Deformations and Stresses in the Structural Reinforcement when using Wending Rods

A. S. Markovich, V.S. Kuznetsov, M. I. Abu Mahadi, Yu. A. Shaposhnikova

1,3 Department of Civil Engineering, Peoples' Friendship University of Russia (RUDN University), Moscow, Russia;
2 Department of Architectural Construction Design, Moscow State University of Civil Engineering, Moscow, Russia;
4 Department of Reinforced Concrete and Stone Structures, Moscow State University of Civil Engineering, Moscow, Russia

*Corresponding Author: markovich.rudn@gmail.com

Abstract

In monolithic construction, when manufacturing reinforcing articles on a construction site, technological requirements for the bending of rods may not always be observed. In various regulatory documents, there are differences in the technological requirements for this operation. The article presents the results of studies of the stress-strain state of reinforcement in the manufacture of clamps, pins and other products related to the bending of rods. Normative requirements and calculated values of limiting relative deformations for various classes of reinforcement and mandrel diameters are given. The recommendations of norms on the diameters of rods and mandrels in the manufacture of bent rods are checked and refined. The relative elongations or shortening of the fibers of the rod are determined by the difference in arc lengths of the midline and arc at a distance x from the midline. According to the results of the work, graphs of the distribution of the relative elongations of the rods are presented for different diameters of the mandrels as a function of the distance from the axis of the section. Plastic deformations develop practically over the entire cross-sectional area of the rod. The use of mandrels with radius less than R = 5r at the bending of armatures A400 and A500S is connected by the risk of cracking, delamination or destruction of the rod. The use of mandrels made from reinforcing bars A240 with mandrels of radius R = 2r is unacceptable, since edge deformations reach 35%, which exceeds the normative values and leads to the destruction of the rod. Also, the boundaries of the ratio of mandrel diameters for smooth reinforcement A240 and periodic A500S are presented. The results of this study can be used in practical work, as well as to establish the minimum mandrel diameters when using new types of reinforcement with other physical and mechanical properties.

Keywords: Bending angle, Bending rod, Mandrel, Monolithic construction, Reinforcement, Reinforcement clamp, Reinforcing bar, Reinforcing pin, Relative deformation, Rod armature, Steel stretching diagram
I. Introduction

In monolithic construction, when performing reinforcement work, it is necessary to bend the rods directly on the construction site, where the technical requirements of this important technological operation are not always observed, and there are discrepancies in the regulatory acts regulating the bending of the rods (SP 63.1330.2012, 2015; Kuznetcov V.S., Shaposhnikova Yu.A., 2016; Paille G.M., 2013; Seinturiere R., 2006).

For example, according to (GOST 5781-82, 2015; GOST 52544-2006, 2018) four groups of rod diameters are distinguished, and according to (SP 52-01-2003, 2015; Manual to SP 52-101-2003, 2005) two groups which is reflected in “Table 1”.

Table 1. Russian normative requirements for mandrel diameters

Nominal diameter of reinforcement d, mm	Diameter of mandrel for bending D	Diameter of reinforcement d, mm	Minimum mandrel diameter
≤12	$5d$	<20	2,5d
>12≤16	$6d$	≥20	4,0d
>16≤25	$8d$		
>25≤50	$10d$		

In European standards (BS 4466, 1989; BS 8110, 2010; EN 1992-1-1, 1998; Manual for the Design of Concrete Building Structures to Eurocode 2, 2006), the designation of the minimum bending radius of the reinforcement is set in a similar manner, and depends on the plastic properties of the steels used for the manufacture of reinforcement products and the diameters of the rods, as shown in “Table 2”.

Table 2. British normative requirements for mandrel diameters. Minimum former radii, bend and hook allowances

Bar size, mm	Type and grade R and type and grade S, mm	Type and grade T and type and grade S, mm	Fabric complying with BS 4466, mm	
d	r	r	d r	
6	12	18	5	15
8	16	24	6	18
10	20	30	7	21
12	24	36	8	24
16	32	48	9	27
20	40	60	10	30
25	50	100	12	36
32	64	128	-	-
40	80	160	-	-
50	100	200	-	-

Copyright reserved © J. Mech. Cont. & Math.
A. S. Markovich et al.

79
And in American norms (ACI 318-05, 2004; ASTM A82/A82M-07, 2013) the requirements for the radius of bending of the rods also depend on the diameters of the rods, three groups of rod diameters are distinguished, as shown in “Table 3“.

Table 3. US normative requirements for mandrel diameters. Minimum diameters of b

Bar size d_b, mm	Minimum diameter
No. 10 through No. 25	$6d_b$
No. 29, No. 32, and No. 36	$8d_b$
No. 43 and No. 57	$10d_b$

“Fig. 1“ shows the distribution of the minimum bending diameters depending on the diameters of the rods or wires in accordance with the requirements of regulatory documents of different countries: Russia, Great Britain and the United States.

The graphs show that all the normative documents considered limit the bending diameters depending on the diameter of the rods used.

The requirements of Russian and American standards on the establishment of bending diameters are close to each other and differ: for diameters $d=10-16$ by no more than 20%, for $d=18-25$ - by 30%, for $d=32-36$ - by 25%, and for $d=40-57^*$ - do not differ.

The recommendations of the British standards for setting mandrel sizes are more differentiated and significantly (up to 2 times) different from Russian ones, and the bending diameters largely depend on the type and class of reinforcement, as indicated in “Table 2“. This difference in British norms is explained by the variety of types of steels used for reinforcement of reinforced concrete elements.
Fig. 1. Minimum bending diameters depending on the diameters of the rods in accordance with the requirements of regulatory documents of different countries.

The paper deals with the features of the stress-strain state of the reinforcement in the bending of the rods during the manufacture of clamps, pins and other bent reinforcing articles. The safe radii of bending angles and ratios of diameters of rods and mandrels for reinforcing steels having different plastic properties, both domestic and foreign, are specified.

Copyright reserved © J. Mech. Cont. & Math.
A. S. Markovich et al.
II. Methods

For each of the types and types of rods used, there are standards for the steel used, depending on the manufacturing technology, application conditions and other. For example, “Table 4” shows the main types of steels and the documents regulating their performance.

Table 4. Analogues of Russian and foreign standards for steel

	USA	Great Britain	Germany	Russia
Structural	ASTM A36	BS4360/43A	DIN 17100	GOST 380
Reinforcing	ASTM A615	BS4449	DIN488	GOST 5781
Hot strips	ASTM A569	BS1449	DIN 1016	GOST 1050
Cold rolled	ASTM A366	BS1449	DIN 1623	GOST 9045
Galvanized	ASTM A527	BS/EN10143	DIN/EN10143	GOST 14918

The ability of reinforcing steel to perceive deformation without compromising integrity, i.e. without the appearance of cracks, tears, and bundles, is established by special tests. For reinforcing steel, they include testing a bar on a cold bend and reinforcement wire on the bend. The bend test consists of plastic deformation of samples of circular, square, rectangular or polygonal cross-sections by bending without changing the direction of the force until a specified bending angle is reached (GOST 14019-2003, 2015; GOST 12004-83, 2015; Bedarev A.V., 2014; Concrete and reinforced concrete - look in the future, 2014; Loganov V. A., Bogdanov V.P., 2008; BS 4466, 1989; BS 970-1, 1996; BS 970-2, 1988; BS 970-3, 1991; ASTM A82/A82M-07, 2013).

Relative elongation is an increase in the length of the sample, which occurs after the passage of the yield point and until the core itself is destroyed. The magnitude of plastic deformation in the rod, achieved during the bending process, should not exceed the limiting deformations of reinforcing steel, which depend on its class and brand “Fig. 2”, “Table 5”.

Copyright reserved © J. Mech. Cont.& Math.
A. S. Markovich et al.
This condition is especially important when using reinforcing steels having reduced flow areas.

Table 5. Examples of analogues of Russian and foreign brands of steels

Russia	USA	Great Britain	Germany
A240 St3kp	A283(A)	1449-37/23CR	1.0036
	A284Gr.D	235JRG1	1.0036
	A570(33, 36)	4360-40B	1.0116
	A573Gr.58	4499-250	Fe360B
	A611Gr.C	Fe360B	Fe360D1
	K01804	Fe360D1FF	K01804
	K02001 and etc.	HFS4	K02301
	and etc.	HFW4	and etc.
	and etc.	S235J2G3	and etc.
A240 St3ps	A284Gr.D	1449-37/23CR	1.0038
	A570(36)	235JRG1	1.0116
	A573Gr.58	4360-40B	Fe360B
	A611Gr.C	4360-40D	Fe360D1
	GradeC	4499-250	RSt37-2
	K01804	722M24	S235J2G3
	K02001	Fe360BFU	USt37-2
	K02301	Fe360D1FF	and etc.
	and etc.	HFS3	and etc.
	and etc.	HFS4	and etc.
	and etc.	HFW3	and etc.
	and etc.	HFW4	and etc.
	and etc.	S235J2G3	and etc.
When bending around the mandrel “Fig. 3” the elongation (shortening) of the fibers of the rod is determined by the difference in arc lengths of the midline and arc at a distance \(x\) from the midline.

With the diameter of the reinforcing bar \(d=2r\), the diameter of the mandrel \(D=2R\) and the angle of bending \(\varphi\), the arc length of the midline \(AB\) is

\[L_0 = \pi \varphi (R+r)/180, \]

and the arc length \(CE\) \(L_1 = \pi \varphi (R+2r)/180\).

The absolute elongation of the outermost fiber \(\Delta\) at a distance \(x=r\) is equal to

\[\Delta = L_1 - L_0 = (\pi \varphi /180) r. \]

(1)

The relative elongation of the outermost fiber \(\varepsilon\) at a distance \(x=r\) is equal to

\[\varepsilon = \Delta/L_0 = (\pi \varphi /180) r/ \pi \varphi (R+r)/180 = r/(R+r). \]

(2)

| St3sp (almost the same as St3ps) | A284Gr.D
| | A570(36)
| | A573Gr.58
| | A611Gr.C
| | GradeC
| | K01804
| | K02001
| | K02301
| | and etc.
| 1449-27/23CR
| 1449-37/23CR
| 37/23HR
| 4360-40B
| 4360-40D
| 4449-250
| 722M24
| Fe360BFU
| Fe360D1FF
| HFS3
| HFS4
| HFW3
| HFW4
| S235J2G3
| and etc.
| 1.0038
| 1.0116
| DC03
| Fe360B
| Fe360D1
| RSt37-2
| S235J0
| S235J2G3
| USt37-2
| and etc.
35GS
-
BSt420S
25G2S
-
-
BSt420S
32G2Rps
-
-
-
St3sp
See above
See above
See above
St3ps
See above
See above
See above
St3GPS
Grade42
-
P275N
S235J2G3
S275J2G3
S275JR
St44-3G
USt37-2G

Copyright reserved © J. Mech. Cont.& Math.
A. S. Markovich et al.
Obviously, the relative elongation does not depend on the angle of bending φ, but only on the ratio of the diameters of the rod d and the mandrel D. A diagram for determining the deformation of the reinforcement in bending is shown in “Fig. 3”.

![Diagram of deformation in bending](image)

Fig. 3. To the definition of deformation of the reinforcing bar at bending: 1 - rod, 2 – mandrel

Plastic deformations are determined when testing reinforcing specimens and are indicated in the certificate for each batch of reinforcing steels. It should be borne in mind that the reinforcement can be made of steels of various categories, which differ in plastic properties (GOST 14019-2003, 2015; GOST 12004-83, 2015; GOST R 54257-2010, 2011). For example, the armature made of steel St1 has complete relative deformations, at least 28%, St5 - (15÷17)%; and St7 - (7÷9)%. The normalized deformation values of steels A240 and A400 and A500S are presented in “Table 6”.

Copyright reserved © J. Mech. Cont. & Math.
A. S. Markovich et al.
Table 6. Indicators of deformability of reinforcing steels A240 and A400 and A500S

(GOST 5781, GOST 52544-2006)

Reinforcement class	Elongation%	Elastic deformations % at		
	The total δ	Uniform δ_u	$\sigma_{u}-R_m$	$\sigma_{u}-R_s$
A240	25	-	0.120	0.105
A400	14	2	0.2	0.175
A500S	14	2	0.25	0.217

III. Results and Discussion.

“Fig. 4” shows the distribution of the relative elongations of the rod and for different diameters of the mandrels.

The plots show that plastic deformations develop practically over the entire cross-sectional area of the rod. For steel A400 and A500S, rod extensions corresponding to the normative index of 14% are reached already at a distance $x=0.3r$ at the radius of the mandrel $R=2r$, at a distance $x=0.9r$ at $R=5r$ and $x=0.9r$ at $R=8r$. Thus, the use of mandrels of radius less than $R=5r$ or $(D=2.5d)$ in the bending of armatures A400 and A500S is associated with the risk of cracking, delamination or destruction of the rod.

Fig. 4. Elongation of rods for different diameters of mandrels

Copyright reserved © J. Mech. Cont.& Math.
A. S. Markovich et al.
It can also be seen that the use of mandrels made of reinforcing bars A240 with mandrels of radius $R=2r$ or $(D=2d)$ is unacceptable, since edge deformations reach 35%, which exceeds the normative values and leads to the destruction of the rod.

The graphs “Fig. 5” show the boundaries of the ratio of mandrel diameters for smooth reinforcement A240 and periodic A500S.

So for the A240 armature, the minimum value of the ratio of the diameter of the mandrel to the diameter of the rod $(k=D/r)$ and corresponding to a relative elongation of 25% $k=3$, which meets the requirements of the norms.

For the A500S armature, the minimum ratio D/r corresponding to a relative elongation of 14% is $k=6$, which is more than the recommended ratio.

IV. Conclusions.

It should be noted that the requirements for Russian and American standards are close to each other, while the recommendations on the British standards from the others are significantly different. Such a difference between the British norms and the rest can be explained by the different physicochemical properties of the steels used to reinforce the jelly-concrete elements.

Based on the results of this paper, the safe boundaries of the bending angles and the ratios of the diameters of the rods and mandrels are specified. It has been established that the use of mandrels with radius less than $R = 5r$ for bending of A400 and A500S reinforcement can lead to the appearance of cracks, delamination or destruction of the rod, and for A240 valves, the use of mandrels of radius less than $R = 2r$ is inadmissible, since edge deformations reach 35 %, which leads to the destruction of the rod.

It should be borne in mind that during operation, the clamps of the compressed elements or compressed zones of the bent elements experience additional deformations associated with the lateral expansion of the concrete, which, together
with the initial relative elongations from the bend of the rod, can lead to its destruction. The results of the research presented in the article can be used in practical work, as well as to establish the minimum mandrel diameters when using new types of reinforcement having other physical and mechanical properties.

V. Acknowledgement

This research paper is financially supported by the Ministry of Education and Science of the Russian Federation on the program to improve the competitiveness of the RUDN University among the world's leading research and education centers in 2016-2020 (Agreement № 02. A03.21.0008).

References

I. A manual for the design of concrete and reinforced concrete structures from heavy concrete without prestressing reinforcement (to SP 52-101-2003) (2005). Moscow.
II. ACI 318-05 (2004). Building Code Requirements for Structural Concrete and Commentary.
III. ASTM A82/A82M-07 (2013). Standard Specification for Steel Wire, Plain, for Concrete Reinforcement, Withdrawn.
IV. BS 4466 (1989). Specification for scheduling, dimensioning, bending and cutting of steel reinforcement for concrete.
V. BS 8110 (2010). British Standard. Structural use of concrete.
VI. BS 970-1 (1996). Specification for wrought steels for mechanical and allied engineering purposes. Part 1: General inspection and testing procedures and specific requirements for carbon, carbon manganese, alloy and stainless steels.
VII. BS 970-2 (1988). Wrought steel for mechanical and allied engineering purposes. Part 2: Requirements for steels for the manufacture of hot formed springs.
VIII. BS 970-3 (1991). Wrought steel for mechanical and allied engineering purposes. Part 3: Bright bars for engineering purposes.
IX. Bedarev A.V. (2014). Calculation of the cross-section of the reinforcement of the zone of anchoring of the armature of the periodic profile. Pp. 193-203.
X. Concrete and reinforced concrete - look in the future. Scientific works of the III All-Russian (II International) Conference on Concrete and Reinforced Concrete: in 7 volumes (2014). Publisher: National Research Moscow State Building University, Moscow.
XI. EN 1992-1-1 (1998). La norme NBN. Eurocode 2.
XII. GOST 12004-83 (2015). Steel reinforcing. Methods of tensile testing.
XIV. GOST 14019-2003 (2015). Methods of testing for bending.

XV. GOST 5781-82 (2015). Hot-rolled steel for the reinforcement of reinforced concrete structures, Moscow.

XVI. GOST R 52544-2006 (2018). Rolled reinforced welded periodic profiles of classes A500C and B500C for reinforcement of reinforced concrete and stone structures, Moscow.

XVII. GOST R 54257-2010 (2011). Reliability of building structures and foundations, Moscow.

XVIII. Kuznetsov V.S., Shaposhnikova Yu.A. (2016). On the definition deflections of monolithic slabs with the mixed reinforcing at the stage of limit equilibrium. MATEC Web of Conferences (Web of Science). See also URL: http://www.matec-conferences.org/.

XIX. Loganov V. A., Bogdanov V.P. (2008). Mechanism of the cutting and bending of the end of the connecting network rings. Patent for utility model №74837, Russia.

XX. Manual for the Design of Concrete Building Structures to Eurocode 2 (2006). Institution of Structural Engineers. London.

XXI. Paille G.M. (2013). Calcul des structures en beton arme, AFNOR, Paris.

XXII. Seinturier R. (2006), Etat Limite de service, IUT, Génie, Civil de Grenoble.

XXIII. SP 52-103-2007 (2007). Concrete monolithic construction of buildings.

XXIV. SP 63.13330.2012 (2015). Concrete and reinforced concrete structures. Basic provisions. Updated version of SNiP 52-01-2003, Moscow.