Phosphorylation of B14.5a Subunit from Bovine Heart Complex I Identified by Titanium Dioxide Selective Enrichment and Shotgun Proteomics*§

Gabriella Pocsfalvi‡§, Manuela Cuccurullo‡, Gitta Schlosser¶, Salvatore Scacco||, Sergio Papa||, and Antonio Malorni‡

Shotgun proteomics was used to study the steady phosphorylation state of NADH:ubiquinone oxidoreductase (complex I) subunits from bovine heart mitochondria. A total tryptic digestion of enzymatically active complex I was performed, and the resulting peptide mixture was subjected to phosphopeptide enrichment by the use of titanium dioxide (TiO2). The phosphopeptide-enriched fraction was separated and analyzed with nanoscale reverse-phase HPLC-ESI-MS/MS in single information-dependent acquisition. Hence two phosphorylated complex I subunits were detected: 42 kDa and B14.5a. Phosphorylation of 42-kDa subunit at Ser-59 has already been determined with fluorescent phosphoprotein-specific gel staining and mass spectrometry (Schilling, B., Aggeler, R., Schulenberg, B., Murray, J., Row, R. H., Capaldi, R. A., and Gibson, B. W. (2005) Mass spectrometric identification of novel phosphorylation site in subunit NDUFAT10 of bovine mitochondrial complex I. FEBS Lett. 579, 2485–2490). In our work, this finding was confirmed using a non-gel-based approach. In addition, we report novel phosphorylation on B14.5a nuclear encoded subunit. We demonstrated evidence of the phosphorylation site at Ser-95 residue by collision-induced dissociation experiments on three different molecular ions of two tryptic phosphopeptides of B14.5a. Molecular & Cellular Proteomics 6: 231–237, 2007.

NADH:ubiquinone oxidoreductase (complex I, EC 1.6.5.3) has the most complex structure and complicated mechanism of action of all the five complexes of mitochondrial electron transport/oxidative phosphorylation system (OXPHOS). Complex I from bovine heart is known to contain 46 subunits, seven of which are encoded by the mitochondrial DNA, and the remaining are nuclear gene products that are imported into the mitochondria. This highly hydrophobic, multisubunit assembly is partly immersed into the mitochondrial inner membrane and partly extends into the mitochondrial matrix. Traditional gel-based proteomics is extensively used for the characterization of the subunit composition of OXPHOS complexes (1–3). We have recently suggested the use of an alternative, non-gel-based proteomics approach (“shotgun” proteomics) for analyzing composition and post-translational modifications of complex I carried out in a single experiment (4).

Reversible protein phosphorylation/dephosphorylation mediated by protein kinases and phosphatases is a dynamic post-translational process regulating virtually every cellular event including cell signaling, apoptosis, oncogenesis, and immune disorders (5). During phosphorylation/dephosphorylation a phosphate group is covalently attached to/removed from the hydroxyl residues of serine, threonine, and tyrosine. By reversible phosphorylation enzymatic activity, binding properties, stability, hydrophobicity, and localization of a protein can be regulated. Due to the high biological importance of protein phosphorylation, different methods have been developed and used both for the detection of the phosphorylation status and the determination of phosphorylation sites. Traditional methods include 32P radioactive protein labeling followed by autoradiography and Edman sequencing and/or mass spectrometric analysis or alternatively immunochemical detection using antibodies against phosphoserine, phosphothreonine, and phosphotyrosine. In vitro phosphorylation of complex I with added ATP has been performed in a number of works to find potential substrates of mitochondrial kinases in particular protein kinase A (PKA) (6–10) and pyruvate dehydrogenase kinase (11, 12). In human (13) and mammalian cell cultures (7, 14) cAMP-dependent in vitro phosphorylation of complex I subunits has been demonstrated and was associated with stimulation of the NADH:ubiquinone oxidoreductase activity of the complex. cAMP has also been found to reduce

© 2007 by The American Society for Biochemistry and Molecular Biology, Inc.
This paper is available on line at http://www.mcponline.org

Molecular & Cellular Proteomics 6.2 231
accumulation of oxygen free radicals from human and murine cells in culture (15, 16). Changes in the reactive oxygen species (ROS) level appeared to be inversely related to cAMP-dependent activation of complex I (17). In purified bovine complex I, two serine-phosphorylated subunits with molecular masses of 18 and 10 kDa were detected in the presence of cAMP, [32P]ATP, and PKA and identified, by the use of mass spectrometry, as ESSS (Ser-20) and MWFE (Ser-55) (10). In vitro study of mitochondrial tyrosine-phosphorylated proteins has identified the 39-kDa subunit of complex I from rat brain mitochondria (11). Although in vitro studies provide valuable information on phosphorylatable proteins, these phosphorylation sites are not necessarily phosphorylated in living systems. Therefore, direct analysis of naturally occurring phosphorylation of proteins is particularly important, but at the same time it is extremely difficult due to the low level of phosphorylated proteins in a given time and the transient nature of many phosphorylation events. In fact, no phosphorylated subunits have been revealed by traditional gel- and non-gel-based proteomics in native complex I probably due to their low degree of modification. There are two strategies to overcome these difficulties: (a) highly specific detection of phosphoproteins and (b) selective enrichment of phosphorylated proteins or their phosphopeptides. Recently a novel method was applied for the characterization of dynamic and steady-state phosphorylation of complex I subunits from bovine heart using novel phosphoprotein-specific gel staining. With this method, only the 42-kDa subunit was shown to be phosphorylated in both states (18, 19). Based on comparative MS/MS analysis between synthesized phosphopeptides and the tryptic phosphopeptide derived from the 42-kDa protein, serine 59 was identified as the phosphorylation site (20).

Selective enrichment of phosphoproteins or their phosphopeptide fraction can also facilitate the study of steady-state phosphorylation status of low abundance proteins in complex mixtures. Different enrichment methods have been developed for phosphopeptides, i.e. IMAC, immunoprecipitation using specific anti-phospho antibodies, and selective chemical modifications. Recently Pinkse et al. (21) have reported a highly selective and sensitive method of isolation of phosphopeptides from complex cell lysate using a TiO₂ column directly coupled to an ESI mass spectrometer. The method has been improved by Larsen et al. (22) and most recently by Chen and Chen (23). In the present work, we developed a modified TiO₂ affinity approach in which the affinity probe is used in a single tube experiment. The method was combined with shotgun proteomics to study the steady phosphorylation state of complex I subunits. The intact complex is enzymatically digested, and the resulting peptide mixture is separated by HPLC and analyzed by nano-ESI-MS/MS (4). Here we show that besides the 42-kDa protein there is another phosphorylated complex I subunit. This protein is the nuclear encoded B14.5a subunit. The phosphorylation site was determined by CID tandem mass spectrometry.
I retains its inhibitor sensitivity and enzymatic activity. The preparation is known to have a relatively high lipid content and contains significant amounts of transhydrogenase and other proteins related to the OXPHOS system that may have a role in the function, assembly, and stability of the complex (27). In our previous work (4) we showed that shotgun proteomics can deal with this not highly purified, but biologically active, complex I. Here a modified TiO₂-based phosphopeptide enrichment in combination with shotgun proteomics was applied to study the steady-state phosphorylation status of enzymatically active bovine complex I. The solid phase affinity purification is based on the method published earlier by Larsen et al. (22) and was modified for application in a simple five-step single tube experiment using centrifugal force for separating liquid and solid phases. The method was optimized using a peptide mixture containing phosphopeptides.
from precipitated milk caseins (data not shown). Nano-HPLC-ESI-MS/MS in data-directed analysis mode was performed to compare complex I sample before and after solid phase affinity enrichment. Analysis of starting sample yielded a rich ion chromatogram with a high number of peptides that were eluted and sequenced, resulting in the identification of 54 proteins including 37 complex I subunits, nine proteins from other OXPHOS complexes, and eight other mitochondria-related proteins (Supplemental Table 1). According to our previous observations, there was no phosphorylated peptide with statistically significant score detected in complex I without phosphopeptide enrichment (4).

Fig. 2. CID tandem mass spectra of phosphopeptides detected after TiO₂ affinity enrichment. A, [M + 3H]³⁺ triply charged molecular ion at m/z 415.21 eluted between 20.5 and 21.0 min (Fig. 1B). B, [M + 2H]²⁺, doubly charged molecular ions at m/z 622.32 eluted between 20.5 and 21.0 min (Fig. 1B). C, [M + 2H]²⁺, doubly charged molecular ion at m/z 558.27 eluted between 21.6 and 22.1 min (Fig. 1C). D, [M + 2H]²⁺, doubly charged molecular ion at m/z 786.34 of phosphopeptide eluted between 25.0 and 25.7 min (Fig. 1D). Neutral loss of phosphoric acid (H₃PO₄) is indicated as “-P”.

Molecular & Cellular Proteomics 6.2
Phosphorylation of B14.5a Subunit of Complex I

Results obtained on B14.5a subunit by ESI-MS/MS data-dependent analysis of the total tryptic digest and the phosphopeptide-enriched fraction of complex I

Modified residues are indicated in bold.

Peptide sequence	Residues	Charge state	PTMs*	m/z observed	
				Total tryptic digest	Phosphopeptide fraction
VLVAGKPAESSAVAASEK	74–91	3+	ND\(b\)	572.02	ND
ASATRFIQWLWRNASGR	1–17	3+	ACET-Nterm	688.08	ND
LSNVNYGTR	48–56	2+	Cys_CAM	595.80	ND
AVSPAPPIKR	93–101	2+	ND	440.30	ND
AVSPAPPIKR	93–101	2+	PHOS	ND	558.27
KAVSPAPPIKR	92–102	3+	PHOS	ND	415.21
KAVSPAPPIKR	92–102	3+	PHOS	ND	622.32

\(a\) Post-translational modifications: ACET-Nterm, N-terminal amino acid is acetylated; Cys_CAM, cysteine residue is carbamidomethylated; PHOS, serine residue is phosphorylated.
\(b\) ND, not detected.

On the other hand, the analysis of phosphopeptide-enriched fraction resulted in a relatively simple ion chromatogram (Fig. 1A) with only a few proteins identified (Supplemental Table 2). In this fraction, three phosphopeptides were identified with statistically significant scores based on the neutral loss of phosphoric acid (H\(_3\)PO\(_4\)) from the precursor as well fragment ions yielding characteristic 97.995-Da (nominal mass, 98 Da) differences in the CID mass spectra. Between 20.5 and 21.0 min (17.5% B) a peptide with molecular mass of 558.27 \(z\) was eluted giving \(m/z\) 415.21 triply and \(m/z\) 622.35 doubly charged molecular ions detected in the same scans (Fig. 1, A and B) and yielding very similar MS/MS spectra (Fig. 2, A and B). Based on a full set of \(y\)\(_n\) and a partial set of \(b\)\(_n\), \(b\)_\(_n\), \(_n\) fragment ions the sequence of this peptide is (K)\(92\)AVpSPAPPIKR\(102\)(W) where pS is phosphoserine (residues 92–102, sequence numbering is based on the mature protein sequence after the removal of initial methionine) of B14.5a subunit of bovine mitochondrial complex I containing two missed cleavage sites. In this sequence the only amino acid subject to phosphorylation is Ser-95. Evidence of phosphorylation occurred at Ser-95 by interpreting the low mass of phosphopeptide sequence carbamidomethylated at Cys-55 and phosphorylated at Ser-59. We could confirm that phosphorylation occurred at Ser-59 by interpreting the low mass region of the spectrum. In agreement with the results published recently by Schilling et al. (20), we observed the presence of ion pair \(y_2\) \(y_2\) – 98 \(m/z\) 314.09 and \(m/z\) 216.13, respectively) characteristic of Ser(P)-59 and the lack of ion at \(m/z\) 234.1, which would be the \(y_2\) fragment ion in the case of phosphorylation at Ser-56.

DISCUSSION

The combination of solid phase affinity method using TiO\(_2\) particles in a simple one-tube experiment and shotgun proteomics can highly facilitate the investigation of phosphorylation status in the physiological state as demonstrated here in the study of steady-state phosphorylation of mitochondrial complex I from bovine heart. The enrichment method using TiO\(_2\) is not highly specific: most of the peptides in the elution fraction are acidic tryptic peptides (Supplemental Table 2). However, after affinity separation we could detect three phosphopeptides identifying two proteins, 42 kDa and B14.5a. Steady-state phosphorylation of 42-kDa subunit was recently reported identifying the Ser-59 residue as phosphorylation site using a gel-based method and mass spectrometry (20). Here we confirmed this finding using a non-gel-based approach. We further show that B14.5a, encoded by the nuclear NDUF\(_A\) gene of complex I, is also phosphorylated in the

Molecular & Cellular Proteomics 6.2 235
Phosphorylation of B14.5a Subunit of Complex I

native complex. B14.5a subunit is a low molecular mass protein (M_{average} 12,587.4 Da, calculated by considering the non-phosphorylated mature protein) mainly located in the extramembrane domain (subcomplex II) of the enzyme but also present in subcomplex I (28). B14.5a has been proposed to be a ubiquinone-binding protein (28), but its precise role in the function of complex I enzyme is unknown. By analyzing tryptic digests of complex I before and after affinity enrichment, six peptides were detected from the B14.5a subunit (Table I). Three of these peptides (residues 1–17, 92–102, and 93–102) are post-translationally modified. Previously reported N-α-acetylation of B14.5a (19) was confirmed here by sequencing the N-terminal peptide 1–17 (Table I and Supplemental Table 1) present in the total tryptic digest. In addition, sequencing of two miscleaved tryptic peptides present in the phosphopeptide-enriched fraction and represented by three molecular ions demonstrates the phosphorylation of Ser-95 residue.

Differences in identified phosphoproteins between our studies and previous studies (10, 18–20) can be explained by the differences in the methods used for the preparation of the complex I sample, the systems studied (induced versus naturally occurring phosphorylation), and the techniques applied for detection. As for techniques, previous works applied gel electrophoresis using radiolabeling (10) and fluorescent phosphosensor dye (18, 19) combined with mass spectrometry-based identification. By using radiolabeling or the shotgun approach alone (without affinity enrichment) in contrast with fluorescent gel staining, there were no phosphorylated complex I proteins detected in the steady state. This demonstrates the superior sensitivity of fluorescent phosphosensor dye over traditional radiolabeling. On the other hand, the dynamic range and/or the sensitivity of shotgun proteomics alone has turned out to be insufficient for revealing phosphopeptides in the complex mixture deriving from enzymatic digestion of complex I (4). Applying combined TlO$_2$ enrichment and shotgun proteomics, however, seems to be more sensitive than the gel-based approaches because it detects the phosphorylation of both B14.5a and 42-kDa subunits.

Mitochondria play a central role in the regulation of apoptosis and are the major site of the ROS generation. Increased ROS production has been implicated in pathological disorders and in aging as well. Complex I is a main source of superoxide and thus possibly responsible for increased mitochondrial ROS production and redox signaling (17, 29). In this system, post-translational modifications, in particular oxidation (30), reversible protein glutathionylation (31), S-nitrosation (32), and phosphorylation (12), play important regulatory roles. Despite the presence of serine/threonine and tyrosine kinases in the mitochondrial membrane, there are surprisingly few mitochondrial proteins that have been found to be phosphorylated so far, and only one phosphoprotein (E1$_\alpha$ subunit of pyruvate dehydrogenase complex) regulatory function has been determined (33). Regarding complex I from bovine heart mitochondria, cAMP-dependent PKA-driven phosphorylation of subunits ESSS, MWFE (10), and 42 kDa (20) have been described. In this context, B14.5a and 42-kDa subunits represent a step toward identification of proteins involved in reversible phosphorylation in the steady state of complex I. The regulatory function of these proteins remains to be explored.

Acknowledgement—We thank Dr. Tiziana Cocco for the isolation and purification of complex I from bovine heart mitochondria.

* This work was supported by “Rete di Spettrometria di Massa” (Contract Fondo Europeo di Sviluppo Regionale 94.05.09.103, ARINCO 94.IT.16.028) and by the Joint Project between the National Research Council (Consiglio Nazionale delle Ricerche) of Italy and the Hungarian Academy of Sciences 2004/2006. The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked “advertisement” in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

§ To whom correspondence should be addressed: Proteomic and Biomolecular Mass Spectrometry Centre, Inst. of Food Science and Technology, CNR, via Roma 52, a/c, 83100 Avellino, Italy. Tel.: 39-0825299208; Fax: 39-0825781585; E-mail: gpcoscalvi@isa.cnrr.it.

REFERENCES

1. Carroll, J., Fearnley, I. M., Shannon, R. J., Hirst, J., and Walker, J. E. (2003) Analysis of the subunit composition of Complex I from bovine heart mitochondria. *Mol. Cell. Proteomics* 2, 117–126

2. Devreese, B., Vanrobaeys, F., Smet, J., Beeumen, J. V., and Coster, R. V. (2002) Mass spectrometric identification of mitochondrial oxidative phosphorylation subunits separated by two-dimensional blue-native polyacrylamide gel electrophoresis. *Electrophoresis* 23, 2525–2533

3. Schilling, B., Bharath, M. M. S., Row, R. H., Murray, J., Cusack, M. P., Capaldi, R. A., Freed, C. R., Prasad, K. N., Andersen, J. K., and Gibson, B. W. (2005) Rapid purification and mass spectrometric characterization of mitochondrial NADH Dehydrogenase (Complex I) from rodent brain and a dopaminergic neuronal cell line. *Mol. Cell. Proteomics* 4, 84–96

4. Pocsfalvi, G., Cuccurullo, M., Schlosser, G., Cacace, G., Siciliano, R. A., Mazzeo, M. F., Scacco, S., Cocco, T., Gmioni, A., Malorni, A., and Papa, S. (2006) Shotgun proteomics for the characterisation of subunit composition of mitochondrial complex I. *Biochim. Biophys. Acta* 1757, 1438–1450

5. Cohen, P. (2001) The role of protein phosphorylation in human health and disease. *Eur. J. Biochem.* 268, 5001–5010

6. Papa, S., Sardanelli, A. M., Cocco, T., Speranza, F., Scacco, S., and Technikova-Dobrova, Z. (1996) The nuclear-encoded 18 kDa (IP) A/DOQ subunit of bovine heart complex I is phosphorylated by the mitochondrial cAMP-dependent protein kinase. *FEBS Lett.* 379, 299–301

7. Scacco, S., Vergari, R., Scarpulla, R. C., Technikova-Dobrova, Z., Sardanelli, A., Lambo, R., Lorusso, V., and Papa, S. (2000) cAMP-dependent phosphorylation of the nuclear encoded 18-kDa (IP) subunit of respiratory complex I and activation of the complex in serum-starved mouse fibroblast cultures. *J. Biol. Chem.* 275, 17578–17582

8. Papa, S. (2002) The NDUF54 nuclear gene of complex I of mitochondria and the cAMP cascade. *Biochim. Biophys. Acta* 1555, 147–153

9. Papa, S., Sardanelli, A., Scacco, S., Petruzella, V., Technikova-Dobrova, Z., and Vergari, R. (2002) The NADH: ubiquinone oxidoreductase (complex I) of the mammalian respiratory chain and the cAMP cascade. *J. Bioenerg. Biomembr.* 34, 1–10

10. Chen, R., Fearnley, I. M., Peak-Chew, S. Y., and Walker, J. E. (2004) The phosphorylation of subunits of complex I from bovine heart mitochondria. *J. Biol. Chem.* 279, 26036–26045

11. Augereau, O., Claverol, S., Boudes, N., Basurko, M. J., Bonneu, M., Rognel, R., Mazat, J. P., Letellier, T., and Dachary-Prigent, J. (2005) Identification of tyrosine-phosphorylated proteins of the mitochondrial
oxidative phosphorylation machinery. CMLS Cell. Mol. Life Sci. 62, 1478–1488
12. Raha, S., Myint, A. T., Johnstone, L., and Robinson, B. H. (2002) Control of Oxygen free radical formation from mitochondrial complex I: roles for protein kinase A and pyruvate dehydrogenase kinase. Free Radic. Biol. Med. 32, 421–430
13. Papa, S., Scacco, S., Sardanelli, A. M., Vergari, R., Papa, F., Budde, S., van den Heuvel, L., and Smeitink, J. (2001) Mutation in the NDUF4 gene of complex I abolishes cAMP-dependent activation of the complex in a child with fatal neurological syndrome. FEBS Lett. 489, 259–262
14. Pasdois, P., Deveaud, C., Voisin, P., Bouchaud, V., Rigoulet, M., and Beauvot, B. (2003) Contribution of the phosphorylatable complex I in the growth phase-dependent respiration of C6 glioma cells in vitro. J. Bioenerg. Biomembr. 35, 439–450
15. Piccoli, C., Scacco, S., Bellomo, F., Signorile, A., Iuso, A., Boffoli, D., Scrima, R., Capitanio, N., and Papa, S. (2006) cAMP controls oxygen metabolism in mammalian cells. FEBS Lett. 580, 4539–4543
16. Technikova-Dobrova, Z., Sardanelli, A. M., Speranza, F., Scacco, S., Signorile, A., Lorusso, V., and Papa, S. (2001) Cyclic adenosine monophosphate-dependent phosphorylation of mammalian mitochondrial proteins: enzyme and substrate characterization and functional role. Biochemistry 40, 13941–13947
17. Bellomo, F., Piccoli, C., Cocco, T., Scacco, S., Papa, F., Gaballo, A., Boffoli, D., Signorile, A., D’Aprile, A., Scrima, R., Sardanelli, A. M., Capitanio, N., and Papa, S. (2006) Regulation by the cAMP cascade of oxygen free radical balance in mammalian cells. Antioxid. Redox Signal. 8, 495–502
18. Schulenberg, B., Aggeler, R., Beechem, J. M., Capaldi, R. A., and Patton, W. P. (2003) Analysis of steady-state protein phosphorylation in mitochondria using a novel fluorescent phosphosensor dye. J. Biol. Chem. 278, 27251–27255
19. Schulenberg, B., Goodman, T. N., Aggeler, R., Capaldi, R. A., and Wayne, F. P. (2004) Characterization of dynamic and steady-state protein phosphorylation using a fluorescent phosphoprotein gel stain and mass spectrometry. Electrophoresis 25, 2528–2532
20. Schilling, B., Aggeler, R., Schulenberg, B., Murray, J., Row, R. H., Capaldi, R. A., and Gibson, B. W. (2005) Mass spectrometric identification of novel phosphorylation site in subunit NDUF10 of bovine mitochondrial complex I. FEBS Lett. 579, 2485–2490
21. Pinkse, M. W., Uitto, P. M., Hilhorst, M. J., Ooms, B., and Heck, A. J. (2004) Selective isolation at the femtomole level of phosphopeptides from proteolytic digests using 2D-nanoLC-ESI-MS/MS and titanium oxide pre-columns. Anal. Chem. 76, 3935–3943
22. Larsen, M., Thingholm, T. E., Jensen, O. N., Roepstorff, P., and Jorgensen, J. D. (2005) Highly selective enrichment of phosphorylated peptides from peptide mixtures using titanium dioxide microcolumns. Mol. Cell. Proteomics 4, 873–886
23. Chen, C. T., and Chen, Y. C. (2005) Fe3O4/TiO2 core/shell nanoparticles as affinity probes for the analysis of phosphopeptides using TiO2 surface-assisted laser desorption/ionization mass spectrometry. Anal. Chem. 77, 5912–5919
24. Low, H., and Vallin, I. (1963) Succinate-linked diphosphopyridine nucleotide reduction in submitochondrial particles. Biochem. Biophys. Acta 69, 361–374
25. Hatfi, Y. (1978) Reconstitution of the electron transport system of bovine heart mitochondria. Methods Enzymol. 53, 48–54
26. Colinge, J., Masselet, A., Cusin, I., Mahé, E., Niknejad, A., Argoud-Puy, G., Reffas, S., Bederr, N., Gleizes, A., Rey, P. A., and Bougueleret, L. (2004) High performance peptide identification by tandem mass spectrometry allows reliable automatic data processing in proteomics. Proteomics 4, 1977–1984
27. Sharpley, M. S., Shannon, R. J., Draghi, F., and Hirst, J. (2006) Interactions between phospholipids and NADH:ubiquinone oxidoreductase (complex I) from bovine mitochondria. Biochemistry 45, 241–248
28. Ariznendi, J. M., Skehel, J. M., Runswick, M. J., Fearnley, I. M., and Walker, J. E. (1992) Complementary DNA sequences of two 14.5 kDa subunits of NADH:ubiquinone oxidoreductase from bovine heart mitochondria. FEBS Lett. 313, 80–84
29. Lambert, A. J., and Brand, M. D. (2004) Superoxide production by NADH: ubiquinone oxidoreductase (complex I) depends on the pH gradient across the mitochondrial inner membrane. Biochem. J. 382, 511–517
30. Jung, T., Engels, M., Kaiser, B., Poppek, D., and Grune, T. (2006) Intracellular distribution of oxidized proteins and proteasome in HT22 cells during oxidative stress. Free Radic. Biol. Med. 40, 1303–1312
31. Taylor, E. R., Hurrell, F., Shannon, R. J., Lin, T. K., Hirst, J., and Murphy, M. P. (2003) Reversible glutathionylation of complex I increases mitochondrial superoxide formation. J. Biol. Chem. 278, 19603–19610
32. Burwell, L. S., Nadtochiy, S. M., Tompkins, A. J., Young, S., and Brookes, P. S. (2006) Direct evidence for S-nitrosation of mitochondrial complex I. Biochem. J. 394, 627–634
33. Holtness, M. J., and Sugden, M. C. (2003) Regulation of pyruvate dehydrogenase complex activity by reversible phosphorylation. Biochem. Soc. Trans. 31, 1143–1151

Molecular & Cellular Proteomics 6.2 237