Supercongruences involving Domb numbers and binary quadratic forms

Guo-Shuai Mao · Michael J. Schlosser

Received: 4 January 2023 / Accepted: 20 September 2023 / Published online: 3 October 2023
© The Author(s) 2023

Abstract
In this paper, we prove two recently conjectured supercongruences (modulo p^3, where p is any prime greater than 3) of Zhi-Hong Sun on truncated sums involving the Domb numbers. Our proofs involve a number of ingredients such as congruences involving specialized Bernoulli polynomials, harmonic numbers, binomial coefficients, and hypergeometric summations and transformations.

Keywords Congruences · Binomial coefficients · Domb numbers · Binary quadratic forms

Mathematics Subject Classification Primary 11A07; Secondary 11B65 · 11B83 · 11E16

1 Introduction
The Domb numbers $\{D_n\}$, defined by

$$D_n = \sum_{k=0}^{n} \binom{n}{k}^2 \binom{2k}{k} \binom{2n-2k}{n-k}$$

for non-negative integers n, first appeared in an extensive study by Domb [4] on interacting particles on crystal lattices. In particular, Domb showed that D_n counts the number of $2n$-step polygons on the diamond lattice.

Guo-Shuai Mao was supported by the National Natural Science Foundation of China (grant nos. 12001288 and 12071208) and China Scholarship Council (grant no. 202008320187). Michael J. Schlosser was partially supported by FWF Austrian Science Fund grant P 32305.
The Domb numbers also appear in a variety of other settings, such as in the coefficients in several known series for $1/\pi$. For example, from [2, Equation (1.3)] we know that

$$\sum_{n=0}^{\infty} \frac{5n+1}{64^n} D_n = \frac{8}{\sqrt{3}\pi}.$$

In [10, Theorem 3.1], Rogers showed the following generating function for the Domb numbers by applying a rather intricate method:

$$\sum_{n=0}^{\infty} D_n u^n = \frac{1}{1 - 4u} \sum_{k=0}^{\infty} \binom{2k}{k}^2 \left(\frac{3k}{k} \right) \left(\frac{u^2}{(1-4u)^2} \right)^k,$$

where $|u|$ is sufficiently small. Mu and Sun [9, Equation (1.11)] proved a congruence involving the Domb numbers by applying the telescoping method: For any prime $p > 3$, we have the supercongruence

$$\sum_{k=0}^{p-1} \frac{3k^2+k}{16^k} D_k \equiv -4p^4 q_p(2) \pmod{p^5},$$

where $q_p(a)$ denotes the Fermat quotient $(a^{p-1} - 1)/p$.

In [5], Liu proved a couple of conjectures of Sun and Sun. In particular he confirmed [5, Theorem 1.3] that for any positive integer n the two sums

$$\frac{1}{n} \sum_{k=0}^{n-1} (2k + 1) D_k 8^{n-1-k} \quad \text{and} \quad \frac{1}{n} \sum_{k=0}^{n-1} (2k + 1) D_k (-8)^{n-1-k}$$

are also positive integers.

Sun [21, Conjecture 4.1] conjectured the following congruence for the Domb numbers: Let $p > 3$ be a prime. Then

$$D_{p-1} \equiv 64^{p-1} - \frac{p^3}{6} B_{p-3} \pmod{p^4},$$

where $\{B_n\}$ are the Bernoulli numbers given by

$$B_0 = 1, \quad \sum_{k=0}^{n-1} \binom{n}{k} B_k = 0 \quad (n \geq 2).$$

This conjecture was confirmed by the first author and Wang [8]. For more research on Domb numbers, we kindly refer the readers to [5, 7, 14, 19, 22] (and the references therein).

The main result of this paper is Theorem 1.1 which contains two supercongruences that were originally conjectured by Sun in [13, Conjecture 3.5, Conjecture 3.6]. What makes them interesting is that their formulations involve the binary quadratic form $x^2 + 3y^2$ for primes p that are congruent to 1 modulo 3. (It is well-known that any prime $p \equiv 1 \pmod{3}$ can be expressed as $p = x^2 + 3y^2$ for some integers x and y, an assertion first made by Fermat and subsequently proved by Euler, see [3]. In his paper [13], Sun stated further conjectures of similar type, involving different moduli, and other binary quadratic forms.) First, Sun defined

$$R_3(p) = \left(1 + 2p + \frac{4}{3} (2^{p-1} - 1) - \frac{3}{2} (3^{p-1} - 1) \right) \left(\frac{p-1}{[p/6]} \right)^2.$$

The two supercongruences which we will confirm are as follows.
Theorem 1.1 Let \(p > 3 \) be a prime. Then

\[
\sum_{k=0}^{p-1} k^3 D_k \frac{4k}{4^k} \equiv \begin{cases}
-\frac{64}{45} x^2 + \frac{32}{45} p + \frac{43p^2}{90x} \pmod{p^3} & \text{if } p = x^2 + 3y^2 \equiv 1 \pmod{3}, \\
\frac{x}{3} R_3(p) \pmod{p^2} & \text{if } p \equiv 2 \pmod{3} \text{ and } p \neq 5,
\end{cases}
\]

\[
\sum_{k=0}^{p-1} k^3 D_k \frac{16k}{16^k} \equiv \begin{cases}
\frac{4}{45} x^2 - \frac{2}{45} p + \frac{p^2}{45x} \pmod{p^3} & \text{if } p = x^2 + 3y^2 \equiv 1 \pmod{3}, \\
-\frac{4}{3} R_3(p) \pmod{p^2} & \text{if } p \equiv 2 \pmod{3}.
\end{cases}
\]

Our preparations for the proof of this theorem consist of seven lemmas that we give in Sect. 2. These are used in Sect. 3, devoted to the actual proof of Theorem 1.1. As tools for establishing the results in Sects. 2 and 3 we utilize some congruences from [6, 7] and several combinatorial identities that can be found and proved by the package Sigma [11] via the software Mathematica.

2 Preliminary lemmas

Recall that the Bernoulli polynomials \(\{B_n(x)\} \) are given by

\[
B_n(x) = \sum_{k=0}^{n} \binom{n}{k} B_k x^{n-k} \quad (n = 0, 1, 2, \ldots),
\]

where, as before, \(\{B_n\} \) are the Bernoulli numbers. We will also use the classical Legendre symbol \(\left(\frac{a}{q} \right) \) (for integer \(a \) and odd prime \(q \)). The following lemma involving the (generalized) harmonic numbers can be easily deduced from [16, Theorem 5.2 (c)], [17, Theorem 3.9 (ii), (iii), (iv)], [17, third equation on p. 302], and the simple identity

\[
\sum_{1 \leq k < \frac{2p}{3}} \frac{1}{k} = \sum_{1 \leq k < \frac{2p}{3}} \frac{(-1)^{k-1}}{k} + \sum_{1 \leq k < \frac{p}{3}} \frac{1}{k}.
\]

Lemma 2.1 Let \(p > 5 \) be a prime. Then

\[
H_{\frac{p-1}{2}} \equiv -2q_p(2) \pmod{p},
\]

\[
H_{\left\lfloor \frac{p}{3} \right\rfloor} \equiv -2q_p(2) - \frac{3}{2} q_p(3) \pmod{p},
\]

\[
H_{\left\lceil \frac{p}{3} \right\rceil}^{(2)} \equiv \frac{1}{2} \left(\frac{p}{3} \right) B_{p-2} \left(\frac{1}{3} \right) \pmod{p},
\]

\[
H_{\left\lfloor \frac{p}{3} \right\rfloor}^{(3)} \equiv -\frac{3}{2} q_p(3) + \frac{3p}{4} q_p^2(3) - \frac{p}{6} \left(\frac{p}{3} \right) B_{p-2} \left(\frac{1}{3} \right) \pmod{p^2},
\]

\[
H_{\left\lceil \frac{2p}{3} \right\rceil}^{(2)} \equiv -\frac{3}{2} q_p(3) + \frac{3p}{4} q_p^2(3) + \frac{p}{3} \left(\frac{p}{3} \right) B_{p-2} \left(\frac{1}{3} \right) \pmod{p^2}.
\]
The above lemma can be compared to results established in [18], which contains similar congruences involving the Bernoulli polynomials but, rather than for the harmonic numbers \(\{H_n\} \), for the special numbers \(\{U_n\} \), which in [18] were recursively defined by

\[
U_0 = 1, \quad U_n = -2 \sum_{k=1}^{\lfloor n/2 \rfloor} \binom{n}{2k} U_{n-2k} \quad (n \geq 1).
\]

Lemma 2.2 ([7, Lemma 2.2]) Let \(p > 5 \) be a prime. If \(0 \leq j \leq (p - 1)/2 \), then we have

\[
\binom{3j}{j} \binom{p + j}{3j + 1} \equiv \frac{p}{3j + 1} (1 - pH_{2j} + pH_j) \pmod{p^3}.
\]

Lemma 2.3 ([7, Lemma 2.3]) Let \(p > 3 \) be a prime. For any \(p \)-adic integer \(t \), we have

\[
\binom{2p-2}{\frac{p-1}{2}} + pt \equiv \binom{2p-2}{\frac{p-1}{2}} (1 + pt (H_{2p-2} - H_{p-1})) \pmod{p^2}.
\]

Lemma 2.4 Let \(p > 3 \) be a prime. If \(p = x^2 + 3y^2 \equiv 1 \pmod{3} \), then

\[
p \sum_{k=0}^{p-1} \frac{(2k)^2}{(3k + 4)16^k} \equiv \frac{4}{25} \left(4x^2 - 2p - \frac{p^2}{4x^2} \right) \pmod{p^3}.
\]

Proof By using \(\Sigma \), we establish the following identity:

\[
\sum_{k=0}^{n} \binom{n+k}{k} (-1)^k \frac{1}{3k + 4} = -\frac{1}{(3n - 1)(3n + 1)(3n + 4)} \prod_{k=1}^{n} \frac{3k - 1}{3k - 2}.
\]

(In terms of classical identities for hypergeometric series, this evaluation is equivalent to the \((a, b, c) \mapsto (a + 1, 4/3, 1)\) case of the Pfaff–Saalschütz summation [12, Appendix III, Equation (III.2)].) So modulo \(p^3 \), we have

\[
p \sum_{k=0}^{p-1} \frac{(2k)^2}{(3k + 4)16^k} \equiv \left(\frac{2}{p-1} \right) \left(\frac{p-1}{p-4} \right)^2 + \left(\frac{p-1}{2} \right) \left(\frac{p-4}{3} \right) \left(\frac{p-1}{2} + \frac{p-4}{3} \right)
\]

\[
\equiv \frac{4}{25} - 9p^2 \left(\frac{2}{p-1} \right) \left(\frac{p-1}{p-4} \right)^2 + \left(\frac{p-1}{2} \right) \left(\frac{p-4}{3} \right) \left(\frac{p-1}{2} + \frac{p-4}{3} \right),
\]

where we used the standard notation for the shifted factorial \((a)_n = \prod_{j=0}^{n-1}(a + j)\) (cf. [12, Section 1.1.1]). It is easy to check that

\[
\begin{align*}
\left(\frac{-1/2}{p-3} \right)^2 &= \frac{4(p-1)^2}{(p-5)^2} \left(\frac{-1/2}{p-1} \right)^2, \\
\left(\frac{p-1}{2} \right) \left(\frac{p-1}{2} + \frac{p-4}{3} \right) &= \frac{4(p-1)}{5(p+5)} \left(\frac{p-1}{2} \right) \left(\frac{p-1}{2} + \frac{p-1}{3} \right)
\end{align*}
\]

(2.1)
These identities, together with [6, pp. 14], yield

\[
\sum_{k=0}^{\frac{p-1}{2}} \frac{(2k)^2}{(3k+4)16^k} \equiv \frac{4}{25 - 9p^2} \left(\frac{p-1}{2} \right) \frac{p-1}{6} \left(\frac{p+1}{2} \right) + \frac{4(p-1)^2}{(2p-5)^2} \left(\frac{p+1}{2} \right) + \frac{4(p-1)}{5(p+5)} \left(\frac{p-1}{2} \right)
\]

\[
\equiv \frac{4}{25} \left(1 + \frac{9p^2}{25} \right) \left(4x^2 - 2p - \frac{p^2}{4x^2} \right)
\]

\[
\times \left(1 + \frac{2p}{3} q_p(2) - \frac{p^2}{9} q_p^2(2) + \frac{5p^2}{24} \left(\frac{p}{3} \right) B_{p-2} \left(\frac{1}{3} \right) \right)
\]

\[
\times \left(1 - \frac{2p}{3} q_p(3) + \frac{15p^2}{8} q_p^2(3) + \frac{5p^2}{24} \left(\frac{p}{3} \right) B_{p-2} \left(\frac{1}{3} \right) \right)
\]

\[
+ \frac{4}{25} \left(1 - \frac{6p}{5} - \frac{3p^2}{25} \right) \left(4x^2 - 2p - \frac{p^2}{4x^2} \right)
\]

\[
\times \left(1 - \frac{3p}{2} q_p(3) + \frac{15p^2}{8} q_p^2(3) + \frac{5p^2}{24} \left(\frac{p}{3} \right) B_{p-2} \left(\frac{1}{3} \right) \right)
\]

\[
\times \left(1 - \frac{4p}{3} q_p(2) + \frac{3p}{2} q_p(3) + \frac{14p^2}{9} q_p^2(2) - 2p^2 q_p(2) q_p(3) + \frac{3p^2}{8} q_p^2(3) + \frac{p^2}{8} \left(\frac{p}{3} \right) B_{p-2} \left(\frac{1}{3} \right) \right)
\]

\[
- \frac{4}{25} \left(1 - \frac{6p}{5} + \frac{6p^2}{25} \right) \left(4x^2 - 2p - \frac{p^2}{4x^2} \right)
\]

Again, by [6, pp. 14–15], we have
Thus, Together with (2.1) and 123 Page 6 of 14 G.-S. Mao, M. J. Schlosser

It is easy to check that the right-side of the above congruence is congruent to \(\frac{4}{25} (4x^2 - 2p - \frac{p^2}{4x^2})\) modulo \(p^3\). Therefore we immediately get the desired result stated in Lemma 2.4. \(\square\)

Lemma 2.5 Let \(p > 3\) be a prime with \(p = x^2 + 3y^2 \equiv 1 \pmod{3}\) and let \(k = (p - 4)/3\). Then

\[
(k(k + 1)(k + 3) + (2 - k^2)(3k + 1)p - (k + 2)(3k + 1)(3k + 2)p^2)
\times \left(1 - \frac{4p}{9}q_p(2) + \frac{14p^2}{9}q_p^2(2) + \frac{23p^2}{24} \left(\frac{p}{3}\right) B_{p-2} \left(\frac{1}{3}\right)\right) \pmod{p^3}.
\]

Proof It is easy to see that

\[
\frac{(3k)(p+k)(p+2k)}{3k+4} - \frac{1 - pH_{2k} + pH_{k}}{3k+1}
= \frac{(3k+3)(p+k+1)}{3k+4} \frac{2(2p-5)(p-1)^2}{(4p-1)(p-3)(p+2)(p+5)}
- \frac{1 - pH_{2k+2} + pH_{k+1} + \frac{p}{2k+2} + \frac{p}{2k+1} - \frac{p}{k+1}}{3k+1}.
\]

By Lemma 2.2 we have

\[
\frac{(3k+k+1)}{3k+4} \left(\frac{p+k+1}{3k+4}\right) \equiv 1 - pH_{2k+2} + pH_{k+1} \pmod{p^3}.
\]

Thus,

\[
\frac{(3k)(p+k)(p+2k)}{3k+4} - \frac{1 - pH_{2k} + pH_{k}}{3k+1} \equiv - \frac{207p^2}{100} \pmod{p^3}.
\]

Together with (2.1) and \(\left(\frac{p-1}{p-1/3}\right) \equiv 2x \pmod{p}\) (cf. [23]), this yields

\[
(k(k + 1)(k + 3) + (2 - k^2)(3k + 1)p - (k + 2)(3k + 1)(3k + 2)p^2)
\times \left(1 - \frac{4p}{9}q_p(2) + \frac{14p^2}{9}q_p^2(2) + \frac{23p^2}{24} \left(\frac{p}{3}\right) B_{p-2} \left(\frac{1}{3}\right)\right)
\]
Lemma 2.6 Let $p > 2$ be a prime. If $0 \leq j \leq (p - 1)/2$, then we have

\[
\binom{3j}{j} \binom{p + 2j}{3j + 1} \equiv \frac{p(-1)^j}{3j + 1} (1 + pH_{2j} - pH_j) \pmod{p^3}.
\]

If $(p + 1)/2 \leq j \leq p - 1$, then

\[
\binom{3j}{j} \binom{p + 2j}{3j + 1} \equiv \frac{2p(-1)^j}{3j + 1} \pmod{p^2}.
\]

Proof If $0 \leq j \leq (p - 1)/2$, we can get the result from [15, pp. 24–25]. If $(p + 1)/2 \leq j \leq p - 1$, then

\[
\binom{3j}{j} \binom{p + 2j}{3j + 1} = \frac{(p + 2j) \cdots (2p + 1)(2p - 1) \cdots (p - 1) \cdots (j + 1)!}{(3j + 1)!j!(2j)!}
\]

\[
= \frac{2p^2(2j) \cdots (p + 1)(p - 1)(-1)^j/j!(2j)!}{(3j + 1)!j!(2j)!} = \frac{2p(-1)^j}{3j + 1} \pmod{p^2},
\]

which completes the proof of Lemma 2.6.

Lemma 2.7 Let $p > 3$ be a prime with $p = x^2 + 3y^2 \equiv 1 \pmod{3}$. Then

\[
p \sum_{j=0}^{p-1} \binom{2j}{j}^2 \frac{(H_{2j} - H_j)}{(3j + 4)16^j} \equiv -\frac{184}{125} (4x^2 - 2p) \pmod{p^2}.
\]

Proof By using Σ, we establish the following identity:

\[
\sum_{j=0}^{n} \binom{2j}{j}^2 \frac{(-1)^j(H_{2j} - H_j)}{3j + 4} = -\frac{9(2n + 1)}{10(3n - 1)(3n + 4)}
\]

\[
+ \frac{\binom{2n}{n}}{(3n - 1)(3n + 1)(3n + 4)(\frac{1}{3})n} \left(\frac{9}{10} + \sum_{k=1}^{n} \frac{(\frac{1}{3})_k}{k(\frac{2}{3})_k} \right).
\]

Substituting $n = (p - 1)/2$ into the above identity, then modulo p^2 we have

\[
p \sum_{j=0}^{p-1} \binom{2j}{j}^2 \frac{(H_{2j} - H_j)}{(3j + 4)16^j} \equiv \frac{p(\frac{2}{3})_{p-1}}{\frac{3p-5}{2} \frac{3p-1}{2} \frac{3p+5}{2} (\frac{1}{3})_{p-1}} \left(\frac{9}{10} + \sum_{k=1}^{p-1} \frac{(\frac{1}{3})_k}{k(\frac{2}{3})_k} \right).
\]

In view of [7, pp. 9] and [6, pp. 14–15], we have

\[
\frac{(\frac{2}{3})_{p-1}}{(\frac{1}{3})_{p-1}} \frac{(\frac{p}{3} + 1)_{p-1}}{\frac{p}{3}_{p-1}} \equiv 4x^2 - 2p \pmod{p^2},
\]

\[
\frac{(\frac{2}{3})_{p-1}}{(\frac{1}{3})_{p-1}} \sum_{k=1}^{p-1} \frac{1}{k(\frac{2}{3})_k} \equiv 0 \pmod{p}.
\]
Hence,
\[
\frac{p-1}{3} \sum_{j=0}^{\frac{p-1}{3}} (\binom{1}{j})^2 (H_{2j} - H_j) \equiv \frac{9}{10} \left(\frac{3p-5}{2} \right) \frac{p-1}{2} \left(\frac{3p-5}{2} \right) \frac{p-1}{2} \left(\frac{3p+5}{2} \right) \frac{p-1}{2} = -9 \frac{4}{10} \frac{25}{2} (4x^2 - 2p) = -18 \frac{25}{125} (4x^2 - 2p) \pmod{p^2}.
\]

The proof of Lemma 2.7 is complete. \(\square \)

3 Proof of Theorem 1.1

Our proof of Theorem 1.1 heavily relies on the following two transformation formulas due to Chan and Zudilin [1] and Sun [19] respectively,

\[
\sum_{k=0}^{n} \binom{n}{k}^2 \binom{2k}{2n-2k} = \sum_{k=0}^{n} (-1)^k \binom{n+2k}{3k} \binom{2k}{k} \binom{3k}{k} 16^{n-k}, \tag{3.1}
\]

\[
\sum_{k=0}^{n} \binom{n}{k}^2 \binom{2k}{n-k} = \sum_{k=0}^{\lfloor n/2 \rfloor} \binom{n+k}{3k} \binom{2k}{k} \binom{3k}{k} 4^{n-2k}. \tag{3.2}
\]

Proof of Theorem 1.1 We first consider the first congruence in Theorem 1.1 in the case \(p = x^2 + 3y^2 \equiv 1 \pmod{3} \). By (3.2), we have

\[
\sum_{k=0}^{p-1} k^3 \frac{D_k}{4^k} = \sum_{k=0}^{p-1} k^3 \frac{\binom{k/2}{j}}{3^{j}} \binom{2j}{j}^2 \binom{3j}{j} 4^{k-2j} = \sum_{j=0}^{(p-1)/2} \frac{\binom{2j}{j}^2 \binom{3j}{j}^3}{16^{j}} \sum_{k=2j}^{p-1} k^3 \binom{k+j}{3j}.
\]

By using \(\Sigma \)igma, we establish the following identity:

\[
\sum_{k=2j}^{n-1} k^3 \binom{k+j}{3j} = \sigma_1 \frac{\binom{n+j}{3j+1}}{(j+1)(3j+2)(3j+4)},
\]

where

\[
\sigma_1 = j(j+1)(j+3) + n(2 - j^2)(3j+1) - n^2(j+2)(3j+1)(3j+2) + n^3(j+1)(3j+1)(3j+2).
\]

Thus,

\[
\sum_{k=0}^{p-1} k^3 \frac{D_k}{4^k} = \sum_{j=0}^{(p-1)/2} \frac{\binom{2j}{j}^2 \binom{3j}{j}^3}{16^{j}} \frac{\sigma_1}{(j+1)(3j+2)(3j+4)}.
\]

Let

\[
\sigma_2 = k(k+1)(k+3) + p(2 - k^2)(3k+1) - p^2(k+2)(3k+1)(3k+2).
\]
In view of Lemma 2.2, we have for \(p \equiv 1 \pmod{3} \) the supercongruence
\[
\sum_{k=0}^{p-1} k^3 \frac{D_k}{4^k} = \sum_{k=0}^{p-1} \frac{2^{k+1}}{(k+1)16^k} \sigma_2 (k+1)(3k+2)(3k+4)
\]
\[
\equiv \sum_{k=0}^{p-1} \frac{(2k)^2}{16^k} p(1-pH_{2k} + pH_k)\sigma_2 (k+1)(3k+2)(3k+4) + S_1 \pmod{p^3},
\]
where \(S_1 \) is defined by the following expression with \(k = (p-4)/3 \),
\[
S_1 = \left(k(k+1)(3k+3) + (2-k^2)(3k+1)p - (k+2)(3k+1)(3k+2)p^2\right)
\times \frac{(-\frac{1}{k})^2}{(k+1)(3k+2)} \left(\frac{(3k)^2}{3k+4} - \frac{1-pH_{2k} + pH_k}{3k+1}\right).
\]

In view of [20, Equation (12)] and [7, Equation (2.10)], we have
\[
\sum_{k=0}^{p-1} \frac{(2k)^2}{(k+1)16^k} \equiv 0 \pmod{p^2}, \tag{3.3}
\]
\[
\sum_{k=0}^{p-1} \frac{(2k)^2}{(3k+1)16^k} \equiv 0 \pmod{p}. \tag{3.4}
\]

And in view of [7, pp. 13–14], we have
\[
\frac{2p^2}{3} \sum_{k=0}^{p-1} \frac{(2k)^2}{(3k+2)16^k} \equiv \sum_{k=0}^{p-1} \frac{p(2k)^2}{(3k+2)16^k} \equiv -\frac{p^2}{2} \pmod{p^3}. \tag{3.5}
\]

Hence by (3.5), Lemma 2.5 and [6, Theorem 1.2], we have
\[
\sum_{k=0}^{p-1} k^3 \frac{D_k}{4^k} + \frac{184p^2x^2}{125} = \frac{p}{27} \sum_{k=0}^{p-1} \frac{(2k)^2}{16^k} \left(-8 + \frac{21}{3k+2} - \frac{10}{3k+4}\right)
\]
\[
+ \frac{p^2}{3} \sum_{k=0}^{p-1} \frac{(2k)^2}{16^k} \left(-3 + \frac{7}{3k+2} + \frac{1}{3k+4}\right)
\]
\[
- p^3 \sum_{k=0}^{p-1} \frac{(2k)^2}{16^k} \left(-\frac{1}{k+1} - \frac{2}{3k+4}\right)
\]
\[
- \frac{p^2}{27} \sum_{k=0}^{p-1} \frac{(2k)^2}{16^k} \left(-8 + \frac{21}{3k+2} - \frac{10}{3k+4}\right)
\]
\[
- \frac{p^3}{3} \sum_{k=0}^{p-1} \frac{(2k)^2}{16^k} \left(-3 + \frac{7}{3k+2} + \frac{1}{3k+4}\right)
\]
\[
\equiv \left(-\frac{8}{27} - \frac{10}{27} \frac{4}{27} \frac{4}{27} \right) \left(4x^2 - 2p - \frac{p^2}{27} \frac{4}{27} \right) - \frac{21}{27} \frac{p^2}{27} + \frac{4}{3} \frac{4}{27} \left(4x^2 - 2p\right).
\]
In view of [7, pp. 9–10], we have

\[+ 2p^2 \frac{16x^2}{25} - \frac{10p}{27} \frac{18}{125} (4x^2 - 2p) + \frac{213p^2}{272x^2} + \frac{p^2}{3} \frac{18}{125} 4x^2 \]

\[\equiv - \frac{64x^2}{45} + \frac{32p}{45} + \frac{43p^2}{90x^2} + \frac{184p^2x^2}{125} \quad (\text{mod } p^3). \]

Thus we immediately obtain the desired result

\[\sum_{k=0}^{p-1} k^3 \frac{D_k}{4^k} \equiv - \frac{64x^2}{45} + \frac{32p}{45} + \frac{43p^2}{90x^2} \quad (\text{mod } p^3). \]

(3.6)

Now we are ready to prove the case \(p \equiv 2 \) (mod 3) with \(p > 5 \). As before,

\[\sum_{k=0}^{p-1} k^3 \frac{D_k}{4^k} \equiv \sum_{k=0}^{p-1} \frac{2k^2}{16} \frac{(3k+1)(p+k)}{k(k+1)(k+3)} \left(k(3k+2)(3k+4) \right) \]

\[\equiv \frac{p}{27} \sum_{k=0}^{p-1} \frac{(2k)^2}{16^k} \left(\frac{-8}{3k+1} + \frac{21}{3k+2} - \frac{10}{3k+4} \right) \]

\[+ \frac{p^2}{3} \sum_{k=0}^{p-1} \frac{(2k)^2}{16^k} \left(\frac{-3}{k+1} + \frac{7}{3k+2} + \frac{1}{3k+4} \right) \]

\[- \frac{p^2}{27} \sum_{k=0}^{p-1} \frac{(2k)^2}{16^k} \left(H_{2k} - H_k \right) \left(\frac{-8}{3k+1} + \frac{21}{3k+2} - \frac{10}{3k+4} \right) \quad (\text{mod } p^2). \]

In view of [7, pp. 9–10], we have

\[\sum_{k=0}^{p-1} \frac{(2k)^2}{(3k+1)16^k} = 0 \quad (\text{mod } p), \]

and in view of Lemma 2.4, we have

\[\sum_{k=0}^{p-1} \frac{(2k)^2}{(3k+4)16^k} = 0 \quad (\text{mod } p). \]

Thus,

\[\sum_{k=0}^{p-1} k^3 \frac{D_k}{4^k} \equiv \frac{7p}{9} \sum_{k=0}^{p-1} \frac{(2k)^2}{(3k+2)16^k} + \frac{7p^2}{3} \sum_{k=0}^{p-1} \frac{(2k)^2}{(3k+2)16^k} \]

\[- \frac{7p^2}{9} \sum_{k=0}^{p-1} \frac{(2k)^2}{(3k+2)16^k} \left(H_{2k} - H_k \right) \quad (\text{mod } p^2). \]
In view of [7, Equation (4.2)], we have
\[
\sum_{k=0}^{n-1} \frac{(2k)^2}{16^k(3k+2)} \equiv 3 \sum_{k=0}^{n-1} \frac{(2k)^2}{16^k(3k+2)} \pmod{p}, \quad (3.7)
\]
and
\[
p \sum_{k=0}^{n-1} \frac{(2k)^2}{(3k+2)16^k} \equiv 4R_3(p) \pmod{p^2}. \quad (3.8)
\]
Hence
\[
\sum_{k=0}^{n-1} k^3D_k \equiv 28/9R_3(p) \pmod{p^2}. \quad (3.9)
\]
Now we consider the other congruences in Theorem 1.1. Similar to above, by (3.1), we have
\[
\sum_{k=0}^{n-1} k^3D_k = \sum_{k=0}^{n-1} k^3 \sum_{j=0}^{k} (-1)^j \left(\frac{k+2j}{3j} \right) \left(\frac{2j}{3j} \right) \left(\frac{3j}{j} \right) 16^{k-j}
\]
\[
= \sum_{j=0}^{n-1} \frac{(2j)^2(3j)}{(-16)^j} \sum_{k=j}^{p-1} k^3 \left(\frac{k+2j}{3j} \right).
\]
By using \(\text{Sigma} \), we establish the following identity:
\[
\sum_{k=j}^{n-1} k^3 \left(\frac{k+2j}{3j} \right) = \frac{\sigma_3}{(3j+2)(3j+4)} \left(\frac{n+2j}{3j+1} \right),
\]
where
\[
\sigma_3 = j(1+2j) + 2n(3j+1) - 2n^2(3j+1)(3j+2) + n^3(3j+1)(3j+2).
\]
Let
\[
\sigma_4 = j(1+2j) + 2p(3j+1)(3j+2) - 2p^2(3j+1)(3j+2).
\]
Thus, if \(p \equiv 1 \pmod{3} \), then by Lemma 2.6, we have, modulo \(p^3 \),
\[
\sum_{k=0}^{n-1} k^3D_k = \frac{1}{18p(p+1)} \left(\frac{-1/2}{2p-2} \right)^2 \left(\frac{2p-2}{2p-3} \right) \left(p + \frac{4p-4}{3} \right)
\]
\[
\equiv \sum_{j=0}^{n-1} \frac{(2j)^2(3j)}{(-16)^j} \frac{\sigma_4}{(3j+2)(3j+4)}
\]
\[
\equiv \sum_{j=0}^{n-1} \frac{(2j)^2}{(-16)^j} \frac{p(-1)^j(1 + pH_2j - pH_j)}{(3j+1)(3j+2)(3j+4)} \frac{\sigma_4}{(3j+1)(3j+2)(3j+4)} + S_2,
\]
where \(S_2 \) is defined by the following expression with \(k = (p - 4)/3 \),
\[
S_2 = - \frac{\left(\frac{1}{k} \right)^2 (k(1+2k) + 2p(3k+1)(3k+1) - 2p^2(3k+1)(3k+2))}{3k+2}
\]
Hence, as above, by (3.3), (3.4), (3.5), Lemmas 2.5 and 2.7, we have

$$\begin{align*}
\sum_{k=0}^{p-1} & k^3 D_k \cdot \frac{1}{16^k} - \frac{1}{18p(p+1)} \left(\frac{-1/2}{p-2} \right)^2 \left(\frac{-2p-2}{2p-3} \right) \left(\frac{p+4p^4}{3} \right) \\
& = \frac{p}{27} \sum_{j=0}^{p-1} \frac{(2j)^2}{16^j} \left(-1 + \frac{-3}{3j+2} + \frac{10}{3j+4} \right) \\
& + \frac{p^2}{3} \sum_{j=0}^{p-1} \frac{(2j)^2}{16^j} \left(\frac{1}{3j+2} + \frac{1}{3j+4} \right) - 2p^3 \sum_{j=0}^{p-1} \frac{(2j)^2}{(3j+4)16^j} \\
& + \frac{p^2}{27} \sum_{j=0}^{p-1} \frac{(2j)^2}{16^j} \left(-1 + \frac{-3}{3j+2} + \frac{10}{3j+4} \right) (H_{2j} - H_j) \\
& + \frac{p^3}{3} \sum_{j=0}^{p-1} \frac{(2j)^2}{16^j} \left(\frac{1}{3j+2} + \frac{1}{3j+4} \right) (H_{2j} - H_j) + \frac{184p^2 x^2}{125} \\
& = \left(-\frac{1}{27} + \frac{104}{27} \right) \left(4x^2 - 2p - \frac{4p^2}{4x^2} \right) - 2p^3 \left(\frac{18}{27} \frac{18}{125} (4x^2 - 2p) + \frac{3}{9} \frac{18}{125} \frac{18}{2} \frac{2}{4x^2} - \frac{p^2}{3} \frac{18}{125} 4x^2 + \frac{184p^2 x^2}{125} \right) \\
& = \frac{4x^2}{45} - \frac{2p}{45} + \frac{49p^2}{180x^2} \pmod{p^3}.
\end{align*}$$

It is easy to see that

$$\left(\frac{2p-2}{2p-3} \right) \left(\frac{p+4p^4}{2p-3} \right) \equiv -2p \pmod{p^2}. $$

In view of [7, pp. 18], we have

$$\left(\frac{-1/2}{p-2} \right)^2 \equiv \frac{9p^2}{4x^2} \pmod{p^3}. $$

These yield

$$\begin{align*}
\sum_{k=0}^{p-1} & k^3 D_k \cdot \frac{1}{16^k} \equiv \frac{4x^2}{45} - \frac{2p}{45} + \frac{49p^2}{180x^2} - \frac{p^2}{4x^2} \\
& = \frac{4x^2}{45} - \frac{2p}{45} + \frac{p^2}{45x^2} \pmod{p^3}. \tag{3.10}
\end{align*}$$

If $p \equiv 2 \pmod{3}$ with $p > 5$ (the case $p = 5$ can be checked directly), then modulo p^2, we have

$$\Box$$
\[
\sum_{k=0}^{p-1} k^3 D_k \equiv \sum_{j=0}^{p-1} \begin{pmatrix} 2j \\ j \end{pmatrix}^2 \frac{pj(1+2j) + 2p^2(j+1)(3j+1) + p^2j(2j+1)(H_{2j} - H_j)}{(3j+1)(3j+2)(3j+4)} \mod p^2.
\]

Hence, similar to above, we have
\[
\sum_{k=0}^{p-1} k^3 D_k \equiv \frac{p}{27} \sum_{j=0}^{p-1} \begin{pmatrix} 2j \\ j \end{pmatrix}^2 \left(\frac{-1}{3j+1} + \frac{-3}{3j+2} + \frac{10}{3j+4} \right)
+ \frac{p^2}{3} \sum_{j=0}^{p-1} \begin{pmatrix} 2j \\ j \end{pmatrix}^2 \left(\frac{1}{3j+2} + \frac{1}{3j+4} \right)
+ \frac{p^2}{27} \sum_{j=0}^{p-1} \begin{pmatrix} 2j \\ j \end{pmatrix}^2 \left(\frac{-1}{3j+1} + \frac{-3}{3j+2} + \frac{10}{3j+4} \right) (H_{2j} - H_j)
\equiv -\frac{p}{9} \sum_{j=0}^{p-1} \begin{pmatrix} 2j \\ j \end{pmatrix}^2 \left(3j+2\right) + \frac{p^2}{3} \sum_{j=0}^{p-1} \begin{pmatrix} 2j \\ j \end{pmatrix}^2 \left(3j+2\right)
+ \frac{p^2}{9} \sum_{j=0}^{p-1} \begin{pmatrix} 2j \\ j \end{pmatrix}^2 (H_{2j} - H_j)
\equiv -\frac{p}{9} \sum_{j=0}^{p-1} \begin{pmatrix} 2j \\ j \end{pmatrix}^2 \left(3j+2\right) - \frac{4}{9} R_3(p) \mod p^2.
\]

This, together with (3.6), (3.9) and (3.10), completes the proof of Theorem 1.1. □

Acknowledgements The authors would like to thank the anonymous referees for helpful comments.

Funding Open access funding provided by Austrian Science Fund (FWF).

Data availability Data sharing is not applicable to this article as no new data were created or analyzed in this study.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Chan, H.H., Zudilin, W.: New representations for Apéry-like sequences. Mathematika 56, 107–117 (2010)
2. Chan, H.H., Chan, S.H., Liu, Z.-G.: Domb’s numbers and Ramanujan-Sato type series for $1/\pi$. Adv. Math. 186, 396–410 (2004)
3. Cox, D.A. Primes of the Form $x^2 + ny^2$. Fermat, Class Field Theory and Complex Multiplication. (Wiley Inc., New York, 1989)
4. Domb, C.: On the theory of cooperative phenomena in crystals. Adv. Phys. 9, 149–361 (1960)
5. Liu, J.-C.: Supercongruences for sums involving Domb numbers. Bull. Sci. Math. 169, 102992 (2021)
6. Mao, G.-S.: On some congruences of binomial coefficients modulo p^3 with applications. Preprint (temporarily on Researchgate)
7. Mao, G.-S., Liu, Y.: Proof of some conjectural congruences involving Domb numbers and binary quadratic forms. J. Math. Anal. Appl. 516, 126493 (2022)
8. Mao, G.-S., Wang, J.: On some congruences involving Domb numbers and harmonic numbers. Int. J. Number Theory 15, 2179–2200 (2019)
9. Mu, Y.-P., Sun, Z.-W.: Telescoping method and congruences for double sums. Int. J. Number Theory 14(1), 143–165 (2018)
10. Rogers, M.D.: New $_3F_4$ hypergeometric transformations, three-variable Mahler measures, and formulas for $1/\pi$. Ramanujan J. 18, 327–340 (2009)
11. Schneider, C.: Symbolic summation assists combinatorics. Sém. Lothar. Combin. 56, B56b (2007)
12. Slater, L.J.: Generalized Hypergeometric Functions. Cambridge University Press, Cambridge (1966)
13. Sun, Z.-H.: New conjectures involving binomial coefficients and Apéry-like numbers. Preprint arXiv:2111.04538v1
14. Sun, Z.-W.: Number theory and related area. In: Ouyang, Y., Xing, C., Xu, F., Zhang, P. (eds.) Advanced Lecture Mathematics, vol. 27, pp. 149–197. Higher Education Press and International Press, Beijing (2013)
15. Sun, Z.-H.: Super congruences concerning binomial coefficients and Apéry-like numbers. Preprint arXiv:2002.12072v1
16. Sun, Z.-H.: Congruences concerning Bernoulli numbers and Bernoulli polynomials. Discrete Appl. Math. 105, 193–223 (2000)
17. Sun, Z.-H.: Congruences involving Bernoulli and Euler numbers. J. Number Theory 128(2), 280–312 (2008)
18. Sun, Z.-H.: Identities and congruences for a new sequence. Int. J. Number Theory 8(1), 207–225 (2012)
19. Sun, Z.-H.: Congruences for Domb and Almkvist–Zudilin numbers. Integral Transforms Spec. Funct. 26(8), 642–659 (2015)
20. Sun, Z.-H.: Super congruences for two Apéry-like sequences. J. Differ. Equ. Appl. 24(10), 1685–1713 (2018)
21. Sun, Z.-H.: Congruences involving binomial coefficients and Apéry-like numbers. Publ. Math. Debrecen 96(3–4), 315–346 (2020)
22. Sun, Z.-H.: Supercongruences and binary quadratic forms. Acta Arith. 199(1), 1–32 (2021)
23. Yeung, K.M.: On congruences for binomial coefficients. J. Number Theory 33, 1–17 (1989)

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.