The Organizational Factors that Influence the Adoption of Problem Solving Tools in Malaysia Small and Medium Enterprises

Rong Quan Low¹, Ahmad Suhaimi Baharudin² and Seng Chee Lim³

¹SEGI College Penang, 10200, Penang; lowrongquan@gmail.com
²,³Universiti Sains Malaysia, 11700, Penang; asuhaimi@cs.usm.my, limcopy@gmail.com

Abstract

Background/Objectives: The adoption level of the Problem Solving Tools is reported to be low in the Malaysia Small and Medium Enterprises. Hence the main objective of this research is to identify the Organizational Factors that influence the adoption level. Methods/Statistical Analysis: The questionnaires are sent to the selected respondents which were selected through the random sampling technique. 1000 questionnaires are sent out through post service. The result then uses the Discriminant Analysis technique to analyze the result where the SPSS 19 software was used. Findings: In the end of the research period, 141 respondents returned the questionnaires. The respond rate is about 14.1%. The 141 was then analyzed using the Discriminant Analysis. The results had shown that both organizational factors are having significant values where the significance level of the factors is lower than 0.05. This shown that the factors are discriminating the high level and low level of adoption of Problem Solving Tools successfully. It is also reported that the accuracy level is 75.2% which is high. The result of the research could recommend the managers of the Small and Medium Enterprises to actually provide more resources and also could adopt the Tailor-Made Problem Solving Tools where they could custom made their own tools by combining parts from other tools. This will increase the adoption level of the tools as they are more familiar and also the cost will be lower. Applications/Improvements: Future research could use survey on the other factors of the TOE model.

Keywords: Discriminant Analysis, Manufacturing, Problem Solving, Problem Solving Tools, SME

1. Introduction

In this competitive business market, many companies are struggling to survive and stay ahead from other competitors and organizations¹. The competitive level of an organization no matter Multi-National Companies (MNC) or Small and Medium Enterprises (SME) will decide the organizations’ future. This situation is more difficult to the SMEs which is having limited resources and limited financial support². In Malaysia, SMEs serve as the backbone of the economy as 97.3% of the economy and businesses established are from SMEs and among them is Manufacturing Sector of SMEs which has 5.9% ⁴. Manufacturing SMEs played an important role as they provide high GDP for the country and the products produced are representing the country’s reputation. However, Daily problems such as Human Resources Problems, Defective Products, and Reoccur of Problems will lower down the product’s quality and slowly damaging the company’s reputation and in the end leading them to bankruptcy.

Hence, in order to help SMEs to solve their problems more effectively, Problem Solving Tools are introduced to them. Problem Solving Tools such as Six Sigma, PDCA, TRIZ and 5 whys are good tools that help companies to solve their problems effectively. This is because the SMEs are only solving their problems at the surface area hence the problem solving tools will provide a series of
guidelines to solve the problems from the root cause and prevent the problems from reoccur5,6.

However, due to the resources constraint, Manufacturing SMEs are not adopting the tools successfully and it is in Low Level2,3,7,8. Hence this research will discuss about the factors that influence the adoption level of Problem Solving Tools in Manufacturing SMES in Malaysia.

\section*{2. Technology, Organization and External Environmental (TOE)}

The research framework was developed by Tornatzky and Fleischer in year 1990 where this framework was widely used in the research of organizations9. This framework also is widely used in research for investigating and identifying the factors that influence the adoption of new technologies and innovations1,10.

The TOE model consists of 3 main factors which are the Technological Factors, Organizational Factors and External Environmental Factors. The Technological Factors discusses about the external and internal technologies which is regarding the adoption of the new technologies and innovations11,9, mentioned that the decision to adopt new innovations and adoptions will rely on the availability of the innovations and how the innovations will suit the organization's processes. On the other hand, Organizational Factors will discuss about the field and resources which the organization possesses when adopting the new technologies8. It is also said that if the organizations possessed with extra resources such as financial and human resources hence the adoption level will increase8,9.

External Environmental Factors is the last factors of TOE model. The factors discuss about the field and platform where the organizations are operating9. Some of the important factors are competitors, customers, government and dealers5,12. In this research, Organizational Factors are further discuss on the adoption level of Problem Solving Tools in Manufacturing SMEs in Malaysia. The following chapter will discuss more about the factors.

\section*{3. Organizational Factors}

\subsection*{3.1 Organization's Resources}

In many past researches, organization's resources are reported to be essential towards the adoption level of new innovations and technologies13-15. According to12,16, the organizations which are equipped with more resources such as financial, the probabilities of them adopting the new technologies and innovations will be higher. In this research, Manufacturing SMEs did not adopt Problem Solving Tools in the higher level is because they are having insufficient of resources such as human (experts, employees) and money (trainings, maintenance). Hence the higher the resources available, the higher the adoption level. H1 = Organization's Resources are positively related to Adoption Level of Problem Solving Tools in Manufacturing SMEs in Malaysia.

\subsection*{3.2 Level of Comfortable of using the Available Problem Solving Tools}

The Level of Comfortable of Using the Available Problem Solving Tools was reported to have a negative influence on the adoption of new technologies and innovations12,13,17. Problems that occur during the current process of the innovations will lead the users to adopt new innovations and technologies12,17,18.

In this research, the Level of Comfortable of using the Available Problem Solving Tools was negatively related to the adoption level. This is because Manufacturing section of the SMEs are reluctant to use new Problem Solving Tools because they are used to the old tools as changing of the tools will adjust their level of comfort and add more burden to the employees who are using the tools19. H3 = The Level of Comfortable of using the Available Problem Solving Tools is negatively influencing the Adoption level of Problem Solving Tools in Manufacturing SMEs of Malaysia.

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{research_framework.png}
\caption{Research Framework.}
\end{figure}
4. Research Methodologies

The research was conducted using the random sampling technique. Firstly the list of Manufacturing SMEs are retrieved from the SMECORP and SMEINFO websites. After the list is retrieved, the researcher uses software to generate the respondents randomly. 1000 respondents are chosen from the list.

All the questionnaires are sent out to the selected respondents by postage service and only the higher managerial, knowledge workers and managerial positions of the organizations are targeted. This is because they are decision makers of the organizations which could be responsible for adoption of the Problem Solving Tools.

After the data collection period, a total of 141 respondents are returned which is having the response rate of 14.1%. The number of 141 was suitable for data analysis as it fulfils the requirements where it is stated the number of respondents should be 10 times bigger than the number of the variables. In this research, there are 2 variables hence only 20 respondents are required. Hence the 141 respondents are next analyzed using the SPSS 19 version and Discriminant Analysis technique.

5. Result and Analysis

The SPSS 19 version was used in the analysis process. The data was analyzed using the Discriminant Analysis technique. Discriminant Analysis is a tool use to check the relationships between grouped dependent variable with the independent variables which is continuous. In this research, the categorical dependent variables are the Low Level of Adoption of Problem Solving Tools and High Level of Adoption of Problem Solving Tools.

First of all, the ratios of the cases are tested. This step is used to determine whether the model is suitable to use Discriminant Analysis. According to, the ratio should be five to one and in this case there are two variables which are 141 and it is having ratio of 70.5 which is higher than 5. Hence it is said the model is suitable for Discriminant Analysis.

Secondly, Table 2 is the group statistic table where ‘1’ is the Low Level of Adoption of Problem Solving Tools and ‘2’ is the High Level of Adoption of Problem Solving Tools. The results shows that the two variables are having significant changes between the means hence it is said that the variables are successfully influencing the adoption of Problem Solving Tools.

Table 1. Analysis Case Processing Summary Table

Unweighted Cases	N	Percent
Valid	141	100.0
Missing or out-of-range group codes	0	.0
At least one missing discriminating variable	0	.0
Excluded		
Both missing or out-of-range group codes and at least one missing discriminating variable	0	.0
Total	141	100.0

Table 2. Group Statistics Table

Variables	High Mean	Low Mean	Significance Level
OR	4.70	3.77	0.000
CUR	5.30	4.93	0.038

Table 3. Wilks’ Lambda Table

Test of Function(s)	Wilks’ Lambda	Chi-square	df	Sig.
1	.886	16.693	2	.000

Table 4. Prior Probabilities for Groups

newd	Prior	Cases Used in Analysis	
		Unweighted	Weighted
1.00	.709	100	100.0000
2.00	.291	41	41.0000
Total	1.000	141	141.0000
The final table is the Classification Result Table. The cross validated accuracy rate is 75.2%. It is larger than the proportional by chance accuracy rate which was calculated using the formula of 73.4%. Hence finally we can say that the criteria for classification was fulfilled.

Table 5. Classification Results Table
newd Predicted Group Membership
Original Count
1.00
2.00
%
2.00
Cross-validated Count
1.00
2.00
%
2.00

a. Cross validation is done only for those cases in the analysis. In cross validation, each case is classified by the functions derived from all cases other than that case.
b. 75.9% of original grouped cases correctly classified.
c. 75.2% of cross-validated grouped cases correctly classified.

6. Discussion

According to the result stated in section 5, both the independent variables are providing significant changes between the mean values. This shows that the variables are successfully discriminating the groups in the dependent variable.

The H1 was proven as Organization’s Resources were giving a positive result where the mean values are significant. This was in line with many researches such as 14,26-28. Manufacturing SMEs who has higher resources such as human resources and financial resources will bring a better outcome to the adoption level of the Problem Solving Tools. This shows that companies who wish to adopt the tools in the future will have to first prepare the resources needed for the adoption such as number of experts, consultants, money for trainings and maintenance.

The H2 on the other hand also produced a significant value. Companies who assume that the current problem solving process is comfortable will not adopt the new tools. This result was in line with some of the important researches such as12,13. Manufacturing SMEs’ employees are reluctant to change the tools they are currently using because they will have to change the entire culture of the process and learn again something new which add to their burden. Hence companies who wanted to adopt the tools could adopt different simple tools and create their Tailor-Made Problem Solving Tools which will be not so costly and something they already familiar with. This will increase the problem solving tools adoption level.

8. Conclusion

This research focuses only on the Organizational Factors of the TOE Model; Future researchers could maybe research on the Technological and External Environmental Factors of the TOE model for the Adoption of Problem Solving Tools in Manufacturing SMEs in Malaysia. Future researchers could also explore on the adoption of Problem Solving Tools in Service Sectors as the Service Sectors are the contributing 90.1% of the number of SME businesses in Malaysia4.

This research also brought a few contributions towards the body of knowledge and practical contributions to the Manufacturing SMEs. The first contribution is on the extension of the TOE model in the context of Problem Solving Tools in Malaysia. Many past researchers did their research on problem solving tools in their own country but not in Malaysia and also in this research; Discriminant Analysis is used to analyze the data which is different from most of the researches which only use multi regression technique.

The practical contributions on the other hand has brought contributions to the SMEs as the discussion part of the research serves as a guideline and suggestions for SMEs and their managerial team to take note on which factors that they need extra care before adopting the tools.

9. Acknowledgements

The authors would like to sincerely thank the School of Computer Sciences, Universiti Sains Malaysia (USM) as this research has been supported from the Research University Grant (RUI) [Account Number: 1001/PKOMP/811251] and from the Short Term Research Grant [Account Number: 304/PKOMP/6312103] from the Universiti Sains Malaysia.
10. References

1. SMECORP Malaysia. SME Annual Report 2013/14. Malaysia; 2014.
2. Yeoh TJ, Yeoh TS. TRIZ: Systematic innovation towards factory operational efficiency. Electronic Manufacturing Technology Symposium (IEMT); 2008 33rd IEEE/CPMT International; 2008; p. 1–4.
3. Repenning NP. Understanding fire fighting in new product development. J Prod Innov Manag [Internet]. 2001;18(5):285–300. Available from: http://www.sciencedirect.com/science/article/pii/S0737678201000996
4. Hashim MK, Osman I. An Evaluation of the Business Practices in Malaysian SMEs. Malaysian Manag Rev. 2003. p. 1–8.
5. Mohd Yusof S. Total Quality Management (TQM) Advancement And Critical Success Factors For Implementation In Manufacturing Small And Medium Sized Enterprise (SMEs). 2003.
6. Ross JE, Perry S. Total Quality Management: Text and Cases Readings. 3rd ed. CRC Press; 1999. p. 568.
7. Sahran S, Zeinalnezhad M, Mukhtar M. Quality Management in Small and Medium Enterprises: Experiences from A Developing Country. Int Rev Bus Res Pap [Internet]. 2010 [cited 2013 May 16]; 6(6):164–73. Available from: http://bizresearchpapers.com/13. Shahnorbaun-FINAL.pdf
8. Tornatzky LG, Fleischer M. Processes of Technological Innovation (Issues in Organization and Management Series) [Internet]. Lexington Books; 1990 [cited 2013 Jun 10]. 298 p. Available from: http://www.amazon.com/Processes-Technological-Innovation-Organization-Management/dp/0669203483
9. Marimuthu M, Omar A, Ramayah T, Mohamad O. Readiness to Adopt E-Business Among SMEs in Malaysia: Antecedents and Consequence. Int J E-Adoption [Internet]. IGI Global; 2011; 3(3):1–19. Available from: http://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/jea.2011070101
10. Oliveira T, Martins M. Literature Review of Information Technology Adoption Models at Firm Level. Electron J Inf Syst [Internet]. 2011; 14(1):110–21. Available from: http://www.ejise.com/issue/download.html?idArticle=705
11. Starbuck WH. Organization and their environments. M. Dunnett. Chicago: Rand McNally; 1976.
12. Ungan M. Factors affecting the adoption of manufacturing best practices. Benchmarking An Int J. 2004; 11(5):504–20.
13. Chau PY, Tam K. Organizational Adoption of Open Systems: A “Technology-Push, Need-Pull” Perspective. Inf Manag. 2000; 16(1):64–73.
14. Franco M, Haase H. Failure factors in small and medium-sized enterprises: qualitative study from an attributional perspective. Int Entrep Manag J [Internet]. 2009 Oct 6; 6(4):503–21. Available from: http://www.springerlink.com/index/10.1007/s11365-009-0124-5
15. Jusoh R, Parnell J. Competitive strategy and performance measurement in the Malaysian context: An exploratory study. Manag Decis [Internet]. 2008; 46(1):5–31. Available from: http://www.emeraldinsight.com/10.1108/00251740810846716
16. Kwon TH, Zmud RW. Unifying the fragmented models of information systems implementation. New Y ork: John Wiley and Sons; 1987. p. 227–251.
17. Bogan CE, English MJ. Benchmarking for Best Practices: Winning Through Innovative Adaptation. USA: R.R. Donnelley and Sons Company; 1994. p. 297.
18. Ram S. A model of innovation resistance. Adv Consum Res. 1987;14(1):208–12.
19. Antony J, Kumar M, Madu CN. Six sigma in small- and medium-sized UK manufacturing enterprises: Some empirical observations. Int J Qual Reliab Manag [Internet]. 2005; 22(8):860–74. Available from: http://www.emeraldinsight.com/10.1108/02656710510617265
20. SMECORP Malaysia. SME Corporation Official Website [Internet]. 2012. Available from: http://www.smeCorp.gov.my
21. SMECORP Malaysia. SME Info Portal [Internet]. 2011. Available from: http://secure.smeinfo.com.my/directory/sector.php?intSectorID=1
22. Hair JF, Black WC, Babin BJ, Anderson RE. Multivariate Data Analysis: Pearson New International Edition. 7th ed. Upper Saddle River: Pearson; 2013. p. 1–738.
23. Sekaran U, Bougie R. Research Methods for Business: A Skill Building Approach. 4th ed. Wiley; 2010. p. 225–7.
24. Burns RP, Burns R. Business Research Methods and Statistics Using SPSS. London: SAGE Publications Ltd; 2009. p. 560.
25. El-Habil AM. An application on multinomial logistic regression model. Pakistan J Stat Oper Res. 2012; 8(2):271–91.
26. Kuan KK, Chau PY. A Perception-Based Model for EDI Adoption in Small Business Using A Technology-Organization-Environment Framework. Inf Manag. 2001; 38(8):507–21.
27. Jiacovou CL, Renbasat I, Dexter AS. Electronic Data Interchange and Small Organizations: Adoption and Impact of Technology. 1995;19(4):465–85.
28. Kenneth W, Rebecca MN, AEM. Factors Affecting Adoption of Electronic Commerce among Small Medium Enterprises in Kenya: Survey of Tour and Travel Firms in Nairobi. Int J Business, Humanit Technol. 2012; 2(4):76–91.
