Polynomial Inequalities in Regions Bounded by Piecewise Asymptotically Conformal Curve with Nonzero Angles in the Bergman Space

G. A. ABDULLAYEV¹⁺, F. G. ABDULLAYEV¹,²⁺⁺ and A. TAYLAKOVA²

¹Mersin University, Mersin, Turkey
²Kyrgyz-Turkish Manas University, Bishkek, Kyrgyzstan
Email: *gulnareabdullah@mersin.edu.tr, **fabul@mersin.edu.tr, ***fahreddinabdullayev@gmail.com

Abstract We continue the study of estimates of algebraic polynomials in regions bounded by a piecewise asymptotically conformal curve with interior non-zero angles in the weighted Bergman space.

Keywords: Algebraic polynomials, Conformal mapping, Asymptotically conformal curve.

Prim.30A10, 30C10, Sec.41A17

1 Introduction and Main Results

Let \(G \subset \mathbb{C} \) be a finite region, with \(0 \in G \), bounded by a Jordan curve \(L := \partial G, \Omega := \text{ext} L := \overline{\mathbb{C}} \setminus G \), where \(\overline{\mathbb{C}} := \mathbb{C} \cup \{ \infty \} \), \(\Delta := \{ w : |w| > 1 \} \) and let \(\wp_n \) denote the class of arbitrary algebraic polynomials \(P_n(z) \) of degree at most \(n \in \mathbb{N} \).

Let \(w = \Phi(z) \) be the univalent conformal mapping of \(\Omega \) onto the \(\Delta \) normalized by \(\Phi(\infty) = \infty \), \(\lim_{z \to \infty} \frac{\Phi(z)}{z} > 0 \), and \(\Psi := \Phi^{-1} \). For \(t \geq 1 \), \(z \in \mathbb{C} \), we set:

\[
L_t := \{ z : |\Phi(z)| = t \} \quad (L_1 \equiv \Omega), \quad G_t := \text{int} L_t, \quad \Omega_t := \text{ext} L_t.
\]

Let \(\{ z_j \}_{j=1}^m \) be a fixed system of distinct points on curve \(L \), located in the positive direction. For some fixed \(R_0 \), \(1 < R_0 < \infty \), and \(z \in G_{R_0} \), consider a so-called generalized Jacobi weight function \(h(z) \) being defined as follows:

\[
h(z) := h_0(z) \prod_{j=1}^m |z - z_j|^\gamma_j, \quad z \in G_{R_0}, \tag{1.1}
\]

where \(\gamma_j > -2 \), for all \(j = 1, 2, \ldots, m \), and the function \(h_0 \) is uniformly separated from zero in \(G_{R_0} \), i.e. there exists a constant \(c_0 := c_0(G_{R_0}) > 0 \) such that, for all \(z \in G_{R_0} \)

\[
h_0(z) \geq c_0 > 0.
\]

For any \(p > 0 \) and for Jordan region \(G \), let's define:

\[
\| P_n \|_p := \| P_n \|_{A_p(h,G)} := \left(\int_G h(z) |P_n(z)|^p \, d\sigma_z \right)^{1/p} < \infty, \quad 0 < p < \infty; \tag{1.2}
\]

\[
\| P_n \|_\infty := \| P_n \|_{A_{\infty}(1,G)} := \| P_n \|_{C(\overline{G})}, \quad p = \infty,
\]

where \(\sigma_z \) is the two-dimensional Lebesgue measure.

In this work, we continue the study of the following Nikolskii-type inequality:

\[
\| P_n \|_\infty \leq c_1 \lambda_n(G,h,p) \| P_n \|_p, \tag{1.3}
\]

** Corresponding Author
where $c_1 = c_1(G, h, p) > 0$ is a constant independent of n and P_1, and $\lambda_n(G, h, p) \to \infty$, $n \to \infty$, depending on the geometrical properties of region G, weight function h and of p. The estimate of (1.3)-type for some (G, p, h) was investigated in [27, pp.122-133], [17], [26, Sect.5.3], [32], [15], [2]-[8] (see, also, references therein) and others. Further, analogous of (1.3) for some regions and the weight function $h(z)$ were obtained: in [8] for $p > 1$ and for regions bounded by piecewise Dini-smooth boundary without cusps; in [11] for $p > 0$ and for regions bounded by quasiconformal curve; in [7] for $p > 1$ and for regions bounded by piecewise smooth curve without cusps; in [10] for $p > 0$ and for regions bounded by asymptotically conformal curve; in [16] for $p > 0$ and for regions bounded by piecewise smooth curves with interior (zero or nonzero) angles, in [12] for $p > 0$ and for regions bounded by piecewise asymptotically conformal curve having cusps and others.

In this work, we investigate similar problems for $z \in G$ in regions bounded by piecewise asymptotically conformal curves having interior nonzero zero angles and for weight function $h(z)$, defined in (1.1) and for $p > 0$.

Now, we begin to give some definitions and notations.

Following [24, p.97], [28], the Jordan curve (or arc) L is called K-quasiconformal ($K \geq 1$), if there is a K-quasiconformal mapping f of the region $D \supset L$ such that $f(L)$ is a circle (or line segment).

Let S be a Jordan curve and $z = z(s), s \in [0, |S|], |S| := mes S$, denote the natural representation of S. Let $z_1, z_2 \in S$ be an arbitrary points and $S(z_1, z_2) \subset S$ denotes the subarc of S of shorter diameter with endpoints z_1 and z_2. The curve S is a quasicircle if and only if the quantity

$$ \sup_{z_1, z_2 \in L; z \in S(z_1, z_2)} \frac{|z_1 - z| + |z_2 - z|}{|z_1 - z_2|} $$

is bounded. Following to Lesley [25], the curve S to be said "c-quasiconformal", if the quantity (1.4) bounded by positive constant c, independent from points z_1, z_2 and z. At the literature it is possible to find various functional definitions of the quasiconformal curves (see, for example, [29, pp.286-294], [24, p.105], [13, p.81], [30, p.107]).

The Jordan curve S is called asymptotically conformal [19], [30], if

$$ \sup_{z_1, z_2 \in S; z \in S(z_1, z_2)} \frac{|z_1 - z| + |z_2 - z|}{|z_1 - z_2|} \to 1, \quad |z_1 - z_2| \to 0. $$

We will denote this class as AC, and will write $G \in AC$, if $L := \partial G \in AC$.

The asymptotically conformal curves occupy a special place in the problems of the geometric theory of functions of a complex variable. These curves in various problems have been studied by Anderson, Becker and Lesley [14], Dynkin [20], Pommerenke, Warschawski [31], Gutlyanskii, Ryazanov [21], [22], [23] and others. According to the geometric criteria of quasiconformality of the curves ([13, p.81], [30, p.107]), every asymptotically conformal curve is a quasicircle. Every smooth curve is asymptotically conformal but corners are not allowed. It is well known that quasicircles can be non-rectifiable (see, for example, [18], [24, p.104]). The same is true for asymptotically conformal curves.

A Jordan arc ℓ is called asymptotically conformal arc, when ℓ is a part of some asymptotically conformal curve.

Now, we define a new class of regions bounded by piecewise asymptotically conformal curve having exterior nonzero "angles" at the connecting points of boundary arcs.

Throughout this work, we will assume that $p > 0$ and the constants c, c_0, c_1, c_2, \ldots are positive and constants e_0, e_1, e_2, \ldots are sufficiently small positive (generally, are different in different relations), which depends on G in general and, on parameters inessential for the argument, otherwise, the dependence will be explicitly stated. Also note that, for any $k \geq 0$ and $m > k$, notation $j = k, m$ denotes $j = k, k+1, \ldots, m$.

Now, let's introduce "special angles" on L.

Definition 1.1. We say that a Jordan region $G \in \text{PAC}(\nu_1, \ldots, \nu_m)$, $0 < \nu_j < 2$, $j = \overline{1, m}$, if $L := \partial G$ consists of the union of finite asymptotically conformal arcs $\{L_j\}_{j=1}^m$, connected at the points $\{z_j\}_{j=1}^m$ in L such that in z_0-L locally asymptotically conformal and for any $z_j \in L, j = \overline{1, m}$, where two arcs L_{j-1} and L_j meet, there exist $r_j := r_j(L, z_j) > 0$ and $\nu_j := \nu_j(L, z_j)$, $0 < r_j < 2$, such that for some $0 \leq \theta_0 < 2$ a closed maximal circular sector $S(z_j; r_j, \nu_j) := \{\zeta : |z_j - z_j| + r_j e^{i\theta_j}, \theta_0 \leq \theta < \theta_0 + \nu_j\}$ of radius r_j and opening $\nu_j \pi$ lies in $G = \text{int}L$ with vertex at z_j. AAN
Clearly, that $PAC(\nu_1) \subset PAC(\nu_2)$, if $\nu_2 \geq \nu_1$.

Definition 1.2. We say that a Jordan region $G \in PAC(\nu)$, if $G \in PAC(\nu_1, \ldots, \nu_m)$, $0 < \nu_j < 2$, $j = \overline{1,m}$, where $\nu = \min(\nu_j : 0 < \nu_j < 2$, $j = \overline{1,m})$.

It is clear from Definition 1.1 (1.2), that each region $G \in PAC(\nu_1, \ldots, \nu_m)$, $0 < \nu_1, \ldots, \nu_m < 2$, $(G \in PAC(\nu))$ may have 'singularity' at the boundary points $\{z_i\}_{i=1}^m \in L$. If it does not have such 'singularity' (in this case we put $\tilde{\nu}$).

Remark 1.1. $(\cite{9, Theorem 1.15}, \cite{2})$ For any $G \in \nu_n$, $n \in N$, and arbitrarily small $\varepsilon > 0$, there exists $c_1 = c_1(G, p, \gamma_j) > 0$ such that

$$\|P_n\|_\infty \leq c_1(1 + 1)\frac{\gamma_j}{2-\gamma_j} + \nu \|P_n\|_p,$$

where $\tilde{\gamma} = \max \{0, \gamma_i\}$ and $\tilde{\nu} = \min \{\nu_i\}$, $i = \overline{1,m}$.

Theorem 1.2. Let $p > 0$. Suppose that $G \in PAC(\nu_1, \ldots, \nu_m)$ for some $0 < \nu_1, \ldots, \nu_m < 1$; $h(z)$ defined as in (1.1). Then, for any $P_n \in \nu_n$, $n \in N$, and arbitrarily small $\varepsilon > 0$, there exists $c_2 = c_2(G, p, \gamma_j) > 0$ such that

$$|P_n(z)| \leq c_2\mu_n \|P_n\|_p,$$

where

$$\mu_n := \begin{cases} n^{(2+\gamma_j)(2-\gamma_j)} + \varepsilon, & \text{if } \gamma_j > \frac{1}{2-\gamma_j} - 2 - \varepsilon, \\ (n \ln n)^{\frac{\gamma_j}{2}}, & \text{if } \gamma_j = \frac{1}{2-\gamma_j} - 2 - \varepsilon, \\ n^{\frac{1}{\gamma_j}}, & \text{if } 2 < \gamma_j < \frac{1}{2-\gamma_j} - 2 - \varepsilon. \end{cases}$$

The sharpness of the estimations (1.6) and (1.7) can be discussed by comparing them with the following result:

Remark 1.1. $(\cite{9, Theorem 1.15}, \cite{2})$ For any $n \in N$ there exists a polynomials $Q^*_n, T^*_n \in \nu_n$ such that for unit disk B and weight function $h^*(z) = |z - 1|^2$ the following is true:

$$|Q^*_n(z)| \geq c_6n \|Q^*_n\|_{A_2(B)}, \text{ for all } z \in B;$$

$$|T^*_n(z)| \geq c_7n^2 \|T^*_n\|_{A_2(h^*, B)}.$$
According to Cauchy integral representation for the unbounded region

According to (3.1) - (3.5), we have:

The function

Then, for each

and let

Suppose that

Proof. Let us set:

and for this branch, we maintain the same designation.

For any

let us set:

The function

is analytic in \(\Omega \), continuous on \(\overline{\Omega} \), \(Q_{n,p}(\infty) = 0 \) and does not have zeros in \(\Omega \). We take an arbitrary continuous branch of the \(Q_{n,p}(z) \) and for this branch, we maintain the same designation. According to Cauchy integral representation for the unbounded region \(\Omega \), we have:

According to (3.1) - (3.5), we have:

\[
|P_n(z)|^{p/2} \leq \frac{B_m(z)\Phi^{n+1}(z)}{2\pi d(z,\Omega_{R_1})} \int_{L_{R_1}} \left| \frac{P_n(\zeta)}{B_m(\zeta)\Phi^{n+1}(\zeta)} \right|^{p/2} |d\zeta| \leq \frac{\Phi^{n+1}(z)}{\zeta - z}, \quad z \in \Omega_{R_1}.
\]
Advances in Analysis, Vol. 3, No. 4, October 2018

According to Lemma 2.3, for we obtain:

\[
\left(\int_{|t|=R_1} |P_n(\zeta)|^2 \, |d\zeta| \right) \leq \int_{|t|=R_1} h(\Psi(t)) \left| P_n(\Psi(t)) \right| |\Psi'(t)|^2 \, |dt| \cdot \int_{|t|=R_1} \frac{|dt|}{h(\Psi(t)) |\Psi(t) - \Psi(w)|^2} \tag{3.8}
\]

\[
\leq \int_{|t|=R_1} h(\Psi(t)) \left| P_n(\Psi(t)) \right| |\Psi'(t)|^2 \, |dt| \cdot \int_{|t|=R_1} \frac{|dt|}{h(\Psi(t)) |\Psi(t) - \Psi(w)|^2}
\]

\[= \int_{|t|=R_1} |f_{n,p}(t)|^p \, |dt| \cdot \int_{|t|=R_1} \frac{|dt|}{h(\Psi(t)) |\Psi(t) - \Psi(w)|^2} =: A_n \cdot D_n(w),
\]

where \(f_{n,p}(t) := \frac{1}{h(\Psi(t))} P_n(\Psi(t)) |\Psi'(t)|^\frac{p-2}{2}, \quad |t| = R_1. \)

For the estimate integral \(A_n \), we divide the circle \(|t| = R_1\) into \(n \) equal parts \(\delta_n \) with \(\text{mes} \delta_n = \frac{2\pi R_1}{n} \) and by applying the mean value theorem, we get:

\[A_n := \int_{|t|=R_1} |f_{n,p}(t)|^p \, |dt| = \frac{n}{\delta_n} \sum_{k=1}^n |f_{n,p}(t_k')|^p \text{mes} \delta_k, \quad t_k' \in \delta_k.
\]

On the other hand, by applying mean value estimation

\[|f_{n,p}(t_k')|^p \leq \frac{1}{\pi \left(|t_k'|-1 \right)^2} \int_{|\xi|<|t_k'|-1} |f_{n,p}(\xi)|^p \, d\sigma_\xi,
\]

we obtain:

\[(A_n)^2 \leq \frac{n}{\delta_n} \sum_{k=1}^n \frac{\text{mes} \delta_k}{\pi \left(|t_k'|-1 \right)^2} \int_{|\xi|<|t_k'|-1} |f_{n,p}(\xi)|^p \, d\sigma_\xi, \quad t_k' \in \delta_k.
\]

By taking into account, at most two of the discs with center \(t_k' \) are intersecting, we have:

\[A_n \leq \frac{n \text{mes} \delta_1}{\left(|t_1'|-1 \right)^2} \int_{1<|\xi|<R} |f_{n,p}(\xi)|^p \, d\sigma_\xi \leq n \int_{1<|\xi|<R} |f_{n,p}(\xi)|^p \, d\sigma_\xi.
\]

According to Lemma 2.3, for \(A_n \) we get:

\[A_n \leq n \int_{G_n \setminus G} h(\zeta) |P_n(\zeta)|^p \, d\sigma_\zeta \leq n \cdot \|P_n\|^p.
\]

To estimate the integral \(D_n(w) \), denoted by \(w_j := \Phi(z_j), \varphi_j := \text{arg} \, w_j, \) for any fixed \(\rho > 1 \), we introduce:

\[
\Delta_1(\rho) := \left\{ t = re^{i\theta} : r > \rho, \, \frac{\varphi_0 + \varphi_1}{2} \leq \theta < \frac{\varphi_1 + \varphi_2}{2} \right\},
\]

\[
\Delta_2(\rho) := \left\{ t = re^{i\theta} : r > \rho, \, \frac{\varphi_1 + \varphi_2}{2} \leq \theta < \frac{\varphi_1 + \varphi_0}{2} \right\};
\]

\[
\Delta_j := \Delta_j(1), \, \Omega_j := \Psi(\Delta_j), \, \Omega_j^\rho := \Psi(\Delta_j(\rho));
\]

\[L_{\rho} := L \cap \overline{T}_{\rho}^j, \, L_{\rho} := L_{\rho} \cap \overline{T}_{\rho}^j, \quad j = 1, 2; \, L = L^1 \cup L^2, \, L_{\rho} = L_{\rho}^1 \cup L_{\rho}^2.
\]
Under these notations, from (3.8) for the $D_n(w)$, we get:

$$D_n(w) = \int_{|t|=R_1} \frac{|dt|}{\pi(\Psi(t)) |\Psi(t) - \Psi(w)|^2}$$

$$= \sum_{j=1}^{2} \int_{\Phi(L_{R_1}^j)} \frac{|dt|}{\prod_{j=1}^{2} |\Psi(t) - \Psi(w_j)|^{\gamma_j} |\Psi(t) - \Psi(w)|^2}$$

$$= \sum_{j=1}^{2} \int_{\Phi(L_{R_1}^j)} \frac{|dt|}{\prod_{j=1}^{2} |\Psi(t) - \Psi(w_j)|^{\gamma_j} |\Psi(t) - \Psi(w)|^2} = : \sum_{j=1}^{2} D_{n,j}(w),$$

since the points $\{z_j\}_{j=1}^{2} \in L$ are distinct. So, we need to evaluate the $D_{n,j}(w)$. For this, we take $z \in L_R$ and introduce the notations:

$$\Phi(L_{R_1}) = \Phi(\bigcup_{j=1}^{2} L_{R_1}^j) = \bigcup_{j=1}^{2} \Phi(L_{R_1}^j) = \bigcup_{j=1}^{2} \bigcup_{i=1}^{2} K_{i}^j(R_1),$$

where

$$K_{1}^j(R_1) := \left\{ t \in \Phi(L_{R_1}^j) : |t - w_j| < c_1 \right\}$$

$$K_{2}^j(R_1) := \Phi(L_{R_1}^j) \setminus K_{1}^j(R_1), \quad j = 1, 2.$$

Analogously,

$$\Phi(L_R) = \Phi(\bigcup_{j=1}^{2} L_{R}^j) = \bigcup_{j=1}^{2} \Phi(L_{R}^j) = \bigcup_{j=1}^{2} \bigcup_{i=1}^{2} K_{i}^j(R),$$

where

$$K_{1}^j(R) := \left\{ t \in \Phi(L_{R}^j) : |\tau - w_j| < 2c_1 \right\}$$

$$K_{2}^j(R) := \Phi(L_{R}^j) \setminus K_{1}^j(R), \quad j = 1, 2.$$

Then, after these definitions, taking arbitrary fixed $w = \Phi(z) \in \Phi(L_R)$, the quantity $D_{n,j}(w)$ can be written as follows:

$$D_{n,j}(w) = \sum_{i=1}^{2} \int_{K_{i}^j(R_1)} \frac{|dt|}{|\Psi(t) - \Psi(w_j)|^{\gamma_j} |\Psi(t) - \Psi(w)|^2} = : \sum_{i=1}^{2} D_{n,i,j}(w)$$

(3.13)

The quantity $D_{n,j}^i(w)$ we shall estimate for each $i = 1, 2$ and $j = 1, 2$ in cases separately, depending of location of the $w \in \Phi(L_R)$. Let $\varepsilon > 0$ arbitrary small fixed number.

Case 1. Let $w \in \Phi(L_{R_1}^j)$.

According to the above notations, we will make evaluations for case $w \in K_{1}^i(R)$ for each $i = 1, 2, 3$. 1.1) Let $w \in K_{1}^1(R)$. In this case, we will estimate the quantity

$$D_{n,1}(w) = \sum_{i=1}^{2} \int_{K_{i}^1(R_1)} \frac{|dt|}{|\Psi(t) - \Psi(w_j)|^{\gamma_j} |\Psi(t) - \Psi(w)|^2} = : \sum_{i=1}^{2} D_{n,1,i}(w)$$

(3.14)

for $\gamma_1 \geq 0$ and $\gamma_1 < 0$ separately.

For each $i = 1, 2$ and $j = 1, 2$ we put: $K_{i,1}^j(R_1) := \left\{ t \in \Phi(L_{R_1}^j) : |t - w_j| \geq |t - w| \right\}$, $K_{i,2}^j(R_1) := K_{i}^j(R_1) \setminus K_{i,1}^j(R_1)$. 148

AAN Copyright © 2018 Isaac Scientific Publishing
1.1.1) If $\gamma_1 \geq 0$, then

$$D_{n,1}^1(w) = \int_{K_1^1(R_1)} \frac{|dt|}{|\Psi(t) - \Psi(w_1)|^{2+\gamma_1} |\Psi(t) - \Psi(w)|^{2}}$$ \hspace{1cm} (3.15)$$

$$= \int_{K_1^1(R_1)} \frac{|dt|}{|\Psi(t) - \Psi(w)|^{2+\gamma_1}} + \int_{K_2^1(R_1)} \frac{|dt|}{|\Psi(t) - \Psi(w_1)|^{2+\gamma_1}}$$

$$= : D_{n,1}^{1,1}(w) + D_{n,1}^{1,2}(w).$$

Since $G \in PAC(\nu_1, \nu_2)$ for some $0 < \nu_1, \nu_2 < 1$, according to [25], $\psi \in Lip_\nu$ and $\Phi \in Lip_{\frac{1}{2-\nu_i}}$, $i = 1, 2$, in a some fixed neighborhood of point z_j. Therefore, we get:

$$D_{n,1}^{1,1}(w) \leq \int_{K_1^1(R_1)} \frac{|dt|}{|t - w|^{2+\gamma_1}(2-\nu_1)} \leq n^{(2+\gamma_1)(2-\nu_1)-1},$$ \hspace{1cm} (3.16)$$

and

$$D_{n,1}^{1,2}(w) \leq \int_{K_1^1(R_1)} \frac{|dt|}{|t - w_1|^{2+\gamma_1}(2-\nu_1)} \leq n^{(2+\gamma_1)(2-\nu_1)-1},$$ \hspace{1cm} (3.17)$$

If $\gamma_1 < 0$, then

$$D_{n,1}^1(w) = \int_{K_1^1(R_1)} \frac{|\Psi(t) - \Psi(w_1)|^{(-\gamma_1)} |dt|}{|\Psi(t) - \Psi(w)|^{2}}$$ \hspace{1cm} (3.18)$$

$$\leq \int_{K_1^1(R_1)} \frac{|dt|}{|t - w|^{2-\nu_1}} \leq \int_{K_1^1(R_1)} \frac{|dt|}{|t - w|^{2-\nu_1}}$$

$$\leq n^{2(2-\nu_1)-1}.$$ \hspace{1cm} (3.19)$$

1.1.2) If $\gamma_1 \geq 0$, then

$$D_{n,1}^2(w) = \int_{K_2^1(R_1)} \frac{|dt|}{|\Psi(t) - \Psi(w_1)|^{2+\gamma_1} |\Psi(t) - \Psi(w)|^{2}}$$ \hspace{1cm} (3.20)$$

$$= \int_{K_1^1(R_1)} \frac{|dt|}{|\Psi(t) - \Psi(w)|^{2+\gamma_1}} + \int_{K_2^1(R_1)} \frac{|dt|}{|\Psi(t) - \Psi(w_1)|^{2+\gamma_1}}$$

$$= : D_{n,1}^{2,1}(w) + D_{n,1}^{2,2}(w).$$

and, so from Lemma 2.1 and 2.2, we get:

$$D_{n,1}^{2,1}(w) \leq \int_{K_2^1(R_1)} \frac{|dt|}{|t - w_1|^{2+\gamma_1}(2-\nu_1)} \leq n^{(2+\gamma_1)(2-\nu_1)-1},$$ \hspace{1cm} (3.21)$$

and

$$D_{n,1}^{2,2}(w) \leq 1.$$ \hspace{1cm} (3.22)$$

Therefore, from (3.19)-(3.21) for $\gamma_1 \geq 0$, we have:

$$D_{n,1}^2(w) \leq n^{(2+\gamma_1)(2-\nu_1)-1},$$ \hspace{1cm} (3.23)$$

For $\gamma_1 < 0$ from (3.14), we have:

$$D_{n,1}^2(w) = \int_{K_2^1(R_1)} \frac{|\Psi(t) - \Psi(w_1)|^{(-\gamma_1)} |dt|}{|\Psi(t) - \Psi(w)|^{2}}$$ \hspace{1cm} (3.24)$$
where \(R > \phi \).

Proof. Suppose that \(w \in K^1_2(R) \).

1.2) Let \(w \in K^1_2(R) \).

1.2.1) For any \(\gamma_1 > -2 \)

\[
D^1_{n,1}(w) = \int_{K^1_1(R)} \frac{|dt|}{|t-w|^2(1+\varepsilon)} \leq n^{1+\varepsilon}, \quad \forall \varepsilon > 0.
\]

(3.24)

and so, according to Lemmas 2.1 and 2.2, we obtain:

\[
D^1_{n,1}(w) \leq \int_{K^1_1(R)} \frac{|dt|}{|\Psi(t) - \Psi(w)|^{2+\gamma_1}} \leq 1,
\]

and

\[
D^1_{n,1}(w) \leq \int_{K^1_1(R)} \frac{|dt|}{|t-w|^{(2+\gamma_1)(2-\nu_1)}} \leq n^{(2+\gamma_1)(2-\nu_1)-1}.
\]

(3.25)

and

\[
\begin{align*}
D^2_{n,1}(w) &\leq \int_{K^1_1(R)} \frac{|dt|}{|\Psi(t) - \Psi(w)|^{2+\gamma_1}} + \int_{K^1_1(R)} \frac{|dt|}{|\Psi(t) - \Psi(w_1)|^{2+\gamma_1}} \leq n^{(2+\gamma_1)(1+\varepsilon)} - 1, \\
&\leq \int_{K^1_1(R)} \frac{|dt|}{|t-w|^{(2+\gamma_1)(1+\varepsilon)}} + 1 \leq n^{(2+\gamma_1)(1+\varepsilon)} - \varepsilon, \quad \forall \varepsilon > 0.
\end{align*}
\]

Combining estimates (3.14)-(3.26), for \(w \in \Phi(L_R) \), we have:

\[
D_{n,1} \leq n^{(2+\tilde{\gamma}_1)(2-\nu_1)-1+\varepsilon}, \quad \tilde{\gamma}_1 := \max \{0; \gamma_1\}.
\]

(3.27)

Case 2. Let \(w \in \Phi(L_R^\nu) \). Analogously to the Case 1, we will obtain estimates for \(w \in K^2_2(R) \) and \(w \in K^1_2(R) \)

\[
D_{n,2}(w) \leq n^{(2+\gamma_2)(2-\nu_2)-1+\varepsilon}, \quad \tilde{\gamma}_2 := \max \{0; \gamma_2\}
\]

(3.28)

Therefore, comparing relations (3.11), (3.13), (3.27) and (3.28), we have:

\[
D_{n}(w) \leq n^{(2+\tilde{\gamma}_1)(2-\nu_1)-1} + n^{(2+\tilde{\gamma}_2)(2-\nu_2)-1},
\]

(3.29)

where \(\tilde{\gamma}_1 \) and \(\tilde{\gamma}_2 \) defined as in (3.27) and (3.28).

Now, from (3.7), (3.8), (3.9) and (3.29), for any \(z \in L_R \), we get:

\[
|P_n(z)| \leq [n^{(2+\tilde{\gamma}_1)(2-\nu_1)} + n^{(2+\tilde{\gamma}_2)(2-\nu_2)}] \|P_n\|_p
\]

Since this estimate holds for any \(z \in L_R \), then it is also true for \(z \in \overline{G} \). Therefore, we complete the proof of theorem.

3.2 Proof of Theorem 1.2

Proof. Suppose that \(G \in \text{PAC}(\nu_1, \nu_2) \) for some \(0 < \nu_1, \nu_2 < 1 \) and \(h(z) \) is defined as in (1.1). For each \(R > 1 \), let \(w = \varphi_R(z) \) denote a univalent conformal mapping \(G_R \) onto the \(B \), normalized by \(\varphi_R(0) = 0, \varphi_R'(0) > 0 \), and let \(\{\zeta_j\}, 1 \leq j \leq m \leq n \), be a zeros of \(P_n(z) \) (if any exist) lying on \(G_R \).

Let

\[
b_{m,R}(z) := \prod_{j=1}^{m} \tilde{g}_{j,R}(z) = \prod_{j=1}^{m} \frac{\varphi_R(z) - \varphi_R(\zeta_j)}{1 - \varphi_R(\zeta_j)\varphi_R(z)},
\]

(3.30)
denote a Blaschke function with respect to zeros \(\{ \zeta_j \} \), \(1 \leq j \leq m \leq n \), of \(P_n(z) \) \((33)\). Clearly,

\[
|b_{m,R}(z)| \equiv 1, \ z \in L_R, \ \text{and} \ |b_{m,R}(z)| < 1, \ z \in G_R. \tag{3.31}
\]

For any \(p > 0 \) and \(z \in G_R \), let us set

\[
T_{n,p}(z) := \left[\frac{P_n(z)}{b_{m,R}(z)} \right]^{p/2}. \tag{3.32}
\]

The function \(T_{n,p}(z) \) is analytic in \(G_R \), continuous on \(\overline{G}_R \) and does not have zeros in \(G_R \). We take an arbitrary continuous branch of the \(T_{n,p}(z) \) and for this branch we maintain the same designation. Then, the Cauchy integral representation for the \(T_{n,p}(z) \) at the \(z = z_1 \) gives:

\[
T_{n,p}(z_1) = \frac{1}{2\pi i} \int_{L_R} T_{n,p}(\zeta) \frac{d\zeta}{\zeta - z_1}.
\]

Then, according to (3.31), we obtain:

\[
|P_n(z_1)|^{p/2} \leq \frac{|b_{m,R}(z_1)|^{p/2}}{2\pi} \int_{L_R} \left| \frac{P_n(\zeta)}{b_{m,R}(\zeta)} \right|^{p/2} \frac{|d\zeta|}{|\zeta - z_1|} \tag{3.33}
\]

Multiplying the numerator and the denominator of the last integrand by \(h^{1/2}(\zeta) \), replacing the variable \(w = \Phi(z) \) and applying the Hölder inequality, we obtain:

\[
\left(\int_{L_R} \left| P_n(\zeta) \right|^2 \frac{|d\zeta|}{|\zeta - z_1|} \right)^2 \leq \int_{|t|=R} h(\Psi(t)) |P_n(\Psi(t))|^p |\Psi'(t)|^2 |dt| \cdot \int_{|t|=R} \frac{|dt|}{h(\Psi(t)) |\Psi(t) - \Psi(w_1)|^2}
\]

\[
= \int_{|t|=R} |f_{n,p}(t)|^p |dt| \cdot \int_{|t|=R} \frac{|dt|}{h(\Psi(t)) |\Psi(t) - \Psi(w_1)|^2},
\]

where \(f_{n,p}(t) \) has been defined as in (3.8). Since \(R > 1 \) is arbitrary, then (3.34) holds also for \(R = R_1 := 1 + \frac{\varepsilon_1}{n}, \ 0 < \varepsilon_1 < 1 \). So, we have:

\[
\left(\int_{L_{R_1}} \left| P_n(\zeta) \right|^2 \frac{|d\zeta|}{|\zeta - z_1|} \right)^2 \leq \int_{|t|=R_1} |f_{n,p}(t)|^p |dt| \cdot \int_{|t|=R_1} \frac{|dt|}{h(\Psi(t)) |\Psi(t) - \Psi(w_1)|^2}
\]

\[
= : A_n \cdot D_n(w_1),
\]

and, \(A_n \) and \(D_n(w_j) \) have been defined as in (3.8) for \(R = R_1 \). Therefore, from (3.33) and (3.35), we have:

\[
|P_n(z_1)| \leq A_n \cdot D_n(w_1), \tag{3.36}
\]

where, according to (3.9), the estimate

\[
A_n \leq n \cdot \|P_n\|_p
\]
is satisfied. For the estimate of the quantity $D_n(w_1)$ we use the notations at the estimation of the $D_n(w)$ as in (3.11)-(3.13). Therefore, under these notations, for the $D_n(w_1)$, we get:

$$D_n(w_1) \leq \int_{\phi(L_n')} \frac{|dt|}{|\Psi(t) - \Psi(w_1)|^{2+\gamma_1}} \tag{3.37}$$

$$\leq \sum_{i=1}^{2} \int_{K_i'(L_n')} \frac{|dt|}{|\Psi(t) - \Psi(w_1)|^{2+\gamma_1}} = \sum_{i=1}^{2} D^i_{n,1}(w_1).$$

So, we need to evaluate the $D^i_{n,1}(w_1)$ for each $i = 1, 2$. We have:

$$D^1_{n,1}(w_1) = \int_{K_1'(L_n')} \frac{|dt|}{|\Psi(t) - \Psi(w_1)|^{2+\gamma_1}} \tag{3.38}$$

$$\leq \int_{K_1'(L_n')} \frac{|dt|}{|t - w_1|^{2+\gamma_1}(2-\nu_1)} \leq \left\{ \begin{array}{ll}
n(2+\gamma_1)(2-\nu_1)-1, & \text{if } (2 + \gamma_1)(2 - \nu_1) > 1, \\
\ln n, & \text{if } (2 + \gamma_1)(2 - \nu_1) = 1, \\
1, & \text{if } (2 + \gamma_1)(2 - \nu_1) < 1,
\end{array} \right.$$

and

$$D^2_{n,1}(w_1) = \int_{K_2'(L_n')} \frac{|dt|}{|\Psi(t) - \Psi(w_1)|^{2+\gamma_1}} \leq \int_{K_2'(L_n')} \frac{|dt|}{|t - w_1|^{2+\gamma_1+\varepsilon}} \leq n(2+\gamma_1)(1+\varepsilon)-1. \tag{3.39}$$

Combining relations (3.37) - (3.39), we have:

$$D_n(w_1) \leq \left\{ \begin{array}{ll}
n(2+\gamma_1)(2-\nu_1)-1+\varepsilon, & \text{if } (2 + \gamma_1)(2 - \nu_1) > 1 - \varepsilon, \\
\ln n, & \text{if } (2 + \gamma_1)(2 - \nu_1) = 1 - \varepsilon, \\
1, & \text{if } (2 + \gamma_1)(2 - \nu_1) < 1 - \varepsilon,
\end{array} \right. \tag{3.40}$$

From the estimations (3.36) and (3.40), we obtain:

$$|P_n(z_1)| \leq \left\{ \begin{array}{ll}
n^{(2+\gamma_1)(2-\nu_1) \frac{1}{p}} + \varepsilon, & \text{if } (2 + \gamma_1)(2 - \nu_1) > 1 - \varepsilon, \\
(n \ln n)^{\frac{1}{p}}, & \text{if } (2 + \gamma_1)(2 - \nu_1) = 1 - \varepsilon, \\
n^{\frac{1}{p}}, & \text{if } (2 + \gamma_1)(2 - \nu_1) < 1 - \varepsilon,
\end{array} \right.$$

and we complete the proof of theorem. \qed

Acknowledgments. This work is supported by KTMU Project No: 2016 FBE 13.

References

1. F.G. Abdullayev, V.V. Andrievskii, On the orthogonal polynomials in the domains with K-quasiconformal boundary. Izv. Akad. Nauk Azerb. SSR., Ser. FTM, no.1, pp.3-7, 1983.
2. F.G. Abdullayev, On the some properties of the orthogonal polynomials over the region of the complex plane (Part I), Ukr.Math.J., vol. 52, no.12, pp. 1807-1821, 2000.
3. F.G. Abdullayev, On the some properties of the orthogonal polynomials over the region of the complex plane (Part II), Ukr.Math.J., vol. 53, no. 1, pp. 1-14, 2001.
4. F.G. Abdullayev, On the some properties of the orthogonal polynomials over the region of the complex plane (Part III), Ukr.Math.J., vol. 53, no. 12, pp. 1934-1948, 2001.
5. F.G. Abdullayev, The properties of the orthogonal polynomials with weight having singularity on the boundary contour, J. of Comp. Anal. and Appl., vol. 6, no. 1, pp. 43-59, 2004.
6. F.G. Abdullayev, U. Deger, On the orthogonal polynomials with weight having singularity on the boundary of regions of the complex plane, Bull. Belg. Math. Soc., vol. 16, no. 2, pp. 235-250, 2009.
7. F. G. Abdullayev, C.D. Gün, On the behavior of the algebraic polynomials in regions with piecewise smooth boundary without cusps, Ann. Polon. Math., vol. 111, pp. 39-58, 2014.
8. F. G. Abdullayev, N.P. Özkartepe, On the Behavior of the Algebraic Polynomial in Unbounded Regions with Piecewise Dm-Smooth Boundary, Ukr. Math. J., vol. 66, no. 5, pp. 579-597, 2014.
9. F. G. Abdullayev, N.P. Özkartepe, Uniform and pointwise Bernstein-Walsh-type inequalities on a quasidisk in the complex plane, Bull. Belg. Math. Soc., vol. 23, no. 2, pp. 285-310, 2016.
10. F.G. Abdullayev, T. Tunç, Uniform and pointwise polynomial inequalities in regions with asymptotically conformal curve on weighted Bergman space, Lobachevski Journal of Mathematics, vol. 38, no. 2, pp. 193-205, 2017.
11. F.G. Abdullayev, T. Tunç, G. A. Abdullahayev, Polynomial inequalities in quasidisks on weighted Bergman space, Ukr. Math. J., vol. 69, no. 5, pp. 675–695, 2017.
12. F.G. Abdullayev, D. Şimşek, N. Saypidinova and Z. Tashpaeva, Polynomial Inequalities in Regions with Piecewisely Asymptotically Conformal Curve in the Weighted Lebesgue Space, Advances in Analysis, vol. 3, no. 2, pp. 100-112. 2018.
13. L. Ahlfors, Lectures on Quasiconformal Mappings. Princeton, NJ: Van Nostrand, 1966.
14. J. M. Anderson, J. Becker, F. D. Lesley, Boundary values of asymptotically conformal mapping, J. London Math. Soc., vol. 38, no. 2, pp. 453-462, 1988.
15. V. V. Andrievskii, Weighted Polynomial Inequalities in the Complex Plane, J. Approx. Theory, vol. 164, no. 9, pp. 1165-1183, 2012.
16. S. Balci, M. Imash-kyzy, F.G. Abdullayev, Polynomial Inequalities in Regions with Zero Interior Angles in the Bergman Space, Ukr. Math. J., vol. 70, no. 3, pp. 362-384, 2018.
17. I.M. Batchayev, Integral representations in domains with quasiconformal boundary and some of their applications. Avtoreferat dis. cand.fiz.-mat. nauk Azerb. Univ., Baku, 16 p. 1981.
18. P.P. Belinskii, General Properties of Quasiconformal Mappings. Nauka, Sib. otd., Novosibirsk, 1974.
19. J. Becker, C. Pommerenke, Über die quasikonforme Fortsetzung schlichten Funktionen, Math. Z., vol. 161, pp. 69-80, 1978.
20. E.M. Dyn’kin, Nonanalytic symmetry principle and conformal mappings. St. Petersburg Math. J., no. 5, pp. 523-544, 1994.
21. V. Gutlyanskii, V. Ryazanov, On asymptotically conformal curves, Complex Variables, vol. 25, pp. 357–366, 1994.
22. V. Gutlyanskii, V. Ryazanov, On the local behaviour of quasi-conformal mappings, Izvestiya: Mathematics, vol. 59, no. 3, pp. 471-498, 1995.
23. V. Ya. Gutlyanski, V. I. Ryazanov, On quasi-circles and asymptotically conformal circles, Dokl. Ross. Akad. Nauk, vol. 330, no. 5, pp. 546-548, 1993. (English transl., Russian Acad. Sci. Math., vol. 47, pp. 563-566, 1993).
24. O. Lehto, K.I. Virtanen, Quasiconformal Mapping in the plane, Springer Verlag, Berlin, 1973.
25. F.D. Lesley, Hölder continuity of conformal mappings at the boundary via the strip method, Indiana Univ. Math. J., vol. 31, pp. 341-354, 1982.
26. G. V. Milovanovic, D.S. Mitrinovic, Th.M. Rassias, Topics in Polynomials: Extremal Problems, Inequalities, Zeros, Singapore, World Scientific, 1994.
27. S. M. Nikolskii, Approximation of Function of Several Variable and Imbeding Theorems, New-York, Springer-Verlag, 1975.
28. S. Rickman, Characterization of quasiconformal arcs, Ann. Acad. Sci. Fenn., Ser. A, Mathematica., vol. 395, no. 30, pp. 69-80, 1978.
29. Ch. Pommerenke, Univalent Functions, Göttingen, Vandenhoeck & Ruprecht, 1975.
30. Ch. Pommerenke, Boundary Behaviour of Conformal Maps. - Springer-Verlag, Berlin, 1992.
31. Ch. Pommerenke, S.E. Warschawski, On the quantitative boundary behavior of conformal maps, Comment. Math. Helv., vol. 57, pp. 107-129, 1982.
32. I. Pritsker, Comparing Norms of Polynomials in One and Several Variables, J. of Math. Anal. and Appl., no. 216, pp. 685-695, 1997.
33. J.L. Walsh, Interpolation and Approximation by Rational Functions in the Complex Domain, AMS, 1960.
34. S.E. Warschawski, Über das randverhalten der ableitung der ableitung der abbildungsfunktion bei konformer abbildung, Math.Z., vol. 35, pp. 321-456, 1932.