Acceleration in integro-differential combustion equations

Emeric Bouin ∗ Jérôme Coville † Guillaume Legendre ‡

May 24, 2021

Abstract

We study acceleration phenomena in monostable integro-differential equations with ignition nonlinearity. Our results cover fractional Laplace operators and standard convolutions in a unified way, which is also a contribution of this paper. To achieve this, we construct a sub-solution that captures the expected dynamics of the accelerating solution, and this is here the main difficulty. This study involves the flattening effect occurring in accelerated propagation phenomena.

Keywords: integro-differential operators, fractional laplacian, acceleration, spreading.

1 Introduction.

In this paper, we are interested in describing quantitatively propagation phenomena in the following (non-local) integro-differential equation:

\[u_t(t,x) = D[u](t,x) + f(u(t,x)) \quad \text{for} \quad t > 0, x \in \mathbb{R}, \tag{1.1} \]

where

\[D[u](t,x) := \text{P.V.} \left(\int_{\mathbb{R}} [u(t,y) - u(t,x)] J(x-y) \, dy \right) \]

with \(J \) is a nonnegative function satisfying the following properties.

Hypothesis 1.1. Let \(s \in [0, \frac{1}{2}] \). The kernel \(J \) is symmetric and is such that there exists positive constants \(J_0, J_1 \) and \(R_0 \geq 1 \) such that

\[
\int_{|z| \leq 1} J(z)|z|^2 \, dz \leq 2J_1 \quad \text{and} \quad \frac{J_0}{|z|^{1+2s}} \mathbb{I}_{\{|z| \geq 1\}} \geq J(z) \geq \frac{J_0^{-1}}{|z|^{1+2s}} \mathbb{I}_{\{|z| \geq R_0\}}.
\]

The operator \(D[\cdot] \) describes the dispersion process of the individuals. Roughly, the kernel \(J \) gives the probability of a jump from a position \(x \) to a position \(y \), so that the tails of \(J \) are of crucial importance to quantify the dynamics of the population. As a matter of fact, the parameter \(s \) will thus appear in the rates we obtain later. One may readily notice that our hypothesis on \(J \) allows to cover the two broad types of integro-differential operators \(D[u] \) usually considered in the literature which are the fractional laplacian \((-\Delta)^su\) and the standard convolution operators with integrable kernels often written \(J \ast u - u \). This universality is one main contribution of this paper.

∗CEREMADE - Université Paris-Dauphine, UMR CNRS 7534, Place du Maréchal de Lattre de Tassigny, 75775 Paris Cedex 16, France. E-mail: bouin@ceremade.dauphine.fr

†UR 546 Biostatistique et Processus Spatiaux, INRA, Domaine St Paul Site Agropolis, F-84000 Avignon, France. E-mail: jerome.coville@inra.fr

‡CEREMADE - Université Paris-Dauphine, UMR CNRS 7534, Place du Maréchal de Lattre de Tassigny, 75775 Paris Cedex 16, France. E-mail: legendre@ceremade.dauphine.fr
Hypothesis 1.2. Take $\theta > 0$,
\[
 f(1) = 0, \quad f(u) = 0 \quad \text{if} \quad u \leq \theta \quad \text{and} \quad f(u) > 0 \quad \text{in} \quad [\theta, 1].
\]

The strong maximum principle implies that the solution to (1.1) takes values in $[0, 1]$ only. Moreover, since the initial data is decreasing, at all times $t \in \mathbb{R}^+$, the function $x \mapsto u(t, x)$ is decreasing over \mathbb{R}, from one to zero. To follow the propagation, we may thus follow level sets of height $\lambda \in (0, 1)$,
\[
x_\lambda(t) := \sup \{ x \in \mathbb{R}, u(t, x) \geq \lambda \}.
\]

Our main result is the following.

Theorem 1.3. Assume that J satisfies Hypothesis 1.1 with $s < \frac{1}{2}$ and that f is an ignition nonlinearity. For any $\lambda \in (0, 1)$, the level line $x_\lambda(t)$ accelerates with the following rate,
\[
t^{\frac{1}{s}} \lesssim x_\lambda(t) \lesssim t^{\frac{1}{s}+\epsilon}.
\]

The main purpose of this research report is to show the lower bound, the sharp upper bound will come in a later work.

Let us review some existing works around this issue. Existence of fronts have been obtained for the fractional laplacian for $s > 1/2$ by Mellet et al in [11] and for the convolution type operator $J \ast u - u$ provided J has a first moment by Coville [7, 6]. See also some related works by Shen et al [12, 13]. Here we explore a situation where no first moment at infinity exists, that is $s \leq 1/2$. Thanks to the monostable results [8, 9], we already know that accelerated propagation can only occur in this region of parameter. This is drastic contrast with truly monostable nonlinearities [4, 3].

![Figure 1: Schematic view of the expected behaviour of solution at a given time t.](image)

The rest of the paper is organised as follows. The following Section 2 is about the behaviour of the linear problem. Then, Section 3 describes in broad lines the construction of the sub-solution.

2 Flattening in the linear problem

Finally, the flattening behaviour of linear anomalous diffusions is reminiscent from [1, 10, 5, 2], and we shall here recall and extend some principal computations from these papers.
The Fourier symbol of the operator $D[\cdot]$ is
\[W(\xi) := \int_{\mathbb{R}} (\cos(\xi y) - 1) J(y) \, dy. \]

Note that one may recover two typical cases. If $J(y) \propto |y|^{-1-2s}$, that is $D[\cdot]$ is a fractional Laplacian, then $W(\xi) = |\xi|^{2s}$. If J is an integrable function with unit mass, as in convolution models, then $W(\xi) = J(\xi) - 1$. The presence of a singularity at 0 for J has an influence on large frequencies ξ, whereas the tail of J influences small frequencies. As a consequence,

For small ξ, write,
\[\int_{\mathbb{R}} (\cos(\xi y) - 1) J(y) \, dy = \int_{|y| \leq R_0} (\cos(\xi y) - 1) J(y) \, dy + \int_{|y| \leq R_0} (\cos(\xi y) - 1) J(y) \, dy \]

The first integral in the r.h.s is of order $|\xi|^{2s}$ with explicit constant by a direct Taylor expansion and using the hypothesis on J. The second one is estimated as follows. Since
\[\int_{|y| \leq R_0} J_0^{-1} \frac{\cos(\xi y) - 1}{|y|^{1+2s}} \, dy \leq \int_{|y| \leq R_0} (\cos(\xi y) - 1) J(y) \, dy \leq \int_{|y| \leq R_0} J \frac{\cos(\xi y) - 1}{|y|^{1+2s}} \, dy, \]

we have that $\int_{|y| \leq R_0} (\cos(\xi y) - 1) J(y) \, dy$ is of order $-|\xi|^{2s}$ with explicit estimates. As a consequence, since $s \leq \frac{1}{2}$, W is of order $-|\xi|^{2s}$ with explicit estimates.

In this section, we discuss the fact that the solution to the following linearised problem
\[G_t = D[G] \quad \text{for} \quad t > 0, x \in \mathbb{R}, \]
\[G(0, \cdot) = \delta_{x=0}, \tag{2.2} \]
flattens, that is, there exists $C_0 \in \mathbb{R}^+$ such that
\[\forall t \in \mathbb{R}^+, \exists x_0 \in \mathbb{R}^+, \quad G(t, x) \geq \frac{C_0 t}{|x|^{1+2s}}. \]

The proof takes its spirit in [10, Proposition 2.2] and we explain the arguments below. Note that then the solution to
\[v_t = D[v] \quad \text{for} \quad t > 0, x \in \mathbb{R}, \]
\[v(0, \cdot) = \mathbb{1}_{(-\infty, 0]}, \tag{2.3} \]
is then given by
\[v(t, x) = G(t, \cdot) * \mathbb{1}_{(-\infty, 0]}(\cdot)(x) = \int_0^{+\infty} G(t, y) \, dy. \]

From this computation, observe that for any t, we have $\lim_{x \to -\infty} v(t, x) = 1$. Getting an estimate of G for very large y will yield an estimate for v.

Solving in the Fourier variable, this is
\[\forall \xi \in \mathbb{R}, \quad \hat{G}(t, \xi) = \exp(W(\xi)t). \]

Observe that, formally,
\[G(t, x) = \int_{\mathbb{R}} \exp(W(\xi)t - ix\xi) \, d\xi = 2\Re\left(\int_0^\infty \exp(W(\xi)t - ix\xi) \, d\xi \right). \]

Compute, for any $x \neq 0$,
\[\int_0^R \exp(W(\xi)t - ix\xi) \, d\xi = \frac{1}{x} \int_0^{Rx} \exp\left(W\left(\frac{u}{x} \right) t - iu \right) \, du \]

3
Following the same steps as in [], we shall use a contour integral in the complex plane. Define the holomorphic function
\[\varphi(z) := \exp \left(W \left(\frac{t}{x} \right) t - z \right) \]
that we integrate on the contour The Cauchy integral theorem gives
\[
\frac{1}{x} \int_0^{Rx} \exp \left(W \left(\frac{u}{ix} \right) t - u \right) du = \frac{1}{ix} \int_0^{Rx} \exp \left(W \left(\frac{u}{ix} \right) t - u \right) du + \frac{1}{ix} \int_0^{\pi} \exp \left(W \left(\frac{Rx e^{i\theta}}{ix} \right) t - Rx e^{i\theta} \right) iRx e^{i\theta} \, d\theta
\]
The second integral goes to zero by the Lebesgue dominated convergence theorem. Taking \(R \to \infty \), we get that the following integral exists and that
\[
2 \Re \left(\int_0^{\infty} \exp (W(\xi) t - ix\xi) \, d\xi \right) = -\frac{2}{x} \Re \left(i \int_0^{\infty} \exp \left(W \left(\frac{u}{ix} \right) t - u \right) du \right)
\]
From the latter, we deduce that
\[
\lim_{x \to \infty} \frac{2}{x} \int_0^{\infty} \Re \left(\exp (W(\xi) t - ix\xi) \, d\xi \right) = \frac{2}{x} \int_0^{\infty} \Re \left(\exp \left(W \left(\frac{u}{ix} \right) t \right) \right) e^{-u} \, du
\]
using the scaling of \(W \) near zero and the dominated convergence theorem.

3 The strategy for the construction of sub-solutions.

In this section, we present the way that we construct a sub-solution to prove the lower bounds in Theorem 1.3. We are looking for a sub-solution \(u \) to (1.1) that satisfies everywhere
\[
-u \leq D[u] + f(u) \quad \text{and} \quad u \leq \varepsilon,
\]
for some \(\varepsilon \in (\theta, 1) \) and \(t > t^* \). We construct an at least of class \(C^2 \) function \(u \) piecewise,
\[
\begin{align*}
u &:= \varepsilon, \quad \text{on} \{ x \leq X(t) \}, \\
u &:= \phi, \quad \text{else},
\end{align*}
\]
with \(\phi(t, X(t)) = \varepsilon \). The point \(X(t) \) is unknown at that stage. As previously for the monostable case, we expect \(\phi \) to look like a solution of the standard fractional Laplace equation with Heaviside initial data at the far edge. In this situation, a natural candidate would be given by
\[
w(t, x) := \left[\frac{x^{2s}}{\kappa t} + \gamma \right]^{-1}.
\]
with \(\kappa, \gamma \) positive free parameter that will be determined later on. Note that this function is well defined for \(t \geq 1 \) and \(x > 0 \). The expected decay in space of a solution of the standard fractional Laplace equation
with Heaviside initial data being at least of order tx^{-2s}, such a w would have the good asymptotics. For $\varepsilon \in (0, 1)$, let us define $X(t) > 0$ such that $w(t, X(t)) = \varepsilon$. For such $X(t)$ to be well defined, we need to impose that $\gamma < \frac{1}{\varepsilon}$, and thus for such ε and $\gamma < \frac{1}{\varepsilon}$, $X(t)$ is then defined by the following formula

$$X(t) = \left[\varepsilon^{-1} - \gamma\right]^{\frac{1}{2s}} (\kappa t)^{\frac{1}{2s}}.$$

(3.6)

One may observe that $X(t)$ moves with the speed that we expect in Theorem 1.3. However, taking ϕ as this w would not lead to a C^2 function at $x = X(t)$. As in the monostable case, to remedy this issue, we complete our construction by taking ϕ such that

$$u(t, x) := \begin{cases}
\varepsilon & \text{for all } x \leq X(t), \\
3 \left(1 - \frac{1}{\varepsilon} w(t, x) + \frac{1}{3\varepsilon^2} w^2(t, x) \right) w(t, x) & \text{for all } x > X(t),
\end{cases}$$

(3.7)

for $t > 1$.

4 Proof of Theorem 1.3.

Start by observing that \bar{u} defined in (3.7) satisfies (3.4) if and only if,

$$0 \leq D[u] + f(\varepsilon), \quad x \leq X(t),$$

(4.8)

$$u_t \leq D[u] + f(u), \quad \text{else.}$$

(4.9)

As a consequence, again the main work is to derive good estimates for $D[u]$ in both regions $x \leq X(t)$ and $x \geq X(t)$. The estimate in the first region will be rather direct to get and will rely mostly on the fact that \bar{u} is constant there together with the tails of J. In the latter region, things are more intricate. We have to split it into two zones, as depicted on Figure 2 below, each one being the stage of one specific character of the model and thus demanding a specific way to estimate $D[u]$.

Let us now show that for the right choice of ε and κ the function \bar{u} is indeed a subsolution to (3.4) for all $t \geq 1$.

4.1 Some preliminary estimates.

4.1.1 Facts and formulas on X and w.

As in the previous construction, let us recall some useful facts. From direct computations we have:

$$u_t = u_x = u_{xx} = 0$$

for all $t > 0, x < X(t)$

(4.10)

$$u_t = 3w_t \left(1 - \frac{w}{\varepsilon}\right)^2, \quad u_x = 3w_x \left(1 - \frac{w}{\varepsilon}\right)^2,$$

for all $t > 1, x > X(t)$

(4.11)

$$u_{xx}(t, x) = 3 \left(1 - \frac{w}{\varepsilon}\right) \left[w_{xx} \left(1 - \frac{w}{\varepsilon}\right) - \frac{2w_x^2}{\varepsilon}\right]$$

for all $t > 1, x > X(t)$

(4.12)

Note crucially that \bar{u} is then at a C^2 function in x and C^1 in t. We will also need repeatedly the following information on derivatives of w at any point (t, x) where w is defined.

$$w_t = \kappa w^2(t, x) \frac{x^{2s}}{(\kappa t)^2}$$

(4.13)

$$w_x = -2sw^2(t, x) \frac{x^{2s-1}}{\kappa t}$$

(4.14)

$$w_{xx} = 4s^2 w^3(t, x) \frac{x^{4s-2}}{(\kappa t)^2} + 2s(2s-2s)w^2(t, x) \frac{x^{2s-2}}{\kappa t}$$

(4.15)
Figure 2: Schematic view of the sub-solution at a given time t. Several zones have to be considered. The exact expression of $X_\eta(t)$ will appear naturally later. The blue zone is where \underline{u} is constant, making computations easier. In the orange zone, the fact that $u > \theta$ is crucial. In the green (far-field) zone, the decay imitating a fractional Laplace equation gives the right behaviour.

Observe that since $s \leq 1/2$, we deduce from the latter that w is convex in $[X(t), +\infty)$. Moreover by using the definition of $X(t)$ we also deduce that for $t \geq 1$,

$$w_x(t, X(t)) = \frac{-2s\varepsilon [1 - \gamma\varepsilon]}{X(t)}.$$ \hfill (4.16)

4.1.2 An estimate for w on $[X(t) + 1, +\infty)$.

Proposition 4.1. For all $\kappa > 0$ and all $\varepsilon \in (0, 1)$, $\gamma < \frac{1}{2}$, we have for all $x \geq X(t)$,

$$w(t, x) \leq \frac{(1 - \gamma\varepsilon)\kappa t}{x^{2s}}.$$

Proof. By using (3.5), the definition of w, since we have

$$w(t, x) = \left(1 + \frac{\kappa t X(t)^{2s}}{x^{2s}} \right)^{-1}.$$

Since $x \geq X(t)$,

$$w(t, x) \leq \frac{\kappa t (1 - \varepsilon\gamma)}{x^{2s}}.$$

\hfill \Box

4.2 Estimating $D[\underline{u}]$ when $x \leq X(t)$.

On this region, by definition of \underline{u}, we have

$$D[\underline{u}](t, x) = \int_{y \geq X(t)} [\underline{u}(t, y) - \varepsilon] J(x - y) \, dy.$$
This section aims at showing (4.8). For the convenience of the reader, we shall state this is the following

Proposition 4.2. For all, \(0 < s \leq \frac{1}{4}, 1 > \varepsilon > \theta, \gamma < \frac{1}{2} \) and \(\kappa \) there exists \(t_0(\varepsilon, \kappa, s, \gamma) \) such that for all \(t \geq t_0 \)

\[
D[u](t, x) + f(\varepsilon) \geq 0 \quad \text{for all} \quad x \leq X(t).
\]

Proof. Recall that by (??), we have

\[
D[u] \geq -\frac{f(\varepsilon)}{2} - \frac{3}{\varepsilon} \left(J_1 + J_0 \int_1^B z^{1-2s} dz \right) w_x(t, X(t))^2.
\]

We are now ready to choose \(B := \left(\frac{3(\varepsilon+1)}{s f(\varepsilon)} \right)^{\frac{1}{2}} \) above. We then get

\[
D[u] \geq -\frac{f(\varepsilon)}{2} - \frac{3}{\varepsilon} \left(J_1 + J_0 \int_1^B z^{1-2s} dz \right) w_x(t, X(t))^2.
\]

Set for legibility \(C_0 := 3 \left(J_1 + J_0 \int_1^B z^{1-2s} dz \right) \), and use the estimate (4.16) on \(w_x(t, X(t)) \), to get

\[
D[u] + f(\varepsilon) \geq \frac{f(\varepsilon)}{2} - \frac{C_0}{\varepsilon} w_x(t, X(t))^2,
\]

\[
\geq \frac{f(\varepsilon)}{2} - \frac{4C_0s^2\varepsilon^2 [1-\gamma\varepsilon]^2}{X^2(t)}.
\]

the proposition is proved by taking \(t \) large since \(X(t) \to +\infty. \)

\[\square \]

4.3 Estimate of \(D[u] \) on \(x > X(t) \).

In this region, as exposed earlier and shown in Figure 2, we shall estimate \(D[u] \) in two separate intervals

\[
[X(t), \sup \{ X + R_0; X_\eta(t) \}], \quad [\sup \{ X_\eta(t), X(t) + R_0 \}, +\infty).
\]

with \(X_\eta \) to be chosen.

4.3.1 The region \(X(t) \leq x \leq \sup \{ X(t) + R_0; X_\eta \} \)

For all \(\varepsilon > \theta \), let \(\eta(\varepsilon) > 0 \) be the smallest positive root of the polynomial function \(z \mapsto \frac{1}{\varepsilon^2} z^3 + z - (\varepsilon - \theta) \). Then for such \(\eta(\varepsilon) \),

\[
3(\varepsilon - \eta) \left(1 - \frac{\varepsilon - \eta}{\varepsilon} + \frac{\varepsilon - \eta}{3\varepsilon^2} \right) = 3(\varepsilon - \eta) \left(\frac{1}{3} + \frac{\eta}{3\varepsilon} + \frac{\eta^2}{3\varepsilon^2} \right) = (\varepsilon - \eta) \left(1 + \frac{\eta}{\varepsilon} + \frac{\eta^2}{\varepsilon^2} \right)
\]

\[= \frac{\varepsilon - \eta^3}{\varepsilon^2} \]

\[= \theta + \eta \]

Let \(X_\eta(t) \) be such that \(w(t, X_\eta(t)) = \varepsilon - \eta \), then by construction we have \(X_\eta > X(t) \) and from the above computation, \(w(t, x) \geq \theta + \eta \) for all \(x \leq X_\eta(t) \).

We start this with an estimate

Lemma 4.3. For all \(B > 1 \) and \(\delta \geq \sup \{ R_0, B + X(t) - x \} \),

\[
D[u](t, x) \geq -\frac{J_0 u(t, x)}{s B^{2s}} - \frac{3}{\varepsilon} \left(J_1 + J_0 \int_1^B z^{1-2s} dz \right) \sup_{-B \leq \xi \leq B, \ x + \xi > X(t)} (w_x(t, x + \xi))^2.
\]

(4.17)
Proof. By definition of \(u \), for any \(\delta \geq R_0 \) we have, using Hypothesis 1.1,
\[
D[u](t, x) = \int_{x+z \leq X(t)-\delta} \frac{\varepsilon - u(t, x)}{|z|^{1+2s}} J(z) |z|^{1+2s} dz + \int_{x+z \geq X(t)-\delta} [u(t, x+z) - u(t, x)] J(z) dz,
\]
\[
= \frac{J_0^{-1}}{2s} \frac{\varepsilon - u(t, x)}{(x - X(t) + \delta)^{1+2s}} + \int_{x+z \geq X(t)-\delta} [u(t, x+z) - u(t, x)] J(z) dz. \tag{4.18}
\]

We shall now estimate
\[
\int_{x+z \geq X(t)-\delta} [u(t, x+z) - u(t, x)] J(z) dz.
\]

For \(B \geq 0 \) to be chosen later on, we decompose,
\[
\int_{x+z \geq X(t)-\delta} [u(t, x+z) - u(t, x)] J(z) dz = \int_{x+z \geq X(t)-\delta, |z| \leq B} [u(t, x+z) - u(t, x)] J(z) dz
\]
\[
+ \int_{x+z \geq X(t)-\delta, |z| > B} [u(t, x+z) - u(t, x)] J(z) dz. \tag{4.19}
\]

The second integral in the right hand side of the above expression is the easiest. Since \(u \) is positive and \(J \) satisfies (1.1) we then have for \(B > 1 \),
\[
\int_{x+z \geq X(t)-\delta, |z| \geq B} [u(t, x+z) - u(t, x)] J(z) dz \geq -u(t, x) J_0 \int_{x+z \geq X(t)-\delta, |z| \geq B} \frac{dz}{|z|^{1+2s}}.
\]

When \(X(t) - \delta \leq x - B \), a short computation shows that
\[
\int_{x+z \geq X(t)-\delta, |z| \geq B} \frac{dz}{|z|^{1+2s}} = \int_{X(t)-x-\delta \leq z \leq -B} \frac{dz}{|z|^{1+2s}} + \int_{z \geq B} \frac{dz}{z^{1+2s}}
\]
\[
= \int_{X(t)-x-\delta \leq z \leq -B} \frac{dz}{|z|^{1+2s}} + \int_{z \geq B} \frac{dz}{z^{1+2s}}
\]
\[
= \frac{1}{2sB^{2s}} - \frac{1}{2s(x + \delta - X(t))^{2s}} + \frac{1}{2sB^{2s}}.
\]

On the other hand if \(X(t) - \delta \geq x - B \) then
\[
\int_{x+z \geq X(t)-\delta, |z| \geq B} \frac{dz}{|z|^{1+2s}} = \int_{z \geq B} \frac{dz}{|z|^{1+2s}} = \int_{z \geq B} \frac{dz}{z^{1+2s}} = \frac{1}{2sB^{2s}}.
\]

In each situation we then have
\[
\int_{x+z \geq X(t)-\delta, |z| \geq B} [u(t, x+z) - u(t, x)] J(z) dz \geq -\frac{u(t, x) J_0}{s B^{2s}}. \tag{4.20}
\]

Let us now estimate the first integral of the right hand side of (4.19), that is, let us estimate
\[
I := \int_{x+z \geq X(t)-\delta, |z| \leq B} [u(t, x+z) - u(t, x)] J(z) dz.
\]

Since \(\underline{u}(t, x) \) is \(C^1 \) in \(x \) we have, for all \(t \geq 1 \) and \(x \in \mathbb{R} \),
\[
\underline{u}(t, x+z) - \underline{u}(t, x) = z \int_0^1 \underline{u}_x(t, x + \tau z) d\tau
\]

8
and therefore we can rewrite I as follows:

$$I = \int_{x+z \geq X(t)-\delta, |z| \leq B} \int_0^1 u_x(t, x + \tau z)zJ(z)\,d\tau dz.$$

For any $\delta \geq B + X(t) - x$, let us observe that by symmetry we have

$$\int_{x+z \geq X(t)-\delta, |z| \leq B} \int_0^1 J(z)z\,d\tau dz = 0.$$

As a consequence we can rewrite I as follows:

$$I = \int_{x+z \geq X(t)-\delta, |z| \leq B} \int_0^1 [u_x(t, x + \tau z) - u_x(t, x)]zJ(z)\,d\tau dz.$$

Since u_x is a C^1 function, by using the Taylor expansion

$$[u_x(t, x + \tau z) - u_x(t, x)] = \tau z \int_0^1 u_{xx}(t, x + \tau \sigma z)\,d\sigma$$

we have

$$I = \int_{x+z \geq X(t)-\delta, |z| \leq B} \int_0^1 u_{xx}(t, x + \sigma z)\tau^2 z^2 J(z)\,d\tau d\sigma dz,$$

$$\geq \min_{-B \leq x \leq B} u_{xx}(t, x + \xi) \left(\int_{|z| \leq B} \int_0^1 \tau^2 z^2 J(z)\,d\tau d\sigma dz \right)$$

$$\geq \min_{-B \leq x \leq B} u_{xx}(t, x + \xi) \left(\int_{|z| \leq 1} \int_0^1 \tau^2 z^2 J(z)\,d\tau d\sigma dz + \int_{1 \leq |z| \leq B} \int_0^1 \tau^2 z^2 J(z)\,d\tau d\sigma dz \right).$$

By using (4.19), (4.20) and (4.21) and the convexity of w, we deduce that

$$I \geq -\frac{6}{\varepsilon} \sup_{x+\xi > X(t)} w_x(t, x + \xi)^2 \left(\int_{|z| \leq 1} \int_0^1 \tau^2 z^2 J(z)\,d\tau d\sigma dz + \int_{1 \leq |z| \leq B} \int_0^1 \tau^2 z^2 J(z)\,d\tau d\sigma dz \right).$$

Hence we have

$$I \geq -\frac{3}{\varepsilon} \left(J_1 + J_0 \int_1^B z^{-2s} \,dz \right) \sup_{x+\xi > X(t)} w_x(t, x + \xi)^2. \quad (4.21)$$

Collecting (4.19), (4.20) and (4.21), we get the following estimate for all $B > 1$ and $\delta \geq \sup\{R_0, B + X(t) - x\},$

$$\mathcal{D}[u](t, x) \geq J_0^{-1} \frac{\varepsilon - u(t, x)}{2s (x - X(t) + \delta)^{2s}} - \frac{J_0(u(t, x))}{s B^{2s}} - \frac{3}{\varepsilon} \left(J_1 + J_0 \int_1^B z^{-1-2s} \,dz \right) \sup_{x+\xi > X(t)} (w_x(t, x + \xi))^2 \quad (4.22)$$

with ends the proof of the lemma since $u \leq \varepsilon$. \hspace{1cm} \Box

Proposition 4.4. For all $s \leq \frac{1}{4}$, $1 > \varepsilon > \theta, \kappa$ and $\gamma < \frac{1}{4}$ there exists t_1 such that

$$\mathcal{D}[u] + f(u) \geq \frac{1}{2} f(u) \quad \text{for all} \quad t \geq t_1, \quad X(t) < x < \sup\{X(t) + R_0; X_0\}.$$
Proof. Recall that (4.17) is still all the way valid in this new context. Thus, for any \(\delta > \sup\{ R_0, X(t) - x + B\} \), using that \(u \leq \varepsilon \), when \(X(t) < x \leq \sup\{ X(t) + R_0; X_\eta(t) \} \),

\[
\mathcal{D}[w](t, x) \geq - \frac{J_0 \varepsilon}{s} - \frac{3}{\varepsilon} \sup_{-B < \xi < B, x + \xi > X(t)} (w_x(t, x + \xi))^2 \left(J_1 + J_0 \int_1^B z^{1-2s} \, dz \right)
\]

Recall that since \(x \leq X_\eta(t) \), we have \(u \geq \theta + \eta \). On the other hand, observe that since \(x < X(t) + R_0 \) and since \(u \) is smooth we have

\[
\begin{align*}
\hat{u}(t, x) & \geq \hat{u}(t, X(t) + R_0) = \hat{u}(t, X(t)) + \hat{u}(t, X(t) + R_0) - \hat{u}(t, X(t)) \\
& = \hat{u}(t, X(t)) + R_0 \int_0^1 \hat{w}_x(t, X(t) + \tau) \, d\tau,
\end{align*}
\]

and by using the definition of \(\hat{w}_x \) in (4.11), and the convexity of \(x \rightarrow w(t, x) \) at any time, we deduce that

\[
\hat{u}(t, x) \geq \hat{u}(t, X(t)) + 3R_0 w_x(t, X(t)) = \varepsilon + 3R_0 w_x(t, X(t)).
\]

From the estimate of \(w_x(t, X(t)) \), (4.16), it follows that

\[
\hat{u}(t, x) \geq \varepsilon - \frac{6R_0 s \varepsilon}{X(t)},
\]

which, thanks to \(\lim_{t \to +\infty} X(t) = 0 \), enforces for \(t \geq t' \),

\[
\hat{u}(t, x) \geq \theta + \eta.
\]

In both cases, we then have for \(t \geq t' \),

\[
\hat{u}(t, x) \geq \theta + \eta.
\]

As a consequence \(f(u) > 0 \) for all \(x \leq \sup\{ X(t) + R_0, X_\eta \} \) and \(t > t' \). Specify \(B = \nu J_0 \tau \) with \(\nu > 1 \) to be chosen later on. Then from the above inequality we deduce that

\[
\mathcal{D}[\hat{u}](t, x) \geq - \frac{f(u)}{\nu^{2s}} - \frac{3}{\varepsilon} \sup_{-B < \xi < B, x + \xi > X(t)} (w_x(t, x + \xi))^2 \left(J_1 + J_0 \int_1^B z^{1-2s} \, dz \right) \text{ when } x > X(t),
\]

from which yields for \(X(t) < x < X(t) + R_0 \) and \(t \geq t^* \),

\[
\mathcal{D}[\hat{u}](t, x) + f(\hat{u}) \geq f(\hat{u}) \left(1 - \frac{1}{\nu^{2s}} \right) - \frac{3}{\varepsilon} \sup_{-B < \xi < B, x + \xi > X(t)} (w_x(t, x + \xi))^2 \left(J_1 + J_0 \int_1^{\nu^{-1-s} J_0} z^{1-2s} \, dz \right).
\]

Recall that \(w \) is convex in \(x \), so that

\[
\sup_{-B < \xi < B, x + \xi > X(t)} (w_x(t, x + \xi))^2 = w_x(t, X(t))^2,
\]

and choose now \(\nu > \nu_0 := \sup \left\{ \frac{4}{\nu^{1-s}}, \frac{s(f(u))}{J_0 \tau} + 1 \right\} \), we then get using (4.16),

\[
\mathcal{D}[\hat{u}] + \frac{1}{2} f(\hat{u}) \geq \frac{1}{4} f(\hat{u}) - 4s^2 \varepsilon(1 - \gamma \varepsilon)^2 C_1 \left(\frac{1}{X(t)} \right)^2,
\]

with \(C_1 := 3 \left[J_1 + J_0 \int_1^B z^{1-2s} \, dz \right] \).

Finally recalling that \(\lim_{t \to \infty} \frac{1}{X(t)} = 0 \), we may find \(t_1 \geq t^* \) such that for all \(t \geq t_1 \), the right hand side of the above expression is positive ending thus the proof of this proposition. \(\square \)
4.3.2 The region $x > \sup\{X(t) + R_0; X_0\}$

Lemma 4.5. For any time $t > 1$ and $x \geq \sup\{X(t) + R_0, X_2(t)\}$,

$$D[u](t, x) \geq \frac{\varepsilon - u(t, x)}{2sJ_0 x^{2s}} + J_1 \min_{-1 < \xi < 1} \frac{\partial u_x(t, x + \xi)}{2sB^{2s}} + \frac{3J_0}{4} \left(\int_1^B z^{-2s} dz \right) w_x(t, x). \quad (4.23)$$

Proof. Let us go back to the definition of $D[u](t, x)$ that we split into three parts:

$$D[u](t, x) = \int_{-\infty}^{-1} [u(t, x + z) - u(t, x)] J(z) \, dz + \int_{-1}^{1} [u(t, x + z) - u(t, x)] J(z) \, dz + \int_1^{\infty} [u(t, x + z) - u(t, x)] J(z) \, dz.$$

Since $x \geq X(t) + R_0$ and u is decreasing, the first integral can be estimated as follows:

$$\int_{-\infty}^{-1} [u(t, x + z) - u(t, x)] J(z) \, dz \geq J_0^{-1} \int_{-\infty}^{X(t)-x} \frac{u(t, x + z) - u(t, x)}{z^{1+2s}} \, dz + \int_{X(t)-x}^{-1} [u(t, x + z) - u(t, x)] J(z) \, dz \geq \frac{J_0^{-1}}{2s} \frac{\varepsilon - u(t, x)}{(x - X(t))^{2s}}. \quad (4.24)$$

To obtain an estimate of the second integral, we actually follow the same steps as several times previously to obtain via Taylor expansion,

$$\int_{-1}^{1} [u(t, x + z) - u(t, x)] J(z) \, dz = \int_{-1}^{1} \int_{0}^{1} \int_{0}^{1} \frac{\partial u_x(t, x + \tau \sigma z)}{\tau \sigma z^2} J(z) \, d\tau d\sigma dz \geq J_1 \min_{-1 < \xi < 1} \frac{\partial u_x(t, x + \xi)}{2sB^{2s}}. \quad (4.25)$$

Finally, let us estimate the last integral

$$I := \int_{1}^{+\infty} [u(t, x + z) - u(t, x)] J(z) \, dz = \int_{1}^{B} [u(t, x + z) - u(t, x)] J(z) \, dz + \int_{B}^{+\infty} [u(t, x + z) - u(t, x)] J(z) \, dz,$$

for $B > 1$ to be chosen later on. Since u is positive we have

$$\int_{B}^{+\infty} [u(t, x + z) - u(t, x)] J(z) \, dz \geq - \frac{J_0 u(t, x)}{2sB^{2s}}. \quad (4.26)$$

By using again a Taylor formula, the last integral rewrites

$$\int_{1}^{B} [u(t, x + z) - u(t, x)] J(z) \, dz = \int_{1}^{B} \int_{0}^{1} \frac{\partial u_x(t, x + \tau z)}{\tau z} J(z) \, d\tau dz.$$

Observe that since $x \geq X_2$ and w is convex, (4.12) implies

$$\frac{\partial u_x(t, x + \tau z)}{\tau z} \geq \frac{3}{4} w_x(t, x).$$

It follows that

$$\int_{1}^{B} [u(t, x + z) - u(t, x)] J(z) \, dz \geq \frac{3}{4} \left(\int_{1}^{B} z J(z) \, dz \right) w_x(t, x) \geq \frac{3J_0}{4} \left(\int_1^B z^{-2s} dz \right) w_x(t, x). \quad (4.27)$$
using Hypothesis 1.1. Collecting (4.24), (4.25), (4.26), (4.27), we find for $x \geq X(t) + R_0$,

$$
\mathcal{D}[u](t, x) \geq \frac{\varepsilon - u(t, x)}{2sJ_0x^{2s}} + J_1 \min_{-1<\xi<1} u_{xx}(t, x + \xi) - \frac{J_0u(t, x)}{2sB^{2s}} + \frac{3J_0}{4} \left(\int_1^B z^{-2s} \, dz \right) w_x(t, x),
$$

which ends the proof of the lemma.

Recall that by Lemma 4.5, we have in the range $x \geq X(t) + R_0$,

$$
\mathcal{D}[u](t, x) \geq \frac{\varepsilon - u(t, x)}{2sJ_0x^{2s}} + J_1 \min_{-1<\xi<1} u_{xx}(t, x + \xi) - \frac{J_0u(t, x)}{2sB^{2s}} + \frac{3J_0}{4} \left(\int_1^B z^{-2s} \, dz \right) w_x(t, x).
$$

(4.28)

Let us now estimate $\mathcal{D}[u]$ when $x \geq \sup \{X(t) + R_0, X_\eta(t)\}$.

Proposition 4.6. For any $s < \frac{1}{2}$, $\kappa > 0$, $\varepsilon > \theta$ there exists γ_0 and $t_3 > 0$ such that for all $t \geq t_3$ and $\gamma_0 \leq \gamma < \frac{1}{\varepsilon}$

$$
\mathcal{D}[u](t, x) \geq \frac{\eta}{2sJ_0x^{2s}} \left(1 - \frac{\mathcal{J}_0^2\kappa t(1 - \varepsilon\gamma)}{\eta B^{2s}} \right) + J_1 \min_{-1<\xi<1} u_{xx}(t, x + \xi) + 3J_0 \int_1^B z^{-2s} \, dz w_x(t, x).
$$

Let us rewrite $\gamma := \frac{-2s}{\varepsilon}$ with $\sigma \in (0, 1)$, then we have

$$
\mathcal{D}[u](t, x) \geq \frac{\eta}{2sJ_0x^{2s}} \left(1 - \frac{\mathcal{J}_0^2\kappa t\sigma}{\eta B^{2s}} \right) + J_1 \min_{-1<\xi<1} u_{xx}(t, x + \xi) + 3J_0 \int_1^B z^{-2s} \, dz w_x(t, x).
$$

Let us now estimate from below $\min_{-1<\xi<1} u_{xx}(t, x + \xi)$. Using (4.12) and the convexity of w, we see that

$$
\min_{-1<\xi<1} u_{xx}(t, x + \xi) \geq -\frac{6}{\varepsilon} (w_x(t, x - 1))^2,
$$

which thanks to (4.14) and that $w(t, x - 1) \leq w(t, X(t)) = \varepsilon$ leads to

$$
\min_{-1<\xi<1} u_{xx}(t, x + \xi) \geq -24s^2\varepsilon^2 w^2(t, x - 1) \frac{(x - 1)^{4s - 2}}{(\kappa t)^2}.
$$

By proposition 4.1 since $X(t) + 1 \leq X(t) + R_0 \leq x$, we have

$$
w(t, x - 1) \leq \frac{\kappa t\sigma}{(x - 1)^{2s}}.
$$

and thus since $x \geq X_\eta(t)$

$$
\min_{-1<\xi<1} u_{xx}(t, x + \xi) \geq -24s^2\varepsilon^2 \frac{1}{(x - 1)^2} \geq -48s^2\varepsilon^2 \frac{1}{(X_\eta(t) - 1)^{2-2s}} \frac{1}{x^{2s}}.
$$

Now by using that $s \leq \frac{1}{2}$, the definition of $X_\eta(t)$, since $X_\eta(t) > (\kappa t)^{\frac{1}{2}} (\frac{\varepsilon}{\eta})^{\frac{1}{2}}$ we may find $t'(\kappa, s, \varepsilon)$ independent of σ such that for all $t \geq t'$

$$
J_1 \min_{-1<\xi<1} u_{xx}(t, x + \xi) \geq -\frac{\eta}{8J_0x^{2s}}.
$$
Therefore for all \(t \geq t' \) we then get
\[
\mathcal{D}(\underline{u})(t,x) \geq \frac{\eta}{2s \mathcal{J}_0 x^{2s}} \left(\frac{3}{4} - \frac{\mathcal{J}_0^2 \kappa t \sigma}{\eta B^{2s}} \right) + 3 \mathcal{J}_0 \int_1^B z^{-2s} dz w_x(t,x).
\]
Again, by using Proposition 4.1, we deduce that
\[
w_x(t,x) = -2s \frac{x^{2s-1}}{\kappa t} w(t,x) \geq -2s \frac{(\kappa t)^2 \sigma^2 x^{2s-1}}{\kappa t} x^{1-2s} = -\frac{\kappa t}{x^{2s+1}} (2s \sigma^2),
\]
and we then have
\[
\mathcal{D}(\underline{u})(t,x) \geq \frac{\eta_0}{2s \mathcal{J}_0 x^{2s}} \left(\frac{3}{4} - \frac{\mathcal{J}_0^2 \kappa t \sigma}{\eta B^{2s}} - \frac{12s^2 \mathcal{J}_0^2 \sigma^2 \kappa t}{\eta x} \int_1^B z^{-2s} dz \right).
\]
Let \(C_1 := \frac{\mathcal{J}_0^2}{\eta} \) and \(C_2 := 12s^2 \), we then have
\[
\mathcal{D}(\underline{u})(t,x) \geq \frac{\eta}{2s \mathcal{J}_0 x^{2s}} \left(\frac{3}{4} - C_1 \kappa t \sigma \left[\frac{1}{B^{2s}} + \frac{C_2 \sigma}{x} \int_1^B z^{-2s} \right] \right).
\]
We now treat the case \(s = \frac{k}{2} \) and \(s < \frac{k}{2} \)

Recall now that \(s < \frac{k}{2} \), so for \(B > 1 \) we have
\[
\int_1^B z^{-2s} dz \leq \frac{B^{1-2s}}{1-2s},
\]
and the above expression reduce to
\[
\mathcal{D}(\underline{u})(t,x) \geq \frac{\eta}{2s \mathcal{J}_0 x^{2s}} \left(\frac{3}{4} - C_1 \kappa t \sigma \left[\frac{1}{B^{2s}} + \frac{C_2 \sigma}{x} B^{1-2s} \right] \right).
\]
with \(\mathcal{C}_2 := \frac{C_2}{1-2s} \).

Let us now take \(B = \frac{2s}{(1-2s)\kappa \sigma} \) and check whether \(B > 1 \). Since \(x > X_0(t) \), this means that
\[
B \geq \frac{2s}{\mathcal{C}_2 (1-2s) \sigma} \kappa \left(\frac{\eta}{\varepsilon^2} \right)^{\frac{1}{2}},
\]
so for \(t \geq t^* := \left(\frac{\mathcal{C}_2 (1-2s) \sigma}{s} \right)^{2s} \kappa \left(\frac{\eta}{\varepsilon^2} \right)^{\frac{1}{2}} \) we then have \(B > 2 \) and a short computations shows
\[
\left[\frac{1}{B^{2s}} + \frac{\mathcal{C}_2 \sigma}{x} B^{1-2s} \right] = (1-2s) \frac{\mathcal{C}_2^2 \sigma^2 x^{2s}}{(2s \kappa x)^2} + \frac{\mathcal{C}_2 \sigma}{x} \frac{(2s \kappa x)^{1-2s}}{\sigma^{1-2s} \mathcal{C}_2^{1-2s} (1-2s)^{1-2s}} = \left(1-2s \right) \frac{\mathcal{C}_2^2 \sigma^2 x^{2s}}{(2s \kappa x)^2} + \frac{\mathcal{C}_2^2 \sigma^2 x^{2s} (2s \kappa x)^{1-2s}}{\sigma^{1-2s} (1-2s)^{2-2s}} = \frac{\sigma^{2s}}{x^{2s}} C_3
\]
with \(C_3 := \frac{\mathcal{C}_2}{2} \left(\frac{(1-2s) \sigma}{2s \kappa x} + \frac{(2s \kappa x)^{1-2s}}{(1-2s)^{1-2s}} \right) \).

As a consequence, we have
\[
\mathcal{D}(\underline{u})(t,x) \geq \frac{\eta}{2s \mathcal{J}_0 x^{2s}} \left(\frac{3}{4} - C_1 C_3 \kappa t \sigma^{1+2s} x^{2s} \right).
\]
Since \(x \geq X(t) \), by exploiting (3.6), the definition of \(X(t) \), we then achieve
\[D[\underline{u}](t, x) \geq \frac{\eta}{2s^{0}x^{2s}} \left(\frac{3}{4} - \frac{C_{1}C_{3}\kappa t^{1+2s}}{X^{2s}(t)} \right) \]

\[\geq \frac{\eta}{2s^{0}x^{2s}} \left(\frac{3}{4} - C_{1}C_{3}\sigma^{2s} \right) \]

and the proposition is then proved by taking \(\sigma \) small and \(t \geq t_{3} := \sup\{t', t^{*}\} \).

\[\square \]

4.4 Tuning the parameter \(\kappa \)

In this last part of the proof, we choose our parameter \(\kappa \) in order that for some \(t^{*} > 0 \), \(\underline{u} \) is indeed a sub-solution to (1.1) for \(t \geq t^{*} \). Recall that \(\underline{u} \) is a sub-solution if and only if (4.8) and (4.9) hold simultaneously. Since (4.8) holds unconditionally for \(t \) sufficiently large, the only thing left to check is that (4.9) holds for a suitable choice of \(\kappa \).

By using (4.11) and (4.13), (4.9) holds if particular

\[3 \frac{x^{2s}}{\kappa t^{2}} w^{2}(t, x) \leq D[\underline{u}](t, x) + f(\underline{u}), \quad x > X(t), \]

Set \(t^{*} := \sup\{t_{0}, t_{1}, t_{2}, t_{3}\} \), where \(t_{0}, t_{1}, t_{2} \) and \(t_{3} \) are respectively determined by Proposition 4.2, Proposition 4.4 and Proposition 4.6. To make our choice, let us decompose the set \([X(t), +\infty) = I_{1} + I_{2} \) into two subsets defined as follows

\[I_{1} := [X(t), X_{\eta}(t)], \quad I_{2} := [X_{\eta}(t), +\infty). \]

On the first interval, we have

Lemma 4.7. For all \(0 < s \leq \frac{1}{4}, \varepsilon > \theta \), there exists \(t_{4}(\varepsilon) \geq t^{*} \) such that for all \(\kappa \), one has

\[3 \frac{x^{2s}}{\kappa t^{2}} w^{2}(t, x) \leq D[\underline{u}](t, x) + f(\underline{u}), \quad \text{for all} \quad x \in I_{1}. \]

Proof. First observe that since \(x \geq X_{\eta} \), by the previous proofs, we know that \(\underline{u} \geq \theta + \eta \) and thus \(f(\underline{u}) > \min_{s \in [\theta + \eta, \varepsilon]} f(s) =: m_{0} > 0 \) for all \(t \geq t^{*} \) and \(x \in I_{1} \).

Now by exploiting the definition of \(X_{\eta}(t) \) and \(X(t) \) it follows that \(x \leq \left(\kappa t \left[1 + \frac{1}{\varepsilon - \eta} \right] \right)^{-1} \), and that

\[3 \frac{x^{2s}}{\kappa t^{2}} w^{2}(t, x) \leq \frac{3}{t} \varepsilon^{2} \left[1 + \frac{1}{\varepsilon - \eta} \right] , \]

which by taking \(t \) large then yields, says \(t \geq t' \),

\[3 \frac{x^{2s}}{\kappa t^{2}} w^{2}(t, x) \leq \frac{f(\underline{u})}{2} . \]

Recall that by Proposition 4.4, we have for all \(x \in I_{1} \) and \(t \geq t^{*} \)

\[D[\underline{u}] + f(\underline{u}) \geq \frac{f(\underline{u})}{2} . \]

We then end our proof by taking \(\gamma^{*} := \inf\{\gamma_{0}, \frac{1}{4\kappa} \} \) and \(t \geq t_{4} := \sup\{t', t^{*}\} \).

Finally, let us check what happens on \(I_{2} \),

Claim 4.8. There exists \(\kappa^{*} \) and \(t_{5} \geq t^{*} \) such that for all \(\kappa \leq \kappa^{*} \),

\[3 \frac{x^{2s}}{\kappa t^{2}} w^{2}(t, x) \leq D[\underline{u}] + f(\underline{u}), \quad \text{for all} \quad x \in I_{2}. \]
Proof. By Proposition 4.1, we have for $x \in I_2$ and $t \geq t^*$

$$w(t, x) \leq \frac{kt}{x^{2s}}[1 + \varepsilon],$$

Therefore, we have

$$3\frac{x^{2s}}{kt^2}w^2(t, x) \leq 3\frac{x^{2s}}{kt^2} \frac{(kt)^2}{x^{4s}}[1 + \varepsilon]^2 = \frac{\kappa[1 + \varepsilon]^2}{x^{2s}}.$$

Now recall that by Proposition 4.2, we have for all $x \in I_2$ and $t \geq t^*$

$$\mathcal{D}[u] + f(u) \geq \frac{\eta}{16\mathcal{J}_0 x^{2s}}.$$

The claim is then proved by taking $\kappa \leq \kappa^* := \frac{1}{48\mathcal{J}_0 x^{1+\varepsilon}}$.

References

[1] R. M. Blumenthal and R. K. Getoor. Some theorems on stable processes. *Transactions of the American Mathematical Society*, 95(2):263–273, 1960.

[2] K. Bogdan, T. Byczkowski, T. Kulczycki, M. Ryznar, R. Song, and Z. Vondracek. Potential analysis of stable processes and its extensions. Springer Science & Business Media, 2009.

[3] X. Cabré and J.-M. Roquejoffre. The influence of fractional diffusion in fisher-kpp equations. *Communications in Mathematical Physics*, 320(3):679–722, 2013.

[4] X. Cabré and J.-M. Roquejoffre. Propagation de fronts dans les équations de Fisher-KPP avec diffusion fractionnaire. *C. R. Math. Acad. Sci. Paris*, 347(23–24):1361–1366, 2009.

[5] E. Chasseigne, M. Chaves, and J. D. Rossi. Asymptotic behavior for nonlocal diffusion equations. *J. Math. Pures Appl. (9)*, 86(3):271–291, 2006.

[6] X. Chen. Existence, uniqueness, and asymptotic stability of traveling waves in nonlocal evolution equations. *Adv. Differential Equations*, 2(1):125–160, 1997.

[7] J. Coville. Travelling fronts in asymmetric nonlocal reaction diffusion equations: The bistable and ignition cases. *CCSD-Hal e-print*, pages –, May 2007.

[8] J. Coville, C. Gui, and M. Zhao. Propagation acceleration in reaction diffusion equations with anomalous diffusions. *Nonlinearity*, 34(3):1544–1576, Mar. 2021.

[9] C. Gui and T. Huan. Traveling wave solutions to some reaction diffusion equations with fractional laplacians. *Calculus of Variations and Partial Differential Equations*, 54(1):251–273, 2015.

[10] V. Kolokoltsov. Symmetric stable laws and stable-like jump-diffusions. *Proceedings of the London Mathematical Society*, 80(3):725–768, 2000.

[11] A. Mellet, J.-M. Roquejoffre, and Y. Sire. Existence and asymptotics of fronts in non local combustion models. *Commun. Math. Sci.*, 12(1):1–11, 2014.

[12] W. Shen and Z. Shen. Regularity and stability of transition fronts in nonlocal equations with time heterogeneous ignition nonlinearity. *Journal of Differential Equations*, 262(5):3390–3430, 2017.

[13] W. Shen and Z. Shen. Transition fronts in nonlocal equations with time heterogeneous ignition nonlinearity. *Discrete & Continuous Dynamical Systems-A*, 37(2):1013–1037, 2017.