HOXA5 Regulates Expression of the Progesterone Receptor*

Received for publication, May 15, 2000, and in revised form, June 27, 2000
Published, JBC Papers in Press, June 29, 2000
DOI 10.1074/jbc.C000324200

Venu Raman‡§, Akihiro Tamori‡§§, Mustafa Vali‡, Karen Zeller‡, Dorian Korz¶, and Saraswati Sukumar‡

From the Breast Cancer Program, Johns Hopkins Oncology Center, Baltimore, Maryland 21231

The majority of breast carcinomas show reduced or no expression of the transcription factor, HOXA5. Recently, we have shown that HOXA5 is a potent transactivator of p53 in breast cells and thus may affect the response of breast cancer cells to DNA damage. To determine whether HOXA5 played a role in growth and homeostasis in breast cells, we studied its interaction with the progesterone receptor. The progesterone receptor (PR) belongs to the superfamily of nuclear receptors whose members co-ordinate morphogenesis of the mammary gland in response to binding to their cognate ligands. An increased expression of the endogenous PR gene was seen in MCF-7 cells following induced expression of an exogenously transfected HOXA5 gene. HOXA5, but not HOXB4, -B5, or -B7 activated the PR promoter in two breast cancer cell lines, MCF-7 and Hs578T. Deletion and mutation analysis of the promoter identified a single HOXA5-binding site required for transactivation of the PR gene by HOXA5. HOXA5 binds directly to this site in the PR promoter. Thus, HOXA5 may behave as a transcriptional regulator of multiple target genes, two among which are p53 and the progesterone receptor.

The proper development of the embryonic body plan depends, in large part, on a family of genes called the HOX genes (1, 2). Recently, it was reported that the loss of function of several genes belonging to HOX group 9 impaired proper development of mammary glands in mice during and after pregnancy, thereby leading to a strong deficit in milk production and, hence, an abnormal lactation capacity (3). Our own studies have shown that the expression of one member of this family, HOXA5, is undetectable in nearly 60% of breast cancers (4). One target of HOXA5 action could be the progesterone receptor. The progesterone receptor belongs to a superfamily of nuclear hormone receptors (5, 6). Through its binding to progesterone, PR is implicated in the control of proliferation, differentiation, and development of the breast and uterine tissues (5, 6). In the breast, while estrogen transmits a proliferative signal, progesterone through its interaction with PR, functions as a modulator of estrogen action, leading to pathways of differentiation (5, 6). The most direct evidence for PR function in the mammary gland comes from studies with mice lacking the PR gene (7). The mammary glands of these mice show incomplete ductal branching and failure of lobulo-alveolar development (7). Few upstream regulators of PR gene expression have been identified (8, 9). In this paper, we provide cellular and biochemical evidence that PR is directly regulated by HOXA5.

MATERIALS AND METHODS

Human HOX Recombinant Plasmids—The four HOX cDNAs from pBSHOXAS (John. F. Fuller, UCLA), pBSHOBX4 (C.-P. Chang, Stanford University), pBSHOBX5, and pBSHOXB7 (Corey Langman, UCSF), were subcloned into the KpnI and XbaI sites of the mammalian expression vector, pCDMS (In vitroGen). The nature of the cloned fragments was confirmed by nucleotide sequencing.

Deletion Constructs of Progesterone Receptor Reporter Plasmids—The PR promoter construct was prepared by PCR amplification using the following primers (GenBank accession number X69068) PR forward primer 5’-ACCTTTCTCTATCTGCCT-3’ (nt 15–33) and PR reverse primer 5’-GCTTCTAACAAGCCTCC-3’ (nt 1135–1114), cloned into TA cloning vector (In vitroGen, CA). The 1121-bp insert was excised from the TA cloning vector by XhoI-HindIII restriction enzymes and cloned into pGL2 basic luciferase reporter vector (Promega Corp., Madison, WI). The resulting clone was sequenced and is referred to as –1121-bp PRPLuc. To make deletion constructs, –1121-bp PRPLuc was digested with KpnI and XbaI to create a 3’ and 5’ overhang, respectively, at the multiple cloning site and subjected to exonuclease III nucleotide digestion at 30 °C. At 30-s intervals, a sample was transferred into the S1 nuclease mixture as per the manufacturer’s instructions (Erase a base kit, Promega Corp.). Following ligation and transformation, the clones containing inserts of varying sizes of the promoter region were selected. The clones were designated as follows: –792-bp PRPLuc, –640-bp PRPLuc, –294-bp PRPLuc, –143-bp PRPLuc, –67-bp PRPLuc, and –48-bp PRPLuc. In addition, we generated a clone lacking the region with a canonical HOXA5-binding site located close to the transcription start site. This was done by digesting –1121-bp PRPLuc with AegI and HindIII, followed by recessed end filling with Klenow enzyme followed by self-ligation. The resulting clone is referred to as Δ68 to –1-bp PRPLuc.

Site-directed Mutagenesis—The core HOXA5-binding site (nt –62 to –59) in the –1121-bp PRPLuc and –67-bp PRPLuc construct was mutated using the Altered Sites™ in vitro Mutagenesis System (Promega Corp.) according to the manufacturer’s instructions. Mutations were confirmed by nucleotide sequencing.

DNA Transfection and Reporter Plasmid Assay—MCF-7 and Hs578T breast cancer cell (ATCC, Manassas, VA) were maintained in Dulbeco’s modified Eagle’s medium with 10% fetal bovine serum. Cells were plated at 5 × 10^6/60-mm dish. 24 h later, cells were transfected (PanVera Corp.) with 2 µg of the indicated reporter plasmid and/or 1 µg of the expression plasmid pCMVHOXA5, -B5, -B7, or -B7. Transfection efficiency for each assay was assessed by cotransfection of 5 µg of SV40 Renilla luciferase plasmid DNA (Promega Corp.). Luciferase activities were assayed 24 h after transfection using the Dual Luciferase Assay kit (Promega Corp.). The PR promoter-firefly luciferase generated light output was normalized to the light output obtained with Renilla luciferase in each cell line.

The Inducible HOXA5 System—The two plasmids, cedosyne-inducible mammalian expression kit (In vitroGen), was used to generate the clones of MCF-7 cells containing an inducible HOXA5 gene. Briefly, the HOXA5 gene was cloned into the EcoRI site of the vector, pIND, generating the plasmid, pINDHOXA5. MCF-7 cells were transfected with 2 µg each of recombinant pINDHOXA5 and pVgRXX (expresses...
PR Regulation by HOXA5

a heterodimeric receptor which is derived from Drosophila and modified to contain the VP16 transactivation domain and the retinoid X receptor or with 2 μg each of pIND and pVgRXR using LipofectAMINE (PanVera). Six stable clones from each culture (designated MCF7-HOXA5–1 to 6 and MCF7-VGX–1 to 6) were selected for G418 (Life Technologies, Inc.) and zeocin resistance. The inducibility of HOXA5 upon addition of the edysone analog, P onasterone A (5 μM, Invitrogen, Carlsbad, CA), was determined by Western analysis using the polyclonal antibody, anti-HOXA5–2 (Babco, Richmond, CA). Of the six MCF7-HOXA5 clones, only two (MCF7-HOXA–1 and MCF7-HOXA–2) survived passage longer than 2 months.

Preparation of Cell Extracts and Immunoblot Analysis—MCF-7 cells expressing HOXA5 under the control of the edysone-inducible expression system, MCF7-HOXA5 (4), were rinsed gently, twice in phosphate-buffered saline (20 mM Tris, pH 7.5, and 137 mM NaCl) and lysed in lysis buffer (0.5% Nonidet P-40, 20 mM Hepes, pH 7.5, 120 mM KCl, 1 mM MgCl₂, 10% glycerol, 1 mM dithiothreitol, and 0.5 mM phenylmethylsulfonyl fluoride). Blots were incubated with either 1 μg/ml rabbit polyclonal anti-HOXA5 (Babco) antibody, anti-β-actin (IC-18, Sigma), or affinity-purified rabbit polyclonal anti-PR (C-19, Santa Cruz) in 1 x phosphate-buffered saline containing 5% nonfat powdered dry milk and 0.25% Tween 20 for 2 h at room temperature. Immunoreactive proteins were visualized by chemiluminescence and autoradiography.

Gel-shift Assays—Nuclear extracts from SAOS2 cells transiently transfected with pCMV-HOXA5 were prepared, and gel-shift assays were performed as described by Raman et al. (10). The reaction was carried out in a 20-μl final volume. Nonspecific binding was eliminated by incubating 2–5 μg of extract in 20 mM HEPES-HCl, pH 7.9, 50 mM KCl, 1 mM EDTA, 10 mM MgCl₂, 1% (v/v) nonfat milk in a total volume of 20 μg of extract. Following a 10-min incubation at room temperature, 10 μl of the reaction mixture was loaded onto a 2% agarose gel containing 10 μg of 125I-labeled oligonucleotide probe, to which the probe was added, and incubation continued for 15 min. The DNA-protein complexes were separated from the unbound probe in nondenaturing 5% polyacrylamide gels by electrophoresis at 100 V for 3–4 h in 0.25 M Tris-HCl, pH 8.9, 200 mM glycine, 0.002 M EDTA. The gels were placed in 20% (v/v) methanol and 10% (v/v) acetic acid for 4 h at room temperature. Autoradiography was performed on the dried gels.

RESULTS AND DISCUSSION

In this paper, we investigated the hypothesis that HOXA5 plays a role in the development and homeostasis of the breast by regulating the levels of the hormone receptor, PR, which is crucial in its growth and differentiation (5). Seven putative HOX-binding sequences were found in the 1.1-kilobase pairs upstream regulatory sequence of the human progesterone receptor gene. The sequence similarity for the HOX-binding sites is crucial in its growth and differentiation (5). Seven putative HOX-binding sequences were found in the 1.1-kilobase pairs upstream regulatory sequence of the human progesterone receptor gene. The sequence similarity for the HOX-binding sites is crucial in its growth and differentiation (5). Seven putative HOX-binding sequences were found in the 1.1-kilobase pairs upstream regulatory sequence of the human progesterone receptor gene. The sequence similarity for the HOX-binding sites is crucial in its growth and differentiation (5). Seven putative HOX-binding sequences were found in the 1.1-kilobase pairs upstream regulatory sequence of the human progesterone receptor gene. The sequence similarity for the HOX-binding sites is crucial in its growth and differentiation (5). Seven putative HOX-binding sequences were found in the 1.1-kilobase pairs upstream regulatory sequence of the human progesterone receptor gene. The sequence similarity for the HOX-binding sites is crucial in its growth and differentiation (5). Seven putative HOX-binding sequences were found in the 1.1-kilobase pairs upstream regulatory sequence of the human progesterone receptor gene. The sequence similarity for the HOX-binding sites is crucial in its growth and differentiation (5). Seven putative HOX-binding sequences were found in the 1.1-kilobase pairs upstream regulatory sequence of the human progesterone receptor gene. The sequence similarity for the HOX-binding sites is crucial in its growth and differentiation (5). Seven putative HOX-binding sequences were found in the 1.1-kilobase pairs upstream regulatory sequence of the human progesterone receptor gene. The sequence similarity for the HOX-binding sites is crucial in its growth and differentiation (5). Seven putative HOX-binding sequences were found in the 1.1-kilobase pairs upstream regulatory sequence of the human progesterone receptor gene. The sequence similarity for the HOX-binding sites is crucial in its growth and differentiation (5). Seven putative HOX-binding sequences were found in the 1.1-kilobase pairs upstream regulatory sequence of the human progesterone receptor gene. The sequence similarity for the HOX-binding sites is crucial in its growth and differentiation (5). Seven putative HOX-binding sequences were found in the 1.1-kilobase pairs upstream regulatory sequence of the human progesterone receptor gene. The sequence similarity for the HOX-binding sites is crucial in its growth and differentiation (5). Seven putative HOX-binding sequences were found in the 1.1-kilobase pairs upstream regulatory sequence of the human progesterone receptor gene. The sequence similarity for the HOX-binding sites is crucial in its growth and differentiation (5). Seven putative HOX-binding sequences were found in the 1.1-kilobase pairs upstream regulatory sequence of the human progesterone receptor gene. The sequence similarity for the HOX-binding sites is crucial in its growth and differentiation (5). Seven putative HOX-binding sequences were found in the 1.1-kilobase pairs upstream regulatory sequence of the human progesterone receptor gene. The sequence similarity for the HOX-binding sites is crucial in its growth and differentiation (5).

To investigate a possible regulation of PR by HOX proteins, a transient transfection assay was performed using the ER+ /PR + human breast cancer cell line, MCF-7. Cells were cotransfected with the reporter plasmid, -1121 bp PR-Luc, together with expression plasmids encoding full-length human HOXAS. Strikingly, we found a 60–66-fold increase in luciferase activity in MCF-7 cells transfected with the reporter plasmid and constructs expressing HOXB4, or another member of the HOX gene family, HOXB7 (Fig. 1C). None of the HOX proteins affected the renilla luciferase activity of the pRL-SV40-Luc control plasmid (data not shown). To extend these observations, we performed similar experiments in Hs578T cells, a human breast cancer cell line that is ER-/PR-. Transactivation of the PR promoter by HOXA5 was also observed here, and the level of activation was comparable with that of MCF-7 cells (Fig. 1C). In these cells, HOXB4 showed a low (up to 10-fold), but consistent, level of activation, but HOXB5 and HOXB7 were inactive. These results suggest that in two separate breast cancer cell lines, expression from the PR promoter is highly stimulated specifically by HOXA5, but not by three other members of the HOX gene family. Also, the ER/PR status of the cells did not influence the ability of HOXA5 to transactivate the cells, suggesting that factors responsible for the transactivation effect are present in both cell types.

We also varied the dose of HOXA5 plasmid DNA in experiments in MCF-7 cells. We found that the activation effect increased as the dose was increased from 0.25 to 1 μg and then declined when 2 μg was used (data not shown). 1 μg of expression plasmid was therefore used in all subsequent experiments. A mutant of HOXA5 that introduced a stop codon leading to a C-terminal truncation was also tested in these experiments. This mutant, which lacked the HOXA5 DNA-binding site, was unable to activate expression from the PR promoter (data not shown). These results indicate that HOXA5 can activate transcription of the PR promoter in this system, and the transactivation effect is due to an interaction of the DNA binding domain of HOXA5 protein with the PR promoter.

To further define the sequence requirements for the transactivation function, deletion constructs of the PR promoter luciferase construct were tested in cotransfection assays with the full-length HOXA5 expression plasmids. Deletion of the -1121 bp PR-Luc construct to -792 bp PR-Luc construct, which removes one putative HOX-binding site, resulted in a 27% reduction in luciferase activity in response to HOXA5 in
MCF-7 cells (Fig. 2A) and a 35% reduction in Luc activity in Hs578T cells (Fig. 2A). A systematic deletion of the next two HOX-binding sites (−460-bp PRPLuc, −294-bp PRPLuc) resulted in only a slight decrease in luciferase activity in both the cell lines. A further deletion to −143 bp (−143-bp PRPLuc) stimulated luciferase activity 40–45% more than the full-length PR-Luc construct in MCF-7 cells but not in Hs578T cells. This increase in Luc activity in MCF-7 cells, but not in Hs578T, suggests the presence of a negative regulatory molecule in Hs578T cells, which is absent in MCF-7 cells, reflecting the genetic heterogeneity between the two cell lines. However, a further deletion to −67 bp resulted in a 2-fold increase in luciferase activity compared with the −143-bp PRPLuc construct in both MCF-7 and Hs578T cells. This stepwise analysis suggested that the site important for transactivation by HOXA5 is located between −67 and −1. In addition, it is quite likely that the removal of a binding site for negative regulatory molecules between −67 and −143 bp within the PR promoter enhances the positive transcriptional ability of HOXA5.

Transfection of HOXB4, -B5, or -B7 along with the −67-bp PRPLuc yielded results similar to those shown in Fig. 1A in MCF-7 and Hs578T cells (Fig. 2B). Further deletion of the last HOXA5-binding site (located at −62 bp), in constructing the −48-bp PRPLuc, resulted in a drastic decrease of luciferase activity in both cell lines. However, luciferase activity was not completely abolished, suggesting the presence of a putative transactivator binding sequence in this region. From the results obtained by the deletion analysis, it appeared that the 3′-most 67 bp, containing only one HOXA5-binding site and the putative transactivator binding sequence, was sufficient for the transactivation. Finally, the specific deletion of these sequences from the full-length PR-Luc construct completely abolished the ability of HOXA5 to transactivate PR-linked reporter activity, providing confirmation that the 3′-most HOXA5-binding site is essential for the activity of PR.

The HOX-binding site that resides at the 3′ end of promoter region contains the core HOX motif, TAAT. To determine whether the “TAAT” core-containing site in the PR promoter is a bona fide HOXA5-binding site, electrophoretic mobility shift assays were performed. We tested the binding of oligonucleotides corresponding to this site to HOXA5 protein present in nuclear extracts of SAOS2 cells transfected with pcDNA-HOXA5. Western analysis of cell extracts using a HOXA5-specific antibody showed the overexpression of the 40–42-kDa HOX protein in HOXA5-transfected MCF-7 cells (data not shown). Equal amounts of protein from cells transfected with vector DNA and pcDNA-HOXA5 were used. Nuclear extracts from vector-transfected and HOXA5-transfected MCF-7 cells were incubated with a 32P-end-labeled 30-mer oligonucleotide probe containing the HOXA5-binding site (Fig. 3A). HOXA5 produced a protein-DNA complex efficiently with the probe containing the wild type sequence (TAAT) (lane 2). Addition of 50-fold molar excess of unlabeled probe resulted in inhibition of this binding (lane 3), while a heterologous probe of a random sequence did not mediate competitive inhibition of protein/DNA binding (lane 4). Furthermore, when cell extracts were mixed with an oligonucleotide probe that carries two mutations (TGGT) in the core binding site, no protein/DNA complex formation was observed (lane 5). Finally, HOXA5 antibodies (lane 6) caused a supershift of the bound HOXA5 protein-oligonucleotide complex. These results, combined with detailed mutational analysis, indicate that the core sequence TAAT is necessary for this binding. These results clearly show that the TAAT-containing sequence present in the −67-bp PR promoter is indeed a HOX-binding sequence.

In a final test to confirm that the site lost in the −48-bp promoter construct is the HOXA5-binding site, we tested the in vivo effects of the same mutations in the core binding site that had abolished DNA-protein complex formation in cell extracts. Transient transfection assays were performed using two −67-bp PRPLuc reporter constructs, MUT-1 containing two mutations (TGGT) or MUT-2 carrying one mutation (TGGT) in the core binding site, no protein/DNA complex formation was observed (lane 5). Finally, HOXA5 antibodies (lane 6) caused a supershift of the bound HOXA5 protein-oligonucleotide complex. These results, combined with detailed mutational analysis, indicate that the core sequence TAAT is necessary for this binding. These results clearly show that the TAAT-containing sequence present in the −67-bp PR promoter is indeed a HOX-binding sequence.
Lane 5 shows binding assay using the mutant oligonucleotide (as described in B) with protein extracts from cells transfected with pCMVHOXA5. Lane 6 shows the supershift caused by binding of HOXA5 protein-oligonucleotide complex to HOXA5 antibodies. The bold arrow indicates the bound probe, while the open arrow shows the supershifted band. *, double-stranded oligonucleotides end-labeled with [γ-32P]ATP. The oligonucleotide probe used contains the HOX-binding site from the PR promoter (B). C, MCF-7 and Hs578T cells were transiently transfected with the constructs of −67-bp PRLuc or −67-bp PRLuc with either a AA to GG or A to G mutation in the core HOX-binding site, along with the expression plasmid pCMVHOXA5. Results are an average of six experiments ± S.D. D, MCF-7 and Hs578T cells were transiently transfected with the constructs of −1121-bp PRLuc or −1121-bp 3' HOX-MUT-2 PRLuc (TAAT to TAGT mutation in the core HOX-binding site), along with the expression plasmid pCMVHOXA5. Results are an average of three experiments ± S.D.

In summary, we have described an effect of HOXA5 upon the protein levels of PR-B isofrom. HOXA5 is a member of a class of proteins known principally for their role in pattern formation during development. Also, an oncogenic function for both murine and human HOX proteins, by overexpression or by une timely expression, has been well established (11, 12). While the oncogenic activity of overexpressed Hox genes has substantial experimental support, these observations and our data suggest additional functions for HOXA5. Our recent studies (4) indicate that HOXA5 is a potent transcriptional activator of p53 in breast cells. Breast cancer cell lines and primary breast cancer specimens displayed a co-ordinate loss of p53 and HOXA5 mRNA and protein expression. We proposed that reduced or lack of expression of HOXA5 could lead to loss of p53 expression, providing a mechanism, other than by mutation, for loss of function of this important tumor suppressor during the development of breast cancer. Based upon the results of the study presented here, we raise the possibility that HOX genes play an important role in normal breast development by regulating the expression of the PR gene and that its loss in breast cancer could influence the transcription and thereby the expression of several key genes important for normal differentiation.

In our experiments, HOXA5 is a strong positive regulator of PR. We have yet to define the biological significance of the relationship described here. The major modulators of PR concentration are the ovarian hormone estrogen and progesterone itself (13). However, even though estrogen levels are biphasic in the mammary gland during menstrual cycle in normal women, the concentrations of PR are uniform, suggesting that its synthesis is not under the exclusive control of estrogen in breast tissues (14). Similar results were obtained using estrogen receptor-α knock-out mice. In the ER null-homozygous mice, PR mRNA was nevertheless detected, suggesting the existence of both estrogen-dependent and -independent gene regulation (15). In this study we have identified HOXA5 as a novel upstream regulator of PR gene expression in normal breast cells and presented evidence for the presence of an additional factor, other than estrogen, that controls PR expres-
sion in breast cancer. Similar to its well known role in body patterning during embryonic development as an “master regulator of gene action,” it is possible that HOXA5 has multiple roles in breast development and that loss of HOXA5 will have a major impact upon the action of multiple genes important in homeostasis.

Acknowledgments—We thank Alan Rein for critically reviewing the manuscript and the members of the Sukumar laboratory for support and discussion.

REFERENCES
1. Veraksa, A., Del Campo, M., and McGinnis, W. (2000) Mol. Genet. Metab. 69, 85–100
2. Greer, J. M., Puetz, J., Thomas, K. R., and Capecchi, M. R. (2000) Nature 403, 661–665
3. Chen, F., and Capecchi, M. R. (1999) Proc. Natl. Acad. Sci. U. S. A. 96, 541–546
4. Raman, V., Martensen, S. A., Reisman, D., Evron, E., Odenwald, W. F., Jaffee, E., Marks, J., and Sukumar, S. (2000) Nature 405, 974–978
5. Shyamala, G., Yang, X., Cardiff, R. D., and Dale, E. (2000) Proc. Natl. Acad. Sci. U. S. A. 97, 3044–3049
6. Conneely, O. M., Lydon, J. P., DeMayo, F., and O’Malley, B. W. (2000) J. Soc. Gynecol. Investig. 7, Suppl. 1, S25–S32
7. Lydon, J. P., DeMayo, F. J., Funk, C. R., Mani, S. K., Hughes, A. R., Montgomery, C. A., Jr., Shyamala, G., Conneely, O. M., and O’Malley, B. W. (1995) Genes Dev. 9, 2266–2278
8. Moutsatsou, P., and Sekeris, C. E. (1997) Ann. N. Y. Acad. Sci. 816, 99–115
9. Katzenellenbogen, B. S. (2000) J. Soc. Gynecol. Investig. 7, Suppl. 1, S33–S37
10. Raman, V., Andrews, M. E., Harkey, M. A., and Raff, R. A. (1993) Int J Dev. Biol. 37, 499–507
11. Cillo, C., Faiella, A., Cantile, M., and Boncinelli, E. (1999) Exp. Cell Res. 248, 1–9
12. van Oostveen, J., Bijl, J., Raaphorst, F., Waloomers, J., and Meijer, C. (1999) Leukemia (Baltimore) 13, 1675–1690
13. Brisken, C., Park, S., Vass, T., Lydon, J. P., O’Malley, B. W., and Weinberg, R. A. (1998) Proc. Natl. Acad. Sci. U. S. A. 95, 5076–5081
14. Battersby, S., Robertson, B. J., Anderson, T. J., King, R. J., and McPherson, K. (1992) Br. J. Cancer 65, 601–607
15. Korach, K. S. (2000) J. Soc. Gynecol. Investig. 7, Suppl. 1, S16–S17
HOXA5 Regulates Expression of the Progesterone Receptor
Venu Raman, Akihiro Tamori, Mustafa Vali, Karen Zeller, Dorian Korz and Saraswati Sukumar

J. Biol. Chem. 2000, 275:26551-26555.
doi: 10.1074/jbc.C000324200 originally published online June 29, 2000

Access the most updated version of this article at doi: 10.1074/jbc.C000324200

Alerts:
• When this article is cited
• When a correction for this article is posted

Click here to choose from all of JBC’s e-mail alerts

This article cites 15 references, 4 of which can be accessed free at http://www.jbc.org/content/275/34/26551.full.html#ref-list-1