Differential flatness for

Neuroscience population dynamics

A preliminary study

Version 1 – November 2016
Hugues Mounier
Laboratoire des Signaux et Systèmes
CentraleSupélec
3, rue Joliot Curie
91192 GIF sur YVETTE
e-mail: hugues.mounier@l2s.centralesupelec.fr
CONTENTS

I NEURAL MASS MODELS

1. **SIMPLE AND COMMON NEURAL MASS MODELS**
 - 1.1 Scalar integrate and fire models 5
 - 1.2 Two variables integrate and fire models 6
 - 1.3 Two variables integrate and fire Izhikevich’s models 6
 - 1.4 Vectorial integrate and fire models 6
 - 1.5 Neural mass Wilson-Cowan E-I networks 7

2. **DIFFERENTIAL FLATNESS**
 - 2.1 Differential flatness notion 9
 - 2.1.1 Dynamics and observation equations 9
 - 2.1.2 Differential flatness definition 9
 - 2.1.3 Parametrization ... 10
 - 2.1.4 A word of methodology 11
 - 2.2 Differential flatness of simple neural mass models 11
 - 2.2.1 Weakly coupled E-I networks 11
 - 2.2.2 Differential flatness of a weakly coupled E-I network 12
 - 2.2.3 Differential flatness of Wilson Cowan’s E-I network 12
 - 2.2.4 Differential flatness of asymmetric Wilson Cowan’s E-I network .. 12

3. **DIFF. FLATNESS APPLICATIONS & EXTENSIONS**
 - 3.1 Differential flatness applications 15
 - 3.1.1 Trajectory tracking 15
 - 3.1.2 Feedforward to feedback switching 18
 - 3.1.3 Cyclic character ... 18
 - 3.1.4 Positivity & Boundedness 19
 - 3.1.5 Simultaneous synchronisation & tracking 20
 - 3.2 Flatness apps. for neural mass E-I networks 20
 - 3.2.1 Trajectory tracking for weakly coupled E-I networks 20
 - 3.2.2 Trajectory tracking for asymmetric Wilson-Cowan’s E-I networks .. 22
 - 3.2.3 Feedforward to feedback switching 23
 - 3.3 Diff. flatness apps. for simplistic motor control 24
 - 3.3.1 Two link arm model 24
 - 3.3.2 Differential flatness and open loop control of the two link arm .. 25
 - 3.3.3 End effector dynamics 26
 - 3.3.4 Trajectory tracking of the two link arm 27
 - 3.4 Extensions of differential flatness 30
3.5 Flatness of other neural mass models
3.5.1 Jansen and Rit model

II NEURAL FIELD POPULATION MODELS
3.5.2 General case model
3.5.3 Parameters and variables assumptions
3.5.4 Neuron interaction strength examples
3.5.5 Simplification hypotheses
3.5.6 Pointwise neuron interaction strength models
3.5.7 Exponential type neuron interaction strength
3.6 A Jansen and Rit Neural field model

BIBLIOGRAPHY

III APPENDIX
A NOTATIONS, TRANSFORMS AND SIGMOID FUNCTIONS
A.1 Functions and distributions
A.2 Transforms
A.3 Sigmoid functions

B SOME FLATNESS SIMPLE CRITERIA
B.1 Necessary and sufficient conditions in peculiar cases
B.2 A necessary condition
B.3 Static state feedback linearizability criterion
B.3.1 Brief recall of differential geometry notions

C DEFINITIONS FOR EXTENSIONS OF DIFFERENTIAL FLATNESS
C.1 Systems, dynamics and differential flatness
C.1.1 Basic definitions from differential algebra
C.1.2 Algebraic and transcendental extensions
C.1.3 Nonlinear systems and flatness
C.2 H-fields, Liouvillian and existential closedness

D TWO LINK ARM INVERSE KINEMATICS
E TWO LINK ARM CODE LISTING
E.1 Flatness based control of the arm
NOTATIONS

Some recurrent notations, transforms and sigmoid functions we shall be using throughout this document are given in Appendix A p. 53.

INTRODUCTION

The various objectives one wishes to attain through a controlled dynamical system almost always boil down to a system’s behavior modification. One has at his disposal so called control variables whose aim is to steer the system. The behavior modification generally consist in tracking a prescribed trajectory, with stability. Note that the first phase (open loop trajectory tracking) is a feedforward one, while the second (with stability) is a feedback one. A possible methodology for controlling a system is then decomposed in two steps:

1. A so called open loop trajectory tracking, supposing the model perfect and the initial conditions perfectly known.

2. A feedback stabilizing the system around the reference trajectories, to compensate for model mismatch, poorly known initial conditions and external perturbations.

Simple and natural solutions to problem 1 are obtained through the differential flatness property, a notion due to Michel Fliess, Jean Lévine, Philippe Martin and Pierre Rouchon (Fliess et al., 1995). This property amounts to a parametrization of a dynamical system in terms of a so-called flat output: any variable in the system can be expressed through a function of the flat output components and a finite number of its derivatives. This parametrization yields expressions of all the system’s variables without having to integrate any differential equation, which ensures fast computations. The control is in particular given through the flat output and its derivatives; an inversion of the system control input to flat output is thus performed, without any integration. This notion has been extended to infinite dimensional systems, governed by partial differential equations (Woittennek and Mounier, 2010).

The present document is devoted to structural properties of neural population dynamics and especially their differential flatness. Several applications of differential flatness in the present context can be envisioned, among which: trajectory tracking, feedforward to feedback switching, cyclic character, positivity and boundedness.
Part I

NEURAL MASS MODELS
SIMPLE AND COMMON NEURAL MASS MODELS

The following models are quite simple models for neural populations with lumped space parameters (see, e.g. (Dayan and Abbott, 2005), Chapter 7, (Ermentrout and Terman, 2010), Chapter 11). The case of distributed parameter models, so-called neural field models, is considered in Section 3.5.2, p. 39.

1.1 SCALAR INTEGRATE AND FIRE MODELS

These type of models are of the form:

\[C \dot{v} = -g_L(v - v_L) + F(v) + I \] (1.1)

where \(v \) is the membrane potential, determined with respect to the resting potential of the cell, \(\tau_m \) is the membrane time constant, \(F(v) \) is a spike generating current, and \(I \) is the total current elicited by synaptic inputs to the neuron.

Common types of models, each associated with a specific type of spike generating currents, are:

- The leaky integrate and fire, corresponding to \(F = 0 \)
- The quadratic integrate and fire (or theta neuron), corresponding to

\[F(v) = \frac{g_L}{2\Delta T} (v - v_T)^2 + g_L(v - v_T) - I_T \]

- The exponential integrate and fire, corresponding to

\[F(v) = g_L \Delta T e^{\frac{v - v_T}{\Delta T}} \]
1.2 TWO VARIABLES INTEGRATE AND FIRE MODELS

More general models adds a second variable coupled to the voltage (see (Izhikevich, 2010))

\[
\begin{align*}
\dot{v} &= F(v) - \mu + I \\
\dot{\mu} &= a(bv - \mu)
\end{align*}
\]

The function \(F(v) \) describes the current–voltage characteristic of the membrane potential near the threshold, and it typically looks like a parabola (Izhikevich, 2003, 2004): \(F(v) = v^2 \). Other choices possible are

\[
F(v) = |v|^3, \quad F(v) = \frac{1}{1 - v}, \quad F(v) = |v|^n - v
\]

An exponential spike generating current has been considered in (Brette and Gerstner, 2005) leading to the so-called adaptive exponential integrate and fire: \(F(v) = e^v - v \), and (Touboul, 2009) suggested the quartic model \(F(v) = v^4 + 2av \).

1.3 TWO VARIABLES INTEGRATE AND FIRE IZHIKEVICH’S MODELS

Another class of models is found in (Izhikevich, 2010):

\[
\begin{align*}
\dot{v} &= F(v) - \mu(E - v) + I \\
\dot{\mu} &= a(bv - \mu)
\end{align*}
\]

where \(v \) plays the role of a conductance and \(E \) is its reverse potential, which could be assumed to take values \(\pm 1 \) or 0 after appropriate rescaling.

1.4 VECTORIAL INTEGRATE AND FIRE MODELS

Two types of integrate and fire models can be derived (see, e.g. (Ermentrout and Terman, 2010), Chapter 11):

\[
\begin{align*}
\tau_m \dot{v} &= -v + WF(v) + \tilde{I} \\
\tau_d \dot{\rho} &= -\rho + F(W\rho + I)
\end{align*}
\]

where \(\tau_m \) is the membrane time constant, and

\[
\tau_d \dot{\rho} = -\rho + F(W\rho + I)
\]

where \(\tau_d \) is the synaptic decay time.
Remarks

1. The choice of one of the models is based on time scale considerations (see, e.g. (Ermentrout and Terman, 2010), p. 335), where in (1.3) the temporal dynamics is dominated by the synaptic decay and in (1.3), the membrane time constant of the postsynaptic cell are small compared with the decay of the synapse.

2. Note that the above two models can be shown to be equivalent (when \(\tau_d = \tau_m = \tau \)) in the following sense (see (Miller and Fumarola, 2012)). If \(\rho \) is a solution of the membrane model (1.3), then \(W_\rho + I \) is a solution of (1.2). Indeed, setting \(\nu = W_\rho + I \), one obtains

\[
\tau \dot{\nu} = \tau W_\rho + \tau I = W(-\rho + F(W_\rho + I)) + \tau I
\]

\[
= -(\nu - I) + WF(\nu) + \tau I
\]

\[
= -\nu + WF(\nu) + \tilde{I}
\]

1.5 Neural Mass Wilson-Cowan E-I Networks

Consider the simplest form of network, a pair of mutually coupled local populations of excitatory and inhibitory neurons, also called E-I network (see, e.g. (Bressloff, 2014), Subsection 6.2, p. 238). This model was originally developed by Wilson and Cowan (see, e.g. (Ermentrout and Terman, 2010), Subsection 11.3, p. 344), and has the form

\[
\tau_e \dot{\nu}_e = -\nu_e + F_e(w_{ee} \nu_e - w_{ei} \nu_i + I_e)
\]

\[
\tau_i \dot{\nu}_i = -\nu_i + F_i(w_{ii} \nu_i - w_{ei} \nu_e + I_i)
\]

where \(\nu_e \) and \(\nu_i \) are the proportion of excitatory and inhibitory cells firing per unit time, the activations are nonlinear functions (typically sigmoidal) \(F_e, F_i \) of the presently active proportion of cells, \(w_{ee}, w_{ii}, w_{ei}, w_{ei} \) are the strength of the connections.

The matrix form of the previous model is

\[
\tau_e \dot{\nu}_e = -\nu_e + F_e(W_{ee} \nu_e - W_{ei} \nu_i + I_e)
\]

\[
\tau_i \dot{\nu}_i = -\nu_i + F_i(W_{ii} \nu_i - W_{ei} \nu_e + I_i)
\]
DIFFERENTIAL FLATNESS

2.1 DIFFERENTIAL FLATNESS NOTION

2.1.1 Dynamics and observation equations

Consider a system given by the dynamics equation and the observation equation

\[\dot{x} = f(x, u) \quad \text{dynamics equation} \quad (2.1a) \]
\[y_m = h(x) \quad \text{observation equation} \quad (2.1b) \]

with \(x(t) = (x_1(t), \ldots, x_n(t)) \), the state, or, in Karl Friston’s terms the hidden variables (see, e.g. (Friston, 2012)), i.e. the controlled variables, \(u(t) = (u_1(t), \ldots, u_m(t)) \), the control input, functions enabling an action on the process (typically input current), and \(y_m = (y_{m1}(t), \ldots, y_{mp}(t)) \) the output, measured functions enabling to sense the environment (quantities coming from sensors).

Note that the dynamics equations form an undetermined system of differential equations, since the control functions \(u(t) \) are not a priori determined. Once the control variables are fixed (i.e. substituted with known functions of time), the system (2.1) becomes determined (i.e. can be integrated). The state variables represent the instantaneous memory of the system: once the control variables have been determined, the knowledge of the state variables (at time \(t \)) enables to predict the future state (at time \(t + dt \)).

Another formulation is the following: the state of a dynamical system is a set of physical quantities the specification of which (in the absence of external excitation) completely determines the evolution of the system.

2.1.2 Differential flatness definition

The notion of differential flatness (see (Fliess et al., 1995)) is a form of controllability for non linear dynamical systems which is espe-
Differentially well suited for trajectory tracking problems. It amounts to a parametrization of the system without integration of any differential equation. Although the mathematical property seems quite strong, it appears that this notion is commonly encountered in practice (see, e.g., (Rouchon, 2001, Martin and Rouchon, 2008) for a catalog of differentially flat systems). We shall give below a definition for such systems and illustrate this through simple examples derived from the well-known Wilson and Cowan’s model. Some more details about this property is given in the appendices.

Definition 1 The system

\[\dot{x} = f(x, u) \]

with \(x(t) \in \mathbb{R}^n \) and \(u(t) \in \mathbb{R}^m \) is differentially flat if there exists a set of variables, called a flat output,

\[y = h(x, u, \dot{u}, \ldots, u^{(r)}), \quad y(t) \in \mathbb{R}^m, r \in \mathbb{N} \]

such that

\[x = A(y, \dot{y}, \ldots, y^{(\rho_x)}) \]

\[u = B(y, \dot{y}, \ldots, y^{(\rho_u)}) \]

with \(q \) an integer, and such that the system equations

\[\frac{dA}{dt}(y, \ldots, y^{(q+1)}) = f(A(y, \ldots, y^{(q)}), B(y, \ldots, y^{(q+1)})) \]

are identically satisfied.

2.1.3 Parametrization

For any flat output given through a function of the form \(t \in \mathbb{R} \rightarrow y(t) \), the trajectory of the system \(x(t), u(t) \) are given by:

\[x(t) = A(y(t), \dot{y}(t), \ldots, y^{(\rho_x)}(t)) \]

\[u(t) = B(y(t), \dot{y}(t), \ldots, y^{(\rho_u)}(t)) \]

There is a one to one correspondence between the system trajectories and the ones given by the flat output.
2.1.4 A word of methodology

The preceding notion will be used to obtain so called “open loop” controls, that is control laws which will ensure the tracking of the reference flat outputs when the model is assumed to be perfect and the state initial conditions are assumed to be exactly known. Since this is never the case in practice, one needs some feedback schemes that will ensure asymptotic convergence to zero of the tracking errors. Our framework can thus be decomposed in two steps:

1. Design of the reference trajectory of the flat outputs; off-line computation of the open loop controls.

2. Inline computation of the complementary closed loop controls in order to stabilize the system around the reference trajectories.

Why is this two step design better suited than a classical stabilization scheme? The first step obtains a first order solution to the tracking problem, while following the model instead of forcing it (like in a usual pure stabilization scheme). The second step is a refinement one, and the error between the actual values and the tracked references will be much smaller than in the pure stabilization case.

2.2 DIFFERENTIAL FLATNESS OF SIMPLE NEURAL MASS MODELS

2.2.1 Weakly coupled E-I networks

Consider a Wilson-Cowan model where \(w_{ie} \ll 1 \). Hence (1.4a) reduces to

\[
\tau_e \dot{v}_e = -v_e + F_e (w_{ee} v_e + I_e)
\]

Alternatively, one could also consider the other limit case where \(w_{ei} \ll 1 \) where (1.4b) reduces to

\[
\tau_i \dot{v}_i = -v_i + F_i (w_{ii} v_i + I_i)
\]

Whatever case we consider, we shall abbreviate it by the following highly simplified model

\[
\tau \dot{v} = -v + F(v + I)
\]

(2.6)
where the subscript has been dropped for convenience. This model, although simplistic, is considered here because of its simplicity for pedagogical purposes. Set
\[\phi = F^{-1} \]
where \(F \) is a sigmoid function (see A.3, p. 54).

2.2.2 Differential flatness of a weakly coupled E-I network

The model depicted by (2.6) is differentially flat, with \(\nu \) as a flat output. Indeed, one has
\[w\nu + I = \phi(\tau \dot{\nu} + \nu) \]
and the input \(I \) is given by
\[I = -w\nu + \phi(\tau \dot{\nu} + \nu) \quad (2.7) \]

2.2.3 Differential flatness of Wilson Cowan’s E-I network

The E-I network equations (1.4a)–(1.4b)
\[
\begin{align*}
\tau_e \dot{v}_e &= -v_e + F_e(w_{ee}v_e - w_{ie}v_i + I_e) \\
\tau_i \dot{v}_i &= -v_i + F_i(w_{ii}v_i - w_{ei}v_e + I_i)
\end{align*}
\]
rewrite
\[
\begin{align*}
w_{ee}v_e - w_{ie}v_i + I_e &= F_e^{-1}(\tau_e \dot{v}_e + v_e) \\
w_{ii}v_i - w_{ei}v_e + I_i &= F_i^{-1}(\tau_i \dot{v}_i + v_i)
\end{align*}
\]
This model is thus differentially flat with flat output \((v_e, v_i)\):
\[
\begin{align*}
I_e &= w_{ee}v_e - w_{ie}v_i + F_e^{-1}(\tau_e \dot{v}_e + v_e) \\
I_i &= -w_{ei}v_e + w_{ii}v_i + F_i^{-1}(\tau_i \dot{v}_i + v_i)
\end{align*}
\]

2.2.4 Differential flatness of asymmetric Wilson Cowan’s E-I network

Consider the E-I Wilson-Cowan equations (1.4a)–(1.4b) with statically coupled external currents
\[I_e = (1 + a)I, \quad I_i = (1 - a)I \]
with \(a \in [-1, 1] \) an asymmetry factor. The model (1.4a)–(1.4b) then becomes (see, e.g. (Ermentrout and Terman, 2010), Section 11.3, p. 349)

\[
\tau_e \dot{v}_e = -v_e + F_e((1 + a)I - w_e v_i) \\
\tau_i \dot{v}_i = -v_i + F_i((1 - a)I - w_i v_e)
\]

In the asymmetric case, i.e. \(a = -1 \) the preceding equations are

\[
\tau_e \dot{v}_e = -v_e + F_e(-w_i v_i) \quad (2.8a) \\
\tau_i \dot{v}_i = -v_i + F_i(2I - w_e v_i) \quad (2.8b)
\]

Then, \(v_e \) is a flat output. Indeed, one gets

\[
v_i = -\frac{1}{w_i} F_e^{-1}(\tau_e v_e + v_e) \\
I = \frac{1}{2} \left[w_e v_e + F_e^{-1}(\tau_i v_i + v_i) \right]
\]
3 DIFFERENTIAL FLATNESS APPLICATIONS AND EXTENSIONS

3.1 DIFFERENTIAL FLATNESS APPLICATIONS

A number of applications of differential flatness can be envisioned, among which:

- Trajectory tracking.
- Feedforward to feedback switching.
- Cyclic character.
- Positivity & boundedness.
- Simultaneous synchronisation & tracking.

3.1.1 Trajectory tracking

Flatness and feedback linearization

A characterization of flat systems that appears very useful for stabilized trajectory tracking is the following

Proposition 1 A system is flat if, and only if, it is linearizable by endogenous feedback and change of coordinates.

A dynamic feedback is called endogenous if it does not include any external dynamics. More precisely

Definition 2 Consider the dynamics \(\dot{x} = f(x, u) \). The feedback

\[
\begin{align*}
 u &= \zeta(x, z, v) \\
 \dot{z} &= \zeta(x, z, v)
\end{align*}
\]
(where \(v \) is the new input) is called a dynamic endogenous feedback if the original dynamics \(\dot{x} = f(x, u) \) is equivalent to the transformed one

\[
\dot{x} = f(x, \zeta(x, z, v)) \\
\dot{z} = \zeta(x, z, v)
\]

Two systems are called equivalent if there exists a invertible transformation which exchanges their trajectories.

A more restrictive notion is the one of static state feedback, as described below.

Definition 3 Consider the dynamics \(\dot{x} = f(x, u) \). The feedback

\[
u = \zeta(x, v)
\]

(where \(v \) is the new input) is called a static feedback if the original dynamics \(\dot{x} = f(x, u) \) is transformed to

\[
\dot{x} = f(x, \zeta(x, v))
\]

See the Subsection B.3, p. 58 for a static state feedback linearization criterion.

Dynamical extension algorithm

This procedure enables one to know if an \(m \)-uple \((y_1, \ldots, y_m) \) is a flat output or not. Meanwhile, we shall obtain a linearizing feedback.

Phase I – Gathering the so called weak brunovsky indices.

1) Differentiate \(y_1 \) until a combination of controls appears. Note \(\kappa_1 \) the number of successive differentiations \(y_1^{(\kappa_1)} = f_1 \)

2) Differentiate \(y_2 \) until a combination of controls (independent of the previous ones) appears. Note \(\kappa_2 \) the number of successive differentiations \(y_2^{(\kappa_2)} = f_2 \)

:

m) Differentiate \(y_m \) until a combination of controls (independent of the previous ones) appears. Note \(\kappa_m \) the number of successive differentiations \(y_m^{(\kappa_m)} = f_m \)
PHASE II – Deciding the flatness character.
Then, if \(\kappa_1 + \cdots + \kappa_m = n \) (\(n \) being the state dimension), the system admits \((y_1, \ldots, y_m)\) as a flat output. If not, \((y_1, \ldots, y_m)\) isn’t a flat output.

PHASE III – Obtaining the linearizing feedback.
The linearizing feedback is given by \(f_1 = v_1, \ldots, f_m = v_m \).

Closed loop trajectory tracking
The open loop control laws suppose that the model is perfect and that the initial conditions are exactly known. Since this is never the case in practice, we add corrective terms to the open loop controls derived above in order to stabilize the system around the reference trajectories.

More precisely, considering a flat dynamics \(\dot{x} = f(x, u) \), we want to derive a controller able to follow any reference trajectory \(t \mapsto y_r(t) \). In order to compensate for model mismatch and poorly known initial conditions, one has to complement the open loop (obtained through flatness) with a closed loop corrective term depending on the error \(y(t) - y_r(t) \).

Knowing the dynamics is flat, with flat output \(y \), it can be transformed via endogenous feedback and coordinate change to a linear dynamics of the form

\[
\begin{align*}
y^{(\kappa_1)}_1 &= v_1 \\
& \vdots \\
y^{(\kappa_m)}_m &= v_m
\end{align*}
\]

with the new input \((v_1, \ldots, v_m)\). Then, the elementary tracking feedback

\[
v_i = y^{(\kappa_i)}_{ir} - \sum_{j=0}^{\kappa_i-1} k_{ij} (y^{(j)}_i - y^{(j)}_{ir}), \quad i = 1, \ldots, m
\]

\[
v_i = y^{(\kappa_i)}_{ir} - \sum_{j=0}^{\kappa_i-1} k_{ij} e^{(j)}_i
\]

with appropriately chosen \(k_{ij} \) gains renders the error dynamics asymptotically stable:

\[
e^{(\kappa_i)}_i = \sum_{j=0}^{\kappa_i-1} -k_{ij} e^{(j)}_i, \quad i = 1, \ldots, m
\]
3.1.2 Feedforward to feedback switching

Open and closed loop

The so-called open loop control u_o is obtained through \((2.5b)\)

$$u(t) = B(y(t), \dot{y}(t), \ldots, y^{(p_u)}(t))$$

by replacing y with a sufficiently differentiable trajectory $y_r(t)$:

$$u_o(t) = B(y_r(t), \dot{y}_r(t), \ldots, y_r^{(p_u)}(t))$$

The use of this control law would lead to the desired tracking behavior $y = y_r$ if the model \((2.1a)\) was perfect and if the initial conditions on y was precisely known. Since this is never the case in practice, one has to use closed loop feedback laws, such as the ones elaborated in the previous Subsection 3.1.1, p. 15. The difference between open and closed loop control laws can be bounded by the tracking error and its derivatives. The simple weakly coupled E-I network example is examined in Subsection 3.2.3, p. 23.

Temporal switching from feedforward to feedback

Consider the following control law

$$u(t) = (1 - \sigma(t - t_{sw}))u_o(t) + \sigma(t - t_{sw})u_c(t)$$

with σ a sigmoid function, for example of the form

$$\sigma(t) = \frac{1}{1 + e^{-t/\beta}}, \quad \sigma(t) = \frac{1 + \tanh(\alpha t)}{2}$$

Thus, from $t = 0$ to $t = t_{sw} - d$ for some $d > 0$, we have $u \approx u_o$, and from $t = t_{sw} + d$, $u \approx u_c$. This is the kind of control human beings tend to adopt for example in gesture control. When grasping a glass of water, the first part of the gesture is done in open loop, quickly and inaccurately; the second part of it is done with visual feedback, much more slowly but precisely.

3.1.3 Cyclic character

When the flat output is cyclic, i.e.

$$(1 - \Delta_r)y(t) = y(t) - y(t - \tau) = 0$$
Then, all the variables which are expressed as functions of $y(t)$, that is all the variables when the system is flat, are also cyclic: for a variable z which is expressed as $z = C(y, \dot{y}, \ldots, y^{(\eta)})$

$$(1 - \Delta \tau)z = (1 - \Delta \tau)C(y, \dot{y}, \ldots, y^{(\eta)})$$

$$= C((1 - \Delta \tau)y, (1 - \Delta \tau)\dot{y}, \ldots, (1 - \Delta \tau)y^{(\eta)})$$

$$= 0$$

(3.2)

More generally, if the flat output satisfies a difference equation:

$$p(\Delta \tau)y = 0$$

where p is a polynomial, then any variable of the flat system with flat output y also satisfies the same difference equation.

3.1.4 Positivity & Boundedness

The goal is here to specify the reference trajectory in order to enforce certain properties for various system variables. Two main cases can be considered: The one of cyclic reference trajectories and the one of non cyclic ones.

Cyclic reference trajectories

The flat output reference trajectories being cyclic can be expressed through a Fourier series

$$\forall i = 1, \ldots, m, \quad y_i = \sum_{n=1}^{\infty} \xi_i, n e^{\frac{2i\pi}{\pi}}$$

(3.3)

Since all variables are also cyclic (see (3.2)) they can also be expressed through a Fourier series

$$z = \sum_{n=1}^{\infty} \zeta_n e^{\frac{2i\pi}{\pi}}$$

(3.4)

One then has some relations expressing the ζ_n through the $\xi_{i,n}$:

$$\tilde{\xi}_n = \phi_n(\xi_{1,n}, \ldots, \xi_{m,n})$$

And the positivity can be expressed through a sum of squares type formula (see, e.g. [Dumitrescu, 2007]). Several matlab packages are available for finding sum of squares decompositions of real multivariate polynomials; the most popular ones are SOSTOOLS (see http://).
www.cds.caltech.edu/sostools/), YALMIP (see http://users.isy.liu.se/johanl/yalmip/, and especially http://users.isy.liu.se/johanl/yalmip/pmwiki.php?n=Examples.MoreSOS) and GloptiPoly (see http://homepages.laas.fr/henrion/software/gloptipoly/).

Non cyclic reference trajectories

One option is to take in the flat output \(y = (y_1, \ldots, y_m) \) all the components \(y_i \)'s as polynomial splines. If the firing rate function is taken to be of Naka Rushton type, then all inequalities will boil down to expressions of the form

\[
P_i(y, \dot{y}, \ldots, y^{(\rho)}) > 0, \quad i = 1, \ldots, m
\]

where the \(P_i \)'s are polynomials in their variables. Since the \(y_i \)'s are polynomial splines, \(P_i(y, \ldots, y^{(\rho)}) \) will be another polynomial spline. And any approximating polynomial spline is contained in the convex hull of its control points. One then can choose the lowest of these to be positive, to ensure the above inequality to be fullfilled.

3.1.5 Simultaneous synchronisation & tracking

One considers here two (or more generally \(N \)) oscillators coupled via their input:

\[
\begin{align*}
\dot{x}_1 &= f_1(x, u) \\
\dot{x}_2 &= f_2(x, u)
\end{align*}
\]

The flatness of this system ensures not only that synchronisation is possible, but also that any periodic trajectory (of the flat output) may be tracked, which is a much stronger result.

3.2 DIFFERENTIAL FLATNESS APPLICATIONS FOR SIMPLE NEURAL MASS E-I NETWORKS

3.2.1 Trajectory tracking for weakly coupled E-I networks

Recall the weakly coupled E-I network (2.6), p. 11:

\[
\tau \dot{v} = -v + F(w v + I)
\] (3.5)
In a trajectory tracking, one chooses a reference trajectory v_r and one wants that $\lim_{t \to \infty} v = v_r$, or, what is the same

$$\lim_{t \to \infty} e_v = 0,$$

where $e_v = v - v_r$

This behavior can be enforced through the following desired error dynamics

$$\dot{e}_v = -\lambda e_v$$

where $\lambda > 0$ is a user chosen gain ruling the tracking error convergence speed. In order to obtain the desired behavior (3.6), one has to set in (2.6):

$$-v + F(wv + I_c) = -\tau\lambda e_v + \tau v_r$$

where I_c is the closed loop control law. The preceding equation can be rewritten as

$$wv + I_c = \phi(v - \tau\lambda e_v + \tau v_r)$$

which yields the following closed loop tracking feedback law

$$I_c = -wv + \phi(\tau v_r + v - \tau\lambda e_v)$$

which ensures, through (3.6), the tracking of the reference trajectory v_r for the system (2.6) with stability.

Remark 1 The application of the preceding extension algorithm is quite trivial since the system is fairly simple:

- Gathering the so called weak brunoovsky indices.
 The flat output v is differentiated once in equation (2.6) where the control I is already present, hence $\kappa_1 = 1$.

- Deciding the flatness character.
 Since the dimension of the state is $n = 1$, $\sum_i \kappa_i = \kappa_1 = n$ and the system is flat with flat output v.

- Obtaining the linearizing feedback.
 The linearizing feedback is given by:

$$\frac{1}{\tau} (-v + F(wv + I)) = v$$

(3.8)
This feedback transforms the dynamics (2.6) into the following linear one:
\[\dot{\nu} = \nu \]
and the elementary tracking feedback is
\[v = \dot{\nu} - \lambda e_v \]
(3.9)
Thus, the original tracking feedback law is obtained from (3.8) and (3.9):
\[I = -w \nu + \phi(\tau \dot{\nu} + \nu - \tau \lambda e_v) \]

3.2.2 Trajectory tracking for asymmetric Wilson-Cowan’s E-I networks

Recalling the equations of the asymmetric Wilson-Cowan’s E-I network (2.8a)–(2.8b)
\[\tau_e \dot{\nu}_e = -\nu_e + F_e(-w_i v_i) \]
\[\tau_i \dot{\nu}_i = -\nu_i + F_i(2I - w_e v_e) \]
and differentiating the first equation in \(\nu_e \), we get the flat dynamics
\[\tau_e \ddot{\nu}_e = -\dot{\nu}_e - w_i F'_e(-w_i v_i) \dot{v}_i \]
\[= -\dot{\nu}_e + \frac{w_i}{\tau_i} F'_e(-w_i v_i) \left(\nu_i - F_i(2I - w_e v_e) \right) \]
(3.10)
The desired dynamics being
\[\dot{e}_{er} = -\lambda e_{er} - \mu e_{er}, \quad \text{where } e_{er} = \nu_e - \nu_{er} \]
the right hand side of (3.10) is then taken to be
\[\dot{\nu}_e + \frac{w_i}{\tau_i} F'_e(-w_i v_i) \left(-\nu_i + F_i(2I - w_e v_e) \right) = \tau_e \left(\dot{\nu}_e + \lambda e_{er} + \mu e_{er} \right) \]
Thus we get
\[-\nu_i + F_i(2I - w_e v_e) = \frac{\tau_i \tau_e}{w_i F'_e(-w_i v_i)} \left(\frac{1}{\tau_e} \dot{\nu}_e + \dot{\nu}_{er} + \lambda e_{er} + \mu e_{er} \right) \]
and the tracking control feedback loop is obtained as
\[I = \frac{1}{2} \left[w_e \nu_e + F_i^{-1} \left(\nu_i + \frac{\tau_i \tau_e}{w_i F'_e(-w_i v_i)} \left(\frac{1}{\tau_e} \dot{\nu}_e + \dot{\nu}_{er} + \lambda e_{er} + \mu e_{er} \right) \right) \right] \]
3.2.3 Feedforward to feedback switching

Open and closed loop

The so-called open loop control law is obtained when replacing \(v \) by the reference trajectory \(v_r \) in (2.7):

\[
I_o = -w v_r + \phi(\tau \dot{v}_r + v_r)
\]

(3.11)

The use of this control law would lead to the desired tracking behavior \(v = v_r \) if the model (2.6) was perfect and if the initial conditions on \(v \) was precisely known.

This type of law is typically used by the brain, after training, for quick movements where the sensory system is bypassed. When the sensory system is used, the so-called closed loop control law (3.7) is applied.

The difference between \(I_c \) and \(I_o \) is

\[
I_o - I_c = w e_v - \phi(\tau \dot{v}_r + v - \tau \lambda e_v) + \phi(\tau \dot{v}_r + v_r)
\]

\[
= w e_v - \phi(\tau \dot{v}_r + v_r + (1 - \tau \lambda)e_v) + \phi(\tau \dot{v}_r + v_r)
\]

Then, supposing \(\phi \) to be globally \(\gamma \)-lipschitz:

\[
|\phi(\tau \dot{v}_r + v_r + (1 - \tau \lambda)e_v) - \phi(\tau \dot{v}_r + v_r)| \leq \gamma |1 - \tau \lambda| |e_v|
\]

Hence the difference \(I_o - I_c \) admits the following bound

\[
|I_c - I_o| \leq \alpha + \gamma |1 - \tau \lambda| |e_v|
\]

Thus, if the tracking error is small, \(I_c \) is in a neighborhood of \(I_o \).

Temporal switching from feedforward to feedback

Consider the following control law

\[
I(t) = (1 - \sigma(t - t_{sw})) I_o(t) + \sigma(t - t_{sw}) I_c(t)
\]

(3.12)

with \(\sigma \) a sigmoid function (see A.3, p. 54). Thus, from \(t = 0 \) to \(t = t_{sw} - d \) for some \(d > 0 \), we have \(I \approx I_o \), and from \(t = t_{sw} + d \), \(I \approx I_c \). This is the kind of control human beings tend to adopt for example in gesture control. When grasping a glass of water, the first part of the gesture is done in open loop, quickly and inaccurately; the
second part of it is done with visual feedback, much more slowly but precisely. The expression can alternatively be expressed as:

\[I = (1 - \sigma_{sw})\phi(\tau_\nu + v_r) + \sigma_{sw}(-w e_v + \phi(\tau_\nu + v - \tau \lambda e_v)) \]

\[= \phi(\tau_\nu + v_r) + \sigma_{sw}(-w e_v + \Delta \phi(v, v_r)) \]

where \(\sigma_{sw} = \sigma(t - t_{sw}) \) and

\[\Delta \phi(v, v_r) = \phi(\tau_\nu + v - \tau \lambda e_v) - \phi(\tau_\nu + v_r) \]

3.3 Differential Flatness Applications for Simplistic Motor Control

3.3.1 Two Link Arm Model

Consider a two link robot arm acting as a simplistic model of a human arm:

\[M_{11} \theta_1 + M_{12} \theta_2 + C_1(\theta, \dot{\theta}) + G_1(\theta) = T_1 \]
\[M_{21} \theta_1 + M_{22} \theta_2 + C_2(\theta, \dot{\theta}) + G_2(\theta) = T_2 \]

where \(\theta_1 \) is the angle of the first arm, \(\theta_2 \) of the second, \(\theta = (\theta_1, \theta_2)^T \), \(M_{ij} \) are equivalent masses, \(C_i \) are the coriolis forces, \(G_i \) are the gravity forces, and \(T_i \) are the control torques. The expressions for the \(C_i \)'s and the \(G_i \)'s are the following:

- The inertia expressions are

\[M_{11} = J_1 + J_2 + m_1 r_1^2 + m_2 (l_1^2 + r_1^2 + 2 l_1 r_2 \cos \theta_2) \]
\[M_{12} = M_{21} = J_2 + m_2 (r_2^2 + l_1 r_2 \cos \theta_2) \]
\[M_{22} = J_2 + m_2 r_2^2 \]

where \(J_i \) is the inertia of link \(i \), \(m_i \) its mass, \(l_i \) its length, and \(r_i \) the distance from the beginning of the link to its center of mass.

- The Coriolis terms are given by:

\[C_1 = -m_2 l_1 \dot{\theta}_2^2 r_2 \sin \theta_2 - 2m_2 l_1 \dot{\theta}_1 \dot{\theta}_2 r_2 \sin \theta_2 \]
\[C_2 = m_2 l_1 \dot{\theta}_1^2 r_2 \sin \theta_2 \]

- And the gravity terms are

\[G_1 = (m_2 l_1 + m_1 r_1)g \sin \theta_1 + m_2 r_2 g \sin(\theta_1 + \theta_2) \]
\[G_2 = m_2 r_2 g \sin(\theta_1 + \theta_2) \]
3.3 Diff. flatness appls. for simplistic motor control

Equations (3.13) can be rewritten in a vectorial form; to this purpose, set

\[
M = \begin{pmatrix} M_{11} & M_{12} \\ M_{21} & M_{22} \end{pmatrix}, \quad \theta = \begin{pmatrix} \theta_1 \\ \theta_2 \end{pmatrix}, \\
C = \begin{pmatrix} C_1 \\ C_2 \end{pmatrix}, \quad G = \begin{pmatrix} G_1 \\ G_2 \end{pmatrix}, \quad T = \begin{pmatrix} T_1 \\ T_2 \end{pmatrix}
\]

Then, model (3.13) becomes

\[
M\ddot{\theta} + C(\theta, \dot{\theta}) + G(\theta) = T
\]

(3.17)

![Figure 3.1: A two link robot arm.](image)

3.3.2 Differential flatness and open loop control of the two link arm

Remark 2 Model (3.17) is differentially flat, with \(\theta \) as a flat output. Indeed, the inputs \(T \) are directly expressed in terms of \(\theta \) and its derivatives:

\[
T = M\ddot{\theta} + C(\theta, \dot{\theta}) + G(\theta)
\]

and the open loop control for a trajectory \(\theta_1r, \theta_2r \) given by

\[
T_r = M\ddot{\theta}_r + C(\theta_r, \dot{\theta}_r) + G(\theta_r)
\]

Knowing that the desired trajectory is generally not given in terms of \(\theta_1, \theta_2 \) but in terms of the end effector coordinates \(h_x, h_y \), we have to express the former in terms of the latter. The end effector (e.g. the wrist) coordinates are given by:

\[
h_x = l_1 \cos \theta_1 + l_2 \cos(\theta_1 + \theta_2) \quad (3.18a) \\
h_y = l_1 \sin \theta_1 + l_2 \sin(\theta_1 + \theta_2) \quad (3.18b)
\]
The inversion of these formulae is detailed in Appendix D, p. 65. We shall here give the final expressions:

\[\theta_1 = \arctan \left(\frac{h_y}{h_x} \right) - \arctan \left(\frac{l_2 \sin \theta_2}{l_1 + l_2 \cos \theta_2} \right) \] (3.19a)

\[\theta_2 = \arctan \left(\pm \sqrt{1 - h^2} \right) \] (3.19b)

\[\bar{h} = \frac{h_x^2 + h_y^2 - l_1^2 - l_2^2}{2l_1l_2} \]

3.3.3 End effector dynamics

The dynamics in \(\theta \) is given by:

\[\ddot{\theta} = -M^{-1}(C + G) + M^{-1}T \] (3.20)

and the dynamics in the end effector, i.e. in \(h_x, h_y \) is obtained through a double differentiation of (3.18). A first differentiation yields

\[\begin{align*}
\dot{h}_x &= -l_1 \dot{\theta}_1 \sin \theta_1 - l_2 (\dot{\theta}_1 + \dot{\theta}_2) \sin(\theta_1 + \theta_2) \\
\dot{h}_y &= l_1 \dot{\theta}_1 \cos \theta_1 + l_2 (\dot{\theta}_1 + \dot{\theta}_2) \cos(\theta_1 + \theta_2)
\end{align*} \]

And then

\[\begin{align*}
\ddot{h}_x &= -h_y \ddot{\theta}_1 - l_2 \sin(\theta_1 + \theta_2) \ddot{\theta}_2 - \phi_x(\theta, \dot{\theta}) \\
\ddot{h}_y &= h_x \ddot{\theta}_1 + l_2 \cos(\theta_1 + \theta_2) \ddot{\theta}_2 - \phi_y(\theta, \dot{\theta})
\end{align*} \] (3.21a)

with

\[\begin{align*}
\phi_x(\theta, \dot{\theta}) &= l_1 \dot{\theta}_1^2 \cos \theta_1 + l_2 (\dot{\theta}_1 + \dot{\theta}_2)^2 \cos(\theta_1 + \theta_2) \\
\phi_y(\theta, \dot{\theta}) &= l_1 \dot{\theta}_1^2 \sin \theta_1 + l_2 (\dot{\theta}_1 + \dot{\theta}_2)^2 \sin(\theta_1 + \theta_2)
\end{align*} \]

Thus, one gets

\[\begin{pmatrix} \ddot{h}_x \\ \ddot{h}_y \end{pmatrix} = \begin{pmatrix} -h_y & -l_2 \sin(\theta_1 + \theta_2) \\ h_x & l_2 \cos(\theta_1 + \theta_2) \end{pmatrix} \begin{pmatrix} \ddot{\theta}_1 \\ \ddot{\theta}_2 \end{pmatrix} - \begin{pmatrix} \phi_x \\ \phi_y \end{pmatrix} \]

Or, in other terms

\[\ddot{h}_i = H \ddot{\theta} - \phi \]
With the following notations
\[
H = \begin{pmatrix} -h_y & -l_2 \sin(\theta_1 + \theta_2) \\ h_x & l_2 \cos(\theta_1 + \theta_2) \end{pmatrix}, \quad h = \begin{pmatrix} h_x \\ h_y \end{pmatrix} \quad (3.22)
\]
And, using (3.20), one gets the dynamics in the end effector \(h \):
\[
\ddot{h} = -HM^{-1}(C + G - T) - \phi \quad (3.23)
\]

3.3.4 Trajectory tracking of the two link arm

The system (3.23) is differentially flat, with flat output \(h_x, h_y \). Indeed equations (3.19) yield the expressions of \(\theta_1 \) and \(\theta_2 \) in terms of \(h_x, h_y, \) and \(T \) is given by:
\[
T = C + G + MH^{-1}(\dot{h} + \phi)
\]
Thus, considering a reference trajectory \(h_{xr}(t), h_{yr}(t) \), the so-called open loop control \(T_r \) is given by:
\[
T_r = C_r + G_r + MH_r^{-1}(\dot{h}_r + \phi_r) \quad (3.24)
\]
with
\[
C_r = \begin{pmatrix} -m_2l_1\theta_2^2r_2 \sin \theta_2r - 2m_2l_1\dot{\theta}_1r_2 \sin \theta_2r \\ m_2l_1\dot{\theta}_1r_2 \sin \theta_2r \end{pmatrix}
\]
\[
G_r = \begin{pmatrix} (m_2l_1 + m_1r_1)g \sin \theta_{1r} + m_2r_2g \sin(\theta_{1r} + \theta_{2r}) \\ m_2r_2g \sin(\theta_{1r} + \theta_{2r}) \end{pmatrix}
\]
\[
H_r = \begin{pmatrix} -h_{yr} & -l_2 \sin(\theta_{1r} + \theta_{2r}) \\ h_{xr} & l_2 \cos(\theta_{1r} + \theta_{2r}) \end{pmatrix}
\]
\[
\phi_r = \begin{pmatrix} l_1\dot{\theta}_{1r}^2 \cos \theta_{1r} + l_2(\dot{\theta}_{1r} + \dot{\theta}_{2r})^2 \cos(\theta_{1r} + \theta_{2r}) \\ l_1\dot{\theta}_{1r}^2 \sin \theta_{1r} + l_2(\dot{\theta}_{1r} + \dot{\theta}_{2r})^2 \sin(\theta_{1r} + \theta_{2r}) \end{pmatrix}
\]
\[
\theta_{1r} = \arctan\left(\frac{h_{yr}}{h_{xr}}\right) - \arctan\left(\frac{l_2 \sin \theta_{2r}}{l_1 + l_2 \cos \theta_{2r}}\right)
\]
\[
\theta_{2r} = \arctan\left(\pm \sqrt{\frac{1 - h_r^2}{h_r}}\right)
\]
\[
\bar{h}_r = \frac{h_{xr}^2 + h_{yr}^2 - l_1^2 - l_2^2}{2l_1l_2}
\]
Then, the feedback control law ensuring tracking of the reference trajectory \(h_{xr}(t), h_{yr}(t) \) is given by:

\[
T = C + G + MH^{-1}\left(\phi + \dot{h}_r - \Lambda_0^h e_h - \Lambda_1^h \dot{e}_h \right)
\]

(3.25)

with

\[
\Lambda_0^h = \begin{pmatrix} \lambda_{00}^h & 0 \\ 0 & \lambda_{01}^h \end{pmatrix}, \quad \Lambda_1^h = \begin{pmatrix} \lambda_{10}^h & 0 \\ 0 & \lambda_{11}^h \end{pmatrix}
\]

where the \(\lambda_{ij}^h \) are suitably chosen reals such that the closed loop error equation in \(e_h \) is exponentially stable (it is thus sufficient to choose these as strictly positive reals).

Note that the difference between the previous tracking control law and the feedforward one given in (3.24) is of the form:

\[
T - T_r = C - C_r + G - G_r + MH^{-1}\left(\phi + \dot{h}_r - \Lambda_0^h e_h - \Lambda_1^h \dot{e}_h \right) - MH^{-1}\left(\Lambda_0^h e_h + \mu_{h\dot{e}_h} \right)
\]

(3.26)

which tends to zero when \(e_h \) itself tends to zero.

In (3.25), one needs to compute \(H^{-1} \) (the matrix \(H \) being defined in (3.22)), which requires the determinant \(\Delta_H \)

\[
\Delta_H = l_2 (h_x \sin(\theta_1 + \theta_2) - h_y \cos(\theta_1 + \theta_2))
\]

to be non zero. From (3.18), we get

\[
\Delta_H = l_1 (h_x \sin \theta_1 - h_y \cos \theta_1)
\]

Thus, when \(\Delta_H = 0 \), we get

\[
\tan(\theta_1 + \theta_2) = \tan \theta_1
\]

Or, what is the same

\[
\theta_2 = 0, \quad \text{or} \quad \theta_2 = \pi
\]

The first case yields the following end effector coordinates:

\[
h_x = (l_1 + l_2) \cos \theta_1 \\
h_y = (l_1 + l_2) \sin \theta_1
\]
Thus, the end effector with coordinates h_x, h_y remains on a circle centered at the origin and with radius $l_1 + l_2$, which corresponds to the arm being fully extended. The second case ($\theta_2 = \pi$) yields the end effector coordinates:

$$h_x = (l_1 - l_2) \cos \theta_1$$
$$h_y = (l_1 - l_2) \sin \theta_1$$

and the end effector with coordinates h_x, h_y remains on a circle centered at the origin and with radius $l_1 - l_2$, which corresponds to the arm fully folded.

When designing a reference trajectory, we shall avoid these two cases. Let us consider

$$h_{yr}(t) = \frac{h_{yf} - h_{yi}}{2} \left[1 + \tanh \left(\gamma (h_{xr}(t) - h_{xi}) \right) \right]$$
$$h_{xr}(t) = \frac{(h_{xf} - h_{xi})t}{T} + h_{xi}$$

for $t \in [0, T]$, and for example:

$$h_{xi} = 0.8(l_1 + l_2), \quad h_{xf} = 0$$
$$h_{yi} = l_1 + 0.1l_2, \quad h_{yf} = -0.1l_1$$

The trajectory tracking is illustrated in Figure 3.2a, and the associated animation in Figure 3.2b. The corresponding control laws are shown in Figures 3.3a and 3.3b. The tracking errors are plotted in
Several extensions of differentially flat systems can be envisioned. The recent paper (Aschenbrenner et al., 2013) reviews some of the most interesting ones. A Liouvillian closed structure D will contain all the solutions of first order linear differential equations, an
extended Liouvillian one will contain all the solutions of linear differential equations and an existentially closed one all the solutions of algebraic differential equations. We shall give some rather elementary definitions below (see Appendix C.2, p. 62).

Definition 4 The system

\[
x = f(x, u)
\]

with \(x(t) \in \mathbb{R}^n \) and \(u(t) \in \mathbb{R}^m \) is called Liouvillian (resp. extended Liouvillian, existentially closed) if there exists a set of variables, called a Liouvillian (resp. extended Liouvillian, existentially closed) output \(y = (y_1, \ldots, y_m) \) solution of

\[
H(y, \dot{y}, \ldots, y^{(r_y)}, x, u, \ldots, u^{(r_u)}) = 0, \quad r_y, r_u \in \mathbb{N}
\]

with \(H \) linear of first order (resp. linear, polynomial) in its variables, such that

\[
x = A(y, \dot{y}, \ldots, y^{(r_y)})
\]

\[
u = B(y, \dot{y}, \ldots, y^{(r_u)})
\]

with \(q \) an integer, and such that the system equations

\[
\frac{dA}{dt}(y, \dot{y}, \ldots, y^{(q+1)}) = f(A(y, \dot{y}, \ldots, y^{(q)}), B(y, \dot{y}, \ldots, y^{(q+1)}))
\]

are identically satisfied.

3.5 Differential Flatness of Some Other Neural Mass Models

3.5.1 Jansen and Rit model

Brief recall of the model

Consider the Jansen and Rit model, as depicted in (Pinotsis et al., 2012):

\[
\begin{align*}
\dot{v}_1 + 2\kappa v_1 + \kappa^2 v_1 &= \kappa_i m_e(w_{13}F(v_3) + u) \quad (3.30a) \\
\dot{v}_2 + 2\kappa_i v_2 + \kappa^2_i v_2 &= \kappa_i m_i w_{33} F(v_3) \quad (3.30b) \\
\dot{v}_3 + 2\kappa_i v_3 + \kappa^2_i v_3 &= \kappa_i m_e w_{31} F(v_1) + w_{32} F(v_2) \quad (3.30c) \\
y &= v_3 \quad (3.30d)
\end{align*}
\]
These equations respectively depict the following populations: excitatory stellate, inhibitory and excitatory. The signification of the various variables and parameters are the following:

\(\nu_i \) Expected depolarization in the \(i \)-th population

\(w_{ij} F(\nu_j) \) presynaptic input to the \(i \)-th population from the \(j \)-th one

\(F(\nu_j) \) Sigmoid function of the postsynaptic depolarization

\(w_{ij} \) Intrinsic connection strength between the populations \(j \) and \(j \)

\(m_i, m_e \) Maximum postsynaptic responses

\(\kappa_e, \kappa_i \) Rate constants of postsynaptic filtering

\(u \) Exogenous input

\(y \) Endogenous output

The choice made in (Pinotsis et al., 2012) for the sigmoid function \(F \) is the logistic function

\[
F(\nu) = \frac{1}{1 + e^{-\beta(\nu - \nu_T)}},
\]

whose derivative and inverse are:

\[
F' = \beta F(F - 1), \quad \text{and} \quad F^{-1}(\eta) = \phi(\eta) = \nu_T + \frac{1}{\beta} \ln \left(\frac{\eta}{\eta - 1} \right)
\]

Let \(d_i, d_e \) be the differential operators

\[
d_i = \frac{d^2}{dt^2} + 2\kappa_i \left(\frac{d}{dt} + \kappa_i \right) + \kappa_i^2 = \left(\frac{d}{dt} + \kappa_i \right)^2
\]

\[
d_e = \left(\frac{d}{dt} + \kappa_e \right)^2
\]

Then, the previous model (3.30) can be written as

\[
d_e \nu_1 = \kappa_e m_e \left(w_{13} F(\nu_3) + u \right) \quad (3.31a)
\]
\[
d_i \nu_2 = \kappa_i m_i w_{23} F(\nu_3) \quad (3.31b)
\]
\[
d_e \nu_3 = \kappa_e m_e \left(w_{31} F(\nu_1) + w_{32} F(\nu_2) \right) \quad (3.31c)
\]
\[
y = \nu_3 \quad (3.31d)
\]

Differential flatness of the model

A flat output of the model (3.30) is \(\nu_2 \). Indeed, after equation (3.30b), one gets \(\nu_3 \):

\[
\nu_3 = \phi \left(\frac{1}{\kappa_i m_i w_{23}} \left(\dot{\nu}_2 + 2\kappa_i \dot{\nu}_2 + \kappa_i^2 \nu_2 \right) \right) \quad (3.32)
\]
Then, after (3.30c)

\[
w_{31}F(v_1) = w_{32}F(v_2) + \frac{1}{\kappa_e m_e}(\dot{v}_3 + 2\kappa_e \dot{v}_3 + \kappa_e^2 v_3)
\]

Hence the expression for \(v_1\):

\[
v_1 = \phi\left[\frac{w_{32}}{w_{31}}F(v_2) + \frac{1}{\kappa_e m_e w_{31}}(\dot{v}_3 + 2\kappa_e \dot{v}_3 + \kappa_e^2 v_3) \right]
\]

(3.33)

And, using (3.30a), the expression for \(u\):

\[
u = -w_{13}F(v_3) + \frac{1}{\kappa_e m_e}(\dot{v}_1 + 2\kappa_e \dot{v}_1 + \kappa_e^2 v_1)
\]

(3.34)

The Figure 3.5 below outlines the compartmental like model underlying the model (3.30). The bold arrows in this Figure enables one, by reversing the arrows, to reveal the differential flatness character of the model: \(v_3\) is obtained from \(v_2\) by reversing the arrow \((v_3) \rightarrow (v_2)\) (yielding equation (3.32)) ; then, \(v_1\) is obtained from \(v_3\) (and \(v_2\)) by reversing the arrow \((v_1) \rightarrow (v_3)\) (yielding equation (3.33)) ; finally \(u\) is obtained from \(v_1\) (and \(v_3\)) by reversing the arrow \((u) \rightarrow (v_1)\) (yielding equation (3.34)).
Extended Liouvillian character of the model

Since the output of interest considered in (Pinotsis et al., 2012) is ν_3, we can investigate how the model can be parametrized by this variable. The variable ν_2 can be obtained from ν_3 by integrating the differential equation (3.30b) in ν_2 (which is linear in this variable). Indeed, (3.30b) can be rewritten as:

$$\frac{d}{dt} \begin{pmatrix} \nu_2 \\ \dot{\nu}_2 \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ -\kappa_i^2 & -2\kappa_i \end{pmatrix} \begin{pmatrix} \nu_2 \\ \dot{\nu}_2 \end{pmatrix} + \begin{pmatrix} 0 \\ \kappa_i m_i w_{23} F(\nu_3) \end{pmatrix}$$

or, in matrix form

$$\dot{V} = AV + U, \quad \text{with}$$

$$V = \begin{pmatrix} \nu_2 \\ \dot{\nu}_2 \end{pmatrix}, \quad A = \begin{pmatrix} 0 & 1 \\ -\kappa_i^2 & -2\kappa_i \end{pmatrix}, \quad U = \begin{pmatrix} 0 \\ \kappa_i m_i w_{23} F(\nu_3) \end{pmatrix}$$

The general solution of this last equation is well known to be

$$V = V(0)e^{At} + \int_0^t e^{A(t-\tau)} U(\tau)d\tau$$

One has

$$e^{At} = \begin{pmatrix} (1 + \kappa_i t) e^{-\kappa_i t} & te^{-\kappa_i t} \\ -\kappa_i^2 e^{-\kappa_i t} & (1 - \kappa_i t) e^{-\kappa_i t} \end{pmatrix}$$

Thus, ν_2 is given by

$$\nu_2 = \nu_{20} ((1 + \kappa_i t) e^{-\kappa_i t}) + \dot{\nu}_{20} te^{-\kappa_i t} + \kappa_i m_i w_{23} \int_0^t (t - \tau) e^{-\kappa_i (t-\tau)} F(\nu_3(\tau))d\tau$$

(3.35)

where $\nu_{20} = \nu_2(0)$, $\dot{\nu}_{20} = \dot{\nu}_2(0)$. Then, the two other variables are obtained as in (3.33)–(3.34):

$$\nu_1 = \phi \left[\frac{w_{32}}{w_{31}} F(\nu_2) + \frac{1}{\kappa_e m_e w_{31}} (\dot{\nu}_3 + 2\kappa_i \dot{\nu}_3 + \kappa_i^2 \nu_3) \right]$$

(3.36a)

$$u = -w_{13} F(\nu_3) + \frac{1}{\kappa_e m_e} (\dot{\nu}_1 + 2\kappa_e \dot{\nu}_1 + \kappa_e^2 \nu_1)$$

(3.36b)

Recalling d_i, d_e the differential operators

$$d_i = \left(\frac{d}{dt} + \kappa_i \right)^2, \quad d_e = \left(\frac{d}{dt} + \kappa_e \right)^2$$
The previous equations (3.35)–(3.36) can be rewritten as:

\[v_2 = d_i^{-1} (\kappa_i m_i w_{23} F(v_3)) \]
\[v_1 = \phi \left[\frac{w_{32}}{w_{31}} F(v_2) + \frac{1}{\kappa_e m_e w_{31}} d_e v_3 \right] \]
\[u = -w_{13} F(v_3) + \frac{1}{\kappa_e m_e} d_e v_1 \]

Thus, the model is extended Liouvillian and an extended Liouvillian output is \(v_3 \).
Part II

NEURAL FIELD POPULATION MODELS
3.5.2 General case model

We consider spatially distributed network models, such as the ones considered in Chapter 8 of (Ermentrout and Terman, 2010), Subsection 8.4, p. 223, and Chapter 12, Subsection 12.3.1, p. 376 or in Chapter 6 of (Bressloff, 2014), Subsection 6.5, p. 264 (as well as Subsection 2.5, p. 14 of (Bressloff, 2012)).

We can consider the so-called activity-based neural field model:

\[
\tau_s \frac{\partial v(t, x)}{\partial t} = -v(t, x) + F(I_r w(x) \ast_x v(t, x)) h(v(t, x)) + u(t, x)
\]

or, in a slightly more compact way

\[
\tau_s \frac{\partial v}{\partial t} = -v + F(I_r w(x) \ast_x v) h(v) + u \tag{3.38}
\]

And a slightly more general case

\[
\tau_s \frac{\partial v}{\partial t} = -v + F \left(I_r \int_{\Omega_x} w(x - \xi) v(t, \xi) d\xi \right) h(v) + u \tag{3.39}
\]

Alternately, we can consider the slightly different model

\[
\tau_s \frac{\partial v}{\partial t} = -v + I_r w(x) \ast_x F(v(t, x)) h(v) + u \tag{3.40}
\]

And its slight generalization

\[
\tau_s \frac{\partial v}{\partial t} = -v + I_r \int_{\Omega_x} w(x - \xi) F(v(t, \xi)) d\xi h(v) + u \tag{3.41}
\]

3.5.3 Parameters and variables assumptions

The various parameters and functions satisfy the following:

\(\circ\) The spatial variable is three dimensional, i.e. \(\Omega_x \subset \mathbb{R}^3\).

\(\circ\) The parameter \(\tau_{sy}\) is a constant.

\(\circ\) If the synapses are saturating, then \(h(s) = 1 - s\), otherwise, \(h(s) = 1\).

\(\circ\) The function \(F\) is a sigmoid type function (see A.3, p. 54).

\(\circ\) The control \(u(t, r)\) has a spatial compact support \(\Omega_u\).

\(\circ\) The neuron interaction strength function \(w(r)\) is symmetric, non-negative, integrates to 1 over the whole line and is rapidly decaying at infinity:

\[
\exists M \in \mathbb{R}^3, \exists a \in \mathbb{R}^+, \forall x \in \mathbb{R}^3 \text{ s.t. } \|x\| > M, \|w(x)\| < \|x^{-a}\|
\]
Acronym Name	Function w				
(Wdorg) Dirac at the origin	δ_0				
(Wdnor) Dirac not at the origin	δ_{x_0}				
(Wsofd) Sum of Diracs	$\sum_{i=1}^{N} a_i \delta_{x_i}$				
(Wsexp) Single exponential	$e^{-ax} H(t)$				
(Wmexp) Multiple exponential	$\sum_{i=1}^{N} e^{-a_i x} H(t)$				
(Wgaus) Gaussian	e^{-x^2/σ^2}				
(Waexp) Absolute exponential	$e^{-	x	/2}$		
(Wdosc) Decaying oscillatory	$e^{-b	x	}(b \sin	x	+ \cos x)$
(Wwhat) Flat hat shaped	$\text{rect}(x/\chi)$				
(Wmhat) Mexican hat	$\Gamma_1 e^{-\gamma_1 x} - \Gamma_2 e^{-\gamma_2 x}$ or $e^{-\gamma_1 x^2/\sigma_1^2} - e^{-\gamma_2 x^2/\sigma_2^2}$				
(Wwhat) Wizard hat	$(1/4)(1 -	x) e^{-	x	}$
(Wcomp) Compact support	w has compact support				

Table 3.1: Neuron interaction strength functions examples.

3.5.4 Neuron interaction strength examples

Some typical examples of such w functions are shown in Table 3.1.

The graphical representations of some of the above-mentioned neuron interaction strength functions are given in Figures 3.6 and 3.7.

3.5.5 Simplification hypotheses

We shall make the following simplifying assumptions:

(H1) We consider a spherical symmetric case, which boils down to the unidimensional case where $\Omega_x = [a, b]$ in r and $r = ||x||$.

(H2) We consider F equal to a heaviside:

$$\forall \xi \in \mathbb{R}^-, \quad F(\xi) = 0, \quad \forall \xi \in \mathbb{R}^+, \quad F(\xi) = 1$$
(H3) We consider that the synapses are not saturating, hence \(h(s) = 1 \).

3.5.6 Pointwise neuron interaction strength models

Dirac at the origin case

We consider that \(w \) is a single spatial Dirac:

\[w(r) = \delta_0 \]
We then obtain the following system
\[\dot{v}(t,r) = -av(t,r) + \delta_0 \ast_r (\mathbb{1}_{[a,b]} v(t,r)) + u(t,r) \]
Or, in other words
\[\dot{v}(t,r) = -av(t,r) + \mathbb{1}_{[a,b]}(r) v(t,r) + u(t,r) \quad (3.42) \]

Dirac not at the origin case
We consider that \(w \) is a single spatial Dirac:
\[w(t,r) = \delta_{r_0} \]
with \(r_0 \in [a,b] \). We then obtain the following system
\[\dot{v}(t,r) = -av(t,r) + \delta_{r_0} \ast_r (\mathbb{1}_{[a,b]} v(t,r)) + u(t,r) \quad (3.43) \]
Or, in other words
\[\dot{v}(t,r) = -av(t,r) + \mathbb{1}_{[a,b]}(r-r_0) v(t,r-r_0) + u(t,r) \quad (3.44) \]

3.5.7 Exponential type neuron interaction strength

A single exponential
Consider that the neuron interaction strength \(w \) satisfies a linear differential equation:
\[w'(r) = -aw(r) \]
The model is the following
\[\tau_{sy} \frac{\partial v(t,r)}{\partial t} = -v(t,r) + I_{r}w(r) \ast_r v(t,r) + u(t,r) \quad (3.45) \]
Hence, the convolution part is
\[w(r) \ast_r v(t,r) = \frac{1}{L_r} \left(\tau_{sy} \frac{\partial v(t,r)}{\partial t} + v(t,r) - u(t,r) \right) \]
And is spatial derivative is
\[w'(r) \ast_r v(t,r) = \frac{1}{L_r} \left(\tau_{sy} \frac{\partial^2 v(t,r)}{\partial t \partial r} + \frac{\partial v(t,r)}{\partial r} + \frac{\partial u(t,r)}{\partial r} \right) \]
Hence, \(v \) satisfies the following partial differential equation:
\[\tau_{sy}\partial_t \partial_r v(t,r) = -(a \tau_{sy} \partial_t + \partial_r + a) v(t,r) - (\partial_r + a) u(t,r) \]
A more general case

In (Coombes et al., 2014), Chapter 5, “PDE Methods for Two-Dimensional Neural Fields” by Carlo R. Laing, the case of neuron interaction strength \(w \) with a rational Fourier transform is considered:

\[
\mathcal{F}(w)(\xi) = \tilde{w}(\xi) = \int_{-\infty}^{+\infty} w(\tau) e^{-j\xi \tau} d\tau = \frac{p(\xi^2)}{q(\xi^2)}
\]

with \(p \) and \(q \) two polynomials. Then, equation (3.40) with \(h(s) = 1 \):

\[
\tau_{sy} \frac{\partial v(t, x)}{\partial t} = -v(t, x) + I_r w(x) * F(v(t, x)) + u(t, x)
\]

becomes

\[
(\tau_{sy} \partial_t + 1)\tilde{v}(t, \xi) = I_r \tilde{w}(\xi) \tilde{F}(v)(t, \xi) + \tilde{u}(t, \xi)
\]

\[
= I_r \frac{p(\xi^2)}{q(\xi^2)} \tilde{F}(v)(t, \xi) + \tilde{u}(t, \xi)
\]

Thus, through multiplication by \(q(\xi^2) \):

\[
(\tau_{sy} \partial_t + 1)q(\xi^2)\tilde{v}(t, \xi) = I_r p(\xi^2) \tilde{F}(v)(t, \xi) + q(\xi^2) \tilde{u}(t, \xi)
\]

which yields, in the spatial domain:

\[
(\tau_{sy} \partial_t + 1)q(\partial_x^2)v(t, x) = I_r p(\partial_x^2)F(v)(t, x) + q(\partial_x^2)u(t, x)
\]

The Fourier transforms of some of the neuron interaction strength functions of Table 3.1, p. 40 are shown in Table 3.2.

3.6 A Jansen and Rit Neural Field Model

Let us consider, after (Pinotsis et al., 2012), the following neural field Jansen and Rit model

\[
\begin{align*}
\dot{v}_1 + 2\kappa_0 \dot{v}_1 + \kappa_0^2 v_1 &= \kappa_v (\mu_1 + u) & (3.46a) \\
\dot{v}_2 + 2\kappa_0 \dot{v}_2 + \kappa_0^2 v_2 &= \kappa_v \mu_2 & (3.46b) \\
\dot{v}_3 + 2\kappa_0 \dot{v}_3 + \kappa_0^2 v_3 &= \kappa_v \mu_3 & (3.46c) \\
\partial_t^2 \mu_1 - \sigma^2 \partial_x^2 \mu_1 + 2\sigma \beta_{13} \partial_t \mu_1 + \sigma^2 \beta_{13}^2 \mu_1 &= \phi_{13}(v_3) & (3.46d) \\
\partial_t^2 \mu_2 - \sigma^2 \partial_x^2 \mu_2 + 2\sigma \beta_{23} \partial_t \mu_2 + \sigma^2 \beta_{23}^2 \mu_2 &= \phi_{23}(v_3) & (3.46e) \\
\partial_t^2 \mu_3 - \sigma^2 \partial_x^2 \mu_3 + 2\sigma \beta_{31} \partial_t \mu_3 + \sigma^2 \beta_{31}^2 \mu_3 &= \psi_{31}(v_1, v_2) & (3.46f)
\end{align*}
\]
Name	Function/Distribution	Fourier transform						
Dirac at the origin	δ_0	1						
Dirac not at the origin	δ_{x_0}	$e^{-j\xi x_0}$						
Sum of Diracs	$\sum_{i=1}^{N} a_i \delta_{x_i}$	$\sum_{i=1}^{N} a_i e^{-j\xi x_i}$						
Flat hat shaped	rect $\left(\frac{x}{\lambda}\right)$	sinc						
Gaussian	$e^{-\frac{x^2}{2\sigma^2}}$	$\frac{\sigma}{\sqrt{2}} e^{-\frac{\xi^2}{4\sigma^2}}$						
Absolute exponential	$e^{-a	x	}$	$\frac{2a}{a^2 + \xi^2}$				
Decaying oscillatory	$e^{-b	x	} \frac{(b \sin	x	+ \cos x)}{\sqrt{2}}$	$\frac{4b(b^2 + 1)}{\xi^4 + 2(b^2 - 1)\xi^2 + (b^2 + 1)^2}$		
Mexican hat	$\frac{\Gamma_1 e^{-\gamma_1	x	} - \Gamma_2 e^{-\gamma_2	x	}}{\Gamma_2 e^{-\gamma_2	x	}}$	$\frac{2\Gamma_1 \gamma_1 (\gamma_2 + \xi^2) - \Gamma_2 \gamma_2 (\gamma_1^2 + \xi^2)}{(\gamma_1^2 + \xi^2)(\gamma_2^2 + \xi^2)}$
Wizard hat	$\frac{(1 -	x)e^{-	x	}}{4}$	$\frac{\xi^2}{(1 + \xi^2)^2}$		

Table 3.2: Fourier transforms of some neuron interaction strength functions.
with

\[\phi_{ij}(v_j) = \alpha_{ij} \left(\sigma^2 F(v_j) + \sigma F'(v_j) \right) \]
\[\psi_{31}(v_1, v_2) = \alpha_{31} \left(\sigma^2 \beta_{31} (F(v_1) - F(v_2)) + \sigma (F'(v_1) - F'(v_2)) \right) \]

Let us recall the differential operators \(d_i \) and \(d_e \) and introduce \(D_1, D_2, D_3 \):

\[d_i = \left(\frac{d}{dt} + \kappa_i \right)^2 \]
\[d_e = \left(\frac{d}{dt} + \kappa_e \right)^2 \]

\[D_1 = \partial_t^2 - \sigma^2 \partial_x^2 + 2 \sigma \beta_{13} \partial_t + \sigma^2 \beta_{13}^2 \]
\[D_2 = \partial_t^2 - \sigma^2 \partial_x^2 + 2 \sigma \beta_{23} \partial_t + \sigma^2 \beta_{23}^2 \]
\[D_3 = \partial_t^2 - \sigma^2 \partial_x^2 + 2 \sigma \beta_{31} \partial_t + \sigma^2 \beta_{31}^2 \]

The model (3.46) can then be rewritten as

\[d_e v_1 = \kappa_e m_e (\mu_1 + u) \] \hspace{1cm} (3.47a)
\[d_i v_2 = \kappa_i m_i \mu_2 \] \hspace{1cm} (3.47b)
\[d_e v_3 = \kappa_e m_e \mu_3 \] \hspace{1cm} (3.47c)
\[D_1 \mu_1 = \phi_{13}(v_3) \] \hspace{1cm} (3.47d)
\[D_2 \mu_2 = \phi_{23}(v_3) \] \hspace{1cm} (3.47e)
\[D_3 \mu_3 = \psi_{31}(v_1, v_2) \] \hspace{1cm} (3.47f)

The Figure 3.8 below outlines the compartmental like model underlying the model (3.47).

The variable \(v_2 \) is a Liouvillian output. Indeed, \(\mu_2 \) is obtained through \(v_2 \) using equation (3.47b):

\[\mu_2 = \frac{1}{\kappa_i m_i} \ \frac{d_i v_2}{d_e} \] \hspace{1cm} (3.48)

Then \(v_3 \) is obtained via \(\mu_2 \) with the help of (3.47c)

\[v_3 = \psi(D_2 \mu_2) \] \hspace{1cm} (3.49)

where \(\psi_2 \) denotes the inverse function of \(\alpha_{23} (\sigma^2 \beta_{23} F + \sigma F') \). After, \(\mu_3 \) is derived from \(v_3 \) through (3.47c)

\[\mu_3 = \frac{1}{\kappa_e m_e} \ \frac{d_e v_3}{d_i} \] \hspace{1cm} (3.50)
The variable μ_3 and v_2 yields v_1 through (3.47f)

$$v_1 = D_3 \mu_3 + \alpha_{31} \left(\sigma^2 \beta_{31} F(v_2) + \sigma F'(v_2) \right)$$ \hspace{1cm} (3.51)

where ψ_3 is the inverse function of $\alpha_{31}(\sigma^2 \beta_{31} F + \sigma F')$. By integrating the wave equation in the equation (3.47d) we get μ_1 from v_3

$$\mu_1 = \alpha_{13} D_1^{-1} \left(\sigma^2 \beta_{13} F(v_3) + \sigma F'(v_3) \right)$$ \hspace{1cm} (3.52)

At last, the control input u can be derived through (3.47a) from μ_1 and v_1

$$u = \frac{1}{\kappa_e m_e} d_e v_1 - \mu_1$$ \hspace{1cm} (3.53)
BIBLIOGRAPHY

M. Aschenbrenner, L. van den Dries, and J. van der Hoeven. Towards a model theory for transseries. *Notre Dame Journal of Formal Logic*, 54:279–310, 2013.

M. Aschenbrenner and L. van den Dries. Liouville closed h-fields. *Journal of Pure and Applied Algebra*, 197:83–139, 2005a.

M. Aschenbrenner and L. van den Dries. *Analyzable Functions and Applications*, volume 373 of *Contemp. Math.*, chapter Asymptotic differential algebra, pages 49–85. Amer. Math. Soc., Providence, RI, 2005b.

P. C. Bressloff. Spatiotemporal dynamics of continuum neural fields. *J. Phys. A: Math. Theor.*, 45, 2012.

P. C. Bressloff. *Waves in Neural Media – From Single Neurons to Neural Fields*. Springer, New York, 2014.

R. Brette and W. Gerstner. Adaptive exponential integrate-and-fire model as an effective description of neuronal activity. *J. Neurophysiol.*, 94:3637–3642, 2005.

S. Coombes, P. beim Graben, R. Potthast, and J. Wright. *Neural Fields – Theory and Applications*. Springer, Berlin, 2014.

P. Dayan and L. F. Abbott. *Theoretical Neuroscience: Computational and Mathematical Modeling of Neural Systems*. The MIT Press, Cambridge, Massachusetts, 2005.

B. Dumitrescu. *Positive Trigonometric Polynomials and Signal Processing Applications*. Springer, Dordrecht, The Netherlands, 2007.

G. B. Ermentrout and D. H. Terman. *Mathematical Foundations of Neuroscience*. Springer, New York, 2010.

M. Fliess, J. Lévine, P. Martin, and P. Rouchon. Flatness and defect of non-linear systems: introductory theory and applications. *Internat. J. Control*, 61:1327–1361, 1995.
M. Fliess, H. Mounier, P. Rouchon, and J. Rudolph. Tracking control of a vibrating string with an interior mass viewed as delay system. *ESAIM Control Optim. Calc. Var.*, 3:315–321, 1998.

K. Friston. The free-energy principle: a unified brain theory? *Nat. Rev. Neurosci.*, 11:127–138, 2010.

K. Friston. A free energy principle for biological systems. *Entropy*, 14:2100–2121, 2012.

H. Haken. *Brain Dynamics – An Introduction to Models and Simulation*. Springer-Verlag, Berlin, 2008.

E.M. Izhikevich. Simple model of spiking neurons. *IEEE Transactions on Neural Networks*, 14:1569–1572, 2003.

E.M. Izhikevich. Which model to use for cortical spiking neurons? *IEEE Transactions on Neural Networks*, 15:1063–1070, 2004.

E.M. Izhikevich. Hybrid spiking models. *Phil. Trans. R. Soc. A*, 368:5061–5070, 2010.

P. Martin and P. Rouchon. Systèmes plats : planification et suivi de trajectoires. In *Actes des Journées Nationales de Calcul Formel*, pages 197–276, 2008. URL http://jncf2008.loria.fr/jncf2008.pdf.

K.D. Miller and F. Fumarola. Mathematical equivalence of two common forms of firing-rate models of neural networks. *Neural Comput.*, 24:25–31, 2012.

K. Friston and D.A. Pinotsis. Xx.

D.A. Pinotsis, R.J. Moran, and K.J. Friston. Dynamic causal modeling with neural fields. *Neuroimage*, 59:1261–1274, 2012.

M.J. Richardson, M.A. Riley, and K. Shockley, editors. *Progress in Motor Control – Neural, Computational and Dynamic Approaches*, volume 782 of *Advances in experimental medicine and biology*. Springer, Dordrecht, 2013.

P. Rouchon. Motion planning, equivalence, infinite dimensional systems. *Int. J. of Applied Mathematics and Computer Science*, 11, 2001.

J. Touboul. Importance of the cutoff value in the quadratic adaptive integrate-and-fire model. *Neural Comput.*, 21:2114–2122, 2009.
J. van der Hoeven. *Transseries and real differential algebra*, volume 1888 of *Lecture Notes in Mathematics*. Springer-Verlag, 2006.

F. Woittennek and H. Mounier. Controllability of networks of spatially one-dimensional second order PDE – an algebraic approach. *Siam J. Contr.*, 48:3882–3902, 2010.
A.1 Functions and Distributions

- The distribution $H(\eta)$ is the Heaviside distribution:
 \[
 H(\eta) = \begin{cases}
 0 & \text{if } \eta \leq 0 \\
 1 & \text{if } \eta > 0
 \end{cases}
 \]

- The function $\text{sinc}(\eta)$ is the cardinal sine:
 \[
 \text{sinc}(\eta) = \frac{\sin(\eta)}{\eta}
 \]

- The distribution $\text{rect}(\eta)$ is the rectangular pulse of width 1:
 \[
 \text{rect}(\eta) = \begin{cases}
 0 & \text{if } |\eta| \geq \frac{1}{2} \\
 1 & \text{if } |\eta| < \frac{1}{2}
 \end{cases}
 \]

- The boxcar distribution (rectangular pulse of width ρ and centered on η_0):
 \[
 \text{rect}\left(\frac{t - t_0}{\rho}\right) = H(\eta_0 + \frac{\rho}{2}) - H(t - t_0 - \frac{\rho}{2})
 \]

- The linear rectifier function is
 \[
 |\eta|_+ = \begin{cases}
 0 & \text{when } v \leq 0 \\
 v & \text{when } v > 0
 \end{cases}
 \]
A.2 Transforms

Consider a function $f(t, x)$ from $\mathbb{R} \times \Omega_x$ to \mathbb{R}, where $\Omega_x \subseteq \mathbb{R}^3$.

- The function $\hat{f}(t, \xi)$ will designate the spatial Fourier transform of f, i.e.
 \[
 \hat{f}(t, \xi) = \mathcal{F}(f)(t, \xi) = \int_{-\infty}^{+\infty} f(t, x)e^{-j\xi x}dx
 \]

- The function $\hat{f}(s, x)$ will designate the temporal Laplace transform of f, i.e.
 \[
 \hat{f}(s, x) = \mathcal{L}(f)(s, x) = \int_{-\infty}^{+\infty} f(t, x)e^{-st}dt
 \]

A.3 Sigmoid Functions

The following functions F will be in particular used for the firing rate. Thus $F(\xi)$ designates a spike rate and ξ a stimulus intensity. A sigmoid function $F : \mathbb{R} \rightarrow \mathbb{R}$ is such that

\[
F(0) = F'(0) = 0, \quad F(1) = 1, \quad F'(1) = 0 \\
\forall \xi \in \mathbb{R}, \xi < 0 \quad F(\xi) = 0, \quad \forall \xi \in \mathbb{R}, \xi > 1 \quad F(\xi) = 1
\]

The following lists some of the most used sigmoid functions (see, e.g. (Ermentrout and Terman, 2010), Section 11.3, p. 345; (Bressloff, 2014), pp. 9, 22, 254, 373; (Haken, 2008), pp. 14, 252).

- The Heaviside.
 \[
 F(x) = F_0H(\xi - \xi_0)
 \]

- The Piecewise linear function.
 \[
 F(x) = \begin{cases}
 0 & \text{if } \xi < \xi_0 \\
 \beta(\xi - \xi_0) & \text{if } \xi_0 \leq \xi < \xi_0 + 1/\beta \\
 0 & \text{if } \xi > \xi_0 + 1/\beta
 \end{cases}
 \]

- The Logistic function.
 \[
 F(x) = \frac{1}{1 + e^{-\beta(x-x_T)}}
 \]
one has

\[
F' = \beta F(F - 1)
\]

\[
F^{-1}(\eta) = \phi(\eta) = x_T + \frac{1}{\beta} \ln \frac{\eta}{\eta - 1}
\]

- The **Traub Model**.

\[
F(\xi) = \frac{1}{1 + e^{-\xi/\alpha}}
\]

- The **Hyperbolic tangent function**.

\[
F(\xi) = F_0(1 + \tanh(\alpha \xi))
\]

- The **Square root function**.

\[
F(\xi) = F_0 \sqrt{\xi - \xi_T}
\]

- The **Noisy firing rate function**.

\[
F(\xi) = \sqrt{\frac{\xi - \xi_T}{1 - e^{-\frac{(\xi - \xi_T)}{\beta}}}}
\]

Here, \(\beta\) is a measure of the noise, and when \(\beta\) tends to zero, the function approaches a pure square root model.

- The **Mean firing rate with flexible shape function** (see (Coombes et al., 2014), p. 371).

\[
F(\xi) = F_m - \frac{F_m}{(1 + \sigma^2 \frac{\xi - \mu}{\sigma})^\kappa}
\]

- The **Naka-Rushton functions** (alternately called Hill functions).

\[
F(\xi) = \begin{cases}
 \frac{r \xi^n}{\xi^n + \theta^n} & \text{if } \xi \leq 0 \\
 0 & \text{if } \xi > 0
\end{cases}
\]

where \(r\) is the maximum spike rate and \(\theta\) is the value of the stimulus intensity for which \(F\) reaches half its maximum. The exponent \(n\) is a measure of the steepness of the \(F(\xi)\) curve. Typical values matching experimental data range from 1.4 to 3.4.

The function

\[
F(\xi) = 1 - \frac{\xi^n}{\xi^n + \theta^n} = \frac{\theta^n}{\xi^n + \theta^n}
\]

is also used.
o The *Algebraic sigmoid function*.

\[F(\xi) = \frac{\xi}{\sqrt{1 + \xi^2}} \]

This function has the inverse

\[F^1(\eta) = \frac{\eta}{\sqrt{1 - \eta^2}} \]
SOME FLATNESS SIMPLE CRITERIA

There does not exist, at the time of this writing, a general criterion for checking flatness, neither for building flat outputs in a constructive manner. Nevertheless, some peculiar cases are to be noticed.

B.1 NECESSARY AND SUFFICIENT CONDITIONS IN PECULIAR CASES

Proposition 2 Any static state feedback linearizable system is flat.

See below (Subsection B.3, p. 58) for a static state feedback linearizability criterion for affine input systems.

Proposition 3 (Charlet, Levine and Marino, 1989) For systems with a single input, dynamic feedback linearization implies static feedback linearization.

Proposition 4 (Charlet, Levine and Marino, 1989) A dynamics affine in the input with n states and n − 1 inputs is flat as soon as it is controllable (strongly accessible).

Recall that a dynamics is called affine in the input if it is of the form

\[\dot{x} = f_0(x) + \sum_{i=1}^{n-1} g_i(x)u_i \]

A dynamics with \(x \in \mathcal{X} \subseteq \mathbb{R}^n \) is strongly accessible if, for all \(x \in \mathcal{X} \), there exists a \(T > 0 \) such that

\[\text{int} \mathcal{R}(x) \neq \emptyset \]

where \(\text{int} \mathcal{S} \) denotes the interior of the set \(\mathcal{S} \) and \(\mathcal{R}(x) \) is the reachable set of \(x \).
B.2 A NECESSARY CONDITION

Proposition 5 (Ruled variety criterion, Rouchon, 1995) Suppose the dynamics $\dot{x} = f(x, u)$ is flat. The projection of the sub variety $p = f(x, u)$ in the (p, u)-space (x is here a parameter) onto the p-space is a ruled variety for all x.

This criterion means that the elimination of u from the n equations $\dot{x} = f(x, u)$ yields $n - m$ equations $F(x, \dot{x}) = 0$ with the following property: for all (x, p) such that $F(x, p) = 0$, there exists $a \in \mathbb{R}^n$, $a \neq 0$ such that

$$\forall \lambda \in \mathbb{R}, \quad F(x, p + \lambda a) = 0$$

The variety $F(x, p)$ is thus ruled since it contains the line passing through p with direction a.

B.3 STATIC STATE FEEDBACK LINEARIZABILITY CRITERION

Consider an affine input system

$$\dot{x} = f(x) + \sum_{i=1}^{n-1} g_i(x)u_i = f(x) + g(x)u$$

where f, g_i are smooth vector fields on a domain $D \subset \mathbb{R}^n$, $x \in D$, $u \in \mathbb{R}^m$.

B.3.1 Brief recall of differential geometry notions

Definition 5 Let $r \geq 0$ be an integer. A C^r vector field on \mathbb{R}^n is a mapping $f : D \to \mathbb{R}^n$ of class C^r from an open set $D \subset \mathbb{R}^n$ to \mathbb{R}^n. A smooth vector field is a mapping $f : D \to \mathbb{R}^n$ of class C^∞.

Let $h(x)$ be a smooth vector field on a domain $D \subset \mathbb{R}^n$. The Lie derivative of h along f, denoted as $L_f h(x)$ can be defined (in local coordinates) as

$$\frac{\partial h(x)}{\partial x} f(x) = \sum_{i=1}^n \frac{\partial h(x)}{\partial x_i} f(x)$$

since it is a smooth vector field, a Lie derivative operator can be applied to it. Set

$$L^i_f = L_f L^{i-1}_f$$
The Lie bracket of f and g can be defined (in local coordinates) as

$$[f, g](x) = \frac{\partial g}{\partial x} f(x) - \frac{\partial f}{\partial x} g(x)$$

Iterated lie brackets are denoted as $\text{ad}_f^i g$:

$$\text{ad}_f^i g = [f, \text{ad}_f^{i-1} g]$$

Let f_1, \ldots, f_η be some vector fields on $D \subseteq \mathbb{R}^n$. The distribution Δ spanned the vector fields f_1, \ldots, f_η is the collection of vector spaces

$$\Delta(x) = \text{span}_{\mathbb{R}^n} \{f_1(x), f_2(x), \ldots, f_\eta(x)\}$$

for all $x \in D$. We denote

$$\Delta = \text{span}_{\mathbb{R}^n} \{f_1, f_2, \ldots, f_\eta\}$$

A distribution Δ is involutive if

$$\forall g_1, g_2 \in \Delta, [g_1, g_2] \in \Delta$$

Proposition 6 The system with dynamics $\dot{x} = f(x) + g(x)u$ is static state feedback linearizable if, and only if, there is a domain $D_0 \subset D$ such that the following two conditions are satisfied:

1. The matrix $[g, \text{ad}_f^1 g, \ldots, \text{ad}_f^{\eta-1} g]$ has rank n for all $x \in D_0$.

2. The distribution $\{g, \text{ad}_f g, \ldots, \text{ad}_f^{\eta-2} g\}$ is involutive in D_0.
PRECISE DEFINITIONS FOR EXTENSIONS OF DIFFERENTIAL FLATNESS

C.1 SYSTEMS, DYNAMICS AND DIFFERENTIAL FLATNESS

C.1.1 Basic definitions from differential algebra

Definition 6 An ordinary differential field \(k \), is a field on which a mapping \(d: k \to k \) is defined, satisfying the natural properties with respect to addition and product, i.e., for any \(x, z \in k \),

\[
\begin{align*}
d(x + z) &= d(x) + d(z) \\
d(xz) &= d(x)z + xd(z)
\end{align*}
\]

Definition 7 Let \(K \) be a field. A subfield of \(K \) is a subset \(k \) of \(K \) that is closed under the field operations of \(K \) and under taking inverses in \(K \). In other words, \(k \) is a field with respect to the field operations inherited from \(K \). The larger field \(K \) is then said to be an extension field of \(k \), denoted as \(K/k \).

Definition 8 Let \(k \) and \(K \) be differential fields with differential operators \(d_k \) and \(d_K \) respectively. Then, \(K \) is a differential extension field of \(k \) if \(K \) is an extension field of \(k \) and

\[
\forall x \in k, d_k(x) = d_K(x)
\]

Let \(S \) be a subset of \(K \). We shall denote by \(k(S) \) the differential subfield of \(K \) generated by \(k \) and \(S \).

C.1.2 Algebraic and transcendental extensions

All fields are assumed to be of characteristic zero. Assume also that the differential field extension \(K/k \) is finitely generated, i.e., there exists a finite subset \(S \subseteq K \) such that \(K = k(S) \).
Definitions

An element \(a \) of \(K \) is said to be **differentially algebraic** over \(k \) if it satisfies an algebraic differential equation with coefficients in \(k \): there exists a non-zero polynomial \(P \) over \(k \), in several indeterminates, such that

\[
P(a, \dot{a}, \ldots, a^{(v)}) = 0
\]

It is said to be **differentially transcendental** over \(k \) if it is not differentially algebraic.

The extension \(K/k \) is said to be **differentially algebraic** if any element of \(K \) is differentially algebraic over \(k \). An extension which is not differentially algebraic is said to be **differentially transcendental**.

C.1.3 Nonlinear systems and flatness

Definition 9 Let \(k \) be a given differential ground field. A (nonlinear) system is a finitely generated differential extension \(K/k \).

Definition 10 A nonlinear system \(K/k \) is called **differentially flat** if there exists a finite family \(y = (y_1, \ldots, y_m) \) of elements of an algebraic extension \(L \) of \(K \) such that the extension \(L/k\langle y \rangle \) is (non differentially) algebraic. Such a family is called a **flat output**.

C.2 H-fields, Liouvillian and existential closedness

The paper (Aschenbrenner et al., 2013) reviews some of the most interesting notions for extending the differential flatness notion. One can also see (Aschenbrenner and van den Dries, 2005a,b, van der Hoeven, 2006) for related material.

Definition 11 An \(H \)-field is an ordered differential field \(K \) whose natural dominance relation \(\preceq \) satisfies the following two conditions, for all \(z \in K \):

1. **(H1)** If \(z \succ 1 \), then \(\dot{z}/z > 0 \)
2. **(H2)** If \(z \preceq 1 \), then \(z - c \prec 1 \), for some \(c \in C \), the field of constants of \(K \).

Remark 3 In more usual terms, the dominance relations can be explicated as follows, for real valued functions:

- \(f \preceq g \iff \lim_{t \to \infty} \frac{f(t)}{g(t)} \in \mathbb{R} \)
- \(f \prec g \iff \lim_{t \to \infty} \frac{f(t)}{g(t)} = 0 \)
Definition 12 An H-field K is Liouville closed if it is real closed and any equation $\dot{z} + az = b$ with $a, b \in K$ has a non zero solution in K.

Definition 13 An H-field K is existentially closed if every finite system of algebraic differential equations over K in several unknowns with a solution in an H-field extension of K has a solution in K.
TWO LINK ARM INVERSE KINEMATICS

The position of the end effector (the wrist) of a two link arm is given by

\[h_x = l_1 \cos \theta_1 + l_2 \cos(\theta_1 + \theta_2) \]
\[h_y = l_1 \sin \theta_1 + l_2 \sin(\theta_1 + \theta_2) \]

where \(h_x, h_y \) are the coordinates of the end effector. By summing the square of the two preceding equations, one obtains

\[h_x^2 + h_y^2 = l_1^2 + l_2^2 + 2l_1l_2 \left[\cos \theta_1 \cos(\theta_1 + \theta_2) + \sin \theta_1 \sin(\theta_1 + \theta_2) \right] \]

\[= l_1^2 + l_2^2 + 2l_1l_2 \cos \theta_2 \]

Then

\[\cos \theta_2 = \frac{h_x^2 + h_y^2 - l_1^2 - l_2^2}{2l_1l_2} \]

or

\[\theta_2 = \arctan \left(\frac{\sin \theta_2}{\cos \theta_2} \right) \]

\[= \arctan \left(\frac{\pm \sqrt{1 - \cos^2 \theta_2}}{\cos \theta_2} \right) \]

\[= \arctan \left(\frac{\pm \sqrt{1 - h^2}}{h} \right) \]

\[h = \frac{h_x^2 + h_y^2 - l_1^2 - l_2^2}{2l_1l_2} \]

Setting

\[k_1 = l_1 + l_2 \cos \theta_2, \quad k_2 = l_2 \sin \theta_2 \]
one has

\[h_x = k_1 \cos \theta_1 - k_2 \sin \theta_1 \]
\[h_y = k_1 \sin \theta_1 + k_2 \cos \theta_1 \]

Then

\[\rho = \sqrt{k_1^2 + k_2^2}, \quad \gamma = \arctan \left(\frac{k_2}{k_1} \right) \]

wherefrom

\[h_x = \rho \cos \gamma \cos \theta_1 - \rho \sin \gamma \sin \theta_1 \]
\[h_y = \rho \cos \gamma \sin \theta_1 + \rho \sin \gamma \cos \theta_1 \]

or, what is the same

\[\frac{h_x}{\rho} = \cos(\gamma + \theta_1), \quad \frac{h_y}{\rho} = \sin(\gamma + \theta_1) \]

Then

\[\theta_1 + \gamma = \arctan \left(\frac{h_y}{h_x} \right) \]

and, finally

\[\theta_1 = \arctan \left(\frac{h_y}{h_x} \right) - \arctan \left(\frac{l_2 \sin \theta_2}{l_1 + l_2 \cos \theta_2} \right) \]
TWO LINK ARM CODE LISTING

E.1 FLATNESS BASED CONTROL OF THE ARM

The listing beginning on the next page is a matlab code of the differential flatness based control of the two link arm example whose model is depicted in (3.13) and tracking feedback law in (3.25).
function mainTwoJointArmFlatness()

% Nomenclature
% P: physical parameters
% R: reference trajectories and control laws
% U: complete control laws
% G: gains
% S: simulation scenario

clear all

%% PHYSICAL parameters
% Fixed physical parameters
P.g = 9.81; % gravity constant
P.l1 = 0.3384; % (m) length of lower arm part
P.l2 = 0.4554; % (m) length of upper arm part
P.r1 = 0.1692; % (m) distance to center of mass
P.r2 = 0.2277; % (m) distance to center of mass
P.m1 = 2.10; % (kg) mass of lower arm part
P.m2 = 1.65; % (kg) mass of upper arm part
P.J1 = 0.025; % (kg.m^2) inertia of lower arm part
P.J2 = 0.075; % (kg.m^2) inertia of upper arm part

%% REFERENCE trajectory
% A tanh one
R.hxi = 0.8*(P.l1+P.l2); R.hxf = 0;
R.hyi = P.l1 + 0.1*P.l2; R.hyf = -0.1*P.l1;
R.stiffness = 9; R.hXR = 0.5*R.hxi;

%% SIMULATION values
S.tini = 0; S.tend = 10; % initial and final simulation times
S.relTol = 1e-3; S.absTol = 1e-6; % relative and absolute simulation tolerances

% Initial state values
tvirt = [S.tini:0.01:S.tend]';
strRef = inverseKinematics(tvirt, P, R, S);
S.theta10 = strRef.theta1r(1) + 0.05*(strRef.theta1r(end)-strRef.theta1r(1));
S.dotTheta10 = strRef.dotTheta1r(1) + 0.05*(strRef.dotTheta1r(end)-strRef.dotTheta1r(1));
S.theta20 = strRef.theta2r(1) + 0.05*(strRef.theta2r(end)-strRef.theta2r(1));
S.dotTheta20 = strRef.dotTheta2r(1) + 0.05*(strRef.dotTheta2r(end)-strRef.dotTheta2r(1));
%% Default FEEDBACK GAINS
%% flatness based gains
% for \((s+s_1)(s+s_2) = s^2 + (s_1+s_2)s + s_1s_2\)
sTh1 = 5; sDotTh1 = 2*sTh1;
sTh2 = 6; sDotTh2 = 2*sTh2;
K.kp1 = sTh1*sDotTh1; K.kp2 = sTh2*sDotTh2;
K.kd1 = sTh1+sDotTh1; K.kd2 = sTh2+sDotTh2;
K.Kp = [K.kp1 0; 0 K.kp2];
K.Kd = [K.kd1 0; 0 K.kd2];

% Saving option
S.forSaving = 'yes';

% Simulate
options = odeset('RelTol', S.relTol, 'AbsTol', S.absTol);
[tS Xs] = ode23tb(@dynTwoJointArm, [S.tini S.tend], ...
 [S.theta10 S.dotTheta10 S.theta20 S.dotTheta20],...
 options, P, R, K, S);
S.tS = tS; S.Xs = Xs;
plotVariables(P, R, K, S);
end % of main()

function P = coriolisGravity(P, theta1, dotTheta1, theta2, dotTheta2)
% Masses and intertia gathering
m1 = P.m1; m2 = P.m2; l1 = P.l1; l2 = P.l2;
r1 = P.r1; r2 = P.r2; J1 = P.J1; J2 = P.J2;
% Coriolis and gravity terms computations
M11 = J1 + J2 + (m1*r1^2) + (m2*((l1^2) + (r2^2) + ...
 (2*l1*r2*cos(theta2))));
M12 = J2 + (m2*((r2^2) + (l1*r2*cos(theta2))));
M21 = M12;
M22 = J2 + (m2*r2^2);
M = [M11 M12; M21 M22];
C1 = -(m2*l1*r2*dotTheta2^2*sin(theta2)) -...
 (2*m2*l1*r2*dotTheta1*dotTheta2*sin(theta2));
C2 = m2*l1*dotTheta1^2*r2*sin(theta2);
C = [C1, C2];
G1 = (P.g*sin(theta1)*((m2*l1)+(m1*r1))) + (P.g*m2*...
 r2*sin(theta1+theta2));
G2 = P.g*m2*r2*sin(theta1+theta2);
G = [G1, G2];
P.C = C; P.G = G; P.M = M;
end
function [dotX] = dynTwoJointArm(t, X, P, R, K, S)

 persistent count;

 if (t <= 0) count = 0; end;

 if (round(t) >= count)
 count = count + 1;
 disp(sprintf('time t = %f
', t));
 end;

 % Variable gathering
 dotX = zeros(4,1);
 theta1 = X(1,:); dotTheta1 = X(2,:);
 theta2 = X(3,:); dotTheta2 = X(4,:);

 % Coriolis and gravity terms computations
 P = coriolisGravity(P, theta1, dotTheta1, theta2, dotTheta2);

 % Control law computation
 T = twoLinkFlatCtrlLaw(t, X, P, R, K, S);

 % Two link arm DYNAMICS
 M = P.M; C = P.C; G = P.G;
 ddotTheta = inv(M) * (-C - G + T);

 % return the derivative of the state
 dotX = [dotTheta1 ddotTheta(1) dotTheta2 ddotTheta(2)]';
end

function [T] = twoLinkFlatCtrlLaw(t, X, P, R, K, S)

 % Variable gathering
 dotX = zeros(4,1);
 theta1 = X(1,:); dotTheta1 = X(2,:);
 theta2 = X(3,:); dotTheta2 = X(4,:);
 M = P.M; C = P.C; G = P.G; l1 = P.l1; l2 = P.l2;

 % reference trajectories
 [strRefHx strRefHy] = tanhRefTraj(t, P, R, S);
 hxr = strRefHx.v; hyr = strRefHy.v;
 dotHxr = strRefHx.d1; dotHyr = strRefHy.d1;
 ddotHxr = strRefHx.d2; ddotHyr = strRefHy.d2;

 % Intermediary computations
 [Hinv phi] = computeHinvPhi(theta1, theta2, dotTheta1, dotTheta2, P);

 hx = l1*cos(theta1) + 12*cos(theta1 + theta2);
 hy = l1*sin(theta1) + 12*sin(theta1 + theta2);
 dotHx = -l1*dotTheta1*sin(theta1) - 12*(dotTheta1+dotTheta2)*sin(theta1+theta2);
\[\text{dotHy} = l_1 \times \text{dotTheta1} \times \cos(\theta_1) + 12 \times \text{dotTheta1} + 12 \times \text{dotTheta2} \times \cos(\theta_1 + \theta_2); \]

% errors computation
\[e_{hx} = h_x - h_{xr}; \quad e_{hy} = h_y - h_{yr}; \]
\[\text{dotEHx} = \text{dotHx} - \text{dotHxr}; \quad \text{dotEHy} = \text{dotHy} - \text{dotHyr}; \]
% Vector computation
\[\text{vectDdotHr} = [\text{ddotHxr} \quad \text{ddotHyr}]; \quad \text{vectEH} = [e_{hx} \quad e_{hy}]; \]
% control law computation
\[T = C + G + M \times \text{Hinv} \times \phi + \text{vectDdotHr} - \ldots \]
\[K \cdot \text{Kd} \times \text{vectDotEH} - K \cdot \text{Kp} \times \ldots \]
\[\text{vectEH}; \]
\]

function \[\text{matHinv} \quad \text{vectPhi} = \text{computeHinvPhi} \]
\[(\theta_1, \theta_2, \text{dotTheta1}, \text{dotTheta2}, P) \]
\[l_1 = P.l_1; \quad l_2 = P.l_2; \]
\[h_x = l_1 \times \cos(\theta_1) + l_2 \times \cos(\theta_1 + \theta_2); \]
\[h_y = l_1 \times \sin(\theta_1) + l_2 \times \sin(\theta_1 + \theta_2); \]
\[H = [-h_y -12 \times \sin(\theta_1 + \theta_2); \]
\[h_x \quad 12 \times \cos(\theta_1 + \theta_2)]; \]
\[\text{matHinv} = \text{inv}(H); \]
\[\text{vectPhi} = [l_1 \times \text{dotTheta1} - 2 \times \cos(\theta_1) + 12 \times \ldots \]
\[\text{dotTheta1} \times \text{dotTheta2} - 2 \times \cos(\theta_1 + \theta_2); \]
\[l_1 \times \text{dotTheta1} - 2 \times \sin(\theta_1) + 12 \times \ldots \]
\[\text{dotTheta1} \times \text{dotTheta2} - 2 \times \sin(\theta_1 + \theta_2)]; \]
\]

% Reference trajectory
function \[\text{strRefHx} \quad \text{strRefHy} = \text{tanhRefTraj} \]
\[(t, P, R, S) \]
\[h_x = ((R.hxf - R.hxi). \times t) \div (S.tend) + R.hxi; \]
\[\text{strRefHx.v} = h_x; \]
\[\text{strRefHx.d1} = ((R.hxf - R.hxi) \div (S.tend)) \times \text{ones(length(hx),1)}; \]
\[\text{strRefHx.d2} = \text{zeros(length(hx),1)}; \]
\[\text{strRefTanh} = \text{tanhTr}(h_x, R.stiffness, R.hyi, R.hyf, R.hxR); \]
function strRef = inverseKinematics(t, P, R, S)
l1 = P.l1; l2 = P.l2;
[strRefHx strRefHy] = tanhRefTraj(t, P, R, S);
hxr = strRefHx.v; hyr = strRefHy.v;
dothxr = strRefHx.d1; dothyr = strRefHy.d1;
ddothxr = strRefHx.d2; ddothyr = strRefHy.d2;
cosTheta2r = (hxr.^2 + hyr.^2 - l1.^2 - l2.^2)./(2.*l1.*l2);
sinTheta2r = sqrt(1 - cosTheta2r.^2);
theta2r = unwrap(atan2(sqrt(1 - cosTheta2r.^2), cosTheta2r));
theta1r = unwrap(atan2(hyr,hxr)) - ...
 unwrap(atan2(12.*sinTheta2r,(l1+l2.*cosTheta2r)));
dotTheta2r = -(hxr.*dothxr + hyr.*dothyr)./(l1*l2.*sinTheta2r);
dotTheta1r = (dothyr.*hxr - hyr.*dothxr)./(hxr.^2 + hyr.^2) - ...
 (l2.*dotTheta2r.*(1+l1.*cosTheta2r)) ./ ...
 (l1^2 + 2*l1*l2.*cosTheta2r + l2^2);
 ddotTheta2r = -(hxr.*ddothxr + dothxr.^2 + hyr.*ddothyr + dothyr.^2)./...
 (l1*l2.*sinTheta2r) + (hxr.*dothxr + hyr.*dothyr) .*...
 (cosTheta2r.*dotTheta2r)./(l1*l2.*sinTheta2r.^2);
 ddotTheta1r = (ddothyr.*hxr - hyr.*ddothxr)./(hxr.^2 + hyr.^2) - ...
 2.*(dothyr.*hxr - hyr.*dothxr).*(hxr.*dothxr + hyr.*dothyr) - ...
 l2.*ddotTheta2r.*(1+l1.*cosTheta2r) .(l1.*dotTheta2r.^2.*sinTheta2r)) ./ ...
 (l1^2 + 2*l1*l2.*cosTheta2r + l2^2) + ...
 2*l1*l2.*(12.*dotTheta2r.*(1+l1.*cosTheta2r)).(sinTheta2r.*dotTheta2r)./...
 (l1^2+2*l1*l2.*cosTheta2r+12-2).^2;
strRef.theta1r = theta1r; strRef.theta2r = theta2r;
strRef.dotTheta1r = dotTheta1r; strRef.dotTheta2r ← dotTheta2r;
strRef.ddotTheta1r = ddotTheta1r; strRef.ddotTheta2r ← ddotTheta2r;
end

%%%%%%% plots

function plotVariables(P, R, K, S)

% For plots
police = 'Helvetica'; size = 24; lineWidth = 2;

ts = S.ts; tr = ts; Xs = S.Xs;

% Reference curve and inverse kinematics
[strRefHx strRefHy] = tanhRefTraj(tr, P, R, S);
hxr = strRefHx.v; hyr = strRefHy.v;
dotHxr = strRefHx.d1; dotHyr = strRefHy.d1;
ddotHxr = strRefHx.d2; ddotHyr = strRefHy.d2;
strRefTh = inverseKinematics(tr, P, R, S);
theta1r = strRefTh.theta1r; theta2r ← strRefTh.theta2r;
dotTheta1r = strRefTh.dotTheta1r; dotTheta2r ← strRefTh.dotTheta2r;

% Simulated state
theta1 = Xs(:,1); dotTheta1 = Xs(:,2);
theta2 = Xs(:,3); dotTheta2 = Xs(:,4);

% Control laws computation

T1r = []; T2r = [];
for i = 1:length(ts)
 % Open loop control
 Pr = coriolisGravity(P, theta1r(i), dotTheta1r(i) ←
 theta2r(i), dotTheta2r(i));
 Mr = Pr.M; Cr = Pr.C; Gr = Pr.G;
 [Hinvr phir] = computeHinvPhi(theta1r(i), theta2r ←
 (i), dotTheta1r(i), dotTheta2r(i), P);
 DdotHr = [ddotHxr(i) ddotHyr(i)];
 Tr = Cr + Gr - Mr*Hinvr*(DdotHr + phir);
 T1r = [T1r; Tr(1)]; T2r = [T2r; Tr(2)];
 % Simulated closed loop control
 P = coriolisGravity(P, theta1(i), dotTheta1(i), ←
 theta2(i), dotTheta2(i));
 T = twoLinkFlatCtrlLaw(ts(i), Xs(:,i), P, R, K, ←
 S);
 T1 = [T1; T(1)]; T2 = [T2; T(2)];
end

% Simulated curve: forward kinematics
li = P.l1; l2 = P.l2;
hx = l1 .* cos(theta1) + l2 .* cos(theta1 + theta2)
hy = l1 .* sin(theta1) + l2 .* sin(theta1 + theta2)

figure(1);
% hx hy plot
subplot(2, 2, 1);
plot(tr, hx, 'r', ts, hx, 'b', 'LineWidth', lineWidth); grid;
xlabel('time (s)', 'FontName', police, 'FontSize', size);
ylabel('h_x, h_{xr} (deg)', 'FontName', police, 'FontSize', size);
title('red h_{xr} ; blue h_x',...
 'FontName', police, 'FontSize', size, ' FontWeight', 'bold');

% theta2 plot
subplot(2, 2, 2);
plot(tr, hy, 'r', ts, hy, 'b', 'LineWidth', lineWidth); grid;
xlabel('time (s)', 'FontName', police, 'FontSize', size);
ylabel('h_y, h_{yr} (deg)', 'FontName', police, 'FontSize', size);
title('red h_{yr} ; blue h_y',...
 'FontName', police, 'FontSize', size, ' FontWeight', 'bold');

subplot(2, 2, 3);
plot(tr, theta1, *(180/pi), 'r', ts, theta1, *(180/pi), 'b', 'LineWidth', lineWidth); grid;
xlabel('time (s)', 'FontName', police, 'FontSize', size);
ylabel('\theta_1, \theta_{1r} (deg)', 'FontName', police, 'FontSize', size);
title('red \theta_{1r} ; blue \theta_1',...
 'FontName', police, 'FontSize', size, ' FontWeight', 'bold');

subplot(2, 2, 4);
plot(tr, theta2, *(180/pi), 'r', ts, theta2, *(180/pi), 'b', 'LineWidth', lineWidth); grid;
xlabel('time (s)', 'FontName', police, 'FontSize', size);
ylabel('\theta_2, \theta_{2r} (deg)', 'FontName', police, 'FontSize', size);
title('red \theta_{2r} ; blue \theta_2',...
 'FontName', police, 'FontSize', size, ' FontWeight', 'bold');
hFig2 = figure(2);
% T1 and T1r plot
set(gca, 'FontName', police, 'FontSize', size);
plot(tr, T1r, 'r--', ts, T1, 'b-', 'LineWidth', lineWidth); grid;
xlabel('time (s)', 'FontName', police, 'FontSize', size);
ylabel('T_1, T_{1r} (N)', 'FontName', police, 'FontSize', size);
if (strcmp(S. forSaving, 'yes') ~= 1)
 title('red T_{1r}; blue T_1',...
 'FontName', police, 'FontSize', size,
 'FontWeight', 'bold');
else
 print(hFig2, '-dpdf', '../GraphicsImages/twoLinkArmCtrl1.pdf');
end

hFig3 = figure(3);
% T2 and T2r plot
set(gca, 'FontName', police, 'FontSize', size);
plot(tr, T2r, 'r--', ts, T2, 'b-', 'LineWidth', lineWidth); grid;
xlabel('time (s)', 'FontName', police, 'FontSize', size);
ylabel('T_2, T_{2r} (N)', 'FontName', police, 'FontSize', size);
if (strcmp(S. forSaving, 'yes') ~= 1)
 title('red T_{2r}; blue T_2',...
 'FontName', police, 'FontSize', size, 'FontWeight', 'bold');
else
 print(hFig3, '-dpdf', '../GraphicsImages/twoLinkArmCtrl2.pdf');
end

hFig4 = figure(4);
set(gca, 'FontName', police, 'FontSize', size);
plot(tr, hx-hxr, 'b', 'LineWidth', lineWidth); grid;
xlabel('time (s)', 'FontName', police, 'FontSize', size);
ylabel('h_x - h_{xr} (m)', 'FontName', police, 'FontSize', size);
if (strcmp(S. forSaving, 'yes') ~= 1)
 title('red h_{xr}; blue h_x',...
 'FontName', police, 'FontSize', size, 'FontWeight', 'bold');
else
 print(hFig4, '-dpdf', '../GraphicsImages/twoLinkArmErrHx.pdf');
end

hFig5 = figure(5);
set(gca, 'FontName', police, 'FontSize', size);
plot(tr, hy-hyr, 'b', 'LineWidth', lineWidth); grid;
xlabel('time (s)', 'FontName', police, 'FontSize', size);
ylabel('h_y - h_{yr} (m)', 'FontName', police, 'FontSize', size);
if (strcmp(S, forSaving, 'yes') ~= 1)
 title('h_y - h_{yr}', 'FontSize', size);
else
 print(hFig5, '-dpdf', '../GraphicsImages/twoLinkArmErrHy.pdf');
end

% forward reference and actual kinematics
hFig6 = figure(6);
set(gca, 'FontName', police, 'FontSize', size);
plot(hx, hy, 'b-', hxr, hyr, 'r--', 'LineWidth', lineWidth); grid;
xlabel('h_x (m)', 'FontName', police, 'FontSize', size);
ylabel('h_y (m)', 'FontName', police, 'FontSize', size);
if (strcmp(S, forSaving, 'yes') ~= 1)
 title('blue h_x h_y red h_{xr} h_{yr}', 'FontSize', size);
else
 print(hFig6, '-dpdf', '../GraphicsImages/twoLinkArmHxHy.pdf');
end

hFig7 = figure(7);
set(gca, 'FontName', police, 'FontSize', size);
R.hxi = 0.8*(p.l1+p.l2); R.hxf = 0;
R.hyi = p.l1 + 0.1*p.l2; R.hyf = -0.1*p.l1;
hold on
for i = 1:3:length(ts)
 line([0, l1*cos(theta1(i))], [0, l1*sin(theta1(i))], 'Color', [0 0 0.5], 'LineWidth', 2);
 line([l1*cos(theta1(i)), l1*cos(theta1(i))+l2*cos(theta1(i)+theta2(i))],... [l1*sin(theta1(i)),...
\[11 \cdot \sin(\theta_1(i)) + 12 \cdot \sin(\theta_1(i) + \theta_2(i)) \], 'Color', [0 0 0.9], 'LineWidth', 2);
plot(hx(i), hy(i), 'ro', 'LineWidth', 2); grid;
pause(0.01);
end
hold off
xlabel('h_x (m)', 'FontName', 'police', 'FontSize', size);
ylabel('h_y (m)', 'FontName', 'police', 'FontSize', size);
if (strcmp(S, forSaving, 'yes') ~= 1)
 title('blue h_x h_y red h_{xr} h_{yr}', ...
 'FontName', 'police', 'FontSize', size, ' FontWeight', 'bold');
else
 print(hFig7, '-dpdf', ' ../GraphicsImages/twoLinkArmAnimation.pdf');
end
end