The interplay between the disulfide bond formation pathway and cytochrome c maturation in *Escherichia coli*

Despoina A.I. Mavridou, Stuart J. Ferguson *, Julie M. Stevens *

Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, United Kingdom

A R T I C L E I N F O

Article history:
Received 22 March 2012
Revised 25 April 2012
Accepted 26 April 2012
Available online 5 May 2012

Edited by Miguel De la Rosa

A B S T R A C T

Heme attachment to c-type cytochromes in bacteria requires cysteine thiols in the CXXCH motif of the protein. The involvement of the periplasmic disulfide generation system in this process remains unclear. We undertake a systematic evaluation of the role of DsbA and DsbD in cytochrome c biogenesis in *Escherichia coli* and show unequivocally that DsbA is not essential for holocytochrome production under aerobic or anaerobic conditions. We also prove that DsbD is important but not essential for maturation of c-type cytochromes. We discuss the findings in the context of a model in which heme attachment to, and oxidation of, the apocytochrome are competing processes.

© 2012 Federation of European Biochemical Societies. Published by Elsevier B.V.

Open access under CC BY license.

1. Introduction

C-type cytochromes are proteins that contain covalently bound heme and are essential for the life of numerous organisms from all kingdoms of life. In Gram-negative bacteria the heme attachment reaction, typically to two cysteines of a CXXCH protein motif, is generally performed in the oxidizing environment of the periplasm by the cytochrome c maturation (Ccm) system consisting of eight proteins (CcmA–H) [1,2]. Oxidation of the cysteine thiols to a disulfide might reasonably be expected to prevent the heme attachment reaction, creating a chemical paradox that needs to be resolved.

The periplasmic protein DsbA is crucial for the oxidative folding of extracytoplasmic and extracellular proteins that require disulfide bonds [3] and is linked to the virulence of many pathogens [4]. The characteristics of the modified thioredoxin-like structure of DsbA [5], along with other considerations [6,7], have given insight into its strongly oxidizing properties. DsbB reoxidizes DsbA [8] and transfers electrons to the respiratory chain [9]. The presence of DsbA creates a requirement for proteins with reducing functions in the periplasm to reverse the oxidation reaction and make the apocytochrome thiol groups available for heme attachment. The pathway for reductant provision to the Ccm system as it is currently understood in *Escherichia coli*, along with DsbA and DsbB, are shown in Fig. 1.

DsbD is the sole provider of reducing power to the periplasm. Reductant is needed when incorrectly formed disulfides are inserted into proteins with more than two cysteines, and an isomerase is required, or presumably if c-type cytochrome apoproteins acquire disulfide bonds. DsbD is a three-domain protein comprising a transmembrane region with a soluble periplasmic domain at each terminus [10]. It interacts with thioredoxin in the cytoplasm and, via a disulfide cascade [11], transfers reductant to multiple periplasmic partners [12]. DsbC, a dimeric periplasmic disulfide isomerase [13] as well as TrbB, a disulfide bond thioredoxin-like isomerase involved in bacterial conjugation [14] interact with the N-terminal domain of DsbD (nDsbD). For transfer of reductant to the Ccm pathway, nDsbD interacts with the protein CcmG [15]. In the Ccm system CcmG and CcmH (Fig. 1) have been implicated in thiol-oxidoreductase functions. CcmG has a thioredoxin fold but it is not clear whether it interacts with apocytochromes directly, or via thiol–disulfide exchange with CcmH. CcmH has a pair of cysteine residues, in a three-helix bundle fold [16], though the cysteine residues are not essential for cytochrome c biogenesis under all growth conditions [17,18].

Several studies have investigated the requirement for DsbA and the involvement of DsbD in cytochrome c maturation, with different conclusions. Contrary to intuitive expectation, in *E. coli* strains lacking dsbA, the absence of endogenous cytochromes c under anaerobic conditions has been reported [19]. The absence of DsbA...
also resulted in failure to mature an exogenous mono-heme cytochrome c [20]. DsbB was found to be essential for cytochrome c biogenesis [21], consistent with its role as oxidant of DsbA. These observations were taken as an indication that the formation of disulfide bonds was an obligate step, rather than an undesirable diversion from the heme attachment reaction to apocytochromes. Also, it has been thought that the breakage of the S–S bond could provide a driving force for the formation of the thioether bonds of cytochromes to heme[22]. DsbD was shown to be absolutely essential for cytochrome c maturation in E. coli [23]. Lack of its analogue, CcdA, was also found to impair cytochrome c production in Rhodobacter capsulatus [24].

More recently, the failure of DsbA deletion strains to produce cytochromes in E. coli was found to vary according to the specific cytochrome involved. A cytochrome c from a hyperthermophile was produced at greater than wild-type levels in a ΔdsbA strain [25] and a c-type variant of cytochrome b₅₆₂ was matured under aerobic conditions abundantly and correctly despite the absence of DsbA [26]. Experiments in R. capsulatus showed that deletion of dsbA did not result in loss of c-type cytochromes [27] but that lower cytochrome c levels are matured in ΔdsbA [24]. It was also shown that in R. capsulatus and Bacillus subtilis lack of the oxidative proteins (DsdA/DsbB and BdbC/BdbD, respectively) counteracts the cytochrome c deficiency in ΔccdB strains [24,27,28]. However, in E. coli, the paradigm for study of c-type cytochrome biogenesis, such comparative studies with isogenic strains have not been done and thus there are important unresolved contradictions between the original [19–21] and more recent publications.

In this work we have sought to clarify the involvement of DsbA and DsbD in cytochrome c biogenesis by examining several endogenous and exogenous cytochromes, with both mono- and multi-heme examples. By using a full set of gene deletion strains and large culture volumes (combined with extracted periplasms being concentrated in small volumes) to ensure that even low levels of cytochrome c are detected, we assess the contribution of DsbA and DsbD, both individually and in combination, under aerobic and anaerobic conditions.

2. Materials and methods

All bacterial strains and plasmids used in this study are listed in Table 1.

2.1. Cell growth

Aerobic cell growth was conducted in 200 ml 2×TY medium (16 g l⁻¹ peptone, 10 g l⁻¹ yeast extract, 5 g l⁻¹ NaCl) in 2.5 l flasks. Cultures were inoculated from single colonies and incubated at 37 °C for 15–18 h with shaking at 200 rpm. Fully aerobic growth conditions prevented expression of the endogenous E. coli Ccm system and the Ccm operon was constitutively expressed from plasmid pEC86 [29]. 1 mM isopropyl-1-thio-β-β-galactopyranoside (IPTG) was added to the cultures from inoculation. 100 μg ml⁻¹ ampicillin, 20 μg ml⁻¹ gentamycin and 34 μg ml⁻¹ chloramphenicol were used when appropriate.

Cells were grown anaerobically, allowing the expression of the endogenous Ccm system, for 24 h in 11 bottles filled to the top with growth media at 37 °C without shaking, inoculated from overnight starter cultures (also grown at 37 °C). Growth media were prepared as described previously [30]. 10 mM nitrate (or 5 mM nitrite in the case of expression of endogenous cytochromes) was used as terminal electron acceptor. 100 μg ml⁻¹ ampicillin or...
20 μM ml⁻¹ gentamicin, were added when appropriate; for the expression of the endogenous E. coli cytochromes no antibiotics were used. Cytochrome c₅₅₀ was induced with 1 mM IPTG from inoculation and cytochrome c₁ was induced by autoinduction [31]. When needed, l-cystine (Sigma) was added to the media from inoculation at a final concentration of 5 mM (l-cystine was dissolved in 1 M HCl at a concentration of 5% w/v before addition to the growth media).

2.2. Characterization of the cytochrome c content of periplasmic fractions

For extraction of the periplasmic fractions, cells were harvested and sphaero-plastod as described [32]. At least 6 replicates of each experiment were conducted. The production of cytochrome c₅₅₀ was quantified by visible absorption spectroscopy on a Varian Cary 50 Bio spectrophotometer. Samples were normalized according to wet-cell pellet weights and were reduced by the addition of a few fractions.

Errors on the levels of cytochrome c production were calculated for datasets collected on different days. On average these values have ±6% error of 8%; details of the errors for each set of experiments can be found in Table 2.

3. Results and discussion

3.1. Cytochrome c production under aerobic growth conditions

E. coli does not express its endogenous c-type cytochromes under aerobic conditions. We used two exogenous cytochromes c (cytochromes c₅₅₀ and c₁ from Paracoccus denitrificans) as test substrates for the Ccm system in different genetic backgrounds (wild-type, ΔdsbA, ΔdsbD and ΔdsbA/ΔdsbD, see Table 1). Cytochrome c₁ is produced in its semi-apo form (i.e. without heme and with heme attached to the c-type cytochrome domain) as the d₁ heme cofactor is not produced by E. coli. The Ccm proteins were expressed constitutively from plasmid pEC86 [29].

Table 1

Name	Description	Source
MC1000	araD139, Δ(ara, leu)/7697, ΔlacX74, galR1,	[45]
MC1000 (ΔdsbA)	MC1000 ΔdsbA::kan	Lab
MC1000 (ΔdsbD)	MC1000 ΔdsbD	Stock
pEC86	E. coli camABCDEFGH, Cam⁸	
prZ001	P. denitrificans cytochrome c₁, Gent⁸	Lab
pKPD1	P. denitrificans c₅₅₀, Amp⁸	

Table 2

Strain	Level of cytochrome c₁	Level of cytochrome c₅₅₀
ΔdsbA/ΔdsbD	23 (±4)	6 (±6)
ΔdsbD	29 (±10)	100 (±13)
ΔdsbA	39 (±8)	100 (±13)
MC1000	100 (±9)	100 (±13)

Table 2 shows the quantification of the levels of production of the two cytochromes as determined spectrophotometrically (for c₅₅₀) and densitometrically (for semi-apo c₁). The amount of holocytochrome in the wild-type (WT) strain MC1000 is arbitrarily set to 100. For both substrates the heme attachment levels in ΔdsbA were very close to those observed in the parental strain. Around 50% levels were detected in the double deletion strain ΔdsbA/ΔdsbD in both cases. In the situation where both the oxidizing protein (DsB) and reducing protein (DsD) are absent it might be expected that cytochrome levels would approach those seen in the WT strain. However, in the heavily aerated cultures used here, we expect that oxygen would make a significant contribution to spontaneous disulfide bond formation in the periplasm. DsD would therefore be needed to reduce the proportion of cytochrome that became oxidized via that route. In ΔdsbD we found detectable levels of holocytochrome C₅₅₀ and significant amounts of holocytochrome c₁. These observations contrast with previous reports that DsD is absolutely essential for cytochrome c maturation in E. coli [35] although the latter study was performed under anaerobic conditions. It has, however, been shown that DsD is not needed for production of cytochromes c in Pseudomonas aeruginosa [36] grown aerobically. The absence of DsD would be expected to attenuate cytochrome levels, as we have observed, because no reductant is being provided to reverse the oxidizing effects of both DsA and oxygen.

The difference in the relative maturation levels between the two substrate cytochromes is possibly due to their different properties. The accessibility of the pair of cysteine thiols on an apocytochrome delivered to the periplasm will depend on the folding rate of the apoprotein once it is transported by the Sec system. Also, the reduction potential of the thiol–disulfide couple, and the pKₐ values of the cysteine pair of the CXXCH motif, will determine their tendency for oxidation. The potentials could vary dramatically: for example in thioredoxins, which also have a CXXC motif, the character of the XX values, the effect of the helix dipole, and other factors have significant effects on the reduction potentials [37].
3.2. Cytochrome c production under anaerobic growth conditions

A comparable set of growths to those described above were performed in anaerobic cultures. *E. coli* grown under these conditions produces its endogenous cytochromes c [38]; two of these are soluble periplasmic proteins that we have quantitated here, along with the exogenous cytochromes c550 and cd. The endogenous NapB is a di-heme cytochrome c involved in nitrate reduction [39] and NrfA is a pentaheme nitrite reductase that has one of its hemes attached to an unusual CXXCK motif [40]. Results are presented in Table 2. There are variations in the heme attachment levels seen for the different cytochromes in the various strains but the trends are the same in all cases. There is a significant decrease in holocytochrome level in ΔdsbA compared to WT, a similar level when comparing ΔdsbA with ΔdsbA/ΔdsbD, and a reduction in ΔdsbD, but not to undetectable levels in any case.

In ΔdsbA the significant decrease in holocytochrome level compared to the aerobic cultures highlights the effect of spontaneous disulfide bond formation under aerobic but not under anaerobic conditions. The presence of an oxidant appears to increase holocytochrome levels (as long as a source of reductant (DsbD) is also present) possibly because the disulfide stabilizes the apocytochrome; apocytochromes are readily degraded in the periplasm and are usually not detectable when heme has not been attached to them [41]. It could also be that the oxidized apocytochrome is protected from degradation while interacting with the reducing components of the Ccm system (CcmG or CcmH) and that the most productive holocytochrome biogenesis pathway is one in which components of the Ccm system (CcmG or CcmH) and that the most protected from degradation while interacting with the reducing component (ΔdsbA or ΔdsbD) is therefore irrelevant. Hence, the Ccm system attaches heme to the same fraction of apocytochrome in each of the two strains, and the remainder becomes degraded. Again the different properties of the individual cytochromes appear to affect their levels of maturation in the strains examined. These effects are most obvious in the ΔdsbD strain (where the level of competition between the Ccm system and DsbA depends on the intrinsic properties of each cytochrome) and the ΔdsbA/ΔdsbD strain (where any source of reductant and oxidant, except for spontaneous reoxidation, are removed). More cytochrome cd1 is produced in ΔdsbD (compared to the other cytochromes), both aerobically and anaerobically. Its large size, along with the fact that the protein forms a dimer [42], could protect the CXXCH motif of each monomer from immediate oxidation by DsbA. A larger variation can be seen for the amounts of holocytochromes produced in the ΔdsbA/ΔdsbD strain, varying from ~15% for NrfA to ~40% for NapB. With any source of oxidant (DsbA, oxygen or chemical) absent, the tendency of the CXXCH motif to find itself in the dead-end situation of disulfide bond formation (since DsbD is absent) could depend on the microenvironment around each motif, which varies for the four substrates (differences in folding rate, number of CXXCH motifs, pKs values, and reduction potentials of the cysteine pair being contributing factors).

We propose a model for *E. coli* (shown in Fig. 2) in which the apocytochrome can undergo the competing processes of either heme attachment to, or oxidation of, its cysteine thiols. A proportion of the apoprotein interacts with the Ccm heme attachment proteins directly, involving no thiol–disulfide reactions (for this fraction of apocytochrome DsbD and CcmG/H are irrelevant). Another fraction of the apoprotein instead is oxidized by DsbA (or

![Fig. 2. Model illustrating the involvement of DsbA, DsbD and the Ccm system in the formation of holocytochrome c in *E. coli*. Upon entering into the periplasm, through the Sec system, the reduced and unfolded apocytochrome can undergo the competing processes of either heme attachment to, or oxidation of, its cysteine thiols. A fraction of the apoprotein interacts with the Ccm heme attachment proteins (CcmA–F) directly. Another fraction instead is oxidized by with DsbA (or oxygen when present). Then it is dependent on the presence of the reducing proteins DsbD and CcmG/H, which eventually deliver it in the reduced state to CcmA–F, for heme attachment. The final product, holocytochrome c, can be produced via both pathways.](image-url)
oxygen when present); the apoform of a CXXCH-containing variant of cytochrome \(b_{562}\) with a disulfide in its CXXCH motif has been shown to be formed [26]. This fraction then is dependent on the presence of the reducing proteins for covalent heme attachment. The ratios of the apocytochrome that will enter each of these pathways will depend on the properties of the individual proteins as illustrated by the varied relative levels of the different substrates in the different strains examined here. It should be taken into account that for multi-heme cytochromes (like NapB and NraF) it is likely that CXXCH motifs on the same polypeptide chain have different properties. Also attachment of heme to one of the motifs might affect the subsequent heme attachment to the remaining ones. A previous study indicated that a heme binding motif incorporated into a thioredoxin-like fold did not result in high levels of heme attachment [43] demonstrating that the efficiency of heme attachment to CXXCH can be very low depending on the properties of the individual substrate.

3.3. Concluding remarks

DsbA is a powerful oxidase that functions outside the cytoplasmic membranes of many bacteria and has a necessarily broad substrate specificity. C-Type cytochromes, with their characteristic CXXCH heme-binding motifs, are delivered to the periplasm by the Sec system in their unfolded form [44] and therefore easily become targets for DsbA-catalyzed disulfide-bond formation. The original studies, although a complementation with some small molecule disulfides was seen [20], erroneously concluded that DsbA is essential for holocytochrome c production [19–21]. We suspect that the experimental conditions used [19–21] fortuitously led to this conclusion. The present work establishes that the absence of DsbA does have consequences for c-type cytochrome formation in \(E.\ coli\) for a variety of reasons as explored here which may also relate to comparable observations made in \(R.\ capsulatus\). The Ccm proteins are able to reverse the oxidation event allowing heme attachment to occur; DsbD functions as a house-keeping protein that corrects the unwanted oxidation of apocytochromes. This, along with the potential stabilization of the oxidized apocytochrome, seems to be the most efficient way for these two essential but opposing pathways to coexist in the periplasm but the key point is that mechanistically it is now unambiguous that a disulfide bond is not a prerequisite for heme attachment to a CXXCH motif catalyzed by the Ccm system.

Acknowledgements

This work was supported by the Wellcome Trust (Grant Number 092532 and a Value-in-People Award) and the Biotechnology and Biological Sciences Research Council (Grant BB/H107887/1). D.A.I.M. acknowledges funding from the Alexander S. Onassis Public Benefit Foundation and the E.P.A. Cephalosporin Fund. We are grateful to Prof. Linda Thony-Meyer for providing us with strains MC1000\(\Delta\)dsbA and MC1000\(\Delta\)dsbA\(\Delta\)dsbD.

References

[1] Kranz, R.G., Richard-Fogal, C., Taylor, J.S. and Frawley, E.R. (2009) Cytochrome c biogenesis: mechanisms for covalent modifications and trafficking of heme and for heme-iron redox control. Microbiol. Mol. Biol. Rev. 73, 510–528.

[2] Stevens, J.M., Mavridou, D.A., Hamer, K., Kittilsilou, P., Goddard, A.D. and Ferguson, S.J. (2011) Cytochrome c biogenesis System I. FEBS J. 278, 4170–4178.

[3] Shoulidce, S.R., Heras, B., Walden, P.M., Totsika, M., Schembri, M.A. and Martin, J.L. (2011) Structure and function of DsbA, a key bacterial oxidative folding catalyst. Antioxid. Redox. Signal. 14, 1729–1760.

[4] Peak, J.A. and Taylor, R.K. (1992) Characterization of a periplasmic thioldisulfide interchange protein required for the functional maturation of secreted virulence factors of Vibrio cholerae. Proc. Natl. Acad. Sci. U S A 89, 6210–6214.

[5] Martin, J.L., Bardwell, J.C. and Kuriyan, J. (1993) Crystal structure of the DsbA protein required for disulfide bond formation in vivo. Nature 365, 464–468.

[6] Graus-chopf, U., Winther, J.R., Korber, P., Zander, T., Dallinger, P. and Bardwell, J.C. (2005) Why is DsbA such an oxidizing disulfide catalyst? Cell 83, 947–955.

[7] Zapun, A., Bardwell, J.C. and Creighton, T.E. (1993) The reactive and destabilizing disulfide bond of DsbA, a protein required for protein disulfide bond formation in vivo. Biochim. Biophys. Acta 1187, 5083–5082.

[8] Inaba, K., Murakami, S., Nakagawa, A., Iida, H., Kinjo, M., Ito, K. and Suzuki, M. (2009) Dynamic nature of disulfide bond formation catalysts revealed by crystal structures of DsbA. EMBO J. 28, 779–791.

[9] Robertson, I.B., Stevens, J.M. and Ferguson, S.J. (2008) Dispensable residues in the active site of the cytochrome c biogenesis protein CcmH. FEBS Lett. 582, 3067–3072.

[10] Fabianek, R.A., Hofer, T. and Thony-Meyer, L. (1999) Characterization of the Escherichia coli CcmH protein reveals new insights into the redox pathway required for cytochrome c maturation. Arch. Microbiol. 171, 92–100.

[11] Metheringham, R., Griffiths, L., Crooke, H., Forsythe, S. and Cole, J. (1995) An essential role for DsbA in cytochrome c synthesis and formate-dependent nitrite reduction by Escherichia coli K-12. Arch. Microbiol. 164, 301–307.

[12] Sambongi, Y. and Ferguson, S.J. (1996) Mutants of Escherichia coli lacking disulfide oxidoreductases DsbA and DsbB cannot synthesise an exogenous monoaemon c-type cytochrome except in the presence of disulphide compounds. FEBS Lett. 398, 265–268.

[13] Robertson, I.B., Stevens, J.M. and Ferguson, S.J. (2008) The dithiol:disulfide oxidoreductases DsbA and DsbB of Bacillus subtilis interact with a strategic protein in the activities of anaerobically induced electron transfer chains in Escherichia coli K12. Mol. Gen. Genet. 253, 95–102.

[14] Moore, C.R. and Pettigrew, G.W. (1990) Cytochrome c: evolutionary, structural and physicochemical aspects, Springer-Verlag, New York.

[15] Sambongi, Y. and Ferguson, S.J. (1994) Specific thiol compounds complement deficiency in c-type cytochrome biogenesis in Escherichia coli carrying a mutation in a membrane-bound disulfide isomerase-like protein. FEBS Lett. 353, 235–238.

[16] Turkarslan, S., Sanders, C., Ecki, S. and Daldal, F. (2008) Compensatory thioredoxin interactions between DsbA, CcdA and CcmG uncouple the apocytochrome c holdase role of CcmG during cytochrome c maturation. Mol. Microbiol. 70, 652–666.

[17] Kojima, N., Yamanaka, M., Ichiki, S. and Sambongi, Y. (2005) Unexpected holdase role of CcmG during cytochrome c maturation. J. Bacteriol. 187, 2071–2079.

[18] Robertson, I.B., Stevens, J.M. and Ferguson, S.J. (2008) Compensatory effects of mutations in cytochrome c biogenesis system I. J. Biol. Chem. 283, 1418–1421.

[19] Allen, J.W., Barker, P.D. and Ferguson, S.J. (2003) The dithiol:disulfide oxidoreductases DsbD and DsbB of Rhodobacter sphaeroides are not directly involved in cytochrome c biogenesis, but their inactivation restores the cytochrome c biogenesis defect of Ccm-null mutants. J. Bacteriol. 185, 3361–3372.

[20] Erdelndsson, L.S. and Hederstedt, L. (2002) Mutations in the thiol-disulfide oxidoreductase DsbD can suppress cytochrome c deficiency of Ccm-A-defective Bacillus subtilis cells. J. Bacteriol. 184, 1423–1429.

[21] Arslan, E., Schulz, H., Zufferey, R., Kunzler, P. and Thony-Meyer, L. (1998) Overproduction of the Bradyrhizobium japonicum c-type cytochrome subunits of the cbh, oxidase in Escherichia coli. Biochim. Biophys. Res. Commun. 251, 744–747.
Mavridou, D.A., Saridakis, E., Kritsiligkou, P., Goddard, A.D., Stevens, J.M., Ferguson, S.J. and Redfield, C. (2011) Oxidation state-dependent protein-protein interactions in disulfide cascades. J. Biol. Chem. 286, 24943–24956.

Studier, F.W. (2005) Protein production by auto-induction in high density shaking cultures. Protein Expr. Purif. 41, 207–234.

Allen, J.W., Tomlinson, E.J., Hong, L. and Ferguson, S.J. (2002) The Escherichia coli cytochrome c maturation (Ccm) system does not detectably attach heme to single cysteine variants of an apocytochrome c. J. Biol. Chem. 277, 33559–33563.

Goodhew, C.F., Brown, K.R. and Pettigrew, G.W. (1986) Haem staining in gels, a useful tool in the study of bacterial c-type cytochromes. Biochim. Biophys. Acta 852, 288–294.

Goddard, A.D., Stevens, J.M., Rao, F., Mavridou, D.A., Chan, W., Richardson, D.J., Allen, J.W. and Ferguson, S.J. (2010) C-Type cytochrome biogenesis can occur via a natural Ccm system lacking CcmH, CcmG, and the heme-binding histidine of CcmE. J. Biol. Chem. 285, 22882–22889.

Crooke, H. and Cole, J. (1995) The biogenesis of c-type cytochromes in Escherichia coli requires a membrane-bound protein, DpzZ, with a protein disulphide isomerase-like domain. Mol. Microbiol. 15, 1139–1150.

Page, M.D., Saunders, N.F. and Ferguson, S.J. (1997) Disruption of the Pseudomonas aeruginosa dipZ gene, encoding a putative protein-disulfide reductase, leads to partial pleiotropic deficiency in c-type cytochrome biogenesis. Microbiology 143 (Pt 10), 3111–3122.

Chivers, P.T., Prehoda, K.E. and Raines, R.T. (1997) The CXXC motif: a rheostat in the active site. Biochemistry 36, 4061–4066.

Iobbi-Nivol, C., Crooke, H., Griffiths, L., Grove, J., Hussain, H., Pommier, J., Mjeoan, V. and Cole, J.A. (1994) A reassessment of the range of c-type cytochromes synthesized by Escherichia coli K-12. FEMS Microbiol. Lett. 119, 89–94.

Berks, B.C., Richardson, D.J., Reilly, A., Willis, A.C. and Ferguson, S.J. (1995) The napEDABC gene cluster encoding the periplasmic nitrate reductase system of Thioploca pantotropha. Biochem. J. 309 (Pt 3), 983–982.

Einsle, G. (2011) Structure and function of formate-dependent cytochrome c nitrite reductase. NrfA. Methods Enzymol. 496, 399–422.

Gao, T. and O’Brien, M.R. (2007) Control of DegP-dependent degradation of c-type cytochromes by heme and the cytochrome c maturation system in Escherichia coli. J. Bacteriol. 189, 6253–6259.

Koppenhofer, A., Turner, K.L., Allen, J.W., Chapman, S.K. and Ferguson, S.J. (2000) Cytochrome cd$_{1}$ from Paracoccus pantotrophus exhibits kinetically gated, conformationally dependent, highly cooperative two-electron redox behavior. Biochemistry 39, 4243–4249.

Mavridou, D.A., Braun, M., Thony-Meyer, L., Stevens, J.M. and Ferguson, S.J. (2008) Avoidance of the cytochrome c biogenesis system by periplasmic CXXCH motifs. Biochem. Soc. Trans. 36, 1124–1128.

Thony-Meyer, L. and Kunzler, P. (1997) Translocation to the periplasm and signal sequence cleavage of preapocytochrome c depend on sec and lep, but not on the ccm gene products. Eur. J. Biochem. 246, 794–799.

Casadaban, M.J. and Cohen, S.N. (1980) Analysis of gene control signals by DNA fusion and cloning in Escherichia coli. J. Mol. Biol. 138, 179–207.

Stewart, E.J., Katzen, F. and Beckwith, J. (1999) Six conserved cysteines of the membrane protein DsbD are required for the transfer of electrons from the cytoplasm to the periplasm of Escherichia coli. EMBO J. 18, 5963–5971.

Sambongi, Y. and Ferguson, S.J. (1994) Synthesis of holo Paracoccus denitrificans cytochrome c$_{550}$ requires targeting to the periplasm whereas that of holo Hydrogenobacter thermophilus cytochrome c$_{552}$ does not. Implications for c-type cytochrome biogenesis. FEMS Lett. 340, 65–70.