A Study of a Comprehensive Quality Indicator of Multi-Storey Residential Buildings While the Indicators of the Groups Factors are Changing

A Lapidus¹, Y Shesterikova²

¹National Research Moscow State University of Civil Engineering, 129337 Moscow, Russia
²National Research Moscow State University of Civil Engineering, 129337 Moscow, Russia

E-mail: shesterikova.jana@yandex.ru

Abstract. The most significant eight parameters that affect the quality of a multi-story building object are identified. In the form of a regression model, a linear, quadratic, and general quadratic model are used. Based on the results of the studies, it was concluded that the most adequate model is the general quadratic model. The dependence of complex quality indicators of residential multi-storey buildings of the specific group of factors is studied. A three-dimensional surface graph of the regression equation is constructed based on the various groups of factors. A series of 6 dependencies in a graph describes the alternating effect of 2 groups of factors on changes in a comprehensive quality indicator.

1. Introduction

After analyzing Russian and foreign literature, the author identifies the main parameters that affect the quality of a multi-story building object.

Further, according to the results of a survey of experts, the most significant of them the following are 8 parameters:
- technical specifications for the facilities (P1);
- A reliable and complete volume of materials, including all sections on engineering surveys (P2);
- compliance with organizational and technical decisions (P5);
- compliance with the sequence of work (P6);
- geotechnical monitoring (P7);
- the presence of lifting mechanisms (P8);
- application of industrial formwork systems (P10);
- the use of modern equipment with high performance (P11);

In the course of further studies, for the selected eight factors, according to the calculation results, an intercorrelation matrix was compiled.

Based on the results of the analysis of the intercorrelation matrix, 4 groups of well-interconnected variables (z₁, z₂, z₃ and z₄) were identified.

Due to the fact that this experiment is multifactorial, it is necessary to search for a mathematical model that is a regression equation that adequately describes the results of the experiment.
2. Analysis parametrical indicators

To find the coefficients of the regression equations, one should use the mathematical theory of experimental design. It makes it possible to control the course of the experiment as efficiently as possible in order to obtain the most possible information, based on the minimum allowable amount of experimental data.

Planning an experiment is the procedure for selecting the number of experiments and the conditions that are sufficient to solve the problem with the necessary accuracy.

In the form of a regression model, a linear model is used. Here, the factors z1, z2, z3, and z4 are selected as factors.

The dependence is obtained:

\[Y = 60.37 + 5.94z_1 + 8.69z_2 + 7.13z_3 + 5.9z_4 \]

With a confidence probability of 0.95 (p-value is less than 0.05), all the coefficients are significant (by Student's criterion).

The coefficient of determination of the model is 0.879, which confirms the high adequacy of the model.

The next model under consideration is quadratic. Here, the groups z1, z2, z3, and z4, as well as their squares, are also taken as factors.

The dependence is obtained:

\[Y = 54.67 + 5.94z_1 + 8.68z_2 + 7.125z_3 + 5.90z_4 - 4.41z_1z_2 + 7.78z_2z_3 + 1.15z_3z_4 + 3.40z_4^2 \]

Only the coefficients of the linear terms are significant (coefficients at squares according to the Student criterion have a confidence level less than the generally accepted 0.95).

The coefficient of determination of the model is 0.925, which confirms the high adequacy of the model (according to the Fisher criterion, the significance is 2.0448E-05).

Next, the dependence of the general quadratic model is obtained:

\[Y = 54.83 + 8.89z_1 + 9.45z_2 + 5.83z_3 + 5.83z_4 + 0.2Z_1^2 + 5.2Z_2^2 + 2.7Z_3^2 + 2.7Z_4^2 - 2.5Z_1Z_2 - 1.25Z_1Z_4 - 1.86Z_2Z_4 - 1.86Z_2Z_3 + 3.12Z_2Z_4 \]

Only the coefficients of linear terms are significant (coefficients for squares and products of factors by Student's criterion have a confidence level less than the generally accepted 0.95).

The coefficient of determination of the model is 0.965, which confirms the high adequacy of the model (according to the Fisher criterion, the significance is 0.000481547).

The conducted studies allow us to conclude that the most adequate model is the general quadratic model, although not all estimates of the regression coefficients are highly significant (p-values are not all less than 0.05).

A detailed study of the dependence of complex quality indicators of residential multi-storey buildings on the considered group of factors was carried out graphically.

Here it is required to construct a three-dimensional graph of the surface of the regression equation based on various groups of factors.

Taking into account that the number of factors is 4, it will be convenient to study the resulting surfaces with a variable combination of 2 acting factors when the other two are in a fixed position. In this situation, it will become a series consisting of 6 dependencies in the chart.

The resulting combination is as follows:

CRC = f (z1, z2); CRC = f (z1, z3); CRC = f (z1, z4); CRC = f (z2, z3); CRC = f (z2, z4); CRC = f (z3, z4).
For example:

\[
CRC = f(z_1, z_2) = 54.83 + 8.89z_1 + 9.45z_2 + 0.2z_1^2 + 5.2z_2^2 - 2.5z_1z_2
\]

Figure 1

The combined action of factors \(z_1\) and \(z_2\) has a moderate effect on the value of \(P_{kach.}\). Stimulating the linear nature of the processes.

\[
CRC = f(z_1, z_3) = 54.83 + 8.89z_1 + 5.83z_3 + 0.2z_1^2 + 2.7z_3^2
\]

Figure 2

In the study of the combined effect of factors \(z_1\) and \(z_3\) on the value of the complex parameter \(CRC = f(z_1, z_3)\), the linear dependence on \(z_1\) and \(z_3\) prevails, although a more pronounced quadratic dependence on the factor \(z_3\) is observed.

\[
CRC = f(z_1, z_4) = 54.83 + 8.89z_1 + 5.83z_4 + 0.2z_1^2 + 2.7z_4^2 - 1.25z_1z_4
\]

Figure 3
The response surface $f(z_1, z_4)$ is not linear in the entire studied range. Moreover, the degree of non-linearity has a pronounced zonality. Three zones with different non-linearity are clearly distinguished on the graph.

Similar graphs were obtained for the remaining variables. A series of 6 dependencies in the graph describes the alternating effect of 2 groups of factors on changes in CRC (a comprehensive quality indicator).

3. References

[1] Telichenko V I 2003 Quality management of construction products: Tech. safety and quality regulation in construction: a textbook for university students (M.: DIA) 86 p
[2] Gusakov A A, Bogomolov U M, Brekhman A I, Vagonyan G A 2004 Systems engineering construction under redaction Gusakov A A 2-nd edition Publishing house ACB
[3] Demidov L P 2014 An experimental approach to assessing the dependence of the construction site potential on groups of factors Technology and organization of construction production 2(7) (M) pp 46-49
[4] 2003 Experimental-statistical models Experiment planning and regression analysis of results Using Harrington's desirability function in solving optimization problems of chemical technology (Moscow, RCTU) 89 p
[5] Kobzar A I 2006 Applied mathematical statistics For engineers and scientists (M.: FIZMATLIT) 816 p
[6] Ginzburg A 2016 Sustainable building life cycle design MATEC Web of Conferences XV International conference «Topical problems of architecture, civil engineering, energy efficiency and ecology» p 02018
[7] Lapidus A, Abramov I 2018 Formation of production structural units within a construction company using the systemic integrated method when implementing high-rise development projects E3S Web of Conferences, D Safarik, Y Tabunschikov and V Murgul (Eds.) C 03066
[8] Lapidus A A, Govorukha P A 2015 Organizational and technologic potential of setting of enclosing structures for residential buildings International Journal of Applied Engineering Research Vol 10 20 pp 40946-40949
[9] Kirillov V I 2011 Qualimetry and system analysis: a training manual (Minsk: New knowledge) (M.: INFRA-M) 440 p
[10] Lapidus A A, Shesterikova Y V 2017 Study of the complex quality index of building facility construction work performance Modern science and innovations 3 pp 74-80
[11] Lapidus A A, Shesterikova Y V 2019 Mathematical model for assessment the potential of the high-rise apartment buildings complex quality index E3S Web of Conferences 91 02025 TPACEE-2018
[12] Lagutin M B 2009 Visual mathematical statistics 2-nd edition 472 p
[13] Tsvin M N 2002 Multivariate experiment: graphical interpretation of data (K.: IGiM) 120 p
[14] Gavrilov V A 2004 Comprehensive Quality Score for Qualimetric Process Evaluation Methods of quality management 5 pp 41-50
[15] Froese T M 2010 The impact of emerging information technology on project management for construction Automation in Construction Vol 19 5 pp 531-538
[16] Saydayev H L-A 2012 Organizational and managerial modeling of a comprehensive assessment of the performance of construction companies Candidate dissertation (Moscow)
[17] Shinri S, Masamichi T Developing environmental load factors for construction materials used in social infrastructure LCA Environmental System Research Papers Vol 38 pp 185-191
[18] Topchy D V 2015 Organizational and technological modeling of construction and installation works with a comprehensive assessment of the effectiveness of the conversion of industrial Candidate dissertation (Moscow)
[19] Azariy Lapidus, Sergey Sinenko and Yana Shesterikova E3S Web of Conferences "Qualitative analysis of safety factors of organizational and technological decisions made at the stage of development of project documentation

[20] Stefan I A, Stefan V V 2003 Mathematical methods for processing experimental data: a manual (Kemerovo State University KuzGTU) 123 p