A clinico-epidemiological multicenter study of herpes zoster in immunocompetent and immunocompromised hospitalized children

Purpose: There are limited population-based data regarding herpes zoster in children. Thus we conducted a multi-institutional epidemiological analysis of herpes zoster in children and comparative analysis according to their immune status.

Materials and Methods: The study included 126 children under the age of 18 years who were hospitalized for herpes zoster at 8 hospitals in South Korea, between July 2009 and June 2015. The subjects were divided into 2 groups according to their immune status, and medical records were reviewed.

Results: There were 61 cases (48.4%) in the immunocompetent group and 65 cases (51.6%) in the immunocompromised group. Median age was older in immunocompromised group (11.4 vs. 8.6) (p < 0.001). The mean duration of hospitalization was longer in immunocompromised group (11.0 vs. 6.6) (p < 0.001). Patients were treated with oral or intravenous antiviral agents. A total of 12 in immunocompetent group were cured only by oral acyclovir. No treatment failure was found in both groups. Six immunocompromised patients had postherpetic neuralgia and 1 case was in immunocompetent group. In immunocompetent children, herpes zoster was likely caused by early varicella infection. There was no increase in progression of severity in both groups due to appropriate treatment.

Conclusion: Early initiation of therapy is necessary for those in immunocompromised conditions. And inactivated herpes zoster vaccination may be considered in immunocompromised adolescents in the future.

Keywords: Herpes zoster, Immunocompetent children, Immunocompromised children, Epidemiological analysis

Introduction

Primary infection with varicella zoster virus (VZV) leads to the clinical manifestation of chicken pox. Following primary infection, VZV remains in the body as a latent infection in the dorsal root ganglia and cranial nerve ganglia. VZV can be reactivated when VZV-specific cell-mediated immunity becomes weak, resulting in herpes zoster accompanied by vesicular eruption along the dermatome of the disease and pain. In general, herpes zoster mainly occurs in the elderly, who exhibit low VZV-specific cell-mediated immunity, and in the immunocompromised. However, it can also occur in immunocompetent children. The clinical symptoms of herpes zoster, such as pain, pruritus, and fever, are milder in children than in adults, and complications are also less frequent.
and less severe [1,2].

Epidemiological studies of herpes zoster, as well as its causes and underlying mechanisms in immunocompetent children, are relatively scarce compared to the number of studies conducted on adults. As herpes zoster appears consistently in immunocompetent children [3,4], there have been studies examining the correlation between the incidence of herpes zoster and chickenpox vaccination, in addition to some large-scale population-based epidemiological studies [2,5-8], but none of these results have been validated. It is known, however, that varicella vaccination does not increase the incidence of herpes zoster and that the frequency of occurrence varies by region. In addition, it has been reported that early infection with VZV and underlying chronic disorders represent risk factors for herpes zoster in immunocompetent children [6,9,10].

Although national immunization program (NIP) vaccination, including the varicella vaccine, has been required since 2005 in Korea for children over the age of 1 years, the incidences of varicella and herpes zoster have remained the same. Since the implementation of NIP vaccination, there have been no population-based epidemiological studies on herpes zoster, and systematic epidemiological studies are also lacking [11-13], as are comparative studies of herpes zoster in immunocompetent and immunocompromised children. Thus, in this study, we conducted a multi-institutional epidemiological analysis of herpes zoster in children after the introduction of chickenpox vaccination into NIP, as well as a clinical comparative analysis of immunocompetent and immunocompromised children.

Materials and Methods

We recruited participants from among patients below the age of 18 who were admitted to the department of pediatrics in 8 medical institutions (Seoul St. Mary’s Hospital, St. Paul’s Hospital, Incheon St. Mary’s Hospital, Daejeon St. Mary’s Hospital, Uijeongbu St. Mary’s Hospital, St. Vincent’s Hospital, Bucheon St. Mary’s Hospital, and Yeouido St. Mary’s Hospital) between July 2009 and June 2015. Those who were suspected to have herpes zoster due to unilateral bullous skin lesions accompanied by clinical pain received a definitive diagnosis through examination after admission into the study. Data were collected from patients’ medical records, including age, sex, presence of underlying disease, history of varicella and immunization history of varicella vaccination, clinical features, examination results, treatment and progress, and complications at the time of admission. The authors assert that all procedures contributing to this work comply with the ethical standards of the relevant national and institutional committees on human experimentation (Catholic Medical Center, XCI5RAMI0079) and with the Helsinki Declaration of 1975, as revised in 2008. Informed consent was obtained from all study participants.

Patients were divided into immunocompromised and immunocompetent groups according to their immune status resulting from underlying diseases. Patients receiving cancer therapy or long-term administration of steroids or immunosuppressants due to hematological tumors, solid tumors, congenital immunodeficiency, autoimmune or rheumatic immune disease, chronic kidney disease, or organ transplantation were categorized as immunocompromised. Patients who had not been diagnosed with one of these underlying diseases were categorized as immunocompetent. The progression of clinical symptoms, associated complications, and treatment outcomes regarding herpes zoster were compared between the 2 groups.

SAS for Windows version 9.4 (SAS Institute Inc., Cary, NC, USA) was used for all statistical analyses. Categorical data, such as sex ratio, distribution of mean age, manifestation rate of an associated symptom (fever), and the route of drug administration, were analyzed by chi-square test. The category, with a low expected frequency, was analyzed with Fisher exact test. Continuous data, such as mean age, days with fever, mean days of admission, blood test values, and treatment period, were analyzed with two-sample t tests. Differences were considered statistically significant at p ≤ 0.05.

Results

Demographic characteristics and underlying diseases
Among a total of 126 subjects over the seven years of the study, there were 9 cases of herpes zoster in 2009 (4 immunocompetent vs. 5 immunocompromised cases), 19 in 2010 (8 vs. 11), 10 in 2011 (2 vs. 8), 27 in 2012 (11 vs. 16), 19 in 2013 (10 vs. 9), 26 in 2014 (15 vs. 11), and 16 in 2015 (11 vs. 5). There were 61 cases (48.4%) in the immunocompetent group and 65 cases (51.6%) in the immunocompromised group. The male:female sex ratio was 0.79:1.0 in the immunocompetent group and 0.91:1.0 in the immunocompromised group, reflecting no significant difference in sex ratio between the 2 groups (p=0.699).
The median age of the patients was 8.6 years in the immunocompetent group and 11.4 years in the immunocompromised group, which represents a significant difference between the 2 groups (p<0.001). Children aged 6-10 years were the most prevalent in the immunocompetent group (22 patients, 36.1%), whereas those aged 11-15 years were more prevalent in the immunocompromised group (30 patients, 46.2%). Despite this, there was no significant difference between the groups in terms of age distribution (p=0.062) (Table 1).

In the analysis of underlying diseases in the immunocompromised group, blood cancer was the most prevalent (52 patients, 80%), followed by aplastic anemia (8 patients), solid tumors (3 patients), chronic Epstein-Barr virus infection (1 patient), and rheumartritis (1 patient).

Varicella disease history and varicella vaccine immunization history

In the immunocompromised group, among the 13 patients, with known history regarding whether they had varicella zoster infection or not, 9 subjects (69.2%) had varicella or herpes zoster. Among these, 3 patients had experienced a recurrence of herpes zoster, all of whom had received a stem cell transplant due to blood cancer. In the immunocompetent group, among 27 patients, with known history regarding whether they had varicella zoster infection or not, 16 subjects (59.3%) had varicella.

Among 107 patients who had been immunized with the varicella vaccine, 49 (45.8%) had a confirmed immunization history of varicella: 13 out of 64 (21.3%) in the immunocompromised group and 36 out of 43 (83.7%) in the immunocompetent group (Table 2).

Associated symptoms, laboratory results, and hospitalization periods

Associated symptoms included fever, vomiting, and headache. Fever, which was the most prevalent symptom, occurred in 13 immunocompetent patients (21.3%) and 22 immunocompromised patients (33.8%). The mean duration of fever was 3.1 days in the immunocompetent group and 2.3 days in the immunocompromised group, which was not statistically significant (p=0.149) (Table 3). In analyzing the laboratory results, we found that the mean white blood cell count was 6,210.9 cells/mm3 in the immunocompetent group and 4,026.7 cells/mm3 in the immunocompromised group, while the mean neutrophil counts were 3,975.7 cells/mm3 and 2,271.4 cells/mm3 in the 2 groups, respectively. Both measurements were significantly different between groups (p<0.001). Mean C-reactive protein (CRP) levels were 1.14 mg/dL in the immunocompetent group and 0.74 mg/dL in the immunocompromised group, which was not statistically significant (p=0.256). Mean absolute neutrophil count (ANC) was 3,975.7 cells/mm3 in the immunocompetent group and 2,271.4 cells/mm3 in the immunocompromised group, which was not statistically significant (p=0.001). Mean alanine transaminase (ALT) and aspartate aminotransferase (AST) levels were not significantly different between groups.

Mean hospitalization duration was 6.6 days in the immunocompetent group and 11.0 days in the immunocompromised group, which was statistically significant (p=0.001). Mean white blood cell (WBC) count was 6,210.9 cells/mm3 in the immunocompetent group and 4,026.7 cells/mm3 in the immunocompromised group, which was statistically significant (p=0.001). Mean CRP level was 1.14 mg/dL in the immunocompetent group and 0.74 mg/dL in the immunocompromised group, which was statistically significant (p=0.256). Mean ANC was 3,975.7 cells/mm3 in the immunocompetent group and 2,271.4 cells/mm3 in the immunocompromised group, which was statistically significant (p=0.001). Mean hospitalization duration was significantly different between groups (p<0.001). Mean WBC, CRP, and ANC were significantly different between groups (p<0.001). Mean AST and ALT were significantly different between groups (p<0.001).

Table 1. Sex and age distributions of immunocompetent and immunocompromised patients

Variable	Immunocompetent (n=61)	Immunocompromised (n=65)	Total	p-value
Sex				
Male:Female	27:34 (0.79:1.0)	31:34 (0.91:1.0)	58:68 (0.85:1.0)	0.6994
Age (yr), n (%)				
1	1 (1.6)	0	1 (0.8)	
1-5	11 (18.0)	5 (7.7)	16 (12.7)	
6-10	22 (36.1)	15 (23.1)	37 (29.4)	
11-15	18 (29.5)	30 (46.2)	48 (38.1)	
16-18	9 (14.8)	15 (23.1)	24 (19.0)	
Mean age (yr)	8.6	11.4	0.0011	

4Numbers in parentheses represent proportions (sex).

1Chi-square test.

2Two-sample t test.

Table 2. Varicella infection and vaccination histories of immunocompetent and immunocompromised patients

Chicken pox	Herpes zoster	Chicken pox vaccination	Non-vaccinated	Unknown	
Immunocompetent	16	0	36	7	18
Immunocompromised	6	3	13	51	1

Table 3. Associated symptoms, laboratory findings, and hospitalization duration of immunocompetent and immunocompromised patients

Variable	Immunocompetent (n=61)	Immunocompromised (n=65)	p-value
Fever, n (%)	13 (21.3)	22 (33.8)	0.1164
Fever duration (day)	3.1	2.3	0.1494
WBC count (cells/mm3)	6,210.9	4,026.7	0.0014
CRP (mg/dL)	1.14	0.74	0.2564
ANC (cells/mm3)	3,975.7	2,271.4	0.0014
Elevated AST, ALT, n (%)	0	27 (41.5)	0.0014
Hospitalization duration (day)	6.6	11.0	0.0014

WBC, white blood cell; CRP, C-reactive protein; ANC, absolute neutrophil count; AST, aspartate aminotransferase; ALT, alanine transaminase.

4Chi-square test.

1Two-sample t test.
active protein counts were 1.14 mg/dL in the immunocompetent group and 0.74 mg/dL in the immunocompromised group and were not significantly different between groups (p=0.256). No cases in the immunocompetent group exhibited increases in aspartate aminotransferase (AST) and alanine transaminase (ALT), markers for disseminative herpes zoster, while 27 (41.5%) in the immunocompromised group did, representing a significantly higher number of patients in the immunocompromised group (p<0.001) (Table 3). The mean duration of hospitalization was 6.6 days (4-15 days) in the immunocompetent group and 11.0 days (7-21 days) in the immunocompromised group, a difference that was significant (p<0.001) (Table 3).

Dermatomic distributions of herpes zoster skin lesions

Herpes zoster skin lesions are distributed over 1 or more dermatomes. In the immunocompetent group, the frequency of zoster in trigeminal dermatomes was 32.8% (20 patients), followed by the thoracic dermatomes (29.5% 18 patients), while in the immunocompromised group, the thoracic dermatomes (21 patients, 32.3%) was the most involved followed by the lumbar dermatomes (17 patients, 26.2%). There were 18 (14.3%) cases involving more than 2 dermatomes, with 8 cases from the immunocompetent group and 10 cases from the immunocompromised group (Table 4).

Table 4. Dermatomic distributions of herpes zoster skin lesions in immunocompetent and immunocompromised patients

Dermatome	Immunocompetent (n=61)	Immunocompromised (n=65)	Total
Cranial nerve	20 (32.8)	5 (7.7)	25 (19.8)
Cervical	11 (18.0)	9 (13.8)	20 (15.9)
Thoracic	18 (29.5)	21 (32.3)	39 (30.9)
Lumbar	4 (6.6)	17 (26.2)	21 (16.7)
Sacral	0	3 (4.6)	3 (2.4)
Multiple	8 (13.1)	10 (15.4)	18 (14.3)

Values are presented as number (%).

Table 5. Therapeutic drugs and administration routes used in the treatment of immunocompetent and immunocompromised patients

Therapeutic drug	Immunocompetent (n=61)	Immunocompromised (n=65)	p-value
ACV only	60	62	>0.99^a
IV ACV+PO famciclovir	1	2	
IV ACV+PO valacyclovir	0	1	
Administration route	IV	36	<0.001^b
	IV+PO	13	
	PO	12	

IV, intravenous; ACV, acyclovir; PO, oral.

^aFisher exact test.

^bChi-square test.

In the immunocompromised group, the thoracic dermatomes (21 patients, 32.3%) was the most involved followed by the lumbar dermatomes (17 patients, 26.2%). There were 18 (14.3%) cases involving more than 2 dermatomes, with 8 cases from the immunocompetent group and 10 cases from the immunocompromised group (Table 4).

Treatment and complications

Patients were treated with oral or intravenous antiviral agents. Among immunocompromised patients, 39 were given intravenous acyclovir only, and 26 were given both intravenous acyclovir and oral antiviral agents (acyclovir, 23; famciclovir, 2; valacyclovir, 1). No patient was treated only with oral antiviral agents. In the immunocompetent group, 36 patients were given intravenous acyclovir only, and 13 patients were given both intravenous acyclovir and oral antiviral agents (acyclovir, 12; famciclovir, 1). In addition, 12 patients were completely cured by oral acyclovir administration, which was a significant difference from the immunocompromised group (p<0.001). Failure of treatment after the administration of antiviral agents was not observed in either group (Table 5).

Regarding complications, encephalomeningitis was observed in 2 immunocompetent patients and 1 immunocompromised patient, and Ramsay Hunt syndrome was observed in 3 immunocompromised patients. A microbiologically confirmed secondary bacterial infection of surgical scarlet fever caused by *Staphylococcus aureus* was observed in 1 patient from the immunocompetent group. In addition, one cellulitis, keratitis, and blepharitis cases were observed in the immunocompetent group. Neuralgia was reported in 7 patients following herpes zoster infection: 6 cases from the immunocompromised group and 1 case from the immunocompetent group (Table 6).
Discussion

Herpes zoster is a disease caused by the reactivation of latent VZV following reduced virus-specific cell-mediated immuni-
ty. Although it mainly occurs in the elderly and immunocom-
prised, it can occur in all age groups and immune status-
es. Despite regional differences, it is consistently reported in
children. Hence, epidemiological study and monitoring of pediat-
ric herpes zoster are required. Recently, studies to as-

sess changes in herpes zoster incidence rates in children after
the introduction of the varicella vaccine [8,14,15], and studies
about the risk factors of herpes zoster in normal children [6, 16-18] have been reported. However, epidemiological studies

of herpes zoster in Korean children are still lacking.

Incidence rates of herpes zoster in children vary widely
across studies, as do views on the association between herpes
zoster and varicella vaccination. This partially stems from
conflicting study results; for example, some studies reported
an increase in the incidence of herpes zoster due to reduced
natural exposure resulting from a decrease in varicella infec-
tion after the introduction of the varicella vaccine [19-21]. In
contrast, other studies claimed that the incidence of herpes
zoster has decreased because the latent version of the live at-
tenuated varicella vaccine strain exhibits reduced reactiva-
tion activity compared to that of wild viruses [22,23]. The mean
age of incidence was found to be 8 years in one report and 12
years in another, also showing variation. However, the fact
that early varicella infection is associated with the incidence
of herpes zoster in immunocompetent children has been ac-
cepted by most researchers [6,17,19,24]. Furthermore, the in-
cidence of herpes zoster is known to be high in children with-
out immunodeficiency but who have chronic diseases such as
asthma or diabetes [25-27]. One Korean study reported that
the incidence of herpes zoster in children have increased
since the mid-1990s, when the varicella vaccine was intro-
duced, and that the median age of incidence is 9.9 years [11].

We performed a retrospective study after the varicella vac-
cine was introduced to the routine NIP, and thus our study
has certain limitations. However, we were able to confirm
that the incidence of herpes zoster has remained constant in
immunocompetent children. The median age at onset of
herpes zoster in this study was 8.6 years in the immunocom-
petent patients and 11.4 years in immunocompromised pa-

tients, reflecting a significantly lower age in immunocompe-
tent patients (Table 1). Among immunocompetent herpes
zoster patients, 16 had a history of varicella infection, with 10
of these infections occurring before the age of 2 years. Hence,
we speculate that the mean age was lower in immunocom-
petent children than in immunocompromised patients be-
cause early infection is associated with the incidence of her-
pes zoster in immunocompetent children. In addition, most
immunocompetent children received the varicella vaccine,
while immunization rates were low among immunocompro-
mised patients (Table 2). To confirm this, a prospective, lon-
gitudinal cohort study is needed.

In terms of underlying disease states, we found that 3 im-
munocompetent children had diabetes. Additionally, it has
been shown that immunocompromised children, especially
those with hematological malignancies and solid tumors, ex-
hibit high incidences of herpes zoster as adults [16]. Among
the 65 immunocompromised patients who participated in
this study, 52 of them had hematological malignancies, and 3
had solid tumors.

In our study population, general symptoms such as fever
and fatigue appeared in the early stage. Pain and pruritus of
the skin lesions was the most common symptoms. In most
patients, pruritus increased as the inflammation and blisters
associated with skin lesions dissipated, and pain was only
observed in certain immunocompromised patients. This clin-
ical progression consist with previous study results [28,29].
Furthermore, postherpetic neuralgia can occur in the late
stages of the disease, and therefore proper pain management
is required. These typical clinical symptoms can be clearly
observed in the elderly and immunocompromised adults. In
children (excluding immunocompromised children in whom
treatment was delayed or not given), both immunocompe-
tent and immunocompromised patients generally exhibit
mild symptoms and progression compared to adults [28,29].
A recent study reported significantly higher rates of associat-
ed symptoms, such as fever, pain, and pruritus, in immuno-
competent children with herpes zoster than in immunocom-
promised ones, suggesting that the differences were related
to immune status [28]. In this study, the most common symp-
tom (excluding skin symptoms) was fever, the mean duration
of which was 3 days in both groups. According to the basic
blood chemistry test performed during hospitalization, total
white blood cell counts and neutrophil counts were signifi-
cantly higher in immunocompetent patients than in immu-
nocompromised children. According to the liver function
test, ALT and AST levels were elevated in 41.5% of immuno-
compromised patients. The duration of hospitalization was
significantly longer in immunocompromised patients, with
The skin lesion manifestation leads to the most favorable progression and prognosis. Acyclovir is administered intravenously or orally as the primary antiviral treatment, but intravenous acyclovir treatment can also be accompanied by oral treatment with famciclovir or valacyclovir. When there is no response to primary treatment, an alternative treatment regimen involving foscarnet or cidofovir is available. In patients with impaired renal function, brivudin can also be used as an alternative antiviral agent [29,30]. In addition to these direct antiviral treatments, steroids can be used in parallel to alleviate pain and improve disease progression. Close monitoring of organ function and viral load is required after the administration of antiviral agents [30]. In conclusion, we found that the incidence of herpes zoster in immunocompetent children has remained consistent following the inclusion of the varicella vaccine to the NIP in Korea. In immunocompetent children with herpes zoster, the disease was likely caused by early varicella infection, with a younger age of herpes zoster incidence than among immunocompromised patients. Clinically, the mean duration of hospitalization was longer for immunocompromised patients than for immunocompetent patients, but there was no increase in progression severity or serious complications. This is likely due to proper treatment received during the early stages of skin lesion development in both groups. In the future, active management of childhood herpes zoster will require monitoring of disease incidence and epidemiological changes through a prospective cohort study. Furthermore,
methods for preventing early varicella infection in immunocompetent children and for reducing the incidence of herpes zoster in immunocompromised children, potentially through an inactivated or subunit varicella zoster virus vaccines, should be explored.

ORCID

Ji Hyen Hwang https://orcid.org/0000-0002-0988-6878
Ki Hwan Kim https://orcid.org/0000-0001-6145-3909
Seung Beom Han https://orcid.org/0000-0002-1299-2137
Hyun Hee Kim https://orcid.org/0000-0002-7196-2894
Jong-Hyun Kim https://orcid.org/0000-0001-8641-7904
Soo Young Lee https://orcid.org/0000-0002-5354-3135
Jin Han Kang https://orcid.org/0000-0003-1610-6742

References

1. Gershon AA. Varicella-zoster virus. In: Feigin RD, Cherry JD, editors. Textbook of pediatric infectious diseases. 5th ed. Philadelphia, PA: WB Saunders Co; 2003. p.1962-9.
2. Petursson G, Helgason S, Gudmundsson S, Sigurdsson JA. Herpes zoster in children and adolescents. Pediatr Infect Dis J 1998;17:905-8.
3. Yih WK, Brooks DR, Lett SM, et al. The incidence of varicella and herpes zoster in Massachusetts as measured by the Behavioral Risk Factor Surveillance System (BRFSS) during a period of increasing varicella vaccine coverage, 1998-2003. BMC Public Health 2005;5:68.
4. Jumaan AO, Yu O, Jackson LA, Bohlke K, Galil K, Seward JF. Incidence of herpes zoster, before and after varicella-vaccination-associated decreases in the incidence of varicella, 1992-2002. J Infect Dis 2005;191:2002-7.
5. Guess HA, Broughton DD, Melton LJ 3rd, Kurland LT. Epidemiology of herpes zoster in children and adolescents: a population-based study. Pediatrics 1985;76:512-7.
6. Kakourou T, Theodoridou M, Mostrou G, Syriopoulou V, Papadogeorgaki H, Constantopoulos A. Herpes zoster in children. J Am Acad Dermatol 1998;39:207-10.
7. Insinga RP, Itzler RF, Pellissier JM, Saddier P, Nikas AA. The incidence of herpes zoster in a United States administrative database. J Gen Intern Med 2005;20:748-53.
8. Wen SY, Liu WL. Epidemiology of pediatric herpes zoster after varicella infection: a population-based study. Pediatrics 2015;135:e565-71.
9. Pergam SA, Forsberg CW, Boeckh MJ, et al. Herpes zoster incidence in a multicenter cohort of solid organ transplant recipients. Transpl Infect Dis 2011;13:15-23.
10. Grote V, von Kries R, Rosenfeld E, Belohradsky BH, Liese J. Immunocompetent children account for the majority of complications in childhood herpes zoster. J Infect Dis 2007;196:1455-8.
11. Mok HR, Park SY, Lee SY, et al. A recent 10-year clinical and epidemiological study on zoster under 20 years old. Korean J Pediatr Infect Dis 2005;12:195-201.
12. Kwak BO, Kim DH, Lee HJ, Choi EH. Clinical manifestations of hospitalized children due to varicella-zoster virus infection. Korean J Pediatr Infect Dis 2013;20:161-7.
13. Park SJ, Song HJ, Kim CW, Lee KS. A clinical study of 72 cases of herpes zoster in children and adolescents. Korean J Dermatol 2006;44:664-8.
14. Weinmann S, Chun C, Schmid DS, et al. Incidence and clinical characteristics of herpes zoster among children in the varicella vaccine era, 2005-2009. J Infect Dis 2013;208:1859-68.
15. Lin HC, Chao YH, Wu KH, et al. Increased risk of herpes zoster in children with cancer: a nationwide population-based cohort study. Medicine (Baltimore) 2016;95:e4037.
16. Wootton SH, Law B, Tan B, et al. The epidemiology of children hospitalized with herpes zoster in Canada: Immunization Monitoring Program, Active (IMPACT), 1991-2005. Pediatr Infect Dis J 2008;27:112-8.
17. Tseng HF, Smith N, Marcy SM, Sy LS, Jacobsen SJ. Incidence of herpes zoster among children vaccinated with varicella vaccine in a prepaid health care plan in the United States, 2002-2008. Pediatr Infect Dis J 2009;28:1069-72.
18. Given R, Chaves SS, Jumaan A, et al. The incidence and clinical characteristics of herpes zoster among children and adolescents after implementation of varicella vaccination. Pediatr Infect Dis J 2009;28:954-9.
19. Feder HM Jr, Hoss DM. Herpes zoster in otherwise healthy children. Pediatr Infect Dis J 2004;23:451-7.
20. Brisson M, Gay NJ, Edmunds WJ, Andrews NJ. Exposure to varicella boosts immunity to herpes-zoster: implications for mass vaccination against chickenpox. Vaccine 2002;20:2500-7.
21. Thomas SL, Hall AJ. What does epidemiology tell us about risk factors for herpes zoster? Lancet Infect Dis 2004;4:26-33.
22. Tanuseputro P, Zagorski B, Chan KJ, Kwong JC. Population-based incidence of herpes zoster after introduction of a publicly funded varicella vaccination program. Vac-
23. Chen JJ, Zhu Z, Gershon AA, Gershon MD. Mannose 6-phosphate receptor dependence of varicella zoster virus infection in vitro and in the epidermis during varicella and zoster. Cell 2004;119:915-26.

24. Huang JL, Sun PC, Hung IJ. Herpes zoster in infancy after intrauterine exposure to varicella zoster virus: report of two cases. J Formos Med Assoc 1994;93:75-7.

25. Kim BS, Mehra S, Yawn B, et al. Increased risk of herpes zoster in children with asthma: a population-based case-control study. J Pediatr 2013;163:816-21.

26. Umaretiya PJ, Swanson JB, Kwon HJ, Grose C, Lohse CM, Juhn YJ. Asthma and risk of breakthrough varicella infection in children. Allergy Asthma Proc 2016;37:207-15.

27. Hata A, Kuniyoshi M, Ohkusa Y. Risk of herpes zoster in patients with underlying diseases: a retrospective hospital-based cohort study. Infection 2011;39:537-44.

28. Kuchar E, Szenborn L, Lis I, Jaroszewska A, Czeladzka J. Clinical presentation of herpes zoster in immunocompetent and immunocompromised hospitalized children treated with scyclovir. J Pediatr Hematol Oncol 2016;38:394-7.

29. Gross G, Schofer H, Wassilew S, et al. Herpes zoster guideline of the German Dermatology Society (DDG). J Clin Virol 2003;26:277-89.

30. Wiegering V, Schick J, Beer M, et al. Varicella-zoster virus infections in immunocompromised patients: a single centre 6-years analysis. BMC Pediatr 2011;11:31.