Identifying bird remains using ancient DNA barcoding

Love Dalén, Vendela K. Lagerholm, Johan A. A. Nylander, Nick Barton, Zbigniew M. Bochenski, Teresa Tomek, David Rudling, Per G. P. Ericson, Martin Irestedt and John R. Stewart

Table S1. Identity of the sampled avian bones. Approximate ages are denoted as Eemian, Late Glacial (LG), Early Holocene (EH) and Roman.

Lab ID	Specimen label	Site	Material	Age	Identification
J1	MER (9) TR A, Spit 5	Merlin’s Cave, UK	Right humerus	LG/EH	J.S.
J2	MER (9) TR A, Spit 5	Merlin’s Cave, UK	Proximal left humerus	LG/EH	J.S.
J3	MER (9) TR A, Spit 5	Merlin’s Cave, UK	Right humerus	LG/EH	J.S.
J4	MER (8) TR A, Spit 4	Merlin’s Cave, UK	Carpometacarpus	LG/EH	J.S.
J5	1987.2 /II (972)	Beddingham Villa, UK	Right humerus	Roman	J.S.
J6	1987.2 /II (14)	Beddingham Villa, UK	Right humerus	Roman	J.S.
J7	1987.2 /II (101)	Beddingham Villa, UK	Tarsometatarsus	Roman	J.S.
J8	MER (2) W. front initial clean	Merlin’s Cave, UK	Distal left humerus	LG/EH	J.S.
J9	1987.2 /II (367)	Beddingham Villa, UK	Left tibiotarsus shaft	Roman	J.S.
J10	1987.2 /II (367)	Beddingham Villa, UK	Proximal right carpometacarpus	Roman	J.S.
J11	1987.2 /II (367)	Beddingham Villa, UK	Distal left carpometacarpus	Roman	J.S.
J12	1987.2 /II (79)	Beddingham Villa, UK	Left humerus (juvenile)	Roman	J.S.
J13	1987.2 /II (79)	Beddingham Villa, UK	Left tarsometatarsus shaft	Roman	J.S.
J14	MER (8) TR A, Spit 4	Merlin’s Cave, UK	Right coracoid fragment	LG/EH	J.S.
J15	MER (8) TR A, Spit 4	Merlin’s Cave, UK	Right ulna	LG/EH	J.S.
J16	MER (8) TR A Spit 7	Merlin’s Cave, UK	Right coracoid fragment	LG/EH	J.S.
J17	MER (8) TR A Spit 7	Merlin’s Cave, UK	Synsacrum fragment	LG/EH	J.S.
J18	JM 96, TC2, Area A, Spit 5	Joint Mitnor, UK	Coracoid fragment	Eemian	J.S.
J19	AF OBZ/450, Layer II	Oblazowa Cave, Poland	Right tarsometatarsus	LG	T.T
J20	AF OBZ/602, Layer IV	Oblazowa Cave, Poland	Right tarsometatarsus	LG	T.T
J21	AF OBZ/602, Layer IV-VI	Oblazowa Cave, Poland	Distal left carpometacarpus	LG	T.T
J22	AF OBZ/450, Layer IV	Oblazowa Cave, Poland	Left carpometacarpus	LG	T.T
J23	AF OBZ/450, Layer IV-VI	Oblazowa Cave, Poland	Distal left humerus	LG	T.T
J24	AF OBZ/450, Layer IV	Oblazowa Cave, Poland	Proximal right ulna	LG	T.T
J25	AF OBZ/450, Layer IV	Oblazowa Cave, Poland	Right ulna	LG	T.T

1 Mean of published dates from the same site is 11 k BP [1]. 2 Rudling [2]. 3 The Eemian in Britain is dated to 125 k BP [3]. 4 Published dates from the sampled layers are 13 k BP (layer II) and 18 k BP and 29 k BP (layer V) [4].
Table S2. Output from BLAST+ showing the best taxon match for the successful ancient DNA sequences against the custom database.

Query id	Binomen	Subject id	% Identity	Alignment length	Mis-matches	Gap opens	q. start	q. end	s. start	s. end	evalue	Bit score				
J2	Oenanthe lugubris *	gi	300432064	gb	HM046851.1	Oenanthe schalowi isolate 447 16S ribosomal RNA gene, partial sequence; mitochondrial	100	74	0	0	119	192	323	396	1E-33	137
J3	Oenanthe lugubris *	gi	300432064	gb	HM046851.1	Oenanthe schalowi isolate 447 16S ribosomal RNA gene, partial sequence; mitochondrial	100	74	0	0	119	192	323	396	1E-33	137
J4	Turdus pilaris	Turdus_pilaris_NRM20066901_16S.seq "Contig 23" (1,549)	98.7	78	1	0	1	78	212	289	9E-35	141				
J5	Turdus merula	Turdus_merula_NRM20056091_16S.seq "Contig 42" (1,549)	100	58	0	0	135	192	347	404	9E-25	108				
J6	Emberiza calandra	Emberiza_calandra_NRM20046026_16S.seq "Contig 5" (1,550)	100	78	0	0	1	78	211	288	7E-36	145				
J7	Turdus philomelos	Turdus_philomelos_NRM976168_16S.seq "Contig 5" (1,550)	100	74	0	0	119	192	331	404	1E-33	137				
J8	Emberiza calandra	Emberiza_calandra_NRM20046026_16S.seq "Contig 5" (1,550)	100	78	0	0	1	78	211	288	7E-36	145				
J9	Anser anser	gi	544582183	gb	KC984218.1	Anser anser 16S ribosomal RNA gene, partial sequence; mitochondrial	97.5	80	1	1	1	80	7	85	1E-33	137
J10	Gallus gallus	gi	29824878	gb	AY236430.1	Gallus gallus 16S ribosomal RNA gene, partial sequence; mitochondrial gene for mitochondrial product	100	78	0	0	1	78	22	99	7E-36	145
J11	Columba livia	Columba_livia_NRM20076011_16S.seq "Contig 1" (1,546)	100	75	0	0	1	75	210	284	3E-34	139				
J12	Gallus gallus	gi	29824878	gb	AY236430.1	Gallus gallus 16S ribosomal RNA gene, partial sequence; mitochondrial gene for mitochondrial product	98.7	79	0	1	1	79	22	99	3E-34	139
J13	Anas penelope	Anas_penelope_NRM20036435_16S.seq "Contig 3" (1,557)	100	79	0	0	1	79	211	289	2E-36	147				
J14	Corvus monedula	Corvus_monedula_NRM986450_16S.seq "Contig 7" (1,548)	100	77	0	0	1	77	212	288	2E-35	143				
J17	Lagopus muta	Lagopus_muta_NRM986101_16S.seq "Contig 52" (1,554)	100	76	0	0	115	190	328	403	8E-35	141				
J19	Turdus pilaris	Turdus_pilaris_NRM20066901_16S.seq "Contig 23" (1,549)	100	74	0	0	118	191	331	404	1E-33	137				
J20	Turdus pilaris	Turdus_pilaris_NRM20066901_16S.seq "Contig 23" (1,549)	100	78	0	0	1	78	212	289	7E-36	145				
J21	Turdus merula	Turdus_merula_NRM20056091_16S.seq "Contig 42" (1,549)	100	78	0	0	1	78	212	289	7E-36	145				
J22_(frag2)	Alauda arvensis	Alauda_arvensis_NRM996263_16S.seq "Contig 4" (1,552)	98.7	74	1	0	1	74	331	404	5E-33	134				
J24_(frag2)	Eremophila alpestris	gi	220900200	gb	FJ465221.1	Eremophila alpestris	100	74	0	0	1	74	296	369	4E-34	137
J25	Eremophila alpestris albigula voucher MFUM 20042 16S ribosomal RNA gene, partial sequence; mitochondrial gi	220900200	gb	FJ465221.1	Eremophila alpestris albigula voucher MFUM 20042 16S ribosomal RNA gene, partial sequence; mitochondrial											
-----	--															
	100 80 0 0 1 80 175 254 5E-37 148															

* A corrigendum to the associated publication has stated that the deposited *Oenanthe schalowi* sequences were derived from incorrectly labelled specimens, and actually belong to the species *O. lugubris* [5,6].
Figure S1. Photo of the drilled humerus bone from specimen J1, illustrating the amount of material that is needed for ancient DNA analyses.

References

1. Ramsey, C.B.; Higham, T.F.G.; Owen, D.C.; Pike, A.W.G.; Hedges, R.E.M. Radiocarbon dates from the Oxford AMS System: archaeometry datelist 31. Archaeometry 2002, 44, 1-149.
2. Rudling, D. A Tale of Two Villas: Beddingham and Barcombe. Bulletin of the Association for Roman Archaeology 2003, 10-15.
3. Currant, A.; Jacobi, R. A formal mammalian biostratigraphy for the Late Pleistocene of Britain. Quat. Sci. Rev. 2001, 20, 1707-1716.
4. Bochenski, Z.; Bochenski, Z.M.; Tomek, T. A history of Polish birds. Institute of Systematics and Evolution of Animals, Polish Academy of Sciences: Krakow, 2012.
5. Förschler, M.I.; Khoury, F.; Bairlein, F.; Aliabadian, M. Phylogeny of the mourning wheatear Oenanthe lugens complex. Molecular Phylogenetics and Evolution 2010, 56, 758-767.
6. Förschler, M.I.; Khoury, F.; Bairlein, F.; Aliabadian, M. Corrigendum to “Phylogeny of the mourning wheatear Oenanthe lugens complex” [Mol. Phylogenet. Evol. 56 (2010) 758-767]. Molecular Phylogenetics and Evolution 2010, 57, 483-484.