Research Article

Dengming Liu* and Miaojun Yu

On the extinction problem for a p-Laplacian equation with a nonlinear gradient source

https://doi.org/10.1515/math-2021-0091
received March 4, 2021; accepted August 11, 2021

Abstract: We deal with the extinction properties of the weak solutions for a p-Laplacian equation with a gradient nonlinearity. The critical extinction exponent is specified and the decay estimates of the extinction solutions are given.

Keywords: extinction, non-extinction, p-Laplacian equation, nonlinear gradient source

MSC 2020: 35K20, 35K55

1 Introduction

The main aim of this paper is devoted to studying the extinction properties of the weak solutions for the following p-Laplacian equation

$$
\begin{aligned}
& \begin{cases}
\Delta u = \text{div}(|\nabla u|^{p-2}\nabla u) + \mu u^l |\nabla u|^q, & (x, t) \in \Omega \times (0, +\infty), \\
\frac{\partial u}{\partial \nu}(x, t) = 0, & (x, t) \in \partial \Omega \times (0, +\infty), \\
u(x, 0) = u_0(x), & x \in \bar{\Omega},
\end{cases}
\end{aligned}
$$

(1.1)

where $\Omega \subset \mathbb{R}^N$, $N \geq 1$, is an open bounded domain with smooth boundary $\partial \Omega$, $1 < p < 2$, the parameters μ, l and q are positive, and $u_0 \in L^\infty(\Omega) \cap W_0^{l,p}(\Omega)$ is a nonzero nonnegative function.

Nonlinear partial differential equations arise in various fields of science and have attracted the attention of many scholars (see [1–6]). Model (1.1) can be used to describe the combustion process in combustion theory where $u(x, t)$ represents the temperature of the combustible substance (see [7]). Model (1.1) can also be used to describe the evolution of the population density of a kind of biological species under the effect of certain natural mechanism in population dynamics where $u(x, t)$ is the density of the species (see [8]). In particular, model (1.1) with $l = 0$ is often referred to as a generalized viscous Hamilton-Jacobi equation. Model (1.1) with $l = 0$ is also related to the Kardar-Parisi-Zhang equation in the physical theory of growth and roughening of surfaces (see [9,10]).

One of the particular features of problem (1.1) is that the equation is singular at the points where $\nabla u = 0$. Hence, generally there is no classical solution and we introduce the definition of the weak solution for problem (1.1) as follows.

* Corresponding author: Dengming Liu, School of Mathematics and Computational Science, Hunan University of Science and Technology, Xiangtan, Hunan 411201, P. R. China, e-mail: liudengming@hnust.edu.cn

Miaojun Yu: School of Mathematics and Computational Science, Hunan University of Science and Technology, Xiangtan, Hunan 411201, P. R. China, e-mail: 3300523182@qq.com

Open Access. © 2021 Dengming Liu and Miaojun Yu, published by De Gruyter. This work is licensed under the Creative Commons Attribution 4.0 International License.
Definition 1.1. By a local weak solution to problem (1.1), we understand a function \(u \in C(0, T; L^1(\Omega)) \) for some \(T > 0 \), which moreover satisfies the following assumptions:

- \(|\nabla u|^p, |u^q| \in L^1(\Omega \times (0, T))\);
- for any \(\zeta \in C_0^\infty(\Omega \times (0, T)) \) and \(0 < t_1 < t_2 < T \), we have

\[
\int_\Omega u(x, t_2)\zeta(x, t_2)dx + \int_\Omega \int_{t_1}^{t_2} [-u\zeta_t + |\nabla u|^{p-2}\nabla u \cdot \nabla \zeta]dxdt = \int_\Omega u(x, t_1)\zeta(x, t_1)dx + \mu \int_{t_1}^{t_2} |u^q| \zeta dx dt;
\]

- \(u(x, t) = 0 \) for \(x \in \partial \Omega \);
- \(u(x, t) \to u_0(x) \) as \(t \to 0 \) with convergence in \(L^1(\Omega) \).

Problem (1.1) exhibits various interesting qualitative properties, such as blow-up (or gradient blow-up), extinction, dead-core, and quenching, which reflect natural phenomena, according to various conditions on the parameters \(p, \mu, l \), and \(q \), the initial data \(u_0(x) \) and the domain \(\Omega \) (see [11–25]). Because of this, problem (1.1) has attracted the attention of many mathematicians in the last decade. The authors of [9,26–28] showed the local existence result and established the comparison principle of the weak solutions. When \(\mu = 0 \), DiBenedetto [1] and Yuan et al. [29] proved that the necessary and sufficient condition for the extinction to occur is \(1 < p < 2 \). The authors of [7,30,31] considered the extinction behaviors of the solutions for problem (1.1) with \(q = 0 \) and proved that the critical extinction exponent of the solution is \(l = p - 1 \).

For the case \(l = 0 \) and \(\mu = -1 \), Iagar and Laurençot [32] concerned with the following Cauchy problem

\[
\begin{cases}
 u_t = \text{div}(|\nabla u|^{p-2}\nabla u) - |u|^q, & x \in \mathbb{R}^N, \ t > 0, \\
 u(x, 0) = u_0(x), & x \in \mathbb{R}^N.
\end{cases}
\]

Based on comparison principle and gradient estimates of the solutions, they classify the behavior of the solutions for large time, obtaining either positivity as \(t \to \infty \) for \(q > p - \frac{N}{N+1} \), optimal decay estimates as \(t \to \infty \) for \(q \in \left[\frac{p}{2}, p - \frac{N}{N+1} \right] \), or extinction in finite time for \(q \in \left(0, \frac{p}{2} \right) \). Recently, under the restrictive condition \(N > p \), Liu and Mu [33,34] considered problem (1.1) with \(l = 0 \) and proved that \(q = p - 1 \) is the critical extinction exponent of the nonnegative weak solution.

To the best of our knowledge, there is no result on the extinction behaviors of the solutions to problem (1.1). From a physical point of view, \(\text{div}(|\nabla u|^{p-2}\nabla u) \) with \(p \in (1, 2) \) is called a fast diffusion term, which may cause the extinction phenomenon of the weak solution; \(\mu u^q \) with \(\mu > 0 \) is called a nonlinear reaction term, which may prevent the extinction phenomenon of the weak solution. Motivated by the works above, our main attention will be focused on what role of the competition between the fast diffusion term and the coupled nonlinear hot source it plays in determining whether the extinction phenomenon occurs or not. Compared with some previous models which only have source term \(\mu u^q \) or \(|u|^q \), the coupled reaction term \(\mu u^q \) is more general, and it can reflect some complicated natural phenomena more exactly. Consequently, the coupled reaction term \(\mu u^q \) will bring more challenges while dealing with the integral norm estimates and require more skills.

The main results of this article are stated as follows.

Theorem 1.2. Assume that \(0 < l \leq q < \frac{p}{p+2} \) and \(p - 1 < q + l \), then the nonnegative weak solution of problem (1.1) vanishes in finite time provided that \(u_0 \) is sufficiently small. Furthermore, one has

\[
\begin{align*}
 \|u\|_{L^\infty(\Omega \times [0, T_0])} &\leq \|u_0\|_{L^\infty(\Omega \times [0, T_0])} \left(1 - \frac{p \Lambda_4}{N \|u_0\|_{L^\infty(\Omega \times [0, T_0])}} \right)^{\left(\frac{p}{p+2} \right)^{-1}}, \quad t \in [0, T_0), \\
 \|u\|_{L^\infty(\Omega \times [T_0, +\infty))} &\equiv 0, \quad t \in [T_0, +\infty),
\end{align*}
\]

where \(\Lambda_4 \) is the best possible constant in the optimal decay estimate (see [17, 19]).
for $N \geq 2$ and $1 < p < \frac{2N}{N+2}$,
\[
\begin{align*}
\|u\|_2 &\leq \|u_0\|_2 \left[1 - \frac{(2 - p)\Lambda_2}{2 \|u_0\|_2^2} t \right]^{\frac{1}{q-p}}, & t \in [0, T_2), \\
\|u\|_2 &\equiv 0, & t \in [T_2, +\infty),
\end{align*}
\] for $N \geq 2$ and $\frac{2N}{N+2} \leq p < 2$, and
\[
\begin{align*}
\|u\|_2 &\leq \|u_0\|_2 \left[1 - \frac{(2 - p)\Lambda_2}{2 \|u_0\|_2^2} t \right]^{\frac{1}{q-p}}, & t \in [0, T_3), \\
\|u\|_2 &\equiv 0, & t \in [T_3, +\infty),
\end{align*}
\] for $N = 1$, where $\Lambda_2, \Lambda_4, \Lambda_6, \Lambda_7, \Lambda_8, \Lambda_9,$ and Λ_{10} are positive constants, given by (2.7), (2.8), (2.13), (2.14), (2.18), and (2.19), respectively.

Theorem 1.3. Assume that $0 < q + l < p - 1$, then for any nonzero nonnegative initial data u_0, problem (1.1) admits at least one non-extinction solution provided that μ is sufficiently large.

Theorem 1.4. Assume that $q + l = p - 1$.
(1) Assume that $0 < l \leq q < \frac{p}{p+2}$, then the nonnegative weak solution of problem (1.1) vanishes in finite time provided that μ is sufficiently small. Furthermore, one has
\[
\begin{align*}
\|u\|_{L^{\frac{N(2-p)}{p}}(0,T_4)} &\leq \|u_0\|_{L^{\frac{N(2-p)}{p}}(\mathbb{R}^N)} \left[1 - \frac{p \Lambda_8}{N \|u_0\|_{L^{\frac{N(2-p)}{p}}(\mathbb{R}^N)}^2} t \right]^{\frac{1}{q-p}}, & t \in [0, T_4), \\
\|u\|_{L^{\frac{N(2-p)}{p}}(0,T_4)} &\equiv 0, & t \in [T_4, +\infty),
\end{align*}
\] for $N \geq 2$ and $1 < p < \frac{2N}{N+2}$,
\[
\begin{align*}
\|u\|_2 &\leq \|u_0\|_2 \left[1 - \frac{(2 - p)\Lambda_0}{2 \|u_0\|_2^2} t \right]^{\frac{1}{q-p}}, & t \in [0, T_5), \\
\|u\|_2 &\equiv 0, & t \in [T_5, +\infty),
\end{align*}
\] for $N \geq 2$ and $\frac{2N}{N+2} \leq p < 2$, and
\[
\begin{align*}
\|u\|_2 &\leq \|u_0\|_2 \left[1 - \frac{(2 - p)\Lambda_0}{2 \|u_0\|_2^2} t \right]^{\frac{1}{q-p}}, & t \in [0, T_6), \\
\|u\|_2 &\equiv 0, & t \in [T_6, +\infty),
\end{align*}
\] for $N = 1$, where $\Lambda_8, \Lambda_9, \Lambda_{10}, \Lambda_{11}$, and Λ_{12} are positive constants, given by (2.24), (2.25), (2.27), (2.28), (2.30), and (2.31), respectively.
(2) For any nonzero nonnegative initial data u_0, problem (1.1) admits at least one non-extinction solution provided that μ is sufficiently large.

Remark 1.5. Theorems 1.2, 1.3, and 1.4 tell us that $q + l = p - 1$ is the critical extinction exponent of the weak solution of problem (1.1). On the other hand, Theorems 1.2, 1.3, and 1.4 generalize and extend the previous results in [7,30,31,33,34] to a more general case.
2 Proof of the main results

In this section, we will give the conditions on the occurrence of the extinction phenomenon by using integral norm estimate approach. Meanwhile, the proof of the non-extinction results will be given by using super-solution and sub-solution methods.

Proof of Theorem 1.2. Multiplying the first equation in (1.1) by \(u^s \) with \(s > 0 \), and then integrating the resulting identity over \(\Omega \), one obtains

\[
\frac{1}{s+1} \frac{d}{dt} \int_{\Omega} u^{s+1} \, dx + \left(\frac{p}{p-1+s} \right)^q \int_{\Omega} \left| \nabla u^{\frac{p-1+s}{p}} \right|^p \, dx = \mu \left(\frac{p}{p-1+s} \right)^q \int_{\Omega} \left| \nabla u^{\frac{p-1+s}{p}} \right|^p \, dx. \tag{2.1}
\]

Since \(0 < l \leq q < \frac{p}{p+2} < p \), it is easily seen that

\[
0 < \frac{p(s+l)-q(s-1)}{(s+1)(p-q)} \leq \frac{p(s+q)-q(s-1)}{(s+1)(p-q)} < 1.
\]

Then by Young’s inequality and Hölder’s inequality, it holds that

\[
\int_{\Omega} u^{\frac{p(s+l)-q(s-1)}{(s+1)(p-q)}} \left| \nabla u^{\frac{p-1+s}{p}} \right|^p \, dx \leq \varepsilon \int_{\Omega} \left| \nabla u^{\frac{p-1+s}{p}} \right|^p \, dx + C(\varepsilon) \int_{\Omega} u^{\frac{p(s+l)-q(s-1)}{(s+1)(p-q)}} \, dx \leq \varepsilon \int_{\Omega} \left| \nabla u^{\frac{p-1+s}{p}} \right|^p \, dx + C(\varepsilon) |\Omega|^{\frac{q-1}{p(s+l)-q(s-1)}} \left(\int_{\Omega} u^{s+1} \, dx \right)^{\frac{p(s+l)-q(s-1)}{(s+1)(p-q)}} ,
\]

where \(\varepsilon \in \left(0, s \mu^{-1} \left(\frac{p}{p+1+s} \right)^{p-q} \right) \). Substituting (2.2) into (2.1) leads to

\[
\frac{d}{dt} \int_{\Omega} u^{s+1} \, dx + \Lambda_1 \int_{\Omega} \left| \nabla u^{\frac{p-1+s}{p}} \right|^p \, dx \leq \Lambda_2 \left(\int_{\Omega} u^{s+1} \, dx \right)^{\frac{q-1}{p(s+l)-q(s-1)}} \left(\int_{\Omega} \left| \nabla u^{\frac{p-1+s}{p}} \right|^p \, dx \right)^{\frac{p(s+l)-q(s-1)}{(s+1)(p-q)}} , \tag{2.3}
\]

where

\[
\Lambda_1 = (s+1) \left(\frac{p}{p-1+s} \right)^q \left[\frac{p}{p-1+s} \right]^{p-q} - \mu \varepsilon \]

and

\[
\Lambda_2 = (s+1) \mu C(\varepsilon) \left(\frac{p}{p-1+s} \right)^q |\Omega|^{\frac{q-1}{p(s+l)-q(s-1)}} \left(\frac{p(s+l)-q(s-1)}{(s+1)(p-q)} \right).
\]

Now, we will divide the proof of Theorem 1.2 into three cases according to the ranges of \(N \) and \(p \).

1. \(N \geq 2 \) and \(1 < p < \frac{2N}{N+2} \). For this case, choosing \(s = \frac{N(2-p)-p}{p} > 1 \) in (2.3), then by Sobolev embedding inequality, it holds that

\[
\left(\int_{\Omega} u^{s+1} \, dx \right)^{\frac{p-1+s}{pN(N-1)}} = \left(\int_{\Omega} \frac{N(p-1+s)}{N-p} \, dx \right)^{\frac{N-p}{pN(N-1)}} \leq \kappa \left(\int_{\Omega} \left| \nabla u^{\frac{p-1+s}{p}} \right|^p \, dx \right)^{\frac{1}{p}},
\]

that is,

\[
\kappa^{-1} \left(\int_{\Omega} u^{s+1} \, dx \right)^{\frac{p-1+s}{pN(N-1)}} \leq \int_{\Omega} \left| \nabla u^{\frac{p-1+s}{p}} \right|^p \, dx,
\]

\[
(2.4)
\]
where \(\kappa_i \) is the embedding constant, depending only on \(p \) and \(N \). Combining (2.3) with (2.4) yields

\[
\frac{d}{dt} \int_{\Omega} u^{s+1} dx + \Lambda_1 \left(\int_{\Omega} u^{s+1} dx \right)^{\frac{p-1+s}{s+1}} \leq \Lambda_2 \left(\int_{\Omega} u^{s+1} dx \right)^{\frac{p-(1-p)}{s+1}},
\]

in other words,

\[
\frac{d}{dt} \int_{\Omega} u^{s+1} dx \leq \left(\int_{\Omega} u^{s+1} dx \right)^{\frac{p-1+s}{s+1}} \left[\Lambda_2 \left(\int_{\Omega} u^{s+1} dx \right)^{\frac{p-(1-p)}{s+1}} - \Lambda_3 \right],
\]

where \(\Lambda_3 = \Lambda_2 \kappa_1^p \). Noting that \(q + l > p - 1 \), one can take \(u_0 \) so small that

\[
\left(\int_{\Omega} u_0^{s+1} dx \right)^{\frac{p-(1-p)}{s+1}} < \Lambda_2^{-1} \Lambda_3.
\]

Then from (2.5), it follows that

\[
\frac{d}{dt} \int_{\Omega} u^{s+1} dx \leq -\Lambda_4 \left(\int_{\Omega} u^{s+1} dx \right)^{\frac{p-1+s}{s+1}},
\]

here

\[
\Lambda_4 = \Lambda_3 - \Lambda_2 \left(\int_{\Omega} u^{s+1} dx \right)^{\frac{p-(1-p)}{s+1}} > 0.
\]

Integrating both sides of (2.6) with respect to the time variable from 0 to \(t \), one can conclude that

\[
\left(\int_{\Omega} u^{s+1} dx \right)^{\frac{2-p}{s+1}} \leq \left(\int_{\Omega} u_0^{s+1} dx \right)^{\frac{2-p}{s+1}} - \frac{(2-p)\Lambda_4}{s+1} t,
\]

namely,

\[
\|u\|_{\frac{N(p-2-p)}{p}} \leq \|u_0\|_{\frac{N(p-2-p)}{p}} \left[1 - \frac{p\Lambda_4}{N\|u_0\|^{\frac{2-p}{N(p-2-p)}}} t \right]^{\frac{1}{2-p}},
\]

which means that \(u(x, t) \) vanishes in finite time

\[
T_1 = N(p\Lambda_4)^{-1}\|u_0\|^{\frac{2-p}{N(p-2-p)}}.
\]

(II) \(N \geq 2 \) and \(\frac{2N}{N+2} \leq p < 2 \). For this case, taking \(s = 1 \) in (2.3), then (2.3) becomes

\[
\frac{d}{dt} \int_{\Omega} u^2 dx + \Lambda_1 \int_{\Omega} |\nabla u|^p dx \leq \Lambda_2 \left(\int_{\Omega} u^2 dx \right)^{\frac{p-(1-p)}{p}}.
\]

On the other hand, Hölder's inequality and Sobolev embedding inequality lead us to the following estimate:

\[
\int_{\Omega} u^2 dx \leq |\Omega|^{1-\frac{2N(p-2-p)}{p(N-2-p)}} \left(\int_{\Omega} \frac{\mathbf{K}_p}{u^{N(p-2-p)}} dx \right)^{\frac{2N(p-2-p)}{p}} \leq \kappa_2 |\Omega|^{1-\frac{2N(p-2-p)}{p}} \left(\int_{\Omega} |\nabla u|^p dx \right)^{\frac{2}{p}},
\]
which suggests that

\[
\left(\kappa_2 |\Omega|^{1-\frac{2(N-p)}{np}} \right)^{\frac{p}{2}} \int_{\Omega} u^2 \, dx \leq \int_{\Omega} |\nabla u|^p \, dx,
\]

(2.10)

where \(\kappa_2 \) is the embedding constant, depending only on \(p \) and \(N \). Inserting (2.10) into (2.9), one has

\[
\frac{d}{dt} \int_{\Omega} u^2 \, dx + A_3 \left(\int_{\Omega} u^2 \, dx \right)^{\frac{p}{2}} \leq A_3 \left(\int_{\Omega} u^2 \, dx \right)^{\frac{p}{2}} - A_5,
\]

which is equivalent to

\[
\frac{d}{dt} \int_{\Omega} u^2 \, dx \leq A_3 \left(\int_{\Omega} u^2 \, dx \right)^{\frac{p}{2}} - A_5,
\]

(2.11)

where

\[
A_5 = A_3 \left(\kappa_2 |\Omega|^{1-\frac{2(N-p)}{np}} \right)^{\frac{p}{2}}.
\]

By taking \(u_0(x) \) so small that

\[
\left(\int_{\Omega} u_0^2 \, dx \right)^{\frac{p}{2}} \leq A_2 A_3^{-1},
\]

then from (2.11), it follows that

\[
\frac{d}{dt} \int_{\Omega} u^2 \, dx \leq \Lambda_6 \left(\int_{\Omega} u^2 \, dx \right)^{\frac{p}{2}},
\]

(2.12)

where

\[
\Lambda_6 = A_5 - A_3 \left(\int_{\Omega} u_0^2 \, dx \right)^{\frac{p}{2}} > 0.
\]

(2.13)

Integrating both sides of (2.12) with respect to the time variable on \((0, t)\), one arrives at

\[
\left(\int_{\Omega} u^2 \, dx \right)^{\frac{2-p}{2}} \leq \left(\int_{\Omega} u_0^2 \, dx \right)^{\frac{2-p}{2}} - \frac{(2-p)\Lambda_6 t}{2},
\]

that is,

\[
\|u\|_2 \leq \|u_0\|_2 \left[1 - \frac{(2-p)\Lambda_6}{2 \|u_0\|_2^{2-p}} t \right]^{\frac{1}{2-p}},
\]

which suggests that \(u(x, t) \) vanishes in finite time

\[
T_2 = 2(2-p)\Lambda_6^{-1}\|u_0\|_2^{2-p}.
\]

(2.14)
(III) $N = 1$ and $1 < p < 2$. Since $1 < p < 2$, there exists an embedding constant κ_3 such that

$$
\left(\int_{\Omega} u^2 dx \right)^{\frac{1}{2}} \leq \kappa_3 \left(\int_{\Omega} |\nabla u|^p dx \right)^{\frac{1}{p}},
$$

namely,

$$
\kappa_3^p \left(\int_{\Omega} u^2 dx \right) \leq \int_{\Omega} |\nabla u|^p dx.
$$

(2.15)

With the help of (2.9) and (2.15), one observes

$$
\frac{d}{dt} \int_{\Omega} u^2 dx \leq \left(\int_{\Omega} u^2 dx \right)^{\frac{p}{2}} \left[\Lambda_2 \left(\int_{\Omega} u^2 dx \right)^{\frac{p|1-(p-1)|}{2p-4}} - \Lambda_3 \kappa_3^p \right].
$$

(2.16)

By choosing $u_0(x)$ so small that

$$
\left(\int_{\Omega} u_0^2 dx \right)^{\frac{p|1-(p-1)|}{2p-4}} \leq \Lambda_4 \kappa_3^p,
$$

then it follows from (2.16) that

$$
\frac{d}{dt} \int_{\Omega} u^2 dx \leq -\Lambda_7 \left(\int_{\Omega} u^2 dx \right)^{\frac{p}{2}},
$$

(2.17)

where

$$
\Lambda_7 = \Lambda_4 \kappa_3^p - \Lambda_2 \left(\int_{\Omega} u_0^2 dx \right)^{\frac{p|1-(p-1)|}{2p-4}} > 0.
$$

(2.18)

Integrating (2.17), we arrive at the following inequality:

$$
\left(\int_{\Omega} u^2 dx \right)^{\frac{2-p}{2}} \leq \left(\int_{\Omega} u_0^2 dx \right)^{\frac{2-p}{2}} - \frac{(2-p)\Lambda_7}{2} t.
$$

This means that

$$
\|u\|_2 \leq \|u_0\|_2 \left[1 - \left(\frac{(2-p)\Lambda_7}{2 \|u_0\|_2^{2-p}} \right)^{\frac{1}{2-p}} \right]^{\frac{1}{2-p}},
$$

which implies that $u(x, t)$ vanishes in finite time

$$
T_3 = \mathcal{Z}(2-p)\Lambda_7^{-1} \|u_0\|_2^{\frac{2}{2-p}}.
$$

(2.19)

The proof of Theorem 1.2 is complete. □
Proof of Theorem 1.3. Before starting the proof of Theorem 1.3, let λ_1 be the first eigenvalue and $\psi(x)$ be the corresponding eigenfunction of the following problem

$$
\begin{aligned}
-\text{div}(\nabla U|U|^{p-2}\nabla U) &= \lambda U |U|^{p-2}, \quad x \in \Omega, \\
U(x) &= 0, \quad x \in \partial \Omega.
\end{aligned}
$$

(2.20)

In what follows, we assume that $\psi(x) > 0$. In addition, we normalize $\psi(x)$ in L^∞ norm, namely, $\max_{x \in \Omega} |\psi(x)| = 1$. Let us define a function $f(t)$ for $t \geq 0$ by

$$
f(t) = d \frac{1}{p-1-t} \left(1 - e^{-ct} \right)^{\frac{q+1}{q}},
$$

where $d \in (0, 1)$ and $c \in \left(0, \frac{(p-1)-(q+1)}{d^{q+1}}\right)$. Then it is easily seen that

$$
f(0) = 0 \quad \text{and} \quad f(t) \in (0, 1) \quad \text{for} \quad t > 0.
$$

By virtue of

$$(1 - \alpha)^{\beta} + a \beta < 1, \quad \text{for} \; \alpha, \beta \in (0, 1),$$

it holds that

$$
f'(t) + \frac{1}{d} f^{p-1}(t) - f^{q+1}(t) < 0.
$$

(2.22)

Let

$$
\mathcal{V}(x, t) = f(t) \psi(x).
$$

It remains to prove that $\mathcal{V}(x, t)$ is a non-extinction weak sub-solution of problem (1.1). By a series of straightforward computations, noting that (2.22) and the definition of $\psi(x)$, it holds that

$$
I := \int_0^t \int_\Omega \left[\psi_{x_1} + |\nabla \psi|^{p-2} \nabla \psi_{x_1} \cdot \nabla \psi - \mu f^{p-1}(t) |\nabla \psi|^q \right] \psi dx ds
$$

$$
= \int_0^t \int_\Omega \left[f(s) \psi(x) - \mu f^{q+1}(s) |\nabla \psi|^q + \lambda f^{p-1}(s) \psi_{x_1} \psi_{x_1} \right] \psi(x, s) dx ds
$$

$$
\leq \int_0^t \int_\Omega \left[f^{q+1} - \frac{1}{d} f^{p-1} \right] \psi - \mu f^{q+1} |\nabla \psi|^q + \lambda f^{p-1} \psi_{x_1} \psi_{x_1} \right] \psi dx ds
$$

$$
< \int_0^t \int_\Omega f^{q+1} \psi + \lambda f^{p-1} \psi_{x_1} \psi_{x_1} \psi_{x_1} - \mu f^{q+1} |\nabla \psi|^q \right] \psi dx ds
$$

$$
< \int_0^t \sup_{x \in \Omega} \psi dx \int_\Omega \left[1 + \lambda f^{p-1} \psi_{x_1} \psi_{x_1} \psi_{x_1} \right] dx.
$$

If

$$
\mu > (\lambda_1 + 1) |\Omega| \left(q^{-1}(q+1) \left\| \nabla \psi \right\|_{L^q}^{q+1} \right),
$$

then one can immediately claim that $I < 0$, which suggests that $\mathcal{V}(x, t)$ is a strict non-extinction weak sub-solution of problem (1.1).

On the other hand, one can prove that $\mathcal{V}(x, t) = K \geq \max \{1, \|u_0(x)\|_{L^\infty}\}$ is a non-extinction supersolution of problem (1.1), and $\mathcal{V}(x, t) \leq \mathcal{V}(x, t)$. Therefore, by an iteration process, one can conclude that there is at least a non-extinction solution $u(x, t)$ of problem (1.1), which satisfies $\mathcal{V}(x, t) \leq u(x, t) \leq \mathcal{V}(x, t)$. The proof of Theorem 1.3 is complete. \qed
Proof of Theorem 1.4.

(1) For $N \geq 2$ and $1 < p < \frac{2N}{N+2}$. From (2.5) it follows that

$$\frac{d}{dt} \int_{\Omega} u^{s+1} dx \leq -\Lambda_8 \left(\int_{\Omega} u^{s+1} dx \right)^{\frac{p-1}{N+p}},$$

where

$$\Lambda_8 = \Lambda_3 - \Lambda_2,$$

and Λ_8 is greater than zero if one takes

$$\mu \in \left(0, \left[\frac{\sqrt{p} - p}{p} \right]^\frac{1}{2-p} - \frac{p\Lambda_8}{N\|u_0\|_{L^p(N^{\frac{p}{p-2}})}} \right].$$

Integrating both sides of (2.23) with respect to the time variable from 0 to t, one arrives at

$$\|u\|_{L^\frac{2}{p-q}} \leq \|u_0\|_{L^\frac{2}{p-q}} \left[1 - \frac{p\Lambda_8}{N\|u_0\|_{L^p(N^{\frac{p}{p-2}})}} \right]^{\frac{1}{2-p}} t,$$

which suggests that $u(x, t)$ vanishes in finite time

$$T_5 = N(p\Lambda_8)^{-1}\|u_0\|_{L^p(N^{\frac{p}{p-2}})}^{-2-p}.$$
where
\[
\Lambda_0 = \Lambda_0 \kappa_3^p - \Lambda_2
\] (2.30)
is a positive constant if one takes
\[
\mu \in \left(0, \left(\varepsilon + C(\varepsilon) \kappa_p^p |\Omega|^{-\frac{2(p-q)}{2(p-q)-p(h+1)}}\right)^{-1}\right).
\]
Integrating (2.29), one can conclude that
\[
\|u\|_2 \leq \|u_0\|_2 \left[1 - \frac{(2 - p)\Lambda_0 t}{2 \|u_0\|_2^{2-p}}\right]^{\frac{1}{2-p}},
\]
which suggests that \(u(x, t)\) vanishes in finite time
\[
T_0 = 2((2 - p)\Lambda_0)^{-1}\|u_0\|_2^{2-p}.
\] (2.31)

(2) Let
\[
\mathcal{V}(x, t) = [(1 - q - \lambda t)^{\frac{1}{p-1}} - \lambda t]^{q-1} \psi(x).
\]
Then using the similar manners to the proof of Theorem 1.3, one can easily check that \(\mathcal{V}(x, t)\) is a strict non-extinction weak sub-solution of problem (1.1) provided that
\[
\mu > (\lambda_1 + 1)|\Omega|\|\psi\|_q^{q-1}.
\]
On the other hand, \(\mathcal{V}(x, t) = \lambda e^t\) with \(\lambda > \max\{1, \|u_0(x)\|_{L^\infty}\}\) is a non-extinction super-solution of problem (1.1) and \(\mathcal{V}(x, t) \leq \mathcal{V}(x, \ell)\). Therefore, one can show that problem (1.1) admits at least one non-extinction solution \(u(x, t)\), which satisfies \(\mathcal{V}(x, t) \leq u(x, t) \leq \mathcal{V}(x, t)\).

The proof of Theorem 1.4 is complete.

\section{3 Conclusion}

In the present article, we mainly concern with the critical extinction exponent of the weak solution to a fast diffusive \(p\)-Laplacian equation with a nonlinear reaction term \(\mu u^l |\nabla u|^q\). By using the integral norm estimate method and super-solution and sub-solution methods, the conditions on the occurrence of the extinction phenomenon of the weak solution are given. We complete classifying the extinction and non-extinction phenomenon of the weak solution by the exponent \(p = q + l + 1\). Properly speaking, we prove that if \(p - 1 < q + l\), the weak solution of problem (1.1) will vanish in finite time for appropriate small initial data, while if \(q + l < p - 1\), problem (1.1) admits at least one non-extinction weak solution for any nonzero nonnegative initial data. When \(q + l = p - 1\), the size of the parameter \(\mu\) plays a crucial role in the occurrence of the extinction phenomenon. To sum up, the present study is a natural extension result of the previous ones in [7,30,31,33,34], where the reaction term is just a power function of \(u\) or \(|\nabla u|\).

Our future work includes the following two aspects:
(1) The extinction behaviors of the weak solutions to some classes of inhomogeneous parabolic problems.
(2) The study of the numerical extinction phenomena of the weak solution to some kinds of parabolic equations like (1.1).

\textbf{Acknowledgments:} The authors are sincerely grateful to the anonymous referees for their valuable comments and suggestions, which greatly improved the quality of this paper.
Funding information: This work was supported by the Hunan Provincial Natural Science Foundation of China (No. 2019J50160).

Conflict of interest: The authors state no conflict of interest.

References

[1] E. DiBenedetto, Degenerate Parabolic Equations, Springer, New York, 1993.
[2] D. M. Liu and C. L. Mu, Cauchy problem for a doubly degenerate parabolic equation with inhomogeneous source and measure data, Differ. Integral Equ. 27 (2014), no. 11–12, 1001–1012.
[3] D. M. Liu, C. L. Mu, and I. Ahmed, Blow-up for a semilinear parabolic equation with nonlinear memory and nonlocal nonlinear boundary, Taiwanese J. Math. 17 (2013), no. 4, 1353–1370, DOI: https://doi.org/10.11650/tjm.17.2013.2648.
[4] F. Kamache, R. Guefaifia, and S. Boulaaras, Existence of three solutions for perturbed nonlinear fractional p-Laplacian boundary value systems with two control parameters, J. Pseudo-Differ. Oper. Appl. 11 (2020), no. 4, 1781–1803, DOI: https://doi.org/10.1007/s11868-020-00354-y.
[5] S. Boulaaras, Y. Bouizem, and R. Guefaifia, Further results of existence of positive solutions of elliptic Kirchhoff equation with general nonlinearities of source terms, Math. Methods Appl. Sci. 43 (2020), no. 15, 9195–9205, DOI: https://doi.org/10.1002/mma.6613.
[6] R. Guefaifia, S. Boulaaras, J. B. Zuo, and P. Agarwal, Existence and multiplicity of positive weak solutions for a new class of (P, Q)-Laplacian systems, Miskolc Math. Notes 21 (2020), no. 2, 861–872, DOI: https://doi.org/10.18514/MMN.2020.3378.
[7] Y. Tian and C. L. Mu, Extinction and non-extinction for a p-Laplacian equation with nonlinear source, Nonlinear Anal. 69 (2008), no. 8, 2422–2431, DOI: https://doi.org/10.1016/j.na.2007.08.021.
[8] P. Zheng and C. L. Mu, Extinction and decay estimates of solutions for a polytropic filtration equation with the nonlocal source and interior absorption, Math. Methods Appl. Sci. 36 (2013), no. 6, 730–743, DOI: https://doi.org/10.1002/mma.2630.
[9] B. H. Gilding, The Cauchy problem for \(u_t = \Delta u + |u|^p \), 84 (2005), no. 6, 753–785, DOI: https://doi.org/10.1016/j.matpur.2004.11.003.
[10] M. Kardar, G. Parisi, and Y. C. Zhang, Dynamic scaling of growing interfaces, Phys. Rev. Lett. 56 (1986), no. 9, 889–892, DOI: https://doi.org/10.1103/PhysRevLett.56.889.
[11] S. Benachour, Ph. Laurençot, and D. Schmitt, Extinction and decay estimates for viscous Hamilton-Jacobi equation in \(\mathbb{R}^d \), Proc. Amer. Math. Soc. 130 (2002), no. 4, 1103–1111, DOI: https://doi.org/10.1090/S0002-9939-01-06140-8.
[12] S. Benachour, Ph. Laurençot, D. Schmitt, and Ph. Souplet, Extinction and non-extinction for viscous Hamilton-Jacobi equation in \(\mathbb{R}^d \), Asym. Anal. 31 (2002), no. 3–4, 229–246.
[13] X. M. Deng and J. Zhou, Global existence, extinction, and non-extinction of solutions to a fast diffusion p-Laplace evolution equation with singular potential, J. Dyn. Control Syst. 26 (2020), no. 3, 509–523, DOI: https://doi.org/10.1007/s10883-019-09462-5.
[14] X. M. Deng and J. Zhou, Extinction and non-extinction of solutions to a fast diffusion p-Laplace equation with logarithmic nonlinearity, J. Dyn. Control Syst. (2021), DOI: https://doi.org/10.1007/s10883-021-09548-z.
[15] Z. B. Fang and X. H. Xu, Extinction behavior of solutions for the p-Laplacian equations with nonlocal sources, Nonlinear Anal. Real World Appl. 13 (2012), no. 4, 1780–1789, DOI: https://doi.org/10.1016/j.nonwa.2011.12.008.
[16] J. S. Guo and C. C. Wu, On the dead-core problem for the p-Laplace equation with a strong absorption, Tohoku Math. J. 67 (2015), no. 4, 541–551, DOI: https://doi.org/10.2748/tmj/1450798072.
[17] C. H. Jin, J. X. Yin, and Y. Y. Ke, Critical extinction and blow-up exponents for fast diffusive polytropic filtration equation with sources, Proc. Edinb. Math. Soc. 52 (2009), no. 2, 419–444, DOI: https://doi.org/10.1017/S0013091507000399.
[18] D. M. Liu and C. Y. Liu, Global existence and extinction singularity for a fast diffusive polytropic filtration equation with variable coefficient, Math. Probl. Eng. 2021 (2021), 5577777, DOI: https://doi.org/10.1155/2021/5577777.
[19] D. M. Liu and C. L. Mu, Critical extinction exponent for a doubly degenerate non-divergent parabolic equation with a gradient source, Appl. Anal. 97 (2018), no. 12, 2132–2141, DOI: https://doi.org/10.1080/00036811.2017.1359557.
[20] D. M. Liu and L. Yang, Extinction phenomenon and decay estimate for a quasilinear parabolic equation with a nonlinear source, Adv. Math. Phys. 2021 (2021), 5569043, DOI: https://doi.org/10.1155/2021/5569043.
[21] C. L. Mu, L. Yan, and Y. B. Xiao, Extinction and nonextinction for the fast diffusion equation, Abstr. Appl. Anal. 2013 (2013), 747613, DOI: https://doi.org/10.1155/2013/747613.
[22] P. Souplet, Gradient blow-up for multidimensional nonlinear parabolic equations with general boundary conditions, Differ. Integr. Equ. 15 (2002), no. 2, 237–256.
23] Y. F. Wang and J. X. Yin, *Critical extinction exponents for a polytropic filtration equation with absorption and source*, Math. Methods Appl. Sci. **36** (2013), no. 12, 1591–1597, DOI: https://doi.org/10.1002/mma.2708.

24] X. H. Xu and T. Z. Cheng, *Extinction for a p-Laplacian equation with gradient source and nonlinear boundary condition*, Appl. Anal. (2021), DOI: https://doi.org/10.1080/00036811.2021.1889521.

25] J. Zhou and C. L. Mu, *Critical blow-up and extinction exponents for non-Newton polytropic filtration equation with source*, Bull. Korean Math. Soc. **46** (2009), no. 6, 1159–1173, DOI: https://doi.org/10.4134/BKMS.2009.46.6.1159.

26] Z. Chaoui and A. El Hachimi, *Qualitative properties of weak solutions for p-Laplacian equations with nonlocal source and gradient absorption*, Bull. Korean Math. Soc. **57** (2020), no. 4, 1003–1031, DOI: https://doi.org/10.4134/BKMS.b190720.

27] D. Giachetti and G. Maroscia, *Existence results for a class of porous medium type equations with a quadratic gradient term*, J. Evol. Equ. **8** (2008), no. 1, 155–188, DOI: https://doi.org/10.1007/s00028-007-0362-3.

28] H. F. Shang, *Doubly nonlinear parabolic equations with measure data*, Ann. Mat. Pura Appl. **192** (2013), no. 2, 273–296, DOI: https://doi.org/10.1007/s10231-011-0223-0.

29] H. J. Yuan, S. Z. Lian, W. J. Gao, X. J. Xu, and C. L. Cao, *Extinction and positive for the evolution p-Laplacian equation in \mathbb{R}^N*, Nonlinear Anal. **60** (2005), no. 6, 1085–1091, DOI: https://doi.org/10.1016/j.na.2004.10.009.

30] W. J. Liu and B. Wu, *A note on extinction for fast diffusive p-Laplacian with sources*, Math. Methods Appl. Sci. **31** (2008), no. 12, 1383–1386, DOI: https://doi.org/10.1002/mma.976.

31] J. X. Yin and C. H. Jin, *Critical extinction and blow-up exponents for fast diffusive p-Laplacian with sources*, Math. Meth. Appl. Sci. **30** (2007), no. 10, 1147–1167, DOI: https://doi.org/10.1002/mma.833.

32] R. G. Iagar and Ph. Laurençot, *Positivity, decay, and extinction for a singular diffusion equation with gradient absorption*, J. Funct. Anal. **262** (2012), no. 7, 3186–3239, DOI: https://doi.org/10.1016/j.jfa.2012.01.013.

33] D. M. Liu and C. L. Mu, *Extinction for a quasilinear parabolic equation with a nonlinear gradient source*, Taiwanese J. Math. **18** (2014), no. 5, 1329–1343, DOI: https://doi.org/10.11650/tjm.18.2014.3863.

34] D. M. Liu and C. L. Mu, *Extinction for a quasilinear parabolic equation with a nonlinear gradient source and absorption*, J. Appl. Anal. Comput. **5** (2015), no. 1, 114–137, DOI: https://doi.org/10.11948/2015010.