Grinding of fir tree slots of powder metallurgy superalloy FGH96 using profiled electroplated CBN wheel

Xun Li 1 · Bin Qin 2 · Ziming Wang 1 · Yu Zhang 3 · Jianhua Yu 3

Received: 24 February 2021 / Accepted: 28 April 2021 / Published online: 10 May 2021
© The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2021

Abstract
Broaching is commonly used for machining fir tree slots on turbine disk, which has outstanding advantages and disadvantages, such as high-quality machined surface, high manufacturing accuracy, and high productivity as well as fast tool wear, extremely high processing costs, long preparation time, and poor process flexibility. Utilizing the electroplated cubic boron nitride (CBN) profiled grinding wheels and single-sided local profiled grinding process, the experiments of FGH96 turbine disk slots are carried out. The results show that the high precision of slot profile can be achieved by the developed process. Using the given experimental parameters \(n = 48,000 \) rpm, \(a_p = 0.002 \) mm, \(v_f = 100 \) mm/min, and 600# electroplated CBN-profiled wheel, the profile error of FGH96 slots is within \(\pm 0.012 \) mm, and the grinding surface roughness is less than Ra 0.8 \(\mu m \). After four whole slots are machined completely, the grinding wheel still has grinding capability, which proves that 600# electroplated CBN-profiled wheel can meet the grinding needs of FGH96 turbine disk slots.

Keywords Grinding · Fir tree slot · CBN grinding wheel · FGH96

1 Introduction
Powder metallurgy superalloy is the preferred material for manufacturing high-temperature load-bearing parts of aero-engines, which have excellent high-temperature mechanical properties and fatigue creep resistance. FGH96 alloy is a typical material of the second generation damage tolerance type superalloy. Because of its mature preparation technology, uniform material structure, and stable mechanical properties, it has been widely used to manufacture turbine disks and other hot components of aero-engines [1–3]. However, the excellent mechanical properties at high-temperature lead to poor cutting performance, and the machining of fir tree slots on turbine disk is very difficult especially [4].

At present, broaching is known to be the best process to machine fir tree slots of turbine disk on powder metallurgy superalloy, which can offer very high productivity and is the first selection to serial production of the turbine disk [5, 6]. Klocke et al. presented a suitable carbide broach structure, which further improved the machining efficiency and tool life of the broaching. At the same time, the ceramic side milling process was utilized for rough machining fir tree slots, which greatly improved the rough machining efficiency [7, 8]. However, major shortcomings of the broaching process are also very prominent, which include high capital cost, large size of machine tools together with their inflexibility, costly tooling, lengthy setup, validation and changeover times, and high cutting forces (up to 10,000 N) [9].

For these reasons, wire-EDM becomes more and more a serious alternative to the established and a critically defined broaching process for fir tree slot production [10, 11]. Klocke et al. deeply studied the application of wire-EDM for machining fir tree slots through developing a process monitoring tool for processing quality assessment and correlating surface integrity evaluation, which obtained some good experimental results [10–13]. The profile error of the slots machined by wire-EDM can be within \(\pm 0.01 \) mm. From technological point of view, wire-EDM can be an alternative to the established broaching process for the production of fir tree slots [14]. But,
wire-EDM process also has an outstanding drawback that re-
cast layers with different thicknesses will be formed on ma-
chined surfaces, which will have a negative influence on the
fatigue performance of a dynamic component [14, 15]. Thus,
wire-EDM process has limited further application in the field
of powder metallurgy superalloy slots machining.

With the development of high speed spindle and
electroplated superabrasive grinding wheel technology, high-
speed grinding with profiled electroplated superabrasive
wheel is gradually applied to the field of fir tree slots machin-
ing. Aspinwall pointed out the drawback of broaching fir tree
slots, and the experiments of using the profiled superabrasive
wheels to machine Udimet 720 fir tree slots were also carried
out. Machining data were presented, which verified the feasi-
bility of small diameter, profiled, and electroplated CBN
grinding wheels when cutting Udimet 720 fir tree slots [16].
Meanwhile, combined with the electrochemical superabrasive
machining, superabrasive grit type and electrical parameters
were developed to improve the processing efficiency and flex-
bility [17]. Lanes et al. proposed a method that using a cup
grinding wheel to machine fir tree slots in the theory [18], but
the verification experiments were not carried out and the ad-
vantages of this process had not been presented.

From the above research results, machining the fir tree slots
utilizing profiled electroplated grinding wheel is feasible. But
little research achievement on the grinding technology and
machining accuracy of FGH96 turbine disk slots is presented.
So, utilizing the electroplated CBN-profiled grinding wheels
and single-sided local profiled grinding process, the grinding
experiments of FGH96 turbine disk slots are carried out. The
influence of grinding process and grinding parameters on the
profile accuracy of fir tree slots is studied, and the feasibility of
this process is verified, which provides an effective process
method for machining high-precision fir tree slots of FGH96
turbine disk.

2 Experimental conditions

2.1 Experimental material and workpiece

The experimental material is powder metallurgy superalloy
FGH96, and the chemical composition is listed in Table 1.
The mechanical properties of FGH96 at room temperature
are shown in Table 2, and based material microstructure is
shown in Fig 1.

Table 1 Chemical composition of FGH96 (wt%)
Cr
16.20

In general, the fir tree slot is straight, as shown in Fig. 2,
and the symmetrical plane of the slot has a certain angle with
the axis of the turbine disk. The turbine fir tree slots could be
pre-machined by wire-EDM, as shown in Fig 3. The profile of
slots was measured by a coordinate measuring machine, as
shown in Fig. 4.

From Fig. 4, the profile error is between −0.02 mm and
+0.03 mm. However, the quality of the machined surface is
poor and the surface roughness is about Ra 3.2 μm.
Meanwhile, the machined surface and microstructure of
FGH96 fir tree slot machined by wire-EDM are shown in
Fig. 5. There is an obvious recast layer which thickness is
about 15 μm. If the recast layer not only could be removed
by precision grinding but also the profile accuracy and surface
quality of slots could be ensured, the precision grinding of
FGH96 slots will be realized. Therefore, the FGH96 fir tree
slots are pre-machined by wire-EDM firstly in order to re-
move most of the material and only about 0.1 mm is reserved
for finishing grinding by the profiled grinding wheel.

2.2 Grinding experimental setup

The grinding speed is very important to the grinding efficien-
cy and grinding performance of superabrasive grinding wheel.
Because FGH96 is a typical difficult-to-cut material, the high-
speed spindle is needed to meet the requirement of grinding
linear speed. Therefore, a high-speed spindle which can get
maximum rotating speed 60,000 rpm is attached to the ma-
chining center, as shown in Fig. 6. At the same time,
Blasogrind HC 10 high-speed oil is used as coolant for all
the grinding experiments. The outlet pressure of the coolant
is 45 bar and the flow rate is 80 L/min.

Table 2 Mechanical properties of FGH96 at room temperature
σy/MPa
1106

Fig. 1 Microstructure of FGH96
2.3 Structure of profiled grinding wheel and profiled grinding process

According to the structural characteristics of the turbine slot, the structure of profiled electroplated CBN wheel is developed, as shown in Fig. 7. The maximum and minimum diameters of the profiled wheel are about 10.83 mm and 5.15 mm, respectively. At the same time, the diameter of the grinding wheel at any grinding point is less than the width of the fir tree slot, which can ensure that only one side of the grinding wheel is in contact with the profile of slot, as shown in Fig. 8, and that the coolant can fully lubricate and cool the grinding wheel and grinding area. The grinding performance of grinding wheel and grinding surface quality can be guaranteed stably.

Utilizing the above profiled electroplated CBN wheel, it is necessary to translate the grinding wheel for several times and allow the generatrix of the grinding wheel to overlap locally, so as to realize the profiled grinding of one-sided profile of turbine disk slot. Meanwhile, the grinding process of the whole slot tooth is shown in Fig. 9.
3 Experimental results and analysis of the slot grinding

3.1 Selection of grinding wheel parameters and grinding parameters

FGH96 is a typical difficult-cut material; the grit size of grinding wheel has a direct influence on the machined surface quality and grinding efficiency. So, it is very important to choose the grit size of grinding wheel according to the machined surface quality. Grinding experiments are carried out on the FGH96 workpiece utilizing electroplated CBN grinding wheel with different grit sizes and the grinding parameters $n = 48,000$ rpm, $a_p = 0.002$ mm, and $v_f = 100$ mm/min. The experimental workpiece is shown in Fig. 10.

The surface roughness is measured along the direction perpendicular to the grinding linear velocity by a TIME3220 roughness tester. The measurement results are shown in Fig. 11. Under the same grinding conditions, when the grit size of grinding wheel increases from 240# to 400#, the surface roughness decreases from Ra 3.01 to Ra 0.72 μm obviously. When the grit size of grinding wheel increases to 700# continuously, the surface roughness still decreases to Ra 0.54 μm moderately. It can be known that the grit sizes have an obviously influence on the surface roughness. According to the machining requirements of turbine disk slot, the surface roughness should be better than Ra 0.8 μm. Meanwhile, the grit size of grinding wheel also has a great influence on the grinding efficiency and the wheel wear. From the above analysis comprehensively, 600# electroplated CBN-profiled grinding wheel is utilized for finish machining FGH96 turbine disk slots, which can make sure the surface roughness stably and meet the use requirements of Ra \leq 0.8 μm.

On the other hand, the typical microstructure of machined surface and grinding wheels is examined by a scanning electron microscope (SEM), as shown in Fig. 12. The grinding grooves appear on the machined surface along the direction of grinding linear velocity, which caused by the scratch of the higher abrasive grits on the peripheral surface of wheel. The size of abrasive particles has a direct influence on the depth of the grinding grooves.

3.2 Experimental results and discussion

Using electroplated profiled CBN wheels, the grinding experiments of FGH96 fir tree slots pre-machined by wire-EDM are carried out, as shown in Fig. 13. The profile of slot is rough ground for 10 times using 400# electroplated profiled CBN wheel; the parameters are $n = 48,000$ rpm, $a_p = 0.005$ mm, and $v_f = 200$ mm/min. Then, it is fine ground for 5 times using 600# electroplated profiled CBN wheel and the parameters are $n = 48,000$ rpm, $a_p = 0.002$ mm, and $v_f = 100$ mm/min. The slots after finishing grinding are shown in Fig. 14.
The profile of slots is measured by a coordinate measuring machine. The results are shown in Fig. 15, and the profile error of slots is within ±0.012 mm, which is better than that machined by wire-EDM. Meanwhile, the profile accuracy of
slots can meet the use requirements of FGH96 turbine disk slots, which is about ±0.015 mm.

At the same time, the surface quality of FGH96 slot is examined by SEM, and it can be seen that the microrerest layer on the surface machined by wire-EDM has been removed completely. The microstructure of the machined surface is evenly arranged and without any damage, as shown in Fig. 16.

Meanwhile, the wear and the performance of the grinding wheel are the key factors to ensure the grinding accuracy of the slot. Therefore, it is necessary to detect the wear of grinding wheel after grinding, and the wear degree of grinding wheel surface is shown in Fig. 17.

From the above results, after four whole slots are ground completely, CBN grits on the surface of the profiled electroplated wheel have any wear, but no grits pullout appears obviously. The grits are evenly distributed on the wheel surface and have grinding capability, which can meet the requirements for precision grinding slots. Meanwhile, the grit wear at the groove of the profiled grinding wheel is more serious than that at the inclined plane and flange, because the grinding wheel at the groove has a low grinding speed which affects the grinding performance.

4 Conclusions

(1) For the FGH96 fir tree slots after rough machining by wire-EDM, single-sided local profiled grinding of slots is presented utilizing 600# electroplated CBN-profiled grinding wheel. In addition, under the conditions of experimental parameters, electroplated CBN-profiled grinding wheel has excellent grinding ability and no obvious wholesale grit pullout is observed, which can ensure the use requirements of FGH96 fir tree slots precision grinding.

(2) Compared with wire-EDM, recast layer appears on the surface of FGH96 fir tree slots machined by grinding, which can avoid the negative influencing of the recast layer on the fatigue performance of turbine disk.

(3) Under the grinding parameters \(n = 48,000 \) rpm, \(v_f = 100 \) mm/min, and \(a_p = 0.002 \) mm, utilizing 600# electroplated CBN-profiled grinding wheel, the machined surface can meet the quality requirement of FGH96 turbine disk slots, the grinding surface roughness is less than Ra 0.8 \(\mu \text{m} \), and the profile error is within ± 0.012 mm. So, an effective process method for the precise and low cost machining of FGH96 turbine disk slots is developed, which can promote the efficient development of turbine disk of new aero-engines.

Author contribution Xun Li: overall framework, experimental planning, draft writing of the manuscript.

Bin Qin: grinding experiments operation, experimental result analyzation.

Ziming Wang: grinding wheel design, grinding parameter optimization.

Yu Zhang: profile accuracy measurement, grinding mechanism analysis.

Jianhua Yu: grinding experiment operation, experimental result analyzation.

Funding This work was partially supported by National Science and Technology Major Project of China (No. 2018ZX04005001) and National Natural Science Foundation of China (No. 51875028).

Declarations

Conflict of interest The authors declare no competing interests.

References

1. Wang Y, Wang X, Zhong B, Wei D, Jiang X (2019) Estimation of fatigue parameters in total strain life equation for powder
metallurgy superalloy FGH96 and other metallic materials. Int J Fatigue 122:116–124. https://doi.org/10.1016/j.ijfatigue.2019.01.007

2. Li BK, Ding WF, Yang CY, Li CH (2019) Grindability of powder metallurgy nickel-base superalloy FGH96 and sensibility analysis of machined surface roughness. Int J Adv Manuf Technol 101: 2259–2273. https://doi.org/10.1007/s00170-018-3117-0

3. Li BK, Dai CW, Ding WF, Yang CY, Li CH, Kulik O, Shumyacher V (2020) Prediction on grinding force during grinding powder metallurgy nickel-based superalloy FGH96 with electroplated CBN abrasive wheel. Chinese J Aeronautics (In press). https://doi.org/10.1016/j.cja.2020.05.002

4. Miao J, Pollock TM, Jones JW (2009) Crystallographic fatigue crack initiation in nickel-based superalloy René 88DT at elevated temperature. Acta Mater 57(20):5964–5974. https://doi.org/10.1016/j.actamat.2009.08.022

5. Wang G, Wang N, Sun S, Zhu D (2011) Design method of turbine fir–tree blade root tenon slot broach. Adv Mater Res 305:177–180. https://doi.org/10.4028/www.scientific.net/amr.305.177

6. Vogtel P, Klocke F, Lung D (2014) High performance machining of profiled slots in nickel-based-superalloys. Procedia CIRP 14(14): 54–59. https://doi.org/10.1016/j.procir.2014.03.061

7. Klocke F, Doebbler B, Seimann M, Binder M (2016) Towards high productive roughing of profiled grooves in nickel based alloys. ASME Turbo Expo 2016: Turbomachinery Technical Conference and Exposition. https://doi.org/10.1115/gt2016-56475

8. Klocke F, Seimann M, Binder M, Doebbler B (2018) Milling of fir-tree slots in Allvac 718 plus. Procedia CIRP 77:409–412. https://doi.org/10.1016/j.procir.2018.08.297

9. Ozturk O, Badak E (2003) Modeling of broaching process for improved tool design. International Mechanical Engineering Congress and Exposition: Manufacturing. Washington D C, USA. https://doi.org/10.1115/imece2003-42304

10. Klocke F, Klink A, Veselovac T, Aspinwall DK, Soo SL, Schmidt M, Schlip J, Levy G, Kruth JP (2014) Turbomachinery component manufacture by application of electrochemical, electro-physical and photonic processes. CIRP Ann Manuf Technol 63(2):703–726. https://doi.org/10.1016/j.cirp.2014.05.004

11. Klocke F, Welling D, Klink A, Veselovac T, Nothe T, Perez R (2014) Evaluation of advanced wire-EDM capabilities for the manufacture of fir tree slots in Inconel 718. Procedia CIRP 14:430–435. https://doi.org/10.1016/j.procir.2014.03.039

12. Klocke F, Welling D, Klink A, Perez R (2014) Quality assessment through in-process monitoring of wire-EDM for fir tree slot production. Procedia CIRP 24:97–102. https://doi.org/10.1016/j.procir.2014.07.136

13. Klocke F, Welling D, Dieckmann J, Veselovac D, Perez R (2012) Developments in wire-EDM for the manufacturing of fir tree slots in turbine discs made of Inconel 718. Key Eng Mater 504-506:1177–1182. https://doi.org/10.4028/www.scientific.net/kem.504-506.1177

14. Welling D (2014) Results of surface integrity and fatigue study of wire-EDM compared to broaching and grinding for demanding jet engine components made of Inconel 718. Procedia CIRP 13(1): 339–344. https://doi.org/10.1016/j.procir.2014.04.057

15. Bergs T, Tombul U, Herrig T, Klink A, Welling D (2020) Influence of an additional indexing rotary axis on wire electrical discharge machining performance for the automated manufacture of fir tree slots. J Eng Gas Turbines Power 142(9):091005.1–091005.6. https://doi.org/10.1115/1.4046805

16. Aspinwall DK, Soo SL, Curtis DT, Mantle AL (2007) Profiled superabrasive grinding wheels for the machining of a nickel based superalloy. CIRP Ann 56(1):335–338. https://doi.org/10.1016/j.cirp.2007.05.077

17. Curtis DT, Soo SL, Aspinwall DK, Sage C (2009) Electrochemical superabrasive machining of a nickel-based aeroengine alloy using mounted grinding points. CIRP Ann Manuf Technol 58:173–176. https://doi.org/10.1016/j.cirp.2009.03.074

18. Lanes G (2007) Cup shaped grinding wheel, in particular for turbine root slot grinding. World patent: WO 2007/096295 A1.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.