Role of Nanomedicine in Management and Prevention of COVID-19

Jitendra N. Wankar†‡, Vivek K. Chaturvedi2, Chandrashekhar Bohara3, Mohan P. Singh2 and Raghvendra A. Bohara4*†

1 The Council for Scientific and Industrial Research, Centre for Cellular and Molecular Biology-Annexe-II, Medical Biotechnology Complex, Hyderabad, India, 2 Centre of Biotechnology, University of Allahabad, Prayagraj, India, 3 Kurana Trust, Bengaluru, India, 4 Centre for Interdisciplinary Research, D. Y. Patil Education Society, Kolhapur, India

COVID-19, or the Coronavirus disease 2019, caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has become a pandemic. At the time of writing this (July 28, 2020), more than 17 million people have become affected and 0.7 million people have lost their lives and still, this number is continuing to rise with many people losing their lives each day. This is one of the biggest catastrophes in human history since world war II, in which the whole world is affected by this frightening situation. The recent outbreak of COVID-19 has created a global emergency for the management of the crisis. COVID-19 is a severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) caused by a novel coronavirus that has encountered humans for first time, and as a result humans lack the innate immunity to fight against this novel strain of the coronavirus which results in severe miscommunication among health care facilities (Al-Qahtani, 2020; Wu et al., 2020). Due to the pandemic situation, it was difficult to handle the enormous amounts of patients who required treatment, which placed a burden on the healthcare industry, and the death rate was higher than expected. The majority of the world experienced a complete lockdown situation to combat the outbreaks and limit the spreads of the virus (Liu et al., 2020). The term “Corona” is the Latin name for “crown” and has been assigned to the coronavirus due to its structure seen under electron transmission microscopy. It is a typical RNA virus family (Figure 1) that is divided into four...
Nanomedicine has proven its role in medicine to deliver the drug at the target site with minimal side effects. Several nanotechnology-based products are currently on the market and are under clinical investigation.

Most common problems with drug molecules for COVID-19 like infection

1. BCS class II (high permeability and low solubility), III (high solubility and low permeability), IV (low solubility and low permeability)
2. Non-specific drug distribution and high dose-related toxicity
3. The short plasma half-life of the drug molecules.

Nanomedicine has many facets that can be precisely utilized to deliver the drug molecules to infected cells, and the targeted ligand conjugated nanoparticle specifically binds with epitopes of the virus that results in inactivation of the virus, causing it to fail to enter the cells. Thus, the infection can be neutralized with nanomedicine-based approaches as shown in Figure 1.

Several nanocarriers have been exploited for drug delivery to solve the problem associated with drug molecules. These can be divided into two categories, polymeric and inorganic nanocarriers.

In many research labs around the world, scientists are working on nanoparticle-based vaccine products which are still in consideration such as Novavax developing a protein subunit of a nanoparticle vaccine + matrix M (adjuvant) (based on recombinant SARS-CoV-2 glycoprotein). The University of Tokyo/Daiichi-Sankyo is working on the RNA based lipid nanoparticles (LNP)-encapsulated mRNA for the SARS-CoV-2 infection-causing viruses. Similarly, The Scientific Research Institute of Vaccines and Sera, Saint Petersburg is working on a nanoparticle vaccine (recombinant protein) (S protein and other epitopes based) (Verma et al., 2017a,c; Das et al., 2019; Khalaj-Hedayati et al., 2020).

INORGANIC AND POLYMER-BASED NANOCARRIERS FOR COVID-19 TREATMENT

A polymer of natural or synthetic origin can form highly complex structures with varying parameters during synthesis. The size, composition and shape can be tailorable, which has a significant impact on the morphology and behavior of the polymeric nanocarrier. Natural, synthetic, and semi-synthetic materials can be used to fabricate the nanocarrier such as polymeric nanoparticles, liposome, cyclodextrin complexes etc.

POLYMERIC SOLID COLLOIDAL NANO PARTICLES

Polymeric nanoparticles enable the safe in-vivo administration of the drug molecules with its unique properties such as improved safety and efficacy, controlled drug release and targeted drug delivery.
FIGURE 1 | Replication cycle and role of nanomedicine in neutralizing the virus infection such as SARS-CoV-2.

delivery (Kumari et al., 2017; Verma et al., 2017b, 2018b; Paul et al., 2018). It also reduces the high dose-related side effects and permeability across the cellular membrane due to its nano-size properties. This beneficial effect of the polymeric nanoparticle can be utilized for drug delivery to revive the existing drug to treat the SARS-CoV-2 infection. Zhang et al. (2020), have developed the poly (lactic-co-glycolic acid) (PLGA) polymer-based nanosponge to tackle SARS-CoV-2 Infectivity. Mainly, human lung epithelial type II cells and human macrophages membrane-coated nanosponge was fabricated with PLGA as the inner core material which shares the same cellular physiology required for the entry of SARS-CoV-2 into host cells. This artificial cellular nanosponge acts as a receiving target for SARS-CoV-2 during incubation where it becomes neutralized and unable to infect the host cells (Kumari et al., 2018). In this way, the polymeric nanoparticle is a potential nanocarrier system to deliver drugs to treat SARS-CoV-2 infection.

LIPOSOMAL TARGETED DELIVERY TO TREAT COVID-19 DISEASE

The liposome is a lipid bilayer vesicle and has been widely utilized for the delivery of hydrophobic and hydrophilic drugs. The liposome can functionize as a ”stealth liposome” that shows long systemic circulation, targeted and stimulus-responsive drug delivery. Due to its biocompatible and biodegradable nature, it is one of the preferred carriers for drug formulation and can be a potential platform for developing the novel formulation to treat COVID-19 infection. Ohno et al. (2009), have studied the synthetic peptides-based liposomes to treat SARS coronavirus infection. The chemically conjugated peptide-liposome is effective for the induction of cytotoxic T lymphocytes that clears the virus load and can be a potential treatment strategy against SERS (Verma et al., 2018a). Tai et al. (2020), Investigated the liposome-based novel formulation of hydroxychloroquine
in Sprague-Dawley (SD) rats as a potential treatment for COVID-19. This inhalable formulation has found a higher drug concentration in the lungs (∼30-fold) with a longer half-life in lung and lower exposure to another organ such as the heart compared to intravenous injection (Arun et al., 2019). Thus, the liposome as a carrier system may impart distinctive advantages for drug delivery to treat the COVID-19 infection.

CYCLODEXTRIN COMPLEXES PREVENT INFECTION AND PROGRESSION OF COVID-19

Cyclodextrin is a natural cyclic polysaccharide containing α, β, and γ as a basic unit. It has been widely explored as a pharmaceutical solubilizer to developed formulation via host-guest complexation to dissolve the hydrophobic and hydrophilic drug molecules (Shah et al., 2020). Currently, cyclodextrin nanoparticles have gained attention due to the presence of multiple units of cyclodextrin that dissolved a higher quantity of drug compared to native cyclodextrin (Khalaj-Hedayati et al., 2020). It is one of the generally recognized as safe (GRAS) materials for human administration and has been proved safe for many decades and has many established formulations on the market. Recently, the FDA has approved the cyclodextrin-based formulation of Remdesivir for the treatment of COVID-19 (Jones et al., 2020), and it has shown promising effects in a clinical scenario against several other viruses such as Nipah virus (Li C. et al., 2020) and MERS-CoV infection (de Wit et al., 2020; Sheahan et al., 2020). Cyclodextrin not only acts a pharmaceutical solubilizer for the mainly hydrophobic drug but it also has anti-infective properties against several viruses (Kumari et al., 2017; Jones et al., 2020) Hence, cyclodextrin may be considered as a potential delivery vehicle for the pulmonary aerosol for localized drug delivery to the lungs.

INORGANIC AND METALLIC BASED NANOCARRIER FOR COVID 19 TREATMENT

Various metal nanoparticles such as gold, silver, platinum, gadolinium, silica, and its hybrid nanostructure can be used to synthesize inorganic nanocarrier for drug delivery (Jadhav et al., 2018; Chaturvedi et al., 2020). The silver nanoparticle is known for its broad-spectrum antimicrobial activity and is an active component in pharmaceutical products such as silver-sulfasalazine where silver ion enhances the antimicrobial property of sulfasalazine drug. It has been used in the treatment

TABLE 1	Inorganic nanocarriers’ roles in the treatment of viruses like SARS-CoV-2.					
S.No.	Name of Nanomaterials	Strategies used	COVID like respiratory viruses	Animal model (Host)	Dose	References
1	Ag₂S nanoclusters	Inhibition of viral proliferation in vitro cells	Porcine epidemic diarrhea virus (PEDV)	Pig	46 µg/ml	(Du et al., 2018)
2	Bio polymeric nano/microspheres N-(2-hydroxypropyl)-3-trimethyl chitosan nano/microsphere (HTCC-NS/MS)	Capable of adsorbing coronaviruses	Human coronavirus NL63 (HCoV-NL63)	Human	10 mg/500 µl	(Ciejka et al., 2017)
3	GO-Ag nanocomposite	Antiviral activity against enveloped viruses	Feline coronavirus (FCoV)	Cat	0.1 mg/ml	(Chen et al., 2016)
4	Diphyllin nanoparticles	Inhibition of endosomal acidification responsible for virus uncoating and cytoplasmic entry	Feline Infectious Peritonitis Virus (FIPV)	Cat	2 µM	(Hu et al., 2017)
5	Ag NPs, Ag NW	Inhibition of cell apoptosis induced by the virus	Transmissible gastroenteritis virus (TGEV)	Pig	3.125–12.5 µg/ml	(Lv et al., 2014)
6	Composites with silver colloid and titanium dioxide nanoparticles	Inhibited the growth of the viruses	Transmissible gastroenteritis virus (TGEV) and porcine epidemic diarrhea virus (PEDV)	Pig	1,000-fold diluted from original	(Cho et al., 2014)
8	PLGA nanoparticles (PLGA-KAg)	Induced cross-protective cell-mediated immune response	Bovine param influenza 3 virus (BPI3V) Swine influenza virus (H1N2)	Pig	2 µg/ml	(Dhakal et al., 2017)
of wound dressing and burn care products. Moreover, silver has recorded anti-cancer, anti-inflammatory, antiplatelet, anti-angiogenesis antifungal, and antibacterial activities. Additionally, silver nanoparticles are under investigation for viricidal effects. Coronavirus has been found to adhere to surfaces and remains there for around 12 h where the silver-based anti-infective coating can neutralize the virus (Rai et al., 2009; Balagna et al., 2020), studied the anti-infective property of silver by developing the Silver nanocluster-silica composite coated facial mask that exerts a viricidal effect against SARS-CoV-2. This coating can be applied to metallic, glass and ceramic surfaces, so it has vast importance and beneficial application for safety in crowded places like supermarkets, hospitals, and schools to limit the spread of SARS-CoV-2 (Balagna et al., 2020). There are several multifunctional metal nanoparticle/hybrid structures that were explored to limit the range of SARS-CoV-2 through their anti-infective properties as shown in Table 1.

NANOMEDICINE AS A PROMISING APPROACH FOR COVID 19 DIAGNOSTICS

During the COVID-19 crisis, there was the urgency to develop the diagnostic kits for the early detection of SARS-CoV-2 infection to restrict the movement of the infectious person. Several laboratory-based tests like chest computed tomography, RT-PCR and point of care tests like detection of antibodies against SARS-CoV19 have been developed. This test can be utilized by medical professionals based on the acute and chronic phase of the viral infection. The efficacy of the test depends on various factors like the invasive nature of the infection, and the development of antibodies against antigens presented by the virus in the human body (Li C. et al., 2020). Nanotechnology has played a significant role in the fabrication of the diagnostic tools at various levels such as lateral flow assay (Pandya et al., 2020). Surface-enhanced Raman spectroscopy-based detection where metallic nanoparticles have a fundamental role in improving the signal of analytes and its discovery by optical, electrical and immunofluorescent approaches (Kumar et al., 2020; Mujjawar et al., 2020). Li C. et al. (2020), have developed a point-of-care, lateral flow immunoassay-based test for the simple and rapid detection of the antibodies (immunoglobulin M (IgM) and IgG antibodies) against SARS-CoV-2 virus in a human blood sample in 15 min where the antigen was coated in gold nanoparticles, which further detect the antibodies by the colorimetric reaction. This test can be utilized for the rapid testing of SARS-CoV-2 carriers, symptomatic or asymptomatic, in hospitals, clinics, and test laboratories (Li Z. et al., 2020). Recently, Li C. et al. (2020) has demonstrated in-depth information about the COVID 19 diagnosis that readers can refer to for a more detailed insight.

CONCLUSION

Nanomedicine is one of the most important fields of science that has played a substantial role in the development of the novel technology to tackle the problems associated with disease treatment and diagnosis. Several nanocarriers are under investigation to improve the conventional drug delivery systems to effectively target drug releases, low dose, reduced toxicity, improved permeability, and controlled release of the drug. Moreover, nanomedicine has also performed significant parts in creating point-of-care testing to tackle infectious diseases like COVID19. Cyclodextrin-based Remdesivir formulation is one of the great success of nanomedicine in the treatment of COVID 19 infection. Additionally, plasmonic nanoparticle (Gold, silver, and its hybrid nanostructure) exert anti-infective activity against COVID 19 and has played a vital role in the development of point-of-care diagnostic tests for its detection. Hence, nanomedicine has provided crucial support to manage the COVID 19 pandemic crisis.

AUTHOR CONTRIBUTIONS

RB: conceived the idea, writing, and data collection. CB: data collection. VC: figure and table. JW: drafting. MS: proofreading and guidelines figure and table. All authors contributed to the article and approved the submitted version.

ACKNOWLEDGMENTS

RB wants to acknowledge Government of Ireland Postdoctoral fellowship Grant GOIPD/2017/1283. We would also like to acknowledge the Science Foundation Ireland (SFI) and the European Regional Development Fund (Grant Number 13/RC/2073).

REFERENCES

Al-Qahtani, A. A. (2020). Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2): emergence, history, basic and clinical aspects. Saudi J. Biol. Sci. 27, 2531–2538. doi: 10.1016/j.sjbs.2020.04.033

Arun, T., Verma, S. K., Panda, P. K., Josephus, R. J., Iha, E., Akbari-Fakhhrabadi, A., et al. (2019). Facile synthesized novel hybrid graphene oxide/cobalt ferrite magnetic nanoparticles based surface coating material inhibit bacterial secretion pathway for antibacterial effect. Mater. Sci. Eng. C Mater. Biol. Appl. 104:109932. doi: 10.1016/j.msec.2019.109932

Balagna, C., Perero, S., Percivalle, E., Nepita, E. V., and Ferraris, M. (2020). Virucidal effect against coronavirus SARS-CoV-2 of a silver nanocluster/silica composite sputtered coating. Open Ceramics 1:100006. doi: 10.1016/j.oceram.2020.100006

Bohara, R. A., Throat, N. D., Mulla, N. A., and Pawar, S. H. (2017). Surface-modified cobalt ferrite nanoparticles for rapid capture, detection, and removal of pathogens: a potential material for water purification. Appl. Biochem. Biotechnol. 182, 598–608. doi: 10.1007/s12010-016-2347-6

Chaturvedi, V. K., Yadav, N., Rai, N. K., Ellah, N. H. A., Bohara, R. A., Rehan, I. F., et al. (2020). Pleuratus sajor-caju-mediated synthesis of silver and gold nanoparticles active against colon cancer cell lines: a new era of herbonanociotics. Mol. 25:3091. doi: 10.3390/molecules25133091

Chauhan, G., Madou, M. J., Kalra, S., Chopra, V., Ghosh, D., and Martinez-Chapa, S. O. (2020). Nanotechnology for COVID-19: therapeutics and vaccine research. ACS Nano. 14, 7760–7782. doi: 10.1021/acsnano.0c04006
Chen, Y.-N., Hsieh, Y.-H., Hsieh, C.-T., Tsou, D.-Y., and Chang, P.-L. (2016). Antiviral activity of graphene-silver nanocomposites against non-enveloped and enveloped viruses. *Int. J. Environ. Res. Public Health* 13(40). doi: 10.3390/ijerph13040430

Cho, I. H., Lee, D. G., and Yang, Y. Y. (2014). Composition with sterilizing activity against bacteria, fungus and viruses, application thereof and method for preparation thereof. US20130129805A1.

Ciejka, J., Wolski, K., Nowakowska, M., Pyrc, K., and Szczubiakia, K. (2017). Biopolymeric nano/microspheres for selective and reversible adsorption of coronaviruses. *Mater. Sci. Eng. C* 76, 735–742. doi: 10.1016/j.msec.2017.03.047

Das, B. K., Verma, S. K., Das, T., Panda, P. K., Parashar, K., Suar, M., et al. (2019). Altered electrical properties with controlled copper doping in ZnO nanoparticles inhibits their cytotoxicity in macrophages by ROS induction and apoptosis. *Chem. Biol. Interact.* 297, 141–154. doi: 10.1016/j.cbi.2018.11.004

de Wit, E., Feldmann, F., Cronin, J., Jordan, R., Okumura, A., Thomas, T., et al. (2020). Prophylactic and therapeutic remdesivir (GS-5734) treatment in the rhesus macaque model of MERS-CoV infection. *Proc. Natl Acad. Sci. U.S.A.* 117, 6771–6776. doi: 10.1073/pnas.1922083117

Dhakal, S., Hiremath, J., Bondra, K., Lakshmanappa, Y. S., Shyu, D.-L., Ouyang, K., Li, Z., Yi, Y., Luo, X., Xiong, N., Liu, Y., Li, S., et al. (2020). Development and evaluation of biocompatible NPs for nonviral gene therapy. *Nanoscale* 12, 20969–20983. doi: 10.1039/D0NR04855B

Hu, C.-M. J., Chang, W.-S., Fang, Z.-S., Chen, Y.-T., Wang, W.-L., Tsai, H.-T., et al. (2014). Composition with sterilizing properties for biomedical application. *Artif. Cells Nanomed. Biotechnol.* 42, 4369–4378. doi: 10.1080/21691401.2018.1505398

Khalaj-Hedayati, A., Chua, C. L. L., Smooker, P., and Lee, K. W. (2018). Altered physiochemical properties in industrially synthesised ZnO nanocrystals. *Nanomicroscopy* 2, 194–205. doi: 10.1016/j.jconrel.2016.12.039

Kumari, P., Panda, P. K., Jha, E., Kumari, K., Nisha, K., Mallick, M. A., et al. (2017). Modified cyclodextrins as broad-spectrum antivirals. *ACS Biomater. Sci. Eng.* 3, 892–899. doi: 10.1021/acsbiomaterials.7b00707

Kumari, P., Panda, P. K., Jha, E., Panda, P. K., Thirumurugan, A., Suar, M., and Parashar, S. K. S., et al. (2018b). Molecular insights to alkaline based bio-fabrication of ZnO nanoparticles and their applications. *Nanomedicine* 13, 2415–2433. doi: 10.1080/21691401.2018.1505746

Kumari, P., Jha, E., Panda, P. K., Thirumurugan, A., Patro, S., Parashar, S. K. S., et al. (2017b). Mechanistic insight into the rapid one-step facile biofabrication of antibacterial silver nanoparticles from bacterial release and their biogenicity and concentration-dependent inhibition in vitro cytotoxicity tocol cells. *RSC Adv.* 7, 40034–40045. doi: 10.1039/C7RA05943D

Verma, S. K., Jha, E., Panda, P. K., Parashar, S., and Shar, M., et al. (2020). Altered physiochemical properties in industrially synthesised ZnO nanoparticles regulate oxidative stress; induce in vivo cytotoxicity in embryonic zebrafish by apoptosis. *Sci. Rep.* 7, 13909. doi: 10.1038/s41598-018-14039-y

Wu, F., Zhao, S., Yu, B., Chen, Y. M., Wang, W., Song, Z. G., et al. (2020). A new coronavirus associated with human respiratory disease in China. *Nature* 579, 265–269. doi: 10.1038/s41586-020-2008-3

Zhang, Q., Honko, A., Zhou, J., Gong, H., Downs, S. N., Vasquez, J. H., et al. (2020). Cellular nanoprisms inhibit SARS-CoV-2 infectivity. *Nano Lett.* 7, 5570–5574. doi: 10.1021/acs.nanolett.0c02278

Conflict of Interest: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2020 Wankar, Chaturvedi, Bhojra, Singh and Bhojra. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.