Translating SNOMED CT Terminology into a Minor Language

Olatz Perez-de-Viñaspre and Maite Oronoz
Outline

1. Introduction

2. SNOMED CT

3. Translation Algorithm
 - Phase 1: Lexical Resources
 - Phase 2: Finite State Transducers and Biomedical Affixes

4. Results

5. Conclusions
Outline

1 Introduction

2 SNOMED CT

3 Translation Algorithm
 • Phase 1: Lexical Resources
 • Phase 2: Finite State Transducers and Biomedical Affixes

4 Results

5 Conclusions
Introduction. SNOMED CT and Basque

- **SNOMED Clinical Terms (SNOMED CT)**
 - Comprehensive, multilingual *clinical healthcare terminology*
 - Enables consistent representation of meaning in EHRs

- **Basque**
 - Spoken by the 27% of Basques (714,136 out of 2,648,998)
 - 663,035 in the Spanish part
 - 51,100 in the French part
 - Basque is a minority language in its standardization process and persists between two powerful languages, Spanish and French
 - Nowadays, co-official in some parts, during centuries out of educational systems, media, and industrial environments

 Written use of the Basque Language in the bio-sanitary system and in EHRs is low but co-official

Figure 1: Classification of dialects in Basque
(Koldo Zuazo, 2008)
Introduction. SNOMED CT and Basque

- **SNOMED Clinical Terms (SNOMED CT)**
 - Comprehensive, multilingual *clinical healthcare terminology*
 - Enables consistent representation of meaning in EHRs

- **Basque**
 - Spoken by the 27% of Basques (714,136 out of 2,648,998)
 - 663,035 in the Spanish part
 - 51,100 in the French part

- Basque is a minority language in its standardization process and persists between two powerful languages, Spanish and French
- Nowadays, co-official in some parts, during centuries out of educational systems, media, and industrial environments

Written use of the Basque Language in the bio-sanitary system and in EHRs is low but co-official

Figure 1: Classification of dialects in Basque (Koldo Zuazo, 2008)
Introduction. SNOMED CT and Basque

- SNOMED Clinical Terms (SNOMED CT)
 - Comprehensive, multilingual clinical healthcare terminology
 - Enables consistent representation of meaning in EHRs

- Basque
 - Spoken by the 27% of Basques (714,136 out of 2,648,998)
 - 663,035 in the Spanish part
 - 51,100 in the French part

- Basque is a minority language in its standardization process and persists between two powerful languages, Spanish and French
- Nowadays, co-official in some parts, during centuries out of educational systems, media, and industrial environments

Written use of the Basque Language in the bio-sanitary system and in EHRs is low but co-official

Figure 1: Classification of dialects in Basque (Koldo Zuazo, 2008)
Introduction. SNOMED CT and Basque

- SNOMED Clinical Terms (SNOMED CT)
 - Comprehensive, multilingual **clinical healthcare terminology**
 - Enables consistent representation of meaning in EHRs

- Basque
 - Spoken by the 27% of Basques (714,136 out of 2,648,998)
 - 663,035 in the Spanish part
 - 51,100 in the French part

- Basque is a **minority language** in its **standardization** process and persists between two powerful languages, Spanish and French
- Nowadays, co-official in some parts, during centuries out of educational systems, media, and industrial environments

 binnen

Written use of the Basque Language in the bio-sanitary system and in EHRs is low but co-official
Introduction. SNOMED CT and Basque

- **SNOMED Clinical Terms (SNOMED CT)**
 - Comprehensive, multilingual *clinical healthcare terminology*
 - Enables consistent representation of meaning in EHRs

- **Basque**
 - Spoken by the 27% of Basques (714,136 out of 2,648,998)
 - 663,035 in the Spanish part
 - 51,100 in the French part

 - Basque is a *minority language* in its *standardization* process and persists between two powerful languages, Spanish and French
 - Nowadays, co-official in some parts, during centuries out of educational systems, media, and industrial environments

 Written use of the Basque Language in the bio-sanitary system and in EHRs is low but co-official

Figure 1: Classification of dialects in Basque
(Koldo Zuazo, 2008)
Introduction. Goals

Goals

- To offer a medical terminology in Basque to the bio-medical personnel to try to enforce the use of Basque in the bio-sanitary area
- To be able to access multilingual medical resources in Basque language

How?

Semi-automatically translating the terminology content of SNOMED CT
Introduction. Goals

Goals

- To offer a medical terminology in Basque to the bio-medical personnel to try to enforce the use of Basque in the bio-sanitary area
- To be able to access multilingual medical resources in Basque language

How?

Semi-automatically translating the terminology content of SNOMED CT
Outline

1 Introduction

2 SNOMED CT

3 Translation Algorithm
 - Phase 1: Lexical Resources
 - Phase 2: Finite State Transducers and Biomedical Affixes

4 Results

5 Conclusions
SNOMED CT: core terminology for electronic health records with more than 296,000 active concepts and their corresponding terms (> 1 million terms)

Acceptable coverage of the terminology needed to record patients’ conditions (Humphreys et al., 1997)

Description Types:

Concept: 95575002 - Obstruction of pelviureteric junction
Descriptions in English
Description
Obstruction of pelviureteric junction (disorder)
Obstruction of pelviureteric junction
PUJ - Pelviureteric obstruction
PUO - Pelviureteric obstruction
Pelviureteric obstruction
UPJ - Ureteropelvic obstruction
Ureteropelvic obstruction
SNOMED CT

- SNOMED CT: core terminology for electronic health records with more than 296,000 active concepts and their corresponding terms (> 1 million terms)
- Acceptable coverage of the terminology needed to record patients' conditions (Humphreys et al., 1997)
- Description Types:

Description in English	Type
Obstruction of pelviureteric junction (disorder)	FSN
Obstruction of pelviureteric junction	Preferred Term
PUJ - Pelviureteric obstruction	Synonym
PUO - Pelviureteric obstruction	Synonym
Pelviureteric obstruction	Synonym
UPJ - Ureteropelvic obstruction	Synonym
Ureteropelvic obstruction	Synonym
SNOMED CT

- SNOMED CT: core terminology for electronic health records with more than 296,000 active concepts and their corresponding terms (> 1 million terms)
- Acceptable coverage of the terminology needed to record patients’ conditions (Humphreys et al., 1997)
- Description Types:

Description	Type
Obstruction of pelviureteric junction (disorder)	FSN Preferred Term
Obstruction of pelviureteric junction	Preferred Term
PUJ - Pelviureteric obstruction	Synonym
PUO - Pelviureteric obstruction	Synonym
Pelviureteric obstruction	Synonym
UPJ - Ureteropelvic obstruction	Synonym
Ureteropelvic obstruction	Synonym

Louhi 2014 (Gothenburg, Sweden) IXA (http://ixa.si.ehu.es) Translating SNOMED CT into Basque
SNOMED CT

- SNOMED CT: core terminology for electronic health records with more than 296,000 active concepts and their corresponding terms (> 1 million terms)
- Acceptable coverage of the terminology needed to record patients conditions (Humphreys et al., 1997)
- Description Types:

Concept: 95575002 - Obstruction of pelviureteric junction		
Descriptions in English	**Type**	
Description	**FSN**	
Obstruction of pelviureteric junction (disorder)	Preferred Term	
Obstruction of pelviureteric junction	Synonym	
PUJ - Pelviureteric obstruction	Synonym	
PUO - Pelviureteric obstruction	Synonym	
Pelviureteric obstruction	Synonym	
UPJ - Ureteropelvic obstruction	Synonym	
Ureteropelvic obstruction	Synonym	
Hierarchy	Semantic Tag	Example
---------------------------------	--------------	------------------------------------
Clinical Finding/disorder	disorder	Myocardial infarction
	finding	Hyperalphenaglobulinaemia
Procedure/intervention	procedure	Eye structure transplantation
	regime/therapy	Pulsed electromagnetic energy to shoulder
Organism	organism	Pelistega europaea
Body structure	body structure	Supratentorial brain structure
	morphologic abnormality	Acute erythremia
	cell	Umbrella cell
	cell structure	Viral envelope
Substance	substance	Bacterial agent
Pharmaceutical/biologic product	product	Naratriptan
Qualifier value	qualifier value	Perinatal period
Observable entity	observable entity	Postvaccination state
Event	event	Flood
Situation with explicit context	situation	Mother smokes
Social context	occupation	Hospital nurse
	person	Homosexual parents (family)
	ethnic group	Irish traveller
	religion/philosophy	Nonconformist religion
	life style	White collar thief
	social concept	Upper class economic status
	racial group	American Indian race
Physical object	physical object	Cardiac compression board
Specimen	specimen	Lumpectomy breast sample
Environment/ geographical location	environment	Psychiatric intensive care unit
	geographic location	Republic of Serbia
	environment/location	Environment or geographical location
Linkage concept	attribute	Agent relationship
	link assertion	Has problem member
	linkage concept	Linkage concept
Staging and scales	assessment scale	Lequesne index
	tumor staging	pM category
	staging scale	Chest pain rating
Special concept	navigational concept	Enzymes A - L
	namespace concept	Extension Namespace 1000001
	administrative concept	Appointment
	special concept	Special concept
Record artifact	record artifact	Family history section

Louhi 2014 (Gothenburg, Sweden) IXA (http://ixa.si.ehu.es) Translating SNOMED CT into Basque 8 / 20
Two possible language sources: English and Spanish

We analyzed the RF2, Snapshot distributions dated 31-07-2012 (English) and 30-10-2012 (Spanish)

Analyzed aspects:

- General numbers of FSNs, PTs and Synonyms and their lacks:
 - The number of active concepts is the same: 296,433 (same file)
 - The number of terms in Spanish is smaller: 15,715 concepts lack of PTs and Synonyms

- Length of the terms in each language:
 - English: 6.76% (1 token), 23.28% (2 tokens) and 20.70% (3 tokens)
 - Spanish version: 33.79% (≤ 3 tokens), 66.21% (≥ 4 tokens)

Conclusions:

- The English version is more complete and consistent than the Spanish one
- The terms in the English version are shorter in length and, in consequence, simpler to translate

We decided to choose the English version as source
Two possible language sources: **English** and **Spanish**

We analyzed the RF2, Snapshot distributions dated 31-07-2012 (English) and 30-10-2012 (Spanish)

Analyzed aspects:

▶ General numbers of FSNs, PTs and Synonyms and their lacks:
 ★ The number of active **concepts** is the same: 296,433 (same file)
 ★ The number of **terms** in Spanish is smaller: 15,715 concepts lack of PTs and Synonyms

▶ **Length of the terms in each language:**
 ★ English: 6.76% (1 token), 23.28% (2 tokens) and 20.70% (3 tokens)
 ★ Spanish version: 33.79% (≤ 3 tokens), 66.21% (≥ 4 tokens)

Conclusions:

▶ The English version is more complete and consistent than the Spanish one
▶ The terms in the English version are shorter in length and, in consequence, simpler to translate

We decided to choose the English version as source
Two possible language sources: **English** and **Spanish**

We analyzed the RF2, Snapshot distributions dated 31-07-2012 (English) and 30-10-2012 (Spanish)

Analyzed aspects:

- **General numbers of FSNs, PTs and Synonyms and their lacks:**
 - The number of active **concepts** is the same: 296,433 (same file)
 - The number of **terms** in Spanish is smaller: 15,715 concepts lack of PTs and Synonyms

- **Length of the terms in each language:**
 - English: 6.76% (1 token), 23.28% (2 tokens) and 20.70% (3 tokens)
 - Spanish version: 33.79% (≤ 3 tokens), 66.21% (≥ 4 tokens)

Conclusions:

- The English version is more complete and consistent than the Spanish one
- The terms in the English version are shorter in length and, in consequence, simpler to translate

We decided to choose the English version as source
Hierarchy	Semantic Tag (ST)	# FSN	English version	Semantic Tag (ST)	# FSN
Clinical Finding/disorder	disorder	94,242	trastorno	trastorno	82,725
	finding	45,401	hallazgo	hallazgo	36,625
Procedure/intervention	procedure	75,078	procedimiento	procedimiento	59,411
	regime/therapy	3,573	régimen/terapia	régimen/terapia	2
	regime/tratamiento	2,773	régimen/tratamiento	régimen/tratamiento	2,773
Organism	organism	35,870	organismo	organismo	35,465
Body structure	body structure	26,960	estructura corporal	estructura corporal	26,747
	morphologic abnormality	5,259	anomalía morfológica	anomalía morfológica	5,082
	cell	645	célula	célula	640
	cell structure	513	estructura celular	estructura celular	509
Substance	substance	25,834	sustancia	sustancia	24,918
Pharmaceutical/biologic product	product	24,379	producto	producto	23,854
Qualifier value	qualifier value	10,134	calificador	calificador	9,570
Observable entity	observable entity	9,044	entidad observable	entidad observable	8,602
Event	event	8,959	evento	evento	8,587
Situation with explicit context	situation	8,716	situación	situación	5,785
Social context	occupation	6,460	ocupación	ocupación	4,650
	person	688	persona	persona	432
	ethnic group	366	grupo étnico	grupo étnico	283
	religion/philosophy	227	religión/filosofía	religión/filosofía	217
	life style	30	estilo de vida	estilo de vida	25
	social concept	27	contexto social	contexto social	26
	racial group	21	grupo racial	grupo racial	19
Physical object	physical object	5,148	objeto físico	objeto físico	4,747
Specimen	specimen	1,455	espéctimen	espéctimen	1,386
Environment	environment	1,253	medio ambiente	medio ambiente	1,162
geographical location	geographic location	619	localización geográfica	localización geográfica	619
	environment/location	1	medio ambiente/localización	medio ambiente/localización	1
Linkage concept	attribute	1,157	atributo	atributo	1,145
	link assertion	8	relación asertiva	relación asertiva	8
	linkage concept	1	concepto de enlace	concepto de enlace	1
Staging and scales	assessment scale	1,125	escala de evaluación	escala de evaluación	1081
	tumor staging	261	estadificación tumoral	estadificación tumoral	249
	staging scale	41	escala de estadificación	escala de estadificación	16
Special concept	navigational concept	732	concepto para navegación	concepto para navegación	725
	namespace concept	153	espacio de nombres	espacio de nombres	153
	administrative concept	80	concepto administrativo	concepto administrativo	31
	special concept	31	concepto especial	concepto especial	1

Louhi 2014 (Gothenburg, Sweden)
Outline

1 Introduction

2 SNOMED CT

3 Translation Algorithm
 - Phase 1: Lexical Resources
 - Phase 2: Finite State Transducers and Biomedical Affixes

4 Results

5 Conclusions
Translation Algorithm

Incremental approach

The design is for any language pair but some linguistic resources needed for source and objective languages

Our implementation:
- Input: 1 term in English
- Output: \(\geq 1 \) equivalent terms in Basque

The algorithm is applied at term-level (not at concept-level)

Algorithm: 4 phases
- The first 2 phases: developed and evaluated (quantitatively)
- Last 2 phases: in the very near future
Translation Algorithm

Phase 0: Mapping of ICD-10

- Semi-automatic mapping between SNOMED CT and the ICD-10 (IHTSDO)
- By identifying the sense of a concept in SNOMED CT, the best semantic space in the ICD-10 for this concept is searched
- The corresponding Basque term for some of the SNOMED CT concepts is obtained through ICD-10
- To take into account:
 - At concept level, not at term level ⇒ Before executing the algorithm implementation
 - Different purposes: ICD-10 for classification and SNOMED CT for representation
- Fruitful for very specialised terms
Translation Algorithm

1. phase: Lexical Knowledge

- ItzulDB (XML): initialized with all the lexical resources available + the pairs generated in the translation process
- Dictionaries of the bio-medical domain and the ICD-10 classification

Example:

Input term: Deoxyribonucleic acid
Steps in figure number: 1, 2, 4
Translation: Azido desoxirribonukleiko, ADN, DNA
Translation Algorithm

2. phase: Morpheosemantics

- A term is analyzed at word-level and generation-rules are used to create the translation.
- We apply medical suffix and prefix equivalences and morphotactic rules, as well as transcription rules.

Example:

Input term: Photodermatitis
Steps in figure number: 3, 5, 7, 6, 4
Applied rules:
- Identified parts: photo+dermat+itis
- Translated parts: foto+dermat+itis
Translation: Fotodermatitis
Translation Algorithm

1. Search the term in the translation pairs DB.
2. Is there any Basque term found?
 - Yes
 - No
3. Make a word-level analysis of the term.
4. Generate the Basque term(s).
5. Make a shadow-syntax analysis of the term.
6. Is there any generation-rule applied?
 - Yes
 - No
7. Is there any syntactic rule applied?
 - Yes
 - No
8. Store the Basque term(s).
9. Use Automatic Translator.

3. phase: Shallow Syntax (future)
 - Chunk-level generation rules
 - Hypothesis: some chunks will appear in ItzulDB

Example:

Input term: Deoxyribonucleic acid sample
Steps in figure number: 8, 9, 10, 6, 4
Chunks in ItzulDB:
1st chunk: Deoxyribonucleic acid
 Basque: azido desoxirribonukleiko, ADN, DNA
2nd chunk: sample
 Basque: lagin
Translation: Azido desoxirribonukleikoaren lagin, ADN lagin, DNA lagin
Translation Algorithm

4. phase: Machine Translation (future)

- Aim: to adapt a rule-based automatic translation system called Matxin (Mayor et al., 2011) to the medical domain

Example:

- **Input term:** Partial excision of oesophagus and interposition of colon
- **Steps in figure number:** 12, 4
- **Translation:** Esofagoaren zati baten excisiona eta interpositiona bi puntua
Translation Algorithm

1. Search the term in the translation pairs DB
2. Is there any Basque term found?
3. No
4. Store the Basque term(s)
5. Make a word-level analysis of the term
6. Generate the Basque term
7. Is there any generation-rule applied?
8. No
9. Make a shadow-syntax analysis of the term
10. Yes
11. Is there any syntactic rule applied?
12. Use Automatic Translator

Feedback

- All the processes finish in step 4
- The Basque equivalents with their original English terms are stored in an XML document that follows the TermBase eXchange
- Itzu1DB (lexical resources) is enriched with the translation pairs generated that overcome a confidence threshold ⇒ Help in the translation of new terms
Phase 1: Lexical Resources (English-Basque pairs)

Resources used to initialize ItzuIDB

- **ZT Dictionary**: Science and technology (medicine, biochemistry, biology...). 13,764 English-Basque equivalences
- **Nursing Dictionary**: 5,393 entries
- **Glossary of Anatomy**: Anatomical terminology used by University experts in their lectures. 2,578 useful entries
- **ICD-10**: translated into Basque in 1996. Also available in English and in Spanish. 7,061 equivalences
- **EuskalTerm**: Terminology bank contains 75,860 entries from which 26,597 are from the biomedical domain
- **Elhuyar Dictionary**: English-Basque dictionary. 39,164 equivalences
Phase 2: Finite State Transducers and Biomedical Affixes

- FSTs used to identify the affixes in English Medical terms and by means of affix translation pairs, to generate the equivalent terms in Basque

Input term: symphysiolysis

Identified affixes: sym+physio+lysis, sym+physi+o+lysis

Translation of the affixes: sim+fisio+lisi, sim+fisi+o+lisi

Morphotactics output term: sinfisiolisi

First approach (Perez-de-Viñaspre et al., 2013):
- 826 prefixes and 143 suffixes with medical meanings manually translated
- Evaluation: Gold Standard of 885 English-Basque pairs: precision of 93% and recall of 41%
- Only SNOMED CT terms for which all the prefixes and suffixes were identified were translated
 - For instance, the “hypophosphatemia” was not translated
 - “hypo”, “phos” and “emia” affixes identified
 - But “phat” not identified

Current approach:
- We have increased the number of affixes and transcription rules
- New numbers: 1,703 prefixes and 630 suffixes and 40 rules for transcription
- We are able to translate terms even though all their parts are not identified
- We now translate “hypophosphatemia” into “hipofosfatemia”
Outline

1 Introduction

2 SNOMED CT

3 Translation Algorithm
 - Phase 1: Lexical Resources
 - Phase 2: Finite State Transducers and Biomedical Affixes

4 Results

5 Conclusions
Results in the translation: Dictionary matching and morphosemantics.

- **Phase 1: Dictionary matching**
 - Evaluation in terms of **quantity**, not of **quality**
 - Dictionaries manually generated by lexicographers. The quality is assumed

- **Phase 2: Morphosemantics**
 - 93% precision and 41% recall
 - # Syn: The number of obtained Basque terms
 - # Matches: The number of English terms translated
 - The same input terms may have synonyms or even the same equivalent term given by different dictionaries.
 Example: “alopatia” obtained in ZT and Nursing.

Disorder	Finding	Body Structure	Procedure					
	#Syn	#Matches	#Syn	#Matches				
ICD-10 mapping	11,227	-	1,878	-	0	-		
In dictionaries	4,804	3,488	1,836	915	5,896	2,992	778	473
ZT Dictionary	1,104	883	367	311	1,812	1,212	293	253
Nursing Dictionary	437	350	340	245	978	725	199	157
Glossary of Anatomy	3	3	10	8	1,982	1,431	2	2
ICD-10	2,434	2,308	216	195	410	370	5	4
EuskalTerm	906	596	442	306	2,346	1,423	202	155
Elhuyar	299	135	956	300	1,090	367	270	91
Morphosemantics	2,620	2,184	705	578	970	779	1,551	1,362
Total	17,627	5,672	4,419	1,493	6,866	3,771	2,329	1,835
Overall Results

	Disorder	Finding	Body Structure	Procedure
Translated Concepts	14,125	2,777	3,231	1,502
Concepts in total	65,386	33,204	31,105	82,069
Percentage	21.60%	8.36%	10.39%	1.83%

- **Disorder**: 21.60% of the translated. Good. Thanks to the ICD-10 (11,227 synonyms) and morphosemantics (81.53% of the simple terms)
- **Finding**: the most balanced
- **Body Structure**: the Glossary of Anatomy only contributes in this hierarchy (previous table)
- **Procedure**: dictionaries do not help much, in contrast, morphosemantics contribution allows to translate the 87.84% of the simple terms
Outline

1 Introduction

2 SNOMED CT

3 Translation Algorithm
 - Phase 1: Lexical Resources
 - Phase 2: Finite State Transducers and Biomedical Affixes

4 Results

5 Conclusions
Conclusions

- We have designed a translation algorithm for the multilingual terminology content of SNOMED CT and we have implemented the first two phases
 1. Lexical resources feed our database
 2. Basque equivalents are generated using transducers and medical and biological affixes
- Dictionaries provide Basque equivalents of any term length while transducers get as input unique token terms
- Results are provided for the most populated hierarchies are shown even though both methods are applied for all the hierarchies in SNOMED CT
- Results are promising. We obtained the equivalents in Basque of 21.60% of the disorders
- Future Work:
 - Specialist in medical terminology can check the quality of the obtained terms and correct them
 - Implement the remainder of the phases in the algorithm: Shallow Syntax and Machine Translation
Translating SNOMED CT Terminology into a Minor Language

Olatz Perez-de-Viñaspre and Maite Oronoz

University of the Basque Country

IXA Taldea