The Q-index and connectivity of graphs

Peng-Li Zhanga, Lihua Fengb, Weijun Liub, Xiao-Dong Zhanga

a School of Mathematical Sciences, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, PR China
b School of Mathematics and Statistics, Central South University, New Campus, Changsha, Hunan, 410083, PR China

Abstract

A connected graph G is said to be k-connected if it has more than k vertices and remains connected whenever fewer than k vertices are deleted. In this paper, for a connected graph G with sufficiently large order, we present a tight sufficient condition for G with fixed minimum degree to be k-connected based on the Q-index. Our result can be viewed as a spectral counterpart of the corresponding Dirac type condition.

Key words: Q-index; Minimum degree; k-connected.

AMS subject classifications: 05C50; 05C40.

1 Introduction

All graphs considered in this paper are simple connected and undirected. The notations we used are standard. Let G be a simple connected graph with vertex set $V(G)$ and edge set $E(G)$ such that $|V(G)| = n$ and $|E(G)| = m$. Let $d(v)$ be the degree of a vertex v in G, and the minimum degree be $\delta(G) = \delta$. For two vertex-disjoint graphs G and H, we denote $G \cup H$ the disjoint union of G and H, $G \vee H$ the join of G and H, which is a graph obtained by adding all possible edges between G and H. Throughout this paper, we use the symbol $i \sim j$ to denote the vertices i and j are adjacent, and $i \nsim j$ otherwise.

A graph G is said to be k-connected if it has more than k vertices and remains connected whenever fewer than k vertices are deleted. In the meantime, a vertex-cut X of G is a subset of $V(G)$ such that $G - X$ is disconnected. The vertex connectivity κ is the minimum vertex-cut X. We say G is k-connected when $\kappa \geq k$, $\kappa = 0$ if G is either trivial or disconnected. In other words, G is k-connected if the minimum vertex-cut X satisfies $|X| \geq k$.

The adjacency matrix of G is $A(G) = (a_{ij})_{n \times n}$ with $a_{ij} = 1$ if i and j are adjacent, and $a_{ij} = 0$ otherwise. The largest eigenvalue of $A(G)$, denoted by $\lambda(G)$, is called the spectral radius of G. The diagonal matrix of G is $D(G) = (d_{ii})_{n \times n}$, whose diagonal entries d_{ii} satisfy $d_{ii} = d(i)$. The signless Laplacian matrix $Q(G)$ of G is defined as $D(G) + A(G)$. The largest eigenvalue of $Q(G)$, denoted by $q(G)$, is called the Q-index (or the signless Laplacian spectral radius) of G.

When one talks about spectral graph theory, perhaps one of the most well-known problems is the Brualdi-Solheid problem [3]: Given a set \mathcal{G} of graphs, find a tight upper bound for the spectral radius in \mathcal{G} and characterize the extremal graphs. This problem is well studied in the literature for various classes of graphs, such as graphs with given number of cut vertices or cut edges [11, 21], graphs with given edge chromatic number [4]. For the Q-index counterpart of the above problem, Zhang [31] gave the Q-index of graphs with given degree sequence, Zhou [32] studied the Q-index.

*This work is supported by the National Natural Science Foundation of China (Nos. 11971311, 12026230); L. Feng and W. Liu were supported by NSFC (Nos. 11871479, 12071484), Hunan Provincial Natural Science Foundation (2020JJ4675, 2018JJ2479). E-mail addresses: zpengli@sjtu.edu.cn (P.-L. Zhang), fenglh@163.com (L. Feng), wjliu6210@126.com(W. Liu), xiaodong@sjtu.edu.cn (X.-D. Zhang, corresponding author).
and Hamiltonicity. Also, from both theoretical and practical viewpoint, the eigenvalues of graphs have been successfully used in many other disciplines, one may refer to [15, 17, 18, 22, 30].

Analogous to the Brualdi–Solheid problem, the following problem was proposed [25]: What is the maximum spectral radius of a graph G on n vertices without a subgraph isomorphic to a given graph F? Regarding this problem, Fiedler and Nikiforov [12] obtained tight sufficient conditions for graphs to be hamiltonian or traceable. This motivates further study for such questions. Later, Zhou [32] considered the Q-index version of the results in [12]. For further reading in this topic, see [7, 8, 9, 13, 22, 23, 24, 27, 33, 34].

For the connectivity and eigenvalues of graphs, one must mention the classical result from Fiedler [1] which states that the second smallest Laplacian eigenvalue is at most the connectivity for any non-complete graph, which now becomes one of the most attractive research areas. For adjacency eigenvalues, extending the result in [4], Cioabă [5] obtained a simple graph of order n which now becomes one of the most attractive research areas. For adjacency eigenvalues, extending the result in [4], Cioabă [5] obtained λ_n-index version of the results in [12]. For further reading in this topic, see [15, 17, 18, 29, 30].

There are also several related results regarding the edge-connectivity and eigenvalues of graphs, one must mention the classical result from Fiedler [1] which states that the second smallest Laplacian eigenvalue is at most the connectivity for any non-complete graph, which now becomes one of the most attractive research areas. For adjacency eigenvalues, extending the result in [4], Cioabă [5] obtained λ_n-index version of the results in [12]. For further reading in this topic, see [15, 17, 18, 29, 30].

For the connectivity and eigenvalues of graphs, one must mention the classical result from Fiedler [1] which states that the second smallest Laplacian eigenvalue is at most the connectivity for any non-complete graph, which now becomes one of the most attractive research areas. For adjacency eigenvalues, extending the result in [4], Cioabă [5] obtained λ_n-index version of the results in [12]. For further reading in this topic, see [15, 17, 18, 29, 30].

One of the classical problems of graph theory is to obtain sufficient conditions for a graph possessing certain properties. It is known that [2] Page 4], if G is a simple graph of order $n \geq k+1$, and if $\delta \geq \frac{1}{2}(n+k-2)$, then G is k-connected. In this paper, borrowing ideas from [19, 20], by utilizing the Q-index, we will establish a new sufficient condition for graphs with fixed minimum degree to be k-connected, for sufficiently large order (and therefore for relatively small δ). Such results may be of independent interest. For any $k > 1$ and $n > 2k+1$, let

$$M_k(n) = K_k \lor (K_{n-2k} \cup K_k).$$

For any $k \geq 1$ and $n \geq k+2$, let

$$L_k(n) = K_1 \lor (K_{n-k-1} \cup K_k).$$

In light of the result of Li and Ning [16], Nikiforov [20] proved the following theorem.

Theorem 1.2 Let $k > 1$, $n \geq k^3 + k + 4$, and let G be a graph of order n with minimum degree $\delta(G) \geq k$. If $\lambda(G) \geq n - k - 1$, then G has a Hamiltonian cycle unless $G = M_k(n)$ or $G = L_k(n)$.

We define

$$\mathcal{M}_1(n,k) = \left\{ G \subseteq M_k(n) - E', \text{ where } E' \subseteq E_1(M_k(n)) \text{ with } |E'| \leq \left\lfloor \frac{k^3}{2} \right\rfloor \right\},$$

$$\mathcal{L}_1(n,k) = \left\{ G \subseteq L_k(n) - E', \text{ where } E' \subseteq E_1(L_k(n)) \text{ with } |E'| \leq \left\lfloor \frac{k^2}{2} \right\rfloor \right\}.$$

Li, Liu and Peng [19] recently obtained the Q-index counterpart of Theorem 1.2.

Theorem 1.3 Let $k > 1$, $n \geq k^4 + k^3 + 4k^2 + k + 6$. Let G be a connected graph with n vertices and minimum degree $\delta(G) \geq k$. If $q(G) \geq 2(n - k - 1)$, then G has a Hamilton cycle unless $G \in \mathcal{M}_1(n,k)$ or $G \in \mathcal{L}_1(n,k)$.

2
For convenience, for the rest of this paper, we denote
\[A(n, k, \delta) := K_{k-1} \cup (K_{\delta-k+2} \cup K_{n-\delta-1}). \]
Obviously, for any integers \(k > 1, \delta \geq 1 \) and \(n > \delta + 1 \), \(A(n, k, \delta) \) is not \(k \)-connected. For the graph \(A(n, k, \delta) \), let
\[
X := \{ v \in V(A(n, k, \delta)) : d(v) = \delta \}, \quad Y := \{ v \in V(A(n, k, \delta)) : d(v) = n - 1 \},
\]
\[
Z := \{ v \in V(A(n, k, \delta)) : d(v) = n - \delta + k - 3 \}.
\]
Let \(E' \) denote the edge set of \(E(A(n, k, \delta)) \) whose endpoints are both from \(Y \cup Z \). We define
\[
A_1(n, k, \delta) := \left\{ G \subseteq A(n, k, \delta) - E', \text{where } E' \subset E(A(n, k, \delta)) \text{ with } |E'| \leq \left\lfloor \frac{(\delta-k+2)(k-1)}{2} \right\rfloor \right\},
\]
\[
A_2(n, k, \delta) := \left\{ G \subseteq A(n, k, \delta) - E', \text{where } E' \subset E(A(n, k, \delta)) \text{ with } |E'| = \left\lfloor \frac{(\delta-k+2)(k-1)}{2} \right\rfloor + 1 \right\},
\]
\[
F(k, \delta) := (k^2 + 2k - 3)\delta^2 - (2k^3 - k^2 - 17k + 8)\delta + k^4 - 3k^3 - 8k^2 + 23k + 4.
\]
In [8], using the adjacency spectral radius, it is obtained that

Theorem 1.4 Let \(\delta \geq k \geq 3, n \geq (\delta - k + 2)(k^2 - 2k + 4) + 3 \). Let \(G \) be a connected graph of order \(n \) and minimum degree \(\delta(G) \geq \delta \). If
\[
\lambda(G) \geq n - \delta + k - 3,
\]
then \(G \) is \(k \)-connected unless \(G = A(n, k, \delta) \).

Motivated by Theorem 1.3 as the \(Q \)-spectral counterpart of Theorem 1.4, we have the following main result of this paper.

Theorem 1.5 Let \(G \) be a connected graph of order \(n \) with minimum degree \(\delta(G) = \delta \geq k \geq 3 \). If \(n \geq F(k, \delta) \) and
\[
q(G) \geq 2(n - \delta + k - 3),
\]
then \(G \) is \(k \)-connected unless \(G \in A_1(n, k, \delta) \).

2 Preliminaries

In this section, we present some basic notations and lemmas.

Let \(x = (x_1, x_2, \ldots, x_n)^T \neq 0 \), by Rayleigh’s principle, we have
\[
q(G) = \max_x \frac{(Q(G)x, x)}{(x, x)} = \max_x \frac{x^TQ(G)x}{x^Tx}.
\]
By the definition of \(Q(G) \), we have
\[
(Q(G)x, x) = \sum_{i \neq j} (x_i + x_j)^2.
\]
If \(z \) is the corresponding unit positive eigenvector (usually called Perron vector) of \(q(G) \), then
\[
Q(G)z = q(G)z.
\]
According to the Perron-Frobenius theorem, we have \(x_i > 0 \) for each \(i \in V(G) \) if \(G \) is connected. Taking the \(i \)-th entry of both sides and rearranging terms, we have
\[
(q(G) - d(i))z_i = \sum_{i \neq j} z_j. \tag{1}
\]
Let \(N(i) \) denote the set of neighbours of \(i \), \(N[i] = N(i) \cup \{ i \} \). From the above, we have the following lemma.
Lemma 2.1 [10] For any $i, j \in V(G)$, we have
\[
(q(G) - d(i))(z_i - z_j) = (d(i) - d(j))z_j + \sum_{k \in N(i) \setminus N(j)} z_k - \sum_{t \in N(j) \setminus N(i)} z_t.
\] (2)

Lemma 2.2 [10] Let G be a graph of order n. Then
\[
q(G) \leq \frac{2m}{n - 1} + n - 2.
\]

Using the ideas in [13], we obtain

Lemma 2.3 Let G be a connected graph of order $n \geq 2\delta - k + 5$, size m, minimum degree $\delta(G) = \delta \geq k \geq 2$. If
\[
m > \frac{1}{2}n(n - 1) - (\delta - k + 3)(n - \delta - 2),
\]
then G is k-connected unless G is a subgraph of $A(n, k, \delta)$.

Proof. Suppose on the contrary that G is not k-connected. Let X be a minimum vertex-cut with $1 \leq |X| \leq k - 1$. Assume that C_1, C_2, \ldots, C_t ($t > 1$) are the components of $G - X$, where $|C_1| \leq |C_2| \leq \ldots \leq |C_t|$. Clearly, for $1 \leq i \leq t$, each vertex in C_i is adjacent to at most $|C_i| - 1$ vertices of C_i and $|X|$ vertices of X. Thus
\[
\delta|C_i| \leq \sum_{x \in C_i} d(x) \leq (|C_i| - 1 + |X||C_i|),
\]
hence $|C_i| \geq \delta - |X| + 1$, and therefore $\delta - |X| + 1 \leq |C_i| \leq n - |X| - (\delta - |X| + 1)$, which implies
\[
\delta - |X| + 1 \leq |C_i| \leq n - \delta - 1.
\]
Let $S = \cup_{i=2}^{t} C_i$. Then from above, $\delta - |X| + 1 \leq |S| \leq n - \delta - 1$. Since $G - X$ is disconnected, there are no edges between C_1 and S in G, we obtain
\[
m \leq \frac{1}{2}n(n - 1) - |C_1||S|.
\]

In order to prove that G is a subgraph of $A(n, k, \delta)$, it suffices to show that $|C_1| = \delta - k + 2$.

If $|C_1| \geq \delta - k + 3$, as $|C_1| \leq |C_2| \leq \ldots \leq |C_t|$ and $S = \cup_{i=2}^{t} C_i$, we have $|C_1| \leq \frac{n - |X|}{2}$. Therefore for $\delta - k + 3 \leq |C_1| \leq \frac{n - |X|}{2}$, we have $|C_1||S| = |C_1|(n - |X| - |C_1|) \geq (\delta - k + 3)(n - |X| - (\delta - k + 3))$, the equality is attained when $|C_1| = \delta - k + 3$. Since $|X| \leq k - 1$,
\[
m \leq \frac{1}{2}n(n - 1) - |C_1||S|
\]
\[
\leq \frac{1}{2}n(n - 1) - (\delta - k + 3)(n - |X| - (\delta - k + 3))
\]
\[
\leq \frac{1}{2}n(n - 1) - (\delta - k + 3)(n - \delta - 2).
\]

From the assumption, we get a contradiction. Thus $|C_1| \leq \delta - k + 2$. Combining this with $|C_1| \geq \delta - |X| + 1 \geq \delta - k + 2$, we have $|C_1| = \delta - k + 2$.

Hence, as the minimum degree of G is δ, we have $|X| = k - 1$ and $d_G(i) = \delta$ for each $i \in C_1$, therefore each vertex of C_1 is adjacent to each vertex of X. We obtain the result. \[\Box\]
3 Proof of the Main Result

To prove Theorem 1.5 we still need to prove the following several lemmas.

Lemma 3.1 Assume \(\delta \geq k \geq 3 \), let \(G \) be a connected graph of order \(n \geq F(k, \delta) \) and minimum degree \(\delta \geq k \). For each graph \(G \in A_k(n, k, \delta) \), we have \(q(G) \geq 2(n - \delta + k - 3) \).

Proof. Let \(G \) be a graph in \(A_k(n, k, \delta) \). We easily get that \(q(K_{n-\delta+k-2} \cup K_{\delta-k+2}) = 2(n - \delta + k - 3) \).

Now we construct a vector \(z \), where \(z_i = 1 \) if \(i \in Y \cup Z \), \(z_j = 0 \) if \(j \in X \). Obviously \(z \) is the corresponding eigenvector to \(q(K_{n-\delta+k-2} \cup K_{\delta-k+2}) \). Then we obtain
\[
\langle Q(G)z, z \rangle - \langle Q(K_{n-\delta+k-2} \cup K_{\delta-k+2})z, z \rangle = (\delta - k + 2)(k - 1) - 4|E'| \geq 0.
\]

By the Rayleigh’s principle, we have \(q(G) \geq 2(n - \delta + k - 3) \). \(\blacksquare \)

Lemma 3.2 Assume \(\delta \geq k \geq 3 \), let \(G \) be a connected graph of order \(n \geq F(k, \delta) \) and minimum degree \(\delta \geq k \). For each graph \(G \in A_2(n, k, \delta) \), we have \(q(G) \geq 2(n - \delta + k - 3) - 1 \).

Proof. Let \(z \) be the vector defined in Lemma 3.1. We have
\[
\langle Q(G)z, z \rangle - \langle Q(K_{n-\delta+k-2} \cup K_{\delta-k+2})z, z \rangle = (\delta - k + 2)(k - 1) - 4|E'| \geq -4.
\]

Similarly, we have \(q(G) \geq 2(n - \delta + k - 3) - \frac{4}{\|z\|^2} > 2(n - \delta + k - 3) - 1 \). \(\blacksquare \)

We put our attention to prove \(q(G) < 2(n - \delta + k - 3) \) for \(G \in A_2(n, k, \delta) \) in the following.

Let \(G \) be a graph among \(A_2(n, k, \delta) \) with the largest \(Q \)-index, assume further that the induced subgraph \(G[Y] \) contains the largest number of edges. Then \(|Y| = k - 1 \geq 2 \), i.e., \(k \geq 3 \).

In the following, let \(x \) be the eigenvector corresponding to \(q(G) \). Moreover we may assume \(\max_{i \in V(G)} x_i = 1 \). Following this, we have

Lemma 3.3 Assume \(G \in A_2(n, k, \delta) \) as defined above. For each \(i \in X \), we have
\[
x_i \leq \frac{k - 1}{q(G) - (2\delta - k + 1)}.
\]

Proof. Using equation (1) at vertex \(i \), we have
\[
(q(G) - d(i))x_i = \sum_{j \in X \setminus i} x_j + \sum_{j \in Y} x_j.
\]

As \(d(i) = \delta \), \(x_i \) is the same for all vertex in \(X \), and \(\max_{i \in V(G)} x_i = 1 \), we have
\[
(q(G) - (\delta + (\delta - k + 1))) x_i = \sum_{j \in Y} x_j.
\]

The proof is completed. \(\blacksquare \)

Now we divide \(Y, Z \) into the following two parts, respectively.

\[
Y_1 = \{i \in Y : d(i) = n - 1\}, \quad Y_2 = \{i \in Y : d(i) \leq n - 2\},
\]

\[
Z_1 = \{i \in Z : d(i) = n - \delta + k - 3\}, \quad Z_2 = \{i \in Z : d(i) \leq n - \delta + k - 4\}.
\]

We first declare the following truth: \(Z_1 \neq \emptyset \) since \(n - \delta - 1 > 2 \left(\left\lfloor \frac{(\delta-k+2)(k-1)}{4} \right\rfloor + 1 \right) + 1 \), and \(n \geq F(k, \delta) \).

We already know the upper bound of \(x_i \) for each \(i \in X \) and \(x_i < 1 \). Clearly \(\max_{i \in V(G)} x_i = \max_{i \in Y \cup Z} x_i \).

We also need the following several lemmas.
Lemma 3.4 Let \(G \in \mathcal{A}_2(n, k, \delta) \) as above. If \(Y_2 \neq \emptyset \), then we have \(x_i > x_j \) for all \(i \in Z_1 \) and \(j \in Y_2 \).

Proof. By contradiction, assume that there exist some \(i \in Z_1 \) and \(j \in Y_2 \) such that \(x_i \leq x_j \). For \(k \in Y \) and \(j \sim k \), we define a new graph \(G' \in \mathcal{A}_2(n, k, \delta) \) by removing the edge \(ik \) and adding a new edge \(jk \). Since

\[
\langle Q(G')x, x \rangle - \langle Q(G)x, x \rangle = (x_j - x_i)(x_i + x_j + 2x_k) \geq 0,
\]

we get \(q(G') \geq q(G) \) and the induced graph \(G'[Y] \) has more edges than \(G[Y] \), which contradicts the choice of \(G \). The result follows. \(\blacksquare \)

Lemma 3.5 Assume \(G \in \mathcal{A}_2(n, k, \delta) \) as defined above.

1. If \(Z_2 \neq \emptyset \), then we have \(x_i > x_j \) for all \(i \in Z_1 \) and \(j \in Z_2 \).
2. If \(Y_1, Y_2 \neq \emptyset \), then we have \(x_i > x_j \) for any \(i \in Y_1 \) and \(j \in Y_2 \).
3. If \(Y_1 \neq \emptyset \), then we have \(x_i > x_j \) for any \(i \in Y_1 \) and \(j \in Z_1 \).

Proof. (1). Using Lemma 2.4, we have

\[
(q(G) - d(i))(x_i - x_j) = (d(i) - d(j))x_j + \sum_{k \in N(i) \setminus N(j)} x_k - \sum_{l \in N(j) \setminus N(i)} x_l.
\]

For each \(i \in Z_1 \) and \(j \in Z_2 \), note that \(N(j) \setminus \{i\} \subset N(i) \setminus \{j\} \). Rearranging the last equation, we obtain

\[
(q(G) - d(i) + 1)(x_i - x_j) = (d(i) - d(j))x_j + \sum_{k \in N(i) \setminus N[j]} x_k. \quad (3)
\]

As \(d(i) > d(j) \), the proof is completed.

(2). If \(Y_1, Y_2 \neq \emptyset \), using Lemma 2.4, we have

\[
(q(G) - d(i))(x_i - x_j) = (d(i) - d(j))x_j + \sum_{k \in N(i) \setminus N(j)} x_k - \sum_{l \in N(j) \setminus N(i)} x_l.
\]

For each \(i \in Y_1 \) and \(j \in Y_2 \), note that \(N(j) \setminus \{i\} \subset N(i) \setminus \{j\} \). Rearranging the last equation, we obtain

\[
(q(G) - d(i) + 1)(x_i - x_j) = (d(i) - d(j))x_j + \sum_{k \in N(i) \setminus N[j]} x_k.
\]

as \(d(i) > d(j) \), the proof is completed.

(3). If \(Y_1 \neq \emptyset \), applying Lemma 2.4, we have

\[
(q(G) - d(i))(x_i - x_j) = (d(i) - d(j))x_j + \sum_{k \in N(i) \setminus N(j)} x_k - \sum_{l \in N(j) \setminus N(i)} x_l.
\]

For each \(i \in Y_1 \) and \(j \in Z_1 \), note that \(N(j) \setminus \{i\} \subset N(i) \setminus \{j\} \). Rearranging the last equation, we obtain

\[
(q(G) - d(i) + 1)(x_i - x_j) = (d(i) - d(j))x_j + \sum_{k \in N(i) \setminus N[j]} x_k.
\]

as \(d(i) > d(j) \), the proof is completed. \(\blacksquare \)

From above, bearing in mind that \(Z_1 \neq \emptyset \), we have
Lemma 3.6 Assume $G \in A_2(n, k, \delta)$ as defined above. We have
\[
\max_{i \in V(G)} x_i - \min_{j \in Y \cup Z} x_j \leq \frac{(\delta - k + 2)(k + 3) + 4}{2(q(G) - n + 1)}.
\]

Proof. We distinguish the proof into two cases.

Case 1: $Y_1 = \emptyset$. Notice that $\max_{i \in V(G)} x_i$ is attained at the vertices in Z_1. For each $i \in Z_1$, $d(i) = n - \delta + k - 3$, hence the vertex i is adjacent to all other vertices in $Y \cup Z$.

Subcase 1.1: If $j \in Z_2$, we have $N(i) \setminus N[j] = \{k : k \in Y \cup Z$ and $k \sim j\}$. Thus we have $d(i) - d(j) \leq \left[\frac{(\delta - k + 2)(k - 1)}{4}\right] + 1$ and $|N(i) \setminus N[j]| \leq \left[\frac{(\delta - k + 2)(k - 1)}{4}\right] + 1$. Note that $N(j) \setminus \{i\} \subset N(i) \setminus \{j\}$, applying equation (3), we obtain
\[
(q(G) - d(i) + 1)(x_i - x_j) = (d(i) - d(j))x_j + \sum_{k \in N(i) \setminus N[j]} x_k
\]
\[
\leq \left[\frac{(\delta - k + 2)(k - 1)}{2} \right] + 2.
\]

Since $i \in Z_1, \delta \geq k$, we have
\[
x_i - x_j \leq \frac{(\delta - k + 2)(k - 1)}{2(q(G) - (n - \delta + k - 3) + 1)} + 2 = \frac{(\delta - k + 2)(k - 1) + 4}{2(q(G) - n + \delta - k + 4)} < \frac{(\delta - k + 2)(k + 3) + 4}{2(q(G) - n + 1)}.
\]

Subcase 1.2: If $j \in Y_2$, we have $N(i) \setminus N[j] = \{k : k \in Y \cup Z$ and $k \sim j\}$, and $N(j) \setminus N[i] = X$. Thus $|N(i) \setminus N[j]| \leq \left[\frac{(\delta - k + 2)(k - 1)}{4}\right] + 1$. Meanwhile, note that $|d(i) - d(j)| \leq \left[\frac{(\delta - k + 2)(k - 1)}{4}\right] + \delta - k + 3$. Similarly, we obtain
\[
(q(G) - d(i) + 1)(x_i - x_j) = (d(i) - d(j))x_j + \sum_{k \in N(i) \setminus N[j]} x_k - \sum_{l \in X} x_l
\]
\[
\leq (d(i) - d(j))x_j + \sum_{k \in N(i) \setminus N[j]} x_k
\]
\[
\leq \frac{(\delta - k + 2)(k - 1)}{2} + \delta - k + 2 + 2
\]
\[
= \frac{(\delta - k + 2)(k + 1) + 4}{2}.
\]
Since \(i \in Z_1, \delta \geq k \), we easily have
\[
x_i - x_j \leq \frac{(\delta - k + 2)(k + 1) + 2}{q(G) - (n - \delta + k - 3) + 1} = \frac{(\delta - k + 2)(k + 1) + 4}{2(q(G) - n + \delta - k + 4)} < \frac{(\delta - k + 2)(k + 3) + 4}{2(q(G) - n + 1)}.
\]

Case 2: \(Y_1 \neq \emptyset \). Notice that \(\max_{i \in V(G)} x_i \) is attained at the vertices in \(Y_1 \). When \(i \in Y_1, d(i) = n - 1 \), hence the vertex \(i \) is adjacent to all other vertices in \(V(G) \).

Subcase 2.1: If \(j \in Y_2 \), we have \(N(i) \setminus N[j] = \{ k : k \in Y \cup Z \text{ and } k \approx j \} \). Thus we have
\[
d(i) - d(j) \leq \left[\frac{(\delta - k + 2)(k - 1)}{4} \right] + 1 \quad \text{and} \quad |N(i) \setminus N[j]| \leq \left[\frac{(\delta - k + 2)(k - 1)}{4} \right] + 1.
\]
Note that \(N(j) \setminus \{ i \} \subset N(i) \setminus \{ j \} \), applying equation (3), we obtain
\[
(q(G) - d(i) + 1)(x_i - x_j) = (d(i) - d(j))x_j + \sum_{k \in N(i) \setminus N[j]} x_k
\]
\[
\leq \left[\frac{(\delta - k + 2)(k - 1)}{2} \right] + 2.
\]
Since \(i \in Y_1, \delta \geq k \), we easily have
\[
x_i - x_j \leq \frac{(\delta - k + 2)(k - 1) + 2}{q(G) - (n - 1) + 1} = \frac{(\delta - k + 2)(k - 1) + 4}{2(q(G) - n + 2)} < \frac{(\delta - k + 2)(k + 3) + 4}{2(q(G) - n + 1)}.
\]

Subcase 2.2: If \(j \in Z_1 \), we have \(N(i) \setminus N[j] = X - \{ j \} \), and \(N(j) \setminus N[i] = \emptyset \). Thus \(|N(i) \setminus N[j]| = (n - 1) - (n - \delta + k - 3 + 1) = \delta - k + 1 \). Note that \(d(i) - d(j) = \delta - k + 2 \), we similarly obtain
\[
(q(G) - d(i) + 1)(x_i - x_j) = (d(i) - d(j))x_j + \sum_{k \in N(i) \setminus N[j]} x_k
\]
\[
\leq \delta - k + 2 + \delta - k + 1
\]
\[
< 2(\delta - k + 2).
\]
Since \(i \in Y_1, \delta \geq k \), we have
\[
x_i - x_j < \frac{2(\delta - k + 2)}{q(G) - (n - 1) + 1} < \frac{4(\delta - k + 2)}{2(q(G) - n + 1)} < \frac{(\delta - k + 2)(k + 3) + 4}{2(q(G) - n + 1)}.
\]

Subcase 2.3: If \(j \in Z_2 \), we have \(N(i) \setminus N[j] = \{ k : k \in X \cup Y \cup Z \text{ and } k \approx j \} \), and \(N(j) \setminus N[i] = \emptyset \). Thus we have \(|N(i) \setminus N[j]| \leq \delta - k + 2 + \left[\frac{(\delta - k + 2)(k - 1)}{4} \right] + 1 \). Meanwhile, note that
\[
d(i) - d(j) \leq \left[\frac{(\delta - k + 2)(k - 1)}{4} \right] + \delta - k + 3.
\]
Similarly, we obtain
\[
(q(G) - d(i) + 1)(x_i - x_j) = (d(i) - d(j))x_j + \sum_{k \in N(i) \setminus N[j]} x_k
\]
\[
\leq \frac{(\delta - k + 2)(k - 1)}{2} + 2(\delta - k + 2) + 2
\]
\[
= \frac{(\delta - k + 2)(k + 3) + 4}{2}.
\]
Since \(i \in Y_1, \delta \geq k \), we have

\[
x_i - x_j \leq \frac{(\delta - k + 2)(k + 1)}{2} + \frac{2}{q(G) - (n - 1) + 1} = \frac{(\delta - k + 2)(k + 3) + 4}{2(q(G) - n + 2)} < \frac{(\delta - k + 2)(k + 3) + 4}{2(q(G) - n + 1)}.
\]

The proof is completed. \(\blacksquare \)

Now we can prove Lemma 3.7, which is crucial for Theorem 1.5.

Lemma 3.7 Let \(G \) be a connected graph of order \(n \geq F(k, \delta) \) and minimum degree \(\delta \geq k \geq 3 \). For each graph \(G \in \mathcal{A}_2(n, k, \delta) \), we have \(q(G) < 2(n - \delta + k - 3) \).

Proof. We assume \(G \in \mathcal{A}_2(n, k, \delta) \) such that \(G \) has the largest \(Q \)-index \(q(G) \) among \(\mathcal{A}_2(n, k, \delta) \) and \(G[Y] \) contains the largest number of edges. Let \(x \) be the eigenvector corresponding to \(q(G) \), and \(G'[X] \) be the complete graph \(K_{\delta - k + 2} \) induced by \(X \). Lemmas 3.3 and 3.6 imply that

\[
\langle Q(G)x, x \rangle - \langle Q(K_{\delta - k + 2} + K_{n-\delta+k-2})x, x \rangle \leq \frac{\langle Q(K_{\delta - k + 2} + K_{n-\delta+k-2})x, x \rangle}{2} \left(\frac{k - 1}{q(G) - (2\delta - k + 1)} \right)^2 + (k - 1)(\delta - k + 2) \left(1 + \frac{k - 1}{q(G) - (2\delta - k + 1)} \right)^2 - 4|E'| \left(1 - \frac{(\delta - k + 2)(k + 3) + 4}{2(q(G) - n + 1)} \right)^2.
\]

As \(|E'| = \left\lfloor \frac{(\delta - k + 2)(k - 1)}{4} \right\rfloor + 1 \geq \frac{(\delta - k + 2)(k - 1) + 1}{4} \), we have

\[
\langle Q(G)x, x \rangle - \langle Q(K_{\delta - k + 2} + K_{n-\delta+k-2})x, x \rangle \leq \frac{\langle Q(K_{\delta - k + 2} + K_{n-\delta+k-2})x, x \rangle}{2} \left(\frac{k - 1}{q(G) - (2\delta - k + 1)} \right)^2 + (k - 1)(\delta - k + 2) \left(1 + \frac{k - 1}{q(G) - (2\delta - k + 1)} \right)^2 - ((k - 1)(\delta - k + 2) + 1) \left(1 - \frac{(\delta - k + 2)(k + 3) + 4}{2(q(G) - n + 1)} \right)^2.
\]

Since \(n \geq F(k, \delta) \), and \(q(G) > 2(n - \delta + k - 3) - 1 \) by Lemma 3.2, we have

\[
\langle Q(G)x, x \rangle - \langle Q(K_{\delta - k + 2} + K_{n-\delta+k-2})x, x \rangle < 0.
\]

According to the Rayleigh’s principle,

\[
\langle Q(K_{\delta - k + 2} + K_{n-\delta+k-2})x, x \rangle \leq q(K_{\delta - k + 2} + K_{n-\delta+k-2}) = 2(n - \delta + k - 3).
\]

Therefore, we have \(q(G) = \frac{\langle Q(G)x, x \rangle}{\langle x, x \rangle} < 2(n - \delta + k - 3). \) \(\blacksquare \)

Now we are ready to prove Theorem 1.5.

Proof. By Lemma 2.2, we have

\[
2(n - \delta + k - 3) \leq q(G) \leq \frac{2m}{n - 1} + n - 2.
\]
Therefore
\[
m \geq \frac{(n - 2\delta + 2k - 4)(n - 1)}{2} = \frac{n(n - 1)}{2} - (\delta - k + 3)(n - \delta - 2) + n - \delta - 2 - (\delta - k + 2)(\delta + 1) > \frac{n(n - 1)}{2} - (\delta - k + 3)(n - \delta - 2),
\]
the last inequality holds as \(n \geq F(k, \delta) \). By Lemma 2.3, \(G \) is \(k \)-connected unless \(G \in A(n, k, \delta) \). Together with Lemmas 3.1 and 3.7, the result follows.

References

[1] A. Berman, X.D. Zhang, On the spectral radius of graphs with cut vertices, J. Combin. Theory Ser. B 83 (2001) 233–240.
[2] B. Bollobas, Extremal Graph Theory, Academic Press, 1978.
[3] R.A. Brualdi, E.S. Solheid, On the spectral radius of complementary acyclic matrices of zeros and ones, SIAM J. Algebra. Discrete Method 7 (1986), 265–272.
[4] S.L. Chandran, Minimum cuts, girth and spectral threshold, Inform. Process. Lett. 89 (3) (2004), 105–110.
[5] S.M. Cioabă, Eigenvalues and edge-connectivity of regular graphs, Linear Algebra Appl. 432 (2010), 458–470.
[6] L.H. Feng, J.X. Cao, W.J. Liu, S.F. Ding, H. Liu, The spectral radius of edge chromatic critical graphs, Linear Algebra Appl. 492 (2016), 78–88.
[7] L.H. Feng, P.L. Zhang, H. Liu, W.J. Liu, M.M. Liu, Y.Q. Hu, Spectral conditions for some graphical properties, Linear Algebra Appl. 524 (2017), 182–198.
[8] L.H. Feng, P.L. Zhang, W.J. Liu, Spectral radius and \(k \)-connectedness of graphs, Monatsh. Math. 185 (2018), 651–661.
[9] L.H. Feng, X.M. Zhu, W.J. Liu, Wiener index, Harary index and graph properties, Discrete Appl. Math. 223 (2017), 72–83.
[10] L.H. Feng, G.H. Yu, On the three conjectures involving the signless Laplacian spectral radius of graphs, Publ. Inst. Math. (Beograd) 85 (99) (2009), 35–38.
[11] M. Fiedler, Algebraic connectivity of graphs, Czechoslovak Math. J. 23 (98) (1973), 298–305.
[12] M. Fiedler, V. Nikiforov, Spectral radius and Hamiltonicity of graphs, Linear Algebra Appl. 432 (9) (2010), 2170–2173.
[13] X.F. Gu, H.-J. Lai, P. Li, S.M. Yao, Edge-disjoint spanning trees, edge connectivity and eigenvalues in graphs, J. Graph Theory 81 (1) (2016), 16–29.
[14] Z.M. Hong, Z.J. Xia, F. Chen, L.Volkmann, Sufficient conditions for graphs to be \(k \)-connected, maximally connected and super-connected, Complexity, (2021), 1–11.
[15] B.F. Huo, X.L. Li, Y.T. Shi, Complete solution to a conjecture on the maximal energy of unicyclic graphs, European J. Combin. 32(5) (2011), 662–673.
[16] B.L. Li, B. Ning, Spectral analogues of Erdős’s and Moon-Moser’s theorems on Hamilton cycles, Linear Multilinear Algebra 64 (11)(2016), 2252–2269.

[17] J. Li, X.L. Li, Y.T. Shi, On the maximal energy tree with two maximum degree vertices, Linear Algebra Appl. 435(9) (2011), 2272–2284.

[18] X.L. Li, Y.T. Shi, M.Q. Wei, J. Li, On a conjecture about tricyclic graphs with maximal energy, MATCH Commun. Math. Comput. Chem. 72 (1) (2014), 183–214.

[19] Y.W. Li, Y. Liu, X. Peng, Signless Laplacian spectral radius and Hamiltonicity of graphs with large minimum degree, Linear Multilinear Algebra. 66 (10) (2018), 2011-2023.

[20] H.Q. Liu, M. Lu, F. Tian. Edge-connectivity and (signless) Laplacian eigenvalue of graphs, Linear Algebra Appl. 439 (12)(2013), 3777–3784.

[21] H.Q. Liu, M. Lu, F. Tian, On the spectral radius of graphs with cut edges, Linear Algebra Appl. 389 (2004) 139–145.

[22] W.J. Liu, M.M. Liu, L.H. Feng, Spectral conditions for graphs to be β-deficient involving minimum degree, Linear Multilinear Algebra 66 (4) (2018), 792–802.

[23] W.J. Liu, M.M. Liu, P.L. Zhang, L.H. Feng, Spectral conditions for graphs to be k-hamiltonian or k-path-coverable, Discuss. Math. Graph Theory 40 (1) (2020), 161-179.

[24] M. Lu, H.Q. Liu, F. Tian, Spectral radius and Hamiltonian graphs, Linear Algebra Appl. 437 (7) (2012), 1670–1674.

[25] V. Nikiforov, The spectral radius of graphs without paths and cycles of specified length, Linear Algebra Appl. 432 (9) (2010), 2243–2256.

[26] V. Nikiforov, Spectral radius and Hamiltonicity of graphs with large minimum degree, Czechoslovak Math. J. 66 (141)(2016), 925–940.

[27] B. Ning, J. Ge, Spectral radius and Hamiltonian properties of graphs, Linear Multilinear Algebra 63 (8) (2015), 1520–1530.

[28] S. O, S.M. Cioabă, Edge-connectivity, eigenvalues, and matchings in regular graphs, SIAM J. Discrete Math. 24 (4) (2010), 1470–1481.

[29] M.J. Zhang, S.C. Li, Extremal Halin graphs with respect to the signless Laplacian spectra, Discrete Appl. Math. 213 (2016), 207–218.

[30] M. Zhang, S.C. Li, Extremal cacti of given matching number with respect to the distance spectral radius, Appl. Math. Comput. 291 (2016), 89–97.

[31] X.-D. Zhang, The signless Laplacian spectral radius of graphs with given degree sequence, Discrete Appl. Math. 157 (13) (2009), 2928–2937.

[32] B. Zhou, Signless Laplacian spectral radius and Hamiltonicity, Linear Algebra Appl. 432 (2/3) (2010), 566–570.

[33] Q.N. Zhou, L.G. Wang, Distance signless Laplacian spectral radius and Hamiltonian properties of graphs, Linear Multilinear Algebra 65 (11) (2017), 2316–2323.

[34] Q.N. Zhou, L.G. Wang, Y. Lu, Some sufficient conditions on k-connected graphs, Appl. Math. Comput. 325 (2018), 332–339