THE SPECTRUM OF THE RESTRICTION TO AN INVARIANT SUBSPACE

DIMOSTHENIS DRIVALIARIS AND NIKOS YANNAKAKIS

Abstract. Let \(X \) be a Banach space, \(A \in B(X) \) and \(M \) be an invariant subspace of \(A \). We present an alternative proof that, if the spectrum of the restriction of \(A \) to \(M \) contains a point that is in any given hole in the spectrum of \(A \), then the entire hole is in the spectrum of the restriction.

Mathematics subject classification (2010): 47A10, 47A15.
Keywords and phrases: Spectrum, invariant subspace.

REFERENCES

[1] J. BRAM, Subnormal operators, Duke Math. J. 22, 1 (1955), 75–94.
[2] J. CONWAY, The theory of subnormal operators, American Mathematical Society, Providence Mathematical Surveys and Monographs 36, Providence, RI, 1991.
[3] J. CONWAY AND R. OLIN, A functional calculus for subnormal operators II, Mem. Amer. Math. Soc. 73, 1977.
[4] T. CRIMMINS AND P. ROSENTHAL, On the decomposition of invariant subspaces, Bull. Amer. Math. Soc. 73, (1967), 97–99.
[5] H. DOWSON, Spectral theory of linear operators, Academic Press, London-New York, 1978.
[6] H. DOWSON, Operators induced on quotient spaces by spectral operators, J. London Math. Soc. 42, (1967), 666–671.
[7] P. HALMOS, A Hilbert space problem book, Springer-Verlag, Graduate Texts in Mathematics 19, 2nd ed., New York-Berlin, 1982.
[8] T. ITO, On the commutative family of subnormal operators, J. Fac. Sci. Hokkaido Univ. 14, (1958), 1–15.
[9] M. PUTINAR, Hyponormal operators are subscalar, J. Operator Theory 12, (1984), 385–395.
[10] H. RADJAVI AND P. ROSENTHAL, Invariant subspaces, Springer-Verlag, New York-Heidelberg, 1973.
[11] J. SCROGGS, On invariant subspaces of a normal operator, Duke Math. J. 26, (1957), 95–111.
[12] J. STOCHEL AND F. SZAFRANIEC, On normal extensions of unbounded operators. III. Spectral properties., PRIMS 25, (1989), 105–139.