Fluoride Ion-Initiated Decarboxylation of Silyl Alkynoates to Alkynylsilanes

Takahiro Kawatsu, Sho Kataoka, Norihisa Fukaya, Jun-Chul Choi, Kazuhiko Sato, and Kazuhiro Matsumoto*

ABSTRACT: This communication describes the development of a metal-free catalytic decarboxylation of silyl alkynoates to alkynylsilanes. Treatment of a silyl alkynoate with a catalytic amount of tetrabutylammonium difluorotriphenylsilicate (TBAT) in N,N-dimethylformamide at 150 °C resulted in decarboxylation to give the corresponding alkynylsilane in good to excellent yield (75 → 95%). The TBAT system was applicable to the decarboxylation of sterically demanding silyl alkynoates such as tert-butylidiphenylsilyl 3-phenylpropiolate. Mechanistic studies revealed that the tetrabutylammonium alkynoate derived from TBAT and the silyl alkynoate act as a catalyst for the decarboxylation.

INTRODUCTION

Decarboxylative transformations are recognized as useful reactions in organic synthesis, because carboxylic acids and their ester derivatives are readily available starting materials.1 Among them, the class of decarboxylation reactions that connect two moieties in a molecule separated by a carboxyl group, such as the protodecarboxylation of carboxylic acids and decarboxylative allylic alkylation of β-keto allyl esters, are operationally advantageous: the only stoichiometric coproduct is carbon dioxide, which is nontoxic, nonflammable, and readily removable from the reaction medium.2

Alkynylsilanes are useful building blocks in organic synthesis.3 While the nucleophilic substitution of a halosilane with a metal acetylide prepared by deprotonating a terminal alkyne with an organometallic reagent is one of the most common methods for the synthesis of alkynylsilanes (Scheme 1a),4 the high nucleophilicity of metal acetylides limits their functional group tolerance, and the coproducts derived from the organometallic reagents are sometimes problematic from the viewpoints of practicality and atom economy. Therefore, the catalytic Si−C cross-coupling of a terminal alkyne with a silicon electrophile has attracted increasing attention, and various silicon electrophiles such as halosilanes,5,6 hydro- silanes,7 and vinylsilanes8 are now available for this purpose (Scheme 1b). On the other hand, we recently reported a catalytic decarboxylation approach for the synthesis of alkynylsilanes (Scheme 1c).9−11 In the presence of a copper-based catalyst, a silyl alkynoate is decarboxylated to afford the corresponding alkynylsilane. Although the copper-catalyzed system has some advantages such as a low catalyst loading, mild reaction conditions, and easy-to-remove carbon dioxide as the coproduct, the steric hindrance of the silyl substituents strongly affected the reaction progress and the decarboxylation of silyl alkynoates with bulky silyl groups such as the trisopropylsilyl group was significantly impeded.

Owing to the high affinity of the fluoride ion to silicon atoms, the activation of organosilicon compounds by fluoride...
ion is a common procedure for the transformations of organosilicon compounds. Indeed, alkaline metal fluorides have been applied as catalysts in the decarboxylation of trimethylsilyl perfluorobenzoates. Although the applicable substrates are limited to trimethylsilyl penta- and tetrafluorobenzoates, and the applicability of the approach to the decarboxylation of other silyl esters was unclear, we expected that the small, hard fluoride ion would activate silyl alkoanoates to induce decarboxylation, irrespective of the steric bulk of the silyl substituents (Scheme 1d).

RESULTS AND DISCUSSION

The decarboxylation of trisopropylsilyl 3-phenylpropiolate (1a) was initially investigated in the presence of 5 mol % KF in N,N-dimethylformamide (DMF) at 150 °C, and the desired alkynylsilane 2a was obtained in 42% yield after 1 h (Table 1).

entry	catalyst	conv. (%)	yield (%)
1	KF	46	42
2	KCl	23	19
3	KBr	11	2
4	KI	<5	trace
5	NaF	27	22
6	CsF	65	55
7	MgF2	<5	trace
8	TBAF	>95	50
9	TBAT	94	75
10	TBAT	>95	71

\(^a\)Determined by \(^1\)H NMR analysis using mesitylene as internal standard. \(^b\)PTFE vessel was used instead of glassware. \(^c\)The reaction was carried out at 80 °C.

Under the optimal reaction conditions, the scope of silyl alkoanoates was investigated (Table 2). The decarboxylation of trimethylsilyl 3-phenylpropiolate (1b) was completed in 1 h, affording desired alkynylsilane 2b in 94% yield. Triphenylsilyl 3-phenylpropiolate (1c) and tert-butyldimethylsilyl 3-phenylpropiolate (1d) were completely consumed in 3 h, furnishing products 2c (86%) and 2d (89%), respectively. Even more sterically demanding tert-butyldiphenylsilyl 3-phenylpropiolate (1e) was efficiently decarboxylated to give alkynylsilane 2e in 76% yield, albeit with a longer reaction time of 12 h. Silyl alkoanoates with vinyl (1f) and allyl (1g) groups on the silicon atom were also decarboxylated in excellent yields without any side reactions. The reactions of trimethylsilyl 3-arylsilanes with either electron-donating (−Me and −OMe) or electron-withdrawing (−Cl, −Br, and −NO₂) groups at the para- and ortho-position on the benzene ring afforded the corresponding alkynylsилanes (2h−2m) in high yields (88−95%). These results show that the electronic nature of the aryl groups has little effect on the product yield. It is noteworthy that, because this system contains no transition metals, substrates with C−Cl and C−Br functional groups are tolerated under the reaction conditions. Silyl alkoanoate 1n with an acetoxy group was found to decompose to some extent at 150 °C; thus, the reaction was carried out at 80 °C for 6 h to give alkynylsilane 2n in 94% yield. Diisopropylsilyl-ethyl 3-phenylpropiolate (1o) smoothly underwent two-fold decarboxylation to give the corresponding dialkynylsilane (2o) in 82% yield. Bis-(trisopropylsilyl)ethylbenzene (2p) was afforded in 75% yield by the two-fold decarboxylation of silyl alkoanoate 1p.

Table 1. Optimization of the Reaction Conditions

entry	catalyst	conv. (%)	yield (%)
1	KF	46	42
2	KCl	23	19
3	KBr	11	2
4	KI	<5	trace
5	NaF	27	22
6	CsF	65	55
7	MgF2	<5	trace
8	TBAF	>95	50
9	TBAT	94	75
10	TBAT	>95	71

\(^a\)Determined by \(^1\)H NMR analysis using mesitylene as internal standard. \(^b\)PTFE vessel was used instead of glassware. \(^c\)The reaction was carried out at 80 °C.

Table 2. Scope and Limitations of Silyl Alkoanoates

R	[Si] =	R	[Si] =	Isolated yield (time)
1	SiMe₃	2b	94%	(1 h)
2	SiPh₂	2c	86%	(3 h)
3	SiMe₂SiBu	2d	89%	(3 h)
4	SiPh₂SiBu	2e	76%	(3 h)
5	SiMe₂(vinyl)	2f	>95%	(1 h)
6	Si(allyl)Me₂	2g	>95%	(1 h)

Reaction carried out at 80 °C.
To shed light on the reaction mechanism, the decarboxylation of 1a was followed by 19F NMR spectroscopy (Figure S1). When 1a was reacted with 5 mol % TBAT in DMF-d_7 at room temperature, the complete consumption of TBAT and the formation of iPr$_3$SiF and Ph$_3$SiF were observed; no other compounds containing fluorine atoms were detected. The production of iPr$_3$SiF and Ph$_3$SiF was also confirmed by 29Si-1H NMR spectroscopy (Figure S2). These observations suggest that TBAT is not the true catalyst for the decarboxylation, but rather, the tetrabutylammonium alkynoate that is produced by the reaction of the silyl alkynoate with TBAT functions catalytically. Indeed, tetrabutylammonium 3-phenylpropionate, which was prepared from 3-phenylpropionic acid, NaH, and tetrabutylammonium chloride, smoothly catalyzed the decarboxylation of silyl alkynoate 1a to give alkynylsilane 2a in 95% NMR yield under fluoride-free conditions (Scheme 2a). The clean decarboxylation of 1a with 5 mol % nBu$_4$NOAc also indicated that the fluoride ion is not an essential component of the catalyst, but that the carboxylate ion plays a critical role in the decarboxylation (Scheme 2b).

While the formation of alkynylsilane 2a was not observed in the stoichiometric reaction of tetrabutylammonium 3-phenylpropionate and iPr$_3$SiF (Scheme 2c and Figure S3), not only alkynytriisopropylsilane 2a (11%) but also alkynyltriphenylsilane 2c (13%) were produced in the stoichiometric reaction of silyl alkynoate 1a and TBAT (Scheme 2d and Figure S4), implying that the formation of the tetrabutylammonium alkynoate is reversible.

Based on these findings, a possible reaction mechanism is proposed, as illustrated in Scheme 3. First, TBAT reacts with the silyl alkynoate to produce a tetrabutylammonium alkynoate as well as two fluorosilanes (R$_3$SiF and Ph$_3$SiF) derived from the silyl alkynoate and TBAT. The thus-obtained tetrabutylammonium alkynoate reacts with the silyl alkynoate to form a pentacoordinate silicon intermediate, which undergoes decarboxylation to give the desired alkynylsilane and carbon dioxide with regeneration of the tetrabutylammonium alkynoate.

In summary, we have developed a facile method for the synthesis of alkynylsilanes by decarboxylating silyl alkynoates in the presence of a catalytic amount of commercially available TBAT. A wide variety of substrates, including those with bulky silyl groups such as the tert-butyldiphenylsilyl group or functional groups such as chloro, bromo, and acetoxy groups, were efficiently decarboxylated in good to excellent yields. Mechanistic studies revealed that the tetrabutylammonium alkynoate is the catalyst for the decarboxylation and TBAT acts as a precatalyst. Our group is now investigating catalytic systems for the decarboxylation of silyl esters other than silyl alkynoates.

EXPERIMENTAL SECTION

General Procedure for Decarboxylation of Silyl Alkynoates 1. In a PTFE vessel, a solution of silyl alkynoate 1 (0.50 mmol) and tetrabutylammonium difluorotriphenylsilicate (5 mol %, 0.025 mmol) in DMF (1.0 mL) was stirred at 150 °C. After 1−12 h, the reaction mixture was diluted in CH$_2$Cl$_2$ (0.5 mL) and passed through a silica gel column. After evaporation, the desired alkynylsilane 2 was obtained in 75 → 95% yield.

ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acsomega.1c01256.

Experimental procedures, characterization data, and copies of NMR spectra (1H, 13C(1H), and 29Si(1H)) of the alkynylsilane products (PDF)
This work was supported by the “Development of Innovative Catalytic Processes for Organosilicon Functional Materials” project (Project Leader: K.S.) from the New Energy and Industrial Technology Development Organization (NEDO).

REFERENCES

(1) (a) Rodriguez, N.; Goossen, L. J. Decarboxylative Coupling Reactions: a Modern Strategy for C–C-Bond Formation. Chem. Soc. Rev. 2011, 40, 5030–5048. (b) Wei, Y.; Hu, P.; Zhang, M.; Su, W. Metal-Catalyzed Decarboxylative C–H Functionalization. Chem. Rev. 2017, 117, 8864–8907. (c) Patra, T.; Maiti, D. Decarboxylation as the Key Step in C–C Bond—Forming Reactions. Chem.—Eur. J. 2017, 23, 7382–7401. (d) Moon, P. J.; Lundgren, R. J. Metal-Catalyzed Ionic Decarboxylative Cross-Coupling Reactions of C(sp3) Acids: Reaction Development, Mechanisms, and Application. ACS Catal. 2020, 10, 1742–1753. (e) Daley, R. A.; Topczewski, J. J. Aryl-Decarboxylation Reactions Catalyzed by Palladium: Scope and Mechanism. Synthesis 2020, 52, 365–377.

(2) Weaver, J. D.; Recio, A.; Grenning, A. J.; Tunge, J. A. Transition Metal-Catalyzed Decarboxylative Allylation and Benzylation Reactions. Chem. Rev. 2011, 111, 1846–1913.

(3) (a) Larson, G. Some Aspects of the Chemistry of Allylkynes. Synthesis 2018, 50, 2433–2462. (b) Yamamoto, Y. Silver-Catalyzed C–H and C–Si Bond Transformations and Related Processes. Chem. Rev. 2008, 108, 3199–3222. (c) Blumenkopf, T. A.; Overman, L. E. Vinyllinsilane- and Allylkynsilane-Terminated Cyclization Reactions. Chem. Rev. 1986, 86, 857–873.

(4) (a) Greene, T. W.; Wutts, P. G. Protective Groups in Organic Synthesis, 5th ed.; John Wiley & Sons: New York, 2006. (b) Davidson, W. E.; Henry, M. C. Organometallic Acetylens of the Main Groups III–V. Chem. Rev. 1967, 67, 73–106. (c) Huang, P.; Xu, D.; Reich, R. M.; Kaiser, F.; Liu, B.; Kühn, F. E. Et,Zn-Mediated Stoichiometric C(sp)–H Silylation of 1-Alkynes and Chlorosilanes. Tetrahedron Lett. 2019, 60, 1574–1577.

(5) (a) Lapouyade, P.; Deleir, G.; Dunogues, J.; Calas, R. Synthèse nouvelle d’α-lécyçnes α-silices. J. Organomet. Chem. 1974, 80, C45–C46. (b) Taniguchi, Y.; Inanaga, J.; Yamaguchi, M. Use of 1,8-Diazabicyclo[4.4.0]Junde-7-ene in Preparation of Trimethylsilyl Enol Thiethers and Trimethylsilylecylenes. Bull. Chem. Soc. Jpn. 1981, 54, 3229–3230. (c) Kownacki, I.; Marcinec, B.; Dudzic, B.; Kubicki, M. Silvylative Coupling of Terminal Alkynes with Iodosilanes: New Catalytic Activation of sp-Hybridized Carbon–Hydrogen Bonds. Organometallics 2011, 30, 2539–2545. (d) Kownacki, I.; Orwat, B.; Marcinec, B.; Kownacka, A. New and Efficient Route for the Synthesis of Alkynyl Functionalized Silicon Derivatives. Tetrahedron Lett. 2014, 55, 548–550. (e) Kownacki, I.; Orwat, B.; Marcinec, B.; Iridium-Promoted Conversion of Chlorosilanes to Alkynyl Derivatives in a One-Pot Reaction Sequence. Organometallics 2014, 33, 3051–3059. (f) Speesvaya, E. S.; Lunapova, I. A.; Konshina, D. N.; Konshin, V. V. Zn(OTf)2/i-Pr2NET Promoted Synthesis of Tetraalkynylsilanes. Tetrahedron Lett. 2021, 63, 152713.

(6) Rahaim, R. J.; Jr.; Shaw, J. T. Zinc-Catalyzed Silylation of Terminal Alkenes. J. Org. Chem. 2008, 73, 2912–2915.

(7) (a) Jun, C.-H.; Crabtree, R. H. Dehydrogenative Silylation, Isomerization and the Control of Syn- vs. Anti-Addition in the Hydroisolation of Alkynes. J. Organomet. Chem. 1993, 447, 177–187. (b) Itoh, M.; Mitsuzuka, M.; Utsumi, T.; Iwata, K.; Inoue, K. Dehydrogenative Coupling Reactions between Hydrocarbons and Monosubstituted Alkynes Catalyzed by Solid Bases. J. Organomet. Chem. 1994, 476, c30–c31. (c) Tsuchimoto, T.; Fuji, M.; Iketani, Y.; Sekine, M. Dehydrogenative Silylation of Terminal Alkenes with Hydrocarbons under Zinc–Pyridine Catalysis. Adv. Synth. Catal. 2012, 354, 2959–2964. (d) Toutov, A. A.; Betz, K. N.; Schuman, D. P.; Liu, W.-B.; Fedorov, A.; Stoltz, B. M.; Grubbs, R. H. Alkali Metal-Hydroxide-Catalyzed C(sp)–H Bond Silylation. J. Am. Chem. Soc. 2017, 139, 1668–1674. (e) Ma, Y.; Lou, S. J.; Luo, G.; Luo, Y.; Zhan, G.; Nishiura, M.; Luo, Y. B(C6F5)3/Amine-Catalyzed C(sp)–H Silylation of Terminal Alkenes with Hydrocarbons: Experimental and Theoretical Studies. Angew. Chem. Int. Ed. 2018, 57, 15222–15226.

(8) Marcinec, B.; Dudzic, B.; Kownacki, I. A New Catalytic Route for the Activation of sp-Hybridized Carbon–Hydrogen Bonds. Angew. Chem. Int. Ed. 2006, 45, 8180–8184.

(9) Kawatsu, T.; Aoyagi, K.; Nakajima, Y.; Choi, J.-C.; Sato, K.; Matsumoto, K. Catalytic Decarboxylation of Silyl Alkynates to Alkynylsilanes. Organometallics 2020, 39, 2947–2950.

(10) (a) Herrgott, H. H.; Simchen, G. Eine Einfache Synthese von Trichloromethyltrimethylsilan und Carbonsäure-Trimethylsilylestern. Synthesis 1980, 1980, 626–627. (b) Kornyei, A. N.; Donnikova, O. S.; Samenov, V. V.; Kurskii, Y. A. Synthesis of [Trichloromethyl]-organosilanes by Catalytic Decarboxylation of [Trichloroacetoxy]-organosilanes. Russ. Chem. Bull. 1995, 44, 145–148.

(11) Idris, M. A.; Lee, S. Recent Advances in Decarboxylation Reactions of Alkynoic Acids. Synthesis 2020, 52, 2277–2298.

(12) (a) Abele, E.; Abele, R. Recent Advances in Activation of Silicon Bonds by Fluoride Ion. Main Group Met. Chem. 2009, 32, 165–194. (b) Abele, E. Activation of Silicon Bonds by Fluoride Ion in the Organic Synthesis in The New Millennium: A Review. Main Group Met. Chem. 2005, 28, 45–69. (c) Abele, E.; Lukevics, E. Recent Advances in Fluoride Ion Activation of Silicon Bonds in Organic Synthesis. Main Group Met. Chem. 2001, 24, 315–350. (d) Chuit, C.; Corriu, R. J. P.; Reye, C.; Young, J. C. Reactivity of Penta- and Hexacordinate Silicon Compounds and Their Role as Reaction Intermediates. Chem. Rev. 1993, 93, 1371–1448. (e) Furin, G. G.; Vyyazankina, O. A.; Gostevsky, B. A.; Vyazankin, N. S. Synthetic Aspects of the Use of Organosilicon Compounds under Nucleophilic Catalysis Conditions. Tetrahedron 1988, 44, 2675–2749.
(13) Igumnov, S. M.; Boyko, V. E.; Don, V. L. Method of Producing Fluorinated Aryl(trimethyl)silane. Russia Patent RU 2521168 C1, 2014.

(14) Sharma, R. K.; Fry, J. L. Instability of Anhydrous Tetra-n-alkylammonium Fluorides. *J. Org. Chem.* 1983, *48*, 2112–2114.

(15) Pilcher, A. S.; Ammon, H. L.; DeShong, P. Utilization of Tetrabutylammonium Triphenylsilyldifluoride as a Fluoride Source for Nucleophilic Fluorination. *J. Am. Chem. Soc.* 1995, *117*, 5166–5167.