Original article
Scand J Work Environ Health 2008;34(5):364-373
doi:10.5271/sjweh.1282

Case-control study of low-back pain referred for magnetic resonance imaging, with special focus on whole-body vibration
by Palmer KT, Harris EC, Griffin MJ, Bennett J, Reading I, Sampson M, Coggon D

Affiliation: MRC Epidemiology Resource Centre, Southampton General Hospital, Southampton, SO16 6YD, United Kingdom. ktp@mrc.soton.ac.uk

Corrections
See 2009;35(1):80 for a correction.

Refers to the following text of the Journal: 1997;23(4):243-256

The following article refers to this text: 2012;38(6):577-581

Key terms: back; back pain; case–control study; driving; imaging; low back; low-back pain; magnetic resonance imaging; mental health; MRI; occupational risk factor; radiology; risk factor; vibration; whole-body vibration

This article in PubMed: www.ncbi.nlm.nih.gov/pubmed/18853063
Case–control study of low-back pain referred for magnetic resonance imaging, with special focus on whole-body vibration

by Keith T Palmer, DM, E Claire Harris, PhD, Michael J Griffin, PhD, James Bennett, MSc, Isabel Reading, PhD, Madelaine Sampson, David Coggon, PhD

Palmer KT, Harris EC, Griffin MJ, Bennett J, Reading I, Sampson M, Coggon D. Case–control study of low-back pain referred for magnetic resonance imaging, with special focus on whole-body vibration. Scand J Work Environ Health 2008;34(5):364–373.

Objectives This study investigated risk factors for low-back pain among patients referred for magnetic resonance imaging (MRI), with special focus on whole-body vibration.

Methods A case–control approach was used. The study population comprised working-aged persons from a catchment area for radiology services. The cases were those in a consecutive series referred for a lumbar MRI because of low-back pain. The controls were age- and gender-matched persons X-rayed for other reasons. Altogether, 252 cases and 820 controls were studied, including 185 professional drivers. The participants were questioned about physical factors loading the spine, psychosocial factors, driving, personal characteristics, mental health, and certain beliefs about low-back pain. Exposure to whole-body vibration was assessed by six measures, including weekly duration of professional driving, hours driven in one period, and current root mean square A(8). Associations with whole-body vibration were examined with adjustment for age, gender, and other potential confounders.

Results Strong associations were found with poor mental health and belief in work as a causal factor for low-back pain, and with occupational sitting for ≥3 hours while not driving. Associations were also found for taller stature, consulting propensity, body mass index, smoking history, fear–avoidance beliefs, frequent twisting, low decision latitude, and low support at work. However, the associations with the six metrics of whole-body vibration were weak and not statistically significant, and no exposure–response relationships were found.

Conclusions Little evidence of a risk from professional driving or whole-body vibration was found. Drivers were substantially less heavily exposed to whole-body vibration than in some earlier surveys. Nonetheless, it seems that, at the population level, whole-body vibration is not an important cause of low-back pain among those referred for MRI.

Key terms back; driving; imaging; mental health; occupational risk factor; radiology.
However, two case–control studies by Kelsey et al have suggested an elevated risk of surgically managed prolapsed intervertebral disc for truck (9) and car (10) drivers, while, in a large survey of commercial travelers by Pietri et al (11), a relation was found both between weekly hours of driving and the 12-month period prevalence and the cumulative incidence of low-back pain. An increased prevalence of low-back pain has also been reported for urban bus drivers when they were compared with maintenance workers (12). By contrast, a community-based cross-sectional survey found little association between whole-body vibration and low-back pain and estimated the overall risk and attributable burden of disease arising from whole-body vibration in British workers to be relatively small when compared with the effects of lifting (13).

In our present study, we gauged the public health impact of whole-body vibration on back disorders severe enough to be referred for specialist investigation by nuclear magnetic resonance imaging (MRI) of the lumbar spine and the extent to which such referrals were associated with whole-body vibration and professional driving as compared with other recognized risk factors for low-back pain.

Study population and methods

A case–control approach was used. The study population comprised all adults aged 20–64 years resident (as defined by certain postal codes) in the catchment area served by the radiology services of the main public hospital in Southampton. The cases were a consecutive series of patients from the study population referred to the radiology department at the public hospital or to either of two local private hospitals for MRI of the lumbar spine during 2003–2006. Patients who had an MRI because of external trauma or nonmechanical pathology (eg, cancer, metabolic bone disease, infections, congenital disorders) were excluded, as were patients with previous back surgery. The controls were those who attended the emergency department of the public hospital and were X-rayed over the same period. They were identified according to a predefined algorithm. The eligible controls fulfilled the same residency requirement as the cases and were group-matched to them by gender and 5-year age groups; the participants who had radiographs after a road traffic accident or who had ever had a scan of or surgery on their back were excluded. The potential cases and controls were identified from the patient records of the participating radiology departments.

The possible participants were mailed a questionnaire and a single reminder as necessary after four weeks. The cases were asked about their history of low-back pain and sciatica, and their recent disability was assessed using the Roland-Morris questionnaire (14). The cases and controls also completed a common question set on current or more recent job and other occupations held for more than 12 months, physical and psychosocial risk factors at work, professional driving and exposure to whole-body vibration (vehicle types, duration and intensity), personal characteristics (eg, height, weight, age, gender, smoking habits), mental health (low mood, somatizing tendency), fear-avoidance beliefs, beliefs regarding work as a cause or aggravation of low-back pain, and the propensity to ask for consultation for low-back pain.

Various standard instruments of inquiry were used. Low mood was assessed using the mental health section of the SF-36 (SF-36 MH) (15), with the participants categorized into groups (best, intermediate, worst) according to approximate thirds of the distribution of the scores across all of the participants. Somatizing tendency was assessed using elements of the Brief Symptom Inventory (16), a validated self-reported measure of distress, comprised of items on bothersome nausea, faintness or dizziness, chest pain, and breathing difficulties during the past 7 days. The number of symptoms reported as “extremely”, “quite a bit”, or “moderately” distressing were summed, with the data analyzed in three groups (0, 1, ≥2 distressing symptoms). Fear–avoidance beliefs were assessed using elements of the validated Fear–Avoidance Beliefs Scale of Waddell et al (17), a sum being made of the number of statements with which the respondent agreed (0, 1–2, 3–4). Three questions were also asked concerning beliefs about work as a cause or aggravation of low-back pain and two on attitudes towards consulting (whether it was important to see a physician straightaway at the first sign of trouble, whether neglecting problems of this kind could lead to permanent health problems) (18); in each case, the number of items of agreement was summed. Questions on occupational psychosocial risk factors were based on the Karasek model (19), with the participants classified according to decision latitude (three groups) and support (three groups), as well as self-reported job satisfaction (two groups). The participants were categorized by age into three groups and by height into rough thirds of the overall distribution by gender, and a count was made of the number of anatomical sites outside the back (knees, hips, shoulders, neck, wrist–hand, elbows) with pain lasting ≥1 day in the past four weeks (coded as 0, 1–2, 3–6). A series of questions was also asked about exposure in the current or most recent job to digging, lifting ≥10 kg (times/day), bending the trunk (times/day), twisting (times/day), standing (hours/day), sitting while not driving (hours/day), and unloading a vehicle by hand.

Finally, occupational exposure to whole-body vibration in the current or most recent job was assessed.
according to the following six metrics: (i) professional driving for ≥1 hours/day, (ii) professional driving ≥3 hours/time, (iii) average weekly hours driven for the most common source of exposure (in three groups), (iv) average weekly hours driven for all exposure sources (in five groups), (v) maximum rms (root mean square) of any machine (three groups: 0, 0.5, ≥0.6 m/s²), and (vi) current A(8) rms [0, ≥0–<0.5, 0.5–<1.15, ≥1.15 m/s², where 0.5 m/s² represents the daily exposure action level and 1.15 m/s² the daily exposure limit value in the European Directive 2002/44/EC on mechanical vibration (20)]. To establish these last two metrics, we asked questions about the time driven in a typical week for each of a predefined list of vehicles, as well as for an open category. Externally acquired estimates of vibration magnitude [the vertical, z-axis, frequency-weighted acceleration on the seat in accord with BS 6841 (21) or ISO 2631 (22)] for the various commonly reported exposure sources (1) were then applied, and dose measures estimated according to a standard methodology agreed on by the VIBRISKS European Research Consortium (23).

Although not a feature of this report, all of the cases had images of the lumbosacral spine taken according to routine departmental practice. Ethical approval was given by the NHS Southampton and South West Hampshire Local Research Ethics Committee.

The analysis was restricted to cases whose present episode of low-back pain started in their current or most recent job and to controls who gave a current or most recent job history. It focused on two main outcome groups: (i) all cases and (ii) cases with a Roland-Morris score of >10 (the median value for all cases) versus the controls. Associations with each outcome were explored by logistic regression and expressed as adjusted odds ratios (aOR) with associated 95% confidence intervals (95% CI). Separate models were constructed in relation to personal risk factors, occupational risk factors other than whole-body vibration, and professional driving and whole-body vibration exposure. All of the models were adjusted for age and gender (as factors of group matching and recruitment). Subsequently, for each outcome–control comparison, a stepwise forward selection regression model was fitted with age and gender constrained to be included in the model and the significance level for the inclusion of other variables (personal, occupational, and whole-body-vibration-related) set at P<0.20.

Finally, as some 113 cases were recruited from private hospitals (targeting full case ascertainment) but no controls came from these centers (since accidents and emergencies in the study population were only treated at the public hospital), we explored possible selection bias by re-running the analyses with the exclusion of private cases.

All of the analyses were performed using Stata 10.0 software (StataCorp LP, College Station, TX, USA).

Results

Altogether, 758 cases and 2306 controls were approached. Usable replies were received from 393 (52%) of the cases and 980 (43%) of the controls. The major reason for nonresponse was failure to return a questionnaire, but other reasons included moving away (7 cases and 38 controls), postal errors (1 case and 2 controls), serious concomitant illness (1 case), and mental handicap (5 controls). Among the remaining 393 cases, 4 were excluded because they did not confirm low-back pain in the questionnaire, and 7 were ineligible because of previous surgery to the back; while among the 980 controls, 97 were excluded because they had previously had either a scan of or surgery on the back. A further 108 cases were excluded because their low-back pain

Table 1. Characteristics of the study participants. (MRI = magnetic resonance imaging)

Characteristic	Cases All (N=252)	Severe 1 (N=125)	Controls (N=820)
N %	N %	N %	
Gender			
Male	131 52	65 52	383 47
Female	121 48	60 48	437 53
Age at MRI or X-ray examination (years)			
20–34 years	55 22	29 23	173 21
35–49 years	121 48	63 50	347 42
50–64 years	76 30	33 26	300 37
X-ray type			
Chest	–	–	43 5
Abdomen	–	–	12 1
Ankle–foot	–	–	254 31
Upper limb above wrist	–	–	73 9
Other	–	–	31 4
Wrist–hand	–	–	307 37
Lower limb above ankle	–	–	100 12
Sciatica			
No	48 19	14 11	–
Yes	199 79	109 87	–
Missing	5 2	2 2	–
Hospital			
Public	139 55	80 64	820 100
Private	113 45	45 36	0

* Cases with a Roland-Morris score higher than the median (10).

1 Age at MRI or X-ray examination (years) for all cases: mean 43.3 (SD 10.22), median 43, quartile 1–quartile 2: 36–62, minimum 21–maximum 64; age at MRI or X-ray examination (years) for severe cases: mean 42.4 (SD 9.91), median 42, quartile 1–quartile 2: 35–50, minimum 22–maximum 64; age at MRI or X-ray examination (years) for controls: mean 44.7 (SD 10.75), median 45, quartile 1–quartile 2: 36–53, minimum 20–maximum 64.
began before their current or most recent job; 1 case and 18 controls had never held a job; 13 cases and 45 controls gave an incomplete occupational history; and 8 cases gave incomplete information concerning the timing of low-back pain onset and the start or stop dates of the current or most recent job. Thus a total of 252 cases and 820 controls were finally included in the occupational analyses.

Table 2 on page 366 summarizes the characteristics of the participants included in the analyses of personal and occupational risk factors. The controls had most commonly attended for X-rays of the wrist–hand or ankle–foot. They were well matched to the cases according to age and gender. They had also started their current or most recent job in a similar interval before the scan or X-ray [median 8.7 and interquartile range

Table 2. Associations with demographic and personal characteristics in the study groups. OR = odds ratio, 95% CI = 95% confidence interval, M = male, F = female

Characteristic	Cases All (N=252)	Cases Severe (N=125)	Controls All (N=820)	Controls versus cases	Controls versus controls
Height (cm)					
Shortest third (<176 M, <161 F)	81 32	43 34	316 39	1.0 --	1.0 --
Middle third (176–181 M, 161–168 F)	80 32	38 30	280 34	1.1 0.8–1.6	1.0 0.6–1.6
Tallest third (>181 M, >168 F)	84 33	41 33	205 25	1.6 1.1–2.2	1.4 0.9–2.3
Missing	7 3	3 2	19 2	- -	- -
Body mass index					
<25 kg/m²	95 38	40 32	312 38	1.0 --	1.0 --
25–<30 kg/m²	90 36	46 37	300 37	1.0 0.7–1.3	1.2 0.7–1.8
≥30 kg/m²	50 20	30 24	169 21	1.0 0.7–1.5	1.5 0.9–2.5
Missing	17 7	9 7	39 5	- -	- -
Smoking status					
Never	117 46	40 32	358 44	1.0 --	1.0 --
Ex	71 28	39 31	247 30	0.9 0.6–1.2	1.4 0.9–2.3
Current	63 25	46 37	208 25	0.9 0.6–1.3	1.9 1.2–3.0
Missing	1 0.4	-	7 0.9	- -	- -
Somatizing tendency (number of symptoms at least moderately distressing)					
0	138 55	50 40	493 60	1.0 --	1.0 --
1	54 21	36 29	181 22	1.2 0.8–1.7	2.3 1.4–3.7
≥2	54 21	37 30	141 17	1.4 1.0–2.1	2.8 1.8–4.6
Missing	6 2	2 2	5 0.6	- -	- -
SF-36 MH score					
Best	87 35	21 17	343 42	1.0 --	1.0 --
Intermediate	73 29	43 34	263 32	1.1 0.8–1.6	2.9 1.6–4.9
Worst	86 34	59 47	210 26	1.7 1.2–2.4	4.8 2.8–8.2
Missing	6 2	2 2	4 0.5	- -	- -
Fear–avoidance beliefs (number of statements agreed)					
0	68 27	26 21	260 32	1.0 --	1.0 --
1–2	134 53	67 54	383 47	1.3 0.9–1.8	1.7 1.0–2.7
3–4	45 18	30 24	168 20	1.0 0.7–1.5	1.8 1.0–3.1
Missing	5 2	2 2	9 1	- -	- -
Number of other sites with pain (in the past 4 weeks)					
0	75 30	31 25	216 26	1.0 --	1.0 --
1–2	121 48	62 50	371 45	0.9 0.7–1.3	1.2 0.7–1.9
3–6	54 21	32 26	231 28	0.7 0.5–1.1	1.1 0.6–1.8
Missing	5 0.8	-	2 0.2	- -	- -
Propensity to consult for low-back pain (number of statements agreed)					
0	60 24	28 22	310 38	1.0 --	1.0 --
1	82 33	42 34	226 28	1.8 1.3–2.7	2.0 1.2–3.3
2	105 42	53 42	271 33	2.0 1.4–2.8	2.1 1.3–3.4
Missing	5 2	2 2	13 2	- -	- -

* Each risk factor was considered separately, with adjustment for age (categorized into three groups) and gender. The percentages may not sum to 100% due to rounding.

* Cases with a Roland-Morris score higher than the median (10).

* Mental health section of the SF-36 (short form 36 of the mental health questionnaire).
(IQR 4.3–16.3) years for the cases and median 6.9 (IQR 2.9–16.5) years for the controls.

Among the cases, the median duration of the current episode of low-back pain (defined as the interval since last free of pain for as much as a month) was 1.0 (IQR 0.5–2.2) years, and 79% reported sciatica (pain spreading down the leg to below the knee or causing distal neurological symptoms). The median Roland-Morris score for the past 4 weeks was 10 (IQR 5–16). Altogether, 68% of the cases reported taking at least

| Table 3. Associations with occupational risk factors in the study groups. a (OR = odds ratio. 95% CI = 95% confidence interval) |
|---------------------------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| Risk factor | Cases All (N=252) | Cases Severe (N=125) | Controls All (N=820) | Controls Severe (N=125) |
| | N | % | N | % | N | % | N | % | OR | 95% CI | OR | 95% CI |
| Activities in a typical workday | | | | | | | | | | | | |
| Digging | | | | | | | | | | | | |
| No | 244 | 97 | 119 | 95 | 786 | 96 | 1.0 | -- | 1.0 | -- |
| Yes | 8 | 3 | 6 | 5 | 34 | 4 | 0.7 | 0.3–1.5 | 1.0 | 0.4–2.6 |
| Lifting ≥10 kg | | | | | | | | | | | | |
| 0 times/day | 96 | 38 | 42 | 34 | 308 | 38 | 1.0 | -- | 1.0 | -- |
| 1–10 times/day | 110 | 44 | 52 | 42 | 344 | 42 | 1.0 | 0.7–1.4 | 1.1 | 0.7–1.7 |
| >10 times/day | 46 | 18 | 31 | 25 | 168 | 20 | 0.8 | 0.5–1.2 | 1.2 | 0.7–2.1 |
| Bending trunk | | | | | | | | | | | | |
| 0 times/day | 100 | 40 | 43 | 34 | 313 | 38 | 1.0 | -- | 1.0 | -- |
| ≤20 times/day | 96 | 38 | 50 | 40 | 303 | 37 | 1.0 | 0.7–1.4 | 1.2 | 0.8–1.9 |
| >20 times/day | 56 | 22 | 32 | 26 | 294 | 25 | 0.8 | 0.6–1.2 | 1.1 | 0.7–1.8 |
| Twisting (times/day) | | | | | | | | | | | | |
| 0 times/day | 145 | 58 | 58 | 46 | 520 | 63 | 1.0 | -- | 1.0 | -- |
| ≤20 times/day | 71 | 28 | 45 | 36 | 212 | 26 | 1.2 | 0.9–1.7 | 1.9 | 1.3–2.9 |
| >20 times/day | 36 | 14 | 22 | 18 | 88 | 11 | 1.4 | 0.9–2.2 | 2.2 | 1.3–3.8 |
| Standing | | | | | | | | | | | | |
| <1 hours/day | 61 | 24 | 28 | 22 | 150 | 18 | 1.0 | -- | 1.0 | -- |
| 1–3 hours/day | 79 | 31 | 33 | 26 | 221 | 27 | 0.9 | 0.6–1.3 | 0.8 | 0.5–1.4 |
| 3 hours/day | 112 | 44 | 64 | 51 | 449 | 55 | 0.6 | 0.4–0.9 | 0.8 | 0.5–1.2 |
| Sitting while not driving | | | | | | | | | | | | |
| <1 hours/day | 73 | 29 | 43 | 34 | 324 | 40 | 1.0 | -- | 1.0 | -- |
| 1–3 hours/day | 54 | 21 | 28 | 22 | 219 | 27 | 1.1 | 0.8–1.6 | 1.0 | 0.6–1.6 |
| >3 hours/day | 125 | 50 | 54 | 43 | 277 | 34 | 2.0 | 1.5–2.8 | 1.5 | 1.0–2.3 |
| Unloading a vehicle by hand (as professional drivers) | | | | | | | | | | | | |
| No | 229 | 91 | 113 | 90 | 748 | 89 | 1.0 | -- | 1.0 | -- |
| Yes | 23 | 9 | 12 | 10 | 72 | 9 | 0.9 | 0.6–1.6 | 1.0 | 0.5–1.9 |
| Beliefs and psychosocial factors | | | | | | | | | | | | |
| Beliefs about work as a cause of low-back pain | | | | | | | | | | | | |
| 0 | 44 | 17 | 11 | 9 | 225 | 27 | 1.0 | -- | 1.0 | -- |
| 1–2 | 97 | 38 | 49 | 39 | 265 | 32 | 1.9 | 1.3–2.8 | 3.8 | 1.9–7.5 |
| 3 | 100 | 40 | 60 | 48 | 293 | 36 | 1.7 | 1.1–2.5 | 4.1 | 2.1–8.1 |
| Missing | 11 | 4 | 5 | 4 | 37 | 5 | . | | . | | . | |
| Decision latitude | | | | | | | | | | | | |
| Often | 112 | 44 | 47 | 38 | 387 | 47 | 1.0 | -- | 1.0 | -- |
| Sometimes | 71 | 28 | 34 | 27 | 220 | 27 | 1.1 | 0.8–1.6 | 1.3 | 0.8–2.1 |
| Seldom or never | 65 | 26 | 42 | 34 | 196 | 24 | 1.2 | 0.8–1.7 | 1.8 | 1.1–2.8 |
| Missing | 4 | 2 | 2 | 2 | 17 | 2 | . | | . | | . | |
| Job support from colleagues or managers | | | | | | | | | | | | |
| Often | 104 | 41 | 46 | 37 | 372 | 45 | 1.0 | -- | 1.0 | -- |
| Sometimes | 75 | 30 | 44 | 35 | 240 | 29 | 1.1 | 0.8–1.6 | 1.5 | 1.0–2.3 |
| Seldom or never | 45 | 18 | 23 | 18 | 110 | 13 | 1.5 | 1.0–2.2 | 1.7 | 1.0–3.0 |
| Not applicable | 25 | 10 | 11 | 9 | 92 | 11 | 1.0 | 0.6–1.6 | 1.0 | 0.5–2.1 |
| Missing | 3 | 1 | 1 | 0.8 | 6 | 0.7 | . | | . | | . | |
| Job satisfaction | | | | | | | | | | | | |
| Satisfied or very satisfied | 222 | 88 | 109 | 87 | 710 | 87 | 1.0 | -- | 1.0 | -- |
| Dissatisfied or very dissatisfied | 29 | 12 | 15 | 12 | 103 | 13 | 0.9 | 0.6–1.4 | 0.9 | 0.5–1.7 |
| Missing | 1 | 0.4 | 1 | 0.8 | 7 | 0.9 | . | | . | | . | |

a Each risk factor was considered separately, with adjustment for age (categorized into three groups) and gender. The percentages may not sum to 100% due to rounding.

b Cases with a Roland-Morris score higher than the median (10).
2 weeks off work in the last year because of symptoms.

Table 2 on page 367 compares the distribution of the demographic and personal characteristics for the cases and controls. Associations were found with tall stature, somatizing tendency, poor SF-36 MH score, and propensity to consult over low-back pain. In addition, among the cases with a Roland-Morris score of >10, there were associations with body mass index, current smoking status, and fear–avoidance beliefs, while the associations with a poor SF-36 MH score and somatizing tendency were strengthened. Thus, for example, the odds ratio versus controls was raised in the worst versus best group of the SF36 MH score, by 1.7-fold among the cases as a whole and by 4.8-fold for the severe cases.

Table 3 on page 368 shows the associations with occupational risk factors other than whole-body vibration, with adjustment for age and gender. Associations were found with twisting, sitting while not driving, job support, belief in work as a cause of low-back pain, and lack of decision latitude. For the most part, the associations were strengthened when the analysis focused on severe cases. Thus the odds ratio for twisting (>20 times/day versus not at all) was 1.4 for all of the cases versus the controls but 2.2 for a Roland-Morris score of >10 versus the controls.

The study included 185 professional drivers (42 cases and 143 controls), and, of these, 164 reported driving a single vehicle occupationally. The predominant exposure was to cars (115 reports), there being also 25 truck drivers, 8 bus drivers, 7 drivers of forklift trucks, 6 ambulance drivers, 2 drivers of loaders, and 1 tractor driver. The median weekly exposure time for drivers was 16 (IQR 10–30) hours, and the estimated median A(8) was 0.79 (IQR 0.56–1.24) m/s² rms.

Few positive associations were found between the six metrics of whole-body vibration and the two case outcomes. Table 4 presents the effect estimates for each exposure definition with adjustment for age and gender. In the comparison of severe cases versus controls (but not in that for all cases versus controls), professional driving for ≥3 hours at a time was associated with a higher odds of low-back pain (1.3), and increases in odds ratios were found in the groups with A(8) ≥0.5–1.15 versus 0 m/s² (OR 1.3) and regular driving for <15 hours/week. But no finding was significant at the 5% level, and no exposure metric showed an exposure–response pattern.

Table 4. Associations with exposure to whole-body vibration and professional driving in the study groups. * [OR = odds ratio, 95% CI = 95% confidence interval, rms = root mean square, rms A(8) = 8-hour energy equivalent acceleration]

	Cases All (N=252)	Severe † (N=125)	Controls (N=820)	All cases versus controls	Severe cases † versus controls
	N %	N %	N %	OR 95% CI	OR 95% CI
Professional driving (≥1 hours/day)					
No	210 83	101 81	677 83	1.0 .	1.0 .
Yes	42 17	24 19	143 17	0.9 0.6–1.3	1.1 0.6–1.7
Professional driving (≥3 hours/time)					
No	233 92	114 91	765 93	1.0 .	1.0 .
Yes	19 8	11 9	55 7	1.0 0.6–1.8	1.3 0.6–2.5
Average hours driven/week for the most common exposure source					
None	210 83	101 81	677 83	1.0 .	1.0 .
<16	24 10	15 12	67 8	1.1 0.6–1.8	1.4 0.8–2.6
≥16	18 7	9 7	76 9	0.7 0.4–1.2	0.7 0.3–1.5
Total hours driven/week, all sources					
Not a regular driver	210 83	101 81	677 83	1.0 .	1.0 .
<15	22 9	13 10	54 7	1.2 0.7–2.1	1.5 0.8–2.9
≥15	20 8	11 9	89 11	0.6 0.4–1.1	0.8 0.4–1.5
Maximum rms of any machine (m/s²)					
Not a regular driver	210 83	101 81	677 83	1.0 .	1.0 .
0.5	28 11	16 13	87 11	1.0 0.6–1.5	1.2 0.6–2.1
≥0.6	14 6	8 6	56 7	0.7 0.4–1.3	0.9 0.4–1.9
Current rms A(8) (m/s²)					
Not a regular driver	210 83	101 81	677 83	1.0 .	1.0 .
0.5–1.15	28 11	17 14	79 10	1.0 0.6–1.7	1.3 0.7–2.4
>1.15	10 4	5 4	44 5	0.6 0.3–1.3	0.7 0.3–1.8

* Each risk factor was considered separately, with adjustment for age (categorized into three groups) and gender. Percentages may not sum to 100% due to rounding.
† Cases with a Roland-Morris score higher than the median (10).
Table 5 shows the final models selected by the stepwise regression. In the all cases versus controls comparison, positive associations with being tall, in poor mental health, and having a propensity to consult over back pain were confirmed, while associations with occupational risk factors (twisting, sitting while not driving, belief about work as a cause of back pain) tended to strengthen. Among the severe cases, the association with somatizing tendency was somewhat weaker than among the cases as a whole, while those with sitting while not driving and beliefs about work as a cause of back pain were stronger. The associations with sitting while not driving were noteworthy in all of the comparisons (OR 3.4–3.7). Relative to the data presented in table 4, stronger but nonsignificant associations were found with professional driving for >3 hours at a time (OR 1.8–2.3), but no dose–response pattern was found in relation to hours driven per week, and the A(8) exposure metric was not retained in either model.

When we repeated the analysis after excluding the cases from the private hospitals (N=113), the final stepwise regression models for all cases versus controls and severe cases versus controls showed positive associations with frequent lifting (OR 1.5 and 1.8, respectively, for >10 versus 0 lifts/day), frequent twisting (OR 2.9 and 2.8, respectively, for >20 versus 0 twists/day), sitting while not driving (OR 2.4 and 2.4, respectively, for >3 versus <1 hours/day), beliefs about work as a cause of low-back pain (OR 2.2 and 3.9, respectively, for 3 versus 0 beliefs), and propensity to consult over low-back pain (OR 2.6 and 2.0, respectively, for 2 versus 0 statements agreed with). In addition, there was an association with somatizing tendency for all cases versus controls (OR 1.7 for a score of ≥2 versus 0) and with the SF-36 MH score for severe cases versus controls (OR 3.9 for worst versus best category of the score). However, no vibration or driving metrics were retained in the two finally selected stepwise models.

Table 5. Stepwise regression analysis of the risk factors for being a case or severe case of low-back pain. (OR = odds ratio, 95% CI = 95% confidence interval, M = male, F = female)

Demographic and personal characteristics	All cases (N=252) versus controls (N=820)	Severe cases a (N=125) versus controls (N=811)
OR 95% CI	OR 95% CI	OR 95% CI
Height (cm)		
Shortest third (<176 M, <161 F)	1.0	-
Middle third (176–181 M, 161–168 F)	1.1	0.8–1.6
Tallest third (>181 M, >168 F)	1.7	1.1–2.4
Smoking status		
Never smoker	-	1.0
Ex-smoker	-	1.4
Current smoker	-	0.9–2.6
Somatizing tendency (number of symptoms at least moderate)		
0	-	1.0
1	-	1.9
≥2	-	1.8
SF-36 MH score		
Best	1.0	-
Intermediate	1.1	0.7–1.6
Worst	1.8	1.2–2.6
Fear–avoidance beliefs (number of statements agreed)		
0	1.0	-
1–2	1.2	0.8–1.7
3–4	0.7	0.4–1.1
Number of other sites with pain (in the past 4 weeks)		
0	1.0	-
1–2	0.9	0.6–1.3
3–6	0.5	0.3–0.8
Propensity to consult over low-back pain (number of statements agreed)		
0	1.0	-
1	2.0	1.3–3.0
2	2.3	1.6–3.5

Table 5. Continued.

Occupational risk factors
Twisting (times/day)
0
≥20
<20
Sitting while not driving (hours/day)
<1
1–3
>3
Beliefs about work as a cause of low-back pain
0
1–2
3
Job satisfaction
Satisfied or very satisfied
Dissatisfied or very dissatisfied
Exposure to whole-body vibration
Professional driving (≥3 hours at a time)
No
Yes
Total hours driven/week, all sources
Not a regular driver
Yes
<15
≥15

a Starting with the null model, which included adjustment for age and gender, each factor was entered independently, and the most significant factor was retained and adjusted for in all of the models in the next stage in an iterative forward stepwise process. If the P-values were tied, then the factor with the highest likelihood ratio test statistic, based on the degrees of freedom, was selected. If information on a risk factor was missing for some participants, a “missing” category was included in the analysis. However, odds ratios for these “missing” categories have not been presented.

b Cases with a Roland Morris score higher than the median (10).

c Mental health section of the SF-36 (short form 36 of the mental health questionnaire).
Discussion

As judged by these findings, there are positive associations between low-back pain referred for MRI of the lumbar spine and low mood, somatizing tendency, certain beliefs about low-back pain, and consulting propensity, as well as with being tall, smoking, and work involving frequent or prolonged twisting, sitting while not driving, and low decision latitude. Beyond these findings, which are supported by a broader research literature, we found only very limited evidence of a risk from exposure to professional driving and whole-body vibration, and none for exposures estimated to exceed the daily exposure limit value in the Physical Agents Directive of the European Union (20).

When the findings of our study are weighed, a few limitations need to be considered. Response was incomplete. However, an incomplete response would be a source of bias in relation to questions about whole-body vibration only if the nonrespondents’ associations with professional driving differed from those of the respondents, and we have no reason to expect such a difference.

A more-important limitation is that, among the cases, the exposure history came after the occurrence of low-back pain. The relevant exposures are those that precede the onset of symptoms, but the most reliable and complete information came from the most recent or currently held job. Bias could have arisen if workers with low-back pain developed symptoms in driving jobs but then moved to work with less exposure because of symptoms (unhealthy worker selection bias). Assessing this bias is challenging in practice, as low-back pain often begins early in adulthood (24), sometimes before employment begins (25), and then runs a relapsing and recurrent course. Defining an exposure that predates symptoms may seem arbitrary, while the distinction between whole-body vibration as an initiating factor as compared with a factor of aggravation is also not straightforward. A censoring of recent exposure experience for cases would need to be mirrored by a censoring for controls. In practice, we focused on the current episode of low-back pain, and when it began, and limited the analysis to cases whose symptoms began in the current or most recent job, comparing their exposure to controls reporting a current or recent job. While it remains possible that some drivers had reduced their exposure but remained within the same job, we consider the scope for this possibility to be more limited than for a change of occupation; and no such selection was evident in relation, say, to occupational twisting.

Assessing exposures after the event has the potential also to inflate some risk estimates through reverse causation. Thus low mood could arise as a consequence of severe low-back pain rather than causing it. However, it seems implausible that some exposures with positive associations could be influenced in this way (eg, twisting, height) and, less likely for others (eg, tendency to somatize).

Recruitment through secondary medical care raises the possibility that professional drivers might have sought care, or been referred, less readily for MRI investigation than other occupational groups, such as manual laborers. This possibility could lead to an under-representation of professional drivers among the cases, while not altering the general conclusion that whole-body vibration does not appear to be an important cause of back-pain cases seen in MRI services.

The hospitals from which the cases were recruited were the only institutions in the study area that provided MRI scans for low-back pain, and the identification of eligible cases from the study population should therefore have been nearly complete. Similarly, the hospital from which the controls were recruited was the only provider of accident and emergency services in the study area, and this exclusivity should have helped to ensure that the control group was representative in terms of relevant exposures. Bias could have occurred, however, if the workers with low-back pain who were in white-collar jobs had more ready access to private medical care and were therefore more likely to be investigated by MRI scanning than those from manual occupations. To explore this possibility, we conducted a sensitivity analysis in which we examined the impact of excluding cases that had been identified from private hospitals, but we found no major impact on the findings in relation to driving and whole-body vibration.

A further challenge lies in the assessment of exposures to whole-body vibration. Estimates of dose relied on self-assessed exposure times and imputed values of vibration magnitude from external field observations. Nondifferential errors could have biased the associations towards the null. However, there is evidence that professional drivers make a reasonably accurate assessment of their exposure times (26). Moreover, it seems unlikely that there would be much misclassification of an exposure metric such as professional driving for ≥3 hours at a time. We focused exposure assessment on the current or most recent job, for which reporting was likely to be more complete and reliable, and, in doing so, did not consider total lifetime hours or total lifetime dose of vibration, which (while difficult to measure reliably) may bear a different relation to low-back pain risk.

Finally, in assessments of the null finding in relation to whole-body vibration, the possibility of uncontrolled confounding should be borne in mind. Although we have no direct evidence to this effect, a factor that protected against back pain among the controls, or a greater exposure to whole-body vibration from nonoccupational sources among the controls, may serve to
obscure associations with occupational exposure to whole-body vibration.

Our finding of a lack of a clear relation between low-back pain and whole-body vibration contrasts with the results of several other research reports and reviews (2–12). One explanation, given the relatively low prevalence of professional driving in our study population (17%), is that an effect was missed by chance. The upper confidence intervals for the risk estimates did not exclude a doubling of risk from professional driving for ≥3 hours at a time at the 5% level and the absence of any exposure–response effect by estimated A(8), although limited by the numbers with high exposure, tends to argue against this explanation.

A second possibility is that the drivers in our study—representing a population-based sample—were less heavily exposed to whole-body vibration than in surveys of occupational cohorts. Most were drivers of cars, with relatively few other sources of exposure reported. Associations with car driving have been reported in several earlier surveys (9–11), but there are also some contrary observations from general-population-based samples (13, 27). It was estimated that, for only 1 in 6 to 7 of our study participants, was the A(8) ≥0.5 m/s² and, for only 1 in 20, was it ≥1.15 m/s². In comparison, in positive studies from occupational settings, the average exposure levels were around 0.5 m/s² for crane drivers (28, 29) and helicopter pilots (30), 0.8 m/s² for lift truck drivers (4), and 0.7–1.0 m/s² for tractor drivers (6), and drivers of wheel loaders and freight containers (31).

Our findings should not be construed as arguing against whole-body vibration as a cause of low-back pain in more highly exposed working populations.

The finding of a clear consistent and strong association with sitting while not driving raises a third possibility—that previously reported associations with whole-body vibration were confounded by constrained sitting, a characteristic ingredient of professional driving. The data in hand provide some support for this idea in that an association was found in the final models being. The data in hand provide some support for this idea in that an association was found in the final models being.

A fourth possibility is that whole-body vibration is generally associated with mild-to-moderate low-back pain, but not with severe low-back pain that leads to investigation by MRI.

Whichever the explanation, our findings suggest that, in the population studied, whole-body vibration seems not to be an important cause of low-back pain severe enough to be referred for MRI imaging of the lumbar spine. Certain aspects of mental health (low mood, somatizing tendency) and health beliefs (beliefs regarding work as a cause or aggravation of back pain) may make a more important contribution.

Acknowledgments

This research was supported by the European Commission under the Quality of Life and Management of Living Resources program, project QLK4-2002-02650 (VIBRisks).

References

1. Palmer KT, Griffin MJ, Bendall H, Pannett B, Coggon D. The prevalence and pattern of occupational exposure to whole-body vibration in Great Britain: findings from a national survey. Occup Environ Med. 2000;57:229–36.
2. Brendstrup T, Biering-Sorensen F. Effect of fork-lift truck driving on low-back trouble. Scand J Work Environ Health. 1987;13:445–52.
3. Boshuizen HC, Hulshof CTJ, Bongers PM. Long-term sick leave and disability pensioning due to back disorders of tractor drivers exposed to whole-body vibration. Int Arch Occup Environ Health. 1990;62:117–22.
4. Boshuizen HC, Bongers PM, Hulshof CTJ. Self-reported back pain in fork-lift truck and freight-container tractor drivers exposed to whole-body vibration. Spine. 1992;17:59–65.
5. Boshuizen HC, Bongers PM, Hulshof CTJ. Self-reported back pain in tractor drivers exposed to whole-body vibration. Int Arch Occup Environ Health. 1990;62:109–15.
6. Bovenzi M, Betta A. Low-back disorders in agricultural tractor drivers exposed to whole-body vibration and postural stress. Appl Ergon. 1994;25:231–41.
7. Kumar A, Varghese M, Mohan D, Mahajan P, Gulati P, Kale S. Effect of whole-body vibration on the low back. A study of tractor-driving farmers in north India. Spine. 1999;24:2506–15.
8. Bongers PM, Boshuizen HC, Hulshof CTJ. Self-reported back pain in drivers of wheel-loaders [thesis]. Amsterdam: Universiteit van Amsterdam; 1990. p 205–20.
9. Kelsey JL. An epidemiological study of acute herniated lumbar intervertebral discs. Rheumatol Rehabil. 1975;14:144–58.
10. Kelsey JL, Githens PB, O’Conner T, Weil U, Calogero JA, Holford T, et al. Acute prolapsed lumbar intervertebral disc: an epidemiologic study with special reference to driving automobiles and cigarette smoking. Spine. 1984; 6: 608–13.
11. Pietri F, Leclerc A, Boitel L, Chastang J-F, Morcet J-F, Blondet S. Effect of whole-body vibration on the low back. A study of tractor-driving farmers in north India. Spine. 1999;24:2506–15.
12. Bongers PM, Boschuizen HC, Hulshof CTJ. Self-reported back pain in drivers of wheel-loaders [thesis]. Amsterdam: Universiteit van Amsterdam; 1990. p 205–20.
13. Palmer KT, Griffin MJ, Syddall HE, Pannett B, Cooper C, Coggon D. The relative importance of whole-body vibration and occupational lifting as risk factors for low-back pain. Occup
14. Roland M, Morris R. A study of the natural history of low-back pain, part I: development of a reliable and sensitive measure of disability in low-back pain. Spine. 1983;8:141–4.

15. Jenkinson C, Coulter A, Wright L. Short form 36 (SF 36) health survey questionnaire: normative data for adults of working age. BMJ. 1993;306:1437–40.

16. Derogatis LR, Melisaratos N. The brief symptom inventory: an introductory report. Psychol Med. 1983;13:595–605.

17. Waddell G, Newton M, Henderson I, Somerville D, Main CJ. A Fear-Avoidance Beliefs Questionnaire and the role of fear-avoidance beliefs in chronic low back pain and disability. Pain. 1993;52:157–68.

18. Palmer KT, Calnan M, Wainwright D, O’Neill C, Winterbottom A, Watkins C. Upper limb pain in primary care: health beliefs, somatic distress, consulting and patient satisfaction, Fam Pract. 2006; 23: 609–17.

19. Karasek RA. Job demands, job decision latitude, and mental strain: implications for job redesign. Adm Sci Q. 1979; 24: 285–307.

20. The European Parliament, The Council of the European Union. Directive 2002/44/EC of 25 June 2002 on the minimum health and safety requirements regarding the exposure of workers to the risks arising from physical agents (vibration). Off J Eur Communities. 2002;L177:13–9.

21. International Organization for Standardization (ISO). Mechanical vibration and shock—evaluation of human exposure to whole-body vibration, part 1: general requirements. Geneva (Switzerland): ISO; 1997. ISO 2631–1.

22. British Standards Institution. Guide to measurement and evaluation of human exposure to whole-body mechanical vibration and repeated shock. Bristol (United Kingdom): British Standards Institution; 1987. BS 6841.

23. Lundström R. Risks of occupational vibration exposures (VI-BRISKS): FP5 Project No. QLK4-2002-02650 January 2003 to December 2006: annex to the final technical report—appendix 2 [Internet]. Brussels: European Commission, Quality of Life and Management of Living Resources Programme; 2007 [cited 3 July 2008]. Available from: http://www.vibrisk.soton.ac.uk/reports/Annex%20UMUH%20WP4_1%20WBV%20Protocol%20310107.pdf.

24. Harkness EF, Macfarlane GJ, Nahit ES, Silman AJ, McBeth J. Risk factors for new-onset low back pain amongst cohorts of newly employed workers. Rheumatology. 2003; 42:959–68.

25. Jones GT, Macfarlane GJ. Epidemiology of low back pain in children and adolescents. Arch Dis Child. 2005; 90:312–6.

26. Palmer KT, Haward B, Griffin MJ, Bendall H, Coggon D. Validity of self-reported occupational exposures to hand-transmitted and whole-body vibration. Occup Environ Med. 2000;57:237–41.

27. Xu Y, Bach E, Orhede E. Work environment and low back pain: the influence of occupational activities. Occup Environ Med. 1997;54:741–5.

28. Bongers PM, Boshuizen HC, Huls hof C TJ, Koe meester AP. Back disorders in crane operators exposed to whole-body vibration. Int Arch Occup Environ Health. 1988;60:129–37.

29. Bongers PM, Boshuizen HC, Huls hof C TJ, Koe meester AP. Long-term sickness absence due to back disorders in crane operators exposed to whole-body vibration. Int Arch Occup Environ Health. 1988;61:59–64.

30. Bongers PM, Huls hof C TJ, Dijkstra L, Boshuizen HC, Groenhout HJ, Valken E. Back pain and exposure to whole body vibration in helicopter pilots. Ergonomics. 1990;33:1007–26.

31. Bongers P, Boshuizen H. Back disorders and whole-body vibration at work. Hague (Netherlands): CIP-Gegevens Koninklijke Bibliotheek; 1990.

32. Garg A, Moore JS. Epidemiology of low-back pain in industry. In: Moore JS, Garg A, editors. Occupational medicine. Philadelphia (MA): Hanley & Belfus, Inc: 1992. p 593–608. Occupational Medicine: State of the Art Reviews, vol 7. no 4

33. Riihimäki H. Back and limb disorders. In: McDonald C, editor. Epidemiology of Work-related Diseases. London: BMJ Publishing Group; 1995.

34. Andersson GBJ. Epidemiologic aspects on low-back pain in industry. Spine. 1981;6:53–60.

35. Skovron ML. Epidemiology of low back pain. Ballieres Clin Rheumatol. 1992;6:559–73.

36. Burdorf A, Sorock G. Positive and negative evidence of risk factors for back disorders [review]. Scand J Work Environ Health. 1997;23(4):243–56.

37. Hartvigsen J, Leboeuf-Yde C, Lings S, Corder EH. Is sitting-while-at-work associated with low back pain?: a systematic, critical literature review. Scand J Public Health. 2000;28:230–9.

Received for publication: 21 February 2008