Chloroplast genome structure and phylogenetic analysis of Glycosmis parviflora (Sims) Little 1948, a folk medicinal plant featured in Lingnan Region, China

Aimin Chen, Fang Li, Xuena Xie, Rong Huang, Enwei Tian and Zhi Chao

ABSTRACT
Glycosmis parviflora is the most widely spread and the most morphologically varied species of Chinese Glycosmis, and its roots and leaves serve as folk medicines. We sequenced the complete chloroplast (cp) genome of G. parviflora. The cp genome obtained was a circular DNA molecule of 159,825 bp in length, containing one large and one small single copy region (LSC and SSC) of 87,517 and 18,352 bp separated by a pair of 26,978 bp inverted repeat regions (IRs). The overall GC content of the cp genome was 38.4%. The phylogenetic analysis revealed that Glycosmis was strongly supported as a monophyletic group belonging to Clauseneae, and G. parviflora was closely related to G. pentaphylia. The results will provide the basis for the further study of molecular markers and phylogeny of G. parviflora.
overall chloroplast genome, IR regions, LSC and SCC are 38.40, 42.9, 36.7, 32.9%, respectively.

In order to gain insight into its phylogenetic position, a phylogenetic analysis was performed using the complete cp genomes of *G. parviflora* and other 19 species of Rutaceae. The cp genomes of the 19 species were downloaded from GenBank (species names and accession numbers shown in Figure 1). All the cp genomes were aligned with MAFFT (Rozewicki et al. 2019), and then edited manually by MEGA X (Kumar et al. 2018). The maximum likelihood (ML) tree was inferred in RAxML (Stamatakis 2014) with the best fitting substitution model (GTR + F + R2) determined by the Akaike information criteria (AIC). The bootstrap support was calculated with 1000 replications.

In the phylogenetic tree with *Phellodendron chinense* as an outgroup species, two clades were clearly recognized, which corresponded to Clauseneae and Aurantieae respectively. *Glycosmis* was a strongly supported monophyletic group (PP = 100) in Clauseneae, and was the sister group to *Micromelum*. *G. parviflora* was closely related to *G. pentaphylla* (Figure 1).

Author contributions

Z C conceived the study, reviewed and revised the drafts of the paper. AM C analyzed data, wrote and revised the manuscript. F L performed the genome assembly and annotation. XN X conducted the molecular experiments, and assisted with data analysis. RH assisted in manuscript revision. EW T collected plant materials and assisted with the molecular experiments. All authors read and approved the final manuscript.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Funding

This research was partly supported by National Natural Science Foundation of China [Grant No. 81373905], and Guangdong Natural Science Foundation [Grant No. 2014A030313321].

Data availability statement

The genome sequence data that support the findings of this study are openly available in GenBank of NCBI at https://www.ncbi.nlm.nih.gov/ under the accession no. MW714375. The associated BioProject, SRA, and Bio-Sample numbers are PRJNA820442, SRX14636471, and SAMN27006371, respectively.

References

Jin JJ, Yu WB, Yang JB, Song Y, dePamphilis CW, Yi TS, Li DZ. 2020. GetOrganelle: a fast and versatile toolkit for accurate de novo assembly of organelle genomes. Genome Biol. 21(1):241.
Knöller HJ, Reddy KR. 2008. Biological and pharmacological activities of carbazole alkaloids. Alkaloids - Chem Biol. 65:181–193.
Kumar S, Stecher G, Li M, Knyaz C, Tamura K. 2018. MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol. 35(6):1547–1549.
Mou FJ, Ma SZ, Xu QH, Zhang DX. 2012. Floral morphology and anatomy of Glycosmis (Rutaceae) in China and their systematic implications. J. Plant Sci. 30(4):327–336.
Qu XJ, Moore MJ, Li DZ, Yi TS. 2019. PGA: a software package for rapid, accurate, and flexible batch annotation of plastomes. Plant Methods. 15:50.
Rozewicki J, Li S, Amada KM, Standley DM, Katoh K. 2019. MAFFT-DASH: integrated protein sequence and structural alignment. Nucleic Acids Res. 47(W1):W5–W10.
Stamatakis A. 2014. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics. 30(9):1312–1313.
Teja PK, Patel P, Bhavsar D, Bindusri C, Jadhav K, Chauthe SK. 2021. Traditional uses, phytochemistry, pharmacology, toxicology and formulation aspects of Glycosmis species: a systematic review. Phytochemistry. 190:112865.
Tillich M, Lehwark P, Pellizzer T, Ulbricht-Jones ES, Fischer A, Bock R, Greiner S. 2017. GeSeq - versatile and accurate annotation of organelle genomes. Nucleic Acids Res. 45(W1):W6–W11.
Wang GQ. 2014. Nationwide compilation of traditional and folk medicinal materials. 3rd ed. Vol. 2. Beijing: People’s Medical Publishing House; p. 132.
Yang JB, Li DZ, Li HT. 2014. Highly effective sequencing whole chloroplast genomes of angiosperms by nine novel universal primer pairs. Mol Ecol Resour. 14(5):1024–1031.
Zhang DX, Hartley TG. 2008. GLYCOSMIS. In Flora of China. Vol. 11. St. Louis (MO): Missouri Botanical Garden Press; p. 80–83.