The Zinc Finger Protein Zbtb18 Represses Expression of Class I Phosphatidylinositol 3-Kinase Subunits and Inhibits Plasma Cell Differentiation

Bin Xie, Tariq E. Khoyratty, Enas Abu-Shah, Pablo F. Cespedes, Andrew J. MacLean, Gabriela Pirgova, Zhiyuan Hu, Ahmed A. Ahmed, Michael L. Dustin, Irina A. Udalova and Tal I. Arnon

*J Immunol* 2021; 206:1515-1527; Prepublished online 19 February 2021;
doi: 10.4049/jimmunol.2000367
http://www.jimmunol.org/content/206/7/1515

---

**Supplementary Material**

http://www.jimmunol.org/content/suppl/2021/02/18/jimmunol.2000367.DCSupplemental

**References**

This article cites 67 articles, 12 of which you can access for free at:
http://www.jimmunol.org/content/206/7/1515.full#ref-list-1

---

**Why The JI?** Submit online.

- **Rapid Reviews!** 30 days* from submission to initial decision
- **No Triage!** Every submission reviewed by practicing scientists
- **Fast Publication!** 4 weeks from acceptance to publication

*average

---

**Subscription**

Information about subscribing to *The Journal of Immunology* is online at:
http://jimmunol.org/subscription

**Permissions**

Submit copyright permission requests at:
http://www.aai.org/About/Publications/JI/copyright.html

**Author Choice**

Freely available online through *The Journal of Immunology* Author Choice option

**Email Alerts**

Receive free email-alerts when new articles cite this article. Sign up at:
http://jimmunol.org/alerts

---

*The Journal of Immunology* is published twice each month by
The American Association of Immunologists, Inc.,
1451 Rockville Pike, Suite 650, Rockville, MD 20852

Copyright © 2021 The Authors All rights reserved.
Print ISSN: 0022-1767 Online ISSN: 1550-6606.
The Zinc Finger Protein Zbtb18 Represses Expression of Class I Phosphatidylinositol 3-Kinase Subunits and Inhibits Plasma Cell Differentiation

Bin Xie,* Tariq E. Khoyratty,* Enas Abu-Shah,* Pablo F. Cespedes,* Andrew J. MacLean,* Gabriela Pirgova,* Zhiyuan Hu,† Ahmed A. Ahmed,† Michael L. Dustin,* Irina A. Udalova,* and Tal I. Arnon*

The PI3K pathway plays a key role in B cell activation and is important for the differentiation of Ab producing plasma cells (PCs). Although much is known about the molecular mechanisms that modulate PI3K signaling in B cells, the transcriptional regulation of PI3K expression is poorly understood. In this study, we identify the zinc finger protein Zbtb18 as a transcriptional repressor that directly binds enhancer/promoter regions of genes encoding class I PI3K regulatory subunits, subsequently limiting their expression, dampening PI3K signaling and suppressing PC responses. Following activation, dividing B cells progressively down-regulated Zbtb18, allowing gradual amplification of PI3K signals and enhanced development of PCs. Human Zbtb18 displayed similar expression patterns and function in human B cells, acting to inhibit development of PCs. Furthermore, a number of Zbtb18 mutants identified in cancer patients showed loss of suppressor activity, which was also accompanied by impaired regulation of PI3K genes. Taken together, our study identifies Zbtb18 as a repressor of PC differentiation and reveals its previously unappreciated function as a transcription modulator of the PI3K signaling pathway. The Journal of Immunology, 2021, 206: 1515–1527.

Antibody responses are crucial for protection against invading pathogens and for providing long-term immunity in response to vaccination. However, the potential long-term persistence of plasma cells (PCs) also poses risks for developing pathogenic Ab responses and autoimmune diseases (1, 2). There is, therefore, considerable interest in defining specific factors and mechanisms that control the development of these cells (3–6). A major signaling pathway involved in this process is the PI3K cascade, which is rapidly induced in B cells in response to various types of activation (7–11). Previous studies have shown that loss of PI3K activity leads to impaired PC differentiation, whereas stronger PI3K signals are associated with increased PC responses (12–14). Progressive increase in chromatin accessibility of PI3K genes during the initial phase of activation has also been noted (3, 15). However, the mechanisms that facilitate changes in PI3K chromatin accessibility during activation and the relevance of this process to PC differentiation have not been explored. Moreover, despite being a key signaling pathway involved in multiple biological processes and human diseases, the transcription factors that control PI3K gene expression remain unknown.

In this study, we identify the zinc finger protein (ZFP) Zbtb18 as a transcriptional suppressor that binds promoter/enhancer elements of genes encoding class I PI3K regulatory subunits, consequently limiting their expression. We demonstrate that gradual down-regulation of Zbtb18 during the early phase of B cell activation enhances PI3K expression and promotes PC differentiation, a function that we show to be conserved in both mouse and human B cells. To the best of our knowledge, this is the first transcription factor that has been shown to directly regulate expression of PI3K genes in immune cells. Because Zbtb18 is expressed in other cell types, the implication of these findings may go beyond a role for Zbtb18 in regulating B cell responses and could be important for understanding how this protein modulates PI3K signals in health and disease.

Materials and Methods

Human samples B cells isolation, in vitro culture, and RNA electroporation

Human blood samples from nonclinical and deidentified leukapheresis resection cones were purchased from National Health Service at the University of Oxford and processed under ethics license record number 11/H07117. Human peripheral B cells were isolated by using the RosetteSep Human B Cell Enrichment Kit (catalog no. 15064; StemCell Technologies). For experiments assessing mRNA expression, cells were further sorted into three subsets: naive B cells (CD19+ IgD+ CD27–), memory B cells (CD19+ CD27+ CD38+), and plasmablasts/PCs (CD19+ CD27+ CD38–).

For electroporation of Zbtb18-IREs-GFP and GFP control mRNAs, total B cells were isolated as indicated above (>81% CD19+) and then rested overnight at a final concentration of 5 × 10⁶ cells per milliliter in RPMI 1064.
1640 medium supplemented with 10% heat-inactivated FBS, 10 mM HEPES, 2 mM L-glutamine, 1 mM sodium pyruvate, 0.1 mM MEM nonessential amino acids, and 50 U/ml of penicillin-streptomycin. Cells were then stimulated with a cytokine mixture, referred to in this study as B cell stimulatory mixture, containing recombinant human IL-2 (50 U/ml; PeproTech), IL-4 (10 ng/ml; PeproTech), IL-21 (20 ng/ml; BioLegend), and BAFF (20 ng/ml; BioLegend). Forty-eight hours later, B cells were collected for transfection; 5 × 10^5 cells were resuspended in OPTI-MEM (at 25 × 10^6/ml) and transferred to a 2-mm cuvette (Bio-Rad Laboratories), and either electroporated with equimolar ratios of GFP (10 μg) or Zbtb18-ires-GFP (30 μg) mRNA at 300 V and 1 ms using an ECM830 Square Wave Electroporator (BTX). Control GFP or Zbtb18-ires-GFP mRNA were generated from pGEM vector using in vitro RNA Transcription Kits (mMESSAGE mMACHINE T7 ULTRA, AM1345; Thermo Fisher Scientific) and further purified by Megafacets (AM1908; Thermoscientific). Immediately after transfection, cells were resuspended in supplemented RPMI 1640 media, and 24 h later, GFP expression was assessed by flow cytometry and B cell stimulatory mixture was added to the cultures for additional 2 d to generate CD19^+ CD27^+ CD38^− plasmablasts/PCs.

**Mice and bone marrow chimeras**

C57BL/6 (CD45.2^+^) or B6 Ly5.2 (CD45.1^+^) mice were purchased from Charles River Laboratories. MD4 (16) (MGL:2384162; Bel-2g (17) (MGD:1290291) mice were generated as described previously. Blimp1-Venus mice on a B6 background were obtained from M. Saitou (18).

To generate bone marrow (BM) chimeras, CD45.2^+^ B6 mice were lethally irradiated with 1100 rad split in two doses (4 h apart) and reconstituted with 1 × 10^5 to 3 × 10^5 BM cells from the indicated donors. Mice were analyzed 8–14 wk later. Mice were bred and maintained under specific pathogen–free conditions in accredited animal facilities at Kennedy Institute of Rheumatology, University of Oxford. Experiments were conducted in accordance with the U.K. Scientific Procedures Act (1986) under a project license authorized by the U.K. Home Office. Both males and females were used.

**Retroviral transductions**

For overexpression of Zbtb18, we used the murine stem cell virus (MSCV2.2) retroviral vector, whereas transduction of short hairpin RNA (shRNA) (shRNA) was performed using LMP retroviral vector (MSCV-LTRmiR30-PIG, kindly provided by Prof. M. Huse from Sloan Kettering; Open Biosystems). Zbtb18 or shRNA sequences were cloned into the above vectors followed by an internal ribosome entry site (IRES) and an expression marker.

Splenocytes were transduced with the above vectors as previously described (19). Briefly, splenocytes were harvested in media containing 0.2% fetal calf serum (FCS)/anti-CD180 (BP-105, clone R105, BD Bioscience). Twenty-four and forty-eight hours later, cells were stained for 1.5 h with 1 μl per well freshly made retroviral supernatant (1000G, 25˚C, brake off). Cells were harvested either 1 d (for cells transduced to overexpress Zbtb18 using the MSCV2.2 retroviral vector) or 72 h (for shRNA transduction, using the MSCV-LTRmiR30-PIG vector) after second spin infection. When cells were transduced to overexpress Control GFP or Zbtb18-control or shRNA, cells were harvested 72 h after the second spin infection.

BM transduction was performed as previously described (20). Briefly, CD45.1^+^ donors were injected i.v. with 3 mg of 5-fluorouracil (Sigma-Aldrich). Four days later, BM was harvested and cultured in the presence of IL-3 (20 ng/ml), IL-6 (50 ng/ml), and mouse stem cell factor (100 ng/ml; PeproTech). BM cells were spin infected twice in 2 consecutive d with supernatants of the relevant retroviral vector. Between spin infection, cells were cultured with the above cytokine containing medium. One day after the last spin infection, cells (2.5 × 10^5 to 5 × 10^6 per mouse) were injected into lethally irradiated CD45.2^+^ C57BL/6 recipients.

For transduction of the mouse B cell lymphoma line WEHI-231 (CRL-1702; American Type Culture Collection), cells were seeded at 1 × 10^6 40LB cells were irradiated with 40 Gy. The irradiated cells were washed, seeded in a 10-cm dish, and added with ~25 × 10^6 transduced B cells in a total of 50 mL of 40LB media (RPMI 1640 supplemented with 10% FBS, 100 U/ml penicillin-streptomycin, 10 mM HEPES, 1 mM sodium pyruvate, 50 μM 2-ME) for the indicated time points.

**Flow cytometry, tissue digestion, and sort**

For staining of B cells, the following Abs were used: IgG-SDA605 (1A6-2) CD19-PE (HB19), CD138-PeCy7 (M115), HLA-DR-PerCP (L243), CD38-A700 (HB-7), CD27-BV421 (M-T271), and propidium iodide solution (catalog no. 421301) from BioLegend. FcR-blocking reagent (130-039-091) was from Miltenyi Biotec. To stain mouse cells, we used B220-PE (RA3-6B2), IgM-PEcy7 (7A2, IgM-PEcy7 (RMM-1) and Thy1.1-Pacific Blue (OX-7) from BioLegend. FAS-PEcy7 (7o2) and IgM-biotin (A85-1) were from BD Biosciences. IgM-alkaline phosphatase (M1-14D12) was from eBioscience. p-AKT S473 was from Cell Signaling Technology (CST; D9E), and Alexa Fluor 647–conjugated F(ab’2) donkey anti-rabbit IgG (H+L) was from Jackson ImmunoResearch (711-606-152). To stain Zbtb18-Myc, Ab we used the anti-Myc rabbit Ab (9E10; Bethyl Laboratories) and the rabbit anti-secondary goat-anti-A647 (catalog no. A27018; Life Technologies). For intracellular staining, cells were of p-AKT and anti-Myc, cells were fixed, permeabilized, and stained following the protocol described previously (22). Analysis of flow cytometry data were conducted in FlowJo software (version 10.4.2).

To stain PCs from freshly harvested spleens, spleens were harvested and digested with RPMI 1640 containing 2% FBS, collagenase type 2 (0.25 mg/ml), DNase I (10 μg/ml), and M-2-ME) for the indicated time.

**PC differentiation and cell stimulation in vitro**

To induce PC differentiation in vitro, cells were seeded at 1 × 10^6 per ml in B cell medium containing either anti-CD40 (10 μg/ml, FGK4-5; BioXcell) and IL-4 (10 ng/ml; eBiosciences) or LPS (5 μg/ml). For transduction, cells were spin infected for 1.5 h with 1 ml of retroviral supernatant (1000G, 25˚C, brake off). Cells were harvested either 1 d (for cells transduced to overexpress Zbtb18 using the MSCV2.2 retroviral vector) or 72 h (for shRNA transduction, using the MSCV-LTRmiR30-PIG vector) after second spin infection. When cells were transduced to overexpress Zbtb18-control or shRNA, cells were harvested 72 h after the second spin infection.

**Incubation with the 40LB cells line**

In some cases, as indicated in the legends of the relevant assays, transduced splenocytes were incubated with the cell line 40LB (a kind gift from K. Motoyama (21)) to improve cell survival and to enhance stimulation. For this, ~15 × 10^4 40LB cells were irradiated with 40 Gy. The irradiated cells were washed, seeded in a 10-cm dish, and added with ~25 × 10^6 transduced B cells in a total of 50 mL of 40LB media (RPMI 1640 supplemented with 10% FBS, 100 U/ml penicillin-streptomycin, 10 mM HEPES, 1 mM sodium pyruvate, 50 μM 2-ME) for the indicated time points.

**B cell proliferation assay**

For cell proliferation analysis, splenocytes were stained with the CellTrace Violet regent (5 μM per 10 × 10^6 cells per ml; Invitrogen). Cells were labeled for 15 min 37˚C in serum free medium followed by washing. Labeled cells were subsequently stimulated to induce PC differentiation in vitro for 3 d.

**RNA extraction and real-time PCR**

RNA extraction was performed based on the RNeasy Mini Kit (Qiagen) followed by reverse transcription reaction using cDNA Reverse Transcription Kit (catalog no. 4368814; Applied Biosystems). Real-time PCR was performed using PrecisionFAST Blue LRSY (Primer Design) on a ViiA7 384-well real-time PCR detection system (Applied
BioSystems). All gene expression levels were normalized to an internal housekeeping (hk) gene (RPL13A for human samples, HPRT and GAPDH for mouse samples) and calculated as 2^{-ΔΔCt (B-C/T-gene)}.

**Assay for transposable-accessible chromatin followed by deep sequencing and data processing**

Assay for transposable-accessible chromatin followed by deep sequencing (ATAC-seq) was performed by an optimized Omini-ATAC protocol (23). Samples were quality checked for ATAC-seq-specific patterning on a bioanalyzer chip and were pooled at an equimolar ratio and sequenced on an HiSeq2500 using 75 bp paired-end chemistry in Welcome Centre for Human Genetics, Oxford. Raw sequencing reads were trimmed with Cutadapt prior to mapping to the mm10 version of the mouse genome using Bowtie2 with the following parameters:–local–x 2000. PCR duplicates were removed with PicardTools; additionally, reads mapping to chrM, with MAPQ <10, and insert sizes >150 bp were removed prior to peak calling. Peaks were called with MACS2 with the following settings:–format BAMPE–nomodel–keep-dup all–nfold 5 50. Peaks found in at least two biological replicates were kept for further analysis, and merged peak set consisting of all discovered peaks was used for differential accessibility testing. Reads were counted over the merged peak set using BedTools and tested using DESeq2. Significantly differentially accessible peaks were deemed as having adjusted p values <0.05 (likelihood-ratio test), and adjusted p values <0.05, and fold change >1.5 (Wald test). Gene ontology was conducted using GREAT. DeepTools was used to generate normalized BigWigs from all biological replicates, which were merged for visualization in an integrative genomics viewer. De novo motif discovery was conducted on differentially accessible peaks using HOMER findMotifsGenome.pl with default settings and enrichment of discovered motifs at peaks was calculated with the annotatePeaks.pl command with the option: “-hist 5.” The data are deposited at the Gene Expression Omnibus database at https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE129657.

**Chromatin immunoprecipitation**

Chromatin immunoprecipitation (ChIP) assay was described previously (24). A total of 5 × 10^6 to 10 × 10^6 transfected flow cytometry–sorted cells (live 98% CD138+ GFP+ or RFP+ were fixed, lysed, and immunoprecipitated by 2 μg of mouse IgG Ab (sc-2025; Santa Cruz Biotechnology), anti-Myc Ab (Clone 4A6, 05-724; MilliporeSigma), anti-H3K4me1 (ab8895; Abcam), anti-H3K4me3 (ab8580; Abcam), anti-H3K27me3 (ab6002; Abcam), or anti-H3K27Ac (ab4729; Abcam) conjugating with dynabeads (10004D; Life Technologies). Alternatively, for Myc Ab pull-down experiments, cells were resuspended directly in Chip lysis buffer (1% SDS, 10 mM EDTA, 50 mM Tris-HCL) after being fixed in 1% formaldehyde and rinsed in PBS, to reduce the loss or leak of Zbtb18 protein/DNA complex during the processing. After elution, the DNA was purified with QIAquick PCR Purification Kit (28106; Qiagen). Quantitative PCR (qPCR) reaction was performed with PrecisionFAST Blue LR SY. **Western blot and immunoprecipitation**

Western blot was performed as previously described (25). A total of 2 × 10^5 flow cytometry–sorted transfected B cells (live B220^+ CD138^+ GFP^+ or RFP^+) were lysed in 80 μl of lysis buffer (no. 9903; CST) supplemented with proteinase inhibitor (P8340; Sigma-Aldrich). When stably transfected WEHI cells were used, ~1 × 10^6 total cells of each were lysed in RIPA buffer (89900; Sigma-Aldrich) at 30 mln cells per milliliter supplemented with proteinase inhibitor (P8340; Sigma-Aldrich). For immunoprecipitation of Myc–tagged proteins, 5 × 10^6 sort transfected B cells (GFP+) were lysed in 300 μl lysis buffer (no. 9903; CST) supplemented with proteinase inhibitor (P8340; Sigma-Aldrich). The total cell lysis was incubated with 4 μg of mouse IgG Ab (sc-2025; Santa Cruz Biotechnology) and 50 μl of A/G-Sepharose beads (GE17-0574-02; GE Healthcare) at 4°C for 3 h to reduce nonspecific binding. The beads were spin down and the lysate was subsequently incubated with 2 μg anti-Myc Ab (05-724; MilliporeSigma) at 4°C O/N, followed by addition of 20 μl of beads for 2 h at 4°C. The whole-cell lysis or immunoprecipitated fraction was separated by SDS-PAGE and transferred onto nitrocellulose membranes (162-0115; Bio-Rad Laboratories), immunoblotted with anti-p85 Ab (ABS234; MilliporeSigma), anti-p101 Ab (D32A5, sc. 5569; CST), or anti-GAPDH (6C5, MAB374; MilliporeSigma), anti-p–AKT (Ser473; New England Biolabs), anti-AKT (pan) (C68F7; CST), anti-Myc (Ab9132; Abcam), or anti-GAPDH (6C5, MAB374; Merck Life Science). For secondary Abs anti-mouse 680RD (catalog no. 926-68070; LI-COR Biosciences), anti-rabbit 800CMC (catalog no. 926-32211; LI-COR Biosciences), and anti-guaco 800CMC (925-32214; LI-COR Biosciences) were used. Membranes were developed and quantified by using the Odyssey Imaging Systems (LI-COR Biosciences).

**Immunofluorescent confocal microscopy**

Transduced splenocytes (2 × 10^6 to 5 × 10^6) were sorted (live B220^+ CD138^+ GFP^+) and fixed in 2% paraformaldehyde for 40 min on ice. After washing, cells were incubated in 0.5% Triton X-100 for 30 min at room temperature for permeabilization. Primary stain with goat anti-Myc Ab (ab9132; Abcam) and secondary stain with donkey anti-goat Alexa 594 Ab (ab150132; Abcam) were performed at room temperature for 45 min to 1 h. After staining, cells were imaged using an Olympus FV1200 IX83 Confocal System, with the use of a × 40 objective.

**Analysis of online transcriptomic data**

To identify the ZFPs regulated in both germinal center (GC) B cells and PC compared with naive and memory B cells, we performed differential expression analysis on downloaded expression matrices of GSE69027 (6), GDS1695 (26), and GSE23925 (27) using the R package limma (28). The list of ZFPs was downloaded from HGNC. We compared follicular B cells versus BM PC in GSE69027, naive versus PC and naive versus GC in GDS1695, and naive versus GC in GSE23925. The intersected group of differentially expressed ZFP genes (fold change ≥2 and false discovery rate [FDR] ≤0.05) across all the comparisons led to the identification of four genes that were downregulated and one gene that was upregulated in both PC and GC compared with naive and memory B cells.

**Statistical analysis**

For most experiments, p values were calculated with unpaired two-tailed Student t test for two-group comparisons. For in vivo experiments (comparing PC, GC B cells, and folliclar B cells within the same mouse) and Chip qPCR assay, p values were calculated with paired two-tailed Student t test. For human B cell differentiation assay, p values were calculated with ratio-paired two-tailed Student t test. Unless otherwise indicated, the data in figures are displayed as the mean ± SD. The p values <0.05 were considered significant, and the following values were delineated: *p < 0.05, **p < 0.01, ***p < 0.001, and ****p < 0.0001. Statistical analysis was performed with GraphPad Prism 7.

**Results**

Zbtb18 suppresses PC differentiation

To identify candidate factors involved in regulation of PC development, we used existing published RNA-sequencing datasets (6, 26, 27) to search for genes that are differentially up- or downregulated in PCs and GC B cells compared with naive and memory B cells (≥2-fold change; p ≤ 0.05). We hypothesized that genes that are differentially expressed in both subsets are more likely to reflect factors that affect the early phase of PC differentiation, prior to entry to the GC reaction. We focused our analysis on zinc finger molecules because of their known function as transcriptional regulators of lymphocyte differentiation and maturation (29, 30). Among 932 ZFPs compared, we identified four downregulated (Klf2, Zbtb18, Moc3, and Tp53) and one upregulated (Tcf19) gene fitting the above criteria (Supplemental Fig. 1A, 1B). Because a role for Klf2 in regulation of B cell differentiation has been previously described (31–34), we focused our attention on Zbtb18, which was the second most significantly differentially expressed gene in our analysis.

A role for Zbtb18 in regulating immune responses has never been reported. To first test whether it may be involved in PC differentiation, we enforced constitutive expression of Zbtb18 in B cells and determined its impact on the development of PCs. For this, splenocytes were retrovirally transduced with Zbtb18 or control MSCV vectors containing bicis tronic GFP or RFP reporters, respectively. Overexpression of Zbtb18 in transduced B cells was confirmed by qPCR, indicating ~2- to 3-fold increase compared with naive freshly isolated B cells or control-transduced cells (Supplemental Fig. 1C). Transduction of splenocytes with a Zbtb18–Myc–tagged construct further indicated that expression of the retrovirally transduced Zbtb18 protein tightly correlates with that of the reporter gene (Supplemental Fig. 1D). It should be noted that transduction of primary B cells involves initial stimulation of the
cells with anti-CD180 Ab. However, this activation alone is not enough to drive PC responses. To test whether Zbtb18 overexpression affects PC differentiation, control/RFP– and Zbtb18/GFP–transduced B cells were sorted, mixed in a 1:1 ratio, and cocultured with IL-4 and anti-CD40 (see schematic illustration of experimental set up in Fig. 1A). Three days later, we determined the relative representation of Zbtb18/GFP– and control/RFP–transduced cells in the PC pool (B220+/CD138−) and in the B220+/CD138− B cell subset (referred to as “non-PCs”). We found that whereas the ratio between Zbtb18- and control-transduced B cells in the non-PC subset remained constant and close to the initial 1:1 input, in the PC subset, Zbtb18-transduced cells were significantly outcompeted by control-transduced cells, and their relative representation dropped by more than 50% (Fig. 1B, 1C). A similar reduction in PC frequencies in Zbtb18-overexpressing cells was observed following stimulation with LPS (Supplemental Fig. 2A) or when cells were transduced with an alternative isoform of Zbtb18 (isoform 2) (Supplemental Fig. 2B). In this isoform, alternative splicing leads to the expression of a shorter protein lacking the first 9 aa at the N terminus of the protein. Notably, however, although Zbtb18 overexpression greatly reduced PC formation, it did not completely block their development or impact their ability to class switch (Supplemental Fig. 2C).

To further assess the relevance of these findings in the more complex setting of immune responses, we tested the effect of Zbtb18 overexpression in vivo. Wild-type (WT) CD45.2+ splenocytes transduced with Zbtb18/GFP or control/Thy1.1 vector. To increase cell survival and stimulation, transduced cells were incubated with the stroma cell line 40LB 2 d prior to harvesting (schematic illustration in Fig. 1D). Although this treatment does not lead to in vivo development of PCs, it further adds to the activation status of the transduced cells, possibly enhancing their ability to participate in the immune response in vivo. After 2 d, the cells were cotransferred into CD45.1+ MD4-recombinant mice. We used MD4 animals that express a transgenic BCR with high affinity to lysozyme to reduce competition between transferred and endogenous B cells, thus allowing us to track the response of adoptively transferred polyclonal B cells. Twelve days postimmunization, we found that whereas the ratio between Zbtb18- and control-transduced cells was consistent and close to 1:1 within the non-PC subsets (including B220+/CD138−GL7+ and GL7+ cells), in the PC pool (B220+CD138−GL7−), Zbtb18-overexpressing cells were outcompeted and their frequencies were reduced by ~50% compared with control-transduced B cells (Fig. 1E, 1F). Together, these findings reveal a significant and intrinsic role for Zbtb18 in suppressing PC responses.

**Downregulation of Zbtb18 correlates with cell division and PC differentiation**

Zbtb18 may reduce PC responses by negatively regulating their survival. To address this possibility, we asked whether enhanced expression of the antiapoptotic regulator Bcl-2 can rescue Zbtb18-mediated suppression of PCs. We expect that if Zbtb18 limits PCs numbers because of impaired survival, ectopic expression of Bcl-2 (which negates key apoptotic pathways in B cells) (17) will reduce this effect. Zbtb18- or control-expressing vectors were transduced in splenocytes derived from animals carrying the Bcl-2 transgene and were cocultured, stimulated, and analyzed as described in Fig. 1A. Although Bcl-2–expressing B cells showed increase in PC expansion compared with WT-stimulated cells, as expected, Zbtb18 overexpression led to a significant reduction in PC frequencies at a level similar to that observed in WT-transduced controls (Fig. 2A–C). Furthermore, Zbtb18 expression was not associated with reductions in mRNA levels of several Bcl-2 family members, including the key PC survival regulator McIl, as well as Bcl2a, Bcl2l1, and Bcl2l2 (17, 35, 36) (Fig. 2D), or with increased apoptosis rates (Fig. 2E).

PC differentiation has been tightly linked to cell proliferation (3, 6, 15). To investigate the kinetics of Zbtb18 expression during cell division, we labeled B cells from a Blimp-1–Venus+–transgenic mouse line with the CellTrace Violet (CTV) cell tracer dye, activated them, sorted cells from divisions 0, 2, and 5, and analyzed each fraction by qPCR for expression of Zbtb18, Irf4, and BcI6. Cells that have upregulated the PC master regulator Blimp-1 (Blimp-1–Venus+) were also sorted and analyzed at the same time from division 5 (Fig. 2F). As previously reported (6), induction of Irf4 correlated with the upregulation of Blimp-1, whereas BcI6 expression dropped abruptly at this stage (Fig. 2G). In contrast, Zbtb18 expression was reduced gradually between divisions 0, 2, and 5, reaching its lowest levels in Blimp-1+ cells that divided more than five times. To ask whether downregulation of Zbtb18 is associated with rates of cell proliferation, we generated chimeras reconstituted with BM cells transduced with Zbtb18 or control GFP vector. We did not detect any gross defects in the ability of transduced BM cells to mature and differentiate into B cell subsets in these mice (data not shown). Control or Zbtb18-expressing B cells were labeled with a cell tracer dye and stimulated to induce PCs in vitro. Flow cytometry analysis revealed that, in Zbtb18-overexpressing cells, rates of cell division were reduced (Fig. 2H). Thus, these results show that downregulation of Zbtb18 correlates with gradual increase in PC differentiation. Notably, although constitutive expression of Zbtb18 inhibited PC responses, partial inhibition of this protein using shRNA approach did not lead to spontaneous activation of the cells or to enhanced PC responses (Supplemental Fig. 2D, 2E). This observation suggests that Zbtb18 likely contributes to mechanisms that inhibit cell activation and that, although this function is largely redundant under steady-state conditions (possibly because of the presence of other dominant factors that target the same pathway in resting B cells), downregulation of Zbtb18 is necessary to release the cells from this inhibition and allow PC differentiation to progress.

**Zbtb18 modulates chromatin accessibility of the P13K pathway**

To identify molecular mechanisms of Zbtb18 function, we explored the effect of Zbtb18 on chromatin accessibility in activated B cells using ATAC-seq. We hypothesized that enforcing constitutive expression of Zbtb18 will allow us to identify specific loci that fail to open shortly after activation, thus revealing potential targets. Because we found that Zbtb18 is rapidly downregulated after stimulation (Fig. 2F), we focused our analysis on the early phase of activation (day 2). Transduced B cells were sorted (GFP+ B220+CD138−) and analyzed by ATAC-seq. For baseline control, transduced cells were similarly sorted prior to stimulation (day 0). Principal component analysis of differentially accessible peaks detected across all samples indicated that the main source of variation was between cells that received anti-CD40 and IL-4 (day 2) and those that did not receive this stimulation (day 0), regardless of Zbtb18 expression (Fig. 3A). This is further reflected by the large number of differentially accessible peaks between day 0 and day 2 in both control- and Zbtb18-overexpressing conditions. However, the second major variation, principal component-2, accounts for specific changes induced by constitutive expression of Zbtb18 (Fig. 3A) with relatively few peaks modified by Zbtb18 2 d poststimulation (Fig. 3B), indicating that Zbtb18 acts to regulate a restricted set of target loci.

Changes induced by constitutive Zbtb18 expression were most prominent on day 2 after stimulation with IL-4 and anti-CD40,
FIGURE 1. Zbtb18 suppresses PCs responses. (A–C) Splenocytes were transduced with Zbtb18/GFP or control/RFP retroviral vectors. B220+ RFP+ and GFP+ live cells were sorted by flow cytometry, mixed in a 1:1 ratio (day 0), and incubated with anti-CD40 and IL-4 for 3 d. A schematic illustration of the experiment is shown in (A). An example for flow cytometry gating scheme at day 0 (B) and day 3 (C) are shown. Red arrows show gating strategy. The ratio between Zbtb18/GFP+ and Ctrl/RFP+ cells in the non-PCs (B220high CD138+ and CD138high) compartments is shown (C, right). (A)–(C) show the result of one representative experiment out of at least three independent experiments performed. Each circle represents one technical replicate.

(D–F) CD45.2+ splenocytes were transduced with control/Thy1.1 or with Zbtb18/GFP and then cultured in the presence of 40LB stroma cells for 2 d. Transduced cells were analyzed by flow cytometry and cotransferred in a 1:1 ratio into CD45.1+ MD4 mice. The next day, mice were immunized with SRBCs, and 12 d later, their spleens were analyzed by flow cytometry. A schematic illustration of the experiment is shown in (D). The gating scheme is shown (plots are pregated on live CD45.1neg cells) (Fig. 3A–F). The ratios between CD45.2+ Zbtb18/GFP– and CD45.2+ control/Thy1.1-expressing cells were determined in the indicated populations (F). (D)–(F) show pooled data from two independent experiments performed. Each circle represents data from one mouse. **p < 0.01, ****p < 0.0001.
more variable effects suppressing some, but not all, loci (Fig. 4A, Supplemental Fig. 3C). As expected, \( \beta \)-actin and IL-6 loci, which are not regulated by Zbtb18, showed similar levels of accessibility in control-versus Zbtb18-transduced B cells (Supplemental Fig. 3C). Together, these results support a role for Zbtb18 as a transcriptional suppressor of the PI3K pathway.

The zinc finger domain of Zbtb18 directly interacts with its target DNA motif to regulate B cell differentiation

Zinc finger domains are known to bind their DNA targets via defined motifs. We, therefore, next used our ATAC-seq data to perform de novo (transcription factor–binding) motif–enrichment analysis in genes that were suppressed by Zbtb18 overexpression. Zbtb18-binding motifs were significantly enriched in the repressed ATAC-seq peaks in Zbtb18-transduced B cells compared with the control group at day 2 (Fig. 4B). A moderate but significant enrichment of the binding motifs of two other B cell response regulators including PU.1 (37, 38) and Oct2 (39, 40) was also noted (Fig. 4B), possibly suggesting collaborative or competing interactions with Zbtb18.

Importantly, several Zbtb18 motifs (41) were identified in the repressed peaks of \( \text{Pik3r1} \), \( \text{Pik3r5} \), and \( \text{Pi3kr6} \) (Fig. 4C, highlighted in red), supporting the possibility that Zbtb18 directly binds to these genes. In agreement, Chip qPCR analysis in B cells transduced with an Myc-tagged Zbtb18 showed a clear and selective interaction with DNA elements in \( \text{Pik3r1} \), \( \text{Pik3r5} \), and \( \text{Pi3kr6} \), but not in control genes including \( \beta \)-actin or IL-6 (Fig. 4C). Furthermore, this interaction was lost in B cells transduced with the
Zbtb18 zinc finger–deficient mutant (ΔZF), supporting a critical role for this domain in binding DNA motifs of class I PI3K regulatory genes (Fig. 4C). Consistent with loss of binding to PI3K genes, the truncated ΔZF Zbtb18 also lost its ability to suppress PC responses (Supplemental Fig. 4A–C). We, therefore, propose that downregulation of Zbtb18 during activation may allow dividing B cells to gradually lose Zbtb18-mediated inhibition and increase PI3K activity and that this effect may contribute to enhanced differentiation of PCs.

Downregulation of Zbtb18 modulates PI3K activity in stimulated B cells

The above hypothesis suggests that following activation B cells will increase the total amount of PI3K subunits in the cell and that downregulation of Zbtb18 will be necessary for this process. To test this possibility, we assessed protein levels of PI3K subunits in B cells transduced with control or Zbtb18 retroviral vector before and after stimulation. Within 2 d poststimulation with IL-4 and anti-CD40, we noted an increase in the total protein level of PIK3R1 (P85) and PIK3R5 (P101) in control-activated cells (Fig. 4D), supporting the hypothesis that expression of PI3K genes is enhanced during the early phase of activation. Notably, in addition to the expected PIK3R5 band size of ~100 kDa (green arrow Fig. 4D), we also detected a slightly higher specific band at ~115 kDa (black arrow), which displayed a similar trend. PIK3R6 was excluded from the analysis because, despite our efforts, we could not clearly detect it by Western blot, possibly because of its relatively low expression levels in hematopoietic cells (42). The finding that levels of PIK3R1 and PIK3R5 were only mildly increased in control-activated cells could partially be because of the relatively early time point we chose for analysis, at a time when PI3K proteins may not yet accumulated in the cells. Attempts to explore later timepoints were unsuccessful because many transduced B cells that did not receive anti-CD40 and IL-4 stimulation died within 3 d in tissue culture, thus preventing direct comparison with baseline levels. Importantly, however, B cells in which Zbtb18 was constitutively expressed did not show detectable changes in PI3KR1 and PI3KR5 expression upon activation (Fig. 4D), supporting the possibility that downregulation of Zbtb18 shortly after stimulation is needed to release transcriptional repression of PI3K genes. In line with this hypothesis, mRNA levels of PI3KR1, PI3KR5, and PI3KR6 were significantly and specifically reduced in Zbtb18-overexpressing B cells, as determined 2 d poststimulation with IL-4 and anti-CD40 (Fig. 4E).

Although the above findings show that Zbtb18 directly suppresses expression of class I PI3K subunits, they do not directly confirm that this effect has a measurable quantitative impact on PI3K signaling or PC differentiation. To next test this possibility, we assessed AKT phosphorylation levels in activated Zbtb18-overexpressing B cells by Western blot analysis. In these experiments we preincubated the transduced cells on the 40LB cell line to enhance survival and activation (experimental setup shown in Fig. 5A). In agreement with a role for Zbtb18 in inhibiting PI3K signals, Zbtb18-overexpressing B cells displayed a modest but consistent reduction in AKT phosphorylation (Fig. 5B). Similar results were obtained when p-AKT levels were tested using flow
cytometry analysis (Fig. 5C). As a complementary approach to further test the effect of Zbtb18 expression on PI3K signaling, we stably transduced the B cell line WEHI-231 with Zbtb18 (GFP+) vectors. Cells were analyzed by flow cytometry and mixed to achieve a 1:1 ratio of B220+–GFP+ and RFP+–expressing cells, followed by stimulation with anti-CD40 and IL-4. Two days after stimulation, RFP+ or GFP+ B220+ CD138+ live cells were sorted by flow cytometry and subjected to Chip qPCR analysis of the ATAC-seq differential peaks of Pik3r1, Pik3r5, and Pik3r6 genes. Data are from pooled samples from three independent experiments performed (total n = 3). (B) De novo motif–enrichment analysis in repressed ATAC-seq peaks of Zbtb18 versus control (Ctrl) cells. Motif density distribution relative to the peak summit for Zbtb18, Pu.1 and Oct2 motifs in the repressed ATAC-seq peaks (bottom). (C) Chip qPCR analysis of interactions between Myc-tagged Zbtb18 (WT), or D ZF with the indicated genes. Ctrl B cells transduced with empty GFP-expressing vector. Conserved Zbtb18-binding motif identified in the ATAC-seq peaks of the indicated genes are shown in red. Analysis was performed on transduced sorted cells (live B220+ GFP+ cells) 2 d after anti-CD40 and IL-4 stimulation. Data show pooled samples collected in three independent experiments performed (total n = 3, biological replicates). (D) Immunoblot analysis of p85a, p101, and GAPDH in Ctrl/RFP– or Zbtb18/GFP–transduced B cells 2 d after being cocultured with or without anti-CD40 and IL4 stimulation (left) [as in (A) above]. Cells were sorted prior to analysis on day 2 (gated on live B220+ CD138+ GFP+ or RFP+ cells). Quantification of p85a or p101 expression normalized with GAPDH (right). Figure shows combined data collected in two independent experiments performed. Each circle represents data from one experiment. (E) qPCR analysis of the indicated genes in control- and Zbtb18-transduced B cells, sorted (as GFP+ B220+ CD138+ live cells) 2 d poststimulation with anti-CD40 and IL-4. Expression of mRNA is presented relative to the abundance of GAPDH. Data in (E) show the results from one representative experiment out of three independent experiments performed. Each circle represents a technical replicate.

* 

** 

*** 

****

*p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001.

FIGURE 4. Zbtb18 directly binds and suppresses expression of PI3K class I genes. (A) Splenocytes were transduced with control (RFP+) or Zbtb18 (GFP+) vectors. Cells were analyzed by flow cytometry and mixed to achieve a 1:1 ratio of B220+–GFP+– and RFP+–expressing cells, followed by stimulation with anti-CD40 and IL-4. Two days after stimulation, RFP+ or GFP+ B220+ CD138+ live cells were sorted by flow cytometry and subjected to Chip qPCR analysis of the ATAC-seq differential peaks of Pik3r1, Pik3r5, and Pik3r6 genes. Data are from pooled samples from three independent experiments performed (total n = 3). (B) De novo motif–enrichment analysis in repressed ATAC-seq peaks of Zbtb18 versus control (Ctrl) cells. Motif density distribution relative to the peak summit for Zbtb18, Pu.1 and Oct2 motifs in the repressed ATAC-seq peaks (bottom). (C) Chip qPCR analysis of interactions between Myc-tagged Zbtb18 (WT), or D ZF with the indicated genes. Ctrl B cells transduced with empty GFP-expressing vector. Conserved Zbtb18-binding motif identified in the ATAC-seq peaks of the indicated genes are shown in red. Analysis was performed on transduced sorted cells (live B220+ GFP+ cells) 2 d after anti-CD40 and IL-4 stimulation. Data show pooled samples collected in three independent experiments performed (total n = 3, biological replicates). (D) Immunoblot analysis of p85a, p101, and GAPDH in Ctrl/RFP– or Zbtb18/GFP–transduced B cells 2 d after being cocultured with or without anti-CD40 and IL4 stimulation (left) [as in (A) above]. Cells were sorted prior to analysis on day 2 (gated on live B220+ CD138+ GFP+ or RFP+ cells). Quantification of p85a or p101 expression normalized with GAPDH (right). Figure shows combined data collected in two independent experiments performed. Each circle represents data from one experiment. (E) qPCR analysis of the indicated genes in control- and Zbtb18-transduced B cells, sorted (as GFP+ B220+ CD138+ live cells) 2 d poststimulation with anti-CD40 and IL-4. Expression of mRNA is presented relative to the abundance of GAPDH. Data in (E) show the results from one representative experiment out of three independent experiments performed. Each circle represents a technical replicate.

* 

** 

*** 

****

*p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001.

FIGURE 5. ZBTB18 regulates plasma cell differentiation. (A) ZBTB18 directly binds and suppresses expression of PI3K class I genes. (A) Splenocytes were transduced with control (RFP+) or Zbtb18 (GFP+) vectors. Cells were analyzed by flow cytometry and mixed to achieve a 1:1 ratio of B220+–GFP+– and RFP+–expressing cells, followed by stimulation with anti-CD40 and IL-4. Two days after stimulation, RFP+ or GFP+ B220+ CD138+ live cells were sorted by flow cytometry and subjected to Chip qPCR analysis of the ATAC-seq differential peaks of Pik3r1, Pik3r5, and Pik3r6 genes. Data are from pooled samples from three independent experiments performed (total n = 3). (B) De novo motif–enrichment analysis in repressed ATAC-seq peaks of Zbtb18 versus control (Ctrl) cells. Motif density distribution relative to the peak summit for Zbtb18, Pu.1 and Oct2 motifs in the repressed ATAC-seq peaks (bottom). (C) Chip qPCR analysis of interactions between Myc-tagged Zbtb18 (WT), or D ZF with the indicated genes. Ctrl B cells transduced with empty GFP-expressing vector. Conserved Zbtb18-binding motif identified in the ATAC-seq peaks of the indicated genes are shown in red. Analysis was performed on transduced sorted cells (live B220+ GFP+ cells) 2 d after anti-CD40 and IL-4 stimulation. Data show pooled samples collected in three independent experiments performed (total n = 3, biological replicates). (D) Immunoblot analysis of p85a, p101, and GAPDH in Ctrl/RFP– or Zbtb18/GFP–transduced B cells 2 d after being cocultured with or without anti-CD40 and IL4 stimulation (left) [as in (A) above]. Cells were sorted prior to analysis on day 2 (gated on live B220+ CD138+ GFP+ or RFP+ cells). Quantification of p85a or p101 expression normalized with GAPDH (right). Figure shows combined data collected in two independent experiments performed. Each circle represents data from one experiment. (E) qPCR analysis of the indicated genes in control- and Zbtb18-transduced B cells, sorted (as GFP+ B220+ CD138+ live cells) 2 d poststimulation with anti-CD40 and IL-4. Expression of mRNA is presented relative to the abundance of GAPDH. Data in (E) show the results from one representative experiment out of three independent experiments performed. Each circle represents a technical replicate.

* 

** 

*** 

****

*p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001.
Zbtb18-mediated suppression. PI3K activity is negated by PTEN, a constitutively expressed phosphatase that terminates class I PI3K signaling by dephosphorylating PIP3 into PI(4,5)P2. To test whether inhibiting PTEN will overcome Zbtb18-mediated PI3K suppression, we cotransduced B cells with Zbtb18 or control vector together with PTEN-shRNA or control shRNA. The efficiency of the PTEN-shRNA was confirmed by qPCR and in vitro PC differentiation assay (Supplemental Fig. 4D, 4E). Cotransduced cells were stimulated with IL-4 and anti-CD40 for 3 d and analyzed by flow cytometry. As expected, cotransduction of cells with Zbtb18 and control shRNA led to ∼30% reduction in PC development compared with cells coexpressing the control vector and control shRNA (Fig. 5G). However, when PTEN was silenced, PC frequencies were increased and Zbtb18 constitutive expression no longer inhibited the response (Fig. 5G). Moreover, direct inhibition of FOXO1, one of the major cellular targets that are inactivated by FOXO1 inhibitor and analyzed by flow cytometry 3 d later. The frequencies of GFP+ and RFP+ cells in the non-PCs (B220high CD138low) and PCs (B220low CD138high) populations are shown. Figure shows one of three independent experiments performed (n = 3, technical replicates). *p < 0.05, **p < 0.001, ***p < 0.0001.
the PI3K pathway in B cells, effectively negated Zbtb18-mediated suppression of PC differentiation and restored the response (Fig. 5H). Together, these observations are consistent with the notion that Zbtb18-mediated suppression of PC differentiation is at least partially facilitated by its transcriptional repression of PI3K genes.

**Zbtb18 suppresses differentiation of human PCs**

The mouse Zbtb18 protein shares 99% homology with its human counterpart (43). We next examined expression pattern of ZBTB18 in human B cells purified from the blood of healthy donors. Similar in mice, we find that expression of ZBTB18 was significantly downregulated in PCs compared with naïve and memory human B cells (Fig. 6A). To assess whether ZBTB18 also functions similarly in human B cells and suppresses PC development, we enforced expression of ZBTB18 mRNA in purified stimulated human B cells and analyzed the relative frequencies of PCs. A GFP-expressing vector was used as control. mRNA was electroporated into purified B cells 2 d after their culture in the presence or absence of stimulation. We hypothesized that, at this time point, endogenous Zbtb18 begins to decline and, therefore, its enforced expression at this stage may interfere with the ability of cells to progress toward PC fate. In agreement with this hypothesis, we found that cells that received Zbtb18 RNA showed a significant and consistent reduction in PC formation (Fig. 6B), suggesting Zbtb18 has a similar PC suppression capacity in human B cells.

Somatic mutations of Zbtb18 have been identified in diseases associated with excessive activity of PI3K, including several human cancers including glioblastoma, ovary, gut, and acute lymphoblastic leukemia patients (44–57). To gain additional insight into mechanisms of Zbtb18 activity, we transduced B cells with mutated forms of ZBTB18 (Myc-tagged) derived from such patients and tested their ability to suppress PC differentiation. Among the eight mutants tested, we find that all those in which the zinc finger motif was interrupted (including R195-stop, K426Q, R436C, and R482C) had lost the capacity to suppress PCs formation, indicating loss of ZBTB18 activity (Fig. 6C). Importantly, loss of activity was not due to failure to express the mutated protein or to localize it to the nucleus, as confirmed by flow cytometry analysis of Myc expression, immunofluorescent, and Western blot analysis (Fig. 6D, Supplemental Fig. 4F, 4G). Furthermore, ChIP qPCR analysis confirmed impaired interactions of the mutants with pi3krr1, pi3kr5, and pi3kr6 genes (Fig. 6E), indicating that, in addition to loss of activity in suppressing PC responses, these ZBTB18-mutated proteins are dysfunctional in their capacity to regulate PI3K signaling.

**Discussion**

**PC differentiation is an irreversible process that involves a massive shift in the expression of hundreds of genes.** This dramatic transition is mediated by a series of cell divisions during which the cells progressively lose their B cell identity and acquire PC fate (4–6). Previous studies have shown that during the early phase of PC differentiation, chromatin accessibility of class I PI3K genes increases (15). However, the mechanistic link between cell division and epigenetic regulation of this signaling pathway and the relevance of this process to PC differentiation have not been explored. In this study, we demonstrate that PC differentiation is associated with downregulation of Zbtb18, a ZFP, that we identify as a transcriptional repressor of class I PI3K regulatory subunits. We propose that cell division–coupled amplification of PI3K signals is promoted by gradual decrease in Zbtb18 and that this process plays a role in promoting PC differentiation.

Several lines of evidence support this conclusion. Using ATAC-seq analysis, we show that constitutive expression of Zbtb18 in activated B cells leads to decrease in chromatin accessibility of genes encoding for class I PI3K regulatory subunits, most notably for Pik3r1, Pik3r5, and Pik3r6. This was accompanied by lower association of the activating epigenetic marker H3K4Me3 with promoter/enhancer elements and with lower expression of PI3K proteins in activated B cells. Furthermore, we show that Zbtb18-binding motifs are enriched within DNA regions of several class I PI3K genes, most notably those encoding for Pik3r1, Pik3r5, and Pik3r6, and that Zbtb18 directly binds them. Collectively, these findings provide support to the notion that Zbtb18 acts as a transcriptional repressor that limits expression of PI3K regulatory subunits. Given the known role of PI3K signaling in driving PC responses, we propose that during the initial phase of B cell activation, downregulation of Zbtb18 is necessary to release transcriptional repression of PI3K genes consequently amplifying PI3K signals and enhancing PC differentiation. In line with this possibility, Zbtb18 overexpression in primary B cells or in the WEHI-231 B cell line was associated with reduced AKT phosphorylation. Moreover, restoring proximal and distal activation of the PI3K signaling cascade negated Zbtb18-mediated inhibition and rescued PC differentiation.

Our results indicate that Zbtb18 inhibits, but not fully block, the PI3K pathway in B cells. This is evident by the fact that overexpression of Zbtb18 reduced but did not completely prevent PC formation. Furthermore, partial inhibition of Zbtb18 using shRNA approach did not lead to spontaneous or enhanced PC differentiation, suggesting that loss of Zbtb18 is not enough to drive activation. It is, therefore, likely that the ability of Zbtb18 to modulate PI3K activity in B cells is limited to defined differentiation steps where cells are either more sensitive to relatively subtle changes in PI3K signals or where alternative mechanisms that negatively regulate PI3K activity are downregulated. This may also explain why enforced expression of Zbtb18 did not have a significant effect on GC responses, which depend on PI3K signaling, possibly reflecting the differential manner by which PI3K pathway is regulated in these cells compared with naive B cells (22, 58, 59). We therefore propose that Zbtb18 functions as a rheostat to fine-tune B cell activation and that the extent of its effect is context dependent. Future studies using genetic mouse models to selectively and more efficiently delete Zbtb18 from B cells are necessary to further explore its role in regulating B cell homeostasis.

Triggering the PI3K signaling in B cells is known to negatively regulate class switch recombination (12, 60, 61). Surprisingly however, overexpression of Zbtb18 did not lead to impaired class switching. It is possible that the extent by which Zbtb18 modulates PI3K signals is insufficient to modify FOXO1-mediated control of CSR. In support of this possibility, FOXO1 heterozygous mice had normal levels of CSR (62). In addition, it is important to note that FOXO1 is not the only target of AKT and that PI3K also activates other effector proteins (63, 64). Thus, although our study show that Zbtb18 inhibits PCs at least partially by modulating the PI3K pathway and the FOXO1 activity, our findings do not rule out a contribution of other effector proteins downstream to PI3K to this effect or the existence of additional mechanisms by which Zbtb18 may modulate the differentiation of PCs.

The PI3K pathway plays a central role in regulating multiple cellular processes and is highly conserved among multicellular organisms. Dysregulation of PI3K activity is associated with many human diseases including cancer, diabetes, cardiovascular disorder, and neurologic diseases. Despite being of major relevance to human health, to date, little is known about the manner by which PI3K
genes are transcriptionally regulated. Our finding that both mouse and human Zbtb18 has the capacity to bind class I PI3K genes and modulate their expression in B cells may have broader implications that extend beyond its role in regulating immune responses and that may be even more relevant to other cell types in which Zbtb18 is expressed. Notably, in humans, Zbtb18 is abundantly expressed in the brain where it has been shown to regulate the development of neuronal cells. Somatic mutations of Zbtb18 have been identified in various diseases, including human cancers (44–57). The role of Zbtb18 in these diseases is not well understood, but recent findings.

FIGURE 6. Zbtb18 suppresses differentiation of human PCs. (A) qPCR analysis of the transcript abundance of Zbtb18 in human naive cell (CD19+IgD+CD27-) memory cell (CD19+CD27+CD38-), and PC (CD19+IgD-CD27+CD38+) sorted from human peripheral blood samples. Expression of mRNA is presented relative to the abundance of RPL13A. Data are from two biological replicates analyzed with two technical replicates each. The experiment is one out of two independent experiments performed. (B) Human B cells were purified from healthy donors, stimulated, and electroporated with control (Ctrl) or Zbtb18 RNA. Left, Representative example of flow cytometry analysis of cells 5 d poststimulation pregated on CD19+cells. Right, Frequencies of PCs (CD38+CD27+). Data are from pooled samples from four independent experiments performed. Each experiment is color coded. (C) Left, Schematic illustration of point mutations in Zbtb18 identified in cancer patients. Red lines highlight mutations that target residues within the zinc finger motif or that lead to loss of the entire domain. Right, B cells from mouse spleen were transduced with control/RFP or Zbtb18-Myc–Tagged/GFP WT or mutants, sorted, coincubated, and stimulated with IL-4 and anti-CD40 for 3 d (as in Fig. 1A). Shown are the frequencies of non-PC and PC populations in GFP- and RFP-expressing cells. Data show one representative experiment out of three independent experiments performed. Each circle represents a technical replicate. (D) Anti-Myc intracellular stain splenocytes transduced with Zbtb18-Myc–tagged WT and mutants. Ctrl B cells transduced with empty (GFP-only) vector. Histograms are pregated on untransduced (GFP-, black) and transduced (GFP+, green) fractions. Left, Representative histograms. Right, MFIs of Myc. Figure shows data from one representative experiment out of three independent experiments performed. Each circle represents a technical replicate. (E) Chip qPCR analysis for binding of Zbtb18-Myc (WT) or the indicated mutated forms to class I PI3K genes. β-actin was used as a nonspecific binding gene. Ctrl B cells transduced with empty (GFP-only) vector. Analysis was performed on sorted cells (live B220+GFP+) 2 d after anti-CD40 and IL-4 stimulation. Figure shows one representative experiment out of three independent experiments performed (n = 4, technical replicates). *p < 0.05, **p < 0.01, ****p < 0.0001.
have shown that it may act as a tumor suppressor gene such that its loss may directly contribute to the development or progression of the disease (65–67). Given the importance of PI3K in regulation of multiple cellular processes and the tight association between excessive PI3K activity and cancer development, it will be important to determine whether Zbtb18 may play a more dominant role in regulating the PI3K pathways in other cell types and whether loss of its function may contribute to progression or onset of some diseases.

Acknowledgments

We thank Dr. Daisuke Kitamura for the kind gift of the stroma cell line CD40LB and Andrea Reboldi, Audrey Gerard, and Oliver Bannard for critical reading of the manuscript.

Disclosures

The authors have no financial conflicts of interest.

References

1. Fujio, K., T. Okamura, S. Sumitomo, and K. Yamamoto. 2013. Regulatory cell subsets in the control of autoantibody production related to systemic autoimmunity. Ann. Rheum. Dis. 72(Suppl. 2): i85–i88.

2. Potter, M. 2003. Neoplastic development in plasma cells. Immunol. Rev. 194: 177–195.

3. Barbic, B. G., C. D. Scharer, A. P. R. Bally, and J. M. Boss. 2016. Plasma cell differentiation is coupled to division-dependent DNA hypomethylation and gene regulation. Nat. Immunol. 17: 1216–1225.

4. Nutt, S. L., P. D. Hodgkin, D. M. Tarlinton, and L. M. Corcoran. 2015. The generation of antibody-secreting plasma cells. Nat. Rev. Immunol. 15: 110–121.

5. Nutt, S. L., N. Taubenheim, J. Hasbold, L. M. Corcoran, and P. D. Hodgkin. 2011. The genetic network controlling plasma cell differentiation. Semin. Immunol. 23: 341–349.

6. Shyu, Y. W., S. N. Willis, N. Taubenheim, M. Inouye, D. M. Tarlinton, G. K. Smyth, P. D. Hodgkin, S. L. Nutt, and L. M. Corcoran. 2015. Transcriptional profiling of mouse B cell terminal differentiation defines a signature for antibody-secreting plasma cells. Nat. Immunol. 16: 663–673.

7. Fruman, D. A., and G. Bismuth. 2009. Fine tuning the immune response with PI3K. Immunol. Rev. 228: 253–272.

8. Hosdon, D. J., and M. Turner. 2009. The role of PI3K signalling in the B cell response to antigen. Adv. Exp. Med. Biol. 633: 43–53.

9. Jellusova, J., and R. C. Rickert. 2016. The PI3K pathway in B cell metabolism. Crit. Rev. Biochem. Mol. Biol. 51: 359–378.

10. Limon, J. J., and D. A. Fruman. 2012. Akt and mTOR in B cell activation and differentiation. Front. Immunol. 3: 228.

11. Turner, M. E., H. Hobeika, and H. Jumaa. 2010. Role of PI3K in the generation and survival of B cells. Immunol. Rev. 237: 55–71.

12. Omori, S. A., M. H. Cato, A. Anzenl-Mills, K. D. Puri, M. Shapiro-Shelef, K. Calame, and R. C. Rickert. 2006. Regulation of class-switch recombination and plasma cell differentiation by phosphatidylinositol 3-kinase signaling. Immunity 25: 545–557.

13. Lin, W. H., W. C. Adams, S. A. Nish, Y. H. Chen, B. Yen, N. J. Rothman, R. Kratuchvich, T. Okada, U. Klein, and S. L. Reiner. 2015. Asymmetric PI3K signaling driving developmental and regenerative cell fate bifurcation. Cell Rep. 13: 2203–2218.

14. Chen, Y. H., R. Kratuchvich, W. W. Lin, N. J. Rothman, B. Yen, W. C. Adams, S. A. Nish, J. C. Rathmell, and S. L. Reiner. 2018. Asymmetric PI3K activity in lymphocytes organized by a PI3K-mediated polarity pathway. Cell Rep. 22: 860–868.

15. Scharer, C. D., B. G. Barbic, M. Guo, A. P. R. Bally, and J. M. Boss. 2018. Plasma cell differentiation is controlled by multiple cell division-coupled epigenetic programs. Nat. Commun. 9: 1698.

16. Goodnow, C. C., J. J. Crosbie, S. Adelstein, T. B. Lavoie, J. C. Jameson, R. A. Brink, H. Pritchard-Briscoe, J. S. Woutersen, R. H. Loblay, K. Raphael, et al. 1988. Altered immunoglobulin expression and functional silencing of self-reactive B lymphocytes in transgenic mice. Nature 337: 676–682.

17. Strasser, A., S. Whittingham, D. L. Vaux, M. L. Math, J. M. Adams, S. C. Gyorkey, and A. W. Harris. 1991. Enforced BCL2 expression in B-lymphoid cells prolongs survival of B cells. Nature 348: 290–297.

18. Ohnita, Y., B. Payer, D. O’ Carroll, K. Ancelin, Y. Ono, M. Sano, S. C. Barton, T. Obukhanych, M. Nussenblatt, A. Tarakhovsky, et al. 2005. Blimpl is a critical determinant of the germ cell lineage in mice. Nature 436: 207–213.

19. Petrie, J. P., L. C. Kelly, Y. Xu, and J. G. Cyster. 2009. EBI2 mediates B cell segregation between the outer and centre follicle. Nature 460: 1112–1126.

20. Yi, T., and J. G. Cyster. 2013. EBI2-mediated bridging channel positioning supports splenic dendritic cell homeostasis and particulate antigen capture. Elife 2: e00757.
mechanisms and outcomes. [Published erratum appears in 2018 Nat. Med. 24: 1292.]

46. Gerlinger, M., S. Horvill, J. Larkin, A. J. Rowan, M. P. Salm, I. Varela, R. Fisher, N. McGranahan, N. Matthews, C. R. Santos, et al. 2014. Genomic architecture and evolution of clear cell renal cell carcinomas defined by multi-region sequencing. Nat. Genet. 46: 225–233.

47. Giannakis, M., E. Hodis, X. Jasmine Mu, M. Yamauchi, A. W. Burgess, J. Cibulskis, G. Saksena, M. S. Lawrence, Z. R. Qian, R. Nishihara, et al. 2014. RNF43 is frequently mutated in colorectal and endometrial cancers. Nat. Genet. 46: 1264–1266.

48. Giannakis, M., X. J. Mu, S. A. Shukla, Z. R. Qian, O. Cohen, R. Nishihara, S. Bahl, Y. Cao, A. Amin-Mansour, M. Yamauchi, et al. 2016. Genomic correlates of immune-cell infiltrates in colorectal carcinoma. Cell Rep. 17: 1206.

49. Hoadley, K. A., C. Yau, T. Hinoue, D. M. Wolf, A. J. Lazar, E. Drill, R. Shen, A. M. Taylor, A. D. Cherniack, V. Thorsson, et al; Cancer Genome Atlas Network. 2018. Cell-of-origin patterns dominate the molecular classification of 10,000 tumors from 33 types of cancer. Cell 173: 291–304.e6.

50. Kataoka, K., Y. Nagata, A. Kitanaka, Y. Shiraishi, T. Shimamura, J. Yasunaga, Y. Totoki, K. Chiba, A. Sato-Otsubo, G. Nagae, et al. 2015. Integrated molecular analysis of adult T cell leukemia/lymphoma. Nat. Genet. 47: 1304–1315.

51. Liu, J., T. Lichtenberg, K. A. Hoadley, L. M. Poisson, A. J. Lazar, A. D. Cherniack, A. J. Kovatch, C. C. Benz, D. A. Levine, A. V. Lee, et al; Cancer Genome Atlas Research Network. 2018. An integrated TCGA pan-cancer clinical data resource to drive high-quality survival outcome analytics. Cell 173: 400–416.e11.

52. Multiple Myeloma Research Consortium. 2014. Widespread genetic heterogeneity in multiple myeloma: implications for targeted therapy. Cancer Cell 25: 91–101.

53. Mouradov, D., C. Sloggett, R. N. Jorissen, C. G. Love, S. Li, A. W. Burgess, J. Cibulskis, G. Saksena, M. S. Lawrence, Z. R. Qian, R. Nishihara, et al. 2014. Colorectal cancer cell lines are representative models of the main molecular subtypes of primary cancer. Cancer Res. 74: 3238–3247.

54. Sanchez-Vega, F., M. Mina, J. Armenia, W. K. Chatila, A. Luna, K. C. La, S. Dimitriadoy, D. L. Liu, H. S. Kantheti, S. Saghafinia, et al; Cancer Genome Atlas Research Network. 2018. Oncogenic signaling pathways in the cancer genome atlas. Cell 173: 321–337.e10.

55. Seshagiri, S., E. W. Stawiski, S. Durinck, Z. Modrusan, E. W. Stawiski, S. Durinck, Z. Modrusan, E. E. Storm, C. B. Conway, S. Chaudhuri, Y. Guan, V. Janakiraman, B. S. Kajiwali, et al. 2012. Recurrent R-spondin fusions in colon cancer. Nature 488: 660–664.

56. Taylor, A. M., J. Shih, G. Hu, G. F. Gao, X. Zhang, A. C. Berger, S. E. Schumacher, C. Wang, H. Hu, J. Liu, et al; Cancer Genome Atlas Research Network. 2018. Genomic and functional approaches to understanding cancer aneuploidy. Cancer Cell 33: 676–689.e3.

57. Zhang, J., K. McClayl, H. Yoshitani, B. Xu, Y. Chang, M. L. Churchman, G. Wu, Y. Li, L. Wei, I. Iacobucci, et al; St. Jude Children’s Research Hospital–Washington University Pediatric Cancer Genome Project. 2016. Dereegulation of DUX4 and ERG in acute lymphoblastic leukemia. Nat. Genet. 48: 1481–1489.

58. Luo, W., F. Weisel, and M. J. Shlomchik. 2015. B cell receptor and CD40 signaling are rewired for synergistic induction of the c-Myc transcription factor in germinall center B cells. Immunity 48: 313–326.e5.

59. Shlomchik, M. J., W. Luo, and F. Weisel. 2019. Linking signaling and selection in the germinal center. Immunol. Rev. 288: 49–63.

60. Dengler, H. S., G. V. Baracho, S. A. Omori, S. Bruckner, K. C. Arden, D. H. Castrillon, R. A. DePino, and R. C. Rickert. 2008. Distinct functions for the transcription factor Foxo1 at various stages of B cell differentiation. Nat. Immunol. 9: 1388–1398.

61. Suzuki, A., T. Kaisho, M. Ohishi, M. Tsukio-Yamaguchi, T. Tsukuba, P. A. Koni, T. Sasaki, T. W. Mak, and T. Nakano. 2003. Critical roles of Pten in B cell homeostasis and immunoglobulin class switch recombination. J. Exp. Med. 197: 657–667.

62. Dominguez-Sola, D., J. Kung, A. B. Holmes, V. A. Wells, T. Mo, K. Basso, and R. Dalla-Favera. 2015. The FOXO1 transcription factor instructs the germlinal center dark zone program. Immunity 43: 1064–1074.

63. Fruinan, D. A., H. Chiu, B. D. Hopkins, S. Bagrodia, L. C. Cantley, and R. T. Abraham. 2017. The PI3K pathway in human disease. Cell 170: 605–635.

64. Manning, B. D., and A. Toker. 2017. AKT/PKB signaling: navigating the network. Cell 169: 381–405.

65. Fedele, V., F. Dai, A. M. Maslalman, D. H. Heiland, E. Kling, A. M. Gütjens-Sanchez, R. Ferraresi, L. Platania, D. Sorossh, H. Kim, et al. 2017. Epigenetic regulation of ZBTB18 promotes glioblastoma progression. Mol. Cancer Res. 15: 998–1011.

66. Sumazin, P., X. Yang, H. S. Chiu, W. J. Chung, A. Iacobucci, D. Llobet-Navas, P. Rajbhandari, M. Bansal, P. Guarnieri, J. Silva, and A. Califano. 2011. An extensive microRNA-mediated network of RNA-RNA interactions regulates oncogenic pathways in glioblastoma. Cell 147: 370–381.

67. Tatard, V. M., C. Xiang, J. A. Biegel, and N. Dahmane. 2010. ZNF238 is DUX4 and ERG in acute lymphoblastic leukemia. Cell Rep. 7: 1264–1266.