From sewers to stars

New possibilities in the vigilance of COVID-19

F Passariello

1Fondazione Vasculab ONLUS, via Francesco Cilea 280 - 80127 Naples, Italy

submitted: May 2, 2020, accepted: May 3, 2020, EPub Ahead of Print: May 3, 2020
Conflict of interest: None

DOI: 10.24019/jtavr.78 - Corresponding author: Dr. Fausto Passariello, afunzionale@tiscalinet.it

© 2020 Fondazione Vasculab impresa sociale ONLUS. All rights reserved.

Abstract Phase 2 can be monitored, following the viral load dosing curves in urban waste water, as the SARS-COV2 virus can be traced into the fecal material. This low-cost method can be moved upstream for a strict control of smaller areas. The city of Naples has a capillary network of sewers, which allow a much finer tracing. The method could be expanded to all the territory of Italy and also to other countries.

Keywords Sewers, COVID-19, RT-PCR, Phase 2 monitoring, Underground Naples

From sewers to stars

New possibilities in the vigilance of COVID-19

We are close to phase 2 and to the reopening of activities. As it has been pointed out several times, there will be no increase in contagion just if can be responsible as citizens and we can quickly identify the outbreaks, meticulously tracing the contacts. But in the end, asymptomatic people will escape.

Fortunately good news are coming.

On Apr 17 it appears in MedRxiv, archive of preprints (i.e. not yet reviewed), supported by the Cold Spring Harbor Laboratory (NY) and the British Medical Journal, a pre-print signed Sebastien Wurtzer et al. on the significant correlation in the city of Paris between contagion curves and viral load dosing curves in urban waste water, by the Polymerase chain reaction (PCR) used in normal swabs for Covid-19.

Indeed, undoubtedly the SARS-COV2 virus infects the intestinal cells and can be traced into the fecal material.

Wurtzer and the other authors, who work at "Eau de Paris" and the "Université Sorbonne" underline that the viral load curve precedes the clinical contagion by a few days, with a promising predictive value. The samples were carried out for about a month and twice a week by sewer canals that collect waste water from 5 'arrondissements'.

Zhugen Yang, a researcher at Cranfield University’s Water Science Institute, England, notes that this is a low-cost method and that following the experiences in other countries the viral load allows the estimate of the absolute number of (future) infections.

Paul Bertsch, scientific director of a similar institution in Australia, says that the method allows the control of a large community of even millions of inhabitants, but at the same time it can be moved upstream for a finer control, eg. taking samples in areas grouped by postcode.

Bertsch then adds that in Australia a similar control is already in place to monitor the use of illegal drugs, so
the method could easily be used on a large scale in about a month, alongside a service already fully organized for drug addiction.

All this comes from the reading of Wurtzer’s article\(^1\) and from a review of the French journalist Christa Lesté-Lasserre\(^2\) and from the other articles in the references. But at this point I would like to add some personal thoughts for Naples and Italy.

Neapolitan citizens know that the underground Naples\(^3\) has long been a tourist attraction, mythical and sometimes disturbing, as it can be remembered by all those who ventured into its narrow tunnels. On the contrary, maybe just a few people know the modern underground Naples, which runs under the road surface, under every road, with a plant that is almost identical to that of the surface roads and with the same identical name.

In simple terms, there is an exact plan of the sewage collectors of Naples, drawn up minutely building by building, as all the technicians who deal with maintenance of sewage systems know well.

In Naples you could sample the largest collectors and, guided by the viral load, then move to smaller collectors, reaching the individual buildings, inside which to make swabs on all the inhabitants and then trace the contacts of the positive.

This strategy could complement the existing one of swabs in suspicious places and the technological use of apps and information available on social networks, thus obtaining adequate control.

It is likely that a similar knowledge of the sewerage network is present on the entire Italian territory, so the method could be applied almost everywhere, with a huge saving of time and money (fewer swabs) but above all with the certainty of more accurate and convincing monitoring, in order to reduce social containment as much as possible. Moreover, as Bertsch states, the positive detection in the collectors of an urban area could convince with irrefutable arguments the population of that area to observe the rules.

Finally, urgent interventions should be an opportunity to start a new course in our city as elsewhere in Italy. The monitoring of infections (not only Covid-19) and drug addiction from wastewater could be a flagship of Italian health care, raised after the pandemic, one of the darkest moments in its history.

Dalle fogne alle stelle

Nuove possibilità nella vigilanza del COVID-19

Siamo prossimi alla fase 2 e alla riapertura delle attività. Come più volte è stato fatto notare, non vi sarà un incremento del contagio solo se sapremo essere responsabili come cittadini e saremo in grado di individuare con rapidità i focolai, tracciando meticolosamente i contatti. Ma alla fine pur sempre sfuggiranno gli asintomatici.

Per fortuna vi sono novità in arrivo.

Il 17 aprile appare su MedRxiv, archivio di preprint (cioè non ancora sottoposti a review), supportato dal Cold Spring Harbor Laboratory (NY) e dal British Medical Journal, un pre-print a firma Sebastien Wurtzer et al. sulla significativa correlazione nella città di Parigi tra curve di contagio e curve di dosaggio della carica virale nelle acque reflue urbane, a partire dalla reazione Polymerase chain reaction (PCR), in uso nei normali tamponi per il Covid-19\(^1\).

Infatti, è acquisizione certa che il virus SARS-COV2 infetti le cellule intestinali e che possa essere rintracciato nel materiale fecale\(^2,3,4\).

Wurtzer e gli altri autori, che lavorano presso “Eau de Paris” e l’“Université Sorbonne”, sottolineano come la curva della carica virale preceda di pochi giorni il contagio clinico, con un promettente valore predittivo. Il prelievi sono stati effettuati per circa un mese e due volte alla settimana da canali fognari che raccolgono le acque reflue da 5 “arrondissements”.

Zhugen Yang, ricercatore del Cranfield University’s Water Science Institute, Inghilterra, nota che il metodo è a basso costo e che inoltre dalle esperienze in altri paesi la carica virale rende possibile stimare il numero assoluto di infezioni (futuro)\(^5,6\).

Paul Bertsch, direttore scientifico di analoga istituzione in Australia, afferma che il metodo consente il controllo di una vasta comunità anche di milioni di abitanti, ma allo stesso tempo può essere spostato a monte per un controllo più fine, a es. effettuando campioni in aree raggruppate per codice postale.

Bertsch aggiunge poi che in Australia già è operativo un controllo simile per monitorare l’uso di droghe illegali, per cui il metodo potrebbe facilmente entrare in uso su ampia scala in circa un mese, affiancando un servizio già completamente organizzato per la tossicodipendenza.

Tutto questo deriva dalla lettura dell’articolo di Wurtzer\(^1\) e da una rassegna della giornalista francese Christa Lesté-Lasserre\(^7\) e degli altri articoli in bibliografia.
Ma a questo punto vorrei aggiungere qualche riflessione personale per Napoli e l’Italia.

I cittadini napoletani sanno che la Napoli sotterranea è da tempo un’attrazione turistica, mitica e a volte inquietante, come ricorderanno tutti quelli che si sono avventurati nei suoi stretti cunicoli. Ma forse solo pochi conoscono la Napoli sotterranea moderna, che corre sotto il manto stradale, sotto ogni strada, con una pianta che è quasi identica a quella delle strade in superficie e con lo stesso identico nome.

In termini semplici, esiste una pianta esatta dei collettori fognari di Napoli, redatta minuziosamente edificio per edificio, come sanno bene tutti i tecnici che si occupano di manutenzione degli impianti fognari.

A Napoli si potrebbero campionare i collettori più ampi e, guidati dalla carica virale, passare poi a collettori più piccoli, giungendo ai singoli edifici, all’interno dei quali effettuare tamponi su tutti gli abitanti e tracciare quindi i contatti dei positivi.

Questa strategia potrebbe affiancare quella già esistente dei tamponi nei luoghi sospetti e l’uso tecnologico delle App e delle informazioni disponibili sui social, ottenendo così un adeguato controllo.

E’ probabile che un’analoga conoscenza della rete fognaria sia presente sull’intero territorio italiano, per cui il metodo potrebbe essere applicato quasi ovunque, con un enorme risparmio di tempo e di denaro (minor numero di tamponi), ma soprattutto con la certezza di un monitoraggio più accurato e convincente, al fine di ridurre quanto più possibile il contenimento sociale. Inoltre, come afferma Bertsch, il riscontro di positività nei collettori di un’area urbana potrebbe convincere con argomenti inconfutabili la popolazione di quell’area a osservare le regole.

In ultimo, gli interventi effettuati in urgenza dovrebbero essere l’occasione per iniziare un nuovo corso nella nostra città come altrove in Italia. Il monitoraggio delle infezioni (non solo Covid-19) e delle tossicodipendenze a partire dalle acque reflue potrebbe essere un fiore all’occhiello della sanità italiana, risollevatosi dopo la pandemia, uno dei momenti più bui della sua storia.

Dott. Fausto Passariello
Fondazione Vasculab, Napoli
www.vasculab.it

References
1) Sebastien Wurtzer, Vincent Marechal, Jean-Marie Mouchel, Laurent Moulin. Time course quantitative detection of SARS-CoV-2 in Parisian wastewaters correlates with COVID-19 confirmed cases. MedR# xiv Apr 17, 2020 preprint https://doi.org/10.1101/2020.04.12.20062679.

2) Wenling Wang, Yanli Xu, Ruqin Gao, Roujian Lu, Kai Han, Guizhen Wu, Wenjie Tan. Detection of SARS-CoV-2 in Different Types of Clinical Specimens. JAMA. Published online March 11, 2020. https://doi.org/10.1001/jama.2020.3786

3) Mart M. Lamers, Joep Beumer, Jelte van der Vaart, Kévin Knoops, Jens Puschhof, Tim I. Breugem, Raimond B. G. Ravelli, J. Paul van Schayck, Anna Z. Mykytyn, Hans Q. Duimel, Elly van Donselaar, Sanra Riesebosch, Helma J. H. Kuijpers, Debby Schippers, Willine J. van de Wetering, Miranda de Graaf, Marion Koopmans, Edwin Cuppen, Peter J. Peters, Bart L. Haagmans, Hans Clevers. SARS-CoV-2 productively infects human gut enterocytes. Science 01 May 2020:eabc1669. https://doi.org/10.1126/science.abc1669

4) Corman, VM, Landt, O, Kaiser, M, Molenkamp, R, Meijer, A, Chu, DKW, Bleicker, T, Brunk, S, Scheider, J, Schmidt, ML, Mulders, DGC, Haagmans, BL, van der Veer, B, van den Brink, S, Wijshman, I, Godekers, G, Ronette, J-L, Ellis, J, Zambon, M, Peiris, M, Goossens, H, Reusken, C, Koopman, MPG, Drosten, C, 2020. Detection of 2019 novel coronavirus (2019-nCoV) by real-time RT-PCR. Euro Surveill. 25 (3). https://doi.org/10.2807/1560-7917.ES.2020.25.3.2000045

5) W. Ahmed, N. Angel, J. Edson, et al., First confirmed detection of SARS-CoV-2 in untreated wastewater in Australia: A proof of concept for the wastewater surveillance of COVID-19 in the community, Science of the Total Environment (2020), https://doi.org/10.1016/j.scitotenv.2020.138764

6) Andrew F. Brouwer, Joseph N. S. Eisenberg, Connor D. Pomeroy, Lester M. Shulman, Musa Hindiyeh, Yossi Manor, Itamar Grotto, James S. Koopman, and Marisa C. Eisenberg. Epidemiology of the silent polio outbreak in Rahat, Israel, based on modeling of environmental surveillance data. PNAS November 6, 2018 115 (45) E10625-E10633. https://doi.org/10.1073/pnas.1808798115

7) Christa Lesté-Lasserre. Coronavirus found in Paris sewage points to early warning system. News for Science, Apr 21, 2020. https://www.sciencemag.org/news/2020/04/coronavirus-found-paris-sewage-points-early-warning-system

8) Napoli sotterranea [underground Naples] web site. Addressed at https://www.napolisotterranea.org/ on May 2, 2020.