Achromobacter xylosoxidans: An Emerging Pathogen Carrying Different Elements Involved in Horizontal Genetic Transfer

German Matías Traglia · Marisa Almuzara · Andrea Karina Merkier · Christina Adams · Laura Galanternik · Carlos Vay · Daniela Centrón · María Soledad Ramírez

Received: 21 January 2012 / Accepted: 16 August 2012 / Published online: 28 August 2012

© The Author(s) 2012. This article is published with open access at Springerlink.com

Abstract In the last few years, numerous cases of multi-drug-resistant *Achromobacter xylosoxidans* infections have been documented in immunocompromised and cystic fibrosis patients. To gain insights into the molecular mechanisms and mobile elements related to multidrug resistance in this bacterium, we studied 24 non-epidemiological *A. xylosoxidans* clinical isolates from Argentina. Specific primers for plasmids, transposons, insertion sequences, *bla*ampC, *intI1*, and *intI2* genes were used in PCR reactions. The obtained results showed the presence of wide host range IncP plasmids in ten isolates and a high dispersion of class 1 integrons (*n* = 10) and class 2 integrons (*n* = 3). Four arrays in the variable region (vr) of class 1 integrons were identified carrying different gene cassettes as the aminoglycoside resistance *aac(6’)-Ib* and *aadA1*, the trimethoprim resistance *dfrA1* and *dfrA16*, and the β-lactamase *bla*OXA-2. In only one of the class 2 integrons, a vr was amplified that includes *sat2-aadA1*. The *bla*ampC gene was found in all isolates, confirming its ubiquitous nature. Our results show that *A. xylosoxidans* clinical isolates contain a rich variety of genetic elements commonly associated with resistance genes and their dissemination. This supports the hypothesis that *A. xylosoxidans* is becoming a reservoir of horizontal genetic transfer elements commonly involved in spreading antibiotic resistance.

Introduction

Achromobacter spp. is a rarely nosocomial and community pathogen, being *Achromobacter xylosoxidans* the most frequent species among *Achromobacter* spp. isolates [6, 8, 18]. Many reports of *A. xylosoxidans* infections are documented in immunocompromised and cystic fibrosis (CF) patients, where its pathogenic role has not yet been properly clarified [7, 8]. In Argentina, the relative frequency of *A. xylosoxidans* among the uncommon non-glucose-fermenting gram-negative bacilli infections has been increasing reaching 66 % of total non-glucose-fermenting gram-negative bacilli infection isolates [18].

Although clinical *A. xylosoxidans* isolates usually show multiple drug resistance, the relative low attention paid to this pathogen resulted in poor understanding of their resistance mechanisms. Little is known about molecular mechanisms and transferable elements contributing to the acquisition and dissemination of antibiotic resistance determinants in *A. xylosoxidans* clinical isolates.

The aim of this study was to explore the occurrence of mobile elements related to antibiotic-resistance determinants among a collection of 24 non-epidemiological-related...
clinical isolates of *A. xylosoxidans* recovered in Argentina from six centers.

Materials and Methods

Bacterial Strains

Twenty-four non-epidemiological-related clinical isolates of *A. xylosoxidans* recovered in Argentina from six centers were used (Table 1). All isolates were identified using standard biochemical tests and API 20NE (Biomerieux), and the species level was confirmed by sequencing the 16S rRNA gene [19]. Clonal relationships analysis, using the macrorestriction technique, showed the presence of 15 different clones among the isolates included in the study (data not shown). The antibiotic susceptibility was performed by agar dilution method following the general recommendations of the Clinical and Laboratory Standards Institute (CLSI) [4].

DNA Techniques

Total DNAs were prepared and used as template for PCR reactions. PCR reactions were carried out using the GoTaq enzyme according to manufacturer’s instructions (Promega, Madison, WI), and the products were detected by agarose gel electrophoresis. To reveal the presence of transferable determinants associated to horizontal gene transfer, specific primers for plasmids (IncP, IncW, IncA/C, IncN, IncFII, *repAci1*), transposons (Tn1331, Tn3, Tn7), insertion sequences (IS) (IS26, IS440), and the *bla*_{ampC}, *intI1*, and *intI2* genes were used (Table 2). The selection of the mobile elements was based on their association with antibiotic-resistance determinants and also its distribution in our hospitals [12, 13, 16].

Table 1 Characteristic and obtained results of the 24 *A. xylosoxidans* isolates used in the study

Isolate^a	Hospital	Year	Source^b	IncP	IS26	IS440	*intI1*	vr^c	*intI2*
Ax79	Center 2	2004	NP	+	–	+	+	dfrA1-aadA1	+
Ax169	Center 3	2004	NP	+	–	+	+	dfrA1-aadA1	+
Ax126	Center 1	2001	NP	+	+	–	+	dfrA1-aadA1	+
Ax144	Center 1	2001	NP	+	–	+	–	NA	–
Ax69	Center 2	2002	CF	–	–	+	–	NA	–
Ax72	Center 2	2007	CF	+	–	–	+	*aac(6')-lb*	–
Ax77	Center 2	2007	CF	–	–	+	–	NA	–
Ax210	Center 3	2007	CF	–	–	–	–	NA	–
Ax81	Center 2	2008	CF	–	–	–	–	NA	–
Ax82	Center 2	2008	CF	–	–	–	–	NA	–
Ax90	Center 2	2008	CF	–	–	–	–	NA	–
Ax91	Center 2	2008	CF	–	–	–	–	NA	–
Ax92	Center 2	2008	CF	–	–	–	–	NA	–
Ax93	Center 2	2008	CF	–	+	–	–	NA	–
Ax97	Center 2	2007	CF	–	–	–	–	NA	–
Ax336	Center 2	2010	CF	–	–	+	–	NA	–
Ax11	Center 2	2004	NP	–	–	–	+	*aac(6')-lb*	–
Ax22	Center 1	1995	NP	–	–	–	–	NA	–
Ax44	Center 1	2006	NP	+	–	–	+	dfrA16	–
Ax56	Center 1	2003	NP	+	–	–	+	*aac(6')-lb*	–
Ax68	Center 6	2010	NP	+	–	–	–	NA	–
Ax114	Center 1	2002	NP	+	–	–	+	dfrA1-aadA1	–
Ax247	Center 1	2006	NP	–	–	+	–	NA	–
Ax304	Center 4	1996	NP	–	–	–	+	*bla*_{OXA-2}	–
Ax2700	Center 5	2006	NP	+	–	–	–	NA	–

^a Isolates of the study: Ax for *Achromobacter xylosoxidans*

^b NP for nosocomial patient’s samples and CF for cystic fibrosis patient’s samples

^c vr: class 1 integron variable region

NA not applicable
Table 2 Oligonucleotides used in the study

Target	Oligonucleotide	Sequence 5′–3′	References
IncW	TrwAB1	AGCGTATGAGCCCCGTGAAGGG	[3]
	TrwAB2	AAGATTAAGCAGGAGAAGCAGAATAACG	[3]
IncP	TrfA2 1	CGAAATTCATATGGGAGAAAGTA	[3]
	TrfA2 2	CGTTTGCAATTGCAACCAGAGTC	[3]
IncN	KikA1	ACTTACCTTTTATCAACACATTGGCCG	[3]
	KikA2	CGACTGGTATTTACCACTCTGGCC	[3]
IncF	REPA	GGAGGGATTGGCATTCCG	[3]
	REPC	AAAAGCCTGTGTGAG	[3]
IncA/C	CA1	ATGTCGAGACAGAAGAATGC	[3]
	OR1	CTTGCAATTGAAATGTGAATAA	[3]
IS26	IS26F	GCTGCGTGACAGCCGGAG	[9]
	IS26R	ATACCTGTGAGGTGTCG	[9]
IS440	IS440F	CTCAGCTCCGTCCGACT	[9]
	IS440R	GCCATGCGAGCGCCGG	[9]
Tn1331	Tn1331NF	GAATTCCTCGTGAACCGCCTATTT	[15]
	Tn1331NR	GGGCCCGGAGATTTTGGGCTGAGC AATT	[15]
Tn3	Tn3F	AAGTTCATGGGCTTCG	[9]
	201L	ACTACGATACGAGGGGCT	[9]
msA	TnsAF	CTCCATATTCCACTTTGGCT	[5, 14]
	TnsAR	GCTAACATGACAGAAGTCC	[5, 14]
msB	TnsBF	CATGTTGCTACAGCCAGAATAAG	[5, 14]
	TnsBR	GACCAAGGTATTTACAAAAGC	[5, 14]
msC	TnsCF	GTTTATGCTGACGAGGGG	[5, 14]
	TnsCR	GCTATCCAGCGCTGCGG	[5, 14]
msD	Tn5DF	GGGATTTGTTAGCTCTAAGC	[5, 14]
	Tn5DR	CCCTTAAATTTGCTATCTC	[5, 14]
msE	TnsEF	TTGCTCTCTAAACCCTCT	[5, 14]
	TnsER	TCGATTTTGTCTTGTGATG	[5, 14]
aac(6′)-Ib	aac(6′)IbF	TGTGACGGGATCTGTCG	[13]
	aac(6′)IbR	CAGTGAAGCTGTCTTGCC	[13]
intI1	Inti1F	CGAGGCATAGACTGTAC	[12]
	Inti1R	TTCGAATGCTGTAACCGC	[12]
intI2	Inti2F	GCAAAATGAGTGCACACGC	[12]
	Inti2R	ACCCGTTGCAACAGT	[12]
5′CS	Sulpro	GCCTGACAGGCTGAAAAG	[12]
3′CS	3′CS	AACGAGACTTGACCTGATAG	[12]
sat	SatF	TGAGCAGTGGGGGCAAAAC	[12]
	SatR	TCATCCCTGCTGCCGAG	[12]
aadA1	aadA1r	TCATTGCGCTGCACCACC	[12]
	aadA1	TCGATGACGGCAACTAC	[12]
dfrA1	Dhfr1r	CCTGAAATCCCGCAGCAAA	[12]
	dfrA1	AGCCTGTCACCTTGGGC	[12]
blaOXA-2	Oxa2F	GAAGAAACGCCTCTGC	[12]
	Oxa2R	TACCCACACCAATCCACAT	[12]
dfrA16	Dhfr16F	CAAAGGGGACGACCTTCT	This study
	Dhfr16R	CACCCCTCATCATCGTA	This study
DNA Sequencing

PCR products were sequenced after purifying the DNA by using the Wizard SV Gel and PCR clean-up System kit according to the manufacturer’s directions (Promega, USA). Sequencing was performed on both DNA strands, using an ABI Prism 3100 BioAnalyzer equipment. The nucleotide sequences were analyzed using the Blast V2.0 software (http://www.ncbi.nlm.nih.gov/BLAST/).

Results and Discussion

The 24 A. xylosoxidans isolates studied exhibited the typical multiresistance profile previously described for this species, being the third and fourth-generation cephalosporins, fluoroquinolones, and aminoglycosides not active against Achromobacter spp. [18]. All isolates were susceptible to tazobactam, imipenem, and meropenem (Table S1 in Supplementary material).

Among the PCR reactions performed for the selected transferable elements, positive results were obtained in ten isolates (42 %) for the IncP plasmids, a wide host range and self-transmissible plasmid important in the dissemination of resistant genes around the world [11] (Table 1). Negative results were obtained for the other Inc groups searched (IncW, IncA/C, IncN, IncFII). Sequence analysis of the amplification products showed 99 % of identity in 200-bp length with the replication gene trfA (AN GU186864). The GC% of the trfA replication gene of IncP plasmid is 60.5 %, which is very similar to the GC% (67 %) of A. xylosoxidans. We also noticed in this study that most isolates containing IncP plasmids corresponded to nosocomial isolates (n = 9). In only one CF patient isolate (Ax72), an IncP plasmid was identified.

Regarding IS and transposons, positive results were obtained for IS26 (n = 2) and IS440 (n = 7) (Table 1), two ISs frequently associated to antimicrobial resistance genes and to classes 1 and 2 integrons [1, 2, 10], obtaining negative results for the transposons Tn1331, Tn3, and Tn7.

In addition, a high dispersion of class 1 integrons was found (42 %). Most of the positive isolates corresponded to nosocomial patient samples (n = 9), being only one positive isolate from a CF patient sample (Ax72). To

Fig. 1 Schematic representation of arrays of class 1 integrons found among the A. xylosoxidans (n = 24) isolates. Thin black vertical closed bar The attI1 site, thin gray vertical closed bar the attC sites of the gene cassettes. Arrows The primers used to identify the class 1 integron vr. Figure is not in scale.
characterize the vr of class 1 integrons, PCR cartography was carried out as previously described [12]. Four vr were identified, being all the arrays different to the previous sulfamethoxazole, CIP.

Moreover, the similar GC% between the trfA replicon of the IncP plasmid and the A. xylosoxidans genome reinforces the argument that A. xylosoxidans could be considered as a reservoir of transferable elements. It is likely that its intrinsic antibiotic multidrug resistant profile that ensures its selectivity under antibiotic pressure, along with its ability to survive in fluids and in the environment [18], makes A. xylosoxidans a reservoir of transferable elements that could contribute to the dissemination and acquisition of antimicrobial resistance mechanisms within the nosocomial environment.

Acknowledgments M.S.R and D.C. are members of the Carrera del Investigador Científico, CONICET, Argentina. This study was supported by Grant UBACYT 20020100300013 from UBA and PIP 11420100100152 from CONICET to M.S.R., UBACYT M008 and B084 Buenos Aires, Argentina to D.C. and C.V., respectively. C.A. was supported by LA Basin Minority Health and Health Disparities International Research Training Program (MHIRT) 5T37MD001368-14 (National Institute on Minority Health and Health Disparities).

Open Access This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution, and reproduction in any medium, provided the original author(s) and the source are credited.

Isolate	CAZ	FEP	PIP	IPM	MEM	AMK	GEN	TMP	CIP	vr^2
Ax79	8	32	0.25	1	0.125	128	128	0.25	8	dfrA1-aadA1
Ax169	32	128	0.25	0.5	0.5	128	128	1	16	dfrA1-aadA1
Ax126	4	32	0.5	1	0.25	128	128	0.125	16	dfrA1-aadA1
Ax72	4	32	0.25	1	0.25	256	256	4	6	aac(6^Ib)
Ax11	32	128	8	4	0.24	128	128	64	64	aac(6^Ib)
Ax44	16	32	0.5	1	0.5	128	128	256	4	dfrA16
Ax56	8	32	8	2	0.06	64	32	0.125	2	aac(6^Ib)
Ax114	16	32	0.125	1	0.125	128	128	16	16	dfrA1-aadA1
Ax304	32	128	8	4	0.125	128	128	32	4	blaOXA-2

CAZ ceftazidime, FEP cefepime, PIP piperacillin, IPM imipenem, MEM meropenem, AMK amikacin, GEN gentamicin, TMP trimethoprim, CIP ciprofloxacin

vr^2: class 1 integron variable region found in the Ax isolates

References

1. Antunes P, Machado J, Peixe L (2007) Dissemination of sul3-containing elements linked to class 1 integrons with an unusual 3’ conserved sequence region among Salmonella isolates. Antimicrob Agents Chemother 51:1545–1548
2. Aubert D, Naas T, Nordmann P (2003) IS1999 increases expression of the extended-spectrum beta-lactamase VEB-1 in Pseudomonas aeruginosa. J Bacteriol 185:5314–5319
3. Carattoli A, Bertini A, Villa L, Falbo V, Hopkins KL, Threlfall EJ (2005) Identification of plasmids by PCR-based replicon typing. J Microbiol Methods 63:219–228
4. CLSI (2008) Performance standards for antimicrobial susceptibility testing. Clinical and Laboratory Standards Institute, Wayne, PA
5. Flores C, Qadri MI, Lichtenstein C (1990) DNA sequence analysis of five genes; tnsA, B, C, D and E, required for Tn7 transposition. Nucleic Acids Res 18:901–911
6. Gomez-Cereo J, Suarez I, Rios JJ, Pena P, Garcia de Miguel MJ, de Jose M, Monteagudo O, Linares P, Barbado-Canó A, Vazquez JJ (2003) Achromobacter xylosidans bacteremia: a 10-year analysis of 54 cases. Eur J Clin Microbiol Infect Dis 22:360–363
7. Hansen CR, Pressler T, Nielsen KG, Jensen PO, Bjomsholt T, Hosby N (2010) Inflammation in Achromobacter xylosidans infected cystic fibrosis patients. J Cyst Fibros 9:51–58
8. Magni A, Trancassini M, Varesi P, Iebba V, Curci A, Pecoraro C, Cimino G, Schippa S, Quattrucci S (2010) Achromobacter xylosidans genomic characterization and correlation of randomly amplified polymorphic DNA profiles with relevant clinical features [corrected] of cystic fibrosis patients. J Clin Microbiol 48:1035–1039
9. Merkier AK (2009) Caracterizacion de B-lactamasas en bacilos gram negativos no fermentadores de la glucosa. Thesis Doctoral, Universidad de Buenos Aires
10. Naas T, Poirel L, Karim A, Nordmann P (1999) Molecular characterization of In50, a class 1 integron encoding the gene for the extended-spectrum beta-lactamase VEB-1 in Pseudomonas aeruginosa. FEMS Microbiol Lett 176:411–419
11. Novais A, Canton R, Valverde A, Machado E, Galan JC, Peixe L, Carattoli A, Baquero F, Coque TM (2006) Dissemination and persistence of blaCTX-M-9 are linked to class 1 integrons containing CR1 associated with defective transposon derivatives from Tn402 located in early antibiotic resistance plasmids of IncHI2, IncP1-alpha, and IncFI groups. Antimicrob Agents Chemother 50:2741–2750
12. Orman BE, Pineiro SA, Arduino S, Galas M, Melano R, Caffer ML, Sordelli DO, Centron D (2002) Evolution of multiresistance in nontyphoid salmonella serovars from 1984 to 1998 in Argentina. Antimicrob Agents Chemother 46:3963–3970
13. Quiroga MP, Andres P, Petroni A, Soler Bistue AJ, Guerriero L, Vargas LJ, Zorreguieta A, Tokumoto M, Quiroga C, Tolmasky ME, Galas M, Centron D (2007) Complex class 1 integrons with diverse variable regions, including aac(6’)-Ib-cr, and a novel allele, qnrB10, associated with ISCR1 in clinical enterobacterial isolates from Argentina. Antimicrob Agents Chemother 51:4466–4470
14. Ramirez MS, Quiroga C, Centron D (2005) Novel rearrangement of a class 2 integron in two non-epidemiologically related isolates of Acinetobacter baumanii. Antimicrob Agents Chemother 49:5179–5181
15. Ramirez MS, Parenteau TR, Centron D, Tolmasky ME (2008) Functional characterization of Tn1331 gene cassettes. J Antimicrob Chemother 62:669–673
16. Ramirez MS, Pineiro S, Centron D (2010) Novel insights about class 2 integrons from experimental and genomic epidemiology. Antimicrob Agents Chemother 54:699–706
17. Shin KS, Han K, Lee J, Hong SB, Son BR, Youn SJ, Kim J, Shin HS (2005) Imipenem-resistant Achromobacter xylosidans carrying blaVIM-2-containing class 1 integron. Diagn Microbiol Infect Dis 53:215–220
18. Vay CA, Almuzara MN, Rodriguez CH, Pugliese ML, Lorenzo Barba F, Mattera JC, Famiglietti AM (2005) ‘In vitro’ activity of different antimicrobial agents on gram-negative nonfermentative bacilli, excluding Pseudomonas aeruginosa and Acinetobacter spp. Rev Argent Microbiol 37:34–45
19. Weisburg WG, Barns SM, Pelletier DA, Lane DJ (1991) 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 173:697–703