The Use of Bone Marrow and Peripheral Blood Stem Cell Transplantation in the Treatment of Cancer

Frederick R. Appelbaum, MD

Introduction
Bone marrow or peripheral blood stem cell transplantation is used in the treatment of cancer for two reasons. First, transplantation permits exploitation of the steep dose-response relationship seen in some tumors by allowing administration of doses of systemic chemotherapy and radiotherapy that without transplantation would cause unacceptably severe or lethal myelosuppression. Second, transplantation of allogeneic marrow confers an antitumor effect, separate from the effects of chemoradiotherapy. The first successful bone marrow transplants in humans were performed in the late 1960s. This year, it is estimated that over 15,000 patients will undergo the procedure worldwide (Fig. 1).

Historical Aspects
The first suggestion that bone marrow transplantation might be possible occurred in 1949 when Jacobson et al.1 made the observation that mice could survive otherwise lethal total body irradiation if the spleen was protected by lead foil. A similar radioprotective effect was seen if bone marrow from one mouse was given intravenously to a radiated recipient of the same strain.2 By the mid-1950s, several laboratories had shown, using cytogenetic markers, that the radioprotective effect of bone marrow transplantation was due to the replacement of the damaged hematopoietic system of the host with healthy cells of donor origin.3 The potential clinical implications of these studies were noted, and in 1959, the first attempts to treat leukemia using high-dose chemoradiotherapy followed by syngeneic marrow transplantation were initiated by Dr. E. Donnell Thomas.4 Initial attempts to apply transplantation outside the setting of identical twins were unsuccessful because of lack of understanding of the human histocompatibility system.

In the late 1950s and early 1960s, human leukocyte antigens (HLA) and their importance in histocompatibility were first recognized. By the mid-1960s, it was demonstrated in an outbred species (the dog) that matching at the major histocompatibility complex allowed for successful allogeneic marrow transplantation.5 The work of Dr. Thomas and fellow investigators led to the first successful allogeneic transplants for leukemia in the late 1960s6 and the gradual acceptance of this therapy during the 1970s.7 Autolo-
gous marrow transplantation was first successfully employed to cure patients with lymphoma in the late 1970s and became widespread in the 1980s. Today, the annual number of autologous transplants surpasses that of allogeneic transplantation. In 1990, a Nobel prize in medicine was awarded to E. Donnell Thomas for his contributions to this field (Table 1).

Biologic Basis

Several features of human bone marrow make the transplant procedure feasible. The first is the remarkable regenerative capacity of marrow. In mice it has been demonstrated that the transfer of a single hematopoietic stem cell can result in complete and sustained hematopoietic reconstitution of a lethally irradiated recipient. While human bone marrow has never been put to this test, transplantation of considerably less than 10 percent of a donor’s total body marrow regularly results in complete and sustained replacement of a patient’s entire hematopoietic system. After the transplant, donor marrow cells normally produce all of the patient’s red cells, platelets, granulocytes, and T lymphocytes and B lymphocytes as well as the patient’s pulmonary alveolar macrophages, Kupffer’s cells of the liver, osteoblasts, Langerhans’ cells of the skin, and microglial cells of the brain.

A second feature of marrow which makes transplantation practical is that after intravenous infusion, marrow cells have the capacity to home to the marrow space. The mechanisms by which this happens are not entirely understood, but a remarkably high percentage of primitive hematopoietic cells appear to end up in the marrow, in some murine studies as many as 50 percent. Current studies
suggest that early hematopoietic cells are retained in the marrow because marrow endothelial cells express members of a family of cell adhesion molecules termed “selectins,” which bind to carbohydrate-based ligands on early hematopoietic cells.11

An additional characteristic of marrow stem cells that has made autologous transplantation feasible is their ability to survive cryopreservation with little, if any, damage. Using relatively simple techniques of freezing and thawing, cryopreserved autologous marrow is virtually as effective as fresh marrow in providing protection after otherwise lethal total body irradiation.12

Cryopreserved autologous marrow is virtually as effective as fresh marrow in providing protection after total body irradiation.

Source of Stem Cells

SYNGENEIC TRANSPLANTATION

An identical twin, when available, is the best possible donor. With syngeneic marrow, there are fewer complications than with autologous marrow transplantation, and unlike autologous marrow, marrow from a healthy identical twin cannot be contaminated with tumor cells. Syngenicity is easily established by DNA typing using restriction fragment length polymorphisms.

ALLOGENEIC TRANSPLANTATION

Allogeneic marrow transplantation can be performed using HLA-identical sibling donors, other HLA-matched or HLA-mismatched family members, or HLA-matched unrelated donors. The best results occur with sibling donors who are identical with the patient for HLA class I and class II determinants.

The genes encoding HLA are located on chromosome 6 and are codominantly expressed so that the probability of HLA-identity between any two siblings is 25 percent. Given the average family size in the United States, the chance of having an HLA-matched sibling is about 35 percent. The formula for calculating the chance that a patient has an HLA-identical sibling is 1-(0.75)^n where n equals the number of siblings.

HLA class I antigens (usually referred to as HLA-A and HLA-B) are defined using alloantisera in microcytotoxicity assays. HLA class II antigens are encoded by genes located within the HLA-D region and are termed DP, DQ, and DR. DQ and DR antigens can be identified by alloantisera, but identification of DP requires cellular techniques, such as mixed lymphocyte culture reactions or more current molecular techniques such as sequence-specific oligonucleotide probe hybridization.

While the best results with allogeneic transplantation have been achieved using HLA-identical sibling donors, transplants using family member donors identical with the patient for one haplotype but mismatched for a single locus on the other (A, B, or D) result in nearly equal survival, albeit with a higher incidence of graft-versus-host disease (GVHD).13,14 The results of transplants using family member donors mismatched for two or more loci are considerably worse with more GVHD, more graft rejection, and decreased survival.13,14

Following initial reports that transplantation could be successfully performed using an HLA-matched unrelated donor, there has been a rapid increase in this activity.15,16 Currently, more than 1.3 million normal individuals have volunteered to serve as marrow donors in the United States alone, making the odds of finding an A, B, and D matched unre-
lated donor about 50 percent.17 On average, it takes about four months from the time a search is initiated to identify a donor and initiate a transplant. Analysis of the first several hundred patients transplanted from unrelated donors suggests that GVHD is more common and long-term cure rates are slightly lower than with the use of matched family members.18,19

AUTOLOGOUS TRANSPLANTATION

Autologous transplantation involves removing and usually cryopreserving a patient’s own marrow and reinfusing that marrow to reestablish hematopoietic function after the administration of high-dose chemotherapy or chemoradiotherapy. Deciding the type of transplantation to recommend for any individual patient is complex. Autologous transplantation has the advantage of avoiding GVHD and associated complications but has the disadvantage of potentially containing viable tumor cells and lacking a graft-versus-tumor effect.

Because autologous marrow may contain viable tumor cells, numerous strategies have been developed to reduce the number of tumor cells in autologous marrow. Removal of tumor cells (negative selection) using antibodies together with complement, toxins, or immunomagnetic beads is very efficient, removing three to four logs of tumor cells from marrow.20,21 In vitro treatment of marrow with chemotherapy has been studied, as has removal of tumor cells using short-term in vitro culturing of marrow cells.22-24 Techniques involving positive selection of normal hematopoietic stem cells to separate them from tumor cells are also being tested.25

Although gene marking studies have definitively demonstrated that tumor cells in marrow can contribute to relapse,26 it has not been established whether the techniques mentioned above can prevent this outcome. It is also not firmly established how these techniques affect normal marrow function. Several retrospective analyses suggest that purging might be effective in acute myeloid leukemia (AML) and B-cell non-Hodgkin’s lymphoma, but prospective, controlled studies have not been performed.21,27

PERIPHERAL BLOOD STEM CELL TRANSPLANTATION

For several decades, it has been recognized that hematopoietic stem cells circulate in the peripheral blood, albeit in very

Table 1

Marrow Transplantation — Historical Aspects

Year	Event
1949	Spleen shielding experiment of Jacobson et al1
1956	Cytogenetic proof of marrow engraftment3
1959	First human twin transplants for leukemia4
1962	Successful engraftment of allogeneic marrow in dogs5
1968	First successful allogeneic marrow transplant in human6
1977	First successful application of autologous marrow transplantation7
1990	Dr. E. Donnell Thomas awarded Nobel Prize

low numbers. Initial studies in animal models demonstrated that at least 10 times more mononuclear cells were needed to rescue animals from lethal total body irradiation if collected from peripheral blood as compared with marrow.28,29 Predictably, initial attempts to use peripheral blood stem cells as a source of hematopoietic grafts were complicated by the large number of phereses required (often seven or more) and by slow engraftment.30 Recently, it has been shown that administration of chemotherapy and/or hematopoietic growth factors leads to a marked rise in the number of hematopoietic progenitors in the peripheral blood, measured either as colony-formed units or as CD34+ cells. This has triggered intensive study of the use of peripheral blood stem cells as a substitute for marrow.31-33 The results have been dramatic. In the autologous setting, with one to three leukaphereses after treatment with granulocyte colony-stimulating factor (G-CSF) or granulocyte-macrophage colony-stimulating factor (GM-CSF), a sufficient number of cells for engraftment can usually be collected.

Recovery after engraftment using mobilized peripheral blood stem cells is considerably faster than recovery after using marrow.34,35 Similar results have been demonstrated using G-CSF mobilized cells for syngeneic transplantation, and preliminary results suggest the same can be done in the allogeneic setting.36

Concern about the use of peripheral blood cells for autologous transplants centers around the possibility that contamination with tumor cells is greater than with autologous marrow. For allogeneic transplantation, there is the concern that the amount of T-cell contamination is higher than with marrow. However, given the rapid reliable engraftment that has been demonstrated and the fact that the technique avoids a surgical procedure for the donor, it seems likely that mobilized peripheral blood properly manipulated to remove autologous tumor cells or reduce the number of allogeneic T cells will soon replace marrow as the preferred source of stem cells for use after myeloablative therapy in most circumstances.

Preparative Regimens

Following identification of the source of stem cells, the next step in the transplant procedure is the administration of high-dose chemotherapy or radiotherapy or a combination of the two. The goal of the preparative regimen is to eliminate the malignancy and in allogeneic marrow transplantation to sufficiently immunosuppress the patient to allow engraftment. In developing transplant preparative regimens, most investigators have focused on the use of agents that have high activity against the malignancy being treated and also have myelosuppression as their dominant dose-limiting toxicity in the nontransplant setting. Thus, the agents most commonly used are alkylating agents (cyclophosphamide, busulfan, thiotepa, melphalan, carmustine), etoposide, cytarabine, and total body irradiation. The choice of preparative regimen is determined by the particular clinical situation, taking into account the disease under treatment, the age and health of the patient, and the source of marrow.

Marrow Collection and Infusion

Marrow is usually obtained from the donor’s anterior and posterior iliac crests with the donor under spinal or general anesthesia. A total marrow volume of 10
to 15 ml/kg of donor weight is usually obtained with each aspiration site limited to 3 to 5 ml to avoid excessive dilution with peripheral blood. The heparinized marrow is filtered through 0.3-mm and 0.2-mm screens to remove bone spicules and fat. The marrow may require further in vitro treatment to remove unwanted cells, including removing donor red cells to avoid a hematolytic transfusion reaction in the setting of an ABO-incompatible transplant, donor T cells to attempt to avoid GVHD, or tumor cells from autologous marrow as discussed earlier. The risk involved in marrow donation is small. In Seattle, for example, there were six serious but nonfatal complications among 1,220 consecutive donations.37

Peripheral blood stem cells are usually collected using continuous flow apheresis techniques from donors previously treated with hematopoietic growth factor alone or after chemotherapy. In Seattle, attempts are made to collect a minimum of 5 x 10^6 CD34+ cells/kg based on studies demonstrating consistent rapid engraftment when this minimum cell dose is met.38

Table 2
Estimated Five-Year Disease-Free Survival Following Transplantation

Disease	Stage	Allogeneic	Autologous
Acute myeloid leukemia	1st CR	45-65	30-50
	2nd CR	20-45	20-40
Acute lymphocytic leukemia	1st CR	40-70	30-50
	2nd CR	25-45	15-25
Myelodysplastic syndrome	Combined	45	ND
Chronic myelogenous leukemia	Chronic phase	60-75	0-5
	Accelerated phase	30-45	0-5
	Blast crisis	10-20	0-5
Non-Hodgkin’s lymphoma	1st Relapse, 2nd CR	40-60	40-60
	Advanced	10-25	10-25
Hodgkin’s disease	1st Relapse, 2nd CR	40-60	40-60
	Advanced	10-25	10-25
Multiple myeloma	Combined	30	0-5
Neuroblastoma	Stage IV	25-50	25-50
Breast cancer	Stage IV	ND	10-20
	Stage II		70
Testicular cancer	Recurrent	ND	20

CR = complete remission; ND = no data.
Marrow and peripheral blood stem cell infusions are usually well tolerated although patients sometime develop fever, cough, or mild shortness of breath. Slowing the infusion usually alleviates these symptoms.

Engraftment

The rate of engraftment depends on the source of stem cells, the use of hematopoietic growth factor, and the choice of prophylaxis against GVHD. The most rapid engraftment is seen with peripheral blood stem cells, where recovery to granulocyte counts of 100/mm³ usually occurs by day 10 and 500/mm³ by day 12. If marrow rather than peripheral blood is used, the granulocyte count usually reaches 100/mm³ by day 16 and 500/mm³ by day 22. This rate can be accelerated by four to six days with the use of G-CSF or GM-CSF posttransplant (Fig. 2). The use of methotrexate after allogeneic transplant delays recovery by an average of four days. Platelet recovery generally occurs shortly after granulocyte recovery.

Complications of Transplantation

DIRECT TOXICITIES OF CHEMORADIOTHERAPY

Following the standard preparative regimen of cyclophosphamide and total body irradiation, nausea, vomiting, and mild skin erythema develop immediately in almost all patients. Occasionally, hemorrhagic cystitis is seen despite bladder irrigation or mesna therapy, and rarely

Fig. 2. Neutrophil recovery after autologous transplantation for malignant lymphoma. Data on the use of marrow alone or marrow plus granulocyte-macrophage colony-stimulating factor (GM-CSF) from Nemunaitis et al. The curve for recovery with granulocyte colony-stimulating factor (G-CSF) mobilized peripheral blood stem cells (PBSC) from Bensinger et al.
(less than two percent of cases), acute hemorrhagic carditis can develop. Oral mucositis inevitably develops at about five to seven days posttransplant and usually requires narcotic analgesia. Studies at the Fred Hutchinson Cancer Research Center suggest that self-administration of narcotics using a pump provides the greatest patient satisfaction and, surprisingly, uses a lower cumulative dose of narcotics.42 By 10 days posttransplant, most patients have developed complete alopecia and are profoundly granulocytopenic.

Veno-occlusive disease of the liver is a serious complication of high-dose chemoradiotherapy that develops in about 10 percent of patients and is characterized by ascites, tender hepatomegaly, and jaundice occurring any time during the first month posttransplant with a peak incidence at day 16.43 Predisposing factors include pretransplant hepatitis of whatever cause and the use of more intensive conditioning regimens.44 About 30 percent of patients who develop veno-occlusive disease will die with progressive hepatic failure and, terminally, a hepato-renal syndrome. Although there is no proven effective therapy, preliminary studies suggest that treatment with alprostadil or tissue plasminogen activator may reverse the disease.45,46 Randomized trials are in progress.

Most pneumonias occurring post-transplant are infectious in nature, but idiopathic interstitial pneumonia, which is thought to be a direct toxicity of intensive chemoradiotherapy, occurs in five to 10 percent of patients.47 Biopsies reveal some cases to be characterized by diffuse alveolar damage while other have a more clearly interstitial component. Treatment with high-dose steroids is often attempted, but evidence from randomized trials that steroids change the ultimate outcome of this syndrome is lacking.48

Direct complications of chemoradiotherapy seen late after transplantation include decreased growth velocity in children with delay in the development of secondary sex characteristics.49,50 Most postpubertal women will develop ovarian failure, which should be treated, and most men become azospermic.51,52 Cataracts develop in 10 to 20 percent of patients, especially if steroids are required for treatment of chronic GVHD.53 While the above-listed toxicities represent the usual constellation seen after cyclophosphamide and total body irradiation, other preparative regimens may be associated with their own unique problems.

Graft Failure

Although complete or sustained engraftment usually occurs following transplantation, in some cases marrow function either does not return or, after temporary engraftment, marrow function is lost. Following autologous transplantation, graft failure may be the consequence of marrow damage suffered prior to collection. For example, in one large randomized study, prior exposure of patients to chemotherapeutic drugs that presumably affect hematopoietic stem cells was highly associated with poor marrow function posttransplant.54 Graft failure after autologous transplantation can also result from marrow damage during ex vivo treatment, during storage, or because of exposure of the patient to myelotoxic agents posttransplant. There is some evidence to suggest that viral infections, for example, with cytomegalovirus (CMV) or human herpesvirus 6, may result in poor marrow function.55,56

Following allogeneic transplantation, graft failure may be the result of graft rejection, which is thought to represent an immunologic reaction against the graft by residual host immune cells.57,58 Immunologically mediated graft rejection is more commonly seen in patients who receive less immunosuppressive conditioning regimens, in recipients of T-cell-depleted marrow, or in recipients of HLA-mismatched marrow.59,60 Recently,
it has been observed that some patients with GVHD after a period of normal engraftment develop graft failure and that it is impossible to grow marrow stromal cells from such patients, suggesting that a graft-versus-stroma effect may be the cause of poor graft function in some.61

The approach to treatment of graft failure depends on the likely cause. The obvious first step in all patients with poor graft function is to remove all potential myelosuppressive agents. A reasonable second step is to attempt a trial of GM-CSF because published studies suggest that 40 to 50 percent of patients respond.62 Further therapy depends on the evidence for immunologic rejection based on identification of persistent host lymphocytes in peripheral blood or marrow of the patient. If persistent host cells are found, the patient should receive further immunosuppression before a second transplant is performed. Regimens now in use are antithymocyte globulin plus cyclophosphamide or high-dose steroids plus an anti-CD3 antibody.53 If no residual host cells are found, sometimes a second marrow infusion without prior immunosuppression can lead to recovery of hematopoiesis.64

The two most commonly used agents to prevent acute GVHD are methotrexate and cyclosporine. and they are equally effective when used individually.68 The combination of the two is more effective in preventing acute GVHD than either alone.69,70 Removal of T cells from the allogeneic marrow is also effective in preventing acute GVHD, but in most circumstances has been associated with an increased incidence of graft rejection and leukemic relapse.71,72 Accordingly, the use of partial T-cell depletion (i.e., complete depletion followed by adding back a fraction of the T cells) and the use of interleukin-2 after engraftment of T-cell-depleted marrow are all under study.73,74 Once acute GVHD develops, it can be treated with steroids, antithymocyte globulin, and monoclonal antibodies against T cells or their receptors.75-78

GVHD that develops or persists after three months posttransplant is termed chronic GVHD and has features in common with collagen vascular diseases, including a malar rash, scleroderma-like changes, sicca syndrome, arthritis, obliterative bronchiolitis, and, in some cases, bile duct degeneration and cholestasis.79 Chronic GVHD develops in 20 to 40 percent of patients and is seen more often in patients with prior acute GVHD and in older patients.80 Prednisone and/or cyclosporine is the usual treatment, and in some cases, azathioprine or thalidomide has been useful.81-83 In most patients, chronic GVHD eventually resolves and
immunosuppressive therapy can be withdrawn, but one to three years of treatment may be required. Patients with chronic GVHD on immunosuppression are susceptible to bacterial infections and should receive prophylactic trimethoprim/sulfamethoxazole and/or penicillin.

INFECTIOUS DISEASES COMPLICATING MARROW TRANSPLANTATION

During the first two to three weeks posttransplant, all patients are severely granulocytopenic. Most develop a fever, and in about one third, a positive blood culture is found. Febrile granulocytopenic patients should be treated with broad-spectrum antibiotics, and in many centers antibiotics are initiated once patients become granulocytopenic to prevent septicemia. The prophylactic administration of fluconazole reduces the incidence of Candida albicans infection.84

Patients who remain febrile despite antibiotic and antifungal prophylaxis represent a difficult challenge, and their management is guided by individual aspects of the patient and the institutional experience. At most centers, the addition of amphotericin B is the usual next step.85

Granulocyte transfusions can be effective in treating specific infections, particularly now that donors can be treated with G-CSF prior to donation, greatly increasing the number of granulocytes that can be collected and transfused.86 There is no established role for prophylactic granulocyte transfusions.87 Laminar air flow isolation can reduce the incidence of infection, but has no impact on survival in patients being transplanted as treatment for malignancy.88 With current supportive care, the risk of death due to an infectious cause during the period of granulocytopenia is less than five percent.

In the past, CMV infection was frequently seen posttransplant. More recently, it has been shown that primary CMV infection can be prevented in CMV-seronegative patients by the sole use of CMV-seronegative blood products.89 In CMV-seropositive patients, treatment with ganciclovir as soon as virus excretion is evident can diminish the incidence of CMV-associated disease and death, but some patients will develop disease simultaneously with or before excretion is noted.90 Ganciclovir prophylaxis beginning at the time of engraftment can prevent the development of CMV disease in most patients, but ganciclovir causes significant marrow suppression in at least 10 percent of patients.91 Therefore, current studies are evaluating alternative strategies to prevent CMV infection such as monitoring peripheral blood posttransplant for the development of CMV antigenemia and only initiating ganciclovir prophylaxis if and when patients turn positive.

Herpes simplex infection, if not prevented, contributes to the severity of early oral mucositis and esophagitis. However, the prophylactic use of acyclovir 250 mg/m² intravenously every eight hours can prevent herpes simplex reactivation in almost all seropositive patients.92 Pneumocystis carinii used to cause pneumonia in five to 10 percent of patients posttransplant, but now can be prevented in virtually all patients by treatment with oral trimethoprim/sulfamethoxazole for one week pretransplant and then resuming treatment two days per week once engraftment occurs. Dapsone may be useful in preventing infection with P carinii in patients allergic to sulfa drugs.

Patients more than three months posttransplant are still at risk for varicella-zoster infections and if they have chronic GVHD for recurrent bacterial infections. Varicella-zoster infection usually presents as localized disease, but it will disseminate in about one third of patients. The case fatality rate of disseminated varicella-zoster infection occurring during the first nine months posttransplant is 33 percent, and thus all patients with varicella-zoster infection occurring
during this early time period should be treated with acyclovir to prevent dissemination. As noted previously, patients with chronic GVHD receiving immuno-suppression should remain on trimethoprim/sulfamethoxazole and/or penicillin to reduce late bacterial infections.

Treatment of Specific Malignancies with Marrow Transplantation

Acute Myeloid Leukemia

Allogeneic marrow transplantation is the only form of therapy able to cure patients with AML who fail induction therapy, curing 15 to 20 percent of such patients. Thus, all patients aged 55 years or younger with newly diagnosed AML should be HLA typed along with their families soon after diagnosis to enable transplantation for those who fail induction. Allogeneic transplantation can cure about 30 percent of patients in second remission and 35 percent of those in untreated first relapse. These results are superior to those achieved without transplantation and therefore represent situations that are clear indications for the procedure.

The best results with allogeneic transplantation are obtained in patients transplanted in first remission, with a cure rate of 40 to 70 percent reported. At least 14 prospective comparisons of marrow transplantation for those with HLAmatched siblings versus chemotherapy for those without have been published. In these series, the cure rate with marrow transplantation has ranged from 40 to 64 percent, while that for chemotherapy has ranged from 19 to 24 percent. However, there have been important advances in both chemotherapy and transplantation since the conduct of most of these studies. Further, it remains untested whether a strategy of transplantation in first remission is superior to the combination of initial chemotherapy followed by transplantation as salvage therapy.

Autologous marrow transplantation for patients with AML in first and second remission in several phase II studies has yielded similar results to those achieved with allogeneic transplantation. In general, relapse rates after autologous transplantation have been substantially higher than for allogeneic transplantation, but the incidence of death from transplant-related complications has been somewhat lower. In the few studies where the two approaches have been compared head-to-head, allogeneic transplantation has shown a small survival advantage. The largest of these studies, presented only in abstract form, assigned 569 patients with AML in first remission to allogeneic transplantation, autologous transplantation, or continued chemotherapy and found disease-free survival at four years to be 54 percent, 49 percent, and 30 percent, respectively.

Acute Lymphocytic Leukemia

As with AML, allogeneic transplantation for patients with acute lymphocytic leukemia (ALL) who fail induction therapy or develop chemotherapy-resistant disease can cure 15 to 20 percent of patients, and thus these settings represent indications for the procedure. The results of transplantation for patients in second remission are better, with cure rates of 30 to 50 percent reported by several groups. However, further intensive chemotherapy also can cure some patients who suffered initial relapse. This is particularly true for children who relapse more than 18 months after initial induction chemotherapy.

A recent study comparing the outcome of allogeneic transplantation in 255 children to that of an equal number of children treated with chemotherapy reported a five-year disease-free survival of 36 percent for transplant patients compared with 16 percent for chemotherapy patients. The relative benefit of transplantation compared with chemotherapy...
was similar for all categories of children. Thus, allogeneic transplantation can be recommended for all patients with ALL in second complete remission with appropriate donors.123

Allogeneic transplantation for ALL in first remission has been reported to result in long-term disease-free survival in 40 to 70 percent of adult patients.125-127 In a retrospective study comparing these results to those achieved with chemotherapy, no clear advantage could be found for either approach.128 In the largest prospective randomized study published to date, involving 572 patients, the three-year disease-free survival was 43 percent for patients receiving an allogeneic transplant, 39 percent for autologous transplantation, and 32 percent for continued chemotherapy.129 There are some categories of patients, such as those with Philadelphia-chromosome-positive ALL, who have a poor prognosis using non-transplant treatments and therefore are particularly likely to benefit from transplantation in first remission.130

Studies comparing allogeneic to autologous transplantation in ALL have consistently shown a substantially higher relapse rate with autologous transplantation but a somewhat higher rate of death from complications of the transplant with the use of allogeneic marrow.131 In balance, most investigators recommend use of allogeneic marrow if an appropriate donor is available.

MYELODYSPLASTIC SYNDROME

Myelodysplastic syndrome (MDS) is generally considered to be incurable except with marrow transplantation. In some patients, MDS has a relatively indolent course and transplantation can be safely withheld until the disease progresses. However, once patients develop significant granulocytopenia (<1,000 cells/mm³) or thrombocytopenia (<40,000 cells/mm³) or the percentage of blasts in the marrow exceeds five percent, the expected survival of patients with MDS if not transplanted is short, and transplantation should be seriously considered.132 If an HLA-matched sibling is available to serve as a donor, the chance of long-term survival with transplantation in this setting is roughly 45 percent.133-135 Although it is now being explored, there is no established role for autologous transplantation in MDS.

CHRONIC MYELOGENOUS LEUKEMIA

Allogeneic and syngeneic marrow transplantation are the only forms of therapy known to cure chronic myelogenous leukemia (CML), with five-year disease-free survival rates of 15 to 20 percent for patients in blast crisis, 40 to 45 percent for accelerated phase patients, and 60 to 70 percent for patients transplanted during chronic phase (Fig. 3).136,137 Time from diagnosis influences the outcome of transplantation during chronic phase, with the best results obtained in patients transplanted within one year of diagnosis and progressively worse results for longer delays.138,139 Prior exposure to busulfan also is an adverse risk factor for transplantation.139 Thus, patients younger than 55 years with HLA-matched siblings should probably be transplanted as soon after diagnosis as possible, and the use of busulfan during chronic phase should be avoided. A small number of patients aged 55 to 65 years with CML have received transplants, and the reported results are not much worse than in younger patients.140

Results of the use of unrelated donor transplants in CML have been accumulating. Although the initial experience was substantially worse than seen with matched sibling transplants, more recent results demonstrate a disease-free survival of 65 percent at three years, at least at some centers.141,142

The use of autologous transplants for CML is increasingly being studied. There are, at present, no data to suggest that with current approaches, this tech-
Hematologic Malignancies

CHRONIC LYMPHOYTIC LEUKEMIA

Use of marrow transplantation in chronic lymphocytic leukemia (CLL) has received only limited attention. Given the indolent nature of the disease and its propensity to occur in older patients, this is not surprising. Among the small number of patients treated using allogeneic transplantation, complete remissions have been achieved in most, and about 50 percent remain disease-free, albeit with a follow-up of only several years so far. Complete remissions have been achieved, some of which appear to be sustained. Much more study will be needed to determine if transplantation significantly improves long-term outcome in this disease.

NON-HODGKIN’S LYMPHOMA

Patients with disseminated intermediate- or high-grade non-Hodgkin’s lymphoma (NHL) who fail conventional therapy are seldom cured without transplantation. High-dose therapy followed by autologous or allogeneic marrow transplantation can cure a substantial proportion of such patients. A number of studies have documented cure rates of 40 to 50 percent for patients transplanted after an initial relapse but while their tumors remain sensitive to chemotherapy. Cure rates decrease substantially once the disease becomes resistant to conventional-
dose treatment.146-148 A poor performance status and large tumor bulk are additional adverse risk factors.

As in other diseases, patients transplanted using allogeneic marrow have a lower relapse rate but a higher risk of nonrelapse mortality than patients transplanted using autologous marrow.146,149

For most categories of intermediate- and high-grade NHL, the outcomes of allogeneic and autologous transplantation appear roughly similar, although an advantage for allogeneic transplantation in patients with lymphoblastic lymphoma has been suggested.

Some studies have begun to explore the use of transplantation in first remission. Several encouraging pilot studies have been published.150-152 A large, randomized study failed to show an overall benefit for transplantation in first remission but did suggest that patients with significant risk factors for poor outcome with chemotherapy might benefit from early transplantation.153

Marrow transplantation for patients with low-grade NHL has also been intensively studied. Disease-free survival of 40 to 60 percent with a follow-up of three to four years has been reported for patients transplanted after failing front-line therapy.21,154 However, late relapses have been seen in some patients, and the ultimate cure rate with this approach is as yet undetermined. Trials of autologous transplantation for low-grade lymphoma in first remission are under way.

HODGKIN’S DISEASE

The results of transplantation for Hodgkin’s disease are similar to those for NHL. A substantial proportion of patients who have failed first-line chemotherapy for Hodgkin’s disease can be cured with salvage transplantation.155-157 Results are better if transplants are performed when patients have chemotherapy-sensitive disease with minimal bulk and a good performance status. In this setting, cure rates of 40 to 70 percent have been reported.158 As with NHL, lower relapse rates but higher nonrelapse mortality are seen with use of allogeneic as opposed to autologous marrow.146,157,159

MULTIPLE MYELOMA

Allogeneic marrow transplantation is being increasingly used to treat patients for multiple myeloma. Overall survival rates for allogeneic transplantation in patients who have failed first-line therapy have averaged 35 percent at five years after transplant, and importantly, there appears to be a plateau in disease-free survival, suggesting that some of these patients are cured.160,161 Autologous transplantation is also being increasingly studied. There is less evidence that this approach can lead to long-term cure with current techniques. However, if used before patients have truly resistant disease, autologous transplantation can result in a substantial reduction in tumor burden and in many cases to at least temporary complete remissions.162-165 In one large randomized study, presented only in abstract form so far, autologous transplantation used shortly after patients had achieved a complete remission led to significantly longer remission durations with a trend toward improved overall survival compared with further conventional chemotherapy.166

OTHER HEMATOLOGIC MALIGNANCIES

Long-term survival has been documented following allogeneic marrow transplantation for patients with hairy cell leukemia and various myeloproliferative syndromes, but the number of patients reported in any one disease category is small.

NEUROBLASTOMA

High-dose therapy followed by autologous or allogeneic marrow transplantation can apparently cure 15 percent of pa-
patients with recurrent neuroblastoma and up to 40 percent of patients with stage IV disease transplanted while in remission. These results are generally considered to be superior to those obtained with conventional chemotherapy, but randomized trials to substantiate this view are lacking.

BREAST CANCER

High-dose therapy followed by autologous marrow transplantation results in a higher rate of complete remission than seen with standard-dose chemotherapy in women with stage IV breast cancer. Studies in a large number of such patients have reported disease-free survival at two to five years of 10 to 30 percent. While these results appear superior to those achieved with standard-dose chemotherapy, longer follow-up will be needed to determine if completely responding patients are cured and whether this percentage is truly higher than seen with conventional-dose chemotherapy. Based on these initial high response rates, high-dose therapy followed by autologous transplantation has been increasingly studied in patients at extremely high risk to recur after conventional-dose adjuvant therapy, such as patients with 10 or more positive nodes. Preliminary results of such an approach appear encouraging and have led to a nationwide controlled trial.

In addition to the important scientific questions raised by the application of autologous transplantation for breast cancer, the number of patients potentially impacted and the relatively high cost of care have made this approach the archetypal in the discussion of who pays for the medical care of patients receiving treatment on clinical trials. How this question is answered will have a profound impact on further clinical research.

TESTICULAR CANCER

Although standard-dose chemotherapy for testicular cancer is highly effective, 30 to 40 percent of patients fail conventional regimens. High-dose chemotherapy with autologous marrow support has resulted in a two-year disease-free survival rate of about 20 percent in patients with advanced recurrent disease, a rate that is seemingly better than that achieved with conventional approaches.

Studies of high-dose therapy with stem cell support are currently being conducted for ovarian cancer, small cell lung cancer, glioblastoma multiforme, and soft-tissue sarcoma in addition to the malignancies mentioned above.

New Approaches in Transplantation

Numerous new approaches to the clinical application of marrow and peripheral blood stem cell transplantation for the treatment of malignancy are under study. One area of research involves the source and quality of stem cells used for transplantation. Already, the use of mobilized peripheral blood stem cells has improved the safety and diminished the cost of autologous transplantation and may have a similar effect for allogeneic transplantation. Possible sources of allogeneic stem cells have been increased with the expansion of the National Marrow Donor Program and the demonstration...
that stem cells obtained from cord blood offer a viable alternative. Efforts to try to improve the quality of autologous marrow continue through the discovery of more sensitive markers for residual disease and the development of better methods to eliminate contaminating tumor cells, for example, in vitro treatment with immunomagnetic beads, antisense oligonucleotides, and positive selection of hematopoietic stem cells.

A large effort is being made to improve the safety of the transplant procedure. Advances in the prevention and treatment of a number of infectious diseases have already had a major effect, significantly diminishing the impact of *P carinii*, herpes infections, and, most recently, cytomegalovirus disease. Better methods to prevent and treat fungal infections are needed and are under study. Mortality from GVHD after matched-sibling transplants is now distinctly unusual, but GVHD continues to be a major problem limiting the success of mismatched and unrelated transplants. Studies exploring the depletion of subsets of T cells from donor marrow show promise. Recent advances in our understanding of the requirement of T cells to see both their particular antigen plus a costimulatory signal for normal activation have raised the possibility that by blocking the costimulatory signal, anergy or clonal deletion might be achieved. Studies exploring these approaches are ongoing.

Perhaps the most important area of research concerns the development of techniques to more effectively eradicate the underlying malignancy. Most currently used preparative regimens rely on systemic chemotherapy, often with total body irradiation. Clinical studies have demonstrated that higher-dose regimens more effectively eliminate the underlying malignancy but are associated with an increased risk of nonrelapse mortality. Thus, investigators are examining whether monoclonal antibodies or other targeting agents can be used to deliver higher doses of radiotherapy or chemotherapy to sites of malignancy while sparing normal organs. Initial studies demonstrate that this is possible in the treatment of leukemia and lymphoma and have yielded encouraging clinical results.

Other approaches to improve the effectiveness of the transplant regimen in eliminating the underlying malignancy are based on the important observation that relapse of most forms of leukemia and lymphoma is more frequent after syngeneic or T-cell-depleted transplantation than it is after allogeneic transplantation, particularly if patients develop some GVHD. A number of relatively nonspecific attempts to capitalize on this graft-versus-leukemia (GVL) effect are being made, including the use of cyclosporine to try to produce pseudo-GVHD after autologous transplantation and the use of donor buffy coat or interleukin-2 after allogeneic transplantation. Experiments in animal models of the graft-versus-leukemia effect have shown that it is largely a T-cell phenomenon and that the T cells that cause GVHD are not necessarily the same ones responsible for the graft-versus-leukemia effect. Thus, experiments are under way attempting to identify, isolate, and expand T cells with relative specificity for the tumor for use after allogeneic transplantation.

Since its first successful application 25 years ago, the clinical use of marrow and peripheral blood stem cell transplantation has dramatically increased (Fig. 1). While everyone looks forward to a day when antitumor therapies will be less toxic and less expensive than transplantation, current success and the prospects for further improvement argue that, at least for the immediate future, marrow and peripheral blood stem cell transplantation will play a wider role in the treatment of patients with cancer.
References

1. Jacobson LO, Marks EK, Robson MJ, et al: Effect of spleen protection on mortality following x-irradiation. J Lab Clin Med 1949;34:1538-1543.
2. Lorenz E, Uphoff D, Reid TR, Shelton E: Modification of irradiation injury in mice and guinea pigs by bone marrow injections. J Natl Cancer Inst 1951;12:197-201.
3. Ford CE, Hamerton JL, Barnes DWH, Louitit JF: Cytological identification of radiation-chimaeras. Nature 1956;177:452-454.
4. Thomas ED, Lochtke HL Jr, Cannon JH, et al: Supralethal whole body irradiation and isologous marrow transplantation in man. J Clin Invest 1959; 38:1709-1716.
5. Thomas ED, Collins JA, Herman EC Jr, Ferrebee JW: Marrow transplants in lethally irradiated dogs given methotrexate. Blood 1962;19:217-228.
6. Gatti RA, Meuwissen HJ, Allen HD, et al: Immunological reconstitution of sex-linked lymphopenic immunological deficiency. Lancet 1968; 2:1366-1369.
7. Thomas ED, Storb R, Clift RA, et al: Bone-marrow transplantation. N Engl J Med 1975;292:832-843,895-902.
8. Appelbaum FR, Herzig GP, Ziegler JL, et al: Successful engraftment of cryopreserved autologous bone marrow in patients with malignant lymphoma. Blood 1978;52:85-95.
9. Spangrude GJ, Heimfeld S, Weissman IL: Purification and characterization of mouse hematopoietic stem cells. Science 1988;241:58-62.
10. Lord BI, Schofield R: Haemopoietic spleen colony-forming units, in Potten CS, Hendry JH (eds): Cell Clones: Manual of Mammalian Cell Culture for autologous bone marrow transplants in patients with leukemia or lymphoma. N Engl J Med 1991;325:1525-1533.
11. Clark BR, Gallagher JT, Dexter TM: Cell adhesion in the stromal regulation of haemopoiesis. J Pathol 1992;166:19-652.
12. Appelbaum FR, Herzig GP, Graw RG, et al: Study of cell dose and storage time on engraftment of cryopreserved autologous bone marrow in a canine model. Transplantation 1978:26:245-248.
13. Beatty PG, Clift RA, Mickelson EM, et al: Marrow transplantation from related donors other than HLA-identical siblings. N Engl J Med 1985; 313:765-771.
14. Anasetti C, Amos D, Beatty PG, et al: Effect of HLA compatibility on engraftment of bone marrow transplants in patients with leukemia or lymphoma. N Engl J Med 1989;320:197-204.
15. O'Reilly RJ, Dupont B, Pahwa S, et al: Reconstitution in severe combined immunodeficiency by transplantation of bone marrow from an unrelated donor. N Engl J Med 1977;297:1311-1318.
16. Hansen JA, Clift RA, Thomas ED, et al: Transplantation of marrow from an unrelated donor to a patient with acute leukemia. N Engl J Med 1980;303:565-567.
17. McCullough J, Hansen J, Perkins H, et al: The National Marrow Donor Program: How it works, accomplishments to date. Oncology 1989;3:63-72.
18. Beatty PG, Hansen JA, Longton GM, et al: Marrow transplantation from HLA-matched unrelated donors for treatment of hematologic malignancies. Transplantation 1991;51:443-447.
19. Kernan NA, Bartsch G, Ash RC, et al: Analysis of 462 transplantations from unrelated donors facilitated by the National Marrow Donor Program. N Engl J Med 1993;328:593-602.
20. Bast RC Jr, DeFabritiis P, Lipton J, et al: Elimination of malignant clonogenic cells from human bone marrow using multiple monoclonal antibodies and complement. Cancer Res 1985; 45:499-503.
21. Gribben JG, Freedman AS, Neuberger D, et al: Immunologic purging of marrow assessed by PCR before autologous bone marrow transplantation for B-cell lymphoma. N Engl J Med 1991;325:1525-1533.
22. Rowley SD, Jones RJ, Piantadosi S, et al: Efficacy of ex vivo purging for autologous bone marrow transplantation in the treatment of acute nonlymphoblastic leukemia. Blood 1989;74:501-506.
23. Gorin NC, Aegeter P, Auvert B, et al: Autologous bone marrow transplantation for acute myelocytic leukemia in first remission: A European survey of the role of marrow purging. Blood 1990;75:1606-1614.
24. Chang J, Morgenstern GR, Coutinho LH, et al: The use of bone marrow cells grown in long-term culture for autologous bone marrow transplantation in acute myeloid leukaemia: An update. Bone Marrow Transplant 1989;4:5-9.
25. Berenson RJ, Bensinger WI, Hill RS, et al: Engraftment after infusion of CD34+ marrow cells in patients with breast cancer or neuroblastoma. Blood 1991;77:1717-1722.
26. Brenner MK, Rill DR, Moen RC, et al: Gene-marking to trace origin of relapse after autologous bone-marrow transplantation. Lancet 1993;341:85-86.
27. Labopin M, Gorin NC: Autologous bone marrow transplantation in 2502 patients with acute leukemia in Europe: A retrospective study. Leukemia 1992;6(suppl 4):95-99.
28. Cavins JA, Scheer SC, Thomas ED, Ferrebee JW: The recovery of lethally irradiated dogs given infusions of autologous leukocytes preserved at -80 C. Blood 1964;23:38-43.
29. Appelbaum FR: Hemopoietic reconstitution following autologous bone marrow and peripheral blood mononuclear cell infusions. Exp Hematol 1979;7(Suppl 5):7-11.
30. Keski-Hokkanen A, Armitage JO, Landmark JD, et al: Autologous peripheral hematopoietic stem cell stem cell transplantation restores hematopoietic function following marrow ablative therapy. Blood 1988;71: 723-727.
31. Richman CM, Weiner RS, Yankee RA: Increase in circulating stem cells following
chemotherapy in man. Blood 1976;47:1031-1039.
32. Socinski MA, Cannistra SA, Elias A, et al: Granulocyte-macrophage colony stimulating factor expands the circulating hemopoietic progenitor cell compartment in man. Lancet 1988;1:1194-1198.
33. Gianni AM, Siena S, Bregni M, et al: Granulocyte-macrophage colony-stimulating factor to harvest circulating hemopoietic stem cells for autotransplantation. Lancet 1989;2:580-585.
34. Bensinger W, Singer J, Appelbaum F, et al: Autologous transplantation with peripheral blood mononuclear cells collected after administration of recombinant granulocyte stimulating factor. Blood 1993;81:3158-3163.
35. Pettengell R, Morgenstern GR, Woll PJ, et al: Peripheral blood progenitor cell transplantation in lymphoma and leukemia using a single apheresis. Blood 1993;82:3770-3777.
36. Weaver CH, Buckner CD, Longin K, et al: Syngeneic transplantation with peripheral blood mononuclear cells collected after the administration of recombinant human granulocyte colony-stimulating factor. Blood 1993;82:1981-1984.
37. Buckner CD, Clift RA, Sanders JE, et al: Marrow harvesting from normal donors. Blood 1984;64:630-634.
38. Bensinger WI, Longin K, Appelbaum F, et al: Peripheral blood stem cells (PBSCs) collected after recombinant granulocyte colony stimulating factor (rG-CSF): An analysis of factors correlating with the tempo of engraftment after transplantation. Br J Haematol 1994;87:825-831.
39. Nemunaitis J, Rabinowe SN, Singer JW, et al: Recombinant granulocyte-macrophage colony-stimulating factor after autologous bone marrow transplantation for lymphoid cancer. N Engl J Med 1991;324:1773-1778.
40. Advani R, Chao NJ, Horning SJ, et al: Granulocyte-macrophage colony-stimulating factor (GM-CSF) as an adjunct to autologous hemopoietic stem cell transplantation for lymphoma. Ann Intern Med 1992;116:183-189.
41. Gianni AM, Siena S, Bregni M, et al: Phase I/II trial of recombinant human granulocyte-macrophage colony-stimulating factor following allogeneic bone marrow transplantation. Blood 1991;77:2065-2071.
42. Hill HF, Chapman CR, Kornell JA, et al: Self-administration of morphine in bone marrow transplant patients reduces drug requirement. Pain 1990;40:121-129.
43. Shulman HM, Hinterberger W: Hepatic veno-occlusive disease: Liver toxicity syndrome after bone marrow transplantation. Bone Marrow Transplant 1992;10:197-214.
44. McDonald GB, Hinds MS, Fisher LD, et al: Veno-occlusive disease of the liver and multi-organ failure after bone marrow transplantation: A cohort study of 355 patients. Ann Intern Med 1993;118:255-267.
45. Bearman SI, Shen DD, Hinds MS, et al: A phase I/II study of prostaglandin E, for the prevention of hepatic venoocclusive disease after bone marrow transplantation. Br J Haematol 1993;84:724-730.
46. Bearman SI, Shuhart MC, Hinds MS, McDonald GB: Recombinant human tissue plasminogen activator for the treatment of established severe venoocclusive disease of the liver after bone marrow transplantation. Blood 1992;80:2458-2462.
47. Crawford SW, Hackman RC: Clinical course of idiopathic pneumonia after marrow transplantation. Am Rev Respir Dis 1993;147:1393-1400.
48. Chao NJ, Duncan SR, Long GD, et al: Corticosteroid therapy for diffuse alveolar hemorrhage in autologous bone marrow transplant recipients. Ann Intern Med 1991;114:145-146.
49. Sanders JE, Pritchard S, Mahoney P, et al: Growth and development following marrow transplantation for leukemia. Blood 1986;68:1129-1135.
50. Sanders JE: The impact of marrow transplant preparative regimens on subsequent growth and development: The Seattle Marrow Transplant Team. Semin Hematol 1991;28:244-249.
51. Sanders JE, Buckner CD, Leonard JM, et al: Late effects on gonadal function of cyclophosphamide, total-body irradiation, and marrow transplantation. Transplantation 1983;36:252-255.
52. Sanders JE, Buckner CD, Amos D, et al: Ovarian function following marrow transplantation for aplastic anemia or leukemia. J Clin Oncol 1988;6:813-818.
53. Deeg HJ, Flourney N, Sullivan KM, et al: Cataracts after total body irradiation and marrow transplantation: A sparing effect of dose fractionation. Int J Radiat Oncol Biol Phys 1984;10:957-964.
54. Rabinowe SN, Neuber B, Dierman PJ, et al: Long-term follow-up of a phase III study of recombinant human granulocyte-macrophage colony-stimulating factor after autologous bone marrow transplantation for lymphoid malignancies. Blood 1993;81:1903-1908.
55. Torok-Storb B, Fries B, Stachel D, Khaira D: Cytomegalovirus: Variations in tropism and disease. Leukemia 1993;7:583-585.
56. Knox KK, Carrigan DR: In vitro suppression of Cytomegalovirus: Variations in tropism and disease. Leukemia 1993;7:583-585.
57. Storb R, Prentice RL, Thomas ED, et al: The Seattle Marrow Transplant Team. Semin Hematol 1991;28:244-249.
58. Sanders JE, Pritchard S, Mahoney P, et al: Growth and development following marrow transplantation for leukemia. Blood 1986;68:1129-1135.
59. Sanders JE: The impact of marrow transplant preparative regimens on subsequent growth and development: The Seattle Marrow Transplant Team. Semin Hematol 1991;28:244-249.
60. Champlin RE, Carigan DR: In vitro suppression of Cytomegalovirus: Variations in tropism and disease. Leukemia 1993;7:583-585.
61. Knox KK, Carrigan DR: In vitro suppression of Cytomegalovirus: Variations in tropism and disease. Leukemia 1993;7:583-585.
Transplant Proc 1987;19(6 suppl 7):33-37.
62. Nemunaitis J, Singer JW, Buckner CD, et al: The use of recombinant human granulocyte-macrophage colony-stimulating factor in graft failure after bone marrow transplantation. Blood 1990;76:245-253.
63. Storb R, Weiden PL, Sullivan KM, et al: Second marrow transplants in patients with aplastic anemia rejecting the first graft: Use of a conditioning regimen including cyclophosphamide and antithymocyte globulin. Blood 1987;70:116-121.
64. Bolger GB, Sullivan KM, Storb R, et al: Second marrow infusion for poor graft function after allogeneic marrow transplantation. Bone Marrow Transplant 1986;1:21-30.
65. Sullivan KM: Graft-versus-host disease, in Forman SJ, Blume KG, Thomas ED (eds): Bone Marrow Transplantation. Boston, Blackwell Scientific Publications, 1994, pp 339-362.
66. Anasetti C, Beatty PG, Storb R, et al: Effect of HLA incompatibility on graft-versus-host disease, relapse, and survival after marrow transplantation for patients with leukemia or lymphoma. Hum Immunol 1990;29:79-91.
67. Nash RA, Pepe MS, Storb R, et al: Acute graft-versus-host disease: Analysis of risk factors after allogeneic marrow transplantation and prophylaxis with cyclosporine and methotrexate. Blood 1992;80:1835-1845.
68. Storb R, Deeg HJ, Fisher L, et al: Cyclosporine v methotrexate for graft-v-host disease prevention in patients given marrow grafts for leukemia: Long-term follow-up of three controlled trials. Blood 1988;71:293-298.
69. Storb R, Deeg HJ, Whitehead J, et al: Methotrexate and cyclosporine compared with cyclosporine alone for prophylaxis of acute graft versus host disease after marrow transplantation for leukemia. N Engl J Med 1986;314:729-735.
70. Storb R, Deeg HJ, Pepe M, et al: Methotrexate and cyclosporine versus cyclosporine alone for prophylaxis of graft-versus-host disease in patients given HLA-identical marrow grafts for leukemia: Long-term follow-up of a controlled trial. Blood 1989;73:1729-1734.
71. Goldman JM, Gale RP, Horowitz MM, et al: Bone marrow transplantation for chronic myelogenous leukemia in chronic phase: Increased risk of relapse associated with T-cell depletion. Ann Intern Med 1988;108:806-814.
72. Martin PJ, Hansen JA, Torok-Storb B, et al: Graft failure in patients receiving T cell-depleted HLA-identical allogeneic marrow transplants. Bone Marrow Transplant 1988;3:445-456.
73. Champlin R, Ho W, Gajewski J, et al: Selective depletion of CD8+ T lymphocytes for prevention of graft-versus-host disease after allogeneic bone marrow transplantation. Blood 1990;76:418-423.
74. Soiffer RJ, Bosserman L, Murray C, et al: Reconstitution of T-cell function after CD6-depleted allogeneic bone marrow transplantation. Blood 1990;75:2076-2084.
75. Martin PJ, Schoch G, Fisher L, et al: A retrospective analysis of therapy for acute graft-versus-host disease: Initial treatment. Blood 1990;76:1464-1472.
76. Martin PJ, Schoch G, Fisher L, et al: Retrospective analysis of therapy for acute graft-versus-host disease: Secondary treatment. Blood 1991;77:1821-1828.
77. Anasetti C, Martin PJ, Hansen JA, et al: A phase I-II study evaluating the murine anti-IL-2 receptor antibody 2A3 for treatment of acute graft-versus-host disease. Transplantation 1990;50:49-54.
78. Anasetti C, Martin PJ, Storb R, et al: Treatment of acute graft-versus-host disease with a nonmitogenic anti-CD3 monoclonal antibody. Transplantation 1992;54:844-851.
79. Sullivan KM, Agura E, Anasetti C, et al: Chronic graft-versus-host disease and other late complications of bone marrow transplantation. Semin Hematol 1991;28:250-259.
80. Atkinson K, Horowitz MM, Gale RP, et al: Risk factors for chronic graft-versus-host disease after HLA-identical sibling bone marrow transplantation. Blood 1988;72:555-561.
81. Sullivan KM, Witherspoon RP, Storb R, et al: Alternating-day cyclosporine and prednisone for treatment of high-risk chronic graft-v-host disease. Blood 1988;72:555-561.
82. Sullivan KM, Witherspoon RP, Storb R, et al: Prednisone and azathioprine compared with prednisone and placebo for treatment of chronic graft-v-host disease: Prognostic influence of prolonged thrombocytopenia after allogeneic marrow transplantation. Blood 1988;72:546-554.
83. Vogelsang GB, Farmer ER, Hess AD, et al: Thalidomide for the treatment of chronic graft versus host disease. N Engl J Med 1992;326:1055-1058.
84. Goodman JL, Winston DJ, Greenfield RA, et al: A controlled trial of fluconazole to prevent fungal infections in patients undergoing bone marrow transplantation. N Engl J Med 1992;326:845-851.
85. Pizzo PA: Management of fever in patients with cancer and treatment-induced neutropenia. N Engl J Med 1990;323:1333-1332.
86. Bensinger WI, Price TH, Dale DC, et al: The effects of daily recombinant human granulocyte colony stimulating factor administration on normal granulocyte donors undergoing leukapheresis. Blood 1993;81:1883-1888.
87. Petersen FB, Buckner CD, Clift RA, et al: Prevention of nosocomial infections in marrow transplant patients: A prospective randomized comparison of systemic antibiotics versus granulocyte transfusions. Infect Control 1986;7:586-592.
88. Petersen F, Thorquaint M, Buckner C, et al: The effects of infection prevention regimens on early infectious complications in marrow transplant patients: A four arm randomized study. Infection 1988;16:199-208.
89. Bowden RA, Sayers M, Flourney N, et al: Cytomegalovirus immune globulin and seronegative blood products to prevent primary cytomegalovirus infection after marrow transplantation. N Engl J Med 1986;314:1006-1010.
90. Goodrich JM, Mori M, Gleaves CA, et al: Early treatment with ganciclovir to prevent cytomegalovirus disease after allogeneic bone marrow transplantation. N Engl J Med 1991;325:1601-1607.
91. Goodrich JM, Bowden RA, Fisher L, et al: Ganciclovir prophylaxis to prevent cytomegalovirus disease after allogeneic marrow transplant. Ann Intern Med 1993;118:173-178.
92. Meyers JD, Wade JC, Mitchell CD, et al: Multicenter collaborative trial of intravenous acyclovir for treatment of mucocutaneous herpes simplex virus infection in the immunocompromised host. Am J Med 1982;73:229-235.
93. Meyers JD, Wade JC, Shepp DH, Newton B: Acyclovir treatment of varicella-zoster virus infection in the compromised host. Transplantation 1984;37:571-574.
94. Biggs JC, Horowitz MM, Gale RP, et al: Bone marrow transplants may cure patients with acute leukemia never achieving remission with chemotherapy. Blood 1992;80:1090-1093.
95. Forman SJ, Schmidt GM, Nademanee AP, et al: Allogeneic bone marrow transplantation as therapy for primary induction failure for patients with acute leukemia. J Clin Oncol 1991;9:1570-1574.
96. Clift RA, Buckner CD, Thomas ED, et al: The treatment of acute non-lymphoblastic leukemia by allogeneic marrow transplantation. Bone Marrow Transplant 1987;2:243-258.
97. Appelbaum FR, Clift RA, Buckner CD, et al: Allogeneic marrow transplantation for acute non-lymphoblastic leukemia after first relapse. Blood 1983;61:949-953.
98. Clift RA, Buckner CD, Appelbaum FR, et al: Allogeneic marrow transplantation during untreated first relapse of acute myeloid leukemia. J Clin Oncol 1992;10:1723-1729.
99. Thomas ED, Buckner CD, Clift RA, et al: Marrow transplantation for acute nonlymphoblast leukemia in first remission. N Engl J Med 1979;301:597-599.
100. Blume KG, Beuttler E, Bross KJ, et al: Bone marrow mobilisation and allogeneic marrow transplantation in acute leukemia. N Engl J Med 1980;302:1041-1046.
101. Appelbaum FR, Dahlberg S, Thomas ED, et al: Bone marrow transplantation or chemotherapy after remission induction for adults with acute nonlymphoblastic leukemia: A five-year follow-up. Blood 1988;72:179-184.
102. Champlin RE, Ho WG, Gale RP, et al: Treatment of acute myelogenous leukemia: A prospective controlled trial of bone marrow transplantation versus consolidation chemotherapy. Ann Inten Med 1985;102:285-291.
103. Marmont A, Bagicalupo A, Van Lint MT, et al: Bone marrow transplantation versus chemotherapy alone for acute nonlymphoblastic leukemia. Exp Hematol 1985;13(suppl 17):40.
104. Zander AR, Keating M, Dicke K, et al: A comparison of bone marrow transplantation with chemotherapy for adults with acute leukemia of poor prognosis in first complete remission. J Clin Oncol 1988;6:1548-1557.
105. Conde E, Iriondo A, Rayon C, et al: Allogeneic bone marrow transplantation versus intensification chemotherapy for acute myelogenous leukaemia in first remission: A prospective controlled trial. Br J Haematol 1988:68:219-226.
106. Reiffers J, Gaspard MH, Maraninchi D, et al: Comparison of allogeneic or autologous bone marrow transplantation and chemotherapy in patients with acute myeloid leukaemia in first remission: A prospective controlled trial. Br J Haematol 1989;72:57-63.
107. Ringden O, Bolme P, Lonnqvist B, et al: Allogeneic bone marrow transplantation versus chemotherapy in children with acute leukemia in Sweden. Pediatr Hematol Oncol 1989;6:137-144.
108. Dahl GV, Kalwinsky DK, Mirro J Jr, et al: Allogeneic bone marrow transplantation in a program of intensive sequential chemotherapy for children and young adults with acute nonlymphocytic leukemia in first remission. J Clin Oncol 1990;8:295-303.
109. Schiller GJ, Nimer SD, Territo MC, et al: Bone marrow transplantation versus high-dose cytarabine-based consolidation chemotherapy for acute myelogenous leukemia in first remission. J Clin Oncol 1992;10:41-46.
110. Cassileth PA, Lynch E, Hines JD, et al: Varying intensity of postremission therapy in adult acute myeloid leukemia. Blood 1992;79:1924-1930.
111. Amadori S, Testi AM, Arico M, et al: Prospective comparative study of bone marrow transplantation and postremission chemotherapy for childhood acute myelogenous leukemia. J Clin Oncol 1993;11:1046-1054.
112. Nesbit ME Jr, Buckley JD, Feig SA, et al: Chemotherapy for induction of remission of childhood acute myeloid leukemia followed by marrow transplantation or multiagent chemotherapy: A report from the childrens cancer group. J Clin Oncol 1994;12:127-135.
113. Archimbaud E, Thomas X, Michallet M, et al: Prospective genetically randomized comparison between intensive postinduction chemotherapy and bone marrow transplantation in adults with newly diagnosed acute myeloid leukemia. J Clin Oncol 1994;12:262-267.
114. Hewlett J, Kopecky JK, Head D, et al: A prospective evaluation of the roles of allogeneic marrow transplantation and low-dose monthly maintenance chemotherapy in the treatment of adult acute myelogenous leukemia (AML): A Southwest Oncology Group study. Leukemia 1995;9:562-569.
115. Yeager AM, Kaizer H, Santos GW, et al: Autologous bone marrow transplantation in patients with acute nonlymphocytic leukemia, using ex vivo marrow treatment with 4-hydroperoxycyclophosphamide. N Engl J Med 1986;315:141-147.
117. Lowenberg B, Verdonck LJ, Dekker AW, et al: Autologous bone marrow transplantation in acute myeloid leukemia in first remission: Results of a Dutch prospective study. J Clin Oncol 1990;8:287-294.
118. Chao NJ, Stein AS, Long GD, et al: Busulfan/etoposide-initial therapy with a new preparative regimen for autologous bone marrow transplantation in patients with acute nonlymphoblastic leukemia. Blood 1993;81:319-323.
119. Ball ED, Mills LE, Cornwell GG 3d, et al: Autologous bone marrow transplantation for acute myeloid leukemia using monoclonal antibody-purged bone marrow. Blood 1990;75:1199-1206.
120. Petersen FB, Lynch MH, Clift RA, et al: Autologous marrow transplantation for patients with acute myeloid leukemia in untreated first relapse or in second complete remission. J Clin Oncol 1993;11:1353-1360.
121. Zittoun R, Mandelli F, Willemze R, et al: Prospective phase III study of autologous bone marrow transplantation (ABMT) v short intensive chemotherapy (IC) v allogeneic bone marrow transplantation (ALLO-BMT) during first complete remission (CR) of acute myelogenous leukemia (AML): Results of the EORTC-GIMEMA AML 8A trial. Blood 1993;82(suppl 1):85a. Abstract.
122. Brochstein JA, Kernan NA, Groshen S, et al: Allogeneic bone marrow transplantation after hyperfractionated total-body irradiation and cyclophosphamide in children with acute leukemia. N Engl J Med 1987;317:1618-1624.
123. Zwaan FE, Hermans J, Barrett AJ, Speck B: Bone marrow transplantation for acute lymphoblastic leukaemia: A survey of the European Group for Bone Marrow Transplantation (EGBMT). Br J Haematol 1984;58:33-42.
124. Barrett AJ, Horowitz MM, Pollock BH, et al: Bone marrow transplants from HLA-identical siblings as compared with chemotherapy for children with acute lymphoblastic leukemia in a second remission. N Engl J Med 1994;19:1253-1258.
125. Doney K, Bukner CD, Kopecki KJ, et al: Marrow transplantation for patients with acute lymphoblastic leukemia in first marrow remission. Bone Marrow Transplant 1987;2:355-363.
126. Barrett AJ, Horowitz MM, Gale RP, et al: Marrow transplantation for acute lymphoblastic leukemia: Factors affecting relapse and survival. Blood 1989;74:862-871.
127. Chao NJ, Forman SJ, Schmidt GM, et al: Allogeneic bone marrow transplantation for high-risk acute lymphoblastic leukemia during first complete remission. Blood 1991;78:1923-1927.
128. Horowitz MM, Messerer D, Hoelzer D, et al: Gammaherapy and bone marrow transplantation for adults with acute lymphoblastic leukemia in first remission. Ann Intern Med 1991;115:13-18.
129. Fiere D, Lepage E, Sebban C, et al: Adult acute lymphoblastic leukemia: A multicentric randomized trial testing bone marrow transplantation as postremission therapy. J Clin Oncol 1993;11:1990-2001.
130. Barrett AJ, Horowitz MM, Ash RC, et al: Bone marrow transplantation for Philadelphia chromosome-positive acute lymphoblastic leukemia. Blood 1992;79:3067-3070.
131. Kersey JH, Weisdorf D, Nesbit ME, et al: Comparison of autologous and allogeneic bone marrow transplantation for treatment of high-risk refractory acute lymphoblastic leukemia. N Engl J Med 1987;317:461-467.
132. Sanz GF, Sanz MA, Vallespi T, et al: Two regression models and a scoring system for predicting survival and planning treatment in myelodysplastic syndromes: A multivariate analysis of prognostic factors in 370 patients. Blood 1989;74:395-408.
133. Appelbaum FR, Barrall J, Storb R, et al: Bone marrow transplantation for patients with myelodysplasia: Pretreatment variables and outcome. Ann Intern Med 1990;112:590-597.
134. Anderson JE, Appelbaum FR, Fisher LD, et al: Allogeneic bone marrow transplantation for 93 patients with myelodysplastic syndrome. Blood 1993;82:677-681.
135. O’Donnell MR, Nadeeman AP, Snyder DS, et al: Bone marrow transplantation for myelodysplastic and myeloproliferative syndromes. J Clin Oncol 1987;5:1822-1826.
136. Champlin R, McGlave P: Allogeneic bone marrow transplantation for chronic myeloid leukemia, in Forman SJ, Blume KG, Thomas ED (eds): Bone Marrow Transplantation. Boston, Blackwell Scientific Publications, 1994.
137. Thomas ED, Clift RA, Fefer A, et al: Marrow transplantation for the treatment of chronic myelogenous leukemia. Ann Intern Med 1986;104:155-163.
138. Thomas ED, Clift RA: Indications for marrow transplantation in chronic myelogenous leukemia. Blood 1989;73:861-864.
139. Goldman JM, Szidlo R, Horowitz MM, et al: Choice of pretreatment and timing of transplants for chronic myelogenous leukemia in chronic phase. Blood 1993;82:2235-2238.
140. Clift RA, Appelbaum FR, Thomas ED: Treatment of chronic myeloid leukemia by marrow transplantation. Blood 1993;82:1954-1956. Editorial.
141. McGlave P, Bartsch G, Anasetti C, et al: Unrelated donor marrow transplantation therapy for chronic myelogenous leukemia: Initial experience of the National Marrow Donor Program. Blood 1993;81:543-550.
142. Lanino E, Anasetti C, Longton G, et al: Prevention of cytomegalovirus disease with ganciclovir in recipients of marrow transplants from unrelated donors. Blood 1993;82:344a. Abstract.
143. McGlave PB, De Fabritiis P, Deisseroth A, et al: Autologous transplants for chronic myelogenous leukaemia: Results from eight transplant groups. Lancet 1994;343:1486-1488.
lymphocytic leukemia: 17 cases: Report from the EBMTG. Bone Marrow Transplant 1991;7:275-279.
145. Rabinowe SN, Soiffer RJ, Gribben JG, et al: Autologous and allogeneic bone marrow transplantation for poor prognosis patients with B-cell chronic lymphocytic leukemia. Blood 1993;82:1366-1376.
146. Appelbaum FR, Sullivan KM, Buckner CD, et al: Treatment of malignant lymphoma in 100 patients with chemotherapy, total body irradiation, and marrow transplantation. J Clin Oncol 1987;5:1340-1347.
147. Philip T, Armitage JO, Spitzer G, et al: High-dose therapy and autologous bone marrow transplantation after failure of conventional chemotherapy in adults with intermediate-grade or high-grade non-Hodgkin’s lymphoma. N Engl J Med 1987;316:1493-1498.
148. Goldstone AH, McMillan AK, Chopra R: High-dose therapy for the treatment of non-Hodgkin’s lymphoma, in Armitage JO, Antman KH (eds): High-Dose Cancer Therapy: Pharmacology, Hematopoietins, Stem Cells. Baltimore, Williams & Wilkins, 1992, pp. 662-676.
149. Chopra R, Goldstone AH, Pearce R, et al: Autologous versus allogeneic bone marrow transplantation for non-Hodgkin’s lymphoma: A case-controlled analysis of the European Bone Marrow Transplant Group registry data. J Clin Oncol 1992;10:1690-1695.
150. Gulati SC, Shank B, Black P, et al: Autologous bone marrow transplantation for patients with poor-prognosis lymphoma. J Clin Oncol 1988;6:1303-1313.
151. Nademanee A, Schmidt GM, O’Donnell MR, et al: High-dose chemoradiotherapy followed by autologous bone marrow transplantation as consolidation therapy during first complete remission in adult patients with poor-risk aggressive lymphoma: A pilot study. Blood 1992;80:1130-1134.
152. Verdonck LF, Dekker AW, deGast GC, et al: Autologous bone marrow transplantation for adult poor-risk lymphoblastic lymphoma in first remission. J Clin Oncol 1992;10:1644-1646.
153. Haioun C, Lepage E, Gisselbrecht C, et al: Comparison of autologous bone marrow transplantation (ABMT) with sequential chemotherapy for aggressive non-Hodgkin’s lymphoma (NHL) in first complete remission: A study on 464 patients (LNH87 protocol). Blood 1993;82(suppl 1):87a. Abstract.
154. Takvorian T, Canellos GP, Ritz J, et al: Prolonged disease-free survival after autologous bone marrow transplantation in patients with non-Hodgkin’s lymphoma with a poor prognosis. N Engl J Med 1987;316:1499-1505.
155. Jagannath S, Dicke KA, Armitage JO, et al: High-dose cyclophosphamide, carmustine, and etoposide and autologous bone marrow transplantation for relapsed Hodgkin’s disease. Ann Intern Med 1986;104:163-168.
156. Armitage JO, Bierman PJ, Vose JM, et al: Autologous bone marrow transplantation for patients with relapsed Hodgkin’s disease. Am J Med 1991;91:605-611.
157. Jones RJ, Piantadosi S, Mann RB, et al: High-dose cytotoxic therapy and bone marrow transplantation for relapsed Hodgkin’s disease. J Clin Oncol 1990;8:527-537.
158. Jagannath S, Armitage JO, Dicke KA, et al: Prognostic factors for response and survival after high-dose cyclophosphamide, carmustine, and etoposide with autologous bone marrow transplantation for relapsed Hodgkin’s disease. J Clin Oncol 1989;7:179-185.
159. Anderson JE, Litzow MR, Appelbaum FR, et al: Allogeneic, syngeneic, and autologous marrow transplantation for Hodgkin’s disease: The 21-year Seattle experience. J Clin Oncol 1993;11:2342-2350.
160. Gahrtong G, Tura S, Ljungman P, et al: Allogeneic bone marrow transplantation in multiple myeloma. N Engl J Med 1991;325:1267-1273.
161. Bensinger WI, Buckner CD, Clift RA, et al: Phase I study of busulfan and cyclophosphamide in preparation for allogeneic marrow transplant for patients with multiple myeloma. J Clin Oncol 1992;10:1492-1497.
162. Barlogie B, Alexanian R, Dicke KA, et al: High-dose chemoradiotherapy and autologous bone marrow transplantation for resistant multiple myeloma. Blood 1987;70:869-872.
163. Barlogie B, Gahrton G: Bone marrow transplantation in multiple myeloma. Bone Marrow Transplant 1991;7:71-79.
164. Anderson KC, Barut BA, Ritz J, et al: Monoclonal antibody-purged autologous bone marrow transplantation therapy for multiple myeloma. Blood 1991;77:712-720.
165. Jagannath S, Vesole DH, Glenn L, et al: Low-risk intensive therapy for multiple myeloma with combined autologous bone marrow and blood stem cell support. Blood 1992;80:1666-1672.
166. Attal M, Harousseau JL, Stoppa AM, et al: High dose therapy in multiple myeloma: A prospective randomized study of the Intergroupe Francais du Myelome (IFM). Blood 1993;82(suppl 1):198a. Abstract.
167. Pole JG, Casper J, Elfenbein G, et al: High-dose chemoradiotherapy supported by marrow infusions for advanced neuroblastoma: A Pediatric Oncology Group study. J Clin Oncol 1991;9:152-158 [Erratum, J Clin Oncol 1991;9:1094].
168. Philip T, Bernard JL, Zucker JM, et al: High-dose chemoradiotherapy with bone marrow transplantation as consolidation treatment in neuroblastoma: An unselected group of stage IV patients over 1 year of age. J Clin Oncol 1987;5:266-271.
169. Peters WP, Shpall EJ, Jones RB, et al: High-dose combination alkylating agents with bone marrow support as initial treatment for metastatic breast cancer. J Clin Oncol 1988;6:1368-1376.
170. Antman K, Ayash L, Elias A, et al: A Phase II study of high-dose cyclophosphamide, thiotepa, and carboplatin with autologous marrow support in women with measurable advanced breast cancer responding to standard-dose therapy. J Clin Oncol 1992;10:102-110.
171. Williams SF, Mick R, Desser R, et al: High-dose consolidation therapy with autologous stem cell rescue in stage IV breast cancer. J Clin Oncol 1989;7:1824-1830.

172. Marks LB, Halperin EC, Prosnitz LR, et al: Post-mastectomy radiotherapy following adjuvant chemotherapy and autologous bone marrow transplantation for breast cancer patients with ≥10 positive axillary lymph nodes. Int J Radiat Oncol Biol Phys 1992;23:1021-1026.

173. Peters WP, Ross M, Vredenburgh JJ, et al: High-dose chemotherapy and autologous bone marrow support as consolidation after standard-dose adjuvant therapy for high-risk primary breast cancer. J Clin Oncol 1993;11:1132-1143.

174. Broun ER, Nichols CR, Kneebone P, et al: Long-term outcome of patients with relapsed and refractory germ cell tumors treated with high-dose chemotherapy and autologous bone marrow rescue. Ann Intern Med 1992;117:124-128.

175. Nichols CR, Andersen J, Lazarus HM, et al: High-dose carboplatin and etoposide with autologous bone marrow transplantation in refractory germ cell cancer: An Eastern Cooperative Oncology Group protocol. J Clin Oncol 1992;10:558-563.

176. Broxmeyer HE, Kurtzberg J, Gluckman E, et al: Umbilical cord blood hematopoietic stem and repopulating cells in human clinical transplantation. Blood Cells 1991;17:313-329.

177. Clift RA, Buckner CD, Appelbaum FR, et al: Allogeneic marrow transplantation in patients with chronic myeloid leukemia in the chronic phase: A randomized trial of two irradiation regimens. Blood 1991;77:1660-1665.

178. Clift RA, Buckner CD, Appelbaum FR, et al: Allogeneic marrow transplantation in patients with acute myeloid leukemia in first remission: A randomized trial of two irradiation regimens. Blood 1990;76:1867-1871.

179. Matthews DC, Appelbaum FR, Eary JF, et al: Development of a marrow transplant regimen for acute leukemia using targeted hematopoietic irradiation delivered by 131I-labeled anti-CD45 antibody, combined with cyclophosphamide and total body irradiation. Blood 1985;85:1122-1131.

180. Press OW, Eary JF, Appelbaum FR, et al: Radiolabeled-antibody therapy of B-cell lymphoma with autologous bone marrow support. N Engl J Med 1993;329:1219-1224.

181. Truitt RL, Atasoylu AA: Impact of pretransplant conditioning and donor T cells on chimerism, graft-versus-host disease, graft-versus-leukemia reactivity, and tolerance after bone marrow transplantation. Blood 1991;77:2515-2523.