Multivariate Analysis of Sesame Genotypes under Induced Drought Conditions

M. Vignesh, M. Prakash*, B. Priyadharshini and R. Anandan

Department of Genetics and Plant Breeding, Faculty of Agriculture Annamalai University, Annamalai nagar, Tamilnadu, India

*Corresponding author

ABSTRACT

Sesame is one of the oldest oil crop, cultivated in tropical and sub tropical areas. Tolerance to moisture stress is one of the important criteria in the cultivation of sesame in many countries of the world. Hence, experiments were conducted to screen ten ruling varieties of sesame viz., CO1, SVR1, SVPR1, VRI 1, VRI 2, TMV 3, TMV 4, TMV 5, TMV 6 and TMV 7 under induced drought condition using Poly Ethylene Glycol (PEG 6000) @ 3, 6, 9, 12, and 15 percentage concentrations. All the observations from the seedlings namely germination percentage, speed of germination, shoot length, root length and dry matter production were recorded. From the results, it was found that among the genotypes, maximum length of the seedling was noticed in TMV 5 (15.2 cm) followed by VRI 1 (14.5cm) and TMV 7 (13.7cm). A similar trend was observed for other seedling parameters of dry matter production, germination percentage and speed of germination. In general, with the increasing the levels of drought stress, the performance of seedlings in terms of shoot length, root length and dry matter production were found to decrease.

Keywords
Sesame, Drought, Seedling parameters

Introduction

Sesame is one of the important oilseed crop cultivated in tropical and sub tropical areas. Among the various stresses, moisture stress and its tolerance is one of the important criteria in the cultivation of sesame. Drought imposes one of the commonest and most significant constraints to agricultural production, seriously affecting crop growth, gene expression, distribution, yield and quality (Yang et al., 2004; Shi et al., 2009). Seed germination and seedling emergence are critical stages for plant establishment in crops grown in arid and semi-arid regions. It is at these critical stages that crop stand density and final yield are determined (Hadas, 1976). It has been reported that water stress can reduce or delay germination or completely prevent germination (Turk et al., 2004). Boureima et al. (2011) using some sesame mutants showed that germination, emergence and root length of sesame were reduced under drought. Effects of drought stress reported that emergence was the most and germination was the least affected.
Polyethylene glycol (PEG) has been used to control water potential in seed germination studies to assess plant drought tolerance at germination and seedling stages (Dodd and Donovan, 1999). Water potential can be controlled precisely in this method and a large number of treatments can be performed quickly. PEG with 6000 or higher molecular weight cannot enter the pores of plant cells and PEG is not toxic to plant cells (Verslues et al., 2006). The response of germination rate, germination percentage, root length, shoot length and ratio of root length to shoot length (R/S) to stress induced by sodium chloride was different depending on concentrations (Khoshsokhan et al., 2012). In order to study the response of sesame varieties to moisture stress, experiments were conducted with PEG to report varieties tolerant to drought.

Materials and Methods

Laboratory experiments were conducted to screen ten ruling varieties of sesame viz., CO1, SVR1, SVPR1, VRI 1, VRI 2, TMV 3, TMV 4, TMV 5, TMV 6 and TMV 7 and drought condition was induced by using polyethylene glycol (PEG 6000) @ 3, 6, 9, 12, and 15 percentage concentrations. In this study, mature seeds of sesame were collected. Before starting the experiment, seeds were sterilized with solution of 3% sodium hypochlorite for two minutes. The experimental design was arranged in a completely randomized design (CRD) with four replications of hundred seeds each.

The number of germinated seeds was recorded daily and all the observations from the seedlings namely germination percentage, speed of germination, shoot length, root length, dry matter production, vigour index I and vigour index II were recorded from each replicates and mean was worked out. The data on morphological response of the seedlings due to drought exposure were collected after ten days of treatment with respect to shoot length, root length and biomass. Ten normal seedlings were taken randomly at the end of the germination test and the length from the collar region to tip of the primary root was measured and the mean value was expressed in centimeter for root length and the length between the collar region to tip of the primary shoot was measured and the mean value was expressed in centimeter for shoot length.

Germination percentage (GP) was calculated using this formula.

\[
\text{Germination percentage} = \frac{\text{No. of seeds germinated}}{\text{Total no. of seeds sown}} \times 100
\]

Vigour index values were computed using the formula suggested by Abdul-Baki and Anderson (1973) and expressed in whole number.

\[
\text{Vigour index} = \text{Germination percentage} \times \frac{\text{Dry matter in g.}}{\text{total seedling length in cm.}}
\]

The statistical analyses of morphological data were done using SPSS 16.0 for Windows STAR statistical software. Clusters of genotype were identified by using sequential multivariate statistical techniques cluster analysis (Ding, 2004).
Results and Discussion

From the results, it was found that among the genotypes, maximum length of the seedling was noticed in TMV 5 (15.2 cm) followed by VRI 1 (14.5 cm) and TMV 7 (13.7 cm) (table 1). A similar trend was observed for other seedling parameters of dry matter production, germination percentage and speed of germination. In general, with the increasing levels of drought stress, the performance of seedlings in terms of shoot length, root length and dry matter production were found to be decrease. With increasing levels of drought, germination % was found to decrease from 90 % (control) to 30 % (15 % PEG) and seedling length was also found to decrease from 15.2 cm (control) to 4.9 cm (15 % PEG). A similar trend was noted in all the seedling parameters studied.

Genotypes	PEG %	Shoot Length (cm)	Root Length (cm)	Germination %	Total Length (cm)	Dry matter Per 10 Seedling	Vigour Index 1	Vigour Index 2	Speed Of Germination
CO1	Con	10.0	1.9	95	11.9	0.090	1130.5	8.55	2.781
3	9.2	1.6	90	10.8	0.078	972.0	7.02	15 % PEG	
6	8.3	1.3	80	9.6	0.044	768.0	3.52	2.560	
9	8.0	1.1	70	9.1	0.041	637.0	2.87	1.866	
12	7.2	0.9	50	8.1	0.037	405.0	1.85	1.110	
15	5.1	0.6	40	5.7	0.012	228.0	0.48	0.866	
SVR1	Con	6.5	5.6	100	12.1	0.069	1210.0	6.90	2.826
3	6.0	5.3	90	11.3	0.067	1017.0	6.03	2.750	
6	5.2	4.6	80	9.8	0.058	784.0	4.64	2.125	
9	5.0	3.0	70	8.0	0.051	560.0	3.57	2.070	
12	4.8	2.6	60	7.4	0.044	444.0	2.67	1.565	
15	4.5	1.9	50	6.4	0.031	320.0	1.55	1.520	
SVPR1	Con	6.5	1.9	95	8.4	0.058	798.0	5.51	1.495
3	6.0	1.8	90	7.8	0.054	702.0	4.86	2.655	
6	5.4	1.2	80	6.6	0.051	528.0	4.08	2.500	
9	5.0	1.0	60	6.0	0.047	120.0	2.82	2.150	
12	4.8	0.8	50	5.6	0.043	280.0	2.15	2.110	
15	4.3	0.6	40	4.9	0.039	196.0	1.56	1.905	
VR1-1	Con	9.0	5.5	95	14.5	0.079	1377.5	7.50	1.905

When analyzing the effects of different proportions of drought on sesame, it shows gradual decrease in seedling characters. Since sesame is generally cultivated in marginal areas where they face water stress, development of varieties with higher tolerance to moisture stress and water use efficiency will benefit both sesame cultivation and production. On the other hand, PEG had lesser inhibitory effect on seed germination than seedling growth. This result agrees with that of Zraibi et al. (2011) having evaluated different safflower varieties under drought and salt stress. Contrarily, these stresses had less inhibitory effect on seedling growth than seed germination, for white and black seeds characterizing the accessions. A similar finding was reported in sunflower (Kaya et al., 2006).

Table 1: Response of sesame varieties to moisture stress condition

When analyzing the effects of different proportions of drought on sesame, it shows gradual decrease in seedling characters. Since sesame is generally cultivated in marginal areas where they face water stress, development of varieties with higher tolerance to moisture stress and water use efficiency will benefit both sesame cultivation and production. On the other hand, PEG had lesser inhibitory effect on seed germination than seedling growth. This result agrees with that of Zraibi et al. (2011) having evaluated different safflower varieties under drought and salt stress. Contrarily, these stresses had less inhibitory effect on seedling growth than seed germination, for white and black seeds characterizing the accessions. A similar finding was reported in sunflower (Kaya et al., 2006).
	Con	TMV-3	TMV-4	TMV-5	TMV-6	TMV-7
	3	6	9	12	15	3
	6	9	12	15	3	6
	9	12	15	3	6	9
	12	15	3	6	9	12
	15	3	6	9	12	15

VR1-2						
	3	6	9	12	15	3
	6	9	12	15	3	6
	9	12	15	3	6	9
	12	15	3	6	9	12
	15	3	6	9	12	15

	3	6	9	12	15	3
	6	9	12	15	3	6
	9	12	15	3	6	9
	12	15	3	6	9	12
	15	3	6	9	12	15
Table 2. Clusters of genotypes under study using Euclidian distance matrix at different drought levels

Cluster (CON)	Genotype
I	CO1
II	SVR1
III	SVPR1
IV	VRI-1 VRI-2 TMV-3 TMV-4 TMV-6
V	TMV-5 TMV-7

Cophenetic Correlation Coefficient = 0.792

Cluster (PEG3)	Genotype
I	CO1 TMV-3
II	SVR1
III	SVPR1 TMV-4
IV	VRI-1 TMV-5
V	VRI-2 TMV-6

Cophenetic Correlation coefficient = 0.69

Cluster (PEG6)	Genotype
I	CO1
II	SVR1 TMV-3
III	SVPR1
IV	VRI-1 VRI-2 TMV-7
V	TMV-4 TMV-6

Cophenetic Correlation Coefficient = 0.789

Cluster (PEG9)	Genotype
I	CO1
II	SVR1 TMV-3
III	SVPR1
IV	VRI-1 VRI-2 TMV-7
V	TMV-6

Cophenetic Correlation Coefficient = 0.77

Cluster (PEG12)	Genotype
I	CO1 VRI-2 TMV-7
II	SVR1 TMV-3
III	SVPR1
IV	VRI-1 TMV-5
V	TMV-4 TMV-6

Cophenetic Correlation Coefficient = 0.63

Cluster (PEG15)	Genotype
I	CO1 TMV-4
II	SVR1 TMV-3
III	SVPR1
IV	VRI-1 VRI-2 TMV-6
V	TMV-5

Cophenetic Correlation Coefficient = 0.76
Fig. 2 Clusters of genotypes under study using Euclidian distance matrix at a. PEG8, b. PEG3 c. PEG6, d. PEG9, e. PEG 12 and f. PEG15
Agglomerative cluster analysis using Euclidean Distance as distance measure was done for grouping the germplasms suitably. On the basis of dendrogram (Fig. 1 and table 2) constructed by UPGMA, five clusters were formed at different levels of drought. In the rest of the drought level, the cophenetic correlation coefficient was highest in 0.79(Control), followed by 0.78(PEG 6%), 0.77 (PEG 9% & PEG 15%). In the cluster analysis, the genotype CO1 presented in first cluster at all the drought levels followed by SVR1 and SVPR1 presented in clusters II & III. Differences in clustering pattern and swapping of genotypes among different clusters in different methods of diversity analysis have been reported in a number of studies (Suh et al., 1997, Han-yong et al., 2004, Thanh et al., 1999, Taran et al., 2005)

Seedling growth was more affected by drought stress than seed germination for sesame cultivars, and thus root length and/or shoot length could be relevant selection criteria in sesame breeding program for drought tolerance at early growth stages.

References

Abdul-Baki, A.A. and J.D. Anderson. (1973). Vigour determination is soybean seed by multiple criteria. Crop Sci., 13: 630-633.

Boureima, S., Eyletters, M., Diouf, M., Diop, T.A. and Van Damme, P. 2011. Sensitivity of seed germination and seedling radicle growth to drought stress in sesame (Sesamum indicum L.). Res. J. Environ. Sci., 5:557-564.

Ding, C. 2004. K- means clustering via principal component analysis. ICML’04 Proceedings of the twenty-first International Conference on Machine Learning, Banff, Canada.

Dodd, G.L. and Donovan, L.A. 1999. Water potential and ionic effect on germination and seedling growth of two cold desert shrubs. Am. J. Bot., 86:1146-1153.

Hadas, A. 1976. Water uptake and germination of leguminous seeds in soils of changing matrix and osmotic water potential. J. Exp. Bot., 28:977-985.

Han-yong, Y, Xing-hua, W, Yi-ping, W. Xiao-ping, Y. Sheng-xiang T. 2004. Study on genetic variation of rice varieties derived from Aizizhan by using morphological traits, allozymes and simple sequence repeat (SSR) markers. Chin. J. Rice Sci., 18:477–482.

Kaya, M.D. G. Okçu, M. Atak, Y. Çikil and Ö. Kolsarici, 2006. Seed treatments to overcome salt and drought stress during germination in sunflower (Helianthus annuus L.). Eur. J. Agron. 24: 291–295.

Khoshoksahan, F., Babalar, M., Chaghazardi, H.R and Fatahi Moghadam, M.R. 2012. Effect of salinity and drought stress on germination indices of two Thymus species. Agron Res Moldavia. 45:28-35.

Shi, G.Y., Liao, W.X., Qin, L.F. and Lu, L.L. 2009. PEG simulated water stress effects on physiological and biochemistry indexes of germination of Toona sinensis seeds. J. For. Sci. Technol. 4:142-145.

Suh, H.S, Sato Y, I,Morishima, H. 1997. Genetic characterization of weed rice (Oryza sativa L.) based on morpho–physiology, isozymes and RAPD markers. Theor. Appl. Genet. 94:316–321.

Taran, B, Zhang, C. Warkentin, T. Tullu, A. Vandenberg, A. 2005. Genetic diversity among varieties and wild species accessions of pea (Pisum sativum L.) based on molecular markers and morphological and physiological characters. Genome. 48:257–272.

Thanh, N.D, Zheng, H.G, Dong, N.V. Trinh, L.N, Ali, M.L. Nguyen, H.T. 1999. Genetic variation in root morphology and microsatellite DNA loci in upland rice (Oryza sativa L.) from Vietnam. Euphytica. 105:53–62.

Turk, M.A., Rahmsn, A., Tawaha M. and Lee, K.D. 2004. Seed germination and seedling growth of three lentil cultivars under moisture stress. Asian J Plant Sci. 3:394-397.

Verslues, P.E., Agarwal M., Katiyar-Agarwal S., Zhu J and Zhu, J.K. 2006. Methods and concepts in quantifying resistance to drought, salt and freezing, abiotic stresses.
that affect plant water status. Plant J., 45:523-539.

Yang, X.Q., Zhang, S.Q., Liang, Z.S. and Shan, Y. 2004. Effects of water stress on chlorophyll fluorescence parameters of different drought resistance wheat cultivars seedlings. Acta Bot Boreal-Occident Sin. 24:812-816.

Zraibi, L. A. Nabloussi, M. Kajeiou, A. El Amrani, A. Khalid and H. Serghini Caid, 2011. Comparative germination and seedling growth response to drought and salt stresses in a set of safflower (Carthamus tinctorius) varieties. Seed Technol., 33: 39–52.

How to cite this article:
Vignesh, M., M. Prakash, B. Priyadharshini and Anandan, R. 2018. Multivariate Analysis of Sesame Genotypes under Induced Drought Conditions. Int. J. Curr. Microbiol. App. Sci. 7(07): 4062-4070. doi: https://doi.org/10.20546/ijcmas.2018.707.472