Impact of Immune Checkpoint Inhibitor Therapy on The Overall Survival in Elderly Patients With Non-Small Cell Lung Cancer

Minehiko Inomata (✉ 9446-tym@umin.org)
Toyama University Hospital

Kenji Azechi
Toyama University Hospital

Naoki Takata
Toyama University Hospital

Kana Hayashi
Toyama University Hospital

Kotaro Tokui
Toyama University Hospital

Chihiro Taka
Toyama University Hospital

Seisuke Okazawa
Toyama University Hospital

Kenta Kambara
Toyama University Hospital

Shingo Imanishi
Toyama University Hospital

Toshiro Miwa
Toyama University Hospital

Ryuji Hayashi
Toyama University Hospital

Shoko Matsui
Toyama University Hospital

Kazuyuki Tobe
Toyama University Hospital

Research article

Keywords: elderly, immune checkpoint inhibitor, lung cancer
Abstract

Purpose: We analyzed the relationship between a history of immune checkpoint inhibitor and overall survival in patients with non-small cell lung cancer (NSCLC) aged \(\geq 70 \) years.

Methods: We conducted a retrospective analysis of the data of patients with NSCLC aged \(\geq 70 \) years old who had received systemic anticancer therapy at our institution between 2015 and 2019.

Results: The analysis included the data of a total of 63 patients, including 36 patients who had received immune checkpoint inhibitor therapy and 27 patients who had not received treatment with an immune checkpoint inhibitor. Univariate analysis revealed a longer overall survival in patients who had received treatment with an immune checkpoint inhibitor as compared to those who had not received treatment with an immune checkpoint inhibitor (median: 17.2 vs. 9.8 months; \(p = 0.026 \), log-rank test). Multivariate analysis revealed a significant association between a history of treatment with immune checkpoint inhibitors and the overall survival (hazard ratio, 95% confidence interval: 0.42, 0.20-0.86; \(p = 0.019 \), Cox proportional hazards model). A significant interaction was also observed between a history of treatment with an immune checkpoint inhibitor and the tumor histology (\(p = 0.006 \)), the association between the overall survival and a history of immune checkpoint inhibitor therapy being stronger in the non-small cell lung cancer patients with squamous cell carcinoma than in those with adenocarcinoma.

Conclusion: A significant association between history of immune checkpoint inhibitor therapy and the overall survival was detected in elderly NSCLC patients aged \(\geq 70 \) years old in a clinical practice setting. Our results also suggested that the impact of immune checkpoint inhibitor therapy on the survival differed depending on the tumor histology.

Introduction

In patients with advanced non-small cell lung cancer (NSCLC), systemic drug therapy is the standard of care. Recent studies have shown that treatment with immune checkpoint inhibitors (ICIs) yields a longer survival than treatment with cytotoxic agents in patients with advanced NSCLC [1–5]. In addition, although immune-related adverse events are problematic, ICI therapy has been shown to be associated with a lower frequency of severe adverse reactions as compared to cytotoxic chemotherapy [1–5], and ICIs are expected to be useful agents for the treatment of elderly patients with NSCLC. However, the efficacy and safety of ICI therapy in elderly patients with NSCLC has not yet been clearly evaluated, although subset analysis in patients classified by age has been conducted in some previous trials [2–5].

Pooled analysis in the KEYNOTE study revealed the superiority of pembrolizumab over a cytotoxic agent in terms of the survival in elderly NSCLC patients [6], and a single-arm phase II study showed the efficacy and safety of pembrolizumab treatment in elderly NSCLC patients aged \(\geq 75 \) years old [7]. Furthermore, an analysis of real-world data showed that the efficacy of ICIs did not differ among patient groups divided by age [8]. These previous studies suggest that ICI therapy is effective even in elderly patients with NSCLC in clinical settings.
We conducted this retrospective study and analyzed the effect of immune checkpoint inhibitor therapy on the overall survival in patients with non-small cell lung cancer aged ≥ 70 years old.

Methods

Clinical information

We conducted a retrospective analysis of the data of patients with NSCLC who had received anticancer treatment at Toyama University Hospital. The patient inclusion criteria were as follows: 1) cytologically or histologically diagnosed NSCLC; 2) received systemic anticancer treatment, excluding adjuvant chemotherapy and chemoradiotherapy, between 2015 and 2019; 3) aged ≥70 years at the start of the systemic anticancer treatment. The exclusion criteria were as follows: 1) presence of tumor driver mutations; 2) synchronous multiple cancer; 3) history of treatment with an ICI as part of a clinical trial or of combined ICI therapy with cytotoxic agents. The disease stage was evaluated according to the 8th edition of the UICC TNM classification and patients who had undergone surgery for NSCLC were reclassified based on the findings at the start of the systemic anticancer treatment. Information about the tumor PD-L1 status was retrieved from the medical charts, testing of which was commissioned to BML (Tokyo, Japan) and performed using 22C3 antibody. Any preexisting interstitial pneumonia was evaluated based on the findings of chest computed tomography and from the medical charts.

This study was conducted in accordance with the Declaration of Helsinki and the Ethical Guidelines for Medical and Health Research Involving Human Subjects (Ministry of Health, Labour and Welfare of Japan), after obtaining approval from the Ethics committee, University of Toyama (Reference number: R2019146). We disclosed information about the study to the subjects but did not obtain written informed consent as it was a retrospective study.

Statistical analysis

Statistical analysis was performed using JMP ver. 14.0.2 (SAS, Cary, NC), and P value <0.05 was considered as being indicative of significance.

Patients were divided into subgroups according to each of the clinical parameters and the overall survival (OS) among the groups were compared by the log-rank test. A Cox proportional hazards model was used to evaluate the association between clinical parameters, including history of treatment with ICIs, and the OS. We planned to include performance status (PS), disease stage, history of treatment with an ICI, history of treatment with a platinum doublet, and variables identified by univariate analysis as being significant by the log-rank test with P values of <0.05 as independent variables.

A Cox proportional hazards model was also used to analyze the interaction between history of ICI therapy and the patient background characteristics for the OS. The model included history of ICI therapy (yes or no), each of the patient background characteristics, and interaction variables (product term of two variables) as independent variables.
Results

A total of 209 patients with NSCLC received systemic anticancer treatment between 2015 and 2019 at Toyama University Hospital. Of these, 79 patients with tumor driver mutations, 58 patients aged < 70 years old, and 9 other patients (reasons for exclusion indicated in the figure) were excluded. Finally, data of a total of 63 patients were included in the analyses (Figure 1).

Table 1 shows the patient characteristics. Twenty (31.7%) and 36 (57.1%) of the NSCLC patients were diagnosed as having squamous cell carcinoma and adenocarcinoma, respectively. Other histologic types included adenosquamous carcinoma, large cell neuroendocrine cell carcinoma, and NSCLC, not otherwise specified. In all, 36 patients (57.1%) had received treatment with ICIs. Thirteen (36.1%), 19 (52.8%), and 4 (11.1%) patients received ICI therapy as 1st, 2nd, and 3rd line treatment, respectively, and 11 (30.6%), 21 (58.3%), and 4 (11.1%) patients received nivolumab, pembrolizumab, and atezolizumab, respectively.
Table 1
Patient characteristics

	n (%)
Age (yr)	
< 75	30 (47.6%)
≥ 75	33 (52.4%)
Sex	
Male	52 (82.5%)
Female	11 (17.5%)
Histology	
Squamous	20 (31.7%)
Adenocarcinoma	36 (57.1%)
Others	7 (11.1%)
PD-L1 TPS	
≥ 1%	27 (42.9%)
< 1%	22 (34.9%)
Unknown	14 (22.2%)
History of surgery	
Yes	26 (41.3%)
No	37 (58.7%)
ILD	
Yes	15 (23.8%)
No	48 (76.2%)
Disease stage	
≤ III	17 (27.0%)
IVA	37 (58.7%)
IVB	9 (14.3%)
PS	
0–1	53 (84.1%)
≥ 2	10 (15.9%)
History of ICI therapy	
Yes	36 (57.1%)
No	27 (42.9%)
History of platinum therapy	
Yes	32 (50.8%)
No	31 (49.2%)

ICI, Immune checkpoint inhibitor; ILD, interstitial lung disease; PD-L1, programmed death ligand-1; PS, performance status; TPS, tumor proportion score

Table 2 shows the association between the patient characteristics and the OS analyzed by the log-rank test. Univariate analysis identified the tumor PD-L1 status, disease stage, and history of treatment with an...
ICI as being significantly associated with the OS. Figure 2 shows the Kaplan-Meier curve for the OS in the patients with and without a history of treatment with ICIs.

Table 2: Association between the patient background characteristics and the overall survival (univariate analysis)

Characteristic	OS (95% CI)	P
Age (yr)		
< 75	12.9 (9.2–27.4)	0.732
≥ 75	11.0 (8.8–29.3)	
Sex		
Male	12.8 (9.6–14.5)	0.953
Female	17.2 (3.4–18.5)	
Histology		
Squamous	9.6 (5.1–29.3)	0.354
Adenocarcinoma	13.6 (10.7-NE)	
Others	10.0 (2.7-NE)	
PD-L1 TPS		
≥ 1%	27.4 (12.6-NE)	0.002
< 1%	12.9 (3.9–18.5)	
Unknown	9.2 (4.2–9.8)	
History of surgery		
Yes	14.4 (10.7-NE)	0.262
No	9.8 (8.4–17.2)	
ILD		
Yes	12.8 (4.9–27.4)	0.832
No	12.6 (9.5–18.5)	
Disease stage		
≤ III	13.6 (10.4–53.9)	0.007
IVA	12.9 (8.8–29.3)	
IVB	5.7 (2.7–11.0)	
PS		
0–1	12.9 (10.4–18.5)	0.064
≥ 2	5.2 (2.7–53.9)	
History of ICI therapy		
Yes	17.2 (10.7–34.1)	0.026
No	9.8 (4.2–14.4)	
History of platinum therapy		
Yes	13.6 (9.2–34.1)	0.323
No	11.0 (9.6–17.2)	

ICI, Immune checkpoint inhibitor; ILD, interstitial lung disease; OS, overall survival; PD-L1, programmed death ligand-1; PS, performance status; TPS, tumor proportion score
Table 3 shows the association between a history of treatment with an ICI and the OS evaluated using the Cox proportional hazards model. The PS, disease stage, history of treatment with an ICI, and history of treatment with a platinum doublet were selected as the independent variables. The tumor PD-L1 status was excluded, because there was a significant overlap between the tumor PD-L1 status and history of treatment with an ICI, even though the tumor PD-L1 status was found to be significantly associated with the OS by the log-rank test. Analysis using the Cox proportional hazards model revealed a significant association between history of treatment with an ICI and the OS.

Table 3
Association between the patient background characteristics and the overall survival (multivariate analysis)

	HR (95% CI)	P
PS		
0–1	0.31 (0.12–0.83)	0.020
≥ 2	1	
Disease stage		
≤ III	0.37 (0.13–1.05)	0.061
IVA	0.44 (0.19–1.03)	0.059
IVB	1	
History of ICI therapy		
Yes	0.42 (0.20–0.86)	0.019
No	1	
History of platinum therapy		
Yes	0.63 (0.31–1.28)	0.202
No	1	
ICI, Immune checkpoint inhibitor; PS, performance status		

Table 4 shows the results of a subset analysis in patients divided into subgroups by the patient background characteristics to assess the association between history of treatment with an ICI and the OS. There was a significant interaction between the tumor histology and history of treatment with an ICI on the effect, with the association between ICI therapy and OS not being seen in patients with adenocarcinoma, but evident in those with squamous cell carcinoma and carcinoma of other histologic types.
Table 4 shows the results of a subset analysis in patients divided into subgroups by the patient background characteristics to assess the association between history of treatment with an ICI and the OS.

	OS (95% CI)	P (log-rank test)	P (Interaction)	
	ICI (+)	ICI (-)		
Age (yr)				
< 75	27.4 (10.0-53.9)	9.5 (2.8-14.4)	0.060	0.620
≥ 75	12.8 (9.5-34.1)	10.4 (3.9-18.5)	0.141	
Sex				
Male	27.4 (10.7-34.1)	9.8 (4.2-13.6)	0.015	0.221
Female	17.2 (3.2-17.2)	18.5 (3.4-18.5)	0.433	
Histology				
Squamous	29.3 (7.2-53.9)	5.5 (3.3-10.4)	0.002	0.006
Adenocarcinoma	12.9 (8.8-NE)	14.4 (4.9-NE)	0.686	
Others	12.8 (3.4-NE)	2.8 (2.7-2.8)	0.008	
PD-L1 TPS				
≥ 1%	27.4 (12.6-NE)	14.5 (5.1-NE)	0.467	0.983
< 1%	12.9 (3.2-34.1)	10.4 (2.8-NE)	0.667	
Unknown	9.5 (5.1-29.3)	9.2 (3.3-11.0)	0.566	
History of surgery				
Yes	12.9 (10.0-NE)	14.4 (3.3-18.5)	0.332	0.996
No	17.2 (8.8-29.3)	9.2 (4.2-11.0)	0.085	
ILD				
Yes	27.4 (7.2-53.9)	9.8 (3.3-14.5)	0.057	0.415
No	12.9 (9.6-34.1)	10.4 (3.4-18.5)	0.158	
Disease stage				
≤III	27.4 (12.6-53.9)	10.4 (3.3-NE)	0.065	0.647

ICI, Immune checkpoint inhibitor; ILD, interstitial lung disease; OS, overall survival; PD-L1, programmed death ligand-1; PS, performance status; TPS, tumor proportion score
	OS (95% CI)	P (log-rank test)	P (Interaction)
IVA	12.9 (8.8–NE)	14.4 (3.4–NE)	0.292
IVB	5.5 (3.4–17.2)	5.9 (2.7–11.0)	0.624
PS			
0–1	17.2 (12.6–34.1)	10.4 (5.1–14.5)	0.062
≥ 2	7.2 (3.4–53.9)	3.4 (2.7–4.9)	0.031
History of platinum therapy			
Yes	27.4 (8.4–53.9)	10.4 (3.9–14.5)	0.110
No	12.8 (9.5–29.3)	5.9 (2.1–18.5)	0.040

ICI, Immune checkpoint inhibitor; ILD, interstitial lung disease; OS, overall survival; PD-L1, programmed death ligand-1; PS, performance status; TPS, tumor proportion score

No significant differences in the OS were observed among patients who received ICI therapy as 1st (median: 12.6, 95% confidence interval: 5.5–NE months), 2nd (median: 29.3, 95% confidence interval: 12.8–53.9 months) and 3rd (median: 9.7, 95% confidence interval: 8.4–17.2 months) line treatment (p = 0.073, log-rank test). Furthermore, the OS was also not significantly different among patients who received ICI therapy (p = 0.807, log-rank test), including treatment with nivolumab (median: 19.5, 95% confidence interval: 3.2–53.9 months), pembrolizumab (median: 27.4, 95% confidence interval: 10.7–NE months), and atezolizumab (median: 12.9, 95% confidence interval: 10.0–NE months).

Discussion

In the present study, multivariate analysis revealed a significant independent association between a history of treatment with an ICI and a longer OS in patients with NSCLC aged ≥ 70 years old. However, because of the retrospective nature of the study, it was difficult to rule out the possible confounding effects of patient background factors on the results of the analyses. Especially, patients who showed long survival durations might have received ICI therapy in the late phase because they had survived for longer. Thus, we cannot draw any definitive conclusion about the causative relationship between history of treatment with an ICI and a longer OS in patients with NSCLC aged ≥ 70 years old. However, the proportion of patients that received ICI therapy as 3rd line treatment was relatively low. Given that pooled analysis in the KEYNOTE study [6] and a single-arm phase 2 study [7] demonstrated the efficacy of treatment with an ICI in elderly patients with NSCLC, we believe that it is possible that treatment with an ICI contributed significantly to the longer survival in elderly patients with NSCLC.
There was a significant interaction between ICI therapy and the histology for the OS, the association between ICI therapy and OS being stronger in patients with squamous cell carcinoma and carcinoma of other histologic types than in patients with adenocarcinoma. It has been reported that nivolumab is effective in patients with squamous cell carcinoma, regardless of the tumor PD-L1 expression (1), while was less effective in patients with non-squamous cell carcinoma with no tumor PD-L1 expression (2). A possible explanation for the interaction between ICI therapy and tumor histology in terms of the OS in the present study could be the lower lesser efficacy of ICI therapy against PD-L1-negative tumors in NSCLC patients with adenocarcinoma.

The limitations of the present study were the retrospective nature of the study and the small sample size, which could have reduced the statistical power of the study; random errors and selection bias could also have influenced the results of the analysis. In addition, confounding factors might not have been fully adjusted for.

In conclusion, the present study demonstrated that NSCLC patients aged ≥ 70 years old who had received ICI therapy showed a longer overall survival than those who had not received ICI therapy. The association was stronger in NSCLC patients with squamous cell carcinoma and other histologic types of carcinoma than in those with adenocarcinoma.

Declarations

Funding

The authors received no specific funding for this work.

Conflicts of interest/Competing interests

The author reports no conflicts of interest in this work.

Ethics approval

This study was conducted in accordance with the Declaration of Helsinki and the Ethical Guidelines for Medical and Health Research Involving Human Subjects (Ministry of Health, Labour and Welfare of Japan), after obtaining approval from the Ethics committee, University of Toyama (Reference number: R2019146).

Consent to participate/ Consent for publication

We disclosed information about the study to the subjects but did not obtain written informed consent as it was a retrospective study.

Authors' contributions
MI contributed to the conception and design of the work. Data analysis was also performed by MI. Data collection was performed by MI, KA, NT, KH, KT, CT, SO, KK, SI, TM, RH, and SM. The interpretation of the data and revision of the manuscript were performed by MI, KA, NT, KH, KT, CT, SO, KK, SI, TM, RH, SM, and KT.

Availability of data and materials

The datasets used during the current study are available from the corresponding author on reasonable request.

References

1. Brahmer J, Reckamp KL, Baas P, Crinò L, Eberhardt WE, Poddubskaya E, Antonia S, Pluzanski A, Vokes EE, Holgado E, Waterhouse D, Ready N, Gainor J, Arén Frontera O, Havel L, Steins M, Garassino MC, Aerts JG, Domine M, Paz-Ares L, Reck M, Baudelet C, Harbison CT, Lestini B, Spigel DR (2015) Nivolumab versus Docetaxel in Advanced Squamous-Cell Non-Small-Cell Lung Cancer. N Engl J Med. 373: 123-35.

2. Borghaei H, Paz-Ares L, Horn L, Spigel DR, Steins M, Ready NE, Chow LQ, Vokes EE, Felip E, Holgado E, Barlesi F, Kohlhäufi M, Arrieta O, Burgio MA, Fayette J, Lena H, Poddubskaya E, Gerber DE, Gettinger SN, Rudin CM, Rizvi N, Crinò L, Blumenschein GR Jr, Antonia SJ, Dorange C, Harbison CT, Graf Finckenstein F, Brahmer JR (2015) Nivolumab versus Docetaxel in Advanced Nonsquamous Non-Small-Cell Lung Cancer. N Engl J Med. 373: 1627-39.

3. Herbst RS, Baas P, Kim DW, Felip E, Pérez-Gracia JL, Han JY, Molina J, Kim JH, Arvis CD, Ahn MJ, Majem M, Fidler MJ, de Castro G Jr, Garrido M, Lubiniecki GM, Shentu Y, Im E, Dolled-Filhart M, Garon EB (2016) Pembrolizumab versus docetaxel for previously treated, PD-L1-positive, advanced non-small-cell lung cancer (KEYNOTE-010): a randomised controlled trial. Lancet. 9; 387: 1540-1550.

4. Reck M, Rodríguez-Abreu D, Robinson AG, Hui R, Csőszi T, Fülöp A, Gottfried M, Peled N, Tafreshi A, Cuffe S, O'Brien M, Rao S, Hotta K, Leiby MA, Lubiniecki GM, Shentu Y, Rangwala R, Brahmer JR; KEYNOTE-024 Investigators (2016) Pembrolizumab versus Chemotherapy for PD-L1-Positive Non-Small-Cell Lung Cancer. N Engl J Med. 10; 375: 1823-1833.

5. Rittmeyer A, Barlesi F, Waterkamp D, Park K, Ciardiello F, von Pawel J, Gadgeel SM, Hida T, Kowalski DM, Dols MC, Cortinovis DL, Leach J, Polikoff J, Barrios C, Kabbinavar F, Frontera OA, De Marinis F, Turna H, Lee JS, Ballinger M, Kowanetz M, He P, Chen DS, Sandler A, Gandara DR; OAK Study Group (2017) Atezolizumab versus docetaxel in patients with previously treated non-small-cell lung cancer (OAK): a phase 3, open-label, multicentre randomised controlled trial. Lancet. 389 (10066): 255-265

6. Nosaki K, Saka H, Hosomi Y, Baas P, de Castro G Jr, Reck M, Wu YL, Brahmer JR, Felip E, Sawada T, Noguchi K, Han SR, Piperdi B, Kush DA, Lopes G (2019) Safety and efficacy of pembrolizumab monotherapy in elderly patients with PD-L1-positive advanced non-small-cell lung cancer: Pooled analysis from the KEYNOTE-010, KEYNOTE-024, and KEYNOTE-042 studies. Lung Cancer. 135: 188-195.
7. Imai H, Wasamoto S, Yamaguchi O, Suzuki K, Sugiyama T, Uchino J, Minemura H, Osaki T, Ishii H, Umeda Y, Mori K, Kotake M, Kagamu H, Morozumi N, Taniguchi H, Kasai T, Minato K, Kaira K (2020) Efficacy and safety of first-line pembrolizumab monotherapy in elderly patients (aged ≥ 75 years) with non-small cell lung cancer. J Cancer Res Clin Oncol. 146: 457-466.

8. Galli G, De Toma A, Pagani F, Randon G, Trevisan B, Prelaj A, Ferrara R, Proto C, Signorelli D, Ganzinelli M, Zilembo N, de Braud F, Garassino MC, Lo Russo G (2019) Efficacy and safety of immunotherapy in elderly patients with non-small cell lung cancer. Lung Cancer. 137: 38-42.

Figures

Figure 1

Patient selection. Data of NSCLC patients aged ≥70 years old with no tumor driver mutations were analyzed.
Figure 2

Kaplan-Meier curve for OS in patients who had and had not received ICI therapy. Solid line: patients who had received treatment with an ICI; dashed line: patients who had not received treatment with an ICI. Patients who had received treatment with an ICI showed a longer OS than those who had not received treatment with an ICI (p = 0.026, log-rank test).