Gut dysbiosis in rheumatic diseases: A systematic review and meta-analysis of 92 observational studies

Yilun Wang,1 Jie Wei,2 Weiya Zhang,2 Michael Doherty,3,4 Yuqing Zhang,5,6 Haibin Xie,5 Ning Wang,5 and Chao Zeng1,6

1Department of Orthopaedics, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan 410008, China
2Health Management Center, Xiangya Hospital, Central South University, Changsha, China
3Hunan Key Laboratory of Joint Degeneration and Injury, Changsha, China
4University of Nottingham, Nottingham, UK
5Pain Centre Versus Arthritis UK, Nottingham, UK
6Division of Rheumatology, Allergy, and Immunology, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, USA
7The Mongan Institute, Massachusetts General Hospital, Harvard Medical School, Boston, USA
8National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China

Summary

Background
Emerging evidence suggests that dysbiosis in gut microbiota may contribute to the occurrence or development of several rheumatic diseases. Since gut microbiota dysbiosis is potentially modifiable, it has been postulated to be a promising preventive or therapeutic target for rheumatic diseases. However, the current understanding on the potential associations between gut microbiota and rheumatic diseases is still inadequate. Therefore, we aimed to synthesise the accumulating evidence for the relation of gut microbiota to rheumatic diseases.

Methods
The PubMed, Embase and Cochrane Library were searched from inception to March 11, 2022 to include observational studies evaluating the associations between gut microbiota and rheumatic diseases. Standardised mean difference (SMD) of \(\alpha \)-diversity indices between rheumatic diseases and controls were estimated using random-effects model.

Findings
Of the included 92 studies (11,998 participants), 68 provided data for \(\alpha \)-diversity. Taken together as a whole, decreases in \(\alpha \)-diversity indices were consistently found in rheumatic diseases (observed species: SMD = -0.36, [95%CI = -0.63, -0.09]; Chao1: SMD = -0.57, [95%CI = -0.88, -0.26]; Shannon index: SMD = -0.33, [95%CI = -0.48, -0.17]; Simpson index: SMD = -0.32, [95%CI = -0.49, -0.14]). However, when specific rheumatic diseases were examined, decreases were only observed in rheumatoid arthritis (observed species: SMD = -0.51, [95%CI = -0.78, -0.24]; Shannon index: SMD = -0.31, [95%CI = -0.49, -0.13]; Simpson index: SMD = -0.31, [95%CI = -0.54, -0.08]), systemic lupus erythematosus (Chao1: SMD = -1.60, [95%CI = -2.54, -0.66]; Shannon index: SMD = -0.63, [95%CI = -1.08, -0.18]), gout (Simpson index: SMD = -0.64, [95%CI = -1.07, -0.22]) and fibromyalgia (Simpson index: SMD = -0.28, [95%CI = -0.44, -0.11]), whereas an increase was observed in systemic sclerosis (Shannon index: SMD = 1.25, [95%CI = 0.09, 2.41]). Differences with statistical significance in \(\beta \)-diversity were consistently reported in ankylosing spondylitis and IgG4-related diseases. Although little evidence of disease specificity of gut microbes was found, shared alterations of the depletion of anti-inflammatory butyrate-producing microbe (i.e., Faecalibacterium) and the enrichment of pro-inflammatory microbe (i.e., Streptococcus) were observed in rheumatoid arthritis, Sjögren’s syndrome and systemic lupus erythematosus.

Interpretation
Gut microbiota dysbiosis was associated with rheumatic diseases, principally with potentially non-specific, shared alterations of microbes.

Funding
National Natural Science Foundation of China (81930071, 81902265, 82072502 and U21A20352).

Copyright © 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

*Corresponding authors at: Department of Orthopaedics, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan 410008, China.
E-mail addresses: lei_guanghua@csu.edu.cn (G. Lei), zengchao@csu.edu.cn (C. Zeng).
1 These authors contributed equally to this work.
This suggests that gut microbes serving as diagnostics for disease-specific alterations in gut microbes was evident. Several systematic reviews on gut dysbiosis in specific rheumatic diseases have been published. However, these systematic reviews have focused on only one specific rheumatic disease, and thus are not always suitable to answer some research questions. For example, the identification of disease-specific gut microbes, which are consistently enriched or depleted in a rheumatic disease, would shed light on disease diagnostics and phenotyping, a pathway to intervention or therapy, or to address causality. In addition, the identification of non-specific and shared gut microbes across different rheumatic diseases is also important because this knowledge could help us understand potentially shared pathogenesis of multiple rheumatic conditions.

Added value of this study

Through a systematic review and meta-analysis based on 92 observational studies with 11,998 participants spanning 14 rheumatic diseases, we provided comprehensive evidence that gut microbiota dysbiosis were associated with a shared alteration with a depletion of anti-inflammatory butyrate-producing microbe (i.e., Faecalibacterium) and an enrichment of pro-inflammatory microbe (i.e., Streptococcus) in rheumatic diseases in general. Meanwhile, evidence of distinct disease-specific alterations in gut microbes was sparse.

Implications of all the available evidence

Studies should be interpreted with caution, as many identified microbial associations may be indicative of a shared alteration to multiple rheumatic diseases rather than a disease-specific biological difference. These microbes and their metabolites could also be used as general targets for innovative preventive or therapeutic tools for different rheumatic diseases. In addition, little evidence of distinct disease-specific alterations in gut microbes was evident. This suggests that gut microbes serving as diagnostics for specific rheumatic diseases warrants further studies.

Introduction

The human gut is colonised by a complex microbial ecosystem, collectively called the gut microbiota, which plays a pivotal role in key biological processes such as metabolic interactions and host immune responses. The gut microbiota has an association not only with the well-being of human but also with a range of disease conditions, such as obesity, growth disorders, metabolic diseases, and mental illness. The emerging evidence in the past decades suggests that dysbiosis in gut microbiota and its impact on the balance between pro- and anti-inflammatory immune responses may contribute to the occurrence or development of several rheumatic diseases, such as rheumatoid arthritis, ankylosing spondylitis, systemic lupus erythematosus, ankylosing spondylitis, systemic lupus erythematosus, systemic sclerosis, Sjögren’s syndrome, and osteoarthritis. Since gut microbiota dysbiosis is potentially modifiable, it has been postulated to be a promising preventive or therapeutic target for rheumatic diseases.

However, the current understanding on the potential associations between gut microbiota and rheumatic diseases are far from adequacy. For example, there has been a common assumption that high α-diversity (e.g., taxonomic richness and evenness) is desirable for the gut microbial ecosystem; however, results from individual studies with various sample sizes are inconsistent. In addition, the identification of disease-specific gut microbes, which are consistently depleted or enriched in disease conditions across different populations with various characteristics, would shed light on disease diagnostics and phenotyping, a pathway to intervention or therapy, or to address causality. Furthermore, the identification of non-specific and shared gut microbes across different rheumatic diseases is also important because this knowledge could help us understand potentially shared pathogenesis of multiple rheumatic conditions. However, these research questions remain unsolved, and individual studies are not always suitable to answer them.

Systematic review and meta-analysis is a powerful approach to synthesise the existing knowledge for the purpose of identifying consistencies across multiple studies, but to our best knowledge, no such research work has been performed yet on gut microbiota alterations across a spectrum of rheumatic diseases. Therefore, our study aimed to synthesise the accumulating evidence on the associations between gut microbiota and multiple rheumatic diseases.
Methods

Protocol
The protocol of study was preregistered with PROSPERO (CRD42021282397). The Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA) reporting guideline was followed.

Search details
Two independent investigators (Wei Li and Haibin Xie) from the research team were responsible for systematic literature search across PubMed, Embase and Cochrane Library databases from inception to March 11, 2022 (see Appendix 1 for the full electronic search strategy). No restriction was applied, and non-English written articles were translated. For all the finally included articles, their references and related reviews were manually reviewed.

Selection criteria
The same two investigators (Wei Li and Haibin Xie) implemented study selection on an independent basis by firstly screening the titles and abstracts, followed by reviewing the full texts of eligible articles. Disagreements, if any, were resolved by consulting a third investigator (Yilun Wang). Specifically, the inclusion criteria were: (i) applied an observational design (e.g.., case-control study, cross-sectional study, and cohort study); (ii) performed gut microbiota analysis with available data on diversity or abundance measures; and (iii) included participants with a rheumatic disease.

Data extraction
A pre-designed template was used to extract desired information, which was then cross-checked by four investigators (Yilun Wang, Wei Li, Haibin Xie and Ning Wang). The primary outcomes of interest were community-level measures of gut microbiota composition (i.e., α-diversity and β-diversity) and phylum-, family-, and genus-level taxonomic findings (i.e., relative abundance). The α-diversity, as a summary of microbial community in individual samples, can be compared among multiple groups to assess the richness (i.e., number of taxa) and evenness (i.e., how well each taxon is represented) in the sample. The β-diversity can be used to measure the inter-sample diversity that assesses the phylogenetic structure of communities in comparison with other samples analysed. In addition, other information including publication details, participant demographics and methodology was also extracted.

Quality assessment
The methodological quality of included studies was examined by two reviewers (Wei Li and Haibin Xie) independently based on the Newcastle–Ottawa Scale (NOS). Any disagreement in quality scoring would be resolved by mutual discussion as far as possible; if failed, the first author (Yilun Wang) would make the final verdict. The NOS is a quality assessment approach for observational studies based on three criteria: selection, comparability, and outcome. Under recommendation by the Cochrane Collaboration, it has been widely adopted to assess the quality and bias of systematic reviews and meta-analyses. A total NOS score of ≤ 5 was considered low quality, 6 or 7 was considered moderate quality, and 8 or 9 was considered high quality.

Statistics

Quantitative synthesis. We performed a meta-analysis on the differences in α-diversity (e.g., observed species, Chao1, abundance coverage estimator, incidence coverage estimator, Pielou, Shannon index, Simpson index, inverse Simpson index, and faith phylogenetic diversity) between patients with rheumatic diseases and individuals without rheumatic diseases (i.e., controls) in terms of the indices with data available in at least 10 studies. The pooled standardised mean difference (SMD) and its 95% confidence interval (CI) were computed for each index through inverse-variance random-effects meta-analysis. The effect size was categorised as trivial (SMD ≤ 0.2), small (0.2 < SMD < 0.5), moderate (0.5 ≤ SMD < 0.8), or large (SMD ≥ 0.8). Medians and inter-quartile ranges were converted to means and standard deviations (SD). Where necessary, numerical data was extracted from graphs using WebPlotDigitizer V.4.42. The inter-study heterogeneity was quantified by the DerSimonian-Laird estimator, and was interpreted on the differences in α-diversity (e.g., observed species, Chao1, abundance coverage estimator, incidence coverage estimator, Pielou, Shannon index, Simpson index, inverse Simpson index, and faith phylogenetic diversity) between patients with rheumatic diseases and individuals without rheumatic diseases (i.e., controls) in terms of the indices with data available in at least 10 studies. A study with rheumatic medications (e.g., nonsteroidal anti-inflammatory drugs) was considered a study with patients on treatment. As part of our meta-analysis, three subgroup analyses were performed, which were stratified by the specific type of rheumatic disease, the regional distribution of study populations (i.e., Eastern countries versus Western countries), and the administration of antirheumatic medication (i.e., on treatment versus treatment naïve), respectively. While grouping the participants from Eastern and Western countries, typical lifestyle and diet habit were considered to control for geographical differences in genetics and diet. More specifically, Eastern countries were defined as countries or regions in East and South Asia, whereas western countries referred to those in Europe, North America, Oceania and Middle East. A study with ≥80% of the patients receiving antirheumatic medications (e.g.., nonsteroidal anti-inflammatory drugs and disease-modifying anti-inflammatory drugs) was considered a study with patients on treatment. Further, two sensitivity analyses were conducted to evaluate the robustness of findings by removing low-quality studies (NOS ≤ 5) and those with
Qualitative synthesis. Differences in β-diversity between patients with rheumatic diseases and controls were summarised in a qualitative manner. A consistently different β-diversity was defined as that all included studies for a specific disease reported significant differences in β-diversity between patients and controls. To confirm disease-specific and shared alterations, we firstly summarised within disease findings for each microbe reported by at least two studies. Then, we categorised those microbes using the following rules: (1) the microbes were labelled as increased, decreased, or “not consistent” in patients with rheumatic disease versus the control group; (2) a “not consistent” finding was defined as any finding with <75% agreement among studies reporting this microbe; (3) a consistent finding among three or more studies (from at least two research groups) was considered potentially associated with the disease, whereas a consistent finding between only two studies was deemed worth future verification; (4) a microbe was regarded as a candidate for disease-specific alteration if it was altered (in a consistent direction) in one disease only; and (5) a shift replicated across at least three rheumatic diseases was considered a shared alteration.

Role of the funding source
The funders had no role in study design, data collection, data analysis, data interpretation, or writing of the report.

Ethics
Since no private or confidential patient data will be contained in the reporting, approval from an ethics committee is not required.

Results

Search results
A total of 2,741 articles were preliminarily retrieved from the database search, and 92 studies across 14 rheumatic diseases were included (Appendix 2). The most researched disease was rheumatoid arthritis, followed by systemic lupus erythematosus, ankylosing spondylitis, systemic sclerosis, osteoarthritis and Sjögren’s syndrome. Regarding individual diagnoses, the total number of included participants varied from 77 (psoriatic arthritis) to 2,184 (rheumatoid arthritis), the mean age ranged from 2.6 (Kawasaki disease) to 63.7 (osteoarthritis) years, and the percentage of females ranged from 4.1% (gout) to 93% (fibromyalgia) (Table 1).

Characteristics of included studies
Characteristics of included studies are presented in Appendix 3. Slightly over half of the studies (53 [57.6%]) were carried out in Eastern countries, 38 (41.3%) in Western countries, and only 1 (1.1%) in Africa. Medication usage varied substantially, with 25 studies (27.2%) performed in medication-free or drug-naive groups, 9 studies (9.8%) in groups on treatment, and the remainder not controlling for this, resulting in anywhere between 13.0% and 89.7% of patients receiving medication. The methodology of stool processing (Appendix 4) and composition analysis (Appendix 5) also varied remarkably, with 16S ribosomal RNA (rRNA) sequencing being most commonly adopted (25 studies [81.5%]), followed by shotgun metagenomics (13 studies [14.1%]), quantitative polymerase chain reaction or real-time quantitative polymerase chain reaction (3 studies [3.3%]), and GA-map Dysbiosis test (1 study [1.1%]).

Matching-variables between patients and controls in each included study are listed in Appendix 3. A total of 21 studies did not match any variable. The NOS of the included studies ranged from 2–8 (Appendix 6). According to the total NOS score, 31 of the included studies were rated as low quality, 54 were rated as moderate quality, and 7 were rated as high quality.

α-diversity
Sixty-eight studies provided data for α-diversity, which was then assessed by 7 indices, namely estimates of richness (observed species, Chao1, abundance coverage estimator), evenness (Pielou), richness/evenness (Shannon, Simpson), and biodiversity (Faith phylogenetic diversity). Among them, 4 indices with sufficient studies (n ≥ 10) (i.e., observed species, Chao1, Shannon index and Simpson index) were included in the meta-analysis. No evidence of publication bias was found in any analysis (Appendix 7).

As for the richness, 26 studies reported data on observed species in patients with rheumatic diseases (n = 1,311) versus controls (n = 994). Taken together as a whole, the pooled estimate indicated a significant decrease of gut microbiome richness in the patients with rheumatic diseases versus controls, though showing a small effect size (SMD = −0.36, [95%CI = −0.61, −0.09], P = 0.01; inverse-variance, random-effects) and high heterogeneity (I² = 88%). When specific diseases were examined, a significant decrease of gut microbiome richness was observed only in rheumatoid arthritis (SMD = −0.51, [95%CI = −0.78, −0.24], P < 0.001, I² = 65%; inverse-variance, random-effects) (Figure 1a). Thirty studies reported data on Chao1 in patients with...
rheumatic diseases ($n = 1,495$) versus controls ($n = 3,244$). The pooled estimate for combined rheumatic diseases indicated a significant decrease versus controls with a moderate effect size ($SMD = -0.57$, $[95\% CI = -0.88, -0.26]$, $P < 0.001$, $I^2 = 93\%$; inverse-variance, random-effects), but individually, a significant decrease was found only in systemic lupus erythematosus ($SMD = -1.60$, $[95\% CI = -2.54, -0.66]$, $P < 0.001$, $I^2 = 94\%$; inverse-variance, random-effects) (Figure 1b).

As for the richness/evenness, 58 studies reported the Shannon index in patients with rheumatic diseases ($n = 2,893$) versus controls ($n = 7,444$). A significant decrease in the combined rheumatic diseases with a small effect size ($SMD = -0.33$, $[95\% CI = -0.48, -0.17]$, $P < 0.001$; inverse-variance, random-effects) but high heterogeneity ($I^2 = 87\%$) was found by pooling the data during meta-analysis. However, when specific diseases were examined, there was a significant decrease in rheumatoid arthritis ($SMD = -0.31$, $[95\% CI = -0.54, -0.08]$, $P = 0.007$, $I^2 = 48\%$; inverse-variance, random-effects), gout ($SMD = -0.64$, $[95\% CI = -1.07, -0.22]$, $P = 0.003$, $I^2 = 69\%$; inverse-variance, random-effects), and fibromyalgia ($SMD = -0.28$, $[95\% CI = -0.44, -0.11]$, $P = 0.001$, $I^2 = 0\%$; inverse-variance, random-effects) (Figure 2b).

Table 1: Summary characteristics of the included studies by rheumatic diseases.

Disorder	Included studies	Number of participants	Mean age	Female ratio
Rheumatoid arthritis	21	2,184	45.3	58.6
Systemic lupus erythematosus	15	2,040	40.4	70.8
Ankylosing spondylitis	13	1,214	41.4	34.3
Systemic sclerosis	9	765	54.8	77.5
Osteoarthritis	7	1,887	63.7	62.3
Sjögren’s syndrome	6	1,176	51.9	58.4
Gout	5	402	43.8	4.1
Juvenile idiopathic arthritis	5	490	9.0	55.0
Behcet’s disease	4	217	42.4	69.8
Fibromyalgia	4	2,141	60.2	95.0
IgG4-related diseases	2	321	55.5	56.5
Kawasaki disease	2	154	2.6	47.9
Psoriatic arthritis	2	77	44.1	64.9
Microscopic polyangiitis	1	105	60.0	NA

We further conducted subgroup analyses according to the regional distribution of the included participants for the purpose of understanding the sources of inter-study heterogeneity. Most of the α-diversity indices showed a decrease in patients from Eastern countries only rather than those from Western countries. Substantial heterogeneity, however, was still observed (I^2 ranged from 62 to 95%) (Appendix 8). Then, we also compared results from medication-free or drug-naive studies with those from studies with patients on treatment ($\geq 80\%$ of the patients receiving medications) (Appendix 9). Decreases in α-diversity indices were mainly seen in studies where patients did not receive any treatment. Heterogeneity of the Simpson index was substantially reduced, and the SMD did not vary significantly in studies with patients on treatment ($SMD = -0.61$, $[95\% CI = -0.84, -0.37]$, $P < 0.001$, $I^2 = 0\%$; inverse-variance, random-effects). In addition, sensitivity analyses were performed by removing low-quality studies (Appendix 10) and those with no matching of any variable (Appendix 11), and all α-diversity indices were still significantly decreased in patients with rheumatic diseases versus controls. However, substantial heterogeneity still existed (I^2 ranged from 76 to 94%).

β-diversity

The comparison of β-diversity between patients with rheumatic diseases and controls was conducted in 64 studies (Figure 3). More than half of the studies in 7 rheumatic diseases (i.e., rheumatoid arthritis, systemic...
Figure 1. Forest plots of diversity richness estimators in the gut microbiota of patients with rheumatic diseases compared with healthy controls. Panel a. Observed species in patients with rheumatic diseases versus controls ($n = 1,311$ versus $n = 994$, $P = 0.01$; inverse-variance, random-effects). Panel b. Chao 1 in patients with rheumatic diseases versus controls ($n = 1,495$ versus $n = 3,244$, $P < 0.001$; inverse-variance, random-effects). SD, standard deviation; CI, confidence interval.

Articles 6 www.thelancet.com Vol 80 Month June, 2022
Figure 2. Forest plots of α-diversity richness/evenness in the gut microbiota of patients with rheumatic diseases compared with healthy controls. Panel a. Shannon index in patients with rheumatic diseases versus controls (n = 2,893 versus n = 7,444, P < 0.001; inverse-variance, random-effects). Panel b. Simpson index in patients with rheumatic diseases versus controls (n = 1,460 versus n = 2,903, P < 0.001; inverse-variance, random-effects). SD, standard deviation; CI, confidence interval.
Figure 3. β-diversity comparison between patients with rheumatic diseases and healthy controls. RA, rheumatoid arthritis; SLE, systemic lupus erythematosus; AS, ankylosing spondylitis; SS, systemic sclerosis; JIA, juvenile idiopathic arthritis; OA, osteoarthritis; FM, fibromyalgia; KD, Kawasaki disease; MPA, microscopic polyangiitis; PsA, psoriatic arthritis; IgG4-D, IgG4-related diseases; BD, Behcet’s disease; SjS, Sjögren’s syndrome.
lupus erythematosus, systemic sclerosis, ankylosing spondylitis, gout, Sjögren’s syndrome and IgG4-related diseases) reported significant difference of β-diversity. Among these diseases, consistently different β-diversity was only reported in ankylosing spondylitis and IgG4-related diseases.

Differentially abundant microbes
Seventy-four studies examined the relative abundance of gut microbes in patients with rheumatic diseases versus controls at phylum, family, or genus levels. Differences spanning 11 phyla, 23 families, and 112 genera were observed. The study-level findings can be found in Appendix 12 and Supplementary Tables 1–3.

Figure 4 summarises the within and across rheumatic disease comparison for the microbes reported by two or more studies. A high within disease inconsistency was observed, and most of the consistent within disease changes were replicated by only 2 studies, suggesting that there is little evidence for disease-specific alteration regarding relative abundance of gut microbes. Instead, our findings indicate a shared alteration across multiple rheumatic diseases for certain microbes. The most consistent changes were the enrichment of *Streptococcus* in ankylosing spondylitis, osteoarthritis, rheumatoid arthritis, Sjögren’s syndrome, systemic lupus erythematosus and systemic sclerosis (20 of 21 studies reported this genus) and *Lactobacillus* in ankylosing spondylitis, systemic lupus erythematosus and systemic sclerosis (11 of 11 studies). We also observed the depletion of *Faecalibacterium* in rheumatoid arthritis, Sjögren’s syndrome and systemic lupus erythematosus (8 of 9 studies).

Discussion
This study assessed gut microbiota alterations across a spectrum of rheumatic diseases through a systematic review and meta-analysis. The main findings were: (1) small to moderate decreases in α-diversity indices were found consistently in rheumatic diseases taken as a whole. When specific rheumatic diseases were examined, decreases in α-diversity were only observed in rheumatoid arthritis, systemic lupus erythematosus, gout, and fibromyalgia; whereas an increase was observed in systemic sclerosis; (2) significant differences of β-diversity were frequently reported in a qualitative manner but only consistently in ankylosing spondylitis and IgG4-related diseases; (3) patients with rheumatoid arthritis, Sjögren’s syndrome and systemic lupus erythematosus shared the alterations of the depletion of anti-inflammatory butyrate-producing microbe (i.e., *Faecalibacterium*) and the enrichment of pro-inflammatory microbe (i.e., *Streptococcus*); (4) whenever gut microbes merited specificity, these alterations were weakly reproduced, suggesting that disease-specific alterations remain uncertain and thus need further verification.

A meta-analysis which included 28 case-control gut microbiome studies involving 10 diseases (i.e., diarrhea, colorectal cancer, inflammatory bowel disease, obesity, human immunodeficiency virus, autism spectrum disorder, type I diabetes, liver diseases, arthritis, Parkinson’s disease) indicated that many associations were likely to be non-disease-specific but rather part of a non-specific, shared alteration to health and disease. Several systematic reviews on gut dysbiosis in specific rheumatic diseases have been published. Of these, Chu et al. analysed 26 case-control studies and found that either decreased or unchanged α-diversity was commonly seen in patients with rheumatoid arthritis, and the depletion of genus *Faecalibacterium* was also reported frequently in such patients. The review by Wang et al., including 14 case-control studies, reported a remarkably increased α-diversity in patients with ankylosing spondylitis, accompanied by increased amounts of genus *Dialister* and *Streptococcus* as well as decreased amounts of genus *Parasutterella*. The remaining two reviews concluded that the gut microbiota in patients with psoriatic arthritis and fibromyalgia was different from that in controls, but the findings were heterogeneous. In our study, we included 92 observational studies spanning 14 rheumatic diseases and revealed that gut microbiota dysbiosis was associated with rheumatic diseases in general with predominantly non-specific, shared alterations of microbes.

While it is challenging to establish the causal relationship between gut dysbiosis and the risk of rheumatic diseases based on case-control studies or cross-sectional studies, experimental evidence indicated that gut dysbiosis could lead to changes in systemic immune responses, loss of tolerance and development of autoimmunity. Data derived from animal models, results obtained from patients with early-stage diseases, and findings generated from causal analytical approaches (e.g., Mendelian randomization and polygenic risk score) also suggested that gut dysbiosis might precede the onset of disease and somehow act as a concealed trigger for systemic inflammation.

The biological mechanisms linking gut dysbiosis to systemic inflammation have been postulated. The gut epithelial cells can form a dynamic physical barrier to strictly control antigen trafficking through paracellular pathways. However, the barrier integrity of the gut may be breached by zonulin production following the development of gut dysbiosis, causing disassembly of tight junction proteins. This phenomenon had been reported in patients with rheumatoid arthritis, ankylosing spondylitis, systemic lupus erythematosus and other rheumatic diseases. Abnormal gut barrier function may result in increased epithelial permeability, allowing microbial fragments and products to enter the sub-epithelial space and lamina propria.
binding to specific receptors of antigen-presenting cells, these molecules will activate pro-inflammatory T cells (including T helper 1 and T helper 17 cells), thus inducing B cells to differentiate into autoantibody-producing plasma cells. At the same time, under the condition of protective molecules, the anti-inflammatory pathway will be activated, and the regulatory T cells will be polarized afterwards.\(^{61}\) These immune cells primed in the gut can traffic to other organs and tissues.\(^{48,62,63}\) For example, the synovium of patients with rheumatoid arthritis contains T cells in expression of the gut homing receptor \(\alpha E\beta 7\) integrin.\(^{64}\) Once trafficking to target organs or tissues, the immune cells and their products will activate macrophages, release pro-inflammatory cytokines, or inactivate the inflammatory pathway by producing anti-inflammatory cytokines.\(^{10}\) Taken together, in case that pathobiont microbes occupy a predominant position, a persistent chronic inflammatory condition will be likely to induce the occurrence or development of rheumatic diseases.\(^{27}\)

Short-chain fatty acids (SCFAs), which are generated by the bacterial metabolism of dietary elements, exert a direct function of immunomodulation.\(^{65}\) Studies have found that SCFAs have an effect on both anti-inflammation and promoting bone formation, through which they could reduce the risk or improve the prognosis of rheumatic diseases including rheumatoid arthritis, gout and ankylosing spondylitis.\(^{66}\) Taken together, in case that pathobiont microbes occupy a predominant position, a persistent chronic inflammatory condition will be likely to induce the occurrence or development of rheumatic diseases.\(^{27}\)

We provided comprehensive evidence by assessing gut microbiota alterations across a wide range of rheumatic diseases through a systematic review and meta-analysis including 92 observational studies with 11,998 participants. Our results showed a comprehensive overview of current evidence regarding the microbial diversity, disease-specific and shared alterations of gut microbes. In addition, all included studies were human observational studies, so the results may have implications of clinical relevance. However, limitations of this study should also be sincerely pointed out. Firstly, most of the included studies were of a modest sample size;
thus, our analyses might still be underpowered and preliminary, and require further verification with studies of larger sample sizes. Secondly, substantial heterogeneity was observed in the meta-analysis. When more evidence becomes available, additional analyses are required to identify the sources of heterogeneity. For example, there is evidence that microbial composition varied in different disease statuses (active versus inactive) and durations (i.e., newly diagnosed versus previously diagnosed). Thirdly, this study aimed to examine the gut microbiota among most of the included studies. When more published raw data become available, future meta-analyses using standard processing and analysis methods are warranted to compare gut microbes across different studies. Finally, the gut microbiota from other Western nations as new evidence becomes available. This work was supported by the National Natural Science Foundation of China (81930071, 81902265, 82072502, U21A20352). No funding bodies have been listed. This work was supported by the National Natural Science Foundation of China (81930071, 81902265, 82072502, U21A20352). No funding bodies had any role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Contributors
Chao Zeng and Guanghua Lei had full access to all of the data in the study and take responsibility for the integrity of the data and the accuracy of the data analysis. Concept and design: Chao Zeng, Guanghua Lei, Yilun Wang and Jie Wei. Acquisition, analysis, or interpretation of data: All authors. Drafting of the manuscript: Yilun Wang, Jie Wei, Chao Zeng and Guanghua Lei. Critical revision of the manuscript: Yilun Wang and Jie Wei. Obtained funding: Chao Zeng, Guanghua Lei and Jie Wei. Administrative, technical, or material support: Chao Zeng and Guanghua Lei. Supervision: Chao Zeng and Guanghua Lei. All authors have read, provided critical feedback on intellectual content and approved the final manuscript. The interpretation of these data is the sole responsibility of the authors.

Declaration of interests
No conflict of interest for any of the authors.

Data sharing statement
The data that support the findings of this study are available from the corresponding authors upon reasonable request.

Acknowledgements
Everyone who contributed significantly to the work has been listed. This work was supported by the National Natural Science Foundation of China (81930071, 81902265, 82072502, U21A20352). No funding bodies had any role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
Supplementary materials
Supplementary material associated with this article can be found in the online version at doi:10.1016/j.ebiom.2022.104055.

References
1 Gilbert JA, Blaser MJ, Caporaso JG, Jansson JK, Lynch SV, Knight R. Current understanding of the human microbiome. Nature. 2010;467:53–59.
2 Kamada N, Seo SU, Chen GY, et al. Role of the gut microbiota in immune and inflammatory diseases. Nature Reviews Immunology. 2013;13(10):643–653.
3 Clemente JC, Manasson J, Scher JU. The role of the gut microbiota in systemic inflammatory disease. BMJ. 2013;346:f492.
4 Gill SR, Pop M, Deboy RT, et al. Metagenomic analysis of the human distal gut microbiome. Science. 2006;312(5781):1355–1359.
5 Turnbaugh PJ, Hamady M, Yatsunenko T, et al. A core gut microbiome in obese and lean twins. Nature. 2009;457(7228):480–486.
6 Qin J, Li Y, Cai Z, et al. A metagenome-wide association study of gut microbiota in type 2 diabetes. Nature. 2012;490(7418):64–69.
7 Karlsson CL, Oomenfelt J, Xu J, Molin G, Ahrne S, Thorngren-Jerneck K. The microbiota of the gut in preschool children with normal and excessive body weight. Obesity. 2012;20(1):237–246.
8 Ley RE, Backhed F, Turnbaugh P, et al. Obesity alters gut microbial ecology. Proc Natl Acad Sci U S A. 2005;102(11):11070–11075.
9 Le Chatelier E, Nielsen T, Qin J, et al. Richness of human gut microbiome correlates with metabolic markers. Nature. 2013;500(7464):54–59.
10 Van de Wiele T, Van Praet JT, Marzorati M, Drennan MB, Elewaut D. How the microbiota shapes rheumatic diseases. Nat Rev Rheumatol. 2016;12(7):398–411.
11 Alpizar-Rodriguez D, Lesker TR, Gronow A, et al. Prevotella copri is associated with the activity of systemic lupus erythematosus. Arthritis Rheumatol. 2019;71(9):1614–1622.
12 Van der Meulen TA, Harmsen HJM, Vila AV, et al. Gut microbiota in patients with spondyloarthritis: a systematic review. BMC Musculoskelet Disord. 2020;21(1):181.
13 Zhang X, Zhang D, Jia H, et al. The oral and gut microbiomes are linked to disease activity of rheumatic diseases. Clin Rheumatol. 2020;39(9):2523–2528.
14 Breban M, Tap J, Leboimne A, et al. Faecal microbiota study reveals novel aetiology of rheumatoid arthritis. Arthritis Res Ther. 2009;11(6):R175.
15 Al-Gahtani H, Zhang C, Zhang Y, et al. Association between gut microbiota and symptomatic hand osteoarthritis: data from the Xiangya osteoarthritis study. Arthritis Res Ther. 2021;23(9):166–1662.
16 Rosenbaum JT, Asquith MJ. The microbiome: a revolution in treatment for rheumatic diseases? Curr Rheumatol Rep. 2016;18(10):62.
17 Shreiner AB, Kao JY, Young VB. The gut microbiome in health and in disease. Curr Opin Gastroenterol. 2015;31(5):50–55.
18 Yang G, Wang H, Xu X, et al. Dysregulation of gut microbiome is linked to disease activity of rheumatic diseases. Clin Rheumatol. 2020;39(9):2523–2528.
19 Plichta DR, Somani J, Pichaud M, et al. Congruent microbiome perturbations in psoriatic arthritis and ankylosing spondylitis patients, as well as the effects of TNFi therapy upon microbiome composition. Ann Rheum Dis. 2021;80(12):1575–1583.
20 Van der Meulen TA, Vila AV, et al. Dysbiosis in patients with spondyloarthritis: a systematic review. Semin Arthritis Rheum. 2021;52:151925.
21 Yang S, Zhang G, Zhang Y, et al. Dynamic changes in gut microbiota composition in psychiatric disorders. ISME J. 2017;11(6):1758–1773.
22 Shade A. Diversity is the question, not the answer. ISME J. 2017;11(1):9–15.
23 Guo M, Wang H, Xu S, et al. Alteration in gut microbiome is associated with dysregulation of cytokines and glucocorticoid therapy in systemic lupus erythematosus. Gut Microbes. 2020;11(6):1758–1777.
24 Li Y, Wang HF, Li X, et al. Disordered intestinal microbes are associated with the activity of systemic lupus erythematosus. Clin Sci. 2019;135(7):821–838 (Lundin).
25 Zhang F, Ma C, Zhang B, Bi L. Dynamic changes in gut microbiota under the influence of smoking and TNF-alpha-blocker in patients with ankylosing spondylitis. Clin Rheumatol. 2020;39(9):2523–2528.
26 Chen Z, Zhang X, Wu X, et al. Adalimumab therapy restores the gut microbiome in patients with ankylosing spondylitis. Front Immunol. 2021;12:700570.
27 Olsen SW, Alm EJ. Dysbiosis is not an answer. Nat Microbiol. 2016;1:16238.
28 Duvalliet C, Gibbons SM, Gurry T, Trizarry RA, Alm EJ. Meta-analysis of gut microbiome studies identifies disease-specific and shared responses. Nat Commun. 2017;8(1):878.
29 Page MJ, McKenzie IE, Bossuyt PM, et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ. 2021;372:n471.
30 Nikolova VL, Smith MRB, Hall LJ, Cleare AJ, Stone JM, Young AH. Perturbations in gut microbiota composition in psychiatric disorders: a review and meta-analysis. JAMA Psychiatry. 2017;74(12):1433–1454.
31 The Cochrane Collaboration. Cochrane Handbook For Systemic Reviews of Interventions. Wiley; 2011.
32 Bechard LJ, Rothpletz-Puglia P, Touger-Decker R, Duggan C, Melita NM. Influence of obesity on clinical outcomes in hospitalized children: a systematic review. JAMA Pediatr. 2015;169(10):946–948.
33 Page MJ, McKenzie IE, Bossuyt PM, et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ. 2021;372:n471.
34 Higgins D. Cochrane Handbook for Systematic Reviews of Interventions. John Wiley & Sons; 2008.
35 Erdrich S, Hawrelak JA, Myers SP, Harnett J. Determining the association between lichenygalga, the gut microbiome and its biomarkers: a systematic review. BMC Musculoskelet Disord. 2014;15:315.
36 Niederau K, Littmann DR. The microbiota in adaptive immune homeostasis and disease. Nature. 2016;535(6616):77–84.
37 Chu XJ, Cao NW, Zhou HY, et al. The oral and gut microbiome in rheumatoid arthritis patients: a systematic review. Arthritis Res Ther. 2021;23(9):166–1662.
38 Yada SK, Boppana S, Ito N, et al. Gut dysbiosis breaks immunological tolerance toward the central nervous system during young adulthood. Proc Natl Acad Sci USA. 2017;114(44):E918–E927.
39 Li B, Selvitoe C, Tang R, Gershwin ME, Ma X. The microbiome and autoimmunity: a paradigm from the gut-liver axis. Cell Mol Immunol. 2018;15(6):535–549.
40 Honda K, Littmann DR. The microbiota in adaptive immune homeostasis and disease. Nature. 2016;535(6616):77–84.
41 Huang Z, Chen J, Li B, et al. Faecal microbiota transplantation from metabolically compromised human donors accelerates osteoarthritis in mice. Ann Rheum Dis. 2020;79(6):654–662.
42 Wei J, Zhang C, Zhang Y, et al. Association between gut microbiota and symptomatic hand osteoarthritis: data from the Xiangya osteoarthritis study. Arthritis Res Ther. 2021;23(9):166–1662.
64 Trollmo C, Nilsson IM, Sollerman C, Tarkowski A. Expression of
56 Ciccia F, Guggino G, Rizzo A, et al. Dysbiosis and zonulin upregu-
54 Zaiss MM, Joyce Wu HJ, Mauro D, Schett G, Ciccia F. The gut-joint
63 Teng F, Klinger CN, Felix KM, et al. Gut microbiota drive autoim-
60 Arrieta MC, Bistritz L, Meddings JB. Alterations in intestinal per-
50 Kurilshikov A, Medina-Gomez C, Bacigalupe R, et al. Large-scale
51 Wells PM, Adebayo AS, Bowyer RCE, et al. Associations between
49 Nguyen Y, Mariette X, Salliot C, Gusto G, Boutron-Ruault MC,
53 Frost F, Kacprowski T, Ruhlemann M, et al. Long-term instability
888.
54 large-scale
73 Forbes JD, Chen CY, Knox NC, et al. A comparative study of the gut
72 Qiu X, Zhang M, Yang X, Hong N, Yu C. Faecalibacterium praus-
80 Tandon R, Sharma M, Chandrashkehr Y, Kotb M, Yacoub MH,
59 Tito RY, Cypers H, Joossens M, et al. Brief report: dialister as a
89 Mizuno M, Noto D, Kaga N, Chiba A, Miyake S. The dual role of
78 McGuire T, Gerjarusak P, Hinthorn DR, Liu C. Osteomyelitis
84 Boer CG, Radjabzadeh D, Medina-Gomez C, et al. Intestinal micro-
70 Cleophas MC, Grisan TO, Lemmers H, et al. Suppression of mono-
87 Tito RY, Cypers H, Joossens M, et al. Altered mucosal micro-
83 Mackie SL, Keat A. Poststreptococcal reactive arthritis: what is it and
61 Wu HJ, Ivanov II, Darce J, et al. Gut-residing segmented filamen-
76 Sublette ME, Cheung S, Lieberman E, et al. Bipolar disorder and the
gut microbiome: a systematic review. *Bipolar Disord.* 2021;23
86 Liu F, Ren T, Li X, et al. Distinct microbiomes of gut and saliva in
82 Scher JU, Sczesnak A, Longman RS, et al. Expansion of intestinal
89 Mizuno M, Noto D, Kaga N, Chiba A, Miyake S. The dual role of
85 de Paiva CS, Jones DB, Stern ME, et al. Altered mucosal micro-
57 Wang W, Yang GJ, Zhang J, et al. Plasma, urine and ligament tis-
sue metabolite profiling reveals potential biomarkers of ankylosing
spondylitis using NMR-based metabolic profiles. *Arthritis Res Ther*
2016;18(1):244.
88 Hager J, Bang H, Hagen M, et al. The role of dietary fiber in rheuma-
toid arthritis patients: a feasibility study. *Nutrients.* 2019;11(10):
3932.
86 Lucas S, Omata Y, Hofmann J, et al. Short-chain fatty acid regul-
ate systemic bone mass and protect from pathological bone loss.
Nat Commun. 2018;9(3):355.
87 Cieplohas MC, Crian TO, Lemmers H, et al. Suppression of mono-
sodium urate crystal-induced cytokine production by butyrate is
mediated by the inhibition of class I histone deacetylases. *Arthritis
Rheumatol.* 2016;75(3):933–600.
77 He J, Chu Y, Li J, et al. Intestinal butyrate-metabolizing species
contribute to autoantibody production and bone erosion in rheu-
matoid arthritis. *Sci Adv.* 2022;8(6):eahm1151.
85 Qiu X, Zhang M, Yang X, Hong N, Yu C. Faecalibacterium praus-
nitii upregulates regulatory T cells and anti-inflammatory cyto-
kines in treating TNBS-induced colitis. *J Crohns Colitis.* 2013;7(11):
es37–es68.
74 Forbes JD, Chen CY, Knox NC, et al. A comparative study of the gut
microbiota in immune-mediated inflammatory diseases—does a
common dysbiosis exist? *Microbiome.* 2018;6(1):221.
56 Sokol H, Seksik P, Furet JP, et al. Low counts of Faecalibacterium
prausnitzii in colitis microbiota. *Inflamm Bowel Dis.* 2009;15
(8):1183–1189.
59 Miquel S, Martin R, Brideinouc C, et al. Ecology and metabolism of
the beneficial intestinal commensal bacterium Faecalibacterium
prausnitzii. *Gut Microbes.* 2014;5(2):146–153.
75 Miquel S, Martin R, Brideinouc C, et al. Ecology and metabolism of
the beneficial intestinal commensal bacterium Faecalibacterium
prausnitzii. *Gut Microbes.* 2014;5(2):146–153.
74 Sublette ME, Cheung S, Lieberman E, et al. Bipolar disorder and the
gut microbiome: a systematic review. *Bipolar Disord.* 2021;23
(5):544–564.
57 Chang PV, Hao L, Offermanns S, Medzhutov R. The microbial
metabiole butyrate regulates intestinal macrophage function via
histone deacetylase inhibition. *Proc Natl Acad Sci U S A.* 2014
(6):2447–2452.
78 McGuire T, Gerjarusak P, Hinthorn DR, Liu C. Osteomyelitis
caused by beta-hemolytic streptococcus group B. *JAMA.* 1977;238
(10):2554–2555.
58 Murillo O, Roset A, Sobrino B, et al. Streptococcus venereal osteo-
ankylosing multiple faces of the same disease. *Clin Microbiol Infect.*
2014;20(1):O3–O38.
72 Tandon R, Sharma M, Chandrashekar Y, Kotb M, Yacoub MH,
Narula J. Revisiting the pathogenesis of rheumatic fever and card-
itis. *Nat Rev Cardiol.* 2011;8(11):71–77.
81 Cunningham MW. Rheumatic fever, autoimmunity, and molecu-
lar mimicry: the streptococcal connection. *Int Rev Immunol.*
2014;33(4):314–329.
73 Barazh J. Rheumatic fever and post-group a streptococcal arthritis
in children. *Curr Infect Dis Rep.* 2013;15(5):263–268.
82 Macke SL, Kent A. Poststreptococcal reactive arthritis: what is it and
how do we know? *Rheumatol.* 2004;43(8):949–954. (Oxford).
83 Boer CG, Radjabzadeh D, Medina-Gomez C, et al. Intestinal micro-
bioe composition and its relation to joint pain and inflammation.
Nat Commun. 2015;6(1):4581.
84 Walter J. Ecological role of lactobacilli in the gastrointestinal tract:
implications for fundamental and biomedical research. *Appl Envi-
ron Microbiol.* 2008;74(16):4585–4596.
85 Liu F, Ren T, Li X, et al. Distinct microbiomes of gut and saliva in
patients with systemic lupus erythematosus and clinical associa-
tions. *Front Immunol.* 2021;12:626317.
86 Tito RY, Cypers H, Joossens M, et al. Brief report: dialister as a
microbial marker of disease activity in spondyloarthritis. *Arthritis
Rheumatol.* 2017;69(9):114–121.
87 Scher JU, Sezenos A, Longman RS, et al. Expansion of intestinal
Prevotella copri correlates with enhanced susceptibility to arthritis.
Eli Lilly. 2017;13:e0159384.
88 Mizuno M, Noto D, Kaga N, Chiba A, Miyake S. The dual role of
short fatty acid chains in the pathogenesis of autoimmune disease
models. *PLoS One.* 2017;12(4):e0173032.
89 Dossen PH, Solomon A, Hollan I. Metabolic abnormalities in
patients with inflammatory rheumatic diseases. *Best Pract Res Clin
Rheumatol.* 2016;30(1):901–915.
74 Bengtson AA, Trygg J, Wuttge DM, et al. Metabolic profiling of
systemic lupus erythematosus and comparison with primary sjog-
ren’s syndrome and systemic sclerosis. *PLoS One.* 2016;11(7):
e0195384.
75 Heinte-Buschart A, Wilmes P. Human gut microbiome: function
and matters. *Trends Microbiol.* 2018;26(7):556–574.
76 de Paiva CS, Jones DB, Stern ME, et al. Altered mucosal micro-
bioe diversity and disease severity in sjogren syndrome. *Sci Rep.*
2016;6:23561.