Progressive neurological deficits in multiple myeloma: meningeal myelomatosis without MRI abnormalities

S. van Ginkel • T. J. Snijders • N. W. C. J. van de Donk • C. J. M. Klijn • M. L. D. Broekman

Received: 15 August 2011 / Revised: 30 October 2011 / Accepted: 2 November 2011 / Published online: 23 November 2011
© The Author(s) 2011. This article is published with open access at Springerlink.com

Dear Sirs,

Multiple myeloma (MM) is characterized by the accumulation of monoclonal plasma cells [12], with common nervous system involvement including peripheral neuropathy and epidural compression [2]. In contrast, intraparenchymal lesions and infiltration of cerebrospinal fluid (CSF) and leptomeninges (meningeal myelomatosis) are rare; CSF infiltration occurs in 1% of MM patients [4], which is less common than in solid tumours (1–5%) and much less than in lymphoma and leukaemia (5–15%) [1, 7]. We present a MM patient with progressive and stepwise, multifocal neurological symptoms. Craniospinal MRI was normal, but CSF examination confirmed the diagnosis of meningeal myelomatosis.

A 63-year-old male visited the emergency department with double vision and repetitive short-lasting episodes of light-headedness and headache when standing up without loss of consciousness. Nine months earlier he had been diagnosed with Durie-Salmon stage IIIA (International Scoring System stage 3) IgA-kappa MM, with bone lesions (skull, spine, long bones) and an extramedullary left psoas muscle mass. Three cycles of induction chemotherapy with thalidomide, doxorubicine, and dexamethasone were followed by melphalan with stem cell rescue. Four months later, he experienced a relapse with reoccurrence of the psoas lesion and new extramedullary (paranasal sinuses and paravertebral) lesions, for which lenalidomide, dexamethasone and radiotherapy of the psoas lesion was initiated.

At the time of presentation in the emergency department, just after initiation of lenalidomide and dexamethasone, no abnormalities of ocular motility could be found although the patient still experienced double vision. A mild paresis of the right peroneus muscle, hypoesthesia of the first to third right toes, and absent achilles tendon reflexes were noted. Differential diagnosis was broad (Table 1). Electrocardiography, laboratory investigations and gadolinium-enhanced brain MRI (Fig. 1a1) were normal.

One week later, the double vision and light-headedness had disappeared, but the patient had developed a mild paresis of the right biceps and triceps muscles with normal tendon reflexes. Because of the multifocal neurological deficits, the revised differential diagnosis (Table 1) included cervical epidural MM localization and meningeal myelomatosis. However, CT of the neck and cervical spine MRI were normal. Right arm electromyography revealed signs consistent with a C5 or C6 radiculopathy.
Another week later, the patient developed a slight dysarthria and severe weakness of the left anterior tibial muscle. Lumbar epidural compression, meningeal myelomatosis or infection were considered, but gadolinium-enhanced lumbar spine MRI was normal (Fig. 1a2). However, CSF examination showed 133 \(\times 10^6 \) leucocytes/L and an elevated total protein level of 0.63 g/L; flow cytometry demonstrated 92% monoclonal plasma cells (Fig. 1b, c).

We concluded that the patient’s multifocal neurological abnormalities were due to meningeal myelomatosis. He was treated with biweekly intrathecal methotrexate and prednisone. After two courses, no more plasma cells could be detected in the CSF, CSF leukocyte count (1 \(\times 10^6 \)/L) and total protein level (0.34 g/L) normalised and his neurological symptoms had improved. Three months later the patient died from progressive systemic disease. Autopsy confirmed the diagnosis of meningeal myelomatosis.

In this MM patient, the uncommon occurrence of meningeal myelomatosis was associated with negative craniospinal MRI. This patient’s history stresses that, in cases with a high clinical suspicion of meningeal myelomatosis, a normal MRI should be followed by CSF examination.

Symptoms and signs of meningeal myelomatosis are usually multifocal, including non-specific prodromes, cranial nerve neuropathy and radiculopathy (all present in our case) and may vary greatly according to involved structures. Contrast-enhanced MRI is often used to diagnose neoplastic meningitis, but sensitivity is much lower for hematologic malignancies (20–37% for leukaemia and lymphoma) than for solid tumours (85%) [10]. In contrast, MRI was false-negative in only 8% of a group of myelomatous meningitis patients [8, 9].

There is no standardized treatment for meningeal myelomatosis. Treatment options include craniospinal radiation or intrathecal chemotherapy, often accompanied by systemic chemotherapy [2, 8, 11, 13], but survival is generally short [6, 8, 13].

In conclusion, meningeal myelomatosis, although rare, should be considered in MM patients with progressive multifocal neurological deficits, even when MRI is normal. CSF investigation is mandatory in an early stage to prevent delay in diagnosis and treatment.

Conflict of interest N. W. C. J. van de Donk received research funding from Celgene.

Table 1 Differential diagnosis of neurological complications of multiple myeloma and suggested ancillary investigations for each of these diagnoses [2, 8, 9, 13]

Causes	Diagnosis	Ancillary investigation(s)
Directly related to MM	1. Cranial nerve palsy due to skull base lesion(s)*	CT of skull base, cranial ceMRI
	2. Spinal epidural localization, resulting in (a) myelopathy b	Spinal MRI
	(b) radiculopathy b	
	(c) cauda equina syndrome	
	3. Localised plexus or peripheral nerve compression b	Ipsilateral ceMRI
	4. Amyloid related neuropathy a	Ipsilateral ceMRI
	5. Central nervous system involvement (a) intraparenchymal plasmocytoma	Brain ceMRI
	(b) CSF infiltration/meningeal myelomatosis a, b	Craniospinal ceMRI, CSF investigation
	6. Obstructive hydrocephalus (due to 5b) [3]	Brain CT or MRI
Indirectly related to MM	1. Metabolic encephalopathy (due to hypercalcaemia a, uremia, hyperviscosity syndrome)	Serum laboratory investigations
Related to treatment	1. Infection a	Serum laboratory investigations, dedicated studies for suspected infection
	2. Metabolic encephalopathy	Serum laboratory investigations
	3. Radiation toxicity:	
	(a) Neuropathy [5]/plexopathy	EMG (ceMRI)
	(b) myelopathy	Spinal ceMRI
	(c) encephalopathy	Brain ceMRI
	4. Chemotherapy-induced peripheral neuropathy a	EMG

ceMRI contrast-enhanced magnetic resonance imaging; CSF cerebrospinal fluid; CT computed tomography; EMG electromyography

* Differential diagnoses at first presentation

b Differential diagnoses at second presentation
Fig. 1 Studies from presented patient. a T1-weighted gadolinium-enhanced MRI of a1 brain and a2 lumbosacral spine. Pathologically enhancing multiple myeloma lesions are visible in the sphenoid sinus (asterisk, a1) and lumbar vertebrae (arrows, a2). No pathological gadolinium-enhancement of the nerve roots or meninges is visible.

b Microscopic image of cerebrospinal fluid showing the presence of a myeloma plasma cell with perinuclear halo and eccentrically located nucleus with prominent nucleoli. c Flow cytometric analysis of cerebrospinal fluid demonstrating c1 CD138+, c2 CD38+, and c3 CD19- cells, which is typical for malignant plasma cells.

References

1. Chamberlain MC (2010) Leptomeningeal metastasis. Curr Opin Oncol 22:627–635
2. Chamberlain MC, Glantz M (2008) Myelomatous meningitis. Cancer 112:1562–1567
3. Dennis M, Chu P (2000) A case of meningeal myeloma presenting as obstructive hydrocephalus—a therapeutic challenge. Leuk Lymphoma 40:219–220
4. Fassas AB, Muwalla F, Berryman T, Benramdane R, Joseph L, Anaisis E, Sethi R, Desikan R, Siegel D, Badros A, Toor A, Zangari M, Morris C, Angtuaco E, Mathew S, Wilson C, Hough A, Harik S, Barlogie B, Tricot G (2002) Myeloma of the central nervous system: association with high-risk chromosomal abnormalities, plasmablastic morphology and extramedullary manifestations. Br J Haematol 117:103–108
5. Guy J, Mancuso A, Beck R, Moster ML, Sedwick LA, Quisling RG, Rhoton AL Jr, Protzko EE, Schiffman J (1991) Radiation-induced optic neuropathy: a magnetic resonance imaging study. J Neurosurg 74:426–432
6. Halczuk I, Ilzecka J, Stelmasiak Z (1999) Myelomatous meningitis: a case report. Neuroradiology 33:1425–1433
7. Kesari S, Batchelor TT (2003) Leptomeningeal metastases. Neuro Oncol 5:25–66
8. Nieuwenhuizen L, Biesma DH (2008) Central nervous system myelomatosis: review of the literature. Eur J Haematol 80:1–9
9. Patriarca F, Zaja F, Silvestri F, Sperotto A, Scalise A, Gigli G, Fanin R (2001) Meningeal and cerebral involvement in multiple myeloma patients. Ann Hematol 80:758–762
10. Pauls S, Fischer AC, Brambs HJ, Fetscher S, Hoche W and Bommer M (2011) Use of magnetic resonance imaging to detect neoplastic meningitis: Limited use in leukemia and lymphoma but convincing results in solid tumors. Eur J Radiol. doi: 10.1016/j.ejrad.2011.02.020
11. Petersen SL, Wagner A, Gimsing P (1999) Cerebral and meningeal multiple myeloma after autologous stem cell transplantation. A case report and review of the literature. Am J Hematol 62:228–233
12. Phekoo KJ, Schey SA, Richards MA, Bevan DH, Bell S, Gillett D, Moller H, Consultant Haematologists, South Thames Haematology Specialist Committee (2004) A population study to define the incidence and survival of multiple myeloma in a National Health Service Region in UK. Br J Haematol 127:299–304
13. Schluterman KO, Fassas AB, Van Hemert RL, Harik SI (2004) Multiple myeloma invasion of the central nervous system. Arch Neurol 61:1423–1429