Screening

Association of ten gastrointestinal and other medical conditions with positivity to faecal occult blood testing in routine screening: a large prospective study of women in England

Emily He, Rupert Alison, Roger Blanks, Kirstin Pirie, Gillian Reeves, Robyn L Ward, Robert Steele, Julietta Patnick, Karen Canfell, Valerie Beral and Jane Green

1Cancer Epidemiology Unit, Nuffield Department of Population Health, University of Oxford, Oxford, UK, 2Prince of Wales Clinical School, University of New South Wales Sydney, NSW, Australia, 3Cancer Research Division, Cancer Council NSW, Woolloomooloo, NSW, Australia, 4Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia, 5Department of Surgery, Ninewells Hospital, Dundee, UK and 6School of Public Health, University of Sydney, Sydney, NSW, Australia

*Corresponding author. Cancer Council NSW, 153 Dowling St, Woolloomooloo, NSW 2011, Australia. E-mail: emily.he@nswcc.org.au

Abstract

Background: In 2006, the Bowel Cancer Screening Programme (BCSP) in England began offering biennial faecal occult blood testing (FOBt) at ages 60–69 years. Although FOBt is aimed at detecting colorectal neoplasms, other conditions can affect the result. In a large UK prospective study, we examined associations, both before and after screening, between FOBt positivity and 10 conditions that are often associated with gastrointestinal bleeding.

Methods: By electronically linking BCSP and Million Women Study records, we identified 604,495 women without previous colorectal cancer who participated in their first routine FOBt screening between 2006 and 2012. Regression models, using linked national hospital admission records, yielded adjusted relative risks (RRs) in FOBt-positive versus FOBt-negative women for colorectal cancer, adenoma, diverticular disease, inflammatory bowel disease, oesophagitis, peptic ulcer, anaemia and other haematological disorders.

Results: RRs in FOBt-positive versus FOBt-negative women were 201.3 (95% CI 173.8–233.2) for colorectal cancer and 197.9 (95% CI 180.6–216.8) within 12 months after screening; 3.49 (95% CI 2.31–5.26) and 4.88 (95% CI 3.80–6.26), respectively, 12–24 months after screening; P < 0.001 for all RRs. In the 12 months after screening, the RR for inflammatory bowel disease was 26.3 (95% CI 19.9–34.7), and ranged between 2 and 5 for the other gastrointestinal or haematological disorders. The RRs of being diagnosed with any of the eight conditions other than colorectal neoplasms before screening, and in the 12–24 months after screening, were 1.81 (95% CI 1.81–2.01) and 1.92 (95% CI 1.66–2.13), respectively.

© The Author(s) 2019. Published by Oxford University Press on behalf of the International Epidemiological Association. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.
Conclusions: Whereas FOBt positivity is associated with a substantially increased risk of colorectal neoplasms after screening, eight other gastrointestinal and haematological conditions are also associated with FOBt positivity, both before and after screening.

Key words: Bowel cancer screening, faecal occult blood test, bowel cancer, colonoscopy, upper gastrointestinal bleeding

Background

Colorectal cancer is the third most common cause of cancer deaths in the UK, and accounted for 12% of all new cancers in 2014.¹ As colorectal cancers are prone to bleeding, the rationale for screening with faecal occult blood test (FOBt) is to detect blood originating from otherwise asymptomatic tumours, thereby enabling diagnosis at an early, potentially curable stage.²⁻⁵ Although it is acknowledged that FOBt positivity can be affected by a range of conditions other than colorectal cancer,⁶ no previous study has evaluated the associations of FOBt positivity with other gastrointestinal or haematological conditions in a population-based bowel cancer screening programme. Quantifying associations between FOBt positivity and colorectal cancer, as well as other gastrointestinal and haematological conditions, may help guide clinical decision making at both a population and an individual level.

The National Health Service (NHS) Bowel Cancer Screening Programme (BCSP) in England was launched in 2006 to provide biennial colorectal cancer screening using guaiac-based FOBt. In this report, we link FOBt results in the BCSP with information on cause-specific hospital admissions in the large prospective study of women’s health, the Million Women Study. We investigated associations between FOBt positivity and 10 prespecified conditions related to gastrointestinal bleeding.

Methods

The Bowel Cancer Screening Programme in England

The BCSP in England began offering biennial screening with FOBt to men and women aged 60–69 years from 2006 (extended to 74 years from 2010).²⁻⁴ Those defined as FOBt-positive by the BCSP were referred to specialist screening nurses at bowel cancer screening centres for further investigations. In most cases, this investigation was a colonoscopy; radiological imaging was performed in the small minority deemed unsuitable for colonoscopy. The BCSP records individual data, including the dates of screening invitations, FOBt results and, for those who were FOBt-positive, findings of further investigations organized by the BCSP.

The Million Women Study

The Million Women Study is a large nationwide study of women’s health. A total of 1.3 million women, representing one in four of all UK women born in 1935–50, joined the study in 1996–2001. Participants answered a questionnaire on sociodemographic, health and lifestyle characteristics, and consented to follow-up through medical records. Details of the study design have been published elsewhere.⁹⁻¹⁰ Questionnaires and information on data
access for the study can be viewed at www.millionwomenstudy.org.

Using their unique NHS number and other identifying details, study participants are followed by linkage to electronic, routinely collected NHS records for deaths, cancer registrations and hospital admissions. Data for England are provided through NHS Digital. The Hospital Episode Statistics (HES) inpatient dataset in England contains details of all NHS inpatient (overnight and day case) admissions, including private patients treated in NHS hospitals. Diagnoses are recorded using the Tenth Revision of the International Classification of Diseases (ICD-10). Colonoscopies are generally performed as ‘day cases’ in NHS hospitals, and their findings are recorded in the HES database. Cancer registration, death and emigration records are available from recruitment to 31 December 2014 and HES records from 1 April 1997 to 31 December 2014.

With approval from the Cambridge South Research Ethics Committee and by the NHS Bowel Cancer Screening Programme Research Committee, the BCSP database was linked to the Million Women Study database in 2013 (done by NHS Connecting for Health, now NHS Digital).

Outcomes

Linked HES records were searched for hospital admission with diagnoses of the following 10 pre-specified gastrointestinal and haematological conditions: colorectal cancer, colorectal adenoma, inflammatory bowel disease, diverticular disease, haemorrhoids, peptic ulcer disease, oesophagitis, upper gastrointestinal cancer, anaemia and other bleeding disorders. Table 1 gives the ICD-10 codes used to define each of the 10 conditions. More than one diagnosis may have been recorded in a single hospital admission. We did validation analyses for colorectal cancer using cases ascertained from the cancer registry data.

Conditions were defined as being diagnosed ‘before screening’ if the first hospital record for the condition was before the first BCSP screening invitation. Conditions were defined as being diagnosed ‘after screening’ if the first hospital record of the condition was after the first screening invitation. First diagnoses after screening were further divided into those in the first 12 months after screening invitation (i.e. including results of diagnostic investigations following a positive screening test) and those first recorded in the 12–24 months after screening. Diagnoses after 24 months were not included, as the BCSP would have offered many women routine screening again 24 months after

Diagnosis in analysis	ICD-10*	Description
Colorectal cancer	C18	Malignant neoplasm of colon
	C19	Malignant neoplasm of rectosigmoid junction
	C20	Malignant neoplasm of rectum
Colorectal adenoma	D12	Benign neoplasm of colon, rectum, anus or anal canal
Inflammatory bowel disease	K50	Crohn’s disease [regional enteritis]
Diverticular disease	K57	Diverticular disease of intestine
Haemorrhoids	I84	Haemorrhoids
Peptic ulcer disease	K25	Gastric ulcer
	K26	Duodenal ulcer
	K27	Peptic ulcer, site unspecified
	K28	Gastrojejunal ulcer
	K29	Gastritis and duodenitis
Oesophagitis	K20	Oesophagitis
	K21	Gastro-oesophageal reflux disease
Upper gastrointestinal cancer	C15	Malignant neoplasm of oesophagus
	C16	Malignant neoplasm of stomach
	C17	Malignant neoplasm of small intestine
Anaemias	D50	Iron deficiency anaemia
	D51	Vitamin B12 deficiency anaemia
	D52	Folate deficiency anaemia
	D53	Other nutritional anaemias
Haematological conditions	D65-D69	Coagulation defects, purpura and other haemorrhagic conditions
	D70-D77	Other diseases of blood and blood-forming organs
	C81-C96	Malignant neoplasm of lymphoid, haematopoietic and related tissue

*First three characters of ICD-10 codes were used to define diagnoses used in the analysis.
the first invitation. For FOBt-positive patients who underwent subsequent colonoscopy, the information was obtained from hospital diagnoses in the HES database, as colonoscopies are generally performed as inpatient ‘day cases’ in NHS hospitals.

Statistical analysis
Record linkage identified 899,166 Million Women Study participants who received their first invitation for routine bowel cancer screening from the BCSP (prevalent screening round). For these analyses, we excluded women who did not accept the invitation for screening (n = 278,705), had any solid or haematological malignancy registered before recruitment into Million Women Study (n = 15,144), were lost to follow-up before first BCSP invitation (n = 22) or had a hospital record of colorectal cancer before FOBt screening (n = 800). The remaining 604,495 participants, first screened for bowel cancer between 2006 and 2012, were included in the analyses.

For conditions first diagnosed before screening, logistic regression models estimated odds ratios, henceforth referred to as relative risks (RRs), for various diagnoses in FOBt-positive versus FOBt-negative women. For conditions first diagnosed after screening, Cox regression models, with attained age as the underlying time variable, estimated hazard ratios, henceforth referred to as relative risks (RRs), for first hospital diagnoses in FOBt-positive versus FOBt-negative women in the first 12 months after screening, and 12–24 months after screening. For every RR estimate, 95% confidence intervals (CI) were calculated.

All analyses were adjusted for area deprivation (based on the Townsend index12), smoking (never, past, current), alcohol consumption in drinkers (<2, 3–14, ≥15 drinks per week) and body mass index (<25, 25–29, 30+ kg/m2), as these have been associated increased risk of colorectal cancer. Information relating to these variables was obtained at recruitment; women with missing data on adjustment variables (<2% for each) were included in the analyses as a separate category. Information on family history of colorectal cancer and use of antiplatelet or anticoagulant medications were not collected at recruitment. Analyses of diagnoses other than colorectal neoplasms (cancer or adenoma) excluded women with colorectal cancer diagnosed in the 24 months after screening. All analyses were performed using Stata version 14.0.

Results
Of the 604,495 women without previous colorectal cancer who had a routine FOBt screen, 8852 (1.5%) were FOBt-positive and referred for further investigations in the Bowel Cancer Screening Programme (BCSP). All FOBt screening was performed between 13 July 2006 and 13 March 2012.

The baseline characteristics and the frequency of conditions recorded in hospital admission data before the FOBt screen are shown in Table 2. Results are given for nine of the 10 gastrointestinal and haematological conditions being investigated here, as the 10th condition is colorectal cancer, and women with previous colorectal cancer were excluded from these analyses.

Before screening, FOBt-positive women were more likely than FOBt-negative women to have had previous diagnoses of colorectal adenoma or non-neoplastic colorectal conditions (inflammatory bowel disease, diverticular disease and haemorrhoids), as well as upper gastrointestinal conditions (oesophagitis, peptic ulcer disease and upper gastrointestinal cancer). FOBt-positive women were also more likely than FOBt-negative women to have had a previous admission for anaemia or other haematological disorders. The proportions of women admitted with at least one of the eight conditions (other than colorectal adenoma) before FOB testing were 25% of FOBt-positive and 16% of FOBt-negative participants. The pre-screening diagnoses most strongly associated with FOBt positivity were inflammatory bowel disease (RR = 6.06, 5.11–7.18; P < 0.0001) and anaemia (RR = 4.20, 3.74–4.71; P < 0.0001).

Of the FOBt-positive women, 7687 (87%) attended the BCSP for further investigations, which for almost all women was a colonoscopy. Among the 1174 (13%) FOBt-positive women who did not attend the BCSP for further investigation, hospital admission records indicate that they were significantly more likely than the attenders to have had previous hospital admissions for each of the nine pre-selected gastrointestinal and haematological conditions, particularly inflammatory bowel disease and anaemia (Table 3).

In all, 700 (7.9%) FOBt-positive women had a hospital diagnosis for colorectal cancer and 1704 (19%) for colorectal adenoma in the first 12 months after screening. Among the FOBt-negative women, the corresponding numbers were 247 and 649, yielding relative risks of 201.3 (173.8–232.3) and 197.9 (180.6–216.8) for colorectal cancer and for adenoma in FOBt-positive compared with FOBt-negative women. Results for colorectal cancer were similar, based on cancers ascertained from the cancer registry data, at 212.0 (184.0–246.5).

In the first 12 months after screening, FOBt positivity was also associated with large increases in non-neoplastic colorectal conditions, with 1717 FOBt-positive women diagnosed with diverticular disease (RR = 42.0, 39.6–44.6), 612 with haemorrhoids (RR = 28.5, 25.9–31.3) and 70
with inflammatory bowel disease (RR = 26.3, 19.9–34.7; \(P < 0.0001 \) for all the RRs quoted (Figure 1A). Virtually all the colorectal conditions (both neoplastic and non-neoplastic) were recorded in the 6 months after the FOBt screening invitation and were probably diagnosed as a result of the BCSP referral.

After excluding those diagnosed with colorectal cancer after screening, FOBt positivity was associated with a

Table 2. Baseline characteristics and pre-screening HES diagnoses for hospital admissions in FOBt-positive women \((n = 8852)\) versus FOBt-negative women \((n = 595 643)\)

Participant characteristics	FOBt-positive \((n = 8852)\), % (n)	FOBt-negative \((n = 595 643)\), % (n)
Mean age at first invitation to bowel screening, years (SD)	65.9 (3.7)	65.3 (3.6)
Socioeconomic group (% in upper third)	31.2% (2757)	36.0% (14 377)
Current smoker	18.0% (1596)	15.8% (93 980)
Body mass index \(\geq 30 \) kg m\(^2\)	23.7% (2100)	15.1% (89 618)
Alcohol intake \(\geq 30 \) g per week	41.3% (3655)	43.5% (258 826)

Hospital admission before routine FOB testing for nine pre-specified conditions

Colorectal neoplasms	FOBt-positive	FOBt-negative
Colorectal adenomas	1.97% (174)	0.93% (5562)
Colorectal non-neoplastic		
Inflammatory bowel disease	1.79% (146)	0.27% (1614)
Diverticular disease	6.27% (511)	3.19% (18 975)
Haemorrhoids	5.12% (417)	2.54% (15 131)

Upper gastrointestinal

Oesophagitis	FOBt-positive	FOBt-negative
Peptic ulcer	9.29% (757)	5.24% (31 177)

Upper gastrointestinal cancer	FOBt-positive	FOBt-negative
Anaemia	3.86% (315)	0.82% (4867)
Potential bleeding tendency	6.43% (524)	2.16% (12 880)

Any of the above, except colorectal neoplasms	FOBt-positive	FOBt-negative
	25.2% (2007)	15.6% (82 677)

Women with the 10th condition being investigated, colorectal cancer, were excluded from these analyses if the cancer had been diagnosed before routine screening.

Table 3. Pre-screening diagnoses in FOBt-positive women by attendance at Bowel Cancer Screening Programme for further diagnostic tests

FOBt-positive who attended BCSP for further diagnostic tests \((n = 7678)\)	FOBt-positive who did not attend BCSP for further diagnostic tests \((n = 1174)\)	
% (n) Adjusted RR\(^b\) (95% CI)	% (n) Adjusted RR\(^b\) (95% CI)	
Colorectal neoplasms		
Colorectal adenoma	1.52% (117)	1.49 (1.24–1.79)
Colorectal non-neoplastic		
Inflammatory bowel disease	0.82% (63)	2.93 (2.28–3.78)
Diverticular disease	5.25% (403)	1.48 (1.34–1.64)
Haemorrhoids	4.39% (337)	1.68 (1.51–1.88)

Upper gastrointestinal

Oesophagitis	FOBt-positive	FOBt-negative
Peptic ulcer disease	8.44% (648)	1.53 (1.41–1.66)
Upper gastrointestinal cancer	0.13% (10)	2.17 (1.15–4.07)

Haematological

Anaemia	FOBt-positive	FOBt-negative
Potential bleeding tendency	4.98% (382)	2.19 (1.97–2.43)
Any of the above, except colorectal neoplasms	22.2% (1681)	1.62 (1.53–1.71)

Women with the 10th condition being investigated, colorectal cancer, were excluded from these analyses if the cancer had been diagnosed prior to routine screening.

Relative risk in FOBt-positive versus FOBt-negative women, adjusted for age, socioeconomic group, smoking status, alcohol intake and body mass index.
5-fold risk of upper gastrointestinal cancer and 2-fold risk of peptic ulcer or oesophagitis in the first 12 months after screening (Figure 1B). It was also associated with a 3–5-fold relative risk of anaemia or other bleeding tendency being diagnosed in the first 12 months after screening.

Women who attended the BCSP for diagnostic colonoscopies had higher relative risks for colorectal cancer and adenoma, although those who did not attend also had considerably raised risks for both (Table 4). The RRs for colorectal cancer in attenders and non-attenders were 220.5 (190.2 – 255.6) and 74.7 (52.8 – 105.6), respectively, and the corresponding RRs for colorectal adenoma were 228.3 (208.3 – 250.2) and 21.1 (14.6 – 30.4), respectively; $P < 0.0001$ for all the RRs quoted. In validation analysis, the RRs for colorectal cancer in attenders and non-attenders, using diagnoses ascertained from the cancer registry data, were similar to those based on HES data, at 232.0 (201.1 – 269.9) and 78.4 (55.8 – 110.1), respectively. The mean time between FOBT screening invitation and HES record of colorectal cancer diagnosis was also similar in the 662 attenders and 38 non-attenders, at 3.0 [standard deviation (SD) 1.6] and 4.9 (SD 2.9) months, respectively. For upper gastrointestinal cancer and anaemia, RRs in the first 12 months after screening were significantly greater in non-attenders than in attenders for BCSP investigations.

In the 12–24 months after screening, the relative risks for colorectal cancer ($RR = 3.49, 2.31 – 5.26; P < 0.0001$) and for colorectal adenoma ($RR = 4.88, 3.80 – 6.26; P < 0.0001$) remain elevated in FOBT-positive versus FOBT-negative women, although much lower than in the preceding 12 months (for colorectal cancer, the numbers were 24 and 475, respectively; and for colorectal adenoma, the numbers were 66 and 1075, respectively). There was also an increased risk of being diagnosed with other colorectal, upper gastrointestinal and haematological conditions (Figure 2). The RRs of being diagnosed with any of the eight conditions other than colorectal neoplasms were about doubled, both before screening and in the 12–24 months after screening, at 1.81 (1.72 – 1.90) and 1.92 (1.70 – 2.17), respectively.

A COLORECTAL CONDITIONS	Cases in FOBT positive	Adjusted risk ratios (95% CI) in FOBT positive vs. FOBT negative
Colorectal cancer	700	201.32 (173.84, 233.15)
Colorectal polyps	1704	197.86 (180.55, 216.83)
Inflammatory bowel disease	70	26.28 (19.90, 34.71)
Diverticular disease	1717	42.03 (39.61, 44.59)
Haemorrhoids	612	28.47 (25.90, 31.28)

B UPPER GASTROINTESTINAL AND HAEMATOLOGICAL CONDITIONS	Cases in FOBT positive	Adjusted risk ratios (95% CI) in FOBT positive vs. FOBT negative
Oesophagitis	81	1.60 (1.28, 2.00)
Peptic ulcer disease	126	2.33 (1.95, 2.78)
Upper gastrointestinal cancer	10	5.15 (2.70, 9.83)
Anaemia	92	5.35 (4.32, 6.63)
Potential bleeding tendency	129	3.35 (2.81, 4.00)

Figure 1 Risk ratios for various conditions first diagnosed in the 12 months after positive FOBT. [A] shows the risk ratios for colorectal conditions. [B] shows the risk ratios for upper gastrointestinal and haematological conditions. Note different scales are used in (A) and (B) in the figure.
Discussion

Many countries, such as the UK and Australia, have implemented population-based screening programmes using FOBT. However, conditions other than colorectal neoplasms can affect the test result, and the specificity of FOBT has been found to be variable. This is the first study to examine systematically, in a large cohort of 604,495 women who took part in routine bowel cancer screening in England, associations between FOBT positivity and clinical conditions related to gastrointestinal bleeding, both before and after screening.

In this study, 1.5% of those screened were FOBT-positive, and 7.9% of those who were FOBT-positive were diagnosed with colorectal cancer in the first 12 months after screening. These findings are consistent with previous estimates reported by the UK Bowel Cancer Screening Programme. Compared with FOBT-negative women, FOBT-positive women had a 200-fold greater risk of being diagnosed with colorectal neoplasms in the first 12 months after screening, falling to a 3–5-fold relative risk in the 12–24 months after screening. The findings here relate to the prevalent round of colorectal cancer screening and the positive predictive value of screening has been reported to be reduced after the prevalent screen. The excess risk of colorectal neoplasms and of other conditions in the first 12 months after FOBT positivity reflects, in large part, that FOBT-positive individuals are offered further investigations by the BCSP whereas FOBT-negative individuals are not.

Almost 30% of the FOBT-positive women in this study had a hospital diagnosis of a non-neoplastic colorectal condition (mainly diverticular disease or haemorrhoids) in the 12 months after FOBT. Virtually all the diagnoses were made at around the time of colonoscopy, which is generally recorded as day case hospital admission. Our findings are in line with results reported by other organised screening programmes, that 24–38% of FOBT-positive individuals have non-neoplastic colorectal conditions identified during diagnostic colonoscopies. Although diverticular disease has been reported to account for some 40% of clinical lower gastrointestinal bleeding episodes, it is generally considered an incidental finding in colonoscopy for investigation of positive FOBT.

About 15% of FOBT-positive women had a hospital admission with benign causes of upper gastrointestinal bleeding before screening and in 1% this was first diagnosed in the 12 months after screening, consistent with previous findings. The majority of these conditions were non-malignant, mostly peptic ulcer disease. In contrast, the proportion of FOBT-positive women diagnosed with upper gastrointestinal cancer (although statistically significantly higher than in FOBT-negative women) is exceedingly low, present in only about 0.1% of FOBT-positive women before testing and a further 0.1% in the next 12 months. Other limited evidence indicate that considerably fewer than 1% of FOBT-positive colonoscopy-negative patients have upper gastrointestinal cancer.

Table 4. Conditions diagnosed in hospital admission records for the first time in the initial 12 months after routine FOBT testing in FOBT-positive women, by attendance at Bowel Cancer Screening Programme for further diagnostic tests

Diagnosis in HES	FOBT-positive who attended BCSP for further diagnostic tests (n = 7678)	FOBT-positive who did not attend BCSP for further diagnostic tests (n = 1174)		
	% (n)	Adjusted RR* (95% CI)	% (n)	Adjusted RR* (95% CI)
Colorectal neoplasms				
Colorectal cancer	8.62% (662)	220.5 (190.2–255.6)	3.24% (38)	74.7 (52.8–105.6)
Colorectal adenoma	21.8% (1674)	228.3 (208.3–250.2)	2.56% (30)	21.1 (14.6–30.4)
Colorectal non-neoplastic				
Inflammatory bowel disease	0.84% (59)	25.7 (19.1–34.6)	0.98% (11)	28.8 (15.6–53.1)
Diverticular disease	23.9% (1671)	49.1 (46.2–52.1)	3.72% (42)	5.99 (4.42–8.13)
Haemorrhoids	8.31% (582)	31.7 (28.8–34.8)	2.66% (30)	9.45 (6.58–13.56)
Upper gastrointestinal				
Oesophagitis	0.93% (65)	1.49 (1.17–1.91)	1.42% (16)	2.25 (1.38–3.68)
Peptic ulcer	1.49% (104)	2.24 (1.84–2.72)	1.95% (22)	2.86 (1.88–4.35)
Upper gastrointestinal cancer	0.09% (6)	3.59 (1.58–8.16)	0.35% (4)	14.1 (5.21–38.4)
Haematological				
Anaemia	0.87% (61)	4.13 (3.19–5.36)	2.75% (31)	12.4 (8.7–17.8)
Potential bleeding tendency	1.40% (98)	2.97 (2.43–3.64)	2.75% (31)	5.59 (3.92–7.97)
Any of the above, except colorectal neoplasms	37.4% (2577)	24.2 (23.1–25.2)	12.6% (135)	5.48 (4.62–6.49)

*Relative risk in FOBT-positive versus FOBT-negative women, adjusted for age, socioeconomic group, smoking status, alcohol intake and body mass index.

bWomen who were diagnosed with colorectal cancer within 24 months after routine FOBT were excluded from analyses relating to diagnoses other than cancer.
HES Diagnoses	Cases in FOBT positive	Adjusted risk ratios (95% CI) of each diagnosis in FOBT positive vs. FOBT negative*
COLORECTAL CONDITIONS		
Colorectal cancer		
Before screening FOBT	Excluded from study	
12-24 months after screening FOBT	24	3.49 (2.31, 5.26)
Colorectal polyps		
Before screening FOBT	174	1.91 (1.64, 2.23)
12-24 months after screening FOBT	66	4.88 (3.80, 6.26)
Inflammatory bowel disease		
Before screening FOBT	146	6.46 (5.44, 7.67)
12-24 months after screening FOBT	16	4.63 (2.79, 7.69)
Diverticular disease		
Before screening FOBT	511	1.78 (1.63, 1.95)
12-24 months after screening FOBT	125	2.20 (1.84, 2.63)
Haemorrhoids		
Before screening FOBT	417	1.97 (1.78, 2.18)
12-24 months after screening FOBT	69	2.29 (1.80, 2.91)
UPPER GASTROINTESTINAL CONDITIONS		
Oesophagitis		
Before screening FOBT	570	1.49 (1.37, 1.63)
12-24 months after screening FOBT	80	1.36 (1.09, 1.69)
Peptic ulcer disease		
Before screening FOBT	757	1.68 (1.56, 1.82)
12-24 months after screening FOBT	93	1.54 (1.25, 1.89)
Upper gastrointestinal cancer		
Before screening FOBT	12	
12-24 months after screening FOBT	Insufficient data	
HAEMATOLOGICAL CONDITIONS		
Anaemia		
Before screening FOBT	315	
12-24 months after screening FOBT	73	
Potential bleeding tendency		
Before screening FOBT	524	
12-24 months after screening FOBT	102	
ANY OF THE ABOVE EXCLUDING COLORECTAL NEOPLASMS		
Before screening FOBT	2007	1.91 (1.81, 2.01)
12-24 months after screening FOBT	254	1.88 (1.66, 2.13)

Figure 2. Risk ratios for colorectal, upper gastrointestinal and haematological conditions first diagnosed before FOBT and those first diagnosed 12-24 months after positive FOBT. *First hospital admission 12-24 months after FOBT, adjusted for socioeconomic group, body mass index, alcohol consumption and smoking status. 'Colorectal neoplasms' encompasses colorectal cancer and colorectal polyps.
The relative risks of being diagnosed with anaemia (>95% were iron deficiency anaemia) in FOBT-positive versus FOBT-negative women, before and after screening, range from 3 to 5. The anaemia itself may not necessarily be caused by gastrointestinal bleeding but could be a manifestation of some other underlying haematological condition. Approximately 6% of the FOBT-positive women had a previous hospital diagnosis of other specified haematological conditions which could predispose to gastrointestinal bleeding, and about 1.2% had a first diagnosis of one of these conditions in the 12 months after FOBT testing. The associated relative risks are approximately 3–4, suggesting that the presence of these conditions influences FOBT positivity. A small part of the excess risks for non-colorectal conditions diagnosed after screening could be due to increased contact with health professionals.

About one in eight who were FOBT-positive did not attend further investigations organised by the BCSP. Non-attenders were more likely than the attenders to have the pre-existing conditions associated here with gastrointestinal bleeding. Some have suggested that the most common reasons for non-attendance at BCSP after FOBT positivity include unwillingness to undergo a colonoscopy or inopportune timing, but our results suggest that many had pre-existing conditions associated with gastrointestinal bleeding and appeared to have diagnostic investigations done elsewhere, possibly because they were already under the care of other clinicians within the NHS.

The findings here are for a population-based NHS screening programme using guaiac-based FOBT, and may not be directly translatable to other screening programmes that use immunochemical-based FOBT (faecal immunochemical testing, FIT). The characteristics of screen-detected and interval cancers are being reported elsewhere.

Some of the important strengths of this study include having a virtually complete dataset on cause-specific NHS hospital admissions, both before and after FOBT screening. By linking BCSP data to information collected in the Million Women Study, it was possible to obtain information on clinical diagnoses recorded before screening as well as after screening, not only for the 87% of the FOBT-positive women who attended the BCSP for further investigations, but also for the 13% who did not. The main limitation of this study is that diagnoses are restricted to those associated with hospital admissions (overnight or day case stays) and that it involved only women, who have lower rates of FOBT positivity and lower risks of colorectal cancer and adenoma compared with men. A systematic review has found the accuracy of primary diagnosis codes in these hospital data to be 96% after 2002. Some participants may have had outpatient or primary care diagnoses for conditions such as diverticular disease or haemorrhoids, which although amenable to colonoscopic detection, could also have been diagnosed through radiological or clinical examinations.

Conclusion

Our study confirms that FOBT positivity in routine bowel cancer screening is associated with a substantially increased risk of colorectal neoplasms diagnosed in the first 12 months after screening, and a small excess risk in the 12–24 months after screening. It also showed that FOBT positivity is associated with eight other gastrointestinal or haematological conditions related to gastrointestinal bleeding. These results emphasise the importance of reviewing relevant medical history and discussion about other conditions associated with gastrointestinal bleeding might be considered when counselling patients with positive FOBT results.

Funding

This was work was supported by the UK Medical Research Council and Cancer Research UK, as well as the White-Walker Cancer Research Scholarship and an Australian National Health and Medical Research Council Postgraduate Scholarship (GNT1093776) for E.H. The study sponsors had no part in designing the study question nor in the analysis or interpretation of results. They also did not take part in the writing of the article nor in the decision to submit for publication.

Author Contributions

E.H. performed the literature search, participated in the study design and electronic data linkage and was responsible for statistical analysis, data interpretation and drafting of the manuscript. R.A., R.B., K.P. and G.R. participated in the study design, electronic data linkage and statistical analysis. R.W., R.S., J.P. and K.C. provided expert content advice and assisted in interpretation of study findings. J.G. and V.B. oversaw the study, including the study design, statistical analysis and drafting of the manuscript. All authors reviewed the study’s findings and read and approved the final manuscript.

Conflict of interest: None declared.

References

1. Cancer Research UK. *Cancer Incidence for Common Cancers*. 2015. https://www.cancerresearchuk.org/health-professional/cancer-statistics/incidence/common-cancers-compared (20 March 2018, date last accessed).
2. Hardcastle JD, Chamberlain JO, Robinson MHE et al. Randomised controlled trial of faecal-occult-blood screening for colorectal cancer. *Lancet* 1996;348:1472–77.
3. Hewitson P, Glasziou P, Watson E, Towler B, Irwig L. Cochrane systematic review of colorectal cancer screening using the fecal
occult blood test (hemoccult): an update. Am J Gastroenterol 2008;103:1541–49.
4. Scholefield JH, Moss SM, Mangham CM, Whynes DK, Hardcastle JD. Nottingham trial of faecal occult blood testing for colorectal cancer: a 20-year follow-up. Gut 2012;61:1036–40.
5. Kronborg O, Jørgensen OD, Fenger C, Rasmussen M. Randomized study of biennial screening with a faecal occult blood test: results after nine screening rounds. Scand J Gastroenterol 2004;39:846–51.
6. Beral V. Breast cancer and hormone-replacement therapy in the Million Women Study. Lancet 2003;362:419–27.
7. The Million Women Study Collaborative Group. The Million Women Study: design and characteristics of the study population. Breast Cancer Res 1999;1:73–80.
8. Townsend P, Phillimore P, Beattie A. Health and Deprivation: National level: the International Colorectal Cancer Screening Programme. J Med Screen 2014;21:12–19.
9. Rockey DC, Koch J, Cello JP, Sanders LL, McQuaid K. Relative frequency of upper gastrointestinal and colonic lesions in patients with positive fecal occult-blood tests. N Engl J Med 1998;339:153–59.
10. Bini EJ, Rajapaksa RC, Valdes MT, Weinstel EH. Is upper gastrointestinal endoscopy indicated in asymptomatic patients with a positive fecal occult blood test and negative colonoscopy? Am J Med 1999;106:613–18.
11. Psaila PC, Al-Kawas FH. Yield of upper endoscopy in the evaluation of asymptomatic patients with Hemoccult-positive stool after a negative colonoscopy. Am J Gastroenterol 1992;87:1571–74.
12. Chen YK, Gladden DR, Kestenbaum DJ, Collen MJ. Is there a role for upper gastrointestinal endoscopy in the evaluation of patients with occult blood-positive stool and negative colonoscopy? Am J Gastroenterol 1993;88:2026–29.
13. Allard J, Cosby R, Del Giudice ME, Irvine EJ, Morgan D, Tinmouth J. Gastroscopy following a positive fecal occult blood test and negative colonoscopy: systematic review and guideline. Can J Gastroenterol 2010;24:113–20.
14. Zappa M, Visioli CB, Ciatto S et al. Gastric cancer after positive screening faecal occult blood testing and negative assessment. Dig Liver Dis 2007;39:321–26.
15. Levi Z, Vilkin A, Niv Y. Esophago-gastro-duodenoscopy is not indicated in patients with positive immunochemical test and nonexplanatory colonoscopy. Eur J Gastroenterol Hepatol 2010;22:1431–34.
16. Plumb AA, Ghanouni A, Rainbow S et al. Patient factors associated with non-attendance at colonoscopy after a positive screening faecal occult blood test. J Med Screen 2017;24:12–19.
17. Burns EM, Rigby E, Mamidanna R et al. Systematic review of discharge coding accuracy. J Public Health (Oxf) 2012;34:138–48.