Tris(2,4-di-tert-butylphenyl)phosphit

MAK-Wert

nicht festgelegt, vgl. Abschn. II b der MAK- und BAT-Werte-Liste

Spitzenbegrenzung
–

Hautresorption
–

Sensibilisierende Wirkung
–

Krebserzeugende Wirkung
–

Fruchtschädigende Wirkung
–

Keimzellmutagene Wirkung
–

BAT-Wert
–

Synonyma
Phenol, 2,4-bis(1,1-dimethylethyl)-, phosphit (3:1)

Chemische Bezeichnung
Tris(2,4-di-tert-butylphenyl)phosphit

CAS-Nr.
31570-04-4

Formel

\[
\begin{array}{c}
\text{C}_4\text{H}_{63}\text{O}_3\text{P} \\
\end{array}
\]

Molmasse
646,94 g/mol

Schmelzpunkt
181–186°C (USEPA 2001, 2009)

Siedepunkt
nicht bestimmbar, Zersetzung bei
>350°C (USEPA 2009)

Dampfdruck bei 20°C
1,3 × 10⁻¹⁰ hPa (OECD 2009)

\(\log K_{OW}\)
18,1 (ber.; USEPA 2001); >6,0
(ber.; USEPA 2009)

Löslichkeit
<0,09 mg/l Wasser (OECD-Prüfrichtlinie 105; USEPA 2001); <0,005 mg/l bei 20°C (USEPA 2009)
Stabilität

aufgrund der geringen Wasserlöslichkeit Stabilität im Wasser nicht bestimmbar (USEPA 2001)

stabil gegen Hydrolyse; unter extremen Bedingungen (k. w. A.) Hydrolyse zur Phosphonsäure möglich (OECD 2009)

Herstellung

aus 2,4-Di-tert-butylphenol und Phosphortrichlorid in Gegenwart von Katalysatoren in einem wenigstens dreistufigen Verfahren (Ciba-Geigy AG 1991)

Reinheit

>98% (Sigma-Aldrich 2012)

Verunreinigungen

≤0,3% flüchtige organische Stoffe (k. w. A.) und ≤0,3% 2,4-Di-tert-butylphenol (OECD 2009)

Verwendung

Antioxidans in Lebensmittelkontaktmaterialien, in Kunststoffen, Papier, Metallbeschichtungen, Farben, Lacken, Stabilisatoren, Antistatikmitteln, Färbemitteln, Klebstoffen, Bindemitteln (typisch 0,15–0,5%), in Additiven und in Schmiermitteln (OECD 2009), Additiv in Schmierstoffen mit Trinkwasser-Kontakt (Sanitärschmierstoffe) (UBA 2008), Stabilisator für Polymere (Sigma-Aldrich 2012)

Die vorliegende Begründung basiert im Wesentlichen auf der Zusammenfassung der USEPA (2001, 2009) und der Bewertung von Tris(2,4-di-tert-butylphenyl)phosphit im Rahmen des ICCA-HPV-Programms (OECD 2009).

1 Allgemeiner Wirkungscharakter

Akut wirkt Tris(2,4-di-tert-butylphenyl)phosphit kaum toxisch. Nach 90-tägiger oraler Verabreichung mit der Schlundsonde tritt bei Ratten ab 500 mg/kg KG und Tag ein erhöhtes relatives Nierengewicht ohne histopathologisches Korrelat auf, das sich zudem bei gleichen Dosierungen in einer Zwei-Generationenstudie nicht bestätigt. Die zweijährige Fütterung von bis zu 147 mg/kg KG und Tag an Ratten führt zu keinen substanzbedingten Effekten. Ebenso ohne Wirkung ist eine 90-tägige Fütterung von bis zu 318 mg Tris(2,4-di-tert-butylphenyl)phosphit/kg KG und Tag an Beagle-Hunde. Die Aufnahme aus dem Gastrointestinaltrakt bei Ratten beträgt allerdings nur 3–5%.
Tris(2,4-di-tert-butylphenyl)phosphit ist beim Kaninchen weder haut- noch augenreizend. In einer Untersuchung am Meerschweinchen, die aufgrund zu niedriger Testkonzentrationen limitiert ist, wirkt Tris(2,4-di-tert-butylphenyl)phosphit nicht hautsensibilisierend. Untersuchungen zur atemwegssensibilisierenden Wirkung liegen nicht vor. In einer Zwei-Generationenstudie mit Fütterung von Tris(2,4-di-tert-butylphenyl)phosphit an Ratten führen Dosierungen von 702–1035 mg/kg KG und Tag zu leichter parenteraler Toxizität, leicht reduzierter Fertilität in der F0-Generation und einem verminderten Gewicht der Nachkommen der F2-Generation. In einer Entwicklungstoxizitätsstudie nach OECD-Prüfrichtlinie 414 an Kaninchen treten bis zur höchsten getesteten Dosis von 1200 mg/kg KG und Tag weder bei den Muttertieren noch bei den Nachkommen adverse Effekte auf. Tris(2,4-di-tert-butylphenyl)phosphit wirkt weder in vitro noch in vivo an Soma- oder Keimzellen genotoxisch. Eine Kanzerogenitätsstudie an der Ratte, die aufgrund der hohen Mortalität auch in der Kontrollgruppe und einer zu niedrigen eingesetzten Dosis von maximal 147 mg/kg KG und Tag in ihrer Aussagekraft limitiert ist, gibt keinen Hinweis auf ein tumorigenes Potenzial von Tris(2,4-di-tert-butylphenyl)phosphit.

2 Wirkungsmechanismus

Hierzu liegen keine Angaben vor.

3 Toxikokinetik und Metabolismus

3.1 Aufnahme, Verteilung, Ausscheidung

An 29 männliche Sprague-Dawley-Ratten wurde einmalig 14C-markiertes Tris(2,4-di-tert-butylphenyl)phosphit in Dosierungen von 0,26 oder 5,3 mg/kg KG oral oder 0,05 mg/kg KG intravenös verabreicht. Innerhalb von 72 Stunden wurden 95–97% der verabreichten Radioaktivität mit den Faeces ausgeschieden. Nur 0,12 bzw. 0,38% der Radioaktivität fanden sich nach 72 Stunden im Urin und 0,002 bzw. 0,05% im Blut der Tiere. Die Körper der Tiere der hohen Dosisgruppe enthielten 0,19% Radioaktivität, in der niedrigeren Dosisgruppe konnte diese nicht bestimmt werden. Ebenso erfolgte die Ausscheidung nach intravenöser Gabe vorwiegend mit den Faeces, jedoch deutlich langsamer (nach 72 Stunden 3,7% in den Faeces und 0,33% im Urin). Die Radioaktivität in Blut (0,27%) und restlichem Körper (73,7%) war nach 72 Stunden entsprechend höher (Ciba-Geigy Limited 1981 a). Der größte Teil der Substanz dürfte bei oraler Gabe mit den Faeces unresorbiert ausgeschieden worden sein. Aus dieser Studie lässt sich eine orale Bioverfügbarkeit von 3–5% ableiten. Ratten (k. w. A.) wurde radioaktiv markiertes Tris(2,4-di-tert-butylphenyl)phosphit mit der Schlundsonde verabreicht und anschließend fünf Tage lang Urin und Faeces gesammelt. In den Faeces fanden sich 80% der Radioaktivität wieder (OECD 2009). Studien zur Hautresorption von Tris(2,4-di-tert-butylphenyl)phosphit liegen nicht vor, so dass Modellrechnungen zur Abschätzung der perkutanen Resorption herangezogen
werden. Der Stoff ist in wässrigen Medien sehr schwer löslich, der Oktanol/Wasser-Verteilungskoeffizient \(\log K_{\text{OW}} \) wird mit >6 (USEPA 2009) bzw. 18,1 (USEPA 2001) angegeben. Unter Berücksichtigung der Strukturverwandtschaft von Tris(2,4-di-tert-butylphenyl)phosphit und Tris(nonylphenyl)phosphit \(\log K_{\text{OW}} >8 \) und einer Löslichkeit von 0,005 mg/l (Begründung “Tris(nonylphenyl)phosphit“ 2013) ergeben Modellrechnungen nach Guy und Potts (1993) bzw. nach Wilschut et al. (1995) für eine gesättigte wässrige Lösung unter Standardbedingungen (60 Minuten Expositionsduer, 2000 cm\(^2\) Hautfläche) eine Resorption von 0,0007 mg bzw. 0,001 mg. Nach dem Modell von Fiserova-Bergerova et al. (1990) werden etwa 0,06 mg Tris(2,4-di-tert-butylphenyl)phosphit perkutan resorbiert.

3.2 Metabolismus

Der Metabolit, der vorwiegend in den Faeces der Ratte nachgewiesen wurde, war Tris(2,4-di-tert-butylphenyl)phosphat, welches vermutlich durch Oxidation im Gastrointestinaltrakt entsteht (OECD 2009).

4 Erfahrungen beim Menschen

4.1 Allergene Wirkung

Es liegt trotz des weit verbreiteten Gebrauchs von Tris(2,4-di-tert-butylphenyl)phosphit kein Hinweis auf ein sensibilisierendes Potenzial beim Menschen vor (OECD 2009).

5 Tierexperimentelle Befunde und In-vitro-Untersuchungen

5.1 Akute Toxizität

5.1.1 Inhalative Aufnahme

Hierzu liegen keine Angaben vor.

5.1.2 Orale Aufnahme

Die orale LD\(_{50}\) von Tris(2,4-di-tert-butylphenyl)phosphit ist bei Ratte, Maus und Hamster größer als 6000 mg/kg KG (Ciba-Geigy Limited 1974, 1977 a, b).

Die Untersuchung an der Ratte wurde mit jeweils fünf männlichen und fünf weiblichen Tieren pro Dosisgruppe durchgeführt. Den Tieren wurden 1000, 3170, 4640 oder 6000 mg/kg KG mit der Schlundsonde verabreicht. Zwei Stunden nach der Substanzgabe traten Sedierung, Speichelfluss, Atemnot, Exophthalmus (ein- oder beidseitiges
Hervortreten des Augapfels), gekrümmte Haltung und gesträubtes Fell auf. Diese Befunde waren innerhalb von sechs bis sieben Tagen reversibel. Die höchste Dosis war für ein weibliches Tier nach zwei Tagen letal. Bei der makroskopischen Untersuchung traten keine substanzenbedingten Befunde auf. Die klinischen Beobachtungen wiesen auf eine unspezifische Toxizität hin (Ciba-Geigy Limited 1974).

Jeweils fünf männliche und fünf weibliche Mäuse pro Dosisgruppe erhielten 2150, 3170, 4640 oder 6000 mg/kg KG oral mit der Schlundsonde. Zwei Stunden nach der Substanzgabe traten Sedierung, Atemnot, gekrümmte Haltung und gesträubtes Fell auf. Diese Befunde waren innerhalb von acht bis zwölf Tagen reversibel. Die höchste Dosis war für drei weibliche Tiere (nach 48 Stunden, sieben bzw. 14 Tagen) letal. Bei der makroskopischen Untersuchung traten keine substanzenbedingten Befunde auf (Ciba-Geigy Limited 1977 a).

Die Untersuchung am Hamster wurde mit jeweils drei männlichen und drei weiblichen Tieren pro Dosisgruppe durchgeführt. Den Tieren wurde 1000, 2150, 4640 oder 6000 mg/kg KG verabreicht, was bei keinem der Tiere letal wirkte. Zwei Stunden nach der Substanzgabe traten Sedierung, Atemnot, gekrümmte Haltung und gesträubtes Fell auf. Diese Befunde waren innerhalb von 14 Tagen reversibel (Ciba-Geigy Limited 1977 b).

5.1.3 Dermale Aufnahme

Die dermale LD$_{50}$ von Tris(2,4-di-tert-butylphenyl)phosphit bei der Ratte wird mit größer als 2000 mg/kg KG berichtet. Nach OECD-Prüfrichtlinie 402 wurde hierzu fünf männlichen und fünf weiblichen Tieren eine Dosis von 2000 mg/kg KG auf die Haut gegeben. Bei einigen Tieren wurden zwei Tage lang eine gekrümmte Haltung und gesträubtes Fell beobachtet. Bei der makroskopischen Untersuchung traten keine substanzbedingten Befunde auf. Die klinischen Beobachtungen wiesen auf eine unspezifische Toxizität hin (Ciba-Geigy Limited 1992).

5.1.4 Intraperitoneale Aufnahme

Die LD$_{50}$ nach intraperitonealer Gabe von Tris(2,4-di-tert-butylphenyl)phosphit war bei Ratten größer als 2000 mg/kg KG (ECB 2000).

5.2 Subakute, subchronische und chronische Toxizität

5.2.1 Inhalative Aufnahme

Hierzu liegen keine Angaben vor.

5.2.2 Orale Aufnahme

In einer 28-Tage-Schlundsondenstudie an Sprague-Dawley-Ratten erhielten jeweils fünf männliche und fünf weibliche Tiere pro Dosisgruppe täglich 0, 10, 50 oder 250 mg Tris(2,4-di-tert-butylphenyl)phosphit/kg KG. Klinische Beobachtungen und Körpergewicht wurden täglich, die Futteraufnahme wöchentlich dokumentiert. Der Studienumfang beinhaltete zudem ophthalmologische und hämatologische Untersuchun-
gen, Urinanalysen sowie am Ende der Studie makro- und mikroskopische Untersuchungen. Jeweils zehn zusätzliche Tiere der hohen Dosisgruppe und der Kontrollgruppe wurden 28 Tage lang nachbeobachtet. Der NOAEL betrug 250 mg/kg KG und Tag (Ciba-Geigy Limited 1975 a).

In einer 90-Tagestudie erhielten jeweils 20 männliche und 20 weibliche Sprague-Dawley-Ratten pro Dosisgruppe täglich mit der Schlundsonde 0, 125, 250, 500 oder 1000 mg Tris(2,4-di-tert-butylphenyl)phosphit/kg KG. Es wurden täglich klinische Beobachtungen sowie wöchentlich Körpergewicht und Futteraufnahme dokumentiert. Bei der Kontrollgruppe und der höchsten Dosisgruppe fanden jeweils vor Studienbeginn und in der 4., 12. und 17. Woche Urinanalysen, hämatologische Untersuchungen und Bestimmungen der klinisch-chemischen Blutwerte sowie vor Studienbeginn und in der 6., 13. und 17. Woche ophthalmologische Untersuchungen statt. Am Ende der Studie wurden die Tiere makro- und mikroskopisch untersucht (k. A. zu den untersuchten Organen). Jeweils zehn zusätzliche Tiere der höchsten Dosisgruppe und der Kontrollgruppe wurden nach Beendigung der Exposition vier Wochen lang nachbeobachtet.

Die absoluten und relativen Nierengewichte der weiblichen Tiere waren am Ende der 90-tägigen Expositionszeit ab 500 mg/kg KG und Tag signifikant erhöht (absolutes Nierengewicht 0, 0, 8 und 8% erhöht im Vergleich zur Kontrolle bei 125, 250, 500 bzw. 1000 mg/kg KG und Tag; relatives Nierengewicht 2, 3, 14 und 15% erhöht bei 125, 250, 500 bzw. 1000 mg/kg KG und Tag). Dieser Befund war in der hohen Dosisgruppe in der Nachbeobachtungszeit nicht reversibel. Ab 250 mg/kg KG und Tag wurden signifikant erhöhte absolute Schilddrüsengewichte bei den weiblichen Tieren beobachtet (absolutes Schilddrüsengewicht 5, 26, 42 und 31% erhöht im Vergleich zur Kontrolle bei 125, 250, 500 bzw. 1000 mg/kg KG und Tag; relatives Schilddrüsengewicht 16, 33, 50 und 33% erhöht bei 125, 250, 500 bzw. 1000 mg/kg KG und Tag). Diese Befunde waren in der Nachbeobachtungszeit reversibel. Jedoch lassen nach Angaben der Autoren die hohen Abweichungen innerhalb einer Dosisgruppe sowie das Vorhandensein von Fett und Muskeln an einigen histologischen Organpräparaten Zweifel an diesen Messergebnissen aufkommen. Alle erhöhten Organgewichte waren ohne histopathologisches Korrelat. Es wurden keine weiteren behandlungsbedingten klinischen Symptome, Effekte auf Körpergewicht, Futter- oder Wasseraufnahme, Blut- oder Urinparameter, makroskopische oder histopathologische Befunde beobachtet (Ciba-Geigy Limited 1976). In der Bewertung der USEPA wird der NOAEL mit 1000 mg/kg KG und Tag angegeben (USEPA 2009). Da in der Zwei-Generationenstudie an Ratten (Abschnitt 5.5.1) die Zunahme des Nieren- oder Schilddrüsengewichtes nicht bestätigt wurde (hier traten sogar vereinzelte Gewichtsverminderungen auf), sieht auch die Kommission 1000 mg/kg KG und Tag als NOAEL an.

In einer Zwei-Jahre-Studie (Abschnitt 5.7.2) erhielten Ratten mit dem Futter 0, 7–18, 20–55 oder 58–147 mg Tris(2,4-di-tert-butylphenyl)phosphit/kg KG und Tag. Im ersten Jahr war das Körpergewicht in der hohen Dosisgruppe bei den weiblichen Tieren signifikant um 10% erhöht. Organgewichtsbestimmung, ophthalmologische Untersuchung, Hämatologie, klinische Chemie, Urinanalyse, makro- und mikroskopische Untersuchungen waren ohne substanzbedingten Befund. Der NOAEL dieser Untersuchung betrug 147 mg/kg KG und Tag (Ciba-Geigy Limited 1979 a, 1981 b).

In einer zehntägigen Dosisfindungsstudie mit Beagle-Hunden wurde an jeweils ein männliches und ein weibliches Tier pro Dosisgruppe 0, 300 oder 1000 mg Tris(2,4-di-tert-butylphenyl)phosphit/kg KG und Tag in Gelatinekapseln mit dem Futter verab-
reicht. Es traten keine klinischen Vergiftungssymptome auf. Das Körpergewicht und die Futteraufnahme waren unverändert. Beide Tiere der hohen Dosisgruppe und das weibliche Tier der niedrigen Dosisgruppe wiesen eine leicht verminderte Anzahl roter Blutkörperchen auf, die aber im physiologischen Bereich lag. Die Untersuchung der klinisch-chemischen Parameter und die Urinanalyse waren ohne auffälligen Befund. Eine Autopsie wurde nicht durchgeführt (Ciba-Geigy Limited 1977 c). Wegen des eingeschränkten Untersuchungsumfanges kann für diese Studie kein NOAEL angegeben werden.

Auch eine 17-tägige Dosisfindungsstudie mit gleichem Versuchsaufbau und Dosierungen von 10 000 oder 30 000 mg Tris(2,4-di-tert-butylphenyl)phosphit/kg Futter, was einer Aufnahme von 233–284 bzw. 852–1130 mg Tris(2,4-di-tert-butylphenyl)phosphit/kg KG und Tag entsprach, war ohne substanzbedingte Befunde (Ciba-Geigy Limited 1977 d). Wegen des eingeschränkten Untersuchungsumfanges kann für diese Studie kein NOAEL angegeben werden.

Eine 90-Tage-Fütterungsstudie an Beagle-Hunden wurde mit jeweils vier männlichen und vier weiblichen Tieren pro Dosisgruppe durchgeführt. Die nominalen Konzentrationen betrugen 0, 1000, 3000 und 10 000 mg Tris(2,4-di-tert-butylphenyl)phosphit/kg Futter (tatsächlich: 0, 719, 2208 und 8092 mg/kg Futter) und entsprachen einer täglichen Aufnahme von 28 mg Tris(2,4-di-tert-butylphenyl)phosphit/kg KG in der niedrigen Dosisgruppe sowie 318 mg/kg KG in der hohen Dosisgruppe. Zur mittleren Dosisgruppe liegen keine Angaben vor. In der Kontrollgruppe und der hohen Dosisgruppe wurden jeweils zwei zusätzliche Tiere mitgeführt und nach Ende der Exposition 28 Tage lang nachbeobachtet. Es wurden täglich klinische Beobachtungen, Futter- und Wasseraufnahme sowie wöchentlich das Körpergewicht dokumentiert. Ophthalmologische Untersuchungen und ein Gehörtest fanden zu Beginn der Studie und nach 4, 8, 13 und 17 Wochen statt. Blutproben für Hämatologie und klinische Chemie sowie Urinproben wurden zu Beginn der Studie und nach 4, 9, 13 und 17 Wochen entnommen. Am Ende der Studie fanden makro- und mikroskopische Untersuchungen statt (k. A. zu den untersuchten Organen). Der NOAEL dieser Untersuchung betrug 318 mg/kg KG und Tag (8092 mg/kg Futter) (Ciba-Geigy Limited 1978 a).

Untersuchungen zur östrogenen Wirkung

Sechs weibliche juvenile Ratten (22 Wochen alt) erhielten fünf Tage lang täglich Tris(2,4-di-tert-butylphenyl)phosphit mit der Schlundsonde in Dosierungen von 0, 100, 300 oder 1000 mg/kg KG. Die Behandlung führte weder zu klinischen Effekten noch zu einer Veränderung des Uterusgewichts. Die Positivkontrollgruppe, in der die Tiere 17α-Ethinylestradiol erhielten, zeigte deutliche Effekte, was auf ein funktionierendes Testsystem hinweist (Ciba-Geigy Limited 1999).

Eine weitere Untersuchung wurde nach dreitägiger Verabreichung identischer Dosierungen mit der Schlundsonde an jeweils sechs ovarektomierten Ratten durchgeführt. Die Behandlung der Ratten mit Tris(2,4-di-tert-butylphenyl)phosphit führte nicht zu klinischen Effekten. In der höchsten Dosisgruppe von 1000 mg/kg KG und Tag waren das absolute und relative Uterusgewicht um 25 bzw. 27% erhöht. Die Positivkontrolle mit 0,01 mg 17α-Ethinylestradiol/kg KG und Tag führte zu einer nicht signifikanten Erhöhung von 30 bzw. 40%, die Gabe von 0,1 mg/kg KG und Tag zu einer signifikanten Gewichtserhöhung von 151 bzw. 180%. Histopathologisch konnte eine veränderte östrogene Aktivität in Vagina (Hyperplasie, Hyperkeratose) oder Uterus (Hyperplasie,
Hypertrophie des endometrialen oder myometrialen Gewebes) ab 0,01 mg 17α-Ethinyl-
estradiol/kg KG und Tag sowie bei einem Tier in der Vagina nach Gabe von 1000 mg Tris(2,4-di-tert-butylphenyl)phosphit/kg KG und Tag nachgewiesen werden. Die Auto-
ren bewerten Tris(2,4-di-tert-butylphenyl)phosphit unter den vorliegenden Versuchsbe-
dingungen als östrogen aktiv (Ciba-Geigy Limited 2000). Der Bewertung der Autoren
kann nicht zugestimmt werden, da nur bei einem Tier ein Effekt durch eine 100 000-
fach höhere Dosis als bei 17α-Ethinylerastradiol beobachtet wurde, was noch nicht als
Hinweis auf eine östrogene Wirkung durch Tris(2,4-di-tert-butylphenyl)phosphit zu
werten ist.

Untersuchungen zur neurotoxischen Wirkung
Die zweimalige Schlundsondengabe von Tris(2,4-di-tert-butylphenyl)phosphit in Dosie-
rungen von 0, 2150 oder 6000 mg/kg KG und Tag innerhalb von 21 Tagen an jeweils
20–30 Hühner pro Dosisgruppe führte nicht zu beobachtbaren neurotoxischen Effekten.
Die mikroskopische Untersuchung von Rückenmark und Ischiasnerv gab keinen Hin-
weis auf eine akute oder verzögerte Neuropathie. Die Positivkontrolle mit Tri-o-cresyl-
phosphat zeigte ein funktionierendes Testsystem an (Ciba-Geigy Limited 1979 b).

5.2.3 Dermale Aufnahme
Hierzu liegen keine Angaben vor.

5.3 Wirkung auf Haut und Schleimhäute

5.3.1 Haut
Tris(2,4-di-tert-butylphenyl)phosphit wirkte in zwei Untersuchungen nicht reizend an
der Kaninchenhaut (k. w. A.; ECB 2000; OECD 2009).
Die 24-stündige okklusive Applikation von Tris(2,4-di-tert-butylphenyl)phosphit auf
die Haut führte bei sechs Kaninchen weder nach 24 noch nach 72 Stunden zu Reizwir-
kungen (Ciba-Geigy Limited 1975 b).

5.3.2 Auge
Tris(2,4-di-tert-butylphenyl)phosphit wirkte in zwei Untersuchungen nicht reizend am
Kaninchenauge (k. w. A.; ECB 2000; OECD 2009).
Die Instillation von 100 mg Tris(2,4-di-tert-butylphenyl)phosphit in den Bindehautsack
bei Kaninchen verursachte keine Reizwirkung (Ciba-Geigy Limited 1975 c).

5.4 Allergene Wirkung

In einem Optimierungstest nach Maurer wurde bei jeweils zehn männlichen und weib-
lchen Meerschweinchen an alternierenden Tagen insgesamt zehnmalig eine intrader-
male Induktion mit 0,1% Tris(2,4-di-tert-butyl-phenyl)phosphit in Propylen Glykol/
Kochsalzlösung (70/30) durchgeführt. Während der zweiten und dritten Woche wurde
die Substanz zusammen mit komplettem Freundschen Adjuvans appliziert. Nach 14 Tagen fand die intradermale Provokationsbehandlung mit 0,1%iger Testzubereitung statt. Hierbei zeigten sich bei zehn von 19 mit Testsubstanz vorbehandelten Tieren und bei drei von 19 mit Vehikel vorbehandelten Kontrolltieren Reaktionen, die geringfügig bis deutlich ausgeprägter waren als die bei den jeweiligen Tieren in der ersten Woche der Induktionsbehandlung aufgetretenen Reaktionen. Nach einer weiteren zehntägigen Behandlungs- pause erfolgte eine 24-stündige okklusive Auslösebehandlung mit 30%iger Zubereitung der Testsubstanz in Vaseline. Hierbei trat weder bei einem der 18 vorbehandelten Tiere noch bei einem der 19 Kontrolltiere eine Reaktion auf. Tris(2,4-di-tert-butyl-phenyl)phosphit wirkte in dieser Untersuchung nicht hautsensibilisierend (Ciba-Geigy Limited 1979 c).

5.5 Reproduktionstoxizität

5.5.1 Fertilität

In einer Zwei-Generationenstudie wurde an jeweils 24–28 Sprague-Dawley-Ratten pro Dosisgruppe Futter mit 0, 1600, 4000 oder 10 000 mg Tris(2,4-di-tert-butylphenyl)-phosphit/kg Futter (0, 112–166, 279–412 bzw. 702–1035 mg/kg KG und Tag) verabreicht. Die Tiere der F0- und F1-Generation erhielten das Futter insgesamt 18 Wochen lang und wurden jeweils nach 70 Tagen zwölf Tage lang verpaart. Alle Tiere wurden kontinuierlich bis zum Ende der Laktation der F2-Generation exponiert. Jeweils am Ende der Laktationszeit fanden bei den Elterntieren der höchsten Dosisgruppe, den Kontrolltieren und einem Teil der F1- und F2-Nachkommen histopathologische Untersuchungen statt. In der höchsten Dosisgruppe der F0-Tiere waren der Fertilitätsindex (67,9% im Vergleich zu 88,9% in der Kontrolle) und die Implantationsrate (14,6 im Vergleich zu 15,7) leicht, aber nicht signifikant reduziert. Weitere Effekte auf die Fertilität traten weder in der F0- noch in der F1-Generation auf. Vorübergehend trat bei den weiblichen F0-Tieren bei 1600 und 10 000 mg/kg Futter eine verminderte Futteraufnahme sowie eine reduzierte Körpergewichtszunahme auf. Ab 1600 mg/kg Futter war das Verhältnis von Gehirn- zu Körpergewicht bei den männlichen F0-Tieren nicht dosisabhängig vermindert, und das absolute und relative Lebergewicht war ebenfalls ohne Dosisabhängigkeit signifikant erhöht. Bei den weiblichen F0-Tieren war dieser Effekt nur bei 10 000 mg/kg Futter zu beobachten. Ab 1600 mg/kg Futter war auch das relative Milzgewicht der männlichen F0-Tiere leicht, ab 4000 mg/kg Futter das relative Herzgewicht der weiblichen F0-Tiere signifikant vermindert. Bei den weiblichen F1-Nachkommen war ab 4000 mg/kg Futter das relative Milzmilzgewicht der männlichen F1-Elterntieren bei 10 000 mg/kg Futter das relative Milzgewicht signifikant vermindert. Bei den männlichen F2-Nachkommen zeigte sich bei 10 000 mg/kg Futter ein im Verhältnis zum Körpergewicht vermindertes Gewicht des Gehirns, ein signifikant erhöhtes relatives Herzgewicht, und ein reduziertes relatives Lebergewicht. Weitere auf die Behandlung zurückzuführende klinische oder systemische Effekte traten nicht auf. Auch die histopathologischen Untersuchungen waren ohne auffälligen Befund. Zusammengefasst war bei der höchsten Dosis von 10 000 mg/kg Futter (702–1035 mg/kg KG und Tag) eine leichte Toxizität bei den Muttertieren zu beobachten, die mit einer ebenfalls leicht reduzierten Fertilität einherging. In Abwesenheit histopathologischer Korre-
late zu den verschiedenen, oben genannten Organgewichtsveränderungen sind diese Befunde von fraglicher biologischer Relevanz (Ciba-Geigy Limited 1985; OECD 2009; USEPA 2001). Der NOAEL für die systemische Toxizität bei den Elterntieren und für die Fertilität beträgt 4000 mg/kg Futter (279–412 mg/kg KG und Tag).

In einer weiteren Zwei-Generationenstudie an Wistar-Ratten mit einer sechswöchigen Gabe von 100 mg Tris(2,4-di-tert-butylphenyl)phosphit/kg Futter an die F0-Elterntiere und einer vierwöchigen Gabe an die Tiere der F1-Generation waren keine toxischen Effekte zu beobachten (k. w. A.) (OECD 2009).

In einem Dominant-Letal-Test an der Maus (Abschnitt 5.6.2) traten bis zu einer oralen Dosierung von 3000 mg/kg KG und Tag keine Effekte auf die Fertilität der männlichen Tiere auf (Ciba-Geigy Limited 1978 c).

5.5.2 Entwicklungstoxizität

In der in Abschnitt 5.5.1 beschriebenen Zwei-Generationenstudie mit Fütterung von Tris(2,4-di-tert-butylphenyl)phosphit an Sprague-Dawley-Ratten betrug der NOAEL für die Entwicklungstoxizität 4000 mg/kg Futter (279–412 mg/kg KG und Tag). Bei der höchsten Dosis von 10000 mg/kg Futter (702–1035 mg/kg KG und Tag) war das Gewicht der F2-Nachkommen leicht vermindert (Ciba-Geigy Limited 1985; OECD 2009; USEPA 2001, 2009).

In einer Entwicklungstoxizitätsstudie nach OECD-Prüfrichtlinie 414 wurde an jeweils 20 Chinchilla-Kaninchen pro Dosisgruppe vom 6. bis 18. Trächtigkeitstag täglich 0, 200, 600 oder 1200 mg Tris(2,4-di-tert-butylphenyl)phosphit/kg KG mit der Schlundsonde verabreicht. Zwei Muttertiere der beiden unteren Dosisgruppen und vier der hohen Dosisgruppe starben vor Ende des Versuchs, zwei davon durch Intubationsfehler, zwei andere an Pneumonie. Es traten bis zur höchsten getesteten Dosis weder bei den Muttertieren noch den Nachkommen adverse Effekte auf. Der NOAEL beträgt somit für maternale und entwicklungs-toxische Effekte beim Kaninch en 1200 mg Tris(2,4-di-tert-butylphenyl)phosphit/kg KG und Tag (Ciba-Geigy Limited 1983).

5.6 Genotoxizität

5.6.1 In vitro

In einem Mutagenitätstest mit Saccharomyces cerevisiae MP-1 wirkte Tris(2,4-di-tert-butylphenyl)phosphit in Konzentrationen von 625, 1250, 2500, 5000 oder 10000 μg/ml nicht mutagen (Ciba-Geigy Limited 1982 a).

In einem Mutagenitätstest mit Salmonella typhimurium wurden die Stämme TA98, TA100, TA1535 und TA1538 in An- und Abwesenheit eines metabolischen Aktivierungssystems gegen 0, 10, 30, 90, 270 oder 810 μg Tris(2,4-di-tert-butylphenyl)phosphit/ml exponiert. Es traten weder erhöhte Mutationsraten noch Zytotoxizität auf. Die Positivkontrollen zeigten ein funktionierendes Testsystem an (Ciba-Geigy Limited 1978 b).
5.6.2 In vivo

Somazellen
An jeweils vier bis sechs Chinesische Hamster pro Dosisgruppe wurde einmalig 1111, 2222 oder 4444 mg Tris(2,4-di-tert-butylphenyl)phosphit/kg KG bzw. in der Folgestudie 1777, 2666, 4000 oder 6000 mg/kg KG mit der Schlundsonde verabreicht. Die Untersuchung des Knochenmarks auf Schwesterchromatidaustausche (SCE) erfolgte 24 Stunden nach der Substanzgabe. In der ersten Untersuchung wurden die Proben von jeweils zwei Tieren pro Geschlecht untersucht. Dabei war nach Gabe der hohen Dosis von 4444 mg/kg KG bei einem Tier die Anzahl der SCE stark erhöht, so dass sich eine erhöhte Zahl an SCE/Zelle ergab (6,26 im Vergleich zu 4,21 SCE/Zelle in der Kontrolle). Zur Bestätigung dieses Ergebnisses wurde die Folgestudie durchgeführt. In dieser Studie waren, basierend auf der Auswertung von jeweils drei Tieren pro Geschlecht und Dosisgruppe, die SCE nicht signifikant angestiegen. In einer späteren Analyse wurden die Proben aller Tiere untersucht, das heißt es fand eine Auswertung von fünf Tieren pro Geschlecht und Dosisgruppe statt. Die SCE waren bei den Tieren der höchsten Dosis von 6000 mg/kg KG leicht, aber signifikant erhöht (5,17 im Vergleich zu 4,56 SCE/Zelle in der Kontrolle; Ciba-Geigy Limited 1982 b). Im ersten Experiment wird die Erhöhung der SCE/Zelle durch einen Ausreißer hervorgerufen. In der zweiten Auswertung des zweiten Experiments tritt nur bei der über den Empfehlungen der aktuellen Prüfrichtlinien liegenden Dosierung von 6000 mg/kg KG eine statistisch signifikante, jedoch sehr geringe Erhöhung auf. Der Befund ist somit als zweifelhaft anzusehen und wird nicht zur Bewertung herangezogen.

Ein Chromosomenaberrationstest an Knochenmarkszellen des Chinesischen Hamsters wurde nach zweitägiger oraler Gabe von 0, 500, 1000 oder 2000 mg Tris(2,4-di-tert-butylphenyl)phosphit/kg KG und Tag mit der Schlundsonde durchgeführt. Es wurden jeweils sechs Tiere pro Geschlecht und Dosisgruppe exponiert. Die Inzidenz der Chromosomenaberration war im Vergleich zur Kontrollgruppe nicht signifikant erhöht (Ciba-Geigy Limited 1980 a).

Nach dem gleichen Applikationsschema von Tris(2,4-di-tert-butylphenyl)phosphit wurde an Knochenmarkszellen von jeweils sechs männlichen und sechs weiblichen Chinesischen Hamstern ein Mikronukleustest durchgeführt. Die Knochenmarkszellen wurden hierzu 24 Stunden nach der letzten Substanzgabe aufgearbeitet. Die Inzidenz der Mikronuklei war im Vergleich zur Kontrollgruppe nicht signifikant erhöht (Ciba-Geigy Limited 1980 b).

Keimzellen
Jeweils 15 männlichen NMRI-Mäusen wurde fünf Tage lang mit der Schlundsonde 0, 1481 oder 4444 mg Tris(2,4-di-tert-butylphenyl)phosphit/kg KG und Tag verabreicht und anschließend die Spermazellen auf Chromosomenaberrationen untersucht. Es zeigten sich keine substanzbedingten genotoxischen Effekte (Ciba-Geigy Limited 1982 c).

In einer weiteren Untersuchung wurden am 1., 3., 4., 6. und 10. Versuchstag jeweils 0, 1481 oder 4444 mg Tris(2,4-di-tert-butylphenyl)phosphit/kg KG und Tag mittels Schlundsonde an 15 NMRI-Mäuse pro Dosisgruppe verabreicht. Die drei Tage nach der letzten Dosisgabe untersuchten primären und sekundären Spermatidenzellen wiesen keine erhöhte Inzidenz an Chromosomenaberrationen auf (Ciba-Geigy Limited 1982 d).
In einem Dominant-Letal-Test erhielten 20 männliche Mäuse pro Dosisgruppe Tris-(2,4-di-tert-butylphenyl)phosphit einmalig in Dosen von 0, 1000 oder 3000 mg/kg KG mit der Schlundsonde verabreicht. Die Tiere wurden anschließend sechs Wochen lang mit jeweils zwei unbehandelten weiblichen Mäusen verpaart und die Feten am 18. Trächtigkeitstag untersucht. Es wurden keine dominant-letalen Effekte beobachtet (Ciba-Geigy Limited 1978 c).

5.7 Kanzeroegenität

5.7.1 Kurzzeitstudien
Hierzu liegen keine Angaben vor.

5.7.2 Langzeitstudien
In einer Zwei-Jahre-Studie erhielten jeweils 70 männliche und 70 weibliche Sprague-Dawley-Ratten 0, 250, 750 oder 2000 mg Tris(2,4-di-tert-butylphenyl)phosphit/kg Futter, was 7–18, 20–55 bzw. 58–147 mg/kg KG und Tag entsprach. Von den Tieren überlebten 50, 40, 39 und 43% bei 0, 250, 750 bzw. 2000 mg/kg Futter. Im ersten Jahr war das Körpergewicht in der hohen Dosisgruppe bei den weiblichen Tieren signifikant um 10% erhöht. Es traten weder substanzbedingte toxische Wirkungen (Abschnitt 5.2.2) noch erhöhte Tumorinzidenzen auf (Ciba-Geigy Limited 1979 a, 1981 b). Die Studie ist aufgrund der niedrigen Überlebensrate und der niedrigen eingesetzten Dosis limitiert in ihrer Aussagekraft. Eine Ursache für die geringe Überlebensrate wurde nicht genannt.
In einer weiteren 24-monatigen Studie mit Fütterung von 100 mg Tris(2,4-di-tert-butylphenyl)phosphit/kg Futter an Wistar-Ratten (entspricht ca. 5 mg/kg KG und Tag) wurden bei den behandelten Tieren verglichen mit Kontrolltieren keine erhöhten Inzidenzen benigner oder maligner Tumoren beobachtet (OECD 2009).

6 Bewertung
Tris(2,4-di-tert-butylphenyl)phosphit wirkt in den vorliegenden Untersuchungen kaum toxisch, was vermutlich unter anderem auf die geringe Bioverfügbarkeit nach oraler Aufnahme zurückzuführen ist.

MAK-Wert und Spitzenbegrenzung. Studien zur inhalativen Wirkung von Tris(2,4-di-tert-butylphenyl)phosphit, aus denen ein MAK-Wert abgeleitet werden kann, liegen nicht vor. Tris(2,4-di-tert-butyl-phenyl)phosphit wirkt am Kaninchen weder haut- noch augenreizend, daher ist nicht mit einer Reizwirkung im Atemtrakt zu rechnen. Da Tris (2,4-di-tert-butylphenyl)phosphit aber kaum wasserlöslich bzw. unlöslich ist (<0,09 mg/l Wasser (OECD-Prüfrichtlinie 105; USEPA 2001) und eine große Moleküllstruktur vorliegt, ist bei inhalativer Aufnahme eine Wirkung im unteren Atemtrakt abgelagerten Partikeln nicht auszuschließen. Da hierzu keine Inhalationsstudie vorliegt,
kann kein MAK-Wert abgeleitet werden. Tris(2,4-di-tert-butyl-phenyl)phosphit wird deshalb dem Abschnitt II b der MAK- und BAT-Werte-Liste zugeordnet. Die Festlegung einer Spitzenbegrenzung entfällt.

Fruchtschädigende Wirkung. In einer Zwei-Generationenstudie mit Fütterung von Tris(2,4-di-tert-butylphenyl)phosphit an Ratten führt eine Dosis von 702–1035 mg/kg KG und Tag zu einer leichten parentalen Toxizität der F0-Generation und einem verminderten Gewicht der Nachkommen der F2-Generation. In einer Entwicklungstoxizitätsstudie nach OECD-Prüfrichtlinie 414 an Kaninchen treten bis zur höchsten getesteten Dosis von 1200 mg/kg KG und Tag weder bei den Muttertieren noch den Nachkommen adverse Effekte auf. Da kein MAK-Wert abgeleitet wird, wird keine Zuordnung zu einer Schwangerschaftsgruppe vorgenommen.

Krebserzeugende und keimzellmutagene Wirkung. Eine orale Kanzerogenitätsstudie an der Ratte, deren Aussagekraft aufgrund der geringen Überlebensrate und zu geringen Dosierung limitiert ist, ergibt keinen Hinweis auf ein tumorigenes Potenzial von Tris(2,4-di-tert-butylphenyl)phosphit. In einem Mutagenitätstest mit Salmonella typhimurium ist Tris(2,4-di-tert-butylphenyl)phosphit nicht mutagen, zytotoxische Konzentrationen werden jedoch nicht erreicht. In-vivo-Untersuchungen auf klastogene Wirkung (Schwesterchromatid austausch, Chromosomenaberrationen, Mikronuklei) am Knochenmark des Chinesischen Hamsters sind negativ. Chromosomenaberrationstests an Spermatozyten oder Spermatogonien sowie ein Dominant-Letal-Test an der Maus zeigen ebenso keinen Effekt. Es erfolgt daher keine Einstufung in eine Kategorie für Kanzerogene oder Keimzellmutagene.

Hautresorption. Experimentelle Ergebnisse aus Studien zur Hautresorption liegen nicht vor. Die Aufnahme von Tris(2,4-di-tert-butylphenyl)phosphit aus dem Gastrointestinaltrakt ist gering. Aus der Anwendung mathematischer Modelle ergibt sich für eine standardisierte Aufnahme aus gesättigter wässriger Lösung eine geringe dermale Resorption von 0,001–0,059 mg. Verglichen mit dem aus dem systemischen NOAEL nach zweijähriger Fütterung bei Ratten von 147 mg/kg KG und Tag unter Einbeziehen der 5%igen oralen Resorption, dem speziesspezifischen Korrekturwert bezüglich der toxikokinetischen Unterschiede zwischen der Ratte und dem Menschen von 1:4 und der pro Woche nur fünftägigen Exposition am Arbeitsplatz errechnete NAEL von 2,6 mg/kg KG und Tag ist der Anteil der perkutanen Resorption zu vernachlässigen. Tris(2,4-di-tert-butylphenyl)phosphit wird daher nicht mit „H“ markiert.

Sensibilisierende Wirkung. Klinische Befunde zur kontaktsensibilisierenden Wirkung des Tris(2,4-di-tert-butylphenyl)phosphits liegen nicht vor. Ein Optimierungstest am Meerschweinchen ergab keinen eindeutigen Hinweis auf ein hautsensibilisierendes Potenzial von Tris(2,4-di-tert-butylphenyl)phosphit. Untersuchungen zur atemwegsensibilisierenden Wirkung liegen nicht vor. Tris(2,4-di-tert-butylphenyl)phosphit wird daher weder mit „Sh“ noch mit „Sa“ markiert.
7 Literatur

Ciba-Geigy AG (1991) Process for the preparation of Tris-(2,4-di-tert-butylphenyl)phosphite, CA Patent 2023164, Publication Date 1991-02-16, European Classification C07F9/145, Ciba-Geigy AG, Basel, Schweiz, http://www.wikipatents.com/CA-Patent-2023164/process-for-the-preparation-of-tris-2,4-di-tert-butylphenylphosphite

Ciba-Geigy Limited (1974) Acute oral LD50 of TK-11682 in the rat, Studiennummer: Siss 3863, 25. März 1974, Ciba-Geigy Limited, Schweiz, Basel, unveröffentlicht

Ciba-Geigy Limited (1975 a) 28 Day oral toxicity study in rats with compound TK 11682, 11. Juli 1975, Ciba-Geigy Limited, Schweiz, Basel, unveröffentlicht

Ciba-Geigy Limited (1975 b) Skin irritation in the rabbit after single application of TK 11682, Studiennummer: Siss 4635, 11. Juni 1975, Ciba-Geigy Limited, Schweiz, Basel, unveröffentlicht

Ciba-Geigy Limited (1975 c) Eye irritation in the rabbit of TK 11682, Studiennummer: Siss 4635, 11. Juni 1975, Ciba-Geigy Limited, Schweiz, Basel, unveröffentlicht

Ciba-Geigy Limited (1976) Toxicity to rats, repeated oral administration for 13 weeks followed by a 4 week withdrawal period, Studiennummer: TK 11682 – D13-168, 18. August 1976, Ciba-Geigy Limited, Schweiz, Basel, unveröffentlicht

Ciba-Geigy Limited (1977 a) Acute oral LD50 in the mouse of TK11682, Studiennummer: Siss 6236, 17. November 1977, Ciba-Geigy Limited, Schweiz, Basel, unveröffentlicht

Ciba-Geigy Limited (1977 b) Acute oral LD50 in the Chinese hamster (Cricetulus griseus) of TK11682, Studiennummer: Siss 6236, 19. September 1977, Ciba-Geigy Limited, Schweiz, Basel, unveröffentlicht

Ciba-Geigy Limited (1977 c) 10 Day oral range finding study in dogs with compound TK11682, 25. April 1977, Ciba-Geigy Limited, Schweiz, Basel, unveröffentlicht

Ciba-Geigy Limited (1977 d) 17 Day dietary range finding study in dogs with compound TK11682, 24. February 1977, Ciba-Geigy Limited, Schweiz, Basel, unveröffentlicht

Ciba-Geigy Limited (1978 a) 3 Month dietary toxicity study in dogs with compound TK 11682, Studiennummer: 7DO3, 13. April 1978, Ciba-Geigy Limited, Schweiz, Basel, unveröffentlicht

Ciba-Geigy Limited (1978 b) Salmonella/mammalian-microsome mutagenicity test with TK 11682 (test for mutagenic properties in bacteria), Studiennummer: 78-2515, 2. Mai 1978, Ciba-Geigy Limited, Schweiz, Basel, unveröffentlicht

Ciba-Geigy Limited (1978 c) Dominant lethal study – TK 11682 (Irgafor 168), mouse (test for cytotoxic or mutagenic effects on male germinal cells), Studiennummer: 784820, 26. September 1978, Ciba-Geigy Limited, Schweiz, Basel, unveröffentlicht

Ciba-Geigy Limited (1979 a) TK 11682: Combined toxicity and carcinogenicity study in rats, Studiennummer: CIA/15/TK 11682, 27. November 1979, Ciba-Geigy Limited, Schweiz, Basel, unveröffentlicht

Ciba-Geigy Limited (1979 b) Acute oral toxicity and neurotoxicity study of TK 11682 in the domestic fowl (Gallus domesticus), Studiennummer: Siss. 6035, 16. Januar 1979, Ciba-Geigy Limited, Schweiz, Basel, unveröffentlicht

Ciba-Geigy Limited (1979 c) Skin sensitizing (contact allergenic) effect in guinea pig of TK11682, Studiennummer: 790316, 24. Juli 1979, Ciba-Geigy Limited, Schweiz, Basel, unveröffentlicht

Ciba-Geigy Limited (1980 a) Chromosome studies in somatic cells – TK 11682 – Chinese hamster (test for mutagenic effects on bone marrow cells), Studiennummer: 783106, 26. Mai 1980, Ciba-Geigy Limited, Schweiz, Basel, unveröffentlicht

Ciba-Geigy Limited (1980 b) Micronucleus anomaly test in somatic interphase nuclei – TK 11682 – Chinese hamster (test for mutagenic effects on bone marrow cells), Studiennummer: 78-3006, 2. Juli 1980, Ciba-Geigy Limited, Schweiz, Basel, unveröffentlicht

Ciba-Geigy Limited (1981 a) Investigation of resorption and elimination of Irgafos 168 by rats, Studiennummer: NA 799148, Juli 1981, Ciba-Geigy Limited, Schweiz, Basel, unveröffentlicht

Ciba-Geigy Limited (1981 b) TK 11682: Combined toxicity and oncogenicity study of dietary administration to rats for two years, Studiennummer: LSR 80/CIA015, 16. Juni 1981, Ciba-Geigy Limited, Schweiz, Basel, unveröffentlicht
Ciba-Geigy Limited (1982 a) Mutagenicity test on Saccharomyces cerevisiae MP-1 in vitro with TK 11682 (test for mutagenic properties in yeast cells), Studiennummer: 820052, 11. Oktober 1982, Ciba-Geigy Limited, Schweiz, Basel, unveröffentlicht

Ciba-Geigy Limited (1982 b) Sister chromatid exchange study – TK 11682 – Chinese hamster (test for mutagenic effects on bone marrow cells), Studiennummer: 800586, 1. September 1982, Ciba-Geigy Limited, Schweiz, Basel, unveröffentlicht

Ciba-Geigy Limited (1982 c) Chromosome studies in male germinal epithelium – TK 11682 – mouse (test for mutagenic effects on spermatogonia), Studiennummer: 782927, 27. Januar 1982, Ciba-Geigy Limited, Schweiz, Basel, unveröffentlicht

Ciba-Geigy Limited (1982 d) Chromosome studies in male germinal epithelium – TK 11682 – mouse (test for mutagenic effects on spermatocytes), Studiennummer: 782928, 8. Februar 1982, Ciba-Geigy Limited, Schweiz, Basel, unveröffentlicht

Ciba-Geigy Limited (1983) Report on IRGAFOS 168 (TK 11682) teratology study in rabbits, Studiennummer 820874, Oktober 1983, Ciba-Geigy Limited, Schweiz, Basel, unveröffentlicht

Ciba-Geigy Limited (1985) Report on IRGAFOS 168 (TK 11682) two-generation reproduction toxicity study in rats, Studiennummer 820873, Februar 1985, Ciba-Geigy Limited, Schweiz, Basel, unveröffentlicht

Ciba-Geigy Limited (1992) Acute dermal toxicity in the rat – TK 11682 – (Irgafos 168), Studiennummer 924065, 22. Juni 1992, Ciba-Geigy Limited, Schweiz, Basel, unveröffentlicht

Ciba-Geigy Limited (1999) Screening study for estrogenic activity by oral administration (gavage) in juvenile female rats (uterotrophic assay), Studiennummer: 17514 FSR, 2. April 1999, Ciba-Geigy Limited, Schweiz, Basel, unveröffentlicht

Ciba-Geigy Limited (2000) Screening study for estrogenic activity by oral administration (gavage) in ovariecotomized rats (uterotrophic assay), Studiennummer: 17514 FSR, 5. Oktober 2000, Ciba-Geigy Limited, Schweiz, Basel, unveröffentlicht

ECB (European Chemicals Bureau) (2000) Tris(2,4-di-tert-butylphenyl) phosphite. IUCLID dataset, 18. Feb 2000, ECB, Ispra, Italien

Fiserova-Bergerova V, Pierce JT, Droz PO (1990) Dermal absorption potential of industrial chemicals: criteria for skin notation. Am J Ind Med 17: 617–635

Guy RH, Potts RO (1993) Penetration of industrial chemicals across the skin: a predictive model. Am J Ind Med 23: 711–719

OECD (Organisation for Economic Co-operation and Development) (2009) SIDS initial assessment profile, report and dossier; tris(2,4-di-tert-butylphenyl)phosphite, OECD, Paris, Frankreich http://webnet.oecd.org/HPV/UI/handler.axd?id=ab23a7ad-8c88-4faf-8c78-d96de5587334

Sigma-Aldrich (2012) Produktkatalog, http://www.sigmaaldrich.com/catalog/ProductDetail.do?D7=0&N5=SEARCH_CONCAT_PNO|BRAND_KEY&N4=441791|ALDRICH&N25=0&QS=ON&F=SPEC

UBA (Umweltbundesamt) (2008) Leitlinie zur hygienischen Beurteilung von Schmierstoffen im Kontakt mit Trinkwasser (Sanitätsschmierstoffe), (Schmierstoffleiitlinie) Stand 7. Oktober 2008

USEPA (US Environmental Protection Agency) (2001) IRGAFOS 169 – tris(2,4-di-tert-butylphenyl) phosphite – CAS No. 31570-04-4; Doc No. AR201-12966B3, received 2001, March; USEPA, Washington, DC, USA

USEPA (2009) Initial Risk-Based Prioritization of High Production Volume (HPV) Chemicals. Tris(2,4-di-(tert)-butylphenyl)phosphite (CASRN 31570-04-4) CA Index Name: Phenol, 2,4-bis(1,1-dimethylethyl)-, 1,1′,1′′-phosphite), U.S. Environmental Protection Agency Risk-Based Prioritization Document, April 2009, USEPA, Washington DC, USA

Wilschut A, ten Berge WF, Robinson PJ, McKone TE (1995) Estimating skin permeation. The validation of five mathematical skin permeation models. Chemosphere 30: 1275–1296

abgeschlossen am 29.02.2012

MAK, 54. Lieferung, 2013
