Fine-tuning the orientation of the polarity axis by Rga1, a Cdc42 GTPase-activating protein

Kristi E. Miller, Wing-Cheong Lo, Mid Eum Lee, Pil Jung Kang, and Hay-Oak Park

ABSTRACT In yeast and animal cells, signaling pathways involving small guanosine triphosphatases (GTPases) regulate cell polarization. In budding yeast, selection of a bud site directs polarity establishment and subsequently determines the plane of cell division. Rga1, a Cdc42 GTPase-activating protein, prevents budding within the division site by inhibiting Cdc42 repolarization. A protein complex including Nba1 and Nis1 is involved in preventing rebudding at old division sites, yet how these proteins and Rga1 might function in negative polarity signaling has been elusive. Here we show that Rga1 transiently localizes to the immediately preceding and older division sites by interacting with Nba1 and Nis1. The LIM domains of Rga1 are necessary for its interaction with Nba1, and loss of this interaction results in premature delocalization of Rga1 from the immediately preceding division site and, consequently, abnormal bud-site selection in daughter cells. However, such defects are minor in mother cells of these mutants, likely because the G1 phase is shorter and a new bud site is established prior to delocalization of Rga1. Indeed, our biphasic mathematical model of Cdc42 polarization predicts that premature delocalization of Rga1 leads to more frequent Cdc42 repolarization within the division site when the first temporal step in G1 is assumed to last longer. Spatial distribution of a Cdc42 GAP in coordination with G1 progression may thus be critical for fine-tuning the orientation of the polarity axis in yeast.

INTRODUCTION Establishing cell polarity in a proper orientation is critical for development and cell proliferation (Drubin and Nelson, 1996; Nelson, 2003). In most fungal and animal cells, selection of a polarity axis is linked to polarity establishment via a conserved mechanism involving the Cdc42 GTPase (Johnson, 1999; Etienne-Manneville, 2004; Park and Bi, 2007). Cells of the budding yeast Saccharomyces cerevisiae grow by choosing a single bud site, which determines the axis of cell polarity and the plane of cell division. Bud-site selection occurs in a cell-type-specific manner (Freifelder, 1960; Hicks et al., 1991; Chant and Pringle, 1995): a or α cells (such as wild-type haploids) bud in the axial pattern, in which a new bud site is chosen adjacent to the previous division site. In contrast, a/α cells (such as wild-type diploids) bud in the bipolar pattern, in which daughter cells typically bud at the pole distal from the division site, and mother cells choose a new bud adjacent to the division site or at the opposite pole. The axial pattern depends on a transient cortical marker that includes Bud3, Bud4, Axl1, and Axl2 (see Bi and Park, 2012). This axial landmark interacts with the Rsr1 GTPase module (Kang et al., 2001; Kang et al., 2012) composed of Rsr1 (also known as Bud1), its GTPase-activating protein (GAP) Bud2, and its guanine nucleotide exchange factor (GEF) Bud5 (Bender and Pringle, 1989; Chant and Herskowitz, 1991; Chant et al., 1991; Park et al., 1993). The Rsr1 GTPase module then interacts with the Cdc42 GTPase (Johnson, 1999; Etienne-Manneville, 2004; Kang et al., 2012) composed of Cdc42, its GAP Gpa1, and its GEF Cdc24 to couple the spatial cue to polarity establishment (Zheng et al., 1995; Park et al., 1997; Kozinski et al., 2003; Kang et al., 2010). Bud3 also directly activates Cdc42 in early G1, supporting a...
model that stepwise activation of Cdc42 is necessary for spatial cue-directed Cdc42 polarization (Kang et al., 2014).

Both haploid and diploid cells select a new bud site that does not overlap with any previous bud site (Barton, 1950; Mortimer and Johnston, 1959; Hicks et al., 1977; Chant and Pringle, 1995). Each cell division site on the mother cell surface is marked by a chitin-rich ring (called a “bud scar”), while the division site on the daughter cell is marked by a frail chitin-less structure (called a “birth scar”) (Bacon et al., 1966; Cabib and Bowers, 1971) (Figure 1A). The interdependent transmembrane proteins Rax1 and Rax2, which mark the cell division sites through multiple generations, are known to be involved in bipolar budding as the persistent pole marker in a/α cells (Chen et al., 2000; Kang et al., 2004). However, their role in the axial budding pattern had not been known when this study began. Here, the bud neck during cytokinesis is referred to as the current division site and is distinguished from the immediately preceding division site (i.e., the most recently used division site), at which Rax1 and Rax2 have arrived (Figure 1A). Cdc42 and its GAP Rga1 are also involved in proper bud-site selection (Johnson and Pringle, 1990; Miller and Johnson, 1997; Stevenson et al., 1995; Chen et al., 1996; Smith et al., 2002; Lo, Lee, et al., 2013; Kang et al., 2014). Interestingly, among Cdc42 GAPs, Rga1 is uniquely required for preventing budding within the previous division site by inhibiting Cdc42 repolarization (Tong et al., 2007). A protein complex including Nba1 and Nis1, which interact with Rax1 and Rax2, has been suggested to inhibit Cdc42 at the old division sites (referred to as “cytokinesis remnants” [CRMs]) and thus function as negative polarity cues (Meitinger et al., 2014). We recently found that Rga1 localizes to old division sites in addition to the current division site (Lee et al., 2015). These observations raised a number of questions, including how Rga1 might localize to the old division sites and whether its function at these sites might be related to the negative polarity cues at CRMs. To address these questions, we combined various methods including quantitative microscopy and mathematical modeling. Here we report that Rga1 localizes to the old division sites transiently via interaction with Nba1 and Nis1.

![FIGURE 1: Localization of Rga1 to old cell division sites. (A) Scheme depicting the cell division sites in a yeast cell budding in the axial pattern. The current division site denotes the bud neck during cytokinesis. Following cytokinesis and cell separation, the division site becomes the most recently used site (i.e., the immediately preceding division site) and is marked with a new bud scar (purple) on the mother cell and with a birth scar (green) on the daughter cell. Older cell division sites on the mother cell are marked with bud scars (blue). (B) (a) Localization pattern of GFP-Rga1 to old bud sites is summarized from time-lapse images of cells budding in different patterns (n = 26 each strain). Representative images are shown for cells with GFP-Rga1 localized to all (b) or some (c) old bud sites. Bars, 3 μm. (C) Representative SIM images of GFP-Rga1 (marked with arrowhead at old bud site) and Cdc3-mCherry. Maximum intensity projection images (left) and three-dimensional reconstruction of boxed region (right) are shown for each cell. Bars, 3 μm.](image-url)
We provide evidence that the Cdc42 GAP Rga1 is the core of negative polarity signaling at any previous cell division site.

RESULTS

Rga1 localizes to old division sites regardless of budding pattern

Although Cdc42 becomes enriched at the bud neck (which becomes the division site) in late M phase (Richman et al., 2002), Rga1 inhibits Cdc42 activation and thus rebudding within the division site (Tong et al., 2007). We thus asked whether Rga1 localizes only to old division sites that are adjacent to the bud neck (i.e., only in cells budding in the axial pattern) to inhibit Cdc42 repolarization at these sites. We examined localization of green fluorescent protein (GFP) tagged Rga1 in cells that bud in different patterns after staining with Calcofluor, which stains the bud scars and bud neck. We observed three different patterns of GFP-Rga1 localization in these cells (Figure 1B): GFP-Rga1 was present at all old bud sites (Figure 1Bb), some but not all old bud sites (Figure 1Bc), or none of the old bud sites. The percentage of these groups was not significantly different among wild-type (WT) a and a/α cells (which bud in an axial and a bipolar pattern, respectively) and rsr1Δ cells (which bud in a random pattern), indicating that Rga1 localizes to the old division sites of these cells regardless of their budding pattern. A close-up view of GFP-Rga1 by structured illumination microscopy (SIM) revealed that Rga1 localizes to the old division site as multiple dots organized as a ring (Figure 1C and Supplemental Video S1; n = 4).

Transient localization of Rga1 to the current and old division sites

How does Rga1 localize to old cell division sites? One possibility might be that Rga1 is inherited from the division site and then stably anchored at old division sites, as in the case of Rax1 and Rax2. Alternatively, Rga1 might localize to old cell division sites transiently in every cell cycle as it does to the current division site. To distinguish between these possibilities, we performed time-lapse imaging of WT haploid cells expressing GFP-Rga1 for one round of the cell division cycle. We observed that GFP-Rga1 at the immediately preceding division site disappeared around bud emergence in the next cell cycle (98%, n = 52 mother cells; 100%, n = 32 daughter cells). GFP-Rga1 at old division sites in mother cells also disappeared around bud emergence (96%, n = 27) and then reappeared at those sites during G2/M phase (89%, n = 27) (see arrowheads, Figure 2A).

We then compared dynamics of GFP-Rga1 at different stages of the cell cycle by fluorescence recovery after photobleaching (FRAP). We found that GFP-Rga1 at old bud sites was fairly dynamic with half-time of recovery ($t_{1/2}$) = 22.4 ± 1.6 s (Figure 2Ba). Similar dynamics were observed for GFP-Rga1 at the bud neck prior to cytokinesis and at the immediately preceding division site in early G1 (Figure 2B, b and d). GFP-Rga1 was most dynamic during cytokinesis (right after splitting of the Cdc3-RFP ring) ($t_{1/2}$ = 4.0 ± 1.8 s; Figure 2Bc). Taken together, these results indicate that Rga1 at the old division sites is dynamic, transiently arriving at these sites in each cell division cycle.

FIGURE 2: Rga1 is dynamic at old and current cell division sites. (A) GFP-Rga1 localizes to old bud site (marked with arrowheads) transiently in WT at 30°C. Numbers indicate time (in min) from the onset of cytokinesis ($t = 0$). Bar, 3 μm. (B) (a) FRAP analysis of GFP-Rga1 at old bud site. Left, recovery after photobleaching is plotted (mean ± SEM), and curve fit is in red. The half-time of recovery ($t_{1/2}$) (mean ± SEM) and number (n) of samples analyzed are shown. Right, representative cell before (prebleach) and after photobleaching. The red boxed region was bleached at time 0. Bar, 3 μm. (b–d) FRAP analysis of GFP-Rga1 at the bud neck prior to cytokinesis (b), during cytokinesis (c), and at the immediately preceding division site (d).
Localization of Rga1 to old division sites depends on Rax1, Rax2, Nis1, and Nba1

While Rga1 localization to the bud neck depends on septins (Caviston et al., 2003), the “old” septin ring does not remain at the division site after G1 (Oh and Bi, 2011), suggesting that Rga1 relies on another protein(s) to localize to the old division sites. We considered a number of proteins that localize to old division sites as potential binding partners of Rga1. The persistent division site markers Rax1 and Rax2 arrive at the cell division site after septa formation (Chen et al., 2000; Kang et al., 2004; Khmelinskii et al., 2012). Nba1 and Nis1, which initially localize to the current division site via the scaffold protein Gps1, also localize to the immediately preceding division site by interacting with Rax1/2 after septation and then remain at the old division sites for multiple generations (Meitinger et al., 2014). We thus asked whether Rga1 is recruited to old division sites by these proteins. First, we found that GFP-Rga1 colocalized with Rax2-RFP, Nis1-RFP, and Nba1-RFP to the old and immediately preceding division sites (marked with arrowhead and arrows, respectively; mean Pearson’s correlation coefficient, PCC > 0.5) (Figure 3A). We also tested whether

![Localization of Rga1 to old bud sites depends on Rax1, Rax2, Nis1, and Nba1. (A) Colocalization of GFP-Rga1 with (a) Rax2-mCherry, (b) Nis1-tdTomato, and (c) Nba1-tdTomato. Numbers indicate mean PCC values at the immediately preceding division site (within images) and at older bud sites (below images). Number of cells analyzed for colocalization (at the immediately preceding division site and at the old division site) are as follows: Rax2 (31, 31); Nis1 (31, 31); and Nba1 (32, 25). Arrowheads and arrows mark old division sites and the immediately preceding division site, respectively. Bars, 3 μm. (B) Quantification of cells with GFP-Rga1 or GFP-Rga1Δm1 present at old bud sites. Strains marked with # are congenic to ESM356-1. Only large budded cells with old bud site(s) were counted. Mean ± SEM is shown from three independent experiments with the following total number of cells analyzed: WT (301), rax1Δ (311), rax2Δ (308), nba1Δ (322), GFP-rga1Δm1 (300), WTΔ (396), nis1Δ (338), and gps1Δ (324). (C) Yeast two-hybrid assays of full-length and the truncated forms of Rga1 (depicted on the right). Growth on the –Leu plate denotes interaction. (D) MBP pull-down assays using MBP-Nba1 (a) and MBP-Nis1 (b) with the addition of extracts containing either GST-Rga1N or GST-Rga1NΔm1 in the presence or absence of Zn++, as indicated. GST- and MBP-fusion proteins were detected with anti-GST and anti-MBP antibodies, respectively. Average recovery of GST-Rga1N pulled down with MBP-Nba1 was 4% or 0.09% in the presence or absence of Zn+++, respectively, and 0.08% GST-Rga1NΔm1 was recovered with MBP-Nba1 in the presence of Zn++. Average recovery of GST-Rga1N or GST-Rga1NΔm1 with MBP-Nis1 was about the same (0.2%). No detectable GST-Rga1N or GST-Rga1NΔm1 was pulled down with MBP control.
localization of GFP-Rga1 to old bud sites was dependent on RAX1, RAX2, NIS1, or NBA1 by examining large-budded cells of WT or mutants deleted for each of these genes after Calcofluor staining. We found that very few of these mutant cells (all of which express GPS1) had GFP-Rga1 localization to old division sites. Similarly, GFP-Rga1 localization to old division sites was not observed in gps1Δ cells (Figure 3B), likely because Nis1 and Nba1 were not initially recruited to the division site in the absence of Gps1 and thus were not present at the old division sites, as expected from the previous report (Meitinger et al., 2014). These results are consistent with the idea that Rga1 is recruited to the old division site by Nba1 and Nis1, which themselves are anchored by Rax1 and Rax2.

The LIM domains of Rga1 are necessary for its interaction with Nba1

Since it had been suggested that Nba1 and Nis1 function as negative polarity cues independently from Rga1 (Meitinger et al., 2014), it was surprising to find that Rga1 localization depends on Nba1 and Nis1. To explore this issue further, we examined whether Rga1 interacted with Nba1 and/or Nis1 by a yeast two-hybrid assay. We expressed Rga1 fused to a DNA-binding domain and Nba1 (or Nis1) fused to an activation domain in a strain carrying the LEU2 reporter. Growth on a plate lacking Leu indicated that Rga1 interacts with Nba1 and Nis1, similarly to the positive control Cdc42G12V (which is expected to be the GTP-locked state in vivo and thus to interact with its GAP). Interestingly, when we tested truncated Rga1 fusion proteins, the N-terminal half of Rga1 (amino acids 1–537; Rga1N) exhibited a similar two-hybrid interaction with Nba1 and Nis1. In contrast, the C-terminal fragment (Rga1C), which carries the GAP domain, interacted with Cdc42G12V but not with Nba1 or Nis1 (Figure 3C). These results suggest that the N-terminal region of Rga1 specifically interacts with Nba1 and Nis1.

The N-terminal region of Rga1 contains tandem LIM domains (amino acids 1–122) (Chen et al., 1996), which are named after their initial discovery in the proteins Lin11, Isl-1, and Mec-3. LIM domains are characterized by a unique cysteine-rich motif with a zinc-finger structure that often functions as a protein-binding interface (Kadras and Beckerle, 2004). Interestingly, it has been reported that Rga1 LIM domain mutants exhibit an abnormal budding pattern (Chen et al., 1996). We thus postulated that the LIM domains of Rga1 might be involved in interaction with Nba1 and/or Nis1. To test this idea, we performed in vitro binding assays using recombinant proteins. Rga1N or Rga1NN1 (which lacks LIM domains; denoted Δ1) was expressed as a glutathione S-transferase (GST) fusion protein, and Nba1 or Nis1 was expressed as an maltose binding protein (MBP) fusion protein from Escherichia coli. We found that MBP-Nba1 associated efficiently with GST-Rga1N but not GST-Rga1NN1 in the MBP pull-down assay. Moreover, this Rga1N-Nba1 association was dependent on the presence of Zn(II) (Figure 3A), indicating that the LIM domains of Rga1 are indeed necessary for its interaction with Nba1. MBP-Nis1 associated similarly with both Rga1N and Rga1NN1 in vitro (Figure 3Db), suggesting that another region in Rga1N is involved in interaction with Nis1.

We then examined how LIM domains might be involved in localization of GFP-Rga1 to old cell division sites by introducing the same LIM domain deletion mutant (Δ1). GFP-Rga1Δ1m1 poorly localized to old division sites in large budded cells, despite its localization to the bud neck (Figure 3B; see Figure 8 later in this article). Together, these results suggest that Rga1 localizes to old division sites via interaction with Nba1 and that the LIM domains of Rga1 are necessary for its interaction with Nba1.

Rga1 at the immediately preceding division site and older division sites may affect the orientation of the polarity axis

If Rga1 functions to prevent Cdc42 repolarization at old division sites, as it does at the current division site (Tong et al., 2007), then we would predict that rax1Δ, rax2Δ, nba1Δ, and nis1Δ mutants exhibit improper bud-site selection. To test this idea, we examined the division sites of these mutants by staining cells with Calcofluor and wheat germ agglutinin conjugated to fluorescein isothiocyanate (WGA-FITC). WGA-FITC stains the division site in daughter cells (i.e., “birth scar”) as well as bud scars in mother cells (see Figure 1A). Almost all daughter cells of rax1Δ, rax2Δ, nba1Δ, and nis1Δ mutants budded within the birth scar (marked with an arrow; Figure 4A). The majority of mother cells of these mutants had bud scars that often appeared adjacent to one another, although these bud scars (or a bud) were present within the birth scar (Figure 4B, ii). A smaller percentage of mutant mother cells had bud scars (or a bud) within a bud scar (Figure 4B, iii) or at the opposite poles (Figure 4B, iv), and these bud scars were also present within the birth scar. These analyses indicate that rax1Δ, rax2Δ, nba1Δ, and nis1Δ mutants are severely defective in selecting the first bud site, whereas subsequent budding events are partially defective.

Because there was some difficulty visualizing bud scars within a bud scar from the static images, we took a complementary approach to determine the role of Rga1 at the old division sites. We monitored Cdc42 polarization in rax1Δ cells by time-lapse imaging using the p21-binding domain of Gic2 fused to tdTomato (PBD-RFP), a biosensor for active Cdc42, which specifically interacts with Cdc42-GTP (Ozbudak et al., 2005; Tong et al., 2007; Okada et al., 2017). The transcriptional repressor Whi5 fused to GFP was used as a cell-cycle marker, since its nuclear exit divides the G1 phase into two temporal steps, 1 and 2 (Di Talia et al., 2007). In addition, Cdc3-GFP was used as both a cell-cycle and positional marker, since the septin hourglass splits into a double ring at the division site around the onset of cytokinesis (Kim et al., 1991; Lippincott et al., 2001). The PBD-RFP signal peaks at the presumptive bud site prior to disassembly of the septin ring at the division site, approximately concurrent with the appearance of new septin clouds (Okada et al., 2013; Kang et al., 2014; Lee et al., 2015). Cdc42 always polarized at a site adjacent to the septin ring in mother and daughter cells of WT haploids (Figure 5B and Supplemental Figure S1), as expected. In contrast, Cdc42 polarized within the septin ring in a subset of rax1Δ mother cells (9.7%, n = 31; Figure 5B and Supplemental Figure S2B) and in the majority of rax1Δ daughter cells (Figure 5). This relatively minor defect of Cdc42 polarization in rax1Δ mother cells is thus consistent with the budding pattern (see Figure 4B).

We then employed mathematical modeling to simulate how Rga1 localization to the old bud site affects Cdc42 polarization. We extended our previous generic model of Cdc42 polarization on a two-dimensional computational domain with the axial landmark ring in the center (Figure 6A). This model incorporated two temporal steps in G1—the first step included positive feedback and delayed negative feedback, whereas the second step included stronger positive feedback with diminished negative feedback (Lee et al., 2015). When Rga1 distribution at the current division site and at the previous division site (adjacent to the current division site) was implemented, our simulations showed that Cdc42 always polarized to a site that was outside of the old division site (Figure 6B, a and c). In contrast, if Rga1 was absent at the old division site, one of 10 simulations resulted in Cdc42 polarization within the old division site (Figure 6B, b and d), consistent with a minor defect in Cdc42 polarization in vivo (see Figure 5B). Collectively, both experimental data and computational modeling suggest that Rga1 localization to the
has been shown to exhibit an abnormal budding pattern (Chen et al., 1996). Indeed, we found that the budding phenotypes of \(\text{rga1}^{\Delta} \text{m1} \) and \(\text{rga1}^{\Delta} \text{C40S C98S} \) were very similar to those observed in mother and daughter cells of \(\text{rax1}^{\Delta} \), \(\text{rax2}^{\Delta} \), \(\text{nis1}^{\Delta} \), and, in particular, an \(\text{nba1}^{\Delta} \mu^{\Delta} \) mutant (Figure 4). These observations suggest that the Rga1 LIM domain mutant protein, which poorly interacts with Nba1, is unable to promote proper bud-site selection. With the same logic, \(\text{rax1}^{\Delta} \), \(\text{rax2}^{\Delta} \), \(\text{nis1}^{\Delta} \), and \(\text{nba1}^{\Delta} \mu^{\Delta} \) mutants exhibit improper bud-site selection, likely because Rga1 is not recruited to the previous division sites in these mutants.

If Rga1 and Nba1 function independently of each other to inhibit Cdc42 repolarization, as previously suggested (Meitinger et al., 2014), then we would expect that a \(\text{rga1}^{\Delta} \text{nba1}^{\Delta} \) double mutant might have an additive budding defect compared with each single mutant. Remarkably, the pattern of bud positions of \(\text{rga1}^{\Delta} \text{nba1}^{\Delta} \) daughter cells was almost identical to that of \(\text{rga1}^{\Delta} \) or \(\text{nba1}^{\Delta} \) daughters. Indeed, no statistically significant difference was observed between daughter cells of these mutants with immediately preceding division site and older division sites is important for inhibiting Cdc42 repolarization at these sites. However, having Rga1 activity at older division sites in mother cells may be less critical than at the current division site (see below for more discussion).

Mutational analyses suggest Rga1 functions in the same pathway with Nba1 and Nis1

Our data described so far support the idea that Rga1 functions together with Nba1 and Nis1. To explore further the functional interaction between Rga1 and these negative polarity cues, we asked whether improper bud-site selection of \(\text{rax1}^{\Delta} \), \(\text{rax2}^{\Delta} \), \(\text{nba1}^{\Delta} \), and \(\text{nis1}^{\Delta} \) mutants was caused by their inability to recruit Rga1 to the previous division sites. To this end, we examined the \(\text{rga1}^{\Delta} \text{m1} \) mutant, because this LIM domain deletion disrupted the interaction between Rga1 and Nba1 in vitro, and GFP-Rga1\(\Delta m1 \) poorly localized to the old bud sites in large-budded cells (see Figure 3, B and D). It is noteworthy that the LIM domain mutant \(\text{rga1}^{\Delta C40S C98S} = \text{dbm1-5,7} \) has been shown to exhibit a normal budding pattern (Chen et al., 1996). Indeed, we found that the budding phenotypes of \(\text{rga1}^{\Delta m1} \) and \(\text{rga1}^{\Delta C40S C98S} \) were very similar to those observed in mother and daughter cells of \(\text{rax1}^{\Delta} \), \(\text{rax2}^{\Delta} \), \(\text{nis1}^{\Delta} \), and, in particular, an \(\text{nba1}^{\Delta} \mu^{\Delta} \) mutant (Figure 4). These observations suggest that the Rga1 LIM domain mutant protein, which poorly interacts with Nba1, is unable to promote proper bud-site selection. With the same logic, \(\text{rax1}^{\Delta} \), \(\text{rax2}^{\Delta} \), \(\text{nis1}^{\Delta} \), and \(\text{nba1}^{\Delta} \mu^{\Delta} \) mutants exhibit improper bud-site selection, likely because Rga1 is not recruited to the previous division sites in these mutants.

If Rga1 and Nba1 function independently of each other to inhibit Cdc42 repolarization, as previously suggested (Meitinger et al., 2014), then we would expect that a \(\text{rga1}^{\Delta} \text{nba1}^{\Delta} \) double mutant might have an additive budding defect compared with each single mutant. Remarkably, the pattern of bud positions of \(\text{rga1}^{\Delta} \text{nba1}^{\Delta} \) daughter cells was almost identical to that of \(\text{rga1}^{\Delta} \) or \(\text{nba1}^{\Delta} \) daughters. Indeed, no statistically significant difference was observed between daughter cells of these mutants with immediately preceding division site and older division sites is important for inhibiting Cdc42 repolarization at these sites. However, having Rga1 activity at older division sites in mother cells may be less critical than at the current division site (see below for more discussion).

Mutational analyses suggest Rga1 functions in the same pathway with Nba1 and Nis1

Our data described so far support the idea that Rga1 functions together with Nba1 and Nis1. To explore further the functional interaction between Rga1 and these negative polarity cues, we asked whether improper bud-site selection of \(\text{rax1}^{\Delta} \), \(\text{rax2}^{\Delta} \), \(\text{nba1}^{\Delta} \), and \(\text{nis1}^{\Delta} \) mutants was caused by their inability to recruit Rga1 to the previous division sites. To this end, we examined the \(\text{rga1}^{\Delta} \text{m1} \) mutant, because this LIM domain deletion disrupted the interaction between Rga1 and Nba1 in vitro, and GFP-Rga1\(\Delta m1 \) poorly localized to the old bud sites in large-budded cells (see Figure 3, B and D). It is noteworthy that the LIM domain mutant \(\text{rga1}^{\Delta C40S C98S} = \text{dbm1-5,7} \) has been shown to exhibit a normal budding pattern (Chen et al., 1996). Indeed, we found that the budding phenotypes of \(\text{rga1}^{\Delta m1} \) and \(\text{rga1}^{\Delta C40S C98S} \) were very similar to those observed in mother and daughter cells of \(\text{rax1}^{\Delta} \), \(\text{rax2}^{\Delta} \), \(\text{nis1}^{\Delta} \), and, in particular, an \(\text{nba1}^{\Delta} \mu^{\Delta} \) mutant (Figure 4). These observations suggest that the Rga1 LIM domain mutant protein, which poorly interacts with Nba1, is unable to promote proper bud-site selection. With the same logic, \(\text{rax1}^{\Delta} \), \(\text{rax2}^{\Delta} \), \(\text{nis1}^{\Delta} \), and \(\text{nba1}^{\Delta} \mu^{\Delta} \) mutants exhibit improper bud-site selection, likely because Rga1 is not recruited to the previous division sites in these mutants.

If Rga1 and Nba1 function independently of each other to inhibit Cdc42 repolarization, as previously suggested (Meitinger et al., 2014), then we would expect that a \(\text{rga1}^{\Delta} \text{nba1}^{\Delta} \) double mutant might have an additive budding defect compared with each single mutant. Remarkably, the pattern of bud positions of \(\text{rga1}^{\Delta} \text{nba1}^{\Delta} \) daughter cells was almost identical to that of \(\text{rga1}^{\Delta} \) or \(\text{nba1}^{\Delta} \) daughters. Indeed, no statistically significant difference was observed between daughter cells of these mutants with immediately preceding division site and older division sites is important for inhibiting Cdc42 repolarization at these sites. However, having Rga1 activity at older division sites in mother cells may be less critical than at the current division site (see below for more discussion).
GFP-Rga1 in daughter cells of these mutants was clearly different compared with WT daughter cells. While GFP-Rga1 delocalized at the immediately preceding division site during \(T_2 \) in WT daughter cells (100%, \(n = 21 \); Figure 7Aa), GFP-Rga1 delocalized before transition to \(T_2 \) in \(\text{rax1} \)\(\Delta \) daughter cells (83%, \(n = 18 \); Supplemental Figure S2A). GFP-Rga1 delocalized even earlier in \(\text{nba1} \)\(\Delta \) daughter cells: 71% during \(T_1 \) and 29% at \(T_1/T_2 \) transition (\(n = 17 \); Figure 7, Ab and Bb). Local intensity of GFP-Rga1 at the immediately preceding division site was indeed significantly lower at the \(T_1/T_2 \) boundary in \(\text{nba1} \)\(\Delta \) and \(\text{rax1} \)\(\Delta \) daughter cells compared with WT daughter cells (Figure 7Bb). However, the global intensity and local intensity of GFP-Rga1 (at the bud neck) before cytokinesis were similar in all these strains (Figure 7B, a and b). The duration of \(T_1 \) and \(T_2 \) was also about the same among daughter cells of these strains (Figure 7Bc). Since Rga1 delocalizes in \(\text{nba1} \)\(\Delta \) daughter cells even during \(T_1 \), Rga1 may interact with \(\text{rax1} \) prior to interacting with other proteins at the immediately preceding division site.

To confirm that premature delocalization of Rga1 from the immediately preceding division site in these mutants is indeed due to lack of interaction between Rga1 and \(\text{nba1} \), we imaged GFP-Rga1\(\Delta \)m1, which lacks the LIM domains. Indeed, GFP-Rga1\(\Delta \)m1
GFP-Rga1∆m1 and GFP-Rga1 (Figure 8Bc). Since localization of GFP-Rga1∆m1 to the bud neck was reduced prior to cytokinesis (unlike in the case of GFP-Rga1 in nba1Δ cells; see Figure 7Bb), the LIM domains may thus affect Rga1’s localization even before its interaction with Nba1. Collectively, these observations suggest that Rga1 localizes to the immediately preceding division site via interaction with Nba1 (and likely also with Nis1), similarly to its localization to older division sites (see above).

Delocalized during T1 (Figure 8A), similarly to premature delocalization of GFP-Rga1 in nba1Δ cells with minor differences. Local intensity of GFP-Rga1 in nba1Δ cells was lower than WT GFP-Rga1 prior to cytokinesis, during T1, and at the T1/T2 transition (Figure 8Ba), although the global intensity of both proteins was about the same in large budded cells before cytokinesis (Figure 8Ba). The average duration of T1 and T2 in daughter cells was also similar between the strains expressing GFP-Rga1∆m1 and GFP-Rga1 (Figure 8Bc). Since localization of GFP-Rga1∆m1 to the bud neck was reduced prior to cytokinesis (unlike in the case of GFP-Rga1 in nba1Δ cells; see Figure 7Bb), the LIM domains may thus affect Rga1’s localization even before its interaction with Nba1. Collectively, these observations suggest that Rga1 localizes to the immediately preceding division site via interaction with Nba1 (and likely also with Nis1), similarly to its localization to older division sites (see above).
Premature delocalization of Rga1 in mid G1 may lead to budding within the division site in daughter cells

To explain how the timing of Rga1 delocalization in G1 can affect the orientation of the Cdc42 polarization axis, we extended our computational modeling. When localization of Cdc42 GAP resembled that of Rga1 in WT daughter cells (see Figure 6C), our biphasic model for Cdc42 polarization predicted that the Cdc42-GTP cluster level fluctuated around the division site during the first phase and then became stabilized at a single site that is adjacent to the axial landmark (Lee et al., 2015; Figure 6C, a and c). In contrast, when the Cdc42 GAP was assumed to delocalize from the division site prior to the second phase, as in rax1Δ or nba1Δ daughter cells, Cdc42 always polarized within the division site (Figure 6C, b and d). Therefore, our model recapitulates time-evolved Cdc42 polarization in vivo, consistent with the same site rebudding phenotype of the daughter cells of rax1Δ, rax2Δ, nis1Δ, and nba1Δ mutants (see Figure 4A).

Why does this premature delocalization of Rga1 have a more pronounced effect in daughter cells of these mutants? One critical difference between mother and daughter cells is cell size. Since mother cells are larger than newly born daughter cells, the duration of T1 is shorter (Di Talia et al., 2007). We postulated that this cell-cycle difference could account for the different bud-site selection defect in mother versus daughter cells. To explore this idea, we modeled how different lengths of the first phase (equivalent to T1) of G1 would affect Cdc42 polarization when premature delocalization of Rga1 was implemented (see Figure 9A). Interestingly, when...
the first phase was assumed to last for 10 or 15 min (which is a little longer than T_1 in typical mother cells at 30°C), Cdc42 cluster became stabilized at a site adjacent to the preceding division site (Figure 9, B and C). In contrast, when the first phase was modeled longer than 20 min ($T_1 = 25–27$ min in daughter cells), Cdc42 repolarized within the division site more frequently in our simulations (Figure 9C). By implementing the similar premature delocalization of Rga1, we ran additional independent simulations with different lengths of the first phase and randomly generated parameters within certain ranges (see Materials and Methods). These simulations confirmed that Cdc42 repolarizes within the division site at a higher frequency as the first phase is assumed to last longer (Supplemental Figure S3). Our model thus supports the idea that premature delocalization of Rga1 in the mutants causes a more severe defect in orienting the polarity axis in daughter cells because of their longer T_1 compared with mother cells. An interesting prediction from this model is that even with premature delocalization of Rga1, if a cell traverses G1 rapidly, the cell might be able to establish a proper bud site prior to delocalization of Rga1. To test this prediction by manipulating the G1 length in vivo, we introduced whi5 deletion into a rax1Δ mutant, since cells are smaller and progress through T_1 more quickly in the absence of START inhibitor Whi5 (Jorgensen et al., 2002; Di Talia et al., 2007). We then examined the bud site and birth scar positions of $rax1\Delta$ $whi5\Delta$ daughter cells. We found a statistically significant increase of the axial budding events in the $rax1\Delta$ $whi5\Delta$ daughter cells compared with $rax1\Delta$ daughter cells ($p = 0.01$; Figure 4A). Although whi5Δ did not completely rescue the “budding-within-the-birth-scar phenotype” of $rax1\Delta$ daughters, these observations are consistent with our model’s prediction.

DISCUSSION

Despite significant progress made in recent years, how a single axis of cell polarity is established is not fully understood. The axis of Cdc42 polarization in budding yeast is critical for mitotic spindle orientation as well as determination of the plane of cell division. Rga1, a Cdc42 GAP in budding yeast, is required for proper bud site selection (Stevenson et al., 1995; Chen et al., 1996; Smith et al., 2002; Lo, Lee, et al., 2013) and for preventing rebudding at the previous division site by inhibiting Cdc42 repolarization (Tong et al., 2007). Whether Rga1 functions independently or interacts with...
other negative polarity cues to prevent Cdc42 repolarization at all previously used divisions sites had been elusive. It was also not clear how Rga1 is recruited to the old division sites. Our studies reported here answer some of these outstanding questions and also raise new ones.

We provide several lines of evidence that Rga1 is recruited to the immediately preceding division site and older division sites by Nba1 and Nis1, which localize to these sites via interaction with Rax1 and Rax2 (Meitinger et al., 2014). However, unlike Nba1, Nis1, Rax1, and Rax2, which are stably anchored to these sites, Rga1 arrives transiently at the old division sites in each cell division cycle. Our FRAP analyses indicate that Rga1 is very dynamic at old division sites as well as at the current division site, unlike Nba1 and Nis1 (Meitinger et al., 2014). It is, however, not known whether and why such transient delivery, as opposed to stable anchoring, of Rga1 to old division sites is necessary. We speculate that a regulatory mechanism might exist to conserve the critical enzyme Rga1 during repeated cell divisions. As expected from their role in recruitment of Rga1 to previous division sites, we find that cells lacking NBA1, NIS1, RAX1, or RAX2 as well as cells expressing an Rga1 LIM domain mutant protein, which is defective in interaction with Nba1, exhibit improper bud-site selection. While RAX1 and RAX2 are known to be involved in bipolar budding of diploid a/α cells (Chen et al., 2000; Kang et al., 2004), our analyses of bud scars and birth scar show that haploid rax1Δ and rax2Δ mutants are also defective in bud-site selection. Because of the relatively minor defect in mother cells of these mutants (see below), the role of Rax1 and Rax2 in axial budding might have been overlooked in previous studies.

We show that Rga1 interacts with Nba1 efficiently in the presence of Zn++ ion, consistent with the requirement of Rga1 LIM domains for the interaction. Known functions of LIM domains, which have a characteristic cysteine-rich motif with a zinc-finger structure, include mediating intramolecular and intermolecular protein interactions (Feuerstein et al., 1994; Schmeichel and Beckerle, 1994). The LIM domains might also regulate Rga1 activity, since a Rga1 protein lacking functional LIM domains could suppress defects caused by a mutation of Rho-GAP Bem2 (Chen et al., 1996). In addition, a recent study reported that overexpression of a C-terminal
Rga1 fragment (i.e., lacking the LIM domains) leads to a loss-of-polarity phenotype, while the overexpression of full-length Rga1 results in no defects, suggesting a possible inhibitory function of the N-terminal domain (He et al., 2015). Whether Nba1 is involved only in recruiting Rga1 to previous division sites or also in regulating its GAP activity remains an open question.

We suggest that Rga1 functions in the same pathway with Nba1 and Nis1 to inhibit Cdc42 based on the following data presented in this study: First, localization of Rga1 to the immediately preceding division site as well as older division sites is dependent on Nba1, Nis1, Rax1, and Rax2 (Figures 3 and 7 and Supplemental Figure S2). Second, Rga1 interacts directly with Nba1 and likely with Nis1 (Figure 3). Third, a rga1Δ nba1Δ double mutant exhibits an almost identical defect of Cdc42 repolarization as rga1Δ or nba1Δ single mutant (rather than having an additive defect) (Figure 4). Furthermore, an rga1 mutant lacking LIM domains fails to interact with Nba1 and exhibits a similar defect as nba1Δ (Figures 3D, 4, and 8). We note that Meitinger et al. (2014) reached a different conclusion from analyses of these mutants. Although we are unsure about the cause of this discrepancy, it is not due to difference of strain backgrounds, since we have examined mutants in two different strain backgrounds including one used in their report (see Materials and Methods). Our analyses distinguished the cell division sites in mother and daughter cells by staining with two fluorescent dyes, while their analyses did not separate mother and daughter cells but used transmission electron microscopy images to visualize a bud-neck “collar” (excess cell wall material indicative of rebudding at a previously used site). We speculate that the previous study might have reached a similar conclusion about the functional interaction between Rga1 and Nba1-Nis1, if it had included separate analyses of daughter cells in addition to the cytokinesis remnants remained at the old division sites in mother cells. To clarify this issue will require further investigation.

It has been suggested that Nba1 and Nis1 prevent Cdc42 reactivation at previous division sites by inhibiting the interaction between the Cdc24 polarity complex and Rsr1 (Meitinger et al., 2014). While we cannot rule out the possibility that another mechanism may also be involved in the process, we favor the idea that the inhibitory function of Nba1 in Cdc42 repolarization at the old division sites relies on the recruitment of Rga1. We thus propose inhibitory pathways for Cdc42 polarization as follows (Figure 10): During cytokinesis, Rga1 and Gps1-Nba1-Nis1 inhibit Cdc42 polarization at the current division site (Tong et al., 2007; Meitinger et al. 2013). Once cytokinesis and septation have been completed, that is, when Rax1-Rax2 have arrived at the immediately preceding division site (Kang et al., 2004), Nba1 and Nis1 are anchored to the site via interaction with Rax1-Rax2 (Meitinger et al., 2014). This complex at the immediately preceding division site then recruits Rga1, which inhibits Cdc42 (this study). Rga1 is also recruited to older division sites and inhibits Cdc42 repolarization, although Rga1’s role at the old division site(s) seems to be relatively less critical (this study). Similarly, Meitinger et al. (2014) noted that disruption of Nba1 at the immediately preceding division site (referred to as “emergent CRMs”) caused a greater defect in Cdc42 inhibition than removal of Nba1 from older cell division sites. How these protein–protein interactions are altered during cytokinesis and subsequent G1 also remains an open question.

An unexpected, interesting finding from this study is the distinct effect of Rga1 distribution on polarization of mother versus daughter cells. While Rga1 localization to the immediately preceding division site is critical for positioning a proper bud site in daughter cells, this localization has a relatively minor role in mother cells. This is likely due to the intrinsic difference in the cell-cycle progression (Di Talia et al., 2007). Selection of a bud site and thus establishing the axis of Cdc42 polarization occur long after cytokinesis in daughter cells, unlike in mother cells (Lee et al., 2015). Consequently, Rga1 localization to the current division site is most critical in mother cells (Tong et al., 2007), whereas transient localization of Rga1 to both current division site and immediately preceding division site until T1/T2 transition are equally important in daughter cells (this study). Indeed, our mathematical modeling can recapitulate distinct dynamics of Cdc42 polarization in mother and daughter cells by implementing transient distribution of Cdc42 GAP (Lee et al., 2015; this study). According to our model, Cdc42 is more likely to repolarize within the previous division site when the first temporal phase of G1 is longer and premature delocalization of Cdc42 GAP is implemented (as observed in rax1Δ or nba1Δ mutants). This model thus provides a possible explanation for the different phenotypes of the mutant mother and daughter cells. A logical extension of this model is that even with premature delocalization of Rga1 from the division site, if a cell is forced to pass through T1 rapidly, then the cell might be able to establish a proper bud site. Our experimental test of this

FIGURE 10: Model for inhibition of Cdc42 repolarization at the current and old cell division sites. During cytokinesis, Rga1 (green circle) and the Nba1-Nis1-Gps1 inhibit Cdc42 repolarization to the division site. After cytokinesis and septum formation, Nba1-Nis1 (solid and dotted red boxes) are inherited to the immediately preceding site and remain at the older division sites via interaction with Rax1-Rax2 (blue lines). Rga1 is recruited to the immediately preceding site as well as at the older division sites via interaction with Nba1-Nis1. Rga1 then inhibits Cdc42 repolarization at these previous cell division sites. The complex at the old division site is omitted in the cell shown on the left.
prediction by introducing a whi5 deletion to shorten G1 resulted in only partial rescue of the rax1Δ daughter cells. A caveat to such a test is that deleting the key START regulator Whi5 might affect not only T1 length but also potentially the activity or assembly of the polarity complex. Because cell-to-cell variations of the G1 length is observed even in WT cells (Di Talia et al., 2007), it would also be imperative to access the G1 length of individual cells and examine its correlation with the budding pattern. Other factors at the division sites might also contribute to differential Cdc42 polarization in mother versus daughter cells of these mutants. For example, distinct components in bud scar versus birth scar might affect these cortical polarity components differently. While a crucial test awaits for a deeper understanding of regulation of these polarity factors, our modeling introduces an intriguing concept that delicate coordination of the spatial distribution of a Cdc42 GAP with cell-cycle progression is critical for establishing a proper axis of cell polarization and thus selection of a new nonoverlapping plane of cell division in budding yeast.

MATERIALS AND METHODS

Strains, plasmids, and general methods

Standard methods of yeast genetics, DNA manipulation, and growth conditions were used (Guthrie and Fink, 1991). All yeast strains used for imaging express tagged and truncated genes under their native promoters from the chromosomes. Yeast strains and plasmids used in this study are listed in Supplemental Tables S1 and S2, respectively, with a brief description of construction methods.

Microscopy and image analysis

Cells were grown in appropriate synthetic medium overnight and then freshly subcultured for 3–4 h in the same medium. Time-lapse imaging was performed at 30°C (except those indicated, at 22°C) essentially as previously described (Kang et al., 2014) using a spinning disk confocal microscope (Ultra-VIEW VoX CSU-X1 system; Perkin Elmer-Cetus) equipped with a 100x; 1.4 NA Plan Apochromat objective lens (Nikon); 440-, 488-, 515- and 561-nm solid-state lasers (Modular Laser System 2.0; Perkin Elmer-Cetus); and a back-thinned electron-multiplying charge-coupled device (CCD) camera (ImagEM C9100-13; Hamamatsu Photonics) on an inverted microscope (Ti-E; Nikon). For most time-lapse imaging, images were captured (9 z-stacks; 0.3 μm step) every 2 or 4 min using cells either mounted on an agarose slab or in a glass-bottomed dish (MatTek) containing medium with 5 μM propyl gallate (Sigma), an anti-fade reagent. Cells were adhered onto the microwell of the dish, which was pretreated with 0.2% concanavalin A (Sigma) and then covered with proper medium containing 0.6% agarose and propyl gallate. For long-term time-lapse microscopy (in Figure 2A), images were captured every 6 min at 30°C. For Figure 1B, time-lapse images were captured (11 z-stacks; 0.4 μm step, 4-min interval) after staining cells with Calcofluor White (see below).

SIM was performed using a GE DeltaVision OMX SR equipped with an Olympus 60x (1.42 NA) objective lens. Static images were captured (19 z-stacks; 0.125 μm step) at 25°C. Cells were mounted onto a glass-bottomed dish as described above. SoftWoRx v6.5.2 was used to capture images and create three-dimensional projections.

Image processing and analyses were performed using ImageJ (National Institutes of Health). Maximum intensity projections of z-stacks were generated to make figures and videos, except where noted. To estimate colocalization, z-stack images were used after background subtraction to calculate Pearson’s correlation coefficient (PCC) using the Coloc 2 plug-in, and PCC >0.5 was considered as colocalization.

To quantify the local fluorescence intensity of GFP-Rga1, first a rectangular region of interest (ROI) that included the GFP-Rga1 signal was used to measure the intensity from z-stacks. A second ROI that included the first ROI and the surrounding cytoplasmic region (approximately twice as big as the first ROI) was used for background subtraction (Coffman et al., 2011). The intensity of GFP-Rga1 at the bud neck before cytokinesis (i.e., 3 min before the Cdc3–mCherry ring split), peak intensity of GFP-Rga1 localized at the division site during T1, and GFP-Rga1 localized to the division site at the T1/T2 transition were measured for each individual cell. For global intensity quantification, average intensity projections were created from all 9 z-sections at 0.3 μm spacing, and an ROI was drawn around the outline of cells. The intensity of WT cells without any fluorescently tagged proteins were used to subtract background. To determine the time when GFP-Rga1 delocalized from the immediately preceding division site in daughter cells (marked with a yellow arrowhead in Figures 7 and 8 and Supplemental S2A), the same threshold was applied to quantify the GFP-Rga1 intensity at each time point using ImageJ.

To quantify the Whi5–mCherry signal in the nucleus at each time point, a circular ROI that included the Whi5–mCherry signal in the nucleus was used to measure the intensity from z-stack images. Background subtraction was done as described above for GFP-Rga1. The duration time of T1 and T2 was determined by monitoring the intensity of the nuclear Whi5–mCherry signal as well as the onset of cytokinesis (identified by a split Cdc3–mCherry ring) and bud emergence in individual mother and daughter cells. The T1/T2 transition was marked when the Whi5–mCherry intensity in the nucleus was ~50% of its peak level. The duration time of T1 and T2 was found to be similar for all the strains examined in this study (ns: p > 0.6; Figures 7Bc and 8Bc).

Kymographs and heatmaps were generated from maximum intensity projection images of z-stacks, except noted, using the multiple kymograph plug-in and heat map histogram plug-in for ImageJ. Kymographs of Cdc3-GFP, in Supplemental Figure S2Bb, was generated from a single z-stack to show the hollow septin ring more clearly.

FRAP analysis

Images were captured at a single z-section on a gelatin slab at 22°C using the photokinetics unit on the Ultra-VIEW VoX confocal system (see above), similarly to the assays described previously (Coffman et al., 2009). Prior to beginning each FRAP experiment, a z-stack image was taken with the 561-nm laser to examine Cdc3–mCherry signal and select cells in specific stages of the cell cycle. In the FRAP assay, the middle focal plane of cells was bleached to <50% of the original fluorescence intensity after collecting five prebleach images. Postbleach images were acquired for a duration long enough such that the recovery curve reached a plateau. Background and photobleaching during image acquisition were corrected using empty space among cells and unbleached cells in the same image. The prebleach intensity of the ROI was normalized to 100%, and the first postbleach intensity was normalized to 0%. The intensities of every three consecutive postbleach time points were averaged to reduce noise. Then the intensity data were plotted and fitted using the exponential decay equation

\[T = m_1 + m_2 \exp(-m_3 t) \]

where \(m_3 \) is the off-rate, using Prism 6 (GraphPad Software). The half-time of recovery was calculated using the equation \(t_{1/2} = \ln(2)/m_3 \).

Analysis of cell division sites

Bud scars and birth division scars were stained with Calcofluor White (0.5 μg/ml) and WGA-FITC (100 μg/ml), as previously described.
Maximum intensity projections were generated from 17 z-stacks (0.3 μm step size) of images captured with a fluorescence microscope (E800; Nikon) fitted with a 100x 1.3NA oil Plan Fluor objective lens (Nikon), a CCD camera (ORCA-ER; Hamamatsu Photonics), and FITC-GFP and DAPI (4′,6-diamidino-2-phenylindole) filters (Intelligent Imaging Innovations). Cell division sites were analyzed in three independent experiments. The budding pattern of ESM356-1 nba1Δ cells was determined from time-lapse images by analyzing the position of the new septin ring in relation to the old septin ring (marked with Cdc3-mCherry). We found that the majority of mother cells appeared to bud in an axial pattern (84%, n = 32), similarly to nba1Δ mutants in the YEF473A (Bi and Pringle, 1996) strain background. Staining of both bud scars and birth scar indicated that the bud scars were adjacent to one another but within the birth scar in the majority of mother cells of this mutant (see the text and Figure 4).

Yeast two-hybrid assay

Two-hybrid assays were performed using EGY48 carrying the LEU2 reporter (and the lacZ reporter plasmid pSH18-34, URA3), as previously described (Gyuris et al., 1993). The full-length, N-terminal half (amino acids 1–537) and the C-terminal half (amino acids 538–1007) of Rga1 were expressed as DNA-binding domain fusions using pEG202 clones (Supplemental Table S2). The full-length Nba1 and Nis1 were expressed as activation domain fusions using pG4-5 clones (Supplemental Table S2). pG4-5-cdc42G12V (a gift from M. Peter, ETH Zurich, Switzerland) carries the C188S mutation (in addition to G12V) to avoid membrane targeting (Butty et al., 2002). About 1.5 x 10^4 cells of each transformant of a DBD and an AD fusion or a vector control were spotted on SGal-His-Trp-Ura and SGal-His-Trp-Ura-Leu plates and incubated at 30°C for 4–5 d at least three independent transformants of a DBD and an AD fusion were tested and spot assays were repeated in triplicate.

In vitro binding assay and immunoblotting

GST or MBP fusion proteins were expressed in protease-deficient E. coli cells (BL21-CodonPlus), and in vitro binding assays were performed using the S10 fraction as previously described (Kozminski et al., 2003; Kang et al., 2014) except some modifications described below. Cell lysates carrying MBP fusion proteins were prepared using a lysis buffer (10 mM sodium phosphate buffer, pH 8.0, 500 mM NaCl, 10 mM β-mercaptoethanol, 1 mM EGTA (ethylene glycol-bis[β-aminoethyl ether]-N,N,N',N'-tetraacetic acid), 0.2% Triton X-100). To pull down MBP fusion proteins, the S10 fraction was incubated with 40 μl amylose resin (New England BioLabs) for 1 h at 4°C by rocking. The beads were then washed four times using the same lysis buffer and once using a binding buffer (10 mM sodium phosphate buffer, pH 8.0), 100 mM NaCl, 10 mM β-mercaptoethanol, 0.2% Triton X-100, 50 μM Zn(OAc)₂ or the same buffer without Zn(OAc)₂. The S10 fractions containing GST-Rga1Δ or GST-Rga1N141Δ were prepared using the same binding buffer with or without 50 μM Zn(OAc)₂. To perform binding assays, the S10 fractions containing GST-Rga1Δ and GST-Rga1N141Δ were incubated with an equal amount of MBP-Nba1 (or MBP-Nis1 or MBP control) on amylose resin either in the presence or absence of Zn²⁺ for 2.5 h at 4°C by rocking. After washing the amylose resin using the binding buffer with or without Zn²⁺ (see above), proteins were eluted from the resin with Laemmli sample buffer and subjected to SDS–PAGE and immunoblotting. GST- and MBP-fusion proteins were detected using monoclonal antibodies against GST (Novus Biologicals) and polyclonal rabbit anti-MBP antibodies (New England Biolabs), respectively. Protein bands were then visualized using Alexa Fluor 680 goat anti-rabbit immunoglobulin G (IgG; Molecular Probes) or IRDye 800CW-conjugated goat anti-mouse IgG (LI-COR Biosciences) secondary antibodies and the Odyssey CLx system (LI-COR Biosciences). Proteins were quantified using the software of the Odyssey CLx system, and relative recovery of GST-Rga1Δ or GST-Rga1N141Δ was estimated by the ratio of each pulled-down protein over the input and then normalized against pulled-down MBP fusion proteins. Binding assays were repeated two to four times with or without Zn²⁺ for each combination of proteins, and the average recovery was calculated (see legend to Figure 3D).

Statistical analysis

Data analysis was performed using Prism 6 (GraphPad Software). A two-tailed Student’s t test was performed to determine statistical differences between two sets of data.

MODELING

A two-dimensional model of Cdc42

A two-dimensional model applied in the study is based on our previous model, and the details are previously described (Lee et al., 2015). Briefly, the model consists of the particle density of membrane-bound Cdc42, denoted by a. The computational domain, denoted by M in the model, is a two-dimensional region of cell membrane, in which the landmark cue is located at the center. For simplicity, we assume that membrane-bound Cdc42 appears only in this domain and the domain is taken as planar without considering the effect of the surface curvature. Another key assumption is mass conservation: that is, the total number of molecules in the whole cell remains constant in time (Altschuler et al., 2008; Howell et al., 2009; Lo, Lee, et al., 2013).

The dynamics of a is governed by the following reaction-diffusion equation:

\[
\frac{\partial a}{\partial t} = D_a \Delta a + F(a(x,t), u(x,t)) - k_{off}(a(x,t-t_1), x,t) a
\]

with the function \(F(a)\) defined as the average value of \(a\) over the membrane, namely,

\[
\bar{a} = \int_M a \, dM \big/ |M|
\]

where \(\int_M\) equals the total area of domain M. Three key components of Cdc42 dynamics included in the model are lateral membrane diffusion of Cdc42, recruitment (activation) of Cdc42 from the cytoplasm to the membrane, and the reverse reaction (Altschuler et al., 2008).

The activation term is based on the following form of feedback:

\[
F(a(x,t), u(x)) = \theta_1(t) \left(u(x) + k_{on1} \frac{a(x,t)/K_1^2}{1 + \phi(a(x,t)/K_1^2)} \right)
\]

\[
+ k_{on2} \left(1 - \theta_1(t) \right) \frac{a(x,t)/K_2^2}{1 + \phi(a(x,t)/K_2^2)}
\]

In the formula, the first term of the right-hand side represents the axial landmark [denoted by \(u(x)\)] and the Rsr1 module feedback (Goryachev and Pokhilko, 2008; Howell et al., 2009; Lo, Lee, et al., 2013; Lo et al., 2014; Goryachev and Leda, 2017), with \(K_1\) a normalizing factor; the second term of the right-hand side represents the feedback in Cdc42-signaling network. We consider two temporal phases: 1) in the first phase, the axial landmark and the Rsr1 module are involved in positive feedback; 2) in the second phase, the spatial cue is excluded and the Cdc42-signaling feedback is active with
stronger positive feedback strength. Since we assume that the feedback is stronger than the Ras1 module feedback, we apply smaller normalizing factor K_2 ($< K_1$) here.

The function is defined as

\[u(x) = \delta_g(x) \mathcal{R}(x), \]

where $\delta_g(x)$ is a spatial uncorrelated random function with uniform distribution between 0 and 1 for each x; $\mathcal{R}(x)$ is defined as

\[
\begin{cases}
\mathcal{R}(x) = 8 & \text{if } 0.6 \leq |x| \leq 0.75 \\
\mathcal{R}(x) = 0 & \text{otherwise}
\end{cases}
\]

The on–off function $\theta_1(t)$ controls a switch from time phase 1 and time phase 2 at time t_{off}, and $\theta_1(t)$ is defined as

\[\theta_1(t) = \frac{e^{(t_{\text{on}}-t)/\epsilon}}{1 + e^{(t_{\text{on}}-t)/\epsilon}} \]

where ϵ is a very small value ($\epsilon = 0.01$).

Similarly to the activation term, we define the deactivation term as

\[k_{\text{off}} \left(a(x, t-t_1), x, t \right) = g(x, t) + 3\delta_g(x)H(a(x, t-t_1) - K_{\text{off}}) \]

where H is defined as

\[
\begin{cases}
H(a) = 0 & \text{if } a \leq 0 \\
H(a) = 1 & \text{if } a > 0
\end{cases}
\]

The function $g(x, t)$ will be specified later in "parameter settings." Note that the negative feedback functions when $a(x, t-t_1)$ is larger than K_{off}, $\delta_g(x, t)$ is a spatiotemporal uncorrelated random function with uniform distribution between 0 and 1 for each x and t.

Parameter settings

Based on previous studies (Goryachev and Pokhilko, 2008; Lo, Lee, et al., 2013), the diffusion rate of Cdc42 on the membrane was around $0.1–0.15 \text{ μm}^2 \text{ min}^{-1}$; the recruitment rate and the activation rate of Cdc42 were 10 and 0.1 min^{-1}, respectively; the normalizing parameter K_1 was taken to be less than 0.3 to achieve spontaneous budding without spatial cues. In this paper, we take $D_m = 0.1 \text{ μm}^2 \text{ min}^{-1}$; and since the activation/recruitment process considered here combines both activation and recruitment processes, we take $k_{\text{on1}} = k_{\text{on2}} = 1 \text{ min}^{-1}$, $K_1 = 0.3$, and $K_2 = 0.2$. We take K_2 less than K_1, because we assume that the second feedback is stronger than the first one. Based on our previous work (Lee et al., 2015), we take the parameters for modeling delayed negative feedback as $K_{\text{off}} = 2$, the threshold of Cdc42 for functioning negative feedback; and $t_1 = 1$ min, the time delay for negative feedback. For modeling the change of Rga1 distribution, we define the function $g(x, t)$ according to the changes of the nonzero regions (higher value = 3, lower value = 1, r is the distance from a point to the center of the domain, r' is the distance from a point to the point 1 μm right to the center of the domain):

1. For wild-type daughter cells, we take $0.35(1 - t/10) + 0.35 < r < 0.35(1 - t/10) + 0.65$ for $0 < t < 10$; $\{r < 0.35\} \text{ for } 10 < t < 15$; $\{0.35(1 - t/5)/8 < r < 0.35(t - 15)/8 + 0.3\}$ for $15 < t < 23$; $\{0.35 < r < 0.65\}$ for $23 < t < 32.2$. The Rga1 ring level is decreasing at 32.2 min and totally delocalizes at 39 min in WT daughter cells.

2. For wild-type mother cells, we take $\{0.3 < r < 0.65\}$ for $0 < t < 3$; $\{0.3 < r < 0.65\}; \{0.5 < r' < 0.65\}$ for $3 < t < 6$. The Rga1 ring level is decreasing at 6 min and totally delocalizes at 18 min in WT mother cells.

The parameter t_{on} depends on the time the first phase ends in different types of cells and mutations, and the values are mentioned in each figure legend.

For each simulation in Supplemental Figure S3, we generate three independent random variables ($\delta_1, \delta_2, \delta_3$) from a uniform distribution between 0.5 and 1.5 and then set $k_{\text{on1}} = k_{\text{on2}} = \delta_1$, the highest value of the function $g(x, t) = 3\delta_2$, $K_1 = 0.3\delta_3$, and $K_2 = 0.2\delta_3$.

ACKNOWLEDGMENTS

We thank C. S. Chan, G. Pereira, S. Martin, E. Bi, M. Peter, J.-Q. Wu, and B. Andrews for plasmids and strains; Y. Zhu and J.-Q. Wu for technical help; S. Cole and A. Jablonski for access to GE DeltaVision OMX SR; and A. Hopper for comments on the manuscript. This work was supported by a research grant (R01 GM114582) from the National Institutes of Health/National Institute of General Medical Sciences to H-O. P. and a CityU Strategic Research Grant (Project No. 7004697) and a general research fund from the Research Grants Council of Hong Kong (Project No. 11303117) to W.C.L.

REFERENCES

Boldface names denote co-first authors.

Altschuler SJ, Angenent SB, Wang Y, Wu LF (2008). On the spontaneous emergence of cell polarity. Nature 454, 886–889.

Bacon JD, Davidson ED, Jones D, Taylor I F (1966). The location of chitin in the yeast cell wall. Biochem J 101, 36–38c.

Barton AA (1950). Some aspects of cell division in Saccharomyces cerevisiae. J Gen Microbiol 4, 84–86.

Bender A, Pringle JR (1989). Multicopy suppression of the cdc24 budding defect in yeast by CDC42 and three newly identified genes including the ras-related gene RSR1. Proc Natl Acad Sci USA 86, 9976–9980.

Bi E, Park H-O (2012). Cell polarization and cytokinesis in budding yeast. Genetics 191, 347–387.

Bi E, Pringle JR (1996). ZDS1 and ZDS2, genes whose products may regulate Cdc42p or Cdc24p in Saccharomyces cerevisiae. Mol Cell Biol 16, 5264–5275.

Butty A-C, Perrinjaquet N, Petit A, Jaquenoud M, Segall JE, Hofmann K, Zwahlen C, Peter M (2002). A positive feedback loop stabilizes the guanine-nucleotide exchange factor Cdc24 at sites of polarization. EMBO J 21, 1565–1576.

Cabib E, Bowers B (1971). Chitin and yeast budding: localization of chitin in budding yeast. J Biol Chem 246, 152–259.

Caviston JP, Longtine M, Pringle JR, Bi E (2003). The role of Cdc42p GTPase-activating proteins in assembly of the septin ring in yeast. Mol Biol Cell 14, 4051–4066.

Chant J, Corrado K, Pringle JR, Herskowitz I (1991). Yeast BUD5, encoding a putative GDP-GTP exchange factor, is necessary for bud site selection and interacts with bud formation gene BEM1. Cell 65, 1213–1224.

Chant J, Herskowitz I (1991). Genetic control of bud site selection in yeast by a set of gene products that constitute a morphogenetic pathway. Cell 66, 823–1212.

Chant J, Pringle JR (1995). Patterns of bud-site selection in the yeast Saccharomyces cerevisiae. J Cell Biol 129, 751–765.

Chen T, Hiroko T, Chaudhuri A, Inose F, Lord M, Tanaka S, Chant J, Pringle JR, Bi E, Park H-O (2012). Cell polarization and cytokinesis in budding yeast. Mol Cell 65, 1213–1236.

Chen T, Hiroko T, Chaudhuri A, Inose F, Lord M, Tanaka S, Chant J, Fujita A (2000). Multigenerational cortical inheritance of the Rax2 protein in orienting polarity and division in yeast. Science 290, 1975–1978.

Coffman VC, Nile AH, Lee I-J, Liu H, Wu J-Q (2009). Roles of formin nodes and myosin motor activity in Mid1p-dependent contractile-ring assembly during fission yeast cytokinesis. Mol Biol Cell 20, 5195–5210.

Coffman VC, Wu P, Parthun MR, Wu J-Q (2011). CENP-A exceeds microtubule attachment sites in centromere clusters of both budding and fission yeast. J Cell Biol 195, 563–572.
