Characterisation of Arabica Coffee Pulp - Hay from Kintamani - Bali as Prospective Biogas Feedstocks

Roy Hendroko Setyobudi¹,², Satriyo Krido Wahono²,³, Praptiningsih Gamawati Adinurani⁴, Ahmad Wahyudi⁵, Wahyu Widodo⁵, Maizirwan Mel⁶, Yogo Adhi Nugroho⁷, Bayu Prabowo⁸,⁹, and Tony Liwang⁷

¹Waste Laboratory of University Muhamadiyah of Malang, Jl. Raya Tlogomas No. 246 Malang, 65114, Indonesia
²Future Industry Institute and School of Engineering, University of South Australia, Mawson Lakes SA 5095, Adelaide, Australia.
³Technical Implementation Unit for Development of Chemical Engineering Processes, Indonesian Institute of Sciences, 55861, Yogyakarta, Indonesia
⁴Faculty of Agrotechnology, Merdeka University of Madiun, Jl. Serayu No. 79 Madiun 63131, Indonesia
⁵Faculty of Agricultural and Animal Science, University Muhamadiyah of Malang, Indonesia.
⁶Department of Biotechnology, Faculty of Engineering, International Islamic University Malaysia (IIUM), Gombak, 50728 Kuala Lumpur, Malaysia
⁷Plant Production and Biotechnology Division, PT Sinar Mas Agroresources and Technology Tbk., Sinar Mas Land Plaza, 2nd Tower 10th Fl. Jl. M.H. Thamrin No. 51, Jakarta 10350, Indonesia
⁸Department of Renewable Energy Engineering, Universitas Prasetiya Mulya, Tangerang, Banten 15339, Indonesia
⁹Institute of Energy and Power Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China

Abstract. The huge amount of coffee pulp waste is an environmental problem. Anaerobic fermentation is one of the alternative solutions. However, availability of coffee pulp does not appear for year-round, whereas biogas needs continuous feedstocks for digester stability. This research uses coffee pulp from Arabica Coffee Factory at Mengani, Kintamani, Bali–Indonesia. The coffee pulp was transformed into coffee pulp-hay product by sun drying for preservations to extend the raw materials through the year. Characterization of coffee pulp-hay was conducted after to keep for 15 mo for review the prospect as biogas feedstocks. Several parameters were analyzed such as C/N ratio, volatile solids, carbohydrate, protein, fat, lignocellulose content, macro-micro nutrients, and density. The review results indicated that coffee pulp-hay is prospective raw material for biogas feedstock. This well-proven preservation technology was able to fulfill the continuous supply. Furthermore, some problems were found in the recent preliminary experiment related to the density and fungi growth in the conventional laboratory digester. Further investigation was needed to implement the coffee pulp – hay as biogas feedstocks.

Key words: Environmental problems, floating feed, hay technology, low density feed, preservation feedstocks, waste to energy

* Corresponding author: roy_hendroko@hotmail.com
1 Introduction

Coffee pulp (CP) is one of the huge wastes which is produced by Coffee Factories (CF). Weight volume of CP is 41 % to 50 % in wet basis [1, 2], or 20 % to 29 % in dry basis [2, 3]. CP is commonly disposed to the river or environment around the CF [4, 5] which produces negative impact since CP contains toxic compound namely caffeine, alkaloids, tannins and polyphenolics [6, 7].

Baier and Hofmann in Bombardiere [8] and reference [9] showed that CP is a prospective organic compound as biogas raw material. Biogas is the renewable energy resource which is needed by CF [10], particularly for reducing fossil energy cost and increasing efficiency. Mulato [11] and Mulato & Suharyanto [12] said that the biogas of CF waste production is able to utilize as energy resources of coffee drying, lighting and circulating pump generator.

However, CP does not available for year-round as biogas feedstock. Coffee harvesting is conducted between June and September every year in Indonesia, so CP is available for 3 mo to 5 mo [13]. Whereas, Steiner [14] stated that the anaerobic digester does not economical when operated less than 8 mo. Some references [12, 13] suggested utilization of cow-dung as replacement feedstocks while there is no availability of CP, but not every CF have stabled cattle ranch. Furthermore, CP replacement by cow-dung and vice versa provide negative impact possibility to anaerobic stability process [15] and disrupt the steady-state/start-up process which conducted for 2 mo to 3 mo [16–18].

Other references [14, 19] suggested to apply silage technology on CP, so biogas feedstock is available for a year. However, it has several drawbacks such as anaerobic storage requirement, component addition (molasses), etc. Therefore, this study was conducted to review effective preservation of CP by sun drying or hay technology.

2 Materials and methods

CP was collected from peeling machine by the wet base system for coffee time processing in July 2016 to August 2016 from Arabica CF at Mengani, Kintamani, Bali, Indonesia. Coffee of Kintamani-Bali is a pioneer plantation product in Indonesia as the first obtained of certifications geographical indications (GI) at 2008 from 10 Indonesian Arabica coffee products [20]. CP was dried under the sunshine for about 5 d on the drying floor until water content about 12 %. Then, the dried pulp or hay pulp (HP) was stored in burlap sacks placed in the warehouse. After 15 mo, HP was characterized in the laboratory of Indonesian Research Institute for Animal Production in Ciawi, Bogor, Indonesia to determine the suitability of HP as biogas feedstock. Analysis methods were shown in Table 1.

No	Variable	Methods
1	Mg, K, Na, Fe, Ca	Atomic Absorption Spectroscopy (AAS)
2	S, C/N ratio, phenol total	spectrophotometry
3	water, fat, ash, lignin content	gravimetry
4	Protein	destructive auto analysis
5	Neutral Detergent Fiber (NDF)	neutral detergent solvent extraction
6	Acid Detergent Fiber (ADF)	acid detergent solvent extraction
7	Cellulose	acid extraction
8	Carbohydrate, Volatile Solid (VS), N content, hemicellulose	calculation
9	Density	true density
3 Result and Discussions

3.1 C/N ratio

C/N ratio analysis results of arabica coffee HP-GI Kintamani is shown in Table 2. Table 2 shows HP is commonly appropriate as biogas feedstock [21–26], except standard 4 [27, 28]. The previous studies showed that C/N ratio of CP is 40.0 to 71.2 [29, 30]. Furthermore, C/N ratio of cow-dung is 16.67 [31] or 21.00 [32]. It indicates that pulp storage as hay for 15 mo reduce C/N ratio to the ideal value.

Table 2. C/N ratio comparison of coffee pulp-hay

coffee pulp-hay	standard	1	2	3	4
C/N ratio	20.06	10 to 30	15 to 25	20 to 30	23 to 32
Reference	This study	[21, 22]	[23, 24]	[25, 26]	[27, 28]

3.2 C/N ratio

Volatile Solid (VS) of arabica coffee HP-GI Kintamani is shown in Table 3. Table 3 shows that VS of HP is appropriate to some references [33–35]. VS is a necessary factor to predict methane amount production [24, 35, 39, 40], wherein the higher ratio of VS produced greater methane [41, 42].

The previous study said that cow-dung is an ideal substrate for anaerobic digestion [43], but other studies stated about vice versa indication that cow-dung produced low yield biogas [44, 45]. The biogas volume of CF waste is 18 times higher than cow-dung [13] which supports also by VS data in Table 3. However, the higher VS was inducted into the digester, also produce the larger amount of volatile acid [39] which influencing digester alkalinity and pH. Therefore, the high VS content had to insert slowly into an anaerobic digester.

Table 3. Volatile solid comparison of coffee pulp-hay

coffee pulp-hay	fresh coffee pulp	cow-dung			
Volatile Solid	91.02	91.10	92.80	94.00	27.80 to 39.60
Reference	This study	[33]	[34]	[35]	[32, 36–38]

3.3 Carbohydrate, Protein and Fat Contents

Carbohydrate, protein and fat contents of arabica coffee HP-GI Kintamani is shown in Table 4. Table 4 shows that carbohydrate, protein and fat contents of HP after 15 mo storage are appropriate to the references range [5, 48, 49], even particularly for carbohydrate content is higher than references [46, 47]. Moreover, it also shows that HP contents are higher than cow-dung. However, carbohydrate dominant of HP provided negative impact possibility in the anaerobic process. Some references [24, 50, 51] stated that the possibility of buffer capacity is weak, with the impact of problems in the alkalinity of the substrate. It supported by other references [23, 24, 28] which said that carbohydrate dominant produced the low quality of biogas related to the high number of C-atoms in the substrate.
Table 4. Carbohydrate, protein, and fat contents comparison of coffee pulp-hay

	coffee pulp-hay	previous studies	cow-dung
Carbohydrate (%)	65.99	35.00 to 63.20\(^1\)	41.15
Protein (%)	11.00	0.80 to 15.00\(^2\)	9.55
Fat (%)	1.54	0.83 to 7.00\(^3\)	0.40
Reference	This study	\(^1\)[46, 47], \(^2\)[5, 48], \(^3\)[49, 48]	[32]

3.4 Lignocellulose content

Carbohydrate was divided into simple carbohydrate (monosaccharide dan disaccharide) and complex carbohydrate (polysaccharide). Some references [29, 47, 52] stated that CP was categorized rich lignocelluloses as the common characteristic of agricultural wastes [53]. Table 5 shows lignocellulose content consist of cellulose, lignin, and hemicellulose. Table 5 indicates that lignocelluloses of HP are appropriate to some references range [5, 33, 54–57], but lignin content of HP is lower than references [56, 57]. Moreover, cellulose and hemicellulose (a+b) of cow-dung is higher than HP, but it has similar lignin content.

Table 5. Cellulose, lignin, and hemicellulose contents comparison of coffee pulp-hay.

	coffee pulp-hay	previous research	cow-dung
Selulosa (a) (%)	25.84	17.70 to 49.87\(^1\)	22.28 to 26.59
Hemiselulosa (b) (%)	4.37	2.30 to 21.80\(^2\)	11.27 to 23.55
Lignin (%)	12.46	17.50 to 31.58\(^3\)	11.24 to 12.67
(a) + (b) (%)	30.21	20.00 to 87.00	33.55 to 50.14
Reference	\(^1\)[54, 55], \(^2\)[5, 33], \(^3\)[56, 57]	[31, 32]	

3.5 Nutrient

Steiner [14] dan Tadesse & Mebratu [30] stated that CP nutrient is appropriate as biogas feedstocks and met the requirement of C:N:P = 250:10:1, but it did not show nutrient content value. Table 6 shows macronutrient content of HP. Nutrient contents of C, N, P, and S of HP lower than the references requirement [23, 25]. C nutrient was needed by microbes as energy resources [59]. Madigan and Martinko [60] said that 50 % of dry weight cell was carbon. N nutrient was needed to construct cell structure which required 14 % of dry weight of microbes [59, 60]. Table 6 supports references [50, 61] which said that agricultural wastes and or agro-industry were categorized as poor nutrients. However, HP nutrient shows appropriate to previous research range [30, 33, 59], even C nutrient is higher than reference [58]. Based on this data, HP nutrient did not decrease after 15 mo storage and was higher than cow-dung nutrients [32]. It was supported by Higashikawa [62] which found that CP nutrient was higher at N, K, and B variables, but lower at P, Mg, and Mn variables.
Table 6. Macronutrients contents comparison of coffee pulp-hay.

	coffee pulp-hay	standard	previous research	cow-dung
		1	2	
Carbon (%)	35.31	100	500 to 1 000	30.37
Nitrogen (%)	1.76	10	15 to 20	0.80
Phosphat (%)	0.20	1	5	0.13
Sulphur (%)	0.18	1	3	--
Reference	This study	[25]	[23]	[58], [33, 56], [30, 56], [32]

Table 7 shows that HP contains inhibitors, particularly as micronutrients namely Ca, Mg, and Na. CP was a substance rich in hydroxyl groups, so it had the ability to absorb heavy metal [2, 33, 66–70]. This property caused HP micronutrients were categorized as inhibitors, but microbes had the ability to degrade toxic material [71, 72]. Furthermore, Table 7 also indicates HP contains phenol as an inhibitor. It also supported by some references about CP phenol content [33, 73, 74], but microbes also degraded phenol in anaerobic digestion [75, 76].

Table 7. Micronutrients of P, K, Ca, Mg, Na and total phenol comparison of coffee pulp-hay.

	coffee pulp-hay	Standard stimulatory	Standard moderately inhibitory
C/P	177	150 to 300\(^1\)	
C/K	11	40 to 100\(^1\)	
K (mg L\(^{-1}\))	329	200 to 400\(^2\)	2 500 to 4 500\(^2\)
Ca (mg L\(^{-1}\))	4 600	200 to 400\(^2\)	2 500 to 4 500\(^2\)
Mg (mg L\(^{-1}\))	1 100	75 to 150\(^2\)	1 000 to 1 500\(^2\)
Na (mg L\(^{-1}\))	500	100 to 200\(^2\)	3 500 to 5 500\(^2\)
Phenol (mg L\(^{-1}\))	5 500	2 400\(^1\)	
Reference	[63], [64]	[64], [65]	

Fe micronutrient content of HP-GI Kintamani is low which is shown in Table 8. It was lower than stimulatory requirement [77, 78], but it still in previous research range [63, 80], and lower than others previous research [81, 82]. The low Fe content of HP-GI Kintamani was needed further study, it was possibly caused by Kintamani land was categorized Inceptisol [83]. Inceptisol Kintamani was the young land of Batur Volcano eruption. Some references [84, 85] stated about Inceptisol characteristics such as pH was acidic to slightly acidic; soil electrical conductivity (EC) was very low; whereas organic matter, total nitrogen, cation exchange capacity (CEC), saturation bases, potassium potency and Iron Hydrous Oxide were low. Nandini and Narendra [85] found that Fe content of Bangli, Kintamani soil was in the range of 15.0 mg/kg to 18.4 mg/kg which categorized very low

Table 8. Iron nutrient content comparison of coffee pulp-hay.

Fe nutrient of coffee pulp-hay	Stimulatory	Inhibitor	Previous Research
136 mg kg\(^{-1}\) or 0.014 %	0.02 % [77]	0.18 % [79]	0.015 % (Bressani in [80])
	0.40 % [78]		0.01 % to 0.50 % [63]
			0.025 % [81]
			0.287 % [82]
3.6 Density

The true density value of HP-GI Kintamani showed 0.40 g mL$^{-1}$, which was lower than the bulk density of previous research of 0.53 g mL$^{-1}$ [82]. The low density has a negative impact which was also reported by the previous research of dry husk *Jatropha curcas* Linn. (DH-JcL) with true density of 0.59 g mL$^{-1}$ [32].

Moreover, other problems were obstruction of DH-JcL inclusion since the inlet digester blocked; then DH-JcL floated on the digester substrate, so methanogenic bioconversion process was not optimized. Praptiningsih et al. [86] overcame the floating DH-JcL by utilizing ballast weight. The floating HP problem was confirmed in preliminary studies of biogas using HP-GI Kintamani was conducted in November 2017 to February 2018 at Waste Laboratory of Nutrition and Animal Husbandry Laboratory of Muhamadiyah University of Malang, Indonesia. Another negative impact was the easiness growth of fungi on CP which found when it was drying under the sun as hay on the CF. The fungi were suspected dormant for 15 mo of HP storage process. However, it was grown rapidly when HP was mixed to water diluents in the conventional laboratory digester which is shown in Figure 1.a-d.

![Figure 1](image1.jpg)

Figure 1. (a) the floating HP digestate on the substrate; (b) The thickness of HP digestate which blocking biogas goes to gas holder; (c, d) two types of fungi on digestate.
4 Conclusion

Based on the data was concluded that coffee pulp-hay after 15 mo storage was appropriate as biogas feedstock. The further investigation was needed to overcome the dormant fungi problems on the HP storage but grown rapidly when HP was utilized as biogas substrate.

The authors are grateful to Ricky Hendarto Setyobudi and Fitri Ramli, Arabica Coffee Factory at Mengani, Kintamani, Bali – Indonesia for supply the Hay-Pulp as research material.

References

1. B. Janissen, T. Huynh. Resources, Conservation & Recycling 128, 110–117 (2018). https://www.sciencedirect.com/science/article/pii/S0921344917303154
2. L. Blinova, M. Sirotiak, A. Bartosova, M. Soldan. Slovak University of Technology in Bratislava 25, 40:91–101 (2017). https://www.degruyter.com/view/j/rput.2017.25.issue-40/rput-2017-0011/rput-2017-0011.xml
3. S. Widyotomo. Review Penelitian Kopi dan Kakao 1, 1:63–80 (2013). [in Bahasa Indonesia]. https://anzdoc.com/download/potensi-dan-teknologi-diversifikasi-limbah-kopi-menjadi-prod.html?reader=1.
4. J.F. Calzada, O.R. deLeon, M.C. deArriola, F. deMicheo, C. Rolz, C., R. de Leon, et al. Biotechnology Letters 3, 12:713–716 (1981). https://link.springer.com/article/10.1007/BF00134849
5. T. Widjaja, T. Iswanto, A. Altway, M. Shovitri, S.R. Juliastuti. Methane Production from Coffee Pulp by Microorganism of Rumen Fluid and Cow Dung in Co-digestion. Chemical Engineering Transactions 56, 1465–1470 (2017). https://www.researchgate.net/profile/Toto_Iswanto/publication/319417335_Methane_Production_from_Coffee_Pulp_by_Microorganism_of_Rumen_Fluid_and_Cow_Dung_in_Co-digestion/links/59a92cd7a6fdcc2398414dd9/Methane-Production-from-Coffee-Pulp-by-Microorganism-of-Rumen-Fluid-and-Cow-Dung-in-Co-digestion.pdf
6. L. Fan, A.T. Soccol, A. Pandey, C.R. Soccol. Micologia Aplicada International 15, 15–21 (2003). https://www.researchgate.net/publication/26484135_Cultivation_of_Pleurotus_mushrooms_on_Brazilian_coffee_husk_and_effects_of_caffeine_and_tannic_acid
7. S.R. Juliastuti, T. Widjaja, A. Altway, T. Iswanto. AIP Conference Proceedings 1840, 1 (2017). DOI:10.1063/1.4982341. https://aip.scitation.org/doi/abs/10.1063/1.4982341
8. Y.E. Bombardiere. The Potensial of Anaerobic Technology to Treat Coffee Waste in Huatusco, Mexico. [Thesis]. The Center for International Studies of Ohio University, Athens, USA, (2006). pp.85. https://etd.ohiolink.edu/pg_10?0::NO:10:P10_ACCESSION_NUM:ohiou1152557924
9. E. Novita, S. Wahyuningsih. Teknologi Penanganan Limbah Cair untuk Mewujudkan Lingkungan Perkebunan Kopi Rakyat yang Sehat, Produktif dan Berkelanjutan [Liquid Waste Technology Process to Develop a Healthy, Productive and Sustainable Peasant Coffee Plantation] [Online] from http://repository.uncj.ac.id/bitstream/handle/123456789/73730/Lap_Akhir_Stranas%202015_Elida%20Novita.pdf?sequence=1. (2015). [Accessed on 5 April 2017]. [in Bahasa Indonesia]
10. C. Rolz, J.F. Menchu, F. Calzada, R. de Leon, R. Garcla. Process Biochemistry 17, 2:8–11 (1982). https://www.cabdirect.org/cabdirect/abstract/19822413679
11. S. Mulato. *Case Study of Biogas Production from Plant-Based Materials and Animal Manure Resources Available In the Cocoa and Coffee Farms*. 2009 International Workshop on Developing Bioenergy and Conserving the Natural Ecosystem in APEC Member Economies (Seoul, Korea, 2009). 2009 APEC Workshop Developing Bioenergy and Conserving the Natural Ecosystem in APEC Member Economies: 79–96. https://apec.org/Publications/2010/02/2009-International-Workshop-on-Developing-Bioenergy-and-Conserving-the-Natural-Ecosystem-in-APEC-Mem

12. S. Mulato, E Suharyanto. *Case Study of Biogas Production from Plant-Based Materials and Animal Manure Resources Available in the Coffee Farm*. Proceedings of 22th International Conference on Coffee Science, Bali, Indonesia: ASIC 3-8 Oktober 2010 https://www.asic-cafe.org/conference/23rd-international-conference-coffee-science/case-study-biogas-production-plant-based

13. E. Novita. *Desain Proses Pengolahan pada Agroindustri Kopi Robusta Menggunakan Modifikasi Teknologi Olah Basah Berbasis Produksi Bersih* [Process Design of Robusta Coffee Agro Industry Using Wet Processing Technology Modification Based on Cleaner Production. [Dissertation]. Institut Pertanian Bogor, Bogor, Indonesia (2012). p. 325. http://repository.ipb.ac.id/handle/123456789/55728

14. R. Steiner. *Biogas Production of Coffee Pulp & Waste Water* [Online] from www.repic.ch/index.php/download_file/359/358/ (2011). [Accessed on 15 October 2017]

15. R. Bello-Mendoza, M.F. Castillo-Rivera. Anaerobe 4, 5:219–225 (1998). https://www.sciencedirect.com/science/article/pii/S1075996498901718

16. L.H. Quang. *Making Use of Tannery Chromium Containing Sludge as Feed for Biogas Plant*. [Thesis]. Central Ostrobothnia University of Aplied Sciences (2011) p.92 http://www.theses.fi/bitstream/handle/10024/29164/Thesis+-+COU+-+Le+Huy+Quang.pdf?sequence=1

17. A. Dahiy (Eds). *Bioenergy, Biomass to Biofuels*. UK: Academic Press (2015). p 619. https://www.amazon.com/Bioenergy-Biomass-Biofuels-Anju-Krivov/dp/0124079091

18. A. Wellinger, J. Patrick Murphy, D. Baxter (Eds). The Biogas Handbook: Science, Production and Applications. UK Woodhead Publishing (2013). p. 512. https://www.amazon.com/Biogas-Handbook-Production-Applications-Publishing/dp/085709498X

19. Hofmann, M. and Baier, U. 2003. Abstract In: Vergärung von Pulpa aus der Kaffee-Produktion. Energieforschung Forschungs- und PhD-Programm Biomass Bundesamts für Energie BFE pp. 33 [in German] http://www.bfe.admin.ch/php/modules/enet/streamfile.php?file=000000007800.pdf&name=230057.pdf

20. Direktorat Jenderal Perkebunan, Kementrian Pertanian. *30 Produk Perkebunan Indikasi Geographis* [30 Plantation Products with Geographical Indication] [Online] from http://ditjenbun.pertanian.go.id/berita-421-30-produk-perkebunan-indikasi-geografis.html (2016). [Accessed on 5 January 2018]. [in Bahasa Indonesia]

21. A.B. Karki, K. Dixit. Biogas fieldbook. Khatmandu: Sahayogi Press (1984). p.171. http://agris.fao.org/agris-search/search.do?recordID=NP8600002

22. M. Schön. *Numerical Modelling of Anaerobic Digestion Processes in Agricultural Biogas Plants*. [Dissertation]. Technische Universität München, Germany, (2009). p. 157.
23. D. Deublein, A. Steinhauser. 2008 Biogas from Waste and Renewable Resources; Wiley Online Library: Weinheim, Germany. p. 429. http://onlinelibrary.wiley.com/book/10.1002/9783527621705

24. A. Schnürrer, Å. Jarvis. Microbiological Handbook for Biogas Plants Swedish Waste Management U2009:03 Swedish Gas Centre Report 207 [Online] from http://www.eac-quality.net/fileadmin/eac_quality/user_documents/3_pdf/Microbiological_handbook_for_biogas_plants.pdf (2010). [Accessed on 20 May 2017]

25. G.D. Zupancic, V. Grilc. Anaerobic Treatment and Biogas Production from Organic Waste, In: Management of Organic Waste. Sunil K. (Eds). Rijeka, Croatia, Shanghia, China: InTech. (2012). p 28. https://www.intechopen.com/books/howtoreference/management-of-organic-waste/anaerobic-treatment-and-biogas-production-from-organic-wastes

26. K. Fricke , H. Santen , R. Wallmann , A. Hüttner, N. Dichtl . Waste Manag. 2007;27(1):30–43 (2007) https://www.ncbi.nlm.nih.gov/pubmed/16860554

27. U. Marchaim. Biogas Processes for Sustainable Development. Rome: FAO (1992). p. 254. http://www.fao.org/docrep/t0541e/T0541E00.htm

28. I. Angelidakis, L. Ellegaard. Applied Biochemistry and Biotechnology, 109, (1-3):95–106 (2003). https://link.springer.com/article/10.1385/ABAB:109:1-3:95

29. N.A. Dzung, T.T. Dzung, V.T. Phuong Khanh. 2013. Resources and Environment 3, 4:77–82. http://article.sapub.org/10.5923.j.re.20130304.03.html

30. M. Tadesse, A. Mebratu. International Journal of Recent Development in Engineering and Technology, 6, 1:18–30 (2017). http://www.ijrdet.com/files/Volume6Issue1/IJRDET_0117_04.pdf

31. G.N. Demirer, S. Chen. Process Biochemistry, 40, 11:3542–3549 (2005). https://www.sciencedirect.com/science/article/pii/S1359511305001923

32. P.G. Adinurani, R.H. Setyobudi, A. /nindita, S.K. Wahono, M. Maizirwan, A. Sasmito, Y.A. Nugroho, T. Liwang. Energy Procedia 65:264–273 (2015). https://ac.els-cdn.com/S1876610215000478/1-s2.0-S1876610215000478-main.pdf?_tid=e7f7e647-f845-4103-a871-b25bed4e9de5&acdnat=1521028434_52192956794b4b62ea2502dede9c71d4

33. G. Corro, L. Paniagua, U. Pal, F. Banuelos, M. Rosas. Energy Conversion and Management 74:471–481 (2013). https://www.sciencedirect.com/science/article/pii/S0196890413003889

34. E. Fischer, T. Schmidt, S. Hora, J. Giersdorf, W. Stinner, F. Scholwin. Agro-Industrial Biogas in Kenya. Potentials, Estimates for Tariffs, Policy and Business Recommendations [Online] from http://kerea.org/wp-content/uploads/2012/12/Agro-Industrial-Biogas-in-Kenya.pdf, (2010). [Accessed on 5 April 2017]

35. C. Nzila, D. Njuguna, D. Madara, J. Githaig, R. Muasya, A. Muumbo, H. Kiriamit. Journal of Emerging Trends in Engineering and Applied Sciences 6, 5:327–334 (2015). https://www.researchgate.net/publication/308795332_Characterization_of_Agro-Residues_For_Biogas_Production_and_Nutrient_Recovery_In_Kenya

36. J.H. Martin. An Evaluation of a Mesophilic, Modefied Plug Flow Anaerobic Digester for Dairy Cattle Manure [Online] from http://www.dvoinc.com/documents/gordondale_report_final.pdf. (2005). [Accessed on 20 May 2017]
37. B.S.U.I. Abubakar, N. Ismail. ARPN Journal of Engineering and Applied Sciences, 7, 2:169–172 (2012). https://pdfs.semanticscholar.org/88a3/6a207992acfffa045a87a0b8eb04aa1d994e.pdf.

38. J.A. Oleszkiewicz, H.M. Poggi-Varaldo. Journal of Environmental Engineering, 123, 11:1087–1092 (1997). https://www.researchgate.net/publication/245299570_High-Solids_Anaerobic_Digestion_of_Mixed_Municipal_and_Industrial_Waste.

39. M.H. Gerardi. The Microbiology of Anaerobic Digesters. New Jersey: A John Wiley & Sons, Inc. (2003). p. 192. http://onlinelibrary.wiley.com/book/10.1002/0471468967

40. I. Angelidaki, W. Sanders. Reviews in Environmental Science and Bio/Technology, 3, 2:117–129 (2004). https://link.springer.com/article/10.1007/s11157-004-2502-3

41. S. Goswami. Optimization of Methane Production from Solid Organic Waste [Online] (2004) from https://mafiadoc.com/optimization-of-methane-production-from-solid-organic-waste. [Accessed on 20 May 2012].

42. J.A. Ogejo, Z. Wen, J. Ignosh, E. Bendfeldt, E.E.R. Collins. Biomethane Technology [Online] from https://pubs.ext.vt.edu/442/442-881/442-881_pdf.pdf (2009). [Accessed on 6 April 2017]

43. de Graaf Daniel, and Fendler, R. 2010. Biogas production in Germany. SPIN background paper. p. 29 http://www.spin-project.eu/downloads/0_Biogas_production_in_Germany.pdf.

44. H.B. Moller, S.G. Sommer, B.K. Ahring. J. Environ Quality, 33, 1:27–36 (2004). https://www.ncbi.nlm.nih.gov/pmc/articles/PMC14964355

45. H.B. Moller, S.G. Sommer, B.K. Ahring. Biomass Bioenergy, 26, 5:485–495 (2004). https://www.sciencedirect.com/science/article/pii/S0961953403001569

46. M.F. Mahesa. Esterifikasi Senyawa Polifenol dari Ekstrak Kulit Biji Kopi dengan Asam p-Hidroksibenzoat dengan Menggunakan katalis SiO2 – H2SO4 [Polyphenol Esterification of Skin Coffee Bean Extract Using p-Hydroxybenzoate Acid an SiO2 – H2SO4 Catalyst]. [Thesis]. Universitas Indonesia, Jakarta (2012). p. 103. http://lib.ui.ac.id/file?file=20308463-T31079-Esterifikasi%20senyawa.pdf

47. R. Bressani. The By-Products of Coffee Berries. In: Coffee Pulp, Composition, Technology and Utilization. J.E. Braham, R. Bressani (Eds.). Ottawa: International Development Research Centre (1979). pp. 5–10. https://idl-bnc-idrc.dspacedirect.org/handle/10625/6006

48. A. Das, N. Venkatachalapathy. International Journal of Applied and Natural Sciences, 5, 1:75–82 (2016). https://archive.org/details/10.PROFITABLEEXPLORATIONOFCOFFEEPULPARE

49. R. Eka, N. Ahmad, S.C. Titi. 2013. Karakterisasi dan Pre-Treatment Kulit Kopi Hasil Samping Pengolahan Kopi Metode Kering untuk Produksi Bioetanol. [Characterization and Pre-Treatment of Coffee Pulp from Coffee Processing Dry Methods for Bioethanol Production.] Abstrak dan Executive Summary.Universitas Jember (2013) p.10 [in Bahasa Indonesia].

http://repository.unej.ac.id/bitstream/handle/123456789/61192/Eka%20Ruriani_pekerti_dipa_45.pdf?sequence=1

50. W. Parawira. Anaerobic Treatment of Agricultural Residues and Wastewater Application of High-Rate Reactors. [Doctoral Dissertation]. Lund University, Sweden (2004). p.60. https://lup.lub.lu.se/search/ws/files/5606523/1472236.pdf.
51. B. Demirel, P. Scherer. Biomass and Engineering, 32, 3:203–209 (2008).
https://www.sciencedirect.com/science/article/pii/S0961953407001523

52. A. Pandey, C.R. Soccol, P. Nigam, D. Brand. Biochem. Eng. J., 6, 2:153–162 (2000).
https://www.ncbi.nlm.nih.gov/pubmed/10959086

53. Y. Chen, J.J. Cheng, K.S. Creamer. Bioresource Technology, 99, 10:4044–4064 (2008).
https://www.sciencedirect.com/science/article/pii/S0960852407001563

54. J.E.G. van Dam, P.F.H. Harmans. Coffee Residues Utilization. Netherlands: Wageningen UR Food & Biobased Research. p. 75.
http://library wur nl/WebQuery/wurpubs/503808

55. N.D. Siswati, M. Yatim, R. Hidayanto. Bioetanol dari limbah kulit kopi dengan proses fermentasi [Bio-ethanol production from coffee peel waste with fermentation process]. [Online] from https://media.neliti.com/media/publications/134134-ID-none.pdf http://ejournal.upnjatim.ac.id/index.php/tekkim/article/download/80/63 (n.d.).p.4.[Accessed on 6 April 2017]. [in Bahasa Indonesia].

56. E. Houbron, A. Larrinaga, E. Rustia. Water Science & Technology, 48, 6:255–262 (2003). https://www.ncbi.nlm.nih.gov/pubmed/14640226

57. E. Ruriani, A. Nafi, T.C. Sunarti. Karakterisasi Kulit Kopi Hasil Samping Pengolahan Kopi Metode Kering untuk Produksi Bioetanol [Skin Coffee Characterization as By-product of Dry Methods Coffee Processing for Bio-ethanol Production]. Seminar Nasional Perhimpunan Ahli Teknologi Pangan Indonesia (Jember, Indonesia, 2013). http://repository.unej.ac.id/handle/123456789/61192

58. W. Irawaty, H. Hindarso, Felycia E.S., Y. Mulyono, H. Kurniawan. Utilization of Indonesian Coffee Pulp to Make an Activated Carbon. Asian Pacific Confederation of Chemical Engineers congress program and abstracts. DOI: 10.11491/apcche.2004.0.452.0 (2004). https://www.jstage.jst.go.jp/article/apcche/2004/0/2004_0_452/_article

59. United Nations. Updated Guidebook on Biogas Development, Energy Resources Development Series No. 27 [Online] from https://www.ircwash.org/sites/default/files/352.1-84UP-3638.pdf (1984). [Accessed on 6 April 2017]

60. M.T. Madigan, J.M. Martinko. Brock Biology of Microorganisms. 11th ed. New Jersey: Pearson Prentice Hall (2006). p. 1056. https://www.amazon.com/Brock-Biology-Microorganisms-11th-J-K/dp/B0028IGIJE

61. R. Zhang, Z. Zhang. Bioresource Technology 68, 3:235–245 (1999). https://www.sciencedirect.com/science/article/pii/S0960852498001540

62. F.S. Higashikawa, C.A. Silva, W. Bettiol. Revista Brasileira de Ciência do Solo 34, 5:1743–1752 (2010). http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0100-06832010000500026

63. M. Kayhanian, G. Tchobanoglous, R.C. Brown. Handbook of Energy Efficiency and Renewable Energy. USA: CRC Press (2007). Pp. 25.4–25.8. https://www.amazon.com/Efficiency-Renewable-Mechanical-Aerospace-Engineering/dp/0849317304

64. C.P.L. Grady, H.C. Lim. Biological Wastewater Treatment: Theory and Applications. New York: Marcel Dekker (1980). p. 963. https://books.google.co.id/books/about/Biological_Wastewater_Treatment.html?id=pDTiQgAACAAJ&redir_esc=y

65. G.F. Parkin, R.E. Speece, C.H.L. Yang, W.M. Kocher. Journal WPCF, 55, 1:44-53 (1983). https://www.jstor.org/stable/25041796
66. I. Hartati, I. Riwayati, L. Momentum, 7, 2:25–30 (2011). [in Bahasa Indonesia]
67. U. Zuhail. *Gum Xanthan* [Online] https://ummuzuhail.wordpress.com/dunia/gum-xanthan/ (n.d.). [Accessed on 25 December 2017].
68. I. Riwayati, I. Hartati, H. Purwanto, Suwardiyono. *Adsorpsi Logam Berat Timbal dan Kadmium pada Limbah Batik Menggunakan Biosorbent Pulpa Kopi Terxanthasi* [Adsorption of Lead and Cadmium Metals in Batik Waste Using Biosorbent Xanthate Coffee Pulp]. Prosiding Seminar Nasional Aplikasi Sains & Teknologi (SNAST) 2014 (Yogyakarta, Indonesia, 2014). SNAST 2014:C211–C216 (2014). https://www.researchgate.net/publication/290838755_ADSORPSI_LOGAM_BERAT_TIMBAL_DAN_KADMIUM_PADA_LIMBAH_BATIK_MENGUNGANBI BIOSORBENT_PULPA_KOPI_TERXANTHASI
69. LW. Hadayani, I. Riwayati, R.D. Ratnani. *Momentum*, 11, 1:19–23 (2015). [in Bahasa Indonesia]. https://publikasiilmiah.unwahas.ac.id/index.php/MOMENTUM/article/view/1077
70. L.S. Oliveira, A.S. Franca, T.M. Alves, S.D.F. Rocha. *J. Hazardous Mat.* 155, 3:507–512 (2008). https://www.sciencedirect.com/science/article/pii/S0304389407017177
71. I. Gaimé-Perraud, S. Roussos, D. Martinez-Carrera. *Micol Neotrop Apl*, 6:95–103 (1993). http://horizon.documentation.ird.fr/exl-doc/pleins_textes/pleins_textes_6/b_fdi_35-36/39745.pdf
72. T. Jayachandra, C. Venugopal, K.A.A. Appaiah. *Energy Sustain Develop*, 15, 1:104–108 (2011). https://www.infona.pl/resource/bwmeta1.element.elsevier-9e1f3a7-a107-3fbb-b929-22ae8c49d93a
73. A.K. Kivaisi. *Tanz. J. Science*, 28, 2:1–10 (2002). https://www.ajol.info/index.php/tjs/article/view/18349
74. A. Ramakrishnan, R.Y. Surampalli. *Bioresource Technology*, 123:352–359 (2012). https://www.ncbi.nlm.nih.gov/pubmed/22940341
75. N.V. Pradepp, S. Anupama, K. Navya, H.N. Shalini, M. Idris, U.S. Hampannavar. *Water Science*, 5, 2:105–112 (2015). https://link.springer.com/article/10.1007/s13201-014-0176-8
76. S.B. Ariyani. *Jurnal Biopropal Industri* 2 (1): 14–20 (2011). [in Bahasa Indonesia]. http://download.portalgaruda.org/article.php?article=416282&val=8391&title=Decreased%20Levels%20of%20Fenol%20in%20the%20Case%20of%20Traditional%20Herb%20Industry%20using%20Activated%20Sludge%20Method
77. L. Hinken, I. Urban, E. Haun, D. Weichgrebe, K.H. Rosenwinkel. *Water Sci. Technol.* 58, 7:1453–1459 (2008). https://www.ncbi.nlm.nih.gov/pubmed/18957759
78. N.R. Raju, S.S. Devi, K. Nand. *Biotechnol. Lett.*, 13, 6:461–464 (1991). https://link.springer.com/article/10.1007/BF01031002
79. F.E. Mosey, D.A. Hughes. *Journal Institute Water Pollution Control*, 1:3–24 (1975). https://www.researchgate.net/publication/279573236_The_Toxicity_of_Heavy_Metal_Ions_to_Anaerobic_Digestion
80. L.G. Elias. *Chemical Composition of Coffee-Berry*. In: Coffee Pulp: Composition, Technology, and Utilization. J.E. Braham, R. Bressani (Eds.). Ottawa:The International Development Research Centre (1979). pp. 12–16. https://idl-bnc-idrc.dspacedirect.org/handle/10625/6006
81. F.H. Orozco, J. Cegarra, L.M. Trujillo, A. Roig. *Biol Fertil Soils*, 22, 1–2:162–166 (1996). https://link.springer.com/article/10.1007/BF00384449
82. S.N. Avinash, C.A. Srinivasamurthy, S. Bhaskar, N.B. Prakash. International Journal of Current Microbiology and Applied Sciences, 6, 10:2265–2272 (2017). https://www.researchgate.net/publication/320562129_Characterization_Extraction_and_Foliar_Spray_of_Fortified_Humic_Acid_on_Quality_of_Capsicum

83. W.A. Asfimanto, T. Nur lambang, T. Waryono. Pengaruh Kondisi Fisik dan Budidaya Terhadap Kualitas Kopi di Kintamani dan Gayo [Effect of Physical Condition and Cultivation on the Quality Coffee in Kintamani and Gayo] [Online] from http://lontar.ui.ac.id/naskahringkas/2016-04/S47782-Asfimanto%20W%20A (2013). [Accessed on 20 May 2017]

84. S. Hasibuan, B.K. Dijatmo, K.H. Nitimulyo, E. Hanudin. Jurnal Dinamika Pertanian 29, 1:97–106 (2014). http://journal.uir.ac.id/index.php/dinamikapertanian/article/view/864

85. R. Nandini, B.H. Narendra. Jurnal Penelitian Hutan dan Konservasi Alam, 9, 3:199–211 (2012). https://www.researchgate.net/publication/319230455_KARAKTERISTIK_LAHAN_KRITIS_BEKAS_LETUSAN_GUNUNG_BATUR_DI_KABUPATEN_BANGLI_BAL

86. P.G. Adinurani, R.H. Setyobudi, S.K. Wahono, M. Mel, A. Nindita, E. Purbajanti, et al. Proceedings of the Pakistan Academy of Sciences B. Life and Environmental Sciences, 54, 1:47–57 (2017). http://www.paspk.org/wp-content/uploads/2017/03/Ballast-Weight-Review-of-Capsule-Husk-Jatropha-curcas-Linn.pdf