NON-SELF-ADJOINT RESOLUTIONS OF THE IDENTITY
AND ASSOCIATED OPERATORS

ATSUSHI INOUE AND CAMILLO TRAPANI

ABSTRACT. Closed operators in Hilbert space defined by a non-self-
adjoint resolution of the identity \(\{X(\lambda)\}_{\lambda \in \mathbb{R}} \), whose adjoints constitute
also a resolution of the identity, are studied. In particular, it is shown
that a closed operator \(B \) has a spectral representation analogous to the
familiar one for self-adjoint operators if and only if \(B = TAT^{-1} \) where
\(A \) is self-adjoint and \(T \) is a bounded operator with bounded inverse.

1. Introduction

In recent years there has been an increasing interest on non-self-adjoint
operators with real spectrum, because of the important role they play in the
so-called pseudo-hermitian quantum mechanics, an unconventional approach
to this branch of physics, based on the use of non-self-adjoint Hamiltonians
\[2, 4\]. Often self-adjointness can be restored by changing the environment:
in fact, if a closed operator \(H' \) can be expressed as \(H' = THT^{-1} \), where
\(H \) is self-adjoint and \(T \) is a bounded operator with bounded inverse then
\(H \) and \(H' \) have the same spectrum. If this condition is satisfied, \(H' \) and \(H \)
are said to be similar. This relation can be interpreted as the possibility
of defining a (possibly, indefinite) inner product which makes \(H' \) into a
self-adjoint operator with respect to the new metric. In this case, if \(H = \int_{\mathbb{R}} \lambda dE(\lambda) \) is the spectral representation of \(H \), then \(H' = \int_{\mathbb{R}} \lambda dX(\lambda) \) where
\(X(\lambda) = TE(\lambda)T^{-1} \). The family \(\{X(\lambda)\}_{\lambda \in \mathbb{R}} \) obtained in this way behaves
under many respects in analogous way to an ordinary spectral family with
the crucial difference that its elements are non-self-adjoint projections (this
means that, for every \(\lambda \in \mathbb{R} \), \(X(\lambda)^2 = X(\lambda) \) but \(X(\lambda)^* \neq X(\lambda) \), in general).

This observation is the starting point of this paper. In fact, we will con-
ider, as suggested by the previous example, a non-self-adjoint resolution
of the identity \(\{X(\lambda)\}_{\lambda \in \mathbb{R}} \) enjoying prescribed regularity properties (mono-
tonicity, uniform boundedness, etc.); in particular we will focus our attention
to the case where \(\{X(\lambda)^*\}_{\lambda \in \mathbb{R}} \) is a resolution of the identity too (we speak
in this case of a *-resolution of the identity) and study closed operators
that are associated to it. To be clearer, let us consider an ordinary spectral
family \(\{E(\lambda)\}_{\lambda \in \mathbb{R}} \) consisting of self-adjoint (or orthogonal) projections in
Hilbert space \(\mathcal{H} \). Then, as it is well-known, this family defines uniquely a
self-adjoint operator A whose domain
\[D(A) = \left\{ \xi \in \mathcal{H} : \int_{\mathbb{R}} \lambda^2 d \langle E(\lambda)\xi | \xi \rangle < \infty \right\} \]
can be expressed in several equivalent ways due to the equalities
\[\langle E(\lambda)\xi | \xi \rangle = \| E(\lambda)\xi \|^2 = \left((E(\lambda)^* E(\lambda))^{1/2} \xi | \xi \right), \quad \xi \in \mathcal{H}. \]
These equalities do not hold, in general, if we remove the assumption that each $E(\lambda)$ is self-adjoint, so that the corresponding spectral integrals may produce different operators and these operators are the main object of this paper. The main result of the paper consists in showing that a closed operator B can be expressed as
\[B = \int_{\mathbb{R}} \lambda dX(\lambda) \]
if, and only if it is similar to a self-adjoint operator A; i.e. $B = TAT^{-1}$ where A is self-adjoint and T is a bounded operator with bounded inverse.

2. Preliminaries

In this section we collect some definitions and facts concerning quasi-similarity and similarity for possibly unbounded linear operators [1].

Let \mathcal{H}, \mathcal{K} be Hilbert spaces, $D(A)$ and $D(B)$ dense subspaces, respectively of \mathcal{H} and \mathcal{K}; $A : D(A) \to \mathcal{H}, B : D(B) \to \mathcal{K}$ two linear operators. A bounded operator $T : \mathcal{H} \to \mathcal{K}$ is called an intertwining operator for A and B if
\begin{enumerate}
 \item[(i)] $T : D(A) \to D(B)$;
 \item[(ii)] $BT\xi = TA\xi$, $\forall \xi \in D(A)$.
\end{enumerate}

Definition 2.1. Let A and B be two linear operators in the Hilbert spaces \mathcal{H} and \mathcal{K}, respectively.

We say that A and B are quasi-similar, and write $A \dashv B$, if there exists an intertwining operator T for A and B which is invertible, with inverse T^{-1} densely defined.

The operators A and B are said to be similar, and write $A \sim B$, if they are quasi similar and the inverse T^{-1} of the intertwining operator T intertwines B and A.

Remark 2.2. We notice that \sim is an equivalence relation. Moreover, if $A \sim B$, then $TD(A) = D(B)$.

If $A \dashv B$ (respectively, $A \sim B$) with intertwining operator T, then, $B^* \dashv A^*$ (respectively, $B^* \sim A^*$), with intertwining operator T^*.

Remark 2.3. Let A and B be linear operators in \mathcal{H} and \mathcal{K}, respectively, with $A \sim B$. The following properties of similar operators are easily proved.
\begin{enumerate}
 \item[(i)] A is closed if, and only if, B is closed.
 \item[(ii)] A^{-1} exists if, and only if, B^{-1} exists. Moreover, $B^{-1} \sim A^{-1}$.
\end{enumerate}
If A is a closed operator, we denote, as usual, by $\sigma(A)$ its spectrum. The parts in which the spectrum is traditionally decomposed, the point spectrum, the continuous spectrum and the residual spectrum, are denoted respectively by $\sigma_p(A)$, $\sigma_c(A)$, $\sigma_r(A)$.

Proposition 2.4. Let A, B be closed operators. Assume that $A \sim B$ and let T be the corresponding intertwining operator. Then the spectra $\sigma(A)$ and $\sigma(B)$ coincide and

$$\sigma_p(A) = \sigma_p(B), \quad \sigma_c(A) = \sigma_c(B), \quad \sigma_r(A) = \sigma_r(B).$$

Moreover, if $\lambda \in \sigma_p(A)$, the multiplicity $m_A(\lambda)$ of λ as eigenvalue of A is the same of its multiplicity $m_B(\lambda)$ as eigenvalue of B.

The situation for quasi-similarity is more involved and it has been described in [1]. We summarize in the next proposition the main results.

Proposition 2.5. Let A, B be closed operators. Assume that $A \dashv B$ with intertwining operator T. Then the following statements hold.

Statement (sp.)	Condition	Description
(sp.1) $\sigma_p(A) \subseteq \sigma_p(B)$	T^{-1} bounded and $T(D(A))$ is a core for B	$\sigma_p(B) \subseteq \sigma(A)$
(sp.2) $\sigma_p(A) \subseteq \sigma_p(B) \subseteq \sigma(B) \subseteq \sigma(A)$	T^{-1} everywhere defined and bounded and $TD(A)$ is a core for B.	

Remark 2.6. Suppose, for instance, that A is self-adjoint, then any operator B which is quasi-similar to A by means on an intertwining operator T whose inverse is bounded too, has real spectrum and, if A has a pure point spectrum, then B is isospectral to A.

3. Non-self-adjoint resolutions of the identity

To begin with, we fix some terminology. Let \mathcal{H} be a Hilbert space. A bounded operator X will be called a projection if $X^2 = X$ and a self-adjoint (or orthogonal) projection if $X = X^2 = X^*$. If X is a nonzero projection, then $\|X\| \geq 1$, while if it is self-adjoint $\|X\| = 1$.

Example 3.1. Let us consider two biorthogonal Schauder bases $\Phi = \{\varphi_n, n \in \mathbb{N}\}$ and $\Psi = \{\psi_n, n \in \mathbb{N}\}$ of the Hilbert space \mathcal{H}, $\langle \varphi_i | \psi_j \rangle = \delta_{i,j}$ and let us consider an operator of the form

$$S = \sum_{k=1}^{\infty} \alpha_k (\psi_k \otimes \overline{\varphi_k})$$

with $\alpha_k \in \mathbb{C}$, $k \in \mathbb{N}$. The domain of S is the following subspace of \mathcal{H}:

$$D(S) = \left\{ \xi \in \mathcal{H} : \lim_{n \to \infty} \left\| \sum_{k=n+1}^{n+p} \alpha_k \langle \xi | \varphi_k \rangle \psi_k \right\| = 0, \forall p \in \mathbb{N} \right\}.$$
This domain is dense, since it contains the vectors \(\psi_k, k \in \mathbb{N} \).

It is easy to see that every \(\alpha_k \) is an eigenvalue of \(S \) with eigenvector \(\phi_k \).

The spectrum \(\sigma(S) \) of \(S \) is the set \(\{ \alpha_k, k \in \mathbb{N} \} \). In particular, \(\sigma_p(S) = \{ \alpha_k, k \in \mathbb{N} \} \) and every limit point of \(\sigma_p(S) \), if any, lies in the continuous spectrum \(\sigma_c(S) \) of \(S \).

To simplify notations, we put \(R_k = \psi_k \otimes \overline{\phi_k} \). This family of rank one operators enjoys the following easy properties:

1. \(\| R_k \| \leq \| \phi_k \| \| \psi_k \| \);
2. \(R_k^* = R_k \); and \(R_k R_m = 0 \) if \(m \neq k \).

In particular, (iii) implies that \(R_k \) is a non-self-adjoint projection (unless \(\phi_k = \psi_k \)). Moreover, since \(\Psi = \{ \psi_n, n \in \mathbb{N} \} \) is a Schauder basis, one gets

\[
\xi = \sum_{k=1}^{\infty} R_k \xi, \quad \forall \xi \in \mathcal{H}.
\]

Thus, the family \(\{ R_k \} \) enjoys the property

\[
\sup_{n \in \mathbb{N}} \left\| \sum_{k=1}^{n} R_k \right\| < \infty.
\]

Let us now assume that the spectrum \(\sigma(S) \) of \(S \) is real. Then, we can define, for \(\lambda \in \mathbb{R} \) and \(\xi \in \mathcal{H} \),

\[
X(\lambda) \xi = \sum_{k \leq \lambda} R_k \xi.
\]

Then we can formally write

\[
S \xi = \int_{\mathbb{R}} \lambda dX(\lambda) \xi.
\]

Let us suppose that \(\{ \varphi_k \} \) and \(\{ \psi_k \} \) are biorthogonal Riesz bases. This means that there exists a symmetric bounded operator \(G \) with bounded inverse \(G^{-1} \) and an orthonormal basis \(\{ \chi_n \} \) such that \(\varphi_k = G^{-1} \chi_k \) and \(\psi_k = G \chi_k \), for every \(k \in \mathbb{N} \). Then, we get

\[
(\psi_k \otimes \overline{\varphi_k}) \xi = \langle \xi | \varphi_k \rangle \psi_k = \langle \xi | G^{-1} \chi_k \rangle G \chi_k = \langle G^{-1} \xi | \chi_k \rangle G \chi_k.
\]

Hence \(\psi_k \otimes \overline{\varphi_k} = G(\chi_k \otimes \overline{\chi_k})G^{-1} \).

Then, it is easily seen that the family of operators \(\{ X(\lambda) \} \lambda \in \mathbb{R} \) enjoys the properties \(q_1 \)-(\(q_4 \)) listed in Definition 3.2 below.

We remark that in finite dimensional spaces every family of projections whose sum is the identity operator is similar to a family of orthogonal projections; so that the situation discussed above is the more general possible.

For the infinite dimensional case, an analogous statement was obtained by Mackey [3, Theorem 55]: every non-self-adjoint resolution of the identity is similar to a self-adjoint resolution of the identity (Mackey’s terminology is different: a non-self-adjoint resolution of the identity is a countably additive spectral measure on the Borel sets of the plane or of the real line); the...
resolution of the identity \(\{X(\lambda)\} \) of the next Definition \[3.2\] need not define a countably additive spectral measure on the Borel sets.

Definition 3.2. Let \(\mathcal{H} \) be a Hilbert space. A resolution of the identity of \(\mathcal{H} \) on the interval \(I := [\alpha, \beta], \) \((-\infty \leq \alpha < \beta \leq +\infty) \) is a one parameter family of (non necessarily self-adjoint) bounded operators \(\{X(\lambda)\}_{\lambda \in I} \) satisfying the following conditions

\[
(qs_1) \quad \sup_{\lambda \in I} \|X(\lambda)\| := \gamma(X) < +\infty;

(qs_2) \quad X(\lambda)X(\mu) = X(\mu)X(\lambda) = X(\lambda)\text{ if } \lambda < \mu;

(qs_3) \quad \lim_{\lambda \to \alpha} X(\lambda)\xi = 0; \quad \lim_{\lambda \to \beta} X(\lambda)\xi = \xi, \quad \forall \xi \in \mathcal{H};

(qs_4) \quad \lim_{\epsilon \to 0^+} X(\lambda + \epsilon)\xi = X(\lambda)\xi, \quad \forall \lambda \in I; \quad \forall \xi \in \mathcal{H}.
\]

If the limits in (qs_3) and (qs_4) hold with respect to the weak topology only, then we say that \(\{X(\lambda)\}_{\lambda \in I} \) is a weak resolution of the identity.

If \(X(\lambda)^* = X(\lambda), \) for every \(\lambda \in I, \) we say that the resolution of the identity is self-adjoint.

Remark 3.3. Since the \(X(\lambda)'s \) are projections, \(\|X(\lambda)\| \geq 1, \) for every \(\lambda \in I. \) Hence \(\gamma(X) \geq 1. \)

Proposition 3.4. If \(\{X(\lambda)\}_{\lambda \in \mathbb{R}} \) is a resolution of the identity, \(\{X(\lambda)^*\}_{\lambda \in \mathbb{R}} \) is a weak resolution of the identity.

Remark 3.5. From (qs_2) and (qs_4) it follows that \(X(\lambda)^2 = X(\lambda), \) for every \(\lambda \in \mathbb{R}. \) Thus every \(X(\lambda) \) is a projection, but not an orthogonal projection, in general. If also \(X(\lambda)^* = X(\lambda), \) for every \(\lambda \in \mathbb{R}, \) then \(\{X(\lambda)\}_{\lambda \in \mathbb{R}} \) is a spectral family in the usual sense. In this case, weak limits, automatically become strong limits so every weak self-adjoint resolution of the identity is a resolution of the identity.

Remark 3.6. If \(\{X(\lambda)\}_{\lambda \in \mathbb{R}} \) is a self-adjoint resolution of the identity, then condition (qs_2) can be replaced with the following equivalent one:

\[
(qs_2') \quad X(\lambda) \leq X(\mu), \quad \lambda, \mu \in I, \quad \lambda < \mu.
\]

Definition 3.7. If both \(\{X(\lambda)\}_{\lambda \in I} \) and \(\{X(\lambda)^*\}_{\lambda \in I} \) are resolutions of the identity, we simply say that \(\{X(\lambda)\}_{\lambda \in I} \) is a *-resolution of the identity.

For reader’s convenience, we recall the definition of generalized resolution of the identity due to Naimark, \[5\] Appendix; \[6\] Vol.II, Appendix.

Definition 3.8. A *generalized resolution of the identity* is a one parameter family of bounded symmetric operators \(\{B(\lambda)\}_{\lambda \in I}, \) where \(I := [\alpha, \beta] \) is a bounded or unbounded interval of the real line, satisfying the following conditions

\[
(gr_i) \quad \lim_{\lambda \to \alpha} B(\lambda)\xi = 0; \quad \lim_{\lambda \to \beta} B(\lambda)\xi = \xi, \quad \forall \xi \in \mathcal{H};

(gr_2) \quad \lim_{\epsilon \to 0^+} B(\lambda + \epsilon)\xi = B(\lambda)\xi, \quad \forall \lambda \in I; \quad \forall \xi \in \mathcal{H};

(gr_3) \quad B(\lambda) \leq B(\mu), \text{ if } \lambda, \mu \in I, \lambda < \mu.
\]
Remark 3.9. The operators of a generalized resolution of the identity are self-adjoint but not necessarily idempotent, while in Definition 3.2 we require exactly the opposite.

Example 3.10. Let \(\{ E(\lambda) \}_{\lambda \in \mathbb{R}} \) be a self-adjoint resolution of the identity and \(G \) a bounded symmetric operator with bounded inverse, with \(G^2 \neq I \). Put \(X(\lambda) := GE(\lambda)G^{-1} \), for every \(\lambda \in \mathbb{R} \). Then \(\{ X(\lambda) \}_{\lambda \in \mathbb{R}} \) is a resolution of the identity in the sense of Definition 3.2. In particular, \(1 \leq \| X(\lambda) \| \leq \| G \| \| G^{-1} \| \), for every \(\lambda \in \mathbb{R} \). Let us prove, for instance, the second equality in \((qs3)\). We have,
\[
\| GE(\lambda)G^{-1} \xi - \xi \| = \| GE(\lambda)G^{-1} \xi - GG^{-1} \xi \|
\leq \| G \| \| E(\lambda)G^{-1} \xi - G^{-1} \xi \| \to 0 \text{ as } \lambda \to +\infty.
\]
It is easily seen that in this case \(\{ X(\lambda)^* \}_{\lambda \in \mathbb{R}} \) is a (non-self-adjoint) resolution of the identity too.

If \(G^2 = I \) then every \(X(\lambda) \) is symmetric and so it is a self-adjoint resolution of the identity.

From now on, we will only consider the case
\[
\gamma(X) = \sup_{\lambda \in I} \| X(\lambda) \| = 1.
\]
This assumption does not imply that the \(X(\lambda) \)'s are self-adjoint projections. For instance, in the case considered in Example 3.10 one can easily find examples of operators \(G \) satisfying \(\| G \| \| G^{-1} \| = 1 \).

Lemma 3.11. Let \(\{ X(\lambda) \}_{\lambda \in \mathbb{R}} \) be a resolution of the identity. If \(\lambda < \mu \) then
\[
\| X(\lambda) \xi \| \leq \| X(\mu) \xi \|, \quad \forall \xi \in \mathcal{H}.
\]
Hence, the nonnegative valued function \(\lambda \mapsto \| X(\lambda) \xi \| \) is increasing, for every \(\xi \in \mathcal{H} \).

Proof. Indeed, if \(\lambda \leq \mu \),
\[
\| X(\lambda) \xi \| = \| X(\lambda)X(\mu) \xi \| \leq \| X(\lambda) \| \| X(\mu) \| \| \xi \| \| X(\lambda) \xi \| \leq \gamma(X) \| X(\mu) \xi \| = \| X(\mu) \xi \|.
\]

3.1. Operators associated to a resolution of the identity. A resolution of the identity \(\{ X(\lambda) \} \) defines an operator valued function \(\lambda \mapsto F(\lambda) \), \(\lambda \in \mathbb{R} \), where \(F(\lambda) \) is the positive operator
\[
F(\lambda) = X(\lambda)^*X(\lambda), \quad \lambda \in \mathbb{R}.
\]
Of course, \(\langle F(\lambda) \xi, \xi \rangle = \| X(\lambda) \xi \|^2 \) for every \(\lambda \in \mathbb{R}, \xi \in \mathcal{H} \).

Lemma 3.12. Let \(\{ X(\lambda) \} \) be a \(* \)-resolution of the identity. Then, the operator valued function \(\lambda \mapsto F(\lambda) \) has the following properties:
\[\begin{align*}
(f_{s1}) & \sup_{\lambda \in \mathbb{R}} \| F(\lambda) \| = 1; \\
(f_{s2}) & F(\lambda) \leq F(\mu) \text{ if } \lambda < \mu;
\end{align*}\]
Lemma 3.13. The following properties hold:

\(\left(f_{33} \right) \lim_{\lambda \to -\infty} F(\lambda)\xi = 0; \lim_{\lambda \to +\infty} F(\lambda)\xi = \xi, \quad \forall \xi \in \mathcal{H}; \)
\(\left(f_{34} \right) \lim_{\epsilon \to 0^+} F(\lambda + \epsilon)\xi = F(\lambda)\xi, \quad \forall \lambda \in \mathbb{R}; \forall \xi \in \mathcal{H}. \)

Hence, \(\{F(\lambda)\}_{\lambda \in \mathbb{R}} \) is a generalized resolution of the identity in the sense of Definition 3.13.

Proof. \((f_{31}) \) is an easy consequence of the \(C^* \)-property.

\((f_{32}) \): Using Lemma 3.11 we have
\[\langle F(\lambda)|\xi \rangle = \|X(\lambda)|\xi \|^2 \leq \|X(\mu)|\xi \|^2 = \langle F(\mu)|\xi \rangle. \]

\((f_{33}) \) follows from the inequalities
\[0 \leq \|F(\lambda)|\xi \| = \|X(\lambda)^*X(\lambda)|\xi \| \leq \|X(\lambda)^*\|\|X(\lambda)|\xi \| \to 0 \text{ as } \lambda \to -\infty \]
and
\[\|F(\lambda)|\xi - \xi \| = \|X(\lambda)^*X(\lambda)|\xi - \xi \|
\[= \|X(\lambda)^*X(\lambda)|\xi - X(\lambda)|\xi + X(\lambda)|\xi - X(\lambda)|\xi - X(\lambda)|\xi - \xi \|
\[\leq \|X(\lambda)^*\|\|X(\lambda)|\xi - \xi \| + \|X(\lambda)^* - X(\lambda)|\xi \| + \|X(\lambda)|\xi - \xi \| \to 0 \text{ as } \lambda \to +\infty \]

since, by the assumption \(\lim_{\lambda \to +\infty} X(\lambda)^*|\xi \| = \lim_{\lambda \to +\infty} X(\lambda)|\xi \| = \xi, \) for every \(\xi \in \mathcal{H}. \)

\((f_{34}) \): In similar way, since
\[\|F(\lambda + \epsilon)|\xi - F(\lambda)|\xi \| = \|X(\lambda + \epsilon)^*X(\lambda + \epsilon)|\xi - X(\lambda)^*X(\lambda)|\xi \|
\[\leq \|X(\lambda + \epsilon)^*\|\|X(\lambda + \epsilon) - X(\lambda)|\xi \| + \|X(\lambda + \epsilon)^*X(\lambda)|\xi - X(\lambda)^*X(\lambda)|\xi \|, \]
both terms go to 0 by the assumption as \(\epsilon \to 0^+. \)

So under the assumptions of Lemma 3.12 one can define, in standard fashion, a positive operator valued measure on the Borel sets of the line: one begins with considering a bounded interval of the form \(\Delta =]\lambda, \mu[\) and defines
\[F(\Delta) = F(\mu) - F(\lambda). \]

the measure of the closed interval \([\lambda, \mu[\) is then defined by \(F([\lambda, \mu[) = F(\{\lambda\}) + F(\Delta), \) the measure of the singleton \(\{\lambda\} \) being defined as
\[F(\{\lambda\}) = \lim_{\epsilon \to 0^+} F([\lambda - \epsilon, \lambda[) \]
and then one extends the measure \(F(\cdot) \) to arbitrary Borel sets.

Lemma 3.13. The following properties hold:

\((f_1) \) \(X(\mu)^*F(\lambda)X(\mu) = F(\lambda), \) if \(\lambda \leq \mu; \)
\((f_2) \) \(F(\lambda) = X(\mu)^*F(\lambda), \) \(F(\lambda) = F(\lambda)X(\mu), \) if \(\lambda \leq \mu; \)
\((f_2) \) If \(a < b, \)
\[(X(b)^*-X(a)^*)F(\lambda)(X(b) - X(a)) \]
\[= \begin{cases} 0 & \text{if } \lambda < a < b \\ (X(\lambda)^*-X(a)^*)(X(\lambda) - X(a)) & \text{if } a < \lambda < b \\ (X(b)^*-X(a)^*)(X(b) - X(a)) & \text{if } a < b < \lambda. \end{cases} \]
These properties come almost immediately from the definition and from (qs1).

If \(\{X(\lambda)\} \) is a *-resolution of the identity, then the family \(\{F(\lambda)\} \) defined above is a generalized spectral family in the sense of Naimark [5, Appendix]. Hence, there exists a self-adjoint resolution of the identity \(H \) in a possibly larger Hilbert space \(\mathcal{H} \), containing \(\mathcal{H} \) as a closed subspace, such that \(F(\lambda) = P \mathbf{E}(\lambda) \upharpoonright \mathcal{H} \), where \(P \) is the projection of \(\mathcal{H} \) onto \(\mathcal{H} \) and by requiring that \(\mathcal{H} \) is spanned by the vectors of the form \(E(\lambda)\xi, \xi \in \mathcal{H} \), then \(\mathcal{H} \) is (essentially) unique.

Let \(A \) be the self-adjoint operator, with dense domain \(PD(A) \) in \(\mathcal{H} \) whose spectral family is \(\{E(\lambda)\} \). Then the operator \(T_X = PA \upharpoonright \mathcal{H} \) on the dense domain \(D(T_X) = PD(A) \) of \(\mathcal{H} \) is closed and symmetric.

Then one easily proves that

Theorem 3.14. Assume that \(\{X(\lambda)\} \) is a *-resolution of the identity and let \(F(\cdot) = X(\cdot)^*X(\cdot) \) be the positive operator valued function defined above.

Set

\[
D(T_X) = \left\{ \xi \in \mathcal{H} : \int_{\mathbb{R}} \lambda^2 \langle F(\lambda)\xi | \xi \rangle < \infty \right\}.
\]

Then, \(D(T_X) \) is dense in \(\mathcal{H} \) and there exists a unique closed symmetric operator \(T_X \), defined on \(D(T_X) \) such that

\[
\langle Tx \xi | \eta \rangle = \int_{\mathbb{R}} \lambda d \langle F(\lambda)\xi | \eta \rangle, \quad \forall \xi \in D(T_X), \eta \in \mathcal{H}.
\]

Remark 3.15. We remark that one can prove that \(D(T_X) \) is dense in \(\mathcal{H} \) directly. Indeed, if \(\xi \in \mathcal{H} \), we put \(\xi_n = (X(n) - X(-n))\xi, n \in \mathbb{N} \). From (qs3) it follows that \(\|\xi - \xi_n\| \to 0 \). It remains to prove that \(\xi_n \in D(T_X) \). Taking into account the properties given in Lemma 3.13 one has

\[
\int_{\mathbb{R}} \lambda^2 d \langle F(\lambda)\xi_n | \xi_n \rangle = \int_{\mathbb{R}} \lambda^2 d \langle F(\lambda)(X(n) - X(-n))\xi | (X(n) - X(-n))\xi \rangle
\]

\[
= \int_{\mathbb{R}} \lambda^2 d \langle (X(n)^* - X(-n)^*)F(\lambda)(X(n) - X(-n))\xi | \xi \rangle
\]

\[
= \int_{-n}^n \lambda^2 d\|X(\lambda) - X(-n)\|\xi\|)^2
\]

\[
\leq 2 \int_{-n}^n \lambda^2 d\|X(\lambda)\xi\|^2
\]

\[
\leq 2n^2 \int_{\mathbb{R}} d\|X(\lambda)\xi\|^2 = 2n^2\|\xi\|^2 < \infty.
\]

Of course, since we have supposed a full symmetry of \(\{X(\lambda)\} \) and \(\{X(\lambda)^*\} \), we can also define \(F_*(\lambda) := X(\lambda)X(\lambda)^* \), \(\lambda \in \mathbb{R} \) and apply the previous statements to the family \(\{F_*(\lambda)\} \). Then, by Theorem 3.14 one defines a second closed symmetric operator \(T_X^* \), related to the resolution of the identity \(\{X(\lambda)\} \). But there is more.
Assume, in fact, that the resolution of the identity \(\{X(\lambda)\} \) is of bounded variation, by which we mean that, for every \(\xi \in \mathcal{H} \) the complex valued function \(\lambda \in \mathbb{R} \rightarrow \langle X(\lambda)\xi | \xi \rangle \) is of bounded variation on the line. Then there exists a complex Borel measure \(\mu_\xi \) on \(\mathbb{R} \) such that
\[
\langle X(\lambda)\xi | \xi \rangle = \mu_\xi((-\infty, \lambda)), \quad \lambda \in \mathbb{R}.
\]
By the elementary properties of measures, it follows that
\[
\mu_\xi((\lambda, \mu)) = \langle X(\mu)\xi - X(\lambda)\xi | \xi \rangle, \quad \lambda < \mu.
\]
It is clear that if \(\{X(\lambda)\} \) is of bounded variation so it is also \(\{X(\lambda)^*\} \), and the corresponding measure is nothing but the complex conjugate of \(\mu_\xi \).

Proposition 3.16. Let \(\{X(\lambda)\} \) be a \(*\)-resolution of the identity. Then the function \(\lambda \rightarrow X(\lambda) \) is of bounded variation.

Proof. Let \(\lambda_0, \ldots, \lambda_n \) be a finite set of points with \(-\infty < \lambda_0 < \lambda_1 < \cdots < \lambda_n < \lambda \). We shorten \(\omega = (-\infty, \lambda] \), \(\omega_k = [\lambda_k - \lambda_{k-1}] \). Then we have
\[
\sum_{k=1}^n |\langle X(\omega_k)\xi | \eta \rangle| = \sum_{k=1}^n |\langle X(\omega_k)^2\xi | \eta \rangle| \\
= \sum_{k=1}^n |\langle X(\omega_k)\xi | X(\omega_k)^*\eta \rangle| \\
\leq \sum_{k=1}^n \|X(\omega_k)\xi\| \|X(\omega_k)^*\eta\| \\
= \sum_{k=1}^n \langle F(\omega_k)\xi | \xi \rangle^{1/2} \langle F^*_k(\omega_k)\eta | \eta \rangle^{1/2} \\
\leq \left(\sum_{k=1}^n \langle F(\omega_k)\xi | \xi \rangle \right)^{1/2} \left(\sum_{k=1}^n \langle F^*_k(\omega_k)\eta | \eta \rangle \right)^{1/2} \\
= \langle F(\omega)\xi | \xi \rangle^{1/2} \langle F^*_k(\omega)\eta | \eta \rangle^{1/2}.
\]
Hence the supremum over all possible decompositions of \(\omega \) is finite and so is the limit when \(\lambda \rightarrow +\infty \).

In this case, the non-self-adjoint resolution of the identity \(\{X(\lambda)\} \) defines a countably additive measure \(X(\omega) \), on the Borel sets \(\omega \) of the line. By the quoted result of Mackey [3, Theorem 55] one gets the following statement.

Lemma 3.17. Let \(\{X(\lambda)\} \) be a \(*\)-resolution of the identity. Then there exists a self-adjoint resolution of the identity \(\{E(\lambda)\} \) and an invertible operator \(T \) with bounded inverse such that
\[
X(\lambda) = TE(\lambda)T^{-1}, \quad \forall \lambda \in \mathbb{R}.
\]
Let \(\{X(\lambda)\} \) be a \(*\)-resolution of the identity. By Proposition 3.16 we can define the integral
\[
\int_{\mathbb{R}} \lambda dX(\lambda).
\]

Let \(\mathcal{D} \) denote the set of all \(\xi \in \mathcal{H} \) such that the integral \(\int_{\mathbb{R}} \lambda d \langle X(\lambda)\xi | \eta \rangle \) exists, for every \(\eta \in \mathcal{H} \), and the conjugate linear functional
\[
\Theta_\xi(\eta) := \int_{\mathbb{R}} \lambda d \langle X(\lambda)\xi | \eta \rangle, \quad \eta \in \mathcal{H}
\]
is bounded on \(\mathcal{H} \).

Then, by the Riesz theorem there exists an operator \(L \) on \(\mathcal{D} \) such that
\[
\langle L\xi | \eta \rangle = \int_{\mathbb{R}} \lambda d \langle X(\lambda)\xi | \eta \rangle, \quad \eta \in \mathcal{H}.
\]
Here we denote the operator \(L \) by the integral \(\int_{\mathbb{R}} \lambda dX(\lambda) \).

Lemma 3.18. Let \(\{X(\lambda)\} \) be a \(*\)-resolution of the identity and let \(\{\Delta_k\} \) be a finite or countable family of disjoint intervals of the real line. Then, for every \(\eta \in \mathcal{H} \),
\[
\left(\sum_{k=1}^{n} \|X(\Delta_k)\eta\|^2 \right)^{1/2} \leq \|\eta\|.
\]

Proof. Since \(\{X(\lambda)\} \) is a resolution of the identity, \(X(\lambda)^*X(\lambda) \) is a generalized resolution of the identity. Then we can write \(X(\lambda)^*X(\lambda) = PE(\lambda) \upharpoonright \mathcal{H} \) where, as before, \(E(\cdot) \) is an ordinary (i.e. self-adjoint) resolution of the identity in a possibly larger Hilbert space \(\mathcal{H} \) and \(P \) the projection onto \(\mathcal{H} \). Then we have
\[
\sum_{k=1}^{n} \|X(\Delta_k)\eta\|^2 = \sum_{k=1}^{n} \langle X(\Delta_k)\eta | X(\Delta_k)\eta \rangle = \sum_{k=1}^{n} \langle X(\Delta_k)^*X(\Delta_k)\eta | \eta \rangle
\]
\[
= \sum_{k=1}^{n} \langle PE(\Delta_k)\eta | \eta \rangle = \sum_{k=1}^{n} \langle PE(\Delta_k)\eta | \eta \rangle
\]
\[
= \sum_{k=1}^{n} \langle E(\Delta_k)\eta | P\eta \rangle = \sum_{k=1}^{n} \langle E(\Delta_k)\eta | \eta \rangle
\]
\[
= \sum_{k=1}^{n} \langle E(\Delta_k)\eta | E(\Delta_k)\eta \rangle = \sum_{k=1}^{n} \|E(\Delta_k)\eta\|^2 \leq \|\eta\|^2.
\]

Lemma 3.19. We have \(D(T_X) = \mathcal{D} \).

Proof. For every \(\xi \in D(T_X) \), \(\eta \in \mathcal{H} \)
(3.5) \[\int_{\mathbb{R}} \lambda d \langle X(\lambda) \xi \mid \eta \rangle \leq \left(\int_{\mathbb{R}} \lambda^2 d \langle F(\lambda) \xi \mid \xi \rangle \right)^{1/2} \| \eta \| \].

Indeed, let \([\alpha, \beta]\) be a bounded interval, and \(\{\Delta_k; k = 1, \ldots, n\}\) a family of disjoint intervals whose union is \([\alpha, \beta]\). For every \(k\), choose \(\lambda_k \in \Delta_k\). Then, for the Cauchy sums defining the integrals we get

\[
\sum_{k=1}^{n} \lambda_k \langle X(\Delta_k) \xi \mid \eta \rangle \leq \sum_{k=1}^{n} |\lambda_k| \langle X(\Delta_k) \xi \mid X(\Delta_k)^* \eta \rangle \]

\[
\leq \left(\sum_{k=1}^{n} \lambda_k^2 \|X(\Delta_k)\| \right)^{1/2} \left(\sum_{k=1}^{n} \|X(\Delta_k)^* \eta\| \right)^{1/2}
\leq \left(\sum_{k=1}^{n} \lambda_k^2 \langle F(\Delta_k) \xi \mid \xi \rangle \right)^{1/2} \| \eta \|.
\]

Hence, the inequality (3.5) holds on every finite interval and, by taking limits also on the real line, and so \(D(T_X) \subseteq \mathcal{D}\).

Conversely, take an arbitrary \(\xi \in \mathcal{D}\). Then we have, taking into account Lemma 3.13

\[
\|L \xi\| = \int_{\mathbb{R}} \lambda d \int_{\mathbb{R}} \mu d \langle X(\lambda) \xi \mid X(\mu) \xi \rangle
= \int_{\mathbb{R}} \lambda d \int_{\mathbb{R}} \mu d \langle X(\mu)^* X(\lambda) \xi \mid \xi \rangle
= \int_{\mathbb{R}} \lambda d \int_{-\infty}^{\lambda} \mu d \langle X(\mu)^* X(\lambda) \xi \mid \xi \rangle + \int_{\mathbb{R}} \lambda d \int_{\lambda}^{\infty} \mu d \langle X(\mu)^* X(\lambda) \xi \mid \xi \rangle
= \int_{\mathbb{R}} \lambda d \int_{-\infty}^{\lambda} \mu d \langle X(\mu)^* F(\lambda) \xi \mid \xi \rangle + \int_{\mathbb{R}} \lambda d \int_{\lambda}^{\infty} \mu d \langle F(\mu) X(\lambda) \xi \mid \xi \rangle
= \int_{\mathbb{R}} \lambda d \int_{-\infty}^{\lambda} \mu d \langle F(\mu) \xi \mid \xi \rangle + \int_{\mathbb{R}} \lambda d \int_{\lambda}^{\infty} \mu d \langle F(\lambda) \xi \mid \xi \rangle
= \int_{\mathbb{R}} \lambda^2 d \langle F(\lambda) \xi \mid \xi \rangle.
\]

Hence \(\mathcal{D} \subseteq D(T_X)\). Thus, we have \(\mathcal{D} = D(T_X)\). \(\Box\)

Theorem 3.20. Let \(B\) be closed operator in \(\mathcal{H}\). The following statements are equivalent.

(i) \(B\) is similar to a self-adjoint operator \(A\), that is, \(B = T A T^{-1}\), with an intertwining operator \(T\) satisfying \(\| T E(\lambda) T^{-1} \| = 1\), for every \(\lambda \in \mathbb{R}\), where \(\{E(\lambda)\}\) is the spectral resolution of \(A\).
(ii) There exists a *-resolution of the identity \(\{X(\lambda)\} \) such that

\[
B = \int_{\mathbb{R}} \lambda dX(\lambda).
\]

Proof. (i)⇒(ii): Let \(A = \int_{\mathbb{R}} \lambda dE(\lambda) \) be the spectral resolution of \(A \) and put \(X(\lambda) = TE(\lambda)T^{-1} \). Then it is easily shown that \(\{X(\lambda)\} \) is a *-resolution of the identity (with \(\|X(\lambda)\| = 1 \), for every \(\lambda \in \mathbb{R} \)). We show that \(D(B) = TD(A) = D(T_X) \).

Let \(\xi \in D(T_X) \). Since

\[
\int_{\mathbb{R}} \lambda^2 d \langle E(\lambda)T^{-1}\xi \mid T^{-1}\xi \rangle = \int_{\mathbb{R}} \lambda^2 d \langle E(\lambda)T^{-1}\xi \mid E(\lambda)T^{-1}\xi \rangle = \int_{\mathbb{R}} \lambda^2 d \langle T^{-1}X(\lambda)\xi \mid T^{-1}X(\lambda)\xi \rangle \leq \|T^{-1}\|^2 \int_{\mathbb{R}} \lambda^2 d \langle X(\lambda)\xi \mid X(\lambda)\xi \rangle = \|T^{-1}\|^2 \int_{\mathbb{R}} \lambda^2 d \langle F(\lambda)\xi \mid \xi \rangle < \infty,
\]

we have, \(T^{-1}\xi \in D(A) \) or, equivalently \(\xi \in D(B) \).

On the other hand, let \(\xi \in TD(A) \). Then,

\[
\int_{\mathbb{R}} \lambda^2 d \langle F(\lambda)\xi \mid \xi \rangle = \int_{\mathbb{R}} \lambda^2 d \langle TE(\lambda)T^{-1}\xi \mid TE(\lambda)T^{-1}\xi \rangle \leq \|T\|^2 \int_{\mathbb{R}} \lambda^2 d \langle E(\lambda)T^{-1}\xi \mid T^{-1}\xi \rangle < \infty,
\]

and so \(\xi \in D(T_X) \). Thus, \(D(B) = D(T_X) \) and by Lemma 3.19 \(D(B) = D(\int_{\mathbb{R}} \lambda dX(\lambda)) \). Furthermore, we have

\[
\langle B\xi \mid \eta \rangle = \left(\int_{\mathbb{R}} \lambda dX(\lambda)\xi \right) \left(\int_{\mathbb{R}} \lambda dX(\lambda)\xi \right)
\]

for every \(\xi \in D(B) \) and \(\eta \in \mathcal{H} \).

(ii)⇒(i): By Lemma 3.17, there exists a self-adjoint resolution of the identity \(\{E(\lambda)\} \) and an invertible operator \(T \) with bounded inverse such that \(X(\lambda) = TE(\lambda)T^{-1} \), for every \(\lambda \in \mathbb{R} \).

Let now \(A \) be the self-adjoint operator \(A = \int_{\mathbb{R}} \lambda dE(\lambda) \). As shown above we have \(D(T_X) = TD(A) \) and furthermore \(D(B) = D(\int_{\mathbb{R}} \lambda dX(\lambda)) \) and

\[
\langle B\xi \mid \eta \rangle = \left(\int_{\mathbb{R}} \lambda dX(\lambda)\xi \right) \left(\int_{\mathbb{R}} \lambda dX(\lambda)\xi \right) = \langle TAT^{-1}\xi \mid \eta \rangle,
\]

for every \(\xi \in D(B) \) and \(\eta \in \mathcal{H} \).

\[\square\]

Remark 3.21. The operator \(B \) has real spectrum and empty residual spectrum, since \(\sigma(B) = \sigma(A) \) and \(\sigma_r(B) = \sigma_r(A) \). Moreover, \(B \) is a \textit{pseudo-hermitian} operator; i.e. \(B \) is a spectral operator of scalar type.
Lemma 3.23. Let B be a closed operator with positive spectrum. The following statements are equivalent.

(i) B is similar to a positive self-adjoint operator A, with an intertwining operator T satisfying $\|TE(\lambda)T^{-1}\| = 1$, for every $\lambda \in \mathbb{R}$, where $\{E(\lambda)\}$ is the spectral resolution of A.

(ii) There exists a *-resolution of the identity $\{X(\lambda)\}_{\lambda \in \mathbb{R}^+}$ on $\mathbb{R}^+ := [0, \infty)$ such that

$$B = \int_0^\infty \lambda dX(\lambda).$$

If one of the equivalent conditions (i) or (ii) holds, then there exists a closed operator B_2 with positive spectrum such that $B_2^2 = B$.

Proof. The equivalence of (i) and (ii) follow from Proposition 2.4 and Theorem 3.20. Suppose that $B = TAT^{-1}$ for some positive self-adjoint operator A and an invertible bounded operator T with bounded inverse. Then, putting $B_2 = T^1/2A^{1/2}T^{-1}$, B_2 is a closed operator with positive spectrum such that $B_2^2 = B$. \hfill \Box

In order to go further, we need the following lemma

Corollary 3.22. Let B be a closed operator with positive spectrum. The following statements are equivalent.

(i) B is similar to a positive self-adjoint operator A, with an intertwining operator T satisfying $\|TE(\lambda)T^{-1}\| = 1$, for every $\lambda \in \mathbb{R}$, where $\{E(\lambda)\}$ is the spectral resolution of A.

(ii) There exists a *-resolution of the identity $\{X(\lambda)\}_{\lambda \in \mathbb{R}^+}$ on $\mathbb{R}^+ := [0, \infty)$ such that

$$B = \int_0^\infty \lambda dX(\lambda).$$

Proof. The equivalence of (i) and (ii) follow from Proposition 2.4 and Theorem 3.20. Suppose that $B = TAT^{-1}$ for some positive self-adjoint operator A and an invertible bounded operator T with bounded inverse. Then, putting $B_2 = T^1/2A^{1/2}T^{-1}$, B_2 is a closed operator with positive spectrum such that $B_2^2 = B$. \hfill \Box

In order to go further, we need the following lemma

Lemma 3.23. The function $K \mapsto \sqrt{K}$ is strongly continuous on the set $\mathcal{M} := \{K \in \mathcal{B}(\mathcal{H}); K \geq 0, \|K\| \leq M\}$.

Proof. Let $K_\alpha \rightharpoonup K$, $K, K_\alpha \in \mathcal{M}$. By the Weierstrass theorem, there is a sequence of polynomials $\{p_n(x)\}$ such that $p_n(x) \to \sqrt{x}$, uniformly on $[0, M]$. This implies that $\|p_n(Z) - \sqrt{Z}\| \to 0$, for every $Z \in \mathcal{M}$. Since

$$\|(\sqrt{K_\alpha} - \sqrt{K})\| \leq \|(\sqrt{K_\alpha} - p_n(K_\alpha))\| + \|p_n(K_\alpha) - p_n(K)\|$$

Now choose, n large enough to make the first and third term in the right hand side smaller than $\epsilon > 0$ and, fixed this n, take α big enough to make the second term smaller than ϵ. The latter is possible since the multiplication is jointly strongly continuous on every norm bounded ball of $\mathcal{B}(\mathcal{H})$; thus, if $K_\alpha \rightharpoonup K$ then, for every polynomial p, $p(K_\alpha) \to p(K)$. \hfill \Box

By Lemma 3.12 and Lemma 3.23 we obtain the following result.

Proposition 3.24. Let $\{X(\lambda)\}$ be a *-resolution of the identity. Then, the operator valued function $\lambda \mapsto \Phi(\lambda)$, where $\Phi(\lambda) := F(\lambda)^{1/2} = (X(\lambda)X(\lambda)^*)^{1/2}$, has the following properties:

(fs1) $\sup_{\lambda \in \mathbb{R}} \|\Phi(\lambda)\| = 1$;

(fs2) $\Phi(\lambda) \leq \Phi(\mu)$ if $\lambda < \mu$;

(fs3) $\lim_{\lambda \to -\infty} \Phi(\lambda)\xi = 0$; $\lim_{\lambda \to +\infty} \Phi(\lambda)\xi = \xi$, $\forall \xi \in \mathcal{H}$;

(fs4) $\lim_{\epsilon \to 0^+} \Phi(\lambda + \epsilon)\xi = \Phi(\lambda)\xi$, $\forall \lambda \in \mathbb{R}$; $\forall \xi \in \mathcal{H}$.

Hence, in analogy to Theorem 3.14 we have
Theorem 3.25. Let $\Phi(\cdot) = (X(\cdot)^*X(\cdot))^{1/2}$ be the positive operator valued function defined by the $*$-resolution of the identity $\{X(\lambda)\}$ on the real line. Set,

$$D(S_X) = \left\{ \xi \in \mathcal{H} : \int_{\mathbb{R}} \lambda^2 \, d \langle \Phi(\lambda)\xi | \xi \rangle < \infty \right\}.$$

Then there exists a unique closed symmetric operator S_X, defined on $D(S_X)$ such that

$$\langle S_X \xi | \eta \rangle = \int_{\mathbb{R}} \lambda \, d \langle \Phi(\lambda)\xi | \eta \rangle, \quad \forall \xi \in D(S_X), \, \eta \in \mathcal{H}.$$

Question: Is there any relationship between the operators B, T_X and S_X?

Clearly, if $\{X(\lambda)\}$ is a self-adjoint resolution of the identity, then the three operators coincide. So far we know that B and T_X have the same domain but we do not know if and how B can be expressed in terms of T_X. About the relationship between B or T_X we do not know almost anything, so we leave this question open.

Acknowledgements – The authors thank the referee for pointing out a serious inaccuracy in a previous version of this paper.

References

[1] J.-P. Antoine and C. Trapani, Partial inner product spaces, metric operators and generalized hermiticity, J. Phys. A: Math. Theor. 46 (2013) 025204 (21pp)
[2] C.M. Bender, A. Fring, U. Günther and H. Jones, Quantum physics with non-Hermitian operators, J. Phys. A: Math. Theor. 45 (2012) 440301
[3] G.W. Mackey, Commutative Banach Algebras, Notas de Matematica n. 17, Rio de Janeiro, 1959.
[4] A. Mostafazadeh, Pseudo-Hermitian representation of quantum mechanics, Int. J. Geom. Methods Mod. Phys. 7 (2010) 1191–1306
[5] F. Riesz and B. Sz. Nagy, Lecons d’Analyse fonctionelle, Gauthier-Villars, Paris (1972)
[6] N.I. Akhiezer and I.M. Glazman, Theory of Linear Operators in Hilbert space, II, Dover Publ. (1993)

Department of Applied Mathematics, Fukuoka University, Fukuoka 814-0180, Japan
E-mail address: a-inoue@fukuoka-u.ac.jp

Dipartimento di Matematica e Informatica, Università di Palermo, I-90123 Palermo, Italy
E-mail address: camillo.trapani@unipa.it