Crystal structure of the complex between venom toxin and serum inhibitor from Viperidae snake

Received for publication, November 27, 2018 Published, Papers in Press, November 30, 2018, DOI 10.1074/jbc.RA118.006840

Narumi Shioi1,2, Takahiro Tadokoro3, Seijiro Shioi4, Yukiko Okabe5, Haruki Matsubara5, Shunsuke Kita5, Toyouyi Ose6, Kimiko Kuroki7, Shigeyuki Terada1, and Katumi Maenaka6,4

From the 1Department of Chemistry, Faculty of Science, Fukuoka University, 19-1, 8-chome Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan, 2Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan, and 3Radioisotope Center, Fukuoka University, Fukuoka 814-0180, Japan

Edited by Luke O’Neill

Venomous snakes have endogenous proteins that neutralize the toxicity of their venom components. We previously identified five small serum proteins (SSP-1–SSP-5) from a highly venomous snake belonging to the family Viperidae as inhibitors of various toxins from snake venom. The endogenous inhibitors belong to the prostate secretory protein of 94 amino acids (PSP94) family. SSP-2 interacts with triflin, which is a member of the cysteine-rich secretory protein (CRISP) family that blocks smooth muscle contraction. However, the structural basis for the interaction and the biological roles of these inhibitors are largely unknown. Here, we determined the crystal structure of the SSP-2–triflin complex at 2.3 Å resolution. A concave region centrally located in the N-terminal domain of triflin is fully occupied by the terminal β-strands of SSP-2. SSP-2 does not bind tightly to the C-terminal cysteine-rich domain of triflin; this domain is thought to be responsible for its channel-blocker function. Instead, the cysteine-rich domain is tilted 7.7° upon binding to SSP-2, and the inhibitor appears to sterically hinder triflin binding to calcium channels. These results help explain how an endogenous inhibitor prevents the venomous protein from maintaining homeostasis in the host. Furthermore, this interaction also sheds light on the binding interface between the human homologues PSP94 and CRISP-3, which are up-regulated in prostate and ovarian cancers.

This work was supported in part by the NMR Facility Yokohama Institute, RIKEN, to provide insight into structural information of the SSP-2–triflin complex. This work was supported in part by the Central Research Institute of Fukuoka University Grant 131042 and supported by the Female Researcher Support Programme of Fukuoka University (to N.S.). This work was partly supported by JSPS KAKENHI Grant 22121007, Platform Project for Supporting Drug Discovery and Life Science Research (Basis for Supporting Innovative Drug Discovery and Life Science Research (BINDS)) from AMED under Grant 18am01010930002, Hokkaido University, Global Facility Center (GFC), Pharma Science Open Unit (PSOU), funded by MEXT under “Support Program for Implementation of New Equipment Sharing System,” Hokkaido University Biosurface Project, and Takeda Science Foundation. The authors declare that they have no conflicts of interest with the contents of this article.

This article contains Figs. S1–S5 and Tables S1 and S2. The atomic coordinates and structure factors (code 6IMF) have been deposited in the Protein Data Bank (http://wwpdb.org/).

1 These authors contributed equally to this work.

2 To whom correspondence may be addressed. Tel.: 81-92-870-6631 ext. 6215; Fax: 81-92-865-6030; E-mail: anarumi@fukuoka-u.ac.jp.

3 To whom correspondence may be addressed. Tel.: 81-11-706-3764; Fax: 81-11-706-4986; E-mail: tadokotot@fukuoka-hokudai.ac.jp.

4 To whom correspondence may be addressed. Tel.: 81-11-706-3970; Fax: 81-11-706-4986; E-mail: maenaka@fukuoka-hokudai.ac.jp.

5 The abbreviations used are: CR, cysteine-rich; SSP, small serum protein.

J. Biol. Chem. (2019) 294(4) 1250–1256

© 2019 Shioi et al. Published under exclusive license by The American Society for Biochemistry and Molecular Biology, Inc.
and together with the PSP94 homodimer structure (22), the CRISP–3–binding interface of PSP94 molecule was identified, proposing two distinct PSP94–CRISP complex models. Therefore, the PSP94–CRISP interactions are still largely ambiguous.

Here, we show the first complex structure of PSP94 and CRISP family proteins, which explains the structural basis of SSP–2–mediated inhibition of triflin activity. Moreover, the triflin–SSP–2 complex structure enables us to provide a structural model of the PSP94–CRISP–3 complex.

Results

Overall crystal structure of the SSP–2–triflin complex

SSP–2 effectively restores the toxic activity of triflin, which is mediated by the strong SSP–2–triflin binding (KD = 24 nM), as reported previously (14). However, the molecular basis of the SSP–2–triflin interaction is largely unknown. We determined the crystal structure of the SSP–2–triflin complex at 2.3 Å resolution using native proteins derived from snake serum and venom; these proteins possess many disulfide bonds and are difficult to produce in sufficient amounts from typical recombinant expression systems (Fig. 1 and Table S1). To the best of our knowledge, this is the first three-dimensional structure of a complex between a snake toxin and its endogenous inhibitor protein. The structure revealed that the SSP–2 N-terminal β1 strand (Ala1–Gly3) and partial C-terminal region (Leu59–Glu61), which are located on the same side of the molecule, insert into the central concave surface of the PR–1 domain of triflin. Approximately one fifth of the SSP–2 molecule is buried in the large cleft of the triflin molecule (1172.1 Å2; Fig. S1A, yellow region), which is smaller than the standard buried surface areas of protein–protein interactions (~1600 Å2). However, this association is mediated by tight hydrogen bonding and electrostatic complementation (Fig. S1B and Table S2); this association is because of (i) 16 hydrogen bonds, including 6 interchain backbone hydrogen bonds, which is more than the average (23) and (ii) the complexation significance score calculated by the PISA software (24), which ranges from 0 to 1 as interface relevance to complex formation increases, was 0.897, indicating a stable complex. Therefore, the interaction between SSP–2 and triflin was strong and in the nanomolar range, even though the interface was not large.

Details of binding interfaces

The N-terminal SSP–2 β1 strand interacts with His115, Asn152, Ile153, and Ile154 in the cleft of the triflin PR–1 domain (Fig. 2A and Fig. S2A and D). In the unbound triflin (PDB ID: 1WVR) (4), a Cd2+ ion is coordinated by His115 and His116; this feature is well-conserved among CRISP family proteins (Fig. S3). The N-terminal Ala1 of SSP–2 is positioned at this site in the complex (Fig. 2A and Fig. S2E) and inhibits metal-binding activity. Furthermore, β1 and the neighboring β4 strand of SSP–2 interact with the triflin PR–1 domain via hydrophobic interactions and a β-sheet–like structure (Fig. 2A and Fig. S2). Glu44, Asp46, and Asp48 at the loop and β4 strand of SSP–2 comprise a negatively charged cluster and form salt bridges with Arg63 and Lys72 of triflin (Fig. 2B). This interaction is further enhanced by polar interactions between Ser51 Oγ of SSP–2 and Arg63 Nε of triflin (1) as well as Glu44 Oε2 of SSP–2 and Arg63 main chain nitrogen atom of triflin (2) (Fig. 2B and Table S2). The entire SSP–2 C-terminal β5 strand and part of the β4 strand (Ile77–Ala80) of triflin form a parallel β-sheet via intermolecular hydrogen bonds (Fig. 2, C and D). The key amino acid residues that mediate this hydrophobic interaction are Tyr56, Leu59, and Leu69 of SSP–2 and Trp93, Val112, and His115 of triflin (Fig. 2C and Fig. S2B). Additional interactions were observed between the ethylene region of SSP–2 Glu61 and triflin Tyr78 and Thr81 (Fig. 2, C and D). In the triflin structure (PDB ID: 1WVR), Lys138 and Tyr139 form a typical cation–π interaction to stabilize this region of triflin, and the interaction is conserved in the complex model (Fig. 2D and Fig. S2F). Moreover, hydrogen bonding between SSP–2 Arg62 Nε1 and triflin Lys138 main chain oxygen atom, SSP–2 Ala63 main chain nitrogen atom and triflin Thr81 Oγ1 enhances the interaction in this region (Fig. 2D and Table S2). In summary, the β1 and β5 strands of SSP–2 comprise the horizontal long edge of the β-sheets that play central roles in the formation of the edge-to-edge binding interface that inhibits triflin function.

Structural basis for the binding specificity of SSPs

Our previous report showed that among the five SSPs, only SSP–2 and SSP–5 could interact with triflin (14). The SSP–2–triflin complex structure shows that both the N- and C-terminal domains of SSP–2 are required for the interaction with triflin. SSP–3 and SSP–4 lack the C-terminal domain (Fig. 1B), which likely results in their failure to interact with triflin. In addition, the N terminus of the SSP–2 β5 strand is located deep inside the cavity of triflin, and the smaller amino acids Gly57 and Gly58 of SSP–2 and SSP–5 are surrounded by bulky residues, such as Ile77 and His115 (Fig. 2A and Fig. S2B). The presence of Asp55 in SSP–1 may cause steric hindrance that prevents the interaction with triflin. These structural features would therefore ensure the specificity of SSP family members.

Discussion

We demonstrated previously that a new class of endogenous inhibitors isolated from Japanese viper serum is capable of neutralizing distinct classes of snake toxin (9–11). Structural information of these toxin and inhibitor complexes would help in understanding the specificity and selectivity of the endogenous inhibitors.

SSP–2–mediated inhibition of triflin activity

Several ion channel targets of venom CRISPs from Viperidae and Elapidae have been identified and characterized (2). It is believed that the C-terminal CR domain of venom CRISPs is important for target molecule recognition (3, 4) because the CR domain shares a conserved motif with ion channel blockers from sea anemones and scorpions (3, 4, 25). In addition, a cryo-EM study showed that the hinge region (161–182) and CR domain (183–221) of natrin, a snake venom CRISP, are crucial for binding to the Ca2+ release channel ryanodine receptor 1 (5). Our structure indicates that the CR domain of triflin exhibits few direct interactions with SSP–2 (Fig. 1A and Fig. S2C); however, upon binding, there is a conformational change. The superposition of free and SSP–2–bound forms of triflin shows
that the CR domain is tilted by 7.7° toward SSP-2 (Fig. S4). SSP-2 is likely located sufficiently close to the triflin CR domain, raising the possibility to sterically hinder the interaction with an ion channel.

Structural model for the PSP94-CRISP complex

Over the last decade, researchers have awaited the identification of the interacting regions between PSP94 and a CRISP in mammals (20–22) in the context of the physiological relevance. In the present study, we determined the first structure of a PSP94-family protein in complex with a CRISP-family protein. PSP94 interacts strongly with triflin (26), and the terminal β1 and β8 strands of PSP94 are suggested to be involved in complex formation with CRISPs. Because SSP-2 has a significant structural similarity with PSP94, especially the N-terminal domain (Figs. 1C and 3, B–D), we superimposed PSP94 onto SSP-2 in our complex
structure based on these facts to generate a hypothetical PSP94–CRISPR–binding model (Fig. 3A). The key structural elements of the SSP-2 interface, such as the horizontal long edge of the β-sheet, are likely conserved in PSP94, aside from the β5 and β8 strands. This is because SSP-2 has a shorter C-terminal region than PSP94, and thus the N and C termini of SSP-2 are located on the opposite side of the molecule (Fig. 3, B and C). In our complex model, the β8 strand at the extended C-terminal of PSP94 likely plays the corresponding role of the β5 strand of SSP-2 in forming the binding surface (Fig. 3A). The alignment of venom CRISPs and human CRISPR-3 showed that the important side chains for the interaction found in our complex are relatively well-conserved among CRISPs (Fig. S3), potentially explaining the ability of PSP94 to bind to a wide range of CRISPs (26). CRISPR-interacting residues of PSP94 identified in earlier studies (20, 21) distribute similarly to trillin-interacting residues of SSP-2 (Fig. 3, B–D), indicating the conservation of the interface between PSP94– and CRISPR-family proteins (Fig. 3A). Mapping of these residues on the structures also suggests

Figure 1. Crystal structure of the SSP-2–triflin complex. A, cartoon representation of the SSP-2–triflin complex structure (left). SSP-2 is shown in orange; triflin is shown in pale green. The β-strands involved in the interaction are highlighted in red for SSP-2 (β1 and β5) and in dark green for triflin (β4). Disulfide bonds that are conserved among PSP94 family proteins are represented with sticks. The sulfur atoms are indicated in yellow. The disordered regions of SSP-2 (Ser10–Pro17) and triflin (Gin183–Asn186) in the crystal structure are indicated with a dotted line. The surface representation of the SSP-2–triflin complex is shown (top right). The left model is the same view as the cartoon representation on the left; whereas the right model represents a view rotated by 90° around a vertical axis. The enlarged view (bottom right) shows the $F_o - F_c$ electron density map of SSP-2 contoured at 2.0 (sky blue) at the interface with triflin. The structure of the complex shows that βs (Leu25–Glu22) of SSP-2 forms a parallel β-sheet structure with β4 of triflin to interact with the toxin. B, sequence alignment of SSP-1 to SSP-5 from P. flavoviridis and the PSP94 family protein human PSP94. Universal Protein Resource (UniProt) accession numbers are as follows: A7VN13 (SSP-1), A7VN14 (SSP-2), A7VN15 (SSP-3), A7VN16 (SSP-4), and A7VN17 (SSP-5) from P. flavoviridis; P08118 (PSP94) from Homo sapiens. Highly conserved residues are shown in white font on a red background; and other conserved residues are shown in red font. Cysteine residues forming disulfide bridges are indicated below the alignment with a light green number. The same number indicates the paired residues for the disulfide bond. The secondary structures of SSP-2 and PSP94 obtained from the SSP-2–triflin complex and the PSP94 crystal structure (22) are shown above and below the alignment, respectively. Black arrow indicates β-strand. T indicates a β-turn. The alignment figure was generated using Esprit (35). The residues whose side chains are involved in the interaction between SSP-2 and triflin are indicated with double circles. The residue numbers used throughout the manuscript are derived from this sequence alignment. Missing indicates a disordered region. The box with dashed lines indicates the β-strands that form an interchain β-sheet with triflin. The residues involved in the interaction with CRISPR identified by the NMR experiment (20) are indicated with diamonds below the alignment. Natural variants of PSP94 are also indicated with a yellow box. C, cartoon representation of the SSP-2 structure in the SSP-2–triflin complex. The orientation of SSP-2 is a view rotated 180° around a vertical axis, as shown in A. Conserved disulfide bonds are shown as ball and stick models with residue numbers in purple. See also Fig. S1 and Table S1.

Figure 2. Binding interface between SSP-2 and triflin. SSP-2 is shown as a cartoon model, whereas triflin is shown as a surface model. The complex structure is the same view as in the top right panel of Fig. 1A, showing the binding mode of SSP-2 in the cleft of triflin. A–D, the boxed regions are shown as detailed views. A, focused view of the β1 strand of SSP-2. Black dotted lines indicate hydrogen bonds. B, detailed view of the charge-charge interactions. The ion pair and hydrogen bonds are indicated with black dotted lines. A weak ion pair (>4.0 A distance) between Asp48 of SSP-2 and Lys72 of triflin is also shown. C, detailed view of the C-terminal β-sheet formed by the SSP-2 β5 strand and the triflin β4 strand. Black dotted lines indicate hydrogen bonds, and related residues are shown as the stick model. The residues involved in the hydrophobic interaction are also indicated with the stick model. D, detailed view of the cation-π interaction between Lys118 and Tyr139 of triflin. Black dotted lines indicate hydrogen bonds. See also Fig. S2 and Table S2.

Figure 3. Structure of the SSP-2–triflin complex

Structure of the SSP-2–triflin complex
the relevance of the conserved interaction (Fig. S5A). Although these data determined the binding interface, distinct complex models in the context of the orientation of PSP94 relative to CRISP have been proposed (20–22). Kumar et al. (22) determined that the model of PSP94 binds to CRISP-3 in an antiparallel manner, which is the same orientation as our model, and is based on the crystal structure of the antiparallel PSP94 dimer. In contrast, Ghasriani et al. (20) proposed a complex model in a parallel orientation using the NMR structure of PSP94. However, the orientation of the N-terminal domain relative to its C-terminal domain of PSP94 forms a straight face and is different from the twisted orientation of the NMR structure of PSP94, which may be important for the formation of the binding interface (22). Therefore, the complex proposed here might be the first feasible model of the PSP94-CRISP complexes, although there could be a possibility of a distinct orientation.

Moreover, most of the natural variants of PSP94 are found far from the CRISP-binding interface (Fig. 3E). In CRISP-3, a few natural variants are also found to be inequivalent to the binding sites with PSP94 protein (Fig. S5B). Overall, our model provides important structural insight into the PSP94–hCRISP-3 complex, which is involved in prostate cancer and has been a contested target for many years.

Conclusion

To date, most studies have focused on relatively abundant and stable venom components. However, endogenous inhibitor proteins were evolutionarily acquired by venomous snakes to protect themselves and have not been fully characterized. Although trilin itself is not a lethal toxin, related ion channel blockers such as natrin induce serious clinical effects. Here, we described the molecular basis of the interaction of CRISP family toxins with endogenous inhibitors in venomous snakes. Furthermore, because an effective snakebite therapeutic molecule has yet to be developed, the crystal structure of the endogenous inhibitor-toxin complex provides valuable information for the
rational design and development of antivenom drugs as well as the usefulness of SSPs as new therapeutic potentials. The structure also provides structural insight into the related P594-CRISP interactions involved in prostate and ovarian cancers.

Experimental procedures

Protein purification

The serum of P. flavoviridis was collected from snakes on Amami Island, Japan. SSP-2 was purified from the serum of P. flavoviridis as described previously (9). Briefly, the serum was fractionated with cold ethanol, and the fraction containing SSPs was loaded onto two COSMOSIL 5C8-AR-300 columns (Nacalai Tesque, Kyoto, Japan); the first column was 20 × 150 mm, and the second column was 4.6 × 150 mm. Elution was carried out using a gradient of acetonitrile in 0.1% TFA at a flow rate of 5.0 or 1.0 ml per min, and absorbance was detected at 230 nm. Triflin was isolated from the crude venom by TFA at a flow rate of 5.0 or 1.0 ml per min, and absorbance was detected at 230 nm. Triflin was isolated from the crude venom of P. flavoviridis in three column chromatography steps as described previously (27). The crude venom was fractionated on a Sephacryl S-300 HR column (5.0 × 90 cm; GE Healthcare) in 50 mm Tris-HCl buffer, pH 8.0, 50 mm NaCl, and 5 mm CaCl2. The third fraction containing triflin was injected onto the SP Sepharose Fast Flow column (5 ml; GE Healthcare) in 10 mm phosphate buffer (pH 6.8) and eluted with a linear gradient to 0.25 M NaCl. The obtained fractions were applied onto a HiLoad Superdex 75 column (1.6 × 60 cm, GE Healthcare) equilibrated with 20 mm Tris-HCl, pH 8.0, and 200 mm NaCl. The quality and quantity of the purified SSP-2 and triflin were assessed by SDS-PAGE and protein sequencer (Shimadzu, Kyoto, Japan), and the concentration of pure samples was determined using a spectrophotometer as described previously (9).

Crystallization of the SSP-2–triflin complex

Both triflin and SSP-2 proteins were purified directly from P. flavoviridis venom or serum, as described above. These proteins possess eight and five disulfide bonds, respectively, and are difficult to purify in sufficient amounts from Escherichia coli, insect cells, or cell-free protein synthesis systems. To obtain the SSP-2–triflin complex, purified SSP-2 and triflin were mixed in a 1:1 molar ratio and incubated for 2 h at 4 °C. The protein mixture was subsequently applied to a Superdex 75 10/300 GL column (GE Healthcare) for purification. The fractions containing the protein complex were collected and concentrated to 4.8 mg/ml as determined by the Bradford protein assay method in 10 mm Tris-HCl, pH 8.0, containing 100 mm NaCl and 5 mm CaCl2 using a Millipore filter device (Amicon, Nihon Millipore, Tokyo, Japan). Screenings for crystallization were carried out using the ProPlex (Molecular Dimensions, Suffolk, UK) and Classics II (Qiagen, Germantown, Maryland) screening kits using the sitting-drop vapor-diffusion method. Drops were formed by mixing the SSP-2–triflin complex and reservoir solution in a 1:1 ratio (0.05 μl each) using a Mosquito robot (TTP Labtech, Melbourne, UK), and the crystals were grown at 20 °C. Native crystals of the SSP-2–triflin complex appeared under several conditions used in the commercial screening kits, and crystals suitable for X-ray diffraction analysis were obtained using ProPlex solution No. 2.12 (0.2 M ammonium sulfate, 0.1 M MES, pH 6.5, 20% (w/v) PEG 8000).

Data collection and structure determination of the SSP-2–triflin complex

X-ray diffraction data sets for the SSP-2–triflin complex crystal were collected at 100 K using synchrotron radiation at the BL44XU station at SPring-8, Harima, Hyogo, Japan, and processed using the HKL2000 program (28). X-ray diffraction experiments showed that crystals of the SSP-2–triflin complex belonged to the C2 space group with the following unit cell parameters: a = 111.2 Å, b = 48.1 Å, c = 75.0 Å, α = γ = 90°, and β = 103°. The structure was solved using the molecular replacement method and the program MOLREP (29). The crystal structures of triflin (PDB ID: 1WVR) and SSP94 (PDB ID: 3IX0) were used as search models. Automatic model building was carried out using ARP/wARP (30). Model modification and structure refinement were performed using COOT (31), REFMAC5 (32), and PHENIX (33). The quality of the final model was validated using the Molprobity program (34). The final structure was refined to an R factor of 18.6% and Rfree of 21.9% up to a 2.3 Å resolution, as summarized in Table S1. We were unable to build a model of the Pro11–Met15 region of SSP-2, located on the opposite side of the binding interface to triflin, because of poor electron density. The coordinates for the refined SSP-2–triflin complex structure have been deposited in the Protein Data Bank (PDB ID: 6IMF). Figures depicting the protein structure were generated using PyMOL.

Accession code

The atomic coordinates and structural factors for the SSP-2–triflin complex have been deposited in the RCSB Protein Data Bank under the accession code 6IMF.

Author contributions—N. S., S. T., and K. M. conceptualization; N. S., Y. O., H. M., and K. M. resources; N. S., T. T., S. T., and K. M. supervision; N. S. and K. M. funding acquisition; N. S., T. T., S. S., Y. O., K. K., and K. M. investigation; T. T., S. S., H. M., S. K., and T. O. formal analysis; T. T., S. K., T. O., and K. K. validation; T. T. visualization.

Acknowledgments—We thank Professor Takahito Chigiwa (So-jo University) for providing information about the venom components of P. flavoviridis. We also thank Yaopeng Hu (Fukuoka University) and Lin Hai Kurahara (Fukuoka University) for the useful discussion. We are grateful to Professor R. Manjunatha KINI (National University Singapore) for helpful discussions. We thank the beamline staff of the Photon Factory and SPring-8 for their assistance with X-ray diffraction data collection.

References

1. Kasturiratne, A., Wickremasinghe, A., de Silva, N., Gunawardena, N., Pathmeswaran, A., Premaratna, R., Savioli, L., Laloo, D., and de Silva, H. (2008) The global burden of snakebite: A literature analysis and modelling based on regional estimates of envenoming and deaths. PLoS Med. 5, e218 CrossRef Medline
Structure of the SSP-2–triflin complex

2. Yamazaki, Y., and Morita, T. (2004) Structure and function of snake venom cysteine-rich secretory proteins. *Toxicon* 44, 227–231 CrossRef

3. Suzuki, N., Yamazaki, Y., Brown, R., Fujimoto, Z., Morita, T., and Mizuno, H. (2008) Structures of pseudochetoxin and pseudcin, two snake-venom cysteine-rich secretory proteins that target cyclic nucleotide-gated ion channels: Implications for movement of the C-terminal cysteine-rich domain. *Acta Crystallogr. D Biol. Crystallogr.* 64, 1034–1042 CrossRef

4. Shikamoto, Y., Suto, K., Yamazaki, Y., Morita, T., and Mizuno, H. (2005) Crystal structure of a CRISP family Ca$^{2+}$–channel blocker derived from snake venom. *J. Mol. Biol.* 350, 735–743 CrossRef

5. Zhou, Q., Wang, Q. L., Meng, X., Shu, Y., Jiang, T., Wagenknecht, T., Yin, C. C., Sui, S. F., and Liu, Z. (2008) Structural and functional characterization of ryanodine receptor-natrium toxin interaction. *Biophys. J.* 95, 4289–4299 CrossRef

6. Yamakawa, Y., and Omori-Satoh, T. (1992) Primary structure of the antihemorrhagic factor in serum of the Japanese habu: A snake-venom metalloproteinase inhibitor with a double-headed cytad domain. *J. Biochem.* 112, 583–589 CrossRef

7. Deshimaru, M., Tanaka, C., Fujino, K., Aoki, N., Terada, S., Hattori, S., and Ohno, M. (2005) Properties and cDNA cloning of an antihemorrhagic factor (HSF) purified from the serum of *Trimeresurus flavoviridis*. *Toxicon* 46, 937–945 CrossRef

8. Dunn, R. D., and Broady, K. W. (2001) Snake inhibitors of phospholipase A$_2$ enzymes. *Biochim. Biophys. Acta* 1533, 29–37 CrossRef

9. Aoki, N., Sakiyama, A., Deshimaru, M., and Terada, S. (2007) Identification of novel serum proteins in a Japanese viper: Homologs of mammalian PSP94. *Biochem. Biophys. Res. Commun.* 359, 330–334 CrossRef

10. Aoki, N., Matsuo, H., Deshimaru, M., and Terada, S. (2008) Accelerated evolution of small serum proteins (SSPs)—The PSP94 family proteins in a Japanese viper. *Gene* 426, 7–14 CrossRef

11. Shioi, N., Deshimaru, M., and Terada, S. (2014) Structural analysis and characterization of new small serum proteins from the serum of a venomous snake (Gloydius blomhoffii). *Biosci. Biotechnol. Biochem.* 78, 410–419 CrossRef

12. Masuda, S., Hayashi, H., Atoda, H., Morita, T., and Araki, S. (2001) Puriﬁcation, cDNA cloning and characterization of the vascular apoptosis-inducing protein, HV1, from *Trimeresurus flavoviridis*. *Eur. J. Biochem.* 268, 3339–3345 CrossRef

13. Shioi, N., Nishijima, A., and Terada, S. (2015) Flavorase, a novel non-haemorrhagic metalloproteinase in *Protobothrops flavoviridis* venom, is a target molecule of small serum protein-3. *J. Biochem.* 158, 37–48 CrossRef

14. Aoki, N., Sakiyama, A., Kuroki, K., Maenaka, K., Kohda, D., Deshimaru, M., and Terada, S. (2008) Serotrin, a CRISP family protein with binding afﬁnity for small serum protein-2 in snake serum. *Biochim. Biophys. Acta* 1784, 621–628 CrossRef

15. Whitaker, H. C., Warren, A. Y., Eeles, R., Kote-Jarai, Z., and Neal, D. E. (2010) The potential value of microsemionprotein-β as a prostate cancer biomarker and therapeutic target. *Prostate* 70, 333–340 CrossRef

16. Ma, J., Yan, B., Zhang, J., Jiang, B., Guo, Y., Riedel, H., Mueller, M., Remick, S., and Yu, J. (2014) PSP94, an upstream signaling mediator of prostatic found highly elevated in ovarian cancer. *Cell Death Dis.* 5, e1407 CrossRef

17. Krätzschmar, J., Haendler, B., Eberspecher, U., Roosterman, D., Donner, P., and Schleuning, W. D. (1996) The human cysteine-rich secretory protein (CRISP) family primary structure and tissue distribution of CRISP-1, CRISP-2 and CRISP-3. *Eur. J. Biochem.* 236, 827–836 CrossRef

18. Asmann, Y. W., Kosari, F., Wang, K., Chevillle, J. C., and Vasmazgis, G. (2002) Identification of differentially expressed genes in normal and malignant prostate by electronic profiling of expressed sequence tags. *Cancer Res.* 62, 3308–3314 CrossRef

19. Grande, G., Vincenzoni, F., Milardi, D., Pomp, G., Ricciardi, D., Fruscella, E., Mancini, F., Pontecorvi, A., Castagnola, M., and Marana, R. (2017) Cervical mucus proteome in endometriosis. *Clin. Proteomics* 14, 7 CrossRef

20. Gharsiani, H., Fernlund, P., Udhby, L., and Drakenberg, T. (2009) A model of the complex between human β-microsemionprotein and CRISP-3 based on NMR data. *Biochem. Biophys. Res. Commun.* 378, 235–239 CrossRef

21. Breed, A., Gomes, A., Roy, B., Mahale, S., and Pathak, B. (2013) Mapping of the binding sites involved in PSP94-CRISP-3 interaction by molecular dissection of the complex. *Biochim. Biophys. Acta* 1830, 3019–3029 CrossRef

22. Kumar, A., Jagtap, D. D., Mahale, S. D., and Kumar, M. (2010) Crystal structure of prostate secretory protein PSP94 shows an edge-to-edge association of two monomers to form a homodimer. *J. Mol. Biol.* 397, 947–956 CrossRef

23. Lo Conte, L., Chothia, C., and Janin, J. (1999) The atomic structure of protein-protein recognition sites. *J. Mol. Biol.* 285, 2177–2198 CrossRef

24. Kristinell, E., and Henrick, K. (2007) Inference of macromolecular assemblies from crystalline state. *J. Mol. Biol.* 372, 749–797 CrossRef

25. Guo, M., Teng, M., Niu, L., Liu, Q., Huang, Q., and Hao, Q. (2005) Crystal structure of the cysteine-rich secretory protein stecrisp reveals that the cysteine-rich domain has a K+ channel inhibitor-like fold. *J. Biol. Chem.* 280, 12405–12412 CrossRef

26. Hansson, K., Kjellberg, M., and Fernlund, P. (2009) Cysteine-rich secretory proteins in snake venoms form high affinity complexes with human and porcine β-microsemionproteins. *Toxicon* 54, 128–137 CrossRef

27. Yamazaki, Y., Koike, H., Sugiyama, Y., Motoyoshi, K., Wada, T., Hishinuma, S., Mita, M., and Morita, T. (2002) Cloning and characterization of novel snake venom proteins that block smooth muscle contraction. *Eur. J. Biochem.* 269, 2708–2715 CrossRef

28. Otwinowski, Z., and Minor, W. (1997) Processing of X-ray diffraction data collected in oscillation mode. *Methods Enzymol.* 276, 307–326 CrossRef

29. Vagin, A., and Teplyakov, A. (1997) MOLREP: An automated program for molecular replacement. *J. Appl. Crystallogr.* 30, 1022–1025 CrossRef

30. Langer, G., Cohen, S. X., Lamzin, V. S., and Perrakis, A. (2008) Automated macromolecular model building for X-ray crystallography using ARP/WARP version 7. *Nat. Protoc.* 3, 1171–1179 CrossRef

31. Emsley, P., and Cowtan, K. (2004) Coot: Model-building tools for molecular graphics. *Acta Crystallogr. D Biol. Crystallogr.* 60, 2126–2132 CrossRef

32. Murshudov, G., Vagin, A., and Dodson, E. (1997) Refinement of macromolecular structures by the maximum-likelihood method. *Acta Crystallogr. D Biol. Crystallogr.* 53, 240–255 CrossRef

33. Adams, P., Afonine, P., Bunkoczi, G., Chen, V., Davis, I., Echols, N., Headd, J., Hung, L., Kapral, G., Grosse-Kunstleve, R., McCoy, A., Moriarty, N., Oefner, R., Read, R., Richardson, D., Richardson, J., Terwilliger, T., and Zwart, P. (2010) PHENIX: A comprehensive Python-based system for macromolecular structure solution. *Acta Crystallogr. D Biol. Crystallogr.* 66, 213–221 CrossRef

34. Chen, V., Arendall, W., Kapral, G., Murray, L., Richardson, J., and Wilson, K. (2010) MolProbity: All-atom structure validation for X-ray crystallography using ARP/WARP version 7. *Nat. Protoc.* 5, 1171–1179 CrossRef