}y \rangle)(v)
\]

(the first inner product is that of \(X(F) \) and the later two are that of \(X(E) \)). Thus the pair of \(U \) and \(\alpha \) satisfies the definition of a coherent unitary equivalence. \(\square \)
Not every coherent unitary equivalence is built from a graph isomorphism in the sense of the preceding Proposition. As a simple example, consider the graph E with but a single vertex v and two edges e_1 and e_2. In this case $C_0(E^0) = \mathbb{C}$ and $X(E) = \mathbb{C}^2$. Hence any unitary $U \in M_2(\mathbb{C})$ forms (with the identify on $C_0(E^0)$) a coherent unitary equivalence. However, the only such equivalences arising from graph isomorphisms would be those of the two permutation matrices in $M_2(\mathbb{C})$.

Proposition 2.3. If there is a coherent unitary equivalence between X and Y then T_X and T_Y are *-isomorphic.

Proof. Let A and B be the coefficient C^*-algebras for X and Y, respectively. Suppose that (U, α) is a coherent unitary equivalence between X and Y and let (σ, π) be a Toeplitz representation of Y. For $x \in X$ and $a \in A$
$$
\sigma(U(x \cdot a)) = \sigma(U x \alpha(a)) = \sigma(U x) \pi(\alpha(a)) \\
\sigma(U(\phi_X(a)x)) = \sigma(\alpha(a)U x) = \pi(\alpha(a))\sigma(U x)
$$
and for $x_1, x_2 \in X$
$$
\pi \circ \alpha(\langle x_1, x_2 \rangle_A) = \pi((U x_1, U x_2)_B) = \sigma(U x_1)^* \sigma(U x_2).
$$
Hence $(\sigma \circ U, \pi \circ \alpha)$ is a Toeplitz representation of X.

In particular, $(\sigma_Y \circ U, \pi_B \circ \alpha)$ is a Toeplitz representation of X where (σ_Y, π_B) is the universal Toeplitz representation of Y in T_Y. By the universal property of T_X, there is a *-homomorphism $\theta : T_X \rightarrow T_Y$ such that $\theta \circ \sigma_X = \sigma_Y \circ U$ and $\theta \circ \pi_A = \pi_B \circ \alpha$, where (σ_X, π_A) is the universal representation of X in T_X.

Similarly $(\sigma_X \circ U^{-1}, \pi_A \circ \alpha^{-1})$ is a Toeplitz representation of Y and induces a *-homomorphism $\theta' : T_Y \rightarrow T_X$ for which $\theta' \circ \sigma_Y = \sigma_X \circ U^{-1}$ and $\theta' \circ \pi_B = \pi_A \circ \alpha^{-1}$. Thus
$$
\sigma_Y = \sigma_Y \circ U \circ U^{-1} = \theta \circ \sigma_X \circ U^{-1} = \theta \circ \theta' \circ \sigma_Y
$$
and similarly $\pi_B = \theta \circ \theta' \circ \pi_B$. Since the identity id on T_Y also has the property that $\pi_B = id \circ \pi_B$ and $\sigma_Y = id \circ \sigma_Y$, it follows by the universal property of T_Y that $\theta \circ \theta' = id$. Identical reasoning verifies that $\theta' \circ \theta$ is the identity on T_X. Thus θ is our desired *-isomorphism. \square

Going forward we will be exclusively interested in Toeplitz algebras associated to graph correspondences, and so offer the following corollary.

Corollary 2.4. Let E and F be graphs. If (U, α) is a coherent unitary equivalence between $X(E)$ and $X(F)$ then there is a *-isomorphism $\Gamma_{U,\alpha} : T_{X(E)} \rightarrow T_{X(F)}$ for which $\Gamma_{U,\alpha}(\delta_e) = U \delta_e$ and $\Gamma_{U,\alpha}(\delta_v) = \alpha(\delta_v)$ for all $e \in E^1$ and $v \in E^0$.

This is immediately seen from the proof of the previous proposition if we recall that we identify $X(E)$ and $X(F)$ with their images in $T_{X(E)}$ and $T_{X(F)}$, respectively, under the appropriate universal maps.

3. **Endomorphisms from Graphs**

Throughout this section we will let E be a graph. All *-representations will be assumed non-degenerate.

Proposition 3.1. Given a *-representation $\tau : T_{X(E)} \rightarrow B(H)$, the assignments
$$
Ad_{\tau}(w) = \sum_{e \in E^1} \tau(\delta_e) w \tau(\delta_e)^*,
$$
(the sum is taken as a SOT limit) define a \ast-endomorphism Ad_{τ} of the von Neumann algebra $W = \{\tau(\delta_v) : v \in E^0\}$.

Proof. First, notice that for $e \in E^1$ and $w \in W$ the term $\tau(\delta_e)w\tau(\delta_e)^*$ has its support projection contained in $\tau(\delta_e^*\delta_e)$. Since the partial isometries $\tau(\delta_e)$ have mutually orthogonal ranges, it follows that for every $h \in H$, $\tau(\delta_e)w\tau(\delta_e)^*h$ is nonzero for at most one $e \in E^1$. Thus the sum converges in the SOT.

Certainly Ad_{τ} is linear and has $Ad_{\tau}(w^*) = Ad_{\tau}(w)^*$ for each $w \in W$. Given $w_1, w_2 \in W$ we find that

$$Ad_{\tau}(w_1)Ad_{\tau}(w_2) = \left(\sum_{e \in E^1} \tau(\delta_e)w_1\tau(\delta_e)^* \right) \left(\sum_{f \in E^1} \tau(\delta_f)w_2\tau(\delta_f)^* \right)$$

$$= \sum_{e, f \in E^1} \tau(\delta_e)w_1\tau(\delta_e)^*\tau(\delta_f)w_2\tau(\delta_f)^*$$

$$= \sum_{e \in E^1} \tau(\delta_e)w_1\tau(\delta_{s(e)})w_2\tau(\delta_e)^*$$

$$= \sum_{e \in E^1} \tau(\delta_e)\tau(\delta_{s(e)})w_1w_2\tau(\delta_e)^*$$

$$= \sum_{e \in E^1} \tau(\delta_e)w_1w_2\tau(\delta_e)^*$$

$$= Ad_{\tau}(w_1w_2)$$

and so Ad_{τ} is multiplicative. Note that any potential issues with SOT-convergence of the product are circumvented by E^1 being at most countable. All that remains is to verify that $Ad_{\tau}(w) \in W$ for each $w \in W$. To that end we first note that $\delta_v^*\delta_v = \delta_v^*$ if $v = r(e)$ and is zero otherwise. By taking adjoints, $\delta_v\delta_v = \delta_v$ if $v = r(e)$ and is zero otherwise. Thus, given $w \in W$ and $v \in E^0$ we find

$$Ad_{\tau}(w)\tau(\delta_v) = \sum_{e \in r^{-1}(v)} \tau(\delta_e)w\tau(\delta_e)^* = \tau(\delta_v)Ad_{\tau}(w)$$

and so $Ad_{\tau}(w)$ commutes with each $\tau(\delta_v)$. \square

The following is a construction which we believe to be folklore, but use of it is motivated by observations made by Muhly and Solel \[4]. Given a \ast-representation $\tau : T_X(E) \to B(H)$ let $W = \{\tau(\delta_v) : v \in E^0\}'$. The space

$$\mathcal{I}_\tau := \{T \in B(H) : Ad_{\tau}(w)T = Tw, \; w \in W\}$$

is a C^*-correspondence over W'. The left and right actions of W' are simply multiplication within $B(H)$ and the W'-valued inner product is defined by $\langle T, S \rangle_{W'} := T^*S$.

Because our endomorphism is of the form Ad_{τ}, we can say more: for $w \in W$ and $e \in E^1$

$$Ad_{\tau}(w)\tau(\delta_e) = \sum_{f \in E^1} \tau(\delta_f)w\tau(\delta_f)^*\tau(\delta_e) = \tau(\delta_e)w\tau(\delta_{s(e)}) = \tau(\delta_e)\tau(\delta_{s(e)})w = \tau(\delta_e)w$$

and so $\tau(\delta_e) \in \mathcal{I}_\tau$ for each $e \in E^1$. As $\tau(\delta_v) \in W'$ for each $v \in E^0$ we finally have $\tau(X(E)) \subseteq \mathcal{I}_\tau$.

Theorem 3.2. Suppose that τ_1 and τ_2 are two faithful $*$-representations of $T_{X(E)}$. If $\text{Ad}_{\tau_1} = \text{Ad}_{\tau_2}$ on $W = \{\tau_1(\delta_v) : v \in E^0\}' = \{\tau_2(\delta_v) : v \in E^0\}'$ then there is a coherent unitary equivalence (U, α) between $X(E)$ and itself such that $\tau_2 = \tau_1 \circ \Gamma_{U, \alpha}$.

Here $\Gamma_{U, \alpha}$ is the $*$-automorphism of $T_{X(E)}$ as defined in Corollary 2.3.

Proof. Since $\{\tau_1(\delta_v) : v \in E^0\}$ and $\{\tau_2(\delta_v) : v \in E^0\}$ are sets of orthogonal projections with the same commutant they are in fact equal. To ease notation we’ll denote these projections by P_v, $v \in E^0$, (with no assumption that $P_v = \tau_1(\delta_v)$ or similar) hence

$$\{P_v : v \in E^0\} = \{\tau_1(\delta_v) : v \in E^0\} = \{\tau_2(\delta_v) : v \in E^0\}.$$

As $\text{Ad}_{\tau_1} = \text{Ad}_{\tau_2}$ we have that $\mathcal{I}_{\tau_1} = \mathcal{I}_{\tau_2}$ and we’ll call this module simply \mathcal{I}.

As $\tau_1(\delta_c) \in \mathcal{I}$ for each $c \in E^1$ we have

$$\tau_1(\delta_c) = \tau_1(\delta_c)I = \text{Ad}_{\tau_2}(I)\tau_1(\delta_c) = \sum_{f \in E^1} \tau_2(\delta_f)\tau_2(\delta_f)^*\tau_1(\delta_c)$$

hence $\tau_1(\delta_c)$ is in the W'-submodule of \mathcal{I} generated by $\tau_2(X(E))$. Similarly, for each $c \in E^1$, $\tau_2(\delta_c)$ is in the W'-submodule generated by $\tau_1(X(E))$. Thus they generate the same W'-submodule of \mathcal{I}.

Given $c, f \in E^1$ we have seen that

$$\tau_2(\delta_f)^* \tau_1(\delta_c) \in W' = \{P_v : v \in E^0\}'' = \ell^\infty(\{P_v : v \in E^0\}).$$

Notice however that $\tau_2(\delta_f)^* \tau_1(\delta_c)\tau_2(\delta_0) = 0$ unless $v = s(c)$ and hence $\tau_2(\delta_f)^* \tau_1(\delta_c)$ is a multiple of $\tau_1(\delta_{s(c)})$ only, i.e. is an element of $C_0(\{P_v : v \in E^0\})$. Since before we obtained $\tau_1(\delta_c) = \sum_{f \in E^1} \tau_2(\delta_f)\tau_2(\delta_f)^*\tau_1(\delta_c)$ for all $c \in E^1$, it now follows that $\tau_1(X(E))$ and $\tau_2(X(E))$ generate the same correspondence over $C_0(\{P_v : v \in E^0\})$. It is important to note that this correspondence has three different actions of $C_0(\{P_v : v \in E^0\})$: the ones inherited through τ_1 and τ_2 and simple operator multiplication in $B(H)$.

Finally we have that $\tau_1(C_0(E^0)) = \tau_2(C_0(E^0))$ and $\tau_1(X(E)) = \tau_2(X(E))$ as sets and, because both representations are faithful by hypothesis, so $\tau_2^{-1} \circ \tau_1$ is a well-defined bijection on both $X(E)$ and $C_0(E^0)$. Denote by U and α the restrictions of $\tau_2^{-1} \circ \tau_1$ to $X(E)$ and to $C_0(E^0)$, respectively.

Given $x \in X(E)$ and $a \in C_0(E^0)$ we have

$$U(xa) = \tau_2^{-1} \circ \tau_1(xa) = \tau_2^{-1} \circ \tau_1(x) \tau_2^{-1} \circ \tau_1(a) = (Ux)\alpha(a),$$

$$U(\phi(a)x) = \tau_2^{-1} \circ \tau_1(\phi(a)x) = \tau_2^{-1} \circ \tau_1(a) \tau_2^{-1} \circ \tau_1(x) = \alpha(a)Ux,$$

$$\langle Ux, y \rangle = [\tau_2^{-1} \circ \tau_1(x)]^*y = \tau_2^{-1} \circ \tau_1(x^* \tau_1^{-1} \circ \tau_2(y)) = \alpha((x, \tau_1^{-1} \circ \tau_2(y))) = \alpha((x, U^{-1}y)).$$

and so (U, α) is a coherent unitary equivalence between $X(E)$ and itself.

It follows from Corollary 2.3 that (U, α) induces an automorphism $\Gamma_{U, \alpha}$ of $T_{X(E)}$ and, by construction, $\tau_2 \circ \Gamma_{U, \alpha} = \tau_1$, as desired. \square

Our result is a generalization of Laca’s [3, Proposition 2.2]. When E is the graph with a single vertex and $n \leq \infty$ edges we have already seen that $T_{X(E)} = \mathcal{E}_n$. If τ_1 and τ_2 are faithful and nondegenerate then $W = B(H)$. The map α is the identity on $C_0(E^0) = \mathbb{C}$ and U is a unitary operator on the Hilbert space $X(E)$.

We will conclude this section with a brief discussion of conjugacy conditions for endomorphisms of the type we’ve been examining. Recall that two endomorphisms α and β are said to be conjugate if there is an automorphism γ such that $\alpha \circ \gamma = \gamma \circ \beta$.

Lemma 3.3. If $P_1, P_2, \ldots \in B(H)$ is an at most countable family of orthogonal projections and γ is a $*$-automorphism of $W = \{P_1, P_2, \ldots\}'$ then there exists a unitary $U \in B(H)$ such that $\gamma(w) = UwU^*$ for all $w \in W$.

Proof. Note that for each n, γ restricts to a $*$-isomorphism γ_n between $P_n B(H) P_n = B(P_n H)$ and $\gamma(P_n) B(H) \gamma(P_n) = B(\gamma(P_n) H)$. Such isomorphisms are always spatial and so there are unitaries $U_n : B(P_n H) \to B(\gamma(P_n) H)$ such that $\gamma_n(w) = U_n w U_n^*$. It is then immediate that $U = \bigoplus U_n$ is a unitary in $B(H)$ and $U w U^* = \gamma(w)$ for each $w \in W$.

□

Theorem 3.4. Suppose that $\tau_1, \tau_2 : T_{X(E)} \to B(H)$ are two faithful $*$-representations such that Ad_{τ_1} and Ad_{τ_2} are conjugate $*$-endomorphisms of $W = \{\tau_1(\delta_v) : v \in E^0\}' = \{\tau_2(\delta_v) : v \in E^0\}'$. Then there is a coherent unitary equivalence (U, α) between $X(E)$ and itself such that τ_2 and $\tau_1 \circ \Gamma_{U, \alpha}$ are unitarily equivalent $*$-representations.

Proof. Let γ be an $*$-automorphism of W such that $Ad_{\tau_1} \circ \gamma = \gamma \circ Ad_{\tau_2}$ and let $V \in B(H)$ be the unitary for which $\gamma(w) = V w V^*$ according the Lemma 3.3. Then $Ad_{\tau_2}(w) = V^* Ad_{\tau_1}(V w V^*) V$ for all $w \in W$. Define $\kappa(t) := V \tau_1(t) V^*$ and note that κ is a $*$-representation of $T_{X(E)}$ such that

$$Ad_{\kappa}(w) = \sum_{e \in E^1} \kappa(\delta_{\varepsilon}) w \kappa(\delta_{\varepsilon})^* = \sum_{e \in E^1} V \tau_1(\delta_{\varepsilon}) W \tau_1(\delta_{\varepsilon})^* V^* = V Ad_{\tau_1}(V^* w V) V^*$$

and so $Ad_{\kappa} = Ad_{\tau_2}$ on W. Applying Theorem 3.2 we obtain a coherent unitary equivalence (U, α) inducing the $*$-automorphism $\Gamma_{U, \alpha}$ of $T_{X(E)}$ such that $\tau_2 = \kappa \circ \Gamma_{U, \alpha}$. As now $\tau_2(t) = V \tau_1(\gamma(t)) V^*$ for each $t \in T_{X(E)}$, we have that τ_2 and $\tau_1 \circ \Gamma_{U, \alpha}$ are unitarily equivalent, as desired.

□

4. Graphs from Endomorphisms

Theorem 4.1. Let $P_1, P_2, \ldots \in B(H)$ be pairwise disjoint projections, $W = \{P_1, P_2, \ldots\}'$, and α a normal $*$-endomorphism of W. Then there exists a graph E and $*$-representation $\tau : T_{X(E)} \to B(H)$ such that $\alpha = Ad_\tau$.

Proof. Without loss of generality we may assume that $\sum P_i = I$. If this were not the case then the same procedure outlined below would yield a degenerate representation of $T_{X(E)}$.

For $i > 0$ define $H_i = P_i H$. For $i, j > 0$ and $x \in W$ define $\alpha_{ij}(x) = P_j \alpha(P_i x)$. Then α_{ij} restricts to a $*$-homomorphism between $B(H_i) = P_i B(H) P_i$ and $B(H_j) = P_j B(H) P_j$ as seen by

$$P_j \alpha(P_i x) P_j \alpha(P_j y) = P_j (P_j \alpha(P_i x)) \alpha(P_j y) = P_j \alpha(P_i x P_j y) = P_j \alpha(P_j x y).$$

Thus by Proposition 2.1 if α_{ij} is nonzero there exists $n_{ij} \in \mathbb{N} \cup \{\infty\}$ and isometries $V_{k}^{(ij)} \in B(H_i, H_j)$, $k = 1, \ldots, n_{ij}$ such that $\|\alpha_{ij}|_{B(H_i)}(T) = \sum_{k=1}^{n_{ij}} V_{k}^{(ij)} T V_{k}^{(ij)*}$.

We will identify the $V_{k}^{(ij)}$ with their associated partial isometries in $B(H)$, so that $V_{k}^{(ij)*} V_{k}^{(ij)} = P_i$ and $V_{k}^{(ij)} V_{k}^{(ij)*} \leq P_j$.

Set $E^0 = \{P_1, P_2, \ldots\}$ and $E^1 = \bigcup_{i,j} \{V_{k}^{(ij)} : k = 1, \ldots, n_{ij}\}$. Define maps $r, s : E^1 \to E^0$ by $r(V_{k}^{(ij)}) = P_j$ and $s(V_{k}^{(ij)}) = P_i$. Then $E = (E^0, E^1, r, s)$ is a graph. It is trivial to see that the identity maps on E^1 and E^0 extend to a Toeplitz covariant representation of $X(E)$, τ.
Finally, we have that for each $x \in W$

$$\alpha(x) = \sum_{i,j>0} P_j x\alpha(P_i x) = \sum_{i,j>0} \alpha_{ij}(x) = \sum_{i,j>0} \sum_{k=1}^{n_{ij}} V_k^{(ij)} x V_k^{(ij)*} = \sum_{f \in E^1} \tau(\delta_f) x \tau(\delta_f)^*$$

as desired. □

References

[1] W. Arveson. Continuous analogues of Fock space. *Mem. Amer. Math. Soc.*, 80(409):iv+66, 1989.
[2] Neal J. Fowler and Iain Raeburn. The Toeplitz algebra of a Hilbert bimodule. *Indiana Univ. Math. J.*, 48(1):155–181, 1999.
[3] M. Laca. Endomorphisms of $B(H)$ and Cuntz algebras. *J. Operator Theory*, 30(1):85–108, 1993.
[4] Paul S. Muhly and Baruch Solel. Quantum Markov processes (correspondences and dilations). *Internat. J. Math.*, 13(8):863–906, 2002.
[5] Michael V. Pimsner. A class of C^*-algebras generalizing both Cuntz-Krieger algebras and crossed products by \mathbb{Z}. In *Free probability theory (Waterloo, ON, 1995)*, volume 12 of *Fields Inst. Commun.*, pages 189–212. Amer. Math. Soc., Providence, RI, 1997.

Department of Mathematics, State University of New York College at Cortland, Cortland, NY 13045-0900

E-mail address: philip.gipson@cortland.edu