A NOTE ON A QUESTION OF R. POL CONCERNING LIGHT MAPS

V. V. Uspenskij

Abstract. Let \(f : X \to Y \) be an onto map between compact spaces such that all point-inverses of \(f \) are zero-dimensional. Let \(A \) be the set of all functions \(u : X \to I = [0, 1] \) such that \(u[f^{-1}(y)] \) is zero-dimensional for all \(y \in Y \). Do almost all maps \(u : X \to I \), in the sense of Baire category, belong to \(A \)? H. Toruńczyk proved that the answer is yes if \(Y \) is countable-dimensional. We extend this result to the case when \(Y \) has property \(C \).

In R. Pol’s article [6] the following question was posed [5, Problem 423]:

Let \(f : X \to Y \) be a continuous map of a compactum \(X \) onto a compactum \(Y \) with \(\dim f^{-1}(y) = 0 \) for all \(y \in Y \). Does there exist a nontrivial continuous function \(u : X \to I \) into the unit interval such that \(u[f^{-1}(y)] \) is zero-dimensional for all \(y \in Y \)?

It was shown in [2] that the answer is positive. However, R. Pol informed me that he actually meant another question: do almost all maps \(u : X \to I \), in the sense of Baire category, have the property considered above? H. Toruńczyk gave a positive answer under the assumption that \(Y \) is countable-dimensional. The aim of the present note is to extend this result to the case when \(Y \) has property \(C \). In the general case the question remains open.

A space \(Y \) is a \(C \)-space, or has property \(C \), if for any sequence \(\{\alpha_n : n \in \omega\} \) of open covers of \(Y \) there exists a sequence \(\{\mu_n : n \in \omega\} \) of disjoint families of open sets in \(Y \) such that each \(\mu_n \) refines \(\alpha_n \) and the union \(\bigcup_{n \in \omega} \mu_n \) is a cover of \(Y \). This notion was first defined about 1973 by W.E. Haver for compact metric spaces and then by D.F. Addis and J.H. Gresham [1] in the general case. Every finite-dimensional paracompact space and every countable-dimensional metric space has property \(C \) [1], [3]. Every normal \(C \)-space is weakly infinite-dimensional [1], [3] (Engelking [3] includes normality in the definition of property \(C \)). R. Pol’s example of a weakly infinite-dimensional compact metric space which is not countable-dimensional ([3], [4]) has property \(C \) and thus distinguishes between property \(C \) and the property of being countable-dimensional. It is an open problem whether for (compact) metric spaces property \(C \) is equivalent to the property of being weakly infinite-dimensional.

All maps are assumed to be continuous. We denote by \(I \) the interval \([0, 1]\). A map \(f : X \to Y \) is \emph{light} if the fibres \(f^{-1}(y) \) are zero-dimensional for all \(y \in Y \). For a compact space \(X \) let \(C(X, I) \) be the space of all maps \(u : X \to I \) with the usual metric, induced by the metric of the Banach space \(C(X) = C(X, R) \).

1991 Mathematics Subject Classification. Primary 54C10. Secondary 54C35, 54E52, 54F45.

Key words and phrases. Selection, zero-dimensional, countable-dimensional, \(Z \)-set, property \(C \).
1. **Theorem.** Let \(f : X \to Y \) be an onto light map between compact spaces. Let \(A \) be the set of all functions \(u : X \to I \) such that \(u[f^{-1}(y)] \) is zero-dimensional for all \(y \in Y \). If \(Y \) has property \(C \), then \(A \) is a dense \(G_δ \)-subset of \(C(X, I) \).

The proof is based on a selection theorem for \(C \)-spaces obtained in [7]. Let \(X \) be a paracompact \(C \)-space. Suppose that to each \(x \in X \) a contractible non-empty subset \(\Phi(x) \) of a space \(Y \) is assigned. Suppose that the multi-valued map \(\Phi \) has the following semi-continuity property: for every compact \(K \subset Y \) the set \(\{ x \in X : K \subset \Phi(x) \} \) is open. Then \(\Phi \) has a continuous selection: there exists a continuous map \(\phi : X \to Y \) such that \(\phi(x) \in \Phi(x) \) for each \(x \in X \) [7, Theorem 1.3]. We shall use a corollary of this theorem involving the notion of a \(Z \)-set. Denote by \(C(X, Y) \) the space of all maps \(f : X \to Y \) in the compact-open topology. Let us say that a closed subset \(F \) of a topological space \(X \) is a \(Z \)-set in \(X \) if for any compact space \(K \) the set \(C(K, X \setminus F) \) is dense in \(C(K, X) \). If \(X \) is a separable metric ANR, this definition agrees with the usual one [4]. For a closed subset \(F \subset X \) to be a \(Z \)-set, it suffices that the identity map of \(X \) be in the closure of the subspace \(C(X, X \setminus F) \) of \(C(X, X) \). If \(F \) is a \(Z \)-set in \(X \) and \(U \) is open in \(X \), then \(F \cap U \) is \(Z \)-set in \(U \). If \(C \) is a convex subset of a Banach space and \(F \) is a \(Z \)-set in \(C \), then \(C \setminus F \) is contractible (see, for example, Proposition 6.4 in [7]). Therefore, the selection theorem formulated above implies

2. **Theorem.** Let \(X \) be a paracompact \(C \)-space. Let \(C \) be a convex subset of a Banach space. Suppose that to each \(x \in X \) a \(Z \)-subset \(Z(x) \) of \(C \) and a convex subset \(U(x) \) of \(C \) are assigned so that the set \(\bigcup_{x \in X} \{ x \} \times Z(x) \) is closed in \(X \times C \) and the set \(\bigcup_{x \in X} \{ x \} \times U(x) \) is open in \(X \times C \). Then there exists a continuous map \(f : X \to C \) such that \(f(x) \in U(x) \setminus Z(x) \) for every \(x \in X \).

It follows from the arguments of [7] that Theorem 2 actually characterizes \(C \)-spaces among paracompact spaces.

3. **Lemma.** Let \(X \) be a convex subset of a locally convex space \(E \). If \(Y \) is a convex dense subspace of \(X \), then any closed \(F \subset X \) which is disjoint from \(Y \) is a \(Z \)-set in \(X \).

Proof. It suffices to prove that for any convex symmetric neighbourhood \(V \) of zero in \(E \) and for any compact \(K \subset X \) there exists a map \(f : X \to Y \) such that \(f(x) \in x + V \) for every \(x \in K \). Since \(Y \) is dense in \(X \), we have \(Y + V \supset K \), and by the compactness of \(K \) there exists a finite \(A \subset Y \) such that \(K \subset A + V \). Let \(\{ h_a : a \in A \} \) be a partition of unity subordinated to the cover \(\{ a + V : a \in A \} \) of \(K \). This means that each \(h_a \) is a map from \(K \) to \(I \), \(\sum_{a \in A} h_a = 1 \) and the support \(\text{supp}(h_a) \) of \(h_a \) is contained in \(a + V \) for every \(a \in A \). The partition of unity \(\{ h_a \} \) defines a map of \(K \) into a simplex of dimension \(\text{Card}(A) - 1 \). This map can be extended over \(X \), since a simplex is an absolute retract. It follows that there exists a partition of unity \(\{ H_a : a \in A \} \) on \(X \) such that the restriction of \(H_a \) to \(K \) coincides with \(h_a \) for every \(a \in A \). Define \(f : X \to E \) by \(f(x) = \sum_{a \in A} H_a(x)a \).

The range of \(f \) is contained in the convex hull of \(A \) and hence in \(Y \). Let us show that \(f(x) - x \in V \) for every \(x \in K \). Fix \(x \in K \), and let \(B \) be the set of all \(a \in A \) such that \(h_a(x) > 0 \). If \(a \in B \), then \(x \in \text{supp}(h_a) \subset a + V \). Therefore \(f(x) - x = \sum_{a \in A} h_a(x)(a - x) = \sum_{a \in B} h_a(x)(a - x) \) is a convex combination of points of \(V \) and hence belongs to \(V \).
4. Lemma. Let X be compact, Y be a zero-dimensional closed subspace of X. If F is a closed subspace of $C(X, I)$ such that $f(Y)$ is infinite for every $f \in F$, then F is a Z-set in $C(X, I)$.

Proof. In virtue of Lemma 3, it suffices to show that the convex set $\{g \in C(X, I) : g(Y) \text{ is finite}\}$ is dense in $C(X, I)$. Fix $f \in C(X, I)$ and $\epsilon > 0$. Since $\dim Y = 0$, there exists a map $h : Y \to I$ with finite range such that $0 \leq f(y) - h(y) < \epsilon$ for every $y \in Y$. Let $k : X \to I$ be an extension of the map $y \mapsto f(y) - h(y)$ ($y \in Y$) over X such that $k(x) < \epsilon$ for every $x \in X$. The function $g = f - k \in C(X)$ is ϵ-close to f and coincides with h on Y, hence $g(Y) = h(Y)$ is finite. If the range of g is not contained in I, replace g by rg, where r is the natural retraction of the real line onto I. □

Proof of Theorem 1. Let $f : X \to Y$ be a light map of a compact space X onto a compact C-space Y. Let A be the set of all maps $u : X \to I$ such that $u[f^{-1}(y)]$ is zero-dimensional for all $y \in Y$. Let $C = C(X, I)$. We must show that A is a dense G_δ-subset of C.

For every subset $V \subset I$ let A_V be the set of all maps $u : X \to I$ such that for every $y \in V$ the set $u[f^{-1}(y)]$ does not contain V. Fix a countable base \mathcal{B} in I. Since a subset of I is zero-dimensional if and only if it does not contain any element of \mathcal{B}, we have $A = \bigcap_{V \in \mathcal{B}} A_V$. Thus it suffices to prove that for every $V \in \mathcal{B}$ the set A_V is open and dense in C.

We show that for every $V \subset I$ the set A_V is open in C. For every $t \in I$ let B_t be the set of all pairs (y, u) in $Y \times C$ such that $t \in u[f^{-1}(y)]$, and let C_t be the set of all triples (x, y, u) in $X \times Y \times C$ such that $f(x) = y$ and $u(x) = t$. Every B_t is closed, since B_t is the image of the closed set C_t under the projection $X \times Y \times C \to Y \times C$ which is a closed map. Similarly, the projection $Y \times C \to C$ is closed and sends the closed set $\bigcap_{t \in V} B_t$ to the complement of A_V. Hence A_V is open in C.

We prove that A_V is dense in C for every infinite subset $V \subset I$. Fix $h \in C$ and $\epsilon > 0$. We must show that there exists $w \in A_V$ such that $|w(x) - h(x)| < \epsilon$ for every $x \in X$. For every $y \in Y$ let $U(y)$ be the convex set of all $u \in C$ such that $|u(x) - h(x)| < \epsilon$ for every $x \in f^{-1}(y)$, and let $Z(y)$ be the set of all $u \in C$ such that $V \subset u[f^{-1}(y)]$. According to Lemma 4, $Z(y)$ is a Z-set in C. The set $\bigcup_{y \in Y} \{y\} \times Z(y)$ is closed in $Y \times C$, since it is equal to the closed set $\bigcap_{t \in V} B_t$ considered in the preceding paragraph. The set $\bigcup_{y \in Y} \{y\} \times U(y)$ is open in $Y \times C$, since its complement is equal to the image of the closed subset $\{(x, u) : |u(x) - h(x)| \geq \epsilon\}$ of $X \times C$ under the perfect map $f \times \text{id}_C : X \times C \to Y \times C$. Thus we can apply Theorem 2. In virtue of this theorem, there exists a continuous map $y \mapsto u_y$ from Y to C such that $u_y \in U(y) \setminus Z(y)$ for every $y \in Y$. The map $w : X \to I$ defined by $w(x) = u_{f(x)}(x)$ has the required properties: $w \in A_V$ and $|w(x) - h(x)| < \epsilon$ for every $x \in X$. Indeed, for every $y \in Y$ the map w coincides with u_y on the set $f^{-1}(y)$. Since $u_y \notin Z(y)$, it follows that $w[f^{-1}(y)] = u_y[f^{-1}(y)]$ does not contain V. Thus $w \in A_V$. Similarly, for every $x \in X$ we have $|w(x) - h(x)| = |u_{f(x)}(x) - h(x)| < \epsilon$, since $u_{f(x)} \in U(f(x))$. □

References

[1] D.F. Addis and J.H. Gresham, A class of infinite-dimensional spaces. Part I: Dimension theory and Alexandroff’s Problem, Fund. Math. 101 (1978), 195–205.
[2] A.N. Dranishnikov, V.V. Uspenskij, Light maps and extensional dimension, Topology Appl. 80 (1997), 61–99.
[3] R. Engelking, *Theory of dimensions: Finite and infinite*, Heldermann Verlag, Lemgo, 1995.
[4] J. van Mill, *Infinite-dimensional topology: Prerequisites and introduction*, North-Holland, Amsterdam et al., 1989.
[5] J. van Mill and G.M. Reed (eds.), *Open problems in topology*, North-Holland, Amsterdam et al., 1990.
[6] R. Pol, *Questions in dimension theory*, [5], pp. 279–291.
[7] V.V. Uspenskij, *A selection theorem for C-spaces*, Topology Appl. 85 (1998), 351–374.

321 Morton Hall, Department of Mathematics, Ohio University, Athens, Ohio 45701, USA

E-mail address: uspensk@bing.math.ohiou.edu, vvu@uspensky.ras.ru