A Pfaffian–Hafnian Analogue of Borchardt’s Identity

Masao ISHIKAWA* Hiroyuki KAWAMUKO† Soichi OKADA‡

Abstract

We prove

\[
\text{Pf}\left(\frac{x_i - x_j}{(x_i + x_j)^2}\right)_{1 \leq i, j \leq 2n} = \prod_{1 \leq i < j \leq 2n} \frac{x_i - x_j}{x_i + x_j} \cdot \text{Hf}\left(\frac{1}{x_i + x_j}\right)_{1 \leq i, j \leq 2n}
\]

(and its variants) by using the complex analysis. This identity can be regarded as a Pfaffian–Hafnian analogue of Borchardt’s identity and as a generalization of Schur’s identity.

1 Introduction

Determinant and Pfaffian identities play a key role in combinatorics and the representation theory (see, for example, [4], [5], [6], [8], [10], [11]). Among such determinant identities, the central ones are Cauchy’s determinant identities (2)

\[
det\left(\frac{1}{x_i + y_j}\right)_{1 \leq i, j \leq n} = \frac{\prod_{1 \leq i < j \leq n}(x_j - x_i)(y_j - y_i)}{\prod_{1 \leq i, j \leq n}(x_i + y_j)}. \tag{1}
\]

\[
det\left(\frac{1}{1 - x_i y_j}\right)_{1 \leq i, j \leq n} = \frac{\prod_{1 \leq i < j \leq n}(x_j - x_i)(y_j - y_i)}{\prod_{1 \leq i, j \leq n}(1 - x_i y_j)}. \tag{2}
\]

C. W. Borchardt [11] gave a generalization of Cauchy’s identities:

\[
det\left(\frac{1}{(x_i + y_j)^2}\right)_{1 \leq i, j \leq n} = \frac{\prod_{1 \leq i < j \leq n}(x_j - x_i)(y_j - y_i)}{\prod_{1 \leq i, j \leq n}(x_i + y_j)} \cdot \text{perm}\left(\frac{1}{x_i + y_j}\right)_{1 \leq i, j \leq n}, \tag{3}
\]

\[
det\left(\frac{1}{(1 - x_i y_j)^2}\right)_{1 \leq i, j \leq n} = \frac{\prod_{1 \leq i < j \leq n}(x_j - x_i)(y_j - y_i)}{\prod_{1 \leq i, j \leq n}(1 - x_i y_j)} \cdot \text{perm}\left(\frac{1}{1 - x_i y_j}\right)_{1 \leq i, j \leq n}. \tag{4}
\]

Here \text{perm} A is the permanent of a square matrix A defined by

\[
\text{perm} A = \sum_{\sigma \in S_n} a_{1\sigma(1)}a_{2\sigma(2)} \cdots a_{n\sigma(n)}.
\]

This identity (3) is used when we evaluate the determinants appearing in the 0-enumeration of alternating sign matrices (see [11]).

I. Schur [12] gave a Pfaffian analogue of Cauchy’s identity (11) in his study of projective representations of the symmetric groups. Schur’s Pfaffian identity and its variant (9, 13) are

\[
Pf\left(\frac{x_j - x_i}{x_j + x_i}\right)_{1 \leq i, j \leq 2n} = \prod_{1 \leq i < j \leq 2n} \frac{x_j - x_i}{x_j + x_i}, \tag{5}
\]

\[
Pf\left(\frac{x_j - x_i}{1 - x_i x_j}\right)_{1 \leq i, j \leq 2n} = \prod_{1 \leq i < j \leq 2n} \frac{x_j - x_i}{1 - x_i x_j}. \tag{6}
\]

In this note, we give identities which can be regarded as Pfaffian analogues of Borchardt’s identities (9, 11) and as generalizations of Schur’s identities (15, 16).
Theorem 1.1. Let n be a positive integer. Then we have

$$
\text{Pf} \left(\frac{x_i - x_j}{(x_i + x_j)^2} \right)_{1 \leq i, j \leq 2n} = \prod_{1 \leq i < j \leq 2n} \frac{x_i - x_j}{x_i + x_j} \cdot \text{Hf} \left(\frac{1}{x_i + x_j} \right)_{1 \leq i, j \leq 2n},
$$

(7)

$$
\text{Pf} \left(\frac{x_i - x_j}{(1 - x_i x_j)^2} \right)_{1 \leq i, j \leq 2n} = \prod_{1 \leq i < j \leq 2n} \frac{x_i - x_j}{1 - x_i x_j} \cdot \text{Hf} \left(\frac{1}{1 - x_i x_j} \right)_{1 \leq i, j \leq 2n}.
$$

(8)

Here $\text{Hf} A$ denotes the Hafnian of a symmetric matrix A defined by

$$
\text{Hf} A = \sum_{\sigma \in F_{2n}} a_{\sigma(1)\sigma(2)} a_{\sigma(3)\sigma(4)} \cdots a_{\sigma(2n-1)\sigma(2n)},
$$

where F_{2n} is the set of all permutations σ satisfying $\sigma(1) < \sigma(3) < \cdots < \sigma(2n-1)$ and $\sigma(2i-1) < \sigma(2i)$ for $1 \leq i \leq n$.

2 Proof

In this section, we prove the identity (7) in Theorem 1.1 by using the complex analysis. The other identity (8) is shown by the same method, and also derived from more general identity (18) in Theorem 2.2, which follows from (7). So we omit the proof of (8) here.

Hereafter we put

$$
A = \left(\frac{x_i - x_j}{(x_i + x_j)^2} \right)_{1 \leq i, j \leq 2n}, \quad B = \left(\frac{1}{x_i + x_j} \right)_{1 \leq i, j \leq 2n}.
$$

For an $2n \times 2n$ symmetric (or skew-symmetric) matrix $M = (m_{ij})$ and distinct indices i_1, \cdots, i_r, we denote by M^{i_1, \cdots, i_r} the $(2n-r) \times (2n-r)$ matrix obtained by removing the rows and columns indexed by i_1, \cdots, i_r.

First we show two lemmas by using the complex analysis.

Lemma 2.1.

$$
\sum_{1 \leq k, l \leq 2n, k \neq l} \frac{1}{(x_k - z)(x_l - z)} \text{Hf}(B_{k,l}) = \text{Hf}(B) \cdot \sum_{k=1}^{2n} \frac{2x_k}{x_k^2 - z^2}.
$$

(9)

Proof. Let us denote by $F(z)$ (resp. $G(z)$) the left (resp. right) hand side of (9), and regard $F(z)$ and $G(z)$ as rational functions in the complex variable z, where x_1, \cdots, x_{2n} are distinct complex numbers. Then $F(z)$ and $G(z)$ have poles at $z = \pm x_1, \cdots, \pm x_{2n}$ of order 1. The residues of $F(z)$ at $z = \pm x_m$ are given by

$$
\text{Res}_{z=x_m} F(z) = - \sum_{1 \leq l \leq 2n, l \neq m} \frac{1}{x_l + x_m} \text{Hf}(B_{m,l}), \quad \text{Res}_{z=-x_m} F(z) = \sum_{1 \leq l \neq m} \frac{1}{x_k + x_m} \text{Hf}(B_{k,m}).
$$

By considering the expansion of $\text{Hf}(B)$ along the mth row/column, we have

$$
\text{Res}_{z=x_m} F(z) = - \text{Hf}(B), \quad \text{Res}_{z=-x_m} F(z) = \text{Hf}(B).
$$

On the other hand, the residues of $G(z)$ at $z = \pm x_m$ are given by

$$
\text{Res}_{z=x_m} G(z) = - \text{Hf}(B) \cdot \frac{2x_m}{2x_m} = - \text{Hf}(B),
$$

$$
\text{Res}_{z=-x_m} G(z) = \text{Hf}(B) \cdot \frac{2x_m}{2x_m} = \text{Hf}(B).
$$

Since $\lim_{z \to \infty} F(z) = \lim_{z \to \infty} G(z) = 0$, we conclude that $F(z) = G(z)$. \hfill \Box
Lemma 2.2. If \(n \) is a positive integer, then

\[
\sum_{k=1}^{2n-1} \frac{x_k - z}{(x_k + z)^2} \prod_{i \leq 2n-1, i \neq k} \frac{x_k + x_i}{x_k - x_i} \cdot \operatorname{Hf}(B^{k,2n}) = \prod_{i=1}^{2n-1} \frac{x_i - z}{x_i + z} \sum_{k=1}^{2n-1} \frac{1}{x_k + z} \cdot \operatorname{Hf}(B^{k,2n}). \tag{10}
\]

Proof. Let \(P(z) \) (resp. \(Q(z) \)) be the left (resp. right) hand side of (10), and regard \(P(z) \) and \(Q(z) \) as rational functions in \(z \), where \(x_1, \ldots, x_{2n-1} \) are distinct complex numbers. Then \(P(z) \) and \(Q(z) \) have poles at \(z = -x_1, \ldots, -x_{2n-1} \) of order 2. Thus, for a fixed \(m \) such that \(1 \leq m \leq 2n-1 \), we can write

\[
P(z) = \frac{p_2}{(z + x_m)^2} + \frac{p_1}{z + x_m} + O(z + x_m),
\]

\[
Q(z) = \frac{q_2}{(z + x_m)^2} + \frac{q_1}{z + x_m} + O(z + x_m),
\]

in a neighborhood of \(z = -x_m \). Now we compute the coefficients \(p_2, p_1, q_2 \) and \(q_1 \), and prove \(p_2 = q_2, p_1 = q_1 \).

By using the relation

\[
\frac{x_m - z}{(x_m + z)^2} = \frac{2x_m}{(x_m + z)^2} - \frac{1}{x_m + z},
\]

we see that

\[
p_2 = 2x_m \prod_{1 \leq i \leq 2n-1, i \neq m} \frac{x_m + x_i}{x_m - x_i} \cdot \operatorname{Hf}(B^{m,2n}),
\]

\[
p_1 = - \prod_{1 \leq i \leq 2n-1, i \neq m} \frac{x_m + x_i}{x_m - x_i} \cdot \operatorname{Hf}(B^{m,2n}). \tag{12}
\]

Next we deal with

\[
Q(z) = \frac{x_m - z}{x_m + z} \times \prod_{1 \leq i \leq 2n-1, i \neq m} \frac{x_i - z}{x_i + z} \times \sum_{k=1}^{2n-1} \frac{1}{x_k + z} \cdot \operatorname{Hf}(B^{k,2n}).
\]

The first factor can be written in the form

\[
\frac{x_m - z}{x_m + z} = \frac{2x_m}{x_m + z} - 1.
\]

By using the Taylor expansion \(\log(1 - t) = -t + O(t^2) \), we have

\[
\log \frac{x_i - z}{x_i + z} = -\frac{z + x_m}{x_i + x_m} + O\left((z + x_m)^2\right),
\]

\[
\log \frac{x_i + z}{x_m - x_i} = \frac{z + x_m}{x_i - x_m} + O\left((z + x_m)^2\right).
\]

Hence we see that

\[
\log \left(\frac{x_i - z}{x_i + z} \right) = -\frac{2x_i}{x_i^2 - x_m^2} (z + x_m) + O\left((z + x_m)^2\right).
\]

Therefore the second factor of \(Q(z) \) has the form

\[
\prod_{1 \leq i \leq 2n-1, i \neq m} \frac{x_i - z}{x_i + z} = \prod_{1 \leq i \leq 2n-1, i \neq m} \frac{x_i + x_m}{x_i - x_m} \left(1 - \sum_{1 \leq k \leq 2n-1, k \neq m} \frac{2x_k}{x_k^2 - x_m^2} (z + x_m) + O\left((z + x_m)^2\right) \right).
\]

Since we have

\[
\frac{1}{x_k + z} = \frac{1}{x_k - x_m} + O(z + x_m),
\]

3
the last factor of $Q(z)$ has the following expansion:

$$\sum_{k=1}^{2n-1} \frac{1}{x_k + z} \text{Hf}(B^{k,2n}) = \frac{1}{x_m + z} \text{Hf}(B^{m,2n}) + \sum_{1 \leq k \leq 2n-1 \atop k \neq m} \frac{1}{x_k - x_m} \text{Hf}(B^{k,2n}) + O(z + x_m).$$

Combining these expansions, we have

$$q_2 = 2x_m \prod_{1 \leq i \leq 2n-1 \atop i \neq m} \frac{x_i + x_m}{x_i - x_m} \cdot \text{Hf}(B^{m,2n}),$$

and

$$q_1 = \prod_{1 \leq i \leq 2n-1 \atop i \neq m} \frac{x_i + x_m}{x_i - x_m} \times \left\{ 2x_m \sum_{1 \leq k \leq 2n-1 \atop k \neq m} \frac{\text{Hf}(B^{k,2n})}{x_k - x_m} - 2x_m \sum_{1 \leq k \leq 2n-1 \atop k \neq m} \frac{2x_k}{x_k^2 - x_m^2} - \text{Hf}(B^{m,2n}) \right\}. \quad (14)$$

It follows from (11) and (13) that $p_2 = q_2$. From (12) and (14), in order to prove the equality $p_1 = q_1$, it is enough to show that

$$\sum_{1 \leq k \leq 2n-1 \atop k \neq m} \frac{1}{x_k - x_m} \text{Hf}(B^{k,2n}) = \text{Hf}(B^{m,2n}) \sum_{1 \leq k \leq 2n-1 \atop k \neq m} \frac{2x_k}{x_k^2 - x_m^2}.$$

By permuting the variables x_1, \cdots, x_{2n-1}, we may assume that $m = 2n - 1$. Then, by expanding the Hafnian on the left hand side along the last row/column, it is enough to show that

$$\sum_{k=1}^{2n-2} \frac{1}{x_k - x_{2n-1}} \sum_{1 \leq i \leq 2n-2 \atop i \neq k} \frac{1}{x_i + x_{2n-1}} \text{Hf}(B^{k,1,2n-1}) = \text{Hf}(B^{2n-1,2n-1}) \sum_{k=1}^{2n-2} \frac{2x_k}{x_k^2 - x_{2n-1}^2}.$$

This follows from Lemma 2.1 (with $2n$ replaced by $2n - 2$ and z replaced by x_{2n-1}), and we complete the proof of Lemma 2.2. \hfill \Box

Now we are in the position to prove the identity (7) in Theorem 1.1.

Proof of (7). We proceed by induction on n.

Expanding the Pfaffian along the last row/column and using the induction hypothesis, we see

$$\text{Pf}(A) = \sum_{k=1}^{2n-1} (-1)^{k-1} \frac{x_k - x_{2n}}{(x_k + x_{2n})^2} \text{Pf}(A^{k,2n})$$

$$= \sum_{k=1}^{2n-1} (-1)^{k-1} \frac{x_k - x_{2n}}{(x_k + x_{2n})^2} \prod_{1 \leq i < j \leq 2n-1 \atop i,j \neq k} \frac{x_i - x_j}{x_i + x_j} \cdot \text{Hf}(B^{k,2n}).$$

By using the relation

$$\prod_{1 \leq i < j \leq 2n-1 \atop i,j \neq k} \frac{x_i - x_j}{x_i + x_j} = (-1)^{k-1} \prod_{1 \leq i < j \leq 2n-1 \atop i \neq k} \frac{x_i - x_j}{x_i + x_j} \cdot \prod_{1 \leq i < 2n-1 \atop i \neq k} \frac{x_k + x_i}{x_k - x_i},$$

we have

$$\text{Pf}(A) = \prod_{1 \leq i < j \leq 2n-1} \frac{x_i - x_j}{x_i + x_j} \sum_{k=1}^{2n-1} \frac{x_k - x_{2n}}{(x_k + x_{2n})^2} \prod_{1 \leq i < 2n-1 \atop i \neq k} \frac{x_k + x_i}{x_k - x_i} \cdot \text{Hf}(B^{k,2n}).$$
On the other hand, by expanding the Hafnian along the last row/column, we have
\[\prod_{1 \leq i < j \leq 2n} \frac{x_i - x_j}{x_i + x_j} \cdot \text{Hf}(B) = \prod_{1 \leq i < j \leq 2n} \frac{x_i - x_j}{x_i + x_j} \sum_{k=1}^{2n-1} \frac{1}{x_k + x_{2n}} \cdot \text{Hf}(B^{k,2n}). \]

So it is enough to show the following identity:
\[\sum_{k=1}^{2n-1} \frac{x_k - x_{2n}}{(x_k + x_{2n})^2} \prod_{1 \leq i < j \leq 2n, i \neq k} \frac{x_k + x_j}{x_k - x_i} \cdot \text{Hf}(B^{k,2n}) = \prod_{i=1}^{2n-1} \frac{x_i - x_{2n}}{x_i + x_{2n}} \sum_{k=1}^{2n-1} \frac{1}{x_k + x_{2n}} \cdot \text{Hf}(B^{k,2n}). \]

This identity follows from Lemma 2.2 and the proof completes.

3 Generalization

The Cauchy’s identities (1) and (2), and the Borchardt’s identities (3) and (4) are respectively unified in the following form.

Theorem 3.1. Let \(f(x, y) = axy + bx + cy + d \) be a nonzero polynomial. Then we have
\[
\det \left(\frac{1}{f(x_i, y_j)} \right)_{1 \leq i, j \leq n} = (-1)^{n(n-1)} (ad - bc)^{n(n-1)/2} \prod_{1 \leq i < j \leq n} \frac{(x_j - x_i)(y_j - y_i)}{f(x_i, y_j)},
\]
\[
\det \left(\frac{1}{f(x_i, y_j)^2} \right)_{1 \leq i, j \leq n} = (-1)^{n(n-1)} (ad - bc)^{n(n-1)/2} \prod_{1 \leq i < j \leq n} \frac{(x_j - x_i)(y_j - y_i)}{f(x_i, y_j)} \cdot \text{perm} \left(\frac{1}{f(x_i, y_j)} \right)_{1 \leq i, j \leq n}.
\]

Similarly we can generalize the Schur’s identities (5) and (6), and our identities (7) and (8).

Theorem 3.2. Let \(g(x, y) = axy + b(x + y) + c \) be a nonzero polynomial. Then we have
\[
\text{Pf} \left(\frac{x_j - x_i}{g(x_i, x_j)} \right)_{1 \leq i, j \leq 2n} = (b^2 - ac)^{n(n-1)} \prod_{1 \leq i < j \leq 2n} \frac{x_j - x_i}{g(x_i, x_j)},
\]
\[
\text{Pf} \left(\frac{x_j - x_i}{g(x_i, x_j)^2} \right)_{1 \leq i, j \leq 2n} = (b^2 - ac)^{n(n-1)} \prod_{1 \leq i < j \leq 2n} \frac{x_j - x_i}{g(x_i, x_j)} \cdot \text{Hf} \left(\frac{1}{g(x_i, x_j)} \right)_{1 \leq i, j \leq 2n}.
\]

This generalization (17) is given in (17).

Proof. We derive (17) and (18) from (15) and (16) respectively.

First we consider the case where \(b^2 - ac \neq 0 \). Suppose that \(a \neq 0 \). Then, by putting \(A = \frac{1}{2}, \ B = \frac{1}{2a}(b + \sqrt{b^2 - ac}), \ C = a, \ D = b - \sqrt{b^2 - ac} \), and substituting \(x_i \rightarrow \frac{Ax_i + B}{Cx_i + D} \) (1 \(\leq i \leq 2n \)) in (15) and (16), we obtain (17) and (18). Similarly we can show the case where \(c \neq 0 \).

If \(b^2 - ac = 0 \) and \(a \neq 0 \), then we have
\[
g(x_i, x_j) = a^{-1}(ax_i + b)(ax_j + b).
\]

Hence we can evaluate the left hand sides of (17) and (18) by using
\[
\text{Pf} \left(x_j - x_i \right)_{1 \leq i, j \leq 2n} = \begin{cases} x_2 - x_1 & \text{if } n = 1, \\ 0 & \text{if } n \geq 2, \end{cases}
\]
and obtain the equalities in (17) and (18). Similarly we can show the case where \(b^2 - ac = 0 \) and \(c \neq 0 \).
From (15) and (16), we have
\[\det \left(\frac{1}{f(x_i, y_j)} \right)_{1 \leq i, j \leq n} = \det \left(\frac{1}{f(x_i, y_j)} \right)_{1 \leq i, j \leq n} \cdot \text{perm} \left(\frac{1}{f(x_i, y_j)} \right)_{1 \leq i, j \leq n}. \]

Since the matrix \((f(x_i, y_j))_{1 \leq i, j \leq n} \) has rank at most 2, this identity is the special case of the following theorem.

Theorem 3.3. (Carlitz and Levine [3]) Let \(A = (a_{ij}) \) be a matrix of rank at most 2. If \(a_{ij} \neq 0 \) for all \(i \) and \(j \), we have
\[\det \left(\frac{1}{a_{ij}} \right)_{1 \leq i, j \leq n} = \det \left(\frac{1}{a_{ij}} \right)_{1 \leq i, j \leq n} \cdot \text{perm} \left(\frac{1}{a_{ij}} \right)_{1 \leq i, j \leq n}. \]

From (17) and (18), we have
\[\text{Pf} \left(\frac{x_j - x_i}{g(x_i, x_j)^2} \right)_{1 \leq i, j \leq 2n} = \text{Pf} \left(\frac{x_j - x_i}{g(x_i, x_j)} \right)_{1 \leq i, j \leq 2n} \cdot \text{Hf} \left(\frac{1}{g(x_i, x_j)} \right)_{1 \leq i, j \leq 2n}. \]

It is a natural problem to find a Pfaffian–Hafnian analogue of Theorem 3.3. Also it is interesting to find more examples of a skew-symmetric matrix \(X \) and a symmetric matrix \(Y \) satisfying
\[\text{Pf} (x_{ij}y_{ij})_{1 \leq i, j \leq 2n} = \text{Pf} (x_{ij})_{1 \leq i, j \leq 2n} \cdot \text{Hf} (y_{ij})_{1 \leq i, j \leq 2n}. \]

Recently there appeared a bijective proof of Borchardt’s identity (see [13]). It will be an interesting problem to give a bijective proof of (7) and (8).

References

[1] C. W. Borchardt, Bestimmung der symmetrischen Verbindungen vermittelst ihrer erzeugenden Funktion, J. Reine Angew. Math. 53 (1855), 193–198.

[2] A. L. Cauchy, Mémoire sur les fonctions altertées et sur les sommes alternées, Exercices Anal. et Phys. Math. 2 (1841), 151–159.

[3] L. Carlitz and J. Levine, An identity of Cayley, Amer. Math. Monthly 67 (1960), 571–573.

[4] M. Ishikawa, S. Okada and M. Wakayama, Applications of minor summation formulas I : Littlewood’s formulas, J. Algebra 183 (1996), 193–216.

[5] M. Ishikawa and M. Wakayama, Applications of minor summation formulas II : Pfaffians and Schur polynomials, J. Combin. Theory Ser. A 88 (1999), 136–157.

[6] M. Ishikawa and M. Wakayama, Applications of minor summation formulas III : Pl"ucker relations, lattice paths and Pfaffian identities, arXiv:math.CO/0312358.

[7] D. Knuth, Overlapping Pfaffians, Electron. J. Combin. 3 (2) (“The Foata Festschrift”) (1996), 151–163.

[8] C. Krattenthaler, Advanced determinant calculus, Sem. Lothar. Combin. 42 (“The Andrews Festschrift”) (1999), Article B42q.

[9] D. Laksov, A. Lascoux and A. Thorup, On Giambelli’s theorem on complete correlations, Acta Math. 162 (1989), 143–199.

[10] S. Okada, Application of minor summation formulas to rectangular-shaped representations of classical groups, J. Algebra 205 (1998), 337–367.

[11] S. Okada, Enumeration of symmetry classes of alternating sign matrices and characters of classical groups, arXiv:math.CO/0308234 to appear.
[12] I. Schur, Über die Darstellung der symmetrischen und der alternirenden Gruppe durch gebrochene lineare Substituionen, J. Reine Angew. Math. 139 (1911), 155–250.

[13] D. Singer, A bijective proof of Borchardt’s identity, Electron. J. Combin. 11 (1), R48.

[14] J. R. Stembridge, Non-intersecting paths, Pfaffians and plane partitions, Adv. Math. 83 (1990), 96–131.