Shellability is NP-complete

Zuzana Patáková

Xavier Goaoc, Pavel Paták, Martin Tancer and Uli Wagner

Charles University, Prague

November 3, 2020
Arranging a jigsaw puzzle

Rules:

- triangular pieces
- add pieces one by one
- more pieces can share an edge
Arranging a jigsaw puzzle

Rules:

- triangular pieces
- add pieces one by one
- more pieces can share an edge
- glue new piece by edge or edges, NOT a vertex
Arranging a jigsaw puzzle

Rules:
- triangular pieces
- add pieces one by one
- more pieces can share an edge
- glue new piece by edge or edges, NOT a vertex

allowed

boundary of tetrahedron

not allowed
Arranging a jigsaw puzzle

Rules:
- triangular pieces
- add pieces one by one
- more pieces can share an edge
- glue new piece by edge or edges, NOT a vertex

This is shellability in 2D (purely 2D object obtained by the rules).
Why is shellability useful?

- Adding pieces sequentially allows proofs by induction.
Why is shellability useful?

- Adding pieces sequentially allows proofs by induction.
- $h_i = \# \text{ of faces glued by } i \text{ edges}$
- $f_i = \# \text{ of faces of dimension } i$
Why is shellability useful?

- Adding pieces sequentially allows proofs by induction.
- \(h_i = \# \) of faces glued by \(i \) edges
- \(f_i = \# \) of faces of dimension \(i \)
- \(h_i \) determines \(f_i \)

\[
\begin{align*}
f_{-1} &= h_0 = 1 \\
f_0 &= 3h_0 + h_1 \\
f_1 &= 3h_0 + 2h_1 + h_2 \\
f_2 &= h_0 + h_1 + h_2 + h_3
\end{align*}
\]

\[
\begin{align*}
h_0 &= f_{-1} = 1 \\
h_1 &= -3f_{-1} + f_0 \\
h_2 &= 3f_{-1} - 2f_0 + f_1 \\
h_3 &= -f_{-1} + f_0 - f_1 + f_2
\end{align*}
\]
Why is shellability useful?

- Adding pieces sequentially allows proofs by induction.
- \(h_i = \# \) of faces glued by \(i \) edges
- \(f_i = \# \) of faces of dimension \(i \)
- \(h_i \) determines \(f_i \)

\[
\begin{align*}
 f_{-1} &= h_0 = 1 \\
 f_0 &= 3h_0 + h_1 \\
 f_1 &= 3h_0 + 2h_1 + h_2 \\
 f_2 &= h_0 + h_1 + h_2 + h_3 \\
 h_0 &= f_{-1} = 1 \\
 h_1 &= -3f_{-1} + f_0 \\
 h_2 &= 3f_{-1} - 2f_0 + f_1 \\
 h_3 &= -f_{-1} + f_0 - f_1 + f_2
\end{align*}
\]
Why is shellability useful?

- Adding pieces sequentially allows proofs by induction.
- $h_i =$ # of faces glued by i edges
- $f_i =$ # of faces of dimension i
- h_i determines f_i

\[
\begin{align*}
 f_{-1} &= h_0 = 1 \\
 f_0 &= 3h_0 + h_1 \\
 f_1 &= 3h_0 + 2h_1 + h_2 \\
 f_2 &= h_0 + h_1 + h_2 + h_3
\end{align*}
\]

$\begin{align*}
 h_0 &= f_{-1} = 1 \\
 h_1 &= -3f_{-1} + f_0 \\
 h_2 &= 3f_{-1} - 2f_0 + f_1 \\
 h_3 &= -f_{-1} + f_0 - f_1 + f_2
\end{align*}$
Why is shellability useful?

- Adding pieces sequentially allows proofs by induction.
- $h_i = \# \text{ of faces glued by } i \text{ edges}$
- $f_i = \# \text{ of faces of dimension } i$
- h_i determines f_i

\[
\begin{align*}
 f_{-1} &= h_0 = 1 \\
 f_0 &= 3h_0 + h_1 \\
 f_1 &= 3h_0 + 2h_1 + h_2 \\
 f_2 &= h_0 + h_1 + h_2 + h_3
\end{align*}
\]
Why is shellability useful?

- Adding pieces sequentially allows proofs by induction.
- \(h_i = \# \) of faces glued by \(i \) edges
- \(f_i = \# \) of faces of dimension \(i \)
- \(h_i \) determines \(f_i \)

\[
\begin{align*}
 f_{-1} &= h_0 = 1 \\
 f_0 &= 3h_0 + h_1 \\
 f_1 &= 3h_0 + 2h_1 + h_2 \\
 f_2 &= h_0 + h_1 + h_2 + h_3
\end{align*}
\]

\[
\begin{align*}
 h_0 &= f_{-1} = 1 \\
 h_1 &= -3f_{-1} + f_0 \\
 h_2 &= 3f_{-1} - 2f_0 + f_1 \\
 h_3 &= -f_{-1} + f_0 - f_1 + f_2
\end{align*}
\]
Why is shellability useful?

- Adding pieces sequentially allows proofs by induction.
- \(h_i = \# \) of faces glued by \(i \) edges
- \(f_i = \# \) of faces of dimension \(i \)
- \(h_i \) determines \(f_i \)

\[
\begin{align*}
f_{-1} &= h_0 = 1 \\
f_0 &= 3h_0 + h_1 \\
f_1 &= 3h_0 + 2h_1 + h_2 \\
f_2 &= h_0 + h_1 + h_2 + h_3
\end{align*}
\]

\[
\begin{align*}
h_0 &= f_{-1} = 1 \\
h_1 &= -3f_{-1} + f_0 \\
h_2 &= 3f_{-1} - 2f_0 + f_1 \\
h_3 &= -f_{-1} + f_0 - f_1 + f_2
\end{align*}
\]
Why is shellability useful?

- Adding pieces sequentially allows proofs by induction.
- $h_i = \# \text{ of faces glued by } i \text{ edges}$
- $f_i = \# \text{ of faces of dimension } i$
- h_i determines f_i and vice-versa

$$
\begin{align*}
 f_{-1} &= h_0 = 1 \\
 f_0 &= 3h_0 + h_1 \\
 f_1 &= 3h_0 + 2h_1 + h_2 \\
 f_2 &= h_0 + h_1 + h_2 + h_3
\end{align*}
$$

$$
\begin{align*}
 h_0 &= f_{-1} = 1 \\
 h_1 &= -3f_{-1} + f_0 \\
 h_2 &= 3f_{-1} - 2f_0 + f_1 \\
 h_3 &= -f_{-1} + f_0 - f_1 + f_2
\end{align*}
$$
Why is shellability useful?

- Adding pieces sequentially allows proofs by induction.
- $h_i =$ # of faces glued by i edges
- $f_i =$ # of faces of dimension i
- h_i determines f_i and vice-versa

\[
\begin{align*}
 f_{-1} &= h_0 = 1 \\
 f_0 &= 3h_0 + h_1 \\
 f_1 &= 3h_0 + 2h_1 + h_2 \\
 f_2 &= h_0 + h_1 + h_2 + h_3
\end{align*}
\]

\[
\begin{align*}
 h_0 &= f_{-1} = 1 \\
 h_1 &= -3f_{-1} + f_0 \\
 h_2 &= 3f_{-1} - 2f_0 + f_1 \\
 h_3 &= -f_{-1} + f_0 - f_1 + f_2
\end{align*}
\]

... “almost” Euler formula!

(Why $h_3 = 1$?)
Works in higher dimensions as well

\[\mathcal{K} = \text{a finite simplicial complex of dimension } d \geq 1 \]

\[= \text{a fin. collection of geometric simplices in } \mathbb{R}^n \text{ (for some } n) \]:

- \(\sigma \in \mathcal{K}, \tau \text{ is a face of } \sigma \Rightarrow \tau \in \mathcal{K} \)
- \(\sigma_1, \sigma_2 \in \mathcal{K} \Rightarrow \sigma_1 \cap \sigma_2 \text{ is a face of } \sigma_1 \text{ and } \sigma_2 \)
Shellability in higher dimensions

- Works in higher dimensions as well
- $\mathcal{K} = \text{a finite simplicial complex of dimension } d \geq 1$
 - $= \text{a fin. collection of geometric simplices in } \mathbb{R}^n \text{ (for some } n)$:
 - $\sigma \in \mathcal{K}$, τ is a face of σ \Rightarrow $\tau \in \mathcal{K}$
 - $\sigma_1, \sigma_2 \in \mathcal{K}$ \Rightarrow $\sigma_1 \cap \sigma_2$ is a face of σ_1 and σ_2

- **Assume:** all facets (= inclusion maximal faces) have dim d
Shellability in higher dimensions

- Works in higher dimensions as well
- \(\mathcal{K} = \) a finite simplicial complex of dimension \(d \geq 1 \)
 = a fin. collection of geometric simplices in \(\mathbb{R}^n \) (for some \(n \)):
 - \(\sigma \in \mathcal{K}, \ \tau \) is a face of \(\sigma \) \(\Rightarrow \) \(\tau \in \mathcal{K} \)
 - \(\sigma_1, \sigma_2 \in \mathcal{K} \) \(\Rightarrow \) \(\sigma_1 \cap \sigma_2 \) is a face of \(\sigma_1 \) and \(\sigma_2 \)

- **Assume:** all facets (\(= \) inclusion maximal faces) have dim \(d \)

\(\mathcal{K} \) is shellable if \(\exists \) ordering \(F_1, \ldots, F_N \) of facets of \(\mathcal{K} \) s.t.
\(\forall 2 \leq i \leq N: F_i \cap (\bigcup_{j<i} F_j) \) is a non-empty union of \((d - 1) \)-dim faces.

... “gluing facets along \((d - 1) \)-dim faces“
boundaries of polytopes are shellable . . . Bruggesser, Mani ’72

used e.g. in Schläfli’s “proof” of Euler-Poincaré formula (1852):
\[f_0 - f_1 + \cdots + (-1)^{d-1}f_{d-1} = 1 - (-1)^d \]
boundaries of polytopes are shellable \ldots Bruggesser, Mani '72

used e.g. in Schl"afli's "proof" of Euler-Poincaré formula (1852):

\[f_0 - f_1 + \cdots + (-1)^{d-1}f_{d-1} = 1 - (-1)^d \]
- boundaries of polytopes are shellable ... Bruggesser, Mani ’72
 used e.g. in Schläfli’s “proof” of Euler-Poincaré formula (1852):
 \[f_0 - f_1 + \cdots + (-1)^{d-1} f_{d-1} = 1 - (-1)^d \]
 - there is a line shelling
 - reverse order is also a shelling
 [not true in general]
• boundaries of polytopes are shellable . . . Bruggesser, Mani ’72
 used e.g. in Schlafli’s “proof” of Euler-Poincaré formula (1852):
 \[f_0 - f_1 + \cdots + (-1)^{d-1}f_{d-1} = 1 - (-1)^d \]

 • there is a line shelling
 • reverse order is also a shelling
 [not true in general]
 \[\Rightarrow h_i = h_{d-i} \quad \text{Dehn-Sommerville relations ’27} \]
Polytope theory

- Boundaries of polytopes are shellable ... Bruggesser, Mani ’72

 used e.g. in Schlafli’s “proof” of Euler-Poincaré formula (1852):
 \[f_0 - f_1 + \cdots + (-1)^{d-1} f_{d-1} = 1 - (-1)^d \]

 - There is a line shelling
 - Reverse order is also a shelling [not true in general]

 \[\Rightarrow h_i = h_{d-i} \] Dehn-Sommerville relations ’27

 \[\Rightarrow \] Every planar triangulation has \(2f_0 - 4 \) faces.

 In higher dimensions:
 - UBT: Cyclic polytopes maximize \# of faces McMullen ’70
 - LBT: Stacked polytopes minimize \# of faces Klee ’75
Shellability in various areas of mathematics

- **Polytope theory**: Inductive procedure for removing facets while all intermediate complexes are topological balls.

- **PL Topology**: Shelling of a PL-manifold (with boundary) keeps the homeomorphism type.

- **Shellability of posets**: Pioneered by Björner and Wachs in 80’s. Consequences, e.g., on enumerative properties of posets.

- **Shelling monoids**: Peeva, Reiner, Sturmfels ’98: Koszul property of monoidal algebra via shellability of monoids.
Shellability is in NP – try all possible orderings

Danaraj, Klee '78: Is shellability efficiently decidable?

Showed: shellability of 2-dim pseudomanifolds can be tested in linear time (pseudomn. = every edge in exactly two triangles)
Main result

- Shellability is in NP – try all possible orderings

- Danaraj, Klee ’78: **Is shellability efficiently decidable?**
 Showed: shellability of 2-dim **pseudomanifolds** can be tested in linear time (pseudomn. = every edge in exactly two triangles)

Goaoc, Paták, ZP, Tancer, Wagner ’18:

- **It is NP-complete to decide whether a given 2-dim simplicial complex is shellable.**

 ...reduction from 3-SAT
Main result

- Shellability is in NP – try all possible orderings

- Danaraj, Klee ’78: **Is shellability efficiently decidable?**
 Showed: shellability of 2-dim **pseudomanifolds** can be tested in linear time (pseudomn. = every edge in exactly two triangles)

Goaoc, Paták, ZP, Tancer, Wagner ’18:

- **It is NP-complete to decide whether a given 2-dim simplicial complex is shellable.**

 …reduction from **3-SAT**

- **It is NP-complete to decide whether a given \(\geq 3 \)-dim contractible simplicial complex is shellable.**

 easy corollary
High-level overview of the proof

- We go backwards and remove triangles.
- For a 3-CNF formula \(\phi \) build a 2-dim simpl complex \(K_\phi \) s.t.
 \[
 \phi \text{ satisfiable} \iff K_\phi \text{ collapsible \ after removing \# \ var \ triangles}
 \]
We go backwards and remove triangles.

For a 3-CNF formula ϕ build a 2-dim simpl complex K_ϕ s.t.

ϕ satisfiable \iff K_ϕ collapsible after removing $\# \text{ var}$ triangles

$$\Phi = (u \lor \neg x \lor \neg y) \land (\neg u \lor y \lor \neg z)$$
High-level overview of the proof

- We go backwards and remove triangles.
- For a 3-CNF formula ϕ build a 2-dim simpl complex K_ϕ s.t.
 \[\phi \text{ satisfiable } \iff K_\phi \text{ collapsible } \] after removing $\# \text{ var}$ triangles

\[\Phi = (u \lor \neg x \lor \neg y) \land (\neg u \lor y \lor \neg z) \]
\[u = x = y = \text{TRUE}, z = \text{FALSE} \]
High-level overview of the proof

- We go backwards and remove triangles.
- For a 3-CNF formula ϕ build a 2-dim simpl complex K_ϕ s.t.
 \[\phi \text{ satisfiable} \iff K_\phi \text{ collapsible} \] after removing $\# \text{ var}$ triangles

\[\Phi = \left(u \lor \neg x \lor \neg y \right) \land \left(\neg u \lor y \lor \neg z \right) \]

\[u = x = y = \text{TRUE}, \quad z = \text{FALSE} \]
Open problems

- Is shellability of 2-dim complexes \textbf{FPT} in Euler characteristics?

- Is it NP-hard to decide whether a given 2-dim complex embedded in \mathbb{R}^3 (or even \mathbb{R}^4) is shellable?

- Can a greedy algorithm fail when shelling a k-skeleton of n-simplex? Simon’s conjecture: \textbf{NO}.

- How hard is to recognize shellable 3-balls? essentially asked by Danaraj, Klee ’78

- If a poset is given by its Hasse diagram, does recognition of shellable posets belong to NP? Shellability of a poset $P = \text{shellability of the order complex } \Delta(P)$.
Open problems

- Is shellability of 2-dim complexes FPT in Euler characteristics?
- Is it NP-hard to decide whether a given 2-dim complex embedded in \mathbb{R}^3 (or even \mathbb{R}^4) is shellable?
- Can a greedy algorithm fail when shelling a k-skeleton of n-simplex? Simon’s conjecture: NO.
- How hard is to recognize shellable 3-balls? essentially asked by Danaraj, Klee ’78
- If a poset is given by its Hasse diagram, does recognition of shellable posets belong to NP? Shellability of a poset $P =$ shellability of the order complex $\Delta(P)$.

Thank you!