CONTINUOUS LOCATION UNDER REFRACTION

VÍCTOR BLANCO, JUSTO PUERTO, AND DIEGO PONCE

Abstract. In this paper we address the problem of locating a new facility on a d-dimensional space when the distance measure (ℓ_p- or polyhedral-norms) is different at each one of the sides of a given hyperplane H. We relate this problem with the physical phenomenon of refraction, and extends it to any finite dimension space and different distances at each one of the sides of any hyperplane. An application to this problem is the location of a facility within or outside an urban area where different distance measures must be used. We provide a new second order cone programming formulation, based on the ℓ_p-norm representation given in [3] that allows to solve, exactly, the problem in any finite dimension space with semidefinite programming tools.

We also extend the problem to the case where the hyperplane is considered as a rapid transit media (a different third norm is also considered over H) that allows the demand to travel faster through H to reach the new facility. Extensive computational experiments run in Gurobi are reported in order to show the effectiveness of the approach.

1. Introduction

In the literature of transportation research it is frequent to address routing or distribution problems where the movement between points is modeled by the combination of different transportation modes, as for instance a standard displacement combined with several high speed lines. Similar approaches have been also applied in some location problems [5] considering that movements can be performed in a continuous framework or taking advantage of a rapid transit line modeled by an embedded network; and different applications of these models are mentioned in the location literature. For instance, the location of a facility within or outside an urban area where, due to the layout of the streets within the city boundary, the movement is slow, while outside this boundary in the rural area movement is fast. Another possible application, mentioned by Brimberg et. al [5] could be in a region where, due to the configuration of natural barriers or borders, there is a distinct change in the orientation of the transportation network, as for instance in the southern area of Ontario.

Location problems are among the most important applications of Operation Research. Continuous location problems appear very often in economic models of distribution or logistics, in statistics when one tries to find an estimator from a data set or in pure optimization problems where one looks for the optimizer of a certain function. For a comprehensive overview of Location Theory, the reader is referred to [9] or [15]. Most of the papers in the literature devoted to continuous facility location consider that the decision space is \mathbb{R}^d, endowed with a unique distance. We consider here the problem where \mathbb{R}^d is split by a hyperplane $H = \{ x \in \mathbb{R}^d : \alpha^T x = \beta \}$ for some $\alpha \in \mathbb{R}^d$ and $\beta \in \mathbb{R}$, into two regions H_A and H_B, with sets of demand points A and B, respectively. Each one of these regions is endowed with a (possibly different) norm $\| \cdot \|_{PA}$ and $\| \cdot \|_{PB}$, respectively, to measure the distance within the corresponding halfspace. For the ease of presentation we will restrict ourselves to consider that the involved norms are ℓ_p, $p > 1$, or polyhedral. Therefore, we deal with the problem of finding the location of a new facility such that the overall sum of the weighted distances from the demand points is minimized. This setting induces a transportation pattern where, in each side of the hyperplane, the motion goes at a different speed. This problem is not new and we can find antecedents in the literature in the papers by Parlar [17], Brimberg et. al [5, 6], Fathaly [13], among others, and it can be seen as a natural generalization of the classical Weber’s problem (see [12]). Note that the distances between two points, depending of the region where they are located, may measured with different norms. Hence, the distance between two points x and y is $\| x - y \|_{PA}$ (resp. $\| x - y \|_{PB}$) if they belong to H_A (resp. to H_B), or the length...
of the shortest weighted path between them otherwise. Related problems have been analyzed in \[2, 4, 7, 19, 20\], among others. In order to address this location problem, first we have to solve the question of computing the shortest path between points in different regions since our goal is to optimize a globalizing function of the length of those paths. We note in passing that some partial answers in the plane and particular choices of distances can be found in \[14\].

This problem is closely related with the physical phenomenon of *refraction*. Refraction describes the process that occurs when the light changes of medium, and then the phase velocity of a wave is changed. This effect is also observed when sound waves pass from one medium into another, when water waves move into water of a different depth or, as in our case, when a traveler moves between opposite sides of the separating hyperplane. Snell’s law states that for a given pair of media and a planar wave with a single frequency, there is a ratio relationship between the sines of the angle of incidence θ_A and the angle of refraction θ_B and the indices of refraction n_A and n_B of the media: $n_A \sin \theta_A - n_B \sin \theta_B = 0$ (see Fig. 1). This law is based on Fermat’s principle that states that the path followed by a light ray between two points is the one that takes the least time. As a by-product of the results in this paper, we shall find an extension of this law that also applies to transportation problems when more than one transportation mode is present in the model.

Our goal in this paper is to design an approach to solve the above mentioned family of location problems, for any combination of norms and in any dimension. Moreover, we show an explicit formulation of these problems as second order cone programming (SOCP) problems (see \[1\] for further details) which enables the usage of standard commercial solvers to solve them.

![Figure 1. Illustration of Snell’s law on the plane.](image)

The paper is organized in 6 sections. In Section 2 we analyze the problem of computing shortest paths between pairs of points separated by a hyperplane H when the distance measure is different in each one of the halfspaces defined by H. We characterize the crossing (gate) points where such a path intersects the hyperplane, generalizing the well-known refraction principle (Snell’s Law) for any dimension and any combination of ℓ_p-norms. Section 3 analyzes location problems with distance measures induced by the above shortest paths. We provide a compact mixed-integer second order cone formulation for this problem and a transformation of that formulation into two continuous SOCP problems. In Section 4 the problem is extended to the case where the hyperplane is endowed with a third norm and thus, it can be used to reduce the length of the shortest paths between regions. Section 5 is devoted to the computational experiments. We report results for different instances. We begin comparing our approach for the first model, with those presented (in dimension 2 and for ℓ_1- and ℓ_2-norms) in \[17\] and \[21\] by using the data sets given there; then we test our methodology using the 50-points data set in \[11\] (for dimension 2 and different combinations of ℓ_p-norms, both for the first and the second model); and finally we run a randomly generated set of larger instances (5000, 10000 and 50000 demand points) for different dimension (2, 3 and 5) and different combinations of ℓ_p-norms. The paper ends, in Section 6, with some conclusions and an outlook for further research.
2. Shortest paths between points separated by a hyperplane

Let us assume that \(\mathbb{R}^d \) is endowed with two \(\ell_{p_i} \)-norms each one in the corresponding halfspace \(H_i, i \in \{A, B\} \) induced by the hyperplane \(H = \{x \in \mathbb{R}^d : \alpha^t x = \beta\} \). Let us write \(\alpha^t = (\alpha_1, ... , \alpha_d) \) and assume further that \(p_i = r_i/s_i \) with \(r_i, s_i \in \mathbb{N} \setminus \{0\} \) and \(\text{gcd}(r_i, s_i) = 1, i \in \{A, B\} \).

We are given two points \(a, b \in \mathbb{R}^d \) such that \(\alpha^t a < \beta \) and \(\alpha^t b > \beta \), with weights \(\omega_a, \omega_b \) respectively and a generic (but fixed) point \(x^* = (x_1^*, ... , x_d^*)^t \) such that \(\alpha^t x^* = \beta \).

The following result characterizes the point \(x^* \) that provides the shortest weighted path between \(a \) with weight \(\omega_a \) and \(b \) with weight \(\omega_b \) using their corresponding norms in each side of \(H \).

Lemma 1. If \(1 < p_A, p_B < +\infty \), the length \(d_{p_A p_B}(a, b) \) of the shortest weighted path between \(a \) and \(b \) is

\[
d_{p_A p_B}(a, b) = \omega_a \|x^* - a\|_{p_A} + \omega_b \|x^* - b\|_{p_B},
\]

where \(x^* = (x_1^*, ... , x_d^*)^t \), \(\alpha^t x^* = \beta \) must satisfy the following conditions:

1. For all \(j \) such that \(\alpha_j = 0 \):
 \[
 \omega_a \left[\frac{|x_j^* - a_j|}{\|x^* - a\|_{p_A}} \right]^{p_A-1} \text{sign}(x_j^* - a_j) + \omega_b \left[\frac{|x_j^* - b_j|}{\|x^* - b\|_{p_B}} \right]^{p_B-1} \text{sign}(x_j^* - b_j) = 0.
 \]

2. For all \(i, j \) such that \(\alpha_i \alpha_j \neq 0 \),
 \[
 \omega_a \left[\frac{|x_i^* - a_i|}{\|x^* - a\|_{p_A}} \right]^{p_A-1} \frac{\text{sign}(x_i^* - a_j)}{\alpha_i} + \omega_b \left[\frac{|x_i^* - b_i|}{\|x^* - b\|_{p_B}} \right]^{p_B-1} \frac{\text{sign}(x_i^* - b_j)}{\alpha_j} = 0.
 \]

Proof. Computing \(d_{p_A p_B}(a, b) \) reduces to solving the following problem:

\[
\min_{x: \alpha^t x = \beta} \omega_a \|x - a\|_{p_A} + \omega_b \|x - b\|_{p_B}.
\]

The above problem is a convex minimization problem with a linear constraint. Consider the Lagrangian function \(L(x, \lambda) = \omega_a \|x - a\|_{p_A} + \omega_b \|x - b\|_{p_B} + \lambda(\alpha^t x - \beta) \). Then necessary and sufficient optimality conditions read as:

\[
\omega_a \left[\frac{|x_j - a_j|}{\|x - a\|_{p_A}} \right]^{p_A-1} \text{sign}(x_j - a_j) + \omega_b \left[\frac{|x_j - b_j|}{\|x - b\|_{p_B}} \right]^{p_B-1} \text{sign}(x_j - b_j) = \lambda a_j = 0, \quad j = 1, \ldots d
\]

\[
\alpha^t x - \beta = 0.
\]

First of all, if \(\alpha_j = 0 \) we obtain condition \(1 \) from the first set of equations. Next, if \(\lambda \alpha_j \neq 0 \) the above system gives rise to condition \(2 \).

\[\square \]

In the case where one of the two norms involved is not strict, i.e. \(p_A \) or \(p_B \in \{1, \infty\} \) there are non-differentiable points besides the origin and the optimality condition is obtained using subdifferential calculus. Denote by \(\partial f(x) \) the subdifferential set of \(f \) at \(x \).

Lemma 2. If \(p_A = +\infty \) or \(p_B = 1 \), the length \(d_{p_A p_B}(a, b) \) of the shortest weighted path between \(a \) and \(b \) is

\[
d_{p_A p_B}(a, b) = \omega_a \|x^* - a\|_{p_A} + \omega_b \|x^* - b\|_{p_B},
\]

where \(x^* = (x_1^*, ... , x_d^*)^t \), \(\alpha^t x^* = \beta \) must satisfy:

\[
\lambda \alpha \in \omega_a \partial \|x^* - a\|_{p_A} + \omega_b \partial \|x^* - b\|_{p_B}, \quad \text{for some } \lambda \in \mathbb{R}.
\]

We note in passing that the optimality condition in Lemma 2 gives rise, whenever \(p_A \) or \(p_B \) are specified, to usable expressions. In particular, if both \(p_A \) and \(p_B \in \{1, +\infty\} \) the resulting problem is linear and the condition is very easy to handle. Lemmas 1 and 2 extend the results in [14] to the case of general norms and any finite dimension greater than 2.

Next consider the following embedding of \(x \in \mathbb{R}^d \rightarrow (x, \alpha^t x - \beta) \in \mathbb{R}^{d+1} \). Take any point \(x^* \) such that \(\alpha^t x^* = \beta \). Clearly, \(a, x^* \) map to \((a, \alpha^t a - \beta), (x^*, 0)\), respectively. Then, let us denote by \(\gamma_\alpha \) the angle between the vectors \((a - x^*, 0)\) and \((a - x^*, \alpha^t a - \beta)\). Now, we can interpret \(|\alpha^t a - \beta| \)
as a generalized sine of the angle γ_a (see Fig. 2). The reader may note that in general this ratio is not a trigonometric function, unless $p_i = 2$, $i \in \{A, B\}$. This way we define by abusing of notation

$$\sin_{p_A} \gamma_a = \frac{|\alpha^i a - \beta|}{\|a - x^*\|_{p_A}} \quad (\text{analogously } \sin_{p_B} \gamma_b = \frac{|\alpha^i b - \beta|}{\|b - x^*\|_{p_B}}).$$

The above expression can be expressed by components, namely:

$$\sin_{p_A} \gamma_a = \left| \sum_{j=1}^{d} \frac{\alpha_j a_j - \alpha_j x^*_j}{\|a - x^*\|_{p_A}} \right|,$$

(observe that $\alpha^i x^* = \beta$).

Finally, by similarity we shall denote the non-negative value of each component in the previous sum as

$$\sin_{p_A} \gamma_a := \frac{|\alpha_j a_j - \alpha_j x^*_j|}{\|a - x^*\|_{p_A}}, \ j = 1, \ldots, d.$$

With the above convention we can state a result that extend the well-known Snell’s Law to this framework. It relates the gate point x^* in the hyperplane $\alpha^i x = \beta$ between two points a and b in terms of the generalized sine $(\ref{generalized_sine})$ of the angles γ_a and γ_b.

Figure 2. Illustrative example of the generalized sines.

Corollary 3 (Snell’s-like result). The point x^*, $x^* = (x^*_1, \ldots, x^*_d)^t$, $\alpha^i x^* = \beta$ that defines the shortest weighted path between a and b is determined by the following necessary and sufficient conditions:

1. For all j such that $\alpha_j = 0$:
 $$\omega_a \left[\frac{|x^*_j - a_j|}{\|x^* - a\|_{p_A}} \right]^{p_A-1} \text{sign}(x^*_j - a_j) + \omega_b \left[\frac{|x^*_j - b_j|}{\|x^* - b\|_{p_B}} \right]^{p_B-1} \text{sign}(x^*_j - b_j) = 0.$$

2. For all i, j, $\alpha_i \alpha_j \neq 0$:
 $$\omega_a \left[\frac{\sin_{p_A} \gamma_a}{\|a\|} \right]^{p_A-1} \frac{\text{sign}(x^*_i - a_i)}{\alpha_i} \omega_b \left[\frac{\sin_{p_B} \gamma_b}{\|b\|} \right]^{p_B-1} \frac{\text{sign}(x^*_i - b_i)}{\alpha_i} +$$
 $$\omega_a \left[\frac{\sin_{p_A} \gamma_a}{\|a\|} \right]^{p_A-1} \frac{\text{sign}(x^*_j - a_j)}{\alpha_j} \omega_b \left[\frac{\sin_{p_B} \gamma_b}{\|b\|} \right]^{p_B-1} \frac{\text{sign}(x^*_j - b_j)}{\alpha_j} = 0.$$

Corollary 4 (Snell’s Law). If $d = 2$, $p_A = p_B = 2$ and $H = \{(x_1, x_2) \in \mathbb{R}^2 : \alpha_1 x_1 + \alpha_2 x_2 = \beta \}$ with $\alpha_1, \alpha_2, \beta \in \mathbb{R}$, the point x^* satisfies that

$$\omega_a \sin \theta_a = \omega_b \sin \theta_b,$$

where θ_a and θ_b are: 1) if $\alpha_1 \leq \alpha_2$, the angles between the vectors $a - x^*$ and $(-\alpha_2, \alpha_1)^t$, and $b - x^*$ and $(\alpha_2, -\alpha_1)^t$, or 2) if $\alpha_1 > \alpha_2$, the angles between the vectors $a - x^*$ and $(\alpha_2, -\alpha_1)^t$, and $b - x^*$ and $(-\alpha_2, \alpha_1)^t$.

Proof. Since for $p = 2$ the ℓ_2-norm is isotropic, we can assume w.l.o.g. that the separating line is $x_2 = 0$. Thus, after a change of variable x^* can be taken as the origin of coordinates and $a = (a_1, a_2)$ such that $a_1 \geq 0$, $a_2 < 0$, $b = (b_1, b_2)$ such that $b_1 \leq 0$, $b_2 > 0$.

Next, the optimality condition using Lemma 1 is \(\omega_\alpha \frac{|a_1|}{\|a\|_2} - \omega_\beta \frac{|b_1|}{\|b\|_2} = 0 \). The result follows since \(\sin \theta_a = \frac{|a_1|}{\|a\|_2} \) and \(\sin \theta_b = \frac{|b_1|}{\|b\|_2} \).

\[\square \]

3. Location Problems with Demand Points in Two Media Separated by a Hyperplane

In this section we analyze the problem of locating a new facility to serve a set of given demand points which are classified into two classes, based on a separating hyperplane. The peculiarity of the model is that different norms to measure distances may be considered within each one of the halfspaces induced by the hyperplane.

Let \(A \) and \(B \) be two finite sets of given demand points in \(\mathbb{R}^d \), and \(\omega_a \) and \(\omega_b \) be the weights of the demand points \(a \in A \) and \(b \in B \), respectively. Consider \(H = \{ x \in \mathbb{R}^d : \alpha^t x = \beta \} \) to be the separating hyperplane in \(\mathbb{R}^d \) with \(\alpha \in \mathbb{R}^d \) and \(\beta \in \mathbb{R} \), and

\[H_A = \{ x \in \mathbb{R}^d : \alpha^t x \leq \beta \}, \quad H_B = \{ x \in \mathbb{R}^d : \alpha^t x > \beta \}. \]

We assume that \(\mathbb{R}^d \) is endowed with a mixed norm such that the distance measure in \(H_A \) is induced by a norm \(\| \cdot \|_{\alpha} \), the distance measure in \(H_B \) is induced by the norm \(\| \cdot \|_{\beta} \) and \(p_A \geq p_B \). We assume further that \(p_i = r_i/s_i \), with \(r_i, s_i \in \mathbb{N} \setminus \{0\} \) and \(\gcd(r_i, s_i) = 1 \), \(i \in \{ A, B \} \). We observe that the hypothesis that \(p_A \geq p_B \) ensures that the two media induce movements at different speed and that it is always faster to move within \(H_A \).

The goal is to find the location of a single new facility in \(\mathbb{R}^d \) so that the sum of the distances from the demand points to the new facility is minimized. The problem can be stated as:

\[
(P) \quad f^* := \inf_{x \in \mathbb{R}^d} \sum_{a \in A} \omega_a \, d_{p_A,p_B}(x,a) + \sum_{b \in B} \omega_b \, d_{p_A,p_B}(x,b)
\]

where for two points \(x, y \in \mathbb{R}^d \), \(d_{p_A,p_B}(x,y) \) is the length of the shortest path between \(x \) and \(y \), as determined by lemmas 1 and 2.

Note that the shortest paths can be explicitly described by distinguishing whether the new location is in \(H_A \) or \(H_B \). Let \(x \in \mathbb{R}^d \), then:

\[
d_{p_A,p_B}(x,a) = \begin{cases} \min \| x - a \|_{p_A} & \text{if } x \in H_A, \\ \| y - a \|_{p_A} + \| x - y \|_{p_B} & \text{if } x \in H_B, \end{cases}
\]

and

\[
d_{p_A,p_B}(x,b) = \begin{cases} \min \| x - b \|_{p_A} & \text{if } x \in H_B, \\ \| y - b \|_{p_B} + \| x - y \|_{p_A} & \text{if } x \in H_A. \end{cases}
\]

Theorem 5. Assume that \(\min\{|A|,|B|\} > 2 \). If the points in \(A \) or \(B \) are not collinear and \(p_A < +\infty \), \(p_B > 1 \) then Problem (P) always has a unique optimal solution.

Proof. Let us define the function \(f(x,y) : \mathbb{R}^d \times (|A|+|B|)^d \to \mathbb{R} \) as:

\[
f(x,y) = \begin{cases} f\le(x,y) := \sum_{a \in A} \omega_a \| x - a \|_{p_A} + \sum_{b \in B} \omega_b \| x - y \|_{p_B} & \text{if } \alpha^t x \leq \beta \\ f> (x,y) := \sum_{a \in A} \omega_a \| y_a - a \|_{p_A} + \sum_{a \in A} \omega_a \| x - y \|_{p_A} + \sum_{b \in B} \omega_b \| x - b \|_{p_B} & \text{if } \alpha^t x > \beta. \end{cases}
\]

It is clear that

\[
f^* = \min \{ \inf_{\alpha^t x \leq \beta, \alpha^t y = \beta, \forall b \in B} f\le(x,y), \quad \inf_{\alpha^t x > \beta, \alpha^t y = \beta, \forall a \in A} f> (x,y) \}. \]

We observe that both functions, namely \(f\le \) and \(f> \) are continuous and coercive. This implies that \(\inf_{\alpha^t x \leq \beta, \alpha^t y = \beta, \forall b \in B} f\le(x,y) \) is attained since the domain is closed and bounded from below. Thus a solution for this subproblem always exists. Moreover, we prove that \(f\le \) is strictly convex which in turn implies that the solution of the first subproblem (SP\(\leq \)) is unique.
Indeed, let \((x, y), (x', y')\) be two points in the domain of \(f_{\leq}\) and \(0 < \lambda < 1\).

\[
f_{\leq}(\lambda x + (1 - \lambda)x', \lambda y + (1 - \lambda)y') = \sum_{a \in A} \omega_a \|\lambda x + (1 - \lambda)x' - a\|_{p_A}
+ \sum_{b \in B} \omega_b \|\lambda x + (1 - \lambda)x' - \lambda y_b - (1 - \lambda)y'_b\|_{p_A}
+ \sum_{b \in B} \omega_b \|\lambda y_b + (1 - \lambda)y'_b - b\|_{p_B}
\]

\((A\ \text{not\ collinear\ and\ } p_A > 1) < \sum_{a \in A} \omega_a (\lambda \|x - a\|_{p_A} + (1 - \lambda)\|x' - a\|_{p_A})
+ \sum_{b \in B} \omega_b (\lambda \|y - b\|_{p_B} + (1 - \lambda)\|y'_b - b\|_{p_B})
= \lambda f_{\leq}(x, y) + (1 - \lambda) f_{\leq}(x', y').\]

The analysis of the second subproblem is different since the domain is not closed. First, analogously to the above proof it follows that \(f_{\geq}\) is strictly convex in its domain, namely \(\alpha' x > \beta, \alpha'y_a = \beta, \forall a \in A\). Therefore, if the infimum is attained (in the interior of \(H_B\)) the solution must be unique. Next, we will prove that if the inf of the second subproblem is not attained then it cannot be an optimal solution of Problem \([\mathcal{P}]\) since there exists another point in \(\alpha'x \leq \beta, \alpha'y_b = \beta, \forall b \in B\) with a smaller objective value.

Let us assume that no optimal solution of \((SP_{\geq})\) exists. This implies that the infimum is attained at the boundary of \(H_B\) and therefore there exists \((\bar{x}, \bar{y})\), \(\alpha' \bar{x} = \beta\) such that

\[
\inf_{\alpha' x > \beta, \alpha'y_b = \beta, \forall a} f_{\geq}(x, y) = f_{\geq}(\bar{x}, \bar{y}).
\]

Next,

\[
f_{\geq}(\bar{x}, \bar{y}) = \sum_{a \in A} \omega_a \|\bar{y}_a - a\|_{p_A} + \sum_{a \in A} \omega_a \|\bar{x} - \bar{y}_a\|_{p_B} + \sum_{b \in B} \omega_b \|\bar{x} - b\|_{p_B}
\geq \sum_{a \in A} \omega_a \|\bar{y}_a - a\|_{p_A} + \sum_{a \in A} \omega_a \|\bar{x} - \bar{y}_a\|_{p_A} + \sum_{b \in B} \omega_b \|\bar{x} - b\|_{p_B}
\]

\((*)\)

Now, let \(B_1 := \{b \in B : \omega_b \|\bar{x} - b\|_{p_B} \geq \omega_b \|\bar{x} - \bar{y}_b\|_{p_B} + \omega_b \|\bar{x} - \bar{y}_b\|_{p_A}\}\) and \(B_2 = B \setminus B_1\). (Observe that \(\bar{y}_b = \bar{x}\) for all \(b \in B_2\).) This allows us to bound from below \((\ast)\) as follows:

\[
(*) \geq \sum_{a \in A} \omega_a \|\bar{x} - a\|_{p_A} + \sum_{b \in B_2} \omega_b \|\bar{x} - \bar{y}_b\|_{p_B} + \sum_{b \in B_2} \omega_b \|\bar{x} - \bar{y}_b\|_{p_A} + \sum_{b \in B_2} \omega_b \|\bar{x} - b\|_{p_B}
= \sum_{a \in A} \omega_a \|\bar{x} - a\|_{p_A} + \sum_{b \in B_1} \omega_b \|\bar{x} - \bar{y}_b\|_{p_B} + \sum_{b \in B_1} \omega_b \|\bar{x} - \bar{y}_b\|_{p_A}
= f_{\leq}(\bar{x}, \bar{y}).
\]

Hence, \((\bar{x}, \bar{y})\) provides a smaller objective value evaluated in \((SP_{\leq})\) which concludes the proof. \(\square\)

The above description of the distances, allows us to formulate Problem \([\mathcal{P}]\) as a mixed integer nonlinear programming problem by introducing an auxiliary variable \(\gamma \in \{0, 1\}\) that identifies whether the new facility belongs to \(H_A\) or \(H_B\).
Theorem 6. Problem (P) is equivalent to the following problem:

\[
\begin{align*}
(2a) & \quad \min \sum_{a \in A} \omega_a Z_a + \sum_{b \in B} \omega_b Z_b \\
(2b) & \quad \text{s.t. } z_a - Z_a \leq M_a (1 - \gamma), \quad \forall a \in A, \\
(2c) & \quad w_a + u_a - Z_a \leq M_a \gamma, \quad \forall a \in A, \\
(2d) & \quad z_b - Z_b \leq M_b \gamma, \quad \forall b \in B, \\
(2e) & \quad w_b + u_b - Z_b \leq M_b (1 - \gamma), \quad \forall b \in B, \\
(2f) & \quad z_a \geq \|x - a\|_{PA}, \quad \forall a \in A, \\
(2g) & \quad w_a \geq \|x - y_a\|_{PA}, \quad \forall a \in A, \\
(2h) & \quad u_a \geq \|a - y_a\|_{PA}, \quad \forall a \in A, \\
(2i) & \quad z_b \geq \|x - b\|_{PB}, \quad \forall b \in B, \\
(2j) & \quad w_b \geq \|x - y_b\|_{PA}, \quad \forall b \in B, \\
(2k) & \quad u_b \geq \|b - y_b\|_{PB}, \quad \forall b \in B, \\
(2l) & \quad \alpha^t x - \beta \leq M (1 - \gamma), \\
(2m) & \quad \alpha^t x - \beta \geq -M \gamma, \\
(2n) & \quad \alpha^t y_a = \beta, \quad \forall a \in A, \\
(2o) & \quad \alpha^t y_b = \beta, \quad \forall b \in B, \\
(2p) & \quad Z_a, z_a, w_a, u_a \geq 0, \quad \forall a \in A, \\
(2q) & \quad Z_b, z_b, w_b, u_b \geq 0, \quad \forall b \in B, \\
(2r) & \quad y_a, y_b \in \mathbb{R}^d, \quad \forall a \in A, b \in B, \\
(2s) & \quad \gamma \in \{0, 1\}.
\end{align*}
\]

with $M, M_a, M_b > 0$ sufficiently large constants for all $a \in A, b \in B$.

Proof. Let us introduce the auxiliary variable $\gamma = \begin{cases} 1 & \text{if } x \in H_A, \\ 0 & \text{if } x \in \overline{H}_B, \end{cases}$ that models whether the location of the new facility x is in H_A or in the closure of H_B. (Observe that if $x \in H_A \cap \overline{H}_B$, γ can assume both values.) Note that constraints (2b), (2m) and (2s) assure the correct definition of this variable. Next, we define the auxiliary variables $Z_a \forall a \in A$ and $Z_b \forall b \in B$ that represent the shortest path length from the new location at x to $a \in A$ and $b \in B$, respectively. Similarly, with z_a and z_b we shall model $\|x - a\|_{PA}$ and $\|x - b\|_{PB}$, respectively.

We shall prove the case $x \in H_A$, since the case $x \in \overline{H}_B$ follows analogously when $\gamma = 0$. In case $x \in H_A$ (being then $\gamma = 1$), let us denote with w_b the distance between x and the gate point, y_b, of b on \mathcal{H}, namely $w_b = \|x - y_b\|_{PA}$; and with u_b the distance between y_b and b, $u_b = \|b - y_b\|_{PB}$ for all $b \in B$ (2o). Since $\gamma = 1$, the minimization of the objective function and constraints (2b), (2i), (2j) and (2k) assure that the variables are well-defined and that:

$$Z_a = z_a = \|x - a\|_{PA} \quad \text{and} \quad Z_b = w_b + u_b = \|x - y_b\|_{PA} + \|b - y_b\|_{PB}.$$

Hence, the minimum value of $\sum_{a \in A} \omega_a Z_a + \sum_{b \in B} \omega_b Z_b$ is the overall sum of the shortest paths distances between x and the points in $A \cup B$.

Observe that the hyperplane \mathcal{H} induces the decomposition of \mathbb{R}^d into $\mathbb{R}^d = H_A \cup \overline{H}_B$, and such that $H_A \cap \overline{H}_B = \mathcal{H}$. Moreover, using the result in Theorem 5 Problem (P) is equivalent to solve two problems, restricting x to be in H_A and in \overline{H}_B. □
Theorem 7. Let \(x^* \in \mathbb{R}^d \) be the optimal solution of \((P) \). Then, \(x^* \) is the solution of one of the following two problems:

\[
(P_A) \quad \min \sum_{a \in A} \omega_a z_a + \sum_{b \in B} \omega_b w_b + \sum_{b \in B} \omega_b u_b \\
\text{s.t.} \quad (2f), (2j), (2k), (2o), (3), \alpha^T x \leq \beta, \\
z_a \geq 0, \forall a \in A, \\
w_b, u_b \geq 0, \forall b \in B, \\
x, y_a \in \mathbb{R}^d.
\]

\[
(P_B) \quad \min \sum_{b \in B} \omega_b z_b + \sum_{a \in A} \omega_a w_a + \sum_{a \in A} \omega_a u_a \\
\text{s.t.} \quad (2g), (2h), (2i), (2n), \alpha^T x \geq \beta, \\
z_b \geq 0, \forall b \in B, \\
w_a, u_a \geq 0, \forall a \in A, \\
x, y_a \in \mathbb{R}^d.
\]

Proof. Let \(x^* \) be the optimal solution of \((P) \). By Theorem 6, \(x^* \) must be the optimal solution of \((2a)-(2s) \). Hence, we can distinguish two cases: (a) \(x^* \in H_A \); or (b) \(x^* \in \overline{H}_B \). First, let us analyze case (a). Since \(x^* \in H_A \), then \(\gamma^* = 1 \). Hence, the non-redundant constraints in \((P) \) are \((2o), (3), (2i), (2g), (2k) \), and the variables \(Z_a \) and \(Z_b \) in \((P) \) reduce to \(z_a \) and \(w_b + u_b \), respectively. The above simplification results in the formulation of Problem \((P_A) \).

For case (b), the proof follows in the same manner. The reader may note that the hyperplane \(H \) is considered in both problems. However, by the proof of Theorem 5, if \(x^* \) is in \(H \), since we assume that \(p_A \geq p_B \), the optimal value of \((P_A) \) is not greater than the optimal value of \((P_B) \) and the solution can be considered to belong to \(H_A \).

From theorems 5 and 7 we get the following result.

Theorem 8. Let \((x^*, y^*) \in \mathbb{R}^{d \times |B|^d}\) be the optimal solution of \((P_A) \) and \((\hat{x}, \hat{y}) \in \mathbb{R}^{d \times |A|^d}\) be the optimal solution of \((P_B) \), with objective values \(f^* \) and \(\hat{f} \), respectively. If \(f^* > \hat{f} \) (resp. \(f^* < \hat{f} \)), \(y^*_b = y^*_b' = x^* \), for all \(b, b' \in B \) (resp. \(\hat{y}_a = \hat{y}_{a'} = \hat{x} \), for all \(a, a' \in A \)).

As we mentioned before, the important cases where the norms used to measure distances are \(\ell_p \)-norms, \(p \in \mathbb{Q}, 1 < p < +\infty \), are very important and their corresponding models simplify further. In what follow, we give explicit formulations for these problems.
Theorem 9. Let $\| \cdot \|_{p_i}$ be a ℓ_{p_i}-norm with $p_i = \frac{r_i}{s_i} > 1$, $r_i, s_i \in \mathbb{N} \setminus \{0\}$, and $\gcd(r_i, s_i) = 1$ for $i \in \{A, B\}$. Then, $[P_A]$ is equivalent to

\[
\begin{align*}
(5a) & \quad \min_{a \in A} \omega_a z_a + \sum_{b \in B} \omega_j w_j + \sum_{b \in B} \omega_b u_b \\
& \text{s.t.} \quad \begin{cases}
(5b) & t_{ak} - x_k + a_k \geq 0, \quad \forall a \in A, k = 1, \ldots, d, \\
(5c) & t_{ak} + x_k - a_k \geq 0, \quad \forall a \in A, k = 1, \ldots, d, \\
(5d) & v_{bk} + x_k - y_{bk} \geq 0, \quad \forall b \in B, k = 1, \ldots, d, \\
(5e) & v_{bk} - x_k + y_{bk} \geq 0, \quad \forall b \in B, k = 1, \ldots, d, \\
(5f) & g_{bk} - y_{bk} + b_k \geq 0, \quad \forall b \in B, k = 1, \ldots, d, \\
(5g) & g_{bk} + y_{bk} - b_k \geq 0, \quad \forall b \in B, k = 1, \ldots, d, \\
(5h) & t'^{A}_{ak} \leq \xi_{ak} r_A^{r_A - s_A}, \quad \forall a \in A, k = 1, \ldots, d, \\
(5i) & v'^{A}_{bk} \leq \rho_{bk} w_{A}^{r_A - s_A}, \quad \forall b \in B, k = 1, \ldots, d, \\
(5j) & g'^{A}_{bk} \leq \psi_{bk} u_{b}^{r_A - s_A}, \quad \forall b \in B, k = 1, \ldots, d, \\
(5k) & \sum_{k=1}^{d} \xi_{ak} \leq z_a, \quad \forall a \in A, \\
(5l) & \sum_{k=1}^{d} \rho_{bk} \leq w_b, \quad \forall b \in B, \\
(5m) & \sum_{k=1}^{d} \psi_{bk} \leq w_b, \quad \forall b \in B, \\
(5n) & \xi_{ak}, t_{ak}, \rho_{bk}, v_{bk}, \psi_{bk}, g_{bk} \geq 0, \quad \forall a \in A, b \in B, k = 1, \ldots, d, \\
(5o) & z_a, w_b, u_b \geq 0, \quad \forall a \in A, b \in B, , \\
(5p) & x, y \in \mathbb{R}^d, \quad \forall b \in B.
\end{cases}
\end{align*}
\]

Proof. Note that the difference between $[P_A]$ and the formulation $[5a]-[5p]$ stems in the constraints that represent the norms $\{21, 22, 23\}$ in $[P_A]$ that are now rewritten as $[5b]-[5m]$. This equivalence follows from the observation that any constraint in the form $Z \geq \|X - Y\|_{p}$, for any $p = \frac{r}{s}$ with $r, s \in \mathbb{N} \setminus \{0\}$, $r > s$ and $\gcd(r, s) = 1$, and X, Y variables in \mathbb{R}^d, can be equivalently written as the following set of constraints:

\[
\begin{align*}
\begin{cases}
Q_k + X_k - Y_k \geq 0, & k = 1, \ldots, d, \\
Q_k - X_k + Y_k \geq 0, & k = 1, \ldots, d, \\
Q_k^{r} \leq R_k^{r} Z^{r - s}, & k = 1, \ldots, d, \\
\sum_{k=1}^{d} R_k \leq Z, \\
R_k \geq 0, & \forall k = 1, \ldots, d.
\end{cases}
\end{align*}
\]

Indeed, let $\rho = \frac{r}{s}$, then $\frac{1}{\rho} + \frac{2}{s} = 1$. Let (Z, X, Y) fulfills the inequality $Z \geq \|X - Y\|_{p}$. Then we have

\[
\|X - Y\|_{p} \leq Z \iff \left(\sum_{k=1}^{d} |X_k - Y_k|^\frac{s}{s} \right)^{\frac{2}{s}} \leq Z^\frac{s}{s} \iff \left(\sum_{k=1}^{d} |X_k - Y_k|^s Z^\frac{s}{s} \right)^{\frac{2}{s}} \leq Z^\frac{s}{s},
\]

\[
\iff \sum_{k=1}^{d} |X_k - Y_k|^s Z^\frac{s}{s} \leq Z.
\]

Then (7) holds if and only if $\exists R \in \mathbb{R}^d, R_k \geq 0, \forall k = 1, \ldots, d$ such that

\[
|X_k - Y_k|^s Z^\frac{s}{s} \leq R_k, \quad \text{satisfying} \quad \sum_{k=1}^{d} R_k \leq Z,
\]
or equivalently,

$$|X_k - Y_k|^p - 1 \leq R_k^p Z^{-1/p},$$

Set $Q_k = |X_k - Y_k|$ and $R_k = |X_k - Y_k|^p Z^{-1/p}$. Then, clearly (Z, X, Y, Q, R) satisfies \mathcal{H}_1.

Conversely, let (Z, X, Y, Q, R) be a feasible solution of \mathcal{H}_1. Then, $Q_k \geq |X_k - Y_k|$ and $R_k \geq Q_k^p Z^{-1/p} \geq |X_k - Y_k|^p Z^{-1/p}$. Thus,

$$\sum_{k=1}^d |X_k - Y_k|^p Z^{-1/p} \leq \sum_{k=1}^d R_k \leq Z,$$

which in turns implies that $\sum_{k=1}^d |X_k - Y_k|^p Z^{-1/p} \leq Z Z^{-1/p}$ and hence, $\|X - Y\|_p \leq Z$.

\[\square \]

Remark 10 (Polyhedral Norms). *Note that when the norms in H_A or H_B are polyhedral norms, a much simpler (linear) representation than the one given in Theorem 3 is possible. Actually, it is well-known that if $\| \cdot \|$ is a polyhedral norm, such that B^*, the unit ball of its dual norm, has $\text{Ext}(B^*)$ as set of extreme points, the constraint $Z \geq \|X - Y\|$ is equivalent to

$$Z \geq v^*(X - Y), \forall v \in \text{Ext}(B^*).$$

Corollary 11. Problem $[P_A]$ (resp. $[P_B]$) can be represented as a semidefinite programming problem with $|A|(2d+1) + |B|(4d+3)+1$ (resp. $|B|(2d+1) + |A|(4d+3)+1$) linear constraints and at most $4d(|A| \log r_A + |B| \log r_A + |B| \log r_B)$ (resp. $4d(|B| \log r_B + |A| \log r_B + |A| \log r_A)$) positive semidefinite constraints.

Proof. By Theorem 3, Problem $[P_A]$ is equivalent to Problem $[P_1]$. Then, using $[1]$ Lemma 3, we represent each one of the nonlinear inequalities, as a system of at most $2 \log r_A$ or $2 \log r_B$ inequalities of the form $X^2 \leq Y Z$, involving 3 variables, X, Y, Z with Y, Z non negative. Hence, by Schur complement, it follows that

$$X^2 \leq Y Z \Leftrightarrow \begin{pmatrix} Y + Z & 0 & 2X \\ 0 & Y + Z & Y - Z \\ 2X & Y - Z & Y + Z \end{pmatrix} \succeq 0, Y + Z \geq 0. \quad (8)$$

Hence, Problem $[P_A]$ is a semidefinite programming problem because it has a linear objective function, $|A|(2d+1) + |B|(4d+3)+1$ linear inequalities and at most $4d(|A| \log r_A + |B| \log r_A + |B| \log r_B)$ linear matrix inequalities.

\[\square \]

The reader may note that by similar arguments and since the left-hand representation of (8) is a second order cone constraint, Problem $[P_A]$ can also be seen as a second order cone program.

The following example illustrates this model with the 18-points data set from Parlar [17].

Example 12. Let $\mathcal{H} = \{x \in \mathbb{R}^d : 1.5x - y = 0\}$ and consider the set of 18-demand points in [17]. We consider that the distance measure in H_A is the ℓ_2-norm while in H_B is the ℓ_3-norm. The solution of Problem $[P_A]$ is $x^* = (9.23792, 6.435661)$ with objective value $f^* = 103.934734$.

Fig. 3 shows the demand points A and B, the hyperplane \mathcal{H}, the solution x^*, as well as the shortest paths between x^* and the points in A and B.
Figure 3. Demand points and optimal solution of Example 12.

Finally, to conclude this section we address the restricted case of Problem (P). Let \(\{g_1, \ldots, g_l\} \subset \mathbb{R}[X] \) be real polynomials and \(K := \{x \in \mathbb{R}^d : g_j(x) \geq 0, j = 1, \ldots, l\} \) a basic closed, compact semialgebraic set with nonempty interior satisfying that for some \(M > 0 \) the quadratic polynomial \(u(x) = M - \sum_{k=1}^d x_k^2 \) has a representation on \(K \) as \(u = \sigma_0 + \sum_{j=1}^l \sigma_j g_j \), for some \(\{\sigma_0, \ldots, \sigma_l\} \subset \mathbb{R}[X] \) being each \(\sigma_j \) sum of squares (Archimedean property [15]). We remark that the assumption on the Archimedean property is not restrictive at all, since any semialgebraic set \(K \subseteq \mathbb{R}^d \) for which it is known that \(\sum_{k=1}^d x_k^2 \leq M \) holds for some \(M > 0 \) and for all \(x \in K \), admits a new representation \(K' = K \cup \{x \in \mathbb{R}^d : g_{l+1}(x) := M - \sum_{k=1}^d x_k^2 \geq 0\} \) that trivially verifies the Archimedean property.

For the sake of simplicity, we assume that the domain \(K \) is compact and has nonempty interior, as it is usual in Location Analysis. We observe that we can extend the results in Section 3 to a broader class of convex constrained problems.

Theorem 13. Let \(K := \{x \in \mathbb{R}^d : g_j(x) \geq 0, j = 1, \ldots, l\} \) be a basic closed, compact semialgebraic set with nonempty interior, and consider the restricted problem:

\[
\min_{x \in K} \sum_{a \in A} \omega_a d(x, a) + \sum_{b \in B} \omega_b d(x, b).
\]

Assume that \(K \) satisfies the Archimedean property and further that any of the following conditions hold:

1. \(g_i(x) \) are concave for \(i = 1, \ldots, l \) and \(-\sum_{i=1}^l \mu_i \nabla^2 g_i(x) > 0 \) for each dual pair \((x, \mu)\) of the problem of minimizing any linear functional \(c^T x \) on \(K \) (Positive Definite Lagrange Hessian (PDLH)).
2. \(g_i(x) \) are sos-concave on \(K \) for \(i = 1, \ldots, l \) or \(g_i(x) \) are concave on \(K \) and strictly concave on the boundary of \(K \) where they vanish, i.e. \(\partial K \cap \partial \{x \in \mathbb{R}^d : g_i(x) = 0\} \), for all \(i = 1, \ldots, l \).
3. \(g_i(x) \) are strictly quasi-concave on \(K \) for \(i = 1, \ldots, l \).

Then, there exists a constructive finite dimension embedding, which only depends on \(p_A, p_B \) and \(g_i, i = 1, \ldots, l \), such that the solution of (9) can be obtained by solving two semidefinite programming problems.

Proof. The unconstrained version of Problem (9) can be equivalently written as two SDP problems using the result in Theorem 7 and Corollary 11. Therefore, it remains to prove that under the conditions 1, 2 or 3 the constraint set \(x \in K \) is also exactly represented as a finite number of semidefinite constraints or equivalently that it is semidefinite representable (SDr). The discussion that the three above mentioned cases are SDr is similar to that in [3, Theorem 8] and thus it is omitted here. \(\square \)
4. Location Problems in Two Media Divided by a Hyperplane Endowed with a Different Norm

In this section we consider an extension of the location problem in the previous section where the separating hyperplane is endowed with a third norm, namely $\| \cdot \|_{p_H}$, and it may be used to travel in shortest paths crossing it. Thus, the new problem consists of locating a new facility to minimize the weighted sum of the distances to the demand points, but where, if it is convenient, a shortest path from the facility to a demand point that crosses the hyperplane may travel through it. This way the hyperplane can be seen as a rapid transit boundary for displacements between different media.

We define the shortest path distance between two points a and b in \mathbb{R}^d by

$$d_t(a, b) = \begin{cases} \|a - b\|_{p_A} & \text{if } a, b \in H_i, \ i \in \{A, B\}, \\ \min_{x, y \in H} \|x - a\|_{p_A} + \|x - y\|_{p_H} + \|y - b\|_{p_B} & \text{if } a \in H_A, \ b \in \overline{B}, \end{cases}$$

and x, y represent the access and the exit (gate) points where the shortest path from a to b crosses through the hyperplane.

As in Section 2 we can also give a general result about the optimal gate points of the shortest weighted path between points in this framework. In this case we must resort to subdifferential calculus to avoid nondifferentiability situations due to the possible coincidence of x^* and y^*. Let us denote by $\partial_t f(x^*, y^*)$ (resp. $\partial_t f(x^*, y^*)$) the subdifferential set of the function f as a function of its first (resp. second) set of variables, i.e. x^* is fixed (resp. y^* is fixed), at x^* (resp. y^*).

Lemma 14. The distance $d_t(a, b)$ of the shortest weighted path between a and b is

$$\omega_\circ \|x^* - a\|_{p_A} + \omega_H \|x^* - y^*\|_{p_H} + \omega_B \|y^* - b\|_{p_B},$$

where $x^* = (x^*_1, \ldots, x^*_d)$, and $y^* = (y^*_1, \ldots, y^*_d)$, $\alpha^t x^* = \beta$, $\alpha^t y^* = \beta$ must satisfy:

\[
\lambda_\circ \alpha \in \omega_\circ \partial_x \|x^* - a\|_{p_A} + \omega_H \partial_x \|x^* - y^*\|_{p_H}, \quad \text{for some } \lambda_\circ \in \mathbb{R},
\]

\[
\lambda_\circ \alpha \in \omega_B \partial_y \|y^* - a\|_{p_B} + \omega_H \partial_y \|x^* - y^*\|_{p_H}, \quad \text{for some } \lambda_\circ \in \mathbb{R}.
\]

Now, we will consider again the embedding defined in Section 2 $x \in \mathbb{R}^d \to (x, \alpha^t x - \beta) \in \mathbb{R}^{d+1}$. Denote by γ_a the angle between the vectors $(a - x^*, 0)$ and $(a - x^*, \alpha^t a - \beta)$ and by γ_b the angle between $(b - y^*, 0)$ and $(a - y^*, \alpha^t b - \beta)$. Then, we can interpret $|\alpha^t a - \beta|/\|a - x^*\|_{p_A}$ and $|\alpha^t b - \beta|/\|b - y^*\|_{p_B}$ as generalized sines of the angles γ_a and γ_b, respectively (see Fig. 4). The reader may again note that in general these ratios are not trigonometric functions, unless $p_A = p_B = 2$. We define the generalized sines as:

$$\sin_{p_A} \gamma_a = \frac{|\alpha^t a - \beta|}{\|a - x^*\|_{p_A}} \quad \text{and} \quad \sin_{p_B} \gamma_b = \frac{|\alpha^t b - \beta|}{\|b - y^*\|_{p_B}}.$$

These expressions can be written by components as:

$$\sin_{p_A} \gamma_a = \sum_{j=1}^d \frac{\alpha_j a_j - \alpha_j x_j^*}{\|a - x^*\|_{p_A}}, \quad \sin_{p_B} \gamma_b = \sum_{j=1}^d \frac{\alpha_j b_j - \alpha_j y_j^*}{\|b - y^*\|_{p_B}}.$$

Finally, by similarity we shall denote the non-negative value of each component in the previous sums as

$$\sin_{p_A} \gamma_{a_j} := \frac{|\alpha_j a_j - \alpha_j x_j^*|}{\|a - x^*\|_{p_A}} \quad \text{and} \quad \sin_{p_B} \gamma_{b_j} := \frac{|\alpha_j b_j - \alpha_j y_j^*|}{\|b - y^*\|_{p_B}}, \quad j = 1, \ldots, d.$$

With the above notation, we state the following results derived from Lemma 14.

Corollary 15 (Snell’s-like result). Assume that $\| \cdot \|_{p_A}, \| \cdot \|_{p_B}, \| \cdot \|_{p_H}$ are ℓ_p-norms with $1 < p < +\infty$. Let $x^*, y^* \in \mathbb{R}^d$, $\alpha^t x^* = \alpha^t y^* = \beta$. Then, x^* and y^* define the shortest weighted path between a and b when traversing the hyperplane is allowed if and only if the following conditions are satisfied:

1. For all j such that $\alpha_j = 0$:

$$\omega_\circ \left[\frac{|x_j^* - a_j|}{\|x^* - a\|_{p_A}} \right]^{p_A - 1} \cdot \text{sign}(x_j^* - a_j) + \omega_H \left[\frac{|x_j^* - y_j^*|}{\|x^* - y^*\|_{p_H}} \right]^{p_H - 1} \cdot \text{sign}(x_j^* - y_j^*) = 0,$$
Therefore, \(b \) and \(\omega \) satisfy one of the following conditions:

Corollary 16. If \(d = 2 \), \(p_A = p_B = p_H = 2 \) and \(\mathcal{H} = \{(x_1, x_2) \in \mathbb{R}^2 : x_2 = 0\} \), the points \(x^*, y^* \) satisfy one of the following conditions:

1) \(\omega_a \sin \theta_a = \omega_b \sin \theta_b = \omega_H \frac{\gamma_a}{\|x^* - y^*\|_2} \) and \(x^* \neq y^* \), or

2) \(\omega_a \sin \theta_a = \omega_b \sin \theta_b \) and \(x^* = y^* \),

where \(\theta_a \) is the angle between the vectors \(a - x^* \) and \((0, -1) \) and \(\theta_b \) the angle between \(b - y^* \) and \((0, 1) \) (see Fig. 4).

Proof. To prove 1), since the Euclidean norm is isotropic, we can assume w.l.o.g. that after a change of variable \(x^* \) and \(y^* \) can be taken such that \(x^*_1 = 0 \), \(y^*_1 \geq 0 \) and \(a = (a_1, a_2) \) such that \(a_1 \geq 0 \), \(a_2 < 0 \), \(b = (b_1, b_2) \) such that \(b_1 \leq 0 \), \(b_2 > 0 \).

The optimality condition using Lemma [14], assuming \(x^* \neq y^* \), is:

\[
\frac{\omega_a |a_1|}{\|x^* - a\|_2} - \omega_H \frac{|y^*_1|}{\|x^* - y^*\|_2} = 0,
\]

\[
-\frac{\omega_b |y^*_1 - b_1|}{\|y^* - b\|_2} + \omega_H \frac{|y^*_1 - b_1|}{\|y^* - b\|_2} = 0.
\]

The result follows since \(\sin \theta_a = \frac{|a_1|}{\|x^* - a\|_2} \), \(\sin \theta_b = \frac{|y^*_1 - b_1|}{\|y^* - b\|_2} \).

If \(x^* = y^* \) the result for condition 2) follows from Corollary [4].

Note that in Corollary [16] one can make w.l.o.g. the assumption that the separating line is \(x_2 = 0 \) due to the isotropy of the Euclidean norm.

We observe that if \(\omega_a = \omega_b = \omega_H = 1 \), and \(y_1 > 0 \) from the equation (10) we get \(|y^*_1 - b_1| = \|y^* - b\|_2 \) which is impossible unless \(b_2 = 0 \) which contradicts the hypotheses in the proof. Therefore, \(y^*_1 \) cannot be greater than zero. Hence, in this case the condition reduces to \(x^* = y^* \) and \(\omega_a \frac{|a_1|}{\|x^* - a\|_2} = \omega_b \frac{|y^*_1 - b_1|}{\|y^* - b\|_2} \) or in other words \(\sin \theta_a = \sin \theta_b \).
Note also that the case when $\omega_H = 0$ and $\omega_a \omega_b \neq 0$, reduces to compute the projections onto \mathcal{H}, of each one of the points a and b. Indeed by condition 1) in Corollary 16, $\sin \theta_a = \sin \theta_b = 0$, being $\theta_a = \theta_b = 0$ (see Fig. 5).

Figure 5. Snell’s law when traversing \mathcal{H}.

Lemma 17. Let $a \in \mathcal{H}_A$ and $b \in \mathcal{H}_B$. Then,

1. If $\max\{p_A, p_B\} \geq p_H$ the shortest path distance $d_t(a,b) = \min_{x, y \in \mathcal{H}} \|x - a\|_{p_A} + \|x - b\|_{p_B}$, i.e. it crosses \mathcal{H} at a unique point.
2. If $p_H \geq \max\{p_A, p_B\}$ then the shortest path from a to b may contain a non-degenerated segment on \mathcal{H}.

Proof. Let us consider the general form of the solution to determine $d_t(a,b)$, namely

$$d_t(a,b) = \min_{x,y \in \mathcal{H}} \|x - a\|_{p_A} + \|x - y\|_{p_H} + \|y - b\|_{p_B}.$$

Clearly, if $p_A \geq p_H$, we have

$$\|x - a\|_{p_A} + \|x - y\|_{p_H} + \|y - b\|_{p_B} \geq \|x - a\|_{p_A} + \|x - y\|_{p_A} + \|y - b\|_{p_B};$$

(by the triangular inequality)

$$\|x - a\|_{p_A} + \|y - b\|_{p_B}.$$

Definition 18. We say that the norms ℓ_{p_A}, ℓ_{p_B} and ℓ_{p_H} satisfy the Rapid Enough Transit Media Condition (RETM) for $a \in A$ and $b \in B$ if:

1. For $y^* \in \arg \min_{y \in \mathcal{H}} \|y - a\|_{p_A}, \|a - y^*\|_{p_A} + \|x - y^*\|_{p_H} \leq \|x - a\|_{p_A}$, for all $x \in \mathcal{H}$, and
2. For $x^* \in \arg \min_{x \in \mathcal{H}} \|x - b\|_{p_B}, \|b - x^*\|_{p_B} + \|x^* - y\|_{p_H} \leq \|y - b\|_{p_B}$, for all $y \in \mathcal{H}$.

Note that the above definition states that a triplet of norms $(\ell_{p_A}, \ell_{p_B}, \ell_{p_H})$ satisfies the condition if the norm defined over the hyperplane \mathcal{H} is ‘faster enough’ to reverse the triangle inequality when mixing the norms, i.e., when the shortest path from a point outside the hyperplane to another point in the hyperplane benefits from traveling throughout the hyperplane.

Lemma 19. Let $a \in \mathcal{H}_A$ and $b \in \mathcal{H}_B$. Then, if $p_H \geq p_A \geq p_B$ and the corresponding norms satisfy the RETM condition for a and b, the shortest path from a to b crosses throughout \mathcal{H} in the following two points:

$$x^* = a - \frac{\alpha^A a - \beta^A}{\|\alpha^A\|_{p_A}^*} \delta^A_\alpha$$

and

$$y^* = b - \frac{\alpha^B b - \beta^B}{\|\alpha^B\|_{p_B}^*} \delta^B_\alpha$$

where $\| \cdot \|_{p_A}^*$ and $\| \cdot \|_{p_B}^*$ are the dual norms to $\| \cdot \|_{p_A}$ and $\| \cdot \|_{p_B}$, respectively, and $\delta^A_\alpha, \delta^B_\alpha \in \arg \max_{\|\delta\|_{p_A} = 1} \alpha^A \delta^A, \delta^B_\alpha \in \arg \max_{\|\delta\|_{p_B} = 1} \alpha^B \delta^B$.

Figure 6. Snell’s law when traversing \mathcal{H} and $\omega_H = 0$.
Proof. First, note that \(x^* \) and \(y^* \) correspond with the projections of \(a \) and \(b \) onto \(\mathcal{H} \), respectively (see (16)). Let \(x, y \in \mathcal{H} \) be alternative gate points in a path from \(a \) to \(b \). Then

\[
\|b - y\|_{p_B} + \|x - y\|_{p_B} + \|a - x\|_{p_A} \overset{RET M}{\geq} \|b - y^*\|_{p_B} + \|y^* - y\|_{p_B} + \|x - y\|_{p_B} + \|a - x^*\|_{p_A}
\]

\[
+ \|x^* - x\|_{p_B}
\]

\[
\geq \|b - y^*\|_{p_B} + \|a - x^*\|_{p_A} + \|y^* - x\|_{p_B} + \|x^* - x\|_{p_B}
\]

\[
\geq \|b - y^*\|_{p_B} + \|a - x^*\|_{p_A} + \|y^* - x^*\|_{p_B}.
\]

Example 20. Let \(\mathcal{H} = \{ (x, y) \in \mathbb{R}^2 : y = x \} \) and \(a = (4,5)^t \in \mathcal{H}_A \), \(b = (12,11)^t \in \mathcal{H}_B \) with \(p_A = p_B = 1 \) and \(p_B = +\infty \). We observe that these norms satisfy the RETM condition for \(a \) and \(b \). First of all, we realize that, \(x^* \) and \(y^* \), the closest \(\ell_1 \)-points to \(a \) and \(b \), respectively, on \(\mathcal{H} \) must belong to \(x^* \in [(4,4),(5,5)] \) and \(y^* \in [(11,11),(12,12)] \), respectively.

1. Let \((y, y) \in \mathcal{H} \). \(\|a - x^*\|_1 + \|x^* - (y, y)\|_\infty = 1 + \min\{|4 - y|,|5 - y|\} \) and \(\|a - (y, y)\|_1 = |4 - y| + |5 - y| \). Then, for \(y \geq 5 \), we get that \(1 + (y - 5) = y - 4 \leq (y - 4) + (y - 5) = 2y - 9 \), which is always true for \(y \geq 5 \). Otherwise, if \(y \leq 4 \), \(1 + (4 - y) = 5 - y \leq (4 - y) + (5 - y) = 9 - 2y \), which is always true for \(y \leq 4 \).

2. Let \((x, x) \in \mathcal{H} \). \(\|b - y^*\|_1 + \|y^* - (x, x)\|_\infty = 1 + \min\{|11 - x|,|12 - x|\} \) and \(\|a - (x, x)\|_1 = |12 - x| + |11 - x| \). Then, for \(x \geq 12 \), we get that \(1 + (x - 12) = x - 11 \leq (x - 12) + (x - 11) = 2x - 23 \), which is always true for \(x \geq 12 \). Otherwise, if \(x \leq 11 \), \(1 + (11 - x) = 12 - x \leq (12 - x) + (11 - x) = 23 - 2x \), which is always true for \(x \leq 11 \).

Hence, the RETM condition is satisfied, and the shortest path from \(a \) to \(b \) crosses in \(\mathcal{H} \) through their projections:

\(x^* = (5,5) \) and \(y^* = (11,11) \).

The overall length of this path is \(\|a - x^*\|_1 + \|x^* - y^*\|_\infty + \|b - y^*\|_1 = 1 + 6 + 1 = 8 \) (see Fig. 7).

Note that the RETM condition is defined for any triplet of norms \((\ell_{p_A}, \ell_{p_B}, \ell_{p_B}) \) and for any pair of points \(a \) and \(b \). Hence, unless the condition is fulfilled for all pair of points \(a \in A \) and \(b \in B \), we cannot extend Lemma (19) to the location of all the points in \(A \) and \(B \). Actually, even for the slowest \(\ell_p \)-norm in \(\mathcal{H}_A \) and \(\mathcal{H}_B \), namely \(\ell_1 \), and the fastest one in \(\mathcal{H} \), namely \(\ell_\infty \), it is easy to check that such a condition is not verified for any pair of points.

Once we have analyzed shortest paths between points in the framework of the location problem to be solved, we come back to the original goal of this section: the location of a new facility to minimize the weighted sum of shortest path distances from the demand points. Thus, the problem that we wish to analyze in this section can be stated similarly as in (14).

(PT)

\[
\min_{x \in \mathbb{R}^d} \sum_{a \in A} \omega_a d_1(x, a) + \sum_{b \in B} \omega_b d_1(x, b).
\]
Note that Problem \((\mathbf{P}) \), analyzed in Section 3 is a particular case of Problem \((\mathbf{PT}) \) when the two crossing points \(y^1 \) and \(y^2 \) are enforced to be equal, i.e. whenever it is not allowed to move traversing the hyperplane when computing shortest paths between the different media.

By similar arguments to those used in Theorem 23 we can also state an existence and uniqueness result for Problem \((\mathbf{PT}) \).

Theorem 21. Assume that \(\min\{|A|, |B|\} > 2 \). If the points in \(A \) or \(B \) are not collinear and \(p_B > 1 \) or \(p_A < +\infty \) then Problem \((\mathbf{PT}) \) always has a unique optimal solution.

It is also possible to give sufficient conditions so that Problem \((\mathbf{PT}) \) reduces to \((\mathbf{P}) \). The following proposition clearly follows from Lemma 17.

Proposition 22. Let \(A, B \subseteq \mathbb{R}^d \) and \(H = \{x \in \mathbb{R}^d : \alpha^T x = \beta\} \). Then, if \(p_A \geq p_B \geq p_H \), Problem \((\mathbf{PT}) \) reduces to Problem \((\mathbf{P}) \).

The description of the shortest path distances in \((\mathbf{DT}) \), allows us to formulate Problem \((\mathbf{PT}) \) as a mixed integer nonlinear programming problem in a similar manner as we did in Theorem 6 for \((\mathbf{P}) \).

Theorem 23. Problem \((\mathbf{PT}) \) is equivalent to the following problem:

\[
\begin{align*}
\text{(11a)} & \quad \min \sum_{a \in A} \omega_a z_a + \sum_{b \in B} \omega_b z_b \\
\text{s.t.} \quad & \quad (2a), (2d), (2i), (2k), (2m), \\
\text{(11b)} & \quad w_a + u_a + t_a - z_a \leq M_a \gamma, \quad \forall a \in A, \\
\text{(11c)} & \quad w_b + u_b + t_b - z_b \leq M_b (1 - \gamma), \quad \forall b \in B, \\
\text{(11d)} & \quad w_a \geq \|x - y_a^1\|_{PA}, \quad \forall a \in A, \\
\text{(11e)} & \quad u_a \geq (\alpha - y_a^1)_{\mathbb{A}}, \quad \forall a \in A, \\
\text{(11f)} & \quad t_a \geq (y_a^1 - y_a^2)_{\mathbb{A}}, \quad \forall a \in A, \\
\text{(11g)} & \quad w_b \geq \|x - y_b^1\|_{PA}, \quad \forall b \in B, \\
\text{(11h)} & \quad u_b \geq \|y_b^1 - y_b^2\|_{PB}, \quad \forall b \in B, \\
\text{(11i)} & \quad t_b \geq \|y_b^1 - y_b^2\|_{PB}, \quad \forall b \in B, \\
\text{(11j)} & \quad \alpha^Ty_a = \beta, \quad \forall a \in A, \\
\text{(11k)} & \quad \alpha^Ty_b^1 = \beta, \quad \forall b \in B,
\end{align*}
\]

with \(M_a, M_b > 0 \) sufficiently large constants for all \(a \in A, b \in B \).

The following result states that the solution of Problem \((\mathbf{11}) \) can also be reached by solving two simpler problems when restricting the solution to belong to \(H_A \) or \(H_B \).

Theorem 24. Let \(x^* \in \mathbb{R}^d \) be the optimal solution of \((\mathbf{PT}) \). Then, \(x^* \) is the solution of one of the following two problems:
and finally to (2). Let $z_a \geq 0$, $\forall a \in A$, $w_b, u_b, t_b \geq 0$, $\forall b \in B$; $x, y_b \in \mathbb{R}^d$.

\begin{align*}
\min_{a \in A} & \sum_{a \in A} \omega_a z_a + \sum_{b \in B} \omega_b w_b + \\
& \sum_{b \in B} \omega_b u_b + \sum_{b \in B} \omega_b t_b \\
\text{s.t.} & (2), (13), (14), (15). (PT_A)
\end{align*}

\begin{align*}
\min_{a \in A} & \sum_{a \in A} \omega_a z_a + \sum_{b \in B} \omega_b w_a + \\
& \sum_{a \in A} \omega_a u_a + \sum_{a \in A} \omega_a t_a \\
\text{s.t.} & (2), (11d), (11g), (16), (17), (18).
\end{align*}

\begin{align*}
z_a & \geq 0, \forall a \in A, \\
w_b, u_b, t_b & \geq 0, \forall b \in B, \\
x, y_b & \in \mathbb{R}^d.
\end{align*}

\begin{align*}
& \text{and the solution } x^* = 9.133220, 6.897760 \text{ with objective value } f^* = 100.442353.
\end{align*}

We illustrate Problem (PT) with an instance of the 18 points data set in [17].

Example 25. Consider the 18 points in [17] and the separating line $H = \{ x \in \mathbb{R}^d : 1.5x - y = 0 \}$. Assume that in H_A the distance is measured with the ℓ_2-norm, in H_B the distance is induced by the ℓ_∞-norm and on H the norm is $\frac{1}{2}\ell_\infty$. Fig. 8 shows the demand points A and B, the hyperplane H and the solution x^*. The optimal solution is $x^* = (9.133220, 6.897760)$ with objective value $f^* = 100.442353$.

Note that the difference between this model and the one above is that the shortest path distance from the new facility to a demand point may not cross the hyperplane H at a unique point. Comparing the results with those obtained in Example 24 for the same data set, but not allowing the use of H as a high speed media, we get savings in the overall transportation cost of 3.492381.

In Fig. 8 we can observe that the shortest path from the new facility x^* and the demand point $(2, 8)$ consists of traveling from x^* to $y^1 = (5.918243, 8.877364)$ in H_B (using the ℓ_∞-norm), then traveling within the hyperplane H from y_1 to $y^2 = (4.635013, 6.952519)$ (using the $1/4 - \ell_\infty$-norm) and finally to $(2, 8)$ in H_A (using ℓ_2-norm). Actually, the overall length of the path is:

\[d_3(x^*, y^1) + \frac{1}{4}d_\infty(y^1, y^2) + d_2(y^2, (2, 8)) = 3.447879 + 0.4812115 + 2.835578 = 6.7646685. \]

Finally, we state, for the sake of completeness, the following result whose proof is similar to the one for Theorem 13 and that extends the second order cone formulations in Theorem 24 to the constrained case.

Theorem 26. Let $\{g_1, \ldots, g_l\} \subset \mathbb{R}[X]$ be real polynomials and $K := \{ x \in \mathbb{R}^d : g_j(x) \geq 0, j = 1, \ldots, l \}$ a basic, closed, compact semialgebraic set with nonempty interior satisfying the Archimedean property, and consider the following problem

\begin{equation}
\min_{x \in K} \sum_{a \in A} \omega_a d_a(x, a) + \sum_{b \in B} \omega_b d_b(x, b), \tag{12}
\end{equation}

with $d_i(x, y)$ as defined in (DT). Assume that any of the following conditions hold:

...
1. \(g_i(x) \) are concave for \(i = 1, \ldots, \ell \) and \(-\sum_{i=1}^{\ell} \mu_i \nabla^2 g_i(x) \succ 0 \) for each dual pair \((x, \mu)\) of the problem of minimizing any linear functional \(c^T x \) on \(K \) (Positive Definite Lagrange Hessian (PDLH)).
2. \(g_i(x) \) are sos-concave on \(K \) for \(i = 1, \ldots, \ell \) or \(g_i(x) \) are concave on \(K \) and strictly concave on the boundary of \(K \) where they vanish, i.e. \(\partial K \cap \partial \{x \in \mathbb{R}^d : g_i(x) = 0\} \), for all \(i = 1, \ldots, \ell \).
3. \(g_i(x) \) are strictly quasi-concave on \(K \) for \(i = 1, \ldots, \ell \).

Then, there exists a constructive finite dimension embedding, which only depends on \(p_A, p_B, p_H \) and \(g_i, i = 1, \ldots, \ell \), such that \((12) \) is equivalent to two semidefinite programming problems.

5. Computational Experiments

We have performed a series of computational experiments to show the efficiency of the proposed formulations to solve problems \((P)\) and \((PT)\). Our SOCP formulations have been coded in Gurobi 5.6 and executed in a PC with an Intel Core i7 processor at 2x 2.40 GHz and 4 GB of RAM. We fixed the barrier convergence tolerance for QCQP in Gurobi to \(10^{-10} \).

Our computational experiments have been organized in three blocks because the goal is different in each one of them. First, we report on the data sets already considered in Parlar [17] and Zaferanieh et al. [21]. These data sets are of 4, 18 (in [17]), 30 and 50 (in [21]) demand points in the plane and separating hyperplanes \(y = 0.5x \), \(y = x \), \(y = 1.5x \). Second, we consider the well-known 50-points data set in Eilon et. al [11] with different separating hyperplanes and norms in each one of the corresponding halfspaces. Finally, we also report on some randomly generated instances with 5,000, 10,000 and 50,000 demand points in dimension 2, 3 and 5 and different combinations of norms. The results of the first block are included in tables 1 and 2. Table 1 shows in columns CPUtilme \([17, 21]\), \(f^* \) \([17, 21]\) and \(x^* \) \([17, 21]\) the results reported in [17] (for the 4 and 18 points data sets) and [21] (for the 30 and 50 points data sets), and in columns CPUtilme \([17]\), \(f^* \) \([17]\) and \(x^* \) \([17]\) the results obtained with our approach. In this table \(N \) is the number of demand points, \(H \) is the equation of the separating hyperplane (line), CPUtilme is the CPU-time and \(f^* \) and \(x^* \) are the objective value and coordinates of the optimal solution reported with the corresponding approach, respectively. In order to compare our objective values and those obtained in [17] or [21], we have evaluated such values by using the solution obtained in those papers, where the authors provided a precision of two decimal places. This evaluation was motivated because we found several typos in the values reported in the papers. The goal of this block of data is to compare the quality of solutions obtained by the different methods. Comparing with our method, we point out that our solutions are superior since we always obtain better objective values than those in [17] or [21]. These results are not surprising since both [17] and [21] apply approximate methods whereas our algorithm is exact. Furthermore, the approach in [21] is much more computationally costly than ours. Additionally, in order to check whether a rapid transit line can improve the transportation costs from the demand points to the new facility, we report in Table 2 the results obtained for the same data sets applied to Problem \((PT)\) taking \(\| \cdot \|_H = \frac{1}{2} \ell_\infty \). We observe that in this case the overall saving in distance traveled ranges in 5% to 24%.

Table 3 reports the results of the second block of experiments. In this block, we test the implementation of our SOCP algorithm over the 50-points data sets in [11]. The goals are: (1) to check the efficiency of our methodology for a well-known data set in location theory, considering different norms in the different media, over the models \([17]\) and \([21]\) (Note that in [17] and [21] only \([P]\) is solved and using \(\ell_1 \) and \(\ell_\infty \)-norms); and (2) to provide some benchmark instances to compare current and future methodologies for solving \([P]\) and \((PT)\). To this end, we report CPU times and objective values for different combination of \(\ell_p \)-norms \((\ell_2, \ell_3 \text{ and } \ell_{1.5}) \) and polyhedral norms \((\ell_1, \ell_\infty) \) fulfilling the conditions \(p_A > p_B \) for Problem \([P]\) and \(p_H > p_A \geq p_B \) for Problem \((PT)\) and different slopes for the separating hyperplane \(H = \{x \in \mathbb{R}^2 : y = \lambda x\} \) with \(\lambda \in \{1.5, 1, 0.5\} \) to classify the demand points.

Finally, Table 4 shows the results of our computational test for the third block of experiments. The goal of this block is to explore the limits in: 1) number of demand points, 2) dimension of the framework space; and 3) combination of norms, that can be adequately handled by our algorithm for solving problems \([P]\) and \((PT)\). To this for, we consider randomly generated instances with
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline
\(N\) & \(\mathcal{H}\) & \text{CPUTime} & \(f^*\) & \text{CPUTime} & \(f^*\) & \(x^*\) & \(x^*\) \\
\hline
4 & \(y = x\) & 0.037041 & 26.951942 & (3.333333, 1.666666) & 49.62 & 26.951958 & (3.33, 1.66) \\
18 & \(y = 1.5x\) & 0.057064 & 112.350633 & (8.926152, 6.465740) & 35.54 & 112.350702 & (8.92, 6.46) \\
30 & \(y = 0.5x\) & 0.056049 & 301.378666 & (6.000000, 4.000000) & 8.25 & 301.491361 & (6.01, 4.02) \\
30 & \(y = x\) & 0.070050 & 265.971645 & (5.658061, 4.586079) & 15.31 & 265.973315 & (5.65, 4.60) \\
30 & \(y = 1.5x\) & 0.074053 & 257.814247 & (5.512428, 4.561921) & 16.94 & 257.814247 & (5.51, 4.56) \\
50 & \(y = 0.5x\) & 0.107079 & 1126.392248 & (11.000000, 8.000000) & 35.00 & 1127.382313 & (11.23, 8.00) \\
50 & \(y = x\) & 0.116091 & 966.377027 & (10.730800, 8.661463) & 30.61 & 966.377027 & (10.73, 8.67) \\
50 & \(y = 1.5x\) & 0.095062 & 939.487369 & (10.525793, 8.603231) & 29.44 & 939.487629 & (10.53, 8.60) \\
\hline
\end{tabular}

Table 1. Comparison of results from Parlar [17] and Zafaranieh et al. [21] and our approach [P].

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline
\(N\) & \(\mathcal{H}\) & \text{CPUTime} & \(f^*\) & \text{CPUTime} & \(f^*\) & \(x^*\) \\
\hline
4 & \(y = x\) & 0.0000 & 20.5307 & (0.000000, 0.000001) & \\
18 & \(y = 1.5x\) & 0.0000 & 108.3362 & (8.811381, 7.119336) & \\
30 & \(y = 0.5x\) & 0.0156 & 254.7805 & (6.000000, 3.000000) & \\
30 & \(y = x\) & 0.0000 & 230.7513 & (5.234851, 5.234838) & \\
30 & \(y = 1.5x\) & 0.0156 & 244.4072 & (5.153294, 5.102873) & \\
50 & \(y = 0.5x\) & 0.0156 & 917.1736 & (11.923664, 9.61832) & \\
50 & \(y = x\) & 0.0156 & 808.2990 & (10.000020, 9.999995) & \\
50 & \(y = 1.5x\) & 0.0156 & 892.4482 & (10.521522, 9.571467) & \\
\hline
\end{tabular}

Table 2. Results of model \(\text{PT}\) with \(\| \cdot \| = \frac{1}{d}\) for the data sets in [17] and [21].

\(N \in \{5000, 10000, 50000\}\) demand points in \([0, 1]^d\), for \(d = 2, 3\) and 5. The separating hyperplane was taken as \(\mathcal{H} = \{x \in \mathbb{R}^d : x_d = 0.5\}\) and the different norms to measure the distances in each region \((\ell_1, \ell_2, \ell_1, 5, \ell_3\) and \(\ell_\infty\)) combined adequately to fulfill the conditions (see Lemma [17] and Proposition [22]) to assure that the problems are well-defined and that the different instances of Problem \(\text{PT}\) do not reduce to \(\text{P}\). From Table 3, we conclude that our method is rather robust so that it can efficiently solve instances with more than 50000 demand points in high dimension spaces \((d = 2, 3, 5)\) and different combinations of norms in few seconds. We have observed that instances with polyhedral norms, in particular \(\ell_1\), are in general harder to solve than those with smooth norms. This behavior is explained because the representation of polyhedral norms requires to add constraints depending of the number of extreme points of their unit balls. This figure grows exponentially with the dimension and for instance, for 50000 points in dimension \(d = 5\), our formulation needs 50000 \(\times 5 \times 32 = 8,000,000\) linear inequalities in order to represent the norm \(\ell_1\). This results in an average CPU time of 1019.48 seconds (with a maximum of 3945.82 seconds) for those problems where either \(\ell_p\) or \(\ell_p,\ell_q\) equals \(\ell_1\), whereas the CPU time for the remaining problems in dimension \(d = 5\) is 215.69 seconds (with a maximum of 697.50 seconds).

6. Conclusions and Extensions

This paper addresses the problem of locating a new facility on a \(d\)-dimensional space when the distance measures (\(\ell_p\) or polyhedral norms) are different at each one of the sides of a given hyperplane \(\mathcal{H}\). This problem generalizes the classical Weber problem, which becomes a particular case when the same norm is considered in both sides of the hyperplane. We relate this problem with the physical phenomenon of refraction and obtain an extension of the law of Snell with application to transportation models with several transportation modes. We also extend the problem to the
case where the hyperplane is considered as a rapid transit media that allows the demand points to travel faster through \mathcal{H} to reach the new facility. Extensive computational experiments run in Gurobi are reported in order to show the effectiveness of the approach.

Several extensions of the results in this paper are possible applying similar tools to those used here. Among them we mentioned the consideration of a broader family of Location problems, namely Ordered median problems [18] with framework space separated by a hyperplane. Similar results to the ones in this paper can be obtained assuming that the sequence of lambda weights is non-decreasing monotone, inducing a convex objective function. Another, interesting extension is

\begin{table}
\centering
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline
p_A & p_B & p_H & CPUS | f^* & CPUS | f^* & CPUS | f^* \\
\hline
\multicolumn{8}{|c|}{$\mathcal{H} = \{ y = 1.5x \} \ (|A| = 15)$} \\
1.5 & 1 & 0.0000 & 230.8447 & 0.0313 & 212.9341 & 0.0156 & 200.6406 \\
2 & 1 & 0.0158 & 227.9991 & 0.0156 & 202.6576 & 0.0000 & 185.9525 \\
1.5 & 3 & 0.0313 & 192.0466 & 0.0469 & 180.9279 & 0.0156 & 174.0444 \\
2 & 3 & 0.0156 & 178.2223 & 0.0312 & 174.8964 & 0.0156 & 168.5066 \\
\infty & 1 & 0.0000 & 219.8367 & 0.0000 & 182.1900 & 0.0000 & 161.2033 \\
1.5 & 2 & 0.0313 & 188.7783 & 0.0156 & 168.9589 & 0.0000 & 157.2146 \\
1 & 2 & 0.0156 & 175.4420 & 0.0156 & 163.6797 & 0.0000 & 155.6124 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline
p_A & p_B & p_H & CPUS | f^* & CPUS | f^* & CPUS | f^* \\
\hline
\multicolumn{8}{|c|}{$\mathcal{H} = \{ y = 0.5x \} \ (|A| = 39)$} \\
1.5 & 1 & 0.0156 & 237.4732 & 0.0156 & 224.9178 & 0.0000 & 236.1300 \\
2 & 1 & 0.0000 & 237.3162 & 0.0156 & 218.9480 & 0.0000 & 235.4689 \\
1.5 & 3 & 0.0625 & 228.5484 & 0.0938 & 201.5863 & 0.0156 & 200.3068 \\
2 & 3 & 0.0156 & 223.7967 & 0.0156 & 204.3500 & 0.0000 & 234.7300 \\
\infty & 1 & 0.0156 & 230.8165 & 0.0156 & 206.9512 & 0.0469 & 200.5514 \\
1.5 & 2 & 0.0000 & 230.8165 & 0.0156 & 206.9512 & 0.0469 & 200.5514 \\
1 & 2 & 0.0156 & 225.9387 & 0.0156 & 192.4722 & 0.0156 & 200.1428 \\
\infty & 1 & 0.0156 & 233.7967 & 0.0156 & 204.3500 & 0.0000 & 234.7300 \\
1.5 & 3 & 0.0313 & 196.5559 & 0.0156 & 193.3584 & 0.0313 & 196.4864 \\
2 & 3 & 0.0156 & 196.5559 & 0.0469 & 188.3989 & 0.0313 & 196.3008 \\
\infty & 1 & 0.0156 & 196.5431 & 0.0469 & 179.3396 & 0.0313 & 196.1787 \\
1.5 & 2 & 0.0313 & 196.5559 & 0.0469 & 193.3584 & 0.0313 & 196.4864 \\
1 & 2 & 0.0156 & 196.5559 & 0.0469 & 188.3989 & 0.0313 & 196.3008 \\
\infty & 1 & 0.0156 & 196.5431 & 0.0469 & 179.3396 & 0.0313 & 196.1787 \\
1.5 & 3 & 0.0156 & 223.1421 & 0.0156 & 188.1506 & 0.0156 & 185.9133 \\
2 & 3 & 0.0156 & 223.1421 & 0.0469 & 184.0770 & 0.0313 & 182.1271 \\
\infty & 1 & 0.0156 & 223.1421 & 0.0469 & 184.0770 & 0.0313 & 182.1271 \\
2 & 3 & 0.0156 & 180.1096 & 0.0469 & 169.7842 & 0.0156 & 180.0857 \\
\infty & 1 & 0.0156 & 180.1096 & 0.0156 & 169.7842 & 0.0156 & 180.0857 \\
\hline
\end{tabular}
\caption{Results for the 50-points data set in [11].}
\end{table}
the consideration of a framework space subdivided by an arrangement of hyperplanes. In this case, the problem can still be solved using an enumerative approach based on the subdivision of the space induced by the hyperplanes. Note that the subdivision induced by an arrangement of hyperplanes can be efficiently computed [10], although its complexity is exponential in the dimension of the space. Furthermore, the norm-representation used in our formulations allows us to consider even different norms for each demand point. This framework would model situations in which each demand point is able to use an individual transportation mode which can be different from the one used by the remaining users in the region.

Table 4. CPU Times in seconds for randomly generated data sets.
ACKNOWLEDGEMENTS

The authors were partially supported by the project FQM-5849 (Junta de Andalucía\FEDER). The first and second authors were partially supported by the project MTM2010-19576-C02-01 (MICINN, Spain).

REFERENCES

[1] Alizadeh, F. and Goldfarb, D. (2003), Second order cone programming, Mathematical Programming 95, 3–51.
[2] Aybat, N.S. and Iyengar, G. (2014) . A unified approach for minimizing composite norms. Mathematical Programming A 144, 181–226.
[3] Blanco, V., Puerto, J. and El-Haj Ben-Ali, S. (2014). Revisiting several problems and algorithms in continuous location with l_p norms. Computational Optimization and Applications. DOI 10.1007/s10589-014-9638-z
[4] Brimberg, J. (1995). The Fermat-Weber location problem revisited. Mathematical Programming 71 (1),71 – 76
[5] Brimberg, J., Kakhki, H.T., Wesolowsky, G.O. (2003). Location Among Regions with Varying Norms. Annals of Operations Research 122 (1-4), 87–102.
[6] Brimberg, J., Kakkhi, H.T., Wesolowsky, G.O. (2005). Locating a single facility in the plane in the presence of a bounded region and different norms. Journal of the Operational Research Society of Japan 48 (2), 135–47.
[7] Cánovas, L., Marín, A., and Cañavate, R. (2002). On the convergence of the Weiszfeld algorithm. Mathematical Programming, 93, 327–330.
[8] Carrizosa, E. and Rodríguez-Chía, A. (1997). Weber problems with alternative transportation systems. European Journal of Operational Research 97 (1), 87–93.
[9] Drezner, Z. and Hamacher, H.W. editors (2002). Facility Location: Applications and Theory, Springer.
[10] H. Edelsbrunner (1987). Algorithms in Combinatorial Geometry. Springer.
[11] Eilon, S., Watson-Gandy, C. and Christofides, N (1971). Distribution management: mathematical modeling and practical analysis. Operational Research Quarterly 20:309.
[12] Eckhardt, U. (1980). Weber’s problem and Weiszfeld’s algorithm in general spaces. Mathematical Programming 18, 186–196.
[13] Fathali, J. and Zaferanieh, M. (2011). Location problems in regions with l_p and block norms. Iranian Journal of Operations Research 2 (2), 72–87.
[14] Franco, L., Velasco, F., Gonzalez-Abril, L. (2012). Gate points in continuous location between regions with different l_p norms. European Journal of Operational Research, 218 (3), 648-655.
[15] Lasserre, J.B. (1999). Moments, Positive Polynomials and Their Applications Imperial College Press, London.
[16] Mangasarian, O.L. (1999). Arbitrary-norm separating plane. Oper. Res. Lett. 24(1-2), 15–23 (1999).
[17] Parlar, M., (1994). Single facility location problem with region-dependent distance metrics. International Journal of System Science 25 (3), 513–525.
[18] Nickel, S. and Puerto, J. (2005). Facility Location - A Unified Approach. Springer Verlag.
[19] Puerto, J. and Rodríguez-Chía, A.M. (2011). On the structure of the solution set for the single facility location problem with average distances. Mathematical Programming 128, 373–401.
[20] Rodríguez-Chía, A. and Valero–Franco, C.(2013). On the global convergence of a generalized iterative procedure for the minimum location problem with l_p distances for p > 2. Mathematical Programming 137, 477–502.
[21] Zaferanieh, M., Taghizadeh Kakkhi, H., Brimberg, J. and Wesolowsky, G.O. (2008). A BSSS algorithm for the single facility location problem in two regions with different norms. European Journal of Operational Research 190(1) 79–89.