A two-dimensional limit theorem for Lerch zeta-functions. II

Danutė Regina Genienė

Faculty of Education, Šiauliai University
P. Višinskio 25, LT-76351 Šiauliai
E-mail: dana@splius.lt

Abstract. We prove a two-dimensional limit theorem for Lerch zeta-functions with transcendental and rational parameters.

Keywords: Lerch zeta-function, probability measure, weak convergence.

Let $s = \sigma + it$ be a complex variable, and $0 < \lambda < 1$ and $0 < \alpha \leq 1$ be fixed parameters. The Lerch-zeta function $L(\lambda, \alpha, s)$ is defined, for $\sigma > 1$, by the Dirichlet series $L(\lambda, \alpha, s) = \sum_{m=0}^{\infty} \frac{e^{2\pi i m \lambda}}{(m+\alpha)^s}$, and, because of $0 < \lambda < 1$, is analytically continued to an entire function.

Probabilistic limit theorems for the function $L(\lambda, \alpha, s)$ with transcendental and rational parameter α were proved in [2] while the case of algebraic irrational parameter α was considered in [3, 4, 6, 7].

In [5], we proved a limit theorem on the complex plane for a pair $(L(\lambda_1, \alpha_1, s), L(\lambda_2, \alpha_2, s))$, when α_1 and α_2 are transcendental and algebraic irrational numbers, respectively. The aim of this note is to prove a limit theorem of such a kind when the number α_2 is rational. To state the theorem we need some notation and definitions.

Denote by $B(S)$ the class of Borel sets of the space S, by $\text{meas}\{A\}$ the Lebesgue measure of a measurable set $A \subset \mathbb{R}$, and let

$$\nu_T(\cdots) = \frac{1}{T} \text{meas}\{t \in [0, T]; \cdots\},$$

where in place of dots a condition satisfied by t is to be written. Let $\gamma = \{s \in \mathbb{C}: |s| = 1\}$. Define $\Omega_1 = \prod_{m=0}^{\infty} \gamma_m$ and $\Omega_2 = \prod_{p} \gamma_p$, where $\gamma_m = \gamma$ and $\gamma_p = \gamma$ for all $m \in \mathbb{N}_0 = \mathbb{N} \cup \{0\}$ and primes p, respectively. Denote by $\omega_1(m)$ and $\omega_2(p)$ the projections of $\omega_1 \in \Omega_1$ to γ_m and of $\omega_2 \in \Omega_2$ to γ_p, respectively. Moreover, we extend the function $\omega_2(p)$ to the set \mathbb{N} by the formula $\omega_2(m) = \prod_{p\|m} \omega_2(p), m \in \mathbb{N}$, where $p\|m$ means that $p^j|m$ but $p^{j+1} \nmid m$.

Let $\Omega = \Omega_1 \times \Omega_2$. Then Ω is a compact topological Abelian group, therefore, on $(\Omega, B(\Omega))$ the probability Haar measure m_H can be defined. This gives a probability space $(\Omega, B(\Omega), m_H)$. Suppose that $\alpha_2 = \frac{a}{q}$, $0 < a < q$, $(a, q) = 1$. Denote by $\omega = (\omega_1, \omega_2)$ the elements of Ω, and put, for brevity, $\underline{\alpha} = (\alpha_1, \alpha_2)$, $\underline{\lambda} = (\lambda_1, \lambda_2)$, $\underline{\sigma} = (\sigma_1, \sigma_2)$. On the probability space $(\Omega, B(\Omega), m_H)$, define the \mathbb{C}^2-valued random element $L(\underline{\lambda}, \underline{\alpha}, \underline{\sigma}, \omega)$, for $\min(\sigma_1, \sigma_2) > \frac{1}{2}$, by

$$L(\lambda, \alpha, \sigma, \omega) = (L(\lambda_1, \alpha_1, \sigma_1, \omega_1), L(\lambda_2, \alpha_2, \sigma_2, \omega_2)), $$
where
\[L(\lambda_1, \alpha_1, \sigma_1, \omega_1) = \sum_{m=0}^{\infty} e^{2\pi i \lambda_1 m} \omega_1(m) \frac{\sigma_1}{(m + \alpha_1)^{\sigma_1}} \]
and
\[L(\lambda_2, \alpha_2, \sigma_2, \omega_2) = e^{\frac{-2\pi i m}{q}} q^s \omega_2(q) \sum_{m \equiv 1 \mod(q)} e^{\frac{2\pi im}{m^{\sigma_2}}}. \]

Let \(L(\lambda, \alpha, \sigma + it) = (L(\lambda_1, \alpha_1 + it), L(\lambda_2, \alpha_2, \sigma + it)) \).

Theorem 1. Suppose that the number \(\alpha_1 \) is transcendental, \(\alpha_2 = \frac{a}{q} \), \(0 < a < q \), \((a, q) = 1 \), and \(\min(\sigma_1, \sigma_2) > \frac{1}{2} \). Then the probability measure
\[P_T(A) \equiv \nu_T(L(\lambda, \alpha, \sigma + it) \in A), \quad A \in \mathcal{B}(\mathbb{C}), \]
converges weakly to the distribution of the random element \(L(\lambda, \alpha, \sigma, \omega) \) as \(T \to \infty \).

Let \(\mathcal{P} \) denote the set of all prime numbers. Since \(\alpha_1 \) is transcendental, the set \(\{\log(m + \alpha_1) : m \in \mathbb{N}_0\} \) is linearly independent over the field of rational numbers \(\mathbb{Q} \). The set \(\{\log p : p \in \mathcal{P}\} \) is also linearly independent over \(\mathbb{Q} \). Therefore, it is not difficult to prove that the set
\[L(\alpha_1) \equiv \{\log(m + \alpha_1) : m \in \mathbb{N}_0\} \cup \{\log p : p \in \mathcal{P}\} \]
is linearly independent as well. This leads to the following lemma.

Lemma 1. (See [8].) Suppose that the number \(\alpha_1 \) is transcendental. Then the probability measure
\[Q_T(A) \equiv \nu_T(((m + \alpha_1)^{-it} : m \in \mathbb{N}_0), (p^{-it} : p \in \mathcal{P}) \in A), \quad A \in \mathcal{B}(\Omega), \]
converges weakly to the Haar measure \(m_H \) as \(T \to \infty \).

Let \(\sigma_1 > \frac{1}{2} \) be a fixed number, and \(v_n(m, \alpha_1) = \exp\{-\left(\frac{m + \alpha_1}{m + \alpha_1}^\sigma_1\right)^s\} \), \(v_n(m) = \exp\{-\left(\frac{m}{m}^\sigma_1\right)^s\} \). Define \(L_n(\lambda, \alpha, s) = (L_n(\lambda_1, \alpha_1, s), L_n(\lambda_2, \alpha_2, s)) \), where
\[L_n(\lambda_1, \alpha_1, s) = \sum_{m=0}^{\infty} e^{2\pi i \lambda_1 m} v_n(m, \alpha_1) \frac{\sigma_1}{(m + \alpha_1)^{\sigma_1}} \]
and
\[L_n(\lambda_2, \alpha_2, s) = \sum_{m \equiv 1 \mod(q)} e^{\frac{2\pi im}{m^{\sigma_2}}} e^{\frac{-2\pi im}{q}} q^s v_n(m). \]

By contour integration it is proved, see, for example, [2], that the series for \(L_n(\lambda_1, \alpha_1, s) \) and \(L_n(\lambda_2, \alpha_2, s) \) both converge absolutely for \(\sigma > \frac{1}{2} \).
A two-dimensional limit theorem for Lerch zeta-functions. II

Let, for \(\omega = (\omega_1, \omega_2) \in \Omega \),
\[
L_n((\omega_1, \omega_2), s) = (L_n(\lambda_1, \alpha_1, \omega_1, s), L_n(\lambda_2, \alpha_2, \omega_2, s)),
\]
where
\[
L_n(\lambda_1, \alpha_1, \omega_1, s) = \sum_{m=0}^{\infty} \frac{e^{2\pi i \lambda_1 m \omega_1} e^{m \sigma_1}}{(m + \alpha_1)^s}
\]
and
\[
L_n(\lambda_2, \alpha_2, \omega_2, s) = \sum_{m=0}^{\infty} \frac{e^{2\pi i \lambda_2 m \omega_2} e^{m \sigma_2}}{(m + \alpha_2)^s}.
\]
Since \(|\omega_1(m)| = |\omega_2(m)| = 1\), the later two series also converge absolutely for \(\sigma > \frac{1}{2} \).

On \((C^2, B(C^2))\), define the probability measures \(P_{T,n}(A) = \nu_T(L_n(\lambda, \alpha, \omega, \sigma + it) \in A) \) and \(\tilde{P}_{T,n}(A) = \nu_T(L_n(\lambda, \alpha, \omega, \sigma + it) \in A) \).

Lemma 2. Suppose that \(\min(\sigma_1, \sigma_2) > \frac{1}{2} \). Then on \((C^2, B(C^2))\), there exists a probability measure \(P_n \) such that both the measures \(P_{T,n} \) and \(\tilde{P}_{T,n} \) converge weakly to \(P_n \) as \(T \to \infty \).

Proof. Define the function \(h_n : \Omega \to C^2 \) by the formula \(h_n(\omega) = L(\lambda, \alpha, \omega, \sigma) \). Then the function is continuous, and
\[
h_n((m + \alpha_1)^{-it}; m \in \mathbb{N}_0, (p^{-it}; p \in P)) = L(\lambda, \alpha, \omega, \sigma + it).
\]
Therefore, \(P_{T,n} = Q_T h_n^{-1} \). This, the continuity of \(h_n \), Lemma 1, and Theorem 5.1 of [1] show that \(P_{T,n} \) converges weakly to \(m_H h_n^{-1} \) as \(T \to \infty \).

By the same arguments, using the invariance of the Haar measure \(m_H \), we obtain that the measure \(\tilde{P}_{T,n} \) also converges weakly to \(m_H h_n^{-1} \) as \(T \to \infty \). \(\square \)

For \(z_1 = (z_{11}, z_{12}) \), \(z_2 = (z_{21}, z_{22}) \in C^2 \), let \(\rho_2(z_1, z_2) = (\sum_{j=1}^{2} |z_{j1} - z_{j2}|^2)^{\frac{1}{2}} \).

Lemma 3. Suppose that \(\min(\sigma_1, \sigma_2) > \frac{1}{2} \). Then
\[
\lim_{n \to \infty} \limsup_{T \to \infty} \frac{1}{T} \int_0^T \rho_2(L(\lambda, \alpha, \omega, \sigma + it), L_n(\lambda, \alpha, \omega, \sigma + it)) dt = 0,
\]
and, for almost all \(\omega \in \Omega \),
\[
\lim_{n \to \infty} \limsup_{T \to \infty} \frac{1}{T} \int_0^T \rho_2(L(\lambda, \alpha, \omega, \sigma + it), L_n(\lambda, \alpha, \omega, \sigma + it)) dt = 0.
\]

Proof. The lemma follows from corresponding one-dimensional relations, see [2], and from the definition of the metric \(\rho_2 \). \(\square \)

Define one more probability measure
\[
\tilde{P}_T(A) = \nu_T(L(\lambda, \alpha, \omega, \sigma + it) \in A), \quad A \in B(C^2).
\]
Lemma 4. Suppose that \(\min(\sigma_1, \sigma_2) > \frac{1}{T} \). Then on \((\mathbb{C}^2, \mathcal{B}(\mathbb{C}^2)) \), there exists a probability measure \(P \) such that both the measures \(P_T \) and \(\hat{P}_T \) converge weakly to \(P \) as \(T \to \infty \).

Proof. We remind that \(P_n \) is the limit measure in Lemma 2. First we observe that the family of probability measures \(\{P_n; n \in \mathbb{N}_0\} \) is tight. This is obtained by using Lemma 2 and the fact that

\[
\lim_{T \to \infty} \frac{1}{T} \int_0^T |L_n(\lambda_1, \alpha_1, \sigma_1 + it)|^2 \, dt = \sum_{m=0}^{\infty} \frac{v_n^2(m\alpha_1)}{(m + \alpha_1)^2\sigma_1} \leq \sum_{m=0}^{\infty} \frac{1}{(m + \alpha_1)^2\sigma_1} < \infty
\]

and

\[
\lim_{T \to \infty} \frac{1}{T} \int_0^T |L_n(\lambda_2, \alpha_2, \sigma_2 + it)|^2 \, dt = \sum_{m=1}^{\infty} \frac{q^2\sigma^2_v(m\alpha)}{m^{2\sigma_2}} \leq \sum_{m=1}^{\infty} \frac{\sigma^2_v}{m^{2\sigma_2}} < \infty.
\]

By the Prokhorov theorem, the tightness implies a relative compactness. Therefore, there exists a subsequence \(\{P_{n_k}\} \subset \{P_n\} \) such that \(P_{n_k} \) converges weakly to a certain probability measure \(P \) on \((\mathbb{C}^2, \mathcal{B}(\mathbb{C}^2)) \) as \(k \to \infty \).

Let \(\theta \) be a random variable defined on a certain probability space \((\Omega_0, \mathcal{B}(\Omega_0), \mathbb{P}) \) and uniformly distributed on \([0, 1]\). Define \(\hat{X}_{T,n}(\lambda, \alpha, \sigma) = L_n(\lambda, \alpha, \sigma + i\theta T) \), and denote by \(D \) the convergence in distribution. Then, by Lemma 2, we have that

\[
\hat{X}_{T,n}(\lambda, \alpha, \sigma) \xrightarrow{D} \hat{X}_n(\lambda, \alpha, \sigma),
\]

where \(\hat{X}_n(\lambda, \alpha, \sigma) \) is the \(\mathbb{C}^2 \)-valued random element with distribution \(P_n \). Moreover, by the above remark, we have that

\[
\hat{X}_n(\lambda, \alpha, \sigma) \xrightarrow{D} P.
\]

Let \(\hat{X}_T(\lambda, \alpha, \sigma) = L(\lambda, \alpha, \sigma + i\theta T) \). Then we deduce from Lemma 3 that, for every \(\varepsilon > 0 \),

\[
\lim_{n \to \infty} \limsup_{T \to \infty} \mathbb{P}(\rho_2(\hat{X}_T(\lambda, \alpha, \sigma), \hat{X}_{T,n}(\lambda, \alpha, \sigma)) \geq \varepsilon)
\]

\[
\leq \lim_{n \to \infty} \limsup_{T \to \infty} \frac{1}{T} \int_0^T \rho_2(L(\lambda, \alpha, \sigma + it), L_n(\lambda, \alpha, \sigma + it)) \, dt = 0.
\]

This, (1), (2) and Theorem 4.2 of [1] show that \(\hat{X}_T(\lambda, \alpha, \sigma) \xrightarrow{D} P \), or, in other words, the measure \(P_T \) converges weakly to \(P \) as \(T \to \infty \). The latter relation also shows that the measure \(P \) is independent on the choice of the sequence \(\{P_{n_k}\} \). Thus, we have that

\[
\hat{X}_n(\lambda, \alpha, \sigma) \xrightarrow{D} P.
\]

Define \(\hat{X}_{T,n}(\lambda, \alpha, \omega, \sigma) = L_n(\lambda, \alpha, \omega, \sigma + i\theta T) \) and \(\hat{X}_T(\lambda, \alpha, \omega, \sigma) = L(\lambda, \alpha, \omega, \sigma + i\theta T) \). Then, repeating the above arguments for the random elements \(\hat{X}_{T,n}(\lambda, \alpha, \omega, \sigma) \),
A two-dimensional limit theorem for Lerch zeta-functions. II

ω, σ and \(\hat{X}(\lambda, \alpha, \omega, \sigma) \) with using of Lemmas 2 and 3, and the relation (3), we obtain that the measure \(\hat{P}_T \) also converges weakly to \(P \) as \(T \to \infty \).

Proof of Theorem 1. In view of Lemma 4, it remains to show that the measure \(P \) coincides with the distribution of the random element \(L \).

Let \(A \) be a continuity set of the measure \(P \). Then by Lemma 4 we have that
\[
\lim_{T \to \infty} \nu_T \left(L(\lambda, \alpha, \omega, \sigma + it) \in A \right) = P(A).
\]

On the probability space \((\Omega, \mathcal{B}(\Omega), m_H)\), define the random variable \(\xi \) by
\[
\xi(\omega) = \begin{cases}
1 & \text{if } L(\lambda, \alpha, \omega, \sigma) \in A, \\
0 & \text{otherwise.}
\end{cases}
\]

Then, clearly, the expectation
\[
\mathbb{E}[\xi] = \int_{\Omega} \xi(\omega) \, dm_H = m_H(\omega \in \Omega: L(\lambda, \alpha, \omega, \sigma) \in A) = P_L(A),
\]
where \(P_L \) is the distribution of the random element \(L \).

Let, for \(t \in \mathbb{R} \), \(\alpha_t = ((m + \alpha_1)^{-it}; m \in \mathbb{N}_0), (p^{-it}; p \in \mathcal{P}) \), and \(\varphi_t(\omega) = \omega \alpha_t, \omega \in \Omega \). Then \(\{\varphi_t: t \in \mathbb{R}\} \) is a one-parameter group of measurable measure preserving transformations on \(\Omega \). Since the set \(L(\alpha_1) \) is linearly independent over \(\mathbb{Q} \), by a standard method can be proved that the group \(\{\varphi_t: t \in \mathbb{R}\} \) is ergodic. Hence, the random process \(\xi(\varphi_t(\omega)) \) is ergodic as well. Therefore, the Birkhoff–Khintchine theorem shows that
\[
\lim_{T \to \infty} \frac{1}{T} \int_0^T \xi(\varphi_t(\omega)) \, dt = \mathbb{E}[\xi].
\]

On the other hand, by the definition of \(\xi \) and \(\varphi_t \) we find that
\[
\frac{1}{T} \int_0^T \xi(\varphi_t(\omega)) \, dt = \nu_T \left(L(\lambda, \alpha, \omega, \sigma + it) \in A \right).
\]

This, (5) and (6) yield
\[
\lim_{T \to \infty} \nu_T \left(L(\lambda, \alpha, \omega, \sigma + it) \in A \right) = P_L(A).
\]

Therefore, by (4), \(P(A) = P_L(A) \) for all continuity sets \(A \) of \(P \). Hence, \(P(A) = P_L(A) \) for all \(A \in \mathcal{B}(\mathbb{C}^2) \).

References

[1] P. Billingsley. *Convergence of Probability Measures*. Wiley, New York, 1968.

[2] A. Laurinčikas and R. Garunkštis. *The Lerch Zeta-Function*. Kluwer, Dordrecht, London, Boston, 2002.

[3] V. Garbaliauskienė, D. Genienė and A. Laurinčikas. Value-distribution of the Lerch zeta-function with algebraic irrational parameter. I. *Lith. Math. J.*, 47(2):163–176, 2007.
[4] D. Genienė. The Lerch zeta-function with algebraic irrational parameter. *Liet. mat. rink., LMD darbai*, 50:9–13, 2009.

[5] D. Genienė. A two-dimensional limit theorem for Lerch zeta-functions. *Šiauliai Math. Seminar*, 5(13):19–29, 2010.

[6] D. Genienė, A. Laurinčikas and R. Macaitienė. Value-distribution of the Lerch zeta-function with algebraic irrational parameter. II. *Lith. Math. J.*, 47(4):394–405, 2007.

[7] D. Genienė, A. Laurinčikas and R. Macaitienė. Value-distribution of the Lerch zeta-function with algebraic irrational parameter. III. *Lith. Math. J.*, 48(3):282–293, 2008.

[8] H. Mishou. The joint value distribution of the Riemann zeta function and Hurwitz zeta-functions. *Lith. Math. J.*, 47(1):32–47, 2007.

REZIUMĖ

Dvimatė ribinė teorema Lercho dzeta funkcijoms. II

D.R. Genienė

Straipsnyje įrodoma dvimatė ribinė teorema Lercho dzeta funkcijoms su transcendentčia ir racional–irraţionalų parametrais.

Raktiniai žodžiai: Lercho dzeta funkcija, tikimybinis matas, silpnasis konvergavimas.