On Generalized Stone’s Theorem

Massoud Amini

Department of Mathematics, Tarbiat Modares University
P.O. Box 14115-175, Tehran, Iran
mamini@modares.ac.ir

Abstract. It is known that the generator of a strictly continuous one parameter unitary group in the multiplier algebra of a C^*-algebra is affiliated to that C^*-algebra. We show that under natural non degeneracy conditions, this self adjoint unbounded operator lies indeed in the (unbounded) multiplier algebra of the Pedersen’s ideal of the C^*-algebra.

Mathematics Subject Classification: Primary 46L05; Secondary 47D03

Keywords: Stone’s theorem, Pedersen’s ideal, unbounded multipliers

1. Introduction

One of the main objectives of the Heisenberg formulation of the Quantum Mechanics is to give appropriate models for the commutation relations, the most famous one of which being

$$[P, Q] = i\hbar I$$

where \hbar is the Planck constant and P, Q are the quantum position and quantum momentum. It was known from the beginning that bounded linear operators cannot satisfy such a relation (convince yourself by checking this for matrices where you have a trace for free!). In particular this does not happen in a C^*-algebra. Although projective limit of C^*-algebras can include unbounded operators, this cannot happen in a projective limit also. (Just recall that some of their quotients are C^*-algebras [Ph88b]). One classical trick is to replace this type of relation by a stronger commutation property, which in this case is

$$U_tQU_{-t} = e^{i\hbar t}Q$$

where $U_t = e^{itH}$, for some closed operator H. It has been shown in [HQV] that any strictly continuous one parameter group of unitaries (U_t) in the multiplier

1Supported by an IPM grant.
2Current address: Institut Penyelidikan Matematik, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor Darul Ehsan, Malaysia
massoud@putra.upm.edu.my
algebra of a \(C^\ast\)-algebra \(A_0\) has a generator \(H\) (a version of Stone’s theorem) which could be chosen to be in \(A_0^n\) (the set of densely defined linear operators on \(A_0\) which are affiliated with \(A_0\) [Wr91]). Here we show that indeed \(H\) could be chosen more specifically. Let \(A_{00} = K(A_0)\) be the Pedersen’s ideal of \(A_0\) and \(\Gamma(A_{00})\) be the topological algebra of (unbounded) multiplier on \(A_{00}\) [LT]. We show that \(H\) could be chosen to be in \(A = \Gamma(A_{00})\).

2. Stone’s theorem

We start with some lemmas from [Wr91] in which we replace \(A_0^n\) with \(A = \Gamma(A_{00})\). We keep the notations of the above paragraph all over the paper. We also freely use the notations and terminology of [Wr91]. All morphisms are supposed to be non degenerate, and following [Wr 91] we use \(\text{Mor}\) to denote the set of morphisms.

The following lemma has been already proved in [Am], but we bring the proof here for the sake of completeness.

Lemma 2.1. Let \(A_0\) and \(B_0\) be \(C^\ast\)-algebras. Let \(\phi_0 \in \text{Mor}(A_0, B_0)\) be strictly non degenerate (that is \(B_{00} \subseteq \phi_0(A_{00})B_0\)). Then \(\phi_0\) extends uniquely to a morphism \(\phi \in \text{Mor}(A, B)\) such that \(\phi(A_{00})B_0\) is a core for \(\phi(T)\) and \(\phi(T)(\phi_0(a)b) = \phi_0(Ta)b\) for all \(a \in A_{00}, b \in B_0\), and \(T \in A = \Gamma(A_{00})\).

Proof Since \(\phi_0\) preserves the spectral theory, \(\phi_0(A_{00}) \subseteq B_{00}\). On the other hand, \(\phi_0(A_{00})\) is clearly a dense ideal of \(\phi_0(A_0)\). Therefore \(B_0\phi_0(A_{00})B_0\) is an ideal of \(B_0\) which is dense in \(B_0\phi_0(A_0)B_0\). Now if \(\phi_0\) is non degenerate then \(\phi_0(A_0)B_0\) is dense in \(B_0\), so \(B_0\phi_0(A_0)B_0\) is dense in \(B_0B_0 = B_0\), i.e. \(B_0\phi_0(A_{00})B_0\) is a dense ideal of \(B_0\) and so contains \(B_{00}\). But \(B_0\phi_0(A_{00})B_0 \subseteq B_0B_{00}B_0 \subseteq B_{00}\), hence the equality holds. If \(\phi_0\) is strictly non degenerate then \(\phi_0(A_{00})B_0 \supseteq B_{00}\). The converse inclusion follows from the fact that \(\phi_0(A_{00}) \subseteq B_{00}\). Hence \(\phi_0(A_{00})B_0 = B_{00}\). Now the right hand side is self adjoint and the adjoint of the left hand side is \(B_0\phi_0(A_{00})\), hence \(B_0\phi_0(A_{00}) = B_{00}\), \(\square\)

Now each \(T \in A = \Gamma(A_{00})\) could be considered as an element of \(A_0^n\) and \(\phi_0\) also extends to \(\tilde{\phi} : A_0^n \to B_0^n\) by [Wr91, 1.2]. But there is no ambiguity as we have

Lemma 2.2. With the above notations, \(\tilde{\phi}(T) = \phi(T)\). In particular we have \(\phi(z_T) = z_{\phi(T)}\).

Proof The first statement follows from above lemma and the facts that by assumption \(\phi_0(A_{00})B_0 \supseteq B_{00}\) and \(\tilde{\phi}(T)(\phi_0(a)b) = \phi_0(Ta)b\) \((a \in D(T) \supseteq A_{00}, b \in B_0)\) [Wr91, 1.2]. The second statement is proved for \(\tilde{\phi}\) in [Wr91,1.2], and follows from the first for \(\phi\). \(\square\)

Next we prove a technical result about \(z\)-transform [Wr91], where \(z\) is a bounded continuous function on \(\mathbb{C}\). Here we take \(z(\lambda) = \lambda(1 + \lambda\bar{\lambda})^{\frac{1}{2}}\) (see [Am2] for the properties of \(z\)-transform on unbounded multiplier algebra).
Proposition 2.1. Let A_0 be a C^*-algebra and $T \in A$ be self adjoint. Let $z_T \in \mathcal{M}(A_0)$ be the z-transform of T. Then $\sigma(z) \subseteq [-1, 1]$. Assume that
\[\text{span}\{f(z_T) a : f \in C_{00}(-1, 1), a \in A_0\} \supseteq A_{00}. \]
Then there is a unique $\phi = \phi_T \in \text{Mor}(C(\mathbb{R}), A)$ such that $\phi_T(id) = T$. Moreover $\phi(C_{00}(\mathbb{R}))A_0 \supseteq A_{00}$ and $\phi_T(z) = z_T$, for $z(t) = t(1 + t^2)^{\frac{1}{2}}$, $t \in \mathbb{R}$.

Proof $z_T \in \mathcal{M}(A_0)$ is self adjoint and $\|z_T\| \leq 1$, so its spectrum $\sigma(z_T)$ is contained in $[-1, 1]$. The same is true for $z \in C_0(\mathbb{R})$. We use the continuous functional calculus to show the uniqueness. If $\phi(id) = T$ then $\phi(z) = z_T$ and $\phi(f \circ z) = f(z_T)$, for each $f \in C_b(-1, 1) = C([-1, 1])$. But each element of $C_0(\mathbb{R})$ is of the form $f \circ z$, where $f \in C_0(-1, 1)$ and the uniqueness follows.

For the existence, let’s define $\phi_0 : C_0(\mathbb{R}) \to M(A_0)$ by $\phi_0(f \circ z) = f(z_T)$. Then ϕ_0 is clearly a *-homomorphism. Also by assumption, $\phi_0(C_{00}(\mathbb{R}))A_0 \supseteq A_{00}$ which means that ϕ_0 is strictly non degenerate. By [Am, Theorem 3.4], ϕ_0 extends (uniquely) to some $\phi \in \text{Mor}(C(\mathbb{R}), \Gamma(A_{00}))$. Now $\phi(f \circ z) = f(z_T)$, for each $f \in C_0(-1, 1)$. In particular, for $f(t) = t(1 - t^2)^{\frac{1}{2}}$, we get $f \circ z = id$ and so $\phi(id) = f(z_T) = T$.

Let ϕ_0 and ϕ be as in the proof of the above proposition. Then ϕ is not injective in general. But we can do the classical trick to make it injective. Consider $\ker(\phi_0) = \{f \in C_0(\mathbb{R}) : f = 0 \text{ on } \sigma(T)\}$. Then $C_0(\mathbb{R})/\ker(\phi_0) = C_0(\sigma(T))$ and the corresponding quotient map identifies with the restriction map $\pi : C_0(\mathbb{R}) \to C_0(\sigma(T))$. Let $id_{\sigma(T)} = \pi(id)$, then we have

Proposition 2.2. Let A_0 be a C^*-algebra and $T \in \Gamma(A_{00})$, then there is a unique embedding $\psi = \psi_T \in \text{Mor}(C(\sigma(T)), \Gamma(A_{00}))$ such that $\psi_T(id_{\sigma(T)}) = T$.

Proof Since π is onto, there is a function ψ_0 such that $\psi_0\pi = \phi_0$. Then ψ_0 is a *-homomorphism. To see that it is strictly non degenerate it is enough to observe that $\psi_0(C_0(\sigma(T)))A_0 = \phi_0(C_0(\mathbb{R}))A_0 \supseteq A_{00}$. Therefore it extends to a morphism $\psi \in \text{Mor}(C(\sigma(T)), \Gamma(A_{00}))$.

Next let us show that ψ is one-one. It is clear that ψ_0 is one-one (since $\psi_0 = \phi_0\pi$ where $\pi(ker\phi_0) = \{0\}$). Take any $F \in C(\mathbb{R})$ such that $\psi(F) = 0$, then $0 = \psi(F)\psi_0(f)a = \psi_0(Ff)a$, for each $f \in C_0(\sigma(T))$ and $a \in A_0$. This means that $\psi_0(Ff) \in M(A_0)$ multiplies A_0 into 0, i.e. $\psi_0(Ff) = 0$. Hence $Ff = 0$ for each $f \in C_0(\sigma(T))$, and so $F = 0$.

Now we are prepared to prove the generalization of Stone’s theorem. Let A_0 be a C^*-algebra, $A_{00} = K(A_0)$ its Pedersen’s ideal, and $A = \Gamma(A_{00})$ be the algebra of (unbounded) multipliers of A_{00} [LT]. For each $t \in \mathbb{R}$ consider the function $e_t \in C(\mathbb{R})$ defined by $e_t(s) = \exp(is) \quad (s \in \mathbb{R})$. Let $h \in A = \Gamma(A_{00})$ and $U_t = \phi_h(e_t) = \exp(iht)$. Then $(U_t)_{t \in \mathbb{R}}$ is a one parameter strictly continuous unitary group in $M(A_0)$ (the strict continuity follows from the fact that ϕ_h is non degenerate). Moreover, if $h \in b(\Gamma(A_{00})) = M(A_0)$, then this is also norm continuous. Conversely each strictly continuous unitary group in $M(A_0)$ is of this form, for some $h \eta A_0$ [HQV]. Here we want h to be actually
in $\Gamma(A_{00})$. Clearly for this to happen, we would need to put some condition on the unitary group. This is the content of the following result. The proof is quite similar to [HQV, 2.1]. Here we only sketch those parts of the proof which have to be modified. But first a definition.

Definition 2.1. Let A_0 be a C^*-algebra and $(U_t)_{t \in \mathbb{R}}$ be a one parameter strictly continuous unitary group in $M(A_0)$. Let’s define $\alpha : L^1(\mathbb{R}) \to M(A_0)$ by $\alpha(f) = \int_{\mathbb{R}} f(t)U_t dt$, where

$$\left(\int f(t)U_t dt \right)x = \int f(t)U_t xdt \quad (x \in A_0)$$

is in the Bochner sense. This extends to a $*$-homomorphism $\alpha \in Mor(C^*(\mathbb{R}), A_0)$ [HQV]. We say that (U_t) is (strictly) non degenerate, if the morphism α is (strictly) non degenerate (cf. [Am]).

Theorem 2.1. (Generalized Stone’s Theorem) Let A_0 be a C^*-algebra and $(U_t)_{t \in \mathbb{R}}$ be a one parameter strictly continuous strictly non degenerate unitary group in $M(A_0)$. Then there exists a self adjoint $h \in \Gamma(K(A_0)))$ such that $U_t = \exp(ith)$ for $t \in \mathbb{R}$. Moreover, if $(U_t)_{t \in \mathbb{R}}$ is norm continuous, then $h \in M(A_0)$.

Proof Define $\alpha \in Mor(C^*(\mathbb{R}), A_0)$ as above. Then α is strictly non degenerate, and so it extends to a morphism of the corresponding pro-C^*-algebras, which we still denote it by $\alpha \in Mor(\Gamma(K(C^*(\mathbb{R})))$, $\Gamma(K(A_0)))$ (see the discussion before Theorem 3.2 in [Am]). Also it is well known that the Fourier transform $\mathcal{F} : L^1(\mathbb{R}) \to C_0(\mathbb{R})$ extends to an isomorphism $\mathcal{F} \in Mor(C^*(\mathbb{R}), C_0(\mathbb{R}))$ with $\mathcal{F}(\iota_t) = \lambda_t$, where λ is the left regular representation of \mathbb{R}. Since \mathcal{F} is surjective we can extend it to an isomorphism $\mathcal{F} \in Mor(\Gamma(K(C^*(\mathbb{R})))$, $C(\mathbb{R}))$ [LT]. Also it is clear that $\alpha(\iota_t) = U_t \ (t \in \mathbb{R})$. Define $h = (\alpha \circ \mathcal{F}^{-1})(id) \in \Gamma(A_{00})$. This is self adjoint and by the uniqueness part of Proposition 1.2 we have $\phi_h = \alpha \circ \mathcal{F}^{-1}$. Now $U_t = \alpha(\iota_t) = \alpha(\mathcal{F}^{-1}(\iota_t)) = \phi_h(\iota_t) = \exp(ith)$, which finishes the proof of the first part of the theorem.

Now, for each $t \in \mathbb{R}$ we get

$$\|U_t - 1\| = \|\phi_h(\iota_t) - 1\| = \|\phi_h(\iota_t)\pi(\iota_t - 1)\| = \|\pi(\iota_t - 1)\|$$

$$= \sup\{|e^{it\lambda} - 1| : \lambda \in \sigma(h)\}.$$

So, if the unitary group is norm continuous, then $\sigma(h)$ is bounded. Hence $h \in b(\Gamma(K(A_0)))$ [Ph88b]. But $b(\Gamma(K(A_0))) = M(A_0)$ [Ph88a], so $h \in M(A_0)$ and the proof is complete. □

Next, following [HQV], we show that h can be found by differentiating the unitary group $(U_t)_{t \in \mathbb{R}}$.

Proposition 2.3. Let A_0 be a C^*-algebra, $(U_t)_{t \in \mathbb{R}}$ a one parameter strictly continuous unitary group in $M(A_0)$, and h a self adjoint element of $\Gamma(K(A_0)))$
such that $U_t = \exp(it h)$ for $t \in \mathbb{R}$. Define the (unbounded) operator $H : D(H) \subseteq A_0 \rightarrow A_0$ by

(1) \[D(H) = \{ a \in A_0 : t \mapsto U_t a \text{ is } C^1 \} \]

(2) \[Ha = \left. \frac{d}{dt} \right|_{t=0} U_t a = \lim_{t \to 0} (U_t a - a)/t \quad (a \in D(H)). \]

Then $h \subseteq iH = i \frac{d}{dt} |_{t=0} U_t$.

Proof Using minimality of A_{00} we have $A_{00} \subseteq \sqrt{1-z_h A_0}$. Now this last set is contained in $D(H) = D(iH)$ [HQV, 2.2]. The fact that $h(x) = iH(x)$, for each $x \in A_{00}$, follows from the calculations of [HQV, 2.2]. \qed

This in particular shows the uniqueness of the element $h \in \Gamma(A_{00})$ for which $U_t = \exp(it h)$ \quad ($t \in \mathbb{R}$). We call this element the *infinitesimal generator* of the one parameter group $(U_t)_{t \in \mathbb{R}}$.

3. **ELEMENTS AFFILIATED WITH GROUP C^*-ALGEBRA**

The group C^*-algebras are important objects in the theory of quantum groups. One reason is that they are *dual objects* to continuous functions. When the underlying group is not discrete (non compact case), one would expect some unbounded elements to come into the play. These can not belong to the group C^*-algebra, but they are usually affiliated with it. The problem of finding all elements affiliated with $C^*(G)$ is open in general. Some attempts are done to find them in the case that G is a Lie group [Wr91]. In this case we know that the elements of the corresponding Lie algebra, considered as differential operators, are affiliated with the group C^*-algebra. The question of whether all elements of the universal enveloping algebra of G are affiliated with $C^*(G)$ was left open. In this section we give an affirmative answer to this question.

Let G be a Lie group, and $\pi : G \rightarrow B(\mathcal{X})$ be a (strongly continuous) representation of G on a Banach space \mathcal{X}. We say that $x \in \mathcal{X}$ is a C^∞-vector ($analytic$ vector, respectively) of π if the map $g \mapsto \pi(g)x$ from G to \mathcal{X} is a C^∞ (analytic, respectively) function. We denote the set of all such elements $x \in \mathcal{X}$ by $D^\infty = D^\infty(\pi)$ ($D^\omega(\pi)$, respectively). Then this is a dense subset of \mathcal{X}. Indeed L. Gårding showed that if $\phi \in C^\infty_0(G)$ and $\pi(\phi)x = \int_G \pi(t)x \phi(t)dt \quad (x \in \mathcal{X})$, then $D^\infty_0 = \pi(C^\infty_0(G))\mathcal{X} \subseteq \mathcal{X}$ is dense. This is called the *Gårding domain* of π. Let $\mathcal{G} = L(G)$ be the Lie algebra of G, i.e. the set of all left invariant vector fields on G (at identity). For each $X \in \mathcal{G}$, define

$$\pi(X)x = \lim_{h \to 0} \frac{\pi(\exp hX)x - x}{h} \quad (x \in D^\infty)$$

Then $\pi(X) : D^\infty \subseteq \mathcal{X} \rightarrow D^\infty \subseteq \mathcal{X}$ is a densely defined unbounded operator on \mathcal{X}, and it is *skew symmetric* if π is unitary (and \mathcal{X} a Hilbert space).

Harish-Chandra noticed that D^∞ could have a subspace D such that $\pi(X)D \subseteq D$ but $\pi(g)D \not\subseteq D$. Therefore he suggested replacing D^∞ with D^ω. He
showed that \(D^\omega \) is dense in \(\mathcal{X} \) for certain representations of a semisimple Lie group [HC]. P. Cartier and J. Dixmier gave a proof for all unitary representations [CD], and E. Nelson used a generalization of the fundamental solution of the heat equation on Lie groups to prove this for an arbitrary representation. He also used analytic vectors to give a sufficient condition for a representation of a Lie algebra to be induced by a unitary representation of the Lie group [Nel]. Later I. Segal showed that this is equivalent to the \textit{complete positivity} of the representation with respect to an appropriate cone [Seg].

We are mainly interested in the case of the universal representation. For any locally compact group \(G \), the universal representation \(u : G \to M(C^*(G)) \) is determined by the following universal property: For each \(C^* \)-algebra \(A \) and each representation \(\pi : G \to A \), there is a unique \(\tau \in \text{Mor}(C^*(G), A) \) such that \(\pi = \tau u \). Then \(u \) is continuous and open with respect to the strict topology. Now let \(G \) be a Lie group and let \(\mathcal{G} \) be its Lie algebra of dimension \(N \) with a basis \(X_1, X_2, \ldots, X_N \). Then the \textit{universal enveloping algebra} \(U = U(G) \) is an \(* \)-algebra under \(X^* = -X \), \(X \in \mathcal{G} \). Elements of \(U \) are differential operators on \(G \) commuting with the right translations: Take \(D^\infty = D^\infty(u) \), then each \(X \in U \) defines \(du(X) : D^\infty \subseteq C^*(G) \to \mathcal{B}(H_u) \)

\[
du(X)a = Xu(g)a|_{g=e} = \lim_{t \to 0} \frac{1}{t}(u(\exp tX)a - a)
\]

which is a closable operator whose closure is simply denoted by \(X : D^\infty \subseteq C^*(G) \to C^*(G) \). For the reasons explained in the beginning of this section, we are interested in elements affiliated with \(C^*(G) \). We know that for \(X \in U \), if the differential equation \(X^*Xf = -f \) has only trivial bounded \(C^\infty \)-solution, then \(X, X^* \eta C^*(G) \) [Wr95,2.1]. It is known that all the elements of \(\mathcal{G} \) and also the \textit{elliptic operator} \(\Delta = -\sum_1^N X_i^2 \), where \(X_i \)'s form a basis of \(\mathcal{G} \), are affiliated with \(C^*(G) \) [Wr95]. The \(X_i \)'s are skew self-adjoint, where as \(\Delta \) is self-adjoint and positive (yes positive!).

Now let \(A_0 \) be a \(C^* \)-algebra and \(G \) be a Lie group acting on \(A_0 \) through a strictly continuous representation \(u : G \to M(A_0) \). Then

\[
C^\infty(u) = \{x \in A_0 : g \mapsto u(g)x \text{ is } C^\infty\}
\]

contains the dense subspace of \(A_0 \) spanned by all elements \(u(f)x \), with \(f \in C^\infty_0(G) \) and \(x \in A_0 \).

Proposition 3.1. With the above notation, to each \(X \in \mathcal{G} \) there corresponds an element \(\hat{X} \in \Gamma(A_0) \) such that

\[
\exp \hat{X} = u(e^{tX}) \quad (t \in \mathbb{R}).
\]

Moreover \(\hat{X} \) leaves \(C^\infty(u) \) invariant and \([X,Y]^\hat{\cdot} = [\hat{X},\hat{Y}]\), when restricted to \(C^\infty(u) \), for all \(X,Y \in \mathcal{G} \).
Proof Take $X \in \mathcal{G}$ and put $U_t = u(e^{tX})$. Then Theorem 2.1 applies and gives $\hat{X} \in \Gamma(A_{00})$ with $U_t = e^{t\hat{X}}$ for each $t \in \mathbb{R}$ (here \hat{X} is skew self adjoint). The rest is proved as in [HQV, 2.4]. □

Corollary 3.1. With the above notation, $\mathcal{U}(\mathcal{G}) \subseteq \Gamma(K(C^*(G)))$.

Proof Just observe that G acts strictly continuously on $C^*(G)$ through the universal representation and apply above proposition. □

References

[Am] M. Amini, Locally compact pro-C^*-algebras, Canadian J. Math. 56 (2004), 3-22.
[Am2] M. Amini, Graph of unbounded multipliers, Studia Sci. Math. Hungarica 42 (2005), 31-40.
[CD] P. Cartier, J. Dixmier, Vecteurs analytiques dans les representations de groups de Lie, Amer. J. Math. 80 (1958), 131-145.
[Seg] I.E. Segal, A class of operator algebras which are determined by groups, Duke Math. J. 18 (1951), 221-265.
[HC] Harish-Chandra, Representations of a semisimple Lie group on a Banach space I, Trans. Amer. Math. Soc. 75 (1953), 185-243.
[HQV] J. Hollevoet, J. Quaegebeur and S. Van Keer, Stone’s theorem in C^*-algebras, Quart. J. Math. Oxford Series (2) 43(170) (1992), 227-233.
[LT] A. Lazar, D.C. Taylor, Multipliers of Pedersen’s ideal, Mem. Amer. Math. Soc. 169 (1976).
[Nel] E. Nelson, Analytic vectors, Ann. of Math. 70(2) (1959), 752-615.
[Ph88a] N.C. Phillips, A new approach to the multipliers of Pedersen’s ideal, Proc. Amer. Math. Soc. 104(3) (1988), 861-867.
[Ph88b] N.C. Phillips, Inverse limits of C^*-algebras and applications, Operator algebras and applications, Vol. 1, 127-185, London Math. Soc. Lecture Note Series 135 (1988), Cambridge Univ. Press, Cambridge.
[Wr95] S.L. Woronowicz, C^*-algebras generated by unbounded elements, Rev. Math. Phys. 7(3) (1995), 481-521.
[Wr91] S.L. Woronowicz, Unbounded elements affiliated with C^*-algebras and non-compact quantum groups, Com. Math. Phys. 136 (1991), 399-432.

Received: April, 2009