Null-forms of conic systems in \mathbb{R}^3 are determined by their symmetries

Timothée Schmoderer$^{a, *}$, Witold Respondeka

aLaboratoire de Mathématiques, INSA Rouen Normandie, Rouen, France

ARTICLE INFO

Keywords:
Control-affine system
Conic systems
Feedback equivalence
Infinitesimal symmetries
Normal forms

ABSTRACT

We address the problem of characterisation of null-forms of conic 3-dimensional systems, that is, control-affine systems whose field of admissible velocities forms a conic (without parameters) in the tangent space. Those systems have been previously identified as the simplest control systems under a conic nonholonomic constraint or as systems of zero curvature. In this work, we propose a distinct characterisation of null-forms of conic systems among all control-affine systems by studying the Lie algebra of infinitesimal symmetries. Namely, we show that the Lie algebra of infinitesimal symmetries characterises uniquely null-forms of conic systems.

1. Introduction

In Schmoderer and Respondek (2021), we propose a characterisation and a classification of single input control-affine systems which admit conic sets as admissible velocities. In particular, we give a characterisation of all 3-dimensional control-affine systems with scalar control that are feedback equivalent, locally around (x₀, y₀, w₀) ∈ \mathbb{R}^3, to one of the following conic null-forms

$$\Sigma_E : \begin{cases} \dot{x} = \cos(w) \\ \dot{y} = \sin(w) \\ \dot{w} = u \end{cases}, \quad \Sigma_H : \begin{cases} \dot{x} = \cosh(w) \\ \dot{y} = \sinh(w) \\ \dot{w} = u \end{cases},$$

and $\Sigma_p : \begin{cases} \dot{x} = u^2 \\ \dot{y} = w \\ \dot{w} = u \end{cases}.$

The parabolic system Σ_p actually depends on the nature of the point (x₀, y₀, w₀) around which the systems Σ_p is considered: an equilibrium or not. As a consequence, Σ_p has two distinct normal forms, for w₀ = 0 and w₀ ≠ 0, and we will specify this distinction just before our main result Theorem 1.

We call the systems Σ_E, Σ_H, and Σ_p, null-forms because of the absence of any parameters, functional or real-continuous, in their expression (in particular, observe that those system are trivial in the sense of Serres (2009)). We call the systems Σ_E, Σ_H, and Σ_p, elliptic, hyperbolic, and parabolic, respectively, because in the manifold \mathbb{R}^2, equipped with local coordinates (x, y), the trajectories (x(t), y(t)) of Σ_E, Σ_H, and Σ_p satisfy a nonholonomic constraint of the form

$$S_E = x^2 + y^2 - 1 = 0, \quad S_H = x^2 - y^2 - 1 = 0,$$

and $S_p = y^2 - x = 0,$

respectively. The importance of the null-forms Σ_E, Σ_H, and Σ_p, is multiple. First, Σ_E, resp. Σ_H, and resp. Σ_p, describes ellipses, resp. hyperbolae, and resp. parabolas, in the tangent bundle $T\mathbb{R}^2$, that is, the simplest non-holonomic constraints that are not affine with respect to velocities; see Schmoderer and Respondek (2021) for a detailed analysis of the link between quadratic equations on $T\mathbb{R}^2$ and control systems. Second, the elliptic and hyperbolic systems Σ_E and Σ_H show up in the seminal trend-setting paper Agrachev (1998) as simple control-affine systems of zero curvature (a crucial feedback invariant of control-affine system on 3-dimensional manifolds with scalar control). Third, Σ_E describes the well-known Dubins model of a car Dubins (1957), whereas Σ_H is its hyperbolic counterpart Monroy-Pérez (1998), and while the parabolic system Σ_p is studied in Schmoderer and Respondek (2021). Fourth, but not least, the null-forms Σ_E, Σ_H, and Σ_p, have the simplest possible Lie ideals \mathfrak{g} among all single-input control-affine systems with 3-dimensional state space. To justify that statement, recall that for the system $\dot{x} = f(x) + g(x)u$ we define its Lie algebra $\mathfrak{g} = \{ f,g \}_{\text{LA}}$ and its Lie ideal \mathfrak{g}_0 (generated by g in \mathfrak{g}), the former being responsible for accessibility and the latter for strong accessibility, see e.g. Isidori (1995) and Nijmeijer and van der Schaft (1990). For Σ_E, Σ_H, and Σ_p, the Lie ideal is the simplest possible, namely, it is the 3-dimensional Lie algebra $\mathfrak{g}_0 = \text{vect}_\mathbb{R} \{ g, ad_f g, [g, ad_f g] \}$ such that $\mathfrak{g} = \text{vect}_\mathbb{R} \{ ad_f g, [g, ad_f g] \}$ is an abelian ideal of \mathfrak{g}_0 and the linear map $ad_f : \mathfrak{g} \to \mathfrak{g}$ has eigenvalues ±1 for Σ_E, ±1 for Σ_H, or a double zero eigenvalue (and is nilpotent) for Σ_p; compare Remark 1.

We will denote by \mathfrak{g}_0 the set $\{ \Sigma_E, \Sigma_H, \Sigma_p \}$ of the three above null-forms conic systems when we discuss properties that do not require to distinguish a specific system. Consider the system $\Sigma_O : \dot{x} = f_O(x,u)$, where $x \in \mathbb{R}^2$, $u \in \mathbb{R}$, and f_O takes one of the three forms $f_O = A(x) \cos(u) + B(x) \sin(u) + C(x)$, or $f_H = A(x) \cosh(u) + B(x) \sinh(u) + C(x)$, or $f_p = A(x) u^2 + B(x) u + C(x)$, where A, B, and C are smooth vector fields on \mathbb{R}^2. Observe, for the null-forms Σ_O, that interpreting $u \in \mathbb{R}$ as a scalar control that enters non-linearly, the three forms Σ_O can be considered as Σ_O^* for which the vector fields A and B are simultaneously rectified and C is annihilated. In Schmoderer and Respondek (2021),
see also Schmoderer (2022), we described (by identifying suitable feedback invariants) the systems Σ_Q with A, B, and C of the just mentioned form, thus we characterised the null-forms Σ_Q. The result of the present paper differ from those of Schmoderer and Respondek (2021) in two aspects. First, in Schmoderer and Respondek (2021), we characterised Σ_Q among all conic systems of the form Σ, while in the present paper, we propose a characterisation that directly applies to any control-affine system (on a 3D-manifold with scalar control). Second, and more important, the methodology that we apply to describe our null-forms is based on the study of the Lie algebra of infinitesimal symmetries (see below for a precise definition), which turns out to uniquely determine all null-forms Σ_Q (with additional regularity conditions for Σ_P). To summarise, the three null forms Σ_Q appeared in our previous work Schmoderer and Respondek (2021), where we proposed their characterisation as subclasses of control-affine systems satisfying a quadratic nonholonomic constraint. In particular, the null-forms Σ_Q show up as the simplest models, i.e. with no functional nor real parameters, in our classification and therefore we expected that they are the most symmetric. In the present paper, we propose their study via the infinitesimal symmetries and prove that their symmetries (which, indeed, form basic Σ-invariant sets of all infinitesimal symmetries forms a real Lie algebra. Since Σ is defined locally around ξ_0 and $\tilde{\xi}_0$, then we say that Σ and $\tilde{\Sigma}$ are locally feedback equivalent at ξ_0 and $\tilde{\xi}_0$, respectively. A feedback transformation will be denoted by the triple (ϕ, α, β) or simply (α, β) if $\phi = \text{Id}$.

Infinitesimal symmetries

We introduce the notion of symmetries in the case of single input control-affine system (see Respondek and Tall (2002); Grizzle and Marcus (1985) for a detailed introduction). For a control-affine system $\Sigma = (f, g)$, we define the field of admissible velocities A as

$$A(\xi) = \{f(\xi) + g(\xi)u : u \in \mathbb{R}\} \subset T_\xi X.$$

We say that a diffeomorphism $\phi : X \to \tilde{X}$ is a symmetry of Σ if it preserves the field of affine lines A (equivalently, the affine distribution $A = f + G$), that is,

$$\phi^*A = A.$$

We say that a vector field v on X is an infinitesimal symmetry of $\Sigma = (f, g)$ if the (local) flow γ_t^v of v is a (local) symmetry, for any t for which it exists, that is the (local) diffeomorphism γ_t^v satisfies $(\gamma_t^v)_*A = A$. Consider the system $\Sigma = (f, g)$ and recall that G is the distribution spanned by the vector field g. Since $(\gamma_t^v)_*(f + G) = f + G$, it follows that $(\gamma_t^v)_*$ preserves G and preserves f modulo G, which immediately gives the following characterisation of infinitesimal symmetries.

Proposition 1

A vector field v is an infinitesimal symmetry of the control-affine system $\Sigma = (f, g)$ if and only if

$$[v, g] = 0 \mod G \quad \text{and} \quad [v, f] = 0 \mod G.$$

By the Jacobi identity, it is easy to see that if v_1 and v_2 are infinitesimal symmetries, then so is $[v_1, v_2]$, hence the set of all infinitesimal symmetries forms a real Lie algebra.

Notice that the Lie algebra of infinitesimal symmetries is attached to the affine distribution $A = f + G$ and not to a particular pair (f, g). Different pairs (f, g) related via feedback transformations (α, β) define the same A and thus give rise to the same Lie algebra of infinitesimal symmetries which, therefore, is a feedback invariant object attached to Σ.

2. Main results

In this section, we prove that the Lie algebras of infinitesimal symmetries of the systems Σ_E, Σ_H, and Σ_P, determine the corresponding systems among all control-affine systems. With the help of Proposition 1, we give in the next lemma the Lie algebras of infinitesimal symmetries of the systems Σ_E, Σ_H, and Σ_P.

T. Schmoderer & W. Respondek: Preprint submitted to Elsevier
Lemma 1 (Lie algebra of infinitesimal symmetries of Σ_Q). The Lie algebra of infinitesimal symmetries of Σ_E, Σ_H, and Σ_P are respectively:

\[
\begin{align*}
\mathfrak{Q}_E &= \text{vect}_\mathbb{R} \left\{ \frac{\partial}{\partial x}, \frac{\partial}{\partial y}, y \frac{\partial}{\partial x} - x \frac{\partial}{\partial y} - \frac{\partial}{\partial w} \right\}, \\
\mathfrak{Q}_H &= \text{vect}_\mathbb{R} \left\{ \frac{\partial}{\partial x}, \frac{\partial}{\partial y}, y \frac{\partial}{\partial x} + x \frac{\partial}{\partial y} + \frac{\partial}{\partial w} \right\}, \\
\mathfrak{Q}_P &= \text{vect}_\mathbb{R} \left\{ \frac{\partial}{\partial x}, \frac{\partial}{\partial y}, 2x \frac{\partial}{\partial x} + y \frac{\partial}{\partial y} + w \frac{\partial}{\partial w} \right\}.
\end{align*}
\]

We will denote by \mathfrak{Q}_Q the set of the three above Lie algebras in order to state general facts about them. Those three Lie algebras share the property of having the abelian Lie ideal vect$_\mathbb{R} \left\{ \frac{\partial}{\partial x}, \frac{\partial}{\partial y} \right\}$, which corresponds to the fact that the systems Σ_Q are invariant under translations $(x, y) \mapsto (x + c, y + d)$, with $c, d \in \mathbb{R}$. The third vector field plays the role of an Euler vector field for \mathfrak{Q}_P and is an infinitesimal rotation (elliptic or hyperbolic) in the case of \mathfrak{Q}_E and \mathfrak{Q}_H.

Proof. The proof is a direct calculation using the characterisation of infinitesimal symmetries given in Proposition 1. Let $v = v_1 \frac{\partial}{\partial x} + v_2 \frac{\partial}{\partial y} + v_3 \frac{\partial}{\partial w}$, where $v_1 = v_1(x, y, w)$, be an infinitesimal symmetries of Σ_Q. Then, using that v is a symmetry of \mathcal{G}, we deduce that $v_1 = v_1(x, y)$ and $v_2 = v_2(x, y)$. We now distinguish the three conic systems.

For Σ_E, we have $f = \cos(w) \frac{\partial}{\partial x} + \sin(w) \frac{\partial}{\partial y}$, hence $[v, f] \in \mathcal{G}$ implies

\[
\begin{align*}
\cos(w) \frac{\partial v_1}{\partial x} + \sin(w) \frac{\partial v_1}{\partial y} &= -\sin(w)v_3, \\
\cos(w) \frac{\partial v_2}{\partial x} + \sin(w) \frac{\partial v_2}{\partial y} &= \cos(w)v_3.
\end{align*}
\]

Multiplying the first equation by $\cos(w)$ and inserting the second equation, we obtain

\[
\left(\frac{\partial v_1}{\partial x} - \frac{\partial v_2}{\partial y} \right) \cos(2w) + \left(\frac{\partial v_1}{\partial y} + \frac{\partial v_2}{\partial x} \right) \sin(2w) + \frac{\partial v_1}{\partial x} + \frac{\partial v_2}{\partial y} = 0,
\]

which yields, first, $v_1 = v_1(y)$ and $v_2 = v_2(x)$, and, second, $v_1(y) = ay + b$ and $v_2(x) = -ax + c$, where $a, b, c \in \mathbb{R}$. Finally, taking $(a, b, c) = (1, 0, 0)$, $(a, b, c) = (0, 1, 0)$, and $(a, b, c) = (0, 0, 1)$ we obtain \mathfrak{Q}_E.

For Σ_H, it is an analogous calculation as above but with hyperbolic functions.

For Σ_P, we have $f = w^2 \frac{\partial}{\partial x} + w \frac{\partial}{\partial y}$, hence $[v, f] \in \mathcal{G}$ implies

\[
\begin{align*}
w^2 \frac{\partial v_1}{\partial x} + w \frac{\partial v_1}{\partial y} &= 2wv_3, \\
w^2 \frac{\partial v_2}{\partial x} + w \frac{\partial v_2}{\partial y} &= v_3.
\end{align*}
\]

Inserting the second equation in the first, we obtain a polynomial of degree 3 in w that identically vanishes. Thus each of its coefficient vanishes, implying $\frac{\partial v_2}{\partial x} = 0$, $\frac{\partial v_1}{\partial y} = 0$, and $\frac{\partial v_1}{\partial x} = 2 \frac{\partial v_2}{\partial y}$. Therefore, we conclude that $v = (2ax + b)\frac{\partial}{\partial x} + (ay + c)\frac{\partial}{\partial y} + aw \frac{\partial}{\partial w}$, where $a, b, c \in \mathbb{R}$. Finally, taking $(a, b, c) = (1, 0, 0), (a, b, c) = (0, 1, 0)$, and $(a, b, c) = (0, 0, 1)$ we obtain \mathfrak{Q}_P.

Based on the commutativity relations of the generators of \mathfrak{Q}_Q, we identify the three Lie algebras in the classification of 3-dimensional Lie algebras as presented by Winternitz in Bowers (2005). First, $\mathfrak{Q}_E \cong L(3, 4, 0)$ is the Lie algebra of the euclidean group $E(2)$, that is, the group of affine transformations of \mathbb{R}^2 which preserve the euclidean metric. In other words, \mathfrak{Q}_E is \mathfrak{vi}_0 in the Bianchi (1898) classification of 3-dimensional Lie algebras. Second, $\mathfrak{Q}_H \cong L(3, 2, -1)$ is the Lie algebra of the Poincaré group $P(1, 1)$, of affine transformations of \mathbb{R}^2 which preserve the Lorentz metric, i.e. \mathfrak{Q}_H is \mathfrak{vi}_0 is the Bianchi classification. Finally, $\mathfrak{Q}_P \cong L(3, 2, 2)$ with no immediate interpretation and \mathfrak{Q}_P is one of \mathfrak{vi}-algebras of the Bianchi classification, see Proposition 1 for its characterisation. The notation emphasises that \mathfrak{Q}_P and \mathfrak{Q}_H fall into the same class of Bowers (2005) but for different parameters (2 and -1, respectively), while \mathfrak{Q}_E remains apart. When considering complex Lie algebras we would have $\mathfrak{Q}_E \cong L(3, 2, -1)$ and thus the three Lie algebras \mathfrak{Q}_Q would fall into the same class but in that case we would not be able to distinguish between \mathfrak{Q}_E and \mathfrak{Q}_H as those complex Lie algebras would be isomorphic.

The following proposition gives checkable conditions to identify the Lie algebras \mathfrak{Q}_Q among all 3-dimensional Lie algebras.

Proposition 2 (Characterisation of \mathfrak{Q}_Q). A 3-dimensional Lie algebra \mathfrak{Q} is isomorphic to \mathfrak{Q}_Q if and only if $\mathfrak{Q} = I \oplus L$, with I an abelian ideal of dimension 2, and the action $\text{ad}_I : I \to I$ of any $\ell \in L$ on I satisfies

(i) either ad_{ℓ} is diagonalisable with two non-zero real eigenvalues related by $\lambda_1 = 2\lambda_2$, in which case $\mathfrak{Q} \cong \mathfrak{Q}_P$.

(ii) or ad_{ℓ} has two purely imaginary eigenvalues, in which case $\mathfrak{Q} \cong \mathfrak{Q}_E$.

(iii) or ad_{ℓ} is diagonalisable with two non-zero real eigenvalues related by $\lambda_1 = -\lambda_2$, in which case $\mathfrak{Q} \cong \mathfrak{Q}_H$.

Remark 1. Notice that for Σ_E, resp. Σ_H, its Lie ideal \mathfrak{Q}_0 is isomorphic to the Lie algebra of infinitesimal symmetries \mathcal{E}_Q, resp. \mathcal{H}_Q. This is not the case for the Lie ideal \mathfrak{Q}_0 of Σ_P and its symmetry Lie algebra \mathfrak{Q}_P.

Proof. See Bowers (2005).

Before giving our main result, notice that null-forms elliptic and hyperbolic systems Σ_E and Σ_H do not possess any equilibrium point, i.e. $0 \not\in A(\xi)$. On the other hand, the drift $f_\mathcal{P} = w^2 \frac{\partial}{\partial x} + w \frac{\partial}{\partial y}$ of the null form parabolic system Σ_P considered locally around (x_0, y_0, w_0) possesses an equilibrium if $w_0 = 0$ and not if $w_0 \neq 0$. As a consequence, the system

\[
\begin{align*}
\end{align*}
\]

\[
\begin{align*}
\end{align*}
\]

\[
\begin{align*}
\end{align*}
\]
Theorem 1 (Σ_{Q} are characterised by \mathcal{Q}_{Q}). Consider the control-affine system $\Sigma : \xi = f(\xi) + g(\xi)u$ on a smooth 3-dimensional manifold X with a scalar control, and let \mathcal{Q} be its Lie algebra of infinitesimal symmetries.

(i) Σ is locally feedback equivalent to Σ_{E}, around $\xi_{0} \in X$, if and only if

$$\mathcal{Q} \cong \mathcal{Q}_{E} \quad \text{and} \quad I(\xi_{0}) \oplus G(\xi_{0}) = T_{\xi_{0}}X.$$

(ii) Σ is locally feedback equivalent to Σ_{H}, around $\xi_{0} \in X$, if and only if

$$\mathcal{Q} \cong \mathcal{Q}_{H} \quad \text{and} \quad I(\xi_{0}) \oplus G(\xi_{0}) = T_{\xi_{0}}X.$$

(iii) Σ is, locally around $\xi_{0} \in X$, feedback equivalent to Σ_{p}, around $(x_{0}, y_{0}, 0)$, if and only if

$$\mathcal{Q} \cong \mathcal{Q}_{p}, \quad I(\xi_{0}) \oplus G(\xi_{0}) = T_{\xi_{0}}X, \quad \text{and} \quad f(\xi_{0}) \notin G(\xi_{0}).$$

Remark 2. Two systems Σ_{E} (resp. Σ_{H}) around any two points ξ_{0} and ξ_{0}' are locally feedback equivalent to each other. On the other hand, equilibrium points $f(\xi_{0}) \in G(\xi_{0})$ and non-equilibrium points $f(\xi_{0}) \notin G(\xi_{0})$ are distinguished for Σ_{p}: the system is feedback equivalent to Σ_{p}' in the former case and to Σ_{p}' in the latter as assert statements $(iii)'$ and (iii), respectively.

Notice that in statement $(iii)'$ the condition on the pointwise rank of the distribution G^{1} can be replaced by $(g \wedge [f, g])(\xi_{0}) \neq 0$, compare this statement with the assumptions of Proposition 3 below.

Proof. We show the sufficiency part of the statements only as the necessity follows immediately from the list of infinitesimal symmetries given by Lemma 1. For all three cases, the beginning of the proof is the same.

Consider a control-affine system Σ, given by vector fields f and g, and let three vector fields v_{1}, v_{2}, v_{3} span the 3-dimensional Lie algebra $\mathcal{Q} = \text{vect}_{\mathbb{R}} \{v_{1}, v_{2}, v_{3}\}$ of infinitesimal symmetries, which by assumption is isomorphic to \mathcal{Q}_{Q}. We can assume that the abelian ideal of \mathcal{Q} is $I = \text{vect}_{\mathbb{R}} \{v_{1}, v_{2}\}$ and that v_{1}, v_{2}, v_{3} satisfy the commutativity relations of \mathcal{Q}_{Q} (we express them below for each case separately).

Since $I(\xi_{0}) \oplus G(\xi_{0}) = T_{\xi_{0}}X$, it follows that $v_{1}, v_{2},$ and g are independent, locally around ξ_{0}. We apply a local diffeomorphism $\psi(\xi) = (\tilde{x}, \tilde{y}, \tilde{w}), \psi(\xi_{0}) = 0 \in \mathbb{R}^{3}$, such that $\tilde{v}_{1} = \psi_{*}v_{1} = \frac{\partial}{\partial \tilde{x}}, \tilde{v}_{2} = \psi_{*}v_{2} = \frac{\partial}{\partial \tilde{y}}$, and $\tilde{g} = \psi_{*}g = g_{1} \frac{\partial}{\partial \tilde{x}} + g_{2} \frac{\partial}{\partial \tilde{y}} + g_{3} \frac{\partial}{\partial \tilde{w}}$, for some smooth functions $g_{i},$ satisfying $g_{3}(0) \neq 0$. Replacing \tilde{g} by $\frac{1}{\tilde{g_{3}}} \tilde{g}$, we may assume that $\tilde{g} = g_{1} \frac{\partial}{\partial \tilde{x}} + g_{2} \frac{\partial}{\partial \tilde{y}} + \frac{\partial}{\partial \tilde{w}}$. Then, since \tilde{v}_{1} and \tilde{v}_{2} are symmetries of $\mathcal{G}_{\mathcal{Q}} = \langle g_{1} \frac{\partial}{\partial \tilde{x}} + g_{2} \frac{\partial}{\partial \tilde{y}} + \frac{\partial}{\partial \tilde{w}} \rangle$, we have $\tilde{v_{i}}, \tilde{g} \in \mathcal{G}_{\mathcal{Q}}$, for $i = 1, 2$, which implies $g_{1} = g_{i}(\tilde{w})$ and $g_{2} = g_{2}(\tilde{w})$. Therefore, we in fact have $[\tilde{v}_{1}, \tilde{g}] = [\tilde{v}_{2}, \tilde{g}] = 0$ and thus there exists a local diffeomorphism $(x, y, w) = \phi(\tilde{x}, \tilde{y}, \tilde{w})$ such that $\phi_{*}\tilde{v}_{1} = \frac{\partial}{\partial x}, \phi_{*}\tilde{v}_{2} = \frac{\partial}{\partial y}$ and $\phi_{*}\tilde{g} = \frac{\partial}{\partial w}$. Denote $v_{3} = v_{1} \frac{\partial}{\partial x} + v_{2} \frac{\partial}{\partial y} + v_{3} \frac{\partial}{\partial w}$, the third infinitesimal symmetry, where $v_{1}^{3} = v_{1}^{3}(x, y)$ and $v_{2}^{3} = v_{2}^{3}(x, y)$ since v_{3} is a symmetry of $G_{\mathcal{Q}} = \langle \frac{\partial}{\partial w} \rangle$. We now separate the case of elliptic, hyperbolic, and parabolic systems.

(i) Assume that $\mathcal{Q} \cong \mathcal{Q}_{E}$ and, since diffeomorphisms do not change the commutation relations, we have $[v_{1}, v_{3}] = -v_{2}$ and $[v_{2}, v_{3}] = v_{1}$. Hence,

$$v_{3} = (y + c) \frac{\partial}{\partial x} + (-x + d) \frac{\partial}{\partial y} + v_{3}^{3}(w) \frac{\partial}{\partial w},$$

where c, d are real constants. To simplify our computations, we replace v_{3} by $v_{3} - cv_{1} - dv_{2} \in \mathcal{Q}$, which does not change the commutativity relations, so we can get rid of both constants. Now consider the vector field $f = f_{1} \frac{\partial}{\partial x} + f_{2} \frac{\partial}{\partial y} + f_{3} \frac{\partial}{\partial w}$, then by the fact that v_{1} and v_{2} are symmetries of Σ we get that $f_{1} = f_{1}^{1}(w)$ and $f_{2} = f_{2}^{2}(w)$. Using the symmetry $v_{3} = y \frac{\partial}{\partial x} - x \frac{\partial}{\partial y} + v_{3}^{3}(w) \frac{\partial}{\partial w}$, calculate

$$[v_{3}, f] = \left(v_{3}^{3} \frac{df_{1}}{dw} - f_{2}^{2} \right) \frac{\partial}{\partial x} + \left(v_{3}^{3} \frac{df_{2}}{dw} + f_{1}^{1} \right) \frac{\partial}{\partial y} \mod \mathcal{G}_{\mathcal{Q}},$$

which implies the following system of ODEs, where the derivatives are taken with respect to w:

$$(\text{Sys}_{E}) : \begin{cases} v_{3}^{3}(f_{1}') - f_{2}^{2} = 0 \\ v_{3}^{3}(f_{2}') + f_{1}^{1} = 0 \end{cases}.$$
By multiplying the first equation of \((\mathcal{S}y_{SE})\) by \(f_1\) and the second by \(f_2\) and adding them, we obtain the following relation \(v_3^2\left((f_1)^2 + (f_2)^2\right)' = 0\). From \((\mathcal{S}y_{SE})\), it is clear that \(v_3^2 \neq 0\) otherwise we would have \(f_1^2 \equiv f_2^2 \equiv 0\) and the Lie algebra of symmetries would be much larger that \(\mathfrak{g}\). Observe that the points \(w\), where \(v_3(w) = 0\), satisfy also \(f_1(w) = f_2(w) = 0\).

We will show that we always have \((f_1)^2 + (f_2)^2\)' = 0. If \(v_3^2(0) \neq 0\), then it is clear that the conclusion holds, if \(v_3^2(0) = 0\) but in an open neighbourhood around 0 there are no other points where \(v_3^2\) vanishes, then it is also clear that the conclusion holds. Finally if \(v_3^2(0) = 0\) and in any open neighbourhood of zero there are other zeros of \(v_3^2\), then consider the open segment \([w_1, w_2]\) between two consecutives zeros. For all \(w \in [w_1, w_2]\) we have \((f_1)^2 + (f_2)^2 = \mathcal{R}(\mathcal{R} \in \mathbb{R})\) but since for \(w = w_1\) and \(w = w_2\) we have \(f_1^2(w) = f_2^2(w) = 0\), for \(i = 1, 2\), therefore, by continuity, \(\mathcal{R} = 0\). But then, we have \((f_1)^2 + (f_2)^2 = 0\) implying \(f_1 = f_2 = 0\) on \([w_1, w_2]\) and repeating this process for all consecutive roots around 0 implies that \(f\) is \(f = 0\) around 0 but then the Lie algebra \(\mathfrak{g}\) of infinitesimal symmetries would be of infinite dimension and this situation is excluded. Finally, we have \((f_1)^2 + (f_2)^2\)' = 0 around zero, implying \((f_1)^2 + (f_2)^2 = \mathcal{R}, \mathcal{R} > 0\). Therefore \(f_1 = \sqrt{\mathcal{R}} \cos(w)\) and \(f_2 = \sqrt{\mathcal{R}} \sin(w)\) and, by normalising the coordinates \(x\) and \(y\), we obtain the form \(\Sigma_E\).

(iii) The proof is essentially the same so we omit some details. Using the multiplication table \([v_1, v_3] = v_2\) and \([v_2, v_3] = v_1\), we obtain

\[
v_3 = y \frac{\partial}{\partial x} + x \frac{\partial}{\partial y} + v_3(w) \frac{\partial}{\partial w},
\]

which, used as a symmetry of \(f\), yields the system

\[
(\mathcal{S}y_{SH}) : \{ v_3^2(f_1)' - f_2^2 = 0, \quad v_3^2(f_2)' - f_1^2 = 0 \}
\]

We derive the relation \(v_3^2((f_1)^2 - (f_2)^2)' = 0\) and by a similar reasoning we get \((f_1)^2 - (f_2)^2 = \mathcal{R}\) with \(\mathcal{R} \in \mathbb{R}\), but necessarily \(\mathcal{R} \neq 0\) because the Lie algebra of infinitesimal symmetries of \(\Sigma\) with \(f_1 = \pm f_2\) is of infinite dimension. Finally, we have \(f_1 = \sqrt{\mathcal{R}} \cosh(w)\) and \(f_2 = \sqrt{\mathcal{R}} \sinh(w)\) and using a coordinate normalisation we get \(f_1 = \cosh(w)\) and \(f_2 = \sinh(w)\).

(iii) Using the multiplication table of \(\mathfrak{g}_P\) given by \([v_1, v_3] = 2v_1\) and \([v_2, v_3] = v_2\), which has not been changed by applying diffeomorphisms, we obtain

\[
v_3 = 2x \frac{\partial}{\partial x} + y \frac{\partial}{\partial y} + v_3(w) \frac{\partial}{\partial w},
\]

which is a symmetry of \(f\) and thus yields the system

\[
(\mathcal{S}y_{SP}) : \{ v_3^2(f_1)' - 2f_1^2 = 0, \quad v_3^2(f_2)' - f_2^2 = 0 \}
\]

recall that \(f_1 = f_1^1(w)\) and \(f_2 = f_2^2(w)\). We will now distinguish two cases, namely we separate between existence or not of an equilibrium at \(w_0 = 0\).

(a) Assume that \(f(0) \notin \mathcal{G}(0)\), that is \((f_1^1, f_2^2(0)) \neq (0, 0)\) and thus by \((\mathcal{S}y_{SP})\) we have \((f_1^1)'(f_2^2)'(0) \neq (0, 0)\). Assume \(f_2^2(0) \neq 0\), thus \(f_2^2(w) = c + h(w)\), where \(c = f_2^2(0)\) and \(h(0) = 0\). Replacing \(y\) by \(y/c\) we may assume \(f_2^2(w) = 1 + h(w)\), where \(h'(0) \neq 0\), if not the second equation of \((\mathcal{S}y_{SP})\) is not satisfied at \(0 \in \mathbb{R}\). Set \(\hat{w} = h(w)\) and denote the transformed vector fields \(\hat{f} = \hat{f}_3\), for which \((\mathcal{S}y_{SP})\) implies \(\hat{f}_3 = 1 + \hat{w}\) and

\[
(f_1)'(1 + \hat{w}) = 2\hat{f}_1^1.
\]

Solving this equation gives \(f_1^1(\hat{w}) = c(1 + \hat{w})^2\) with \(c \in \mathbb{R}\). But \(c\) can not be 0, otherwise the Lie algebra \(\mathfrak{g}\) of infinitesimal symmetries would be of infinite dimension, thus not isomorphic to \(\mathfrak{g}_P\). Finally, introducing \(\hat{x} = x/c\) we obtain \(\Sigma_{1,P}\). If \(f_2(0) = 0\), then \(f_1(0)' \neq 0\) implying that \((f_1^1)'(0) \neq 0\) and leading to the normalisation \(f_1^1(\hat{w}) = 1 + \hat{w}\) giving \(\hat{f}_3 = 2(1 + \hat{w})\) and \(\hat{f}_2 = (1 + \hat{w})^{1/2}\). This forms is equivalent to \(\Sigma_{1,P}^0\) by the local diffeomorphism \(w = (1 + \hat{w})^{1/2} - 1\), sending \(0\) into 0.

(b) Assume \(f(0) \in \mathcal{G}(0)\) and \(g \wedge \text{ad}_x f(0) \neq 0\). If \(f_2(0)' \neq 0\), take \((\hat{x}, \hat{y}, \hat{w}) = (x, y, f^2(0))\) as a local diffeomorphism around \(0 \in \mathbb{R}^3\) that maps \(f_1\), \(f_2\) and \(v_3\) into \(f_1^1, f_2^2\) and \(\hat{v}_3\), respectively. We have \(\hat{w} = \hat{w}^2\), so the system \((\mathcal{S}y_{SP})\) implies \(\hat{v}_3^2 = \hat{w}^2\) and

\[
\hat{w} (f_1)' = 2\hat{f}_1^1.
\]

Solving this equation gives \(f_1^1(\hat{w}) = c(\hat{w})^2\) with \(c \in \mathbb{R}\). But \(c\) can be 0, otherwise the Lie algebra \(\mathfrak{g}\) of infinitesimal symmetries would be of infinite dimension. Finally, introducing \(\hat{x} = x/c\) we obtain \(\Sigma_{0,P}^0\). If \((f_2)'(0) = 0\), then \((f_1)'(0) \neq 0\) and by applying the local diffeomorphism \((\hat{x}, \hat{y}, \hat{w}) = (x, y, f^1(0))\) we get \(f_1 = \hat{w}\) yielding \(\hat{v}_3(\hat{w}) = \hat{w}^2\) and \(2\hat{w}(f_2)' = f_2^2\).

Hence, \(|f_2' | = |d|\hat{w}|^{1/2}\) and the only smooth solution, around \(\hat{w} = 0\), is given by \(d = 0\) but then the Lie algebra \(\mathfrak{g}\) of infinitesimal symmetries would be of infinite dimension contradicting our assumption.

All systems \(\Sigma\) that are locally feedback equivalent to either \(\Sigma_E\) or \(\Sigma_H\) are completely characterised by their symmetry algebras being isomorphic to \(\mathfrak{g}_E\) or \(\mathfrak{g}_H\), respectively. This is not the case for \(\Sigma_P\). Namely, there are systems that have \(\mathfrak{g}_P\) as the symmetry algebra although they are not locally feedback equivalent to \(\Sigma_P\).
Proposition 3. Let $\Sigma : \dot{\xi} = f(\xi) + g(\xi)u$ be a control-affine system on a smooth 3-dimensional manifold \mathcal{X} with a scalar control, and let \mathfrak{g} be its Lie algebra of infinitesimal symmetries. Assume $f(\xi_0) \in \mathcal{G}(\xi_0)$ and, additionally, that there exists $k \geq 1$, the smallest integer such that $g \wedge \text{ad}_g^k f(\xi_0) \neq 0$. Then,

$$\mathfrak{g} \cong \mathfrak{g}_p \quad \text{and} \quad I(\xi_0) \oplus \mathcal{G}(\xi_0) = T_{\xi_0} \mathcal{X}$$

if and only if Σ is feedback equivalent to

$$\Sigma_{0,k}^p : \begin{cases} \dot{x} = u^{2k} \\ \dot{y} = u^k \\ \dot{w} = u \end{cases}$$

around $(x_0, y_0, 0) \in \mathbb{R}^3$.

Moreover, it is a classical fact that (under the above assumptions) the integer k is an invariant of feedback transformations, hence if $k \neq k'$, then $\Sigma_{0,k}^p$ and $\Sigma_{0,k'}^p$ are not locally feedback equivalent around $w_0 = 0$. To be consistent with the notation of the above proposition, the previously considered normal form $\Sigma_{0,k}^p$ should actually be denoted $\Sigma_{0,k}^p$.

Proof. We prove the necessity only, as there are no difficulties to show (repeating the arguments of Lemma 1) that the Lie algebra of infinitesimal symmetries of $\Sigma_{0,k}^p$ is isomorphic to \mathfrak{g}_p. We adapt the point (iii)-(b) of the proof of Theorem 1. Assume that $f(0) \in \mathcal{G}(0)$ and that $k \geq 1$ is the smallest integer such that $g \wedge \text{ad}_g^k f(0) \neq 0$, that is $\frac{d^k}{dw^k}(f^1, f^2)(0) \neq (0, 0)$. If $(f^2(\xi_0)(0) \neq 0$, then by the Taylor expansion we can write $f^2(w) = u^k H(w)$, where $H(0) \neq 0$. We can suppose $H(0) > 0$, if not, replace y by $-y$, and we apply around $0 \in \mathbb{R}^3$ the local diffeomorphism $(\hat{x}, \hat{y}, \hat{w}) = (x, y, w(H(w))^{1/k})$ that maps f^1, f^2 and ν_3 into f^1, f^2 and ν_3, respectively. We have $f^2 = \hat{w}^k$, so the system $(\Sigma_{0,k}^p)$ implies $\nu_3 = \hat{w}/k$ and

$$\hat{w}(\hat{f}^1)^k = 2k^2.$$

Solving this singular equation gives $\hat{f}^1(\hat{w}) = c \hat{w}^{2k}$ with $c \in \mathbb{R}$. However, the solution passing through $\hat{w} = 0$ is not unique so à priori we may have different values of c for $\hat{w} < 0$ and $\hat{w} > 0$ but the only C^∞ solutions are those given by the same value of c (either $c = 0$ or $c \neq 0$) for any \hat{w}. But c can not be 0, otherwise the Lie algebra \mathfrak{g} of infinitesimal symmetries would be of infinite dimension.

Finally, introducing $\hat{x} = x/c$ we obtain the desired form $\Sigma_{0,k}^p$.

If $(f^1(\xi_0)(0) \neq 0$, then normalizing $\hat{f}^1 = \hat{w}^k$ and applying an analogous procedure we deduce that $\hat{f}^2(\hat{w}) = c \hat{w}^{4k}/2$. If $c = 0$ then the Lie algebra of infinitesimal symmetries would be of infinite dimension contradicting our assumptions. In all other cases of k and c the solution is not smooth around $\hat{w} = 0$ except for $k = 2l$ and the same value of c for $\hat{w} < 0$ and $\hat{w} > 0$. But in the latter case we have $(f^2(\xi_0)(0) \neq 0$, with $l < k$, that contradicts the definition of k. \hfill \Box

Remark 3. Statement (iii) of Theorem 1 and Proposition 3 describe all systems having \mathfrak{g}_p as the symmetry algebra for which k exists (in particular, all analytic systems). In the C^∞ category there are, however, systems for which k does not exist and the symmetry algebra is \mathfrak{g}_p. For example, consider

$$\begin{cases} \hat{x} = \hat{f}(\hat{w})^2 \\ \hat{y} = \hat{f}(\hat{w}) \\ \hat{w} = u \end{cases}$$

with $\hat{f}(\hat{w}) = \exp(-1/\hat{w}^2)$ and $\hat{f}(0) = 0$. By a straightforward calculation, its symmetry algebra is, indeed, \mathfrak{g}_p but, obviously, k does not exist at $(x_0, y_0, 0)$.

The fact that the case of existence of an equilibrium, i.e. $f(\xi_0) \in \mathcal{G}(\xi_0)$, exhibits a richer collection of normal forms can be explained as follows. In that case, the fields of admissible velocities $\mathcal{A} = f + \mathcal{G}$ becomes at ξ_0 a linear (and not an affine) subspace $\mathcal{A}(\xi_0) = \mathcal{G}(\xi_0)$ of $T_{\xi_0} \mathcal{X}$ and the symmetries are less constrained by that structure. Conversely, any given symmetry imposes a bit less rigidity on f if $f(\xi_0) = \mathcal{G}(\xi_0)$.

In Respondek and Tall (2002) it is proved that any control-affine single-input system, with controllable linear approximation around an equilibrium, has at most two symmetries: the identity and, in an exceptional “odd” case, a symmetry conjugated to minus identity. All systems studied in the present paper have a nontrivial 3-dimensional Lie algebra of symmetries but are in a perfect accordance with the result of Respondek and Tall (2002). Namely, the systems Σ_E, Σ_H, and $\Sigma_{0,k}^p$ do not have equilibria while Σ_0^p and $\Sigma_{0,k}^p$ are considered around an equilibrium but their linear approximations are not controllable.

3. Conclusions

In this paper, we propose a characterisation of nullforms of conic systems Σ_0 via their Lie algebra of infinitesimal symmetries. We showed that this class of control-affine systems is completely determined by its Lie algebra of symmetries (under some regularity assumptions do not the parabolic systems Σ_p). There are few results of that kind for control-affine systems existing in the literature, with a notable exception of Doubrov and Zelenko (2014), and more for the control-linear case, see Anderson and Kruglikov (2011); Doubrov and Kruglikov (2014); Kruglikov (2012).

In view of all those results, it would be very interesting to study the following generalisation.

Problem. Let \mathfrak{g} be a finite-dimensional Lie algebra of vector fields acting transitively on a manifold \mathcal{X}. Does \mathfrak{g} uniquely determine a class of control-affine systems (around a generic point) whose Lie algebra of infinitesimal symmetries is \mathfrak{g}?

We believe that considering control-affine systems instead of control-linear systems in that problem matters. A reason is that the existence of the drift f gives more rigidity on the
symmetries and therefore would constrain the structure of systems possessing those symmetries. To start investigating this problem, we could begin with the study of all 2- and 3-dimensional Lie algebras (which are well known) and to characterise the control-affine systems that admit those Lie algebras as symmetries. In the thesis of the first author Schmoderer (2022), Theorem 1 is generalised to the class of paraboloid control-affine systems, that is control-affine system (with $m \geq 1$ controls and the state space being a $(2m + 1)$-dimensional manifold) whose field of admissible velocities is a paraboloid hypersurface of the tangent bundle.

References

Agrachev, A.A., 1998. Feedback-Invariant Optimal Control Theory and Differential Geometry. II. Jacobi curves for singular extremals. Journal of Dynamical and Control Systems 4, 583–604. doi:10.1023/A:1021871218015.

Anderson, I., Kruglikov, B., 2011. Rank 2 distributions of Monge equations: Symmetries, equivalences, extensions. Advances in Mathematics 228, 1435–1465. doi:10.1016/j.aim.2011.06.019.

Bianchi, L., 1898. Sugli spazi a tre dimensioni che ammettono un gruppo continuo di movimenti. Memorie della Societa Italiana delle Scienze 11, 267–352. English translation: On the Three-Dimensional Spaces Which Admit a Continuous Group of Motions. General Relativity and Gravitation 33, 2171–2253. doi: 10.1023/A:1015357132699.

Bowers, A., 2005. Classification of three-dimensional real Lie algebras. Available online URL: http://math.ucsd.edu/~abowers/downloads/survey/3d_Lie_alg_classify.pdf.

Doubrov, B., Kruglikov, B., 2014. On the models of submaximal symmetric rank 2 distributions in 5D. Differential Geometry and its Applications 35, 314–322. doi:10.1016/j.difgeo.2014.06.008.

Doubrov, B., Zelenko, I., 2014. Geometry of rank 2 distributions with nonzero Wilczynski invariants. Journal of Nonlinear Mathematical Physics 21, 166–187. doi:10.1080/14029251.2014.909885.

Dubins, L.E., 1957. On curves of minimal length with a constraint on average curvature, and with prescribed initial and terminal positions and tangents. American Journal of Mathematics 79, 497–516. doi:10.2307/2372560.

Grizzle, J., Marcus, S., 1985. The structure of nonlinear control systems possessing symmetries. IEEE Transactions on Automatic Control 30, 248–258.

Isidori, A., 1995. Nonlinear Control Systems. Communications and Control Engineering, Nonlinear Control Systems. third ed., Springer-Verlag, London. URL: https://www.springer.com/gp/book/9783540199168, doi:10.1007/978-1-4612-6155-5.

Kruglikov, B., 2012. Lie theorem via rank 2 distributions (integration of PDE of class $\omega = 1$). Journal of Nonlinear Mathematical Physics 19, 158. doi:10.1142/S1424012512500118.

Monroy-Pérez, F., 1998. Non-Euclidean Dubins’ problem. Journal of Dynamical and Control Systems 4, 249–272. doi:10.1023/A:1022842619374.

Nijmeijer, H., van der Schaft, A., 1990. Nonlinear Dynamical Control Systems. Springer-Verlag, New York. URL: https://www.springer.com/gp/book/9780387972343, doi:10.1007/978-1-4757-2181-8.

Respondek, W., Tall, I.A., 2002. Nonlinearizable single-input control systems do not admit stationary symmetries. Systems & Control Letters 46, 1–16. doi:10.1016/S0167-6911(01)00197-9.

Schmiderer, T., 2022. Study of Control Systems under Quadratic Nonholonomic Constraints. Motion Planning, Introduction to the Regularised Continuation Method. Ph.D. thesis. INSA Rouen Normandie. URL: http://theses.fr/s221665.

Schmiderer, T., Respondek, W., 2021. Conic nonholonomic constraints on surfaces and control systems. arXiv:2106.08635 [math] URL: http://arxiv.org/abs/2106.08635, arXiv:2106.08635.

Serres, U., 2009. Control systems of zero curvature are not necessarily trivializable. arXiv:0902.2332 [math] URL: http://arxiv.org/abs/