Ironworks Conveyor Monitoring Using Mirror-drive High-speed Active Vision

Zhengmi Tang, Kohei Shimasaki, Mingjun Jiang, Takeshi Takaki, Idaku Ishii*, Aoi Koga and Hiroshi Matsuda

1) Graduate School of Engineering, Hiroshima University
2) Digital Monozukuri (Manufacturing) Education and Research Center, Hiroshima University
3) Center for Information and Communication Technology, Nagasaki University
4) Graduate School of Engineering, Nagasaki University

Abstract: In this study, dynamic deflections and vibrations of belt conveyors operating in ironworks are observed using a high-speed telephoto mirror-drive active vision that can simultaneously switch viewpoints and capture zooming-in images at hundreds of frames per second. 160-fps video images for a belt conveyor are captured by our active vision system with pan-and-tilt scan as multiple high-frame-rate video images in the experiments, and small deflections and vibrations of multiple belts and pillars, whose peak frequencies are 10 Hz or more, are estimated with the precision of dozens of micrometers by image analysis such as DIC (digital image correlation) when the camera system is 5 m or more away from the conveyor to be monitored.

Keywords: structural health monitoring; high-speed vision; vibration analysis; wide-area sensing.
ミラー駆動型高速アクティブビジョンを用いた
製鉄所コンベヤーモニタリング

唐 正密1)・島崎 航平2)・姜 明俊1)・高木 健1)・石井 造船1)*・古賀 掲維3)・松田 浩4)

Ironworks Conveyor Monitoring Using Mirror-drive High-speed Active Vision
Zhengmi Tang, Kohei Shimasaki, Mingjun Jiang, Takeshi Takaki, Idaka Iishi, Aoi Koga and Hiroshi Matsuda

1. 緒言

国内製鉄所の多くが1960～1970年代の高度成長経済期に建設され、建設後40年以上経過した製鉄所における基盤インフラ設備の老朽化が進む中で、火災、爆発、ガス漏洩等による事故が増加している。老朽化により、設備の安全確保、設備の稼働率、減便部位などのモニタリングが不可欠となっている。従来のモニタリングシステムは、コンピュータおよび端末装置に装置し、データを収集し、システムに取り入れているが、製鉄所内インフラ設備の安定稼働を支えることは不可能であり、メンテナンス不足に起因したトラブルは根絶できないのが現状である。

構造物の動的変位に着目した振動モニタリングは、構造物における構造損傷を検知する重要な手段の一つであり、加速度計、GPS、光ファイバ等の構造物変位センサによる計測が多数報告されている。しかし、大規模な構造物全体の動きを計測するために複数箇所にセンサを設置する必要があり、センサ設置の工程と時間を要する問題がある。構造物へのセンサー設置を必要とする遠隔モニタリングとして、レーザー、オプサービング等の光学的なセンサを用いた構造物の非接触振動計測の研究も数多く報告されている。特に2010年から2014年にかけての研究が活発に行われており、画像相関法（DIC）を用いた計測則の実装も行われている。一方で、一部の研究者も、スマートフォンやウェブカメラを用いたモニタリング方法の実装が検討されている。

本研究では、レーザーを用いた振動モニタリングシステムを用いた高精度モニタリングシステムの開発を目的としている。レーザーを用いたモニタリングシステムの特徴は、対象物の反射を用いて計測が可能であるため、異常が発生した場合に迅速に対応できるという点である。
ミラー駆動型高速アクティブビジョンを用いた製鉄所コンベアモニタリング

2. ミラー駆動型高速アクティブビジョン

2・1 システム構成

Fig.1にミラー駆動型高速アクティブビジョンの概念および本論文で用いたシステムの外観を示す。本システムは、高速USB3.1カメラ（DFK37BUX273, Imaging Source）、望遠レンズ（150-600mm F5-6.3 DG OS HSM, Sigma）、2自由度ガルバノミラー（6240H, Cambridge Technology）、制御用PC（Windows 10 home 64bit OS, MouseComputer Z370-S01, Intel Core CPU i7-8700K @ 3.70GHz, DDR4 16GBメモリ）から構成され、カメラ、レンズ以外の要素は、Aoyamaらが構築したミラー駆動型高速アクティブビジョンとほぼ同じ構成をとる。高速USB3.1カメラ DFK37BUX273は8-bit濃淡1440×1080画素の撮影および制御用PCへの画像転送を最高273fpsで可能であり、搭載イメージセンサの画素ピクセルは3.45×3.45μmである。カメラに装着された望遠レンズは、最大径121mm、重さ2860g、焦点距離を150～600mm間で調整可能なものである。望遠レンズ正面に配置されたガルバノミラー6240Hは、パン軸・チルト軸に対応したミラー17.5×12.2mmの2つのミラーを持ち、制御用PCからの電圧指令によりミラー角度が制御される。これらの角度はアナログ電圧によりモニタ可能である。ガルバノミラーを介して、パン・チルト方向ともにカメラ視点を最大40度変えることができ、現在の角度から10度以内であれば、1ms以内に任意角度に視点切替え可能である。制御用PCには、電圧指令用のDAボード（PEX-340416, Interface）およびミラー角度モニタ用ADボード（PEX-321216, Interface）が搭載されている。

2・2 撮影・処理の流れ

一般にズーム撮影では、カメラが少しでも動くと画像内での見かけのずれが大きくとなるため、計測対象をカメラ視野内に捉えるための事前準備に手間がかかり、特に製鉄所等のフィールド撮影では、計測試験毎に正確なカメラを同一位置に設置することが困難な場面が多くあり、同一カメラで異なる視野の画像を撮影する場合にこの問題が顕著となる。これらのことを考慮した形で、本論文ではミラー駆動型高速アクティブビジョンを用い、Fig.2で示す撮影・処理の流れにより、構築物に対する振動モニタリングを実現する。

（1）ミラー走査によるパノラマ画像生成

計測対象位置を把握するために、ミラー走査によるパノラマ画像を生成する。時間間隔tで視線方向を切り替え、パン方向I回、チルト方向J回計IJ個の異なる視点の画像

\[P(x, y, t_n + kt) \] (0≤k<IJ) の撮影を伴うミラー走査を行い、これらの画像からパノラマ画像 \(P(x', y') = \text{Panorama} \) が合成される。時刻 \(t_n + (i+j)t \) のパン・チルト角は、走査ステップ角をそれぞれ \(\Delta \theta_n, \Delta \theta_m \) とし、\(\theta_n \) と \((i+j)t \) と \((i\Delta \theta_n, j\Delta \theta_m) \) の範囲においてパン・チルト角 \(\theta \) の関係は、パノラマ合成時においてルックアップテーブル

\[(x', y') = \text{lut}(\theta_n, (i+j)t) \]

として記録される。

（2）ビデオ撮影を行うパン・チルト角度の指定

（1）で生成したパノラマ画像 \(P(x', y') \) に基づき、ユーザ者が振動計測を行うべき対象があるN個の座標位置 \((x_n', y_n') \) (n=0,...,N−1) を指定した上で、パン・チルト角とパノラマ画像の座標相関の関係を表すルックアップテーブルに基づき、ビデオ撮影を行うN個の視線方向に対応したパン・チルト角 \(\theta_n = \text{lut}((x_n', y_n')) \) を決定する。

（3）複数視点に対するフレームレート画像撮影

（2）で決定した視線方向 \(\theta_n \) (n=1,...,N−1) に基づき,
バン・チルト角を \(\theta(t) = \theta(t_0) + \frac{\Delta t}{N} (0 \leq t \leq N \Delta t) \) と時間変化させながら、高フレームレート画像 \(I(x, y; t) \) を撮影する。

Aoyamaらの研究では、視点をフレーム毎に切り替え、 \(N \) 視点のビデオ画像を元画像の \(1/N \) のフレームレートで同時に取得したのに対し、本論文ではフレームレートを優先し、視点毎に一定時間 \(\Delta t \) だけ撮影を行った後に視線方向を切り替え、 \(N \) 視点の高フレームレート画像 \(I_n(x, y; t) = I(x, y; t - n \Delta t) (0 \leq t < N \Delta t) \) を取得するものとした。

(4) 高フレームレート画像に基づく微小変位計測・周波数解析

視点毎に得られたビデオ画像 \(I_n(x, y; t') \) に対し、ターゲット領域 \(R_n(x, y) \) を指定して、DIC等の微小変位を推定する画像処理アルゴリズムを適用し、画像内の二次元変位 \((\xi_n, \eta_n) = \text{Displacement} I(x, y; t') \) を計算する。測定された変位に対し、FFTによる周波数解析を行うことにより、ターゲット領域毎の振動周波数応答を求めることができる。なお本論文では、変位推定アルゴリズムについては、ターゲット部位に応じた形で異なる手法を適用したため、詳細の説明は次節に譲るものとする。

3. ベルトコンベアに対する振動モニタリング試験

3・1 実験環境および設定

次に国内にある製鋼所内で稼働中のベルトコンベアに対して、ミラー駆動型高速アクティブビジョンを用いて振動モニタリング試験を行った結果を示す。本試験は2019年12月10日午前中に、晴れ、気温5.1℃、風速1.9 m/s（午前10時）の気候条件下で実施した。ターゲットとしたベルトコンベアは、直径17 cmのローラー用支柱が0.8 m間隔で並び、その上に厚み10 mm前後のベルトがV字型に配置された形で層を搬送するものであり、速度が2.7 m/sで原料搬送時においてモニタリング試験を実施した。Fig.3に、このベルトコンベアについて、(a) 3Dレーザスキャナ（Focus3D X330, FARO）により計測された三次元点群、(b) 点群に基づき土木設計ソフトウェア（Civil 3D, Autodesk）を用いて生成した三次元モデルを示す。

ミラー駆動型高速アクティブビジョンは制御用PCを含めて可動ワゴンの構成に固定しており、可動ワゴンは雨天・微光・風等の影響を防ぐために1.5×1.5 m大のテントを用意した上で、ベルトコンベア正面から5 m離れた位置に設置した。本論文では、望遠レンズの焦点距離を

![Fig. 2. Flowchart of video shooting and processing in this study. (Online version in color.)](image)
150 mmとし、5 m先において16.4×12.3 cmの範囲に対し
て、0.114 mm画素の解像度で12ビット濃淡1440×1080 画
像を160 fps撮影することとした。隣接する視点画像が連
続するように、時間間隔τ＝6.25 ms、走査ステップ角Δθw
＝1.88度、Δθv＝1.41度のミラーワンタッチにより、水平22視
点×垂直29視点の計638枚の画像を撮影し、これらの画像
をFig.4で示す31680×31320画素のパノラマ画像に合成
した。これらのパノラマ画像に基づき、ユーザーが指定す
る形で、Fig.4に示す5本のローラー支柱（No.1, No.2, No.3,
No.4, No.5）付近を高フレームレート撮影すべき領域とし
て指定し、支柱やベルトの微小変位・振動を計測するもの
として、これらの視線方向に対応したパン・チルト角を決
定した。これらの5個の視線方向それぞれに対して、Δt＝
3.75 s間の1440×1080画像を160 fpsで撮影した。なおNo.1
～No.5の全てのローラーは、ベルトに連動する形で回転し
ていることを確認した。撮影した画像例をFig.5に示す。

本論文ではこれらの高フレームレート画像において、画像
処理すべき領域を指定した上で、(a) 支柱の微小変位計
測、(b) 支柱側でのベルトの振動・厚み計測を行った。

支柱の微小変位計測では、ローラー軸を固定する円形部
の表面が鉱石粉塵の影響に特徴的な模様があることに
着目し、Fig.6に示す領域に対して、撮影画像内の明るさが
大きく変化しないとし、勾配ベーシットDIC法(5)を使用し
た。ベルトの振動・厚みは、支柱側にに対応した、Fig.6中
に示す経線を基準に、ベルトの上端/下端位置をエッジ検
出し、端位置をベルトの振動変位、上端位置と下端位置
の差をベルト厚みとして計算した。なお支柱No.4の高フ
レームレート画像では、立て看板によりベルトが観測不
可能であったことを付記する。

3・2 コンベア支柱に対する解析結果

No.1～No.5の支柱のx座標（水平方向）、y座標（垂直方
向）の時間変化をFig.7に、これらの周波数特性をFig.8に
示す。水平方向、垂直方向いずれも振幅0.05 mm前後の時
間変化が観測され、ピーク周波数が10 Hzおよび26 Hz前
後に観測されている。比較実験として、ミラー型駆動型高
速アクティブビジョンで用いたものと同じ高速USBカメラ
をNo.1の支柱の正面1.2 m先に設置し、点距離25 mmの
レンズを装着した上で、12ビット濃淡1440×1080画像を
160 fpsで撮影し、同様な解析処理により、支柱の水平/垂
直変位の時間変化を計測した。Fig.9に撮影画像例および
DIC解析を行った領域を示す。支柱付近の23.3×17.5 cm
の範囲に対し、0.162 mm/画素での撮影となった。比較実験
について、(a) 支柱No.1の水平/垂直変位の時間変化、(b)
それぞれの周波数特性をFig.10に示す。比較実験では、異な
る時期でのコンベア稼働状況をモニタリングしたもののは
あるものの、Fig.7で計測された水平/垂直変位に比べ、変
位が小さく、10, 15, 20 Hzといったピーク周波数がクリア
に観測されたことがわかる。このことは、本試験における
ミラー型駆動型高速アクティブビジョンの実証実験では、ベ
ルトの振動に起因するピーク周波数10 Hzを基準とした数
十μmオーダーの周期的な振動を遠隔計測できる一方で、
特に水平変位では26 Hz前後のピーク周波数成分などの雑
音・エラーが発生したものの予想される。

3・3 コンベアベルトに対する解析結果

No.1～No.3およびNo.5の支柱側でのベルト振動変位
として、ベルト下端位置のy座標の時間変化をFig.11に、こ
れの周波数特性をFig.12に示す。いずれの位置でも、ドリフトを伴う形で振幅1 mm程度の周期的時間変化が観測され、ピーク周波数が10 Hz前後に観測されている。振動変位がドリフトしている理由は、搬送中の原料の分布が一様ではなく、分布状況に応じた形でベルトのたわみ具合が変化しているためと考えられる。また厚みを含むベルトの状態をモニタリングするために、ベルト下端位置を基準として、ベルト上端位置との差であるベルト厚みの時間変化をFig.13に、およびFig.6で示したローラー左側の縦線上での断面輝度プロファイールを用いて、ベルトの層構造を容
Fig. 7. Pillar displacements in horizontal and vertical directions. (Online version in color.)

Fig. 8. Frequency responses of pillar displacements. (Online version in color.)

Fig. 9. Input image with its DIC-analysis region in 1.2-m-distance experiment. (Online version in color.)

Fig. 10. Pillar displacements and their frequency responses in 1.2-m-distance experiment. (Online version in color.)
Fig. 11. Belt displacements in vertical direction. (Online version in color.)

Fig. 12. Frequency responses of belt displacements. (Online version in color.)

Fig. 13. Belt thicknesses. (Online version in color.)

Fig. 14. Corrected spatio-temporal images at vertical lines. (Online version in color.)
とほぼ一致したペルト厚みおよび時空間画像計測結果を確認している。支柱No.1〜No.3付近では、ペルト厚みはほぼ10 mm前後で観測された一方で、ペルト上的材料がペルト上端部として認識されており、これらの材料が不均一に搬送されているため、1〜2 mm前後のばらつきが生じている。支柱No.5付近ではペルト上端部がコンピュータ前にある画素数により隠れており、ペルト厚みが正確に計測されなかった。Fig.14の時空間画像では、3.75 sに搬送された10 m分のペルトについて、その多層構造を確認することができるとともに、不均一に搬送されている材料下部に、ペルト下端からほぼ一定位置にペルト上端部が観測されている。特に支柱No.1付近の時空間画像では、ペルトの層構造に対応した箇模様が一部認められる場所であり、ペルト断面の観測からその劣化部位が観測されている。

3.4 考察

3.2のコンペア支柱に対する解析結果では、ミラー駆動型高速アクティブビジョンによる計測結果が12 m先の固定高速カメラと計測結果に比べ、26 Hz前後の周波数成分を伴う形やや振幅が大きくなった。この要因としては、ミラー駆動型高速アクティブビジョンを固定した可動ワゴンの振動が考えられる。検証のために、製鉄所でのモニタリング試験と同様な設定で、実験室において5 m先から実験室内の静止対象を観測したところ、3.2の解析結果と同様な周波数26 Hz、振幅0.01 mm前後の周期的波形が確認された一方で、可動ワゴンから制御用PCを外した状態で観測した場合、これらの周波数の波形は観測されずに雑音成分が軽減したことを確認した。可動ワゴンの振動は、ワゴン上に搭載した制御用PC内の1500回転/秒前後で回転する空冷ファンにより発生したものと考えられ、特に製鉄所でのモニタリング試験では可動ワゴンを柔らかい地面に設置したため、これらの振動が増幅されたものと考えられる。なおコンペア等の振動に影響を受けない固定対象が同一画像内に撮影できる場合、画像内の固定対象の変位をリフェンスとした補正により、本論文で問題となったカメラ自体の微小振動に伴う誤差を軽減することが可能である。

これ以外にも製鉄所でのモニタリング試験では、地表温度と気温の差による気のゆらぎに伴う陽炎の発生に伴い、画像の中で観測対象が揺れたり、波乱する現象が生じることが多発し、特に地表温度が気温より高いときに遠距離からのズーム撮影を行う場合に、この傾向が顕著に表れた。本論文に掲載した計測結果は、陽炎が比較的発生しない日の午前中に撮影した画像を解析したため、陽炎が大きな問題とはならなかったが、ミラー駆動型アクティブビジョンに限らず、一般に遠隔からのズーム撮影画像を用いた微小変位・振動計測を高精度に行うためには、気象条件を考慮した上で解析すべき画像を撮影する必要がある。

4. 結言

本論文では、製鉄所でペルトコンペアに対する遠隔動的パラメータを高速視点切换とともに高速フレームレートでズーム撮影できるミラー駆動型高速アクティブビジョンにより実現した。稼働中ペルトコンペアに対し、パルチル特視制御と連動する形で160 fpsビデオ画像を撮影し、デジタル相関法に基づく微小変位・振動解析を行うことにより、複数視野方向のコンペア支柱やペルトに対する数微米オーダーの動的変位の計測実験結果を示した。今後は、高速フレームレート振動解析の高精度化・高速実時間化を図るとともに、本論文で取り上げたペルトコンペアだけでなく、製鉄所内にある各種配管・搬送テーブル・クレーン等の広域インフラ設備に対するモニタリング試験の実施を通じて、ミラー駆動型高速アクティブビジョンによる広域モニタリングの有効性を検証していく。

文献

1) Nikkei BP: Nikkei Monodukuri (Probl.-solving info. manuf.), 601(2004), 159 (in Japanese).
2) S.Ida: Saf. Tomorrow, 102(2005), 74 (in Japanese).
3) J.W.Brownjohn: Philos. Trans. A Math. Phys. Eng. Sci., 365(2007), 589. https://doi.org/10.1098/rsta.2006.1925
4) J.M.Ko and Y.Q.Ni: Eng. Struct., 27(2005), 1715. https://doi.org/10.1016/j.engstruct.2005.02.021
5) A.Sabato, M.Q.Feng, Y.Fukuda, D.L.Carnil and G.Fortino: IEEE Sens. J., 16(2016), 2942. https://doi.org/10.1109/JSEN.2016.2522940
6) F.Moschas and S.Siros: Eng. Struct., 33(2011), 10. https://doi.org/10.1016/j.engstruct.2010.09.013
7) J.W.Lovse, W.F.Teskey, G.Lachapelle and M.E.Cannon: J. Surv. Eng., 121(1995), https://doi.org/10.1061/(ASCE)0733-9435(1995)121:1(35)
8) X.Meng, A.H.Dodson and G.W.Roberts: Eng. Struct., 29(2007), 3178. https://doi.org/10.1016/j.engstruct.2007.03.012
9) G.Conforti, M.Brenci, A.Mencaglia and A.G.Mignani: Appl. Opt., 28(1989), 5158. https://doi.org/10.1364/AO.28.005158
10) A.Mita and J.Yokoi: Proc. 5th Int. Conf. Motion and Vibration Control, (2000), 4.
11) F.J.Eberhardt and F.A.Arends: J. Acoust. Soc. Am., 48(1970), 603. https://doi.org/10.1121/1.1912183
12) H.H.Nassif, M.Gindy and J.Davis: NDT&E Int., 38 (2005), 213. https://doi.org/10.1016/j.ndteint.2004.06.012
13) G.Giuliani, M.Norgia1, S.Donati and T.Bosch: J. Opt. A: Pure Appl. Opt., 4 (2002), S283. https://doi.org/10.1088/1464-4258/4/6/371
14) M.Pieraccini, M.Fratini, F.Parrini and C.Atzeni: IEEE Trans. Geosci. Remote Sens., 44 (2006), 3284. https://doi.org/10.1109/TGRS.2006.879112
15) C.R.Farrar, T.W.Darling, A.Migliori and W.E.Baker: Mech. Syst. Signal Process., 13 (1999), 241.
16) J.J.Lee and M.Shinozuka: Exp. Mech., 46 (2006), 105. https://doi.org/10.1007/s11340-006-6124-2
17) S.W.Kim and N.S.Kim: NDT E Int., 59 (2013), 25. https://doi.org/10.1016/j.ndteint.2013.05.002
18) A.M.Wahbeh, J.P.Caffrey and S.F.Masri: Smart Mater. Struct., 12 (2003), 785. https://doi.org/10.1088/0964-1726/12/5/016
19) P.S.H.Jr and G.Elisha: Struct Control Health Monit., 25 (2018). https://doi.org/10.1002/stc.2235
20) S.Yoneyama and H.Ueda: Mater. Trans., 53 (2012), 285. https://doi.org/10.2320/matertrans.I-M2011843
21) G.Busca, A.Cigata, P.Mazzoleni and E.Zappa: Exp. Mech., 54 (2014), 255. https://doi.org/10.1007/s11340-013-9784-8
22) S.Ri, M.Fujigaki and Y.Morimoto: Exp. Mech., 50 (2010), 501. https://doi.org/10.1007/s11340-009-9239-4
23) M.Fujigaki, D.Tomita and Y.Murata: J. Jpn. Soc. Exp. Mech., 15 (2016), 315 (in Japanese). https://doi.org/10.11395/jsem.15.315
24) I.Ishii, T.Taniuchi, R.Sukunobu and K.Yamanoto: Proc. IEEE Int. Conf. on Intelligent Robots and Systems, IEEE, Piscataway, NJ, (2009), 3671. https://doi.org/10.1109/IROS.2009.5354718
25) I.Ishii, T.Tatebe, Q.Gu, Y.Moriue, T.Takaki and K.Tajima: Proc. IEEE Int. Conf. on Robotics and Automation, IEEE, Piscataway, NJ, (2010), 1536. https://doi.org/10.1109/ROBOT.2010.5509731
26) J.G.Chen, N.Wadhwa, Y.J.Cha, F.Durand, W.T.Freeman and O.Buyukozturk: J. Sound Vib., 345 (2015), 58. https://doi.org/10.1016/j.jsv.2015.01.024
27) T.Beberniss and D.A.Ehrhardt: Mech. Syst. Signal Process., 86B (2017), 35. https://doi.org/10.1016/j.ymssp.2016.04.014
28) H.Yang, Q.Gu, T.Aoyama, T.Takaki and I.Ishii: IEEE Sens. J., 13 (2013), 4831. https://doi.org/10.1109/JSEN.2013.2276620
29) D.Zhang, J.Guo, X.Lei and C.Zhu: Sensors, 16 (2016), 572. https://doi.org/10.3390/s16040572
30) J.Aloimonos, I.Weiss and A.Bandyopadhyay: Int. J. Comput. Vis., 1 (1988), 333. https://doi.org/10.1007/BF00133571
31) K.Okumura, H.Oku and M.Ishikawa: J. Robot. Soc. Jpn., 29 (2011), 201 (in Japanese). https://doi.org/10.7210/jrsj.29.201
32) T.Suemish, M.Ishii and M.Ishikawa: Appl. Opt., 56 (2017), 3789. https://doi.org/10.1364/AO.56.003789
33) T.Aoyama, M.Li, M.Jiang, K.Inoue, T.Takaki, I.Ishii, H.Yang, C.Unemoto, H.Matsuda, M.Chikaraishi and A.Fujiwara: IEEE-ASME Trans. Mechatron., 23 (2018), 179. https://doi.org/10.1109/TMECH.2017.2764504
34) T.Aoyama, M.Li, M.Jiang, K.Inoue, T.Takaki, I.Ishii, H.Yang, C.Unemoto, H.Matsuda, M.Chikaraishi and A.Fujiwara: J. Dyn. Syst. Meas. Control, 141 (2019), 031007-1. https://doi.org/10.1115/1.4041604
35) M.A.A.Sutton, J.J.Orteu and H.Schreier: Image Correlation for Shape, Motion and Deformation Measurements, Springer Science+Business Media, New York, (2009), 81. https://doi.org/10.1007/978-0-387-78747-3