A Common Anterior Insula Representation of Disgust Observation, Experience and Imagination Shows Divergent Functional Connectivity Pathways

Mbemba Jabbi1,2*, Jojanneke Bastiaansen2, Christian Keysers2*

1 Section on Integrative Neuroimaging, Cognitive Brain Disorders Branch, National Institutes of Mental Health, Bethesda, Maryland, United States of America, 2 Social Brain Lab, BCN Neuroimaging Center, University Medical Center Groningen, Groningen, The Netherlands

Abstract

Similar brain regions are involved when we imagine, observe and execute an action. Is the same true for emotions? Here, the same subjects were scanned while they (a) experience, (b) view someone else experiencing and (c) imagine experiencing gustatory emotions (through script-driven imagery). Capitalizing on the fact that disgust is repeatedly inducible within the scanner environment, we scanned the same participants while they (a) view actors taste the content of a cup and look disgusted (b) tasted unpleasant bitter liquids to induce disgust, and (c) read and imagine scenarios involving disgust and their neutral counterparts. To reduce habituation, we inter-mixed trials of positive emotions in all three scanning experiments. We found voxels in the anterior Insula and adjacent frontal operculum to be involved in all three modalities of disgust, suggesting that simulation in the context of social perception and mental imagery of disgust share a common neural substrates. Using effective connectivity, this shared region however was found to be embedded in distinct functional circuits during the three modalities, suggesting why observing, imagining and experiencing an emotion feels so different.

Introduction

“Disgust refers to something revolting, primarily in relation to the sense of taste, as actually perceived or vividly imagined; and secondarily to anything which causes a similar feeling, through the sense of smell, touch and even eyesight” Charles Darwin (1872/1965)

The concept of ‘simulation’ is important for our understanding of imagination and social perception. For actions, simulation accounts of imagination propose that we can accurately imagine what it feels like to perform actions because common brain areas are involved in the execution and imagination of these actions. Empirical evidence showing parietal, pre-/supplementary motor cortex activations during imagination and action-execution supports this account [1–5]. Simulation accounts of action perception posit that we intuitively feel what others do and can anticipate their future actions because our perceptual apparatus links their actions with neural structures planning our own actions. Empirical support for this comes from the discovery of mirror neurons in the premotor and inferior parietal cortex of the macaque monkey responding to perception and execution of similar actions [6–9] and the observation of human premotor and inferior parietal responses to observation and execution of actions [10–16].

Together, evidence for action simulation, perception and imagination implicates brain areas including the premotor and posterior parietal regions as neural substrates involved in three functions: motor execution, observation and imagination. Perhaps the brain does not need to duplicate the motor expertise stored in motor areas in order to permit imagination and social perceptive processes; at least in part, it employs the very hardware of our own actions. However, it is unclear whether these notions can be extended to the realm of emotions.

Neuroimaging studies have shown that while individuals view or become aware of the delight [17], pain [18–21] or disgust [17,22,23] of others, they activate the anterior insula and adjacent frontal operculum (IFO) that reacts to experience of similar emotions and is modulated by empathic tendencies. IFO lesions also disrupt experience and recognition of disgust, suggesting a role for this region in emotional simulation/understanding [24,25].

Interestingly, similar IFO regions have been shown to be recruited during affective autobiographical recall [26,27], and taste imagination of pictured food items [28]. In line with these results, emerging evidence points to the functional significance of this region in facilitating awareness per se [29]. Thus in addition to deficits in disgust perception and experience, lesions of IFO has been shown to result in marked reduction of feelings of craving for cigarettes in long term smokers [30,31], anosognosia [32] and amusia [33].

Given the well documented role of the IFO in coding experience and social observation of disgust (among other feeling states), an interesting question would be whether this area would similarly respond to individuals vivid imagination of disgusting

* E-mail: jabbi.m@mail.nih.gov (MJ); c.m.keysers@rug.nl (CK)
experiences. Here, we address this question and further examined
how the functional circuitry that includes the IFO differs between
the imagination, observation and experience of disgust. In with the
emerging role of this region in coding awareness of feeling states, it
was hypothesized that a common IFO region involved in the
experience and observation of disgust [17,23], will be involved in
imagination and that the functional connectivity between this
region and the rest of the brain will differ across experience,
observation and imagination of disgust.

Materials and Methods

Participants: 12 healthy right-handed volunteers (6 females)
were recruited for the three fMRI experiments. All 12 individuals
were free of neurological, psychiatric and other physical conditions
with normal or corrected to normal vision. They completed the
consent forms approved by the University Medical Center
Groningen’s institutional review board and were paid 50 euros
in total for their participation to observation, experience and imagination
experiments.

Observation and Experience: The experimental procedures for the
observation and experience conditions of this study have been
described earlier [17], but are briefly illustrated in Figures S2 and S3.

Imagination: Similar to the observation and experience experi-
ments, the script-driven imagery runs consisted of three different
conditions: disgust, neutral and pleasant (but the data of the
pleasant condition is not of interest to the present report). Written
scenarios (scripts) with an approximate reading time of 35 seconds
were developed to induce disgust (9 scripts), neutral (7 scripts) and
pleasant (8 scripts) emotional states, totaling to 25 scripts
(see Supplementary Materials S1 for sample scripts).

Initially, 11 participants that did not take part in the fMRI study
rate all 25 scripts as to the amount of disgust and pleasure they
experience while reading and imagining themselves going through the
scenarios of the scripts and how hard the scripts were to
imagine. We asked two additional participants to tell us which
script they read most quickly, and then measured their reading
time with a chronometer. The shortest reading time was just over
20 s, which is why 20 s was used as the upper limit of the surface
under the curve analysis described below (For additional
information, see Supplementary Materials).

For the final experiment, each of the participants rated all 25
scripts in terms of how disgusting, how pleasant and how hard to
imagine (on a scale ranging from 0 to 6). These ratings served two
purposes: first, to choose on an individual basis the 6 most
disturbing, the 6 most pleasant and the 6 most neutral (i.e. least
disturbing or pleasant) scripts for the fMRI experiment, and
second, to obtained personal ratings of the scripts used in the fMRI
experiment (Figure S1).

During scanning, (Figure S4) each trial begins with a red
fixation cross lasting 6 seconds followed by a script present as a
single screen of text lasting 35 seconds followed by a fixation cross
lasting 6 seconds. The subjects then viewed a screen with a simple
arithmetic task for 6 seconds, and had to indicate their choice by
pressing the right or left button of a response box with their right
index finger. The next trial then begin with 6 seconds of fixation
cross and the next script and so on. We included the arithmetic
task between two scripts to maintain attention and wash out the
emotional state induced by the scripts between two scripts. Each
run contained 9 trials (3 disgust, 3 neutral and three pleasant
scripts, all presented in a fully randomized order) and two such
runs lasting 9.35 minutes each were administered for the
imagination experiment.

Image Acquisition and Analysis: Images were acquired using a
Philips 3T whole-body scanner (Best, The Netherlands) using a
circular sense head coil. T2*-weighted echo-planar sequencing was
performed with 39 interleaved 3.5 mm thick axial slices with 0
mm gap (TR = 2000 ms, TE = 30 ms, flip angle = 80°,
FOV = 224 mm, 64×64 matrix of 3.5×3.5×3.5 mm voxels). At
the end of each functional scan, a T1-weighted anatomical image
(1×1×1 mm) parallel to the bicomissural plane, covering the
whole brain was acquired.

Statistical Parametric Mapping (SPM2; Wellcome Department
of Cognitive Neurology, London UK; http://www.fil.ion.ucl.ac.
uk) was used for the preprocessing and analysis. All functional
volumes were realigned to the first acquired volume and images
were then coregistered to the participant’s anatomical space and
subsequently spatially normalized to obtain images with a voxel
size of 2×2×2 mm [34]. All volumes were then smoothed with an
8 mm full-with half-maximum isotropic Gaussian kernel. For the
time series on all 12 participants, high-pass filters with cut-off
points at 106 s, 310 s and 390 s for the observation, tasting and
imagination conditions respectively, were included in the filtering
matrix in order to remove low-frequency noise and slow-drifts in
the signal. Condition-specific effects at each voxel were estimated
using the general linear model. Contrast images were then tested
at the group level using a one tailed t-test against zero to
implement a random effects analysis. We extracted the timecourse
from the IFO ROI that was found to be commonly active during
the observation and experience [17] for all three experimental
conditions using marsbar (http://marsbar.sourceforge.net;
M.Brett, J.-L. Anton, R. Valabregue, and J.-B. Poline, ROI
SPM toolbox, Abstract).

Connectivity Analysis: To explore the functional integration
between the shared circuit mechanism in the IFO and other
related regions during the three disgust modalities, we employed the
psychophysiological interaction (PPI) analysis implemented in
SPM to identify voxels whose timecourse correlated more strongly
with the timecourse of activity in IFO during the disgust compared
to the neutral condition for imagination, observation and taste
separately using the procedures advised by Friston and colleagues
[35]. The seed region for this analysis was determined in each
condition and subject separately by opening the relevant contrast
in SPM (e.g. vision of disgust – vision of neutral), placing the
cursor at the center of the IFO ROI (x = 42, y = 18, z = –6) and
defining a 5 mm radius sphere using the function VOI. This
function will automatically move to the closest voxel with a
significant contrast (at p<0.005 uncorrected), and the actual
center of the sphere therefore deviated on average by 4 mm from
the center of the ROI (see Table S2), but their was no significant
difference between the spatial distribution of centers in the three
modalities (two-tailed matched pair t-test performed separately on
the x, y and z coordinates for imagination vs. observation,
imagination vs. taste and observation vs. taste, all p>0.25
uncorrected). The PPI analysis multiplies point by point the
timecourse of activity in the sphere seed region with a
psychological variable containing the value 1 for the condition
disgust, –1 for the condition neutral and zero elsewhere and then
uses this interaction vector, next to both the timecourse of the seed
region and the psychological variable as three regressors in a
subsequent whole-brain GLM analysis. Comparing the parameter
estimate of the interaction term with zero at the second level of
analysis (one-tailed t-test comparing n = 12 parameter estimates
against zero) then identifies voxels in the population of 12
participants that are on average functionally more connected to
the seed region in the disgust condition compared to the neutral
condition (Friston et al., 1997). These PPI maps were then
thresholded at \(p<0.001 \), uncorrected, with an extent threshold of 10 voxels.

Results

Script ratings

Before scanning, the twelve participants included in the fMRI experiment rated (Figure S1) the 6 disgust scripts as more disgusting than the neutral ones (two-tailed matched pair t-test, \(p<0.001 \) uncorrected for multiple comparisons) but their was no significant difference between the disgusting and neutral scripts in terms of how pleasant (\(p>0.07 \)) or how hard they were to imagine (\(p>0.87 \)). The pleasant scripts that served to balance the experimental design but that were not further analyzed here differed from the other scripts in that they were less disgusting than the disgust script (\(p<0.001 \)), more pleasant than both the other types of scripts (\(p<0.001 \)). Finally, the disgusting scripts were slightly more disgusting than the pleasant scripts pleasant (\(p<0.04 \)).

Timecourses

In Jabbi et al. [17], a region of the IFO was significantly more active during the vision and the experience of disgust compared to their neutral control conditions (\(p<0.005 \) vision of disgust – vision of neutral and \(p<0.005 \) taste of quinine – taste of neutral solution, Fig. 1a). To examine if this region is also recruited during the imagination of scenarios involving disgust (compared to those without emotional valence) we extracted the signal from this ROI in the imagination condition for the 12 participants that returned to be scanned during the imagination of emotional scripts (Fig. 1b; Traditional GLM results for all three modalities are specified in Table S1). Given that it is difficult to know how the emotional state of the participants fluctuates during the reading of the scenarios, we did not use a standard GLM approach but instead calculated the surface under the average difference curve between the disgust and neutral scenarios for the interval 4 s–20 s for each individual. The first 4 s were excluded because of the hemodynamic response delay and time points after 20 s, to exclude volumes in which some of the participants had finished reading some of the scripts. One of the core goals of the present study being the examination of a shared IFO representation of the simulation (imagination), experience and social observation of emotional feeling states, we therefore employed a one-sample t-test (one tailed) comparing the surfaces of the 12 participants against zero and found the disgust scenarios significantly (\(p<0.004 \)) recruit the IFO ROI more than neutral scenarios during imagination. Timecourses of the IFO ROI during the observation and experience of disgust are also shown for illustrative purposes [17,23].

Functional Connectivity

To examine the functional circuitry within which the IFO is embedded in these three disgust modalities (observation, imagination and experience), we used the time course of the IFO (based on a 5 mm sphere centered on the voxel with a significant omnibus test closest to \(x = 42, y = 18, z = -6 \), see methods) as the seed region to map effective connectivity using three separate (one per modality) psychophysiological interaction (PPI) analysis [35]. This analysis was performed separately for each participant, and the parameter estimates of the interaction term tested against zero at the population level using a one-tailed t-test to determine which voxels consistently increased their functional connectivity with the IFO during the disgust condition compared to the neutral condition. Results are shown in Figure 2 and Table 1.

During observation, we found only the ipsilateral right inferior frontal gyrus (IFG, pars triangularis or BA 45 [36] to be effectively more connected with the right IFO during the observation of facial expressions of disgust relative to neutral faces (Table 1). During experience and imagination condition, a much wider network involving in particular somatosensory, motor, gustatory and ‘limbic’ regions were shown to be effectively more connected to the IFO during the disgust compared to the neutral condition (Table 1).

Figure 1. Condition specific IFO time courses. a) coronal slice (\(y = 18 \)) showing the location of the ROI (white) previously shown to be involved in the experience and observation of disgust (\(p<0.005, k>10 \) voxels) (Jabbi et al., 2007). b–d) time courses of the average disgust-neutral difference relative to the onset of the movies of facial expressions, script-driven imagery and the administration of the tastants, respectively. Error bars represent the standard error of the mean.

doi:10.1371/journal.pone.0002939.g001
Overlap between the functional connectivity networks observed in these modalities was rare and restricted only to a single two-way overlapping cluster between imagination and experience in the left temporal pole.

Discussion

We tested and confirmed the hypothesis that the shared-circuitry in the IFO, shown earlier to be active during experience and observation of other people’s disgust [17,23], is also activated by the imagination of one’s own disgust.

The IFO is thought to play an important role in interoceptive awareness, i.e. sensing the inner state of the body [30,31,37–39]. This region’s involvement in both the observation and experience of disgust and pleasure [17,23] has been speculated to provide a simulation mechanism of the inner state of disgust during disgust observation in others. Findings showing IFO involvement in experience and observation/awareness of other people’s pain [18–21], suggested that this purported simulatory IFO response may not be specific for emotions linked to gustatory or olfactory stimulation but rather more generally linked to the simulation of bodily feeling states during social cognition [40–41]. Independent evidence

Figure 2. PPI maps of the whole brain. Functional connectivity of the whole brain with the IFO (as seed) thresholded at the t = 4.64 (corresponding to p<0.05 corrected for false discovery rate for the imagination of disgust relative to neutral). The numbers in the figures show the corresponding Z-coordinates in MNI space. Left is left and right is right.

doi:10.1371/journal.pone.0002939.g002
Table 1. Regions of Effective Connectivity with IFO during Observation, Taste and Imagination of Disgust Relative to Neutral at $p<0.001, k>10$ voxels, $t>4.64$.

Region	MNI	Voxels	t-value	z-value
Observation PPI				
IFG BA45	56	30	12	26
			6.35	4.04
Taste PPI				
Temporal Pole	−48	5	−21	147
			7.98	4.5
SI/SII	−50	−14	31	134
			8.32	4.59
Cingulate Motor	11	−12	52	89
			7.39	4.35
MI BA/3a/4a/4p	46	−13	43	60
			7.02	4.24
	−20	−35	64	32
			5.83	3.86
	−46	−27	53	17
			5.78	3.84
Orbitofrontal Cortex	−28	12	−15	37
			6.67	4.14
MPFG	−19	57	9	31
			7.14	4.28
Putamen/Lentiform	−22	−2	12	30
			5.18	3.61
Caudate	−12	−5	14	14
			4.64	3.3
Globus pallidus	−13	−2	−2	14
			5.9	3.88
Angular gyrus/TPJ	−40	−62	33	28
			5.76	3.83
ITG/MTG	56	2	−9	23
			5.62	3.78
	49	2	−30	12
			4.98	3.53
	46	−58	−5	21
			6.31	4.02
	−39	−8	−31	18
			5.57	3.76
Lingual Gyrus	−26	−67	−5	10
			5.33	3.67
ITG/MTG/STG	−38	−4	−36	18
			5.57	3.76
	50	8	−38	12
			4.98	3.53
Posterior Insula	−45	−20	8	11
			5.09	3.53
Cerebellum	41	−58	−34	12
			4.98	3.53
	20	−52	−28	19
			8.5	4.63
	−24	−55	−29	14
			5.41	3.7
Imagination PPI				
Med&Post Insula/STG	50	8	−4	1754
			12.51	5.38
Lingual Gyrus	−4	−90	2	202
			5.19	3.62
	−11	−64	−1	102
			6.11	3.96
Temporal Pole/MTG	−46	4	−20	129
			7.3	4.32
	36	13	−25	10
			5.99	3.91
	52	−3	−16	13
			5.16	3.61
SMA/preSMA BA6	−6	3	63	374
			6.02	3.92
Amygdala	−31	−2	−13	129
			7.3	4.32
Hyppocampus	34	−16	−4	56
			6.5	4.08
MI	19	−17	73	28
			7.42	4.36
ACC	−15	12	37	57
			7.24	4.3
IFG BA44/45	−47	20	36	44
			4.84	3.47
Posterior cingulate	−8	0	45	33
			4.99	3.54
Prefrontal gyrus/SFG	−17	46	46	31
			4.9	3.5
	−21	24	51	24
			5.33	3.67
suggests that some sectors of IFO are also involved in the imagination of basic emotions and sensations such as taste [26–28]. Our findings of a common IFO activation in the same participants’ experience, observation and while they imagine feeling disgust provides to our knowledge, the first direct evidence indicating that two apparently distinct forms of simulation (social perception and imagination) actually share a common neural substrate in the IFO. These findings have two implications: First, it supports the idea that imagination and social perception of emotions may share neuroanatomical underpinnings. This is in line with similar findings in the mirror neuron literature showing common neural representations for perceived, executed and imagined motor actions [6–9]. Second, it provides insights into the neural basis of the captivating experience of reading a book: While previous studies on social perception used movies of other people’s experiences or arbitrarily colored symbolic cues, our combination of movies and written material in the present experiment demonstrates that reading (mental imagery) as well as watching other people experience what is imagined recruits brain regions involved in experiencing an emotion.

The IFO ROI selected in this study appears to be a key location in the phenomenon of simulation that makes feeling an emotion, seeing that emotion on someone else’s face and imagining that emotion somehow shares a similar feeling component. Despite this partial overlap, these three modalities of disgust however do feel clearly different, emerge through distinct processes, and are triggered by different events. During experience: the brain activity is triggered by an unpleasant taste; during observation: by the sight of disgusted facial expression; and during imagination: by vivid mental imagery triggered by written scripts. Interestingly, these differences seem to be reflected in our connectivity findings.

Our IFO ROI involved in all three modalities includes anterior aspects of the insula and the adjacent frontal operculum, where the postmortem cytoarchitectonic analysis of 5 human brains observed a dysgranular cytoarchitecture [42], probably corresponding to the dysgranular zone of the frontal operculum/insula [43]. Tracer injections in the monkey Insula shows it to be highly interconnected with most of the brain [44–46], in particular the motor cortices (IFG-premotor, SMA/preSMA, M1 and cingulated motor cortex), regions involved in gustation (basal ganglia, amygdala, ACC, orbitofrontal cortex), somatosensory (SI, SII and posterior Insula), high level vision (STS) and memory and semantics (temporal pole and hippocampus). However, it is worth noting that the monkey Insula does not have a homologue of IFO [47], underscoring a likely prominent role for this phylogenetically new region in higher order physiological awareness “that might be absent in monkeys”. Our effective connectivity findings showed changes in the temporal correlation between the BOLD signal in the IFO and a variety of putative human homologues of the connected structures shown earlier to be connected with monkey insula [43–46].

During experience, changes in effective connectivity occur primarily with somatosensory (left SI/SII and posterior Insula) [48], gustatory/ motivational (basal ganglia, orbitofrontal cortex), and motor output regions (cingulated and primary motor cortex). What do these changes in effective connectivity mean? The SI/SII and the posterior insula are involved in somatosensation [49] and could represent the tactile experience of tasted fluids - relatively similar for neutral and unpleasant gustatory stimuli. The IFO however increases activity as the intensity of the taste of a solution increases as well as integrates the taste and texture of food [49]. The observed IFO effective connectivity with somatosensory areas during disgust experience relative to tasteless artificial saliva may therefore likely reflect the integration of texture and taste in the IFO. Indeed, the orbitofrontal cortex, the basal ganglia and motor regions (M1 and cingulate motor cortex) are involved in evaluating the valence of a taste [49] and regulating behavior accordingly [47]. Thus the increase in effective connectivity between these regions and the IFO may underlie the valence-related relevance of taste processing.

During imagination, participants need to [a] transform the written material involved in the scripts into a mental simulation of the actions, sensations and feeling states of the protagonists. All scripts, be they disgust-inducing or neutral involved actions and sensations, and this processing would therefore not be specific for the disgust inducing scripts. Unlike the neutral scripts, imagining the disgust inducing scripts naturally triggers strong feeling states of disgust. Broca's area (left BA44/45) and the left temporal pole are structures that are known to be important for understanding stories [50]. Thus, the increase of effective connectivity between the IFO and these regions for the disgust scripts may likely reflect a cognitive-affective integration mechanism. The SMA/preSMA plays a key role in the mental imagery of actions [−5, 51] and somatosensory regions (right SI/SII/posterior Insula) play an important role in the mental imagery of tactile and proprioceptive sensation [48,51] and would therefore play an important role in the imagery of actions and sensations in general. The change of effective connectivity with the IFO however reflects that this motor and somatosensory imagery seems to be linked to activity in the IFO and feeling states more strongly, if these actions and sensations are disgusting. Increases of connectivity with the hippocampus finally could reflect autobiographic memories triggered by the scripts [52].

During social observation, the most prominent region with stronger connectivity during disgust compared to neutral faces was the ipsilateral right BA45. This region has been shown to be involved in execution, observation and imitation of facial

Table 1. cont.
Region
Premotor cortex/BA6
Putamen
MPFG

| doi:10.1371/journal.pone.0002939.t001 |
expressions [22,33,54]. Together, these findings suggest that vision of any facial movement triggers a motor simulation of facial expressions in the BA45 that might be related to the phenomenon of facial mimicry [55,56]. If the facial expression is emotional however, and disgusting in particular, an increase in effective connectivity between this region and the IFO, would link a simulation of the bodily feeling state of disgust with the simulation of the disgusted facial expression. Indeed, whereas lesions of the IFG resulted in widespread deficits in the perception of facial expressions [57], lesions in the IFO lead to more focused deficits in disgust recognition [24,25].

Conclusions

Humans can achieve vivid emotional feeling states in the absence of actual emotional encounters in a myriad of ways, including the recall of past experiences, the imagination of hypothetical experiences, reading a good book, watching a good movie or witnessing a friend’s experience. By making participants view disgusted facial expression of others, read disgust provoking scenarios and taste an unpleasantly bitter solution, we found a modality specific involvement of a region of the IFO during disgust. However, the functional connectivity between this region and the rest of the brain was orchestrated in a modality specific way. This suggests that the IFO is a convergence zone where bodily feeling states relevant for the emotion of disgust are coded according to a common code [58,59] regardless of stimulus modality. Our findings of IFO involvement in all three modalities supports the idea that simulation through both pre-reflective (viewing someone else’s disgust) as well as reflective (deliberate mental imagery and language) routes may therefore be complementary rather than independent of each other [60]. This idea is supported by evidence showing dampening effect of people’s expectation on their IFO response during exposure to aversive tastes, suggesting a role for this region in regulating reflective/cognitive processes relevant for homeostatic maintenance [61]. The functional relationship between the IFO and interconnected regions during social cognition, as opposed to imaginary and actual emotional experience remains an important question for future work, but the relative lack of overlap between the results of our effective connectivity analysis between the three modalities confirms the idea that these modalities feel different despite the presence of regions that encode them according to a common code [58,59] regardless of stimulus modality. Our findings of IFO involvement in the actual imagination of gustatory disgust are in support of the important role of this region in regulating awareness and embodiment of feeling states.

References

1. Fadiga L, Craighero L (2004) Electrophysiology of action representation. J Clin Neurophysiol 21: 157–169.
2. Gerardin E, Sirigu A, Lehericy S, P olène JB, Gaymard B, Marsault C, et al. (2000) Partially overlapping neural networks for real and imagined hand movements. Cereb Cortex 10: 1093–1104.
3. Jeannerod M, Frak V (1999) Mental imaging of motor activity in humans. Curr Opin Neurobiol 9: 735–739.
4. Porro CA, Francesco MP, Cettolo V, Diamond ME, Baraldi P, Zuania C, et al. (1996) Primary motor and sensory cortex activation during motor performance and motor imagery: a functional magnetic resonance imaging study. J Neurosci 16: 7638–7658.
5. Solodkin A, Hietak P, Chen EE, Small SL (2004) Fine modulation in network activation during motor execution and motor imagery. Cereb Cortex 14: 1246–1255.
6. Fogassi L, Ferrari PF, Gesierich B, Rozzi S, Chersi F, Rizzolatt G (2005) Parietal lobe: from action organization to intention understanding. Science 308: 662–667.
7. Keysers C, Koleh E, Umiltà MA, Fogassi L, Gallese V, Rizzolatt G (2005) Audiodiscl mirror neurons and action recognition. Exp Brain Res 153: 629–636.
8. Kohler E, Keysers C, Umiltà MA, Fogassi L, Gallese V, Rizzolatt G (2002) Hearing sounds, understanding actions: action representation in mirror neurons. Science 297: 846–848.
9. Umiltà MA, Kohler E, Gallese V, Fogassi L, Gallese E, Keysers C, et al. (2001) I know what you are doing: a neurophysiological study. Neuron 31: 155–163.
10. Gallese V, Goldman A (1998) Mirror neurons and the simulation theory of mind-reading. Trends In Cognitive Sciences 2: 493–501.
11. Gallese V, Keysers C, Rizzolatt G (2004) A unifying vision of the basis of social cognition. Trends Cog Sci 8: 396–403.
12. Gazzola V, Rizzolatt G, Wicker B, Keysers C (2007) The anthropomorphic brain: the mirror neuron system responds to human and robotic actions. Neuroimage 35: 1674–1694.
13. Gazzola V, van der Worp H, Mulder T, Wicker B, Rizzolatt G, Keysers C (2007) Ataplasics Born without Hands Mirror the Goal of Hand Actions with Their Feet. Curr Biol 17: 1235–1240.
14. Grafton ST, Arbib MA, Fadiga L, Rizzolatt G (1996) Localization of grasp representations in humans by positron emission tomography: 2. Observation compared with imagination. Exp Brain Res 112: 103–111.
Imagine Disgust in Your Insula

15. Iacoboni M, Woods RP, Brass M, Bekkering H, Mazziotta JC, Rizzolatti G (1999) Cortical mechanisms of human imitation. Science 286: 2526–2528.
16. Keysers C, Gazzola V (2006) Towards a unifying neural theory of social cognition. Prog Brain Res 156: 379–401.
17. Jabbi M, Swart M, Keysers C (2007) Empathy for positive and negative emotions in the gustatory cortex. Neuroimage 34: 1744–1753.
18. Jackson PL, Melzoff AN, Decety J (2005) How do we perceive the pain of others? A window into the neural processes involved in empathy. Neuroimage 24: 771–779.
19. Lamm C, Batson CD, Decety J (2007) The neural substrate of human empathy: effects of perspective-taking and cognitive appraisal. J Cogn Neurosci 19: 42–56.
20. Sazonova MV, Huishchik Y, Williams AC, Schurmann M, Kabo E, Hari R (2007) The compassionate brain: humans detect intensity of pain from another’s face. Cereb Cortex 17: 230–237.
21. Singer T, Seymour B, O’Doherty J, Kraehe H, Dolan RJ, Frith CD (2004) Empathy for pain involves the affective but not sensory components of pain. Science 303: 1137–1142.
22. Carr L, Iacoboni M, Duheau MC, Mazziotta JC, Lenzi GL (2003) Neural mechanisms of empathy in humans: a relay from neural systems for imitation to limbic areas. Proc Natl Acad Sci U S A 100: 5497–5502.
23. Wicker B, Keysers C, Philp J, Royet JP, Gallese V, Rizzolatti G (2003) Both of us disgusted in My insula: the common neural basis of seeing and feeling disgust. Neuron 40: 655–664.
24. Adolphs R, Tranel D, Damasio AR (2003) Dissociable neural systems for recognizing emotions. Brain Cogn 52: 61–69.
25. Calder AJ, Keane J, Manes F, Antoun N, Young AW (2000) Impaired recognition and experience of disgust following brain injury. Nat Neurosci 3: 1077–1078.
26. Damasio AR, Grabowski TJ, Bechera A, Damasio H, Ponte LL, Parvizia J, et al. (2006) Subcortical and cortical brain activity during the feeling of self-generated emotions. Nat Neurosci 3: 1049–1056.
27. Preston SD, Bechara A, Damasio H, Grabowski TJ, Stanfield RB, Sonya M, et al. (2007) The neural substrates of cognitive empathy. Social Neuroscience 2: 234–275.
28. Kikuchi S, Kubota F, Nisijima K, Washiya S, Kato S (2005) Cerebral activation focusing on strong tasting food: a functional magnetic resonance imaging study. Neuroreport 16: 281–285.
29. Craig AD (2008) V Interoception and Emotion: A Neuroanatomical Perspective. In Lewis M, ed (2008) Handbook of Emotions. New York. pp 272–288.
30. Preston SD, Bechara A, Damasio H, Grabowski TJ, Stanfield RB, Sonya M, et al. (2007) The neural substrates of cognitive empathy. Social Neuroscience 2: 234–275.
31. Kikuchi S, Kubota F, Nisijima K, Washiya S, Kato S (2005) Cerebral activation focusing on strong tasting food: a functional magnetic resonance imaging study. Neuroreport 16: 281–285.
32. Craig AD (2002) How do you feel? Interoception: the sense of the physiological condition of the body. Nat Rev Neurosci 3: 655–666.
33. Hyde KL, Lerch JP, Zatorre RJ, Griffiths TD, Evans AC, Peretz I (2007) Neural mechanisms of empathy in humans: a relay from neural systems for imitation to limbic areas. Proc Natl Acad Sci U S A 100: 5497–5502.
34. Friston KJ, Holmes AP, Worsley KJ, Poline JB, Frith CD, Frackowiak RJS (1995) Statistical parametric maps in functional imaging: a general linear approach. Hum Brain Mapp 3: 189–210 b.
35. Friston KJ, Buechel G, Finn GR, Morris J, Rolls E, Dolan RJ (1997) Psychophysiological and modulatory interactions in neuroimaging. Neuroimage 6: 218–229.
36. Amunts K, Schleicher A, Burget U, Mohlberg H, Uylings HB, Zilles K (1999) Broca’s region revisited: cytoarchitecture and intersubject variability. J Comp Neurol 412: 319–341.
37. Craig AD (2002) How do you feel? Interoception: the sense of the physiological condition of the body. Nat Rev Neurosci 3: 655–666.
38. Critchley HD, Wiens S, Rolls TE, Ohman A, Dolan RJ (2004) Neural systems supporting interoceptive awareness. Nat Neurosci 7: 189–193.
39. Critchley HD (2005) Neural mechanisms of autonomic, affective, and cognitive integration. J Comp Neurol 493: 154–166.
40. Damasio AR (2005) Looking for Spinoza: Joy, Sorrow and the Feeling Brain. New York, New York: Hartcourt.
41. James W (1884) What is an Emotion. Mind 9: 181–205.
42. Bontius DJ, Solodkin A, Van Hoeseen GW (2005) Pathology of the insular cortex in Alzheimer disease depends on cortical architecture. J Neuropathol Exp Neurol 64: 910–922.
43. Mesulam MM, Mufson EJ (1982a) Insula of the old world monkey. I. Architectonics in the insulo-orbito-temporal component of the paralimbic brain. J Comp Neurol 212: 1–22.
44. Augustine JR (1996) Circuitry and functional aspects of the insular lobe in primates including humans. Brain Res Brain Res Rev 22: 229–244.
45. Chikama M, McFarland NR, Amaral DG, Haben SN (1997) Insular cortical projections to functional regions of the striatum correlate with cortical cytoarchitectonic organization in the primate. J Neurosci 17: 9686–9705.
46. Mesulam MM, Mufson EJ (1982b) Insula of the old world monkey. II: Efficient cortical output and comments on function. J Comp Neurol 212: 38–52.
47. Fudge JL, Brabant MA, Danish M, Pannoni V (2005) Insular and gustatory inputs to the caudal ventral striatum in primates. J Comp Neurol 490: 101–118.
48. Dijkerman HC, de Haan EH (2007) Somatosensory processes subserving perception and action. Behav Brain Sci 30: 189–201; discussion 201-139.
49. Small DM, Prescott J (2005) Odor/taste integration and the perception of flavor. Exp Brain Res 166: 345–357.
50. Vigneau M, Beauchaine T, Herve PV, Duffau H, Crivello F, Houdé O, et al. (2006) Meta-analyzing left hemisphere language areas: phonology, semantics, and sentence processing. Neuroimage 30: 1414–1432.
51. Sacco K, Candia F, Cerfiani L, Mote D, Duca S, Geminiani GC (2006 Sep) Motor imagery of walking following training in locomotor attention. The effect of “the tango lesson”. Neuroimage 32(3): 1441–9.
52. Rekas PV, Constable RT (2005) Evidence that autobiographic memory retrieval does not become independent of the hippocampus: an fMRI study contrasting very recent with remote events. J Cogn Neurosci 17: 1930–1961.
53. Pfeifer JH, Iacoboni M, Mazziotta JC, DiPette M (2008) Mirroring others’ emotions relates to empathy and interpersonal competence in children. Neuroimage 39: 2076–2085.
54. van der Gaag G, Minderhau R, Keysers C (2007) Facial expressions: what the mirror neuron system can and cannot tell us. Social Neuroscience 2: 179–222.
55. Dimberg U (1990) Facial electromyography and emotional reactions. Psychophysiology 27: 481–494.
56. Hess U, Bluyser S, Philipp P (1999) Facial mimicry. In: PPhilippot, RFedman, ECoats, eds (1999) The social context of nonverbal behavior. New York: Cambridge University Press.
57. Adolphs R, Damasio H, Tranel D, Cooper G, Damasio AR (2000) A role for somatosensory cortices in the visual recognition of emotion as revealed by three-dimensional lesion mapping. J Neurosci 20: 2683–90.
58. Prinz W (1997) Eur J Cogn Psych 9: 129–154.
59. Pessoa L (2008) On the relationship between emotion and cognition. Nat Rev Neurosci 2: 148–58.
60. Keysers C, Gazzola V (2007) Integrating simulation and theory of mind: from self to social cognition. Trends Cogn Sci 11: 194–196.
61. Nitschke JB, Dixon GE, Sariqolouls I, Short SJ, Cohen JD, Smith EE, Koslyn SM, Rose RM, Davidson RJ (2006) Altering expectancy dampens neural response to aversive taste in primary taste cortex. Nat Neurosci 9: 435–42.