Steinitz classes of tamely ramified nonabelian extensions of odd prime power order

Alessandro Cobbe

January 19, 2010

Abstract

The Steinitz class of a number field extension K/k is an ideal class in the ring of integers \mathcal{O}_k of k, which, together with the degree $[K : k]$ of the extension determines the \mathcal{O}_k-module structure of \mathcal{O}_K. We call $R_t(k, G)$ the classes which are Steinitz classes of a tamely ramified G-extension of k. We will say that those classes are realizable for the group G; it is conjectured that the set of realizable classes is always a group.

In this paper we will develop some of the ideas contained in [8] to study some l-groups, where l is an odd prime number. In particular, together with [1] we will complete the study of realizable Steinitz classes for groups of order l^3. We will also give an alternative proof of the results of [1], based on class field theory.

Introduction

Let K/k be an extension of number fields and let \mathcal{O}_K and \mathcal{O}_k be their rings of integers. By Theorem 1.13 in [18] we know that

$$\mathcal{O}_K \cong \mathcal{O}_k^{[K : k] - 1} \oplus I$$

where I is an ideal of \mathcal{O}_k. By Theorem 1.14 in [18] the \mathcal{O}_k-module structure of \mathcal{O}_K is determined by $[K : k]$ and the ideal class of I. This class is called the Steinitz class of K/k and we will indicate it by $\text{st}(K/k)$. Let k be a number field and G a finite group, then we define:

$$R_t(k, G) = \{ x \in \text{Cl}(k) : \exists K/k \text{ tame, } \text{Gal}(K/k) \cong G, \text{st}(K/k) = x \}.$$
1 Preliminary results

In this paper we will use the notations and some techniques from [8] to study the realizable classes for some l-groups, where l is an odd prime number.

Some of the results in this paper are parts of the author’s PhD thesis [7]. For earlier results see [1], [2], [3], [4], [5], [6], [9], [10], [11], [13], [14], [15], [16], [17], [20], [21] and [22].

Acknowledgements

I am very grateful to Professor Cornelius Greither and to Professor Roberto Dvornicich for their advice and for the patience they showed, assisting me in the writing of my PhD thesis with a lot of suggestions. I also wish to thank the Scuola Normale Superiore of Pisa, for its role in my mathematical education and for its support during the time I was working on my PhD thesis.

1 Preliminary results

We start recalling the following two fundamental results.

Theorem 1.1. If K/k is a finite tame Galois extension then

$$d(K/k) = \prod_p p^{(e_p - 1)[K:A]/e_p},$$

where e_p is the ramification index of p.

Proof. This follows by Propositions 8 and 14 of chapter III of [12].

Theorem 1.2. Assume K is a finite Galois extension of a number field k.

(a) If its Galois group either has odd order or has a noncyclic 2-Sylow subgroup then $d(K/k)$ is the square of an ideal and this ideal represents the Steinitz class of the extension.

(b) If its Galois group is of even order with a cyclic 2-Sylow subgroup and α is any element of k whose square root generates the quadratic subextension of K/k then $d(K/k)/\alpha$ is the square of a fractional ideal and this ideal represents the Steinitz class of the extension.

Proof. This is a corollary of Theorem I.1.1 in [9]. In particular it is shown in [9] that in case (b) K/k does have exactly one quadratic subextension.

\[2\]
Further, considering Steinitz classes in towers of extensions, we will need the following proposition.

Proposition 1.3. Suppose K/k_1 and k_1/k are number fields extensions. Then

$$\text{st}(K/k) = \text{st}(k_1/k)[k_1:E]N_{k_1/k}(\text{st}(K/k_1)).$$

Proof. This is Proposition I.1.2 in [9].

We will also use some other preliminary results.

Lemma 1.4. Let m, n, x, y be integers. If $x \equiv y \pmod{m}$ and any prime q dividing n divides also m then

$$x^n \equiv y^n \pmod{mn}.$$

Proof. Let $n = q_1 \ldots q_r$ be the prime decomposition of n (q_i and q_j with $i \neq j$ are allowed to be equal). We prove by induction on r that $x^n \equiv y^n \pmod{mn}$. If $r = 1$, then $mn = mq_1$ must divide m^{q_1} and there exists $b \in \mathbb{N}$ such that

$$x^n = (y + bm)^{q_1} = y^{q_1} + \sum_{i=1}^{q_1-1} \binom{q_1}{i} (bm)^i y^{q_1-i} + (bm)^{q_1} \equiv y^n \pmod{mn}.$$

Let us assume that the lemma is true for $r - 1$ and prove it for r. Since $q_r | m$, as above, for some $c \in \mathbb{N}$ we have

$$x^n = (y^{q_1 \ldots q_{r-1}} + cmq_1 \ldots q_{r-1})^{q_r}$$

$$= y^n + \sum_{i=1}^{q_r} \binom{q_r}{i} (cmq_1 \ldots q_{r-1})^i y^{q_1 \ldots q_{r-1}(q_r-i)} \equiv y^n \pmod{mn}.$$

Definition 1.5. Let K/k be a finite abelian extension of number fields. Then we define the subgroup $W(k, K)$ of the ideal class group of k in the following equivalent ways (the equivalence is shown in [9], Proposition 1.10):

- $W(k, K) = \{x \in J_K/P_k : x \text{ contains infinitely many primes of absolute degree 1 splitting completely in } K\}$
- $W(k, K) = \{x \in J_K/P_k : x \text{ contains a prime splitting completely in } K\}$
- $W(k, K) = N_{K/k}(J_K) \cdot P_k/P_k$.

In the case of cyclotomic extensions we will also use the shorter notation $W(k, m) = W(k, k(\zeta_m))$.

Lemma 1.6. If $q | n \Rightarrow q | m$ then $W(k, m)^n \subseteq W(k, mn)$.

Proof. Let $x \in W(k, m)$. According to Proposition 1.10 and Lemma 1.11, both from [8], x contains a prime ideal p, prime to mn and such that $N_{k/Q}(p) \in P_m^n$, where $m = m \cdot p_\infty$. Then by Lemma 1.4 $N_{k/Q}(p^n) \in P_m^n$, with $n = mn \cdot p_\infty$, and it follows from Lemma 1.12 of [8] that $x^n \in W(k, mn)$.

Definition 1.7. We will call a finite group G of order m good if the following properties are verified:

1. For any number field k, $R_t(k, G)$ is a group.
2. For any tame G-extension K/k of number fields there exists an element $\alpha_{K/k} \in k$ such that:

 (a) If G is of even order with a cyclic 2-Sylow subgroup, then a square root of $\alpha_{K/k}$ generates the quadratic subextension of K/k; if G either has odd order or has a noncyclic 2-Sylow subgroup, then $\alpha_{K/k} = 1$.

 (b) For any prime p, with ramification index e_p in K/k, the ideal class of

 $\left(p^{(e_p-1)m_{e_p}} - e_p(\alpha_{K/k})\right)^{\frac{1}{2}}$

 is in $R_t(k, G)$.
3. For any tame G-extension K/k of number fields, for any prime ideal p of k and any rational prime l dividing its ramification index e_p, the class of the ideal

 $p^{(l-1)m_{e_p(l)}}$

 is in $R_t(k, G)$ and, if 2 divides $(l-1)m_{e_p(l)}$, the class of

 $p^{\frac{l-1}{2}m_{e_p(l)}}$

 is in $R_t(k, G)$.
4. G is such that for any number field k, for any class $x \in R_t(k, G)$ and any integer a, there exists a tame G-extension K with Steinitz class x and such that every non trivial subextension of K/k is ramified at some primes which are unramified in $k(\zeta_a)/k$.
2 Some \(l\)-groups

In [1], Clément Bruche proved that if \(G\) is a nonabelian group of order \(l^3 = uv\) and exponent \(v\), where \(l\) is an odd prime, then \(R_k(k, G) = W(k, l)^{u(l-1)/2}\) under the hypothesis that the extension \(k(\zeta_v)/k(\zeta_l)\) is unramified, thereby giving an unconditional result when \(G\) has exponent \(l\).

In this section we prove that \(R_k(k, C(l^2) \rtimes \mu C(l)) = W(k, l)^{l(l-1)/2}\), without any additional hypothesis on the number field \(k\). Indeed we will consider a more general situation, studying groups of the form \(G = C(l^n) \rtimes \mu C(l)\), with \(n \geq 2\), where \(\mu\) sends a generator of \(C(l)\) to the elevation to the \(l^{n-1} + 1\)-th power. Together with Bruche’s result this will conclude the study of realizable Steinitz classes for tame Galois extensions of degree \(l^3\).

Lemma 2.1. Let \(l\) be an odd prime. The group \(G = C(l^n) \rtimes \mu C(l)\), with \(n \geq 2\) is identified by the exact sequence

\[1 \to C(l^n) \to G \to C(l) \to 1\]

if the action of \(C(l)\) on \(C(l^n)\) is given by \(\mu\).

Proof. Let \(G\) be the group written in the above exact sequence, let \(H\) be a subgroup of \(G\) isomorphic to \(C(l^n)\) and generated by \(\tau\); let \(x \in G\) be such that its class modulo \(H\) generates \(G/H\), which is cyclic of order \(l\), and such that \(x\tau x^{-1} = \tau^{n-1}+1\), i.e. \(x\tau = \tau^{n-1}+1x\). Then \(x^l = \tau^a\) for some \(a \in \mathbb{N}\). Since \(G\) is of order \(l^{n+1}\) and it is not cyclic, the order of \(x\) must divide \(l^n\) and so

\[\tau^a x^n = x^l = 1,\]

i.e. \(l\) divides \(a\) and there exists \(b \in \mathbb{N}\) such that \(a = bl\). By induction we prove that, for \(m \geq 1\),

\[(\tau^{-b} x)^m = \tau^{-(bl-b^{l-1}(m-1)m/2)} x^m.\]

This is obvious for \(m = 1\); we have to prove the inductive step:

\[(\tau^{-b} x)^m = \tau^{-(bl-1-b^{l-1}(m-2)(m-1)/2)} x^{m-1} \tau^{-b} x = \tau^{-(bl-1-b^{l-1}(m-2)(m-1)/2)} x^{m-1} \tau^{-b} x = \tau^{-(bl-1-b^{l-1}(m-1)/2)} x^m = \tau^{-(bl-1-b^{l-1}(m-1)/2)} x^m = \tau^{-(bl-1-b^{l-1}(m-1)/2-2b(m-1)))} x^m = \tau^{-(bm-b^{l-1}(m-1)m/2)} x^m.\]

Then calling \(\sigma = \tau^{-b} x\), we obtain that

\[\sigma^l = (\tau^{-b} x)^l = \tau^{-bl} x^l = \tau^{-a+a} = 1.\]
Further
\[\sigma \tau \sigma^{-1} = \tau^{-b} x \tau x^{-1} \tau^b = \tau^{-b} \tau^{l^n - 1} \tau^b = \tau^{l^n - 1} \]
and \(\sigma, \tau \) are generators of \(G \). Thus \(G \) must be a quotient of the group
\[\langle \sigma, \tau : \sigma^l = \tau^n = 1, \sigma \tau \sigma^{-1} = \tau^{l^n - 1} \rangle. \]
But this group has the same order of \(G \) and thus they must be equal. \(\square \)

It follows that we can use Proposition 2.13 of \[8\] to study \(\text{R}_t(k, C(l^n) \rtimes \mu C(l)) \), for any number field \(k \).
For any \(\tau \in H \) we define \(E_{k,\mu,\tau} \) as the fixed field in \(k(\zeta_{o(\tau)}) \) of
\[G_{k,\mu,\tau} = \left\{ g \in \text{Gal}(k(\zeta_{o(\tau)})/k) : \exists g_1 \in \mathcal{G}, \mu(g_1)(\tau) = \tau^{\nu_{k,\tau}(g)} \right\} \]
where \(g_2(\zeta_{o(\tau)}) = \zeta_{o(\tau)}^{\nu_{k,\tau}(g_2)} \) for any \(g_2 \in \text{Gal}(k(\zeta_{o(\tau)})/k) \).

Lemma 2.2. Let \(\tau \) be a generator of \(C(l^n) \) in \(C(l^n) \rtimes \mu C(l) \). Then \(E_{k,\mu,\tau} = k(\zeta_{l^n - 1}) \).

Proof. By definition \(E_{k,\mu,\tau} \) is the fixed field in \(k(\zeta_{l^n}) \) of
\[G_{k,\mu,\tau} = \left\{ g \in \text{Gal}(k(\zeta_{l^n})/k) : \exists g_1 \in C(l) \mu(g_1)(\tau) = \tau^{\nu_{k,\tau}(g)} \right\} \]
\[= \left\{ g \in \text{Gal}(k(\zeta_{l^n})/k) : \exists a \in \mathbb{N} \tau^{al^n - 1} = \tau^{\nu_{k,\tau}(g)} \right\} \]
\[= \left\{ g \in \text{Gal}(k(\zeta_{l^n})/k) : \nu_{k,\tau}(g) \equiv 1 \pmod{l^n - 1} \right\} \]
\[= \left\{ g \in \text{Gal}(k(\zeta_{l^n})/k) : g(\zeta_{l^n - 1}) = \zeta_{l^n - 1} \right\} = \text{Gal}(k(\zeta_{l^n})/k(\zeta_{l^n - 1})). \]
Hence \(E_{k,\mu,\tau} = k(\zeta_{l^n - 1}) \). \(\square \)

Lemma 2.3. We have
\[\text{R}_t(k, C(l^n) \rtimes \mu C(l)) \supseteq W(k, l^{n-1}) \mathbb{Z}^l. \]
Further, for any \(x \in W(k, l^{n-1}) \) and any positive integer \(a \), there exists a tame \(G \)-extension of \(k \) with Steinitz class \(x_{l^a} \) and such that any nontrivial subextension of \(K/k \) is ramified at some primes which are unramified in \(k(\zeta_a)/k \).

Proof. By Proposition 2.13 of \[8\] and Lemma 2.1
\[\text{R}_t(k, C(l^n) \rtimes \mu C(l)) \supseteq \text{R}_t(k, C(l))^l \cdot W(k, E_{k,\mu,\tau})_{l^{n-1}}, \]
where \(\tau \) is a generator of \(C(l^n) \). We easily conclude since \(1 \in \text{R}_t(k, C(l)) \) and, by Lemma 2.2 \(E_{k,\mu,\tau} = k(\zeta_{l^n - 1}) \), i.e.
\[W(k, E_{k,\mu,\tau}) = W(k, l^{n-1}). \]
The second part of the lemma follows again by Proposition 2.13 of \[8\]. \(\square \)
To prove the opposite inclusion we need some lemmas.

Lemma 2.4. Let \(\tau \) be a generator of \(C(l^n) \) in \(C(l^n) \rtimes \mu \) \(C(l) \) and \(0 < c < n \) be an integer, then
\[
G_{k,\mu,\tau^c}^{lc} \subseteq G_{k,\mu,\tau}.
\]

Proof. For any positive integer \(a \) we define
\[
\hat{\mu}^a : G \to (\mathbb{Z}/o(\tau^c))^*
\]
by \(\tau^a \hat{\mu}^a (g_1) = \mu(g_1)(\tau^a) \) for all \(g_1 \in G \). By definition, if \(g \in G_{k,\mu,\tau^c} \), then there exists \(g_1 \in G \) such that
\[
\tau^c \hat{\mu}^c (g_1) = \mu(g_1)(\tau^c) = \tau^c \hat{\mu}^c (g_1).
\]
We also observe that
\[
\zeta_{l^n-c}^{\nu_{k,\tau^c}} (g) = \zeta_{l^n}^{\nu_{k,\tau^c}} (g) = g (\zeta_{l^n-c}) = \zeta_{l^n-c}^{\nu_{k,\tau^c}} (g)
\]
and that
\[
\tau^{\nu_{k,\tau^c}} (g_1) = \mu(g_1)(\tau^c) = \mu(g_1)(\tau) = \tau^{\nu_{k,\tau^c}} (g_1).
\]
From the above equalities we deduce that
\[
\nu_{k,\tau^c} (g) \equiv \nu_{k,\tau^c} (g_1) \equiv \hat{\mu}^c (g_1) \equiv \hat{\mu}^c (g_1) \pmod{l^n-c}
\]
and therefore by Lemma 1.4 we obtain that
\[
\nu_{k,\tau^c} (g^c) \equiv \hat{\mu}^c (g_1^c) \pmod{l^n}.
\]
We conclude that
\[
\tau^{\nu_{k,\tau^c}} (g^c) = \hat{\mu}^c (g_1^c) = \mu(g_1^c)(\tau)
\]
and hence that \(g^c \in G_{k,\mu,\tau}. \)

Lemma 2.5. Let \(\tau \) be a generator of \(C(l^n) \) in \(C(l^n) \rtimes \mu \) \(C(l) \) and \(0 < c < n \) be an integer, then
\[
W(k, E_{k,\mu,\tau^c})^{lc} \subseteq W(k, l^n-1).
\]

Proof. Let \(x \) be a class in \(W(k, E_{k,\mu,\tau^c}) \). By Proposition 1.10 in [8] there exists a prime \(p \) in the class of \(x \) splitting completely in \(E_{k,\mu,\tau^c}/k \). By Theorem IV.8.4 in [19], \(p \in H_m^{E_{k,\mu,\tau^c}/k} \), where \(m \) is a cycle of declaration of \(E_{k,\mu,\tau^c}/k \). Then, by Proposition II.3.3 in [19],
\[
\left(\frac{k(\zeta_{l^n})/k}{p} \right)_{E_{k,\mu,\tau^c}} = \left(\frac{E_{k,\mu,\tau^c}/k}{p} \right) = 1.
\]
2 Some l-groups

Thus
\[
\left(\frac{k(\zeta_{ln})/k}{\mathfrak{p}} \right) \in \text{Gal}(k(\zeta_{ln})/E_{k,\mu,\tau^{lc}}) = G_{k,\mu,\tau^{lc}}
\]
and it follows by Lemma 2.4 that
\[
\left(\frac{k(\zeta_{ln})/k}{\mathfrak{p}^{e^p}} \right) = \left(\frac{k(\zeta_{p^n})/k}{\mathfrak{p}} \right)^{lc} \in G_{k,\mu,\tau} \subseteq \text{Gal}(k(\zeta_{ln})/E_{k,\mu,\tau}).
\]
Then
\[
\left(\frac{E_{k,\mu,\tau}/k}{\mathfrak{p}^{e^p}} \right) = \left(\frac{k(\zeta_{p^n})/k}{\mathfrak{p}^{e^p}} \right)_{E_{k,\mu,\tau}} = 1
\]
and so the class x^{e^p} of \mathfrak{p}^{e^p} is in $W(k, E_{k,\mu,\tau})$, which is equal to $W(k, l^{n-1})$ by Lemma 2.2.

Lemma 2.6. Let K/k be a tamely ramified abelian extension of number fields and let \mathfrak{p} be a prime ideal in k whose ramification index in K/k is e, then $N_{k/\mathbb{Q}}(\mathfrak{p}) \in \mathcal{P}_m$, where $m = e \cdot p^\infty$. In particular, by Lemma 1.12 of [8], $\mathfrak{p} \in H^m_{k(\zeta_{e^n})/k}$ and so its class is in $W(k, e)$.

Proof. This is Lemma I.2.1 of [9].

Lemma 2.7. Let K/k be a tame $C(l^n) \ltimes_{\mu} C(l)$-extension of number fields and let \mathfrak{p} be a ramifying prime, with ramification index $e_{\mathfrak{p}}$. Then the class of
\[
\mathfrak{p}^{e_{\mathfrak{p}} - 1} \cdot \frac{p^{\frac{n^p + 1}{e_{\mathfrak{p}}}}}{p^{\frac{n^p}{e_{\mathfrak{p}}}}}
\]
and the class of
\[
\mathfrak{p}^{\frac{1}{2}} \cdot \frac{p^{\frac{n^{p+1}}{e_{\mathfrak{p}}}}}{p^{\frac{n^p}{e_{\mathfrak{p}}}}}
\]
are both in
\[
W(k, l^{n-1}) \frac{1}{2} l.
\]

Proof. The Galois group of K/k is $C(l^n) \ltimes_{\mu} C(l)$, i.e.
\[
G = \langle \sigma, \tau : \sigma^l = \tau^n = 1, \sigma \tau \sigma^{-1} = \tau^{n^p - 1} \rangle.
\]

Since the ramification is tame, the inertia group at \mathfrak{p} is cyclic, generated by an element $\tau^a \sigma^b$; by induction we obtain
\[
(\tau^a \sigma^b)^m = \tau^{am + abl^{n-1}(m-1)m/2} \sigma^{bm}.
\]
The order $e_{\mathfrak{p}}$ of $\tau^a \sigma^b$ must be a multiple of l, since the element $\tau^a \sigma^b$ is nontrivial and G is an l-group. Hence, recalling that $\tau^l = 1$, we obtain that
\[
e_{\mathfrak{p}} = \text{smallest positive integer such that}
\]
\[
\tau^{ae_{\mathfrak{p}}} \sigma^{be_{\mathfrak{p}}} = 1.
\]
First of all we assume that l^2 divides e_p. If l^2 is the exact power of l dividing a, we obtain that $e_p = l^{n-\beta}$ and in particular that $\beta \leq n - 2$. So we have

$$\sigma_*(\tau^a \sigma^b) = \sigma \tau^a \sigma^b \sigma^{-1} = \tau^{a(l^{n-1}+1)} \sigma^b = (\tau^a \sigma^b)^{l^{n-1}+1}$$

and

$$\tau_*(\tau^a \sigma^b) = \tau \tau^a \sigma^b \tau^{-1} = \tau^{a-b \beta^{n-1}} \sigma^b = (\tau^a \sigma^b)^{-a \beta^{n-1} \beta^{n-1}+1},$$

where $a \tilde{\alpha} \equiv l^2 \pmod{l^n}$. Hence, in particular, the inertia group is a normal subgroup of G. Thus we can decompose our extension in K/k_1 and k_1/k which are both Galois and such that p is totally ramified in K/k_1 and unramified in k_1/k. By Lemma 2.14 of [5] the class of p is in $W(k, E_{k,\rho,\tau^a \sigma^b})$, where the action ρ is induced by the conjugation in G and, in particular, it sends τ to the elevation to the $-\tilde{\alpha}bl^{n-1} \beta + 1$-th power, as seen above, and σ to the elevation to the $l^{n-1}+1$-th power. The group $G_{k,\rho,\tau^a \sigma^b}$ consists of those elements g of $\text{Gal}(k_1(\zeta_{l^{n-1}})/k)$ such that $\nu_{k,\tau^a \sigma^b}(g)$ is congruent to a product of powers of $l^{n-1}+1$ and $-\tilde{\alpha}bl^{n-1} \beta + 1$ modulo $l^{n-1} \beta$. But all these are congruent to 1 modulo $l^{n-1} \beta$ and thus $G_{k,\rho,\tau^a \sigma^b}k(\zeta_{l^{n-1} \beta}) = \{1\}$. Hence

$$E_{k,\rho,\tau^a \sigma^b} \supseteq k(\zeta_{l^{n-1} \beta}) \supseteq k(\zeta_{\frac{l^n}{l}})$$

i.e.

$$W(k, E_{k,\rho,\tau^a \sigma^b}) \subseteq W(k, \frac{e_p}{l^2}).$$

Hence, by the assumption that $l^2|e_p$, the class of

$$p^\frac{l-1}{2} \frac{l^{n+1}}{\text{e}_p}$$

is in

$$W(k, \frac{e_p}{l^2}) \frac{l-1}{2} \frac{l^{n+1}}{\text{e}_p} \subseteq W(k, l^{n-1}) \frac{l-1}{2},$$

and the same is true for

$$p^\frac{e_p-1}{2} \frac{l^{n+1}}{\text{e}_p}.$$

It remains to consider the case $e_p = l$. We now define k_1 as the fixed field of τ and we first assume that p ramifies in K/k_1. Then its inertia group in $\text{Gal}(K/k_1) = C(l^n)$ is of order l and thus must be generated by $\tau^{l^{n-1}}$. Hence by Lemma 2.14 of [5] the class of p is in $W(k, E_{k,\mu,\tau^{l^{n-1}}})$ and $p^\frac{(l-1) \frac{l^{n+1}}{\text{e}_p}}{2}$ is the square of an ideal in $W(k, E_{k,\mu,\tau^{l^{n-1}}}) \frac{l-1}{2} l^{n}$, which is contained in $W(k, E_{k,\mu,\tau^{l^{n-1}}}) \frac{l-1}{2} l^{n}$ by Lemma 2.5. Hence, by Lemma 2.2 the class of

$$p^\frac{l-1}{2} \frac{l^{n+1}}{\text{e}_p} = p^\frac{e_p-1}{2} \frac{l^{n+1}}{\text{e}_p}$$

9
3 Nonabelian extensions of order \(l^3 \)

is in

\[
W(k, l^n)^{\frac{l-1}{2}}.
\]

Finally let us consider the case of \(p \) ramified in \(k_1/k \). By Lemma 2.6 the class of \(p \) is in \(W(k, l) \). Hence the class of

\[
p^{\frac{l-1}{2} \cdot (n+1)} = p^{\frac{p-1}{2} \cdot (n+1)}
\]

is in

\[
W(k, l)^{\frac{l-1}{2}ln}.
\]

By Lemma 1.6

\[
W(k, l)^{\frac{l-1}{2}ln} \subseteq W(k, l^n)^{\frac{l-1}{2}} \subseteq W(k, l^n)^{\frac{l-1}{2}}.
\]

Theorem 2.8. We have

\[
\text{R}_t(k, C(l^n) \rtimes \mu C(l)) = W(k, l^n)^{\frac{l-1}{2}}.
\]

Further the group \(C(l^n) \rtimes \mu C(l) \) is good.

Proof. By Theorems 1.1 and 1.2, by Lemma 2.3 and Lemma 2.7 it is immediate that

\[
\text{R}_t(k, C(l^n) \rtimes \mu C(l)) = W(k, l^n)^{\frac{l-1}{2}}.
\]

The prove that \(C(l^n) \rtimes \mu C(l) \) is good is now straightforward using the same results.

3 Nonabelian extensions of order \(l^3 \)

As a particular case of Theorem 2.8 we state the following proposition.

Proposition 3.1. The group \(C(l^2) \rtimes \mu C(l) \) is good and

\[
\text{R}_t(k, C(l^2) \rtimes \mu C(l)) = W(k, l)^{\frac{l-1}{2}}.
\]

Up to isomorphism, the only other nonabelian group of order \(l^3 \) is

\[
G = \langle x, y, \sigma : x^l = y^l = \sigma^l = 1, \sigma x = x \sigma, \sigma y = y \sigma, yx = x y \sigma \rangle,
\]

which is a semidirect product of the normal subgroup \(\langle x, \sigma \rangle \cong C(l) \times C(l) \) and the cyclic subgroup \(\langle y \rangle \) of order \(l \), where the action \(\mu_1 \) is given by conjugation. Clément Bruche proved in [1] that

\[
\text{R}_t(k, G) = W(k, l)^{\frac{l-1}{2}l^2}.
\]
We can give a different proof of Bruche’s result, using class field theory. We will also prove that the nonabelian group of order \(l^3 \) and exponent \(l \) studied by Bruche is a good group.

Lemma 3.2. Let \(k \) be a number field, then

\[
R_t(k, G) \supseteq W(k, l)^{l^2l^2}.
\]

Further, for any \(x \in W(k, l) \) and any positive integer \(a \), there exists a tame \(G \)-extension of \(k \) with Steinitz class \(x^{l^2l^2} \) and such that any nontrivial subextension of \(K/k \) is ramified at some primes which are unramified in \(k(\zeta_a)/k \).

Proof. Let \(x \in W(k, l) \) and \(n \in \mathbb{N} \setminus \{0\} \). By Theorem 2.19 in [8] there exists a \(C(l) \)-extension \(k_1 \) with Steinitz class \(x^{l^2l^2} \) and which is totally ramified at some prime ideals, which are unramified in \(k(\zeta_a)/k \). Let \(p \) be one of them.

Now we would like to use Lemma 2.10 of [8] to obtain a \(C(l) \times C(l) \)-extension of \(k_1 \) which is Galois over \(k \), with \(\text{Gal}(K/k) \cong G \). Unfortunately this is not possible since the exact sequence

\[
1 \to C(l) \times C(l) \to \mathcal{H} \to C(l) \to 1
\]

does not identify the group \(\mathcal{H} \) uniquely as the group \(G \). Nevertheless, the argument of that lemma at least produces a \(C(l) \times C(l) \)-extension of \(k_1 \) which is Galois over \(k \) and with \(\text{st}(K/k_1) = x^{l^2l^2} \). Further we get that \(K/k_1 \) is unramified at \(p \) and that any nontrivial subextension of \(K/k \) is ramified at some primes which are unramified in \(k(\zeta_a)/k \).

We want to prove that \(\text{Gal}(K/k) \cong G \). To this aim, we assume that this is not the case, i.e. that \(\text{Gal}(K/k) \cong C(l^2) \times_{\mu} C(l) \), and we derive a contradiction. First of all, by construction, \(\text{Gal}(K/k_1) \cong C(l) \times C(l) \) and this must be a subgroup of \(\text{Gal}(K/k) \cong C(l^2) \times_{\mu} C(l) \): the only possibility is that it is the subgroup \(H \) which arises by replacing \(C(l^2) \) (the left hand factor in the semidirect product) by its subgroup of order \(l \); \(H \) happens to consist of all elements of \(C(l^2) \times_{\mu} C(l) \) having order 1 or \(l \). Since the prime ideal \(p \) ramifies in \(k_1/k \) and not in \(K/k_1 \), its ramification index is \(l \) and, therefore, its inertia group is contained in \(H \). Hence by Galois theory we conclude that the inertia field of \(p \) in \(K/k \) contains \(k_1 \), i.e. that \(p \) ramifies in \(K/k_1 \) and not in \(k_1/k \). This is a contradiction, since \(p \) is ramified in \(k_1/k \).

Hence we have proved that in the above construction the extension \(K/k \) has Galois group \(G \). By Proposition 1.3

\[
\text{st}(K/k) = \text{st}(k_1/k)^{[K:k_1]} = x^{l^{-1}l^2}N_{k_1/k}(\text{st}(K/k_1)).
\]
To prove the opposite inclusion we need the following lemma.

Lemma 3.3. Let K/k be a tame G-extension of number fields. The ramification index of a prime ramifying in K/k is l and its class is contained in $W(k, l)$.

Proof. The ramification index of a ramifying prime is equal to l, since the corresponding inertia group must be cyclic and any nontrivial element in G is of order l.

Let k_1 be the subfield of K fixed by the normal abelian subgroup $\langle x, \sigma \rangle$ of the Galois group G of K/k.

If a prime p ramifies in k_1/k, then its class is in $W(k, l)$ by Lemma 2.6.

If a prime p ramifies in K/k_1, then it is unramified in k_1/k (the ramification index is prime) and so its inertia group is generated by an element of the form $x^a\sigma^c$, where $a, c \in \{0, 1, \ldots, l - 1\}$ are not both 0. By Lemma 2.14 of [8] the class of p is in $W(k, E_{k,\mu_1,x^a\sigma^c})$. For any $b \in \{0, 1, \ldots, l - 1\}$ we have

$$
\mu_1(y^b)(x^a\sigma^c) = y^b x^a\sigma^c y^{-b} = x^a\sigma^{c+ab}
$$

and this expression cannot be a nontrivial power of $a^a\sigma^c$. Hence, by definition, the group $G_{k,\mu_1,x^a\sigma^c}$ must be trivial and we conclude that $E_{k,\mu_1,x^a\sigma^c} = k(\zeta_l)$. Therefore, in particular, the class of the prime ideal p is contained in $W(k, l)$.

Proposition 3.4. The group G is good and

$$
\text{R}_l(k, G) = W(k, l)^{1-1/2}.
$$

Proof. One inclusion is given by Lemma 3.2. The proof that $\text{R}_l(k, G) \subseteq W(k, l)^{1-1/2}$ follows by Lemma 3.3 since for any tame G-extension K/k of number fields the Steinitz class is the class of the ideal

$$
\prod_{p: e_p \neq 1} p^{e_p - 1/2} = \prod_{p: e_p \neq 1} p^{1-1/2},
$$

which is contained in $W(k, l)^{1-1/2}$. Now we prove that all the properties of good groups are verified.

1. This is clear, since $W(k, l)$ is a group.

2. For any prime p, ramifying in a tame G-extension K/k of number fields, by Lemma 3.3 the class of

$$
p^{e_p - 1/2}\frac{\sigma^3}{e_p} = p^{1-1/2}
$$

is contained in $W(k, l)^{1-1/2}$, which is equal to $\text{R}_l(k, G)$.

12
3. Immediate by Lemma 3.3 and the explicit formula for $R_t(k, G)$.

4. This follows by Lemma 3.2.

References

[1] C. Bruche. Classes de Steinitz d’extensions non abéliennes de degré p^3. *Acta Arith.*, 137(2):177–191, 2009.

[2] C. Bruche and B. Sodaïgui. On realizable Galois module classes and Steinitz classes of nonabelian extensions. *J. Number Theory*, 128(4):954–978, 2008.

[3] N. P. Byott, C. Greither, and B. Sodaïgui. Classes réalisables d’extensions non abéliennes. *J. Reine Angew. Math.*, 601:1–27, 2006.

[4] J. E. Carter. Steinitz classes of a nonabelian extension of degree p^3. *Colloq. Math.*, 71(2):297–303, 1996.

[5] J. E. Carter. Steinitz classes of nonabelian extensions of degree p^3. *Acta Arith.*, 78(3):297–303, 1997.

[6] J. E. Carter and B. Sodaïgui. Classes de Steinitz d’extensions quaternionniennes généralisées de degré $4p^r$. *J. Lond. Math. Soc. (2)*, 76(2):331–344, 2007.

[7] A. Cobbe. *Steinitz classes of tamely ramified Galois extensions of algebraic number fields*. PhD thesis, Scuola Normale Superiore, Pisa, 2010.

[8] A. Cobbe. *Steinitz classes of tamely ramified Galois extensions of algebraic number fields*. arXiv:0910.5080v1, to appear in Journal of Number Theory.

[9] L. P. Endo. *Steinitz classes of tamely ramified Galois extensions of algebraic number fields*. PhD thesis, University of Illinois at Urbana-Champaign, 1975.

[10] M. Godin and B. Sodaïgui. Classes de Steinitz d’extensions à groupe de Galois A_4. *J. Théor. Nombres Bordeaux*, 14(1):241–248, 2002.

[11] M. Godin and B. Sodaïgui. Module structure of rings of integers in octahedral extensions. *Acta Arith.*, 109(4):321–327, 2003.
References

[12] S. Lang. *Algebraic number theory*. GTM 110. Springer-Verlag, New York, second edition, 1994.

[13] R. Long. Steinitz classes of cyclic extensions of degree l. *Proc. Amer. Math. Soc.*, 49:297–304, 1975.

[14] R. L. Long. Steinitz classes of cyclic extensions of prime degree. *J. Reine Angew. Math.*, 250:87–98, 1971.

[15] R. Massy and B. Sodaigui. Classes de Steinitz et extensions quaternioniennes. *Proyecciones*, 16(1):1–13, 1997.

[16] L. R. McCulloh. Cyclic extensions without relative integral bases. *Proc. Amer. Math. Soc.*, 17:1191–1194, 1966.

[17] L. R. McCulloh. Galois module structure of abelian extensions. *J. Reine Angew. Math.*, 375/376:259–306, 1987.

[18] W. Narkiewicz. *Elementary and analytic theory of algebraic numbers*. Springer Monographs in Mathematics. Springer-Verlag, Berlin, third edition, 2004.

[19] J. Neukirch. *Class field theory*, volume 280 of *Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]*. Springer-Verlag, Berlin, 1986.

[20] B. Sodaigui. Classes de Steinitz d’extensions galoisiennes relatives de degré une puissance de 2 et problème de plongement. *Illinois J. Math.*, 43(1):47–60, 1999.

[21] B. Sodaigui. Relative Galois module structure and Steinitz classes of dihedral extensions of degree 8. *J. Algebra*, 223(1):367–378, 2000.

[22] E. Soverchia. Steinitz classes of metacyclic extensions. *J. London Math. Soc. (2)*, 66(1):61–72, 2002.