On the existence of a rainbow 1-factor in proper coloring of $K_{rn}^{(r)}$

Xueliang Li1 and Zhixia Xu1,2,†

1Center for Combinatorics and LPMC-TJKLC, Nankai University, Tianjin 300071, P.R. China
2College of Mathematics and System Sciences, Xinjiang University, Urumuqi, 830046, P.R. China

Abstract

El-Zanati et al proved that for any 1-factorization \mathcal{F} of the complete uniform hypergraph $\mathcal{G} = K_{rn}^{(r)}$ with $r \geq 2$ and $n \geq 3$, there is a rainbow 1-factor. We generalize their result and show that in any proper coloring of the complete uniform hypergraph $\mathcal{G} = K_{rn}^{(r)}$ with $r \geq 2$ and $n \geq 3$, there is a rainbow 1-factor.

Keywords: edge-colored graph, rainbow 1-factor, rainbow matching

AMS Subject Classification 2000: 05C15, 05C35, 05C55, 05C70.

1 Introduction

A hypergraph $\mathcal{G} = (\mathcal{V}, \mathcal{E})$ consists of a finite set \mathcal{V} of vertices and a set \mathcal{E} of subsets of \mathcal{V} called edges. An edge subset \mathcal{E}' of disjoint edges of \mathcal{E} is called independent. A proper coloring of \mathcal{E} is a partition of \mathcal{E} into independent sets with each partition set is given a color, say $1, 2, \cdots, l$. For a given coloring of \mathcal{G}, a subhypergraph \mathcal{G}' is called rainbow if each edge of \mathcal{G}' has distinct color. A 1-factor of a hypergraph $(\mathcal{V}, \mathcal{E})$ is an independent edge set which partition

*Supported by NSFC, PCSIRT and the “973” program. Email: lxl@nankai.edu.cn (Xueliang Li); irisxuxx@gmail.com (Zhixia Xu). † corresponding author
A 1-factorization of $\mathcal{G} = \mathcal{G}(V, E)$ is a partition of E into 1-factors. For positive integers $r \geq 2$ and n, the complete r-uniform hypergraph on n vertices is the hypergraph $K_n^{(r)}$, with a vertex set V of order n and an edge set E consisting of all r-subsets of V. Note that $K_n^{(2)}$ is K_n, the simple complete graph of order n. In order for $K_n^{(r)}$ to contain a 1-factor, it is clearly necessary that r divides n. In 1973, Baranyai [1] showed that $K_n^{(r)}$ has a 1-factorization. Given a 1-factorization \mathcal{F} of $K_n^{(r)}$, $n \geq 3$, Woolbright in 1978 showed that there exists a 1-factor in $K_n^{(r)}$ whose edges belong to at least $n - 1$ different 1-factors of \mathcal{F}. In 1998, Woolbright and Fu [4] proved that for any 1-factorization of K_{2n} there is a rainbow 1-factor.

In [2], El-Zanati et al proved that for any 1-factorization \mathcal{F} of the complete uniform hypergraph $\mathcal{G} = K_n^{(r)}$ with $r \geq 2$ and $n \geq 3$, there is a rainbow 1-factor. It is clear that a 1-factorization is a very special case of proper colorings. In the present paper, we want to use a weaker condition, the proper coloring condition, to replace their stronger condition, the 1-factorization condition, and to generalize their result as follows: for any proper coloring of the complete uniform hypergraph $\mathcal{G} = K_n^{(r)}$ with $r \geq 2$ and $n \geq 3$, there is a rainbow 1-factor. To show the result, we divide the proof into three cases: $r = 2$ and $n \geq 3$, $r > 2$ and $n = 3$, $r > 2$ and $n > 3$. Notice that the proof of Theorem 3 for the case $r > 2$ in [2] can be used directly to show that for $r > 2, n > 3$ there is a rainbow 1-factor in any proper coloring of the complete uniform hypergraph $\mathcal{G} = K_n^{(r)}$. For the case $r > 2, n = 3$, we give a prove in Theorem 2.3. The substantial part of our proof is to show the result for the case $r = 2$ and $n \geq 3$, which will be given in Theorems 2.1 and 2.2. As a result we have

Theorem 1.1. For any proper coloring of the complete uniform hypergraph $\mathcal{G} = K_n^{(r)}$ with $r \geq 2$ and $n \geq 3$, there is a rainbow 1-factor.

2 Existence of a rainbow 1-factor in proper coloring of K_{2n} and $K_{3r}^{(r)}$

Let $G = (V, E)$ be a graph and C be a proper coloring of G. A rainbow matching of G is a matching whose edges have pairwise different colors. For $e \in E$, let $C(e)$ denote the color of e. For $v \in V$, let $C(v) = \{C(e) | e$ is incident with $v\}$. For any subset E' of E, let $C(E') = \{C(e) | e \in E'\}$ and $F(E') = C(E) - C(E')$.

Lemma 2.1. For any proper coloring of \(K_{2n} \), there is a rainbow perfect matching when \(n = 3 \) or \(n = 4 \).

Proof. For \(n = 3 \), let the vertices of \(K_6 \) be \(v_1, v_2, \cdots, v_6 \) and \(C \) be a proper coloring of \(K_6 \), let \(1, 2, \cdots, l \) be the colors used, we will show that there is a rainbow \(3K_2 \) in \(C \). Suppose 1 is the color that appears least times in \(C \) on \(E(K_6) \). If 1 appears on three edges, then \(C \) is a 1-factorization of \(K_6 \) and by the proof in [1], there is a rainbow 1-factor in \(C \). If 1 appears on two edges, say \(C(x_1x_2) = C(x_3x_4) = 1 \), assume that \(C(x_5x_1) = 2, C(x_5x_2) = 3, C(x_5x_3) = 4, C(x_5x_4) = 5 \), \(C(x_5x_6) = 6 \). Since \(\{x_5x_1, x_6x_2, x_3x_4\} \) is independent, to avoid the existence of rainbow perfect matching, it must be that \(C(x_6x_2) = 2 \). Similarly, \(\{x_5x_2, x_6x_1, x_3x_4\} \) is independent and \(C(x_6x_1) = 3 \); \(\{x_1x_2, x_5x_3, x_6x_4\} \) is independent and \(C(x_6x_4) = 4 \); \(\{x_1x_2, x_5x_4, x_6x_3\} \) is independent and \(C(x_6x_3) = 5 \). Now both \(\{x_5x_2, x_6x_3, x_1x_4\} \) and \(\{x_5x_3, x_6x_2, x_1x_4\} \) are independent, whatever color the edge \(x_1x_4 \) receives, we will have a rainbow perfect matching. If 1 appears only once in \(C \) and \(c(x_1x_2) = 1 \), to avoid the existence of rainbow perfect matching, there is no rainbow \(2K_2 \) in the subgraph induced by \(\{v_2, v_3, v_4, v_5\} \). The only such coloring is \(c(x_3x_4) = c(x_5x_6) = 2, c(x_3x_5) = c(x_4x_6) = 3, c(x_3x_6) = c(x_5x_4) = 4 \). Assume \(c(x_3x_1) = 5 \). Since both \(\{x_1x_3, x_5x_6, x_2x_4\} \) and \(\{x_1x_3, x_4x_6, x_2x_5\} \) are independent, we have \(C(x_2x_4) = 5 \) and \(C(x_2x_5) = 5 \), a contradiction. So in any proper coloring of \(K_6 \), there is a rainbow perfect matching.

For \(n = 4 \), let the vertices of \(K_8 \) be \(v_1, v_2, \cdots, v_8 \) and \(C \) be a proper coloring of \(K_8 \), we will show that there is a rainbow \(4K_2 \) in \(C \). Starting with any triangle, it is possible to find in \(C \) of \(G = K_8 \) at least two rainbow \(K_4 \), say \(G[\{v_1, v_2, v_3, v_4\}] \) and \(G[\{v_1, v_2, v_3, v_5\}] \) are both rainbow. If there is at least one rainbow \(2K_2 \) in \(G[\{v_5, v_6, v_7, v_8\}] \), since \(\{v_1v_2, v_3v_4\} \), \(\{v_1v_3, v_2v_4\} \) and \(\{v_1v_4, v_2v_3\} \) are all independent and each edge has a distinct color, we can find a rainbow \(4K_4 \) in \(C \). Similarly, there is no rainbow \(2K_2 \) in \(G[\{v_4, v_6, v_7, v_8\}] \). But it is impossible that both \(G[\{v_5, v_6, v_7, v_8\}] \) and \(G[\{v_4, v_6, v_7, v_8\}] \) have no rainbow \(2K_2 \), and the proof is complete. \(\square\)

Theorem 2.2. For \(n \geq 3 \), any proper coloring of \(K_{2n} \) contains a rainbow perfect matching.
Proof. By Lemma 1, we can assume \(n \geq 5 \). Let \(C \) be any proper coloring of \(K_{2n} \) with the colors named 1, 2, \(\cdots \), \(l \), \(l \geq 2n - 1 \). Let \(\mathcal{M} \) be any maximal rainbow matching with \(|\mathcal{M}| = k \). Suppose \(k < n \), we will show that there must be a rainbow matching with \(k + 1 \) edges. Recall that \(C(\mathcal{M}) \) denotes the set of colors of \(\mathcal{M} \) and \(F(\mathcal{M}) \) denotes the complementary set of colors. Let \(s, t \) be two unmatched vertices. We may assume that \(C(\mathcal{M}) = \{1, 2, \cdots, k\} \) and \(C(st) = 1 \). Note that by maximality of \(\mathcal{M} \), any edge incident with \(s \) whose color is in \(F(\mathcal{M}) \) must be incident with an edge of \(\mathcal{M} \).

Let \(C(s) = C_1 \cup C_2 \) with \(C_1 \subseteq C(\mathcal{M}) \), \(C_2 \subseteq F(\mathcal{M}) \), \(|C_1| = p \leq k \), \(|C_2| = 2n - 1 - p \). Consider all the \((s, t)\)-paths of length three, whose first edge is colored with a color \(\alpha \) in \(F(\mathcal{M}) \), and the second edge is in \(\mathcal{M} \); we call them the candidate 3-paths relative to \(\mathcal{M} \). We can assume that each of these paths has its third edge colored with a color either in \(C(\mathcal{M}) - \{1\} \), or the color \(\alpha \) again, for otherwise we could augment \(\mathcal{M} \) to \(k + 1 \) edges simply by deleting the second edge of the path from it and adding the first and third edges. There are \(2n - 1 - p \) of these candidate paths and only \(k - 1 \) colors in \(C(\mathcal{M}) - \{1\} \). So it follows that at least \(2n - p - k \) of these paths have the first and third edges colored with the same color in \(F(\mathcal{M}) \); we call such paths \(\mathcal{M} \)-symmetric \((s, t)\)-paths.

Let \(C(t) = C'_1 \cup C'_2 \) with \(C'_1 \subseteq C(\mathcal{M}) \), \(C'_2 \subseteq F(\mathcal{M}) \), \(|C'_1| = q \leq k \), \(|C'_2| = 2n - 1 - q \). Consider the \(2n - 1 - q \) edges incident with \(t \) whose colors are in \(F(\mathcal{M}) \). Each of these edges must be incident with an edge of \(\mathcal{M} \), by the maximality of \(\mathcal{M} \); at most 2 of them, say the ones colored \(k + 1 \) and \(k + 2 \), are incident with the edge of \(\mathcal{M} \) colored 1. Now let \(L = C(t) \setminus (C(\mathcal{M}) \cup \{k+1, k+2\}) \) and \(|L| = 2n - q - 3 \).

For each color \(i \in L \), we define a slight variation of the \((\mathcal{M}, st)\) pair. If the edge of color \(i \) incident with vertex \(t \) is \(e_t = \{t, z_i\} \) of \(\mathcal{M} \), we let the corresponding matching be \(\mathcal{M}_i = (\mathcal{M} - \{e_i\}) \cup \{e_t\} \); now \(t_i \) is unmatched (in \(\mathcal{M}_i \)), and we let our starting/ending vertex pair be \(s, t_i \), respectively. Note that \(F(\mathcal{M}_i) = (F(\mathcal{M}) - i) \cup \{C(e_i)\} \). Also note that \(C(e_i) \neq 1 \), because \(i \) is neither \(k + 1 \) or \(k + 2 \).

As in the previous discussion, for each such \(i \), there are \(2n - 1 - p \) candidate 3-paths relative to \(\mathcal{M}_i \), starting at \(s \), ending at \(t_i \), whose first edge is colored with a color in \(F(\mathcal{M}_i) \), and whose second edge is in \(\mathcal{M}_i \). Again, we assume that at least \(2n - p - k \) of these paths are symmetric. Thus, listing the symmetric
paths for \(i \in L \), we get a total of at least \((2n - q - 3)(2n - p - k)\) paths in the list of symmetric candidate paths. However, because in each of these symmetric paths either the middle edge is in \(M \), or the path has the form \(sz_i t_i \), and therefore has the same first and third edges as \(sz_i t_i \), each of the symmetric candidate paths is uniquely determined by its first edge. Moreover, the color \(\alpha \) of the starting/ending edge in these symmetric paths cannot be \(c(e_i) = c(\{z_i, t_i\}) \) (the only possible such path has vertex sequence \(sz_i t_i \), which is not symmetric because \(c(e_i) \neq 1 \)), so \(\alpha \) must be in \(C_2 \). Therefore, each of the possible starting color can only start one path in the list. It follows that \(2n - p - 1 \geq (2n - q - 3)(2n - p - k) \). Let \(x = 2n - p \), \(y = 2n - q \), then \(x - 1 \geq (y - 3)(x - k) \), and \(x(y - 4) < k(y - 3) \). Since \(q \leq k < n \), \(y = 2n - q = n + n - q \geq n + n - k > n \), \(y > 4 \). Then we have \(\frac{x}{k} < \frac{y - 3}{y - 4} \) and \(x < k \), that is \(p + k > 2n \), which is contrary to \(p \leq k < n \).

We conclude that there must be a rainbow matching with \(k + 1 \) edges, and so the result follows. \(\square \)

For the case \(n = 3 \), it is easy to see that in any 1-factorization of \(K_{3r}^{(r)} \) there is a rainbow 1-factor, and the proof was omitted in [2]. But in a proper coloring, the proof is not straightforward, and we prefer to give the details in the following.

Theorem 2.3. For \(r \geq 2 \), any proper coloring of \(K_{3r}^{(r)} \) contains a rainbow perfect matching.

Proof. Let the vertex set of \(K_{3r}^{(r)} \) be \(V = \{x_1, x_2, \cdots, x_{3r}\} \) and \(C \) be a proper coloring of \(K_{3r}^{(r)} \). Take any two independent edges having a same color 1, say \(m_1 = \{x_1, x_2, \cdots, x_r\} \) and \(m_2 = \{x_{r+1}, x_{r+2}, \cdots, x_{2r}\} \). Then for any edge \(m^1 \subset V - m_1 \) other than \(m_2 \) and \(m^{1*} = V - (m_1 \cup m^1) \), \(m^1 \) and \(m^{1*} \) have the same color and there is no other edge in this color, otherwise \(\{m_1, m^1, m^{1*}\} \) is a rainbow 1-factor. Similarly, for any edge \(m_2 \subset V - m_2 \) other than \(m_1 \) and \(m^{2*} = V - (m_2 \cup m^2) \), \(m^2 \) and \(m^{2*} \) have the same color and there is no other edge in this color. Let \(m^1 = \{x_{r+1}, x_{r+2}, \cdots, x_{2r-1}, x_{2r+1}\} \), \(m^2 = \{x_1, x_{2r+2}, x_{2r+3}, \cdots, x_{3r}\} \), then \(\{m^1, m^2, \{x_2, x_3, \cdots, x_r, x_{2r}\}\} \) is a rainbow 1-factor. \(\square \)
References

[1] Zs. Baranyai, On the factorization of the complete uniform hypergraph, In: Infinite and finite sets I Colloq Math Soc János Bolyai 10, North-Holland, Amsterdam, 1975, pp.91-108.

[2] S.I. El-Zanati, M.J. Plantholt, P.A. Sissokho and L.E. Spence, On the existence of rainbow 1-factor in 1-factorizations of $K_{rn}^{(r)}$, J. Combin. Des. 2007.

[3] D.E. Woolbright, On the size of partial 1-factor of 1-factorization of the complete k-uniform hypergraph on kn vertices, Ars Combin. 6(1978), 185-192.

[4] D.E. Woolbright and H.L. Fu, On the existence of rainbows in 1-factorizations of K_{2n}, J. Combin. Des. 6(1998), 1-20.