Charcot-Marie-Tooth type 4B2 demyelinating neuropathy in miniature Schnauzer dogs caused by a novel splicing SBF2 (MTMR13) genetic variant: a new spontaneous clinical model

Nicolas Granger Corresponding Author, 1, 2, Alejandro Luján Feliu-Pascual 3, Charlotte Spicer 4, Sally Ricketts 5, Rebekkah Hitti 5, Oliver Forman 5, Joshua Hersheson 4, Henry Houlden 4

1 Royal Veterinary College, University of London, Hatfield, United Kingdom
2 Bristol Veterinary Specialists, CVS Referrals, Bristol, United Kingdom
3 Neurology / Neurosurgery Service, Aúna Especialidades Veterinarias, Valencia, Spain
4 Department of Molecular Neuroscience, UCL Institute of Neurology & National Hospital for Neurology and Neurosurgery & London, London, United Kingdom
5 Kennel Club Genetics Centre, Animal Health Trust, Newmarket, United Kingdom

Corresponding Author: Nicolas Granger
Email address: nicolasgranger@rvc.ac.uk

Background Charcot-Marie-Tooth (CMT) disease is the most common neuromuscular disorder in humans affecting 40 out of 100,000 individuals. In 2008, we described the clinical, electrophysiological and pathological findings of a demyelinating motor and sensory neuropathy in Miniature Schnauzer dogs, with a suspected autosomal recessive mode of inheritance based on pedigree analysis. The discovery of additional cases has followed this work and led to a genome-wide association mapping approach to search for the underlying genetic cause of the disease.

Methods For genome wide association screening, genomic DNA samples from affected and unaffected dogs were genotyped using the Illumina CanineHD SNP genotyping array. SBF2 and its variant were sequenced using primers and PCRs. RNA was extracted from muscle of an unaffected and an affected dog and RT-PCR performed. Immunohistochemistry for myelin basic protein was performed on peripheral nerve section specimens.

Results The genome-wide association study gave an indicative signal on canine chromosome 21. Although the signal was not of genome-wide significance due to the small number of cases, the SBF2 (also known as MTMR13) gene within the region of shared case homozygosity was a strong positional candidate, as 22 genetic variants in the gene have been associated with demyelinating forms of Charcot-Marie-Tooth disease in humans. Sequencing of SBF2 in cases revealed a splice donor site genetic variant, resulting in cryptic splicing and predicted early termination of the protein based on RNA sequencing results.

Conclusions This study reports the first genetic variant in Miniature Schnauzer dogs responsible for the occurrence of a demyelinating peripheral neuropathy with abnormally folded myelin. This discovery establishes a genotype / phenotype correlation in affected Miniature Schnauzers that can be used for the diagnosis of these dogs. It further supports the dog as a natural model of a human disease; in this instance Charcot-Marie-Tooth disease. It opens avenues to search the biological mechanisms responsible for the disease and to test new therapies in a non-rodent large animal model. In particular, recent gene editing methods that led to the restoration of dystrophin expression in a canine model of muscular dystrophy could be applied to other canine models such as this before translation to humans.
Charcot-Marie-Tooth type 4B2 demyelinating neuropathy in miniature Schnauzer dogs caused by a novel splicing SBF2 (MTMR13) genetic variant: a new spontaneous clinical model

Authors

Nicolas Granger¹,², Alejandro Luján Feliu-Pascual³, Charlotte Spicer⁴, Sally L. Ricketts⁵, Rebekkah J. Hitti⁵, Oliver P. Forman⁵, Joshua Hesheson⁴, Henry Houlden⁴

¹: The Royal Veterinary College, University of London, Hawkshead Lane, Hatfield, Hertfordshire, United Kingdom

²: CVS referrals, Bristol Veterinary Specialists at Highcroft, Bristol, United Kingdom.

³: Neurology / Neurosurgery Service, Aúna Especialidades Veterinarias, Algepser 22-1, Paterna, Valencia, Spain.

⁴: Department of Molecular Neuroscience, UCL Institute of Neurology & National Hospital for Neurology and Neurosurgery & London, United Kingdom.

⁵: Kennel Club Genetics Centre, Animal Health Trust, Kentford, Newmarket, Suffolk, United Kingdom.

Corresponding Author:

Dr Nicolas Granger

The Royal Veterinary College, University of London, Hawkshead Lane, Hatfield, Hertfordshire, United Kingdom & CVS referrals, Bristol Veterinary Specialists at Highcroft, Bristol, United Kingdom.

Email address: nicolasgranger@rvc.ac.uk
Abstract

Background Charcot-Marie-Tooth (CMT) disease is the most common neuromuscular disorder in humans affecting 40 out of 100,000 individuals. In 2008, we described the clinical, electrophysiological and pathological findings of a demyelinating motor and sensory neuropathy in Miniature Schnauzer dogs, with a suspected autosomal recessive mode of inheritance based on pedigree analysis. The discovery of additional cases has followed this work and led to a genome-wide association mapping approach to search for the underlying genetic cause of the disease.

Methods For genome wide association screening, genomic DNA samples from affected and unaffected dogs were genotyped using the Illumina CanineHD SNP genotyping array. SBF2 and its variant were sequenced using primers and PCRs. RNA was extracted from muscle of an unaffected and an affected dog and RT-PCR performed. Immunohistochemistry for myelin basic protein was performed on peripheral nerve section specimens.

Results The genome-wide association study gave an indicative signal on canine chromosome 21. Although the signal was not of genome-wide significance due to the small number of cases, the SBF2 (also known as MTMR13) gene within the region of shared case homozygosity was a strong positional candidate, as 22 genetic variants in the gene have been associated with demyelinating forms of Charcot-Marie-Tooth disease in humans. Sequencing of SBF2 in cases revealed a splice donor site genetic variant, resulting in cryptic splicing and predicted early termination of the protein based on RNA sequencing results.

Conclusions This study reports the first genetic variant in Miniature Schnauzer dogs responsible for the occurrence of a demyelinating peripheral neuropathy with abnormally folded myelin. This discovery establishes a genotype / phenotype correlation in affected Miniature Schnauzers that can be used for the diagnosis of these dogs. It further supports the dog as a natural model of a human disease; in this instance Charcot-Marie-Tooth disease. It opens avenues to search the biological mechanisms responsible for the disease and to test new therapies in a non-rodent large animal model. In particular, recent gene editing methods that led to the restoration of dystrophin expression in a canine model of muscular dystrophy could be applied to other canine models such as this before translation to humans.
Introduction

Charcot-Marie-Tooth (CMT) disease is the most common neuromuscular disorder of the human population, affecting 40 out of 100,000 individuals in Europe and the United States [1-3] and more than 2.6 million people worldwide [4]. It was jointly described by Drs. Charcot and Marie in Paris and Dr. Tooth in Cambridge in 1886 [5]. It is now well established that CMT disease refers to a wide group of degenerative motor and sensory neuropathies, 70% of which are hereditary [2, 6, 7]. More than 60 genes encompassing ~900 genetic variants have been implicated in the pathogenesis of CMT [8] offering the potential for further research to elucidate alterations in biological cascades causing the neuropathies. However, few advances have been made so far and CMT remains a slowly progressive and incurable disease. Current research is focused on the use of rodent transgenic models, which have several limitations. They are difficult and time consuming to obtain and the expected phenotype cannot be guaranteed [8], limitations that are not present with spontaneously occurring animal models.

In companion dogs, CMT-like diseases naturally occur, as evidenced by the phenotypic descriptions made by veterinarians in 22 breeds up until 2011 [, 10]. We have now entered a phase where veterinary researchers and canine geneticists are taking advantage of next-generation sequencing techniques in order to identify the molecular defects underlying these diseases in dogs, sometimes with a very small number of affected individuals [11, 12]. This promises to lead to an exponential unravelling of genetic variants in animals spontaneously affected by inherited neurological diseases.

In support of this, in the last decade, several variants within five different genes have been reported in eight canine breeds affected by inherited polyneuropathies similar to CMT disease in humans. First found in 2009, a deletion in the mitochondrial tRNATyr gene in Golden Retrievers causes a sensory neuropathy [13]. Following on, variants of the NDRG1 gene, implicated in myelination, cause an early-onset progressive polyneuropathy in Alaskan Malamutes [14] and a hereditary motor and sensory polyneuropathy in Greyhounds [15]. The ARHGEF10 gene, involved in neuronal growth and axonal migration, is mutated in some Leonberger and Saint Bernard dogs with severe juvenile-onset polyneuropathy and laryngeal paralysis [16] whereas a variant of the GJA9 gene, which is part of the connexin gap junction family proteins, causes a late onset polyneuropathy with laryngeal paralysis in Leonberger dogs [17]. Finally, the
RAB3GAP1 gene, involved in Rab proteins’ function in membrane trafficking in the endoplasmic reticulum, axonal transport, autophagy and synaptic transmission, has a single nucleotide deletion in Black Russian terrier dogs [18] and a SINE insertion in Alaskan Huskies [19], leading to juvenile-onset, laryngeal paralysis, polyneuropathy and ocular changes similar to Warburg micro syndrome in humans. In Rottweilers, a variant in the same RAB3GAP1 gene causes neuronal vacuolation and spinocerebellar degeneration [20]. Older neuropathies, such as the well-known inherited sensory and autonomic in the Border Collie first described in 1987 [21], have also benefited from genetic advances. In 2016 one causal genetic variant of FAM134B, which encodes a cis-Golgi protein found in sensory and autonomic ganglion neurons, has been discovered [22] and two-years later, this mutation was also described in two mixed breed dogs [23]. In four other breeds, the German short-haired Pointer, the English Pointer, the English Springer Spaniel and the French Spaniel, some known since 1964, a similar inherited sensory and autonomic exist and found to be linked to a genetic variation of the long-non-coding RNA located upstream of the Glial cell-Derived Neurotrophic Factor gene, coding for a neurotrophic factor involved in neuronal development and adult neuronal survival [24]. The discovery of this genetic variant is particularly relevant to hereditary sensory and autonomic neuropathies in humans where it is not known.

In 2008, we described the clinical, electrophysiological and pathological findings of a demyelinating hereditary motor and sensory neuropathy in Miniature Schnauzer dogs, characterized by the presence of focally folded myelin sheaths also known as tomacula and segmental demyelination [25]. After exclusion of variants in the PMP22 and P0 myelin genes by direct sequencing, the aim of this study was to demonstrate that the demyelinating hereditary motor and sensory neuropathy in Miniature Schnauzer dogs was genetic in origin by conducting a genome-wide association study (GWAS) and resequencing of candidate genes. From these investigations, a splice variant in the SBF2 (SET-binding factor 2), also known as MTMR13 (myotubularin-related protein-13) gene was identified. We will be using the official HUGO Gene Nomenclature Committee gene name SBF2 throughout the remainder of the manuscript to refer to the SBF2/MTMR13 gene.

Materials & Methods

Study samples
All dogs were examined and investigated by veterinary neurologists. Blood was collected from Miniature Schnauzers pre-mortem and tissue samples were collected post-mortem after dogs had been euthanized on welfare grounds. Euthanasia was carried out solely to alleviate suffering and no healthy individuals were sacrificed for use in this study. Euthanasia was carried out in accordance with the Veterinary Surgeons Act 1966 and under the auspices of the RCVS. All samples used in this study were collected after permission had been granted by dog owners (24-2018E).

Sample DNA and RNA extraction

All DNA samples were collected from privately owned pet dogs by blood or tissue extraction using the QIAamp midi or mini DNA extraction kit (Qiagen). Affected dogs are described below and some have been previously reported. Controls were Miniature Schnauzer dogs that were reported as clinically healthy with no sign of neuropathy based on our neurological examination of these cases (n=7), or apparently healthy Miniature Schnauzers with no owner report of neurological disorder (n=224). Cerebellum or muscle tissue samples were collected post-mortem and DNA and total RNA extracted using the RNeasy midi kit (Qiagen). Genomic DNA from AHT control dogs utilized for this study were derived from buccal swab samples or from residual blood drawn for diagnostic veterinary purposes as part of the dog’s veterinary care. Samples were taken following informed and written owner consent. Sample collection for genetic research has been approved by the Animal Health Trust Ethics Committee (24-2018E).

Total RNA was extracted from homogenized muscle from an affected dog with two copies of the $SBF2$ variant and a control dog using a miRNeasy Mini Kit (Qiagen, Chatsworth, CA) according to the manufacturer’s instructions. First-strand cDNA synthesis was then carried out using SuperScript II Reverse Transcriptase First-Strand Synthesis System for RT-PCR (Invitrogen / Life Technologies). The synthesizing conditions included initial 5 minutes’ incubation at 65°C with dNTP and a mix of random hexamers/oligo dT primers, after which tubes were placed on ice for at least 1 minute. cDNA synthesis mix (5 x First-Strand Buffer, 0.1M DTT, RNase OUT) was added and incubated at 25°C for 2 minutes. SuperScript II was added and tubes incubated at 25°C for 10 minutes, followed by 42°C for 50 minutes. The reaction was terminated by incubation at 70°C for 5 minutes.

GWAS analysis
Genomic DNA samples from the first two Miniature Schnauzers diagnosed with a peripheral neuropathy in France by one author (NG), and 39 Miniature Schnauzer controls were genotyped using the Illumina CanineHD SNP genotyping array that comprises 173,662 SNPs (i.e. a total of 41 dogs). The SNP genotyping dataset was analyzed for association using the statistical package PLINK [26]. As part of the 41 dogs, a set of nine dogs (comprising the two affected cases and seven controls) and a set of 32 controls were genotyped by two centers; University College London (JH, HH) and Animal Health Trust (SLR, RSH, OPF) respectively. To preserve data quality SNP QC was conducted in each dataset independently before merging. Sample call rates for all individuals were >99%. SNP quality control filtering excluded SNPs with a minor allele frequency of less than 5% and a genotyping call rate of less than 97% in each independent dataset. This resulted in 74,374 SNPs for association analysis in the merged dataset. Multidimensional scaling analysis did not indicate the presence of population stratification between the two sets (Supplementary file 1). Later, a further 192 Miniature Schnauzers (Animal Health Trust) with no report of the disorder were included as a follow-up set along with six other affected cases (five from Spain, one from Belgium), altogether leading to a set of eight affected dogs and 231 controls.

Due to the very small sample size and disproportionate case-control ratio we conducted the GWAS analysis using a Fisher’s exact test with 100,000 permutations (max(T) permutation procedure) to account for multiple testing. (The threshold for genome-wide statistical association after permutation is 1.3.)

SBF2 resequencing

This was done using the two originally described French cases; five affected cases available from Spain; and one case from Belgium – these dogs presented with similar neurological and electrophysiological signs as originally described. Genomic DNA was amplified using a standard touchdown PCR reaction. Cycling conditions were as follows: 94°C (5 minutes); 94°C (30 seconds), 60°C (30 seconds), 72°C (45 seconds) for 25 cycles; 94°C (30 seconds) 50°C (30 seconds) 72°C (45 seconds) for 13/18 cycles, 72°C (10 minutes). Primers for each of 35 coding exons with flanking intronic regions were designed with PrimerZ (http://genepipe.ngc.sinica.edu.tw/primerz/) (see sequences in Supplementary file 2). Enzymatic clean-up with Exonuclease I and FastAP Thermosensitive Alkaline Phosphatase (Thermo Scientific) was carried out and subsequent sequencing performed. PCR primers were used for sequencing along with BigDye Terminator v.1.1 cycle sequencing kit (Applied Biosystems). Cycling conditions were as follows: 94°C (1 minute); 94°C (30 seconds), 50°C (15 seconds), 60°C (4 minutes) for 25 cycles. Sequencing reaction
products were purified using sephadex columns and then run on a 3730xl DNA Analyzer. The resulting data sequences were aligned to the canine SBF2 reference sequence (CanFam 3.1) retrieved from Ensembl (ENSCAFG00000007500; ensembl.org) and manually analyzed using Sequencher v. 4.9 (Gene Codes Corporation, Ann Arbor, MI, USA). Gene Runner was used to investigate the amino acid sequence.

Variant genotyping and statistical analysis

The SBF2 variant was genotyped using an allelic discrimination assay using an ABI StepOne real-time thermal cycler. Primers and allelic discrimination probes were designed using Primer3 [27] and obtained from Integrated DNA Technologies (IDT). Primer sequences were:

- TGGGAGAGTGGAAGCAACAG (forward); GGAGTGTCTCTGTATGTGCACATT (reverse); 5’-FAM- TTGTCACAAACAGTTACCAA-NFQ-3’ (mutant); 5’-VIC- TTGTCACAAACAGGTACCAA-NFQ-3’ (wildtype). Individual probe assays were re-suspended in ultrapure water to a 40X mix and combined. Allelic discrimination reactions were prepared using KAPA probe fast (KAPA Biosystems) with the 40X probe mix. Thermal cycling conditions were: 25°C for 30 seconds; 95°C for 3 minutes; followed by 40 cycles of 95°C for 3 seconds; and 60°C for 10 seconds, then the reaction held at 25°C for 30 seconds.

As the variant was rare in our sample set, a subset of genotypes was verified by Sanger sequencing. Primer sequences were AACCTCATGGTCAACCTGCT (forward) and TGCACAGCGATTTGCCTAA (reverse). PCR cycling consisted of an initial 95°C denaturation step for 5 minutes, followed by 35 cycles of 95°C for 30 seconds; 60°C for 30 seconds; and 72°C for 1 minute. Final elongation was 72°C for 5 minutes. PCR products were purified using 96-well multiscreen PCR plates (Merk Millipore) and sequenced in both directions using BigDye Terminator v3.1 chemistry (Applied Biosystems) and an ABI 3130XL Genetic Analyzer (Applied Biosystems). Sequences were aligned and manually called using the Staden package [28].

The association between demyelinating neuropathy and genotype was assessed using the Fisher's exact test.

Immunohistochemistry of peripheral nerve sections

Peripheral nerve specimens originating from surgical biopsies at the time of diagnosis were embedded in OCT and snap frozen in isopentane pre-cooled with liquid nitrogen and stored at -80°C. Cryostat sections of 30 µm were then cut and mounted on histopathology slides and air
dried for 30 minutes at 37°C. The sections were stained for myelin basic protein as follows: incubation in a blocking solution of 10% normal goat serum 0.1M PBS and 0.3% t-octylphenoxy polyethoxethanol for an hour at room temperature; incubation with primary antibody (anti-myelin basic protein monoclonal antibody, 1:100, Chemicon) diluted in 0.1M PBS containing normal goat serum overnight at 4°C; washing 3 times with 0.1 M PBS for 5 minutes; incubation with a secondary antibody (Alex Fluor 488, goat anti-rat, ThermoFischer Scientific) for 2 hours, in the dark, at room temperature. The sections were then examined under a fluorescent microscope.

Results

Disease phenotype

The phenotype of this inherited demyelinating peripheral nerve disease was previously reported and affected dogs share familial links, based on the pedigree analysis of 32 dogs (see Figure 2 from Vanhaesebrouck et al.) [25]. Briefly, at a young age (< 2 years), affected Miniature Schnauzers presented regurgitations caused by mega-esophagus and inspiratory dyspnea caused by laryngeal paralysis. Electrophysiological studies revealed marked slowing of motor and sensory nerve conduction velocities (~20m/s), although some nerves had preserved conduction velocities. Although the prognosis remains guarded, long survival is observed with dogs alive > 3 years following diagnosis. Teased nerve fibers presented variable thickness of the myelin sheath with characteristic ‘tomacula’ and area of segmental demyelination. Toluidine-blue-stained semi-thick resin-embedded sections demonstrated loss of myelinated fibers, thinly myelinated fibers and redundant myelin loops again characteristic of the presence of tomacula, as previously reported by Vanhaesebrouck et al. [25]. Muscle biopsy specimens appeared normal when sampled [25]. Immunohistochemistry of peripheral nerve sections stained for myelin basic protein (Fig. 1) demonstrate the loss of normal myelin architecture in affected cases.

Mapping of the causative variant

The genome-wide association study was conducted using two cases originally described in 2008 [25] and 38 apparently healthy breed-matched controls (one control sample did not work during testing). The strongest associated SNP was located on canine chromosome 21 (BICF2S2377579 – CanFam 3.1 position chr21: 34,045,084) (Fig. 2), although this did not reach genome-wide statistical association due to the small dataset and concurrent lack of statistical power. Interrogation of the SNP genotype distributions across the associated region identified a
run of shared homozygosity in cases spanning from chr21:18,552,117-46,804,230 (CanFam3.1). The most obvious candidate gene in this region was the SBF2 gene, which causes CMT in human patients with a clear phenotype.

Resequencing of the SBF2 gene was initially performed using one of the two affected case and one control. This revealed a homozygous +1 splice genetic variant in exon 19 (c.2363+1 G>T; chr21:33,080,022 C>A CanFam3.1) in the affected case in comparison to the control (Fig. 3). No further variants were found in the entire coding sequence. This putative disease-causing c.2363+1 G>T variant was assessed in the initial GWAS set (2 affected and 39 controls) plus six additional affected cases and a further 192 Miniature Schnauzers with no report of the disorder, demonstrating a highly significant statistical association (see Table 1) in comparison to the top GWAS SNP. This identified 10 heterozygotes and 182 dogs with a homozygous wildtype genotype in the added 192 controls and 38 homozygous wildtype genotypes in the GWAS set (one control from this set did not work); but no dogs homozygous for the variant in the control set. The 6 affected cases, 5 from Spain and one from Belgium, were mutant homozygous dogs. Screening for the variant in a dataset of 802 whole genome sequences from 162 purebred dogs/mixed breed dogs/wolves identified two Miniature Schnauzers that were heterozygous for the variant and one mutant homozygote; the remaining 799 dogs were clear (Supplementary file 3). On follow-up investigation the mutant homozygous dog was affected with neonatal lethal spondylocostal dysostosis, hence no clinical data relevant to the demyelinating neuropathy phenotype was available [29]. The original two GWAS cases were found in France and the mutant homozygote identified through genome data was of Australian origin, although the sire was from Sweden. The additional six affected cases were from Spain and Belgium. This tentatively suggests presence of the variant in different regions of the globe.

Effect of SBF2 variant on mRNA splicing and coding sequence
To analyze the consequence of this splicing acceptor site variant on SBF2 pre-mRNA splicing, RNA was extracted from dissected muscle of an unaffected and an affected dog (the case found in Belgium) and RT-PCR performed. The resulting transcripts were sequenced which revealed the presence of a 40-bp deletion at the 3’ site of exon 19 due to the induction of a cryptic splice site in this exon (Fig. 4A). The SBF2 genetic variant and resulting 40-bp deletion leads to a premature stop codon (p.G775Vfs*5) and truncates the protein by 1070 amino acids (Fig. 4B).
We previously described a suspected inherited demyelinating peripheral neuropathy in Miniature Schnauzer dogs and highlighted its similarities with some demyelinating forms of CMT in humans [25, 30]. Mainly, we discovered in the dog the presence of specific neuropathological features of the peripheral nerves, such as abnormal folding of peripheral myelin around the axons termed *tomacula*, as originally described in humans with certain demyelinating neuropathies [31, 32]. An inherited trait for the canine disease equivalent was suggested based on pedigree analysis of affected dogs. Our findings led us to suspect that variants of genes coding for: (i) myelin proteins (such as *PMP22*, *P0*, *periaxin*); (ii) intracellular Schwann cell proteins involved in the synthesis, transport and degradation of myelin proteins including the myotubularin-related (MTMR) proteins; and (iii) regulating myelin gene transcription proteins (such as *EGR2*), might be responsible for the disease [33, 34]. In particular, variants of genes coding for the MTMR proteins and leading to abnormal myelin compaction have been described in CMT type 1, type 4B1 (variants in *MTMR2*) and type 4B2 (variant in *SBF2* (*MTMR13*), *MTMR2* regulatory binding partner) [33, 35-51]. In this study we have mapped demyelinating neuropathy in the Miniature Schnauzer to canine chromosome 21 and have subsequently identified a genetic variant in and exon 19 of *SBF2* that shows strong segregation with the disease in this breed. Variants of the *SBF2* gene are known in humans to cause CMT type 4B2 (although a variant in exon 19 has not been found in humans). So far, thirty-seven humans with twenty-six pathogenic *SBF2* variants leading to CMT type 4B2 have been reported [52], a number that has dramatically increased recently with the discovery of nine new *SBF2* variants in one study [49] and three new *SBF2* variants in another [48].

Myotubularins (MTM) form a family of 14 proteins [53] that act as phosphoinositide phosphatase (PP) proteins and play a central role in neuromuscular homeostasis [39]. Some are catalytically active (such as MTRM2) and dephosphorylate sub pools of phosphatidylinositols (PtdIns) [53-57], while others are catalytically inactive and function as a scaffold to bind other myotubularins and proteins (such as MTMR13 binds MTMR2) [58, 59]. They are implicated in a number of physiological processes including cell proliferation, growth, survival, motility, cytoskeletal regulation and intracellular vesicle trafficking and signaling (endosomal-lysosomal pathways) [53, 60]. Their importance is highlighted by the large number of diseases associated with variant of myotubularin genes [61-63], but it remains poorly understood how these variants lead to disease.

Their ubiquitous expression, lack of functional redundancy and involvement in varied pathologies suggests that their expression and regulation finely varies between organs [64, 65].
For example, in humans, a variant within the dDENN domain of SBF2 leads to a demyelinating neuropathy [39] and a variant within the DENN domain causes a thrombocytopenia without neurological manifestations [47]. It is believed in this latter case that the genetic variant affects the solubility of the SBF2 protein but that the protein conformation is preserved [47]. In cases with involvement of the peripheral nerves, the analysis of the type of genetic variants associated with SBF2 also provides a very good example of how variants in one gene, and within a particular domain, leads to different phenotypes, in particular with additional involvement of the eye. The first SBF2 variant in humans was reported in a Turkish family and involved a deletion of 1,301 bp across exons 11 and 12, removing the unique dDENN motif [39] but allowing the synthesis of a partially functional SBF2 protein highlighting the possible role of dDENN in myelin compaction. This only caused a demyelinating neuropathy. Later, in a Tunisian and a Moroccan family, two nonsense variants in SBF2 were identified in exons 23 (2875C>T (Gln956Stop)) and 27 (3586C>T (Arg1196Stop)) [40]. These patients presented juvenile onset glaucoma associated with the demyelinating neuropathy, a phenotype that was also found in a Japanese family affected by another nonsense variant (1459C>T (Arg487Stop)) in exon 14 of SBF2 gene [41]. These variants resulted in a truncated protein with deletion of the GRAM, myotube-related and PH domains and complete loss of function. Finally, with variants of the inactive phosphatase domain of SBF2, leading to presence of an abnormal but likely partially functional SBF2 protein, human patients have a demyelinating peripheral neuropathy with or without glaucoma [42, 49]. The occurrence of ocular anomalies in association with peripheral neuropathy is also present in the recent report of an inherited peripheral neuropathy in Black Russian terrier dogs [18].

The finding of a variant in SBF2 in the dogs of this report strikingly exemplifies the wide role of myotubularin proteins since a variant of MTM1 has also been reported in a group of Labrador Retrievers, but leads to a centro-nuclear myopathy [66], as it does in humans [64]. These dogs are clinically normal at birth but develop generalized muscular weakness and muscle atrophy at ~7 weeks of age and die in their first six months of life. MTM1 is specifically involved in endosomal and membrane trafficking pathways, and late maturation and maintenance of T-tubules. In affected dogs, the structure of the T tubule network is affected, leading to disorganization of the muscle triads and their maintenance.

This new Miniature Schnauzer canine model allows useful comparisons between the human and canine disease for several reasons. First, this is a spontaneous (i.e. naturally occurring)
model of a demyelinating neuropathy with focally folded myelin. This is important because the phenotype is likely more relevant and closer to the disease observed in humans, knowing the limitations of the rodent models. SBF2 deficient mice have been created by inserting a gene-trap vector following exon 14 of SBF2, leading to lack of expression of the PH-GRAM and phosphatase domains and coiled-coil motif of SBF2 [67], which are the domains involved in binding, catalyzing and mediating interactions between active and inactive myotubularins [68, 69]. Although SBF2 is broadly expressed in the mouse [70], the phenotype of this model differs from the naturally occurring disease since no reduction in the sciatic nerve conduction velocity was observed at 12 months of age in mice (this is also the case in a mouse model of the MTMR2 neuropathy [71]), which markedly contrasts with the profound slowing of nerve conduction velocity observed in dogs [35] and humans [39-42]. Clinically, these mice are not distinguishable from wild type animals but behavior analysis with the rotarod test identified deficient mice [67].

Another group of researchers created a similar mouse mutant by inserting a gene-trap plasmid following exon 17 [72], resulting in a similar defect as described above. Again, these animals did not show obvious behavioral abnormalities, but in contrast to the model from Tersar et al. [67], showed reduced motor nerve conduction velocities (in the range of 20m/s). These two examples illustrate the complexity of establishing engineered animal models in the laboratory because the clinical phenotype obtained is not predictable, or is variable or lacking. In contrast, affected Miniature Schnauzer dogs present to veterinary hospitals with clear clinical signs, marked electrophysiological abnormalities and characteristic pathological features. As shown above, the variant described can be directly compared to variants affecting some human families, where protein abnormalities are more likely to be similar. Altogether, the signs observed in dogs provide means to follow-up the disease progression and to trial novel therapies. Secondly, the dog model could be used for in vitro studies, for example using fibroblast cultures that can be easily obtained from skin biopsies. In one study [73] using the Robinson’s mouse model [72], the consequences of SBF2 variant on the endo-lysosomal pathway has been investigated and it was found that loss of SBF2 does not dysregulate the endo-lysosomal membrane system in Schwann cells. Therefore, there is a need to further identify the impact of SBF2 loss on the trafficking of specific cargo proteins. The prevalence of the disease in Miniature Schnauzers is currently not known but there is likely a pool of animals that could be available for tissue sampling and further in vitro research. Future studies could focus on the identification of specific membrane proteins that may be abnormally trafficked in the absence of SBF2, as well as on defining how phosphatidylinositols are dysregulated by the loss of these proteins [74]. Finally, it
should be mentioned that, although spontaneous canine models are appealing, they come with limitations. In particular, their remain unknown as to how many cases could be accessed for research. The use of companion dogs in research requires strict ethical safeguards, and imposes limitation to access to tissue (including post-mortem) and interventions that can be performed. The cost of developing colonies of affected dogs within veterinary laboratories and cost of running clinical trial is also greater than the cost of working with rodents.

Conclusions

In conclusion, we have identified a splicing variant in SBF2 as the most likely cause for the demyelinating peripheral neuropathy observed in Miniature Schnauzer dogs. This provides the first naturally occurring large animal model of a demyelinating form of CMT disease, 4B2. The discovery and description of naturally occurring models of CMT diseases open great research avenues. They render possible in vitro characterization of molecular pathways and functional work, such as with the use of fibroblasts obtained from the skin or nerve transcriptome analysis. The large pool of affected dogs and expansion of veterinary hospitals could allow collection of samples for this research and could pave the way for testing new therapies in canine models, as exemplified by the recent use of gene editing to restore dystrophin expression in a canine model of muscular dystrophy [75]. This strategy could be applied to many genetic diseases, such as the demyelinating peripheral neuropathy presented here, while the use of a larger animal model allows real-life quantification of the benefit of proposed therapies.

Acknowledgements

The authors are grateful to referring veterinarians, veterinary neurology specialists (Sofie Bhatti, Prof. Luc VanHam, Dr. An Vanhaesbrouck, Jerome Couturier, Laurent Cauzinille, Prof. Diane Shelton) and to all dog owners and breeders who donated samples and shared pedigree data of their dogs. We thank the Joint Miniature Schnauzer Eye Fund for funding the genome-wide association study of the 32 dogs in the Animal Health Trust dataset. We thank the Dog Biomedical Variant Database Consortium (Gus Aguirre, Catherine André, Danika Bannasch, Doreen Becker, Brian Davis, Cord Drögemüller, Kari Ekenstedt, Kiterie Faller, Oliver Forman, Steve Friedenberg, Eva Furrow, Urs Giger, Christophe Hitte, Marjo Hytönen, Vidhya Jagannathan, Tosso Leeb, Hannes Lohi, Cathryn Mellersh, Jim Mickelson, Leonardo Murgiano,
Anita Oberbauer, Sheila Schmutz, Jeffrey Schoenebeck, Kim Summers, Frank van Steenbeek, Claire Wade) and Natasha Olby for sharing whole genome sequencing data from control dogs. We also acknowledge all canine researchers who deposited dog whole genome sequencing data into public databases. We also thank the breed clubs and Kennel Club Charitable Trust who jointly funded the Animal Health Trust’s Give a Dog a Genome project that contributed data from control dogs.

References

1. Skre H: Genetic and clinical aspects of Charcot-Marie-Tooth's disease. Clin Genet 1974, 6(2):98-118.
2. Pareyson D, Marchesi C: Diagnosis, natural history, and management of Charcot-Marie-Tooth disease. Lancet Neurol 2009, 8(7):654-667.
3. Reilly MM, Murphy SM, Laura M: Charcot-Marie-Tooth disease. J Peripher Nerv Syst 2011, 16(1):1-14.
4. Emery AE: Population frequencies of inherited neuromuscular diseases—a world survey. Neuromuscul Disord 1991, 1(1):19-29.
5. Charcot JM: Sur une forme particulière d’atrophie musculaire progressive, souvent familiale, débutant par les pieds et les jambes et atteignant plus tard les mains. Revue Médicale 1886, 6:97-138.
6. Vallat JM, Mathis S, Funalot B: The various Charcot-Marie-Tooth diseases. Curr Opin Neurol 2013, 26(5):473-480.
7. Houlden H, Reilly MM: Molecular genetics of autosomal-dominant demyelinating Charcot-Marie-Tooth disease. Neuromolecular Med 2006, 8(1-2):43-62.
8. Bouhy D, Timmerman V: Animal models and therapeutic prospects for Charcot-Marie-Tooth disease. Ann Neurol 2013, 74(3):391-396.
9. Coates JR, O'Brien DP: Inherited peripheral neuropathies in dogs and cats. Vet Clin North Am Small Anim Pract 2004, 34(6):1361-1401.
10. Granger N: Canine inherited motor and sensory neuropathies: an updated classification in 22 breeds and comparison to Charcot-Marie-Tooth disease. Vet J 2011, 188(3):274-285.
11. Forman OP, De Risio L, Mellersh CS: Missense mutation in CAPN1 is associated with spinocerebellar ataxia in the Parson Russell Terrier dog breed. PloS one 2013, 8(5):e64627.
12. Fenn J, Boursnell M, Hitti RJ, Jenkins CA, Terry RL, Priestnall SL, Kenny PJ, Mellersh CS, Forman OP: Genome sequencing reveals a splice donor site mutation in the SNX14 gene associated with a novel cerebellar cortical degeneration in the Hungarian Vizsla dog breed. BMC genetics 2016, 17(1):123.
13. Baranowska I, Jaderlund KH, Nennesmo I, Holmqvist E, Heidrich N, Larsson NG, Andersson G, Wagner EG, Hedhammar A, Wibom R, Andersson L: Sensory ataxic neuropathy in golden retriever dogs is caused by a deletion in the mitochondrial tRNATyr gene. PLoS Genet 2009, 5(5):e1000499.
14. Bruun CS, Jaderlund KH, Berendt M, Jensen KB, Spodsberg EH, Gredal H, Shelton GD, Mickelson JR, Minor KM, Lohi H, Bjerkås I, Stigen O, Espenes A, Rohdin C, Edlund R, Ohlsson J, Cizinauskas S, Leifsson PS, Drögemüller C, Moe L, Cirera S, Fredholm M: A Gly98Val mutation in the N-Myc downstream regulated gene 1 (NDRG1) in Alaskan Malamutes with polyneuropathy. PloS one 2013, 8(2):e54547.
15. Drogemuller C, Becker D, Kessler B, Kemter E, Tetens J, Jurina K, Jaderlund KH, Flagstad A, Perloski M, Lindblad-Toh K, Matiasek K: A deletion in the N-myc downstream regulated gene 1 (NDRG1) gene in Greyhounds with polyneuropathy. PloS one 2010, 5(6):e11258.

16. Ekenstedt KJ, Becker D, Minor KM, Shelton GD, Patterson EE, Bley T, Oevermann A, Bilzer T, Leeb T, Drogemuller C, Mickelson JR: An ARHGEF10 deletion is highly associated with a juvenile-onset inherited polyneuropathy in Leonberger and Saint Bernard dogs. PloS genetics 2014, 10(10):e1004635.

17. Becker D, Minor KM, Letko A, Ekenstedt KJ, Jagannathan V, Leeb T, Shelton GD, Mickelson JR, Drogemuller C: A GJA9 frameshift variant is associated with polyneuropathy in Leonberger dogs. BMC genomics 2017, 18(1):662.

18. Mhlanga-Mutangadura T, Johnson GS, Schnabel RD, Taylor JF, Johnson GC, Katz ML, Shelton GD, Lever TE, Giuliano E, Granger N, Shomper J, O'Brien DP: A mutation in the Warburg syndrome gene, RAB3GAP1, causes a similar syndrome with polyneuropathy and neuronal vacuolation in Black Russian Terrier dogs. Neurobiology of disease 2016, 86:75-85.

19. Wiedmer M, Oevermann A, Borer-Germann SE, Gorgas D, Shelton GD, Drogemuller M, Jagannathan V, Henke D, Leeb T: A RAB3GAP1 SINE Insertion in Alaskan Huskies with Polyneuropathy, Ocular Abnormalities, and Neuronal Vacuolation (POANV) Resembling Human Warburg Micro Syndrome 1 (WARBM1). G3 2015, 6(2):255-262.

20. Mhlanga-Mutangadura T, Johnson GS, Ashwini A, Shelton GD, Wenneogle SA, Johnson GC, Kuroki K, O'Brien DP: A Homozygous RAB3GAP1:c.743delC Mutation in Rotweilers with Neuronal Vacuolation and Spinocerebellar Degeneration. Journal of veterinary internal medicine 2016, 30(3):813-818.

21. Wheeler SJ: Sensory neuropathy in a Border Collie Puppy. J Small Anim 1987, 28:281-289.

22. Forman OP, Hitti RJ, Pettitt L, Jenkins CA, O'Brien DP, Shelton GD, De Risio L, Quintana RG, Beltran E, Mellersh C: An Inversion Disrupting FAM134B Is Associated with Sensory Neuropathy in the Border Collie Dog Breed. G3 (Bethesda) 2016, 6(9):2687-2692.

23. Amengual-Batle P, Rusbridge C, José-López R, Golini L, Shelton GD, Mellersh CS: Gutierrez-Quintana R: Two mixed breed dogs with sensory neuropathy are homozygous for an inversion disrupting FAM134B previously identified in Border Collies. Journal of veterinary internal medicine 2018, 32(6):2082-2087.

24. Plassais J, Lagouette L, Correard S, Paradis M, Guaguère E, Hédan B, Pommier A, Bothier N, Cadiergues MC, Pilorge P, Silversides D, Bizot M, Samuels M, Arnan C, Johnson R, Hitte C, Salbert G, Méreau A, Quignon P, Derrien T, André C: A Point Mutation in a lincRNA Upstream of GDNF Is Associated to a Canine Insensitivity to Pain: A Spontaneous Model for Human Sensory Neuropathies. PLoS Genet 2016, 29;12(12):e1006482.

25. Vanhaesebrouck AE, Couturier J, Cauzinille L, Mizisin AP, Shelton GD, Granger N: Demyelinating polyneuropathy with focally folded myelin sheaths in a family of Miniature Schnauzer dogs. J Neurol Sci 2008, 275(1-2):100-105.

26. Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MA, Bender D, Maller J, Sklar P, de Bakker PI, Daly MJ, Sham PC: PLINK: a tool set for whole-genome association and population-based linkage analyses. American journal of human genetics 2007, 81(3):559-575.

27. Untergasser A, Cutcutache I, Koressaar T, Ye J, Faircloth BC, Remm M, Rozen SG: Primer3—new capabilities and interfaces. Nucleic acids research 2012, 40(15):e115.

28. Staden R: The Staden sequence analysis package. Molecular biotechnology 1996, 5(3):233-241.
29. Willet CE, Makara M, Reppas G, Tsoukalas G, Malik R, Haase B, Wade CM: Canine disorder mirrors human disease: exonic deletion in HES7 causes autosomal recessive spondylocostal dysostosis in miniature Schnauzer dogs. PloS one 2015, 10(2):e0117055.

30. Niemann A, Berger P, Suter U: Pathomechanisms of mutant proteins in Charcot-Marie-Tooth disease. Neuromolecular medicine 2006, 8(1-2):217-242.

31. Ohnishi A, Murai Y, Ikeda M, Fujita T, Furuya H, Kuroiwa Y: Autosomal recessive motor and sensory neuropathy with excessive myelin outgrowth. Muscle Nerve 1989, 12(7):568-575.

32. Gabreels-Festen AA, Joosten EM, Gabreels FJ, Stegeman DF, Vos AJ, Busch HF: Congenital demyelinating motor and sensory neuropathy with focally folded myelin sheaths. Brain 1990, 113 (Pt 6):1629-1643.

33. Previtali SC, Quattrini A, Bolino A: Charcot-Marie-Tooth type 4B demyelinating neuropathy: deciphering the role of MTMR phosphatases. Expert reviews in molecular medicine 2007, 9(25):1-16.

34. Suter U, Scherer SS: Disease mechanisms in inherited neuropathies. Nat Rev Neurosci 2003, 4(9):714-726.

35. Houlden H, King RH, Wood NW, Thomas PK, Reilly MM: Mutations in the 5' region of the myotubularin-related protein 2 (MTMR2) gene in autosomal recessive hereditary neuropathy with focally folded myelin. Brain 2001, 124(Pt 5):907-915.

36. Bolino A, Muglia M, Conforti FL, LeGuern E, Salih MA, Georgiou DM, Christodoulou K, Hausmanowa-Petrusewicz I, Mandich P, Schenone A, Gambardella A, Bonò F, Quattrone A, Devoto M, Monaco AP: Charcot-Marie-Tooth type 4B is caused by mutations in the gene encoding myotubularin-related protein-2. Nat Genet 2000, 25(1):17-19.

37. Conforti FL, Muglia M, Mazzei R, Patitucci A, Valentino P, Magariello A, Sprovieri T, Bonò F, Bergmann C, Gabriele AL, Peluso G, Nisticò R, Senderek J, Quattrone A: A new SBF2 mutation in a family with recessive demyelinating Charcot-Marie-Tooth (CMT4B2). Neurology 2004, 63(7):1327-1328.

38. Nelis E, Erdem S, Tan E, Lofgren A, Ceuterick C, De Jonghe P, Van Broeckhoven C, Timmerman V, Topaloglu H: A novel homozygous missense mutation in the myotubularin-related protein 2 gene associated with recessive Charcot-Marie-Tooth disease with irregularly folded myelin sheaths. Neuromuscul Disord 2002, 12(9):869-873.

39. Senderek J, Bergmann C, Weber S, Ketelsen UP, Schorle H, Rudnik-Schoneborn S, Buttner R, Buchheim E, Zerres K: Mutation of the SBF2 gene, encoding a novel member of the myotubulin family, in Charcot-Marie-Tooth neuropathy type 4B2/11p15. Hum Mol Genet 2003, 12(3):349-356.

40. Azzedin H, Bolino A, Taieb T, Briouk N, Di Duca M, Bouhouche A, Benamou S, Mrabet A, Hammoudouche T, Chkili T, Gouider R, Ravazzolo R, Brice A, Laporte J, LeGuern: Mutations in MTMR13, a new pseudophosphatase homologue of MTMR2 and Sbf1, in two families with an autosomal recessive demyelinating form of Charcot-Marie-Tooth disease associated with early-onset glaucoma. Am J Hum Genet 2003, 72(5):1141-1153.

41. Hirano R, Takashima H, Umehara F, Arimura H, Michizono K, Okamoto Y, Nakagawa M, Boerkoel CF, Lupski JR, Osame M, Arimura K: SET binding factor 2 (SBF2) mutation causes CMT4B with juvenile onset glaucoma. Neurology 2004, 63(3):577-580.

42. Luigetti M, Bolino A, Scarlino S, Sabatelli M: A novel homozygous mutation in the MTMR2 gene in two siblings with 'hypermyelinating neuropathy'. Journal of the peripheral nervous system : JPNS 2013, 18(2):192-194.
597 43. Murakami T, Kutoku Y, Nishimura H, Hayashi M, Abe A, Hayasaka K, Sunada Y: Mild phenotype of Charcot-Marie-Tooth disease type 4B1. J Neurol Sci 2013, 334(1-2):176-179.

598 44. Nouioua S, Hamadouche T, Funalot B, Bernard R, Bellatache N, Bouderba R, Grid D, Assami S, Benhassine T, Levy N, Vallat JM, Tazir M: Novel mutations in the PRX and the MTMR2 genes are responsible for unusual Charcot-Marie-Tooth disease phenotypes. Neuromuscul Disord 2011, 21(8):543-550.

599 45. Parman Y, Battaloglu E, Baris I, Bilir B, Poyraz M, Bissar-Tadmouri N, Williams A, Ammar N, N elis E, Timmerman V, De Jonghe P, Najafov A, Deymeer F, Serdaroglu P, Brophy PJ, Said G: Clinicopathological and genetic study of early-onset demyelinating neuropathy. Brain 2004, 127(Pt 11):2540-2550.

600 46. Verny C, Ravise N, Leutenegger AL, Pouplard F, Dubourg O, Tardieu S, Dubas F, Brice A, Genin E, LeGuern E: Coincidence of two genetic forms of Charcot-Marie-Tooth disease in a single family. Neurology 2004, 63(8):1527-1529.

601 47. Abuzenadah AM, Zaher GF, Dallol A, Damanhouri GA, Chaudhary AG, Al-Sayes F, Gari MA, AlZahrani M, Hindawi S, Al-Qahtani MH: Identification of a novel SBF2 missense mutation associated with a rare case of thrombocytopenia using whole-exome sequencing. Journal of thrombosis and thrombolysis 2013, 36(4):501-506.

602 48. He J, Guo L, Xu G, Xu L, Lin S, Chen W, Wang N: Clinical and genetic investigation in Chinese patients with demyelinating Charcot-Marie-Tooth disease. Journal of the peripheral nervous system : JPNS 2018.

603 49. Laporte J, Bedez F, Bolino A, Mandel JL: Myotubularins, a large disease-associated family of cooperating catalytically active and inactive phosphoinositide phosphatases. Hum Mol Genet 2003, 12 Spec No 2:R285-292.

604 50. Biancalana V, Caron O, Gallati S, Baas F, Kress W, Novelli G, D'Apice MR, Lagier-Tourenne C, Buj-Bello A, Romero NB, Mandel JL: Characterisation of mutations in 77 patients with X-linked myotubular myopathy, including a family with a very mild phenotype. Hum Genet 2003, 112(2):135-142.

605 51. Blondine F, Laporte J, Bodin S, Superti-Furga G, Payrastre B, Mandel JL: Myotubularin, a phosphatase deficient in myotubular myopathy, acts on phosphatidylinositol 3-kinase and phosphatidylinositol 3-phosphate pathway. Hum Mol Genet 2000, 9(15):2223-2229.
648 56. Laporte J, Blondeau F, Buj-Bello A, Mandel JL: The myotubularin family: from genetic
disease to phosphoinositide metabolism. *Trends Genet* 2001, 17(4):221-228.
649 57. Schaeetzky J, Dove SK, Short B, Lorenzo O, Clague MJ, Barr FA: Phosphatidylinositol-5-
phosphate activation and conserved substrate specificity of the myotubularin
phosphatidylinositol 3-phosphatases. *Curr Biol* 2003, 13(6):504-509.
650 58. Berger P, Berger I, Schaffitzel C, Tersar K, Volkmann B, Suter U: Multi-level regulation of
myotubularin-related protein-2 phosphatase activity by myotubularin-related protein-
13/set-binding factor-2. *Hum Mol Genet* 2006, 15(4):569-579.
651 59. Jean S, Cox S, Schmidt EJ, Robinson FL, Kiger A: Sbf/MTMR13 coordinates PI(3)P and
Rab21 regulation in endocytic control of cellular remodeling. *Mol Biol Cell* 2012,
23(14):2723-2740.
652 60. Buj-Bello A, Laugel V, Messaddeq N, Zahreddine H, Laporte J, Pellissier JF, Mandel JL:
The lipid phosphatase myotubularin is essential for skeletal muscle maintenance but not
for myogenesis in mice. *Proc Natl Acad Sci U S A* 2002, 99(23):15060-15065.
653 61. Amoasii L, Hnia K, Laporte J: Myotubularin phosphoinositide phosphatases in human
diseases. *Curr Top Microbiol Immunol* 2012, 362:209-233.
654 62. McCrea HJ, De Camilli P: Mutations in phosphoinositide metabolizing enzymes and
human disease. *Physiology (Bethesda)* 2009, 24:8-16.
655 63. Nicot AS, Laporte J: Endosomal phosphoinositides and human diseases. *Traffic* 2008,
9(8):1240-1249.
656 64. Kim SA, Taylor GS, Torgersen KM, Dixon JE: Myotubularin and MTMR2,
phosphatidylinositol 3-phosphatases mutated in myotubular myopathy and type 4B
Charcot-Marie-Tooth disease. *J Biol Chem* 2002, 277(6):4526-4531.
657 65. Laporte J, Liaubet L, Blondeau F, Tronchere H, Mandel JL, Payrastre B: Functional
redundancy in the myotubularin family. *Biochem Biophys Res Commun* 2002,
291(2):305-312.
658 66. Beggs AH, Bohm J, Snead E, Kozlowski M, Maurer M, Minor K, Childers MK, Taylor SM,
Hitte C, Mickelson JR, Guo LT, Miziaen AP, Buj-Bello A, Tirel L, Laporte J, Shelton GD:
MTM1 mutation associated with X-linked myotubular myopathy in Labrador Retrievers.
659 67. Tersar K, Boentert M, Berger P, Atanasoski S, Mantei N, Wessig C, Toyka KV, Young P, Suter U:
Mtmr13/Sbf2-deficient mice: an animal model for CMT4B2. *Human molecular genetics*
2007, 16(24):2991-3001.
660 68. Begley MJ, Taylor GS, Brock MA, Ghosh P, Woods VL, Dixon JE: Molecular basis for
substrate recognition by MTMR2, a myotubularin family phosphoinositide phosphatase.
661 69. Robinson FL, Dixon JE: The phosphotyrosine-3-phosphatase MTMR2 associates with
MTMR13, a membrane-associated pseudophosphatase also mutated in type 4B
Charcot-Marie-Tooth disease. *J Biol Chem* 2005, 280(36):31699-31707.
662 70. Kirfel J, Senderek J, Moser M, Roper A, Stendel C, Bergmann C, Zerres K, Buettner R:
Cloning, expression and characterization of the murine orthologue of SBF2, the gene
mutated in Charcot-Marie-Tooth disease type 4B2. *Gene expression patterns : GEP*
2006, 6(8):978-984.
663 71. Bonneick S, Boentert M, Berger P, Atanasoski S, Mantei N, Wassig C, Toyka KV, Young P, Suter U:
An animal model for Charcot-Marie-Tooth disease type 4B1. *Hum Mol Genet* 2005,
14(23):3685-3695.
664 72. Robinson FL, Niesman IR, Beiswenger KK, Dixon JE: Loss of the inactive myotubularin-
related phosphatase Mtmr13 leads to a Charcot-Marie-Tooth 4B2-like peripheral
neuropathy in mice. *Proc Natl Acad Sci U S A* 2008, 105(12):4916-4921.
665 73. Ng AA, Logan AM, Schmidt EJ, Robinson FL: The CMT4B disease-causing
phosphatases Mtmr2 and Mtmr13 localize to the Schwann cell cytoplasm and
endomembrane compartments, where they depend upon each other to achieve wild-type levels of protein expression. *Hum Mol Genet* 2013, 22(8):1493-1506.

Dang H, Li Z, Skolnik EY, Fares H: Disease-related myotubularins function in endocytic traffic in Caenorhabditis elegans. *Molecular biology of the cell* 2004, 15(1):189-196.

Amoasii L, Hildyard JCW, Li H, Sanchez-Ortiz E, Mireault A, Caballero D, Harron R, Stathopoulou TR, Massey C, Shelton JM, Bassel-Duby R, Piercy RJ, Olson EN: Gene editing restores dystrophin expression in a canine model of Duchenne muscular dystrophy. *Science* 2018, 362(6410):86-91.
Figure 1

Immunofluorescent staining for myelin basic protein in canine peripheral nerves.

(A, C) Transverse sections (30 μm) obtained from the tibial nerve of a normal Miniature Schnauzer dog stained for myelin basic protein (green) - note the preservation of the peripheral myelin architecture delineating axons within the fascicle; (B, D) Transverse sections (30 μm) obtained from the tibial nerve of an affected Miniature Schnauzer dog - the myelin has lost its organization. C and D are magnified images of A and B white rectangles respectively. Scale bar A, C = 20 μm; scale bar B, D = 10 μm.
Table 1 (on next page)

Miniature Schnauzers genotyped for the candidate variant originating from the initial GWAS set (2 affected cases and 38 controls*), 6 other affected cases and 192 controls.
Table 1 Miniature Schnauzers genotyped for the candidate variant originating from the initial GWAS set (2 affected cases and 38 controls*), 6 other affected cases and 192 controls.

c.2363+1 genotype	Case (n)	Control (n)	Total
G/G	0	220	220
G/T	0	10	10
T/T	8	0	8

P-value 4.4×10^{-15}

* T is mutant allele

* NB Data on c.2363+1 genotype is missing for one control dog
Figure 2

Manhattan plot to illustrate results of GWAS analysis

Manhattan plot on two cases and 39 controls; 74,374 SNPs. The X-chromosome is omitted. Analyses were conducted using Fisher’s exact test and 100,000 permutations to correct for multiple testing using the max(T) permutation procedure in PLINK. EMP2 = corrected empirical P-value.
Figure 3

Sanger sequencing electropherogram traces of the c.2363+1 G>T variant (boxed) in *SBF2* exon 19.

Trace shows the 3’ end of exon 19 and the adjacent intron from PCR products amplified from genomic DNA.
Figure 4

Electropherogram of PCR-amplified cDNA of control and affected dogs.

(A) Electropherogram of PCR-amplified cDNA from a control dog; (B) Electropherogram of PCR-amplified cDNA from an affected dog showing use of a cryptic splice site after disruption of the exon 20 donor site by the c.2363+1 G>T variant. The result is a 40-bp truncation of the transcript. (C) Normal amino acid sequence; (D) The cryptic splice site is positioned at c.2324-c2325 and is predicted to lead to a sequence of 5 aberrant amino acids and premature termination (p.G775Vfs*5).