SFBs of Japanese Plum (Prunus salicina): Cloning Seven Alleles and Determining Their Linkage to the S-RNase Gene

Gal Sapir
Migal, Galilee Technology Center, P.O. Box 831, Kiryat Shmona 11016, Israel; and B. Trivawks Bee Research Center, Department of Entomology, Faculty of Agricultural, Food and Environmental Quality Sciences, The Hebrew University of Jerusalem, Rehovot 76100, Israel

Raphael A. Stern and Martin Goldway
Migal, Galilee Technology Center, P.O. Box 831, Kiryat Shmona 11016, Israel; and the Department of Biotechnology, Faculty of Life Sciences, Tel-Hai Academic College, Upper Galilee, 12210, Israel

Sharoni Shafir
B. Trivawks Bee Research Center, Department of Entomology, Faculty of Agricultural, Food and Environmental Quality Sciences, The Hebrew University of Jerusalem, Rehovot 76100, Israel

Received for publication 28 Mar. 2007. Accepted for publication 19 June 2007.

Abstract. Japanese plum (Prunus salicina Lindl.), a species of the Rosaceae family, carries the S-RNase-mediated gametophytic self-incompatibility system. Self-incompatibility is manifested if the S-haplotype of the pollen is carried also by the pollinated flower. Thus, for fertilization to occur, the cultivars have to be genetically compatible. The haplotype is conferred by a S-locus, which contains the style-specific expressed S-RNase and the pollen-specific expressed F-box genes (SFB). Since both the S-RNase and the SFB genes are multiallelic and are characteristic of each of the S-haplotypes, they are ideal markers for molecular S-typing. In this work, seven SFBs, from eight Japanese plum cultivars, were cloned and sequenced. Five of the alleles were published recently and two SFBc and SFBb are new. The physical linkage of SFBb and SFBb to their adjacent S-RNase was determined; it is 544 base pairs (bp) and 404 bp for the Sb and Sc loci, respectively.

Self-incompatibility (SI) is the ability of a fertile hermaphrodite flowering plant to prevent self-fertilization by discriminating between self and nonself pollen. Japanese plum (Prunus salicina Lindl.), a species of the Rosaceae family, carries the S-RNase-mediated gametophytic self-incompatibility system (GSI system). This system was first identified in Solanaceae (Anderson et al., 1986) and later in Rosaceae (Sassa et al., 1992) and in Scrophulariaceae (Xue et al., 1996). Research in the three botanical families is brought together in an attempt to explore the S-RNase-mediated GSI system.

In GSI, the inhibition of a pollen grain is based on its haploid genotype (termed S-haplotype). SI is manifested if the S-haplotype of the pollen is carried also by the pollinated flower (McCubbin and Kao, 2000). The haplotype is conferred by a S-locus, which contains, among others, the style-specific expressed S-RNase and the pollen-specific expressed F-box genes (McClure et al., 1989; Zhu et al., 2004). Both genes are heteroallelic and are suspected of being involved in determining the specific self-pollen rejection; however, the mechanism of the system is still not fully understood. Several reviews describing the current perception of the S-RNase-mediated GSI system have been published recently (Goldway et al., 2007; McClure and Franklin-Tong, 2006; Takayama and Isogai, 2005).

As a result of the SI, for obtaining satisfactory yield, it is essential that Japanese plum orchards contain at least two cultivars that serve as pollinators of each other. Before the molecular genetic era, compatibility was determined in field experiments by using natural and hand-pollination of cultivar couples. However, because agronomic and environmental factors affect fruit-set levels, the method is inaccurate. Although S-RNase alleles are well known and have been studied for more than a decade, the pollen F-Box gene was identified only recently, first in Antirrhinum (Lai et al., 2002) and then in almond (Prunus dulcis) and Japanese apricot (Prunus mume) (Entani et al., 2003; Ushijima et al., 2003), both of the Prunus genus included in Prunoideae, a subfamily of Rosaceae, in Petunia inflata of the Solanaceae (Sijacic et al., 2004), and recently in apple (Malus domestica) and Japanese pear (Prunus pyrifolia) (Cheng et al., 2006; Sassa et al., 2007), which are in Maloideae, another subfamily of Rosaceae. The gene was termed SLF (S-Locus F-box) by Entani et al. (2003) and also SFB (S-haplotype-specific F-Box protein) by Ushijima et al. (2003).

In this article, we followed the latter, which has been already applied to other Prunus species. Because both the S-RNase and the SFB genes are multiallelic and are characteristic of each of the S-haplotypes, they are ideal markers for molecular S-typing. To date, 14 S-RNases were cloned from Japanese plum (Beppu et al., 2002, 2003; Sapir et al., 2004). In the present work, seven Japanese plum SFBs were cloned from nine cultivars. Five SFBs were also described in a recent work of Zhang et al. (2007).
sequenced from two different clones in both directions with automated sequencing using dye terminator cycle sequencing with fluorescent-labeled dye terminators on an ABI PRISM 377 DNA sequencer (PE Bio System, Foster City, CA).

Analysis of the physical distance between S-RNase and SFB in the cultivar ‘Golfrose’.

The physical distance between S-RNase and SFB in the cultivar ‘Golfrose’ was analyzed by PCR amplification using 20 ng of DNA, 5 mM of 10x PCR buffer containing 27.5 mM MgCl2, (Roche Diagnostics, Mannheim, Germany), 0.5 mM dNTP mix, 1 μM of PRL-C2 primer, designed from S-RNase C2 conserved region (Tao et al., 1999), 1 μM of SFBc-F primer, designed from the F-box motif of SFB (Romero et al., 2004), and 1 μL of Expand Long Template PCR System (5 unit/μL; Roche Diagnostics) in a 50-μL reaction mixture. The PCR conditions were as follows: initial cycle of 2 min at 94°C followed by 10 cycles of 10 s at 94°C, 30 s at 54°C, and 10 min at 68°C followed by 25 cycles of 15 s at 94°C, 30 s at 54°C, and 10 min + 20 s for each successive cycle at 68°C. The final cycle was 7 min at 68°C.

DNA sequence and its putative protein analysis. Analysis of the consensus contigs of each SFB genomic DNA and deduced amino acid sequence data were performed by LaserGene 6 (Madison, WI) software.

Results and Discussion

PCR products of SFBs were identified from cultivars with a previously determined S-RNase genotype (Sapir et al., 2004; unpublished data). For preventing misidentification, each SFB allele was cloned and sequenced at least twice from two or three different cultivars (Fig. 1). A total of seven alleles were cloned from the following nine cultivars as follows: SFB f from ‘Wickson’, SFB e from ‘Black Diamond’, SFB b from ‘Royal Zee’, SFB c from ‘440’, SFB g from ‘Songold’, SFB h from ‘Shiro’, SFB b from ‘Golfrose’, and SFB e from ‘Newyorker’.

DNA alignment revealed that all seven Japanese plum SFB alleles carry the previously described features of the SFB gene: a single F-box domain, four (hyper) variable regions (V1, V2, HVa, and HVb), and no introns (Fig. 1). The comparison of their putative amino acid showed they were highly polymorphic, ranging from 73.3% to 82.5% (Table 1). These levels of polymorphism resemble those of other Prunus SFBs. For example, in almond (Prunus dulcis), it ranges from 68.4% to 76.4% (Ushijima et al., 2003), in Japanese apricot (Prunus mume) from 74.9% to 80.2% (Entani et al., 2003), in sweet cherry (Prunus avium) from 75.3% to 81.1% (Ikeda et al., 2004), and in European apricot (Prunus armeniaca) from 67% to 83% (Romero et al., 2004). Furthermore, this SFB polymorphism is similar to the Japanese plum S-RNases polymorphism (63.8% to 84.1%) (Table 1).
Table 1. Identities of the putative amino acid sequences of Japanese plum S-locus genes. The upper half represents amino acid sequence identities (%) between SFBs and the lower half between the S-RNases. SFBs: GenBank accession numbers: SFBb (DQ464688), SFBa (DQ464689), SFBc (DQ464690), SFBd (DQ989578), SFBf (DQ989579), and SFBe (DQ992485). S-RNase genes: GenBank accession numbers: S-RNaseb (AB084143), S-RNasec (AB084146), S-RNased (AB084147), S-RNasee (AB099311), and S-RNasef (AB092313).

Sb	Sc	Sd	Se	Sf	Sg
92.0	81.4	76.7	77.0	82.5	77.0
76.7	73.3	76.9	74.7	76.1	74.1
80.6	82.5	76.7	78.6	77.1	77.7
78.1	76.9	78.3	75.8	71.0	73.1
79.4	74.7	63.8	78.8	70.0	78.2
80.3	73.8	65.2	78.0	69.1	71.9
74.4	83.8	72.0	84.1	74.7	76.6

PCR was carried out with primers complementary to the F-Box motif of the SFB and the C2 conserved region of S-RNase (see “Materials and Methods”). PCR amplification of 'Golfrose' DNA with primer pair SFBc-F and Pru-C2. PCR products (left) were run on a 0.7% agarose gel, stained with ethidium bromide. (B) A scheme illustrating the distances between the S-RNase and SFB genes for Sb and Sb japanese plum haplotypes. Full Arrows represent the transcriptional direction of the genes, solid line represent intergenic region.

Literature Cited

Anderson, M.A., E.C. Cornish, S.L. Mau, E.G. Williams, R. Hoggart, A. Atkins, I. Bonig, and A.E. Clarke. 1986. Cloning of cDNA for a stylar glycoprotein associated with expression of self-incompatibility in Nicotiana alata. Nature 321:38–44.

Beppu, K., Y. Takemoto, H. Yamane, H. Yaegaki, M. Yamaguchi, I. Kataoka, and R. Tao. 2003. Determination of S-haplotypes of Japanese plum (Prunus salicina Lindl.) cultivars by PCR and cross-pollination tests. J. Hort. Sci. Biotechnol. 78:315–318.

Beppu, K., H. Yamane, H. Yaegaki, M. Yamaguchi, I. Kataoka, and R. Tao. 2002. Diversity of S-RNase genes and S-haplotypes in Japanese plum (Prunus salicina Lindl.). J. Hort. Sci. Biotechnol. 77:658–664.

Cheng, J.H., Z.H. Han, X.F. Xu, and T.Z. Li. 2006. Isolation and identification of the pollen-expressed polymorphic F-box genes linked to the S-locus in apple (Malus xdomestica). Sex. Plant Reprod. 19:175–183.

Dayhoff, M.O., R.M. Schwartz, and B.C. Orcutt. 1979. A model for evolutionary change in proteins. p. 345–352. In: M.O. Dayhoff (ed.). Atlas of protein sequence and structure. National Biomedical Research Foundation, Washington DC.

Doyle, J.J. and J.L. Doyle. 1987. A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochemical Bulletin 19:11–15.

Entani, T., M. Iwano, H. Shiba, F.S. Che, A. Isogai, and S. Takayama. 2003. Comparative analysis of the self-incompatibility (S-) loci region of Prunus mume: Identification of a pollen-expressed F-box gene with allelic diversity. Genes Cells 8:203–213.

Entani, T., M. Iwano, H. Shiba, S. Takayama, and K. Fukui. 1999. Centromeric location of an S-RNase gene in Petunia hybrida Vilm. Theor. Appl. Genet. 99:391–397.

Goldway, M., G. Sapiro, and R.A. Stern. 2007. Molecular basis and horticultural application of the gametophytic self-incompatibility system in Rosaceae tree fruits, p. 215–237. In: Plant breeding reviews. Wiley Publishing, Hoboken, NJ.

Ikeda, K., B. Igic, K. Ushijima, H. Yamane, N.R. Hauck, R. Nakano, H. Sassa, A.F. Iezzoni, J.R. Kohn, and R. Tao. 2004. Primary structure features of the S haplotype-specific F-box protein, SFB, in Prunus. Sex. Plant Reprod. 16:235–243.

Ikeda, K., K. Ushijima, H. Yamane, R. Tao, N.R. Hauck, A.M. Sebolt, and A.F. Iezzoni. 2005. Linkage and physical distances between the S-haplotype S-RNase and SFB genes in sweet cherry. Sex. Plant Reprod. 17:289–296.

Lai, Z., W. Ma, B. Han, L. Liang, Y. Zhang, G. Hong, and Y. Xue. 2002. An F-box gene linked to the self-incompatibility S locus of Antirrhinum is expressed specifically in pollen and tapetum. Plant Mol. Biol. 50:29–42.
Schneider, D.A., V. Franklin-Tong. 2006. Gametophytic self-incompatibility: Understanding the cellular mechanisms involved in 'self' pollen tube inhibition. Planta 224:233–245.

McClure, B.A., V. Haring, P.R. Ebert, M.A. Anderson, R.J. Simpson, F. Sakiyama, and A.E. Clarke. 1989. Style self-incompatibility gene products of Nicotiana alata are ribonucleases. Nature 342:955–957.

McCubbin, A.G. and T.H. Kao. 2000. Molecular recognition and response in pollen and pistil interactions. Annu. Rev. Cell Dev. Biol. 16:333–364.

Romero, C., S. Vilanova, L. Burgos, J. Martinez-Calvo, M. Vicente, G. Liácer, and M.L. Badenes. 2004. Analysis of the S-locus structure in Prunus armeniaca L. Identification of S-haplotype specific S-RNase and F-box genes. Plant Mol. Biol. 56:145–157.

Sapir, G., R.A. Stern, D. Eiskowitch, and M. Goldway. 2004. Cloning of four new Japanese plum S-alleles and determination of the compatibility between cultivars by PCR analysis. J. Hort. Sci. Biotechnol. 79:223–227.

Sassa, H., H. Sassa, M. Tamura, M. Kusaba, H. Hirano, and T. Koba. 2007. S-locus F-box brothers: Multiple and pollen-specific F-box genes with S-haplotype-specific polymorphisms in apple and Japanese pear. Genetics 175:1869–1881.

Schneider, D., R.A. Stern, and M. Goldway. 2005. A comparison between semi and fully compatible apple pollinators grown under sub optimal condition. HortScience 40:1280–1282.

Sijacic, P., X. Wang, A.L. Skippan, Y. Wang, P.E. Dowd, A.G. McCubbin, S. Huang, and T.H. Kao. 2004. Identification of the pollen determinant of S-RNase-mediated self-incompatibility. Nature 429:302–305.

Sonneveld, T., K.F. Tobutt, S.P. Vaughan, and T.P. Robbins. 2005. Loss of pollen-S function in two self-compatible selections of Prunus avium is associated with deletion/mutation of an S haplotype-specific F-box gene. Plant Cell 17:37–51.

Takayama, S. and A. Isozai. 2005. Self-incompatibility in plants. Annu. Rev. Plant Biol. 56:467–489.

Tao, R., H. Yamane, A. Sugihara, H. Murayama, H. Sassa, and H. Mori. 1999. Molecular typing of S-alleles through identification, characterization and cDNA cloning for S-RNases in sweet cherry. J. Amer. Soc. Hort. Sci. 124:224–233.

Thompson, J.D., T.J. Gibson, F. Plewniak, F. Jeanmougin, and D.G. Higgins. 1997. The CLUSTAL_X windows interface: Flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 25:4876–4882.

Usuijima, K., H. Sassa, A.M. Dandekar, T.M. Gradziel, R. Tao, and H. Hirano. 2003. Structural and transcriptional analysis of the self-incompatibility locus of almond: Identification of a pollen-expressed F-box gene with haplotype-specific polymorphism. Plant Cell 15:771–781.

Usuijima, K., H. Sassa, M. Tamura, M. Kusaba, R. Tao, M.T. Gradziel, A.M. Dandekar, and H. Hirano. 2001. Characterization of the S-locus region of almond (Prunus dulcis): Analysis of a somaclonal mutant and a cosmid contig for an S haplotype. Genetics 158:379–386.

Usuijima, K., H. Yamane, A. Watari, E. Kakehi, K. Ikeda, N.R. Hauck, A.F. Iezzoni, and R. Tao. 2004. The S haplotype-specific F-box protein gene, SFB, is defective in self-compatible haplotypes of Prunus avium and P. mume. Plant J. 39:573–586.

Wang, Y., X. Wang, A.G. McCubbin, and T.H. Kao. 2003. Genetic mapping and molecular characterization of the self-incompatibility (S) locus in Petunia inflata. Plant Mol. Biol. 53:565–580.

Xue, Y., R. Carpenter, H.G. Dickinson, and E.S. Coen. 1996. Origin of allelic diversity in antirrhinum S-locus RNases. Plant Cell 8:805–814.

Yamane, H., K. Ikeda, K. Ushijima, H. Sassa, and R. Tao. 2003a. A pollen-expressed gene for a novel protein with an F-box motif that is very tightly linked to a gene for S-RNase in two species of cherry, Prunus cerasus and P. avium. Plant Cell Physiol. 44:764–769.

Yamane, H., K. Ushijima, H. Sassa, and R. Tao. 2003b. The use of S-haplotype-specific F-box protein gene, SFB, as a molecular marker for S-haplotype and self-compatibility in Japanese apricot (Prunus mume). Theor. Appl. Genet. 107:1357–1361.

Zhang, S.-L., S.-X. Huang, H. Kitashiba, and T. Nishio. 2007. Identification of S-haplotype-specific F-box in Japanese plum (Prunus salicina Lindl.). Sex. Plant Reprod. 20:1–8.

Zhu, M., X. Zhang, K. Zhang, L. Jiang, and L. Zhang. 2004. Development of simple molecular marker specific for detecting the self-compatible S4’ haplotype sweet cherry (Prunus avium L.). Plant Mol. Bio. Rep. 22:387–398.

Zisovich, A., R.A. Stern, S. Shafir, and M. Goldway. 2005. Fertilisation efficiency of semi- and fully-compatible European pear (Prunus communis) cultivars. J. Hortic. Sci. Biotechnol. 80:143–146.