The combination of several non-guaranteed random energy sources (RES), conventional sources, and nonconstant consumer loads in a local system leads to stochastic power imbalances. This study objective consists in determining the possibilities of ensuring the power balance in a hybrid power generation system with a standby generator and a search for the methods of calculating the optimal parameters to achieve energy balance. This objective is achieved by simulating the processes inherent in wind and solar power engineering and the regimes of energy consumption through a combination of random functions with a standard probability distribution. Aggregated data on weather factors for several years in a region with a high renewable energy potential which can be used to describe the behavior of wind and solar energy over time were used as experimental data. The use of multiple simulations of random processes with calculated parameters has made it possible to draw conclusions about the presence of certain ratios of power and the generator control modes. These ratios can determine minimum energy and consumption losses, reduce the likelihood of energy imbalance, more efficiently use the reserved power. Specific features of the stochastic nature of RES related to the presence of trends and random fluctuations at short hourly intervals were additionally taken into account. Possibilities of varying the conditions of and switching on and off the standby generator were provided. The existence of some ranges was established for the installed power of the generator outside which its use becomes inefficient. The proposed approach makes it possible to find the probability of various system states, assess the reliability of energy consumption, and minimize unproductive losses.

Keywords: local power system, renewable energy sources, diesel generator, power balance.

References

1. Kuznietsov, M., Melnyk, O. (2020). The influence of instability consumption on the hybrid energy system balance. Vidnovluvana Energetika, 2 (61), 8–17. doi: https://doi.org/10.36296/1819-8058.2020.2(61).8-17

2. Negi, S., Mathew, L. (2014). Hybrid Renewable Energy System: A Review. International Journal of Electrical and Electronic Engineering, 7 (5), 535–542. Available at: https://www.ripublication.com/irph/ijeec_spl/ijeecv7n5_15.pdf

3. Baba Kyari, I., Ya’u Muhammad, J. (2019). Hybrid Renewable Energy Systems for Electrification: A Review. Science Journal of Circuits, Systems and Signal Processing, 8 (2), 32. doi: https://doi.org/10.11648/j.scs.20190802.11

4. Raza, M. Q., Nadarajah, M., Hung, D. Q., Baharudin, Z. (2017). An intelligent hybrid short-term load forecasting model for smart power grids. Sustainable Cities and Society, 31, 264–273. doi: https://doi.org/10.1016/j.scs.2016.12.006

5. Hsu, C.-C., Chen, C.-Y. (2003). Regional load forecasting in Taiwan—applications of artificial neural networks. Energy Conversion and Management, 44 (12), 1941–1949. doi: https://doi.org/10.1016/s0196-8904(02)00225-x

6. Xia, C., Wang, J., McMenemy, K. (2010). Short, medium and long term load forecasting model and virtual load forecaster based on radial basis function neural networks. International Journal of Electrical Power & Energy Systems, 32 (7), 743–750. doi: https://doi.org/10.1016/j.ijepes.2010.01.009

7. Khwaja, A. S., Naem, M., Anpalagan, A., Venetsanopoulos, A., Venkatesh, B. (2015). Improved short-term load forecasting using bagged neural networks. Electric Power Systems Research, 125, 109–115. doi: https://doi.org/10.1016/j.epsr.2015.03.027

8. Rehman, S., El-Amin, I. (2015). Study of a Solar P/v/Wind/Diesel Hybrid Power System for a Remotely Located Population near Arar, Saudi Arabia. Energy Exploration & Exploitation, 33 (4), 591–620. doi: https://https://doi.org/10.1016/j.eje.2015.03.008

9. Spure, P., Lizina-Simona, P. (2018). Technical and economical analysis of a PV/wind/diesel hybrid power system for a remote area. Energy Procedia, 147, 343–350. doi: https://doi.org/10.1016/j.egypro.2018.07.102

10. Akram, M. W., Yusuf, S. S. (2011). An efficient solar-diesel hybrid power generation system for Maheshkhali Island of Bangladesh. Proceedings of the 13th International Conference on Mechanical Engineering (ICME2019). doi: https://doi.org/10.1063/5.0037473

11. Hadjipaschalis, I., Poullikkas, A., Efthimiou, V. (2009). Overview of current and future energy storage technologies for electric power applications. Renewable and Sustainable Energy Reviews, 13 (6-7), 1513–1522. doi: https://doi.org/10.1016/j.rser.2008.09.028

12. Djelouil, O., Kelaiaia, M. S., Labar, H., Necabi, S., Merad, F. (2019). Energy hybridization photovoltaic/diesel generator/pump storage hydrotlectric management based on online optimal fuel consumption per kWh. Sustainable Cities and Society, 44, 1–15. doi: https://doi.org/10.1016/j.scs.2018.09.037

13. Khan, M. J., Yadav, A. K., Mathew, I. (2017). Techno economic feasibility analysis of different combinations of PV-Wind-Diesel-Battery hybrid system for telecommunication applications in different cities of Punjab, India. Renewable and Sustainable Energy Reviews, 76, 577–607. doi: https://doi.org/10.1016/j.rser.2017.03.076

14. Haghighat Mamaghani, A., Avella Escandon, S. A., Najafi, B., Shirazi, A., Rinaldi, F. (2016). Techno-economic feasibility of photovoltaic/wind, diesel and hybrid electrification systems for off-grid rural electrification in Colombia. Renewable Energy, 97, 293–305. doi: https://doi.org/10.1016/j.renene.2016.05.086

15. Suchitra, D., Uthra, R., Jegatheesan, R., Tushar, B. (2013). Optimization of a PV-Diesel hybrid Stand-Alone System using Multi-Objective Genetic Algorithm. Emerging Research in Management & Technology, 2 (5), 68–76

16. Zhang, J., Li, H., Chen, D., Xu, B., Mahmud, M. A. (2021). Flexibility assessment of a hybrid power system: Hydroelectric units in balancing the injection of wind power. Renewable Energy, 171, 1313–1326. doi: https://doi.org/10.1016/j.renene.2021.02.122
17. Olsson, M., Perninge, M., Söder, L. (2010). Modeling real-time balancing power demands in wind power systems using stochastic differential equations. Electric Power Systems Research, 80 (8), 966–974. doi: https://doi.org/10.1016/j.epsr.2010.01.004

18. Bendat, J. S., Piersol, A. G. (2010). Random data: analysis and measurement procedures. Wiley. doi: https://doi.org/10.1002/9781118032428

19. Ly senko, O., Kuznetsov, M., Chebanov, A., Adamova, S. (2019). Hybrid Power System Stochastic Optimization. Modern Development Paths of Agricultural Production, 385–394. doi: https://doi.org/10.1007/978-3-030-19418-5_40

20. Kuznetsov, N., Ly senko, O. (2017). Statistical analysis of energy indices of solar radiation [Based on the data of Tokmak Solar Power Station]. Problemele energeticii regionale, 2 (34), 140–148. Available at: http://elar.tsatu.edu.ua/bitstream/123456789/5052/1/15_02_34_2017.pdf

DOI: 10.15387/1729-4061.2021.245663

PREDICTION OF COMBINED CYCLE POWER PLANT ELECTRICAL OUTPUT USING MACHINE LEARNING REGRESSION ALGORITHMS (p. 16–26)

Nader S. Santarisi
Applied Science Private University, Amman, Jordan
ORCID: https://orcid.org/0000-0001-7101-2908

Sinan S. Faouri
Applied Science Private University, Amman, Jordan
ORCID: https://orcid.org/0000-0002-7760-3329

In order to monitor the performance and related efficiency of a combined cycle power plant (CCPP), in addition to the best utilization of its power output, it is vital to predict its full load electrical power output. In this paper, the full load electrical power output of CCPP was predicted employing practically efficient machine learning algorithms, including linear regression, ridge regression, lasso regression, elastic net regression, random forest regression, and gradient boost regression. The original data came from an actual confidential power plant, which was working on a full load for 6 years, with four major features: ambient temperature, relative humidity, atmospheric pressure, and exhaust vacuum, and one target (electrical power output per hour). Different regression performance measures were used, including R2 (coefficient of determination), MAE (Mean Absolute Error), MSE (Mean Squared Error), RMSE (Root Mean Squared Error), and MAPE (Mean Absolute Percentage Error). Research results revealed that the gradient boost regression model outperformed other models with and without using the dimensionality reduction technique (PCA) with the highest R2 of 0.912 and 0.872, respectively, and had the lowest MAPE of 0.872 % and 1.039 %, respectively. Moreover, prediction performance dropped slightly after using the dimensionality reduction technique almost in all regression algorithms used. The novelty in this work is summarized in predicting electrical power output in a CCPP based on a few features using simpler algorithms than reported deep learning and neural networks algorithms combined. That means a lower cost and less complicated procedure as per each, however, resulting in practically accepted results according to the evaluation metrics used.

Keywords: combined cycle power plants, machine learning, predictive models, linear regression.

References

1. Hoang, T.-D., Pawlukiewicz, D. K. (2016). The efficiency analysis of different combined cycle power plants based on the impact of selected parameters. International Journal of Smart Grid and Clean Energy, 5 (2), 77–85. doi: https://doi.org/10.12720/sgce.5.2.77-85

2. Combined cycle power plant: how it works. Available at: https://www.wwye.com/gas-power/resources/education/combined-cycle-power-plants

3. Tüfekçi, P. (2014). Prediction of full load electrical power output of a base load operated combined cycle power plant using machine learning methods. International Journal of Electrical Power & Energy Systems, 60, 126–140. doi: https://doi.org/10.1016/j.ijepes.2014.02.027

4. Mouyedi, H., Mosavi, A. (2021). Electrical Power Prediction through a Combination of Multilayer Perceptron with Water Cycle Ant Lion and Satin Bowerbird Searching Optimizers. Sustainability, 13 (4), 2336. doi: https://doi.org/10.1007/s12403-021-05287-7

5. Sholahudin, S., Han, H. (2015). Heating Load Predictions using The Static Neural Networks Method. International Journal of Technology, 6 (6), 946. doi: https://doi.org/10.14716/jtech.v6i1902

6. Dehghani Samani, A. (2018). Combined cycle power plant with indirect dry cooling tower forecasting using artificial neural network. Decision Science Letters, 7, 131–142. doi: https://doi.org/10.5267/j.dsl.2017.6.004

7. Çelik, O. (2018). A Research on Machine Learning Methods and Its Applications. Journal of Educational Technology and Online Learning, 1 (3), 25–40. doi: https://doi.org/10.31681/jotel.457046

8. Brownlee, J. (2016). Linear Regression for Machine Learning. Artificial Intelligence for Machine Learning. Available at: https://machinelearningmastery.com/linear-regression-for-machine-learning/

9. Kumari, K., Yadav, S. (2018). Linear regression analysis study. Journal of the Practice of Cardiovascular Sciences, 4 (1), 33. doi: https://doi.org/10.4103/jpcs.jpcs_8_18

10. Van Der Maaten, L., Postma, E., van den Herik, J. (2009). Dimensionality Reduction: A Comparative Review. Available at: https://lvdmaaten.github.io/publications/papers/TR_Dimensionality_Reduction_Review_2009.pdf

11. Mladenić, D. (2006). Feature Selection for Dimensionality Reduction. Lecture Notes in Computer Science, 84–102. doi: https://doi.org/10.1007/11752790_5

12. Ringnér, M. (2008). What is principal component analysis? Nature Biotechnology, 26 (3), 303–304. doi: https://doi.org/10.1038/nbt0308-303

13. Sniederman, R. (2020). From Linear Regression to Ridge Regression, the Lasso, and the Elastic Net. And why you should learn alternative regression techniques. Available at: https://towardsdatascience.com/from-linear-regression-to-ridge-regression-the-lasso-and-the-elastic-net-4eacaeaf57e6

14. Raita, Y., Camargo, C. A., Macias, C. G., Mansbach, J. M., Piedra, P. A., Porter, S. C. et. al. (2020). Machine learning-based prediction of acute severity in infants hospitalized for bronchiolitis: a multicenter prospective study. Scientific Reports, 10 (1). doi: https://doi.org/10.1038/s41598-020-67629-8

15. Chahboun, S., Maaroufi, M. (2021). Principal Component Analysis and Machine Learning Approaches for Photovoltaic Power Prediction: A Comparative Study. Applied Sciences, 11 (17), 7943. doi: https://doi.org/10.3390/app11177943

16. Kaya, H., Tüfekçi, P., Güngen, S. F. (2012). Local and Global Learning Methods for Predicting Power of a Combined Gas & Steam Turbine. International Conference on Emerging Trends in Computer and Electronics Engineering (ICETCEE’2012), 13–18. Available at: http://procentre.org/images/extraimages/70%202012%2005.pdf

17. Elfaki, E., Hassan, A. H. A. (2018). Prediction of Electrical Output Power of Combined Cycle Power Plant Using Regression ANN Model. International Journal of Computer Science and Control Engineering, 6 (2), 9–21. Available at: https://zenodo.org/record/1285164#.YaX5l1VByUk

18. Elfaki, E. A., Ahmed, A. H. (2018). Prediction of Electrical Output Power of Combined Cycle Power Plant Using Regression ANN Model. Journal of Power and Energy Engineering, 06 (12), 17–38. doi: https://doi.org/10.4236/jpee.2018.612002

19. Plis, M., Rusinowski, H. (2018). A mathematical model of an existing gas-steam combined heat and power plant for thermal diagnos-
Abstract and References. Energy-saving technologies and equipment

20. Wood, D. A. (2020). Combined cycle gas turbine power output prediction and data mining with optimized data matching algorithm. SN Applied Sciences, 2 (3). doi: https://doi.org/10.1007/s42452-020-2249-7

21. Liu, Z., Karimi, I. A. (2020). Gas turbine performance prediction via machine learning. Energy, 192, 116627. doi: https://doi.org/10.1016/j.energy.2019.116627

22. Bartolini, C. M., Carcessa, F., Comodi, G., Pelagalli, L., Renzi, M., Vagni, S. (2011). Application of artificial neural networks to micro gas turbines. Energy Conversion and Management, 52 (1), 781–788. doi: https://doi.org/10.1016/j.enconman.2010.08.003

23. Anvari, S., Taghaviifar, H., Saray, R. K., Khaliliyara, S., Jafarzad, S. (2015). Implementation of ANN on CCHP system to predict trigeneration performance with consideration of various operative factors. Energy Conversion and Management, 101, 503–514. doi: https://doi.org/10.1016/j.enconman.2015.05.045

24. Fast, M., Assadi, M., De, S. (2009). Development and multi-utility of an ANN model for an industrial gas turbine. Applied Energy, 86 (1), 9–17. doi: https://doi.org/10.1016/j.apenergy.2008.03.018

25. Rossi, F., Velázquez, D., Monedero, I., Biscarri, F. (2014). Artificial neural networks and physical modeling for determination of baseline consumption of CHP plants. Expert Systems with Applications, 41 (10), 4658–4669. doi: https://doi.org/10.1016/j.eswa.2014.02.001

26. Khosravani, H., Castilla, M., Berenguel, M., Ruano, A., Ferreira, P. (2016). A Comparison of Energy Consumption Prediction Models Based on Neural Networks of a Biochloric Building. Energies, 9 (1), 57. doi: https://doi.org/10.3390/en9010057

27. Arferandi, Y. D., Caesarendra, W., Nugraha, H. (2021). Heat Rate Prediction of Combined Cycle Power Plant Using an Artificial Neural Network (ANN) Method. Sensors, 21 (4), 1022. doi: https://doi.org/10.3390/s21041022

28. Kaggle. Available at: https://www.kaggle.com/gova26/airpressure

29. Linear regression. Wikipedia. Available at: https://en.wikipedia.org/wiki/Linear_regression

30. Ridge Regression. Available at: https://andreaprovino.it/ridge-regression/

31. A Complete understanding of LASSO Regression (2020). Available at: https://www.mygreatlearning.com/blog/understanding-of-lasso-regression/

32. Brownlee, J. (2020). How to Develop Elastic Net Regression Models in Python. Python Machine Learning. Available at: https://machine-learningmastery.com/elastic-net-regression-in-python/

33. Chakure, A. (2019). Random Forest Regression. Available at: https://medium.com/swlh/random-forest-and-its-implementation-71824cd4545f

34. Brownlee, J. (2020). How to Develop a Gradient Boosting Machine Ensemble in Python. Ensemble Learning. Available at: https://machine-learningmastery.com/gradient-boosting-machine-ensemble-in-python/

35. Thakur, M. Coefficient of Determination Formula. Available at: https://www.educba.com/coefficient-of-determination-formula/

36. Enders, F. B. Coefficient of determination. Available at: https://www.britannica.com/science/coefficient-of-determination

DOI: 10.15587/1729-4061.2021.247208

PROCEDURE FOR SELECTING OPTIMAL GEOMETRIC PARAMETERS OF THE ROTOR FOR A TRACTION NON-PARTITIONED PERMANENT MAGNET-ASSISTED SYNCHRONOUS RELUCTANCE MOTOR (p. 27–33)

Borys Liubarskyi
National Technical University «Kharkiv Polytechnic Institute», Kharkiv, Ukraine

ORCID: https://orcid.org/0000-0002-9285-7345

Dmytro Iakunin
National Technical University «Kharkiv Polytechnic Institute», Kharkiv, Ukraine

ORCID: https://orcid.org/0000-0002-3995-3162

Oleh Nikonov
Kharkiv National Automobile and Highway University, Kharkiv, Ukraine

ORCID: https://orcid.org/0000-0002-8878-4318

Dmytro Liubarskyi
Kharkiv National Automobile and Highway University, Kharkiv, Ukraine

ORCID: https://orcid.org/0000-0003-3535-9809

Vladyslav Vasenko
O. M. Beketov National University of Urban Economy in Kharkiv, Kharkiv, Ukraine

ORCID: https://orcid.org/0000-0001-8615-972X

Magomedemin Gasanov
National Technical University «Kharkiv Polytechnic Institute», Kharkiv, Ukraine

ORCID: https://orcid.org/0000-0002-2161-2386

This paper reports the construction of a mathematical model for determining the electromagnetic momentum of a synchronous reluctance motor with non-partitioned permanent magnets. Underlying it is the calculation of the engine magnetic field using the finite-element method in the flat-parallel problem statement. The model has been implemented in the FEMM finite-element analysis environment. The model makes it possible to determine the engine’s electromagnetic momentum for various rotor geometries. The problem of conditional optimization of the synchronous reluctance motor was stated on the basis of the rotor geometric criteria. As an analysis problem, it is proposed to use a mathematical model of the engine’s magnetic field. Constraints for geometric and strength indicators have been defined. The Nelder-Mead method was chosen as the optimization technique. The synthesis of geometrical parameters of the synchronous reluctance motor rotor with non-partitioned permanent magnets has been proposed on the basis of solving the problem of conditional optimization. The restrictions that are imposed on optimization parameters have been defined. Based on the study results, the dependence of the angle of rotation of the magnet was established on the basis of strength calculations. According to the calculation results based on the proposed procedure, it is determined that the optimal distance from the interpole axis and the angle of rotation of magnets is at a limit established by the strength of the rotor structure.

Based on the calculations, the value of the objective function decreased by 24.4% (from ~847 Nm to ~1054 Nm), which makes it possible to significantly increase the electromagnetic momentum only with the help of the optimal arrangement of magnets on the engine rotor.

The results of solving the problem of synthesizing the rotor parameters for a trolleybus traction motor helped determine the optimal geometrical parameters for arranging permanent magnets.

Keywords: synchronous reluctance motor, Nelder-Mead method, finite-element method, non-partitioned permanent magnets.

References

1. Lvishis, A. L. (2017). Asinhronnii tyagovyi proizvod: natchalo puti. Lokomotiv, 1 (721). 44–46.

2. Goolak, S., Gerlìci, J., Tschächenko, V., Sapronova, S., Lacz, T., Kravchenko, K. (2019). Determination of Parameters of Asynchronous Electric Machines with Asymmetrical Windings of Electric Locomotives. Communications - Scientific Letters of the Uni-
University of Zilina, 21 (2), 24–31. doi: https://doi.org/10.26552/com.c.2019.2.24-31

3. Liubarskyi, B., Demydov, A., Yeritsyan, B., Nuriev, R., Iakunin, D. (2018). Determining electrical losses of the traction drive of electric train based on a synchronous motor with excitation from permanent magnets. Eastern-European Journal of Enterprise Technologies, 2 (9 (92)), 29–39. doi: https://doi.org/10.15587/1729-4061.2018.1297936

4. Basov, H. H., Yetso, S. I. (2005). Rozvytok elektrychnoho motorova-homo bloku rihomohomou skladu. Ch. 2. Kharkiv: «Apeks+», 246.

5. Bezruchenko, V. M., Varchenko, V. K., Chumaik, V. V. (2003). Tiahovyi elektrychni mashyny elektrorukhomoho skladu. Dnipropetrovsk: DNUZT, 252.

6. Liubarskyi, B., Riabov, I., Iakunin, D., Dubinina, O., Nikonov, O., Domansky, V. (2021). Determining the effect of stator groove geometry in a traction synchronous reluctance motor with permanent magnets on the saw-shaped electromagnetic moment level. Eastern-European Journal of Enterprise Technologies, 3 (8 (111)), 68–74. doi: https://doi.org/10.15587/1729-4061.2021.2332270

7. Liubarskyi, B. G., Overianova, L. V., Riabov, I. S., Iakunin, D. I., Ostroverkh, O. O., Voronin, Y. V. (2021). Estimation of the main dimensions of the traction permanent magnet-assisted synchronous reluctance motor. Electrical Engineering & Electromechanics, 2, 3–8. doi: https://doi.org/10.22098/2074-272x.2021.2.01

8. Stipetic, S., Zarko, D., Kovacic, M. (2016). Optimised design of permanent magnet assisted synchronous reluctance motor series using combined analytical–finite element analysis based approach. IET Electric Power Applications, 10 (3), 330–338. doi: https://doi.org/10.1049/iet-epa.2015.0245

9. Vigo-Felipe, P. R., Gómez-Sanzl, J. R., Sousa-Santos, V., Queipo-Osvaria, E. C. (2018). Motores sincronicos de reluctancia auxitada por iman permanente: Un nuevo avance en el desarrollo de los motores electricos. Ingenia. Investigación y Tecnología, 19 (3), 269–279. doi: https://doi.org/10.22201/i.26540732e.2018.1963023

10. Moghadam, R. R. (2011). Synchronous Reluctance Machine (SynRM) in Variable Speed Drives (VSD) Applications – Theoretical and Experimental Reevaluation. Stocholm, 260. Available at: https://www.diva-portal.org/smash/get/diva2:417890/FULL-TEXT01.pdf

11. Wu, W., Zhu, X., Quan, L., Du, Y., Xiang, Z., Zhu, X. (2018). Design and Analysis of a Hybrid Permanent Magnet Assisted Synchronous Reluctance Motor Considering Magnetic Salieny and PM Usage. IEEE Transactions on Applied Superconductivity, 28 (3), 1–6. doi: https://doi.org/10.1109/tasc.2017.2775584

12. Yoshida, K. (2002). Development of Main Circuit System using Direct Drive Motor (DDM). Special edition paper. JR EAST Technical Review, 1, 046–052. Available at: https://www.jreast.co.jp/e/development/tech/pdf/1_46_32tech.pdf

13. Vaskovskiy, Yu. M., Haidenko, Yu. A., Ruziatynskiy, A. E. (2013). Mathematical modeling and selecting of construction parameters for traction synchronous motors with permanent magnets. Tekhnichnaya elektrodynamika, 6, 40–45. Available at: http://dspacem. nbs. karpovas. int/bitstream/handle/123456789/100553/09-Vaskovskiy. pdf?sequence=1

14. Dehghani Ashkezari, J., Khajeroshanan, H., Niasati, M., Jafar Mojibian, M. (2017). Optimum design and operation analysis of permanent magnet-assisted synchronous reluctance motor. Turkish Journal of Electrical Engineering & Computer Sciences, 25, 1894–1907. doi: https://doi.org/10.3906/elk-1603-170

15. Mohd Jamil, M. L., Zolakpaie, Z. Z., Jidin, A., Raja Othman, R. N. F., Sutikno, T. (2015). Electromagnetic Performance due to Tooth-Integration with Renewable Energy Sources. International Journal of Power Electronics and Drive Systems (IJPEDS), 6 (4), 860. doi: https://doi.org/10.11591/ijpedsl.v6i4.pp860-868

16. Upsensky, B., Avramov, K., Liubarskyi, B., Andrieiev, Y., Nikonov, O. (2019). Nonlinear torsional vibrations of electromechanical coupling of diesel engine gear system and electric generator. Journal of Sound and Vibration, 460, 114877. doi: https://doi.org/10.1016/j.jsv.2019.114877

17. Meeker, D. (2015). Finite Element Method Magnetics. Version 4.2. User’s Manual. Available at: http://www.femm.info/Archives/doc/manual42.pdf

18. Severin, V. P. (2005). Vector optimization of the integral quadratic estimates for automatic control systems. Journal of Computer and Systems Sciences International, 44 (2), 207–216.

19. Nikulina, E. N., Severyn, V. P., Kotsuiba, N. V. (2018). Optimization of direct quality indexes of automatic control systems of steam generator productivity. Bulletin of National Technical University “KhP”. Series: System Analysis, Control and Information Technologies, 21, 8–13. doi: https://doi.org/10.20998/2079-0023.2018.21.02

20. Kononenko, K. E., Kononenko, A. V., Krutskih, S. V. (2015). Parametric characterization of a synchronous motor for electric drive of an treadmill for electrical drive of electrical machines. Eastern-European Journal of Enterprise Technologies, 4 (5 (100)), 16–25. doi: https://doi.org/10.15587/1729-4061.2019.176304

DOI: 10.15587/1729-4061.2021.246619

DEVELOPMENT OF MECHANICAL COUPLING AND EXCITING SYSTEM IN SYNCHRONOUS GENERATORS (p. 34–40)

Raad Lafta Damij
Energy Transmission Company, Basra, Iraq

ORCID: https://orcid.org/0000-0003-2558-4232

Power is generated in a variety of ways, including renewable energy, nuclear power, and burning of fossil fuels. The majority of our power is currently generated by burning fossil fuels, mostly natural gas and coal, to spin turbines attached to an electromagnetic generator. The main advantage of AC generation is that the voltage levels can be altered up and down with transformers, allowing electricity to be sent across long distances to the loads that demand it. The excitation system demand for large synchronous generators with a few hundred-megawatt ratings becomes very enormous. The challenge of transmitting such a big amount of power through high-speed sliding contacts becomes daunting. Mechanical coupling with exciter for synchronous generators is essential to mitigate such problems as the corrected output is linked directly to the field winding. This paper aims to develop a simulation of a 3-phase diesel engine-based 2 MW/400 V synchronous generator with mechanical coupling and an exciter system. The developed simulation of the synchronous machine is set to deliver 25% of its rating value (500 kW) till the time of 3 sec. Then, additional power of 1 MW is switched at t=3 sec via a 3-phase circuit breaker. The dynamic response of field current and field voltage of the simulation shows reasonable step performance as the corrected output is linked directly to the field winding. This paper aims to develop a simulation of a 3-phase diesel engine-based 2 MW/400 V synchronous generator with mechanical coupling and an exciter system. The developed simulation of the synchronous machine is set to deliver 25% of its rating value (500 kW) till the time of 3 sec. Then, additional power of 1 MW is switched at t=3 sec via a 3-phase circuit breaker. The dynamic response of field current and field voltage of the simulation shows reasonable step performance as the steady-state time is less than 3 sec. The control of the excitation system allows the generator to maintain voltage, control reactive power flow, and assist in maintaining power system stability. The simulation was accurate when measuring the voltage and current under these changes. This analysis can help to investigate further integration with renewable energy sources.

Keywords: synchronous generator, mechanical coupling, exciter system, rectifier, three-phase generator, diesel generator.
References

1. Athilan, B., Azapagic, A. (2015). Life cycle environmental impacts of electricity from fossil fuels in Turkey. Journal of Cleaner Production, 106, 555–564. doi: https://doi.org/10.1016/j.jclepro.2014.07.046

2. Kelford, B. M., Ballinger, B., Schmeda-Lopez, D. R., Greig, C., Smart, S. (2018). The early retirement challenge for fossil fuel power plants in deep decarbonisation scenarios. Energy Policy, 119, 294–306. doi: https://doi.org/10.1016/j.enpol.2018.04.018

3. Gorginpour, H. (2018). Optimal design of brushless AC exciter for large synchronous generators considering grid codes requirements. IET Generation, Transmission & Distribution, 12 (17), 3954–3962. doi: https://doi.org/10.1049/iet-gtd.2018.5416

4. Abramov, E., Vekslander, T., Kreuchenboim, O., Perez, M. M. (2018). Fully Integrated Digital Average Current-Mode Control Voltage Regulator Module IC. IEEE Journal of Emerging and Selected Topics in Power Electronics, 6 (2), 485–499. doi: https://doi.org/10.1109/jestpe.2017.2771949

5. Liu, W., Qin, G., Zhu, Q., Hu, G. (2018). Synchronous extraction circuit with self-adaptive peak-detection mechanical switches design for piezoelectric energy harvesting. Applied Energy, 230, 1292–1303. doi: https://doi.org/10.1016/j.apenergy.2018.09.051

6. Generator Excitation Control Systems and Methods. Available at: https://www.generatorsource.com/Generator-Excitation-Methods.aspx

7. Ygaw, A., Bunteyirga, B., Darsema, M. (2020). Generator Excitation Loss Detection on Various Excitation Systems and Excitation System Failures. Advances of Science and Technology, 382–394. doi: https://doi.org/10.1007/978-3-030-43960-2_26

8. Hammons, T. J. (1978). Influence of Exciter and LP Turbine Blade Dynamics on the Mechanical Stressing of Large Synchronous-Generator Shafts Following Clearance of System Faults and Out-of-Phase Synchronization.

9. Ma, P., Liu, W.-G., Luo, G.-Z., Jiao, N.-F., Yang, N.-F. (2012). Starting control strategy for three-stage aviation brushless synchronous motor. Dianji yu Kongzhi Xuebao/Electric Machines and Control, 16 (11), 29–32.

10. Ortega, R., Galaz-Larios, M., Bazanella, A. S., Stankovic, A. (2001). Excitation control of synchronous generators via total energy-shaping. Proceedings of the 2001 American Control Conference. (Cat. No.01CH37148). doi: https://doi.org/10.1109/acc.2001.945816

11. Schulte, S., Hameyer, K. (2007). Reduction of force exciting influences to decrease radiation of acoustic noise in synchronous machines. COMPEL - The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, 26 (4), 1017–1027. doi: https://doi.org/10.1108/03321640710756348

12. Parwal, A., Fregelus, M., Silva, D. C., Potapenko, T., Hjalmarsson, J., Kelly, J. et. al. (2019). Virtual Synchronous Generator Based Current Synchronous Detection Scheme for a Virtual Inertia Emulation in SmartGrids. Energy and Power Engineering, 11 (03), 99–131. doi: https://doi.org/10.4236/epc.2019.113007

13. Msedi, A., Le Ballou, S., Aloui, H., Vido, L. (2019). Robust control of a wind conversion system based on a hybrid excitation synchronous generator: A comparison between H∞ and CRONE controllers. Mathematics and Computers in Simulation, 158, 453–476. doi: https://doi.org/10.1016/j.matcom.2018.11.004

14. Leng, X., Xu, S. (2021). Research on Intelligent Control of Synchronous Generator Excitation System Based on Computer Technology. Journal of Physics: Conference Series, 1992 (3), 032125. doi: https://doi.org/10.1088/1742-6596/1992/3/032125

15. Chelladurai, J., Vinod, B., Bogaraj, T., Kanakaraj, J., Sundaram, M. (2015). Scalar Controlled Boost PWM Rectifier for Micro Wind Energy Systems. Research Journal of Applied Sciences, Engineering and Technolog, 10 (1), 35–44. doi: https://doi.org/10.19026/rjaset.10.2551

DOI: 10.15587/1729-4061.2021.247283

DETERMINATION OF A ROTARY FILM EVAPORATOR COEFFICIENT OF A HEATING FILM-FORMING ELEMENT (p. 41–47)

Andrii Zahorulko
State Biotechnological University, Kharkiv, Ukraine
ORCID: https://orcid.org/0000-0001-7768-6571

Aleksy Zagorulko
State Biotechnological University, Kharkiv, Ukraine
ORCID: https://orcid.org/0000-0003-1186-3832

Oleksander Cherevko
Kharkiv State University of Food Technology and Trade, Kharkiv, Ukraine
ORCID: https://orcid.org/0000-0002-3135-9732

Olena Dromenko
State Biotechnological University, Kharkiv, Ukraine
ORCID: https://orcid.org/0000-0003-2982-302X

Alla Solomon
Vinnytsia National Agrarian University, Vinnytsia, Ukraine
ORCID: https://orcid.org/0000-0003-2982-302X

Roman Yakobchuk
National University of Food Technologies, Kyiv, Ukraine
ORCID: https://orcid.org/0000-0001-9777-5790

Oksana Bondarenko
Dnipro State Agrarian and Economic University, Dnipro, Ukraine
ORCID: https://orcid.org/0000-0001-8623-9263

Natalia Nozdrina
Dnipro State Agrarian and Economic University, Dnipro, Ukraine
ORCID: https://orcid.org/0000-0001-9074-5011

A model of a rotary film evaporator with a film-forming element with a reflective heated surface has been developed. This will allow stabilizing the hydraulic movement of the cut wave flow due to the reflective surface of the geometric shape for the forced direction of the cut raw material to the heating surface. Autonomous heating of the reflective surface additionally provides a temperature effect in the conditions of movement of particles of raw materials after cutting.

The analysis of the experimental and theoretical parameters of heat transfer made it possible to substantiate the criterion equation for determining the heat transfer coefficient of an evaporator with the proposed film-forming element and a reflective heated surface for calculating the coefficient from the working surface to the raw material. The calculation of the rotary-film evaporator takes into account the influence of the vertical component of the motion of the raw material, centrifugal movement during the rotation of the film-forming element, mixing of the boiling film of the raw material with steam bubbles, and the geometric characteristics of the film-forming blade on the hydrodynamic flow of the raw material. The calculation of the rotary-film evaporator was carried out using the criterion equation and the obtained useful heat exchange surface – 0.75 m². The specific metal consumption in a rotary film evaporator with a film-forming element having a reflective surface is 57 kg/m², compared to the vacuum evaporator traditionally used in canning industries (410 kg/m²), which is 7.1 times less. The duration of the temperature effect on the raw material is also reduced: a rotary film evaporator – 200 s and 3600 s in a traditional apparatus. The data obtained will be useful for the design of rotary-film devices of different geometric parameters using articulated blades with a reflective plate.

Keywords: heat transfer coefficient, rotary film evaporator, criterion equation, film-forming element, organic raw materials.
References

1. Shkaruratov, O. I., Drehot, O. I., Chudovskaya, V. A. et. al. (2014). Kontseptsii rozvytku orhanichnoho zemlerobstva v Ukraini do 2020 roku. Kyiv: TOV «Ekoinvestkom», 16.

2. Tarpan, A., Papadaki, A., Bosnea, L., Kanellaki, M., Kopsahelis, N. (2019). Novel frozen yogurt production fortified with sea buckthorn berries and probiotics. LWT, 105, 242–249. doi: https://doi.org/10.1016/j.lwt.2019.02.024

3. Pop, N., Fidelis, M., Arzvedlo, L., do Carmo, M. A. V., Wang, D., Mocan, A. et. al. (2021). Berry polyphenols and human health: evidence of antioxidant, anti-inflammatory, microbiota modulation, and cell-protection effects. Current Opinion in Food Science, 42, 167–186. doi: https://doi.org/10.1016/j.cofs.2021.06.003

4. Mora, N. N., Koubaa, M., Rouchinejad, S., Juliano, P., Alpas, H., Inacio, R. S. et. al. (2017). Landmarks in the historical development of twenty-first century food processing technologies. Food Research International, 97, 318–339. doi: https://doi.org/10.1016/j.foodres.2017.05.001

5. Boesveldt, S., Bobowski, N., McCrickerd, K., Maitre, I., Sulmont-Rossé, C., Forde, C. G. (2018). The changing role of the senses in food choice and food intake across the lifespan. Food Quality and Preference, 68, 80–89. doi: https://doi.org/10.1016/j.foodqual.2018.02.004

6. Silveira, A. C. P. (2015). Thermodynamic and hydrodynamic characterization of the vacuum evaporation process during concentration of dairy products in a falling film evaporator. Food and Nutrition. Agrocampus Ouest. Available at: https://tel.archives-ouvertes.fr/tel-01342521/document

7. Crespi-Llorens, D., Vicente, P., Viedma, A. (2018). Experimental study of heat transfer to non-Newtonian fluids inside a scraped surface heat exchanger using a generalization method. International Journal of Heat and Mass Transfer, 118, 75–87. doi: https://doi.org/10.1016/j.ijheatmasstransfer.2017.10.115

8. Cokgezmé, O. F., Sabanci, S., Cevik, M., Yildiz, H., Icier, F. (2017). Performance analyses for evaporation of pomegranate juice in ohmic heating assisted vacuum system. Journal of Food Engineering, 207, 1–9. doi: https://doi.org/10.1016/j.jfoodeng.2017.03.015

9. Zahorulko, A., Zagorulko, A., Yancheva, M., Ponomarenko, N., Tesluk, H., Silchenko, E. et. al. (2020). Increasing the efficiency of heat and mass exchange in an improved rotary film evaporator for concentration of fruit-and-berry puree. Eastern-European Journal of Enterprise Technologies, 6, 8 (108), 32–38. doi: https://doi.org/10.15587/1729-4061.2020.218695

10. Mykhailov, V., Zahorulko, A., Zagorulko, A., Lushchenko, B., Dudnyk, S. (2021). Method for producing fruit paste using innovative equipment. Acta Innovations, 39, 15–21. doi: https://doi.org/10.32933/actainnovations.39.2

11. Zahorulko, A., Zagorulko, A., Yancheva, M., Serik, M., Sabadash, S., Savchenko-Pererva, M. (2019). Development of the plant for low-temperature treatment of meat products using ir-radiation. Eastern-European Journal of Enterprise Technologies, 1, 11 (97), 17–22. doi: https://doi.org/10.15587/1729-4061.2019.154950

12. Inzran, A., Rana, M. A., Siddiqui, A. M. (2018). Study of a Eyring–Powell Fluid in a Scraped Surface Heat Exchanger. International Journal of Applied and Computational Mathematics, 4 (1). doi: https://doi.org/10.1007/s40819-017-0436-z

13. Martinez, D. S., Solano, J. P., Vicente, P. G., Viedma, A. (2019). Flow pattern analysis in a rotating scraped surface plate heat exchanger. Applied Thermal Engineering, 160, 113795. doi: https://doi.org/10.1016/j.applthermaleng.2019.113795

14. Błasiak, P., Pietrowicz, S. (2019). A numerical study on heat transfer enhancement via mechanical aids. International Journal of Heat and Mass Transfer, 140, 203–215. doi: https://doi.org/10.1016/j.ijheatmasstransfer.2019.03.116

15. Acosta, C. A., Yanes, D., Bhalla, A., Guo, R., Finol, E. A., Frank, J. I. (2020). Numerical and experimental study of the glass-transition temperature of a non-Newtonian fluid in a dynamic scraped surface heat exchanger. International Journal of Heat and Mass Transfer, 152, 119525. doi: https://doi.org/10.1016/j.ijheatmasstransfer.2020.119525

16. Cherevko, O., Mirkhaylov, V., Zahorulko, A., Zagorulko, A., Gordienko, I. (2021). Development of a thermal-radiation single-drum roll dryer for concentrated food stuff. Eastern-European Journal of Enterprise Technologies, 11 (109), 25–32. doi: https://doi.org/10.15587/1729-4061.2021.224990

17. Zahorulko, A. M., Zahorulko, O. Ye. (2016). Pat. No. 108041 UA. Hnuchiyki plivkovyi rezzystuvnyi elektronahrivach vyprominuyuchcho typu. No. x2016008027; declared: 02.20.2016; published: 24.06.2016, Bul. No. 12. Available at: https://uapatents.com/5-108041-gnuchkijiplivkoviyirezistuvnychielektronagrivach-viprominuyuchchotipu.html

18. Vakuum-vyparnoy apparat MZS-320. Available at: https://www.mzko.com.ua/2015-08-03-00-59-07/vakuum-vyparnoy-apparatu.html

19. Cherevko, A., Mayak, O., Kostenko, S., A. Sardarov (2019). Experimental and simulation modeling of the heat exchange process while boiling vegetable juice. Prohresyvni tekhnika ta tekhnolohiyi kharkovychykh vyrobnytv restoranndoo hospodarstva i torhivli, 1, 75–85. Available at: http://nbuv.gov.ua/UJRN/PT_2019_1_9

DOI: 10.15587/1729-4061.2021.245794

DETERMINING HEAT LOSSES IN UNIVERSITY EDUCATIONAL PREMISES AND DEVELOPING AN ALGORITHM FOR IMPLEMENTING ENERGY-SAVING MEASURES (p. 48–59)

Marina Savchenko-Pererva
Suny National Agrarian University, Sumy, Ukraine
ORCID: https://orcid.org/0000-0002-8488-3272

Oleg Radechuk
Suny National Agrarian University, Sumy, Ukraine
ORCID: https://orcid.org/0000-0002-8228-2499

Ludmila Rozhkov
Suny National Agrarian University, 160, Sumy, Ukraine
ORCID: https://orcid.org/0000-0002-1068-8959

Hanna Barsukova
Suny National Agrarian University, Sumy, Ukraine
ORCID: https://orcid.org/0000-0002-4261-2182

Oleksandr Savoisky
Suny National Agrarian University, Sumy, Ukraine
ORCID: https://orcid.org/0000-0002-6459-4931

This paper gives examples of the implementation of energy-saving measures in public premises. The introduction of energy-saving measures at enterprises significantly reduces the fixed component of industrial expenditures. As a rule, educational institutions, for example, public premises, are financed from the state budget, and saving money on utilities will enable redirecting finances to the development of the university’s educational and scientific base. Thus, the main purpose of implementing such measures is to reduce the cost of maintaining buildings.

The measures are divided into three stages. At the first preparatory stage, the problem elements of a building and communications, which require the introduction of energy-saving measures using a special Fluke Ti25 device, are identified. Problem elements of the building structure were determined by complete scanning of the ceiling, walls, and floor with the help of a thermal imager. A large (more
than 10 %) difference between indoor air temperature and the temperature of the building element indicates a problem element. The research method is thermographic.

The study contains an example of scanning the wall of the premises. The temperature difference between the left and the right sides of the wall is 2.6 °C (the difference with the room temperature is 21 %). This indicates significant heat losses through the wall. At the second stage of information processing, measures to reduce energy consumption were determined. At the third stage of the introduction of energy-saving measures, the measures that directly affect the energy consumption of a building and effective functioning of communications were implemented.

The practical relevance of the study is to obtain results and practical recommendations that can be applied in practice to improve the energy efficiency of premises and buildings.

Keywords: energy saving in premises, energy audit of buildings, energy sources, energy-saving measures, technological measures, investment measures.

References

1. Nota, G., Nota, F. D., Peluso, D., Torro Lazo, A. (2020). Energy Efficiency in Industry 4.0: The Case of Batch Production Processes. Sustainability, 12 (16). 6631. doi: https://doi.org/10.3390/su12166631
2. Aspaa, S. K., Jelle, B. P., Guldbrekken, L., Uvsløte, S. (2016). Accelerated aging and durability of double-glazed sealed insulated window panes and impact on heating demand in buildings. Energy and Buildings, 116, 395–402. doi: https://doi.org/10.1016/j.enbuild.2016.01.015
3. Ascone, F., Bianco, N., De Masi, R. F., de Rossi, F., Vanoli, G. P. (2015). Energy retrofit of an educational building in the ancient center of Benevento. Feasibility study of energy savings and respect of the historical value. Energy and Buildings, 95, 172–183. doi: https://doi.org/10.1016/j.enbuild.2014.10.072
4. Ciampi, G., Rosato, A., Scorpio, M., Sibilo, S. (2015). Retrofitting Solutions for Energy Saving in a Historical Building Lighting System. Energy Procedia, 78, 2669–2674. doi: https://doi.org/10.1016/j.egypro.2015.11.343
5. Littig, G., Klohsdel, S., Audenaert, A., Braet, J. (2015). Hygrothermal performance evaluation of traditional brick masonry in historic buildings. Energy and Buildings, 105, 393–411. doi: https://doi.org/10.1016/j.enbuild.2015.07.049
6. Mahajan, G., Cho, H., Shanley, K., Kang, D. (2015). Comprehensive modeling of airflow rate through automatic doors for low-rise buildings. Building and Environment, 87, 72–81. doi: https://doi.org/10.1016/j.enbuild.2015.01.016
7. Zahorulko, A., Zagorulko, A., Yancheva, M., Serik, M., Sadabad, S., Savchenko-Pererva, M. (2019). Development of the plant for low-temperature treatment of meat products using ir-radiation. Eastern-European Journal of Enterprise Technologies, 1 (11 (97)), 17–22. doi: https://doi.org/10.15587/1729-4061.2019.1534590
8. Kasabova, K., Sabadash, S., Mohutova, V., Volokh, V., Poliauk, A., Lazarijevic, T. et al. (2020). Improvement of a scraper heat exchanger for pre-heating plant-based raw materials before concentration. Eastern-European Journal of Enterprise Technologies, 3 (11 (105)), 6–12. doi: https://doi.org/10.15587/1729-4061.2020.202501
9. Radchuk, O. V., Savchenko-Pererva, M. Yu., Katczov, M. V. (2018). Ways to improve energy conservation by conducting energy audits. Visnyk Sumskoho natsionalnoho ahrarnoho universytetu, 10 (34), 73–77.
10. Nemish, P. D. (2013). Sutnist, otsinka ta napriamy pidvyshchenня efektyvnosti mehanizmu enerhoberezhennia ahpromyslovoho kompleksu. Innovatiivna ekonomika, 7 (45), 46–53.
11. Kostyuchenko, N., Petrushenko, Y., Smolennikov, D., Danko, Y. (2015). Community-based approach to local development as a basis for sustainable agriculture: experience from Ukraine. International Journal of Agricultural Resources, Governance and Ecology, 11 (2), 178–189. doi: https://doi.org/10.1504/ijargeo.2015.072901
12. Savchenko-Pererva, M., Yakuba, A. (2015). Improving the efficiency of the apparatus with counter swirling flows for the food industry. Eastern-European Journal of Enterprise Technologies, 3 (10 (75)), 43–48. doi: https://doi.org/10.15587/1729-4061.2015.43785
13. Sukmanov, V. O., Radchuk, O. V., Savchenko-Pererva, M. Y., Budnik, N. V. (2020). Optical piezometer and precision researches of food properties at pressures from 0 to 1000 MPa. Journal of Chemistry and Technologies, 28 (1), 68–87. doi: https://doi.org/10.15421/082009
14. Kasanov, N. (2017). Implementation of energy savings strategy for industrial enterprises. Efektyvna ekonomika. 2. Available at: http://www.economy.nayka.com.ua/?op=1&z=5916
15. Ippolitova, I. Ya., Sorokotiazhenko, K. S. (2015). Formation of organizational and economic mechanism of energy saving in the enterprise. Hlobalni ta natsionalni ekonomichni problematicy, 8, 406–411. Available at: http://global-national.in.ua/archive/8-2015/85.pdf
16. Kartsi, M. (2020). Energy audit of building systems: An engineering approach. CRC Press, 658. doi: https://doi.org/10.1201/9781003011613
17. Kontokosta, C. E., Spiegel-Feld, D., Papadopoulos, S. (2020). The impact of mandatory energy audits on building energy use. Nature Energy, 5 (4), 309–316. doi: https://doi.org/10.1038/s41560-020-0589-6
18. Cheri, A., Alghoul, M. A., Bakhtyev, B., Elayeb, O., Shameri, M. A., Alrubah, M. S., Soufan, K. (2015). The role of window glazing on daylighting and energy saving in buildings. Renewable and Sustainable Energy Reviews, 42, 323–345. doi: https://doi.org/10.1016/j.rser.2014.09.020
19. Thomsen, K. E., Rose, J. Merck, O., Jensen, S. Ø., Østergaard, I., Knudsen, H. N., Bergoe, N. C. (2016). Energy consumption and indoor climate in a residential building before and after comprehensive energy retrofitting. Energy and Buildings, 123, 8–16. doi: https://doi.org/10.1016/j.enbuild.2016.04.049
20. Cheng, Z. (2017). China’s Wisdom to Promote World Energy Transformation and Development. Wisdom China, 07, 10–12.
21. Zagorec, M., Josipovic, D., Majer, J. (2008). Measures for saving thermal energy in buildings. Građevinar, 60 (5), 411–420. Available at: http://casopis-gradjevinar.hr/assets/uploads/JCSE-60-2008-05-03.pdf
22. Kirimat, A., Krejcar, O. (2018). A review of infrared thermography for the investigation of building envelopes: Advances and prospects. Energy and Buildings, 176, 390–406. doi: https://doi.org/10.1016/j.enbuild.2018.07.052
23. Ferrarini, G., Bison, P., Bortolin, A., Cadelano, G. (2016). Thermal response measurement of building insulating materials by infrared thermography. Energy and Buildings, 133, 559–564. doi: https://doi.org/10.1016/j.enbuild.2016.10.024
24. Hevts, V. M. (2016). Rozvytok ta vrazmaidohiyi ekonomichnii ta enerhetychnyi polityky v Ukraini (stehnozam naukovo dopovidi na zasidannya Prezydiyi NANS Ukrainy 16 hruudnia 2015 r.). Visnyk Natsionalnoi akademiyi nauk Ukrainy, 2, 46–53. Available at: http://nbuv.gov.ua/UJRN/vnua_2016_2_10
25. Inshchev, Ye. M., Nikitin, Ye. Ye., Tarosnykiv, M. V., Cherniavskyi, A. V. (2014). Posibnyk z munitsypalnoho enerhetychnoho menedzhmentu. Kyiv: Polihraf plius, 238. Available at: https://merp.org.ua/images/Docs/Handbook_EM.pdf
26. Sabadash, S., Savchenko-Pererva, M., Radchuk, O., Rozhkova, L., Zahorulko, A. (2020). Improvement of equipment in order to intensify the process of drying dispersed food products. Eastern-European Journal of Enterprise Technologies, 3 (11 (105)), 6–12. doi: https://doi.org/10.15587/1729-4061.2020.202501
The wide spectrum of electromagnetism that explains current and voltage at specific time and location in a power system is referred to as power quality. Alternative energies are becoming more popular due to concerns about power quality, safety, and the environment, as well as commercial incentives. Moreover, photovoltaic (PV) energy is one of the most well-known renewable resources since it is free to gather, unlimited, and considerably cleaner. Active power filter (APF) is an effective means to dynamically suppress harmonics and solve power quality problems caused by the DC side voltage fluctuation. Therefore, this paper describes a substantial advancement in the harmonic suppression compensation algorithm, as well as the cascaded active power filter. Also, this paper focuses on compensating the error of photovoltaic grid-connected generation based on optimized H-bridge cascaded APF. The details of the working principle and topological structure of the APF used as the compensation device are analyzed. The H-bridge cascaded APF is optimized using the segmented variable step-length conductance increment (SVSCLI) algorithm. The overall cascaded APF control strategy is designed and simulated using MatLab/Simulink environment. By the simulation results comparing the existing traction network power quality control measures, before and after compensation, the effectiveness of the proposed control strategy is verified. The proposed controller strengthens the compensation of specific odd harmonics to improve the system work models and criteria to improve power quality. Moreover, the proposed algorithm showed positive significance for optimizing the quality of photovoltaic grid-connected power, reducing the current harmonic, and improving the equipment utilization of photovoltaic inverters.

Keywords: active power filter, photovoltaic grid-connected, DC link capacitor, control strategy, harmonic compensation, cascaded multilevel.

References

1. Chen, Y.-M., O’Connell, R. M. (1997). Active power line conditioner with a neural network control. IEEE Transactions on Industry Applications, 33 (4), 1131–1136. doi: http://doi.org/10.1109/28.605738
2. Blaabjerg, F., Chen, Z., Kjaer, S. B. (2004). Power Electronics as Efficient Interface in Dispersed Power Generation Systems. IEEE Transactions on Power Electronics, 19 (5), 1184–1194. doi: http://doi.org/10.1109/tpel.2004.833453
3. Asiminoaei, L., Blaabjerg, F., Hansen, S. (2007). Detection is key – Harmonic detection methods for active power filter applications. IEEE Industry Applications Magazine, 13 (4), 22–33. doi: http://doi.org/10.1109/mai.2007.4283306
4. Demirdelen, T., Inci, M., Bayindir, K. C., Tumay, M. (2013). Review of hybrid active power filter topologies and controllers. 4th International Conference on Power Engineering, Energy and Electrical Drives, 587–592. doi: http://doi.org/10.1109/powereng.2013.6633674
5. Wang, L., Lam, C.-S., Wong, M.-C. (2017). Modeling and Parameter Design of Thyristor-Controlled LC-Coupled Active Power Filter (TCLC-HAPF) for Unbalanced Compensation. IEEE Trans-
Abstract and References. Energy-saving technologies and equipment

6. Jiang, W., Ding, X., Ni, Y., Wang, J., Wang, L., Ma, W. (2018). An Improved Deadbeat Control for a Three-Phase Three-Line Active Power Filter With Current-Tracking Error Compensation. IEEE Transactions on Power Electronics, 33 (3), 2061–2072. doi: http://doi.org/10.1109/tpele.2017.2693325

7. Jain, C., Singh, B. (2015). Single – phase single – stage multifunctional grid interfaced solar photo – voltaic system under abnormal grid conditions. IET Generation, Transmission & Distribution, 9 (10), 886–894. doi: http://doi.org/10.1049/iet-gtd.2014.0533

8. Chilipi, R. R., Al Sayari, N., Beig, A. R., Al Hosani, K. (2016). A Multitasking Control Algorithm for Grid-Connected Inverters in Distributed Generation Applications Using Adaptive Noise Cancellation Filters. IEEE Transactions on Energy Conversion, 31 (2), 714–727. doi: http://doi.org/10.1109/teec.2015.2510662

9. Zhou, Y., Li, H. (2014). Analysis and Suppression of Leakage Current in Cascaded-Multilevel-Inverter-Based PV Systems. IEEE Transactions on Power Electronics, 29 (10), 5265–5277. doi: http://doi.org/10.1109/tpele.2013.2289939

10. Hoon, Y., Mohd Radzi, M., Hassan, M., Mailah, N. (2017). Control Algorithms of Shunt Active Power Filter for Harmonics Mitigation: A Review. Energies, 10 (12), 2038. doi: http://doi.org/10.3390/en10122038

11. Singh, B., Verma, V., Solanki, J. (2007). Neural Network-Based Selective Compensation of Current Quality Problems in Distribution System. IEEE Transactions on Industrial Electronics, 54 (1), 53–60. doi: http://doi.org/10.1109/tie.2006.888734

12. Campanhol, L. B. G., da Silva, S. A. O., de Oliveira, A. A., Bacon, V. D. (2017). Single-Stage Three-Phase Grid-Tied PV System With Universal Filtering Capability Applied to DG Systems and AC Microgrids. IEEE Transactions on Power Electronics, 32 (12), 9131–9142. doi: http://doi.org/10.1109/tpele.2017.2639381

13. Dong, D., Luo, F., Zhang, X., Boroyevich, D., Mattavelli, P. (2013). Grid-Interface Bidirectional Converter for Residential DC Distribution Systems – Part 2: AC and DC Interface Design With Passive Components Minimization. IEEE Transactions on Power Electronics, 28 (4), 1667–1679. doi: http://doi.org/10.1109/tpele.2012.2213614

14. Shayani, R. A., de Oliveira, M. A. G. (2011). Photovoltaic Generation Penetration Limits in Radial Distribution Systems. IEEE Transactions on Power Systems, 26 (3), 1625–1631. doi: http://doi.org/10.1109/tpwrs.2010.2077656

15. Zhou, T., Francois, B. (2011). Energy Management and Power Control of a Hybrid Active Wind Generator for Distributed Power Generation and Grid Integration. IEEE Transactions on Industrial Electronics, 58 (1), 95–104. doi: http://doi.org/10.1109/tie.2010.2046580

16. Singh, M., Khadkikar, V., Chandra, A., Varma, R. K. (2011). Grid Interconnection of Renewable Energy Sources at the Distribution Level With Power-Quality Improvement Features. IEEE Transactions on Power Delivery, 26 (1), 307–315. doi: http://doi.org/10.1109/tper.2010.2081384

17. Akorede, M. F., Hizam, H., Pouresmaeil, E. (2010). Distributed energy resources and benefits to the environment. Renewable and Sustainable Energy Reviews, 14 (2), 724–734. doi: http://doi.org/10.1016/j.rser.2009.10.025

18. Mozina, C. (2010). Impact of Green Power Distributed Generation. IEEE Industry Applications Magazine, 16 (4), 55–62. doi: http://doi.org/10.1109/mias.2010.936070

19. Karangi, S. B., Geddada, N., Mishra, M. K., Kumar, B. K. (2013). A Modified Three-Phase Four-Wire UPQC Topology With Reduced DC-Link Voltage Rating. IEEE Transactions on Industrial Electronics, 60 (9), 3553–3566. doi: http://doi.org/10.1109/tie.2012.2206333

20. Renukadevi V., Jayanand, B. (2015). Harmonic and Reactive Power Compensation of Grid Connected Photovoltaic System. Procedia Technology, 21, 438–442. doi: http://doi.org/10.1016/j.protcy.2015.10.067

21. Somayajula, D., Crow, M. L. (2014). An Ultracapacitor Integrated Power Conditioner for Intermittency Smoothing and Improving Power Quality of Distribution Grid. IEEE Transactions on Sustainable Energy, 5 (4), 1145–1155. doi: http://doi.org/10.1109/tse.2014.2334622
М. П. Кузнецов, О. В. Лисенко, А. Б. Чебанов, Д. П. Журавель

Поєднання кількох негарантованих джерел енергії (ВДЕ), традиційних джерел та непостійного навантаження споживачів у локальній системі приводить до стохастичних порушень балансу потужностей. Метою даної роботи є визначення можливостей забезпечення балансу потужностей в гібридній енергосистемі з резервним генератором та пошук методів розрахунку оптимальних параметрів для досягнення енергетичного балансу. Поставлена мета досягається шляхом імітаційного моделювання процесів, властивих вітрових та сонячних енергетичних та, а також режимів споживання енергії за допомогою комбінації випадкових функцій зі стандартними розподілами ймовірностей. Як експериментальні дані використано агреговані дані щодо погодних факторів за кілька років у регіоні з високим потенціалом вітрової та сонячної енергії. Застосування багаторазового моделювання випадкових процесів з розрахунковими параметрами дозволило здобити висновки про наявність певних співвідношень потужностей та режимів керування генератором. З цими співвідношеннями можна визначити мінімум втрат енергії та споживання, зменшити ймовірність небалансу енергії, більш ефективно використовувати резервну потужність. Додатково враховані специфічні особливості стохастичної природи ВДЕ, пов’язані з наявністю трендів та випадкових флуктуацій на коротких годинних інтервалах. Поряд з встановленням можливостей варіювання умов включення та вимкнення резервного генератора. Встановлено існування деяких діапазонів для встановленої потужності генератора, за якими його використання стає неефективним. Запропонований підхід дозволяє визначити ймовірність різних станів системи, оцінити надійність забезпечення енергією та мінімізувати непродуктивні втрати.

Ключові слова: локальна енергосистема, вітровий двигун, сонячний двигун, енергетика.

Для контролю продуктивності і відповідно ефективності електростанції комбінованого циклу (ЕСКЦ), окрім оптимального використання її вихідної потужності, важливе прогнозування вихідної електричної потужності при повному навантаженні. У даній роботі вихідна електрична потужність ЕСКЦ при повному навантаженні була спрогнозована з використанням практично ефективних алгоритмів машинного навчання, включаючи лінійну регресію, гребеневу регресію, регресію ласо, регресію еластична мережа, регресію випадковий ліс і регресію градієнтний бустинг. Вихідні дані були отримані з діючої конфіденційної електростанції, що працювала при повному навантаженні протягом 6 років, з чотирма основними характеристиками: температура навколишнього середовища, відносна вологість, атмосферний тиск і вакуум на вихлопі, а також одним цільовим показником (вихідна електрична потужність). Використовувалися різні показники ефективності регресії, включаючи R

Ключові слова: електростанції комбінованого циклу, машинне навчання, прогнозні моделі, лінійна регресія.

Методика вибору оптимальних геометричних параметрів ротору тягового синхронно-реактивного двигуна з постійними магнітами (с. 17—33)

Б. Г. Любарський, Д. І. Якунін, О. Я. Ніконов, Д. Б. Любарський, В. О. Васенко, М. І. Гасанов

Розроблені математична модель та визначення електромагнітного моменту синхронно-реактивного двигуна з несекціонованими постійними магнітами. Вона базується на розрахунку магнітного поля двигуна методом скінчених елементів у пласко-паралельній постанові задачі. Модель реалізована в середовищі скінчено-елементного аналізу FEMM. Мета даної роботи — визначити електромагнітний момент двигуна при різноманітній геометрії ротору. Проведено постановку задачі умовної оптимізації ротору синхронно-реактивного двигуна за геометричними критеріями ротору. В якості задачі аналізу запропоновано використати математичну модель магнітного поля двигуна. Встановлено обмеження за геометричними та міцністюю показниками. У якості метода оптимізації обрано метод Нелдера-Міда. Запропоновано синтез геометричних параметрів ротору синхронно-реактивного двигуна з несекціонованними постійними магнітами на підставі вирішення задачі умовної оптимізації. Визначені обмеження, які накладаються на параметри
optimalizacii. Za результатами досліджень ідентифіковано залежність обмеження куту повороту магніту на підставі розрахунків на міцність. За результатами розрахунків на підставі запропонованої методики визначено, що оптимальна відстань від міжполюсної осі та кут повороту магнітів знаходиться на обмежені, що встановлено для міцності конструкції ротора.

За результатами розрахунків значення цільової функції зменшилося на 24,4 % (з – 847 Нм до –1054 Нм), що дає можливість значно підвищити електромагнітний момент лише за допомогою оптимального розташування магнітів на роторі двигуна.

За результатами вирішення задачі синтезу параметрів ротору тягового двигуна тролейбусу визначено оптимальні геометричні параметри розташування постійних магнітів.

Ключові слова: синхронно-реактивний двигун, метод Нелдера-Міда, метод скінчених елементів, несекціоновані постійні магніти.

DOI: 10.15587/1729-4061.2021.246619

РОЗРОБКА МЕХАНІЧНОГО ЗВ’ЯЗКУ І СИСТЕМИ ЗБУДЖЕННЯ В СИНХРОННИХ ГЕНЕРАТОРАХ (c. 34—40)

Рад Лафта Дамі

Існують різні способи вироблення енергії, включаючи альтернативну енергетику, ядерну енергетику та спалювання викопного палива. В даній час велика частина енергії виробляється за рахунок спалювання викопного палива, в основному природного газу та вугілля, для обертання турбін, приєднаних до електромагнітного генератора. Болювою перевагою генерування змінного струму є те, що рівні напруги можна підвищувати та знижувати за допомогою трансформаторів, що дозволяє передавати електроенергію споживачам на великі відстані. Величезне ставлять у процесах збудження для великих синхронних генераторів з оптимальною потужністю в кілька сотень мегават.

У результаті аналізу експериментально-теоретичних параметрів теплообміну обґрунтовано критеріальне рівняння коефіцієнта тепловіддачі, роторно-плівковий випарник, критеріальне рівняння, плівкоутворюючий елемент, орієнтована сировина.

Ключові слова: синхронний генератор, механічний зв’язок, система збудження, випрямляч, тріфазний генератор, дизель-генератор.

DOI: 10.15587/1729-4061.2021.247283

ВИЗНАЧЕННЯ КОЕФІЦІЕНТУ ТЕПЛОВІДДАЧІ РОТОРНО-ПЛІВКОВОГО ВИПАРНИКА З ГРІЮЧИМ ПЛІВКОУТВОРЮЮЧИМ ЕЛЕМЕНТОМ (c. 41—47)

А. М. Загорулько, О. Є. Загорулько, О. І. Черевко, О. Б. Дроменко, А. М. Соломон, Р. Л. Якобчук, О. В. Бондаренко, Н. Л. Ноздріна

Розроблено модель роторного-плівкового випарника з плівкоутворюючим елементом, який має відбивальну обігріваючу поверхню. Таке рішення запропоновано для стабілізації гідравлічного руху зрізаючої хвилі за рахунок відбивальної поверхні плівкоутворюючих лопатів, що у 7,1 раз менше. Також зменшується тривалість температурного впливу на сировину: роторно-плівковий випарник – 200 с та 3600 с у традиційному апараті. Отримані дані будуть корисні для проєктування роторно-плівкових апаратів різних геометричних параметрів, що використовують шарнірні лопаті з відбивальною пластинкою.

Ключові слова: коефіцієнт тепловіддачі, роторно-плівковий випарник, гідродинамічний режим, плівкоутворюючий елемент, коефіцієнт тепловіддачі, роторно-плівковий випарник, критеріальне рівняння, плівкоутворюючий елемент, орієнтована сировина.

DOI: 10.15587/1729-4061.2021.245794

ВИЗНАЧЕННЯ ТЕПЛОВИХ ВТРАТ У ПРИМІЩЕННІ ГРОМАДСЬКОГО ПРИЗНАЧЕННЯ З РОЗРОБКОЮ АЛГОРИТМУ ПО ВИПРОВАДЖЕНИЮ ЗАХОДІВ ІЗ ЕНЕРГОЗБЕРЕЖЕННЯ (c. 48—59)

М. Ю. Савченко-Перерва, О. В. Радчук, Л. Г. Рожкова, Г. В. Барсукова, О. Ю. Савойський

Наведені приклади впровадження заходів з енергообезпечення у приміщення загального користування. Впровадження енергообезпечуючих заходів на підприємствах значно зменшує постійну складову виробничих витрат.

Ключові слова: енергосистема, моделювання, аналіз, реактивна потужність, тріфазний випрямлювач, синхронний генератор, механічний зв’язок, система збудження, випрямляч, тріфазний генератор, дизель-генератор, випрямляч, тріфазний випарник, плівкоутворюючий елемент, орієнтована сировина.

DOI: 10.15587/1729-4061.2021.245619

Розроблено модель роторного-плівкового випарника з плівкоутворюючим елементом, який має відбивальну обігріваючу поверхні. Таке рішення запропоновано для стабілізації гідравлічного руху зрізаючої хвилі за рахунок відбивальної поверхні плівкоутворюючих лопатів, що у 7,1 раз менше. Також зменшується тривалість температурного впливу на сировину: роторно-плівковий випарник – 200 с та 3600 с у традиційному апараті. Отримані дані будуть корисні для проєктування роторно-плівкових апаратів різних геометричних параметрів, що використовують шарнірні лопаті з відбивальною пластинкою.

Ключові слова: коефіцієнт тепловіддачі, роторно-плівковий випарник, гідродинамічний режим, плівкоутворюючий елемент, орієнтована сировина.

DOI: 10.15587/1729-4061.2021.245794

ВИЗНАЧЕННЯ ТЕПЛОВИХ ВТРАТ У ПРИМІЩЕННІ ГРОМАДСЬКОГО ПРИЗНАЧЕННЯ З РОЗРОБКОЮ АЛГОРИТМУ ПО ВИПРОВАДЖЕНИЮ ЗАХОДІВ ІЗ ЕНЕРГОЗБЕРЕЖЕННЯ (c. 48—59)

М. Ю. Савченко-Перерва, О. В. Радчук, Л. Г. Рожкова, Г. В. Барсукова, О. Ю. Савойський

Наведені приклади впровадження заходів з енергообезпечення у приміщення загального користування. Впровадження енергообезпечуючих заходів на підприємствах значно зменшує постійну складову виробничих витрат.
Як правило, навчальні заклади, як приклад приміщень загального користування, фінансуються з державного бюджету, а економія коштів на комунікації будівлі дозволяє перенаправити фінанси на розвиток навчальної та наукової бази університету.

Таким чином, основною метою впровадження таких заходів є зменшення витрат на утримання будівель. Заходи поділяються на три етапи. На першому підготовчому етапі визначаються проблемні елементи будівель та комунікацій, які потребують впровадження енергооберігаючих заходів за допомогою спеціального пристрою Fluke Ti25. Проблемні елементи конструкції будівлі були визначені шляхом повного сканування стел, стін та підлоги за допомогою тепловізора. Велика (більше 10%) різниця між температурою повітря в приміщенні та температурою будівельного елемента вказує на проблемний елемент. Метод дослідження – термографічний.

Наведено приклад сканування стіни приміщення. Різниця температур між лівою та правою сторонами стіни становить 2,6 °C (різниця з температурою в приміщенні становить 21 %). Це свідчить про значні втрати тепла через стіни. На другому етапі обробка інформації визначається заходи щодо зменшення споживання енергії. На третьому, етапі – впровадження енергооберігаючих заходів, реалізуються заходи, які безпосередньо впливають на споживання енергії будівлі та ефективне функціонування комунікацій.

Практична актуальність дослідження полягає в отриманні результатів та практичних рекомендацій, які можна застосувати на практиці для підвищення енергоефективності приміщень та будівлі.

Ключові слова: енергооберігання у приміщеннях, енергоаудит будівель, джерела енергії, енергооберігаючі заходи, технологічні заходи, інвестиційні заходи.

DOI: 10.15587/1729-4061.2021.248276

КОМПЕНСАЦІЯ ТА ПРИДУШЕННЯ ГАРМОНІК ФОТОЕЛЕКТРИЧНОЇ ГЕНЕРАЦІЇ ЗА ДОПОМОГОЮ КАСКАДНОГО ФІЛЬТРА АКТИВНОЇ ПОТУЖНОСТІ (с. 60–68)

Mohammed Obaid Mustafa, Najimaldin M. Abbas

Широкий спектр електромагнетизму, який характеризує ток і напругу в певний момент часу і місця в енергосистемі, називається якістю електроенергії. Альтернативні джерела енергії поступово набувають популярності у зв'язку з подорожчанням джерел енергії, екологічною безпекою та ефективністю. Фотоелектрична енергія є одним з найбільш використовуваних джерел енергії, адже вона відбувається через фотоелектричну енергію, яка використовується для запобігання проблем, пов'язаних з відходами, а також для використання енергії, що використовуються для виконання робіт.

Ключові слова: фільтр активної моделювання, сетеві фотоелектричні системи, конденсатор в цепі зміни, стратегія управління, компенсація гармоній, каскадний многоуровневий.