Piezoelectric effect in chemical vapour deposition-grown atomic-monolayer triangular molybdenum disulfide piezotronics

Junjie Qi1,*, Yann-Wen Lan2,3,*, Adam Z. Stieg4,5, Jyun-Hong Chen6, Yuan-Liang Zhong6, Lain-Jong Li7, Chii-Dong Chen3, Yue Zhang1 & Kang L. Wang2

High-performance piezoelectricity in monolayer semiconducting transition metal dichalcogenides is highly desirable for the development of nanosensors, piezotronics and photopiezotransistors. Here we report the experimental study of the theoretically predicted piezoelectric effect in triangle monolayer MoS2 devices under isotropic mechanical deformation. The experimental observation indicates that the conductivity of MoS2 devices can be actively modulated by the piezoelectric charge polarization-induced built-in electric field under strain variation. These polarization charges alter the Schottky barrier height on both contacts, resulting in a barrier height increase with increasing compressive strain and decrease with increasing tensile strain. The underlying mechanism of strain-induced in-plane charge polarization is proposed and discussed using energy band diagrams. In addition, a new type of MoS2 strain/force sensor built using a monolayer MoS2 triangle is also demonstrated. Our results provide evidence for strain-gating monolayer MoS2 piezotronics, a promising avenue for achieving augmented functionalities in next-generation electronic and mechanical-electronic nanodevices.
strain engineering is a powerful strategy for significantly enhancing the performance of electronic and photonic devices\(^1\)–\(^7\). In recent years, many experimental works have used one-dimensional (1D) piezoelectric nanomaterials as the building blocks of piezo-phototronic devices for light emission or as nanogenerators\(^8\)–\(^10\). However, inconsistent performance of such devices due to the inhomogeneous as-synthesized 1D materials\(^11\)–\(^13\) and difficulties in implementing 1D nanostructure-based devices impede their further applications. Alternatively, utilizing piezoelectric effects in two-dimensional (2D) materials may overcome the limitations caused by 1D nanostructures and could fully take advantage of the state-of-art microfabrication technologies. Considering their ultra-high strain tenability and technological compatibility\(^14\)–\(^22\), 2D materials are of great interest as high-performance piezoelectric materials.

Many 2D materials including h-BN, graphene, graphene nitride (C\(_3\)N\(_4\)) and trigonal prismatically coordinated transition metal dichalcogenide (TMDC) crystals have demonstrated piezoelectric effects and provide opportunities in the development of novel nano-electromechanical devices.\(^23\)–\(^26\) Graphene is not intrinsically piezoelectric but can exhibit piezoelectric effects through introduction of specific defects\(^27\). Recent reports of piezoelectricity in graphene nitride nanosheets were attributed to the intrinsic existence of nanoscale holes.\(^26\) 2D semiconducting TMDC such as MoS\(_2\) are gaining increased attention for next-generation electronics and optoelectronics\(^27\)–\(^32\) due to their unique properties\(^33\)–\(^36\). Bulk TMDC crystals exhibit a hexagonal honeycomb structure where adjacent sites occupied by two alternating species are centrosymmetric\(^37\). Because of this centrosymmetric structure, piezoelectricity is unexpected in bulk TMDC materials. By scaling TMDC thickness down to monolayer, the structure becomes non-centrosymmetric. Owing to the absence of an inversion centre in its crystalline structure, monolayer TMDC is predicted to be strongly piezoelectric.\(^24\) Recently, the piezoelectricity of a mechanically exfoliated MoS\(_2\) flake on a flexible substrate designed for piezotronics and energy conservation was reported\(^38\). In their work, polarization charges are induced along one direction at the zigzag edge under uni-axial strain. As compared with exfoliated MoS\(_2\) flakes, chemical vapour deposition (CVD)-grown monolayer MoS\(_2\) has a regular triangular shape with three zigzag edges\(^39\)–\(^41\). Strain-induced polarization charges are theoretically predicted to accumulate only at zigzag edges under isotropic mechanical deformation\(^42\) and improved strain-induced piezoelectricity in monolayer MoS\(_2\) triangles has not been rigorously investigated to date. Therefore, much experimental confirmation about piezoelectricity in CVD-grown monolayer MoS\(_2\) triangle under mechanical deformations is needed. In addition, although the field of semiconducting TMDC-based electronic devices has evolved rapidly, studies on sensor development have been relatively limited\(^42\),\(^43\). In spite of the straightforward concept in piezoelectricity, its potential in electromechanical devices remains largely under exploited.

In the following, we report the experimental study of the piezoelectric effect in CVD-grown monolayer MoS\(_2\) triangles under isotropic mechanical deformation. The application on a new piezotronic strain/force sensor that is built using a monolayer MoS\(_2\) with high sensitivity is also presented. The highest gauge factor of the monolayer MoS\(_2\) strain sensor is \(\sim 1,160\), which is much larger than that of conventional metal sensor (1 \(\sim 5\)). The working principle of this new type of strain sensor is discussed in comparison with a theoretical model, where polarization charges accumulated at three zigzag edges in the monolayer MoS\(_2\) triangle enable multi-directional sensor applications. The discovery of this property in 2D materials enables active sensing, actuating and new electronic components for nanoscale devices based on the well-established piezoelectric effect.

Results

Characterization of atomic monolayer MoS\(_2\). High-quality monolayer MoS\(_2\) films were synthesized by CVD method (See Methods). Two distinct morphologies are known to be dominant in CVD MoS\(_2\) triangles\(^36\)–\(^38\), where one involves a zigzag edge that comprises molybdenum and the other a zigzag edge that comprises sulphur. The former has a straighter edge than the latter and is entirely used in this work. An atomic force microscopy (AFM) image of the as-synthesized MoS\(_2\) sheet on a Si substrate shown in Fig. 1a indicates a smooth surface topography, combined cross-sectional and image histogram analyses of multiple topographic AFM images confirmed the MoS\(_2\) film thickness to be \(\sim 0.75\) nm as seen in Fig. 1a inset. Figure 1b shows a typical transmission electron microscopy (TEM) image of the synthesized MoS\(_2\) sheet, which reveals the periodic atomic arrangement of the monolayer MoS\(_2\) film. The inset displays the corresponding diffraction pattern that indicates one set of hexagonal lattice structure, confirming that the synthesized MoS\(_2\) sheet has a monolayer structure with the highly crystalline quality. It is also noted from TEM-based energy-dispersive spectroscopy analysis (Supplementary Fig. 1) that the atomic percentage ratio between Mo and S is 1:2.

Device fabrication. Triangular MoS\(_2\) monolayer films were then made into electronic devices by using the following procedures. Oxidized (300 nm) silicon substrates with millimetre-sized Au contact pads for electrical measurements were prepared by photolithography. In these standard chips, an \(80 \times 80\) \(\mu\)m\(^2\) central region is prepared for electron beam lithography of nanodevice fabrication. Before transferring the as-synthesized MoS\(_2\) monolayer films onto the centre region, the sapphire-capped films were spin-coated with PMMA and immersed into 2 M NaOH solution to etch away the sapphire layer. The PMMA-capped MoS\(_2\) was first cleaned by deionized water and placed on the centre region. After removing PMMA, the monolayer MoS\(_2\) surface was further cleaned by chloroform. Tapping-mode AFM was used to determine the layer thickness and accurately identify the position of the individual MoS\(_2\) sheets for subsequent e-beam lithography. The selected MoS\(_2\) sheets were constantly measured by Raman spectroscopy to confirm the layer number, as shown in Supplementary Fig. 2. The measured energy difference between two Raman characteristic peaks at 384.3 and 405.2 cm\(^{-1}\) was 20.9 cm\(^{-1}\), indicating that the MoS\(_2\) film had a single-layer structure\(^44\), consistent with the AFM analysis in Fig. 1a. Nanoscale Au electrodes made by a standard e-beam lithographic technique were placed on top of the triangle MoS\(_2\) sheet, connecting it to the Au contact pads. To study the piezoelectric polarization direction, multiple contact electrodes around the triangle shape were intentionally designed. Figure 1c shows a typical device consisting of a triangular MoS\(_2\) monolayer device and several sets of source/drain (S–D) electrodes. The measurement setup for these MoS\(_2\) devices is shown schematically in Fig. 1d, in which the contact-mode AFM was used to apply a controlled mechanical load to the MoS\(_2\) monolayer.

Mechanical–electronic coupling properties of the devices. To identify the maximum deformation, which could be achieved in these MoS\(_2\) devices, the relationship between the applied force and deformation was measured through AFM-based force spectroscopy using the PeakForce Quantitative Nano-mechanical Property Mapping mode. Deformation maps over
a 2.5 × 2.5 μm² area in the central region of MoS₂ device shown in the inset of Fig. 2a were acquired under variable mechanical loading forces applied by AFM tip, as seen in Supplementary Fig. 3. Figure 2a provides the load-dependent deformation of the monolayer MoS₂ device. Owing to physical constraints imposed by the underlying substrate, mechanical deformation of the MoS₂ monolayer saturated when the applied force exceeded an average of 25 nN for all of measured devices. The current–voltage ($I-V_b$) characteristics of these devices were investigated under variable mechanical loads using the circuit defined by S and D as seen in the inset of Fig. 2a. By cycling the applied loading force from 0 to 12.5 nN and back to 0 nN with the AFM tip in contact with the centre of the denoted area, measured $I-V_b$ curves shown in Fig. 2b reveal a decrease in current with increasing force and this decrease can be reversed when the strain was released. It can also be clearly seen that the measured current through the device at a fixed voltage (0.55 V) monotonically decreased as deformation increased, as shown in the inset of Fig. 2b.

To further investigate the coupling effect of mechanical deformation and electric field, $I-V_b$ curves similar to those shown in Fig. 3a,b were acquired in the central region of the sample under variable load, using different $S–D$ electrode pairs as marked in the inset, respectively. It is noted that before the application of a mechanical loading force, different $S–D$

![Figure 1](image1.png)

Figure 1 | Characterization of the MoS₂ monolayer and device structure. (a) AFM image of a triangular MoS₂ monolayer. Inset shows the histogram analyses of multiple topographic AFM images confirmed the MoS₂ film thickness to be ∼0.75 nm. (b) High-resolution TEM image of the synthesized MoS₂ monolayer. Inset is the corresponding diffraction pattern. (c) A typical AFM image of a MoS₂ monolayer device. (d) Schematic illustration of a MoS₂ device under mechanical load applied by an AFM tip.

![Figure 2](image2.png)

Figure 2 | Deformation of the MoS₂ monolayer and electromechanical properties of the device. (a) Deformation of the MoS₂ monolayer under different forces applied by the AFM tip. Optical image of the measured MoS₂ device (inset) denoting the tested 2.5 × 2.5-μm² area by a black dashed rectangle. (b) $I-V_b$ curves of the measured MoS₂ device under a force applied in the centre of the tested region cycled from 0 to 12.5 nN and back to 0 nN, where the inset reveals the measured current under variable mechanical load at a fixed bias voltage of 0.55 V.
Experimental data from conductors is slightly or moderately doped. As the MoS2 employed in this work is intrinsic n-type and the measurements were carried out at room temperature, current through the reversely biased contacts were intrinsic.

Applying a loading force at the centre of the device results in a significant drop in the measured current that scales directly with the magnitude of the applied force. Figure 3c displays I–V curves in other two measured electrodes when a bipolar sweep voltage of ±1 V is applied to the device from −1 to 1 V. The same trend of the current change at the positive and negative bias was observed.

The observation of this phenomenon between all S–D combinations indicates that the position and directionality of the measured electrodes are not relevant to the deformation-induced modulation of conductance.

Along the electron transport path from the S to D electrodes, there is a back-to-back metal–semiconductor–metal contact. For carrier transport through a metal–semiconductor barrier, tunneling effects dominate when the semiconductor is highly doped, whereas the thermionic emission dominates when the semiconductor is slightly or moderately doped. As the MoS2 employed in this work is intrinsic n-type and the measurements were carried out at room temperature, current through the reversely biased Schottky barrier ϕ_s can be given by a classic thermionic emission diffusion theory (for $V \gg 3kT/q$)45:

$$I = S A^* T^2 \exp \left(- \frac{\phi_s}{kT} \right) \exp \left(\frac{q \sqrt{\xi^2/4 \pi^2 k_s^2}}{kT} \right)$$

where S is the area of the contact junction, A^* is the effective Richardson constant, q is the electronic charge, k is the Boltzmann constant, T is the temperature, N_D is the donor impurity density, V_{bi} is the build in potential at the barrier and k_s is the permittivity of MoS2. To evaluate whether this equation can precisely describe the observed phenomenon, $\ln I$ is plotted as a function of $V_b^{1/4}$ by using the data provided by the I–V_b curve without strain in the inset of Fig. 3c. The curve shows that the experimental data is fitted well with the linear model. This not only indicates that the thermionic emission–diffusion model is the dominant working process in the fabricated devices, but also shows that the theory can be applied to extract the Schottky barrier from experimental data. If S, A^*, T and N_D are constant, the barrier height could be retrieved from the $\ln I$–V plot45. Subsequently, the deformation-induced change of Schottky barrier height can be determined by

$$\ln \left(\frac{I_1}{I_0} \right) = -\Delta \phi/kT$$

where I_1 and I_0 are the currents measured through the MoS2 at a fixed bias with and without being deformed, respectively. The results are plotted in Fig. 3d for two biases of −1 and 1 V, indicating that the change of barrier height $\Delta \phi$ on S and D contacts has an approximately linear relationship with applied forces and both the barrier heights at the S and D contacts were increased with increased deformation. Moreover, the $\Delta \phi$ has the same trend at the other bias voltages, which is not very sensitive to the choice of bias voltage.

To better understand the origin of mechanical tuning of electronic properties in these devices, transport behaviours were compared by applying the mechanical force at distinct spatial locations on the MoS2 monolayer. Figure 4a,b provides the corresponding I–V_b curves measured at two fixed S–D electrodes, but with the AFM tip in contact at the centre and near the edge of the triangular film, respectively. The results reliably revealed a decrease in the measured current with increasing force applied at the centre (upper inset of Fig. 4a), but an increase in measured current with increasing force applied near the edge (upper inset of (1))

$$S = \frac{q}{kT} \left(V + V_{bi} - \frac{kT}{q} \right)$$

The derived change of the barrier height as a function of applied force at a D–S bias of −1 and 1 V, respectively. The blue line is a linear fitting. (d) The derived change of the barrier height as a function of applied force at a D–S bias of −1 and 1 V, respectively. The blue line is a linear fitting.
that the MoS$_2$ monolayer undergoes tensile strain when force is applied near the edges (yellow circles) versus compressive strain when applied at the contact area. The relation between Young’s modulus, E, is known to be 270 GPa for monolayer MoS$_2$ (ref. 14), thus the strain can be approximated by the following equation:

$$\varepsilon = \frac{F}{A \cdot r} = 4.7 \times 10^{-5} F.$$

The local strain ε of the monolayer MoS$_2$ can be estimated as:

$$E \cdot \varepsilon = F/A$$

where E is Young’s modulus, F is the applied force and A is the cross-sectional area of AFM tip. By approximating the nominal radius of the AFM tip (Bruker ScanAsyst-Air) to be 5 nm, the contact area $A (\pi r^2)$ is found to be roughly 78.5 nm2. E is known to be ~ 270 GPa for monolayer MoS$_2$ (ref. 14), thus the strain can be derived by the following equation:

$$\varepsilon = \frac{F}{A \cdot E} = \frac{F}{2.12 \times 10^4} = 4.7 \times 10^{-5} F.$$

The relationship between the changes of barrier height $\Delta \phi$ and the applied strain can therefore be obtained. Figure 4d shows the barrier height changes at bias voltage of 1 V as a function of strain, indicating that the change of barrier height increases with increasing compressive strain and decreases with increasing tensile strain. The asymmetry relation between compressive and tensile strain can be explained by differences in local strain-induced charge polarization. For the case of local tensile strain near the edge, the induced charge effectively accumulates on the zigzag edge. As compared with the local compressive strain at the centre, the induced charge is likely to be scattered by other electrons/charges during its migration to the zigzag edges. This may be caused by the fact that the barrier height change under tensile strain is different with that under compressive strain.

Strain/force sensor. To investigate the observed device response towards sensor applications, the induced device current was measured as a function of time at a fixed bias voltage of 1 V under a periodically switched applied load. Figure 5a,b shows the time-resolved measurement of the device current response under compressive and tensile strain, controlled by the spatial location of the loading force, respectively. While applying a loading force of 10 nN, the measured current is immediately decreased under compressive strain and increased under tensile strain. The response was highly repeatable in many on/off cycles, indicating the stability of the device. The accessibility of multiple steady states in the device, characterized by the measured current under different loading forces (0, 5 and 10 nN) as shown in Fig. 5c, will enable the development of logic circuit applications based on these triangular MoS$_2$ monolayer devices. The response time of the MoS$_2$ strain sensor was evaluated as shown in Fig. 5d, in which the rise time and decay time were about 1.79 and 1.23, respectively. The performance of a strain sensor was also characterized using gauge factor, which is defined as $[\Delta I(\varepsilon)/I(0)]/\Delta \varepsilon$. The highest gauge factor in our CVD monolayer MoS$_2$ strain sensors (Supplementary Fig. 4)
Figure 5 | Current response of monolayer MoS$_2$ strain sensor. Current response of CVD monolayer MoS$_2$ device at repeated compressive (a) and tensile (b) strains at a fixed bias voltage of 1V. (c) Measured current response when the device is free of strain (0 nN) and under mechanical loads equivalent to 5 and 10 nN, respectively. (d) Rise time and decay time of the MoS$_2$ piezotronic device.

Discussion

It has been theoretically reported that due to lack of centrosymmetry in crystal structure, MoS$_2$ with an odd number of layers under strain will give rise to in-plane piezoelectric polarization charges induced at the zigzag edges (1a) and doped-Si (1b)47, and even greater than that of the highest reported gauge factor for CNTs (~1,000)48. This increase can be attributed to the piezoelectric polarization and the detailed mechanism discussed in the next section. These results clearly demonstrate the utility of triangular MoS$_2$ monolayer devices as force/strain sensors, to monitor the mechanical changes at the nanoscale range or smaller.

In summary, we have performed a thorough experimental study to confirm the piezoelectricity of CVD-grown triangular monolayers of MoS$_2$ through the application of local isotropic deformation. The proposed working mechanism was confirmed to be the result of strain-induced in-plane charge polarization at the zigzag edges. These piezoelectric polarization charges alter Schottky barrier heights at both contacts and thus produce a change in conductivity of the MoS$_2$ devices. A novel strain/force sensor using these MoS$_2$ devices was also demonstrated. The highest gauge factor was found to be more than 1,000, a value much larger than that of the conventional metal sensors and...
Figure 6 | Band diagrams of the triangle monolayer MoS2 piezotronic device. (a) Energy band diagram of the device without bias voltage. Schottky barrier has similar barrier heights at the S and D contacts. (b) Energy band diagram of the device with an external bias. The quasi-Fermi level is raised at the source contact. (c) Negative polarization charges induced on three zigzag edges of MoS2 under a local isotropic compressive strain, depleting free electrons near the contact interface and increasing the SBHs at both contacts. The asymmetry of band diagram is the result of the bias. (d) Positive polarization charges induced on three zigzag edges of MoS2 under a local isotropic tensile strain, attracting free electrons near the contact interface and decreasing the SBHs at both contacts. The red arrows represent the directions of polarization. E_F is Fermi level of monolayer MoS2, E_C is conduction band, E_V is valence band, V_{bias} is the external bias and Δ is the piezopotential induced the change of barrier height.

comparable with that of the highest known gauge factor for CNTs (\sim600–1,000). The merit of these triangular MoS2 devices lies in their suitability for the development of multi-directional nanoforce detectors. Experimental observations of the piezoelectric effect in 2D materials are expected to enable more applications in new electronic components such as touch sensors, energy generators and bio-integrated systems, as well as through their integration with silicon-based CMOS technology for achieving augmented functionalities.

Methods

Growth of atomic monolayer MoS2. High-quality monolayer MoS2 films were synthesized by CVD under the following conditions. Pure MoO3 powder was placed in a ceramic boat at the centre of furnace and cleaned sapphire or silicon substrate was placed faced down on the downstream side adjacent to the ceramic boat. A separate ceramic boat with sulfur powder was placed on the upstream side next to the MoO3 powder. The furnace was heated from room temperature to 650 °C at a rate of 25 °C min$^{-1}$. After reacting for 3 min at 650 °C, the furnace was naturally cooled down to room temperature. In the optimized synthesis condition, monolayer MoS2 films with triangular shapes were produced over the entire substrate with a repeatability of \sim90%.

TEM and Raman spectra measurement. The microstructures and morphologies of the nanostructures are characterized by a FEI Titan TEM. Raman spectrums were taken by a Horiba HR800 system with laser excitation wavelength 632.8 nm.

AFM and electrical characterization of devices. All AFM-based methods employed the Dimension Icon scanning probe microscope (Bruker Nano, Inc.) in ambient conditions using SiN probes (ScanAsyst-Air, calibrated spring constants of 0.3–0.5 N m$^{-1}$ and nominal tip radius of 2–5 nm). Cantilever spring constants were calibrated using the Sader method. Topographic characterization was carried out in the PeakForce Tapping mode. The PeakForce Quantitative Nanomechanics mode was used to characterize mechanical deformation of the MoS2 sample at variable mechanical loads. A combination of force versus distance and force versus separation spectra enabled accurate calibration of force-dependent deformation images acquired in the PeakForce Quantitative Nanomechanics mode. Contact mode was used for point deformation of the MoS2 monolayer devices under a fixed mechanical force throughout acquisition of respective I–V spectra. Electrical properties of fabricated devices were measured with a semiconductor parameter analyser (Keithley 4200) at room temperature.

References

1. Wang, Q. H., Kalantar-Zadeh, K., Kis, A., Coleman, J. N. & Strano, M. S. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotechnol. 7, 699–712 (2012).
2. Lu, P., Wu, X., Guo, W. & Zeng, X. C. Strain-dependent electronic and magnetic properties of MoS2 monolayer, bilayer, nanoribbons and nanotubes. Phys. Chem. Chem. Phys. 14, 13035–13040 (2012).
3. Scalise, E., Houssa, M., Pourtois, G., Afnan, V., V. & Stesmans, A. Strain-Induced semiconductor to metal transition in the two-dimensional honeycomb structure of MoS2. Nano Res. 5, 43–48 (2012).
4. He, K., Poole, C., Mak, K. F. & Shan, J. Experimental demonstration of continuous electronic structure tuning via strain in atomically thin MoS2. Nano Lett. 13, 2931–2936 (2013).
5. Mak, K. F., Lee, C., Hone, J., Shan, J. & Heinz, T. F. Atomically thin MoS2: a new direct-gap semiconductor. Phys. Rev. Lett. 105, 136805 (2010).
6. Conley, H. J. et al. Bandgap engineering of strained monolayer and bilayer MoS2. Nano Lett. 13, 3626–3630 (2013).
7. Feng, J., Qian, X., Huang, C. & Li, J. Strain-engineered artificial atom as a broad-spectrum solar energy funnel. Nat. Photonics 6, 866–872 (2012).
8. Yang, Q., Wang, W. H., Xu, S. & Wang, Z. L. Enhancing light emission of ZnO microwire-based diodes by piezo-phototronic effect. Nano Lett. 11, 4012–4017 (2011).
9. Wang, Z. L. Towards self-powered nanosystems: from nanogenerators to nanopiezotronics. Adv. Funct. Mater. 18, 3553–3567 (2008).
10. Wang, Z. L. & Wu, W. Piezotronics and piezo-phototronics: fundamentals and applications. Natl. Sci. Rev. 1, 62–90 (2013).
11. Allen, J. E., Perea, D. E., Hemesh, B. R. & Lauhon, L. J. Nonuniform nanowire doping profiles revealed by quantitative scanning photocurrent microscopy. Adv. Mater. 21, 3067–3072 (2009).
12. Perea, D. E. et al. Direct measurement of dopant distribution in an individual vapour–liquid–solid nanowire. Nat. Nanotechnol. 4, 315–319 (2009).
13. Wang, Y. et al. Piezoelectric effect in flexible thin-film based devices. Adv. Mater. 25, 3371–3379 (2013).
14. Bertolazzi, S., Brivio, J. & Kis, A. Stretching and breaking of ultrathin MoS2. ACS Nano 5, 9703–9709 (2011).
15. Ghorbani-Asl, M. et al. Electromechanics in MoS2 and WS2: nanotubes vs. monolayers. Sci. Rep. 3, 2961–2968 (2013).
16. Yoon, W. S., Han, S. W., Hong, S. C., Kim, I. G. & Lee, J. D. Thickness and strain effects on electronic structures of transition metal dichalcogenides: 2H-MX2 semiconductors (M = Mo, W; X = S, Se, Te). Phys. Rev. B 85, 033305 (2012).
17. Johari, P. & Shenoy, V. B. Tuning the electronic properties of semiconductor transition metal dichalcogenides by applying mechanical strains. ACS Nano 6, 5449–5456 (2013).
18. Radisavljevic, B. & Kis, A. Mobility engineering and metal-insulator transition in monolayer MoS2. Nat. Mater. 12, 815–820 (2013).
19. Castellanos-Gomez, A. et al. Local Strain Engineering in Atomically Thin MoS2. Nano Lett. 13, 5361–5366 (2013).
20. Coop, R. C. et al. Nonlinear elastic behavior of two-dimensional molybdenum disulfide. Phys. Rev. B 87, 035423 (2013).
21. Castellanos-Gomez, A. et al. Elastic properties of freely suspended MoS2 nanosheets. Adv. Mater. 24, 772–775 (2012).
22. Hui, Y. Y. et al. Exceptional tunability of band energy in a compressively strained trilayer MoS2 sheet. ACS Nano 7, 7126–7131 (2013).
23. Zelisko, M. et al. Anomalous piezoelectricity in two-dimensional graphene and its nitride nanosheets. Nat. Commun. 5, 4284 (2014).
24. Britnell, L. et al. Strong light–matter interactions in heterostructures of atomically thin films. Science 340, 1311–1314 (2013).
25. Najmaei, S. et al. Vapour phase growth and grain boundary structure of molybdenum disulphide atomic layers. Nature 514, 754–759 (2013).
26. Mak, K. F. et al. Tight bond triplets in monolayer MoS2. Nat. Mater. 12, 207–211 (2013).
27. Radisavljevic, B., Radenovic, A., Brivio, J., Giacometti, V. & Kis, A. Single-layer MoS2 transistors. Nat. Nanotechnol. 6, 147–150 (2011).
28. Splendiani, A. et al. Emerging photoluminescence in monolayer MoS2. Nano Lett. 10, 1271–1275 (2010).
29. Nguyen, L. N. et al. Resonant tunneling through discrete quantum states in stacked atomically-layered MoS2. Nano Lett. 14, 2381–2386 (2014).
30. Tongay, S. et al. Broad-range modulation of light emission in two-dimensional semiconductors by molecular physiosorption gating. Nano Lett. 13, 2831–2836 (2013).
31. Ghatak, S., Pal, A. N. & Gosh, A. Nature of electronic states in atomically thin MoS2 field-effect transistors. ACS Nano 5, 7707–7712 (2011).
32. Jaridwala, D. et al. Band-like transport in high mobility unencapsulated single-layer MoS2 transistors. Appl. Phys. Lett. 102, 173107–173110 (2013).
33. Qu, H. et al. Hopping transport through defect-induced localized states in molybdenum disulfide. Nat. Commun. 4, 2642–26426 (2013).
34. Ghorbani-Asl, M., Borini, S., Kuc, A. & Heine, T. Strain-dependent modulation of conductivity in single layer transition-metal dichalcogenides. Phys. Rev. B 87, 235434 (2013).
35. Wu, W. Z. et al. Piezoelectricity of single-atomic-layer MoS2 for energy conversion and piezotronics. Nature 514, 470–474 (2014).
36. van der Zande, A. M. et al. Grains and grain boundaries in highly crystalline monolayer molybdenum disulfide. Nat. Mater. 12, 554–561 (2013).
37. Lauritsen, J. V. et al. Size-dependent structure of MoS2 nanocrystals. Nat. Nanotechnol. 2, 53–58 (2007).