Ipanema-β: tools and examples for HEP analysis on GPU

D. Martínez Santosa, b, P. Álvarez Cartellec, M. Borsatob, V. G. Chobanovab, J. García Pardiñasb, M. Lucio Martínezb, M. Ramos Pernasb

aAxencia Galega de Innovación. Consellería de Industria. Xunta de Galicia, Spain
bUniversidade de Santiago de Compostela, Santiago de Compostela, Spain
cImperial College London, London, United Kingdom

Abstract

Acknowledgements

We would like to thank Cedric Potterat and the rest of our colleagues at the Federal University of Rio de Janeiro, for introducing us to the world of GPUs and for showing us the large gain in computing speed that such devices can achieve in a likelihood fit. We are very grateful for the funding provided by EPLANET, which made this exchange possible. We would also like to thank Axencia Galega de Innovacion (GAIN), XuntaGAL and the European Research Council (ERC-StG-639068) for their support.
1. Introduction

We present here a set of examples, classes and tools which can be used for statistical analysis in Graphics Processing Units (GPU). This includes binned and unbinned maximum likelihood fits, pseudo-experiment generation, convolutions, Markov Chain Monte Carlo method implementations, and limit setting techniques. Our idea is that these examples can be used either as starting points by anyone interested in the subject, or as a framework to develop given analyses. Hence, we include cases with different levels of complexity, starting by showing how to use and combine existing packages, down to more realistic examples that required of us the development of generic classes. Our code is based on pyCUDA [1], which is then combined with scientific packages for analysis such as iMinuit [2, 3] or pyMultinest [4]. In Sect. 2, we list the packages that we use, as well as other approaches we tried or that could be of interest for the reader. Sections 3-7 describe the provided examples. Section 8 is meant to collect some frequently asked questions.
2. Software

The Ipanema package is available on git:

```
git clone https://gitlab.cern.ch/bsm-fleet/Ipanema.git.
```

It contains the following folders:

```
urania cuda polibio examples
```

and a simple `setup.csh` script. The software we use depends on the following:

- Cuda. Tested with 7.5 and 8.0.
- Python2 (we used 2.7.11).
- Standard Python packages for scientific usage, such as scipy, numpy, matplotlib. We got them all through an installation of Anaconda [5]. We tested both against Anaconda2 and Anaconda4.
- pyCuda [1] (not in Anaconda). In addition, we made a modified version of `curand.py`, (toyrand.py) where the generation of an array of poisson numbers uses a separate poisson mean per generated value. We include `toyrand.py` in the repository.
- reikna [6] (not in Anaconda).
- Default (for likelihood fits): iminuit [2] (not in Anaconda). In order to use analytical gradients, one needs to get the version from the git master branch. If not, then the standard 1.2 is fine.
- Optional, multidimensional parameter sampling: Multinest [7], pymultinest [4] (not in Anaconda).
- Optional, symbolic programing: sympy (included in Anaconda1), Mathematica (optional, can be called by urania modules to substitute some of the utilities of sympy).

1The released examples are for sympy 0.7.6.1 as well as sympy 1.0, older versions of sympy may need some small tweaking of the expression manipulation.
There are several interesting packages on the market that we don’t use here, but that the reader may be interested in:

- **GooFit.** This is the software that was shown to us in Rio. It mimics the structure of RooFit, but for Cuda. We don’t use it because we preferred to work mostly from Python, and because at the time we knew about GooFit, there were still functionalities missing that we needed. It can be used with a related software, Hydra.

- **numba.accelerate:** It contains an alternative to pyCUDA, which can upload Python functions to a GPU using decorators. It was the base of our first attempts to make fitting programs via Python+CUDA. But after some time we moved to pyCUDA instead. We gave it a short try to combine both, but they didn’t seem compatible.

- **Faddeeva’s function from GitHub.** It is not used in the current released examples, but we are using it for more realistic versions of the \(B_0 \rightarrow J/\psi KK \) fit, for instance.

To test the examples we provide, we use three graphics card models: GeForce 980 GTX Ti, GeForce 1080 GTX and Tesla M2090. Their specifications are listed in Appendix D.
3. Example 1: Fit to a signal peak on top of an exponential background

File: examples/sbfit.py

In this example, a signal peak is fitted on top of an exponential background, using an unbinned maximum likelihood fit. The signal probability density function (PDF) is implemented in a file called psipatia.cu as a device function, \texttt{__device__ double log_apIpatia}. A \texttt{__device__} function is only accessible by the GPU. The signal PDF is then processed inside sbfit.py by pyCUDA’s \texttt{SourceModule}. Since \texttt{SourceModule} uses strings, we read \texttt{psipatia.cu} as:

\begin{verbatim}
mod = SourceModule(file("psipatia.cu","r").read()).
\end{verbatim}

An alternative way is to define a string which contains the CUDA code, as done in the standard pyCUDA examples.

The signal PDF is later called by a global function, \texttt{__global__ void Ipatia}, over an array of data. Global functions are visible both for the GPU and for the host (e.g. a CPU). They must be of type \texttt{void}, meaning that any output has to be passed as an argument. In this case, the output (\texttt{int_gpu}) is an array with the signal PDF value of each data point. The function is then called in Python as:

\begin{verbatim}
sig_pdf(bins_gpu, int_gpu, np_float64(mu), np_float64(sigma), np_float64(l), np_float64(beta), np_float64(a), np_float64(n), np_float64(a2), np_float64(n2), block = (1000,1,1), grid = (len(mydat)/1000,1)).
\end{verbatim}

Note that each parameter has to be passed to the GPU using the variable type specified in the CUDA code. In this case, all parameters are of type \texttt{double}, which is passed as \texttt{np_float64(parameter)}. The last two arguments of the function define the block and grid size in the GPU. The maximum block size depends on the computing capability of the graphics card and is smaller or equal than 1024. The limitations for the grid size are much looser. In this case we are making blocks of 1000 events each, and then the grid as large as needed.
so that it covers all the events, i.e, $\text{Nevs} = \text{block}[x] \times \text{grid}[x]$. The y and z components of the block/grid are not used.

The minimization is done by Minuit, via the iminuit package. Minuit minimizes a given cost function, FCN. In most of the usages in high-energy physics, the FCN is $-2 \log L$ (or just $-\log L$) and a typical definition for fit errors correspond to a change of one unit in $-2 \log L$. Inside the FCN the signal and background PDF,

$$\text{bkg}_\text{gpu} = \text{pycuda}.\text{cumath}.\text{exp}(k*\text{data}_\text{array}_\text{gpu}),$$

and afterwards the likelihood for each data point are calculated in parallel by the GPU,

$$\text{LL}_\text{gpu} = \text{pycuda}.\text{cumath}.\text{log}(fs*\text{invint}_s*\text{sig}_\text{gpu}+fb*\text{invint}_b*\text{bkg}_\text{gpu}).$$

Here, invint_s and invint_b are the inverses of the signal and background PDF integrals, $\text{integral}_\text{ipa}$ and $\text{integral}_\text{exp}$, respectively. The calculation of $\text{integral}_\text{ipa}$ is performed numerically by summing up the int_gpu entries,

$$\text{integral}_\text{ipa} = \text{np.sum}((\text{int}_\text{gpu}).\text{get()})*\text{DM}.$$

The background PDF integral is determined analytically,

if $k!= 0$:
 $$\text{integral}_\text{exp} = (\text{np.exp}(k*\text{Mmax})-\text{np.exp}(k*\text{Mmin}))*1./k$$
else :
 $$\text{integral}_\text{exp} = (\text{Mmax} - \text{Mmin}).$$

This parallelization significantly reduces the computational time compared to an algorithm which loops over the data and calculates each value in sequence. Note also that some operations, such as the calculation of an exponential or a logarithmic function, can be performed directly on the gpu_array from the Python function even though it is parallelized and executed in the GPU, as shown above. In the end, the individual likelihoods are summed up to a total
likelihood in the CPU2. The sum, including normalization terms, is returned as the output of FCN. The results of the MIGRAD and HESSE methods and the corresponding correlation matrix are shown in Fig. 1.

The example prints in the end the GPU time in seconds. We measured the following timings in different devices (Table 1):

Device	10k events	10M events
GeForce 980 GTX Ti	0.9	30.9
GeForce 1080 GTX	1.0	24.1
Tesla M2090	1.1	21.5

4. Example 2: Fit to the time and angular distribution in bins of the \(KK \) mass

File: examples/phis/fitphis.py

This example bases on the fit used by the LHCb collaboration to determine the CP-violating phase \(\phi_s \) in the \(B_s^0 \rightarrow J/\psi KK \) decay channel \cite{8}. In the model we consider contributions from \(\phi \rightarrow KK \) (P wave), which has three polarization states, and from \(f_0 \rightarrow KK \) (S wave). We fit the time dependent angular distributions of \(B_s^0 \) and \(\bar{B}_s^0 \) decays in six \(KK \) mass bins. The events are produced with EvtGen \cite{9}, where equal numbers of \(B_s^0 \) and \(\bar{B}_s^0 \) are generated according to a theoretical model, which for simplicity does not include any experimental effects.

2Depending on the size of the array, in some cases it is faster to pass the entire array to the host and let it do the sum, while above a given size which we didn’t calculate accurately it becomes better to do the sum in the GPU.
Figure 1: Fit result of Example 1: (a) MIGRAD output, (b) HESSE output, (c) parameter correlation matrix.
We use a simultaneous fit over a total of 12 categories: six KK mass bins times two B flavours. Most of the fit parameters are shared between all of the 12 categories. These are: the polarization fractions, the CP-violating phases for each contributing resonance and polarization, the physics parameters Δm_s, Γ, $\Delta \Gamma$. The S wave parameters are individual for each bin, since a priori they differ between the KK mass bins. The external constant C_{SP} accounts for the KK-mass integral in the interference between the S and the P waves. These factors are imported from a Python list from the file phisParams.py.

The parameter handling is performed by the classes Parameter or Free defined in ModelBricks.py. In Parameter, a parameter is initialized, from a parameter name, and an initial value. Additional information can be passed at the initialization, such as, limits, step, type and a flag indicating whether it is a constant (default). Free inherits from Parameter, with the only difference that the default is constant=False. For example, to fix the longitudinal fraction, we use

$$f_L = \text{Parameter}("fL",0.5, \text{limits}=(0.3,.6)),$$

while to set it free in the fit:

$$f_L = \text{Free}("fL",0.5, \text{limits}=(0.3,.6)).$$

The latter would be equivalent to:

$$f_L = \text{Parameter}("fL",0.5, \text{limits}=(0.3,.6), \text{constant} = \text{False}),$$

as well as to

$$f_L = \text{Parameter}("fL",0.5, \text{limits}=(0.3,.6))$$

$$\text{fL.constant} = \text{False}$$

The categories for the simultaneous fit are created with a custom class, Cat, defined in ModelBricks.py. Instances of Cat store information such as the data array, and default values block and grid size to be used for each bin when calculating the likelihood. As Python objects, additional attributes can
be incorporated *ad-hoc* without existing in the definition of the `Cat` class. In this example, we add the bin number, a pointer to the function that calculates the integral for that category (the integral function is different for B_0^+ and B_0^-), etc. When initializing an instance of `Cat`, a GPU array with the size of the data is reserved in order to store the likelihood probability values at each point.

A list of parameters and categories is passed when initializing an instance of the model class, `myModel`,

```python
manager = myModel(Params, cats)
```
defined in `PhisModel.py`. The class `myModel` inherits from the `ParamBox` class defined in `ModelBricks.py` and is adapted to the particular problem in this example. For details on `ParamBox` see Appendix A.

In `myModel`, the PDF and its normalization are calculated for each data point by the function

```python
run_cat(self, cat, CSP, Fs, fL, fpe, dpa, dpe, dS, G, DG, DM, phis)
```
and then combined to a total $-2 \log L$. The corresponding physics distributions are taken from the physics model defined in `cuda.phis.c`. Once an instance of the model is initialized, a Minuit fit can be created using the class method `createFit()` of `ParamBox`. The class method `createFit()` instantiates a Minuit object from `iminuit` and passes to it central values, ranges and other information of the parameters. The Minuit instance is stored as `fit` attribute of `manager`.

A method `plotcat(Cat)` creates a plot (via `matplotlib`) of the result in a given bin including the pulls, as shown in Fig. 2. The fit result for the case when only the P wave contributes to the final state is shown in Fig. 3. The computation times as tested on different devices are summarized in Tab. 2.

`ParamBox` also includes a method that can launch a scan of the parameter space using MultiNest,

```python
manager.createMultinest("mnest_party")
```
This is done via pymultinest. The string passed to createMultinest is the folder in which MultiNest will store its outputs. Although pymultinest has a default value for it ("./chains"), here we force the user to set it manually, to avoid reading from an unrelated chain made on the same folder. Keyword arguments will be sent to pymultinest. In addition, a keyword argument reset = True/False can be used to restart the sampling if a scan on the same folder was done before. Then, the ParamBox class provides methods to read the MultiNest output, for example

manager.mnest_vals()

prints out the most probable value. The default priors in ParamBox are flat, thus the printed values should be close to those found by Minuit, unless one of the two algorithms has converged to a local minimum or the parameter space was undersampled. Note that convergence in MultiNest will be way slower than for Minuit (although MultiNest can offer other advantages).
Figure 3: Fit result of Example 2 for the case of a P wave contribution only: (a) **MIGRAD** output, (b) **HESSE** output, (c) parameter correlation matrix.
Table 2: Timings of the Example 2 in different devices (see text for details).

Device	10k events	10M events
time [s]		
GeForce 980 GTX Ti	1.9	60
GeForce 1080 GTX	1.8	50
Tesla M2090	1.9	

5. Example 3: Binned fit to $\Upsilon \rightarrow \mu^+\mu^-$ decays in bins of η and p_T and search for $A^0 \rightarrow \mu^+\mu^-$ decay

File: ypsiions.py

In this example, a binned fit is performed to the Υ resonances, on a decay into two muons of opposite sign. The fit is performed simultaneously in bins of pseudorapidity, η, and transverse momentum, p_T. The number of bins for these two variables is left to the user, and specified in two lists:

```python
ptbins = range(2)
etabins = range(2).
```

Binning scheme for the data is set using

```python
binning = gpuarray.to_gpu(np.float64(np.linspace(5.5e3, 15e3, 512*32)))
```

where 5.5e3 and 15e3 are the bounds on the di-muon mass (in MeV/c^2) and 512*32 defines a number of bins in terms of the grid used later. Data is taken from a toy-MC sample, generated from a PDF as the one used in the fit. The parameters to create the sample are specified in a dictionary corresponding in this case to the initial values of those to do the fit:

```python
genPars = {}
for p in Params:
    genPars[p.name] = p.val
manager.generateToy(genPars).
```
For more information on how to generate toy-MC samples see Sect. 7. When
the categories (one per bin) are defined:

\[\text{Cat(cat_name, idata[1], getN = True)} \]

the input data for each category is set as binned specifying getN=True. The \(\Upsilon \) fit parameters are fixed to those saved in params.py. The free parameter limits are specified during the initialization of the variable Params:

\[
\text{Params} = [
\text{Free('l_m', 0.47, limits = (0., 0.9)),}
\text{Free('l_b', -2.0, limits = (-4, -0.1)),}
\text{Free('a_1', 1.26, limits = (0.5, 5.)),}
\text{Free('n_1', 1.28, limits = (0.5, 5.)),}
\text{Parameter('n_2', 1.),}
\text{Parameter('a_2', 200.),}
\text{Free('beta', -0.001, limits = (-1.e-02, 0.)),}
\text{Free('scale', 1.e-04, limits = (0, 0.005)),}
\text{Parameter('A1_m', 9460.30),}
] \]

The mass model consists on a smeared Ipatia distribution, which includes a gaussian convolution for the multiple scattering \[10\]. The MS contribution is read from rampup_params.cpickle. As an output the mass plots for each \(p_T \) and \(\eta \) bin are shown and saved in pdf format (see Fig. 4).

6. Example 4: CL\(_{s}\)

File: cls_beta_01.py

Limits setting and combinations of experimental results using the CL\(_{s}\) method (or modified frequentist approach \[11, 12\]) can greatly benefit from the use of GPUs, by parallelizing the computation of the toy experiments, that represent the most time-consuming part of the computation of the confidence levels. In
Figure 4: Fits to the binned dataset of two opposite sign muons in the Υ range. The three peaks correspond to the three different states of the Υ resonance which contribute to this spectrum.

Table 3: Timings of the Example 3 in different devices (see text for details).

Device	10^{10} events time \[s\]
GeForce 980 GTX Ti	≈ 50
GeForce 1080 GTX	≈ 50
Tesla M2090	-
In this section, a generic example is shown. This example consists of the computation of CL_{b}, CL_{s+b}, and CL_{s} in a hypothetical search experiment of a signal described by the Ipatia function \cite{10} in the mass spectrum, on top of an exponential background. For this, a definition of the different parameters is done, such as the number of bins for the mass distribution ($NBINS = 10000$), as well as the array of mass values that define the interval where the search is performed:

```python
masslow = np.arange(5179., 5379., 200./NBINS, dtype = dtype)
DM = masslow[1] - masslow[0]
massbins = np.append(masslow, np.array(max(masslow)+DM,dtype = dtype))
mass_center = masslow + 0.5*DM,
```

where `masslow` is the array of low-edges, `DM` its step size, `massbins` is defined from `masslow` such that the last value of the array is also incorporated, and `mass_center` is the corresponding array with the bin centers. After this, the Ipatia function is loaded into the GPU, and the values of its parameters are specified:

```python
mod = SourceModule(file(os.environ["IPAPATH"] + "/cuda/psIpatia.cu","r").read())
ipa = mod.get_function("Ipatia").
```

In order to convert unbinned data to histograms, bins for the GPU have to be defined from `mass_center`:

```python
bins_gpu = gpuarray.to_gpu(mass_center)
bins_cx = bins_gpu.astype(np.complex128)
```

Note that there are two sets of bins: the ones of type `np.float64` are used for both the Ipatia and exponential PDF that will be used later for the background, while the bins of type `np.complex128` will be necessary when convolving the Ipatia with a Gaussian function.

The array corresponding to the signal distribution is created as an empty array with the size of `mass_center`, filled via the Ipatia function and then convolved with a Gaussian function as follows:

```python
ipa(bins_gpu, sigf_i_gpu, np.float64(mu),np.float64(sigma),np.float64(l),np.float64(beta), np.float64(a), np.float64(n), np.float64(a2),
np.float64(n2), block = (1000,1,1), grid = (max(len(tmp0)/1000,1),1))
SM = GaussSmear1(bins, sigma0)
sigf_gpu = SM.Smear(sigf_i_gpu).

As for the background distribution, an array of the same length as sigf_gpu is filled following an exponential function, exp(−kx), where k is set to be -0.001 and x is the mass value. Both signal and background distributions are normalized to 1:
sigpdf_gpu = sigf_gpu/np.sum((sigf_gpu).get())
bkgpdf_gpu = bkgf_gpu/np.sum((bkgf_gpu).get()).

From these PDFs, the data that will be used for the CLs computation is generated, setting the number of expected events for both signal (ns) and background (nb).

def HistoPdf(ns =5000, nb = Nb): return np.float64(ns) * sigpdf_gpu + np.float64(nb)*bkgpdf_gpu
fake_data = gpuarray.to_gpu(np.uint32(tmp0))
generateBinned(fake_data, HistoPdf(ns = 70)).

Finally, the confidence levels and CLs are calculated as a function of the signal strength or number of signal events. The number of toy experiments used can be modified, and for the sake of this example is set to the default value (10000 toys), good enough to get proper precision.
CL = CLcalculator()
CL.setData(fake_data)
CL.setExpected(HistoPdf)
CL.CLs(70, toys = 10000)

7. Example 5: Generating ToyMC

GPU devices can also be used to generate toyMC. For binned PDFs, it can be done via generateBinned as shown in the examples of CLs and A^0 \to \mu\mu. Generating unbinned datasets require somewhat more gymnastics, but
Table 4: Timings of the example 4 in different devices (See text for details).

| Device           | time (s) per event |
|------------------|--------------------|
| GeForce 980 GTX Ti | 10.6               |
| GeForce 1080 GTX  | 12.8               |
| Tesla M2090      | 41.7               |

can also be done without too much effort, as we will discuss now. CUDA random generators are imported via `curand.h` and `curand_kernel.h`. It must be noted that the latter cannot be included inside an `extern "C"`, which is what `SourceModule` automatically wraps the code in. Thus, we have to invoke `SourceModule` (or `cuRead`) with the keyword argument `no_extern_c = True`. Then we should place `extern "C"` manually inside our CUDA file, after the inclusion of the generators and before the function definitions.

Once this is done, one can proceed and use `curand_init`, `curand_uniform` etc to generate random numbers, and create toyMC. The generation can be done for instance by using the `accept-reject` method.

An example of this is shown in file:

`examples/toyMC/fitphis.py`

The above is a modified version of the example presented in Sect. 4, where we generate a random dataset for one of the categories of the fit, and plot it on top of the PDF. The example can easily be expanded to generate datasets for all categories, as well as to include Poissonian random fluctuations on the generated number of events. For this we suggest generating `Nevts` in the Python class with `scipy.random.poisson` or `scipy.random.normal`, and modifying the grid and block sizes accordingly. The timing of the example measured in different setups is shown in Table 5.
Table 5: Timings of Example 5 in different devices (see text for details).

| Device          | 133 725 events | 6 769 840 events |
|-----------------|----------------|-----------------|
| time [s]        |                |                 |
| GeForce 980 GTX Ti | 0.11           | 0.34            |
| GeForce 1080 GTX | 0.13           | 0.30            |
| Tesla M2090     | -              | -               |

Combining with Symbolic programming

When dealing with complicated models, symbolic programming can be very useful. In Python this can be done through sympy. In that case, being able to convert a symbolic expression to a CUDA piece of code greatly simplifies the development of GPU fits. For instance, the angular PDFs and the corresponding integrals in the $B^0_s \rightarrow J/\psi K^+ K^-$ example were obtained this way. Another example of this is

```
examples/urania/faddeeva.py,
```

where the limit expression of Faddeva’s functions at large $t/\sigma$ are obtained, and converted to _device_. CUDA functions.

A more complicated (and, sadly, cryptic) example 3 can be found at:

```
examples/urania/JpsiPhiTimeFit_forRooFit.py.
```

where the $B^0_s \rightarrow J/\psi \phi$ time-dependent angular distribution is printed to LaTex and .pdf files as well as to a RooFit fitting class. By enabling the flag USE_MATHEMATICA one can get the integral over time from Mathematica instead of sympy, as the latter is sometimes worse at simplification. The Python list Spins lists the spins of the hh resonances one wants to generate, i.e, $[1]$ for P–wave, $[0,1]$ for S–

---

3Note: this was adapted to the sympy version quoted in Sect. 2, but the outcome for that version is has not yet been tested.
wave and P-wave, \([0,1,2]\) to also include D-wave, etc\(^4\)… One can similarly make an script to create CUDA code. The following examples:

examples/urania/JpsiPhiTimeFit_forCuda.py
examples/urania/JpsiPhiTimeFit_forCuda_Bbar.py

create CUDA files with the function, the integrals and the derivatives.

8. FAQ

- **Can I add prints/std::outs to my cuda stuff?**: Yes, `#include <stdio.h>` and you could use `printf` at least on the `_global_` functions. You can also pass a `gpuarray` to your program and store on it intermediate numbers that you want to check, it will be visible from Python.

---

\(^4\) A priori the list of waves is unlimited. But of course as the expression becomes more and more complicated, the symbolic manipulation may get stuck.
Appendix A. ParamBox class

The class ParamBox is defined in ModelBricks.py. To initialize an instance, one needs to provide a list of fit parameters and (optionally) a list of categories (class Cat). The following methods are contained in ParamBox:

- **freeThese(pars)**: Frees each parameter in the provided list
- **lock_to_init(pars)**: Fixes each parameter in the provided list
- **createFit()**: Initializes a Minuit fit providing it with a list of parameters
- **createMultinest(savedir, reset = False, **kwargs)**: Runs a Multinest scan with the fit result as an input and saves the output in a directory
- **readMultinest(savedir)**: Reads an existing Multinest output and prints its result
- **fitSummary()**: Creates an instance of the class FitSummary (defined in the same file), which contains the fit result information, such as the parameter values, parameter errors, fit matrix etc.
- **saveFitSummary(name)**: Saves the fit result information into a cPickle file with the name provided
Appendix B. Parameter class

The class Parameter, defined in ModelBricks.py, handles the information of each parameter in the fit. It is initialized with a name and, optionally, an initial value, range limits, a step size, a flag indicating whether it is constant (default), and a type. The following methods are contained in Parameter:

- **setVal(var)**: Sets the initial value
- **autoStepSize()**: Sets the step size to one tenth of the parameter range (determined by the limits)
- **setLimits(m,M, constant = False)**: Sets the lower and upper limits and, optionally, changes the constant flag
- **getSettings()**: Returns a dictionary with the available information of the parameter (value, limits, error and whether it is constant)

The class Free is completely equivalent to Parameter but with the option constant=False set by default.
Appendix C. Cat class

The information in each category of a simultaneous fit is handled by the class \texttt{Cat}, defined in \texttt{ModelBricks.py}. An instance of this class is initialized with a name for the category. Additionally, a dataset (GPU array, numpy ndarray, list, cPickle file or string) can be provided. If \texttt{getN=True} is added as extra argument, the class will determine the size of the given sample. Alternatively, the user can specify the size by setting \texttt{N} to the desired value in the arguments.

When an instance of the class \texttt{Cat} is initialized, the following two methods are called (if possible):

- \texttt{setData(ary, getN = False)}: Creates a GPU array to store the provided dataset
- \texttt{bookProbs(N)}: Books a GPU array with the size of the data for the likelihood probability values at each point
Appendix D. Hardware

Here, we give some hardware specifications for the graphics cards used to test the examples in this documentation.

Table D.6: Specifications of the graphics cards used for testing the examples.

|                          | GeForce 980 GTX Ti | GeForce 1080 GTX | Tesla M2090 |
|--------------------------|--------------------|------------------|-------------|
| CUDA cores               | 2816               | 2560             | 512         |
| Single precision (GFLOPS)| 5632               | 8228 (8873)      | 1331.2      |
| Double precision (GFLOPS)| 176                | 257 (277)        | 665.6       |
| Memory size (GiB)        | 6.1                | 8                | 6.1         |
| Memory Bandwidth (GB/s)  | 336.5              | 320              | 177.6       |
References

[1] A. Klöckner, N. Pinto, Y. Lee, B. Catanzaro, P. Ivanov and A. Fasih, *Pycuda and pyopencl: A scripting-based approach to gpu run-time code generation*, *Parallel Comput.* 38 (Mar., 2012) 157–174.

[2] “Iminuit - interactive ipython friendly minimizer based on seal minuit.” https://github.com/iminuit/iminuit, 2017.

[3] F. James and M. Winkler. http://www.cern.ch/minuit, May, 2004.

[4] Buchner, J., Georgakakis, A., Nandra, K., Hsu, L., Rangel, C., Brightman, M. et al., *X-ray spectral modelling of the agn obscuring region in the cdfs: Bayesian model selection and catalogue*, *A&A* 564 (2014) A125.

[5] “Anaconda.” https://docs.continuum.io/anaconda/, 2017.

[6] “reikna.” http://reikna.publicfields.net/en/latest/, 2017.

[7] F. Feroz, M. P. Hobson and M. Bridges, *Multinest: an efficient and robust bayesian inference tool for cosmology and particle physics*, *Monthly Notices of the Royal Astronomical Society* 398 (2009) 1601.

[8] LHCb collaboration, R. et al., Aaij, *Precision measurement of cp violation in \( B^0_s \to j/ΨK^+K^- \) decays*, *Phys. Rev. Lett.* 114 (2015) 041801.

[9] D. J. Lange, *The EvtGen particle decay simulation package*, *Nucl. Instrum. Meth.* A462 (2001) 152–155.

[10] D. Martínez Santos and F. Dupertuis, *Mass distributions marginalized over per-event errors*, *Nucl. Instrum. Meth.* A764 (2014) 150–155, [1312.5000].

[11] T. Junk, *Confidence level computation for combining searches with small statistics*, *Nucl. Instrum. Meth.* A434 (1999) 435–443, [hep-ex/9902006].

[12] A. L. Read, *Presentation of search results: The CL(s) technique*, *J. Phys. G28* (2002) 2693–2704.