A SPHERE THEOREM FOR BACH-FLAT MANIFOLDS WITH
POSITIVE CONSTANT SCALAR CURVATURE

YI FANG AND WEI YUAN

ABSTRACT. We show a closed Bach-flat Riemannian manifold with a fixed positive constant
scalar curvature has to be locally spherical if its Weyl and traceless Ricci tensors are small
in the sense of either \(L^\infty \) or \(L^2 \)-norm. Compared with the complete non-compact case done
by Kim, we apply a different method to achieve these results. These results generalize a
rigidity theorem of positive Einstein manifolds due to M.-A. Singer. As an application, we
can partially recover the well-known Chang-Gursky-Yang’s 4-dimensional conformal sphere
theorem.

1. Introduction

The notion of Bach tensor was first introduced by Rudolf Bach in 1921 (see [1]) when
studying the so-called conformal gravity. That is, instead of using the Hilbert-Einstein
functional, one consider the functional

\[W(g) = \int_{M^4} |W(g)|^2 dv_g \]
on 4-dimensional manifolds. The corresponding critical points of this functional are charac-
terized by the vanishing of certain symmetric 2-tensor \(B_g \). The tensor \(B_g \) is usually referred
as Bach tensor and the metric is called Bach-flat, if \(B_g \) vanishes.

Let \((M^n, g)\) be an \(n \)-dimensional Riemannian manifold \((n \geq 4)\). The Bach tensor is
defined to be

\[B_{jk} = \frac{1}{n-3} \nabla^i \nabla^l W_{ijkl} + W_{ijkl} S^{il}, \tag{1.1} \]

where

\[S_{jk} = \frac{1}{n-2} \left(R_{jk} - \frac{1}{2(n-1)} R g_{jk} \right) \tag{1.2} \]
is the Schouten tensor.

Using the Cotton tensor

\[C_{ijk} = \nabla_i S_{jk} - \nabla_j S_{ik} \tag{1.3} \]

Key words and phrases. Bach-flat, sphere theorem, constant scalar curvature, gap theorems.

This work was supported by NSFC (Grant No. 11521101, No. 11601531), The Fundamental Research
Funds for the Central Universities (Grant No. 2016-34000-31610258) and The Young Teachers’ Science
Research Funds of Anhui University of Technology (Grant No. RD16100248).

1
and the relation
\[\nabla^i W_{ijkl} = (n - 3) C_{ijk}, \]
we can extend the definition of Bach tensor such that it can be defined for 3-dimensional manifolds:

Definition 1.1. For any \(n \geq 3 \), the Bach tensor is defined to be
\[B_{jk} = \nabla^i C_{ijk} + W_{ijkl} S_{il}. \]
We say a metric is *Bach-flat*, if its Bach tensor vanishes.

Typical examples of Bach flat metrics are Einstein metrics and locally conformally flat metrics. Due to the conformal invariance of Bach-flatness on 4-manifolds, metric conformal to Einstein metrics are also Bach-flat. For 4-dimensional manifolds, it also includes half-locally conformally flat metrics. In general, Tian and Viaclovsky studied the module space of 4-dimensional Bach-flat manifolds (cf. \[7, 8\]). Besides these known "trivial" examples, there are not many examples known about generic Bach-flat manifolds so far. In fact, in some particular situations, one would expect rigidity phenomena occur.

In \[5\], Kim shows that on a complete non-compact 4-dimensional Bach-flat manifold \((M, g)\) with zero scalar curvature and positive Yamabe constant has to be flat, if the \(L^2(M, g)\)-norm of its Riemann curvature tensor is sufficiently small. This result can be easily extended to any dimension \(n \geq 3 \).

Kim’s proof is based on a classic idea that one can get global rigidity from local estimates: applying the ellipticity of Bach-flat metric, the Sobolev’s inequality and together the smallness of \(||Rm||_{L^2(M, g)} \), one can get the estimate
\[||Rm||_{L^1(B_r, g)} \lesssim \frac{C}{r} ||Rm||_{L^2(M, g)} \]
for any fixed \(p \in M \) and \(r > 0 \). Now the conclusion follows by letting \(r \to \infty \).

This method can also be used in various problems, for example, see \[3\]. However, note that the assumption of non-compactness is essential here. One cannot get the rigidity by simply letting \(r \to \infty \), when the manifold is compact without boundary for instance.

Is it possible for us to have a result similar to Kim’s but on closed manifolds? Here by *closed manifolds*, we mean compact manifolds without boundary. In fact, Singer proved that even dimensional closed positive Einstein manifolds with non-vanishing Euler characteristic have to be locally spherical, provided the \(L^+ \)-norm of its Weyl tensor is small (cf. \[6\]). As a special case of Bach-flat metric, this result suggests that this phenomenon might occur in a larger class.

Applying a global estimate for symmetric 2-tensors (see Proposition \[2, 3\]), we can prove the following result:
Theorem A. Suppose \((M^n, g)\) is a closed Bach-flat Riemannian manifold with constant scalar curvature
\[R_g = n(n - 1). \]

If
\[(1.6) \quad ||W||_{L^\infty(M,g)} + ||E||_{L^\infty(M,g)} < \varepsilon_0(n) := \frac{n - 1}{4}, \]
then \((M, g)\) is isometric to a quotient of the round sphere \(\mathbb{S}^n\).

Remark 1.2. Note that in Theorem A we do not assume the Yamabe constant is uniformly positively lower bounded. This assumption will be needed in Theorem B. It is equivalent to the existence of a uniform Sobolev’s inequality (see section 4), which was applied frequently in the proof of Theorem B.

Another one by assuming integral conditions:

Theorem B. Suppose \((M^n, g)\) is a closed Bach-flat Riemannian manifold with constant scalar curvature
\[R_g = n(n - 1). \]

Assume that there is a constant \(\alpha_0\) such that its Yamabe constant satisfies that
\[(1.7) \quad Y(M, [g]) \geq \alpha_0 > 0. \]

Then \((M, g)\) is isometric to a quotient of the round sphere \(\mathbb{S}^n\), if
\[(1.8) \quad ||W||_{L^{\frac{2}{\alpha_0}}(M,g)} + ||E||_{L^{\frac{2}{\alpha_0}}(M,g)} < \tau_0(n, \alpha_0) := \frac{3\alpha_0}{32n(n - 1)}. \]

Remark 1.3. Bach-flat metrics is one of the typical examples of the so-called critical metrics (cf. [7]). By replacing the presumption Bach-flatness with harmonic curvature, which refers to the vanishing of Cotton tensor when the scalar curvature is a constant, the corresponding version of Theorem A and B are still valid without any essential difficulty.

In particular, applying Theorem B for 4-dimensional manifolds, we can partially recover the well-known 4-dimensional conformal sphere theorem by Chang-Gursky-Yang (cf. [2]; for a generalization see [4]):

Theorem C. Suppose \((M^4, g)\) is a closed Bach-flat Riemannian manifold. Assume that there is a constant \(\alpha_0\) such that its Yamabe constant satisfies that
\[(1.9) \quad Y(M, [g]) \geq \alpha_0 > 0. \]

Then \((M, g)\) is conformal to the round sphere \(\mathbb{S}^4\) or its canonical quotient \(\mathbb{R}P^4\), if
\[(1.10) \quad \int_{M^4} |W_g|^2 dv_g < \frac{32}{3} \pi^2 (\chi(M^4) - 2) + \frac{\alpha_0}{192}. \]

Remark 1.4. It was shown in [2] that \((M^4, g)\) is conformal to \((\mathbb{C}P^2, g_{FS})\) or a manifold covered isometrically by \(S^1 \times S^3\) endowed with the canonical product metric, if we assume
\[(1.11) \quad \int_{M^4} |W_g|^2 dv_g = 16\pi^2 \chi(M^4) \]
instead.
Acknowledgement. The author would like to express their appreciations to Professor Huang Xian-Tao for his interests in this problem and inspiring discussions.

2. θ-Codazzi Tensor and Related Inequality

We define a concept which generalizes the classic Codazzi tensor:

Definition 2.1. For any $\theta \in \mathbb{R}$, we say a symmetric 2-tensor $h \in S_2(M)$ is a θ-Codazzi tensor if

$$C_{\theta}(h)_{ijk} := \nabla_i h_{jk} - \theta \nabla_j h_{ik} = 0.$$ (2.1)

In particular, h is referred to be a Codazzi tensor or anti-Codazzi tensor if $\theta = 1$ or $\theta = -1$ respectively.

The motivation for us to define this notion is the following identity associated to it:

Lemma 2.2. Suppose (M, g) is a closed Riemannian manifold with constant scalar curvature $R_g = n(n-1)\lambda$.

Then for any $h \in S_2(M)$ and $\theta \in \mathbb{R}$,

$$\int_M \left(|\nabla h|^2 - \frac{1}{1+\theta^2} |C_{\theta}(h)|^2 \right) dvol_g$$

$$= \frac{2\theta}{1+\theta^2} \int_M \left[|\delta h|^2 + W(\circ h, \circ h) + \frac{2}{n-2}(tr h) E \cdot h - \frac{n}{n-2}tr(E \times h^2) - n\lambda |\hat{h}|^2 \right] dvol_g,$$

where $\hat{h} := h - \frac{1}{n}(tr h)g$ is the traceless part of the tensor h.

Proof. We have

$$\int_M \nabla_i h_{jk} \nabla^j h^{ik} dvol_g$$

$$= - \int_M \nabla_j \nabla_i h^j_{ik} dvol_g$$

$$= - \int_M (\nabla_i \nabla_j h_{k}^{j} + R_{ju}^{j} h_{k}^{l} - R_{ji}^{l} h_{k}^{j}) h^{ik} dvol_g$$

$$= - \int_M (\nabla_i (\delta h)_{k} + R_{id} h_{k}^{l} - R_{jikl} h^{jl}) h^{ik} dvol_g$$

$$= \int_M \left[|\delta h|^2 - (E_{id} h_{k}^{l} + (n-1)\lambda g_{id} h_{k}^{l}) h^{ik} \right] dvol_g$$

$$+ \int_M \left(W_{jikt} + \frac{2}{n-2} (E_{jikg} - E_{jkig}) + \lambda (g_{jigk} - g_{jkgi}) \right) h^{jl} h^{ik} dvol_g$$

$$= \int_M \left[|\delta h|^2 + W(h, h) + \lambda ((tr h)^2 - n|h|^2) + \frac{2}{n-2}(tr h) E \cdot h - \frac{n}{n-2}tr(E \times h^2) - n\lambda |\hat{h}|^2 \right] dvol_g.$$

Thus for any $\theta \in \mathbb{R}$,
\[
\int_M |C_\theta(h)|^2 dv_g
= \int_M |\nabla_i h_{jk} - \theta \nabla_j h_{ik}|^2 dv_g
= \int_M \left[(1 + \theta^2)|\nabla h|^2 - 2\theta \nabla_i h_{jk} \nabla^j h^{ik} \right] dv_g
= \int_M \left[(1 + \theta^2)|\nabla h|^2 - 2\theta \left(|\delta h|^2 + W(\hat{h}, \hat{h}) + \frac{2}{n-2}(tr h) E \cdot h - \frac{n}{n-2} tr(E \times h^2) - n\lambda |\hat{h}|^2 \right) \right] dv_g.
\]
That is,
\[
\int_M \left(|\nabla h|^2 - \frac{1}{1 + \theta^2} |C_\theta(h)|^2 \right) dv_g
= \frac{2\theta}{1 + \theta^2} \int_M \left[|\delta h|^2 + W(\hat{h}, \hat{h}) + \frac{2}{n-2}(tr h) E \cdot h - \frac{n}{n-2} tr(E \times h^2) - n\lambda |\hat{h}|^2 \right] dv_g.
\]

From this, we get the following inequality:

Proposition 2.3. Suppose (M, g) is a closed Riemannian manifold with constant scalar curvature $R_g = n(n-1)\lambda$.

Then for any $h \in S_2(M)$ and $\theta \in \mathbb{R},$
\[
(2.3) \quad \int_M |\nabla h|^2 dv_g \geq \frac{2\theta}{1 + \theta^2} \int_M \left[|\delta h|^2 + W(\hat{h}, \hat{h}) + \frac{2}{n-2}(tr h) E \cdot h - \frac{n}{n-2} tr(E \times h^2) - n\lambda |\hat{h}|^2 \right] dv_g,
\]
where equality holds if and only if h is a θ-Codazzi tensor.

In particular, we have

Corollary 2.4. Suppose (M, g) is a closed Riemannian manifold with constant scalar curvature $R_g = n(n-1)\lambda$.

Then the traceless part of Ricci tensor satisfies
\[
(2.4) \quad \int_M |\nabla E|^2 dv_g \geq \frac{2\theta}{1 + \theta^2} \int_M \left[W(E, E) - \frac{n}{n-2} tr E^3 - n\lambda |E|^2 \right] dv_g,
\]
In particular when $\theta = 1$, the equality holds if and only if g is of harmonic curvature.

Proof. By the second Bianchi identity, we can easily see that
\[
\delta E = -\frac{n-2}{2n} dR_g = 0.
\]
Note that $tr E = 0$, thus the conclusion follows.
When $\theta = 1$, E is a Codazzi tensor if and only if the Cotton tensor vanishes:

$$C_{ijk} = \frac{1}{n - 2} Alt_{i,j} \left(\nabla_i R_{jk} - \frac{1}{2(n-1)} g_{jk} \nabla_i R \right) = 0.$$

\[\square\]

3. L^∞-sphere theorem

We can rewrite the Bach tensor in terms of traceless Ricci tensor:

Lemma 3.1. The Bach tensor can be expressed as follow

$$B_g = \frac{1}{n-2} \Delta g E - \frac{1}{2(n-1)} \left(\nabla^2 g R - \frac{1}{n} g \Delta g R \right) + \frac{2}{n-2} \hat{W} \cdot E$$

$$- \frac{n}{(n-2)^2} \left(E \times E - \frac{1}{n} |E|^2 g \right) - \frac{1}{(n-1)(n-2)} R E,$$

where $(\hat{W} \cdot E)_{jk} := W_{ijkl} E^{il}$.

Proof. By definition,

$$\nabla^i C_{ijk} = \nabla^i (\nabla_i S_{jk} - \nabla_j S_{ik})$$

$$= \Delta g S_{jk} - (\nabla_j \nabla_i S^i_k + R^i_{ijp} S^p_k - R^p_{ijk} S^i_p)$$

$$= \Delta g S_{jk} - \nabla_j \nabla_k tr S - (Ric \times S)_{jk} + (\hat{Rm} \cdot S)_{jk},$$

where we used the fact

$$\nabla_i S^i_k = \nabla_k tr S$$

by the contracted second Bianchi identity.

Since

$$S = \frac{1}{n-2} E + \frac{R}{2n(n-1)} g$$

and

$$Rm = W + \frac{1}{n-2} E \otimes g + \frac{R}{2n(n-1)} g \otimes g,$$

the conclusion follows by substituting them into

$$B_{jk} = \nabla^i C_{ijk} + W_{ijkl} E^{il}.$$

\[\square\]

As the first step, we show the metric has to be Einstein under given presumptions:

Proposition 3.2. For $n \geq 3$, there exists a constant $\Lambda_n > 0$ only depends on n, such that any closed Bach flat Riemannian manifold (M^n, g) with constant scalar curvature

$$R_g = n(n-1)$$

and

$$||W_g||_{L^\infty(M,g)} + ||E_g||_{L^\infty(M,g)} < \Lambda_n := \frac{n}{3}$$

has to be Einstein.
Proof. Since the scalar curvature R_g is a constant, by Lemma 3.1,

$$B_g = \frac{1}{n-2} \Delta_g E + \frac{2}{n-2} \overset{\circ}{W} \cdot E - \frac{n}{(n-2)^2} \left(E \times E - \frac{1}{n} |E|^2 g \right) - \frac{n}{n-2} E = 0.$$

That is,

$$\Delta_g E + 2 \overset{\circ}{W} \cdot E - \frac{n}{n-2} \left(E \times E - \frac{1}{n} |E|^2 g \right) - nE = 0.$$

Thus,

$$-E \Delta_g E = 2W(E, E) - \frac{n}{n-2} \text{tr}(E^3) - n|E|^2$$

and hence

$$(3.2) \quad \int_M |\nabla E|^2 dv_g = - \int_M E \Delta_g Edv_g = \int_M \left(2W(E, E) - \frac{n}{n-2} \text{tr}(E^3) - n|E|^2 \right) dv_g.$$

On the other hand, from Corollary 2.4,

$$\int_M |\nabla E|^2 dv_g \geq \frac{2\theta}{1 + \theta^2} \int_M \left(W(E, E) - \frac{n}{n-2} \text{tr}E^3 - n|E|^2 \right) dv_g,$$

for any $\theta \in \mathbb{R}$. Therefore,

$$(3.3) \quad \frac{2(1 - \theta + \theta^2)}{(1 - \theta)^2} \int_M W(E, E) dv_g \geq \frac{n}{n-2} \int_M \left(\text{tr}E^3 + (n-2)|E|^2 \right) dv_g.$$

Since

$$\int_M W(E, E) dv_g \leq \|W\|_{L^\infty(M, g)} \int_M |E|^2 dv_g,$$

by taking $\theta = -1$, we get

$$\frac{n}{n-2} \int_M (\text{tr}E^3 + (n-2)|E|^2) dv_g \leq \frac{3}{2} \|W\|_{L^\infty(M, g)} \int_M |E|^2 dv_g.$$

That is,

$$\frac{n}{n-2} \int_M \text{tr}E^3 dv_g \leq \left(\frac{3}{2} \|W\|_{L^\infty(M, g)} - n \right) \int_M |E|^2 dv_g.$$

From the inequality

$$\int_M \text{tr}E^3 dv_g \geq - \int_M |E|^3 dv_g \geq -\|E\|_{L^\infty(M, g)} \int_M |E|^2 dv_g,$$

we have

$$\left(\frac{3}{2} \|W\|_{L^\infty(M, g)} + \frac{n}{n-2} \|E\|_{L^\infty(M, g)} - n \right) \int_M |E|^2 dv_g \geq 0.$$

Therefore for any metric g satisfies

$$\|W\|_{L^\infty(M, g)} + \|E\|_{L^\infty(M, g)} < \Lambda_n := \frac{n}{3},$$

we have $E = 0$. □

It is well-known that the Weyl tensor satisfies an elliptic equation on Einstein manifolds (cf. [6]):
Lemma 3.3. Let \((M^n, g)\) be an Einstein manifold with scalar curvature
\[R_g = n(n - 1)\lambda, \]
then its Weyl tensor satisfies
\[\Delta_g W - 2(n - 1)\lambda W - 2Q(W) = 0, \]
where \(Q(W) := B_{ijkl} - B_{jikl} + B_{ikjl} - B_{jkil} \) is a quadratic combination of Weyl tensors with \(B_{ijkl} := g^{pq}g^{rs}W_{prij}W_{qkls}.\)

Now we finish this section by proving one of our main theorem:

Proof of Theorem A. We take
\[\varepsilon_0 := \min\{\Lambda_n, \frac{n - 1}{4}\} = \frac{n - 1}{4}. \]
From Proposition 3.2, we conclude that \(g\) is an Einstein metric. Applying Lemma 3.3, we have
\[- \int_M \langle \Delta_g W - 2(n - 1)W, W \rangle dv_g = -2 \int_M \langle Q(W), W \rangle dv_g \leq 8 \int_M |W|^3 dv_g. \]
That is,
\[\int_M (|\nabla W|^2 + 2(n - 1)|W|^2) dv_g \leq 8 \int_M |W|^3 dv_g. \]
(3.5)
Now we have
\[2(n - 1) \int_M |W|^2 dv_g \leq 8 \int_M |W|^3 dv_g \leq 8\|W\|_{L^\infty(M,g)} \int_M |W|^2 dv_g. \]
Thus the Weyl tensor vanishes, since
\[\|W\|_{L^\infty(M,g)} < \varepsilon_0 = \frac{n - 1}{4}. \]
Therefore, the metric \(g\) is locally spherical. \(\Box\)

4. \(L^{\frac{n}{2}}\)-SPHERE THEOREM

Let \((M, g)\) be an Riemannian manifold. Suppose the Yamabe constant associated to it satisfies that
\[Y(M, [g]) := \inf_{0 \neq u \in C^\infty(M)} \frac{\int_M \left(\frac{4(n-1)}{n-2} |\nabla u|^2 + R_g u^2 \right) dv_g}{\left(\int_M u^{\frac{2n}{n-2}} dv_g \right)^{\frac{n-2}{n}}} \geq \alpha_0 > 0. \]
By normalizing the scalar curvature such that \(R_g = n(n-1) \), we get
\[
\left(\int_M u^{n-2} dv_g \right)^{\frac{n-2}{n}} \leq \frac{1}{Y(M,[g])} \int_M \left(\frac{4(n-1)}{n-2} |\nabla u|^2 + R_g u^2 \right) dv_g
\]
\[
= \frac{n(n-1)}{Y(M,[g])} \int_M \left(\frac{4}{n(n-2)} |\nabla u|^2 + u^2 \right) dv_g
\]
\[
\leq \frac{4n(n-1)}{3Y(M,[g])} \int_M (|\nabla u|^2 + u^2) dv_g
\]
\[
\leq \frac{4n(n-1)}{3\alpha_0} \int_M (|\nabla u|^2 + u^2) dv_g
\]

Denote \(C_S := \frac{4n(n-1)}{3\alpha_0} > 0 \), we get the Sobolev’s inequality
\[
(\int_M u^{2n} dv_g)^{\frac{n-2}{n}} \leq C_S \int_M (|\nabla u|^2 + u^2) dv_g
\]

Note that, the constant \(C_S > 0 \) only depends on \(n \) and \(\alpha_0 \) and is independent of the metric \(g \).

Lemma 4.1. Let \((M^n, g)\) be a Bach flat Riemannian manifold with constant scalar curvature \(R_g = n(n-1) \).

Suppose there is a constant \(\alpha_0 \) such that its Yamabe constant satisfies that
\[
Y(M,[g]) \geq \alpha_0 > 0.
\]

Then \((M^n, g)\) is Einstein, if
\[
||W||_{L^\frac{2n}{n-2}(M,g)} + ||E||_{L^\frac{2n}{n-2}(M,g)} < \delta_0 := \frac{\alpha_0}{4n(n-1)} = \frac{1}{3C_S}.
\]

Proof. From equation (3.2) and Hölder’s inequality,
\[
\int_M |\nabla E|^2 dv_g = \int_M \left(2W(E,E) - \frac{n}{n-2} tr(E^3) - n|E|^2 \right) dv_g
\]
\[
\leq \left(2||W||_{L^\frac{2n}{n-2}(M,g)} + \frac{n}{n-2}||E||_{L^\frac{2n}{n-2}(M,g)} \right) ||E||_{L^\frac{2n}{n-2}(M,g)}^2 - n||E||_{L^2(M,g)}^2
\]
\[
\leq 3\delta_0 ||E||_{L^\frac{2n}{n-2}(M,g)}^2 - n||E||_{L^2(M,g)}^2.
\]

By Sobolev’s inequality (4.1) and the Kato’s inequality,
\[
||E||_{L^\frac{2n}{n-2}(M,g)}^2 \leq C_S \left(||\nabla E||_{L^2(M,g)}^2 + ||E||_{L^2(M,g)}^2 \right) \leq C_S \left(||\nabla E||_{L^2(M,g)}^2 + ||E||_{L^2(M,g)}^2 \right).
\]

Thus, we have
\[
||\nabla E||_{L^2(M,g)}^2 \leq 3\delta_0 C_S \left(||\nabla E||_{L^2(M,g)}^2 + ||E||_{L^2(M,g)}^2 \right) - n||E||_{L^2(M,g)}^2
\]
\[
= ||\nabla E||_{L^2(M,g)}^2 - (n-1) ||E||_{L^2(M,g)}^2.
\]

Therefore, \(E \) vanishes identically on \(M \) and hence \((M,g)\) is Einstein. \(\square \)
Now we can show

Proof of Theorem B. From Lemma 4.1, \((M, g)\) has to be Einstein. Now from Sobolev’s inequality (4.1), Kato’s inequality and inequality (3.5), we have

\[
||W||^2_{L^{\frac{2n}{n-2}}(M,g)} \leq C_S \int_M (|
abla|W|^2 + |W|^2) \, dv_g \leq C_S \int_M (|
abla W|^2 + |W|^2) \, dv_g \leq 8C_S \int_M |W|^3 \, dv_g.
\]

Applying Hölder’s inequality,

\[
\int_M |W|^3 \, dv_g \leq ||W||_{L^\frac{2n}{n-2}(M,g)} ||W||_{L^\frac{2n}{n-2}(M,g)}^2
\]

and hence

\[
(1 - 8C_S ||W||_{L^\frac{2n}{n-2}(M,g)}) \, ||W||_{L^\frac{2n}{n-2}(M,g)}^2 \leq 0,
\]

which implies that \(W\) vanishes identically on \(M\) since

\[
||W||_{L^\frac{2n}{n-2}(M,g)} < \tau_0 := \frac{3\alpha_0}{32n(n-1)} = \frac{1}{8C_S}.
\]

Therefore, \((M, g)\) is isometric to a quotient of \(S^n\).

As for \(n = 4\), we have

Proof of Theorem C. Let \(\hat{g} \in [g]\) be the Yamabe metric, which means

\[
R_{\hat{g}} \left(Vol(M^4, \hat{g}) \right)^\frac{1}{2} = Y(M^4, [g]).
\]

We can also normalize it such that

\[
R_{\hat{g}} = 12.
\]

According to the solution of Yamabe problem,

\[
Y(M^4, [g]) \leq Y(S^4, g_{S^4}) = 12 \cdot \left(\frac{8}{3} \pi^2 \right)^\frac{1}{2} = 8\sqrt{6}\pi
\]

and hence

\[
Vol(M^4, \hat{g}) \leq Vol(S^4, g_{S^4}) = \frac{8}{3} \pi^2.
\]

From the Gauss-Bonnet-Chern formula,

\[
\int_{M^4} \left(Q_{\hat{g}} + \frac{1}{4} |E_{\hat{g}}|^2 \right) \, dv_{\hat{g}} = 8\pi^2 \chi(M^4),
\]

where

\[
Q_{\hat{g}} := -\frac{1}{6} \Delta_{\hat{g}} R_{\hat{g}} - \frac{1}{2} |E_{\hat{g}}|^2 + \frac{1}{24} R_{\hat{g}}^2
\]

is the Q-curvature for metric \(\hat{g}\). Thus,

\[
||E_{\hat{g}}||^2_{L^2(M, \hat{g})} = \frac{1}{2} ||W_{\hat{g}}||^2_{L^2(M, \hat{g})} + 12 Vol(M^4, \hat{g}) - 16\pi^2 \chi(M^4) \leq \frac{1}{2} ||W_{\hat{g}}||^2_{L^2(M, \hat{g})} + 16\pi^2 (2 - \chi(M^4)).
\]
and hence
\[
\|W_\hat{g}\|_{L^2(M,\hat{g})}^2 + \|E_\hat{g}\|_{L^2(M,\hat{g})}^2 \leq \frac{3}{2}\|W_\hat{g}\|_{L^2(M,\hat{g})}^2 + 16\pi^2(2 - \chi(M^4)) \\
= \frac{3}{2}\|W_\hat{g}\|_{L^2(M,\hat{g})}^2 + 16\pi^2(2 - \chi(M^4)) \\
< \frac{\alpha_0}{128},
\]
where we used the fact that \(\|W_\hat{g}\|_{L^2(M,\hat{g})}\) is conformally invariant for 4-dimensional manifolds.

On the other hand, the metric \(\hat{g}\) is also Bach-flat, since Bach-flatness is conformally invariant for 4-dimensional manifolds. Applying Theorem B to the Yamabe metric \(\hat{g}\), we conclude that \((M^4, \hat{g})\) is isometric to a quotient of the round sphere \(\mathbb{S}^4\).

For the quotient of an even dimensional sphere, only identity and \(\mathbb{Z}_2\)-actions make it a smooth manifold. Therefore, \((M^4, g)\) is conformal to \(\mathbb{S}^4\) or \(\mathbb{R}P^4\) with canonical metrics. \(\square\)

REFERENCES

1. R.Bach, Zur Weylschen Relativitätstheorie und der Weylschen Erweiterung des Krümmungstensorbegriffs, Math.Zeit., 9, 110 - 135. (1921)
2. S.-Y.A.Chang, M.Gursky and P.Yang, A conformally invariant sphere theorem in four dimensions, Publ.Math.Inst.Hautes Etudes Sci. 98, 105 - 143. (2003)
3. B.-L.Chen, On stationary solutions to the vacuum Einstein field equations, arXiv: 1606.00543. (2016)
4. B.-L.Chen and X.-P. Zhu, A conformally invariant classification theorem in four dimensions, Comm.Anal.Geom. 22, 811 - 831. (2014)
5. S.Kim, Rigidity of noncompact complete Bach-flat manifolds, J.Geom.Phys. 60, 637 - 642. (2010)
6. M.-A.Singer, Positive Einstein metrics with small \(L^2\)-norm of the Weyl tensor, Differ.Geom.Appl. 2, 269 - 274. (1992)
7. G.Tian and J.Viaclovsky, Bach-flat asymptotically locally Euclidean metrics, Invent.Math. 160 no. 2, 357 - 415. (2005)
8. G.Tian and J.Viaclovsky, Moduli spaces of critical Riemannian metrics in dimension four, Adv.Math. 196 no. 2, 346 - 372. (2005)

(YI FANG) DEPARTMENT OF APPLIED MATHEMATICS, ANHUI UNIVERSITY OF TECHNOLOGY, MA’ANSHAN, ANHUI 243002, CHINA
E-mail address: flxy85@163.com

(WEI YUAN) DEPARTMENT OF MATHEMATICS, SUN YAT-sen UNIVERSITY, GUANGZHOU, GUANGDONG 510275, CHINA
E-mail address: gnr-x@163.com