Generalized AdS-Lorentz deformed supergravity on a manifold with boundary

Alessandro Banaudi¹,²*, Lucrezia Ravera¹†

¹INFN, Sezione di Milano, Via Celoria 16, I-20133 Milano, Italy
²Dipartimento di Fisica, Università di Milano, Via Celoria 16, 20133 Milano, Italy

July 26, 2018

Abstract

The purpose of this paper is to explore the supersymmetry invariance of a particular supergravity theory, which we refer to as $D = 4$ generalized AdS-Lorentz deformed supergravity, in the presence of a non-trivial boundary. In particular, we show that the so-called generalized minimal AdS-Lorentz superalgebra can be interpreted as a peculiar torsion deformation of $\mathfrak{osp}(4|1)$, and we present the construction of a bulk Lagrangian based on the aforementioned generalized AdS-Lorentz superalgebra.

In the presence of a non-trivial boundary of space-time, that is when the boundary is not thought as set at infinity, the fields do not asymptotically vanish, and this has some consequences on the invariances of the theory, in particular on supersymmetry invariance. In this work, we adopt the so-called rheonomic (or geometric) approach in superspace and show that a supersymmetric extension of a Gauss-Bonnet like term is required in order to restore the supersymmetry invariance of the theory. The action we end up with can be recast as a MacDowell-Mansouri type action, namely as a sum of quadratic terms in the generalized AdS-Lorentz covariant super field-strengths.

Keywords: Supergravity Models, Superspaces, Supersymmetric Effective Theories, Space-Time Symmetries

* alessandro.banaudi@mi.infn.it
† lucrezia.ravera@mi.infn.it
1 Introduction

Gravity and supergravity theories in diverse dimensions in the presence of a boundary have been studied in different contexts from the early '70 on (see, for example, [1], [2], [3], [4]).

A particularly relevant field in which they find application is the so-called AdS/CFT duality (see the first works [5], [6], [7], [8], [9] on this topic and references therein). In the supergravity limit (i.e. low-energy limit) of string theory, this duality implies a one-to-one correspondence between quantum operators in the CFT on the boundary and the fields of the supergravity theory in the bulk. In AdS/CFT, the action functional is required to be supplemented with proper boundary conditions for the supergravity fields, the latter acting as sources for the CFT operators. The divergences of the bulk metric near the boundary can be eliminated through the so-called holographic renormalization (see, for instance, [10] and references therein), with the inclusion of appropriate counterterms at the boundary.

In relevant works such as [11], [12], [13], [14], [15], the inclusion of boundary terms and counterterms to AdS gravity was studied, and, on the other hand, many authors [16], [17], [18], [19], [20], [21] considered it the context of supergravity theories, by adopting different approaches. The results of these works pointed out to the conclusion that, in order to restore all the invariances of a (super)gravity Lagrangian with cosmological constant on a manifold with a non-trivial boundary (that is when the boundary is not thought as set at infinity), one needs to add topological (i.e. boundary) contributions to the theory, also providing the counterterms necessary for regularizing the action and the conserved charges.

More recently, in [22] the authors constructed the $\mathcal{N} = 1$ and $\mathcal{N} = 2$, $D = 4$ supergravity theories with negative cosmological constant in the presence a non-trivial boundary in a geometric framework (extending to superspace the geometric approach of [11], [12], [13], [14], [15]): Precisely, they generalized the so-called rheonomic (or geometric) approach to supergravity [23] (see also [24], [25] for recent reviews of this framework) in the presence of a non-trivial boundary and they added proper boundary terms to the Lagrangian in order to restore the supersymmetry invariance of the theory. In particular, the authors found that the supersymmetry invariance of the full Lagrangian (understood as bulk plus boundary contributions) is recovered with the introduction of a supersymmetric extension of the Gauss-Bonnet term. The final Lagrangian is written down as a sum of quadratic terms in $OSp(\mathcal{N}|4)$-covariant super field-strengths, reproducing a MacDowell-Mansouri type action [26].

Lately, in [27] the authors explored the supersymmetry invariance of a particular supergravity theory in the presence of a non-trivial boundary, following the prescription of [22]. Specifically, they presented the explicit construction of a geometric bulk Lagrangian based on an enlarged superalgebra, known as AdS-Lorentz superalgebra, showing that, also in this case, the supersymmetric extension of a Gauss-Bonnet like term is required to restore the supersymmetry invariance of the complete theory. In analogy to the result of [22], they obtained that the full action can be finally written as a MacDowell-Mansouri type action.

Driven by the results of [22], [27] (see also [25]), in this work we explore the supersym-
metry invariance of a supergravity theory we will refer to as $D = 4$ generalized AdS-Lorentz deformed supergravity, in the rheonomic approach in the presence of a non-trivial boundary. In particular, we present the construction of a geometric bulk Lagrangian based on the generalized minimal AdS-Lorentz superalgebra introduced in [28], which is larger than $\mathfrak{osp}(4|1)$ and, as we will explicitly show in the sequel, can be seen as a peculiar torsion deformation of $\mathfrak{osp}(4|1)$. Then, we study the supersymmetry invariance of the Lagrangian in the presence of a non-trivial space-time boundary.

The present paper is organized as follows: In Section 2 we recall some aspects of AdS-Lorentz superalgebras, showing that they can be seen as particular torsion deformations of the AdS superalgebra $\mathfrak{osp}(4|1)$. To this aim, we write and analyze their dual Maurer-Cartan formulation. In Section 3 we present the explicit geometric construction of the bulk Lagrangian in terms of the generalized AdS-Lorentz supercurvatures, in which a scale parameter ϵ appears. Then, we show that the same Lagrangian can be rewritten in terms of Lorentz-type curvatures for which $\epsilon \to 0$. The whole procedure can be viewed as an alternative way to introduce a generalized cosmological constant in the theory.

Subsequently, in Section 4 we study the supersymmetry invariance of the Lagrangian in the presence of a non-trivial boundary of space-time. In particular, we show that, in order to restore the supersymmetry invariance of the full Lagrangian, a supersymmetric Gauss-Bonnet like term is necessary. The action obtained in this way can be finally recast in a suggestive form as a sum quadratic terms in generalized AdS-Lorentz covariant super field-strengths, that is as a MacDowell-Mansouri type action [26].

Section 5 contains our conclusions and possible future developments, while in Appendix A we collect some useful formulas in $D = 4$ space-time dimensions.

2 AdS-Lorentz superalgebras and some of their features

In this section, we recall some features of the so-called AdS-Lorentz superalgebra and of its minimal generalization. We also write the dual Maurer-Cartan form of the aforementioned superalgebras and show that they can be seen as peculiar torsion deformations of $\mathfrak{osp}(4|1)$.

The AdS-Lorentz (super)algebra was obtained as a deformation of the Maxwell (super)symmetries [29], [30] and it can be alternatively derived through a particular expansion process, called S-expansion [31] of the AdS (super)algebra [28], [33], [34], [35]. When the AdS-Lorentz algebra is considered, it is possible to introduce a generalized cosmological constant term in a Born-Infeld like gravity action [36], [37], [38]; analogously, the AdS-Lorentz superalgebra and its minimal generalization allow to introduce a generalized supersymmetric cosmological constant term in $\mathcal{N} = 1$, $D = 4$ supergravity [28].

1 The S-expansion method [31] is based on combining the multiplication law of a semigroup S with the structure constants of a Lie (super)algebra \mathfrak{g}, in such a way to end up with a new, larger, Lie (super)algebra $\mathfrak{g}_S = S \times \mathfrak{g}$, that is called the S-expanded (super)algebra (see also [32] for an analytic method for performing S-expansion).
The AdS-Lorentz superalgebra is generated by the set \(\{ J_{ab}, P_a, Z_{ab}, Q_\alpha \} \) \((a = 0, 1, 2, 3 \text{ and } \alpha = 1, 2, 3, 4 \text{ in } D = 4)\), it is semisimple, and its (anti)commutation relations read:

\[
\begin{align*}
[J_{ab}, J_{cd}] &= \eta_{bc} J_{ad} - \eta_{ac} J_{bd} - \eta_{bd} J_{ac} + \eta_{ad} J_{bc}, \\
[J_{ab}, Z_{cd}] &= \eta_{bc} Z_{ad} - \eta_{ac} Z_{bd} - \eta_{bd} Z_{ac} + \eta_{ad} Z_{bc}, \\
[Z_{ab}, Z_{cd}] &= \eta_{bc} Z_{ad} - \eta_{ac} Z_{bd} - \eta_{bd} Z_{ac} + \eta_{ad} Z_{bc}, \\
[J_{ab}, P_a] &= \eta_{bc} P_a - \eta_{ac} P_b, \quad [P_a, P_b] = Z_{ab}, \\
[Z_{ab}, P_a] &= \eta_{bc} P_a - \eta_{ac} P_b, \\
[J_{ab}, Q_\alpha] &= -\frac{1}{2} (\gamma_{ab} Q)_\alpha, \\
[P_a, Q_\alpha] &= -\frac{1}{2} (\gamma_a Q)_\alpha, \\
[Z_{ab}, Q_\alpha] &= -\frac{1}{2} (\gamma_{ab} Q)_\alpha, \\
\{Q_\alpha, Q_\beta\} &= -\frac{1}{2} \left[(\gamma^{ab} C)_{\alpha\beta} Z_{ab} - 2 (\gamma^a C)_{\alpha\beta} P_a \right],
\end{align*}
\]

where \(C \) is the charge conjugation matrix, \(\gamma_a \) and \(\gamma_{ab} \) are gamma matrices in four dimensions, \(J_{ab} \) and \(P_a \) are the Lorentz and translations generators, respectively, \(Q_\alpha \) is the supersymmetry charge, and \(Z_{ab} \) are non-abelian Lorentz-like generators.

The generators \(\{ P_a, Z_{ab}, Q_\alpha \} \) span a non-abelian ideal of the AdS-Lorentz superalgebra \((2.1)\). Let us also observe that the Lorentz-type algebra \(\mathcal{L} = \{ J_{ab}, Z_{ab} \} \) is a subalgebra of \((2.1)\). This subalgebra and its extensions to higher dimensions have been useful to derive General Relativity from Born-Infeld gravity theories \cite{39, 40, 41}.

The minimal generalization of the AdS-Lorentz superalgebra \((2.1)\) contains one more spinor charge and it can be found in \cite{28}, where it was obtained through the so-called S-expansion procedure from \(\mathfrak{osp}(4|1) \).\footnote{In the sequel, we will refer to this minimal generalization of the AdS-Lorentz superalgebra as the generalized minimal AdS-Lorentz superalgebra or, for simplicity, just as the generalized AdS-Lorentz superalgebra.} Let us mention that an Inönü-Wigner contraction of the generalized minimal AdS-Lorentz superalgebra leads to a generalization of the minimal Maxwell superalgebra introduced in \cite{42}. The Maxwell algebra \cite{43, 44, 45, 46, 47, 48, 49} (see also the more recent paper \cite{50}) is a non-central extension of the Poincaré algebra\footnote{In fact, the Maxwell algebra is obtained from the Poincaré algebra by replacing the commutator \([P_a, P_b] = 0\) of the latter with \([\tilde{P}_a, P_b] = Z_{ab}\), where \(Z_{ab} = -Z_{ba} \) are abelian generators commuting with translations and behaving like a tensor with respect to Lorentz transformations.} and it describes the symmetries of systems evolving in flat Minkowski space filled in by a constant electromagnetic background. Its minimal supersymmetric extension \cite{42} involves an extra spinor charge (besides the spinor charge \(Q_\alpha \) of the super-Poincaré algebra).

The generalized minimal AdS-Lorentz superalgebra is generated by the set \(\{ J_{ab}, P_a, \tilde{Z}_a, Z_{ab}, Q_\alpha, \Sigma_\alpha \} \) \((a = 0, 1, 2, 3 \text{ and } \alpha = 1, 2, 3, 4 \text{ in } D = 4)\) and they fulfill the following (anti)commutation relations:
Furthermore, an İnönü-Wigner contraction of (2.2) provides the so-called minimal Maxwell and [56] in the supergravity and superstrings contexts, respectively.

As we can see above, a new Majorana spinor charge appears. The introduction of a second spinorial generator can also be found, for example, in [51], [52], [53], [54], [55] (see also [25])

Notice also that by setting \(\tilde{J} \), \(\tilde{P} \), \(\tilde{Z} \), \(\tilde{c} \) of [57] (namely a minimal generalization of the Maxwell superalgebra).
2.1 The AdS-Lorentz superalgebra as a torsion deformation of \(\mathfrak{osp}(4|1) \)

Before moving to the analysis of the supersymmetry invariance, in the presence of a non-trivial boundary, of a deformed \(D = 4 \) supergravity theory based on the generalized minimal AdS-Lorentz superalgebra \((2.2)\), we clarify in the following the relations between the AdS-Lorentz superalgebras \((2.1)\) and \((2.2)\) and \(\mathfrak{osp}(4|1) \).

Let us first consider the AdS-Lorentz superalgebra, given in \((2.1)\).

We introduce the set of 1-forms \(\{ \omega^{ab}, V^a, k^{ab}, \psi^\alpha \} \), that are 1-form fields respectively dual to the generators \(\{ J^{ab}, P^a, Z^{ab}, Q^\alpha \} \), that is

\[
\omega^{ab}(J^{cd}) = \delta_{cd}^{ab}, \quad V^a(P_b) = \delta^a_b, \quad k^{ab}(Z_{cd}) = \delta_{cd}^{ab}, \quad \psi(Q) = 1.
\]

(2.3)

Observe, in particular, that the presence of the bosonic generator \(Z^{ab} \) implies the introduction of its dual 1-form field \(k^{ab} \).

The aforementioned 1-form fields obey the following Maurer-Cartan equations:

\[
\begin{align*}
 d\omega^{ab} + \omega^{ac} \wedge \omega^c_b &= 0, \quad \text{ (2.4a)} \\
 D_\omega V^a + k^a_b \wedge V^b - \frac{1}{2} \bar{\psi} \wedge \gamma^a \psi &= 0, \quad \text{ (2.4b)} \\
 D_\omega k^{ab} + k^a_c \wedge k^{cb} + 4e^2 V^a \wedge V^b + e \bar{\psi} \wedge \gamma^{ab} \psi &= 0, \quad \text{ (2.4c)} \\
 D_\omega \psi + \frac{1}{4} k^{ab} \wedge \gamma_{ab} \psi + e V^a \wedge \gamma_a \psi &= 0, \quad \text{ (2.4d)}
\end{align*}
\]

where \(D_\omega = d + \omega \) denotes the Lorentz covariant derivative in four dimensions\(^5\) and \(\wedge \) is the wedge product between differential forms. Here \(\psi \) corresponds to a Majorana spinor satisfying \(\bar{\psi} = \psi^T C \). Note that we have introduced a scale parameter \(e = \frac{1}{2l} \), being \(l \) the AdS radius. The 1-form fields of (the dual Maurer-Cartan formulation of) the AdS-Lorentz superalgebra have length dimensions \([\omega^{ab}] = L^0, [V^a] = L^1, [k^{ab}] = L^0, \) and \([\psi] = L^{1/2} \).

We can then define the AdS-Lorentz Lie algebra valued 2-form supercurvatures as follows (see also \([27],[25],[28]\)):

\[
\begin{align*}
 \mathcal{R}^{ab} &\equiv d\omega^{ab} + \omega^{ac} \wedge \omega^c_b, \quad \text{ (2.5a)} \\
 R^a &\equiv D_\omega V^a + k^a_b \wedge V^b - \frac{1}{2} \bar{\psi} \wedge \gamma^a \psi, \quad \text{ (2.5b)} \\
 F^{ab} &\equiv D_\omega k^{ab} + k^a_c \wedge k^{cb} + 4e^2 V^a \wedge V^b + e \bar{\psi} \wedge \gamma^{ab} \psi, \quad \text{ (2.5c)} \\
 \Psi &\equiv D_\omega \psi + \frac{1}{4} k^{ab} \wedge \gamma_{ab} \psi + e V^a \wedge \gamma_a \psi. \quad \text{ (2.5d)}
\end{align*}
\]

\(^4\)In the sequel, for simplifying our notation, we will neglect the spinor index \(\alpha \).

\(^5\)In particular, our convention reads: \(D_\omega V^a = dV^a + \omega^a_b \wedge V^b, D_\omega k^{ab} = dk^{ab} + 2\omega^a_c \wedge k^{cb}, \) and \(D_\omega \psi = d\psi + \frac{1}{4} \omega^{ab} \wedge \gamma_{ab} \psi \).
Let us now consider the Maurer-Cartan equations associated with the AdS superalgebra \(\mathfrak{osp}(4 | 1) \), which read:

\[
\begin{align*}
 d\omega^{ab} + \omega^{ac} \wedge \omega_c^b + 4e^2 V^a \wedge V^b + e \bar{\psi} \wedge \gamma^{ab} \psi &= 0, \\
 D_\omega V^a - \frac{1}{2} \bar{\psi} \wedge \gamma^a \psi &= 0, \\
 D_\omega \psi + e V^a \wedge \gamma_a \psi &= 0.
\end{align*}
\]

(2.6a) (2.6b) (2.6c)

The corresponding supercurvatures are defined by:

\[
\begin{align*}
 \tilde{R}^{ab} &\equiv d\omega^{ab} + \omega^{ac} \wedge \omega_c^b + 4e^2 V^a \wedge V^b + e \bar{\psi} \wedge \gamma^{ab} \psi, \\
 \tilde{R}^a &\equiv D_\omega V^a - \frac{1}{2} \bar{\psi} \wedge \gamma^a \psi, \\
 \tilde{\Psi} &\equiv D_\omega \psi + e V^a \wedge \gamma_a \psi,
\end{align*}
\]

(2.7a) (2.7b) (2.7c)

where we can also write \(d\omega^{ab} + \omega^{ac} \wedge \omega_c^b = R^{ab} \).

Here we have denoted by \(\tilde{R}^{ab}, \tilde{R}^a, \tilde{\Psi} \) the \(\mathfrak{osp}(4 | 1) \) supercurvatures in order to avoid confusion with the AdS-Lorentz supercurvatures (2.5a)-(2.5d) previously introduced.

We can now exploit the freedom of redefining the Lorentz spin connection in \(\mathfrak{osp}(4 | 1) \) by the addition of a new antisymmetric tensor 1-form \(B^{ab} \) (carrying length dimension zero) as follows:

\[
\omega^{ab} \rightarrow \hat{\omega}^{ab} \equiv \omega^{ab} - B^{ab}.
\]

(2.8)

Let us observe that such a redefinition is always possible and also implies a change of the torsion 2-form, that is why we will talk about a “torsion deformation” of \(\mathfrak{osp}(4 | 1) \). After having performed the redefinition (2.8) of the spin connection, if we rename \(\hat{\omega}^{ab} \) as \(\omega^{ab} \), the Maurer-Cartan equations (2.6a)-(2.6c) take the following form:

\[
\begin{align*}
 d\omega^{ab} + \omega^{ac} \wedge \omega_c^b + D_\omega B^{ab} + B^a_c \wedge B^{cb} \\
 + 4e^2 V^a \wedge V^b + e \bar{\psi} \wedge \gamma^{ab} \psi &= 0, \\
 D_\omega V^a + B^a_b \wedge V^b - \frac{1}{2} \bar{\psi} \wedge \gamma^a \psi &= 0, \\
 D_\omega \psi + \frac{1}{4} B^{ab} \wedge \gamma_{ab} \psi + e V^a \wedge \gamma_a \psi &= 0.
\end{align*}
\]

(2.9a) (2.9b) (2.9c)

Now, if we further require, as an extra condition, the Lorentz spin connection \(\omega^{ab} \) to satisfy

\[
 R^{ab} = d\omega^{ab} + \omega^{ac} \wedge \omega_c^b = 0,
\]

(2.10)

corresponding to a Minkowski background, then eq. (2.9a) splits into two equations, namely eq. (2.10) plus the condition

\[
 D_\omega B^{ab} + B^a_c \wedge B^{cb} + 4e^2 V^a \wedge V^b + e \bar{\psi} \wedge \gamma^{ab} \psi = 0.
\]

(2.11)

6On the same lines of what was done in \[54\] in the case of \(\mathfrak{osp}(1 | 32) \).
which defines the Maurer-Cartan equation for the tensor 1-form field B^{ab}.

Observe that the algebra obtained from $\mathfrak{osp}(4|1)$ through the procedure written above is not isomorphic to $\mathfrak{osp}(4|1)$ because of the extra constraint (2.10), which implies (2.11), imposed on the Maurer-Cartan equations (2.9a)-(2.9c).

On the other hand, renaming B^{ab} as k^{ab}, we can see that the Maurer-Cartan equations (2.10), (2.9b), (2.11), and (2.9c) exactly correspond to those of the AdS-Lorentz superalgebra previously introduced, namely to eqs. (2.4a)-(2.4d). Correspondingly, from (2.10), (2.9b), (2.11), and (2.9c) one can also derive the AdS-Lorentz supercurvatures (2.5a)-(2.5d).

We can thus conclude that, at the price of introducing the (torsion) field k^{ab} fulfilling (2.11), $\mathfrak{osp}(4|1)$ can be mapped into the AdS-Lorentz superalgebra, where the spin connection ω^{ab} is identified with the Lorentz connection of a four-dimensional Minkowski space-time with vanishing Lorentz curvature (albeit with a modification of the supertorsion and of the gravitino super field-strength). Thus, we can say that the AdS-Lorentz superalgebra can also be viewed as a “torsion-deformed” version of $\mathfrak{osp}(4|1)$.

Following the prescription we have just described, one could also derive AdS-Lorentz like superalgebras in higher dimensions.

In the sequel, we shall consider the generalized minimal AdS-Lorentz superalgebra (2.2) and carry on an analogous analysis of its relation with $\mathfrak{osp}(4|1)$.

2.2 Relation between the generalized AdS-Lorentz superalgebra and $\mathfrak{osp}(4|1)$

As we have done in the AdS-Lorentz case, we now describe the generalized AdS-Lorentz superalgebra (2.2) in its dual Maurer-Cartan formulation. Let us introduce the set of 1-form fields $\{\omega^{ab}, V^a, \tilde{h}^a, \tilde{k}^{ab}, k^{ab}, \psi, \xi\}$ dual to the generators $\{J_{ab}, P_a, \tilde{Z}_a, \tilde{Z}_{ab}, Z_{ab}, Q, \Sigma\}$, that is

$$\begin{align*}
\omega^{ab}(J_{cd}) &= \delta^a_{cd}, & V^a(P_b) &= \delta^a_b, \\
\tilde{h}^a(\tilde{Z}_b) &= \delta^a_b, & \tilde{k}^{ab}(\tilde{Z}_{cd}) &= \delta^{ab}_{cd}, & k^{ab}(Z_{cd}) &= \delta^{ab}_{cd}, \\
\psi(Q) &= 1, & \xi(\Sigma) &= 1.
\end{align*}$$

(2.12)

Note that the presence of the generators $\tilde{Z}_a, \tilde{Z}_{ab}, Z_{ab}, \Sigma$ implies the introduction of their dual, new, bosonic and fermionic 1-form fields $\tilde{h}^a, \tilde{k}^{ab}, k^{ab},$ and ξ, respectively. The Maurer-Cartan

This was already observed in [25], but it had not been explicitly derived yet.
equations describing the generalized AdS-Lorentz superalgebra (2.2) are:

\[
\begin{align*}
\textit{d} \omega^{ab} + \omega^{ac} \wedge \omega_c^b &= 0, \\
D_\omega V^a + k_b^a \wedge V^b + \tilde{k}_b^a \wedge \tilde{h}^b - \frac{1}{2} \tilde{\psi} \wedge \gamma^a \psi - \frac{1}{2} \xi \wedge \gamma^a \xi &= 0, \\
D_\omega \tilde{h}^a + \tilde{k}_b^a \wedge V^b + k_b^a \wedge \tilde{h}^b - \tilde{\psi} \wedge \gamma^a \xi &= 0, \\
D_\omega \tilde{k}^{ab} + 2 k_c^a \wedge \tilde{k}^{cb} + 8 e^2 V^a \wedge \tilde{h}^b + e \tilde{\psi} \wedge \gamma^{ab} \psi + e \tilde{\xi} \wedge \gamma^{ab} \xi &= 0, \\
D_\omega \tilde{k}^{ab} + \tilde{k}_c^a \wedge \tilde{k}^{cb} + k_c^a \wedge k^{cb} + 4 e^2 V^a \wedge V^b + 4 e^2 \tilde{h}^a \wedge \tilde{h}^b + 2 e \tilde{\psi} \wedge \gamma^{ab} \xi &= 0, \\
D_\omega \psi + \frac{1}{4} k^{ab} \wedge \gamma_{ab} \psi + \frac{1}{4} \tilde{k}^{ab} \wedge \gamma_{ab} \xi + e V^a \wedge \gamma_a \xi + e \tilde{h}^a \wedge \gamma_a \xi &= 0, \\
D_\omega \xi + \frac{1}{4} k^{ab} \wedge \gamma_{ab} \xi + \frac{1}{4} \tilde{k}^{ab} \wedge \gamma_{ab} \psi + e V^a \wedge \gamma_a \psi + e \tilde{h}^a \wedge \gamma_a \xi &= 0,
\end{align*}
\]

where both \(\psi \) and \(\xi \) are Majorana spinors. The 1-form fields of (the dual Maurer-Cartan formulation of) the generalized AdS-Lorentz superalgebra have length dimensions \([\omega^{ab}] = L^0, [V^a] = L^1, [\tilde{h}^a] = L^1, [k^{ab}] = L^0, [\psi] = L^{1/2}, \) and \([\xi] = L^{1/2}.\)

We can then define the generalized AdS-Lorentz Lie algebra valued 2-form supercurvatures as follows (see also [25]):

\[
\mathcal{R}^{ab} \equiv \textit{d} \omega^{ab} + \omega^{ac} \wedge \omega_c^b, \\
R^a \equiv D_\omega V^a + k_b^a \wedge V^b + \tilde{k}_b^a \wedge \tilde{h}^b - \frac{1}{2} \tilde{\psi} \wedge \gamma^a \psi - \frac{1}{2} \xi \wedge \gamma^a \xi, \\
\tilde{H}^a \equiv D_\omega \tilde{h}^a + \tilde{k}_b^a \wedge V^b + k_b^a \wedge \tilde{h}^b - \tilde{\psi} \wedge \gamma^a \xi, \\
\tilde{F}^{ab} \equiv D_\omega \tilde{k}^{ab} + 2 k_c^a \wedge \tilde{k}^{cb} + 8 e^2 V^a \wedge \tilde{h}^b + e \tilde{\psi} \wedge \gamma^{ab} \psi + e \tilde{\xi} \wedge \gamma^{ab} \xi, \\
F^{ab} \equiv D_\omega k^{ab} + k_c^a \wedge \tilde{k}^{cb} + k_c^a \wedge k^{cb} + 4 e^2 V^a \wedge V^b + 4 e^2 \tilde{h}^a \wedge \tilde{h}^b + 2 e \tilde{\psi} \wedge \gamma^{ab} \xi, \\
\Psi \equiv D_\omega \psi + \frac{1}{4} k^{ab} \wedge \gamma_{ab} \psi + \frac{1}{4} \tilde{k}^{ab} \wedge \gamma_{ab} \xi + e V^a \wedge \gamma_a \xi + e \tilde{h}^a \wedge \gamma_a \psi, \\
\Xi \equiv D_\omega \xi + \frac{1}{4} k^{ab} \wedge \gamma_{ab} \xi + \frac{1}{4} \tilde{k}^{ab} \wedge \gamma_{ab} \psi + e V^a \wedge \gamma_a \psi + e \tilde{h}^a \wedge \gamma_a \xi.
\]

Now, considering the Maurer-Cartan equations of \(\text{osp}(4|1) \) given by (2.6a)-(2.6c) we observe that, redefining

\[
\begin{align*}
\omega^{ab} &\rightarrow \tilde{\omega}^{ab} \equiv \omega^{ab} - \tilde{B}^{ab} - B^{ab}, \\
V^a &\rightarrow \tilde{V}^a \equiv V^a - \tilde{B}^a, \\
\psi &\rightarrow \tilde{\psi} \equiv \psi - \eta,
\end{align*}
\]

if we then rename \(\tilde{\omega}^{ab} \Rightarrow \omega^{ab}, \tilde{V}^a \Rightarrow V^a, \) and \(\tilde{\psi} \Rightarrow \psi, \) the Maurer-Cartan equations (2.6a)-(2.6c) become

8Here, with an abuse of notation, we use the same Greek letters adopted for the case of the AdS-Lorentz superalgebra.
(2.16c) become:

\[
\begin{align*}
d\omega^{ab} + \omega^{ac} \wedge \omega^c_b &+ D_\omega \tilde{B}^a + D_\omega B^{ab} + B^{ab} + 2B^a_c \wedge \tilde{B}^b_c + 2B^a_c \wedge B^b + 4e^2 V^a \wedge V^b \\
&+ 8e^2 V^a \wedge \tilde{B}^b + 4e^2 V^a \wedge \tilde{B}^b + e \tilde{\psi} \wedge \gamma^{ab} \psi + 2e \tilde{\psi} \wedge \gamma^a \eta + e \bar{\eta} \wedge \gamma^{ab} \eta = 0, \\
D_\omega V^a + D_\omega \tilde{B}^a + B^{ab} \wedge V^b + B^{ab} \wedge \tilde{B}^b + \tilde{B}^{ab} \wedge V^b + \tilde{B}^{ab} \wedge \tilde{B}^b \\
&- \frac{1}{2} \tilde{\psi} \wedge \gamma^a \psi - \tilde{\psi} \wedge \gamma^{ab} \eta - \frac{1}{2} \bar{\eta} \wedge \gamma^a \eta = 0, \\
D_\omega \psi + D_\omega \eta + \frac{1}{4} B^{ab} \wedge \gamma_{ab} \psi + \frac{1}{4} B^{ab} \wedge \gamma_{ab} \eta + \frac{1}{4} \tilde{B}^{ab} \wedge \gamma_{ab} \psi + \frac{1}{4} \tilde{B}^{ab} \wedge \gamma_{ab} \eta + e V^a \wedge \gamma_a \psi \\
&+ e V^a \wedge \gamma_a \eta + e \tilde{B}^a \wedge \gamma_a \psi + e \tilde{B}^a \wedge \gamma_a \eta = 0.
\end{align*}
\]

Both \(\tilde{B}^{ab}\) and \(B^{ab}\) are antisymmetric tensor 1-forms carrying length dimension zero, \(\tilde{B}^a\) is a 1-form carrying length dimension 1, and \(\eta\) is a spinor 1-form carrying length dimension 1/2.

Then, if we further require the Lorentz spin connection \(\omega^{ab}\) to satisfy (2.10) (corresponding to a Minkowski background), together with the following (new) extra conditions:

\[
\begin{align*}
D_\omega \tilde{B}^a + \tilde{B}^a_b \wedge V^b + B^a_b \wedge \tilde{B}^b - \tilde{\psi} \wedge \gamma^a \eta = 0, \\
D_\omega \tilde{B}^{ab} + 2B^a_c \wedge \tilde{B}^b_c + 8e^2 V^a \wedge \tilde{B}^b + e \tilde{\psi} \wedge \gamma^{ab} \psi + e \bar{\eta} \wedge \gamma^{ab} \eta = 0, \\
D_\omega B^{ab} + \tilde{B}^a_c \wedge \tilde{B}^{cb} + B^a_c \wedge \tilde{B}^{cb} + 4e^2 V^a \wedge V^b + 4e^2 \tilde{B}^a \wedge \tilde{B}^b + 2e \tilde{\psi} \wedge \gamma^{ab} \eta = 0, \\
D_\omega \eta + \frac{1}{4} B^{ab} \wedge \gamma_{ab} \eta + \frac{1}{4} \tilde{B}^{ab} \wedge \gamma_{ab} \psi + e V^a \wedge \gamma_a \psi + e \tilde{B}^a \wedge \gamma_a \eta = 0,
\end{align*}
\]

which define the Maurer-Cartan equations for the 1-form fields \(\tilde{B}^a, \tilde{B}^{ab}, B^{ab}\), and \(\eta\), one can easily prove that, after having redefined \(\tilde{B}^a \Rightarrow \tilde{h}^a, \tilde{B}^{ab} \Rightarrow \tilde{k}^{ab}, B^{ab} \Rightarrow k^{ab}\), and \(\eta \Rightarrow \xi\), the superalgebra we end up with is exactly the generalized minimal AdS-Lorentz one, with Maurer-Cartan equations given by (2.13a)-(2.13d). Let us observe that, again, the superalgebra obtained from \(\mathfrak{osp}(4|1)\) through the procedure written above (namely, the generalized AdS-Lorentz superalgebra) is not isomorphic to \(\mathfrak{osp}(4|1)\), because of the extra constraints (2.10), (2.17a)-(2.17d) imposed on the Maurer-Cartan equations (2.9a)-(2.9c). One can then define the AdS-Lorentz super field-strengths as given in (2.14a)-(2.14d).

Thus, we can conclude that, at the price of introducing the extra 1-form fields \(\tilde{h}^a, \tilde{k}^{ab}, k^{ab}\), and \(\xi\) (satisfying (2.17a), (2.17b), (2.17c), and (2.17d), respectively), \(\mathfrak{osp}(4|1)\) can be mapped into the generalized AdS-Lorentz superalgebra, where the spin connection is identified with the Lorentz connection of a Minkowski space-time with vanishing Lorentz curvature (furthermore, we also have a modification of the supertorsion and of the gravitino super field-strength). In this sense, the generalized minimal AdS-Lorentz superalgebra can be interpreted as a peculiar “torsion deformation” of \(\mathfrak{osp}(4|1)\).

Some comments are in order. Let us first of all observe that the AdS-Lorentz and the generalized minimal AdS-Lorentz superalgebras, which, as we have seen above, correspond to different, peculiar, torsion deformations of \(\mathfrak{osp}(4|1)\), can also be both obtained from \(\mathfrak{osp}(4|1)\) by performing the so-called S-expansion procedure, as it was done in [28]. In particular, the semigroup leading from \(\mathfrak{osp}(4|1)\) to the AdS-Lorentz superalgebra (2.1) is the abelian
semigroup $S^{(2)}_M = \{\lambda_0, \lambda_1, \lambda_2\}$ (according with the notation of [28]), whose elements obey the multiplication laws

$$
\lambda_\alpha \lambda_\beta = \begin{cases}
\lambda_{\alpha+\beta}, & \text{if } \alpha + \beta \leq 2, \\
\lambda_{\alpha+\beta-2}, & \text{if } \alpha + \beta > 2.
\end{cases}
$$

(2.18)

Similarly, the semigroup leading from $\mathfrak{osp}(4|1)$ to the generalized minimal AdS-Lorentz superalgebra (2.2) is the abelian semigroup $S^{(4)}_M = \{\lambda_0, \lambda_1, \lambda_2, \lambda_3, \lambda_4\}$ (again, according with the notation of [28]), whose elements obey the following multiplication laws:

$$
\lambda_\alpha \lambda_\beta = \begin{cases}
\lambda_{\alpha+\beta}, & \text{if } \alpha + \beta \leq 4, \\
\lambda_{\alpha+\beta-4}, & \text{if } \alpha + \beta > 4.
\end{cases}
$$

(2.19)

Then, interestingly enough, we can conclude that semigroups of the type $S^{(2n)}_M$ (with $n \geq 1$) can lead from $\mathfrak{osp}(4|1)$ to different torsion deformations of it. We argue that the same should also occur in higher space-time dimensions.

Let us also observe that, on the other hand, the so-called Maxwell-type superalgebras (commonly related to the AdS-Lorentz type superalgebras through Inönu-Wigner contractions), such as those discussed in [57], cannot be directly related to $\mathfrak{osp}(4|1)$ by performing a torsion deformation involving a redefinition like (2.8) or (2.15).

Correspondingly, they can be obtained by performing S-expansions of $\mathfrak{osp}(4|1)$ involving semigroups of the type $S^{(2m)}_E$ (with $m \geq 2$), which have different multiplication laws with respect to those of the semigroups $S^{(2n)}_M (n \geq 1)$ (see [57] for details). All the above observations could help to shed some light on the relations occurring among the aforementioned different superalgebras and physical theories based on them.

3 Generalized AdS-Lorentz supergravity in the geometric approach

Now, let us briefly recall some of the main features of the rheonomic (geometric) approach for the description of $\mathcal{N} = 1$, $D = 4$ pure supergravity (more details can be found in [22], [27], [25]), since this will be useful in the sequel.

In the geometric approach to supergravity [23], the theory is given in terms of 1-form superfields μ^A defined on superspace $\mathcal{M}_{4|4}$. In particular, the bosonic 1-form V^a and the fermionic 1-form ψ^a define the supervielbein basis $\{V^a, \psi^a\}$ in superspace.

In this framework, the supersymmetry transformations in space-time are interpreted as diffeomorphisms in the fermionic directions of superspace and they are generated by Lie derivatives with fermionic parameter ϵ^a. Then, the supersymmetry invariance of the theory is fulfilled requiring the Lie derivative of the Lagrangian to vanish for diffeomorphisms in the fermionic directions of superspace, that is to say:

$$
\delta_{\epsilon^a} \mathcal{L} \equiv \ell_{\epsilon^a} \mathcal{L} = \epsilon^a d \mathcal{L} + d(\epsilon^a \mathcal{L}) = 0,
$$

(3.1)
where ϵ is the fermionic parameter along the tangent vector dual to the gravitino (for simplicity, we have omitted the spinor index α), and ι is the contraction operator. In particular, we have $\iota_\epsilon(\psi) = \epsilon$ and $\iota_\epsilon(V^\alpha) = 0$.

The contribution $\iota_\epsilon d\mathcal{L}$ in (3.1), which would be identically zero in space-time, is non-trivial here, in superspace. On the other hand, the contribution $d(\iota_\epsilon \mathcal{L})$ is a boundary term and does not affect the bulk result. Then, a necessary condition for a supergravity Lagrangian is

$$\iota_\epsilon d\mathcal{L} = 0,$$

(3.2)

corresponding to require supersymmetry invariance in the bulk. Under (3.2), the supersymmetry transformation of the action simply reduces to

$$\delta_\epsilon S = \int_{\mathcal{M}_4} d(\iota_\epsilon \mathcal{L}) = \int_{\partial \mathcal{M}_4} \iota_\epsilon \mathcal{L}.$$

(3.3)

When we consider a Minkowski background (or, in general, a space-time with boundary thought as set at infinity), the fields asymptotically vanish, so that

$$\iota_\epsilon \mathcal{L}|_{\partial \mathcal{M}_4} = 0$$

(3.4)

and, consequently,

$$\delta_\epsilon S = 0.$$

(3.5)

Then, we have that, in this case, eq. (3.2) is also a sufficient condition for the supersymmetry invariance of the Lagrangian.

On the other hand, when the background space-time presents a non-trivial boundary, the condition (3.4) (modulo an exact differential) becomes non-trivial, and it is necessary to check it explicitly to get supersymmetry invariance of the action, requiring a more subtle treatment.

Before analyzing the generalized (minimal) $D = 4$ AdS-Lorentz deformed supergravity theory in the presence of a non-trivial boundary of space-time, we will now study the construction of the bulk Lagrangian and the corresponding supersymmetry transformation laws, on the same lines of [27]. Specifically, we will apply the rheonomic approach to derive the parametrization of the Lorentz-like curvatures involving the extra 1-form fields \tilde{h}^a, \tilde{k}^{ab}, k^{ab}, and ξ by studying the different sectors of the on-shell Bianchi Identities. This will also lead to the supersymmetry transformation laws. Subsequently, we will construct a geometric generalized $D = 4$ AdS-Lorentz Lagrangian, showing that it can be written in terms of the aforementioned Lorentz-like curvatures (this is an alternative way to introduce a generalized supersymmetric cosmological term, see also [27]). After that, we will analyze the supersymmetry invariance of the theory in the presence of a non-trivial space-time boundary.
3.1 Parametrization of the Lorentz-like curvatures

Let us consider the following Lorentz-type curvatures defined in superspace:

\[\mathcal{R}^{ab} \equiv d\omega^{ab} + \omega^{ac} \wedge \omega_c^b, \]

(3.6a)

\[R^a \equiv D_\omega V^a + k_b^a \wedge V^b + \tilde{k}_b^a \wedge \tilde{h}^b - \frac{1}{2} \tilde{\psi} \wedge \gamma^a \xi - \frac{1}{2} \xi \wedge \gamma^a \xi, \]

(3.6b)

\[\tilde{H}^a \equiv D_\omega \tilde{h}^a + \tilde{k}_b^a \wedge V^b + k_b^a \wedge \tilde{h}^b - \tilde{\psi} \wedge \gamma^a \xi, \]

(3.6c)

\[\tilde{F}^{ab} \equiv D_\omega \tilde{k}^{ab} + 2 \tilde{k}_c^a \wedge \tilde{k}^{cb}, \]

(3.6d)

\[F^{ab} \equiv D_\omega k^{ab} + k_c^a \wedge k^{cb} + k_c^a \wedge k^{cb}, \]

(3.6e)

\[\rho \equiv D_\omega \psi + \frac{1}{4} k^{ab} \wedge \gamma_{ab} \psi + \frac{1}{4} \tilde{k}^{ab} \wedge \gamma_{ab} \xi, \]

(3.6f)

\[\sigma \equiv D_\omega \xi + \frac{1}{4} k^{ab} \wedge \gamma_{ab} \xi + \frac{1}{4} \tilde{k}^{ab} \wedge \gamma_{ab} \psi. \]

(3.6g)

The supercurvatures (3.6a)-(3.6g) satisfy the Bianchi identities:

\[D_\omega \mathcal{R}^{ab} = 0, \]

(3.7a)

\[D_\omega R^a = \mathcal{R}^a_b \wedge V^b + \tilde{F}^a_b \wedge V^b - k^a_b \wedge R^b - \tilde{k}^a_b \wedge \tilde{H}^b + \tilde{\psi} \wedge \gamma^a \rho + \xi \wedge \gamma^a \sigma, \]

(3.7b)

\[D_\omega \tilde{H}^a = \mathcal{R}^a_b \wedge \tilde{h}^b + \tilde{F}^a_b \wedge \tilde{h}^b - \tilde{k}^a_b \wedge R^b + \tilde{F}^a_b \wedge \tilde{H}^b + \tilde{\psi} \wedge \gamma^a \rho + \tilde{\psi} \wedge \gamma^a \sigma, \]

(3.7c)

\[D_\omega \tilde{F}^{ab} = 2 \mathcal{R}^{ab}_c \wedge \tilde{k}^{cb} + 2 \tilde{F}^{ab}_c \wedge k^{cb}, \]

(3.7d)

\[D_\omega F^{ab} = 2 \mathcal{R}^{ab}_c \wedge k^{cb} + 2 \tilde{F}^{ab}_c \wedge \tilde{k}^{cb} + 2 \tilde{F}^{ab}_c \wedge k^{cb}, \]

(3.7e)

\[D_\omega \rho = \frac{1}{4} \mathcal{R}^{ab} \wedge \gamma_{ab} \psi - \frac{1}{4} \gamma_{ab} \rho \wedge k^{ab} + \frac{1}{4} \tilde{F}^{ab} \wedge \gamma_{ab} \psi - \frac{1}{4} \gamma_{ab} \sigma \wedge \tilde{k}^{ab} + \frac{1}{4} \tilde{F}^{ab} \wedge \gamma_{ab} \xi, \]

(3.7f)

\[D_\omega \sigma = \frac{1}{4} \mathcal{R}^{ab} \wedge \gamma_{ab} \xi - \frac{1}{4} \gamma_{ab} \sigma \wedge k^{ab} + \frac{1}{4} \tilde{F}^{ab} \wedge \gamma_{ab} \xi - \frac{1}{4} \gamma_{ab} \rho \wedge \tilde{k}^{ab} + \frac{1}{4} \tilde{F}^{ab} \wedge \gamma_{ab} \psi. \]

(3.7g)

We write the most general ansatz for the Lorentz-type curvatures in the supervielbein basis \{V^a, \psi\} of superspace as follows:

\[\mathcal{R}^{ab} = \mathcal{R}^{ab}_{cd} V^c \wedge V^d + \Theta^{ab}_{\quad e} \psi \wedge V^e + \alpha \epsilon \tilde{\psi} \wedge \gamma^{ab} \psi, \]

(3.8a)

\[R^a = R^a_{\quad bc} V^b \wedge V^c + \Theta^a_{\quad b} \psi \wedge V^b + \beta \epsilon \epsilon \tilde{\psi} \wedge \gamma^a \psi, \]

(3.8b)

\[\tilde{H}^a = \tilde{H}^a_{\quad bc} V^b \wedge V^c + \Lambda^a_{\quad b} \psi \wedge V^b + \gamma \epsilon \epsilon \tilde{\psi} \wedge \gamma^a \psi, \]

(3.8c)

\[\tilde{F}^{ab} = \tilde{F}^{ab}_{\quad cd} V^c \wedge V^d + \Lambda^{ab}_{\quad c} \psi \wedge V^c + \delta \epsilon \epsilon \tilde{\psi} \wedge \gamma^{ab} \psi, \]

(3.8d)

\[F^{ab} = F^{ab}_{\quad cd} V^c \wedge V^d + \Pi^{ab}_{\quad c} \psi \wedge V^c + \epsilon \epsilon \epsilon \tilde{\psi} \wedge \gamma^{ab} \psi, \]

(3.8e)

\[\rho = \rho_{ab} V^a \wedge V^b + \lambda \epsilon \gamma_{ab} \psi \wedge V^a + \epsilon^{1/2} \Omega_{ab} \psi^a \wedge \psi^b, \]

(3.8f)

\[\sigma = \sigma_{ab} V^a \wedge V^b + \mu \epsilon \gamma_{ab} \psi \wedge V^a + \epsilon^{1/2} \tilde{\Omega}_{ab} \psi^a \wedge \psi^b, \]

(3.8g)

\[^9 \text{Here we use the Greek letters } \tilde{F}^{ab}, \tilde{F}^{ab}, \rho, \text{ and } \sigma, \text{ in order to avoid confusion with the generalized AdS-Lorentz supercurvatures } 2.144 \text{-- } 2.148. \]
where \(e \) is the scale parameter (carrying length dimension \(-1\)). Setting \(R^a = 0 \) (that is called the on-shell condition), we can withdraw some terms appearing in the above ansatz by studying the scaling constraints. On the other hand, the coefficients \(\alpha, \beta, \gamma, \delta, \varepsilon, \lambda, \) and \(\mu \) can be determined from the analysis of the various sectors of the (on-shell) Bianchi identities in superspace \((3.7a)-(3.7g)\).

One can then show that the Bianchi identities \((3.7a)-(3.7g)\) are solved by parametrizing (on-shell) the full set of supercurvatures as follows:

\[
\begin{align*}
R^{ab} &= R^{ab}_{cd} V^c \wedge V^d + \Theta^{ab} \psi \wedge V^c, \\
R^a &= 0, \\
\tilde{H}^a &= 0, \\
\tilde{F}^{ab} &= \tilde{F}^{ab}_{cd} V^c \wedge V^d + \bar{\Theta}^{ab} \psi \wedge V^c + e \bar{\psi} \wedge \gamma^{ab} \psi, \\
\tilde{F}^{ab} &= \tilde{F}^{ab}_{cd} V^c \wedge V^d + \bar{\Pi}^{ab} \psi \wedge V^c + e \bar{\psi} \wedge \gamma^{ab} \psi, \\
\rho &= \rho_{ab} V^a \wedge V^b - e \gamma_{ab} \psi \wedge V^a, \\
\sigma &= \sigma_{ab} V^a \wedge V^b - e \gamma_{ab} \psi \wedge V^a,
\end{align*}
\]

with

\[
\begin{align*}
\Theta^{ab} + \bar{\Pi}^{ab} &= e^{abde} (\bar{\rho}_{cd} \gamma^e \gamma^f + \bar{\rho}_{de} \gamma^c \gamma^f - \bar{\rho}_{de} \gamma^c \gamma^f), \\
\Lambda^{ab} &= e^{abde} (\bar{\sigma}_{cd} \gamma^e \gamma^f + \bar{\sigma}_{de} \gamma^c \gamma^f - \bar{\sigma}_{de} \gamma^c \gamma^f).
\end{align*}
\]

For reaching this result, we have used the formulas given in Appendix A. We have thus found the parametrization of the Lorentz-type curvatures \((3.6a)-(3.6g)\). This, as we are going to show, also provides us with the supersymmetry transformations laws.

Supersymmetry transformation laws obtained within the geometric approach

The parametrizations \((3.9a)-(3.9g)\) we have obtained above allow to derive the supersymmetry transformations in a direct way. Indeed, in the geometric framework we have adopted, the transformations on space-time are given by (see [23], [24] and [25] for details):

\[
\delta \mu^A = (\nabla \epsilon)^A + \iota_\epsilon R^A,
\]

for all the superfields \(\mu^A \), where the symbol \(\nabla \) denotes the gauge covariant derivative and where

\[
\epsilon^A \equiv (\epsilon^{ab}, \epsilon^a, \bar{\epsilon}^a, \bar{\epsilon}^{ab}, \epsilon^{\alpha}, \bar{\epsilon}^\alpha).
\]

Observe that here we have a new supersymmetry-like transformation, related to the presence of the spinor charge \(\Sigma_\alpha \).

Then, for \(\epsilon^{ab} = \epsilon^a = \bar{\epsilon}^a = \bar{\epsilon}^{ab} = \epsilon^{\alpha} = \bar{\epsilon}^\alpha = 0 \), we have (we neglect the spinor index \(\alpha \), for
simplicity):
\[
i_e \mathcal{R}^{ab} = \tilde{\Theta}^{ab} e V^c, \tag{3.13a}
\]
\[
i_e R^a = 0, \tag{3.13b}
\]
\[
i_e \tilde{H}^a = 0, \tag{3.13c}
\]
\[
i_e \tilde{F}^{ab} = \tilde{\Lambda}^{ab} e V^c + 2 e \tilde{\gamma}^{ab} \psi, \tag{3.13d}
\]
\[
i_e F^{ab} = \tilde{\Pi}^{ab} e V^c + 2 e \tilde{\gamma}^{ab} \psi, \tag{3.13e}
\]
\[
i_e \rho = - e \gamma_a e V^a, \tag{3.13f}
\]
\[
i_e \sigma = - e \gamma_a e V^a. \tag{3.13g}
\]
This provides the following supersymmetry transformation laws for the 1-form fields:
\[
\delta_e \omega^{ab} = \tilde{\Theta}^{ab} e V^c, \tag{3.14a}
\]
\[
\delta_e V^a = \tilde{\gamma}^a \psi, \tag{3.14b}
\]
\[
\delta_e \tilde{h}^a = \tilde{\gamma}^a \xi, \tag{3.14c}
\]
\[
\delta_e \tilde{k}^{ab} = \tilde{\Lambda}^{ab} e V^c + 2 e \tilde{\gamma}^{ab} \psi, \tag{3.14d}
\]
\[
\delta_e k^{ab} = \tilde{\Pi}^{ab} e V^c + 2 e \tilde{\gamma}^{ab} \psi, \tag{3.14e}
\]
\[
\delta_e \psi = D \omega e + \frac{1}{4} \gamma_{ab} k^{ab} - e \gamma_a e V^a, \tag{3.14f}
\]
\[
\delta_e \xi = \frac{1}{4} \gamma_{ab} \tilde{k}^{ab} - e \gamma_a e V^a. \tag{3.14g}
\]
We will now move to the construction of a geometric bulk Lagrangian.

3.2 Rheonomic construction of the geometric bulk Lagrangian

We now construct a geometric bulk Lagrangian based on the generalized AdS-Lorentz superalgebra.

The most general ansatz for the aforementioned Lagrangian can be written as follows:
\[
\mathcal{L} = \mu^{(4)} + R^A \wedge \mu_A^{(2)} + R^A \wedge R^B \mu_{AB}^{(0)}, \tag{3.15}
\]
where the upper index \((p)\) denotes the degree of the related differential \(p\)-forms. Here, the \(R^A\)’s are the generalized AdS-Lorentz Lie algebra valued supercurvatures defined by eqs. (2.14a)-(2.14g), invariant under the rescaling
\[
\omega^{ab} \rightarrow \omega^{ab}, \quad V^a \rightarrow \omega V^a, \quad \tilde{h}^a \rightarrow \omega \tilde{h}^a, \quad \tilde{k}^{ab} \rightarrow \tilde{k}^{ab}, \quad k^{ab} \rightarrow k^{ab}, \quad \psi \rightarrow \omega^{1/2} \psi, \quad \xi \rightarrow \omega^{1/2} \xi. \tag{3.16}
\]

The Lagrangian must scale with \(\omega^2\), being \(\omega^2\) the scale-weight of the Einstein-Hilbert term. Thus, due to scaling constraints reasons (see [23]), some of the terms in the ansatz
disappear. Besides, since we are now constructing the bulk Lagrangian, we can set \(R^A \land R^B \mu_{AB}^{(0)} = 0 \). Nevertheless, these terms will be fundamental for the construction of the boundary contributions needed in order to restore the supersymmetry invariance of the full Lagrangian (understood as bulk plus boundary contributions) in the presence of a non-trivial boundary of space-time. Then, applying the scaling and the parity conservation law, we are left with the following explicit form for the Lagrangian (written in terms of the generalized AdS-Lorentz 1-form fields and of the super field-strengths (2.14a)-(2.14g)):

\[
\mathcal{L} = \epsilon_{abcd} R^{ab} \land V^c \land V^d + \alpha_1 \epsilon_{abcd} R^{ab} \land V^c \land \hat{h}^d + \alpha_2 \epsilon_{abcd} R^{ab} \land \hat{h}^c \land \hat{h}^d + \\
+ \alpha_3 \epsilon_{abcd} \tilde{F}^{ab} \land V^c \land V^d + \alpha_4 \epsilon_{abcd} \tilde{F}^{ab} \land V^c \land \hat{h}^d + \alpha_5 \epsilon_{abcd} \tilde{F}^{ab} \land \hat{h}^c \land \hat{h}^d + \\
+ \alpha_6 \epsilon_{abcd} F^{ab} \land V^c \land V^d + \alpha_7 \epsilon_{abcd} F^{ab} \land V^c \land \hat{h}^d + \alpha_8 \epsilon_{abcd} F^{ab} \land \hat{h}^c \land \hat{h}^d + \\
+ \alpha_9 \bar{\psi} \land V^a \gamma_\alpha \gamma_5 \land \Psi + \alpha_{10} \bar{\psi} \land \hat{h}^a \gamma_\alpha \gamma_5 \land \Psi + \alpha_{11} \bar{\psi} \land V^a \gamma_\alpha \gamma_5 \land \Xi + \\
+ \alpha_{12} \bar{\psi} \land \hat{h}^a \gamma_\alpha \gamma_5 \land \Xi + \alpha_{13} \bar{\xi} \land V^a \gamma_\alpha \gamma_5 \land \Psi + \alpha_{14} \bar{\xi} \land \hat{h}^a \gamma_\alpha \gamma_5 \land \Psi + \\
+ \alpha_{15} \bar{\xi} \land V^a \gamma_\alpha \gamma_5 \land \Xi + \alpha_{16} \bar{\xi} \land \hat{h}^a \gamma_\alpha \gamma_5 \land \Xi + \\
+ e \epsilon_{abcd} \bar{\psi} \land \gamma^{ab} \psi \land (\beta_1 V^c \land V^d + \beta_2 V^c \land \hat{h}^d + \beta_3 \hat{h}^c \land \hat{h}^d) + \\
+ e \epsilon_{abcd} \bar{\psi} \land \gamma^{ab} \xi \land (\beta_4 V^c \land V^d + \beta_5 V^c \land \hat{h}^d + \beta_6 \hat{h}^c \land \hat{h}^d) + \\
+ e \epsilon_{abcd} \bar{\xi} \land \gamma^{ab} \xi \land (\beta_7 V^c \land V^d + \beta_8 V^c \land \hat{h}^d + \beta_9 \hat{h}^c \land \hat{h}^d) + \\
+ \beta_{10} e^2 \epsilon_{abcd} V^a \land V^b \land V^c \land V^d + \beta_{11} e^2 \epsilon_{abcd} V^a \land V^b \land V^c \land \hat{h}^d + \\
+ \beta_{12} e^2 \epsilon_{abcd} V^a \land V^b \land \hat{h}^c \land \hat{h}^d + \beta_{13} e^2 \epsilon_{abcd} V^a \land \hat{h}^b \land \hat{h}^c \land \hat{h}^d + \beta_{14} e^2 \epsilon_{abcd} \hat{h}^a \land \hat{h}^b \land \hat{h}^c \land \hat{h}^d, \\ (3.17)
\]

where, in addition, we have consistently set the coefficient of the first term in (3.17) to 1. The \(\alpha_i \)'s and the \(\beta_j \)'s are constant (dimensionless) parameters to be determined by studying the field equations.

Let us now compute the variation of the Lagrangian with respect to the different fields. Along these calculations, we make use of the formulas given in Appendix [A]. The variation of the Lagrangian with respect to the spin connection \(\omega^{ab} \) reads

\[
\delta_\omega \mathcal{L} = 2 \epsilon_{abcd} \delta \omega^{ab} \land \left[D_{\omega} V^c \land V^d + \frac{1}{2} \alpha_1 D_{\omega} V^c \land \hat{h}^d + \frac{1}{2} \alpha_1 D_{\omega} \hat{h}^c \land V^d + \alpha_2 D_{\omega} \hat{h}^c \land \hat{h}^d + \\
+ \alpha_3 \hat{k}^c \land V^d + \alpha_4 \hat{k}^c \land V^d + \alpha_5 \hat{k}^c \land \hat{h}^d + \alpha_6 \hat{k}^c \land \hat{h}^d + \\
+ \alpha_7 \hat{k}^c \land V^d + \alpha_8 \hat{k}^c \land \hat{h}^d + \frac{1}{8} \alpha_{11} \bar{\psi} \land \gamma^c \psi \land V^d - \frac{1}{8} \alpha_{10} \bar{\psi} \land \gamma^c \psi \land \hat{h}^d + \\
- \frac{1}{8} \alpha_{12} \bar{\psi} \land \gamma^c \xi \land V^d - \frac{1}{8} \alpha_{14} \bar{\psi} \land \gamma^c \xi \land \hat{h}^d + \\
- \frac{1}{8} \alpha_{13} \bar{\xi} \land \gamma^c \xi \land V^d - \frac{1}{8} \alpha_{16} \bar{\xi} \land \gamma^c \xi \land \hat{h}^d \right].
\] (3.18)
One can then prove that, if
\begin{align*}
\alpha_1 &= \alpha_4 = \alpha_7 = 2, \\
\alpha_2 &= \alpha_3 = \alpha_5 = \alpha_6 = \alpha_8 = 1, \\
\alpha_9 &= \alpha_{10} = \alpha_{11} = \alpha_{12} = \alpha_{13} = \alpha_{14} = \alpha_{15} = \alpha_{16} = 4,
\end{align*}
(3.19)
\[\delta_\alpha \mathcal{L} = 0\] yields the following field equation:
\[\epsilon_{abcd} \left(R^c + \tilde{H}^c \right) \wedge \left(V^d + \tilde{h}^d \right) = 0, \quad (3.20)\]
generalizing to \(R^c + \tilde{H}^c \) and \(V^d + \tilde{h}^d \) the usual equation \(\epsilon_{abcd} R^c \wedge V^d = 0 \) for the supertorsion. The variation of the Lagrangian with respect to \(\tilde{k}^{ab} \) and \(k^{ab} \) gives the same result, that is it does not imply any additional on-shell constraint.

Analogously, one can prove that, by setting
\begin{align*}
\beta_1 &= \beta_3 = \beta_7 = \beta_9 = -1, \\
\beta_2 &= \beta_4 = \beta_6 = \beta_8 = \beta_{10} = \beta_{14} = -2, \\
\beta_5 &= -4, \\
\beta_{11} &= \beta_{13} = -8, \\
\beta_{12} &= -12,
\end{align*}
(3.21)
the variation of the Lagrangian with respect to the vielbein \(V^a \) can be recast into the following form:
\[\delta V \mathcal{L} = \left[2\epsilon_{abcd} (R^{ab} \wedge V^c + R^{ab} \wedge \tilde{h}^c) + 2\epsilon_{abcd} (\tilde{F}^{ab} \wedge V^c + \tilde{F}^{ab} \wedge \tilde{h}^c) \right. \]
\[+ 2\epsilon_{abcd} (F^{ab} \wedge V^c + F^{ab} \wedge \tilde{h}^c) \]
\[+ 4\bar{\psi} \wedge \gamma_d \gamma_5 \Psi + 4\bar{\psi} \wedge \gamma_d \gamma_5 \Xi + 4\bar{\xi} \wedge \gamma_d \gamma_5 \Psi + 4\bar{\xi} \wedge \gamma_d \gamma_5 \Xi \] \[\left. \right] \wedge \delta V^d. \quad (3.22)\]

Then, \(\delta V \mathcal{L} = 0 \) leads to the (generalized) equation
\[2\epsilon_{abcd} (R^{ab} + \tilde{F}^{ab} + F^{ab}) \wedge (V^c + \tilde{h}^c) + 4(\bar{\psi} + \bar{\xi}) \wedge \gamma_d \gamma_5 (\Psi + \Xi) = 0. \quad (3.23)\]
The variation of the Lagrangian with respect to \(\tilde{h}^a \) yields the same result. Finally, from the variation of the Lagrangian with respect to the gravitino field \(\psi \), we find the (generalized) field equation
\[8(V^a + \tilde{h}^a) \wedge \gamma_a \gamma_5 (\Psi + \Xi) + 4\gamma_a \gamma_5 (\psi + \xi) \wedge (R^a + \tilde{H}^a) = 0. \quad (3.24)\]
The variation with respect to \(\xi \) gives the same result.

We have thus completely determined the bulk Lagrangian of the theory, fixing all the coefficients. Interestingly, one can easily prove that the aforementioned geometric bulk Lagrangian can be rewritten in terms of the Lorentz-type curvatures (3.6a)-(3.6g) as follows:
Thus, let us consider the bulk Lagrangian (3.25). The supersymmetry invariance of the full Lagrangian (given by bulk plus boundary contributions), on the same lines of [22], [27] (see also [25]). In the calculations terms required to recover the supersymmetry invariance of the full Lagrangian (given by bulk presence of a non-trivial space-time boundary and, in particular, we present the explicit boundary formations (3.14a)-(3.14g) of the 1-form fields on space-time, up to boundary terms. As we have already mentioned, if the space-time background has a non-trivial boundary, we have to find the on-shell supercurvature parametrizations (3.9a)-(3.9g) by studying the various sectors of the Bianchi identities.

Let us also mention that the Lagrangian (3.25) has been written as a first-order Lagrangian, and the field equation for the spin connection ω^{ab} implies (up to boundary terms) the vanishing, on-shell, of $R^a + H^a$ (defined in eqs. (3.6b) and (3.6c), respectively). This is in agreement with the conditions $R^a = 0$ and $H^a = 0$ we have previously imposed in order to find the on-shell supercurvature parametrizations (3.9a)-(3.9g) by studying the various sectors of the Bianchi identities.

The space-time Lagrangian (3.25) results to be invariant under the supersymmetry transformations (3.14a)-(3.14g) of the 1-form fields on space-time, up to boundary terms. As we have already mentioned, if the space-time background has a non-trivial boundary, we have to check explicitly the condition (3.4).

4 Supersymmetry invariance of the theory in the presence of a non-trivial boundary of space-time

In the following, we analyze the supersymmetry invariance of the Lagrangian in the presence of a non-trivial space-time boundary and, in particular, we present the explicit boundary terms required to recover the supersymmetry invariance of the full Lagrangian (given by bulk plus boundary contributions), on the same lines of [22], [27] (see also [25]). In the calculations presented in this section, we make extensive use of the formulas in four dimensions given in Appendix A. Thus, let us consider the bulk Lagrangian (3.25). The supersymmetry invariance in the bulk is satisfied on-shell. Nevertheless, for this theory the boundary invariance
of the Lagrangian under supersymmetry is not trivially satisfied, and the condition (3.4) has to be checked in an explicit way in the presence of a non-trivial boundary of space-time. In fact, we find that, if the fields do not asymptotically vanish at the boundary, we have

$$\epsilon_c \mathcal{L}_{\text{bulk}}|_{\partial \mathcal{M}} \neq 0.$$ \hfill (4.1)

In order to restore the supersymmetry invariance of the theory, it is possible to modify the bulk Lagrangian by adding boundary (i.e. topological) terms, which do not alter the bulk Lagrangian, so that (3.1) is still fulfilled. The only possible boundary contributions (that are topological 4-forms) compatible with parity and Lorentz-like invariance are:

\[
\begin{align*}
 d \left(\tilde{\omega}^{ab} \wedge \mathcal{N}^{cd} + \tilde{\omega}^a_f \wedge \tilde{\omega}^{fb} \wedge \tilde{\omega}^{cd} \right) \epsilon_{abcd} &= \epsilon_{abcd} \mathcal{N}^{ab} \wedge \mathcal{N}^{cd}, \quad \text{(4.2a)} \\
 d \left(\tilde{\psi} \wedge \gamma_5 \rho + \tilde{\xi} \wedge \gamma_5 \sigma + \tilde{\psi} \wedge \gamma_5 \sigma + \tilde{\xi} \wedge \gamma_5 \rho \right) &= \tilde{\rho} \wedge \gamma_5 \rho \\
 &+ \tilde{\sigma} \wedge \gamma_5 \sigma + 2 \tilde{\rho} \wedge \gamma_5 \sigma + \frac{1}{8} \epsilon_{abcd} \mathcal{R}^{ab} \wedge \tilde{\psi} \wedge \gamma^{cd} \psi \\
 &+ \frac{1}{8} \epsilon_{abcd} \mathcal{F}^{ab} \wedge \tilde{\psi} \wedge \gamma^{cd} \psi \\
 &+ \frac{1}{4} \epsilon_{abcd} \mathcal{R}^{ab} \wedge \tilde{\psi} \wedge \gamma^{cd} \xi \\
 &+ \frac{1}{4} \epsilon_{abcd} \mathcal{F}^{ab} \wedge \tilde{\psi} \wedge \gamma^{cd} \xi \\
 &+ \frac{1}{8} \epsilon_{abcd} \mathcal{F}^{ab} \wedge \tilde{\xi} \wedge \gamma^{cd} \xi, \quad \text{(4.2b)}
\end{align*}
\]

where we have defined $\tilde{\omega}^{ab} = \omega^{ab} + \tilde{k}^{ab}$ and $\mathcal{N}^{ab} = \mathcal{R}^{ab} + \tilde{\mathcal{R}}^{ab} + \mathcal{F}^{ab}$.

Then, the boundary terms (4.2a) and (4.2b) correspond to the following boundary Lagrangian:

\[
\begin{align*}
 \mathcal{L}_{\text{bdy}} &= d \left(H^{(3)} \right) \\
 &= \alpha \epsilon_{abcd} \mathcal{R}^{ab} \wedge \mathcal{R}^{cd} + \tilde{F}^{ab} \wedge \tilde{F}^{cd} + F^{ab} \wedge F^{cd} + 2 \mathcal{R}^{ab} \wedge \tilde{F}^{cd} + 2 \mathcal{R}^{ab} \wedge F^{cd} + 2 \tilde{F}^{ab} \wedge F^{cd} \\
 &+ \beta \left(\tilde{\rho} \wedge \gamma_5 \rho + \tilde{\sigma} \wedge \gamma_5 \sigma + 2 \tilde{\rho} \wedge \gamma_5 \sigma + \frac{1}{8} \epsilon_{abcd} \mathcal{R}^{ab} \wedge \tilde{\psi} \wedge \gamma^{cd} \psi \\
 &+ \frac{1}{8} \epsilon_{abcd} \mathcal{F}^{ab} \wedge \tilde{\psi} \wedge \gamma^{cd} \psi \\
 &+ \frac{1}{4} \epsilon_{abcd} \mathcal{R}^{ab} \wedge \tilde{\psi} \wedge \gamma^{cd} \xi \\
 &+ \frac{1}{4} \epsilon_{abcd} \mathcal{F}^{ab} \wedge \tilde{\psi} \wedge \gamma^{cd} \xi \\
 &+ \frac{1}{8} \epsilon_{abcd} \mathcal{F}^{ab} \wedge \tilde{\xi} \wedge \gamma^{cd} \xi \right), \quad \text{(4.3)}
\end{align*}
\]

where, in fact,

\[
\begin{align*}
 H^{(3)} &= \alpha \epsilon_{abcd} \left(\tilde{\omega}^{ab} \wedge \mathcal{N}^{cd} + \tilde{\omega}^a_f \wedge \tilde{\omega}^{fb} \wedge \tilde{\omega}^{cd} \right) \\
 &+ \beta \left(\tilde{\psi} \wedge \gamma_5 \rho + \tilde{\xi} \wedge \gamma_5 \sigma + \tilde{\psi} \wedge \gamma_5 \sigma + \tilde{\xi} \wedge \gamma_5 \rho \right). \quad \text{(4.4)}
\end{align*}
\]
Here, α and β are constant parameters. Notice that the structure of a supersymmetric Gauss-Bonnet like term appears in (4.3).

Then, let us consider the following “full” Lagrangian (bulk plus boundary):

$$L_{\text{full}} = L_{\text{bulk}} + L_{\text{bdy}} =$$

$$= \epsilon_{abcd}R_{ab}^c \wedge V^c \wedge V^d + 2\epsilon_{abcd}R_{ab}^c \wedge \tilde{h}^c \wedge \tilde{h}^d + \epsilon_{abcd}\tilde{F}_{ab}^c \wedge V^c \wedge V^d$$

$$+ 2\epsilon_{abcd}\tilde{F}_{ab}^c \wedge \tilde{h}^d + \epsilon_{abcd}\tilde{F}_{ab}^c \wedge \tilde{h}^c \wedge \tilde{h}^d + \epsilon_{abcd}F_{ab}^c \wedge V^c \wedge V^d + 2\epsilon_{abcd}F_{ab}^c \wedge V^c \wedge \tilde{h}^d$$

$$+ \epsilon_{abcd}F_{ab}^c \wedge \tilde{h}^c \wedge \tilde{h}^d + 4\tilde{\psi} \wedge V^a \gamma_a \gamma_5 \wedge \rho + 4\tilde{\psi} \wedge \tilde{h}^a \gamma_a \gamma_5 \wedge \rho + 4\tilde{\psi} \wedge V^a \gamma_a \gamma_5 \wedge \sigma +$$

$$+ 4\tilde{\psi} \wedge \tilde{h}^a \gamma_a \gamma_5 \wedge \sigma + 4\tilde{\xi} \wedge V^a \gamma_a \gamma_5 \wedge \rho + 4\tilde{\xi} \wedge \tilde{h}^a \gamma_a \gamma_5 \wedge \rho + 4\tilde{\xi} \wedge V^a \gamma_a \gamma_5 \wedge \sigma + 4\tilde{\xi} \wedge \tilde{h}^a \gamma_a \gamma_5 \wedge \sigma$$

$$+ 2\epsilon^2\epsilon_{abcd}V^a \wedge V^b \wedge V^c \wedge V^d + 8\epsilon^2\epsilon_{abcd}V^a \wedge V^b \wedge V^c \wedge \tilde{h}^d + 12\epsilon^2\epsilon_{abcd}V^a \wedge V^b \wedge \tilde{h}^c \wedge \tilde{h}^d$$

$$+ 8\epsilon^2\epsilon_{abcd}V^a \wedge \tilde{h}^b \wedge \tilde{h}^c \wedge \tilde{h}^d + 2\epsilon^2\epsilon_{abcd}\tilde{F}^a \wedge \tilde{h}^b \wedge \tilde{h}^c \wedge \tilde{h}^d + 2\epsilon\epsilon_{abcd}\tilde{\psi} \wedge \gamma^a \psi \wedge V^c \wedge V^d$$

$$+ 4\epsilon\epsilon_{abcd}\tilde{\psi} \wedge \gamma^a \psi \wedge V^c \wedge \tilde{h}^d + 2\epsilon\epsilon_{abcd}\tilde{\psi} \wedge \gamma^a \psi \wedge \tilde{h}^c \wedge \tilde{h}^d + 4\epsilon\epsilon_{abcd}\tilde{\psi} \wedge \gamma^a \psi \wedge V^c \wedge \tilde{h}^d$$

$$+ 8\epsilon\epsilon_{abcd}\tilde{\psi} \wedge \gamma^a \psi \wedge V^c \wedge \tilde{h}^d + 4\epsilon\epsilon_{abcd}\tilde{\psi} \wedge \gamma^a \psi \wedge \tilde{h}^c \wedge \tilde{h}^d + 2\epsilon\epsilon_{abcd}\tilde{\psi} \wedge \gamma^a \psi \wedge \tilde{h}^c \wedge \tilde{h}^d$$

$$+ 4\epsilon\epsilon_{abcd}\tilde{\psi} \wedge \gamma^a \psi \wedge V^c \wedge \tilde{h}^d + 2\epsilon\epsilon_{abcd}\tilde{\psi} \wedge \gamma^a \psi \wedge \tilde{h}^c \wedge \tilde{h}^d$$

$$+ \alpha\epsilon_{abcd}\left(\epsilon_{abcd}R^c \wedge R^{cd} + \epsilon_{abcd}\tilde{F}^c \wedge \tilde{F}^{cd} + \epsilon_{abcd}F^c \wedge F^{cd} + 2\epsilon_{abcd}\tilde{F}^c \wedge F^{cd} + 2\epsilon_{abcd}F^c \wedge F^{cd} + 2\epsilon_{abcd}\tilde{F}^c \wedge F^{cd}\right)$$

$$+ \beta\left(\tilde{\psi} \wedge \gamma_5 \rho + \tilde{\psi} \wedge \gamma_5 \sigma + 2\tilde{\psi} \wedge \gamma_5 \rho + \tilde{\psi} \wedge \gamma_5 \sigma + 1/8\epsilon_{abcd}R^a \wedge \tilde{h}^b \wedge \gamma^c \psi + 1/8\epsilon_{abcd}\tilde{F}^a \wedge \tilde{h}^b \wedge \gamma^c \psi \right)$$

$$+ 1/8\epsilon_{abcd}\tilde{F}^a \wedge \tilde{h}^b \wedge \gamma^c \psi + 1/4\epsilon_{abcd}R^a \wedge \tilde{h}^b \wedge \gamma^c \psi + 1/4\epsilon_{abcd}\tilde{F}^a \wedge \tilde{h}^b \wedge \gamma^c \psi$$

$$+ 1/8\epsilon_{abcd}R^a \wedge \xi \wedge \gamma^c \xi + 1/8\epsilon_{abcd}\tilde{F}^a \wedge \xi \wedge \gamma^c \xi + 1/8\epsilon_{abcd}F^a \wedge \xi \wedge \gamma^c \xi$$

$$+ 1/8\epsilon_{abcd}\tilde{F}^a \wedge \xi \wedge \gamma^c \xi).$$

(4.5)

Observe that, due to the homogeneous scaling of the Lagrangian, the coefficients α and β must be proportional to e^{-2} and e^{-1}, respectively (namely they should have length dimension 2 and 1, respectively).

Now, the supersymmetry invariance of the full Lagrangian L_{full} in (4.5), in the geometric approach, requires

$$\delta_\epsilon L_{\text{full}} \equiv \ell_\epsilon L_{\text{full}} = \epsilon_\epsilon dL_{\text{full}} + d(\epsilon_\epsilon L_{\text{full}}) = 0.$$

(4.6)

Since the boundary terms (4.2a) and (4.2b) we have introduced so far are total differentials, the condition for supersymmetry in the bulk, that is $\epsilon_\epsilon dL_{\text{full}} = 0$, is trivially satisfied.

Then, the supersymmetry invariance of the full Lagrangian L_{full} requires just to verify that, for suitable values of α and β, the condition $\epsilon_\epsilon L_{\text{full}} = 0$ (modulo an exact differential) holds on the boundary, that is to say $\epsilon_\epsilon L_{\text{full}}|_{\partial \mathcal{M}} = 0$.
Computing $\iota_* L_{\text{full}}$, we get:

\[
\iota_* L_{\text{full}} = \epsilon_{abcd} \epsilon_{e} \left(R^{ab} + \tilde{F}^{ab} + F^{ab} \right) \wedge V^c \wedge V^d + 2 \epsilon_{abcd} \epsilon_{e} \left(R^{ab} + \tilde{F}^{ab} + F^{ab} \right) \wedge V^c \wedge \hat{h}^d \\
+ \epsilon_{abcd} \epsilon_{e} \left(R^{ab} + \tilde{F}^{ab} + F^{ab} \right) \wedge \tilde{h}^c \wedge \tilde{h}^d + 4 \varepsilon V^a \wedge \gamma_a \gamma_5 \wedge \rho + 4 \varepsilon \tilde{h}^a \wedge \gamma_a \gamma_5 \wedge \rho \\
+ 4 \varepsilon V^a \wedge \gamma_a \gamma_5 \wedge \sigma + 4 \tilde{h}^a \wedge \gamma_a \gamma_5 \wedge \sigma + 4 \psi \wedge V^a \wedge \gamma_a \gamma_5 \epsilon_{e} (\rho) + 4 \bar{\psi} \wedge V^a \wedge \gamma_a \gamma_5 \epsilon_{e} (\sigma) \\
+ 4 \psi \wedge \tilde{h}^a \wedge \gamma_a \gamma_5 \epsilon_{e} (\rho) + 4 \bar{\psi} \wedge \tilde{h}^a \wedge \gamma_a \gamma_5 \epsilon_{e} (\sigma) + 4 \xi \wedge V^a \wedge \gamma_a \gamma_5 \epsilon_{e} (\rho) + 4 \xi \wedge \tilde{h}^a \wedge \gamma_a \gamma_5 \epsilon_{e} (\sigma) \\
+ 4 \varepsilon \epsilon_{abcd} \tilde{e} \gamma_{ab} \psi \wedge V^c \wedge V^d + 8 \varepsilon \epsilon_{abcd} \tilde{e} \gamma_{ab} \psi \wedge V^c \wedge \tilde{h}^d + 4 \varepsilon \epsilon_{abcd} \tilde{e} \gamma_{ab} \psi \wedge \tilde{h}^c \wedge \tilde{h}^d \\
+ 4 \varepsilon \epsilon_{abcd} \tilde{e} \gamma_{ab} \xi \wedge V^c \wedge V^d + 8 \varepsilon \epsilon_{abcd} \tilde{e} \gamma_{ab} \xi \wedge V^c \wedge \tilde{h}^d + 4 \varepsilon \epsilon_{abcd} \tilde{e} \gamma_{ab} \xi \wedge \tilde{h}^c \wedge \tilde{h}^d \\
+ 2 \varepsilon_{abcd} \epsilon_{e} \left(R^{ab} + \tilde{F}^{ab} + F^{ab} \right) \wedge \left(\alpha R^{cd} + \alpha \tilde{F}^{cd} + \alpha F^{cd} + \frac{\beta}{16} \bar{\psi} \wedge \gamma^{cd} \psi \\
+ \frac{\beta}{8} \tilde{\psi} \wedge \gamma^{cd} \xi + \frac{\beta}{16} \tilde{\psi} \wedge \gamma^{cd} \xi \right) + \frac{\beta}{4} \epsilon_{abcd} \left(R^{ab} + \tilde{F}^{ab} + F^{ab} \right) \wedge \left(\bar{e} \gamma_{cd} \psi + \bar{e} \gamma^{cd} \xi \right) \\
+ 2 \beta \epsilon_{e} (\rho) \wedge \gamma_5 \rho + 2 \beta \epsilon_{e} (\sigma) \wedge \gamma_5 \sigma + 2 \beta \epsilon_{e} (\rho) \wedge \gamma_5 \sigma + 2 \beta \epsilon_{e} (\sigma) \wedge \gamma_5 \rho. \right)
\] (4.7)

Now, in general, this is not zero, but its projection on the boundary should be. Indeed, in the presence of a non-trivial boundary of space-time, the field equations in superspace for the Lagrangian (4.5) acquire non-trivial boundary contributions, which lead to the following constraints that are valid on the boundary:

\[
\left\{ \begin{array}{l}
\left(R^{ab} + \tilde{F}^{ab} + F^{ab} \right) \mid_{\partial M} = - \frac{1}{2 \alpha} V^a \wedge V^b - \frac{1}{\alpha} V^a \wedge \tilde{h}^b - \frac{1}{2 \alpha} \tilde{h}^a \wedge \tilde{h}^b \\
- \frac{\beta}{16} \bar{\psi} \wedge \gamma_{ab} \psi - \frac{\beta}{8 \alpha} \bar{\psi} \wedge \gamma_{ab} \xi - \frac{\beta}{16 \alpha} \tilde{\psi} \wedge \gamma_{ab} \xi, \\
(\rho + \sigma) \mid_{\partial M} = \frac{2}{\beta} V^a \wedge \gamma_a \psi + \frac{2}{\beta} V^a \wedge \gamma_a \xi + \frac{2}{\beta} \tilde{h}^a \wedge \gamma_a \psi + \frac{2}{\beta} \tilde{h}^a \wedge \gamma_a \xi.
\end{array} \right.
\] (4.8)

We can see that the supercurvatures on the boundary are not dynamical, rather being fixed to constant values.

Then, upon use of (4.8) (and of Fierz identities and gamma matrices formulas reported in Appendix A), after some algebraic manipulation, on the boundary we are left with:

\[
\iota_* L_{\text{full}} \mid_{\partial M} = \epsilon_{abcd} \left(4 \varepsilon - \frac{\beta}{8 \alpha} - \frac{4}{\beta} \right) (\bar{e} \gamma_{ab} \psi + \bar{e} \gamma_{ab} \xi) \wedge \left(V^c \wedge V^d + 2 V^c \wedge \tilde{h}^d + \tilde{h}^c \wedge \tilde{h}^d \right). \] (4.9)

Thus, we find that $\iota_* L_{\text{full}} \mid_{\partial M} = 0$ if the following relation between α and β holds:

\[
\frac{\beta}{4 \alpha} + \frac{8}{\beta} = 8 \varepsilon.
\] (4.10)
Then, solving eq. (4.10) for β, we obtain:

$$\beta = 16 \, e \alpha \left(1 \pm \sqrt{1 - \frac{1}{8 \, e^2 \, \alpha}}\right).$$

(4.11)

Now, observe that, by setting the square root in (4.11) to zero, which implies

$$\alpha = \frac{1}{8e^2} \quad \Rightarrow \quad \beta = \frac{2}{e},$$

(4.12)

we recover the following 2-form supercurvatures:

$$N^{ab} = R^{ab} + \tilde{F}^{ab} + F^{ab} + 8e^2 \, V^a \wedge \tilde{h}^b + e \, \bar{\psi} \wedge \gamma^{ab} \psi + e \, \bar{\xi} \wedge \gamma^{ab} \xi$$

$$+ 4e^2 \, V^a \wedge \tilde{V}^b + 4e^2 \, \tilde{h}^a \wedge \tilde{h}^b + 2e \, \bar{\psi} \wedge \gamma^{ab} \psi,$$

(4.13a)

$$\Omega = \rho + \sigma + e \, V^a \wedge \gamma_a \xi + e \, \bar{h}^a \wedge \gamma_a \psi + e \, V^a \wedge \gamma_a \psi + e \, \tilde{h}^a \wedge \gamma_a \xi,$$

(4.13b)

$$R^a = D_\omega V^a + k^a_b \wedge V^b + \tilde{k}^a_b \wedge \tilde{h}^b - \frac{1}{2} \bar{\psi} \wedge \gamma^a \psi - \frac{1}{2} \bar{\xi} \wedge \gamma^a \xi,$$

(4.13c)

$$\tilde{H}^a = D_\omega \tilde{h}^a + \tilde{k}^a_b \wedge V^b + k^a_b \wedge \tilde{h}^b - \bar{\psi} \wedge \gamma^a \psi,$$

(4.13d)

Notice that (4.13a)-(4.13d) reproduce the generalized AdS-Lorentz supercurvatures, since one can write:

$$N^{ab} = R^{ab} + \tilde{F}^{ab} + F^{ab},$$

(4.14a)

$$\Omega = \Psi + \Xi,$$

(4.14b)

being $R^{ab}, \tilde{F}^{ab}, F^{ab}, \Psi,$ and Ξ defined in eqs. (2.14a)-(2.14g).

The full Lagrangian (4.5), written in terms of the 2-form supercurvatures (4.14a) and (4.14b), can be finally recast as a MacDowell-Mansouri like form [26], that is:

$$L_{\text{full}} = \frac{1}{8e^2} \epsilon_{abcd} N^{ab} \wedge N^{cd} + \frac{2}{e} \Omega \wedge \gamma \Omega,$$

(4.15)

whose boundary term, in particular, corresponds to the following supersymmetric Gauss-Bonnet like term (in the sequel, SUSY GB-like term, that is eq. (4.3) in which we have substituted (4.12)):
SUSY GB-like term = \frac{1}{8e^2} \epsilon_{abcd} \left(\mathcal{R}^{ab} \wedge \mathcal{R}^{cd} + \tilde{\mathcal{F}}^{ab} \wedge \tilde{\mathcal{F}}^{cd} + \mathcal{F}^{ab} \wedge \mathcal{F}^{cd} \right) \\
+ 2\mathcal{R}^{ab} \wedge \tilde{\mathcal{F}}^{cd} + 2\mathcal{R}^{ab} \wedge \mathcal{F}^{cd} + 2\tilde{\mathcal{F}}^{ab} \wedge \mathcal{F}^{cd} \\
+ \frac{2}{e} \left(\bar{\rho} \wedge \gamma_5 \bar{\sigma} + \bar{\sigma} \wedge \gamma_5 \bar{\rho} + 2\bar{\rho} \wedge \gamma_5 \bar{\sigma} + \frac{1}{8} \epsilon_{abcd} \mathcal{R}^{ab} \wedge \bar{\psi} \wedge \gamma^{cd} \psi + \frac{1}{8} \epsilon_{abcd} \tilde{\mathcal{F}}^{ab} \wedge \bar{\psi} \wedge \gamma^{cd} \psi \right) \\
+ \frac{1}{8} \epsilon_{abcd} \mathcal{F}^{ab} \wedge \bar{\psi} \wedge \gamma^{cd} \psi + \frac{1}{4} \epsilon_{abcd} \mathcal{R}^{ab} \wedge \bar{\psi} \wedge \gamma^{cd} \xi + \frac{1}{4} \epsilon_{abcd} \tilde{\mathcal{F}}^{ab} \wedge \bar{\psi} \wedge \gamma^{cd} \xi \\
+ \frac{1}{4} \epsilon_{abcd} \mathcal{F}^{ab} \wedge \bar{\psi} \wedge \gamma^{cd} \xi + \frac{1}{8} \epsilon_{abcd} \bar{\mathcal{R}}^{ab} \wedge \bar{\xi} \wedge \gamma^{cd} \xi + \frac{1}{8} \epsilon_{abcd} \bar{\tilde{\mathcal{F}}}^{ab} \wedge \bar{\xi} \wedge \gamma^{cd} \xi \\
+ \frac{1}{8} \epsilon_{abcd} \mathcal{F}^{ab} \wedge \bar{\xi} \wedge \gamma^{cd} \xi \right). \tag{4.16}

Let us observe that considering the square root in (4.11) as different from zero would cause other boundary terms appearing in the MacDowell-Mansouri like Lagrangian. Indeed, defining

\[f^2 = 1 - \frac{1}{8e^2\alpha}, \]

and considering \(f \neq 0 \) in (4.11) (\(\beta \neq 0 \Rightarrow f \neq -1 \)), we end up with the following extra contributions:

\[-\frac{f^2}{8e^2(f^2-1)}d \left(\bar{\omega}^{ab} \wedge \mathcal{N}^{cd} + \bar{\omega}^a f \wedge \bar{\omega}^{fb} \wedge \bar{\omega}^{cd} \right) \epsilon_{abcd} \]

\[+ 16\alpha f d \left(\bar{\psi} \wedge \gamma_5 \rho + \bar{\xi} \wedge \gamma_5 \sigma + \bar{\psi} \wedge \gamma_5 \sigma + \bar{\xi} \wedge \gamma_5 \rho \right) \tag{4.17} \]

(recall that we defined \(\bar{\omega}^{ab} = \bar{\omega}^{ab} + \bar{\kappa}^{ab} + \bar{\kappa}^{ab} \) and \(\mathcal{N}^{ab} = \mathcal{R}^{ab} + \bar{\mathcal{F}}^{ab} + \mathcal{F}^{ab} \)). These terms break the off-shell generalized AdS-Lorentz structure of the theory. However, the first term in (4.17) is incompatible with the invariance of the Lagrangian under diffeomorphisms in the bosonic directions of superspace; on the other hand, considering the second term in (4.17) and using the value of \(\rho + \sigma \) at the boundary, given in (4.8), we can easily prove that this term vanishes on-shell. Thus, in view of the fact that the closure of the generalized minimal AdS-Lorentz superalgebra only holds on-shell for a supersymmetric theory (in the absence of auxiliary fields), this extra contribution does not play a significant role as far as supersymmetry is concerned.

We have thus shown that the Gauss-Bonnet like term given in (4.16) allows to recover the supersymmetry invariance of the (on-shell) generalized AdS-Lorentz deformed supergravity theory in the presence of a boundary of space-time that is non-trivial.

Observe that, in terms of the newly defined supercurvatures (4.13a) and (4.13b), the boundary conditions on the super field-strengths (4.8) take the following simple form:

\[\mathcal{N}^{ab} \big|_{\partial M} = 0 \quad \text{and} \quad \Omega \big|_{\partial M} = 0. \]

This means, in particular, that the linear combinations \(\mathcal{R}^{ab} + \bar{\mathcal{F}}^{ab} + \mathcal{F}^{ab} \) and \(\Psi + \Xi \) vanish at the boundary.
5 Comments and possible developments

In this paper, driven by the results of [22] and [27], we have presented the explicit geometric construction of the $D = 4$ generalized (minimal) AdS-Lorentz deformed supergravity bulk Lagrangian (based on the generalized minimal AdS-Lorentz superalgebra of [28]). In particular, we have introduced in an alternative way a generalized supersymmetric cosmological term and we have studied the supersymmetry invariance of the Lagrangian in the presence of a non-trivial boundary of space-time, finding that the supersymmetric extension of a Gauss-Bonnet like term is required in order to restore the supersymmetry invariance of the full Lagrangian (understood as bulk plus boundary terms). In this way, we have also further investigated on the study performed in [28] in the context of AdS-Lorentz superalgebras and generalized supersymmetric cosmological constant terms in $N = 1$ supergravity.

The presence of the 1-form fields \tilde{k}^{ab}, k^{ab}, and ξ in the boundary could be useful in the context of the AdS/CFT correspondence.

In particular, as it was shown in [58], the introduction of a topological boundary in a four-dimensional bosonic action is equivalent to the holographic renormalization procedure in the AdS/CFT context. Then, we conjecture that the presence of \tilde{k}^{ab}, k^{ab}, and ξ in the boundary of our theory, allowing to recover the supersymmetry invariance in the geometric approach, could also allow to regularize the (deformed) supergravity action in the holographic renormalization context.

Furthermore, it would also be interesting to discuss our construction in the context of the recent works [59], [60].

In this work, we have also observed that both the AdS-Lorentz and the generalized minimal AdS-Lorentz superalgebras can be viewed as peculiar torsion deformations of $osp(4|1)$. This is intriguing, since, on the other hand, the same superalgebras can be obtained through S-expansion from $osp(4|1)$ by using semigroups of the type $S^{(2n)}_{M}$, with $n \geq 1$ ($S^{(2)}_{M}$ and $S^{(4)}_{M}$, respectively, see [28] for details). Then, our results could be useful to shed some light on the properties and physical role of these semigroups, also in higher-dimensional cases. Moreover, the form of the MacDowell-Mansouri like action obtained in [28] by considering the generalized minimal AdS-Lorentz superalgebra coincides with the one in (4.15) of our paper, obtained by adopting a geometric approach. We argue that all the superalgebras which can be obtained through S-expansion from $osp(4|1)$ by using semigroups of the type $S^{(2n)}_{M}$ ($n \geq 1$) can be viewed as particular torsion deformations of $osp(4|1)$, in the sense intended in this paper, and that they can consequently lead to MacDowell-Mansouri like actions involving supersymmetric extension of Gauss-Bonnet like terms allowing the supersymmetry invariance of the full Lagrangians (bulk plus boundary contributions) in the presence of a non-trivial boundary of space-time.

Then, it would also be compelling to analyze differences and analogies (from a geometric point of view) between the case we have discussed in the present work and the case of the super-Maxwell algebras, such as the minimal super-Maxwell algebra of [57] (called sM_{4} in the same paper).

In particular, in [57] the authors obtained the minimal $D = 4$ supergravity action plus
boundary terms from the minimal Maxwell superalgebra \mathcal{M}_4 applying the S-expansion procedure to $\mathfrak{osp}(4|1)$. Let us observe, as a first hint towards this possible future study, that the action they ended up with can be also viewed as an Inönü-Wigner contraction of (1.15), and, on the other hand, it cannot be written as a sum of quadratic terms in the super field-strengths considered in [57].

Another future analysis could consist in investigating the possible relations among the extra 1-form fields appearing in the generalized minimal AdS-Lorentz superalgebra (and also those of the super-Maxwell type algebras) and the extra 1-forms appearing in the hidden superalgebras underlying supergravity theories in higher dimensions [51], [52], [54], [55] (see also [25]). This analysis could also shed some light on the conjectured relations [52], [54] between the aforementioned hidden superalgebras and the framework of Exceptional Field Theory (see [61], [62], [63] and references therein). Some work is in progress on this topic.

Finally, it would be also interesting to discuss AdS-Lorentz (and also super-Maxwell) deformed supergravity theories in the context of gauged supergravities, exploiting the powerful embedding tensor formalism [64].

Acknowledgements

We are grateful to Alberto Santambrogio and Dietmar Klemm for the support. L.R. also acknowledge interesting discussions with Laura Andrianopoli and Mario Trigiante.

A Useful formulas in four dimensions

The gamma matrices in $D = 4$ space-time dimensions are defined through $\{\gamma_a, \gamma_b\} = -2\eta_{ab}$, where η_{ab} is the Minkowski metric (we adopt the convention $\eta_{ab} \equiv (-1, 1, 1, 1)$). They satisfy the algebraic relations:

\[
\begin{align*}
[\gamma_a, \gamma_b] &= 2\gamma_{ab}, \quad \gamma_5 = -\gamma_0 \gamma_1 \gamma_2 \gamma_3, \quad \gamma_5^2 = -1, \\
\{\gamma_5, \gamma_a\} &= [\gamma_5, \gamma_a] = 0, \quad \gamma_5 \gamma_a = -\frac{1}{2} \epsilon_{a b c d} \gamma_{c d}, \\
\gamma_a \gamma_b &= \gamma_{ab} - \eta_{ab}, \quad \gamma_{ab} \gamma_{cd} = \epsilon_{a b c d} \gamma_5 - 4 \delta_{[a}^c \gamma_{b] d} - 2 \delta_{c d}^{a b}, \\
\gamma_{a b} \gamma^c &= 2 \gamma_{[a} \delta_{b]}^c - \epsilon_{a b c d} \gamma_5 \gamma_d, \\
\gamma^{a b} \gamma^c &= -2 \gamma_{a [d} \delta_{b]}^c - \epsilon_{a b c d} \gamma_5 \gamma_d, \quad \gamma_{m a b} \gamma^m = 0, \\
\gamma_{a b} \gamma_m \gamma^{a b} &= 0, \quad \gamma_{a b} \gamma_{c d} \gamma^{a b} = 4 \gamma_{c d}, \quad \gamma_{m a} \gamma^m = -2 \gamma^a.
\end{align*}
\]

Furthermore, we have:

\[
\begin{align*}
(C \gamma_a)^T &= C \gamma_a, \quad (C \gamma_{a b})^T = C \gamma_{a b}, \\
(C \gamma_5)^T &= -C \gamma_5, \quad (C \gamma_5 \gamma_a)^T = -C \gamma_5 \gamma_a,
\end{align*}
\]
where C is the charge conjugation matrix ($C^T = -C$). We are dealing with Majorana spinors, fulfilling $\bar{\psi} = \psi^T C$. The following identities hold:

\[
\begin{align*}
\bar{\psi} \wedge \xi &= (-1)^{pq} \bar{\xi} \wedge \psi, \\
\bar{\psi} \wedge S\xi &= -(-1)^{pq} \bar{\xi} \wedge S\psi, \\
\bar{\psi} \wedge A\xi &= (-1)^{pq} \bar{\xi} \wedge A\psi
\end{align*}
\] (A.3)

for the p-form ψ and q-form ξ, being S and A symmetric and antisymmetric matrices, respectively. Finally, we can write the Fierz identities in four dimensions:

\[
\begin{align*}
\psi \wedge \bar{\psi} &= \frac{1}{2} \gamma_a \bar{\psi} \wedge \gamma^a \psi - \frac{1}{8} \gamma_{ab} \bar{\psi} \wedge \gamma^{ab} \psi, \\
\gamma_a \psi \wedge \bar{\psi} \wedge \gamma^a \psi &= 0, \\
\gamma_{ab} \psi \wedge \bar{\psi} \wedge \gamma^{ab} \psi &= 0, \\
\gamma_{ab} \psi \wedge \bar{\psi} \wedge \gamma^a \psi &= \psi \wedge \bar{\psi} \wedge \gamma_b \psi.
\end{align*}
\] (A.4)

References

[1] J. W. York, Jr., “Role of conformal three geometry in the dynamics of gravitation,” Phys. Rev. Lett. 28 (1972) 1082. doi:10.1103/PhysRevLett.28.1082

[2] G. W. Gibbons and S. W. Hawking, “Action Integrals and Partition Functions in Quantum Gravity,” Phys. Rev. D 15 (1977) 2752. doi:10.1103/PhysRevD.15.2752

[3] J. D. Brown and J. W. York, Jr., “Quasilocal energy and conserved charges derived from the gravitational action,” Phys. Rev. D 47 (1993) 1407 doi:10.1103/PhysRevD.47.1407 [gr-qc/9209012].

[4] P. Horava and E. Witten, “Eleven-dimensional supergravity on a manifold with boundary,” Nucl. Phys. B 475 (1996) 94 doi:10.1016/0550-3213(96)00308-2 [hep-th/9603142].

[5] J. M. Maldacena, “The Large N limit of superconformal field theories and supergravity,” Int. J. Theor. Phys. 38 (1999) 1113 [Adv. Theor. Math. Phys. 2 (1998) 231] doi:10.1023/A:1026654312961, 10.4310/ATMP.1998.v2.n2.a1 [hep-th/9711200].

[6] S. S. Gubser, I. R. Klebanov and A. M. Polyakov, “Gauge theory correlators from non-critical string theory,” Phys. Lett. B 428 (1998) 105 doi:10.1016/S0370-2693(98)00377-3 [hep-th/9802109].

[7] E. Witten, “Anti-de Sitter space and holography,” Adv. Theor. Math. Phys. 2 (1998) 253 doi:10.4310/ATMP.1998.v2.n2.a2 [hep-th/9802150].

[8] O. Aharony, S. S. Gubser, J. M. Maldacena, H. Ooguri and Y. Oz, “Large N field theories, string theory and gravity,” Phys. Rept. 323 (2000) 183 doi:10.1016/S0370-1573(99)00083-6 [hep-th/9905111].
[9] E. D'Hoker and D. Z. Freedman, “Supersymmetric gauge theories and the AdS / CFT correspondence,” hep-th/0201253.

[10] K. Skenderis, “Lecture notes on holographic renormalization,” Class. Quant. Grav. 19 (2002) 5849 doi:10.1088/0264-9381/19/22/306 [hep-th/0209067].

[11] R. Aros, M. Contreras, R. Olea, R. Troncoso and J. Zanelli, “Conserved charges for gravity with locally AdS asymptotics,” Phys. Rev. Lett. 84 (2000) 1647 doi:10.1103/PhysRevLett.84.1647 [gr-qc/9909015].

[12] R. Aros, M. Contreras, R. Olea, R. Troncoso and J. Zanelli, “Conserved charges for even dimensional asymptotically AdS gravity theories,” Phys. Rev. D 62 (2000) 044002 doi:10.1103/PhysRevD.62.044002 [hep-th/9912045].

[13] P. Mora, R. Olea, R. Troncoso and J. Zanelli, “Finite action principle for Chern-Simons AdS gravity,” JHEP 0406 (2004) 036 doi:10.1088/1126-6708/2004/06/036 [hep-th/0405267].

[14] R. Olea, “Mass, angular momentum and thermodynamics in four-dimensional Kerr-AdS black holes,” JHEP 0506 (2005) 023 doi:10.1088/1126-6708/2005/06/023 [hep-th/0504233].

[15] D. P. Jatkar, G. Kofinas, O. Miskovic and R. Olea, “Conformal Mass in AdS gravity,” Phys. Rev. D 89 (2014) no.12, 124010 doi:10.1103/PhysRevD.89.124010 [arXiv:1404.1411 [hep-th]].

[16] P. van Nieuwenhuizen and D. V. Vassilevich, “Consistent boundary conditions for supergravity,” Class. Quant. Grav. 22 (2005) 5029 doi:10.1088/0264-9381/22/23/008 [hep-th/0507172].

[17] D. V. Belyaev, “Boundary conditions in supergravity on a manifold with boundary,” JHEP 0601 (2006) 047 doi:10.1088/1126-6708/2006/01/047 [hep-th/0509172].

[18] D. V. Belyaev and P. van Nieuwenhuizen, “Tensor calculus for supergravity on a manifold with boundary,” JHEP 0802 (2008) 047 doi:10.1088/1126-6708/2008/02/047 [arXiv:0711.2272 [hep-th]].

[19] D. V. Belyaev and P. van Nieuwenhuizen, “Simple d=4 supergravity with a boundary,” JHEP 0809 (2008) 069 doi:10.1088/1126-6708/2008/09/069 [arXiv:0806.4723 [hep-th]].

[20] D. Grumiller and P. van Nieuwenhuizen, “Holographic counterterms from local supersymmetry without boundary conditions,” Phys. Lett. B 682 (2010) 462 doi:10.1016/j.physletb.2009.11.022 [arXiv:0908.3486 [hep-th]].

[21] D. V. Belyaev and T. G. Pugh, “The Supermultiplet of boundary conditions in supergravity,” JHEP 1010 (2010) 031 doi:10.1007/JHEP10(2010)031 [arXiv:1008.1574 [hep-th]].
22] L. Andrianopoli and R. D'Auria, “N=1 and N=2 pure supergravities on a manifold with boundary,” JHEP 1408 (2014) 012 doi:10.1007/JHEP08(2014)012 [arXiv:1405.2010 [hep-th]].

23] L. Castellani, R. D'Auria and P. Fré, “Supergravity and superstrings: A Geometric perspective. Vol. 2: Supergravity,” Singapore, Singapore: World Scientific (1991) 607-1371

24] L. Castellani, “Supergravity in the group-geometric framework: a primer,” arXiv:1802.03407 [hep-th].

25] L. Ravera, “Group Theoretical Hidden Structure of Supergravity Theories in Higher Dimensions,” doi:10.6092/polito/porto/2700157 arXiv:1802.06602 [hep-th].

26] S. W. MacDowell and F. Mansouri, “Unified Geometric Theory of Gravity and Supergravity,” Phys. Rev. Lett. 38 (1977) 739 Erratum: [Phys. Rev. Lett. 38 (1977) 1376]. doi:10.1103/PhysRevLett.38.1376, 10.1103/PhysRevLett.38.739

27] M. C. Ipinza, P. K. Concha, L. Ravera and E. K. Rodríguez, “On the Supersymmetric Extension of Gauss-Bonnet like Gravity,” JHEP 1609 (2016) 007 doi:10.1007/JHEP09(2016)007 [arXiv:1607.00373 [hep-th]].

28] P. K. Concha, E. K. Rodríguez and P. Salgado, “Generalized supersymmetric cosmological term in N = 1 Supergravity,” JHEP 1508 (2015) 009 doi:10.1007/JHEP08(2015)009 [arXiv:1504.01898 [hep-th]].

29] D. V. Soroka and V. A. Soroka, “Semi-simple extension of the (super)Poincaré algebra,” Adv. High Energy Phys. 2009 (2009) 234147 doi:10.1155/2009/234147 [hep-th/0605251].

30] R. Durka, J. Kowalski-Glikman and M. Szczachor, “Gauged AdS-Maxwell algebra and gravity,” Mod. Phys. Lett. A 26 (2011) 2689 doi:10.1142/S0217732311037078 [arXiv:1107.4728 [hep-th]].

31] F. Izaurieta, E. Rodríguez and P. Salgado, “Expanding Lie (super)algebras through Abelian semigroups,” J. Math. Phys. 47 (2006) 123512 doi:10.1063/1.2390659 [hep-th/0606215].

32] M. C. Ipinza, F. Lingua, D. M. Peñafiel and L. Ravera, “An Analytic Method for S-Expansion involving Resonance and Reduction,” Fortsch. Phys. 64 (2016) no.11-12, 854 doi:10.1002/prop.201600094 [arXiv:1609.05042 [hep-th]].

33] J. Diaz, O. Fierro, F. Izaurieta, N. Merino, E. Rodríguez, P. Salgado and O. Valdivia, “A generalized action for (2 + 1)-dimensional Chern-Simons gravity,” J. Phys. A 45 (2012) 255207 doi:10.1088/1751-8113/45/25/255207 [arXiv:1311.2215 [gr-qc]].
[34] O. Fierro, F. Izaurieta, P. Salgado and O. Valdivia, “(2+1)-dimensional supergravity invariant under the AdS-Lorentz superalgebra,” arXiv:1401.3697 [hep-th].

[35] P. K. Concha, R. Durka, N. Merino and E. K. Rodríguez, “New family of Maxwell like algebras,” Phys. Lett. B 759 (2016) 507 doi:10.1016/j.physletb.2016.06.016 [arXiv:1601.06443 [hep-th]].

[36] P. Salgado and S. Salgado, “so(D − 1, 1) ⊗ so(D − 1, 2) algebras and gravity,” Phys. Lett. B 728 (2014) 5. doi:10.1016/j.physletb.2013.11.009

[37] P. K. Concha, N. Merino and E. K. Rodríguez, “Lovelock gravities from Born-Infeld gravity theory,” Phys. Lett. B 765 (2017) 395 doi:10.1016/j.physletb.2016.09.008 [arXiv:1606.07083 [hep-th]].

[38] P. Concha and E. Rodríguez, “Generalized Pure Lovelock Gravity,” Phys. Lett. B 774 (2017) 616 doi:10.1016/j.physletb.2017.10.019 [arXiv:1708.08827 [hep-th]].

[39] P. K. Concha, D. M. Peñafiel, E. K. Rodríguez and P. Salgado, “Even-dimensional General Relativity from Born-Infeld gravity,” Phys. Lett. B 725 (2013) 419 doi:10.1016/j.physletb.2013.07.019 [arXiv:1309.0062 [hep-th]].

[40] P. K. Concha, D. M. Peñafiel, E. K. Rodríguez and P. Salgado, “Chern-Simons and Born-Infeld gravity theories and Maxwell algebras type,” Eur. Phys. J. C 74 (2014) 2741 doi:10.1140/epjc/s10052-014-2741-6 [arXiv:1402.0023 [hep-th]].

[41] P. K. Concha, D. M. Peñafiel, E. K. Rodríguez and P. Salgado, “Generalized Poincaré algebras and Lovelock-Cartan gravity theory,” Phys. Lett. B 742 (2015) 310 doi:10.1016/j.physletb.2015.01.038 [arXiv:1405.7078 [hep-th]].

[42] S. Bonanos, J. Gomis, K. Kamimura and J. Lukierski, “Maxwell Superalgebra and Superparticle in Constant Gauge Backgrounds,” Phys. Rev. Lett. 104 (2010) 090401 doi:10.1103/PhysRevLett.104.090401 [arXiv:0911.5072 [hep-th]].

[43] H. Bacry, P. Combe and J. L. Richard, “Group-theoretical analysis of elementary particles in an external electromagnetic field. 1. the relativistic particle in a constant and uniform field,” Nuovo Cim. A 67 (1970) 267. doi:10.1007/BF02725178

[44] R. Schrader, “The maxwell group and the quantum theory of particles in classical homogeneous electromagnetic fields,” Fortsch. Phys. 20 (1972) 701. doi:10.1002/prop.19720201202

[45] S. Bonanos and J. Gomis, “A Note on the Chevalley-Eilenberg Cohomology for the Galilei and Poincare Algebras,” J. Phys. A 42 (2009) 145206 doi:10.1088/1751-8113/42/14/145206 [arXiv:0808.2243 [hep-th]].
[46] S. Bonanos, J. Gomis, K. Kamimura and J. Lukierski, “Deformations of Maxwell Superalgebras and Their Applications,” J. Math. Phys. 51 (2010) 102301 doi:10.1063/1.3492928 [arXiv:1005.3714 [hep-th]].

[47] J. Gomis, K. Kamimura and J. Lukierski, “Deformed Maxwell Algebras and their Realizations,” AIP Conf. Proc. 1196 (2009) 124 doi:10.1063/1.3284373 [arXiv:0910.0326 [hep-th]].

[48] S. Bonanos and J. Gomis, “Infinite Sequence of Poincare Group Extensions: Structure and Dynamics,” J. Phys. A 43 (2010) 015201 doi:10.1088/1751-8113/43/1/015201 [arXiv:0812.4140 [hep-th]].

[49] G. W. Gibbons, J. Gomis and C. N. Pope, “Deforming the Maxwell-Sim Algebra,” Phys. Rev. D 82 (2010) 065002 doi:10.1103/PhysRevD.82.065002 [arXiv:0910.3220 [hep-th]].

[50] J. Gomis and A. Kleinschmidt, “On free Lie algebras and particles in electro-magnetic fields,” JHEP 1707 (2017) 085 doi:10.1007/JHEP07(2017)085 [arXiv:1705.05854 [hep-th]].

[51] R. D’Auria and P. Fré, “Geometric Supergravity in $d = 11$ and Its Hidden Supergroup,” Nucl. Phys. B 201 (1982) 101 Erratum: [Nucl. Phys. B 206 (1982) 496]. doi:10.1016/0550-3213(82)90376-5, 10.1016/0550-3213(82)90281-4

[52] L. Andrianopoli, R. D’Auria and L. Ravera, “Hidden Gauge Structure of Supersymmetric Free Differential Algebras,” JHEP 1608 (2016) 095 doi:10.1007/JHEP08(2016)095 [arXiv:1606.07328 [hep-th]].

[53] D. M. Peñafiel and L. Ravera, “On the Hidden Maxwell Superalgebra underlying D=4 Supergravity,” Fortsch. Phys. 65 (2017) no.9, 1700005 doi:10.1002/prop.201700005 [arXiv:1701.04234 [hep-th]].

[54] L. Andrianopoli, R. D’Auria and L. Ravera, “More on the Hidden Symmetries of 11D Supergravity,” Phys. Lett. B 772 (2017) 578 doi:10.1016/j.physletb.2017.07.016 [arXiv:1705.06251 [hep-th]].

[55] L. Ravera, “Hidden Role of Maxwell Superalgebras in the Free Differential Algebras of D=4 and D=11 Supergravity,” arXiv:1801.08860 [hep-th].

[56] M. B. Green, “Supertranslations, Superstrings and Chern-Simons Forms,” Phys. Lett. B 223 (1989) 157. doi:10.1016/0370-2693(89)90233-5

[57] P. K. Concha and E. K. Rodriguez, “N = 1 Supergravity and Maxwell superalgebras,” JHEP 1409 (2014) 090 doi:10.1007/JHEP09(2014)090 [arXiv:1407.4635 [hep-th]].

[58] O. Miskovic and R. Olea, “Topological regularization and self-duality in four-dimensional anti-de Sitter gravity,” Phys. Rev. D 79 (2009) 124020 doi:10.1103/PhysRevD.79.124020 [arXiv:0902.2082 [hep-th]].
[59] G. Anastasiou, I. J. Araya and R. Olea, “Renormalization of Entanglement Entropy from topological terms,” arXiv:1712.09099 [hep-th].

[60] G. Anastasiou, I. J. Araya and R. Olea, “Topological terms, AdS$_{2n}$ gravity and renormalized Entanglement Entropy of holographic CFTs,” arXiv:1803.04990 [hep-th].

[61] O. Hohm and H. Samtleben, “Exceptional Form of D=11 Supergravity,” Phys. Rev. Lett. 111 (2013) 231601 doi:10.1103/PhysRevLett.111.231601 [arXiv:1308.1673 [hep-th]].

[62] O. Hohm and H. Samtleben, “Exceptional field theory. II. E$_{7(7)}$,” Phys. Rev. D 89 (2014) 066017 doi:10.1103/PhysRevD.89.066017 [arXiv:1312.4542 [hep-th]].

[63] O. Hohm and H. Samtleben, “Consistent Kaluza-Klein Truncations via Exceptional Field Theory,” JHEP 1501 (2015) 131 doi:10.1007/JHEP01(2015)131 [arXiv:1410.8145 [hep-th]].

[64] M. Trigiante, “Gauged Supergravities,” Phys. Rept. 680 (2017) 1 doi:10.1016/j.physrep.2017.03.001 [arXiv:1609.09745 [hep-th]].