Heat and Mass Transfer in an L Shaped Porous Medium

Salman Ahmed N.J 1, Azeem 2 and T.M.Yunus Khan 3
1 Department of Mechanical and Industrial Engineering, College of Engineering, Sultan Qaboos University, P.O. Box 33, Al-Khod, Muscat, 123, Sultanate of Oman
2 Department of Mathematics and Computer Science, Taylor’s University, Kuala Lumpur, Malaysia
3 Department of Mechanical Engineering, BVB College of Engineering & Technology, Hubli, India
E-mail: yunus.tatagar@gmail.com

Abstract. This article is an extension to the heat transfer in L-shaped porous medium by including the mass diffusion. The heat and mass transfer in the porous domain is represented by three coupled partial differential equations representing the fluid movement, energy transport and mass transport. The equations are converted into algebraic form of equations by the application of finite element method that can be conveniently solved by matrix method. An iterative approach is adopted to solve the coupled equations by setting suitable convergence criterion. The results are discussed in terms of heat transfer characteristics influenced by physical parameters such as buoyancy ratio, Lewis number, Rayleigh number etc. It is found that these physical parameters have significant effect on heat and mass transfer behavior of L-shaped porous medium.

Index terms. L-Shaped porous medium, Heat and Mass Transfer, FEM

1. Introduction
Heat and mass transfer in porous media with respect to various geometries has been reported in literature but still there is scope for further research in uncommon geometrical shapes such as L shape. The heat transfer and it effect on various phenomenon can be found in the dedicated articles [1-40] that describe the various phenomenon coupled with different geometries. To the best of author’s knowledge, heat and mass transfer in L shaped is porous region has not been reported thus motivating us to carry on this investigation.

2. Page layout (headers, footers, page numbers and margins)
A “L” shaped porous medium is considered as shown in Figure 1. The heat and mass transfer in such system can be describes with the help of momentum equation, energy transport equation and mass diffusion equation as given below.
The governing equations for heat transfer in porous medium can be given in non-dimensional form as

\begin{align}
\frac{\partial^2 \psi}{\partial x^2} + \frac{\partial^2 \psi}{\partial y^2} &= -Ra \left[\frac{\partial T}{\partial x} + N \frac{\partial C}{\partial x} \right] \\
\frac{\partial \psi}{\partial y} \frac{\partial T}{\partial x} - \frac{\partial \psi}{\partial x} \frac{\partial T}{\partial y} &= \left(\frac{\partial^2 T}{\partial x^2} + \frac{\partial^2 T}{\partial y^2} \right) \\
\frac{\partial \psi}{\partial y} \frac{\partial C}{\partial x} - \frac{\partial \psi}{\partial x} \frac{\partial C}{\partial y} &= \frac{1}{Le} \left(\frac{\partial^2 C}{\partial x^2} + \frac{\partial^2 C}{\partial y^2} \right)
\end{align}

The above equations should be solved with suitable method to find the values of solution variables such as temperature, stream function and concentration distribution inside the porous medium. Finite element method has been utilized in this study to solve equations 1-3 with the boundary conditions as shown in Figure 1. It should be noted that the solution of equations 1-3 is obtainable in iterative manner due to multiple solution variables which are coupled together in equation 1-3.

3. Results and Discussion

The iterative solution of governing equations yielded the value of each of solution variable at every node in the domain. These values are further processed to understand the heat and mass transfer characteristics inside the porous medium by plotting the contours of temperature, stream function and concentration. Figure 2 shows the effect of buoyancy ratio on heat and mass transfer. This figure is obtained at Ra=100, Le=2. It is found that the isotherms have not much affected due to change in buoyancy ratio. However, the concentration line distribution reaches far deep into porous region. It is noted that that mass diffusion is restricted to only horizontal leg of L shape. This could due to the nature of applied boundary condition. The fluid circulates in to cells at higher buoyancy ratio (N=1) but has only one circulation pattern at N=0. Figure 3 illustrates the change of Lewis number and its influence on heat and mass transfer. The concentration lines get affected considerably due to change in Lewis number but there was not much of its effect on isotherms. The fluid is found to have two cells at lower Lewis number as compared to its higher value.
Figure 2. Contours for variation of N I) N=0.1 II) N=1 a) Isotherms b) Iso-Concentration c) Streamlines
Figure 3. Contours for variation of Le I) Le=1 II) Le=10 a) Isotherms b) Iso-Concentration c) Streamlines
4. Conclusion
Heat and mass transfer in L shaped porous medium is analyzed. The following conclusion can be given based on the study carried out for present work.

- The heat and mass transfer in L shape is found to follow similar trend as in other geometrical shapes of porous medium.
- The mass diffusion is restricted to only horizontal leg of L shape porous region with no concentration lines in the vertical leg.

5. References
[1] Badruddin, I.A., Al-Rashed, A.A.A.A., Ahmed, N.J.S., Kamangar, S. and Jeevan, K. Natural convection in a square porous annulus. *International Journal of Heat and Mass Transfer*, 55(23–24), 7175-7187 (2012).
[2] Badruddin, I.A., Abdullah, A.A.A.A., Ahmed, N. J. S. and Kamangar, S. Investigation of heat transfer in square porous-annulus. *International Journal of Heat and Mass Transfer*, 55 (7-8), 2184-2192 (2012).
[3] Ahmed, N.J.S., Zainal, Z.A., Badruddin, I.A., Hussain, M.T.K. Heat transfer analysis of porous medium in a conical cylinder with variable wall temperature. *International Journal of Mechanical and Materials Engineering*, 3(2), 145-152 (2008).
[4] Badruddin, I.A., Azeem, Mohd Yamani Idna Idris, Nik-Ghazali. N., Salman Ahmed N.J, Abdullah A.A.A. Al-Rashed, Simplified Finite Element Algorithm to Solve Conjugate Heat and Mass Transfer in Porous Medium, *International Journal of Numerical Methods for Heat and Fluid Flow*, Vol. 27, (2017).
[5] Badruddin, I.A., Zainal, Z.A., Aswatha Narayana, P.A., Seetharamu, K.N, Natural convection through an annular vertical cylindrical porous medium, *International Journal of Heat Exchangers*. 7 (2), pp. 251-262 (2006)
[6] Quadir, G. A. and Irfan Anjum Badruddin, Heat transfer in porous medium embedded with vertical plate: Non-equilibrium approach - Part B, *AIP Conf. Proc. 1738*, 480125 (2016).
[7] Badruddin, I.A., Zainal, Z.A., Narayana, P.A., Seetharamu, K.N, Heat transfer in porous cavity under the influence of radiation and viscous dissipation, *Int. commun. Heat Mass Transfer*. 33(4), 491-499(2006).
[8] Badruddin, I.A., Zainal, Z.A., Narayana, P.A., Seetharamu, K.N and Siew, L.W. Free convection and radiation for a vertical wall with varying temperature embedded in a porous medium. *Int. J. Therm., Sci*. 45(5), 487-493 (2006a).
[9] Badruddin, I.A., Zainal, Z.A., Narayana, P.A., Seetharamu, K.N and Siew, L.W. Free convection and radiation characteristics for a vertical plate embedded in a porous medium. *Int. J. Numerical Methods in Engineering*, 65(13), 2265–2278 (2006b).
[10] Yunus Khan, T.M., Irfan Anjum Badruddin , Quadir, G.A., Heat transfer in a conical porous cylinder with partial heating, *IOP Conf. Series: Materials Science and Engineering* 149 ,012211 (2016)
[11] Badruddin I.A., Zainal, Z.A, Khan Z. A and Mallick, Z., Effect of viscous dissipation and radiation on natural convection in a porous medium embedded within vertical annulus, *Int. J. Therm. Sci*. 46(3), 221-227(2007).
[12] Badruddin, I.A., Zainal, Z. A., Narayana, P.A. and Seetharamu, K.N., Thermal non-equilibrium modeling of heat transfer through vertical annulus embedded with porous medium, *Int. J. Heat Mass Transfer*. 49(25-26), 4955-4965(2006).
[13] Ahmed, N.J.S., Badruddin, I.A., Zainal, Z.A., Khaleed, H.M.T. and Kanesan, J. Heat transfer in a conical cylinder with porous medium. *International Journal of Heat and Mass Transfer*, 52(13-14), 3070-3078 (2009).
[14] Ahmed, N.J.S., Badruddin, I.A., Kanesan, J., Zainal, Z.A. and Ahamed, K.S.N. Study of mixed convection in an annular vertical cylinder filled with saturated porous medium, using thermal
non-equilibrium model. *International Journal of Heat and Mass Transfer*, **54**(17-18), 3822-3825 (2011).

[15] Badruddin, I.A., Ahmed, N. J. S., Al-Rashed, A.A.A.A., Kanesan, J., Kamangar, S. and Khaleed, H.M.T. Analysis of Heat and Mass Transfer in a Vertical Annular Porous Cylinder Using FEM. *Transport in Porous Media*, **91**(2), 697-715 (2012).

[16] Al-Rashed, A.A.A.A., Badruddin, I.A. Heat transfer in a porous cavity, *International Journal of Mechanical and Materials Engineering*, **7**(1), pp. 1-8

[17] Badruddin, I.A., Yunus Khan, T. M., Salman Ahmed N. J and Sarfaraz Kamangar, Effect of variable heating on double diffusive flow in a square porous cavity, *AIP Conf. Proc.* **1728**, 020689 (2016).

[18] Irfan Anjum Badruddin and Quadir, G. A., Radiation and viscous dissipation effect on square porous annulus, *AIP Conf. Proc.* **1738**, 480127 (2016).

[19] Irfan Anjum Badruddin and Quadir, G. A., Heat and mass transfer in porous cavity: Assisting flow, *AIP Conf. Proc.* **1738**, 480126 (2016)

[20] Salman Ahmed N J , Abdullah A AA Al-Rashed , Yunus Khan, T.M, SarfarazKamangar , AbdulgaphurAthani , Irfan Anjum Badruddin, Heat transfer analysis in an annular cone subjected to power law variations, *IOP Conf. Series: Materials Science and Engineering* **149**,012212 (2016)

[21] Badruddin, I.A., Zainal, Z.A., Narayana, P.A., and Seetharamu, K. N., Numerical analysis of convection conduction and radiation using a non-equilibrium model in a square porous cavity, *Int. J. Therm. Sci.* **46**(1), 20-29 (2007).

[22] Badruddin, I.A., Zainal, Z.A., Narayana, P.A., Seetharamu, K.N., Heat transfer by radiation and natural convection through a vertical annulus embedded in porous medium, *Int. Commun. Heat Mass Transfer*. **33**(4), 500-507(2006).

[23] Irfan Anjum Badruddin and G. A. Quadir, Heat transfer in porous medium embedded with vertical plate: Non-equilibrium approach - Part A, *AIP Conf. Proc.* **1738**, 480124 (2016).

[24] V. Prasad, F.A Kulacki, Natural convection in a vertical porous annulus, *Int. J. Heat Mass Transfer*. 27 207-219(1984).

[25] Nik-Ghazali,N., Badruddin.I.A., Badarudin.A., and Tabatabaieia.S. Advances Dufour and Soret Effects on Square Porous Annulus. *Advances in Mechanical Engineering*, January-December, 6. 209753 (2014).

[26] Azeem, T. M. Yunus Khan, I.A. Badruddin, N. Nik-Ghazali and Mohd Yamani Idna Idris, Influence of radiation on double conjugate diffusion in porous cavity, *AIP Conf. Proc.* **1728**, 020283 (2016).

[27] Azeem, Irfan Anjum Badruddin, Mohd Yamani Idna Idris, Nik-Ghazali, N, Salman Ahmed N.J, Abdullah A AA Al-Rashed. Conjugate heat and mass transfer in square porous cavity, *Indian Journal of Pure & Applied Physics* Vol. **54**, pp.777-786 (2016).

[28] Ahmed, N.J.S., Kamangar, S., Badruddin, I.A., Al-Rashed, A. A. A. A., Quadir, G.A., Khaleed, H.M.T. and Khan, T.M.Y., Conjugate heat transfer in porous annulus, *J. Porous Media*. **19**(12), 1109-1119(2014).

[29] Azeem, Manzoor Elahi M Soudagar and Irfan Anjum Badruddin, Investigation of Heat Transfer Due To Isothermal Heater in Irregular Porous Cavity: Part I, *AIP Conf. Proc.* (2017).

[30] N.Ameer Ahamad, Manzoor Elahi M Soudagar, and Irfan Anjum Badruddin, Double Diffusion in Arbitrary Porous Cavity: Part I, *AIP Conf. Proc.* (2017).

[31] Badruddin, I. A., Ahmed N. J. S, Al-Rashed, A. A. A., Nik-Ghazali, N., Jameel, M., Kamangar, S., Khaleed, H. M. T., and Yunus Khan, T .M., Conjugate Heat Transfer in an Annulus with Porous Medium Fixed Between Solids, *Transport in Porous media*, **109**(3), 589-608 (2015).

[32] Manole, D.M., &Lage, J.L. (1992). Numerical benchmark results for natural convection in a porous medium cavity, in: Heat and Mass Transfer in Porous Media, *ASME Conference*, HTD 216 55.
[33] Misirlioglu, A., Baytas, A.C., & Pop, I. (2005). Free convection in a wavy cavity filled with a porous medium. *International Journal of Heat & Mass Transfer*, 48, 1840-1850.

[34] Modest, M.F. (1993). Radiative heat transfer, New York: McGraw-Hill.

[35] Morgan, K., Lewis. R.W., & Roberts, P.M. (1984). Solution of two-phase flow problems in porous media via an alternating direction finite element method, *Applied Mathematical Modelling*, 8, 391-396.

[36] Moya, S.L., Ramos, E., & Sen, M. (1987). Numerical study of natural convection in a tilted rectangular porous material. *International Journal of Heat & Mass Transfer*, 30, 741-756.