Artificial Noise Revisited
Shuiyin Liu, Yi Hong, and Emanuele Viterbo

Abstract

The artificial noise (AN) scheme, proposed by Goel and Negi, is being considered as one of the key enabling technology for secure communications over MIMO wiretap channels. However, the decrease in secrecy rate due to the increase in the number of Eve’s antennas is not well understood. In this paper, we develop an analytical framework to characterize the secrecy rate of the AN scheme as a function of Eve’s SNR, Bob’s SNR, the number of antennas in each terminal, and the power allocation scheme. We first derive a closed-form expression for the average secrecy rate. We then derive a closed-form expression for the asymptotic instantaneous secrecy rate with large number of antennas at all terminals. Finally, we derive simple lower and upper bounds on the average/instantaneous secrecy rate that provide a tool for the system design.

Index Terms
artificial noise, secrecy capacity, physical layer security, wiretap channel.

I. INTRODUCTION

The security of data transmissions is a fundamental issue in wireless communication systems, where the broadcast characteristics make it difficult to prevent eavesdropping. Traditional key-based cryptography [1–3] usually is based on the assumption that the eavesdropper (Eve) has limited computational resources. These algorithms ensure that it is computational infeasible to decipher the encrypted messages without knowledge of the secret key. On the other hand, assuming Eve has unlimited computational power, Wyner, in [4], analyzed how one can reliably send information over a discrete memoryless wiretap channel. Wyner showed that, if Eve intercepts a degraded version of the intended receiver’s (Bob’s) signal, the transmitter (Alice) can limit the information leakage by means of channel coding. The associated notion of secrecy...
capacity was introduced to characterize the maximum transmission rate from Alice to Bob, below which Eve is unable to obtain any information.

Wyner’s original work provided the theoretical foundation for keyless security, namely physical layer security. Several studies have been made to generalize Wyner’s wiretap channel model. For example, in [5], Leung-Yan-Cheong and Hellman studied the Gaussian wiretap channel and showed that a positive secrecy capacity exists only when Eve’s channel is of lower quality than that of Bob. In [6], the authors considered a non-degraded version of Wyner’s wiretap channel. The notion of wiretap channel has also been extended to fading channels. For quasi-static fading channels, the outage probability of secrecy capacity is derived in [7]. For the ergodic fading channel, [8] provides a detailed analysis of secrecy capacity. In [9], the secrecy capacity region of a multiple-access channel with confidential messages is studied in [10]. The achievable average secrecy rate has been widely adopted as a metric of security [7–11].

In the context of wiretap code design, Csiszár [12] proposed the strong secrecy criterion, i.e., \(\lim_{n \to \infty} I(u; y) = 0 \), which implies that the overall information leakage between the message \(u \) and Eve’s channel output \(y \) should vanish as the codeword length \(n \) tends to infinity. Polar codes achieving strong secrecy over discrete memoryless channels have been proposed in [13]. For Gaussian wiretap channels, nested lattice codes achieving strong secrecy were proposed in [14]. In particular, polar codes in [13] and lattice codes in [14] were shown to achieve semantic security [2]. In [15], Oggier et al. showed that it is possible to construct lattice codes that maximizes Eve’s error probability.

Instead of only relying on the randomness of communication channels, physical layer jamming techniques were proposed to increase secrecy rate. In [11], Goel and Negi showed that it is possible to align additive white Gaussian noise (AWGN), so called “artificial noise” (AN), within the null space of a MIMO channel between Alice and Bob, thus only Eve is jammed. The idea of AN has been extended to various system models [16–20]. When the number of Bob’s antennas \(N_B \) is one, the asymptotic analysis of the secrecy capacity was derived in [16], and its power allocation scheme was presented in [17]. In the case of imperfect channel state information, an average minimum mean square (MSE) uplink-downlink duality was derived in [18]. More recently, we have shown that Eve’s error probability can be maximized by any randomly distributed AN (not necessarily Gaussian) [19]. In the existing AN-based schemes, it is commonly assumed that the number of Eve’s antennas \(N_E \) is smaller than the number of Alice’s antennas \(N_A \), i.e., \(N_E < N_A \) [11, 20]. However, the relationship between the secrecy rate and unbounded \(N_E \) has never been explored.
In this work, we characterize the exact secrecy rate of the original AN scheme \cite{11} for any Eve-to-
Bob channel noise-power ratios using various AN power allocation schemes, with arbitrary number of
antennas at each terminal. Our contributions are three-fold: firstly, we derive a closed-form expression for
the average secrecy rate; secondly, we derive a closed-form expression for the asymptotic instantaneous
secrecy rate as the number of antennas in each terminal becomes large; and finally, we derive lower
and upper bounds on the average/instantaneous secrecy rate, leading to simple sufficient and necessary
conditions that guarantee positive average/instantaneous secrecy rate.

The paper is organized as follows: Section II presents the system model, followed by the analysis
of secrecy rate in Section III. Section IV provides lower and upper bounds on the secrecy rate. Conclusions
are drawn in Section V. Proofs of the theorems are given in Appendix.

Notation: Matrices and column vectors are denoted by upper and lowercase boldface letters, and
the Hermitian transpose, inverse, pseudoinverse of a matrix B by B^H, B^{-1}, and B^\dagger, respectively. $|B|$ denotes the determinant of B. Let the random variables $\{X_n\}$ and X be defined on the same probability
space. We write $X_n \xrightarrow{a.s.} X$ if X_n converges to X almost surely or with probability one. I_n denotes the
identity matrix of size n. An $m \times n$ null matrix is denoted by $0_{m \times n}$. A circularly symmetric complex
Gaussian random variable x with variance σ^2 is defined as $x \sim \mathcal{CN}(0, \sigma^2)$. The real, complex, integer and
complex integer numbers are denoted by \mathbb{R}, \mathbb{C}, \mathbb{Z} and $\mathbb{Z}[i]$, respectively. $I(x; y)$ represents the mutual
information of two random variables x and y. We use the standard asymptotic notation $f(x) = O(g(x))$
when $\limsup_{x \to \infty} |f(x)/g(x)| < \infty$. $\lceil x \rceil$ rounds to the closest integer. A central complex Wishart matrix
$A \in \mathbb{C}^{m \times m}$ with n degrees of freedom and covariance matrix Σ, is defined as $A \sim W_m(n, \Sigma)$. We write
\triangleq for equality in definition.

II. SYSTEM MODEL

We consider secure communications over a three-terminal system, including a transmitter (Alice), the
intended receiver (Bob), and an unauthorized receiver (Eve), equipped with N_A, N_B, and N_E antennas,
respectively. The signal vectors received by Bob and Eve are

\[
z = Hx + n_B, \tag{1}
\]

\[
y = Gx + n_E, \tag{2}
\]

where $x \in \mathbb{C}^{N_A \times 1}$ is the transmit signal vector, $H \in \mathbb{C}^{N_B \times N_A}$ and $G \in \mathbb{C}^{N_E \times N_A}$ are the respective
channel matrices between Alice to Bob and Alice to Eve, and n_B, n_E are AWGN vectors with i.i.d.
entries $\sim \mathcal{N}_C(0, \sigma_B^2)$ and $\mathcal{N}_C(0, \sigma_E^2)$. We assume that the entries of H and G are i.i.d. complex random variables $\sim \mathcal{N}_C(0, 1)$.

Without loss of generality, we normalize Bob’s channel noise variance to one, i.e.,

$$\sigma_B^2 = 1,$$

and accordingly normalize the total average transmission power $E(||x||^2)$, as in [21].

A. Artificial Noise Scheme

The AN scheme assumes $N_B < N_A$, in order to ensure that H has a non-trivial null space $Z = \text{null}(H)$ (such that $HZ = 0_{N_B \times (N_A-N_B)}$) [11]. Let $H = U\Lambda V^H$ be the singular value decomposition (SVD) of H, then we can write the unitary matrix V as

$$V = [V_1, Z],$$

where the N_B columns of V_1 span the orthogonal complement subspace to the null space spanned by the columns of Z.

Using the AN scheme, Alice transmits

$$x = V_1 u + Zv = V \begin{bmatrix} u \\ v \end{bmatrix},$$

where $u \in \mathbb{C}^{N_B \times 1}$ is the information vector and $v \in \mathbb{C}^{(N_A-N_B)\times 1}$ is the “artificial noise”. For the purpose of evaluating the achievable secrecy rate, both u and v are assumed to be Gaussian circularly symmetric random vectors with i.i.d. complex entries $\sim \mathcal{N}_C(0, \sigma_u^2)$ and $\mathcal{N}_C(0, \sigma_v^2)$, respectively.

Equations (1) and (2) can then be rewritten as

$$z = HV_1 u + HZv + n_B = HV_1 u + n_B,$$

$$y = GV_1 u + GZv + n_E.$$

From (6) and (7), we note that v only degrades Eve’s channel, but does not affect Bob.

In our paper, we assume the worst-case scenario for Alice and Bob described in [11]:

- Alice has only the knowledge of H.
- Eve has the knowledge of H, G, Z and V_1.

Different from [11], we assume no upper bound on N_E.
Since V is a unitary matrix, the total transmission power can be written as
\[||x||^2 = \left[\begin{array}{c} u \\ v \end{array} \right]^H V^H V \left[\begin{array}{c} u \\ v \end{array} \right] = ||u||^2 + ||v||^2. \] (8)

We set the average transmit power constraint P,
\[P = E(||x||^2) = P_u + P_v, \] (9)
where
\[P_u = E(||u||^2) = \sigma_u^2 N_B, \]
\[P_v = E(||v||^2) = \sigma_v^2 (N_A - N_B), \] (10)
are fixed by the power allocation scheme that selects the balance between σ_u^2 and σ_v^2.

B. Instantaneous and Average Secrecy Capacities

The idea underpinning the AN scheme is to increase secrecy capacity by jamming Eve. We recall from [22] the definition of instantaneous secrecy capacity:
\[C_S \triangleq \max_{p(u)} \left\{ I(u; z) - I(u; y) \right\}. \] (11)
where the maximum is taken over all possible input distributions $p(u)$.

We remark that C_S is a function of H and G, which are embedded in z and y. To average out the randomness of C_S, we further define the average secrecy capacity, as in [21]
\[\bar{C}_S \triangleq \max_{p(u)} \left\{ I(u; z|H) - I(u; y|H, G) \right\}, \] (12)
where $I(X; Y|Z) \triangleq E_Z [I(X; Y)|Z]$, following the notation in [21].

Since closed form expressions for C_S and \bar{C}_S are not always available (except for the following Theorem 3 given in Sec. III.E), we often resort to the corresponding secrecy rates, given by
\[R_S \triangleq I(u; z) - I(u; y), \] (13)
\[\bar{R}_S \triangleq I(u; z|H) - I(u; y|H, G), \] (14)
assuming Gaussian input alphabets, i.e., v and u are mutually independent Gaussian vectors with i.i.d. complex entries $\mathcal{N}_C(0, \sigma_v^2)$ and $\mathcal{N}_C(0, \sigma_u^2)$, respectively.
C. System Parameters

We define Bob’s and Eve’s SNRs as
• $\text{SNR}_B \triangleq \frac{\sigma_u^2}{\sigma_B^2}$
• $\text{SNR}_E \triangleq \frac{\sigma_u^2}{\sigma_E^2}$

To simplify our notation, we define three system parameters:
• $\alpha \triangleq \frac{\sigma_u^2}{\sigma_E^2}$ (SNR E)
• $\beta \triangleq \frac{\sigma_v^2}{\sigma_u^2}$ (AN power allocation)
• $\gamma \triangleq \frac{\sigma_E^2}{\sigma_B^2}$ (Eve-to-Bob noise-power ratio)

Note that $\text{SNR}_B = \alpha \gamma$. If $\gamma > 1$, we say Eve has a degraded channel. Since we have normalized σ_B^2 to one, we can write (10) as
• $P_u = \alpha \gamma N_B$
• $P_v = \alpha \beta \gamma (N_A - N_B)$

III. SECRECY RATE WITH GAUSSIAN INPUT ALPHABETS

In this section, we first derive a closed-form expression for the average secrecy rate in (14) with Gaussian input alphabets. We then present an asymptotic analysis on the instantaneous secrecy rate in (13). Finally, we show average secrecy capacity in (12) is achieved with Gaussian input alphabets when $N_E \leq N_A - N_B$. To present our result, we define some useful functions.

A. Definitions

We first define the following function (see [23])

$$\Theta(m, n, x) \triangleq e^{-1/x} \sum_{k=0}^{m-1} \sum_{l=0}^{k} \sum_{i=0}^{2l} \left\{ \frac{(-1)^i (2l)! (n - m + i)!}{2^{2k-i} (n - m + l)!} \right\} \cdot \binom{2(k-l)}{k-l} \cdot \binom{2(l+n-m)}{2l-i} \cdot \sum_{j=0}^{n-m+i} x^{-j} \Gamma(-j, 1/x),$$

where $\binom{a}{b} = a! / (a - b)! b!$ is the binomial coefficient, $n \geq m$ are positive integers, and $\Gamma(a, b)$ is the incomplete Gamma function

$$\Gamma(a, b) = \int_b^\infty x^{a-1} e^{-x} dx.$$ (16)

We further define

$$N_{\min} \triangleq \min \{ N_E, N_A - N_B \},$$ (17)

$$N_{\max} \triangleq \max \{ N_E, N_A - N_B \}.$$ (18)
\[\hat{N}_{\text{min}} \triangleq \min \{ N_E, N_A \}, \] (19)
\[\hat{N}_{\text{max}} \triangleq \max \{ N_E, N_A \}. \] (20)

Finally, we define a set of \(N_A \) power ratios \(\{ \theta_i \}_{i=1}^{N_A} \), where
\[\theta_i \triangleq \begin{cases} \alpha & 1 \leq i \leq N_B \\ \alpha \beta & N_B + 1 \leq i \leq N_A \end{cases} \] (21)

B. Average Secrecy Rate

A closed-form expression for \(\bar{R}_S \) in (14) can be derived using the results from [21, Th. 2], [23, Th. 1] and [24, Th. 1], leading to the following theorem.

Theorem 1:
\[\bar{R}_S = \Theta(N_B, N_A, \alpha \gamma) + \Theta(N_{\text{min}}, N_{\text{max}}, \alpha \beta) - \Omega, \] (22)

where \(\Theta(\cdot, \cdot, \cdot) \) is given in (15).

\[\Omega = \begin{cases} K \sum_{k=1}^{\hat{N}_{\text{min}}} \det (R^{(k)}) & \beta \neq 1 \\ \Theta(\hat{N}_{\text{min}}, \hat{N}_{\text{max}}, \alpha) & \beta = 1 \end{cases} \] (23)

\[K = \frac{(-1)^{N_E(N_A-\hat{N}_{\text{min}})}}{\Gamma(\hat{N}_{\text{min}}(N_E))} \prod_{i=1}^{\hat{N}_{\text{min}}} \mu_i^{m_{i,N_E}} \prod_{i=1}^{2} \Gamma(m_i) \prod_{1<j} (\mu_i - \mu_j)^{m_i m_j}, \] (24)

and \(\mu_1 > \mu_2 \) are the two distinct eigenvalues of the matrix \(\text{diag} \left(\{ \theta_i^{-1} \}_{i=1}^{N_A} \right) \), with corresponding multiplicities \(m_1 \) and \(m_2 \) such that \(m_1 + m_2 = N_A \). The matrix \(R^{(k)} \) has elements

\[r^{(k)}_{i,j} = \begin{cases} (\mu e_i)^{N_A-j-d_i} \frac{(N_A-j)!}{(N_A-j-d_i)!} & \hat{N}_{\text{min}} + 1 \leq j \leq N_A \\ (-1)^d_i \frac{\varphi(i,j)!}{(\mu e_i)^{\varphi(i,j)+1}} & 1 \leq j \leq \hat{N}_{\text{min}}, j \neq k \\ (-1)^d_i \varphi(i,j)! e^{\mu e_i} \sum_{l=0}^{\varphi(i,j)} \frac{\varphi(i,j)}{(\mu e_i)^l+1} & \text{otherwise} \end{cases} \] (25)
where
\[
e_i = \begin{cases}
1 & 1 \leq i \leq m_1 \\
2 & m_1 + 1 \leq i \leq N_A
\end{cases}
\]
\[
d_i = \sum_{k=1}^{e_i} m_k - i,
\]
\[
\varphi(i, j) = N_E - \hat{N}_{\text{min}} + j - 1 + d_i.
\]

Proof: See Appendix A.

Theorem 1 gives the exact value of \(\bar{R}_S \) for the AN scheme, as a function of SNR_B (\(\alpha \gamma \)), SNR_E (\(\alpha \)), power allocation scheme (\(\beta \)), \(N_A, N_B \) and \(N_E \). Note that (22) can be expressed in terms of a finite number of incomplete Gamma functions, thus provides a closed-form expression for \(\bar{R}_S \).

C. Asymptotic Instantaneous Secrecy Rate

The instantaneous secrecy rate \(R_S \) in (13) is a function of \(H, V \) and \(G \). Since we assumed that the realizations of \(H, V \) and \(G \) are known to Eve, she is able to compute the exact value of \(R_S \). However, Alice only knows the realizations of \(H \) and \(V \), and can only assume that \(G \) is a random matrix. Therefore, \(R_S \) is a random variable from Alice’s perspective. We will consider this point of view when designing the secure communications system and we will use random matrix theory to characterize the asymptotic behavior (in terms of number of antennas) of the normalized instantaneous secrecy rate \(R_S/N_B \). We then show by simulation that the asymptotic behavior is a very accurate approximation even for very small numbers of antennas.

The following theorem proves that \(R_S/N_B \) converges to a constant value, which depends only of the system parameters: \(\alpha, \beta, \gamma \), \(P_u, P_v \), and the asymptotic number of antenna ratios. A special case of this result for \(\beta = 1 \) was given in [25]. Here, we provide a unified result for arbitrary \(\beta \).

Theorem 2: As \(N_A, N_B, N_A - N_B \) and \(N_E \to \infty \) with \(N_A/N_E \to \beta_1 \), \(N_A/N_B \to \beta_2 \) and \(N_B/N_E \to \beta_3 \),
\[
\frac{R_S}{N_B} \xrightarrow{a.s.} \Phi(P_u, \beta_2) - \frac{1}{\beta_3} (\beta_1 \nu(\delta) - \log \delta + \delta - 1) \\
+ \frac{1}{\beta_3} \Phi \left(\frac{P_v}{\gamma(\beta_1 - \beta_3), \beta_1 - \beta_3} \right) \triangleq \Psi,
\]
where
\[
\Phi(x, y) = y \log \left(1 + x - \frac{1}{4} F(x, y) \right) - \frac{F(x, y)}{4x} \\
+ \log \left(1 + xy - \frac{1}{4} F(x, y) \right),
\]
\[\mathcal{F}(x, y) = \left(\sqrt{x(1 + y)^2 + 1} - \sqrt{x(1 - y)^2 + 1} \right)^2, \quad (28) \]

\[\mathcal{V}(\delta) = \frac{1}{\beta_2} \log \left(1 + \frac{\delta P_u}{\gamma \beta_3} \right) + \left(1 - \frac{1}{\beta_2} \right) \log \left(1 + \frac{\delta P_v}{\gamma (\beta_1 - \beta_3)} \right), \quad (29) \]

and \(\delta \) is the solution of the equation

\[\beta_1 = \frac{1 - \delta}{1 - \eta(\delta)}, \quad (30) \]

\[\eta(\delta) = \frac{1}{\beta_2} \left(1 - \frac{\delta P_u}{\gamma \beta_3} \right)^{-1} + \left(1 - \frac{1}{\beta_2} \right) \left(1 + \frac{\delta P_v}{\gamma (\beta_1 - \beta_3)} \right)^{-1}. \]

Proof: See Appendix B.

In the special case of \(\beta = 1 \), according to the definitions of \(P_u \) and \(P_v \) given in Sec. II.C, we have

\[\frac{P_u}{\gamma \beta_3} = \frac{P_v}{\gamma (\beta_1 - \beta_3)}. \]

According to [26, Eq. 2.121], the explicit solution of (30) is

\[\delta = 1 - \frac{\mathcal{F} \left(\frac{P_u}{\gamma \beta_3}, \beta_1 \right)}{4P_u \gamma \beta_3}. \]

By substituting (32) and (33) into (26), we have

\[\frac{R_{SN}}{N_B} \xrightarrow{a.s.} \Phi(P_u, \beta_2) - \Phi(P_u / (\gamma \beta_3), \beta_1) + \Phi(P_u / (\gamma \beta_3), \beta_1 - \beta_3), \quad (34) \]

which coincides with [25, Th. 3].

D. Asymptotic Approximation of Average Secrecy Rate

Theorem 2 shows that the random variable \(R_{SN} / N_B \) converges almost surely to a constant \(\Psi \) given in (26), as the number of antennas at each terminal goes to infinity. Hence, also the average normalized secrecy rate converges to the same constant, as stated in the following corollary.

Corollary 1: Under the same assumptions of Theorem 2

\[\frac{\bar{R}_S}{N_B} \rightarrow \Psi, \]

where \(\Psi \) is given in (26). Then we can write that

\[\bar{R}_S \approx N_B \Psi \triangleq \bar{R}_{S, Asym}. \]

for a sufficiently large number of antennas.

Proof: The proof is straightforward.
Fig. 1. R_S vs. γ and N_E with $\alpha = 3$ dB, $\beta = -3$ dB, $N_A = 6$ and $N_B = 3$.

Corollary 1 provides an alternative way to evaluate R_S. To use the asymptotic approximation $R_{S,\text{Asym}}$ for a finite system model, we substitute in Ψ

$$
\beta_1 = \frac{N_A}{N_E}, \quad \beta_2 = \frac{N_A}{N_B}, \quad \text{and} \quad \beta_3 = \frac{N_B}{N_E}.
$$

(37)

Remark 1: For finite system models, we verified by simulations that the difference between R_S and $R_{S,\text{Asym}}$ is indistinguishable if

$$
\min \{N_A, N_B, N_A - N_B, N_E\} > 2.
$$

(38)

Example 1: Let us apply Theorem 1 and Corollary 1 to the analysis of an AN scheme with $N_A = 6$, $N_B = 3$ and $\alpha = 3$ dB. Fig. 1 shows the value of R_S with $\beta = -3$ dB, as a function of γ and N_E. In Fig. 2, we fix $\gamma = 3$ dB and verify the relationship between β, N_E and R_S. Both figures show an excellent agreement between the theoretically derived R_S and Monte Carlo simulation and the asymptotic approximation $R_{S,\text{Asym}}$.

Moreover, Fig. 1 shows how R_S increases with increasing γ and decreases with increasing N_E. In Fig. 2, we observe that increasing β (i.e., increasing AN power) has little effect on increasing R_S when $N_E > N_A$.

E. Achieving Average Secrecy Capacity

The following theorem gives a sufficient condition for the achievability of the average secrecy capacity R_S using Gaussian input alphabets.
Theorem 3: If $N_E \leq N_A - N_B$, as $\alpha, \beta \to \infty$, then

$$\bar{C}_S = \bar{R}_S = \bar{C}_{Bob}, \quad (39)$$

where \bar{C}_{Bob} represents Bob’s average channel capacity.

Proof: See Appendix C.

According to (12), a universal upper bound on the average MIMO secrecy capacity is given by

$$\bar{C}_S \leq \max_{p(u)} \{I(u; z|H)\} = \bar{C}_{Bob}. \quad (40)$$

Remark 2: Combining (39) and (40), we can show that the maximum average MIMO secrecy capacity is achieved by using the AN transmission scheme and Gaussian input alphabets, if N_E is not larger that $N_A - N_B$.

IV. LOWER AND UPPER BOUNDS ON SECRECY RATE

To guarantee positive average/instantaneous secrecy rate, in this section, we present simple sufficient and necessary conditions, based upon lower and upper bounds on the average/instantaneous secrecy rate using Gaussian input alphabets.

A. Bounds on Average Secrecy Rate

The following theorem bounds \bar{R}_S given in (22).

Theorem 4:

$$\bar{R}_{LB} \leq \bar{R}_S \leq \bar{R}_{UB}. \quad (41)$$
Fig. 3. \bar{R}_S and \bar{R}_{LB} vs. N_E with $\alpha = 3$ dB, $\beta = 1$ dB, $\gamma = 6$ dB, $N_B = 3$ and $N_A = 4$.

where the equality holds if $\beta = 1,$

$$\bar{R}_{LB} = \Theta(N_B, N_A, \alpha \gamma) + \Theta(N_{\min}, N_{\max}, \alpha \beta) - \Theta(\hat{N}_{\min}, \hat{N}_{\max}, \theta_{\max}), \quad (42)$$

$$\bar{R}_{UB} = \Theta(N_B, N_A, \alpha \gamma) + \Theta(N_{\min}, N_{\max}, \alpha \beta) - \Theta(\hat{N}_{\min}, \hat{N}_{\max}, \theta_{\min}), \quad (43)$$

$$\theta_{\min} \triangleq \min\{\alpha, \alpha \beta\},$$

$$\theta_{\max} \triangleq \max\{\alpha, \alpha \beta\}, \quad (44)$$

and $\Theta(\cdot, \cdot, \cdot)$ is given in (15).

Proof: See Appendix D. \hfill \blacksquare

Example 2: Fig. 3 compares the values of \bar{R}_S, \bar{R}_{UB}, \bar{R}_{LB} as functions of N_E with $\alpha = 3$ dB, $\beta = 1$ dB, $\gamma = 6$ dB, $N_B = 3$ and $N_A = 4$. Note that the upper and lower bounds are become tighter as β approaches 0 dB.

B. Bounds on Instantaneous Secrecy Rate

We then provide lower and upper bounds on the instantaneous secrecy rate R_S in (13) for high SNR$_B$.

February 11, 2014 DRAFT
Theorem 5: Let $N_A, N_B, N_A - N_B$ and $N_E \rightarrow \infty$ with $N_A/N_E \rightarrow \beta_1$, $N_A/N_B \rightarrow \beta_2$, $N_B/N_E \rightarrow \beta_3$, and let $P_u, P_v \rightarrow \infty$, then almost surely (i.e., with probability one)

\[
\frac{R_S}{N_B} \geq \Delta(A_{\text{max}}),
\]
\[
\frac{R_S}{N_B} \leq \Delta(A_{\text{min}}),
\]

(45)

where the equality (i.e., almost sure convergence to $\Delta(\cdot)$) holds if $\beta = 1$,

\[
\rho \triangleq \beta_1 - \beta_3,
\]
\[
A_{\text{min}} \triangleq \min \left\{ \frac{P_v}{\gamma \rho \gamma \beta_3}, \frac{P_u}{\gamma \rho \gamma \beta_3} \right\},
\]
\[
A_{\text{max}} \triangleq \max \left\{ \frac{P_v}{\gamma \rho \gamma \beta_3}, \frac{P_u}{\gamma \rho \gamma \beta_3} \right\},
\]

(46)

\[
\Delta(x) \triangleq (\log P_u \beta_2 - (\beta_2 - 1) \log (1 - \beta_2^{-1}) - 1) - F(x) + \Xi,
\]

(47)

\[
F(x) \triangleq \begin{cases}
 \beta_2 \left(\log x - \frac{1 - \beta_1}{\beta_1} \log (1 - \beta_1) - 1 \right), & \beta_1 \leq 1 \\
 \beta_2^{-1} \left(\log x \beta_1 - (\beta_1 - 1) \log (1 - \beta_1^{-1}) - 1 \right), & \beta_1 > 1
\end{cases}
\]

(48)

\[
\Xi \triangleq \begin{cases}
 (\beta_2 - 1) \left(\log \frac{P_v}{\gamma \rho} - \frac{1 - \rho}{\rho} \log (1 - \rho) - 1 \right), & \rho \leq 1 \\
 \beta_2^{-1} \left(\log \frac{P_v}{\gamma} - (\rho - 1) \log (1 - \rho^{-1}) - 1 \right), & \rho > 1
\end{cases}
\]

(49)

Proof: See Appendix E.

C. Sufficient and Necessary Conditions for $\bar{R}_S, R_S > 0$

Theorem 5 shows that the random variable R_S/N_B is almost surely bounded by the constant values $\Delta(A_{\text{max}})$ and $\Delta(A_{\text{min}})$ given in (50). Then the average normalized secrecy rate is also bounded by the same values, as stated in the following corollary.

Corollary 2: Under the same assumptions of Theorem 5

\[
\frac{\bar{R}_S}{N_B} \geq \Delta(A_{\text{max}}),
\]
\[
\frac{\bar{R}_S}{N_B} \leq \Delta(A_{\text{min}}),
\]

(50)

where $\Delta(\cdot)$ is given in (47). The equality holds if $\beta = 1$.

Proof: The proof is straightforward.

The bounds in (45) and (50) enable the following simple sufficient and necessary conditions for positive instantaneous and average secrecy rate.
Corollary 3: Let \(N_A, N_B, N_A - N_B \) and \(N_E \to \infty \) with \(N_A/N_E \to \beta_1, N_A/N_B \to \beta_2 \) and \(N_B/N_E \to \beta_3 \). Then a sufficient condition for positive instantaneous and average secrecy rate is given by

\[
\lim_{P_u, P_v \to \infty} \Delta(A_{\text{max}}) > 0, \quad (51)
\]

and a necessary condition for positive instantaneous and average secrecy rate is given by

\[
\lim_{P_u, P_v \to \infty} \Delta(A_{\text{min}}) > 0, \quad (52)
\]

where \(\Delta(\cdot) \) is given in (47).

Proof: The proof is straightforward.

To use Corollary 3 for finite (relatively small) SNR \(B \) and number of antennas, we substitute in \(\Delta(\cdot) \)

\[
\beta_1 = N_A/N_E, \quad \beta_2 = N_A/N_B, \quad \beta_3 = N_B/N_E,
\]

\[
P_u = \alpha \gamma N_B \quad \text{and} \quad P_v = \alpha \beta \gamma (N_A - N_B). \quad (53)
\]

Thus \(\Delta(\cdot) \) reduces to a function of \(N_A, N_B, N_E, \alpha, \beta \) and \(\gamma \).

Remark 3: We verified by simulation that Corollary 3 is accurate for finite system models, when

\[
\min \{ \alpha \gamma, \alpha \beta \gamma \} \geq 4,
\]

\[
\min \{ N_A, N_B, N_A - N_B, N_E \} > 2. \quad (54)
\]

Example 3: We consider an AN scheme with \(N_A = 6, N_B = 3, \alpha = \gamma = 3 \) dB and \(\beta = 1 \) dB. Fig. 4 shows the value of \(\bar{R}_S/N_B, \Delta(A_{\text{max}}) \) and \(\Delta(A_{\text{min}}) \) as functions of \(N_E \). By direct computation, \(\Delta(A_{\text{max}}) > 0 \) until \(N_E > 12 \) and \(\Delta(A_{\text{min}}) < 0 \) when \(N_E > 16 \). It was observed experimentally in Fig. 4 that \(\bar{R}_S > 0 \) when \(N_E < 12 \) and \(\bar{R}_S = 0 \) when \(N_E > 16 \).

Compared to the expressions in Theorems 1 and 2, the sufficient and necessary conditions for positive average/instantaneous secrecy rate in Corollary 3 are much easier to compute, and can be used for system design. For example, from Alice’s perspective, given \(N_A, N_B, \alpha, \beta \) and \(\gamma \), she can easily predict the number of antennas Eve needs to drive the secrecy rate to zero.

V. CONCLUSIONS

In this paper, we have studied the artificial noise scheme in a situation where Eve has unlimited number of antennas. We derived closed-form expressions for the average secrecy rate and the asymptotic instantaneous secrecy rate. The proposed analysis allows a simple evaluation on the secrecy rate with any SNR \(B, \text{SNR}_E, N_A, N_B \) and \(N_E \), and extends previous studies that were limited to either the case of \(N_E < N_A \) or the case of \(N_B = 1 \).
In the second part of this paper, we have derived lower and upper bounds on the average/instantaneous secrecy rate. Moreover, simple sufficient and necessary conditions for positive average and instantaneous secrecy rate have been derived. These easily computable conditions provide Alice and Eve with design tools for choosing system parameters.

APPENDIX

A. Proof of Theorem 1

Recalling that
\[\bar{R}_S = I(u; z|H) - I(u; y|H, G). \] (55)

In what follows, we evaluate \(I(u; z|H) \) and \(I(u; y|H, G) \), respectively. We treat \(H \) and \(G \) as Gaussian random matrices.

1) \(I(u; z|H) \)

Since \((HV_1)(HV_1)^H = HH^H\), using [21 Th. 2] and [23 Th. 1], we have
\[
I(u; z|H) = E_H (\log |I_{N_B} + \alpha \gamma HH^H|)
\]
\[= \Theta(N_B, N_A, \alpha \gamma), \] (56)

where \(\Theta(x, y, z) \) is given in [15].

2) \(I(u; y|H, G) \)
Since all entries in H and G are mutually independent, $I(u;y)$ can be expressed as a function of these independent random entries. This allows us to take two steps to compute the expected value of $I(u;y)$: we first compute $I(u;y|G)$ given H, then compute $E_H[I(u;y|G)|H]$. The advantage is that for given H, $V = [V_1, Z]$ is a fixed unitary matrix. Then, using [27] Th. 1, GV_1 and GZ are mutually independent complex Gaussian random matrices with i.i.d. entries $\sim N_C(0, 1)$.

Let $G_1 = GV_1$, $G_2 = GZ$, $W_1 = G_1 G_1^H$ and $W_2 = G_2 G_2^H$. According to [21], for given H, we have

$$I(u;y|G) = E_{G_1, G_2} \left(\log \frac{|I_{N_E} + \sigma_y^2 W_1 + \sigma_y^2 W_2|}{|I_{N_E} + \sigma_y^2 W_2|} \right)$$

$$= E_{G_1, G_2} \left(\log \frac{|I_{N_E} + \sigma_y^2 W_1 + \sigma_y^2 W_2|}{|I_{N_E} + \sigma_y^2 W_2|} \right)$$

$$= E_{G_1, G_2} (\log |I_{N_E} + \alpha W_1 + \alpha \beta W_2|) - E_{G_2} (\log |I_{N_E} + \alpha \beta W_2|). \quad \text{(57)}$$

According to [21] Th. 2 and [23] Th. 1, the second term of (57) equals to

$$E_{G_2} (\log |I_{N_E} + \alpha \beta W_2|) = \Theta(N_{\min}, N_{\max}, \alpha \beta), \quad \text{(58)}$$

where $\Theta(x,y,z)$, N_{\min} and N_{\max} are given in (15), (17) and (18), respectively.

To compute the first term of (57), we rewrite $\alpha W_1 + \alpha \beta W_2$ as $G_3 \Delta G_3^H$, where

$$G_3 = [G_1, G_2] \quad \text{(59)}$$

$$\Delta = \text{diag} \left(\{\theta_i\}^N_1 \right). \quad \text{(60)}$$

θ_i is defined in (21). We define

$$\Omega = E_{G_1, G_2} (\log |I_{N_E} + \alpha W_1 + \alpha \beta W_2|). \quad \text{(61)}$$

Case 1: If $\beta = 1$, using [21] Th. 2 and [23] Th. 1, we have

$$\Omega = E_{G_3} (\log |I_{N_E} + \alpha G_3 G_3^H|) = \Theta(\hat{N}_{\min}, \hat{N}_{\max}, \alpha), \quad \text{(62)}$$

where G_3, \hat{N}_{\min} and \hat{N}_{\max} are given in (59), (19) and (20), respectively.

Case 2: If $\beta \neq 1$, Δ^{-1} contains two groups of coinciding eigenvalues. According to [24] Th. 1, we have

$$\Omega = E_{G_3} (\log |I_{N_E} + G_3 \Delta G_3^H|) = K \sum_{k=1}^{N_{\min}} \det \left(R^{(k)} \right), \quad \text{(63)}$$
where \(K \) and \(R^{(k)} \) are given in (24) and (25), respectively.

Based on (57), (58), (62) and (63), we have

\[
I(u; y|H, G) = E_H (I(u; y|G)|H) = \Omega - \Theta(N_{\text{min}}, N_{\text{max}}, \alpha \beta).
\]

(64)

By substituting (64) and (56) into (55), we have

\[
\bar{R}_S = \Theta(N_B, N_A, \alpha \gamma) + \Theta(N_{\text{min}}, N_{\text{max}}, \alpha \beta) - \Omega.
\]

(65)

\[\blacksquare\]

B. Proof of Theorem 2

Recalling that \(R_S = I(u; z) - I(u; y) \).

In what follows, we evaluate \(I(u; z) \) and \(I(u; y) \), respectively.

1) \(I(u; z) \)

Similarly to (56), we have

\[
I(u; z) = \log |I_{N_B} + \alpha \gamma HH^H|.
\]

(67)

Since Alice knows the realization of \(H \), she is able to compute the deterministic value of \(I(u; z) \). As \(N_A \) and \(N_B \to \infty \) with \(N_A/N_B \to \beta_2 \), the following limit holds [26 Eq. 1.14]

\[
\frac{I(u; z)}{N_B} \to \Phi(P_u, \beta_2),
\]

(68)

where \(\Phi(x, y) \) is given in (27).

2) \(I(u; y) \)

Similarly to (57), we have

\[
I(u; y) = \log |I_{N_E} + \alpha W_1 + \alpha \beta W_2| - \log |I_{N_E} + \alpha \beta W_2|,
\]

(69)

where \(G_1 = GV_1 \), \(G_2 = GZ \), \(W_1 = G_1 G_1^H \) and \(W_2 = G_2 G_2^H \).

From Alice side, \(V = [V_1, Z] \) is a fixed unitary matrix and \(G \) is a Gaussian random matrix. Using [27 Th. 1], \(G_1 \) and \(G_2 \) are mutually independent complex Gaussian random matrices with i.i.d. entries \(\sim \mathcal{N}_C(0, 1) \).
According to [26, Eq. 1.14], as $N_A - N_B$ and $N_E \to \infty$ with $N_A/N_E \to \beta_1$ and $N_B/N_E \to \beta_3$, i.e.,

$$(N_A - N_B)/N_E \to \beta_1 - \beta_3,$$

$$\log \frac{|I_{N_E} + \alpha \beta W_2|}{N_E} \overset{a.s.}{\to} \Phi \left(\frac{P_v}{\gamma(\beta_1 - \beta_3)}, \beta_1 - \beta_3 \right). \tag{70}$$

Let $W_3 = \alpha W_1 + \alpha \beta W_2$. We can rewrite W_3 as $\hat{G}_3 T \hat{G}_3^H$, where

$$\hat{G}_3 = \left[\frac{1}{\sqrt{N_E}} G_1, \frac{1}{\sqrt{N_E}} G_2 \right], \tag{71}$$

$$T = N_E \text{diag} \left(\{ \theta_i \}_{i=1}^{N_A} \right). \tag{72}$$

where the θ_i's are given in (21). Note that the entries of \hat{G}_3 are i.i.d. complex random variables $\sim \mathcal{N}(0, 1/N_E)$.

According to [26, Th. 2.39], as N_A and $N_E \to \infty$ with $N_A/N_E \to \beta_1$,

$$\log \frac{|I_{N_E} + W_3|}{N_E} \overset{a.s.}{\to} \beta_1 \mathcal{V}(\delta) - \log \delta + \delta - 1, \tag{73}$$

where $\mathcal{V}(\delta)$ is given in (29) and δ satisfies

$$\beta_1 = \frac{1 - \delta}{1 - \eta(\delta)}, \tag{74}$$

with $\eta(\delta)$ given in (31).

From (68), (70) and (73), as N_A, N_B, $N_A - N_B$ and $N_E \to \infty$ with $N_A/N_E \to \beta_1$, $N_A/N_B \to \beta_2$ and $N_B/N_E \to \beta_3$,

$$\frac{R_S}{N_B} \overset{a.s.}{\to} \Psi, \tag{75}$$

where the constant Ψ is given in (26).

\blacksquare

C. Proof of Theorem 3

We first show that using Gaussian input alphabets, if $N_E \leq N_A - N_B$, $I(u; y | H, G) \to 0$ as $\alpha, \beta \to \infty$. We follow the definitions in the proof of Theorem 1. Based on (57), for a given realization of H, we have

$$I(u; y | G)$$

$$= E_{G_1, G_2} \left(\log \frac{|I_{N_E} \sigma_u^2 + \sigma_v^2 W_1 + \sigma_v^2 W_2|}{|I_{N_E} \sigma_u^2 + \sigma_v^2 W_2|} \right)$$

$$\leq E_{G_2} \left(\log \frac{|I_{N_E} \sigma_u^2 + \sigma_v^2 E_{G_1}(W_1) + \sigma_v^2 W_2|}{|I_{N_E} \sigma_u^2 + \sigma_v^2 W_2|} \right)$$

$$= E_{G_2} \left(\log \frac{|I_{N_E} + \sigma_u^2 + \sigma_v^2 W_2|}{|I_{N_E} + \sigma_v^2 W_2|} \right) + N_E \log \frac{\sigma_u^2 + N_B \sigma_v^2}{\sigma_v^2}, \tag{76}$$
where (a) holds due to the concavity of log-determinant function and Jensen’s inequality.

Let

\[W = \begin{cases} G_2G_2^H & \text{if } N_E \leq N_A - N_B \\ G_2^H G_2 & \text{if } N_E > N_A - N_B \end{cases} \]

i.e., \(W \sim W_{\min}(N_{\max}, I_{\min}) \).

Recalling the definitions of \(\alpha \) and \(\beta \) in Sec. II.C, and based on Sylvester’s determinant theorem and [23, Th. 1], the first term of (76) can be rewritten as

\[
E_{G_2} \left(\log \left| \frac{I_{\min} + \frac{\alpha \beta}{1 + \alpha N_B} W}{I_{\min} + \alpha \beta W} \right| \right) = \Theta(N_{\min}, N_{\max}, \alpha \beta/(1 + \alpha N_B)) - \Theta(N_{\min}, N_{\max}, \alpha \beta) \quad (77)
\]

where \(\Theta(x, y, z) \) is given in (15).

From (76) and (77), we have

\[
I(u; y|H, G) = E_H [I(u; y|G)|H] \leq N_E \log(1 + \alpha N_B) - \Theta(N_{\min}, N_{\max}, \alpha \beta) + \Theta(N_{\min}, N_{\max}, \alpha \beta/(1 + \alpha N_B)) = (N_E - N_{\min}) \log \alpha N_B + O \left(\frac{1}{\alpha} \right) + O \left(\frac{1}{\beta} \right). \quad (78)
\]

Based on (78), if \(N_{\min} = N_E \), i.e., \(N_E \leq N_A - N_B \), as \(\alpha \) and \(\beta \to \infty \),

\[
I(u; y|H, G) = 0. \quad (79)
\]

Under the same conditions, by substituting (79) into (14), we have

\[
\bar{R}_S = I(u; z|H) = \bar{C}_{\text{Bob}}, \quad (80)
\]

where \(\bar{C}_{\text{Bob}} \) represents Bob’s average channel capacity. The last equation holds since the input \(u \) is a circularly symmetric complex Gaussian random vector with zero mean and covariance \(\sigma_u^2 I_{N_B} \) [21, Th. 1].

On the other hand, from (12), we have

\[
\bar{C}_S \leq \max_{p(u)} \{ I(u; z|H) \} = \bar{C}_{\text{Bob}}. \quad (81)
\]

Based on (80) and (81), as \(\alpha, \beta \to \infty \), if \(N_E \leq N_A - N_B \),

\[
\bar{C}_S = \bar{R}_S = \bar{C}_{\text{Bob}}. \quad (82)
\]
D. Proof of Theorem 4

We follow the definitions in the proof of Theorem 1. We first bound the term Ω in the expression of \bar{R}_S given in (26). Recalling that

$$\Omega = E_{G_1, G_2} \left(\log |I_{N_e} + \alpha W_1 + \alpha \beta W_2| \right). \quad (83)$$

Let $\theta_{\min} = \min\{\alpha, \alpha \beta\}$ and $\theta_{\max} = \max\{\alpha, \alpha \beta\}$. Since W_1 and W_2 are positive semidefinite matrices, using [28, Eq. 12, pp. 55], we have

$$|I_{N_e} + \alpha W_1 + \alpha \beta W_2| \geq |I_{N_e} + \theta_{\min}(W_1 + W_2)| \quad \geq |I_{N_e} + \theta_{\min}G_3G_3^H|, \quad (84)$$

and

$$|I_{N_e} + \alpha W_1 + \alpha \beta W_2| \leq |I_{N_e} + \theta_{\max}(W_1 + W_2)| \quad \leq |I_{N_e} + \theta_{\max}G_3G_3^H|, \quad (85)$$

where G_3, \hat{N}_{\min} and \hat{N}_{\max} are given in (59), (19) and (20), respectively. The equality holds if $\beta = 1$.

Based on (83), (84) and (85), using [21, Th. 2] and [23, Th. 1], we have

$$\Theta(\hat{N}_{\min}, \hat{N}_{\max}, \theta_{\min}) \leq \Omega \leq \Theta(\hat{N}_{\min}, \hat{N}_{\max}, \theta_{\max}), \quad (86)$$

where $\Theta(x, y, z)$ is given in (15).

By substituting (86) into (22), we have

$$\bar{R}_{LB} \leq \bar{R}_S \leq \bar{R}_{UB},$$

where

$$\bar{R}_{LB} = \Theta(N_B, N_A, \alpha \gamma) + \Theta(N_{\min}, N_{\max}, \alpha \beta) - \Theta(\hat{N}_{\min}, \hat{N}_{\max}, \theta_{\max}), \quad (87)$$

$$\bar{R}_{UB} = \Theta(N_B, N_A, \alpha \gamma) + \Theta(N_{\min}, N_{\max}, \alpha \beta) - \Theta(\hat{N}_{\min}, \hat{N}_{\max}, \theta_{\min}). \quad (88)$$
E. Proof of Theorem 5

We follow the definitions in the proofs of Theorems 1 and 4. Based on (67), (69), (84) and (85), we have

\[
R_S \geq \log |I_{N_B} + \alpha \gamma H H^H| + \log |I_{N_E} + \alpha \beta W_2| - |I_{N_E} + \theta_{\max} G_3 G_3^H| \triangleq R_{LB},
\]

(89)

\[
R_S \leq \log |I_{N_B} + \alpha \gamma H^H| + \log |I_{N_E} + \alpha \beta W_2| - |I_{N_E} + \theta_{\min} G_3 G_3^H| \triangleq R_{UB}.
\]

(90)

The equality of the random variables \(R_S = R_{LB} = R_{UB} \) holds if \(\beta = 1 \), since \(\theta_{\min} = \theta_{\max} \).

We then evaluate \(R_{LB} \) and \(R_{UB} \). For convenience, we define

\[
\rho \triangleq \beta_1 - \beta_3,
\]

\[
A_{\min} \triangleq \min \left\{ \frac{P_v}{\gamma \rho}, \frac{P_u}{\gamma \beta_3} \right\},
\]

\[
A_{\max} \triangleq \max \left\{ \frac{P_v}{\gamma \rho}, \frac{P_u}{\gamma \beta_3} \right\}.
\]

Similarly to the proof in Theorem 2 using [26, Eq. 1.14], as \(N_A, N_B, N_A - N_B \) and \(N_E \to \infty \) with \(N_A/N_E \to \beta_1, N_A/N_B \to \beta_2 \) and \(N_B/N_E \to \beta_3 \),

\[
\frac{\log |I_{N_B} + \alpha \gamma H H^H|}{N_B} \overset{a.s.}{\to} \Phi \left(P_u, \beta_2\right),
\]

(91)

\[
\frac{\log |I_{N_E} + \alpha \beta W_2|}{N_E} \overset{a.s.}{\to} \Phi \left(\frac{P_v}{\gamma \rho}, \rho\right),
\]

(92)

\[
\frac{|I_{N_E} + \theta_{\max} G_3 G_3^H|}{N_E} \overset{a.s.}{\to} \Phi \left(A_{\max}, \beta_1\right),
\]

(93)

\[
\frac{|I_{N_E} + \theta_{\min} G_3 G_3^H|}{N_E} \overset{a.s.}{\to} \Phi \left(A_{\min}, \beta_1\right),
\]

(94)

where \(\Phi (x, y) \) is given in (27).

We then evaluate the function \(\Phi (x, y) \). From (27), since \(\mathcal{F} (x, y) = \mathcal{F} (xy, y^{-1}) \), it is easy to show the following property

\[
\Phi (x, y) = \frac{\Phi (xy, y^{-1})}{y^{-1}}.
\]

(95)

Recalling [26, Examples 2.14&2.15], if \(y \leq 1 \),

\[
\lim_{x \to \infty} \left(\log x - \frac{\Phi (x, y)}{y} \right) = \frac{1 - y}{y} \log (1 - y) + 1.
\]

(96)
Using (95) and (96), we have the following results on the non random quantities \(\Phi(P_u, \beta_2) \), \(\Phi(P_v/(\gamma \rho), \rho) \), \(\Phi(A_{\text{max}}, \beta_1) \) and \(\Phi(A_{\text{min}}, \beta_1) \).

Since \(\beta_2 > 1 \), i.e., \(N_A > N_B \),

\[
\lim_{P_u \to \infty} \left(\log P_u \beta_2 - \Phi(P_u, \beta_2) \right) = \lim_{P_u \to \infty} \left(\log P_u \beta_2 - \frac{\Phi(P_u \beta_2, \beta_2^{-1})}{\beta_2^{-1}} \right) = (\beta_2 - 1) \log(1 - \beta_2^{-1}) + 1. \tag{97} \]

If \(\rho \leq 1 \),

\[
\lim_{P_v \to \infty} \left(\log \frac{P_v}{\gamma \rho} - \Phi \left(\frac{P_v}{\gamma \rho}, \rho \right) \right) = \frac{1 - \rho}{\rho} \log(1 - \rho) + 1. \tag{98} \]

If \(\rho > 1 \),

\[
\lim_{P_v \to \infty} \left(\log \frac{P_v}{\gamma} - \Phi \left(\frac{P_v}{\gamma}, \rho^{-1} \right) \right) = \lim_{P_v \to \infty} \left(\log \frac{P_v}{\gamma} - \frac{\Phi \left(P_v/\gamma, \rho^{-1} \right)}{\rho^{-1}} \right) = (\rho - 1) \log(1 - \rho^{-1}) + 1. \tag{99} \]

If \(\beta_1 \leq 1 \),

\[
\lim_{P_v, P_r \to \infty} \left(\log A_{\text{max}} - \frac{\Phi \left(A_{\text{max}}, \beta_1 \right)}{\beta_1} \right) = \frac{1 - \beta_1}{\beta_1} \log(1 - \beta_1) + 1, \tag{100} \]

\[
\lim_{P_v, P_r \to \infty} \left(\log A_{\text{min}} - \frac{\Phi \left(A_{\text{min}}, \beta_1 \right)}{\beta_1} \right) = \frac{1 - \beta_1}{\beta_1} \log(1 - \beta_1) + 1. \tag{101} \]

If \(\beta_1 > 1 \),

\[
\lim_{P_v, P_r \to \infty} \left(\log A_{\text{max}} \beta_1 - \Phi \left(A_{\text{max}}, \beta_1 \right) \right) = \lim_{P_v, P_r \to \infty} \left(\log A_{\text{max}} \beta_1 - \frac{\Phi \left(A_{\text{max}} \beta_1, \beta_1^{-1} \right)}{\beta_1^{-1}} \right) = (\beta_1 - 1) \log(1 - \beta_1^{-1}) + 1, \tag{102} \]

\[
\lim_{P_v, P_r \to \infty} \left(\log A_{\text{min}} \beta_1 - \Phi \left(A_{\text{min}}, \beta_1 \right) \right) = \lim_{P_v, P_r \to \infty} \left(\log A_{\text{min}} \beta_1 - \frac{\Phi \left(A_{\text{min}} \beta_1, \beta_1^{-1} \right)}{\beta_1^{-1}} \right) = (\beta_1 - 1) \log(1 - \beta_1^{-1}) + 1. \tag{103} \]
Based on the above analysis, as \(N_A, N_B, N_A - N_B, N_E \to \infty \) with \(N_A/N_E \to \beta_1, N_A/N_B \to \beta_2 \) and \(N_B/N_E \to \beta_3 \), and for \(P_u, P_v \to \infty \)

\[
\frac{R_{LB}/N_B}{a.s.} \to \Delta(A_{\text{max}}),
\]

\[
\frac{R_{UB}/N_B}{a.s.} \to \Delta(A_{\text{min}}),
\]

(104)

where \(\Delta(\cdot) \) is given in (47).

Using (89), (90) and (104), under the above conditions, we have (45).
[16] A. Khisti and G. W. Wornell, “Secure transmission with multiple antennas I: The MISOME wiretap channel,” IEEE Trans. Inf. Theory, vol. 56, no. 7, pp. 3088–3104, 2010.

[17] X. Zhou and M. R. McKay, “Secure transmission with artificial noise over fading channels: Achievable rate and optimal power allocation,” IEEE Trans. Veh. Technol., vol. 59, no. 8, pp. 3831–3842, Oct. 2010.

[18] M. Pei, J. Wei, K.-K. Wong, and X. Wang, “Masked beamforming for multiuser MIMO wiretap channels with imperfect CSI,” IEEE Trans. Wireless Commun., vol. 11, no. 2, pp. 544–549, Feb. 2012.

[19] S. Liu, Y. Hong, and E. Viterbo, “Practical secrecy using artificial noise,” IEEE Communications Letters, vol. 17, no. 7, pp. 1483–1486, 2013.

[20] X. Zhang, X. Zhou, and M. R. McKay, “Enhancing secrecy with multi-antenna transmission in wireless Ad Hoc networks,” IEEE Trans. Inf. Forensics Security, vol. 8, no. 11, pp. 1802–1814, 2013.

[21] E. Telatar, “Capacity of multi-antenna Gaussian channels,” European Transactions on Telecommunications, vol. 10, no. 6, pp. 585–595, 1999.

[22] F. Oggier and B. Hassibi, “The secrecy capacity of the MIMO wiretap channel,” IEEE Trans. Inf. Theory, vol. 57, no. 8, pp. 4961–4972, 2011.

[23] H. Shin and J. H. Lee, “Closed-form formulas for ergodic capacity of MIMO Rayleigh fading channels,” in Proc. IEEE Int. Conf. Commun. (ICC’03), Anchorage, US, May 2003, pp. 2996–3000.

[24] M. Chiani, M. Z. Win, and H. Shin, “MIMO networks: The effects of interference,” IEEE Trans. Inf. Theory, vol. 56, no. 1, pp. 336–349, 2010.

[25] S. Liu, Y. Hong, and E. Viterbo, “Artificial noise revisited: When Eve has more antennas than Alice,” submitted to IEEE Int. Conf. Signal Process. Commun. (SPCOM’14).

[26] A. M. Tulino and S. Verdú, Random Matrix Theory and Wireless Communications. North America: Now Publishers Inc., 2004.

[27] E. Lukacs and E. P. King, “A property of the normal distribution,” Ann. Math. Statist., vol. 25, no. 2, pp. 389–394, 1954.

[28] H. Lütkepohl, Handbook of matrices. John Wiley and Sons, 1996.