کارگاه‌های آموزشی مرکز اطلاعات علمی

آموزش مهارت‌های کاربردی ISI در تدوین و چاپ مقالات
روش تحقیق کمی
آموزش نرم‌افزار برای پژوهشگران
Word
In vivo solid tumor targeting with recombinant VEGF-diphtheria immunotoxin

Mohammad Hosseininejad-Chafi †, Ehsan Alirahimi †, Behzad Ramezani †, Akbar Oghalaie †, Nazli Sotoudeh †, Hajsadat Ghaderi †, Fatemeh Kazemi-Lomedasht †, Mahdi Habibi-Anbouhi ‡, Reza Moazzami ‡, Mahdi Behdani *†*

1 Biotechnology Research Center, Venom & Biotherapeutics Molecules Lab, Pasteur Institute of Iran, Tehran, Iran
2 National Cell Bank, Pasteur Institute of Iran, Tehran, Iran
3 Human Genetics Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran

A R T I C L E I N F O
Article type: Original
Article history:
Received: Dec 28, 2020
Accepted: Oct 31, 2021
Keywords: Angiogenesis, Immunotherapy, Immunotoxin, Tumor, Vascular endothelial growth-factor

Introduction
Forty years ago, Folkman claimed that angiogenesis is essential for tumors to grow beyond essential size (1) and it is now proven to be an indisputable fact (2). Since then efforts have been made to suppress this physiological process, which is tightly regulated during human growth. Dysregulation of this process results in diabetic retinopathy and development of solid tumors (3, 4). It has been shown that vascular endothelial growth factor-A (VEGF-A) and vascular endothelial growth factor receptor2 (VEGFR2) are the predominant regulators of this process (5-9).

Immunotoxins are a class of proteins that contain a toxin at one end and a cell-binding ligand at the other end. First immunotoxins were made by chemically conjugating an antibody to a toxin (10, 11). The next class of immunotoxins, antibody fragments were replaced by smaller molecules such as growth factors or cytokines (12). Three main toxin components of immunotoxins that are tested clinically are pseudomonas exotoxin (PE), diphtheria toxin (DT), and ricin (13). Examples of immunotoxins that have entered phase one clinical studies include anti-CD33, conjugated to gelonin (14), or anti-mesothelin variable antibody fragment [Fv] linked to PE (15). DT is synthesized in *Corynebacterium diphtheria* as a single-chain enzyme of 535 amino acids with a molecular weight of 63 kDa (1, 2). This toxin has two domains namely A and B. B domain is responsible for cellular binding and translocation, while A subunit is responsible for inhibition of protein synthesis by transferring the ADP-ribosyl moiety of NAD+ to the eukaryotic polypeptide elongation factor 2 (EF2) (16, 17). DT protein which lacks the receptor-binding domain is non-toxic to human cells (18). This toxin has been used as an immunotoxin in several other fusion proteins such as DT386-BR2 (19), E7777 (20), and DT388-IL3 (21, 22). Among those, E7777 has entered phase one clinical trial (20).

In this study, the diphtheria toxin subunit was genetically fused to mouse VEGF (mVEGF-DT) and formed an immunotoxin. This protein was expressed in the bacterial expression system and its biological activity was *in vivo* assessed in the mouse tumor model.

Materials and Methods
Gene construction and cloning
Two DNA coding sequences consisting of mouse VEGF (NM_001025257.3) and truncated diphtheria toxin, DT386,
Immunotoxin expression and purification

BL-21 (DE3) bacteria were transformed with pET-mVEGF-DT and pET-DT plasmids. The single colony that was positive in colony PCR and digestion, was inoculated in LB media in presence of selective antibiotics. When OD\textsubscript{600} of 0.6 was reached, expression of recombinant protein was induced with 1mM of Isopropyl-beta-d-thiogalactopyranoside (IPTG) and incubated at 37 °C overnight. Recombinant expression was confirmed by SDS-PAGE and Western blotting. Briefly, proteins were separated in 15% SDS-PAGE and were transferred to nitrocellulose paper with the semi-dry method (45 min, 15 volts). Blot was blocked by 3% skimmed milk overnight at 4 °C and then incubated with 1:2000 diluted rabbit anti-His antibody and anti-rabbit-HRP conjugated antibody (1:1000). Finally, the blot was developed with 4-chloro-1-naphthol.

Protein purification was performed under denaturation conditions. The cell pellet was collected by centrifugation (8000 rpm, 15 min) and re-suspended in the binding buffer (100 mM NaH\textsubscript{2}PO\textsubscript{4}, 10 mM Tris-Cl, 8 M Urea, pH 8). Sonication was used to lyse the cells. The soluble fraction was separated by centrifugation and 0.45-micrometer filter, and the lysate was applied to the Ni-NTA column (Qiagen, Germany) which was pre-equilibrated with binding buffer. After washing the column with wash buffer (100 mM NaH\textsubscript{2}PO\textsubscript{4}, 10 mM Tris-Cl, 8 M Urea, pH 6.3), His tagged portions were eluted by applying elution buffer (100 mM NaH\textsubscript{2}PO\textsubscript{4}, 10 mM Tris-Cl, 8 M Urea, pH 4.5). The purity of the preparation was verified by SDS-PAGE.

In vivo assay

Mouse and tumor model

Three to four week old C57BL/6 (female) mice were purchased from the animal facility of Pasteur Institute of Iran. All animals used in this study were cared for according to the animal care and use protocol of the Pasteur Institute of Iran. The tumor was induced in these mice by injection of 106 TC-1 cells (final volume of 200 µl in PBS). TC-1 was derived from primary lung epithelial cells of C57BL/6 mice. The right flank of the C57BL/6 mice was shaved, and cells were injected. This mouse was used as stock. Following the establishment of the tumor, the stock mouse was sacrificed and the tumor was dissected into 3 mm3 segments that were then transplanted into 18 mice. Tumor size was monitored three times a week using a caliper according to this equation (23): $V=L\times W^2 \times 0.52$, where V: volume, L: length, and W: width. Tumor volume change was monitored according to the relative tumor volume (RTV) formula: tumor volume in day X / tumor volume in day 0.

Treatment study

The TC-1 tumor-bearing C57BL/6 mice were divided into three groups, each group contained 6 mice. Mice were injected intra-tumoral in weekly intervals. Treatment started when tumor volume reached 4 mm3 and continued for 2 months. The mortality was monitored during this period. For each injection, the control group received 100 µl PBS; the DT group received 100 µg of DT toxin, and the test group received 100 µg of mVEGF-DT. The final volume for each injection was 100 µl.

Ethical standards

All animal studies have been approved by the Institutional Ethics Committee (Pasteur Institute of Iran). All researchers got acquainted with the ethical methods of working with laboratory animals before starting their research.

Statistical analysis

GraphPad PRISM software was used for statistical analysis. The survival rate was evaluated by Kaplan-Meier analysis. Two-way ANOVA was used for comparison. The mean of the size of the tumor was calculated within each group, and one-way ANOVA was used to determine the significant difference between groups ($P<0.05$).

Results

Gene construction and expression

Recombinant pET-mVEGF-DT and pET-DT constructs were synthesized and sub-cloned to pET22b. The sub-cloning procedure was confirmed by colony-PCR with T7 primers (Figure 2A), NdeI, and XhoI digestion (Figure 2B). Expression of recombinant mVEGF-DT and DT was induced by 1mM of IPTG. Expression of mVEGF-DT and DT was confirmed by SDS-PAGE and Western-Blotting. Figure 3 shows the expression and purification of the proteins. A 43 KDa protein corresponding to DT protein and 58 KDa corresponding to mVEGF-DT was observed.

In vivo treatment of tumor

For in vivo treatment of tumor in mice, 18 C57BL/6 mice harboring TC1 cell-induced cancer were divided into three groups. The therapeutic effect of mVEGF-DT is shown in Figure 4. In the sixth week, tumor volumes were approximately the same size at the beginning of the experiment. All three groups showed a gradual increase in tumor volume within the first three weeks of treatment,

Figure 1. Schematic diagram of fusion proteins used in this study. A: MVEGF-DT immunotoxin. B: Diphtheria toxin (control protein)
whereas this increase in the PBS group was sharper than others. mVEGF-DT treated group displayed a substantial decrease in volume after 3 weeks of treatment, as compared with PBS and DT groups. Also, DT group showed a slower increase in tumor growth when compared with the PBS group. The difference between the three groups was significant from the second week (P-value = 0.003). There was a significant difference between the mVEGF-DT group and the DT group (P-value = 0.022) and also the mVEGF-DT group and the PBS group (P-value = 0.006) from the fourth week onwards. Also, there was no significant difference between the two groups of DT and PBS by the end of the eighth week (P-value = 0.499). All mice in the mVEGF-DT treated group survived until the end of the experiment (Figure 5). There was a significant difference between the three groups in the survival of mice (P-value < 0.0001). DT protein had increased the survival of the tumor-bearing mice when compared with the PBS group (P-value < 0.0003).

![Figure 2](image1.png) (A) Colony PCR of final construct with T7 primers. Lane 1; MVEGF-DT and Lane 3; DT, Lane 2, 4; 1kb DNA ladder. (B) Conformational digestion of mVEGF-DT and DT. Lane 2; pET-DT, Lane 3; pET-mVEGF-DT. Lane 2, 4; 1kb DNA ladder. Cat No.PR901645

![Figure 3](image2.png) SDS-PAGE and Western blot. (A) SDS-PAGE (15%) of expressed and purified proteins. Lane 1; mVEGF-DT bacterial lysate, Lane 2-5; purified mVEGF-DT, Lane 6; protein marker Cat No PR901641, Lane 7-9; purified DT, Lane 10-11; DT bacterial lysate. (B) Anti-His Western blot analysis. Lane 1; DT protein, Lane 2; protein marker Cat No PR901641, Lane 3; mVEGF-DT protein

![Figure 4](image3.png) Therapeutic effect of mVEGF-DT on mice. On the 6th week of tumor implantation, mice were photographed. Difference in tumor size is noticeable. 1; PBS group, 2; DT group, 3; and 4; mVEGF-DT group

![Figure 5](image4.png) (A) Changes of tumor volume during treatment. Significant difference between MVEGF-DT with DT (*: P-value = 0.022) and PBS (**: P-value = 0.006) from the fourth week onwards was observed. (B) Kaplan-Meier survival curves of mice bearing TC1 induced tumor. Mice that were treated with MVEGF-DT had a prolonged survival rate (***: P-value < 0.0001)
Discussion

Immunotoxins include a target recognition moiety that is connected to bacterial or plant proteinaceous toxins. The target recognition portion can include complete monoclonal antibodies, antibody fragments, or ligands that bind to the receptor on the cell surface. Diphtheria toxin is one of the most widely used toxins for the development of immunotoxins (24, 25). It was first pointed by Yamaizumi that diphtheria toxin is toxic for mammalian cells (26), and it was Thorpe, who later discovered that conjugation of DT to the antibody can increase the efficiency of targeting (27). Diphtheria toxin consists of two subunits A and B. Fragment A is non-toxic outside the cell, but once it enters the cell by binding to elongation factor-2 (EF-2), it prevents protein synthesis and destroys the cell (28). Therefore, DTA can be a highly potent molecule for cancer therapy, if it can be delivered specifically into the tumor cells. To date, three immunotoxins have been FDA approved to be used in humans; interleukin -2 conjugated to the diphtheria toxins (OntakTM) administered as an antineoplastic agent, interleukin -3 conjugated to the diphtheria toxin (ElzonriTM) used for the treatment of blastic plasmacytoid dendritic cell neoplasms (29) and anti-CD22 conjugated to Pseudomonas exotoxin A (Lumoxiti[®]) approved for the treatment of relapsed or refractory hairy cell leukemia (30).

Immunotoxins are being successfully tested to treat many different diseases, like liver cancer (31), prostate cancer (32), and autoimmune diseases (33). The specificity of the recombinant immunotoxins is determined by distribution location and expressing the extent of the targeted antigens. In some instances, the targets are presented on normal tissues as well as tumor cells, which could induce side effects by nonspecific binding. Compared with solid tumors, hematological tumors are more sensitive to immunotoxin therapy.

Angiogenesis is a critical multi-step process that results in the growth and sprouting of solid tumors. It has been proven that inhibition of angiogenesis, is an effective way to treat solid tumors and is a key factor in the growth of solid tumors. This process is involved in many different physiological processes such as embryonic development and wound healing (34). Dysregulation of angiogenesis, on the other hand, leads to diabetic retinopathy and development and progress of solid tumors (3, 4). Therefore, inhibition of tumoral angiogenesis is one of the goals of cancer treatment. Angiogenesis is a complicated process by which new vessels are formed via stimulation of some small molecules, of prime importance, vascular endothelial growth factor (VEGF), and blockade of VEGF leads to inhibition of tumor angiogenesis (35). Some immunotoxins have been developed to target endothelial cells and therefore, inhibit tumor growths such as VEGF121-DT (36) and Shiga-like toxin-VEGF (37). An immunotoxin containing VEGF121/rGel was developed by Veenendaal et al., and it was shown that destruction of the vasculature around melanoma and human prostate carcinoma xenografts in mice leads to decreased tumor volume (38). They specifically showed that eradication of tumors was not because of the direct toxicity of VEGF121/rGel on tumors. In this study, we developed an immunotoxin that has the mouse VEGF on its N-terminal and subunit A of the diphtheria toxin at its C terminal, which is separated by a human IgA1 hinge as a linker. We showed our immunotoxin could successfully inhibit tumor growth in the mouse tumor model when compared with control groups. In 2010, Hu et al. (39) used a DNA construct that contained VEGF165-PE38 for cancer therapy. The construct was injected into the tumors of nude mice of the malignant glioma model and inhibition of the growth of tumor size, and inhibition of capillary-like structures in their CAM assays was shown. Previously, our group showed VEGFR2-specific Nanobody Pseudomonas exotoxin A conjugated could efficiently inhibit cell proliferation (40). DT386 that was used in this study, lacks the B subunit, which prevents the toxin from binding to the eukaryotic cell membrane. Using this form of toxin that only has the A subunit, has shown to be not cytotoxic (41). The same results were observed in our study, that is the DT group injected mice were alive and were not dead from DT386 side effects. The DT group showed an increase in the survival time in comparison with our negative (PBS) group. It can be because of the fact that our DT toxin was able to stimulate the response in mice and the hyperimmune mice escaped tumor mortality for a longer time.

Conclusion

The successful targeting of solid tumor cells by mVEGF-DT immunotoxin demonstrates the therapeutic potential utility of these conjugates. Statistical analysis showed that a significant difference was observed between groups. However, it is suggested that the ability of the immunotoxin to detect VEGF be evaluated in flow cytometric and immunohistochemical tests. Furthermore, the level of immune response to immunotoxins in the animal model should be examined.

Acknowledgment

This study was financially supported by Pasteur Institute of Iran (grant number 1805).

Authors’ Contributions

MH, MB, BR, and RM Data analysis and draft manuscript preparation; NS and FK Critical revision of the paper; MB and MH Supervision of the research; HG and AO Data processing, collection, performing experiments; MB Study concept and design.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

References

1. Sitohy B, Nagy JA, Dvorak HF. Anti-VEGF/VEGFR therapy for cancer: reassessing the target. Cancer Res 2012; 72:1909-1914.
2. Neufeld G, Cohen T, Gengrinovitch S, Poltorak Z. Vascular endothelial growth factor (VEGF) and its receptors. FASEB J 1999; 13:9-22.
3. Folkman J, Hanahan D, editors. Switch to theangiogenic phenotype during tumorigenesis. Princess Takamatsu Symp 1991; 22:339-347.
4. Folkman J. What is the evidence that tumors are angiogenesis dependent?. J Nal Cancer Inst 1990; 82:4-6.
5. Eichmann A, Simons M. VEGF signaling inside vascular endothelial cells and beyond. Curr Opin Cell Biol 2012; 24:188-193.
6. Carmeliet P, Jain RK. Molecular mechanisms and clinical applications of angiogenesis. Nature 2011; 473:298-307.
7. Mohseni N, Jahanian-Najafabadi A, Kazemi-Lomedafti F, Arezomand R, Habibi-Anbouhi M, Shabazzadeh D, et al. Recombinant expression and purification of functional vascular
endothelial growth factor-121 in the baculovirus expression system. Asian Pac J Trop Med 2016; 9:1195-1199.
8. Kazemi-Lomedesht F, Pooshang-Bagheri K, Habibi-Anbouhi M, Hajizadeh-Safar E, Shahbazzadeh D, Mirzahosseini E, et al. In vivo immunotherapy of lung cancer using cross-species reactive vascular endothelial growth factor nanobodies. Iran J Basic Med Sci 2017; 20:489-496.
9. Airihaini E, Ashkiyan A, Kazemi-Lomedesht F, Azadmehesh K, Hosseininejad-Chafi M, Habibi-Anbouhi M, et al. Intrabody targeting vascular endothelial growth factor receptor-2 mediates downregulation of surface localization. Cancer Gene Ther 2017; 24:33-37.
10. Moollen FL, Cooperband SR. Selective destruction of target cells by diphtheria toxin conjugated to antibody directed against antigens on the cells. Science 1970; 169:68-70.
11. Krolek C, Villemce C, Isakson P, Uhr J, Vitetta E. Selective killing of normal or neoplastic B cells by antibodies coupled to the A chain of ricin. PNAS USA 1980; 77:5419.
12. Cawley DB, Herschman HR, Gilliland DG, Collier RJ. Epidermal growth factor-toxin A chain conjugates: EGF-ricin A is a potent toxin while EGF-diphtheria fragment A is nontoxic. Cell 1980; 22:563-570.
13. Kreitman RJ. Immunotoxins for targeted cancer therapy. AAPS J 2006; 8:E532-E551.
14. Borthakur G, Rosenblum MG, Talpaz M, Daver N, Ravandi F, Faderl S, et al. Phase I study of an anti-CD33 immunotoxin, humanized monoclonal antibody M195 conjugated to recombinant gelonin (HUM-195/rGEL), in patients with advanced myeloid malignancies. Haematologica 2013; 98:217-221.
15. Hassan R, Sharon E, Thomas A, Zhang J, Ling A, Miettinen M, et al. Phase I study of the antisense immunotoxin SSIP in combination with pemtrexed and cisplatin for front-line therapy of pleural mesothelioma and correlation of tumor response with serum mesothelin, megakaryocyte potentiating factor, and cancer antigen 125. Cancer 2014; 120:3311-3319.
16. Zhang Y, Schulte W, Pink D, Phipps K, Zijlstra A, Lewis JD, et al. Sensitivity of cancer cells to truncated diphtheria toxin. PLoS One 2010; 5:e10498.
17. Shafee F, Rabbani M, Behdani M, Jahaniem-Najafabadi A. Expression and purification of truncated diphtheria toxin, DT386, in Escherichia coli: An attempt for production of a new vaccine against diphtheria. Res Pharm Sci 2016; 11:428-434.
18. Ramakrishnan S, Olson T, Bautch VL, Mohanj D. Vascular endothelial growth factor-toxin conjugate specifically inhibits KDR/flk-1-positive endothelial cell proliferation in vitro and angiogenesis in vivo. Cancer Res 1996; 56:1324-1330.
19. Shafee F, Rabbani M, Jahaniem-Najafabadi A. Production and evaluation of cytotoxic effects of DT386-BR2 fusion protein as a novel anti-cancer agent. J Microbiol Methods 2016; 130:100-105.
20. Maruyama Y, Tobinai K, Ando K, Ohmachi K, Ogura M, Uchida T, et al. Phase I study of E7777, a diphtheria toxin fragment-interleukin-2 fusion protein, in Japanese patients with phase 1 study of E7777, a diphtheria toxin fragment-interleukin-2 fusion protein, in Japanese patients with mesothelioma. Cancer Gene Ther 2013; 20:205-209.
21. Urieto JO, Liu T, Black JH, Cohen KA, Hall PD, Willingham MC, et al. Expression and purification of the recombinant diphtheria toxin fusion protein DT 388 IL3 for phase 1 clinical trials. Protein Expr Purif 2004; 33:123-133.
22. Hogge DE, Yalcintepe L, Wong S-H, Gerhard B, Franken AE. Variant diphtheria toxin-interleukin-3 fusion proteins with increased receptor affinity have enhanced cytotoxicity against acute myeloid leukemia progenitors. Clin Cancer Res 2006; 12:1284-1291.
23. Xanthopoulos J, Romano A, Majumdar SK. Response of mouse breast cancer cells to anastrozole, tamoxifen, and the combination. Biomed Res Int 2005; 2005:10-19.
24. Pastan I, Hassan R, FitzGerald DJ, Kreitman RJ. Immunotoxin treatment of cancer. Annu Rev Med 2007; 58:221-237.
25. Spiess K, Jeppesen MG, Malmgard-Clausen M, Krzywykowski K, Kledal TN, Rosenkilde MM. Novel Chemokine-Based Immunotoxins for Potent and Selective Targeting of Cytomegalovirus Infected Cells. J Immunol Res 2017; 2017:4069260.
26. Yamaizumi M, Mekada E, Uchida T, Okada Y. One molecule of diphtheria toxin fragment A introduced into a cell can kill the cell. Cell 1978; 15:245-250.
27. Thorpe P, Ross W, Cumber A, Hinson C, Edwards D, Davies A. Toxicity of diphtheria toxin for lymphoblastoid cells is increased by conjugation to antilymphocytic globulin. Nature 1978; 237:271.
28. Bennett MJ, Eisenberg D. Refined structure of monomeric diphtheria toxin at 2.3 A resolution. Protein Sci 1994; 3:1464-1475.
29. Olsen E, Ducic M, Frankel A, Kim Y, Martin A, Vonderheid E, et al. Pivotal phase III trial of two dose levels of denileukin diftitox for the treatment of cutaneous T-cell lymphoma. J Clin Oncol 2001; 19:376-388.
30. Lin AY, Dinner SN. Moxetumomab pasudotox for hairy cell leukemia: preclinical development to FDA approval. Blood Adv 2019; 3:2905-2910.
31. Wang C, Gao W, Meng F, Pasan I, Ho M. Construction of an immunotoxin, HN3-mPE24, targeting gpycin-3 for liver cancer therapy, Oncotarget 2016.
32. Hollevoet K, Mason-Osann E, Liu X-F, Imhof-Jung S, Niederfellner G, Pasan I. In vitro and in vivo activity of the low-immunogenic antimesothelin immunotoxin RG7787 in pancreatic cancer. Mol Cancer Ther 2014; 13:2040-2049.
33. Stepanov A, Beley A, Kasheverov I, Rybietas A, Dronina M, Dyachenko I, et al. Development of a recombinant immunotoxin for the immunotherapy of autoimmune lymphocytes expressing MOG-specific BCRs. Biotechnol Lett 2016; 1-8.
34. Robinson CJ, Stringer SE. The splice variants of vascular endothelial growth factor (VEGF) and their receptors. J Cell Sci 2001; 114:853-865.
35. Shojaei F. Anti-angiogenesis therapy in cancer: Current challenges and future perspectives. Cancer Lett 2012; 320:130-137.
36. Wild R, Dhanabal M, Olson T, Ramakrishnan S. Inhibition of angiogenesis and tumour growth by VEGF121–toxin conjugate: Differential effect on proliferating endothelial cells. Br J Cancer 2000; 83:1077.
37. Backer MV, Budker VG, Backer JM. Shiga-like toxin-VEGF fusion proteins are selectively cytotoxic to endothelial cells overexpressing VEGFR-2. J Control Release 2001; 74:349-355.
38. Veemendaal LM, Jin H, Ran S, Cheung L, Navone N, Marks JW, et al. In vitro and in vivo studies of a VEGF121/Gelonin chimeric fusion toxin targeting the neovascularization of solid tumors. Proc Natl Acad Sci U S A 2002; 99:7866-7871.
39. Hu CC, Ji HM, Chen SL, Zhang HW, Wang BQ, Zhou LY, et al. Investigation of a plasmid containing a novel immunotoxin VEGF165-PE38 gene for antiangiogenic therapy in a malignant glioma model. Int J Cancer 2010; 127:2222-2229.
40. Behdani M, Zeinali S, Karimipour M, Khademah M, Schoonooghe S, Aslemarz A, et al. Development of VEGFR2-specific Nanobody Pseudomonas exotoxin A conjugated to provide efficient inhibition of tumor cell growth. N Biotechnol 2013; 30:205-209.
41. Ramakrishnan S, Olson T, Bautch V, Mohanj D. Vascular endothelial growth factor-toxin conjugate specifically inhibits KDR/flk-1-positive endothelial cell proliferation in vitro and angiogenesis in vivo. Cancer Res 1996; 56:1324-1330.
کارگاه‌های آموزشی مرکز اطلاعات علمی

آموزش مهارت‌های کاربردی ISI در ندوبین و جاب مقالات

روش تحقیق کمی

آموزش نرم‌افزار برای پژوهشگران