Light-Emitting Diodes in Dermatology: A Systematic Review of Randomized Controlled Trials

Jared Jagdeo, M.D.,M.S.,1,2,3* Evan Austin, B.S.,1,2 Andrew Mamalis, M.D.,M.S.,2 Christopher Wong, B.S.,2 Derek Ho, M.D.,1,2 and Daniel M. Siegel, M.D., M.S.4

1Department of Dermatology, University of California at Davis, Sacramento, California
2Dermatology Service, Sacramento VA Medical Center, Mather, California
3Department of Dermatology, Downstate Medical Center, State University of New York, Brooklyn, New York

Objective: In dermatology, patient and physician adoption of light-emitting diode (LED) medical technology continues to grow as research indicates that LEDs may be used to treat skin conditions. The goal of this systematic review is to critically analyze published randomized controlled trials (RCTs) and provide evidence-based recommendations on the therapeutic uses of LEDs in dermatology based on published efficacy and safety data.

Methods: A systematic review of the published literature on the use of LED treatments for skin conditions was performed on September 13th 2017.

Results: Thirty-one original RCTs were suitable for review.

Conclusions: LEDs represent an emerging modality to alter skin biology and change the paradigm of managing skin conditions. Acne vulgaris, herpes simplex and zoster, and acute wound healing received grade of recommendation B. Other skin conditions received grade of recommendation C or D. Limitations of some studies include small patient sample sizes (n = 20), absent blinding, no sham placebo, and varied treatment parameters. Due to few incidences of adverse events, affordability, and encouraging clinical results, we recommend that physicians use LEDs in clinical practice and researchers continue to explore the use of LEDs to treat skin conditions.

INTRODUCTION

In dermatology, patient and physician adoption of LED (light-emitting diode) technology continues to grow as research indicates that LEDs may be used to treat skin conditions. This increased level of interest is evidenced by a doubling of the number of articles published and PubMed indexed on LEDs per year since 2010 (Fig. 1). LEDs are combinable with systemic and topical therapies and may be clinically advantageous due to efficacy, excellent safety of non-ionizing wavelengths, low cost, ease of home use by patients, and portability.

LEDs utilize high-efficiency semiconductors to produce non-coherent, non-collimated light in the ultraviolet (UV), visible, and near-infrared ranges of the electromagnetic spectrum (approximately 255–1300 nm) [1]. LEDs may treat skin conditions by altering intrinsic cellular activity according to the principles of photobiomodulation [1]. Chromophores in the skin, such as mitochondrial cytochrome C, endogenous protoporphyrins, and melanin, absorb photons, and cause downstream alterations in skin biophysiology that can manifest as changes in cellular proliferation, differentiation, migration, inflammation, or collagen production [2–4]. When comparing LED therapy, the following descriptive treatment parameters are commonly used: (i) the wavelength or color of light; (ii) the fluence or the amount of energy received per unit of skin surface area (unit: J/cm²); (iii) the power density or energy delivered per surface area of skin.

*Correspondence to: Jared Jagdeo, MD, MS, Department of Dermatology, University of California at Davis, 3301 C Street Suite #1400 Sacramento, CA 95816. E-mail: jrjagdeo@gmail.com

Accepted 23 December 2017
Published online 22 January 2018 in Wiley Online Library (wileyonlinelibrary.com).
DOI 10.1002/lsm.22791

© 2018 The Authors. Lasers in Surgery and Medicine Published by Wiley Periodicals, Inc.
(W/cm²); (iv) treatment period (Seconds); and (v) duty cycle or fraction of treatment length in which light is delivered (expressed as a percentage of treatment period). Each wavelength has unique biophysiological properties due to differences in chromophore targets and how deeply each wavelength penetrates the skin [2]. The relationship between power density, session length, and fluence can be described using this general equation:

\[
\text{Power density (W/cm}^2\text{)} \times \text{time (seconds)} = \text{fluence (J/cm}^2\text{)}
\]

The goal of this systematic review is to critically analyze published randomized controlled trials (RCTs) and provide evidence-based recommendations on the therapeutic uses of LEDs in dermatology based on published efficacy and safety data.

METHODS

We performed a search strategy according to Preferred Reporting Items for Systematic Reviews and Meta-analysis (PRISMA) protocol on September 13th, 2017. The bibliographies of included publications were checked for additional relevant articles that were not identified in the database search. Each article was independently reviewed by two of the authors. We included published RCTs that used LEDs therapeutically for skin conditions. We excluded articles pertaining to UV light as its therapeutic effects and mechanism of action have been well studied. We excluded studies that lacked an LED-only treatment arm when other photoactive drugs, photosensitizers, lasers, and light-based devices were used. Reviews, conference abstracts, presentations, basic science manuscripts, animal studies, and non-English articles were excluded. A research librarian assisted with the systematic search and the accuracy and completeness of included and excluded articles (Fig. 2).

RESULTS

Our systematic search identified 4,542 articles. After screening titles, abstracts, and full text articles, 31 original

RCTs using LED blue light (LED-BL), LED red light (LED-RL), LED near-infrared light (LED-nIR) and/or yellow light (LED-YL) were suitable for review: acne vulgaris (8), herpes simplex and zoster [HSV, HZV] (3), skin rejuvenation (6), acute wound healing (5), psoriasis (3), atopic dermatitis (1), chronic wound healing (2), oral mucositis (1), radiation dermatitis (1), and thigh cellulite reduction (1) (Table 1). Grades of recommendation were assigned based on the Oxford Centre for Evidence-based Medicine—Levels of Evidence [5]. Table 1 provides a detailed summary of the identified studies and highlights the grades of recommendation, study designs, treatment parameters, results, and adverse events.

CHARACTERISTICS OF LED DEVICES

Among the reviewed studies, there were greater than 20 different LED devices used. A majority of reviewed studies used FDA-cleared or commercially available LED
Author	Total # of Patients/Drop-Out	Study Design and Biases	Follow-Up	Primary Outcome	Treatment Parameters	Treatment Regimen	Results	Adverse Events
FDA-cleared LED treatments of skin conditions								
Acne vulgaris (8)—Grade of recommendation: B								
Ash et al. [6]	41.5	Rater-blinded, no placebo	12-week	Lesion count	LED-BL (414-nm, 17.6 J/cm²)	Every other day for 8 weeks	50.08% decrease	None reported
					No treatment	Four treatments over 2 days	2.45% increase	None reported
Gold et al. [7]	30.0	Placebo-controlled, split-face	10-day or until resolution	Lesion size	LED-BL (414-nm)	Sham placebo	Lesion size—76% decrease	None reported
							Clearance—37% decrease	None reported
							Lesion size—41% decrease	None reported
							Clearance—10% decrease	None reported
Kwon et al. [8]	35.3	Double-blind, placebo-controlled	12-week	Lesion count	LED-BL (420-nm, 6.1 mW/cm², 0.91 J/cm²) and LED-RL (660-nm, 8.1 mW/cm², 1.22 J/cm²) for 2.5 minutes (100% duty cycle)	Twice daily for 4 weeks	Inflammatory lesions—77% decrease	Mild dryness, erythema, and desquamation
							Non-inflammatory lesions—54% decrease	
Liu et al. [9]	20.0	Rater-blinded, no placebo	8-week	Inflammatory lesion count	LED-BL (405-nm, 6.0 mW/cm², 7.2 J/cm²) for 20 minutes. Five regions of face received 20% each of total irradiation LED-RL (630-nm, 9.6 mW/cm², 11.52 J/cm²) for 20 minutes. Five regions of face received 20% each of total irradiation	Twice weekly for 4 weeks	71.4% decrease	Skin dryness
Liu et al. [10]	150/0	Split-face, no placebo, no blinding	4-month	Sessions till 90% clearance of inflammatory lesions	5% ALA PDT (633-nm, 105 mW/cm², 126 J/cm²) for 20 minutes IPL (420-nm, 11-15 J/cm², 30-40 ms pulses)	Weekly until 90% clearance	3 ± 1.52 sessions	PDT: Pain, erythema, and edema; LED and IPL: Minimal erythema and stinging

(Continued)
Author	Total # of Patients/Drop-Out	Study Design and Biases	Follow-Up	Primary Outcome	Treatment Parameters	Treatment Regimen	Results	Adverse Events
Na et al. [11]	30/2	Split-face, rater-blinded, no placebo	16-week	Lesion count	LED-RL (633-nm, 105 mW/cm², 126 J/cm², 50% duty cycle) and LED-BL (415-nm, 40 mW/cm², 48 J/cm², 50% duty cycle) for 40 minutes	Twice a day for 8 weeks	9 ± 3.34 sessions	Burning sensation
Nestor et al. [12]	105/13	Double-blinded, no placebo, missing control groups	12-week	Lesion count	LED-BL (445-nm) and LED-RL (630-nm)	N/A	Inflammatory lesions—24.4% decrease	No adverse events
Sami et al. [13]	45/0	Split-face, rater-blinded, no placebo	1-month following last treatment	Sessions till 90% clearance of inflammatory lesions	PDL (595-nm, 6-8 J/cm², 40 ms pulse, 75% duty cycle) and IPL (550-1200-nm, 22 J/cm², 30 ms pulses)	Weekly until 90% clearance	4.1 ± 1.39 sessions	PDL: Mild purpura and PIH LED: No adverse events IPL: Slight stinging and erythema (Continued)
Author	Total # of Patients/Drop-Out	Study Design and Biases	Follow-Up	Primary Outcome	Treatment Parameters	Treatment Regimen	Results	Adverse Events
-------------------------	------------------------------	---	-----------	-----------------	----------------------	-------------------	---------	---------------
Herpes simplex and zoster (3)—Grade of recommendation: B	Dougal and Lee [14]	87/7 Double-blind, placebo-controlled	16-day	Healing time	LED-nIR (1072-nm) for 3 minutes* Sham Placebo	Six times over 2 days	5.9 ± 2.6 days	None reported
	Hargate [15]	32/5 Double-blind, placebo-controlled, self-reported	12-day	Healing time	LED-nIR (1072-nm) Sham Placebo	Six times over 2 days	7.5 ± 3.0 days	No adverse events
	Park et al. [16]	28/0 Rater-blinded, no placebo	20-day	Healing time	LED-nIR (830-nm, 55 mW/cm², 33 J/cm², 100% duty cycle) for 10 minutes and oral famciclovir	LED-nIR on days 0, 4, 7, and 10	13.14 ± 2.34 days	No adverse events
Skin rejuvenation (6)—Grade of recommendation: C	Bhat et al. [17]	23/1 Split-face, rater-blinded, no placebo	12-week	Elasticity and hydration	LED-RL (630-nm, 80 mW/cm², 96 J/cm², 100% duty cycle) for 20 minutes No treatment	Three times a week for 3 weeks	No difference between LED-RL and control side	None reported
	Lee et al. [18]	112/36 Split-face, double-blinded, placebo-controlled	16-week	Wrinkles and elasticity	LED-RL (633-nm, 126 J/cm², 55 mW/cm², 100% duty cycle) for 20 minutes LED-nIR (830-nm, 55 mW/cm², 66 J/cm², 100% duty cycle) for 20 minutes LED-RL and LED-nIR Sham Placebo	Twice weekly for 4 weeks	Wrinkles: 26% improvement, elasticity: 14% improvement Wrinkles: 33% improvement, elasticity: 19% improvement Wrinkles: 36% improvement, elasticity: 16% improvement Wrinkles: No difference, elasticity: no difference	No adverse events

(Continued)
Author	Total # of Patients/Drop-Out	Study Design and Biases	Follow-Up	Primary Outcome	Treatment Parameters	Treatment Regimen	Results	Adverse Events
Miglardi et al. [19]	30/0	Patient rated outcomes, no blinding, no placebo	2-month after last treatment	Patient satisfaction	LED-RL (633-nm, 50% duty cycle) and LED-nIR (880-nm, 50% duty cycle) for 1.17 minutes	Every 5 days for 40 days	100% satisfaction	No adverse events
Nam et al. [20]	52/2	Double-blind, no placebo	12-week	Skin roughness and physician assessment	LED-RL (660-nm, 5.17 J/cm², 7.5 mW/cm², 15% duty cycle) for 11.5 minutes	Daily for 12 weeks	Improvements in 3/5 roughness parameters compared to baseline. No difference in physician assessment	Ocular symptoms
Nikolis et al. [21]	32/2	Placebo-controlled, single-blind, split-faced	12-week	Total wrinkle score	LED-BL (446-nm, 45 J/cm², 150 mW/cm², 100% duty cycle) for 5 minutes and chromophore gel	Weekly for 4 weeks	Significant improvement	Edema and erythema
Author	Total # of Patients/Drop-Out	Study Design and Biases	Follow-Up	Primary Outcome	Treatment Parameters	Treatment Regimen	Results	Adverse Events
-----------------------------------	-------------------------------	---	--------------------	----------------------------------	----------------------	-------------------	-------------------------------	-------------------------
Stirling and Haslam [22]	79/1	Double-blind, placebo-controlled, patient rated outcomes.	6-10 week	Patient assessment	LED-nIR (1072-nm) for 3 minutes*	Daily for 8-10 weeks	52% reported improvement	No adverse events
Shuler and Foltz [23]	14/0	Split-face, rater-blinded, no placebo	96-hour	Erythema	LED-YL (590-nm, 0.1 J/cm², 2.86 mW/cm²) for 35 seconds following erbium-doped fiber laser	Once following laser treatment	At 24 hours less erythema in 20/20 patients in LED-YL treatment group. At 48 hours, less erythema in 6/20 patients. No difference at 96-hour follow-up	None reported
Bay et al. [27]	20/0	Split-body, double-blind	11-day	Physician assessment, erythema and hyperpigmentation	LED-nIR (830-nm, 65 J/cm², 109 mW/cm²) and LED-YL (595-nm, 0.13 J/cm², 0.19 mW/cm²) for 11 minutes following CO₂ laser assisted red light PDT. Unclear duty cycle for LED-YL and LED-nIR. LED-YL (595-nm, 0.13 J/cm², 0.19 mW/cm²) for 11 minutes following CO₂ laser assisted red light PDT.	Daily for 5 days starting one day before CO₂ assisted PDT	No difference in physician assessment, erythema, or hyperpigmentation	None reported
Chaves et al. [26]	16/6	Double-blind, placebo-controlled, small population (< 20)	4-week	Sessions to heal and pain	LED-nIR (860-nm, 4 J/cm², 50 mW/cm², 50% duty cycle) for 79 seconds Sham placebo	Twice weekly for 4 weeks	2-4 sessions, clinically significant reduction in pain following 6 out of 8 treatment sessions. 5-8 sessions, no change in pain after sessions	No adverse events

Non-FDA cleared LED treatments of skin conditions

Acute wound healing (4)—Grade of recommendation: B

Acute wound healing (4)—Grade of recommendation: B
Author	Total # of Patients/Drop-Out	Study Design and Biases	Follow-Up	Primary Outcome	Treatment Parameters	Treatment Regimen	Results	Adverse Events
Khoury and Goldman [24]	15/0	Split-face, rater-blinded, small patient population (<20), no placebo	1-week	Erythema score	LED-YL (590-nm, 71.4% duty cycle) for 35 seconds following IPL (16-22 J/cm²)	Once following laser treatment and once at 24 hours post treatment	43.3 ± 21.9 erythema score immediately after treatment.	None reported
					No treatment following IPL		16.0 ± 15.9 after 24 hours. No difference after 1 week	
							52.7 ± 24.6 erythema score immediately after treatment.	
							20.0 ± 18.5 after 24 hours. No difference after 1 week	
Trelles et al. [25]	28/0	Split-face, rater-blinded, no placebo	6-month	Physician assessment	LED-RL (633-nm, 96 J/cm², 80 mW/cm², 100% duty cycle) for 20 minutes and LED-nIR (830-nm, 60 J/cm², 55 mW/cm², 100% duty cycle) following ER: YAG/CO₂ laser. Then three LED-RL treatments in following 2 weeks	LED-nIR immediately and 72 hours following ER: YAG/CO₂ laser. Then three LED-RL treatments in following 2 weeks	93% efficacy at 3-month follow-up. 100% efficacy at 6-month follow-up. 50% increase in healing time	None reported
					No treatment following ER: YAG/CO₂ laser		86% efficacy at 3-month follow-up. 97% efficacy at 6-month follow-up	
Klempenning et al. [28]	27/0	Split-face, double-blind, no placebo	4-week	SUM score	LED-RL (630-nm, 60 J/cm², 50 mW/cm², 100% duty cycle) for 20 minutes and salicylic acid LED-BL (420-nm, 120 J/cm², 50 mW/cm², 100% duty cycle) following ER: 10% Salicylic acid	LED – 3 times a week for 4 weeks; salicylic acid daily for 4 weeks	26.7% improvement Burning sensation and hyperpigmentation	
							33.9% improvement	
							39.4% improvement	

(Continued)
Author	Total # of Patients/Drop-Out	Study Design and Biases	Follow-Up	Primary Outcome	Treatment Parameters	Treatment Regimen	Results	Adverse Events
Pfaff et al. [29]	47/2	Split-face, double-blind, no placebo	16-week	LPSI	LED-BL (453-nm, 90 J/cm², 200 mW/cm²) for 30 minutes. Duty cycle differed between treatments but is not directly stated.	Daily (5–7 days) for 4 weeks followed by thrice weekly for 8 weeks	–0.92 ± 1.1 LPSI change	Changes in pigmentation
Weinstbl et al. [30]	40/3	Split face, double-blind, no placebo	6-week	LPSI	LED-BL (420-nm, 90 J/cm², 100 mW/cm²) for 15 minutes	Daily for 4 weeks	Significant improvement compared to untreated plaque at week-4, but not week-6	Hyperpigmentation
Keemss et al. [31]	21/1	Split-face, no placebo	6-week	Eczema severity index	LED-BL (453-nm, 90 J/cm²)	Thrice weekly for 4 weeks	30.4% improvement following LED-BL	Mild hyperpigmentation
Frangez et al. [33]	80/1	Double-blind, placebo-controlled	8-week	Circulation and Falanga wound bed score	Diabetic chronic wound; LED-RL (625-nm, 24% of power density and 660-nm, 71% of power density) and LED-nIR (850-nm, 5% of power density). Total 2.4 J/cm², 50% duty cycle for 5 minutes. Power density not specified.	Three times weekly for 8 weeks	29% increase in blood flow. Significant improvement in Falanga wound bed score compared to placebo.	None reported
Author	Total # of Patients/Drop-Out	Study Design and Biases	Follow-Up	Primary Outcome	Treatment Parameters	Treatment Regimen	Results	Adverse Events
------------------------	-----------------------------	---	-----------	--------------------------------------	--	--	--	
Siqueira et al. [32]	17/2	Double-blind, placebo-controlled, small patient population (<20)	30-week	Ulcer surface area and healing rate	Diabetic chronic wound: placebo (580-900-nm, 0.72 J/cm²) for 5 minutes*	Weekly for 30 weeks	Ulcer surface area change 9.8% of baseline (9.8% to 31.2% quartiles). Healing time hazard ratio of 0.89 (95%CI 0.4-1.98)	None reported
Hodgson et al. [35]	80/0	Double-blind, placebo-controlled	2-week	WHO pain assessment scale	LED-RL (625-nm, 4 J/cm², 25 mW/cm²) for 2.67 minutes and Unna boot. In large ulcers (>1 cm²), five areas of wound received of 4 J/cm² for total of 20 J/cm² for 800 seconds	Daily for 2 weeks	44% less pain in LED-RL high-risk group compared to sham placebo high-risk group. No difference for low-risk group	None reported
Fife et al. [38]	33/4	Double-blind, placebo-controlled	6-week	NCI grading	LED-YL (590-nm, 71.4% duty cycle) for 35 seconds* Sham Placebo (machine not turned on)	Before and after each radiation session and seven additional	No difference in NCI grades between groups	No adverse events

(Continued)
The description and treatment parameters in the original article, an asterisk (*) marks the treatment parameters.
TABLE 2. FDA-Cleared LED Treatments of Skin Conditions

Device	Wavelength	Device Names (Manufacturer)	Skin Indication
LED-BL	411–777-nm, 7.5 mW/cm², 15% duty cycle, 11.5 minutes	Tanda Zap (Syneron), Illumask (La Lumiere/Neutrogena/Johnson & Johnson), Omnilux Blue (Photo Therapeutics)	Mild to moderate acne
LED-RL	830-nm, 55 mW/cm², 66 J/cm², 20 minutes	Young Again (Espansione), Omnilux Revive (Photo Therapeutics)	Acne vulgaris, vascular/pigmented lesions, and rhytides
LED-YL	96 J/cm², 20 minutes	Gentlewaves (Light Bioscience)	Rhytides and facial herpes simplex
LED-nIR	830-nm, 55 mW/cm², 33 J/cm², 10 minutes	Young Again (Espansione), Virtulite cold sore machine (Virtulite)	Rhytides

sessions to achieve clearance, but LEDs may be safe for home use. LEDs may be especially beneficial for pregnant women with acne vulgaris as retinoid treatments are pregnancy class C (ie, animal studies have shown harm, but there are not enough high quality studies in humans to judge safety).

Herpes Simplex and Zoster—Grade of Recommendation: B

Three RCTs used LED-nIR for the treatment of recurrent facial HSV or HZV [14–16]. In two placebo-controlled, double-blind RCTs of 87 and 32 patients, six treatments of LED-nIR (1072-nm) over 2 days resulted in a 2–3 days reduction in re-epithelialization time in patients with labial HSV infections by 12–16 days follow-up [14,15]. In a RCT of 28 patients with HZV, LED-nIR (830-nm, 55 mW/cm², 33 J/cm², 10 minutes) for four treatments over 10 days with oral famciclovir resulted in reduced healing time, less atrophic scarring, and fewer incidences of post-inflammatory hyperpigmentation compared to famciclovir alone treatment [16].

Clinical recommendation. LED-nIR treatment significantly and consistently reduced healing time by at least 2 days in patients with HSV and HZV. Two of these studies did not describe treatment parameters used and it is therefore difficult to translate the findings to clinical practice. Thrice daily LED-nIR for 3 days may be a useful at-home adjunct with standard-of-care oral anti-viral medications to enhance recovery. Based on the results of one of the RCTs the following treatment parameters may be safe and effective: 830-nm, 55 mW/cm², 33 J/cm² for 10 minutes.

Skin Rejuvenation—Grade of Recommendation: C

Six RCTs used LEDs for skin rejuvenation (2 LED-RL; 1 LED-nIR; 1 LED-BL; 2 LED-YL and LED-nIR) [17–22]. In a RCT of 23 patients, LED-RL (630-nm, 126 J/cm², 55 mW/cm², 20 minutes) did not significantly improve skin elasticity or hydration (assessed using cutometers and corneometers) compared to untreated controls after thrice daily treatments for 3 weeks [17]. In a different RCT of 52 patients, LED-RL (660-nm, 5.17 J/cm², 7.5 mW/cm², 15% duty cycle, 11.5 minutes) or LED white light (LED-WL; 411–777-nm, 7.5 mW/cm², 15% duty cycle, 11.5 minutes) improved wrinkles in three out of five parameters using digital analysis but there were no changes in physician assessment [20]. In a double-blind, placebo-controlled RCT of 79 patients, there was a 32% improvement in skin texture following daily LED-nIR (1072-nm, 3 minutes) treatment for 8–10 weeks by patient self-assessment. In a RCT of 32 patients, LED-BL (446-nm, 45 J/cm², 150 mW/cm², 5 minutes) and a placebo gel improved wrinkles compared to a 0.1% retinol-based cream after four weekly treatments [21].

One placebo-controlled RCT of 112 patients found that LED-RL (633-nm, 126 J/cm², 55 mW/cm², 20 minutes), LED-nIR (830-nm, 55 mW/cm², 66 J/cm², 20 minutes), or combination LED-RL (50% duty cycle) and LED-nIR (50% duty cycle) twice weekly for 4 weeks improved wrinkles by 26%, 33%, and 36%, respectively [18]. In another RCT, 30 patients were satisfied when receiving LED-RL (633-nm, 50% duty cycle, 1.17 minutes) and LED-nIR (880-nm, 50% duty cycle, 1.17 minutes), radiofrequency, or combination (LED with radiofrequency) treatments after 5–27 treatments over 40–50 days [19].

Clinical recommendation. Clinical evidence indicates that daily LED-nIR with LED-RL for 8–10 weeks has the best efficacy in improving rhytides. There is a high level of variability in treatment parameters and future studies may seek to optimize power densities, fluences, and session lengths. Several researchers have used LED-YL with success in case series, but our search did not reveal any RCTs studying LED-YL for skin rejuvenation [4]. Therapies for skin rejuvenation often have gradual results, and 6-month or longer follow-up may be required to assess the efficacy of LEDs for long-term skin rejuvenation.

NON-FDA CLEARED LED TREATMENTS OF SKIN CONDITIONS

Acute Wound Healing—Grade of Recommendation: B

Five RCTs used LEDs (1 LED-nIR; 2 LED-YL; 1 LED-RL and LED-nIR; 1 LED-nIR and LED-YL) for enhanced wound healing and recovery following acute trauma or laser skin procedures [23–26]. One double-blind, placebo-controlled RCT used twice weekly LED-nIR (860-nm, 4 J/cm², 50 mW/cm², 50% duty cycle; 1.31 minutes) for 4 weeks to treat nipple trauma in sixteen breastfeeding female patients. There was a reduction in lesion area and pain after LED-nIR therapy [26]. Two split-face RCTs used LED-YL (590-nm, 0.14 J/cm², 2.86 mW/cm², 35 seconds or 590-nm, 71.4% duty cycle) to improve wound healing and
erythema immediately following erbium-doped laser or IPL therapy for photodamaged skin [23,24]. LED-YL improved erythema in 20 out of 20 patients and there was a physician-evaluated reduction in erythema at 24 hours follow-up [23,24]. In a split-face RCT of 28 female patients treated with ER:YAG or CO2 laser for photodamaged skin, healing time was 50% faster on the combination LED-RL (633-nm, 96 J/cm², 80 mW/cm², 50% duty cycle, 20 minutes) and LED-nIR (830-nm, 60 J/cm², 55 mW/cm², 50% duty cycle, 20 minutes) treated side compared to no treatment after 15 treatments over 3 weeks [25]. One double-blind, split-body RCT compared combined LED-nIR (830-nm, 65 J/cm², 109 mW/cm², unclear duty cycle, 11 minutes) and LED-YL (595-nm, 0.13 J/cm², 0.19 mW/cm², 11 minutes) to LED-YL alone for reduced erythema and pigmentation following CO2 assisted red light PDT [27]. There was no significant difference between LED-nIR and LED-YL compared the LED-YL in physician assessment, erythema, or hyperpigmentation. The authors considered “ultra-low fluence” LED-YL as a “placebo,” but low fluence and power density LED-YL may improve wound healing. As a result, this study is lacking a true placebo.

Clinical recommendation. Daily LED-YL (590-nm) or LED-nIR (830-nm) until wound resolution may reduce healing time and erythema in acute wound healing processes of different etiologies. For LED-YL, data indicates that one to 2 minutes of 5 mW/cm² LED-YL help acute wound healing process. Higher fluences (5-40 J/cm²), power densities (~50 mW/cm²), and session length (~20 minutes) may be required for LED-nIR treatments. The included RCTs have short follow-up (7 days or less) and future studies using LED-YL or LED-nIR may assess patients at later time points to determine reduction of scarring following LED therapy.

Psoriasis—Grade of Recommendation: C

Three double-blind, split-body RCTs used LEDs (2 LED-BL, 1 LED-BL and LED-RL) to manage psoriasis [28–30]. Two split-body RCTs compared daily LED-BL of different wavelengths (420-nm or 453-nm), irradiances (200 or 100 mW/cm²), and duty cycles (100% or not specified) for 4 weeks, and both studies showed a significant improvement in local psoriasis severity index compared to the contralateral untreated control plaques [29,30]. In both studies fluence was consistent at 90 J/cm². Lesions recurred in one of these studies after treatment cessation. One split-body RCT of 27 patients found that thrice weekly LED-BL (630-nm, 60 J/cm², 50 mW/cm², 20 minutes) and LED-BL (420-nm, 120 J/cm², 50 mW/cm², 20 minutes) for 4 weeks reduced patient psoriatic plaque erythema and induration by 26.7% and 33.9%, respectively, but not significantly compared to daily salicylic acid in petroleum after 4 weeks [28] Salicylic acid had the greatest effect on plaque desquamation, while LED-RL and LED-BL decreased erythema.

Clinical recommendation. LED-BL (at least 90 J/cm², 50 mW/cm², 20 minutes) may be effective for the treatment of psoriasis with best results achieved with daily treatments. The reviewed studies do not provide enough evidence to recommend whether 50, 100, or 200 mW/cm² power densities are most effective. According to clinical evidence, the treatment parameters and regimens studied have greatest effect on the inflammatory component of psoriasis and not the hyperproliferative component of the psoriatic plaques. Lesions recurred following LED-BL treatment cessation in one study, a common issue associated with discontinuation of psoriasis treatment.

Atopic Dermatitis—Grade of Recommendation: D

In a split-face RCT of 21 patients, thrice weekly LED-BL (453-nm, 90 J/cm²) for 4 weeks improved erythema, edema, lichenification, and crusts by 30.4%, according to the eczema severity index [31].

Clinical recommendation. LED-BL may improve atopic dermatitis. There is limited evidence to make clinical recommendations and additional RCTs are required. We did not identify any non-RCTs studying LEDs for atopic dermatitis.

Chronic Wound Healing—Grade of Recommendation: D

Two RCTs used LEDs (1 LED-RL; 1 LED-RL and LED-nIR) for chronic wounds [32,33]. One RCT compared LED-RL (625-nm, 4–20 J/cm², 25 mW/cm², 2.67–13.33 minutes) and Unna boot. plus Unna boot alone in patients with chronic venous ulcers [32]. Overall healing time was not improved in the LED treatment group. One double-blind RCT used combination LED-RL+ (625-nm, 12% duty cycle and 660-nm, 35.1% duty) and LED-nIR (850-nm, 2.5% of power density) for 5 minutes for a total fluence of 2.4 J/cm² to treat 80 patients with diabetic or non-diabetic chronic ulcer. Wound healing and blood flow improved by 18–60% compared to LED-WL+ (580–900-nm, 0.72 J/cm², 5 minutes) [33].

Clinical recommendation. There is insufficient evidence to recommend LEDs for chronic wounds. We have previously published a review of photobiomodulation therapy of diabetic ulcers, and evidence from case reports and case series show that light therapy may provide benefit [34]. Differences in treatment regimen and study sample size powering may be responsible for the contradictory results. Researchers may consider reevaluating successful treatment parameters in larger studies [33].

Oral Mucositis—Grade of Recommendation: D

In one double-blind RCT of 80 bone-marrow transplant patients, daily LED-RL (LED-RL (670-nm, 4 J/cm², 50 mW/cm², 1.33 minutes) for 2 weeks did not alter the onset of oral mucositis compared to placebo [35]. One subset of patients, those with regular risk for developing oral mucositis, reported 44% less pain using the World Health Organization (WHO) pain assessment scale following LED-RL therapy [35].

Clinical recommendation. There is insufficient evidence to suggest that LEDs improve or prevent oral...
mucositis. RCTs, expert opinion, and anecdotal evidence supports the use of low-level laser and light-based therapy over LEDs for patients at high risk for oral mucositis [36].

Radiation Dermatitis—Grade of Recommendation: D

One double-blind, placebo-controlled RCT examined the use of LED-YL* (590-nm, 71.4% duty cycle, 35 seconds) treatment for 2 weeks to prevent radiation dermatitis in 33 breast cancer patients [37,38]. LED-YL was applied before and after each radiation session and seven additional times in a 2 week regimen. LED-YL did not alter the onset or severity of dermatitis as assessed by the National Cancer Institute grading system.

Clinical recommendation. There is insufficient evidence to recommend LEDs for radiation dermatitis. A previous cohort study with the same LED-YL treatment regimen showed decreased onset of radiation dermatitis, but this RCT was unable to replicate those results [37]. Larger sample sizes may be needed to demonstrate benefit.

Thigh Cellulite Reduction—Grade of Recommendation: D

In a double-blind, split-face RCT of nine patients, twice weekly LED-RL* (660-nm) and LED-nIR* (950-nm) for 12 weeks did not improve cellulite with a placebo gel [39]. Combination phosphatidylcholine gel, LED-RL, and LED-nIR reduced cellulite in eight patients.

Clinical recommendation. We do not recommend LEDs to reduce thigh cellulite, as LED alone did not result in improvement in thigh cellulite reduction.

DISCUSSION

Based upon our systematic review of 31 RCTs, we provide evidence based suggested treatment parameters and regimens for LED therapy for skin conditions which dermatologists may tailor to meet patient needs. Scientific evidence exists that supports that LEDs may improve outcomes in acne vulgaris, HSV, HZV, and acute wound healing. LED treatments were safe and well tolerated by patients. Adverse events were mild and included pigment changes, dryness, erythema, desquamation, and stinging. No severe adverse events were reported. There is a theoretical risk of malignancy and photoaging from LEDs to the skin surface. As a result, future RCTs will need to clearly detail treatment parameters and optimize wavelength, fluence, and power density for each skin condition in order to determine the efficacy of LEDs for each skin condition.

LIMITATIONS

Limitations of some studies include small patient sample sizes (n < 20), absent blinding, no sham placebo, and varied treatment parameters which makes it difficult to compare study outcomes. Future studies using LEDs may address the aforementioned limitations through the use of sham placebo and temperature-matched controls to ensure that the results are solely due to photobiomodulatory effects. However, with light-based studies, it is sometimes difficult to blind both provider and patient, and placebo treatments are also challenging. There are several key factors that determine clinical outcomes, and all are important: peak wavelength and distribution range, power density at treatment site, treatment time period, total fluence, and treatment regimen. Although most studies used commercially available LED devices, differences in light output and power densities among manufacturers’ devices may contribute to outcome variability. It is possible that some clinical studies that did not achieve desired outcomes are using LEDs at a sub-optimal regimen, wavelength, power density, or fluence for the desired therapeutic effect. For example, studies may have used similar wavelength(s) and fluences, but the power densities may be drastically different. A high power density or low power density light source may be used for different treatment session lengths to achieve the same fluences. Even though fluences will be the same, these differences in power densities may alter the results of a study. Pulsing versus continuous treatments may also be significant to clinical outcomes, but there is not enough data to make a recommendation. In the published literature, actual duty cycles may not necessarily equal device on/off time. Due to the angle of divergence inherent in many of the LEDs, the distance to treatment surface is often critical and the delivered power density may be very different than what is published. Surface area in cm2 and therefore power density (W/cm2) may change due to small differences in the distance from the LED to the skin surface. As a result, it is difficult to determine if heterogeneity in treatment parameters changes treatment efficacy. Photobiomodulation tends to have biphasic dose response and LED treatment parameters are often not tailored to specific indications [40]. Low-fluence LED therapies are usually appropriate when cell growth or collagen production is desired, while high-fluence LED therapies may have inhibitory effects [40]. There may be clinical exceptions to this biphasic response. As a result, future RCTs will need to clearly detail treatment parameters and optimize wavelength, fluence, and power density for each skin condition in order to determine the efficacy of LEDs for each skin condition.

CONCLUSION

LEDs represent an emerging modality to alter skin biology and change the paradigm of managing skin conditions. Based on the published evidence, acne vulgaris, HSV, HZV, and acute wound healing received grade of recommendation B. Other skin conditions received grade of recommendation C or D. Due to few adverse events, affordability, and encouraging clinical results, we recommend that physicians use LEDs in clinical practice and researchers continue to explore the use of LEDs to treat skin conditions. As therapeutic LED technology is further translated from a research setting to clinical practice, we anticipate that standardized treatment protocols with...
consistent treatment wavelengths, fluences, and regimens for additional dermatologic indications will be established.

ACKNOWLEDGMENTS

Bruce Abbot, a research librarian, provided valuable assistance in designing the systematic search and confirming the accuracy and completeness of included and excluded articles. Dr. Jagdeo is a recipient of a National Institutes of Health (NIH) K23 Career Development Award focused on the investigation of novel light-based anti-scar therapy. Information reported in this publication is based on research that was supported by the National Institute of General Medical Sciences of the NIH under Award No. K23GM117309.

REFERENCES

1. Barolet D. Light-emitting diodes (LEDs) in dermatology. Semin Cutan Med Surg 2008;27(4):227–238.
2. de Freitas LF, Hamblin MR. Proposed mechanisms of photobiomodulation or low-level light therapy. IEEE J Sel Top Quantum Electron 2016;22(3):17.
3. Mamalis A, Koo E, Garcha M, Murphy WJ, Isseroff RR, Jagdeo J. High fluence light emitting diode-generated red light modulates characteristics associated with skin fibrosis. J Biophotonics 2016;9(11–12):1167–1179.
4. Opel DR, Hagstrom E, Pace AK, et al. Light-emitting diodes: A brief review and clinical experience. J Clin Aesthetic Dermatol 2015;8(6):36.
5. Phillips B, Ball C, Sackett D, et al. Oxford Centre for Evidence-Based Medicine Levels of Evidence Grades of Recommendation (2001). Oxford (UK): Oxford Centre for Evidence-Based Medicine Google Scholar; 2013.
6. Ash C, Harrison A, Drew S, Whittall R. A randomized controlled study for the treatment of acne vulgaris using high-intensity 414 nm solid state diode arrays. J Cosmet Laser Ther 2015;17(4):170–176.
7. Gold MH, Sensing W, Biron JA. Clinical efficacy of home-use blue-light therapy for mild-to-moderate acne. J Cosmet Laser Ther 2011;13(6):308–314.
8. Kwon HH, Lee JB, Yoon JY, et al. The clinical and histological effect of home-use, combination blue-red LED phototherapy for mild-to-moderate acne vulgaris in Korean patients: A double-blind, randomized controlled trial. Br J Dermatol 2013;168(5):1088–1094.
9. Liu G, Pan C, Li K, Tan Y, Wei X. Phototherapy for mild to moderate acne vulgaris with portable blue and red LED. J Innovative Opt Health Sci 2011;04(01):45–52.
10. Liu LH, Fan X, An XY, Zhang J, Wang CM, Yang YX. Randomized trial of three phototherapy methods for the treatment of acne vulgaris in Chinese patients. Photodermatol Photoimmunol Photomed 2014;30(5):246–253.
11. Na JI, Suh DH. Red light phototherapy alone is effective for acne vulgaris: Randomized, single-blind clinical trial. Dermatol Surg 2007;33(10):1228–1232.
12. Nestor MS, Swenson N, Macri A, Manway M, Paparone P. Efficacy and tolerability of a combined 445 nm and 630 nm over-the-counter light therapy mask with and without topical salicylic acid versus topical benzoyl peroxide for the treatment of mild-to-moderate acne vulgaris. J Clin Aesthetic Dermatol 2016;9(3):25–35.
13. Sami NA, Attia AT, Badawi AM. Phototherapy in the treatment of acne vulgaris. J Drugs Dermatol: JDD 2008;7(7):627–632.
14. Dougal G, Lee SY. Evaluation of the efficacy of low-level light therapy using 1072 nm infrared light for the treatment of herpes simplex labialis. Clin Exp Dermatol 2013;38(7):713–718.
15. Hargate G. A randomised double-blind study comparing the effect of 1072-nm light against placebo for the treatment of herpes labialis. Clin Exp Dermatol 2006;31(5):638–641.
16. Park KY, Han TY, Kim IS, Yeo IK, Kim BJ, Kim MN. The effects of 830 nm light-Emitting diode therapy on acute herpes zoster ophthalmicus: A pilot study. Ann Dermatol 2013;25(2):163–167.
17. Bhat J, Birch J, Whitehurst C, Lanigan SW. A single-blind randomised controlled study to determine the efficacy of Omniflux Revive facial skin treatment in skin rejuvenation. Lasers Med Sci 2005;20(1):6–10.
18. Lee SY, Park KH, Choi JW, et al. A prospective, randomised, placebo-controlled, double-blinded, and split-face clinical study on LED phototherapy for skin rejuvenation: Clinical, profilometric, histologic, ultrastructural, and biochemical evaluations and comparison of three different treatment settings. J Photochem Photobiol B: Biol 2007;84(1):51–67.
19. Migliardi R, Tofani F, Donati L. Non-invasive peri-oral rejuvenation: Radiofrequency dual radiowave energy source (rf) and light emission diode system (LED). Orbit 2009;28(4):214–218.
20. Nam CH, Park BC, Kim MH, Choi EH, Hong SP. The efficacy and safety of 660 nm and 411 to 777 nm light-emitting devices for treating wrinkles. Dermatol Surg 2017;43(3):371–380.
21. Nikolis A, Bernstein S, Kinney B, Scuderi N, Rastogi S, Sampalis JS. A randomized, placebo-controlled, single-blinded, split-faced clinical trial evaluating the efficacy and safety of formulation KLOX-001 gel containing light-emitting diode light on facial rejuvenation. Clin Cosmet Invest Dermatol 2016;9:115–125.
22. Stirling RJ, Haslam JD. A self-reported clinical trial investigates the efficacy of 1072 nm light as an anti-ageing agent. J Cosmet Laser Ther 2007;9(4):226–230.
23. Alster TS, Wanitphakdeecha R. Improvement of postinflammatory laser erythema with light-emitting diode photomodulation. Dermatol Surg 2009;35(5):813–815.
24. Khoury JG, Goldman MP. Use of light-emitting diode photomodulation to reduce erythema and discomfort after intense pulsed light treatment of photodamage. J Cosmet Dermatol 2008;7(1):30–34.
25. Trelles MA, Allones I, Mayo E. Combined visible light and infrared emitting diode (LED) therapy enhances wound healing after laser ablative resurfacing of photodamaged facial skin. Med Laser Appl 2006;21(3):165–175.
26. Chaves ME, Araujo AR, Santos SP, Pinotti M, Oliveira LS. LED phototherapy improves healing of nipple trauma: A pilot study. Photomed Laser Surg 2012;30(3):172–178.
27. Cohen C, Vissing AC, Thay C, Petersen D, et al. Skin reactions after photodynamic therapy are unaffected by 839nm photobiomodulation therapy: A randomized, double-blind, placebo-controlled, clinical trial. Lasers Surg Medicine 2017.
28. Kleinpenning M, Otero M, van Erp P, Gerritsen M, van der Kooij GF. Efficacy of blue light vs. red light in the treatment of psoriasis: A double-blind, randomized comparative study. J Eur Acad Dermatol Venereol 2012;26(2):219–225.
29. Pfaff S, Liebmann J, Born M, Merk HF, Von Felbert V. Prospective randomized long-term study on the efficacy and safety of UV-free blue light for treating mild psoriasis vulgaris. Dermatol (Basel, Switzerland). 2015;231(1):24–34.
30. Weinstabl A, Hoff-Lesch S, Merk HF, von Felbert V. Prospective randomized study on the efficacy of blue light in the treatment of psoriasis vulgaris. Dermatology (Basel, Switzerland) 2011;223(3):251–259.
31. Keemss K, Pfaff SC, Born M, Liebmann J, Merk HF, von Felbert V. Prospective, randomized study on the efficacy and safety of local UV-free blue light treatment of eczema. Dermatology 2016;232(4):496–502.
32. Siqueira CPCM, de Paula Ramos S, Gobbi CAA, et al. Effects of weekly LED therapy at 625 nm on the treatment of chronic lower ulcer. Lasers Med Sci 2014;30(1):367–373.
33. Frangez I, Cankar K, Ban Frangez H, Smrke DM. The effect of LED on blood microcirculation during chronic wound healing in diabetic and non-diabetic patients—A prospective, double-blind randomized study. Lasers Med Sci 2017;32(4):887–894.
34. Tchaneque-Fossou CN, Ho D, Dahle SE, et al. A systematic review of low-level light therapy for treatment of diabetic foot ulcer. Wound Repair Regen 2016;24(2):418–426.
35. Hodgson B, Margolis D, Salzman D, et al. Amelioration of oral mucositis pain by NASA near-infrared light-emitting diodes in bone marrow transplant patients. Support Care Cancer 2012;20(7):1405–1415.

36. Lalla RV, Bowen J, Barasch A, et al. MASCC/ISOO clinical practice guidelines for the management of mucositis secondary to cancer therapy. Cancer. 2014;120(10):1453–1461.

37. DeLand MM, Weiss RA, McDaniel DH, Geronemus RG. Treatment of radiation-induced dermatitis with light-emitting diode (LED) photomodulation. Lasers Surg Med 2007;39(2):164–168.

38. Fife D, Rayhan DJ, Behnam S, et al. A randomized, controlled, double-blind study of light emitting diode photomodulation for the prevention of radiation dermatitis in patients with breast cancer. Dermatol Surg 2010;36(12):1921–1927.

39. Sasaki GH, Oberg K, Tucker B, Gaston M. The effectiveness and safety of topical PhotoActif phosphatidylcholine-based anti-cellulite gel and LED (red and near-infrared) light on Grade II-III thigh cellulite: A randomized, double-blinded study. J Cosmet Laser Ther 2007;9(2):87–96.

40. Hamblin MR, Huang YY, Sharma SK, Carroll J. Biphasic dose response in low level light therapy—An update. Dose Response 2011;9(4):602–618.