Strong Constraints on Jet Quenching in Centrality-Dependent p + Pb Collisions at 5.02 TeV from ATLAS

Aad, G.; Abbott, B.; Abbott, DC; Abeling, K.; Abidi, S.H.; Aboulhorma,, A; Abramowicz, H.; Abreu, H.; Abulaiti, Y.; Abusleme Hoffman, A. C.; Acharya, B.S.; Dam, Mogens; Camplani, Alessandra; Hansen, Peter Henrik; Hansen, Jørn Dines; Hansen, Jørgen Beck; Ignazzi, Rosanna; Petersen, Troels Christian; Wiglesworth, Graig; Xella, Stefania; ATLAS Collaboration

Published in: Physical Review Letters

DOI: 10.1103/PhysRevLett.131.072301

Publication date: 2023

Document version: Publisher's PDF, also known as Version of record

Document license: CC BY

Citation for published version (APA):
Aad, G., Abbott, B., Abbott, DC, Abeling, K., Abidi, S. H., Aboulhorma, A., Abramowicz, H., Abreu, H., Abulaiti, Y., Abusleme Hoffman, A. C., Acharya, B. S., Dam, M., Camplani, A., Hansen, P. H., Hansen, J. D., Hansen, J. B., Ignazzi, R., Petersen, T. C., Wiglesworth, G., ... ATLAS Collaboration (2023). Strong Constraints on Jet Quenching in Centrality-Dependent p + Pb Collisions at 5.02 TeV from ATLAS. Physical Review Letters, 131, [072301]. https://doi.org/10.1103/PhysRevLett.131.072301
Strong Constraints on Jet Quenching in Centrality-Dependent $p + \text{Pb}$ Collisions at 5.02 TeV from ATLAS

G. Aad et al.* (ATLAS Collaboration)

(Received 3 June 2022; revised 4 October 2022; accepted 17 November 2022; published 16 August 2023)

Jet quenching is the process of color-charged partons losing energy via interactions with quark-gluon plasma droplets created in heavy-ion collisions. The collective expansion of such droplets is well described by viscous hydrodynamics. Similar evidence of collectivity is consistently observed in smaller collision systems, including pp and $p + \text{Pb}$ collisions. In contrast, while jet quenching is observed in $\text{Pb} + \text{Pb}$ collisions, no evidence has been found in these small systems to date, raising fundamental questions about the nature of the system created in these collisions. The ATLAS experiment at the Large Hadron Collider has measured the yield of charged hadrons correlated with reconstructed jets in 0.36 nb$^{-1}$ of $p + \text{Pb}$ and 3.6 pb$^{-1}$ of pp collisions at 5.02 TeV. The yields of charged hadrons with $p_T^{ch} > 0.5$ GeV near and opposite in azimuth to jets with $p_T^{jet} > 30$ or 60 GeV, and the ratios of these yields between $p + \text{Pb}$ and pp collisions, I_{ppb}, are reported. The collision centrality of $p + \text{Pb}$ events is categorized by the energy deposited by forward neutrons from the struck nucleus. The I_{ppb} values are consistent with unity within a few percent for hadrons with $p_T^{ch} > 4$ GeV at all centralities. These data provide new, strong constraints that preclude almost any parton energy loss in central $p + \text{Pb}$ collisions.

DOI: 10.1103/PhysRevLett.131.072301

Over two decades of measurements of relativistic nucleus-nucleus collisions at the Relativistic Heavy Ion Collider (RHIC) and the Large Hadron Collider (LHC) have established that a quark-gluon plasma is formed in these collisions and undergoes a collective expansion described by viscous hydrodynamics [1]. High-momentum colored probes, such as quarks and gluons, lose some of their energy as they traverse the plasma and produce a highly modified hadron fragmentation pattern, a process referred to as “jet quenching” [2–4]. On the other hand, colorless photons and Z bosons pass through unscathed [5–10]. Over the past decade, measurements in smaller collision systems, such as pp and $p + \text{Pb}$ at the LHC and $p + \text{Au}$, $d + \text{Au}$, and $^3\text{He} + \text{Au}$ at RHIC display similar experimental evidence of collectivity [11,12]. These observations have prompted theoretical discussion as to whether jet quenching should be present in these small systems [13–19]. However, measurements of jet [20,21] and hadron [22–24] production rates at high transverse momentum (p_T) [25] and measurements of jet-to-hadron fragmentation functions [26] in minimum-bias $p + \text{Pb}$ collisions show no indication of jet quenching, relative to pp, in these small systems [27].

Experiments have also examined the subset of $p + \text{Pb}$ collisions where the proton undergoes many interactions in the Pb nucleus (i.e., a large number of proton-nucleon collisions (N_{coll})) and which typically have larger-than-average particle multiplicities. These so-called “central” events may produce a larger and longer-lived quark-gluon plasma that would induce a bigger jet quenching effect. Measurements that characterize the centrality of events according to the charged-particle multiplicity or energy at midrapidity have found significant deviations of high-p_T charged-hadron production rates from the pp expectation [28]. However, Monte Carlo (MC) simulations using the HIJING [29] generator, and other models of small collision systems [30], indicate that most of this behavior is the result of physics correlations between the charged-particle multiplicity and the probability to produce a high-p_T jet or hadron in individual proton-nucleon collisions [28,31]. In addition, in extreme kinematic regions, such as those with large Bjorken x, the production of high-p_T jets or hadrons becomes anticorrelated with the centrality signal [20,32], which may arise from the decreasing interaction strength of protons in these configurations [33,34] or from other effects [35,36]. Model-dependent corrections for the effect of these correlations can be derived [30,37], but they have strongly limited the precision of searches for jet quenching phenomena in central $p + \text{Pb}$ events. A measurement of the yield of charged hadrons ($8 < p_T < 15$ GeV) correlated...
with the highest p_T charged hadron indicate no nuclear modification within uncertainties [38].

An alternative method, which does not exhibit the physics biases described above, is to select $p + Pb$ events by counting the number of spectator neutrons produced by the disintegrating Pb nucleus that strike a zero-degree calorimeter (ZDC), where central events yield more neutrons on average. However, estimating $\langle N_{coll} \rangle$ in the resulting event categories is challenging due to limited understanding of how spectator nucleons are distributed in terms of single neutrons, protons, and larger charged fragments (only the first of which strike the ZDC). Nevertheless, the ALICE Collaboration has used this method and found that rates of charged [28] and heavy-flavor [39] hadrons in central $p + Pb$ collisions are unmodified in comparison with those derived from pp interactions, albeit within significant modeling uncertainties. To avoid the reliance on $\langle N_{coll} \rangle$, jet quenching in these events may instead be searched for by examining jet-hadron kinematic correlations or the internal structure of jets. A measurement of hadron-triggered jet yields in ZDC-selected central $p + Pb$ events has placed limits on the total amount of energy transported across the boundary of an $R = 0.4$ jet cone [40], which is one possible signature. The measurement presented here can additionally constrain the parton energy loss, even in the case where the jet shape remains unmodified.

This Letter presents a measurement of the charged-hadron yield in events with jets in the ATLAS calorimeters satisfying two different selections ($p_T^{jet} > 30$ GeV or $p_T^{jet} > 60$ GeV) in $p + Pb$ and pp collisions at a 5.02 TeV nucleon-nucleon center-of-mass energy. The $p + Pb$ and pp data were recorded in 2016 and 2017, respectively, with triggers sampling integrated luminosities of 0.36 nb$^{-1}$ and 3.6 pb$^{-1}$. In $p + Pb$ running, the proton and lead beams had per-nucleon energies of 4 TeV and $(Z/A) \times 4$ TeV ≈ 1.58 TeV, respectively, leading to a rapidity shift of the center-of-mass frame, $\Delta y^{com} = 0.465$, from the laboratory frame (while $y^{com} = 0$ in pp running). Charged hadrons are required to have $p_T^{ch} > 0.5$ GeV and lie within $|y - y^{com}| < 2.035$, and their yields are measured in two azimuthal regions with respect to the jet: the “away-side” region $\Delta \phi_{ch,jet} = |\phi_{ch} - \phi_{jet}| > 7\pi/8$ and the “near-side” region $\Delta \phi_{ch,jet} < \pi/8$. The total yield in each region, $Y(p_T^{ch})$, is normalized by the number of jets and reported in pp events and in $p + Pb$ events for different ZDC energy selections. To quantify any modification that would result from the partons’ propagation through a created quark-gluon plasma, the ratio of the per-jet charged-particle yields between $p + Pb$ and pp collisions, $I_{pb} = Y_{pb}/Y_{pp}$, is reported and compared with predictions from theoretical calculations. Importantly, this observable does not depend on a quantitative estimate of $\langle N_{coll} \rangle$.

The ATLAS experiment [41] is a multipurpose particle detector with a forward-backward symmetric cylindrical geometry and a near 4π coverage in solid angle. It consists of an inner tracking detector surrounded by a superconducting solenoid providing a 2 T axial magnetic field, electromagnetic and hadron calorimeters, and a muon spectrometer. The inner tracking detector covers the pseudorapidity range $|\eta| < 2.5$. It consists of silicon pixel, silicon microstrip, and transition radiation tracking detectors. Lead plus liquid-argon sampling calorimeters provide electromagnetic (EM) energy measurements with high granularity. A steel or scintillator-tile hadron calorimeter covers the central pseudorapidity range ($|\eta| < 1.7$). Liquid-argon calorimeters with separate EM and hadronic compartments instrument the end cap (up to $|\eta| = 3.2$) and forward (FCal, up to $|\eta| = 4.9$) regions. Two ZDCs are each composed of four longitudinal layers of tungsten absorbers and quartz rods. They are situated in the far-forward region $|\eta| > 8.3$ and, in $p + Pb$ events, the downstream ZDC, relative to the Pb beam direction, primarily measures spectator neutrons from the struck Pb nucleus. An extensive software suite [42] is used in the reconstruction and analysis of real and simulated data, in detector operations, and in the trigger and data acquisition systems of the experiment.

Events are selected for analysis using a combination of minimum-bias and calorimeter jet triggers [43], which are used for the measurements with $p_T^{jet} > 30$ GeV and > 60 GeV, respectively. Both the pp and $p + Pb$ events are required to have a primary reconstructed vertex with z coordinate $|z| < 150$ mm [44]. The pp and $p + Pb$ data were recorded at low collision rates, and an additional requirement that events have only one reconstructed interaction vertex further reduces pileup. In the pp ($p + Pb$) data, this requirement accepts approximately 40% (99%) of triggered events.

The centrality of $p + Pb$ events is characterized using the total energy in the Pb-going side of the ZDC, E_{ZN}. The ZDC energy is calibrated by matching the single- and double-neutron peaks to their known beam energies (1.58 TeV and 3.15 TeV) [45]. The resulting energy distribution is shown in Fig. 1, with more central (lower centrality) events at high E_{ZN}. Using a ZDC with similar acceptance, the ALICE Collaboration has used multiple bootstrapping methods to estimate that the $\langle N_{coll} \rangle$ values in these events range from approximately 13.6 ($\pm 11\%$) in 0%–20% centrality $p + Pb$ events to 1.2 ($\pm 24\%$) in 80%–100% events [28], which are likely to be similar in ATLAS. These values and uncertainties are not explicitly used in the measurement in this Letter but may be useful for modeling comparisons.

Jets are reconstructed from calorimeter energy deposits as described in Ref. [46], using the anti-k_t algorithm [47,48] with radius parameter $R = 0.4$. The jet kinematics are corrected event by event for the contribution from
underlying event (UE) particles, and are calibrated using simulations [42,49,50] of the calorimeter response and in situ measurements of the absolute energy scale in data. The accepted jets lie within $|\eta| < 2.8$.

Reconstructed charged-particle tracks must satisfy quality criteria outlined in Ref. [51]. The charged-particle yield is corrected for imperfect reconstruction and selection efficiency with a per-track weight, and for the small contribution of secondary-particle and fake tracks, with both corrections derived from PYTHIA 8 [52] pp and HIJING $p + Pb$ MC event samples. The contribution of UE particles to the total yields is estimated by measuring these yields in minimum-bias $p + Pb$ or pp events with the same selection requirements and with matched intervals in FCAL energy (which is well-correlated with UE activity [53]). The UE contribution is subtracted from the yield measured in jet-containing events. The ratio of signal to UE background is approximately 0.25 (1) for $p_T^{ch} = 0.5$ GeV rising quickly to 3 (30) for $p_T^{ch} = 4$ GeV, in central $p + Pb$ (pp) events. Finally, the finite resolution of the p_T^{ch} and p_T^{ch} measurements affects the measured yields. This effect is typically smaller than 10% and is similar in $p + Pb$ and pp events. It is corrected for via an iterative Bayesian unfolding procedure [54] applied to the two-dimensional (p_T^{ch}, p_T^{ch}) distributions derived from PYTHIA 8 pp MC events and minimum-bias $p + Pb$ data events overlaid with PYTHIA 8 pp events.

The dominant sources of systematic uncertainty in the measurement are those affecting the measurement of the jet kinematics, the charged-particle selection, and the unfolding correction. The jet-related uncertainties are derived from in situ studies of the calorimeter response [49] and their application to the jets used in heavy-ion data [50] (where they accommodate large jet quenching effects), and from comparisons of the simulated response in samples from different generators. They typically dominate at high p_T^{ch}. Several sources of tracking-related uncertainty are considered, such as the uncertainty in the absolute efficiency and the sensitivity to selection cuts. They are described in previous measurements of charged-particle fragmentation functions [26,55] and typically dominate at low p_T^{ch}.

The uncertainty in the unfolding correction is evaluated by considering different priors and by performing the analysis procedure, including the UE subtraction, in simulation to evaluate how accurately the generator-level distributions are recovered. This uncertainty is significant at all p_T^{ch}. Many of these uncertainties, such as the jet-related ones, have a quantitatively similar impact on the yields in the $p + Pb$ and pp data and largely cancel out in the $I_{p_{ch}}$ ratio.

Figure 2 (top row) shows $I_{p_{ch}}$ for charged particles on the away side of jets with $p_T^{jet} > 60$ GeV. In the region $p_T^{ch} > 1$ GeV, the $I_{p_{ch}}$ values in all centrality selections are consistent with unity within the uncertainties. At the lowest measured p_T^{ch} values, the $I_{p_{ch}}$ value decreases by about 10%, albeit with growing uncertainties. In a leading-order parton-parton scattering picture, the away-side hadrons arise from the fragmentation of $p_T \approx 60$ GeV partons azimuthally opposite to the parton producing the jet. A jet quenching effect in $p + Pb$ should lead to $I_{p_{ch}}$ values below unity. As such, these results strongly constrain any possible modification of parton fragmentation in the region $z = p_T^{ch} / p_T^{jet} \approx 0.05–1.0$, within uncertainties that decrease to 2%–4% at high z, with respect to that in pp collisions.

Figure 2 (bottom row) shows the $I_{p_{ch}}$ ratios for charged particles on the near side of jets with $p_T^{jet} > 60$ GeV. In the region $p_T^{ch} > 4$ GeV, there is a centrality-independent enhancement of approximately 5%. Similar to that observed on the away side, there is a characteristic suppression in the region $p_T^{ch} < 1$ GeV. Additionally, the $I_{p_{ch}}$ value shows a modest systematic enhancement in the region $1 < p_T^{ch} < 4$ GeV. It is notable that the pattern from 0.5 to 4 GeV is consistent between the away and near sides, and also with the nuclear modification factor (ratio of total yields between $p + Pb$ and $\langle N_{coll}\rangle$-scaled pp) for inclusive charged hadrons [56]. The latter is often interpreted in terms of initial-state parton scattering in the nuclear target, also known as the “ Cronin effect ” [57]. In heavy-ion collisions, the “ soft ” particle production regime can be described via hydrodynamics and it is known that the radial flow of the quark-gluon plasma may play a role in this p_T^{ch} region. The measurement in this Letter suggests that low-p_T particles that arise from jet fragmentation also exhibit a similar pattern.
FIG. 2. The ratio of per-jet charged-particle yields between $p + Pb$ and pp collisions, I_{pPb}, for hadrons opposite ($\Delta \phi_{ch,\text{jet}} > 7\pi/8$, top row) and near ($\Delta \phi_{ch,\text{jet}} < \pi/8$, bottom row) a jet with $p_T^{\text{jet}} > 60$ GeV. Results are shown for different ZDC-selected $p + Pb$ centralities in each column. Statistical uncertainties are shown as vertical lines and systematic uncertainties as filled boxes.

FIG. 3. The ratio of per-jet charged-particle yields, I_{pPb}, on the near side (left) and away side (right) between $p + Pb$ and pp are plotted for the 0%–20% $p + Pb$ ZDC-selected centralities. Particles correlated with a jet above 30 GeV and 60 GeV are shown. Statistical uncertainties are shown as vertical lines and systematic uncertainties as filled boxes. Also shown are calculations from the ANGANTYR generator [58] with two treatments of nuclear-modified parton distribution functions (nPDFs): EPPS16 [59] at next-to-leading order and no nPDF modification, and with a PYTHIA 8-based model for parton energy loss with vacuum fragmentation (see text). ANGANTYR results are only shown for $p_T^{ch} > 4.5$ GeV where no UE subtraction is necessary. The colored bands represent statistical uncertainties only.

072301-4
The same measurements were also performed for jets with $p_T^{\text{jet}} > 30 \text{ GeV}$, which are sensitive to quenching effects on lower-p_T partons. These are shown in Fig. 3, focusing on $p_T^{\text{ch}} > 4 \text{ GeV}$ and 0%–20% centrality ZDC-selected events to emphasize the region of potential jet quenching. Within the larger uncertainties, which arise from the larger relative UE background, poorer jet energy resolution, and smaller sampled luminosity, they are compatible with the $p_T^{\text{jet}} > 60 \text{ GeV}$ results. Since the near-side $I_{p\text{pb}}$ is similar to a modified jet fragmentation function, it can be compared with the previous measurement in $p + \text{Pb}$ collisions by ATLAS [26]. For jets in a similar p_T^{jet} range, the $p + \text{Pb}$-to-pp ratios of fragmentation functions in Ref. [26] are compatible with the results in this Letter, although with larger uncertainties due to the different datasets used.

In Fig. 3, the $I_{p\text{pb}}$ measurements are also compared with calculations from the heavy-ion MC generator ANGANTYR [58] run in $p + \text{Pb}$ mode. ANGANTYR is based on PYTHIA 8 and has no final-state effects producing collectivity or jet quenching—noting that this is run with so-called “string shoving” turned off [60]. ANGANTYR shows a near-side enhancement similar to that in data, and studies with varied generator settings indicate that this does not arise from either the nuclear modification of parton densities or the isospin composition difference between Pb nuclei and protons. On the away side, the generator features a small enhancement, but is also compatible with the data within its uncertainties.

The data are compared to a parton energy loss scenario, modeled using PYTHIA 8, where the parton opposite a $p_T > 60 \text{ GeV}$ jet loses a percentage of its energy before undergoing vacuumlike fragmentation into $p_T > 4 \text{ GeV}$ charged hadrons. Considering both statistical and systematic data uncertainties, the parton energy loss is constrained to be $0.2\% \pm 0.5\%$ and less than 1.4% at the 90% confidence level (shown in the right panel of Fig. 3).

Despite experimental observations consistent with collectivity in $p + \text{Pb}$ collisions [11], these data severely constrain the amount of jet quenching in central $p + \text{Pb}$ collisions. It has been proposed that soft (low-momentum) quarks and gluons are only formed on a timescale of 1 fm/c, and thus the high-p_T partons may undergo their virtuality evolution and showering unscathed and fragment in vacuum if the quark-gluon plasma is small, i.e., with radius < 1–2 fm [61]. A quantitative calculation incorporating this virtuality evolution is necessary to confront the $I_{p\text{pb}}$ measurements presented here.

In conclusion, this Letter reports a measurement of charged-hadron yields in the azimuthal directions away from and near to jets in $p + \text{Pb}$ collisions, compared with those in pp collisions, using data collected with the ATLAS detector at the LHC. Central $p + \text{Pb}$ collisions, where the effects of a quark-gluon plasma are expected to be largest, are selected in an unbiased way by detecting forward spectator neutrons. The per-jet yields on the near side indicate a modest, order 5%, enhancement for $p_T^{\text{ch}} > 4 \text{ GeV}$ that is well described by the MC generator ANGANTYR. The per-jet yields on the away side are consistent with unity for all $p_T^{\text{ch}} > 1 \text{ GeV}$, with uncertainties that are particularly small for $p_T^{\text{ch}} > 4 \text{ GeV}$. These data serve as a sensitive probe of jet quenching effects and place strong limits on the degree to which the propagation and fragmentation of hard-scattered partons is modified in small hadronic collisions. The results in this Letter heighten the challenge to the theoretical understanding of the quark-gluon system produced in $p + \text{Pb}$ collisions.

We thank CERN for the very successful operation of the LHC, as well as the support staff from our institutions without whom ATLAS could not be operated efficiently. We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWFW and FWF, Austria; ANAS, Azerbaijan; CNPq and FAPESP, Brazil; NSERC, NRC and CFI, Canada; CERN; ANID, Chile; CAS, MOST and NSFC, China; Minciencias, Colombia; MEYS CR, Czech Republic; DNRF and DNSRC, Denmark; IN2P3-CNRS and CEA-DRF/IRFU, France; SRNSFG, Georgia; BMBF, HGF and MPG, Germany; GSRI, Greece; RGC and Hong Kong SAR, China; ISF and Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRST, Morocco; NWO, Netherlands; REN, Norway; MEiN, Poland; FCT, Portugal; MINE/IFA, Romania; MESTD, Serbia; MSSR, Slovakia; ARRS and MIZŠ, Slovenia; DSI/NRF, South Africa; MICINN, Spain; SRC and Wallenberg Foundation, Sweden; SERI, SNF and Cantons of Bern and Geneva, Switzerland; MOST, Taiwan; TENMAK, Turkey; STFC, United Kingdom; DOE and NSF, USA. In addition, individual groups and members have received support from BCKDF, CANARIE, Compute Canada and CRC, Canada; PRIMUS 21/SCI/017 and UNCE SCI/013, Czech Republic; COST, ERC, ERDF, Horizon 2020 and Marie Sklodowska-Curie Actions, European Union; Investissements d’Avenir Label, Investissements d’Avenir Idex and ANR, France; DFG and AvH Foundation, Germany; Herakleitos, Thales and Aristeia programmes co-financed by EU-ESF and the Greek NSRF, Greece; BSF-NSF and MINERVA, Israel; Norwegian Financial Mechanism 2014–2021, Norway; NCN and NAWA, Poland; La Caixa Banking Foundation, CERCA Programme Generalitat de Catalunya and PROMETEO and GenT Programmes Generalitat Valenciana, Spain; Göran Gustafssons Stiftelse, Sweden; The Royal Society and Leverhulme Trust, United Kingdom. The crucial computing support from all WLCG partners is acknowledged gratefully, in particular from CERN, the ATLAS Tier-1 facilities at TRIUMF (Canada), NDGF (Denmark, Norway, Sweden), CC-IN2P3 (France), KIT/GridKA (Germany), INFN-CNAF (Italy), NL-T1 (Netherlands), PIC (Spain),
ASGC (Taiwan), RAL (UK), and BNL (USA), the Tier-2 facilities worldwide and large non-WLCG resource providers. Major contributors of computing resources are listed in Ref. [62].

[1] U. Heinz and R. Snellings, Collective flow and viscosity in relativistic heavy-ion collisions, Annu. Rev. Nucl. Part. Sci. 63, 123 (2013).
[2] L. Cunqueiro and A. M. Sickles, Studying the QGP with Jets at the LHC and RHIC, Prog. Part. Nucl. Phys. 124, 103940 (2022).
[3] M. Connors, C. Nattrass, R. Reed, and S. Salur, Jet measurements in heavy ion physics, Rev. Mod. Phys. 90, 025005 (2018).
[4] G.-Y. Qin and X.-N. Wang, Jet quenching in high-energy heavy-ion collisions, Int. J. Mod. Phys. E 24, 1530014 (2015).
[5] CMS Collaboration, Constraints on the Initial State of PbPb Collisions via Measurements of Z Boson Yields and Azimuthal Anisotropy at $\sqrt{s_{NN}} = 5.02$ TeV, Phys. Rev. Lett. 127, 102002 (2021).
[6] ATLAS Collaboration, Z boson production in Pb + Pb collisions at $\sqrt{s_{NN}} = 5.02$ TeV measured by the ATLAS experiment, Phys. Lett. B 802, 135262 (2020).
[7] ALICE Collaboration, Z-boson production in p-Pb collisions at $\sqrt{s_{NN}} = 5.02$ TeV and Pb-Pb collisions at $\sqrt{s_{NN}} = 2.76$ TeV with the ATLAS Detector, Phys. Rev. Lett. 110, 022301 (2013).
[8] CMS Collaboration, The production of isolated photons in PbPb and pp collisions at $\sqrt{s_{NN}} = 5.02$ TeV, J. High Energy Phys. 07 (2020) 116.
[9] ATLAS Collaboration, Medium-Induced Modification of Z-Tagged Charged Particle Yields in Pb + Pb Collisions at 5.02 TeV with the ATLAS Detector, Phys. Rev. Lett. 126, 072301 (2021).
[10] J. L. Nagle and W. A. Zajc, Small system collectivity in relativistic hadronic and nuclear collisions, Annu. Rev. Nucl. Part. Sci. 68, 211 (2018).
[11] P. Romatschke and U. Romatschke, Relativistic Fluid Dynamics In and Out of Equilibrium, Cambridge Monographs on Mathematical Physics (Cambridge University Press, Cambridge, England, 2019).
[12] J. Brewer, A. Huss, A. Mazzeliauskas, and W. van der Schee, Ratios of jet and hadron spectra at LHC energies: Measuring high-p_T suppression without a pp reference, Phys. Rev. D 105, 074040 (2020).
[13] A. Huss, A. Kurkela, A. Mazzeliauskas, R. Paatelainen, W. vanderSchee, and U. A. Wiedemann, Discovering Partonic Rescattering in Light Nucleus Collisions, Phys. Rev. Lett. 126, 192301 (2021).
[14] A. Huss, A. Kurkela, A. Mazzeliauskas, R. Paatelainen, W. vanderSchee, and U. A. Wiedemann, Predicting parton energy loss in small collision systems, Phys. Rev. C 103, 054903 (2021).
[15] B. G. Zakharov, Jet quenching from heavy to light ion collisions, J. High Energy Phys. 09 (2021) 087.
fluctuations in pA collisions at the CERN Large Hadron Collider, Phys. Rev. C 93, 011902(R) (2016).
[34] M. Alvioli, L. Frankfurt, D. V. Perepelitsa, and M. Strikman, Global analysis of color fluctuation effects in proton–and deuteron–nucleus collisions at RHIC and the LHC, Phys. Rev. D 98, 071502(R) (2018).
[35] A. Bzdak, V. Skokov, and S. Bathe, Centrality dependence of high energy jets in p + Pb collisions at energies available at the CERN Large Hadron Collider, Phys. Rev. C 93, 044901 (2016).
[36] M. Kordell and A. Majumder, Jets in collisions at deuteron Global analysis of color fluctuation effects in proton–nucleus collisions at RHIC and the LHC, Phys. Rev. D 98, 071502(R) (2018).
[37] D. V. Perepelitsa and P. A. Steinberg, Calculation of central–collisions at the CERN Large Hadron Collider, Phys. Rev. C 99, 054904 (2018).
[38] ALICE Collaboration, Study of charged particle production at high p_T using event topology in pp, p – Pb and Pb – Pb collisions at \(\sqrt{s} = 5.02 \) TeV, arXiv:2204.10157.
[39] ALICE Collaboration, Measurement of prompt D^0, D^+, D^++, and D_S^0 production in p–Pb collisions at \(\sqrt{s_{NN}} = 5.02 \) TeV, J. High Energy Phys. 12 (2019) 092.
[40] ALICE Collaboration, Constraints on jet quenching in p-Pb collisions at \(\sqrt{s_{NN}} = 5.02 \) TeV measured by the event–activity dependence of semi-inclusive hadron-jet distributions, Phys. Lett. B 783, 95 (2018).
[41] ATLAS Collaboration, The ATLAS Experiment at the CERN Large Hadron Collider, J. Instrum. 3, S08003 (2008).
[42] ATLAS Collaboration, The ATLAS Collaboration Software and Firmware, Report No. ATL-SOFT-PUB-2021-001, 2021.
[43] ATLAS Collaboration, Performance of the ATLAS trigger system in 2015, Eur. Phys. J. C 77, 317 (2017).
[44] ATLAS Collaboration, Vertex reconstruction performance of the ATLAS detector at \(\sqrt{s} = 13 \) TeV, Report No. ATL-PHYS-PUB-2015-026, 2015.
[45] ATLAS Collaboration, Exclusive dimuon production in ultraperipheral Pb + Pb collisions at \(\sqrt{s_{NN}} = 5.02 \) TeV with ATLAS, Phys. Rev. C 104, 024906 (2020).
[46] ATLAS Collaboration, Dijet azimuthal correlations and conditional yields in pp and p + Pb collisions at \(\sqrt{s_{NN}} = 5.02 \) TeV with the ATLAS detector, Phys. Rev. C 100, 034903 (2019).
[47] M. Cacciari, G. P. Salam, and G. Soyez, The anti-k_t jet clustering algorithm, J. High Energy Phys. 04 (2008) 063.
[48] M. Cacciari, G. P. Salam, and G. Soyez, FastJet User Manual, Eur. Phys. J. C 72, 1896 (2012).
[49] ATLAS Collaboration, Jet energy scale measurements and their systematic uncertainties in proton–proton collisions at \(\sqrt{s} = 13 \) TeV with the ATLAS detector, Phys. Rev. D 96, 072002 (2017).
[50] ATLAS Collaboration, Jet energy scale and its uncertainty for jets reconstructed using the ATLAS heavy ion jet algorithm, Report No. ATLAS-CONF-2015-016, 2015.
[51] ATLAS Collaboration, Charged-particle distributions in \(\sqrt{s} = 13 \) TeV pp interactions measured with the ATLAS detector at the LHC, Phys. Lett. B 758, 67 (2016).
[52] T. Sjöstrand, S. Ask, J. R. Christiansen, R. Corke, N. Desai, P. Iten, S. Mrenna, S. Prestel, C. O. Rasmussen, and P. Z. Skands, An introduction to PYTHIA 8.2, Comput. Phys. Commun. 191, 159 (2015).
[53] ATLAS Collaboration, Measurement of the centrality dependence of the charged-particle pseudorapidity distribution in proton–lead collisions at \(\sqrt{s_{NN}} = 5.02 \) TeV with the ATLAS detector, Eur. Phys. J. C 76, 199 (2016).
[54] G. D’Agostini, A multidimensional unfolding method based on Bayes’ theorem, Nucl. Instrum. Methods Phys. Res., Sect. A 362, 487 (1995).
[55] ATLAS Collaboration, Measurement of jet fragmentation in Pb + Pb and pp collisions at \(\sqrt{s_{NN}} = 5.02 \) TeV with the ATLAS detector, Phys. Rev. C 98, 024908 (2018).
[56] ATLAS Collaboration, Transverse momentum, rapidity, and centrality dependence of inclusive charged-particle production in \(\sqrt{s_{NN}} = 5.02 \) TeV p + Pb collisions measured by the ATLAS experiment, Phys. Lett. B 763, 313 (2016).
[57] J. W. Cronin, H. J. Frisch, M. J. Shochet, J. P. Boymond, P. A. Piroué, and R. L. Sumner, Production of hadrons at large transverse momentum at 200, 300, and 400 GeV, Phys. Rev. D 11, 3105 (1975).
[58] C. Bierlich, G. Gustafson, L. Lönnblad, and H. Shah, The Angantyr model for heavy-ion collisions in PYTHIA8, J. High Energy Phys. 10 (2018) 134.
[59] K. J. Eskola, P. Paakkinen, H. Paukkunen, and C. A. Salgado, EPS09s16: Nuclear parton distributions with LHC data, Eur. Phys. J. C 77, 163 (2017).
[60] C. Bierlich, S. Chakraborty, G. Gustafson, and L. Lönnblad, Setting the string shoving picture in a new frame, J. High Energy Phys. 03 (2021) 270.
[61] B. Muller, Parton energy loss in strongly coupled AdS/CFT, Nucl. Phys. A855, 74 (2011).
[62] ATLAS Collaboration, ATLAS computing acknowledgements, Report No. ATL-SOFT-PUB-2021-003, 2021.
Department of Physics, University of Texas at Arlington, Arlington, Texas, USA
Physics Department, National and Kapodistrian University of Athens, Athens, Greece
Physics Department, National Technical University of Athens, Zografou, Greece
Department of Physics, University of Texas at Austin, Austin, Texas, USA
Institute of Physics, Azerbaijan Academy of Sciences, Baku, Azerbaijan
Institut de Física d’Altes Energies (IFAE), Barcelona Institute of Science and Technology, Barcelona, Spain
Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, China
Physics Department, Tsinghua University, Beijing, China
Department of Physics, Nanjing University, Nanjing, China
University of Chinese Academy of Science (UCAS), Beijing, China
Institute of Physics, University of Belgrade, Belgrade, Serbia
Department for Physics and Technology, University of Bergen, Bergen, Norway
Physics Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
University of California, Berkeley, California, USA
Institut für Physik, Humboldt Universität zu Berlin, Berlin, Germany
Albert Einstein Center for Fundamental Physics and Laboratory for High Energy Physics, University of Bern, Bern, Switzerland
School of Physics and Astronomy, University of Birmingham, Birmingham, United Kingdom
Department of Physics, Bogazici University, Istanbul, Türkiye
Department of Physics Engineering, Gaziantep University, Gaziantep, Türkiye
Department of Physics, Istanbul University, Istanbul, Türkiye
Istinye University, Sariyer, Istanbul, Türkiye
Facultad de Ciencias y Centro de Investigaciones, Universidad Antonio Nariño, Bogotá, Colombia
Departamento de Física, Universidad Nacional de Colombia, Bogotá, Colombia
Dipartimento di Fisica e Astronomia A. Righi, Università di Bologna, Bologna, Italy
INFN Sezione di Bologna, Italy
Physikalisches Institut, Universität Bonn, Bonn, Germany
Department of Physics, Boston University, Boston, Massachusetts, USA
Department of Physics, Brandeis University, Waltham, Massachusetts, USA
Transilvania University of Brasov, Brasov, Romania
Horia Hulubei National Institute of Physics and Nuclear Engineering, Bucharest, Romania
Department of Physics, Alexandru Ioan Cuza University of Iasi, Iasi, Romania
National Institute for Research and Development of Isotopic and Molecular Technologies, Physics Department, Cluj-Napoca, Romania
University Politehnica Bucuresti, Bucharest, Romania
West University in Timisoara, Timisoara, Romania
Faculty of Physics, University of Bucharest, Bucharest, Romania
Faculty of Mathematics, Physics and Informatics, Comenius University, Bratislava, Slovak Republic
Department of Subnuclear Physics, Institute of Experimental Physics of the Slovak Academy of Sciences, Kosice, Slovak Republic
Physics Department, Brookhaven National Laboratory, Upton, New York, USA
Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Física, y CONICET, Instituto de Física de Buenos Aires (IFIBA), Buenos Aires, Argentina
California State University, California, USA
Cavendish Laboratory, University of Cambridge, Cambridge, United Kingdom
Department of Physics, University of Cape Town, Cape Town, South Africa
Thembalab, Western Cape, South Africa
Department of Mechanical Engineering Science, University of Johannesburg, Johannesburg, South Africa
National Institute of Physics, University of the Philippines Diliman (Philippines), Philippines
University of South Africa, Department of Physics, Pretoria, South Africa
University of Zululand, KwaDlangezwa, South Africa
School of Physics, University of the Witwatersrand, Johannesburg, South Africa
Department of Physics, Carleton University, Ottawa ON, Canada
Faculté des Sciences Ain Chock, Réseau Universitaire de Physique des Hautes Energies - Université Hassan II, Casablanca, Morocco
Faculté des Sciences, Université Ibn-Tofail, Kénitra, Morocco
Faculté des Sciences Semlalia, Université Cadi Ayyad, LPHEA-Marrakech, Morocco
LPMR, Faculté des Sciences, Université Mohamed Premier, Oujda, Morocco
Faculté des sciences, Université Mohammed V, Rabat, Morocco
Institute of Applied Physics, Mohammed VI Polytechnic University, Ben Guerir, Morocco
CERN, Geneva, Switzerland
Affiliated with an institute covered by a cooperation agreement with CERN
Affiliated with an international laboratory covered by a cooperation agreement with CERN

Enrico Fermi Institute, University of Chicago, Chicago, Illinois, USA

LPC, Université Clermont Auvergne, CNRS/IN2P3, Clermont-Ferrand, France

Nevis Laboratory, Columbia University, Irvington, New York, USA

Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark

Dipartimento di Fisica, Università della Calabria, Rende, Italy

INFN Gruppo Collegato di Cosenza, Laboratori Nazionali di Frascati, Italy

Physics Department, Southern Methodist University, Dallas, Texas, USA

Physics Department, University of Texas at Dallas, Richardson, Texas, USA

National Centre for Scientific Research “Demokritos”, Agia Paraskevi, Greece

Department of Physics, Stockholm University, Sweden

Oskar Klein Centre, Stockholm, Sweden

Deutsches Elektronen-Synchrotron DESY, Hamburg and Zeuthen, Germany

Fakultät Physik, Technische Universität Dortmund, Dortmund, Germany

Institut für Kern- und Teilchenphysik, Technische Universität Dresden, Dresden, Germany

SUPA - School of Physics and Astronomy, University of Edinburgh, Edinburgh, United Kingdom

INFN e Laboratori Nazionali di Frascati, Frascati, Italy

Physikalisches Institut, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany

II. Physikalisches Institut, Georg-August-Universität Göttingen, Göttingen, Germany

Département de Physique Nucléaire et Corpusculaire, Université de Genève, Genève, Switzerland

Dipartimento di Fisica, Università di Genova, Genova, Italy

INFN Sezione di Genova, Italy

II. Physikalisches Institut, Justus-Liebig-Universität Giessen, Giessen, Germany

SUPA - School of Physics and Astronomy, University of Glasgow, Glasgow, United Kingdom

LPSC, Université Grenoble Alpes, CNRS/IN2P3, Grenoble INP, Grenoble, France

Laboratory for Particle Physics and Cosmology, Harvard University, Cambridge, Massachusetts, USA

Department of Modern Physics and State Key Laboratory of Particle Detection and Electronics, University of Science and Technology of China, Hefei, China

Institute of Frontier and Interdisciplinary Science and Key Laboratory of Particle Physics and Particle Irradiation (MOE), Shandong University, Qingdao, China

School of Physics and Astronomy, Shanghai Jiao Tong University, Key Laboratory for Particle Astrophysics and Cosmology (MOE), SKLPPC, Shanghai, China

Tsung-Dao Lee Institute, Shanghai, China

Kirchhoff-Institut für Physik, Ruprecht-Karls-Universität Heidelberg, Heidelberg, Germany

Physikalisches Institut, Ruprecht-Karls-Universität Heidelberg, Heidelberg, Germany

Department of Physics, Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China

Department of Physics, University of Hong Kong, Hong Kong, China

Department of Physics and Institute for Advanced Study, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China

Department of Physics, National Tsing Hua University, Hsinchu, Taiwan

JClab, Université Paris-Saclay, CNRS/IN2P3, 91405, Orsay, France

Department of Physics, Indiana University, Bloomington, Indiana, USA

INFN Gruppo Collegato di Udine, Sezione di Trieste, Udine, Italy

ICTP, Trieste, Italy

Dipartimento Politecnico di Ingegneria e Architettura, Università di Udine, Udine, Italy

INFN Sezione di Lecce, Italy

Dipartimento di Matematica e Fisica, Università del Salento, Lecce, Italy

INFN Sezione di Milano, Italy

Dipartimento di Fisica, Università di Milano, Milano, Italy

INFN Sezione di Napoli, Italy

Dipartimento di Fisica, Università di Napoli, Napoli, Italy

INFN Sezione di Pavia, Italy

Dipartimento di Fisica, Università di Pavia, Pavia, Italy

INFN Sezione di Pisa, Italy

Dipartimento di Fisica E. Fermi, Università di Pisa, Pisa, Italy

INFN Sezione di Roma, Italy

Dipartimento di Fisica, Sapienza Università di Roma, Roma, Italy

INFN Sezione di Roma Tor Vergata, Italy

Dipartimento di Fisica, Università di Roma Tor Vergata, Roma, Italy
INFN Sezione di Roma Tre, Italy
Dipartimento di Matematica e Fisica, Università Roma Tre, Roma, Italy
INFN-TIFPA, Italy
Università degli Studi di Trento, Trento, Italy
Università Innsbruck, Department of Astro and Particle Physics, Innsbruck, Austria
University of Iowa, Iowa City, Iowa, USA
Department of Physics and Astronomy, Iowa State University, Ames, Iowa, USA
Departamento de Engenharia Elétrica, Universidade Federal de Juiz de Fora (UFJJ), Juiz de Fora, Brazil
Universidade Federal do Rio de Janeiro COPPE/EE/IF, Rio de Janeiro, Brazil
Instituto de Física, Universidade de São Paulo, São Paulo, Brazil
Rio de Janeiro State University, Rio de Janeiro, Brazil
KEK, High Energy Accelerator Research Organization, Tsukuba, Japan
Graduate School of Science, Kobe University, Kobe, Japan
AGH University of Science and Technology, Faculty of Physics and Applied Computer Science, Krakow, Poland
Marian Smoluchowski Institute of Physics, Jagiellonian University, Krakow, Poland
Institute of Nuclear Physics Polish Academy of Sciences, Krakow, Poland
Faculty of Science, Kyoto University, Kyoto, Japan
Kyoto University of Education, Kyoto, Japan
Research Center for Advanced Particle Physics and Department of Physics, Kyushu University, Fukuoka, Japan
Instituto de Física La Plata, Universidad Nacional de La Plata and CONICET, La Plata, Argentina
Physics Department, Lancaster University, Lancaster, United Kingdom
Oliver Lodge Laboratory, University of Liverpool, Liverpool, United Kingdom
Department of Experimental Particle Physics, Jožef Stefan Institute and Department of Physics, University of Ljubljana, Ljubljana, Slovenia
School of Physics and Astronomy, Queen Mary University of London, London, United Kingdom
Department of Physics, Royal Holloway University of London, Egham, United Kingdom
Department of Physics and Astronomy, University College London, London, United Kingdom
Louisiana Tech University, Ruston, Louisiana, USA
Fysiska institutionen, Lunds universitet, Lund, Sweden
Departamento de Física Teórica C-15 and CIAFF, Universidad Autónoma de Madrid, Madrid, Spain
Institut für Physik, Universität Mainz, Mainz, Germany
School of Physics and Astronomy, University of Manchester, Manchester, United Kingdom
CPPM, Aix-Marseille Université, CNRS/IN2P3, Marseille, France
Department of Physics, University of Massachusetts, Amherst, Massachusetts, USA
Department of Physics, McGill University, Montreal, Quebec, Canada
School of Physics, University of Melbourne, Victoria, Australia
Department of Physics, University of Michigan, Ann Arbor, Michigan, USA
Department of Physics and Astronomy, Michigan State University, East Lansing, Michigan, USA
Group of Particle Physics, University of Montreal, Montreal, Quebec, Canada
Fakultät für Physik, Ludwig-Maximilians-Universität München, München, Germany
Max-Planck-Institut für Physik (Werner-Heisenberg-Institut), München, Germany
Graduate School of Science and Kobayashi-Maskawa Institute, Nagoya University, Nagoya, Japan
Department of Physics and Astronomy, University of New Mexico, Albuquerque, New Mexico, USA
Institute for Mathematics, Astrophysics and Particle Physics, Radboud University/Nikhef, Nijmegen, Netherlands
Nikhef National Institute for Subatomic Physics and University of Amsterdam, Amsterdam, Netherlands
Department of Physics, Northern Illinois University, DeKalb, Illinois, USA
New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
United Arab Emirates University, Al Ain, United Arab Emirates
University of Sharjah, Sharjah, United Arab Emirates
Department of Physics, New York University, New York, New York, USA
Ochanomizu University, Otsuka, Bunkyo-ku, Tokyo, Japan
The Ohio State University, Columbus, Ohio, USA
Homer L. Dodge Department of Physics and Astronomy, University of Oklahoma, Norman, Oklahoma, USA
Department of Physics, Oklahoma State University, Stillwater, Oklahoma, USA
Palacký University, Joint Laboratory of Optics, Olomouc, Czech Republic
Institute for Fundamental Science, University of Oregon, Eugene, Oregon, USA
Graduate School of Science, Osaka University, Osaka, Japan
Department of Physics, University of Oslo, Oslo, Norway
Department of Physics, Oxford University, Oxford, United Kingdom
LPNHE, Sorbonne Université, Université Paris Cité, CNRS/IN2P3, Paris, France
*Also at Department of Physics, King’s College London, London, United Kingdom.
*Also at Institute of Physics, Azerbaijan Academy of Sciences, Baku, Azerbaijan.
*Also at Lawrence Livermore National Laboratory, Livermore, USA.
*Also at TRIUMF, Vancouver BC, Canada.
*Also at Department of Physics, University of Thessaly, Greece.
*Also at Department of Physics, University of Fribourg, Fribourg, Switzerland.
*Also at University of Colorado Boulder, Department of Physics, Colorado, USA.
*Also at Department of Physics and Astronomy, University of Louisville, Louisville, Kentucky, USA.
*Also at Department of Physics, Westmont College, Santa Barbara, USA.
*Also at Departament de Fisica de la Universitat Autonoma de Barcelona, Barcelona, Spain.
*Also at Affiliated with an institute covered by a cooperation agreement with CERN.
*Also at The Collaborative Innovation Center of Quantum Matter (CICQM), Beijing, China.
*Also at Department of Physics, Ben Gurion University of the Negev, Beer Sheva, Israel.
*Also at Università di Napoli Parthenope, Napoli, Italy.
*Also at Institute of Particle Physics (IPP), Canada.
*Also at Bruno Kessler Foundation, Trento, Italy.
*Also at Borough of Manhattan Community College, City University of New York, New York, New York, USA.
*Also at Department of Financial and Management Engineering, University of the Aegean, Chios, Greece.
*Also at Centro Studi e Ricerche Enrico Fermi, Italy.
*Also at Department of Physics, California State University, East Bay, USA.
*Also at Institutio Catalana de Recerca i Estudis Avancats, ICREA, Barcelona, Spain.
*Also at University of Chinese Academy of Sciences (UCAS), Beijing, China.
*Also at Yeditepe University, Physics Department, Istanbul, Türkiye.
*Also at Institute of Theoretical Physics, Ilia State University, Tbilisi, Georgia.
*Also at CERN, Geneva, Switzerland.
*Also at Hellenic Open University, Patras, Greece.
*Also at Center for High Energy Physics, Peking University, China.
*Also at Department of Physics, California State University, Sacramento, USA.
*Also at Département de Physique Nucléaire et Corpusculaire, Université de Genève, Genève, Switzerland.
*Also at Institut für Experimentalphysik, Universität Hamburg, Hamburg, Germany.
*Also at Department of Physics and Astronomy, Michigan State University, East Lansing, Michigan, USA.
*Also at Physics Department, An-Najah National University, Nablus, Palestine.
*Also at Institute for Nuclear Research and Nuclear Energy (INRNE) of the Bulgarian Academy of Sciences, Sofia, Bulgaria.
*Also at L2IT, Université de Toulouse, CNRS-IN2P3, UPS, Toulouse; France.
*Also at Department of Financial and Management Engineering, University of the Aegean, Chios; Greece.
*Also at Department of Physics, Stanford University, Stanford, California, USA.
*Also at Hellenic Open University, Patras, Greece.
*Also at University of Colorado Boulder, Department of Physics, Colorado, USA.
*Also at Technical University of Munich, Munich, Germany.