Counting substructures and eigenvalues II: quadrilaterals

Bo Ning∗ Mingqing Zhai†

January 3, 2022

Abstract: Let G be a graph and $\lambda(G)$ be the spectral radius of G. A previous result due to Nikiforov [Linear Algebra Appl., 2009] in spectral graph theory asserted that every graph G on $m \geq 10$ edges contains a 4-cycle if $\lambda(G) > \sqrt{m}$. Define $f(m)$ to be the minimum number of copies of 4-cycles in such a graph. A consequence of a recent theorem due to Zhai et al. [European J. Combin., 2021] shows that $f(m) = \Omega(m)$. In this article, by somewhat different techniques, we prove that $f(m) = \Theta(m^2)$. We left the solution to $\lim_{m \to \infty} \frac{f(m)}{m^2}$ as a problem, and also mention other ones for further study.

Keywords: Quadrilaterals; Spectral radius; Counting

AMS Classification: 05C50; 05C35

1 Introduction

This is the second paper of our project [19], which aims to study the relationship between copies of a given substructure and the eigenvalues of a graph. In this article, we study the supersaturation problem of 4-cycles under the eigenvalue condition.

The study of 4-cycles plays an important role in the history of extremal graph theory. The extremal number of C_4 (i.e., a 4-cycle), denoted by $ex(n, C_4)$, is defined to be the maximum number of edges in a graph which contains no 4-cycle as a subgraph. The study of $ex(n, C_4)$ can be at least dated back to Erdős [7] eighty years ago. A longstanding conjecture of Erdős and Simonovits [8] (see also [5, p. 84]) states that every graph on n vertices and at least $ex(n, C_4) + 1$ edges contains at least two copies of 4-cycles when n is large. Very recently, He, Ma and Yang [21]
announced this conjecture does not hold for the cases $n = q^2 + q + 2$ where $q = 4^k$ is large.

The original supersaturation problem of subgraphs in graphs focuses on the following function: for a given graph H and for integers $n, t \geq 1$,

$$h_H(n, t) = \min \{ \#H : |V(G)| = n, |E(G)| = ex(n, H) + t \},$$

where $ex(n, H)$ is the Turán function of H. Establishing a conjecture of Erdős, Lovász and Simonovits [13] proved that $h_{C_3}(n, k) \geq k \lfloor \frac{n}{2} \rfloor$ for all $1 \leq k < \lfloor \frac{n}{2} \rfloor$. But He et al.’s result tells us $h_{C_4}(n, 1) = 1$ for some positive integers n. This means that supersaturation phenomenon of C_4 is quite different from the cases of triangles [13].

On the other hand, counting the copies of 4-cycles plays a heuristic important role in measuring the quasirandom-ness of a graph (see Chap. 9 in [1]).

As an important case of spectral Zarankiewicz problem, Nikiforov [15] proved that every n-vertex C_4-free graph satisfies that $\lambda(G) \leq \frac{1}{2} + \sqrt{n - \frac{3}{4}}$ where $\lambda(G)$ is the spectral radius of G, and the earlier bound of Babai and Guiduli [2] gives the correct order of the main term. As the counterpart of these results, we consider sufficient eigenvalue condition (in terms of the size of a graph) for the existence of 4-cycles. A pioneer result can be found in [14].

Theorem 1 ([14]). Let G be a graph with m edges, where $m \geq 10$. If $\lambda(G) \geq \sqrt{m}$ then G contains a 4-cycle, unless G is a star (possibly with some isolated vertices).

Recently, Theorem 1 was extended by the following.

Theorem 2 ([22]). Let r be a positive integer and G be a graph with m edges where $m \geq 16r^2$. If $\lambda(G) \geq \sqrt{m}$, then G contains a copy of $K_{2,r+1}$, unless G is a star (possibly with some isolated vertices).

Let B_r be an r-book, that is, the graph obtained from $K_{2,r}$ by adding one edge within the partition set of two vertices. Very recently, Nikiforov [17] proved that, if $m \geq (12r)^4$ and $\lambda(G) \geq \sqrt{m}$, then G contains a copy of B_{r+1}, unless G is a complete bipartite graph (possibly with some isolated vertices). This result further extends above two theorems and solves a conjecture proposed in [22].

The central topic of this article is the following spectral radius version of supersaturation problem of 4-cycles:

Problem 1. Let $f(m)$ be the minimum number of copies of 4-cycles over all labelled graph G on m edges with $\lambda(G) > \sqrt{m}$. Give an estimate of $f(m)$.

Till now, the only counting result related to Problem 1 is a consequence of Theorem 2. Note that $K_{2,r+1}$ contains $r(r+1)$ 4-cycles for $r = \frac{\sqrt{m}}{4}$. Theorem 2 implies that $f(m) \geq \frac{m^2}{32}$, unless G is a star (possibly with some isolated vertices).

One may ask for the best answer to Problem 1. In this paper, we make the first progress towards this problem.
Theorem 3. Let $m \geq 3.6 \times 10^9$ be a positive integer. Then $f(m) \geq \frac{m^2}{2000}$, unless the graph G is a star (possibly with some isolated vertices).

Throughout the left part, we also define $f(G)$ to be the number of copies of 4-cycles in a graph G.

Proposition 1. $f(m) \leq \frac{(m-1)(m-2\sqrt{m})}{8}$.

Proof. Let $s = \sqrt{m} + 1$ and K_s^+ be the graph obtained from the complete graph K_s by adding $m - \binom{s}{4}$ pendent edges to one vertex of K_s. Clearly, $\lambda(K_s^+) \geq \lambda(K_s) = \sqrt{m}$. However, observe that K_s^+ contains $\binom{s}{4}$ copies of K_4 and every K_4 contains three copies of 4-cycles. Consequently, $f(K_s^+) = 3\binom{s}{4} = \frac{(m-1)(m-2\sqrt{m})}{8}$.

Together with Theorem 3 and Proposition 1, one can easily find that $f(m) = \Theta(m^2)$.

Let us introduce some necessary notation and terminologies. Let G be a graph with vertex set $V(G)$ and edge set $E(G)$. For a vertex $u \in V(G)$, we denote by $N_G(u)$ the set of neighbors of u, and by $d_G(u)$ the degree of u. The symbol $G - v$ denotes the subgraph induced by $V(G)\{v\}$ in G.

The paper is organized as follows. In Section 2, we shall give some necessary preliminaries and prove a key lemma. We present a proof of our main theorem in Section 3. We conclude this article with one corollary and some open problems for further study.

2 Preliminaries

In this section, we introduce some lemmas, which will be used in the subsequent proof.

The first lemma is known as Cauchy’s Interlace Theorem.

Lemma 2.1 ([4]). Let A be a symmetric $n \times n$ matrix and B be an $r \times r$ principal submatrix of A for some $r < n$. If the eigenvalues of A are $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_n$, and the eigenvalues of B are $\mu_1 \geq \mu_2 \geq \cdots \geq \mu_r$, then $\lambda_i \geq \mu_i \geq \lambda_{i+n-r}$ for all $1 \leq i \leq r$.

The following inequality is due to Hofmeister.

Lemma 2.2 ([9]). Let G be a graph of order n and $M(G) = \sum_{u \in V(G)} d_G^2(u)$. Then

$$\lambda(G) \geq \sqrt{\frac{1}{n} M(G)},$$

(1)

with equality if and only if G is either regular or bipartite semi-regular.
Lemma 2.3 ([12]). Let G be a graph of order n and size m. Then

$$f(G) = \frac{1}{8} \sum_{i=1}^{n} \lambda_i^4 + \frac{m}{4} - \frac{1}{4} M(G),$$

(2)

where $\lambda_1, \ldots, \lambda_n$ are the eigenvalues of G with $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_n$.

The following result is well-known [3,20]. A short proof can also be found in [18].

Lemma 2.4 ([3,18,20]). Let G be a bipartite graph with m edges, where $m \geq 1$. Then $\lambda(G) \leq \sqrt{m}$, with equality if and only if G is a complete bipartite graph (possibly with some isolated vertices).

We need prove the last lemma. A proof of its one special case that $m \leq n - 2$ can be found in [10, Lemma 2.4].

Lemma 2.5. Let G be a graph with m edges. Then $M(G) \leq m^2 + m$.

Proof. Let G be an extremal graph with the maximum $M(G)$ and $n := |G|$. Let $V(G) = \{u_1, \ldots, u_n\}$, and $d_i := d_G(u_i)$ for each $u_i \in V(G)$. We may assume that $d_1 \geq \cdots \geq d_n \geq 1$.

If there exists some integer $i \geq 2$ such that $u_i u_1 \notin E(G)$, then we choose a vertex $u_j \in N_G(u_i)$ and define $G' := G - u_i u_j + u_i u_1$. Now $d_{G'}(u_1) = d_1 + 1$, $d_{G'}(u_j) = d_j - 1$ and $d_{G'}(u_k) = d_G(u_k)$ for each $k \in \{2, \ldots, n\} \setminus \{j\}$. Consequently,

$$M(G') - M(G) = (d_1 + 1)^2 + (d_j - 1)^2 - d_1^2 - d_j^2 = 2d_1 - 2d_j + 2 \geq 2,$$

a contradiction. Thus, $N_G(u_1) = V(G) \setminus \{u_1\}$, and so $d_1 = n - 1$.

Now let $e(G - u_1)$ be the number of edges in $G - u_1$. Clearly, $e(G - u_1) = m - d_1$. If $e(G - u_1) = 0$, then $G \cong K_{1,m}$, and so $\sum_{i=1}^{n} d_i^2 = m^2 + m$, as desired. In the following, we assume $e(G - u_1) \geq 1$.

If $e(G - u_1) \leq d_1 - 2$, then $d_i + d_j \leq e(G - u_1) + 3 \leq d_1 + 1$ for each $u_i u_j \in E(G - u_1)$. Now let $G' = G - u_i u_j + u_i u_0$, where $u_i u_j \in E(G - u_1)$ and u_0 is a new vertex adjacent only to u_1 in G'. Then

$$M(G') - M(G) = (d_1 + 1)^2 + 1 + (d_i - 1)^2 + (d_j - 1)^2 - d_1^2 - d_i^2 - d_j^2 = 2(d_1 - d_i - d_j) + 4.$$

It follows that $M(G') > M(G)$, a contradiction. Therefore, $e(G - u_1) \geq d_1 - 1$.

Now let $e(G - u_1) = k$ and define a new graph $G'' := K_{1,d_1+k}$. Then $k \geq d_1 - 1$ and $e(G'') = d_1 + k = e(G) = m$. Note that $n = d_1 + 1$ and $2k = 2e(G - u_1) = \sum_{i=2}^{n} (d_i - 1)$. Hence, $2kd_1 \geq \sum_{i=2}^{n} d_i^2 - d_1^2 = M(G) - 2d_1^2$. It follows that

$$M(G') - M(G) = (k + d_1)^2 + (k + d_1) - M(G) \geq k^2 - d_1^2 + (k + d_1) \geq 0,$$

as $k \geq d_1 - 1$. Thus, $M(G) \leq M(G') = m^2 + m$. This proves Lemma 2.5.
3 Proof of Theorem 3

In this section, we give a proof of Theorem 3. We would like to point out that the techniques used in the left part are completely different from [19].

3.1 A key lemma

We first prove a key lemma.

Lemma 3.1. Let \(G \) be a graph of size \(m \geq 1.8 \times 10^9 \) and \(X \) be the Perron vector of \(G \) with component \(x_u \) corresponding to \(u \in V(G) \). If \(\lambda(G) \geq \sqrt{m} \) and \(x_u x_v > \frac{1}{9\sqrt{m}} \) for any \(uv \in E(G) \), then \(f(G) \geq \frac{m^2}{900} \) unless \(G \) is a star (possibly with some isolated vertices).

Proof. We may assume that \(\delta(G) \geq 1 \), where \(\delta(G) \) is the minimum degree of \(G \). Then \(G \) is connected (otherwise, we can find an edge \(uv \) with \(x_u x_v = 0 \)). By Perron-Frobenius theorem, \(X \) is a positive vector. Let \(A = \{ u \in V(G) : x_u > \frac{1}{3\sqrt{m}} \} \) and \(B = V(G) \setminus A \). Clearly, \(B \) is an independent set. Now suppose that \(f(G) < \frac{m^2}{900} \) and set \(\lambda := \lambda(G) \). We will prove a series of claims.

Claim 3.1. We have \(\lambda(G) \geq 2 \) unless \(G \cong K_{1,m} \).

Proof. Assume that there exists a vertex \(u \in V(G) \) with \(d_G(u) = 1 \) and \(N_G(u) = \{ u \} \). Then \(x_u x_u = \frac{x_u^2}{\lambda} \leq \frac{x_u^2}{\sqrt{m}} \). Since \(x_u x_u > \frac{1}{9\sqrt{m}} \), we have \(x_u > \frac{1}{3} \). Let \(u^* \in V(G) \) with \(x_{u^*} = \max_{v \in V(G)} x_v \). Then \(x_{u^*} > \frac{1}{3} \).

Now let \(S := N_G(u^*) \), \(T := V(G) \setminus (S \cup \{ u^* \}) \), and \(N_S(v) = N_G(v) \cap S \) for any \(v \in V(G) \). Moreover, we partite \(S \) into three subsets \(S_1, S_2 \) and \(S_3 \), where \(S_1 = \{ v : \frac{1}{6} < x_v \leq x_{u^*} \} \), \(S_2 = \{ v : \frac{1}{6} < x_v \leq \frac{1}{2} \} \), and \(S_3 = \{ v : 0 < x_v \leq \frac{1}{6} \} \).

Choose a vertex \(u \in S_1 \) arbitrarily. By Cauchy-Schwarz inequality,

\[
(\lambda x_u)^2 = \left(\sum_{v \in N_G(u)} x_v \right)^2 \leq d_G(u) \sum_{v \in N_G(u)} x_v^2 \leq d_G(u)(1 - x_u^2). \tag{3}
\]

Since \(x_u > \frac{1}{4} \) and \(\lambda \geq \sqrt{m} \), we have \(d_G(u) \geq \frac{m}{15} \). If \(|N_T(u)| \leq \frac{m}{450} \), then \(|N_S(u)| \geq \frac{m}{15} - \frac{m}{450} - 1 \geq \frac{m}{15\lambda} \), and thus \(G \) contains a copy of \(K_{2,\lfloor \frac{m}{15\lambda} \rfloor} \). Hence, \(G \) contains at least \(\left(\frac{m}{2\sqrt{m}} \right) \) quadrilaterals, a contradiction. Therefore, \(|N_T(u)| \geq \frac{m}{450} \) and \(|N_S(u)| < \frac{m}{15\lambda} \). Now let \(S^* = \{ v \in S : x_v < \frac{1}{108} \} \), \(T^* = \{ v \in T : x_v < \frac{1}{108} \} \) and \(V' = (S \setminus S^*) \cup (T \setminus T^*) \). Since \(X \) is a unit vector, we have \(|V'| \leq 108^2 \). By Cauchy-Schwarz inequality,

\[
\sum_{v \in V'} x_v \leq \sqrt{|V'|} \sum_{v \in V'} x_v^2 \leq \sqrt{|V'|} \leq 108. \tag{4}
\]

Consequently,

\[
\sum_{v \in N_S(u)} x_v = \sum_{v \in N_{S \setminus S^*}(u)} x_v + \sum_{v \in N_{S^*}(u)} x_v \leq 108 + \frac{1}{108}|N_{S^*}(u)|.
\]
Recall that $|N_{S^*}(u)| \leq |N_S(u)| \leq \frac{m}{156}$ and $x_u^* > \frac{1}{3}$. It follows that
\[
\sum_{v \in N_S(u)} x_v \leq 324 + \frac{1}{36} |N_{S^*}(u)| x_u^* < \frac{1}{36} \cdot \frac{m}{15} x_u^*.
\]

On the other hand, note that $|N_{T^*}(u)| \geq |N_T(u)| - 108^2 \geq \frac{m}{525}$ and $x_v < \frac{1}{108} < \frac{1}{36} x_u^*$ for any $v \in T^*$. Then
\[
\sum_{v \in N_T(u)} x_v < \sum_{v \in N_{T \setminus T^*}(u)} x_u^* + \sum_{v \in N_{T^*}(u)} \frac{1}{36} x_u^* \leq |N_T(u)| x_u^* - \frac{35}{36} \cdot \frac{m}{525} x_u^* = |N_T(u)| x_u^* - \frac{1}{36} \cdot \frac{m}{15} x_u^*.
\]

It follows that $\sum_{v \in N_{S \cup T}(u)} x_v < |N_T(u)| x_u^*$. Let $e(S, T)$ be the number of edges from S to T, and $e(S)$ be the number of edges within S. Then
\[
\sum_{u \in S_1} \sum_{v \in N_{S \cup T}(u)} x_v < e(S_1, T) x_u^*.
\]

Secondly, consider a vertex $u \in S_2$ arbitrarily. Note that $x_u > \frac{1}{12}$ and $\lambda \geq \sqrt{m}$. Then (3) gives $d_G(u) \geq \frac{m}{30}$. Since $S^* \subseteq S_3$ and $x_u^* - x_u > \frac{1}{3} - \frac{1}{4} = \frac{1}{12}$, we have
\[
\sum_{v \in N_{S^*}(u)} x_v \leq \frac{1}{108} |N_{S_3}(u)| \leq \frac{1}{9} |N_{S_3}(u)| (x_u^* - x_u),
\]
and by (4) we have $\sum_{v \in N_{S^*}(u)} x_v \leq \sum_{v \in V'} x_v \leq 108$. Then
\[
\sum_{v \in N_S(u)} x_v = \sum_{v \in N_{S \setminus S^*}(u)} x_v + \sum_{v \in N_{S^*}(u)} x_v \leq 108 + \frac{1}{9} |N_{S_3}(u)| (x_u^* - x_u).
\]

If $|N_{S^*}(u)| \geq \frac{m}{72}$, then $|N_{S_3}(u)| \geq |N_{S^*}(u)| \geq \frac{m}{72}$. Since $x_u^* - x_u > \frac{1}{12}$, it follows from (6) that $\sum_{v \in N_S(u)} x_v < |N_{S_3}(u)| (x_u^* - x_u)$, and thus
\[
\sum_{v \in N_{S \cup T}(u)} x_v < |N_{S_3}(u)| (x_u^* - x_u) + |N_T(u)| x_u^*. \tag{7}
\]

If $|N_{S^*}(u)| \leq \frac{m}{72}$, then
\[
|N_{T^*}(u)| \geq d_G(u) - |N_{S^*}(u)| - 108^2 > \frac{m}{72}.
\]

Hence,
\[
\sum_{v \in N_{T^*}(u)} x_v \leq |N_{T^*}(u)| \cdot \frac{1}{108} < |N_{T^*}(u)| x_u^* - 108,
\]
as $x_u^* > \frac{1}{3}$. It follows that $\sum_{v \in N_{T^*}(u)} x_v < |N_T(u)| x_u^* - 108$. Combining with (6), we can also obtain (7). Therefore, in both cases we have
\[
\sum_{u \in S_2} \sum_{v \in N_{S \cup T}(u)} x_v < e(S_2, S_3) x_u^* + e(S_2, T) x_u^* - \sum_{u \in S_2} |N_{S_3}(u)| x_u. \tag{8}
\]
Thirdly, we consider an arbitrary vertex \(u \in S_3 \). Since \(x_u > \frac{1}{3} \), we have \(x_v \leq \frac{1}{6} < \frac{1}{2} x_u \) for each \(v \in N_{S_3}(u) \). Thus, \(\sum_{u \in S_3} \sum_{v \in N_{S_3}(u)} x_v \leq e(S_3) x_u \), with equality if and only if \(e(S_3) = 0 \). Therefore,

\[\sum_{u \in S_3} \sum_{v \in N_{S_3,T}(u)} x_v \leq e(S_3, S_1) x_u + e(S_3) x_u + e(S_3, T) x_u + \sum_{u \in S_3} \sum_{v \in N_{S_3}(u)} x_v. \tag{9} \]

Notice that

\[\sum_{u \in S_2} |N_{S_3}(u)| x_u = \sum_{u \in S_3} \sum_{v \in N_{S_2}(u)} x_v. \]

Combining with (5), (8) and (9), we have

\[\sum_{u \in S} \sum_{v \in N_{S_i,T}(u)} x_v \leq (e(S) + e(S, T)) x_u, \tag{10} \]

where if equality holds then \(S_1 \cup S_2 = \emptyset \) and \(e(S_3) = 0 \), that is, \(e(S) = 0 \). Furthermore, we can see that

\[\lambda x_u = \sum_{u \in S} \sum_{v \in N_{G}(u)} x_v = |S| x_u + \sum_{u \in S} \sum_{v \in N_{S_i,T}(u)} x_v \leq (|S| + e(S) + e(S, T)) x_u \leq m x_u. \]

Since \(\lambda \geq \sqrt{m} \), the above inequality holds in equality, that is, \(\lambda = \sqrt{m} \). Therefore, \(m = |S| + e(S) + e(S, T) \), and (10) holds in equality (hence \(e(S) = 0 \)). This implies that \(G \) is a complete bipartite graph. By Lemma 2.4, \(G \) is a complete bipartite graph. Since \(f(G) < \frac{m^2}{500} \), \(G \) can only be a star. This completes the proof. \(\square \)

In the following, we may assume that \(G \not\cong K_{1,m} \). Then by Claim 3.1, \(\delta(G) \geq 2 \).

Claim 3.2. \(|A| \leq 9 \sqrt{m}. \)

Proof. Recall that \(x_u > \frac{1}{2 \sqrt{m}} \) for each \(u \in A \). Thus \(\sum_{u \in A} x_u > \frac{|A|}{9 \sqrt{m}} \), and hence \(|A| \leq 9 \sqrt{m} \). \(\sum_{u \in A} x_u^2 \leq 9 \sqrt{m}. \) \(\square \)

Claim 3.3. Let \(|G| = \frac{m}{2} + b \). Then \(-\frac{m}{125} \leq b \leq |A| \).

Proof. Set \(\lambda := \lambda_{|G|} \). Note that \(\lambda \geq \sqrt{m} \). By Lemmas 2.2 and 2.3,

\[f(G) \geq \frac{1}{8}(\lambda^4 + \lambda^4) - \frac{1}{4} M(G) \geq \frac{1}{8}(\lambda^4 + \lambda^4) - \left| \frac{|G|}{4} \right| \geq \frac{1}{8} \lambda^4 - \frac{b}{4} \lambda^2. \tag{11} \]

If \(b < -\frac{m}{125} \), then

\[f(G) \geq -\frac{b}{4} \lambda^2 \geq \frac{m}{500} \lambda^2 \geq \frac{m^2}{500}, \]

a contradiction. Thus, \(b \geq -\frac{m}{125} \).

On the other hand, recall that \(e(B) = 0 \) and \(\delta(G) \geq 2 \), then

\[m \geq e(B, A) \geq 2|B| = 2(|G| - |A|) = 2\left(\frac{m}{2} + b - |A|\right). \]

Thus, \(b \leq |A| \), as desired. \(\square \)
Claim 3.4. $\Delta(G) \leq \frac{2}{15} m$, where $\Delta(G)$ is the maximum degree of G.

Proof. We know that $\sum_{i=1}^{\lfloor |G| \rfloor} \lambda_i^2 = 2m$. Thus, $\lambda^2 = \lambda_i^2 \leq 2m$. Combining with (11) and $b \leq |A| \leq 9\sqrt{m}$, we have

$$f(G) \geq \frac{1}{8} \lambda^4 - \frac{b}{4} \lambda^2 \geq \frac{1}{8} \lambda^4 - 9m^\frac{3}{2}. \quad (12)$$

Now if there exists some $u \in V(G)$ with $d_G(u) > \frac{2}{15} m$, then

$$|N_B(u)| \geq d_G(u) - |A| > \frac{2}{15} m - 9\sqrt{m}.$$

Since $e(B) = 0$, G contains $K_{1,|N_B(u)|}$ as an induced subgraph. By Lemma 2.1,

$$\lambda' \leq -\sqrt{|N_B(u)|} < -\sqrt{\frac{2}{15} m - 9\sqrt{m}},$$

and by (12) we have

$$f(G) \geq \frac{1}{8} \lambda^4 - 9m^\frac{3}{2} \geq \frac{1}{8} \left(\frac{2}{15} m - 9\sqrt{m}\right)^2 - 9m^\frac{3}{2} > \frac{m^2}{500},$$

for $m \geq 1.8 \times 10^9$. We have a contradiction. Therefore, $\Delta(G) \leq \frac{2}{15} m$. \(\square\)

Claim 3.5. Let $B^* = \{u \in V(G) : d_G(u) = 2\}$. Then $B^* \subseteq B$ and

$$\frac{m}{2} + 3(b - |A|) \leq |B^*| \leq \frac{m}{2}. \quad (13)$$

Proof. Let $u \in B^*$ and $N_G(u) = \{u_1, u_2\}$. Then $\lambda x_u = x_{u_1} + x_{u_2} \leq 2$. Since $\lambda \geq \sqrt{m}$, we have $x_u \leq \sqrt{m} < \frac{1}{3} \sqrt{m}$, and so $u \in B$.

Recall that $e(B) = 0$. Thus, $e(B^*) = 0$, and $m \geq e(B^*, A) \geq 2|B^*|$. This gives $|B^*| \leq \frac{m}{2}$. On the other hand, note that $|B| = |G| - |A| = \frac{m}{2} + b - |A|$, then

$$m \geq e(B, A) \geq 2|B^*| + 3(|B| - |B^*|) = \frac{3}{2} m + 3(b - |A|) - |B^*|.$$

It follows that $|B^*| \geq \frac{m}{2} + 3(b - |A|)$. \(\square\)

Claim 3.6. Let $A^* = \{v \in N_G(u) : u \in B^*\}$. Then $A^* \subseteq A$ and $|A^*| \leq 24$.

Proof. Since $e(B) = 0$, we have $N_G(u) \subseteq A$ for any $u \in B^*$. Thus, $A^* \subseteq A$. Furthermore, we will see that $\frac{1}{20} < x_v^2 \leq \frac{2}{17}$ for each $v \in A^*$.

Let v be an arbitrary vertex in A^*. By Cauchy-Schwarz inequality,

$$(\lambda x_v)^2 = \left(\sum_{u \in N_G(v)} x_u \right)^2 \leq d_G(v) \sum_{u \in N_G(v)} x_u^2 \leq d_G(v)(1 - x_v^2) \leq \frac{2}{15} m(1 - x_v^2),$$

as $\Delta(G) \leq \frac{2}{15} m$. Since $\lambda \geq \sqrt{m}$, we have $x_v^2 \leq \frac{2}{15}$.

If there exists a vertex \(v \in A^* \) with \(x_v^2 \leq \frac{1}{25} \), then by the definition of \(A^* \), we can find a vertex \(u \in N_{B^*}(v) \). Clearly,
\[
\lambda x_u \leq x_v + \sqrt{\frac{2}{17}} \leq \frac{1}{5} + \sqrt{\frac{2}{17}} < \frac{5}{9},
\]
Consequently,
\[
x_u x_v < \frac{1}{\lambda} \cdot \frac{5}{9} \cdot \frac{1}{5} \leq \frac{1}{9/\sqrt{m}},
\]
which contradicts the condition of Lemma 3.1. Therefore, \(x_v^2 > \frac{1}{25} \) for any \(v \in A^* \), and so \(|A^*| \leq 24 \).

Claim 3.7. Let \(V'' := (A \setminus A^*) \cup (B \setminus B^*) \). Then \(|V''| \leq \frac{m}{60} \) and \(e(V'') \leq \frac{m}{20} \).

Proof. Recall that \(|A \cup B| = |G| = \frac{m}{2} + b \). Combining with (13), we obtain that \(|V''| \leq |G| - |B^*| \leq 3|A| - 2b \). Moreover, by Claims 3.2 and 3.3, we have \(|A| \leq 9/\sqrt{m} \) and \(b \geq -\frac{m}{125} \). Thus, \(|V''| \leq 27/\sqrt{m} + \frac{2}{125}m \leq \frac{m}{60} \).

Now we estimate \(e(V'') \). Again by \(|A| \leq 9/\sqrt{m} \), \(b \geq -\frac{m}{125} \) and (13), we have
\[
e(A^*, B^*) = 2|B^*| \geq m + 6(b - |A|) \geq m - \frac{6}{125}m - 54/\sqrt{m}.
\]
It follows that \(e(V'') \leq m - e(A^*, B^*) \leq \frac{6}{125}m + 54/\sqrt{m} \leq \frac{m}{20} \).

Now we give the final proof of Lemma 3.1. For convenience, let \(d'(u) := |N_{V''}(u)| \) for each \(u \in V'' \). Note that \(e(V'', B^*) = 0 \). Thus by Claim 3.6,
\[
d_G(u) \leq d'(u) + |A^*| \leq d'(u) + 24
\]
for each vertex \(u \in V'' \). Consequently,
\[
\sum_{u \in V''} d_G^2(u) \leq \sum_{u \in V''} (d'(u) + 24)^2 = 96e(V'') + 24^2|V''| + \sum_{u \in V''} d'^2(u). \tag{14}
\]
Since \(e(V'') \leq \frac{m}{20} \), by Lemma 2.5 we have \(\sum_{u \in V''} d'^2(u) \leq \frac{m^2}{400} + \frac{m}{20} \). Combining this with Claim 3.7 and (14), we have
\[
\sum_{u \in V''} d_G^2(u) \leq 96 \cdot \frac{m}{20} + 24^2 \cdot \frac{m}{60} + \frac{m^2}{400} + \frac{m}{20} < \frac{m^2}{225}. \tag{15}
\]
On the other hand, by Claim 3.4, \(\Delta(G) \leq \frac{2}{15}m \), and so
\[
\sum_{u \in A^*} d_G^2(u) \leq |A^*|\Delta(G)^2 \leq \frac{96}{225}m^2
\]
(as \(|A^*| \leq 24 \)). Moreover, by Claim 3.5 \(|B^*| \leq \frac{m}{2} \), and thus
\[
\sum_{u \in B^*} d_G^2(u) = 4|B^*| \leq 2m.
\]
Combining with (15), we get
\[M(G) = \sum_{u \in V'' \cup A^* \cup B^*} d^2_G(u) \leq \frac{1}{225}m^2 + \frac{96}{225}m^2 + 2m < \frac{100}{225}m^2 = \frac{4}{9}m^2. \]

Now by Lemma 2.3, we have
\[f(G) \geq \frac{1}{8} \lambda^4 - \frac{1}{4} M(G) \geq \frac{1}{8}m^2 - \frac{1}{9}m^2 = \frac{1}{72}m^2 > \frac{1}{500}m^2, \]
a contradiction. This completes the proof. \(\square \)

3.2 Nikiforov’s deleting small eigenvalue edge method

Over the past decades, Nikiforov developed some novel tools and techniques for solving problems in spectral graph theory (see [16]). One is the method we called “deleting small eigenvalue edge method”, or “The DSEE Method”. Generally speaking, an edge \(xy \in E(G) \) is called a small eigenvalue edge, if \(x_u x_v \) is small where \(x_u, x_v \) are Perron components.

By using this method, Nikiforov [14] successfully proved the following results, of which some original ideas appeared in [16] earlier:

- Every graph on \(m \) edges contains a 4-cycle if \(\lambda(G) \geq \sqrt{m} \) and \(m \geq 10 \), unless it is a star with possibly some isolated vertices (see Claim 4 in [14, pp. 2903]);

- Every graph on \(m \) edges satisfies that the booksize \(bk(G) > \frac{\sqrt{m}}{12} \) if \(\lambda(G) \geq \sqrt{m} \), unless it is a complete bipartite graph with possibly some isolated vertices (see [17], this confirmed a conjecture in [22]).

One main ingredient in the proof of Theorem 3 is using this method.

3.3 Proof of Theorem 3

Now we are ready to give the proof of Theorem 3.

Proof of Theorem 3. Let \(G \) be a graph with \(e(G) = m \) and \(\lambda(G) \geq \sqrt{m} \). By using the Nikiforov DESS Method [17], we first construct a sequence of graphs.

(i) Set \(i := 0 \) and \(G_0 := G \).

(ii) If \(i = \lfloor \frac{m}{2} \rfloor \), stop.

(iii) Let \(X = (x_1, x_2, \ldots, x_{|G_i|})^T \) be the Perron vector of \(G_i \).

(iv) If there exists \(uv \in E(G_i) \) with \(x_u x_v \leq \frac{1}{9\sqrt{e(G_i)}} \), set \(G_{i+1} := G_i - uv \) and \(i := i + 1 \).

(v) If there is no such edge, stop.

Assume that \(G_k \) is the resulting graph of the graph sequence constructed by the above algorithm. Then \(k \leq \lfloor \frac{m}{2} \rfloor \). We can obtain the following two claims.
Claim 3.8. $\lambda(G_{i+1}) \geq \sqrt{m-i-1}$ for each $i \in \{0, 1, \ldots, k-1\}$.

Proof. Let X be the Perron vector of G_i with component x_u corresponding to $u \in V(G_i)$. Then, there exists $uv \in E(G_i)$ with $x_u x_v \leq \frac{1}{9 \sqrt{e(G_i)}}$. Thus,

$$\lambda(G_{i+1}) \geq X^T A(G_{i+1}) X = X^T A(G_i) X - 2 x_u x_v \geq \lambda(G_i) - \frac{2}{9 \sqrt{e(G_i)}}.$$

Hence,

$$\lambda(G_0) \leq \lambda(G_1) + \frac{2}{9 \sqrt{m}} \leq \cdots \leq \lambda(G_{i+1}) + \sum_{j=0}^{i} \frac{2}{9 \sqrt{m-j}}.$$

It follows that

$$\lambda(G_{i+1}) \geq \lambda(G_0) - \frac{2(i+1)}{9 \sqrt{m-i-1}} \geq \sqrt{m} - \frac{2(i+1)}{9 \sqrt{m-i-1}} \quad (16)$$

This implies that $\lambda(G_{i+1}) \geq \sqrt{m-i-1}$, as $i+1 \leq k \leq \lfloor \frac{m}{2} \rfloor$. □

Now we may assume that all isolated vertices are removed from each G_i, where $i \in \{0, 1, \ldots, k\}$.

Claim 3.9. G_k cannot be a star unless $G_k = G_0 \cong K_{1,m}$.

Proof. Suppose to the contrary that $k \geq 1$ while G_k is a star. Since $e(G_k) = m-k$, we have $G_k \cong K_{1,m-k}$. Let u_0 be the central vertex of G_k and u_1, \ldots, u_{m-k} be the leaves. We now let $G_k = G_{k-1} - uv$ and X be the Perron vector of G_{k-1}.

If uv is a pendent edge incident to u_0, say $uv = u_0 u_{m-k+1}$, then

$$\lambda(G_{k-1}) = \sqrt{e(G_{k-1})} = \sqrt{m-k+1}$$

and $\lambda(G_{k-1}) x_{u_i} = x_{u_0}$ for $i \in \{1, 2, \ldots, m-k+1\}$. Hence, $\|X\|_2 = \sum_{i=0}^{m-k+1} x_{u_i}^2 = 2 x_{u_0}^2$, which gives $x_{u_0}^2 = \frac{1}{2}$. It follows that

$$x_{u_0} x_{u_{m-k+1}} = \frac{x_{u_0}^2}{\sqrt{e(G_{k-1})}} > \frac{1}{9 \sqrt{e(G_{k-1})}},$$

which contradicts the definition of G_k.

If uv is an isolated edge or a pendent edge not incident to u_0, then G_{k-1} is bipartite but not complete bipartite. By Lemma 2.4, $\lambda(G_{k-1}) < \sqrt{e(G_{k-1})}$, which contradicts Claim 3.8.

Now we conclude that uv is an edge within $V(G_k) \setminus \{u_0\}$, say $uv = u_1 u_2$, then $x_{u_1} = x_{u_2}$ and $\lambda(G_{k-1}) x_{u_1} = x_{u_0} + x_{u_2}$. Hence, $x_{u_1} = \frac{x_{u_0}}{\lambda(G_{k-1})} < \frac{1}{2} x_{u_0}$, as $\lambda(G_{k-1}) \geq \sqrt{m-k+1}$ by Claim 3.8. Consequently,

$$\lambda^2(G_{k-1}) x_{u_0} = \sum_{i=1}^{m-k} \lambda(G_{k-1}) x_{u_i} = (m-k) x_{u_0} + (x_{u_1} + x_{u_2}) < (m-k+1) x_{u_0},$$

It follows that $\lambda(G_{k-1}) < \sqrt{m-k+1}$, which also contradicts Claim 3.8. □
Now we finish the final proof of Theorem 3. Assume that G is not a star. Then G_k is not a star by Claim 3.9; moreover, $\lambda(G_k) \geq \sqrt{m - k} = \sqrt{e(G_k)}$ by Claim 3.8. If $k < \lfloor \frac{m}{2} \rfloor$, then $x_u x_v > \frac{1}{9 \sqrt{e(G_k)}}$ for any edge $uv \in E(G_k)$. Since $e(G_k) = m - k > \frac{m}{2}$, by Lemma 3.1 $f(G_k) \geq \frac{(e(G_k))^2}{500} > \frac{m^2}{2000}$, and so $f(G) > \frac{m^2}{2000}$, as desired.

If $k = \lfloor \frac{m}{2} \rfloor$, then by (16) we have

$$\lambda(G_k) \geq \sqrt{m - \frac{2k}{9 \sqrt{m - k}}} \geq \sqrt{m - \frac{m}{9 \sqrt{\frac{m}{2}}}} = \left(1 - \frac{\sqrt{2}}{9}\right) \sqrt{m},$$

and so

$$\lambda^4(G_k) \geq (1 - \frac{\sqrt{2}}{9})^4 m^2 = 0.5047 m^2 > 0.504 m^2 + 4m.$$

On the other hand, by Lemma 2.5,

$$M(G_k) \leq (e(G_k))^2 + e(G_k) = \left\lfloor \frac{m}{2} \right\rfloor^2 + \left\lfloor \frac{m}{2} \right\rfloor \leq 0.25 m^2 + 2m.$$

Thus by Lemma 2.3,

$$f(G_k) \geq \frac{1}{8} \lambda^4(G_k) - \frac{1}{4} M(G_k) > \frac{1}{8} (0.504 - 0.5) m^2 = \frac{1}{2000} m^2,$$

and so $f(G) > \frac{m^2}{2000}$. This completes the proof.

\section{Concluding remarks}

We do not try our best to optimize the constant "$\frac{1}{2000}$" in Theorem 3. So it is natural to pose the following problem:

\textbf{Problem 2.} Determine $\lim_{m \to \infty} \frac{f(m)}{m^2}$. (We think that the upper bound in Proposition 1 is close to the truth.)

By Theorem 3 and an inequality $\lambda(G) \geq \frac{2m}{n}$ due to Collatz and Sinogowitz [6], we deduce the following.

\textbf{Theorem 4.} Let G be a graph on n vertices and m edges. If $m > \max\{\frac{n^2}{4}, 3.6 \times 10^9\}$, then G contains $\frac{n^4}{32000}$ copies of 4-cycles.

On the other hand, we would like to mention the following conjecture.

\textbf{Conjecture 4.1} (Conjecture 5.1 in [22]). Let $k \geq 2$ be a fixed positive integer and G be a graph of sufficiently large size m without isolated vertices. If $\lambda(G) \geq k - 1 + \sqrt{\frac{4m - k^2 + 1}{2}}$, then G contains a cycle of length t for every $t \leq 2k + 2$, unless $G = S_{\frac{m}{k + 1}}$.

When $k = 1$, the above conjecture reduces to Nikiforov’s result (Theorem 1). Let B_r,k be the join of an r-clique with an independent set of size k. We conclude this note with a new conjecture appeared in [11] which extends Theorem 1.
Conjecture 4.2 (Conjecture 1.20 in [11]). *Let m be large enough and G be a $B_{r,k}$-free graph with m edges. Then $\lambda(G) \leq (1 - \frac{1}{r^2})2m$, with equality if and only if G is a complete bipartite graph for $r = 2$, and G is a complete regular r-partite graph for $r \geq 3$ with possibly some isolated vertices.*

References

[1] N. Alon, J.H. Spencer, The probabilistic method. Third edition. With an appendix on the life and work of Paul Erdős. Wiley-Interscience Series in Discrete Mathematics and Optimization. John Wiley & Sons, Inc., Hoboken, NJ, 2008.

[2] L. Babai, B. Guiduli, Spectral extrema for graphs: the Zarankiewicz problem, *Electronic J. Combin.* 16 (2009), no. 1, R123, 8 pp.

[3] A. Bhattacharya, S. Friedland, U.N. Peled, On the first eigenvalue of bipartite graphs, *Electron. J. Combin.* 15 (2008), no. 1, R144, 23 pp.

[4] A. Brouwer, W.H. Haemers, Spectra of Graphs, Springer, New York, 2012.

[5] F. Chung, R. Graham, Erdős on Graphs. His legacy of unsolved problems. A K Peters, Ltd., Wellesley, MA, 1998.

[6] L. Collatz, U. Sinogowitz, Spektren endlicher Grafen, *Abh. Math. Semin. Univ. Hamb.*, 21 (1957), 63–77.

[7] P. Erdős, On sequences of integers no one of which divides the product of two others and some related problems, *Izvestiya Naustno-Issl. Inst. Mat. i Meh. Tomsk* 2 (1938) 74–82.

[8] P. Erdős, M. Simonovits, Cube-supersaturated graphs and related problems, Progress in graph theory (Waterloo, Ont., 1982), 203–218, Academic Press, Toronto, ON, 1984.

[9] M. Hofmeister, Spectral radius and degree sequence, *Math. Nachr.* 139 (1988) 37–44.

[10] D. Ismailescu, D. Stefanica, Minimizer graphs for a class of extremal problems, *J. Graph Theory* 39 (2002), no. 4, 230–240.

[11] Y.T. Li, L.H. Feng, W.J. Liu, A survey on spectral conditions for some extremal graph problem, *Advances in Math. (China)* (2022), to appear.

[12] B.-L. Liu, M.-H. Liu, On the spread of the spectrum of a graph, *Discrete Math.* 309 (2009) 2727–2732.

[13] L. Lovász, M. Simonovits, On the number of complete subgraphs of a graph, II, in: Studies in Pure Math, Birkhäuser, 1983, 459–495.

[14] V. Nikiforov, The maximum spectral radius of C_4-free graphs of given order and size, *Linear Algebra Appl.* 430 (2009) 2898–2905.
[15] V. Nikiforov, A contribution to the Zarankiewicz problem, *Linear Algebra Appl.* **432** (2010), no. 6, 1405–1411.

[16] V. Nikiforov, Some new results in extremal graph theory, Surveys in combinatorics 2011, 141–181, London Math. Soc. Lecture Note Ser., 392, Cambridge Univ. Press, Cambridge, 2011.

[17] V. Nikiforov, On a theorem of Nosal, arXiv:2104.12171 (2021).

[18] B. Ning, On some papers of Nikiforov, *Ars Combin.* **135** (2017), 187–195.

[19] B. Ning, M.Q. Zhai, Counting substructures and eigenvalues I: triangles, submitted on November 2, 2021.

[20] E. Nosal, Eigenvalues of Graphs, Master Thesis, University of Calgary, 1970.

[21] T.C. Yang, Some extremal results on 4-cycles, A talk given at the sixth Shanghai Jiaotong University workshop on graph theory and combinatorics (2021).

[22] M.Q. Zhai, H.Q. Lin, J.L. Shu, Spectral extrema of graphs of fixed size: cycles and complete bipartite graphs, *European J. Combin.* **95** (2021) 103322, 18 pp.