タイトル	Title
	経年劣化した既存RC造建築物の現場水平加力実験(Field Loading Test on Deteriorated Existing Reinforced Concrete Building)
著者	Author(s)
	鈴木, 和彦 / 大谷, 恭弘 / 三谷, 敦 / [他]
掲載誌・巻号・ページ	Citation
	神戸大学都市安全研究センター研究報告,6:369-378
刊行日	Issue date
	2002-03
資源タイプ	Resource Type
	Departmental Bulletin Paper / 紀要論文
版区分	Resource Version
	publisher
権利	Rights
DOI	JaLCDOI
	10.24546/00317651
URL	http://www.lib.kobe-u.ac.jp/handle_kernel/00317651

PDF issue: 2018-11-02
経年劣化した既存 RC 造建築物の現場水平加力実験

Field Loading Test on Deteriorated Existing Reinforced Concrete Building

鈴木 和彦 1)
Kazuhiko Suzuki
大谷 恭弘 1)
Yasuhiro Ohtani
三谷 紘 3)
Isao Mitani
藤永 隆 4)
Takashi Fujinaga
内田 直樹 5)
Naoki Uchida

概要：1971年以前に建設され、築後30年以上経過した大阪府下の自治体が管理する既存 RC 造建築物が、解体・撤去されることに対応し、当該建築物の部分架構を利用して現場水平載荷実験を行った。載荷実験に先立ち、対象建築の劣化・損傷状況等を調査するため、コンクリートコアの採取ならびに中性化深さの測定を行った。対象建築の力学的性能の評価・検証を行うことを目的として、部分構造要素に対して静的弾性繰り返し載荷および静的破壊実験を行った。更論文では、対象建築に対するこれら一連の現地調査・載荷実験の結果について報告する。

キーワード：実験実施、せん断破壊、既存不適格建築、性能評価

1．はじめに

鉄筋コンクリート造建築物は広く全国に普及しており、その耐震安全性を確保することとは都市の防災上重要であることである。1995年に発生した兵庫県南部地震においては、多くの建築が倒壊から軽微に至るさまざまな被害を受けた。この地震では、1981年の建築基準法改正（新耐震設計法）以前の建築物に大きな被害が目立ったということがあり、現在では全国的に新耐震設計法以前に建てられた既存不適格建築物に対して耐震診断が進められている。

既存 RC 造建築物はその耐震性において、1971年以前のものとそれ以前のものとに大別される。1971年の日本建築学会「鉄筋コンクリート構造計算規定（以下 RC 規準）」の改訂により、改訂以前に建設された建築物と比べて、改訂後に建設された建築物は耐震安全性が大きく向上していると考えられるからである。この改訂は、1968年に発生した十勝沖地震がきっかけとなり、耐震安全性が見直されたものである。この地震では鉄筋コンクリート造建築物が大きな被害を受け、特に比較的低層の学校建築などに被害が多く、壁や柱の存在により軸力が大きく短柱となった柱のせん断破壊が顕著であった。よって、この地震をきっかけに、1971年に「RC 規準」は、部材のせん断力に対する設計に限っては、その部材を含むラーメン局部の曲げ降伏が先行するように設計せん断力を増し、軸力を確保する方向に改訂された。したがって、改訂以前に建設された建築物では、その耐震性能が十勝沖地震（1968）で大きな被害を受けた建築と同程度あるいはそれ以下となるものが多いと予想される。

既存建築物に現行法を満足するような耐震安全性を確保させるには建物の性能をよく把握し、問題があれ
ば耐震補強をすることが必要である。しかし、実際の経年変化や、中小規模の地震による損傷を経験した可能性のある実構造物の構造要素に対する実際の力学性能の評価については実験室レベルでは不可能であり、実在の既存建築に対して実験する以外は基本的に困難である。しかし実在建物を利用して破壊に至るまでの荷重変形関係を得る機会は極めて少ない。また、既往のモデル解析や実験で得られた知見と実在建物の変形特性との対応を調べた研究にみるとはるかに少ないのが現状である。したがって、実在建物の骨組みがどのように破壊に至るかの過程を追跡することは工学的に有意なことである。

今回、1971年以前に建設され、築後30年以上に及んだ大阪府下の自治体が管理する既存RC造建築物が、解体・撤去されることとなり、当該建物の部分構造を利用した静的破壊実験を行う機会が得られた。載荷実験に先立ち、対象建物の劣化状態を調査するため、コンクリートコアの採取ならびに中性化深度の測定を行った。解体建物の力学的性能の評価・検討を行うことを目的として、部分構造要素に対して現場水平載荷実験を行った。本論文では、対象建物に対するこれからの現地調査・載荷実験の結果について報告する。

2. 実験建物概要と実験対象部分

(1) 実験建物概要

実験に使用した建物は1970年に建設されたRC造地上2階建物である。大阪府下の某市が管理する地区センターであり、実験当時で築後32年を迎ええた建物である。なお、1995年の兵庫県南部地震による構造物の被害について、特に報告されているはない。

図1(a)～(c)に1階からR階の床梁伏図を、図2に軸組図を示す。当該建物は南北方向4スパン、東西方向2スパンの2層のラーメン構造である。RC造の構造体を構成するコンクリートの設計基準強度は180kgf/cm²(17.64N/mm²)で、鉄筋はSD305(現SD345相当)を使用している。当時の鉄筋コンクリート構造計算規則(1962年改訂版)に基づき、それらに対する設計許容応力度は表1の値を採用している。なお、表1の許容応力度のうち、短期に対する「コンクリートの許容せん断応力度」および「鉄筋とコンクリートの許容圧着応力度」については、1971年改訂版以降3/4の値に引き下げられ

図1 各階伏図
ており、当該建物は現行の設計基準に照らし合わせると、せん断強度において危険側にあることになる。

表1 設計許容応力度

	長期	短期
	kN/cm²	kN/cm²
コンクリート	60(5.9)	120(11.8)
せん断	6(0.59)	12(1.18)
鉄筋	2000(1986)	3300(3233)
引張	2000(1986)	3300(3233)
鉄筋とコンクリートの付着	18(1.76)	20(2.03)

(2) 実験対象部分と実験準備

載荷実験の対象とした試験体部

分は、図1、2に破線図図で示した建物北西部の2階1スパンラーメン架構である。試験体部分への載荷に必要な反力架構を試験体部分の両側に確保する。図中、マスキングを施している部分は、載荷実験時に解体栞の部分である。解体は今回実施した実験装置を模擬した断面で解体作業が行われた。試験体と非試験体の切断箇所は、Y方向の梁・スラブが2階が試験体ラーメンより約1000mm、R階が約500mmの位置で、X方向は2階が試験体ラーメンより約1000mm、R階が約1500mmの位置である。なお、試験体部分の切り出しは試験体部分への損傷がないように実施した。今回実験では、柱が腰壁・帯壁とつながった状態での柱のせん断破壊の性状を検討することを目的として、試験体部の柱と帯壁・帯壁の絶切りを行わなかった。また、実験に先立ち、試験体部分の窓枠や内装の撤去、RC構体表面のモルタル層など表面仕上げ材の撤去を行った。仕上げモルタルの撤去後、試験体の柱頭柱脚部分でコンクリートの打設不良の箇所が確認され、特に2階柱脚部分では高さ方向に長さ約1000mmにわたって、すべての面で見られた。

構体を構成するコンクリートの中性化深度ならびに材料の圧縮強度及びヤング係数を調査するため、解体前にコンクリートのコア採打を19箇所で実施した。圧縮試験を行ったのはそのうちの3体である。中性化深度については抜き取ったコアに直接フェノールフタレイニ溶液を吹き付けて、コンクリート部における無変色部の深さを測定した。また、実験対象部分付近における建物解体後の部材断面にも、フェノールフタレイニ溶液を吹き付け、同様に中性化深度を測定した。

3. 材料の性質

(1) 材料試験結果

対象建物より採取したコンクリートコアの圧縮試験および鉄筋の引張試験を実施した。

コンクリートコアの採取場所は図1にNo.4、No.12、No.18と示す部分で、矢印はコアの摺取方向である。コンクリートコアについては、仕上げ部分を除去したあと、コア上下面に銘板でキャッピングを施し圧縮試験を行った。圧縮ひずみとポアソン比を測定するため、圧縮軸方向と鉛直方向にひずみゲージを貼付した。コアの寸法および試験結果を図2に応力ひずみ関係を図3に示す。圧縮試験に用いたコンクリートコンは長さについては、コア採取後に凹凸を除去したため一様ではない。なお、表2に示した値は形状寸法による補正を行ったものである。

鉄筋については非試験体柱部分より採取し引張試験に用いた。異形鉄筋D19で試験片はJIS2号試験片相当とした。引張試験の結果を図3に応力ひずみ関係を図4に示す。

表2 コンクリートの圧縮試験結果

供試体番号	直径 (mm)	圧縮強度 (MPa)	ヤング係数 (GPa)	ポアソン比
No.4	99.9	22.6	23.2	-
No.12	99.7	27.8	31.5	0.22
No.18	99.8	25.9	23.6	0.18
平均	-	25.4	26.1	0.20

表3 鉄筋の引張試験結果

供試体番号	降伏点耐力 (MPa)	引張強度 (MPa)	ヤング率 (GPa)	伸び率 (％)
No.1	403	635	221	21.0
No.2	394	614	230	21.3
No.3	403	635	207	22.3
平均	400	628	219	21.5
(2) コンクリートの中性化深さ
抜き取ったコンクリートコアより得られた中性化深さを表4に示す。なお、32年経過後の中性化深さの推定値は岸谷式で表面処理のないセメント材が60％の普通コンクリートでは、約21mmである。
表面モルタル仕上げのないなかった屋内側の中性化深度は、各コアの最大値は30mm前後であるが、最も深度が大きい場所は73mmに達している箇所があった。深度が最大値となった部屋は、集合会等のために利用されていたと思われる部屋であり、部屋の使用頻度や使用状況が中性化深さに影響したものであると考えられる。また、屋外側より屋内側の深度の方が大きい傾向が見られた。表面モルタル処理が施されている箇所の、屋外側での最大深度は0〜3mmで、屋内側での最大深度は10〜20mmであった。造営使用時の屋内側の二酸化炭素の量が屋外側に比べて多いことと、モルタルを用いない表面処理材の違いが原因であると考えられる。コンクリートの中性化深さは、屋外側よりも屋内側のほうが大きくなる傾向が見られた。
表面のモルタルの処理が20〜30mm施されている箇所で表面に吹き付け塗装がされている場合、30年経過後もほとんどコンクリート部分には中性化深さが進行しないことが確認された。

4. 水準架橋実験の概要

(1) 実験方法
本実験に用いた試験体は図1、2に示す部分で、2層1スパンラーメンである。試験体架橋の概要を図5に示す。また、図6、図7に示す柱および梁の断面は当該建物の設計図書のものである。
水平荷重の載荷においては、南側の非試験体部分を反力骨組として使用した。水平力の載荷は2階柱脚部分と、屋上(R階梁)部分で行い、力点は2階梁心より約400mm上段の位置、R階梁心より約1000mm上の位置とした。図8に示す水平加力装置を用い、各階ともに正・負載荷を各1台の油圧ジャッキ(容量500kN)を
図5 試験体立面図

図6 柱断面図

用いて行った。両面に加える水平力の比率は1:1とした。図に示すように、試験体を北側へ加力する方向を正載荷、試験体を南側へ加力する方向を負載荷とすると、正載荷時には耐圧ビームを北側に押すことにより、負載荷時にはPC鋼材（d=32×4）を介して耐圧ビームを南側に押すことにより繰り返し加力を行った。荷重は各検圧ジャッキの先端に取付けたロードセルにより測定した。

載荷プログラムを図9に示す。弾性内での挙動を捉えるため、正載荷は水平荷重が49kNと98kNで1回ずつ、負載荷は49kNで2回載荷・除荷を行った。弾性範囲は荷重制御とし、それ以降は変位制御とした。したがって、図9-aでは軸力を荷重、図9-bでは転軸は変位である。

水平変位は図5中に示す位置（両面の梁の中）に貼付けた鋼尺（最小目盛り1mm）の目盛を地上固定点に設置したトランシットで目測0.5mm単位で測定した。構造の変位も構造内水平変位と同様の方法で測定した。また、柱内での平均ひずみと平均応力およびせん断破壊の性状を検討することを目的として、試験体1階柱の中央部の地面より約1735mm上部の位置にて変位計を図5に示す位置に両柱に設置した。測定方向は4辺
が鉛直方向と水平方向となる。一辺400mmの正方形の辺方向とその2つの対角線方向に設置した。また、曲率を求めるため、試験体頭部の加力装置側柱の垂線下面位置および腹壁上面位置にバイ型変位計（ゲージ長：200mm）を設置した。なお、バイ型変位計は、既存のひび割れを挟むように設置した。それらの設置位置を図8に示す。

(2) 亀裂状況
亀裂の観察は目視にて行った。実験終了後の1階載荷装置側柱の亀裂の様子を図10に示す。曲げ亀裂は層間変形が0.005radに向け荷重時に1階の各柱で発生し、その後、水平荷重の増加とともに数を増し、進展していった。変形角が0.008radに向け荷重時に1階柱にせん断亀裂が発生し、また、2階柱と柱の接合部分に斜め亀裂が発生した。変形角が0.013radとなった時に、1階載荷装置側柱で亀裂幅が約10mmに達する斜め亀裂が大きな音を伴って発生した。これで耐力が上がらなくなったことを確認し、加力を終了した。

5. 実験結果と考察
(1) 耐力の評価
載荷実験は2日にわたって行い、1日目は弾性載荷と破壊実験のための予備載荷を行い、2日目に破壊実験を行った。各層の水平荷重-変位関係を図11に示す。縦軸は層断面断面で、横軸は水平変位である。図中、実線は2階の、破線はR階の荷重-変位関係を表す。水平変位はトランスミット測定による変位である。実験最大耐力は743MPaであった。
試験体の自重は、鉄筋コンクリートの体積密度を24kN/m³として仮定して算定した。1階柱に作用する柱1本あたりの自重による軸力は約100kNである。
柱の曲げ終局強度は、コンクリート強度とコア試験の平均値 25.4MPa、鉄筋の降伏強度に引張試験での降伏耐力 400MPa を用いて計算した。試験体にかかる軸軸モーメントを考慮せず両柱が受け持つ荷重が等しいとする。1 階南側柱根頭で約 368kN、柱脚で 503kN となり、骨組みの終局耐力は約 803kN となる。ここで算定に用いた柱の有効高さは内法高さとした。

柱のせん断終局強度は、(1)式 9 従い、コンクリート強度はコア試験の値を用いた。また、せん断破壊筋の降伏強度は、材料試験を行っていないため、設計基準強度を用いて計算した。したがって、柱のせん断終局強度を低めに評価することになると考えられる。ここで今回の算定の場合、1 式の中で第 2 項のせん断破壊筋の降伏点強度

\[\sigma_{w} = 0.053p_{w} \left(\frac{F_{c} + 180}{M(Q - d) + 0.12} \right) + 2.7 \sqrt{p_{w} \cdot \sigma_{w} + 0.10} \]

ここで、 \(Q_{w} \) は柱の終局せん断力(kg), \(p_{w} \) は引張鉄筋比(%), \(F_{c} \) はコンクリート圧縮強度(kg/cm²), \(M/Q \) は強度算定断面における M とせん断力 Q の比(cm²), \(d \) は柱の有効高さ(cm), \(p_{w} \) はせん断破壊筋比, \(\sigma_{w} \) はせん断破壊筋の降伏強度(kg/cm²), \(\sigma_{w} \) は柱軸方向応力変化力(kg/cm²), \(b \) は柱幅(cm), \(j \) は応力中心間距離(cm)である。

計算結果は、実験用の軸向変動による柱の軸力を考慮せず両柱が受け持つ荷重が等しいとする。1 階南側柱で 290kN となり、この場合骨組の終局耐力は 580kN となる。よって算定結果による破壊モードは、柱のせん断破壊となり、実験での破壊モードと一致した。算定による耐力と、実験による実際の最大耐力を比較すると、実験値の方が大きい結果となり、その比は 1.28 であった。柱頭・柱脚部のコンクリート施工不良部分や、地震 30 年以上経過し、兵庫県南部地震の影響を受けている可能性があることを考慮に入れると、算定耐力よりも実験耐力のほうが小さくなることが予想されたが、実験耐力の方が大きい結果となった。

(2) 弾性域での柱のせん断力・曲率・軸ひずみの評価

柱変位(柱中央部)からの算定せん断力

弾性載荷時の 1 階柱のせん断力と、載荷荷重の関係を図 12 に示す。各柱に正方形形に設置した変位計(柱中央部)より得られたデータから、せん断ひずみを 2 式の座標変換式で算定し、平面応力状態を想定し、応力ひずみ関係を 3 式を用いた。ここでヤング係数とポアソン比は表 2 に示すコンクリート圧縮試験で得られた値を用いた。また、弹性範囲内であるため、鉄筋の負担するせん断力は無視した。

\[\varepsilon_{x} = \varepsilon_{y} \sin^{2} \theta + \varepsilon_{z} \cos^{2} \theta + \gamma_{yz} \sin(2\theta) \]

\[\varepsilon_{y} = \varepsilon_{x} \cos^{2} \theta + \varepsilon_{z} \sin^{2} \theta - \gamma_{yz} \sin(2\theta) \]

ここで、 \(\varepsilon_{x} \)、 \(\varepsilon_{y} \) はそれぞれ柱の鉛直方向と水平方向の垂直ひずみ、 \(\gamma_{yz} \) はせん断ひずみ、 \(\varepsilon_{x} \)、 \(\varepsilon_{y} \) はそれぞれの対角線方向のひずみ、 \(\theta \) は、 \(x \) 軸と対角線のつなす角度である。

\[\left[\begin{array}{c}
\sigma_{x} \\
\sigma_{y} \\
\tau_{xy}
\end{array} \right] = \frac{E}{1-\nu^2} \left[\begin{array}{ccc}
1 & \nu & 0 \\
\nu & 1 & 0 \\
0 & 0 & 1-\nu/2
\end{array} \right] \left[\begin{array}{c}
\varepsilon_{x} \\
\varepsilon_{y} \\
\gamma_{yz}
\end{array} \right] \]

ここで \(\sigma_{x} \)、 \(\sigma_{y} \) はそれぞれ柱の鉛直方向と水平方向の垂直応力、 \(\varepsilon_{x} \) はせん断応力、 \(E \) はヤング係数、 \(\nu \) はポアソン比である。

層間変形が 0.002rad(載荷ステップが 3)以前では、変位計より得られた平均ひずみより算定される両柱のせん断力の合計が載荷荷重とはほぼ等しいが、載荷荷重が大きくなると、正載荷時には算定せん断力のほうが大きくなり、負載載荷時には載荷荷重のほうが大きい結果となった。この原因は、算定せん断力は剛性が一定であると仮定しているのに対して、実際の骨組は剛性の増加とともに剛性が小さくなるためであると考えられる。さらに、1 階南側柱と北側柱のせん断力を比較すると、軸向変動により、圧縮力を受ける側の柱の算定せん断力は載荷荷重の 2 分の 1 の値とほぼ一致した値になるのに対して、引張力を受ける側の柱
の値はそれよりも大きい値となった。これは、コンクリートの耐力は圧縮側に比べ引張側の方が小さいため、剛性が一定であると仮定すると、引張側柱のせん断力の方が過大評価されているためであると考えられる。したがって、圧縮側柱に作用するせん断力は、算定せん断より実際は小さく、圧縮側に作用するせん断力とほぼ等しいと予想される。

b）パイ型変位計からの算定せん断力

1階両柱の上下位置のパイ型変位計より得られた曲率から、弹性仮定でモーメント勾配を求め、柱のせん断力を算定した（以下算定せん断力（パイ型変位計）と略す）。算定に用いたヤング係数はコンクリート圧縮強度の値を用いた。また、モーメント算定時に鉄筋は考慮せず、全断面有効とした。載荷荷重と1階両柱の算定せん断力（パイ型変位計）を算定せん断力（変位計）の関係を図13に示す。ここで1階両柱の受け持つ載荷荷重の比は全荷重の1/2とした。結果は算定せん断力（パイ型変位計）が載荷荷重よりも大きな結果となり、全体的に約2倍の値となった。また、算定せん断力（変位計）との差は最大で116kNであり、算定せん断力（パイ型変位計）の方が大きい値となった。この原因は、弹性仮定で算定した曲げ剛性が過大評価されているためであると考えられる。

c）1階両柱の曲率とすべり

図14に1階両柱の上部と下部に設置したパイ型変位計（図5参照）のデータから算定した弾性載荷での荷重-曲率関係をそれぞれ示す。パイ型変位計は、柱の上部と下部にそれぞれ南北の面に2箇所設置し、柱の東西方向のずみの変化を測定できるようにした。曲率は、柱の北面が曲げ引張になるときを正の値、南面が曲げ引張になるときを負の値とした。図14中、右肩上がりの曲線が柱上部、右肩下がりの曲線は柱下部の変位計の値である。また、実線は柱の東側面の曲率、破線は西側面の曲率である。

柱の上部側では、東側よりも西側の曲率の絶対値が比較的小さかったのに対して、柱の下部側では、西側の曲率の絶対値が東側の約2倍の大きさとなっていた。この原因は、裏壁等の影響で加力により柱にねじれが生じていたことや初期ひび割れの発生などが考えられる。

1階両柱中央部の東面に正方形形に設置した変位計から算定した荷重-曲率関係と、同じ柱の上下位置のパイ型変位計から算定した変位計（柱中央部）位置での荷重-曲率関係を図15にそれぞれ示す。ここでパイ型変位計は、上下位置とも柱の東側に設置したものので使用した。柱中央部の変位計から得られたグラフは比較的線形挙動に近い軌跡を描くのに対して、パイ型変位計より得られたグラフは、載荷初期の段階では変位

図12 1階両柱の算定せん断力
図13 1階両柱の算定せん断力
図14 曲率分布
図15 柱中央部での曲率
計（柱中央部）のグラフと一致するが、層間変形角が0.0022rad（軽荷ステップ3）に向かう途中から大きく離れれた。これは変位計（柱中央部）の方が柱の中心軸に近い場所で測定しているため、引張の影響による誤差が小さいためであると考えられる。しかし、変位計（柱中央部）とパイ型変位計からのそれぞれの算定曲率は、両値とも初期剛性はほぼ等しい結果となり、どちらのデータも精度に問題はないと考えられる。

図16に1階1柱の変位計（柱中央部）により測定された軸ひずみと、パイ型変位計によって測定された軸ひずみの時間変化を示す。載荷増幅が増えると軸ひずみが増えることが確認できる。変位計（柱中央部）と柱下部のパイ型変位計の値は、比較的似た形状のグラフであるが、層間変形角が0.0022rad（軽荷ステップ3）に向かう途中で、柱上部のパイ型変位計によるひずみが顕著に増加した。また、3つの場合ともに載荷ステップ3の荷重除荷後もひずみが残存している。この原因は、ここで柱の亀裂が進展し、特に柱上部では、曲げ亀裂が大きく進展したことが考えられる。

6. まとめ

大阪府下の公共建築物で1971年以前のRC規準によって設計され、30年以上使用されたRC造建築物の解体撤去に際し、その部分構架に対して繰り返し水平載荷実験を行った。載荷実験に先立ち、コンクリートの中性化深度および強度を調べ、劣化状況の調査を行った。載荷実験では、劣化・損傷を受けた骨組みの状態を確認するため、耐力について検討し、また、弾性載荷時の1階1柱に設置した変位計（柱中央部）とパイ型変位計の挙動を確認した。以下に本研究より得られた知見を示す。

コンクリートの中性化深度は、屋外側よりも屋内側のほうが大きくなる傾向が見られた。また、表面のモルタルの処理が20〜30mm施されている箇所で、表面が剥きへつけ塗装の場合は、30年経過後もほとんど中性化深度が進まないことが確認された。

30年以上経過後のRC造建築物の部分構架に対して、文献2）の算定式で材料試験結果を用いてせん断耐力を算定すると、実験値のほうが大きく安全側に評価することができた。

両柱の中央部に設置した変位計により算定した両柱のせん断力にとると、柱に作用するせん断力は、軸倒モーメントが働くRC骨組に対しても、弾性範囲内では層せん断力をほぼ等分に分配することを示唆するものであると考えられる。

謝辞：本研究における現場実験の実施に当たっては豊中市建築都市部建築課ならびに（株）松本工務店の関係各位に多大な協力をいただいた。また、本研究費の一部は平成13年度神戸大学都市安全研究センター特別プロジェクト研究助成（代表内田直樹）を利用した。本論文の作成に当たっては、都市安全研究センター室崎益輝教授に貴重なご意見をいただいた。ここに謝意を表す。

参考文献
1）日本建築学会：鉄筋コンクリート構造計算法（1991）
2）日本建築設計協会：既存鉄筋コンクリート造建築物の耐震診断基準（1990）
3）大谷敬弘、三谷隆：30年経過した既存RC造建築物の現場載荷実験、神戸大学大学院自然科学研究所紀要、20-B、pp.113-121、2002
4）德広千夫、三谷隆、久保達：実在鉄筋軽量コンクリート造建築物の繰り返し水平加力による破壊実験、コンクリート工学、25(10)、pp.95-112、1987
5）岸谷孝一、西村紀昭他編：コンクリート構造の耐久性シリーズ－中性化－、技報堂、pp.34-39、1986

著者：1）鈴木和彦、自然科学研究科博士前期課程；2）大谷敬弘、工学部建築学科、助教授；3）三谷隆、内田直樹、工学部建築学科、教授；4）藤原隆、工学部建築学科、助手
Field Loading Test on Deteriorated Existing Reinforced Concrete Building

Kazuhiko Suzuki
Yasuhiro Ohtani
Isao Mitani
Takashi Fujinaga
Naoki Uchida

Abstract

Performance of a deteriorated existing reinforced concrete (RC) building, which had been on service since 1970, was investigated. The building that was designed based on the old AIJ Standard for Structural Calculation of Reinforced Concrete Structures (AIJ, 1962) was planned to be deconstructed and removed. Since authors had a chance to carry field experiments on the building before deconstruction, field-loading test on the portal frame was performed to evaluate its structural performance. Prior to the loading test, concrete core specimens were taken and used for compression test and also measurement of carbonation. Then, ultimate behavior as well as elastic behavior of the portal frame was examined through the horizontal loading tests. In this paper, results of the field test and measurement are reported and performance of the building so investigated is discussed.