Influence of electromagnetic atomizers’ technical condition on power and ecological indicators of gasoline I.C.E. in operation

S Khlopkov¹, I Danilov¹*, A Khodyakov¹, S Danilov¹ and L Leonteva²

¹Peoples’ Friendship University of Russia (RUDN University), Moscow, Russia
²Samara State University of Railway Transport, Saratov, Russia

Email: danilov-ik@rudn.ru

Abstract. Productivity of electromagnetic atomizers (EMA) of gasoline engines has been defined. It is established that EMA productivity removed from engine with an operating time of 30-60 thousand km, as well as new atomizers after their washing by ultrasound can change both productivity growth, and its decrease. It is shown that the content of PCO and \(\text{C}_\text{H} \) in the exhaust gases of car GAZ-27040 V (run of 30 thousand km) at engine work (on idling turns) with washed MA is below concentration of the specified toxic components in exhaust gases of the motor completed by unwashed ultrasound EMA. It is established that the difference in compared values of capacity and a torque, obtained in testing on dynamometric stand (subroutine \(P_{\text{max}} \), for the EMA engine before processing by ultrasound) is not significant. In the tests conducted in subroutine \(V_{\text{const}} \), the gain of capacity of the EMA engine washed out by ultrasound has been 0.04 MJ·km\(^{-1}\) (1.71%).

Keywords: electromagnetic atomizers, gasoline engines, capacity, torque.

1. Introduction

It is known that the technical condition (TC) of electromagnetic atomizers (EMA) influences the work of the gasoline engine [1-9]. The reasons of TC disturbance of fuel injection device are unstable work of the engine (jerks and failures at loading increase on the power unit), its capacity decrease, the fuel consumption increase, the raised toxicity of the exhaust gases [1-3]. Therefore, timely disturbance diagnostics of working EMA, restoration of its working capacity are the problems which decision is really actual nowadays.

Being a device of fuel injection, EMA’s main failures are solenoid coil-winding circuit, decrease of needle valve spring rigidity, needle hanging-up of the valve in extreme top or bottom positions [9]. The reasons influencing atomizer working capacity, can be (as a result of thermal influence) surface deposits of hydrocarbons and pitches insoluble in gasoline [1-8].

One of the diagnostics of EMN serviceability violations is the measurement of the performance of an injection device removed from the engine after checking the performance of an electromagnet. Restoration of EMN with a working solenoid is carried out, first of all, assuming that the nozzles contain surface sediments (pollution). EMN is washed using ultrasound. The degree of pollution injectors depends not only on the mileage of the car, but also on the quality of gasoline.

The purpose of the research was necessary to evaluate the technical condition of the injectors with different run times both before and after their ultrasonic washing. To solve the problem, it was considered expedient not only to evaluate the performance of the injectors, but also to establish the influence of their technical condition on the energy and environmental performance of the engine. The received data can be used in setting the terms of service timing of maintenance of the injectors. The moment of their complete replacement, regardless of the technical condition, on the recommendation of the manufacturers is 100 thousand km of run [10-12].
2. Materials and methods

Objects of research were EMA gasoline engines. A technical condition of fuel injection device was estimated by HP-6B, a device for cleaning and analysis of fuel atomizers complete with ultrasonic bathroom «Ultrasonic Cleaner». Atomizers removed from the engine have been tested. Measurements of atomizers productivity have been done in automatic and manual adjustment modes of frequency \((n \tau) \), width \((\tau) \) and numbers of impulses \((N \tau) \) \([4, 13, 14]\). Mode 1 «spillage», 2 «idling», \(n = 650 \) mines\(^{-1}\) («minimum»), \(\tau = 3 \) ms, \(N_c = 2000 \) impulses; 3 «loading», \(n = 2400 \) mines\(^{-1}\), \(\tau = 12 \) ms, \(N_c = 1000 \) impulses; 4 «loading maximum», \(n = 3600 \) mines\(^{-1}\), \(\tau = 6 \) ms, \(N_c = 2000 \) impulses.

Atomizes productivity \(q_i \) is calculated by the formula:

\[
q_i = \frac{Q}{t} \tag{1}
\]

where \(Q \) - volume of fuel during measurement \(t \), ml; \(t \) - measurement time, minute.

Engine capacity and a torque have been defined on dynamometric stand LPS 2510 (CARTEC) under standard ISO 1585. The standard regulates gaugings of the power nett - real capacity of the engine. Tests have been conducted in two subroutines - in program \(P_{\text{max}} \) and \(V_{\text{const}} \). At realisation of scenario \(P_{\text{max}} \) the car speeds up at direct drive to the highest possible speed. After achievement of preliminary set threshold value of speed (for example, \(80 \) km·h\(^{-1}\)), the stand starts to show resistance to rotation of wheels, simulating thereby real road traffic conditions of the car. During tests under scenario \(V_{\text{const}} \) the vehicle develops the greatest possible capacity at fixed (constant) speed. In program \(V_{\text{const}} \) car movement is simulated, dependence of capacity developed by a vehicle on the chosen speed is investigated.

The car with the distributed fuel injection GAZ-27040 V (GAZELLE) and engine ZMZ-406 has been tested. Toxicity of the motor has been estimated by the content of CO and \(\text{СН} \) in the exhaust gases (gas analyzer Infrakar M-2T.01). Liquids LAVR Ln 2003 and LAVR Ln 2004 have been used accordingly for atomizers cleaning and for definition of their productivity.

Both atomizers Siemens DEKA ZMZ 6354 at engine ZMZ-406 of car GAZ-27040 and EMA, removed from motors of various cars with a run \(~30\) to \(~200\) thousand km have been tested. Atomizers Siemens DEKA VAZ 20734, GM 96334808, Siemens DEKA VAZ 6238, etc have been investigated.

3. Results and discussion

Experimental data are presented in tables 1-4.

Parameter	Run, thousand km	150	60	30	0
\(q_{\text{medium source}} \) ml·min\(^{-1}\)	91.7	88.7	126.2	91.5	
\(q_{\text{medium ultrasound}} \) ml·min\(^{-1}\)	92.3	89.4	125.6	91.2	

Parameter	Run, thousand km	150	60	30	0
\(q_{\text{medium source}} \) ml·min\(^{-1}\)	9.6	9.5	12.9	9.3	
\(q_{\text{medium ultrasound}} \) ml·min\(^{-1}\)	9.8	9.5	12.9	9.5	
Table 3. Average productivity (mode of test 3) the complete set of atomizers before washing (\(q_{\text{medium source}}\)) and after washing by ultrasound (\(q_{\text{medium ultrasound}}\)).

Parameter	Run, thousand km			
\(q_{\text{medium source}}\), ml·min\(^{-1}\)	150	60	30	0
	66.3	64.2	90.9	65.5
\(q_{\text{medium ultrasound}}\), ml·min\(^{-1}\)	66.7	64.2	89.6	65.5

Table 4. Average productivity (mode of test 4) the complete set of atomizers before washing (\(q_{\text{medium source}}\)) and after washing by ultrasound (\(q_{\text{medium ultrasound}}\)).

Parameter	Run, thousand km			
\(q_{\text{medium source}}\), ml·min\(^{-1}\)	150	60	30	0
	61.1	59.0	83.7	60.4
\(q_{\text{medium ultrasound}}\), ml·min\(^{-1}\)	61.3	59.0	82.6	60.1

From data comparison (tables 1-4) it follows that for the complete set with an operating time of 150 thousand km atomizers productivity on all modes of testing after ultrasonic processing of devices is higher than parameter \(q_{\text{medium source}}\). For complete sets with a run below 150 thousand km \(q_{\text{medium ultrasound}}\) is equal to average productivity of atomizers before washing by ultrasound or higher than parameter \(q_{\text{medium source}}\). Similar results, namely a parameter variation \(q_{\text{medium source}}\) \(\leq q_{\text{medium ultrasound}}\) \(\leq q_{\text{medium source}}\) is characteristic and for new atomizers Siemens DEKA VAZ 20734 (tables 1-4). Such changes \(q_{\text{medium ultrasound}}\) in relation to \(q_{\text{medium source}}\) at operating time below 150 thousand km and reference (new) atomizers do not allow to make a correct conclusion about changes of atomizers technical condition after their ultrasonic processing. Therefore, both engine work testing on the dynamometric stand and measurement of CO, incomplete fuel combustion products in exhaust gases are quite reasonable.

![Figure 1. The graphic test report of the GAZ-27040 V from the ZMZ-406 engine before washing of spray jets: curve dependences of engine power (continuous lines; kW, kW) and torque (dashed lines; N\(_m\), N·m) from number of revolutions of bent shaft (U/min, ob·min\(^{-1}\)).](image-url)
Comparing values of power (N) and torque (M) engine follows (figures 1, 2) that these parameters irrespective of impact on the device of injection of ultrasound do not change. So, for example, at rotary speed of bent shaft of 2600 ob∙min⁻¹ values of power vary from 42 to 44 kW.

Changes of power (N) and torque (M) depending on rotary speed of bent shaft estimated, using data processing algorithm (the tabular test report) applied in mathematical statistics, scientific research and in calculations of reliability of products [15-18].

After searching for the maximum and minimum values of the crankshaft rotation frequency (nₜ₀), the span was calculated:

\[\Delta x = x_{max} - x_{min} \] \hspace{1cm} (2)

where \(x_{max} \) - maximum value of the rotational speed of the crankshaft; \(x_{min} \) - minimum value of the crankshaft speed.

Next, we determined the number of intervals (k), which can be divided, presented in the column of the tabular test protocol (nₜ₀) values:

\[k = 1 + 3.32 \cdot \lg(N_{st}) \] \hspace{1cm} (3)

where \(N_{st} \) is the number of parameter values nₜ₀.

To calculate the value of the interval (step) \(\delta \) used the formula Stedgers:

\[\delta = \frac{x_{max} - x_{min}}{1 + 3.32 \cdot \lg(N_{st})} \] \hspace{1cm} (4)

As a result of such processing 9 intervals of values of rotary speed of bent shaft have been received. Further counted for the sizes of power and torque concluded in each interval, their average size. The values of \(\Delta x \) for the 5th single tests (interval of rotary speeds of bent shaft 2000-4800 ob∙min⁻¹) averaged

Table 5 shows the average values of power and torque of the engine ZMZ-406.

From comparison given (tables 5-6) it follows that confidential intervals \(\Delta x \) of parameters \(N_{max} \) and \(M_{max} \) unlike \(Ax \) content CO and CH in the exhaust gases both before and after washing atomizers by ultrasound are blocked.
Table 5. The maximum capacity (N_{max}) and the maximum torque (M_{max}) engine ZMZ-406 of car GAZ-27040 V at tests in subroutine P_{max}.

Parameter	Run, thousand km	Before EMA washing	After EMA washing by ultrasound
N_{max}, kW	'0	73.6	69.8±1.1
M_{max}, N·m		177	165.6±3.5

* - rated power as parameter N of the engine guaranteed by the manufacturer on a mode of a full throttle and the set frequency of rotation of a crankshaft; on passport data N = 73.6 kW at 4500 ob·min\(^{-1}\), M=177 N·m at 3500 ob·min\(^{-1}\).

Table 6. The content (C_{CO}, C_{CH}) in the exhaust gases (EG) carbon monoxide (CO) and products of incomplete combustion of fuel (CH) at work of engine ZMZ-406 of car GAZ-27040 V without neutralizer) in an idling mode.

Gas	n=850 ob·min\(^{-1}\)	n=2500 ob·min\(^{-1}\)		
	Before washing EMA	After washing EMA by ultrasound	Before washing EMA	After washing EMA by ultrasound
CO, %	1.764±0.003	0.618±0.006	2.377±0.004	1.577±0.008
CH, %	(170.4±0.5) \(\cdot \) 10\(^{-6}\)	(117.3±0.6) \(\cdot \) 10\(^{-6}\)	(186.2±3.1) \(\cdot \) 10\(^{-6}\)	(128.6±0.8) \(\cdot \) 10\(^{-6}\)

Therefore values of capacity and a torque have been analyzed, using the tool of tabular processor *Microsoft Office Excel* «the Two-selective z-test for averages», and also the t-criterion of Student, calculated by formula:

\[
t = \frac{|\bar{x}_1 - \bar{x}_2|}{\sqrt{(S_1^2 \cdot (n_1 - 1) + S_2^2 \cdot (n_2 - 1)) \cdot (n_1 + n_2)}}
\]

where \(\bar{x}_1 - \bar{x}_2\) - A difference of selective average values; \(S_{1,2}\) - a selective average quadratic deviation; \(n_{1,2}\) - sample volume.

According to the result of calculations it is established that distinction in compared values of atomizes capacity and a torque before washing by ultrasound is not significant. Higher values of parameters N_{max} and M_{max} the engine with EMA washed out should be characterised as a direction of growth of capacity and a torque connected with ultrasound influence effect on atomizers removed from the engine.

Values of capacity are presented in table 7 at engine testing in subroutine V_{const}.

From comparison given (table 7) it follows that at 40 km·h\(^{-1}\) the difference of values N_{v} for atomizers before washing by ultrasound is 2.2 %, at 90 km·h\(^{-1}\) 1.1 %. Such differences of capacity can be connected with a different inclination of dependences of N_{v} from speed. In fact, data processing has shown (by means of tabular processor *Microsoft Office Excel*) that in the regress equation y=a+bx factor b at a factorial variable x (speed) for dependence N_{v} from V, constructed by the results received at work of the engine with washed out atomizers, is 0.65 (kW·h)·km\(^{-1}\) or 2.34 MJ·km\(^{-1}\). For the dependence received at work of the motor with atomizers before washing by ultrasound, the parameter
b is 0.64 (kW·h)·km$^{-1}$ or 2.30 MJ·km$^{-1}$. Therefore, the capacity gain on kilometer of imitating movement of the car at speed from 40 to 90 km·ch$^{-1}$ is equal 0.04 MJ·km$^{-1}$ (1.71%).

Table 7. Capacity (N_v) engine ZMZ-406 of car GAZ-27040 V at tests in subroutine V_{const}.

The chosen speed V, km·h$^{-1}$	Run, 30 thousand km	Before EMA washing	After EMA washing by ultrasound
40	21.8	22.3	
50	30.0	28.9	
60	36.2	36.1	
70	41.8	41.7	
80	48.7	48.3	
90	54.3	54.9	

4. Conclusion

Thus, as a result of the research it is established that productivity of EMA removed from engine with an operating time of 30-60 thousand km, also as well as reference (new) atomizers after their washing by ultrasound can change both productivity growth, and its decrease. It is shown that the content of CO and CH in the exhaust gases of car GAZ-27040 V (a run of 30 thousand km) at engine work (on idle turns) with washed out atomizers is lower than concentration of the specified toxic components in exhaust gases of the motor completed by unwashed out by ultrasound EMA. It is established that distinction in compared values of capacity and a torque, received in tests on the dynamometric stand in subroutine P_{max}, for the engine with atomizers before their processing by ultrasound is not significant. In the tests spent in subroutine V_{const}, the found out gain of capacity of the engine with the atomizers washed out by ultrasound is 0.04 MJ·km$^{-1}$ (1.71%).

5. Acknowledgment

The publication has been prepared with the support of the “RUDN University Program 5-100”.

6. References

[1] Vereyutin A Ju 2010 Method of diagnosing of electromagnetic atomizers of engines P. gasoline injection PhD Thesis (Tula State University, Tula, Russia) URL: https://elibrary.ru/item.asp?id=19231120

[2] Ovchinnikov G V 2009 Influence of pollution and deterioration of elements of electromagnetic atomizers on characteristics of the automobile gasoline engine PhD Thesis (Vladimir State University, Vladimir, Russia) URL: https://elibrary.ru/item.asp?id=15941081

[3] Tsedashiev T V 2016 About the need for flushing and cleaning nozzles fuel injection system power Proc. Regional Student's Scientific and Practical Conference (Irkutsk: Irkutsk State Agrarian University) 253-258 URL: https://elibrary.ru/item.asp?id=30336768

[4] Grigoriev M V and Dalidovich A A 2018 Diagnostics and maintenance of electromagnetic injectors petrol engine (Moscow: Moscow Automobile & Road Construction State Technical University) URL: http://lib.madi.ru/fel/fel1/fel18M621.pdf

[5] Zelenin V A and Sukhanov S A 2017 Method for preliminary diagnosing performance gasoline engine type injector Scientific Bulletin of the Nevinnomyssk State Humanitarian and Technical University 3 pp 33-36. URL: https://www.elibrary.ru/item.asp?id=32297611

[6] Berezyukov D S 2012 Method development of diagnosing EMA not to be taken apart I.C.E with injection of light fuel and research of changes of their working indicators PhD Thesis (Volgograd State Technical University, Volgograd, Russia) URL: https://www.elibrary.ru/item.asp?id=19388645
[7] Kiselyov D V and Shurin S A 2017 Washing of EMA and a fuel lath of gasoline engine without dismantling and application of specialised equipment Proc. Scientific Problems of Material Support of Armed Forces of the Russian Federation (St Petersburg, Russia: St Petersburg Polytechnic University) 221-226 URL: https://www.elibrary.ru/item.asp?id=30043368

[8] Krasota M V, Shepelenko I V, Matvienko A and Al Soodani S M M 2013 Investigation of the effect of contaminants on the parameters of electromagnetic injectors gasoline engines Engines Designing, Manufacture and Operation of Agricultural Vehicles 43 125-133 URL: http://dspace.kntu.kr.ua/jspui/bitstream/123456789/2786/1/24.pdf

[9] Patrin A N, Nechaev V V and Merkushov J N 2007 Functional diagnosing of electromagnetic atomizers injection I.C.E. with spark ignition Motor Industry 8 29-31. URL: https://www.elibrary.ru/item.asp?id=17289167

[10] Frank Denk 2018 Elektromagnetische Einspritzventile für Ottomotoren (Ilmenau, Germany: Universitätsverlag Ilmenau)

[11] Christoffel J 2017 Continental readies super-precise solenoid injection for 2013 (Pennsylvania, USA: SAE International)

[12] Robert Bosch 2018 Bosch Automotive Handbook, 9th Edition

[13] Kurochkin I M, Hrennikov A O and Dorovsky D V 2009 Technical operation of cars: a laboratory practical work (Tambov: Tambov State Technical University) URL: http://window.edu.ru/resource/321/68321/files/kurochkin-a.pdf

[14] Gusakov S V and Savastenko A A 2006 Test of electromagnetic atomizers’ systems of the distributed injection of gasoline The Methodical maintenance for carrying out laboratory work at the course «Systems of fuel rebound» (Moscow: RUDN University). URL: http://lib.rudn.ru/MegaPro/Web/SearchResult/ToPage/1

[15] Baraz V R and Pegashkin V F 2014 Use MS EXCEL for the analysis of the statistical data (Nizhni Tagil, Russia: Nizhny Tagil Institute of technology of the Ural Federal University) URL: http://elar.urfu.ru/bitstream/10995/28824/1/baraz_pegashkin_2014.pdf

[16] Abdullin R Z and Abdullin V R 2016 Econometrica in MS Excel [an electronic resource]: a practical work (Irkutsk, Russia: Publishing House Baikal State University). URL: file:///C:/Users/Cepreiit/Downloads/Абдуллин.%20Практикум%20по%20эконометрике%20в%20MS%20Excel%20для%20бакалавров%202016%20(2).pdf

[17] Voskoboynikov Ju E 2005 Econometrica in EXCEL, part 1 (dual and plural regressive analysis): the manual (Novosibirsk, Russia: Novosibirsk State University of Architecture and Civil Engineering) URL: http://www.sibstrin.ru/files/kis/Econometrics_Excel_part_1.pdf

[18] Kadochnikova E I 2013 Econometrica The abstract of lectures (Kazan, Russia: Kazan Federal University Press) URL: https://dspace.kpfu.ru/xmlui/bitstream/handle/net/21430/72_198_A5kl-000483.pdf