RESEARCH HIGHLIGHT

Opening the box of PANTHORA in Alzheimer’s disease

Martin Korte1,2 and Reinhard W. Köster3

Signal Transduction and Targeted Therapy (2022) 7:344

A study published in Nature Neuroscience indicates that autophagy dysfunction in neurons precedes the formation of amyloid plaques.1 These findings ask for a reconsideration of the conventionally accepted sequence of events in plaque formation in Alzheimer’s disease.

Alzheimer’s Disease (AD) with synaptic dysfunction and cognitive decline is a devastating age-associated neurodegenerative disease accounting for about two thirds of all cases of dementia.2 The affected brain structures are histologically marked by intracellular neurofibrillary tangles (NFTs) and extracellular amyloid plaques of deposited β-amyloid peptides (Aβ), derived by proteolytic processing of the extracellular domain of the amyloid precursor protein, APP.2 The plaques appear to form first, while NFTs are indicative for an advanced state of AD, but their interrelation is still under dispute.3,4 Therefore, it is extensively investigated why, how, where and when, Aβ plaques and/or remove degenerative cells and attempt to clean out amyloid plaques. Prototypically, APP is proteolytically processed in endosomes/lysosomes. Strikingly, Lee et al. demonstrate that PANTHOS structures contain amyloid plaques with increasing levels of maturation over time concomitant with a compromised neuronal morphology.

Early PANTHOS-containing neurons are not associated with reactive astrocytes or activated microglia. Therefore, initial autophagic defects, deadcellid autolysosome accumulation, PANTHOS build-up and initial plaque formation evades detection by inflammation-mediating neighboring cells. Only when PANTHOS-containing neurons lose structural integrity, they are surrounded by activated astrocytes/microglia. At this advanced stage PANTHOS-containing neurons merge to larger structures likely giving rise to extracellular senile plaques that are eventually released into the extracellular space of the brain.

These findings of the authors imply several ground-breaking new insights into the possible mechanism of AD-associated plaque formation. Foremost, amyloid plaque formation considered to occur extracellularly due to APP proteolysis turns into an intracellular process followed by a release of already formed and matured plaques into the extracellular environment.4 Consequently, plaque formation should be viewed primarily as a cell-autonomous rather than a non-cell autonomous process.

The generation and accumulation of deacidified autolysosomes occurs long before histological signs of plaque formation and at stages when neurons appear to be healthy at large. This cellular metabolic signature could probably be exploited for diagnostic purposes of initiating AD or related neurodegenerative diseases at stages when preventive measure would still have major effects.

Based on the author’s finding the view on neuroinflammatory mechanisms in association with AD may be seen from a different perspective. The first contribution of reactive glia to AD progression may be a late one, when amyloid plaques have already formed and matured inside PANTHOS-containing neurons. But by promoting neuronal cell death of late-stage PANTHOS-neurons, glia might serve as a can opener causing the release of plaque material into the brain environment. This would promote plaque spread, turns further plaque growth from an intracellular into an extracellular process and enables plaque contact and influence possibly with glia.

Besides providing crucial novel insights into cell biological processes of amyloid plaque formation, like any exciting research new important question arise. What is so far missing, is a careful assessment about the role of neuroinflammation, since the authors did not elucidate precisely when neuroinflammation starts and it what it contributes to the observed phenotype. It also remains unclear which mechanism mediates reduction in vATPase-activity,

1Technische Universität Braunschweig, Zoological Institute, Div. Cellular Neurobiology, Spielmannstr. 7, 38106 Braunschweig, Germany; 2Helmholtz Centre for Infection Research, AG NIND, Inhoffenstraße 7, 38124 Braunschweig, Germany and 3Technische Universität Braunschweig, Zoological Institute. Div. Cellular and Molecular Neurobiology, Spielmannstr. 7, 38106 Braunschweig, Germany
Correspondence: Martin Korte (m.korte@tu-bs.de)

Received: 4 July 2022 Revised: 10 August 2022 Accepted: 18 September 2022
Published online: 02 October 2022
and why some autophagosomes are poorly acidified, while others show a properly acidic pH-milieu. Autophagy is a process common to all cells. Why are cholinergic neurons of the forebrain affected first by AD, are they more sensitive to PANTHOS formation? Reestablishing proper acidic conditions in poorly acidified autolysosomes in AD mouse models at early stages should prevent PANTHOS-formation and subsequent establishment of histological features as well as AD symptoms in these animals. Such a rescue would further provide evidence that amyloid plaque formation is initiated in a cell-autonomous process by autophagy defects in neurons themselves. This could trigger a plethora of new drugs or even the development of preventive strategies.

Neurofibrillary tangles as a hallmark of late AD stages do not appear in PANTHOS-neurons until stages of their destruction. Are these deficits inherent to the genetic mouse models that are unable to phenocopy NFT formation like in human AD brains? To investigate the relationship between PANTHOS-forming processes and neurofibrillary tangle appearance will be an interesting area of research.

Overall the findings described in Lee et al. strongly support the notion that, months before plaques develop, Aβ accumulates in faulty lysosomes neurons, and that this finally disturbs neuronal functioning and might cause neuronal death, leaving behind amyloid plaques. This supports therefore the hypothesis that lysosome dysfunction is an early, causal, and, most importantly, pathogenic process in AD.

REFERENCES

1. Lee, J. H. et al. Faulty autolysosome acidification in Alzheimer’s disease mouse models induces autophagic build-up of Abeta in neurons, yielding senile plaques. Nat. Neurosci. 25, 688–701 (2022).
2. Muller, U. C., Deller, T. & Korte, M. Not just amyloid: physiological functions of the amyloid precursor protein family. Nat. Rev. Neurosci. 18, 281–298 (2017).
3. Herrup, K. The case for rejecting the amyloid cascade hypothesis. Nat. Neurosci. 18, 794–799 (2015).
4. Musiek, E. S. & Holtzman, D. M. Three dimensions of the amyloid hypothesis: time, space and ‘wingmen’. Nat. Neurosci. 18, 800–806 (2015).
5. Aman, Y. et al. Autophagy in healthy aging and disease. Nat. Aging 1, 634–650 (2021).

FUNDING

Open Access funding enabled and organized by Projekt DEAL.

© The Author(s) 2022