Flexible hydrogen sensor based on Pd/TiO$_2$ nanofilm with fast response

S H Wu1,2, Z Y Li1, S Mao1, H Y Wang1 and X R Wang1,2

1School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 610054, China
E-mail: shwu@uestc.edu.cn/xiangruwang@uestc.edu.cn

Abstract. Flexible hydrogen sensors based on palladium (Pd) and titanium dioxide (TiO$_2$) nanofilm on poly(dimethylsiloxane) (PDMS) substrate have been demonstrated. We have prepared PDMS using anodic aluminum oxide template and researched the performance of Pd/TiO$_2$ nanofilm based hydrogen sensors with different thickness of TiO$_2$. The sensor with 6nm thickness of TiO$_2$ has demonstrated the best performance with a response/recovery time of 1.6 s/6 s at 0.2% hydrogen concentration, respectively.

1. Introduction
Clean energy has become a global hot topic due to the increasing environmental pollution, non-renewability of fossil fuels and greenhouse effect. Hydrogen (H$_2$) is good clean energy for its renewable and abundant energy with zero pollutant emission [1]. However, its inflammability above a concentration of 4% restricts the extensive utilization of H$_2$ energy, which motivates a lot of researches on the high performance H$_2$ sensors. In recent years, researchers have focused on the new types of hydrogen sensors such as semiconductors, thermoelectric, optics and so on [2]. Especially, metal palladium (Pd) plays an important role in hydrogen sensors due to its special ability of absorbing hydrogen gas at a normal temperature and pressure. Our group have been working on high efficient Pd based hydrogen sensors [3-7]. We tried to use anodic aluminum oxide (AAO) as a substrate to prepare Pd film with porous nano-network structure, which shows good hydrogen detection performance partly due to the increased specific surface area [5,6]. Meanwhile, flexible H$_2$ gas sensors have attracted general attention because of their light-weight, good mechanical property, various applications and so on [8-12]. Lim et al reported a flexible H$_2$ sensor using Pd nanotubes with large surface area and well-interconnected structure exhibiting extremely high sensitivity [8]. Krško et al reported TiO$_2$ thin film based flexible H$_2$ sensor, which demonstrated a response (R_0/R_{H2}) of about 104 for 1% H$_2$ concentration and a capability of sensing H$_2$ concentration of 30 ppm [9].

Poly(dimethylsiloxane) (PDMS) was chosen as an elastomeric substrate for H$_2$ sensors because of its compatibility with Pd, chemical inertness to H$_2$, and mechanical flexibility. In this work, we have fabricated flexible H$_2$ sensors based on Pd/TiO$_2$ nanofilm using PDMS substrate and researched the relationship between the thickness of TiO$_2$ and the performance of hydrogen sensors at room temperature. The sensor with 6nm thick TiO$_2$ achieves a fast response/recovery time of 1.6 s/6 s at 0.2% hydrogen concentration, respectively.

2. Material and methods
AAO template was fabricated using aluminum plate by a two-step anodic oxidation method [5].
Flexible PDMS substrates were prepared by spin coating PDMS monomer mixed with curing agent at a ratio of 10:1 at 300 rpm on AAO. PDMS film on the AAO surface was peeled off after the sample was placed in a baking oven at 75°C for 2 hours. The thickness of PDMS flexible film is about 1.04 mm. TiO$_2$ was prepared on PDMS via spray pyrolysis using a precursor solution of titanium diisopropoxide bis(acetylacetonate) in ethanol with a volume ratio of 1:39 on heating stage with a temperature of 300°C. The thickness of TiO$_2$ was determined by the volume of precursor solution. Then TiO$_2$ films were in situ annealed on heating stage at 300°C for 60 min. We deposited Pd film with a thickness of 30 nm by DC magnetron sputtering at a deposition rate of 1.5 Å/s on the surface of TiO$_2$. Finally a couple of electrodes of 150 nm Ag was prepared on Pd film through E-beam evaporation. Figure 1 shows the schematic fabrication procedure of Pd/TiO$_2$ nanofilm hydrogen sensor. We chose the thickness of TiO$_2$ as 6, 10 and 12 nm, respectively.

![Figure 1. Schematic fabrication procedure of Pd/TiO$_2$ nanofilm hydrogen sensor.](image)

3. Result and discussion

The samples were exposed to a wide range H$_2$ concentrations at room temperature from 0.2% to 1.8% in dry synthetic air for investigating sensing properties. Figure 2 shows the real-time resistance change of the samples at various H$_2$ concentrations. From figure 2, we can see the resistances of three samples decreased under H$_2$ atmosphere and reversed quickly under synthetic air atmosphere, which demonstrates that Pd/TiO$_2$ nanofilm in our work would be discontinuous and work on the “break junction” effect. Meanwhile, the baseline resistances of samples decreased with increasing the thickness of TiO$_2$ observed in figure 2. The decrease of resistance would be due to the enhanced thickness of Pd/TiO$_2$ nanofilm and the improved electrical conductivity.

![Figure 2. Sensing curve of three samples with different thickness of TiO$_2$ measured under different hydrogen concentrations. (a) 6nm TiO$_2$, (b) 10nm TiO$_2$, and (c) 12nm TiO$_2$.](image)

In order to systematically evaluate the sensing performance, the steady-state response (R) of the sensors was defined as $R = R_0 - R_{H2}/R_0$, where R_0 and R_{H2} represents the sensor resistance in pure air and hydrogen gas, respectively. Figure 3 shows the response of hydrogen sensor samples at different hydrogen concentration. From figure 3, the relationship between the response and the square root of H$_2$ partial pressure is not linear for three samples. As we all know, for most resistive Pd-based H$_2$ sensors, the relationship between the resistance change and the square root of H$_2$ partial pressure is approximately linear [13]. Therefore we can further conclude that the Pd/TiO$_2$ nanofilm on PDMS
film works as the “break junctions”. Meanwhile, the numerical value of sensitivity demonstrates the dominating role of Pd in the sensing response of Pd/TiO$_2$ nanofilm and the sensor with 6 nm TiO$_2$ has the optimal sensitivity compared with other samples.

![Figure 3. The steady-state response of hydrogen sensor samples at different hydrogen concentration.](image-url)

![Figure 4. Response and recovery times of three samples with different thickness of TiO$_2$. (a) Response time, (b) Recovery time.](image-url)

The response and recovery times for three samples were shown in figure 4. At room temperature, the sample with 6 nm TiO$_2$ has stable response and recovery at both low and high H$_2$ concentration. However, for the samples with 10 nm and 12 nm TiO$_2$, we could not get the response/recovery times at H$_2$ concentration of 0.2% and 0.4% for the unsteady bringing noise. The response times increased nearly in the linear range of H$_2$ detection at concentrations from 0.2% to 1.8%. Complete recovery was observed for three samples and recovery times were less than 13s at H$_2$ concentration range. Besides, we can see the hydrogen sensor with 6 nm TiO$_2$ shows fastest response in three samples. Especially, the response time and recovery time are respectively 1.6 s/6 s at H$_2$ concentration of 0.2% for the sample with 6 nm TiO$_2$, which are faster than those of the flexible hydrogen sensors based Pd reported
before [11,14].

In order to investigate the enhanced performance of H\textsubscript{2} sensors with TiO\textsubscript{2} layer, the schematic H\textsubscript{2} sensing mechanism for Pd/TiO\textsubscript{2} nanofilm was described in figure 5. With the PDMS prepared by AAO as the substrate, Pd/TiO\textsubscript{2} nanofilm has large specific surface area and “break junctions” of nano-sized Pd particles were formed in nanofilm. Isolated nano-sized Pd particles adsorb hydrogen and form Pd hydride, which leads to a rapid volume expansion of Pd. When some particles touch in the process of expansion, new conducting pathways are formed and the electrical resistance of film is decreased. For TiO\textsubscript{2} particles, dissociatively formed H atoms in Pd will react with the adsorbed oxygen and inject electrons into the TiO\textsubscript{2} layer, which results in the resistance decrease further. With the exist of TiO\textsubscript{2}, the hydrogen dissolution in Pd/TiO\textsubscript{2} nanofilm will be strengthened with the large concentration difference of H atoms at the surface and interior of Pd/TiO\textsubscript{2} nanofilm, shown in figure 5. With the increase of TiO\textsubscript{2} thickness, it would decrease the specific surface area of Pd/TiO\textsubscript{2} nanofilm and result in low hydrogen adsorption and solubility [15].

![Diagram](image_url)

Figure 5. Schematic H\textsubscript{2} sensing mechanism for Pd/TiO\textsubscript{2} nanofilm.

4. Conclusion

In conclusion, flexible hydrogen sensors based on Pd/TiO\textsubscript{2} nanofilm with fast response were fabricated on PDMS by controllable thickness of TiO\textsubscript{2}. We used AAO template to regulate the surface morphology of PDMS. We researched the sensor performance and the decreased resistance under hydrogen gas has demonstrated that Pd/TiO\textsubscript{2} nanofilm sensors work on “break junction” effect. The sensor with 6 nm thickness of TiO\textsubscript{2} achieves a fast response/recovery time of 1.6 s/6 s at 0.2% hydrogen concentration, respectively. The fast response of the sensor is mainly due to large specific surface area of Pd/TiO\textsubscript{2} nanofilm and enhanced dissolution of hydrogen into Pd with the help of TiO\textsubscript{2}.

Acknowledgments

We acknowledge funding from the National Natural Science Foundation of China (Grant Nos. 61775026, 61505015, 61504020, 61405026), the Fundamental Research Funds for the Central Universities (Grant Nos. ZYGX2018J048, ZYGX2014J049), the National Key R & D Program (Grant No. 2014M552330) and China Postdoctoral Science Foundation (Grant No. 2014M552330).

References

[1] Momirlan M and Veziroglu T N 2005 *Int. J. Hydrogen Energy* 30 795-802
[2] Hübert T, Boon-Brett L, Black G and Banach U 2011 *Sens. Actuators B: Chem.* 157 329-52
[3] Ding D, Chen Z and Lu C 2006 *Sens. Actuators B: Chem.* 120 182-6
[4] Ding D and Chen Z 2007 *Adv. Mater.* 19 1996-9
[5] Hao M, Wu S, Zhou H, Ye W, Wei X and Wang X 2015 *J. Mater. Sci.* 51 2420-6
[6] Wu S, Zhou H, Hao H, Wei X, Li S and Yu H 2016 *Appl. Surf. Sci.* 380 47-51
[7] Mao S, Zhou H, Wu S, Yang J, Li Z, Wei X, Wang X, Wang Z and Li J 2018 *Int. J. Hydrogen Energy* **43** 22727-32
[8] Lim M, Kim D H, Park C, Lee Y, Han S, Li Z, Williams R and Park I 2012 *ACS Nano* **6** 598-608
[9] Krško O, Plecenik T, Roch T, Grančič B, Satrapinskyy Li, Truchly M, Durina P, Gregor M, Kůs P and Plecenik A 2017 *Sens. Actuators B: Chem.* **240** 1058-65
[10] Chung M, Kim D, Seo D, Kim T, Im H and Lee H 2012 *Sens. Actuators B: Chem.* **169** 387-92
[11] Kim W, Jang B, Lee H and Lee W 2016 *Sens. Actuators B: Chem.* **224** 547-51
[12] Sun Y and Wang H 2007 *Appl. Phys. Lett.* **90** 213107
[13] Kirchheim R, Sommer F and Schluckebier G 1982 *Acta Metall.* **30** 1059-68
[14] Hu Y, Lei J, Wang Z, Yang S, Luo X, Zhang G, Chen W and Gu H 2016 *Int. J. Hydrogen Energy* **41** 10986-90
[15] Rumiche F, Wang H, Hu W, Indacochea J and Wang M 2008 *Sens. Actuators B: Chem.* **134** 869-77