Moderate deviations for Ewens-Pitman exchangeable random partitions

Stefano Favaro1, Shui Feng2 and Fuqing Gao3

1 University of Torino and Collegio Carlo Alberto, Torino, Italy.
\textit{E-mail}: stefano.favaro@unito.it

2 McMaster University, Hamilton, Canada.
\textit{E-mail}: shuifeng@univmail.cis.mcmaster.ca

3 Wuhan University, Hubei, China
\textit{E-mail}: fqgao@whu.edu.cn

\textit{October 2016}

\textbf{Abstract}

Consider a population of individuals belonging to an infinity number of types, and assume that type proportions follow the two-parameter Poisson-Dirichlet distribution. A sample of size n is selected from the population. The total number of different types and the number of types appearing in the sample with a fixed frequency are important statistics. In this paper we establish the moderate deviation principles for these quantities. The corresponding rate functions are explicitly identified, which help revealing a critical scale and understanding the exact role of the parameters. Conditional, or posterior, counterparts of moderate deviation principles are also established.

\textit{Key words and phrases}: α-diversity; exchangeable random partition; Dirichlet process; large and moderate deviation; random probability measure; two parameter Poisson-Dirichlet distribution

\section{Introduction}

Consider a population of countable number of individuals belonging to an infinite number of types. The type of each individual is labelled by a point in a Polish space S. The type proportions in the population are thus a point $\mathbf{p} = (p_1, p_2, \ldots)$ in the space $\Delta := \{\mathbf{q} = (q_1, q_2, \ldots) : q_i \geq 0, \sum_{j=1}^{\infty} q_j = 1\}$. For each $n \geq 1$, let X_1, X_2, \ldots, X_n be a random sample of size n from the population with X_i denoting the type of the ith sample. The sample diversity is defined as

$$K_n := \text{total number of different types in the sample.}$$

For any $1 \leq l \leq n$, set

$$M_{l,n} := \text{total number of types that appear in the sample } l \text{ times.}$$
The quantity $M_{l,n}$ is typically referred to as the sample diversity with frequency l. Both the random variables K_n and $M_{l,n}$, as well as related functions, provide important statistics for inference about the population diversity.

A natural scheme arises in the occupancy problem. Consider a countable numbers of urns. Balls are put into the urns independently and each ball lands in urn i with probability p_i. After n balls are put into the urns, the total number of occupied urns is K_n, and $M_{l,n}$ is the numbers of urns with l balls inside. Assuming that $p_1 \geq p_2 \geq \ldots$, a comprehensive study of K_n and $M_{l,n}$ was carried out in [15]. See also [14], [1], [2] for some recent contributions. A comprehensive survey of recent progresses in this context is found in [11].

Adding randomness to the type proportions p_i, the population will have random type proportions with the law P being a probability on \triangle. Note that, instead of being independent and identically distributed (iid), the random sample X_1, X_2, \ldots, X_n becomes exchangeable. In particular, following the de Finetti theorem, the random type proportions are recovered from the masses of the limit of empirical distributions of the random sample as n tends to infinity. This framework fits naturally in the context of Bayesian nonparametric inference. See, e.g., [7]. In particular the law P can be viewed as the prior distribution on the unknown species composition $(p_i)_{i \geq 1}$ of the population. The main interests in Bayesian nonparametrics are the posterior distribution of P given an initial sample (X_1, \ldots, X_n) and associated statistical inferences. More specifically, given an initial sample (X_1, \ldots, X_n), interest lies in making inference based on certain statistics induced by an additional unobserved sample of size m. These include, among others, the sample diversity $K_m^{(n)}$ and the sample diversity $M_{l,m}^{(n)}$ with frequency l to be observed in the additional sample of size m. We call $K_m^{(n)}$ and $M_{l,m}^{(n)}$ the posterior sample diversity and the posterior sample diversity with frequency l, respectively.

The most studied family of probabilities on \triangle is Kingman’s Poisson-Dirichlet distribution ([16]) describing in the genetics context the distribution of allele frequencies in a neutral population. This is followed by the study of the two-parameter Poisson-Dirichlet distribution ([18]). Various generalizations of these models can be found in [3], [19] and the references therein.

The focus of this paper is on the asymptotic behaviour of all these sample diversities when the random proportions in the population follow Kingman’s Poisson-Dirichlet distribution and its two-parameter generalization. Specifically, for any α in $[0, 1)$ and $\theta > -\alpha$, let $U_k, k = 1, 2, \cdots$, be a sequence of independent random variables such that U_k has $Beta(1 - \alpha, \theta + k\alpha)$ distribution. If

$$V_1(\alpha, \theta) = U_1, \quad V_n(\alpha, \theta) = (1 - U_1) \cdots (1 - U_{n-1})U_n, \quad n \geq 2,$$

then

$$V(\alpha, \theta) = (V_1(\alpha, \theta), V_2(\alpha, \theta), \cdots) \in \triangle$$
with probability 1. The law of the descending order statistic \(P(\alpha, \theta) = (P_1(\alpha, \theta), P_2(\alpha, \theta), \ldots) \) of \(V(\alpha, \theta) \) is the so-called the two-parameter Poisson-Dirichlet distribution and is denoted by \(PD(\alpha, \theta) \). Kingman’s Poisson-Dirichlet distribution which corresponds to \(\alpha = 0 \). The sample diversities \(K_n, K_m^{(n)}, M_{l,n} \) and \(M_{l,m}^{(n)} \) depend on the parameters \(\theta \) and \(\alpha \). For notational convenience we will not indicate the dependence explicitly. When \(\alpha = 0 \), the parameter \(\theta \) corresponds to the scaled population mutation rate. The sample diversity \(K_n \) turns out to be a sufficient statistic for the estimation of \(\theta \).

There have been many studies on the behaviour of \(K_n \) and \(M_{l,n} \), as \(n \) goes to infinity, and of \(K_m^{(n)} \) and \(M_{l,m}^{(n)} \), as \(m \) goes to infinity. In the case \(\alpha = 0 \), one can represent \(K_n \) as the summation of independent Bernoulli random variables and show that \(K_n / n \) converges to \(\theta \) almost surely. In \([12] \) \((\alpha = 0, \theta = 1) \) and \([13] \) \((\alpha = 0, \text{general } \theta) \) the following central limit theorem was obtained

\[
\frac{K_n - \theta \ln n}{\sqrt{\ln n}} \Rightarrow N(0, 1),
\]

as \(n \) goes to infinity, with \(\Rightarrow \) denoting the weak convergence. When the parameter \(\alpha \) is positive, the Gaussian limit no longer holds. In particular, it was shown in \([17] \) that one has

\[
\lim_{n \to \infty} \frac{K_n}{n^\alpha} = S_{\alpha, \theta}, \quad \text{a.s.}
\]

where \(S_{\alpha, \theta} \) is related to the Mittag-Leffler distribution. For any \(l \geq 1 \), the following holds \([19] \):

\[
\lim_{n \to \infty} \frac{M_{l,n}}{n^\alpha} = (-1)^{l-1} \left(\frac{\alpha}{l} \right) S_{\alpha, \theta}, \quad \text{a.s.}
\]

The random variable \(S_{\alpha, \theta} \) is referred to as the \(\alpha \)-diversity of the \(PD(\alpha, \theta) \) distribution. Large deviation principles for \(K_n \) were established in \([10] \). The fluctuation behaviour of \(K_m^{(n)} \) and \(M_{l,m}^{(n)} \), as \(m \) goes to infinity, were studied in \([6] \), where the notion of posterior \(\alpha \)-diversity were introduced. Moreover, the associated large deviation principles have been recently established in \([8] \) and \([9] \).

The main results of the present paper are the moderate deviation principles (henceforth MDPs) for the sample diversities \(K_n, K_m^{(n)}, M_{l,n} \) and \(M_{l,m}^{(n)} \) under \(PD(\alpha, \theta) \) with \(\alpha > 0 \). Our study is motivated by a better understanding of the non-Gaussian moderate deviation behaviour and a refined analysis about the role of the parameters \(\alpha \) and \(\theta \) involved. Interestingly, our results identify a critical scale and reveal the role of the parameters \(\theta \) and \(\alpha \) explicitly. The paper is organized as follows. Section 2 contains the study of MDPs for the sample diversities \(K_n \) and \(M_{l,n} \). The corresponding results for the posterior sample diversities are then presented in Section 3. A key step here is a Bernoulli representation of \(K_m^{(n)} \) and \(M_{l,m}^{(n)} \). All terminologies and theorems on large and moderate deviations are based on the reference \([5] \).
2 Moderate deviations for K_n and $M_{l,n}$

In the case $\alpha = 0$ and $\theta > 0$, K_n is the summation of independent Bernoulli random variables, and for each $1 \leq l \leq n$ $M_{l,n}$ is approximately a Poisson random variable. Accordingly, the corresponding moderate deviations are standard. Hence we assume in the sequel that $0 < \alpha < 1$ and $\theta + \alpha > 0$.

Moderate deviations in these cases lie between the fluctuation limit results for $\frac{K_n}{n^\alpha}$ and $\frac{M_{l,n}}{n^\alpha}$, and the large deviation results for $\frac{K_n}{n^\alpha}$ and $\frac{M_{l,n}}{n^\alpha}$, respectively. In particular our objectives consist of establishing large deviation principles for $\frac{K_n}{n^\alpha}$ and $\frac{M_{l,n}}{n^\alpha}$ where β_n converges to infinity at a slower pace than $n^{1-\alpha}$ as n tends to infinity. More specifically, we assume that β_n satisfies

$$\lim_{n \to \infty} \frac{\beta_n}{n^{1-\alpha}} = 0, \quad \lim_{n \to \infty} \frac{\beta_n}{(\ln n)^{1-\alpha}} = \infty. \quad (1)$$

The assumption that β_n grows faster than $(\ln n)^{1-\alpha}$ is crucial for establishing the following MDP.

Theorem 2.1 For any $\alpha \in (0, 1)$ and for any $\theta > -\alpha$, $\frac{K_n}{n^\alpha \beta_n}$ satisfies a large deviation principle on \mathbb{R} with speed $\beta_n^{1/(1-\alpha)}$ and rate function $I_\alpha(\cdot)$ defined by

$$I_\alpha(x) = \begin{cases}
(1-\alpha)\alpha/(1-\alpha)x^{1/(1-\alpha)} & \text{if } x > 0, \\
+\infty & \text{if } x \leq 0.
\end{cases}$$

Proof. Let us define $\tilde{K}_n = \frac{K_n}{n^\alpha \beta_n}$. First, by a direct calculation, one has that for any $\lambda \leq 0$

$$\lim_{n \to \infty} \frac{1}{\beta_n^{1/(1-\alpha)}} \ln \mathbb{E} \left[\exp \left\{ \lambda \beta_n^{1/(1-\alpha)} \tilde{K}_n \right\} \right] = 0.$$

For any $\lambda > 0$, set $y_n = 1 - \exp\{-\lambda n^{1-\alpha} \beta_n^{1/(1-\alpha)}\}$. First assume $\theta = 0$. Then by equation (3.5) in [10], we have

$$\mathbb{E} \left[\exp \left\{ \lambda \beta_n^{1/(1-\alpha)} \tilde{K}_n \right\} \right] = \mathbb{E} \left[(1-y_n)^{-K_n} \right] = \sum_{i=0}^{\infty} y_n^i \binom{i\alpha + n - 1}{n - 1}.$$
\[
\sum_{i=0}^{\infty} y_n^i \left(\left\lfloor \frac{i\alpha}{n} \right\rfloor + n - 1 \right) = \sum_{k=0}^{\infty} \left(\frac{k + n - 1}{n - 1} \right) \sum_{\left\lfloor \frac{i\alpha}{n} \right\rfloor = k} y_n^i \\
\geq y_n^{1/\alpha} \sum_{k=0}^{\infty} \left(\frac{k + n - 1}{n - 1} \right) (y_n^{1/\alpha})^k = \frac{y_n^{1/\alpha}}{(1 - y_n^{1/\alpha})^n}.
\]

On the other hand,
\[
\sum_{i=0}^{\infty} y_n^i \left(\left\lfloor \frac{i\alpha}{n} \right\rfloor + n - 1 \right) \\
\leq \sum_{i=0}^{\infty} y_n^i \left(\left\lfloor \frac{i\alpha}{n} \right\rfloor + n - 1 \right) = \sum_{i=0}^{\infty} y_n^i \left(\frac{i\alpha}{n} + n - 1 \right) \\
\leq n \sum_{k=0}^{\infty} \left(\frac{k + n - 1}{n - 1} \right) \sum_{\left\lfloor \frac{i\alpha}{n} \right\rfloor = k} (y_n^{1/\alpha})^i \\
\leq \frac{n}{\alpha} \sum_{k=0}^{\infty} \left(\frac{k + n - 1}{n - 1} \right) (y_n^{1/\alpha})^k \\
= \frac{1}{\alpha (1 - y_n^{1/\alpha})^n}.
\]

Putting these together and applying assumption (1) one gets
\[
\lim_{n \to \infty} \frac{1}{\beta_n^{1/(1-\alpha)}} \ln \mathbb{E} \left[\exp \left\{ \lambda n^{-\alpha} \beta_n^{\alpha/(1-\alpha)} K_n \right\} \right] \\
= \lim_{n \to \infty} \ln \left[1 - \left(1 - \exp \left\{ -\lambda n^{-\alpha} \beta_n^{\alpha/(1-\alpha)} \right\} \right)^{1/\alpha} \right]^{-n\beta_n^{-1/(1-\alpha)}} \\
= \lambda^{1/\alpha}.
\]

Since the law of K_n under $PD(\alpha, \theta)$ is equivalent to the law of K_n under $PD(\alpha, 0)$, the above limit holds for $\lambda \geq 0$.

Set
\[
\Lambda(\lambda) = \begin{cases}
\lambda^{1/\alpha} & \text{if } \lambda > 0, \\
0 & \text{otherwise}.
\end{cases}
\]

Noting that $I_\alpha(x) = \sup_{\lambda \in \mathbb{R}} \{\lambda x - \Lambda(\lambda)\}$, the conclusion holds following Gärtner-Ellis theorem (\[5\]).

\[\blacksquare \]

Theorem 2.1 introduces a moderate deviation principle for K_n. Rewrite the rate function as
\[
I_\alpha(x) = \exp \left\{ \frac{1}{1 - \alpha} [H_\alpha + \ln x] \right\}
\]

with $H_\alpha = (1 - \alpha) \ln(1 - \alpha) + \alpha \ln \alpha$ being the entropy function, it follows that $\alpha x = 1$ is a critical curve. For $0 < x \leq 1$, $I_\alpha(x)$ is decreasing in α. For $x > 1$ $I_\alpha(x)$ decreases for α in
(0,1/x), increases for α in (1/x, 1). The minimum is achieved at the point 1/x. Discounting the scale differences, these results provide a refined comparison between different models in terms of deviation manners.

In the next theorem we establish the MDP for $M_{t,n}$ for any $l \geq 1$.

Theorem 2.2 For any $\alpha \in (0, 1)$ and for any $\theta > -\alpha$, $\frac{M_{t,n}}{n^\theta \beta_n}$ satisfies a large deviation principle on \mathbb{R} with speed $\beta_n^{1/(1-\alpha)}$ and rate function $I_{\alpha,l}(\cdot)$ defined by

$$I_{\alpha,l}(x) = \begin{cases} (1 - \alpha) \left(\frac{l}{(1-\alpha)(l-1)\uparrow 1} \right)^{\alpha/(1-\alpha)} x^{1/(1-\alpha)} & \text{if } x > 0, \\ +\infty & \text{if } x \leq 0, \end{cases}$$

where $(a)_j \uparrow b = a(a + b) \cdots (a + (j-1)b)$ with the proviso $(a)_0 \uparrow b = 1$.

Proof. Let y_n be as in Theorem 2.1. Set

$$y_{n,l} = \frac{\alpha(1-\alpha)(l-1)\uparrow 1}{l!} \frac{y_n}{1 - y_n}.$$

By an argument similar to the proof of Lemma 2.1 in [8], we obtain that for any $\lambda > 0$

$$E \left[\exp \left\{ \lambda n^{-\alpha} \beta_n^{\alpha/(1-\alpha)} M_{t,n} \right\} \right] = E \left[\left(\frac{1}{1 - y_n} \right)^{M_{t,n}} \right] = \sum_{i=0}^{\lfloor n/l \rfloor} y_{n,l}^i \frac{n - il + i\alpha}{n - il} \left(n - il + i\alpha \right).$$

Note that, since $1 \leq \frac{n}{n - il + i\alpha} \leq \frac{1}{\alpha}$ for $i = 0, \ldots, \lfloor n/l \rfloor$, it follows that the large n approximation of

$$E \left[\exp \left\{ \lambda n^{-\alpha} \beta_n^{\alpha/(1-\alpha)} M_{t,n} \right\} \right]$$

is equivalent to that of

$$H_{n,l} = \sum_{i=0}^{\lfloor n/l \rfloor} y_{n,l}^i \left(n - il + i\alpha \right).$$

Set

$$H_{n,l}^- = \sum_{i=0}^{\lfloor n/l \rfloor} y_{n,l}^i \left(n - il + \lfloor i\alpha \rfloor \right)$$

and

$$H_{n,l}^+ = \sum_{i=0}^{\lfloor n/l \rfloor} y_{n,l}^i \left(n - il + \lfloor i\alpha \rfloor + 1 \right).$$
It is clear that
\[H_{n,l}^- \leq H_{n,l} \leq H_{n,l}^+ \leq (n + 1)H_{n,l}^- . \]

The assumption for \(\beta_n \) guarantees that the factor \(n + 1 \) in the upper bound does not contribute to the scaled logarithmic limit. Accordingly, we can write
\[
\lim_{n \to \infty} \frac{1}{\beta_n^{1/(1-\alpha)}} \ln \mathbb{E} \left[\exp \{ \lambda n^{-\alpha} \beta_n^{\alpha/(1-\alpha)} M_{t,n} \} \right] = \lim_{n \to \infty} \frac{1}{\beta_n^{1/(1-\alpha)}} \ln H_{n,l}^- . \tag{2}
\]

To estimate \(H_{n,l}^- \), we write
\[
H_{n,l}^- = \sum_{i=0}^{\lfloor n/l \rfloor} (y_{n,l}^{1/\alpha})^{(n-il+1)\cdots(n-il+\lfloor i\alpha \rfloor)} \frac{(1 + (1-il)/n)^{\lfloor i\alpha \rfloor}}{\lfloor i\alpha \rfloor} \frac{\lfloor i\alpha \rfloor}{(\lfloor i\alpha \rfloor)!}
\]
which is controlled from below by
\[
\sum_{i=0}^{\lfloor n/l \rfloor} (y_{n,l}^{1/\alpha})^{(n-il+1)\cdots(n-il+\lfloor i\alpha \rfloor)} \frac{(1 + (1-il)/n)^{\lfloor i\alpha \rfloor}}{\lfloor i\alpha \rfloor} \frac{\lfloor i\alpha \rfloor}{(\lfloor i\alpha \rfloor)!}
\]
and from above by
\[
\sum_{i=0}^{\lfloor n/l \rfloor} (y_{n,l}^{1/\alpha})^{(n-il+1)\cdots(n-il+\lfloor i\alpha \rfloor)} \frac{(1 + (1-il)/n)^{\lfloor i\alpha \rfloor}}{\lfloor i\alpha \rfloor} \frac{\lfloor i\alpha \rfloor}{(\lfloor i\alpha \rfloor)!}
\]
Since \((y_{n,l}^{1/\alpha})^{\lfloor i\alpha \rfloor} \) does not affect the scaled logarithmic limit in (2), it suffices to focus on
\[
D_{n,l} = \sum_{i=0}^{\lfloor n/l \rfloor} (ny_{n,l}^{1/\alpha})^{(n-il+1)\cdots(n-il+\lfloor i\alpha \rfloor)} \frac{(1 + (1-il)/n)^{\lfloor i\alpha \rfloor}}{\lfloor i\alpha \rfloor} \frac{\lfloor i\alpha \rfloor}{(\lfloor i\alpha \rfloor)!}
\]
and
\[
J_{n,l} = \sum_{i=0}^{\lfloor n/l \rfloor} (ny_{n,l}^{1/\alpha})^{(n-il+1)\cdots(n-il+\lfloor i\alpha \rfloor)} \frac{(1 + (1-il)/n)^{\lfloor i\alpha \rfloor}}{\lfloor i\alpha \rfloor} \frac{\lfloor i\alpha \rfloor}{(\lfloor i\alpha \rfloor)!}
\]
Set \(\gamma_n = \lfloor \beta_n^{1/(1-\alpha)} \rfloor \) and write
\[
D_{n,l} = D_{n,l}^1 + D_{n,l}^2
\]
with
\[
D_{n,l}^1 = \sum_{i=0}^{\gamma_n} (ny_{n,l}^{1/\alpha})^{(n-il+1)\cdots(n-il+\lfloor i\alpha \rfloor)} \frac{(1 + (1-il)/n)^{\lfloor i\alpha \rfloor}}{\lfloor i\alpha \rfloor} \frac{\lfloor i\alpha \rfloor}{(\lfloor i\alpha \rfloor)!}
\]
It follows that
\[
D_{n,l}^2 = \sum_{i=\gamma_n+1}^{\lfloor n/l \rfloor} (ny_{n,l}^{1/\alpha})^{(n-il+1)\cdots(n-il+\lfloor i\alpha \rfloor)} \frac{(1 + (1-il)/n)^{\lfloor i\alpha \rfloor}}{\lfloor i\alpha \rfloor} \frac{\lfloor i\alpha \rfloor}{(\lfloor i\alpha \rfloor)!}
\]
\[
\sum_{i=\gamma_n+1}^{[n/l]} \frac{(ny_{n,l}^{1/\alpha})^{|i\alpha|}}{(|i\alpha|)!} \leq \frac{1}{\alpha} \sum_{k=[(\gamma_n+1)\alpha]}^{\infty} \frac{(ny_{n,l}^{1/\alpha})^k}{k!}
\]

By direct calculation, we have

\[
\lim_{n \to \infty} \frac{ny_{n,l}^{1/\alpha}}{\beta_n^{1/(1-\alpha)}} = \left(\frac{\alpha(1-\alpha)(l-1)}{l!}\lambda\right)^{1/\alpha}
\]

and

\[
\lim_{n \to \infty} \frac{1}{\beta_n^{1/(1-\alpha)}} \ln[(\gamma_n+1)\alpha)! = \infty.
\]

Hence

\[
\lim_{n \to \infty} \frac{1}{\beta_n^{1/(1-\alpha)}} \ln D_{n,l}^2 = -\infty.
\]

This implies that

\[
\lim_{n \to \infty} \frac{1}{\beta_n^{1/(1-\alpha)}} \ln D_{n,l} = \lim_{n \to \infty} \frac{1}{\beta_n^{1/(1-\alpha)}} \ln D_{n,l}^1.
\]

Noting that \(\lim_{n \to \infty} \max_{10 \leq i \leq \gamma_n} \{\frac{|(1-il)/n|}{n}\} = 0\), we obtain

\[
\lim_{n \to \infty} \frac{1}{\beta_n^{1/(1-\alpha)}} \ln D_{n,l}^1 = \lim_{n \to \infty} \frac{1}{\beta_n^{1/(1-\alpha)}} \ln \sum_{i=0}^{\gamma_n} \frac{(ny_{n,l}^{1/\alpha})^{|i\alpha|}}{(|i\alpha|)!}.
\]

By an argument similar to that used in deriving the estimation (3), and taking into account of (4), we obtain that

\[
\lim_{n \to \infty} \frac{1}{\beta_n^{1/(1-\alpha)}} \ln D_{n,l}^1 = \lim_{n \to \infty} \frac{1}{\beta_n^{1/(1-\alpha)}} \ln \exp\{ny_{n,l}^{1/\alpha}\} = \left(\frac{\alpha(1-\alpha)(l-1)}{l!}\lambda\right)^{1/\alpha},
\]

Similarly we can prove that

\[
\lim_{n \to \infty} \frac{1}{\beta_n^{1/(1-\alpha)}} \ln J_{n,l} = \left(\frac{\alpha(1-\alpha)(l-1)}{l!}\lambda\right)^{1/\alpha}.
\]

The result now follows from (2), (6), (7) and Gärtner-Ellis theorem.

\[\square\]
3 Moderate deviations for $K_m^{(n)}$ and $M_{l,m}^{(n)}$

Given $n \geq 1$, let $X_n = (X_1, \ldots, X_n)$ be a sample from the population with type proportions following two parameter Poisson-Dirichlet distribution $PD(\alpha, \theta)$. Let the sample X_n featuring $K_n = j \leq n$ distinct types with corresponding frequencies $N_n = (N_{1,1}, \ldots, N_{1,K_n}) = (n_1, \ldots, n_j)$, and let $M_{l,n}$ be the number of distinct types with frequency $1 \leq l \leq n$. Now consider an additional sample $X_m^{(n)} = (X_{n+1}, \ldots, X_{n+m})$ of size m, and let $K_m^{(n)}$ and $M_{l,m}^{(n)}$ be the sample diversity and sample diversity with frequency $1 \leq l \leq m$ in $X_m^{(n)}$. In this section we derive the MDPs for $K_m^{(n)}$ and $M_{l,m}^{(n)}$ as m tends to infinity given X_n, K_n and N_n. The law of the type proportions of the population is now the posterior distribution of $PD(\alpha, \theta)$ given X_n. Structurally we can divide the type into two groups: types appeared in the sample X_n and brand new types.

Let $L_m^{(n)}$ be the number of X_{n+i}’s for $i = 1, \ldots, m$, that do not coincide with X_i’s, for $i = 1, \ldots, n$. Also, let

i) $\tilde{K}_m^{(n)}$ be the number of new distinct types in the additional sample X_m, i.e. the number of types in $X_m^{(n)}$ which do not coincide with any of the types that appear in the initial sample X_n;

ii) $\tilde{M}_{l,m}^{(n)}$ be the number of new distinct types with frequency l in the additional sample X_m, i.e., the number of types with frequency l among the new types that appear in $X_m^{(n)}$, such that

$$\sum_{l=1}^{m} \tilde{M}_{l,m}^{(n)} = \tilde{K}_m^{(n)} \quad \text{and} \quad \sum_{l=1}^{n} l\tilde{M}_{l,m}^{(n)} = L_m^{(n)}.$$

Since the sample X_n is fixed, the moderate deviations for $K_m^{(n)}$ and $M_{l,m}^{(n)}$ are equivalent to the corresponding moderate deviations for $\tilde{K}_m^{(n)}$ and $\tilde{M}_{l,m}^{(n)}$. Thus we will focus on $\tilde{K}_m^{(n)}$ and $\tilde{M}_{l,m}^{(n)}$ in the sequel. The key step in the proof is the following representation for the conditional, or posterior, distributions of $\tilde{K}_m^{(n)}$ given (K_n, N_n) and of $\tilde{M}_{l,m}^{(n)}$ given (K_n, N_n), for any $l = 1, \ldots, m$. With a slight abuse of notation, throughout this section we write $X|Y$ to denote a random variable whose distribution coincides with the conditional distribution of X given Y.

Theorem 3.1 For any $k \geq 1$ and $p \in [0, 1]$, let $Z_{k,p}$ be Binomial random variable with parameter (k, p), and for any $a, b > 0$ let $B_{a,b}$ be a beta random variable with parameter (a, b). If K_m^* and $M_{l,m}^*$ denote the number of distinct types and the number of distinct types with frequency $1 \leq l \leq m$, respectively, in a sample of size m from $PD(\alpha, \theta + n)$, then we have

$$K_m^{(n)} | (K_n = j, N_n = (n_1, \ldots, n_j)) \overset{d}{=} \tilde{K}_m^{(n)} | (K_n = j) \overset{d}{=} Z_{K_m^*, B_{\frac{m-j}{m+j}, \frac{j}{m+j}}}$$

(8)
and
\[M_{t,m}^{(n)} \mid (K_n = j, N_n = (n_1, \ldots, n_j)) \overset{d}{=} M_{t,m}^{(n)} \mid (K_n = j) \overset{d}{=} Z_{M_{t,m}^{*}, B^{\alpha+j, n-j}} \]
(9)

where \(\overset{d}{=} \) denotes the equality in distribution, and \(B^{\alpha+j, n-j} \) is independent of \(K_m^{*} \) and of \(M_{t,m}^{*} \).

Proof. Since all random variables involved are bounded, it suffices to verify the equality of all moments. We start by recalling some moment formulae for \(K_m^{*} \) and \(M_{t,m}^{*} \) (cf. [20] and [6]). In particular one has
\[
E[(K_m^{*})_{r\downarrow 1}] = \left(\frac{\theta + n}{\alpha} \right)_{r\uparrow 1} \sum_{i=0}^{r} (-1)^{r-i} \binom{r}{i} \frac{(\theta + n + i\alpha)_{m+1}}{(\theta + n)_{m+1}}
\]
(10)
and
\[
E[(M_{t,m}^{*})_{r\downarrow 1}] = (m)_{r\downarrow 1} \left(\frac{\alpha(1-\alpha)(i-1)_{\uparrow 1}}{i!} \right)^{r} \left(\frac{\theta + n}{\alpha} \right)_{r\uparrow 1} \frac{(\theta + n + r\alpha)_{m-r\downarrow 1}}{(\theta + n)_{m\uparrow 1}},
\]
(11)
where \((c)_{\downarrow 1} = (c)_{\uparrow -1}\). Moreover, let us recall the factorial moment of order \(r \) of the Binomial random variable \(Z_{n,p} \), i.e.,
\[
E[(Z_{n,p})^r] = \sum_{t=0}^{r} S(r, t)(n)_{\downarrow 1} p^t,
\]
(12)
with \(S(n, k) \) being the Stirling number of the second kind. If \(S(n, k; a) \) denotes the non-central Stirling number of the second kind, see [4], then by means of Proposition 1 in [7] we have
\[
E[(K_m^{(n)})^r \mid K_n = j] = \sum_{i=0}^{r} (-1)^{r-i} \binom{j + \frac{\theta}{\alpha}}{i}_{\uparrow 1} S(\frac{\theta}{\alpha})_{\downarrow 1} \frac{(\theta + n + i\alpha)_{m+1}}{(\theta + n)_{m+1}}
\]
(by expanding \(S(r, j; \theta/\alpha) \) as a finite sum)
\[
= \sum_{i=0}^{r} (-1)^{r-i} \binom{(\theta + n + i\alpha)_{m+1}}{(\theta + n)_{m\uparrow 1}} \sum_{t=i}^{r} (-1)^{t-i} \binom{t}{i} S(r, t) \frac{(\theta + \frac{\theta}{\alpha})_{t\uparrow 1}}{(\theta + n)_{m\uparrow 1}}
\]
\[
= \sum_{t=0}^{r} S(r, t) \frac{(\theta + \frac{\theta}{\alpha})_{t\uparrow 1}}{(\theta + n)_{m\uparrow 1}} E[(K_m^{*})_{t\downarrow 1}]
\]
(by Equation [10])
\[
= \sum_{t=0}^{r} S(r, t) \frac{(\theta + \frac{\theta}{\alpha})_{t\uparrow 1}}{(\theta + n)_{m\uparrow 1}} \frac{\Gamma \left(\frac{\theta}{\alpha} + j \right)}{\Gamma \left(\frac{\theta}{\alpha} - j \right)} \int_{0}^{1} x^{t\frac{\theta}{\alpha} + j - 1} (1 - x)^{\frac{n}{\alpha} - j - 1} dx
\]
(11)
\[
\begin{align*}
&= \sum_{t=0}^{r} S(r, t)E[(K_{m}^{*})_{t+1}]E[(B_{\frac{\alpha}{\delta}+j, \frac{\beta}{\delta}})^{t}] \\
&= E \left[E \left[\sum_{t=0}^{r} S(r, t)(K_{m}^{*})_{t+1}(B_{\frac{\alpha}{\delta}+j, \frac{\beta}{\delta}})^{t} \right] \right] \\
&= E \left[\left(Z_{K_{m}^{*}, B_{\frac{\alpha}{\delta}+j, \frac{\beta}{\delta}}} \right)^{r} \right] \\
&\text{(by Equation (12))} \\
&= E \left[\left(Z_{K_{m}^{*}, B_{\frac{\alpha}{\delta}+j, \frac{\beta}{\delta}}} \right)^{r} \right]
\end{align*}
\]

and the proof of the representation (8) is completed. Similarly, by Theorem 2 in [6] we can write

\[
E[(\tilde{M}_{l,m}^{(n)})^{r} | K_{n} = j] \\
= \sum_{t=0}^{r} S(r, t)(m)_{t+1} \left(\frac{\alpha(1 - \alpha)(t-1)!}{t!} \right) \left(j + \frac{\theta}{\alpha} \right)_{t+1} \left(\frac{\theta + n + t\alpha}{(\theta + n)m+1} \right)_{t+1}
\]

(by Equation (11))

\[
= \sum_{t=0}^{r} S(r, t) \frac{(j + \frac{\theta}{\alpha})_{t+1}E[(M_{l,m}^{*})_{t+1}]}{(\theta + n)_{t+1}}
\]

(by expanding \((j + \theta/\alpha)_{t+1}/((\theta + n)/\alpha)_{t+1}\) as an Euler integral)

\[
= \sum_{t=0}^{r} S(r, t)E[(M_{l,m}^{*})_{t+1}] \frac{\Gamma \left(\frac{\alpha \theta}{\alpha} \right)}{\Gamma \left(\frac{\alpha}{\alpha} + j \right) \Gamma \left(\frac{\beta}{\alpha} - j \right)} \int_{0}^{1} x^{t+\frac{\alpha}{\alpha}j-1}(1 - x)^{\frac{\beta}{\alpha} - j-1} dx
\]

\[
= \sum_{t=0}^{r} S(r, t)E[(M_{l,m}^{*})_{t+1}]E[(B_{\frac{\alpha}{\delta}+j, \frac{\beta}{\delta}})^{t}]
\]

(by Equation (12))

\[
= E \left[\sum_{t=0}^{r} S(r, t)(M_{l,m}^{*})_{t+1}(B_{\frac{\alpha}{\delta}+j, \frac{\beta}{\delta}})^{t} \right]
\]

and the proof of the representation (9) is completed.

Now are ready to prove the main result of this section.

Theorem 3.2 For any \(\alpha \in (0, 1)\) and \(\theta > -\alpha\), the conditional laws of \(\frac{K_{m}^{(n)}}{m^\alpha \beta_{m}}\) and \(\frac{M_{l,m}^{(n)}}{m^\alpha \beta_{m}}\) satisfy MDPs that are the same as \(\frac{K_{m}}{m^\alpha \beta_{m}}\) and \(\frac{M_{l,m}}{m^\alpha \beta_{m}}\), respectively, as \(m\) tends to infinity.

Proof. First observe that the MDPs for \(\frac{K_{m}^{*}}{m^\alpha \beta_{m}}\) and \(\frac{M_{l,m}^{*}}{m^\alpha \beta_{m}}\) are the same as the corresponding MDPs for \(\frac{K_{m}}{m^\alpha \beta_{m}}\) and \(\frac{M_{l,m}}{m^\alpha \beta_{m}}\), respectively. Furthermore, for any \(\lambda \leq 0\) it is not difficult to see that

\[
\lim_{m \to \infty} \frac{1}{\beta_{m}^{1/(1-\alpha)}} \ln E[e^{\lambda m^{-\alpha} \beta_{m}^{(1-\alpha)} K_{m}^{(n)}} | K_{n} = j]
\]
\[
\lim_{m \to \infty} \frac{1}{\beta_m^{1/(1-\alpha)}} \ln \mathbb{E}[e^{\lambda m^{-\alpha} \beta_m^{\alpha/(1-\alpha)} K_m} | K_n = j] = 0.
\]

Let \(\{Y_i : i \geq 1\} \) be iid Bernoulli with parameter \(\eta = B_{\frac{\alpha}{\alpha + j}, \frac{\alpha}{\alpha - j}} \). it follows from Theorem 3.1 that

\[
\tilde{K}_m^{(n)} \overset{d}{=} \sum_{i=1}^{K_m} Y_i, \quad \tilde{M}_{m,l}^{(n)} \overset{d}{=} \sum_{i=1}^{M_{m,l}} Y_i.
\]

Hence for \(\lambda > 0 \),

\[
\mathbb{E}[e^{\lambda m^{-\alpha} \beta_m^{\alpha/(1-\alpha)} K_m} | K_n = j] \leq \mathbb{E}[e^{\lambda m^{-\alpha} \beta_m^{\alpha/(1-\alpha)} K_m^*}]
\]

and

\[
\mathbb{E}[e^{\lambda m^{-\alpha} \beta_m^{\alpha/(1-\alpha)} K_m} | K_n = j] \geq \mathbb{E}
\left[
\left(1 - \eta + \eta e^{\lambda m^{-\alpha} \beta_m^{\alpha/(1-\alpha)}} K_m^*
ight)^{K_m}
\right]
\]

\[
\geq \mathbb{E}
\left[
\mathbb{E}
\left[
\frac{\Gamma(\frac{\alpha + n}{\alpha})}{\Gamma(\frac{\alpha}{\alpha + n})} \frac{\Gamma(K_m^* + \frac{n}{\alpha})}{\Gamma(K_m^* + \frac{\alpha}{\alpha + n})}
\right]
\right]
\]

\[
\geq \frac{1}{m^{\gamma(m, \alpha, \theta, n, j)}} \mathbb{E}[e^{\lambda m^{-\alpha} \beta_m^{\alpha/(1-\alpha)} K_m^*}]
\]

where \(\gamma(m, \alpha, \theta, n, j) \) is sequence of positive numbers converging to \(\frac{n}{\alpha} - j \) for large \(m \). Thus we have

\[
\lim_{m \to \infty} \frac{1}{\beta_m^{1/(1-\alpha)}} \ln \mathbb{E}[e^{\lambda m^{-\alpha} \beta_m^{\alpha/(1-\alpha)} K_m} | K_n = j] = \lambda^{1/\alpha}.
\]

Similarly we can show that

\[
\lim_{m \to \infty} \frac{1}{\beta_m^{1/(1-\alpha)}} \ln \mathbb{E}[e^{\lambda m^{-\alpha} \beta_m^{\alpha/(1-\alpha)} \tilde{M}_m} | K_n = j] = \left(\frac{\alpha(1 - \alpha)(d-1)\gamma_{d}}{d!} \lambda\right)^{1/\alpha}
\]

which combined with (13) led to the theorem.

\[\square\]

The MDP results in Theorems 2.1, 2.2 and 3.2 identify a critical scale at \((\ln m)^{1-\alpha}\). It is not clear whether MDP holds when \(\beta_m\) is at or has a slower growth rate than \((\ln m)^{1-\alpha}\). Our calculations indicate that if such MDPs hold true, then the posterior MDP and the unconditional MDP may be different.
References

[1] A. Barbour and A. Gnedin (2009). Small counts in the infinite occupancy scheme, *Electron. J. Probab.*, 14, 365–384.

[2] A. Ben-Hamou, S. Boucheron and M.I. Ohannessian (2016). Concentration inequalities in the infinite urn scheme for occupancy counts and the missing mass, with applications. *Bernoulli*, in press.

[3] J. Bertoin, *Random fragmentation and coagulation processes*, Cambridge Studies in Advanced Mathematics, Cambridge University Press, 2006.

[4] C.A. Charalambides, *Enumerative combinatorics*, Chapman and Hall/CRC, 2002.

[5] A. Dembo and O. Zeitouni, *Large deviations techniques and applications*, Springer, New York, 1998.

[6] S. Favaro, A. Lijoi, and I. Prünster (2013). Conditional formulae for Gibbs-type exchangeable random partitions. *Ann. Appl. Probab.*, 23, 1721–1754.

[7] S. Favaro, A. Lijoi, R.H. Mena, and I. Prünster (2009). Bayesian nonparametric inference for species variety with a two parameter Poisson-Dirichlet process prior. *J. Roy. Statist. Soc. Ser. B*, 71, 993–1008.

[8] S. Favaro and S. Feng (2014). Asymptotics for the number of blocks in a conditional Ewens-Pitman sampling model, *Electron. J. Probab.*, 19, 1–15.

[9] S. Favaro and S. Feng (2015). Large deviation principles for the Ewens-Pitman sampling model. *Electron. J. Probab.*, 20, 1–27.

[10] S. Feng and F.M. Hoppe (1998). Large deviation principles for some random combinatorial structures in population genetics and Brownian motion. *Ann. Appl. Probab.*, 8, 975–994.

[11] A. Gnedin, B. Hansen, and J. Pitman (2007). Notes on the occupancy problem with infinitely many boxes: general asymptotic and power laws. *Probability Surveys*, 4:146–171.

[12] V.L. Goncharov (1944). Some facts from combinatorics. *Izvestia Akad. Nauk. SSSR, Ser. Mat.* 8, 3–48.

[13] J.C. Hansen (1990). A functional central limit theorem for the Ewens sampling formula. *J. Appl. Probab.*, 27:28–43.
[14] H. Hwang and S. Janson (2008). Local limit theorems for finite and infinite urn models. *Ann. Probab.*, **36**:992–1022.

[15] S. Karlin (1967). Central limit theorems for certain infinite urn schemes. *J. Math. and Mech.*, **17**, No.4:373–401.

[16] J.F.C. Kingman (1975). Random discrete distributions. *J. Roy. Stat. Soc. Ser. B*, **37**, 1-22.

[17] J. Pitman (1992). Notes on the two parameter generalization of the Ewens random partition structure. Unpublished notes.

[18] J. Pitman and M. Yor (1997). The two parameter Poisson-Dirichlet distribution derived from a stable subordinator. *Ann. Probab.*, **25**, 855–900.

[19] J. Pitman. *Combinatorial stochastic processes*. Ecole d’Eté de Probabilités de Saint-Flour XXXII. Lecture Notes in Mathematics N. 1875, Springer-Verlag, New York, 2006.

[20] H. Yamato and M. Sibuya (2000). Moments of some statistics of Pitman sampling formula. *Bull. Inform. Cybernet.*, **32**, 1–10.