Comparison of exponential-logarithmic and logarithmic-exponential series

Salma Kuhlmann*1 and Marcus Tressl**2

1 Fachbereich Mathematik und Statistik, Universität Konstanz, Fach D 197, 78457 Konstanz, Germany
2 School of Mathematics, University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom

Received 20 December 2011, revised 10 April 2012, accepted 24 April 2012
Published online 10 October 2012

Key words generalized power series, Hahn groups, exponential extension, exponential closure, growth axioms, morphisms of prelogarithmic fields.

MSC (2010) Primary: 06A05, 12J10, 12J15, 12L12, 13A18; Secondary: 03C60, 12F05, 12F10, 12F20.

We explain how the field of logarithmic-exponential series constructed in [20] and [21] embeds as an exponential field in any field of exponential-logarithmic series constructed in [6, 9], and [13]. On the other hand, we explain why no field of exponential-logarithmic series embeds in the field of logarithmic-exponential series. This clarifies why the two constructions are intrinsically different, in the sense that they produce non-isomorphic models of Th(\(\mathbb{R}_{\text{an}}, \exp\)) the elementary theory of the ordered field of real numbers, with the exponential function and restricted analytic functions.

1 Introduction

Several constructions of non-archimedean ordered fields endowed with an exponential and a logarithmic map, and with differential operators have appeared in the literature in the last two decades. All constructions are based on the use of fields of generalized series (cf. Definition 2.1). Let us summarize some of the literature highlights.

The early works of [2] and [3] were motivated by Tarski’s open problem concerning the decidability of \(T_{\exp}:=\text{the elementary theory of } (\mathbb{R}, +, \cdot, <, \exp)\). In [24], Wilkie established the model completeness of this theory. It became particularly interesting to understand the algebraic structure of the non-archimedean models of \(T_{\exp}\). In Dahn, [2, p. 183], a (non-surjective) exponential map is defined on a field of generalized series. This field, denoted by \(L_0\), is reconsidered in the works [19–21]. There, the authors construct a non-archimedean model of \(T_{\exp}\), the so-called field of Logarithmic-Exponential series (LE-series). The construction is based on Dahn’s field \(L_0\), and is attributed to Dahn-Göring [3] in [21, p. 63]. The non-archimedean models constructed in [6–9,13] are based on so-called prelogarithmic fields (cf. Section 3). This class of models, the so-called fields of Exponential-Logarithmic series (EL-series), enjoy many additional features that can be exploited to understand their algebra and model-theory. For instance, models with arbitrary growth rate of the exponential function (arbitrary “exponential rank”) are constructed in [13]. In [4,11,12,22,23], the focus is on the differential operators and on power series expansions for solutions of differential equations. Example 4.3 and variants thereof (e.g., with \(\Gamma=\{\log_m x ; m \in \mathbb{N}_0\}\) instead) are considered in [18, 2.3.1].

All constructions described in the literature are complicated and hard to read for the non-specialists. The inherent complexity of the construction makes a comparison of the resulting structures a tour de force. In this paper, we endeavor to explain these different constructions in a unified way. More precisely, we isolate a list of main basic construction steps. We explain the constructions of [20] and [21] and those of [6,9], and [13] in light of this list. We show how one may combine them in different ways to recover different constructions. This unified approach has several advantages. On the one hand, it makes the constructions more accessible, on the other, it allows to compare the various constructions, up to isomorphism of the obtained models.

* e-mail: salma.kuhlmann@uni-konstanz.de
** e-mail: marcus.tressl@manchester.ac.uk
The paper is organized as follows: In Section 2, we recall some preliminaries on fields of generalized power series. In Sections 3, 4, 5 and 6 we explain the construction of exponential-logarithmic power series fields \(\mathbb{R}((G))^{EL} \) (starting with an arbitrary ordered abelian group \(G \); cf. [9]). The construction is split into three different steps: the initial data is a given prelogarithmic section (cf. Section 3 for the definition), which is used to construct in the second step the exponential extension, and finally in the third step the exponential closure. In Section 7, we introduce the notion of morphisms in the category of fields endowed with prelogarithmic sections. Morphisms are used in Section 9 to “run” a generalized construction of logarithmic-exponential fields in exponential-logarithmic fields. To get as a special case an embedding of Écalle’s “trigèbre de transseries”, which is identified as a subfield of the LE-series field in Section 10, we then show how to embed the LE-series field of [20, 21] into the exponential closure of the subfield generated by logarithmic words (cf. [18, 22, 23]), which is in turn a subfield of any EL-series field. In particular, we get an embedding of Écalle’s “trigèbre de transseries”, which is identified as a subfield of the LE-series field in [21, Section 7.1]. The last Section 11 is devoted to proving that no non-archimedean exponential field \(\mathbb{R}((G))^{EL} \) does embed as an exponential field into the LE-series field.

2 Reminder on generalized power series

Throughout, \(k \) will denote a totally ordered field and \((G, \cdot, 1, <) \) a multiplicative totally ordered abelian group.

Definition 2.1 The field of \emph{generalized power series over} \(G \) with coefficients in \(k \) is defined as follows:

\[
\mathbf{k}((G)) := \left\{ \alpha = \sum \alpha(g) g \mid \alpha(g) \in k, \supp \alpha \text{ is anti-wellordered} \right\}.
\]

Here \(\supp \alpha := \{ g \in G \mid \alpha(g) \neq 0 \} \) is the support of \(\alpha \). Addition and multiplication of series are defined in the usual manner. Cf. [16] for more details.

The field \(\mathbf{k}((G)) \) is endowed with a \emph{canonical valuation} \(v : \mathbf{k}((G)) \to G \cup \{0\} \), defined by \(v(0) = 0 \) where \(0 < G, v(\alpha) := \max \supp \alpha \) for \(\alpha \neq 0 \). The valuation verifies that \(v(\alpha \alpha') = v(\alpha) \cdot v(\alpha') \), as well as the ultrametric triangle inequality: \(v(\alpha + \alpha') \leq \max\{v(\alpha), v(\alpha')\} \), with equality if \(v(\alpha) \neq v(\alpha') \). Thus \(\mathbf{k}((G), v) \) is a \emph{valued field} with \emph{value group} \(G \) (\(G \) is also called the group of exponents, or the group of monomials), and \emph{residue field} \(k \). The field \(\mathbf{k}((G)) \) comes equipped with the \emph{anti lexicographic order}: \(0 \neq \alpha \in \mathbf{k}((G)) \) is \(> 0 \) if \(\alpha(v(\alpha)) > 0 \). The valuation \(v \) is \emph{compatible} with this order, i.e., for all \(\alpha_1, \alpha_2 \) with \(0 < \alpha_1 < \alpha_2 \) we have \(v(\alpha_1) \leq v(\alpha_2) \).

We identify \(k \) with the ordered subfield \(\{ \alpha \cdot 1 \mid \alpha \in k \} \) of \(\mathbf{k}((G)) \). Similarly, we identify \(G \) with the ordered subgroup \(\{ 1 \cdot g \mid g \in G \} \) of \(\mathbf{k}((G))^+ \). Hence \(G > 0 \) in \(\mathbf{k}((G)) \) and one might think of \(G \) as a multiplicative group of germs of functions \(k \to k \) at \(+\infty \).

For any \(g \in G \) we denote by \(G^{<g} \) the strict initial segment of \(G \) determined by \(g \), similar notations for \(G^{\leq g}, G^g, \) and \(G^{>g} \). More generally, for any subset \(A \subseteq G \) we denote by \(G^{<A} := \{ g \mid g < a, \text{ for all } a \in A \} \), similar notations for \(G^{\leq A}, G^A, G^{>A} \). For any subset \(S \subseteq G \), let \(k((S)) := \{ \alpha \in \mathbf{k}((G)) \mid \supp \alpha \subseteq S \} \). Since \(\supp(\alpha_1 + \alpha_2) \subseteq \supp \alpha_1 \cup \supp \alpha_2 \) and \(\supp(-\alpha) = \supp \alpha \), \(k((S)) \) is a \(k \)-linear subspace of \(\mathbf{k}((G)) \).

The \emph{valuation ring} \(\mathbf{k}((G)^{\leq 1}) = \mathbf{k} \oplus \mathbf{k}((G^{<1})) \) is a convex subring of \(\mathbf{k}((G)) \) with maximal ideal \(\mathbf{k}((G^{<1})) \). If \(\alpha \in \mathbf{k}((G)), \alpha > 0 \) and \(g := \max \supp \alpha \), then \(g^{-1} \cdot \alpha \in \mathbf{k}((G^{\leq 1})) \), hence there are uniquely determined \(a \in k^{>0}, \varepsilon \in k((G^{<1})) \) such that \(\alpha = g \cdot a \cdot (1 + \varepsilon) \). We have the following direct sum (respectively, multiplicative direct sum) decompositions:

\[
(1) \quad \mathbf{k}((G)) = \mathbf{k}((G^{>1})) \oplus \mathbf{k} \oplus \mathbf{k}((G^{<1})),
\]

\[
(2) \quad \mathbf{k}((G))^{>0} = G \cdot k^{>0} \cdot (1 + \mathbf{k}((G^{<1}))).
\]

Remark 2.2 In the literature, and in particular in the papers of the first author cited here, the group \(G \) is written additively, \(g \in G \) is associated to the monomial \(t^g \) and series in \(\mathbf{k}((G)) \) are written \(\sum \alpha g t^g \) and have wellordered support. The map \(g \mapsto t^g \) is an order \emph{reversing} isomorphism, the order on \(\mathbf{k}((G)) \) is the lexicographic order, and the canonical valuation is defined by \(v(\alpha) := \min \supp \alpha \). In the present paper, we have opted for the multiplicative notation because it is more suitable for functional interpretations (cf. [10] and [12]).
3 Prelogarithmic sections and associated prelogarithms

In this and the following three sections, we shall recall the construction, and give examples of exponential-logarithmic series fields. We begin by recalling the definition of the restricted logarithm defined on the group of 1-units of the valuation ring of \(k((G)) \).

Definition 3.1 The logarithm on 1-units is the map

\[
1 + k((G^{<1})) \to k((G^{<1})) \text{ defined by } 1 + \varepsilon \mapsto \sum_{i \geq 1} (-1)^{i-1} \varepsilon^i / i.
\]

This map is an isomorphism of ordered groups (cf. [1]). We now focus on extending the domain of the logarithm to \(k((G))^{>0} \).

Definition 3.2 A prelogarithmic section \(l \) of \(k((G)) \) is an embedding of ordered groups \(l : (G, \cdot) \to (k((G^{>1})), +) \). The tuple \((k((G)), l)\) is called a series field with prelogarithmic section \(l \); if \(l \) is clear from the context we just say \(k((G)) \) is a prelogarithmic series field.

Note that prelogarithmic sections on \(k((G)) \) exist, cf. Remark 4.2 and Example 4.3 below.

Definition 3.3 Let \(k \) be an ordered field and \(\log : (k^{>0}, \cdot) \to (k, +) \) an order preserving embedding of groups. We say that \((k, \log)\) is an ordered prelogarithmic field. If \(\log \) is surjective we say that \((k, \log)\) is an ordered logarithmic field, or that \((k, \exp)\) is an ordered exponential field, where \(\exp := \log^{-1} \).

Let \((k, \log)\) be an ordered prelogarithmic field and \(G \) be a multiplicative, abelian ordered group. Let \(l \) be a prelogarithmic section of \(k((G)) \). If \(\alpha \in k((G)), \alpha > 0 \) and \(g := \max \text{supp}\alpha \), write \(\alpha = g \cdot a \cdot (1 + \varepsilon) \) with \(a \in k^{>0}, \varepsilon \in k((G^{<1})) \).

Definition 3.4 Define

\[
L(\alpha) = L(g \cdot a \cdot (1 + \varepsilon)) = l(g) + \log a + \sum_{i \geq 1} (-1)^{i-1} \varepsilon^i / i.
\]

Then \(L : (k((G))^{>0}, \cdot) \to (k((G)), +) \) is the uniquely determined order preserving embedding of groups, extending \(\log, l \) and the logarithm on 1-units. We call \(L \) the prelogarithm associated to the prelogarithmic section \(l \) on \(k((G)) \).

4 Main examples of prelogarithmic series fields

Definition 4.1 Let \(\Gamma \) be a totally ordered set, and \(k \) a totally ordered field. We shall begin by defining \(\Gamma^k \); the Hahn group of rank \(\Gamma \) with exponents in \(k \), written multiplicatively. Consider a totally ordered set of variables

\[
X := \{ x_\gamma \mid \gamma \in \Gamma \}
\]

and let \(\Gamma^k \) be the set of formal products of the form

\[
g = \prod_{\gamma \in \Gamma} x_\gamma^{g(\gamma)}
\]

where \(g(\gamma) \in k \) and \(\text{supp} g := \{ \gamma \in \Gamma \mid g(\gamma) \neq 0 \} \) is anti-wellordered in \(\Gamma \). Multiplication is defined pointwise:

\[
g_1 g_2 = \prod_{\gamma \in \Gamma} x_\gamma^{g_1(\gamma) + g_2(\gamma)}
\]

so 1 is the product with empty support. The order is anti lexicographic: \(g > 1 \) if \(g(\gamma) > 0 \) where \(\gamma = \max \text{supp} g \). For example \(x_\gamma > 1 \) for all \(\gamma \in \Gamma \). Thus, \(\Gamma^k \) is a totally ordered abelian group.

Remark 4.2 Hahn’s Embedding Theorem [5] states that every totally ordered abelian group \(G \) is (isomorphic to) a subgroup of a Hahn group \(\Gamma^R \), for a suitably chosen \(\Gamma \). Therefore when constructing prelogarithmic series fields \(R((G)) \) one may assume without loss of generality that \(G \) is a subgroup of a Hahn group.
Example 4.3 Set $G = \Gamma^k$, we define the basic prelogarithmic section on $k((G))$ by:

$$l\left(\prod_{\gamma \in \Gamma} x^{g(\gamma)}\right) = \sum_{\gamma \in \Gamma} g(\gamma)x_\gamma.$$

Now assume as above that k admits a log : $(k^{>0}, \cdot) \to (k, +)$, and let L be the associated basic prelogarithm as given by (4). We denote by $k((\Gamma^k))^L$ the prelogarithmic series field thus constructed.

Our aim is to use prelogarithmic series fields to construct ordered exponential fields (K, E) which are models of T_{exp}, so we are mainly interested in exponentials satisfying the growth axiom scheme:

$$(GA) \quad \text{if} \; \alpha \in K, n \geq 1, \text{ and } \alpha \geq n^2, \text{ then } E(\alpha) > \alpha^n.$$

Note that because of the hypothesis $\alpha \geq n^2$, (GA) is only relevant for $v(\alpha) \geq 1$. Let us consider the case $v(\alpha) > 1$. In this case, “$\alpha > n^2$” holds for all $n \in \mathbb{N}$ if α is positive, and the axiom scheme (GA) is thus equivalent to the assertion:

$$\forall n \in \mathbb{N} : E(\alpha) > \alpha^n.$$

Applying $L := E^{-1}$ on both sides, we find that this is equivalent to

$$\forall n \in \mathbb{N} : \alpha > L(\alpha^n) = nL(\alpha).$$

Via the valuation v, this in turn holds if

$$v(L(\alpha^n)) < v(\alpha).$$

Definition 4.4 A (pre)logarithm L on the ordered field K will be called a (GA)-(pre)logarithm if it satisfies (7) for $\alpha \in K^0$ with $v(\alpha) > 1$.

Example 4.5 The basic prelogarithm L on $k((G))$ (given in Example 4.3) does not satisfy (GA) (e.g., $L(x_\gamma) = x_{\gamma}$). To remedy to this problem, we fix an embedding

$$\sigma : \Gamma \to \Gamma$$

which is decreasing (i.e., $\sigma(\gamma) < \gamma$ for all $\gamma \in \Gamma$), and define the induced prelogarithmic section l_σ as follows:

$$l_\sigma\left(\prod_{\gamma \in \Gamma} x^{g(\gamma)}\right) = \sum_{\gamma \in \Gamma} g(\gamma)x_{\sigma(\gamma)}.$$

The associated prelogarithm (given in (4)) is denoted by L_σ. We note that L_σ satisfies (GA); one verifies that (7) holds for $\alpha \in k((G))^{>0}$, with $g := v(\alpha) > 1$. Set $x_\gamma := \max \text{supp } g$; one verifies that

$$x_{\sigma(\gamma)} = v(l_\sigma(g)) = v(L_\sigma(\alpha)) < v(\alpha) = g \text{ in } G^{>1}.$$

We denote by $k((\Gamma^k))^{\sigma L}$ the prelogarithmic series field thus constructed.

Example 4.6 In Example 4.3 above, Γ can consist of a totally ordered set of germs at infinity of non-oscillating real valued functions of a real variable, which are infinitely large and positive (i.e., $\lim_{x \to +\infty} f(x) = +\infty$). For example take

$$\Gamma := \{ \log_m x \mid m \in \mathbb{Z} \}.$$

Here, log is the natural logarithm on \mathbb{R} and \log_m is its m-th iterate (for $n \in \mathbb{N}$, $\log_m = \exp_n$ the n-th iterate of the exponential). Let

$$\sigma : \log_m x \mapsto \log_{m+1} x.$$

Let G be the group of exponential-logarithmic words; that is, the subgroup of $\Gamma^\mathbb{R}$ consisting of products with finite support. As in Example 4.3 above, the induced prelogarithmic section l_σ on $\mathbb{R}((G))$ is:

$$l_\sigma(x^{r_0}(\log x)^{r_1} \cdots (\log_n x)^{r_n}) = r_0 \log x + \cdots + r_n \log_{n+1} x.$$
5 The exponential extension of a prelogarithmic field

The following construction or close variants of it, namely to add exponentials to a given field with prelogarithmic section, is used by [2, 4, 6, 7, 9, 13, 20–23], and [18]. It is the core step in constructing exponentials of infinitely large elements.

From now on, we fix a prelogarithmic series field \((k((G)), l))\). Observe that \(l : G \rightarrow (k((G^{-1})), +)\) is not surjective if \(G \neq \{1\}\) (cf. [8]). More precisely, the exponential of any element in \(k((G^{-1})) \setminus l(G)\) is not defined. We shall enlarge our group of monomials \(G\) to a group extension \(G^\#\) to include the missing exponentials.

We take \(G^\#\) to be a multiplicative copy \(e[k((G^{-1})]]\) of \(k((G^{-1}))\) over \(l(G)\). More precisely, we construct \(G^\#\) formally as follows:

\[
G^\# := \{e(\alpha) \mid \alpha \in k((G^{-1}))\}, \quad \text{where } e(\alpha) := g \text{ if } \exists g \in G \text{ s.t. } \alpha = l(g)
\]

By its definition, \(G\) is a subset of \(G^\#\). We define multiplication on \(G^\#\) as follows: \(e(\alpha_1)e(\alpha_2) := e(\alpha_1 + \alpha_2)\). In particular, if \(g_1 = e(\alpha_1), g_2 = e(\alpha_2) \in G\), then \(e(\alpha_1)e(\alpha_2) = e(l(g_1) + l(g_2)) = e(l(g_1g_2)) = g_1g_2\), so \(G\) is a subgroup of \(G^\#\). We equip \(G^\#\) with a total order: \(e(\alpha_1) < e(\alpha_2)\) if and only if \(\alpha_1 < \alpha_2\) in \(k((G^{-1}))\). Again, if \(g_1 = e(\alpha_1), g_2 = e(\alpha_2) \in G\), then \(e(\alpha_1) < e(\alpha_2)\) if and only if \(l(g_1) < l(g_2)\) in \(k((G^{-1}))\) if and only if \(g_1 < g_2\) in \(G\), so \(G\) is an ordered subgroup of \(G^\#\). Since \(G \subseteq G^\#\) as ordered abelian multiplicative groups, we view \(k((G))\) as an ordered subfield of \(k((G^\#))\) by identifying \(k((G))\) with the elements of \(k((G^\#))\) having support in \(G\).

One verifies that the map \(l^\# : (G^\#), \cdot \rightarrow (k((G^\# > 1)), +)\) defined by \(l^\#(e(\alpha)) := \alpha\) for \(\alpha \in k((G^{-1}))\) is a prelogarithmic section with \(l^\#(G^\#) = k((G^{-1}))\) and \(l^\#\) extends \(l\) on \(G\). By construction of the logarithms \(L\) and \(L^\#\) on \(k((G))^{>0}\) and \(k((G^\#))^{>0}\), respectively, \(L^\#\) is an extension of \(L\).

Definition 5.1 We define the exponential extension of \((k((G)), L))\) to be \((k((G^\#)), L^\#))\).

We have the following commutative diagram of embeddings (whenever we have a set theoretic inclusion we use the arrow \(\leftarrow\rightarrow\)):

\[
\begin{array}{ccc}
k((G^\#))^{>0} & \xrightarrow{L^\#} & k((G^\#)) \\
G^\# \downarrow l^\# & & k((G^\# > 1)) \\
G \downarrow l & & k((G^{>1})) \\
& & k((G))
\end{array}
\]

(8)

6 The exponential closure of a prelogarithmic field

From now on we assume that the given logarithm on the residue field \(\log : (k^{>0}, \cdot) \rightarrow (k, +)\) is surjective.

Definition 6.1 If \(n = 0\) set \((k((G))^n, L^n) := (k((G)), L))\). For \(n \in \mathbb{N}\), define inductively the \(n\)-th exponential extension of \((k((G)), L))\): \((k((G))^n, L^n) := \text{the exponential extension of } (k((G)^{n-1}), L^{n-1})\).

Hence \(k((G))^n = k((G^\#)^n))\). Here, the prelogarithm on \((k((G)^n))^{>0}\) associated to \(l^n\) is denoted by \(L^n\).

Definition 6.2 Set \((k((G)))^{\text{EL}} := \bigcup_{n \in \mathbb{N}_0} k((G))^n\) and \(\text{Log} := \bigcup_{n \in \mathbb{N}_0} L^n\). We call \((k((G)))^{\text{EL}}, \text{Log})\) is the EL-series field over the prelogarithmic field \((k((G)))\).

Below, we gather some properties of \((k((G)))^{\text{EL}}, \text{Log})\). We note that \((k((G)))\) is contained in the image of \(L^\#\): the image of \(L^\#\) contains \(k((G^{>1}))\) (from the logarithm on 1-units), \(k((G^{>1}))\) (as image of \(l^\#\)) and \(k\), since \(l\) is surjective. By induction we have

\[
k((G^n)^n) \subseteq L^{n+1} [k((G^{n+1}))^{>0}]
\]
and

\[(10) \quad k((G^{#n,+})) = L^{#n+1}(G^{#n+1}). \]

So \(\text{Log} : (k((G))^{\text{EL},>0}, \cdot) \to (k((G))^{\text{EL},+}, \cdot)\) is an order preserving isomorphism. Let \(\text{Exp} : (k((G))^{\text{EL},+}, \cdot) \to (k((G))^{\text{EL},>0}, \cdot)\) denote the inverse of \(\text{Log}\). By \((9)\) and \((10)\), we have

\[(11) \quad \text{Exp}[k((G^{#n}))] \subseteq k((G^{#n+1}))^{>0} \]

and

\[(12) \quad \text{Exp} [k((G^{#n,+}))] = G^{#n+1}. \]

Finally, although we do not use this fact, we note that \(k((G))^{\text{EL}} \subseteq k((G^{\text{EL}}))\) where \(G^{\text{EL}} := \bigcup_n G^{#n} \).

Example 6.3 We consider the prelogarithmic field \(k((\Gamma^k))^L\) constructed in Example 4.3. The EL series field obtained as above by forming its exponential closure shall be henceforth denoted by \(k((\Gamma^k))^{\text{EL}}\).

Example 6.4 We consider the prelogarithmic field \(k((\Gamma^k))^{\sigma L}\) constructed in Example 4.5. The EL series field obtained as above by forming its exponential closure shall be henceforth denoted by \(k((\Gamma^k))^{\sigma \text{EL}}\). We claim that \(\text{Log}_\sigma : (k((\Gamma^k))^{\sigma \text{EL},>0}, \cdot) \to (k((\Gamma^k))^{\sigma \text{EL},+}, \cdot)\) satisfies \((\text{GA})\). In Example 4.5, we have shown that

\[(13) \quad v(l_\sigma(g)) < g \quad \text{for} \quad g \in G^{>1}. \]

It suffices to show that this property is preserved by exponential extension. Let \(g^# \in G^{#,>1}\). Set \(g := v(l_\sigma(g^#)) \in G^{>1}\). Applying \((13)\) we get:

\[v(l_\sigma(v(l_\sigma(g^#)))) < v(l_\sigma(g^#)). \]

Since \(l_\sigma(v(l_\sigma(g^#))) > 0\) and \(l_\sigma(g^#) > 0\), we get that (by compatibility of \(v\) with the order):

\[l_\sigma(v(l_\sigma(g^#))) < l_\sigma(g^#). \]

Since \(l_\sigma^#\) extends \(l_\sigma\), the last inequality reads

\[l_\sigma^#(v(l_\sigma(g^#))) < l_\sigma^#(g^#). \]

Since \(l_\sigma^#\) is order preserving, we conclude that \(v(l_\sigma^#(g^#))) < g^#\), as required.

7 Morphisms of prelogarithmic fields

In this section, we define a morphism on a prelogarithmic series field \((k((G), l))\) induced by a morphism \(\psi\) of \(G\), and use it in turn to induce a special automorphism ("value group induced" automorphism) \(\psi^{\text{EL}}\) of the corresponding EL-series field \((k((G))^{\text{EL}}, \text{Log})\). These automorphisms \(\psi^{\text{EL}}\) will play the role of "Log-substitution maps" (cf. Example 7.6); symbolically \(\psi^{\text{EL}}(f(x)) = f(\text{Log}(x))\) (substituting \(\text{Log}(x)\) for \(x\)). The aim is to recover in Section 10 the inverse map \((\psi^{\text{EL}})^{-1}\) (substituting \(\text{Exp}(x)\) for \(x\)) which plays a key role in the construction of the LE series field \((k((\Gamma^k))^{\text{LE}})\) of \([21]\).

Definition 7.1 Let \(\nu : k((G_1), l_1) \to k((G_2), l_2)\) be a homomorphism of \(k\)-vector spaces. We say that \(\nu\) respects arbitrary sums if it commutes with arbitrary sums, i.e., if \(\nu(\sum a_i g) = \sum a_i \nu(g)\).

Let \((k((G_1)), l_1)\) and \((k((G_2)), l_2)\) be series fields with prelogarithmic sections and let \(\psi : G_1 \to G_2\) be an order preserving embedding (of groups). Then \(\psi\) extends to \(k((G_1))\) in the obvious way and the resulting extension is also denoted by \(\psi\). Since \(\psi\) respects arbitrary sums (from the way it is defined), \(\psi\) commutes with the logarithms on 1-units defined in (3).
Definition 7.2 We call \(\psi \) a morphism from \((k((G_1)), l_1))\) to \((k((G_2)), l_2))\) if \(\psi \) commutes with the prelogarithmic sections, that is: \(\psi \circ l_1 = l_2 \circ \psi \) on \(G_1 \):

\[
\begin{array}{c}
 \kappa((G_1)) \xrightarrow{\psi} \kappa((G_2)) \\
 \downarrow l_1 \quad \quad \downarrow l_2 \\
 G_1 \xrightarrow{\psi} G_2
\end{array}
\]

(14)

If this is the case, then \(\psi \) also commutes with the prelogarithms:

\[
\psi \circ L_1 = L_2 \circ \psi \text{ on } k((G_1))^{>0}.
\]

(Indeed, if \(a \in k((G_1))^{>0} \) write \(a = g \cdot r \cdot (1 + \varepsilon) \) and compute: \(\psi(L_1(a)) = \psi(l_1 g + \log r + \log(1 + \varepsilon)) = \psi l_1(g) + \log r + \psi(\log(1 + \varepsilon)) = l_2 \psi(g) + \log r + \log(1 + \psi \varepsilon) = L_2(\psi(a)). \)

If \(\psi \) is such a morphism, then \(\psi \) induces a morphism

\[
\psi^\#: (k((G_1^\#)), l_1^\#) \rightarrow (k((G_2^\#)), l_2^\#)
\]

defined as follows: for \(g^\# \in G_1^\# \)

\[
\psi^\#(g^\#) = (l_2^\#)^{-1} \circ \psi \circ l_1^\#(g^\#).
\]

Observe that \(\psi \circ l_1^\#(g^\#) \in k((G_2^1)) \) is indeed in the image of \(l_2^\# \), and that \(\psi^\# \) extends \(\psi \).

Here is the situation in a diagram. The part of the diagram with non broken arrows, commutes:

\[
\begin{array}{c}
 \kappa((G_1^\#)) \xrightarrow{\psi^\#} \kappa((G_2^\#)) \\
 \downarrow \cong \quad \quad \downarrow \cong \\
 \kappa((G_1^{1-1})) \xrightarrow{\cong} \kappa((G_2^{1-1})) \\
 \downarrow \cong \quad \quad \downarrow \cong \\
 \kappa((G_1)) \xrightarrow{\psi} \kappa((G_2))
\end{array}
\]

(15)

Adding the prelogarithmic sections of diagram 8 to diagram 15 we get a complete illustration of the constructions so far in the following figure:
We now iterate the \#-construction: by induction we get a morphism
\[
\psi_{\#n} : (k((G_{1n}^\#)), l^\#_{1n}) \to (k((G_{2n}^\#)), l^\#_{2n})
\]
extending $\psi_{\#n-1}$. In the following two propositions, we record for later use properties of the resulting map
\[
\psi^{EL} : k((G_1))^{EL} \to k((G_2))^{EL},
\]
defined by
\[
\psi^{EL} := \bigcup_{n \in \mathbb{N}} \psi_{\#n}.
\]

Proposition 7.3 The following properties hold.

1. ψ^{EL} is a k-embedding of ordered fields which respects arbitrary sums.
2. ψ^{EL} respects Log and Exp: for $a \in k((G_1))^{EL}$; $\psi^{EL}(\text{Log}(a)) = \text{Log}(\psi^{EL}(a))$ (if $a > 0$) and $\psi^{EL}(\text{Exp}(a)) = \text{Exp}(\psi^{EL}(a))$.
3. If $G_2 \subseteq \psi^{EL}(G_{1n}^\#)$ for some $n \in \mathbb{N}$ then $k((G_{2m}^\#))$ is in the image of $k((G_{1n+m}^\#))$ under ψ^{EL} for all $m \in \mathbb{N}$.

Proof. (1) and (2) are inherited from the corresponding properties of $\psi^\#$. To see (3), note that by definition, $k((G_2))$ is in the image of $\psi^{EL}|_{k((G_1^\#))}$. Thus $k((G_{2m}^\#))$ is in the image of $\psi^{EL}|_{k((G_{1n+m}^\#))}$ for all $m \in \mathbb{N}$. \qed

Definition 7.4 Assume that $G = G_1 = G_2$ and that $l = l_1 = l_2$. We say that the morphism $\psi : G \to G$ is a contracting morphism if for all $g \in G^{\geq 1}$ $\psi(g) < g$. Similarly, we say that ψ^{EL} is a contraction if $\psi^{EL}(g) < g$ for all $g \in G^{EL}$, $g > 1$.

Contracting morphisms will play a key role in Section 10. We record the following for later use.

Proposition 7.5 Assume that $G = G_1 = G_2$ and that $l = l_1 = l_2$, and that ψ is a contracting morphism, then ψ^{EL} is a contraction.

Proof. By induction, it is enough to show $\psi^\#(g^\#) < g^\#$ for all $g^\# \in G^\#$. $g^\# > 1$. Since $\psi(g) < g$ (if $g \in G$, $g > 1$) we have $\psi(f) < f$ for all $f \in k((G^{\#}))$, $f > 0$. Take $g^\# \in G^\#$. $g^\# > 1$. Then $l^\#(g^\#) \in k((G^{\#}))$ is positive, Thus $\psi(l^\#(g^\#)) < l^\#(g^\#)$ and since $(l^\#)^{-1}$ is monotone, we get $\psi^\#(g^\#) = (l^\#)^{-1} \circ \psi \circ l^\#(g^\#) < (l^\#)^{-1}(l^\#(g^\#)) = g^\#$ as desired. \qed
Example 7.6 We study the morphism induced by \(\sigma \) on the exponential-logarithmic series field \(k((\Gamma^k))^\sigma_{EL} \) examined in Examples 4.5 and 6.4. The embedding \(\sigma : \Gamma \to \Gamma \) lifts to an order preserving embedding \(\psi_\sigma := \sigma : G \to G := \Gamma^k \) into itself, defined by

\[
\psi_\sigma \left(\prod_{\gamma \in \Gamma} x_\gamma^{g(\gamma)} \right) = \prod_{\gamma \in \Gamma} x_{\sigma(\gamma)}^{g(\gamma)} = \prod_{\gamma \in \Gamma} l_\sigma(x_\gamma)^{g(\gamma)}.
\]

It is straightforward to verify that \(\psi_\sigma \) is a morphism, which extends to \(\psi_{\sigma,EL} : k((\Gamma^k))^\sigma_{EL} \to k((\Gamma^k))^\sigma_{EL} \).

Note also that for all \(g \in G > 1 \), we have \(\psi_{\sigma}(g) < g \), so that \(\psi_{\sigma,EL}(g) < g \) for all \(g \in G^{EL} \), \(g > 1 \) (by Proposition 7.5).

We also apply Proposition 7.3(3) to establish that \(\psi_{\sigma,EL} \) is surjective (even if \(\sigma \) is not): it suffices to show that for all \(g \in G \) we have that \(g \in \psi_{\sigma}(G^\#) \). Let \(g = \prod_{\gamma \in \Gamma} x_\gamma^{g(\gamma)} \in G \). Now \(\sum_{\gamma \in \Gamma} g(\gamma)x_\gamma \in k((G^{>1})) = t^\#_{\sigma}(G^\#) \).

Let \(g^\# \in G^\# \) be such that \(l^\#_\sigma (g^\#) = \sum_{\gamma \in \Gamma} g(\gamma)x_\gamma \). We compute: \(\psi_{\sigma}^\#(g^\#) = l^\#_\sigma^{-1} \circ \psi_{\sigma} \circ l^\#_\sigma (g^\#) = l^\#_\sigma^{-1} \circ \psi_{\sigma} \left(\sum_{\gamma \in \Gamma} g(\gamma)x_{\sigma(\gamma)} \right) = g \) as required.

8 Groups satisfying the growth axiom

Lemma 8.1 Let \(A, B \) be subgroups of the ordered abelian group \((C, +) \) and suppose \(A < |b| \) for all \(b \in B \), \(b \neq 0 \). Then \(A \) is a convex subgroup of \(A \oplus B \).

Proof. Clearly \(A + B \) is a direct sum. Let \(a, a' \in A \) and \(b \in B \) with \(0 < a + b < a' \). From \(0 < a + b \) we get \(-b < a\). From \(a + b < a' \) we get \(b < a' - a \). Hence \(A < |b| \) and our assumption implies \(b = 0 \). \(\square\)

We return to \(k((G)) \) with prelogarithmic section \(l : G \to k((G^{>1})) \), prelogarithm \(L : (k((G)))^{>0, \cdot} \to (k((G)))^{>0} \), and associated EL-series field \(k((G))^{EL} \) with logarithm Log and exponential Exp.

Lemma 8.2 Let \(U \subseteq H \subseteq G \) be subgroups such that \(U \) is a proper convex subgroup of \(H \) (\(U = \{1\} \) is not excluded). Suppose

\[
(\dagger) \quad \text{Log}(H) < |f| \text{ for all } f \in k((H^{>U})), \quad f \neq 0.
\]

Let

\[
H^{\#,U} = H \cdot \text{Exp} \left(k((H^{>U})) \right) \subseteq G^\#.
\]

Then \(H \) is a proper convex subgroup of \(H^{\#,U} \), \(H^{\#,U} \) is the anti-lexicographic product of \(H \) and \(\text{Exp} \left(k((H^{>U})) \right) \) and

\[
\text{Log} \left(H^{\#,U} \right) < |f| \text{ for all } f \in k((H^{\#,U})^{>H}), \quad f \neq 0.
\]

Proof. \(H \) is a proper subgroup of \(H^{\#,U} \), since for every \(h \in H \) with \(h > U \) we know \(H < \text{Exp}(h) \) from (\dagger). Let \(h^\# \in H^{\#,U} \), hence \(h^\# = h \cdot \text{Exp}(f_1) \) with \(h \in H \) and \(f_1 \in k((H^{>U})) \). By assumption there is \(h_1 \in H \) with \(U < h_1 \). Then \(\text{Log}(h^\#) = \text{Log}(h) + f_1 < h_1 + f_1 \in k((H)) \), hence for every \(f \in k((H^{\#,U})^{>H}) \) with \(f > 0 \) we have \(\text{Log}(h^\#) < h_1 + f_1 < f \). Finally Lemma 8.1 tells us that condition (\dagger) implies that \(H^{\#,U} \) is the anti-lexicographic product of \(H \) and \(\text{Exp} \left(k((H^{>U})) \right) \). \(\square\)

Definition 8.3 Let \(H \) be a subgroup of \(G \) with \(H \neq \{1\} \). We say that the growth axiom holds for \(H \) if condition (\dagger) of Lemma 8.2 is satisfied for \(H \) and \(U = \{1\} \), in other words if

\[
\text{Log}(H) < |f| \text{ for all } f \in k((H^{>1})), \quad f \neq 0.
\]

Observe that for a simply generated subgroup \(H = h^\# \) with \(h > 1 \), \(H \) satisfies the growth axiom if and only if

\[
v(\text{Log}(h)) < v(h)
\]

where \(v \) denotes the natural valuation (in multiplicative notation), i.e., the valuation whose valuation ring is the convex hull of \(\mathbb{Z} \). This is what classically is called “the growth axiom for \(h^\# \).

We iterate Lemma 8.2 to obtain the following proposition.

© 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.mlq-journal.org
Proposition 8.4 Let \((k, \log)\) be a logarithmic field and let \((k((G)), l)\) be a field with prelogarithmic section. Let \(H \neq \{1\}\) be a subgroup of \(G\), satisfying the growth axiom (cf. Definition 8.3). Let \(H^n\) be defined inductively by \(H^{-1} = \{1\}\), \(H^0 = H\) and

\[
H^{n+1} = H^n \cdot \text{Exp}([H^n]^{>H^{n-1}}) \subseteq G^\#n+1.
\]

Then \(H^n\) is a proper convex subgroup of \(H^{n+1}\), \(H^{n+1}\) is the anti-lexicographical product of \(H^n\) and \(\text{Exp}([H^n]^{>H^{n-1}})\) and

\[
\text{Log} (H^{n+1}) < |f| \quad \text{for all} \quad f \in k\((([H^{n+1}]^{>H^n})\), \quad f \neq 0.
\]

Proof. By induction on \(n\). If \(n = 0\), then we may apply Lemma 8.2 for \(\{1\} \subseteq H\), since \(H \neq \{1\}\) satisfies the growth axiom. Notice that \(H^{1} = H^\#. \{(1)\}\) in the notation of Lemma 8.2 and we get the assertion for \(n = 0\).

For the induction step we assume the assertion for \(n\) and apply Lemma 8.2 to the subgroups \(H^n \subseteq H^{n+1}\) of \(G^\#n+1\). Since \(H^{n+2} = (H^{n+1})^\#.H^n\) in the notation of Lemma 8.2, we get the assertion for \(n + 1\).

Lemma 8.5 If \(U \subseteq H\) are subgroups of \(G\) satisfying condition (†) of Lemma 8.2 and \(\psi : (k((G)), l) \to (k((G)), l)\) is a morphism, then also \(\psi(U), \psi(H)\) satisfy condition (†).

Proof. Take \(h_1 \in \psi(H)\) and let \(f_1 \in k\((\psi(H)^{>\psi(U)})\), \(f_1 > 0\). Then there are \(h \in H\) and \(f \in k\((H^{>U})\), \(f > 0\) with \(h_1 = \psi(h)\) and \(f_1 = \psi(f)\). By assumption we have \(l(h) = \text{Log}(h) < f\). Therefore \(\text{Log}(h_1) = l(\psi(h)) = \psi(l(h)) \leq \psi(f) = f_1\) as desired.

9 LE-series constructions

Let \((k, \log)\) be a logarithmic field. Let \((k((G)), l)\) be a field with prelogarithmic section, and let \(\psi\) be a morphism from \((k((G)), l)\) to \((k((G)), l)\), hence \(\psi\) is an order preserving embedding \(G \to G\) such that \(\psi \circ l = l \circ \psi\). We fix a subgroup \(H \neq \{1\}\) of \(G\). The goal of this section is to generalize the construction of the LE series field given in [21, p. 67–72]. More precisely, we construct a subfield of \(k((G))^{EL}\) which contains \(k((H))\) and which is closed under \(\text{Exp}, \text{Log}\) and \(\psi^{EL}\) assuming natural conditions on \(H\) and \(\psi^{EL}\). We shall call this field \(LE = \text{LE}(H, \psi)\) and suppress the dependency on \(H\) and \(\psi\) whenever the data \(H\) and \(\psi\) are clear from the context (cf. Theorem 9.6).

If \(m \in \mathbb{N}_0\) we write \(\psi^{(m)}\) for \(\psi \circ \cdots \circ \psi\). Observe that \(\psi^{(m)}\) is again a morphism from \((k((G)), l)\) to \((k((G)), l)\).

Definition 9.1 We define an increasing sequence of subgroups of \(G^{EL}\):

\[
G_0^m \subseteq G_1^m \subseteq \cdots G^n_m \subseteq G^m_{n+1} \cdots
\]

with \(G^n_m \subseteq G^\#n\) as follows:

Let \(G^{-1}_m := \{1\}\), \(G^{0}_m := \psi^{(m)}(H)\) which is an ordered multiplicative subgroup of \(G\). We define by induction on \(n\):

\[
G^{n+1}_m = G^n_m \cdot \text{Exp} \(\{[G^n_m]^{>G^{n-1}_m}\}\) \subseteq G^\#n+1.
\]

Set \(k^n_m := k\((G^n_m)\) (so \(k^n_m \subseteq k^{n+1}_m\)) and \(L^m := \bigcup_n k^n_m\).

We now study closure properties of the fields \(L_m\) under the various maps.

Proposition 9.2 We have:

1. \(\text{Exp}(k^n_m) \subseteq k^n_m \cdot G^{n+1}_m \subseteq k^{n+1}_m\) (so \(L_m\) is closed under \(\text{Exp}\)).
2. \(\psi^{EL}(G^n_m) = G^{n+1}_m\).
Proof. (1) We have \(k^n_m = k((\{G^m_n\} < G^{n-1}_m)) \oplus k((G^m_n)) \oplus k((\{G^m_n\} > G^{n-1}_m)) \). Since \(\text{Exp} \cdot k((\{G^m_n\} < G^{n-1}_m)) \subseteq k((G^n_m)) \) we obtain

\[
\text{Exp} k^n_m \subseteq k^n_m \cdot \text{Exp} k((G^m_n)) \cdot \text{Exp} k((\{G^m_n\} > G^{n-1}_m)).
\]

By induction hypothesis we know \(\text{Exp} k((G^m_n)) \subseteq k^n_m \) and by definition of \(G^{n+1}_m \) we have \(\text{Exp} k((\{G^m_n\} > G^{n-1}_m)) \subseteq G^{n+1}_m \), so (1) follows. (2) If \(n = 0 \), then \(\psi(G^0_m) = G^0_m \) by definition. By Proposition 7.3, \(\psi^\text{EL} \) is a \(k \)-homomorphism which respects \(\text{Exp} \) and arbitrary sums; by induction on \(n \), we get \(\psi^\text{EL}(G^m_n) = G^m_{n+1} \) from the definition of \(G^m_n \).

Remark 9.3 Notice that it does not follow from the definitions that \(G^{n+1}_m \) is the antilexicographic product of \(G^n_m \) and \(\text{Exp} k((\{G^m_n\} > G^{n-1}_m)) \). Similarly, it does not follow from the definitions that \(L_m \subseteq L_{m+1} \). However, this will be the case under additional assumptions on \(\ell \), \(\psi \) and \(H \) which we shall introduce step by step in the next statements. These results will be needed in Section 10.

Proposition 9.4 If \(H \) satisfies the growth axiom (cf. Definition 8.3) then for every \(m \in \mathbb{N}_0 \), \(G^0_m \) satisfies the growth axiom and \(G^{n+1}_m \) is the antilexicographical product of \(G^n_m \) and \(\text{Exp} k((\{G^m_n\} > G^{n-1}_m)) \). Moreover we have

\[
\text{Exp} k((\{G^m_n\} > 1)) \subseteq G^{n+1}_m.
\]

Proof. \(G^n_m \) satisfies the growth axiom by Lemma 8.5 applied to \(H, \{1\} \) and the morphism \(\psi^{(m)} \). Now Proposition 8.4 applied to \(G^n_0 \) shows that \(G^{n+1}_m \) is the antilexicographical product of \(G^n_m \) and \(\text{Exp} k((\{G^m_n\} > G^{n-1}_m)) \). In particular \(G^n_m \) is a convex subgroup of \(G^{n+1}_m \). To see the moreover part, take \(f \in k((\{G^m_n\} > 1)) \). Since \(G^n_m \) is a convex subgroup of \(G^{n+1}_m \) we can write \(f = f_0 + \cdots + f_n \), where \(\text{supp} f_i \subseteq (G^n_m)^{G^{n-1}_m} \). By definition of \(G^{n+1}_m \) we have \(\text{Exp} f_i \in G^{n+1}_m \subseteq G^{n+1}_m \). Thus \(\text{Exp} f = \prod_{i=0}^n \text{Exp} f_i \in G^{n+1}_m \).

Proposition 9.5 Assume \(H \) satisfies the growth axiom, \(\psi^\text{EL} \) is surjective and

\[(\psi^\text{EL})^{-1}(G^0_0) \subseteq G^0_1 (\text{i.e., } (\psi^\text{EL})^{-1}(H) \subseteq H \cdot \text{Exp} k((H > 1))). \]

Then for all \(n, m \) we have:

(1) \((\psi^\text{EL})^{-1}(G^n_m) \subseteq G^{n+1}_m \).

(2) \(k^n_m \subseteq k_{m+1}^{n+1} \).

If in addition

\[l(H) \subseteq k((\psi(H))), \]

then

(3) \(\log G^n_m \subseteq k_{m+1}^{n+1}, \) and

(4) \(\log (k^n_m)^{G^n_m} \subseteq k_{m+1}^{n+1} \) for all \(n, m \).

Proof. (1) We fix \(m \) and show (1) by induction on \(n \). Firstly, since \(G^n_0 = \psi^{(m)}(H) \), we have \((\psi^\text{EL})^{-1}(G^n_m) = \psi^{(m)}(\psi^{-1}(H)) = (\psi^{(m)}(G^n_0) = G^1_m \), by assumption (17). Assume we know (1) for \(n \). Then

\[
(\psi^\text{EL})^{-1}(G^{n+1}_m) = (\psi^\text{EL})^{-1}(G^n_m) \cdot (\psi^\text{EL})^{-1}(\text{Exp} k((\{G^m_n\} > G^{n-1}_m))) \subseteq G^{n+1}_m \cdot \text{Exp} k((\{\psi^\text{EL})^{-1}(\{G^m_n\} > G^{n-1}_m)) \). By induction, so by definition of \(G^{n+2}_m \) it remains to show that \(\text{Exp} k((\{\psi^\text{EL})^{-1}(\{G^m_n\} > G^{n-1}_m)) \subseteq G^{n+2}_m \). By induction we know \((\psi^\text{EL})^{-1}(\{G^m_n\} > G^{n-1}_m) \subseteq (G^m_{n+1})^{-1} \) and by Proposition 9.4 we know \(\text{Exp} k((\{G^{n+1}_m\} > 1)) \subseteq G^{n+2}_m \). Hence the claim follows.
By Proposition 9.2(2) we know $G^n_m = \psi_{EL}^{-1}(G^n_{m+1})$. Hence $k^n_m = k((G^n_m)) = k((\psi_{EL})^{-1}(G^n_{m+1}))$ and the latter field is contained in $k^n_{m+1} = k((G^n_{m+1}))$ by (1).

Now assume that in addition $l(H) \subseteq k_i$.

(3) We have $\text{Log} G^n_m = \psi(m)^{(m)}(H) \subseteq k^0_i$ by assumption. Since $\psi(m)^{(m)}(k_1^0) = k^0_{m+1}$ we get $\text{Log} G^n_m \subseteq k^0_{m+1}$. By definition of G^{n+1}_m we have $\text{Log} (G^{n+1}_m) \subseteq \text{Log} G^n_m + k^0_m$. By (2) we know $k^n_m \subseteq k^0_{m+1}$ and by induction on n we have $\text{Log} G^n_m \subseteq k^0_{m+1}$. Since $k^0_{m+1} \subseteq k^0_{m+1}$ we obtain (3).

(4) Since $(k^n_m)^{>0} = G^n_m \cdot k^{>0}$, (1 + $k((G^n_{m+1}))$) we get $\text{Log} (k^n_m)^{>0} \subseteq \text{Log} G^n_m + k((G^n_m))$. Now (2) says $k((G^n_m)) \subseteq k^0_{m+1}$ and (3) says $\text{Log} G^n_m \subseteq k^0_{m+1}$. Since $k^0_{m+1} \subseteq k^0_{m+1}$ we obtain (4).

Hence under the assumptions of Proposition 9.5, we have $L_0 \subseteq L_1 \subseteq \cdots$ and we define $\text{LE} := \text{LE}(H; \psi) := \bigcup L_m$. Here the situation in a diagram where a line indicates containment:

So far we know that LE is closed under Exp, Log and ψ_{EL}.

Theorem 9.6 Under the assumptions of Proposition 9.5, we have $L_0 \subseteq L_1 \subseteq \cdots$ and we define $\text{LE} := \text{LE}(H; \psi) := \bigcup L_m$—thus LE is closed under Exp, Log and ψ_{EL}.

We shall now examine a sufficient condition on l, ψ and H for assumption (17) of Proposition 9.5 to be fulfilled:

$$(\text{Comp}_H). \quad \psi|_{l^{-1}(G) \cap H} = l|_{l^{-1}(G) \cap H}.$$

Notice that $l^{-1}(G) = l^{-1}(G^{>1})$ as l has values in $k((G^{>1}))$.

Lemma 9.7 Let l, ψ, H be such that (Comp_H) holds. Then for every $h \in l^{-1}(G) \cap H$, and for every $k \in k$ we have:

1. $\psi_{EL}(\text{Exp}(k \cdot h)) = \text{Exp}(k \cdot \text{Log}(h))$.

2. If ψ_{EL} is surjective, then $(\psi_{EL})^{-1}(\text{Exp}(k \cdot \text{Log}(h))) \in G^0_i$.
Proof. (1) Take \(h \in l^{-1}(G) \cap H \). Then \(\psi^{EL}(\text{Exp}(k \cdot h)) = \text{Exp}(\psi^{EL}(k \cdot h)) = \text{Exp}(k \cdot \psi(h)) = \text{Exp}(k \cdot \text{Log}(h)). \) (2) By (1), \((\psi^{EL})^{-1}(\text{Exp}(k \cdot \text{Log}(h))) = \text{Exp}(k \cdot h). \) Since \(h \in l^{-1}(G) \cap H \) we have \(h > 1 \). Thus \(\text{Exp}(k \cdot h) \in G_0^1 \) by definition.

Corollary 9.8 Let \(l, \psi, H_0 \) be such that \((\text{Comp}_{H_0})\) holds, and assume that \(\psi^{EL} \) is surjective. Let \(H \) be a subgroup of \(G \) containing \(H_0 \) and contained in the group generated by all the \(\text{Exp}(k \cdot \text{Log}(h)), k \in k, h \in l^{-1}(G) \cap H_0. \) Then assumption (17) of Proposition 9.5 is satisfied for \(H \).

Proof. We must show that \((\psi^{EL})^{-1} \) maps \(H \) into \(G_0^1 = \text{H} \cdot \text{Exp}(k((H^>1))) \). By assumption on \(H \) it suffices to show that \((\psi^{EL})^{-1} \) maps each element \(\text{Exp}(k \cdot \text{Log}(h)), k \in k, h \in l^{-1}(G) \cap H_0 \) into \(G_0^1 \). As \((\text{Comp}_{H_0})\) is satisfied we may apply Lemma 9.7(2) for \(H_0 \), which precisely says this.

10 Finding the LE-series field in the exponential field generated by logarithmic words

Let \(G \) be the multiplicative group of logarithmic words:

\[
G := \{ x^{r_0} \cdot (\log x)^{r_1} \cdots (\log x)^{r_n}, n \in \mathbb{N}_0, r_i \in k \}.
\]

Define

\[
\psi(x^{r_0} \cdot (\log x)^{r_1} \cdots (\log x)^{r_n}) := (\log x)^{r_0} \cdot (\log^2 x)^{r_1} \cdots (\log^{n+1} x)^{r_n}.
\]

So \(\psi : G \to G \) is an order preserving group embedding. Let \(l : G \to k((G^>1)) \) be defined by

\[
l(x^{r_0} \cdot (\log x)^{r_1} \cdots (\log x)^{r_n}) := r_0 \cdot \log x + \cdots + r_n \cdot \log^{n+1} x.
\]

Then

(1) \(l \) is a prelogarithmic section of \(k((G)) \) and \(\psi \) is a morphism from \((k((G)), l) \) to \((k((G)), l) \). This is obvious.

(2) \(\psi^{EL} \) is surjective, by Proposition 7.3(3) (applied to \(n = 1 \)).

(3) Clearly \(\psi \) is a contracting morphism. Hence by Proposition 7.5, \(\psi^{EL} \) is a contraction. In particular \((\psi^{EL})^{-1}(g) > g \) for all \(g \in G^{EL}, g > 1 \).

(4) \(H := \{ x^k \mid k \in k \} \) is a subgroup of \(G \) and \(H_0 := \{ x^z \mid z \in \mathbb{Z} \} \) is a subgroup of \(H \), generated by \(l^{-1}(G) \cap H_0 = l^{-1}(G) \cap H = \{ x \} \).

(5) \(H \) satisfies the growth axiom (cf. Definition 8.3), since \(l(x^k) = k \log x < |f| \) for all \(f \in k((H^>1)), k \in k \).

(6) \(\psi \) satisfies \(\text{Comp}_H \), since \(l^{-1}(G) \cap H = \{ x \} \) and \(\psi(x) = l(x) \).

(7) \(l \) and \(\psi \) satisfy condition (18) (cf. Proposition 9.5) as \(l(x^k) = k \log x = k \psi(x) \in k((\psi(H))) \).

Conditions (2), (3) and (6) show that all assumptions of Corollary 9.8 are satisfied. By this property (17) of Proposition 9.5 and by (7) also property (18) of Proposition 9.5 is satisfied. Hence the LE-series construction from Section 9 is applicable and we show that it gives the field \(k((x^{-1}))^{LE} \) of LE-series constructed by [21, p. 67–72], where the composition with \(\text{Exp}(x) \) is

\[
\Phi := (\psi^{EL})^{-1}.
\]

By induction on \(n \), Proposition 9.4 identifies the group \(G_0^n \) with the group \(G_n \) from the construction in [21]. Notice that by induction on \(n \) we may use our exponential function from \(k((G))^{EL} \) as the abstract isomorphism taken in [21] to define their exponential in step \(n \). We see that \(L_0 \) is the field \(k((x^{-1}))^{E} \) from [21]. Moreover we have shown that \(\Phi \) satisfies the following properties:

(1) \(\Phi \) is an order preserving \(k \)-isomorphism of exponential ordered fields.

(2) \(\Phi(x^k) = \text{Exp}(k \cdot x) (k \in k) \)
We would like to thank Mickaël Matusinski for reading a preliminary version of this paper and providing helpful comments.

Acknowledgements

www.mlq-journal.org © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
References

[1] N. Alling, On exponentially closed fields, Proc. Am. Math. Soc. 13, 706–711 (1962).
[2] B. Dahn, The limit behaviour of exponential terms, Fundam. Math. 124, 169–186 (1984).
[3] B. Kuehn and P. Gëring, Notes on exponential logarithmic terms, Fundam. Math. 127, 45–50 (1986).
[4] J. Écalle, Introduction aux fonctions analysables et preuve constructive de la conjecture de Dulac (Hermann, Paris, 1992).
[5] H. Hahn, Über die nichtarchimedischen Größensysteme, Sitzungsber. Kais. Akad. Wiss. Wien, Math.-Naturwiss. Kl. Abt. IIa 116, 601–655 (1907).
[6] F.-V. Kuhlmann and S. Kuhlmann, Explicit construction of exponential-logarithmic power series, Préspublications de Paris 7, Vol. 61 (Séminaire Structures Algébriques Ordonnées, Séminaires, 1995–1996).
[7] F.-V. Kuhlmann and S. Kuhlmann, The exponential rank of nonarchimedean exponential fields, in: Real Algebraic Geometry and Ordered Algebraic Structures. Papers from the special semester (RAGOS) and AMS Special Session on Real Algebraic Geometry and Ordered Algebraic Structures held at Louisiana State University, Baton Rouge, LA, January–May and April 17–21, 1996. Edited by C. N. Delzell and J. J. Madden. Contemporary Mathematics, Vol. 253 (American Mathematical Society, 2000), pp. 181–201.
[8] F.-V. Kuhlmann, S. Kuhlmann, and S. Shelah, Exponentiation in power series fields, Proc. Am. Math. Soc. 125, 3177–3183 (1997).
[9] S. Kuhlmann, Ordered Exponential Fields, Fields Institute Monograph Series Vol. 12 (Fields Institute, 2000).
[10] S. Kuhlmann, A family of logarithmic functions of distinct growth rates, Cent. Eur. J. Math. 8, 1026–1028 (2010).
[11] S. Kuhlmann and M. Matusinski, Hardy type derivations on fields of exponential logarithmic series, J. Algebra 345, 171–189 (2011).
[12] S. Kuhlmann and M. Matusinski, Hardy type derivations in generalized series fields, J. Algebra 351, 185–203 (2012).
[13] S. Kuhlmann and S. Shelah, κ-bounded Exponential Logarithmic Power Series Fields, Ann. Pure Appl. Log. 136, 284–296 (2005).
[14] A. Macintyre, The laws of exponentiation, in: Model Theory and Arithmetic, Proceedings of the CNRS Conference held in Paris, 1979–1980, edited by C. Berline, K. McAloon, and J.-P. Ressayre, Lecture Notes in Mathematics Vol. 890 (Springer-Verlag, 1981), pp. 185–197.
[15] A. Macintyre, Schanuel’s conjecture and free exponential rings, Ann. Pure Appl. Log. 51, 241–246 (1991).
[16] B. H. Neumann, On ordered division rings, Trans. Am. Math. Soc. 66, 202–252 (1949).
[17] M. Rosenlicht, Growth properties of functions in Hardy field, Trans. Am. Math. Soc. 299, 261–271 (1987).
[18] M. Schneling, Corps de Transseries, Ph.D. thesis, Paris 7 (2004).
[19] L. van den Dries, A. Macintyre, and D. Marker, The elementary theory of restricted analytic fields with exponentiation, Ann. Math. 140, 183–205 (1994).
[20] L. van den Dries, A. Macintyre, and D. Marker, Logarithmic-Exponential power series, J. Lond. Math. Soc. (2) 56, 417–434 (1997).
[21] L. van den Dries, A. Macintyre, and D. Marker, Logarithmic-Exponential series, Ann. Pure Appl. Log. 111, 61–113 (2001).
[22] J. van der Hoeven, Automatic asymptotics, Ph.D. thesis, École Polytechnique, Palaiseau (1997).
[23] J. van der Hoeven, Transseries and real differential algebra, Lecture Notes in Mathematics Vol. 1888 (Springer-Verlag, 2006).
[24] A. J. Wilkie, Model completeness results for expansions of the ordered field of real numbers by restricted Pfaffian functions and the exponential function, J. Am. Math. Soc. 9(4), 1051–1094 (1996).