Prevalence of flatfoot among school students and its relationship with BMI

Mohsen Pourghasem*, Nematollah Kamali, Mehrdad Farsi, Nabiollah Soltanpour

Cellular and Molecular Medical Research Centre, Department of Anatomical Sciences, Babol University of Medical Sciences, Babol, Iran

ARTICLE INFO

Article history:
Received 27 July 2015
Received in revised form 18 October 2015
Accepted 21 March 2016
Available online 17 October 2016

Keywords:
Body mass index
Flatfoot
School children

ABSTRACT

Objective: The aim of this study was to analyze the relation between the flat-footedness and obesity.

Materials and Methods: A total of 1158 school children (653 male and 505 female) participated in this cross sectional descriptive study. According to their age, children were divided into three groups for each gender (6–10, 11–13, 14–18 years old). Diagnosis and severity of flatfoot was assessed in using the Dennis method. BMI of children were calculated as body weight divided by height squared (kg m⁻²).

Results: Majority (83.9%) of respondents had normal feet. The prevalence of flatfoot was 16.1% with a decreasing trend with age. Boys had a higher frequency of flatfoot than girls; however the difference was not significant (p > 0.05). The prevalence of flatfoot was 17.5% in boys and 14.5% in girls. The percentage of overweight and obese children was 10.3%. A significant difference in the prevalence of flatfoot occurred between; under-weight (13.9%), normal-weight (16.1%), overweight (26.9%), and obese (30.8%); children.

Conclusion: The increasing prevalence of childhood obesity is one of the most serious health challenges across the globe, and a positive correlation between increased BMI; and flatfoot is one of the potential complications.

* Corresponding author.
E-mail address: mpourghasem@hotmail.com (M. Pourghasem).

Peer review under responsibility of Turkish Association of Orthopaedics and Traumatology.

Feet, the body's base of support, are comprised of some bones arranged and connected together by muscles and ligaments. There are three arches in the foot, which are referred to as the longitudinal medial arch, longitudinal lateral arch, and the transverse arch. These arches, mainly the medial longitudinal arch, absorb the weight pressure.1 Laxity of the ligaments or weakness of the foot muscles may shorten the length of the medial longitudinal arch.

Flatfoot is a medical condition in which the foot does not have a normal medical longitudinal arch while standing.2,3 Due to baby fat, infants are born with flat feet. Later during childhood, the longitudinal arch develops naturally. When children begin standing on their feet, flatfoot becomes diagnosable. Flatfoot has multiple etiologies and it may lead to pain in the heel, knee, hip, and the back. It may also cause other problems such as bunions, hammer-toes, and shin splints.4

Flatfoot may be congenital or acquired.5 Congenital flatfoot is divided into two types; flexible and stiff. In flexible flatfoot, there is a medial longitudinal arch in the foot when it is not bearing any weight but the arch disappears when standing. In stiff flatfoot, the medial longitudinal arch is absent even in a non-weight-bearing situation. In acquired flatfoot, children with normal feet acquire flatfoot while growing up. Flatfoot can be caused by many factors, including obesity, wears and shoes, sitting and sleeping positions of a child, abnormality in the lower limbs, weakness of the muscles and ligaments, and tendon tear.6

Body Mass Index (BMI) is a tool for the evaluation of healthy body weight. BMI calculates the ratio of a person's weight to his/her height squared and enables us to identify obesity. It has been shown in several reports that overweightness and obesity may affect the foot structure in children.7,8 However, some researchers have recounted that there is no association between obesity and flatfoot. As an example, Atamturk reported that the change of arch height is not related to body weight and is rather associated only with the heel width.9

According to duration, load-bearing on feet is categorized into temporary, short and long-term loading.7 A person's BMI may increase temporarily if he/she is carrying something for a short period of time. Short-term indicates when someone's BMI is increased for a longer period of time, such as during pregnancy. Long-term means that a person's BMI has increased permanently due to overweightness or obesity. Zhang et al reported that the...
prevalence of increased BMI among public school children in Mississippi ranged from 22% to 43% between 2005 and 2013.10 There is a wide variation in the prevalence of flatfoot in certain reports. Gracia et al reported that the prevalence of flatfoot in children aged 4 to 13 is 2.7%.11 Bordin et al showed the prevalence of flatfoot as 16.4% and the rate of overweightness as 27.3% in Italian school children.12 A study in Taiwan demonstrated that the prevalence of flatfoot in elementary school children was 59%, the majority of which are males.13

As the prevalence of flatfoot around the world varies, the aim of this study was to determine the prevalence of flatfoot among school children in the city of Babol in Iran and the correlation between obesity and flatfoot.

Patients and methods

All school students from Babol who met the inclusion criteria were included in the study. Students with a musculoskeletal disorder, such as genu valgum, genu varum, genu recurvatum, unequal lower limbs, or scoliosis were excluded. In this cross-sectional descriptive study, 1158 school children from six randomly chosen schools (653 males, 505 females; mean age: 11.95 ± 3.57 years) were included. The participants comprised 2% of the student population in Babol. The children were divided into two groups based on their gender and each gender group was divided into three groups based on age (6–10, 11 to 13, and 14–18 years old). Approval was obtained from the Research Ethics Committee of the Babol University of Medical Sciences.

Flatfoot assessment

The pedograph was prepared using a canopy placed over a smooth, non-villous carpet. The canopy was placed on the floor, with a white sheet under for each foot. The subject stood on the canopy barefoot and in a stable position. The sole of the foot was then printed on the sheet. Consequently, the diagnosis and the severity of the flatfoot was assessed using the Denis method (Fig. 1).14

- Grade 1 flatfoot (Ff1) – the support on the lateral edge of the foot is half that of the metatarsal support
- Grade 2 flatfoot (Ff2) – the support on the central zone and forefoot are equal
- Grade 3 flatfoot (Ff3) – the support on the central zone of the foot is greater than the width of the metatarsal support

Body mass index

The height of each subject was measured to the nearest 0.1 cm, using a portable stadiometer (in the anatomical position) and the weight was measured to the nearest 0.05 kg, using a calibrated electronic scale, with the subject wearing minimal clothing. The BMIs of the children were calculated by dividing the body weight by the square of height (kg/m²). The subject was considered underweight if the BMI was less than 18.5, normal weight if the BMI was between 18.5 and 24.9, overweight if the BMI was between 25 and 29.9, and obese if the BMI was 30 or greater.

Statistical analysis

Frequencies of the variables were calculated using the SPSS for Windows v.19 software and statistical significance was evaluated using the Spearman rank-order correlation, ANOVA and chi-square analyses. Hierarchical multiple regressions was utilized to explore the predictors of flatfoot. Level of significance was set at p < 0.05.

Results

Regarding their level of education, 421 of the participants (36.4%) attended an elementary school, 309 (26.7%) attended a guidance school and 428 of them (37%) studied in high school. The mean weight and height were 43.35 ± 1.78 kg and 1.47 ± 0.19 m, respectively. Majority (83.9%) of the participants had normal height and weight and obese students was 10.3%. There was a significant difference between boys and girls; however, the difference was not significant (17.5% vs. 14.5%, p > 0.05). The Kruskal–Wallis test showed significant differences in the foot stance among different age groups (p = 0.002); as Ff1 (flatfoot) and Ff2 were more prevalent in those aged between 6 and 10 and Ff3 was observed only in a 13-year-old girl (Table 2).

In terms of BMI, our results showed that over half of the students (51.1%) were underweight (Fig. 2). The percentage of overweight and obese students was 10.3%. There was a significant difference in the prevalence of flatfoot among the underweight (13.9%), normal weight (16.1%), overweight (26.9%), and obese (30.8%) children (chi-square = 14.32; p = 0.002) (Table 3). This finding suggests that as weight increased, the percentage of those with flatfoot also increased.

Multiple regression analysis of flatfoot and demographic variables is shown in Table 4. A combination of three demographic variables was a predictor for flatfoot: being younger (β = −0.228), being male (β = −0.062), and being overweight (β = 0.246). Along

Table 1	Distribution of foot stance in our series.		
Cumulative percent	Percent	Frequency	Foot
83.9	83.9	971	Normal
95.5	11.6	135	Ff1
99.9	4.4	51	Ff2
100.0	0.1	1	Ff3
100.0	1158	Total	

Ff1: Grade 1 flatfoot, Ff2: Grade 2 flatfoot, Ff3: Grade 3 flatfoot.

Table 2	Distribution of foot stance among different age groups.		
Age group	Total		
	1	2	3
Foot	Normal	Frequency 329 266 376	971
	Percentage 33.9% 27.4% 38.7%	100.0%	
Ff1	Frequency 68 28 39	135	
	Percentage 50.4% 20.7% 28.9%	100.0%	
Ff2	Frequency 24 14 13	51	
	Percentage 47.1% 27.5% 25.5%	100.0%	
Ff3	Frequency 0 1 0	1	
	Percentage 0.0% 100.0% 0.0%	100.0%	
Total	Frequency 421 309 428	1158	
	Percentage 36.4% 26.7% 37.0%	100.0%	

Ff1: Grade 1 flatfoot, Ff2: Grade 2 flatfoot, Ff3: Grade 3 flatfoot.
with the age and gender, BMI was a predictor of flatfoot (β = 0.195). The variables explained 59% of the variance.

Discussion

The present study was conducted to study the prevalence of flatfoot among school students and also to investigate the relationship between BMI and flatfoot. The prevalence of flatfoot in our series was 16.1%. Similar to our results, the incidence of this deformity in another study was reported as 16.4%.12 Other studies demonstrate the ranging prevalence of flatfoot between 2.7% and 44%.11,12 Our findings indicate that the prevalence of flatfoot among girls and boys as 14.5% and 17.5%, respectively, with no significant difference. Close to our findings, Bordin et al reported that the rate of flatfoot in their series of school students as 18% in boys and 14.6% in girls.13 In other studies, however, the prevalence of flatfoot in girls is higher than that in boys.10,17 A higher incidence of flatfoot in girls is expected due to smaller bones and less bulky muscles. In addition, girls wear closed-toe shoes that are detrimental to the development of the arches of the foot.10

In our opinion, these differences could be due to several factors, which may not be fully studied earlier, such as, absence of a common or standardized assessment, inadequate experience, gender, age range, obesity, genu valgum, femoral and tibial torsion abnormality, ligament laxity (flexible flatfoot), footwear, race and heredity, activity, and even living in rural or urban areas.15

Kamali et al assessed the prevalence of flatfoot among their series with the method of differential pressure footprint mat of Harris and Beath.20 The results were incredible with a higher prevalence of 11.8% in girls. This shows us how essential it is to use a standardized scale in evaluation of the flatfoot to reach a valid result.

Similar to the results of other studies, we also detected a decreasing trend in the prevalence of childhood flatfoot with increasing age. This finding confirms the opinion of the authors that flatfoot in younger children could be a physiological phenomenon which could be corrected with time through muscle and tissue development.11,20

The increase in the prevalence of childhood obesity is one of the most serious health challenges across the globe. This is a payoff for sedentary lifestyle and altered nutrition habits. Our study showed that the prevalence of increased BMI is 10.3% among the school children from north of Iran, contrary to those from south of Iran which has a reported prevalence of 15%.21 This discrepancy even in the same country shows that the condition is related to many factors including lifestyle and culture. A positive correlation between increased BMI and flatfoot was found in this study. Similarly, Chen et al reported a strong significance between flatfoot and increased BMI in children.22 In another study, however, no significant relationship was found between BMI and flatfoot.23 But from our point of view, bearing extra weight on the lower limbs would increase the BMI and other factors.

In conclusion, schools are the right place to evaluate obesity and flatfoot among children. Obesity in younger age could be a cause of flatfoot and decreasing the prevalence of flatfoot can be possible by controlling the BMI and other factors.

Conflict of interests

No conflict of interests declared.

Table 3

Relationship between BMI and foot stance in our series.

Foot stance	Underweight	Ff1	Ff2	Ff3	Total
BMI					
Underweight	510	62	20	0	592
Normal	375	50	22	0	447
Overweight	68	19	5	1	93
Obese	18	4	0	0	26

Ff1: Grade 1 flatfoot, Ff2: Grade 2 flatfoot, Ff3: Grade 3 flatfoot.

Fig. 2. Distribution of BMI (body mass index) in sample.

Table 4

Multiple regression analysis of foot stance and demographic variables.

Criterion	Significant predictor	β regression coefficient	p
Foot stance	Age	0.228	0.001
	Gender	-0.052	0.034
	Weight	0.246	0.021
	BMI	0.195	0.001

References

1. Franco AH. Pes cavus and pes planus. Analyses and treatment. Phys Ther. 1987;67(5):688–694.
2. Kim MK, Lee YS. Kinematic analysis of the lower extremities of subjects with flat feet at different gait speeds. J Phys Ther Sci. 2013;25(3):531–533.
3. Kit RF, Bennett MB, Ribby SR, Kester RC, Alexander BM. The spring in the arch of the human foot. Nature. 1987;325(7000):147–149.
4. Walczak M, Napiontek M. Flexible flatfoot in children, a controversial subject. Ortop Pol. 2003;68(4):261–267.
5. Meehan P. Other conditions of the foot. In: Morrissy RT, ed. Lovell and Winter’s Pediatric Orthopaedics. 3rd ed. Philadelphia: Lippincott; 1990:991–1022.
6. Smith MA. Flat feet in children. BMJ. 1990;301:942–943.
7. Dowling AM, Steel JR, Baur LA. Does obesity influence foot structure and plantar pressure patterns in preschool children? Int J Obes. 2001;25:845–852.
8. Daneshmandi H, Rahnema N, Mehdizadeh R. Relationship between obesity and flatfoot in high school boys and children. Int J Sports Sci Eng. 2003;3:43–49.
9. Aramterk D. Relationship of flatfoot and high arch with main anthropometric variables. Acta Orthop Traumatol Turc. 2009;43(3):254–259.
10. Zhang L, Kolbo JR, Kirkub M, et al. Prevalence and trends in overweight and obesity among Mississippi public school students, 2005-2013. J Miss Med Assoc. 2014 Mar;55(3):80–87.
11. Gracia A, Jimenez FM, Varo MC, Gracia EG, Aracenta JG, Crehue GJ. Flexible flat foot in children: a real problem? Pediatrics. 1999;7:84–89.
12. Bordin D, De Giorgi G, Mazzocco C, Rigon F. Flat and cavus foot, indexes of influence foot structure and development. Int J Sports Sci Eng. 2001;25:845–852.
13. Chang JT, Wang SH, Kuo CL, Shen HC, Hong YW, Lin LC. Prevalence of flexible flatfoot in Taiwanese school-aged children in relation to obesity, gender, and age. Eur J Pediatr. 2010 Apr;169(4):447–452.
14. Denis A. Pied Plat Valgus Statique. Encyclopédie Médico-chirurgicale Appareil Locomoteur. Paris, France: Editions Techniques; 1974.
15. Pfeiffer M, Kotz R, Ledl T, Hauser G, Sluga M. Prevalence of flat foot in preschool-aged children. Pediatrics. 2006;118(2):634–639.
16. Cetin A, Sevil S, Karagolu I, Yucekaya B. Prevalence of flat foot among elementary school students, in rural and urban areas and at suburbs in Anatolia. Eur J Orthop Surg Traumatol. 2011;21(5):327–331.
17. Eluwa M, Omini R, Kpela T, Ekanem T, Pantah AA. The incidence of pes planus among Akwa Ibom state students in the university of calabar. Internet J Forensic Sci. 2009;3(2).

18. Garrick JG, Webb DR. Sport Injuries Diagnoses and Management. vols. 261–265. Philadelphia: Sauders; 1990:292–296.

19. Kamali N, Hajiaghmadi M, Janmohammadi N, Kamali AA. Prevalence of flat foot in elementary, guidance and high school students. J Babol Univ Med Sci. 2008;9(6):50–54.

20. Hicks Jh. The foot as a support. Acta Anat. 1955;25:34–35.

21. Ayatollahi SMT, Mostajabi F. A comparative study of reference data for Body-Mass index of school children in Shiraz (SouthernIran) and CDC standards. JRCMJ. 2007;9(4):185–190.

22. Chen JP, Chung MJ, Wang MJ. Flatfoot prevalence and foot dimensions of 5 to 13 year old children in Taiwan. Foot Ankle Int. 2009;30:326–332.

23. Evans A. The relationship between paediatric foot posture and body mass — do heavier kids really have flatter feet? J Foot Ankle Res. 2013;6(Suppl. 1):O12.