Mechanisms of resistance to carbapenems among Acinetobacter isolates

S. Srinivasan1, Shashikala2 and Sheela Devi2

1Associate Professor, Dept of Microbiology, Indira Gandhi Medical College & Research Institute, Vazhudavur Road, Kadirkannam, Puducherry – 605009.
2Professor, Dept of Microbiology, Pondicherry Institute of Medical sciences, Kalapet, Puducherry – 605014.

*Correspondence Info:
Dr S. Srinivasan,
Associate Professor,
Dept of Microbiology,
Indira Gandhi Medical College & Research Institute,
Vazhudavur Road, Kadirkannam, Puducherry – 605009
E-mail – dssriniv@yahoo.co.in

Abstract

Objectives: To identify carbapenem resistance mechanism in Acinetobacter isolates from clinical samples.

Methods: Eighty six isolates of Acinetobacter spp obtained from various samples were included in the study. Antibiotic susceptibility was determined by Kirby-Bauer disc diffusion method. Isolates showing resistance to Meropenem were further tested for Amp C beta lactamase production by Amp C disc test and Metallobeta lactamase (MBL) production by disc potentiation test.

Results: Among eighty six isolates of Acinetobacter sp, forty eight strains (55%) were found to be resistant to Meropenem by disc diffusion method. Out of forty eight resistant strains, twenty nine strains (60%) were isolated from intensive care units,10 strains (20%) from medical wards and 9 (19%) from surgical wards. Among these resistant strains, six (12%) were found to be Amp C betalactamase producers, 39 strains (81%) produced MBL, 3 strains (6%) were negative for both Amp C and MBL.

Conclusion: In our study we found that meropenem resistance in Acinetobacter was more in Intensive care units and the major resistance mechanism to carbapenem among Acinetobacter isolates was due to production of metallobeta lactamase.

Keywords: Acinetobacter, Metallo beta lactamase, Amp C, Carbapenem resistance

1. Introduction

Acinetobacter sp is a leading cause of nosocomial infections and is intrinsically resistant to many antibiotics. The characteristic feature of Acinetobacter sp is their ability to survive in the hospital environment for prolonged periods. Treatment of Acinetobacter infections is a challenge to the clinicians making the treatment and infection control complicated because of their resistance to multiple antibiotics.1,2 Since Acinetobacter sp are resistant to aminoglycosides, fluoroquinolones, ureidopenicillins and third-generation cephalosporins, carbapenems have emerged as an important agent for managing these infections. But increasing usage of these antibiotics has resulted in the development of carbapenem resistant strains.3,4 Production of metallo beta lactamase has been implicated as the major cause for the development of resistance to Acinetobacter.3 This is a matter of great concern because MBL producers most often exhibit resistant phenotype to additional classes of drugs since they originate nosocomially. Carbapenem resistance in Acinetobacter is attributed to various causes such as reduced expression of outer membrane proteins (29kDa, 33 kDa) and production of carbapenamases.5 A recent study done by Dheepa et al., showed 10% of Acinetobacter isolated from clinical samples were metallo betalactamase producers and 73% were Amp c producers.6 The objective of the study was to know the prevalence and mechanisms of resistance to carbapenems in meropenem-resistant Acinetobacter spp.

2. Materials and Methods

This study was a prospective study done in a tertiary care hospital. Eighty six isolates of Acinetobacter sp obtained from various samples were included in the study. Standard guidelines were followed for sample collection. Samples were processed according to standard Microbiological procedures4. Non fermenting gram negative bacilli, oxidase negative and non motile were considered as Acinetobacter sp. Samples showing growth were subjected to antibiotic sensitivity testing as per CLSI guidelines.7 Antibiotic susceptibility was determined by Kirby-Bauer disc diffusion method. Antibiotics included were ampicillin (10 mcg), amikacin (30 mcg), ceftriaxone (30 mcg), ciprofloxacin (5 mcg), gentamicin (10 mcg), meropenem (10 mcg), piperacillin + tazobactam (100/10 mcg). Cefoxitin (30 mcg) was included to screen for Amp C betalactamase production. Isolates showing resistance to meropenem were tested for MBL production.

i) Amp C disc test8;

The strains that were resistant to cefoxitin were further subjected to Amp C disc test to confirm Amp C production. A lawn culture of E.coli ATCC 25922 is prepared on MHA plate. A cefoxitin disc (30mcg) is placed in the center of the plate. A sterile plain disc moistened with 10 – 20 µl of sterile saline is placed beside the cefoxitin disc (almost touching it). The plain disc is inoculated with several colonies (5 – 10) of test organism. The plates are incubated overnight at 37°C. A flattening or indentation of the cefoxitin inhibition zone in the vicinity of the disc is a positive test (Fig 1)

ii) Disc potentiation test9;

This test was done for the detection of metallo beta lactamase production. The test strain was inoculated onto MHA plate. Two imipenem discs were placed on the inoculated plates approximately 30 mm apart and 10µl of 0.5M EDTA was added to one imipenem disc the plates are incubated at 37°C. An increase in the zone size of at least 7mm around imipenem + EDTA disc in comparison to the imipenem disc alone indicates production of MBL. (Fig 2)
Fig. 1: A positive Amp C disc test - A flattening or indentation of the cefoxitin inhibition zone in the vicinity of the disc

Fig. 2: A positive metallobetalactamase test - An increase of more than 7mm is noted with imipenem+EDTA disc when compared with imipenem disc alone. (Disc potentiation test for Metallobetalactamase detection)

3. Results
Among eighty six isolates of *Acinetobacter* sp, forty eight strains (55%) were found to be resistant to meropenem by disc diffusion method. The distribution of *Acinetobacter* sp in different wards is given in Table 1. The distribution of *Acinetobacter* amongst different samples is given in Table II. Among these 48 resistant strains, six (12%) were found to be Amp C beta lactamase producers by Amp C disc test, 39 strains (81%) produced MBL by disc potentiation test using meropenem and EDTA discs. 3 strains (6%) were negative for both Amp C and MBL. All these strains that were resistant to meropenem were also resistant to all the other classes of antimicrobials.

Wards	Isolation rate
Intensive care units	29 (60%)
Medical wards	10 (20%)
Surgical wards	9 (19%)

Wound swab	33 (68%)
ET secretions	11 (22%)
Urine	4 (8%)

4. Discussion
Acinetobacter sp, a gram negative bacteria has become one of the most dangerous pathogen to treat. It has become a predominant hospital pathogen along with pseudomonas aeruginosa. It is resistant to almost all the antibiotics that are frequently used. It can cause infections like UTI, wound infections, pneumonia, endocarditis and life threatening septicemia. In our study we found that meropenem resistance amongst *Acinetobacter* isolates is about 55%. Another Indian study by Taneja et al. reported 20% resistance to carbapenems among *Acinetobacter* isolates in India. Another similar study conducted by Sinha et al. involving 150 clinical isolates of *Acinetobacter*, 14% of the isolates were found to be resistant to meropenem.

Our study also showed that majority of the isolates (56%) were from Intensive care units. A study conducted by Sinha et al showed 42.8% of the isolates from medical intensive care units. This shows that Acinetobacter can survive well in the hospital environment especially in the intensive care units and can cause frequent hospital acquired infections.

Our study revealed that strains that were resistant to meropenem were also resistant to other classes of antimicrobials like III generation cephalosporin and β lactam – β lactamase inhibitor combinations like piperacillin-tazobactam. In such situations treatment options are very limited leaving the physicians to choose either colistin or polymyxin B. The capacity of *Acinetobacter* species for extensive antimicrobial resistance may be due in part to the organism’s relatively impermeable outer membrane and its environmental exposure to a large reservoir of resistance genes.

Our study showed that 81% of Acinetobacter isolates produced MBL. An Indian study on the *Acinetobacter baumannii* stated that 70.9% isolates produced metallo beta lactamase. The present study revealed 12% of Acinetobacter produce Amp C. A similar study conducted by Dheepa et al., 73% isolates were found to be AmpC β-lactamase producers.

To conclude, multidrug resistant *Acinetobacter* sp are common in hospital especially in intensive care units and treating the infections caused by this organism is very difficult as they are resistant even to carbapenems which are considered to be the life saving drugs. There should be a surveillance mechanism in the laboratory to detect metallo beta lactamases. This menace of multidrug resistant organism can be controlled only by following standard precautions and a good antibiotic policy.
References

1. Peleg AY, Seifert H, Paterson DL. Acinetobacter baumannii: Emergence of a successful pathogen. *Clin Microbiol Rev* 2008; 21:538-82.

2. Vila, J. and Pachón, J. *Acinetobacter baumannii* resistant to everything: what should we do? *Clinical Microbiology and Infection*. 2011; 17: 955–956.

3. Niranjan D K, Singh N P, Manchanda V, Raj S, Kaur I R. Multiple carbapenem hydrolyzing genes in clinical isolates of *Acinetobacter baumannii*. *Indian J Med Microbiol* 2013; 31:237-41.

4. Neil G, Brandi ML, Jean BP and Alexander JK. Carbapenem resistant *Enterobacteriaceae*: Epidemiology and prevention. *Clin Infect Dis.* 2011; 53(1): 60 – 7.

5. Amudhan S M, Sekar U, Arunagiri K, Sekar B. OXA beta-lactamase –mediated carbapenem resistance in *Acinetobacter baumanii*. *Indian J Med Microbiol* 2011; 29:269-74.

6. Bonnin RA, Poirel L, Nordmann P. New Delhi metallo-β-lactamase-producing *Acinetobacter baumannii*: a novel paradigm for spreading antibiotic resistance genes. *Future Microbiol*, 2014; 9(1):33-41.

7. Dheepa M, Appalaraju B. Phenotypic methods for the detection of various betalactamases in carbapenem resistant isolated of *Acinetobacter baumanii* at a tertiary care hospital in south India. *Journal of clinical and diagnostic research*. 2012; 6:970-973.

8. Monica cheesebrough, District laboratory practice in tropical countries. 2nd ed. India: Replika press; 2009. p.45-62

9. Performance standards for Antimicrobial Susceptibility Testing; 22nd Informational supplement. Clinical Laboratory Standards Institute. 2010, M100 – S22, Vol.32 No.3 p.44-50

10. S. Singhal, T Mathur, S Khan, DJ Upadhyay S Chugh R Gaind, A. Rattan. Evaluation of methods for Amp C β lactamase in Gram Negative clinical isolates from tertiary care hospitals. *Indian J Med Microbiol* 2005; 23:120-124.

11. Lee K, Lim YS, Yong D, Yum JH, Chong Y. Evaluation of the Hodge test and the Imipenem-EDTA double disc synergy test for differentiating metallo-β-lactamase-producing isolates of *Pseudomonas* spp and *Acinetobacter* spp. *J Clin Microbiol* 2003;41:4623-9.

12. Peleg AY, Seifert H, Paterson DL. *Acinetobacter baumannii* emergence of a successful pathogen. *Clin Microbiol Rev*. 2008; 21:538–82.

13. N Taneja, S Maharwal, M Sharma. Imipenem resistance in Non fermenters causing nosocomial urinary tract infections. *Ind J Med Sciences*. 2003; 57: 294 – 297.

14. M.Sinha, H Srinivasa. Mechanisms of resistance to carbapenems in meropenem resistant Acinetobacter isolates from clinical samples. *Indian J Med Microbiol*. 2007; 25: 121 – 5.

15. N Sinha, J Agarwal, S Srivastava, M Singh.Analysis of carbapenem resistant *Acinetobacter* from a tertiary care setting in North India. *Indian J Med Microbiol* 2013; 31:60-3.

16. Uma KR, Srinivasa RR, Suchismita S, Shashikala P, Kanungo R, Jayachandran S, *et al*. Phenotypic and genotypic assays for detecting the prevalence of metallo-b-lactamases in the clinical isolates of *Acinetobacter baumannii* from a south Indian tertiary care hospital. *Indian J Med Microbiol*. 2009; 58:430-35.