Electron Spin Relaxation and 39K Pulsed ENDOR Studies on

Cr^{5+} doped $K_3\text{NbO}_8$ at 9.7 and 240 GHz.

S. Nellutla, G. W. Morley‡ and J. van Tol†

Center for Interdisciplinary Magnetic Resonance,
National High Magnetic Field Laboratory,
Florida State University, Tallahassee, Florida-32310, USA.

M. Pati and N. S. Dalal

Department of Chemistry and Biochemistry,
Florida State University and NHMFL, Tallahassee, FL-32306, USA.

(Dated: May 28, 2008)

Abstract

Cr^{5+} doped $K_3\text{NbO}_8$, considered to be useful as a electron spin qubit, has been investigated by pulsed X-band (\sim 9.7 GHz) and 240 GHz electron paramagnetic resonance and electron nuclear double resonance (ENDOR). Comparison of the low temperature electronic spin-lattice relaxation rate $1/T_1$ at 9.7 and 240 GHz shows that it is 250 times faster at 240 GHz than at X-band. On the other hand, the spin-spin relaxation rate $1/T_2$ appears largely frequency independent and is very likely related to the superhyperfine (SHF) coupling of the Cr^{5+} electron with the surrounding potassium and niobium nuclei. This coupling was investigated by HYSCORE at 9.7 GHz and pulsed Mims ENDOR at 240 GHz. The high frequency and field enabled us to unambiguously measure the hyperfine and quadrupole couplings of the 39K in spite of its small magnetic moment. We find that the largest 39K SHF coupling is positive, with 0.522 MHz and 0.20 MHz as its isotropic and dipolar parts respectively. 93Nb ENDOR was dominantly due to its quadrupolar interaction, with a coupling of about 0.8 MHz, and a SHF coupling of about 0.08 MHz. The significance of these data to spin qubit studies is pointed out.

PACS numbers: 76.30.-v, 61.72.Hh, 76.70.Dx, 6.60.Es, 31.30.Gs, 63.20.kd
I. INTRODUCTION

The Cr$^{5+}$ ion diluted in the diamagnetic host K$_3$NbO$_8$ (henceforth noted as Cr:K$_3$NbO$_8$) has been suggested as a magnetic field calibration standard for high field electron paramagnetic resonance (EPR) experiments\(^1\). This $S = 1/2$ system exhibits a small linewidth ($\sim 0.15 - 0.2$ mT depending on the orientation) and the g-value just below the free-electron g-value, g_e. The $I = 0$ (50,52,54Cr) isotopes give rise to a single line that serves as a g-marker, while the 53Cr (9.5% $I = 3/2$) yields four hyperfine lines that can be used to calibrate the linearity of the field\(^1\).

Recently Cr:K$_3$NbO$_8$ has also been suggested\(^2\) as a new transition metal-ion based single electron-spin qubit system for quantum information processing. Quantum computation requires, among others, a long spin-lattice relaxation time T_1 as well as a long spin-spin or spin-memory relaxation time T_2. The latter time provides a measure of the decoherence processes in the material and is used to calculate the figure of merit of a qubit, which is defined as the number of operations that can be performed before the phase information is lost. On the other hand, a 'reset' of the qubit to a well defined starting state takes a time proportional to T_1. Hence, shorter T_1 time means enhanced computing speed. It is therefore desirable to understand the T_1 and T_2 relaxation processes via their temperature and frequency dependence.

The present work reports on our detailed measurements of the electronic T_1 and T_2 relaxation in Cr:K$_3$NbO$_8$ from ambient temperatures down to 4 K at X-band (~ 9.7 GHz, ~ 0.35 tesla (T)) and at 240 GHz (~ 8.7 T). We find that the low temperature relaxation time T_1 is strongly frequency dependent: it decreases by a factor of 250 on going from 9.7 GHz to 240 GHz. On the other hand, T_2 was found to be frequency independent in the investigated temperature range.

In order to understand the process(es) controlling the T_2 we first employed hyperfine sublevel correlation (HYSCORE) spectroscopy\(^3\) at X-band, and found that the nuclei responsible for T_2 are the neighboring 39K nuclei. But the magnitudes of 39K Zeeman, super-hyperfine (SHF) and quadrupole interactions are such that the analysis at X-band becomes very complicated for any definitive analysis. On the other hand, the utilization of the high frequency (240 GHz) pulsed EPR/ENDOR spectrometer yielded ENDOR peaks that could easily be assigned to the neighboring 39K as well as to the 93Nb nuclei, showing the advan-
FIG. 1: (color online) Unit cell structure of Cr:K₃NbO₈. Dodecahedral coordination geometry is shown only for central ion for clarity. The potassium ions labeled as K2 and K2' have an appreciable overlap with Cr 3dₓ²−ᵧ² orbital, whereas the ions labeled as K1 and K3 are in the unpaired electron nodal plane. The definitions of the angles θ and φ are shown by the vector \mathbf{R} on K2'.

The data clearly suggests that the T_2 process, and thus also the linewidths of the continuous wave (cw) EPR peaks, are related to the unresolved SHF coupling to the 39K and 93Nb nuclei. We note that there are few low frequency electron spin echo envelope modulation and cw-ENDOR studies where the 39K hyperfine couplings were resolved.

This article is organized as follows. Section II provides the experimental details on crystal structure, EPR and the ENDOR spectrometers. The results and analysis are presented in section III, and the salient points are summarized in section IV.

II. EXPERIMENTAL DETAILS

The Cr:K₃NbO₈ sample was synthesized according to the published procedure. A typical synthesis involves addition of CrO₃ to a solution of KOH and Nb₂O₅ at -15°C to form a
50% ice slurry followed by drop-wise addition of cold 30% H$_2$O$_2$. Light yellow crystals of Cr$_3$NbO$_8$ were obtained after keeping the final reaction mixture at 5°C for 2-3 days. The Cr$^{5+}$ concentration in the studied Cr$_3$NbO$_8$ samples was determined to be \sim 0.03 mol% by comparing its EPR signal intensity with a reference sample (BDPA in polystyrene) of known number of spins.

The crystal structure of Cr$^{5+}$ doped K$_3$NbO$_8$ is shown in Fig. 1. This system has body-centered tetragonal crystal lattice (I42m space group) with cell parameters $a = b = 6.7862(3)$ Å, $c = 7.8312(7)$ Å and $\alpha = \beta = \gamma = 90^\circ$. The Cr$^{5+}$ ion occupies the Nb$^{5+}$ position and for convenience is shown at the body-center position in Fig. 1. Each Cr$^{5+}$/Nb$^{5+}$ ion is surrounded by four peroxy (O$_2^{2-}$) groups (shown as red balls in Fig. 1) in a dodecahedral arrangement.

The 9.7 GHz cw- and pulsed-EPR measurements were performed on a commercial Bruker Elexsys 580 instrument with a Flexline dielectric resonator using a single crystal of approximate size $2 \times 1 \times 1$ mm3. The data at 240 GHz were collected on a home-built superheterodyne high field cw-EPR instrument which is recently extended to pulsed operation. The single crystals used were typically $0.2 \times 0.1 \times 0.1$ mm3 in size. A semi-confocal Fabry-Perot resonator was used with a 12.5 mm spherical gold-coated mirror and a semi-transparent flat mirror, consisting of a gold mesh deposited on a 160 μm thick quartz cover slip. The maximum available power at this frequency is of the order of 20 mW and the typical $\pi/2$ pulse length is 200 ns.

The ENDOR coil for the 240 GHz spectrometer consisted of a single copper wire parallel to the mesh, which was led through a quartz capillary (0.3 mm or 0.25 mm OD). The single crystal was attached to the outside of the quartz capillary. A typical pulse sequence for the Mims ENDOR experiment consisted of a stimulated echo sequence of three $\pi/2$ pulses of about 240 ns length separated by 600 ns (τ) and 200 μs (t) respectively. A 150 μs radio frequency (RF) pulse was applied between second and third millimeterwave pulses. About 10 W of power was applied to the untuned ENDOR ‘coil’. The pulsed ENDOR measurements were performed at around 5-6 K. Typically 20 shots were averaged per RF frequency and the total acquisition time of the ENDOR spectra was of the order of 20-30 minutes.
FIG. 2: Electron spin echo-detected EPR spectrum at 240 GHz and 15 K for $B_0 \parallel c$-axis. The central peak is from $I = 0$ 50,52,54Cr nuclei whereas the four small peaks separated by ~ 4 mT are from the hyperfine coupling of the unpaired electron to 53Cr nucleus (9.5% $I = 3/2$).

III. RESULTS AND DISCUSSION

Figure 2 shows a typical 240 GHz electron-spin-echo (ESE) detected EPR spectrum obtained with a two pulse Hahn echo sequence ($\pi/2 - \tau - \pi - $ echo) and measuring the integrated echo intensity. The ESE-EPR spectra of Cr:K$_3$NbO$_8$ show intense central peak from the $I = 0$ isotopes (4.34% 50Cr, 83.8% 52Cr, 2.36% 54Cr) at $g_{\parallel} = 1.9472 \pm 0.0002$ for the field $B_0 \parallel c$ and $g_{\perp} = 1.9878 \pm 0.0002$ for $B_0 \perp c$. The g-values indicate that the unpaired electron resides in a 3$d_{x^2-y^2}$ orbital. The four peaks flanking the central peak are the expected four nuclear transitions from the $I = 3/2$ of 53Cr nucleus. The hyperfine coupling is ~ 4 mT for $B_0 \parallel c$ and ~ 1 mT for $B_0 \perp c$. All relaxation and ENDOR measurements described below were performed on the central $I = 0$ peak.

A. Spin-lattice relaxation

The spin-lattice relaxation time T_1 of Cr:K$_3$NbO$_8$ was at 9.7 and 240 GHz measured by an inversion-recovery method employing the sequences $\pi - \tau - \pi/2$ - FID and $\pi - t - \pi/2 - \tau - \pi - \tau - $ echo, respectively. The left panel in Fig. 3 shows the temperature dependence of $1/T_1$ for $B_0 \parallel c$ at 9.7 and 240 GHz. At 9.7 GHz the T_1 increases from about 500 ns at room temperature to about 1 s at 4 K. Above 25 K T_1 at 240 GHz is
FIG. 3: (color online) Temperature dependence of $1/T_1$ (left panel) and $1/T_2$ (right panel) relaxation rates at 9.7 and 240 GHz for $B_0 \parallel c$-axis. The solid red lines in the left panel are a fit to Eq. 1 with parameters listed in Table I. The individual contributions to $1/T_1$ are also shown. See text for details.

As can be seen from the solid lines in Fig. 3, the temperature dependence of the spin-lattice relaxation rate $1/T_1$ at 9.7 and 240 GHz was successfully modeled with Eq.(1) and the best-fit parameters are listed in Table I.

It is noteworthy that the spin-lattice relaxation rate $1/T_1$ at low temperatures (4 - 10 K) is considerably faster at 240 GHz as compared to that at 9.7 GHz which indicates that the direct process is important at these temperatures. However, the ratio of the direct process contribution to $1/T_1$ at 240 and 9.7 GHz is not as large as the expected $\omega^5 \coth(\hbar \omega/2kT)$ dependence for a Kramer’s system but it is closer to $\omega^3 \coth(\hbar \omega/2kT)$ dependence in non-Kramer’s spin systems. For example, at 4 K the observed ratio of the direct process contribution between 240 and 9.7 GHz is about 1/4 of the calculated $\omega^3 \coth(\hbar \omega/2kT)$
TABLE I: Fit parameters of temperature dependence of $1/T_1$ at 9.7 GHz and 240 GHz. The values listed correspond to the solid lines in Fig. 3.

Parameter	Best-fit value 9.7 GHz	Best-fit value 240 GHz
C_1	$0.070(8)$ s$^{-1}$	$250(8)$ s$^{-1}$
C_2	$6(1)*10^4$ s$^{-1}$	$6(1)*10^4$ s$^{-1}$
Δ_1	75(3) cm$^{-1}$	75(3) cm$^{-1}$
C_3	$3.35(73)*10^6$ s$^{-1}$	$3.35(73)*10^6$ s$^{-1}$
Δ_2	255(20) cm$^{-1}$	255(20) cm$^{-1}$

value whereas it is about $4*10^{-4}$ times the $\omega^5 \coth(h\omega/kT)$ value. This difference in the frequency dependence has been observed before13,14 and needs further theoretical analysis which is beyond the scope of this undertaking.

As can be seen from Fig. 3, the spin-lattice relaxation rate $1/T_1$ at 9.7 and 240 GHz frequencies for $T > 10$ K is well described by two Orbach relaxation pathways involving thermally accessible energy levels at $\Delta_1 \sim 75$ cm$^{-1}$ and $\Delta_2 \sim 255$ cm$^{-1}$. Based on the earlier infrared and Raman studies15, the 75 cm$^{-1}$ mode can be ascribed to the translational and librational modes, found to be below 200 cm$^{-1}$ in the peroxychromate ion. Similarly, the 255 cm$^{-1}$ mode compares with the bending vibrational modes reported in the 200 - 400 cm$^{-1}$ region in the peroxychromate ion.

B. Spin-spin relaxation

The standard 2-pulse Hahn echo sequence was used to obtain the spin-spin relaxation time T_2 at both 9.7 and 240 GHz. The right panel of Fig. 3 shows the $1/T_2$ rate as a function of temperature for $B_0 \parallel c$. At 9.7 GHz the T_2 increases from ~ 150 ns at room temperature to ~ 8 μs at 50 K, then decreases to ~ 5 μs at 20 K and finally increases to ~ 10 μs at 4 K. In contrast to T_1, the T_2 time does not show a strong field dependence. However, the temperature dependence of T_2 at both frequencies shows a minimum at about 20 K. We tentatively ascribe this minimum to some sort of motional narrowing caused by the increase in the spin fluctuations of K and Nb hyperfine fields as the temperature is raised above about 20 K. This type of temperature dependence has previously been reported for dilute solutions
of free radicals\cite{16,17,18} and other Cr$^{5+}$ complexes\cite{19}. Above 50 K, the spin-spin relaxation time T_2 is mainly governed by the spin-lattice relaxation processes.

C. Superhyperfine (SHF) interactions

As mentioned earlier the hyperfine interaction of the unpaired electron with the 53Cr in Cr:K$_3$NbO$_8$ was explored previously\cite{10}, and therefore in this report we will only address the SHF coupling with the potassium ($I = 3/2$ 39K) and niobium ($I = 9/2$ 93Nb) nuclei. We believe that the electronic spin-spin relaxation processes in Cr:K$_3$NbO$_8$ are most likely influenced by these interactions and in order to characterize them we used HYSCORE spectroscopy at 9.7 GHz and pulsed Mims ENDOR at 240 GHz.

The HYSCORE spectra of Cr:K$_3$NbO$_8$ at 40 K are shown in Fig. 4 for the orientation along the c-axis (bottom panel) and an orientation in the ab-plane (top panel). The spin echo modulations due to the interactions with neighboring potassium nuclei are very large, which resulted in a good quality HYSCORE spectrum. However, the spectra were found to be too complex for analysis, possibly because at 9.7 GHz, the Zeeman, quadrupole and SHF interactions become comparable and lead to a complex interplay of these interactions. We therefore resorted to ENDOR measurements at 240 GHz (\sim 8.7 T) where the Zeeman
terms become dominant.

At 240 GHz, pulsed ENDOR signals of 39K were measured at various crystal orientations (see Fig. 5). A systematic study of orientation dependence of the ENDOR could not be performed due to the unavailability of a goniometer for this spectrometer at the present time. While the angle (θ) of B_0 relative to the crystal c-axis can be accurately determined from the resonance field of the EPR transition (via the g-tensor anisotropy), the axial g-tensor symmetry does not help with the precise determination of the angle ϕ of B_0 in the ab-plane. However, a closer look at the crystal structure (see Fig. 1) reveals that only the eight potassium nuclei labeled as K2 and K2' have an appreciable overlap with the Cr$^{5+} 3d_{x^2−y^2}$ orbital and therefore are expected to be responsible for the 39K ENDOR signals. These eight equivalent nuclei are related by symmetry ($xyz, \bar{x}yz, xy\bar{z}, \bar{x}y\bar{z}, yxz, \bar{y}xz, \bar{y}x\bar{z}, \bar{y}\bar{x}\bar{z}$), and at some orientations eight sets of signals can indeed be distinguished (e.g. $\theta = 31^\circ$ spectrum in Fig. 5). The potassium ions labeled as K1 and K3 are in the nodal planes of the Cr unpaired electron. They should thus exhibit negligible isotropic SHF couplings.

It should be noted that both negative (smaller stimulated echo) and positive (larger stimulated echo) signals are observed, and that the signal intensities are quite large. When on ENDOR resonance, the observed echo height varied from 40% to 200% of the echo height observed without RF power or out of resonance. The ENDOR intensity is largest when the shot-repetition time is of the order of T_1. This implies that the 39K nuclei are strongly polarized by the pulse sequence, leading to an increase in echo intensity when a nuclear transition in the $M_s = +1/2$ electron manifold is addressed, while the echo intensity becomes smaller when a transition in the $M_s = −1/2$ state is excited, as explained in Ref.20. These anomalous ENDOR intensities occur when the microwave quantum ($\hbar \omega$) is of the same order or larger than the thermal energy kT and allows for the determination of the sign of the hyperfine coupling in both pulsed20,21 and cw-ENDOR22. The observed sets of 39K ENDOR signals are sufficient for a unique assignment of the SHF and quadrupole tensor values and their relative orientations. The data are analyzed by the diagonalization of the usual effective spin Hamiltonian given in Eq.(2) with $S = 1/2$ and $I = 3/2$.

$$\hat{H} = \mu_B \vec{B}_0 \hat{g} \hat{S} + \sum_n (\hat{S} \hat{A}_n \hat{I}_n - \gamma_n \vec{B}_0 \hat{I}_n + \hat{I}_n \hat{Q}_n \hat{I}_n) \quad (2)$$

Here, \hat{g} is the electron Zeeman tensor, \hat{A} and \hat{Q} are, respectively, SHF and quadrupole tensors of the surrounding nuclei. The principal values and their directions of the \hat{A} tensor
FIG. 5: (color online) Mims ENDOR spectra of 39K at 240 GHz and 5 K at several crystal orientations. θ indicates the angle between B_0 and the c-axis. Echo intensity increases during the ENDOR transitions in the $M_s = +1/2$ manifold (upward peaks), while it decreases for the ENDOR transitions in the $M_s = -1/2$ manifold (downward peaks). The arrows correspond to the nuclear Zeeman frequency of ~ 17.25 MHz.

(namely A_1, A_2, A_3) and \tilde{Q} tensor (namely Q_1, Q_2, Q_3) for $K2'$ nucleus obtained from the analysis are given in Table II. The tensors for the other chemically equivalent K2 nuclei can be obtained via the afore-mentioned crystal symmetry operations. The isotropic SHF interaction is $+0.522$ MHz, and can be interpreted as a spin density of 0.23% in the 4s orbital when compared to the hyperfine coupling in the ground state of atomic potassium. While we cannot make a completely unambiguous assignment of the specific potassium nucleus associated with each of the eight sets of SHF and quadrupole tensors, it is natural to assume that the anisotropic contribution to the SHF interaction should reflect the dipolar interaction between the potassium nuclear spin and the chromium electron spin. We therefore assign the SHF tensor given in Table II to the potassium for which the A_3 direction is close to the Cr-K direction (labeled as $K2'$ in the Fig. I).

The quadrupole tensor of $K2'$ is not entirely axial and has the direction of its largest
TABLE II: The principal values and their directions of 39K SHF and quadrupole tensors determined by 240 GHz Mims ENDOR. These values correspond to K2' and the values for the remaining seven K2 potassium ions can be obtained from the symmetry relations given in the text. θ is the angle with the c-axis and ϕ the angle in the ab plane (see Fig. 1). The errors in the directions are estimated to be 2 degrees.

Value(MHz)	θ	ϕ	
A1	+0.407(5)	147	90
A2	+0.425(5)	90	0
A3	+0.733(5)	57	90
Q1	-0.423(4)	87.6	65.6
Q2	-0.329(4)	90.6	-24
Q3	0.752(4)	2.5	-100

FIG. 6: (color online) (a) Calculated energy levels as a function of ϕ at 240 GHz for $S = 1/2$ and $I = 9/2$ for $B_0 40^\circ$ from the c-axis. Closed and open symbols shown for each ΔM_I transition correspond to $M_s = +1/2$ and -1/2. (b) Experimental 93Nb Mims ENDOR at 5 K and 240 GHz for the same orientation.

The principal value close to the c-axis. The slight deviation from the c-axis indicates that the local surrounding of the Cr$^{5+}$ ion is slightly distorted as compared to that for Nb$^{5+}$ ion in the undoped lattice.

At some crystal orientations 93Nb ($I = 9/2$) ENDOR is also observed. ENDOR spectra
for field about 40° from the crystal c-axis is shown in Fig. 6(b). We speculate that at most orientations the SHF interaction is too small to give an appreciable ENDOR intensity, but it can be detected when the field is along the Nb-Cr dipolar direction because of the largest dipolar interaction in this direction. Since Cr and Nb ions are fairly well separated (Cr-Nb: \(\sim 6.2 \) Å), the dipolar contribution to the Cr-Nb SHF interaction can be estimated using a point dipolar approximation as \(b[3\cos^2(\psi)-1] \) with \(b \sim 0.08 \) MHz, where \(\psi \) is the angle between Cr-Nb dipolar axis and \(B_0 \). While the limited data prevents a detailed analysis, the \(^{93}\text{Nb} \) ENDOR spectrum in Fig. 6 can be simulated with a quadrupole tensor \(Q[3\cos^2(\theta)-1] \) with \(|Q| = 0.82 \) MHz under the assumption that the quadrupole tensor is nearly axial with the principal direction along the crystal c-axis.

IV. SUMMARY

We have measured the electron spin relaxation times in Cr:K\(_3 \)NbO\(_8 \) using pulsed EPR at 9.7 and 240 GHz. The SHF couplings of the electron spin with the neighboring potassium nuclei have also been determined using pulsed Mims ENDOR at 240 GHz. The ENDOR results show that the SHF interaction of the Cr unpaired electron with neighboring potassium (labeled as K2 and K2’ in Fig. 1) and the niobium nuclei is responsible for the electron spin-spin relaxation \(T_2 \) process. An unpaired spin density of about 0.2% on the K2 and K2’ nuclei has been estimated from the isotropic \(^{39}\text{K} \) SHF coupling constant. While the \(T_2 \) time in Cr:K\(_3 \)NbO\(_8 \) is largely frequency independent, its temperature dependence shows a minimum around 20 K that has been tentatively ascribed to the change in the rate of surrounding nuclear spin flip flops. At both 9.7 and 240 GHz the spin-lattice relaxation time \(T_1 \) is dominated by a direct and two Orbach processes. The modes involved in the Orbach processes are assigned to bending vibrations, translational lattice vibrations and/or libration modes of the CrO\(_3^- \) ion. Furthermore, the direct process contribution to \(T_1 \) at 240 GHz is found to be about more than two orders of magnitude larger than the contribution at 9.7 GHz. Surprisingly, the contribution ratio is closer to an \(\omega^3 \coth(h\omega/2kT) \) dependence in a non-Kramer’s system than it is to the \(\omega^5 \coth(h\omega/2kT) \) dependence expected for a Kramer’s system. Further theoretical analysis is necessary to understand this divergence. Finally, the frequency dependence of relaxation times in Cr:K\(_3 \)NbO\(_8 \) shows that it is possible to tune \(T_1 \) with the frequency/field while keeping \(T_2 \) relatively the same, a feature useful in
transition metal-ion based spin qubits for quantum information applications.

Acknowledgments

We thank Prof. Ronald J. Clark of Chemistry and Biochemistry department of the Florida State University for crystal structure determination of K3NbO8. SN and JvT acknowledge the State of Florida and NSF Cooperative Agreement grant DMR0654118 and NSF grant DMR0520481 for financial support. NSD acknowledges NSF for funding through grant DMR0506946.

* Current address: London Center for Nanotechnology, University College London, London-WC1H0AH, UK.
† Corresponding author. vantol@magnet.fsu.edu
1 B. Cage, A. Weekley, L. -C. Brunel and N. S. Dalal, Anal. Chem. 71, 1951 (1999).
2 S. Nellutla, K.-Y. Choi, M. Pati, J. van Tol, I. Chiorescu and N. S. Dalal, Phys. Rev. Lett. 99, 137601 (2007).
3 P. Hoefer, A. Grupp, G. Nebenfuehr and M. Mehring, Chem. Phys. Lett. 132, 279 (1986).
4 H. Barkhwjsen, R. de Beer, A. F. Deutz, D. van Ormond and G. Vökel, Solid State Comm. 49, 679 (1984).
5 R. C. DuVarney and J. M. Spaeth, Solid State Comm. 32, 1237 (1979).
6 N. S. Dalal and P. K. Kahol, Solid State Comm. 70, 623 (1989).
7 D. Zverev, H. Vrielinck, F. Callens, P. Matthys, S. Van Doorslaer and N. M. Khaidukov, Phys. Chem. Chem. Phys. 10, 1789 (2008).
8 J. van Tol, L. C. Brunel and R. J. Wylde, Rev. Sci. Inst. 76, 074101 (2005).
9 G. M. Morley, L.C. Brunel and J. van Tol, Rev. Sci. Inst. (to be published). Article is available at http://arxiv.org/abs/0803.3054.
10 N. S. Dalal, J. M. Millar, M. S. Jagadeesh and M. S. Seehra, J. Chem. Phys. 74, 1916 (1981).
11 A. Schweiger and G. Jeschke, Principles of Pulse Electron Paramagnetic Resonance (Oxford University Press, Oxford, 2001).
A. Abragam and B. Bleaney, *Electron Paramagnetic Resonance of Transition ions* (Clarendon Press, Oxford, 1970).

S. S. Eaton, J. Harbridge, G. A. Rinard, G. R. Eaton and R. T. Weber, Appl. Magn. Reson. 20, 151 (2001).

L. K. Aminov, I. N. Kurkin, S. P. Kurzin, D. A. Lukoyanov, I. Kh. Salikhov and R. M. Rakhmatullin, JETP 84, 183 (1997).

H. Haeuseler and G. Haxhillazi, J. Raman Spectrosc. 34, 339 (2003).

I. M. Brown, J. Chem. Phys. 60, 4930 (1974).

I. M. Brown, J. Chem. Phys. 65, 630 (1976).

A. E. Stillman, L. J. Schwartz and J. H. Freed, J. Chem. Phys. 73, 3502 (1980).

K. Nakagawa, M. B. Candelaria, W. W. C. Chik, S. S. Eaton and G. R. Eaton, J. Magn. Reson. 98, 81 (1992) and the references therein.

M. T. Bennebroek and J. Schmidt, J. Magn. Reson. 128, 199 (1997).

B. Epel, A. Pöppl, P. Manikandan, S. Vega and D. Goldfarb, J. Magn. Reson. 148, 388 (2001).

J. van Tol, L. C. Brunel and P. Wyder, Bull. Am. Phys. Soc. 44, 1130 (1999).

S. Li and J. F. Clauser, Phys. Rev. A. 49, 2702 (1994).