Remarks on multi-marginal symmetric Monge-Kantorovich problems

Nassif Ghoussoub*
Department of Mathematics
University of British Columbia
Vancouver BC Canada V6T 1Z2
nassif@math.ubc.ca

Bernard Maurey†
Institut de Mathématiques, UMR 7586 - CNRS
Université Paris Diderot - Paris 7
Paris, France
maurey@math.jussieu.fr

May 5, 2014

Abstract
Symmetric Monge-Kantorovich transport problems involving a cost function given by a family of vector fields were used by Ghoussoub-Moameni to establish polar decompositions of such vector fields into m-cyclically monotone maps composed with measure preserving m-involutions ($m \geq 2$). In this note, we relate these symmetric transport problems to the Brenier solutions of the Monge and Monge-Kantorovich problem, as well as to the Gangbo-Świȩch solutions of their multi-marginal counterparts, both of which involving quadratic cost functions.

1 Introduction
Given Borel probability measures μ_i, $i = 0, 1, \ldots, m - 1$ on domains $\Omega_i \subset \mathbb{R}^d$, and a cost function $c : \Omega_0 \times \Omega_1 \times \ldots \times \Omega_{m-1} \to \mathbb{R}$, the multi-marginal version of Monge’s optimal transportation problem is to minimize:

$$C(T_1, \ldots, T_{m-1}) := \int_{\Omega_0} c(x_0, T_1(x_0), T_2(x_0), \ldots, T_{m-1}(x_0))d\mu_0$$

among all $(m-1)$-tuples of measurable maps $(T_1, T_2, \ldots, T_{m-1})$, where $T_i : \Omega_0 \to \Omega_i$ pushes μ_0 forward to μ_i for all $i = 1, \ldots, m - 1$. The Kantorovich formulation of the problem is to minimize:

$$C(\theta) := \int_{\Omega_0 \times \Omega_1 \times \ldots \times \Omega_{m-1}} c(x_0, x_1, x_2, \ldots, x_{m-1})d\theta$$

among all probability measures θ on $\Omega_0 \times \Omega_1 \times \ldots \times \Omega_{m-1}$ such that the canonical projection

$$\pi_i : \Omega_0 \times \Omega_1 \times \ldots \times \Omega_{m-1} \to \Omega_i$$

pushes θ forward to μ_i for all i.

Note that for any $(m-1)$-tuple $(T_1, T_2, \ldots, T_{m-1})$ such that $T_i \# \mu_0 = \mu_i$ for all $i = 1, 2, \ldots, m - 1$, we can define the measure $\theta = (I, T_1, T_2, \ldots, T_{m-1}) \# \mu_0$ on $\Omega_0 \times \Omega_1 \times \ldots \times \Omega_{m-1}$, where $I : \Omega_0 \to \Omega_0$ is the identity map. Then θ projects to μ_i for all i and $C(T_1, T_2, \ldots, T_{m-1}) = C(\theta)$. In other words, (K) can be interpreted as a relaxed version of (M).

Standard results for fairly general cost functions c show that there exists a probability measure $\tilde{\theta}$ on $\Omega_0 \times \Omega_1 \times \ldots \times \Omega_{m-1}$ with marginals μ_i, $i = 0, 1, \ldots, m - 1$, where the supremum in (K) is attained. The natural question here is the following:

*Partially supported by a grant from the Natural Sciences and Engineering Research Council of Canada.
†Research supported by CNAV93.
Problem (1): For which cost functions \(c \), problem \((K)\) admits a solution \(\tilde{\theta} \) that is supported on a “graph”, that is a measure of the form \(\tilde{\theta} = (I, T_1, T_2, ..., T_{m-1}) \# \mu_0 \) for a suitable family of point transformations \((T_1, T_2, ..., T_{m-1})\).

Whereas the case when \(m = 2 \) is already well understood, the problem when \(m \geq 3 \) remains elusive since existence and uniqueness in \((M)\) as well as uniqueness in \((K)\) are still largely open for general cost functions. There is however one important case where this problem has been resolved by Gangbo and Święch [7]. This is when the cost function is given by

\[
c(x_0, x_1, ..., x_{m-1}) = \sum_{i=0}^{m-1} \sum_{j=i+1}^{m-1} |x_i - x_j|^2.
\]

For which cost functions \(c \) is an appropriate cost function and \(\sigma \) is cyclically symmetric, since one can replace it by its symmetrization

\[
\tilde{\sigma}(x_0, x_1, ..., x_{m-1}) = (x_1, x_2, ..., x_{m-1}, x_0)
\]

and whose marginals are all equal to a given measure \(\mu \). Note that one can then assume that the cost function \(c \) is cyclically symmetric, since one can replace it by its symmetrization

\[
\tilde{c}(x) = \frac{1}{m} \sum_{i=0}^{m-1} c(\sigma^i(x)),
\]

and in this case, one can minimize over the set \(P(\Omega^m, \mu) \) of all probability measures on \(\Omega^m \) whose all marginals are equal to \(\mu \).

Standard results for fairly general cost functions \(c \) show that there exists \(\tilde{\theta} \in P_{sym}(\Omega^m, \mu) \), where the supremum above is attained. The natural question here is the following:

Problem (2): For which cost functions \(c \), problem \((K_{sym})\) admits as a solution a probability measure \(\tilde{\theta} \) of the form \(\tilde{\theta} = (I, S, S^2, ..., S^{m-1}) \# \mu \), where \(S \) is a \(\mu \)-measure preserving transformation on \(\Omega \) such that \(S^m = I \) a.e.

Problem (2) was resolved by Ghoussoub and Moameni for \(m = 2 \) in [13] and for \(m \geq 3 \) in [14] in the case where the cost function is of the form

\[
c(x_0, x_1, ..., x_{m-1}) = \langle u_1(x_0), x_1 \rangle + + \langle u_{m-1}(x_0), x_{m-1} \rangle,
\]

where \(u_1, ..., u_{m-1} \) are bounded vector fields from \(\Omega \to \mathbb{R}^d \). Their work was in the context of establishing polar decompositions of vector fields in terms of monotone operators, which we will briefly describe below.

The raison-d’être of this paper is however to make a link between the results of Gangbo and Święch dealing with the quadratic cost (1) but for marginals of the form \(\mu_i = \sigma^i \# \mu \) for \(i = 0, ..., m-1 \), and the symmetric Monge-Kantorovich problems considered by Ghoussoub and Moameni for the cost (4).

Polar decompositions

Recall that a vector field \(u : \Omega \to \mathbb{R}^d \) on a domain \(\Omega \) in \(\mathbb{R}^d \) is said to be monotone on \(\Omega \) if for all \((x, y) \) in \(\Omega \),

\[
\langle x - y, u(x) - u(y) \rangle \geq 0.
\]

A result of E. Krauss [15] states that a map \(u : \Omega \to \mathbb{R}^d \) is monotone if and only if

\[
u(x) = \nabla H(x, x) \text{ for all } x \in \Omega,
\]

where \(H(x, x) \) is defined as

\[
H(x, y) = H(x-y) = \frac{1}{2} |x-y|^2.
\]
where H is a concave-convex anti-symmetric Hamiltonian on $\mathbb{R}^d \times \mathbb{R}^d$. More recently, Galichon-Ghoussoub [6] extended Krauss’ result to the case of m-cyclically monotone vector fields, where m is a fixed integer larger than 2. Recall that these are the maps u from Ω to \mathbb{R}^d that satisfy for any $m+1$ points $(x_i)_{i=0}^m$ in Ω with $x_0 = x_m$, the inequality

$$
\sum_{k=0}^{m-1} \langle u(x_{k+1}), x_{k+1} - x_k \rangle \geq 0.
$$

(7)

For that, Galichon and Ghoussoub consider the class $\mathcal{H}_m(\Omega)$ of all m-cyclically antisymmetric Hamiltonians on Ω^m, that is the set

$$
\mathcal{H}_m(\Omega) = \{ H \in C(\Omega^m; \mathbb{R}); \sum_{i=1}^m H(\sigma^{-1}(x)) = 0 \text{ for all } x \in \Omega^m \},
$$

where σ is the cyclical permutation $\sigma(x_0, x_1, ..., x_{m-1}) = (x_1, x_2, ..., x_{m-1}, x_0)$. They then show that if a vector field u is m-cyclically monotone, then there exists a Hamiltonian $H \in \mathcal{H}_m(\Omega)$ such that

$$
u(x) = \nabla_m H(x, x, ..., x) \text{ for all } x \in \Omega.
$$

(8)

Moreover, H can be assumed to be concave in the first variable, convex in the last $(m-1)$ variables, though only m-cyclically sub-antisymmetric on Ω^m, that is $\sum_{i=1}^m H(\sigma^{-1}(x)) \leq 0$ for all $x \in \Omega^m$. It is worth comparing the above to a classical theorem of Rockafellar [20], which yields that a single-valued non-degenerate vector field, and which follows from his celebrated mass transport theorem. Recall that a mapping $u : \Omega \to \mathbb{R}^d$ is said to be non-degenerate if the inverse image $u^{-1}(N)$ of every zero-measure $N \subseteq \mathbb{R}^d$ has also zero measure. Brenier proved that any non-degenerate vector field $u \in L^\infty(\Omega, \mathbb{R}^d)$ can be decomposed as

$$
u(x) = \nabla \varphi(x) \text{ on } \Omega, \text{ where } \varphi : \mathbb{R}^d \to \mathbb{R} \text{ is a convex function.}
$$

(9)

More remarkable is the polar decomposition that Y. Brenier [3] establishes for a general non-degenerate vector field, and which follows from his celebrated mass transport theorem. Assuming the boundary $\partial \Omega$ has measure zero, they show that if $u \in L^\infty(\Omega, \mathbb{R}^d)$ is a maximal cyclically monotone operator (i.e., satisfies (7) for every $m \geq 2$), if and only if

$$
\nu(x) = \nabla \varphi(x) \text{ on } \Omega, \text{ where } \varphi : \mathbb{R}^d \to \mathbb{R} \text{ is a convex function.}
$$

(10)

Later, and in the same spirit as Brenier’s, Ghoussoub and Moameni established in [13] another decomposition for non-degenerate vector fields, which can be seen as the general version of Krauss’ characterization of monotone operators. Assuming the boundary $\partial \Omega$ has measure zero, they show that if $u \in L^\infty(\Omega, \mathbb{R}^d)$ is a non-degenerate vector field, then there exists a measure preserving transformation $S : \Omega \to \Omega$ such that $S^2 = I$ (i.e., an involution), and a globally Lipschitz anti-symmetric concave-convex Hamiltonian $H : \mathbb{R}^d \times \mathbb{R}^d \to \mathbb{R}$ such that

$$
u(x) = \nabla_2 H(x, Sx) \text{ a.e. } x \in \Omega.
$$

(11)

In other words, up to a measure preserving involution, essentially every bounded vector field is monotone, where the latter correspond to when S is the identity map on Ω.

More recently, Ghoussoub-Moameni [14] extended this result by showing that any family $u_1, ..., u_{m-1}$ of non-degenerate bounded vector field can be represented as

$$
u_i(x) = \nabla_{i+1} H(x, Sx, S^2 x, ..., S^{m-1} x) \text{ a.e. } x \in \Omega \text{ for } i = 1, ..., m-1,
$$

(12)

where $H \in \mathcal{H}_m(\Omega)$ and S is a measure preserving m-involution (i.e., $S^m = I$). Moreover, H could be replaced by a Hamiltonian that is concave in the first variable and convex in the other $(m-1)$-variables, though only m-cyclically sub-antisymmetric.

The proofs of the representations (11) (when $m = 2$) and of (12) (when $m \geq 3$) rely on symmetric versions of the Monge problem and of its multi-marginal Monge-Kantorovich version as mentioned above. We shall give here another formulation that is closer to the original Monge and multi-marginal Monge-Kantorovich problems corresponding to a quadratic cost.
2 Mass transport with quadratic cost in the presence of symmetry

Given two probability measures with finite second moment μ_0, μ_1 on \mathbb{R}^d, with $X := \text{support}(\mu_0)$ and $Y := \text{support}(\mu_1)$, the Wasserstein distance $W_2(\mu_0, \mu_1)$ between them is defined by the formula

$$W_2(\mu_0, \mu_1)^2 = \inf \left\{ \int_X |x - T(x)|^2 \, d\mu_0(x); \, T \in \mathcal{S}(\mu_0, \mu_1) \right\}$$

where $\mathcal{S}(\mu_0, \mu_1)$ is the class of all Borel measurable maps $T : X \to Y$ such that $T#\mu_0 = \mu_1$, i.e., those which satisfy the change of variables formula,

$$\int_Y h(y) \, d\mu_1(y) = \int_X h(T(x)) \, d\mu_0(x), \quad \text{for every } h \in C(Y).$$

Whether the infimum describing the Wasserstein distance $W_2(\mu_0, \mu_1)$ is achieved by an optimal map \bar{T} is a variation on the original mass transport problem of G. Monge, who inquired about finding the optimal way for rearranging μ_0 into μ_1 against the cost function $c(x) = |x|$. Our cost function here $c(x) = \frac{1}{2} |x|^2$ is quadratic, and the existence, uniqueness and characterization of an optimal map that we give below, was established by Y. Brenier.

Theorem 2.1 (Brenier) Assume μ_0 is absolutely continuous with respect to Lebesgue measure, then there exists a unique optimal map \bar{T} in $\mathcal{S}(\mu_0, \mu_1)$, where the infimum in (13) is achieved. Moreover, the map $\bar{T} : X \to Y$ is one-to-one and onto, μ_0 a.e., and is equal to $\nabla \varphi \, \mu_0$ a.e on X, for some convex function $\varphi : \mathbb{R}^d \to \mathbb{R}$.

Moreover, the Brenier map \bar{T} is the unique map (up to μ_0 a.e. equivalence) of the form $\nabla \varphi$ with φ convex such that $\nabla \varphi_{\#} \mu_0 = \mu_1$.

Now we consider the above theorem in the presence of symmetry.

Corollary 2.2 Let μ be a probability measure on \mathbb{R}^d that is absolutely continuous with respect to Lebesgue measure, and let $\bar{\mu}$ be its image by a self-adjoint unitary transformation σ on \mathbb{R}^d (i.e., $\sigma = \sigma^*$ and $\sigma^2 = I$). Then, there exists a convex function $\varphi : \mathbb{R}^d \to \mathbb{R}$ such that

$$\nabla \varphi_{\#} \mu = \bar{\mu} \quad \text{and} \quad \varphi^*(\sigma(x)) = \varphi(x) \quad \text{for } x \in \mathbb{R}^d,$$

where φ^* is the Legendre transform of φ.

Proof: The above theorem yields a convex function $\varphi : \mathbb{R}^d \to \mathbb{R}$ such that $\nabla \varphi_{\#} \mu = \bar{\mu}$. Recall that if φ^* is the Legendre transform of φ, then $\nabla \varphi^* = (\nabla \varphi)^{-1}$. Hence the function $\varphi(x) = \varphi^*(\sigma(x))$, which is also convex has a gradient $\nabla \varphi = \sigma^* \circ \nabla \varphi^* \circ \sigma$, which also maps μ onto $\bar{\mu}$. By the uniqueness property, we have $\nabla \varphi = \nabla \varphi$, which means that –up to a constant– $\varphi^*(\sigma(x)) = \varphi(x)$ for all $x \in \mathbb{R}^d$.

In the rest of this section, we try to connect the above corollary to the following polar decomposition established in [13].

Theorem 2.3 (Ghoussoub-Moameni) Let Ω be an open bounded set in \mathbb{R}^d such that $\partial \Omega$ has zero Lebesgue measure.

1. If $u \in L^\infty(\Omega, \mathbb{R}^d)$ is a non-degenerate vector field, then there exists a measure preserving transformation $S : \bar{\Omega} \to \bar{\Omega}$ such that $S^2 = I$ (i.e., an involution), and a globally Lipschitz anti-symmetric concave-convex Hamiltonian $H : \mathbb{R}^d \times \mathbb{R}^d \to \mathbb{R}$ such that

$$u(x) = \nabla_2 H(x, Sx) \quad \text{a.e. } x \in \Omega.$$ \hspace{1cm} (16)

The involution S is obtained by solving the following variational problem

$$\sup \left\{ \int_{\Omega} \langle u(x), Sx \rangle \, dx; \text{S is a measure preserving involution on } \Omega \right\}.$$ \hspace{1cm} (17)

2. Moreover, u is a monotone map if and only if there is a representation as (16) with S being the identity.
Lagrangians and Hamiltonians associated to monotone maps

An important example of an involutive transformation is the transpose σ on $\mathbb{R}^d \times \mathbb{R}^d$ defined by $\sigma(x,y) = (y,x)$, since the convex functions L on $\mathbb{R}^d \times \mathbb{R}^d$ satisfying $L^*(y,x) = L(x,y)$ for all $(x,y) \in \mathbb{R}^d \times \mathbb{R}^d$ are connected to central notions in nonlinear analysis and PDEs [11].

Duality theory is at the heart of this concept and it is therefore enlightening to describe it in the case where \mathbb{R}^d is replaced by any reflexive Banach space X. Recall from [11] the notion of a vector field ∂L that is derived from a convex lower semi-continuous Lagrangian on phase space $L : X \times X^* \to \mathbb{R} \cup \{+\infty\}$ in the following way: for each $x \in X$, the –possibly empty– subset $\partial L(x)$ of X^* is defined as

$$\partial L(x) := \{p \in X^*; (p,x) \in \partial L(x,p)\}. \quad (18)$$

Here ∂L is the subdifferential of the convex function L on $X \times X^*$, which should not be confused with ∂L. Of particular interest are those vector fields derived from self-dual Lagrangians, i.e., those convex lower semi-continuous Lagrangians L on $X \times X^*$ that satisfy the following duality property:

$$L^*(p,x) = L(x,p) \quad \text{for all } (x,p) \in X \times X^*, \quad (19)$$

where here L^* is the Legendre transform in both variables, i.e.,

$$L^*(p,x) = \sup\{(y,p) + \langle x, q \rangle - L(y,q) : (y,q) \in X \times X^*\}.$$

Such Lagrangians satisfy the following basic property:

$$L(x,p) - \langle x,p \rangle \geq 0 \text{ for every } (x,p) \in X \times X^*. \quad (20)$$

Moreover,

$$L(x,p) - \langle x,p \rangle = 0 \text{ if and only if } (p,x) \in \partial L(x,p), \quad (21)$$

which means that the associated vector field at $x \in X$ is simply

$$\partial L(x) := \{p \in X^*; L(x,p) - \langle x,p \rangle = 0\}. \quad (22)$$

These so-called selfdual vector fields are natural but far reaching extensions of subdifferentials of convex lower semi-continuous functions. Indeed, the most basic selfdual Lagrangians are of the form

$$L(x,p) = \varphi(x) + \varphi^*(p),$$

where φ is a convex and lower semi-continuous function on X, and φ^* is its Legendre conjugate on X^*, in which case

$$\partial L(x) = \partial \varphi(x).$$

More interesting examples of self-dual Lagrangians are of the form

$$L(x,p) = \varphi(x) + \varphi^*(-\Gamma x + p),$$

where φ is as above, and $\Gamma : X \to X^*$ is a skew adjoint operator. The corresponding selfdual vector field is then

$$\partial L(x) = \Gamma x + \partial \varphi(x). \quad (23)$$

Actually, it turned out that any maximal monotone operator A is a self-dual vector field and vice-versa [11]. That is, there exists a selfdual Lagrangian L such that $A = \partial L$. This fact was proved and reproved by several authors. See for example, R. S. Burachik and B. F. Svaiter [2], B. F. Svaiter [22].

This result means that self-dual Lagrangians can be seen as the potentials of maximal monotone operators, in the same way as the Dirichlet integral is the potential of the Laplacian operator (and more generally as any convex lower semi-continuous energy is a potential for its own subdifferential). Check [11] to see how this characterization leads to variational formulations and resolutions of most equations involving monotone operators.

Proposition 2.1 Let $u : \Omega \to \mathbb{R}^d$ be a possibly set-valued map. The following properties are then equivalent:
1. \(u \) is a maximal monotone map with domain \(\Omega \).

2. There exists a convex self-dual Lagrangian on \(\mathbb{R}^d \times \mathbb{R}^d \) such that \(u(x) = \partial L(x) \) for all \(x \in \Omega \). In other words,
\[(p, x) \in \partial L(x, p) \text{ if and only if } p \in u(x). \tag{24}\]

3. There exists a concave-convex anti-symmetric Hamiltonian \(H \) on \(\mathbb{R}^d \times \mathbb{R}^d \) such that
\[u(x) \subset \partial_2 H(x, x) \text{ for } x \in \Omega. \tag{25}\]

Sketch of proof: Assuming \(u \) is maximal monotone with domain \(\Omega \), we consider its associated Fitzpatrick function, that is
\[N(p, x) = \sup\{ (p, y) + \langle q, x - y \rangle; (y, q) \in \text{Graph}(u) \}. \tag{26}\]

It is known and easy to see that
\[N^*(x, p) \geq N(p, x) \geq \langle x, p \rangle \text{ for every } (x, p) \in \mathbb{R}^d \times \mathbb{R}^d, \tag{27}\]

and that
\[N(p, x) = \langle x, p \rangle \text{ if and only if } (x, p) \in \text{Graph}(u). \]

Now consider the following Lagrangian on \(\mathbb{R}^d \times \mathbb{R}^d \), which interpolates between \(N \) and \(N^* \),
\[L(p, x) := \inf \left\{ \frac{1}{2} N(p_1, x_1) + \frac{1}{2} N^*(x_2, p_2) + \frac{1}{8}\|x_1 - x_2\|^2 + \frac{1}{8}\|p_1 - p_2\|^2 \right\}, \]

where the infimum is taken over all couples \((x_1, p_1) \) and \((x_2, p_2) \) such that
\[(x, p) = \frac{1}{2}(x_1, p_1) + \frac{1}{2}(x_2, p_2). \]

It can be shown (see [11], p. 92) that \(L \) is a self-dual Lagrangian on \(\mathbb{R}^d \times \mathbb{R}^d \), in such a way that
\[N^*(x, p) \geq L(p, x) \geq N(p, x) \geq \langle x, p \rangle \text{ for every } (x, p) \in \mathbb{R}^d \times \mathbb{R}^d, \tag{28}\]

which means that if \((x, p) \in \Omega \times \mathbb{R}^d \), then \(L(p, x) = \langle x, p \rangle \) if and only if \((x, p) \in \text{Graph}(u) \), that is when \(p \in u(x) \).

To show that 2) implies 3), it suffices to take the Legendre transform of \(L \) with respect to the second variable, i.e.,
\[K_L(x, y) = \sup\{ \langle y, p \rangle - L(p, x); p \in \mathbb{R}^d \}. \]

It is clearly concave-convex. The selfduality of \(L \) yields that \(K_L \) is (at least) sub-antisymmetric, i.e.,
\[K_L(x, y) \leq -K_L(y, x) \text{ for } (x, y) \in \mathbb{R}^d \times \mathbb{R}^d. \]

Note that \(K_L(x, y) \leq H_L(x, y) = \frac{1}{2}(K_L(x, y) - K_L(y, x)) \) is anti-symmetric, and that \(u(x) \in \partial_2 H_L(x, x) \) in \(\Omega \) as in the theorem of Krauss mentioned above.

Finally, assuming 3) that is \(u(x) \in \partial_2 H(x, x) \), where \(H \) is convex in the second variable, we have for any \(x, y \in \Omega \), any \(p \in \partial_2 H(x, x) \) and \(q \in \partial_2 H(y, y) \)
\[H(x, y) \geq H(x, x) + \langle p, y - x \rangle \text{ and } H(y, x) \geq H(y, y) + \langle q, x - y \rangle. \]

Since \(H \) is anti-symmetric (hence \(H(x, x) = 0 \)), this implies –by adding the two inequalities– that
\[0 \geq \langle u(x) - u(y), y - x \rangle, \]

which means that \(u \) is monotone. \(\square \)

Now we note that Monge transport problems provide a natural way to construct selfdual Lagrangians, hence general monotone operators.
Corollary 2.4 Let \(\mu \) be a probability measure on the product space \(\Omega := \Omega_1 \times \Omega_2 \subset \mathbb{R}^d \times \mathbb{R}^d \), and let \(\tilde{\mu} \) be the probability measure on \(\tilde{\Omega} := \Omega_2 \times \Omega_1 \) obtained as the image of \(\mu \) by the transformation \(\sigma(x,y) = (y,x) \). Then, there exists a self-dual Lagrangian \(L : \mathbb{R}^d \times \mathbb{R}^d \to \mathbb{R} \) such that \(\nabla L \# \mu = \tilde{\mu} \).

Moreover, the Monge-Kantorovich problem

\[
\sup \left\{ \int_{\Omega_1 \times \Omega_2} \left[\langle x, y' \rangle + \langle y, x' \rangle \right] d\theta(x,y,y',x') ; \theta \in \mathcal{P}(\Omega \times \tilde{\Omega}), \ \text{proj}_1 \theta = \mu, \ \text{proj}_2 \theta = \tilde{\mu} \right\}
\]

has a solution \(\theta \) that is supported on the self-dual Lagrangian manifold

\[
\{(x,y), (x',y') \in \mathbb{R}^{2d} \times \mathbb{R}^{2d} ; L(x,y) + L(x',y') = \langle x, y' \rangle + \langle y, x' \rangle \}.
\]

Proof: This is a direct application of the above corollary. The map \(\nabla L \) then solves the Monge problem

\[
\int_{\Omega_1 \times \Omega_2} |(x,y) - \nabla L(x,y)|^2 d\mu(x,y) = \inf \left\{ \int_{\Omega_1 \times \Omega_2} |(x,y) - T(x,y)|^2 d\mu(x,y) ; T_# \mu = \tilde{\mu} \right\}.
\]

The self-duality of \(L \) follows from applying the above corollary to the transformation \(\sigma(x,y) = (y,x) \). \(\square \)

Involution as a byproduct of mass transport between graphs

Suppose now that \(\mu = (I \otimes u) \# dx \), where \(dx \) is normalized Lebesgue measure on a bounded domain \(\Omega \) in \(\mathbb{R}^d \), and \(u : \Omega \to \mathbb{R}^d \) is a vector field in such a way that \(\mu \) is supported by the graph \(G := \{(x,u(x)) ; x \in \Omega \} \) and let \(\tilde{\mu} = \sigma \# \mu \). Now any map \(T \) pushing \(\mu \) onto \(\tilde{\mu} \) can be parameterized by an application \(S : \Omega \to \Omega \) via the formula:

\[
T : (x,u(x)) \to (u(Sx), Sx),
\]

and the Monge problem between \(\mu \) and \(\tilde{\mu} \) can then be formulated as

\[
\inf \left\{ \frac{1}{2} \int_{\Omega} \left[|u(Sx) - x|^2 + |u(x) - S(x)|^2 \right] dx ; \ S \text{ measure preserving transformation on } \Omega \right\}.
\]

Assume now that –just like in the non-degenerate case– there exists a self-dual Lagrangian \(L \) such that \(\nabla L \# \mu = \tilde{\mu} \). This means that there exists \(S : \Omega \to \Omega \) such that

\[
\nabla L(x,u(x)) = (u(Sx), Sx) \text{ for a.e. } x \in \Omega.
\]

Since \(\nabla L^* = \sigma^* \circ \nabla L \circ \sigma \) and \(\nabla L^*(u(Sx), Sx) = (x,u(x)) \) a.e., we have for a.e. \(x \in \Omega \),

\[
(x,u(x)) = \nabla L^*(u(Sx), Sx) = \sigma^* \circ \nabla L(Sx, u(Sx)) = \sigma^*(u(S^2x), S^2x) = (S^2x, u(S^2x)).
\]

It follows that \(S \) is a measure preserving involution on \(\Omega \). In other words, problem (33) is equivalent to the problem

\[
\sup \left\{ \int_{\Omega} \langle u(x), Sx \rangle dx ; \ S \text{ measure preserving involution on } \Omega \right\},
\]

which was used by Ghoussoub-Moameni to establish the polar decomposition (11). Actually, if one now considers the Legendre transform \(H \) of \(L \) with respect to the second variable, then as noted above, \(H \) is sub-anti-symmetric, can be assumed to be anti-symmetric, and satisfies,

\[
L(x,u(x)) + H(x,Sx) = \langle u(x), Sx \rangle \text{ for all } x \in \Omega.
\]

This then yields the polar decomposition \(u(x) = \nabla_2 H(x,Sx) \) a.e., which can be then seen as a (self-dual) mass transport problem between the measure \(\mu \) supported by the graph of \(u \) and its transpose. Unfortunately, the measure \(\mu \) is too degenerate to fall under the framework where we have uniqueness in Brenier’s theorem, hence the need to give a direct proof of the result as in [13].

In order to link the polar decomposition with the symmetric Monge-Kantorovich problem, we note that measurable functions \(S : \Omega \to \Omega \), whose graphs \(\{(x,Sx) ; x \in \Omega \} \) are the support of measures in \(\mathcal{P}_{\text{sym}}(\Omega \times \Omega) \) can be characterized in the following way.

\[7\]
Lemma 2.5 Let $S : \Omega \to \Omega$ be a measurable map, then the following are equivalent:

1. The image of μ by the map $x \to (x, Sx)$ belongs to $\mathcal{P}^\mu_{\text{sym}}(\Omega \times \Omega)$.
2. S is μ-measure preserving and $S^2x = x$ a.e.
3. $\int_{\Omega} H(Sx, x) \, d\mu(x) = 0$ for every Borel measurable, bounded and antisymmetric function H on $\Omega \times \Omega$.

Proof. It is clear that 1) implies 3), while 2) implies 1). We now prove that 2) and 3) are equivalent. Assuming first that S is measure preserving such that $S^2 = I$ a.e, then for every anti-symmetric H in $L^\infty(\Omega \times \Omega)$, we have

$$\int_{\Omega} H(x, S(x)) \, d\mu(x) = \int_{\Omega} H(S(x), S^2(x)) \, d\mu(x) = \int_{\Omega} H(S(x), x) \, d\mu(x) = -\int_{\Omega} H(x, S(x)) \, d\mu(x),$$

hence $\int_{\Omega} H(x, S(x)) \, d\mu(x) = 0$.

Conversely, if $\int_{\Omega} H(x, S(x)) \, d\mu(x) = 0$ for every anti-symmetric H, then it suffices to take $H(x, y) = f(x) - f(y)$, where f is any continuous function on Ω to conclude that S is necessarily μ-measure preserving. On the other hand, if one considers the anti-symmetric functional

$$H(x, y) = |S(x) - y| - |S(y) - x|,$$

then $0 = \int_{\Omega} H(x, S(x)) \, d\mu(x) = \int |S^2(x) - x| \, d\mu(x)$, which clearly yields that S is an involution μ-almost everywhere.

We now give the following variational formulation for monotone operators, which shows that they are in some way orthogonal to involutions. Denote by $\mathcal{S}_2(\Omega, \mu)$ the set of all μ-measure preserving involutions on Ω. It is an easy exercise to show that $\mathcal{S}_2(\Omega, \mu)$ is a closed subset of a sphere of $L^2(\Omega, \mathbb{R}^d)$. In order to simplify the exposition, we shall assume that $d\mu$ is Lebesgue measure dx normalized to be a probability on the bounded open set Ω, and μ can and will then be dropped from all notation. We shall also assume that the boundary of Ω has measure zero.

Proposition 2.2 Let $u : \Omega \to \mathbb{R}^d$ be a vector field in $L^2(\Omega, \mathbb{R}^d)$. The following properties are then equivalent:

1. u is monotone a.e. on Ω, that is there exists a measure zero set N such that the restriction of u to $\Omega \setminus N$ is monotone.
2. $\sup \left\{ \int_{\Omega} \langle u(x), Sx - x \rangle \, dx; S \in \mathcal{S}_2(\Omega, \mu) \right\} = 0$.
3. The projection of u on $\mathcal{S}_2(\Omega, \mu)$ is the identity map, that is

$$\int_{\Omega} |u(x) - x|^2 \, dx = \inf \left\{ \int_{\Omega} |u(x) - S(x)|^2 \, dx; S \in \mathcal{S}_2(\Omega, \mu) \right\}.$$

4. $\sup \{ \int_{\Omega \times \Omega} \langle u(x), y \rangle \, d\pi(x, y); \pi \in \mathcal{P}_{\text{sym}}(\Omega \times \Omega, dx) \} = \int_{\Omega} \langle u(x), x \rangle \, dx$.

Proof: Assume u is a monotone map and use Proposition 2.1 to write it modulo an obvious abuse in notation as $u(x) = \nabla_2 H(x, x)$ a.e. on Ω, where H is anti-symmetric and convex in the second variable. We can write for any measurable map S,

$$H(x, S(x)) \geq H(x, x) + \langle \nabla_2 H(x, x), S(x) - x \rangle.$$

It follows that

$$\int_{\Omega} (u(x), x - S(x)) \, dx = \int_{\Omega} \langle \nabla_2 H(x, x), x - S(x) \rangle \, dx \geq \int_{\Omega} [H(x, x) - H(x, S(x))] \, dx.$$
Note that \(\int_{\Omega} H(x, S(x))\,dx = 0 \) since \(S \) is measure preserving and \(S^2 = I \). Similarly, \(\int_{\Omega} H(x, x)\,dx = 0 \) and it then follows that \(\int_{\Omega} \langle u(x), x - Sx \rangle\,dx \geq 0 \). Finally, by taking \(Sx = x \), one can then see that the supremum in 2) is equal to zero.

Suppose now that 2) holds. In order to show 1) i.e., that \(u \) is monotone, consider a pair \(x_1, x_2 \) in \(\Omega \) and \(R \) small enough so that \(B(x_i, R) \subset \Omega \) for \(i \in \{1, 2\} \). Define the measure preserving involution \(S_R \) via

\[
S_R(x) = \begin{cases}
 x - x_2 + x_1 & \text{if } x \in B(x_2, R) \\
 x - x_1 + x_2 & \text{if } x \in B(x_1, R) \\
 x & \text{otherwise.}
\end{cases}
\]

Since \(\int_{\Omega} \langle u(x), x - S_R(x) \rangle\,dx \geq 0 \), we have

\[
\left(x_1 - x_2, \int_{B_1} u(x_1 + Ry)\,dy - \int_{B_1} u(x_2 + Ry)\,dy \right) \geq 0.
\]

Since \(u \) is Lebesgue integrable, almost every point \(x \in \Omega \) is a Lebesgue point, which means that \(u(x) = \lim_{R \to 0} \frac{1}{|B|} \int_B u(x + Ry)\,dy \). This leads to \(\langle x_1 - x_2, u(x_1) - u(x_2) \rangle \geq 0 \) for a.e. \(x_1, x_2 \in \Omega \).

By developing the square, it is clear that property 2) is equivalent to 3), which says that the identity map is the projection of \(u \) on the closed subset \(\mathcal{S}_2(\Omega, \mu) \) of the sphere of \(L^2(\Omega, \mathbb{R}^d) \), that is dist(\(u, \mathcal{S}_2(\Omega, \mu) \)) = \(\|u - I\|_2 \).

In other words, \(\int_{\Omega} |u(x) - x|^2\,dx = \inf \{ \int_{\Omega} |u(x) - S(x)|^2\,dx; S \in \mathcal{S}_2(\Omega, \mu) \} \).

For 1) implies 4) assume \(u \) is monotone and observe that for any probability \(\pi \) in \(\mathcal{P}(\Omega \times \Omega) \) with marginals \(dx \), we have

\[
\int_{\Omega \times \Omega} \langle u(x), y - x \rangle d\pi(x, y) = \int_{\Omega \times \Omega} \langle u(x) - u(y), y - x \rangle d\pi + \int_{\Omega \times \Omega} \langle u(y), y - x \rangle d\pi \leq \int_{\Omega \times \Omega} \langle u(y), y - x \rangle d\pi(x, y).
\]

Since \(\pi \) is symmetric, we have then that \(2 \int_{\Omega \times \Omega} \langle u(x), y - x \rangle d\pi(x, y) \leq 0 \). The fact that the supremum is zero follows from simply taking the probability measure supported on the diagonal of \(\Omega \times \Omega \).

Finally, note that 4) implies 2) by considering for any \(S \in \mathcal{S}_2(\Omega, \mu) \) the symmetric measure \(d\pi \) on \(\Omega \times \Omega \) that is the image of Lebesgue measure by the map \(x \to (x, Sx) \). Note that

\[
\int_{\Omega \times \Omega} f(x, y)\,d\pi(x, y) = \int_{\Omega} f(x, Sx)\,dx = \int_{\Omega} f(Sx, x)\,dx = \int_{\Omega \times \Omega} f(x, y)\,d\pi(y, x).
\]

Back to the case of a general vector field, the above then shows that the variational problem used in the polar decomposition

\[
\sup \Big\{ \int_{\Omega} \langle u(x), Sx \rangle\,dx; S \text{ measure preserving involution on } \Omega \Big\}, \quad (35)
\]

is nothing but a symmetric Monge-Kantorovich problem

\[
\sup \{ \int_{\Omega \times \Omega} \langle u(x), y \rangle\,d\pi; \pi \in \mathcal{P}_{sym}(\Omega \times \Omega, dx) \}, \quad (36)
\]

where the cost function is given by \(c(x, y) = \langle u(x), y \rangle \). In the case where \(u \) is monotone then the involution where the supremum is attained is simply the identity.

3 Multidimensional Monge-Kantorovich Theorems

In this section, we are interested in relating the Gangbo-Święch solution of the multidimensional Monge-Kantorovich with quadratic cost to the following recent result of Ghoussoub-Moamneni [14].
Theorem 3.1 Given a probability measure \(\mu \) on \(\Omega \) and bounded vector fields \(u_1, u_2, \ldots, u_{m-1} \) from \(\Omega \) to \(\mathbb{R}^d \) that are \(\mu \)-non-degenerate, then

1. The symmetric Monge-Kantorovich problem

\[
K_{\text{sym}} = \sup \left\{ \int_{\Omega^m} \left[(u_1(x_0), x_1) + \cdots + (u_{m-1}(x_0), x_{m-1}) \right] d\pi ; \pi \in \mathcal{P}_{\text{sym}}(\Omega^m, \mu) \right\}
\]

attains its maximum at a measure of the form \(\bar{\theta} = (I, S, S^2, \ldots, S^{m-1}) \# \mu \), where \(S \) is a \(\mu \)-measure preserving transformation on \(\Omega \) such that \(S^m = I \) a.e.

2. There exists a Hamiltonian \(H \in \mathcal{H}_m(\Omega) \) such that for \(i = 1, \ldots, m-1 \),

\[
u_i(x) = \frac{\nabla_i + 1}{} H(x, Sx, S^2x, \ldots, S^{m-1}x).
\]

Moreover, \(H \) could be replaced by a Hamiltonian that is concave in the first variable and convex in the other variables, though only \(m \)-cyclically sub-antisymmetric.

3. If the vector fields \(u_1, u_2, \ldots, u_{m-1} \) are \(m \)-cyclically monotone, then (38) holds with \(S \) being the identity.

We note first that the general multi-marginal version of the Monge-Kantorovich problem \((K) \) where the probability measures \(\mu_i, \ i = 0, 1, \ldots, m-1 \) are given marginals on domains \(\Omega_i \subset \mathbb{R}^d \), and where \(c \) is any bounded lower semi-continuous cost function \(c : \Omega_0 \times \Omega_1 \times \ldots \times \Omega_{m-1} \to \mathbb{R} \), has the following dual problem.

Proposition 3.1 There exists a solution \(\bar{\theta} \) to the Kantorovich problem \((K) \), as well as an \(m \)-tuple of functions \((u_0, u_1, \ldots, u_{m-1})\) such that for all \(i = 0, \ldots, m-1 \),

\[
u_i(x_i) = \inf_{x_j \in \Omega_j} \left(c(x_0, x_1, \ldots, x_{m-1}) - \sum_{j \neq i} u_j(x_j) \right),
\]

and which maximizes the following dual problem

\[
\sum_{i=0}^{m-1} \int_{\Omega_i} u_i(x_i) d\mu_i
\]

among all \(m \)-tuples \((u_0, u_1, \ldots, u_{m-1})\) of functions \(u_i \in L^1(\mu_i) \) for which \(\sum_{i=0}^{m-1} u_i(x_i) \leq c(x_0, \ldots, x_{m-1}) \) for all \((x_0, \ldots, x_{m-1}) \in \Omega_0 \times \Omega_1 \times \ldots \times \Omega_{m-1} \).

Furthermore, the maximum value in \((D) \) coincides with the minimum value in \((K) \), and

\[
\sum_{i=0}^{m-1} u_i(x_i) = c(x_0, \ldots, x_{m-1}) \quad \text{for all } (x_0, \ldots, x_{m-1}) \in \text{support}(\bar{\theta}).
\]

In their seminal paper, Gangbo and Świȩch [7] dealt with the case of a quadratic cost function,

\[
c(x_0, x_1, x_2, \ldots, x_{m-1}) = \sum_{i=0}^{m-1} \sum_{j=i+1}^{m-1} |x_i - x_j|^2 \quad \text{on } \mathbb{R}^d \times \mathbb{R}^d \times \ldots \times \mathbb{R}^d,
\]

and established the following remarkable result.

Theorem 3.2 (Gangbo-Świȩch) Consider Borel probability measures \(\mu_i \) on domains \(\Omega_i \subset \mathbb{R}^d \), for \(i = 0, 1, \ldots, m-1 \) vanishing on \((d-1)\)-rectifiable sets and having finite second moments, and let \(c \) be a quadratic cost as in (41). Then,

1. There exists a unique measure \(\bar{\theta} \) on \(\Omega_0 \times \Omega_1 \times \ldots \times \Omega_{m-1} \), where \((K) \) is achieved. It is of the form \(\bar{\theta} = (T_0, T_1, T_2, \ldots, T_{m-1}) \# \mu_0 \) on \(\Omega_0 \times \Omega_1 \times \ldots \times \Omega_{m-1} \), where \(T_0 = I, T_i : \Omega_0 \to \Omega_i \) and \(T_i \# \mu_0 = \mu_i \).

2. Each \(T_i \) is one-to-one \(\mu_i \)-almost everywhere, is uniquely determined, and has the form

\[
T_i(x) = \nabla f_i(x) \quad \text{where } f_i(x) = |x|^2/2 + \varphi_i(x) \quad \text{for } x \in \mathbb{R}^d,
\]

and \(\varphi_i \) is a convex function which is related to the solutions \((u_i)_{i=0}^{m-1}\) of the dual problem \((D) \) by the formula \(\varphi_i(x) = \frac{m-1}{2} |x|^2 - u_i(x) \) for \(x \in \mathbb{R}^d \).
3. Moreover, \(\nabla f_0(x) = x + T_1 x + T_2 x + \ldots + T_{m-1} x \) for \(\mu_0 \)-almost all \(x \in \mathbb{R}^d \).

The above result was clarified further by Agueh and Carlier [1], who essentially established the following.

Proposition 3.1 (Agueh-Carlier) Under the conditions of the Theorem 3.2 and with the same notation, we have for each \(i = 0, \ldots, m - 1 \), that \(\frac{1}{m} \nabla f_i \) is the Brenier map that pushes the measure \(\mu_i \) onto the measure \(\nu \) on \(\mathbb{R}^d \) which is the image of the optimal map \(\tilde{\theta} \) by the “barycentric map” \((x_0, \ldots, x_{m-1}) \rightarrow \frac{1}{m} \sum_{i=0}^{m-1} x_i \).

Moreover, \(\nu \) is the unique minimizer of the functional \(\nu \rightarrow \sum_{i=0}^{m-1} W_2^2(\mu_i, \nu) \) where \(W_2 \) is the Wasserstein distance.

We now describe the situation in the case where the measures \(\mu_i \) are obtained from one measure \(\mu \) by cyclic permutations.

Corollary 3.3 Let \(\mu \) be a probability measure on \(\mathbb{R}^N \) and let \(\sigma \) be a unitary linear \(m \)-involution on \(\mathbb{R}^N \), that is \(\sigma^* = \sigma^{-1} \) and \(\sigma^m(x) = x \). Consider the corresponding Kantorovich problem associated to the measures \(\mu_i := \sigma_{\#}^i \mu, i = 0, \ldots, m - 1 \) with quadratic cost on \(\mathbb{R}^{mN} \). Then,

1. The barycentric measure \(\nu \) on \(\mathbb{R}^N \) associated to the measure \(\mu_i := \sigma_{\#}^i \mu, i = 0, \ldots, m - 1 \) is \(\sigma \)-invariant.
2. There exists a strictly convex function \(f_0 : \mathbb{R}^N \rightarrow \mathbb{R} \) such that the functions \(f_i(x) := f_0(\sigma^{i-m}(x)) \) satisfy
 \[
 \nabla f_i \sigma_{\#}^i \mu = \nu \quad \text{for } i = 0, \ldots, m - 1. \tag{43}
 \]

Proof: As shown by Agueh-Carlier [1], \(\nu \) is the unique minimizer of the functional \(\nu \rightarrow \sum_{i=0}^{m-1} W_2^2(\mu_i, \nu) \), where \(\mu_i := \sigma_{\#}^i \mu \). Since \(\sigma^m = I \), the uniqueness yields that \(\nu \) is then \(\sigma \)-invariant. Since now both functions \(f_i \) and \(\psi_i := f_0 \circ \sigma^{i-m} \) are convex and since both \(\nabla f_i \) and \(\nabla \psi_i = \sigma_i^* \circ \nabla f_0 \circ \sigma^{m-i} \) push \(\mu_i \) onto \(\nu \), we get from the uniqueness property of Brenier maps that \(-\mu_i \) modulo a constant \(f_i = f_0 \circ \sigma^{m-i} \).

m-cyclically monotone operators

We shall now apply the above corollary to the case where \(\sigma \) is the cyclic permutation \(\sigma(x_0, \ldots, x_{m-1}) = (x_1, \ldots, x_{m-1}, x_0) \) on a product space \(X^m \). But first, we point to the connection with \(m \)-cyclically monotone operators studied recently by Galichon-Ghoussoub [6]. They proved the following which is obviously an extension of Krauss’ theorem to the case when \(m \geq 3 \).

Theorem 3.4 (Galichon-Ghoussoub) Let \(u_1, \ldots, u_{m-1} : \Omega \rightarrow \mathbb{R}^d \) be \(m \)-cyclically monotone vector fields. Then, there exists a Hamiltonian \(H \in \mathcal{H}_m \) such that

\[
(u_1(x), \ldots, u_{m-1}(x)) = \nabla x_2, \ldots, x_m H(x, x, \ldots, x) \quad \text{for all } x \in \Omega. \tag{44}
\]

Moreover, \(H \) can be replaced by a Hamiltonian \(K \) on \(\mathbb{R}^d \times (\mathbb{R}^d)^{m-1} \), which is concave in the first variable, convex in the last \(m-1 \) variables, whose restriction to \(\Omega^m \) is \(m \)-cyclically sub-antisymmetric. The concave-convex function \(K \) is \(m \)-cyclically antisymmetric in the following sense: For every \(x = (x_0, \ldots, x_{m-1}) \) in \(\Omega^m \), we have

\[
K(x_0, x_1, \ldots, x_{m-1}) + K_{2, \ldots, m}(x_0, x_1, \ldots, x_{m-1}) = 0 \tag{45}
\]

where \(K_{2, \ldots, m} \) is the concavification of the function \(L(x) = \sum_{i=1}^{m-1} H(\sigma^i x) \) with respect to the last \(m-1 \) variables.

As to the connection to measure preserving \(m \)-involutions, they also showed that \(u : \Omega \rightarrow \mathbb{R}^d \) is \(m \)-cyclically monotone \(\mu \) a.e. if and only if it is in the polar set of \(\mathcal{S}_m(\Omega, \mu) \), that is \(\inf \{ \int_{\Omega} (u(x) - S x) d\mu ; S \in \mathcal{S}_m(\Omega, \mu) \} = 0 \). Equivalently, the projection of \(u \) on \(\mathcal{S}_m(\Omega, \mu) \) is the identity map, i.e.,

\[
\inf \{ \int_{\Omega} |u(x) - S x|^2 d\mu(x) ; S \in \mathcal{S}_m(\Omega, \mu) \} = \int_{\Omega} |u(x) - x|^2 d\mu(x).
\]
It is easy to see that the above is also equivalent to the statement that
\[
\sup\{\int_{\Omega^m} \langle u(x), \mu_m \rangle \, d\nu(x); \, \mu \in \mathcal{P}_{\text{sym}}(\Omega^m, \mu) \} = \int_{\Omega} \langle u(x), x \rangle \, d\mu(x),
\]
and that the sup is attained at the image of \(\mu \) by the map \(x \to (x, x, ..., x) \), which is nothing but a particular case of the symmetric Monge-Kantorovich problem, when the cost function is given by \(c(x_0, ..., x_m-1) = \langle u(x_0), x_{m-1} \rangle \), where \(u \) is an \(m \)-cyclically monotone operator.

Multidimensional Monge theorem on graphs and \(m \)-involutions

We shall now make a connection between Theorem 3.1 above, which is a Monge-Kantorovich problem on \(\mathcal{P}_{\text{sym}}(\Omega^m, \mu) \) with
\[
c(x_0, x_1, ..., x_{m-1}) = \langle u_1(x_0), x_1 \rangle + ... + \langle u_{m-1}(x_0), x_{m-1} \rangle
\]
as a cost function, and the mass transport result of Gangbo-Święch, which corresponds to the standard multidimensional Monge-Kantorovich problem, i.e., with cost function
\[
c(y_0, y_1, ..., y_{m-1}) = \sum_{i=0}^{m-1} \sum_{j=i+1}^{m-1} |y_i - y_j|^2,
\]
and where the marginals are \(\mu_i := \sigma_{\#} \mu_0 \) and \(\mu_0 \) is supported on an appropriate graph dictated by the vector fields \(u_1, ..., u_{m-1} \).

For simplicity, we shall do this for \(m = 3 \), that is for two vector fields \(u_1, u_2 \) in \(L^\infty(\Omega; \mathbb{R}^d) \). Consider the (degenerate) probability measure \(\mu \) to be the image of Lebesgue measure \(dx \) on \(\Omega \subset \mathbb{R}^d \) by the map \(P: \Omega \subset \mathbb{R}^d \to \mathbb{R}^{2d} \times \mathbb{R}^{2d} \times \mathbb{R}^{2d} \) defined by
\[
x \to P(x) = (x, x, u_1(x), 0, 0, u_2(x)).
\]

We now consider the 3-cyclic permutation on \(\mathbb{R}^{2d} \times \mathbb{R}^{2d} \times \mathbb{R}^{2d} \) defined by
\[
\sigma(\{x_{0,1}, x_{0,2}, (x_{1,1}, x_{1,2}, x_{2,1}, x_{2,2}), (x_{0,1}, x_{0,2})\}) = ((x_{1,1}, x_{1,2}), (x_{2,1}, x_{2,2}), (x_{0,1}, x_{0,2})),
\]
in such a way that \(\sigma^3 = \text{Id} \).

The quadratic 3-dimensional Monge problem of Gangbo-Święch applied to the measures \(\mu_0 = \mu, \mu_1 = \sigma_{\#} \mu \) and \(\mu_2 = \sigma_{\#}^2 \mu \) becomes the problem of minimizing
\[
\int_{\Omega} \left\{ \|P(x) - \sigma P(S_1 x)\|^2 + \|\sigma P(S_1 x) - \sigma^2 P(S_2 x)\|^2 \right\} \, dx
\]
over all measurable maps \((S_1, S_2) \), where \(S_i : \Omega \to \Omega \) is measure preserving for \(i = 1, 2 \).

The Kantorovich formulation of the problem is then to minimize
\[
C(\pi) := \int_{(\mathbb{R}^d)^3} \left\{ \|P(x) - \sigma P(y)\|^2 + \|\sigma P(y) - \sigma^2 P(z)\|^2 \right\} \, d\pi(x, y, z)
\]
over all probability measures \(d\pi(x, y, z) \) whose 3 marginals are Lebesgue measure. In other words,
\[
C(\pi) = \int_{(\mathbb{R}^d)^3} \left\{ |x - u_1(y)|^2 + |x|^2 + |u_1(x)|^2 + |u_2(y)|^2 + |y|^2 + |u_2(x) - y|^2 + |u_1(y)|^2 + |u_2(z)|^2 + |z|^2 + |u_2(y) - z|^2 + |y| + |y - u_1(z)|^2 + |y|^2 + |x - u_2(z)|^2 + |u_1(x) - z|^2 + |z|^2 + |u_1(z)|^2 + |u_2(x)|^2 \right\} \, d\pi(x, y, z).
\]

Since the integrals of \(x^2, y^2, z^2, u_1(x)^2, u_1(y)^2, u_1(z)^2, u_2(x)^2, u_2(y)^2, u_2(z)^2 \) against the given marginals of \(\pi \) are given constants, the above problem amounts to minimize
\[
\int_{(\mathbb{R}^d)^3} \left\{ |x - u_1(y)|^2 + |u_2(x) - y|^2 + |u_2(y) - z|^2 + |y - u_1(z)|^2 + |x - u_2(z)|^2 + |u_1(x) - z|^2 \right\} \, d\pi(x, y, z),
\]
or, for the same reasons, to maximize
\[
D(\pi) := \int_{(\mathbb{R}^3)^3} \{u_1(y), x) + u_2(x), y) + u_2(y), z) + u_1(z), y) + u_2(z), x) + u_1(x), z)\} \, d\pi(x, y, z),
\]
which is exactly the problem (K_{sym}) where the cost
\[
c(x, y, z) = \langle u_2(x), y \rangle + \langle u_1(x), z \rangle
\]
has been symmetrized. Consider now the optimal maps \(T_1, T_2\) obtained by Gangbo–Świech, that is \(T_i = \nabla f_i \circ \nabla f_0\) pushes \(\mu_0\) to \(\mu_i = \sigma_i \circ \mu_0\) and where \(f_i\) is strictly convex for \(i = 1, 2\). By Corollary 3.3, we have that \(f_0 = f_i \circ \sigma^i\) for \(i = 1, 2\).

Note now that there exist measure preserving transformations \(S_1, S_2\) on \(\Omega\) such that the optimal maps
\[
\tilde{T}_1 x := T_1(Px) = \nabla f_i \circ \nabla f_0(Px) = \sigma P(S_1 x) = (u_1(S_1 x), 0, 0, u_2(S_1 x), S_1 x, S_1 x)
\]
maps \(dx\) onto \(\mu_1\), while
\[
\tilde{T}_2 x := T_2(Px) = \nabla f_i \circ \nabla f_0(Px) = \sigma^2 \circ P(S_2 x) = (0, u_2(S_2 x), S_2 x, S_2 x, u_1(S_2 x), 0)
\]
maps \(dx\) onto \(\mu_2\).

Let now \(T_{2,1} := \nabla f_i \circ \nabla f_1\) in such a way that \(\tilde{T}_2 = T_{2,1} \circ \tilde{T}_1\), and let \(S_{2,1}\) be a measure preserving on \(\Omega\) such that
\[
T_{2,1}(u_1(y), 0, 0, u_2(y), y, y) = (0, u_2(S_{2,1} y), S_{2,1} y, S_{2,1} y, u_1(S_{2,1} y), 0),
\]
so that
\[
T_{2,1} \circ \tilde{T}_1 x = (0, u_2(S_{2,1} x), S_{2,1} x, S_{2,1} x, S_{2,1} x, u_1(S_{2,1} x), 0).
\]
Since \(\tilde{T}_2 = T_{2,1} \circ \tilde{T}_1\), we have that \(S_{2,1} \circ S_1 = S_2\), and since \(\nabla f_0 = \sigma^{3-i} \circ \nabla f_i \circ \sigma^i\) for \(i = 1, 2\) and \(T_{2,1} \circ \sigma(Px) = \nabla f_i \circ \nabla f_1 \circ \sigma(Px)\) for a.e. \(x \in \Omega\), one can easily verify that
\[
S_{2,1} = S_1 := S, S_2 = S_{2,1} \circ S_1 = S^2 \text{ and } S^3 = I.
\]

In other words, the points \((t_0, T_1 t_0, T_2 t_0)\) are such that
\[
t_0 = P(x) = (x, x, u_1(x), 0, 0, u_2(x)),
\]
\[
T_1 t_0 = \sigma P(Sx) = (u_1(Sx), 0, 0, u_2(Sx), Sx, Sx)
\]
and
\[
T_2 t_0 = \sigma^2 P(S^2 x) = (0, u_2(S^2 x), S^2 x, S^2 x, u_1(S^2 x), 0)
\]
where \(S\) is a measure preserving transformation such that \(S^3 = I\).

The convex function \(\Phi_0(t) = f_0(t) - \frac{1}{2} |t|^2\) is such that
\[
\nabla \Phi_0(t_0) = T_1 t_0 + T_2 t_0 = (u_1(x), u_2(S^2 x), S^2 x, S^2 x + u_2(x), Sx + u_1(S^2 x), Sx).
\]

Define now the convex Lagrangian
\[
L(x, y, z) = \Phi_0(x, y, z, 0, 0, 0) =: \Phi(t).
\]
We then get
\[
\nabla L(x, y, z) = (D_{0,1} \Phi(t) + D_{0,2} \Phi(t), D_{1,1} \Phi(t), D_{2,2} \Phi(t))
\]
and
\[
\nabla L(x, u_1(x), u_2(x)) = (u_1(Sx) + u_2(S^2 x), S^2 x, Sx).
\]
Let now \(H\) be the Legendre transform of \(L\) with respect to the last two variables, that is
\[
H(x, y, z) = \sup \{ \langle y, p \rangle + \langle z, q \rangle - L(x, p, q); p \in \mathbb{R}^d, q \in \mathbb{R}^d \}.
\]
\(L\) is clearly concave in the first variable, convex in the last two variables and
\[
L(x, u_1(x), u_2(x)) + H(x, S^2 x, Sx) = \langle u_1(x), S^2 x \rangle + \langle u_2(x), Sx \rangle,
\]
and in other words, \((u_1(x), u_2(x)) = \nabla_{2,3} H(x, S^2 x, Sx)\) for all \(x \in \Omega\).
References

[1] Agueh, M. and Carlier, G., *Barycenters in the Wasserstein space*, SIAM J. Math. Anal., 43(2) (2011) 904–924.

[2] Burachik, R. S. and Svaiter, B. F., *Maximal monotonicity, conjugation and the duality product*, Proc. Amer. Math. Soc. 131 (2003), no.8, 2379-2383.

[3] Brenier, Y. *Polar factorization and monotone rearrangement of vector-valued functions*, Comm. Pure Appl. Math. 44 (1991), 375-417.

[4] Carlier, G. and Nazaret, B., *Optimal transportation for the determinant*, ESAIM Control Optim. Calc. Var., 14(4) (2008), 678–698

[5] Fitzpatrick, S. P. *Representing monotone operators by convex functions*, Proc. Centre for Math. Analysis 20 (1989), 59-65.

[6] Galichon, A. and Ghoussoub, N., *Variational representations for N-cyclically monotone vector fields*, Preprint (2012)

[7] Gangbo, W. and Święch, A., *Optimal maps for the multidimensional Monge-Kantorovich problem* Comm. Pure Appl. Math., 51(1) (1998) 23–45.

[8] Ghoussoub, N., *Anti-selfdual Lagrangians: Variational resolutions of non self-adjoint equations and dissipative evolutions*, AIHP-Analyse non linéaire, 24 (2007), 171-205.

[9] Ghoussoub, N., *A variational theory for monotone vector fields*, Journal of Fixed Point Theory and Applications, Volume 4, Number 1 (2008), 107-135

[10] Ghoussoub, N., *Anti-symmetric Hamiltonians: Variational resolution of Navier-Stokes equations and other nonlinear evolutions*, Comm. Pure & Applied Math., vol. 60, no. 5 (2007), 619-653

[11] Ghoussoub, N., *Selfdual partial differential systems and their variational principles*, Springer Monograph in Mathematics, Springer-Verlag (2008).

[12] Millien, P., *A functional analytic approach to the selfdual polar decomposition*, Masters Thesis, UBC (2011).

[13] Ghoussoub, N. and Moameni A., *A Self-dual Polar Factorization for Vector Fields*, Comm. Pure. Applied. Math (2012) 21pp (to appear)

[14] Ghoussoub, N. and Moameni A., *Symmetric Monge-Kantorovich problems and polar decompositions of vector fields*, Preprint (2012)

[15] Krauss, E., *A representation of arbitrary maximal monotone operators via subgradients of skew-symmetric saddle functions*, Nonlinear Anal. 9, no. 12 (1985), 1381-1399.

[16] Pass, B., *Optimal transportation with infinitely many marginals*, Preprint (2012).

[17] Pass, B., *PhD thesis*, University of Toronto, 2011.

[18] Pass, B., *Uniqueness and Monge solutions in the multimarginal optimal transportation problem*, SIAM Journal on Mathematical Analysis, 43(6) (2011), 2758–2775

[19] Pass, B., *On the local structure of optimal measures in the multi-marginal optimal transportation problem*, Calculus of Variations and Partial Differential Equations, 43:529–536, 2012. 10.1007/s00526-011-0421-z.

[20] Phelps, R. R., *Convex functions, monotone operators and differentiability*, Lecture Notes in Math. 1364, Springer Verlag, New York, Berlin, Tokyo, (1998), 2nd edition 1993.
[21] Rockafellar, T. *Convex Analysis*, Princeton University Press, 1970.

[22] Svaiter, B. F., *Fixed points in the family of convex representations of a maximal monotone operator*, Proc. Amer. Math. Soc. **131**, no 12 (2003), 3851-3859.

[23] Villani, C., *Topics in optimal transportation*, volume 58 of *Graduate Studies in Mathematics*. American Mathematical Society, Providence, 2003.

[24] Villani, C., *Optimal transport: old and new*, volume 338 of *Grundlehren der mathematischen Wissenschaften*. Springer, New York, 2009.