Imaging Evaluation of Fat Infiltration in Paraspinal Muscles on MRI: A Systematic Review with a Focus on Methodology

Gengyu Han, MD†, Yu Jiang, MD†, Bo Zhang2, Chunjie Gong2, Weishi Li, MD1

1Third Hospital Orthopaedics Department, Beijing Key Laboratory of Spinal Disease Research, Peking University and 2Peking University Health Science Center, Beijing, China

Purpose: Numerous studies have applied a variety of methods to assess paraspinal muscle degeneration. However, the methodological differences in imaging evaluation may lead to imprecise or inconsistent results. This article aimed to provide a pragmatic summary review of the current imaging modalities, measurement protocols, and imaging parameters in the evaluation of paraspinal muscle fat infiltration (FI) in MRI studies.

Methods: Web of Science, EMBASE, and PubMed were searched from January 2005 to March 2020 to identify studies that examined the FI of paraspinal muscles on MRI among patients with lumbar degenerative diseases.

Results: Intramyocellular lipids measured by magnetic resonance spectroscopy and FI measured by chemical-shift MRI were both correlated to low back pain and several degenerative lumbar diseases, whereas results on the relationship between FI and degenerative lumbar pathologies using conventional MRI were conflicting. Multi-segment measurement of FI at the lesion segment and adjacent segments could be a prognostic indicator for lumbar surgery. Most studies adopted the center of the intervertebral disc or endplate as the level of slice to evaluate the FI. Compared with visual semiquantitative assessment, quantitative parameters appeared to be precise for eliminating individual or modality differences. It has been demonstrated that fat CSA/total CSA (based on area) and muscle–fat index (based on signal intensity) as quantitative FI parameters are associated with multiple lumbar diseases and clinical outcomes after surgery.

Conclusion: Having a good command of the methodology of paraspinal muscle FI on MRI was effective for diagnosis and prognosis in clinical practice.

Key words: Degeneration; Fat infiltration; Imaging evaluation; Magnetic resonance imaging; Methodology; Introduction

Introduction

Fat infiltration (FI), a crucial indicator of composition change of paraspinal muscle degeneration, may contribute to the loss of muscle strength and endurance1. There has been increasing interest in imaging evaluation of FI as a potential diagnostic and prognostic tool in lumbar spine health in recent decades2.

Systematic reviews have pointed out that the impact of FI on diseases has conflicting results3–5. These discrepancies might be due to methodological differences, such as imaging modality, measurement protocols, and parameter selection1,4,6. Several advanced MRI approaches have been proposed since 2006, including magnetic resonance spectroscopy (MRS) and chemical-shift MRI7,8. Heterogeneity of measurement protocols involves the level and...
slice selection (e.g. slice positioning) and the definition of the region of interest (ROI). Furthermore, numerous imaging parameters hitherto have been used to describe the degree of FI, including semiquantitative and quantitative parameters.

To our knowledge, no prior systematic reviews have examined these imaging methods. This review aimed to summarize the existing MRI methods of FI assessment from the methodological perspective of imaging modalities, measurement protocols, and parameter selection, and to discuss the diagnostic benefits for lumbar degenerative diseases of using various methods for measuring FI.

Literature Review

Three electronic databases (Web of Science, Embase, and PubMed) were searched from January 2005 to March 2020 to identify studies that examined the FI of the paraspinal muscles (psoas, multifidus, and erector spinae). All fields were searched for these terms: “paraspinal muscles,” “multifidus,” “transversospinales,” “erector spinae,” or “psoas major”; and “spinal degeneration” or “low back pain.” Two independent reviewers determined whether studies were included based on the following inclusion criteria: (i) recruited participants who have reported lumbar degenerative diseases (i.e. radiculopathy, disk herniation, sciatica, spinal stenosis, spondylolysis, spondylolisthesis, osteoarthritis, or facet joint osteoarthritis) or nonspecific low back pain (LBP); and (ii) employed MRI (conventional MRI, MRS, and chemical-shift MRI) to measure the FI of paraspinal muscles. Exclusion criteria were: (i) patients without lumbar degenerative diseases or who were younger than 18 years of age to exclude some idiopathic spinal diseases; (ii) patients not involved in any FI assessments; (iii) patients evaluated only by kinematic MRI; (iv) case reports, editorials/letters, literature reviews, guidelines, and abstract-only publications; and (v) non-English literature.

The literature review identified 4500 articles, of which 136 full-text articles were retrieved for full review. After the screening of titles and abstracts, the full text was retrieved and a total of 78 studies were deemed to meet the inclusion criteria. A search flow diagram is presented in Fig. 1.

Imaging Modality

Conventional MRI

Most studies used conventional MRI for measuring FI. In the field of MRI sequence, our results showed that T2-weighted images were used in quantitative assessments more often. It is expedient for orthopaedists to evaluate FI on frequently-used T2-weighted images. Suh et al. found that the intrarater and interrater reliability of parameters were generally excellent for both T1-weighted and T2-weighted images. For predicting LBP using conventional MRI, cross-sectional studies found that greater FI was associated with LBP. However, two longitudinal studies reported no association between FI and LBP.

Novel MRI Modalities

Because of the relatively limited accuracy of conventional MRI, several novel MRI modalities have emerged. We found some studies that applied MRS chemical-shift MRI and multi-echo MRI. A comparison of different MRI modalities is included in Table 1.

MRI has facilitated detailed analyses of muscular fat masses by separating and recording the concentration of extramyocellular lipids (EMCL) and intramyocellular lipids (IMCL), which is not achievable with other technology. Studies have demonstrated that IMCL are significantly higher in those with chronic LBP and that there is a positive correlation between IMCL and VAS. IMCL have not been found to be significantly different between chronic LBP and normal groups. Thus, IMCL of paraspinal muscles might be a useful indicator for diagnosis and rehabilitation strategies.

Chemical-shift MRI can produce water-only and fat-only images from dual-echo and/or multi-echo acquisitions that overmatch MRS when observing EMCL; thus, this is considered the contemporary standard for measuring FI. Excellent accuracy has been demonstrated for manual segmentation based on these imaging techniques compared to spectroscopy and histology. It is capable of quantifying proton density fat fractions (PDFF) which has revealed favorable intra-reader and inter-reader reproducibility. Studies have demonstrated that FI based on chemical-shift MRI is associated with LBP and herniated nucleus pulposus. Moreover, using PDFF measurements could improve the prediction of paraspinal muscle strength beyond cross-sectional areas (CSA). Multi-echo MRI, another new approach based on exploiting chemical shift differences of water and fat resonances, produced a concuring result with the fat values derived by MRS. Fischer et al. performed a quantification of fat content through multi-echo MRI in LBP patients.

Measurement Protocol

Single-Segment or Multi-Segment Measurement

Recent research has suggested that using a single-segment measurement to evaluate FI is insufficient for representing the whole lumbar area. Surgeons should perform a multi-segment assessment instead of a single-segment assessment to evaluate the overall situation of paraspinal muscle degeneration. Considering that the MR slice has a certain thickness, volumetric measures based on a three-dimensional volume across L1–S1 (or the levels of interest) are more appropriate and realistic in representing the entire muscle volume variability.

Studies that investigated nonspecific LBP were inclined to assess multiple segments in the lower lumbar region, especially...
focusing on L4. According to Crawford et al.87, the fat content at L4 best represented that of the entire lumbar region in healthy participants. Hebert et al.22 also reported that pathological change appeared most often at L4. Storheim et al. revealed that higher FI at lower lumbar segments was associated with higher Oswestry disability index (ODI) scores and greater pain intensity in chronic LBP patients49. This indicated that the evaluation of FI in lower lumbar segments was useful and could reflect the morbid state of patients.

For specific lumbar degenerative diseases, studies have tended to evaluate the lesion segment and adjacent segments9,11–15,20,27,30,39,47,51,53,63,70. Several studies have demonstrated that FI could be a risk factor for lumbar degenerative diseases3–15,47. We also found that FI of paraspinal muscles was associated with clinical outcomes. Higher FI of multifidus was correlated with lower functional status and less improvement in ODI in patients with LSS after surgery63,70. Thus, evaluating the FI at the lesion segment and adjacent segments could be a viable method for predicting the clinical outcomes of lumbar surgery.

Slice Selection

Most studies used the center of the intervertebral disc9,10,12,21,27–30,39,43,45,50,52,53,56,59–62,65,71,74,79 or the superior/inferior endplate9,15,19,20,26,31,34,35,41,44,47–49,57,63,64,66,68–70,82,83,85 as the level of slice. These slices are common and available in clinical practice. However, there is no research demonstrating the impact of different slice positioning on the FI results.

Defining the Novel Region of Interest

For manually defining the ROI, minute changes in muscle composition may not be clearly visible88. Semi-automatic
technologies emerging to define the border of paraspinal muscles have the potential to assist with this problem. Antony et al. implemented an interactive segmentation of the erector spinae and the multifidus muscles using the livewire technique (Fig. 3A,B)24.

Interestingly, two studies have proposed a method allowing for quantification of the spatial distribution of FI in each quartile of ROI (medial to lateral) and describing whether there is a geographical propensity for fat to accumulate (Fig. 4)31,57. They found that fat content increased per quartile from medial to lateral in males, whereas the increase of FI depended more on sagittal than transverse distribution57. Antony et al. proposed a new method to quantify the fat content in six regions with reference to the center of the spinal column, which represented the axis of spinal rotation24. These studies demonstrated that orthopaedists can keep a watchful eye on different muscle regions that might have various effects on pain levels.

Imaging Parameters

Visual Semiquantitative Parameters

Our review showed that several early studies used semiquantitative visual grading with distinct cut-off points (2-point scale\textsuperscript{19,67,19,67,3 points scale9,16,49,64,68,78, 4-point scale5,15,18,29,34,37,48,50,59,80, and 5-point scale17,28,35,51)). When muscles were graded, the interobserver and intraobserver agreements were both acceptable with or without cut-off points5,34,51.

Semiquantitative evaluation is convenient and intuitive in clinical practice. Studies have reported that higher FI of paraspinal muscles based on semiquantitative evaluation was correlated to functional disability, pain level, and decreased range of motion of lumbar flexion in LBP patients9,49,64,68. Teichtahl et al. also reported that paraspinal FI, but not muscle area, was associated with high-intensity pain, disability, and structural abnormalities in community-based adults50.

Quantitative Parameters

Quantitative evaluation is more accurate than semiquantitative evaluation. Numerous quantitative parameters based on area or signal intensity were applied to define FI (Table 2). In terms of area-based indicators, fat CSA/total CSA or fat signal fractions is a universal indicator.

Table 1: Comparison of different MRI modalities

MRI modality	Characteristic	Application
Conventional MRI	Convenient in clinical practice; the accuracy is relatively low	The most commonly used tool in quantitative assessment
T2-weighted		IMCLs were correlated to several degenerative lumbar pathologies
MRS	Can record the concentration of both IMCL and EMCL	
Chemical-shift MRI	Overmatches MRS in terms of EMCL; the contemporary standard for measuring EMCL	
Multi-echo MRI	Produces a concurring result compared with MRS	Have been performed in LBP patients

CSA, cross-sectional area; EMCL, extramyocellular lipids; IMCL, intramyocellular lipids; LBP, low back pain; MRS, magnetic resonance spectroscopy; PDFF, proton density fat fractions.

Fig 2 Distribution diagram of paraspinal muscle adipose tissue. Taking the T2-weighted image of the right multifidus muscle of the L4–5 segment as an example, the green contour represents the muscle mass, the yellow contour represents perimyscular fat, and the red contour represents intramuscular fat. The perimyscular fat is stored between muscle groups and intramuscular fat is inside muscles. The perimyscular fat and intramuscular fat pertaining to extramyocellular lipids (EMCL) can be visible on conventional MRI and chemical-shift MRI, while intramyocellular lipids (IMCL) stored in myocyte are shown only on magnetic resonance spectroscopy.
separating fat area through signal intensity difference with a threshold technology. Studies have showed that LBP patients or those presenting with lumbar degenerative diseases have greater fat CSA/total CSA. When multiplanar reconstruction was used, the ratio of fat volume to muscle volume outperformed fat CSA/total CSA, which was dependent upon specific slices. An MRI three-dimensional reconstruction study found that FI increased from L1–L2 to L5–S1 level in patients with lumbar spinal stenosis.

Signal intensity-based indicators include the muscle–fat index (MFI) and mean MRI signal intensity. MFI was calculated by dividing the mean signal intensity of the total muscle by the intramuscular fat to reduce individual differences, and it has been proven to be highly reliable. Greater MFI was correlated to poor

Fig 3 (A) A graphical user interface was developed based on interactive controls for selecting region of interest from the input image, threshold adjustment, and softness level adjustment. (B) MRI input image of the right erector spinae and the multifidus muscles, following a path that is as close as possible to image features detected as edges using Dijkstra’s lowest cost path algorithm. However, the input image has to be down-sampled in the low-resolution image to ensure an effective running speed.
physical function and high incidence of proximal junctional kyphosis. However, the reference of fatty signal intensity was used in a variety of ways. Some studies used a homogenous region of perimuscular fat or subcutaneous fat as fat region when identifying intramuscular fat was impracticable. Applying cerebrospinal fluid from the same axial level of each MRI scan as the reference of signal intensity could also lessen variations in MRI background intensity. Like CT attenuation, the mean MRI signal intensity was also considered to reflect FI in some studies but might be affected by individual differences and MRI operation differences. We recommend combining parameters based on area and signal intensity for use as an indicator of FI.

Conclusion

Novel technologies like MRS and chemical-shift MRI have emerged to provide details on intramyocellular or extracellular fatty concentration and could be used in distinguishing degeneration of the lumbar spine. Studies might perform a multi-segment assessment including at least L4 instead of a single-segment assessment. Adopting the center of the intervertebral disc or endplate as the level of slice is expedient. The spatial distribution of FI might have a particularity in degenerative lumbar spines. Numerous quantitative parameters based on area or signal intensity were applied to define the FI, among which fat CSA/total CSA and MFI seem to be the better choices in diagnosing and predicting clinical outcomes.

References

1. Kalichman L, Carmeli E, Been E. The association between imaging parameters of the paraspinal muscles, spinal degeneration, and low back pain. Biomed Res Int, 2017, 2017: 2562957.
2. Engelke K, Museyko O, Wang L, Laredo JD. Quantitative analysis of skeletal muscle by computed tomography imaging: state of the art. J Orthop Transl, 2018, 15: 91–103.
3. Ranger TA, Cicuttini FM, Jensen TS, et al. Are the size and composition of the paraspinal muscles associated with low back pain? A systematic review. Spine J, 2017, 17: 1729–1748.
4. Vagaska E, Andrasina T, Vohanka S, Adamova B. Changes of paraspinal muscle morphology in patients with chronic non-specific low back pain. Ceska a Slovenska Neurologie a Neurochirurgie, 2019, 82: 505–512.
5. Goubert D, Oosterwijk JV, Meeus M, Danneels L. Structural changes of lumbar muscles in non-specific low back pain: a systematic review. Pain Physician, 2016, 19: 985–1000.
6. Cooley JR, Walker BF, Aridakis ME, Kjaer P, Jensen TS, Hebert JJ. Relationships between paraspinal muscle morphology and neurocompressive conditions of the lumbar spine: a systematic review with meta-analysis. BMC Musculoskeletal Disord, 2018, 19: 351–371.
7. Mengiardi B, Schmid MR, Boos N, et al. Fat content of lumbar paraspinal muscles in patients with chronic low back pain and in asymptomatic volunteers: quantification with MR spectroscopy. Radiology, 2006, 240: 786–792.
51. Yanik B, Keyik B, Conkbayir I. Fatty degeneration of multifidus muscle in patients with chronic low back pain and in asymptomatic volunteers: a 1.5 tesla magnetic resonance imaging study. J Back Musculoskelet Rehabil, 2017, 30: 112–122.

52. Sasiak T, Yoshimura N, Hashizume H, et al. MRI-defined paraspinal muscle morphology in Japanese population: the Wakayama Spine Study. PLoS One, 2017, 12: e0187765.

53. Xie D, Zhang J, Ding W, et al. Abnormal change of paravertebral muscle in adult degenerative scoliosis and its association with bony structural parameters. Eur Spine J, 2019, 28: 1626–1637.

54. Xia W, Fu H, Zhu Z, Lui B. The association between back muscle degeneration and spinal-pelvic parameters in patients with degenerative spinal kyphosis. BMC Musculoskelet Disord, 2019, 20: 454.

55. Shafran N, Suzuki A, Matsumura A, et al. Asymmetrical degeneration of paravertebral muscles in patients with degenerative lumbar scoliosis. Spine (Phila Pa 1976), 2012, 37: 1398–1406.

56. Shahidi B, Parra CL, Berry DB, et al. Contribution of lumbar spine pathology and age to paraspinal muscle size and fatty infiltration. Spine, 2017, 42: 616–623.

57. Yu B, Jiang K, Li X, Zhang J, Liu Z. Correlation of the features of the lumbar spine on MRI with and without chronic low back pain. J Orthop Sports Phys Ther, 2017, 47: 135–146.

58. Hebert JJ, Le Cara EC, Marcus RL, Dempsey AR, Hoffman MD, Hebert JJ. Morphology versus function: the relationship between lumbar multifidus intramuscular adipose tissue and muscle function among patients with low back pain. Arch Phys Med Rehabil, 2014, 95: 1846–1852.

59. Antony J, McGuinness K, Welch N, et al. An interactive segmentation tool for quantifying fat in lumbar muscles using axial lumbar-mri. IJBI, 2016, 37: 11–22.

60. Wan Q, Lin C, Li X, Zeng W, Ma C. MRI assessment of paraspinal muscles in patients with acute and chronic unilateral low back pain. Br J Radiol, 2015, 88: 20140546.

61. Dhooge R, Cagney B, Crombez G, Vanderstraeten G, Dolphens M, Danneels L. Increased intramuscular fatty infiltration without differences in lumbar muscle cross-sectional area during remission of unilateral recurrent low back pain. Man Ther., 2012, 17: 584–588.

62. Teichtahl AJ, Uqrqah DM, Wang Y, et al. Lumbar disc degeneration is associated with modic change and high paraspinal fat content - a 3.0T magnetic resonance imaging study. BMC Musculoskeletal Disorder, 2016, 17: 439.

63. Kong MH, Hymanson HJ, Song KY, et al. Kinetic magnetic resonance imaging analysis of abnormal segmental motion of the functional spine unit clinical article. J Neurosurg, 2010: 375–389.

64. Hyun SJ, Kim YJ, Rhim SC. Patients with proximal juxtafacet kyphosis after stopping at thoracolumbar junction have lower muscularity, fatty degeneration at the thoracolumbar area. Spine, 2016, 16: 1095–1101.

65. Sions JM, Smith AC, Hicks GE, Elliott JM. Trunk muscle size and composition assessment in older adults with chronic low back pain: an intra-examiner and inter-examiner reliability study. Pain Med, 2016, 17: 1436–1446.

66. Hebert JJ, Kjaer P, Fritz JM, Walker BF. The relationship of lumbar multifidus muscle morphology to previous, current, and future low back pain: a 9-year population-based prospective cohort study. Spine (Phila Pa 1976), 2014, 39: 1417–1425.

67. Le Cara EC, Marcus RL, Dempsey AR, Hoffman MD, Hebert JJ. Morphology versus function: the relationship between lumbar multifidus intramuscular adipose tissue and muscle function among patients with low back pain. Arch Phys Med Rehabil, 2014, 95: 1846–1852.

68. Antony J, McGuinness K, Welch N, et al. An interactive segmentation tool for quantifying fat in lumbar muscles using axial lumbar-mri. IJBI, 2016, 37: 11–22.

69. Wan Q, Lin C, Li X, Zeng W, Ma C. MRI assessment of paraspinal muscles in patients with acute and chronic unilateral low back pain. Br J Radiol, 2015, 88: 20140546.

70. Dhooge R, Cagney B, Crombez G, Vanderstraeten G, Dolphens M, Danneels L. Increased intramuscular fatty infiltration without differences in lumbar muscle cross-sectional area during remission of unilateral recurrent low back pain. Man Ther., 2012, 17: 584–588.

71. Battage PJ, Maeda Y, Welk A, Hough B, Kettner N. Reliability of the Goutallier classification in quantifying muscle fatty degeneration in the lumbar multifidus using magnetic resonance imaging. J Manipulative Physiol Ther, 2014, 37: 190–197.

72. Arbanas J, Pavlovic I, Marijancic V, et al. MRI features of the psosas major muscle in patients with low back pain. Eur Spine J, 2013, 22: 1965–1971.

73. Takayama K, Kita T, Nakamura H, et al. New predictive index for lumbar paraspinal muscle degeneration associated with aging. Spine (Phila Pa 1976), 2016, 41: 84–90.

74. Urrutia J, Besa P, Lobos D, Andia M, Arieta C, Urbe S. Is a single-level measurement of paraspinal muscle fat infiltration and cross-sectional area representative of the entire lumbar spine? Skeletal Radiol, 2018, 47: 939–945.

75. Berry DB, Padwal J, Johnson S, Parra CL, Ward SR, Shahidi B. Methodological considerations in region of interest definitions for paraspinal muscles in axial MRIs of the lumbar spine. BMC Musculoskeletal Disorder, 2018, 19: 135.

76. Prasarn ML, Kostantinos V, Coyne E, Wright J, Rechtine GR. Does lumbar multifidus muscle fatty degeneration correlate with diabetic and non-diabetic morbid obesity? J Back Musculoskeletal Rehabil, 2020, 33: 207–215.

77. Ali I, Uirich C, McGregor AH. Degeneration of the extensor muscle group in a surgical low back and leg pain population. J Back Musculoskeletal Rehabil, 2011, 24: 23–30.

78. Bhadresha A, Lawrence DJ, McCarthy MJ. A comparison of magnetic resonance imaging muscle fat content in the lumbar paraspinal muscles with
patient-reported outcome measures in patients with lumbar degenerative disc disease and focal disk prolapse. Global Spine J, 2016, 6: 401–410.

57. Crawford RJ, Volken T, Mhuiris AN, et al. Geography of lumbar paravertebral muscle fatty infiltration the influence of demographics, low back pain, and disability. Spine, 2019, 44: 1298–1302.

58. Dohoozo S, Toyoda H, Takahashi S, et al. Factors associated with improvement in sagittal spinal alignment after microendoscopic laminotomy in patients with lumbar spinal canal stenosis. J Neurosurg Spine, 2016, 25: 39–45.

59. Faur C, Patrascu JM, Haragus H, Angliotiu B. Correlation between multifidus fatty atrophy and lumbar disc degeneration in low back pain. BMC Musculoskeletal Disorder, 2019, 20: 414.

60. Fortin M, Batté MC. Quantitative paraspinal muscle measurements: inter-software reliability and agreement using OsiriX and ImageJ. Phys Ther, 2012, 92: 853–864.

61. Fortin M, Gibbons LE, Videnman T, Batté MC. Do variations in paraspinal muscle morphology and composition predict low back pain in men? Scand J Med Sci Sports, 2015, 25: 880–887.

62. Fortin M, Omidyeganeh M, Batté MC, Ahmad O, Rivaz H. Evaluation of an automated thresholding algorithm for the quantification of paraspinal muscle composition from MRI images. Biomed Eng Online, 2017, 16: 61.

63. Fortin M, Lazay A, Varga PP, Batté MC. Association between paraspinal muscle morphology, clinical symptoms and functional status in patients with lumbar spinal stenosis. Eur Spine J, 2017, 26: 2543–2551.

64. Hildebrandt M, Fankhauser G, Meichtry A, Luomajoki H. Correlation between lumbar dysfunction and fat infiltration in lumbar multifidus muscles in patients with low back pain. BMC Musculoskeletal Disorder, 2017, 18: 12.

65. Hu Z-J, He J, Fang X-Q, Zhou L-N, Fan S-W. An assessment of the software reliability and agreement using OsiriX and ImageJ. Phys Ther, 2012, 92: 853–864.

66. Hu Z, Gu J, Bae CW, Lee SH, Rhim SC. Fatty degeneration of the paraspinal muscles in patients with degenerative lumbar kyphosis: a new evaluation method of quantitative digital analysis using MRI and CT scan. Clin Spine Surg, 2016, 29: 441–447.

67. Kasraei E, Dehghani Z, Mohammadi K, Haghhatkhabeh H, Shohorean F. Comparison of pathologic findings of lumbosacral MRI between low back pain patients and the controls. J Res Med Den Sci, 2018, 6: 213–216.

68. Kjaer P, Bendix T, Sorensen JS, Korcholm L, LibeoufYde C. Are MRI-defined fat infiltrations in the multifidus muscles associated with low back pain? BMC Med, 2007, 5: 2.

69. Lee SK, Jung JY, Kang YR, Jung JH, Yang JJ. Fat quantification of multifidus muscle using T2-weighted Dixon: which measurement methods are best suited for revealing the relationship between fat infiltration and herniated nucleus pulposus. Skeletal Radiol, 2020, 49: 263–271.

70. Yang L, Yuzeng L, Yong H, Tie L, Li G, Chen X. Fat infiltration in the multifidus muscle as a predictor of prognosis after decompression and fusion in patients with single-segment degenerative lumbar spinal stenosis: an ambispective cohort study based on propensity score matching. World Neurosurg, 2019, 128: 989–1001.

71. Lee JH, Lee SH. Does lumbar paraspinal muscles improve after corrective fusion surgery in degenerative flat back? Indian J Orthop, 2017, 51: 147–154.

72. Ropponen A, Videnman T, Batté MC. The reliability of paraspinal muscles composition measurements using routine spine MRI and their association with back function. Man Ther, 2008, 13: 349–356.

73. Fortin M, Macedo LG. Multifidus and paraspinal muscle group cross-sectional areas of patients with low back pain and control patients: a systematic review with a focus on blindness. Phys Ther, 2013, 93: 873–888.

74. Paalanne N, Niinimaki J, Karppinen J, et al. Assessment of association between low back pain and paraspinal muscle atrophy using opposed-phase magnetic resonance imaging: a population-based study among young adults. Spine (Phila Pa 1976), 2011, 36: 1961–1968.

75. Fischer MA, Nanz D, Shimakawa A, et al. Quantification of muscle fat in patients with low back pain: comparison of multi-echo MRI imaging with single-voxel MR spectroscopy. Radiology, 2013, 266: 555–563.

76. Ogon I, Takebayashi T, Takahama H, et al. Magnetic resonance spectroscopic analysis of multifidus muscles lipid content and association with isometric strength measurements with isometric strength measurements. Spine Surg Relat Res, 2019, 3: 163–170.

77. Takahama H, Takebayashi T, Ogon I, et al. Analysis of intra- and extramyocellular lipids in the multifidus muscles in patients with chronic low back pain using MR spectroscopy. Br J Radiol, 2018, 91: 20170536.

78. Takahama H, Takebayashi T, Ogon I, et al. Evaluation of intramyocellular and extramyocellular lipids in the paraspinal muscle in patients with chronic low back pain using MR spectroscopy: preliminary results. Br J Radiol, 2016, 89: 20160136.

79. Smith AC, Parrish TB, Abbott R, et al. Muscle-fat MRI: 1.5 tesla and 3.0 tesla versus histology. Muscle Nerve, 2014, 50: 170–176.

80. Goubert D, Peauw R, Meeus M, et al. Lumbar muscle structure and function in chronic versus recurrent low back pain: a cross-sectional study. Spine J, 2017, 17: 1285–1296.

81. Bailey JF, Fields A, Ballatori A, et al. The relationship between endplate pathology and patient-reported symptoms for chronic low back pain depends on lumbar paraspinal muscle quality. Spine (Phila Pa 1976), 2019, 44: 1010–1017.

82. Yoo YH, Kim HS, Lee YH, et al. Comparison of multi-echo dixon methods with volume interpolated breath-hold gradient echo magnetic resonance imaging in fat-signal fraction quantification of paravertebral muscle. Korean J Radiol, 2015, 16: 1086–1095.

83. Goubert D, Meeus M, Willems T, et al. Association between back muscle characteristics and pressure pain sensitivity in low back pain patients. Scand J Pain, 2018, 18: 281–293.

84. Schlaeger S, Ihruber S, Rohrmeier A, et al. Association of paraspinal muscle water-fat MRI-based measurements with isometric strength measurements. Eur Radiol, 2019, 29: 599–608.

85. Crawford RJ, Elliott JM, Volken T. Change in fatty infiltration of lumbar multifidus, erector spinae, and psoas muscles in asymptomatic adults of Asian or Caucasian ethnicities. Eur Spine J, 2017, 26: 3059–3067.

86. Crawford RJ, Cornell J, Abbott R, Elliott JM. Manually defining regions of interest when quantifying paravertebral muscles fatty infiltration from axial magnetic resonance imaging: a proposed method for the lumbar spine with anatomical cross-reference. BMC Musculoskeletal Disorder, 2017, 18: 25.