V.M. Red’kov

Particle with spin $S = 3/2$ in Riemannian space-time

Institute of Physics, National Academy of Sciences of Belarus

Abstract

Equations for 16-component vector-bispinor field, originated from Rarita–Schwinger Lagrangian for spin 3/2 field extended to Riemannian space-time are investigated. Additional general covariant constrains for the field are produced, which for some space-time models greatly simplify original wave equation.

Peculiarities in description of the massless spin 3/2 field are specified. In the flat Minkowski space for massless case there exist gauge invariance of the main wave equation, which reduces to possibility to produce a whole class of trivial solutions in the the form of 4-gradient of arbitrary(gauge) bispinor function, $\Psi^0(x) = \partial_\alpha \psi(x)$. Generalization of that property for Riemannian model is performed; it is shown that in general covariant case solutions of the gradient type $\Psi^0(\alpha) = (\nabla_\alpha + \Gamma_\alpha)\Psi(x)$ exist in space-time regions where the Ricci tensor obeys an identity $R_{\alpha\beta} - \frac{1}{2}Rg_{\alpha\beta} = 0$.

1 Massive field, additional constraints

Starting with fundamental investigation by Pauli and Fierz [1, 2], also Rarita and Schwinger [3], the field with spin 3/2 always attracted attention:

Ginzburg [4], Davydov [5], Tamm – Davydov – Ginzburg [6, 7], Ginzburg – Smorodinsky [8, 9], Fradkin [10], Belinfante [11], Fainberg [12], Petras [13, 14], Jonson and Sudarshan [15, 16], Bender and McKoy [17], Munczek [18], Velo and Zwanziger [19, 20], Hagen and Singh [21, 22], Baisya [26], Fisk and Tait [27], Hortaçsu [28], Mathews et al [29, 30], Madore and Tait [31, 32], Hasumi, Endo and Kimura [33], Lopes – Spehler – Leite – Fleury [34, 35], Auriola et al [36], Inoue – Omote – Kobayashi [37], Loide [38, 39], Pletjuxov and Strazhev [40], Labonte [41, 42], Capri and Kobes [43], Barut and Xu [44], Darkhosh [45], Rinderi and Sivakumar [46], Cox [47], Penrose [48], Pascalutsa [49], Haberzettl [50], Deser S., Waldron A., Pascalutsa [52, 53], Kirchbach and Ahluwalia [54], Gsponer and Hurni [55], Pilling [57, 58], Kaloshin and Lomov [59, 60], Napsuciale – Kirchbach – Rodriguez [61].

*redkov@dragon.bas-net.by
†Chapter 7 in: V.M. Red’kov, Fields in Riemannian space and the Lorentz group (in Russian). Publishing House "Belarusian Science", Minsk, 2009.
On the curved space-time background, the field of spin 3/2 is investigated much less than fields of spins 0, 1/2, 1. This circumstance is due to complexity of this object: all its 16 components are tightly linked to each other by presence of curved geometry. Let us consider some peculiarities in description of the particle with spin 3/2 in Riemannian space-time, first specifying the massive case.

Lagrangian by Rarita – Schwinger extended to generally covariant case has the form (let it be \(k = mc/\hbar \))

\[
L = \frac{1}{2} \left[\bar{\Psi}_\alpha \gamma^\beta(x) \vec{D}_\beta \Psi^\alpha - \bar{\Psi}_\alpha \gamma^\beta(x) \vec{D}_\beta \Psi^\alpha \right] \\
+ \frac{1}{3} \left[\bar{\Psi}_\alpha \gamma^\alpha(x) \vec{D}_\beta \Psi^\beta - \bar{\Psi}_\alpha \gamma^\alpha(x) \vec{D}_\beta \Psi^\beta \right] \\
+ \frac{1}{6} \left[\bar{\Psi}_\alpha \gamma^\alpha(x) \gamma^\beta \vec{D}_\beta \gamma^\rho(x) \Psi_\rho - \bar{\Psi}_\alpha \gamma^\alpha(x) \gamma^\beta(x) \vec{D}_\beta \gamma^\rho(x) \Psi_\rho \right] \\
+ \kappa \bar{\Psi}_\alpha \Psi^\alpha - \frac{1}{3} \kappa \bar{\Psi}_\alpha \gamma^\alpha(x) \gamma_\beta(x) \Psi^\beta .
\]

(1.1)

Here \(\Psi_\alpha \) stands for a wave function for a particle with transformation properties of local bispinor and general covariant vector; symbols \(\rightarrow \) and \(\leftarrow \) designate operators \(D_\alpha \) acting on the right and on the left respectively

\[
\vec{D}_\alpha = \vec{\nabla}_\alpha + \Gamma_\alpha(x) - ie A_\alpha(x) , \quad \vec{D}_\alpha = \vec{\nabla}_\alpha - \Gamma_\alpha(x) + ie A_\alpha(x),
\]

\(A_\alpha(x) \) designates a 4-potential of external electromagnetic field; for shortness the combination \(e/\bar{\hbar}c \) is noted as \(e \).

From Lagrangian (1.1) it follow equations for \(\Psi(x) \) and \(\bar{\Psi}(x) \):

\[
\left[\left[\gamma^\alpha(x) \vec{D}_\alpha + \kappa \right] \delta^\beta_\sigma - \frac{1}{3} \left[\gamma^\beta(x) \vec{D}_\sigma + \gamma_\sigma(x) \vec{D}_\beta \right] \right] \Psi_\beta(x) = 0 ,
\]

(1.2a)

and

\[
\bar{\Psi}_\beta(x) \left[\left[\gamma^\alpha(x) \vec{D}_\alpha - \kappa \right] \delta^\beta_\sigma - \frac{1}{3} \left[\gamma^\beta(x) \vec{D}_\sigma + \gamma_\sigma(x) \vec{D}_\beta \right] \right] + \frac{1}{3} \gamma^\beta(x) \left[\gamma^\alpha(x) \vec{D}_\alpha + \kappa \right] \gamma_\sigma(x) = 0 .
\]

(1.2b)

Below we use spinor representation for Dirac matrices, so we use identities

\[
\bar{\Psi}_\beta = \Psi_\beta^+ \gamma^0 , \quad (\gamma^\beta(x))^+ = \gamma^0 \gamma^\beta(x) , \quad (\Gamma_\beta(x))^+ \gamma^0 = -\gamma^0 \Gamma_\beta(x).
\]

(1.3)

The order in writing operators \(\gamma^\alpha(x) \) and \(\vec{D}_\beta \) (also \(\gamma^\alpha(x) \) and \(\vec{D}_\beta \)) does not matter, this quantities commute with each other; besides there exist identities

\[
\Psi_\beta = \Psi_\beta^+ \gamma^0 , \quad (\gamma^\beta(x))^+ = \gamma^0 \gamma^\beta(x) , \quad (\Gamma_\beta(x))^+ \gamma^0 = -\gamma^0 \Gamma_\beta(x).
\]
\[
\begin{align*}
\gamma^\rho(x) \Gamma_\sigma(x) & - \gamma_\sigma(x) \Gamma^\rho(x) = \nabla_\sigma \gamma^\rho(x) , \quad (1.4a) \\
\gamma^\rho(x) \vec{D}_\sigma & = \vec{D}_\sigma \gamma^\rho(x) , \quad \gamma^\rho(x) \overset{\leftarrow}{D}_\sigma = \overset{\leftarrow}{D}_\sigma \gamma^\rho(x) . \quad (1.4b)
\end{align*}
\]

Below we will use the formulas
\[
\begin{align*}
\gamma^\alpha(x) \gamma^\beta(x) + \gamma^\beta(x) \gamma^\alpha(x) & = 2 g^{\alpha\beta}(x) , \quad \gamma^\alpha \gamma_\alpha = 4 , \\
\gamma^\alpha(x) \gamma^\beta(x) & = g^{\alpha\beta}(x) + 2 \sigma^{\alpha\beta}(x) , \quad \sigma^{\alpha\beta}(x) = \sigma^{ab} e^{\alpha}_a(x) e^{\beta}_b(x) , \\
\gamma^\alpha(x) \gamma^\beta(x) \gamma^\rho(x) & = \gamma^\alpha(x) g^{\beta\rho}(x) - \gamma^\beta(x) g^{\alpha\rho}(x) + \\
& \gamma^\rho(x) g^{\alpha\beta}(x) + i \gamma^5 \epsilon^{\alpha\beta\rho\sigma}(x) \gamma^\sigma(x) ; \quad (1.5)
\end{align*}
\]

they follow from the properties of usual Dirac matrices multiplied by relevant tetrads.

Starting with eqs. (1.2a, b), one can derive additional constraints for components of the wave function \(\Psi_\alpha(x)\); thereby, in accordance with Pauli – Fierz approach \([1, 2]\), these constraints are deduced from the initial lagrangian (1.1)

Indeed, let us multiply eq. (1.2a) from the left by the matrix \(\gamma^\sigma(x)\):
\[
\left[\gamma^\beta \gamma^\alpha D_\alpha + \kappa \gamma^\beta - \frac{1}{3} \gamma^\sigma \gamma^\beta D_\sigma - \frac{4}{3} D^\beta + \frac{4}{3} \gamma^\alpha \gamma^\beta D_\alpha - \frac{4}{3} \kappa \gamma^\beta \right] \Psi_\beta = 0 ,
\]
from whence it follows
\[
D_\beta \Psi_\beta = \frac{\kappa}{2} \gamma_\beta \Psi_\beta . \quad (1.6)
\]

It is a first additional constraint. Now, let us act on eq. (1.2a) from the left by operator \(D^\rho\):
\[
\left[D^\beta \gamma^\alpha D_\alpha + \kappa D^\beta - \frac{1}{3} \gamma^\sigma D^\sigma D_\sigma - \frac{1}{3} \gamma^\sigma D_\sigma D^\beta + \\
\frac{1}{3} \gamma^\sigma \gamma^\alpha D^\sigma D_\alpha \gamma^\beta - \frac{\kappa}{3} \gamma^\sigma D_\sigma \gamma^\beta \right] \Psi_\beta(x) = 0 .
\]

Then with the use of identity
\[
D^\beta D_\alpha = D_\alpha D^\beta + D^\beta , \quad \text{where} \quad D^\beta_\alpha = D^\beta D_\alpha - D_\alpha D^\beta ,
\]
we get
\[
\gamma^\alpha D_\alpha \left(\frac{2}{3} D^\beta - \frac{\kappa}{3} \gamma^\beta \right) \Psi_\beta + \gamma^\alpha D^\beta_\alpha \Psi_\beta + \kappa D^\beta \Psi_\beta + \frac{1}{3} \sigma^{\alpha\beta} D_{\alpha\beta} \gamma^\rho \Psi_\rho = 0 .
\]

Here, the first term vanishes due to (1.6). Thus, we arrive at
\[
-D_{\alpha\beta} \gamma^\alpha \Psi_\beta + \frac{\kappa^2}{2} \gamma^\rho \Psi_\rho + \frac{1}{3} \sigma^{\alpha\beta} D_{\alpha\beta} \gamma^\rho \Psi_\rho = 0 . \quad (1.7)
\]

This second additional constraint can be transformed to the form of algebraic relationships. Indeed, let us detail operator \(D_{\alpha\beta}^\rho\):
\[D_{\alpha\beta} = (\nabla_\alpha \nabla_\beta - \nabla_\beta \nabla_\alpha) + \dot{D}_{\alpha\beta} - ie \text{ } F_{\alpha\beta}, \]

where \(F_{\alpha\beta} \) is a electromagnetic tensor; \(\dot{D}_{\alpha\beta} \) is determined by relation

\[\dot{D}_{\alpha\beta} = \nabla_\beta \Gamma_\alpha - \nabla_\alpha \Gamma_\beta + \Gamma_\alpha \Gamma_\beta - \Gamma_\beta \Gamma_\alpha. \]

With the use of definition for the bispinor connection \(\Gamma_\alpha \), one can produce

\[\nabla_\beta \Gamma_\alpha - \nabla_\alpha \Gamma_\beta = \frac{1}{2} \sigma^{ab} e_\alpha^{(a)} (e_{(b)\nu;\alpha;\beta} - e_{(b)\nu;\beta;\alpha}), \]

\[+ \frac{1}{2} \sigma^{ab} (e_{(a)\nu;\alpha} e_\nu^{(b);\beta} - e_{(a)\nu;\beta} e_\nu^{(b);\alpha}). \]

For the term \((\Gamma_\alpha \Gamma_\beta - \Gamma_\beta \Gamma_\alpha) \), using the commutative relation

\[([\sigma^{ab}, \sigma^{mn}] = (g^{ma} \sigma^{nb} - g^{mb} \sigma^{na}) - (g^{na} \sigma^{mb} - g^{nb} \sigma^{ma}), \]

we derive the following expression

\[\Gamma_\alpha \Gamma_\beta - \Gamma_\beta \Gamma_\alpha = -\frac{1}{2} \sigma^{ab} (e_{(a)\nu;\alpha} e_\nu^{(b);\beta} - e_{(a)\nu;\beta} e_\nu^{(b);\alpha}). \]

Summing (1.8c) and (1.8d), we get

\[\dot{D}_{\alpha\beta} = \frac{1}{2} \sigma^{ab} e_\alpha^{(a)} (e_{(b)\nu;\beta;\alpha} - e_{(b)\nu;\alpha;\beta}), \]

\[= \frac{1}{2} \sigma^{ab} e_\nu^{(a)} e_\mu^{(b)} R_{\mu\nu\alpha\beta}(x) = \frac{1}{2} \sigma_{\nu\mu}(x) R_{\mu\nu\alpha\beta}(x), \]

where \(R_{\mu\nu;\alpha\beta}(x) \) stands for the Riemann tensor. Substituting (1.8e) into (1.8a), we obtain

\[D_{\alpha\beta} = (\nabla_\alpha \nabla_\beta - \nabla_\beta \nabla_\alpha) + \frac{1}{2} \sigma^{\mu\nu} R_{\mu\nu\alpha\beta} - ie \text{ } F_{\alpha\beta}. \]

Taking into account (1.9), now consider (1.7). For the first term in (1.7) we will obtain

\[-\gamma^\alpha D_{\alpha\beta} \Psi^\beta = -\gamma^\alpha \left[(\nabla_\alpha \nabla_\beta - \nabla_\beta \nabla_\alpha) + \frac{1}{2} \sigma^{\mu\nu} R_{\mu\nu\alpha\beta} - ie \text{ } F_{\alpha\beta} \right] \Psi^\beta; \]

note identity

\[-\gamma^\alpha (\nabla_\alpha \nabla_\beta - \nabla_\beta \nabla_\alpha) \Psi^\beta = \gamma^\alpha \Psi^\nu R_{\nu\alpha}; \]

for the second term, using (1.5), one derives

\[-\frac{1}{2} \gamma^\alpha \sigma^{\mu\nu} R_{\mu\nu\alpha\beta} \Psi^\beta = -\frac{1}{4} \left[\gamma^\alpha g^{\mu\nu} - \gamma^\mu g^{\alpha\nu} + \gamma^\nu g^{\alpha\mu} + i \gamma^5 \epsilon_{\alpha\mu\nu\sigma}(x) \gamma_\sigma \right] R_{\mu\nu\alpha\beta} \Psi^\beta, \]

from whence, allowing for symmetry of the Riemann tensor we get \(R_{\alpha\beta} \) is the Ricci tensor:

\[-\frac{1}{2} \gamma^\alpha \sigma^{\mu\nu} R_{\mu\nu\alpha\beta} \Psi^\beta = -\frac{1}{2} \gamma^\nu R_{\nu\beta} \Psi^\beta. \]
This, relation (1.10a) reads
\[- \gamma^\alpha \tilde{D}_\alpha \Psi^\beta = (\frac{1}{2} R_{\alpha\beta} + ie F_{\alpha\beta}) \gamma^\alpha \Psi^\beta. \] (1.10c)

Now, for the third term in (1.7) we derive
\[\frac{1}{3} (\sigma^{\alpha\beta} D_{\alpha\beta}) \gamma^\rho \Psi_\rho = \frac{1}{3} \sigma^{\alpha\beta} \left[(\nabla_\alpha \nabla_\beta - \nabla_\beta \nabla_\alpha) + \frac{1}{2} \sigma^{\mu\nu} R_{\mu\nu\alpha\beta} - ie F_{\alpha\beta} \right] \gamma^\rho \Psi_\rho. \]

Here the first term vanish identically (let it be \(\gamma^\sigma \Psi_\sigma = \Phi(x) \)):
\[(\nabla_\alpha \nabla_\beta - \nabla_\beta \nabla_\alpha) \Phi(x) = \partial/\partial x^\alpha (\partial \Phi/\partial x^\beta) - \partial/\partial x^\beta (\partial \Phi/\partial x^\alpha) + \Gamma^\sigma_{\alpha\beta} (\partial \Phi/\partial x^\sigma) \equiv 0. \]

The second term \((R)\) is the Ricci scalar reads
\[\frac{1}{6} \sigma^{\alpha\beta} \sigma^{\mu\nu} R_{\mu\nu\alpha\beta} \gamma^\rho \Psi_\rho = \frac{1}{24} \gamma^\alpha (\gamma^\beta \gamma^\mu) R_{\mu\nu\alpha\beta} \gamma^\rho \Psi_\rho \]
\[= -\frac{1}{12} \gamma^\alpha \gamma^\beta R_{\alpha\beta} \gamma^\rho \Psi_\rho = -\frac{1}{12} \left(g^{\alpha\beta} + 2 \sigma^{\alpha\beta} \right) R_{\alpha\beta} \gamma^\rho \Psi_\rho = -\frac{1}{12} R \gamma^\rho \Psi_\rho. \]

Therefore, the third term in (1.7) reduces to
\[\frac{1}{3} (\sigma^{\alpha\beta} D_{\alpha\beta}) \gamma^\rho \Psi_\rho = -\frac{1}{12} R \gamma^\rho \Psi_\rho + \frac{ie}{3} \sigma^{\alpha\beta} F_{\alpha\beta} \gamma^\rho \Psi_\rho. \]

Thus, the second additional constraint (1.7) is equivalent to the algebraic relationship
\[\left(\frac{1}{2} R_{\alpha\beta} + ie F_{\alpha\beta} \right) \gamma^\alpha \Psi^\beta + \left[\frac{1}{2} \kappa^2 - \frac{1}{3} \left(\frac{1}{4} R + ie F_{\alpha\beta} \sigma^{\alpha\beta} \right) \right] \gamma^\rho \Psi_\rho = 0; \] (1.11a)

for convenience let us written down the first condition as well
\[D_\beta \Psi^\beta = \frac{\kappa}{2} \gamma_\beta \Psi^\beta. \] (1.11b)

Sometime, these two relations permit us to greatly simplify the initial wave equation (1.2a). For instance, for a free particle in Minkowski space-time, in Cartesian coordinates and tetrad, eqs. (1.11, b) give
\[\gamma^a \Psi_a(x) = 0, \quad \partial^a \Psi_a(x) = 0, \] (1.12a)
so that eq. (1.2a) assumes the form of four separate Dirac equations
\[(\gamma^a \partial_a + \kappa) \Psi_a(x) = 0. \] (1.12b)

Analogous situation arises in any curved space-time with vanishing Ricci tensor. Indeed, let
\[R_{\alpha\beta}(x) = 0, \quad F_{\alpha\beta}(x) = 0, \] (1.13a)
then the full systems of equations determining the particle with spin 3/2 is
\[
\gamma^\beta(x) \Psi_\beta(x) = 0 , \quad (\nabla_\beta + \Gamma_\beta(x)) \Psi^\beta(x) = 0 , \\
\left[\gamma^\alpha(x) \left(\nabla_\alpha + \Gamma_\alpha(x) \right) + \kappa \right] \Psi^\beta(x) = 0 . \tag{1.13b}
\]
It should be noted that because \(\Psi^\beta(x)\) stands for a general covariant vector, and \(\nabla_\alpha\) stands for a covariant derivative, the karsr equation in (1.13b) is not equivalent to four independent Dirac-like equations.

We can extend the system (1.13b) to the class of space-time model with more general structure of the Ricci tensor
\[
R_{\alpha\beta}(x) = \frac{1}{4} R(x) g_{\alpha\beta}(x) . \tag{1.14a}
\]
In this case, additional constraints reduce to
\[
D^\beta(x) \Psi_\beta(x) = \frac{1}{2} \kappa \gamma^\beta(x) \Psi_\beta(x) , \\
\left(\frac{1}{12} R(x) - \frac{m^2 c^2}{h^2} \right) \left[\gamma^\beta(x) \Psi_\beta(x) \right] = 0 . \tag{1.14b}
\]
Simplest examples of such models are de Sitter and anti de Sitter spaces.

2 Massless field

Now let us specify the massless case. It is known that in Minkowski space-time, equation for massless field with spin 3/2 can be transformed to a special form when it become evident existence of trivial solutions in the form of 4-gradient of arbitrary bispinor
\[
i\gamma^5 \epsilon^{abcd}_a \gamma_d \partial_b \tilde{\Psi}_c(x) = 0 , \quad \tilde{\Psi}_c(x) = \partial_c \psi(x) . \tag{2.1}
\]
This property proves gauge invariance of massless wave equation, which give possibility to remove redundant degrees of freedom.

Let us consider analogous problem in the case of a curved space-time. It is convenient to start with the following matrix form of eq. (1.2a)
\[
\left[\alpha^\nu(x) D_\nu + \kappa \beta(x) \right] \Psi(x) = 0 , \tag{2.2a}
\]
\[
\Psi(x) = (\Psi_\sigma(x)) , \quad (\beta)^\sigma_\rho = \delta^\sigma_\rho - \frac{1}{3} \gamma^\rho(x) \gamma^\sigma(x) , \\
(\alpha^\nu)^\sigma_\rho = \gamma^\nu(x) \delta^\sigma_\rho - \frac{1}{3} \gamma^\sigma(x) \delta^\nu_\rho \\
- \frac{1}{3} \gamma_\rho(x) g^{\sigma\sigma}(x) + \frac{1}{3} \gamma_\rho(x) \gamma^\nu(x) \gamma^\sigma(x) . \tag{2.2b}
\]
Let us perform two successive transformation over eq. (2.2a). Furs, multiply it from the left by a matrix \(C\), ant then translate equation to a new representation with the help of other matrix \(S\):
\[\beta', \alpha' \Rightarrow \beta = C \beta', \alpha' = C \alpha' \Rightarrow \]

\[\tilde{\beta} = S \beta' S^{-1}, \tilde{\alpha}' = S \alpha' S^{-1}, \bar{\Psi} = S \Psi. \]

(2.3)

The relevant matrices are taken in the form

\[C_{\alpha}^{\beta} = \delta_\alpha^\beta + c \gamma_\alpha(x) \gamma^\beta(x), \quad S_{\alpha}^{\beta} = \delta_\alpha^\beta + a \gamma_\alpha(x) \gamma^\beta(x), \]

\[(S^{-1})^{\beta}_{\alpha} = \delta_\alpha^\beta + b \gamma_\alpha(x) \gamma^\beta(x), \quad a + b + 4 ab = 0. \]

(2.4)

The quantities \(a, b, c \) are unknown numerical parameters; relationship between \(a \) and \(b \) ensures identity \(S S^{-1} = I \). In accordance with (2.3) and (2.4), we find \(\beta', \tilde{\beta} \) and \(\alpha', \tilde{\alpha}' \):

\[(\beta')^\rho_\sigma = (\delta^\rho_\sigma - \frac{c + 1}{3} \gamma_\rho \gamma^\sigma), \]

\[(\tilde{\beta})^\rho_\sigma = \{\delta^\rho_\sigma + [b + (4c + 1) (a - (4a + 1) \frac{c + 1}{3})] \gamma_\rho \gamma^\sigma\}, \]

\[(\alpha'^\nu_\sigma)^\rho = [\gamma^\nu \delta^\rho_\sigma - \frac{1}{3} \gamma^\nu \delta^\rho_\sigma + (2c - \frac{1}{3}) \gamma_\rho g^{\nu\sigma} + \frac{1}{3} \gamma_\rho \gamma^\nu \gamma^\sigma], \]

\[(\tilde{\alpha}^\nu_\sigma)^\rho = \gamma^\nu \delta^\rho_\sigma \{1 - \left[b + \frac{1}{3} + b \left(\frac{2c - 1}{3} (1 + 4a) + 2a\right)\right]\} \]

\[+ \gamma^\nu \delta^\rho_\sigma \left\{\frac{2b - 1}{3} + \left[b + \frac{1}{3} + b \left(\frac{2c - 1}{3} (1 + 4a) + 2a\right)\right]\} \]

\[+ \gamma_\rho g^{\nu\sigma} \left\{[(2c - 1) \frac{1}{3} + 2a] + \left[b + \frac{1}{3} + b ((2c - 1) \frac{1}{3} + 4a) + 2a]\right]\} \]

\[+ i \gamma^5 \epsilon^{\nu\sigma\mu} \gamma_\mu \left[b + \frac{1}{3} + b ((2c - 1) \frac{1}{3} + 4a) + 2a]\right]. \]

(2.5b)

Let us try to choose \((a, b, c)\) so that in expression for \(\tilde{\alpha}'\) all terms excluding one containing Levi-Civita tensor vanish. To this end, we must impose restrictions

\[a + b + 4 ab = 0, \quad 1 - \left[b + \frac{1}{3} + b ((2c - 1) \frac{1}{3} + 4a) + 2a\right] = 0, \]

\[\frac{2b + 1}{3} + \left[b + \frac{1}{3} + b ((2c - 1) \frac{1}{3} + 4a) + 2a\right] = 0, \]

\[(1 + 4a) \frac{2c - 1}{3} + 2a + \left[b + \frac{1}{3} + b ((2c - 1) \frac{1}{3} + 4a) + 2a\right] = 0. \]

Solution of the system is

\[a = -\frac{1}{3}, \quad b = -1, \quad c = +2 \]

(2.6a)

Thus, the transformation \(S \) is
\[S_\alpha^\beta = \delta_\alpha^\beta - \frac{1}{3} \gamma_\alpha(x) \gamma^\beta(x) , \quad \tilde{\Psi}_\alpha = S_\alpha^\beta \Psi_\beta \]

and correspondingly in new representation the wave equation is determined by the matrices

\[
\begin{align*}
(\tilde{\beta})_\rho^\sigma &= \delta_\rho^\sigma - \gamma_\rho(x) \gamma^\sigma(x) , \\
(\tilde{\alpha}_\nu^\rho)_\sigma &= +i \gamma^5 \epsilon_\rho^{\nu\sigma\mu}(x) \gamma_\mu(x) .
\end{align*}
\]

Expression for \(\tilde{\beta} \) in (2.6b) can be rewritten as differently

\[
(\tilde{\beta})_\rho^\sigma = -2 \sigma_\rho^\sigma(x)
\]

and further, with the use of identity

\[
2 \sigma_\rho^\sigma(x) = 2 \left(\frac{1}{4} \gamma_\mu(x) \right) \left[\gamma^\mu(x) \sigma_\rho^\sigma(x) \right] = \sigma_\rho^\sigma(x) + \frac{i}{4} \gamma_\mu(x) \gamma^5 \epsilon_\rho^{\sigma\nu} \gamma_\nu(x)
\]

for the matrix \(\tilde{\beta} \) we get

\[
(\tilde{\beta})_\rho^\sigma = \frac{i}{2} \gamma^5 \epsilon_\rho^{\nu\sigma\mu}(x) \gamma_\mu(x) \gamma_\nu(x) .
\]

Allowing for (2.6b, c), equation for the particle with spin 3/2 can be presented as follows

\[
\gamma^5 \epsilon_\rho^{\nu\sigma\mu}(x) \gamma_\mu(x) \left[i D_\nu - \frac{mc}{2h} \gamma_\nu(x) \right] \tilde{\Psi}_\sigma(x) = 0 .
\]

At \(m = 0 \) we obtain an equation (compare it with (2.1)) for massless field

\[
i \gamma^5 \epsilon_\rho^{\nu\sigma\mu}(x) \gamma_\mu(x) \left[\nabla_\nu + \Gamma_\nu(x) \right] \tilde{\Psi}_\sigma(x) = 0 .
\]

Not let us investigate the problem of possible existence of solutions in the form of 4-gradient of arbitrary bispinor field. Substituting the function \(\tilde{\Psi}_\sigma^0(x) \) of the form

\[
\tilde{\Psi}_\beta^0(x) = \left[\nabla_\beta + \Gamma_\beta(x) \right] \Psi(x) ,
\]

into eq. (2.7b), we get

\[
\frac{i}{2} \gamma^5 \epsilon_\rho^{\nu\sigma\mu}(x) \gamma_\mu(x) \left[D_\nu , D_\sigma \right] - \Psi(x) = 0 .
\]

Taking into account expression (1.9) for the commutator \([D_\nu , D_\sigma] \) when \(F_{\nu\mu} = 0 \), and also allowing for that the bispinor \(\Psi \) is a scalar in general covariant sense, we get

\[
\frac{i}{4} \gamma^5 \epsilon_\rho^{\nu\sigma\mu}(x) \gamma_\mu(x) \left[\sigma_{\alpha\beta}(x) R_{\alpha\beta\nu\sigma}(x) \right] \Psi(x) = 0 .
\]

Further, we obtain

\[
\frac{i}{4} \gamma^5 \epsilon_\rho^{\nu\sigma\mu}(x) \left[\gamma^\beta(x) R_{\mu\beta\nu\sigma}(x) + \frac{i}{2} \gamma^5 \epsilon_\mu^{\alpha\beta\sigma\nu}(x) \gamma_\sigma(x) R_{\alpha\beta\nu\sigma}(x) \right] \Psi(x) = 0 ;
\]

therefore arrive at
\(R_{\alpha\beta\nu\sigma}(x) \left[\epsilon_{\rho}^{\nu\gamma\mu}(x) \epsilon_{\mu}^{\alpha\beta\gamma}(x) \right] \left[\gamma_{s}(x) \Psi(x) \right] = 0 \).

Using the known formula

\[
\epsilon_{\rho}^{\nu\sigma\mu}(x) \epsilon_{\mu}^{\alpha\beta\gamma}(x) = \det \begin{vmatrix}
\delta_{\rho}^{\gamma}
& \delta_{\rho}^{\beta}
& \delta_{\rho}^{s}

\delta_{\rho}^{\gamma}
& \delta_{\rho}^{\beta}
& \delta_{\rho}^{s}

\delta_{\rho}^{\gamma}
& \delta_{\rho}^{\beta}
& \delta_{\rho}^{s}
\end{vmatrix},
\]

from (2.8b) we derive relation needed

\[
\left[R_{\alpha\beta}(x) - \frac{1}{2} R(x) g_{\alpha\beta}(x) \right] \gamma^{\beta}(x) \Psi(x) = 0. \tag{2.8c}
\]

Thus, we conclude that in the region where

\[
R_{\alpha\beta}(x) - \frac{1}{2} R(x) g_{\alpha\beta}(x) = 0,
\]

the massless particle with spin 3/2 possess a gauge symmetry and thereby in such regions it is a correctly defined massless object; otherwise it is not clear how one can determine a massless field.

References

[1] W. Pauli, M. Fierz. Über relativistische Feldgleichungen von Teilchen mit beliebigem Spin im elektromagnetischen Feld. Helv. Phys. Acta. 1939. Bd. 12. S. 297–300.

[2] M. Fierz, W. Pauli. On relativistic wave equations for particles of arbitrary spin in an electromagnetic field. Proc. Roy. Soc. London. A. 1939. Vol. 173. P. 211–232.

[3] W. Rarita, J. Schwinger. On a theory of particles with half-integral spin. Phys. Rev. 1941. Vol. 60, no 1. P. 61 – 64.

[4] V.L. Ginzburg. To the theory of particles of spin 3/2. JETP. 1942. Vol. 12. P. 425–442.

[5] A.S. Davydov. Wave equations of a particle having spin 3/2 in absence of field. JETP. 1943. Vol. 13, no 9-10. P. 313–319.

[6] I.E. Tamm, A.S. Davydov. To the theory of particles with spin 3/2 // . 1947. . 17. . 427.

[7] V.L. Ginzburg and I.E. Tamm, ”On Theory of spin”, JETP. 1947. Vol. 17, no. 3. P. 25.

[8] V.D. Ginzburg, Ya.A. Smorodinskiy. On wave equations for particles with various spin, JETP. 1943. Vol. 13. P. 274.

[9] V.L. Ginzburg To the theory of exited states of elementary particles. JETP. 1943. Vol. 13. P. 33–58.

[10] E.E. Fradkin. To the theory of particles with highe spins. JETP. 1950. Vol. 20, no 1. P. 27–38.
[11] F. Belinfante. Intrinsic Magnetic Moment of Elementary Particles of Spin 3/2. Phys. Rev. 1953. Vol. 92. P. 997.

[12] V.Ya. Fainberg. To the interaction theory of the particles of the higher spins with electromagnetic and meson fields. Trudt FIAN SSSR, 1955. Vol. 6. P. 269–332.

[13] M. Petras. A contribution of the theory of the Pauli-Fierz’s equations a particle with spin 3/2. Czech. J. Phys. 1955. Vol. 5, no 2. P. 169–170.

[14] M. Petras. A note to Bhabha’s equation for a particle with maximum spin 3/2. Czech. J. Phys. 1955. Vol. 5, no 3. P. 418–419.

[15] K. Johnson K., E.C.G. Sudarshan. Inconsistency of the local field theory of charged spin 3/2 particles. Ann. Phys. N.Y. 1961. Vol. 13, no 1. P. 121–145.

[16] K. Jonson, E.C.G. Sudarshan. The impossibility of a consistent theory of a charged higher spin Fermi fields. Ann. Phys. 1961. Vol. 13, no 1. P. 126–145.

[17] Carl M. Bender, Barry M. McCoy. Peculiarities of a free massless spin-3/2 field theory. Phys. Rev. 1966. Vol. 148, no 4. P. 1375–1380.

[18] H. Munczek. New formalism for the quantization of a spin-3/2 field. Phys. Rev. 1967. Vol. 164, no 5. P. 1794–1798.

[19] G. Velo, D. Zwanziger. Propagation and quantization of Rarita-Schwinger waves in an external electromagnetic potential. Phys. Rev. 1969. Vol. 186, no 5. P. 1337–1341.

[20] G. Velo, D. Zwanziger. Noncausality and other defects of interaction Lagrangians for particles with spin one and higher. Phys. Rev. 1969. Vol. 188, no 5. P. 2218–2222.

[21] C.R. Hagen. New inconsistencies in the quantization of spin-3/2 fields. Phys. Rev. D. 1971. Vol. 4, no 8. P. 2204–2208.

[22] L.P.S. Singh. Noncausal propagation of classical Rarita-Schwinger waves. Phys. Rev. D. 1973. Vol. 7, no 4. P. 1256–1258.

[23] C.R. Hagen. Consistency of the anomalous-magnetic-moment coupling of a vector-meson field. Phys. Rev. D. 1974. Vol. 9, no 2. P. 498–499.

[24] L.P. Singh, C.R. Hagen. Lagrangian Formulation for Arbitrary Spin. 1. The Boson Case, 2. The Fermion Case. Phys. Rev. D. 1974. Vol. 9. P. 898, 910.

[25] C.R. Hagen, L.P.S. Singh. Search for consistent interactions of the Rarita-Schwinger field. Phys. Rev. D. 1982. Vol. 26, no 2. P. 393–398.

[26] H.L. Baisya. On the Rarita – Schwinger equation for the vector-bispinor field. Nucl. Phys. B. 1971. Vol. 29, no 1. P. 104–124.

[27] C. Fisk, W. Tait. Skew-symmetric tensor-spinor formulation of the spin 3/2 field. J. Phys. A. 1973. Vol. 6. P. 383–392.
[28] M. Hortacsu. Demonstration of noncausality for the Rarita – Schwinger equation. Phys. Rev. D. 1974. Vol. 9, no 4. P. 928–930.

[29] M. Seetharaman, J. Prabhakaran, P.M. Mathews. Rarita-Schwinger particles in homogeneous magnetic field and inconsistencies of spin 3/2 theories. Phys. Rev. D. 1975. Vol. 12, no 2. P. 458–466.

[30] M. Seetharaman, J. Prabhakaran, P.M. Mathews. Causality and indefiniteness of charge in spin 3/2 field theories. J. Phys. A. 1975. Vol. 8, no 4. P. 560–565.

[31] J. Madore, W. Tait. Propagation of Shock Waves in Higher Spin Wave Equations. Commun. Math. Phys. 1973. Vol. 30, P. 201.

[32] J. Madore. The characteristic surfaces of a classical spin-3/2 field in an Einstein-Maxwell background. Phys. Lett. B. 1975. Vol. 55. P. 217.

[33] A. Hasumi, R. Endo and T. Kimura. Dirac Quantization of Massive Spin 3/2 Particle Coupled with Magnetic Field. J. Phys. Vol. A12, L217 (1979).

[34] L. Lopes, D. Spehler. On the Bargmann-Wigner and Weyl spin-3/2 fields. Lett. Nuovo Cim. 1979. Vol. 26, no 17. P. 567–572.

[35] J.L. Leite, D. Spehler, N. Fleury. Spinor gauge invariance and the wave equation of spin-3/2 field. Lett. Nuovo Cim. 1982. Vol. 35, no 2. P. 60–64.

[36] A. Aurilia, M. Kobayashi, Y. Takahashi. Remarks on the constraint structure and the quantization of the Rarita-Schwinger field. Phys. Rev. D. 1980. Vol. 22, no 6. P. 1368–1374.

[37] K. Inoue, M. Omote and M. Kobayashi. Quantization of a Spin 3/2 Field Interacting with the Electromagnetic Field. Prog. Theor. Phys. 1980. Vol. 63. P. 1413.

[38] R.K. Loide. Equations for a vector-bispinor. J. Phys. A. 1984. Vol. 17, no 12. P. 2535–2550.

[39] R.K. Loide. On conformally covariant spin-3/2 and spin-2 equations. J. Phys. A. 1986. Vol. 19, no 5. P. 827–829.

[40] V.A. Pletjuxov, V.I. Strazhev. To the theory of spin 3/2 particles. Izvestiz Vuzov. Fizika. 1985. Vol. 28, no 1. P. 91–96.

[41] G. Labonté. A relatively simple equation for an antisymmetric tensor spinor field 3/2. Nuovo Cim. A. 1980. Vol. 59, no 3. P. 263–274.

[42] G. Labonté. On two relativistic equations for spin-3/2 tensor spinor fields. Nuovo Cim. A. 1981. Vol. 65, no 1. P. 51–63.

[43] A.Z. Capri, R.L. Kobes. Further problems in spin-3/2 field theories. Phys. Rev. D. 1980. Vol. 22. P. 1967–1978.

[44] A.O. Barut, B.W. Xu. On conformally covariant spin-2 and spin-3/2 equations. J. Phys. A. 1982. Vol. 15, no 4. P. 207–210.
[45] T. Darkhosh. Is there a solution to the Rarita – Schwinger wave equation in the presence of an external electromagnetic field? Phys. Rev. D. 1985. Vol. 32, no 12. P. 3251–3255.

[46] S.D. Rindani, M. Sivakumar. Consistent theory of massive spin 3/2 particle with electromagnetic and gravitational interaction by Kaluza-Klein reduction. J. Phys. G. 1986. Vol. 12. P. 1335.

[47] W. Cox. On the Lagrangian and Hamiltonian constraint algorithms for the Rarita-Schwinger field coupled to an external electromagnetic field. J. Phys. A. 1989. Vol. 22, no 10. P. 1599–1608.

[48] R. Penrose. Twistors as spin 3/2 charges. Gravitation and Modern Cosmology / Eds. A. Zichichi et al., N.Y.: Plenum Press, 1991. P. 129–137.

[49] V. Pascalutsa. Quantization of an Interacting Spin-3/2 Field and the Delta Isobar. Phys. Rev. D58, 096002 (1998) [hep-ph/9802288].

[50] H. Haberzettl. Propagation of a massive spin-3/2 particle // nucl-th/9812043.

[51] V. Pascalutsa. Correspondence of consistent and inconsistent spin-3/2 couplings via the equivalence theorem. Phys. Lett. B. 2001. Vol. 503. P. 85–90; arXiv:hep-ph/0008026.

[52] S. Deser, A. Waldron, V. Pascalutsa. Massive spin-3/2 electrodynamics. Phys. Rev. D. 2000. Vol. 62. Paper 105031; arXiv:hep-th/0003011.

[53] S. Deser, A. Waldron. Inconsistencies of massive charged gravitating higher spins. Nucl.Phys.B. 2002. Vol. 631. P. 369–387; arXiv:hep-th/0112182.

[54] M. Kirchbach, D.V. Ahluwalia. A critique on the supplementary conditions of Rarita-Schwinger framework. arXiv:hep-th/0108030.

[55] A. Gsponer, J.P. Hurni. Lanczos’s equation as a way out of the spin 3/2 crisis? Hadronic Journal. 2003. Vol. 26. P. 327–350; mathph/0210055.

[56] T. Pilling. New symmetry current for massive spin-3/2 fields. Mod. Phys. Lett. A. 2004. Vol. 19. P. 1781.

[57] T. Pilling. New symmetry current for massive spin-3/2 fields Mod. Phys. Lett. A. 2004. Vol. 19. P. 1781; arXiv:hep-ph/0404089.

[58] T. Pilling. Symmetry of massive Rarita-Schwinger fields. Int. J. Mod. Phys. A. 2005. Vol. 20. P. 2715–2742; hep-th/0404131.

[59] A.E. Kaloshin, V.P. Lomov. The Rarita – Schwinger field: dressing procedure and spin-parity content. Phys. Atom. Nucl. 2006. Vol. 69. P. 541–551; Yad. Fiz. 2006. Vol. 69. P. 563–573; hep-ph/0409052.

[60] A.E. Kaloshin, V.P. Lomov. Rarita–Schwinger field and multi-component wave equation. Particles and Nuclei, Letters, 2011. Vol. 8, no 6; arXiv:1107.4445.

[61] M. Napsuciale, M. Kirchbach, S. Rodriguez Spin 3/2 Beyond the Rarita-Schwinger Framework Eur. Phys. J. A 2006. Vol. 29. P. 289–306; arXiv:hep-ph/0606308.