Genomes of the willow-galling sawflies *Euura lappo* and *Eupontania aestiva* (Hymenoptera: Tenthredinidae): a resource for research on ecological speciation, adaptation, and gall induction

Craig Michell,* Saskia Wutke,† Manuel Aranda,† and Tommi Nyman‡

* Department of Environmental and Biological Sciences, University of Eastern Finland, Joensuu, Finland
† King Abdullah University of Science and Technology, Red Sea Research Center, Biological and Environmental Sciences & Engineering Division, Thuwal, Saudi Arabia
‡ Department of Ecosystems in the Barents Region, Norwegian Institute of Bioeconomy Research, Svanvik, Norway
Running title:
Willow-galling sawfly genomes

Keywords:
Genome, gall-inducing insects, sawfly, hybrid assembly

Corresponding author:
Craig Thomas Michell
Department of Environmental and Biological Sciences
University of Eastern Finland
80100 Joensuu
Finland
E-mail: Craig.Michell@uef.fi
ABSTRACT

Hymenoptera are a hyperdiverse insect order represented by over 153,000 different species. As many hymenopteran species perform various crucial roles for our environment, such as pollination, herbivory, and parasitism, they are of high economic and ecological importance. There are 99 hymenopteran genomes in the NCBI database, yet only five are representative of the paraphyletic suborder Symphyta (sawflies, woodwasps, and horntails), while the rest represent the suborder Apocrita (bees, wasps, and ants). Here, using a combination of 10X Genomics linked-read sequencing, Oxford Nanopore long-read technology, and Illumina short-read data, we assembled the genomes of two willow-galling sawflies (Hymenoptera: Tenthredinidae: Nematinae: Euurina): the bud-galling species Euura lappo and the leaf-galling species Eupontania aestiva. The final assembly for E. lappo is 259.85 Mbp in size, with a contig N50 of 209.0 kbp and a BUSCO score of 93.5%. The E. aestiva genome is 222.23 Mbp in size, with a contig N50 of 49.7 kbp and an 90.2% complete BUSCO score. De novo annotation of repetitive elements showed that 27.45% of the genome was composed of repetitive elements in E. lappo and 16.89% in E. aestiva, which is a marked increase compared to previously published hymenopteran genomes. The genomes presented here provide a resource for inferring phylogenetic relationships among basal hymenopterans, comparative studies on host-related genomic adaptation in plant-feeding insects, and research on the mechanisms of plant manipulation by gall-inducing insects.
INTRODUCTION

The hyperdiverse insect order Hymenoptera includes over 153,000 described species (Aguiar et al. 2013), but the true number may be ten times higher (Forbes et al. 2018). Hymenopteran species have a multitude of important roles in our environment, including pollination, herbivory, and population control of other insects (Noriega et al. 2018). The high ecological and economic importance of hymenopterans has made many species and groups important model systems in theoretical and applied research.

The order Hymenoptera is divided into the ancestrally herbivorous, paraphyletic suborder “Symphyta” (sawflies, woodwasps, and horntails) and the ancestrally parasitic, monophyletic Apocrita (bees, ants, and wasps). Currently, there are 99 hymenopteran whole-genome assemblies present in the NCBI database (accessed February 2020). Only five of the available genomes represent hymenopteran lineages from the suborder Symphyta, while the remaining 94 belong to Apocrita. Although these numbers roughly correspond to the relative proportions of species in the two suborders, the uneven representation of genome-enabled hymenopteran taxa limits our possibilities for inferring phylogenetic relationships within the order (Branstetter et al. 2018) as well as genomic traits underlying shifts in niche use and rates of diversification (Oeyen et al. 2020). Fortunately, correcting the current bias should be relatively straightforward because hymenopterans are unusually accessible for whole-genome sequencing: hymenopteran genomes are generally small (the majority are between 180 and 340 Mbp) (Branstetter et al. 2018) and contain comparatively low rates of repetitive and transposable elements (Petersen et al. 2019). A further methodological benefit follows from their haplodiploid sex determination system, which leads to the presence of haploid males, for which genome assembly is technically easier than for diploid individuals with intra-genomic sequence variation. Coupling these favourable genomic features with new sequencing technologies such as 10X Genomics linked-read sequencing and MinION ONT
long-read sequencing, it is becoming easier to sequence and assemble high-quality genomes of these important insects.

The symphytan lineages of the Hymenoptera comprise 14 ancestrally herbivorous families and the parasitic sawfly family Orussidae (Nyman et al. 2019). In genome databases, symphytans are currently represented by the tenthredinid *Athalia rosae* (Oeyen et al. 2020), the diprionids *Neodiprion lecontei* (GenBank accession: GCA_001263575) and *Neodiprion pinetum* (GenBank accession: GCA_004916985), the cephid *Cephus cinctus* (Robertson et al. 2018) and the orussid *Orussus abietinus* (Oeyen et al. 2020). *Neodiprion, Cephus,* and *Athalia* have been sequenced because of their status as pests on pines, wheat, and *Brassica*, respectively, while the interest in the Orussidae follows from its status as the sister taxon to the predominantly parasitic and carnivorous Apocrita (Oeyen et al. 2020).

In order to expand the representation of Tenthredinidae, the most species-rich family within the Symphyta, we sequenced and assembled the genomes of the gall-inducing sawflies *Euura lappo* and *Eupontania aestiva* (*Euura saliciscinereae sensu* Liston et al. 2017). These species belong to the subtribe Euurina, a monophyletic and diverse group of nematine sawflies that induce galls on willows (*Salix* spp.). Depending on the species, the females oviposit into the leaves, petioles, shoots, or buds of their willow hosts; plant hormones or hormone analogues injected along with the egg lead to the formation of galls that the larvae feed within (Yamaguchi et al. 2012). Of our focal species, *E. lappo* induces bud galls on *S. lapponum* (Figure 1A), while *E. aestiva* produces pea-shaped galls on the underside of leaves of *S. myrsinifolia* (Figure 1B,C).

The abundance, high species number, marked host specificity, and diverse parasitoid complexes of willow-galling sawflies make them a highly suitable study system for research on host-associated genetic divergence (Leppänen et al. 2014) and tri-trophic network ecology.
(Nyman *et al.* 2007; Gravel *et al.* 2019). In order to facilitate future eco-evolutionary research on Euurina gallers, we utilised a hybrid approach based on 10X Genomics linked-read sequencing, MinION ONT long-read sequencing, and Illumina short-read sequencing (for *E. lappo*) to assemble highly contiguous draft genomes for both focal species. The genomes presented here have a similar level of contiguity and completeness compared to previously-published hymenopteran genomes, as inferred from benchmarking universal single copy orthologs (BUSCO) present in the genomes. Our genomes provide a foundation for future analyses of genomic divergence and adaptation in insect–plant coevolution, as well as expand the representation of symphytan taxa in analyses of phylogenetic relationships and genomic composition within the order Hymenoptera.

MATERIALS AND METHODS

Sample collection

Due to the low input requirements of the library preparation and sequencing strategies that we applied, we were able to use only a single haploid male specimen for each species. The *E. lappo* male (Laboratory ref. # 17059) was collected in Kilpisjärvi, Finland, on August 14, 2016, as a larva within a bud gall on *S. lapponum*. The *E. aestiva* male (Laboratory ref. # TNEAED_712) was collected in Abisko, Sweden on August 18, 2017, from a leaf gall on *S. myrsinifolia*. Both galls were collected in conjunction with more extensive sampling efforts, and the larvae were reared and overwintered as pupae in the laboratory until they emerged as adults in the subsequent spring. Both specimens were stored in 99.5% ethanol at -20°C.

High molecular weight DNA extraction

High molecular weight (HMW) DNA was extracted from the specimens following an adaptation of the salting-out method of Miller *et al.* (1988) (10x Genomics 2018). Before
extraction, the genitalia of the individual males were removed and stored as species vouchers in 99.5% ethanol at –20°C. The remainder of each insect was homogenised using sterile scalpels, and then incubated overnight at 37°C in 600 µl lysis buffer (10 mM Tris–HCl, 400 mM NaCl, and 100 mM EDTA, pH 8.0) with 100 µl of Proteinase K (20 mg/ml). Genomic DNA was then salted out by adding 240 µl of 5M NaCl and cleaned using 70% ethanol. Finally, the extracted HMW DNA was quantified using the Qubit 3.0 system (Invitrogen) and the size distribution (>20 kbp) was confirmed by visualisation on a 0.8% Agarose gel alongside a 1Kb extension ladder (Invitrogen).

Library preparation and sequencing

10X Genomics linked-read sequencing

10X Genomics linked-read sequencing libraries were prepared from 0.5 ng HMW DNA (as determined by an estimated genome size of 270 Mbp) at the Bioscience core lab facility of the King Abdullah University of Science and Technology, Saudi Arabia. The Chromium Genome Reagent Kit v2 provided by the manufacturer was used for library preparation. The final libraries were pooled in equimolar concentrations and then 150-bp paired-end sequenced on a single lane of an Illumina HiSeq4000 platform.

Oxford Nanopore long-read sequencing

HMW DNA sequencing libraries were prepared from 400 ng of input DNA using the Ligation Sequencing kit (SQK-LSK109) along with the Native Barcoding Expansion Kit (EXP-NBD104) following the manufacturer’s (Oxford Nanopore Technologies, UK) protocols. The final libraries were then sequenced on a single flow cell (FLO-MIN106D) on the MinION, which was controlled using the MinKNOW version 3.4.8 software. Real-time base calling was turned off and was instead performed on the servers of the CSC – IT Center for Science, Finland, using Albacore version 2.3.4 (Oxford Nanopore Technologies, UK).
Illumina short-read sequencing

A whole-genome short-read sequencing library was prepared from 10 ng of *E. lappo* DNA using the NEBNext Ultra II FS DNA Library Prep Kit for Illumina (New England Biolabs, USA) following the manufacturer’s protocols. The library was size-selected at 400 bp and sequenced as part of a pool of samples on a single 150-bp paired-end lane of the Illumina HiSeq2500 platform.

Genome assembly and validation

Euura lappo genome assembly

A hybrid *de novo* genome of *Euura lappo* v.1 was assembled using 10X Genomics linked reads, raw ONT long sequencing reads, and Illumina short reads with MaSuRCA version 3.3.6 (Zimin *et al.* 2013). The genome was polished using Pilon version 1.23 (Walker *et al.* 2014) by mapping the sequencing reads back onto the assembled genome to correct misassemblies and heterozygous sites. The genome was then further scaffolded using Scaff10X version 4.2 (Mullikin and Ning 2003; Murchison *et al.* 2012) with the 10X Genomics reads and Oxford Nanopore reads (assembly version 2.0), followed by a second round of genome polishing with Pilon (assembly version 2.2).

The *Euura lappo* genome assembly, ELAPPO_v2.2, was validated by mapping the sequencing reads back onto the genome using BWA version 0.7.17-r1188 (Li and Durbin 2009). The mapping rates were then calculated with samtools version 1.4 (Li *et al.* 2009). The contiguity of the assembly was assessed using QUAST version 5.0.2 (Gurevich *et al.* 2013). To validate the assembly size, we compared it against a *k*-mer based genome-size estimate. The whole-genome Illumina sequencing data were used in this analysis, and the optimal *k*-value was determined using KmerGenie version 1.7051 (Chikhi and Medvedev 2013). Jellyfish version 2.3.0 (Marçais and Kingsford 2011) was then used to obtain the
frequency distribution of all k-mers with length $k = 89$. The frequency distribution was then
analysed with GenomeScope2 (Ranallo-Benavidez et al. 2020) to estimate the genome size
and repeat content. Finally, the completeness of the genome assembly was estimated by
comparison to the single-copy orthologs from the Hymenoptera_odb10 and Metazoa_odb10
datasets using BUSCO version 4.1.4 (Simão et al. 2015; Seppey et al. 2019).

Eupontania aestiva genome assembly

Due to differences in the sequencing strategy for the two focal species, the hybrid genome
assembly of *Eupontania aestiva* was assembled using 10X Genomics linked reads and raw
ONT long sequencing reads with MaSuRCA version 3.3.6. The subsequent steps for genome
polishing, scaffolding and validation, were the same as described above for *E. lappo*.
However, the 10X Genomics linked reads and ONT data were used for polishing and the k-
mer based estimation of genome size and repeat content was performed using the 10X
Genomics linked read data.

Genome annotation

Repeat annotation was performed using the extensive *de novo* TE annotator (EDTA) pipeline
(Ou et al. 2019). This pipeline streamlines the identification and classification of repeats, by
using commonly-used programs, such as RepeatModeler (Smit and Hubley 2015), LTR
Finder (Xu and Wang 2007), LTRharvest (Ellinghaus et al. 2008) and HelitronScanner
(Xiong et al. 2014) to create a *de novo* repeat library. RepeatMasker (Smit et al. 2013) and
the final EDTA repeat libraries were then used to soft mask the genome assemblies prior to
annotation.

Gene prediction was completed *ab initio* using the BRAKER2 pipeline (Hoff et al. 2019) in
conjunction with Genemark-ES (Lomsadze et al. 2005) and Augustus (Stanke et al. 2006).
Functional annotation of the predicted genes was provided by Protein ANNotation with Z-scoRE (PANNZER2) (Koskinen et al. 2015).

Gene homology

The protein sequences of the predicted genes from the two genomes were compared to previously-published protein sequences annotated from the genomes of *Acyrthosiphon pisum* (GCA_005508785), *Tribolium castaneum* (GCA_000002335), *Drosophila melanogaster* (GCA_000001215), *Athalia rosae* (GCF_000344095), *Cephus cinctus* (GCF_000341935), *Neodiprion lecontei* (GCA_001263575), *Orussus abietinus* (GCF_000612105), *Ceratosolen solmsi* (GCA_000503995), *Nasonia vitripennis* (GCF_000002325), and *Apis mellifera* (GCF_003254395) using OrthoFinder2 version 2.3.12 (Emms and Kelly 2015, 2019). For visualisation, the orthogroups were restricted to eight hymenopteran species and graphed using UpSetR (Lex et al. 2014; Conway et al. 2017).

To determine how our two focal genomes fit phylogenetically with other published hymenopteran genomes, we identified BUSCOs for 13 other hymenopteran species (*Athalia rosae* (GCF_000344095), *Neodiprion lecontei* (GCA_001263575), *Neodiprion pinetum* (GCA_004916985), *Cephus cinctus* (GCF_000341935), *Orussus abietinus* (GCF_000612105), *Ormyrus nitidulus* (GCA_900474335), *Nasonia vitripennis* (GCF_000002325), *Cecidostiba fungosa* (GCA_900474305), *Cecidostiba semifascia* (GCA_900474235), *Polistes dominula* (GCF_001465965), *Apis mellifera* (GCF_003254395), *Atta cephalotes* (GCF_000143395), and *Solenopsis invicta* (GCF_000188075)) and one outgroup (*Tribolium castaneum* (GCA_000002335)). Amino acid sequences from 451 BUSCO genes (56,037 amino acid sites), where all focal taxa were represented, were aligned using MUSCLE (Edgar 2004) and trimmed using TrimAl (Capella-Gutiérrez et al. 2009). A consensus maximum-likelihood tree was calculated using ModelFinder (Kalyaanamoorthy et
al. 2017) and IQ-TREE based on the LG+F+I+G4 substitution model (Nguyen et al. 2015), and clade support was inferred based on 1000 bootstrap iterations (Hoang et al. 2018).

RESULTS AND DISCUSSION

Genome assembly

Quality of genome assemblies

The quality of the genomes was first assessed by mapping the sequencing reads back onto the two assemblies. The read-mapping rate was 98.2% for E. lappo and 97.1% for E. aestiva. In the next step, we utilised two BUSCO databases to estimate the completeness of universal single-copy orthologs. The E. lappo genome had 93.5% of the total complete single-copy hymenopteran BUSCOs ([S-Single copy: 91.8%, D-Duplicated: 1.7%], F-Fragmented: 1.5%, M-Missing: 5.0%, n-Total: 5991) and the E. aestiva genome contained 90.2% ([S: 88.4%, D: 1.8%], F: 2.2%, M: 7.6%, n: 5991). The E. lappo genome had 96.3% of the total complete single-copy metazoan BUSCOs ([S: 94.9%, D: 1.4%], F: 0.7%, M: 3.0%, n: 954) and the E. aestiva genome contained 97.8% ([S: 97.5%, D: 0.3%], F: 1.2%, M: 1.0%, n: 954). Hence, both methods indicate good assemblies with near-complete hymenopteran and metazoan core gene sets, suggesting that most genes are present in the annotation of our draft genomes.

Euura lappo

The assembled genome length for E. lappo was 259.85 Mb, which is consistent with the k-mer-based genome-size estimate of 248.28 Mb, as well as with lengths of previously-published hymenopteran genomes (Robertson et al. 2018; Oeyen et al. 2020). The assembled genome consisted of 2,503 contigs, with 50% of the genome contained in the 329 longest contigs (Table 1).
Eupontania aestiva

The length of the assembled *E. aestiva* genome was 222.23 Mb, which is smaller than the k-mer-based estimate of 287.95 Mb. The latter estimate is likely affected by the k-mer counting being based solely on 10X linked reads, but both values are nevertheless close to the estimated size of the *E. lappo* genome, as well as to the aforementioned estimates for other hymenopteran species. The *E. aestiva* genome contained 16,952 contigs, and 50% of the genome was contained in the 1,156 largest contigs (Table 1).

Genome annotation

Repeat annotation

The EDTA repeat annotation pipeline showed that both genomes contained a large proportion of repetitive elements. The masked repeat proportion of the genome was 27.45% in *E. lappo* and 16.89% in *E. aestiva* (Table 1). For *E. lappo*, the estimate was close to the repeat-element composition based on k-mers reported by GenomeScope2 (23.1%), but GenomeScope2 predicted a higher fraction of repeats for *E. aestiva* (44.9%). The difference in the estimated repeat content is likely due to the k-mer frequency of the 10X Genomics sequencing data being biased due to the method of library creation. Interestingly, the *E. lappo* assembly contained more gypsy-type LTRs than did the *E. aestiva* assembly (Table 2). Both genomes also contained a much higher proportion of repeat elements than the 4.33% (3.19% as annotated by EDTA) reported for *Athalia rosae* (Petersen et al. 2019). The difference is most likely due to our use of long-read sequencing technologies, which allow better assembly of repeat elements as compared to datasets based on only Illumina short reads (Schmidt et al. 2020).

Gene prediction
The number of genes predicted *ab initio* was 23,848 and 24,979 for the *E. lappo* and *E. aestiva* genomes, respectively. We acknowledge that this method likely overestimates the true number of genes present due to false positives (Salamov and Solovyev 2000; Misawa and Kikuno 2010), as many hymenopterans have between 12,000 and 20,000 predicted genes (Branstetter *et al.* 2018), but it nevertheless provides a better understanding of the gene repertoires compared to genomes without any form of annotation. The *ab initio* predicted protein set in *E. lappo* had 86.2% of the total complete single-copy BUSCOs ([S: 84.4%, D: 1.8%], F: 3.2%, M: 10.6%, n: 5991), and the corresponding proportion for *E. aestiva* was 87.9% ([S: 86.7%, D: 1.2%], F: 4.6%, M: 7.5%, n: 5991). Due to the quality of the genomes, it is likely that the annotation can be improved through the addition of RNA-seq data in the future.

Gene homology

OrthoFinder2 assigned 95.1% of all proteins from the included 12 insects to one of 22,225 orthogroups, with the remaining ones defined as unassigned. The degree of overlap among the included insect species was 4,780 orthogroups, which is likely a reflection of the core gene set of these taxa. When the analysis was restricted to only eight hymenopteran taxa (Figure 2), a total of 14,382 orthogroups were predicted. The protein sets predicted from our genomes had a high proportion (*E. lappo* 94.5%, *E. aestiva* 95.0%) of genes assigned to one of these orthogroups. Altogether 6,314 orthogroups contained genes from all of the included hymenopteran species, and this likely represents the ‘core’ hymenopteran protein set. The validity of our *ab initio* gene predictions is supported by the fact that the genomes presented here contain >55% of the genes predicted in the recently published *A. rosee* (11,894 genes) and *O. abietinus* (10,959 genes) genomes (Oeyen *et al.* 2020).
The general structure of the phylogenetic tree estimated on the basis of amino acid sequences of 451 BUSCO genes (Figure 3) agrees with previous phylogenetic (Malm and Nyman 2015) and phylogenomic (Branstetter et al. 2017; Peters et al. 2017) analyses of the Hymenoptera. The placement of our two focal tenthredinid gall inducers as sister to the Diprionidae (with the exclusion of Athalia) is consistent with the combined morphology + sequence data results of Schulmeister (2003), as well as with the recent results of Branstetter et al. (2017), which were based on sequencing of ultraconserved genomic elements (UCEs). Interestingly, this topology indicates that our two galler genomes are, in fact, the first representatives of Tenthredinidae sensu stricto.

CONCLUSIONS

The genomes of Euura lappo and Eupontania aestiva presented in this work are of good draft quality, with a contiguity and coverage comparable to previously-published hymenopteran genome assemblies. Hence, our study shows that assembling high-quality hymenopteran genomes can be realised using a reasonably small amount of sequencing with only a single 10X genomics linked-read library as well as MinION long-read technology. The genomes presented here also have a higher content of repeats compared to previously-published hymenopteran genomes; this is likely due to the better ability of long-read sequencing technologies to sequence through these regions, and suggests that the repeat content of hymenopteran genomes may have been underestimated.

Even though numerous hymenopteran genomes have been published during the last decade, plant-feeding symphytan lineages are still severely underrepresented in genomic databases. This is the case especially for the globally distributed and ecologically diverse sawfly family Tenthredinidae, which includes over 5,000 described species (Taeger et al. 2010). The genomes presented here are a step towards correcting this bias, and will constitute a highly
useful resource for analyses of higher-level hymenopteran phylogenetics, development of genomic markers, and elucidation of genome structure and function within the order. In particular, when combined with further data on related species, the genomes of *E. lappo* and *E. aestiva* will enable comparative analyses of the genetic basis of adaptation and speciation in specialist insect herbivores (cf. Leppänen *et al.* 2014). As shown by Yamaguchi *et al.* (2012), adult females and larvae of willow-galling sawflies are able to produce plant hormones or hormone precursors, so our genome data should also help to understand the mechanisms that underlie plant manipulation by gall-inducing insects (cf. Korgaonkar *et al.* 2021).

Data availability

The genome assemblies and sequencing reads are available from GenBank and the SRA databases under BioProject accession numbers PRJNA692175 (*E. lappo*) and PRJNA692828 (*E. aestiva*).

FUNDING

This research was funded by the Academy of Finland (project 294466 to TN) and by baseline funding from King Abdullah University of Science and Technology (to MA).
LITERATURE CITED

10x Genomics, 2018 10x Genomics® Sample Preparation Demonstrated Protocol DNA Extraction from Single Insects. 1–7.

Aguiar, A. P., A. R. Deans, M. S. Engel, M. Forshage, J. T. Huber et al., 2013 Order Hymenoptera. Zootaxa 3703: 51–62.

Branstetter, M. G., A. K. Childers, D. Cox-Foster, K. R. Hopper, K. M. Kapheim et al., 2018 Genomes of the Hymenoptera. Curr. Opin. Insect Sci. 25: 65–75.

Branstetter, M. G., B. N. Danforth, J. P. Pitts, B. C. Faircloth, P. S. Ward et al., 2017 Phylogenomic insights into the evolution of stinging wasps and the origins of ants and bees. Curr. Biol. 27: 1019–1025.

Capella-Gutiérrez, S., J. M. Silla-Martínez, and T. Gabaldón, 2009 trimAl: A tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics 25: 1972–1973.

Chikhi, R., and P. Medvedev, 2013 Informed and automated k-mer size selection for genome assembly. Bioinformatics 30: 31–37.

Conway, J. R., A. Lex, and N. Gehlenborg, 2017 UpSetR: An R package for the visualization of intersecting sets and their properties. Bioinformatics 33: 2938–2940.

Edgar, R. C., 2004 MUSCLE: Multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 32: 1792–1297.

Ellinghaus, D., S. Kurtz, and U. Willhoeft, 2008 LTRharvest, an efficient and flexible software for de novo detection of LTR retrotransposons. BMC Bioinformatics 9: 18.

Emms, D. M., and S. Kelly, 2019 OrthoFinder: Phylogenetic orthology inference for
comparative genomics. Genome Biol. 20: 238.

Emms, D. M., and S. Kelly, 2015 OrthoFinder: solving fundamental biases in whole genome comparisons dramatically improves orthogroup inference accuracy. Genome Biol. 16: 157.

Forbes, A. A., R. K. Bagley, M. A. Beer, A. C. Hippee, and H. A. Widmayer, 2018 Quantifying the unquantifiable: Why Hymenoptera, not Coleoptera, is the most speciose animal order. BMC Ecol. 18: 21.

Gravel, D., B. Baiser, J. A. Dunne, J. P. Kopelke, N. D. Martinez et al., 2019 Bringing Elton and Grinnell together: a quantitative framework to represent the biogeography of ecological interaction networks. Ecography (Cop.). 42: 401–415.

Gurevich, A., V. Saveliev, N. Vyahhi, and G. Tesler, 2013 QUAST: Quality assessment tool for genome assemblies. Bioinformatics 29: 1072–1075.

Hoang, D. T., O. Chernomor, A. Von Haeseler, B. Q. Minh, and L. S. Vinh, 2018 UFBoot2: Improving the ultrafast bootstrap approximation. Mol. Biol. Evol. 35: 518–522.

Hoff, K. J., A. Lomsadze, M. Borodovsky, and M. Stanke, 2019 Whole-genome annotation with BRAKER. Methods Mol. Biol. 1962: 65–95.

Kalyaanamoorthy, S., B. Q. Minh, T. K. F. Wong, A. Von Haeseler, and L. S. Jermiin, 2017 ModelFinder: Fast model selection for accurate phylogenetic estimates. Nat. Methods 14: 587–589.

Korgaonkar, A., C. Han, A. L. Lemire, I. Siwanowicz, D. Bennouna et al., 2021 A novel family of secreted proteins linked to plant gall development. Curr. Biol. 31: 1–14.

Koskinen, P., P. Törönen, J. Nokso-Koivisto, and L. Holm, 2015 PANNZER: High-
throughput functional annotation of uncharacterized proteins in an error-prone environment. Bioinformatics 31: 1544–1552.

Leppänen, S. A., T. Malm, K. Värri, and T. Nyman, 2014 A comparative analysis of genetic differentiation across six shared willow host species in leaf- and bud-galling sawflies. PLoS One 9: e116286.

Lex, A., N. Gehlenborg, H. Strobelt, R. Vuillemot, and H. Pfister, 2014 UpSet: Visualization of intersecting sets. IEEE Trans. Vis. Comput. Graph. 20: 1983–1992.

Li, H., and R. Durbin, 2009 Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25: 1754–1760.

Li, H., B. Handsaker, A. Wysoker, T. Fennell, J. Ruan et al., 2009 The Sequence Alignment/Map format and SAMtools. Bioinformatics 25: 2078–2079.

Liston, A. D., E. Heibo, M. Prous, H. Vårdal, T. Nyman et al., 2017 North European gall-inducing Euura sawflies (Hymenoptera, Tenthredinidae, Nematinae). Zootaxa 4302: 1–115.

Lomsadze, A., V. Ter-Hovhannisyan, Y. O. Chernoff, and M. Borodovsky, 2005 Gene identification in novel eukaryotic genomes by self-training algorithm. Nucleic Acids Res. 33: 6494–6509.

Malm, T., and T. Nyman, 2015 Phylogeny of the symphytan grade of Hymenoptera: New pieces into the old jigsaw(fly) puzzle. Cladistics 31: 1–17.

Marçais, G., and C. Kingsford, 2011 A fast, lock-free approach for efficient parallel counting of occurrences of k-mers. Bioinformatics 27: 764–770.

Miller, S. A., D. D. Dykes, and H. F. Polesky, 1988 A simple salting out procedure for
extracting DNA from human nucleated cells. Nucleic Acids Res. 16: 1215.

Misawa, K., and R. F. Kikuno, 2010 GeneWaltz - A new method for reducing the false positives of gene finding. BioData Min. 3: 6.

Mullikin, J. C., and Z. Ning, 2003 The phusion assembler. Genome Res. 13: 81–90.

Murchison, E. P., O. B. Schulz-Trieglaff, Z. Ning, L. B. Alexandrov, M. J. Bauer et al., 2012 Genome sequencing and analysis of the Tasmanian devil and its transmissible cancer. Cell 148: 780–791.

Nguyen, L. T., H. A. Schmidt, A. Von Haeseler, and B. Q. Minh, 2015 IQ-TREE: A fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol. Biol. Evol. 32: 268–274.

Noriega, J. A., J. Hortal, F. M. Azcárate, M. P. Berg, N. Bonada et al., 2018 Research trends in ecosystem services provided by insects. Basic Appl. Ecol. 26: 8–23.

Nyman, T., F. Bokma, and J. P. Kopelke, 2007 Reciprocal diversification in a complex plant-herbivore-parasitoid food web. BMC Biol. 5: 49.

Oeyen, J. P., P. Baa-Puyoulet, J. B. Benoit, L. W. Beukeboom, E. Bornberg-Bauer et al., 2020 Sawfly genomes reveal evolutionary acquisitions that fostered the mega-radiation of parasitoid and eusocial Hymenoptera. Genome Biol. Evol. 12: 1099–1188.

Ou, S., W. Su, Y. Liao, K. Chougule, J. R. A. Agda et al., 2019 Benchmarking transposable element annotation methods for creation of a streamlined, comprehensive pipeline. Genome Biol. 20: 275.

Peters, R. S., L. Krogmann, C. Mayer, A. Donath, S. Gunkel et al., 2017 Evolutionary history of the Hymenoptera. Curr. Biol. 27: 1013–1018.
Petersen, M., D. Armisén, R. A. Gibbs, L. Hering, A. Khila et al., 2019 Diversity and evolution of the transposable element repertoire in arthropods with particular reference to insects. BMC Evol. Biol. 19: 11.

Ranallo-Benavidez, T. R., K. S. Jaron, and M. C. Schatz, 2020 GenomeScope 2.0 and Smudgeplot for reference-free profiling of polyploid genomes. Nat. Commun. 11: 1432.

Robertson, H. M., R. M. Waterhouse, K. K. O. Walden, L. Ruzzante, M. J. M. F. Reijnders et al., 2018 Genome sequence of the wheat stem sawfly, ceph us cinctus, representing an early-branching lineage of the hymenoptera, illuminates evolution of hymenopteran chemoreceptors. Genome Biol. Evol. 10: 2997–3011.

Salamov, A. A., and V. V. Solovyev, 2000 Ab initio gene finding in Drosophila genomic DNA. Genome Res. 10: 516–522.

Schmidt, H., S. L. Hellmann, A.-M. Waldvogel, B. Feldmeyer, T. Hankeln et al., 2020 A high-quality genome assembly from short and long reads for the non-biting midge Chironomus riparius (Diptera). G3 Genes, Genomes, Genet. 10: 1151–1157.

Schulmeister, S., 2003 Simultaneous analysis of basal Hymenoptera (Insecta): Introducing robust-choice sensitivity analysis. Biol. J. Linn. Soc. 79: 245–275.

Seppey, M., M. Manni, and E. M. Zdobnov, 2019 BUSCO: Assessing genome assembly and annotation completeness, pp. 227–245 in Methods in Molecular Biology, Humana, New York, NY, NewYork.

Simão, F. A., R. M. Waterhouse, P. Ioannidis, E. V. Kriventseva, and E. M. Zdobnov, 2015 BUSCO: Assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics 31: 3210–3212.
Smit, A., and R. Hubley, 2015 *RepeatModeler open-1.0*.

Smit, A., R. Hubley, and P. Green, 2013 RepeatMasker Open-4.0. 2013-2015. http://www.repeatmasker.org.

Stanke, M., O. Keller, I. Gunduz, A. Hayes, S. Waack *et al.*, 2006 AUGUSTUS: Ab initio prediction of alternative transcripts. Nucleic Acids Res. 34: W435–W439.

Taeger, A., S. M. Blank, and A. D. Liston, 2010 World catalog of symphyta (Hymenoptera). Zootaxa 1064: 1–1064.

Walker, B. J., T. Abeel, T. Shea, M. Priest, A. Abouelliel *et al.*, 2014 Pilon: An integrated tool for comprehensive microbial variant detection and genome assembly improvement. PLoS One 9: e112963.

Xiong, W., L. He, J. Lai, H. K. Dooner, and C. Du, 2014 HelitronScanner uncovers a large overlooked cache of Helitron transposons in many plant genomes. Proc. Natl. Acad. Sci. U. S. A. 111: 10263–10268.

Xu, Z., and H. Wang, 2007 LTR-FINDER: An efficient tool for the prediction of full-length LTR retrotransposons. Nucleic Acids Res. 35: W265–W268.

Yamaguchi, H., H. Tanaka, M. Hasegawa, M. Tokuda, T. Asami *et al.*, 2012 Phytohormones and willow gall induction by a gall-inducing sawfly. New Phytol. 196: 586–595.

Zimin, A. V., G. Marçais, D. Puiu, M. Roberts, S. L. Salzberg *et al.*, 2013 The MaSuRCA genome assembler. Bioinformatics 29: 2669–2677.
FIGURE LEGENDS

Figure 1. (A) Bud gall induced by *Euura lappo* on *Salix lapponum*. (B) Leaf gall induced by *Eupontania aestiva* on *S. myrsinifolia*. (C) Larva of *E. aestiva* inside opened gall. (Photographs by TN).

Figure 2. UpSet plot showing the number of orthogroups shared across different partitions of the included hymenopteran protein sets. Set size reflects the total number of orthogroups contained in the protein repertoire of each species, while intersection size indicates the number of orthogroups in common among species or unique to a species. Single dots in the lower panel indicate orthogroups unique to a particular species, and dots joined by lines indicate orthogroups shared across species.

Figure 3. Maximum-likelihood tree of 15 hymenopteran taxa and one coleopteran outgroup (*T. castaneum*) based on amino acid sequences of 451 BUSCOs shared by all focal taxa. Numbers below branches indicate clade support (%) according to 1000 ultrafast bootstrap iterations (* = 100%).
TABLES

Table 1. Assembly statistics for the genomes of *Euura lappo* and *Eupontania aestiva.*

	Euura lappo	Eupontania aestiva
10X linked reads	66X	135X
coverage		
MinION nanopore	9X	10X
coverage		
Illumina shotgun	169X	n.a.
coverage		
Total length (bp)	259,850,900	222,225,666
Number of contigs	2503	16952
Longest contig (bp)	1919081	797452
GC-%	40.5	40.25
N50	208956	49744
N75	102897	13796
L50	329	1156
Complete BUSCOs -		
count (%)	5602 (93.5%)	5404 (90.2%)
Table 2. *de novo* repeat annotation of the *Euura lappo* and *Eupontania aestiva* genomes.

Repeat class	*Euura lappo*	*Eupontania aestiva*				
Count	bp	Count	bp			
DNA						
DTA	26498	7245658	2.79	26790	6952423	3.15
DTC	19198	5100000	1.96	14058	3592678	1.63
DTH	2169	498037	0.19	359	72585	0.03
DTM	45357	11815614	4.55	28874	6809103	3.08
DTT	1480	490372	0.19	419	128294	0.06
Helitron	13267	4941840	1.90	20362	4941319	2.24
LTR						
Copia	9789	4041679	1.56	2175	783202	0.35
Gypsy	34191	19359338	7.45	5264	2092539	0.95
unknown	50728	14651949	5.64	36128	10241713	4.64
MITE						
DTA	3143	592895	0.23	4036	729500	0.33
DTC	1592	285828	0.11	1096	170108	0.08
DTH	149	23489	0.01	116	15614	0.01
-----	---	-----	-----	-----	-----	-----
DTM	16660	2259373	0.87	5305	759185	0.34
DTT	188	32332	0.01	42	3311	0
Total	224409	71338404	27.45	145024	37291574	16.89
