Supporting Information

Computational Study on the Boundary Between the Concerted and Stepwise Mechanism of Bimolecular S_NAr Reactions

Simon Rohrbach, John A. Murphy* and Tell Tuttle*
*John.Murphy@strath.ac.uk
*tell.tuttle@strath.ac.uk
Table of Contents

1. Experimental Procedures 3
 1.1. Software 3
 1.2. Methods 3
 1.3. The Applied σ_p^{-} Scale 3
 1.4. General Procedure 3

2. Results 4
 2.1. Computational Model 4
 Benchmarking DFT Functionals 4
 Validating the Procedure 7
 Comparison to Experiments 8
 2.2. Initial Studies 10
 2.3. Counter-Cation and Explicit Solvent Effects 11
 2.4. Effect of the Nucleophile 12
 The SN(ET)Ar Pathway as an Alternative to the Bimolecular S_nAr Pathway 13
 Additional Reactions of Aryl Fluorides and Various Nucleophiles 15
 Potential Deprotonation of 2-Pyridyl Substrates by Potassium Methoxide 15
 Steric Effects 16
 2.5. Effect of the Aryl Fluoride Electrophile 17
 2.6. S_nAr Mechanism and the Hammett Correlation 17
 2.7. Predicting the S_nAr Mechanism of Substrates with a Simple Descriptor 22

3. Log File Archive 25
 3.1. Computational Model 25
 Benchmarking DFT Functionals 25
 Validating the Procedure 30
 Comparison to Experiments 30
 3.2. Initial Studies 32
 3.3. Counter-Cation and Explicit Solvent Effects 37
 3.4. Effect of the Nucleophile 41
 Steric Effects 47
 3.5. Effect of the Aryl Fluoride Electrophile 49
 3.6. S_nAr Mechanism and the Hammett Correlation 57

4. References 58
1. Experimental Procedures

1.1. Software

The software used was Gaussian09\(^1\) (both Revisions A.02 or D.01 were used) in combination with GaussView 5.0.9\(^2\) for all calculations.

1.2. Methods

The DFT methods employed the functional as specified in combination with Pople triple-ζ basis set 6-311++G(d,p)\(^3-6\) for all atoms up to the atomic number \(Z=18\). For larger atoms (these mainly applied to counter cations \(K^+\), \(Rb^+\) and \(Cs^+\) and the halogen atoms bromine and iodine) the appropriate MWB relativistic pseudo-potential and associated basis set was used.\(^7\) Solvation effects were accounted for by the solvent reaction field method using the conductor-like polarisable continuum model (CPCM) unless mentioned otherwise.\(^8,9\)

1.3. The Applied \(\sigma_p^-\) Scale

The \(\sigma_p^-\) values were taken from the landmark review by Hansch et al.\(^10\) A selection of para-substituents and their associated \(\sigma_p^-\) constants that are used in this chapter are listed in Table SI-1-1 below. The less commonly encountered structures are drawn out next to the table.

Table SI-1-1 \(\sigma_p^-\) Values

Entry	para-Substituent -R	\(\sigma_p^-\)
1	-NO	1.63
2	-NO\(_2\)	1.27
3	-CHC(CN)\(_2\)	1.20
4	-COCF\(_3\)	1.09
5	-CN	1.00
6	-COMe	0.84
7	-CO\(_2\)Me	0.75
8	-CF\(_3\)	0.65
9	-CCH	0.53
10	-NCS	0.34
11	-Cl	0.19
12	-H	0.00
13	-Me	-0.17
14	-OMe	-0.26
15	-NHAc	-0.46
16	-NP(Ph)\(_3\)	-0.77

1.4. General Procedure

For all S\(_N\)Ar reactions reported in this chapter the rate limiting transition state ('TS1') was optimised. The transition state geometry was then displaced by 0.05 units along the imaginary vibration mode in both directions. The geometries obtained in this way served as input structure for the optimisation (keyword: opt=calcfc) towards the substrate complex ('SC') and the product complex ('PC') or Meisenheimer intermediate ('MI'), respectively. Based on whether the optimisation converged directly to the product complex or to a Meisenheimer intermediate the example was classified as concerted or as stepwise, respectively. This procedure was validated as detailed in Section 2.1. If a Meisenheimer intermediate was found, the second transition state ('TS2') leading to the final product was identified for representative examples as specified.
2. Results

In this chapter a detailed description is given of how the results discussed in the paper were obtained. Further, additional results are presented and discussed. The log files can be found in the accompanying archive under DOI: 10.15129/254ecae8-9c72-4bb9-9319-b16eada94f9c. To help efficiently retrieve a file of interest, a list of all log files is given in Chapter 3. The structure of Chapter 3 mirrors the structure of this chapter.

2.1. Computational Model

Benchmarking DFT Functionals

All log files of the calculations presented in this section are listed in Table SI-3-1 (page 25).

The computational model was chosen and validated by comparing the performance of a variety of DFT functionals against the results of a high-level wavefunction-based method for a test-set of S_NAr reactions. A satisfactorily well performing functional was identified for the further study of S_NAr reaction mechanisms.

The S_NAr reaction shown in Figure SI-1 was used as a test case to identify a DFT functional that would predict the mechanistic turning point on the Hammett σ_p scale reliably (Figure 4-2). To establish a benchmark result the energy profiles of the four model reactions were calculated with the second-order Møller-Plesset perturbation theory method MP2. MP2 is a wave-function based method and was the most reliable method that was affordable in terms of computational resources (memory requirements and time) for the studied system (number of atoms, electrons, and size of the basis set). The method predicted a sharp turning point for the S_NAr mechanism from stepwise to concerted with $\tau_p = 0.92 \pm 0.08$. Importantly, the result was the same if either basis set, 6-311++G(d,p) or aug-cc-pVTZ, was used.

A number of DFT functionals was then applied to the same S_NAr model reactions. For all DFT calculations the 6-311++G(d,p) basis set was used. In Figure 4-2 the DFT functionals were clustered into four groups: hybrid functionals based on Becke’s three parameter and/or Lee-Yang-Parr functional, members from the Minnesota family, representatives of the Perdew-Burke-Ernzerhof functional class, and methods derived from Becke’s B97 functional.

None of the tested DFT methods was able to reproduce the MP2 result exactly and to predict the same mechanistic turning point. Most functionals, however, gave a result that was satisfactorily close to the MP2 result. Three functionals predicted a mechanistic turning point that was two increments or more ($\Delta\tau_p \geq 0.22$) away from the MP2 turning point. Importantly, from the investigated functionals, the widely used functional B3LYP with D3-dispersion correction - B3LYP-D3(BJ), as used, for example, by Jacobsen et al.\cite{11} - and the M06-2X functionals were among the worst-performing ones.

Four functionals were not able to predict the mechanistic turning point as sharply as the MP2 method, i.e. they produced an alternating pattern of concerted and stepwise mechanisms as the electronic nature of the para-substituent changes. These were the BHandHLYP, M06, PBE0-D3(BJ) and ωB97 functionals. These were consequently ruled out as suitable functionals for the following study.

As an additional measure of the performance of the DFT functionals, their ability to correctly reproduce

Is there a stable intermediate on the reaction pathway?

Figure SI-1 Four S_NAr reactions ($R = $-COCF$_3$, -CN, -COMe, -CO$_2$Me) were selected to benchmark DFT functionals against the results obtained with a high-level wave-function based method.
The mechanistic transition point on the Hammett σ_p^- scale was calculated with a number of different methods in order to identify a suitable DFT functional. For all tested methods, the 6-311++G(d,p) basis set and cpcm solvent model for DMF was used, unless mentioned otherwise. ‘s’ stands for ‘stepwise $S_{\text{N}}Ar$ mechanism’, ‘c’ stands for ‘concerted $S_{\text{N}}Ar$ mechanism’. [a] The aug-cc-pVTZ basis set was used.

If a stable intermediate can be located, the reaction is classified as stepwise and otherwise as concerted.

The activation energy of the rate limiting step was investigated. As reference values, the MP2/aug-cc-pVTZ results were taken. The results are shown in Figure SI-3 and Table SI-2-1. The MP2 method with the smaller 6-311++G(d,p) basis set still gave a result that is reasonably close to the MP2/aug-cc-pVTZ result. The B3 and LYP-based assembly of functionals in general seriously overestimated the activation energy. Only when dispersion correction was included [B3LYP-D3(BJ)] was a close reproduction of the MP2 reference results achieved. The members of the Minnesota functional family all underestimated the activation energy. The M06-2X functional showed a standard deviation close to 2 kcal/mol, while the range-separated hybrid functional M11 showed a standard deviation of less than 1 kcal/mol. The functionals in the PBE0 and B97 group all showed good to excellent performance.

In conclusion, from the nine DFT functionals that were found to predict the mechanistic turning point τ satisfactorily well (see Figure SI-2), four also gave a good prediction of the rate limiting energy barrier with a standard deviation of < 2 kcal/mol. Overall, the M11 and ωB97XD functionals were the two top-runners and the more modern M11 functional was selected for the further study.

Figure SI-2 The mechanistic transition point on the Hammett σ_p^- scale was calculated with a number of different methods in order to identify a suitable DFT functional. For all tested methods, the 6-311++G(d,p) basis set and cpcm solvent model for DMF was used, unless mentioned otherwise. ‘s’ stands for ‘stepwise $S_{\text{N}}Ar$ mechanism’, ‘c’ stands for ‘concerted $S_{\text{N}}Ar$ mechanism’. [a] The aug-cc-pVTZ basis set was used.
The activation energy of the rate limiting step of the S_nAr reaction from Figure SI-2 has been calculated by different DFT methods. For all tested methods the 6-311++G(d,p) basis set and cpcm solvent model for DMF was used. The deviation of these results from the MP2/aug-cc-pVTZ reference calculation is shown.

Table SI-2-1 Statistical Evaluation of the Functional Performance

Method	STD	MSD	MAD	Absolute Max. Deviation
ωB97XD	0.74	0.64	0.64	1.09
M11	0.96	-0.85	0.85	1.49
ωB97	1.11	1.00	1.00	1.56
MP2*	1.17	0.53	1.02	1.89
HSE1PBE	1.31	0.85	0.85	2.55
PBE0-D3(BJ)	1.58	-1.53	1.53	2.04
B3LYP-D3(BJ)	1.59	-1.38	1.38	2.19
B97D	1.67	-1.59	1.59	2.31
PBE0	1.75	1.46	1.46	3.05
ωB97X	1.97	1.87	1.87	2.78
M06-2X	2.03	-1.93	1.93	2.63
M06	2.52	-2.48	2.48	3.01
M06L	3.09	-2.99	2.99	4.13
B3LYP	4.41	4.35	4.35	5.15
CAM-B3LYP	4.53	4.50	4.50	5.29
B3PW91	5.64	5.61	5.61	6.15
BHandHLYP	7.25	7.23	7.23	8.10

The table gives a more detailed analysis of the results shown Figure SI-3 in STD: standard deviation; MSD: mean signed deviation; MAD: mean absolute deviation. The functionals are colour-coded according to their ability to predict the mechanistic turning point τ satisfactorily (see Figure SI-2). [a] The same basis set - 6-311++G(d,p) - was used as for the DFT methods.
Validating the Procedure

The log files of the calculations presented in this section are included in Table SI-3-1 (page 25).

The method to test for the presence of a Meisenheimer intermediate so far was to start an optimisation from the transition state geometry that was slightly distorted along the imaginary mode. The optimisation can either converge to a Meisenheimer intermediate or directly to the product complex. Although experience showed that this method is able to detect very shallow local minima on the potential energy surface, it was necessary to establish its validity for the situation at hand. The question of particular concern was whether this method might fail to detect very fleeting Meisenheimer intermediates.

The mechanistic classification based on the M11 functional from Figure SI-2 was expanded by one example and validated by internal reaction coordinate (IRC) scans (Table SI-2-2). For the three reactions that were found to follow a concerted mechanism, the second transition state (elimination of the fluoride leaving group) was identified. IRC scans were performed starting from the rate limiting transition states. For the stepwise reaction with \(-R = -\text{COF}_3\) the IRC scan identified the Meisenheimer intermediate as a local minimum on the potential energy surface. This is in accordance with the initial classification of this example as a stepwise S_NAr reaction. Also, for the three concerted reactions where no intermediate was detected during the optimisation of the transition state structure towards the product complex, an IRC scan was performed. In the case of the reaction with \(-R = -\text{CN}\) and \(-R = -\text{COMe}\), the IRC scan located an intermediate that apparently corresponds to a Meisenheimer intermediate. A frequency calculation identified the intermediate structure for the \(-R = -\text{CN}\) example as a true minimum. This was not the case for the structure with \(-R = -\text{COMe}\) (imaginary modes were found in the frequency calculation). Any attempt to identify a transition state for the expulsion of the fluoride leaving group from these two hypothetical intermediate structures failed. Bond scans were performed with a step size of 0.00125 Å to search for a candidate structure for the transition state, but no maxima along the expected reaction coordinate were found in either case. Hence,

\(-R\)	σ_p	Mechanism\[^a^\]	Int1\[^b^\]	IRC\[^c^\]	TS2\[^d^\] (kcal/mol)
\(-\text{NO}_2\)	1.27	stepwise	yes	-	1.61
\(-\text{CHC(CN)}_2\)	1.20	stepwise	yes	-	3.01
\(-\text{COF}_3\)	1.09	stepwise	yes	MI	1.37
\(-\text{CN}\)	1.00	concerted	no	MI	not found\[^e^\]
\(-\text{COMe}\)	0.84	concerted	no	(MI)\[^f^\]	not found\[^f^\]
\(-\text{CO}_2\text{Me}\)	0.75	concerted	no	PC	-

[^a^]: As classified in Figure SI-2.
[^b^]: The result is ‘yes’ if the optimisation from the transition state structure converged to a Meisenheimer intermediate and ‘no’ if it converged directly to the product complex.
[^c^]: An internal reaction coordinate (IRC) scan was performed, starting from the rate limiting transition state TS1 in forward and reverse direction, until a stationary point was found. The result is ‘MI’ if a stationary point was found that corresponds to a Meisenheimer intermediate and ‘PC’ if the scan ran in the forward direction directly to the product complex.
[^d^]: The energy barrier of the second transition state is given relative to the Meisenheimer intermediate.
[^e^]: Imaginary modes were found in a frequency calculation for the stationary point structure identified by the IRC.
[^f^]: Bond scans were performed with a step size of 0.00125 Å to search for a candidate structure for the transition state, but no maxima along the expected reaction coordinate were found.
the stationary points found by the IRC scan for these two examples are better described as inflection points rather than as true local minima on the potential energy surface. For the example with \(-R = -\text{CO}_2\text{Me}\), the result from the IRC scan is in agreement with the initial classification of the reaction.

It can be concluded that the approach of optimising a transition state geometry towards the product complex is a sufficiently sensitive method for finding Meisenheimer intermediates. The method has the advantage over IRC scans that it is computationally more effective and does not falsely classify very flat regions on the potential energy surface as intermediates. Indeed, the results from the IRC scans demonstrated that the potential energy surface of \(S\text{N}_\text{Ar}\) reactions close to the mechanistic turning point is - not surprisingly - very flat.

Comparison to Experiments

All log files of the calculations presented in this section are listed in Table SI-3-2 (page 30).

In addition to benchmarking the DFT functionals against the results from high-level ab initio calculations (i.e. the MP2 results), their predictions were compared with experimental data. First, the activation energy as calculated by the M11/6-311++G(d,p)/cpcm method was compared to the activation energy measured experimentally for one example\(^{[12,10]}\) (Scheme SI-1). The predicted activation energy deviated by only 1 kcal/mol from the experimental\(^{[12]}\) value. Similarly, we calculated the activation energy of the \(S\text{N}_\text{Ar}\) reaction between potassium methoxide and \(\text{para}\)-methoxyfluorobenzene (Scheme SI-2).\(^{[12,10]}\) The activation energy found of 25.4 kcal/mol appears to be in agreement with the finding that the reaction required elevated temperatures to proceed efficiently.\(^{[12,10]}\) These results give additional confidence in the DFT method. However, it is not the accurate determination of barrier heights that is crucial for the study ahead, but the correct prediction of the existence or absence of a Meisenheimer intermediate in the reaction pathway.

There is very limited purely experimental - and at the same time convincing - evidence for concerted \(S\text{N}_\text{Ar}\) mechanisms in the literature. Williams et al. made the most substantial contribution to the field in this respect.\(^{[13-16]}\) Therefore it was an obvious step to calculate energy profiles for some of the reactions, which Williams et al. suggested to proceed via a concerted mechanism. The displacement of phenolates 15 from a triazine-derivative 11 with amine nucleophiles 12\(^{[15]}\) was chosen as a reference case (Table SI-2-3). In apparent contradiction to the claim of these reactions to be concerted\(^{[15]}\), a Meisenheimer intermediate was identified for all examined cases. The energy of the Meisenheimer intermediate (MI) is given with respect to the substrate complex formed between 11 and 12. The transition state energies are given with respect to the Meisenheimer intermediate and are of major concern for the following discussion.

Scheme SI-1

Comparison of predicted and measured activation energy. The mechanism was found to be stepwise. Level of theory: M11/6-311++G(d,p)/cpcm(DMF).

Scheme SI-2

Computation of the activation energy for another literature \(S\text{N}_\text{Ar}\) reaction. Level of theory: M11/6-311++G(d,p)/cpcm(DMF).
The reaction was performed in an aqueous solvent system of water-dioxane 9:1. There are no parameters available to model this solvent system directly. As a reasonable approximation, the solvent model for water was chosen in the calculation.

The displacement of phenolate 15a with DMAP as the nucleophile showed a kinetically very short-lived Meisenheimer intermediate 13a (Entry 1). The relative barrier for the expulsion of the phenolate leaving group 15a equals 1.15 kcal/mol. To assess the effect of explicit solvation, four water molecules were included in the calculation of the energy profile of this reaction (Entry 2). The effect of these additional molecules on the energy profile was moderate. The relative energy of the Meisenheimer intermediate slightly increased. Also, the intermediate became slightly more stable with an energy barrier for the expulsion of the leaving group 15a being 2.24 kcal/mol instead of 1.15 kcal/mol. This result shows that explicit solvation does not have a critical effect on the energy profile of this reaction.

Only moderate changes in the energy profile were observed with the two other phenolate leaving groups 15b and 15c (Entries 3 and 4). When going from DMAP to the morpholine nucleophile, the rate limiting step changed from the addition of the nucleophile (TS1) to the expulsion of the leaving group (TS2) (Entries 5 and 6). Still, the kinetic stability of the Meisenheimer intermediate was very low. The energy barrier is less than 2 kcal/mol for the decay of this intermediate to the substrate complex.

Table SI-2-3 Energy profiles for S_N_Ar reactions where experimental evidence suggests a concerted mechanism.^[a]

Entry	Nu	Ar	TS1 w.r.t. MI (kcal/mol)^[b]	MI w.r.t. MI (kcal/mol)^[c]	TS2 w.r.t. MI (kcal/mol)^[b]
1	DMAP	a	1.90	14.5	1.15
2	DMAP^[d]	a	2.85	16.6	2.24
3	DMAP	b	2.19	15.0	1.89
4	DMAP	c	4.06	12.3	0.25
5	Morpholine^[d]	a	1.31	11.7	6.38
6	Morpholine^[d]	a	1.95	11.0	5.05

[a] Level of theory: M11/6-311++G(d,p)/cpcm(H_2O).
[b] Measured with respect to the Meisenheimer intermediate.
[c] Measured with respect to the substrate complex.
[d] Four explicit molecules of water were included in the calculation.
[e] The energy profiles with two different attack angles of the nucleophile were modelled for the same reaction.
The computational results stand in apparent contradiction to the interpretation of the kinetic studies that were performed by Williams et al. for this class of S_NAr reactions.[15] Closer inspection of the computational results showed, however, that in the majority of cases the relative stability of the Meisenheimer intermediate is lower than 2 kcal/mol - thus below the typically accepted threshold of chemical accuracy.[17] In that sense, the computational results support the interpretation of Williams' kinetic data. Following conventional experimental approaches, these S_NAr reactions appear to proceed via a concerted mechanism. With computational tools, however, it is possible to detect much shallower minima on the potential energy surface than with conventional experiments. Thereby, a reaction that appears to be concerted in the experiment can correctly be revealed to exhibit fleeting intermediates along its path.

2.2. Initial Studies

To gain a broad overview of the two mechanistic domains, three classes of S_NAr reactions were investigated. These are the halide displacement with potassium methoxide (Figure 1 in the main text), halide-halide exchange reactions (Table SI-2-4) and the analogous chalcogen-chalcogen exchange reactions (Table SI-2-5). The log files of these calculations can be found in Table SI-3-4 (page 32), Table SI-3-5 (page 34), and Table SI-3-6 (page 35), respectively.

In the halide displacement with potassium methoxide in Figure 1, only for the fluoride series was the mechanistic turning point identified, with $\tau_p^- = 1.05$. For the displacement of chloride, bromide and iodide the mechanistic turning point could not be identified. These reactions all showed a concerted energy profile even with the most electron-withdrawing \textit{para}-nitroso substituent that was included in the σ_p^- scale.

A similar picture was obtained for the halide exchange reactions (Table SI-2-4). Only for the fluoride identity reaction was a mechanistic turning point identified ($\tau_p^- = 0.59$). For all other combinations of halides, a concerted energy profile was observed even for the examples with the \textit{para}-nitroso substituent. Obviously the mechanistic turning point for these reaction series lies beyond the applied σ_p^- scale.

An analogous study to the halide exchange reactions was performed for the chalcogenide exchange reactions (Table SI-2-5). The nucleophilic displacement of the chalcogen residue in the substrate 20 by the potassium chalcogenide nucleophile 21 served as a model system. In contrast to the halide exchange reaction, the mechanistic turning point for most of the chalcogen exchange reactions actually fell onto the applied σ_p^- scale. Clearly, the chalcogen-chalcogen exchange reactions have a much more pronounced tendency to proceed via a stepwise mechanism. In fact, the identity reaction of methoxide proceeded via

KY	-X	-F	-Cl	-Br	-I
KF	0.59[a]	>1.63[b]	>1.63	>1.63	
KCl	>1.63	>1.63	>1.63	>1.63	
KBr	>1.63	>1.63	>1.63		
KI					>1.63

[a] The S_NAr reaction mechanism changes from stepwise to concerted when going from the \textit{para}-substituent -CF$_3$ ($\sigma_p^- = 0.65$) to -CCH ($\sigma_p^- = 0.53$).

[b] The \textit{para}-nitroso substituent marks the upper limit ($\sigma_p^- = 1.63$) of the applied σ_p^- scale.
a Meisenheimer intermediate even for the most electron-donating para-substituent that was investigated. With increasing atomic number of the chalcogens, the identity reaction showed a decreased tendency to proceed via a stepwise S\textsubscript{N}Ar reaction (i.e. the value of τ^- increases from <-0.77 for methoxide, to 0.31 for methanethiolate, to 0.70 for methaneselenolate). Likewise, the tendency of the displacement reaction of a methane chalcogenide by potassium methoxide to follow a stepwise mechanism decreases with increasing atomic number of the displaced chalcogenide (i.e. the value of τ^- increases from <-0.77 for methoxide, to 0.27 for methanethiolate, to 0.64 for methaneselenolate).

Clearly, a concerted mechanism is favoured for the chalcogen exchange reaction by the participation of larger (i.e. softer) chalcogens. The analogous statement holds true for the halide exchange reaction. The halides chloride, bromide and iodide all strongly favour a concerted mechanism, either in the halide exchange reaction or in an exchange reaction with potassium methoxide. Only for the S\textsubscript{N}Ar reactions involving fluoride was a stepwise energy profile found to have significant importance.

2.3. Counter-Cation and Explicit Solvent Effects

The ability of the alkali counter cation to coordinate to the leaving fluoride anion can have an effect on the mechanistic turning point as became apparent from Figure 2 in the main text and the corresponding discussion. The log files of these calculations are listed in Table SI-3-7 (page 37). In order to refine the understanding of coordination effects, explicit solvent molecules were added to the computational model as ligands of the alkali metal cation (Figure SI-4). It was assumed that the ability of the counter cation to coordinate the fluoride leaving group may decrease if its coordination sphere gets increasingly saturated with other ligands. It was found that the addition of one explicit solvent molecule in the model system did not evoke any shift in τ^-. The addition of a second molecule of DMF led to a significant blurring of the mechanistic turning point, which manifests in an increase of $\Delta\sigma^-$ from 0.05 to 0.22. Also, the value τ^- decreased slightly by 0.18 units. However, since the mechanistic turning point is no longer sharp, it is not clear whether this decrease of τ^- is actually significant. The log files of these calculations are listed in Table SI-3-8 (page 40).

Overall, including explicit solvent molecules did not produce a dramatically different prediction of the mechanistic turning point. A similar observation has already been made previously (Table SI-2-3 Entry 1 vs 2). Hence, relatively weakly coordinating ligands of the alkali metal cation do not seem to have a significant effect on the mechanistic turning point τ^-. This result also has practical implications. It suggests that relying on the implicit solvation model alone is a reasonable - and computationally much more effective - approximation.

τ^- values for the chalcogen-chalcogen exchange reactions	\(\text{KYMe}^{-}\text{XMe}^{-}\)	\(\text{KYMe}^{-}\text{OMe}^{-}\)	\(\text{KYMe}^{-}\text{SMe}^{-}\)	\(\text{KYMe}^{-}\text{SeMe}^{-}\)
KOMe	<-0.77[a]	0.27	0.64	
KSMe	0.31	0.92		
KSeMe		0.70		

[a] The para-triphenylphosphinimine [-NP(Ph)\textsubscript{3}] substituent marks the lower limit ($\sigma^p = -0.77$) of the applied σ^p-scale.

Table SI-2-5 Chalcogen Exchange Reactions

![Chemical structure](Image)
2.4. Effect of the Nucleophile

In Figure 3 in the main text it became apparent that the series of $S_{N}Ar$ reactions with nucleophile $2e-K$

![Diagram showing $S_{N}Ar$ reaction between $R-F$ and $K-OMe$ leading to $R-OMe$ and $K-F$.]

Figure SI-5 Transition state for the $S_{N}Ar$ reaction between 580 ($R = NO_2$) and the nucleophile $601e$. Level of theory: M11/6-311++G(d,p)/cpcm(DMF).
favours a concerted mechanism more ($\tau_p = 1.36$) than the other investigated reaction series ($\tau_p = 1.05$). The log files of these calculations are listed in Table SI-3-9 (page 41). Closer inspection of the geometries of the rate limiting transition states including nucleophile $2e-K$ showed that steric repulsion may be at the heart of this pronounced tendency to follow a concerted mechanism (Figure SI-5). One of the hydrogen atoms of the phenyl group of the nucleophile approaches the plane of the aromatic system of $1a-R-F$ (here shown for $R = NO_2$) as closely as 2.3 Å in the transition state. This steric clash makes a Meisenheimer intermediate less energetically favourable and pushes the reaction towards a concerted pathway.

The SN(ET)Ar Pathway as an Alternative to the Bimolecular S$_N$Ar Pathway

During the reviewing process it was pointed out that the highly activated substrates $1a-R-F$ with $R = NO$, NO$_2$ and CHC(CN)$_2$ may react with the nucleophiles $2b-K$, $2d-K$, $2e-K$ and $2f-K$ alternatively via an SN(ET)Ar process. Along this reaction coordinate, first an electron would be transferred from the nucleophile to the electrophile in a single electron transfer (SET) step. In order to judge the accessibility of the SN(ET)Ar pathway the Gibbs free energy was calculated for the initial SET and compared to the energy profile of the S$_N$Ar reaction. For isolated examples, also the activation energy of the SET was calculated according to the modified Nelsen-four-point method.$^{[19]}$ The results are summarised in Table SI-2-6 below.

For most of the examples the Gibbs free energy of the SET exceeds the activation energy of the S$_N$Ar pathway. Thus, it was possible to rule out a SN(ET)Ar pathway without further investigation. Only for the example of the Meldrum’s acid derivative as the nucleophile $2d-K$, a SET was more favourable than the S$_N$Ar pathway (Entry 5). The log files for the SET calculations are listed in Table SI-3-10 (page 43).

Entry	Nucleophile	R in 1a-R-F	$\Delta G_{S_N Ar}$ (kcal/mol)a	$\Delta G^*_{S_N Ar}$ (kcal/mol)	ΔG_{SET} (kcal/mol)	ΔG^*_{SET} (kcal/mol)
1	$2b-K$	NO	-0.588	11.9	15.8	-
2	“	NO$_2$	3.52	13.9	26.1	-
3	“	CHC(CN)$_2$	-0.558	11.9	25.0	-
4	$2d-K$	CHC(CN)$_2$	6.18	22.1	45.2	-
5	$2e-K$	NO	21.7	27.9	16.0	16.2
6	“	CHC(CN)$_2$	22.2	28.2	36.5	-
7	$2f-K$	CHC(CN)$_2$	-11.7	12.9	13.4	-

[a] For the formation of the Meisenheimer intermediate.

[b] For the formation of the S$_N$Ar product.
Figure SI-6 The mechanistic turning point was investigated for the S_NAr reaction of several different nucleophiles and 4-substituted 2-fluoropyridine 603. Level of theory: M11/6-311++G(d,p)/cpcm(DMF).

Figure SI-7 The mechanistic turning point was investigated for the S_NAr reaction of several different nucleophiles and 4-substituted 1-fluoronaphthalene 604. Level of theory: M11/6-311++G(d,p)/cpcm(DMF).
Additional Reactions of Aryl Fluorides and Various Nucleophiles

The observation that a number of very different nucleophiles showed the same mechanistic turning point was surprising. In order to investigate whether this observation is general, τ_p^- was calculated for two additional aromatic systems - 28 and 29 - and the nucleophiles 2a - d (Figure SI-6 and Figure SI-7). For the pyridine series 28, the variation of τ_p^- among the four nucleophiles 2a - d was somewhat larger than in the benzene series. The average was slightly lower with a value of 0.93 ± 0.14. The log files of these calculations are listed in Table SI-3-11 (page 43). For the naphthalene series 29, the three nucleophiles 2a - c showed a similar value of τ_p^- with an average τ_p^- of 0.77 ± 0.10. The nucleophile 2d, in contrast, massively deviated from this average value. In fact, the S_NAr reaction with this nucleophile favoured a stepwise S_NAr reaction even with electron-donating substituents such as para-methyl or para-NHAc residues. Presumably, π-π-stacking interactions or steric effects between the nucleophile and the aromatic system lead to this pronounced difference to the other nucleophiles. Therefore the reaction series of 2d with 29 was regarded as an anomaly and not included in the calculation of τ_p^-. The log files of these calculations are listed in Table SI-3-13 (page 45).

With the exception of the reactions between 2d and 29 it can be noted that there is relatively little variation between different nucleophiles attacking the same aromatic substrate, i.e. the observation made for the system 1a-R-F was essentially reproduced with 28 and 29. The mechanistic turning point does not seem to depend on the nucleophile strongly, i.e. the value τ_p^- is mainly characteristic for the aromatic system (with a fluoride leaving group).

Potential Deprotonation of 2-Pyridyl Substrates by Potassium Methoxide

For the 2-fluoropyridyl series 1d-R-F with the three most electron-withdrawing para-substituents in the series ($R = CHC(CN)_2, COCF_3$ and CN) one may expect that the deprotonation at position 3 may be accessible with the highly basic potassium methoxide nucleophile 2a-K. This would initiate a reaction sequence leading to an alkyne intermediate. The deprotonation could lead to the expulsion of fluoride and the subsequent addition of the nucleophile to the alkyne intermediate would give the same product as the S_NAr reaction. To elucidate the accessibility of such an alternative mechanism, the energetic profile of the initial deprotonation was investigated. The results are summarised in Table SI-2-7 below.

The deprotonation for all three examples is significantly endergonic by >10 kcal/mol. The activation energy for the S_NAr pathway, in contrast, is very low with <3 kcal/mol (calculated with respect to the substrate complex and not the isolated species). Moreover, the formation of the Meisenheimer intermediate is strongly exergonic. Thus, it can be safely concluded that deprotonation is not a competing reaction pathway for these cases. The log files of these calculations are listed in Table SI-3-12 (page 45).

Table SI-2-7 Deprotonation of 2-Fluoropyridyl Substrates by Potassium Methoxide

Entry	R in 1d-R-F	ΔG S_NAr (kcal/mol)a	ΔG^* S_NAr (kcal/mol)	ΔG Deprotonation (kcal/mol)	$\Delta p\text{Ka}$$^{[b]}$
1	CHC(CN)$_2$	-23.6	1.82	11.2	18.9
2	COCF$_3$	-20.8	1.73	11.3	19.0
3	CN	-16.3	2.89	10.6	17.8

a For the formation of the Meisenheimer intermediate.
b The $\Delta p\text{Ka}$ values were calculated according to $\Delta p\text{Ka} = \Delta G/RT$ where R is the ideal gas constant with the value 1.987 kcal/mol/K and T is the temperature in Kelvin and was set to 298.15 K.
Steric Effects

For two cases so far, indication was found that, in addition to the electronic characteristics of the system, steric effects may influence the mechanistic turning point (see Figure SI-6 3 in the main text and Figure SI-7). From the above discussion, it also follows that the electronic nature of nucleophiles does not have a significant effect on τ_p. This allows us to investigate steric effects by choosing a bulky and a slim nucleophile. Any significant difference in τ_p between these two nucleophiles for the attack at the same series of substrates can then be attributed to steric effects.

Such a comparison was made for the nucleophiles $2c$-K and $2d$-K based on the aromatic substrates $1a-F$, 30 and 31 (Figure SI-8). When going from $1a-F$ to 30 to 31, the small nucleophile $2c$-K does not show any response to the increasing steric bulk and slightly more electron-rich aromatic core. The value τ_p remains constant throughout this series. With the sterically more bulky nucleophile $2d$-K, the situation is different. While there is no difference in τ_p between $2c$-K and $2d$-K for the substrates $1a-F$ and 30, the value of τ_p sharply decreases for the reaction of $2d$-K when a second ortho-methyl group is present as in...
The log files of these calculations are listed in Table SI-3-14 (page 47).

This result shows that steric bulk on the aromatic system can force the S\textsubscript{N}Ar reaction to follow a stepwise mechanism even if a concerted reaction profile would be expected based on the electronic nature of the substrate. As follows from the combination of the nucleophile 2d-K and the aromatic system 31, the steric bias on the mechanism can be massive. The introduction of the second methyl group induced a larger change in \(\tau_p \) than did the expansion of the aromatic core from benzene to anthracene, for example (Figure 4 in the main text). While changes of the electronic nature of the aromatic system affect the S\textsubscript{N}Ar reaction of various nucleophiles approximately equally, steric changes affect mainly bulky nucleophiles like 2d-K.

2.5. Effect of the Aryl Fluoride Electrophile

As illustrated in Figure 4 in the main text, both, an additional fused ring and a nitrogen atom in the ring, help to stabilise the negative charge that accumulates on the aromatic system during the addition of the nucleophile. The better the aromatic core on its own is able to stabilise this negative charge, the less the stabilisation of a (potential) Meisenheimer intermediate depends on the electron-withdrawing nature of the para-substituent. The log files of these calculations are listed in Table SI-3-15 (page 49).

The electron affinity of a given aromatic system can be used to estimate whether a S\textsubscript{N}Ar displacement of the fluoride substituent proceeds via a concerted or stepwise mechanism as shown in Figure 5 in the main text. The log files of these calculations are listed in Table SI-3-16 (page 50).

2.6. S\textsubscript{N}Ar Mechanism and the Hammett Correlation

As has been seen in Figure 6 in the main text, there does not seem to be a connection between the slope of the Hammett correlation and the mechanistic preference of an S\textsubscript{N}Ar reaction series.

To further investigate what information about the overall reaction mechanism is contained in the structure of the rate-limiting transition state, the changes in the geometry of the rate-limiting transition states of the S\textsubscript{N}Ar displacement for the series 1a-R-X (for X = F, Cl) with potassium methoxide was analysed (Figure SI-9). It can be seen that the investigated distances and angles change in a very similar way between the two series (i.e. the slopes of the correlations of the four investigated parameters are nearly the same). Further, also the absolute values of \(d_1, a_1 \) and \(a_2 \) are very similar (as expected, there is a large difference in the distance \(d_2 \) between the two series, which reflects the length difference \(\text{ca. 0.4 Å}^{[18]} \) between the carbon-fluorine and the carbon-chlorine bond). Again, the change of mechanism from stepwise to concerted is not reflected in the change of any of the investigated parameters. The log files for these calculations can be found in Table SI-3-7 (page 37).

For most examples the calculated \(\Delta G^* \) show a good \((R^2 > 0.9) \) correlation vs the Hammett substitution constant \(\sigma_p \) as can be seen from the examples in Figure SI-10, Figure SI-11, and Figure SI-12. The \(R^2 \) value is typically >0.9. Only in two instances the values deviated noticeably from a linear correlation - in the case of the reaction between the Meldrum’s acid derivative nucleophile 2e-K and the fluoro aryl series 1a-R-F (marked as ‘+’ in Figure SI-10) and in the reaction between potassium methoxide and the 2-fluoro pyridyl series 1d-R-F (marked as ‘x’ in Figure SI-12). In the former case the deviation may be explained through the interference of steric interactions as discussed in Section 2.4 and illustrated in Figure SI-5. The log files for these calculations can be found in Table SI-3-9 (page 41), Table SI-3-13 (page 45) and Table SI-3-11 (page 43), respectively.

For three examples, also the overall free energy \(\Delta G^\circ \) was analysed in detail (series 2c-K, 2d-K and 2e-K in Figure SI-13, Figure SI-14 and Figure SI-15, respectively). It was found that \(\Delta G^\circ \) shows no significant correlation with the Hammett \(\sigma_p \) constant, in contrast to \(\Delta G^* \).
Figure SI-9 Geometry change of the transition state structure vs. the Hammett substitution constant σ_p^- for the displacement of fluoride and chloride with potassium methoxide in the series 1a-R-X. The distances and angles, which are measured, are illustrated based on the chloride example 1a-R-Cl with $R = H$. Level of theory: M11/6-311++G(d,p)/cpcm(DMF).
Figure SI-10 Correlation of the activation energy ΔG^* vs. the Hammett substitution constant σ_p for the displacement of fluoride from the phenyl fluoride series $1a-R-F$ by the nucleophiles $2b-K$ (x), $2d-K$ (Δ), $2e-K$ (+) and $2f-K$ (o). Level of theory: M11/6-311++G(d,p)/cpcm(DMF).

Figure SI-11 Correlation of the activation energy ΔG^* vs. the Hammett substitution constant σ_p for the displacement of fluoride from the naphthly fluoride series $1b-R-F$ by the nucleophiles $2a-K$ (x), $2b-K$ (Δ), $2c-K$ (+) and $2d-K$ (o). Level of theory: M11/6-311++G(d,p)/cpcm(DMF).
Figure SI-12 Correlation of the activation energy ΔG^* vs. the Hammett substitution constant σ^- for the displacement of fluoride from the 2-pyridyl fluoride series 1d-R-F by the nucleophiles 2a-K (\times), 2b-K (Δ), 2c-K (+) and 2d-K (o). Level of theory: M11/6-311++G(d,p)/cpcm(DMF).

Figure SI-13 Correlation of the activation energy ΔG^* and ΔG° vs. the Hammett substitution constant σ^- for the displacement of fluoride from the phenyl fluoride series 1a-R-F by the nucleophiles 2c-K. Level of theory: M11/6-311++G(d,p)/cpcm(DMF).
Figure SI-14 Correlation of the activation energy ΔG^* and ΔG° vs. the Hammett substitution constant σ^* for the displacement of fluoride from the phenyl fluoride series $1a-R-F$ by the nucleophiles $2d-K$. Level of theory: M11/6-311++G(d,p)/cpcm(DMF).

Figure SI-15 Correlation of the activation energy ΔG^* and ΔG° vs. the Hammett substitution constant σ^* for the displacement of fluoride from the phenyl fluoride series $1a-R-F$ by the nucleophiles $2e-K$. Level of theory: M11/6-311++G(d,p)/cpcm(DMF).
2.7. Predicting the S_NAr Mechanism of Substrates with a Simple Descriptor

As illustrated in Figure 6 in the main text, the S_NAr mechanism a given aryl fluoride would follow, can be predicted based on its gas-phase electron affinity (EA). Alternatively descriptors to the EA were investigated. The Mulliken charge (Figure SI-16), the ATP charge (Figure SI-17) and the 1s-orbital energy level (Figure SI-18) of the carbon atom at which the substitution takes place were investigated as atom-centred descriptors. None of these measures would serve as a suitable descriptor.

Further, the ionisation potential (IP) (Figure SI-19) and the HOMO-LUMO gap (Figure SI-20) were investigated for a subset of examples. Neither of these measures would give a suitable descriptor. The log files for these calculations can be found in the accompanying data set.

![Figure SI-16](image)

Figure SI-16 Mulliken charge of the carbon-atom at which the substitution occurs for the series 1a-R-F to 1m-R-F. Level of theory: M11/6-311++G(d,p)/cpcm(DMF).
Figure SI-17 ATP charge of the carbon-atom at which the substitution occurs for the series 1a-R-F to 1m-R-F. Level of theory: M11/6-311++G(d,p)/cpcm(DMF).

Figure SI-18 1s energy level of the carbon-atom at which the substitution occurs for the series 1a-R-F to 1m-R-F. Level of theory: M11/6-311++G(d,p)/cpcm(DMF).
Figure SI-19 The ionisation potential of the series 1a-R-F to 1f-R-F and 1k-R-F and 1i-R-F* was calculated. *) The NH-indole analogues were considered instead of the N-Me-indole series. Level of theory: M11/6-311++G(d,p)/cpcm(DMF).

Figure SI-20 The HOMO-LUMO gap of the series 1a-R-F to 1f-R-F and 1k-R-F and 1i-R-F* was calculated. *) The NH-indole analogues were considered instead of the N-Me-indole series. Level of theory: M11/6-311++G(d,p)/cpcm(DMF).
3. Log File Archive

3.1. Computational Model

Benchmarking DFT Functionals
The names of the .log files of the calculations used to compile Figure SI-2, Figure SI-3, Table SI-2-1 and Table SI-2-2 are systematically listed below in Table SI-3-1.

Entry	Method (fold-	-R (sub folder	Reaction Coordinate	File name
	er name)	name) name)		
1	MP2	-COCF₃	SC	TS_COCF3_MP2_aug-cc-pVTZ_back_trial3.log
2	"	-COCF₃	TS1	TS_COCF3_MP2_aug-cc-pVTZ_trial3_freq.log
3	"	-COCF₃	MI	TS_COCF3_MP2_aug-cc-pVTZ_forward_freq.log
4	"	-CN	SC	TS_CN_MP2-aug-cc-pVTZ_back_trial2.log
5	"	-CN	TS	TS_CN_MP2-aug-cc-pVTZ
6	"	-CN	MI	TS_CN_MP2-aug-cc-pVTZ_forward_trial5.log
7	"	-COMe	SC	TS_COMe_MP2-aug-cc-pVTZ_back.log
8	"	-COMe	TS	TS_COMe_MP2-aug-cc-pVTZ_trial5_step13_freq.log
9	"	-COMe	PC	TS_COMe_MP2-aug-cc-pVTZ_forward_trial7_freq.log
10	"	-COMe	TS	TS_COMe_MP2-aug-cc-pVTZ_forward_trial7_freq.log
11	"	-COMe	TS	TS_COMe_MP2-aug-cc-pVTZ_forward_trial7_freq.log
12	"	-CO₂Me	SC	TS_CO2Me_MP2-aug-cc-pVTZ_back.log
13	MP2	-COCF₃	SC	TS_COCF3_MP2_6311++Gdp_back_trial2.log
14	"	-COCF₃	TS1	TS_COCF3_MP2_6311++Gdp_trial4.log
15	"	-COCF₃	MI	TS_COCF3_MP2_6311++Gdp_forward.log
16	"	-CN	SC	TS_CN_MP2-6311++Gdp_back.log
17	"	-CN	TS	TS_CN_MP2-6311++Gdp_trial3.log
18	"	-CN	MI	TS_CN_MP2-6311++Gdp_forward.log
19	"	-COMe	SC	TS_COMe_MP2-6311++Gdp_back_trial10_freq.log
20	"	-COMe	TS	TS_COMe_MP2-6311++Gdp_trial4_freq.log
21	"	-COMe	PC	TS_COMe_MP2-6311++Gdp_forward_trial2.log
22	"	-COMe	SC	TS_CO2Me_MP2_6311++Gdp_back.log
23	"	-COMe	TS	TS_CO2Me_MP2_6311++Gdp_trial3.log
24	"	-COMe	PC	TS_CO2Me_MP2_6311++Gdp_forward_trial3.log
25	B3PW91	-COCF₃	SC	TS_COCF3_B3PW91_6-311++Gdp_back_trial3.log
26	"	-COCF₃	TS1	TS_COCF3_B3PW91_6-311++Gdp.log
27	"	-COCF₃	MI	TS_COCF3_B3PW91_6-311++Gdp_forward.log
28	"	-CN	SC	TS_CN_B3PW91_6-311++Gdp_back_trial3_freq.log
29	"	-CN	TS	TS_CN_B3PW91_6-311++Gdp.log
30	"	-CN	PC	TS_CN_B3PW91_6-311++Gdp_forward_trial2.log
31	"	-COMe	SC	TS_COMe_B3PW91_6-311++Gdp_back_trial5.log
32	"	-COMe	TS	TS_COMe_B3PW91_6-311++Gdp_forward_trial3.log
33	"	-COMe	PC	TS_COMe_B3PW91_6-311++Gdp_forward_trial3.log
34	"	-COMe	SC	TS_CO2Me_B3PW91_6-311++Gdp_back_trial4.log
35	"	-COMe	TS	TS_CO2Me_B3PW91_6-311++Gdp.log
36	"	-COMe	PC	TS_CO2Me_B3PW91_6-311++Gdp_forward_trial2_freq.log
37	B3LYP	-NO2	SC	TS_NO2_F_MeO_B3LYP_back_trial4.log
38	"	-NO2	TS1	TS_NO2_F_MeO_B3LYP_trial2.log
39	"	-NO2	MI	TS_NO2_F_MeO_B3LYP_forward.log
Entry	Method (folder name)	-R (sub folder name)	Reaction Coordinate	File name
-------	---------------------	---------------------	--------------------	-----------
40	"	-COCF\(_3\)	SC	TS_COCF3_B3LYP-6311++Gdp_back_trial4.log
41	"	-COCF\(_3\)	TS1	TS_COCF3_B3LYP-6311++Gdp.log
42	"	-COCF\(_3\)	MI	TS_COCF3_B3LYP-6311++Gdp_forward.log
43	"	-CN	SC	TS_CN_B3LYP-6311++Gdp_back_trial3.log
44	"	-CN	TS	TS_CN_B3LYP-6311++Gdp.log
45	"	-CN	PC	TS_CN_B3LYP-6311++Gdp_forward_trial2.log
46	"	-COMe	SC	TS_COMe_B3LYP-6311++Gdp_back_trial4.log
47	"	-COMe	TS	TS_COMe_B3LYP-6311++Gdp_trial2.freq.log
48	"	-COMe	PC	TS_COMe_B3LYP-6311++Gdp_forward_trial2.log
49	"	-CO\(_2\)Me	SC	TS_CO2Me_B3LYP_6-311++Gdp_back_trial5.log
50	"	-CO\(_2\)Me	TS	TS_CO2Me_B3LYP_6-311++Gdp.log
51	"	-CO\(_2\)Me	PC	TS_CO2Me_B3LYP_6-311++Gdp_forward_trial3.log
52	B3LYP_D3-BJ	-NO2	SC	TS_NO2_F_MeO_B3LYP-D3BJ_back_trial5.log
53	"	-NO2	TS1	TS_NO2_F_MeO_B3LYP-D3BJ_forward.log
54	"	-NO2	MI	TS_NO2_F_MeO_B3LYP-D3BJ_forward_trial5.log
55	"	-COCF\(_3\)	SC	TS_COCF3_B3LYP-D3BJ-6311++Gdp_back_trial4.log
56	"	-COCF\(_3\)	TS1	TS_COCF3_B3LYP-D3BJ-6311++Gdp_trial.log
57	"	-COCF\(_3\)	PC	TS_COCF3_B3LYP-D3BJ-6311++Gdp_forward_trial2.log
58	"	-CN	SC	TS_CN_B3LYP-D3BJ-6311++Gdp_back_trial3.log
59	"	-CN	TS	TS_CN_B3LYP-D3BJ-6311++Gdp.log
60	"	-CN	MI	TS_CN_B3LYP-D3BJ-6311++Gdp_forward_trial3.log
61	"	-COMe	SC	TS_COMe_B3LYP-D3BJ-6311++Gdp_back_trial2.log
62	"	-COMe	TS	TS_COMe_B3LYP-D3BJ-6311++Gdp_trial5.log
63	"	-COMe	PC	TS_COMe_B3LYP-D3BJ-6311++Gdp_forward_trial2.log
64	"	-COMe	SC	TS_COMe_B3LYP-D3BJ-6311++Gdp_back_trial5.log
65	"	-COMe	TS	TS_COMe_B3LYP-D3BJ-6311++Gdp_forward_trial2.log
66	"	-COMe	PC	TS_COMe_B3LYP-D3BJ-6311++Gdp_forward_trial2.freq.log
67	CAM-B3LYP	-COCF\(_3\)	SC	TS_COCF3_CAM-B3LYP-6311++Gdp_back_trial2.log
68	"	-COCF\(_3\)	TS1	TS_COCF3_CAM-B3LYP-6311++Gdp
69	"	-COCF\(_3\)	MI	TS_COCF3_CAM-B3LYP-6311++Gdp_forward.log
70	"	-CN	SC	TS_CN_CAM-B3LYP-6311++Gdp_back_trial4.log
71	"	-CN	TS	TS_CN_CAM-B3LYP-6311++Gdp.log
72	"	-CN	PC	TS_CN_CAM-B3LYP-6311++Gdp_forward_trial2.log
73	"	-COMe	SC	TS_COMe_CAM-B3LYP-6311++Gdp_back_trial4.log
74	"	-COMe	TS	TS_COMe_CAM-B3LYP-6311++Gdp_trial2.log
75	"	-COMe	PC	TS_COMe_CAM-B3LYP-6311++Gdp_forward_trial2.log
76	"	-CO\(_2\)Me	SC	TS_CO2Me_CAM-B3LYP_6-311++Gdp_back.log
77	"	-CO\(_2\)Me	TS	TS_CO2Me_CAM-B3LYP_6-311++Gdp.log
78	"	-CO\(_2\)Me	PC	TS_CO2Me_CAM-B3LYP_6-311++Gdp_forward_trial2.log
79	BHandHLYP	-COCF\(_3\)	SC	TS_COCF3_BHandHLYP-6-311++Gdp_back_trial2.freq.log
80	"	-COCF\(_3\)	TS1	TS_COCF3_BHandHLYP-6-311++Gdp
81	"	-COCF\(_3\)	MI	TS_COCF3_BHandHLYP-6-311++Gdp_forward.log
82	"	-CN	SC	TS_CN_BHandHLYP-6-311++Gdp_back_trial3.freq.log
83	"	-CN	TS	TS_CN_BHandHLYP-6-311++Gdp.log
84	"	-CN	PC	TS_CN_BHandHLYP-6-311++Gdp_forward_trial3.log
85	"	-COMe	SC	TS_COMe_BHandHLYP-6-311++Gdp_back_trial2.freq.log
86	"	-COMe	TS	TS_COMe_BHandHLYP-6-311++Gdp_trial2.freq.log
87	"	-COMe	MI	TS_COMe_BHandHLYP-6-311++Gdp_forward.log
88	"	-CO\(_2\)Me	SC	TS_CO2Me_BHandHLYP_6-311++Gdp_back_trial3.freq.log
89	"	-CO\(_2\)Me	TS	TS_CO2Me_BHandHLYP_6-311++Gdp.log
Entry	Method (fold-er name)	-R (sub folder name)	Reaction Coordinate	File name
-------	---------------------	---------------------	---------------------	-----------
90	"	-CO$_2$Me	PC	TS_CO2Me_BHandHLYP_6-311++Gdp_forward_trial2.log
91	M06L	-COCF$_3$	SC	TS_COCF3_M06L-6311++Gdp_back_trial2.log
92	"	-COCF$_3$	TS1	TS_COCF3_M06L-6311++Gdp.log
93	"	-COCF$_3$	MI	TS_COCF3_M06L-6311++Gdp_forward.log
94	"	-CN	SC	TS_CN_M06L-6311++Gdp_back_trial2.log
95	"	-CN	TS	TS_CN_M06L-6311++Gdp.log
96	"	-CN	PC	TS_CN_M06L-6311++Gdp_forward_trial2.log
97	"	-COMe	SC	TS_COMe_M06L-6311++Gdp_back_trial4.log
98	"	-COMe	TS	TS_COMe_M06L-6311++Gdp.log
99	"	-COMe	PC	TS_COMe_M06L-6311++Gdp_forward.log
100	"	-COCF$_3$	TS1	TS_COCF3_M06L-6311++Gdp_trial2.log
101	"	-COMe	TS	TS_COMe_M06L-6311++Gdp_trial3.log
102	"	-COMe	PC	TS_COMe_M06L-6311++Gdp_forward.log
103	M06	-COCF$_3$	SC	TS_COCF3_M06-6311++Gdp_back.log
104	"	-COCF$_3$	TS1	TS_COCF3_M06-6311++Gdp_trial2.log
105	"	-COCF$_3$	MI	TS_COCF3_M06-6311++Gdp_forward.log
106	"	-CN	SC	TS_CN_M06-6311++Gdp_back_trial2.log
107	"	-CN	TS	TS_CN_M06-6311++Gdp.log
108	"	-CN	PC	TS_CN_M06-6311++Gdp_forward_trial2.log
109	"	-COMe	SC	TS_COMe_M06-6311++Gdp_back_trial4.log
110	"	-COMe	TS	TS_COMe_M06-6311++Gdp_trial2_freq.log
111	"	-COMe	MI	TS_COMe_M06-6311++Gdp_forward.log
112	"	-COMe	SC	TS_COMe_M06-6311++Gdp_back_trial3.log
113	"	-COMe	TS	TS_COMe_M06-6311++Gdp.log
114	"	-COMe	PC	TS_COMe_M06-6311++Gdp_forward_trial3.log
115	M06	-COCF$_3$	SC	TS_COCF3_M062X-6311++Gdp_back_trial5.log
116	"	-COCF$_3$	TS1	TS_COCF3_M062X-6311++Gdp.log
117	"	-COCF$_3$	MI	TS_COCF3_M062X-6311++Gdp_forward.log
118	"	-CN	SC	TS_CN_M062X-6311++Gdp_back.log
119	"	-CN	TS	TS_CN_M062X-6311++Gdp_trial3.log
120	"	-CN	MI	TS_CN_M062X-6311++Gdp_forward_trial2.log
121	"	-COMe	SC	TS_COMe_M062X-6311++Gdp_back_trial3.log
122	"	-COMe	TS	TS_COMe_M062X-6311++Gdp_trial2.log
123	"	-COMe	MI	TS_COMe_M062X-6311++Gdp_forward.log
124	"	-COMe	SC	TS_COMe_M062X-6311++Gdp_back.log
125	"	-COMe	TS	TS_COMe_M062X-6311++Gdp.log
126	"	-CO$_2$Me	MI	TS_CO2Me_M062X-6311++Gdp_forward.log
127	"	-CF$_3$	SC	TS_CF3_M062X-6311++Gdp_trial14.log
128	"	-CF$_3$	TS	TS_CF3_M062X-6311++Gdp_trial2.log
129	"	-CF$_3$	PC	TS_CF3_M062X-6311++Gdp_forward_trial3.log
130	"	-CCH	SC	TS_CCH_F_MeO_M062X-6311++Gdp_back.log
131	"	-CCH	TS	TS_CCH_F_MeO_M062X-6311++Gdp.log
132	"	-CCH	PC	TS_CCH_F_MeO_M062X-6311++Gdp_forward.log
133	M11	-NO$_2$	SC	TS_KOMe_NO2_F_M11_6-311++Gdp_back_trial2.log
134	"	-NO$_2$	TS1	TS_KOMe_NO2_F_M11_6-311++Gdp.log
135	"	-NO$_2$	MI	TS_KOMe_NO2_F_M11_6-311++Gdp_forward_trial2.log
136	"	-NO$_2$	TS2	TS2_KOMe_NO2_F_M11_6-311++Gdp_trial8.log
137	"	-NO$_2$	PC	TS2_KOMe_NO2_F_M11_6-311++Gdp_trial2.log
138	"	-CH(CN)$_2$	SC	TS_KOMe_CHCCCN2_F_M11_6-311++Gdp_back_trial4.log
139	"	-CH(CN)$_2$	TS1	TS_KOMe_CHCCCN2_F_M11_6-311++Gdp.log
Entry	Method\(^a\) (fold-er name)	-R (sub folder name)	Reaction Coordinate\(^b\)	File name
-------	-----------------------------	---------------------	-------------------------	-----------
140	"	-CHC(CN)\(_2\)	MI	TS_KOMe_CHCCN2_F_M11_6-311++Gdp.forward.log
141	"	-CHC(CN)\(_2\)	TS2	TS2_KOMe_CHCCN2_F_M11_6-311++Gdp.log
142	"	-CHC(CN)\(_2\)	PC	TS2_KOMe_CHCCN2_F_M11_6-311++Gdp.forward.log
143	"	-COCF\(_3\)	SC	TS_COCF3_M11_6-311++Gdp.forward2.freq.log
144	"	-COCF\(_3\)	TS1	TS_COCF3_M11_6-311++Gdp.log
145	"	-COCF\(_3\)	MI	TS_COCF3_M11_6-311++Gdp.forward.log
146	"	-COCF\(_3\)	TS2	TS2_COCF3_M11_6-311++Gdp.log
147	"	-COCF\(_3\)	PC	TS2_COCF3_M11_6-311++Gdp.forward3.log
148	"	-COCF\(_3\)	IRC+	IRC_TS1_reverse_COCF3_M11_6-311++Gdp.log
				IRC_TS1_reverse_COCF3_M11_6-311++Gdp.forward.log
				IRC_TS1_reverse_COCF3_M11_6-311++Gdp.forward3.log
				IRC_TS1_reverse_COCF3_M11_6-311++Gdp.forward4.log
				IRC_TS1_reverse_COCF3_M11_6-311++Gdp.forward5.log
				IRC_TS1_reverse_COCF3_M11_6-311++Gdp.forward6.log
149	"	-COCF\(_3\)	IRC-	IRC_TS1_forward_COCF3_M11_6-311++Gdp.log
				IRC_TS1_forward_COCF3_M11_6-311++Gdp.forward2.log
				IRC_TS1_forward_COCF3_M11_6-311++Gdp.forward3.log
150	"	-CN	SC	TS_CN_M11_6-311++Gdp.forward3.log
151	"	-CN	TS	TS_CN_M11_6-311++Gdp.forward3.log
152	"	-CN	PC	TS_CN_M11_6-311++Gdp.forward3.log
153	"	-CN	IRC+	IRC_CN_M11_6-311++Gdp.forward3.log
				IRC_CN_M11_6-311++Gdp.forward3.log
154	"	-CN	IRC-	IRC_CN_M11_6-311++Gdp.forward3.log
155	"	-CN	Freq	Intermediate_by_IRC_reverse_CN_M11_6-311++Gdp.forward3.log
156	"	-CN	BS	BS2_CN_M11_6-311++Gdp.forward3.log
				BS2_CN_M11_6-311++Gdp.forward3.log
157	"	-COMe	SC	TS_COMe_M11_6-311++Gdp.forward3.log
158	"	-COMe	TS	TS_COMe_M11_6-311++Gdp.forward3.log
159	"	-COMe	PC	TS_COMe_M11_6-311++Gdp.forward3.log
160	"	-COMe	IRC+	IRC_COMe_M11_6-311++Gdp.forward3.log
				IRC_COMe_M11_6-311++Gdp.forward3.log
				IRC_COMe_M11_6-311++Gdp.forward3.log
161	"	-COMe	IRC-	IRC_COMe_M11_6-311++Gdp.forward3.log
				IRC_COMe_M11_6-311++Gdp.forward3.log
162	"	-COMe	Freq	Intermediate_by_IRC_reverse_COMe_M11_6-311++Gdp.forward3.log
163	"	-COMe	BS	BS2_COMe_M11_6-311++Gdp.forward3.log
				BS2_COMe_M11_6-311++Gdp.forward3.log
164	"	-CO\(_2\)Me	SC	TS_CO2Me_M11_6-311++Gdp.forward3.log
165	"	-CO\(_2\)Me	TS	TS_CO2Me_M11_6-311++Gdp.forward3.log
166	"	-CO\(_2\)Me	PC	TS_CO2Me_M11_6-311++Gdp.forward3.log
167	"	-CO\(_2\)Me	IRC+	IRC_CO2Me_M11_6-311++Gdp.forward3.log
				IRC_CO2Me_M11_6-311++Gdp.forward3.log
				IRC_CO2Me_M11_6-311++Gdp.forward3.log
168	"	-CO\(_2\)Me	IRC-	IRC_CO2Me_M11_6-311++Gdp.forward3.log
169	PBE0	-COCF\(_3\)	SC	TS_COCF3_PBE0-6311++Gdp.forward4.log
170	"	-COCF\(_3\)	TS1	TS_COCF3_PBE0-6311++Gdp.forward4.log
171	"	-COCF\(_3\)	MI	TS_COCF3_PBE0-6311++Gdp.forward4.log
172	"	-CN	SC	TS_CN_PBE0-6311++Gdp.forward3.log
173	"	-CN	TS	TS_CN_PBE0-6311++Gdp.forward3.log
174	"	-CN	PC	TS_CN_PBE0-6311++Gdp.forward3.log
175	"	-COMe	SC	TS_COMe_PBE0-6311++Gdp.forward3.log
176	"	-COMe	TS	TS_COMe_PBE0-6311++Gdp.forward3.log
177	"	-COMe	PC	TS_COMe_PBE0-6311++Gdp.forward3.log
178	"	-COMe	SC	TS_COMe_PBE0-6311++Gdp.forward3.log
179	"	-COMe	TS	TS_COMe_PBE0-6311++Gdp.forward3.log
180	"	-COMe	PC	TS_COMe_PBE0-6311++Gdp.forward3.log
Entry	Method^a (fold-er name)	-R (sub folder name)	Reaction Coordinate^b	File name
-------	-----------------------------------	---------------------	------------------------------	-----------
181	PBE0-D3-BJ	-COCF₃	SC	TS_COCF3_PBE0-D3BJ_6311++Gdp_back_trial3.log
182	"	-COCF₃	TS1	TS_COCF3_PBE0-D3BJ_6311++Gdp.log
183	"	-COCF₃	MI	TS_COCF3_PBE0-D3BJ_6311++Gdp_forward.log
184	"	-CN	SC	TS_CN_PBE0-D3BJ_6311++Gdp_back_trial2.log
185	"	-CN	TS	TS_CN_PBE0-D3BJ_6311++Gdp.log
186	"	-CN	PC	TS_CN_PBE0-D3BJ_6311++Gdp_forward_trial2.log
187	"	-COMe	SC	TS_COMe_PBE0-D3BJ_6311++Gdp_back_trial4.log
188	"	-COMe	TS	TS_COMe_PBE0-D3BJ_6311++Gdp_trial2.log
189	"	-COMe	PC	TS_COMe_PBE0-D3BJ_6311++Gdp_back_trial4.log
190	"	-CO₂Me	SC	TS_CO2Me_PBE0-D3BJ_6-311++Gdp_back_trial4.log
191	"	-CO₂Me	TS	TS_CO2Me_PBE0-D3BJ_6-311++Gdp_forward_trial2.log
192	"	-CO₂Me	PC	TS_CO2Me_PBE0-D3BJ_6-311++Gdp_forward_trial3.log
193	HSE1PBE	-COCF₃	SC	TS_COCF3_HSE1PBE_6-311++Gdp_back_trial4.log
194	"	-COCF₃	TS1	TS_COCF3_HSE1PBE_6-311++Gdp.log
195	"	-COCF₃	MI	TS_COCF3_HSE1PBE_6-311++Gdp_forward.log
196	"	-CN	SC	TS_HSE1PBE_6-311++Gdp_back_trial2.log
197	"	-CN	TS	TS_HSE1PBE_6-311++Gdp.log
198	"	-CN	PC	TS_HSE1PBE_6-311++Gdp_forward_trial3.log
199	"	-COMe	SC	TS_COMe_HSE1PBE_6-311++Gdp_back_trial2.log
200	"	-COMe	TS	TS_COMe_HSE1PBE_6-311++Gdp_forward_trial2.log
201	"	-COMe	PC	TS_COMe_HSE1PBE_6-311++Gdp_forward_trial2.log
202	"	-CO₂Me	SC	TS_CO2Me_HSE1PBE_6-311++Gdp_back_trial2.log
203	"	-CO₂Me	TS	TS_CO2Me_HSE1PBE_6-311++Gdp_forward_trial2.log
204	"	-CO₂Me	PC	TS_CO2Me_HSE1PBE_6-311++Gdp_forward_trial2.log
205	B97D	-COCF₃	SC	TS_COCF3_B97D_6-311++Gdp_back_trial5.log
206	"	-COCF₃	TS1	TS_COCF3_B97D_6-311++Gdp_trial2_freq.log
207	"	-COCF₃	PC	TS_COCF3_B97D_6-311++Gdp_forward_trial2.log
208	"	-CN	SC	TS_CN_B97D_6-311++Gdp_back_trial2.log
209	"	-CN	TS	TS_CN_B97D_6-311++Gdp.log
210	"	-CN	PC	TS_CN_B97D_6-311++Gdp_forward_trial2.log
211	"	-COMe	SC	TS_COMe_B97D_6-311++Gdp_back_trial2.log
212	"	-COMe	TS	TS_COMe_B97D_6-311++Gdp.log
213	"	-COMe	PC	TS_COMe_B97D_6-311++Gdp_forward_trial2.log
214	"	-CO₂Me	SC	TS_CO2Me_B97D_6-311++Gdp_back_trial2.log
215	"	-CO₂Me	TS	TS_CO2Me_B97D_6-311++Gdp.log
216	"	-CO₂Me	PC	TS_CO2Me_B97D_6-311++Gdp_forward_trial2.log
217	wB97	-COCF₃	SC	TS_COCF3_wB97-6-311++Gdp_back_trial3.log
218	"	-COCF₃	TS1	TS_COCF3_wB97-6-311++Gdp.log
219	"	-COCF₃	MI	TS_COCF3_wB97-6-311++Gdp_forward.log
220	"	-CN	SC	TS_CN_wB97_6-311++Gdp_back_trial2_freq.log
221	"	-CN	TS	TS_CN_wB97_6-311++Gdp.log
222	"	-CN	PC	TS_CN_wB97_6-311++Gdp_forward_trial2.log
223	"	-COMe	SC	TS_COMe_wB97_6-311++Gdp_back_trial7.log
224	"	-COMe	TS	TS_COMe_wB97_6-311++Gdp.log
225	"	-COMe	MI	TS_COMe_wB97_6-311++Gdp_forward.log
226	"	-CO₂Me	SC	TS_CO2Me_wB97_6-311++Gdp_back_trial4.log
227	"	-CO₂Me	TS	TS_CO2Me_wB97_6-311++Gdp.log
228	"	-CO₂Me	PC	TS_CO2Me_wB97_6-311++Gdp_forward_trial2.log
229	wB97X	-COCF₃	SC	TS_COCF3_wB97X-6-311++Gdp_back_trial4.log
230	"	-COCF₃	TS1	TS_COCF3_wB97X-6-311++Gdp.log
[a] The 6-311++G(d,p) basis set was used unless mentioned otherwise. [b] The reaction coordinate is indicated by the following abbreviations. SC: substrate complex; TS1: first transition state; MI: Meisenheimer intermediate; TS2: second transition state; PC: product complex. Alternatively the type of calculation is stated using the following abbreviation. IRC+: internal reaction coordinate scan towards the products; IRC-: internal reaction coordinate scan towards the substrates; BS: bond scan; Freq: single point frequency calculation.

Validating the Procedure

The log files for the IRC scans shown in Table SI-2-2 are included in Table SI-3-1 under the method ‘M11’ and marked as ‘IRC’ in the ‘Reaction Coordinate’ column.

Comparison to Experiments

All files for the calculation shown in Scheme SI-1 and Scheme SI-2 are listed in Table SI-3-2 below. The activation energy of the S_N2Ar reaction shown in Scheme SI-1 was calculated with respect to the separated substrates. The counter cation was not included in the computational model. A minor conformational change of the Meisenheimer intermediate was detected along the S_N2Ar reaction coordinate. The structure ‘TS2’ in table Table SI-3-2 corresponds to the transition state associated with this conformational change.

All files for the calculation shown in Table SI-2-3 are listed in Table SI-3-3 below. If two files are given for the Meisenheimer intermediate (MI) it means that once the MI has been optimised starting form the first transition state (TS1) and once starting from the second transition state (TS2).

Table SI-3-2

Entry	Structure and Comment	Reaction Coordinate[a]	File name
1	Azide anion	-	azide.log
2	7	-	Substrate.log
3	Azide anion and 7	SC	TS_NO2_Azide_back.log
4	Addition of azide on 7	TS1	TS_NO2_Azide.log
Structure and Comment

5 Conformational change of MI

7 Expulsion of fluoride leaving group.

8 Fluoride anion and 8

9 Fluoride anion

11 Fluoride anion

12 1a-OMe-F

14 Substrate complex

15 TS

16 Product complex

17 1,4-Dimethoxybenzene

18 KF

[b] The reaction coordinate is indicated by the following abbreviations. SC: substrate complex; TSx: xth transition state; MIy: Meisenheimer intermediate in conformation y; PC: product complex.

Table SI-3-3

Entry	Entry in Table SI-2-3 (Sub Folder)	Reaction Coordinate[a]	File name
1	1 (DMAP-a)	PC	TS_DMAP_4-NO2-PhO_back_trial3.log
2		TS1	TS_DMAP_4-NO2-PhO_trial2.log
3		MI	TS_DMAP_4-NO2-PhO_forward.log
4		TS2	TS_DMAP_4-NO2-PhO_forward.log
5		SC	TS_DMAP_4-NO2-PhO_forward_trial2.log
6	2 (DMAP-a_water)	PC	TS_DMAP_4-NO2-PhO_4_water_back_trial2.log
7		TS1	TS_DMAP_4-NO2-PhO_4_water_trial4.log
8		MI	TS_DMAP_4-NO2-PhO_4_water_forward_trial2.log
9		TS2	TS_DMAP_4-NO2-PhO_4_water_trial2.log
10		SC	TS_DMAP_4-NO2-PhO_4_water_forward.log
11	3 (DMAP-b)	PC	TS_DMAP_4-COH-PhO_back.log
12		MI	TS_DMAP_4-COH-PhO_forward.log
13		TS2	TS_DMAP_4-COH-PhO_forward.log
14		SC	TS_DMAP_4-COH-PhO_forward_trial2.log
15	4 (DMAP-c)	PC	TS_DMAP_3-5-di-NO2-PhO_back.log
16		TS1	TS_DMAP_3-5-di-NO2-PhO_trial2.log
17		MI	TS_DMAP_3-5-di-NO2-PhO_forward.log
18		TS2	TS_DMAP_3-5-di-NO2-PhO_forward.log
19		SC	TS_DMAP_3-5-di-NO2-PhO_forward.log
20	5 (Morpholien-a_1)	PC	TS_Morpholine_4-NO2-PhO_back.log
21		TS1	TS_Morpholine_4-NO2-PhO_forward.log
22		MI	TS_Morpholine_4-NO2-PhO_forward.log
23		TS2	TS2_Morpholine_4-NO2-PhO_forward.log
24		SC	TS2_Morpholine_4-NO2-PhO_forward.log
25	5 (Morpholien-a_1)	PC	TS_Morpholine_4-NO2-PhO_var2_back_trial3.log
[a] The reaction coordinate is indicated by the following abbreviations. SC: substrate complex; TS1: first transition state; MI: Meisenheimer intermediate; TS2: second transition state; PC: product complex.

3.2. Initial Studies

The calculations of this section were calculated on M11/6-311++G(d,p)/cpcm(DMF) level of theory. For each example the substrate complex (‘SC’), rate limiting transition state (‘TS1’), and product complex (‘PC’) or Meisenheimer intermediate (‘MI’) as appropriate, was calculated. For selected examples also the second transition (‘TS2’) state was calculated.

The log files for the calculations shown in Figure 1 in the main text for the displacement of the halides fluoride, chloride, bromide and iodide by potassium methoxide are listed in below in Table SI-3-4.

Entry	Entry in Table SI-2-3 (Sub Folder)	Reaction Coordinate[a]	File name
26		TS1	TS_Morpholine_4-NO2-PhO_var2.log
27		MI	TS_Morpholine_4-NO2-PhO_var2 Forward.log
			TS2_Morpholine_4-NO2-PhO_var2 Back.log
28		TS2	TS2_Morpholine_4-NO2-PhO_var2.log
29		PC	TS2_Morpholine_4-NO2-PhO_var2 Forward_trial2.log

Table SI-3-4

Entry	X	-R [sub folder]	Reaction Coordinate[a]	File name
1	F	-NO	SC	TS_KOMe_NO_F_M11_6-311++Gdp_back_trial2.log
2			TS1	TS_KOMe_NO_F_M11_6-311++Gdp.log
3			MI	TS_KOMe_NO_F_M11_6-311++Gdp_forward.log
4			TS2	TS2_KOMe_NO_F_M11_6-311++Gdp.log
5			PC	TS2_KOMe_NO_F_M11_6-311++Gdp_forward.log
6		-NO2	SC	TS_KOMe_NO2_F_M11_6-311++Gdp_back_trial2.log
7			TS1	TS_KOMe_NO2_F_M11_6-311++Gdp.log
8			MI	TS_KOMe_NO2_F_M11_6-311++Gdp_forward_trial2.log
9			TS2	TS2_KOMe_NO2_F_M11_6-311++Gdp_trial8.log
10			PC	TS2_KOMe_NO2_F_M11_6-311++Gdp_trial2.log
11		-CHCCN2	SC	TS_KOMe_CHCCN2_F_M11_6-311++Gdp_back_trial4.log
12			TS1	TS_KOMe_CHCCN2_F_M11_6-311++Gdp.log
13			MI	TS_KOMe_CHCCN2_F_M11_6-311++Gdp_forward.log
14			TS2	TS2_KOMe_CHCCN2_F_M11_6-311++Gdp.log
15			PC	TS2_KOMe_CHCCN2_F_M11_6-311++Gdp_forward.log
16		-COF3	SC	TS_COF3_M11_6-311++Gdp_back_trial2_freq.log
17			TS1	TS_COF3_M11_6-311++Gdp.log
18			MI	TS_COF3_M11_6-311++Gdp_forward Frequency.log
19			TS2	TS2_COF3_M11_6-311++Gdp_forward_trial3.log
20			PC	TS2_COF3_M11_6-311++Gdp_forward_trial.log
21		-CN	SC	TS_CN_M11_6-311++Gdp_back_trial2.log
22			TS1	TS_CN_M11_6-311++Gdp.log
23		-COMe	SC	TS_COMe_M11_6-311++Gdp_back_trial2_freq.log
24			TS1	TS_COMe_M11_6-311++Gdp_trial3.log
25			PC	TS_COMe_M11_6-311++Gdp_forward_trial2.log
26		-CO2Me	SC	TS_CO2Me_M11_6-311++Gdp_back_trial2.log
27			TS1	TS_CO2Me_M11_6-311++Gdp.log
28			PC	TS_CO2Me_M11_6-311++Gdp_forward_trial2.log
29		-CF3	SC	TS_KOMe_CF3_F_M11_6-311++Gdp_back_trial2.log
30			TS1	TS_KOMe_CF3_F_M11_6-311++Gdp.log
Entry	X	-R (sub folder)	Reaction Coordinate[a]	File name
-------	-----	-----------------	------------------------	---
31	*	"	PC	TS_KOMe_CF3_F_M11_6-311++Gdp_forward_trial2.log
32	*	-CCH	SC	TS_KOMe_CCH_F_M11_6-311++Gdp_back_trial2.log
33	*	"	TS1	TS_KOMe_CCH_F_M11_6-311++Gdp.log
34	*	"	PC	TS_KOMe_H_F_M11_6-311++Gdp_forward_trial2.log
35	*	-H	SC	TS_KOMe_H_F_M11_6-311++Gdp_back_trial2.log
36	*	"	TS1	TS_KOMe_H_F_M11_6-311++Gdp.log
37	*	"	PC	TS_KOMe_H_F_M11_6-311++Gdp_forward_trial2.log
38	Cl	-NO	SC	TS_KOMe_Cl_NO_M11_6-311++Gdp_back_trial3.log
39	*	"	TS1	TS_KOMe_Cl_NO_M11_6-311++Gdp.log
40	*	"	PC	TS_KOMe_Cl_NO_M11_6-311++Gdp_forward_trial2.log
41	*	-NO2	SC	TS_KOMe_Cl_NO2_M11_6-311++Gdp_back_trial2.log
42	*	"	TS1	TS_KOMe_Cl_NO2_M11_6-311++Gdp.log
43	*	"	PC	TS_KOMe_Cl_NO2_M11_6-311++Gdp_forward_trial2.log
44	*	-CHCCN2	SC	TS_KOMe_Cl_CHCCN2_M11_6-311++Gdp_back_trial3.log
45	*	"	TS1	TS_KOMe_Cl_CHCCN2_M11_6-311++Gdp.log
46	*	"	PC	TS_KOMe_Cl_CHCCN2_M11_6-311++Gdp_forward_trial2.log
47	*	-COCF3	SC	TS_KOMe_Cl_COCF3_M11_6-311++Gdp_forward_trial2.log
48	*	"	TS1	TS_KOMe_Cl_COCF3_M11_6-311++Gdp_forward_trial4.log
49	*	"	PC	TS_KOMe_Cl_COCF3_M11_6-311++Gdp_forward_trial2.log
50	*	-CN	SC	TS_KOMe_Cl_CN_M11_6-311++Gdp_back_trial2_freq.log
51	*	"	TS1	TS_KOMe_Cl_CN_M11_6-311++Gdp.log
52	*	"	PC	TS_KOMe_Cl_CN_M11_6-311++Gdp_forward_trial3.log
53	*	-COMe	SC	TS_KOMe_Cl_COMe_M11_6-311++Gdp_back_trial2.log
54	*	"	TS1	TS_KOMe_Cl_COMe_M11_6-311++Gdp_forward_trial2.log
55	*	"	PC	TS_KOMe_Cl_COMe_M11_6-311++Gdp_forward_trial4.log
56	*	-CO2Me	SC	TS_KOMe_Cl_CO2Me_M11_6-311++Gdp_back_trial2_freq.log
57	*	"	TS1	TS_KOMe_Cl_CO2Me_M11_6-311++Gdp.log
58	*	"	PC	TS_KOMe_Cl_CO2Me_M11_6-311++Gdp_forward_trial2.log
59	*	-CF3	SC	TS_KOMe_Cl_CF3_M11_6-311++Gdp_back_trial2.log
60	*	"	TS1	TS_KOMe_Cl_CF3_M11_6-311++Gdp.log
61	*	"	PC	TS_KOMe_Cl_CF3_M11_6-311++Gdp_forward_trial2.log
62	*	-CCH	SC	TS_KOMe_Cl_CCH_M11_6-311++Gdp_back_trial2.log
63	*	"	TS1	TS_KOMe_Cl_CCH_M11_6-311++Gdp.log
64	*	"	PC	TS_KOMe_Cl_CCH_M11_6-311++Gdp_forward_trial3.log
65	*	-H	SC	TS_KOMe_Cl_H_M11_6-311++Gdp_back_trial2.log
66	*	"	TS1	TS_KOMe_Cl_H_M11_6-311++Gdp.log
67	*	"	PC	TS_KOMe_Cl_H_M11_6-311++Gdp_forward_trial2.log
68	Br	-NO	SC	TS_KOMe_Br_NO_M11_6-311++Gdp_back.log
69	*	"	TS1	TS_KOMe_Br_NO_M11_6-311++Gdp.log
70	*	"	PC	TS_KOMe_Br_NO_M11_6-311++Gdp_forward.log
71	*	-NO2	SC	TS_KOMe_Br_NO2_M11_6-311++Gdp_back.log
72	*	"	TS1	TS_KOMe_Br_NO2_M11_6-311++Gdp.log
73	*	"	PC	TS_KOMe_Br_NO2_M11_6-311++Gdp_forward.log
74	I	-NO	SC	TS_KOMe_I_NO_M11_6-311++Gdp_back.log
75	*	"	TS1	TS_KOMe_I_NO_M11_6-311++Gdp_trial2.log
76	*	"	PC	TS_KOMe_I_NO_M11_6-311++Gdp_forward.log
77	*	-NO2	SC	TS_KOMe_I_NO2_M11_6-311++Gdp_back.log
78	*	"	TS1	TS_KOMe_I_NO2_M11_6-311++Gdp_trial2.log
79	*	"	PC	TS_KOMe_I_NO2_M11_6-311++Gdp_forward.log

[a] The reaction coordinate is indicated by the following abbreviations. SC: substrate complex; TS1: first transition state; MI: Meisenheimer intermediate; TS2: second transition state; PC: product complex.
The log files for the calculations shown in Table SI-2-4 for the halide exchange reactions are listed in below in Table SI-3-5.

Entry	KY-X	-R (sub folder)	Reaction Coordinate	File name
1	KF-F	-CO2Me	SC	TS_KF-F_CO2Me_M11_6-311++Gdp_back_trial2.log
2	"	"	TS1	TS_KF-F_CO2Me_M11_6-311++Gdp.log
3	"	"	MI	TS_KF-F_CO2Me_M11_6-311++Gdp_forward.log
4	"	-CF3	SC	TS_KF-F_CF3_M11_6-311++Gdp_back_trial2.log
5	"	"	TS1	TS_KF-F_CF3_M11_6-311++Gdp.log
6	"	"	MI	TS_KF-F_CF3_M11_6-311++Gdp_forward.log
7	"	-CCH	SC	TS_KF-F_CCH_M11_6-311++Gdp_back_trial2.log
8	"	"	TS1	TS_KF-F_CCH_M11_6-311++Gdp.log
9	"	"	PC	TS_KF-F_CCH_M11_6-311++Gdp_forward_trial2.log
10	"	-NCS	SC	TS_KF-F_NCS_M11_6-311++Gdp_back_trial2.log
11	"	"	TS1	TS_KF-F_NCS_M11_6-311++Gdp.log
12	KF-Cl	-NO	SC	TS_KF-Cl_NO_M11_6-311++Gdp_back_trial2.log
13	"	"	TS1	TS_KF-Cl_NO_M11_6-311++Gdp.log
14	"	"	PC	TS_KF-Cl_NO_M11_6-311++Gdp_forward_trial2.log
15	"	-NO2	SC	TS_KF-Cl_NO2_M11_6-311++Gdp_back_trial2.log
16	"	"	TS1	TS_KF-Cl_NO2_M11_6-311++Gdp.log
17	"	"	PC	TS_KF-Cl_NO2_M11_6-311++Gdp_forward_trial2.log
18	KF-Br	-NO	SC	TS_KF-Br_NO_M11_6-311++Gdp_back_trial2.log
19	"	"	TS1	TS_KF-Br_NO_M11_6-311++Gdp.log
20	"	"	PC	TS_KF-Br_NO_M11_6-311++Gdp_forward_trial2.log
21	"	-NO2	SC	TS_KF-Br_NO2_M11_6-311++Gdp_back_trial2.log
22	"	"	TS1	TS_KF-Br_NO2_M11_6-311++Gdp.log
23	"	"	PC	TS_KF-Br_NO2_M11_6-311++Gdp_forward_trial2.log
24	KF-I	-NO	SC	TS_KF-I_NO_M11_6-311++Gdp_back_trial2.log
25	"	"	TS1	TS_KF-I_NO_M11_6-311++Gdp.log
26	"	"	PC	TS_KF-I_NO_M11_6-311++Gdp_forwardTrial2.log
27	"	-NO2	SC	TS_KF-I_NO2_M11_6-311++Gdp_back_trial2.log
28	"	"	TS1	TS_KF-I_NO2_M11_6-311++Gdp.log
29	"	"	PC	TS_KF-I_NO2_M11_6-311++Gdp_forward_trial2.log
30	KCl-Cl	-NO	SC	TS_KCl-Cl_NO_M11_6-311++Gdp_back_trial2.log
31	"	"	TS1	TS_KCl-Cl_NO_M11_6-311++Gdp.log
32	"	"	PC	TS_KCl-Cl_NO_M11_6-311++Gdp_forward_trial2.log
33	"	-NO2	SC	TS_KCl-Cl_NO2_M11_6-311++Gdp_back_trial2.log
34	"	"	TS1	TS_KCl-Cl_NO2_M11_6-311++Gdp.log
35	"	"	PC	TS_KCl-Cl_NO2_M11_6-311++Gdp_forward_trial2.log
36	KCl-Br	-NO	SC	TS_KCl-Br_NO_M11_6-311++Gdp_back_trial2.log
37	"	"	TS1	TS_KCl-Br_NO_M11_6-311++Gdp.log
38	"	"	PC	TS_KCl-Br_NO_M11_6-311++Gdp_forward_trial2.log
39	"	-NO2	SC	TS_KCl-Br_NO2_M11_6-311++Gdp_back_trial2.log
40	"	"	TS1	TS_KCl-Br_NO2_M11_6-311++Gdp.log
41	"	"	PC	TS_KCl-Br_NO2_M11_6-311++Gdp_forward_trial2.log
42	KCl-I	-NO	SC	TS_KCl-I_NO_M11_6-311++Gdp_back_trial2.log
43	"	"	TS1	TS_KCl-I_NO_M11_6-311++Gdp.log
44	"	"	PC	TS_KCl-I_NO_M11_6-311++Gdp_forward_trial2.log
The reaction coordinate is indicated by the following abbreviations. SC: substrate complex; TS1: first transition state; MI: Meisenheimer intermediate; TS2: second transition state; PC: product complex.

The log files for the calculations shown in Table SI-2-5 for the chalcogen exchange reactions are listed in below in Table SI-3-6.

Table SI-3-6

Entry	KYMe-XMe	-R (sub folder)	Reaction Coordinate[^a]	File name
1	KOMe-OMe	-NHAc	SC	TS_KOMe-OMe_NHCOMe_M11_6-311++Gdp_back
2	KOMe-OMe	-NHAc	TS1	TS_KOMe-OMe_NHCOMe_M11_6-311++Gdp_forward
3	KOMe-OMe	-NPh3	MI	TS_KOMe-OMe_NPPh3_M11_6-311++Gdp_forward
4	KOMe-OMe	-NPh3	TS1	TS_KOMe-OMe_NPPh3_M11_6-311++Gdp_forward
5	KOMe-OMe	-NPh3	MI	TS_KOMe-OMe_NPPh3_M11_6-311++Gdp_forward
6	KOMe-OMe	-NPh3	TS2	TS_KOMe-OMe_NPPh3_M11_6-311++Gdp_forward
7	KOMe-OMe	-CCH	MI	TS_KOMe-OMe_CCH_M11_6-311++Gdp_back
8	KOMe-OMe	-CCH	TS1	TS_KOMe-OMe_CCH_M11_6-311++Gdp_forward
9	KOMe-OMe	-CCH	MI	TS_KOMe-OMe_CCH_M11_6-311++Gdp_back
10	KOMe-OMe	-CCH	TS2	TS_KOMe-OMe_CCH_M11_6-311++Gdp_forward
11	KOMe-OMe	-CCH	PC	TS2_KOMe-OMe_CCH_M11_6-311++Gdp_forward
12	KOMe-OMe	-CCH	TS1	TS_KOMe-OMe_CCH_M11_6-311++Gdp_forward
13	KOMe-OMe	-CCH	MI	TS_KOMe-OMe_CCH_M11_6-311++Gdp_forward
14	KOMe-OMe	-CCH	PC	TS2_KOMe-OMe_CCH_M11_6-311++Gdp_forward
15	KOMe-OMe	-CCH	TS1	TS_KOMe-OMe_CCH_M11_6-311++Gdp_forward
16	KOMe-OMe	-CCH	PC	TS2_KOMe-OMe_CCH_M11_6-311++Gdp_forward
17	KOMe-OMe	-CCH	TS1	TS_KOMe-OMe_CCH_M11_6-311++Gdp_forward
18	KOMe-OMe	-CCH	MI	TS_KOMe-OMe_CCH_M11_6-311++Gdp_forward

[^a]: The reaction coordinate is indicated by the following abbreviations. SC: substrate complex; TS1: first transition state; MI: Meisenheimer intermediate; TS2: second transition state; PC: product complex.
Entry	KYMe-XMe	-R (sub folder)	Reaction Coordinate	File name
19	"	"	PC	TS_KOMe-SMe_H_M11_6-311++Gdp_forward_trial3.log
20	KOMe-SeMe	-NO2	SC	TS_KOMe-SeMe_NO2_M11_6-311++Gdp_back.log
21	"	"	TS1	TS_KOMe-SeMe_NO2_M11_6-311++Gdp.log
22	"	"	MI	TS_KOMe-SeMe_NO2_M11_6-311++Gdp_forward.log
23	"	"	SC	TS_KOMe-SeMe_CN_M11_6-311++Gdp_back.log
24	"	"	TS1	TS_KOMe-SeMe_CN_M11_6-311++Gdp.log
25	"	"	MI	TS_KOMe-SeMe_CN_M11_6-311++Gdp_forward.log
26	"	-COMe	SC	TS_KOMe-SeMe_COMe_M11_6-311++Gdp_back.log
27	"	"	TS1	TS_KOMe-SeMe_COMe_M11_6-311++Gdp.log
28	"	"	MI	TS_KOMe-SeMe_COMe_M11_6-311++Gdp_forward.log
29	"	-CO2Me	SC	TS_KOMe-SeMe_CO2Me_M11_6-311++Gdp_back.log
30	"	"	TS1	TS_KOMe-SeMe_CO2Me_M11_6-311++Gdp_trial2.log
31	"	"	MI	TS_KOMe-SeMe_CO2Me_M11_6-311++Gdp_forward.log
32	"	-CCH	SC	TS_KOMe-SeMe_CCH_M11_6-311++Gdp_back_trial2.log
33	"	"	TS1	TS_KOMe-SeMe_CCH_M11_6-311++Gdp.log
34	"	"	PC	TS_KOMe-SeMe_CCH_M11_6-311++Gdp_forward_trial2.log
35	"	-Cl	SC	TS_KOMe-SeMe_Cl_M11_6-311++Gdp_back.log
36	"	"	TS1	TS_KOMe-SeMe_Cl_M11_6-311++Gdp.log
37	"	"	PC	TS_KOMe-SeMe_Cl_M11_6-311++Gdp_forward.log
38	KSMe-SMe	-C6F5	SC	TS_KSMe-SMe_C6F5_M11_6-311++Gdp_back.log
39	"	"	TS1	TS_KSMe-SMe_C6F5_M11_6-311++Gdp_trial2.log
40	"	"	MI	TS_KSMe-SMe_C6F5_M11_6-311++Gdp_forward.log
41	"	-NCS	SC	TS_KSMe-SMe_NCS_M11_6-311++Gdp_back.log
42	"	"	TS1	TS_KSMe-SMe_NCS_M11_6-311++Gdp.log
43	"	"	MI	TS_KSMe-SMe_NCS_M11_6-311++Gdp_forward.log
44	"	-I	SC	TS_KSMe-SMe_I_M11_6-311++Gdp_back.log
45	"	"	TS1	TS_KSMe-SMe_I_M11_6-311++Gdp.log
46	"	"	PC	TS_KSMe-SMe_I_M11_6-311++Gdp_forward.log
47	"	-Cl	SC	TS_KSMe-SMe_Cl_M11_6-311++Gdp_back.sh
48	"	"	TS1	TS_KSMe-SMe_Cl_M11_6-311++Gdp.log
49	"	"	PC	TS_KSMe-SMe_Cl_M11_6-311++Gdp_forward.log
50	KSMe-SeMe	-CHCCN2	SC	TS_KSMe-SMe_CHCCN2_M11_6-311++Gdp_back.log
51	"	"	TS1	TS_KSMe-SMe_CHCCN2_M11_6-311++Gdp.log
52	"	"	MI	TS_KSMe-SMe_CHCCN2_M11_6-311++Gdp_forward.log
53	"	-COCF3	SC	TS_KSMe-SMe_COCF3_M11_6-311++Gdp_back.log
54	"	"	TS1	TS_KSMe-SMe_COCF3_M11_6-311++Gdp.log
55	"	"	MI	TS_KSMe-SMe_COCF3_M11_6-311++Gdp_forward.log
56	"	-CN	SC	TS_KSMe-SeMe_CN_M11_6-311++Gdp_back.log
57	"	"	TS1	TS_KSMe-SeMe_CN_M11_6-311++Gdp_forward.log
58	"	"	PC	TS_KSMe-SeMe_CN_M11_6-311++Gdp_forward_trial2.log
59	"	-COMe	SC	TS_KSMe-SeMe_COMe_M11_6-311++Gdp_forward.log
60	"	"	TS1	TS_KSMe-SeMe_COMe_M11_6-311++Gdp_forward_trial2.log
61	"	"	PC	TS_KSMe-SeMe_COMe_M11_6-311++Gdp_forward.log
62	KSeMe-SeMe	-CO2Me	SC	TS_KSeMe-SeMe_CO2Me_M11_6-311++Gdp_back.log
63	"	"	TS1	TS_KSeMe-SeMe_CO2Me_M11_6-311++Gdp.log
64	"	"	MI	TS_KSeMe-SeMe_CO2Me_M11_6-311++Gdp_forward.log
65	"	-CO2Me	SC	TS_KSeMe-SeMe_CO2Me_M11_6-311++Gdp_back.log
66	"	"	TS1	TS_KSeMe-SeMe_CO2Me_M11_6-311++Gdp.log
3.3. Counter-Cation and Explicit Solvent Effects

The log files for the calculations shown in Figure 2 in the main text investigating the effect of the counter cation on the mechanistic turning point are listed in below in Table SI-3-7.

Table SI-3-7

Entry	Metal M (sub folder)	-R (sub folder)	Reaction Coordinate[a]	File name
1	Li	-NO	SC TS_LiOMe_NO_F_M11_6-311++Gdp_back_trial2.log	
2			TS1 TS_LiOMe_NO_F_M11_6-311++Gdp_forward.log	
3			MI TS_LiOMe_NO_F_M11_6-311++Gdp_forward.log	
4		-NO2	SC TS_LiOMe_NO2_F_M11_6-311++Gdp_back_trial2.log	
5			TS1 TS_LiOMe_NO2_F_M11_6-311++Gdp_trial2_freq.log	
6			PC TS_LiOMe_NO2_F_M11_6-311++Gdp_forward.log	
7		-CHCCN2	SC TS_LiOMe_CHCCN2_F_M11_6-311++Gdp_back_trial2.log	
8			TS1 TS_LiOMe_CHCCN2_F_M11_6-311++Gdp_forward.log	
9			MI TS_LiOMe_CHCCN2_F_M11_6-311++Gdp_forward_trial3.log	
10		-COCF3	SC TS_LiOMe_COCF3_M11_6-311++Gdp_back_trial2.log	
11			TS1 TS_LiOMe_COCF3_M11_6-311++Gdp_forward.log	
12			PC TS_LiOMe_COCF3_M11_6-311++Gdp_forward_trial2.log	
13		-CN	SC TS_LiOMe_CN_M11_6-311++Gdp_back_trial2.log	
14			TS1 TS_LiOMe_CN_M11_6-311++Gdp_forward.log	
15		-COMe	SC TS_LiOMe_COMe_M11_6-311++Gdp_forward_trial2_freq.log	
16			TS1 TS_LiOMe_COMe_M11_6-311++Gdp_trial2.log	
17			PC TS_LiOMe_COMe_M11_6-311++Gdp_forward.log	
18		-CO2Me	SC TS_LiOMe_CO2Me_M11_6-311++Gdp_back_trial3.log	
19			TS1 TS_LiOMe_CO2Me_M11_6-311++Gdp_trial2_freq.log	
20			PC TS_LiOMe_CO2Me_M11_6-311++Gdp_forward_trial2.log	
21	Na	-NO2	SC TS_NaOMe_NO2_F_M11_6-311++Gdp_back_trial2.log	
22			TS1 TS_NaOMe_NO2_F_M11_6-311++Gdp_trial2_freq.log	
23			MI TS_NaOMe_NO2_F_M11_6-311++Gdp_forward.log	
24		-CHCCN2	SC TS_NaOMe_CHCCN2_F_M11_6-311++Gdp_back_trial3_freq.log	
25			TS1 TS_NaOMe_CHCCN2_F_M11_6-311++Gdp_forward.log	
26			MI TS_NaOMe_CHCCN2_F_M11_6-311++Gdp_forward_trial4.log	
27		-COCF3	SC TS_NaOMe_COCF3_M11_6-311++Gdp_back_trial4.log	
28			TS1 TS_NaOMe_COCF3_M11_6-311++Gdp_forward.log	
29			MI TS_NaOMe_COCF3_M11_6-311++Gdp_forward_trial4.log	
30		-CN	SC TS_NaOMe_CN_M11_6-311++Gdp_back_trial3.log	
31			TS1 TS_NaOMe_CN_M11_6-311++Gdp_forward.log	
32			PC TS_NaOMe_CN_M11_6-311++Gdp_forward.log	

[a] The reaction coordinate is indicated by the following abbreviations. SC: substrate complex; TS1: first transition state; MI: Meisenheimer intermediate; TS2: second transition state; PC: product complex.
Entry	Metal M (sub folder)	-R (sub folder)	Reaction Coordinate	File name
33	"	-COMe	SC	TS_NaOMe_COMe_M11_6-311++Gdp_back_trial3_freq.log
34	"	"	TS1	TS_NaOMe_COMe_M11_6-311++Gdp_trial3_freq.log
35	"	"	PC	TS_NaOMe_COMe_M11_6-311++Gdp_forward.log
36	"	-CO2Me	SC	TS_NaOMe_CO2Me_M11_6-311++Gdp_back.log
37	"	"	TS1	TS_NaOMe_CO2Me_M11_6-311++Gdp_trial2.log
38	"	"	PC	TS_NaOMe_CO2Me_M11_6-311++Gdp_forward.log
39	K	-NO	SC	TS_KOme_NO_F_M11_6-311++Gdp_back_trial2.log
40	"	"	TS1	TS_KOme_NO_F_M11_6-311++Gdp_trial2.log
41	"	MI	TS_KOme_NO_F_M11_6-311++Gdp_forward.log	
42	"	"	TS2	TS2_KOme_NO_F_M11_6-311++Gdp_trial8.log
43	"	"	PC	TS2_KOme_NO_F_M11_6-311++Gdp_forward.log
44	"	-NO2	SC	TS_KOme_NO2_F_M11_6-311++Gdp_back_trial2.log
45	"	"	TS1	TS_KOme_NO2_F_M11_6-311++Gdp_trial2.log
46	"	MI	TS_KOme_NO2_F_M11_6-311++Gdp_forward_trial2.log	
47	"	"	TS2	TS2_KOme_NO2_F_M11_6-311++Gdp_trial8.log
48	"	"	PC	TS2_KOme_NO2_F_M11_6-311++Gdp_forward_trial2.log
49	"	-CHCC2	SC	TS_KOme_CHCC2_F_M11_6-311++Gdp_back_trial4.log
50	"	"	TS1	TS_KOme_CHCC2_F_M11_6-311++Gdp_trial2.log
51	"	MI	TS_KOme_CHCC2_F_M11_6-311++Gdp_forward Trial2.log	
52	"	"	TS2	TS2_KOme_CHCC2_F_M11_6-311++Gdp_trial2.log
53	"	"	PC	TS2_KOme_CHCC2_F_M11_6-311++Gdp_forward_trial2.log
54	"	-COCF3	SC	TS_COCF3_M11_6-311++Gdp_back_trial2_freq.log
55	"	"	TS1	TS_COCF3_M11_6-311++Gdp_trial2.log
56	"	"	MI	TS_COCF3_M11_6-311++Gdp_forward_trial2.log
57	"	"	TS2	TS2_CO2Me_NO2_F_M11_6-311++Gdp_trial8.log
58	"	"	PC	TS2_CO2Me_NO2_F_M11_6-311++Gdp_forward_trial3.log
59	"	-CN	SC	TS_CN_M11_6-311++Gdp_back_trial2.log
60	"	"	TS1	TS_CN_M11_6-311++Gdp_trial2.log
61	"	"	PC	TS_CN_M11_6-311++Gdp_forward_trial2.log
62	"	-COMe	SC	TS_CO2Me_M11_6-311++Gdp_back_trial2_freq.log
63	"	"	TS1	TS_CO2Me_M11_6-311++Gdp_trial3.log
64	"	"	PC	TS_CO2Me_M11_6-311++Gdp_forward_trial2.log
65	"	-CO2Me	SC	TS_CO2Me_M11_6-311++Gdp_back_trial2.log
66	"	"	TS1	TS_CO2Me_M11_6-311++Gdp_trial2.log
67	"	"	PC	TS_CO2Me_M11_6-311++Gdp_forward_trial2.log
68	"	-CF3	SC	TS_KOme_CF3_F_M11_6-311++Gdp_back_trial2.log
69	"	"	TS1	TS_KOme_CF3_F_M11_6-311++Gdp_trial2.log
70	"	"	PC	TS_KOme_CF3_F_M11_6-311++Gdp_forward_trial2.log
71	"	-CCH	SC	TS_KOme_CCH_F_M11_6-311++Gdp_back_trial2.log
72	"	"	TS1	TS_KOme_CCH_F_M11_6-311++Gdp_trial2.log
73	"	"	PC	TS_KOme_CCH_F_M11_6-311++Gdp_forward_trial2.log
74	"	-H	SC	TS_KOme_H_F_M11_6-311++Gdp_back_trial2.log
75	"	"	TS1	TS_KOme_H_F_M11_6-311++Gdp_trial2.log
76	"	"	PC	TS_KOme_H_F_M11_6-311++Gdp_forward_trial2.log
77	Rb	-NO	SC	TS_RbOMe_NO_F_M11_6-311++Gdp_back_trial2.log
78	"	"	TS1	TS_RbOMe_NO_F_M11_6-311++Gdp_trial2.log
79	"	"	MI	TS_RbOMe_NO_F_M11_6-311++Gdp_forward_trial2.log
80	"	-NO2	SC	TS_RbOMe_NO2_F_M11_6-311++Gdp_back_trial5.log
81	"	"	TS1	TS_RbOMe_NO2_F_M11_6-311++Gdp_trial5.log
82	"	MI	TS1	TS_RbOMe_NO2_F_M11_6-311++Gdp_forward_trial2.log
Entry	Metal M (sub folder)	-R (sub folder)	Reaction Coordinate[^a]	File name
-------	---------------------	----------------	--------------------------	-----------
83	"	-CHCCN2	SC	TS_RbOMe_CHCCN2_F_M11_6-311++Gdp_back_trial8_freq_on_step23.log
84	"	"	TS1	TS_RbOMe_CHCCN2_F_M11_6-311++Gdp.log
85	"	Ml	MI	TS_RbOMe_CHCCN2_F_M11_6-311++Gdp_forward.log
86	"	-COCF3	SC	TS_RbOMe_COCF3_M11_6-311++Gdp_back_trial3.log
87	"	"	TS1	TS_RbOMe_COCF3_M11_6-311++Gdp.log
88	"	Ml	MI	TS_RbOMe_COCF3_M11_6-311++Gdp_forward.log
89	"	-CN	SC	TS_RbOMe_CN_M11_6-311++Gdp_back_trial2.log
90	"	"	TS1	TS_RbOMe_CN_M11_6-311++Gdp.log
91	"	PC	PC	TS_RbOMe_CN_M11_6-311++Gdp_forward.log
92	"	-COMe	SC	TS_RbOMe_COMe_M11_6-311++Gdp_back_trial5.log
93	"	"	TS1	TS_RbOMe_COMe_M11_6-311++Gdp_forward_trial2.log
94	"	Ml	MI	TS_RbOMe_COMe_M11_6-311++Gdp_forward_trial2.log
95	"	-CO2Me	SC	TS_RbOMe_CO2Me_M11_6-311++Gdp_back.log
96	"	"	TS1	TS_RbOMe_CO2Me_M11_6-311++Gdp.log
97	"	"	PC	TS_RbOMe_CO2Me_M11_6-311++Gdp_forward.log
98	"	-CF3	SC	TS_RbOMe_CF3_F_M11_6-311++Gdp_back.log
99	"	"	TS1	TS_RbOMe_CF3_F_M11_6-311++Gdp.log
100	"	"	PC	TS_RbOMe_CF3_F_M11_6-311++Gdp_forward_trial2.log
101	"	"	TS1	TS_RbOMe_CCH_F_M11_6-311++Gdp_back.log
102	"	"	PC	TS_RbOMe_CCH_F_M11_6-311++Gdp_forward_trial2.log
103	"	"	TS1	TS_RbOMe_CCH_F_M11_6-311++Gdp_forward_trial2.log
104	"	-H	SC	TS_RbOMe_H_F_M11_6-311++Gdp_back_trial2.log
105	"	"	TS1	TS_RbOMe_H_F_M11_6-311++Gdp_forward_trial2.log
106	"	"	PC	TS_RbOMe_H_F_M11_6-311++Gdp_forward_trial2.log
107	Cs	-NO	SC	TS_CsOMe_NO_F_M11_6-311++Gdp_back.log
108	"	"	TS1	TS_CsOMe_NO_F_M11_6-311++Gdp_forward.log
109	"	Ml	MI	TS_CsOMe_NO_F_M11_6-311++Gdp_forward_trial2.log
110	"	"	MC	TS_CsOMe_NO2_F_M11_6-311++Gdp_back_trial2.log
111	"	"	TS1	TS_CsOMe_NO2_F_M11_6-311++Gdp_forward_trial2.log
112	"	"	MI	TS_CsOMe_NO2_F_M11_6-311++Gdp_forward_trial2.log
113	"	-CHCCN2	SC	TS_CsOMe_CHCCN2_F_M11_6-311++Gdp_back_trial2.log
114	"	"	TS1	TS_CsOMe_CHCCN2_F_M11_6-311++Gdp_forward_trial2.log
115	"	Ml	MI	TS_CsOMe_CHCCN2_F_M11_6-311++Gdp_forward_trial2.log
116	"	-COCF3	SC	TS_CsOMe_COCF3_M11_6-311++Gdp_back_trial3.log
117	"	"	TS1	TS_CsOMe_COCF3_M11_6-311++Gdp_forward_trial3.log
118	"	"	MI	TS_CsOMe_COCF3_M11_6-311++Gdp_forward_trial3.log
119	"	"	MC	TS_CsOMe_COCF3_M11_6-311++Gdp_forward_trial3.log
120	"	"	TS1	TS_CsOMe_CN_M11_6-311++Gdp_forward_trial3.log
121	"	"	PC	TS_CsOMe_CN_M11_6-311++Gdp_forward_trial3.log
122	"	-COMe	SC	TS_CsOMe_COMe_M11_6-311++Gdp_back.log
123	"	"	TS1	TS_CsOMe_COMe_M11_6-311++Gdp_forward_trial3.freq.log
124	"	"	MI	TS_CsOMe_COMe_M11_6-311++Gdp_forward_trial3.freq.log
125	"	-CO2Me	SC	TS_CsOMe_CO2Me_M11_6-311++Gdp_back.log
126	"	"	TS1	TS_CsOMe_CO2Me_M11_6-311++Gdp_forward.log
127	"	"	PC	TS_CsOMe_CO2Me_M11_6-311++Gdp_forward.log
128	"	-CF3	SC	TS_CsOMe_CF3_F_M11_6-311++Gdp_back.log
129	"	"	TS1	TS_CsOMe_CF3_F_M11_6-311++Gdp_forward.log
130	"	"	PC	TS_CsOMe_CF3_F_M11_6-311++Gdp_forward.log
131	"	-CCH	SC	TS_CsOMe_CCH_F_M11_6-311++Gdp_back.log
132	"	"	TS1	TS_CsOMe_CCH_F_M11_6-311++Gdp_forward.log
The reaction coordinate is indicated by the following abbreviations. SC: substrate complex; TS1: first transition state; MI: Meisenheimer intermediate; TS2: second transition state; PC: product complex.

The log files for the calculations with explicit solvent molecules shown in Figure SI-4 are listed in below in Table SI-3-8. For the example without explicit solvation see Table SI-3-7.

Table SI-3-8

Entry	Metal M (sub folder)	-R (sub folder)	Reaction Coordinate\[a\]	File name
133	-CHCCN2	SC	TS_KOMe_F_CHCCN2_1_DMF_M11_6-311++Gdp_back.log	
134	-H	SC	TS_KOMe_F_H_F_M11_6-311++Gdp_back.log	
135		TS1	TS_KOMe_F_H_F_M11_6-311++Gdp_back.log	
136		PC	TS_KOMe_F_H_F_M11_6-311++Gdp_forward_trial2.log	
137	none	COCF3	TS_OMe_COCF3_M11_6-311++Gdp_forward_trial2.log	
138		TS1	TS_OMe_COCF3_M11_6-311++Gdp_forward.log	
139		MI	TS_OMe_COCF3_M11_6-311++Gdp_forward_trial2.log	
140	-CN	SC	TS_OMe_CN_M11_6-311++Gdp_forward_trial2.log	
141		TS1	TS_OMe_CN_M11_6-311++Gdp.log	
142		MI	TS_OMe_CN_M11_6-311++Gdp_forward.log	
143	-COMe	SC	TS_OMe_COMe_M11_6-311++Gdp_forward_trial2.log	
144		TS1	TS_OMe_COMe_M11_6-311++Gdp_forward.log	
145		MI	TS_OMe_COMe_M11_6-311++Gdp_forward.log	
146	-CO2Me	SC	TS_OMe_CO2Me_M11_6-311++Gdp_back_trial4.log	
147		TS1	TS_OMe_CO2Me_M11_6-311++Gdp_forward_trial2.log	
148		MI	TS_OMe_CO2Me_M11_6-311++Gdp_forward_trial2.log	
149	-CF3	SC	TS_OMe_CF3_F_M11_6-311++Gdp_back_trial2.log	
150		TS1	TS_OMe_CF3_F_M11_6-311++Gdp_forward_trial2.log	
151		MI	TS_OMe_CF3_M11_6-311++Gdp_forward_trial2.log	
152	-CCH	SC	TS_OMe_CCH_F_M11_6-311++Gdp_forward_trial2.log	
153		TS1	TS_OMe_CCH_F_M11_6-311++Gdp_forward_trial2.log	
154		PC	TS_OMe_CCH_F_M11_6-311++Gdp_forward_trial3.log	
155		-H	TS_OMe_H_F_M11_6-311++Gdp_forward_trial2.log	
156		TS1	TS_OMe_H_F_M11_6-311++Gdp_forward_trial2.log	
157		PC	TS_OMe_H_F_M11_6-311++Gdp_forward_trial2.log	

\[a\] The reaction coordinate is indicated by the following abbreviations. SC: substrate complex; TS1: first transition state; MI: Meisenheimer intermediate; TS2: second transition state; PC: product complex.
Entry	n (sub folder)	-R (sub folder)	Reaction Coordinate[a]	File name
15	"	-COCF3	SC	TS_KOMe-F_COCF3_2_DMF_M11_6-311++Gdp_back.log
16	"	"	TS1	TS_KOMe-F_COCF3_2_DMF_M11_6-311++Gdp_trial2.log
17	"	"	MI	TS_KOMe-F_COCF3_2_DMF_M11_6-311++Gdp_forward.log
18	"	-CN	SC	TS_KOMe-F_CN_2_DMF_M11_6-311++Gdp_back.log
19	"	"	TS1	TS_KOMe-F_CN_2_DMF_M11_6-311++Gdp_trial4.log
20	"	"	PC	TS_KOMe-F_CN_2_DMF_M11_6-311++Gdp_forward2_trial2.log
21	"	-COMe	SC	TS_KOMe-F_COMe_2_DMF_M11_6-311++Gdp_back_trial2.log
22	"	"	TS1	TS_KOMe-F_COMe_2_DMF_M11_6-311++Gdp_trial2.log
23	"	"	MI	TS_KOMe-F_COMe_2_DMF_M11_6-311++Gdp_forward.log
24	"	-CO2Me	SC	TS_KOMe-F_CO2Me_2_DMF_M11_6-311++Gdp_back_trial2.log
25	"	"	TS1	TS_KOMe-F_CO2Me_2_DMF_M11_6-311++Gdp_trial2.log
26	"	"	MI	TS_KOMe-F_CO2Me_2_DMF_M11_6-311++Gdp_forward.log
27	"	-CF3	SC	TS_KOMe-F_CF3_2_DMF_M11_6-311++Gdp_back.log
28	"	"	TS1	TS_KOMe-F_CF3_2_DMF_M11_6-311++Gdp_trial2.log
29	"	"	PC	TS_KOMe-F_CF3_2_DMF_M11_6-311++Gdp_forward2_trial2.log
30	"	-CCH	SC	TS_KOMe-F_CCH_2_DMF_M11_6-311++Gdp_back.log
31	"	"	TS1	TS_KOMe-F_CCH_2_DMF_M11_6-311++Gdp_trial2.log
32	"	"	PC	TS_KOMe-F_CCH_2_DMF_M11_6-311++Gdp_forward.log

[a] The reaction coordinate is indicated by the following abbreviations. SC: substrate complex; TS1: first transition state; MI: Meisenheimer intermediate; TS2: second transition state; PC: product complex.

3.4. Effect of the Nucleophile

The log files for the calculations of different nucleophiles shown in Figure 3 in the main text are listed in below in Table SI-3-9. For the examples with potassium methoxide as the nucleophile see Table SI-3-7.

Table SI-3-9

Entry	KNu (sub folder)	-R (sub folder)	Reaction Coordinate[a]	File name
1	KSMe	-NO	SC	TS_KSMe-F_NO_M11-6-311++Gdp_back_trial3.log
2	"	"	TS1	TS_KSMe-F_NO_M11-6-311++Gdp.log
3	"	"	MI	TS_KSMe-F_NO_M11-6-311++Gdp_forward_trial2.log
4	"	-NO2	SC	TS_KSMe-F_NO2_M11-6-311++Gdp_back_trial2.log
5	"	"	TS1	TS_KSMe-F_NO2_M11-6-311++Gdp.log
6	"	"	MI	TS_KSMe-F_NO2_M11-6-311++Gdp_forward_trial2.log
7	"	-CHCCN2	SC	TS_KSMe-F_CHCCN2_M11-6-311++Gdp_back_trial6.log
8	"	"	TS1	TS_KOMe-F_CHCCN2_M11-6-311++Gdp.log
9	"	"	MI	TS_KSMe-F_CHCCN2_M11-6-311++Gdp_forward_trial2.log
10	"	-COCF3	SC	TS_KSMe-F_COCF3_M11-6-311++Gdp_back_trial2.log
11	"	"	TS1	TS_KSMe-F_COCF3_M11-6-311++Gdp_trial2.log
12	"	"	MI	TS_KSMe-F_COCF3_M11-6-311++Gdp_forward_trial2.log
13	"	"	TS2	TS2_KSMe-F_COCF3_M11-6-311++Gdp_forward_trial2.log
14	"	-CN	SC	TS_KSMe-F_CN_M11-6-311++Gdp_back_trial3.log
15	"	"	TS1	TS_KOMe-F_CN_M11-6-311++Gdp.log
16	"	"	PC	TS_KSMe-F_CN_M11-6-311++Gdp_forward_trial2.log
17	"	-COMe	SC	TS_KSMe-F_COMe_M11-6-311++Gdp_back_trial2.log
18	"	"	TS1	TS_KSMe-F_COMe_M11-6-311++Gdp_trial2.log
19	"	"	PC	TS_KSMe-F_COMe_M11-6-311++Gdp.log
20	"	-CO2Me	SC	TS_KSMe-F_CO2Me_M11-6-311++Gdp_back_trial2.log
21	"	"	TS1	TS_KSMe-F_CO2Me_M11-6-311++Gdp.log
Entry	KNu (sub folder)	-R (sub folder)	Reaction Coordinate[a]	File name
-------	-----------------	-----------------	------------------------	-----------
22	"	PC	TS_KSMe-F_CO2Me_M11-6-311++Gdp_forward_trial2.log	
23	"	-CF3	TS_KSMe-F_CF3_M11-6-311++Gdp_back_trial3.log	
24	"	TS1	TS_KSMe-F_CF3_M11-6-311++Gdp.log	
25	"	PC	TS_KSMe-F_CF3_M11-6-311++Gdp_forward_trial2.freq.log TS_KSMe-F_CF3_M11-6-311++Gdp_forward_trial2.freq.log	
26	"	-CCH	TS_KSMe-F_CCH_M11-6-311++Gdp_back_trial2.freq.log TS_KSMe-F_CCH_M11-6-311++Gdp_back_trial2.freq.log	
27	"	TS1	TS_KSMe-F_CCH_M11-6-311++Gdp.log	
28	"	PC	TS_KSMe-F_CCH_M11-6-311++Gdp_forward_trial2.log	
29	"	-H	TS_NaSMe-F_H_M11-6-311++Gdp_back_trial3.log	
30	"	TS1	TS_NaSMe-F_H_M11-6-311++Gdp.log	
31	"	PC	TS_NaSMe-F_H_M11-6-311++Gdp_forward_trial3.log	
32	KN3	-CHCCN2	TS_KN3-F_CHCCN2_M11-6-311++Gdp_back_trial4.log	
33	"	TS1	TS_KN3-F_CHCCN2_M11-6-311++Gdp_forward.log	
34	"	MI	TS_KN3-F_CHCCN2_M11-6-311++Gdp_forward.log	
35	"	-COCF3	TS_KN3-F_COCF3_M11-6311++Gdp.back.log	
36	"	TS1	TS_KN3-F_COCF3_M11-6311++Gdp.log	
37	"	MI	TS_KN3-F_COCF3_M11-6311++Gdp_forward.log	
38	"	TS2	TS2_KN3-F_COCF3_M11-6311++Gdp.freq.log	
39	"	PC	TS2_KN3-F_COCF3_M11-6311++Gdp_forward.log	
40	"	TS1	TS_KN3-F_CN_M11-6311++Gdp_back.log	
41	"	PC	TS_KN3-F_CN_M11-6311++Gdp.log	
42	"	TS1	TS_KN3-F_CN_M11-6311++Gdp_forward_trial2.log	
43	"	-COMe	TS_KN3-F_COMe_M11-6311++Gdp_forward_trial2.log	
44	"	TS1	TS_KN3-F_COMe_M11-6311++Gdp.freq.log	
45	"	PC	TS_KN3-F_COMe_M11-6311++Gdp_back_trial3.log	
46	"	TS1	TS_KN3-F_COMe_M11-6311++Gdp.freq.log	
47	"	TS1	TS_KN3-F_COMe_M11-6311++Gdp.freq.log	
48	"	PC	TS_KN3-F_COMe_M11-6311++Gdp_forward_trial2.log	
49	601d (Kacac)	-CHCCN2	TS_Kacac-F_CHCCN2_M11-6-311++Gdp_back.log	
50	"	TS1	TS_Kacac-F_CHCCN2_M11-6-311++Gdp.log	
51	"	PC	TS_Kacac-F_CHCCN2_M11-6-311++Gdp_forward_trial2.log	
52	"	-COCF3	TS_Kacac-F_COCF3_M11-6-311++Gdp.back.log	
53	"	TS1	TS_Kacac-F_COCF3_M11-6-311++Gdp.freq.log	
54	"	MI	TS_Kacac-F_COCF3_M11-6-311++Gdp_forward.log	
55	"	TS2	TS2_Kacac-F_COCF3_M11-6-311++Gdp.freq.log	
56	"	PC	TS2_Kacac-F_COCF3_M11-6-311++Gdp_forward.freq.log	
57	"	TS1	TS_Kacac-F_CN_M11-6-311++Gdp_back.log	
58	"	TS1	TS_Kacac-F_CN_M11-6-311++Gdp.log	
59	"	PC	TS_Kacac-F_CN_M11-6-311++Gdp_forward_trial2.log	
60	"	-COMe	TS_Kacac-F_COMe_M11-6-311++Gdp_forward_trial2.log	
61	"	TS1	TS_Kacac-F_COMe_M11-6-311++Gdp.freq.log	
62	"	PC	TS_Kacac-F_COMe_M11-6-311++Gdp_forward_trial2.log	
63	"	-CO2Me	TS_Kacac-F_CO2Me_M11-6-311++Gdp.forward_trial2.log	
64	"	TS1	TS_Kacac-F_CO2Me_M11-6-311++Gdp.back_trial2.log	
65	"	PC	TS_Kacac-F_CO2Me_M11-6-311++Gdp_forward_trial2.log	
66	601e (KMelder)	-NO	TS_KMelder-F_NO2_M11-6-311++Gdp_forward_freq.log	
67	"	TS1	TS_KMelder-F_NO2_M11-6-311++Gdp.log	
68	"	MI	TS_KMelder-F_NO2_M11-6-311++Gdp_forward.log	
The reaction coordinate is indicated by the following abbreviations. SC: substrate complex; TS1: first transition state; MI: Meisenheimer intermediate; TS2: second transition state; PC: product complex.

The log files for the calculations of SETs leading towards an SN(ET)Ar pathway discussed in Table SI-2-6 are listed below in Table SI-3-10. For the substrate complexes in singlet states see Table SI-3-9 above.

Table SI-3-10

Entry	Nucleophile (sub folder)	R in 1a-R-F	Reaction Coordinate[a]	File name
1	2b-K	NO	triplet	KSMe_NO_substrate_complex_triplet_trial2.log
2		NO₂	triplet	KSMe_NO2_substrate_complex_triplet.log
3		CHCCN₂	triplet	KSCMe_CHCCN2_substrate_complex_triplet.log
4	2d-K	CHCCN₂	triplet	Kacac-F_CHCCN2_substrate_complex_triplet.log
5	2e-K	NO	triplet	KMeldrum_NO_substrate_complex_triplet.log
6			triplet in singlet geom.	KMeldrum_NO_substrate_complex_triplet_in_singlet_geom.log
7			singlet in triplet geom.	KMeldrum_NO_substrate_complex_singlet_in_triplet_geom.log
8		CHCCN₂	triplet	KMeldrum_CHCCN2_substrate_complex_triplet.log
9	2f-K	CHCCN₂	triplet	KPhAc-F_CHCCN2_substrate_complex_triplet.log

[a] 'triplet': Complex of the nucleophile and electrophile was optimised as a triplet. 'triplet in singlet geom.': A single point calculation was performed on the geometry of the singlet complex but with triplet electronic configuration. 'singlet in triplet geom.': A single point calculation was performed on the geometry of the triplet complex but with singlet electronic configuration.

The log files for the calculations of different nucleophiles with 2-fluoropyridines shown in Figure SI-6 are listed in below in Table SI-3-11.

Table SI-3-11

Entry	KNu (sub folder)	-R (sub folder)	Reaction Coordinate[a]	File name
1	KOMe	-CHCCN₂	SC	TS_KOMe-F_CHCCN2_2Pyr_M11-6311++Gdp_back_trial4.log
Entry	KNu (sub folder)	-R (sub folder)	Reaction Coordinate[s]	File name
-------	------------------	----------------	------------------------	-----------
2	"	"	TS1	TS_KOMe-F_CHCCN2_2Pyr_M11-6311++Gdp.log
3	"	MI	MI	TS_KOMe-F_CHCCN2_2Pyr_M11-6311++Gdp_forward.log
4	"	-COCF3	TS1	TS_KOMe-F_COCF3_2Pyr_M11-6311++Gdp_back.log
5	"	MI	TS1	TS_KOMe-F_COCF3_2Pyr_M11-6311++Gdp_forward_trial2.log
6	"	-CN	TS1	TS_KOMe-F_COCF3_2Pyr_M11-6311++Gdp_forward_trial2.log
7	"	TS1	TS1	TS_KOMe-F_CN_2Pyr_M11-6311++Gdp.log
8	"	MI	MI	TS_KOMe-F_CN_2Pyr_M11-6311++Gdp_forward.log
9	"	-COMe	TS1	TS_KOMe-F_COMe_2Pyr_M11-6311++Gdp_back.log
10	"	MI	MI	TS_KOMe-F_COMe_2Pyr_M11-6311++Gdp_forward_trial5.log
11	"	-CO2Me	TS1	TS_KOMe-F_CO2Me_2Pyr_M11-6311++Gdp_back_trial2.log
12	"	MI	TS1	TS_KOMe-F_CO2Me_2Pyr_M11-6311++Gdp_forward_trial2.log
13	"	MI	TS1	TS_KOMe-F_CO2Me_2Pyr_M11-6311++Gdp_forward_trial2.log
14	"	-CF3	TS1	TS_KOMe-F_CF3_2Pyr_M11-6311++Gdp_back.log
15	"	PC	TS1	TS_KOMe-F_CF3_2Pyr_M11-6311++Gdp_forward.log
16	"	-CCH	TS1	TS_KOMe-F_CCH_2Pyr_M11-6311++Gdp_back_trial2.log
17	"	TS1	TS1	TS_KOMe-F_CCH_2Pyr_M11-6311++Gdp.log
18	"	PC	TS1	TS_KOMe-F_CCH_2Pyr_M11-6311++Gdp_forward.log
19	"	TS1	TS1	TS_KOMe-F_CCH_2Pyr_M11-6311++Gdp_forward_trial5.log
20	"	PC	TS1	TS_KOMe-F_CCH_2Pyr_M11-6311++Gdp_forward_trial2.log
21	KSMe	-CHCCN2	TS1	TS_KSMe-F_CHCCN2_2Pyr_M11-6311++Gdp_back.log
22	"	TS1	TS1	TS_KSMe-F_CHCCN2_2Pyr_M11-6311++Gdp.log
23	"	MI	TS1	TS_KSMe-F_CHCCN2_2Pyr_M11-6311++Gdp_forward.log
24	"	-COCF3	TS1	TS_KSMe-F_COCF3_2Pyr_M11-6311++Gdp_back.log
25	"	MI	TS1	TS_KSMe-F_COCF3_2Pyr_M11-6311++Gdp_trial3.log
26	"	MI	TS1	TS_KSMe-F_COCF3_2Pyr_M11-6311++Gdp_forward_trial5.log
27	"	TS1	TS1	TS_KSMe-F_CN_2Pyr_M11-6311++Gdp_back.log
28	"	PC	TS1	TS_KSMe-F_CN_2Pyr_M11-6311++Gdp_forward_trial2.log
29	"	PC	TS1	TS_KSMe-F_CN_2Pyr_M11-6311++Gdp_forward_trial2.log
30	"	-COMe	TS1	TS_KSMe-F_COMe_2Pyr_M11-6311++Gdp_back.log
31	"	TS1	TS1	TS_KSMe-F_COMe_2Pyr_M11-6311++Gdp.log
32	"	PC	TS1	TS_KSMe-F_COMe_2Pyr_M11-6311++Gdp_forward_trial2.log
33	KN3	-CHCCN2	TS1	TS_KN3-F_CHCCN2_2Pyr_M11-6311++Gdp_back.log
34	"	TS1	TS1	TS_KN3-F_CHCCN2_2Pyr_M11-6311++Gdp_trial2.log
35	"	MI	TS1	TS_KN3-F_CHCCN2_2Pyr_M11-6311++Gdp_forward_trial2.log
36	"	-COCF3	TS1	TS_KN3-F_COCF3_2Pyr_M11-6311++Gdp_back.log
37	"	TS1	TS1	TS_KN3-F_COCF3_2Pyr_M11-6311++Gdp.log
38	"	MI	TS1	TS_KN3-F_COCF3_2Pyr_M11-6311++Gdp_forward.log
39	"	PC	TS1	TS_KN3-F_COMe_2Pyr_M11-6311++Gdp_forward_trial2.log
40	"	TS1	TS1	TS_KN3-F_CN_2Pyr_M11-6311++Gdp_trial2.log
41	"	PC	TS1	TS_KN3-F_CN_2Pyr_M11-6311++Gdp_forward_trial2.log
42	"	-COMe	TS1	TS_KN3-F_COMe_2Pyr_M11-6311++Gdp_back_trial2.log
43	"	PC	TS1	TS_KN3-F_COMe_2Pyr_M11-6311++Gdp_forward.log
44	"	PC	TS1	TS_KN3-F_COMe_2Pyr_M11-6311++Gdp_forward_trial3.log
45	"	PC	TS1	TS_KN3-F_CO2Me_2Pyr_M11-6311++Gdp.log
46	"	PC	TS1	TS_KN3-F_CO2Me_2Pyr_M11-6311++Gdp_forward.log
47	"	TS1	TS1	TS_Kacac-F_CHCCN2_2Pyr_M11-6311++Gdp_back.log
48	"	TS1	TS1	TS_Kacac-F_CHCCN2_2Pyr_M11-6311++Gdp.log

Note: The file names are generated based on the reaction coordinates and KNu, indicating the path to the specific log file for each reaction.
The reaction coordinate is indicated by the following abbreviations. SC: substrate complex; TS1: first transition state; MI: Meisenheimer intermediate; TS2: second transition state; PC: product complex.

The log files for the calculations of the deprotonation pathway of 2-fluoropyridyl substrates by potassium methoxide in Table SI-2-7 are listed below in Table SI-3-12.

Table SI-3-12

Entry	Subfolder	Comment	File name
1	CHC(CN)₂	protonated form	Pyridien_F_CHCCN2_neutral.log
2		potassium salt	K3-Pyridine_F_CHCCN2.log
3	COCF₃	protonated form	Pyridine_F_COCF3_neutral.log
4		potassium salt	K3-Pyridine_F_COCF3_trial2.log
5	CN	protonated form	Pyridine_F_CN_neutral.log
6		potassium salt	K3-Pyridine_F_CN.log
7	MeOX	methanol	MeOH.log
8		potassium methoxide	MeOKlog

The log files for the calculations of different nucleophiles with naphthalene shown in Figure SI-7 are listed in below in Table SI-3-13.

Table SI-3-13

Entry	KNu (sub folder)	-R (sub folder)	Reaction Coordinate[a]	File name
1	KOMe	-CHCCN2	SC	TS_KOMe-F_CHCCN2_Np_M11_6-311++Gdp_back.log
2	"	"	TS1	TS_KOMe-F_CHCCN2_Np_M11_6-311++Gdp_back.log
3	"	"	MI	TS_KOMe-F_CHCCN2_Np_M11_6-311++Gdp_forward.log
4	"	-COCF3	SC	TS_KOMe-F_COCF3_Np_M11_6-311++Gdp_forward.log
5	"	"	TS1	TS_KOMe-F_COCF3_Np_M11_6-311++Gdp_back.log
6	"	"	MI	TS_KOMe-F_COCF3_Np_M11_6-311++Gdp_forward_trial2.log
7	"	-CN	SC	TS_KOMe-F_CN_Np_M11_6-311++Gdp_back_trial2.log
8	"	"	TS1	TS_KOMe-F_CN_Np_M11_6-311++Gdp_forward_trial2.log
9	"	"	MI	TS_KOMe-F_CN_Np_M11_6-311++Gdp_forward.log
10	"	-COME	SC	TS_KOMe-F_COMe_Np_M11_6-311++Gdp_back.log
11	"	"	TS1	TS_KOMe-F_COMe_Np_M11_6-311++Gdp_forward_trial2.log
12	"	"	MI	TS_KOMe-F_COMe_Np_M11_6-311++Gdp_forward.log
Entry	KNu (sub folder)	-R (sub folder)	Reaction Coordinate[a]	File name
-------	-----------------	-----------------	------------------------	-----------
12	"	-CO2Me	SC	TS_KOMe-F_CO2Me_Np_M11_6-311++Gdp_back.log
13	"	"	TS1	TS_KOMe-F_CO2Me_Np_M11_6-311++Gdp.log
14	"	"	MI	TS_KOMe-F_CO2Me_Np_M11_6-311++Gdp_forward.sh
15	"	-CF3	SC	TS_KOMe-F_CF3_Np_M11_6-311++Gdp_back_trial2.log
16	"	"	TS1	TS_KOMe-F_CF3_Np_M11_6-311++Gdp_trial2.log
17	"	"	PC	TS_KOMe-F_CF3_Np_M11_6-311++Gdp_forward_trial2.log
18	"	-CCH	SC	TS_KOMe-F_CCH_Np_M11_6-311++Gdp_back.log
19	"	"	TS1	TS_KOMe-F_CCH_Np_M11_6-311++Gdp.log
20	"	"	MI	TS_KOMe-F_CCH_Np_M11_6-311++Gdp_forward_trial2.log
21	"	-CHCCN2	SC	TS_KSMe-F_CHCCN2_Np_M11_6-311++Gdp_back.log
22	"	"	MI	TS_KSMe-F_CHCCN2_Np_M11_6-311++Gdp_forward.log
23	"	-COCF3	SC	TS_KSMe-F_COCF3_Np_M11_6-311++Gdp_back_trial3.log
24	"	"	TS1	TS_KSMe-F_COCF3_Np_M11_6-311++Gdp.log
25	"	"	MI	TS_KSMe-F_COCF3_Np_M11_6-311++Gdp_forward_trial2.log
26	"	-CN	SC	TS_KSMe-F_CN_Np_M11_6-311++Gdp_back.log
27	"	"	MI	TS_KSMe-F_CN_Np_M11_6-311++Gdp_forward_trial2.log
28	"	"	MI	TS_KSMe-F_CN_Np_M11_6-311++Gdp_forward.log
29	"	-COMe	SC	TS_KSMe-F_COMe_Np_M11_6-311++Gdp_back.log
30	"	"	MI	TS_KSMe-F_COMe_Np_M11_6-311++Gdp_forward_trial2.log
31	"	-CO2Me	SC	TS_KSMe-F_CO2Me_Np_M11_6-311++Gdp_back.log
32	"	"	TS1	TS_KSMe-F_CO2Me_Np_M11_6-311++Gdp.log
33	"	-COCF3	SC	TS_KSMe-F_COCF3_Np_M11_6-311++Gdp_back_trial3.log
34	"	"	TS1	TS_KSMe-F_COCF3_Np_M11_6-311++Gdp.log
35	"	"	PC	TS_KSMe-F_COCF3_Np_M11_6-311++Gdp_forward_trial2.log
36	"	-CF3	SC	TS_KSMe-F_CF3_Np_M11_6-311++Gdp_back.log
37	"	"	TS1	TS_KSMe-F_CF3_Np_M11_6-311++Gdp.log
38	"	"	PC	TS_KSMe-F_CF3_Np_M11_6-311++Gdp_back.log
39	"	-CCH	SC	TS_KSMe-F_CCH_Np_M11_6-311++Gdp_back.log
40	"	"	TS1	TS_KSMe-F_CCH_Np_M11_6-311++Gdp_forward_trial2.log
41	"	"	PC	TS_KSMe-F_CCH_Np_M11_6-311++Gdp_forward.log
42	"	-COMe	SC	TS_KN3-F_COMe_Np_M11_6-311++Gdp_back.log
43	"	"	TS1	TS_KN3-F_COMe_Np_M11_6-311++Gdp_trial2.log
44	"	"	MI	TS_KN3-F_COMe_Np_M11_6-311++Gdp_forward.log
45	"	-CO2Me	SC	TS_KN3-F_CO2Me_Np_M11_6-311++Gdp_back.log
46	"	"	TS1	TS_KN3-F_CO2Me_Np_M11_6-311++Gdp.log
47	"	-CF3	SC	TS_KN3-F_CF3_Np_M11_6-311++Gdp_back.log
48	"	"	TS1	TS_KN3-F_CF3_Np_M11_6-311++Gdp_forward_trial2.log
49	"	"	PC	TS_KN3-F_CF3_Np_M11_6-311++Gdp_forward.log
50	"	-CCH	SC	TS_KN3-F_CCH_Np_M11_6-311++Gdp_back.log
51	"	"	TS1	TS_KN3-F_CCH_Np_M11_6-311++Gdp_forward_trial2.log
52	"	"	PC	TS_KN3-F_CCH_Np_M11_6-311++Gdp_forward.log
53	"	"	PC	TS_Kacac-F_COMe_Np_M11_6-311++Gdp_forward_log
54	"	-COMe	SC	TS_Kacac-F_COMe_Np_M11_6-311++Gdp_back_trial3.log
55	"	"	TS1	TS_Kacac-F_COMe_Np_M11_6-311++Gdp.log
56	"	"	MI	TS_Kacac-F_COMe_Np_M11_6-311++Gdp_forward.log
57	"	-CO2Me	SC	TS_Kacac-F_CO2Me_Np_M11_6-311++Gdp_back.log
58	"	"	TS1	TS_Kacac-F_CO2Me_Np_M11_6-311++Gdp_forward_trial2.log
59	"	"	MI	TS_Kacac-F_CO2Me_Np_M11_6-311++Gdp_forward.log
60	"	-CF3	SC	TS_Kacac-F_CF3_Np_M11_6-311++Gdp_back.log
61	"	"	TS1	TS_Kacac-F_CF3_Np_M11_6-311++Gdp_forward_trial2.log
Steric Effects

The log files for the calculations shown in Figure SI-8 are listed below in Table SI-3-14. For the examples with the aromatic system 1a-F see Table SI-3-7.

Entry	KNu (sub folder)	-R (sub folder)	Reaction Coordinate[a]	File name
62	"	"	MI	TS_Kacac-F_CF3_Np_M11_6-311++Gdp_forward.log
63	"	-CCH	SC	TS_Kacac-F_CCH_Np_M11_6-311++Gdp_back.log
64	"	"	TS1	TS_Kacac-F_CCH_Np_M11_6-311++Gdp.log
65	"	"	MI	TS_Kacac-F_CCH_Np_M11_6-311++Gdp_forward.log
66	"	-NCS	SC	TS_Kacac-F_NCS_Np_M11_6-311++Gdp_back.log
67	"	"	TS1	TS_Kacac-F_NCS_Np_M11_6-311++Gdp.log
68	"	"	MI	TS_Kacac-F_NCS_Np_M11_6-311++Gdp_forward.log
69	"	-Cl	SC	TS_Kacac-F_Cl_Np_M11_6-311++Gdp_back.log
70	"	"	MI	TS_Kacac-F_Cl_Np_M11_6-311++Gdp_forward.log
71	"	"	SC	TS_Kacac-F_Cl_Np_M11_6-311++Gdp_forward.log
72	"	-H	SC	TS_Kacac-F_H_Np_M11_6-311++Gdp_back.log
73	"	"	TS1	TS_Kacac-F_H_Np_M11_6-311++Gdp_trial2.log
74	"	"	PC	TS_Kacac-F_H_Np_M11_6-311++Gdp_forward.log
75	"	-Me	SC	TS_Kacac-F_Me_Np_M11_6-311++Gdp_back.log
76	"	"	TS1	TS_Kacac-F_Me_Np_M11_6-311++Gdp_forward.log
77	"	"	MI	TS_Kacac-F_Me_Np_M11_6-311++Gdp_forward.log
78	"	-OMe	SC	TS_Kacac-F_OMe_Np_M11_6-311++Gdp_back.log
79	"	"	TS1	TS_Kacac-F_OMe_Np_M11_6-311++Gdp_forward.log
80	"	"	PC	TS_Kacac-F_OMe_Np_M11_6-311++Gdp_forward.log
81	"	-NHAc	SC	TS_Kacac-F_NHAc_Np_M11_6-311++Gdp_back.log
82	"	"	TS1	TS_Kacac-F_NHAc_Np_M11_6-311++Gdp_forward.log
83	"	"	MI	TS_Kacac-F_NHAc_Np_M11_6-311++Gdp_forward.log

[a] The reaction coordinate is indicated by the following abbreviations. SC: substrate complex; TS1: first transition state; MI: Meisenheimer intermediate; TS2: second transition state; PC: product complex.
Entry	KNu/Ar (sub folder)	-R (sub folder)	Reaction Coordinate\(\text{a}\)	File name
18	"	-CHCCN2	SC	TS_KN3-F_CHCCN2_ortho-di-Me_M11_6-311++Gdp_back.log
19	"	"	TS1	TS_KN3-F_CHCCN2_ortho-di-Me_M11_6-311++Gdp.log
20	"	"	Mi	TS_KN3-F_CHCCN2_ortho-di-Me_M11_6-311++Gdp_forward_trial2.log
21	"	-COCF3	SC	TS_KN3-F_COCF3_ortho-di_Me_M11-6311++Gdp_back.log
22	"	"	TS1	TS_KN3-F_COCF3_ortho-di_Me_M11-6311++Gdp.log
23	"	"	Mi	TS_KN3-F_COCF3_ortho-di_Me_M11-6311++Gdp_forward_trial2.log
24	"	-CN	SC	TS_KN3-F_CN_ortho-di-Me_M11-6311++Gdp_back.log
25	"	"	TS1	TS_KN3-F_CN_ortho-di-Me_M11-6311++Gdp.log
26	"	"	PC	TS_KN3-F_CN_ortho-di-Me_M11-6311++Gdp_forward.log
27	"	-COMe	SC	TS_KN3-F_COMe_ortho-di-Me_M11-6311++Gdp_back_trial2.log
28	"	"	TS1	TS_KN3-F_COMe_ortho-di-Me_M11-6311++Gdp_forward.log
29	"	"	PC	TS_KN3-F_COMe_ortho-di-Me_M11-6311++Gdp_forward.log
30	2d-K (Me)	-CHCCN2	SC	TS_Kacac-F_CHCCN2_ortho-Me_M11_6-311++Gdp_back.log
31	"	"	TS1	TS_Kacac-F_CHCCN2_ortho-Me_M11_6-311++Gdp.log
32	"	"	Mi	TS_Kacac-F_CHCCN2_ortho-Me_M11_6-311++Gdp_forward.log
33	"	-COCF3	SC	TS_Kacac-F_COCF3_ortho-Me_M11-6311++Gdp_back.log
34	"	"	TS1	TS_Kacac-F_COCF3_ortho-Me_M11-6311++Gdp.log
35	"	"	Mi	TS_Kacac-F_COCF3_ortho-Me_M11-6311++Gdp_forward.log
36	"	-CN	SC	TS_Kacac-F_ortho-Me_CN_M11_6-311++Gdp_back.log
37	"	"	TS1	TS_Kacac-F_ortho-Me_CN_M11_6-311++Gdp.log
38	"	"	PC	TS_Kacac-F_ortho-Me_CN_M11_6-311++Gdp_forward.log
39	"	-COMe	SC	TS_Kacac-F_COMe_ortho-Me_M11_6-311++Gdp_back.log
40	"	"	TS1	TS_Kacac-F_COMe_ortho-Me_M11_6-311++Gdp_forward.log
41	"	"	PC	TS_Kacac-F_COMe_ortho-Me_M11_6-311++Gdp_forward_trial2.log
42	2d-K (di-Me)	-COCF3	SC	TS_Kacac-F_COCF3_ortho-di-Me_M11_6-311++Gdp_back.log
43	"	"	TS1	TS_Kacac-F_COCF3_ortho-di-Me_M11_6-311++Gdp_forward.log
44	"	"	Mi	TS_Kacac-F_COCF3_ortho-di-Me_M11_6-311++Gdp_forward.log
45	"	-CN	SC	TS_Kacac-F_ortho-di-Me_CN_M11_6-311++Gdp_back.log
46	"	"	TS1	TS_Kacac-F_ortho-di-Me_CN_M11_6-311++Gdp_forward.log
47	"	"	Mi	TS_Kacac-F_ortho-di-Me_CN_M11_6-311++Gdp_forward.log
48	"	-COMe	SC	TS_Kacac-F_COMe_ortho-di-Me_M11_6-311++Gdp_back.log
49	"	"	TS1	TS_Kacac-F_COMe_ortho-di-Me_M11_6-311++Gdp_forward.log
50	"	"	Mi	TS_Kacac-F_COMe_ortho-di-Me_M11_6-311++Gdp_forward.log
51	"	-CO2Me	SC	TS_Kacac-F_CO2Me_ortho-di-Me_M11_6-311++Gdp_back.log
52	"	"	TS1	TS_Kacac-F_CO2Me_ortho-di-Me_M11_6-311++Gdp_forward.log
53	"	"	Mi	TS_Kacac-F_CO2Me_ortho-di-Me_M11_6-311++Gdp_forward.log
54	"	-CF3	SC	TS_Kacac-F_CF3_ortho-di-Me_M11_6-311++Gdp_back.log
55	"	"	TS1	TS_Kacac-F_CF3_ortho-di-Me_M11_6-311++Gdp_forward.log
56	"	"	Mi	TS_Kacac-F_CF3_ortho-di-Me_M11_6-311++Gdp_forward.log
57	"	-CCH	SC	TS_Kacac-F_CCH_ortho-di-Me_M11_6-311++Gdp_back.log
58	"	"	TS1	TS_Kacac-F_CCH_ortho-di-Me_M11_6-311++Gdp_forward.log
59	"	"	Mi	TS_Kacac-F_CCH_ortho-di-Me_M11_6-311++Gdp_forward.log
60	"	-NCS	SC	TS_Kacac-F_NCS_ortho-di-Me_M11_6-311++Gdp_back.log
61	"	"	TS1	TS_Kacac-F_NCS_ortho-di-Me_M11_6-311++Gdp_forward.log
62	"	"	Mi	TS_Kacac-F_NCS_ortho-di-Me_M11_6-311++Gdp_forward.log
63	"	-Cl	SC	TS_Kacac-F_Cl_ortho-di-Me_M11_6-311++Gdp_back.log
64	"	"	TS1	TS_Kacac-F_Cl_ortho-di-Me_M11_6-311++Gdp_forward.log
65	"	"	Mi	TS_Kacac-F_Cl_ortho-di-Me_M11_6-311++Gdp_forward.log
66	"	-H	SC	TS_Kacac-F_H_ortho-di-Me_M11_6-311++Gdp_back.log
67	"	"	TS1	TS_Kacac-F_H_ortho-di-Me_M11_6-311++Gdp_forward.log
3.5. Effect of the Aryl Fluoride Electrophile

The log files for the calculations of different aromatic systems with the potassium methoxide nucleophile shown in Figure 4 in the main text are listed in below in Table SI-3-15. For the examples with the aromatic systems 1a-R-F, 1d-R-F and 1b-R-F see Table SI-3-7, Table SI-3-11 and Table SI-3-13, respectively.

Entry	Aromatic system (sub folder)	-R (sub folder)	Reaction Coordinate[a]	File name
68	Pyrimidine	-COMe	MI	TS_KOMe-F_COMe_Pyrm_M11-6311++Gdp_back.log
69		-Me	TS_KOMe-F_COMe_Pyrm_M11-6311++Gdp_back.log	
70		-OMe	TS_KOMe-F_COMe_Pyrm_M11-6311++Gdp_back.log	
71	Anthracene	-CO2Me	MI	TS_KOMe-F_CO2Me_Ant_M11_6-311++Gdp_back.log
72		-CF3	MI	TS_KOMe-F_CF3_Ant_M11_6-311++Gdp_back.log
73		-CCH	MI	TS_KOMe-F_CCH_Ant_M11_6-311++Gdp_back.log
74		-NCS	MI	TS_KOMe-F_NCS_Ant_M11_6-311++Gdp_back.log

[a] The reaction coordinate is indicated by the following abbreviations. SC: substrate complex; TS1: first transition state; MI: Meisenheimer intermediate; TS2: second transition state; PC: product complex.
The reaction coordinate is indicated by the following abbreviations. SC: substrate complex; TS1: first transition state; MI: Meisenheimer intermediate; TS2: second transition state; PC: product complex.

The log files for the calculations used to correlate electron affinities and the mechanistic turning points shown in Figure 5 in the main text are listed in below in Table SI-3-16. For the calculation of the S_NAr reaction pathway with the aromatic systems 1a-R-F to 1e-R-F see Table SI-3-7 (1a-R-F), Table SI-3-11 (1d-R-F) and Table SI-3-13 (1b-R-F) and Table SI-3-15 (1c-R-F and 1e-R-F) respectively.

Table SI-3-16

Entry	Aromatic system (sub folder)	-R (sub folder)	Reaction Coordinate[^a]	File name
1	1a-R-F (Benzene)	-NO	neutral	EA_Benzene_NO-F_neutral.log
2		-NO	radical-anion	EA_Benzene_NO-F_rad-anion.log
3		-NO2	neutral	EA_Benzene_NO2-F_neutral.log
4		-NO2	radical-anion	EA_Benzene_NO2-F_rad-anion.log
5		-COCF3	neutral	EA_Benzene_COCF3-F_neutral.log
6		-COCF3	radical-anion	EA_Benzene_COCF3-F_rad-anion.log
7		-CN	neutral	EA_Benzene_CN-F_neutral.log
8		-CN	radical-anion	EA_Benzene_CN-F_rad-anion.log
9		-COMe	neutral	EA_Benzene_COMe-F_neutral.log
10		-COMe	radical-anion	EA_Benzene_COMe-F_rad-anion.log
11		-CO2Me	neutral	EA_Benzene_CO2Me-F_neutral.log
12		-CO2Me	radical-anion	EA_Benzene_CO2Me-F_rad-anion.log
13		-CF3	neutral	EA_Benzene_CF3-F_neutral.log
14		-CF3	radical-anion	EA_Benzene_CF3-F_rad-anion_trial2.log
15		-CCH	neutral	EA_Benzene_CCH-F_neutral.log
16		-CCH	radical-anion	EA_Benzene_CCH-F_rad-anion_trial2.log
17		-NCS	neutral	EA_Benzene_NCS-F_neutral.log
18		-NCS	radical-anion	EA_Benzene_NCS-F_rad-anion_trial2.log
19		-Cl	neutral	EA_Benzene_Cl-F_neutral.log
20		-Cl	radical-anion	EA_Benzene_Cl-F_rad-anion.log
21		-H	neutral	EA_Benzene_H-F_neutral.log
22		-H	radical-anion	EA_Benzene_H-F_rad-anion.log
23		-Me	neutral	EA_Benzene_Me-F_neutral.log
24	1b-R-F (Naphthalene)	-CHCCN2	neutral	EA_Naphthalene_CHCCN2_neutral_pop.log
25		-CHCCN2	radical-anion	EA_Naphthalene_CHCCN2_rad-anion.log
26		-COCF3	neutral	EA_Naphthalene_COCF3-F_rad-anion_trial2.log
27		-COCF3	radical-anion	EA_Naphthalene_COCF3-F_rad-anion_trial2.log
28		-CN	neutral	EA_Naphthalene_CN-F_neutral_pop.log

[^a]: The reaction coordinate is indicated by the following abbreviations.
Entry	Aromatic system (sub folder)	-R (sub folder)	Reaction Coordinate	File name
		-COMe	neutral	EA_Naphthalene_COMe-F_trial2_neutral_pop.log
		"	radical-anion	EA_Naphthalene_COMe-F_rad-anion.log
		-CO2Me	neutral	EA_Naphthalene_CO2Me-F_neutral.log
		"	radical-anion	EA_Naphthalene_CO2Me-F_rad-anion.log
		-CF3	neutral	EA_Naphthalene_CF3-F_neutral.log
		"	radical-anion	EA_Naphthalene_CF3-F_rad-anion.log
		-CCH	neutral	EA_Naphthalene_CCH-F_neutral.pop.log
		"	radical-anion	EA_Naphthalene_CCH-F_rad-anion.log
1c-R-F (Anthracene)	-CO2Me	neutral	EA_Anthracene_CO2Me-F_neutral_pop.log	
		"	radical-anion	EA_Anthracene_CO2Me-F_rad-anion.log
		-CF3	neutral	EA_Anthracene_CF3-F_neutral_pop.log
		"	radical-anion	EA_Anthracene_CF3-F_rad-anion.log
		-CCH	neutral	EA_Anthracene_CCH-F_neutral_pop.log
		"	radical-anion	EA_Anthracene_CCH-F_rad-anion.log
		-NCS	neutral	EA_Anthracene_NCS-F_neutral.log
		"	radical-anion	EA_Anthracene_NCS-F_rad-anion.log
28		-Cl	neutral	EA_Anthracene_Cl-F_neutral.pop.log
		"	radical-anion	EA_Anthracene_Cl-F_rad-anion.log
30		-H	neutral	EA_Anthracene_H-F_neutral_pop.log
		"	radical-anion	EA_Anthracene_H-F_rad-anion.log
		-Me	neutral	EA_Anthracene_Me-F_neutral_pop.log
		"	radical-anion	EA_Anthracene_Me-F_rad-anion.log
1d-R-F (Pyridine)	-CHCCN2	neutral	EA_Pyridine_F_CHCCN2_neutral_pop.log	
		"	radical-anion	EA_Pyridine_F_CHCCN2_rad-anion.log
		-CO2F3	neutral	EA_Pyridine_CO2F3-F_neutral_pop.log
		"	radical-anion	EA_Pyridine_CO2F3-F_rad-anion.log
		-CN	neutral	EA_Pyridine_F_CN_neutral_pop.log
		"	radical-anion	EA_Pyridine_F_CN_rad-anion.log
		-COMe	neutral	EA_Pyridine_COMe-F_neutral_pop.log
		"	radical-anion	EA_Pyridine_COMe-F_rad-anion.log
		-CO2Me	neutral	EA_Pyridine_CO2Me-F_neutral_pop.log
		"	radical-anion	EA_Pyridine_CO2Me-F_rad-anion.log
		-CF3	neutral	EA_Pyridine_CF3-F_neutral_trial2.log
		"	radical-anion	EA_Pyridine_CF3-F_rad-anion.log
		-CCH	neutral	EA_Pyridine_F_CCH_neutral_pop.log
		"	radical-anion	EA_Pyridine_F_CCH_rad-anion.log
1e-R-F (Pyrimidine)	-COMe	neutral	EA_Pyrimidine_COMe-F_neutral_pop.log	
		"	radical-anion	EA_Pyrimidine_COMe-F_rad-anion.log
31		-CO2Me	neutral	EA_Pyrimidine_CO2Me-F_neutral_pop.log
33		-CF3	neutral	EA_Pyrimidine_CF3-F_neutral_pop.log
34		"	radical-anion	EA_Pyrimidine_CF3-F_rad-anion.log
35		-CCH	neutral	EA_Pyrimidine_CCH-F_neutral_pop.log
36		"	radical-anion	EA_Pyrimidine_CCH-F_rad-anion.log
37		-NCS	neutral	EA_Pyrimidine_NCS-F_neutral.log
38		"	radical-anion	EA_Pyrimidine_NCS-F_rad-anion.log
Entry	Aromatic system (sub folder)	-R (sub folder)	Reaction Coordinate[a]	File name
-------	------------------------------	----------------	------------------------	-----------
39	*	-Cl	neutral	EA_Pyrimidine_CI-F_neutral.log
	*	"	radical-anion	EA_Pyrimidine_CI-F_rad-anion.log
	*	-H	neutral	EA_Pyrimidine_F_H_neutral_pop.log
	"	radical-anion	EA_Pyrimidine_F_H_rad-anion.log	
	"	-Me	neutral	EA_Pyrimidine_Me-F_neutral.log
	"	radical-anion	EA_Pyrimidine_Me-F_rad-anion.log	
	1f-R-F (Quinoline)	-CCH	neutral	EA_Quinoline_F_CCH_M11_6-311++Gdp_neutral_pop.log
	"	"	radical-anion	EA_Quinoline_F_CCH_M11_6-311++Gdp_rad-anion.log
	"	-NCS	neutral	EA_Quinoline_NCS-F_neutral_pop.log
	"	"	radical-anion	EA_Quinoline_NCS-F_rad-anion.log
	"	-Cl	neutral	EA_Quinoline_CI-F_neutral_pop.log
	“	radical-anion	EA_Quinoline_CI-F_rad-anion.log	
	“	-H	neutral	EA_Quinoline_H-F_neutral_pop.log
	“	radical-anion	EA_Quinoline_H-F_rad-anion_pop.log	
	“	-CCH	SC	TS_KOMe-F_CCH_Quinoline_M11_6-311++Gdp_back.log
	“	TS1	TS_KOMe-F_CCH_Quinoline_M11_6-311++Gdp.log	
	“	MI	TS_KOMe-F_CCH_Quinoline_M11_6-311++Gdp_forward.log	
	"	-NCS	SC	TS_KOMe-F_NCS_Quinoline_M11_6-311++Gdp_back.log
	“	TS1	TS_KOMe-F_NCS_Quinoline_M11_6-311++Gdp.log	
	“	MI	TS_KOMe-F_NCS_Quinoline_M11_6-311++Gdp_forward.log	
	“	-Cl	SC	TS_KOMe-F_CI_Quinoline_M11_6-311++Gdp_back.log
	40	TS1	TS_KOMe-F_CI_Quinoline_M11_6-311++Gdp.log	
	41	"	PC	TS_KOMe-F_CI_Quinoline_M11_6-311++Gdp_forward.log
	42	"	SC	TS_KOMe-F_H_Quinoline_M11_6-311++Gdp_back.log
	43	"	TS1	TS_KOMe-F_H_Quinoline_M11_6-311++Gdp.log
	44	"	PC	TS_KOMe-F_H_Quinoline_M11_6-311++Gdp_forward.log
	45	1g-R-F (Isoquinoline)	-CCH neutral	EA_Isoquinoline_F_CCH_M11_6-311++Gdp_neutral_pop.log
	"	radical-anion	EA_Isoquinoline_F_CCH_M11_6-311++Gdp_rad-anion.log	
	“	-NCS	neutral	EA_Isoquinoline_F_NCS_neutral_pop.log
	“	radical-anion	EA_Isoquinoline_F_NCS_rad-anion_pop.log	
	“	-Cl	neutral	EA_Isoquinoline_F_CI_M11_6-311++Gdp_rad-anion.log
	"	radical-anion	EA_Isoquinoline_F_CI_M11_6-311++Gdp_pop.log	
	“	-H	neutral	EA_Isoquinoline_F_H_M11_6-311++Gdp_neutral_pop.log
	"	radical-anion	EA_Isoquinoline_F_H_M11_6-311++Gdp_rad-anion.log	
	“	-CCH	SC	TS_KOMe-F_CCH_Isoquinoline_M11_6-311++Gdp_back.log
	“	TS1	TS_KOMe-F_CCH_Isoquinoline_M11_6-311++Gdp.log	
	“	MI	TS_KOMe-F_CCH_Isoquinoline_M11_6-311++Gdp_forward.log	
	“	-NCS	SC	TS_KOMe-F_ICI_Quinoline_M11_6-311++Gdp_back.log
	“	TS1	TS_KOMe-F_ICI_Quinoline_M11_6-311++Gdp.log	
	“	MI	TS_KOMe-F_ICI_Quinoline_M11_6-311++Gdp_forward.log	
	“	-Cl	SC	TS_KOMe-F_CI_Quinoline_M11_6-311++Gdp_back.log
	“	TS1	TS_KOMe-F_CI_Quinoline_M11_6-311++Gdp.log	
	“	MI	TS_KOMe-F_CI_Quinoline_M11_6-311++Gdp_forward.log	
	“	-CCH	SC	TS_KOMe-F_CI_Quinoline_M11_6-311++Gdp_back.log
	“	TS1	TS_KOMe-F_CI_Quinoline_M11_6-311++Gdp.log	
	“	MI	TS_KOMe-F_CI_Quinoline_M11_6-311++Gdp_forward.log	
	“	-Cl	SC	TS_KOMe-F_CI_Quinoline_M11_6-311++Gdp_back.log
	“	TS1	TS_KOMe-F_CI_Quinoline_M11_6-311++Gdp.log	
	“	MI	TS_KOMe-F_CI_Quinoline_M11_6-311++Gdp_forward.log	
	“	-H	SC	TS_KOMe-F_H_Quinoline_M11_6-311++Gdp_back.log
	“	TS1	TS_KOMe-F_H_Quinoline_M11_6-311++Gdp.log	
	“	MI	TS_KOMe-F_H_Quinoline_M11_6-311++Gdp_forward.log	
	“	-CCH	SC	TS_KOMe-F_H_Quinoline_M11_6-311++Gdp_back.log
	“	TS1	TS_KOMe-F_H_Quinoline_M11_6-311++Gdp.log	
	“	MI	TS_KOMe-F_H_Quinoline_M11_6-311++Gdp_forward.log	
	“	-NCS	neutral	EA_Acridine_F_CCH_neutral_pop.log
	“	radical-anion	EA_Acridine_F_CCH_rad-anion.log	
	“	-NCS	neutral	EA_Acridine_F_NCS_neutral_pop.log
Entry	Aromatic system (sub folder)	-R (sub folder)	Reaction Coordinate	File name
-------	-----------------------------	-----------------	---------------------	-----------
		radical-anion	EA_Acridine_F_NCS_rad-anion.log	
		-Cl neutral	EA_Acridine_F_Cl_neutral_pop.log	
		radical-anion	EA_Acridine_F_Cl_rad-anion.log	
		-H neutral	EA_Acridine_F_H_neutral_pop.log	
		radical-anion	EA_Acridine_F_H_rad-anion.log	
		-Me neutral	EA_Acridine_F_Me_neutral_pop.log	
		radical-anion	EA_Acridine_F_Me_rad-anion.log	
		-NHAc neutral	EA_Acridine_F_NHAc_neutral_pop.log	
		radical-anion	EA_Acridine_F_NHAc_rad-anion.log	
	-CCH SC	TS_KOMe-F_CCH_Acridine_M11_6-311++Gdp_back.log		
		TS1	TS_KOMe-F_CCH_Acridine_M11_6-311++Gdp.log	
	MI	MI	TS_KOMe-F_CCH_Acridine_M11_6-311++Gdp_forward.log	
	TS1	TS_KOMe-F_CCH_Acridine_M11_6-311++Gdp_back.log		
		PC	TS_KOMe-F_CCH_Acridine_M11_6-311++Gdp_forward_trial4.log	
		TS1	TS_KOMe-F_CCH_Acridine_M11_6-311++Gdp_forward_trial2.log	
	PC	PC	TS_KOMe-F_CCH_Acridine_M11_6-311++Gdp_forward_trial2.log	
		TS1	TS_KOMe-F_CCH_Acridine_M11_6-311++Gdp_forward_trial2.log	
	PC	PC	TS_KOMe-F_CCH_Acridine_M11_6-311++Gdp_forward_trial2.log	
		TS1	TS_KOMe-F_CCH_Acridine_M11_6-311++Gdp_forward_trial2.log	
		PC	TS_KOMe-F_CCH_Acridine_M11_6-311++Gdp_forward_trial2.log	
		TS1	TS_KOMe-F_CCH_Acridine_M11_6-311++Gdp_forward_trial2.log	
		PC	TS_KOMe-F_CCH_Acridine_M11_6-311++Gdp_forward_trial2.log	
		TS1	TS_KOMe-F_CCH_Acridine_M11_6-311++Gdp_forward_trial2.log	
		PC	TS_KOMe-F_CCH_Acridine_M11_6-311++Gdp_forward_trial2.log	
1i-R-F (N-Me-Indole)	-NO2 neutral	EA_NMeldone_NO2_F_neutral_pop.log		
		radical-anion	EA_NMeldone_NO2_F_rad-anion.log	
		-COCF3 neutral	EA_NMeldone_COCF3_F_neutral_pop.log	
		radical-anion	EA_NMeldone_COCF3_F_rad-anion.log	
		-CN neutral	EA_NMeldone_CN_F_neutral_pop.log	
		radical-anion	EA_NMeldone_CN_F_rad-anion.log	
		-COMe neutral	EA_NMeldone_COMe_F_neutral_pop.log	
		radical-anion	EA_NMeldone_COMe_F_rad-anion.log	
		-CO2Me neutral	EA_NMeldone_CO2Me_F_neutral_pop.log	
		radical-anion	EA_NMeldone_CO2Me_F_rad-anion.log	
		-CF3 neutral	EA_NMeldone_CF3_F_neutral_pop.log	
		radical-anion	EA_NMeldone_CF3_F_rad-anion.log	
	-NO2 SC	TS_NMeldone_KOMe_NO2_F_M11_6-311++Gdp_back.log		
		TS1	TS_NMeldone_KOMe_NO2_F_M11_6-311++Gdp.log	
	MI	MI	TS_NMeldone_KOMe_NO2_F_M11_6-311++Gdp_forward.log	
	-COCF3 SC	TS_NMeldone_KOMe_COCF3_F_M11_6-311++Gdp_back.log		
		TS1	TS_NMeldone_KOMe_COCF3_F_M11_6-311++Gdp.log	
	MI	MI	TS_NMeldone_KOMe_COCF3_F_M11_6-311++Gdp_forward.log	
		TS1	TS_NMeldone_KOMe_COCF3_F_M11_6-311++Gdp_forward_trial2.log	
		PC	TS_NMeldone_KOMe_COCF3_F_M11_6-311++Gdp_forward_trial2.log	
		TS1	TS_NMeldone_KOMe_COCF3_F_M11_6-311++Gdp_forward_trial2.log	
		PC	TS_NMeldone_KOMe_COCF3_F_M11_6-311++Gdp_forward_trial2.log	
		TS1	TS_NMeldone_KOMe_COCF3_F_M11_6-311++Gdp_forward_trial2.log	
		PC	TS_NMeldone_KOMe_COCF3_F_M11_6-311++Gdp_forward_trial2.log	
		TS1	TS_NMeldone_KOMe_COCF3_F_M11_6-311++Gdp_forward_trial2.log	
		PC	TS_NMeldone_KOMe_COCF3_F_M11_6-311++Gdp_forward_trial2.log	
		TS1	TS_NMeldone_KOMe_COCF3_F_M11_6-311++Gdp_forward_trial2.log	
		PC	TS_NMeldone_KOMe_COCF3_F_M11_6-311++Gdp_forward_trial2.log	
		TS1	TS_NMeldone_KOMe_COCF3_F_M11_6-311++Gdp_forward_trial2.log	
		PC	TS_NMeldone_KOMe_COCF3_F_M11_6-311++Gdp_forward_trial2.log	
Entry	Aromatic system (sub folder)	-R (sub folder)	Reaction Coordinate\(\text{a}\)	File name
-------	-----------------------------	----------------	-----------------------------	-----------
			TS1	TS_NMelndole_KOMe_COMe_F_M11_6-311++Gdp.log
		MI	TS_NMelndole_KOMe_COMe_F_M11_6-311++Gdp_forward.log	
	-CO2Me	SC	TS_NMelndole_KOMe_CO2Me_F_M11_6-311++Gdp_back.log	
		TS1	TS_NMelndole_KOMe_CO2Me_F_M11_6-311++Gdp.log	
	-PC	SC	TS_NMelndole_KOMe_CO2Me_F_M11_6-311++Gdp_back.log	
		TS1	TS_NMelndole_KOMe_CO2Me_F_M11_6-311++Gdp.log	
		PC	TS_NMelndole_KOMe_CO2Me_F_M11_6-311++Gdp_forward.log	
1j-R-f (Benzofuran)	-NO2	neutral	EA_Benzofuran_NO2_F_neutral_pop.log	
		radical-anion	EA_Benzofuran_NO2_F_rad-anion.log	
	-COCF3	neutral	EA_Benzofuran_COCF3_F_neutral_pop.log	
		radical-anion	EA_Benzofuran_COCF3_F_rad-anion.log	
	-CN	neutral	EA_Benzofuran_CN_F_neutral_pop.log	
		radical-anion	EA_Benzofuran_CN_F_rad-anion.log	
	-COMe	neutral	EA_Benzofuran_COMe_F_neutral_pop.log	
		radical-anion	EA_Benzofuran_COMe_F_rad-anion.log	
	-CO2Me	neutral	EA_Benzofuran_CO2Me_F_neutral_pop.log	
		radical-anion	EA_Benzofuran_CO2Me_F_rad-anion.log	
	-CF3	neutral	EA_Benzofuran_CF3_F_neutral_pop.log	
		radical-anion	EA_Benzofuran_CF3_F_rad-anion.log	
	-CCH	neutral	EA_Benzofuran_CCH_F_neutral_pop.log	
		radical-anion	EA_Benzofuran_CCH_F_rad-anion.log	
	-NCS	neutral	EA_Benzofuran_NCS_F_neutral_pop.log	
		radical-anion	EA_Benzofuran_NCS_F_rad-anion.log	
	-Cl	neutral	EA_Benzofuran_Cl_F_neutral_pop.log	
		radical-anion	EA_Benzofuran_Cl_F_rad-anion.log	
	-NO2	SC	TS_Benzofuran_KOMe_NO2_F_M11_6-311++Gdp_back.log	
		TS1	TS_Benzofuran_KOMe_NO2_F_M11_6-311++Gdp.log	
	-M1	SC	TS_Benzofuran_KOMe_CO2Me_F_M11_6-311++Gdp_back.log	
		TS1	TS_Benzofuran_KOMe_CO2Me_F_M11_6-311++Gdp.log	
		MI	TS_Benzofuran_KOMe_CO2Me_F_M11_6-311++Gdp_forward.log	
	-CN	SC	TS_Benzofuran_KOMe_CO2Me_F_M11_6-311++Gdp_back.log	
		TS1	TS_Benzofuran_KOMe_CO2Me_F_M11_6-311++Gdp.log	
		PC	TS_Benzofuran_KOMe_CO2Me_F_M11_6-311++Gdp_forward.log	
		TS1	TS_Benzofuran_KOMe_CO2Me_F_M11_6-311++Gdp.log	
		PC	TS_Benzofuran_KOMe_CO2Me_F_M11_6-311++Gdp_forward_trial2.log	
		TS1	TS_Benzofuran_KOMe_CO2Me_F_M11_6-311++Gdp.log	
		PC	TS_Benzofuran_KOMe_CO2Me_F_M11_6-311++Gdp_forward_trial2.log	
		TS1	TS_Benzofuran_KOMe_CO2Me_F_M11_6-311++Gdp.log	
	-CF3	SC	TS_Benzofuran_KOMe_CF3_F_M11_6-311++Gdp_back.log	
		TS1	TS_Benzofuran_KOMe_CF3_F_M11_6-311++Gdp.log	
		PC	TS_Benzofuran_KOMe_CF3_F_M11_6-311++Gdp_forward.log	
		TS1	TS_Benzofuran_KOMe_CF3_F_M11_6-311++Gdp.log	
		PC	TS_Benzofuran_KOMe_CF3_F_M11_6-311++Gdp_forward.log	
		TS1	TS_Benzofuran_KOMe_CF3_F_M11_6-311++Gdp.log	
		PC	TS_Benzofuran_KOMe_CF3_F_M11_6-311++Gdp_forward.log	
		TS1	TS_Benzofuran_KOMe_CF3_F_M11_6-311++Gdp.log	
		PC	TS_Benzofuran_KOMe_CF3_F_M11_6-311++Gdp_forward.log	
		TS1	TS_Benzofuran_KOMe_CF3_F_M11_6-311++Gdp.log	
		PC	TS_Benzofuran_KOMe_CF3_F_M11_6-311++Gdp_forward.log	
		TS1	TS_Benzofuran_KOMe_CF3_F_M11_6-311++Gdp.log	
		PC	TS_Benzofuran_KOMe_CF3_F_M11_6-311++Gdp_forward.log	
Entry	Aromatic system (sub folder)	-R (sub folder)	Reaction Coordinate\(^a\)	File name
-------	-----------------------------	----------------	-----------------------------	----------
"	"	TS1	TS_Benzofuran_KOMe_NCS_F_M11_6-311++Gdp.log	
"	"	PC	TS_Benzofuran_KOMe_NCS_F_M11_6-311++Gdp_forward.log	
"	-Cl	SC	TS_Benzofurn_KOMe_Cl_F_M11_6-311++Gdp_back.log	
"	"	TS1	TS_Benzofurn_KOMe_Cl_F_M11_6-311++Gdp.log	
"	"	PC	TS_Benzofurn_KOMe_Cl_F_M11_6-311++Gdp_forward_trial2.log	
1k-R-F (Benzothiophene)	-CN	neutral	Benzo thiophene_CN_F_M11_6-311++Gdp_neutral_pop.log	
"	"	radical-anion	Benzo thiophene_CN_F_M11_6-311++Gdp_rad-anion.log	
"	-COMe	neutral	Benzo thiophene_COMe_F_M11_6-311++Gdp_neutral_pop.log	
"	"	radical-anion	Benzo thiophene_COMe_F_M11_6-311++Gdp_rad-anion.log	
"	-CO2Me	neutral	EA_Benzo thiophene_CO2MeF_neutral.log	
"	"	radical-anion	EA_Benzo thiophene_CO2MeF_rad-anion.log	
"	-CF3	neutral	EA_Benzo thiophene_CF3F_neutral.log	
"	"	radical-anion	EA_Benzo thiophene_CF3F_rad-anion.log	
"	-CCH	neutral	Benzo thiophene_CCH_F_M11_6-311++Gdp_neutral_pop.log	
"	"	radical-anion	Benzo thiophene_CCH_F_M11_6-311++Gdp_rad-anion.log	
"	-NCS	neutral	Benzo thiophene_NCS_F_M11_6-311++Gdp_neutral_pop.log	
"	"	radical-anion	Benzo thiophene_NCS_F_M11_6-311++Gdp_rad-anion.log	
"	-Cl	neutral	Benzo thiophene_Cl_F_M11_6-311++Gdp_neutral_pop.log	
"	"	radical-anion	Benzo thiophene_Cl_F_M11_6-311++Gdp_rad-anion.log	
"	-CN	SC	TS_Benzo thiophene_KOMe_CN_F_M11_6-311++Gdp_back.log	
"	"	TS1	TS_Benzo thiophene_KOMe_CN_F_M11_6-311++Gdp_forward.log	
56	"	MI	TS_Benzo thiophene_KOMe_CO2MeF_M11_6-311++Gdp_forward.log	
57	"	COMe	TS_Benzo thiophene_KOMe_CO2MeF_M11_6-311++Gdp_back.log	
58	"	TS1	TS_Benzo thiophene_KOMe_CO2MeF_M11_6-311++Gdp_forward_trial2.log	
59	"	MI	TS_Benzo thiophene_KOMe_CO2MeF_M11_6-311++Gdp_forward.log	
60	"	CO2Me	TS_Benzo thiophene_KOMe_CO2MeF_M11_6-311++Gdp_back.log	
61	"	TS1	TS_Benzo thiophene_KOMe_CO2MeF_M11_6-311++Gdp_forward_trial2.log	
62	"	MI	TS_Benzo thiophene_KOMe_CO2MeF_M11_6-311++Gdp_forward.log	
63	"	CF3	TS_Benzo thiophene_KOMe_CF3F_M11_6-311++Gdp_forward.log	
64	"	TS1	TS_Benzo thiophene_KOMe_CF3F_M11_6-311++Gdp_forward_trial2.log	
65	"	PC	TS_Benzo thiophene_KOMe_CF3F_M11_6-311++Gdp_forward_trial2.log	
66	"	CCH	TS_Benzo thiophene_KOMe_CCH_F_M11_6-311++Gdp_forward_trial2.log	
67	"	TS1	TS_Benzo thiophene_KOMe_CCH_F_M11_6-311++Gdp_forward_trial2.log	
68	"	PC	TS_Benzo thiophene_KOMe_CCH_F_M11_6-311++Gdp_forward_trial2.log	
69	"	NCS	TS_Benzo thiophene_KOMe_NCS_F_M11_6-311++Gdp_forward_trial2.log	
70	"	TS1	TS_Benzo thiophene_KOMe_NCS_F_M11_6-311++Gdp_forward_trial2.log	
71	"	PC	TS_Benzo thiophene_KOMe_NCS_F_M11_6-311++Gdp_forward_trial2.log	
72	"	TS1	TS_Benzo thiophene_KOMe_Cl_F_M11_6-311++Gdp_forward_trial2.log	
73	"	PC	TS_Benzo thiophene_KOMe_Cl_F_M11_6-311++Gdp_forward_trial2.log	
74	"	PC	TS_Benzo thiophene_KOMe_Cl_F_M11_6-311++Gdp_forward_trial2.log	
75	11-R-F (N-Me-Pyrrole)	-NO2	EA_NMePyrrole_F_NO2_neutral_pop.log	
76	"	radical-anion	EA_NMePyrrole_F_NO2_rad-anion.log	
77	"	CHCCN2	EA_NMePyrrole_F_CHCCN2_neutral_pop.log	
78	"	radical-anion	EA_NMePyrrole_F_CHCCN2_rad-anion.log	
79	"	COCF3	EA_NMePyrrole_F_COFC3_neutral_pop.log	
Entry	Aromatic system (sub folder)	-R (sub folder)	Reaction Coordinate	File name
-------	-----------------------------	----------------	--------------------	-----------
80	-	radical-anion	EA_NMePyrrole_F_COOF3_rad-anion.log	
81	-CN	neutral	EA_NMePyrrole_F_CN_neutral_pop.log	
82	-	radical-anion	EA_NMePyrrole_F_COOMe_neutral_pop.log	
83	-COMe	neutral	EA_NMePyrrole_F_COOMe_rad-anion_pop.log	
84	-CO2Me	neutral	EA_NMePyrrole_F_CO2Me_neutral_pop.log	
85	-	radical-anion	EA_NMePyrrole_F_CO2Me_rad-anion.log	
86	-CF3	neutral	EA_NMePyrrole_F_CF3_neutral_pop.log	
		radical-anion	EA_NMePyrrole_F_CF3_rad-anion_pop.log	
	-NO2	SC	TS_KOMe_F_NO2_NMePyrrole_M11-6311++Gdp_back.log	
		TS1	TS_KOMe_F_NO2_NMePyrrole_M11-6311++Gdp_log	
		MI	TS_KOMe_F_NO2_NMePyrrole_M11-6311++Gdp_forward.log	
	-CHCCN2	SC	TS_KOMe_F_CHCCN2_NMePyrrole_M11-6311++Gdp_log	
		TS1	TS_KOMe_F_CHCCN2_NMePyrrole_M11-6311++Gdp_forward.log	
	-COCF3	SC	TS_KOMe_F_COCF3_NMePyrrole_M11-6311++Gdp_back.log	
		TS1	TS_KOMe_F_COCF3_NMePyrrole_M11-6311++Gdp_forward.log	
	-CN	SC	TS_KOMe_F_CN_NMePyrrole_M11-6311++Gdp_back.log	
		TS1	TS_KOMe_F_CN_NMePyrrole_M11-6311++Gdp_forward_trial2.log	
	-COMe	SC	TS_KOMe_F_COMe_NMePyrrole_M11-6311++Gdp_back.log	
		TS1	TS_KOMe_F_COMe_NMePyrrole_M11-6311++Gdp_trial2.log	
	-CO2Me	SC	TS_KOMe_F_CO2Me_NMePyrrole_M11-6311++Gdp_back.log	
		TS1	TS_KOMe_F_CO2Me_NMePyrrole_M11-6311++Gdp_forward.log	
	-CF3	SC	TS_KOMe_F_CF3_NMePyrrole_M11-6311++Gdp_back.log	
		TS1	TS_KOMe_F_CF3_NMePyrrole_M11-6311++Gdp_forward_trial4.log	
1m-R-F (Furan)	-NO2	neutral	Furan_F_NO2_neutral_pop.log	
		radical-anion	Furan_F_NO2_rad-anion_pop.log	
	-COCF3	neutral	Furan_F_COCF3_neutral_pop.log	
		radical-anion	Furan_F_COCF3_rad-anion_pop.log	
	-CN	neutral	Furan_F_CN_neutral_pop.log	
		radical-anion	Furan_F_CN_rad-anion_pop.log	
	-COMe	neutral	Furan_F_COMe_neutral_pop.log	
		radical-anion	Furan_F_COMe_rad-anion_pop.log	
	-CO2Me	neutral	Furan_F_CO2Me_neutral_pop.log	
		radical-anion	Furan_F_CO2Me_rad-anion_pop.log	
	-CF3	neutral	Furan_F_CF3_neutral_pop.log	
		radical-anion	Furan_F_CF3_rad-anion_trial3_pop.log	
	-CCH	neutral	Furan_F_CCH_neutral_pop.log	
		radical-anion	Furan_F_CCH_rad-anion_pop.log	
	-NCS	neutral	Furan_F_NCS_neutral_pop.log	
		radical-anion	Furan_F_NCS_rad-anion_pop.log	
	-NO2	SC	TS_KOMe_F_NO2_Furan_M11-6311++Gdp_back.log	
		TS1	TS_KOMe_F_NO2_Furan_M11-6311++Gdp_trial2.log	
		MI	TS_KOMe_F_NO2_Furan_M11-6311++Gdp_forward_pop.log	
	-COCF3	SC	TS_KOMe_F_COCF3_Furan_M11-6311++Gdp_back.log	
Entry	Aromatic system (sub folder)	-R (sub folder)	Reaction Coordinate[a]	File name
-------	-----------------------------	----------------	------------------------	-----------
	"	"	TS1	TS_KOMe-F_COCF3_Furan_M11-6311++Gdp.log
	"	-CN	TS1	TS_KOMe-F_CN_Furan_M11-6311++Gdp.log
	"	"	MI	TS_KOMe-F_CN_Furan_M11-6311++Gdp_forward.log
	"	-COMe	SC	TS_KOMe-F_COMe_Furan_M11-6311++Gdp_back_trial2.log
	"	"	MI	TS_KOMe-F_COMe_Furan_M11-6311++Gdp.log
	"	-CO2Me	SC	TS_KOMe-F_CO2Me_Furan_M11-6311++Gdp_back.log
	"	"	MI	TS_KOMe-F_CO2Me_Furan_M11-6311++Gdp_forward.log
87	"	-CF3	SC	TS_KOMe-F_CF3_Furan_M11-6311++Gdp_back.log
	"	"	PC	TS_KOMe-F_CF3_Furan_M11-6311++Gdp_forward.log
	"	-CCH	SC	TS_KOMe-F_CCH_Furan_M11-6311++Gdp_forward.log
	"	"	TS1	TS_KOMe-F_CCH_Furan_M11-6311++Gdp_trial2.log
	"	"	PC	TS_KOMe-F_CCH_Furan_M11-6311++Gdp_forward.log
	"	-NCS	SC	TS_KOMe-F_NCS_Furan_M11-6311++Gdp_back.log
	"	"	TS1	TS_KOMe-F_NCS_Furan_M11-6311++Gdp.log
	"	"	PC	TS_KOMe-F_NCS_Furan_M11-6311++Gdp_forward_trial2.log

[a] The reaction coordinate is indicated by the following abbreviations. SC: substrate complex; TS1: first transition state; MI: Meisenheimer intermediate; TS2: second transition state; PC: product complex, neutral: the neutral species (used for EA calculation); radical-anion: the radical anion species (no counter cation included, used for EA calculation).

3.6. S₅Ar Mechanism and the Hammett Correlation

The log files for the Hammett correlation studies shown in Figure 6, and Figure SI-9 can be found in Table SI-3-7.
4. References

[1] Gaussian 09, (both Revisions, A.02 or D.01, were used), M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ebara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2016.

[2] GaussView, Version 5, Roy Dennington, Todd A. Keith, and John M. Millan, Semichem Inc., Shawnee Mission, KS, 2016.

[3] R. Krishnan, J. S. Binkley, R. Seeger, J. A. Pople. Self-consistent molecular orbital methods. XX. A basis set for correlated wave functions. J. Chem. Phys. 1980, 72, 650–654.

[4] A. D. McLean, G. S. Chandler. Contracted Gaussian basis sets for molecular calculations. I. Second row atoms, Z=11-18. J. Chem. Phys. 1980, 72, 5639–5648.

[5] T. Clark, J. Chandersekhar, G. W. Spitznagel, P. V. Schleyer. Efficient Diffuse Function-Augmented Basis Sets for Anion Calculations. iii. the 3-21+G Basis Set for First-Row Elements, Li-F. J. Comput. Chem. 1983, 4, 294–301.

[6] M. J. Frisch, J. A. Pople, J. S. Binkley. Self-consistent molecular orbital methods 25. Supplementary functions for Gaussian basis sets. J. Chem. Phys. 1984, 80, 3265–3269.

[7] A. Bergner, M. Dolg, W. Küchle, H. Stoll, H. Preuß. Ab initio energy-adjusted pseudopotentials for elements of groups 13-17. Mol. Phys. 1993, 80, 1431–1441.

[8] V. Barone, M. Cossi. Quantum Calculation of Molecular Energies and Energy Gradients in Solution by a Conductor Solvent Model. J. Phys. Chem. A 1998, 102, 1995–2001.

[9] M. Cossi, N. Rega, G. Scalmani, V. Barone. Energies, structures, and electronic properties of molecules in solution with the C-PCM solvation model. J. Comput. Chem. 2003, 24, 669–681.

[10] C. Hansch, A. Leo, R. W. Taft. A survey of Hammett substituent constants and resonance and field parameters. Chem. Rev. 1991, 91, 165–195.

[11] E. E. Kwan, Y. Zeng, H. A. Besser, E. N. Jacobsen. Concerted nucleophilic aromatic substitutions. Nat. Chem. 2018, 10, 917–923.

[12] a) B. G. Cox, A. J. Parker. Solvation of Ions. XVIII. Protic-Dipolar Aprotic Solvent Effects on the Free Energies, Enthalpies, and Entropies of Activation of an Snar Reaction. J. Am. Chem. Soc. 1973, 95, 408–410. b) J. Su, Q. Chen, L. Lu, Y. Ma, G. H. L. Auyoung, R. Hua. Base-promoted nucleophilic fluoroarenes substitution of C-F bonds. Tetrahedron, 2018, 74, 303–307.

[13] A. H. M. Renfrew, J. A. Taylor, J. M. J. Whitmore, A. Williams. A single transition state in nucleophilic aromatic substitution: reaction of phenolate ions with 2-(4-nitrophenoxy)-4,6-dimethoxy-1,3,5-triazine in aqueous solution. J. Chem. Soc., Perkin Trans. 2 1993, 1703–1704.

[14] A. Hunter, M. Renfrew, J. A. Taylor, D. Rettura, J. M. J. Whitmore, A. Williams. Stepwise versus Concerted Mechanisms at Trigonal Carbon: Transfer of the 1,3,5-Triazinyl Group between Aryl Oxide Ions in Aqueous Solution. J. Am. Chem. Soc. 1995, 117, 5484–5491.

[15] J. Shakes, C. Raymond, D. Rettura, A. Williams, J. Chem. Soc., Perkin Trans. 2 1996, 1553–1557.

[16] N. R. Cullum, D. Rettura, J. M. J. Whitmore, A. Williams. The aminolysis and hydrolysis of N-(4,6-diphenoxy-1,3,5-triazin-2-yl) substituted pyridinium salts: concerted displacement mechanism. J. Chem. Soc., Perkin Trans. 2 1996, 1559–1563.

[17] W. Koch, M. C. Holthausen A Chemist’s Guide to Density Functional Theory, 2000, 2nd Ed. Wiley-
[18] G. Glockler. Carbon-halogen bond energies and bond distances. *J. Phys. Chem.* **1959**, *63*, 828–832.

[19] G. M. Anderson, I. Cameron, J. A. Murphy, T. Tuttle. Predicting the reducing power of organic super electron donors. *RSC Adv.* **2016**, *6*, 11335–11343.