A remark on the convergence of inverse σ_k-flow

JIAN XIAO

Abstract

We study the positivity of related cohomology classes concerning the convergence problem of inverse σ_k-flow in the conjecture proposed by Lejmi and Székelyhidi.

1 Introduction

We aim to study the positivity of related cohomology classes in the following conjecture proposed by Lejmi and Székelyhidi [LS15]. We generalize their conjecture by weakening the numerical condition on X a little bit.

Conjecture 1.1. (see [LS15, Conjecture 18]) Let X be a compact Kähler manifold of dimension n, and let ω, α be two Kähler metrics over X satisfying

$$\int_X \omega^n - \frac{n!}{k!(n-k)!} \omega^{n-k} \wedge \alpha^k \geq 0.$$ (1.1)

Then there exists a Kähler metric $\omega' \in \{\omega\}$ such that

$$\omega'^{n-1} - \frac{(n-1)!}{k!(n-k-1)!} \omega'^{n-k-1} \wedge \alpha^k > 0$$ (1.2)

as a smooth $(n-1,n-1)$-form if and only if

$$\int_V \omega^p - \frac{p!}{k!(p-k)!} \omega^{p-k} \wedge \alpha^k > 0$$ (1.3)

for every irreducible subvariety of dimension p with $k \leq p \leq n-1$.

For the previous works closely related to this conjecture, we refer the reader to [Don99], [Che00, Che04], [SW08] and [FLM11]. And in this note we mainly concentrate on the case when $k = 1$ and $k = n-1$.

For $k = 1$, [CS14, Theorem 3] confirmed this conjecture for toric manifolds. Over a general compact Kähler manifold, it is not hard to see the implication (1.2) \Rightarrow (1.3) holds. In the reverse direction, we prove $\{\omega - \alpha\}$ must be a Kähler class under the numerical conditions in Conjecture 1.1 for $k = 1$; indeed, this is a necessary condition of (1.2) and [LS15, Proposition 14] proved this over Kähler surfaces.
Theorem 1.1. Let X be a compact Kähler manifold of dimension n, and let ω, α be two Kähler metrics over X satisfying the numerical conditions in Conjecture 1.1 for $k = 1$. Then \(\{\omega - \alpha\} \) is a Kähler class.

For $k = n - 1$, we have the following similar result.

Theorem 1.2. Let X be compact Kähler manifold of dimension n, and let ω, α be two Kähler metrics over X satisfying the numerical conditions in Conjecture 1.1 for $k = n - 1$. Then the class \(\{\omega^{n-1} - \alpha^{n-1}\} \) lies in the closure of the Gauduchon cone, i.e. it has nonnegative intersection number with every pseudoeffective $(1,1)$-class.

Acknowledgements

I would like to thank Philippe Eyssidieux and Mehdi Lejmi for introducing this problem to me, and thank Tristan C. Collins for useful comments. This work is supported by the China Scholarship Council.

2 Proof of the main results

In this section, we give the proofs of Theorem 1.1 and Theorem 1.2.

2.1 Theorem 1.1

Proof. The first observation is that, when $k = 1$, the inequalities in the numerical conditions are just the right hand side in weak transcendental holomorphic Morse inequalities. Recall that Demailly’s conjecture on weak transcendental holomorphic Morse inequalities (see e.g. [BDPP13, Conjecture 10.1]) is stated as following:

Let X be a compact complex manifold of dimension n, and let γ, β be two nef classes over X. Then we have

\[
\text{vol}\ (\gamma - \beta) \geq \gamma^n - n\gamma^{n-1} \cdot \beta.
\]

In particular, $\gamma^n - n\gamma^{n-1} \cdot \beta > 0$ implies the class $\gamma - \beta$ is big, that is, $\gamma - \beta$ contains a Kähler current.

Note that the last statement has been proved for Kähler manifolds [Pop14] (see also [Xia13]), that is, if X is a compact Kähler manifold then $\gamma^n - n\gamma^{n-1} \cdot \beta > 0$ implies there exists a Kähler current in the class $\gamma - \beta$.

We apply this bigness criterion to the classes $\{\omega\}$ and $\{\alpha\}$, then the numerical condition (1.3) implies $\{\omega - \alpha\}_{|_V}$ is a big class on every proper irreducible subvariety V. More precisely, if V is singular then by some resolution of singularities we have a proper modification $\pi: \hat{V} \to V$ with \hat{V} smooth, and by (1.3) we know

\[
\pi^*\{\omega\}_{|_V}^p - p\pi^*\{\omega\}_{|_V}^{p-1} \cdot \pi^*\{\alpha\}_{|_V} > 0,
\]

\[
\pi^*\{\omega\}_{|_V}^p - p\pi^*\{\omega\}_{|_V}^{p-1} \cdot \pi^*\{\alpha\}_{|_V} > 0.
\]
thus the class $\pi^*\{\omega - \alpha\}|_V$ contains a Kähler current over \hat{V}. So by the push-forward map π_* we obtain that the class $\{\omega - \alpha\}|_V$ is big over V.

In particular, by (1.1) and (1.3) the restriction of the class $\{\omega - (1 - \epsilon)\alpha\}$ is big on every irreducible subvariety (including X itself) for any sufficiently small $\epsilon > 0$.

We claim this yields $\{\omega - (1 - \epsilon)\alpha\}$ is a Kähler class over X for any $\epsilon > 0$ small. Indeed, our proof implies the following fact.

- Assume β is a big class over a compact complex manifold (or compact complex space) and its restriction to every irreducible subvariety is also big, then β is a Kähler class over X.

To this end, we will argue by induction on the dimension of X. If X is a compact complex curve, then this is obvious. For the general case, we need a result of Mihai Păun (see [Pău98b, Pău98a]):

Let X be a compact complex manifold (or compact complex space), and let $\beta = \{T\}$ be the cohomology class of a Kähler current T over X. Then β is a Kähler class over X if and only if the restriction $\beta|_Z$ is a Kähler class on every irreducible component Z of the Lelong sublevel set $E_c(T)$.

As $\{\omega - (1 - \epsilon)\alpha\}$ is a big class on X, by Demailly’s regularization theorem [Dem92] we can choose a Kähler current $T \in \{\omega - (1 - \epsilon)\alpha\}$ such that T has analytic singularities on X. Then the singularities of T are just the Lelong sublevel set $E_c(T)$ for some positive constant c. For every irreducible component Z of $E_c(T)$, by (1.3) the restriction $\{\omega - (1 - \epsilon)\alpha\}|_Z$ is a big class. After resolution of singularities of Z if necessary, we obtain a Kähler current $T_Z \in \{\omega - (1 - \epsilon)\alpha\}|_Z$ over Z with its analytic singularities contained in a proper subvariety of Z, and for every irreducible subvariety $V \subseteq Z$ the restriction $\{\omega - (1 - \epsilon)\alpha\}|_V$ is also a big class. By induction on the dimension, we get that $\{\omega - (1 - \epsilon)\alpha\}|_Z$ is a Kähler class over Z. So the above result of [Pău98b, Pău98a] implies $\{\omega - (1 - \epsilon)\alpha\}$ is a Kähler class over X, finishing the proof our claim.

By the arbitrariness of $\epsilon > 0$, we get $\{\omega - \alpha\}$ is a nef class on X. Next we prove $\{\omega - \alpha\}$ is a big class. By [DP04, Theorem 2.12], we only need to show

$$\text{vol}(\{\omega - \alpha\}) = \int_X (\omega - \alpha)^n > 0.$$

Since $\{\omega - \alpha\}$ is nef, we can compute the derivative of the function $\text{vol}(\omega - t\alpha)$ for any $t \in [0, 1)$. Thus we have

$$\text{vol}(\{\omega\} - \{\alpha\}) - \text{vol}(\{\omega\}) = \int_0^1 \frac{d}{dt} \text{vol}(\{\omega\} - t\{\alpha\}) dt$$

$$= - \int_0^1 n(\omega - t\alpha)^{n-1} \cdot \{\alpha\} dt,$$

which implies

$$\text{vol}(\{\omega\} - \{\alpha\}) = \text{vol}(\{\omega\}) - \int_0^1 n(\omega - t\alpha)^{n-1} \cdot \{\alpha\} dt$$

$$\geq \int_0^1 n(\omega)^{n-1} - (\omega - t\alpha)^{n-1} \cdot \{\alpha\} dt.$$
Here the last line follows from the equality (1.1). Since \(\omega, \alpha \) are Kähler metrics, this shows
\[\text{vol}(\{\omega - \alpha\}) > 0. \]
Thus \(\{\omega - \alpha\} \) is a big and nef class on \(X \) with its restriction to every irreducible subvariety being big and nef. By the arguments before, we know \(\{\omega - \alpha\} \) must be a Kähler class.

Finally, we give an alternative proof of the fact that the class \(\{\omega - \alpha\} \) is nef using the main result of [CT13] instead of using [Pâuf98b, Pâuf98a]. (I would like to thank Tristan C. Collins who pointed out this to me.) Since \(\{\omega\} \) is a Kähler class, the class \(\{\omega - t\alpha\} \) is Kähler for \(t > 0 \) small. Let \(s \) be the largest number such that \(\{\omega - s\alpha\} \) is nef. We prove that \(s \geq 1 \). Otherwise, suppose \(s < 1 \). Then by the numerical conditions (1.1) and (1.3), the bigness criterion given by transcendental holomorphic Morse inequalities implies that the class \(\{\omega - s\alpha\} \) is big if \(s < 1 \), and furthermore, this holds for all irreducible subvarieties in \(X \). Thus \(\{\omega - s\alpha\} \) is big and nef on every irreducible subvariety \(V \) in \(X \). This means the null locus of the big and nef class \(\{\omega - s\alpha\} \) is empty, and then the main result of [CT13] implies that \(\{\omega - s\alpha\} \) is a Kähler class. This contradicts with the definition of \(s \), so we get \(s \geq 1 \), or equivalently, \(\{\omega - \alpha\} \) must be a nef class.

Remark 2.1. If \(X \) is a smooth projective variety of dimension \(n \) and \(\{\omega\} \) and \(\{\alpha\} \) are the first Chern classes of holomorphic line bundles, then the nefness of the class \(\{\omega - \alpha\} \) just follows from Kleiman’s ampleness criterion, since the numerical condition (1.3) for \(p = 1 \) implies the divisor class \(\{\omega - \alpha\} \) has non-negative intersection against every irreducible curve.

2.2 Theorem 1.2

Next we give the proof of Theorem 1.2.

Proof. The proof mainly depends on Boucksom’s divisorial Zariski decomposition for pseudo-effective \((1,1)\)-classes [Bou04] and the bigness criterion for the difference of two movable \((n-1, n-1)\)-classes [Xia14].

Through a sufficiently small perturbation of the Kähler metric \(\alpha \), e.g. replace \(\alpha \) by
\[\alpha_\epsilon = (1 - \epsilon)\alpha \]
with \(\epsilon \in (0, 1) \), we can obtain that the inequality in (1.1) is strict for the classes \(\{\omega\} \) and \(\{\alpha_\epsilon\} \).

We claim that in this case the \((n-1, n-1)\)-class \(\{\omega^{n-1} - \alpha_\epsilon^{n-1}\} \) has nonnegative intersections with all pseudo-effective \((1,1)\)-classes. Then let \(\epsilon \) tends to zero, we conclude the desired result for the class \(\{\omega^{n-1} - \alpha^{n-1}\} \). Thus we can assume the inequality in (1.1) is strict for the classes \(\{\omega\} \) and \(\{\alpha\} \) at the beginning.

Let \(\beta \) be a pseudoeffective \((1,1)\)-class over \(X \). By [Bou04, Section 3], \(\beta \) admits a divisorial Zariski decomposition
\[\beta = Z(\beta) + N(\beta). \]
Note that $N(\beta)$ is the class of some effective divisor (may be zero) and $Z(\beta)$ is a modified nef class. In particular, we have
\[
\{\omega^{n-1} - \alpha^{n-1}\} \cdot N(\beta) \geq 0. \tag{2.1}
\]
For any $\delta > 0$, we have
\[
Z(\beta) + \delta\{\omega\} = \pi_*\{\hat{\omega}\}
\]
for some modification $\pi : \hat{X} \to X$ and some Kähler metric $\hat{\omega}$ on \hat{X} (see [Bou04, Proposition 2.3]).

By our assumption on (1.1), we have
\[
\int_{\hat{X}} \pi^*\omega^n - n\pi^*\omega \wedge \pi^*\alpha^{n-1} > 0. \tag{2.2}
\]
By [Xia14, Theorem 3.3] (or [Xia13, Remark 3.1]), the inequality (2.2) implies that the class $\{\pi^*\omega^{n-1} - \pi^*\alpha^{n-1}\}$ contains a strictly positive $(n-1, n-1)$-current. This implies
\[
\{\omega^{n-1} - \alpha^{n-1}\} \cdot (Z(\beta) + \delta\{\omega\}) \\
= \{\omega^{n-1} - \alpha^{n-1}\} \cdot \pi_*\{\hat{\omega}\} \\
= \pi^*\{\omega^{n-1} - \alpha^{n-1}\} \cdot \{\hat{\omega}\} \\
> 0.
\]
By the arbitrariness of δ, we get $\{\omega^{n-1} - \alpha^{n-1}\} \cdot Z(\beta) \geq 0$. With (2.1), we show that
\[
\{\omega^{n-1} - \alpha^{n-1}\} \cdot \beta \geq 0.
\]
Since β can be any pseudoeffective $(1,1)$-class, this implies $\{\omega^{n-1} - \alpha^{n-1}\}$ lies in the closure of the Gauduchon cone by [Xia15, Proposition 2.1] (see also [Lam99, Lemma 3.3]).

\begin{remark}
We expect $\{\omega^{n-1} - \alpha^{n-1}\}$ should have strictly positive intersection numbers with nonzero pseudoeffective $(1,1)$-classes. To show this, one only need to verify this for modified nef classes.
\end{remark}

\begin{remark}
Let X be a smooth projective variety, and assume $\{\omega^{n-1} - \alpha^{n-1}\}$ is a curve class. Then the numerical condition (1.3) in Theorem 1.2 implies that $\{\omega^{n-1} - \alpha^{n-1}\}$ is a movable class by [BDPP13, Theorem 2.2].
\end{remark}

3 Further discussions

In analogue with Theorem 1.1 and Theorem 1.2, one would like to prove similar positivity of the class $\{\omega^k - \alpha^k\}$. To generalize our results in this direction, one can apply [Xia13, Remark 3.1]. By [Xia13, Remark 3.1], we know that the condition
\[
\int_V \omega^p - \frac{p!}{k!(p-k)!} \omega^{p-k} \wedge \alpha^k > 0
\]
implies that the class \(\{\omega^k - \alpha^k\}_{|V} \) contains a strictly positive \((k, k)\)-current over every irreducible subvariety \(V \) of dimension \(p \) with \(k < p \leq n - 1 \). However, the difficulties appear as we know little about the singularities of positive \((k, k)\)-currents for \(k > 1 \). We have no analogues of Demailly's regularization theorem for such currents.

Inspired by the prediction of Conjecture 1.1, we propose the following question on the positivity of \((k, k)\)-currents.

Question 3.1. Let \(X \) be a compact Kähler manifold (or general compact complex manifold) of dimension \(n \). Let \(\Omega \in H^{k, k}(X, \mathbb{R}) \) be a big \((k, k)\)-class, i.e. it can be represented by a strictly positive \((k, k)\)-current over \(X \). Assume the restriction class \(\Omega_{|V} \) is also big over every irreducible subvariety \(V \) with \(k \leq \dim V \leq n - 1 \), then does \(\Omega \) contain a smooth strictly positive \((k, k)\)-form in its Bott-Chern class? Or does \(\Omega \) contain a strictly positive \((k, k)\)-current with analytic singularities of codimension at least \(n - k + 1 \) in its Bott-Chern class?

References

[BDPP13] Sébastien Boucksom, Jean-Pierre Demailly, Mihai Păun, and Thomas Peternell, *The pseudo-effective cone of a compact Kähler manifold and varieties of negative Kodaira dimension*, J. Algebraic Geom. **22** (2013), no. 2, 201–248. MR 3019449

[Bou04] Sébastien Boucksom, *Divisorial Zariski decompositions on compact complex manifolds*, Ann. Sci. École Norm. Sup. (4) **37** (2004), no. 1, 45–76. MR 2050205 (2005i:32018)

[Che00] Xiuxiong Chen, *On the lower bound of the Mabuchi energy and its application*, Internat. Math. Res. Notices (2000), no. 12, 607–623. MR 1772078 (2001f:32042)

[Che04] Xiuxiong Chen, *A new parabolic flow in Kähler manifolds*, Comm. Anal. Geom. **12** (2004), no. 4, 837–852. MR 2104078 (2005h:53116)

[CS14] Tristan C. Collins and Gábor Székelyhidi, *Convergence of the \(j \)-flow on toric manifolds*, arXiv preprint arXiv:1412.4809 (2014).

[CT13] Tristan C. Collins and Valentino Tosatti, *Kähler currents and null loci*, arXiv preprint arXiv:1304.5216 (2013).

[Dem92] Jean-Pierre Demailly, *Regularization of closed positive currents and intersection theory*, J. Algebraic Geom. **1** (1992), no. 3, 361–409. MR 1158622 (93e:32015)

[Don99] Simon K. Donaldson, *Moment maps and diffeomorphisms*, Asian J. Math. **3** (1999), no. 1, 1–15, Sir Michael Atiyah: a great mathematician of the twentieth century. MR 1701920 (2001a:53122)

[DP04] Jean-Pierre Demailly and Mihai Păun, *Numerical characterization of the Kähler cone of a compact Kähler manifold*, Ann. of Math. (2) **159** (2004), no. 3, 1247–1274. MR 2113021 (2005i:32020)
[FLM11] Hao Fang, Mijia Lai, and Xinan Ma, *On a class of fully nonlinear flows in Kähler geometry*, J. Reine Angew. Math. 653 (2011), 189–220. MR 2794631 (2012g:53134)

[Lam99] Ahcène Lamari, *Courants kählériens et surfaces compactes*, Ann. Inst. Fourier (Grenoble) 49 (1999), no. 1, vii, x, 263–285. MR 1688140 (2000d:32034)

[LS15] Mehdi Lejmi and Gábor Székelyhidi, *The J-flow and stability*, Adv. Math. 274 (2015), 404–431. MR 3318155

[Pău98a] Mihai Păun, *Fibré en droites numériquement effectifs et variétés kählériennes compactes à courbure de Ricci nef*, Ph.D. thesis, Université Joseph-Fourier-Grenoble I, 1998.

[Pău98b] ———, *Sur l’effectivité numérique des images inverses de fibrés en droites*, Mathematische Annalen 310 (1998), no. 3, 411–421.

[Pop14] Dan Popovici, *An observation relative to a paper by J. Xiao*, arXiv preprint arXiv:1405.2518 (2014).

[SW08] Jian Song and Ben Weinkove, *On the convergence and singularities of the J-flow with applications to the Mabuchi energy*, Comm. Pure Appl. Math. 61 (2008), no. 2, 210–229. MR 2368374 (2009a:32038)

[Xia13] Jian Xiao, *Weak transcendental holomorphic Morse inequalities on compact Kähler manifolds*, arXiv preprint arXiv:1308.2878, to appear in Ann. Inst. Fourier (Grenoble) (2013).

[Xia14] ———, *Movable intersection and bigness criterion*, arXiv preprint arXiv:1405.1582 (2014).

[Xia15] ———, *Characterizing volume via cone duality*, arXiv preprint arXiv:1502.06450 (2015).

INSTITUTE OF MATHEMATICS, FUDAN UNIVERSITY, 200433 SHANGHAI, CHINA

CURRENT ADDRESS:
INSTITUT FOURIER, UNIVERSITÉ JOSEPH FOURIER, 38402 SAINT-MARTIN D’HÈRES, FRANCE
Email: jian.xiao@ujf-grenoble.fr