INTRODUCTION
At this stage of the world economy, a large number of countries directed for the industry development, as well as its innovative component introduce a cluster approach, which is based on obtaining positive benefits and using the effects of extensive concentration of enterprises and their industries, namely: economies of scale, synergies, knowledge exchange, use of common resources, etc. The classical cluster structure is considered as a certain formation, which is organized according to a number of principles, and therefore connected with a certain territory. This location and proximity lead to these results. However, with the digital economy development and the growing share of information consumption of operational processes, goods and services, the effectiveness and efficiency of the economic entities’ interaction is less correlated with their location.

In such realities, the domestic economy development is characterized by the transition to a qualitatively new level of introduction and use of information and telecommunications technologies in all spheres of economic and social activity of the country. Under these conditions, effective interaction of enterprises is impossible without the creation of both production and clusters of digital economy. In a general sense, a cluster means the integration of business entities and cooperating institutions of cooperation, which are territorial or joint activities are aimed at improving the efficiency of their operation, competitiveness and optimization of the regional development.

LITERATURE REVIEW
Many scientific works of domestic and foreign scientists are devoted to the study of digitalization, innovation and information development, among them: Adam (2018); Afonasova, Panfilova, Galichkina, Ślusarczyk (2019); Alraja, Hussein, Ahmed, (2020); Billestrup, Stage (2014); Budzinski, Stöhr (2019); Butko, Pishinen (2019); Chudnovskiy, Tsabolova, Zhukova (2021); Dannikov, Sichkarenko (2018); De Silva (2019); Eichstädt (2020); Gopane (2020); Heat (2019); Ključnikov, Civelek, Krajčík V, Ondrejmišková (2020); Kornieieva (2018); Kychko I., Tulchynska S., Zhgygalkevych Z., Treitiak O. (2021); Lazarenko I.; Saloid S.; Tulchynska, Kryuchenko, Tulchinsky (2020); Lin Chia (2018); Myovella, Karacuka, Haucap (2020); Revko (2020); Shkarlet, Ivanova (2020); Sudolska, Łapińska (2020); Szopik-Depczynska, Cheba, WiŚniewska (2020); Tulchynska, Vovk, Saloid (2021); Yunfu Xu, Aiya (2020); Zajkowska (2017) et al.

World experience proves that clustering is an effective tool of regional and (or) national competition, according to studies by such foreign scientists: Arnold E., Deuten, Van Giessel (2004); Charles, Wessner, Wolff (2012); Enright (1992); Fontagne, Koenig, Mayneris, Poncet (2012); Porter, (2002, 2010); Ketelhohn, Artiganave, Kelly, Krasniqi, Zhang (2010); Santisteban M. (2006); Solveill, Lindqvist, Ketels (2003) et al.
METHODS

Within this paper, such scientific research methods are used as: the method of analysis and synthesis to identify global models of cluster structures and outline their main characteristics; the identification of features and characteristics of Ukrainian clusters; the statistical - for the formation of indicators that allow to describe the state of digitalization of the regions in Ukraine; the graphic method - to visualize the impact of the digital economy on the development of socio-economic relations and the transformation of the clustering process in digital economy.

RESULTS AND DISCUSSION

The application of the cluster approach to the development of national and regional economies should be considered today as one of the effective and efficient tools for the development of both individual territories and areas of economic and social activity, primarily the emergence of a synergy effect. It is proved that the economy clustering has a number of advantages:

- formation of systems (clusters) for the production of a particular product or product, which are created on the basis of the association of economic entities on a territorial, sectorial or legal basis;
- reduction of transaction costs by establishing close cooperation and accounting and control of costs and profitability of all cluster members to achieve a common goal;
- simplification and optimization of cluster management activities by creating a single object of cluster structure management, which is more effective than regulating the functioning of each individual business entity, which while retaining their property rights.

The use of the cluster approach by the economy development of a country or its regions is demonstrated today by most countries of the world. Cluster formations exist and function successfully in Europe, Asia, North and South America, Australia and Africa, a large number of them are concentrated in countries such as India, USA, UK, France, Spain, etc. (Fig. 1).

Fig. 1. Distribution of countries in the world by the largest number of clusters

![Distribution of countries](image)

Source: Search data.

Countries that are territorially close have a large number of common features in the implementation of the cluster approach, mostly at the initial stage. With further development, each country begins to acquire its own characteristics of clustering, but a number of similarities
remain due to the institutional environment and so on. Activities and development of clusters have recently been concentrated not only within regions and countries, but also spread more widely, which leads to the formation of a number of territories in the region which should eventually be considered as international competitive market players. The study of the cluster approach implementation in different countries of the world allowed to identify the leading features of the global cluster models (Table 1).

Table 1. World models of cluster structures

World model	Brief description and features	Advantage
European	Achieving close cooperation between the state and business structures for the effective functioning of the cluster formation	Recognition of the authority of the state in the European business environment, its performance as a defender of market conditions and industry
North American	Low level of the state intervention and influence on the processes of the creation and development of clusters, achieving a high level of the participants’ competition in cluster structures in market economy	Effective interaction of government agencies, industry and educational institutions, resulting in the creation of innovations and technological advances; low level of the formalization in the cluster approach implementation by public authorities.
Asian	State intervention for the formation of competitive clusters, which are the integration of small and medium-sized businesses with large enterprises based on subcontracting conditions for production. Achieving within this model the effect of specialization at a low level of efficiency of the state innovation system in the cluster approach implementation	Protection provision by state bodies of their own producers from foreign ones, assistance with their promotion on world markers
South American	Clustering is carried out mainly with the participation and at the expense of international organizations with the involvement of foreign direct investment to carry out innovations. The cluster structure has a core, which consists of leading companies	Direction of clusters for export
Australian	The cluster structure consists of representatives of private business and public authorities who participate in financing the creation of the cluster on an equal basis through a specially created organization	This model is attractive to all participants in the cluster structure due to mixed funding
African	This model is the youngest of the others, which is characterized by a change in several concepts of the cluster development in a short period of time	Financial and organizational support of international organizations for the processes of origin, formation and development of cluster initiatives and structures
Post-Soviet	Cluster structures have a core, which is mainly large enterprises and operate at a low level of competition, market relations and small business development	Accelerating economic development by creating cluster structures

Source: Search data.

Based on the above, we can formulate the following generalizing features of the global clustering:

- formation, functioning and development of cluster structures is an effective tool for the development of countries and its regions and serves as a catalyst for the transition of socio-economic systems to a higher level;
- a strategic advantage and a distinctive feature of cluster formation is to obtain a synergistic effect, which leads to the increased efficiency of both the cluster and the region in which it operates;
- a characteristic feature of the cluster is its innovative orientation;

The cluster policy is implemented on the basis of cooperation and networking between business entities, authorities, research institutions and educational institutions in order to
achieve a synergy effect and the formation of locomotives of innovative development of the regions. The experience of clustering in Ukraine is more than 20 years, during which all regions of the country worked to study and identify areas of clusters, assess their potential, develop and approve strategies, projects, programs, etc., but real action is aimed at practical steps of clustering little, which is reflected in the small number of actually functioning cluster associations in Ukraine. There is no single official data on their number, so the authors collected and systematized data on the number and specialization of cluster structures, which were identified and described by domestic scientists and experts (Fig. 2).

Fig. 2. Cluster’s specialization in Ukraine in 2020

Cluster Specialization	Count
Information Technology	20
Agriculture and fisheries	18
Food production	16
Tourism and recreation	14
Production of wooden products	12
Mechanical engineering and equipment production	10
Construction	8
Transport and logistics	6
Education	4
Education	2
Production of electronic equipment	2
Shipbuilding	2
Flax production	2
Production of souvenirs	2
Apiculture	2
Stone processing	2
Forest industry	2
Metallurgy	2
Light industry	2
Production of electronic equipment	2
Production of souvenirs	2
Production of wooden products	2
Mechanical engineering and equipment production	2
Food production	2
Agriculture and fisheries	2
Tourism and recreation	2
Information Technology	2

Source: search data.

It should be noted that the number of the above clusters in the country is not constant, because, first, a large number of cluster structures formed during the period from the 90s to 2010 ceased to exist, and second recent years are characterized by the formation of new clusters. connections. Thus, based on the study of the functioning of domestic cluster structures, it is possible to outline special features and give a description of domestic clusters (Table 2).
Table 2. Features and characteristics of Ukrainian clusters

Characteristic	Content
Location of members of	A large number of cluster participants in their location is limited to the territory of
cluster formations on a	one region or the district of the country
common territorial basis	
Connection of cluster	The following specialization prevails among domestic clusters: agriculture and
members with a common	agro-industrial sector, food production, tourism and recreation
sphere of activity	
Structure and number of	In recent years, there has been an increase in the number of clusters of information
cluster members	technology and cluster structures of innovation (innovation clusters) in the regions of the country
Development and support	Ukrainian cluster structures mostly combine from 20 to 50 members, among which enterprises, firms, companies, educational
of domestic cluster	institutions, banking institutions, public organizations, etc. should be singled out.
initiatives by	
international	
organizations	
The initial stage of	The implementation of the clustering process in Ukraine was initiated and is carried out on the basis of cooperation with
functioning of the	foreign organizations and specialists of the USA and the EU, the implementation of joint programs and projects
vast majority of domain	
clusters	
Methodological, institutional, financial, etc. complexities of clusters	The process of origin and further functioning of clusters began with the regions with the lowest indicators of the socio-economic development; a large number of clusters are still at the stage of emergence or formation, has a small number of real participants with weak interaction, territorially located within the region, and sometimes the district. There is no methodology for identifying, forming and evaluating the effectiveness of clusters.

Source: Search data.

The development of Ukraine has recently been increasingly influenced by the intensification of the processes of the world digitalization (Table 3). Digital economy in Ukraine is already a reality, which has a number of preconditions, which are reflected in the following data of the country:

- development of infrastructure for Internet access, as well as growth in the number of Internet users;
- development of IT infrastructure at domestic enterprises;
- development of e-commerce;
- development of the IT sphere;
- development of e-government.

Table 3. Indicators of the digital economy development in Ukraine

	Proportion of households that have access to Internet services at home, %	Share of Internet subscribers to the whole population	Share of the population employed in the IT sector, including IT clusters per 1000 population
Ukraine	65.8	68.5	183.00
The Crimea			
Vinnytsia	63.9	64.2	5.13
Volyn	53.3	57.3	1.92
Dnipropetrovsk	79.3	77.8	15.25
Donetsk	68.0	76.8	3.52
Zhytomyr	54.6	65.	3.28
Transcarpathian	75.9	77.9	1.54
Zaporizhzhia	68.5	71.3	5.97
Ivano-Frankivsk	65.3	76.4	3.14
Kiev	60.8	60.6	17.65
Kirovohrad	54.1	56.0	1.85
Luhansk	63.3	67.4	1.46
Lviv	68.9	70.2	18.99
Mykolayiv	66.8	70.5	4.90
Odessa	69.8	76.3	8.65
Poltava	52.2	60.8	3.55
Rivne	49.3	69.1	2.32
Sumy	67.2	71.6	2.50
Ternopil	64.9	67.9	2.04
Kharkiv	65.0	70.4	25.77
Kherson	50.6	65.5	2.20
Khmelnytsky	55.3	61.1	2.70
Cherkassy	59.5	66.2	4.3
Chernivtsi	69.3	72.2	1.78
Chernihiv	55.3	62.3	2.99
Kyiv city	83.7	81.4	37.89
Sevastopol city	-	-	-

Source: search data.
Today, transformations that take place in the spatial distribution of production and the competitive environment are associated with the economy digitalization. The introduction and development of digital information technologies in all components of production systems leads to increased efficiency by reducing costs in terms of promoting segregated employment, reducing information and management costs, as well as the interaction between environmental factors of direct action and more. Against this background, new forms of economic ties and interaction appear (Fig. 3).

Fig. 3. The impact of digitalization on the development of socio-economic relations

Digitization of the modern economy affects the formation and functioning of cluster structures, which is primarily manifested in reducing the importance of the spatial location of the components of cluster formation, as currently the exchange and transmission of information does not depend on the proximity of participants. Development of modern communications, which are provided by digital technologies, allows the exchange of implicit knowledge without personal interaction and transmission of information, remotely in online format. In addition, the creation of a single digital information space of the cluster allows all its members to gain new knowledge and transform it into innovation, which contributes to the benefits. Against the background of these processes is the separation of information and management processes from material production, which is becoming increasingly automated and robotic, and is located where there is a large number of cheap resources. While people engaged in the information and digital process seek to live where there is a high standard of living. Thus, based on modern transformations, a cluster is a certain association of economic entities that are not united by territorial proximity.

The changes brought about by digital economy have certain consequences for clustering. First, the basis of the cluster is the intellectual component, for the effective functioning of which does not require material resources or close proximity of production systems, but the ability to best implement the human potential. Second, clustering is increasingly ceasing to be associated with a particular region of the country or neighboring territories due to resource constraints and reduced competitiveness. Third, the central element of the cluster is the implementation of digital information management and financial transactions, which are weakly dependent on the geographical location of participants and affect its competitiveness. Thus, traditionally, industrial production clusters are transformed into entities that are
adaptable to the new requirements of digitalization (digital clusters). Thus, the development of the domestic economy based on the digital platform not only does not eliminate the benefits of classical clustering, but also adds new ones (Fig. 4).

Fig. 4. Clusters in the context of the economy digitalization

DIGITIZATION OF THE ECONOMY (influence and manifestations)
Reducing the significance of the geographical factor for the work of cluster
Removing the exchange of implicit knowledge
Improving the availability of information
Separation of information processes from material production

CLUSTERING (process changes)
Changing the place of concentration of capital
Reducing the effectiveness of traditional cluster policy, built on the territorial principle by increasing the information intensity of goods
Dissemination of the digital environment for information, management and financial intra-cluster transactions

INFORMATION TECHNOLOGIES OF DIGITALIZATION IN THE FIELD OF INDUSTRIAL SYSTEMS
Simulation and creation of digital duplicates
Machine learning
Robotization and informatization of production
Industrial Internet
ERP, CRM, BPM systems
Cloud technologies

DIGITAL ECONOMY CLUSTERS
Implementation of basic transactions in the digital
Reduction of intra-cluster transaction costs relative to external ones
Achieving effective interaction of cluster members regardless of their location

GAINING BENEFITS AND OVERCOMING PROBLEMS
Reduce maintenance infrastructure costs
Overcoming the negative impact on the environment
Reduce barriers to entry for new members
Increasing cluster competition
Ensuring greater access to resources

Source: Search data.

The issue of the concept and essence of the cluster of digital economy, which appears in the context of digitalization of socio-economic relations, is interesting. We believe that this cluster structure implements such a basic function as reducing the transaction costs of cooperation and interaction of its participants and is not limited to manufacturers in the field of information technology. The core of a cluster is an association of enterprises and the basis of their interaction is located in the digital space and is not tied to a specific location, and production systems themselves can be material. Thus, a digital economy cluster should be understood as a set of economic entities that cooperate and interact with the help of digital information and communication technologies are sustainable and aimed at reducing transaction costs.

The following features of the digital economy cluster can be distinguished:
• the main transaction processes take place in the digital space;
• transaction costs of interaction are lower in the cluster structure than outside it;
• effectiveness of interaction and cooperation of cluster members does not depend on their physical location.

Thus, it can be noted that the development and dissemination of digitalization has a positive effect on the quality of the information component and accelerates the process of its exchange, resulting in the following transformations in the management process:

• there is a decrease in the influence of the territorial feature of economic entities on the effectiveness of their cooperation and interaction;
• improving the quality of transmission and exchange of both explicit and implicit knowledge;
• separation of information production from material;
• ending the dependence of access to knowledge and technology on the territorial proximity to their source.

Thus, the above transformations change the approaches, principles and patterns of the cluster formation, namely: expand the geography of enterprises in the cluster, change the location and concentration of major production processes, transfer of various intra-cluster transactions (information, management, financial) in the digital space, which becomes the main condition for the integration of enterprises in modern conditions.

Therefore, the digital economy development is occurring today around the world, including Ukraine. To speed up this process and increase its efficiency, it is necessary to use all available tools, one of which is clustering. It allows to unite the efforts of all participants of the cluster: enterprises, authorities, research institutions and educational institutions to achieve a synergistic effect and positively affect the development of the region, the country and the living standards of their population.

CONCLUSION
In the article, based on the thorough analysis and systematization of data, the leading world models of cluster structures are singled out, their characteristic is given and advantages of each are defined, on which base, generalizing features of clustering are systematized and formulated. The implementation of the cluster approach in Ukraine is studied, the specialization of Ukrainian clusters, their features and main features are given. The analysis of digitalization of Ukraine by regions is carried out based on a number of indicators; they are grouped by the level of the digital economy development. The influence of digital economy on socio-economic systems in general, and separately on the clustering process, the consequences of such influence are determined. Digitization has been shown to transform clustering and lead to the emergence of new clusters - digital economy clusters, which are a set of economic entities based on sustainable interaction, digital communications, which leads to lower transaction costs. Thus, the transformations that occur with clustering in digital economy are the emergence of these cluster structures, which today can unite companies not only close to the territory, reduce transaction costs and transfer them to the digital sphere, almost independent of access to resources.

REFERENCES
ADAM, M. Towards a unified approach to digitalization in Europe. Revista de Obras Publicas, 2018, v. 165, No. 3597, p. 20-27. Available at: https://www.thenbs.com/knowledge/working-towards-a-unified-approach-to-bim-in-europe. Access: May 27, 2021.

AFONASOVA, M.A.; PANFILOVA, E.E.; GALICHKINA, M.A.; ŚLUSARCZYK, B. Digitalization in economy and innovation: The effect on social and economic processes. Polish Journal of Management Studies, 2019, v. 19, No. 2, p. 22-32. Available at: https://pjms.zim.pcz.pl/resources/html/article/details?id=190160. Access: May 27, 2021.
ALRAJA, M.N.; HUSSEIN, M.A.; AHMED, H.M.S. What affects digitalization process in developing economies? An evidence from the SMEs sector in Oman. *Bulletin of Electrical Engineering and Informatics*, 2020, v. 10, No. 1, p. 441-448. Available at: https://zenodo.org/record/4507739#.YPEQ-1NgFkx. Access: May 27, 2021.

ARNOLD, E.; DEUTEN, J.; VAN GIJSSEL J-F. An international Review of Competence Centre Programmes. Brighton: Technopolis, 2004. 257p.

BILLESTRUP, J.; STAGE, J. E-government and the digital agenda for Europe: a study of the user involvement in the digitalisation of citizen services in Denmark. In A. Marcus (Ed.), *Design, User Experience, and Usability. User Experience Design for Diverse Interaction Platforms and Environments: Third International Conference, DUXI 2014, Held as Part of HCI International 2014, Heraklion, Crete, Greece, June 22-27, 2014, Proceedings, Part II*, 2014, part. 2 ed., p. 71-80. Springer Publishing Company. Lecture Notes in Computer Science. Available at: https://doi.org/10.1007/978-3-319-07626-3_7. Access: June 03, 2021.

BUDZINSKI, O.; STÖHR, A. The competition policy reform in Europe and Germany - institutional change in the light of digitalzation. *European Competition Journal*, 2019, v. 15, No. 1, p. 15-54. Available at: https://papers.ssm.com/sol3/papers.cfm?abstract_id=3280896. Access: May 27, 2021.

BUTKO, M.; POPELO, O.; IVANOVA, N.; SAMIILENKO, G. Conceptual foundations of the regional industrial cluster formation based on European experience and leading world tendencies. *Financial and credit activity: Problems of theory and practice*, 2020, v. 1(32), p. 319-329. Available at: http://fkd1.ubs.edu.ua/article/view/200528. Access: May 27, 2021.

BUTKO, M.; POPELO, O.; PISHENIN, I. Innovations in Human Resources Management in Eurointegration Conditions: Case for Ukrainian Agro-industrial Complex. *Marketing and management of innovations*, 2019, v. 2, p. 74-82. Available at: https://mmi.fem.sumdu.edu.ua/sites/default/files/07_MMI-02-2019_A172-2018_Butko%20et%20al.pdf. Access: May 27, 2021.

CHUDNOVSKIY, A.D.; TSABOLOVA, O.R.; ZHUKOVA, M.A. Using the Digitalization Experience of Small Enterprises of the Tourism and Hospitality Sector in Germany for Development of the Tourism Infrastructure in Russia. *Studies in Systems, Decision and Control*, 2021, v. 314, p. 369-376. Available at: https://link.springer.com/chapter/10.1007%2F978-3-030-56433-9_39. Access: May 27, 2021.

DANNIKOV, O. V.; SICHKARENKO, K. O. Kontseptualni zasady tsyrovizatsii ekonomiky Ukrainy [Ukrainian economy’s digitalization: conceptual grounds]. *Ekonomika ta upravlinnia natsionalnym hospodarstvom - Economics and management of the national economy*, 2018, v. 17, p. 73-79. Available at: http://www.marketinfr.od.ua/journals/2018/17_2018_ukr/15.pdf. Access: Apr. 27, 2021.

DE SILVA, I. Tackling the challenges raised by the economy digitalization: Recent experiences of the French competition authority. *Antitrust Bulletin*, 2019, v. 64, No.1, p. 3-10. Available at: https://journals.sagepub.com/doi/10.1177/0003603X18822577. Access: Apr. 27, 2021.

EICHSTÄDT, S. Metrology for the digitalization of economy and society. In 19th ITG/GMA-Symposium on Sensors and Measuring Systems 2018, *Sensoren und Messsysteme - Beiträge der 19. ITG/GMA-Fachtagung*, 2020, p. 340-343. Available at: https://oar.ptb.de/files/download/5a97ff6a4c91840cfd0410e4. Access: Apr. 27, 2021.

ELECTRONIC INTERACTION. *White paper on public policy*. 2015. Available at: https://goo.gl/YammZw. Access: June 03, 2021.

ENRIGHT, M. J. Why Clusters are the Way to Win the Game? *Word Link*, 1992, No. 5, p. 46-52. Available at: http://www.sciepub.com/reference/89939. Access: Apr. 27, 2021.
FONTAGNE, L.; KOENIG, P.; MAYNERIS, F.; PONCET, S. Cluster policies and firm selection: Evidence from France. HNW, 2012. 415 p.

GOPANE, T.J. Digitalisation, Productivity, and Measurability of Digital Economy: Evidence from BRICS. In 5th International Conference on Digital Economy, ICDEc 2020. Lecture Notes in Business Information Processing, 2020, v. 395, p. 27-37. Available at: https://ujcontent.uj.ac.za/vital/access/manager/Repository/uj:40775?site_name=GlobalView. Access: Apr. 27, 2021.

HEATH, N. How Estonia became an e-government powerhouse. 2019. Available at: https://www.ncsl.org/Portals/1/Documents/edu/International_Ed_Study_Group_2020/Estonia/12.Article_%20HowEstoniabecameanegovernmentpowerhouse.pdf. Access: June 03, 2021.

KLJUČNIKOV, A.; CIVELEK, M.; KRAJČÍK, V.; ONDREJIMIŠKOVÁ, I. Innovative regional development of the structurally disadvantaged industrial region by means of the local currency. Acta Montanistica Slovaca, 2020, v. 25(2), p. 224-235. Available at: https://www.researchgate.net/profile/Mehmet-Civelek/publication/343524534_Innovative_Regional_Development_of_the_Structurally_Disadvantaged_Industrial_Region_by_the_Means_of_the_Local_Currency/links/5f2e70f692851cd302e777b3/Innovative-Regional-Development-of-the-Structurally-Disadvantaged-Industrial-Region-by-the-Means-of-the-Local-Currency.pdf. Access: Jan. 20, 2021.

KORNIEIEVA, Y. V. The role of the state in promoting investment in digital economy. Economics of forecasting, 2018, is. 1, p. 120-134. Available at: http://eip.org.ua/docs/EP_18_1_120_uk.pdf. Access: Jan. 20, 2021.

LAZARENKO, I.; SALOID, S.; TULCHYNSKA, S.; KYRYCHENKO, S.; TULCHINSKIY, R. Necessity of implementing data science course in economics curricula. Information technologies and teaching aids, 2020, v. 4(78), p. 132-144. Available at: https://journal.iitta.gov.ua/index.php/itlt/article/view/3505/1699. Access: Jan. 20, 2021.

LIN, C. J. Denmark leads the world in digital government. 2018. Available at: https://govinsider.asia/innovation/denmark-online-services-digital-government-australia-korea/. Access: June 03, 2021.

MYOVELLA, G.; KARACUKA, M.; HAUCAP, J. Digitalization and economic growth: A comparative analysis of Sub-Saharan Africa and OECD economies. Telecommunications Policy, 2020, v. 44, No. 2, 101856. Available at: https://www.sciencedirect.com/science/article/abs/pii/S0308596119302290. Access: Jan. 20, 2021.

POPELO, O.; KYUCHKO, I.; TULCHYNSKA, S.; ZHYGALKEVYCH, ZH.; TRETIAK, O. The Impact of Digitalization on the Forms Change of Employment and the Labor Market in the Context of the Information Economy Development. IJCSNS International Journal of Computer Science and Network Security, 2021, v. 21(5), p. 160-167. Available at: http://paper.ijcsns.org/07_book/202105/20210523.pdf. Access: Feb. 15, 2021.

PORTER, M. Building the microeconomic foundations of prosperity: Findings from the microeconomic competitiveness index. In The World Economic Forum’s Global Competitiveness Report 2002-2003. Oxford: Oxford University Press, 2002, p. 23-45.

PORTER, M.; KETELHOHN, N.; ARTIGANAVE, A.; KELLY, J.; KRASNIQI, M.; GI, M. T. P.; ZHANG, L. The Massachusetts Higher Education and Knowledge Cluster: The Microeconomics of Competitiveness. USA: Massachusetts Press, 2010. 34p.

REVKO, A.; BUTKO, M.; POPELO, O. Methodology for Assessing the Influence of Cultural Infrastructure on Regional Development in Poland and Ukraine. Comparatie Economic Research. Central and Eastern Europe, 2020, v. 23, No. 2, p. 21-39. Available at: https://www.econbiz.de/Record/methodology-for-assessing-the-influence-of-cultural-
infrastructure-on-regional-development-in-poland-and-ukraine-revko-alona/10012417334. Access: Feb. 15, 2021.

RISING TO THE CHALLENGE. U.S. Innovation Policy for the Global Economy. Ed. By Charles W. Wessner and Alan Wm. Wolff, National Research Council. Washington, D.C.: The National Academies Press, 2012. 381p.

SANTISTEBAN, M. Industrial Clusters in Spain and Denmark: contextualized institutional strategies for endogeneous development. 2006 European Urban and Regional Studies Conference, 2006, p. 196-201. Available at: https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.511.7558&rep=rep1&type=pdf. Access: Feb. 15, 2021.

SHKARLET, S.; IVANOVA, N.; POPELO, O.; DUBINA, M.; ZHUK, O. Infrastructural and Regional Development: Theoretical Aspects and Practical Issues. Studies of Applied Economics, 2020, v. 38, No. 4. Available at: http://ojs.ual.es/ojs/index.php/eea/article/view/4002. Access: Feb. 15, 2021.

SOLVELL, O.; LINDQVIST, G.; KETELS, C. The Cluster Initiative Greenbook, Gothenburg. Competitiveness Institute, 2003.

SUDOLSKA, A., ŁAPIŃSKA, J. Exploring determinants of innovation capability in manufacturing companies operating in Poland. Sustainability, 2020, v. 12, is. 17, 7101. Available at: https://www.mdpi.com/2071-1050/12/17/7101. Access: Feb. 15, 2021.

SZOPIK-DEPCZYNSKA, K.; CHEBA, K.; WISNIEWSKA, J. Innovation, R&D and user-driven innovation activity in R&D Departments in Poland. The multi-criteria analysis. In International Conference on Knowledge-Based and Intelligent Information and Engineering Systems, KES 2020, 2020, v. 176, p. 2705-2713. Available at: https://reader.elsevier.com/reader/sd/pii/S1877050920321967?token=B8ECBF452432CDEC2114DF2F052DF793374B894E6127CC2EE690E53E94CA2A7F5DCD93F4C81BB9239AB1905A56905260&originRegion=eu-west-1&originCreation=20210716052651. Access: Feb. 15, 2021.

TULCHYNSKA, S.; VOVK, O.; POPELO, O.; SALOID, S.; KOSTIUNIK, O. Innovation and investment strategies to intensify the potential modernization and to increase the competitiveness of microeconomic systems. IJCSNS International Journal of Computer Science and Network Security, 2021, v. 21(6), p. 161-168. Available at: http://paper.ijcsns.org/07_book/202106/20210622.pdf. Access: Feb. 15, 2021.

YUNFU, X; AIYA, L. The relationship between innovative human capital and interprovincial economic growth based on panel data model and spatial econometrics. Journal of Computational and Applied Mathematics, 2020, v. 365. Available at: https://www.sciencedirect.com/science/article/abs/pii/S037704271930384X. Access: June 03, 2021.

ZAJKOWSKA, M. Open models of innovation processes as a future management challenge for small and medium-sized enterprises in Poland. Journal of Management and Business Administration. Central Europe, 2017, v. 25(4), p. 193-208. Available at: https://journals.kozminski.edu.pl/pub/4805. Access: Feb. 15, 2021.
Transformational processes of clustering in digital economy

Abstract
Within the article, information on the current state of clustering is systematized, for which the data on the cluster formations functioning in the world are analyzed, on the basis of which seven world models of clusters are singled out, their main and characteristic features are outlined. The orientation of Ukrainian clusters is clarified, special features are revealed and their characteristics are given. It is proved that modern manifestations of digital economy significantly influence the process of clustering and cluster formation. The analysis of digitalization of Ukraine in the regional section is carried out, grouping of regions on digital development of regions is conducted. The influence of digitalization on the development of socio-economic relations is revealed and outlined. The main transformational changes of modern clustering in the conditions of digitalization are formulated, it is proved that its change led to the appearance of such cluster formations as clusters of digital economy, their concepts, essence, features and advantages are clarified.

Keywords: Transformation processes. Clustering. Digital economy. Information economy. Regional economy.

Resumen
El artículo sistematiza la información sobre el estado actual de la agrupación para la cual se analizan los datos de las formaciones de agrupaciones en funcionamiento en el mundo, a partir de la cual se destacan siete modelos mundiales de agrupaciones, se esbozan sus principales rasgos y rasgos característicos. Se aclara la orientación de los grupos ucranianos, se revelan características especiales y se dan sus características. Está comprobado que las manifestaciones modernas de la economía digital influyen significativamente en el proceso de agrupación y formación de agrupaciones. Se lleva a cabo el análisis de la digitalización de Ucrania en la sección regional, se lleva a cabo la agrupación de regiones sobre el desarrollo digital de las regiones. Se revela y describe la influencia de la digitalización en el desarrollo de las relaciones socioeconómicas. Se formulan los principales cambios transformacionales del clustering moderno en las condiciones de la digitalización, se demuestra que su cambio llevó a la aparición de formaciones de clúster tales como clusters de economía digital, se aclaran sus conceptos, esencia, características y ventajas.

Keywords: Procesos de transformación. Agrupamiento. Economía digital. Economía de la información. Economía regional.