13C hyperfine interactions in the nitrogen-vacancy centre in diamond

Benjamin Smeltzer\(^1\), Lilian Childress\(^1,4\) and Adam Gali\(^2,3\)

\(^1\)Department of Physics and Astronomy, Bates College, Lewiston, ME, USA
\(^2\)Research Institute for Solid State Physics and Optics, Hungarian Academy of Sciences, PO Box 49, H-1525 Budapest, Hungary
\(^3\)Department of Atomic Physics, Budapest University of Technology and Economics, Budafoki ut 8, H-1111 Budapest, Hungary

E-mail: lchildre@bates.edu

New Journal of Physics 13 (2011) 025021 (9pp)
Received 29 August 2010
Published 21 February 2011
Online at http://www.njp.org/
doi:10.1088/1367-2630/13/2/025021

Abstract. The electronic spin associated with the nitrogen-vacancy (NV) centre in diamond interacts with an environment formed by isotopic impurities and paramagnetic defects; the strength of these interactions depends on the location of each impurity relative to the NV centre. From the electron spin resonance spectra of individual NV centres we infer the possible values and signs of hyperfine splittings from nearby \(^{13}\)C nuclear spins at different lattice sites. Moreover, single-defect-centre nuclear magnetic resonance allows the examination of some of the inhomogeneities associated with the mesoscopic environment of NV–\(^{13}\)C systems. These measurements provide a check on *ab initio* calculations of electron spin density and have relevance for potential applications in nuclear spin quantum registers.

Interactions between the nitrogen-vacancy (NV) centre in diamond and proximal spins offer a fertile ground for studying the coherent dynamics of multi-spin systems \([1]–[4]\) and suggest potential implementations for quantum information processing schemes \([4]–[7]\). Moreover, the discrete lattice sites available to substitutional spin impurities such as \(^{13}\)C can be exploited to obtain information about the electronic spin density of the NV centre \([8, 9]\). While conventional ensemble electron paramagnetic resonance (EPR), electron–nuclear double resonance (ENDOR) and nuclear magnetic resonance (NMR) techniques can measure electron–nuclear spin interactions for the native \(^{14}\)N or \(^{15}\)N and a few strongly coupled \(^{13}\)C

\(^4\)Author to whom any correspondence should be addressed.
Figure 1. (a) The spin levels of the electronic ground state and optically excited state of the NV centre at room temperature [15, 16]. The excited state level anticrossing (ESLAC) near 510 G is indicated by a dashed oval. At the ESLAC, electron spin resonance (ESR) transitions are observed in the ground state with a resonance frequency of approximately 1.45 GHz. (b) The hyperfine levels within the ground state $m_s = 0$, $m_s = -1$ manifold. Levels are shown for an NV centre coupled to a 14N and 13C spin in the situation where the hyperfine splitting parameter for 13C is positive. At low magnetic fields, our measurements sample all possible configurations of the nuclear spins, leading to the hyperfine transitions (1)–(6). At the ESLAC, only the $m_I = +1$ 14N state is occupied, so only two hyperfine transitions (3) and (6) are visible.

lattice sites [10, 11], the sensitivity of such ensemble methods depends largely on defect concentrations; even under optimal measurement conditions they cannot resolve weakly coupled rare impurities. By contrast, single-defect measurements can detect weak hyperfine interactions with a resolution well below 1 MHz [3, 12, 13]. We therefore undertake a systematic study of the possible hyperfine interactions between single NV centres in diamond and individual 13C nuclear spins. These results may inform selection of 13C lattice sites for applications, provide a check on ab initio theory and guide the interpretation of data suggesting interactions between the NV centre and other paramagnetic impurities.

The NV centre in diamond is a spin triplet, its ground state (see figure 1(a)) showing optical spin polarization and spin-dependent fluorescence [14]. For high-purity type IIa diamond, the NV electronic spin interacts with the native nitrogen nuclear spin and a bath of 13C isotopic impurities that are distributed randomly in the diamond lattice with 1.1% probability. Each NV centre thus couples with a different mesoscopic environment, leading to distinct hyperfine structure and coherence properties. In particular, there is a discrete set of proximal lattice sites that will be probabilistically occupied by a 13C nuclear spin, leading to a discrete set of possible hyperfine splittings.

To study these hyperfine interactions, we isolate individual NV centres using a scanning confocal microscope (figure 2(c), inset). We record optically detected ESR spectra at two static magnetic field settings. Data shown in figure 2 include both pulsed spectra, taken by applying a microwave π pulse before optical illumination, and continuous-wave (CW) spectra, taken by simultaneous weak optical and weak microwave excitation. In both cases, we record fluorescence as a function of microwave frequency. For a 14NV centre and a proximal 13C, the
Figure 2. (a) A sample ESR spectrum showing coupling to both ^{14}N and ^{13}C nuclear spins. Transitions are labelled as in figure 1(b). Data are taken using a 1.0 μs pulse of microwaves with a Rabi frequency of approximately 0.5 MHz, and detuning is given around a central frequency of 2.83 GHz. The inset shows the same centre at the ESLAC, where 1.15 μs pulses of \approx0.4 MHz Rabi frequency near 1.455 GHz are used. (b) As for (a), but for a different proximal ^{13}C site. Low-field data are taken using 1.75 μs pulses of roughly 0.3 MHz Rabi frequency around a central frequency of 2.74 GHz, while the inset is taken under continuous optical and microwave excitation around 1.45 GHz. (c) Hyperfine splittings observed from a sample of roughly 300 NV centres at both low and high magnetic fields for 20 MHz > A_{hfs} > 2 MHz. Of the surveyed centres, we show the subset exhibiting clear coupling to a single ^{13}C. Error bars are 95% confidence statistical error in the fits. Letters indicate possible lattice sites (see figure 4). The inset represents a scanning confocal image of the type IIa CVD diamond sample (Sumitomo) showing individual NV centres. (d) Observed polarization at the ESLAC (x-axis) versus hyperfine splitting (y-axis). Polarization is calculated as the difference in fitted depth of two resonances divided by their sum; positive polarization corresponds to a positive hyperfine splitting in the ground state. Lorentzian fits are used for CW spectra, whereas Gaussian fits are used for pulsed spectra, but the two curves yield the same polarization within error.
resulting transitions are given by the Hamiltonian

\[H = \Delta S_z^2 + P (I_N^{(z)})^2 + B \cdot \left(g \mu_B S - \gamma_N I^{(N)} - \gamma I \right) + S \cdot \left(A_N \cdot I^{(N)} + A \cdot I \right), \]

where \(\Delta = 2.87 \text{ GHz} \) is the electronic zero-field splitting, \(P = -5 \text{ MHz} \) is the \(^{14}\text{N} \) quadrupole splitting and \(A_N \) (A) is the hyperfine tensor and \(\gamma_N \) (\(\gamma \)) is the gyromagnetic ratio for the \(^{14}\text{N} \) (\(^{13}\text{C} \)) nuclear spin \(I^{(N)} \) (I). The nitrogen hyperfine tensor \(A_N \) has been extracted from both ensemble [11] and single-NV [12, 13] measurements, and causes a splitting of \(-2.16 \text{ MHz} \) between ESR transition frequencies for different \(I_N^{(z)} \) projections. Although most NV centres will show only three hyperfine lines corresponding to the three \(^{14}\text{N} \) nuclear spin projections, those coupling strongly to a single \(^{13}\text{C} \) nuclear spin will have six possible transitions. The optically detected ESR spectrum at low magnetic field can thus show six lines (see figures 1(b), 2(a) and (b)) corresponding to all of the possible combined nuclear spin orientations that occur during the measurement.

The ESR hyperfine spectrum is sensitive to the change in \(^{13}\text{C} \) nuclear spin splitting caused by flipping the electronic spin from \(m_s = 0 \) to \(m_s = -1 \). Because the axis connecting the N and V in the crystal lattice (NV axis \(\parallel \hat{z} \) in equation (1)) provides a definite quantization axis for the electronic spin, we measure a specific combination of hyperfine tensor components. In the secular approximation, the \(^{13}\text{C} \) hyperfine splitting is \(A_{\text{hfs}} = \pm \sqrt{A_{xz}^2 + A_{yz}^2 + A_{z}^2} \) with a sign determined by the sign of \(A_{zz} \).

To determine low-field (\(<50 \text{ G} \parallel \hat{z} \)) hyperfine splittings, we fit the data to six Gaussians constrained to have equal splitting between the \(^{14}\text{N} \) lines, and extract the frequency difference between the two \(^{13}\text{C} \) manifolds (see figures 2(a) and (b)). The Gaussian profile is chosen because of rapid (\(~\text{a few } \mu\text{s} \)) dephasing of the electronic spin by its spin-bath environment, but no significant difference in extracted hyperfine splitting is observed by fitting to a square pulsed excitation or Lorentzian profiles. In an examination of roughly 300 NV centres, only certain discrete values for the hyperfine splitting were observed, corresponding to the possible discrete lattice sites for a nearby \(^{13}\text{C} \). Most NV centres show only \(^{14}\text{N} \) hyperfine structure; the data plotted in figure 2(c) are a representative subset of the surveyed centres observed to interact strongly with a single \(^{13}\text{C} \). We do not show the 130 MHz splitting of the nearest neighbour \(^{13}\text{C} \) lattice sites, as they have been well documented in the literature [1, 11]. In addition to NV centres strongly coupled to a single \(^{13}\text{C} \) nuclear spin, NV centres with multiple proximal \(^{13}\text{C} \) nuclear spins (not included in figure 2(c)) are observed with some regularity, and show the same discrete values of the hyperfine splittings.

We note that previous single-site \(^{13}\text{C} \) measurements have attempted to use electron spin echo envelope modulation (ESEEM) to extract a full hyperfine tensor for two NV centres; however, fits did not yield unique results [3]. Furthermore, inhomogeneity in hyperfine splittings observed for nominally identical NV–\(^{13}\text{C} \) configurations (see figure 3) undermines the value of the greater precision of ESEEM for establishing discrete values of \(A_{\text{hfs}} \). The hyperfine splittings we extract from ESR (a technique chosen to facilitate faster data acquisition) agree within error both with published ESEEM data [3] and with ESEEM data taken for a subset of the NV centres we study (data not shown).

Further information about the hyperfine interaction can be obtained by examining ESR spectra at the ESLAC (figure 1(a)). At a magnetic field near 510 G (oriented along the NV axis), hyperfine flip-flops and electronic spin polarization processes drive both \(^{14}\text{N} \) and \(^{13}\text{C} \) nuclear spins into the maximal spin projection along the excited state quantization axis [12, 15, 17].
Because the 14N hyperfine interaction is negative in the ground state [11], it polarizes into the highest frequency ESR line; the nearly full polarization of the 14N indicates that its quantization axis is parallel to the NV axis in both the ground and excited states (as expected by symmetry).

Different 13C lattice sites will show different (and generally anisotropic) interactions with the NV spin, leading to different 13C polarization properties at the ESLAC. In figure 2(a), polarization into the lowest frequency line allows us to deduce that the hyperfine splitting for this 13C lattice site must be positive, and a relatively high polarization suggests that the quantization axis for the 13C is nearly commensurate with the NV axis in both the ground state and excited state $m_s = -1$ manifolds (as would be expected for e.g. a predominantly contact interaction). In figure 2(b), the opposite situation occurs: while nearly full polarization is observed, the sign is reversed, indicating that the lattice site for this 13C nuclear spin likely coincides with a region of negative NV spin density [9]. While the hyperfine splittings observed at low and high fields mostly agree, some lattice sites (e.g. ~ 4 MHz) show a slightly different splitting at the ESLAC. This may arise from a finite angle between the NV axis and the nuclear spin quantization axis in the $m_s = -1$ electronic spin manifold. Polarization at the ESLAC for different 13C hyperfine splittings is shown in figure 2(d).

The imprecision in ESR data—limited by electronic spin dephasing—makes it difficult to deduce the level of inhomogeneity among NV centres coupled to nominally the same 13C lattice site. While ESEEM provides a more precise tool (limited by electronic spin T2), direct nuclear magnetic resonance (NMR, limited by nuclear spin dephasing) is even less sensitive to environmental noise. Moreover, it provides an additional check that the splittings we observe do arise from 13C interactions. To investigate the degree of homogeneity among hyperfine splittings, we perform NMR within the $m_s = -1$ manifold on 13C–NV pairs all with a nominal hyperfine splitting of 13.7 MHz. NMR measurements begin by polarizing the electronic and nuclear spins using optical excitation at the ESLAC; after driving NMR transitions within the $m_s = -1$ manifold, we map the nuclear spin state onto the electronic spin state with a
π pulse, enabling optical detection of nuclear spin transitions [12]. The NMR frequency (f_{NMR}) is found by fitting to a square pulse profile; because it includes both the hyperfine and Zeeman terms in the nuclear spin Hamiltonian, f_{NMR} is ~ 500 kHz larger than A_{hfs} at the ESLAC (see figure 3(a)), consistent with the positive A_{zz} deduced from polarization data for the 13.7 MHz 13C spins. Because f_{NMR} includes Zeeman terms, we constrain systematic error from drift in B_z by measuring the ESR frequency for a reference NV before and after each data set. The inhomogeneity observed in f_{NMR} is outside the statistical and systematic magnetic field drift error, indicating that local paramagnetic defects or other local effects may shift the nuclear spin levels for different NV centres.

The coherence properties of nominally identical NV–13C systems also show inhomogeneity. Focusing on the 13.7 MHz 13C lattice sites, we study the 13C nuclear spin dephasing times (Ramsey fringe decay) within the $m_s = -1$ manifold and compare them to the electronic spin dephasing times for the same NV centre (see figure 3(b)). Data taken for two other lattice sites are included, as noted in the legend, and all data are taken at the ESLAC. Magnetic field drift is an important factor in accurate coherence measurements, which can require days of averaging for a single data point. We monitor the ESR frequency at 15 min intervals during experiments and shift the ESR and/or NMR detuning to compensate for any observed drift in B_z. Assuming slow magnetic field drift, the uncertainty in our ESR (NMR) resonant frequency is thus reduced to ~ 0.15 MHz (0.06 kHz), so the electronic and nuclear spin dephasing times we measure are primarily limited by intrinsic fluctuations. To further guard against systematic error, we take electronic and nuclear spin data for a given centre on different days. Overall, the trend in figure 3(b) indicates that the same inhomogeneities affect both the electronic and nuclear spin dephasing rates. The outlier in our data set may indicate that electronic and nuclear spins couple differently to the mesoscopic bath, but could also be accounted for by unmeasured rapid external magnetic field fluctuations. Quantitative examination of the degree to which electronic and nuclear spins couple to the same mesoscopic environment is an intriguing avenue for future research.

Beyond documenting the strength of hyperfine interactions between different 13C lattice sites and individual NV centres, these measurements have implications for other areas of research in NV diamond. In particular, the observed discrete hyperfine splittings provide data against which calculations of the NV ground state spin density [8, 9] can be compared. Using a recent ab initio model [18], we carried out all-electron plane wave supercell density functional calculations on a 512-atom defective supercell with PBE functional [19] to calculate the hyperfine tensors of the NV centre. Predicted and measured hyperfine splittings (and signs) are shown in table 1, along with the distance from the vacancy to the lattice site used to obtain the theoretical prediction. Close agreement allows identification of the lattice site associated with each 13C impurity (see table 1, figure 4).

The agreement between theory and experiment motivates using the calculated electronic spin density to predict useful properties of 13C nuclear spins. For example, none of the 13C nuclear spins we observe sit on a lattice site along the NV axis. Such axial sites would share the symmetry of the NV defect, and yield hyperfine interactions that preserve the quantization axis of the nuclear spin (provided $\mathbf{B} \parallel \hat{z}$) regardless of the orbital or spin configuration of the NV defect. The symmetry of the nitrogen nuclear spin has already been exploited to enable single-shot spin readout at room temperature [20], and a second axial spin could expand this capability. Ab initio calculations indicate that the most strongly coupled axial 13C lattice site has a very small hyperfine splitting (~ 0.15 MHz), weaker than nearly 200 lattice sites in the vicinity of
Table 1. Observed hyperfine splittings (A_{hfs}) at low magnetic field and 510 G, NMR resonance frequencies (f_{NMR}), and polarization (P), compared to results from ab initio theory. All frequencies are given in MHz. Numbers in parentheses give error in the last digit: one standard deviation in the fit (single experimental data points), scatter (multiple data points), or maximal deviation among nominally identical 13C lattice sites (theory); numbers in square brackets indicate the number of NV centres for which experimental data were included. For \sim4 and \sim2 MHz data, two lattice sites are possible; calculated splittings for both are provided.

Lattice site	Distance to site (Å)	A_{hfs} theory	Sites	A_{hfs} < 50 G (ESLAC)	A_{hfs} (ESLAC)	Polarization (ESLAC)	f_{NMR} (ESLAC)
A	3.89	14.8(1)	6	13.72(3) [4]	13.74(8) [6]	0.72(6) [6]	14.202(6) [5]
B	3.90	13.9 (1)	3	12.78(1) [3]	12.75(1) [3]	0.69(7) [3]	13.289(2) [2]
C	2.52	$-7.5(1)$	3	$-8.92(3)$ [3]	$-8.6(3)$ [2]	$-0.7(2)$ [2]	
D	2.50	$-5.7(2)$	6	$-6.52(4)$ [5]	$-6.46(3)$ [4]	$-0.80(7)$ [4]	5.997(2) [1]
E, F	2.93, 2.96	4.6(1), 4.67(4)	6	4.2(1) [5]	4.15(3) [4]	0.2(2) [4]	4.719(2) [1]
G, H	5.05, 5.05	2.63(7), 2.27(4)	6, 3	2.4(3) [5]	2.60(4) [3]	0.29(6) [3]	

Figure 4. Two views of the geometry of the NV defect, with lattice sites for proximal 13C nuclear spins labelled as in table 1. The nitrogen is labelled ‘N’, whereas sites labelled ‘0’ are the nearest neighbours to the vacancy (A_{hfs} = 130 MHz).

the NV. Nevertheless, for natural isotopic abundance diamond, where a fraction $\epsilon = 0.011$ of lattice sites are occupied by 13C, roughly $\epsilon(1 - \epsilon)^{200}$ or 1 in 10^3 NV centres would be most strongly coupled to an axial 13C; finding one may thus be possible with automated search routines.

In addition to verifying ab initio spin density calculations, knowledge of the set of hyperfine splittings and polarization behaviours also provides critical information for interpreting ESR spectra for NV centres coupled to other systems. In particular, experiments examining NV interactions with other systems must be careful to distinguish the coupling of interest from
effects of 13C nuclei. For example, some of the data illustrated in figure 2 closely resemble observations interpreted as evidence of coupling between an NV and an electronic spin associated with a substitutional nitrogen impurity [2, 21]; 13C interactions may provide an alternative explanation. A lookup table of known 13C splittings and polarization behaviour thus provides an important check for discerning novel interactions.

Finally, we note that some of the methods we use may also prove applicable to other defect centres. Defects such as vacancy-related centres in silicon carbide (SiC) can show optically detected magnetic resonance (ODMR) and optical electronic spin polarization [22, 23] that should enable single-defect hyperfine measurements. Theoretical studies indicate (with partial support of photo-EPR studies) that the divacancy (two adjacent vacancies) in SiC is a very promising alternative for realizing solid state qubits [24]–[26]. For the Si-vacancy, it has already been demonstrated that polarization could be transferred to isotopic impurity nuclei by tuning to the appropriate magnetic field strength for the $S = 3/2$ electronic spin state [22, 23, 27].

In summary, we provide a systematic survey of NV hyperfine splittings associated with 13C isotopic impurity nuclear spins in diamond. Our results offer confirmation of ab initio theory for the ground state electronic spin density, and highlight inhomogeneities even between nominally identical configurations. Ultimately, greater understanding of NV–13C interactions may have relevance for applications in quantum information technology [5] and inform our understanding of the mesoscopic spin-bath environment in diamond [28].

Acknowledgments

The authors thank Fedor Jelezko for bringing the question of axial lattice sites to our attention and Amrita Roy and Janith Rupasinghe for occasional experimental help. The experimental research (BS and LC) was supported by a grant from Research Corporation and by funds provided by Bates College. AG acknowledges support from the Hungarian OTKA grant K-67886, the János Bolyai programme of the Hungarian Academy of Sciences and the NHDP TÁMOP-4.2.1/B-09/1/KMR-2010-0002 programme.

References

[1] Jelezko F, Gaebel T, Popa I, Domhan M, Gruber A and Wrachtrup J 2004 Observation of coherent oscillation of a single nuclear spin and realization of a two-qubit conditional quantum gate Phys. Rev. Lett. 93 130501
[2] Gaebel T et al 2006 Room-temperature coherent coupling of single spins in diamond Nat. Phys. 2 408–13
[3] Childress L, Gurudev Dutt M V, Taylor J M, Zibrov A S, Jelezko F, Wrachtrup J, Hemmer P R and Lukin M D 2006 Coherent dynamics of coupled electron and nuclear spin qubits in diamond Science 314 281–5
[4] Neumann P 2010 Quantum register based on coupled electron spins in a room-temperature solid Nat. Phys. 6 249
[5] Gurudev Dutt M V, Childress L, Jiang L, Togan E, Maze J, Jelezko F, Zibrov A S, Hemmer P R and Lukin M D 2007 Quantum register based on individual electronic and nuclear spin qubits in diamond Science 316 1312–6
[6] Neumann P, Mizuochi N, Rempp F, Hemmer P, Watanabe H, Yamasaki S, Jacques V, Gaebel T, Jelezko F and Wrachtrup J 2008 Multiparticle entanglement among single spins in diamond Science 320 1326–9
[7] Cappellaro P, Jiang L, Hodges J S and Lukin M D 2009 Coherence and control of quantum registers based on electronic spin in a nuclear spin bath Phys. Rev. Lett. 102 210502
[8] Gali A, Fyta M and Kaxiras E 2008 Ab initio supercell calculations on nitrogen-vacancy center in diamond: electronic structure and hyperfine tensors Phys. Rev. B 77 155206

New Journal of Physics 13 (2011) 025021 (http://www.njp.org/)
[9] Gali A 2009 Identification of individual c-13 isotopes of nitrogen-vacancy center in diamond by combining the polarization studies of nuclear spins and first-principles calculations Phys. Rev. B 80 241204
[10] He X F, Manson N B and Fisk P T H 1993 Paramagnetic resonance of photoexcited N-V defect in diamond. II: Hyperfine interaction with the N-14 nucleus Phys. Rev. B 47 8816–22
[11] Felton S, Edmonds A M, Newton M E, Martineau P M, Fisher D, Twitchen D J and Baker J M 2009 Hyperfine interaction in the ground state of the negatively charged nitrogen vacancy center in diamond Phys. Rev. B 79 075203
[12] Smeltzer B, McIntyre J and Childress L 2009 Robust control of individual nuclear spins in diamond Phys. Rev. A 80 050302
[13] Steiner M, Neumann P, Beck J, Jelezko F and Wrachtrup J 2010 Universal enhancement of the optical readout fidelity of single electron spins at nitrogen-vacancy centers in diamond Phys. Rev. B 81 035205
[14] Manson N B, Harrison J P and Sellars M J 2006 Nitrogen-vacancy center in diamond: model of the electronic structure and associated dynamics Phys. Rev. B 74 104303
[15] Fuchs G D, Dobrovitski V V, Hanson R, Batra A, Weis C D, Schenkel T and Awschalom D D 2008 Excited-state spectroscopy using single spin manipulation in diamond Phys. Rev. Lett. 101 117601
[16] Rogers L J, McMurtrie R L, Sellars M J and Manson N B 2009 Time-averaging within the excited state of the nitrogen-vacancy centre in diamond New J. Phys. 11 063007
[17] Jacques V, Neumann P, Beck J, Markham M, Twitchen D, Meijer J, Kaiser F, Balasubramanian G, Jelezko F and Wrachtrup J 2009 Dynamic polarization of single nuclear spins by optical pumping of nitrogen-vacancy color centers in diamond at room temperature Phys. Rev. Lett. 102 057403
[18] Gali A, Janzen E, Deak P, Kresse G and Kaxiras E 2009 Theory of spin-conserving excitation of the N-V-center in diamond Phys. Rev. Lett. 103 186404
[19] Perdew J P, Burke K and Ernzerhof M 1996 Generalized gradient approximation made simple Phys. Rev. Lett. 77 3865
[20] Neumann P, Beck J, Steiner M, Rempp F, Fedder H, Hemmer P R, Wrachtrup J and Jelezko F 2010 Single-shot readout of a single nuclear spin Science 329 542
[21] Hanson R, Gywat O and Awschalom D D 2006 Room-temperature manipulation and decoherence of a single spin in diamond Phys. Rev. B 74 161203
[22] Orlinski S B, Schmidt J, Mokhov E N and Baranov P G 2003 Silicon and carbon vacancies in neutron-irradiated SiC: a high-field electron paramagnetic resonance study Phys. Rev. B 67 125207
[23] Baranov P G, Bundakova A P, Borovykh I V, Orlinskii S B, Zondervan R and Schmidt J 2007 Spin polarization induced by optical and microwave resonance radiation in a Si vacancy in SiC: a promising subject for the spectroscopy of single defects JETP Lett. 86 202–6
[24] Son N T et al 2006 Divacancy in 4H-SiC Phys. Rev. Lett. 96 055501
[25] Gali A, Gällströms A, Son N T and Janzén E 2010 Theory of neutral divacancy in SiC: a defect for spintronics Mater. Sci. Forum 645–648 395–7
[26] Gali A 2010 Time-dependent density functional study on the excitation spectrum of point defects in semiconductors Phys. Status Solidi B doi:10.1002/pssb.201046254
[27] Janzén E, Gali A, Carlsson P, Gällström A, Magnusson B and Son N T 2009 The silicon vacancy in SiC Physica B 404 4354–8
[28] Maze J R, Taylor J M and Lukin M D 2008 Electron spin decoherence of single nitrogen-vacancy defects in diamond Phys. Rev. B 78 094303