Calibration of an empirical model for moisture content assessment and monitoring in compacted tropical soils used in the subgrade of road pavements

Calibración de un modelo empírico para la evaluación y monitoreo del contenido de humedad en suelos tropicales compactados usados en la subrasante de pavimentos

I. Pizarro *, M. Françoiso **, L. De Almeida **, E. Matsura **

* Instituto Tecnológico de Costa Rica – Cartago, COSTA RICA
** Universidade Estadual de Campinas (UNICAMP) – Campinas, BRASIL

Fecha de Recepción: 28/08/2020
Fecha de Aceptación: 15/11/2020
PAG 275-286

Abstract

Subgrade moisture variation monitoring and control is important due to its influence on road pavement performance and service life. The precise application of non-invasive techniques such as time domain reflectometry (TDR) and ground penetration radar (GPR) in compacted tropical soils depend on calibration models, that consider their mineralogical composition and geotechnical properties. The present work aims to determine calibration models that relate dielectric permittivity with moisture variation in compacted tropical soils. TDR technique was used with low-cost probes and soil calibration columns developed at laboratory for reading dielectric permittivity and define its relationship with moisture. Results showed that through laboratory standardized procedures, it is possible to determine calibration models according to the required accuracy in moisture control in the subgrade. It was found that the high density and magnetic properties of tropical soils significantly influenced the determination of dielectric permittivity and consequently in moisture estimates, hence reaffirming the need of specific calibrations for these types of soils.

Keywords: Tropical soils; moisture content; dielectric permittivity; calibration model, TDR

Resumen

El monitoreo y control de la variación de humedad de la subrasante es importante debido a su influencia en el desempeño y vida de servicio del pavimento. La aplicación precisa de técnicas no destructivas como la reflectometría en el dominio del tiempo (TDR) y el radar de penetración terrestre (GPR) en suelos tropicales compactados, dependen de modelos de calibración que consideren su composición mineralógica y propiedades geotécnicas. El presente trabajo tiene como objetivo determinar modelos de calibración que relacionen la permitividad dieléctrica con la variación de humedad en suelos tropicales compactados. La técnica TDR se utilizó con sondas de bajo costo y columnas de calibración desarrolladas en laboratorio para la lectura de la permitividad dieléctrica y definir su relación con la humedad. Los resultados demostraron que, a través de procedimientos estandarizados de laboratorio, es posible determinar modelos de calibración acordes con la precisión requerida en el control de la humedad en la subrasante. Se constató que la alta densidad y las propiedades magnéticas de los suelos tropicales, influenciaron significativamente en la determinación de la permitividad dieléctrica y, en consecuencia, en la estimación de humedad, lo que reafirma la necesidad de calibraciones específicas para este tipo de suelos.

Palabras clave: Suelos tropicales; contenido de humedad; permitividad dieléctrica; modelo de calibración, TDR

1. Introducción

La humedad es una variable importante en el desempeño del pavimento y de la subrasante. El rápido deterioro del pavimento bajo condiciones de tráfico está directamente relacionado con las variaciones de la humedad y su excesiva acumulación en la subrasante y capas que componen el pavimento (Bastos, 2013).

La reflectometría de dominio del tiempo (TDR, por sus siglas en inglés) y el radar de penetración terrestre (GPR, por sus siglas en inglés) son técnicas no destructivas que se utilizan comúnmente para medir y monitorear en tiempo real el contenido de humedaz de suelo y, por ende, del pavimento y la subrasante. Estos métodos electromagnéticos resultan útiles cuando las muestras y lugar del ensayo deben ser conservados y, por lo general, se utilizan para monitorear situaciones a lo largo del tiempo, con el fin de evaluar y monitorear las variaciones estacionales de humedad. A continuación, se muestran ejemplos de estudios que emplean ambas técnicas para medir y controlar la humedad en estructuras y materiales utilizados en ingeniería civil: (Klemunes, 1998), (Jiang y Tayabji, 1999), (Al-Qadi et al., 2004), (Ekblad y Isacsson, 2007), (Benedetto, 2010), (Khakiev et al., 2014), (Thring et al., 2014), (Benedetto et al., 2015), (Tosti y Slob, 2015), (Fernandes et al., 2017) y (Bhuyan et al., 2018).

* Autor de correspondencia:
Instituto Tecnológico de Costa Rica – Cartago, COSTA RICA
E-mail: spizarro@itcr.ac.cr
Las técnicas TDR y GPR dependen de las mismas propiedades electromagnéticas: permitividad dieléctrica \((\varepsilon)\), conductividad eléctrica \((\sigma)\) y permeabilidad magnética \((\mu)\). Ambas se basan en principios similares de propagación de la onda electromagnética (Curioni et al., 2017) para determinar la permitividad dieléctrica en una primera etapa y, posteriormente, el contenido de humedad por medio de modelos de calibración. Para que las mediciones del contenido de humedad de la subrasante sean precisas, se requieren modelos de calibración específicos para suelos tropicales compactados, los cuales consideren su composición mineralógica, junto con sus propiedades geotécnicas. La utilización de modelos desarrollados para otros fines y aplicaciones puede conducir a un cálculo erróneo del contenido de humedad.

En la mayoría de los suelos minerales, la relación entre la permitividad dieléctrica y el contenido de humedad no varía significativamente entre texturas de suelo diferentes (bajo condiciones de densidad naturales) (Roth et al., 1992). Sin embargo, (Robinson et al., 1994) reportaron que los suelos con minerales magnéticos pueden mostrar distintas propiedades dieléctricas en comparación con suelos minerales no magnéticos. En Brasil, es habitual que los suelos tropicales tengan propiedades magnéticas (susceptibilidad magnética \((x_m > 0)\)) que pueden influir en las mediciones de permitividad dieléctrica que utilizan métodos electromagnéticos y, en consecuencia, afecten la precisión de la estimación del contenido de humedad (Souza et al., 2001).

El propósito de este estudio es determinar modelos de calibración que permitan relacionar la permitividad dieléctrica \((\varepsilon)\) y la variación del contenido de humedad \((\theta_v)\) en suelos tropicales compactados. Se recolectaron seis tipos diferentes de suelo de la subrasante de obras viales y se sometieron a ensayos para caracterizarlos desde el punto de vista físico, químico y dieléctrico. Se usó la técnica TDR con sondas de bajo costo y columnas de calibración de suelos, desarrolladas en el Laboratorio de Ensayos No Destructivos de la UNICAMP (LIND, por sus siglas en portugués), con el fin de obtener lecturas y datos de permitividad dieléctrica.

2. Marco teórico

2.1 Propiedades eléctricas del suelo y el efecto del agua

El suelo es un medio heterogéneo que consta de tres fases (gaseosa, sólida y líquida). La diferencia de permitividad dieléctrica entre las fases \((\varepsilon_{\text{aire}} = 1, \varepsilon_{\text{partícula}} = 3-5 \text{ and } \varepsilon_{\text{agua}} = 81)\) es la principal razón de que los cálculos del contenido de humedad del suelo sean exitosos cuando se utilizan técnicas electromagnéticas (Huisman et al., 2003). Este notable contraste entre los valores de permitividad dieléctrica \((\varepsilon_{\text{partícula}} < \varepsilon_{\text{agua}})\) se debe a la gran capacidad de las moléculas de agua a polarizarse, al ser comparadas con la capacidad de las partículas del suelo (Thring et al., 2014). Por lo tanto, el agua es el componente que más influye en la determinación de permitividad dieléctrica en el suelo (Saarenketo, 2006).

2.2 Modelos de calibración que relacionan la permitividad dieléctrica \((\varepsilon)\) y el contenido de humedad \((\theta_v)\)

(Ekblad e Isacsson, 2007) afirman que las ecuaciones o modelos pueden ser teóricos, empíricos y teórico-empíricos. El modelo empírico que más se utiliza, y probablemente el más citado, fue desarrollado por (Topp et al., 1980), como se señala en la siguiente expresión, (Ecuación 1).

\[
\theta_v = -5,3 \times 10^{-2} + 2,92 \times 10^{-2} \varepsilon_r - 5,5 \times 10^{-4} \varepsilon_r^2 + 4,3 \times 10^{-6} \varepsilon_r^3
\]

Donde:
\(\theta_v\) = contenido de humedad volumétrica \([\text{cm}^3\text{cm}^{-3}]\)
\(\varepsilon_r\) = permitividad dieléctrica relativa

(Ledieu et al., 1986) utilizaron un enfoque distinto para desarrollar su modelo de calibración. Los autores relacionaron el tiempo de propagación de la onda electromagnética y la variación del contenido de humedad en muestras de suelo compactado con una densidad a granel entre 1,38 y 1,78 g cm\(^{-3}\). La siguiente expresión muestra el modelo (Ecuación 2).

\[
\theta_v = 5,688t - 3,38\rho_b - 15,29
\]

Donde:
\(\theta_v\) = contenido de humedad volumétrica [%]
\(t\) = tiempo de propagación de la onda electromagnética [ns]
\(\rho_b\) = densidad a granel [g/cm\(^3\)].
2.3 Reflectometría de dominio del tiempo (TDR)

Esta técnica usa pulsos electromagnéticos (EM) que se envían, a través de un cable coaxial, a una sonda que normalmente tiene dos o tres varillas metálicas (Figura 1). Parte del pulso se refleja debido a la diferencia de impedancia de la sonda en contacto con el suelo. Se establece el tiempo de desplazamiento y el coeficiente de reflexión del pulso, para luego estimar la permitividad dieléctrica relativa (ε_r) y la conductividad eléctrica del suelo (σ).

La velocidad de una onda EM (reflexión y transmisión) a través de las varillas de una sonda TDR se indica en la (Ecuación 3):

$$v = \frac{2l_{cal}}{t} \quad (3)$$

Donde:
- $V =$ velocidad de la onda EM [m/ns]
- $l_{cal} =$ longitud calibrada de las varillas [m]
- $t =$ tiempo de propagación de la onda electromagnética [ns]

En el caso de los materiales geológicos dieléctricos con baja pérdida, y asumiendo que la permeabilidad magnética relativa es igual a 1 ($\mu=1$ para un medio no magnético), la velocidad (v) de propagación de la onda EM se define en la (Ecuación 4):

$$v = \frac{c}{\sqrt{\varepsilon_r \cdot \mu_r}} \quad \Rightarrow \quad v = \frac{c}{\sqrt{\varepsilon_r}} \quad (4)$$

Donde:
- $V =$ velocidad de la onda EM [m/ns]
- $c =$ velocidad de una onda electromagnética en el vacío [m/ns]
- $\varepsilon_r =$ permitividad dieléctrica relativa
- $\mu_r =$ permeabilidad magnética relativa ($\mu_r = x_m + 1$)
- $x_m =$ susceptibilidad magnética

En una configuración entre la (Ecuación 3) y la (Ecuación 4), la permitividad dieléctrica se muestra en la (Ecuación 5):
Donde:

\[\varepsilon_r = \left(\frac{c \cdot t}{2l_{cal}} \right)^2 \] (5)

Donde:

\(\varepsilon_r \) = permitividad dieléctrica relativa
\(c \) = velocidad de una onda EM en el vacío [m/ns]
\(t \) = tiempo de propagación de la onda electromagnética [ns]
\(l_{cal} \) = longitud calibrada de las varillas [m].

3. Metodología

3.1 Caracterización y clasificación de la muestra

Se estudiaron seis tipos de suelos y las muestras de suelo se recolectaron directamente de la subrasante durante su proceso de regularización. Los puntos de recolección se ubican en obras viales dentro del área rural del Estado de Sao Paulo, en Brasil (Tabla 1).

Las muestras deformadas se sometieron a pruebas para caracterizar sus propiedades físicas, de acuerdo con las siguientes normas de prueba: Análisis del tamaño de partículas NBR 7181 (ABNT, 2016d), Determinación de densidad específica NBR 6458 (ABNT, 2016a), Determinación de límites de Atterberg NBR 6459 (ABNT, 2016b) y NBR 7180 (ABNT, 2016c). Las pruebas de compactación del suelo se llevaron a cabo con la energía estándar de Proctor para determinar el contenido óptimo de humedad, la densidad seca máxima y las propiedades de índice (pruebas de compactación del suelo según NBR 7182 (ABNT, 2016e)). Las pruebas se realizaron en el Laboratorio de Mecánica de Suelos de la Facultad de Ingeniería Civil, Arquitectura y Diseño Urbano de la Universidad de Campinas (Unicamp). Finalmente, las muestras fueron objeto de análisis químico con el objetivo de obtener los óxidos de sus elementos constituyentes mediante la técnica de Espectrometría de Fluorescencia de Rayos X en el Laboratorio de Geoquímica Analítica del Instituto de Geociencias de la Universidad de Campinas.

(Tabla 2) muestra tanto las propiedades físicas como la clasificación del suelo de acuerdo con “la Junta de Investigación de Carreteras” (HRB), el “Sistema de Clasificación Unificado” (UCS) y la Clasificación de Suelos Tropicales (MCT) (DNER, 1994a); (DRNA, 1994b); (DRNA, 1996).

Nombre de la muestra	Lugar de recolección	Coordenadas geográficas
BRT-1	Corredor exclusivo de autobuses en Campinas	22°54’36”S 47°05’41”W
BRT-2	Corredor exclusivo de autobuses en Campinas	22°55’07”S 47°06’28”W
SP-332(S5)	Autopista Prof. Zeferino Vaz	22°22’21”S 47°09’52”W
SP-65(S3)	Autopista Dom Pedro	22°22’21”S 47°09’52”W
SP-65(S7)	Autopista Dom Pedro	22°50’58”S 47°01’42”W
SP-65(S2)	Autopista Dom Pedro	22°50’60”S 47°06’24”W
La (Tabla 3) muestra las propiedades obtenidas en los ensayos de compactación. A continuación, la (Tabla 4) presenta un resumen de los resultados de análisis químicos con los óxidos más relevantes, así como la conductividad eléctrica, los que serán discutidos en el presente estudio.

Tabla 2. Resumen de las propiedades físicas y clasificación del suelo

Nombre muestra	$\rho_{sólidos}$ (g/cm3)	Granulometría (%)	Límites de Atterberg (%)	Clasificación						
		Arena	Limo	Arcilla	LL	LP	IP	HTB	SUCS	MCT
BRT-1	2,75	74	18	8	No plástico	A-2-4				
BRT-2	2,78	67	13	20	25	17	8	A-4	BRT-2	2,78
SP-332(S5)	2,75	62	13	25	25	14	10	A-6	SP-332(S5)	2,75
SP-65(S3)	2,85	42	31	27	41	28	14	A-7-6	SP-65(S3)	2,85
SP-65(S7)	2,80	38	31	31	51	35	16	A-7-5	SP-65(S7)	2,80
SP-65(S2)	3,01	32	28	40	43	28	15	A-7-6	SP-65(S2)	3,01

$\rho_{sólidos}$ = gravedad específica de sólidos, LL = límite líquido, LP = límite plástico, PI = índice de plasticidad, HRB = Highway Research Board, SUCS = Sistema Unificado de Clasificación de Suelos, MCT = Miniatura Compacto Tropical, clasificación de suelos tropicales. NA’ = arenoso no laterítico, LG’ = arcilloso no laterítico, LA’ = arenoso laterítico y LG’ = arcilloso laterítico.

Tabla 3. Resumen de las propiedades de suelos compactados

Índice físico	BRT-1	BRT-2	SP-332 (S5)	SP-65 (S3)	SP-65 (S7)	SP-65 (S2)
$\rho_{sós}$ (g/cm3)	2,06	1,96	1,91	1,72	1,63	1,69
$w_{óptimo}$	9,20	11,56	12,54	17,60	22,05	21,97
$\theta_{v,óptimo}$	18,95	22,66	23,95	30,27	35,94	37,14
e	0,33	0,42	0,44	0,66	0,72	0,78

$\rho_{sós}$ = densidad seca máxima, $w_{óptimo}$ = contenido óptimo de humedad, $\theta_{v,óptimo}$ = contenido óptimo de humedad volumétrica, e = relación de vacío

Tabla 4. Resumen de los resultados de los análisis químicos

Óxidos (g/100g)	BRT-1	BRT-2	SP-332 (S5)	SP-65 (S3)	SP-65 (S7)	SP-65 (S2)
SiO$_2$	88,38	84,75	79,43	59,83	59,91	42,64
TiO$_2$	0,28	0,55	1,85	2,01	1,53	4,67
Al$_2$O$_3$	6,32	7,80	9,58	18,30	20,43	20,89
Fe$_2$O$_3$	1,76	2,81	4,50	10,14	8,07	19,42
E.C. (dS/m)	0,14	0,12	0,10	0,10	0,10	0,10

SiO$_2$ = dióxido de silicio, TiO$_2$ = dióxido de titanio, Al$_2$O$_3$ = óxido de aluminio, Fe$_2$O$_3$ = óxido de hierro (III), C.E = conductividad eléctrica.
3.2 Configuración de sondas TDR y columnas de calibración

Las sondas (o guías) de bajo costo se construyeron y calibraron en el Laboratorio de Investigación No Destructiva (LIND) de la Universidad de Campinas, para ser acopladas al sistema TDR. Las sondas consisten en tres varillas paralelas de 10 mm de longitud y un diámetro de 3 mm, 15 mm de distancia entre las varillas y un cable coaxial de 1,5 m. El sistema TDR utilizado incluye una unidad TDR-100, multiplexores de lectura del tipo SMDX50 y el software PC-TDR, todos de la marca Campbell Scientific.

Se utilizaron seis columnas de calibración, una para cada tipo de suelo (Tabla 2). Cada columna de calibración consiste en un cilindro de PVC con un diámetro interno de 102 mm, 190 mm de altura y una pared de 5 mm de espesor (Figura 2), colocados sobre una base de poliestireno donde se insertaron dos sondas TDR. Los principales criterios adoptados para el diseño y calibrado de las columnas fueron la configuración geométrica de la sonda y, especialmente, el área de influencia de sus varillas. Se consideró una altura de 190 mm en un sentido, de manera que el cabezal de la sonda estuviera protegido dentro del cilindro. La pared del cilindro se perforó con agujeros de 2 mm de diámetro cada 30 mm, para permitir una pérdida de humedad homogénea a través de la muestra.

![Figura 2. a) Cilindro de PVC, base de poliestireno y sonda TDR; b) Montaje del cilindro de PVC entre la base y el cuello de extensión utilizados en un ensayo Proctor estándar](image)

3.3. Preparación de las columnas de calibración y adquisición de datos

El siguiente diagrama muestra los procedimientos llevados a cabo para la preparación de las columnas de calibración y la adquisición de datos (Figura 3). La masa del cilindro de PVC, las sondas y la base de poliestireno se determinaron individualmente antes del proceso de compactación. Se registró un total de 4320 observaciones de permitividad dieléctrica (Figura 4).
4. Resultados y análisis

Esta sección presenta el análisis de la variación de permitividad dieléctrica con respecto al contenido de humedad (sección 4.1) y también determina el modelo de calibración general (sección 4.2).
4.1 Variación de permitividad dieléctrica con respecto al contenido de humedad

La (Figura 5) muestra la relación resultante entre la permitividad dieléctrica y el contenido de humedad para los seis suelos. Se utilizó una línea de tendencia polinómica de grado 3, con el contenido de humedad \((\theta_v)\) como variable independiente y la permitividad dieléctrica \((\varepsilon_r)\) como variable de respuesta.

![Figura 5. Relación entre la permitividad dieléctrica y el contenido de humedad, considerando todos los suelos estudiados](image)

La línea de tendencia polinómica de grado 3 presentó el coeficiente de determinación más alto \((R^2 = 0.988)\) y la desviación estándar más baja de residuos \((SD = 0.568)\). En esta relación, cabe destacar las pequeñas variaciones para el mismo valor de humedad (especialmente hacia la izquierda de \(\theta_v = 0.25\) cm\(^3\) cm\(^{-3}\) en la (Figura 5), aun cuando se trata de suelos con diferentes texturas y propiedades físicas (Tabla 2) y (Tabla 3). Hacia la derecha de \(\theta_v = 0.25\) cm\(^3\) cm\(^{-3}\), los suelos mostraron diferencias de permitividad más notorias para el mismo contenido de humedad.

Es un hecho que la medición de la permitividad dieléctrica se ve directamente afectada por las diversas formas en que los distintos tipos de suelos interactúan en presencia del agua. Las causas de las diferencias de permitividad destacadas anteriormente, se deben principalmente al efecto de la composición mineralógica de los suelos y, en menor grado, al efecto de su textura.

4.1.1 Influencia de la textura del suelo

En la (Figura 5) se puede observar que, entre los contenidos de humedad de 0,18 a 0,25 cm\(^3\) cm\(^{-3}\) (cuadrado de líneas punteadas), los suelos con mayor proporción de arena (BRT-1, BRT-2 y SP-332 (S5)) muestran valores de permitividad dieléctrica ligeramente más altos que los suelos con mayor proporción de limo y arcilla (SP-65 (S2), SP-65 (S7) y SP-65 (S3)). Como se observa en la (Tabla 3), los suelos BRT-1, BRT-2 y SP-332 (S5) alcanzan su contenido óptimo de humedad en este rango de humedad. Esto conduce a una mayor contribución de la fase de agua \((\varepsilon_{agua} = 81)\) y, en consecuencia, a un aumento en la medición de la permitividad dieléctrica. Fuera de este rango (0,18 a 0,25 cm\(^3\) cm\(^{-3}\)), la composición mineralógica tuvo una mayor influencia.

4.1.2 Influencia de la composición mineralógica

De acuerdo con los resultados del análisis químico (Tabla 4), los seis suelos muestran una mayor proporción de cuatro óxidos que son comunes en los suelos tropicales: SiO\(_2\), TiO\(_2\), Al\(_2\)O\(_3\) y Fe\(_2\)O\(_3\). El Fe\(_2\)O\(_3\) es el óxido que más influye en la determinación de permitividad dieléctrica con TDR, en virtud de sus propiedades magnéticas. Esta influencia se notó en la (Figura 5) en la permitividad dieléctrica medida con contenidos de humedad inferiores a 0,18 cm\(^3\) cm\(^{-3}\), donde los suelos SP-65 (S2), SP-65 (S3) y SP-65 (S7) con una mayor proporción de Fe\(_2\)O\(_3\) muestran valores de permitividad dieléctrica moderadamente más altos que los suelos BRT-1, BRT-2 y SP-332 (S5) con menor proporción de este óxido. El efecto del Fe\(_2\)O\(_3\) fue mucho más evidente en los contenidos de humedad mayores a 0,25 cm\(^3\) cm\(^{-3}\). La (Figura 5) muestra claramente cómo aumentan las diferencias entre los valores de permitividad dieléctrica a medida que la humedad aumenta. Por ejemplo, con humedades cercanas al
La permitividad dieléctrica relativa corresponde a una fracción del valor estimado a través de TDR, lo que es congruente con el enfoque matemático propuesto por (Roth et al., 1990).

\[
e_{r} \cdot \mu_{r} = \left(\frac{c \cdot t}{2l_{cal}} \right)^2 \Rightarrow e_{r} = \frac{\left(\frac{c \cdot t}{2l_{cal}} \right)^2}{\mu_{r}} \tag{6}
\]

Donde:
- \(e_{r}\) = permitividad dieléctrica relativa
- \(\mu_{r}\) = permeabilidad magnética relativa
- \(c\) = velocidad de una onda EM en el vacío [m/ns]
- \(t\) = tiempo de propagación de la onda EM [ns]
- \(l_{cal}\) = longitud calibrada de las varillas [m]

(Robinson et al., 1994), quienes estudiaron el efecto de algunos minerales magnéticos en la permitividad dieléctrica utilizando TDR, así como en estimaciones posteriores del contenido de humedad, obtuvieron resultados similares.

4.2 Modelo de calibración general

La (Tabla 5) muestra el modelo de calibración general desarrollado, el cual considera seis tipos de suelo y dos modelos específicos que clasifican los suelos en finos y gruesos (clasificación (Tabla 2)). Cada modelo se determinó usando una regresión polinómica grado 3, con la permitividad dieléctrica \(e_{r}\) como variable independiente y el contenido de humedad \(\theta v\) como variable de respuesta.

Modelo	Coeficientes \(\theta v = a + b e_{r} + c e_{r}^2 + d e_{r}^3\)	\(R^2\)	SD Residuos (cm\(^3\)cm\(^{-3}\))
General	\(-1,10 \times 10^{-1}\), \(3,71 \times 10^{-2}\), \(-1,02 \times 10^{-3}\), \(1,28 \times 10^{-5}\)	0,990	0,0096
Fino	\(-1,27 \times 10^{-1}\), \(3,86 \times 10^{-2}\), \(-1,01 \times 10^{-3}\), \(1,11 \times 10^{-5}\)	0,986	0,0116
Grueso	\(-1,53 \times 10^{-1}\), \(5,22 \times 10^{-2}\), \(-2,40 \times 10^{-3}\), \(4,73 \times 10^{-5}\)	0,996	0,0039

La (Tabla 5) permite comprobar que la precisión alcanzada en este estudio se puede comparar (desviación estándar (SD)) con la precisión mencionada por: (Topp et al., 1980) de 0,013 cm\(^3\)cm\(^{-3}\), (Ledieu et al., 1986) de 0,0076 cm\(^3\)cm\(^{-3}\), (Roth et al., 1992) de 0,015 cm\(^3\)cm\(^{-3}\) y (Jacobsen y Schjønning, 1993) de 0,0097 cm\(^3\)cm\(^{-3}\). Cabe observar que, en general, los modelos de calibración con suelos gruesos presentan mejores ajustes \(R^2\) más altos y SD más bajas. Esta misma tendencia se observó en los trabajos desarrollados por (Topp et al., 1980), (Sarani y Afrasjab, 2012), (Dos Santos Batista et al., 2016) y (Costa, 2017).
La (Figura 6) muestra la curva ajustada por medio del modelo de calibración general, para fines de comparación con las curvas ajustadas a través de las ecuaciones clásicas de (Topp et al., 1980) (Ecuación 1) y (Ledieu et al., 1986) (Ecuación 2); ambos modelos son aceptados por la comunidad científica y ampliamente utilizados en términos prácticos.

![Figura 6](image.png)

Figura 6. Comparación de la curva ajustada a través del modelo de calibración general, donde las curvas ajustadas utilizan los modelos de (Topp et al., 1980) y (Ledieu et al., 1986)

Como puede verse en la (Figura 6), tanto el modelo de (Topp et al., 1980) como el modelo de (Ledieu et al., 1986) sobreestiman el contenido de humedad para el mismo valor de permitividad dieléctrica, especialmente al comienzo en la sección seca y al final en la sección húmeda de las curvas, con diferencias de 0,035 cm³ cm⁻³ (diferencia porcentual de 385,4%) y de 0,019 (diferencia porcentual de 5,1%), respectivamente.

Las diferencias en la predicción del contenido de humedad se deben principalmente a: a) efecto de la composición mineralógica de los suelos utilizados para desarrollar el modelo general, sobre todo los suelos finos que muestran susceptibilidad magnética (discutida en la sección 4.1.2). A este respecto, (Roth et al., 1992) y (Robinson et al. (1994) destacan que los modelos calibrados con suelos que han demostrado susceptibilidad en la presencia de un campo magnético pueden diferenciarse de aquellos que han sido validados para suelos minerales no magnéticos, conduciendo así a una sobreestimación del contenido de humedad. b) La densidad seca utilizada en el modelo de calibración general fue de 1,63 a 2,06 g cm⁻³ (Tabla 3), a diferencia de Topp (1,04 a 1,44 g cm⁻³) y Ledieu (1,38 a 1,78 g cm⁻³), quienes utilizaron valores más bajos de densidad seca. La alta densidad de los suelos condujo a una menor relación de vacío (ε), lo que permitió una mayor contribución de la fase sólida (εpartícula = 3-5) en la determinación final de la permitividad dieléctrica del suelo. En consecuencia, se observó una disminución en la contribución de la fase gaseosa (εgaseosa = 1) en la sección seca (baja humedad) y una reducción del efecto de la fase líquida (εagua = 81) en la sección húmeda (alta humedad). Puesto que el efecto de la alta densidad es más evidente en la sección seca de la curva ajustada (Figura 6), existe un consenso general entre los investigadores en cuanto a que la permitividad dieléctrica se puede ver afectada por la densidad seca del suelo. El aumento de la densidad produce un aumento en la permitividad dieléctrica ante contenidos bajos de humedad (Jacobsen y SchØnning, 1993); (Gong et al., 2003); (Namdar-Khojasteh et al., 2012).

5. Conclusiones

Basándose en los resultados analizados en este estudio, los procedimientos de laboratorio implementados demostraron ser efectivos para establecer, a través de modelos de calibración, la relación existente entre la permitividad dieléctrica y la variación de la humedad en suelos tropicales compactados. Los modelos de
Se demostró la influencia de la susceptibilidad magnética de los suelos tropicales en la determinación de la permitividad dieléctrica y, por ende, en las estimaciones de la humedad, reafirmando así la necesidad de calibraciones específicas para estos tipos de suelos.

Por otro lado, también se pudo concluir que los modelos validados para suelos minerales no magnéticos y con menor densidad, sobreestiman el contenido de humedad. El efecto combinado de susceptibilidad magnética y alta densidad de los suelos fue evidente en la lectura y adquisición de datos por medio de TDR. El efecto de la susceptibilidad magnética se observó a través de las relaciones entre la permitividad dieléctrica y el contenido de humedad en el modelo general; sin embargo, se constató un efecto predominante en la sección húmeda (alta humedad). Con respecto a la alta densidad, su efecto predominó en la sección seca (baja humedad) del modelo.

6. Referencias

ABNT (2016a). NBR 6458 – Grãos de pedregulho retidos na peneira de abertura 4,8mm – determinação da massa específica, da massa específica aparente e da absorção de água. Associação Brasileira de Normas Técnicas, Rio de Janeiro.

ABNT (2016b). NBR 6459 – Solo – determinação do limite de liquidez. Associação Brasileira de Normas Técnicas, Rio de Janeiro.

ABNT (2016c). NBR 7180 – Solo – determinação do limite de plasticidade. Associação Brasileira de Normas Técnicas, Rio de Janeiro.

ABNT (2016d). NBR 7181 – Solo – análise granulométrica. Associação Brasileira de Normas Técnicas, Rio de Janeiro.

ABNT (2016e). NBR 7182 – Solo – ensaio de compactação. Associação Brasileira de Normas Técnicas, Rio de Janeiro.

Al-Qadi, I.; Lahouar, S.; Loulizi, A.; Elseifi, M.; Wilkes, J. (2004). Effective approach to improve pavement drainage layers. Journal of Transportation Engineering, 130(5): 658–664, doi: 10.1061/(ASCE)0733-947X(2004)130:5(658).

Bastos, J. (2013). Influencia de la varia- ción de la umidade no comportamento de pavimentos da região metropolitana de Fortaleza. Fortaleza: Universidade Federal do Ceará.

Benedetto, A. (2010). Water content evaluation in unsaturated soil using GPR signal analysis in the frequency domain. Journal of Applied Geophysics, 71(1): 26–35, doi: https://doi.org/10.1016/j.jappgeo.2010.03.001.

Benedetto, A.; Tosti, F.; Ortuani, B.; Giudici, M.; Mele, M. (2015). Mapping the spatial variation of soil moisture at the large scale using GPR for pavement applications. Near Surface Geophysics, 13(3): 269–278, doi: https://doi.org/10.3997/1873-0604.2015006.

Bhuyan, H.; Scheuermann, A.; Bodin, D.; Becker, R. (2018). Soil moisture and density monitoring methodology using TDR measurements. International Journal of Pavement Engineering, 1–12, doi: https://doi.org/10.1080/10298436.2018.1537491.

Bittelli, M.; Salvatorelli, F.; Pisa, P. (2008). Correction of TDR-based soil water content measurements in conductive soils. Geoderma, 143(1): 133–142, doi: https://doi.org/10.1016/j.geoderma.2007.10.022.

Costa, B. (2017). Reflectometría no dominio do tempo (TDR) para determinação do conteúdo de água em solos tropicais do Distrito Federal. Brasília:DF Universidade de Brasília.

Curioni, G.; Chapman, D.; Metje, N. (2017). Seasonal variations measured by TDR and GPR on an anthropogenic sandy soil and the implications for utility detection. Journal of Applied Geophysics, 141(Supplement C): 34–46, doi: https://doi.org/10.1016/j.jappgeo.2017.01.029.

DNRF (1994a). DNRF-ME 256/94: Solos compactados com equipamento miniatura - determinação da perda de massa por imersão. Departamento Nacional de Estradas de Rodagem, Rio de Janeiro.

DNRF (1994b). DNRF-ME 258/94: Solos compactados com equipamento miniatura – Mini-MCV. Departamento Nacional de Estradas de Rodagem, Rio de Janeiro.

DNRF (1996). DNRF-CLA 259/96: Solos compactados com equipamento miniatura – Mini-MCV. Departamento de Nacional Estradas de Rodagem, Rio de Janeiro.

Dos Santos Batista, L.; Coelho, F.; Pereira, F.; Da Silva, M.; Gomes Filho, R.; Gonçalves, A. (2016). Calibração de sonda artesanal de uso com TDR para avaliação da umidade de solos. Revista Brasileira de Agricultura Irrigada, 10(2): 522–532, doi: 10.7127/rbai.v10n200388.

Ekblad, J.; Ibacson, U. (2007). Time-domain reflectometry measurements and soil-water characteristic curves of coarse granular materials used in road pavements. Canadian Geotechnical Journal, 44(7): 858–872, doi: https://doi.org/10.1139/t07-007.

Fernandes, F.; Fernandes, A.; Pais, J. (2017). Assessment of the density and moisture content of asphalt mixtures of road pavements. Construction and Building Materials, 154: 1216–1225, doi: https://doi.org/10.1016/j.conbuildmat.2017.06.119.

Friedman, S. (2011). Electrical Properties of Soils. In: Glinski, J.; Horabik, J. and Lipiec, J. (Eds.) Encyclopedia of Agrophysics. Dordrecht: Springer Netherlands, pp. 242–255.

Gong, Y.; Gao, Q.; Sun, Z. (2003). The effects of soil bulk density, clay content and temperature on soil water content measurement using time-domain reflectometry. Hydrological Processes, 17(18): 3601–3614, doi: https://doi.org/10.1002/hyp.1358.

Huisman, J.; Hubbard, S.; Redman, J.; Annan, A. (2003). Measuring Soil Water Content with Ground Penetrating Radar. Vadose Zone Journal, 2(4): 476–491, doi: https://doi.org/10.2113/2.4.476.

Jacobsen, O.; Schjønning, P. (1993). A laboratory calibration of time domain reflectometry for soil water measurement including effects of bulk density and texture. Journal of Hydrology, 151(2–4): 147–157, https://doi.org/10.1016/0022-1694(93)90233-Y.

Jiang, Y.; Tabayeb, S. (1999). Evaluation of in situ moisture content at long-term pavement performance seasonal monitoring program sites. Transportation Research Record: Journal of the Transportation Research Board, 1655(99-0395): 118–126, doi: https://doi.org/10.3141/1655-16.

Jones, S.; Wraith, J.; Or, D. (2002). Time domain reflectometry measurement principles and applications. Hydrological processes, 16(1): 141–153, doi: https://doi.org/10.1002/hyp.513. 286 Revista Ingeniería de Construcción Vol 35 Nº3 Diciembre de 2020 www.ricuc.cl
Khakiev, Z.; Shapovalov, V.; Kruglikov, A.; Morozov, A.; Yavna, V. (2014). Investigation of long term moisture changes in trackbeds using GPR. Journal of Applied Geophysics, 110(Supplement C): 1–4, doi: https://doi.org/10.1016/j.jappgeo.2014.08.014.

Klemunes, J. (1998). Determining soil volumetric moisture content using time domain reflectometry. FHWA-RD-97-139. United States. Federal Highway Administration. Office of Engineering Research and Development. p. 74.

Ledieu, J.; De Ridder, P.; De Clerck, P.; Dautrebande, S. (1986). A method of measuring soil moisture by time-domain reflectometry. Journal of Hydrology, 88(3–4): 319–328, doi: https://doi.org/10.1016/0022-1694(86)90097-1.

Logsdon, S. (2006). Experimental limitations of time domain reflectometry hardware for dispersive soils. Soil Science Society of America Journal, 70(2): 537–540, doi: https://doi.org/10.2136/sssaj2005.0176N.

Namdar-Khojasteh, D.; Shorafa, M.; Omid, M. (2012). Evaluation of dielectric constant by clay mineral and soil physico-chemical properties. African Journal of Agricultural Research, 7(2): 170–176, doi: 10.5897/AJAR10.346.

Robinson, D.; Bell, J.; Batchelor, C. (1994). Influence of iron and titanium on water content determination by TDR. In: Time domain reflectometry applications in soil science held at the research centre foulum, Denmark, pp. 63–70.

Roth, C.; Malicki, M.; Plagge, R. (1992). Empirical evaluation of the relationship between soil dielectric constant and volumetric water content as the basis for calibrating soil moisture measurements by TDR. European Journal of Soil Science, 43(1): 1–13, doi: https://doi.org/10.1111/j.1365-2389.1992.tb00115.x.

Roth, K.; Schulin, R.; Flühler, H.; Attinger, W. (1990). Calibration of time domain reflectometry for water content measurement using a composite dielectric approach. Water Resources Research, 26(10): 2267–2273, doi: https://doi.org/10.1029/WR026i010p02267.

Saarenketo, T. (1998). Electrical properties of water in clay and silty soils. Journal of Applied Geophysics, 40(1): 73–88, doi: https://doi.org/10.1016/S0926-9851(98)00017-2.

Saarenketo, T. (2006). Electrical properties of road materials and subgrade soils and the use of Ground Penetrating Radar in traffic infrastructure surveys. Oulu: University of Oulu.

Sarani, N.; Afrasjab, P. (2012). Effect of soil texture on moisture measurement accuracy with Theta probe ML2 in Sistan region. In: International conference on chemical, ecology and environmental sciences. Bangkok, pp. 114 - 177.

Souza, C.; Matsura, E.; Testezlaf, R. (2001). Application of the TDR technique in tropical soil. TDR 2001 Proceedings. Northwestern University. Evanston, IL, p. 273–280.

Stangl, R.; Buchan, G.; Loiskandl, W. (2009). Field use and calibration of a TDR-based probe for monitoring water content in a high-clay landslide soil in Austria. Geoderma, 150(1–2): 23–31, doi: https://doi.org/10.1016/j.geoderma.2009.01.002.

Thring, L.; Boddice, D.; Metje, N.; Curioni, G.; Chapman, D.; Pring, L. (2014). Factors affecting soil permittivity and proposals to obtain gravimetric water content from time domain reflectometry measurements. Canadian Geotechnical Journal, 51(11): 1303–1317, doi: https://doi.org/10.1139/cgj-2013-0313.

Topp, G.; Davis, J.; Annan, A. (1980). Electromagnetic determination of soil water content: Measurements in coaxial transmission lines. Water resources research, 16(3): 574–582, doi: https://doi.org/10.1029/WR016i003p00574.

Tosti, F.; Slob, E. (2015). Determination, by using GPR, of the volumetric water content in structures, substructures, foundations and soil. In: Benedetto, A. and Pajewski, L. (Eds.). Civil Engineering Applications of Ground Penetrating Radar. Switzerland: Springer. pp. 163–194.