Data article

Data on nitrogen-containing derivatives of fumaropimaric acid

T.B. Khlebnikova *, V.N. Konev, Z.P. Pai

Borovsky Institute of Catalysis, Department of Catalytic Processes of Fine Chemical Synthesis, Akad. Lavrentiev Pr. 5, Novosibirsk 630090, Russia

ARTICLE INFO

Article history:
Received 22 November 2017
Received in revised form
6 February 2018
Accepted 17 April 2018
Available online 25 April 2018

ABSTRACT

The data presented here are related to the research paper entitled “Levopimaric Acid Derived 1,2-Diamines and Their Application in the Copper-Catalyzed Asymmetric Henry Reaction” [1]. In this data article, we provide 1H, 13C NMR and IR data for the diterpene derivatives described in [1]. The GC–MS analysis of pine oleoresin used as a starting material of the syntheses is also included in the data article.

© 2018 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Specifications table

Subject area	Chemistry
More specific subject area	Organic synthesis, natural products
Type of data	Synthetic schemes, NMR and IR spectra, GC-chromatogram
How data was acquired	NMR spectroscopy: Bruker DRX-500, AM-400 and AV-300; IR spectroscopy: Infralum FT-801 and Shimadzu IRAfinity-1 FT-IR; GC–MS analysis: SHIMADZU GCMS-QP2010 Ultra instrument on the basis of gas chromatograph GC-2010 plus with mass detector
Data format	Raw, analyzed
Experimental factors	The new diterpene derivatives were synthesized and purified by column chromatography or crystallization

DOI of original article: https://doi.org/10.1016/j.tet.2017.11.059

* Corresponding author.
E-mail address: khleb@catalysis.ru (T.B. Khlebnikova).

https://doi.org/10.1016/j.dib.2018.04.059
2352-3409/© 2018 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
Experimental features The synthesized compounds were characterized by NMR and IR spectroscopy
Data source location Novosibirsk, Russian Federation
Data accessibility Data are available with this article

Value of the data

- The data presents NMR, IR spectra of newly synthesized diterpene derivatives and GC–MS analysis of methylated pine oleoresin and could be used by other researchers.
- The provided information on the structural data of diterpenes could be useful for the analysis of spectra and determination of the structure of other diterpene derivatives.
- The data could be helpful for other researchers to identify the compounds described in the research article [1] and to reproduce the experiments reported therein.

1. Data

The dataset presented in this article focuses on characterization of the new diterpene derivatives described in [1]. The article provides the information on the composition of natural raw material (pine oleoresin) and the structural data of the functionalized diterpenes. Scheme 1 illustrates the preparation of mixture of methylated resin acids. The GC–MS analysis of this mixture is given in Fig. 1. Scheme 2 illustrates the method of preparation and isolation of monomethyl ester of fumaropimaric acid 2. The compound 2 was characterized using 1H, 13C NMR and IR (Figs. 2-1, 2-2 and 2-3). Scheme 3 illustrates the synthetic route to the 1,2-disocyanate 3, which was characterized using 1H, 13C NMR and IR (Figs. 3-1, 3-2 and 3-3). Scheme 4 illustrates the synthetic route to the 1,2-diamine 4, which was characterized using 1H, 13C NMR and IR (Figs. 4-1, 4-2 and 4-3). Scheme 5 illustrates the method of preparation of imines 5a-f and aminophenols 6a-f. Figs. 5a-f and 6a-f shows 1H, 13C NMR spectra of the compounds 2 and 4 are provided in [2]. Analyses of the spectra of the compounds 3, 5a-f and 6a-f are provided in [1]. The synthetic procedures for the compounds 2–6 are described in the research article [1].

2. Experimental design, materials and methods

2.1. General information

The chemicals were of reagent purity grade, obtained from commercial sources, and used without further purification. Pine oleoresin OST 13-128-93 (Russian industry standard; oleoresin contains at least 80% of abietic-type acids) was obtained from Orgsyntez OJSC (available on request at http://
orgsyntez.ru/en) and used as received. Solvents were distilled from appropriate drying agents prior to use, unless otherwise noted. Flash column chromatography was performed on silica gel (Panreac 40–63 µm). 1H NMR and 13C NMR spectra were recorded on Bruker DRX-500, AM-400 and AV-300 spectrometers. Chemical shifts were reported in the δ scale using the residual solvent peak of the CHCl$_3$ as a reference (726 ppm) for 1H NMR spectra and the middle signal in the triplet of CDCl$_3$ (77.00 ppm) for 13C NMR samples. IR spectra were recorded using Infralum FT-801 or Shimadzu IRAffinity-1 FT-IR spectrometers. GC–MS analysis of methyl esters of resin acids was carried out on SHIMADZU GCMS-QP2010 Ultra instrument on the basis of gas chromatograph GC-2010 plus with mass detector and with chromatographic column GsBP1-MS 30 m × 0.32 mm.

3. Fumaropimaric acid derivatives

3.1. Methylated pine oleoresin

3.2. 13-isopropyl-17,18-dinor-atis-13-ene-15β,16α-dicarboxy-4-carboxylic acid methyl ester 2
3.3. 13-isopropyl-17,18-dinor-atis-13-ene-15\(\beta\),16\(\alpha\)-diisocyanato-4-carboxylic acid methyl ester 3

3.4. 13-isopropyl-17,18-dinor-atis-13-ene-15\(\beta\),16\(\alpha\)-diamino-4-carboxylic acid methyl ester 4

Scheme 2. Synthesis of monomethyl ester of fumaropimaric acid 2 via Diels-Alder reaction of methyl levopimarate 1a with fumaric acid.

Fig. 2-1. IR spectrum of compound 2.
3.5. Imines 5a-f

3.5.1. 13-Isopropyl-17,18-dinor-atis-13-ene-15β,16α-di(2-hydroxybenzylideneamino)-4-carboxylic acid methyl ester 5a

1H, 13C NMR and IR spectra of the compound 5a are presented in Figs. 5a-1, 5a-2 and 5a-3.

3.5.2. 13-Isopropyl-17,18-dinor-atis-13-ene-15β,16α-di(2-hydroxy-3-methoxybenzylideneamino)-4-carboxylic acid methyl ester 5b

1H, 13C NMR and IR spectra of the compound 5b are presented in Figs. 5b-1, 5b-2 and 5b-3.

3.5.3. 13-Isopropyl-17,18-dinor-atis-13-ene-15β,16α-di(2-hydroxy-3,5-di-tert-butylbenzylideneamino)-4-carboxylic acid methyl ester 5c

1H, 13C NMR and IR spectra of the compound 5c are presented in Figs. 5c-1, 5c-2 and 5c-3.

3.5.4. 13-Isopropyl-17,18-dinor-atis-13-ene-15β,16α-di(2-hydroxy-1-naphthylmethyleneamino)-4-carboxylic acid methyl ester 5d

1H, 13C NMR and IR spectra of the compound 5d are presented in Figs. 5d-1, 5d-2 and 5d-3.

Fig. 2-2. 1H NMR spectrum of compound 2.
3.5.5. 13-isopropyl-17,18-dinor-atis-13-ene-15β,16α-di(2’-pyridyl-methyleneamino)-4-carboxylic acid methyl ester 5e

1H, 13C NMR and IR spectra of the compound 5e are presented in Figs. 5e-1, 5e-2 and 5e-3.

3.5.6. 13-isopropyl-17,18-dinor-atis-13-ene-15β,16α-di(thioph-2-ylideneda)-4-carboxylic acid methyl ester 5f

1H, 13C NMR and IR spectra of the compound 5f are presented in Figs. 5f-1, 5f-2 and 5f-3.
3.6. Aminophenols 6a-f

3.6.1. 13-isopropyl-17,18-dinor-atis-13-ene-15β,16α-di[(2-hydroxybenzyl)amino]-4-carboxylic acid methyl ester 6a

1H, 13C NMR and IR spectra of the compound 6a are presented in Figs. 6a-1, 6a-2 and 6a-3.

3.6.2. 13-isopropyl-17,18-dinor-atis-13-ene-15β,16α-di[(2-hydroxy-3-methoxybenzyl)amino]-4-carboxylic acid methyl ester 6b

1H, 13C NMR and IR spectra of the compound 6b are presented in Figs. 6b-1, 6b-2 and 6b-3.

3.6.3. 13-isopropyl-17,18-dinor-atis-13-ene-15β,16α-di[(2-hydroxy-3,5-di-tert-butylbenzyl)amino]-4-carboxylic acid methyl ester 6c

1H, 13C NMR and IR spectra of the compound 6c are presented in Figs. 6c-1, 6c-2 and 6c-3.

3.6.4. 13-isopropyl-17,18-dinor-atis-13-ene-15β,16α-di[(2-hydroxynaphthalen-1-yl)methylamino]-4-carboxylic acid methyl ester 6d

1H, 13C NMR and IR spectra of the compound 6d are presented in Figs. 6d-1, 6d-2 and 6d-3.
Fig. 3-2. 13C NMR spectrum of compound 3.

Fig. 3-3. IR spectrum of compound 3.
3.6.5. 13-isopropyl-17,18-dinor-atis-13-ene-15β,16α-di[(2-pyridylmethyl)amino]-4-carboxylic acid methyl ester 6e

1H, 13C NMR and IR spectra of the compound 6e are presented in Figs. 6e-1, 6e-2 and 6e-3.

3.6.6. 13-isopropyl-17,18-dinor-atis-13-ene-15β,16α-di[[(thiophen-2-yl)-methyl]amino]-4-carboxylic acid methyl ester 6f

1H, 13C NMR and IR spectra of the compound 6f are presented in Figs. 6f-1, 6f-2 and 6f-3.
Fig. 4-2. 13C NMR spectrum of compound 4.

Fig. 4-3. IR spectrum of compound 4.
Scheme 5. Synthesis of imines 5a-f and aminophenols 6a-f.

Fig. 5a-1. 1H NMR spectrum of compound 5a.
Fig. 5a-2. 13C NMR spectrum of compound 5a.

Fig. 5a-3. IR spectrum of compound 5a.
Fig. 5b-1. 1H NMR spectrum of compound 5b.
Fig. 5b-2. 13C NMR spectrum of compound 5b.

Fig. 5b-3. IR spectrum of compound 5b.
Fig. 5c-1. 1H NMR spectrum of compound 5c.
Fig. 5c-2. 13C NMR spectrum of compound 5c.

Fig. 5c-3. IR spectrum of compound 5c.
Fig. 5d-1. 1H NMR spectrum of compound 5d.
Fig. 5d-2. 13C NMR spectrum of compound 5d.

Fig. 5d-3. IR spectrum of compound 5d.
Fig. 5e-1. 1H NMR spectrum of compound 5e.
Fig. 5e-2. 13C NMR spectrum of compound 5e.

Fig. 5e-3. IR spectrum of compound 5e.
Fig. 5f-1. 1H NMR spectrum of compound 5f.
Fig. 5f-2. 13C NMR spectrum of compound 5f.

Fig. 5f-3. IR spectrum of compound 5f.
Fig. 6a-1. 1H NMR spectrum of compound 6a.
Fig. 6a-2. 13C NMR spectrum of compound 6a.

Fig. 6a-3. IR spectrum of compound 6a.
Fig. 6b-1. 1H NMR spectrum of compound 6b.
Fig. 6b-2. 13C NMR spectrum of compound 6b.

Fig. 6b-3. IR spectrum of compound 6b.
Fig. 6c-1. 1H NMR spectrum of compound 6c.
Fig. 6c-2. 13C NMR spectrum of compound 6c.

Fig. 6c-3. IR spectrum of compound 6c.
Fig. 6d-1. 1H NMR spectrum of compound 6d.
Fig. 6d-2. 13C NMR spectrum of compound 6d.

Fig. 6d-3. IR spectrum of compound 6d.
Fig. 6e-1. 1H NMR spectrum of compound 6e.
Fig. 6e-2. 13C NMR spectrum of compound 6e.

Fig. 6e-3. IR spectrum of compound 6e.
Fig. 6f-1. 1H NMR spectrum of compound 6f.
Fig. 6f-2. 13C NMR spectrum of compound 6f.

Fig. 6f-3. IR spectrum of compound 6f.
Acknowledgements

This work was carried out within the framework of the budget project N AAAA-A17-117041710081-1 for Boreskov Institute of Catalysis. We are grateful to Orgsyntez OJSC for supplying the pine oleoresin. We are grateful to Dr. L.V. Malysheva for IR measurements and Dr. S.A. Prikhod’ko for GC–MS measurements.

Transparency document. Supporting information

Supplementary data associated with this article can be found in the online version at http://dx.doi.org/10.1016/j.dib.2018.04.059.

References

[1] T.B. Khlebnikova, V.N. Konev, Z.P. Pai, Levopimaric acid derived 1,2-diamines and their application in the copper-catalyzed asymmetric henry reaction, Tetrahedron 74 (2018) 260–267.
[2] V.N. Konev, T.B. Khlebnikova, Z.P. Pai, Synthesis of novel optically pure chiral diamine from levopimaric acid, Chem. Sustain. Dev. 19 (2011) 159–162.