A physical map of a BAC clone contig covering the entire autosome insertion between ovine MHC Class IIa and IIb
Li et al.
A physical map of a BAC clone contig covering the entire autosome insertion between ovine MHC Class Ila and I Ib

Gang Li1,2†, Ka Liu2,5†, Shasha Jiao1,2, Haibo Liu2, Hugh T Blair3,4, Peng Zhang2,5, Xiaoran Cui2, Pingping Tan2, Jianfeng Gao1,4* and Runlin Z Ma2,4,5,6*

Abstract

Background: The ovine Major Histocompatibility Complex (MHC) harbors genes involved in overall resistance/susceptibility of the host to infectious diseases. Compared to human and mouse, the ovine MHC is interrupted by a large piece of autosome insertion via a hypothetical chromosome inversion that constitutes ~25% of ovine chromosome 20. The evolutionary consequence of such an inversion and an insertion (inversion/insertion) in relation to MHC function remains unknown. We previously constructed a BAC clone physical map for the ovine MHC exclusive of the insertion region. Here we report the construction of a high-density physical map covering the autosome insertion in order to address the question of what the inversion/insertion had to do with ruminants during the MHC evolution.

Results: A total of 119 pairs of comparative bovine oligo primers were utilized to screen an ovine BAC library for positive clones and the orders and overlapping relationships of the identified clones were determined by DNA fingerprinting, BAC-end sequencing, and sequence-specific PCR. A total of 368 positive BAC clones were identified and 108 of the effective clones were ordered into an overlapping BAC contig to cover the consensus region between ovine MHC class Ila and I Ib. Therefore, a continuous physical map covering the entire ovine autosome inversion/insertion region was successfully constructed. The map confirmed the bovine sequence assembly for the same homologous region. The DNA sequences of 185 BAC-ends have been deposited into NCBI database with the access numbers HR309252 through HR309068, corresponding to dbGSS ID 30164010 through 30163826.

Conclusions: We have constructed a high-density BAC clone physical map for the ovine autosome inversion/insertion between the MHC class Ila and I Ib. The entire ovine MHC region is now fully covered by a continuous BAC clone contig. The physical map we generated will facilitate MHC functional studies in the ovine, as well as the comparative MHC evolution in ruminants.

Keywords: Ovine, MHC, OLA, Physical map, BAC, Comparative mapping
Background

The mammalian Major Histocompatibility Complex (MHC) harbors genes involved in overall resistance/susceptibility of animals to infectious pathogens, including viral, bacterial, internal and external parasites. Pathogens serve as sources of selection pressure to their host animals, and the hosts are forced to develop effective strategies to fight against the pathogens in various environments. Such co-evolutionary struggles may have left distinct marks in the genome of each species involved, and mammalian MHC regions have been shaped into clusters of immunological gene families by such host-pathogen interactions, probably via functional gene duplications [1-3]. The implications of ovine MHC molecules in providing protection against pathogens [4-8] and the associated structures of the artiodactyl MHC region in general have led to a number of studies into the sheep MHC [9-15].

The ovine MHC, also called ovine leukocyte antigen (OLA), is located on the long arm of ovine chromosome 20 (OAR 20q15–20q23) with a similar structure and organization to that of human and other mammals [16]. The literature shows that MHC genes play vital roles in resistance of animals to foot rot [17], parasites [9], and bovine leukemia virus [7]. To date, the majority of studies on the structure and organization of the ovine MHC have focused on the gene content and polymorphism of the class II region [18-23]. Although most loci in the sheep MHC are found to be homologous to their counterparts in the human MHC [12,21,24,25], there are significant differences. Examples of such differences include the DP loci in human being replaced by DY in sheep [19,21,26,27], and the number of DQA loci varying significantly among sheep breeds [20,22,28].

Compared to human and mouse, the structure of the sheep MHC is interrupted by a piece of ~14 Mb autosome insertion, possibly via a hypothetical chromosome inversion (inversion/insertion) in the class II region, similar to that of cattle [24,29-32]. The inversion/insertion constitutes ~25% of ovine chromosome 20, which spliced the MHC class II region into IIa and IIb. The significance of such an insertion in relation to the ovine MHC functions remains unknown. The evolutionary consequence of such an event is also worthy of attention, because some of the ovine-specific MHC loci like DY, and Dsb are located near the boundary region of the inversion/insertion. We previously constructed a physical map of BAC clone contigs covering the ovine MHC except the autosome insertion region [12,13], and a high accuracy sequence map of sheep OLA was accordingly constructed [14].

With the initial release of sheep whole genome reference sequences by the International Sheep Genomic Consortium (ISGC), much more genome sequence information is now accessible for functional and comparative studies [33]. Nevertheless, the sequence map would serve the research community even better if it is cross-referenced/checked for accuracy in DNA sequence and assembly, at least for some chromosome regions, by an alternative approach. In this regard, the detailed information is still not fully available for the gene structure, organization, and DNA sequence for the ovine chromosome region between OLA class IIa and IIb [12,14,27].

In this paper, we describe the construction of a BAC physical map covering the entire autosome insertion between ovine MHC class IIa and IIb. Because ovine and bovine species share the consensus structure and organization in the entire MHC region [24,29-32], we used comparative approaches to screen a sheep BAC library with 119 bovine oligo nucleotide primers designed from the bovine genomic sequences for the consensus region. The order and overlapping relationship of the identified BAC clones were determined by DNA fingerprinting, BAC-end sequencing, and sequence-specific PCR. A total of 108 effective overlapping BAC clones were selected to fully cover the region between class IIa and IIb. The physical map we constructed will help to generate ovine MHC sequencing map with a high level of accuracy, which in turn will facilitate MHC functional and comparative MHC evolution studies in ruminants.

Methods

Comparative design of oligo primers

A BAC library was previously constructed using the genome DNA from a male Chinese merino sheep, with a total of 190,500 BAC clones and an average insert length of 133 kb [12,13]. To screen the BAC library for positive clones in the target genome region between ovine MHC class IIa and IIb, we adapted a comparative strategy to design bovine oligo nucleotide primers using the bovine reference DNA sequences in the consensus genome region [34]. At the time this study was conducted, no sheep genomic sequence was publicly available for the genome region of our concern. Bovine DNA sequences of homologous genes, exon, intron, or partial STS sequences were acquired from the NCBI website (http://www.ncbi.nlm.nih.gov/genome/sts/). Primers were designed along the bovine MHC region between class IIa and IIb, approximately 80–160 kb apart between two neighbor loci using the software Prime Primer 5.0 (Biosoft International, CA). A total of 119 bovine primer pairs were designed for screening the sheep genomic BAC library (Table 1).

BAC library organization and screening

To facilitate large scale PCR screening, all the 190,500 clones of the BAC library were organized into 3-dimensional BAC clone pools of plates, rows, and
Table 1 Comparative bovine primers used for identification of the positive ovine BAC clones in the genome region between MHC Class Ila and Iib*

Name	Gene symbol	Primer sequence (5’→3’)	Product(bp)	Bovine template sequence	Positive OvineBAC clones
S001	VPS52	F: ATCAATCAGAGATCCCACAAG	246	UniSTS:279053	12 H14;12I12;12 J14; 12 K14;20P21
		R: ATCAGAAAACAAGCTGTCCT			
S002	ZBTB22	F: TCTCAGACCTCCTCCCTCC	250	UniSTS:66823	12I12;12 J14;258 F9; 289 G18
		R: GGGTCAAGTTGTGTAGTCT			
S003	KIFC1	F: GAGACGTCCGAGACTCTGCT	1242	UniSTS:BV:104878	170 G9;217 M14;289 G18
		R: CTGGACACTGGAAGCGAGCC			
S004	Loc100139397	F: GGTGATCATGAGAGGGACTCTG	756	Exon 6: NC_007324	19 H17
		R: TTCTCCTCTAAGGCTATGCT			
S005	BAK1	F: TCTGCAAGTGGTCTCCAGGA	293	Exon 6: NC_007324	None
		R: CCAAGCTGGAGCTTCCAGGA			
S006	HPK3	F: ATGATAGAGAGCTGGACAGC	1000	UniSTS:267905	21D23
		R: TCAGCTGCTACTTCTCCAGGG			
S007	LEMD2	F: ACCTGACCGCAACAAGCTG	227	ENSBTAE00000168818: Exon 1	None
		R: GTCTCCGATGTCACCGGTGAG			
S008	Loc790333	F: GACTGCGGAGTGCCCGAGAA	776	Exon	94 M24;114B22
		R: GTGGACGGCTACACCTGCAA			
S009	HMGA1	F: CTGACGCTCCTCATTGGAA	625	ENSBTAE00000364012: Exon 6	57 MS
		R: CAGACAGCGAGCCATGGAG			
S010	NUDE3	F: TGAAGTGAGAGCCACCAAGCC	688	ENSBTAE00000213256: Exon 5	14E10;300 G8
		R: GTCTCCGATGTCACCGGTGAG			
S011	COX5B	F: GTCGGCTGGTGCCCTCTAT	324	ENSBTAE00000398033: Exon 1,2	130 G21;130 M2;170 K16
		R: GGTGTTCCACCCAGCTGTAAA			
S012	PACsin1	F: AAGCCGAGAAACAGTACGGCAC	683	ENSBTAE00000336066: Exon 10	253I24
		R: TCCTCCGATGTCACCGGTGAG			
S013	C6orf106	F: AGTGACCGCGGCTGAGAGAGTT	266	ENSBTAT0000048861: Exon 1	None
		R: AACTCGGAGATGAGCACGC			
S014	SNRPC	F: CCAATGATGAGAGCCCTCTCCG	147	ENSBTAT000003434155:Exon 6	119P19;157 K19;223 N7; 227 J17;232 G24
		R: CAGATGCCAGGACACCATGAT			
S015	TAF11	F: TGGATGTTGGTGGAGAAAGTG	561	ENSBTAT00000022463: Exon 5	194 L19;215 J4;232 G24;234CS
		R: TCAGCTGCTGGTATACAGG			
S016	ANKST1A	F: CGAGGATGCTGCCAACAAG	894	UniSTS:BV:105378	124P23;320A1
		R: ATCGCCATTTCCGCAACAAAG			
S017	TCP11	F: ATCACGGGATCACCCTGTCTC	373	ENSBTAT00000022467: Exon 11	24D11
		R: CTGGCTGACCTACACCGAGGT			
S018	DEF6	F: ACCACACGAGCTCCTCTAC	496	ENSBTAT00000036152:Exon 11	21 M13;666;124 K16; 193E6;206 L10
		R: CCTGCCTGCTGTGTGACTCT			
S019	PPARD	F: GTCCATGCTCCACTCTCCTC	353	ENSBTAT00000023319: Exon 8	28D20;152A4
		R: CGGTGAATCTGCTGGCTCTT			
S020	TEDA3	F: CCCATCACAGCTGGATTTTTA	145	UniSTS:180986	None
		R: AAATGAAAGACTCTGTCGCCCTCCC			
S021	Loc540812	F: TGCACGCGAATCCTCTCAAGC	263	Exon	95D10;119O20;158O6
		R: GCAGCTGGAGTGCTGACTATGAG			
S022	SRPK1	F: CAGACACTACAGGCGCGTGTG	273	ENSBTAT0000002396: Exon 11	269D12;285I5
Table 1 Comparative bovine primers used for identification of the positive ovine BAC clones in the genome region between MHC Class IIa and IIb (Continued)

S023	SLC26A8	F: ACATCAGCACCAGCTCAGTACC	222	UniSTS:476830	26A21;121O15
		R: AGGCGGATAGAACACAAACAC			
S024	MAPK14	F: GAATGGGATAACAAAACACTT	196	UniSTS:279403	26A21;121O15
		R: CCTAAAAATATTTACACTTT			
S025	MAPK13	F: AGAAGCTCAATGCAAAGCGG	606	UniSTS:269171	121O15;154M16
		R: TCCATTCCGTCACCTGTGAG			
S026	BRPF3	F: GACGCCGTGATCCATTTAGGC	575	ENSBTAT00000017711: Exon 1	154M16,250L24; 278B11,281D9,300J5
		R: AGGCGGATAGAACACAAACAC			
S027	PNPLA1	F: TCTCTGACGTTGCAACCTGA	449	ENSBTAT00000055658: Exon 7	78M7,153F9,268E18; 319D4,337K13
		R: CAGCTTGGCTGCGAGGGGTC			
S028	Loc790226	F: CCGACTGCGTAGAAGACAGA	483	Exon	30169G29G39H8; 10 N2,158B13,26D1
		R: ACTGCGTACAGCTCTGTCGA			
S029	KCTD20	F: CGATGCAATCTACTAAGCTGG	834	ENSBTAT0000027439: Exon 8	None
		R: GCAGTCTCCTCTCCGTGCAC			
S030	RPS4Y1	F: TGGCCAGCCTCTTTCTTCCTT	430	ENSBTAT0000036142: Exon 2	2A3,11H24,65N7; 82 N20,97O2,120P24
		R: TACACCTGAGGGGCGCAAGT			
S031	CDK9N1A	F: GGGATAGGCCGCTGGCTCTCT	861	ENSBTAT0000011001: Exon 3	None
		R: GGACATGCGCTGCTGAGSTA			
S032	PPIL1	F: AATGTTCAATGGCCTGCTGCTT	888	ENSBTAT00000030701: Exon 4	30017,139K9,198M20,271C5
		R: CACCAACAGGGCCAGCTCTC			
S033	P116	F: CCGATCGAAGATCGCTCTCAA	461	ENSBTAT0000022703: Exon 5	54024
		R: AGGCCAAGATCTCAGTCCA			
S034	FGD2	F: CACCCTGCTGACACCAACTTC	414	ENSBTAT0000018834: Exon 16	304K7,318117
		R: TCAGGCCAGCTTCTACACCTT			
S035	PIM1	F: AAGCAGCTGAGAGAAGAGCCG	490	UniSTS:463218	None
		R: GACTGTGTCCTTTAGAGCAGG			
S036	TBC1D22B	F: CTGTCACCACTTCTTACCTT	539	ENSBTAT0000018938: Exon 13	5K4,26A20,49B1,98G9
		R: GCACATTCGAGGGCGCAAG			
S037	RNF8	F: TCTGATGTTGTCCTGCTG	708	ENSBTAT00000010959: Exon 9	None
		R: TATCCGACGCTCCTCTCTCT			
S038	Loc509620	F: AGTGGCCACCCACAGAGCTC	666	UniSTS:267349	25P1,103D16,207L1,271M7
		R: AACTCCTGTGCAAGGTCCTGG			
S039	C23H6orf129	F: GGCAGAAGAAGAGGAGAGAC	281	ENSBTAT0000016009: Exon 4	25P1,103D16
		R: GCAGAAGACCTCTCCCTGAGGC			
S040	MDGA1	F: TTCTGCGGTGTCAGAGATGA	228	ENSBTAT00000047505: Exon 16	None
		R: TGTGGCGTGGTCAGAAAAACC			
S041	ZFAND3	F: CGATTGGTATAATTTTTTTTCA	200	UniSTS:34520	159K21,185L24,235B3
		R: TGTTGAATGTGTTAATGGTAAAGGA			
S042	BTBD9	F: GATGGTCTTACAGCTGTTAG	155	UniSTS:279369	None
		R: GAATGTCAGAAATAGAAGTG			
S043	Loc781915	F: AACCCATGTCCTCCTCCAC	714	Exon	67D1,117N21,76E1; 240K15,240O16
		R: AACAAGGGTGGCCAGCCATC			
S044	GL01	F: GATAGGCTTACAGCTGTTAG	155	UniSTS:279369	None
		R: GAATGTCAGAAGAAGTGG			
S045	Loc525414	F: GAAGAAGAGGGTCAGCCGTTAGAG	216	UniSTS:476833	8J2,13E21,24K16; 24N15,28L5,112N3
Table 1 Comparative bovine primers used for identification of the positive ovine BAC clones in the genome region between MHC Class IIa and IIb

S045b	GLP1R	F: CGAGGTGAGGATCCAAAGC	418	Exon 4, 5 and intron 80	G15;138P3
S046	C23H6orf64	F: GTGACACGACCATGGAGTC	415	ENSBTAT0000001425: Exon 2	19 F4;80 G15;138P3; 156B12; 336 L24
S047	XCNK5	F: CTCGACTCTTGCTGTGGA	774	ENSBTAT0000001475: Exon 5	None
S048	XCNK17	F: AGATCCCGGCTCTCCCTTAT	493	ENSBTAT0000001364: Exon 5	None
S049	Loc100139627	F: GTGAGGGGAACTTGAGGCAC	344	NC_007324: designed online	3 L3;51O8;189 L22; 20B12; 270 L14
S050	Loc100138924	F: CTGCTTCTGGGCTGCTGGA	493	NC_007324: designed online	145 G9;146 H11
S051	DAAM2	F: CAGGGAGTGCTCTCAAGGTAAGG	307	UniSTS:476834	None
S052	MOCS1	F: GGTCACAGCCACCATGGAGTC	661	ENSBTAT0000001379: Exon 11	None
S053	L8N3	F: TGCACTTACACGGCGGTCCT	493	ENSBTAT00000023907: Exon 1	77E2;220 J8;325 J12; 325 J13
S054	UNCSCL	F: TGACAGAGGAGGGAGGAGGAGGAGG	278	UniSTS:476835	None
S055	NFYA	F: GCGGCTGAAAGATGGCTGATGAC	550	ENSBTAT00000013080: Exon 10	76 K24;118P22;136B19
S056	TREM2	F: ACAACTCTCTTGAGAAGCCTCAGTGTA	229	ENSBTAT00000009568: Exon 2	64A4;178 L4;208 M19; 282 F4
S057	TREM1	F: CATGATGGGTGCCTGACTATG	515	ENSBTAT00000023397: Exon 4	30C8;73 K17,5A11; 75J13
S058	LOC783024	F: CTGAGGACCAAGAGGCTCATGCT	216	UniSTS:476835	None
S059	FOXP4	F: AATTATCGCTCCAAGGATCCAC	250	UniSTS:384935	None
S060	MDI	F: GCTGAGTGAGCTGACTTG	256	ENSBTAT00000025763: Exon 4	7OB4;166C6;181 J11; 20B12; 229A10
S061	PGC	F: GAAATTCTCTGCTAAGAGCAGAG	268	ENSBTAT00000013080: Exon 10	14 G19,2407;24010; 103 G9; 139 N14
S062	USP49	F: GATGAGGATGCTATGAGAGCAGAG	260	UniSTS:385828	None
S063	BYSL	F: TACAGAGGACTGGAAGTGAGGA	538	ENSBTAT00000013326: Exon 7	3 M12;98 J10;182 F10
S064	TAF8	F: TGGGAGGAGGAGAACCTTTGCTGAGAGCAGAG	228	UniSTS:476835	None
S065	MG137036	F: GAAGCGGACCGATGAGACAGA	238	ENSBTAT00000017035: Exon 2	10015;117E;133 J9; 146 L22;171 L22;176P6
S066	TRERF1	F: GTGACACTCTTGCTGCTGCGGA	643	ENSBTAT00000020376: Exon 1	102A17;12J;97 H15; 81 J21;10001S;259 L15
S067	Loc786000	F: TGGGAGGATGAGAGCTGAC	379	NC_007324: designed online	6P21;32P14;142C8; 162E5;195C23,227D22
S068	UBR2	F: CTGCAAGCACTGACTCCTCAC 169	ENSBTAT000000007833: Exon 2	6P21;129B6;162ES; 163E23;177 M6
		R: CCACACTGAGTCTTCGCAAC		
S069	MRPH2	F: GTATGGAGCTCAGGAACTCGC 232	UniSTS279013	26 J6;26 L8;29 M14; 127A7;134B12;177A2
		R: ACCAGAGCAGTACCTGCTGAGA		
S070	Loc540169	F: ATGAAAGGGTCAGGCAAC 130	UniSTS94727	144A13;164 L3;164 M2;164 M3;172O18;185 N10
		R: ACAGAGCCGCTAAACCGTG		
S071	CNPY3	F: GAACAGTGGTCTGCGGAAAGA 214	UniSTS00000021132: Exon 10	98 J16;172O18;185 N10;189O8;289 J21
		R: GTGAGCTGAGAGCTGCTCA		
S072	CUL7	F: TTTGACCTCTCGTCCGGTG 1,000	UniSTS270008	74C2;189O8;289 J21; 325 K12
		R: CTCCAGCATGTCGGCATG		
S073	PTK7	F: GACTCAGGACCTTCCGAGTG 531	UniSTS268417	54A6;127D14;142 L8; 163O23;204P7
		R: CTGATTTGCGACTCTCGGAGG		
S074	Loc540077	F: CTTGAAATCTCATCTCGGATGG 417	Exon	54A6;142 L8;163O23;204P7
		R: GGAAAGCACAGGATGGTCCCC		
S075	Loc786439	F: GGAGCTTTATTACTCGAGATGG 200	UniSTS222501	None
		R: AATCCAAACTGAAAGACGCA		
S076	ZNF318	F: CTGTCTTCATCTCAGGTCCTCC 438	ENSBTAT0000001348: Exon 1	24 L2366 G883 NS; 119 J9;162 F10
		R: AGCTCCTACTGCTTCCTCC		
S077	TJAP1	F: GAGGACGAGGAGAGGACTGGA 654	ENSBTAT00000035977: Exon 12	None
		R: CGTGCAGAGGTAAGGAGGA		
S078	POLH	F: GACAGCCACACACTACAAGCA 497	ENSBTAT000000007900: Exon 11	68 F17;71 H18;74P6; 124 L6;250 J4
		R: GTCTCAGAGTCCGACAGC		
S079	MRPS18A	F: AGTGTGAGACCCAGTGCAGC 191	ENSBTAT000000056429: Exon 6	115P10;176 M14; 233 H10;278 K6;291I3
		R: AGGACCTCCTCGAGCCTGCA		
S080	VEGFA	F: GATCATGCGGATCAAACCTACC 326	UniSTS471318	128B12; H11;30 L7; 63B12;148 J8;249D14
		R: CCTCCGAGCACAAGATGCTC		
S081	MRPL14	F: TCAGAATCGCTCATTCCAC 182	UniSTS64809	117 J15
		R: CAAACACGCTGTCCTCATG		
S082	SLCA29A1	F: GGTGTCTTTTGGAGCACGACT 537	UniSTS207086	None
		R: CCGAGCAGAGGAGGAGAGA		
S083	AARS2	F: CACTGGAAGCACTGCTGACC 325	ENSBTAT00000018232: Exon 22	None
		R: GCAGCCGACAGCAGCATGTA		
S084	CDC5L	F: CCAACTCAGGAGGACCATCATT 750	UniSTS267825	134E15;147112
		R: GGGTTTTGTTTTGATGTTGG		
S085	SPT3H	F: CTTCTGCTGAGACCTCTGAGT 208	UniSTS476839	23P28;80P15;110 F4;5;6
		R: TGGCTACTGCTTCCACCAGATGGT		
S086	Loc536911	F: TACAGGCCACCCAGAGCA 309	UniSTS280406	9 G19;9 H22;923;24; 59B8
		R: AGAGGGCTGTTGAGGAGCATA		
S086b	CLI5(BM1258)	F: GTATGTATTTTTCCCAACTCTGC 158	UniSTS56663	291I15
		R: GAGTCAGACATGACTGAGCCTG		
S087	ENPP4	F: GAAACACTGACTGAGACATG 595	ENSBTAT00000004547: Exon 2	72 M13;74O6;127 F7; 182 K12;299 N7
		R: TCTCCTGCTGACACCTAA		
S088	ACAN2	F: TCTTACCTGCTGAGGACCTC 132	UniSTS69107	None
		R: TACACTGACAGTCCTGTTGG		
S089	CYP39A1	F: AGGATGATGGTGCAAACATG 200	UniSTS15671	57E15;181B7;202D23; 213A17;261 M4
		R: CATGTTGTCATAATTTGGATGC		
S090	TDRD6	F: GAGTTCTTCCACTGCCGTGTC 490	ENSBTAT00000013158: Exon 1	114B7;147E14;190 N9; 329 H12;2350E16
S091	Loc785478	F: TACGCCACCTACACACAC 439	Exon	65 L20;133 M1211 N8; 233B22;233014
S092	GPR116	F: CACCATCGGTGCTATATTCT 302	ENSBTAT00000035930: Exon 18	291 M9
S093	GPR110	F: AGTGGCAGACATACCGGTCTG 452	ENSBTAT00000028795: Exon 10	None
S094	TNR5F21	F: CAGAGCAGAAAGGACACAGT 500	ENSBTAT00000047874: Exon 11	118P16,351 H10
S095	LOC785024	F: GGTTCGACCGCCACTGGAAT 611	Exon	1487,79 L8,168 N8; 264 L6
S096	LOCS12926	F: AGAGCAGAAGGCACCAAGTC 437	ENSBTAT00000003815: Exon 5	None
S097	CD2AP	F: TACCATCAACACACACATCGAT 309	UniSTS:278169	1 H10,14A2;75 J19; 414B12;151 J21;166 L22
S098	GPR115	F: CACAGTGGTGCCAGAAAAC 490	ENSBTAT00000003815: Exon 5	None
S099	OPNS	F: CTACATCTGCCTGGCTGCAAT 287	ENSBTAT00000021933: Exon 4	1678,228 M7
S100	MGC148542	F: ACATTCTCTCCTTTGCGTCC 272	UniSTS:133880	1A19;1B9;140A1; 216D18;319I16
S101	LOC785693	F: AGCCAGGTAGAGTTCCAATG 518	Exon	17 K13;7E1;7B22; 103 F21
S102	MUT	F: AGAAAAGCAACTGCCAATAAT 750	UniSTS:279392	74 J7,86P12,252B10; 255 G2,66016,313 L2
S103	LOC787783	F: GGAATCATCAACACACACACTGGA 269	UniSTS:476844	255 G2,66016,274D6; 288I23
S104	RHAG	F: GAATGCACGGAATCATACGTC 470	ENSBTAT00000015012: Exon 4,5	53D7;173C22;186 L10; 226 G3,4,226 H7
S105	LOC100138627	F: AATGAATAGTATCCCCAACATCTG 150	UniSTS:164033	None
S106	TFAP2D	F: TAAGCTTTCGGAGAAACCCA 1422	UniSTS:482175	5 K4; 139 L18,230 K5
S107	TFAP2B	F: TGATCTCTCCTCCTTCTC 120	UniSTS:71657	25D11;25 F24;142E22; 161A23,167 J23,189D14
S108	LOC100138859	F: GAGGGACCACGATGACCCATGTA 561	UniSTS:164033	None
S109	LOC37895	F: TCTCTCAATGATGAATAGTCTC 270	UniSTS:251053	56 J7,86O3;87 H23; 277 G10,277 H11
S110	LT7A	F: CACTCGGGCTTATCTCAAGTC 591	ENSBTAT00000002786: Exon 3	13824,74A7;74E17; 164 H22,16423
S111	MCM3	F: TGTCCCCATTTGGGCTC 515	UniSTS:256664	69 G8,168EO2,232C7; 263 M23,270P6
S112	PAQR8	F: TGTATCTGCTCTCTCCTCATC 447	ENSBTAT00000035844: Exon 2	102 M1;160 L10
columns. Random BAC clones from each of 496 permanent 384-well storage plates were duplicated onto a Luria-Bertani (LB) agar plate for overnight growth at 37°C, using a 384-pin Multi-Blot Replicator as tool for BAC clone duplication (V & P Scientific, Inc., San Diego, CA). The overnight \textit{E. coli} colonies were then harvested and pooled for plate (n = 496), row (n = 16), or column (n = 24). The standard alkaline lyses methodology was adapted for isolation of the pooled BAC plasmid DNA and the resulting DNA was assembled into super plates for routine PCR screening [35]. The first dimension of the BAC clone pool consisted of 496 DNA samples, each representing one of 496 BAC plates (P001-P496). The second and third dimension consisted of 16 and 24 DNA samples, respectively, for the pooled 16 rows (R01-R16) and 24 columns (C01-C24) of the random BAC clones.

To screen the BAC library using each of 119 pairs of comparative oligo primer pairs, the diluted DNA from each well of the super pool plates was used as a DNA template. The individual PCR reaction was adapted in a total of 10 μl reaction volume with 50 μM of dNTPs, 1.5 mM Mg++, 0.2 μM of each primer pair, 1 × PCR buffer, and 0.1 unit of Taq DNA polymerase. The PCR products were resolved by 1.5% agarose gel electrophoresis and the specific PCR fragment band with the expected size indicated a potential positive BAC clone for the gene loci of oligo primers used. The exact location of the target clone in the BAC library was determined by sequential PCRs using the super row and super column DNA as templates, respectively.

DNA fingerprinting and contig assembling
DNA fingerprinting was performed to determine the overlapping relationship among the identified positive BAC clones [12]. DNA from the positive BAC clone was purified from host \textit{E. coli} by QIAGEN column and subjected for complete restriction enzyme digestion using \textit{HindIII}. The enzyme digested products were analyzed on 1% TAE agarose gel electrophoresis for recording of DNA fragment patterns. The fingerprinting images were captured with UVP Labworks System (UVP Inc., Upland, CA) for systematic analysis. Restriction fragment patterns were analyzed to identify overlapping BAC clones, which were then manually assembled into draft contigs based on the modified methods of Marra [36] and Soderlund [37].

BAC-end sequencing
BAC-end sequencing was performed for the selected clones to facilitate verification of the overlapping relationships of the BAC clones. The sequencing was performed on an ABI 3730X DNA analyzer at the core facilities of the Institute of Genetics and Developmental Biology, the Chinese Academy of Sciences. The oligo nucleotide primers used for the DNA sequencing were Copycontrol pCC1BAC vector-derived sequencing primer T7 (5'-TAATACGACTCACTATAGGG3'), pCC1/pEpiFOS RP-2 (abbr. RP-2) (5'-TACGCCAAGCTATTTAGGTGAGA-3'), and pCC1/pEpiFOS RP-1 (abbr. RP-1) (5'-CTCGTATGGATGAGGAAATTGTCGTA-3'). The resulting sequences were analyzed for overlapping, and used as templates for oligo primer design. Based on the sequence data generated by BAC-end sequencing, PCR primers (Additional file 1: Table S1) were designed to amplify the common genetic loci in two overlapped BACs for confirmation. Sequence-Specific PCRs (SP-PCRs) were performed in 20 μl system including approximately 2 ng BAC DNA, 0.5 U Taq DNA polymerase, 0.1 mM dNTPs, 1.5 mM Mg++, 0.25 μM each primer, and 1× PCR buffer. When necessary, the PCR products were verified by cloning the fragments into a TA vector for verifying DNA sequencing.

Assemble of the BAC clone contig
A continuous BAC clone contig was eventually assembled based on the integrated results of DNA fingerprinting,
BAC-end sequencing, and sequence specific PCR amplification of the common loci on the overlapping clones. Redundant BAC clones were removed from the assembly based on the necessity and the relative contribution of each overlapping BACs on the contig. Gaps in the contig were closed by the repeated cycles of PCR screening of BAC clones, DNA fingerprinting of additional BAC clones identified, BAC-end sequencing, and SP-PCR verification. Additional effort was made to link the existing BAC clone contig to the physical map constructed previously, for a complete physical map covering the entire ovine MHC including the autosome insertion between class Ila and IIb.

For comparison of the MHC structure and organization between sheep and other mammals, multiple comparisons were performed for the representative MHC and extended DNA sequences from human, chimpanzees, mouse, cattle, and sheep. Sequence data were downloaded from the NCBI database and other related public websites designated for the sheep genomic information.

Results

Target BAC identification

We successfully identified a total of 368 positive BAC clones for ovine chromosome 20 between MHC class Ila and IIb, utilizing bovine primers designed from the consensus genome region (Table 1). Out of 119 pairs of oligo primers designed, 92 pairs worked effectively to generate specific target gene fragments of the expected sizes. This approach resulted in the successful identification of positive ovine BAC clones in the target genome region, and the overall efficiency of comparative PCR reached 80%. The relatively high rate of success for the comparative SP-PCR not only facilitated our mapping efforts, but also helped to confirm the homologous nature of MHC regions between bovine and ovine species.

Organization of ~190,500 random ovine BAC clones into three dimensional super DNA pool of rows (n = 16), columns (n = 24), and plates (n = 496) significantly increased the efficiency of PCR screening of the sheep BAC library (Figure 1). The whole BAC library of 8.4x genome equivalents was screened through with a maximum of 536 (=496 + 16 + 24) PCR reactions, and a positive BAC clone could be frequently identified by as few as 136 (=96 + 16 + 24) PCR reactions using the super pool DNA as templates. In addition, PCR-based BAC clone screening also helped to eliminate the need for hybridization-based screening using radioactive 32P labeling.

DNA fingerprinting and BAC-end sequencing

The initial order of the positive BAC clones identified was successfully determined by inferring the overlapping relationships among the clones via DNA fingerprinting, using *Hind*III for restriction enzyme digestion of the BAC clone DNAs (Figure 2). Out of 368 positive BAC clones subjected for the DNA fingerprinting, 185 clones with their overlapping relationships were successfully determined. The resulting BAC contig covered the entire autosome insertion region between the MHC class Ila and IIb. After removing the redundant clones, a total of 108 effective BACs were ordered to form an overlapping BAC contig (Additional file 1: Table S1).

For cross-checking of the clone order, BAC-end sequencing was performed for all overlapping BAC clones, and the sequences generated were used to design BAC-end oligo primers (Additional file 1: Table S1) for further verification of overlapping relationships. The sequences of 185 BAC-ends have been deposited into the NCBI database with the access number HR309252 through HR309068, corresponding to dbGSS ID 30164010 through 30163826.

Cross verification and physical map assembling

For additional cross-verification of the BAC clone orders, a total of 108 pairs of BAC-end oligo primers were designed for amplification by PCR of the common loci in two overlapping BACs (Figure 3). Verification PCR confirmed the results of DNA fingerprinting at a high level of accuracy. Out of the 108 primer pairs used, 103 produced the specific PCR products with the expected size, the overall success rate reached 95% (Additional file 1: Table S1). An overlapping relationship between two BACs was further verified if the common target loci were detected from both BACs in the overlapped region. A total of five pairs of oligo primers failed to generate the specific PCR band, or failed to produce the PCR fragment at the expected size.

A complete physical map of a BAC clone contig for the ovine MHC region between class Ila and IIb was successfully assembled (Figure 4), based on the integrated results of DNA fingerprinting, BAC-end sequencing, and confirmation PCR of the BAC ends. The fully assembled physical map was composed of 108 effective ovine BAC clones organized into a continuous contig that covered the entire region between ovine MHC class Ila and IIb (Figure 4). Based on the results of DNA fingerprinting, no gaps exist in the constructed BAC clone physical map which spans approximately 14 Mb genome region of ovine chromosome 20, indicating the even distribution of BAC clones in the library we previously constructed.

Discussion

Using the comparative approaches, we successfully constructed a 14 Mb BAC clone contig map for a region in ovine chromosome 20 that harbors the MHC. Comparison between the identified ovine BAC contig and the orthologous bovine genomic region showed that the two
species share essentially the same genomic structure and organization for the entire inversion/insertion between MHC class IIa and IIb (Figure 5). For the available genetic loci generated via the SP-PCR and BAC-end sequencing, our results essentially confirmed the sheep genome sequence assembly presented by ISGC in the MHC region [33].

The physical map of ovine BAC contig we constructed helped to provide additional evidence to support the hypothesis that, there was an ancient chromosome rearrangement in the ancestor of ruminants which shaped the MHC structures currently observed in the ovine and bovine (Figure 5). It is obvious that the MHC region in human, mouse and chimpanzees is continuous with no interruption, but in bovine and ovine it is interrupted by a large piece of autosome insertion which divided MHC class II into IIa and IIb subregions (Figure 5). Given the fact of opposite loci order and orientation for the insertion region in ovine and bovine relative to those of human and mouse, it is highly possible that an event of genetic recombination occurred to the ancestor chromosome of ruminants, probably via chromosome looping and the subsequent crossover. This possibility was suggested by researchers previously [29,38].

Examination of the bovine DNA sequence from the public database showed that the total length of bovine MHC is ~20 Mb, including the extended Class IIb region [34]. However, the total length of the orthologous ovine MHC was ~14.3 Mb as determined in this study, which is approximately 5.7 Mb shorter than the MHC of bovine. On the other hand, the sequence of the same bovine region presented in the NCBI database is ~18 Mb in length (http://www.ncbi.nlm.nih.gov/projects/mapview/maps.cgi?taxid=9913&hchr=23). These discrepancies may not likely be resolved unless highly accurate sequence maps for the entire MHC regions become available.

The reliability of the ovine BAC contig map reported here is sufficiently high in theory, partially due to the fact that the DNA fingerprinting was utilized to infer the BAC clone orders, plus the results were cross-verified by both of the BAC-end sequencing and SP-PCR
amplification of the target loci. However, it is not escaped from our attention that there are 5 out of the 108 overlapping locations in the BAC map where the SP-PCR failed to generate the expected PCR products between the overlapping BAC clones (data not shown). The significance of such failure in relation to the overall quality of the map remains to be determined. The possible explanations include the error in SP-PCR primer sequences, the high level of heterogeneity or polymorphism of the target locus involved, or the mistake in the interpretation of results of DNA fingerprinting.

Combined with our previous BAC physical map for the ovine MHC, we have now assembled a completed BAC clone physical map with the inversion/insertion region included (Additional file 2: Figure S1). The physical map will help to generate an ovine MHC sequencing map with a high level of accuracy, which in turn will
facilitate MHC functional studies and comparative MHC evolution studies in ruminants. DNA sequencing of the BACs is currently underway.

Conclusion

We constructed a high-density physical map for the sheep genome region between MHC class Ila and Iib via comparative approaches. A total of 108 effective ovine BAC clones were selected to form a continuous BAC contig that covers the entire non-MHC insertion. The map spans approximately 14 Mb in length, constituting ~25% of ovine chromosome 20. The entire ovine MHC region, including the autosome insertion for which the physical map has been constructed, is now fully covered by a continuous BAC clone contig. The accuracy of DNA sequences play vital roles in detailed SNP and
other functional studies of MHC genes, as well as for genome evolution studies. The physical map will help to
generate ovine MHC sequencing map with a high level of
accuracy, which in turn will facilitate MHC functional
studies, as well as the comparative MHC evolution in
ruminants.

Additional files

Additional file 1: Table S1. The ovine oligo primers used for
verification of overlapping relationships of the positive BAC clones.

Additional file 2: Figure S1. A complete physical map of entire ovine MHC with the insertion region between class IIa and IIb included. Order and orientation of overlapping BAC clones were jointly determined by combinations of DNA fingerprinting, BAC-end sequencing, and sequence-specific PCR. Genes identified by BAC-end sequencing are marked with erect black lines, with their names listed above. A horizontal bar stands for individual BAC with its identification marked above. Red, purple and green color represent the MHC class I, class III, and class II, respectively.

Competing interests

Authors declare no conflict of interests.

Authors’ contributions

GL carried out BAC library organization and SP-PCR screening. KL carried out DNA fingerprinting and contig assembling. SJ and GL performed oligo primer design and BAC-end sequencing. HL constructed the sheep BAC library. HB carried out data analysis. XC carried out certain verification of overlapping relationships of the positive BAC clones.

Acknowledgements

The authors are very appreciative of the expert reviewers who helped to improve the quality of the manuscript significantly. This work was funded by research grants from National Natural Science Foundation of China (30125024, 30171148), Ministry of Science and Technology of China (2005CB32750, 2010CB530204), and China Ministry of Agriculture (2009ZX08008-005B).

Author details

1School of Life Sciences, Shihua University, Xinjiang 832003, China. 2State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Science, Beijing 100101, China. 1Institute of Veterinary Animal and Biomedical Sciences, Massey University, Palmerston North, New Zealand. 4Joint Research Center for Sheep Breeding and Developmental Biology, IGDB-Massey University, Massey, New Zealand. 5Graduate University of Chinese Academy of Sciences, Beijing 100149, China. 6Institute of Genetics and Developmental Biology, Chinese Academy of Science, Beijing 100101, China.

Received: 21 January 2012 Accepted: 3 August 2012

References

1. Nei M, Rooney AP: Concerted and birth-and-death evolution of multigene families. Annu Rev Genet 2005, 39:121–152.

2. Spurgin LG, Richardson DS: How pathogens drive genetic diversity: MHC, mechanisms and misunderstandings. Proc Biol Sci 2010, 277(1684):979–988.

3. Trowsdale J: The MHC, disease and selection. Immunol Lett 2011, 137(1–2):1–8.

4. Bonneaud C, Richard M, Faivre B, Westerdahl H, Sorci G: An Mhc class I allele associated to the expression of T-dependent immune response in the house sparrow. Immunogenetics 2005, 57(10):782–789.

5. Duckipati VS, Blair HT, Garrick DJ, Murray A: Ovar-Mhc-ovine major histocompatibility complex: role in genetic resistance to diseases. W-Z Ver J 2006, 54(4):153–160.

6. Galindo RC, Ayoubi P, Garcia-Perez AL, Narango V, Kocan KM, Gortazar C, de la Fuente J: Differential expression of inflammatory and immune response genes in sheep infected with Anaplasma phagocytophilum. Vet Immunol Immunopathol 2008, 126(1–2):27–34.

7. Konnai S, Takeshima SN, Tajima S, Yin SA, Okada K, Onuma M, Aida Y: The influence of ovine MHC class II DRB1 alleles on immune response in bovine leukemia virus infection. Microbiol Immunol 2003, 47(3):223–232.

8. Mena A, Nichani AK, Popowycz Y, Ioannou XP, Godson DL, Mutwiri GK, Hecker R, Babiuk LA, Griebel P: Bovine and ovine blood mononuclear leukocytes differ markedly in innate immune responses induced by Class A and Class B CpG-oligodeoxynucleotide. Oligonucleotides 2003, 13(4):245–259.
9. Bulikamp J, Filmther P, Sturmiol P, Nepomuceno JT. Class I and class II major histocompatibility complex alleles are associated with faecal egg counts following natural, predominantly Ostertagia circumcincta infection. *Parasitol Res* 1996; 82(8):693–696.

10. Dukkipati VS, Blair HT, Carrick DI, Murray A. A review of the ovine major histocompatibility complex: structure and gene polymorphisms. *Genet Mol Biol* 2000; 23(4):581–608.

11. Grusszynska J, Broksowa K, Charden KM, Swiderek WP. Restriction fragment length polymorphism of exon 2 Ovar-DRB1 gene in Polish Heath Sheep and Polish Lowland Sheep. *J Appl Genet* 2005, 46(3):311–314.

12. Liu H, Liu K, Wang J, Ma RZ. A BAC clone-based physical map of ovine major histocompatibility complex. *Genomics* 2006, 88(1):98–95.

13. Liu K, Zhang P, Gao J, Liu H, Li G, Qiu Z, Zhang Y, Ren J, Tan P, Ma RZ. Closong a gap in the physical map of the ovine major histocompatibility complex. *Anim Genet* 2011, 42(2):204–207.

14. Gao J, Liu K, Liu H, Blair HT, Li G, Chen C, Tan P, Ma RZ. A complete DNA sequence map of the ovine major histocompatibility complex. *BMC Genomics* 2010, 11(1):466–473.

15. Miladou D, Ballingall KT, Ellis SA, Russell GC, McKeever DJ. Haplotype characterization of transcribed ovine major histocompatibility complex (MHC) class I genes. *Immunogenetics* 2005, 57(7):499–509.

16. Mahdy EA, Malinen A, Chowdhary BP, Andersson L, Gustavsson I. Chromosomal localization of the ovine major histocompatibility complex (OLA) by in situ hybridization. *Hereditas* 1989, 111(1):87–90.

17. Escayg AP, Hickford JG, Bullock DW. Association between alleles of the ovine major histocompatibility complex and resistance to footrot. *Res Vet Sci* 1997, 63(3):283–287.

18. Ballingall KT, Farode K, McKeever DJ. Genomic organisation and allelic diversity within coding and non-coding regions of the Ovar-DRB1 locus. *Immunogenetics* 2008, 60(2):95–103.

19. Deeverson EV, Wright H, Watson S, Ballingall K, Huskisson N, Diamond AG, Howard JC. Class II major histocompatibility complex genes of the sheep. *Anim Genet* 1991, 22(3):211–225.

20. Escayg AP, Hickford JG, Montgomery GW, Dodds KG, Bullock DW. Polymorphism at the ovine major histocompatibility complex class II locus. *Anim Genet* 1996, 27(3):305–312.

21. Scott PC, Choi CL, Brandon MR. Genetic organization of the ovine MHC class II region. *Immunogenetics* 1987, 25(2):116–122.

22. Sibson KJ, Maddox JF, Fabb SA, Brandon MR. Allelic variation of ovine MHC class II DQA1 and DQ2 genes. *Anim Genet* 1998, 29(5):356–362.

23. van der Poel JJ, Groenen MA, Dijkhoff R, Ruyter D, Giphart MJ. The nucleotide sequence of the bovine MHC class II alpha genes: DRA, DOA, and DYA. *Immunogenetics* 1990, 31(1):29–36.

24. Childers CP, Newkirk HL, Honeycutt DA, Ramlachan N, Muzney DM, Sodergren E, Gibbs RA, Weinstock GM, Worley KC, Eichler EE, Nattakit, Li G, Guigo R, et al. The genome sequence of taurine cattle: a window to ruminant biology and evolution. *Science* 2009, 324(5926):522–528.

25. Oseogawa K, Woon PY, Zhao B, Frenget E, Tateno M, Catanesi JJ, de Jong PJ. An improved approach for construction of bacterial artificial chromosome libraries. *Genomics* 1998, 52(1):1–8.

26. Marta MA, Kucaba TA, Dietrich NL, Green ED, Brownstein B, Wilson RK, McDonald KM, Hillier LW, McPherson JD, Waterston RH. High throughput fingerprint analysis of large-insert clones. *Genome Res* 1997, 7(11):1072–1084.

27. Soderlund C, Longden I, Mott R. FPC: a system for building contigs from restriction fingerprinted clones. *Comput Appl Biosci* 1997, 13(5):523–535.

28. Lewin HA, Russell GC, Glass EJ. Comparative organization and function of the major histocompatibility complex of domesticated cattle. *Immunol Rev* 1999, 167(1):145–158.

Cite this article as: Li et al.: A physical map of a BAC clone contig covering the entire autosomal insertion between ovine MHC class Ia and IIb. *BMC Genomics* 2012 13:398.

Submit your next manuscript to BioMed Central and take full advantage of:

- Convenient online submission
- Thorough peer review
- No space constraints or color figure charges
- Immediate publication on acceptance
- Inclusion in PubMed, CAS, Scopus and Google Scholar
- Research which is freely available for redistribution

Submit your manuscript at www.biomedcentral.com/submit