Effectiveness of Physics Learning Media Course assisted by Instagram on Student’s Creative Thinking Skill

Irwanndani*1, Achi Rinaldi1, Agitha Pricilia1, Putri Mardiana Sari1, Adyt Anugrah1

1Tarbiyah and Teacher Training Faculty, Universitas Islam Negeri Raden Intan Lampung, Indonesia

*irwandani@radenintan.ac.id

Abstract. This study aims to determine the effectiveness of Physics Learning Media course assisted by Instagram and to know its impact on students’ creative thinking skills. This study was conducted on students who took Physics Learning Media course. This research is a quasi-experimental with randomized pretest-posttest control group design. Independent sample t-test showed that the implementation of physics learning media course assisted by social media Instagram influenced students’ creative thinking skills. The ability to think creatively in students in the experimental class is higher than in students in the control class. These results indicate that Physics Learning Media course assisted by social media Instagram has an effective impact on students’ creative thinking skills.

Keywords: Learning media, Creative thinking skill, Instagram social media

1. Introduction

Facing the fourth industrial revolution era, education requires a lot of innovation and development, especially in learning process [1–4]. In this era, the development of technology and information is very fast [5–8]. Technological developments and information in the industrial revolution 4.0 causes education to require a lot of innovation and development, especially in learning. This era is known as the digital era, where access to learning becomes easier, faster, and cheaper, so, information is growing so rapidly [9, 10]. The main characteristic of learning in the digital age is the use of technological sophistication as the main base in the learning process [10, 11]. The learning paradigm begins to shift by no longer limiting interaction only in the classroom [13]. The process of interaction begins to move from the real to virtual. Learning also emphasizes the concept of learning that is innovative, skilled in using technology and information media, and able to work and survive by using its life skills [2, 3].

As an educational institution, university has an important role in responding to the paradigm shift. Higher education institutions are expected to be able to equip their students with skills so they can produce globally competitive graduates [3, 4]. Therefore, education process at University must be able to direct its students to be proficient in learning, creating and innovating, and proficient in using technology and information media. Nowadays, technology is more developed and easier to be adapted and utilized for learning purposes [17–19]. The task of educators, in this case is lecturers, is to strive for all forms of learning using information technology and media as its main base. Lecturers are
required to have more creativity in teaching, especially in choosing, designing, preparing and providing learning innovations [19, 20]. Lecturers’ creativity is needed to provide students with 21st century skills [21].

Based on the problems mentioned above, Physics Learning Media (PLM) course at Physics Education Study Program in UIN Raden Intan Lampung has started using learning by utilizing the development of information technology and media. In PLM learning, students are taught to understand the role, function and use of media in learning. Students are trained to be creative in making learning media to be used as a tool to introduce physics subject in schools.

PLM courses are basically intended to train students’ creative thinking skills. Creative thinking is the ability of individuals to look for ways, strategies and new ideas to get a solution to a problem [22–26]. In the learning process of PLM in the classroom, lecturers utilize technological sophistication such as the use of power points, videos, and demonstrations to foster student creativity.

However, based on the results of the evaluation of PLM courses at the end of the semester, it is found that the creative thinking ability of students who take PLM courses in 2017 is still not good. Students’ CTS test results are on average 38.48 from a scale of 100. In fact, the ability to think creatively must be owned by college students as prospective teachers in order to prepare themselves to enter the working world [27]. This was also expressed by the Career Center Maine Department of Labor USA which stated that Creative Thinking Skills are very important to have because this ability is one of the most important abilities and is highly needed in the working world [28]. Based on this, improvement in learning is needed to train students’ creative thinking skills to be better. This is certainly a homework for the lecturer to find a solution to this problem.

It must be recognized that one of the causes of the lack of students' creative thinking skills in PLM courses in 2017 is due to learning that is still offline. Therefore, one alternative solution that can be done is to utilize online learning combined with offline learning.

Online media is indeed developing very rapidly. The rapid development is influenced by the rising popularity of the use of social media [29]. Social media is a virtual community or network that allows users in it to interact with each other, build communities and share ideas and information [30]. Online social media assisted learning can be used as an alternative learning because of its nature which can be accessed anytime and anywhere [29].

Some popular social media include Facebook, Twitter, Instagram, WhatsApp, Line, and many others. These various social media have their own characteristics and advantages. One social media that can be used in learning is social media Instagram. Based on the results of a literature review on Instagram social media, it was found that this social media has several advantages and complete features to facilitate students' creative thinking [31]. Therefore, this research needs to investigate the effectiveness of using Instagram social media as a tool to improve students' creative thinking skills in PLM course.

2. Method
This research used quasi experiment method with randomized pretest-posttest control group design [32]. The research design is illustrated in table 1 below:

Class	Pre-Test	Treatment	Post-Test
Experiment	O₁	X₁	O₂
Control	O₁	X₂	O₂

With:
O₁: Pretest to measure students’ creative thinking skills
O₂: Posttest to measure students’ creative thinking skills
X₁: Treatment with Instagram social media assisted learning
X₂: Treatment with learning without the help of Instagram social media
The population of this study were all students of Physics Education Study Program in UIN Raden Intan Lampung who took Physics Learning Media (PLM) course in even semester of the academic year 2017/2018. From the entire population, two groups were selected as samples using a cluster random sampling technique, then divided into the experimental class and the control class. This technique is used because the population is in a homogeneous condition and each class has the same average ability.

To find out the effectiveness of learning by assisting Instagram social media on students’ creative thinking skills, this study used tests, observations and questionnaires. The creative thinking skills tested was five indicators, those are fluent thinking skills, flexible thinking, original thinking, elaboration, and evaluation. The non-test instruments used include observation sheets to measure the success of Instagram social media assisted learning, documentation to analyze the level of students ‘creative thinking skills and questionnaire sheets to find out the scale of students’ attitudes towards Instagram social media assisted learning.

After CTS instrument was arranged, the instruments are then first tested. The trial results are then analyzed to know the characteristics of each item including validity, reliability, level of difficulty and discrimination power. After testing phase, the instrument was ready to be used in research to measure students' creative thinking skills.

3. Results and Discussion

3.1 Results

The results of the research showed data about students' creative thinking skills in physics learning media (PLM) courses with learning assisted by Instagram social media. Then the highest score (X_{max}) and lowest score (X_{min}) could be found in the experimental class and the control class. All the quantitative results of this research can be seen in Table 2.

Class	X_{max}	X_{min}	Central Tendency	Group Variance			
	\bar{x}	M_o	M_e	R	S		
Experiment	100	40	81,3333	90	80	60	13,5927
Control	75	10	42,6316	40	40	65	20,0948

Based on the results in Table 4.1 it can be seen that the experimental class obtained an average score (\bar{x}) that is greater than in the control class. And by looking at the maximum score obtained from the experimental class and the control class, it can be seen that the experimental class scores were way better than the control class. Based on these results it can be concluded that the creative thinking skill of students in the experimental class is better than the control class. Meanwhile, the results of the hypothesis test obtained by some data are shown in Table 3.

Class	N	\bar{x}	Sp	t_{table}	t_{count}	Conclusion
Experiment	120	81,3333	14,61303	1,977431	2,480,519	H_0 is rejected
Control	19	42,6316				

Based on Table 3, we can see that $t_{\text{count}} > t_{\text{table}}$, so the null hypothesis (H_0) is rejected and alternative hypothesis (H_a) is accepted, so it can be concluded that the learning of physics learning media assisted by social media Instagram is declared effective in improving students' creative thinking skills.

3.2 Discussion

Creative thinking is the ability to see various kinds of possible solutions to a problem, and find the right way to solve a problem. The ability to solve a problem in the right way is very needed. Especially for prospective teachers, they are required to be able to think creatively. Moreover, high creativity is needed for teachers in presenting learning that can be accepted by their students.
Physics learning media is a course that prepares prospective teachers to be creative in presenting learning for their students in the future. Students are required to be able to design learning media so that they can plan for an effective and efficient learning process. One thing applied in this lecture is to train students to be creative in designing instructional media by utilizing modern technology using social media Instagram. By applying physics learning media courses assisted by social media Instagram is expected to be effective in training students' creative thinking skills.

Figure 1 shows some of the learning media products produced by students in the experimental class. Students then periodically upload the product twice a week for 2 months. Before designing media, students first have a discussion to determine the theme, prepare material to be posted and then make it. After posting, they monitored the responses by the number of likes and comments they got. If there are comments about the substance like questions related to the material posted, they are required to answer it properly. In figure 2 is an example of their discussion.

From the process of preparation to uploading material on Instagram trained some of their creative thinking abilities such as fluent, flexible, original, and elaborate thinking skills. This indicates that students' creative thinking skills can be trained through the use of this learning media.
Tables 2 and 3 show that creative thinking skills between students in experimental class and control class were different. Students in the experimental class have a better creative thinking skill. These results are also in line with the responses of students who learning PLM assisted by Instagram in their class, they strongly agree with the application of physics learning media assisted by social media Instagram, because with it, students are able to be more creative especially in designing physics and creative learning media and solving problems related to learning media. Overall, students’ responses are in the “good” category.

4. Conclusion
Based on this research, it can be concluded that physics learning media course assisted by social media Instagram are declared effective on students’ creative thinking skills. These results are also in line with the response of students who are declared “good” towards learning PLM course assisted by social media Instagram.

References
[1] A. Pahrudin, Irwandani, E. Triyana, Y. Oktarisa, and C. Anwar 2019 The analysis of pre-service physics teachers in scientific literacy: Focus on the competence and knowledge aspects J. Pendidik. IPA Indones. 8 1 52–62
[2] B. Kamil, Y. Velina, and M. Kamelia 2019 Students’ Critical Thinking Skills in Islamic Schools: The Effect of Problem-Based Learning (PBL) Model Tadris J. Kegur. dan Ilmu Tarb. 4 1 77–85
[3] N. Khasanah, B. A. Prayitno, and A. Walid 2019 Critical Thinking Ability and Student ’ s Personal Religious Beliefs : An Analysis of DBUS Model Implementation Tadris J. Kegur. dan Ilmu Tarb. 4 1 41–49
[4] Y. Sartika and I. Wahyudi 2019 Using Guided Inquiry Learning with Tracker Application to
[1] I. Irwandi, S. Umarella, A. Rahmawati, M. Meriyati, and N. E. Susilowati 2019 Interactive Multimedia Lectora Inspire Based on Problem Based Learning: Development in the Optical Equipment J. Phys. Conf. Ser. 1155 1 0–11

[2] D. J. C. Tindowen, J. M. Bassig, and J. A. Cagurangan 2017 Twenty-First-Century Skills of Alternative Learning System Learners SAGE Open 7 3

[3] Y. Lan, I. Y. T. Hsiao, and M. Shih 2018 Effective Learning Design of Game-Based 3D Virtual Language Learning Environments for Special Education Students Educ. Technol. Soc. 21 3 213–227

[4] Rusmansyah, L. Yuanita, M. Ibrahim, Isnawati, and B. K. Prahani 2019 Innovative chemistry learning model: Improving the critical thinking skill and self-efficacy of pre-service chemistry teachers J. Technol. Sci. Educ. 9 1 59–76

[5] A. R. Saavedra and V. D. Opfer 2012 Learning 21st-century Skills Requires 21st-century Teaching Phi Delta Kappan 94 2 8–13

[6] A. Yusnitasari and W. Isnaeni 2020 Concept Mastery of Ethnoscience-Based Integrated Science and Life Skills Development of Elementary School Students J. Prim. Educ. 9 1 93–101

[7] D. Kokotsaki, V. Menzies, and A. Wiggins 2016 Project-based learning: A review of the literature Improv. Sch.19 3 267–277

[8] V. B. Gómez-Pablos, M. M. del Pozo, and A. G.-V. Muñoz-Repiso 2017 Project-based learning (PBL) through the incorporation of digital technologies: An evaluation based on the experience of serving teachers Comput. Human Behav. 68 501–512

[9] L. Dimira 2018 Sharpening 4C for Students in Vocational Higher Education Program Towards Industrial Revolution 4.0 Through Summer Camp in 2nd International Conference on Vocational Education and Training (ICOVET 2018) Sharpening 242 130–132.

[10] B. Trilling and C. Fadel, 21st Century Skills: Learning for Life in Our Times. John Wiley & Sons, 2009.

[11] T. Mayasari, A. Kadarohman, D. Rusdiana, and I. Kaniawati 2016 Apakah Model Pembelajaran Problem Based Learning dan Project Based Learning Mampu Melatihkan Keterampilan Abad 21? J. Pendidik. Fis. dan Keilmuan 21 1

[12] P. O. Irianto and L. Y. Febrianti 2017 Pentingnya Penguasaan Literasi Bagi Generasi Muda Dalam Menghadapi MEA in Proceedings Education and Language International Conference

[13] R. N. Hanoum 2014 Mengembangkan Keterampilan Berpikir Tingkat Tinggi Mahasiswa Melalui Media Sosial Eduotech 13 3 400–408

[14] S. Rosamsi, M. Marsyah, and R. H. Ristanto 2019 Interactive Multimedia Effectiveness in Improving Cell Concept Mastery J. Biol. Educ. 8 1 56–61

[15] D. Jamaluddin, M. A. Ramdhani, T. Priatna, and W. Darmalaksana 2019 Techno University to Increase the Quality of Islamic Higher Education in Indonesia Int. J. Civ. Eng. Technol. 10 1 1264–1273

[16] S. M. Ritter and S. Ferguson 2017 Happy Creativity: Listening to Happy Music Facilitates Divergent Thinking PLoS One 12 9

[17] W. Sarwinda 2013 Pemberdayaan Keterampilan Berpikir Kreatif Siswa Melalui Strategi Reciprocal Teaching pada Pembelajaran Biologi SMA Pros. Semin. Biol. 10 2

[18] L. Moma 2017 Pengembangan Kemampuan Berpikir Kreatif Dan Pemecahan Masalah Matematik Mahasiswa Melalui Metode Diskusi J. Cakrawala Pendidik. 36 1 130–139

[19] A. Sardeg et al. 2018 Temperature and heat learning through SSCS model with scaffolding: Impact on students’ critical thinking ability J. Educ. Gift. Young Sci. 6 3 39–52

[20] R. Klavir and S. Hershkovitz 2014 Teaching and Evaluating ‘Open - Ended’ Problems ResearchGate

[21] A. Setiawan, A. Malik, A. Suhandi, and A. Permanasari 2018 Effect of higher order thinking
laboratory on the improvement of critical and creative thinking skills in *IOP Conference Series: Materials Science and Engineering* **306** 012008

[26] N. Kutlu and M. Gökdere 2015 The effect of purdue model based science teaching on creative thinking *Int. J. Educ. Res.* **3** 3 589–599

[27] H. Y. Liu and C. C. Chang 2017 Effectiveness of 4Ps Creativity Teaching for College Students: A Systematic Review and Meta-Analysis *Creat. Educ.* **8** 06 857

[28] A. C. Yusro 2017 Pengembangan Perangkat Pembelajaran Fisika Berbasis SETS Untuk Meningkatkan Kemampuan Berpikir Kreatif Siswa *J. Pendidik. Fis. dan Keilmuan* **1** 2 61–66

[29] I. Irwandani 2016 Pengembangan Media Pembelajaran Berupa Komik Fisika Berbantuan Sosial Media Instagram sebagai Alternatif Pembelajaran *Tadris J. Kegur. dan Ilmu Tarb.* **1** 2 173–177

[30] A. Al-Bahrani and D. Patel 2015 Incorporating Twitter, Instagram, and Facebook in Economics Classrooms *J. Econ. Educ.* **46** 1 56–67

[31] I. Irwandani and S. Juariah 2016 Pengembangan Media Pembelajaran Berupa Komik Fisika Berbantuan Sosial Media Instagram Sebagai Alternatif Pembelajaran *J. Ilm. Pendidik. Fis. Al-BiRuNi* **05** 33–42

[32] J. R. Fraenkel and Wallen, *How to Design and Evaluate Research in Education*. New York: McGraw Hill, 2008.