TECHNICAL NOTE

Imaging of Ménière’s Disease by Subtraction of MR Cisternography from Positive Perilymph Image

Shinji NAGANAWA1*, Masahiro YAMAZAKI1, Hisashi KAWAI1, Kiminori BOKURA1, Michihiko SONE2, and Tsutomu NAKASHIMA2

Departments of1Radiology and 2Otorhinolaryngology, Nagoya University Graduate School of Medicine
65 Tsurumai-cho, Shouwa-ku, Nagoya 466-8550, Japan
(Received March 13, 2012; Accepted July 11, 2012)

To visualize endolymph, perilymph, and bone separately in a single image after intravenous injection of single-dose gadodiamide, we generated a HYDROPS2 image (subtraction of MR cisternography from heavily T2-weighted 3-dimensional fluid-attenuated inversion recovery image) in 12 patients with suspected Ménière’s disease. The contrast-to-noise ratio of endo- and perilymph did not differ significantly between the HYDROPS2 and previously reported HYDROPS (hybrid of reversed image of positive endolymph signal and native image of positive perilymph Signal) images, and scan time was 40% shorter for the HYDROPS2 than HYDROPS.

Keywords: intravenous, magnetic resonance imaging, Ménière’s disease, 3D imaging

Introduction

Endolymphatic hydrops in patients with Ménière’s disease was first visualized by magnetic resonance (MR) imaging using 3-dimensional (3D) fluid-attenuated inversion recovery (FLAIR) after intratympanic (IT) administration of gadolinium-based contrast material (GBCM).1 Researchers from multiple institutions have reported some correlation of endolymphatic hydrops visualized on MR images and clinical tests,2–4 but one report failed to show significant correlation between endolymphatic hydrops and caloric test.5 Thus, correlation between endolymphatic hydrops and clinical findings remains under investigation. The IT administration of GBCM is off-label use and requires 24 hours of waiting time and puncture of the tympanic membrane, so the development of a method to detect endolymphatic hydrops by intravenous (IV) injection of GBCM was explored. Visualization of endolymphatic hydrops in patients with Ménière’s disease is reported using heavily T2-weighted 3D-FLAIR (hT2W-3D-FLAIR) and imaging 4 hours after IV injection of single-dose GBCM (IV-SD-GBCM).6 On 3D-FLAIR including hT2W-3D-FLAIR images, perilymph signal increases after administration of GBCM, and signal intensities of both endolymphatic space and surrounding bone show values near zero (positive perilymph image, PPI). To clarify the boundaries of endolymphatic space and surrounding bones and rule out partial volume averaging artifact from bones, shortening of the inversion time of 3D-FLAIR after IT administration of GBCM was proposed.7 Optimal shortening of inversion time in 3D-FLAIR suppresses the signal of perilymph with GBCM distribution to give high signal to endolymph without GBCM distribution (positive endolymph image, PEI).7 Similar to acquisition of PPI and PEI after IT administration of GBCM, PPI and PEI could be obtained after IV-SD-GBCM based on the hT2W-3D-FLAIR technique by adjusting inversion time.8 Separate visualization of endolymph, perilymph, and bone on a single image has been reported using 3D-inversion recovery sequence with “real” reconstruction (3D-real IR) after IT administration of GBCM8,10 but not after IV-SD-GBCM, probably because of lower GBCM concentration in perilymph. Recently, the fusion of gray-scale inverted PEI with native gray-scale PPI, that is, subtraction of PEI from PPI, has been reported to yield a 3D-real IR-like image even after IV-SD-GBCM. These “HYDROPS” images (HYbrid Of Reversed image Of Positive endolymph signal and native image of positive perilymph Signal) facilitate recognition of endolymph space by IV-SD-GBCM but require scan time of 30 min to obtain both PPI and PEI for
processing. Furthermore, occasional failure of PEI to visualize small endolymph space in the cochlea, probably due to low signal-to-noise ratio (SNR) and blurring, might be a risk for underestimating the size of endolymphatic space. To overcome these problems with HYDROPS, we sought to develop an alternative processing technique by subtracting heavily T₂-weighted MR cisternography from PPI to achieve images with similar contrast to HYDROPS images using a shorter scan time. We named the resulting image “HYDROPS²” (HYbrid of Reversed image Of MR cisternography and positive Perilymph Signal by heavily T₂-weighted 3D-FLAIR). In this study, we adjusted the technique for HYDROPS² processing to obtain images with similar contrast to HYDROPS images and compared image contrast and results of endolymphatic hydrops grading between HYDROPS and HYDROPS² in patients with suspected Ménière’s disease.

Materials and Methods

Patients

The study included 12 patients with clinically suspected Ménière’s disease (4 men, 8 women, aged 17 to 76 years) who underwent MR scanning 4 hours after single-dose (0.2 mL/kg or 0.1 mmol/kg body weight) IV administration of gadolinium-diethylene-triamine pentaacetic acid-bis (methylamide) (gadodiamide, Gd-DTPA-BMA; Omniscan, Daiichi-Sankyo Co. Ltd., Tokyo, Japan) to evaluate the degree of endolymphatic hydrops. All patients had an estimated glomerular filtration rate (eGFR) value exceeding 60 mL/min/1.73 m². Each eGFR was calculated using an equation reported by the Japanese Society of Nephrology for estimating GFR in Japanese patients based on serum creatinine level (Cr): eGFR (mL/min/1.73 m²) = 194 × Cr⁻¹.094 × Age⁻⁰.287 (if female, ×0.739). Experienced otorhinolaryngologists made the clinical diagnosis of Ménière’s disease based on the guidelines of the American Academy of Ophthalmology and Otolaryngology—Head and Neck Surgery (AAO-HNS). ¹²

MR imaging

All MR imaging was performed using a 3-tesla unit (Verio, Siemens, Erlangen, Germany) with 32-channel array head coil. According to the clinical protocol of our hospital for the evaluation of endolymphatic hydrops, the 12 patients underwent heavily T₂-weighted MR cisternography (MRC) for anatomical reference of total lymph fluid, hT₂W-3D-FLAIR with 2250-ms inversion time (PPI), and hT₂W-3D-inversion recovery with 2050-ms inversion time (PEI) 4 hours after receiving IV-SD-GBCM. Parameters were set as previously reported.⁸

Detailed scan parameters for MRC were: heavily T₂-weighted MRC images using variable flip angle 3D turbo spin echo technique (SPACE: sampling perfection with application-optimized contrasts by using different flip angle evolutions); repetition time (TR), 4400 ms; echo time (TE), 544 ms; initial re-focusing 180° flip angle rapidly decreased to constant 120° flip angle for the turbo-spin-echo refocusing echo train; echo-train length, 173 with restore magnetization pulse (fast recovery pulse); matrix size, 322 × 384; 96 axial slices of 1.0-mm-thickness covering the labyrinth; field of view (FOV), 15 × 18 cm; generalized autocalibrating partially parallel acquisition (GRAPPA) parallel imaging technique; acceleration factor, 2; number of excitations (NEX), 1.8; and scan time, 2.9 min.

Detailed scan parameters of hT₂W-3D-FLAIR for PPI were: SPACE sequence; TR, 9000 ms; TE, 544 ms; inversion time, 2250 ms; frequency-selective fat-suppression pre-pulse; initial re-focusing 180° flip angle rapidly decreased to constant 120° flip angle for turbo-spin-echo refocusing echo train; echo-train length, 173; matrix size, 322 × 384; and 104 axial slices of 1.0-mm thickness covering the labyrinth; FOV, 15 × 18 cm; acquired using GRAPPA parallel imaging technique with acceleration factor of 2, 4 excitations, and scan time of 14.5 min.

For PEI, inversion time was 2050 ms. To simplify comparison, we used identical FOV, matrix size, and slice thickness for MR cisternography, PPI, and PEI.

Usually, signal intensity values of perilymph are far larger on MRC without inversion pulse than PPI with inversion pulse. Before generating HYDROPS² images, we measured signal intensity values of perilymph in the vestibule on PPI and MRC in 2 patients, drawing a circular region of interest (ROI) on the scanner console to set up the constant value to balance the signal intensity values between PPI and MRC. We determined a constant value that would reduce the original signal intensity value of the perilymph on PPI to approximately half the original value after the subtraction of MRC multiplied by the constant value. The subtraction should yield similar absolute signal intensity value of positive perilymph and negative endolymph on processed images. Based on results in the 4 ears of the 2 patients, the average constant value was 0.05 (range, 0.04 to 0.06). Therefore, we generated HYDROPS² images on the scanner console by

Magnetic Resonance in Medical Sciences
subtracting the MRC multiplied by 0.05 from PPI and generated HYDROPS images by subtracting PEI from PPI. The HYDROPS and HYDROPS2 images generated for all 12 patients were saved and transferred to a PACS server. For the result of subtraction, negative signal value was allowed. Acquisition of source images takes approximately 30 min for HYDROPS images and approximately 18 min for HYDROPS2 images. During subtraction, we applied no image registration program in this study.

Image analysis

For quantitative evaluation, we measured CNR between peri- and endolymph on HYDROPS and HYDROPS2 images. To reduce partial volume averaging effect, we measured CNR in the vestibule, where endolymphatic space is usually larger than in the cochlea. A circular region of interest (ROI) of 1.2-mm diameter was manually placed on the PACS viewer (Rapideeye, Toshiba Medical Systems, Tokyo, Japan). We referred to MRC to set ROIs on the PPI image. We set the ROI for vestibular endolymph in the center of the area of low signal in the utricle of the vestibule on the PPI image at the slice level of the superior vestibular nerve, and we set the ROI for vestibular perilymph in the area of high signal surrounding the utricle on the PPI image. If endolymph occupied the entire vestibule, we set the ROI in the area of high signal in the lateral semicircular canal. Noise level was defined as the standard deviation (STD) of air signal in the lower corner of the image, and we set a circular ROI of 10-mm diameter for noise. ROIs were copied from PPI onto HYDROPS and HYDROPS2 images. CNR was defined as the difference in signal intensity value between peri- and endolymph divided by the STD of the air signal. We compared average CNR between HYDROPS and HYDROPS2 using Student’s t-test. \(P < 0.05 \) was considered statistically significant difference.

In the present study, we estimated noise in the area of air, although we applied parallel imaging. Use of parallel imaging and multi-channel phased array coil causes uneven noise distribution across the image.\(^{13}\) However, in the present study, we measured CNR to compare it between HYDROPS and HYDROPS2 images in each subject. We estimated signal in the inner ear and noise in the area of air in the lower corner of the image in the identical place in each subject, places that differed little among subjects. Though our CNR measurement was not ideal, we believe it was reasonably appropriate for our study purpose.

For qualitative analysis, 2 neuroradiologists with 5- and 22-years’ experience in inner ear MR imaging independently evaluated images on a PACS viewer. Reviewers knew patients had clinically suspected Ménière’s disease. They evaluated the vestibule and cochlea separately. First, they reviewed either the HYDROPS or HYDROPS2 image and graded endolymphatic hydrops as none, mild, or significant for the cochlea and vestibule according to previously proposed criteria.\(^{14}\) Then, after more than 2 weeks, they reviewed and graded endolymphatic hydrops in the other image. Review order of patients was randomized. The presence of misregistration artifact for HYDROPS and HYDROPS2 images was scored on a positive or negative basis. Apparent double contour of the labyrinth was considered positive for misregistration. In both review sessions, MRC images were used as maps of the total lymph fluid anatomy. Reviewers resolved any discrepancy in grading by consensus after discussion. We used Wilcoxon signed-ranks test to compare grades of endolymphatic hydrops between HYDROPS and HYDROPS2 images. \(P < 0.05 \) was considered statistically significant difference. Image window width was set at 200 and window level, at 50.

Our institutional medical ethics committee approved this retrospective study, and informed consent was waived.

Results

In the quantitative analysis, the average CNR ± STD of the HYDROPS image was 100.1 ± 29.2 and of the HYDROPS2 image, 91.1 ± 33.6. The difference between the 2 types of image was not significant.

In the qualitative analysis, grading scores of endolymphatic hydrops did not differ significantly by HYDROPS and HYDROPS2 image for either the cochlea or vestibule (Figs. 1, 2). For the cochlea, the hydrops grade was higher by HYDROPS2 than HYDROPS in 2 ears; in no ear was the grade by HYDROPS2 lower than that by HYDROPS. For the vestibule, the grade of hydrops was higher by HYDROPS2 than HYDROPS2 in one ear; in no ear was the grade by HYDROPS2 lower than that by HYDROPS.

No misregistration artifact was noticed in any ear.

Table summarizes the patients, results of endolymphatic hydrops grading for the cochlea and vestibule, and results of CNR measurement.

Discussion

The development of the HYDROPS2 image has
enabled the recognition of endolymphatic space on a single kind of image with similar contrast to that of the HYDROPS image in shorter scan time, even after clinically feasible IV-SD-GBCM. On both image types, perilymph signal is positive, endolymph signal is negative, and surrounding bone signal is zero. Image contrast resembles that of 3D-real IR images obtained after IT-GBCM. Acquisition time for source images is approximately 40% shorter for HYDROPS2 than HYDROPS images. Both PEI and PPI employ inversion recovery pulse, so the signal-to-noise ratios of PEI and PPI are usually lower than the SNR of MRC without inversion recovery pulse. During the generation of the HYDROPS image, simple subtraction of PEI with low SNR from PPI further increases noise. In the present study, we performed subtraction of MRC with an attenuation value of 0.05 to generate a HYDROPS2 image. Subtraction of the attenuated MRC with high SNR from PPI for HYDROPS2 might improve noise management. So, HYDROPS2 images obtained in a shorter scan time could maintain a similar level of CNR as that of HYDROPS images.
Fig. 2. A 76-year-old man with bilateral Ménière’s disease. (a) A HYDROPS (HYbrid of Reversed image Of Positive endolymph Signal and native image of positive perilymph Signal) image of the right inner ear. “Mild” endolymphatic hydrops of the cochlea (short arrows) and significant endolymphatic hydrops of the vestibule (long arrows) are visualized. (b) Corresponding HYDROPS2 (HYbrid of Reversed image Of MR cisternography and positive Perilymph Signal by heavily T2-weighted 3-dimensional fluid-attenuated inversion recovery) image. Note that the cochlear endolymph (short arrows) is visualized slightly larger on the HYDROPS2 image than the HYDROPS image (a). On the HYDROPS2 image, cochlear endolymphatic hydrops is graded as “significant.” Endolymphatic hydrops of the vestibule is graded “significant” on HYDROPS2, which is the same grade as HYDROPS.

Grades of endolymphatic hydrops for both the cochlea and vestibule did not differ significantly between HYDROPS and HYDROPS2 images, and grades were not lower on HYDROPS2 than HYDROPS images in any ear. Therefore, the sensitivity of the HYDROPS2 image to detect endolymphatic hydrops might be higher or at least similar to that of the HYDROPS image, though we lack histological confirmation for the grades of endolymphatic hydrops in the present study. Histological confirmation of endolymphatic hydrops is impossible in living human patients. Endolymphatic hydrops may be overestimated by HYDROPS2 and underestimated by HYDROPS. It is still necessary to validate the grading by HYDROPS and HYDROPS2 in a larger patient population by correlating patient symptoms and results of clinical ontological tests with imaging results.

The HYDROPS2 image has some potential limitations. In the present study, we observed no ear with poor contrast enhancement of the perilymph, which might occur by improper injection of contrast material, too early scan timing, and low permeability of the blood-perilymph barrier by unknown etiology. Lower-than-usual perilymph signal on PPI in the case of poor contrast enhancement might result in overestimation of endolymph size on HYDROPS2 images. Therefore, image interpretation should include PPI as well as HYDROPS2 images to prevent misdiagnosis in the clinical setting. In cases with poor perilymph enhancement, it might be necessary to reduce the constant value from 0.05; this value was considered appropriate in this study because the HYDROPS2 image preserved positive signal of perilymph in all ears.

Although we noted no significant motion, motion could also cause image misregistration. However, reducing scan time from 30 min for HYDROPS image to 18 min for HYDROPS2 should reduce the chance of significant motion during scanning.

This preliminary study is also limited because we did not include normal subjects, so we cannot conclude that HYDROPS2 images improve recognition of endolymphatic space in patients without endolymphatic hydrops. Therefore, further study is necessary to determine if the HYDROPS2 image can replace the HYDROPS image.

Conclusions

The subtraction of MRC from PPI facilitated recognition of endolymph space on images obtained after IV-SD-GBCM in shorter scan time than that for the previously proposed method. Further clinical study is warranted for the routine use of this subtracted HYDROPS2 image.
Table. Summary of patients, endolymphatic hydrops grading and contrast-to-noise measurements

Patient	sex	age	side	HYDROPS HYDROPS2					
				Grade score	Grade score				
				cochlea vestibule	cochlea vestibule				
				CNR	CNR				
1	M	63	R	2	2	28.9	2	0	73.3
			L	1	1	77.2	1	1	98.3
2	F	63	R	1	1	115.6	1	2	158.0
			L	1	1	163.3	1	1	194.0
3	F	58	R	2	0	123.3	2	0	126.7
			L	0	1	83.3	0	1	89.2
4	F	72	R	2	2	126.7	2	2	90.0
			L	2	2	137.8	2	2	80.0
5	F	52	R	2	2	117.5	2	2	61.7
			L	1	2	102.5	1	2	63.3
6	F	37	R	2	2	95.0	2	2	70.0
			L	2	1	137.5	2	1	70.0
7	F	33	R	2	2	93.3	2	2	61.4
			L	1	2	91.1	1	2	42.9
8	F	17	R	2	2	98.8	2	2	82.0
			L	0	2	78.8	0	2	88.0
9	F	52	R	2	2	87.8	2	2	100.0
			L	1	2	93.3	2	2	122.0
10	M	47	R	2	2	90.0	2	2	68.0
			L	2	2	125.7	2	2	72.0
11	M	76	R	1	2	58.9	2	2	66.7
			L	2	2	121.1	2	2	115.0
12	M	70	R	2	1	64.4	2	1	86.7
			L	1	1	90.0	1	1	106.7

Average 53 100.1 91.1
STD 23 29.2 33.6

*n.s. **n.s. ***n.s. *n.s. **n.s. ***n.s.

CNR; contrast-to-noise ratio, n.s.; no significant difference
Grading score: 2, significant endolymphatic hydrops; 1, mild endolymphatic hydrops; 0, no hydrops
HYDROPS; HYbriD of Reversed image Of Positive endolymph signal and native image of positive perilymph Signal
HYDROPS2; HYbriD of Reversed image Of MR cisternography and positive Perilymph Signal by heavily T2-weighted 3D-FLAIR image
STD; Standard deviation

References

1. Nakashima T, Naganawa S, Sugiura M, et al. Visualization of endolymphatic hydrops in patients with Ménière’s disease. Laryngoscope 2007; 117: 415–420.
2. Yamamoto M, Teranishi M, Naganawa S, et al. Relationship between the degree of endolymphatic hydrops and electrocochleography. Audiol Neurootol 2010; 15:254–260.
3. Gürkov R, Flatz W, Louza J, Strupp M, Krause E. In vivo visualization of endolymphatic hydrops in patients with Ménière’s disease: correlation with audiovestibular function. Eur Arch Otorhinolaryngol 2011; 268:1743–1748.
4. Fiorino F, Pizzini FB, Beltramello A, Barbieri F. MRI performed after intratympanic gadolinium administration in patients with Ménière’s disease: correlation with symptoms and signs. Eur Arch Otorhinolaryngol 2011; 268:181–187.
5. Kato M, Teranishi M, Katayama N, Sone M, Naganawa S, Nakashima T. Association between endolymphatic hydrops as revealed by magnetic resonance imaging and caloric response. Otol Neurotol 2011; 32:1480–1485.
6. Naganawa S, Yamazaki M, Kawai H, Bokura K, Sone M, Nakashima T. Visualization of endolymphatic hydrops in Ménière’s disease with single-dose intravenous gadolinium-based contrast media using heavily T2-weighted 3D-FLAIR. Magn Reson
7. Naganawa S, Sugiura M, Kawamura M, Fukatsu H, Sone M, Nakashima T. Imaging of endolymphatic and perilymphatic fluid at 3T after intratympanic administration of gadolinium-diethylene-triamine pentaacetic acid. AJNR Am J Neuroradiol 2008; 29:724–726.

8. Naganawa S, Yamazaki M, Kawai H, Bokura K, Sone M, Nakashima T. Imaging of endolymphatic and perilymphatic fluid after intravenous administration of single-dose gadodiamide. Magn Reson Med Sci 2012; 11:145–150.

9. Naganawa S, Satake H, Kawamura M, Fukatsu H, Sone M, Nakashima T. Separate visualization of endolymphatic space, perilymphatic space and bone by a single pulse sequence; 3D-inversion recovery imaging utilizing real reconstruction after intratympanic Gd-DTPA administration at 3 tesla. Eur Radiol 2008; 18:920–924.

10. Nakashima T, Naganawa S, Katayama N, et al. Clinical significance of endolymphatic imaging after intratympanic gadolinium injection. Acta Otolaryngol Suppl 2009; (560):9–14.

11. Naganawa S, Yamazaki M, Kawai H, Bokura K, Sone M, Nakashima T. Imaging of Ménière’s disease after intravenous administration of single-dose gadodiamide: utility of subtraction image with different inversion time. Magn Reson Med Sci 2012; 11:213–219.

12. Committee on Hearing and Equilibrium guidelines for the diagnosis and evaluation of therapy in Ménière’s disease. American Academy of Otolaryngology-Head and Neck Foundation, Inc. Otolaryngol Head Neck Surg 1995; 113:181–185.

13. Dietrich O, Raya JG, Reeder SB, Reiser MF, Schoenberg SO. Measurement of signal-to-noise ratios in MR images: influence of multichannel coils, parallel imaging, and reconstruction filters. J Magn Reson Imaging 2007; 26:375–385.

14. Nakashima T, Naganawa S, Pyykko I, et al. Grading of endolymphatic hydrops using magnetic resonance imaging. Acta Otolaryngol Suppl 2009; (560):5–8.