Evolution and phylogeny of the deep-sea isopod families Desmosomatidae Sars, 1897 and Nannoniscidae Hansen, 1916 (Isopoda: Asellota)

Saskia Brix1 · Christoph Held2 · Stefanie Kaiser1,3,4 · Robert M. Jennings5 · Amy Driskell6 · Angelika Brandt4,7,8

Received: 5 January 2021 / Accepted: 5 August 2021 / Published online: 13 October 2021
© The Author(s) 2021

Abstract
In the deep sea, the phylogeny and biogeography of only a few taxa have been well studied. Although more than 200 species in 32 genera have been described for the asellote isopod families Desmosomatidae Sars, 1897 and Nannoniscidae Hansen, 1916 from all ocean basins, their phylogenetic relationships are not completely understood. There is little doubt about the close relationship of these families, but the taxonomic position of a number of genera is so far unknown. Based on a combined morphological phylogeny using the Hennigian method with a dataset of 107 described species and a molecular phylogeny based on three markers (COI, 16S, and 18S) with 75 species (most new to science), we could separate Desmosomatidae and Nannoniscidae as separate families. However, we could not support the concept of the subfamilies Eugerdellatinae Hessler, 1970 and Desmosomatinae Hessler, 1970. Most genera of both families were well supported, but several genera appear as para- or even polyphyletic. Within both families, convergent evolution and analogies caused difficulty in defining apomorphies for phylogenetic reconstructions and this is reflected in the results of the concatenated molecular tree. There is no biogeographic pattern in the distribution as the genera occur over the entire Atlantic and Pacific Ocean, showing no specific phylogeographical pattern. Poor resolution at deep desmosomatid nodes may reflect the long evolutionary history of the family and rapid evolutionary radiations.

Keywords Atlantic Ocean · Abyssal · Molecular phylogeny · Taxonomy · Henningian method

Introduction
Despite earlier assumptions of a vast homogeneous environment, the deep sea (i.e., areas below the shelf break of around 200 m) encompasses a high diversity of benthic habitats and related fauna. However, with less than 1% of the deep-sea floor being explored, and most of this sampling concentrated in the Northern Hemisphere, it is probably also one of the least known ecosystems (Gage & Tyler, 1991; Stuart et al., 2008; Ramirez Llodra et al., 2010). In the absence of major biogeographic or physical barriers (compared to shelf environments) as well as several past anoxic events that caused extinction of at least parts of the deep-sea fauna (White, 1988), the deep sea’s high diversity is quite...
remarkable. Nevertheless, knowledge and understanding of the mechanisms and drivers of population divergence and speciation in the deep sea remain scarce (Rex & Etter, 2010).

Although fossils are apparently lacking prior to the Late Cretaceous, there are several lines of evidence arguing for recurring recolonization of the deep sea from shelf habitats (Kawagata et al., 2005; Thuy et al., 2014; Yasuhara et al., 2009) and it seems likely that most of the contemporary deep-sea fauna evolved from ancestors entering the deep sea after the late Cretaceous/Paleocene anoxic events (99–56 mya). However, based on biogeographic as well as molecular data, there is also evidence that at least some of the deep-sea fauna may have survived past anoxia in situ (e.g., as demonstrated for some isopod and echinoderm lineages; Lins et al., 2012; Thuy et al., 2014; Wilson, 1998, 1999).

To date, the phylogeny and biogeography of few faunal taxa have been studied well enough across bathymetric and geographic gradients. Among these, isopods are probably one of the best-known groups, and therefore represent an ideal model to study phylogenetic patterns and underlying processes in a deep-sea context (Brandt et al., 2007; Hessler & Thistle, 1975; Hessler et al., 1979; Kussakin, 1973; Osborn, 2009; Raupach et al., 2004, 2009; Wilson, 1999). Isopods in the asellote superfamily Janiroidea are an especially dominant and diverse faunal taxon comprising of several families, which have probably long thrived in the deep sea and which exhibit distinct morphological adaptations to deep-sea conditions (such as lack of eyes; e.g., Brandt, 1992; Hessler et al., 1979; Lins et al., 2012; Wilson, 1998, 2017). Phylogenetic patterns found within the “munnopsoid radiation” (containing the isopod families Munnopsidae Lilljeborg, 1864, Macrostylidae Hansen, 1916, Desmosomatidae Sars, 1897, and Nannoniscidae Hansen, 1916 among others) suggest an ancient invasion, probably during the early Permian, 232–314 mya (Lins et al., 2012), and subsequent radiation in the deep sea.

With more than 200 species in 32 genera known from all oceanic basins and a large proportion of species still waiting to be described, the Desmosomatidae and Nannoniscidae are particularly diverse and widespread. Although they are predominantly deep-sea taxa, several species have known occurrences on polar and temperate shelves (e.g., Brix & Svavarsson, 2010; Brix et al., 2015; Kaiser et al., 2009; Schiecke & Fresi, 1969; Schiecke & Modigh-Tota, 1976), whereas other species have only been reported from hadal depths (>6000 m; Jennings et al., 2020).

Since the first description of a species of Nannoniscidae, *Nannoniscus oblongus* Sars, 1870, and its classification into the Desmosomatidae by Sars (1897), there has been little doubt about the close relationship of both families (Wägele, 1989). However, morphology-based concepts to thoroughly understand phylogenetic relationships between and within Desmosomatidae and Nannoniscidae are limited (e.g., Vanhöffen, 1914; Hessler, 1970; Siebenaller & Hessler, 1977; 1981; Svavarsson, 1984; Wägele, 1989, Kaiser & Brix, 2007; Wilson, 2008). In fact, it has been discussed whether both families should be combined into one, as strong apomorphies to separate both families were missing (Siebenaller & Hessler, 1977). For example, some genera, such as *Thaumastosoma* Hessler, 1970, *Ketosoma* Kaiser & Brix, 2018, and *Pseudomesus* Hansen, 1916, cannot be unambiguously assigned to either of the families, as they possess both nanoniscid and desmosomatid characters (Gurjanova, 1933; Hansen, 1916; Kaiser & Brix, 2007, 2007; Kaiser et al., 2018; Siebenaller & Hessler, 1977; Svavarsson, 1984; Wägele, 1989; Wilson, 2008). Furthermore, some characters have been revealed as inadequate to define family membership. For the Nannoniscidae, Wilson (2008) discussed the positioning of setae on either the coxa or tergite as a weak character for family assignment, as it is variable and plesiomorphic within the Janiroidea. Furthermore, the mandible subdistal tooth, considered as a synapomorphy for Nannoniscidae, is reduced in the nannoniscid genera *Thaumastosoma*, *Austroniscus* Vanhöffen, 1914 and *Exiliniscus* Siebenaller & Hessler, 1981 species, and it is also present in the Macrostylidae (Wilson, 2008). In the desmosomatid genera Desmosoma G.O. Sars, 1864, *Eugerda* Meinert, 1890 and *Mirabilicoxa* Hessler, 1970, on the other hand, composed setae on pereopod I (a desmosomatid synapomorphy) are reduced, whereas in the nannoniscid genus *Rapaniscus* Siebenaller & Hessler, 1981, composed setae are present. The composed (unequally bifid) seta is understood as strong seta with sensory function (see Hessler, 1970; Fig. 2b, p. 9).

Additionally, within-family relationships are not fully resolved by morphological means. For the Desmosomatidae, Hessler (1970) erected the two subfamilies Eugerdellatinae and Desmosomatinae using the shape of the first pereopod as the main character. Here, particularly the position of the genus *Torwolia* Hessler, 1970, is not entirely clear due to the peculiar subchelate condition of pereopod I (Hessler, 1970; but see Brix, 2007). In their morphological phylogenetic analyses, Riehl et al. (2014) used a number of characters that had not previously been considered to infer the phylogenetic relationships between the two families, including the male spermathecal duct position and position of the coxae of pereopods V-VII. Using these characters for desmosomatids and nannoniscids would imply that for each species both sexes are described. In the majority of species, this is not the case. In some genera, the sexual dimorphism can be strong as observed for *Mirabilicoxa* Hessler, 1970 (Golovan, 2018; Jennings et al., 2020).

Molecular studies to date have investigated relationships of Desmosomatidae and Nannoniscidae to other families within the munnopsoid clade with a limited taxon sampling (Lins et al., 2012; Raupach et al., 2004, 2009). Raupach
(2004) found desmosomatids and nannoniscids to be monophyletic, together representing the sister-group of Macro-
stylidae. Raupach et al. (2009) placed the Desmosomatidae as the sister-group to the Nannoniscidae in their 50%
majority rule consensus tree, while their strict consensus tree was inconclusive. Lins et al. (2012) included sequences
from Raupach et al. (2004, 2009) and found the Nannoniscidae after the Macrostylidae appearing most basal in their
tree with the Desmosomatidae forming the sister-group of a branch including Ichthinosomidae Hansen, 1916, Janirellidae
Menzies, 1956, Mesosignidae Schultz, 1969, and Xostylus
Menzies, 1962 (Janiroidea incertae sedis). Furthermore,
Brix et al. (2015, 2018, 2020), Kaiser et al. (2018), and
Jennings et al. (2020) documented the phylogeny of a sub-
set of taxa within Desmosomatidae and Nannoniscidae with
material from different deep-sea regions of the world (South
Atlantic, North Atlantic, North Pacific, and Central Pacific
respectively) using molecular species delimitation. Yet, so
far, no thorough systematic phylogenetic investigation of
both families exists that includes most of the known supra-
specific taxa. In particular, no sequence data of the “prob-
lemmatic” genera Pseudomesus, Thaumastosoma, or Torwolia have been included in a molecular phylogeny of the two
families. Deciphering the phylogenetic position of these gen-
era could lead to a re-evaluation and possibly new interpre-
tation of characters used in the morphological phylogenetic
literature to define Desmosomatidae and Nannoniscidae.

We comprehensively sampled the deep-sea families Des-
mosomatidae and Nannoniscidae to generate multilocus
molecular (COI, 16S, and 18S) and morphological phylog-
enies, as well as a reanalysis of morphological characters to
assess relationships between and within both families. Here, the question remains if the two families Desmosoma-
tidae and Nannoniscidae can be separated, and if so, can
valuable apomorphies to delimit them be identified? Some
phenotypic features may have evolved independently more
than once within the two families, likely driven by similarity
of environmental settings and thus natural selection (e.g.,
Osborn, 2009). Recently it has been suggested that some
cases of convergent evolution of phenotypic traits may have
a genetic basis (Stern, 2013). Thus, putative cases of mor-
phological homoplasy in this study may be the consequence
of parallel genetic changes.

More specifically, we aimed to assess the monophyly of
genera and subfamilies within Desmosomatidae and Nanno-
iscidae and to elucidate the systematic position of “prob-
lemmatic” genera (i.e., Thaumastosoma, Pseudomesus, and
Torwolia in particular). Our data set comprises over 300
specimens collected from 14 ocean basins spanning the
entire Atlantic Ocean and parts of the Pacific Ocean (Fig. 1).
Hence, the large scope of this work allows the possibility of
estimating divergence times between clades and diversifica-
tion rates within them, to determine if they are regionally
isolated within regions of the Atlantic, and possibly linked
to historical forces (Eilertsen & Malaquias, 2015).

By applying multiple molecular and morphological
approaches, we shed light on the diversity and phylogenetic
relationships in two important isopod families, which should
help to increase our understanding of mechanisms and driv-
ers of evolutionary processes in the deep sea.

Material and methods

Genetics

Specimens for molecular analysis were obtained from seven
cruises on which material was preserved in 96% ethanol to
facilitate DNA extraction and amplification: DIVA-2 (M63/2
in 2005) and -3 (M72/1 in 2009), IceAGE-1 and -2 (M85/3
in 2011 and POS456 in 2013), the Vema-Transit cruise
(S0237 in 2015), and ANDEEP-3 (PS 67/ANT XXII/3 in
2005) (Fig. 1, Table 1).

Before DNA extraction, all isopod specimens were mor-
phologically identified and given individual voucher num-
bers. All voucher specimens are stored at the Zoological
Museum, Hamburg (LIB - Leibnitz Institute for the Analysis
of Biodiversity Change; Zoological Museum, Hamburg; see
Table 1). After DNA extraction, all isopod specimens were
re-checked morphologically to species level using a LEICA
MZ 12.5 stereomicroscope and thus molecular trees were
quality checked and cross-checked with the morphological
identifications. All determinations were entered into an Excel
spreadsheet to use as a baseline for creating maps in QGIS.

Three markers were selected for analysis: the nuclear small
ribosomal subunit (18S), and the mitochondrial cytochrome
c oxidase subunit I (COI) and large ribosomal subunit (16S).
We chose a set of one nuclear gene and two mitochondrial
genes because they are widely used in deep-sea isopod phy-
logenic studies (Brix et al., 2014, 2015; Kaiser et al., 2018;
Lins et al., 2012; Osborn, 2009; Raupach et al., 2007, 2009;
Riehl et al., 2014) and allow for integration with and com-
parison to existing data. DNA extraction, PCR, and sequenc-
ing were as described in Riehl et al. (2014). Sequencing of
all loci was performed at the Smithsonian Institute’s Labo-
ratories of Analytical Biology (LAB) as described in Riehl
et al. (2014). Additionally, these protocols were applied in
the laboratory of the University of Hamburg with material from
the Oslo Fjord sampled in 2014.

Sequences were checked by hand using the Geneious
software (Biomatters Ltd.) to remove primer regions and
regions of low confidence, to resolve mismatches, and
to check for proper amino acid translation (COI). These
quality-checked sequences were screened for contami-
nants by BLAST searches against the GenBank nucleo-
tide database; verified sequences were deposited in Gen-
Bank (Table 1). All specimen and sequence information
including metadata is available under the BoLD dataset DEEPISO under https://doi.org/10.5883/DS-DEEPISO. For COI, sequences were aligned as DNA codons using the CLUSTAL algorithm (Larkin et al., 2007) in BioEdit (Tom Hall, Ibis Therapeutics) with default settings. The 16S and 18S alignments were produced with MAFFT ver. 7 (Katoh & Standley, 2013) using default settings, followed by removal of poorly aligned regions in the online Gblocks v0.91b server (Talavera et al., 2007) using all three options for a less stringent selection. Outgroups were chosen from GenBank or in-house unpublished data based on phylogenetic proximity and availability: three to four randomly chosen representatives from Macrostylidae, Haploniscidae Hansen, 1916, and Munnopsidae. The final alignments were deposited in DRYAD under https://doi.org/10.5061/dryad.9w0vt4bfp.

Aligned sequences were used to estimate phylogenetic trees separately for each locus using Bayesian phylogenetic (BP) algorithms in BEAST 2.4.1 (Bouckaert et al., 2014) using the GTR nucleotide substitution model, with four gamma-distributed categories of rate heterogeneity and estimated equilibrium nucleotide frequencies. A starting tree computed via UPGMA and a Yule process of tree evolution was employed. For COI and 18S, branch rate heterogeneity was modeled with a relaxed uncorrelated lognormal clock; for 16S, branch rate heterogeneity could not be adequately modeled, so a strict clock was employed. All tree computations were started with 10 million steps, then checked with Tracer 1.6 and run further if needed until all effective sample size (ESS) estimates were ≥ 200 with a manually chosen burn-in. Final Bayesian trees were computed using TreeAnnotator, with maximum clade credibility tree using common ancestor heights. Multilocus trees were computed on a reduced dataset comprising all specimens for which sequences were obtained from any two of the three loci (the “2G” dataset). Outgroup sequences from single-locus datasets were combined and included if taxonomic IDs across loci were identical at the conspecific level, or if this was not possible at the

Fig. 1 World map indicating sampling spots for the molecular dataset. White circles indicate nannoniscids in the samples, black squares desmosomatids in the samples. Orange dots with numbers indicate nannoniscid genera where sequences of the type species are available, green and blue squares with numbers indicate desmosomatid genera where sequences of the type species are available and included in the mirrored trees (see Fig. 8)
Table 1 List of all voucher specimens including information about BoLD field ID, morphological determination, Ocean Basin occurrence, and Genbank Accession number. More detailed information is available in the BoLD datasets linked to this study.

Field ID	Taxonomy	Expedition	Ocean Basin	COI	18S	16S
D2D001	Mirabilicoxa sp.	DIVA-2	CAP	MZ128360		
D2D003	Chelator rugosus	DIVA-2	CAP	KJ578686 KJ578678 KJ578667		
D2D006	cf. Mirabilicoxa	DIVA-2	CAP	MZ128306		
D2D012	Chelator rugosus	DIVA-2	CAP	KJ578684 KJ578668		
D2D020	Eugerda sp.	DIVA-2	GUI	MZ151154 MZ128357		
D2D022	cf. Eugerda	DIVA-2	GUI	MZ151099		
D2D023	Chelator aequabilis	DIVA-2	GUI	KJ578689 KJ578662		
D2D029	cf. Monedossa	DIVA-2	GUI	MZ128361		
D2D031	Parvochelus russus	DIVA-2	GUI	KJ578695 KJ578671		
D2D035	Parvochelus russus	DIVA-2	GUI	KJ578696		
D2D037	Eugerda sp.	DIVA-2	ANG	MZ128342		
D2D039	Eugerdella theodori	DIVA-2	GUI	MZ151102		
D2D041	Eugerdella theodori	DIVA-2	GUI	MZ151164		
D2D042	cf. Mirabilicoxa	DIVA-2	GUI	MZ151076 MZ128287		
D2D043	Eugerdella theodori	DIVA-2	GUI	MZ151096		
D2D044	Parvochelus russus	DIVA-2	GUI	KJ578697 KJ578672		
D2D045	Eugerdella theodori	DIVA-2	GUI	MZ151089		
D2D048	cf. Whoia	DIVA-2	GUI	MZ151157 MZ128359		
D2D050	Eugerdella theodori	DIVA-2	GUI	KJ578699 KJ578673		
D2D051	Chelator aequabilis	DIVA-2	GUI	KJ578690 KJ578675 KJ578663		
D2D052	Eugerda sp.	DIVA-2	GUI	MZ128329		
D2D053	Eugerdella huberti	DIVA-2	GUI	HQ214677 KJ578682 HQ214679		
D2D055	Eugerdella cf. huberti	DIVA-2	GUI	MZ151119		
D2D058	Eugerdella theodori	DIVA-2	GUI	MZ151115		
D2D061	Parvochelus russus	DIVA-2	GUI	MZ128303		
D2D062	Eugerdella theodori	DIVA-2	GUI	MZ151129		
D2D063	Eugerdella theodori	DIVA-2	GUI	MZ383786 KJ578680		
D2D064	Eugerdella theodori	DIVA-2	GUI	MZ383787 KJ578679		
D2D065	Eugerdella haberti	DIVA-2	GUI	HQ214678		
D2D074	Eugerda sp.	DIVA-2	GUI	MZ151162		
D2N004	Nannoniscus sp.	DIVA-2	GUI	MZ128300		
D2N008	Exiliniscus sp.	DIVA-2	GUI	MZ151092 MZ128301		
D2N011	Nannoniscus sp.	DIVA-2	GUI	MZ151148 MZ128350		
D2N013	Whoia sp.	DIVA-2	GUI	MZ151124 MZ128328		
D3D001	Rapaniscus sp.	DIVA-3	ARG	MZ128345		
D3D002	Rapaniscus sp.	DIVA-3	ARG	MZ151114		
D3D003	Austroniscus sp.	DIVA-3	ARG	MZ128190		
D3D005	Chelator sp.	DIVA-3	ARG	MZ128222		
D3D006	Disparella sp.	DIVA-3	ARG	MZ128341		
D3D007	Familia nova	DIVA-3	ARG	MZ128267		
D3D008	Rapaniscus sp.	DIVA-3	ARG	MZ151163		
D3D009	Austroniscus sp.	DIVA-3	ARG	MZ128299 MZ128192		
D3D012	cf. Desmosoma	DIVA-3	ARG	MZ128273		
D3D013	Familia nova	DIVA-3	ARG	MZ128184		
D3D018	cf. Nannoniscoides	DIVA-3	ARG	MZ128308		
D3D019	Rapaniscus sp.	DIVA-3	ARG	MZ151146		
D3D020	Disparella sp.	DIVA-3	ARG	MZ128176		
Field ID	Taxonomy	Expedition	Ocean Basin	COI	18S	16S
----------	----------	------------	-------------	------	------	------
D3D030	Austroniscus sp.	DIVA-3	ARG	MZ151128	MZ128333	MZ128240
D3D035	cf. Desmosoma	DIVA-3	ARG	MZ151137		MZ128171
D3D038	cf. Mirabilicoxa	DIVA-3	ARG	MZ151159		MZ128228
D3D043	Mirabilicoxa sp.	DIVA-3	ARG	MZ151079		
D3D045	Mirabilicoxa sp.	DIVA-3	ARG			
D3D047	cf. Desmosoma	DIVA-3	ARG			
D3D051	Austroniscus sp.	DIVA-3	ARG	MZ151108	MZ128315	MZ128210
D3D053	Austroniscus sp.	DIVA-3	ARG	MZ128349		
D3D054	Nannoniscus sp.	DIVA-3	ARG	MZ383788	MZ379978	
D3D055	cf. Eugerdella cf. cornuta	DIVA-3	ARG	MZ128358	MZ128280	
D3D060	Ketosoma werneri	DIVA-3	ARG	MZ128305		
D3D061	cf. Parvochelus	DIVA-3	ARG	MZ15088	MZ128297	MZ128187
D3D063	Regabellator sp.	DIVA-3	ARG	MZ151101	MZ128309	MZ128204
D3D064	Taumastosoma diva	DIVA-3	ARG	MZ15081	MZ128304	MZ128196
D3D066	Mirabilicoxa sp.	DIVA-3	ARG	MZ15082	MZ128296	MZ128186
D3D067	cf. Eugerdella cf. cornuta	DIVA-3	ARG	MZ151081	MZ128293	
D3D068	Mirabilicoxa sp.	DIVA-3	ARG	MZ151101	MZ128309	MZ128204
D3D069	cf. Desmosoma	DIVA-3	ARG	MZ151101	MZ128309	MZ128204
D3D070	Mirabilicoxa sp.	DIVA-3	ARG	MZ151101	MZ128309	MZ128204
D3D071	Mirabilicoxa sp.	DIVA-3	ARG	MZ15081	MZ128304	MZ128196
D3D072	Mirabilicoxa sp.	DIVA-3	ARG	MZ151082	MZ128296	MZ128186
D3D073	cf. Desmosoma	DIVA-3	BRA	MZ128312	MZ128208	
D3D074	Eugerdella sp.	DIVA-3	BRA	MZ128348	MZ128266	
D3D081	Rapaniscus sp.	DIVA-3	BRA	MZ151104	MZ128206	
D3D082	Disparella sp.	DIVA-3	BRA	MZ128370	MZ128391	MZ128376
D3D083	Exiliniscus sp.	DIVA-3	BRA	MZ128324	MZ128323	
D3D086	Mirabilicoxa sp.	DIVA-3	BRA	MZ151116	MZ128224	
D3D088	Pseudomesus sp.	DIVA-3	BRA	MZ151080	MZ128292	MZ128174
D3D099	Prochelator sp.	DIVA-3	BRA	MZ151082	MZ128294	MZ128175
D3D100	Disparella sp.	DIVA-3	BRA	MZ128364	MZ128387	MZ128372
D3D104	Mirabilicoxa sp.	DIVA-3	BRA	MZ128368	MZ128374	
D3D105	Mirabilicoxa sp.	DIVA-3	BRA	MZ128363	MZ128386	MZ128371
D3D106	Mirabilicoxa sp.	DIVA-3	BRA	MZ151136	MZ128339	MZ128251
D3D108	Chelator sp.	DIVA-3	BRA	MZ151135	MZ128249	
D3D110	Whoia sp.	DIVA-3	BRA	MZ151077	MZ128288	
D3D111	Eugerdella sp.	DIVA-3	BRA	MZ128352	MZ128270	
D3D112	cf. Eugerda	DIVA-3	BRA	MZ128352	MZ128270	
D3D113	cf. Desmosoma	DIVA-3	BRA	MZ151107	MZ128213	
D3D115	Eugerdella sp.	DIVA-3	BRA	MZ151110	MZ128316	MZ128213
D3D116	Eugerdella sp.	DIVA-3	BRA	MZ151107	MZ128240	
D3D117	Eugerdella sp.	DIVA-3	BRA	MZ151142	MZ128259	
D3D118	Prochelator sp.	DIVA-3	BRA	MZ128335	MZ128243	
D3D121	Chelator sp.	DIVA-3	BRA	MZ151144	MZ128346	MZ128261
D3D123	Prochelator sp.	DIVA-3	BRA	MZ151121	MZ128221	
D3D125	Exiliniscus sp.	DIVA-3	BRA	MZ128215		
D3D126	Mirabilicoxa sp.	DIVA-3	BRA	MZ151160		
D3D130	Eugerdella sp.	DIVA-3	BRA	MZ151134		
D3D138	cf. Desmosoma	DIVA-3	BRA	MZ151151		
Table 1 (continued)

Field ID	Taxonomy	Expedition	Ocean Basin	Genbank Accession number		
D3D140	Exiliniscus sp.	DIVA-3	BRA	MZ151123 MZ128327 MZ128234		
D3D141	Exiliniscus sp.	DIVA-3	BRA	MZ151143		
D3D142	Hebefustis sp.	DIVA-3	BRA	MZ151106		
D3D143	Prochelator sp.	DIVA-3	BRA	MZ128340 MZ128252		
D3D146	Regabellator sp.	DIVA-3	BRA	MZ128290 MZ128172		
D3D148	Mirabilicoxa sp.	DIVA-3	BRA	MZ151097		
D3D149	cf. Eugerda	DIVA-3	BRA	MZ128310 MZ128205		
D3D150	Mirabilicoxa sp.	DIVA-3	BRA	MZ128355 MZ128274		
D3D152	Mirabilicoxa sp.	DIVA-3	BRA	MZ128369 MZ128390 MZ128375		
D3D153	Mirabilicoxa sp.	DIVA-3	BRA	MZ151130 MZ128334 MZ128241		
D3D154	Chelator sp.	DIVA-3	BRA	MZ151139 MZ128343 MZ128255		
D3D155	Mirabilicoxa sp.	DIVA-3	BRA	MZ128336 MZ128344		
D3D156	Parvochelus russus	DIVA-3	BRA	KJ578694		
D3D157	Parvochelus russus	DIVA-3	BRA	KJ578698 KJ578674		
D3D158	Disparella sp.	DIVA-3	BRA	MZ128367 MZ128389 MZ128373		
D3D159	Eugerdella sp.	DIVA-3	BRA	MZ128289 MZ128169		
D3D160	Eugerdella sp.	DIVA-3	BRA	MZ128242		
D3D161	Eugerdella sp.	DIVA-3	BRA	MZ128320 MZ128220		
D3D163	Eugerdella sp.	DIVA-3	BRA	MZ128318 MZ128218		
D3D165	Eugerdella sp.	DIVA-3	BRA	MZ151152 MZ128354 MZ128272		
D3D166	Eugerda sp.	DIVA-3	BRA	MZ128314		
D3D168	Exiliniscus sp.	DIVA-3	BRA	MZ151103 MZ128311		
D3D169	Exiliniscus sp.	DIVA-3	BRA	MZ151132 MZ128338 MZ128245		
D3D170	Exiliniscus sp.	DIVA-3	BRA	MZ151149 MZ128351 MZ128269		
D3D171	Exiliniscus sp.	DIVA-3	BRA	MZ151150 MZ128353 MZ128271		
IA2Desm01	Oecidiobranchus otu3	IceAGE2	NCH	MG895881		
IA2Desm02	Oecidiobranchus cf. nanseni	IceAGE2	NCH	MG895894		
IA2Desm03	Oecidiobranchus otu3	IceAGE2	FIR	MG895880		
IDesm001	Mirabilicoxa sp.	IceAGE1	ICE	MZ151078		
IDesm002	Mirabilicoxa sp.	IceAGE1	ICE	MZ128168		
IDesm003	Mirabilicoxa sp.	IceAGE1	ICE	MZ128256		
IDesm004	Mirabilicoxa cf. similis	IceAGE1	ICE	MZ128194		
IDesm008	Eugerda cf. reticulata	IceAGE1	ICE	MZ128235		
IDesm010	Thaumastosoma cf. platycarpus	IceAGE1	ICE	MF040897 KY951740 KY951735		
IDesm012	Thaumastosoma cf. platycarpus	IceAGE1	ICE	MF040896 KY951734		
IDesm013	Mirabilicoxa cf. acuminata	IceAGE1	ICE	MZ151117 MZ128225		
IDesm014	Chelator insignis	IceAGE1	ICE	KJ710289 KJ630816 KJ630813		
IDesm015	Chelator insignis	IceAGE1	ICE	KJ710302 KJ630817 KJ397325		
IDesm016	Pseudomesus cf. brevicornis	IceAGE1	ICE	MZ151165 MZ128285		
IDesm017	Mirabilicoxa sp.	IceAGE1	ICE	MZ151109 MZ128212		
IDesm018	Mirabilicoxa cf. longispina	IceAGE1	ICE	MZ151127 MZ128237		
IDesm019	Mirabilicoxa cf. gracilipes	IceAGE1	ICE	MZ151155 MZ128277		
IDesm022	cf. Mirabilicoxa	IceAGE1	ICE	MZ151156 MZ128279		
IDesm023	cf. Mirabilicoxa	IceAGE1	ICE	MZ151095 MZ128195		
IDesm024	cf. Mirabilicoxa	IceAGE1	ICE	MZ151093 MZ128193		
IDesm028	Mirabilicoxa sp.	IceAGE1	ICE	MZ151161 MZ128282		
IDesm030	Eugerda cf. reticulata	IceAGE1	ICE	MZ128202		
IDesm032	cf. Mirabilicoxa	IceAGE1	ICE	MZ151138 MZ128254		
Field ID	Taxonomy	Expedition	Ocean Basin	Genbank Accession number		
----------	----------	------------	-------------	--------------------------		
IDesm033	Chelator insignis	IceAGE1	ICE	MZ379981		
IDesm034	Prochelator lateralis	IceAGE1	ICE	MZ351257		
IDesm035	Chelator insignis	IceAGE1	ICE	KJ710278 KJ630818 KJ630812		
IDesm038	Chelator insignis	IceAGE1	ICE	KJ710294 KJ630811		
IDesm039	Chelator cf. insignis	IceAGE1	ICE	KJ937311		
IDesm041	Thaumastosoma cf. platycarpus	IceAGE1	ICE	MF040895	KY951733	
IDesm042	Chelator vulgaris	IceAGE1	ICE	KJ710288	KJ630819	MZ379982
IDesm045	Thaumastosoma cf. platycarpus	IceAGE1	ICE	MF040894	KY951732	
IDesm046	Thaumastosoma cf. platycarpus	IceAGE1	ICE	MF040898	KY951736	
IDesm047	Eugerda cf. armata	IceAGE1	ICE	MZ151084		
IDesm049	Eugerda cf. reticulata	IceAGE1	ICE	MZ151158		
IDesm052	Eugerda sp. 2	IceAGE1	ICE	MZ151085		
IDesm054	Chelator insignis	IceAGE1	REY	KJ710304	KJ630808	
IDesm057	Echinopleura aculeata	IceAGE1	REY	MZ128182		
IDesm058	Chelator insignis	IceAGE1	ICE	KJ710306	KJ630820	KJ630815
IDesm075	Oecidiobranchus cf. nanseni	IceAGE1	IRM	MG831406	MG895890	
IDesm078	Eugerda cf. tenuimana	IceAGE1	IRM	MZ151158		
IDesm082	Pseudomesus sp.	IceAGE1	DEN	MZ128260		
IDesm083	Pseudomesus sp.	IceAGE1	DEN	MZ128199		
IDesm085	Eugerda sp. 3	IceAGE1	DEN	MZ151141		
IDesm095	Chelator insignis	IceAGE1	ICE	KJ710284	KJ630822	KJ937317
IDesm100	Chelator insignis	IceAGE1	ICE	KJ710285	KJ630823	KJ937318
IDesm115	Chelator insignis	IceAGE1	ICE	KJ710312	MZ379979	KJ937333
IDesm131	Chelator insignis	IceAGE1	ICE	KJ630824	KJ937312	
IDesm132	Mirabilicoxa sp.	IceAGE1	IRM	MZ128170		
IDesm133	Mirabilicoxa sp.	IceAGE1	IRM	MZ128250		
IDesm136	Chelator insignis	IceAGE1	REY	KJ710283	MZ379980	KJ937316
IDesm158	Oecidiobranchus cf. plebejum	IceAGE1	NOR	MG831394	MG895874	
IDesm161	Oecidiobranchus cf. plebejum	IceAGE1	NOR	MG831392	MG936645	MG895872
IDesm162	Oecidiobranchus cf. plebejum	IceAGE1	NOR	MG831391	MG936644	MG895871
IDesm170	Pseudomesus brevicornis	IceAGE1	NOR	MZ128198		
IDesm173	Echinopleura aculeata	IceAGE1	REY	MZ151113	MZ128319	MZ128219
IDesm180	Chelator insignis	IceAGE1	ICE	KJ937306	KJ630826	MZ379983
IDesm183	Chelator insignis	IceAGE1	REY	KJ937308	KJ630828	MZ379984
IDesm187	Mirabilicoxa sp.	IceAGE1	DEN	MZ128178		
IDesm190	Thaumastosoma platycarpus	IceAGE1	ICE	MZ128226		
IDesm191	Prochelator lateralis	IceAGE1	REY	MZ151140		
IDesm192	Prochelator lateralis	IceAGE1	REY	MZ128284		
IDesm193	Pseudomesus brevicornis	IceAGE1	ICE	MZ151083		
IDesm195	Pseudomesus brevicornis	IceAGE1	ICE	MZ128229		
IDesm204	Chelator insignis	IceAGE1	ICE	KJ937303	MZ379985	
IDesm206	cf. Mirabilicoxa	IceAGE1	ICE	MZ128246		
INann39	Austroniscus cf. groenlandicus	IceAGE1	ICE	MZ151074		
INann40	Pseudomesus sp.	IceAGE1	ICE	MZ128253		
INann43	Pseudomesus sp.	IceAGE1	ICE	MZ128188		
KJ277	Prochelator lateralis	Oslo Fjord	OSF	MZ128325		
KJ280	Prochelator lateralis	Oslo Fjord	OSF	MZ128331	MZ128238	
KJ281	Prochelator lateralis	Oslo Fjord	OSF	MZ128268		
congeneric level. The Bayesian 2G tree was computed in BEAST2 as above, with site and clock models unlinked across loci.

To estimate divergence times for clades in the molecular trees, divergence estimates from Lins et al. (2012) were used as calibration points in the 2G Bayesian tree, employing normally distributed priors with means taken from Fig. 1 (pg. 980). The divergence of Haploniscidae (our outgroup) was placed at 310 mya and given a variance of 60 mya to correspond to the 95% credibility interval of Lins et al. (2012). The divergence of Nannoniscidae was placed at 260 mya; and the divergence of Desmosomatidae was placed at 210 mya; because no credibility intervals were available for these latter dates, variances of 60 mya were applied here as well. The resulting calibrated 2G tree was used to perform lineage through time (LTT) analysis with the “speciation-extinction” model in BAMM (Rabosky, 2014), to determine if significant changes in speciation and extinction rates have occurred in these taxa. Initial values for priors were selected empirically using setBammpriors, a function in the companion BAMMtools package in R. Five million Markov chain steps were employed, with four heated chains (Metropolis coupling); a deltaT of 0.1 (lowest chain 77% heating) was selected to promote mixing among chains while maintaining the suggested acceptance rates. The expected number of rate shifts was varied among runs from 1 to 3. The first 10% of each run was excluded as burn-in, and BAMMtools was used to ensure the effective sample size (ESS) of the remaining steps was >200. Functions in BAMMtools were used to analyze the output file and produce estimates and confidence parameters as described in the online documentation and guide. For comparison, speciation and extinction rates were estimated using the TESS package (Hoehna et al., 2015) in R, with hyper-parameters estimated empirically, a fraction 0.75 of unsampled lineages among Desmosomatidae and Nannoniscidae, and the MCMC chain run until the ESS reached 500. Replicate runs were conducted with normally distributed priors, and with lognormally distributed priors.

Table 1 (continued)

Field ID	Taxonomy	Expedition	Ocean Basin	COI	18S	16S
KJ288	Echinopleura cf. aculeata	Oslo Fjord	OSF	MZ128298		
KJ291	Prochelator lateralis	Oslo Fjord	OSF	MG936646		
KJ292	Prochelator lateralis	Oslo Fjord	OSF	MZ128337 MZ79986		
DE1	Chelator sp.	ANDEEP	SO	KJ578691 AY461460		
DE2	Mirabilicoxa sp.	ANDEEP	SO	AY461461		
DE4	Prochelator sp.	ANDEEP	SO	MZ337818 AY461462		
DE7	Eugerda sp.	ANDEEP	SO	AY461463		
KM14_Is259_1	Ketosoma sp. nov. 2	MANGAN	CCZ	KY693694 KY693698		
KM14_Is261_2	Ketosoma sp. nov. 2	MANGAN	CCZ	KY693695 KY693697		
NB12_Is740_9	Ketosoma sp. nov. 1	MANGAN	CCZ	KY693696		
NB1iso337	Ketosoma raehelmanni	MANGAN	CCZ	KJ726158		
VTDes001	Disparella sp.	VEMA-TRANSIT	VEM	MF325479 MF325728 MF325639		
VTDes007	Torvolla sp.	VEMA-TRANSIT	VEM	MF325577 MF325781 MF325692		
VTDes008	Pseudomesus sp.	VEMA-TRANSIT	VEM	MF325557 MF325770 MF325684		
VTDes011	Eugerda sp.	VEMA-TRANSIT	VEM	MF325489 MF325735		
VTDes012	Eugerda sp.	VEMA-TRANSIT	VEM	MF325490 MF325736		
VTDes013	Ketosoma vemae	VEMA-TRANSIT	VEM	MF040892 KY951737 KY951730		
VTDes014	Whoia sp.	VEMA-TRANSIT	VEM	MF325578 MF325782		
VTDes019	Pseudomesus sp.	VEMA-TRANSIT	VEM	MF325554 MF325768 MF325681		
VTDes024	Torvolla sp.	VEMA-TRANSIT	VEM	MF325576 MF325780 MF325691		
VTDes031	Parvochelus sp.	VEMA-TRANSIT	VEM	MF325537 MF325756 MF325671		
VTDes033	Chelator sp.	VEMA-TRANSIT	VEM	MF325441 MF325707 MF325604		
VTDes036	Disparella sp.	VEMA-TRANSIT	VEM	MF325478 MF325727		
VTDes108	Prochelator barnacki	VEMA-TRANSIT	VEM	MF325543 MF325760		
VTDes112	Prochelator sp.	VEMA-TRANSIT	VEM	MF325545 MF325761		
VTDes159	Torvolla sp.	VEMA-TRANSIT	VEM	MF325575 MF325779 MF325690		
VTDes161	Eugerda sp.	VEMA-TRANSIT	VEM	MF325484 MF325732		
VTDes569	Ketosoma hessleri	VEMA-TRANSIT	VEM	KY951729		
Assessment of convergence and generation of output plots were conducted in R according to suggestions in the TESS manual, and the run configuration with the best convergence statistics was chosen. The R package phyltools was also used to test the fit of simple models including speciation only (the Yule model) vs. speciation and extinction (the birth–death model).

To estimate the number of species (or Operational Taxonomic Units, OTUs) in the molecular datasets, species delimitation (SD) analyses were conducted on the full COI and 16S ingroup datasets (18S has too slow a mutation rate, and the 2G dataset included too few taxa with enough putative species lineages). Three analyses were conducted on each dataset: ABGD (Automatic Barcode Gap Detection, Puillandre et al., 2011), single-threshold GMYC (General Mixed Yule Coalescent, Pons et al., 2006), and mPTP (multiple Poisson Tree Process, Kapli et al., 2016). The ABGD analysis was performed on aligned sequences using the online website (https://bioinfo.mnhn.fr/abi/public/abgd/abgdweb.html) using K2P distance. GMYC and mPTP were performed on the Bayesian trees from BEAST2; GMYC was performed using its R package, and mPTP with the command-line software, with 3 replicate runs of 100 million steps, discarding the first 1% as burn-in.

Morphology

To be included in the morphological phylogenetic analysis, specimens had to be assignable to described species. The material examined was sampled during the scientific cruises DIVA-1 (Latitudinal Gradients of deep-sea BioDIVersity in the Atlantic Ocean) with RV Meteor in summer 2000, ANDEEP I–II (ANtarctic benthic DEEP-sea biodiversity, colonization history, and recent community patterns) in Antarctic spring 2002. Additionally, type material from the following museums was studied: Australian Museum, Sydney (AM); United States National Museum of Natural History, Washington D.C. (USNM); Zoological Museum of the University of Copenhagen (ZMUC); Museum für Naturkunde, Berlin and Zoological Museum, Hamburg (ZMH) (a detailed list of type specimens used is available as Electronic Supplement 1).

Type localities of the species included in the morphological analysis presented by Wägele (2004) were housed in Bonn and accessed by SB January 2020).

Maps were created using QGIS version 2.16 based on distribution data available in OBIS, GBIF, and all literature available summarized in the so called “Asselkartei” literature collection of Johann-Wolfgang Wägele (currently housed in Bonn and accessed by SB January 2020).

For the morphological analysis, the eight steps of a complete phylogenetic analysis presented by Wägele (2004) were followed. Wägele (2004) adopted the Hennigian method of modern cladistics. Although the basis of our phylogenetic approach is the Hennigian method, we highlight that we follow the methodology described by Wägele (2004) as “phylogenetic cladistics”, i.e., a further development of the Hennigian method. This includes, for example, “traditional” steps like the “a priori” analysis (i.e., the character discussion, see Electronic Supplement 2) and character weighting as well as the use of computer programs.

The morphological phylogenetic analysis was based on a character matrix (Table 2) established with the program DELTA (Description Language for Taxonomy, DELTA Editor, 1.04, © CSIRO 1998–2000, Dallwitz, 1980; Dallwitz et al., 1999) and NEXUSEDITOR (version 0.5.0 © Roderic D.M. Page, University of Glasgow, 2001). PAUP (Swofford, 1998: Phylogenetic Analysis Using Parsimony) was used to conduct the analysis (β test version 4.0b10 for Windows) after converting the DELTA matrix into a nexus file. The DELTA matrix contains 107 taxa and 129 characters. To distinguish the outgroup from the ingroup, 12 characters were used. The character matrix concentrates on highly complex characters, which are hypothesized to be phylogenetically informative. Macrostylidae are defined as the outgroup because they are regarded as closely related to Desmosomatidae and Nannoniscidae, but are clearly differentiated from them by more than 10 synapomorphies (Riehl et al., 2014; Wägele, 1989).

The choice of Macrostylidae as outgroup, and its systematic position relative to the ingroups (Desmosomatidae and Nannoniscidae) is based on work by Wägele (1989) and Raupach et al., (2004, 2009). From both morphological and molecular genetic analyses, there is consensus in choosing Macrostylidae as the outgroup (see above), although there are differences in the systematic position of Macrostylidae and Munnopsidae.

In the molecular study of Lins et al. (2012), munnopsids were the sister taxon to desmosomatids while in the morphological analysis, macrostylids were the sister taxon. This placement makes macrostylids an ideal choice as outgroup.

Characters of Nannoniscidae and Desmosomatidae were treated equally and analyzed as one group. Characters of sexual dimorphism were not used within the phylogenetic analysis because males and females are not known for all species. For the phylogeny, only adult specimens or preparatory females are described in detail. A list of all characters and their a priori weighting sensu Wägele (2004) is presented in Electronic Supplement 3. We followed Richter (2005) in using character weighting by splitting characters into subcharacters according to Wägele (2004) as long as the substructures are tested for homology, as was done in our character analysis (Electronic Supplement 2).

All characters (see Figs. 4, 5) are discussed on the basis of the principles of a phylogenetic analysis sensu Hennig (1966, 1984) and Wägele (2004) implying that the plesiomorphy is relevant for all other taxa (see Electronic Supplements 1, 2, 3). Genera defined by monotypy were included (except for Chelibranchus Mezhov, 1986 and Micromesus Birstein, 1963) because they support groups of related taxa.
For all other genera, a minimum number of two species (type species plus an additional species) were used.

A heuristic search using the software PAUP was conducted with randomized addition of taxa \((\text{addseq} = \text{random}) \) using tree bisconnection-reconnection (TBR) as swapping algorithm. One thousand replicates were performed \((\text{nchuck} = 3, \text{chuckscore} = 1, \text{nreps} = 1000 \text{ randomize} = \text{trees}) \). Both accelerated transformation \((\text{Acctran}) \) and delayed transformation \((\text{Deltran}) \) were tested as character state optimisation criteria. Consensus trees were calculated and drawn with TreeView \((\text{version} \ 1.6.6, \ \copyright \ \text{Roderic D. M. Page, 2001; Page, 1996}) \). Figures were finalized using Photoshop CS5.

Results

Species diversity and delimitation

The three SD methods \((\text{ABGD, GMYC, mPTP}) \) produced largely congruent delimitations for both COI \((\text{Fig. 6}) \) and 16S \((\text{Fig. 7}) \). Out of 121 lineages in COI, ABGD delimited 64 species, GMYC 68, and mPTP 64; out of 155 lineages in 16S ABGD delimited 74 species, GMYC 80, and mPTP 75. These OTUs include 13 valid species names for 16S, nine for COI, and 16 combined; the remaining OTUs were either potentially species new to science or identified to genus level only.
The morphological dataset contains 107 described species including the type species of all genera except for Nannoniscus, whereas the genetic dataset is limited to 74–80 species (see above), most of which are new to science and not yet described by morphological characters. The molecular 2G tree (mirrored to the morphological tree in Fig. 8, with some nodes reordered to maximize vertical correspondence) includes type species of 25 genera (labeled with asterisks). Of the seven type species present in the molecular tree, only Thaumastosoma platycarpus Hessler, 1970 and Pseudomesus brevicornis Hansen, 1916 are included in both datasets. In the case of Pseudomesus brevicornis, sequence data are from the area of the type locality, but not in the case of Thaumastosoma platycarpus.

Morphological and molecular topologies

Morphological versus molecular phylogeny

The morphological and molecular phylogeny

The morphological and molecular 2G trees were largely congruent (Fig. 8). Twelve of the 20 genera present in both trees are monophyletic in both (three nannoniscid and nine desmosomatid genera). The 2G tree recovered Nannoniscidae + Desmosomatidae (the ingroup) as reciprocally monophyletic sister-taxa with high support (0.89–1.00; Fig. 8B). All single-gene trees recovered this ingroup as monophyletic relative to Haploniscidae; however, the monophyly and sister status of Nannoniscidae and Desmosomatidae were only recovered in 18S among single-gene trees (with full support; Electronic Supplement 4). For COI, a
Table 2 DELTA morphological phylogenetic analysis was based on a character matrix

Species	Characters
Maceretipus angustatus	
Maceretipus melanoe	
Maceretipus robustus	
Acanthomus aculeatus	
Acanthomus solenarius	
Acanthomus sordidus	
Balkitalsius atavanicum	
Chelidax eider	
Chelidax magnum	
Chelidax venaverus	
Chelidax vulgaris	
Chelidax antarticus	
Cryodesma aperti	
Cryodesma cryolobulare	
Cryodesma polare	
Desmosoma alpigenum	
Desmosoma helenae	
Desmosoma lyaurce	
*Desmosoma luetne*i	
Desmosoma rhombopinna	
Desmosoma stramineus	
Desmosoma thoracicum	
Diaparella furculis	
Diaparella pelodovis	
Diaparella muscula	
Diaparella rheocharis	
Diaparella isidri	
Echinopleura aculeata	
Echinopleura cephalomagna	
Eugerdella avanetana	
Eugerdella agravia	
Eugerdella elgari	
Eugerdella laevigata	
Eugerdella helvatica	
Eugerdella lucida	
Eugerdella lateri	
Desmosoma oceanicus	
Eugerdella heckleri	
Eugerdella alvarengi	
Eugerdella nigripes	
Eugerdella nigriata	
Eugerdella theocharis	
Eutheleidae cephalus	
Eutheleidae acutocirrus	

Note: The table entries represent character states for each species, with binary characters indicating the presence or absence of specific morphological features.
monophyletic Nannoniscidae was fully supported but fell among desmosomatid clades (Electronic Supplement 5), and for 16S neither group was monophyletic (Electronic Supplement 6). In both—morphological and molecular analyses—Pseudomesus is clearly positioned within Desmosomatidae. Although the morphological data do not resolve at family level, the clade of Pseudomesus also contains two Eugerdella Kussakin, 1965 species. By contrast, our morphological data suggest Thaumastosoma to be the sister clade of Whoia Hessler, 1970 within Desmosomatidae, whereas in the molecular data (2G, 18S), the genus is clearly positioned within Nannoniscidae next to Ketosoma Kaiser & Brix, 2018 as a sister taxon. It should be noted that the consistency index of all trees found in the morphological phylogenetic analysis is low. Consequently, the homoplasy index is high. The retention index (0.8182) is thought to not be distorted by autapomorphies and symlesiomorphies (Wägele, 2001). This index is distinctly higher than the holomorphy index (0.6815). In total, 49 apomorphies were found only once in the trees, 27 apomorphies twice, while 53 occurred more than twice. Due to these difficulties, morphological tree bootstrap values are not shown.

Within Nannoniscidae, four genera out of the seven present in the 2G tree (Fig. 8) were monophyletic (Austroniscus Vanhöffen, 1914, Exiliniscus Siebenaller & Hessler, 1981, Ketosoma, Thaumastosoma); the same number of genera was monophyletic in the 18S, COI, and 16S trees. Within Desmosomatidae, eight genera out of 14 present in the 2G and 18S trees were monophyletic (Chelator Hessler, 1970, Echinopleura G. O. Sars, 1897 [18S only], cf. Desmosoma G. O. Sars, 1864, Disparella Hessler, 1970, Oecidiobranchus Hessler, 1970, Parvochelus Brix & Kihara, 2015, Prochelator Hessler, 1970 [2G only], Pseudomesus, and Torwolia); this number fell to six in COI and 16S. Support of intermediate nodes was generally highest in the 2G and 18S trees, moderate in COI, and low in 16S. No support was recovered in any molecular tree for the two subfamilies defined by Hessler (1970). In both trees—morphological and molecular—Torwolia was recovered as incertae sedis (Hessler, 1970). Genetic data place the genus in a basal polytomy, whereas the morphological strict consensus shows Torwolia as sister clade to a Desmosoma + Eugerdella clade. The 2G, COI, and 16S trees all exhibited topologies with large evolutionary distances between ingroup and outgroup.

Divergence times, biogeography, and speciation rates

Bayesian estimates of divergence times suggested 263 mya for Haploniscidae, 231 mya for Nannoniscidae, and 306 mya for Desmosomatidae. Both trees tend to have many branches in two “zones” or time periods: near the base of the tree at the nannoniscid/desmosomatid split, and near the tips at the level of genera/species. Both TESS and BAMM detected a significant increase in speciation rate in the older time period, around 270 mya (TESS, Bayes Factor (BF) ≈3) to 330 mya (BAMM, posterior support 0.93–0.95); in BAMM, there was low posterior support of 0.05–0.07 for an increase only in the desmosomatids. TESS also detected a significant, larger increase in speciation rate in the more recent time period, about 10 mya (BF≈12). TESS also detected a significant increase in extinction rate just prior to this period, from roughly 27–10 mya (BAMM does not
Phylogeny of the deep-sea isopod families Desmosomatidae and Nannoniscidae

Discussion

One or two families?

Our molecular phylogenetic analyses revealed Desmosomatidae and Nannoniscidae to form two well-supported monophyletic clades in the 18S and 2G trees. These datasets represent different inheritance modes and substitution rates, increased by the fact that the faster evolving ribosomal expansion segments in the 18S gene are greatly enlarged in peracarid crustaceans (Raupach et al., 2009). The combination of quickly evolving expansion segments with highly conserved segments likely gave 18S the greatest resolution; conversely, COI and 16S were better resolved at the genus and species level.

The genetic results were not identical to morphological findings, where family-level relationships for Desmosomatidae and Nannoniscidae remained unresolved in a basal polytomy consisting of six major clades (Desmosoma atypicum Schiecke & Fresi, 1969, D. hessleri Brandt, 1992, Austroniscus+Nannoniscoides, “Nannoniscidae s.s., Desmosomatidae s.s. and Pseudomesus + Eugerda, Fig. 8A). Notably, Thaumastosoma spp. is nested within the Desmosomatidae, whereas Pseudomesus spp., together with two Euderella species, formed a separate clade distinct from all other desmosomatid and nannoniscid genera. By contrast, molecular analysis clearly assigned Thaumastosoma and Ketosoma to Nannoniscidae and Pseudomesus to Desmosomatidae. One reason for explaining the discrepancy between molecular and morphological topologies might be their different taxonomic scopes: the molecular data contained 21 genera of mostly undescribed species, as opposed to 31 genera, including most of their type species, in the morphological data set. Still, sequences of type species for seven genera were contained in the molecular trees.

Recent phylogenetic work on asellote isopods supports the hypothesis of a rapid and profuse radiation in this group (i.e., a great number of many species generated very quickly), including multiple independent radiations from shallow water into the deep sea (e.g., Osborn et al., 2009; Raupach et al., 2009; Lins et al., 2012; Riehl et al., 2014). In this context, the polytomies and short interior branches recovered in our trees should not only be thought of as a lack of resolution; they also represent the nature of rapid radiation itself, which would make obvious and robust apomorphies difficult to uncover, and would create less genetic differentiation among species than would otherwise be expected. Indeed, LLT analyses (Fig. 8C) provide intriguing evidence for exactly such an increase at the desmosomatid/nannoniscid split, which was likely paralleled in other asellote taxa.

It is known that incomplete taxon sampling can make it difficult to deduce sister relationships. This has more of an influence at higher taxonomic levels than when inferring species relationships (Purvis & Agapow, 2002). A phylogenetic study by Riehl et al. (2014) represents a comprehensive morphological phylogenetic study that includes representative families of the munnopoid radiation. Using a very reduced taxon sampling for Desmosomatidae and Nannoniscidae respectively, their analyses nevertheless recovered monophyly of both families, while our much more comprehensive morphological data set failed to infer clear phylogenetic relationships. Remarkably, their analysis included the systematically ambiguous genera Thaumastosoma/Ketosoma and Pseudomesus, which they assigned to Nannoniscidae and Desmosomatidae respectively in line with our molecular data (Riehl et al., 2014).
Outgroup choice can have a significant effect on estimated phylogenetic relationships, as demonstrated by Puslednik and Serb (2008). Compounding this difficulty is the munnopsoid radiation itself, which appears to have been rapid and profuse (Lins et al., 2012), nevertheless, despite these authors using different outgroups, Desmosomatidae and Nannoniscidae were consistently recovered as separate, monophyletic taxa.

Based on molecular analysis, both families are clearly monophyletic, when *Pseudomesus* is excluded from the Nannoniscidae, and *Thaumastosoma* and *Ketosoma* are included. Although neither data type should be assumed to be superior to the other (Pisani et al., 2007), diagnostic characters have to be re-evaluated since those currently proposed are not phylogenetically informative. According to Wägele (1989), the following synapomorphies define Nannoniscidae: ventral rows of natatory setae present on pereopods V–VII (Fig. 5L); uropods short covering the anus valves (Fig. 5F/G). In addition, Wilson (2008) reviewed the taxonomic concepts of the Nannoniscidae and pointed out the complexity of characters as discussed in detail further below (see the “Within-family relationships: Nannoniscidae” section).

Desmosomatidae, on the other hand, have been diagnosed as follows: carpus of pereopod I bearing a ventral row of enlarged composed setae (Fig. 5O/P/Q) and a dorsal row of long simple setae; carpus and propodus of pereopod II bearing a ventral row of enlarged composed setae and a dorsal row of long setae (Fig. 5H/J); antennula article 2 with (only) 2 articulated broom setae (Fig. 5D). Although in the molecular analyses, *Thaumastosoma* was placed solidly in
Nannoniscidae and *Pseudomesus* solidly in Desmosomatidae, both have ventral rows of natatory setae present on pereopods V–VII (Fig. 5L) as expected for nannoniscids. In addition, species within *Pseudomesus* have short uropods that often cover the anus valves (Fig. 5F), which are considered a nannoniscid synapomorphy. On the other hand, *Rapaniscus* Siebenaller & Hessler, 1981 provides an example of a nannoniscid genus that bears both a ventral row of enlarged compound setae and a dorsal row of long simple setae on the carpus of pereopod I (Fig. 5O), and possessing a ventral row of enlarged composed setae and a dorsal row of long setae on carpus and propodus of pereopod II (Fig. 5H). Also, most genera in both families (only) have two articulated broom setae on article 2 of the antennula (Fig. 5D). Thus, characters diagnosing Nannoniscidae and Desmosomatidae are not truly synapomorphic and should be revised.

Within-family relationships: Desmosomatidae

A number of diagnostic features have been used to distinguish morphological clades within the Desmosomatidae, including the shape of the first pereopod (Hessler, 1970; Fig. 5K, O, P, Q), the setation of the carpus and propodus of pereopod II (Fig. 5H/J), the shape of the fifth pereonite including the shape of the first pereopod (Hessler, 1970; but see also Brix, 2007).

The subfamilies of Desmosomatidae defined by Hessler (1970) were not supported in either morphological or...
molecular analysis; indeed, several polytomies within the family prohibited the position of *Torwolia* within Desmosomatidae from being clarified. Our results were similar to Raupach et al. (2009), who could not recover Eugerdellatiinae and Desmosomatinae as monophyletic clades, but their analysis placed respective genera in a polytomy. The poor resolution at deep desmosomatid nodes probably reflects the long evolutionary history of the family, and likely indicates rapid evolutionary radiations (Humphries & Winker, 2010; Osborn, 2009). At smaller scales, the monophyly of several genera was similarly rejected by both morphological and molecular analysis (i.e., Desmosoma, Echinopleura, Eugerdella, Eugerdella, Mirabilicoxa, and Whoia), whereas others formed well-supported monophyletic clades (Chelator, Disparella, Oecidiobranchus, Pseudomesus, and Torwolia) (Fig. 8). The position of Prochelator in the morphological tree could not be resolved, but its monophyly was suggested by molecular analysis. Unfortunately, only a few sequences could be acquired for Desmosoma, and Echinopleura which, according to our morphological data, seem to be polyphyletic (Fig. 8). Similarly, for Cryodesma Svavarsson, 1988, where the lack of genetic data only allowed morphological assessment, polyphyly of the genus was hypothesized. In this context, greater taxon sampling is desirable in order to test the monophyly of these genera and to clarify their phylogenetic placement.

Within desmosomatids, convergent evolution and analogies can pose a difficulty in defining apomorphies for phylogenetic reconstructions. Here, unraveling of the Mirabilicoxa + Disparella and Eugerdella + Mirabilicoxa and Whoia clades should currently be one of the main tasks in desmosomatid systematics, since the difficulties of defining different phenotypic clades are symptomatic of the entire family. Morphologically, these genera can be broadly distinguished by the shape of the first pereopod (Fig. 5P): chelate in *Disparella*, Fig. 5O: raptorial and enlarged/robust in *Eugerdella* and *Whoia*, Fig. 5Q: “unspecialized” in *Mirabilicoxa*). However, intermediate character states in some (thus far undescribed) species exist from an unspecialized pereopod I towards a raptorial and chelate condition, making phenotypic assignment based on the first pereopod alone tremendously difficult. *Mirabilicoxa*, in particular, can be viewed as a “grab bag” for species that cannot be assigned to *Desmosoma*, *Eugerdela*, *Momodessa* Hessler, 1970 or *Whoia* (first author’s pers. observ.). In the same way, Golovan (2018) states that the definition of *Mirabilicoxa* is still unclear. Many proposed characters were either imprecise or can be also observed in other desmosomatid genera and thus are considered to be plesiomorphic (Brix, 2007). Considering the chelate form of pereopod I, a closer relationship to Chelator, Parvochelus, and Prochelator would have been assumed for *Disparella*, as can be seen in the morphological tree. However, the latter contains a clade possessing a wide range of pereopod I morphologies. Interestingly, a sister-group relationship of Chelator, Parvochelus, and Prochelator could also not be confirmed by the molecular data suggesting that the chelate pereopod I represents an analogous feature. Many Eugerdella species have a striking first pereopod, which is characterized by an enlarged propodus and carpus with a ventral row of very robust seta. Overall, however, this genus is very heterogeneous in terms of pereopod I, but also in terms of body shape. Since molecular analyses did not contain any sequences of the type species *Eugerdella coarctata* (Sars, 1899), it was not possible to designate the true *Eugerdella*. Therefore, further studies are needed to resolve the phylogeny within this genus.

Hessler (1970) hypothesized a “Eugerdella-like” condition of the pereopod I (Fig. 5O) in *Whoia* species, which might explain the close linkage of the genus to an *Eugerdella* clade seen both in the morphological and molecular data. However, the morphological resemblance of pereopod I between *Whoia* and *Thaumastosoma* (the latter now confirmed as a nannoniscid, Kaiser et al., 2018) suggests multiple origins of this feature.

Functionally, the first pereopod is used for feeding and grooming (Bauer, 2013; Hessler & Strömberg, 1989). Previous studies conducted on a variety of metazoan taxa have shown that trophic features, including mouthpart and pereopod morphology, can be lost or convergently derived and may therefore not be valuable characters (Apakupakul et al., 1999; Corrigan et al., 2013; Halanych, 1996; Harrington & Reeder, 2017; Havermans et al., 2010; Ruber et al., 1999). Havermans et al. (2010) investigated the phylogenetic relationships within the hyper-diverse superfAMILY Lysianasoidea and found mismatches between molecular and morphological classification schemes, the latter mainly based on trophic adaptations. However, characters related to dietary habits or grooming do not per se indicate convergent evolution. Bauer (1989), for instance, suggested homology with regard to the location of certain types of pereopod I setae and brushes as phylogenetically informative to derive relationships within Decapoda.

Therefore, just as the first pereopod is not a valuable character for subfamily assignment, it may not even be always useful at the generic level, which means that generic diagnoses need to be thoroughly revised. Here, the subchelate condition of pereopod I in *Torwolia* might be an exception. Our morphological analysis did not provide sufficient resolution, but supported our molecular findings that complex structures such as a chelate (Chelator, Prochelator, Parvochelus, and Disparella) or raptorial (*Eugerdella, Whoia*) pereopod I can be considered as analogous features that have probably developed several times independently within the family in the course of adaptive processes.
Here, we do not provide a revision for the desmosomatid genera, since certain clades need a thorough revision and moreover type species were not included for all clades in the molecular data, which permitted inference of the respective genera (sensu stricto). Beyond the scope of the present work, but for future steps, a revision of Mirabilicoxa s.s., Eugerella, and Disparella as well as Eugerda and Desmosoma will be needed as stated also by Golovan (2015) and Jennings et al. (2020). This includes in case of Mirabilicoxa the detection of genetic differences among what have until now been considered different sexes and/or developmental stages leading toward a new understanding of its development and evolution.

Within-family relationships: Nannoniscidae

Within the Nannoniscidae, different morphological clades have been distinguished, mostly using the antennula (number of articles and specialization of the distal articles, see Fig. 5C) as well as level of articulation of pereonites 6, 7, and/or the pleotelson (Fig. 5A, E) as synapomorphic characters. Accordingly, George (2001) defined three different subfamilies based on the fusion of the posterior somites. This classification, however, was rejected by Wilson (2008). Owing to its anatomical complexity, we expected genera with a bulbous 5-segmented antennula (Fig. 5C: i.e., Nannoniscus, Rapaniscus, Regabellator Siebenaller & Hessler, 1981, and Exilinis E. clipeatus Siebenaller & Hessler, 1981 in our study) to be more derived and separate from genera with an unspecialized antennula (Fig. 5D; Wägele, 1989; and Just, 1970; as detailed below). The molecular data were in support of the hypothesis of Nannoniscus, Rapaniscus, and Regabellator forming a well-supported monophyletic clade both in the 18S and 2G tree. In this regard, the position of Exilinis appears quite remarkable, forming a group with genera that have an unspecialised antennula, at least at first. The arrangement of the antennula in Nannoniscus, Rapaniscus, Regabellator, and Exilinis seems to be quite conservative and regarded as homologous feature among respective genera showing a bulbous terminal article and a shelf-like extension of the fourth article (Fig. 2 in Wägele, 1989). While such an extension is present in the type species of Exilinis, *E. clipeatus* Siebenaller & Hessler, 1981, there is none visible in the remaining described species (Siebenaller & Hessler, 1981, cf. Figure 1 in Just, 1970). In some ways, *Exilinis* is quite different from other nannoniscid genera, likely in part reflecting adaptations to a more infaunal lifestyle (e.g., narrow cigar-like body shape, stout first and second antenna, lack of a mandibular palp). Wägele (1989) suggested a close relationship of Exilinis with Panetela and Micromesus, which are unfortunately not included in the current analyses. Furthermore, Hebefustis Siebenaller & Hessler, 1977 is not included, yet its 5-segmented though unspecialized antennula is thought to represent an intermediate state between the specialized bulbous and unspecialized antennula found in nannoniscids (Siebenaller & Hessler, 1977). At the current stage, our molecular results are more in the line with George’s (2001) classification (taxa with free vs. fused posterior somites), while the antennula is considered analogous, which has likely developed independently several times. However, we acknowledge that the degree of somite articulation does not display a consistent character and may be variable within nannoniscid genera (e.g., Nannoniscoides Hansen, 1916). Therefore, subfamilies introduced by George (2001) are not recovered here. Besides, information from the remaining nannoniscid taxa not included in our molecular analyses will need to be added to draw a “final” conclusion at this stage.

Molecular analyses supported the monophyly of most nannoniscid genera, though Nannoniscus was revealed to be polyphyletic in both our morphological and molecular analyses. Siebenaller & Hessler (1981) already highlighted the great morphological variation of Nannoniscus species relative to its type species, *N. oblongus* G. O. Sars, 1870, though they did not suggest an alternative classification. So far, Nannoniscus is solely defined by plesiomorphies, such as uropods inserting closely to the anus valves (Fig. 5A, F), that define the family Nannoniscidae, or synapomorphies (e.g., bulbous terminal article of the antennula as illustrated in Fig. 5C), characteristic for the respective clade (Nannoniscus + Rapaniscus + Regabellator + Exilinis). Thus, a thorough morphological and molecular assessment will be required to solve phylogenetic relationships within the clade—also with regard to the variable position of Regabellator in the individual 18S vs. 2G tree (Supplement 4 and 6B, respectively).

Estimation of divergence times/diversification rates

There is now compelling evidence for a long evolutionary history and origination of many asellotan families in the deep sea, well before end-Permian mass extinctions (Jacobs & Lindberg, 1998; Lins et al., 2012; Raupach et al., 2004, 2009; Wilson, 1998). Isopods in general have a long fossil history starting in the Carboniferous period (Wilson, 2009), when malacostracan diversity was bursting on the evolutionary scene (Schram, 1970, 1974). Putative sister groups for the isopods do not appear in the record until later. The oldest Amphipoda seems to be known from the Triassic (200–250 mya, see McMenamin et al., 2013) while a review of the amphipod fossil record is given by Hegna et al. (2015) discussing amphipods first appearing as fossils in the Eocene. Another possible sister group, Tanaidacea, does have one Paleozoic fossil and a more frequent fossil record from the Jurassic on (Schädel et al., 2019; Vonk & Schram, 2007). Lins et al. (2012) confirmed the colonization
of the deep sea by isopods on multiple occasions from shallow waters (also Raupach et al., 2004, 2009). This, however, does not apply to the clade of “munnopsoid radiation” (including Nannoniscidae and Desmosomatidae), which likely followed an ancient colonization. In contrast to Lins et al. (2012), our Bayesian estimates of divergence times suggested a younger divergence time for Haploniscidae (263 vs. 310 mya), a younger divergence time for Nannoniscidae (231 vs. 260 mya), and an older divergence time for Desmosomatidae (306 vs. 210 mya), although Bayesian 95% credibility intervals for the first two overlapped the Lins et al. (2012) estimates. Credibility intervals in these analyses are often frustratingly wide, particularly where few molecular markers are employed as is the case here; however, a general consensus is becoming established that the Carboniferous and Permian were especially critical periods in isopod evolution. Consistent with this clustering of divergence times, lineage through time (LTT) analysis strongly suggested ($I = 0.93–0.95$) a rapid increase in speciation rates at the base of the desmosomatid/nannoniscid split, occurring around 300–325 mya at the end of the Carboniferous. During this period, episodic increases in oxygenation (oxygen pulses) might have triggered speciation in many terrestrial and marine groups (Droser et al., 2000; Graham et al., 1995). In contrast, decreasing oxygen, alongside changes in sea level and lower temperature levels during the Permian probably contributed to widespread extinctions and modification of faunal composition (Graham et al., 1995). While Paleozoic and Mesozoic anoxic or dysoxic conditions are believed to have eradicated most of the deep-sea fauna, particularly so in the deep Atlantic and Tethys seas (Jacobs & Lindberg, 1998), other studies suggest that allopatric speciation may even have been promoted by anoxic zones, the latter limiting dispersal between oxygenated patches (Rogers et al., 2000). Another possibility would be that taxa have survived anoxia in shallower refugia on the shelf or slope (Rogers et al., 2000). This scenario seems to be unlikely for Desmosomatidae and Nannoniscidae though, since these families exhibit greatest species diversity in the abyss, and in addition several genera have thus far only been recorded from lower bathyal/abyssal waters (e.g., Disparella, Micromesus, Momedossa, Thaumastosoma, Ketosoma) suggesting a deep-sea origin. The fact that most of the samples in our data set come from a depth of more than 3000 m hinders the assessment of depth-related patterns, but at the same time underlines the preponderance of Desmosomatidae and Nannoniscidae in the deep sea.

The lack of a phylogeographic signal in our data also supports the assumption of rapid speciation in both families in the world’s oceans, which results in few easily or robustly differentiated morphological features, especially in the Desmosomatidae. Dating the Desmosomatidae/Nannoniscidae split at c. 300–325 mya, both families evolved clearly before the formation of the Atlantic c. 150 mya (Sheridan et al., 1982). Initially consisting of two separate basins, a deep-water connection formed between the North and South Atlantic between 80 and 65 mya, with today’s bathymetric extent and hydrography only becoming established about 10 mya (Schoop, 1980; Priede & Fröse, 2013). Most of the genera analyzed herein seemed to be established toward the end of the Jurassic (ca. 200 mya), which could explain why the groups as a whole are widely distributed across the Atlantic, but no species in our molecular dataset do span large (> 2500 km) geographic ranges (exceptions based on morphology and literature data only may be Torwolla creper Hessler, 1970, see Electronic Supplement 8 and Thaumastosoma platycarpus, see Electronic Supplement 10). A phylogeographic mapping of oceanic basin of collection onto the COI tree also showed no such correlations (Electronic Supplement 7). Similarly, evidence of a more recent increase in speciation ca. 25–10 mya (Fig. 8C, TESS) corresponds to a late-Oligocene/early-Miocene window associated with increased speciation in, e.g., deep-water corals (Herrera et al., 2012) as Atlantic circulation approached its current configuration. Although these rapid radiations could explain the complicated systematics of desmosomatids and closely related isopod groups, no independent data currently exist with which to evaluate this hypothesis or its implications for the evolution of these taxa.

Conclusion

Desmosomatidae and Nannoniscidae are distinct isopod families, both of which exhibit substantial convergent evolution, possibly reflecting their ecological diversity as Osborn (2009) has shown for the Munnopsidae. Both the morphological and the fossil-calibrated molecular phylogenies suggest that the high variability of forms and many intermediate character states resulted from a rapid, widespread radiation of species in the deep sea. While it is still difficult to find
apomorphies for these groups, in light of their confirmed reciprocal monophyly, taxonomic revision and reexamination of problematic characters are needed to enable better genus diagnoses. Describing more species morphologically may also clarify the relationships indicated by intermediate states. This reanalysis will require a large amount of taxonomic effort (e.g., Brix et al., 2018), but should go far in elucidating the timing, causes, and consequences of rapid speciation in these abundant and ecologically important deep-sea taxa.

Supplementary Information The online version contains supplementary material available at https://doi.org/10.1007/s13127-021-00509-9.

Acknowledgements In memoriam of Robert Hessler (*November 22nd 1932-†October 17th 2020*).

Our work follows the footsteps of Robert Hessler, who was not only the pioneer in desmosomatid phylogeny, but who made a substantial contribution to asselote isopod taxonomy, systematics, and ecology as a whole. His illustrations of the first pereopod as desmosomatid central character (Hessler, 1970) put the first seed toward a desmosomatid phylogeny in 1970 although so many species had been described already. For SB, meeting Robert Hessler personally during the Des-Sea Symposium held in Reykjavik (Iceland) in 2010 inspired the discussion about characters of the single genera. The year 2020 meant for the author team completing our efforts in desmosomatid phylogeny and coincidences with Robert Hessler’s passing after a long and active scientific life. We dedicate this publication to him to honor his scientific work and scientific heritage. We hope to have added one more puzzle piece to the understanding of these fascinating little crustaceans.

The story behind...

All in all, this manuscript is a story spanning 15 years which remarkably stepped up in a year of a global pandemic that however did not bring science to halt. We started the sample collection in 2005 for the molecular dataset and the methods in the field developed rapidly during these 15 years. Doing deep-sea research, we are still in the process of building the baseline, and we discover new species every time we go out to sea. This is reflected by the series of expeditions leading toward the present dataset. We wish to thank all crew members and teams on board for all the support during these expeditions. A special memory is M63/2 in 2005 when we started to establish the cooling chain and brought a DNA lab on board the RV Meteor for the first time. Since 2007, we were able to collaborate within the CeDAMar umbrella with the DNA barcoding centers in Guelph and at the Smithsonian Institution. Since then, our protocols were more and more optimized and what started with single extractions became hundreds at the same time within a 10 year timeframe. Molecular and computational work was supported in part by the Smithsonian Institution, National Museum of Natural History, and Laboratories of Analytical Biology.

Author contributions SB: Leading the project and organizing the lab work, conducting the morphological phylogeny, designing the sampling and work on board in the molecular labs of the research vessels, determine specimens and doing dissections, DNA extraction and sequencing, quality check of sequence data, preliminary alignments, manuscript writing, developing figures and discussions. CH: Final alignment for 18S data, contributing ideas, and discussion of the molecular clock and pieces of text to the manuscript. SK: Species identification and DNA extractions on board during different expeditions together with SB, manuscript writing, developing figures and discussions. RMJ: Conducting the species delimitation and phylogenetic tree inferences based on molecular markers, finalizing the alignments, manuscript writing, developing figures and discussions. AD: Developing protocols for successful high throughput PCR and sequencing, managing the DNA barcoding Peracarida Project in cooperation with SB, quality check of a huge amount of sequence data, manuscript contributions. AB: Idea of the project, discussion of the project and text and adding important pieces to the manuscript writing.

Funding Open Access funding enabled and organized by Projekt DEAL. The Census of the Diversity of Abyssal Marine life project (CeDAMar) financially supported the necessary travels, DNA barcoding workshops and collaboration. From the beginning, this work was supported by the German Research Foundation (DFG, grant numbers BR3848/6-1 to SB and BR Br 1121/20,1–3 and Br 1121/26,1–3 to AB). The Bundesministerium für Bildung und Forschung (BMBF) supported the VEMA-Transit expedition with RV Sonne (SO237) with a grant to AB. SK acknowledges grants provided by the DFG under contract No. Br 1121/26–4 (to AB), the DAAD (2007–2008, 2012–2013) and the Narodowa Agencja Wymiany Akademickiej (NAWA, 2020) under the ULAM program.

Data availability All material used in the study is stored in museum collections as indicated in the methods. Type material information, morphological character matrices, and single-gene phylogenetic trees are made directly available as electronic supplements; DNA sequences are deposited in BoLD at https://dx.doi.org/10.5883/DS-DEEPISO and GenBank (see Table 1), and final DNA alignments in DRYAD at https://doi.org/10.5061/dryad.9w0vt4bfp.

Code availability N/A.

Declarations

Conflict of interest The authors state that there is no conflict of interest.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

Apakupakul, K., Siddall, M. E., & Burreson, E. M. (1999). Higher level relationships of leeches (Annelida: Clitellata: Euhirudinea) based on morphology and gene sequences. *Molecular Phylogenetics and Evolution, 12*, 350–359.

Bauer, R. T. (1989). Decapod crustacean grooming: Functional morphology, adaptive value, and phylogenetic significance. Functional morphology of feeding and grooming in Crustacea. *Crustacean Issues*, *6*, 49–73.

Bauer, R. T. (2013). Adaptive modification of appendages for grooming (cleaning, antifouling) and reproduction in the Crustacea. *Functional Morphology and Diversity, 1*, 327–364.

Birstein, J. A. (1963). Deep-sea isopod crustaceans of the northwestern Pacific Ocean. *Institute of Oceanology of the U.S.S.R. Akademii Nauk, Moscow* [in Russian with English summary] 213 pp.
Bouckaert, R., Heled, J., Kuhnert, D., Vaughan, T., Wu, C.-H., Xie, D., et al., (2014). BEAST 2: A software platform for Bayesian evolutionary analysis. *PLoS Computational Biology*, 10(4), e1003537.

Brandt, A. (1992). Origin of Antarctic Isopoda (Crustacea, Malacostraca). *Marine Biology*, 113, 415–423.

Brandt, A., Gooday, A. J., Brandao, S. N., Brix, S., Brøkeland, W., Cedhagen, T., & Diaz, R. J. (2007). First insights into the biodiversity and biogeography of the Southern Ocean deep sea. *Nature*, 447(7142), 307–311.

Brix, S. (2007). Four new species of Desmosomatidae Sars, 1897 (Crustacea: Isopoda) from the deep sea of the Angola Basin. *Marine Biology Research*, 3(4), 205–230.

Brix, S., & Svavarsson, J. (2010). Distribution and diversity of desmosomatid and nannoniscid isopods (Crustacea) on the Greenland–Iceland–Faeroe Ridge. *Polary Biology*, 33(4), 515–530.

Brix, S., Svavarsson, J., & Leese, F. (2014). A multi-gene analysis reveals multiple highly divergent lineages of the isopod *Chelator insignis* (Hansen, 1916) south of Iceland. *Polish Polar Research*, 35(2), 225–242.

Brix, S., Leese, F., Riehl, T., & Khara, T. C. (2015). A new genus and new species of Desmosomatidae Sars, 1897 (Isopoda) from the eastern South Atlantic abyss described by means of integrative taxonomy. *Marine Biodiversity*, 45(1), 7–61.

Brix, S., Stransky, B., Malyutina, M., Pabis, K., Svavarsson, J., & Riehl, T. (2018). Distributional patterns of isopods (Crustacea) in Icelandic and adjacent waters. *Marine Biodiversity*, 48(2), 783–811.

Brix, S., Osborn, K. J., Schnurr, S. M., Kaiser, S., Truskey, S. B., Brenke, N., Malyutina, M., Martinez Arbizu, P. (2020). Saskia Brix, Karen J. Osborn, Sarah M. Schnurr, Stefanie Kaiser, Sarit B. Truskey, Nils Brenke, Marina Malyutina & Pedro Martinez Arbizu: Adult life strategy affects distribution patterns in abyssal isopods – Implications for conservation in in Pacific nodal areas. *Biogeosciences*, 17. https://doi.org/10.5194/bg-17-6163-2020.

Corrigan, L. J., Horton, T., Fotherby, H., White, T. A., & Hoelzel, A. R. (2013). Adaptive evolution of deep-sea amphipods from the superfamily Lysiassanoidea in the North Atlantic. *Evolutionary Biology*, 41(1), 154–165.

Dallwitz, M. J. (1980). A general system for coding taxonomic descriptions. *Taxon*, 29, 41–46.

Dallwitz, M. L., Paine, T. A., Zucher, E. J. (1999). User’s guide to DELTA editor. Available online at: https://code.google.com/p/open-delta.

Droser, M. L., Bottjer, D. J., Sheehan, P. M., & McGhee, G. R., Jr. (2000). Decoupling of taxonomic and ecologic severity of Phanerozoic marine mass extinctions. *Geology*, 28(8), 675–678.

Eilertsen, M. H., & Malaquias, M. A. E. (2015). Speciation in the dark: Diversification and biogeography of the deep-sea gastropod genus *Scaphander* in the Atlantic Ocean. *Journal of Biogeography*, 42(5), 843–855.

Eilertsen, M. H., & Malaquias, M. A. E. (2015). Speciation in the dark: Diversification and biogeography of the deep-sea gastropod genus *Scaphander* in the Atlantic Ocean. *Journal of Biogeography*, 42(5), 843–855.

Gage, J. D., & Tyler, P. A. (1991). Deep-sea biology: A natural history of organisms at the deep-sea floor. Cambridge University Press.

George, R. Y. (2001). Desmosomatidae and Nannoniscidae (Crustacea, Isopoda, Asellota) from bathyal and abyssal depths off North Carolina and their evolution. *Journal of Natural History*, 35(12), 1831–1859.

Golovan, O. A. (2018). Desmosomatidae (Isopoda: Asellota) from the Kuril Basin of the Sea of Okhotsk: First data on diversity with the description of the dominant species *Miraebilisca biramosa* sp. nov. *Deep Sea Research Part II: Topical Studies in Oceanography*, 154, 292–307.

Graham, J. B., Aguilar, N. M., Dudley, R., & Gans, C. (1995). Implications of the late Paleozoic oxygen pulse for physiology and evolution. *Nature*, 375(6527), 117–120.

Gurjanova, E. F. (1933). Contributions to the Isopoda-Fauna of the Pacific. *Gnathidea and Asellota. Issledovaniia Morei SSSR*, 19, 79–91.

Halanych, K. M. (1996). Convergence in the feeding apparatuses of lophophorates and pterobranch hemichordates revealed by 18S rDNA: An interpretation. *The Biological Bulletin*, 190(1), 1–5.

Hansen, H. J. (1916). Crustacea Malacostraca. III. V. The order Isopoda. *The Danish Ingolf–Expedition*. 3(5): iii+ 262 pp., 16 pls.

Harrington, S. M., & Reeder, T. W. (2017). Phylogenetic inference and divergence dating of snakes using molecules, morphology and fossils: New insights into convergent evolution of feeding morphology and limb reduction. *Biological Journal of the Linnean Society*, 121(2), 379–394.

Havermans, C., Nagy, Z. T., Sonet, G., De Broyer, C., & Martin, P. (2010). Incongruence between molecular phylogeny and morphological classification in amphipod crustaceans: A case study of Antarctic lysianassoids. *Molecular Phylogenetics and Evolution*, 55(1), 202–209.

Hegna, T., Lazo-Wasem, E. A., Serrano, L., & Vega, F. J. (2019). A new fossil talitrid amphipod from the lower early Miocene Chiaspas amber documented with microCT scanning. *Journal of South American Earth Sciences*, 98, 102462. https://doi.org/10.1016/j.jsames.2019.102462.

Hennig, W. (1966). *Phylogenetic systematics* (p. 263p). Illinois, University of Illinois.

Hennig, W. (1984). *Aufgaben und Probleme stammesgeschichtlicher Forschung*. Parey.

Herrera, S., Shank, T. M., & Sánchez, J. A. (2012). Spatial and temporal patterns of genetic variation in the widespread antitropical deep-sea coral *Paragorgia arborea*. *Molecular Ecology*, 21, 6053–6067.

Hessler, R. R. (1970). The Desmosomatidae (Isopoda, Asellota) of the Gay Head-Bermuda Transect. *Bulletin of the Scripps Institution of Oceanography*, 15, 1–185.

Hessler, R. R., & Thistle, D. (1975). On the place of origin of deep-sea isopods. *Marine Biology*, 32(2), 155–165.

Hessler, R. R., & Strömberg, J. O. (1989). Behavior of janiroidean isopods (Asellota), with special reference to deep-sea genera. *Sarsia*, 74(3), 145–159.

Hessler, R. R., Wilson, G. D., & Thistle, D. (1979). The deep-sea isopods: A biogeographic and phylogenetic overview. *Sarsia*, 64(1–2), 67–75.

Hibb, S. M., May, R. M., & Moore, B. R. (2015). TESS: An R package for efficiently simulating phylogenetic trees and performing Bayesian inference of lineage diversification rates. *Bioinformatics*, 32(5), 789–791.

Humphries, E. M., & Winker, K. (2010). Working through polytomes: Auklets revisited. *Molecular Phylogenetics and Evolution*, 54(1), 88–96.

Jacobs, D. K., & Lindberg, D. R. (1998). Oxygen and evolutionary patterns in the sea: Onshore/offshore trends and recent recruitment of deep-sea faunas. *Proceedings of the National Academy of Sciences*, 95(16), 9396–9401.

Jennings, R. M., Golovan, O., & Brix, S. (2020). Integrative species delimitation of desmosomatid and nannoniscid isopods from the Kuril-Kamchatka trench, with description of a hadal species. *Progress in Oceanography*, 182, 102236.

Just, J. (1970). *Decapoda, Mysidae, Isopoda, and Tanaidacea from Jørgen Brønlund Fjord, North Greenland*. CA Reitzel.

Kaiser, S., & Brix, S. (2007). Two new species of the genus *Pseudomesus* Hansen, 1916 (Isopoda, Asellota) from the Southern hemisphere: >Pseudomesus pitombo* sp. nov. and *Pseudomesus satanus* sp. nov. *Zootaxa*, 1658(1), 21–38.

Kaiser, S., Barnes, D. K., Sands, C. J., & Brandt, A. (2009). Biodiversity of an unknown Antarctic Sea: Assessing isopod richness and
abundance in the first benthic survey of the Amundsen continental shelf. Marine Biodiversity, 39(1), 27.

Kaiser, S., Brix, S., Khara, T. C., Janssen, A., & Jennings, R. M. (2018). Integrative species delimitation in the deep-sea genus Thaumastosoma Hessler, 1970 (Isopoda, Asellota, Nannoniscidae) reveals a new genus and species from the Atlantic and central Pacific abyss. Deep Sea Research Part II: Topical Studies in Oceanography, 148, 151–179. https://doi.org/10.1016/j.dsr2.2017.05.006

Kapli, P., Lutteropp, S., Zhang, J., Kobert, K., Pavlidis, P., Stamatakis, A., & Flouri, T. (2016). Multi-Rate Poisson Tree Processes for Single-Locus Species Delimitation under Maximum Likelihood and Markov Chain Monte Carlo. https://doi.org/10.1093/bioinformatics/btv025

Katoh, K., & Standley, D. M. (2013). MAFFT Multiple Sequence Alignment Software Version 7: Improvements in performance and usability. Molecular Biology and Evolution, 30(4), 772–780.

Kawagata, S., Hayward, B. W., Grenfell, H. R., & Sabaa, A. (2005). Evidence for distribution of marine isopods and the problem of deep-sea fauna origin. Marine Biology, 126, 1–10.

Kussakin, O. G. (1973). Peculiarities of the geographical and vertical distribution of marine isopods and the problem of deep-sea fauna origin. Marine Biology, 23(1), 19–34.

Larkin, M. A., Blackshields, G., Brown, N. P., Chenna, R., McGettigan, P. A., McWilliam, H. et al. (2007). Clustal W and Clustal X version 2.0. Bioinformatics 23 (21), 2947–2948.

Rogers, A. D. (2000). The role of the oceanic oxygen minima in generating biodiversity in the deep sea. Deep-Sea Research II, 47, 119–148. https://doi.org/10.1016/S0967-0645(99)00107-1

Ruber, L., Verheyen, E., & Meyer, A. (1999). Replicated evolution of trophic specializations in an endemic cichlid fish lineage from Lake Tanganyika. Proceedings of the National Academy of Sciences USA, 96, 10230.

Sars, G. O. (1896–1899). An account of the Crustacea of Norway with short descriptions and figures of all the species. Volume II. Isopoda. Bergen Museum. Bergen, i-x + 1–270, pls. 1–104.

Schädel, M., Pazinato, P.G., Wal, S. van der, Haug, J.T. (2019) A fossil tanaidacean crustacean from the Middle Jurassic of southern Germany. Palaeodiversity, 12(1) : 13–30. https://doi.org/10.18476/pal.v12.i2

Schiele, U., & Fresi, E. (1969). Two new desmosomatids from the abyssal South Pacific ocean: Eugerda gigantea sp. nov. (Isopoda: Asellota: Desmosomatidae). Journal of the Marine Biological Association of the United Kingdom, 79, 1061–1067. https://doi.org/10.1017/S0025315499001307

Puslednik, L., & Serb, J. M. (2008). Molecular phylogenetics of the Pectinidae (Mollusca: Bivalvia) and effect of increased taxon sampling and outgroup selection on tree topology. Molecular Phylogenetics and Evolution, 48(3), 1178–1188.

Rabosky, D. L. (2014). Automatic detection of key innovations, rate shifts, and diversity-dependence on phylogenetic trees. PloS One, 9(2).

Ramirez-Llodra, E., Brandt, A., Danovaro, R., De Mol, B., Escobar, E., German, C., & Narayanswamy, B. E. (2010). Deep, diverse and definitely different: Unique attributes of the world’s largest ecosystem. Biogeosciences, 7(9), 2851–2899.

Raupach, M. J., Held, C., & Wägele, J. W. (2004). Multiple colonization of the deep sea by the Asellota (Crustacea: Peracarida: Isopoda). Deep Sea Research Part II: Topical Studies in Oceanography, 51(14–16), 1787–1795.

Raupach, M. J., Mayer, C., Malutina, M., & Wägele, J. W. (2009). Multiple origins of deep-sea Asellota (Crustacea: Isopoda) from shallow waters revealed by molecular data. Proceedings of the Royal Society b: Biological Sciences, 276(1658), 799–808.

Rex, M. A., & Etter, R. J. (2010). Deep-sea biodiversity: Pattern and scale. Harvard University Press.
Siebenaller, J. F., & Hessler, R. R. (1977). The Nannoniscidae (Isopoda, Asellota): Hebefustis n. gen. and Nannoniscoides Hansen. Transactions of the San Diego Society of Natural History, 19, 17–44.

Stern, D. L. (2013). The genetic causes of convergent evolution. Nature Reviews Genetics, 14(11), 751–764.

Stuart, C. T., Arbizu, P. M., Smith, C. R., Molodtsova, T., Brandt, A., Etter, R. J., & Rex, M. A. (2008). CeDAMar global database of abyssal biological sampling. Aquatic Biology, 4(2), 143–145.

Svavarsson, J. (1984). Description of the male of Pseudomesus brevicornis Hansen, 1916 (Isopoda, Asellota, Desmosomatidae) and rejection of the family Pseudomesidae. Sarsia, 69(1), 37–44.

Svavarsson, J. (1988). Desmosomatidae (Isopoda, Asellota) from bathyal and abyssal depths in the Norwegian, Greenland, and North Polar Seas. Sarsia, 73(1), 1–32.

Swofford, D. L. (1998). Phylogenetic analysis using parsimony (PAUP), version 4. Sinauer Associates.

Talavera, G. & Castresana, J. (2007). Improvement of phylogenies after removing divergent and ambiguously aligned blocks from protein sequence alignments. Systematic Biology, 56, 564–577. https://doi.org/10.1080/10635150701472164

Thuy, B., Kiel, S., Dulai, A., Gale, A. S., Kroh, A., Lord, A. R., ... & Wisshak, M. (2014). First glimpse into Lower Jurassic deep-sea biodiversity: In situ diversification and resilience against extinction. Proceedings of the Royal Society Bulletin, Biological Sciences, 281(1786).

Vanhöffen, E. (1914). Die Isopoden der Deutschen Südpolar-Expedition 1901–1903. Deutsche Südpolar-Expedition, Zoologie, 15, 447–598. https://doi.org/10.5962/bhl.title.10649

Vonk, R., & Schram, F. R. (2007). Three new tanaid species (Crustacea, Peracarida, Tanaidacea) from the Lower Cretaceous Álava amber in northern Spain. Journal of Paleontology, 81(6), 1502–1509.

Wägele, J. W. (1989). Evolution und phylogenetisches System der Isopoda. Zoologica (Stuttgart), 140, 1–262.

Wägele, J. W. (2001). Grundlagen der phylogenetischen Systematik. München: F. Pfeil, 2. Ausg. (English version 2005. Foundations of Phylogenetic Systematics. München: F. Pfeil.)

Wägele, J. W. (2004). Hennig’s phylogenetic systematics brought up to date. Systematics. Association Special, 67, 101–126.

Wilson, G. D. (1998). Historical influences on deep-sea isopod diversity in the Atlantic Ocean. Deep Sea Research Part II: Topical Studies in Oceanography, 45(1–3), 279–301.

Wilson, G. (1999). Some of the deep-sea fauna is ancient. Crustaceana, 72(8), 1019–1030.

Wilson, G. D. (2008). A review of taxonomic concepts in the Nannoniscidae (Isopoda, Asellota), with a key to the genera and a description of Nannoniscus oblongus Sars. Zootaxa, 1680(1), 1–24.

Wilson, G. D. (2009). The phylogenetic position of the Isopoda in the Peracarida (Crustacea: Malacostraca). Arthropod Systematics & Phylogeny, 67(2), 159–198.

Wilson, G. D. (2017). Macrofauna abundance, species diversity and turnover at three sites in the Clipperton-Clarion Fracture Zone. Marine Biodiversity, 47(2), 323–347.

White, B. N. (1988). Oceanic anoxic events and allopatric speciation in the deep sea. Biological Oceanography, s5(4), 243–259. https://doi.org/10.1080/01965581.1987.10749516

Yasuhara, M., Hunt, G., Cronin, T. M., & Okahashi, H. (2009). Temporal latitudinal-gradient dynamics and tropical instability of deep-sea species diversity. Proceedings of the National Academy of Sciences USA, 106(51), 21717–21720.