Remobilization by a major earthquake of DiPhenylArsinic Acid (DPAA) pollution at a site in Kamisu City, Japan

by Tomoyo Hiyama¹,², Hisashi Nirei³,⁴*, Jonas Satkunas⁵, Kunio Furuno⁶, and Kazuya Kimura⁶

Graduate School of Osaka City University, 3-3-138, Sugimoto-cho, Sumiyoshi-Ku, Osaka City 558-8585, Japan
² Kanto-Kensentsu Co., 699, Mobara, Mobara City, Chiba 297-0026, Japan; E-mail: cxp03773@nifty.ne.jp
³ Japan Branch of IUGS-GEM, 1277-19, Kamauchiya, Motoyahagi, Katori City 287-0025, Japan; *Corresponding author, E-mail: nireihisashi@msn.com
⁴ The Geo-pollution Control Agency, Japan, Rose hights-1, 5-24-1, Makuharihongoh, Hanamigawa-ku, Chiba 262-0033, Japan
⁵ Geological Survey of Lithuania, Vilnius, Lithuania; E-mail: jonas.satkunas@lgt.lt
⁶ Medical Geology Research Institute Co. (MGRI), 1277-19, Kamauchiya, Motoyahagi, Katori City 287-0025, Japan; E-mail: kk21571@gmail.com

Introduction

Japan has a limited amount of readily developable land. Sites are used and reused with alternating phases of excavation and deposition of man-made strata (MMS). The Great East Japan earthquake of 11th March 2011 caused widespread damage due to ground waves and associated liquefaction-fluidization of MMS. A site at Kamisu City, Ibaraki Prefecture, was significantly affected. There, a gravel pit had been filled, partly excavated and then refilled. In 2003 it was found that a nearby drinking water well was seriously contaminated with arsenic. The site was sampled using a grid of boreholes and then excavated within a sheet pile enclosure at the source of the arsenic. The pollution came from large blocks that had been made by mixing cement with DiPhenylArsinic Acid powder and wastes that had been illegally dumped during refilling. The blocks were excavated and removed. Contaminated groundwater was pumped out and purified and the excavation was filled. The site was thought to be decontaminated, but the earthquake caused liquefaction-fluidization. Sand and water contaminated with arsenic were extruded onto the land surface through sand boils. After careful investigation of the site history and the depositional stages of the MMS it was found that arsenic had not been fully removed from MMS beneath the level containing the blocks because remediation works had been designed on the basis of grid sampling rather than an understanding the stratigraphy of, and discontinuities within and beneath, the MMS. The mechanism of DiPhenylArsinic Acid (DPAA) geopollution had not been properly understood. It is important to take history and stratigraphy of MMS into account when designing surveys and works.

Japan has a limited amount of readily developable land. Therefore sites tend to be used and reused fairly frequently, with alternating phases of excavation and deposition. Deposition creates man-made (anthropogenic) strata (MMS which are referred to in North America as unengineered fill) which are often associated with geopollution and stability problems. The Great East Japan earthquake of 11th March 2011, with an epicenter off the coast of Tohoku, caused widespread damage due to ground waves (known in Japan as Jinami) and associated liquefaction-fluidization of MMS. Kamisu City, Ibaraki Prefecture, East Kanto Region (Fig. 1), was significantly affected.

Following the discovery of the pollution, the Geopollution Survey Team of the Center for Water Environment Studies, Ibaraki University (Research Group for Kamisu Organic Arsenic Geopollution of the Center for Water Environment Studies, Ibaraki University, 2003a, 2003b) and the Survey Committee of the Ministry of the Environment (Ministry of the Environment, Government of Japan, 2005) independently conducted surveys. The latter established that the pollution came from porous blocks that had been made by mixing cement with diphenylarsinic acid (DPAA) powder and waste (e.g., glass fragments etc.) (Fig. 2). These materials had been illegally used in the back filling of a fish pond (Fig. 3). The abbreviation used for
these blocks in this paper is DCBs (DiPhenylArsinic Concrete Blocks). The DCBs were excavated and removed, the excavation was backfilled and contaminated groundwater was pumped out and purified (Ministry of the Environment, Government of Japan, 2005). The site was severely disturbed by the 2011 earthquake during which the contaminant was mobilized by liquefaction-fluidization processes. This resulted in surface extrusion of sand contaminated with arsenic. This paper reviews the history of the site and reports results of observations and analyses.

History of the site

Prior to 1978, the Kizaki site was covered by pine forest growing on sandbars and an upper layer of alluvium (Kikuchi, 1968) (Fig. 4). In 1983 the site was quarried for sand and gravel but, by 1988, had
been backfilled with sand, believed to have come from the Omi River, Chiba Prefecture, and was leveled flat. In 1991, part of the site was again excavated to form a rectangular fish pond which was infilled in 1993 (Fig. 3) and again in 1997 (Fig. 4). A well to the northwest of the pond (Fig. 3) supplied drinking water to nearby collective housing.

The 1993 infill included some large DCBs that were dumped illegally (Ministry of the Environment, Government of Japan, 2005). In 2003 contamination was identified in the domestic supply well. After a site investigation using the standard grid method recommended by the Geo-Environmental Protection Center of the Ministry of the Environment, remedial action began in 2004. In 2005, the main contaminated area was isolated in a rectangular steel sheet pile enclosure. The ground within the enclosure was excavated to expose the concrete blocks and after these had been removed, was backfilled. The sheet piles were left in place to isolate groundwater from the rest of the site while pumping and cleaning of groundwater at a purpose-built facility were carried out.

By the time of the 2011 earthquake, pumping has stopped because it was thought that the site had been decontaminated to acceptable levels. However, when material extruded by liquefaction-fluidization was checked it was found to be contaminated. Therefore decontamination was continued until, in 2012, it was estimated that about 90% or more of DPAA around well A (Fig. 2) had been removed. Therefore the pumping operation ended, the treatment facility was dismantled, the sheet piles were removed and the site surface was restored by spreading fresh fill.

Man-made strata and subsurface pollution

When the gravel pit was infilled with sand (MMS1), the base of that fill was the contact between man-made and natural strata. This anthropogenic/natural junction is known in Japan as the Jinji Unconformity (Nirei et al., 1996a; Edgeworth et al., 2015). When the fish pond was excavated in 1991, part of MMS1 was removed. Soon after, the pond was infilled with muddy silt to form a second man-made stratum (MMS2) that rested on a new basal surface (Jinjin Unconformity 1) (Nirei et al., 2015). The term Jinjin Unconformity is used in Japan for the depositional breaks within MMS. The DCBs that were the source of the contamination were disposed of illegally during this backfilling operation.

After pollution was discovered, a U sheet piled Enclosure was constructed and excavated to a depth of about 4.0 m. After removal of the DCBs, the enclosure was filled with sand and clay (MMS3) on a third basal surface (Jinjin Unconformity 2) within the Enclosure (Fig. 5). However, the excavation depth from side B to 6m away was only 2.5 m because no DCBs were in that part of the enclosure. Accordingly a
part of fishpond sediments (MMS2) overlay the Jinjin Unconformity I in this area. On the other hand, as the result of making the enclosure and excavating the U sheet pile cut down to DCB Block Number II (Fig. 6). By excavation along the west side of the Enclosure, one part of Block Number II and another block were moved with retaining wall. At the time of the 2011 earthquake, the Enclosure with U sheet piles had been set up but the retaining wall had not been removed. As DCBs outside the Enclosure had overlain MMS1 directly with Jinjin Unconformity II, DPAA seems to have diffused into MMS1.

The Ministry of the Environment, Government of Japan (2005) surveyed DPAA geopollution of subsurface inside the Enclosure taking many As polluted cores below the excavation level 4 m (Table 1).

Relationship of Jinami (ground waves) and liquefaction-fluidization phenomena

The importance of Jinami in Japan was established in various studies such as those of: the 1978 earthquake off Miyagi Province (Nirei et al., 1986); the 1987 east Chiba earthquake; and southern Hyogo Prefecture earthquake in 1995 (Nirei et al., 1996b); as well as other events (Kazaoka, 2003). These established links between Jinami (an example of which is shown in Fig. 7), liquefaction, fluidization and man-made strata. Liquefaction of the ground is a precursor to the more serious devastation caused by fluidization of the ground (Kazaoka, 2003) and is in turn related to the morphology of the deposit that is affected.

Fluidization was described by Lowe (1975). Kazaoka (2003) proposed that fluidization occurs after liquefaction and, because the two are closely linked, used the term liquefaction-fluidization. Three mechanisms have been described in relation to the connection between Jinami and liquefaction-fluidization (Nirei, 2011):

(1) A detailed description of the liquefaction which occurred around Niigata City in the Great Niigata Earthquake of 1964 was provided by the Department of Geology and Mineralogy, Niigata University (1964). In a triaxial test apparatus, pore water pressure in an isotropically consolidated sand was found to rise when subjected to a cyclic deviator stress of constant amplitude resulting in liquefaction at shallow depths according to effective overburden pressure (Seed and Lee, 1966).

(2) Pore water pressure rises because of increasing ground water pressure associated with the resonance between the natural frequency of the aquifer and the seismic motion. Rising water pressure leads to liquefaction following fluidization of the sand layers and, eventually, a ground wave forms (Working Group on the Problem between Earthquake and Groundwater and Tatsuo Shibasaki, 1980).
Liquefaction-fluidization commonly takes place in sand layers in MMS overlying the Jinji Unconformity. It is speculated that the process is similar to a seiche within the MMS. Pore pressures fluctuate as surface wave vibrations, Jinami, moved through the Jinji Unconformity, initiating liquefaction-fluidization (Nirei, 2011).

Table 1. As concentration in each core sample in DCBs in the enclosure determined by X-ray fluorescence spectrometry (Ministry of Environment, Government of Japan (2005))

DPAA Mixed Concrete Block Number	Sampling Depth (m)	Material Sample	All As (mg/kg)
I-1-1	2.51	porous concrete	450
	2.65	porous concrete	630
	2.91	gravelly sandy clay	560
	2.95	gravelly sandy clay	300
	3.05	sandy clay	75
	3.45	sandy clay	48
	3.65	fine-medium sand	92
	3.95	fine-medium sand	48
	4.95	fine-medium sand	320
	5.95	gravelly sand	170
		Core Of DPAA Mixed Concrete Block	
	2.36	porous concrete	930
	2.46	porous concrete	980
	2.48	gravelly clay	980
	2.58	gravelly clay	1,100
	2.68	gravelly clay	1,100
	2.75	porous concrete	5,800
		Core Of DPAA Mixed Concrete Block	
	2.83	concrete including asphalt	100
		Soil Core	
	2.9	clay including gravels	3,400
	3.13	clay including gravels	2,600
	3.33	clay including gravels	1,700
	3.48	clayey sand	5,300
	3.88	clayey sand	120
	4.28	clayey sand	440
	4.48	fine-medium sand	360
	4.88	fine-medium sand	43
	5.88	fine-medium sand	64
I-2-1	1.61	porous concrete	11,000
	1.81	porous concrete	4,200
	2.01	porous concrete	8,200
	2.2	sandy clay	460
	2.46	porous concrete	130
	2.5	porous concrete	520
	2.66	porous concrete	650
	2.87	porous concrete	440
	3.08	porous concrete	820
	3.21	cemented concrete	84
	3.23	cemented concrete	160
	3.26	cemented concrete	110
		Core Of DPAA Mixed Concrete Block	
	3.33	gravelly clay	38
	3.61	gravelly clay	120
	3.71	gravelly clay	100
	3.81	fine-medium sand	170
	4.33	fine-medium sand	110
	5.33	gravelly sand	92
	6.33	gravelly sand	64

Block Number II	Core Of DPAA Mixed Concrete Block	Sampling Depth (m)	Material Sample	All As (mg/kg)
II-1	1.73	porous concrete	650	
	1.95	porous concrete	1,100	
	1.99	porous concrete	630	
	2.15	porous concrete	1,500	
	2.2	porous concrete	2,100	
	2.57	porous concrete	1,700	
	2.64	sandy clay	1,100	
	2.75	sandy clay	1,300	
	2.95	porous concrete	730	
	3.2	porous concrete	590	
	3.35	cemented concrete	93	
	3.43	sandy clay	420	
	3.75	sandy clay	1,700	
	3.85	fine-medium sand	710	
	4.43	fine-medium sand	53	
	5.43	fine-medium sand	98	
	5.75	sandy clay	1,100	
	6.15	sandy clay	900	
	6.43	clayey sand	270	
		Soil Core		
	1.33	porous concrete	560	
	1.43	porous concrete	400	
	1.55	porous concrete	480	
	1.68	gravelly clayey sand	860	
	1.78	porous concrete	710	
	1.93	porous concrete	1,400	
	1.98	porous concrete	980	
	2.33	gravelly clayey fine sand	320	
	2.48	gravelly clayey fine sand	230	
	2.63	gravelly clayey fine sand	350	
	2.73	porous concrete	960	
	2.83	porous concrete	1,400	
	2.96	porous concrete	1,500	
	3.09	silty sand	140	
	3.43	silty sand	2,100	
	3.63	fine-medium sand	230	
	4.09	fine-medium sand	260	
	5.09	fine-medium sand	170	
	6.09	fine-medium sand	260	

(3) Liquefaction-fluidization commonly takes place in sand layers in MMS overlying the Jinji Unconformity. It is speculated that the process is similar to a seiche within the MMS. Pore pressures fluctuate as surface wave vibrations, Jinami, moved through the Jinji Unconformity, initiating liquefaction-fluidization (Nirei, 2011).
Effects of the 2011 earthquake at the Kizaki site

The Kizaki site after the earthquake is shown in Figures 8 and 9. A fence leading from the left hand side to a large depression in the centre of the site can be seen. The enclosure from which DCBs were removed and groundwater was pumped was behind that fence. The building and two tanks seen behind were the facility for treatment of the DPAA-polluted groundwater. The net fence at the left was originally level but was left undulating by the Jinami. Details of the site are shown diagrammatically in Figure 10. These include:

- the lines of poles marking the extent of the former fish pond areas where, due to liquefaction-fluidization, sand boils and jetted sand occurred;
- areas where water was jetted in association with sand boils;
- a ground crack outside and others inside the fences of A–A’, B–B’ and A–B and in the enclosure; and
- two crest lines of Jinami that are associated with two parallel rows of sand boils and jetted sand inside the area where the original gravel working was backfilled.

Leveling was undertaken to describe the morphology of the Jinami at the Enclosure. The tips of fencing poles around the former fish pond were used as benchmarks (○ in Fig. 10). The area surrounded by a zigzag broken line indicates the Enclosure from which DCBs were excavated. The black area in the plan at Figure 10 shows the positions of DCBs. The fence X–X’ indicates the crest line of a Jinami extending eastwards from the western end of the steel sheet pile area toward east. The Jinami deformed the poles of the X–X’ fence but not the steel sheet piles. Inside the enclosed area ground cracks occurred in a striped pattern and some sand boils were seen (Fig. 11). The former fish pond area also suffered cracks and sand boils extending parallel to the length of the pond (Fig. 12).

Results of analyses for arsenic in erupted sand

Seven samples were taken from sand boils and analyzed for arsenic. These were: (a) five samples from the southwestern part of the Enclosure; (b) one sample each from one meter underground at a point one meter southwest of groundwater observation wells F-26 and F-27 respectively (Fig. 13).

The results of leaching ion tests for arsenic, including DPAA, are shown in Table 2 (Hiyama et al., 2013). All samples exceeded the upper limit of the Japanese soil environmental standard.

A leaching ion test from No. 4 sampling point, 1.2 m west of the western corner of the enclosure, showed the highest value of 4.0 mg/L which was 400 times greater than the upper limit of the Japanese environmental soil standard (Fig. 14). The second highest result (2.9 mg/L) was from No. 2 located 5 m from No. 4 along the line of the sheet piles. Of the two samples taken from 1 meter below the surface, the one from location No. 7, closer to the western corner of the enclosure, showed a higher value than that from No. 8. The two samples taken one meter underground near the F-26 and F-27 groundwater observation wells located near the steel sheet piles were compared, and the value of F-26 closer to the western corner of the Enclosure showed the higher concentration. The results from the samples were used to draw an arsenic

Figure 7. An example of a 1993 Jinami (ground wave) that caused liquefaction and fluidization of a road at Oshamanbe, Hokkaido (Morisaki et al., 1993).

Figure 8. Distribution of erupted sand and the crest of the Jinami (ground wave). Note the wavy line of the retaining net wall along the site of DPAA groundwater pollution cleanup by the Ministry of the Environment, Japan.

Figure 9. Jinami ground wave at the site of DPAA geopollution.
concentration contour map (Fig. 13) which shows the arsenic concentration decreasing westwards from the western corner of the Enclosure. This suggests that arsenic pollutants were advected from the subsurface principally near the western corner of the enclosure. It is thought that some sand and water polluted with arsenic was extruded from MMS1 outside the Enclosure towards the west.

Discussion and conclusions

Following site investigation, enclosure of the contaminated area, excavation and removal of the blocks and pumping and cleaning of groundwater the site was thought to have been successfully purified. However, during the 2011 earthquake, Jinami and liquefaction-fluidization led to extrusion of contaminated sand and water onto the ground surface within, and near the western end, of the Enclosure. Subsequently, further cleaning of groundwater continued until, in 2012, it was judged to be safe, and contaminated sand was removed before new fill was spread to restore the site.

The analytical results demonstrated that the remobilization was due to advection of arsenic pollutants from MMS1 contaminated underlying the Jinjin Unconformity II outside the Enclosure. Possible scenarios for the advection mechanism are:

1. Pollutants in MMS1 western outside the Enclosure were not fully removed and were fluidized and advected from one part of MMS1 western outside the Enclosure onto the ground surface;
2. The first site survey did not use a stratigraphic method therefore the mechanism of DPAA geopollution was not sufficiently clarified. Therefore, MMS1 and MMS2 in the Enclosure, as well as all layers under the cultivated soil layer outside the Enclosure were contaminated. The remaining pollutants then moved up to the ground surface because of fluidization;
3. Arsenic which was contained in the groundwater that erupted as sand boils as a result of fluidization was eluted.

Although the Kamisu study site has now been adequately remediated, there are investigation procedures that need further research. For example, why was the site thought to be successfully decontaminated when significant pollution was still present? We now find that the internal stratigraphy of with the enclosure was not sufficiently understood. The original survey used a standard grid for sediment sampling;

Figure 10. Tops of the ranging poles (lines X–X’ and Y–Y’), and the site of excavation of the large concrete blocks (black) containing DPAA (DCBs).
but this failed to account the inherent, complex internal stratigraphy of the MMS.

A second issue is why it was thought that the site had been successfully decontaminated when significant pollution still remained at the time of the earthquake. It seems that the ground within the Enclosure was not properly understood. The original survey used a standard grid method that did not take account of the stratigraphy of, and discontinuities within, the man-made strata. Thus it seems that the area enclosed by steel sheet piles was not placed on sufficiently clear scientific grounds.

A proper understanding of the MMS stratigraphy is important in properly assessing sites and pollution mechanisms and designing remedial measures.

Japan has a legacy of polluted sites from previous land uses, many of which are associated with MMS. It also has fairly frequent large earthquakes that cause Jinami and liquefaction-fluidization is also commonly seen in those strata. There is, therefore, a significant risk of further incidents of this type occurring in future. In the case of the Kizaki site contamination was already known therefore the extruded
sand and water was considered to be suspect and was tested. However there are likely to be many other, as yet undiscovered, contaminated sites that could cause ground surface pollution. It would be prudent to check extruded materials for any problems.

Acknowledgements

The authors thank Dr. Brian R. Marker for comments on the initial draft of this paper which was prepared by the Chairman and some Members of the IUGS Commission on Geoscience Management Working Group on Man-made Strata and Geopollution (www.iugs-gem.org). And also thanks for the Ministry of the Environment, Japan, on the using the survey data.

References

Department of Geology and Mineralogy, Niigata University, 1964, Geo-hazards map of the 1964 major Niigata Earthquake (in Japanese).

Edgeworth, M., Richter, D.B., Half, P., Waters, C., Price, S.J., and Neal, C., 2015, Diachronous beginnings of the Anthropocene: The lower bounding surface of anthropocene deposits: Anthropocene Review, v.2, no.1, pp.33–58.

Health Prevention Division and Environment Health Division of the Department of Health and Welfare, and the Environmental Measures Division of the Department of Civil Affairs and the Environment, Ibaraki Prefecture, 2003, Drinking ground water polluted with arsenic in Kamisu town: Press release 15th, April (in Japanese).

Hiyama, T., Takahata, H., Ikeda, H., and Nirei, H., 2013, Sustainable utilization of unpolluted groundwater in irrigated paddy fields where ground water pollution with organoarsenic compounds exists: Geopollution Science, Medical Geology and Urban Geology, vol.9, nos.1/2, pp.1–8.

Ishii, K., Tamaoka, A., Otsuka, F., Iwasaki, N., Shin, K., Matsui, A., Endo, G., Kumagai, Y., Ishii, T., Shoji, S., Ogata, T., Ishizaki, M., Doi, M., and Shimojo, N., 2004, Diphenylarsinic acid poisoning from chemical weapons in Kamisu, Japan: Annals of Neurology, vol.56, no.5, pp.741–745.

Kazaoka, O., 2003, Earthquakes with geological hazards due to liquefaction and fluidization in Japan (1964–2001): Urban Kubota, no.40, pp.58–65 (in Japanese).
Kikuchi, T., 1968, Geomorphic development of the Kashima Lowland, Ibaraki Prefecture: Miscellaneous reports of Research Institute for Natural Resources, no.1184, pp. 200–187 (in Japanese with English abstract).

Lowe, D.R., 1975, Water escape structures in coarse-grained sediments: Sedimentology, vol.22, no.2, pp. 157–204.

Ministry of Environment, Government of Japan, 2005, http://www.env.go.jp/chemi/report/h17-07/03_5.pdf

Morisaki, M., Nirei, H., Kazaoka, O., Kusuda, T., Kamura, K., and Kagawa, A., 1993, Jinami (ground waves) caused by the 1993 Southwest off Hokkaido Earthquake: Proceedings of the 3rd Symposium on Geo-Environments and Geo-technics, pp. 385–390 (in Japanese with English abstract).

Nirei, H., 2011, The complex geological hazards due to liquefaction-fluidization and Jinami and Tsunami around the downstream of the Tone river: Symposium report on How to make the safety urban planning on man-made strata in the mid-downstream area of the Tone river without liquefaction-fluidization and Jinami. Symposium of Japanese Society of Geopollution Science, Medical geology and Urban Geology, Council for Certification of Paleo-Kanto Great Depth Submarine Basin Geopark, pp. 71–78 (in Japanese).

Nirei, H., Satoh, K., Furuno, K., Takanashi, Y., and Mori, N., 1986, On the ground wave, so called “Jinami”, and the earthquake of aquifer during the earthquake: Geological Society of Japan Memoir, no.327, pp. 109–114 (in Japanese with English abstract).

Nirei, H., Minato, H., Zheng, Z., Higure, A., and Hara, Y., 1996a, Stratigraphy of waste landfills and zoning of artificial minerals: Proceedings of 6th Symposium on Geo-Environmental and Geo-Technics 6. Committee of Environmental Geology, Geological of Society of Japan, pp. 367–370 (in Japanese with English abstract).

Nirei, H., Satkunas, J., Kazaoka, O., Mitamura, M., Kawabe, T., and Furuno, K. (Japanese team of Man-Made Strata and Geopollution Working Group, IUGS-GEM), 2015, On man-made strata and the Jinji Unconformity: Proceeding of 25th Symposium on Geo-Environments and Geo-technics, pp. 49–54 (in Japanese with English abstract).

Nirei, H., Kusuda, T., Furuno, K., Satoh, K., Sakai, Y., Kamura, K., Kazaoka, O., Morisaki, M., and Kagawa, J., 1996b, Earthquake disaster zone and seismic isolation effect due to liquefaction and fluidization and soil compaction: UEHR Report No. E18, Disaster Prevention Research Institute, Kyoto University, pp. 127–146 (in Japanese with English abstract).

Research Group for Kamisu Organic Arsenic Geo-pollution of the Center for Water Environmental Studies, Ibaraki University, 2003a, Mechanism research report on organoarsenic groundwater pollution: First report, pp. 1–5; Figs.12 (in Japanese).

Research Group for Kamisu Organic Arsenic Geo-pollution of the Center for Water Environmental Studies, Ibaraki University, 2003b, Mechanism research report on organoarsenic groundwater pollution: Second report, p. 1–4; Figs.11 (in Japanese).

Seed, H.B., and Lee, K.L., 1966, Liquefaction of saturated sand cyclic loading: Pro. ASCE, vol.92, no.5M6, pp. 105–134.

Working Group on the problem between earthquake and groundwater and Tatsuo Shibasaki, 1980, Groundwater level fluctuation due to an earthquake (Preliminary note): Earthquake, Tokai University Press, pp. 227–237 (in Japanese with English abstract).

Tomoyo Hiyama (born in 1961) was a graduate student of Osaka City University (2011). She is a consultant on Geopollution and Liquefaction-Fluidization certified by the NPO Geopollution Control Agency and Deputy Editor of the “Mogura (Mole) Eco-Geo NEWS Letter” distributed by the NPO Geopollution Control Agency, Japan (2015). As a senior environmental geologist at Kanto Construction Co. Ltd. (2013), she has specialized on interdisciplinary scientific work on geopollution and geo-environmental hazards.

Hisashi Nirei (born in 1940) is a doctor of natural sciences from the graduate school of Osaka City University (1976). He worked at Chiba Prefectural Research Institute of environmental geology, Chiba, holding different positions progressing from environmental and hydro-geologist (1976) to director of the Research of the Institute and then became a professor of Ibaraki University (1998–2005) and an emeritus professor of the university (2006). He is a consultant on Geo-pollution and Liquefaction-Fluidization certified by NPO Geo-pollution Control Agency and, also, he served as an Officer IUGS-GEM (2008–2016), Officer of the Geological Society of Japan.

Jonas Satkunas (born in 1962) is hydrogeologist and engineering geologist by training. He received a doctorate of natural sciences from Vilnius University, Lithuania. Subsequently, he has worked in the Lithuanian Geological Survey progressing from head of division to deputy director (1994–2014) and then director since February 2014. He is also an associate professor of Vilnius University, since 1992, he has been actively involved in international cooperation and has been a member of a number of IUGS international projects including activities under IUGS and INQUA-SEQS (1995–1998), Pro GEO, Euro GeoSurveys (member of Executive Committee since 2015), INTERREG etc. He is author and co-author of over 300 publications.