Trace anomaly induced effective action and 2d black holes for dilaton coupled supersymmetric theories

SHIN’ICHI NOJIRI and SERGEI D. ODINTSOV

Department of Mathematics and Physics
National Defence Academy
Hashirimizu Yokosuka 239, JAPAN
♠ Tomsk Pedagogical University
634041 Tomsk, RUSSIA
and
Dep.de Fisica
Universidad del Valle
AA25360, Cali, COLOMBIA

ABSTRACT

The action for 2d dilatonic supergravity with dilaton coupled matter and dilaton multiplets is constructed. Trace anomaly and anomaly induced effective action (in components as well as in supersymmetric form) for matter supermultiplet on bosonic background are found. The one-loop effective action and large-N effective action for quantum dilatonic supergravity are also calculated. Using induced effective action one can estimate the back-reaction of dilaton coupled matter to the classical black hole solutions of dilatonic supergravity. That is done on the example of supersymmetric CGHS model with dilaton coupled quantum matter where Hawking radiation which turns out to be zero is calculated. Similar 2d analysis maybe used to study spherically symmetric collapse for other models of 4d supergravity.

PACS: 04.60.-m, 04.70.Dy, 11.25.-w
1 Introduction

There are various motivations to study 2d gravitational theories and their black hole solutions (see [1, 2, 3, 4, 5] and references therein). First of all, it is often easier to study 2d models at least as useful laboratories. Second, starting from 4d Einstein-Maxwell-scalar theory and applying spherically symmetric reduction anzats [6], one is left with specific dilatonic gravity with dilaton coupled matter. Hence, in such case 2d gravity with dilaton coupled matter may describe the radial modes of the extremal dilatonic black holes in four dimensions [7]. Similarly, dilaton coupled matter action appears in string inspired models. Recently, dilaton dependent trace anomaly and induced effective action for dilaton coupled scalars have been studied in refs. [8, 9, 10]. That opens new possibilities in the study of black holes with back-reaction of quantum matter [4].

It could be extremely interesting to present supersymmetric generalization of the results [8, 9, 10]. Above motivations are still valid in this case. Indeed, let us consider the spherical reduction of $N = 1, d = 4$ supergravity theory to $d = 2$ theory. In order to realize the spherical reduction, we assume that the metric has the following form:

$$\begin{align*}
\text{ds}^2 &= \sum_{\mu\nu=0,1,2,3} g_{\mu\nu} dx^\mu dx^\nu \\
&= \sum_{m,n=t,r} g_{mn}(t,r) dx^m dx^n + e^{2\phi(t,r)} (d\theta^2 + \sin^2 \theta d\phi^2) .
\end{align*}$$

The metric (1) can be realized by choosing the vierbein fields e^a_μ as follows

$$
\begin{align*}
 e^0_{\theta,\phi} &= e^3_{\theta,\phi} = e^1_{t,r} = e^2_{t,r} = 0 , \\
 e^1_\theta &= e^3_\phi , \quad e^2_\phi = \sin \theta e^3_\phi , \quad e^1_\phi = e^2_\theta = 0 .
\end{align*}$$

The expression (2) is unique up to local Lorentz transformation. The local supersymmetry transformation for the vierbein field with the parameter ζ and $\bar{\zeta}$ is given by,

$$\delta e^a_\mu = i \left(\psi_\mu \sigma^a \bar{\zeta} - \zeta \sigma^a \bar{\psi}_\mu \right) .$$

Here ψ_μ is Rarita-Schwinger field (gravitino) and we follow the standard notations of ref. [11](see also [12]). If we require that the metric has the form
of (1) after the local supersymmetry transformation, i.e.,
\[\delta g_{\theta \theta} = \delta g_{r \theta} = \delta g_{\theta \varphi} = \delta g_{r \varphi} = 0 , \]
\[\delta g_{\varphi \varphi} = \sin \theta \delta g_{\theta \theta} , \]
we obtain, up to local Lorentz transformation,
\[\zeta_1 = \bar{\zeta}_1 , \quad \zeta_2 = \bar{\zeta}_2 , \]
\[\psi_{\varphi 1} = \sin \theta \psi_{\theta 1} , \quad \bar{\psi}_{\varphi 1} = \sin \theta \bar{\psi}_{\theta 1} , \]
\[\psi_{\varphi 2} = - \sin \theta \psi_{\theta 2} , \quad \bar{\psi}_{\varphi 2} = - \sin \theta \bar{\psi}_{\theta 2} , \]
\[\bar{\psi}_{\theta 1} = - \psi_{\theta 1} , \quad \bar{\psi}_{\theta 2} = - \psi_{\theta 2} , \]
\[\psi_{r 1} - \bar{\psi}_{r 1} = -2e^{-\phi} e^3 \psi_{\theta 1} , \quad \psi_{t 1} - \bar{\psi}_{t 1} = -2e^{-\phi} e^3 \psi_{\theta 2} , \]
\[\psi_{r 2} - \bar{\psi}_{r 2} = -2e^{-\phi} e^0 \psi_{\theta 1} , \quad \psi_{t 2} - \bar{\psi}_{t 2} = -2e^{-\phi} e^0 \psi_{\theta 2} . \]
Eq. (5) tells that the local supersymmetry of the spherically reduced theory is \(N = 1 \), which should be compared with the torus compactified case, where the supersymmetry becomes \(N = 2 \). Let the independent degrees of freedom of the Rarita-Schwinger fields be
\[2 \psi_{t 1} \equiv \psi_{t 1} + \bar{\psi}_{t 1} , \quad 2 \psi_{t 2} \equiv \psi_{t 2} + \bar{\psi}_{t 2} , \]
\[2 \psi_{r 1} \equiv \psi_{r 1} + \bar{\psi}_{r 1} , \quad 2 \psi_{r 2} \equiv \psi_{r 2} + \bar{\psi}_{r 2} , \]
\[\chi_1 \equiv \psi_{\theta 1} , \quad \chi_2 \equiv \psi_{\theta 2} , \]
then we can regard \(\psi_{t,r} \) and \(\chi \) to be the gravitino and the dilatino in the spherically reduced theory.

If we coupled the massless matter multiplet, the action of the spherically reduced theory is given by
\[S = - \frac{1}{4} \int d^4 x d^6 \mathcal{E} \left(\bar{\mathcal{D}} \mathcal{D} - 8 R \right) \Phi_i \Phi_i \]
\[\sim 4\pi \int dr dt \sqrt{g} e^{2\phi} \left(-\partial_\mu A_i \partial^\mu A_i - i \frac{1}{2} [\chi_i \sigma^\mu \mathcal{D}_\mu \bar{\chi}_i + \bar{\chi}_i \bar{\sigma}^\mu \mathcal{D}_\mu \chi_i] + \cdots \right) . \]
Here \(\cdots \) denotes the terms containing the Rarita-Schwinger fields and dilatino. Note that in the spherically reduced theory, the dilaton field \(\phi \) couples with the matter fields. Therefore if we like to investigate 2d dilaton
supergravity as the spherically reduced theory, we need to couple the dilaton field to the matter multiplet.

The present work is organised as following. Next section is devoted to the construction of the Lagrangian for 2d dilatonic supergravity with dilaton coupled matter and dilaton supermultiplets. Dilaton dependent trace anomaly and induced effective action (as well as large-N effective action for quantum dilatonic supergravity) for matter multiplet are found in section 3. Black holes solutions and their properties are discussed for some specific models in section 4. Some conclusions are presented in final section.

2 The action of 2d dilatonic supergravity with matter

In the present section we are going to construct the action of 2d dilatonic supergravity with dilaton supermultiplet and with matter supermultiplet. The final result is given in superfields as well as in components.

In order to construct the Lagrangian of two-dimensional dilatonic supergravity, we use the component formulation of ref.\[13\]. The conventions and notations are given as following:

- signature

\[
\eta^{ab} = \delta^{ab} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}
\]

(10)

- gamma matrices

\[
\gamma^a \gamma^b = \delta^{ab} + i \epsilon^{ab} \gamma_5 ,
\]

\[
\sigma_{ab} \equiv \frac{1}{4} [\gamma_a, \gamma_b] = \frac{i}{2} \epsilon_{ab} \gamma_5 .
\]

(11)

- charge conjugation matrix C

\[
C \gamma_a C^{-1} = -\gamma_a^T ,
\]

\[
C = C^{-1} = -C^T ,
\]

\[
\bar{\psi} = -\psi^T C .
\]

(12)

Here the index T means transverse.
• Majorana spinor
\[\psi = \psi^c \equiv C \bar{\psi}^T. \] (13)

• Levi-Civita tensor
\[\epsilon^{12} = \epsilon_{12} = 1, \quad \epsilon^{ab} = -\epsilon^{ba}, \quad \epsilon_{ab} = -\epsilon_{ba}, \quad \epsilon^{\mu\nu} = e^{a\mu} e^{b\nu} \epsilon_{ab}. \] (14)

In this paper, all the scalar fields are real and all the spinor fields are Majorana spinors.

We introduce dilaton multiplet \(\Phi = (\phi, \chi, F) \) and matter multiplet \(\Sigma_i = (a_i, \chi_i, G_i) \), which has the conformal weight \(\lambda = 0 \), and the curvature multiplet \(W \).

\[W = \left(S, \eta, -S^2 - \frac{1}{2} R - \frac{1}{2} \bar{\psi}^\mu \gamma^\nu \psi_{\mu\nu} + \frac{1}{4} \bar{\psi}^\mu \psi_\mu \right). \] (15)

Here \(R \) is the scalar curvature and
\[\eta = -\frac{1}{2} S \gamma^\mu \psi_\mu + \frac{i}{2} e^{-1} e^{\mu\nu} \gamma_5 \psi_{\mu\nu}, \]
\[\psi_{\mu\nu} = D_\mu \psi_\nu - D_\nu \psi_\mu, \]
\[D_\mu \psi_\nu = \left(\partial_\mu - \frac{1}{2} \omega_\mu \gamma_5 \right) \psi_\nu, \]
\[\omega_\mu = -ie^{-1} e_{a\mu} e^{\lambda\nu} \partial_\lambda e_\nu - \frac{1}{2} \bar{\psi}_\mu \gamma_5 \gamma^\lambda \psi_\lambda. \] (17)

The curvature multiplet has the conformal weight \(\lambda = 1 \).

Then the general action of 2d dilatonic supergravity is given in terms of general functions of the dilaton \(C(\phi), Z(\phi), f(\phi) \) and \(V(\phi) \) as follows
\[\mathcal{L} = - [C(\Phi) \otimes W]_{INV} \]

\(^3\)The definition of the scalar curvature \(R \) is different from that of Ref. [13] \(R^{HUY} \) by sign
\[R = -R^{HUY}. \]

\(^4\)The multiplet containing \(C(\phi) \), for example, is given by \((C(\phi), C'(\phi) \chi, C'(\phi) F - \frac{1}{2} C''(\phi) \chi \chi) \).
\[
\frac{1}{2} [\Phi \otimes \Phi \otimes T_P(Z(\Phi))]_{\text{inv}} - [Z(\Phi) \otimes \Phi \otimes T_P(\Phi)]_{\text{inv}} \\
+ \sum_{i=1}^{N} \left\{ \frac{1}{2} [\Sigma_i \otimes \Sigma_i \otimes T_P(f(\Phi))]_{\text{inv}} - [f(\Phi) \otimes \Sigma_i \otimes T_P(\Sigma_i)]_{\text{inv}} \right\} \\
+ [V(\Phi)]_{\text{inv}} , \\
[C(\Phi) \otimes W]_{\text{inv}} \\
e \left[C(\phi) \left(-S^2 - \frac{1}{2} R - \frac{1}{2} \bar{\psi} \gamma^\nu \psi \mu \nu \right) + C'(\phi)(FS - \bar{\chi} \eta) \right] \\
- \frac{1}{2} [C''(\phi)(\bar{\psi} \psi \mu \nu] + \frac{1}{2} \bar{\psi} \gamma^\mu(\eta C(\phi) + \chi SC(\phi)) + \frac{1}{2} C(\phi) S \bar{\psi} \sigma^\mu \psi \nu \right) , \\
[\Phi \otimes \Phi \otimes T_P(Z(\Phi))]_{\text{inv}} \\
e \left[\left(Z'(\phi) F - \frac{1}{2} Z''(\phi) \bar{\phi} \right) (2 \phi F - \bar{\phi} \chi) + \phi^2 \Box(\phi) - 2 \phi \bar{\phi} \Psi (Z'(\phi) \chi) \right] \\
+ \frac{1}{2} \bar{\psi} \gamma^\mu 2 \chi \left(Z'(\phi) F - \frac{1}{2} Z''(\phi) \bar{\phi} \right) \phi + \Psi (Z'(\phi) \chi) \phi^2 \right] \\
+ \frac{1}{2} \left(Z'(\phi) F - \frac{1}{2} Z''(\phi) \bar{\phi} \right) (2 \phi F - \bar{\phi} \chi) \right] \phi^2 \bar{\psi} \psi \sigma^\mu \psi \nu \right] , \\
[Z(\Phi) \otimes \Phi \otimes T_P(\Phi)]_{\text{inv}} \\
e \left[f'(\phi) \left(Fa_i G_i - \bar{\phi} \xi_i G_i - a_i \bar{\phi} \Psi \xi_i \right) \right] \\
- \frac{1}{2} Z''(\phi) \bar{\phi} \psi a_i G_i + Z(\phi) (\phi \Box \phi - \bar{\phi} \psi \chi + F^2) \right] \\
+ \frac{1}{2} \bar{\psi} \gamma^\mu \left\{ \left(\bar{\psi} \right)_{\phi} Z(\phi) \phi + \chi (Z(\phi) + Z'(\phi) \phi F) \right\} + \frac{1}{2} Z(\phi) \phi F \bar{\psi} \psi \sigma^\mu \psi \nu \right] , \\
\left[f(\Phi) \otimes \Sigma_i \otimes T_P(\Sigma_i) \right]_{\text{inv}} \\
e \left[f'(\phi) \left(Fa_i G_i - \bar{\phi} \xi_i G_i - a_i \bar{\phi} \Psi \xi_i \right) \right] \\
- \frac{1}{2} [f''(\phi) \bar{\phi} \psi a_i G_i + f(\phi) (a_i \Box a_i - \bar{\xi}_i \Psi \xi_i + G_i^2) \right] \\
+ \frac{1}{2} \bar{\psi} \gamma^\mu \left\{ \left(\bar{\psi} \right)_{\phi} f(\phi) + (\phi f(\phi) + \chi f'(\phi) a_i G_i) \right\} + \frac{1}{2} Z(\phi) a_i G_i \bar{\psi} \psi \sigma^\mu \psi \nu \right] , \\
\left[\Sigma_i \otimes \Sigma_i \otimes T_P(f(\Phi)) \right]_{\text{inv}} \\
e \left[\left(f'(\phi) F - \frac{1}{2} f''(\phi) \bar{\phi} \chi \right) \left(2a_i G_i - \bar{\xi}_i \xi_i \right) + a_i^2 \Box (f(\phi)) - 2a_i \xi_i \Psi (f'(\phi) \chi) \right] \\
+ \frac{1}{2} \bar{\psi} \gamma^\mu \left\{ f'(\phi) F - \frac{1}{2} f''(\phi) \bar{\phi} \chi \right\} + \Psi (f'(\phi) \chi) a_i \right\} \right]
The covariant derivatives for the multiplet $Z = (\varphi, \zeta, H)$ with $\lambda = 0$ are defined as

$$D_\mu \varphi = \partial_\mu \varphi - \frac{1}{2} \bar{\psi}_\mu \zeta ,$$
$$D_\mu \zeta = \left(\partial_\mu + \frac{1}{2} \omega_\mu \gamma_5 \right) \zeta - \frac{1}{2} D_\mu \varphi \gamma^\mu \psi_\mu - \frac{1}{2} H \psi_\mu ,$$
$$\Box \varphi = e^{-1} \left\{ \partial_\nu (eg^{\mu \nu} D_\mu \varphi) + \frac{i}{4} \bar{\zeta} \gamma_5 \psi_\mu e^{\mu \nu} - \frac{1}{2} \bar{\psi}_\mu D_\mu \zeta - \frac{1}{2} \bar{\psi}_\mu \gamma^\mu \psi_\nu D_\mu \varphi \right\} .$$

$T_p(Z)$ is called the kinetic multiplet for the multiplet $Z = (\varphi, \zeta, H)$ and when the multiplet Z has the conformal weight $\lambda = 0$, $T_p(Z)$ has the following form

$$T_p(Z) = (H, \bar{D} \zeta, \Box \varphi) .$$

The kinetic multiplet $T_p(Z)$ has conformal weight $\lambda = 1$. The product of two multiplets $Z_k = (\varphi_k, \zeta_k, H_k)$ ($k = 1, 2$) with the conformal weight λ_k is defined by

$$Z_1 \otimes Z_2 = (\varphi_1 \varphi_2, \varphi_1 \zeta_2 + \varphi_2 \zeta_1, \varphi_1 H_2 + \varphi_2 H_1 - \bar{\zeta}_1 \zeta_2) .$$

The invariant Lagrangian $[Z]_{\text{inv}}$ for multiplet Z is defined by

$$[Z]_{\text{inv}} = e \left[F + \frac{1}{2} \bar{\psi}_\mu \gamma^\mu \zeta + \frac{1}{2} \varphi \bar{\psi}_\mu \sigma^{\mu \nu} \psi_\nu + S \varphi \right] .$$

In superconformal gauge

$$e^\mu_\lambda = e^\rho \delta^\mu_\rho \ (e = e^\rho) , \quad \psi_\mu = \gamma_\mu \psi \ (\bar{\psi}_\mu = -\bar{\psi} \gamma_\mu) ,$$

we find

$$\omega_\mu = -ie^\lambda_\mu \partial_\lambda \rho ,$$
\[eR = -2\partial_\mu \partial^\mu \rho \, , \]
\[\epsilon^{\mu\nu} \psi_{\mu\nu} = -2ie\gamma_5\gamma^\mu \left(\partial_\mu - \frac{1}{2} \partial_\mu \rho \right) \psi \, , \]
\[\eta = -S\psi + \gamma^\mu \left(\partial_\mu - \frac{1}{2} \partial_\mu \rho \right) \psi \, , \]
\[\bar{\psi}^\mu \gamma^\nu \psi_{\mu\nu} = -2\bar{\psi} \left(\partial_\mu - \frac{1}{2} \partial_\mu \rho \right) \psi \, , \]
\[\bar{\psi}_\mu \sigma^{\mu\nu} \psi_{\nu} = -\bar{\psi} \psi \, . \]

Hence, we constructed the classical action for 2d dilatonic supergravity with dilaton and matter supermultiplets.

3 Effective action in large-N approach on bosonic background

Our purpose in this section will be the study of trace anomaly and effective action in large-N approximation for the 2d dilatonic supergravity discussed in previous section. We consider only bosonic background below as it will be sufficient for our purposes (study of black hole type solutions).

On the bosonic background where dilatino χ and the Rarita-Schwinger fields vanish, one can show that the gravity and dilaton part of the Lagrangian have the following form:

\[[C(\Phi) \otimes W]_{\text{inv}} = e \left[-C(\phi) \left(S^2 + \frac{1}{2} R \right) - C'(\phi) F S \right] \, , \]
\[[\Phi \otimes \Phi \otimes T_P(Z(\Phi))]_{\text{inv}} = e \left[\phi^2 \Box (Z(\phi)) + 2Z'(\phi) \phi F^2 \right] \, , \]
\[[Z(\Phi) \otimes \Phi \otimes T_P(\Phi)]_{\text{inv}} = e \left[Z(\phi) \phi \Box + Z'(\phi) \phi F^2 + Z(\phi) F^2 \right] \, , \]
\[[V(\Phi)]_{\text{inv}} = e \left[V'(\phi) F + SV(\phi) \right] \, . \]

For matter part we obtain

\[[f(\Phi) \otimes \Sigma_i \otimes T_P(\Sigma_i)]_{\text{inv}} \]
Here the covariant derivatives for the multiplet \((\varphi, \zeta, H)\) with \(\lambda = 0\) are reduced to
\[
\tilde{D}_\mu \varphi = \partial_\mu \varphi , \\
\tilde{D}_\mu \zeta = \left(\partial_\mu + \frac{1}{2} \omega_\mu \gamma_5 \right) \zeta , \\
\Box \varphi = e^{-1} \partial_\nu (e g^{\mu\nu} \partial_\mu \varphi) .
\]
Using equations of motion with respect to the auxiliary fields \(S, F, G_i\), on the bosonic background one can show that
\[
S = \frac{C'(\phi) V'(\phi) - 2 V(\phi) Z(\phi)}{C''(\phi) + 4 C(\phi) Z(\phi)} , \\
F = \frac{C'(\phi) V(\phi) + 2 C(\phi) V'(\phi)}{C''(\phi) + 4 C(\phi) Z(\phi)} , \\
G_i = 0 .
\]
We will be interested in the supersymmetric extension \([14]\) of the CGHS model \([1]\) as in specific example for study of black holes and Hawking radiation. For such a model
\[
C(\phi) = 2 e^{-2\phi} , \quad Z(\phi) = 4 e^{-2\phi} , \quad V(\phi) = 4 e^{-2\phi} ,
\]
we find
\[
S = 0 , \quad F = -\lambda , \quad G_i = 0 .
\]
Using \((26)\), we can show that
\[
\sum_{i=1}^{N} \left\{ \frac{1}{2} [\Sigma_i \otimes \Sigma_i \otimes T_P(f(\Phi))]_{\text{inv}} - [f(\Phi) \otimes \Sigma_i \otimes T_P(\Sigma_i)]_{\text{inv}} \right\} \\
= e f(\phi) \sum_{i=1}^{N} (g^{\mu\nu} \partial_\mu a_i \partial_\nu a_i + \bar{\xi}_i \gamma^\mu \partial_\mu \xi_i - f(\phi) G_i^2) \\
+ \text{total divergence terms} .
\]
Here we have used the fact that
\[\bar{\xi} \gamma^5 \xi = 0 \] (32)
for the Majorana spinor \(\xi \).

Let us start now the investigation of effective action in above theory. It is clearly seen that theory (31) is conformally invariant on the gravitational background under discussion. Then using standard methods, we can prove that theory with matter multiplet \(\Sigma_i \) is superconformally invariant theory. First of all, one can find trace anomaly \(T \) for the theory (31) on gravitational background using the following relation
\[\Gamma_{\text{div}} = \frac{1}{n-2} \int d^2x \sqrt{g} b_2, \quad T = b_2 \] (33)
where \(b_2 \) is \(b_2 \) coefficient of Schwinger-De Witt expansion and \(\Gamma_{\text{div}} \) is one-loop effective action. The calculation of \(\Gamma_{\text{div}} \) for quantum theory with Lagrangian (31) has been done some time ago in ref. [8]. Using results of this work, we find
\[
T = \frac{1}{24\pi} \left\{ \frac{3}{2} NR - 3N \left(\frac{f''}{f} - \frac{f'^2}{2f^2} \right) (\nabla^\lambda \phi)(\nabla_\lambda \phi) - 3N \frac{f'}{f} \Delta \phi \right\} \] (34)
It is remarkable that Majorana spinors do not give the contribution to the dilaton dependent terms in trace anomaly as it was shown in [8]. They only alter the coefficient of curvature term in \(T \) (34). Hence, except the coefficient of curvature term in \(T \) (34), the trace anomaly (34) coincides with the correspondent expression for dilaton coupled scalar [9]. Note also that for particular case \(f(\phi) = e^{-2\phi} \) the trace anomaly for dilaton coupled scalar has been recently calculated in refs. [10].

Making now the conformal transformation of the metric \(g_{\mu\nu} \to e^{2\sigma} g_{\mu\nu} \) in the trace anomaly, and using relation:
\[
T = \frac{1}{\sqrt{g}} \frac{\delta}{\delta \sigma} W[\sigma] \] (35)
one can find anomaly induced action \(W[\sigma] \). In the covariant, non-local form it may be found as following:

\[
W = -\frac{1}{2} \int d^2 x \sqrt{g} \left[\frac{N}{32\pi} R \frac{1}{\Delta} R - \frac{N}{16\pi} \frac{f'^2}{f^2} \nabla^\lambda \phi \nabla^\lambda \phi \frac{1}{\Delta} R - \frac{N}{8\pi} \ln f R \right].
\] (36)

Hence, we got the anomaly induced effective action for dilaton coupled matter multiplet in the external dilaton-gravitational background. We should note that the same action \(W \) (36) gives the one-loop large-\(N \) effective action in the quantum theory of supergravity with matter (18) (i.e., when all fields are quantized).

We can now rewrite \(W \) in a supersymmetric way. In order to write down the effective action expressing the trace anomaly, we need the supersymmetric extension of \(\frac{1}{\Delta} R \). The extension is given by using the inverse kinetic multiplet in [15], or equivalently by introducing two auxiliary field \(\Theta = (t, \theta, T) \) and \(\Upsilon = (u, \upsilon, U) \). We can now construct the following action

\[
[\Theta \otimes (T_P(\Upsilon) - W)]_{\text{inv}}.
\] (37)

The \(\Theta \)-equation of motion tells that, in the superconformal gauge (23)

\[
u \sim \rho \sim -\frac{1}{2\Delta} R, \quad v \sim \psi.
\] (38)

Then we find

\[
\sqrt{g} R \frac{1}{\Delta} R \sim 4 \left[W \otimes \Upsilon \right]_{\text{inv}}
\]

\[
\sqrt{g} \frac{f'^2}{f^2} \nabla^\lambda \phi \nabla^\lambda \phi \frac{1}{\Delta} R
\]

\[
\sim \left[\Phi \otimes \Phi \otimes T_P \left(\frac{f'^2}{f^2} \Phi \right) \otimes \Upsilon \right]_{\text{inv}}
\]

\[
+ 2 \left[\frac{f'^2}{f^2} \Phi \otimes \Upsilon \otimes \Phi \otimes T_P(\Phi) \right]_{\text{inv}},
\]

\[
\sqrt{g} \ln f(\phi) R \sim 2 \left[\ln f(\Phi) \otimes W \right]_{\text{inv}}.
\] (39)

In components,

\[
[\Theta \otimes (T_P(\Upsilon) - W)]_{\text{inv}}
\]
\[e \left[t \left(\Box u + \frac{1}{2} R + \frac{1}{2} \bar{\psi} \gamma^\mu \psi_{\mu \nu} - S \bar{\psi} \psi_\mu \right) + T(U - S) - \bar{\theta}(D u - \eta) \right. \]
\[+ \frac{1}{2} \bar{\psi}_\mu \gamma^\mu \{ (D u - \eta) t + \theta(U - S) \} + \frac{1}{2} t(U - S) \bar{\psi}_\mu \sigma^{\mu \nu} \psi_\nu \right], \quad (40) \]
\[4 [W \otimes \Upsilon]_{\text{inv}} \]
\[= 4 e \left[u \left(-\frac{1}{2} R - \frac{1}{2} \bar{\psi} \gamma^\nu \psi_{\mu \nu} + S \bar{\psi} \psi_\mu \right) + U S - \bar{\nu} \eta \right. \]
\[+ \frac{1}{2} \bar{\psi}_\mu \gamma^\mu \{ \eta u + u S \} + \frac{1}{2} u S \bar{\psi}_\mu \sigma^{\mu \nu} \psi_\nu \right], \quad (41) \]
\[\left[\Phi \otimes \Phi \otimes T_P \left(\frac{f^2(\Phi)}{f^2(\Phi) \otimes \Upsilon} \right) \right]_{\text{inv}} \]
\[= e \left[\phi^2 \Box (u h^2(\phi)) \right. \]
\[+ (2 \phi F - \bar{\chi} \chi) \left\{ h^2(\phi) U \right. \]
\[+ u \{ 2 h'(\phi) h''(\phi) F - (h''(\phi) + h'(\phi) h'''(\phi)) \bar{\chi} \chi \} \} \]
\[- 2 \phi \bar{\chi} D \left(h^2(\phi) v + 2 u h'(\phi) h'''(\phi) \chi \right) \]
\[+ \frac{1}{2} \bar{\psi}_\mu \gamma^\mu \left\{ \{ D \left(h^2(\phi) v + 2 u h'(\phi) h'''(\phi) \chi \right) \} \phi^2 \right. \]
\[+ 2 \chi \phi \left\{ h^2(\phi) U + u \{ 2 h'(\phi) h''(\phi) F - (h''(\phi) + h'(\phi) h'''(\phi)) \bar{\chi} \chi \} \} \right. \]
\[+ \frac{1}{2} \phi^2 \left\{ h^2(\phi) U \right. \]
\[+ u \{ 2 h'(\phi) h''(\phi) F - (h''(\phi) + h'(\phi) h'''(\phi)) \bar{\chi} \chi \} \} \right. \]
\[\left. \left\{ \bar{\psi}_\mu \sigma^{\mu \nu} \psi_\nu \right\} \right], \quad (42) \]
\[\left[\frac{f^2(\Phi)}{f^2(\Phi)} \otimes \Upsilon \otimes \Phi \otimes T_P(\Phi) \right]_{\text{inv}} \]
\[= e \left[u h^2(\phi) \phi \Box \phi \right. \]
\[+ F \left\{ \phi \left(h^2(\phi) U + u \{ 2 h'(\phi) h''(\phi) F \right. \]
\[\left. - (h''(\phi) + h'(\phi) h'''(\phi)) \bar{\chi} \chi \} - 2 h'(\phi) h''(\phi) \bar{\chi} v \right) \right. \]
\[+ u h^2(\phi) F - \chi \left(v h^2(\phi) + 2 \chi u h'(\phi) h''(\phi) \right) \} \]
\[- (u h^2(\phi) \bar{\chi} + \phi h^2(\phi) \bar{\nu} + 2 u \phi h'(\phi) h'''(\phi) \chi) D \chi \]
\[+ \frac{1}{2} \bar{\psi}_\mu \gamma^\mu \left\{ \chi u h^2(\phi) \phi + (\chi u h^2(\phi) + u \phi h^2(\phi) + 2 \chi u \phi h'(\phi) h''(\phi)) \right. \} \]
\[\frac{1}{2} \]
\[12 \]
\[+\frac{1}{2}h^2(\phi)F\bar{\psi}_\mu\sigma^{\mu\nu}\psi_\nu\] ,

\[\ln f(\Phi) \otimes W]_{\text{inv}}\]

\[= e \left[h(\phi) \left(-S^2 + \frac{1}{2}R - \frac{1}{2}\bar{\psi}_\mu\gamma^\mu\psi_\mu \right) + h'(\phi)(FS - \bar{\chi}\eta) - \frac{1}{2}h''(\phi)\bar{\chi}\chi S \right. \]

\[+ \frac{1}{2}\bar{\psi}_\mu\gamma^\mu(\eta h(\phi) + \chi Sh'(\phi)) + \left. \frac{1}{2}h(\phi)S\bar{\psi}_\mu\sigma^{\mu\nu}\psi_\nu \right] .\]

(44)

Here

\[h(\phi) \equiv \ln f(\phi) .\] (45)

That finishes the construction of large-\(N\) supersymmetric anomaly induced effective action for 2d dilatonic supergravity with matter.

At the end of the present section, we will find the one-loop effective action (its divergent part) for the whole quantum theory (25), (26) on the bosonic background under discussion. Using Eqs. (25), (26), one can write the complete Lagrangian as following:

\[e^{-L} = - \left(\tilde{V} + \tilde{C}R + \frac{1}{2}\tilde{Z}(\nabla_\mu\phi)(\nabla^\mu\phi) \right. \]

\[- f(\phi) \sum_{i=1}^{N} \left((\nabla_\mu a_i)(\nabla^\mu a_i) + \bar{\xi}_i\gamma_\mu\partial_\mu\xi_i \right) \] (46)

where

\[- \tilde{V} = -CS^2 - C'FS + 2Z'\phi F^2 + Z'\phi F^2 + ZF^2 \]

\[+ V'F + SV , \]

\[\tilde{C} = \frac{C}{2} , \]

\[2\tilde{Z} = 3\phi Z' + Z \] (47)

where auxiliary fields equations of motion which lead to (28) should be used.

The calculation of the one-loop effective action for the theory (46) has been given in ref. [8] in the harmonic gauge with the following result

\[\Gamma_{\text{div}} = - \frac{1}{4\pi(n-2)} \int d^2x \sqrt{g} \left(\frac{48 - 3N}{12}R + \frac{2}{\tilde{C}}\tilde{V} + \frac{2}{\tilde{C}'}\tilde{V}' \right) \]

13
\[
+ \left(\frac{\tilde{C}''}{\tilde{C}'} - \frac{3\tilde{C}''^2}{\tilde{C}^2} - \frac{\tilde{C}'' \tilde{Z}}{\tilde{C}'^2} - \frac{Nf'^2}{4f^2} + \frac{Nf''}{2f} \right) (\nabla^\lambda \phi)(\nabla_\lambda \phi) \\
+ \left(\frac{\hat{C}'}{\hat{C}' - \frac{Nf'}{2f}} \right) \Delta \phi - \left(\frac{3f \tilde{Z}}{4\hat{C}'^2} + \frac{3f}{4\hat{C}'} - \frac{f'}{\hat{C}'} \right) \sum_{i=1}^N \xi_i \gamma^\mu \partial_\mu \xi_i \right).
\]

Thus, we found the one-loop effective action for dilatonic supergravity with matter on bosonic background. Of course, the contribution of fermionic superpartners is missing there. However, Eq.(48) gives also the divergent one-loop effective action in large-N approximation (one should keep only terms with multiplier N). This effective action may be used also for construction of renormalization group improved effective Lagrangians and study of their properties like BH solutions in ref.[10].

4 Black holes in supersymmetric extension of CGHS model with matter back reaction

In the present section we discuss the particular 2d dilatonic supergravity model which represents the supersymmetric extension of CGHS model. Note that as a matter we use dilaton coupled matter supermultiplet. We would like to estimate back-reaction of such matter supermultiplet to black holes and Hawking radiation working in large-N approximation. Since we are interesting in the vacuum (black hole) solution, we consider the background where matter fields, the Rarita-Schwinger field and dilatino vanish.

In the superconformal gauge the equations of motion can be obtained by the variation over $g_{\pm \pm}$, $g_{\pm -}$ and ϕ

\[
0 = T_{\pm \pm} \\
= e^{-2\phi} \left(4\partial_\pm \rho \partial_\pm \phi - 2 (\partial_\pm \phi)^2 \right) \\
+ \frac{N}{8} \left(\partial_\pm^2 \rho - \partial_\pm \rho \partial_\pm \rho \right) \\
+ \frac{N}{8} \left\{ (\partial_\pm h(\phi) \partial_\pm h(\phi)) \rho + \frac{1}{2} \frac{\partial_\pm}{\partial_\pm} (\partial_\pm h(\phi) \partial_\pm h(\phi)) \right\} \\
+ \frac{N}{8} \left\{ -2 \partial_\pm \rho \partial_\pm h(\phi) + \partial_\pm^2 h(\phi) \right\} + t^\pm (x^\pm)
\]
\[0 = T_{\pm \mp} = e^{-2\phi} \left(2\partial_+ \partial_- \phi - 4\partial_+ \phi \partial_- \phi - \lambda^2 e^{2\rho} \right) \]
\[- \frac{N}{8} \partial_+ \partial_- \rho - \frac{N}{16} \partial_+ h(\phi) \partial_- h(\phi) - \frac{N}{8} \partial_+ \partial_- h(\phi) \]
\[- \frac{N}{64} h'(\phi)^2 F^2 + \left(\frac{N}{16} \rho S + \frac{N}{2} (-h(\phi) S^2 + h'(\phi) FS) \right) e^{2\rho} , \]
(50)
\[0 = e^{-2\phi} \left(-4\partial_+ \partial_- \phi + 4\partial_+ \phi \partial_- \phi + 2\partial_+ \partial_- \rho + \lambda^2 e^{2\rho} \right) \]
\[- \frac{N f'}{f} \left\{ \frac{1}{16} \partial_+(\rho \partial_- h(\phi)) + \frac{1}{16} \partial_-(\rho \partial_+ h(\phi)) - \frac{1}{8} \partial_+ \partial_- \rho \right\} . \]
(51)

Here \(t^{\pm}(x^{\pm}) \) is a function which is determined by the boundary condition. Note that there is, in general, a contribution from the auxiliary fields to \(T_{\pm \mp} \) besides the contribution from the trace anomaly.

In large-\(N \) limit, where classical part can be ignored, field equations become simpler

\[0 = \frac{1}{N} T_{\pm \mp} \]
\[= \frac{1}{8} \left(\partial_+^2 \rho - \partial_+ \rho \partial_+ \rho \right) \]
\[+ \frac{1}{8} \left\{ (\partial_+ h(\phi) \partial_- h(\phi)) \rho + \frac{1}{2} \partial_+ \left(\partial_+ h(\phi) \partial_- h(\phi) \right) \right\} \]
\[+ \frac{1}{8} \left\{ -2\partial_+ \rho \partial_- h(\phi) + \partial_+^2 h(\phi) \right\} + t^{\pm}(x^{\pm}) , \]
(52)
\[0 = \frac{1}{N} T_{\pm \mp} \]
\[= -\frac{1}{8} \partial_+ \partial_- \rho - \frac{1}{16} \partial_+ h(\phi) \partial_- \phi - \frac{1}{8} \partial_+ \partial_- h(\phi) \]
\[0 = \frac{1}{16} \partial_+(\rho \partial_- h(\phi)) + \frac{1}{16} \partial_-(\rho \partial_+ h(\phi)) - \frac{1}{8} \partial_+ \partial_- \rho . \]
(54)

Here we used the \(\Theta \)-equation and the equations for the auxiliary fields \(S \) and \(F \), i.e.,

\[U = S , \quad u = \rho = -\frac{1}{2\Delta} R , \quad S = F = 0 . \]
(55)
The function $t^\pm(x^\pm)$ in (52) can be absorbed into the choice of the coordinate and we can choose
\[t^\pm(x^\pm) = 0. \tag{56} \]
Combining (52) and (53), we obtain
\[-\frac{1}{2}(\partial_\pm \rho)^2 + \frac{1}{2}\rho(\partial_\pm h(\phi))^2 - \partial_\pm \rho \partial_\pm h(\phi) = 0 \tag{57} \]
i.e.,
\[\partial_\pm h(\phi) = \frac{1 + \sqrt{1 + \rho}}{\rho} \partial_\pm \rho \quad \text{or} \quad \frac{1 - \sqrt{1 + \rho}}{\rho} \partial_\pm \rho. \tag{58} \]
This tells that
\[h(\phi) = \int d\rho \frac{1 \pm \sqrt{1 + \rho}}{\rho}. \tag{59} \]
Substituting (59) into (54), we obtain
\[\partial_+ \partial_- \left\{ (1 + \rho)^{\frac{3}{2}} \right\} = 0 \tag{60} \]
i.e.,
\[\rho = -1 + \left(\rho^+(x^+) + \rho^-(x^-) \right)^{\frac{2}{3}}. \tag{61} \]
Here ρ^\pm is an arbitrary function of $x^\pm = t \pm x$. We can straightforwardly confirm that the solutions (59) and (61) satisfy (53). The scalar curvature is given by
\[R = 8e^{-2\rho} \partial_+ \partial_- \rho \]
\[= -4e^{-\frac{4}{3}\left\{ (1 - (1 + \rho^+(x^+) + \rho^-(x^-))^\frac{2}{3} \right\}} \frac{\rho^+(x^+) - \rho^-(x^-)}{(\rho^+(x^+) + \rho^-(x^-))^\frac{2}{3}}. \tag{62} \]
Note that when $\rho^+(x^+) + \rho^-(x^-) = 0$, there is a curvature singularity. Especially if we choose
\[\rho^+(x^+) = \frac{r_0}{x^+}, \quad \rho^-(x^-) = -\frac{x^-}{r_0} \tag{63} \]
there are curvature singularities at $x^+x^- = r_0^2$ and horizon at $x^+ = 0$ or $x^- = 0$. Hence we got black hole solution in the model under discussion.
The asymptotic flat regions are given by \(x^+ \to +\infty \) \((x^- < 0)\) or \(x^- \to -\infty \) \((x^+ > 0)\). Therefore we can regard \(x^\pm \) as corresponding to the Kruskal coordinates in 4 dimensions.

We now consider the Hawking radiation. The quantum part of the energy momentum tensor for the generalized dilatonic supergravity is given by

\[
T_{q \pm \mp} = \frac{N}{8} \left(\frac{\partial^2 \rho}{\partial x^2} - \partial \rho \partial \rho \right) + \frac{N}{8} \left\{ (\partial_x h(\phi) \partial_x h(\phi)) \rho + \frac{1}{2} \frac{\partial_x}{\partial x} (\partial_x h(\phi) \partial_x h(\phi)) \right\} + \frac{N}{8} \left\{ -2 \partial_x \rho \partial_x h(\phi) + \partial_x^2 h(\phi) \right\} + \frac{N}{64} \frac{\partial_x}{\partial x} \left(h'(\phi)^2 F^2 \right) + t(x^\pm), \tag{64}
\]

\[
T_{q \pm \pm} = -\frac{N}{8} \partial_{x^+} \partial_{x^-} \rho - \frac{N}{16} \partial_+ h(\phi) \partial_- h(\phi) - \frac{N}{8} \partial_+ \partial_- h(\phi) - \frac{N}{64} h'(\phi)^2 F^2 + \left(\frac{N}{16} U S + \frac{N}{2} (h(\phi) S^2 + h'(\phi) F S) \right) e^{2\rho}. \tag{65}
\]

Here we consider the bosonic background and put the fermionic fields to be zero. We now investigate the case that

\[
f(\phi) = e^{\alpha \phi} \quad (h(\phi) = \alpha \phi). \tag{66}
\]

Substituting the classical black hole solution which appeared in the original CGHS model \(^1\)

\[
\rho = -\frac{1}{2} \ln \left(1 + \frac{M}{\lambda} e^{\lambda (\sigma^- - \sigma^+)} \right), \tag{67}
\]

\[
\phi = -\frac{1}{2} \ln \left(\frac{M}{\lambda} + e^{\lambda (\sigma^+ - \sigma^-)} \right). \tag{68}
\]

(Here \(M \) is the mass of the black hole and we used asymptotic flat coordinates.) and using eq.(64), we find

\[
T_{q \pm -} = \frac{N \lambda^2}{64} \left(4 + 4 \alpha + \alpha^2 \right) \frac{1}{\left(1 + \frac{M}{\lambda} e^{\lambda (\sigma^- - \sigma^+)} \right)^2} - \frac{N \lambda^2}{16} \left(1 + \alpha \right) \frac{1}{\left(1 + \frac{M}{\lambda} e^{\lambda (\sigma^- - \sigma^+)} \right)} - \frac{N \lambda^2 \alpha^2}{64},
\]

17
\[
T_{\pm \pm}^q = -\frac{N\lambda^2}{32} \left\{ 1 - \frac{1}{\left(1 + \frac{M}{\lambda} e^{\lambda(\sigma^- - \sigma^+)}\right)^2} \right\} \\
- \frac{N\lambda^2\alpha^2}{16} \ln \left(\frac{1 + \frac{M}{\lambda} e^{\lambda(\sigma^- - \sigma^+)}}{1 + \frac{M}{\lambda} e^{\lambda(\sigma^- - \sigma^+)}}\right) + t^\pm(\sigma^\pm) .
\] (69)

Then when \(\sigma^+ \to +\infty\), the energy momentum tensor behaves as

\[
T_{++}^q \to 0 , \\
T_{\pm \pm}^q \to \frac{N\lambda^2\alpha^2}{16} + t^\pm(\sigma^\pm) .
\] (70)

In order to evaluate \(t^\pm(\sigma^\pm)\), we impose a boundary condition that there is no incoming energy. This condition requires that \(T_{++}^q\) should vanish at the past null infinity \((\sigma^- \to -\infty)\) and if we assume \(t^-(\sigma^-)\) is black hole mass independent, \(T_{---}^q\) also should vanish at the past horizon \((\sigma^+ \to -\infty)\) after taking \(M \to 0\) limit. Then we find

\[
t^-(\sigma^-) = -\frac{N\lambda^2\alpha^2}{16}
\] (71)

and one obtains

\[
T_{--}^q \to 0
\] (72)
at the future null infinity \((\sigma^+ \to +\infty)\). Eqs. (70) and (72) might tell that there is no Hawking radiation in the dilatonic supergravity model under discussion when quantum back-reaction of matter supermultiplet in large-\(N\) approach is taken into account. (That indicates that above black hole is extremal one). This might be the result of the positive energy theorem \([17]\). If Hawking radiation is positive and mass independent, the energy of the system becomes unbounded below. On the other hand, the negative radiation cannot be accepted physically. Of course, this result may be changed in next order of large-\(N\) approximation or in other models of dilatonic supergravity. From another side since we work in strong coupling regime it could be that new methods to study Hawking radiation should be developed.
5 Discussion

In summary, we studied 2d dilatonic supergravity with dilaton coupled matter and dilaton supermultiplets. Some results of this work have been shortly reported in [18]. Trace anomaly and induced effective action for matter supermultiplet as well as large-N effective action for dilatonic supergravity are calculated. Using these results one can estimate matter quantum corrections in the study of black holes and their properties like Hawking radiation. Such study is presented on the example of supersymmetric CGHS model which corresponds to specific choice of generalized dilatonic couplings in the initial theory. Similarly, one can investigate quantum spherical collapse for different 4d or higher-dimensional supergravities using 2d models.

It is interesting to note that there are following directions to generalize our work. First of all, one can consider extended 2d supergravities with dilaton coupled matter. General structure of trace anomaly and effective action will be the same. Second, one can consider other types of black hole solutions in the model under discussion with arbitrary dilaton couplings. Unfortunately, since such models are not exactly solvable one should usually apply numerical methods for study of black holes and their properties. Third, it could be important to discuss the well-known C-theorem for dilaton dependent trace anomaly. We hope to investigate some of these questions in near future.

Acknowledgments We would like to thank R.Bousso, I. Buchbinder, S. Hawking, S.Gates and K. Stelle for useful remarks. This research has been supported in part by COLCIENCIAS (Colombia) and RFBR, project No 96-02-16017 (Russia).

References

[1] C.G. Callan, S.B. Giddings, J.A. Harvey and A. Strominger, Phys. Rev. D45 (1992) 1005.

[2] J.G. Russo, L. Susskind and L. Thorlacius, Phys.Lett. B292 (1992) 13; Phys.Rev. D47 (1993) 533.

[3] S.P. de Alwis, Phys.Lett. B289 (1992) 278; A. Bilal and C. Callan, Nucl.Phys. B394 (1993) 73; S. Nojiri and I. Oda, Phys.Lett. B294
(1992) 317; Nucl.Phys. B406 (1993) 499; T. Banks, A. Dabholkar, M. Douglas and M. O’Loughlin, Phys.Rev. D45 (1992) 3607; R.B. Mann, Phys.Rev. D47 (1993) 4438; D. Louis-Martinez and G. Kunstatter, Phys.Rev. D49 (1994) 5227; T.Klobsch and T.Strobl, Class.Quant.Grav. 13 (1996) 965; G. Amelino-Camelia, L. Griguolo and D. Seminara, Phys.Lett. B371 (1996) 41.

[4] S. Bose, L. Parker and Y. Peleg, Phys.Rev. D52 (1995) 3512; M. Katanaev, W. Kummer and H. Liebl, Phys.Rev. D53 (1996) 5609.

[5] T. Banks, Spring School on Supersymmetry and Superstrings, hep-th/9412139; A. Strominger, Les Houches lectures on black holes, hep-th/9501071; S. Giddings, Summer School in High Energy Physics and Cosmology, Trieste, hep-th/9412138.

[6] S.P. Trivedi, Phys.Rev. D47 (1993) 4233; A. Strominger and S.P. Trivedi, Phys.Rev. D48 (1993) 2930.

[7] G.W. Gibbons, Nucl.Phys. B207 (1982) 337; G.W. Gibbons and K. Maeda, Nucl.Phys. B298 (1988) 741; S.B. Giddings and A. Strominger, Phys.Rev.Lett. 67 (1991) 1930; D. Garfinkle, G.T. Horowitz and A. Strominger, Phys.Rev. D43 (1991) 3140.

[8] E. Elizalde, S. Naftulin and S.D. Odintsov, Phys. Rev. D49 (1994) 2852.

[9] S. Nojiri and S.D. Odintsov, hep-th/9706009, Mod.Phys.Lett. A12 (1997) 2083; hep-th/9706143, to appear in Phys.Rev. D.

[10] R. Bousso and S.W. Hawking, hep-th/9705230, Phys.Rev. D56 7788; S. Ichinose, hep-th/9707025; W. Kummer, H. Liebl and D.V. Vassilevich, hep-th/9707041, Mod.Phys.Lett A12 (1997) 2683.

[11] J. Wess and J. Bagger, “Supersymmetry and Supergravity”, Princeton University Press

[12] S.J. Gates, M.T. Grisaru, M. Ricek and W. Siegel, “Superspace or One Thousand and One Lessons in Supersymmetry”, Benjamin/cummins (1983) (Frontiers in Physics, 58).
[13] K. Higashijima, T. Uematsu and Y.Z. Yu, \textit{Phys.Lett.} \textbf{139B} (1994) 161; T. Uematsu, \textit{Z.Phys.} \textbf{C29} (1985) 143; T. Uematsu, \textit{Z.Phys.} \textbf{C32} (1986) 33.

[14] Shin’ichi Nojiri and Ichiro Oda, \textit{Mod.Phys.Lett.} \textbf{A8} (1993) 53.

[15] Mihoko M. Nojiri and Shin’ichi Nojiri, \textit{Prog.Theor.Phys.} \textbf{76} (1986) 733.

[16] S. Nojiri and S.D. Odintsov, \textit{Mod.Phys.Lett.} \textbf{A12} (1997) 925.

[17] Y. Park and A. Strominger, \textit{Phys.Rev.} \textbf{D47} (1993) 1566.

[18] S. Nojiri and S.D. Odintsov, \texttt{hep-th/9708139}, to appear in \textit{Phys.Lett.} \textbf{B}.