Can a Borel group be generated by a Hurewicz subspace?

Lyubomyr Zdomskyy

Abstract

In this paper we formulate three problems concerning topological properties of sets generating Borel non-σ-compact groups. In case of the concrete $F_{\sigma\delta}$-subgroup of $\{0,1\}^{\omega\times\omega}$ this gives an equivalent reformulation of the Scheepers diagram problem.

Introduction

The Hurewicz property was introduced in [5] as a cover counterpart of the σ-compactness: a topological space X is said to have this property, if for every sequence $(u_n)_{n\in\omega}$ of open covers of X there exists a sequence $(v_n)_{n\in\omega}$, where each v_n is a finite subset of u_n, such that each element $x \in X$ belongs to $\bigcup v_n$ for all but finitely many $n \in \omega$. It is easy to see that each σ-compact space is Hurewicz (= has the Hurewicz property). The converse statement is known to fail in ZFC, see [6]. By a Borel space we mean a separable metrizable space which is a Borel subset of its completion. This paper is devoted to problems close to the subsequent one.

Problem 1. Can a Borel non-σ-compact group be generated by its Hurewicz subspace?

This problem is especially interesting for the concrete subgroup G of $\{0,1\}^{\omega\times\omega}$ (standardly endowed with the coordinatewise addition modulo 2) being equivalent to the “Hurewicz” part of the Scheepers diagram problem (see [6 Problems 1,2], [14 Problems 4.1,4.2], [12 Problem 1], and [13 Problem 3.2]), where

$$G = \{ x \in \{0,1\}^{\omega^2} : \text{for every } j \in \omega \text{ and for all but finitely many } i \in \omega \ (x_{i,j} = 0) \}. $$

In order to formulate the Scheepers diagram problem we have to recall some definitions. M. Scheepers in his work [10] introduced a long list of new properties looking similar to the Hurewicz one, and thus gave rise to the branch of set- theoretic topology known as Selection Principles. Selection principles may be thought as some combinatorial conditions on the family of open covers of a topological space. Let \mathcal{A} and \mathcal{B} be a families of covers of a topological space X. Following [10] we say that X has the property

- $\bigcup_{\text{fin}}(\mathcal{A},\mathcal{B})$, if for every sequence $(u_n)_{n\in\omega}\mathcal{A}^{\omega}$ there exists a sequence $(v_n)_{n\in\omega}$, where each v_n is a finite subset of u_n, such that $\{\bigcup v_n : n \in \omega\} \in \mathcal{B}$;

- $S_{\text{fin}}(\mathcal{A},\mathcal{B})$, if for every sequence $(u_n)_{n\in\omega} \in \mathcal{A}^{\omega}$ there exists a sequence $(v_n)_{n\in\omega} \in \mathcal{A}^{\omega}$, where each v_n is a finite subset of u_n, such that $\bigcup\{v_n : n \in \omega\} \in \mathcal{B}$.
Throughout the paper \mathcal{A} and \mathcal{B} run over the families \mathcal{O}, Ω, and Γ of all open (ω, γ-) covers of X. Given a family $u = \{U_i : i \in I\}$ of subsets of a set X, we define the map $\mu_u : X \rightarrow \mathcal{P}(I)$ letting $\mu_u(x) = \{i \in I : x \in U_i\}$ (μ_u is nothing else but the Marczewski “dictionary” map introduced in [9]). In what follows $I \in \{\omega, \omega^2\}$. Depending on the properties of $\mu_u(X)$ a family $u = \{U_n : n \in \omega\}$ is defined to be

- an ω-cover $\mathbb{[\mathbb{I}]}$, if the family $\mu_u(X)$ is centered, i.e. for every finite subset K of X the intersection $\bigcap_{x \in K} \mu_u(x)$ is infinite;
- a γ-cover of X $\mathbb{[\mathbb{I}]}$, if for every $x \in X$ the set $\mu_u(x)$ is cofinite in ω, i.e. $\omega \setminus \mu_u(x)$ is finite.

We shall consider here four selection principles: $\bigcup_{\text{fin}} (\mathcal{O}, \Gamma)$, $\bigcup_{\text{fin}} (\mathcal{O}, \Omega)$, $\bigcup_{\text{fin}} (\mathcal{O}, \mathcal{O})$ and $S_{\text{fin}}(\Gamma, \Omega)$. Let us note that $\bigcup_{\text{fin}} (\mathcal{O}, \Gamma)$ is nothing else but the Hurewicz property. Concerning $\bigcup_{\text{fin}} (\mathcal{O}, \mathcal{O})$, it is the classical Menger covering property introduced in [8]. We are in a position now to formulate the

Scheepers diagram problem.

1. Does the property $\bigcup_{\text{fin}} (\mathcal{O}, \Omega)$ imply $S_{\text{fin}}(\Gamma, \Omega)$?
2. And if not, then does $\bigcup_{\text{fin}} (\mathcal{O}, \Gamma)$ imply $S_{\text{fin}}(\Gamma, \Omega)$?

One may ask the same question as in Problem $\mathbb{[\mathbb{I}]}$ for properties $\bigcup_{\text{fin}} (\mathcal{O}, \Omega)$ and $\bigcup_{\text{fin}} (\mathcal{O}, \mathcal{O})$.

Problem 2. Can a Borel non-σ-compact group be generated by its subspace with the property $\bigcup_{\text{fin}} (\mathcal{O}, \Omega)$?

Problem 3. Can a Borel non-σ-compact group be generated by its subspace with the property $\bigcup_{\text{fin}} (\mathcal{O}, \mathcal{O})$?

The subsequent theorem, which is the main result of this paper, is the reformulation of a Scheepers diagram problem in algebraic manner.

Theorem 4. The property $\bigcup_{\text{fin}} (\mathcal{O}, \Gamma)$ (resp. $\bigcup_{\text{fin}} (\mathcal{O}, \Omega)$, $\bigcup_{\text{fin}} (\mathcal{O}, \mathcal{O})$) implies $S_{\text{fin}}(\Gamma, \Omega)$ if and only if the group G is not generated by its subspace with the property $\bigcup_{\text{fin}} (\mathcal{O}, \Gamma)$ (resp. $\bigcup_{\text{fin}} (\mathcal{O}, \Omega)$, $\bigcup_{\text{fin}} (\mathcal{O}, \mathcal{O})$).

In other words, the positive answer onto the Scheepers diagram problem (1) (resp. (2)) is equivalent to the negative answer onto Problem $\mathbb{[\mathbb{II}]}$ (resp. Problem $\mathbb{[\mathbb{III}]}$) in case of the group G.

The group G is a rather simple object from the point of view of Descriptive Set Theory. For every $j \in \omega$ its projection onto $\{0, 1\}^{\omega \times \{j\}}$ is homeomorphic to \mathbb{Q} being a countable metrizable space without isolated points. From the above it follows that G is a countable intersection of F_σ subsets of $\{0, 1\}^{\omega^2}$ (i.e. it is an $F_{\sigma\delta}$- or, equivalently, Π^0_3- subset) homeomorphic to \mathbb{Q}^{ω^2}. Therefore it is a nowhere locally-compact, and it fails to have the property $\bigcup_{\text{fin}} (\mathcal{O}, \mathcal{O})$. For more simple groups from the point of view of Borel hierarchy Problem $\mathbb{[\mathbb{II}]}$ can be answered in negative.

Proposition 5. No Borel non-σ-compact group B can be generated by its subspace X with the property $\bigcup_{\text{fin}} (\mathcal{O}, \Gamma)$ provided B is an F_σ- or G_{δ}- subspace of a complete metric space.
Recall that a map \(f \) from a topological space \(X \) to a topological space \(Y \) is \textit{Borel}, if for every Borel subset \(B \) of \(Y \) its preimage \(f^{-1}(B) \) is a Borel subset of \(X \). The subsequent statement answers Problem 3 in positive under the Continuum Hypothesis. On the other hand, it is known that the properties \(\bigcup_{f_{\text{in}}}(\Theta, \Omega) \) and \(\bigcup_{f_{\text{in}}}(\Theta, \Theta) \) coincide in some models of ZFC, see [17]. Therefore the negative answer onto Problem 2 would imply that the negative answer onto Problem 3 is consistent as well.

Proposition 6. Under the Continuum Hypothesis a metrizable separable group \(B \) can be generated by its subspace \(X \) with the property \(\bigcup_{f_{\text{in}}}(\Theta, \Theta) \) provided it is a Borel homomorphic image of a nonmeager metrizable separable group. In particular, \(G \) is generated by its subspace with the property \(\bigcup_{f_{\text{in}}}(\Theta, \Theta) \) under CH.

Remark. None of the known methods of construction of spaces with the property \(\bigcup_{f_{\text{in}}}(\Theta, \Gamma) \) can give a subspace of a Borel non-\(\sigma \)-compact group generating it. All finite powers of spaces with the property \(\bigcup_{f_{\text{in}}}(\Theta, \Gamma) \) constructed in [6] Theorem 5.1, [15] Theorem 5.1, and [2] Theorem 10(1)] have the property \(\bigcup_{f_{\text{in}}}(\Theta, \Theta) \) or even \(\bigcup_{f_{\text{in}}}(\Theta, \Gamma) \), and hence so is any group they generate. But every Borel (even analytic) space with the property \(\bigcup_{f_{\text{in}}}(\Theta, \Theta) \) is \(\sigma \)-compact, see [1]. While the Sierpinski sets \(S \) considered in [6] and [11] have the subsequent property: for every Borel subset \(B \) containing \(S \) there exists a \(\sigma \)-compact \(L \) such that \(S \subset L \subset B \), see [3].

Concerning the property \(\bigcup_{f_{\text{in}}}(\Theta, \Omega) \), all known examples (besides Sierpinski sets) have the property \(\bigcup_{f_{\text{in}}}(\Theta, \Theta) \) in all finite powers, and hence can not generate non-\(\sigma \)-compact Borel group.

Proofs

In what follows \(A \subset^{*} B \) standardly means that \(A \setminus B \) is finite. In our proofs we shall exploit set-valued maps. By a \textit{set-valued map} \(\Phi \) from a set \(X \) into a set \(Y \) we understand a map from \(X \) into \(\mathcal{P}(Y) \) and write \(\Phi : X \rightarrow Y \) (here \(\mathcal{P}(Y) \) denotes the set of all subsets of \(Y \)). For a subset \(A \) of \(X \) we put \(\Phi(A) = \bigcup_{x \in A} \Phi(x) \subset Y \). The set-valued map \(\Phi \) between topological spaces \(X \) and \(Y \) is said to be

- \textit{compact-valued}, if \(\Phi(x) \) is compact for every \(x \in X \);
- \textit{upper semicontinuous}, if for every open subset \(V \) of \(Y \) the set \(\Phi^{-1}(V) = \{ x \in X : \Phi(x) \subset V \} \) is open in \(X \).

For a set \(X \) we can identify \(\mathcal{P}(X) \) with the compact space \(\{0, 1\}^{X} \) via the map \(\chi_{A} \rightarrow \chi_{A} \in \{0, 1\}^{X} \) assigning to a subset of \(X \) its characteristic function. A family \(\mathcal{A} \) of subsets of a set \(X \) is called \textit{upward closed}, for every \(A \in \mathcal{A} \) and \(B \supseteq A \) we have \(B \in \mathcal{A} \). For a set \(A \subset X \) we make the subsequent notation: \(\uparrow A = \{ B \subset X : A \subset B \} \). The following lemma is a more convenient reformulation of Theorem 4.

Lemma 7. Let \(\mathcal{P} \) be a topological property preserved by images under upper semicontinuous compact-valued maps. Then the following conditions are equivalent:

1. The property \(\mathcal{P} \) implies \(S_{f_{\text{in}}}(\Gamma, \Omega) \);
2. for every (upward-closed) \(\mathcal{F} \subset \mathcal{P}(\omega^{2}) \) with the property \(\mathcal{P} \) such that \(\omega \times \{ j \} \subset^{*} F \) for every \(F \in \mathcal{F} \) and \(j \in \omega \), there exists a sequence \((K_{j})_{j \in \omega} \) of finite subsets of \(\omega \) such that each element of the smallest filter containing \(\mathcal{F} \) meets \(\bigcup_{n \in \omega} K_{j} \times \{ j \} \).
Proof. (1) ⇒ (2). It simply follows from definition of the property $S_{\text{fin}}(\Gamma, \Omega)$ and the observation that $\{\{F \in \mathcal{F} : F \ni (i, j)\} : i \in \omega\}$ is an open γ-cover of \mathcal{F} for every $j \in \omega$.

(2) ⇒ (1). Let X be a topological space with the property \mathcal{P} and $(u_j)_{j \in \omega}$ be a sequence of open γ-covers of X. Let us write u_j in the form $u_j = \{U_{i,j} : i \in \omega\}$. Set $u = \{U_{i,j} : i, j \in \omega\}$. Consider the set-valued map $\Phi : X \to \mathcal{P}(\omega^2)$, $\Phi : x \mapsto \mu_x(x)$. Applying Lemma 2 of [17], we conclude that Φ is compact-valued and upper semicontinuous, and hence $\mathcal{F} := \Phi(X)$ has the property \mathcal{P}. The definition of Φ implies that \mathcal{F} is upward closed. Since u_j is a γ-cover of X for every $j \in \omega$, $\omega \times \{j\} \subset^* F$ for each $F \in \mathcal{F}$. From the above it follows that there exists a sequence $(K_j)_{j \in \omega}$ of finite subsets of ω such that each element of the smallest filter \mathcal{U} containing \mathcal{F} meets some $K_j \times \{j\}$. Then the family $\{U_{i,j} : i \in K_j\}$ is easily seen to be an ω-cover of X, which finishes our proof. \hfill \Box

The properties $\bigcup_{\text{fin}}(\mathcal{O}, \mathcal{O})$, $\bigcup_{\text{fin}}(\mathcal{O}, \Omega)$, and $\bigcup_{\text{fin}}(\mathcal{O}, \Gamma)$ satisfy the conditions of the above lemma by [17] Lemma 1.

Proof of Theorem 4. Let \mathcal{P} be any of the properties $\bigcup_{\text{fin}}(\mathcal{O}, \mathcal{O})$, $\bigcup_{\text{fin}}(\mathcal{O}, \Omega)$, and $\bigcup_{\text{fin}}(\mathcal{O}, \Gamma)$. Assuming that \mathcal{P} implies $S_{\text{fin}}(\Gamma, \Omega)$, fix a subspace X of \mathcal{G} with the property \mathcal{P}. Let us denote by φ the map assigning to a subset A of ω^2 its characteristic function $\chi_A \in \{0, 1\}^{\omega^2}$. Then the space $\mathcal{F} = \{\omega^2 \setminus A : A \in \varphi^{-1}(X)\}$ has the property \mathcal{P} being homeomorphic to X, and $\omega \times \{j\} \subset^* F$ for every $F \in \mathcal{F}$ by our choice of $\mathcal{G} \supset X$. Applying Lemma 4 we conclude that there exists a sequence $(K_j)_{j \in \omega}$ of finite subsets of ω such that $\bigcup_{j \in \omega} K_j \times \{j\}$ meets all elements of the smallest filter containing \mathcal{F}. Now, a direct verification shows that the characteristic function $\chi_{\bigcup_{j \in \omega} K_j \times \{j\}}$ can not be represented as a sum of elements of X, which means that X does not generate \mathcal{G}.

Next, let us assume that \mathcal{P} does not imply $S_{\text{fin}}(\Gamma, \Omega)$ and apply Lemma 4 to find an upward closed family \mathcal{F} of subsets of ω^2 such that for every sequence $(K_j)_{j \in \omega}$ of finite subsets of ω there exists a finite subset \mathcal{A} of \mathcal{F} such that

$$(\bigcup_{j \in \omega} K_j \times \{j\}) \cap \bigcap_{\mathcal{A}} \mathcal{A} = \emptyset.$$

Set $X = \{\chi_{\omega^2 \setminus F} : F \in \mathcal{F}\}$. Then X has the property \mathcal{P} being homeomorphic to \mathcal{F}. We claim that X is a set of generators of \mathcal{G}. Indeed, let us fix any $g \in \mathcal{G}$ and set $K_j = \{i \in \omega : g_{i,j} = 1\}$. Then each K_j is finite by the definition of \mathcal{G}. For the sequence $(K_j)_{j \in \omega}$ find a finite subset $\mathcal{A} = \{A_i : i \leq n\}$ of \mathcal{F} as above. Using the upward closedness of \mathcal{F}, define inductively a finite subset $\mathcal{B} = \{B_i : i \leq n\}$ of \mathcal{F} letting $B_0 = A_0$ and $B_k = A_k \cup \bigcup_{l < k}(\omega^2 \setminus B_l)$ for all $0 < k \leq n$. It is easy to prove by induction over $k \leq n$ that $(\omega^2 \setminus B_l) \cap (\omega^2 \setminus B_k) = \emptyset$ for all $l < k$ and $\bigcap_{l \leq k} B_k = \bigcap_{l \leq k} A_k$, consequently $\bigcap \mathcal{B} = \bigcap \mathcal{A} \subset (\omega^2 \setminus \bigcup_{j \in \omega} K_j \times \{j\})$. Let $C_k = B_k \cup (\omega^2 \setminus \bigcup_{j \in \omega} K_j \times \{j\})$, $k \leq n$. Then $C = \{C_k : k \leq n\}$ has the following properties

(i) $\bigcup C = \omega^2 \setminus \bigcup_{j \in \omega} K_j \times \{j\};$

(ii) $(\omega^2 \setminus C) \cap (\omega^2 \setminus D) = \emptyset$ for all $C, D \in \mathcal{C};$

(iii) $\mathcal{C} \subset \mathcal{F}.$

It suffices to note that $\{\chi_{\omega^2 \setminus C_k} : k \leq n\} \subset X$ by (iii) and $\chi_{\omega^2 \setminus C_0} + \cdots + \chi_{\omega^2 \setminus C_n} = \chi_{\bigcup_{j \in \omega} K_j \times \{j\}} = g$, which finishes our proof. \hfill \Box
Proof of Proposition 5. First assume that B is a non-σ-compact G_δ-subspace of a complete metric space and fix a subspace X of B with the property $\bigcup_{n \in \omega} (O, \Gamma)$. The same argument as in [6, Theorem 5.7] gives a σ-compact subset L of B such that $X \subset L$. Since B is not σ-compact, it is not generated by L, and hence by X as well.

Now consider a non-σ-compact Borel group B which is an F_σ subset of a complete metric space Y and write B in the form $\bigcup_{n \in \omega} B_n$, where each B_n is closed in Y. Let X be a subspace of B with the property $\bigcup_{n \in \omega} (O, \Gamma)$. Since the property $\bigcup_{n \in \omega} (O, \Gamma)$ is preserved by closed subspaces, $X \cap B_n$ has the property $\bigcup_{n \in \omega} (O, \Gamma)$ for all $n \in \omega$. In addition, each B_n is a G_δ-subspace of Y being closed. From the above it follows that there exists a σ-compact L_n such that $X \cap B_n \subset L_n \subset B_n$, and consequently $X \subset \bigcup_{n \in \omega} L_n \subset B$. It suffices to apply the same argument as in the first part of the proof.

Proof of Proposition 6. Let C be a nonmeager metrizable separable topological group and $f : C \to B$ be a surjective Borel homomorphism. Almost literal repetition of the proof of Lemma 29 from [11] give us a subspace Z of C such that Z generates C and each Borel image of Z has the property $\bigcup_{n \in \omega} (O, O)$, see [11, Corollary 30]. It suffices to note that B is generated by $f(Z)$.

Next, let us show that under CH the group G is generated by its subspace with the property $\bigcup_{n \in \omega} (O, O)$. Indeed, let us denote by τ the Tychonoff product topology on $\{0, 1\}^{\omega \times \omega} = \prod_{j \in \omega} \{0, 1\}^{\omega \times \{j\}}$, where $\{0, 1\}^{\omega \times \{j\}}$ is considered with the discrete topology for each $j \in \omega$. Then $\tau|G$ is stronger than the natural topology on G, and $(G, \tau|G)$ is a completely metrizable topological group being a countable product of countable discrete groups.

Acknowledgements. The author wishes to express his thanks to professor Taras Banakh for supervising the writing of this paper.

References

[1] Arhangel’skii A.V., Hurewicz spaces, analytic sets, and fan tightness of function spaces, Soviet Mathematical Doklady 33 (1986), 396–399.

[2] Bartoszyński T., Tsaban B., Hereditary Topological Diagonalizations and the Menger-Hurewicz Conjectures, Proc. Amer. Math. Soc., to appear. http://arxiv.org/abs/math.LO/0208224

[3] Banakh T., Zdomskyy L., Separation properties between σ-compactness and the Hurewicz property, in progress.

[4] Gerlits J., Nagy Zs., Some properties of $C(X)$, I, Topology Appl. 14 (2) (1982), 151–163.

[5] Hurewicz W., Über Folgen stetiger Functionen, Fund. Math. 9 (1927), 193-204.

[6] Just W., Miller A., Scheepers M., Szeptycki S., The combinatorics of open covers II, Topology Appl. 73 (1996), 241–266.

[7] Kechris A., Classical Descriptive Set Theory, Grad. Texts in Math. 156, Springer, 1995.
[8] Menger K., *Einige Überdeckungssätze der Punktmengenlehre*, Sitzungsberichte. Abt. 2a, Mathematic, Astronomie, Physic, Meteorologie und Mechanic (Wiener Akademie) **133** (1924) 421–444.

[9] Marczewski E. (Szpilrajn), *The characteristic function of a sequence of sets and some of its applications*, Fund. Math. **31** (1938), 207–233.

[10] Scheepers M., *Combinatorics of open covers I: Ramsey Theory*, Topology Appl. **69** (1996), 31–62.

[11] Scheepers M., Tsaban B., *The combinatorics of Borel covers*, Topology and Appl. **121** (2002) 357-382.

[12] Tsaban B., *Selection principles in mathematics: A milestone of open problems*, Note Mat. **22:2** (2003/2004), 179–208. http://arxiv.org/abs/math.GN/0312182

[13] Tsaban B., *Some new directions in infinite-combinatorial topology*, submitted. http://arxiv.org/abs/math.GN/0409069

[14] Tsaban B., (eds.), SPM Bulletin **2** (2003) http://arxiv.org/abs/math.GN/0302062

[15] Tsaban B., Zdomskyy L., *Scales, Fields, and a problem of Hurewicz*, submitted to J. Amer. Math. Soc.. http://arxiv.org/abs/math.GN/0507043.

[16] Vaughan J., *Small uncountable cardinals and topology*, in Open problems in topology (J. van Mill, G.M. Reed, Eds.), Elsevier Sci. Publ., Amsterdam, 1990, pp. 195-218.

[17] Zdomskyy L., *A semifilter approach to selection principles*, Comment. Math. Univ. Carolin. **46** (2005), 525–540. http://arxiv.org/abs/math.GN/0412498

Department of Mechanics and Mathematics, Ivan Franko Lviv National University, Universytetska 1, Lviv, 79000, Ukraine.

E-mail address: lzdomy@rambler.ru