Nearly model-independent constraints on dense matter equation of state in a Bayesian approach

N. K. Patra, Sk Md Adil Imam, B. K. Agrawal, Arunava Mukharjee and Tuhin Malik

Based on:- Phys.Rev.D 106, 043024 (2022) [arXiv:2203.08521]

Department of Physics, BITS Pilani Goa Campus

September 5, 2022
Out Lines

1. Introduction
2. Motivations
3. Methodology
4. Construction of EOSs
5. Results
6. Conclusions
Some bounds on neutron star structure

- For the first time National Radio Astronomy Observatory (NRAO) detected a massive neutron star of mass $2.01 \pm 0.04 \, M_\odot$ and the radius of $13 \pm 2 \, km$ from PSR J0348+0432 in 2007.

 J. Antoniadis et al., Science 340, 6131 (2013)

- Recently in 2019, Neutron Star Interior Composition Explorer (NICER) detected a most massive neutron stars of mass $2.072^{+0.067}_{-0.066} \, M_\odot$ and radius of $12.39^{+1.30}_{-0.98} \, km$ from PSR J0740+6620.

 T. E. Riley et al., Astrophys. J. Lett. 918, L27 (2021)
Some important aspects of neutron star structure

- The neutron star radius is primarily determined by the behavior of the pressure of matter in the vicinity of nuclear matter equilibrium density.

\[R_M = C(n, M)[P(n)]^{0.23-0.26} \]

1. \(P(n) \) is the total pressure
2. \(C(n, M) \) is a number that depends on the density \(n \) at which the pressure was evaluated and the stellar mass \(M \).
3. The correlations seen tighter in case of baryon density \(n = 1.5 \, n_s \) and \(2 \, n_s \).

J. M. Lattimer & M. Prakash, Astrophys.J. 550,426 (2001)
Some important aspects of neutron star structure

- The nuclear equation of state (EOS) is very sensitivity to the neutron star tidal deformability (Λ) on 1 to 2 solar masses neutron stars.

C.Y. Tsang et al., Phys.Rev.C 102, 045808 (2020)
Some important aspects of neutron star structure

- A global power law dependence between tidal deformability and compactness parameter \((M/R)\) is verified over the mass region 1 to 2 solar masses neutron stars.

\[
\Lambda = 1.31 \times 10^{-3} \left(\frac{R}{M}\right)^{5.84} \quad (2)
\]

C.Y. Tsang et al., Phys.Rev.C 102, 045808 (2020)
Motivations

- Find out the correlations of various NS properties with the key parameter of EOS in a model-independent manner.
Objectives

- To construct large number of minimally constrained equations of state (EOSs) and study their correlations with a few selected properties of a neutron star.
- To see the nearly model-independent manner above the saturation density on the correlations of NS properties and the pressure of β-equilibrated matter.
- Formulate a parametrize form of the pressure for β-equilibrated matter, around $2\rho_0$, as a function of neutron star mass and the corresponding tidal deformability.
Equation of States

- We consider n, p, e, μ in the core part of neutron star.
- The three conditions such as:
 - Conservation of baryon no.: $\rho = \rho_n + \rho_p$
 - Charge neutrality: $\rho_p = \rho_e + \rho_\mu$
 - Beta-equilibrium: $\mu_n = \mu_p + \mu_e$

- Using these conditions, we calculate proton fraction and isospin asymmetry parameter ($\delta = \frac{\rho_n - \rho_p}{\rho}$).
- The energy per nucleon for neutron star matter $E(\rho, \delta)$ a given total nucleon density ρ decomposed as,

$$
E(\rho, \delta) = E(\rho, 0) + E_{\text{sym}}(\rho)\delta^2 + \ldots, \quad (3)
$$

- where, $E(\rho, 0)$ is for symmetric nuclear matter and $E_{\text{sym}}(\rho)$ for density-dependent symmetry energy.
Models

- We have taken two different models such as Taylor and $\frac{n}{3}$ which are based on expansions of $E(\rho, 0)$ and $E_{\text{sym}}(\rho)$.

\[E(\rho, 0) = 4 \sum_{n=0}^{\infty} a_n n! \left(\rho - \rho_0 \right)^n, \quad (4) \]
\[E_{\text{sym}}(\rho) = 4 \sum_{n=0}^{\infty} b_n n! \left(\rho - \rho_0 \right)^n, \quad (5) \]
\[E(\rho, \delta) = 4 \sum_{n=0}^{\infty} \frac{1}{n!} (a_n + b_n \delta^2) \left(\rho - \rho_0 \right)^n, \quad (6) \]
\[E(\rho, \delta) = 6 \sum_{n=2}^{\infty} \left(a'_n - 2 \right) \left(\rho - \rho_0 \right)^n, \quad (7) \]
\[E_{\text{sym}}(\rho) = 6 \sum_{n=2}^{\infty} \left(b'_n - 2 \right) \left(\rho - \rho_0 \right)^n, \quad (8) \]
\[E(\rho, \delta) = 6 \sum_{n=2}^{\infty} \left(a'_n - 2 + b'_n \delta^2 \right) \left(\rho - \rho_0 \right)^n. \quad (9) \]
Models

- We have taken two different models such as Taylor and $\frac{n}{3}$ which are based on expansions of $E(\rho, 0)$ and $E_{\text{sym}}(\rho)$.

Taylor’s expansion

\begin{align*}
E(\rho, 0) &= \sum_{n=0}^{4} \frac{a_n}{n!} \left(\frac{\rho - \rho_0}{3\rho_0} \right)^n, \quad (4) \\
E_{\text{sym}}(\rho) &= \sum_{n=0}^{4} \frac{b_n}{n!} \left(\frac{\rho - \rho_0}{3\rho_0} \right)^n, \quad (5) \\
E(\rho, \delta) &= \sum_{n=0}^{4} \frac{1}{n!} (a_n + b_n\delta^2) \left(\frac{\rho - \rho_0}{3\rho_0} \right)^n, (6)
\end{align*}
Models

- We have taken two different models such as Taylor and $\frac{n}{3}$ which are based on expansions of $E(\rho, 0)$ and $E_{\text{sym}}(\rho)$.

Taylor’s expansion

$$
E(\rho, 0) = \sum_{n=0}^{4} \frac{a_n}{n!} \left(\frac{\rho - \rho_0}{3\rho_0}\right)^n,
$$

(4)

$$
E_{\text{sym}}(\rho) = \sum_{n=0}^{4} \frac{b_n}{n!} \left(\frac{\rho - \rho_0}{3\rho_0}\right)^n,
$$

(5)

$$
E(\rho, \delta) = \sum_{n=0}^{4} \frac{1}{n!} (a_n + b_n \delta^2) \left(\frac{\rho - \rho_0}{3\rho_0}\right)^n,
$$

(6)

$\frac{n}{3}$ expansion

$$
E(\rho, 0) = \sum_{n=2}^{6} (a'_{n-2}) \left(\frac{\rho}{\rho_0}\right)^{\frac{n}{3}},
$$

(7)

$$
E_{\text{sym}}(\rho) = \sum_{n=2}^{6} (b'_{n-2}) \left(\frac{\rho}{\rho_0}\right)^{\frac{n}{3}},
$$

(8)

$$
E(\rho, \delta) = \sum_{n=2}^{6} (a'_{n-2} + b'_{n-2} \delta^2) \left(\frac{\rho}{\rho_0}\right)^{\frac{n}{3}}.
$$

(9)

- $a_n, a'_n = \epsilon_0, 0, K_0, Q_0, Z_0$
- $b_n, b'_n = J_0, L_0, K_{\text{sym}, 0}, Q_{\text{sym}, 0}, Z_{\text{sym}, 0}$
Bayesian estimation

This approach is mainly based on the Bayes theorem which states that,

\[P(\theta|D) = \frac{\mathcal{L}(D|\theta)P(\theta)}{Z}, \]

where:

- \(\theta \) is model parameters.
- \(D \) is the data.
- \(Z \) is the evidence.
- \(P(\theta) \) is the prior for the model parameters.
- The likelihood function,

\[\mathcal{L}(D|\theta) = \prod_j \frac{1}{\sqrt{2\pi\sigma_j^2}} e^{-\frac{1}{2} \left(\frac{d_j - m_j(\theta)}{\sigma_j} \right)^2}. \]

The marginalized posterior distribution for a parameter \(\theta_i \) can be obtained as,

\[P(\theta_i|D) = \int P(\theta|D) \prod_{k \neq i} d\theta_k. \]
Construction of EOSs

- For construction large sets of EOSs, we use Bayesian approach. It needs,
 - Data (D)
 - Model (M(θ))
 - Prior (P(θ))

- We have considered the data as energy per neutron of PNM from Ref. K. Hebeler et al. Astrophys. J. 773, 11 (2013).
Construction of EOSs

For construction large sets of EOSs, we use Bayesian approach. It needs,

- Data (D)
- Model (M(θ))
- Prior (P(θ))

We have considered the data as energy per neutron of PNM from Ref. K. Hebeler et al. Astrophys. J. 773, 11 (2013).

The prior distributions of nuclear matter parameters given in Table as,

NMPs	Pr-Dist	μ	σ
ε₀	G	-16	0.3
K₀	G	240	50
Q₀	G	-400	400
Z₀	G	1500	1500
J₀	G	32	5
L₀	G	50	50
Kₜₙₜ₀	G	-100	200
Qₜₙₜ₀	G	550	400
Zₜₙₜ₀	G	-2000	2000
Construction of EOSs

- The nuclear matter parameters are filtered by demanding,
 - pressure for the β-equilibrated matter should increase monotonically with density and symmetry energy should not be negative (thermodynamic stability).
 - speed of sound must not exceed the speed of light (causality).
 - maximum mass of neutron star must exceeds $2M_\odot$ (observational constraint).

- The causality breaks down at higher density mostly for the Taylor EOS. In such cases, we use the stiffest EOS, $P(\epsilon) = P_m + (\epsilon - \epsilon_m)$.

- Once the EOS for the core and crust are known the values of NS mass, radius and tidal deformability corresponding to given central pressure can be obtained by solving Tolman-Oppenheimer-Volkoff equations.
Fig.1: Corner plots for the nuclear matter parameters (in MeV) obtained for Taylor (left) and $\frac{n}{3}$ expansions (right). The one dimensional marginalized posterior distributions (salmon) and the prior distributions (green lines) are displayed along the diagonal plots. The vertical lines indicate 68% confidence interval of nuclear matter parameters.
Posterior Distribution of NM Parameters

NMPs (in MeV)	without PNM	with PNM		
	Taylor	$\frac{n}{3}$	**Taylor**	$\frac{n}{3}$
ε_0	$-15.99^{+0.27}_{-0.27}(0.43)$	$-15.99^{+0.27}_{-0.27}(0.51)$	$-16.00^{+0.27}_{-0.30}(0.42)$	$-16.00^{+0.27}_{-0.28}(0.44)$
K_0	$233.38^{+48.94}_{-42.73}(76.14/83.95)$	$237.43^{+44.24}_{-45.75}(72.25/83.22)$	$231.96^{+44.80}_{-41.33}(72.94/76.63)$	
Q_0	$-411.84^{+207.53}_{-210.88}(301.56/409.00)$	$-419.81^{+262.96}_{-272.47}(437.69/531.58)$	$-418.89^{+187.43}_{-179.25}(300.76/377.42)$	
Z_0	$1600.07^{+1067.33}_{-1362.28}(1883.00/2615.10)$	$1403.84^{+704.56}_{-690.82}(1133.85/1386.25)$	$1638.14^{+1241.83}_{-1277.48}(1906.75/2244.23)$	
J_0	$32.37^{+4.69}_{-4.71}(7.22/10.23)$	$31.88^{+0.87}_{-0.92}(1.43/1.85)$	$31.87^{+0.93}_{-0.82}(1.49/1.68)$	
L_0	$55.60^{+37.59}_{-43.88}(63.89/84.62)$	$51.25^{+13.32}_{-13.91}(21.60/25.54)$	$52.25^{+13.55}_{-12.76}(22.73/23.04)$	
$K_{\text{sym},0}$	$-40.03^{+161.60}_{-135.08}(271.89/234.67)$	$-96.65^{+141.41}_{-127.49}(225.69/216.74)$	$-67.44^{+127.18}_{-114.80}(206.09/200.38)$	
$Q_{\text{sym},0}$	$705.36^{+311.23}_{-352.72}(511.39/727.86)$	$699.56^{+324.38}_{-323.52}(521.95/639.30)$	$726.49^{+300.40}_{-358.51}(510.33/631.86)$	
$Z_{\text{sym},0}$	$-1390.39^{+1518.69}_{-1856.18}(2526.53/3623.74)$	$55.34^{+1205.62}_{-782.52}(2255.28/1415.84)$	$-1622.35^{+1606.61}_{-1911.81}(2788.70/3468.40)$	
Fig. 2: Corner plots for the marginalized posterior distributions (salmon) of the tidal deformability $\Lambda_{1.4}$, radii $R_{1.4}$ (km) and $R_{2.07}$ (km) and the maximum mass M_{max} (M_{\odot}) for Taylor (left) and $n/3$ (right) expansions. The green lines represent effective priors obtained using the priors for nuclear matter parameters.
Joint Probability Distributions of M, R

NS properties	without PNM	with PNM
$A_{1.4}$	527.72	455.85
$R_{1.4}$ (km)	14.69	14.15
R_{207} (km)	13.24	12.27
M_{max} (M_\odot)	2.45	2.19

Fig.3: Plot for joint probability distribution $P(M, R)$ as a function of mass and radius of neutron star obtained for $n/3$ expansion. The red dashed line represents the 90% confidence interval.
Correlations of NS properties with EOS

Fig. 4: The correlation coefficients $r(x, P_{BEM}(\rho))$ of both Taylor and $\frac{n}{3}$ expansions along with the mean-field theory calculations are shown.
Correlations of NS properties with EOS

Fig. 4: The correlation coefficients $r(x, P_{BEM}(\rho))$ of both Taylor and $\frac{n}{3}$ expansions along with the mean-field theory calculations are shown.

Fig. 5: The variations of pressure for β-equilibrated matter ($P_{BEM}(\rho)$) at selected densities versus NS properties.
Correlations of Tidal deformability with Pressure

Fig. 6: Here is the plot of correlation coefficients between tidal deformability (Λ_M) and the pressure of β-equilibrated matter ($P_{\text{BEM}}(\rho)$) on neutron star mass (M) and density (ρ).

\[P_{\text{BEM}}(\rho) = a(M) + b(M)\Lambda_M \]

where M_0 is taken to be 1.4 M_\odot.

The values of a_i and b_i are estimated using a Bayesian approach with the help of $P_{\text{BEM}}(\rho)$ and tidal deformability obtained for Taylor and n_3 expansions.
Correlations of Tidal deformability with Pressure

- The $P_{\text{BEM}}(\rho)$ at $\rho \sim 1.5 - 2.5 \rho_0$ are strongly correlated ($r \sim 0.8 - 1$) with tidal deformability for NS masses in the range $1.2 - 2.0 M_\odot$.

Fig.6: Here is the plot of correlation coefficients between tidal deformability (Λ_M) and the pressure of β-equilibrated matter ($P_{\text{BEM}}(\rho)$) on neutron star mass (M) and density (ρ).
Correlations of Tidal deformability with Pressure

Fig. 6: Here is the plot of correlation coefficients between tidal deformability (Λ_M) and the pressure of β-equilibrated matter ($P_{\text{BEM}}(\rho)$) on neutron star mass (M) and density (ρ).

- The $P_{\text{BEM}}(\rho)$ at $\rho \sim 1.5 - 2.5\rho_0$ are strongly correlated ($r \sim 0.8 - 1$) with tidal deformability for NS masses in the range $1.2 - 2.0M_\odot$.

Hence, $P_{\text{BEM}}(\rho)$ can be parametrized at a given ρ as,

$$\frac{P_{\text{BEM}}(\rho)}{\text{MeVfm}^{-3}} = a(M) + b(M)\Lambda_M,$$

(13)

The mass-dependent coefficients $a(M)$ and $b(M)$ expanded as

$$a(M) = (a_0 + a_1(M - M_0) + a_2(M - M_0)^2),$$

(14)

$$b(M) = (b_0 + b_1(M - M_0) + b_2(M - M_0)^2),$$

(15)

where M_0 is taken to be $1.4M_\odot$.

- The values of a_i and b_i are estimated using a Bayesian approach with the help of $P_{\text{BEM}}(\rho)$ and tidal deformability obtained for Taylor and $n^3/3$ expansions.
Correlations of Tidal deformability with Pressure

- The priors for a_i and b_i are taken to be uniform in the range of -100 to 100.
- The calculations are performed for $\rho = 1.5, 2.0$ and $2.5 \rho_0$.

The average deviation of $P_{BEM}(\rho_0^2)$, obtained using Eq. (13), from the actual values is about 10%. We noticed marginal improvement when the terms corresponding to quadratic in tidal deformability are included in Eq. (13).

Here, we display the variations of tidal deformability as a function of mass and pressure for β-equilibrated matter at $\rho = 1.5, 2.0$ and $2.5 \rho_0$. One can easily estimate the values of $P_{BEM}(\rho)$ for $\rho \sim 2\rho_0$ once the values of tidal deformability known in NS mass ranges $1 - 2M_\odot$.

Naresh Kumar Patra (BITS Pilani, Goa Campus)

QNP2022

September 5, 2022
Correlations of Tidal deformability with Pressure

- The priors for a_i and b_i are taken to be uniform in the range of -100 to 100.
- The calculations are performed for $\rho = 1.5, 2.0$ and $2.5 \rho_0$.
- The average deviation of $P_{BEM}(2\rho_0)$, obtained using Eq. (13), from the actual values is about 10%.
- We find marginal improvement when the terms corresponding to quadratic in tidal deformability are included in Eq. (13).
Correlations of Tidal deformability with Pressure

- The priors for a_i and b_i are taken to be uniform in the range of -100 to 100.
- The calculations are performed for $\rho = 1.5, 2.0$ and $2.5 \rho_0$.
- The average deviation of $P_{\text{BEM}}(2\rho_0)$, obtained using Eq. (13), from the actual values is about 10%.
- We find marginal improvement when the terms corresponding to quadratic in tidal deformability are included in Eq. (13).

- Here, we display the variations of tidal deformability as a function of mass and pressure for β-equilibrated matter at $\rho = 1.5, 2.0$ and $2.5 \rho_0$.
- One can easily estimate the values of $P_{\text{BEM}}(\rho)$ for $\rho \sim 2\rho_0$ once the values of tidal deformability known in NS mass ranges $1.2 - 2.0 M_\odot$.
Conclusions

- A few low-order NMPs such as ϵ_0, K_0, J_0 and L_0 constrained in narrow windows.
Conclusions

- A few low-order NMPs such as ϵ_0, K_0, J_0 and L_0 constrained in narrow windows.
- The correlations of neutron star properties over a wide range of mass with various key quantities characterizing the EOS are investigated.
 - The values of tidal deformability and radius for the NS with $1.4M_\odot$ are strongly correlated with the pressure for the β-equilibrated matter at density $\sim 2\rho_0$.
 - The radius for $2.07M_\odot$ NS is strongly correlated with the pressure for β-equilibrated matter at density $\sim 3\rho_0$.
 - The maximum mass of NS is correlated with the pressure for the β-equilibrated matter at density $\sim 4.5\rho_0$.

These correlation systematics are similar with those obtained for unified EOSs for a diverse set of non-relativistic and relativistic mean-field models. We exploit the model independence of correlations to the pressure for β-equilibrated matter, in the density range $1.5 - 2.5\rho_0$, in terms of the mass and tidal deformability of neutron stars. This parametric form facilitates estimation of the pressure at densities around $2\rho_0$ for a given value of tidal deformability of neutron stars with mass in the range of $1.2 - 2.0 M_\odot$.

Naresh Kumar Patra (BITS Pilani, Goa Campus)
Conclusions

- A few low-order NMPs such as ϵ_0, K_0, J_0 and L_0 constrained in narrow windows.
- The correlations of neutron star properties over a wide range of mass with various key quantities characterizing the EOS are investigated.
 - The values of tidal deformability and radius for the NS with $1.4M_\odot$ are strongly correlated with the pressure for the β-equilibrated matter at density $\sim 2\rho_0$.
 - The radius for $2.07M_\odot$ NS is strongly correlated with the pressure for β-equilibrated matter at density $\sim 3\rho_0$.
 - The maximum mass of NS is correlated with the pressure for the β-equilibrated matter at density $\sim 4.5\rho_0$.
- These correlation systematics are similar with those obtained for unified EOSs for a diverse set of non-relativistic and relativistic mean-field models.
Conclusions

- A few low-order NMPs such as ϵ_0, K_0, J_0 and L_0 constrained in narrow windows.
- The correlations of neutron star properties over a wide range of mass with various key quantities characterizing the EOS are investigated.
 - The values of tidal deformability and radius for the NS with $1.4M_\odot$ are strongly correlated with the pressure for the β-equilibrated matter at density $\sim 2\rho_0$.
 - The radius for $2.07M_\odot$ NS is strongly correlated with the pressure for β-equilibrated matter at density $\sim 3\rho_0$.
 - The maximum mass of NS is correlated with the pressure for the β-equilibrated matter at density $\sim 4.5\rho_0$.
- These correlation systematics are similar with those obtained for unified EOSs for a diverse set of non-relativistic and relativistic mean-field models.
- We exploit the model independence of correlations to the pressure for β-equilibrated matter, in the density range $1.5 - 2.5\rho_0$, in terms of the mass and tidal deformability of neutron star.
Conclusions

- A few low-order NMPs such as ϵ_0, K_0, J_0 and L_0 constrained in narrow windows.
- The correlations of neutron star properties over a wide range of mass with various key quantities characterizing the EOS are investigated.
 - The values of tidal deformability and radius for the NS with $1.4M_\odot$ are strongly correlated with the pressure for the β-equilibrated matter at density $\sim 2\rho_0$.
 - The radius for $2.07M_\odot$ NS is strongly correlated with the pressure for β-equilibrated matter at density $\sim 3\rho_0$.
 - The maximum mass of NS is correlated with the pressure for the β-equilibrated matter at density $\sim 4.5\rho_0$.
- These correlation systematics are similar with those obtained for unified EOSs for a diverse set of non-relativistic and relativistic mean-field models.
- We exploit the model independence of correlations to the pressure for β-equilibrated matter, in the density range $1.5 - 2.5\rho_0$, in terms of the mass and tidal deformability of neutron star.
- This parametric form facilitate estimation of the pressure at densities around $2\rho_0$ for a given value of tidal deformability of neutron stars with mass in the range of $1.2 - 2.0M_\odot$.
Acknowledgement

- The Department of Science and Technology, Ministry of Science and Technology, India, for the support of DST/INSPIRE Fellowship/2019/IF190058.

Collaborations list

- T. K. Jha
- B. K. Agrawal
- Hiranmaya Mishra
- Tuhin Malik
- Arunava Mukharjee
- Chiranjib Mondal
- Sk Md Adil Imam
- Debasree Sen
Thank You!