Research Article

Xiao-Guang Yue, Mohammad Esmael Samei*, Azam Fathipour, Mohammed K. A. Kaabar*, and Artion Kashuri

Using Krasnoselkii's theorem to investigate the Cauchy and neutral fractional q-integro-differential equation via numerical technique

Abstract: This article discusses the stability results for solution of a fractional q-integro-differential problem via integral conditions. Utilizing the Krasnoselkii's, Banach fixed point theorems, we demonstrate existence and uniqueness results. Based on the results obtained, conditions are provided to ensure the generalized Ulam and Ulam–Hyers–Rassias stabilities of the original system. The results are illustrated by two examples.

Keywords: nonlinear fractional integro-differential equation, neutral differential equation, Cauchy differential equation, existence and stability

MSC 2020: 34A08, 34B16, 39A13

1 Introduction and formulation of the problem

The fractional derivative can be considered as a global operator that has greater degrees of flexibility as compared to integer-order derivative, because a classical derivative with integer-order could be a nearby operator. A few researchers have demonstrated that fractional-order derivatives play a noteworthy part in electrochemical analysis to explain the mechanistic behavior of the concentration of a substrate at the electrode surface to the current [1–13]. Some interesting applications of fractional calculus in science and engineering have been discussed [14–18].

It is interesting to study solution to fractional q-integro-differential problem with integral conditions, which will allow a generalized stability. It is shown in [4] that, in a real k-dimensional Euclidean space, the local and global solutions exist for the following Cauchy problem:

$$
\left\{\begin{array}{l}
{^{C}D}^\sigma_{0+}y(t)=h(t, y(t))+\int_0^t \Theta(t, \xi, y(\xi))d\xi, y(0) = \eta_0,
\end{array}\right. (1.1)
$$

where $0 < \sigma \leq 1$, $h \in C(\bar{I} \times \mathbb{R}^k, \mathbb{R}^k)$, $\Theta \in C(\bar{I} \times \mathbb{R}^k, \mathbb{R}^k)$, $\bar{I} = [0, 1]$, and $^{C}D^\sigma_{0+}$ is the Caputo fractional operator. A class of abstract delayed fractional neutral integro-differential equations was introduced in [19], for $\sigma \in (1, 2)$,

$$
\left\{\begin{array}{l}
{D}^\rho_{t^+}y(t) = a_t\mathcal{N}(y(t)) + \int_0^t a_{\xi}(t-\xi)\mathcal{N}(y(\xi))d\xi \\
+ h(t, y(\rho(t,y))), \\
y(0) = \eta, \quad y'(0) = 0.
\end{array}\right. (1.2)
$$

Using the Leray–Schauder alternative fixed point theorem, the existence results were obtained (for more details, see [3]). Recently, much attention has been paid to the study of differential equations with fractional derivatives
Note that in [22], the authors introduced and studied a related problem. Shah et al. [8] investigated the following problem under delay differential equations involving Caputo fractional derivative and under nonlocal initial condition with non-monotone term as
\[
\begin{aligned}
&\mathbb{R}^\text{L} D^\sigma_0 g(y(t)) = h(t, y(t), D^\sigma_0 g(y(at))), \quad t \in [0, q], \quad \sigma \in (0, 1), \\
&y(0) = y_0 + \psi(t, y(t)),
\end{aligned}
\]
where \(\mathbb{R}^\text{L} D^\sigma_0 g(y(t))\) represent Riemann–Liouville fractional derivative of order \(\sigma \in (0, 1)\) and \(h \in C([0, q] \times \mathbb{R}^2, \mathbb{R}), \psi \in C([0, q] \times \mathbb{R}, \mathbb{R}).\) Ruzhansky et al. studied particularly the existence for the following problem:
\[
\begin{aligned}
&\mathbb{C} D^\sigma_0 \mathbb{I} D^\sigma_0 g[y(t) + h(t, y(t))] = h_0(t, y(t)), \quad t \in [0, 1], \\
y(0) = \sum_{j=1}^{n} \eta_j y(h_j), \\
&cy(1) = \alpha \int_{0}^{1} y(\xi) dH(\xi) + \sum_{j=1}^{n} a_j \int_{\tau_{j-1}}^{\tau_j} y(\xi) d\xi,
\end{aligned}
\]
where \(0 < \tau_0 < \tau_1 < \ldots < \tau_n < 1, \quad \sigma, \nu \in \mathbb{I} = (0, 1), \quad \eta_j, a_j \in \mathbb{R}\) and \(\mathbb{C} D^\sigma_0 \mathbb{I} D^\sigma_0 g\) is the CFD of order \(\sigma, h_0, h_1, h_2\) are given continuous functions. By using the classical tools of fixed point theory, the existence and uniqueness results are obtained. On an arbitrary domain, in [21], the authors studied an FDE with non-conjugate Riemann–Stieltjes integro-multpoint boundary conditions by using new tools on function analysis. For some more related works, refer to [26,27]. Shah et al. considered the following system is investigated under Atangana, Baleanu, and Caputo fractional order derivative
\[
\begin{aligned}
&\mathbb{A} \mathbb{B} \mathbb{C} D^\sigma_0 g(y_1(t)) = h_1(t, y(t), y_1(t), y_2(t)), \quad y_1(0) = \eta_1, \\
&\mathbb{A} \mathbb{B} \mathbb{C} D^\sigma_0 g(y_2(t)) = h_2(t, y(t), y_2(t), y_3(t)), \quad y_2(0) = \eta_2, \\
&\mathbb{A} \mathbb{B} \mathbb{C} D^\sigma_0 g(y_3(t)) = h_3(t, y(t), y_3(t), y_4(t)), \quad y_3(0) = \eta_3,
\end{aligned}
\]
where \(t \in [0, q], \sigma \in (0, 1), h_i: [0, q] \times \mathbb{R}^3 \rightarrow \mathbb{R}, \quad (i = 1, 2, 3)\) are continuous functions [28]. Derbazi et al. determined the existence criteria of extremal solutions for the following \(\theta\)-Caputo-type fractional differential equation in a Caputo sense under nonlinear boundary conditions
\[
\begin{aligned}
&\mathbb{C} D^\sigma_0 a \mathbb{D}^\sigma_0 b[y(t)] = h(t, y(t)), \quad t \in [a, b], \quad \sigma \in (0, 1), \\
&h_2(y(a), y(b)) = 0,
\end{aligned}
\]
where \(\mathbb{C} D^\sigma_0 a \mathbb{D}^\sigma_0 b\) is the \(\theta\)-fractional operator of order \(\sigma \in (0, 1)\) in the Caputo sense and \(h_1 \in C([a, b] \times \mathbb{R}, \mathbb{R}), \quad h_2 \in C(\mathbb{R}^2, \mathbb{R})\) [29]. Abbas [7] investigated the following Langevin equation with the generalized proportional fractional derivatives with respect to another function
\[
\begin{aligned}
&D^{\sigma, \beta}_a \mathbb{D}^{\sigma, \beta}_a [D^{\sigma, \beta}_a \mathbb{D}^{\sigma, \beta}_a + \lambda] y(t) = h(t, y(t)), \quad t \in [a, b], \lambda \in \mathbb{R}, \\
&D^{\sigma, \beta}_a \mathbb{D}^{\sigma, \beta}_a y(a) = y_0, \quad y(b) + \int_{c}^{b} \psi(t, y(t)) dt, \quad a < c < b, \psi \in C([a, b] \times \mathbb{R}, \mathbb{R}), \quad \lambda > 0,
\end{aligned}
\]
where \(\theta > 0, D^{\sigma, \beta}_a \mathbb{D}^{\sigma, \beta}_a\) are the generalized proportional fractional derivative and integral with respect to another continuous function \(\theta\) of order \(\alpha \in (0, 1)\) and \(1 - \alpha\), respectively, and \(h_1 \in C([a, b] \times \mathbb{R}, \mathbb{R})\) is the given function. The authors in [30] studied qualitative aspects of the system of fractional differential equations via Caputo–Hadamard derivative given as
\[
\begin{aligned}
&\mathbb{C} D^\sigma_0 y(t) + h_0(t, y(t), z(t)) = 0, \quad t \in [1, e], \\
&\mathbb{C} D^\sigma_0 z(t) + h_0(t, y(t), z(t)) = 0,
\end{aligned}
\]
under boundary conditions
\[
\begin{aligned}
y(1) = z(1) = y'(1) = z'(1) = 0 = y'(e) = z'(e),
\end{aligned}
\]
and
\[
y(e) = \phi_1(y), \quad z(e) = \phi_2(z) \text{ with } \sigma \in (3, 4), \quad a \in (0, 1), \quad \phi_1, \phi_2 : \mathbb{Y} \rightarrow \mathbb{R}
\]
are continuous functions, where \(\mathbb{Y}\) is complete norm space.

The authors in [2], considered the problem for the system (1.9), and we generalized the system in the \(q\)FDE which is not explicitly presented, and therefore it makes sense to consider for \(t \in \mathbb{I}, \sigma, \nu \in \mathbb{I}\), the problem for system as follows:
\[
\begin{aligned}
&\mathbb{C} D^q_0 y(t) = h_0(t, y(t)) + \int_{t}^{\tau} \Theta(t, \xi, y(\xi)) d\xi, \\
&y(0) = \eta \int_{0}^{\tau^*} y(\xi) d\xi, \quad (\tau^* \in \mathbb{I}),
\end{aligned}
\]
where \(\eta\) is a real constant, \(\mathbb{C} D^q_0\) is the Caputo fractional \(q\)-derivative of order \(\sigma + \nu\), \(I^q_0\) denotes the left-sided Riemann–Liouville fractional \(q\)-integral of order \(\sigma\), and \(h_1 : \mathbb{I} \times \mathbb{I} \rightarrow \mathbb{I}, \Theta : \mathbb{I}^2 \times \mathbb{I} \rightarrow \mathbb{I}\), are appropriate functions satisfying some conditions which will be stated later. \(\mathbb{I}\) is a Banach space equipped with the norm \(\|\cdot\|\).

Here, this study is focused on the question of existence and uniqueness in Section 3. In addition, Section 4 is devoted to show a generalized stability. Note that this representation also allows us to generalize the results obtained recently in the literature. The article is ended by two examples illustrating our results.
2 Notations and preliminaries

We recall some essential preliminaries that are used for the results of the subsequent sections. Let \(t_0 \in \mathbb{R} \) and \(q \in \mathbb{I} \). The time scale \(\mathbb{T}_0 \) is defined by
\[
\mathbb{T}_0 = \{0\} \cup \{ t : t = t_0 q^n, \; \forall n \in \mathbb{N} \}.
\]
If there is no confusion concerning \(t_0 \) we shall denote \(\mathbb{T}_0 \) by \(\mathbb{T} \). Let \(s \in \mathbb{R} \). Define \(s_l = (1 - q^s)/(1 - q) \) (see [31]).

The \(\nu \)-factorial function \((y - z)^{(n)}_\nu \) is defined by
\[
(y - z)^{(n)}_\nu = \prod_{k=0}^{n-1} (y - zq^k), \quad n \in \mathbb{N}_0,
\]
and \((y - z)^{(0)}_\nu = 1 \), where \(y, z \in \mathbb{R} \) and \(\mathbb{N}_0 = \{0\} \cup \mathbb{N} \) (see [32]). Also, we have
\[
(y - z)^{(n)}_\nu = y^n \prod_{k=0}^{\infty} \frac{y - zq^k}{y - zq^{\nu + k}}, \quad \sigma \in \mathbb{R}, \; s \neq 0.
\]

Algorithms 1 and 2 simplify \(\nu \)-factorial functions \((y - z)^{(n)}_\nu \) and \((y - z)^{(s)}_\nu \), respectively. In [33], the authors proved
\[
(y - z)^{(n)}_\nu(y - q^s z)_\nu^s, \quad (sy - sz)^{(s)}_\nu = s^s (y - z)^{(s)}_\nu.
\]

If \(z = 0 \), then it is clear that \(y^{(0)} = y^0 \). The \(q \)-gamma function is given by [31].
\[
\Gamma_q(y) = (1 - q)^{1-y} \frac{(1 - q)^{(1 - y)}(1 - q)^{(y - 1)}}{1 - q^{1 - y} - 1}, \quad (y \in \mathbb{R} \setminus \{-1, 0\}).
\]

In fact, by using (2.2), we have
\[
\Gamma_q(y) = (1 - q)^{1-y} \prod_{k=0}^{\infty} \frac{1 - q^{k+1}}{1 - q^{k+y+1}}.
\]

Algorithm 3 shows the MATLAB lines for calculation of \(\Gamma_q(y) \) which we tend \(n \) to infinity in it. Note that, \(\Gamma_q(y + 1) = \Gamma_q(y) \) [33, Lemma 1]. For any positive numbers \(\sigma \) and \(v \), the \(q \)-beta function is defined by
\[
B_q(\sigma, v) = \frac{\Gamma_q(\sigma)\Gamma_q(v)}{\Gamma_q(\sigma + v)}.
\]

For a function \(w : \mathbb{T} \to \mathbb{R} \), the \(q \)-derivative of \(w \), is
\[
D_q[w](t) = \left(\frac{d}{dt}_q \right) w(t) = \frac{w(qt) - w(t)}{qt - t},
\]
for all \(t \in \mathbb{T} \setminus \{0\} \), and \(D_q[w](0) = \lim_{t \to 0} D_q[w](t) \) (see [32]). Also, the higher order \(q \)-derivative of the function \(y \) is defined by
\[
D^n_q[y](t) = D_q[D^{n-1}_q[y]](t), \quad \forall n \geq 1,
\]
where \(D^n_q[y](t) = y(t) \) (see [32]). In fact,
\[
D^n_q[y](t) = \frac{1}{t^n(1 - q^n)} \sum_{k=0}^{n} \frac{(1 - q^{-n})^{(k)}}{(1 - q^{-n})^{(k)}} q^k y(q^k),
\]
for \(t \in \mathbb{T} \setminus \{0\} \) (see ref. [27]).

Remark 2.1. [9] By using Eq. (2.1), we can change Eq. (2.6) as follows:
\[
D^n_q[y](t) = \frac{1}{t^n(1 - q^n)} \sum_{k=0}^{n} \frac{(1 - q^{-n})^{(k)}}{(1 - q^{-n})^{(k)}} q^k y(q^k).
\]

Algorithms 4 and 5 show the MATLAB codes for calculation of Eqs. (2.5) and (2.7), respectively. The \(q \)-integral of the function \(y \) is defined by
\[
I_q[y](t) = \int_0^1 y(t) dt dq_q = t(1-q) \sum_{k=0}^{\infty} q^k y(q^k),
\]
for \(0 \leq t \leq b \), provided the series absolutely converges (see [32]). By using Algorithm 6, we can obtain the numerical results of \(I_q[y](t) \) when \(n \to \infty \). If \(s \in [0, b] \), then
\[
I_q[y](t) = \int_0^b y(t) dt dq_q = \frac{1}{q^n} \sum_{k=0}^{\infty} q^k [by(bq^k) - sy(sq^k)],
\]
whenever the series exists. The operator \(I_q^n \) is given by \(I_q^n[y](t) = y(t) \) and [32]
\[
I_q^n[y](t) = I_q[I_q^{n-1}[y]](t), \quad \forall n \geq 1, \; y \in \mathbb{C}([0, b]).
\]

It has been proved that
\[
D_q[I_q^n[y]](t) = y(t), \quad I_q[D_q[y]](t) = y(t) - y(0),
\]
whenever the function \(y \) is continuous at \(t = 0 \) (see [32]). The fractional Riemann–Liouville-type \(q \)-integral of the function \(y \) is defined by
\[
I_q^n[y](t) = \int_0^t (t - \xi)^{(n-1)} \frac{y(\xi)}{\Gamma_q(n)} dq_q, \quad n \geq 1,
\]
for \(t \in [0, 1] \) and \(\sigma > 0 \) (see refs [27, 34]).

Remark 2.2. [9] By using Eqs. (2.2), (2.3), and (2.8), we have
\[
I^{[a]}_q[y](t) = t^a(1 - q)^a \lim_{n \to \infty} \sum_{k=0}^{n} q^k \sum_{i=0}^{n} q^k \frac{(1 - q^{-n})^{(k)}}{(1 - q^{-n})^{(k)}} q^k y(q^k),
\]
for \(t \in \mathbb{T} \setminus \{0\} \) (see [27]).
Algorithm 7 shows the MATLAB codes of numerical technique. The Caputo fractional q-derivative of the function y is defined by

$$
\mathcal{D}_q^\sigma y(t) = t^{-\sigma} \frac{d}{dt} \left(t^{\sigma-1} \frac{d^{[\sigma]} y(t)}{d [\sigma-1] q} \right)
$$

for $t \in [0, 1]$ and $\sigma > 0$ (see [34,35]). It has been proved that

$$
\mathcal{I}_q^n \mathcal{D}_q^\sigma y(t) = \mathcal{I}_q^{\sigma+n} y(t),
$$

and $\mathcal{D}_q^\sigma \mathcal{I}_q^n y(t) = y(t)$, where $\sigma, \nu \geq 0$ [34]. Also, (see [34])

$$
\mathcal{I}_q^n \mathcal{D}_q^\sigma y(t) = \mathcal{D}_q^n \mathcal{I}_q^\sigma y(t) - \frac{1}{n!} \sum_{k=0}^{n-1} \Gamma(\sigma + k - n + 1) q^k y(0), \quad \sigma > 0, \ n \geq 1.
$$

Remark 2.3. From Eq. (2.3), Remark 2.1, and Eq. (2.10) in Remark 2.2, we obtain

$$
\mathcal{D}_q^\sigma y(t) = \frac{1}{t^{\sigma}} \lim_{n \to \infty} \frac{n}{n} \prod_{i=0}^{n-1} \left(1 - q^{i+1} \right) \mathcal{I}_q^n \mathcal{D}_q^\sigma y(t)
$$

(2.12)

$$
\times \left(\prod_{i=0}^{n} \left(1 - q^i \right) \right) \left(\prod_{i=0}^{n} \left(1 - q^{\sigma + 1 + k} \right) \right)
$$

Algorithm 8 shows the MATLAB codes of numerical technique. One can find other algorithms in [36]. Now, we introduce some basic definitions, lemmas, and theorems, which are used in the subsequent sections.

Lemma 2.4. [37] Let $y \in AC^q[t_1, t_2]$. Then, one has

1. For $\sigma, \delta > 0$,

$$
\mathcal{I}_q^{-\delta} \mathcal{D}_q^\sigma y(t) = y(t) + \sum_{i=0}^{n-1} \mathcal{C}_i (t - t_i)^i, \ (c_0, c_1, ..., c_{n-1} \in \mathbb{R}),
$$

for $n - 1 < \sigma \leq n, \ n \in \mathbb{N}$;

2. $\mathcal{I}_q^n \mathcal{I}_q^m y(t) = \mathcal{I}_q^{n+m} y(t) = \mathcal{I}_q^n y(t)$;

3. $\mathcal{D}_q^n \mathcal{I}_q^m y(t) = y(t)$.

Lemma 2.5. [37] Let $n - 1 < \sigma \leq n, \ n \in \mathbb{N}$, and $y \in C[t_1, t_2]$. Then for all $t \in [t_1, t_2]$, we have $\mathcal{D}_q^\sigma \mathcal{I}_q^n y(t) = y(t)$.

Lemma 2.6. [37] Let $\sigma \in (0, 1)$. Then for each $y \in AC[0, 1]$, $\mathcal{I}_q^{[\sigma]} y(t) = y(t)$ for a.e. $t \in [0, 1]$, where

$$
\mathcal{D}_q^\sigma y(t) = \frac{d}{d t} \frac{1}{\Gamma(1 - \sigma)} \int_0^t (t - \xi)^{1-\sigma} \mathcal{D}_q^\sigma y(\xi) \ d\xi.
$$

Lemma 2.7. ([38], Banach fixed point theorem) Let \mathcal{B} be a non-empty complete metric space and $\mathcal{T} : \mathcal{B} \to \mathcal{B}$ is a contraction mapping. Then, there exists a unique point $y \in \mathcal{B}$ such that $\mathcal{T}(y) = y$.

Lemma 2.8. ([38], Krasnoselskii fixed point theorem) Let \mathcal{B} be bounded, closed, and convex subset in a Banach space \mathcal{B}. If $\mathcal{T}_1, \mathcal{T}_2 : \mathcal{B} \to \mathcal{B}$ are two applications satisfying the following conditions: (A1) $\mathcal{T}_1(y) + \mathcal{T}_2(z) \in \mathcal{B}$ for every $y, z \in \mathcal{B}$; (A2) \mathcal{T}_1 is a contraction; (A3) \mathcal{T}_2 is compact and continuous. Then there exists $v \in \mathcal{B}$ such that $\mathcal{T}_1(v^*) + \mathcal{T}_2(v^*) = v^*$.

3 Existence results

Before presenting our main results, we need the following auxiliary lemma.

Lemma 3.1. Let $\sigma + \nu \in 1$ and $\eta \nu + 1$. Assume that $h_1, h_2, \text{ and } \Theta$ are three continuous functions. If $y \in C(I, \mathcal{I})$, then y is solution of (1.9) if y satisfies the IE

$$
y(t) = \int_0^1 (t - \xi)^{\sigma + 1} \frac{\Gamma(\sigma + \nu)}{\Gamma(1 - \sigma)} h(\xi, y(\xi)) \ d\xi + \int_0^1 \Theta(\xi, s, y(s)) \ d\xi
$$

(3.1)

Proof. Let $y \in C(I, \mathcal{I})$ be a solution of system (1.9). First, we show that y is a solution of integral Eq. (3.1). By Lemma 2.4 and using boundary condition, we obtain
By substituting from integral boundary condition of our problem with using Fubini's theorem and after some computations, we obtain

\[
y(0) = \eta \int_0^\xi y(\xi) d\xi
\]

From integral boundary condition of our problem with using Fubini's theorem and after some computations, we obtain

\[
y(0) = \eta \int_0^\xi y(\xi) d\xi
\]

that is,

\[
y(0) = \frac{\eta}{1 - \eta^*} \int_0^{\tau^*} \int_0^s (s - r)^{\nu v - 1} \frac{h_2(s, y(r))}{\Gamma_q(\sigma + v)} dr d\xi
\]

Finally, by substituting (3.5) in (3.4), we find (3.1). Conversely, from Lemma 3.1 and by applying the operator \(D^\nu v \) on both sides of (3.1), we find
\[C_D^{\alpha+\nu}y(t) \]
\[= C_D^{\alpha+\nu}\left[q(t, y(t)) + \int_0^t \Theta(t, \xi, y(\xi))d\xi \right] + h_0(t, y(t)) \]
\[+ I_D^\nu h(t, y(t)) \]
\[= h_0(t, y(t)) + I_D^\nu h(t, y(t)) + \int_0^t \Theta(t, \xi, y(\xi))d\xi. \]

This means that \(y \) satisfies the equation in problem (1.9). Furthermore, by substituting \(t \) by 0 in integral Eq. (3.1), we are clear that the integral boundary condition in (1.9) holds. Therefore, \(y \) is solution of problem (1.9), which completes the proof.

In order to prove the existence and uniqueness of solution for problem (1.9) in \(C(I, Y) \), we use two fixed point theorem. First, we transform the system (1.9) into fixed point problem as \(y = Ly \), where \(L : (I, Y) \rightarrow (I, Y) \) is an operator defined by following

\[Ly(t) = \int_0^t \left[(t - \xi)^{\alpha-1}_D \right] \left[h(\xi, y(\xi)) + \int_0^\xi \Theta(\xi, s, y(s))d\xi \right] + \right. \]
\[+ \int_0^\xi (\xi - s)^{\alpha-1}_D h_0(s, y(s))d\xi \]
\[+ \frac{\eta}{1 - \eta^\nu} \int_0^\nu (\tau^\nu - s)^{\alpha+\nu}_D h_0(s, y(s))d\xi \]
\[+ \left. \int_0^s \Theta(s, r, y(r))dr \right] + \int_0^s (s - r)^{\alpha-1}_D h_0(r, y(r))d\xi. \]

3.1 Existence result by Krasnoselskii’s fixed point

Theorem 3.2. Consider continuous functions \(h_1, h_2 : I \times Y \rightarrow Y \) and \(\Theta : I^2 \times Y \rightarrow Y \) such that satisfying: (H1) the inequalities

\[\| (t, y(t)) - h_1(z(t)) \| \leq \mu \| y(t) - z(t) \|, \quad j = 1, 2, \]

and

\[\| \Theta(t, s, z(s)) \| \leq \mu \| y(s) - z(s) \|, \]

where \(\mu, H_j \geq 0, (j = 1, 2) \) with \(\mu = \max \{ \mu_1, \mu_2, \mu^* \} \). (H2) there exist three functions \(g^*, \varrho_j \in L_\infty(I, R^+), (j = 1, 2) \), such that

\[\| h_j(t, y(t)) \| \leq \varrho_j(t) \| y(t) \|, \quad j = 1, 2, \]

and

\[\| \Theta(t, s, y(s)) \| \leq g^*(t) \| y(s) \|, \]

\(\forall t \in I, y, z \in Y \) and \((t, s) \in G = \{(t, s) : 0 \leq s \leq t \leq 1 \} \). If \(\lambda \leq 1 \) and \(\mu \lambda^* \leq 1 \), then problem (1.9) has at least one solution on \(I \), where

\[\lambda = \frac{|\varrho_1|_{L_\infty} + |\varrho_2|_{L_\infty}}{\Gamma_\nu(\sigma + \nu + 1) + \Gamma_\sigma(\sigma + 1)\Gamma_\nu(\sigma + \nu + 1)} \]
\[+ \frac{|\eta|_{L_\infty}}{|1 - \eta^\nu| \Gamma_\nu(\sigma + \nu + 2) + |\eta|_{L_\infty} \Gamma_\sigma(\sigma + 1)\Gamma_\nu(\sigma + \nu + 1)} \]
\[+ \frac{2\lambda^* \nu^{\alpha+\nu}}{|1 - \eta^\nu| \Gamma_\nu(\sigma + \nu + 2)} \]
\[+ \frac{\nu^{\alpha+\nu}\nu(\sigma + 1)\Gamma(\sigma + \nu + 1)}{\Gamma_\sigma(\sigma + 1)\Gamma_\nu(\sigma + \nu + 1)}. \]

Proof. For any function \(y \in C(I, Y) \), we define the norm

\[\| y \|_{L_{\infty}} = \max \{ e^{-\lambda t} \| y(t) \| : t \in I \}, \]

and consider the closed ball

\[B_\lambda = \{ y \in C(I, Y) : \| y \|_{L_{\infty}} \leq \lambda \}. \]

Next, let us define the operators \(L_1, L_2 \) on \(B_\lambda \) as follows:

\[L_1 y(t) = \int_0^t \left[(t - \xi)^{\alpha-1}_D \right] \left[h_1(\xi, y(\xi)) + \int_0^\xi \Theta(\xi, s, y(s))d\xi \right] + \right. \]
\[+ \int_0^\xi (\xi - s)^{\alpha-1}_D h_0(s, y(s))d\xi \]
\[+ \left. \int_0^\nu (\tau^\nu - s)^{\alpha+\nu}_D h_0(s, y(s))d\xi \right| + \int_0^s \Theta(s, r, y(r))dr \]
\[+ \int_0^s (s - r)^{\alpha-1}_D h_0(r, y(r))d\xi. \]

and
\[
\mathcal{U}_t y(t) = \frac{\eta}{1 - \eta \tau^q} \int_0^\tau (\tau - s)^{q-1} \mathcal{G}_t(\sigma + s + 1) \bigg[h_t(s, y(s)) + \int_0^s \Theta_t(s, r, y(r))dr \bigg] ds + \int_0^\tau (s - r)^{q-1} \mathcal{G}_t(\sigma + s + 1) h_t(r, y(r))dr ds.
\]

(3.11)

For \(y, z \in B_t \), \(t \in I \) and by the assumption (H2), we find

\[
\|\mathcal{U}_t y(t) + \mathcal{U}_t z(t)\|
\leq \int_0^\tau \left(1 - \xi \tau^q \right) \left[\|h_t(\xi, y(\xi))\| + \int_0^\xi \|\Theta_t(\xi, s, y(s))\|ds \right. \\
+ \int_0^\tau \left(\xi - s \right)^{q-1} \mathcal{G}_t(\sigma + s + 1) h_t(\xi, y(\xi))ds \bigg] d\xi \\
+ \frac{\xi}{1 - \eta \tau^q} \int_0^\tau (\tau - s)^{q-1} \mathcal{G}_t(\sigma + s + 1) \bigg[h_t(s, z(s)) + \int_0^s \Theta_t(s, r, z(r))dr \bigg] ds \\
+ \int_0^\tau \left(s - r \right)^{q-1} \mathcal{G}_t(\sigma + s + 1) h_t(r, z(r))dr ds \bigg] d\xi \\
\leq \int_0^\tau \left(1 - \xi \tau^q \right) \left[\|h_t(\xi, y(\xi))\| + \int_0^\xi \|\Theta_t(\xi, s, y(s))\|ds \right. \\
+ \int_0^\tau \left(\xi - s \right)^{q-1} \mathcal{G}_t(\sigma + s + 1) h_t(\xi, y(\xi))ds \bigg] d\xi \\
+ \frac{\xi}{1 - \eta \tau^q} \int_0^\tau (\tau - s)^{q-1} \mathcal{G}_t(\sigma + s + 1) \bigg[h_t(s, z(s)) + \int_0^s \Theta_t(s, r, z(r))dr \bigg] ds \\
+ \int_0^\tau \left(s - r \right)^{q-1} \mathcal{G}_t(\sigma + s + 1) h_t(r, z(r))dr ds \bigg] d\xi \\
\leq \int_0^\tau \left(1 - \xi \tau^q \right) \left[\|h_t(\xi, y(\xi))\| + \int_0^\xi \|\Theta_t(\xi, s, y(s))\|ds \right. \\
+ \int_0^\tau \left(\xi - s \right)^{q-1} \mathcal{G}_t(\sigma + s + 1) h_t(\xi, y(\xi))ds \bigg] d\xi \\
+ \frac{\xi}{1 - \eta \tau^q} \int_0^\tau (\tau - s)^{q-1} \mathcal{G}_t(\sigma + s + 1) \bigg[h_t(s, z(s)) + \int_0^s \Theta_t(s, r, z(r))dr \bigg] ds \\
+ \int_0^\tau \left(s - r \right)^{q-1} \mathcal{G}_t(\sigma + s + 1) h_t(r, z(r))dr ds \bigg] d\xi \\
\leq \int_0^\tau \left(1 - \xi \tau^q \right) \left[\|h_t(\xi, y(\xi))\| + \int_0^\xi \|\Theta_t(\xi, s, y(s))\|ds \right. \\
+ \int_0^\tau \left(\xi - s \right)^{q-1} \mathcal{G}_t(\sigma + s + 1) h_t(\xi, y(\xi))ds \bigg] d\xi \\
+ \frac{\xi}{1 - \eta \tau^q} \int_0^\tau (\tau - s)^{q-1} \mathcal{G}_t(\sigma + s + 1) \bigg[h_t(s, z(s)) + \int_0^s \Theta_t(s, r, z(r))dr \bigg] ds \\
+ \int_0^\tau \left(s - r \right)^{q-1} \mathcal{G}_t(\sigma + s + 1) h_t(r, z(r))dr ds \bigg] d\xi \\
\leq \int_0^\tau \left(1 - \xi \tau^q \right) \left[\|h_t(\xi, y(\xi))\| + \int_0^\xi \|\Theta_t(\xi, s, y(s))\|ds \right. \\
+ \int_0^\tau \left(\xi - s \right)^{q-1} \mathcal{G}_t(\sigma + s + 1) h_t(\xi, y(\xi))ds \bigg] d\xi \\
+ \frac{\xi}{1 - \eta \tau^q} \int_0^\tau (\tau - s)^{q-1} \mathcal{G}_t(\sigma + s + 1) \bigg[h_t(s, z(s)) + \int_0^s \Theta_t(s, r, z(r))dr \bigg] ds \\
+ \int_0^\tau \left(s - r \right)^{q-1} \mathcal{G}_t(\sigma + s + 1) h_t(r, z(r))dr ds \bigg] d\xi.
\]

Therefore,

\[
\|\mathcal{U}_t y + \mathcal{U}_t z\|
\leq \int_0^\tau \left(1 - \xi \tau^q \right) \left[\|h_t(\xi, y(\xi))\| + \int_0^\xi \|\Theta_t(\xi, s, y(s))\|ds \right. \\
+ \int_0^\tau \left(\xi - s \right)^{q-1} \mathcal{G}_t(\sigma + s + 1) h_t(\xi, y(\xi))ds \bigg] d\xi \\
+ \frac{\xi}{1 - \eta \tau^q} \int_0^\tau (\tau - s)^{q-1} \mathcal{G}_t(\sigma + s + 1) \bigg[h_t(s, z(s)) + \int_0^s \Theta_t(s, r, z(r))dr \bigg] ds \\
+ \int_0^\tau \left(s - r \right)^{q-1} \mathcal{G}_t(\sigma + s + 1) h_t(r, z(r))dr ds \bigg] d\xi \\
\leq \int_0^\tau \left(1 - \xi \tau^q \right) \left[\|h_t(\xi, y(\xi))\| + \int_0^\xi \|\Theta_t(\xi, s, y(s))\|ds \right. \\
+ \int_0^\tau \left(\xi - s \right)^{q-1} \mathcal{G}_t(\sigma + s + 1) h_t(\xi, y(\xi))ds \bigg] d\xi \\
+ \frac{\xi}{1 - \eta \tau^q} \int_0^\tau (\tau - s)^{q-1} \mathcal{G}_t(\sigma + s + 1) \bigg[h_t(s, z(s)) + \int_0^s \Theta_t(s, r, z(r))dr \bigg] ds \\
+ \int_0^\tau \left(s - r \right)^{q-1} \mathcal{G}_t(\sigma + s + 1) h_t(r, z(r))dr ds \bigg] d\xi \\
\leq \epsilon \lambda \leq \epsilon.
\]

This implies that \((\mathcal{U}_t y + \mathcal{U}_t z) \in B_t\). Here we used the computations

\[
\int_0^\tau (1 - \xi \tau^q) \xi^q \mathcal{G}_t(\xi, y(\xi))d\xi = \beta_0(\xi, y(\xi))
\]

and the estimations:
In this step, we show that \mathcal{U}_1 is a contraction mapping. Let $y, z \in \mathcal{S}$, $t \in [0, 1]$. We have

$$
\|\mathcal{U}_1 y(t) - \mathcal{U}_1 z(t)\| \\
\leq \frac{|\eta|}{|1 - \eta t^r|} \int_0^r t^r (t^r - s^q_y)^{\sigma + v} \frac{\Gamma_q(\sigma + v + 1)}{\Gamma_q(\sigma)} ds \\
\times \left[\|h_1(s, y(s)) - h_1(s, z(s))\| \\
+ \int s^r \|h_2(s, y'()) - h_2(s, z'())\| ds \\
+ \int s^r \|\Theta(s, y(s)) - \Theta(s, z(s))\| ds \right] ds
$$

which implies that

$$
\|\mathcal{U}_1 y\| \leq \frac{A}{|1 - \eta t^r|} \int_0^r t^r (t^r - s^q_y)^{\sigma + v} \frac{\Gamma_q(\sigma + v + 1)}{\Gamma_q(\sigma)} ds \\
\times \left[\|h_1(s, y(s))\| + \int s^r \|h_2(s, y'())\| ds \\
+ \int s^r \|\Theta(s, y(s))\| ds \right] ds
$$

Thus,

$$
\|\mathcal{U}_1 y - \mathcal{U}_1 z\| \leq \frac{|\eta|}{|1 - \eta t^r|} \int_0^r t^r (t^r - s^q_y)^{\sigma + v} \frac{\Gamma_q(\sigma + v + 1)}{\Gamma_q(\sigma)} ds \\
\times \left[\|y - z\| \left\| \frac{e^s}{e^{s-1}} - e^s \right\| \right] \left[(e^{s-1} - 1) \right] \\
\times \left[\int s^r \|h_2(s, y'()) - h_2(s, z'())\| ds \\
+ \int s^r \|\Theta(s, y(s)) - \Theta(s, z(s))\| ds \right] ds
$$

Then since $\mu t \leq 1$, \mathcal{U}_2 is a contraction mapping. The continuity of the functions h_1, h_2, Θ implies that \mathcal{U}_1 is continuous and $\mathcal{U}_1 B_t \subset B_t$, for each $y \in B_t$, i.e., \mathcal{U}_1 is uniformly bounded on B_t as

$$
\|\mathcal{(U_1 y)}(t)\| \leq \frac{t}{\Gamma_q(\sigma + v)} \left[\left(t - \xi^q_{y'} - \frac{1}{\Gamma_q(\sigma + v + 1)} \right) \\
\times \|h_1(\xi, y(\xi))\| + \int_0^\xi \|\Theta(\xi, s, y(s))\| ds \right]
$$

which implies that

$$
\|\mathcal{U}_1 y\| \leq \frac{t}{\Gamma_q(\sigma + v)} \left[\left(t - \xi^q_{y'} - \frac{1}{\Gamma_q(\sigma + v + 1)} \right) \\
\times \|h_1(s, y(s))\| + \int_0^\xi \|\Theta(s, y(s))\| ds \right]
$$

Finally, we will show that $(\mathcal{U}_1 B_t)$ is equi-continuous. For this end, we put

$$
\mathcal{H}_j = \sup_{(t, y(t)) \in B_t} \|h_1(t, y(t))\|, \quad \mathcal{H}_j = \sup_{(t, y(t)) \in B_t} \|\Theta(t, y(t))\| ds
$$

Let for any $y \in B_t$ and for each $t_1, t_2 \in I$ with $t_1 \leq t_2$, we have

$$
\|\mathcal{U}_1 y(t_2) - \mathcal{U}_1 y(t_1)\| \\
\leq \int_{t_1}^{t_2} (t_2 - \xi^q_{y'}) \frac{1}{\Gamma_q(\sigma + v + 1)} ds \\
\times \left[\|h_1(\xi, y(\xi))\| + \int_0^\xi \|\Theta(\xi, s, y(s))\| ds \right]
$$

Then since $\mu t \leq 1$, \mathcal{U}_2 is a contraction mapping. The continuity of the functions h_1, h_2, Θ implies that \mathcal{U}_1 is continuous and $\mathcal{U}_1 B_t \subset B_t$, for each $y \in B_t$, i.e., \mathcal{U}_1 is uniformly bounded on B_t as
\[
\begin{align*}
&\leq \int_{t_1}^{t_2} \frac{(t_2 - \xi q)^{\alpha - 1}}{\Gamma(\sigma + v)} \left[\mathcal{H}_1 + \mathcal{Y} + \int_{0}^{\xi} \frac{\mathcal{H}_2(\mathcal{H}_1 - s)^{\alpha - 1}}{\Gamma(\sigma)} ds \right] \, dq_1 \\
&\quad + \frac{1}{\Gamma(\sigma + v)} \int_{t_1}^{t_2} \left[(t_1 - \xi q)^{\alpha - 1} - (t_2 - \xi q)^{\alpha - 1} \right] \\
&\quad \times \left[\mathcal{H}_1 + \mathcal{Y} + \int_{0}^{\xi} \frac{\mathcal{H}_2(\mathcal{H}_1 - s)^{\alpha - 1}}{\Gamma(\sigma)} ds \right] \, dq_1 \\
&\quad \leq \int_{t_1}^{t_2} \frac{(t_2 - \xi q)^{\alpha - 1}}{\Gamma(\sigma + v)} \left[\mathcal{H}_1 + \mathcal{Y} + \int_{0}^{\xi} \frac{1}{\Gamma(\sigma + v + 1)} [\mathcal{H}_1 + \mathcal{Y}] + \frac{\mathcal{H}_2}{\Gamma(\sigma + v + 1)} \right] (t_2 - t_1)^{\alpha - v + 1} + (t_1 - \xi q)^{\alpha - v} - (t_2 - \xi q)^{\alpha - v}].
\end{align*}
\]

The RHS of the last inequality is independent of \(y \) and tends to zero when \(|t_2 - t_1| \to 0 \), this means that \(\mathcal{U} \mathcal{y}(t_2) - \mathcal{U} \mathcal{y}(t_1) \to 0 \), which implies that \(\mathcal{U} \mathcal{B} \) is equicontinuous, then \(\mathcal{U} \) is relatively compact on \(\mathcal{B} \). Hence, by the Arzelà–Ascoli theorem, \(\mathcal{U} \) is compact on \(\mathcal{B} \). Now, all hypotheses of Theorem 3.2 hold; therefore, the operator \(\mathcal{U} \mathcal{I} + \mathcal{U} \) has a fixed point on \(\mathcal{B} \). So problem (1.9) has at least one solution on \(\mathcal{I} \). This proves the theorem.

3.2 Existence and uniqueness result

Theorem 3.3. Assume that \((H_i) \) holds. If \(\mu \lambda < 1 \), then the boundary value problems (1.9) has a unique solution on \(\mathcal{I} \).

Proof. Define \(m = \max\{m_1, m_2, m^*\} \), where \(m_1 \) and \(m^* \) are positive numbers such that

\[
m_j = \sup_{t \in \mathcal{I}} \|h(t, 0)\|, \quad (j = 1, 2),
\]

\[
m^* = \sup_{(t, s) \in \mathcal{I} \times \mathcal{I}} \|\Theta(t, s, 0)\|.
\]

We fix \(\ell \geq \frac{m^*}{\mu \lambda} \) and we consider

\[
\mathcal{N}_\ell = \{y \in C(\mathcal{I}, \mathcal{S}) : \|y\| \leq \ell\}.
\]

Then, in view of the assumption \((H_i) \), we have

\[
\|\mathcal{H}_2(t, y(t))\| = \|h(t, y(t)) - h(t, 0) + h(t, 0)\| \\
\leq \|h(t, y(t)) - h(t, 0)\| + \|h(t, 0)\| \\
\leq \mu \|y\| + m_1,
\]

\[
\|\mathcal{H}_2(t, y(t))\| \leq \mu \|y\| + m^*,
\]

and \(\|\Theta(t, s, y(s))\| \leq m^* \|y\| + m^* \). In the first step, we show that \(\mathcal{U} \mathcal{N}_\ell \subset \mathcal{N}_\ell \). For each \(t \in \mathcal{I} \) and for any \(y \in \mathcal{N}_\ell \),

\[
\|\mathcal{U} \mathcal{y}(t)\| \leq \int_{0}^{\xi} \left[(t - \xi q)^{\alpha - v + 1} + (t_1 - \xi q)^{\alpha - v} - (t_2 - \xi q)^{\alpha - v} \right] \, dq_1 \\
\times \left[\|h(t, y(t))\| + \int_{0}^{\xi} \|\Theta(t, s, y(s))\| \, ds \right] \\
\times \left[\|h(t, y(t))\| + \int_{0}^{\xi} \|\Theta(t, s, y(s))\| \, ds \right] \\
\times \left[\|h(t, y(t))\| + \int_{0}^{\xi} \|\Theta(t, s, y(s))\| \, ds \right] \\
\times \left[\|h(t, y(t))\| + \int_{0}^{\xi} \|\Theta(t, s, y(s))\| \, ds \right] \\
\leq \mu \|y\| + m^* \lambda \leq \ell.
\]

Hence, \(\mathcal{U} \mathcal{N}_\ell \subset \mathcal{N}_\ell \). Now, in the second step, we shall show that \(\mathcal{U} : \mathcal{N}_\ell \to \mathcal{N}_\ell \) is a contraction. From the assumption \((H_i) \) we have for any \(y, z \in \mathcal{N}_\ell \) and each \(t \in \mathcal{I} \)

\[
\|\mathcal{U} \mathcal{y}(t) - \mathcal{U} \mathcal{z}(t)\| \\
\leq \int_{0}^{\xi} \left[(t - \xi q)^{\alpha - v + 1} \right] \, dq_1 \\
\times \left[\|h(t, y(t))\| - \|h(t, z(t))\| \right] \\
\times \left[\|h(t, y(t))\| - \|h(t, z(t))\| \right] \\
\times \left[\|h(t, y(t))\| - \|h(t, z(t))\| \right] \\
\times \left[\|h(t, y(t))\| - \|h(t, z(t))\| \right] \\
\leq \mu \|y - z\|.
\]

Since \(\mu \lambda < 1 \), it follows that \(\mathcal{U} \) is a contraction. All assumptions of Lemma (3.1) are satisfied, then there exists
and problem (1.9) is called Ulam–Hyers–Rassias stable with respect to \(\varrho \in C(\bar{I}, R) \) if
\[
\|z(t)\| \leq \varrho(t), \quad t \in \bar{I},
\]
and there exist a real number \(\gamma > 0 \) and a solution \(z \in C(\bar{I}, \mathcal{S}) \) of problem (1.9) such that
\[
\|y(t) - z(t)\| \leq \gamma \varrho(t), \quad t \in \bar{I},
\]
where \(\gamma \) is a positive real number depending on \(\varepsilon \).

Theorem 4.1. Under assumption (H2) in Theorem 3.1, with \(\mu \lambda < 1 \), problem (1.1) is both Ulam–Hyers and generalized Ulam–Hyers stable.

Proof. Let \(y \in C(\bar{I}, \mathcal{S}) \) be a solution of problem (1.9), satisfying (3.1) in the sense of Theorem 3.2. Let \(z \) be any solution satisfying (4.1). Lemma 2.4 implies the equivalence between the operators \(\mathcal{P} \) and \(\mathcal{T} - \mathcal{I} \) (where \(\mathcal{I} \) is the identity operator) for every solution \(z \in C(\bar{I}, \mathcal{S}) \) of problem (1.9) satisfying \(\mu \lambda < 1 \). Therefore, we deduce by the fixed-point property of the operator \(\mathcal{T} \) that
\[
\|z(t)\| = \|z(t)Tz(t) + Tz(t)y(t)\| \\
= \|Tz(t)\| \|z(t)\| + \|Tz(t)y(t)\| \\
\leq \|Tz(t)\| \|y(t)\| + \|Tz(t)z(t)\| \\
\leq \mu \lambda \|z(t)\| + \varepsilon,
\]

because \(\mu \lambda < 1 \) and \(\varepsilon > 0 \), we find
\[
\|u - v\| \leq \frac{\varepsilon}{1 - \mu \lambda}.
\]
Fixing \(\varepsilon = \frac{\varepsilon}{1 - \mu \lambda} \) and \(\gamma = 1 \), we obtain the Ulam–Hyers stability condition. In addition, the generalized Ulam–Hyers stability follows by taking \(\varrho(\varepsilon) = \frac{\varepsilon}{1 - \mu \lambda} \).

Theorem 4.2. Assume that (H2) holds with \(\mu < \lambda \), and there exists a function \(\varrho \in C(\bar{I}, R^+ \) satisfying the condition 4.2. Then problem (1.9) is Ulam–Hyers–Rassias stable with respect to \(\varrho \).

Proof. We have from the proof of Theorem 4.1,
\[
\|y(t) - z(t)\| \leq \varepsilon \varrho(t), \quad \forall t \in \bar{I},
\]
where \(\varepsilon \), \(\frac{\varepsilon}{1 - \mu \lambda} \), and so the proof is completed.

5 Illustrative of our outcome

First we present Example 5.1, for illustrative our main result.
Example 5.1. Consider the following fractional integro-differential problem:

\[
\begin{align*}
C^d_D^{6\frac{5}{17}}[y](t) &= \left(\frac{15 - 2t}{25} y(t) + \frac{5}{43} \int_0^t (5 - t) \sin(y(t)) \, dt\right) \\
&\quad + \int_0^t y(\xi) \exp(-(t + \xi)) \, d\xi,
\end{align*}
\]

with boundary condition

\[y(0) = -\frac{15}{2} \int_0^{0.6} y(\xi) \, d\xi, \quad \forall t \in \mathbb{I}.
\]

Clearly \(\sigma + v = \frac{68}{77}, \sigma = \frac{5}{17}, \tau^* = 0.6, \) and \(\eta = -\frac{15}{2}.\) To illustrate our results in Theorems 3.2 and 4.1, we take for \(y, z \in \mathcal{H} = \mathbb{R}^+\) and \(t \in [0, 1]\) the following continuous functions:

\[
h_1(t, y(t)) = \frac{(15 - 2t) y(t)}{25},
\]

\[
h_2(t, y(t)) = \frac{(5 - t) \sin(y(t))}{43},
\]

and

\[
\Theta(t, s, y(s)) = \frac{y(s) \exp(-(t + s))}{20}.
\]

Now, for \(y, z \in \mathcal{H},\) we have

\[
\|h_1(t, y(t)) - h_1(t, z(t))\| = \left\|\frac{(15 - 2t) y(t) - (15 - 2t) z(t)}{25}\right\| = \frac{15 - 2t}{25} \|[y(t) - z(t)]\| \
\]

\[
\leq \frac{3}{5} \|[y(t) - z(t)]\|,
\]

\[
\|h_2(t, y(t)) - h_2(t, z(t))\| = \left\|\frac{(5 - t) \sin(y(t)) - (5 - t) \sin(z(t))}{43}\right\| = \frac{5 - 2t}{43} \|[y(t) - z(t)]\| \
\]

\[
\leq \frac{5}{43} \|[y(t) - z(t)]\|,
\]

and

\[\Theta(t, s, y(s)) - \Theta(t, s, z(s))\| = \left\|\frac{y(s) \exp(-(t + s)) - y(s) \exp(-(t + s))}{20}\right\| = \frac{\exp(-(t + s))}{20} \|[y(s) - z(s)]\| \
\]

\[\leq \frac{1}{20} \|[y(s) - z(s)]\|,
\]

for each \(t, s \in \mathbb{I}\) and \((t, s) \in G.\) Hence, \(\mu_1 = \frac{17}{25}, \mu_2 = \frac{17}{43}, \mu' = \frac{1}{20},\) and so

\[\mu = \max\{\mu_1, \mu_2, \mu'\} = \frac{17}{25}.
\]

Also, we obtain

\[
\|h_1(t, y(t))\| = \left\|\frac{(15 - 2t) y(t)}{25}\right\| \leq \frac{15 - 2t}{25} \|[y(t)]\|,
\]

\[
\|h_2(t, y(t))\| = \left\|\frac{(5 - t) \sin(y(t))}{43}\right\| \leq \frac{5 - 2t}{43} \|[y(t)]\|,
\]

\[
\|\Theta(t, s, y(s))\| \leq \frac{\exp(-(t + s))}{20} \|[y(s)]\|,
\]

for each \(t, s \in \mathbb{I}.\) Hence,\n
\[
q_{1}(t) = \frac{15 - 2t}{25}, \quad q_{2}(t) = \frac{5 - 2t}{43}, \quad q'(t) = \frac{\exp(-t)}{20},
\]

for all \(t \in \mathbb{I}, y, z \in \mathcal{H}\) and \((t, s) \in G.\) By the above, we find that

\[
\lambda = \left\|q_{1} \hat{I}^{\sigma\nu}_{\alpha} + q_{2} \hat{I}^{\sigma\nu}_{\alpha} + \frac{\mu_{1}}{\mu_{2}}B_{\alpha}(\sigma + 1, \sigma + v)\hat{I}_{\alpha}(\sigma + 1, \sigma + v) + \frac{\mu_{1}}{\mu_{2}}B_{\alpha}(\sigma + 1, \sigma + v + 1)\hat{I}_{\alpha}(\sigma + 1, \sigma + v + 1) + \frac{\mu_{1}}{\mu_{2}}B_{\alpha}(\sigma + 1, \sigma + v + 1)\hat{I}_{\alpha}(\sigma + 1, \sigma + v + 1)\right\|
\]

\[
= \frac{1}{5} + \frac{1}{30} \left|\alpha\right| B_{\alpha}(\frac{5}{7} + 1, \frac{5}{7} + \frac{1}{7}) \hat{I}_{\alpha}(\frac{5}{7} + 1, \frac{5}{7} + \frac{1}{7}) + \frac{15}{20} \times 0.6 \hat{I}_{\alpha}(\frac{5}{7} + 1, \frac{5}{7} + \frac{1}{7}) + \frac{\mu_{1}}{\mu_{2}} - 0.6 \hat{I}_{\alpha}(\frac{5}{7} + 1, \frac{5}{7} + \frac{1}{7})
\]

\[
= \frac{15}{20} \times 0.6 \hat{I}_{\alpha}(\frac{5}{7} + 1, \frac{5}{7} + \frac{1}{7}) + \frac{15}{20} \times 0.6 \hat{I}_{\alpha}(\frac{5}{7} + 1, \frac{5}{7} + \frac{1}{7})
\]

\[
= \frac{15}{20} \times 0.6 \hat{I}_{\alpha}(\frac{5}{7} + 1, \frac{5}{7} + \frac{1}{7}) + \frac{15}{20} \times 0.6 \hat{I}_{\alpha}(\frac{5}{7} + 1, \frac{5}{7} + \frac{1}{7})
\]

and

\[
\frac{\hat{I}_{\alpha}(\frac{5}{7} + 1, \frac{5}{7} + \frac{1}{7})}{\hat{I}_{\alpha}(\frac{5}{7} + 1, \frac{5}{7} + \frac{1}{7}) + \hat{I}_{\alpha}(\frac{5}{7} + 1, \frac{5}{7} + \frac{1}{7})}.
\]
\[\lambda^* = \left| \eta \right| \left[\frac{2^{n+1/s+1}}{\Gamma(\sigma + 1, \sigma + 1)} + \frac{\Gamma(\sigma + 1)}{\Gamma(\sigma + 1, \sigma + v + 1)} \right] \\
= \left[\frac{15}{2} \right] \left[\frac{2 \times 0.6^{n+1/2+1}}{\Gamma\left(\frac{5}{n} + \frac{3}{2} + 1\right)} + \frac{\Gamma\left(\frac{5}{n} + 1, \frac{5}{n} + \frac{3}{2} + 1\right)}{\Gamma\left(\frac{5}{n} + 1\right)} \right]. \]

(5.3)

Considering \(q = \frac{3}{8}, \frac{1}{2}, \frac{8}{9} \), we can see the results of \(\lambda \) and \(\lambda^* \) in Table 1. These results are plotted in Figure 1.

Then, we obtain

\[\lambda_j \approx \begin{cases} 0.95547, & q_j = \frac{3}{8} \\ 0.76172, & q_j = \frac{1}{2} \\ 0.16793, & q_j = \frac{8}{9} \end{cases} < 1, \]

\[\lambda^*_j \approx \begin{cases} 1.41986, & q_j = \frac{3}{8} \\ 1.13395, & q_j = \frac{1}{2} \\ 0.25096, & q_j = \frac{8}{9} \end{cases} < 1. \]

\[\mu \lambda^*_j \approx \begin{cases} 0.9655, & q_j = \frac{3}{8} \\ 0.7711, & q_j = \frac{1}{2} \\ 0.1707, & q_j = \frac{8}{9} \end{cases} < 1. \]

Using Krasnoselkii’s theorem for investigation.

Table 1: Numerical results of \(\lambda \) and \(\lambda^* \) for \(q = \frac{3}{8}, \frac{1}{2}, \frac{8}{9} \) in Example 5.1

\(n \)	\(q = \frac{3}{8} \)	\(q = \frac{1}{2} \)	\(q = \frac{8}{9} \)			
\(\lambda \)	\(\lambda^* \)	\(\lambda \)	\(\lambda^* \)	\(\lambda \)	\(\lambda^* \)	
1	0.93177	1.34571	0.7630	0.99360	0.11402	0.07701
2	0.94654	1.39205	0.78335	1.06376	0.12377	0.11354
3	0.95212	1.40943	0.78502	1.09885	0.12828	0.12878
4	0.95222	1.41595	0.78598	1.11640	0.13242	0.14232
5	0.95500	1.41840	0.78885	1.12518	0.13618	0.15436
6	0.95530	1.41931	0.79629	1.12957	0.13957	0.16506
7	0.95541	1.41966	0.79610	1.13176	0.14262	0.17458
8	0.95545	1.41978	0.79613	1.13286	0.14356	0.18304
9	0.95546	1.41983	0.79615	1.13341	0.14781	0.19057
10	0.95547	1.41985	0.79616	1.13368	0.15001	0.19727
11	0.95547	1.41986	0.79619	1.13382	0.15197	0.20322
12	0.95547	1.41986	0.79619	1.13389	0.15372	0.20852
13	0.95547	1.41986	0.79622	1.13392	0.15528	0.21323
14	0.95547	1.41986	0.79622	1.13394	0.15667	0.21741
15	0.95547	1.41986	0.79623	1.13395	0.15791	0.22114
16	0.95547	1.41986	0.79623	1.13396	0.15901	0.22445
17	0.95547	1.41986	0.79623	1.13396	0.16000	0.22739
18	0.95547	1.41986	0.79623	1.13396	0.16000	0.22739
...
76	0.95547	1.41986	0.79617	1.13396	0.16792	0.25095
77	0.95547	1.41986	0.79617	1.13396	0.16792	0.25096
78	0.95547	1.41986	0.79617	1.13396	0.16793	0.25096
79	0.95547	1.41986	0.79617	1.13396	0.16793	0.25096
80	0.95547	1.41986	0.79617	1.13396	0.16793	0.25096
All assumptions of Theorem 3.2 are satisfied. Hence, there exists at least one solution for problem (5.1) on I. One can use Algorithm 9 to obtain these results. By taking the same functions, we result the assumption

\[
\mu_l = \begin{cases}
0.6497, & q_l = \frac{3}{8}, \\
0.5180, & q_l = \frac{1}{2}, \\
0.1142, & q_l = \frac{8}{9},
\end{cases} < 1,
\]

then system (5.1) is Ulam–Hyers stable, then it is generalized Ulam–Hyers stable if there exists a continuous and positive function \(q_j \in C(I, R^+) \) such that

\[
\|y(t) - z(t)\| \leq \epsilon_j q(t) = \frac{\epsilon_j q(t)}{1 - \mu_l j},
\]

which it satisfies in assumption of Theorem 4.2.

In the next example, we review and check Theorem 3.3 numerically.

Example 5.2. Consider the following fractional integro-differential problem:

\[
^{c}D_{t}^{29/45} y(t) = \left(16 - \sqrt{t} \tan^{-1}(y(t)) + \frac{\sqrt{t}}{75} \left[2t \sin^{-1}(y(t)) \right] \right) + \int_{0}^{t} y(\xi) \exp \left(-3t + \xi \right) d\xi,
\]

with boundary condition

Figure 1: Graphical representation of \(\lambda, \lambda^* \), and \(\mu \lambda, \mu \lambda^* \) for \(q = \frac{3}{8}, \frac{1}{2}, \frac{8}{9} \) in Example 5.1. (a) \(\lambda \), Eq. (3.8). (b) \(\mu \lambda \). (c) \(\lambda^* \), Eq. (3.9). (d) \(\mu \lambda^* \).
Clearly $\sigma + v = \frac{29}{45}$, $\sigma = \frac{4}{9}$, $r^* = 0.95$, and $\eta = \frac{5}{2}$. To illustrate our results in Theorem 3.3, we take for $y, z \in \bar{S}$ the following continuous functions:

$$h_1(t, y(t)) = \frac{(16 - \sqrt{t}) \tan^{-1}(y(t))}{75},$$
$$h_2(t, y(t)) = \frac{2t \sin^{-1}(y(t))}{21},$$

and

$$\Theta(t, s, y(s)) = \frac{y(s) \exp(-(3t + s))}{10}.$$

Now, for $y, z \in \bar{S}$, we have

$$\|h_1(t, y(t)) - h_1(t, z(t))\| = \frac{(16 - \sqrt{t}) \tan^{-1}(y(t))}{75} - \frac{(16 - \sqrt{t}) \tan^{-1}(z(t))}{75}$$
$$= \frac{16 - \sqrt{t}}{75} |y(t) - z(t)|$$
$$\leq \frac{17}{75} \|y(t) - z(t)\|.$$

Using Krasnoselskii's theorem for investigation.

Table 2: Numerical results of λ and $\mu \lambda$ for $q = \frac{2}{7}, \frac{1}{2}, \frac{9}{11}$ in Example 5.2

n	$q = \frac{2}{7}$	$q = \frac{1}{2}$	$q = \frac{9}{11}$			
	λ	$\mu \lambda$	λ	$\mu \lambda$	λ	$\mu \lambda$
1	0.81214	0.55225	0.54150	0.36822	0.15811	0.10752
2	0.81764	0.55600	0.55200	0.37876	0.16610	0.11295
3	0.81923	0.55708	0.56491	0.38414	0.17332	0.11785
4	0.81969	0.55739	0.56890	0.38685	0.17947	0.12204
5	0.81982	0.55748	0.57090	0.38821	0.18462	0.12554
6	0.81986	0.55750	0.57190	0.38889	0.18887	0.12843
7	0.81987	0.55751	0.57240	0.38923	0.19238	0.13082
8	0.81987	0.55751	0.57265	0.38940	0.19526	0.13278
9	0.81987	0.55751	0.57278	0.38949	0.19763	0.13439
10	0.81987	0.55751	0.57284	0.38953	0.19996	0.13570
11	0.81987	0.55751	0.57287	0.38955	0.20115	0.13678
12	0.81987	0.55751	0.57289	0.38956	0.20245	0.13767
13	0.81987	0.55751	0.57290	0.38957	0.20352	0.13839
14	0.81987	0.55751	0.57290	0.38957	0.20439	0.13898
15	0.81987	0.55751	0.57290	0.38957	0.20510	0.13947
...
43	0.81987	0.55751	0.57290	0.38957	0.20830	0.14164
44	0.81987	0.55751	0.57290	0.38957	0.20830	0.14165
45	0.81987	0.55751	0.57290	0.38957	0.20830	0.14165
46	0.81987	0.55751	0.57290	0.38957	0.20830	0.14165
47	0.81987	0.55751	0.57290	0.38957	0.20831	0.14165
for each $t, s \in J$. Hence,

$$q_0(t) = \frac{16 - \sqrt{i}}{75}, \quad q_5(t) = \frac{2t}{21}, \quad q^*(t) = \frac{\exp(-3t)}{10},$$

for all $t \in I, y, z \in S_2$, and $(t, s) \in G$. By the above, we find that

$$\lambda = \frac{\|q\|_{L^\infty} + \|q^*\|_{L^\infty}}{\Gamma_{\delta}(\sigma + \nu + 1)} + \frac{\|q\|_{L^\infty} B_0(\sigma + 1, \sigma + \nu)}{\Gamma_{\delta}(\sigma + 1) \Gamma_{\delta}(\sigma + \nu)}$$

$$+ \left| \eta \|q\|_{L^\infty} \Gamma_{\delta}(\sigma + \nu + 2) \right| \Gamma_{\delta}(\sigma + 1) \Gamma_{\delta}(\sigma + \nu + 1)$$

$$= \frac{16}{75} + \frac{1}{10} + \frac{2}{21} B_0(\frac{4}{9} + 1, \frac{4}{9} + \frac{1}{5})$$

$$+ \frac{\Gamma_{\delta}(\frac{4}{9} + 1) \Gamma_{\delta}(\frac{4}{9} + \frac{1}{5})}{[2.5] \times \frac{16}{75} + \frac{1}{10} + \frac{2}{21} \times 0.95^{\frac{3}{5} + \frac{1}{4} + 1} + \frac{2.5}{10} \times 0.95^{\frac{3}{5} + \frac{1}{4} + 1}}$$

$$+ \frac{[2.5] \times \frac{16}{75} + \frac{1}{10} + \frac{2}{21} \times 0.95^{\frac{3}{5} + \frac{1}{4} + 1}}{[1 - 2.5 \times 0.95^{\frac{3}{5} + \frac{1}{4} + 1} + \frac{2.5}{10} \times 0.95^{\frac{3}{5} + \frac{1}{4} + 1}] \times \frac{\Gamma_{\delta}(\frac{4}{9} + 1) \Gamma_{\delta}(\frac{4}{9} + \frac{1}{5})}{1 - 2.5 \times 0.95^{\frac{3}{5} + \frac{1}{4} + 1}}}. \tag{5.5}$$

Considering $q = \frac{2}{7}, \frac{1}{7}, \frac{9}{11}$, we can see the results of λ and λ^* in Table 2. These results are plotted in Figure 2. Then, we obtain

$$\lambda = \begin{cases} 0.81987, & q_1 = \frac{3}{8}, \\ 0.57290, & q_1 = \frac{1}{2}, \\ 0.20831, & q_1 = \frac{8}{9}, \\ 0.55751, & q_1 = \frac{3}{8}, \\ 0.38957, & q_1 = \frac{1}{2}, \\ 0.14165, & q_1 = \frac{8}{9}, \end{cases} < 1. \tag{5.4}$$

All assumptions of Theorem 3.3 are satisfied. Hence, there exists at least one solution for problem (5.4) on I.

6 Conclusion

Determining the answer of differential equations from the order of fractions in the discrete state simplifies many problems. The q-integro-differential boundary equations and their applications have attracted several researchers’ interests in the field of fractional q-calculus and its applications in various phenomena from science and technology. q-Integro-differential boundary value problems occur in the mathematical modeling of a variety of physical operations. Using the Krasnoselskii’s, Banach fixed point theorems, we prove existence and uniqueness results.
Based on the results obtained, conditions are provided to ensure the generalized Ulam stability of the original system. The results of Eq. (1.9) investigation on a time scale are illustrated by two numerical examples.

Funding information: There is no funding to declare for this research study.

Author contributions: X-GY: Actualization, methodology, formal analysis, validation, investigation, initial draft. MES: Actualization, methodology, formal analysis, validation, investigation, software, simulation, initial draft, and was a major contributor in writing the manuscript. AF: Actualization, methodology, formal analysis, validation, investigation, and initial draft. MKAK: Actualization, methodology, formal analysis, validation, investigation, initial draft, and was a major contributor in writing the manuscript. AK: Actualization, validation, methodology, formal analysis, investigation, and initial draft. All authors read and approved the final manuscript.

Conflict of interest: The authors declare that they have no competing interests.

Data availability statement: Data sharing not applicable to this article as no datasets were generated or analyzed during the current study.

References

[1] Ragusa MA. On weak solutions of ultraparabolic equations. Nonlinear Anal Theory Methods Appl. 2001;47(1):503–11.

[2] Abdellouahab N, Tellab B, Zennir K. Existence and uniqueness of solutions to fractional Langevin equations involving two fractional orders. Kragujevac J Math. 2022;46(5):685–99.

[3] Ahmad B, Ntouyas SK. On Hadamard fractional integro-differential boundary value problems. J Appl Math Comput. 2015;47(1–2):119–31.

[4] Deimling K. Multivalued differential equations. Berlin-NY: Walter de Gruyter; 1977.

[5] Galeone L, Garrappa R. On multistep methods for differential equations of fractional order. Mediterranean J Math. 2006;3(3):565–80.

[6] Rashid S, Hammouch Z, Ashraf R, Baleanu D, Nisar KS. New quantum estimates in the setting of fractional calculus theory. Adv Differ Equ. 2020;2020:383.

[7] Abbas MI. Investigation of Langevin equation in terms of generalized proportional fractional derivatives with respect to another function. Filomat. 2021;35(12):4073–85.

[8] Shah K, Sheer M, Ali A, Abdeljawad T. On degree theory for non-monotone type fractional order delay differential equation. AIMS Math. 2022;7(5):9479–92.

[9] Samei ME, Ahmadi A, Selvam AGM, Alzabut J, Rezapour S. Well-posed conditions on a class of fractional q-differential equations by using the Schauder fixed point theorem. Adv Differ Equ. 2021;2021:482.

[10] Baitiche Z, Derbazi C, Alzabut J, Samei ME, Kaabar MKA, Siri Z. Monotone iterative method for Langevin equation in terms of psi-Caputo fractional derivative and nonlinear boundary conditions. Fractal Fractional. 2021;5(2):81.

[11] Boutliara A, Kaabar MKA, Siri Z, Samei ME, Yue XG. Investigation of the generalized proportional Langevin and Sturm-Liouville fractional differential equations via variable coefficients and antiperiodic boundary conditions with a control theory application arising from complex networks. Math Probl Eng. 2022;2022:1–21.

[12] Samei ME, Hedayati V, Rezapour S. Existence results for a fraction hybrid differential inclusion with Caputo–Hadamard type fractional derivative. Adv Differ Equ. 2019;2019:163.

[13] Rezapour S, Bouazza Z, Souid MS, Etemad S, Kaabar MKA. Darbo fixed point criterion on solutions of a Hadamard nonlinear variable order problem and Ulam–Hyers–Rassias stability. J Funct Spaces. 2022;2022:1–12.

[14] Yue XG, Zhang Z, Akbulut A, Kaabar MKA, Kaplan M. A new computational approach to the fractional-order Liouville equation arising from mechanics of water waves and meteorological forecasts. J Ocean Eng Sci. 2022:1–8.

[15] Wang X, Yue XG, Kaabar MKA, Akbulut A, Kaplan M. A unique computational investigation of the exact traveling wave solutions for the fractional-order Kaup–Boussinesq and generalized Hirota Satsuma coupled KdV systems arising from water waves and interaction of long waves. J Ocean Eng Sci. 2022:1–17.

[16] Rashid S, Kaabar MKA, Alhobaiti A, Alqurashi M. Constructing analytical estimates of the fuzzy fractional-order Boussinesq model and their application in oceanography. J Ocean Eng Sci. 2022:1–20.

[17] Pandey P, Gómez-Aguilar J, Kaabar MKA, Siri Z, AbdAllah AM. Mathematical modeling of COVID-19 pandemic in India using Caputo-Fabrizio fractional derivative. Comput Biol Med. 2022:145:105518.

[18] Abu-Shady M, Kaabar MKA. A generalized definition of the fractional derivative with applications. Math Problems Eng. 2021;2021:1–9.

[19] Almeida R, Malinowska AB, Monteiro MTT. Fractional differential equations with a caputo derivative with respect to a kernel function and their applications. Math Methods Appl Sci. 2018;41(1):336–52.

[20] Hajiseyedazizi SN, Samei ME, Alzabut J, Chu Y. On multi-step methods for singular fractional q-integro-differential equations. Open Math. 2021;19:1378–405.

[21] Ruizhansky M, Cho YJ, Agarwal P, Area I. Advances in real and complex analysis with applications. Singapore: Birkhauser; 2017.

[22] Li R. Existence of solutions for nonlinear fractional equation with fractional derivative condition. Adv Differ Equ. 2014;2014:292.

[23] Rezapour S, Samei ME. On the existence of solutions for a multi-singular pointwise defined fractional q-integro-differential equation. Boundary Value Problems. 2020;2020:38.

[24] Samei ME, Ghafvari R, Yao SW, Kaabar MKA, Martínez F, Inc M. Existence of solutions for a singular fractional q-differential
equations under Riemann–Liouville integral boundary condition. Symmetry. 2021;13:135.

[25] Samei ME, Karimi L, Kaabar MKA. To investigate a class of multi-singular pointwise defined fractional q-integro-differential equation with applications. AIMS Math. 2022;7(5):7781–816.

[26] Abdeljawad T, Alzabut J, Baleanu D. A generalized q-fractional Gronwall inequality and its applications to nonlinear delay q-fractional difference systems. J Inequal Appl. 2016;216:240.

[27] Annaby MH, Mansour ZS. q-Fractional calculus and equations. Cambridge: Springer Heidelberg; 2012.

[28] Shah K, Arfan M, Ullah A, Al-Mdallal Q, Ansari KJ, Abdeljawad T. Computational study on the dynamics of fractional order differential equations with applications. Chaos Solitons Fractals. 2022;157:111955.

[29] Shah K, Sher M, Ali A, Abdeljawad T. Extremal solutions of generalized Caputo-type fractional-order boundary value problems using monotone iterative method. Fractal Fractional. 2022;2022(6):146.

[30] Khan ZA, Ahmad I, Shah K. Applications of fixed point theory to investigate a system of fractional order differential equations. J Funct Spaces. 2021;2021:7.

[31] Jackson FH. q-difference equations. Am J Math. 1910;32:305–14.

[32] Adams CR. The general theory of a class of linear partial q-difference equations. Trans Am Math Soc. 1924;26:283–312.

[33] Atici F, Eloe PW. Fractional q-Calculus on a time scale. J Nonlinear Math Phys. 2007;14(3):341–52.

[34] Ferreira RAC. Nontrivial solutions for fractional q-difference boundary value problems. Electronic J Qualitative Theory Diff. Equ. 2010;70:1–101.

[35] Rajković PM, Marinković SD, Stanković MS. Fractional integrals and derivatives in q-calculus. Applicable Anal Discrete Math. 2007;1:311–23.

[36] Samei ME, Zanganeh H, Aydogan SM. Investigation of a class of the singular fractional integro-differential quantum equations with multi-step methods. J Math Extension. 2021;17(1):1–545.

[37] Podlubny I. Fractional differential equations. San Diego: Academic Press; 1999.

[38] Baghani H. Existence and uniqueness of solutions to fractional Langevin equations involving two fractional orders. J Fixed Point Theory Appl. 2018;20(2):7.
Appendix

Algorithm 1: MATLAB lines for calculation q-factorial function $(x - y)_q^{(m)}$

Input: y, z, q, m
Output: H

1. If $m = 0$
 1. Set totalout = 1
2. Else
 1. Set totalout = 1;
 2. For $n = 0 : m - 1$
 1. Set totalout = totalout * $(y - z * q^n)$;
 2. H = totalout;

Algorithm 2: MATLAB lines for calculation $y - z_{q}^{(a)}$.

Input: y, z, q, σ, m
Output: H

1. If $m = 0$
 1. Set H = 1
2. Else
 1. Set totalout = 1;
 2. For $n = 0 : m - 1$
 1. Set totalout = totalout * $(y - z * q^n)/(y - z * q^{\sigma+n})$;
 2. H = totalout * $y^{\sigma+n}$;

Algorithm 3: MATLAB lines for calculation $\Gamma_q(y)$.

Input: q, y, m
Output: H

1. For $n = 0 : m$
 1. Set totalout = totalout * $(1 - q^{n+1})/(1 - q^{n+k-1})$;
 2. H = totalout * $(1 - q)^{(1-y)}$;

Algorithm 4: MATLAB lines for calculation $D_q[y](t)$.

Input: q, s, fun
Output: H

1. If $s = 0$
 1. Set H = limit(($\text{subs(fun,s)} - \text{subs(fun,q*s)})/((1-q)*s),s,0)$;
2. Else
 1. Set H = (eval(subs(fun,s)) - eval($\text{subs(fun,q*s)})/((1-q)*s)$);
Algorithm 5: MATLAB lines for calculation $D_{q|t}|y|(t)$.

Input: q, s, m, $func$
Output: H

```
totalout=0;
for n = 0 : m do
    V = 1;
    for i = 0 : m - 1 do
        V = V * (1 - $q^{(i-m)})/(1 - q^{(i+1)})$;
        V = V * $q^n$ * eval(subs(func,s * $q^n$));
        totalout=totalout + V;
    totalout=totalout/(s^m * (1 - $q^m$));
```

Algorithm 6: MATLAB lines for calculation $I_q[y](t)$.

Input: q, s, m, $func$
Output: H

```
totalout=1;
for n = 0 : m do
    totalout = totalout + $q^n$*eval(subs(funx, totalout*$q^n$));
H = s*(1-q)*totalout;
```

Algorithm 7: MATLAB lines for calculation $I^0_q[y](t)$.

Input: q, $sigma$, s, m, $func$
Output: H

```
totalout=0;
for n = 0 : m do
    V = 1;
    for i = 0 : m do
        V = V * (1 - $q^{(sigma+i-1)})*(1 - q^{(sigma+n+i-1)})$;
        totalout=totalout + $q^k$ * V * eval(subs(func,s * $q^n$));
    H = round(totalout *($s^{sigma}$) * (1 - $q^{sigma}$, 6));
```
Algorithm 8: MATLAB lines for calculation $^C\mathcal{D}_q^\sigma[y](t)$.

Input: q, sigma, s, m, func

Output: H

Tootalout=0;

for $n = 0 : m$ do

$V = 1$;

for $i = 0 : m$ do

$V = V \times (1 - q^{(\text{floor}(\text{sigma}) - \text{sigma} + i - 1)})$

$(1 - q^{(k + i)}) / ((1 - q^{(i + 1)})$

$(1 - q^{(\text{floor}(\text{sigma}) - \text{sigma} + k + i - 1)})$;

Tootalout2=0;

for $k = 0 : \text{floor}(\text{sigma})$ do

$V2 = 1$;

for $i = 0 : k - 1$ do

$V2 = V2 \times (1 - q^{(\text{floor}(\text{sigma}))}) / (1 - q^{(i + 1)})$;

$V2 = V2 \times \text{eval}(\text{subs}(\text{fun}, s, q^{(m + k)}))$;

Tootalout2=Tootalout2 + V2;

Tootalout=Tootalout + V*Tootalout2;

end

end

H = round(tootalout * (s*sigma) + (1 - q)*sigma, 6);
Algorithm 9: MATLAB lines for calculating values of λ and λ^* in Example ?? for $q = \frac{3}{\pi}, \frac{1}{2}, \frac{8}{\pi}$.

Input: q, sigma, nu, eta, taustar
Output: H

1. clear;
2. format long;
3. column=1
4. for $s = 1 : yq$ do
5. for $n = 1 : k$
6. paramsmatrix(n, column)=n;
7. C1=qGamma(q(s),sigma+1,n);
8. C2=qGamma(q(s),sigma+nu,n);
9. C3=qGamma(q(s),sigma+nu+1,n);
10. C4=qGamma(q(s),2*sigma+nu+1,n);
11. C5=qGamma(q(s),sigma+nu+2,n);
12. C6=qGamma(q(s),2*sigma+nu+2,n);
13. end
14. paramsmatrix(n, column+1) = round
15. end
16. ((normvarrho1 + normvarhostar)/C3 + normvarrho2/C4
17. +(abs(eta)*normvarrho1 * tausta
18. r (sigma+ nu+1), abs(eta)
19. * normvarrhostar * taustar (sigma+ nu+1))
20. * (abs(1 - eta*taustar)*C5) + abs(eta)
21. * normvarrho2 * taustar(2* sigma+ nu+1)/C6, 6);
22. paramsmatrix(n, column + 2)
23. = round(abs(eta)abs(1 - eta*taustar)*
24. 2*taustar (sigma+ nu+1) / C5
25. + taustar(2* sigma+ nu+1) / C6, 6);
26. column=column +3;