Background: Genomic islands can be observed in many microbial genomes. These stretches of DNA have a conspicuous composition with regard to sequence or encoded functions. Genomic islands are assumed to be frequently acquired via horizontal gene transfer. For the analysis of genome structure and the study of horizontal gene transfer, it is necessary to reliably identify and characterize these islands.

Results: A scoring scheme on codon frequencies

\[\text{Score}_{G1G2}(cdn) = \text{log}(f_{G2}(cdn) / f_{G1}(cdn)) \]

was utilized. To analyse genes of a species \(G1 \) and to test their relatedness to species \(G2 \), scores were determined by applying the formula to log-odds derived from mean codon frequencies of the two genomes. A non-redundant set of nearly 400 codon usage tables comprising microbial species was derived; its members were used alternatively at position \(G2 \). Genes having at least one score value above a species-specific and dynamically determined cut-off value were analysed further. By means of cluster analysis, genes were identified that comprise clusters of statistically significant size. These clusters were predicted as genomic islands. Finally and individually for each of these genes, the taxonomical relation among those species responsible for significant scores was interpreted. The validity of the approach and its limitations were made plausible by an extensive analysis of natural genes and synthetic ones aimed at modelling the process of gene amelioration.

Conclusions: The method reliably allows to identify genomic island and the likely origin of alien genes.
some genomes this portion exceeds 20% of the genomic content. To study HGT, various methods based on the analysis of codon or amino acid sequences or the construction of phylogenetic trees were developed; reviewed e.g. in [6]. Each approach has its individual drawbacks and it might be that each method identifies a separate class of genes acquired in a different period of genome evolution [7]. Because of the mechanistic implications, the pieces of DNA captured via HGT frequently have a considerable length. Consequently, it has to be expected that a large fraction of alien genes occurs in clusters. This assumption is supported by biological evidence: Genes responsible for pathogenicity are often agglomerated in islands; see [8] and references therein. Huge clusters of genes expanding evolutionary fitness can also be found in non-pathogenic species. An example is the symbiotic island of size 611 kb in the genome of M. loti [9].

An exhaustive analysis of genomic islands has several aspects: It consists of the identification of clusters and the interpretation of gene function. For putatively alien genes (pA, acquired via HGT), their likely origin has to be predicted. The most reliable methods (if applied correctly) coping with the latter task rely on the construction and evaluation of phylogenetic trees. However, each such analysis requires the inference of relations within a gene family. For several reasons like the insufficient number of appropriate clades, it is still difficult to extend these phylogenetic studies to each gene of a complete genome. Therefore, methods were developed aimed at the identification of pA genes without the need for computing phylogenetic trees [5,10-12]. These intrinsic methods assess (if applied to sequences) the composition on DNA or protein level and measure the deterioration from the typical case. One disadvantage of these surrogate methods [6] is that the origin of the open reading frames cannot be predicted.

In the following, I introduce a novel surrogate method that has the potential of predicting the putative source of a DNA sequence. It relies on the generally accepted assumption that codon usage in phylogenetically related species is similar [13,14]. The algorithm is integrated into the software package named SIGI and is based on scores assessing codon usage in pairwise comparisons and the taxonomic evaluation of results. It will be shown that its sensitivity in identifying genomic islands is comparable to the most advanced methods like hidden Markov models (HMM). The combination of a sensitive detector with cluster analysis as implemented here, results in the reliable identification of islands and allows to reduce the number of false positive predictions. This seems to be a problem in many studies of HGT published so far [15]. The validity of the predictions is made plausible by an exhaustive statistical analysis based on natural and synthetic genes. These predictions are one function of SIGI. In addition, it identifies gene clusters originating from additional signals like codon usage bias aimed at the optimisation of translational efficiency.

Results

The following paragraphs are organized as follows: First, the predictive power of the new approach named MPW (see Methods) is compared to methods already introduced in order to validate its ability to find compositionally atypical (CA) genes and genomic islands. Then, the performance of the algorithm in identifying the putative source of genes is studied. Finally, predictions deduced for completely sequenced genomes are presented.

Performance of the scoring system in identifying CA genes

An impressive number of methods for the identification of CA and pA genes was introduced so far, e.g. [11,16-18], see also [7]. In order to compare the predictive power of methods and to evaluate the new approach, I used as a test set the genes annotated on chromosome two of V. cholerae. This chromosome contains an integron island of size 125.3 kbp, which includes genes VCA0271 to VCA0491 [19]. For the analysis, two groups were formed consisting of genes VCA0010 to VCA0230 (group cl) and genes VCA0271 to VCA0491 (group gi). For each gene, codon usage contrast, δ* difference, dicodon difference – as defined in [18] – and hMPW(gene) as described in Methods were determined. These scores were accumulated parameter-wise in pairs of histograms H_{c_1} and H_{c_2}. The decision strength of each parameter was assessed by incrementing a running cut-off c_0 and reading from H_{c_1} and H_{c_2} the fraction of genes accumulated below c_0. Resulting curves are plotted in figure 1. The experiment clearly shows that the new algorithm outperforms the methods, which evaluate deviation from mean frequencies of codons, dicodons or dinucleotides. In addition, the plot demonstrates that codon usage contrast (in the following abbreviated as CUI) is the second best indicator on the test set.

Lawrence and Ochman [14] have developed a surrogate method that combines analysis of GC-content on the first and third codon position, of synonymous codon usage, of positional homology and of BLAST hits (in the following abbreviated as CA15). The results achieved for the E. coli K-12 genome are available ftp://ftp.pitt.edu/dept/biology/lawrence. In figure 2, for all genes of this genome, GCB scores – signalling translational efficiency [20] – were plotted vs. CUI-contrast and MPW score values. 402 of the 569 genes annotated as CA with the MPW-approach were also classified as CA15. This number of coincidences is the 4-fold of the fraction expected to occur merely by chance and is much higher than the overlap of any two other methods tested so far; see [6]. Therefore, it can be deduced that a significant portion of the CA genes were acquired...
via HGT and that the periods of genomic evolution addressed by the CALO and the MPW approach overlap to a great extend. The plot makes also clear that putatively highly expressed (PHX, see Methods) genes have to be excluded in applying surrogate methods. At least some of the genes identified as compositional atypical with the CALO method were PHX. Because of the highly specific codon usage, it is unlikely that these genes have been acquired via HGT (see figure 2).

Fraction of CA genes and their location

It is known that the number of pA genes varies significantly among microbial genomes [21]. Some reasons explaining these differences are the nature and the efficiency of the transformational system or the assortment of the ecological niche the species occupy. In table 1, for a number of species the fraction of CA genes is given and compared to values published for HGT. For most of the genomes listed in [21], the fractions of genes identified as compositional atypical are similarly high. The MPW approach identified for the genomes of **Synechocystis** (CALO = 16.6% / MPW = 5.6%) and **A. aeolicus** (9.6% / 3.3%) a lower and for **A. pernix** (3.2% / 6.1%) a higher amount of CA genes. For the genomes of **M. leprae**, **T. thermophilus**, **A. fulgidus**, **C. acetobutylicum**, **P. horikoshii**, **Halo bacterium**, **B. burgdorferi**, **A. aeolicus** and **Nostoc**, the fraction of CA genes was below 5% and for the genomes of **B. melitensis**, **C. crescentus**, **M. jannaschii**, **T. pallidum**, **C. jejuni**, **M. thermautotrophicus**, **M. kandleri**, **P. aerophilum**, **C. perfringens**, **T. elongatus**, **R. conorii** and **C. muridarum**, it was below 3%. This was also true for the genomes of **D. radiodurans** and **H. pylori**, which is in contrast to already published findings [21]. In the genomes of **N. meningitidis**, **R. prowazekii**, **F. nucleatum**, **Buchnera**, **M. genitalium**, **M. pulmonis** and **U. urealyticum** the fraction of CA genes was below 1%. These values correspond well with findings concerning the mosaic structure of genomes: In **N. meningitidis** only 2.2% of the genome are meningococcus specific [22]. In the sequences of many microbial genomes, a noticeable skew in the usage of guanosine and cytosine...
residues is detectable and frequently used to identify the origin of replication. An extensive survey of genomes based on such methods [2] identified six chromosomes not presenting a significant structure: Those of Nostoc, Synechocystis, Buchnera, R. conorii, B. burgdorferi and A. aeolicus. Clusters of pA genes with deviating codon usage would presumably influence the local GC-content, which is obviously not the case in the considered genomes. The two chromosomes of R. solanacearum (>10% of CA genes each) have both a mosaic structure [23].

The genome of B. subtilis has been assessed using a system of hidden Markov models in order to detect heterogeneities in DNA composition [24]. Table 2 is an extended version summing up these findings and the location of CA clusters identified with the MPW approach. The table demonstrates that both algorithms identify with similar efficiency regions of deviating DNA composition.

In a critical survey, four surrogate methods were compared [6] by studying the intersections of those sets of
genes identified as pA by the various methods. It turned out that only the CALO approach and a method based on hidden Markov models tagged the same genes as pA more frequently than expected by chance.

In [25], the genomes of two *Xanthomonas* pathogens were compared: *Xanthomonas axonopodis* pv. *citri* (Xac) and *Xanthomonas campestris* pv. *campestris* (Xcc). To identify unique genes the authors BLASTed each gene of one genome against all genes of the second one and analysed the hits. For the following comparison those genes were named unique that had no BLAST hit with an E-value < 10⁻²⁰ in the second genome. These data sets were downloaded from http://cancer.lbi.ic.unicamp.br/xanthomonas. As the MPW approach was designed to predict clusters only, unique genes lying isolated were removed. The resulting data sets were compared against the MPW prediction. For Xac, 425 genes were identified as unique; the MPW approach annotated 488 genes as CA. 248 genes were both unique and CA. In the Xcc data set consisting of 4240 genes, 340 had the attribute unique and 454 the attribute CA, 213 genes had both attributes. If these attributes were completely unrelated, one would expect for Xcc the following number \(n \) of genes with both attributes:

\[
 n = \frac{454}{4240} \times \frac{340}{4240} \times 4240 \approx 36.
\]

In both genomes, the number of CA genes labelled as unique is more than five times the expected value. Altogether, these findings support the notion that the MPW approach identifies to a great extend the same class of genes as hidden Markov models or the \(CA_{LO} \) method.

Function	HMM [kb]	MPW [kb]	Repeats [kb]	Putative Source
PHX: ribosomal proteins	108–155	202–223	202–213	Bacilli
P1 prophage	202–220	202–233	--	Bacteriaceae
Surfacin	402–410	--	--	Bacteriaceae
P2 prophage	529–570	529–564	555–567	Bacteriaceae, *Bacilli*
P3 prophage	570–650	587–650	--	Bacteriaceae
Site-specific recombinase	651–664	635–664	--	*Bacilli*
yesJ-yesZ, ABC transporter	738–747	737–746	--	*Bacillus*
Multidrug-efflux transporter	752–782	--	--	*Bacillales*
P4 prophage	818–822	--	--	Bacteriaceae
PBSX prophage (1320–1348)	1124–1130	--	--	Bacteriaceae
P5 prophage	1397–1399	1385–1424	--	Bacteriaceae
P6 prophage	1442–1447	--	--	Bacteriaceae
P7 prophage	1478–1482	--	--	Bacteriaceae
P8 prophage	1879–1901	1879–1901	--	Bacteriaceae, *Bacilli*
P9 prophage	2038–2041	--	--	Bacteriaceae
P10 prophage	2046–2073	2050–2060	--	*Bacillales*
P11 prophage	2151–2286	2152–2286	--	*Bacteriaceae, Chlamydia, Streptococcus
P12 prophage	2652–2701	2654–2701	--	*Bacteriaceae, Streptococcus
P13 prophage	2707–2756	2725–2735	--	*Bacteriaceae, *Bacilli*
P14 prophage	3253–3257	3252–3257	--	*Enterobacteriaceae, *Bacillus cereus*
Arsenic resistance regulator	3463–3467	3462–3469	3475–3482	*Bacteriaceae, Bacillales*
PHX: eno, pgm, tpi, pgk, gap	3608–3634	--	--	*Bacterales*
Cell wall synthesis	3658–3685	3658–3684	3665–3672	*Bacteriaceae, Bacillales*
Nitrile reductase	3819–3831	--	--	*Bacteriaceae*
yxiQ-yxxG, bgS, deaD	4009–4022	4009–4022	--	*Bacteriaceae*
ABC transporter	4123–4134	4119–4139	--	*Bacteriaceae*
ABC transporter	4171–4176	4168–4176	4170–4176	*Bacteriaceae, Bacteria, gamma subdivision*
Streptothricin, tetracycline, mercury regul.	4184–4190	4193–4190	4189–4190	*Bacteriaceae*

Numbers give positions on the chromosome in kb. The values in the columns HMM and Repeats are as from [24]. The column "Putative Source" lists predictions generated by SIGI.
An example for a summary view of SIGI's output is given in figure 3.

Identification of ameliorating genes and excluding false predictions

Beginning with the acquisition of an alien gene, its codon usage will be modulated depending on selective constraints and mutational pressure affecting the recipient's genome. This process was named amelioration [14]. One might argue that the codon usage of an ameliorating gene differs significantly from both the donor's and the acceptor's codon frequencies and may thus cause false predictions. In order to test the robustness of the MPW approach with respect to the amelioration process, synthetic genes consisting of random codon sequences of different length between 100 and 500 codons were generated. Each test set consisted of 500 sequences. Codons were selected randomly according to the frequency values as deposited in the CUTG_RF database (see Methods). For each test set, two species REC (recipient) and DON (donor) and a value FRAC \((0.0 \leq \text{FRAC} \leq 1.0)\) were chosen. Codons were drawn according to the frequency tables CDNREC or CDN DON. FRAC determined, how often CDN DON was selected as a source for the determination of codon frequencies. For the analysis described below, for each combination of a donor and an acceptor, nine data sets were generated according to the FRAC-values 0.0, 0.05, 0.10, 0.25, 0.50, 0.75, 0.90, 0.95, 1.0. These test sets served as a crude model for the amelioration process of genes originating from the donor in the recipient's genome. Test sets were
Table 3: Combinations of acceptor and donor species for the generation of random sequences mimicking the amelioration process.

Acceptor	GC-Content [%]										
	I	II	III	IV	V	VI	VII	VIII			
Mesorhizobium loti	63	Pseudomonas	Raistia	Halobacterium	Chloroflexus	Carynebacterium	Thermatoga	Staphylococcus	Fusobacte rium		
Escherichia coli K-12	52	Synchococcus	Bacillus	Methanosarcina	5.0	circulans 4.4	acetivans 6.5	manitama 9.0	solanacearum	thermophilus	
Pyrococcus harkashi	42	Butyribrio	Sulfolobus	Aquifex	5.0	circulans 4.4	acetivans 6.5	manitama 9.0	solanacearum	thermophilus	natalensis
Clostridium	31	Barreka	Methanobacterium	Anoplasma	5.0	circulans 4.4	acetivans 6.5	manitama 9.0	solanacearum	thermophilus	natalensis

The column Acceptor gives the name of the “accepting” species. Column I to VIII list the names of those species selected as donors and the Manhattan distance to the acceptor’s codon frequency table.

It is known that the mean GC-content at the three codon positions is correlated with the mean GC-content of the genome [26]. A significant deviation of the position-specific GC-content from expectation values derived from the mean GC-content of a gene was interpreted as a signal identifying ameliorating genes [14]. In order to determine the acceptor species-specific: Among 24 cases, only the combination of the 3 highest scoring species (see Methods). Consequently and in the worst case, the term “cellular organism” or the name of a superkingdom was predicted as the putative source. Predictions based on k = 2 pairwise scores were in many cases wrong (data not shown). Interestingly, the number of false predictions is extremely low, if the acceptor’s GC-content is above 40% and if the Manhattan distance to the acceptor’s codon usage is below 15. The results obtained for FRAC = 0.95 clearly indicate that the algorithm is robust as long as the codon usage is species-specific. Among 24 cases, only the combination of the acceptor M. loti and the donator F. nucleatum generated more than 20% false positive predictions.

\[
\text{GC_dist} = \sum_{i=1,3} | \text{GC}_i - \text{GC_exp}_i |
\]

The underlying model implies that the mean GC_dist value is larger in the midst of the amelioration interval. The mean deviation should be minimal for newly acquired genes or those having nearly gained the donor’s composition. Thus, one might expect that genes with high GC_dist values generate the largest number of false predictions. In table 4, which summarizes the results obtained for predicting the putative source of synthetic sequences, only entries having a GC_dist value below the cut-off value AMELI were analysed via the MPW approach. AMELI was incremented from 0.05 to 0.25. A putative source was regarded a wrong prediction, if it was neither a taxon linking the donor with the root of the taxonomic tree nor a taxon linking the acceptor with the root. The presented predictions were derived from the taxonomical relation of the k = 3 highest scoring species (see Methods).
If the random sequences used for the analysis are a proper model for the amelioration process, then the following problem arises: The result suggests that the amelioration of a sequence originating from a species with very dissimilar codon usage causes misleading signals. In addition, the results presented in table 4 do not show a correlation of the relative number of false positive predictions with the GC_dist value. Therefore, and at least for the data set used here, the interpretation of the GC_dist value was no indicator to identify ameliorating sequences. If ameliorating sequences of that kind were frequent in genomes, then the interpretation of codon usage or signatures as in [27] would be questionable. However, there is one argument that might resolve the dilemma: It was made plausible that the range and the frequency of HGT is constrained by selective barriers [15] and one might expect that a codon usage too dissimilar to the acceptor’s one prevents an expression level necessary to guarantee the survival of a gene in the acceptor’s genome.

A second test for the predictive power was based on the analysis of native genes selected in 20 species representing the bacterial and archeal superkingdoms. From the genomes of A. fulgidus, M. acetivorans, T. acidophilum, P. horikoshii, T. maritima, D. radiodurans, C. glutamicum, L. lactis, S. pneumoniae, B. subtilis, E. coli, Y. pestis, H. influenzae, N. meningitidis, H. pylori, A. tumefaciens, M. loti, R. conorii, C. pneumoniae and M. pulmonis, genes annotated by SIGI as putative native ones were extracted. Each data set consisted of more than 200 genes. During the analysis and for all data sets, each of the mentioned species was regarded as the putative acceptor resulting in 20 × 20 individual tests. For all genes, the putative source was predicted individually as described (see Methods). In 14 of the 20 data sets, the highest score identified the source correctly for more than 90% of the genes on the level of the taxonomical family irrespective of the choice of the putative acceptor. Less specific were the results for the data sets extracted from the genomes of L. lactis (72% correct predictions on the family level), S. pneumoniae (81%), C. glutamicum (88%), B. subtilis (88%), Y. pestis (83%) and from genes of chromosome 1 of D. radiodurans (59% correct predictions on the phylum level). Inferring the putative source from three high scoring pairwise comparisons as described below, reduced – as expected – the specificity of the taxonomical classification. However, the number of false predictions decreased drastically: For all cases besides D. radiodurans, less than 5% of the sources were misclassified on the level of the taxonomic class. In the worst case, i.e. for D. radiodurans genes, 32% of the predictions were wrong on the phylum level. These findings suggest that codon usage in the extracted gene set of D. radiodurans is unspecific and has to be studied in more detail. In no case, more than 1% false classifications were generated on the level of the superclass. This result indicates that codon usage in Bacteria and Archea is quite distinct.

Table 4: SIGI’s performance in predicting the donor genome for synthetic genes modelling the amelioration process.

Acceptor	Cut-off AMELI	I	II	III	IV	V	VI	VII	VIII
Mesorhizobium loti	0.05	0.50	0.50	0.69	0.50	0.34	0.11	0.26	0.15
	0.10	0.75	0.75	0.32	0.39	0.50	0.82	0.17	0.50
	0.25	0.75	0.36	0.20	0.39	0.50	0.90	0.20	0.95
	0.95	0.47	0.46	0.2	0.05	0.49	0.09	0.25	0.05
	0.95	0.70	0.90	0.10	0.12	0.95	0.97	0.50	0.95
Escherichia coli K-12	0.05	1.00	0.00	0.32	0.06	0.50	0.30	0.80	0.50
	0.10	0.95	0.34	0.39	0.50	0.75	0.45	0.50	0.75
	0.25	0.75	0.00	0.00	0.48	0.75	0.45	0.00	0.50
	0.95	0.95	0.95	0.00	0.95	0.95	0.95	0.95	0.95
Pyrococcus horikoshii	0.05	0.75	0.13	0.00	0.00	0.75	0.50	0.00	0.50
	0.10	0.75	0.38	0.50	0.00	0.75	0.10	0.50	0.00
	0.25	0.75	0.41	0.00	0.00	0.75	0.10	0.00	0.50
	0.95	0.95	0.95	0.00	0.95	0.95	0.95	0.95	0.95
Clostridium acetobutylicum	0.05	1.00	0.20	0.00	0.50	0.75	0.14	0.50	0.75
	0.10	1.00	0.60	0.00	0.00	0.75	0.35	0.50	0.16
	0.25	1.00	0.79	0.00	0.00	0.75	0.35	0.00	0.12
	0.95	0.95	0.66	0.00	0.00	0.95	0.00	0.00	0.00

For each pair of donor and acceptor, the worst case is given for three values of AMELI. Each entry lists the fraction FRAC and the number of correct/incorrect prediction generated for a dataset consisting of 500 sequences. The last line gives the number of correct/incorrect predictions for a FRAC value of 0.95.
Predicting the origin of CA genes

It is known that genomic islands are inhomogeneous in composition and have a mosaic structure, as they are the result of a multistep process [8]. For a first analysis of the genomes however, I identified genomic islands annotated relatively homogeneously with respect to the putative donor.

Each Salmonella genome has approximately 12 fimbria operons frequently involved in virulence [28]. In S. typhimurium, the operons fim, saf, std and sth were identified as CA, bcf, lpf, stc, stf, sti and stj were silent. In S. enteritidis, sef, stb, std, ste and tcf were identified as CA, bcf, saf, sta, stc, stg and sth were inconspicuous. The integrated plasmid genomes Gifsy-1, Gifsy-2, Fels-1 and Fels-2 were CA. In many cases, for these islands the taxa "Bacteria" or plasmids are predicted as putative source, indicating an unspecific codon usage. The bias seen in the fimbria operons might be due to the strong selective pressure imposed by the host immune system. Based on the analysis of the ycdB gene, it was claimed that genomic islands of low GC-content were acquired from Lactococcus lactis [29]. SIGI gave the following annotations for the most similar sequences of ycdB: AAC75047 of E. coli K-12 predicted as CA originating from Bacillli, second most similar CA codon usage (hit) Lactococcus, CAD06974 of S. enteritidis CA (Bacilli, first hit Lactococcus), AAL23317 of S. typhimurium was not annotated as CA, SF2054 of S. flexneri CA, (Bacilli, first hit Lactococcus).

In Salmonella enterica, several CA clusters were identified. In the following list, for some clusters the positions, gene sizes and have to be interpreted with care (see above, results for remediation genes).

In many cases, restriction-modification enzymes were identified as CA like in Nostoc. A genomic island (3278 kb – 3289 kb) containing a type 1 restriction modification enzyme follows a tRNA-Ala gene and a transposase. A second enzyme of that type is located in the genomic island (4186 kb – 4220 kb) following a tRNA-Gly. These genes are predicted as originating from Bacillus and Chlamydompha.

In the genome of the α-Proteobacterium Caulobacter crescentus, only 2.5% of the genes are CA. Several genes clustered in the region from 621 kb – 694 kb were predicted as originating from the Rhizobiales group: CC0575 coding for a putative beta-lactamase (p1 = 5 × 10^-4, p2 = 9 × 10^-5), CC0576, it's product is an asparaginase family protein (p1 = 0.01, p2 = 9 × 10^-5) or CC0618, cysG coding for a siroheme synthase (p1 = 0.01, p2 = 9 × 10^-5). The indices p1 and p2 are explained in Methods. A second cluster at 2.90 kb – 2.95 kb contains the genes for the conjugal transfer protein trbI and several transposases. The codon signature is inhomogeneous, dominated by species of the Rhizobiales group.

Haemophilus influenzae Rd is a small, Gram-negative bacterium; the only natural host is human. For 15 genes, the γ-Proteobacterium Shevannella was predicted as putative source. 12 of these hits were clustered in the region 1572 kb – 1590 kb which belongs to an island extending from 1555 kb – 1595 kb. It contains among genes for hypothetical proteins pepC and genes coding for Mu proteins like muA. Recently, a Shevannella species was identified as human pathogen [32] making the prediction plausible. As the GC-content of H. influenzae is 38%, these predictions have to be interpreted with care (see above, results for ameliorating genes).

In the genome of Streptococcus pyogenes, 131 genes are annotated as "phage associated". However, only 50 of these genes were identified as CA. A CA island spans from 884 kb to 895 kb containing a putative methyltransferase and the srt system involved in lantibiotic production; the putative source is diffuse.

It is known that the genome of Mesorhizobium loti contains a huge symbiosis island (4645 kb – 5256 kb) of size 611 kb [9]. SIGI predicts most of these genes as originating from the Rhizobiales group. The hypothetical protein MLR6371 has the codon signature of the beta subdivision.
Examples for additional CA clusters are: 341 kb – 362 kb coding for unknown proteins around a bacteriophage integrase, genes are similar in codon usage to plasmids and Rhizobiaceae; 779 kb – 827 kb codes several transferases; 843 kb – 861 kb containing genes for an adenylate cyclase, putatively originating from the Rhizobiaceae group; 2592 kb – 2610 kb containing genes for a DNA invertase rlgA and an excisionase; 3705 kb – 3755 kb containing genes for a glycosyltransferase, a DNA polymerase, chloramphenicol-acyetyltransferase, heat shock proteins, codon usage most similar to Rhizobiaceae group; 5714 kb – 5742 kb containing genes for elements of an ABC-transporter, methyltransferases, hydrolases; 6580 kb – 6681 kb genes for hypothetical proteins, an ABC-transporter, a DNA modification-methylase, a histidine-kinase and a site-specific recombinase, the codon usage is most similar to that of the Rhizobiaceae group.

For a complete listing of the results, see the material deposited on the web server http://www.g2l.bio.uni-goettingen.de. For each genome, results are available in a tabulated version and a format readable by the gene browser ARTEMIS [33].

Discussion

It was argued that codon usage and atypical GC-content are no reliable indicators for the study of horizontally transferred genes [34]. An analysis of positional orthologous genes in E. coli and S. typhimurium came up with a similar result [35]. Interestingly the genes referred to as being classified as false positives in E. coli K-12 (gloB, galdiB, yheB) with the CA10 approach were not classified as CA by the MPW method. Definitely, the number of false positive predictions can be reduced by applying a clustering method as introduced here. The risk of missing a large fraction of pA genes should be minimal, as the pieces of transferred DNA have usually a considerably length [8], although there exist exceptions like in the genome of Neisseria [22].

The assumption that surrogate methods might overlook genes acquired by horizontal transfer might be valid for more ancient events, recently acquired genes seem to be detected to a great extend by surrogate methods [2]. Lawrence and Ochman estimated the age of imported genes [5]. The conclusion was that most are relatively recent, i.e. acquired within the last few million years; see e.g. [36]. This suggests that older imports have been purged from the genomes presumably because these genes did not improve fitness [15]. If this argument is valid, there is no need to search for huge amounts of ancient pA genes.

The highly consistent findings of the HMM and the MPW approach for the B. subtilis genome confirm specificity and sensitivity of the MPW method. However, there might be two problems: Predicting the false donor and amelioration. The most convincing proof for the correctness of SIGI’s prediction are concordances with phylogenetic studies. One example of consistent results is the analysis of the ycdB gene presented above. However, in many cases, genes identified as pA with other methods were not part of a CA cluster. This was the case for gltB and ino1 of Thermotoga maritima identified as archael [37], or the events of HGT described for D. radiodurans [38]. The analysis of synthetic genes showed that the risk of predicting a false source is high, if the codon usage of the donor is extremely different. There is however biological evidence that such HGT events are rare. Therefore, most of SIGI’s predictions are reliable on a statistical level. The analysis of the domain structure of aminoacyl-tRNA synthetases revealed a complex history of HGT events [39]. In no genome, the MPW method annotated an aminoacyl-tRNA synthetase as CA. This might indicate the limitations of the approach, which is limited to signals on the codon level.

The GC-content decreases near the replication terminus of several microbial species. The AT richness of the terminus region could be caused by the replication machinery or the DNA repair system [2]. This deviation might be the source for classifying genes incorrectly as CA. In many cases, the GC-content of pathogenicity islands is however lower than the average content – see examples in [22,31] – and it might be that genomic islands were imported preferentially opposite of the origin of replication. In addition, not all genomic islands are AT rich: the area between 1555 kb and 1595 kb in the genome of H. influenzae consists of 40 genes having a GC-content that is higher and 11 genes having a GC-content lower than the mean GC-content of the genome. If GC-content is determined gene-wise, then for 45% of the genomes analysed here, more than 75% of the genes have a lower than mean GC-content, which is in agreement with [40,41]. However, 18% of the genomes harbour in GIs more than 50% of CA genes having a higher GC-content. An extreme case is the genome of S. solfataricus, where 90% of CA genes have a GC-content higher than the mean value of 35%.

In principle, the MPW should also identify genomic islands whose GC-content is similar to the rest of the genome as long as the codon usage is different. Even a similarity of codon usage as detected in thermophilic bacteria of different clades [42] will not cause false predictions: because of the interpretation of taxonomic relation between hits, the annotation will in these cases be less specific but not false.
There are several options to improve SIGI. The integration of more codon usage tables and additional indicators like those introduced in [11] or [27] may further enhance its predictive power. Applying models for the amelioration process [14,34] may allow to "reameliorate" genes and to determine the source of pA genes more specifically. Finally, a statistical model for the MPW approach has to be developed.

Conclusions

SIGI is able to detect genomic islands with high sensitivity. These areas are also candidates for HGT events. Studying such events, SIGI complements methods based on phylogenetic approaches. The analysis of the taxonomical relation among putative donors makes clear that a simple comparison of codon usage may create misleading predictions.

Methods

A scoring scheme to test relatedness of codon usage

The simplest statistical model describing genes as a sequence of codons assumes that codons occur independently from each other. For this model, the Neyman-Pearson lemma assures that a function of the type

\[h(gene) = \frac{f_{G1}(cdn_1)f_{G2}(cdn_2)...f_{G1}(cdn_{n-1})f_{G2}(cdn_n)}{f_{G1}(cdn_1)f_{G1}(cdn_2)...f_{G1}(cdn_{n-1})f_{G1}(cdn_n)} \]

(1)

is optimal to decide, whether gene = start codon, cdn1, cdn2,...cdn_n is a member of the family G1 characterized by codon frequencies f_{G1}(cdn) or belongs to family G2 having codon frequencies f_{G2}(cdn). As a result of test theory, it is known that there exists no other function with a decision strength greater than expression (1). Applying the logarithm and normalizing for gene length gives:

\[h(gene) = \frac{1}{n} \sum_{j=1}^{n} \log \left(\frac{f_{G2}(cdn_j)}{f_{G1}(cdn_j)} \right) = \frac{1}{n} \sum_{j=1}^{n} PW_{G1G2}(cdn_j) \]

(II)

Now h(gene) is the sum of species-specific log-odds scores PW_{G1G2}(cdn) divided by the number of codons constituting the gene. Scores of that type were utilized frequently and are supported by a sound theory [43]. Recently it was shown that a similar approach is appropriate to quantify codon usage bias associated with translational efficiency [20].

The score values PW_{G1G2}(cdn), which were here always deduced from codon frequencies among synonymous codons, can be used to decide whether codon usage in gene resembles more the prevalences of species G1 or species G2. If gene is from genome G1 and if h(gene) is \(\geq 0 \) then its codon usage is more similar to G2. Therefore, and if G2 is taxonomically distinct, the gene under study must be regarded an alien gene and genome G2 might be its source. In the study presented here, a putative source was predicted for genes longer than 100 codons only. This lower limit for gene length was introduced in order to reduce statistical variation due to small sampling size.

As it was one aim of the study to predict the putative source of compositional atypical genes, it was necessary to generate a sufficiently large number of score sets covering most of the possible origins of taxonomically related species. A prerequisite for the calculation of these scores PW_{G1G2} are codon usage tables. Their compilation was initiated with data sets derived from completely sequenced microbial genomes, which were publicly available. Frequency values f_{G2}(cdn) were determined from those genes not annotated as hypothetical or with a putative function. It is known that codon frequencies in putatively highly expressed (PHX) genes deviate significantly from mean values [3,44]. For each gene, z-scores were determined for CU contrast [18] and GCB-values [20] (compare figure 2). A gene was regarded as PHX, if the combination of the two scores exceeded a predefined cut-off value. This initial set was supplemented with entries from the CUTG database [45] in the version as of Aug. 2002. From this collection, only those microbial entries were accepted that contained more than 6400 codons. If more than one frequency table existed for the same taxonomic species, the data set deduced from the largest number of codons was processed further. After data collection, similarity of codon usage among species was controlled by calculating pairwise a Manhattan-like distance among codon usage tables. This distance values were used to select the final set CUTG_RF of codon frequencies. For all elements of CUTG_RF, it was confirmed that the most similar species on codon usage belongs to the same taxonomic class or superclass. This step and the other precautions mentioned above were introduced in order to guarantee taxonomic relatedness among the entries and to eliminate codon usage tables presumably derived from a non-representative sample of a genome. The collection was supplemented with codon usage tables of plasmids. Altogether CUTG_RF consisted of nRF = 371 entries used for the calculation of scores PW_{G1G2}(cdn) at position G2. The codon frequencies f_{G1}(cdn) of the genome G1 under study were determined from those genes not annotated with the terms "hypothetical" or "putative" and which were no PHX genes.

For the analysis of each gene of a genome G1, its codon usage was evaluated in a multiple pairwise test (MPW) using {\(n_{RF} \)} individual scoring schemes PW_{G1G2}(cdn). The species G2_{max} causing the highest score \(h_{MPW}(gene) \) was considered a putative source, if \(h_{MPW}(gene) \) exceeded a cut-off value. In order to quantify the statistical relevance of the prediction, two parameters p1 and p2 were introduced. p1 gives the fraction of genes in G1 that achieved a score at least as high as \(h_{MPW}(gene) \), if evaluated with the scoring
scheme $PW_{G1G2_{max}}(cdn)$. A $p1$ - value of 0.01 e.g. indicates that 1% of the genes in $G1$ have a score equal to or greater than $h_{MPW}(gene)$ if compared to the codon usage of $G2_{max}$. The second parameter $p2$ was derived from a taxonomic rating of those $k = 2$ or 3 species $G2_{1}$-$G2_{k}$ triggering the k largest score values for $gene$. The basis for the analysis was a taxonomic tree generated by using material obtained from the ftp-server of the NCBI ftp://ftp.ncbi.nih.gov/pub taxonomy/. The nodes that represent species belonging to the set CUTF_GRF were labelled with an indicator. To calculate the parameter $p2$, the position of the leaves $G2_{1}$-$G2_{k}$ were used to identify the nearest node (ancestor in the taxonomy tree) t_{i} that subsumes the k leaves. If t_{i} is the ancestor of those n_{i} species belonging to CUTF_GRF, then the probability $p2$ of picking by chance k species belonging to the taxonomic group t_{i} can be calculated as

$$p2 = \left(\frac{n_{i}}{k} \right) \left(\frac{n_{RF}}{k} \right)$$

(III)

Formula (III) was adapted accordingly, if n_{i} was smaller than k. The identification of taxon t_{i} and the p_{2} value allow to determine the specificity of codon usage. If the high scoring species are taxonomically unrelated, t_{i} will be unspecific and p_{2} relatively large. A specialized codon usage will result in small p_{2} values and a more specific taxon.

Identification of CA clusters

The concepts introduced so far allowed to characterize individual genes and to quantify related scores statistically. Now, it was necessary to assess the set of all $h_{max}(gene)$ values in order to derive a cut-off which discriminated those values $h(gene) > 0$ that deviated significantly from expected fluctuations. Because of the focussing on identifying clusters of CA genes, a statistical approach could be utilized to eliminate false positive predictions. To identify genomic islands and to dynamically adapt the cut-off for each genome individually, a two-pass strategy was used. During the first pass, for each gene with number i, all n_{RF} scores were determined and $h_{MPW}(gene_{i})$ was identified. A text string genome was created according to the following instruction:

$$genome(i) = \begin{cases}
N & \text{if } h_{MPW}(gene_{i}) < \text{cut } _{off} \\
S & \text{if } h_{MPW}(gene_{i}) \geq \text{cut } _{off}
\end{cases}$$

For the string genome the global frequency $f_{glob}(S)$ was determined and clusters SSSSS indicating a successive sequence of at least five CA genes were localized. These clusters were extended in both directions until the local frequency $f_{loc}(S)$ fell below the value $2 \times f_{glob}(S)$. The $h_{MPW}(gene)$ values of the genes in the extended clusters and the remaining ones were accumulated in two histograms h_{cl} and h_{rem}. From the histogram h_{cl}, the cut-off c_{off} for round two of the clustering process was derived as the h_{MPW} value exceeded by 95% of the values determined for genes in extended clusters. c_{off} allows to estimate the error of not classifying a CA gene correctly: Applying c_{off} on h_{rem} gives the number of genes having a score above this cut-off and not being classified as a CA gene. Using cut-off c_{off}, the clustering algorithm was reinitiated and the genes classified as belonging to extended clusters in round two were annotated as being CA. The cut-off for round one was always set to 0.025, a value deduced from the analysis of chromosome two of V. cholerae (see Results).

There were several reasons to design the algorithm as described: The main argument for focusing on clusters was a combination of biological evidence and statistical principles that help to increase the reliability of the prediction. First, it is known that genomic islands frequently have a size of 10 – 200 kb [8]. Second, if the probability of annotating a gene as CA is $p(S)$ then the probability for a CA cluster of n successive genes is $p(S)^{n}$, if independency is assumed. Thus, for realistic values of $p(S)$ and n it is highly unlikely that such a cluster occurs merely by chance. Even if we consider a large value like $p(S) = 0.3$, then the probability $p(S)^{5}$ for a cluster of size 5 (as assumed above) is $< 2.5 \times 10^{-3}$. A rough estimation $(1 / p(S)^{5})$ gives that then one among 400 of such clusters occurs merely by chance and is a false positive classification. This situation allows to gain high sensitivity in identifying individual CA genes and to deliberately adjust the cut-off level as described above. As mentioned, the calculation is based on the assumption that the classification of adjacent genes is independent of the context. Assuming independency is a simplistic model, however a rough approximation, if compared to findings in E. coli: 80% of transcription units (which subsume operons) have less than five genes [46].

The factor 2.0 used in the expression $2 \times f_{glob}(S)$ for the propagation of extended clusters was inferred from the analysis of the integron island on chromosome two of V. cholerae (see Results). The exact value of this parameter did not critically influence the identification and localization of the integron island (annotation as from [19], data not shown). In general, the algorithm used for the extension of clusters resembles principles implemented in BLAST for the identification of optimal high scoring segment pairs [47].

Data sets (accession numbers in brackets)

Archaea

Archaeoglobus fulgidus (NC_000917), Aeropyrum pernix (NC_000854), Halobacterium sp. NRC-1 (NC_002607), Methanothermobacter thermautotrophicus (NC_000916), Methanocaldococcus jannaschii (NC_000909), Methanosarcina...
rcina acetivorans (NC_003552), Methanosarcina mazei (AE008384), Pyrococcus abyssi (NC_000868), Pyrococcus horikoshii (NC_000961), Sulfolobus solfataricus (NC_002754), Sulfolobus tokodaii (NC_003106), Thermoplasma acidophilum (NC_002578), Thermoplasma volcanium (NC_002689).

Bacteria

Agrobacterium tumefaciens, Bacteria, Bacillus halodurans (NC_002570), Bacillus subtilis (NC_000964), Brucella melitensis (NC_003317, NC_003318), Borrelia burgdorferi (NC_001318), Buchnera sp. APS (NC_002528), Campylobacter jejuni (NC_002163), Caulobacter crescentus (NC_002696), Chlamydia muridarum (NC_002620), Chlamydia trachomatis (NC_000117), Chlamydia pneumoniae J138 (NC_002491), Chlamydia pneumoniae AR39 (NC_002179), Clostridium acetobutylicum (NC_003030), Clostridium perfringens (NC_003366), Corynebacterium glutamicum (NC_003450), Deinococcus radiodurans (Chromosome 1, NC_001263), Escherichia coli K-12 (NC_000913), Escherichia coli O157:H7 EDL933 (NC_002655), Fusobacterium nucleatum (NC_003454), Haemophilus influenzae Rd (NC_000907), Helicobacter pylori 26695 (NC_000915), Helicobacter pylori J99 (NC_000921), Lactococcus lactis subsp. Lactis (NC_002662), Listeria innocua (NC_003212), Listeria monocytogenes (NC_003210), Moraxellabacter loti (NC_002678), Methanopyrus kandleri (NC_003351), Mycobacterium tuberculosis CDC1551 (NC_002755), Mycobacterium tuberculosis H37Rv (NC_000962), Mycoplasma genitalium (NC_000908), Mycoberacterium leprae strain TN (NC_002677), Mycoplasma pneumoniae (NC_000912), Mycoplasma pulmonis (NC_002771), Neisseria meningitidis Z2491 (NC_003116), Nostoc sp. PCC 7120 (NC_003372), Oceanobacillus iheyensis (NC_004193), Pasteurella multocida (NC_002663), Pseudomonas aeruginosa (NC_002516), Pyrobaculum aerophilum (NC_003364), Rasostria solanacearum (NC_003295, NC_003296), Rickettsia conorii (NC_003103), Rickettsia prowazekii (NC_000963), Salmonella enterica (NC_003198), Salmonella typhimurium (NC_003197), Shigella flexneri (NC_004337), Sinorhizobium meliloti (NC_003047), Staphylococcus aureus subsp. aureus N315 (NC_002745), Staphylococcus aureus strain Mu50 (NC_002758), Streptococcus agalactiae (NC_004116), Streptococcus pneumoniae R6 (NC_003098), Streptococcus pneumoniae TIGR4 (NC_003038), Streptococcus pyogenes (NC_002737), Synechocystis sp. PCC6803 (NC_000911), Thermoanaerobacter tengcongensis (NC_003896), Thermosynechococcus elongatus (NC_004113), Thermostoga maritima (NC_000853), Treponema pallidum (NC_000919), Ureaplasma urealyticum (NC_002162), Vibrio cholerae (NC_002505, NC_002506), Xanthomonas axonopodis (NC_003919), Xanthomonas campestris (NC_003902), Xylella fastidiosa (NC_002488), Yersinia pestis (NC_003143).

The data sets for *Thermus thermophilus* and *Picrophilus torridus* were preliminary data prepared at the Göttingen Genomics Laboratory.

Acknowledgements

The project was carried out within the framework of the Competence Network Göttingen "Genome research on bacteria" (GenoMik) financed by the German Federal Ministry of Education and Research (BMBF). I thank S. Waack and M. Stanke for discussions concerning statistics and test theory and A. Wiese and J. Sobkowiak for supplying me with a perfect computational infrastructure.

References

1. Lobry JR: Asymmetric substitution patterns in the two DNA strands of bacteria. *Mol Biol Evol* 1996, 13:650-665.
2. Daubin V, Perrière G: GC3 structuring along the genome: a common feature in Prokaryotes. *Mol Biol Evol* 2003, 20:471-483.
3. Sharp PM, Li WH: The codon adaptation index - a measure of directional synonymous codon usage bias, and its potential applications. *Nucleic Acids Res* 1987, 15:1281-1295.
4. Doolittle WF: Phylogenetic classification and the universal tree. *Science* 1999, 284:2124-2129.
5. Lawrence JG, Ochman H: Molecular archaeology of the *Escherichia coli* genome. *Proc Natl Acad Sci U S A* 1998, 95:9413-9417.
6. Ragan MA: On surrogate methods for detecting lateral gene transfer. *FEBS Microbiol Lett* 2001, 201:187-191.
7. Ragan MA: Detection of lateral gene transfer among microbial genomes. *Curr Opin Genet Dev* 2001, 11:620-626.
8. Hacker J, Kaper JB: Pathogenicity islands and the evolution of microbes. *Annu Rev Microbiol* 2000, 54:641-679.
9. Kaneko T, Nakamura Y, Sato S, Asamizu E, Kato T, Sasamoto S, Watanabe A, Idesawa K, Ishikawa A, Kawashima K, Kimura T, Kishida Y, Kiyokawa C, Kohara M, Matsumoto M, Matsuno A, Mochizuki Y, Nakayama S, Nakazaki N, Shimpo S, Sugimoto M, Takeuchi C, Yamada M, Tabata S: Complete genome structure of the nitrogen-fixing symbiotic bacterium *Mesorhizobium loti*. DNA Res 2000, 7:331-338.
10. Sandberg R, Winberg G, Brändén CI, Kaske A, Ernberg I, Coster J: Capturing whole-genome characteristics in short sequences using a naive Bayesian classifier. *Genome Res* 2001, 11:1404-1409.
11. Hooper SD, Berg OG: Detection of genes with atypical nucleotide sequence in microbial genomes. *J Mol Biol* 2002, 345:363-375.
12. Mrázek J, Karlin S: Detecting alien genes in bacterial genomes. *Ann N Y Acad Sci* 1999, 870:314-329.
13. HorI H, Osawa S: Origin and evolution of organisms as deduced from SS ribosomal RNA sequences. *Mol Biol Evol* 1987, 4:445-472.
14. Lawrence JG, Ochman H: Amelioration of bacterial genomes: rates of change and exchange. *J Mol Biol* 1997, 44:383-397.
15. Kurland CG, Canback B, Berg OG: Horizontal gene transfer: a sandal view. *Proc Natl Acad Sci U S A* 2003, 100:9658-9662.
16. Ochman H, Elwyn S, Moran NA: Calibrating bacterial evolutionary. *Proc Natl Acad Sci U S A* 1999, 96:12638-12643.
17. Garcia-Vallejo S, Romeu A, Palau J: Horizontal gene transfer in bacterial and archaeal complete genomes. *Genome Res* 2000, 10:1719-1725.
18. Karlin S: Detecting anomalous gene clusters and pathogenicity islands in diverse bacterial genomes. *Trends Microbiol* 2001, 9:333-343.
19. Heidelberg JF, Eisen JA, Nelson WC, Clayton RA, Gwinn ML, Dodson RJ, Haft DH, Hickey EK, Peterson JD, Umayam L, Gill SR, Nelson KE, Read TD, Tettelin H, Richardson D, Ermolaeva MD, Vamathevan J, Joiner S, Qin H, Dragoi I, Sellers P, McDonald L, Utterback T, Fleishmann RD, Nierman WC, White O: DNA sequence of both chro-
mosomes of the choleran pathogen Vibrio cholerae. Nature 2000, 406:477-483.
20. Merlo RL: A survey of codon and amino acid frequency bias in microbial genomes focusing on translational efficiency. J Mol Evol 2003, 57:453-466.
21. Ochman H, Lawrence JG, Groisman EA: Lateral gene transfer and the nature of bacterial innovation. Nature 2000, 405:299-304.
22. Ochman H, Lawrence JG, Groisman EA: Horizontal transfer of archaeal genes into the deinococci: detection by molecular and computer-based approaches. J Mol Evol 2000, 51:587-599.
23. Olendzenski L, Liu L, Zhaxybayeva O, Murphey R, Shin DG, Gogarten JP: Horizontal transfer of archaean genes into the deinococci: detection by molecular and computer-based approaches. J Mol Evol 2000, 51:587-599.
24. Wolf YI, Aravind L, Grishin NV, Koonin EV: Evolution of aminoacyl-tRNA synthetase-analyses of unique domain architectures and phylogenetic trees reveals a complex history of horizontal gene transfer events. Genome Res 1999, 9:689-710.
25. Wolf YI, Aravind L, Grishin NV, Koonin EV: Evolution of aminoacyl-tRNA synthetases-analysis of unique domain architectures and phylogenetic trees reveals a complex history of horizontal gene transfer events. Genome Res 1999, 9:689-710.