Novel Hydrido-Rhodium (III) Complexes with Some Schiff Bases Derived from Substituted Pyridines and Aryl Amines

Abdulhamid Alsaygh1, Jehan Al-Humaidi2 and Ibrahim Al-Najjar*1

1Petrochemicals Research Institute, King Abdulaziz city for Science and Technology, P.O.Box 6086, Riyadh, 11442, Kingdom of Saudi Arabia
2Chemistry Department, College of Science, Princes Nora Bent Abdulrahman University, Riyadh, Saudi Arabia

Keywords: Rhodium; Schiff-bases; Phosphine complexes; Hydrido complexes; Oxidative-addition; Ligand substitution

Introduction

Although the Cyclometallation of aromatic and to a lesser extent aliphatic C-H groups is widely recognized [1,2], these are relatively little known concerning with the cyclometallation of aldehydes [3] and imine functions [4-6]. We have shown that Schiff bases of 2-substituted benzylideneaminothiazoles [5], and 2-(benzylideneamino) pyridines [6], can be form cyclometallated complexes at the imine carbon by using Rh (I) complex. A number of studies have exploited ligands such as quindine-8-carbaldehyde [3,7] and 2-(benzylideneamino) pyridines [8]. Complexation of the metal with aromatic nitrogen gives a favorable geometry for the insertion of the metal into the neighboring C-H or C-C bond [4,7,9,10]. In most recent application for ruthenium, rhodium and iridium complexes have been used as therapeutic agents and a number of kinetically inert metal complexes have been used as therapeutic agents and a number of kinetically inert metal kinases [11-15]. Chung-Hang Leung and Dik-Lung Ma group [14] has also actively pursued the development of kinetically inert metal complexes as inhibitors of various bimolecular targets, including DNA, enzymes and protein–protein interactions [13]. The synthesis and characterization of a variety of new rhodium (III) complexes of (N-benzylideneamino) pyridines, in which the imine C-H bond has undergone oxidative addition to the metal, are reported here.

Experimental

Materials and reagents

All chemicals used such as pyridine substituent’s, benzaldehyde substituent’s, RhCl(xH2O), phenyl phosphine (PPh3) cyelo-1,5-octadiene (COD), tetrahydrofuran (THF), were obtained from Winlab, Aldrich Chemicals and Strem chemicals, respectively and were used without further purification.

Instruments

Open capillaries were used to determine melting points and were uncorrected using Gallenkamp Melting Points Apparatus. Elemental microanalysis of the separated solid chelates for C, H, N, were performed at Perkin Elmer 2400 CHN. The analyses were repeated twice to check the accuracy of the results obtained. Infrared spectra were recorded on a Nexus 470-760-760 spectrometer and FT-IR Spectrometer, Spectrum 8400s. The 1H, 13CNMR and 31P NMR spectra were recorded using 400 MHz Joel Spectrometer.

Synthesis of ligands

All experiments were carried out under an atmosphere of nitrogen by Schlenk techniques. The Schiff bases were prepared by mixing equivalent amount of substituted benzaldehydes and 2-amino pyridine derivatives in methanol solution. This mixture was boiled under reflux with stirring for 8h, at 80°C in an oil bath, and then the mixture was concentrated by rotary evaporation to give yellow precipitate. Which was filtered off, dried, yields are 70%-80% (Scheme 1,Table 1). The results of UV, IR, 1H and 13C Spectroscopy and elemental analyses for Schiff’s bases were published elsewhere [16].

Rhodium compounds of [RhCl(COD)] and [RhCl(PPh3)] were prepared by literature procedures [17,18]. In this work rhodium cyclometallated complexes, were prepared by the reaction of the Schiff

Abstract

A Series of rhodium (III) cyclometallated complexes of the type [(RhCl(NC,C=NC=NR)]2 (R=Substituted aryl), have been synthesized and characterized. Schiff bases derived from a substituted benzaldehyde and 2-amino pyridine substituents were allowed to react with [RhCl(PPh3)] or [Rh(µ-Cl)(COD)] in the presence of 4 equivalents of PPh3 or Ph-BzP to give (H-III) Cyclometallated complexes, in which the imine C-H bond was added oxidatively to the rhodium metal to give (H-M-C). The complexes were characterized using IR and NMR spectroscopy confirmed by elemental micro-analysis. The absorption of the hydride ligand was inferred as trans to N-donar ligand.

Table 1: The prepared Schiff bases (free ligands).

Complex No.	Y(pyridine)	X(aryl)	Complex No.	Y(pyridine)	X(aryl)
1	2-OH	H	8	4-NO2	4-Me
2	H	3-Me	9	4-Br	4-Me
3	2-OH	3-Me	10	H	5-Cl
4	4-NO2	3-Me	11	2-0H	5-Cl
5	4-Br	3-Me	12	4-NO2	5-Cl
6	H	4-Me	13	4-Br	5-Cl
7	2-OH	4-Me			
Citation: Alsaygh A, Al-Humaidi J, Al-Najjar I (2014) Novel Hydrido-Rhodium (III) Complexes with Some Schiff Bases Derived from Substituted Pyridines and Aryl Amines. Mod Chem appl 2: 139. doi:10.4172/2329-6798.1000139

Results and Discussion

The physical, analytical data and UV, IR, 1H, 13C-NMR Spectroscopy for Schiff bases were published elsewhere [16]. The corresponding Rh-complexes of different Schiff base ligand are investigated also by analytical, physical and different spectroscopy methods (Tables 3-5).

Characterization of Rh-Complexes

Infrared Spectra: Infrared spectra of the complexes were recorded to confirm their structure. The vibration frequencies and their tentative assignments for imines ligand (Scheme 1) and their Rh-complexes were assigned by comparison with the vibrational frequencies of the free ligand and their related complexes. The main futures in the infrared of the complexes is the shift of the stretching frequencies of the azomethine (-C=N-) group of the transition metal complexes to lower frequencies.
in the range, 1600-1576 cm⁻¹, compared with free imine ligand, ν(1690-1620 cm⁻¹) due to the coordination of the azomethine moiety, ν(C=N) to the metal [19]. Further evidence of the bonding is given by the observation of new bands in the spectra of the metal complexes of medium or weak intensity at the region 467-435 cm⁻¹ due to ν(M-N) stretching vibration supporting the involvement of the nitrogen atom of the azomethine group via coordination [20,21] (Figure 1), complex (22). Further evidence come from the spectra of ¹H, ¹³C and ³¹P NMR (Tables 4 and 5).

¹H, ¹³C and ³¹P NMR Spectra: The ¹H, ¹³C and ³¹P NMR spectra of the rhodium complexes have been studied in CDCl₃. The ¹H NMR spectrum of each of the new rhodium complexes in CDCl₃, shows a hydride resonance between δ11.19-11.78 ppm (Table 4). The imines C-H signals for the starting free imines appear at δ 9.01-9.44 ppm and after complexation these signals are absent, providing evidence for insertion of Rh metal into the C-H bond of the imines. Strong confirmation evidence comes from appearance of the resonance of the hydride signal in each complex at high field [22,23], ca. (average) δ -11.29 ppm. The hydride signals in the complexes are split by compiling to two equivalent ³¹P nuclei of the rhodium complex. As both of these spin-spin couplings are ca. 11.00 - 12.45 Hz (Table 4). The hydride multiple often appears as a pseudo quartet, but at higher resolution studies usually reveal the expected doublet of triplets (Figure 2 and Figure 3), complexes (23 and 24). The phosphine (PPh₃) rhodium complexes

Complex No.	X	Y	L	δ¹H Hydride (ppm)	δ²³⁵P{¹H} (ppm)	δ¹J¹³⁵P-¹H (Hz)	δ¹J¹⁰³Rh-¹H (Hz)	δ¹J¹⁰³Rh-³¹P (Hz)
14.	2-OH	H	BzPh₂P	-11.78	25.6	11.00	14.3	105.0
15.	2-OH	H	PPh₂P	-11.43	30.2	12.00	13.2	112.0
16.	H	3-Me	PPh₂P	-11.20	30.30	12.40	12.3	111
17.	2-OH	3-Me	PPh₂P	-11.35	3069	12.44	12.4	112.5
18.	4-NO₂	3-Me	PPh₂P	-11.21	30.63	12.45	13.7	114.5
19.	4-Br	3-Me	PPh₂P	-11.27	30.65	12.44	13.3	114.3
20.	H	4-Me	PPh₂P	-11.19	33.36	11.60	13.44	114.6
21.	2-OH	4-Me	PPh₂P	-11.78	33.7	11.00	13.90	112.0
22.	4-OH₂	4-Me	PPh₂P	-11.29	31.86	12.24	13.44	114.6
23.	4-Br	4-Me	PPh₂P	-11.32	32.69	11.00	12.20	118.0
24.	H	5-Cl	PPh₂P	-11.19	34.67	11.20	13.41	121.5
25.	2-OH	5-Cl	PPh₂P	-11.41	n	11.23	14.10	n
26.	4-NO₂	5-Cl	PPh₂P	-11.31	n	11.0	14.42	n
27.	4-Br	5-Cl	PPh₂P	-11.32	20.10	26.82	14.52	114.3

Table 4: ¹H and ³¹P NMR (δ ppm) and coupling constants (Hz) of the rhodium complexes (14-27).

Complex No.	X	Y	L	δ¹³C (ppm)
17.	2-OH	3-Me	235.56	
18.	2-NO₂	3-Me	225.16	
19.	4-Br	3-Me	236.24	
20.	H	4-Me	237.60	

Table 5: ¹³C-NMR for iminoyl carbon (C-7) (δ ppm) in the rhodium complexes (17-20).
(Figure 4 and Figure 5), complexes (24 and 27), show a 31P signal at ca. 18.79-34.67 Hz, (Table 4), with 1J(103Rh-31P) 98.7-118.0 Hz as a doublet in keeping with previous report [3,10,16], depending on the type of the substituent group on pyridine ring (Table 4). The majority of the rhodium imine hydride complexes are only moderately soluble in most organic solvents. The signal of 13C=N of the imino group is observed at ca. δ 225.06-237.60ppm (Table 5). The 13C [1H] NMR spectrum, in particular the signal from the metal-bonded carbon atom, is consistent with the presence of the cyclometallated ring [22,23]. The signal from the metal-bonded carbon, C(7) (iminoyl carbon), appear as a doublet or triplets owing to coupling of two equivalent 31P nuclei and the 103Rh nucleus, whereas the corresponding signal from the uncomplexed imines is found at ca. δ146.24-164.97 ppm [22]. This low-field position for C(7) has been observed in other cases in what a chelating atom is incorporated in a five member-ring [24], and is not unusual for a cyclometallated sp2 carbon [25], similar to carbene-carbon. The remaining 1H and 13C data are as expected. Steric effects are extremely important to structures, spectroscopic properties, and
The chemical behavior of phosphorus ligands and their complexes [26]. In this study two types of phosphorus ligands (PPh₃ and PBzPh₂) were used with different steric and electronic effects. The cone-angle data of Tolman [27] allows some comparisons of relative ligand steric effects to be made and demonstrates phosphine ligands such as PBzPh₂ (ca. 153°) and PPh₃ (ca. 145°). Increasing the size of the substituents on phosphorus will tend to reduce the s character in the phosphorus long pair, thus decreasing $\mathbf{1^1J(M-P)[21]}$. Data from Table 5, shows the $\delta \ ^{31}P \ [^1H]$ at 25.60ppm, with $1^\text{J}(^{103}\text{Rh}-^{31}P)$, 112.0Hz when ligand BzPh₂P and $\delta \ ^{31}P \ [^1H]$ at 105.0Hz with $1^\text{J}(^{103}\text{Rh}-^{31}P)$, 105.0Hz when ligand PPh₃ [27,28].

The position of the ligand signals in both IR($v\ \text{Rh-H}$, 2034.9cm$^{-1}$) for complex 22 (Figure 1) and 1H-NMR (δ-11.29ppm) Spectra, are as expected for a Rh-H bond trans to N-donor ligand. Furthermore,
the 1(31P-1H) value is consistent with a hydride located cis to two magnetically equivalent PPh$_3$ groups [29], which in turn are mutually trans, as inferred from 31P [1H]NMR spectrum (Table 4).

Interestingly, the hydride and 31P NMR spectrum of complexes 24 and 27, the 31P-NMR presented in two types of spectrum, for 31P-NMR spectra, which δ -observed at 34.67 and 18.79 ppm (for complex 24), and at δ 20.10 and 26.82 ppm (for complex 27), with 1(31P-1H) 11.20 Hz and 11.30 Hz, (Figure 4 and Figure 5) respectively, and with 1(103Rh$-^{31}$P), of 121.50 Hz, 98.70 Hz and 121.50, 104.2 Hz respectively (Table 4).

This result may be due to complex instability. The similarity of present of Cl- atom at C5 results of two or three 31P absorption spectrum. By substitution of Br-atom at C-4 of aryl ring (Figure 5) a significant change in signal of 31P was recorded in Figures 4, 5 and Table 4. It was also observed that the signal for C-7 (iminoyl carbon 13C=N) is
at low magnetic field, at δ225.16-237.60 ppm with \(^1{1}J\) (\(^{103}\text{Rh} - ^{13}\text{C}\)), 32-33 Hz and \(^2{1}J\) (\(^{31}\text{P} - ^{13}\text{C}\)), 8-9 Hz (Table 5).

The rhodium complexes are only moderately soluble in organic solvents, and so we have not obtained many \(^{13}\text{C}\) spectra, however, some \(^{13}\text{C}\) (7) data for few complexes are shown in Table 5. The signal for C-7 is all at 225.16-237.60 ppm, whereas the uncomplexed imines C-7 signal is found at δ159.39-164.97 ppm. This low field position is suggestive of carbine-like properties; however, the δ \(^{13}\text{C}=\text{N}\) for complex (24) is observed at low magnetic field at δ 237.67 ppm (Table 5 and Figure 6).

Unfortunately, treatment of some of imines prepared in this work
with 1,5-hexadiene in toluene at 110°C for 6 h under [RhCl(PPh3)3], in screw-capped vial, gives only imonoacyl rhodium(III) complex. The chromatographic results show no indication of forming hex-5-enylketimine. These results indicated that the bond between rhodium and hydrogen is not active enough, very stable and can’t go for further reactions.

Conclusion

The new cyclometallated rhodium complexes have been characterized by elemental analysis, UV, IR, 1H, 31P (occasionally) and 13C-NMR-spectroscopy. Interestingly the hydride ligand signal in IR (ν 2034.9 cm⁻¹) and 1H-NMR (δ = 11.29 ppm), (complex 22). The result obtained from the spectra was expected for Rh-H group trans position to the N-donor ligand.

However, the 31P-NMR for some cyclometallated complexes shows signal at δ 31.86 ppm, complex (22). Furthermore, the 2J (31P-1H) value and hydrogen is not active enough, very stable and can’t go for further reactions.

Acknowledgement

The author would like to thank the Research Centre, College of Science, Princess Nora Bent Abdulrahman University and King Abdulaziz city for Science and Technology for the financial support to this research project (AT-17-171).

References

1. Constable EC (1984) Cyclometallated complexes incorporating a heterocyclic donor atom; the interface of coordination chemistry and organometallic chemistry. Polyhedron 3: 1037-1057.

2. Bruce MI (1977) Cyclometallation Reactions. Angewandte Chemie International Edition in English 16: 73-86.

3. Albinati A, Anklin CG, Ganazzoli F, Ruegg H, Pregosin PS (1987) Preparative and proton NMR spectroscopic studies on palladium(II) and platinum(II) quinoline-8-carboxylic acid complexes. X-ray structures of the cyclometallated acyl complexes PdCl(C6H4)(PPh3)2 and Pt(C6H4)(PPh3)2. Inorg Chem 26: 503-508.

4. Albinati A, Arz C, Pregosin PS (1987) Synthesis, structure and NMR spectroscopy of some rhodium(III) cyclometallated Schiff’s base complexes derived from 2-benzylidene-3-methylpyridines. Crystal structure of [Rh(H2(3-nitrobenzylidene)-3-methylpyridine): (PPh3)3]. Journal of Organometallic Chemistry 335: 379-394.

5. El-Baih FEM, Abu-Loha FM, Gomma Z, Al-Najjar IM (1994) Synthesis and characterization of some rhodium(III) cyclometallated complexes of substituted benzylideneamino thiiazoles. Transition Metal Chemistry 19: 325-328.

6. Amin HB (1997) Synthesis and Characterization of Some Rhodium (III) Cyclometallated Schiff's Base Complexes Derived from 2-Benzylidene Amino substituted Pyridines. J King Saud University, Science 9: 65-75.

7. Suggs JW, Woykulich MJ, Cox SD (1985) Synthesis, structure, and ligand-promoted reductive elimination in an acylrhodium ethyl complex. Organometallics 4: 1101-1107.

8. Suggs JW (1979) Activation of aldehyde carbon-hydrogen bonds to oxidative addition via formation of 3-methyl-2-aminopyridyl aldimines and related compounds: rhodium based catalytic hydroacylation. J Am Chem Soc 101: 489-493.

9. Suggs JW, Jun CH (1985) Metal-catalysed alkyl ketone to ethyl ketone conversions in chelating ketones via carbon–carbon bond cleavage. J Chem Soc Chem Commun 92-93.

10. Meiswinkel A, Werner H (2004) Five- and six-coordinate hydridorhodium(III) complexes containing metalled Schiff-bases as ligands. InorganicChemica Acta 357: 2855-2862.

11. Leung CH, He HZ, Liu LJ, Wang M, Chan DSH, et al. (2013) Metal complexes as inhibitors of transcription factor activity. Coordination Chemistry Reviews 257: 3139-3151.

12. Zhong HJ, Leung KH, Liu LJ, Lu L, Chan DS, et al. (2014) Antagonism of mTOR Activity by a Kinetically Inert Rhodium(III) Complex. ChemPlusChem79: 508-511.

13. Liu LJ, Lin S, Chan DS, Vong CT, Hoi PM, et al. (2014) A rhodium(III) complex inhibits LPS-induced nitric oxide production and angiogenic activity in cellulo. J Inorg Biochem 135: 917-928.

14. Ma DL, Liu LJ, Leung KH, Chen YT, Zhong HJ, et al. (2014) Antagonizing STAT3 Diminization with a Rhodium(III) Complex. Angew Chem Int Ed Engl 53: 9174-9178.

15. Leung CH, Yang H, Ma VPY, Chan DSH, Zhong HJ, et al. (2012) Inhibition of Janus kinase 2 by cyclometallated rhodium complexes. Med Chem Commun 3: 696-698.

16. Alsaygh A, Al-Humaidi J, Al-Najjar I (2014) Synthesis of Some New Pyridine-2-y1-Benzylidene-IminesInternational Journal of Organic Chemistry 4: 116-121.

17. Colquhoun HM, Holton J, Thompson DJ, Twigg MV (1984) New Pathways for Organic Synthesis: Practical Applications of Transition Metals. Springer Press Science.

18. Osborn JA, Wilkinson G (1967) Tris (triphenylphosphine) halorhodium(I). Inorganic Syntheses 10: 67-71.

19. Nakamoto K (1997) Infrared and Raman Spectra at Inorganic and Coordination Compounds (4th Edition). John Wiley and Sons, New York.

20. Chohan HZ, Naseer MM (2007) Organometallic based biologically active compounds: synthesis of mono- and di-ethanolamine derived ferrocenes with antibacterial, antifungal and cytotoxic properties. Applied Organometallic Chemistry 21: 1005-1012.

21. El-Shiekh SM, Abd-Elzaher MM, Eweis M (2006) Synthesis, characterization and biocidal studies of new ferrocenylthiadiazolo-triazinone complexes. Applied Organometallic Chemistry 20: 505-511.

22. Dowera D, Radonovich LJ, Woolsey JF, Heeg MJ (1990) Reaction of 2-(1-alpha,-R-benzylidene)aminopyridines [RhCl2(4-CH3OC6H4)2] with RhICl3 or RhCl2(CO)3; formation and structure of a rhodium(II) dimer. Organometallics 9: 614-620.
Citation: Alsaygh A, Al-Humaidi J, Al-Najjar I (2014) Novel Hydrido-Rhodium (III) Complexes with Some Schiff Bases Derived from Substituted Pyridines and Aryl Amines. Mod Chem appl 2: 139. doi:10.4172/2329-6798.1000139

23. Suggs JW, Chul-Ho J (1984) Directed cleavage of carbon-carbon bonds by transition metals: the α-bonds of ketones. J Am Chem Soc 106: 3054-3056.

24. Giordano G, Crabtree RH (1979) Preparation of (1,5-cyclooctadiene) chlororhodium (I) dimer; rhodium complex. Inorganic Syntheses 19: 218-220.

25. Garrou PE (1981) DELTA-R-ring contributions to phosphorus-31 NMR parameters of transition-metal-phosphorus chelate complexes. Chem Rev 81: 229-266.

26. Foot RG, Heaton BT (1973) Metallation of 2-vinylpyridine by rhodium (III). J Chem Soc ChemCommun838-839.

27. Tolman CA (1977) Steric effects of phosphorus ligands in organometallic chemistry and homogeneous catalysis. Chem Rev 77: 313-348.

28. Al-Najjar IM (1987) 31P and 195Pt NMR characteristics of new binuclear complexes of [Pt2X4(PR3)2] cis/trans isomers and of mononuclear analogs. Inorganica Chimica Acta 128: 93-104.

29. Kaesz HD, Sallant RB (1972) Hydride complexes of the transition metals. Chem Rev 72: 231-281.