Invited article

Molecular identification of *Taenia hydatigena* and *Mesocestoides* species based on copro-DNA analysis of wild carnivores in Mongolia

Gelegbalsan Ulzijargal,1, Chultemsuren Yeruultb,1, Janchiv Khulan,1, Choijilsuren Gantsetsegd,1, Toni Wandra,1, Hiroshi Yamasakif,1, Myadagsuren Narankhajidg,1

1 Department of Laboratory, Mongolian National University of Medical Sciences, Ulaanbaatar, Mongolia
2 Department of Pharmacology, Mongolian National University of Medical Sciences, Ulaanbaatar, Mongolia
3 Department of Biology, National University of Mongolia, Ulaanbaatar, Mongolia
4 National Center for Zoonotic Disease, Mongolia
5 Directorate of Postgraduate, Sari Mutiara Indonesia University, Medan, Indonesia
6 Department of Parasitology, National Institute of Infectious Diseases, Tokyo, Japan
7 Department of Biology, Mongolian National University of Medical Sciences, Ulaanbaatar, Mongolia

A R T I C L E I N F O

Keywords:
Taenia hydatigena
Mesocestoides sp.
cox1 gene
12S rRNA gene
Wild carnivores
Mongolia

A B S T R A C T

Cyclophyllidean tapeworms obligatorily parasitize numerous mammalian species, including herbivores, domestic animals and humans, of which, the genera *Taenia* and *Mesocestoides* are well characterized. However, little is known about these parasitic infections in wild animals. This study aims to investigate the prevalence and distribution of *Taenia* sp. and *Mesocestoides* sp. in wild carnivores in Mongolia by identifying tapeworm species based on mtDNA analysis. The field survey was carried out in 2012–2013 in 19 provinces located in different ecological regions. A total of 405 fecal samples from wild carnivores were collected. Specific DNA markers in fecal samples was detected via copro-DNA analysis and tapeworm species were identified by DNA sequencing. From 27.7% (112/405) of samples, *cox1* and 12S rRNA genes of tapeworms were amplified. Further, *Taenia hydatigena* (50.0%, 56/112) and two *Mesocestoides* species, including *Mesocestoides* sp.-1 (36.6%, 41/112) and *Mesocestoides* sp.-2 (13.4%, 15/112) were identified by DNA sequencing. The prevalence of *T. hydatigena* was 19.9% (27/136), 13.8% (23/167), 4.8% (3/62), and 7.5% (3/40) in wolves, red foxes, corsac foxes, and snow leopards, respectively. The prevalence of *Mesocestoides* sp.-1 was 14.7% (20/136), 9% (15/167), 9.7% (6/62) in wolves, red foxes, and corsac foxes, while the prevalence of *Mesocestoides* sp.-2 was 4.4% (6/136), 1.8% (3/167), 3.2% (2/62), and 10.0% (4/40) in wolves, red foxes, corsac foxes, and snow leopards, respectively. *T. hydatigena* was found throughout all ecological regions, while *Mesocestoides* sp.-1 was in the mountain taiga, forest-steppe, steppe, desert-steppe, and desert-steppe ecoregions. This study revealed the prevalence and distribution of cyclophyllidean tapeworms in wild carnivores in Mongolia; while also confirming that wolves, red foxes, corsac foxes, and snow leopards serve as definitive hosts for unidentified *Mesocestoides* species.

1. Introduction

Mongolia is a land locked country located in Central and East Asia bordering with the Russian Federation in the north and the People’s Republic of China in the west, south, and east, and consists of 21 provinces. Great diversities characterize the geography of the country. Currently, from north to south, it can be divided into four regions (Western, Khangai, Central, and Eastern), and six ecological regions: alpine, mountain taiga, forest-steppe, steppe, desert-steppe, and desert (Table 2 and 3, Fig. 1). The total population of Mongolia is 3.238.479 (NSO, 2019); of which nearly 40% of the rural population is nomadic or semi-nomadic herdsmen (Myadagsuren et al., 2007).

Tapeworms of the genus *Taenia* include over 100 species (Gonzalez et al., 2018) that affect dogs, cats, goats, sheep, cattle, pigs, and other livestock, domestic and wild animals as well as humans. The lifecycle of the *Taenia* species relies on a vertebrate intermediate host in which the infective larvae develop, as well as on a definitive host that ingests the uncooked flesh of the intermediate host (Gonzalez et al., 2018). *Taenia*
defeating the parasite. Mass infection of developing in hosts when immature immune systems are incapable of surface (Blazek et al., 1985). Moreover, cysticerci are permitted to with hemorrhaging in the liver parenchyma and beneath the liver (Blazek et al., 1985). 2015; Poglayen et al., 2017; Kubečka et al., 2018).

Table 2
Prevalence of T. hydatigena and Mesocestoides sp. by region and province in Mongolia.

Region	Province	Number and prevalence (%) T. hydatigena	Mesocestoides sp.-1	Mesocestoides sp.-2
Western	Bayan-Ulgii	2/16 (12.5)	0/16 (0.0)	2/16 (12.5)
	Govi-Altai	0/16 (0.0)	1/16 (6.3)	2/16 (12.5)
	Zavkhan	3/19 (15.8)	6/19 (31.6)	3/19 (15.8)
	Uvs	4/21 (19.0)	2/21 (9.5)	1/21 (4.8)
	Khovd	2/16 (12.5)	0/16 (0.0)	2/16 (12.5)
Khangai	Arkhangai	3/26 (11.5)	2/26 (7.7)	0/26 (0.0)
	Bayankhongor	2/21 (9.5)	2/21 (9.5)	1/21 (4.8)
	Bulgan	5/23 (21.7)	5/23 (21.7)	0/23 (0.0)
	Uvurkhangai	3/14 (21.4)	2/14 (14.3)	1/14 (7.1)
	Khuvsgul	0/8 (0.0)	1/8 (12.5)	0/8 (0.0)
	Orkhon-Uul	5/28 (17.9)	1/28 (3.6)	0/28 (0.0)
Central	Gobi-Sumber			
	Dornogobi	2/49 (4.1)	2/49 (4.1)	1/49 (2.0)
	Dundgobi	5/28 (17.9)	3/28 (10.7)	0/28 (0.0)
	Umnu-Gobi	2/25 (8.0)	2/25 (8.0)	2/25 (8.0)
	Selenge	2/23 (8.7)	4/23 (17.4)	0/23 (0.0)
	Tuv	7/25 (28.0)	1/25 (4.0)	0/25 (0.0)
	Darkhan-Uul	3/12 (25.0)	2/12 (16.7)	0/12 (0.0)
Eastern	Dornod	4/22 (18.2)	4/22 (18.2)	0/22 (0.0)
	Sukhbaatar	4/22 (18.2)		0/22 (0.0)
	Khentii	2/13 (15.4)	1/13 (7.7)	0/13 (0.0)

sp. is distributed worldwide, whereby abundance and incidence in different regions depend on each particular species (Rostami et al., 2015; Poglayen et al., 2017; Kubečka et al., 2018).

T. hydatigena is an omnipresent tapeworm found in domestic animals worldwide (Nguyen et al., 2016; Miran, 2017), exerting a significant constraint on the development of the livestock industry in developing countries. Furthermore, in Mongolia it has been reported that carnivores such as gray wolves, red fox, corsac fox, and dogs are the definitive hosts for T. hydatigena (Dubinin and Dubinina, 1951; Danzan, 1978; Tinnin et al., 2002); whereas, the metacestodes found in sheep, goat, cattle, argali, ibex deer, and roe deer, serve as intermediate hosts (Danzan, 1978; Sharkhuu, 2001; Sharkhuu and Sharrakh, 2004). These intermediate hosts may become infected by environments that are contaminated by infected wild carnivores or dogs, primarily wolves, which become infected following consumption of infected wild and domestic livestock. In fact, within dogs in Mongolia, the prevalence of T. hydatigena was reported as 61.3% (Danzan, 1978). Intermediate hosts containing T. hydatigena cysticerci in the migratory phase, present with hemorrhaging in the liver parenchyma and beneath the liver surface (Blazek et al., 1985). Moreover, cysticerci are permitted to develop in hosts when immature immune systems are incapable of defeating the parasite. Mass infection of T. hydatigena cysticerci may cause the death of infected animals during the migration of cysticerci (Scala et al., 2016; Sgroi et al., 2019).

T. hydatigena accounts for one of the most prevalent tapeworm infections in intermediate hosts, causing significant negative impacts to the health of infected animals (Getaw et al., 2010; Dumitri et al., 2011; Oryan et al., 2012; Debas and Ibrahim, 2013), and significantly impacting the livestock industry in developing countries such as Mongolia (Jenkins et al., 2014; Nguyen et al., 2016; Miran, 2017). Specifically, T. hydatigena infected livestock can result in meat condemnation (Oryan et al., 2012; Debas and Ibrahim, 2013; Rashid et al., 2019). Since animal husbandry accounts for approximately 20–30% of Mongolia’s GDP (MoFALI, 2018), tapeworm infections represent a significant economic burden on herders who practice a nomadic lifestyle. However, T. hydatigena is not only detrimental to developing countries, but has also been reported to cause significant economic losses, reaching 330,000 euros, in developed nations (Scala et al., 2015).

Mesocestoides sp. exhibit unique characteristics compared to other groups of cyclophyllideans (Cho et al., 2013). For instance, the life cycle of Mesocestoides is complex, requiring two or three intermediate hosts to complete its development (Zalesny and Hildebrand, 2012; McAllister et al., 2013; Poglayen et al., 2017). The oncosphere Mesocestoides develops into a second-stage larva in the first intermediate host (arthropod); while in the second intermediate host, such as small mammals (Loos-Frank, 1991) and reptiles, the larva develops into third-stage (tetrathyridium). Among the Mesocestoides isolates, M. litteratus and M. lineatus were commonly isolated from red foxes, dogs, coyotes
and wolves, which served as definitive hosts (Hrčkova et al., 2011; Zalesny and Hildebrand, 2012). Alternatively, in Mongolia domestic or wild animals such as sheep, goats, cattle, argali, ibex deer, and roe deer serve as the second intermediate hosts (Danzan, 1978; Sharhuu and Sharkhuu, 2004). Although there are few studies regarding the identity of definitive hosts in Mongolia, it has been reported that definitive host becomes infected after eating meat contaminated with tetrathyridia (CDC, 2017). Once infected, the intermediate host may experience hemorrhagia within the liver (Blazek et al., 1985), while the definitive hosts have their small intestines colonized by Mesocestoides sp., which can prove to be very dangerous (Jabbar et al., 2012) for rare species such as the snow leopard.

Cestodes represent a significant risk to the health of both humans and their livestock. However, little is known about these tapeworm infections in wild animals. Within Mongolia, soil-transmitted cestode infections are increasing in prevalence, making the need for accurate molecular characterization, and mapping of the geographic distribution of the parasites, of utmost importance if efficient prevention and control options are to be designed (Ebright et al., 2003; McFadden et al., 2016).

This study aims to investigate the prevalence and distribution of Taenia sp. and Mesocestoides sp. in wild carnivores in Mongolia by identifying tapeworm species based on copro-DNA analysis.

2. Materials and methods

2.1. Collection of canid and felid fecal samples

A total of 405 fecal samples were randomly collected from 167, 136, 62, and 40 wolves, red foxes, corsac foxes, and snow leopards, respectively, from 19 of the 21 Mongolian provinces, save for Dornod and Gobi-Sumber, representing all ecological regions of Mongolia (Fig. 1, Table 1). Each fecal sample weighed 18 g. The feces were collected using standard techniques (Lawrence and Brown, 1967; Strachan et al., 1996). The species for each feces sample was visually identified based on color, shape, location, pugmarks, scrapes, and the nearby remains of

Ecoregion/wild carnivore	No. of fecal sample	Number and prevalence (% of positive samples)
Alpine (n = 38) Wolf	10	1/10 (10.0) 0/10 (0.0) 0/10 (0.0)
Snow leopard	28	3/28 (10.7) 0/28 (0.0) 28 (14.3)
Mountain taiga (n = 26) Wolf	14	2/14 (14.3) 3/14 (21.4) 0/14 (0.0)
Snow leopard	12	0/12 (0.0) 1/12 (0.0) 1/12 (0.0)
Forest-steppe (n = 113) Wolf	41	10/41 (24.4) 7/41 (17.1) 0/41 (0.0)
Red fox	49	7/49 (14.3) 3/49 (6.1) 1/49 (2.0)
Corsac fox	23	0/23 (0.0) 2/23 (8.7) 0/23 (0.0)
Steppe (n = 89) Wolf	40	8/40 (20.0) 2/40 (5.0) 6/40 (15.0)
Red fox	36	5/36 (13.9) 5/36 (13.9) 2/36 (5.6)
Corsac fox	13	0/13 (0.0) 4/13 (30.8) 0/13 (0.0)
Desert-steppe (n = 101) Wolf	23	5/23 (21.7) 6/23 (26.1) 0/23 (0.0)
Red fox	59	11/59 (18.6) 0/59 (0.0) 0/59 (0.0)
Corsac fox	19	1/19 (5.3) 0/19 (0.0) 2/19 (10.5)
Desert (n = 38) Wolf	8	1/8 (12.5) 2/8 (25.0) 0/8 (0.0)
Red fox	23	0/23 (0.0) 7/23 (30.4) 0/23 (0.0)
Corsac fox	7	2/7 (28.6) 0/7 (0.0) 2/7 (28.6)

Table 3

Prevalence of T. hydatigena and Mesocestoides sp. infections in wild carnivores by ecoregions in Mongolia.

Fig. 1. Map of Mongolia showing the distribution of Taenia hydatigena (pentangle), Mesocestoides sp.-1 (square), and Mesocestoides sp.-2 (circle) by province detected by molecular identification of fecal samples from wild carnivores. Mongolia consists of 21 provinces: Arkhangai (Akh), Bayankhongor (Bkh), Bayan-Ulgii (BU), Bulgan (BG), Darkhan-Uul (DU), Dornogobi (DoG), Dundgobi (DuG), Govi-Altai (GA), Khentii (KhE), Khovd (KhO), Khuvsgul (KhU), Orkhon-Uul (OU), Selenge (SE), Sukhbaatar (SB), Tuv (TU), Umnugobi (UG), Uvs (Uv), Uvurkhangai (Ukh), Zavkhan (ZKh), Dornod (D), and Gobi-Sumber (GS). The field survey was conducted in all provinces, unless Dornod (D), and GS (Gobi-Sumber). Ulaanbaatar (U) is the capital city of Mongolia. The field survey was conducted in all provinces, unless Dornod (D), and GS (Gobi-Sumber). Ulaanbaatar (U) is the capital city of Mongolia located in Tuv Province.
Table 4: Pairwise genetic distance in gene among Mesocestoides isolates from Mongolia and related taxa.

Mesocestoides isolates	Number 2012/3–4, dated November, 24.	Mongolia (Number 2012/3–4, dated November, 24).
1 Mesocestoides sp.-1	AB792715 (red fox) Mongolia	0.005
2 Mesocestoides sp.-1	AB792716 (corsac fox) Mongolia	0.003
3 Mesocestoides sp.-2	AB792718 (red fox) Mongolia	0.160
4 Mesocestoides sp.-1	AB792719 (red fox) Mongolia	0.192
5 Mesocestoides sp.-2	AB792720 (red fox) Mongolia	0.174
6 Mesocestoides sp.-1	AB792721 (red fox) Mongolia	0.165
7 Mesocestoides sp.-1	AB792722 (red fox) Mongolia	0.170
8 Mesocestoides sp.-1	AB792723 (red fox) Mongolia	0.170
9 Mesocestoides sp.-1	AB792724 (red fox) Mongolia	0.170
10 M. litteratus	KX962362 (wolf) Germany	0.164
11 M. litteratus	KX962361 (wolf) Germany	0.164
12 M. litteratus	KX962367 (wolf) Germany	0.164
13 M. canislagopodis	KT232145 (rock ptarmigan) Iceland	0.049
14 M. canislagopodis	KT232144 (arctic fox) Iceland	0.049
15 AP017667	0.156	
16 AB033413	0.157	
17 LM533943	0.156	
18 M. lineatus	JF268501 (red fox) Slovakia	0.131
19 M. canislagopodis	JF268514 (red fox) Slovakia	0.173
20 M. canislagopodis	JF268513 (red fox) Slovakia	0.172

2.2. DNA analysis

The copro- DNA samples were extracted from frozen feces using the QIAamp DNA Stool Mini kit (Qiagen, Hilden, Germany) according to the manufacturer's instructions. The cytochrome c oxidase subunit 1 (cox1) gene and 12S rRNA was amplified by polymerase chain reaction (PCR) using previously published primers (Bowles and McManus, 1993; von Nickisch-Rosenegk et al., 1999). Amplicons were sequenced in both directions on a 3100-Advant Genetic Analyzer (ABI PRISM, Applied Biosystems, Hitachi, Japan).

2.3. Phylogenetic analysis

Sequence data were assembled and edited using BioEdit (version 7.2.5) and were compared to the reference sequences in GenBank® by using BLAST. Phylogenetic trees were constructed based on the partial nucleotide sequences of cox1 and 12S rRNA, together with reference sequences available in GenBank and using the MEGA software, version 7.0 (http://www.megasoftware.net/). The evolutionary distances were computed using the maximum likelihood estimation method (HKY + G + I substitution model) and neighbor joining (TN93 + G substitution model) was presented as the number of base substitutions per site (Kumar et al., 2016).

2.4. Data analysis

Infection prevalence was determined for the study years. A comparison of infection prevalence was conducted using the Pearson's chi-squared test. All analyses were performed using SPSS v.22 (IBM). Arlequin 3.1 (Excoffier et al., 2005) was used to calculate population diversity indices (haplotype (h) and nucleotide (π) diversities), neutrality indices, Tajima’s D (Tajima, 1989) and Fu’s Fs (Fu, 1997). A p-value < 0.05 was considered statistically significant.

This study was approved by the Research Ethics Committee of the Mongolian National University of Medical Sciences, Ulaanbaatar, Mongolia (Number 2012/3–4, dated November, 24).

3. Results

Table 1 shows results from PCR amplification of 405 wild carnivores' fecal samples, which indicate that 27.7% (112/405) of samples were amplified with molecular sizes of 400 bp and 314 bp for cox1 and 12S rRNA, respectively. Tapeworm DNA was detected in wolves (47.3%, 53/112), red foxes (36.6%, 41/112), corsac foxes (9.8%, 11/112), and snow leopards (6.3%, 7/112). GenBank® accession numbers for cyclophyllidean tapeworms identified in Mongolia are presented in Table 6, along with a breakdown by DNA marker, parasite species/isolate code, wild carnivore, and coordinate. Of the 112 amplified samples, 54 and 56 different sequences were detected in the cox1 and 12S rRNA genes, respectively, and were classified as T. hydatigena (50.0%, 56/112), Mesocestoides sp.-1 (36.6%, 41/112), and Mesocestoides sp.-2 (13.4%, 15/112) via the sequence homology search. Phylogenetic tree analysis revealed that T. hydatigena from Mongolia was included in the clade composed of T. hydatigena from other countries (Table 4, Fig. 2a, 2b, 3a, and 3b).

T. hydatigena infection in wild carnivores was detected throughout all regions, 19.6% (11/56), 32.1% (18/56), 37.5% (21/56), and 10.7% (6/56) in Western, Khangai, Central, and Eastern, respectively (Table 2, Fig. 1). T. hydatigena infection in wild carnivores was detected in 17 provinces. The highest prevalence was observed in Tuv (28.0%, 7/25), while the lowest was in Dormogobi (4.1%, 2/49). No T. hydatigena was
isolated in samples from Govi-Altai and Khuvsgul (Table 2). Further-
more, the prevalence in wolf samples from Tuv was significantly higher
than in other provinces (12.9%, 49/380) (p = 0.034).

The prevalence of T. hydatigena infection in wild carnivores was
19.9% (27/136), 13.8% (23/167), 4.8% (3/62), and 7.5% (3/40) in
wolves, red foxes, corsac foxes, and snow leopards, respectively
(Table 1). Prevalence in wolves was significantly higher compared to
other wild carnivores (10.7%, 29/269) (p = 0.012).

The prevalence of T. hydatigena infection in wolves was 10.0% (1/
10), 8.3% (2/24), 24.4% (10/41), 20.0% (8/40), 21.7% (5/23), and
12.5% (1/8) in alpine, mountain taiga, forest-steppe, steppe, desert-
steppe, and desert, respectively. The prevalence in red foxes was
14.3% (7/49), 13.9% (5/36), and 18.6% (11/59) in forest-steppe, steppe,
and desert-steppe, and the prevalence in corsac foxes was 5.3% (1/19)
and 28.6% (2/7) in desert-steppe and desert, respectively. The prevalence of T. hydatigena infection in the snow leopards was 10.7% (3/28) in
alpine region (Table 3).

Using the cox1 and 12S rRNA sequence data we observed that
Mesocestoides species from Mongolia formed two genetically distant
clades designated Mesocestoides sp.-1 and Mesocestoides sp.-2, which are
not similar to the reference sequences present in GenBank® database were included. Hymenolepis nana served as an out-group.

(b) Phylogenetic analysis of the 12S rRNA partial sequence of T. hydatigena, Mesocestoides sp., and M. lineatus inferred using the sequence distance method and maximum likelihood. Hymenolepis nana was used as an out-group.

isolated in samples from Govi-Altai and Khuvsgul (Table 2). Furthermore, the prevalence in wolf samples from Tuv was significantly higher than in other provinces (12.9%, 49/380) (p = 0.034).

The prevalence of T. hydatigena infection in wild carnivores was
19.9% (27/136), 13.8% (23/167), 4.8% (3/62), and 7.5% (3/40) in
wolves, red foxes, corsac foxes, and snow leopards, respectively
(Table 1). Prevalence in wolves was significantly higher compared to
other wild carnivores (10.7%, 29/269) (p = 0.012).

The prevalence of T. hydatigena infection in wolves was 10.0% (1/
10), 8.3% (2/24), 24.4% (10/41), 20.0% (8/40), 21.7% (5/23), and
12.5% (1/8) in alpine, mountain taiga, forest-steppe, steppe, desert-
steppe, and desert, respectively. The prevalence in red foxes was
14.3% (7/49), 13.9% (5/36), and 18.6% (11/59) in forest-steppe, steppe,
and desert-steppe, and the prevalence in corsac foxes was 5.3% (1/19)
and 28.6% (2/7) in desert-steppe and desert, respectively. The prevalence of T. hydatigena infection in the snow leopards was 10.7% (3/28) in
alpine region (Table 3).

Using the cox1 and 12S rRNA sequence data we observed that
Mesocestoides species from Mongolia formed two genetically distant
clades designated Mesocestoides sp.-1 and Mesocestoides sp.-2, which are
not similar to the reference sequences present in GenBank® database were included. Hymenolepis nana served as an out-group.

(b) Phylogenetic analysis of the 12S rRNA partial sequence of T. hydatigena, Mesocestoides sp., and M. lineatus inferred using the sequence distance method and maximum likelihood. Hymenolepis nana was used as an out-group.

isolated in samples from Govi-Altai and Khuvsgul (Table 2). Furthermore, the prevalence in wolf samples from Tuv was significantly higher than in other provinces (12.9%, 49/380) (p = 0.034).

The prevalence of T. hydatigena infection in wild carnivores was
19.9% (27/136), 13.8% (23/167), 4.8% (3/62), and 7.5% (3/40) in
wolves, red foxes, corsac foxes, and snow leopards, respectively
(Table 1). Prevalence in wolves was significantly higher compared to
other wild carnivores (10.7%, 29/269) (p = 0.012).

The prevalence of T. hydatigena infection in wolves was 10.0% (1/
10), 8.3% (2/24), 24.4% (10/41), 20.0% (8/40), 21.7% (5/23), and
12.5% (1/8) in alpine, mountain taiga, forest-steppe, steppe, desert-
steppe, and desert, respectively. The prevalence in red foxes was
14.3% (7/49), 13.9% (5/36), and 18.6% (11/59) in forest-steppe, steppe,
and desert-steppe, and the prevalence in corsac foxes was 5.3% (1/19)
and 28.6% (2/7) in desert-steppe and desert, respectively. The prevalence of T. hydatigena infection in the snow leopards was 10.7% (3/28) in
alpine region (Table 3).

Using the cox1 and 12S rRNA sequence data we observed that
Mesocestoides species from Mongolia formed two genetically distant
clades designated Mesocestoides sp.-1 and Mesocestoides sp.-2, which are
not similar to the reference sequences present in GenBank® database were included. Hymenolepis nana served as an out-group.

(b) Phylogenetic analysis of the 12S rRNA partial sequence of T. hydatigena, Mesocestoides sp., and M. lineatus inferred using the sequence distance method and maximum likelihood. Hymenolepis nana was used as an out-group.
d values were also large (Table 5).

Mesocestoides sp.-1 infection in wild carnivores was detected in all regions, 22.0% (9/41), 31.7% (13/41), 34.1% (14/41), and 12.2% (5/41) in Western, Khangai, Central, and Eastern, respectively (Table 2, Fig. 1). The prevalence of Mesocestoides sp.-1 infection in wild carnivores was 14.7% (20/136), 9.0% (15/167), and 9.7% (6/62) in wolves, red foxes, and corsac foxes, respectively. However, no Mesocestoides sp.-1 infection was observed in the snow leopard (Table 3). Additionally, Mesocestoides sp.-1 infection was detected in wild carnivores from 17 of the 21 provinces (Table 2). The highest prevalence was observed in Zavkhan (31.6%, 6/19), while the lowest was in Dornogobi (4.1%, 2/49) (Table 2).

The prevalence of Mesocestoides sp.-1 infection in wolves was 21.4% (3/14), 17.0% (7/41), 5.0% (2/40), 26.1% (6/23), and 25.0% (2/8) in mountain taiga, forest-steppe, steppe, desert-steppe, and desert (Table 3). The prevalence in red foxes was 6.1% (3/49), 13.9% (5/36), and 30.4% (7/23) in forest-steppe, steppe, and desert, and the prevalence in corsac foxes was 8.7% (2/23) and 30.8% (4/13) in forest-steppe and steppe, respectively. There was no Mesocestoides sp.-1 infection observed in snow leopards (Table 3).

Mesocestoides sp.-2 infection in wild carnivores was detected in three regions, 66.7% (10/15), 13.3% (2/15), and 20.0% (3/15) in Western, Khangai, and Central, respectively (Table 2, Fig. 1). The prevalence of Mesocestoides sp.-2 infection in wild carnivores was 15.0% (6/40), 3.5% (3/85), 10.5% (2/19), and 14.3% (4/28) in wolves, red foxes, corsac foxes and snow leopards, respectively (Table 3).

The prevalence of Mesocestoides sp.-2 infection was 10.5% (4/38), 0.9% (1/113), 9.0% (8/89), and 2.0% (2/101) in alpine, forest-steppe, steppe, and desert-steppe. The prevalence in wolves was 15.0% (6/40) in steppe. The prevalence in red foxes was 2.0% (1/49) and 5.6% (2/36) in forest-steppe and steppe. The prevalence in corsac foxes was 10.5% (2/19) in desert-steppe, and the prevalence in snow leopards was 14.3% (4/28) in alpine (Table 3).

Mesocestoides sp.-2 infection in wild carnivores was detected in nine provinces. The prevalence of which is shown in Table 2. The highest was in Zavkhan (15.8%, 3/19), and the lowest in Dornogobi (2.0%, 1/49) (Table 2).
4. Discussion

Ecological regions, the existence of wild carnivores and the behavior of local herders all serve to create favorable conditions for parasites to complete their life cycle in Mongolia. The steppe region represents a typical broad grassland that supports stable herds of larger vertebrates. Currently, more than 180,000 herders (34%) in Mongolia live a nomadic or semi-nomadic lifestyle (NSO, 2019).

Animal husbandry is essential for Mongolia’s economy. The number of livestock has reached 66.5 million consisting primarily of goats and sheep, followed by horses, cattle, and camels. (MoFALI, 2018). Most herders in rural areas of Mongolia own livestock, which are kept in common open pastures (Myadagsuren et al., 2007). The majority of the 32 million head of livestock are located within the grassland in the steppe ecoregion, which accounts for about 70% of the country’s territory. However, herein, we did not investigate *T. hydatigena* infection in livestock, which serve as the intermediate host for these tapeworm species, but rather this study is the first to investigate the prevalence and distribution of *Taenia* sp. and *Mesocestoides* sp. using specific molecular tools in wild carnivores in 19 provinces of Mongolia, covering all ecological regions.

![Phylogenetic tree](image)

Fig. 3. Phylogenetic tree based on a partial sequence of tapeworms obtained by the maximum likelihood method was conducted using the HKY + G + I nucleotide substitution model. Numbers above branches are percent bootstrap values based on 1,000 replicates. Bootstrap value > 70% are shown.

(a) Phylogenetic tree based on the *cox1* sequences of *T. hydatigena* and *Mesocestoides* sp. isolates available in the GenBank® database were included. *Hymenolepis nana* served as an out-group.

(b) Phylogenetic analysis of the 12S rRNA partial sequence of *T. hydatigena*, *Mesocestoides* sp., and *M. lineatus* inferred using the sequence distance method and maximum likelihood. *Hymenolepis nana* was used as an out-group.
This study demonstrated that parasitic infections were identified in wild carnivores from all ecosystems in Mongolia. Geographically these animals were distributed from western to eastern regions in all ecoregions and provinces, save for Dornod and Gobi-Sumber, from which there was no available. The infections were primarily detected in wolves (47.3%) followed by red foxes (36.6%), corsac foxes (9.8%), and snow leopards (6.3%) (Table 2).

Phylogenetic tree analysis revealed that *T. hydatigena* from Mongolia was included in the clade composed of *T. hydatigena* from other countries (Table 4, Figs. 2 and 3). Moreover, wild carnivores infected with this parasite were detected in 17 provinces, with the highest prevalence observed in Tuv province (p < 0.05), where the capital city of Mongolia, Ulaanbaatar, is located. The population of Tuv province is approximately 1.2 million (37.5%) (NSO, 2019), and this province provides suitable conditions that support nomadic pastoralism. Additionally, we show that the prevalence of *T. hydatigena* infection is most common in wolves (p < 0.05) (Table 1). Similar results were reported in Iran (Nabavi et al., 2014), Italy and Serbia (Čirović et al., 2015), where wild and domestic hoofed animals were reported to serve as intermediate hosts. Alternatively, no *T. hydatigena* infection was observed in the Govi-Altai and Khuvsgul provinces of Mongolia (Table 2).

In contrast, *Mesocestoides* sp.-1, and *Mesocestoides* sp.-2 isolated from wild carnivores in Mongolia were not found to be similar to reference sequences in GenBank, nor with known *Mesocestoides* species (Figs. 2 and 3), suggesting that *Mesocestoides* sp.-1 is a unique species from *M. lineatus*. These results were also supported by 12S rRNA
Pairwise genetic distance in 12S rRNA gene among *Mesocestoides* species from Mongolia and related taxa.

DNA marker	Parasite species/isolate code	Wild carnivore	Accession number
cox1			
Mesocestoides sp.-1	Isolate Ml01 Wolf	AB792723	
Mesocestoides sp.-1	Isolate Ml03 Red fox	AB792715	
Mesocestoides sp.-1	Isolate Ml04 Corsac fox	AB792716	
Mesocestoides sp.-2	Isolate Msp04 Wolf	AB792720	
Mesocestoides sp.-2	Isolate Msp02 Red fox	AB792718	
Mesocestoides sp.-2	Isolate Msp03 Snow leopard	AB792719	
Taenia hydatigena	Isolate Th03a Red fox	AB792723	
12S rRNA			
Mesocestoides sp.-1	Isolate Ml01 Wolf	AB787552	
Mesocestoides sp.-1	Isolate Ml03 Red fox	AB787554	
Mesocestoides sp.-2	Isolate Msp04 Corsac fox	AB792712	
Mesocestoides sp.-2	Isolate Msp03 Wolf	AB793741	
Mesocestoides sp.-2	Isolate Msp02 Red fox	AB787555	
Taenia hydatigena	Isolate Th03b Red fox	AB793738	

* Accession numbers reported in this study.

sequence analysis and genetic distance data (Table 5). Phylogenetic analysis of *T. hydatigena, Mesocestoides* based on cox1 and 12S rRNA was performed with a 410 bp long alignment comprising 48 sequences. Phylogenetic trees obtained by the use two tree-building methods have the same topology (Fig. 2a, 2b, 3a, and 3b). Further, *Mesocestoides* sp.-2 isolated from snow leopards differed slightly from red fox and wolf isolates, and did not form clades with known *Mesocestoides* species in cox1 genes (Fig. 2a, 3a). In fact, the d values between *Mesocestoides* sp.-2 and European isolates were as large as 0.149–0.164 (Table 4). Similarly, *Mesocestoides* sp.-2 did not form any clades with known *Mesocestoides* species, and the d values were also quite high (Table 5), indicating that these two unidentified *Mesocestoides* species from Mongolia likely represent new species or species unregistered in GenBank. Using two mitochondrial genes, the cox1 and the 12S rRNA we molecularly confirmed the presence of *Mesocestoides* in canids from Mongolia. The overall high haplotype, low nucleotide diversities (Table 7) and the mainly significant negative neutrality indices detected for both cox1 and 12S rRNA sequences for Mongolian *Mesocestoides* sp.-1 and *Mesocestoides* sp.-2 from wolf, red fox, corsac fox, snow leopard from different ecological regions. This is similar to results reported for *Mesocestoides* from many regions worldwide (Foronda et al., 2007; Hřeková et al., 2011; Zalesny and Hildebrand, 2012; Skinner et al., 2016; Varcasia et al., 2018; Montalbano et al., 2018).

Based on the study results, *Mesocestoides* sp.-1 infection in wild carnivores was detected primarily (34.1%) in the Central region, with the highest prevalence observed in Zavkhan (31.6%, 6/19), and the lowest in Dornogobi (4.1%, 2/49) (Table 2). Moreover, the highest prevalence was in corsac foxes (30.8%, 6/19), followed by red foxes (30.4%), and wolves (26.1%) in steppe, desert, and desert-steppe, respectively. There was no *Mesocestoides* sp.-1 infection seen in the snow leopard (Table 3).

* *Mesocestoides* sp.-2 infection in wild carnivores was detected primarily in the Western (66.7%) region where the highest prevalence was again in Zavkhan (15.8%) and the lowest in Dornogobi (4.1%, 2/49) (Table 2). Moreover, the highest prevalence was in corsac foxes (30.8%), followed by red foxes (30.4%), and wolves (26.1%) in steppe, desert, and desert-steppe, respectively (Table 3).

The distribution of *Mesocestoides* sp.-1 and *Mesocestoides* sp.-2 infections in wild carnivores may be related to the natural habitat of these...
wild carnivores in Mongolia. The prey of these wild animals primarily comprise large herbivorous hoofstock including blue sheep, wild sheep, mountain goat, deer, Siberian ibex, and domestic animals such as goats, sheep, cattle, and horses (McCarthy, 2000; McCarthy et al., 2005; Shehzad et al., 2012). However, they also hunt birds, marmots, rodents, and other small mammals (Shehzad et al., 2012). We, therefore, assumed that the relationship between wolves, corsac foxes, and snow leopards and livestock has a central role in the lifecycle of Mesocestoides sp.-1, Mesocestoides sp.-2 in Mongolia. Hence, although felids and canids often act as definitive hosts for tapeworm species, they may also serve as secondary intermediate hosts (Venco et al., 2005; Elini et al., 2007; Jabbar et al., 2012).

The increase in the prevalence of parasitic diseases in wildlife poses a significant challenge to endangered species conservation (Aguirre, 2009; Pedersen and Greives, 2008; Smith et al., 2009). Therefore, it is imperative that appropriate measures be taken to prevent the spread of potentially fatal organisms, such as T. hydatigena and Mesocestoides sp., to the endangered snow leopard. The snow leopard is included on the International Union for Conservation of Nature’s (IUCN) red list and the Mongolian Red List of Mammals (Clark et al., 2006) due to its endangered status. The snow leopard is included on the Endangered list because of the urgent need to improve its status (IUCN). The results of this study serve as a baseline with the potential to inform the development of improved practices to better control the spread of parasitic infections in domestic and wild animals, particularly those considered to be endangered.

The limitation of this study, PCR-positive products were detected in only 112 samples (27.7%). This low isolation rate may have been caused by improper preservation conditions of feces (old and dry) or limited availability of DNA in the fecal samples. DNA extraction efficiency is known to be higher for samples of shorter length. Therefore, longer fragments should be amplified through PCR to increase the probability of detecting Mesocestoides sp.-1 and Mesocestoides sp.-2, which may be underestimated in this study.

This study reports the prevalence of T. hydatigena and Mesocestoides species in wild carnivores based on copro-DNA analysis. The most salient finding is that Mesocestoides sp.-1, and Mesocestoides sp.-2 from Mongolia likely account for new species, or species that are currently unregistered on GenBank. Furthermore, T. hydatigena was detected throughout all ecoregions was Mesocestoides sp.-1, save for in the alpine; while Mesocestoides sp.-2 was isolated from samples in the alpine, forest-steppe, steppe, and desert-steppe regions. Finally, wolf, red fox, corsac fox, and snow leopard were confirmed as new definitive hosts for Mesocestoides sp.-1 and Mesocestoides sp.-2.

Funding

This study was partially supported by the Fellowship Awards 2012 from the Japanese Association of University Women to MN.

Declaration of competing interest

The authors have no conflict of interest regarding the contents of this manuscript.

Acknowledgments

We are grateful for the support of the Mongolian National University of Medical Sciences and staff of the Laboratory of Helminthology, Department of Parasitology, National Institute of Infectious Diseases for their kind cooperation.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.ijppaw.2019.12.004.

References

Aguirre, A.A., 2009. Wild canids as sentinels of ecological health: a conservation medicine perspective.Vectors Parasites 2 (Suppl), S7. https://doi.org/10.1186/1756-3305-2-S1-S7.

Bachi, S., Mishra, C., 2006. Living with large carnivores: predation on livestock by the snow leopard (Uncia uncia). J. Zool. 268, 217–224.

Blazek, K., Schramlová, J., Hulínská, D., 1985. Pathology of the migration phase of Taenia hydatigena (Pallas, 1766) larvae. Folia Parasitol. (Praha) 32, 127–137.

Bowles, J., McManus, D.P., 1993. Rapid discrimination of Echinococcus species and strains using a polymerase chain reaction-based RFLP method. Mol. Biochem. Parasitol. 57, 231–239.

CDC (Centers for Disease Control and Prevention), 2017. Mesocestoidiasis. https://www.cdc.gov/dpdx/mesocestoidiasis/index.html.

Cho, S.H., Kim, T.S., Kong, Y., Na, B.K., Sohn, W.M., 2013. Tetrathyridia of Mesocestoides lineatus in Chinese snakes and their adults recovered from experimental animals. Korean J. Parasitol. 51, 531–536.

Čirvíč, D., Pavlović, I., Penezić, A., 2015. Intestinal helminth parasites of the grey wolf (Canis lupus L.) in Serbia. Acta Vet. Hung. 63, 189–198.

Clark, E.L., Munkhbat, J., Dulamtseren, S., Baillie, J.E.M., Batsaikhan, N., Samiya, R., Stubbe, M., 2006. Mongolian Red List of Mammals. Regional Red List Series 1. Zoological Society of London, London.

Danzan, G., 1978. Helminths of the Wild Mammals in Mongolia. D.Sc. Thesis. VIGIS, Moscow (in Russian).

Daban, N., 2001. Helminths of the Wild Mammals in Mongolia. D.Sc. Thesis. VIGIS, Moscow (in Russian).

Debas, E., Ibrahim, N., 2013. Prevalence and economic importance of hydatidosis in cattle slaughtered at North Gonder Elfora abattoir. Eur. J. Appl. Sci. 5, 29–35. https://doi.org/10.5829/idosi.ejas.2013.5.1.6564. 10.1007/s00436-011-2598-7.

Epub 2011 Aug 17.

Dubinin, V.B., Dubinina, M.N., 1951. Parasite fauna of mammals in Daurian steppe. Materiały k poznaniu fauny i flory SSSR (MOIP). Novaya Seriya 22, 98–156 (in Russian).

Dumitru, I.M., Dumitru, E., Rugina, S., 2011. Role of epidemiologic data in management of hydatidosis in Constanta County, Romania. Ther. Pharmacol. Clin. Toxicol. 15, 132–138.

Ebright, J.R., Altantsetseg, T., Oyungerel, R., 2003. Emerging infectious diseases in Mongolia. Curr. Top. Microbiol. Immunol. 275, 81–138.

Funding

This study was partially supported by the Fellowship Awards 2012 from the Japanese Association of University Women to MN.

Declaration of competing interest

The authors have no conflict of interest regarding the contents of this manuscript.

Acknowledgments

We are grateful for the support of the Mongolian National University of Medical Sciences and staff of the Laboratory of Helminthology, Department of Parasitology, National Institute of Infectious Diseases for their kind cooperation.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.ijppaw.2019.12.004.

Table 7

Genes	n	Hn	Hd	VarHd	nd	SD of H	TajimaD	SigD	FuLiD*	SigD	FuLiF*	SigF
12S rRNA*	56	6	0.775	0.0098	0.23468	0.031	0.3995	Not	2.28560	**	1.85576	*
cox1b	56	6	0.775	0.0098	0.23975	0.031	1.6131	Not	2.28452	**	2.44219	**

12S rRNA* sequences of Mesocestoides from canids in Mongolia. cox1b sequences of Mesocestoides from canids in Mongolia. Abbreviation: n-number of isolate; H-haplotype; Hα-haplotype diversity; nd-nucleotide diversity; SD-standard deviation; SigD-statistical significance D; FuLiD-Fu and Li’s D test statistic; SigF-statistical significance F; T. hydatigena was detected in Mongolian Red List of Mammals (Clark et al., 2006) due to its endangered status. Approximately 20% (over 1000 animals) of the world’s population of snow leopards are found in Mongolia (Fox, 1994; McCarthy et al., 2010).
