2020

Long Non-Coding RNA Profiling of Pediatric Medulloblastoma

Varun Kesherwani
Mamta Shukla
Don W. Coulter
J. Graham Sharp
Shantaram Joshi

See next page for additional authors

Follow this and additional works at: https://digitalcommons.unmc.edu/com_gcba_articles

Part of the Medical Anatomy Commons, Medical Cell Biology Commons, and the Medical Genetics Commons
Authors
Varun Kesherwani, Mamta Shukla, Don W. Coulter, J. Graham Sharp, Shantaram Joshi, and Nagendra K. Chaturvedi
Long non-coding RNA profiling of pediatric Medulloblastoma

Varun Kesherwani¹, Mamta Shukla², Don W. Coulter³, J. Graham Sharp², Shantaram S. Joshi² and Nagendra K. Chatrvedi³,⁴*

Abstract

Background: Medulloblastoma (MB) is one of the most common malignant cancers in children. MB is primarily classified into four subgroups based on molecular and clinical characteristics as (1) WNT (2) Sonic-hedgehog (SHH) (3) Group 3 (4) Group 4. Molecular characteristics used for MB classification are based on genomic and mRNAs profiles. MB subgroups share genomic and mRNA profiles and require multiple molecular markers for differentiation from each other. Long non-coding RNAs (lncRNAs) are more than 200 nucleotide long RNAs and primarily involve in gene regulation at epigenetic and post-transcriptional levels. lncRNAs have been recognized as diagnostic and prognostic markers in several cancers. However, the IncRNA expression profile of MB is unknown.

Methods: We used the publicly available gene expression datasets for the profiling of IncRNA expression across MB subgroups. Functional analysis of differentially expressed IncRNAs was accomplished by Ingenuity pathway analysis (IPA).

Results: In the current study, we have identified and validated the IncRNA expression profile across pediatric MB subgroups and associated molecular pathways. We have also identified the prognostic significance of IncRNAs and unique IncRNAs associated with each MB subgroup.

Conclusions: Identified IncRNAs can be used as single biomarkers for molecular identification of MB subgroups that warrant further investigation and functional validation.

Keywords: Long non-coding RNA, Pediatric Medulloblastoma, Cancer biomarkers, Gene expression and pathways, Therapeutic targets

Background

Medulloblastoma (MB), the most common pediatric brain tumor, constitutes nearly 20% of newly diagnosed brain tumors in children [1, 2]. Treatment of MB involves radiation therapy, chemotherapy and surgical resection. These strategies have improved the survival by 70–80% but also lead to serious morbidities [3, 4]. MB are classified into four major molecular subgroups as WNT, Sonic hedgehog (SHH), Group 3 and Group 4.

The WNT subgroup is least common among all 4 subgroups and present in only 10% of cases. Genetic changes in genes: CTNNB1, DDX3X, SMARCA4 and DKK1 are frequently observed in the WNT subgroup. WNT has the best prognosis among all types of MB. SHH is second most common subgroup with abnormalities in SHH signaling pathway and accounts for ~30% of total MB cases. Genetic anomalies in genes: MYCN, GLI1, PTCH1, SLF4, MLL2, SMO, TPS3, BCR1, GAB1, GABRG1 and LDB1 are frequently seen in the SHH subgroup. The SHH subgroup has an intermediate prognosis among MB subgroups. Group 3 is the third most common subgroup with 25% of the total MB cases.
Table 1 Top 10 up-regulated IncRNAs in WNT subgroup of MB

Gene Symbol	Fold Change	P-val	FDR P-val
EMX2OS	38.18	9.07E-14	4.92E-10
OTX2-AS1	37.84	1.14E-09	3.93E-07
PGMS-AS1	30.26	9.54E-09	1.63E-06
DSCR8	24.56	0.0001	0.0013
LOXL1-AS1	21.06	1.03E-08	1.73E-06
HAND2-AS1	18.51	9.37E-07	3.59E-05
TMEM51-AS1	16.9	3.88E-09	8.82E-07
RMST	13.92	1.14E-07	8.49E-06
LINC01305	11.11	0.0001	0.001
PART1	10.94	1.89E-05	0.0003

Group 3 is mainly MYC-driven and genetic aberrations are seen in genes: MYC, PVT1, OTX2, ML2, SMARCA4, and CHD7 in this subgroup. The prognosis of the Group 3 is very poor and 5 year overall survival is less than 50%. Group 4 is the most common subgroup of MB and accounts for 35% of total cases. The prognosis of the Group 4 is intermediate and genetic aberrations are commonly present in genes: OTX2, DDX31, CHD7, NCAIP, MYCN, CDK6, GF11/GF11B, ML2, KDM6A, ML3, and ZMYM3 [5–9]. Molecular markers used for WNT identification are CTNNB1 (nuclear), FLIA, YAP1 and DKK1; for SHH are SFRP1, GLI1, FLIA, YAP1 and GAB1; for Group 3, NPR3; and for Group 4, KCNA1. Identification of new molecular markers for drug targeting, diagnosis and prognosis are important due to need for improved molecular profiling of MB [10].

Long non-coding RNAs (lncRNAs) are RNAs of more than 200 bp in length and can be transcribed from an intergenic region, genic regions or super enhancer regions in the genome. lncRNAs can modulate chromatin structure, gene regulation via interactions with epigenetic modifiers and transcriptional co-factors, and also have post-translation effects via affecting the stability of mRNA or proteins [11, 12]. Deregulated lncRNA expression is associated with many cancers [13]. LncRNA signatures have been used to classify different types of cancer as biomarkers for diagnosis, prognosis and therapy [14–18]. LncRNAs are secreted in serum, plasma, and CSF in a stable form protected from endogenous RNAase and can be used for non-invasive analysis from patient samples [19, 20]. The role of lncRNA in brain development is well studied [21–26]. However, there is not much known about role of lncRNAs in MB. LncRNA LOXL1-AS1 promotes the proliferation and metastasis of MB by activating the PI3K-AKT pathway [27]. LncRNA CCAT1 promotes cell proliferation and metastasis in human

Table 2 Top 10 down-regulated IncRNAs in WNT subgroup of MB

Gene Symbol	Fold Change	P-val	FDR P-val
LINC00461	-62.39	1.16E-06	4.17E-05
MEG3	-58.9	9.41E-07	3.60E-05
LINC00844	-24.94	0.0003	0.0024
LINC00643	-13.3	6.95E-06	0.0001
SOX2-OT	-12.13	0.0003	0.0024
PEG3-AS1	-10.02	3.49E-07	1.84E-06
TUNAR	-7.72	2.04E-12	5.87E-09
MALAT1	-7.39	1.65E-07	1.10E-05
LINC01105	-7.39	3.77E-05	0.0005
LINC01351	-6.48	2.24E-05	0.0003
MB by regulating the MAPK pathway [28]. Silencing of ANRIL in MB cell lines significantly lowered cell viability and migration. ANRIL promoted the apoptosis of MB cell lines through miR-323-mediated regulation of BRI3, which activates p38 MAPK, ERK, and AKT as well as the WNT signaling pathway [29]. LINC-NeD125 expression is upregulated in Group 4 MB and after interacting to miRNA-induced silencing complex (MISC), it directly binds to miR-19a-3p, miR-19b-3p and miR-106a-5p. Functionally, LINC-NeD125 acts by sequestering the three miRNAs, which leads to the de-repression of major driver genes (CDK6, MYCN, SNAIP, and KDM6A) of Group 4 MB [30]. LncRNA CRNDE expression is elevated in MB and knockdown of CRNDE significantly reduced cell proliferation and inhibited colony formation in MB cell lines, Daoy and D341 [31].

In the current study, we have identified the IncRNAs expression profile of pediatric MB subgroups and associated molecular pathways. We have also identified the unique IncRNAs associated with each subgroup.

Methods

We searched the Gene Expression Omnibus (GEO) database for MB related microarray datasets and found two relevant studies, GSE37418 [for pediatric MB subgroups expression data] and GSM1094863, GSM1094864, GSM1094865, GSM1094866, GSM1094867 [for pediatric primary cerebellum expression data from GSE44971] for our analyses. We further used large GSE124814 datasets for the validation of IncRNAs expression profiles of MB subgroups obtained from our original analyses. We selected the age < 18 years as an inclusion criteria for selecting pediatric MB samples. We selected the datasets which

Table 3	Top 10 upstream regulators involved in DE IncRNAs in WNT subgroup
MAX	transcription regulator
miR-150-5p (and other miRNAs w/seed CUCCCCA)	mature microRNA
miR-133a-3p (and other miRNAs w/seed UUGGUCC)	mature microRNA
miR-133	microRNA
FOLR1	transporter
EZF	group
ATP5	transcription regulator
NCAM1	other
miR-150	microRNA
GAS2L3	other

P-value of overlap	Target molecules in dataset
5.53E-03	DLEU1,DLEU2
5.54E-03	MIAT
7.38E-03	MALAT1
9.22E-03	MALAT1
1.31E-02	GASS,PVT1
1.37E-02	DLEU1,DLEU2
1.47E-02	GASS
1.84E-02	MALAT1
2.56E-02	MIAT
2.92E-02	PV11
Table 4 Top 10 disease and function identified by IPA from DE IncRNAs in WNT subgroup

Categories	Diseases or Functions Annotation	Pval	Activation z-score
Cellular Development, Cellular Growth and Proliferation, Nervous System Development and Function	Neurogenesis of nervous tissue cell lines	3.38E-06	
Cellular Movement	Cell movement of tumor cell lines	1.12E-05	1.324
Cellular Movement	Migration of tumor cell lines	1.14E-05	1.498
Cellular Movement	Invasion of tumor cell lines	1.55E-04	1.083
Cell Cycle	Arrest in G0 phase of tumor cell lines	3.83E-04	
Cancer, Organisinal Injury and Abnormalities	Metastasis of tumor cell lines	4.26E-04	-0.277
Cell Death and Survival	Cell death of eye cell lines	5.07E-04	
Cellular Movement	Migration of cells	6.27E-04	0.573
Cellular Movement	Cell movement	6.75E-04	0.453
Cellular Movement	Migration of hepatoma cell lines	1.34E-03	

used the Affymetrix U133 Plus2 array for probe level RNA expression studies. For data analyses, we first did background correction, normalization (RMA), quality control checks, intensity and batch effect corrections of each dataset. Following that, we did probe level differential analyses of datasets using the limma package (ANOVA with eBayes) with criteria of p < 0.001 and fold change greater than two folds. We then annotated the probe sets with the Affymetrix U133 Plus2 library and filtered out IncRNA genes. The IncRNA gene database used is verified and approved by HGNC. Functional analysis of differentially expressed IncRNAs was done by Ingenuity pathway analysis (IPA) software from BioRad, Inc. We used default parameters and checked all the node types, all species (except uncharted), and all tissue types for core analysis in IPA.

Results
Differentially expressed IncRNAs in the WNT subgroup and their functional roles

Comparative analyses of WNT MB (N = 8) and normal cerebellum tissue (N = 5) datasets with p < 0.05 and fold changes > 2 provided 199 differentially expressed IncRNAs with approved status. Tables 1 and 2 show the fold change in the top 10 upregulated and downregulated IncRNAs. Heatmap of top 10 upregulated and downregulated IncRNAs is shown in Fig. 1a. The complete list of IncRNAs can be seen in Additional file 1. We found 73% overlap with IncRNAs in validation datasets [WNT N = 31, Control = 5] (Additional file 2). We found all the top 10 upregulated and downregulated IncRNAs present in validation datasets. We mostly see non-overlap in IncRNAs at lower expression values.

We did functional analysis of differentially expressed (DE) IncRNAs of the WNT subgroup using IPA. We identified different functional parameters involved in this subgroup. MAX (a MYC interacting partner), miR-150, miR-133a, FOLR1, E2F NCAM1, GAS2L3 and ATF5 are the most significantly associated upstream regulators, while cancer, neurogenesis, metastasis and cellular development are the most important biological functions.

Table 5 Top 10 up-regulated IncRNAs in SHH subgroup of MB

Gene Symbol	Fold Change	P-val	FDR P-val
NEAT1	23.48	0.0003	0.0022
DLEU2	13.24	5.79E-11	2.41E-08
PRRT4A-S1	8.07	1.58E-07	8.49E-06
LINC01355	8.05	2.93E-09	5.15E-07
MIRLET7BHG	7.49	1.79E-07	9.34E-06
CKMT2-A51	6.23	1.86E-09	3.59E-07
SLC16A1-A51	5.65	8.13E-08	5.36E-06
TPT1-A51	5.28	4.44E-08	3.50E-06
LINC01000	4.96	1.10E-08	1.32E-06
ANP32A-H1	4.94	9.36E-07	3.07E-05

Table 6 Top 10 down-regulated IncRNAs in SHH subgroup of MB

Gene Symbol	Fold Change	P-val	FDR P-val
LINC00844	-33.36	1.08E-08	1.32E-06
MIR124-2HG	-28.13	0.0005	0.0032
SOX2-OT	-13.83	2.39E-07	1.15E-05
PEG3A51	-12.94	5.12E-08	3.88E-06
LINC00643	-11.76	3.97E-06	8.83E-05
HCG11	-11.26	0.0012	0.0065
RMST	-9.43	0.0036	0.0155
CCEPR	-8.93	1.49E-06	4.27E-05
MEG3	-8.53	0.0002	0.0018
MALAT1	-8.25	2.82E-06	6.86E-05
affected in this subgroup (Tables 3 and 4). Heatmap of 5 upstream regulators is shown in supplementary Fig. 1 (Additional file 3). The two most important non-canonical networks enriched with DE IncRNAs are shown in Fig. 1b and c. In networks 1; CCND1, AKT1, SOX2, POU5F1, DNMT3B, and CTNNB1, in network 2; TP53, MYC, EZH2, and MDM2 are the central regulators linked with DE IncRNAs.

Differentially expressed IncRNAs in the SHH subgroup and their functional roles

Comparative analyses of the SHH subgroup (N = 10) and normal cerebellum tissue (N = 5) datasets with p < 0.05 and fold change > 2 provided 145 differentially expressed IncRNAs with approved status. Tables 5 and 6 show the fold change in the top 10 upregulated and downregulated IncRNAs. Heatmap of top 10 upregulated and downregulated IncRNAs is shown in Fig. 2a. The complete list of IncRNAs can be seen in Additional file 1. We found 50% overlap with IncRNAs in validation datasets [SHH N = 65, Control = 5] (Additional file 2). We found all the top 10, upregulated and downregulated IncRNAs, present in validation datasets except DLEU2 and PRR34-AS1.

Functional analysis of DE IncRNAs of SHH MB subgroup using IPA predicts, MAX (a MYC interacting partner), miR-133a, FOLR1, E2F, ATF5, AM1, E2F3, GAS2L3 and ACSL5 as most significantly associated upstream regulators, while cancer, neurogenesis, cell proliferation, metastasis and cellular development are the most important biological functions affected in this subgroup (Tables 7 and 8). Heatmap of 5 upstream regulators is shown in supplementary Fig. 1 (Additional file 3). The two most important non-canonical networks enriched with DE IncRNAs are shown in Fig. 2b and c. In network 1; CCND1, TP53, MYC, MALAT1,

Table 7: Top upstream regulators involved in DE IncRNAs in SHH subgroup

Upstream Regulator	Molecule Type	P-val of overlap	Target molecules in dataset
MAX	transcription regulator	2.74E-03	DLEU1, DLEU2
miR-133a-3p (and other miRNAs w/seed UUGGUCC)	mature microRNA	5.17E-03	MALAT1
miR-133	microRNA	6.46E-03	MALAT1
FOLR1	transporter	6.58E-03	GASS, PVT1
E2F	group	6.85E-03	DLEU1, DLEU2
ATF5	transcription regulator	1.03E-02	GASS
NCAM1	other	1.29E-02	MALAT1
E2F3	transcription regulator	1.49E-02	MALAT1, NEAT1
GAS2L3	other	2.05E-02	PVT1
ACSL5	enzyme	2.18E-02	ST7-AS1
CTNNB1, and SP1, in network 2; Histone H3, MDM2, CCNA2, SOX2, POU2F1, SP1, and ESR1 are the central regulators linked with DE lncRNAs.

Differentially expressed lncRNAs in the Group 3 subgroup and their functional roles
Comparative analyses of the Group 3 MB (N = 16) and normal cerebellum tissue (N = 5) datasets with p < 0.05 and fold change >2 provided 149 differentially expressed lncRNAs with approved status. Tables 9 and 10 show the fold change in the top 10 upregulated and downregulated lncRNAs. Heatmap of top 10 upregulated and downregulated lncRNAs is shown in Fig. 3a. The complete list of lncRNAs can be seen in Additional file 1. We found 86% overlap with lncRNAs in validation datasets [Group 3 N = 46, Control N = 5] (Additional file 2). We found all the top 10 upregulated and downregulated lncRNAs in the validation dataset, except NEAT1.

Categories	Diseases or Functions Annotation	P-val	Activation z-score
Cellular Development, Cellular Growth and Proliferation, Nervous System Development and Function	Neurogenesis of nervous tissue cell lines	1.79E-06	
Cellular Development, Cellular Growth and Proliferation	Proliferation of kidney cancer cell lines	3.01E-06	-0.095
Cellular Development, Cellular Growth and Proliferation	Cell proliferation of tumor cell lines	3.90E-04	0.933
Cellular Movement	Migration of carcinoma cell lines	5.25E-04	0.762
Cellular Movement	Migration of kidney cancer cell lines	6.69E-04	
Cellular Movement	Cell movement of tumor cell lines	6.69E-04	0.751
Cellular Movement	Migration of tumor cell lines	1.14E-03	1.033
Cellular Development, Cellular Growth and Proliferation	Cell proliferation of carcinoma cell lines	1.30E-03	0.277
Cellular Development, Connective Tissue Development and Function, Tissue Development	Osteogenic differentiation of nucleus pulposus cells	1.36E-03	
Cancer, Gastrointestinal Disease, Organismal Injury and Abnormalities	Stage I colorectal adenocarcinoma	1.36E-03	

Functional analysis of DE lncRNAs of Group 3 MB using IPA predicted C17orf98, ZNF426, RNFL65, FBXO8, CTCF, LAYN, PYGO1, Firre, TSIX and miR-150-5pa as most significantly associated upstream regulators, while activation/inactivation of X-chromosome, cell movement, and metastasis are the most important biological functions affected in this subgroup (Tables 11 and 12). Heatmap of 5 upstream regulators is shown in supplementary Fig. 2 (Additional file 3). The two most important non-canonical networks enriched with DE lncRNAs are shown in Fig. 3b and c. In network 1; CCND1, EP300, CREBBP, ESR1, CTNNB1, and PRKCD, in network 2; Histone H3, TP53, MYC, XIST, and EZH2 are the central regulators linked with DE lncRNAs.

Differentially expressed lncRNAs in the Group 4 MB and their functional roles
Comparative analyses of Group 4 MB (N = 39) and normal cerebellum tissue (N = 5) datasets with p < 0.05 and
fold change > 2 provided 150 differentially expressed lncRNAs with approved status. Tables 13 and 14 show the fold change in the top 10 upregulated and downregulated lncRNAs. Heatmap of top 10 upregulated and downregulated lncRNAs is shown in Fig. 4a. The complete list of lncRNAs can be seen in Supplementary file 1. We found 82% overlap with lncRNAs in validation datasets [Group 4 N = 95, Control = 5] (Additional file 2). We found all the top 10 upregulated and downregulated lncRNAs in validation datasets.

Functional analysis of DE lncRNAs of Group 4 MB using IPA predicted C17orf98, ZNF426, RNF165, FBX08, CTCF, LAYN, PYGO1, Firre, TSIX and mir-150-5p as most significantly associated upstream regulators, while activation/inactivation of X-chromosomes, cell movement, methylation of DNA and metastasis are the most important biological functions affected in this subgroup (Tables 15 and 16). Heatmap of 5 upstream regulators is shown in supplementary Fig. 2 (Additional file 3). The two important non-canonical networks enriched with DE lncRNAs are shown in Fig. 4b and c. In network 1; AR, MYC, XIST, SP1, CCND1, and EZH2, in network 2; Histone H3, SP1, ESR1, MYC, SOX2, POUSF1, CDH1, and CEBPB are the central regulators linked with DE lncRNAs.

Prognostic significance of lncRNAs in different subgroups of MB

We used a publicly available dataset GSE85217 (Cavalli dataset) to understand the prognostic significance of DE lncRNAs of different MB subgroups. As shown in Fig. 5, high expression of HAND2-AS1 is associated with poor prognosis in WNT MB. Similarly, low expression of MEG3 in SHH, high expression of DLEU2 and DSCR8

Table 11 Top 10 upstream regulators involved in DE lncRNAs in Group 3 MB

Upstream Regulator	Molecule Type	P-val of overlap	Target molecules in dataset
C17orf98	other	1.11E-03	XIST
ZNF426	transcription regulator	1.11E-03	XIST
RNF165	enzyme	1.11E-03	XIST
FBX08	other	1.11E-03	XIST
CTCF	transcription regulator	2.08E-03	TSIX,XIST
LAYN	other	2.22E-03	XIST
PYGO1	other	2.22E-03	XIST
Firre	other	3.33E-03	XIST
TSIX	other	3.33E-03	XIST
mir-150-5p (and other miRNAs w/seed CUCCCAA)	mature microRNA	3.33E-03	MIAT
in Group 3 and high expression of DLEU2 and low expression of XIST in Group 4 are associated with poor prognosis in MB ($p < 0.05$).

Discussion

lncRNAs are known regulators of gene expression. Disruptions in gene regulatory pathways in cancers dictate the aberrant lncRNAs expression [11–13]. Notably, almost 40% of lncRNAs are aberrantly expressed in the brain-related disorders including brain tumors. However, lncRNA expression profile in MB is largely unexplored.

In this study, we have identified the lncRNA expression profile of pediatric MB subgroups and associated molecular pathways. The identified key lncRNAs require further functional validation in vitro and in vivo to explore their potential role in MB subgroup-specific manner. Here, we discuss the known cancer-relevant function of the key lncRNAs identified in MB subgroups.

EMX2OS is the most differentially expressed lncRNA in the WNT subgroup. This lncRNA is known to regulate EMX gene expression in the brain development [32, 33]. OTX2-AS1 (antisense strand of the OTX2 gene) is predominantly involved in eye development [34]. High PGM5-AS1 (antisense strand of the PGM5 gene) expression is associated with development and poor prognosis of colorectal cancer (CRC) [35]. Increased expression of DSC8R is associated with malignant pathology and poor survival in hepatocellular carcinoma (HCC) patients [36]. LOXL1-AS1 (antisense strand of the LOXL1 gene) is involved in the progression and metastasis of MB by regulating the PI3K-AKT signaling [27]. In addition, it is also known to play roles in the proliferation and survival of prostate cancer (PC) cells via miR-541-3p and cell cycle gene CCND1 [37] as well as aggressive nature of glioblastoma by activating NF-kB pathway [38]. HAND2-AS1 (antisense strand of the HAND2 gene) is overexpressed in esophageal squamous cell carcinoma (ESCC) [39] while it is downregulated in non-small cell

Gene Symbol	Fold Change	P-Val	FDR P-Val
LINC01419	139.78	0.0047	0.0175
OTX2-AS1	60.12	9.95E-16	2.03E-13
BLACAT1	27.67	1.13E-18	4.59E-16
DLEU2	11.58	2.25E-15	4.16E-13
LINC01355	7.09	2.23E-07	3.85E-06
MIRLE178HG	7.01	2.03E-06	2.55E-05
PRR34-AS1	6.82	8.84E-12	6.11E-10
LINC01000	6.29	4.10E-12	3.13E-10
CKMT2-AS1	6.19	5.04E-11	2.82E-09
MIR99AHG	5.27	9.82E-07	1.38E-05
Table 14: Top 10 down-regulated IncRNAs in Group 4 of MB

Gene Symbol	Fold Change	P-val	FDR P-val
XET	-343.06	0.0287	0.0745
SOX2-OT	-31.6	1.90E-13	2.06E-11
MALAT1	-13.08	5.80E-10	2.34E-08
LINC00643	-11.64	4.39E-13	4.32E-11
LINC00844	-9.89	1.26E-05	0.0001
LRR75A-AS1	-9.53	1.52E-08	3.87E-07
MIAT	-7.87	2.15E-10	9.90E-09
PRKAG2-AS1	-7.8	4.29E-07	6.75E-06
NR2F1-AS1	-5.98	8.89E-11	4.63E-09
PEG3-AS1	-5.74	1.92E-08	4.73E-07

lung cancer (NSCLC) cells [40]. TMEM51-AS1 (antisense strand of the TMEM51 gene) is associated with renal cell carcinoma (RCC) [41]. RMST1 acts as a tumor suppressor in triple-negative breast cancer (TNBC) by inducing apoptosis and inhibiting proliferation/invasion and migration [42]. PART1 promotes gefitinib-resistance in ESCC by regulating the miR-129/Bcl-2 pathway [43] and also associated with PC tumorigenesis [44]. LINC00461 is involved in glioma tumorigenesis via MAPK/ERK and PI3K/AKT signaling pathways [45]. Downregulation of MEG3 is involved in the proliferation and apoptosis of PC cells by regulating miR-9-5p and its target gene QKI-5 [46]. Downregulation of LINC00844 is associated with poor clinical outcomes and suppressed tumor progression/metastasis in PC [47]. SOX2-OT is overexpressed and promotes tumorigenesis by upregulating SOX2 gene and activating PI3K/AKT signaling pathway in cholangiocarcinoma (CCA) [48]. SOX2-OT is also a prognostic biomarker for osteosarcoma (OS) and involved in cell survival and cancer stem cells [49]. TUNAR plays a tumor suppressive role in glioma cells by upregulating miR-200a and inhibiting Rac1 [50]. MALAT1 promotes the chemo-resistance of cervical cancer via BRWD1-PI3K/AKT pathway [51]. MALAT1 is a well-studied IncRNA in several solid and hematological cancers [52].

NEAT1 is overexpressed in most cancer types, except leukemia and myeloma, where it is down-regulated [53–55]. DLEU2 exhibits role in the proliferation and survival of laryngeal cancer cells via miR-16-1 [56]. DLEU2 is also significantly overexpressed in gastric cancer and contributes to cell proliferation [57]. TPT1-AS1 (antisense strand of the TPT1 gene) expression is upregulated in cervical cancer and has influence on proliferation and migration.

Fig. 4 a) Heatmap of top 10 upregulated and downregulated IncRNAs in Group 4 MB. Expression value of different IncRNAs was clustered using correlation distance method. b) Differentially expressed IncRNAs in a non-canonical biological network in Group 4 MB. The important nodes in this biological network are AR, MYC, XIST, SP1, CCND1, and EZH2. c) Differentially expressed IncRNAs in another non-canonical biological network in Group 4 MB. The important nodes in this biological network are Histone H3, SP1, ESR1, MYC, SOX2, POU5F1, CDH1, and CEBPB. Green indicates downregulated and red indicates upregulated IncRNAs.
Table 15 Top 10 upstream regulators involved in DE IncRNAs in Group 4 MB

Upstream Regulator	Molecule Type	P-val of overlap	Target molecules in dataset
C1orf98	other	1.34E-03	XIST
ZNF426	transcription regulator	1.34E-03	XIST
RNF165	enzyme	1.34E-03	XIST
FBXO8	other	1.34E-03	XIST
LAYN	other	2.68E-03	XIST
PYGO1	other	2.68E-03	XIST
CTCF	transcription regulator	3.03E-03	TSKXIST
Fire	other	4.02E-03	XIST
TSIX	other	4.02E-03	XIST
miR-150-5p (and other miRNAs w/seed CUCCCAA)	mature microRNA	4.02E-03	MIAT

[58]. HCG11 is significantly overexpressed in hepatocellular carcinoma (HCC) and genetic-silencing of HCG11 in HCC cells leads to decreased proliferation [59]. HCG11 expression is downregulated in PC and associated with poor prognosis of patients [60]. CCPEPR contributes significantly in promoting cell proliferation and inhibiting apoptosis in bladder cancer [61].

BLACAT1 is overexpressed in chemo-resistant NSCLC and induces autophagy by regulating miR-17 and ATG7 pathway [62]. It also triggers proliferation/survival by regulating WNT signaling in cervical cancer [63].

XIST is elevated in bladder cancer and inhibits p53 function via binding to TET1 [64]. XIST also binds to miR-34a and elicits proliferation and tumor development in thyroid cancer [65]. XIST is an important regulator of progression and oxaliplatin-resistance in malignant melanoma [66]. MIR100HG is known to be involved in cetuximab-resistance in CRC via the β-catenin cellular pathway [67]. In addition, elevated expression of MIR100HG is correlated with poor prognosis of osteosarcoma [68]. MIAT is overexpressed in clear cell renal cell carcinoma (CCRCC) and associated with poor prognosis [69]. MIAT associates with miR-133 and contributes a role in the progression pancreatic cancer development [70]. MIAT also plays a key role in CRC tumorigenesis via miR-132/Derlin-1 axis [71]. NR2F1-AS1 (antisense strand of the NR2F1 gene) promotes chemotherapy-resistance in HCC by regulating miR-363-ABCC1 drug-transporter pathway [72].

Conclusions
We propose that the majority of DE IncRNAs in MB might have oncogenic properties as seen in other cancers (Supplementary Table S1 in Additional file 3) [73–82]. We found approximately 25% of these DE IncRNAs in MB are tumor suppressive. Also, each MB subgroup has unique and common IncRNAs in their expression.

Table 16 Top 10 disease and function identified by IPA from DE IncRNAs in Group 4 MB

Categories	Diseases or Functions Annotation	P-val	Activation z-score
Cellular Movement	Cell movement of tumor cell lines	4.56E-06	-0.938
Gene Expression	Inactivation of mouse X chromosome	6.13E-06	
Gene Expression	Activation of mouse X chromosome	6.13E-06	
Cellular Movement	Migration of tumor cell lines	6.36E-06	-0.877
Gene Expression	Imprinting	2.27E-05	
Cell Death and Survival	Apoptosis of kidney cancer cell lines	3.30E-05	
Cancer, Organism Injury and Abnormalities	Metastasis of tumor cell lines	1.28E-04	0.555
Cellular Movement	Invasion of tumor cell lines	1.36E-04	0.031
Cellular Development, Cellular Growth and Proliferation	Proliferation of kidney cancer cell lines	1.68E-04	
DNA Replication, Recombination, and Repair, Gene Expression	Methylation of DNA	1.82E-04	
Cell Death and Survival	Cell death of eye cell lines	3.08E-04	
Fig. 5 Kaplan Meier survival curves of different lncRNAs expressed in different subgroups of MB (Cavalli dataset) obtained using scan cut-off method on hsgserver (https://hsgserver1.amc.nl). a. High expression of HAND2-A51 is associated with poor prognosis in WNT MB. b. Low expression of MEG3 is associated with poor prognosis in SHH MB. c. High expression of DLEU2 and DSCR8 are associated with poor prognosis in Group 3 MB. d. High expression of DLEU2 and low expression of XIST in Group 4 MB are associated with poor prognosis (p < 0.05).
profile (Fig. 6). We performed a unique IncRNAs analysis in both original datasets and validation datasets (Additional files 1 and 2). Unique IncRNAs can be validated for differential diagnosis and prognosis of MB subgroups. Common IncRNAs and associated molecules in pathways can be important therapeutic targets. We identified important IncRNAs DELU2, CASC15, LINCO1355 and GASS are present in each subgroup and can be further explored for functional analyses in different MB subgroups. We also found SOX2, Protein kinase C delta (PRKCD), and EZH2 associated with functional networks of each subgroup and could be important drug targets. We also identified the prognostic significance of IncRNAs in different subgroups of MB.

Supplementary information

Supplementary information accompanies this paper at https://doi.org/10.1186/s12920-020-00744-7

Authors’ contributions
VK and NKC conceived and designed the study. VK, MJS and NKC analyzed and interpreted the data. D.T., JGS and SJ critically interpreted the data. VK and NKC wrote the manuscript. All authors read and approved the final version of the manuscript.

Funding
This work was supported by the State of Nebraska through the Pediatric Cancer Research Grant Funds (LI8905) awarded to D. W. Coulter, MD. This funding had no role in the study design, data collection and analysis, interpretation of the data, decision to publish, or writing the manuscript.

Availability of data and materials
We used publicly available GEO datasets (https://www.ncbi.nlm.nih.gov/geo/) GSE57741, GSE1094863, GSE1094864, GSE1094865, GSE1094866, GSE1094867, GSE124814, and GSE124827 for our analyses. The gene expression data GSE124827 (Cavall dataset) was used for survival analyses in the R2-Genomics Analysis and Visualization Platform (https://hgserver1.ancc.malignantcancer.org/gtia/bin/web/main.cgl).

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interest.

Author details
1Child Health Research Institute, University of Nebraska Medical Center, Omaha, NE 68198, USA. 2Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE 68198, USA. 3Department of Pediatrics, Hematology and Oncology Division, University of Nebraska Medical Center, Omaha, NE 68198, USA. 4Nebraska Medical Center, Omaha, NE, USA.

Received: 26 March 2020 Accepted: 19 June 2020
Published online: 26 June 2020

References
1. Cho YJ, Ishermia A, Tamayo P, Santaga S, Ligon A, Greulich H, et al. Integrative genomic analysis of medulloblastoma identifies a molecular subgroup that drives poor clinical outcome. J Clin Oncol. 2011;29:424-30.
2. Kijima N, Kanemura Y. Molecular Classification of Medulloblastoma. Neurol Med Chir (Tokyo). 2016;56:887-97.
3. Spieberger B, Boubet E, Greenberg ML, Rutka JT, Mabbutt DJ. Change in neurocognitive functioning after treatment with cranial radiation in childhood. J Clin Oncol. 2004;22:706-13.
4. Zeltzer LK, Reckless C, Buchbinder D, Zebrak B, Carles J, Tao X, et al. Psychosocial status in childhood cancer survivors: a report from the Childhood Cancer Survivor Study. J Clin Oncol. 2009;27:3996-400.
5. Northcott PA, Korshunov A, Witt H, Hielckicher T, Eberhard CG, Mack S, et al. Medulloblastoma comprises four distinct molecular variants. J Clin Oncol. 2011;29:1408-14.
6. Northcott PA, Shiha DJ, Peacock J, Gartner L, Morsey AS, Zichner T, et al. Subgroup-specific structural variation across 1,000 medulloblastoma genomes. Nature. 2012;484:51-6.
7. Jones DT, Jager N, Kool M, Zichner T, Hutter B, Sultan M, et al. Dissecting the genomic complexity underlying medulloblastoma. Nature. 2012;488:100-5.
8. Robinson G, Parker M, Krabeni TA, Lu C, Chen X, Ding L, et al. Novel mutations target distinct subgroups of medulloblastoma. Nature. 2012;488:43-8.
9. Kool M, Korshunov A, Remke M, Jones DT, Schlatter M, Northcott PA, et al. Molecular subgroups of medulloblastoma: an international meta-analysis of transcriptome, genetic aberrations, and clinical data of WNT, SHH, group 3, and group 4 medulloblastomas. Acta Neuropathol. 2012;123:473-84.
10. Taylor MD, Northcott PA, Korshunov A, Remike M, Cho Y, Clifford SC, et al. Molecular subgroups of medulloblastoma: the current consensus. Acta Neuropathol. 2012;123:3465-72.

11. Harrow J, Frankish A, Gonzalez JM, Tabara E, Diekhans M, Kokocinski F, et al. GENCODE: the reference human genome annotation for the ENCODE project. Genome Res. 2012;22:760-74.

12. Ferlì A, Bozzoni I. Long non-coding RNAs: new players in cell differentiation and development. Nat Rev Genet. 2014;15:7-21.

13. Shen XH, Qi P, Du X. Long non-coding RNAs in cancer invasion and metastasis. Mod Pathol. 2015;28:4-13.

14. Huarte M, Rinn JL. Large non-coding RNAs: missing links in cancer? Hum Mol Genet. 2010;19:R152-61.

15. Grossi E, Sanchez Y, Huarte M. Expanding the p53 regulatory network: lincRNAs take up the challenge. Biochem Biophys Acta. 1852:2016;200-8.

16. Qi P, Zhou XY, Du X. Circulating long non-coding RNAs in cancer: current status and future perspectives. Mol Cancer. 2016;15:39.

17. Do H, Kim W. Roles of anticancer Long non-coding RNAs in Cancer development. Genomics Inform. 2018;16:1-8.

18. de Oliveira JC, Oliveira LC, Mathias C, Pedrosa GA, Lemos DS, Silva-Silva A, et al. Long non-coding RNAs in cancer: Another layer of complexity. J Gene Med. 2018;16:e3065.

19. Ting J, Markberger M, Horvat S, Chyprys C. D3P3CA3 RNA analysis in urine-a new perspective for detecting prostate cancer. Eur Urol. 2009;46:182-6.

20. Kim M, Ozgur E, Cetin G, Erturk N, Akan M, Gezer U, et al. Investigation of circulating IncRNA in B-cell neoplasms. Clin Chim Acta. 2014;431:255-9.

21. Roberts TC, Morris XV, Wood MJ. The role of long non-coding RNAs in neurodevelopment, brain function and neurological disease. Philos Trans R Soc Lond Ser B Biol Sci. 2014;369.

22. Pavlaki I, Alkarnani F, Sun B, Clark N, Sirey T, Lee S, et al. The long non-coding RNA Pauras promotes KAP1-dependent chromatin changes and regulates oligodendrocyte development. Cell Stem Cell. 2018;15:634-5.

23. Wu P, Zhao X, Deng H, Liu X, Liu J, Jia A. Roles of long noncoding RNAs in brain development, functional diversification and neurodegenerative diseases. Brain Res Bull. 2013;97:69-90.

24. Choe KO, Hsien J. The IncRNA Prink in the brain. Cell Stem Cell. 2015;15:634-5.

25. Ramos AD, Andersen RE, Liu SJ, Nowakowski UJ, Hong SJ, Gertz C, et al. The long noncoding RNA Prink regulates neuronal differentiation of embryonic and postnatal neural stem cells. Cell Stem Cell. 2015;16:493-407.

26. Briggs JA, Wolvetang EJ, Mattick JS, Rinn JL, Bong G. Mechanisms of Long non-coding RNAs in mammalian nervous system development, plasticity, disease, and evolution. Neuron. 2018;88:861-77.

27. Gao R, Zhang R, Zhang C, Liang Y, Tang W. LncRNA LOXL1-AS1 Promotes the Proliferation and Metastasis of Medulloblastoma by Activating the PI3K/AKT Pathway. Anul Cell Pathol (Amst). 2018;2018:9275885.

28. Gao R, Zhao R, Zhang C, Zhao L, Zhang Y. Long noncoding RNA CCAAT1 promotes cell proliferation and metastasis in human medulloblastoma via MAPK pathway. Tumour. 2018;104:423-50.

29. Zhang H, Wang X, Chen X. Potential role of Long non-coding RNA ANRI in pediatric Medulloblastoma through promotion on proliferation and migration by targeting mir-523. J Cell Biochem. 2017;118:7357-44.

30. Laneve P, Po A, Favia A, Legnini I, Auffan M, Rea J, et al. The long noncoding RNA LncRNA:ID125 controls the expression of medulloblastoma driver genes by microRNA sponge activity. Oncotarget. 2017;8:13003-15.

31. Sorg H, Han LM, Guo Q, Sun Y. Long non-coding RNA CIRNDE promotes tumor growth in medulloblastoma. Eur Rev Med Pharmacol Sci. 2016;20:2588-97.

32. Noonan FC, Goodfellow PJ, Stoob CJ, Mutch DG, Simon TC. Antisense transcripts at the p53/MDM2 locus in human and mouse genomes. Genomics. 2003;81:65-66.

33. Cech C, Bondell E. Emx homeobox genes and mouse brain development. Trends Neurosci. 2002;25:347-52.

34. Afanaro G, Vitello C, Cacciapaglia C, Caramico T, Caro E, Sengo MJ, et al. Natural antisense transcripts associated with genes involved in eye development. Hum Mol Genet. 2005;14:913-23.

35. Zhu H, Yu J, Zhu H, Guo Y, Feng S. Identification of IncRNAs in colorectal cancer progression based on associated protein-protein interaction analysis. World J Surg Oncol. 2017;15:153.

36. Wang Y, Sun L, Wang L, Liu Z, Li Q, Yao B, et al. Long non-coding RNA DSCR2 acts as a molecular sponge for miR-485-5p to activate Wnt/beta-catenin.

37. Long B, Li N, Xu XX, Li XX, Xu XJ, Liu JY, et al. Long noncoding RNA LOXL1-AS1 regulates prostate cancer cell proliferation and cell cycle progression through miR-541-3p and CCND1. Biochem Biophys Res Commun. 2018;505:561-8.

38. Wang H, Li L, Yin L. Silencing LncRNA LOXL1-AS1 attenuates mesenchymal characteristics of glioblastoma via NF-kappB pathway. Biochem Biophys Res Commun. 2018;500:516-21.

39. Yan Y, Li S, Wang S, Ruberg P, Togovinin I, Zhang J, et al. Long noncoding RNA HAND2-AS1 inhibits cancer cell proliferation, migration, and invasion in esophage squamous cell carcinoma by regulating microRNA-21. J Cell Biochem. 2019;120:9564-71.

40. Miao F, Chen J, Shi M, Song Y, Chen Z, Pang L. LncRNA HAND2-AS1 inhibits non-small cell lung cancer migration, invasion and maintains cell stemness through the interactions with TGF-beta1. Bioger Bioge.
60. Zhang Y, Zhang P, Wan X, Su X, Kong Z, Zhao Q, et al. Downregulation of long non-coding RNA HCG11 predicts a poor prognosis in prostate cancer. Biomed Pharmacother. 2016;83:396-411.
61. Zhan Y, Li Y, Guan B, Chen X, Chen Z, He A, et al. Increased expression of long non-coding RNA CEGPR is associated with poor prognosis and promotes tumorigenesis in uterine cervical cancer. Oncotarget. 2017;8:44326-44.
62. Huang FX, Chen HJ, Zheng FX, Gao ZY, Sun PF, Peng G, et al. LncRNA BLACAT1 is involved in chemoresistance of non-small cell lung cancer cells by regulating autophagy. Int J Oncol. 2015;43:339-47.
63. Wang CH, Li YH, Tian H, Bao XX, Wang ZM. Long non-coding RNA BLACAT1 promotes cell proliferation, migration and invasion in cervical cancer through activation of Wnt/beta-catenin signaling pathway. Eur Rev Med Pharmacol Sci. 2018;22:3002-9.
64. Hu B, Shi G, Li Q, Li W, Zhou H. Long noncoding RNA XIST participates in bladder cancer by downregulating p53 via binding to TET1. J Cell Biochem. 2019;120:630-8.
65. Liu H, Deng F, Zhao Y, Li C, Liang Y. LncRNA XIST/miR-143 axis mediates the cell proliferation and tumor growth of thyroid cancer through MET/PKB-AKT1 signaling. J Exp Clin Cancer Res. 2018;37:75.
66. Pan B, Lin X, Zhang J, Hong W, Zhang Y. Long noncoding RNA X-inactive specific transcript promotes malignant melanoma progression and oxaliplatin resistance. Meditoma Res. 2019;29:54-62.
67. Lu Y, Zhao X, Liu Q, Li C, Graves-Deal R, Gao Z, et al. LncRNA MR100IG- derived miR-100 and miR-125b mediate cetuximab resistance via Wnt/beta- catenin signaling. Nat Med. 2017;23:1331-41.
68. Su X, Teng J, Jin G, Li J, Zhao Z, Gao X, et al. ELK1-induced upregulation of long non-coding RNA MR100IG predicts poor prognosis and promotes the progression of osteosarcoma by epigenetically silencing LAT51 and LAT52. Biomed Pharmacother. 2019;109:288-97.
69. Qu Y, Xiao H, Xiao W, Xiong Z, Hu W, Gao Y, et al. Upregulation of MBP4 regulates LCK2 expression by competitively binding miR-29c in clear cell renal cell carcinoma. Cell Physiol Biochem. 2018;48:1075-87.
70. Li TT, Liu J, Fu SJ. The interaction of long non-coding RNA LMP1 with mIR-133 plays a role in the proliferation and metastasis of pancreatic carcinoma. Biomed Pharmacother. 2018;104:145-50.
71. Liu Z, Wang H, Cai H, Hong Y, Li Y, Su D, et al. Long non-coding RNA LMP1 promotes growth and metastasis of colorectal cancer cells through regulation of miR-132/203/In-1 pathway. Cancer Cell Int. 2018;18:59.
72. Huang H, Chen J, Ding CM, Jin X, Jia ZM, Peng J. LncRNA NR2F1-AS1 regulates hepatocellular carcinoma oxaliplatin resistance by targeting ABCG2 via miR-383. J Cell Mol Med. 2018;22:3238-45.
73. Duan M, Fang M, Wang C, Wang H, Li M. LncRNA EMX2 OS induces proliferation, invasion and sphere formation of ovarian Cancer cells via regulating the miR-654-3p/AKT3/FoxO1 Axis. Cancer Manag Res. 2020;12: 2141-54.
74. Yan SP, Chu DX, Qiu HF, Xie Y, Wang CF, Zhang JY, et al. LncRNA LINC01355 silencing inhibits cell epithelial-mesenchymal transition in cervical cancer by inhibiting TNFR-mediated PI3K/AKT signalling pathway. J Cell Mol Med. 2019;23:265B-66.
75. Hsu CM, Lin PM, Lin HC, Lai CC, Yang CH, Lin SF, et al. Altered expression of Impaired genes in squamous cell carcinoma of the head and neck. Anticancer Res. 2016;36:2251-8.
76. Ye M, Ma J, Liu B, Liu X, Ma D, Dong K. LncRNA1010S acts as an oncogene in the development of neuroblastoma. Oncol Rep. 2019; 31:1080-9.
77. Ai B, Kong X, Wang X, Zhang K, Yang X, Zhai J, et al. LINC01355 suppresses breast cancer growth through FOXO3-mediated transcriptional repression of CDH1. Cell Death Dis. 2019;10:502.
78. Liu HY, Li SR, Guo ZH, Zhang ZS, Ye X, Du Q, et al. IncRNA SLC16A1-AS1 as a novel prognostic biomarker in non-small cell lung cancer. J Investig Med. 2020;68:52-9.
79. Zhu B, Li Y, Chen Q, Zhao X, Li P, Yuan G, et al. Overexpression of the long noncoding RNA TRID HEATS inhibits the progression of lung cancer via the miRNA-198/RB144 axis. J Cell Biochem. 2019;120:2176-1-24.
80. Wang L, Li Z, Zhang J, Liu X. Downregulation of long non-coding RNA LINC01351 inhibits cell migration, invasion, and tumor growth and promotes autophagy via inactivation of the PI3K/AKT/mTOR pathway in gastric cancer. Ther Adv Med Oncol. 2019;11:178855919874651.
81. Emmrich S, Sterbov A, Schmidt F, Thangapandi VR, Reinhardt D, Klußmann JH. LncRNAs MONC and MR100IG act as oncogenes in acute megakaryoblastic leukemia. Mol Cancer. 2014;13:171.
82. Chen J, Lan J, Ye Z, Duan S, Hu Y, Zou Y, et al. Long noncoding RNA LRRC53A-AS1 inhibits cell proliferation and migration in colorectal carcinoma. Exp Biol Med (Maywood). 2019;294:137-43.

Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.