Difference in B^+ and B^0 Direct CP Asymmetry as Effect of a Fourth Generation

Wei-Shu Hou, Makiko Nagashima, and Andrea Soddu
Department of Physics, National Taiwan University, Taipei, Taiwan 106, R.O.C.

Direct CP violation in $B^0 \rightarrow K^+\pi^-$ decay has recently been observed \cite{1,2} at the B factories. The asymmetry in $B^+ \rightarrow K^+\pi^0$ decay is consistent with zero. This difference points towards possible New Physics in the electroweak penguin operator. We point out that a sequential fourth generation, with sizable $V_{t'q}, V_{t'b}$ and near maximal phase, could be a natural cause. We use the perturbative QCD factorization approach for $B \rightarrow K\pi$ amplitudes. While the $B^0 \rightarrow K^+\pi^-$ mode is insensitive to t', we critically compare t' effects on direct CP violation in $B^+ \rightarrow K^+\pi^0$ with $b \rightarrow s\ell^+\ell^-$ and B_s mixing. If the $K^+\pi^0$-$K^+\pi^-$ asymmetry difference persists, we predict $\sin 2\Phi_{B_s}$ to be negative.

PACS numbers: 11.30.Er, 11.30.Hv, 13.25.Hw, 12.60.-i

Direct CP violation (DCPV) in $B^0 \rightarrow K^+\pi^-$ decay has recently been observed \cite{1,2} at the B factories. The combined asymmetry is $A_{K\pi} = -0.114 \pm 0.020$. However, the asymmetry in $B^+ \rightarrow K^+\pi^0$ decay is found to be $2\%^{+3\%}_{-0.4\%}$, which differs from $A_{K\pi}$ by

$$A_{K\pi^0} - A_{K\pi} = +0.163 \pm 0.045,$$ \hfill (1)

with 3.6σ significance. All existing models have predicted $A_{K\pi} \sim A_{K\pi^0}$, as this basically follows from isospin symmetry. The large difference of Eq. (1) is not consistent, if it persists, could indicate isospin breaking New Physics (NP), likely λ and λ' through the electroweak penguin (EWP) operator.

In this paper we point out a natural source for such EWP effects: the existence of a 4th generation. The t' quark can modify the DCPV coefficients, but leave the strong and electromagnetic penguin coefficients largely intact. Eq. (1) can be accounted for, provided that $m_{t'} \sim 300$ GeV, and the quark mixing elements $V_{t'q}, V_{t'b}$ is not much smaller than V_{tb} and has near maximal CP phase. Independently, $b \rightarrow s\ell^+\ell^-$ and B_s mixing constraints can allow large t' effects only if $\lambda_{t'}$ associated CP phase is near maximal.

Precision electroweak data imply that $|m_{t'} - m_{t}|$ cannot be too large \cite{11}. Unitarity of quark mixing requires $|V_{tb}| < 0.08 \%^{+5}\%_{-3}\%$, while constraining $V_{t'q}, V_{t'b}$ appear Standard Model (SM) like, we set $V_{t'b} \sim 0$. We thus decouple from $s \rightarrow d$ constraints such as ϵ_K and $K \rightarrow \pi\nu\nu$ as well \cite{12}.

Adding a fourth generation modifies short distance coefficients. Defining $\lambda_{t'} = V_{t'q}, V_{t'b}$, the effective Hamiltonian relevant for $B \rightarrow K\pi$ can be written as

$$H_{\text{eff}} \propto \lambda_{t'} (C_1O_1 + C_2O_2) + \sum_{i=3}^{10} (\lambda_{c}C_i' - \lambda_{t'} \Delta C_i)O_i,$$ \hfill (2)

where $O_{1,2}$ are the tree operators, $\lambda_{c}C_i'$ are the usual SM penguin terms, and $-\lambda_{t'} \Delta C_i$ with $\Delta C_i \equiv C_{i'} - C_i$ is the 4th generation effect. We have used $\lambda_{u} + \lambda_{c} + \lambda_{s} + \lambda_{t'} = 0$, simplified by ignoring $|\lambda_{u}| \lesssim 10^{-3}$, such that $\lambda_{t'} \equiv -\lambda_{c} - \lambda_{t'}$. The penguin coefficients $\lambda_{c}C_{i'} + \lambda_{t'}C_i'$ at scale μ are then put \cite{10} in the form of Eq. (2), which respect the SM limit for $\lambda_{t'} \rightarrow 0$ or $m_{t'} \rightarrow m_{t}$. Explicit forms for C_i and O_i can be found, for example, in Ref. \cite{15}.

The $K\pi$ amplitudes are dominated by C_4. To illustrate t' sensitivity, in Fig. 1 we plot $-\Delta C_i/C_{10}$ at $m_{t'}$ scale vs $m_{t'}$. The effect is clearly most prominent for the EWP C9 coefficient, with linear $\lambda_{t'} \propto m_{t'}/M_{W}^2$ dependence arising from Z and box diagrams \cite{13}. ΔC_7 has similar dependence but has weaker strength. For the strong penguin $\Delta C_{4,6}$, the t' effect in the QCD penguin loop is weaker than logarithmic \cite{15} and is very mild. As we shall see, the $B^0 \rightarrow K^+\pi^-$ amplitude does not involve the EWP. In contrast, the $B^+ \rightarrow K^+\pi^0$ amplitude is sensitive to the EWP via $\Delta C_9 - \Delta C_7$ (virtual Z materializing as π^0).

We see that it is natural for the 4th generation to show itself through the EWP. The effect depends also on the quark mixing matrix product, parameterized as \cite{10}

$$\lambda_{t'} = V_{t'q}^* V_{tb} = r_s e^{i\phi_s}. \hfill (3)$$

The phase ϕ_s is needed to affect the CPV observables, Eq. (4). Most works on the 4th generation have ignored the phase in $V_{t'q}^* V_{tb}$, making the 4th generation effect far less flexible nor interesting.

Let us first see how $A_{K\pi} < 0$ can be generated. In the usual QCD factorization (QCDF) approach \cite{10}, strong phases are power suppressed, while strong penguin C_4 and C_6 coefficients pick up perturbative absorptive parts. Thus, the predicted $A_{K\pi}$ is small, and turns out to be positive. For the perturbative QCD factorization (PQCDF) \cite{17} approach, one has an additional absorptive part coming from the annihilation diagram, which
arises from a cut on the two quark lines in $B \to s\bar{q} \to K\pi$ decay. In this way, the PQCDF approach predicted the sign and order of magnitude of $A_{K\pi}$. By incorporating annihilation contributions as in PQCDF, however, QCDF can also give negative $A_{K\pi}$.

We adopt PQCDF as a definite calculational framework. The $B^0 \to K^-\pi^+$ amplitude for the 3 generation SM is roughly given by

$$M_{K^-\pi^+} \propto \lambda_u f_K F_e + \lambda_c (f_K F_e^c + f_B F_a^c),$$

where F_e^c is the color-allowed tree (strong penguin) contribution and is real, and F_a^c is the strong penguin annihilation term that has a large imaginary part. We have dropped subdominant non-factorizable effects for sake of presentation. Details cannot be given here, but these factorizable contributions can be computed by following Ref. [17], convoluting the hard part (related to short distance coefficients C_i) and the soft, nonperturbative meson wave functions. Basically, all the $F_j^{(P)}$s are integrals over Bessel functions, and in particular, a Hankel function for F_0^a [17]. We give the SM numbers for F_e, F_e^c and F_a^c in Table I, which leads to $A_{K\pi} = -0.16$ for $\phi_3 \equiv \arg \lambda_u^* = 60^\circ$ (value used throughout [18]), compared to the experimental value of -0.114 ± 0.020.

For $B^+ \to K^-\pi^0$, the difference with $K^-\pi^0$ is

$$\sqrt{2} M_{K^-\pi^0} - M_{K^-\pi^+} \propto \lambda_u f_K F_e + \lambda_c f_K F_e^c,$$

where F_{ek} is the color suppressed tree term, while F_e^c is the color allowed EWP, and both are real. A negligible tree annihilation term $\lambda_u f_B F_a$ has been dropped. Since both the F_{ek} and F_{ek}^c terms are subdominant compared to F_e^c in the 3 generation SM, $A_{K^-\pi^0}$ and $A_{K\pi}$ cannot be far apart. From the values of F_{ek} and F_{ek}^c given in Table I, we get $A_{K^-\pi^0} = -0.10$, which is less negative than $A_{K\pi}$, but at some variance with Eq. (1).

Adding the t' quark, one finds $M_{K^-\pi^+} \equiv M_{K^-\pi^0}$. The difference is proportional to $\lambda_u (f_K \Delta F_{e,a} + f_B \Delta F_{a}^c)$, which is small unless λ_u is very large. This is because $F_{a,\pi}$ are strong penguins, hence $\Delta F_{e,a}$ depends very weakly on $m_{t'}$, as can be seen from Table I (for $m_{t'} = 300$ GeV) and Fig. 1. Thus, $A_{K\pi}$ is insensitive to the 4th generation. For $K^-\pi^0$, one finds

$$\sqrt{2} M_{K^-\pi^0} - \sqrt{2} M_{K^-\pi^+} \propto -\lambda_u f_{\pi} \Delta F_{ek},$$

where again $\Delta F_{e,a}$ terms have been dropped, and ΔF_{ek} is the t' correction to the EWP, which is generated by $\Delta C_9 - \Delta C_7$ at short distance.

Let us put the $K^-\pi^+$ and $K^-\pi^0$ amplitudes in more heuristic form. Eq. (1) can be put in the form

$$M_{K^-\pi^+} \approx M_{K^-\pi^0} \propto re^{-i\phi_3} + e^{i\delta},$$

and the 4th generation effect is minor. The ratio $r = |\lambda_u| f_K F_e/|\lambda_c| f_K F_e^c + f_B F_a^c|$ parameterizes the relative strength of tree (T) vs. strong penguins (P), and δ is the strong phase of $f_K F_e^c + f_B F_a^c$, arising from $F_a^c = |F_a^c| e^{i\delta_a}$. Analogously, for $K^-\pi^0$ one roughly has

$$M_{K^-\pi^0} \propto r \left(1 + \frac{f_{\pi} F_{ek}}{f_K F_e^c + f_B F_a^c} \right) e^{-i\phi_3} + \frac{f_{\pi} F_{ek}}{f_K F_e^c + f_B F_a^c} e^{i\phi_3} + e^{i\delta} - \frac{f_{\pi} \Delta F_{ek}}{f_K F_e^c + f_B F_a^c} \frac{V_{ub}^* V_{tb}}{V_{cb}^* V_{tb}} e^{i\phi_3},$$

where F_{ek} and F_{ek}^c terms come from SM (see Eq. (3)), and the ΔF_{ek} term comes from the t' effect of Eq. (4). Since $r \sim 1/5$, we see from Table I that, for $m_{t'} \sim 300$ GeV and $|V_{ub} V_{tb}| \equiv r_5$ not much smaller than $|V_{cb}^* V_{tb}| \sim 0.04$, the impact of t' on $A_{K^-\pi^0}$ could be significant.

We have presented in the above the major contributions in PQCDF framework. Performing a detailed calculation following Ref. [17], we plot $A_{K\pi}$ and $A_{K\pi^0}$ vs. Φ in Fig. 2(a) for $m_{t'} = 300, 350$ GeV and $r_5 = 0.01$ and 0.03. We see that, indeed, $A_{K\pi}$ is almost independent of t', while it is clear that the largest impact on $A_{K\pi^0}$ is for $\phi_3 \sim \pm \pi/2$ and large $m_{t'}$ and r_5. To maximize $A_{K\pi^0} - A_{K\pi} > 0$, $\phi_3 \sim +\pi/2$ is selected, and Eq. (1) can in principle be accounted for.

The $A_{K\pi} \sim -0.16$ value is at some variance with the experimental value of -0.114 ± 0.020. This number depends crucially on the strong penguin phase. Rather

F_{ek}	0.841 [0.843]	-0.074 [0.075]	-0.076 [0.078]
F_{ek}^c	N.A. [0.001 + 0.026 i]	0.003 + 0.026 i [0.003 + 0.026 i]	0.003 + 0.026 i [0.003 + 0.026 i]
F_{ek}	N.A. [-0.105]	N.A. [-0.014]	N.A. [-0.029]

TABLE I: Factorizable contributions for $B^{0(\ast)} \to K^+\pi^-[0]$ in Standard Model, and for $m_{t'} = 300$ GeV. The difference between the t' and t penguin contributions gives $\Delta F_{ek}^{t'}$. "N.A." stands for "not applicable."
than varying detailed model parameters, we vary $\delta \equiv \arg (f_K F^F + f_B F^B)$. The sign difference between tree and strong penguin constitutes a phase of π and $\pi - \delta \sim 24^\circ$ is perturbative. We plot $A_{K\pi}$ and $A_{K\pi^0}$ vs. ϕ_π in Fig. 2(b) for $m_{\ell\ell} = 300$ GeV and $r_s = 0.03$, for $\delta = 155^\circ$, 156$^\circ$ (nominal) and 160$^\circ$. We see that a slightly smaller $\pi - \delta$ lowers $|A_{K\pi}|$ and is preferred. Note that $A_{K\pi^0} \sim 0$ around $\phi_\pi \sim 90^\circ$ is due to a near cancellation between the ϕ_π (tree) and ϕ_π (EWP) contributions. Thus, we think PQCDP can account for $A_{K\pi} = -0.114 \pm 0.020$ without affecting $A_{K\pi^0}$, but the NP phase ϕ_π should be rather close to 90$^\circ$.

To entertain a large EWP effect in CPV in $b \to s$ decay, one needs to be mindful of the closely related $b \to s\ell^+\ell^-$ and B_s mixing constraints, as well as the usually stringent $b \to s\gamma$ constraint. We have checked that the $b \to s\gamma$ rate constraint is well satisfied for the range of parameters under discussion. This is because on-shell photon radiation is generated by the $b \to s$ transition operator $O_{\gamma s}$, and the associated coefficient ΔC_{γ} has weaker $m_{\ell\ell}$ dependence than ΔC_{γ} shown in Fig. 1. However, $b \to s\ell^+\ell^-$ is generated by EWP operators very similar to $O_{\gamma s}$ in Eq. 2 for $b \to s\ell\ell$. The difference is basically just in the Z charge of q vs. ℓ, hence with same $m_{\ell\ell}$ dependence. The box diagram for B_s mixing also has similar $m_{\ell\ell}$ dependence. Taking the formulas from Ref. 10, we plot $b \to s\ell^+\ell^-$ rate ($m_{\ell\ell} > 0.2$ GeV) and Δm_{B_s} vs. ϕ_π in Figs. 3(a) and (b), for $m_{\ell\ell} = 300$, 350 GeV and $r_s = 0.01$ and 0.03.

We can understand the finding of Ref. 10 that $\phi_\pi \sim 90^\circ$ is best tolerated by the $b \to s\ell^+\ell^-$ and Δm_{B_s} constraints. For $\cos \phi_\pi < 0$, the $b \to s\ell^+\ell^-$ rate gets greatly enhanced 12, and would run against recent measurements. One is therefore forced to the $\cos \phi_\pi > 0$ region, where t' effect is destructive against SM t effect. For Δm_{B_s}, the effect gets destructive for $\cos \phi_\pi > 0$ when r_s is sizable. Since one just has a lower bound $|11|$ of 14.4 ps$^{-1}$, Δm_{B_s} tends to push one away from the cos $\phi_\pi > 0$ region. The combined effect is to settle around $\phi_\pi \sim \pm \pi/2$, i.e. imaginary 10. This result is independent of the discrepancy of Eq. 11.

For sake of discussion we have plotted, as horizontal solid straight lines in Fig. 3(a), the 1σ range of $B(B \to X_s \ell^+\ell^-) = (6.1 \pm 2.0) \times 10^{-6}$ 11 for $m_{\ell\ell} > 0.2$ GeV. This is the Particle Data Group (PDG) 2004 average over Belle and BaBar results 20, 21, with a combined total of 154M BB pairs. Belle has recently measured 22 with 152M BB pairs the value $B(B \to X_s \ell^+\ell^-) = (4.11 \pm 0.83^{+0.74}_{-0.70}) \times 10^{-6}$ for $m_{\ell\ell} > 0.2$ GeV, which would be more stringent. However, this lower result should be confirmed by BaBar, hence we use the more conservative 23 PDG 2004 range. For Δm_{B_s}, we plot the PDG bound of 14.4 ps$^{-1}$ 11 as horizontal solid straight line in Fig. 3(b).

Comparing Figs. 2(a) and 3(a), 3(b), we set $A_{K\pi^0} > -0.05$ as a requirement for a solution, for otherwise it is hard to satisfy Eq. 11, and in any case the 4th generation would seem no longer needed. This requirement demands $r_s > 0.01$. For $m_{\ell\ell} = 350$ GeV and $r_s = 0.03$, which can best bring $A_{K\pi^0} \gtrsim 0$, Figs. 3(a) and 3(b) mutually exclude each other. For $m_{\ell\ell} = 300$ GeV and $r_s = 0.03$ (the case for $m_{\ell\ell} = 350$ GeV and $r_s = 0.02$ is very similar), one finds $\phi_\pi \approx 75^\circ$ gives $A_{K\pi^0} \sim 0$. However, $B(b \to s\ell\ell)$ must be close to the maximal value of $\sim 8 \times 10^{-6}$, and Δm_{B_s} would be just above the bound. For lower r_s values, the solution space is broader. For example, for $m_{\ell\ell} = 300$ GeV and $r_s = 0.02$, one has $A_{K\pi^0} \gtrsim -0.05$ for $\phi_\pi \sim 63^\circ -100^\circ$, $B(b \to s\ell\ell)$ can reach below 6×10^{-6}, but then Δm_{B_s} would again approach the current bound.

We see that for a range of parameter space roughly around $m_{\ell\ell} \sim 300$ GeV and $0.01 < r_s \lesssim 0.03$, solutions to Eq. 11 can be found that do not upset $b \to s\ell\ell$ and Δm_{B_s}. Both large t' mass and sizable V_{ts} mixing are needed; no solutions are found for $m_{\ell\ell} = 250$ GeV.

As the CPV effect through the EWP is large, one may worry if similar effects may show up already in $b \to s\gamma$. We follow Ref. 24, extend to 4 generations, and plot $A_{CP}(b \to s\gamma)$ vs ϕ_π in Fig. 3(c). Like the $A_{K\pi^0}$ case, the t' effect cancels against the SM phase. $|A_{CP}(b \to s\gamma)|$ is in general smaller than the SM value of $\sim 0.5\%$, and consistent with the current measurement of 0.004 ± 0.036 25. In fact, it is below the sensitivity for the proposed high luminosity “Super B factory”.

As proposed, we find sin$2\Phi_{B_s} < 0$ for CPV in B_s mixing, which is plotted vs ϕ_π in Fig. 3(d). We find sin$2\Phi_{B_s}$ in the range of -0.2 to -0.7 and correlating with $A_{K\pi^0} - A_{K\pi}$. Three generation SM predicts zero. Note that refined measurements of $B(b \to s\ell\ell)$ and future measurements of Δm_{B_s} and sin$2\Phi_{B_s}$, together with theory improvements, can pinpoint $m_{\ell\ell}$, r_s and ϕ_π. We note further that 11 14.4 ps$^{-1} < \Delta m_{B_s} < 21.8$ ps$^{-1}$ cannot yet be excluded because data is compatible with a signal in this region. We eagerly await B_s mixing and

![FIG. 3: (a) $B(b \to s\ell^+\ell^-)$, (b) Δm_{B_s}, (c) $A_{CP}(b \to s\gamma)$ and (d) sin$2\Phi_{B_s}$ vs. $\phi_\pi = \arg V_{ts}^* V_{ts}$. Notation is same as Fig. 2(a), with effect strongest for larger r_s and $m_{\ell\ell}$. Horizontal solid band in (a) corresponds to 1σ experimental range, and solid line in (b) is the lower limit, both from Ref. 11. The experimental range for (c) is outside the plot.](image-url)
associated CPV measurement in the near future.

It is of interest to predict the asymmetries for the other two $B \rightarrow K\pi$ modes. $K^0\pi^-$ is analogous to $M_{K^0\pi^+}$ except tree contribution is absent. We find $M_{K^0\pi^-} \simeq M_{K^0\pi^+} \lambda_f (f_{K^0}\bar{F} + f_{B}\bar{F}_a)$, so $A_{K^0\pi^-} \simeq 0$ and insensitive to t'. For $B_0 \rightarrow K^0\pi^0$, we have $M_{K^0\pi^0} \propto \lambda_f f_{K^0}\bar{F} + \lambda_a f_{B}\bar{F}_a + \lambda_f (f_{K^0}\bar{F} + f_{B}\bar{F}_a) - \lambda_f f_{B}\Delta_{ek}$. Numerics can still be obtained from Table I, giving $A_{K^0\pi^0} - A_{K^0\pi^-} \sim 0.1$ if $A_{K^0\pi^-} = A_{K^0\pi}$ is of order suggested by Eq. 1. The impact on mixing-dependent CPV in ϕK_S and $\eta'K_S$ modes are insignificant.

The measurement of $A_{K^0\pi}$ itself should not yet be viewed as settled, since the recent BaBar value of $+0.06\pm 0.07\pm 0.01$ changed sign from the previous $-0.09\pm 0.09\pm 0.01$. But if $A_{K^0\pi} \sim 0$ hence Eq. 1 stays, we would need a large effect in the EWP with a new CPV

ph. Note that, unlike most treatments of the EWP, our strong phase is not a fitted parameter, but calculated from PQCD.

We have also studied separately the final state rescattering (FSI) model as a different proposed source of strong phase. In this model, one allows $K^+\pi^-\leftrightarrow K^0\pi^0\leftrightarrow K^0\pi^+$ rescattering in the final state (power suppressed in QCDF and PQCD), and, to avoid double counting, one uses naive factorization amplitudes as source before rescattering. In this way, one can account for $A_{K^0\pi} < 0$, and also generate a sizable $\pi^0\pi^0$ via rescattering from $\pi^+\pi^-$. Neither QCDF nor PQCD can account for $B(B^0 \rightarrow \pi^0\pi^0) > 10^{-6}$. However, in contrast to Eq. 1, $A_{K^0\pi}$ is found to be more negative than $A_{K^0\pi}$ for $A_{K^0\pi} < 0$. We find no solution to Eq. 1, even when t' is considered. Besides the problem that already exists in 3 generation SM, rescattering brings the electroweak penguin into the $K^-\pi^+$ amplitude from the $K^0\pi^+$ mode, so adding the t' does not help.

We have shown that a fourth generation t' quark can account for $A_{K^0\pi} \sim 0$. Using PQCD factorization calculations, one can account for $A_{K^0\pi} < 0$ (unbathed by t') and generate the needed $A_{K^0\pi} - A_{K^0\pi}$ splitting, which repeats in $A_{K^0\pi} - A_{K^0\pi}$. The closely related $b\rightarrow sl^{+}l^{-}$ should have rate not less than 6×10^{-6}, and B_s mixing should not be far above the current bound of 14.4 ps$^{-1}$. In fact, between the $b\rightarrow sl^{+}l^{-}$ rate and the bound on B_s mixing, $V_{tb}V_{tb}^*$ should be near imaginary if one wants a large t' effect. We predict a quite measurable CP violating phase sin$2\phi_{B_s}$ in the -0.2 to -0.7 range. Refined measurements of the last three measurable can determine m_ν and the strength and phase of $V_{tb}V_{tb}^*$.

Acknowledgement. This work is supported in part by NSC-93-2112-M-002-020, NSC93-2811-M-002-053 and NSC93-2811-M-002-047. We thank H.n. Li for providing the program for computing amplitudes in PQCD.

[1] B. Aubert et al. [BaBar Collab.], Phys. Rev. Lett. 93, 131801 (2004).
[2] Y. Chao et al. [Belle Collab.], Phys. Rev. Lett. 93, 191802 (2004).
[3] B. Aubert et al. [BaBar Collab.], Phys. Rev. Lett. 94, 181802 (2005).
[4] A.J. Buras et al., Nucl. Phys. B 697, 133 (2004).
[5] V. Barger et al., Phys. Lett. B 598, 218 (2004).
[6] S. Nandi and A. Kundu, hep-ph/0407061.
[7] S. Mishima and T. Yoshikawa, Phys. Rev. D 70, 094024 (2004).
[8] Y.L. Wu and Y.F. Zhou, Phys. Rev. D 71, 021701 (2005).
[9] S. Baek et al., Phys. Rev. D 71, 057502 (2005).
[10] A. Arhrib and W.S. Hou, Eur. Phys. J. C 27, 555 (2003).
[11] S. Eidelman et. al [Particle Data Group], Phys. Lett. B 592, 1 (2004).
[12] For other issues regarding the 4th generation (such as unification of couplings), see e.g. P.H. Frampton, P.Q. Hung and M. Sher, Phys. Rept. 330, 263 (2000).
[13] W.S. Hou, R.S. Willey and A. Soni, Phys. Rev. Lett. 58, 1608 (1987).
[14] G. Buchalla, A.J. Buras and M.E. Lautenbacher, Rev. Mod. Phys. 68, 1125 (1996).
[15] W.S. Hou, Nucl. Phys. B 308, 561 (1988).
[16] M. Beneke et al., Nucl. Phys. B606, 245 (2001).
[17] Y.Y. Keum, H.n. Li and A.I. Sanda, Phys. Rev. D 63, 054008 (2001).
[18] $A \pm 10^5$ change in ϕ_3 hardly affects our results.
[19] M. Beneke and M. Neubert, Nucl. Phys. B 675, 333 (2003).
[20] J. Kaneko et al. [Belle Collab.], Phys. Rev. Lett. 90, 021801 (2003).
[21] B. Aubert et al. [BaBar Collab.], Phys. Rev. Lett. 93, 081802 (2004).
[22] M. Iwasaki et al. [Belle Collab.], hep-ex/0500044.
[23] Inspecting the new Belle result of Ref. 24, we find the $M_{K^0\pi}$ mass bins covering K and K^* give lower values than expected. However, the new Belle result for $B \rightarrow K^*\ell\ell$ with 275M BB pairs, K. Abe et al., hep-ex/0410006 actually gives a larger rate than the previous result, A. Ishikawa et al., Phys. Rev. Lett. 91, 261601 (2003), based on 152M BB pairs. This gives further reason for caution.
[24] A.L. Kagan and M. Neubert, Eur. Phys. J. C 7, 5 (1999).
[25] See webpage of Heavy Flavor Averaging Group, http://www.slac.stanford.edu/xorg/hfag/.
[26] W.S. Hou and K.C. Yang, Phys. Rev. Lett. 84, 4806 (2000); C.K. Chua, W.S. Hou and K.C. Yang, Mod. Phys. Lett. A 18, 1763 (2003).
[27] B. Aubert et al. [BaBar Collab.], Phys. Rev. Lett. 91, 021801 (2003).
[28] Recently, H.n. Li, S. Mishima and A.I. Sanda, hep-ph/0508041 finds at next-to-leading order in PQCD, a larger color-suppressed tree (F_{ek}) term. This suppresses the effect of the SM weak phase $e^{-i\phi_3}$ (see Eq. 8) and makes $A_{K^0\pi}$ less negative. While we do not necessarily advocate it, we welcome this development as it would allow more parameter space for the 4th generation.