Supporting Information

Practical and Scalable Kinetic Resolution of BINOLs Mediated by a Chiral Counterion

Benjamin A. Jones*, Tudor Balan†, John D. Jolliffe, Craig D. Campbell, and Martin D. Smith*

anie_201814381_sm_miscellaneous_information.pdf
1. General Information.. S2
2. Catalyst Synthesis.. S3
3. Extended Optimization Table.. S4
4. Synthesis of Racemic BINOLs.. S11
 4.1. 7-Substituted BINOLs.. S12
 4.2. 6-Substituted BINOLs.. S20
 4.3. 5-Substituted BINOLs.. S30
 4.4. 4-Substituted BINOLs... S39
 4.5. BINOLs Prepared by Other Synthetic Routes.. S49
5. General Procedure for the Counterion Mediated Kinetic Resolution of BINOLs............. S61
6. Counterion Mediated Kinetic Resolution of BINOLs.. S63
7. 10 g Scale Kinetic Resolution... S99
8. Determination of Absolute Stereochemistry... S100
9. References.. S103
10. NMR Spectra and HPLC Traces... S104
1. General Information

Reactions requiring moisture-sensitive reagents were carried out in flame-dried glassware, under an atmosphere of argon (balloon pressure). Dichloromethane, tetrahydrofuran and toluene were purified by filtration through activated alumina columns employing the method of Grubbs et al.\(^1\) Water was purified by an Elix® UV-10 system. Reagents were used directly as supplied by major chemical suppliers, or following purification procedures described by Perrin and Armarego.\(^2\) Petrol 40-60 refers to the fraction of petroleum ether which boils in the range 40-60 °C. Brine refers to a saturated aqueous solution of sodium chloride.

Silica gel chromatography was carried out using Merck Geduran® Silica gel (40-63 μm particle size). Thin layer chromatography (TLC) was carried out using pre-coated, aluminium backed plates (Merck Kieselgel 60 F254). Visualisation was achieved with ultraviolet irradiation (254 nm) and staining with permanganate. NMR spectroscopy was carried out using Bruker Avance spectrometers in the deuterated solvent stated, using the residual non-deuterated solvent signal as an internal reference (\(^1\)H NMR: CDCl\(_3\) (7.26), (CD\(_3\))\(_2\)SO (2.50); \(^{13}\)C NMR: CDCl\(_3\) (77.16), (CD\(_3\))\(_2\)SO (39.52); \(^{19}\)F NMR: CFCI\(_3\) (0.00)). Chemical shifts are quoted in ppm, based on appearance rather than interpretation. Signal patterns are indicated as: br s, broad singlet; s, singlet; d, doublet; t, triplet; q, quartet; m, multiplet. Coupling constants, J, are quoted to the nearest 0.1 Hz and are presented as observed. All \(^{19}\)F NMR spectra are reported as proton/fluorine decoupled unless otherwise stated.

Infrared spectra were prepared as a neat film and were recorded using a Bruker Tensor 27 FTIR spectrometer using an ATR module.

Low resolution mass spectrometry was carried out using ESI and was performed on a Micromass LCT Premier Spectrometer. HRMS was carried out using Bruker MicroTDF and Micromass GCT spectrometers under electrospray ionization (ESI) or ammonia chemical ionization (ACI)/electron ionization (EI) conditions respectively. Analytical chiral HPLC was carried out on a Dionex UltiMate 3000 HPLC system comprising a Dionex LPG-3400A pump, WPS-3000SL autosampler and TCC-3000SD column S2 compartment, and a Daicel Chiralpak column (0.46 cm × 25 cm), equipped with an appropriate guard column (0.4 cm × 1 cm). For compound **Bn-15** (2-(benzyloxy)-2′-methoxy-7-methyl-1,1′-binaphthalene), chiral analytical HPLC was performed on a SHIMADZU Prominance-i LC2030-LT instrument. Melting points were determined using a Reichert melting point apparatus and are uncorrected.

Optical rotations were recorded on a Schmidt-Haensch Unipol L2000 polarimeter and values are quoted in deg·mL·g\(^{-1}\)·dm\(^{-1}\). Concentrations are quoted in g/100 mL.
2. Catalyst synthesis

Representative procedure:

N-(2,3,4-trifluorobenzyl)hydrocinchoninium bromide (8)

To a suspension of hydrocinchonine (1.00 g, 3.37 mmol, 1.00 equiv) in tetrahydrofuran (34.0 mL) was added 2,3,4-trifluorobenzyl bromide (759 mg, 0.44 mL, 3.37 mmol, 1.00 equiv). The mixture was heated at 75 °C for 16 h and cooled to room temperature to give a white precipitate. The solids were collected in a funnel and washed successively with diethyl ether (200 mL), tetrahydrofuran (200 mL), ethyl acetate (100 mL) and petroleum ether 40-60 (200 mL). The resulting powder was dried under vacuum to give N-(2,3,4-trifluorobenzyl)hydrocinchoninium bromide (8) (1.57 g, 89% yield) as a white solid.

m.p. > 250 °C (CH₂Cl₂/MeOH)

IR (film) ν_{max}/cm⁻¹: 3164, 2959, 1516, 1493, 1457, 1307, 1126, 1072, 1044, 1013, 995, 963, 931, 899, 813, 777, 762, 753, 684, 636, 616.

¹H NMR (500 MHz, CDCl₃) δ 8.83 (d, J = 3.6 Hz, 1H), 8.28 (d, J = 8.3 Hz, 1H), 8.25 (br. s, 1H), 7.86 (d, J = 3.4 Hz, 1H), 7.51 (d, J = 8.1 Hz, 1H), 7.05 (q, J = 7.3 Hz, 1H), 6.96 (t, J = 7.1 Hz, 1H), 6.45 (app d, J = 19.0 Hz, 2H), 6.21 (d, J = 11.9 Hz, 1H), 5.52 (d, J = 12.1 Hz, 1H), 4.33-4.17 (m, 3H), 2.99 (dd, , J = 11.2, 8.4 Hz, 1H), 2.67 (q, J = 9.9 Hz, 1H), 2.00 (app t, J = 12.1 Hz, 1H), 1.89-1.58 (m, 4H), 1.59-1.37 (m, 3H), 0.90-0.76 (m, 3H), 0.70 (br s, 1H).

¹³C NMR (126 MHz, CDCl₃, ¹⁹F decoupled) δ 149.5, 147.1, 130.3, 129.6, 128.3, 127.0, 123.6, 123.5, 119.7, 113.1, 113.0, 67.3, 65.8, 57.4, 56.5, 36.2, 24.6, 24.3, 24.2, 21.8, 11.4.

HRMS (ESI⁺) C₂₅H₂₆ON₂F₃⁺ [M-Br]⁺: requires 441.21482, found: 441.21426, Δ -1.3 ppm.
3. Extended optimisation table

Figure 1. Catalysts used during optimisation studies
Entry	Cat	Base	Solvent	R-X (eq)	Time	s	Conv	Starting material e.r.	Product e.r.
1	CN1	KOH (25% aq, 5.0 eq)	PhCH₃ (0.1 M)	BnBr (0.6)	18h	1.1	55%	52.5:47.5	52:48
2	CD2	KOH (25% aq, 5.0 eq)	PhCH₃ (0.1 M)	BnBr (0.6)	18h	1.1	50%	51.5:48.5	51.5:48.5
3	3	KOH (25% aq, 5.0 eq)	PhCH₃ (0.1 M)	BnBr (0.6)	18h	1.2	42%	52.5:47.5	52.5:47.5
4	QN3	KOH (25% aq, 5.0 eq)	PhCH₃ (0.1 M)	BnBr (0.6)	18h	1.1	50%	51:49	51:49
5	3	NaOH (25% aq, 5.0 eq)	PhCH₃ (0.1 M)	BnBr (0.6)	18h	1.2	36%	52:48	53.5:46.5
6	3	RbOH (25% aq, 5.0 eq)	PhCH₃ (0.1 M)	BnBr (0.6)	18h	1.3	35%	55.5:44.5	51.5:48.5
7	3	CsOH (25% aq, 5.0 eq)	PhCH₃ (0.1 M)	BnBr (0.6)	18h	1.2	42%	52.5:47.5	52.5:46.5
8	3	K₂CO₃ (50% aq, 5.0 eq)	PhCH₃ (0.1 M)	BnBr (0.6)	18h	2.7	12%	53:47	72:28
9	3	Cs₂CO₃ (50% aq, 5.0 eq)	PhCH₃ (0.1 M)	BnBr (0.6)	18h	2.5	13%	53:47	71:29
10	3	K₃PO₄ (50% aq, 5.0 eq)	PhCH₃ (0.1 M)	BnBr (0.6)	18h	3.1	13%	53:47	73.5:26.5
11	QD4	K₃PO₄ (50% aq, 5.0 eq)	PhCH₃ (0.1 M)	BnBr (0.6)	48h	9.3	24%	62:38	89:11
12	QD5	K₃PO₄ (50% aq, 5.0 eq)	PhCH₃ (0.1 M)	BnBr (0.6)	48h	2.3	16%	53.5:46.5	68.5:31.5
13	QD6	K₃PO₄ (50% aq, 5.0 eq)	PhCH₃ (0.1 M)	BnBr (0.6)	48h	1.9	18%	53:47	64:36
14	QD7	K₃PO₄ (50% aq, 5.0 eq)	PhCH₃ (0.1 M)	BnBr (0.6)	48h	4.8	3%	51:49	79.5:20.5
15	QD8	K₃PO₄ (50% aq, 5.0 eq)	PhCH₃ (0.1 M)	BnBr (0.6)	48h	2.8	10%	52.5:47.5	73.5:26.5
16	QD9	K₃PO₄ (50% aq, 5.0 eq)	PhCH₃ (0.1 M)	BnBr (0.6)	48h	3.0	2%	51:49	74.5:25.5
17	QD10	K₃PO₄ (50% aq, 5.0 eq)	PhCH₃ (0.1 M)	BnBr (0.6)	48h	2.9	4%	51:49	76:24
18	QD11	K₃PO₄ (50% aq, 5.0 eq)	PhCH₃ (0.1 M)	BnBr (0.6)	48h	5.3	29%	62.5:37.5	80:20
19	QD12	K₃PO₄ (50% aq, 5.0 eq)	PhCH₃ (0.1 M)	BnBr (0.6)	48h	7.3	13%	55.5:45.5	88:12
20	4	K₃PO₄ (50% aq, 5.0 eq)	PhCH₃ (0.1 M)	BnBr (0.6)	48h	13	27%	65:35	90:10
21	5	K₃PO₄ (50% aq, 5.0 eq)	PhCH₃ (0.1 M)	BnBr (0.6)	48h	7.6	5%	52:48	91:9
22	QD13	K₃PO₄ (50% aq, 5.0 eq)	PhCH₃ (0.1 M)	BnBr (0.6)	48h	5.6	13%	55:45	83:17
Entry	Cat	Base	Solvent	R-X (eq)	Time	s	Conv	Starting material e.r.	Product e.r.
-------	------	---------------	---------------	----------------	------	----	-------	------------------------	--------------
23	QD14	K$_3$PO$_4$ (50% aq, 5.0 eq)	PhCH$_3$ (0.1 M)	BnBr (0.6)	48h	7.4	14%	56:44	87:13
24	QD15	K$_3$PO$_4$ (50% aq, 5.0 eq)	PhCH$_3$ (0.1 M)	BnBr (0.6)	48h	N/A	N/A	50:50	51:49
25	QD16	K$_3$PO$_4$ (50% aq, 5.0 eq)	PhCH$_3$ (0.1 M)	BnBr (0.6)	48h	8.9	6%	52.5:47.5	90.5:9.5
26		K$_3$PO$_4$ (50% aq, 5.0 eq)	PhCH$_3$ (0.1 M)	**Allyl bromide** (0.6)	48h	7.2	13%	55:45	85:15
27		K$_3$PO$_4$ (50% aq, 5.0 eq)	PhCH$_3$ (0.1 M)	**Allyl iodide** (0.6)	48h	7.1	35%	68:32	83:17
28		K$_3$PO$_4$ (50% aq, 5.0 eq)	PhCH$_3$ (0.1 M)	MeI (0.6)	48h	3.5	19%	56:44	76:24
29		K$_3$PO$_4$ (50% aq, 5.0 eq)	PhCH$_3$ (0.1 M)	BnI (0.6)	48h	12	35%	71:29	89:11
30		K$_3$PO$_4$ (s, 2.0 eq)	PhCH$_3$ (0.1 M)	BnI (0.6)	48h	6.4	45%	74.5:25.5	80:20
31		K$_3$PO$_4$ (s, 5.0 eq)	PhCH$_3$ (0.1 M)	BnI (0.6)	48h	4.4	44%	70:30	75:25
32		K$_3$PO$_4$ (s, 10.0 eq)	PhCH$_3$ (0.1 M)	BnI (0.6)	48h	5.5	55%	81:29	75:25
33		Na$_3$PO$_4$ (s, 5.0 eq)	PhCH$_3$ (0.1 M)	BnI (0.6)	48h	8.5	12%	55:45	88.5:11.5
34		Na$_3$PO$_4$ (15% aq.)	PhCH$_3$ (0.1 M)	BnI (0.6)	48h	6.1	42%	71.5:28.5	80:20
35		Na$_2$CO$_3$ (s, 5.0 eq)	PhCH$_3$ (0.1 M)	BnI (0.6)	48h	N/A	N/A	50:50	75:25
36		Na$_2$CO$_3$ (25% aq, 5.0 eq)	PhCH$_3$ (0.1 M)	BnI (0.6)	48h	9.7	9%	54:46	90:10
37		K$_2$CO$_3$ (s, 5.0 eq)	PhCH$_3$ (0.1 M)	BnI (0.6)	48h	8.8	11%	55:45	89:11
38		K$_2$CO$_3$ (50% aq, 5.0 eq)	PhCH$_3$ (0.1 M)	BnI (0.6)	48h	12	12%	55.5:45.5	91.5:8.5
39		Cs$_2$CO$_3$ (s, 2.0 eq)	PhCH$_3$ (0.1 M)	BnI (0.6)	48h	1.7	39%	56.5:43.5	60:40
40		Cs$_2$CO$_3$ (50% aq, 5.0 eq)	PhCH$_3$ (0.1 M)	BnI (0.6)	48h	8.2	26%	62.5:37.5	86.5:13.5
41		NaOH (25% aq, 5.0 eq)	PhCH$_3$ (0.1 M)	BnI (0.6)	48h	2.7	57%	70:30	65:35
42		KOH (25% aq, 5.0 eq)	PhCH$_3$ (0.1 M)	BnI (0.6)	48h	3.0	63%	76:24	65.5:34.5
43		CsOH (25% aq, 5.0 eq)	PhCH$_3$ (0.1 M)	BnI (0.6)	48h	3.8	60%	78.5:21.5	69:31
44		RbOH (25% aq, 5.0 eq)	PhCH$_3$ (0.1 M)	BnI (0.6)	48h	6.1	56%	83.5:16.5	76:24
Entry	Cat	Base	Solvent	R-X (eq)	Time	s	Conv	Starting material e.r.	Product e.r.
-------	------	---------------	---------------	----------------	------	----	------	------------------------	--------------
46	4	K_3PO_4 (50% aq, 5.0 eq)	Et_2O (0.1 M)	BnI (0.6)	48h	7.7	34%	68:32	84.5:15.5
47	4	K_3PO_4 (50% aq, 5.0 eq)	$^3\text{BuOMe}$ (0.1 M)	BnI (0.6)	48h	4.7	42%	69.5:30.5	76.5:23.5
48	4	K_3PO_4 (50% aq, 5.0 eq)	Mesityl oxide (0.1 M)	BnI (0.6)	48h	2.4	73%	76.5:23.5	60:40
49	4	K_3PO_4 (50% aq, 5.0 eq)	CH_2Cl_2 (0.1 M)	BnI (0.6)	48h	8.2	68%	97:3	72:28
50	4	K_3PO_4 (50% aq, 5.0 eq)	CHCl_3 (0.1 M)	BnI (0.6)	48h	10	57%	91:9	79.5:20.5
51	4	K_3PO_4 (50% aq, 5.0 eq)	PhH (0.1 M)	BnI (0.6)	48h	14	53%	90:10	85:15
52	4	K_3PO_4 (50% aq, 5.0 eq)	PhCF_3 (0.1 M)	BnI (0.6)	48h	2.4	43%	62:38	66:34
53	4	K_3PO_4 (50% aq, 5.0 eq)	m-Xylene (0.1 M)	BnI (0.6)	48h	15	10%	55:45	93:17
54	4	K_3PO_4 (50% aq, 5.0 eq)	p-Xylene (0.1 M)	BnI (0.6)	48h	13	7%	53:47	92.5:7.5
55	4	K_3PO_4 (50% aq, 5.0 eq)	1,2-Dichloro-ethane (0.1 M)	BnI (0.6)	48h	7.6	72%	98:2	69:31
56	4	K_3PO_4 (50% aq, 5.0 eq)	CCl_4 (0.1 M)	BnI (0.6)	48h	8.6	29%	65:35	86.5:13.5
57	4	K_3PO_4 (50% aq, 5.0 eq)	2-MeTHF (0.1 M)	BnI (0.6)	48h	9.7	34%	69:31	87:13
58	4	K_3PO_4 (50% aq, 5.0 eq)	$^3\text{Pr}_2\text{O}$ (0.1 M)	BnI (0.6)	48h	2.1	8%	51:54	67.5:32.5
59	4	K_3PO_4 (50% aq, 5.0 eq)	THF (0.1 M)	BnI (0.6)	48h	2.5	67%	74.5:25.5	62:38
60	4	K_3PO_4 (50% aq, 5.0 eq)	1,4-Dioxane (0.1 M)	BnI (0.6)	48h	6.6	60%	88:12	75:25
61	4	K_3PO_4 (s, 5.0 eq)	9:1 PhH/CHCl$_3$ (0.1 M)	BnOTs (0.6)	72h	2.5	56%	68:32	64:36
62	4	K_2CO_3 (50% aq, 5.0 eq)	PhH (0.1 M)	BnOTs (0.6)	72h	8.5	48%	80:20	81:19
63	4	Cs_2CO_3 (50% aq, 5.0 eq)	PhH (0.1 M)	BnOTs (0.6)	72h	6.0	41%	80:20	71:29
64	QD15	K_2CO_3 (50% aq, 5.0 eq)	PhH (0.1 M)	BnOTs (0.6)	72h	15	55%	92:8	85:15
65	QD12	K_2CO_3 (50% aq, 5.0 eq)	PhH (0.1 M)	BnOTs (0.6)	72h	13.9	57%	94:6	83:17
66	QD4	K_2CO_3 (50% aq, 5.0 eq)	PhH (0.1 M)	BnOTs (0.6)	72h	5.8	43%	72:28	79:21
Entry	Cat	Base	Solvent	R-X (eq)	Time	s	Conv	Starting material e.r.	Product e.r.
-------	-------	------------	---------------	------------	------	----	------	------------------------	--------------
67	QD13	K₂CO₃ (50% aq, 5.0 eq)	PhH (0.1 M)	BnOTs (0.6)	72h	3.4	50%	70:5:29.5	70:30
68	QD14	K₂CO₃ (50% aq, 5.0 eq)	PhH (0.1 M)	BnOTs (0.6)	72h	6.5	57%	85:15	76:24
69	6	K₂CO₃ (50% aq, 5.0 eq)	PhH (0.1 M)	BnOTs (0.6)	72h	21	54%	94.5:5.5	88:12
70	CN17	K₂CO₃ (50% aq, 5.0 eq)	PhH (0.1 M)	BnOTs (0.6)	48h	1.8	50%	60:40	60:40
71	CN18	K₂CO₃ (50% aq, 5.0 eq)	PhH (0.1 M)	BnOTs (0.6)	48h	3.9	44%	68.5:31.5	73.5:26.5
72	CN19	K₂CO₃ (50% aq, 5.0 eq)	PhH (0.1 M)	BnOTs (0.6)	48h	2.7	37%	61:39	68.5:31.5
73	CN20	K₂CO₃ (50% aq, 5.0 eq)	PhH (0.1 M)	BnOTs (0.6)	48h	2.4	47%	65.5:36.5	65.5:34.5
74	7	K₂CO₃ (50% aq, 5.0 eq)	PhH (0.1 M)	BnOTs (0.6)	48h	21	48%	87:13	91.5:9.5
75	CN1	K₂CO₃ (50% aq, 5.0 eq)	PhH (0.1 M)	BnOTs (0.6)	48h	2.9	51%	68:32	67:33
76	CN21	K₂CO₃ (50% aq, 5.0 eq)	PhH (0.1 M)	BnOTs (0.6)	48h	4.3	37%	65.5:34.5	76:24
77	CN22	K₂CO₃ (50% aq, 5.0 eq)	PhH (0.1 M)	BnOTs (0.6)	48h	17	44%	82:18	90:10
78	QD16	K₂CO₃ (50% aq, 5.0 eq)	PhH (0.1 M)	BnOTs (0.6)	72h	21	55%	94:6	88:12
79	QD16	K₂CO₃ (50% aq, 5.0 eq)	PhMe (0.1 M)	BnOTs (0.6)	72h	19	43%	81:19	90.5:9.5
80	QD16	K₂CO₃ (50% aq, 5.0 eq)	C₂H₅Cl₂ (0.1 M)	BnOTs (0.6)	72h	9	31%	66:5:33.5	86:14
81	QD16	K₂CO₃ (50% aq, 5.0 eq)	CHCl₃ (0.1 M)	BnOTs (0.6)	72h	10	45%	79:21	85:15
82	QD16	K₂CO₃ (50% aq, 5.0 eq)	m-Xylene (0.1 M)	BnOTs (0.6)	72h	19	44%	82:18	90.5:9.5
83	QD16	K₂CO₃ (50% aq, 5.0 eq)	p-Xylene (0.1 M)	BnOTs (0.6)	72h	22	47%	84:16	89:11
84	QD16	K₂CO₃ (50% aq, 5.0 eq)	PhCF₃ (0.1 M)	BnOTs (0.6)	72h	7.5	22%	60:40	86:14
85	QD16	K₂CO₃ (50% aq, 5.0 eq)	Et₂O (0.1 M)	BnOTs (0.6)	72h	12	49%	84:16	85:15
86	QD16	K₂CO₃ (50% aq, 5.0 eq)	Pr₂O (0.1 M)	BnOTs (0.6)	72h	5.0	31%	64:36	80.5:19.5
87	QD16	K₂CO₃ (50% aq, 5.0 eq)	'BuO introduction (0.1 M)	BnOTs (0.6)	72h	11	47%	81:19	85:15
88	QD16	K₂CO₃ (50% aq, 5.0 eq)	PhH (0.2 M)	BnOTs (0.6)	72h	12	41%	79.5:20.5	87:13
Entry	Cat	Base	Solvent	R-X (eq)	Time	Conv	Starting material e.r.	Product e.r.	
-------	-----	------	---------	----------	------	------	---------------------	-------------	
89	QD16	K₂CO₃ (50% aq, 5.0 eq)	PhH (0.05 M)	BnOTs (0.6)	72h	19	43%	81:19	90.5:9.5
90	QD16	K₂CO₃ (50% aq, 5.0 eq)	PhH (0.025 M)	BnOTs (0.6)	72h	25	44%	83.5:16.5	92:8
91	CN22	K₂CO₃ (50% aq, 5.0 eq)	PhH (0.025 M)	BnOTs (0.6)	72h	26	43%	83:17	93:7
92	8	K₂CO₃ (50% aq, 5.0 eq)	PhH (0.025 M)	BnOTs (0.6)	72h	32	46%	87:13	93.5:6.5
93	8	NaOH (25% aq, 2.0 eq)	PhH (0.025 M)	BnOTs (0.6)	24h	9.2	51%	83.5:16.5	82.5:17.5
94	8	KOH (25% aq, 2.0 eq)	PhH (0.025 M)	BnOTs (0.6)	24h	7.8	50%	81:19	81:19
95	8	CsOH (25% aq, 2.0 eq)	PhH (0.025 M)	BnOTs (0.6)	24h	19	49%	88:12	89:11
96	8	KHCO₃ (25% aq, 5.0 eq)	PhH (0.025 M)	BnOTs (0.6)	24h	33	4%	51.5:48.5	94:6
97	8	KF (25% aq, 5.0 eq)	PhH (0.025 M)	BnOTs (0.6)	24h	20	8%	54:46	95:5
98	8	CsF (25% aq, 5.0 eq)	PhH (0.025 M)	BnOTs (0.6)	24h	40	2%	51:49	97.5:2.5
99	8	K₂CO₃ (50% aq, 5.0 eq)	PhH (0.025 M)	BnOTs (1.0)	24h	32	53%	96.5:3.5	90.5:9.5
100	8	K₂CO₃ (50% aq, 5.0 eq)	PhH (0.025 M)	BnOTs (1.0)	24h	32	44%	84.5:15.5	94:6
101	8	Na₃PO₄ (s, 5.0 eq)	PhH (0.025 M)	BnOTs (0.6)	24h	30	28%	67.5:32.5	95.5:4.5
102	8	K₃PO₄ (50% aq, 5.0 eq)	PhH (0.025 M)	BnOTs (0.6)	24h	34	48%	90:5:9.5	93:7
103	8	Rb₂CO₃ (50% aq, 5.0 eq)	PhH (0.025 M)	BnOTs (0.6)	24h	29	40%	79.5:20.5	94:6
104	8	NaOH (25% aq, 2.0 eq)	PhH (0.025 M)	BnOTs (0.6)	48h	10	54%	87.5:12.5	82:18
105	8	KOH (25% aq, 2.0 eq)	PhH (0.025 M)	BnOTs (0.6)	48h	8.2	8%	85:1:45	80:20
106	8	CsOH (25% aq, 2.0 eq)	PhH (0.025 M)	BnOTs (0.6)	48h	20	55%	95:5	87:13
107	8	KHCO₃ (25% aq, 5.0 eq)	PhH (0.025 M)	BnOTs (0.6)	48h	27	4%	53:47	96.5:3.5
108	8	KF (25% aq, 5.0 eq)	PhH (0.025 M)	BnOTs (0.6)	48h	53	10%	55:45	98:2
109	8	CsF (25% aq, 5.0 eq)	PhH (0.025 M)	BnOTs (0.6)	48h	25	4%	52:48	96:4
110	8	K₂CO₃ (50% aq, 5.0 eq)	PhH (0.025 M)	BnOTs (1.0)	48h	25	58%	99:1	85.5:14.5
Entry	Cat	Base	Solvent	R-X (eq)	Time	s	Conv	Starting material e.r.	Product e.r.
-------	---------	---	---------------	----------	------	-----	------	------------------------	--------------
111	8	K₂CO₃ (50% aq, 5.0 eq)	PhH (0.025 M)	BnOTs (1.0)	48h	32	51%	93:7	92:8
112	8	Na₃PO₄ (s, 5.0 eq)	PhH (0.025 M)	BnOTs (0.6)	48h	29	35%	74:26	94.5:5.5
113	8	K₃PO₄ (50% aq, 5.0 eq)	PhH (0.025 M)	BnOTs (0.6)	48h	31	54%	96.5:3.5	90.5:9.5
114	8	Rb₂CO₃ (50% aq, 5.0 eq)	PhH (0.025 M)	BnOTs (0.6)	48h	31	47%	88:12	93:7
115	8	K₂CO₃ (sat. aq, 5.0 eq)	PhH (0.025 M)	BnOTs (0.6)	48h	35	50%	93:7	93:7
116	8	K₂CO₃ (sat. aq, 5.0 eq)	PhH (0.025 M)	BnOTs (0.7)	48h	35	55%	98.5:1.5	89.5:10.5
117	8	K₂CO₃ (sat. aq, 5.0 eq)	PhH (0.025 M)	BnOTs (0.8)	48h	34	57%	99.5:0.5	87.5:12.5
118	8	K₂CO₃ (sat. aq, 5.0 eq)	PhH (0.025 M)	BnOTs (0.9)	48h	25	60%	99.5:0.5	83.5:16.5
119	8	K₂CO₃ (sat. aq, 5.0 eq)	PhH (0.025 M)	BnOTs (1.0)	48h	26	60%	>99.5:0.5	83:17
120	8	K₂CO₃ (sat. aq, 5.0 eq)	PhH (0.025 M)	BnOTs (1.5)	48h	13	69%	>99.5:0.5	72:28
121	8	K₂CO₃ (sat. aq, 5.0 eq)	9:1 PhH /CH₂Cl₂ (0.025 M)	BnOTs (0.6)	48h	31	45%	85.5:14.5	93.5:6.5
122	8	K₂CO₃ (sat. aq, 5.0 eq)	9:1 PhH /CHCl₃ (0.025 M)	BnOTs (0.6)	48h	31	46%	87:13	93:7
123	8	K₂CO₃ (sat. aq, 5.0 eq)	9:1 PhH /Et₂O (0.025 M)	BnOTs (0.6)	48h	34	48%	90:10	93.5:6.5
124	8	K₂CO₃ (s, 5.0 eq)	9:1 PhH /Et₂O (0.025 M)	BnOTs (0.6)	48h	34	46%	87.5:12.5	94:6
125	8	K₃PO₄ (sat. aq, 5.0 eq)	9:1 PhH /Et₂O (0.025 M)	BnOTs (0.6)	48h	32	46%	87.5:12.5	93.5:6.5
126	8	K₂CO₃ (sat. aq, 5.0 eq)	9:1 PhH /Et₂O (0.025 M)	BnOTs (1.0)	24h	36	49%	91.5:8.5	93.5:6.5
127	8	K₂CO₃ (sat. aq, 5.0 eq)	9:1 PhH /Et₂O (0.025 M)	BnOTs (1.5)	24h	35	54%	98:2	90:10
4. Synthesis of Racemic BINOLs

Racemic BINOLs were synthesised as shown below. Brominated 2-naphthols (see subsections for synthetic routes) were dimerised following a literature procedure. 6,6’-dibromo BINOL (54) was prepared by bromination of racemic BINOL. Monomethylation gave the C_2 symmetric brominated methyl BINOLs. Debromination with n-BuLi followed by aqueous quenching gave the non-C_2 symmetric bromination BINOLs. The C-Br bonds were then further functionalised through a variety of reactions.

![Synthesis of substituted BINOLs by C-Br bond transformation](image)

Synthesis of substituted BINOLs by C-Br bond transformation. Conditions: A: PhB(OH)$_2$ (1.20 equiv.), Pd(PPh$_3$)$_4$ (5 mol%), Na$_2$CO$_3$ (2.50 equiv.), dioxane-H$_2$O, 90 °C, 16 h. Conditions B: MeMgI (3.00 equiv.), Pd(dppf)Cl$_2$ (10 mol%), THF, Δ. Conditions C: morpholine, Pd$_2$(dba)$_3$ (1 mol%), DavePhos (1.2 mol%), LiHMDS (2.20 equiv.), THF. Conditions D: NaOMe (12.0 equiv.), CuCl (3.00 equiv.), Me$_2$CO, 90 °C, 16 h. Conditions E: PhB(OH)$_2$ (2.40 equiv.), Pd(PPh$_3$)$_4$ (5 mol%), Na$_2$CO$_3$ (5.00 equiv.), dioxane-H$_2$O, 90 °C, 16 h. Conditions F: MeMgI (10.0 equiv.), Pd(dppf)Cl$_2$ (10 mol%), THF, Δ. Conditions G: MeB(OH)$_2$ (4.0 equiv.), Pd(dppf)Cl$_2$-CH$_2$Cl$_2$ (10 mol%), Cs$_2$CO$_3$ (4.0 equiv), 1,4-dioxane, Δ. Conditions H: ArB(OH)$_2$ (2.5 equiv), Pd(PPh$_3$)$_4$ (0.05 equiv), Na$_2$CO$_3$ (2 M aq, 5.0 equiv), DME, Δ.
4.1. 7-Substituted BINOLs

7-Bromonaphthalen-2-ol (50)

Following a modified literature procedure. Bromine (6.14 mL, 19.1 g, 120 mmol, 1.20 equiv.) was added dropwise over 30 minutes to a suspension of PPh₃ (31.4 g, 120 mmol, 1.20 equiv.) in acetonitrile (50 mL) at 0 °C. The reaction was warmed to room temperature, 2,7-dihydroxynaphthalene (16.0 g, 100 mmol, 1.00 equiv.) was added and the reaction was heated at 90 °C for 1 hour. Acetonitrile was removed in vacuo, the flask was fitted with a gas trap filled with saturated Na₂SO₃ solution and the reaction was heated at 250 °C for 1 hour. The resulting mixture was dissolved in CH₂Cl₂ and filtered through a plug of silica and concentrated. Purification via flash column chromatography (50% CH₂Cl₂ – petroleum ether to 100% CH₂Cl₂) afforded 7-Bromonaphthalen-2-ol (50) (7.48 g, 30%) as a brown solid.

m.p. = 119-120 °C (CH₂Cl₂/petroleum ether 40-60).

IR (film) ν_max/cm⁻¹: 3366, 2923, 1652, 1577, 1506, 1473, 1457, 1253, 1209, 921, 626.

¹H NMR (500 MHz, CDCl₃) δ = 7.87 (d, J = 1.68 Hz, 1H), 7.74 (d, J = 8.82 Hz, 1H), 7.65 (d, J = 8.66 Hz, 1H), 7.42 (dd, J = 8.71, 1.92 Hz), 7.13 (dd, J = 8.81, 2.49 Hz, 1H), 7.08 (d, J = 2.35 Hz), 5.05 (s, 1H).

¹³C NMR (126 MHz, CDCl₃) δ = 154.1, 135.8, 129.9, 129.4, 128.3, 127.3, 127.0, 120.8, 118.2, 108.7.

HRMS (ESI⁻) C₁₀H₇⁷⁹BrO [M-H]⁻ requires 220.9608; found 220.9607, Δ -0.5 ppm.

Data in agreement with literature reported⁴
7,7'-Dibromo-[1,1'-binaphthalene]-2,2'-diol (53)

7-Bromonaphthalen-2-ol (50) (7.48 g, 33.5 mmol, 1.00 equiv.) was dissolved in CH$_2$Cl$_2$ (220 mL) and [Cu(TMEDA)OHCl)]$_2$ (155 mg, 0.0350 mmol, 1 mol%) was added. The reaction was stirred for 16 hours at room temperature open to air. The reaction mixture was filtered through a short silica plug eluting with CH$_2$Cl$_2$. Evaporation of the solvent gave 7,7'-dibromo-[1,1'-binaphthalene]-2,2'-diol (53) (6.28 g, 85%) as an off-white solid.

m.p. = 115-117 °C (CH$_2$Cl$_2$).

IR (film) ν_{max}/cm$^{-1}$: 3466, 1611, 1500, 1418, 1378, 1317, 1213, 1195, 1171, 1128, 836, 739.

1H NMR (400 MHz, CDCl$_3$) $\delta = 7.94$ (d, $J = 8.9$ Hz, 2H), 7.76 (d, $J = 8.6$ Hz, 2H), 7.47 (d, $J = 8.7$ Hz, 2H), 7.37 (d, $J = 8.9$ Hz, 2H), 7.23 (s, 2H), 5.04 (s, 2H).

13C NMR (101 MHz, CDCl$_3$) $\delta = 153.6$, 134.6, 131.7, 130.2, 127.9, 127.8, 125.9, 122.4, 118.3, 109.5.

HRMS (ESI$^-$) C$_{20}$H$_{12}$Br$_2$O$_2$ [M-H]$^-$ requires 440.91310, found: 440.91330, $\Delta +0.5$ ppm.

Data in agreement with literature reported4
7,7'-Dibromo-2'-methoxy-[1,1'-binaphthalen]-2-ol (30)

![Chemical Structure](image)

7,7'-dibromo-[1,1'-binaphthalene]-2,2'-diol (53) (6.38 g, 14.4 mmol, 1.00 equiv.) was dissolved in acetone (115 mL) and K$_2$CO$_3$ (2.58 g, 18.7 mmol, 1.30 equiv.) followed by iodomethane (984 µL, 2.24 g, 15.8 mmol, 1.10 equiv.) were added. The reaction was heated under reflux for 16 hours. Upon cooling to room temperature, the solvent was removed in vacuo. The residue was partitioned between water and CH$_2$Cl$_2$ and the phases were separated. The aqueous layer was extracted twice with CH$_2$Cl$_2$ and the organic layers were combined, dried over anhydrous sodium sulfate, filtered and concentrated to give the crude product. Purification via flash column chromatography (1:1 CH$_2$Cl$_2$ – petroleum ether 40-60) gave 7,7'-dibromo-2'-methoxy-[1,1'-binaphthalen]-2-ol (30) (3.21 g, 49%) as an off-white solid.

m.p. = 179-181 °C (CH$_2$Cl$_2$/petroleum ether 40-60).

IR (film) $\nu_{\text{max}}/\text{cm}^{-1}$: 3503, 1612, 1497, 1255, 1088, 830, 754.

1H NMR (500 MHz, CDCl$_3$) $\delta =$
- 8.02 (d, J = 9.1 Hz, 1H),
- 7.87 (d, J = 8.9 Hz, 1H),
- 7.76 (d, J = 8.7 Hz, 1H),
- 7.73 (d, J = 8.7 Hz, 1H),
- 7.47 (d, J = 9.1 Hz, 1H),
- 7.46 (dd, J = 8.7, 1.9 Hz, 1H),
- 7.40 (dd, J = 8.6, 1.9 Hz, 1H),
- 7.35 (d, J = 8.9 Hz, 1H),
- 7.28 (d, J = 1.9 Hz, 1H),
- 7.15 (d, J = 1.9 Hz, 1H),
- 4.88 (s, 1H),
- 3.81 (s, 3H).

13C NMR (127 MHz, CDCl$_3$) $\delta =$
- 156.9, 152.1, 135.3, 135.1, 131.6, 130.2, 130.1, 130.1, 128.0, 127.9, 127.8, 127.0, 126.7, 126.5, 122.5, 121.4, 118.1, 114.0, 113.8, 113.7, 56.7

HRMS (ESI\') C$_{21}$H$_{14}$Br$_2$O$_2$ [M-H]: requires 454.92878, found: 454.92905 $\Delta +0.6$ ppm.
2'-methoxy-7,7'-dimethyl-[1,1'-binaphthalen]-2-ol (32)

To a flask containing 7,7'-dibromo-2'-methoxy-[1,1'-binaphthalen]-2-ol (30) (200 mg, 0.437 mmol, 1.00 equiv.), Pd(dppf)Cl$_2$-CH$_2$Cl$_2$ (35.6 mg, 0.044 mmol, 0.10 equiv.), cesium carbonate (569 mg, 1.75 mmol, 4.00 equiv.) and methylboronic acid (104 mg, 1.75 mmol, 4.00 equiv.), was added 1,4-dioxane (4.50 mL, N$_2$ sparged). The resulting suspension was heated at 105 °C for 48 h. The mixture was cooled to room temperature, diluted with EtOAc (10.0 mL) and filtered through a short plug of silica (eluting with EtOAc). The resulting solution was concentrated in vacuo and purified by flash column chromatography (2:1 petroleum ether 40-60 – diethyl ether) to give 2'-methoxy-7,7'-dimethyl-[1,1'-binaphthalen]-2-ol (32) as an off-white powder (138 mg, 96%)

m.p. = 75-79 °C (CH$_2$Cl$_2$/petroleum ether 40-60)

IR (film) ν$_{max}$/cm$^{-1}$: 3489, 3431, 3046, 3012, 2917, 2848, 1624, 1510, 1458, 1360, 1322, 1263, 1249, 1216, 1182, 1170, 1152, 1085, 831, 756.

1H NMR (500 MHz, CDCl$_3$) δ$_H$: 8.01 (d, $J = 9.1$ Hz, 1H), 7.85 (d, $J = 8.9$ Hz, 1H), 7.80 (d, $J = 8.3$ Hz, 1H), 7.76 (d, $J = 8.5$ Hz, 1H), 7.41 (d, $J = 9.1$ Hz), 7.28 (d, $J = 8.8$ Hz, 1H), 7.21 (dd, $J = 8.3$, 1.49 Hz, 1H), 7.15 (dd, $J = 8.3$, 1.5 Hz, 1H), 6.95 (d, $J = 0.4$ Hz, 1H), 6.82 (d, $J = 0.5$ Hz, 1H), 4.81 (s, 1H), 3.78 (s, 3H), 2.27 (s, 3H), 2.25 (s, 3H)

13C NMR (126 MHz, CDCl$_3$) δ$_C$: 156.4, 151.3, 137.4, 136.2, 134.4, 134.1, 130.8, 129.5, 128.1, 128.1, 127.9, 127.5, 126.7, 125.7, 124.0, 123.8, 116.5, 114.9, 114.8, 113.0, 56.8, 22.1, 22.1

HRMS (ESI$^+$) C$_{23}$H$_{21}$O$_2$ [M+H]$^+$ requires 329.15361; found 329.15366, Δ +0.2 ppm.
7,7′-Dibromo-2′-methoxy-[1,1′-binaphthalen]-2-ol (30) (2.52 g, 5.50 mmol, 1.00 equiv.) was dissolved in THF (55 mL) and cooled to −78 °C. n-BuLi (1.6 M in hexane, 6.87 mL, 11.0 mmol, 2.00 equiv.) was added by syringe pump over 1 hour after which time the reaction was stirred for a further 1 hour at −78 °C. The reaction was quenched by dropwise addition of water. After warming to room temperature, saturated ammonium chloride solution was added. EtOAc was added and the phases were separated. The aqueous phase was extracted twice with EtOAc and the combined organic layers were washed with brine, dried over anhydrous sodium sulfate, filtered and concentrated to give the crude product which was purified by column chromatography (20% EtOAc-petroleum ether 40-60) to give 7-bromo-2′-methoxy-[1,1′-binaphthalen]-2-ol (13) (1.54 g, 77%)

m.p. = 171-172 °C. (EtOAc/petroleum ether 40-60)

IR (film) ν max/cm⁻¹: 3496, 1612, 1501, 1352, 1250, 1168, 828, 809, 754.

¹H NMR (CDCl₃, 400 MHz) δ = 8.08 (d, J = 9.1 Hz, 1H), 7.91 (d, J = 8.1 Hz, 1H), 7.86 (d, J = 9.0 Hz, 1H), 7.72 (d, J = 8.6 Hz, 1H), 7.49 (d, J = 9.1 Hz, 1H), 7.42–7.37 (m, 2H, 1), 7.35 (d, J = 8.9 Hz, 1H), 7.32 (ddd, J = 8.2, 6.8, 1.4 Hz, 1H), 7.19 (d, J = 1.8 Hz, 1H), 7.15 (dd, J = 8.4, 1.1 Hz, 1H), 4.93 (s, 1H), 3.82 (s, 4H).

¹³C NMR (CDCl₃, 101 MHz) δ = 156.2, 152.2, 135.2, 133.9, 131.6, 129.9, 129.9, 129.6, 128.4, 127.7, 127.0, 126.8, 124.6, 124.4, 121.2, 118.0, 114.6, 114.3, 113.8, 56.7.

HRMS (ESI⁻) C₂₁H₁₅O₂⁷⁹Br [M−H]⁻ requires 377.01827; found 377.01807, Δ −0.5 ppm.
7-Bromo-2'-methoxy-[1,1'-binaphthalen]-2-ol (13) (170 mg, 0.448 mmol, 1.00 equiv.) was dissolved in DMF (4.5 mL) then CuCl (133 mg, 1.34 mmol 3.00 equiv.) and NaOMe (4.4 M in MeOH, 1.22 mL, 5.38 mmol, 12.0 equiv.) were added sequentially. The reaction was heated at 100 °C for 16 h then cooled to room temperature. Ice water was added followed by hydrochloric acid (3 M). The resulting suspension was extracted 3 times with EtOAc and the combined organic layers were washed with brine, dried over anhydrous sodium sulfate, filtered and concentrated to give the crude product. Purification via flash column chromatography (3:1 CH₂Cl₂ – petroleum ether 40-60 to 9:1 CH₂Cl₂ – petroleum ether 40-60) afforded 2',7-dimethoxy-[1,1'-binaphthalen]-2-ol (14) as an off-white solid (99.7 mg, 67%).

m.p. = 137-139 °C (CH₂Cl₂/ petroleum ether 40-60).

IR (film) ν_{max}/cm^{-1}: 3495, 3427, 3058, 3007, 2936, 28238, 1621, 1592, 1511, 1464, 1430, 1368, 1331, 1264, 1248, 1221, 1199, 1166, 1148, 1082, 833, 815, 752.

1H NMR (500 MHz, CDCl₃) δ = 8.05 (d, J = 9.1 Hz, 1H), 7.90 (d, J = 8.1 Hz, 1H), 7.83 (d, J = 8.8 Hz, 1H), 7.77 (d, J = 8.9 Hz, 1H), 7.48 (d, J = 9.1 Hz, 1H), 7.38 (ddd, J = 1.2, 6.8, 8.1 Hz, 1H), 7.30 (ddd, J = 1.3, 6.8, 8.4 Hz, 1H), 7.25-7.20 (m, 2H), 6.99 (dd, J = 2.5, 8.9 Hz, 1H), 6.37 (d, J = 2.5 Hz, 1H), 4.92 (s, 1H), 3.82 (s, 3H), 3.51 (s, 3H).

13C NMR (126 MHz, CDCl₃) δ = 158.3, 156.0, 151.9, 135.2, 133.9, 131.2, 129.8, 129.6, 128.2, 127.4, 125.0, 124.7, 124.3, 115.5, 115.2, 115.1, 114.3, 113.9, 104.3, 56.8, 55.1.

HRMS (ESI$^+$) $\text{C}_{22}\text{H}_{19}\text{O}_3^+$ [M+H]$^+$: requires: 331.13287, found: 331.13297, Δ +0.3 ppm.
2'-Methoxy-7-methyl-[1,1'-binaphthalen]-2-ol (15)

7-Bromo-2'-methoxy-[1,1'-binaphthalen]-2-ol (13) (443 mg, 1.20 mmol, 1.00 equiv.) and Pd(dppf)Cl$_2$·CH$_2$Cl$_2$ (98 mg, 0.12 mmol, 10 mol%) were dissolved in THF (15 mL) and MeMgCl solution (3 M in Et$_2$O, 2 mL, 6.00 mmol, 5.00 equiv.) was added. The resulting solution was heated under reflux for 16 hours. On cooling to room temperature, saturated ammonium chloride solution was added and phases were separated. The aqueous phase was extracted twice with EtOAc and the combined organic layers were washed with brine, dried over anhydrous sodium sulfate, filtered and concentrated to give the crude product which was purified by column chromatography (9:1 petroleum ether 40-60 – EtOAc) to give 2'-methoxy-7-methyl-[1,1'-binaphthalen]-2-ol (15) (334 mg, 88%) as an off-white solid.

m.p. = 87-88 °C (EtOAc/petroleum ether 40-60).

IR (film) $\nu_{\text{max}}/\text{cm}^{-1}$: 3481, 3396, 1704, 1621, 1591, 1508, 1473, 1459, 1431, 1378, 1362, 1332, 1265, 1248, 1220, 1184, 1172, 1146, 1129, 1083, 1053, 1041, 1020, 977, 908, 859, 833, 811, 775, 747, 676, 629.

1H **NMR** (400 MHz, CDCl$_3$) δ = 8.06 (1H, d, J = 9.0 Hz), 7.92 (1H, d, J = 8.1 Hz), 7.87 (1H, d, J = 8.9 Hz), 7.78 (1H, d, J = 8.3 Hz), 7.50 (1H, d, J = 9.1 Hz), 7.40 (1H, ddd, J = 8.1, 6.6, 1.3 Hz), 7.35–7.28 (2H, m), 7.24–7.15 (2H, m), 6.84 (1H, s), 4.90 (1H, s), 3.82 (3H, s), 2.27 (3H, s).

13C **NMR** (101 MHz, CDCl$_3$) δ = 156.0, 151.3, 136.2, 134.1, 134.0, 131.0, 129.5, 129.5, 128.1, 128.0, 127.4, 127.3, 125.6, 125.0, 124.2, 123.8, 116.5, 115.6, 114.5, 113.9, 56.7, 29.8.

HRMS (ESI') 13C$_{22}$H$_{18}$O$_2$ [M-H]$^-$ requires 313.12340; found 313.12326, Δ -0.5 ppm.
7-Bromo-2'-methoxy-[1,1'-binaphthalen]-2-ol (13) (548 mg, 1.50 mmol, 1.00 equiv.), phenyl boronic acid (220 mg, 1.80 mmol, 1.20 equiv.) and Pd(PPh₃)₄ (86.7 mg, 0.0750 mmol, 5 mol%) were charged to a flask fitted with a water-cooled condenser. The flask was evacuated and backfilled with argon three times. 1,2-Dimethoxyethane (Argon sparged, 15 mL) was added followed by aqueous Na₂CO₃ solution (Argon sparged, 2 M, 1.87 mL, 2.50 equiv.). The flask was fitted with an argon balloon and heated at 90 °C for 16 hours. After cooling to room temperature, 1 M HCl solution was added and the solution was extracted three times with CH₂Cl₂, the combined organic layers were dried over anhydrous sodium sulfate, filtered and concentrated to give the crude product which was purified by column chromatography (9:1 petroleum ether 40-60 – EtOAc) to give 2'-methoxy-7-phenyl-[1,1'-binaphthalen]-2-ol 16) (410 mg, 71%) as a white solid.

m.p. = 86-87 °C (EtOAc/petroleum ether 40-60).

IR (film) νₓ max/cm⁻¹: 3489, 3055, 2935, 2837, 2361, 1619, 1591, 1507, 1456, 1377, 1264, 1247, 1166, 1131, 1055, 839, 811, 752, 697.

¹H NMR (400 MHz, CDCl₃) δₓ H = 7.93 (d, J = 9.0 Hz, 1H), 7.86–7.82 (m, 2H), 7.79 (dt, J = 8.3, 1.0 Hz, 2H), 7.48 (dd, J = 8.5, 1.8 Hz, 2H), 7.37 (d, J = 9.1 Hz, 2H), 7.31–7.24 (m, 4H), 7.23–7.10 (m, 6H), 3.70 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δₓ C = 156.0, 151.7, 141.6, 139.2, 134.1, 134.0, 131.2, 129.6, 129.5, 128.7, 128.6, 128.4, 128.3, 127.5, 127.4, 127.1, 124.9, 124.3, 123.2, 123.0, 117.6, 115.4, 115.2, 113.8, 56.7.

HRMS (ESI⁺) C₂₇H₂₆O₂ [M+H]+ requires 377.15361; found 377.15363, Δ +0.1 ppm.
4.2. 6-Substituted BINOLs

6,6'-Dibromo-[1,1'-binaphthalene]-2,2'-diol (54)

(+)-BINOL (14.3 g, 50.0 mmol, 1.00 equiv.) was dissolved in acetonitrile (250 mL) and the resulting solution cooled to 0 °C. Bromine (7.70 mL, 24.0 g, 150 mmol, 3.00 equiv.) was added dropwise over 10 minutes. The reaction was stirred for 3 hours at 0 °C after which time saturated Na$_2$SO$_3$ solution was added. The solution was extracted three times with CH$_2$Cl$_2$ and the combined organic layers were dried over sodium sulfate, filtered and concentrated to give 6,6'-dibromo-[1,1'-binaphthalene]-2,2'-diol (54) (22.2 g, 100%) as an off-white solid.

m.p. = 115-117 °C (CH$_2$Cl$_2$).

1H NMR (500 MHz, CDCl$_3$) $\delta = 8.05$ (d, $J = 2.0$ Hz, 2H), 7.90 (d, $J = 9.0$ Hz, 2H), 7.40 (d, $J = 9.0$ Hz, 2H), 7.37 (dd, $J = 2.0$, 9.0 Hz, 2H), 6.96 (d, $J = 9.0$ Hz, 2H), 5.04 (s, 2H).

13C NMR (127 MHz, CDCl$_3$) $\delta = 153.1$, 132.0, 131.0, 130.9, 130.7, 130.6, 126.0, 119.1, 118.2, 110.8.

Data in agreement with literature reported.5
6,6′-Dibromo-2′-methoxy-[1,1′-binaphthalen]-2-ol (33)

\[
\begin{align*}
\text{Br} & \quad \text{Br} \\
& \quad \text{OH} \\
& \quad \text{OMe}
\end{align*}
\]

6,6′-Dibromo-[1,1′-binaphthalene]-2,2′-diol (54) (22.20 g, 50.0 mmol, 1.00 equiv.) and KO\textsubscript{2}CO\textsubscript{3} (8.97 g, 55.0 mmol, 1.10 equiv.) were suspended in acetone (400 mL) and iodomethane (7.80 g, 3.43 mL, 65.0 mmol, 1.30 equiv) was added. The resulting suspension was heated under reflux for 16 hours after which time the reaction was cooled to room temperature. The solvent was removed by evaporation and the residue was partitioned between water and CH\textsubscript{2}Cl\textsubscript{2}. The phases were separated and the aqueous layer was extracted twice with CH\textsubscript{2}Cl\textsubscript{2}. The combined organic layers were dried over anhydrous sodium sulfate, filtered and concentrated to give the crude product. Purification via flash column chromatography (1:1 CH\textsubscript{2}Cl\textsubscript{2} – petroleum ether) afforded 6,6′-dibromo-2′-methoxy-[1,1′-binaphthalen]-2-ol (30) (13.5 g, 59%) as a white solid.

\textbf{m.p.} = 115-117 °C (CH\textsubscript{2}Cl\textsubscript{2}/petroleum ether 40-60).

\textbf{IR} (film) \textit{v}_{\text{max}}/\text{cm}^{-1}: 3480, 3059, 2935, 2837, 2361, 2341, 1614, 1583, 1493, 1459, 1440, 1418, 1381, 1347, 1325, 1303, 1262, 1246, 1210, 1195, 1171, 1146, 1133, 1087, 1068, 1046, 976, 939, 904, 876, 808, 770, 738, 703, 672, 611.

\textbf{1H NMR} (400 MHz, CDCl\textsubscript{3}) \text{δ} 8.05 (s, 1H), 8.01 (s, 1H), 7.96 (d, \textit{J} = 9.1 Hz, 1H), 7.81 (d, \textit{J} = 8.9 Hz, 1H), 7.49 (d, \textit{J} = 9.1 Hz, 1H), 7.39-7.24 (m, 2H), 7.00 (d, \textit{J} = 9.0 Hz, 1H), 6.86 (d, \textit{J} = 8.9 Hz, 1H), 4.90 (s, 1H), 3.81 (s, 3H).

\textbf{13C NMR} (101 MHz, CDCl\textsubscript{3}) \text{δ} = 156.2, 151.7, 132.5, 132.3, 130.9, 130.5, 130.4, 130.3, 130.2, 129.9, 129.2, 126.6, 126.6, 118.8, 118.2, 117.3, 115.0, 114.8, 114.7, 56.7.

Data in agreement with literature reported6
2'-Methoxy-6,6'-diphenyl-[1,1'-binaphthalen]-2-ol (4)

To a flask containing 33 (500 mg, 1.09 mmol, 1.00 equiv), phenylboronic acid (333 mg, 2.73 mmol, 2.50 equiv) and Pd(PPh$_3$)$_4$ (63.1 mg, 54.6 µmol, 0.05 equiv) was added 1,2-dimethoxyethane (11.50 mL, Ar sparged) and sodium carbonate (2.0 M aq, 2.72 mL, Ar sparged). The resulting mixture was heated to 90 °C for 16 hours and cooled to room temperature before addition of water (10 mL) and EtOAc (10 mL). The layers were separated and the aqueous layer was extracted with EtOAc (10 mL × 2). The combined organic layers were washed with brine, dried over anhydrous MgSO$_4$, filtered and the solvent removed under reduced pressure. The resulting solid was purified by flash column chromatography (2:1 CH$_2$Cl$_2$ – petroleum ether 40-60) to give the title compound 34 as a white solid (316 mg, 0.70 mmol, 64% yield).

m.p. = 192-194 °C (CH$_2$Cl$_2$/petroleum ether 40-60).

IR (film) ν_{max}/cm$^{-1}$: 3531, 1595, 1493, 1383, 1357, 1264, 1191, 1087, 810, 756, 699.

1H NMR (500 MHz, CDCl$_3$) δ_H: 8.15-8.11 (m, 2H), 8.10 (d, $J = 1.7$ Hz, 1H), 7.99 (d, $J = 8.9$ Hz, 1H), 7.71-7.67 (m, 4H), 7.59 (dd, $J = 1.8$, 8.8 Hz, 1H), 7.53 (d, $J = 9.1$ Hz, 1H), 7.53 (dd, $J = 1.9$, 8.7 Hz, 1H), 7.50-7.44 (m, 4H), 7.42 (d, $J = 8.9$ Hz, 1H), 7.40-7.33 (m, 1H), 7.31 (d, $J = 8.8$ Hz, 1H), 7.18 (d, $J = 8.7$ Hz, 1H), 5.01 (s, 1H), 3.85 (s, 3H).

13C NMR (126 MHz, CDCl$_3$) δ_C: 156.2, 151.6, 141.3, 140.9, 137.1, 136.2, 133.3, 133.1, 131.6, 130.3, 129.8, 129.5, 129.0, 128.9, 127.4, 127.3, 127.2, 127.1, 127.0, 126.3, 126.2, 125.6, 125.5, 118.1, 115.3, 115.0, 114.3, 56.8.

HRMS (ESI') $C_{33}H_{23}O_2^-$ [M-H]: requires 451.17035, found: 451.17053, Δ +0.4 ppm.
To a flask containing 3 (500 mg, 1.09 mmol, 1.00 equiv), (4-fluorophenyl)boronic acid (382 mg, 2.73 mmol, 2.50 equiv) and Pd(PPh\(_3\))\(_4\) (63.1 mg, 54.6 μmol, 0.05 equiv) was added 1,2-dimethoxyethane (11.50 mL, Ar sparged) and Na\(_2\)CO\(_3\) (2.0 M aq, 2.72 mL, Ar sparged). The resulting mixture was heated to 90 °C for 16 hours and cooled to room temperature before addition of water (10 mL) and EtOAc (10 mL). The layers were separated and the aqueous layer was extracted with EtOAc (10 mL × 2). The combined organic layers were washed with brine, dried over anhydrous MgSO\(_4\), filtered and the solvent removed under reduced pressure. The resulting solid was purified by flash column chromatography (2:1 CH\(_2\)Cl\(_2\) – petroleum ether 40-60) to give the title compound 6 as a white solid (436 mg, 0.89 mmol, 82% yield).

m.p. = 145-147 °C (CH\(_2\)Cl\(_2\)/petroleum ether 40-60).

IR (film) \(\nu_{\text{max}}/\text{cm}^{-1}\): 3525, 1604, 1515, 1473, 1265, 1159, 1087, 820.

\(^1\text{H NMR}\) (500 MHz, CDCl\(_3\)) \(\delta_H\): 8.12 (d, \(J = 9.1\) Hz, 1H), 8.06 (d, \(J = 1.8\) Hz, 1H), 8.02 (d, \(J = 1.8\) Hz, 1H), 7.97 (d, \(J = 8.9\) Hz, 1H), 7.65-7.59 (m, 4H), 7.54 (d, \(J = 9.1\) Hz, 1H), 7.51 (dd, \(J = 1.9, 8.8\) Hz, 1H), 7.45 (dd, \(J = 1.9, 8.7\) Hz, 1H), 7.40 (d, \(J = 8.9\) Hz, 1H), 7.28 (d, \(J = 8.8\) Hz, 1H), 7.18-7.10 (m, 5H), 4.97 (s, 1H), 3.85 (s, 3H).

\(^{13}\text{C NMR}\) (126 MHz, CDCl\(_3\)) \(\delta_C\): 162.6 (d, \(J = 246.7\) Hz), 162.5 (d, \(J = 246.0\) Hz), 156.3, 151.6, 137.8 (d, \(J = 3.4\) Hz), 137.0 (d, \(J = 3.4\) Hz), 136.1, 135.2, 133.3, 133.0, 131.5, 130.3, 129.8, 129.5, 128.9 (app. t, \(J = 7.6\) Hz), 127.1, 126.1, 126.0, 125.7, 125.6, 118.2, 116.0, 115.9, 115.8, 115.7, 115.2, 115.0, 114.4, 56.9.

\(^{19}\text{F NMR}\) (470 MHz, CDCl\(_3\), \(^1\text{H}\) decoupled) \(\delta_F\): -115.6 (s), -116.1 (s).

HRMS (ESI\(^+\)) \(C_{33}H_{21}F_2O_4\) \([\text{M-H}]^+\): requires 487.15151, found: 487.15134, Δ -0.4 ppm.
1,1'-(2-Hydroxy-2'-methoxy-[1,1'-binaphthalene]-6,6'-diyl)bis(4,1-phenylene))bis(ethan-1-one) (36)

To a flask containing 33 (500 mg, 1.09 mmol, 1.00 equiv), (4-acetylphenyl)boronic acid (447 mg, 2.73 mmol, 2.50 equiv) and Pd(PPh₃)₄ (63.1 mg, 54.6 μmol, 0.05 equiv) was added 1,2-dimethoxyethane (11.50 mL, Ar sparged) and Na₂CO₃ (2.0 M aq, 2.72 mL, Ar sparged). The resulting mixture was heated to 90 °C for 16 hours and cooled to room temperature before addition of water (10 mL) and EtOAc (10 mL). The layers were separated and the aqueous layer was extracted with EtOAc (10 mL × 2). The combined organic layers were washed with brine, dried over anhydrous MgSO₄, filtered and the solvent removed under reduced pressure. The resulting solid was purified by flash column chromatography (19:1 CH₂Cl₂ – diethyl ether to 9:1 CH₂Cl₂ – diethyl ether) to give the title compound 36 as a pale yellow solid (280 mg, 0.52 mmol, 48% yield).

m.p. = 161-163 °C (CH₂Cl₂/diethyl ether).

IR (film) νmax/cm⁻¹: 3340, 1674, 1598, 1497, 1358, 1268, 1249, 1057, 818, 751.

¹H NMR (500 MHz, CDCl₃) δH: 8.15 (app. d, J = 8.8 Hz, 3H), 8.03 (app. d, J = 8.2 Hz, 4H), 8.00 (d, J = 8.9 Hz, 1H), 7.76 (app. dd, J = 1.8, 8.4 Hz, 4H), 7.58 (dd, J = 1.8, 8.9 Hz, 1H), 7.55 (d, J = 9.3 Hz, 1H), 7.52 (dd, J = 1.9, 8.8 Hz, 1H), 7.43 (d, J = 8.9 Hz, 1H), 7.31 (d, J = 8.8 Hz, 1H), 7.17 (d, J = 8.8 Hz, 1H), 5.18 (s, 1H), 3.86 (s, 3H), 2.63 (s, 6H).

¹³C NMR (126 MHz, CDCl₃) δC: 197.9, 197.9, 156.6, 152.1, 145.9, 145.4, 135.9, 135.7, 135.6, 134.7, 133.8, 133.6, 131.8, 130.6, 129.6, 129.4, 129.2, 129.1, 127.3, 126.9, 126.8, 126.8, 125.9, 125.8, 125.7, 118.5, 115.2, 115.0, 114.5, 56.8, 26.8.

HRMS (ESI⁺) C₃₇H₂₉O₄⁺ [M+H]⁺: requires: 537.20604, found: 537.20612, Δ +0.2 ppm.
To a flask containing 33 (500 mg, 1.09 mmol, 1.00 equiv), (4-(trifluoromethoxy)phenyl)boronic acid (562 mg, 2.73 mmol, 2.50 equiv) and Pd(PPh₃)₄ (63.1 mg, 54.6 μmol, 0.05 equiv) was added 1,2-dimethoxyethane (11.50 mL, Ar sparged) and Na₂CO₃ (2.0 M aq, 2.72 mL, Ar sparged). The resulting mixture was heated to 90 °C for 16 hours and cooled to room temperature before addition of water (10 mL) and EtOAc (10 mL). The layers were separated and the aqueous layer was extracted with EtOAc (10 mL × 2). The combined organic layers were washed with brine, dried over anhydrous MgSO₄, filtered and the solvent removed under reduced pressure. The resulting solid was purified by flash column chromatography (2:1 CH₂Cl₂ – petroleum ether 40-60) to give the title compound 37 as a white solid (511 mg, 0.82 mmol, 75% yield).

m.p. = 110-112 °C (CH₂Cl₂/petroleum ether 40-60).

IR (film) ν max/cm⁻¹: 3521, 1598, 1497, 1251, 1211, 1164, 1089, 1059, 854.

¹H NMR (500 MHz, CDCl₃) δ H: 8.14 (d, J = 9.1 Hz, 1H), 8.08 (d, J = 1.8 Hz, 1H), 8.05 (d, J = 1.8 Hz, 1H), 7.98 (d, J = 8.9 Hz, 1H), 7.70-7.65 (m, 4H), 7.55 (d, J = 9.1 Hz, 1H), 7.52 (dd, J = 1.9, 8.8 Hz, 1H), 7.46 (dd, J = 1.9, 8.8 Hz, 1H), 7.41 (d, J = 8.9 Hz, 1H), 7.34-7.27 (m, 5H), 7.16 (d, J = 8.8 Hz, 1H), 4.98 (s, 1H), 3.86 (s, 3H)

¹³C NMR (126 MHz, CDCl₃) δ C: 156.4, 151.8, 148.8, 148.8, 148.6, 140.1, 139.7, 135.7, 134.8, 133.5, 133.2, 131.7, 130.4, 129.7, 129.5, 128.6, 128.6, 1270, 126.5, 126.4, 126.0, 125.8, 125.7, 121.5, 121.4, 120.7 (q, J = 257.4 Hz), 118.4, 115.1, 115.0, 114.4, 56.8.

¹⁹F NMR (470 MHz, CDCl₃) δ F: -57.8 (s).

HRMS (ES⁺) C₃₅H₂₁F₆O₄⁺ [M-H]⁺: requires: 619.13495, found: 619.13458, Δ -0.6 ppm.
6,6'-Dibromo-2'-methoxy-[1,1'-binaphthalen]-2-ol (33) (1.95 g, 4.26 mmol, 1.00 equiv.) was dissolved in THF (43 mL) and cooled to −78 °C. nBuLi (1.6 M in hexane, 5.33 mL, 8.52 mmol, 2.00 equiv.) was added by syringe pump over 1 hour after which time the reaction was stirred for a further 1 hour at −78 °C. The reaction was quenched by dropwise addition of water. After warming to room temperature, saturated ammonium chloride solution was added. EtOAc was added and the phases were separated. The aqueous phase was extracted twice with EtOAc and the combined organic layers were washed with brine, dried over anhydrous sodium sulfate, filtered and concentrated to give the crude product. Purification via flash column chromatography (4:1 petroleum ether 40-60 – EtOAc) afforded 6-bromo-2'-methoxy-[1,1'-binaphthalen]-2-ol (21) (1.27 g, 82%) m.p. = 132-133 °C (EtOAc/petroleum ether 40-60).

IR (film) ν_{max}/cm$^{-1}$: 3514, 3059, 2936, 2839, 1588, 1504, 1498, 1474, 1459, 1432, 1379, 1350, 1331, 1307, 1262, 1245, 1205, 1182, 1167, 1144, 1129, 1085, 1053, 974, 936, 903, 879, 866, 809, 782, 747, 673.

1H NMR (400 MHz, CDCl$_3$) δ = 7.97 (d, J = 9.1 Hz, 1H), 8.02 (d, J = 2.1 Hz, 1H), 7.91 (d, J = 8.1 Hz, 1H), 7.81 (d, J = 8.9 Hz, 1H), 7.48 (d, J = 9.1 Hz, 1H), 7.41 (obs. m, 1H), 7.37 (d, J = 8.8 Hz, 1H), 7.33–7.26 (m, 2H), 7.14 (d, J = 8.5 Hz, 1H), 6.93 (d, J = 9.0 Hz, 1H), 4.96 (s, 1H, OH), 3.81 (s, 3H).

13C NMR (101 MHz, CDCl$_3$) δ = 156.0, 151.6, 133.9, 132.3, 131.4, 130.3, 129.1, 129.6, 129.4, 128.9, 128.3, 127.5, 126.7, 124.6, 124.3, 118.6, 117.0, 115.3, 114.5, 113.7, 56.0

HRMS (ESI$^-$) C$_{21}$H$_{15}$O$_2$Br [M–H]$^-$ requires 377.01827; found 377.01807, Δ -0.5 ppm.

Data in agreement with literature7
2',6-dimethoxy-[1,1'-binaphthalen]-2-ol (23)

6-Bromo-2'-methoxy-[1,1'-binaphthalen]-2-ol (21) (190 mg, 0.500 mmol, 1.00 equiv.) was dissolved in DMF (5.0 mL) then CuCl (149 mg, 1.50 mmol 3.00 equiv.) and NaOMe (4.4 M in MeOH, 1.37 mL, 6.00 mmol, 12.0 equiv.) were added sequentially. The reaction was heated at 100 °C for 1 h then cooled to room temperature. Ice water was added followed by hydrochloric acid (3 M). The resulting suspension was extracted 3 times with EtOAc and the combined organic layers were washed with brine, dried over anhydrous sodium sulfate, filtered and concentrated to give the crude product. Purification via flash column chromatography (3:1 CH$_2$Cl$_2$ – petroleum ether 40-60 to 9:1 CH$_2$Cl$_2$ – petroleum ether 40-60) afforded 2',6-dimethoxy-[1,1'-binaphthalen]-2-ol (23) as an off-white solid (104 mg, 63%).

m.p. = 160-162 °C (CH$_2$Cl$_2$/petroleum ether 40-60).

IR (film) ν_{max}/cm$^{-1}$: 3501, 3430, 3056, 3007, 2936, 2839, 1620, 1600, 1508, 1464, 1433, 1366, 1331, 1265, 1249, 1236, 1209, 1171, 1148, 1125, 1083, 1056, 1033, 852, 811, 752

1H NMR (500 MHz, CDCl$_3$) δ = 8.04 (d, $J = 9.1$ Hz, 1H), 7.90 (d, $J = 8.2$ Hz, 1H), 7.81 (d, $J = 8.9$ Hz, 1H), 7.47 (d, $J = 9.1$ Hz, 1H), 7.38 (ddd, $J = 1.2$, 6.9, 8.1 Hz, 1H), 7.35 (d, $J = 8.9$ Hz, 1H), 7.29 (ddd, $J = 1.3$, 6.9, 8.4 Hz, 1H), 7.22-7.18 (m, 2H), 6.98 (d, $J = 9.2$ Hz, 1H), 6.92 (dd, $J = 2.6$, 9.2 Hz, 1H), 4.82 (s, 1H), 3.90 (s, 3H), 3.81 (s, 3H).

13C NMR (126 MHz, CDCl$_3$) δ = 156.0, 155.9, 149.8, 134.1, 131.1, 130.1, 129.5, 129.1, 128.5, 128.3, 127.4, 126.5, 125.0, 124.3, 119.0, 118.0, 115.6, 115.4, 113.9, 106.6, 56.8, 55.4.

HRMS (ESI$^+$) C$_{22}$H$_{19}$O$_3$ $^+$ [M+H]$^+$: requires: 331.13287, found: 331.13303, Δ +0.5 ppm.
2'-Methoxy-6-morpholino-[1,1'-binaphthalen]-2-ol (19)

6-Bromo-2'-methoxy-[1,1'-binaphthalen]-2-ol (21) (379 mg, 1.00 mmol, 1.00 equiv.), Pd$_2$(dba)$_3$ (9.2 mg, 0.0100 mmol, 1 mol%) and DavePhos (4.7 mg, 0.0120 mmol, 1.2 mol%) were added to a Schlenk flask. The flask was evacuated and backfilled with argon three times. Morpholine (105 mg, 105 µL, 1.20 mmol, 1.20 equiv.) was added followed by LiHMDS solution (1 M in THF, 2.2 mL, 2.2 mmol, 2.2 equiv.) and the reaction was stirred at room temperature for 16 hours. 1 M HCl solution was added and the reaction was stirred for 30 minutes. 1 M NaHCO$_3$ solution was added and the aqueous solution was extracted three times with CH$_2$Cl$_2$. The combined organic layers were dried over anhydrous sodium sulfate, filtered and concentrated to give the crude product which was purified by column chromatography (3:2 petroleum ether 40-60 – EtOAc) to give 2'-methoxy-6-morpholino-[1,1'-binaphthalen]-2-ol (19) (244 mg, 63%) as an off-white solid.

m.p. = 231-232 °C (EtOAc/petroleum ether 40-60).

IR (film) ν_{max}/cm$^{-1}$: 3283, 1608, 1591, 1506, 1461, 1449, 1380, 1356, 1335, 1309, 1282, 1265, 1253, 1228, 1199, 1182, 1167, 1146, 1134, 1113, 1088, 1062, 1044, 1022, 960, 934, 879, 856, 848, 817, 798, 779, 772, 759, 747, 731, 699, 666, 638, 616.

1H NMR (400 MHz, CDCl$_3$) δ_H = 7.94 (d, J = 9.0 Hz, 1H), 7.79 (d, J = 8.1 Hz, 1H), 7.66 (d, J = 8.8 Hz, 1H), 7.37 (d, J = 9.1 Hz, 1H), 7.26 (ddd, J = 8.1, 6.7, 1.3 Hz, 1H), 7.20 (d, J = 8.9 Hz, 1H), 7.18–7.14 (m, 1H), 7.09 (m, 2H), 6.93–6.83 (m, 2H), 4.69 (br. s, 1H), 3.81–3.74 (m, 4H), 3.69 (s, 3H), 3.15–3.05 (m, 4H).

13C NMR (101 MHz, CDCl$_3$) δ_C = 155.9, 149.8, 147.2, 134.0, 130.9, 130.0, 129.4, 128.9, 128.6, 128.1, 127.3, 125.9, 125.0, 124.2, 119.6, 117.9, 115.6, 115.1, 113.9, 111.0, 67.0, 56.7, 50.1.

HRMS (ESI$^+$) C$_{25}$H$_{23}$O$_3$N [M+H]$^+$ requires 386.17507; found 386.17477, Δ -0.8 ppm.
6-Bromo-2'-methoxy-[1,1'-binaphthalen]-2-ol (21) (365 mg, 1.00 mmol, 1.00 equiv.), phenyl boronic acid (144 mg, 1.20 mmol, 1.20 equiv.) and Pd(PPh_3)_4 (57.8 mg, 0.0500 mmol, 0.0500 equiv.) were charged to a flask fitted with a water-cooled condenser. The flask was evacuated and backfilled with argon three times. Argon sparged 1,2-dimethoxyethane (10 mL) was added followed by argon sparged aqueous Na_2CO_3 solution (2 M, 1.25 mL, 2.50 equiv.). The flask was fitted with an argon balloon and heated at 90 °C for 16 hours. After cooling to room temperature, 1 M HCl solution was added and the solution was extracted three times with CH_2Cl_2, the combined organic layers were dried over anhydrous sodium sulfate, filtered and concentrated to give the crude product which was purified by column chromatography (9:1 petroleum ether 40-60 – EtOAc) to give 2'-methoxy-6-phenyl-[1,1'-binaphthalen]-2-ol (20) (233 mg, 62%) as a white solid.

m.p. = 208-209 °C (EtOAc/petroleum ether 40-60).

IR (film) \(\nu_{\text{max}} / \text{cm}^{-1} \): 3513, 1507, 1493, 1145, 817, 755, 705.

^1^H NMR (400 MHz, CDCl_3) \(\delta = 8.01–7.93 \) (m, 2H), 7.87 (d, \(J = 8.9 \) Hz, 1H), 7.82 (d, \(J = 8.1 \) Hz, 1H), 7.58 (m, 2H), 7.44–7.11 (m, 9H), 7.05–7.01 (m, 1H), 4.86 (br. S, 1H), 3.73 (s, 3H)

^1^C NMR (101 MHz, CDCl_3) \(\delta = 156.0, 151.4, 141.2, 136.0, 134.0, 133.0, 131.2, 130.1, 129.5, 129.4, 128.8, 128.2, 127.4, 127.2, 127.0, 126.1, 126.1, 125.4, 124.9, 124.2, 117.9, 115.2, 115.0, 113.8, 56.7.

HRMS (ESI^+) \(\text{C}_{27}\text{H}_{20}\text{O}_2 \) [M+H]^+ requires 377.15361; found 377.15365, \(\Delta +0.1 \) ppm.
4.3. 5-Substituted BINOLs

1-Bromo-6-methoxynaphthalene (57)

Following a modified literature procedure. Triphenylphosphite (28.9 mL, 34.1 g, 110 mmol, 1.1 equiv.) was dissolved in CH$_2$Cl$_2$ (300 mL) and the resulting solution was cooled to -78 °C. Bromine (6.15 mL, 20.3 g, 120 mmol, 1.20 equiv.) was added followed by dropwise addition of Et$_3$N (18.1 mL, 13.2 g, 130 mmol, 1.30 equiv.) over 30 minutes. 6-Methoxy-3,4-dihydronaphthalen-1(2H)-one (17.6 g, 100 mmol, 1.00 equiv.) was added and the reaction was warmed to room temperature and stirred for 16 hours after which time the reaction was heated at 45 °C for 2 hours. Upon cooling to room temperature saturated Na$_2$SO$_3$ solution was added and the resulting solution was extracted three times with CH$_2$Cl$_2$. The combined organic layers were washed with water, dried over anhydrous sodium sulfate, filtered and concentrated to give the crude product. Purification via flash column chromatography (39:1 petroleum ether 40-60 – CH$_2$Cl$_2$ to 19:1 petroleum ether 40-60 – CH$_2$Cl$_2$) afforded the vinyl bromide which was found to be unstable and was therefore used immediately in the next reaction.

The product of the previous step (18.5 g, crude) was dissolved in benzene (155 mL) and DDQ (19.3 g, 85.1 mmol) was added and the reaction was stirred at room temperature for 2 hours after which time saturated Na$_2$SO$_3$ solution was added and the resulting suspension was extracted 3 times with EtOAc. The combined organic layers were washed 3 times with saturated NaHCO$_3$ solution, brine, dried over anhydrous sodium sulfate, filtered and concentrated to give the crude product. Purification via flash column chromatography (39:1 petroleum ether 40-60 – CH$_2$Cl$_2$ to 19:1 petroleum ether 40-60 – CH$_2$Cl$_2$) afforded 1-bromo-6-methoxynaphthalene (57) (6.93 g, 29% over 2 steps) as a light-yellow oil.

IR (film) $\nu_{\text{max}}/\text{cm}^{-1}$ 1623, 1501, 1469, 1424, 1359, 1263, 1236, 1197, 1169, 1125, 1032, 957, 916, 840, 818, 803, 775, 745, 658.

1H NMR (500 MHz, CDCl$_3$) δ = 8.16 (d, $J = 9.28$ Hz, 1H), 7.72 (d, $J = 8.35$ Hz, 1H), 7.64 (d, $J = 7.19$ Hz, 1H), 7.32-7.24 (m, 2H), 7.15 (d, $J = 2.50$ Hz, 1H), 3.96 (s, 3H).

13C NMR (126 MHz, CDCl$_3$) δ = 158.2, 135.9, 128.8, 127.6, 127.5, 126.8, 126.7, 122.7, 120.0, 106.1, 55.4.

Data in agreement with literature reported8
5-Bromonaphthalen-2-ol (51)

1-Bromo-6-methoxynaphthalene (57) (6.93 g, 29.2 mmol, 1.00 equiv.) was dissolved in CH$_2$Cl$_2$ (146 mL) and the resulting solution was cooled to 0 °C. BBr$_3$ (3.37 mL, 8.75 g, 35.4 mmol, 1.20 equiv.) was added dropwise over 5 minutes. The reaction was allowed to warm to room temperature and was stirred for 16 hours. The reaction was quenched with water and extracted 3 times with CH$_2$Cl$_2$. The combined organic layers were dried over anhydrous sodium sulfate, filtered and concentrated to give the crude product. Purification via flash column chromatography (1:1 CH$_2$Cl$_2$ – petroleum ether) gave 5-bromonaphthalen-2-ol (51) (6.35 g, 97%) as an off-white solid.

m.p. = 104-105 °C (CH$_2$Cl$_2$/petroleum ether 40-60).

**IR (film) **ν max/cm$^{-1}$: 3244, 1625, 1563, 1504, 1427, 1382, 1252, 1230, 965, 773.

1H NMR (400 MHz, CDCl$_3$) δ = 8.18 (d, J = 9.1 Hz, 1H), 7.69-7.62 (m, 2H), 7.28 (app. t, partially obscured, J = 8.8 Hz), 7.22 (dd, J = 9.1, 2.6 Hz, 1H), 7.18 (d, J = 2.5, 1H), 5.09 (br. s, 1H).

13C NMR (101 MHz, CDCl$_3$) δ = 154.0, 135.8, 129.4, 127.7, 127.5, 127.0, 126.4, 122.8, 119.0, 109.9.

HRMS (ESI') C$_{10}$H$_7$BrO [M-H]$^-$ requires 220.96081, found: 220.96070, Δ -0.5 ppm.

Data in agreement with literature reported8
5,5'-Dibromo-[1,1'-binaphthalene]-2,2'-diol (55)

![Structure diagram of 5,5'-Dibromo-[1,1'-binaphthalene]-2,2'-diol (55)]

5-Bromonaphthalen-2-ol (51) (6.35 g, 28.5 mmol, 1.00 equiv.) was dissolved in CH₂Cl₂ (190 mL) and [Cu(TMEDA)OHCl]₂ (130 mg, 0.280 mmol, 1 mol%) was added. The reaction was stirred for 16 hours at room temperature open to air. The reaction mixture was filtered through a short silica plug eluting with CH₂Cl₂. Evaporation of the solvent gave 5,5'-dibromo-[1,1'-binaphthalene]-2,2'-diol (55) (6.28 g, 100%) as an off-white solid.

m.p. = 79-80 °C (CH₂Cl₂).

IR (film) ν max/cm⁻¹: 3367, 2923, 2360, 1698, 1615, 1572, 1541, 1497, 1395, 1331, 1252, 1197, 1132, 981, 913, 820, 799, 656.

¹H NMR (500 MHz, CDCl₃) δ = 8.46 (d, J = 9.48 Hz, 2H), 7.70 (dd, J = 7.15, 0.89, 2H), 7.51 (d, J = 9.30 Hz, 2H), 7.17 (dd, J = 8.41, 7.33 Hz, 2H), 7.09 (d, J = 8.59 Hz, 2H), 5.09 (s, 2H).

¹³C NMR (126 MHz, CDCl₃) δ = 153.4, 134.7, 131.0, 128.4, 128.0, 128.0, 124.0, 123.5, 119.0, 111.0.

HRMS (ESI⁺) C₂₀H₁₁⁷⁹Br₂O₂ [M+H]⁺ requires 440.91203, found: 440.91260, Δ +1.3 ppm.
5,5'-Dibromo-2'-methoxy-[1,1'-binaphthalen]-2-ol (38)

5,5'-Dibromo-[1,1'-binaphthalene]-2,2'-diol (55) (5.80 g, 13.1 mmol, 1.00 equiv.) was dissolved in acetone (115 mL) and K₂CO₃ (2.35 g, 17.0 mmol, 1.30 equiv.) followed by iodomethane (900 µL, 2.04 g, 14.4 mmol, 1.10 equiv.) were added. The reaction was heated under reflux for 16 hours. Upon cooling to room temperature, the solvent was removed in vacuo. The residue was partitioned between water and CH₂Cl₂ and the phases were separated. The aqueous layer was extracted twice with CH₂Cl₂ and the organic layers were combined, dried over anhydrous sodium sulfate, filtered and concentrated to give the crude product. Purification via flash column chromatography (1:1 CH₂Cl₂ – petroleum ether 40-60) gave 5,5'-dibromo-2'-methoxy-[1,1'-binaphthalen]-2-ol (38) (3.02 g, 50%) as an off-white solid.

m.p. = 133-135 °C (CH₂Cl₂/petroleum ether 40-60).

IR (film) ν max/cm⁻¹: 3525, 2923, 2848, 2360, 2341, 1772, 1733, 1716, 1698, 1684, 1652, 1611, 1588, 1560, 1394, 1371, 1192, 1050, 913, 752, 690, 668, 655.

¹H NMR (500 MHz, CDCl₃) δ H: 8.53 (d, J = 9.5 Hz, 1H), 8.37 (d, J = 9.3 Hz, 1H), 7.69 (dd, J = 6.49, 1.9 Hz, 1H), 7.63 (dd, J = 7.38, 1.0 Hz, 1H), 7.60 (d, J = 9.4 Hz, 1H), 7.47 (d, J = 9.2 Hz, 1H), 7.16-7.10 (m, 2H), 7.07 (dd, J = 8.40, 7.4 Hz, 1H), 6.98 (d, J = 8.5 Hz, 1H), 4.91 (s, 1H), 3.86 (s, 3H).

¹³C NMR (127 MHz, CDCl₃) δ C: 156.6, 151.9, 135.2, 135.0, 130.9, 129.4, 128.3, 127.9, 127.8, 127.6, 127.5, 126.9, 124.7, 124.7, 123.2, 123.2, 118.8, 115.1, 115.1, 114.6, 56.6.

HRMS (ESI⁺) C₂₁H₁₃O₂⁷⁹Br₂ [M-H]⁻ requires 454.92878; found 454.92850, Δ = -0.6 ppm.
2’-methoxy-5,5’-dimethyl-[1,1’-binaphthalen]-2-ol (39)

To a flask containing 5,5’-dibromo-2’-methoxy-[1,1'-binaphthalen]-2-ol (38) (200 mg, 0.437 mmol, 1.00 equiv.), Pd(dppf)Cl₂·CH₂Cl₂ (35.6 mg, 0.044 mmol, 0.10 equiv.), cesium carbonate (569 mg, 1.75 mmol, 4.00 equiv.) and methylboronic acid (104 mg, 1.75 mmol, 4.00 equiv.), was added 1,4-dioxane (4.50 mL, N₂ sparged). The resulting suspension was heated at 105 °C for 48 h. The mixture was cooled to room temperature, diluted with EtOAc (10.0 mL) and filtered through a short plug of silica (eluting with EtOAc). The resulting solution was concentrated in vacuo and purified by flash column chromatography (2:1 petroleum ether 40-60 – diethyl ether) to give 2’-methoxy-5,5’-dimethyl-[1,1’-binaphthalen]-2-ol (39) as an off-white powder (135 mg, 94%)

m.p. = 142-144°C. (CH₂Cl₂/petroleum ether 40-60)

IR (film) ν max/cm⁻¹: 3530, 2917, 2849, 1613, 1595, 1511, 1458, 1405, 1381, 1327, 1266, 1210, 1180, 1153, 1091, 1074, 1050, 802, 757

¹H NMR (500 MHz, CDCl₃) δH: 8.23 (dd, J = 9.2, 0.4, 1H), 8.08 (d, J = 9.2 Hz, 1H), 7.51 (d, J = 9.4 Hz, 1H), 7.38 (d, J = 9.2 Hz, 1H), 7.20 (d, J = 6.8 Hz), 7.18-7.13 (m, 2H), 7.10 (dd, J = 8.4, 7.0 Hz, 1H), 7.03 (d, J = 8.5, 1H), 6.90 (d, J = 8.3 Hz, 1H), 4.85 (s, 1H), 3.80 (s, 3H), 2.76 (s, 3H), 2.74 (s, 3H)

¹³C NMR (126 MHz, CDCl₃) δC: 155.9, 151.1, 134.7, 134.6, 134.5, 134.1, 128.7, 128.3, 127.4, 127.3, 126.4, 126.1, 125.2, 124.4, 123.5, 117.0, 116.1, 113.4, 56.8, 19.8, 19.8.

HRMS (ESI⁺) C_{23}H_{21}O_{2}⁺ [M+H]⁺ requires 329.15361; found: 329.15364, Δ +0.1 ppm
2′-methoxy-5,5′-diphenyl-[1,1′-binaphthalen]-2-ol (40)

To a flask containing 38 (500 mg, 1.09 mmol, 1.00 equiv), phenylboronic acid (333 mg, 2.73 mmol, 1.00 equiv) and Pd(PPh₃)₄ (63.1 mg, 54.6 μmol, 0.05 equiv) was added 1,2-dimethoxyethane (11.50 mL, Ar sparged) and sodium carbonate (2.0 M aq, 2.72 mL, Ar sparged). The resulting mixture was heated to 90 °C for 16 hours and cooled to room temperature before addition of water (10 mL) and EtOAc (10 mL). The layers were separated and the aqueous layer was extracted with EtOAc (10 mL × 2). The combined organic layers were washed with brine, dried over anhydrous MgSO₄, filtered and the solvent removed under reduced pressure. The resulting solid was purified by flash column chromatography (1:1 CH₂Cl₂ – petroleum ether 40-60 to 2:1 CH₂Cl₂ – petroleum ether 40-60) to give the title compound 40 as a white solid (360 mg, 0.80 mmol, 73% yield).

m.p. = 134-136 °C. (CH₂Cl₂/petroleum ether 40-60)

IR (film) νₓ/cm⁻¹: 3534, 3058, 2917, 2360, 1608, 1510, 1491, 1463, 1405, 1324, 1264, 1187, 1118, 1086, 809, 760, 702.

¹H NMR (500 MHz, CDCl₃) δH: 8.14 (d, J = 9.4 Hz, 1H), 7.99 (d, J = 9.4 Hz, 1H), 7.61-7.51 (m, 8H), 7.51-7.41 (m, 3H), 7.37-7.23 (m, 7H), 7.13 (dd, J = 8.0, 1.1 Hz, 1H), 4.94 (s, 1H), 3.83 (s, 3H).

¹³C NMR (126 MHz, CDCl₃) δC: 156.0, 151.3, 141.4, 141.0, 140.8, 140.7, 134.7, 134.3, 130.3, 129.6, 128.5, 128.4, 128.2, 127.8, 127.5, 127.4, 127.3, 127.1, 126.2, 125.5, 124.7, 117.5, 115.7, 115.6, 113.7, 56.8.

HRMS (ESI⁻) C₃₃H₂₅O₂⁻ [M-H]⁻ requires 451.17035; found: 451.17035, Δ -0.0 ppm
5,5'-Dibromo-2'-methoxy-[1,1'-binaphthalen]-2-ol (38) (2.37 g, 5.17 mmol, 1.00 equiv.) was dissolved in THF (52 mL) and cooled to −78 °C. n-BuLi (2.5 M in hexane, 4.14 mL, 10.3 mmol, 2.00 equiv.) was added by syringe pump over 1 hour after which time the reaction was stirred for a further 1 hour at −78 °C. The reaction was quenched by dropwise addition of water. After warming to room temperature, saturated ammonium chloride solution was added. EtOAc was added and the phases were separated. The aqueous phase was extracted twice with EtOAc and the combined organic layers were washed with brine, dried over anhydrous sodium sulfate, filtered and concentrated to give the crude product. Purification via flash column chromatography (4:1 petroleum ether 40-60 – EtOAc) afforded 5-bromo-2'-methoxy-[1,1'-binaphthalen]-2-ol (24) (1.03 g, 52%)

m.p. = 152-153 °C (EtOAc/petroleum ether 40-60).

IR (film) ν_{max}/cm$^{-1}$: 3486, 3409, 2980, 1613, 1592, 1507, 1461, 1369, 1346, 1333, 1268, 1252, 1231, 1214, 1192, 1173, 1147, 1131, 1086, 1055, 807, 751.

1H NMR (400 MHz, CDCl$_3$) δ = 8.35 (d, $J = 9.3$ Hz, 1H), 8.07 (d, $J = 9.1$ Hz, 1H), 7.91 (d, $J = 8.4$ Hz, 1H), 7.61 (dd, $J = 5.9$, 2.5 Hz, 1H), 7.48 (d, $J = 9.0$ Hz, 1H), 7.45 (d, $J = 9.0$ Hz, 1H), 7.38 (ddd, $J = 8.1$, 6.8, 1.3 Hz, 1H), 7.30 (ddd, $J = 8.3$, 6.8, 1.4 Hz, 1H), 7.13 (d, $J = 7.5$ Hz, 1H), 7.07–7.00 (m, 2H), 4.98 (s, 1H), 3.81 (s, 3H).

13C NMR (101 MHz, CDCl$_3$) δ = 156.1, 152.1, 135.2, 134.0, 131.5, 129.5, 129.2, 128.4, 127.7, 127.5, 126.9, 125.0, 124.8, 124.4, 123.3, 118.9, 115.6, 114.8, 113.8, 56.7.

HRMS (ESI$^+$) 79Br [M+H]$^+$ requires 377.01827; found 377.01822, Δ 0.1 ppm.
5-Bromo-2'-methoxy-[1,1'-binaphthalen]-2-ol (24) (190 mg, 0.500 mmol, 1.00 equiv.) was dissolved in DMF (5 mL) then CuCl (149 mg, 1.50 mmol 3.00 equiv.) and NaOMe (4.4 M in MeOH, 1.37 mL, 6.00 mmol, 12.0 equiv.) were added sequentially. The reaction was heated at 100 °C for 1 h then cooled to room temperature. Ice water was added followed by hydrochloric acid (3 M). The resulting suspension was extracted 3 times with EtOAc and the combined organic layers were washed with brine, dried over anhydrous sodium sulfate, filtered and concentrated to give the crude product. Purification via flash column chromatography (1:1 CH₂Cl₂ – petroleum ether 40-60 to 4:1 CH₂Cl₂ – petroleum ether 40-60) afforded 2',5-dimethoxy-[1,1'-binaphthalen]-2-ol (23) as an off-white solid (123 mg, 75%).

m.p. = 80-81 °C (CH₂Cl₂/ petroleum ether 40-60).

¹H NMR (400 MHz, CDCl₃) δ = 8.38 (d, J = 9.1 Hz, 1H), 8.04 (d, J = 9.1 Hz, 1H), 7.97-7.86 (m, 1H), 7.47 (d, J = 9.1 Hz, 1H), 7.42-7.32 (m, 2H), 7.29 (ddd, J = 8.2, 6.7, 1.4 Hz, 1H), 7.20 (dd, J = 8.5, 1.2 Hz, 1H), 7.14 (dd, J = 8.5, 7.6 Hz, 1H), 6.68 (d, J = 7.6 Hz, 1H), 6.64 (d, J = 8.5 Hz, 1H), 4.93 (s, 1H), 4.02 (s, 3H), 3.81 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ = 156.0, 155.9, 151.8, 135.0, 134.1, 131.0, 129.4, 128.1, 127.3, 126.7, 125.0, 124.2, 124.0, 121.0, 117.4, 116.4, 115.6, 114.9, 113.8, 101.7, 56.7, 55.5.

IR (film) ν max/cm⁻¹: 3493, 3434, 3063, 3003, 2958, 2936, 2838, 1620, 1591, 1464, 1431, 1415, 1333, 1301, 1268, 1252, 1223, 1165, 1149, 1122, 1076, 1052, 1020.

HRMS (ESI⁺) C_{22}H_{18}O_{3} [M+H]^+ requires 331.13287; found 31.13293, Δ +0.2 ppm
5-Bromo-2'-methoxy-[1,1'-binaphthalen]-2-ol (24) (379 mg, 1.00 mmol, 1.00 equiv.) and Pd(dppf)Cl$_2$.CH$_2$Cl$_2$ (98 mg, 0.100 mmol, 10 mol%) were dissolved in THF (10 mL) and MeMgCl solution (3 M in Et$_2$O, 1.70 mL, 5.00 mmol, 5.00 equiv.) was added. The resulting solution was heated under reflux for 16 hours. On cooling to room temperature, saturated ammonium chloride solution was added and phases were separated. The aqueous phase was extracted twice with EtOAc and the combined organic layers were washed with brine, dried over anhydrous sodium sulfate, filtered and concentrated to give the crude product which was purified by column chromatography (9:1 petroleum ether 40-60 – EtOAc) to give 2'-methoxy-7-methyl-[1,1'-binaphthalen]-2-ol (22) (334 mg, 88%) as an off-white solid.

m.p. = 135-136 °C (EtOAc/petroleum ether 40-60).

IR (film) ν_{max}/cm$^{-1}$: 3507, 1592, 1272, 1210, 1186, 1067, 808, 800, 752.

1H NMR (400 MHz, CDCl$_3$) δ = 8.00 (d, J = 9.1 Hz, 1H), 7.94 (d, J = 9.0 Hz, 1H), 7.80 (d, J = 8.3 Hz, 1H), 7.37 (d, J = 9.1 Hz, 1H), 7.30 (d, J = 9.2 Hz, 1H), 7.27–7.24 (m, 1H), 7.20–7.14 (m, 1H), 7.09–6.98 (m, 3H), 6.83 (d, J = 8.2 Hz, 1H), 4.81 (s, 1H), 3.70 (s, 3H), 2.65 (s, 3H).

13C NMR (101 MHz, CDCl$_3$) δ = 156.0, 151.0, 134.5, 134.1, 133.9, 131.0, 129.4, 128.2, 128.1, 127.3, 126.3, 126.0, 125.0, 124.3, 124.2, 123.4, 117.0, 115.6, 115.6, 113.8, 56.7, 19.8.

HRMS (ESi$^+$) C$_{22}$H$_{20}$O$_2$ [M+H]$^+$ requires 315.13796; found 315.13797, Δ 0.0 ppm.
4.4. 4-Substituted BINOLs

8-Bromo-6-methoxy-3,4-dihydronaphthalen-1(2H)-one (58)

Following a modified literature procedure, 6-methoxy-3,4-dihydronaphthalen-1(2H)-one (25.0 g, 142 mmol, 1.00 equiv.) and methoxyamine hydrochloride (23.4 g, 284 mmol, 2.00 equiv.) were dissolved in ethanol (284 mL) and pyridine (28.4 mL) was added. The resulting solution was stirred at room temperature for 16 hours. The solution was concentrated in vacuo and 2 M HCl solution was added followed by CH$_2$Cl$_2$. The organic phase was separated and the aqueous phase was extracted twice with CH$_2$Cl$_2$. The combined organic layers were washed with 1 M NaHCO$_3$ solution, brine, dried over anhydrous sodium sulfate, filtered and concentrated to give the crude product which was used without further purification.

The crude oxime ether was dissolved in acetic acid (568 mL). Pd(OAc)$_2$ (1.59 g, 7.01 mmol, 5 mol% equiv.) and N-bromosuccinimide (30.3 g, 170 mmol, 1.20 equiv.) were added and the reaction was heated at 80°C for 1 hour. On cooling to room temperature, the reaction mixture was filtered through celite and concentrated. The residue was dissolved in Et$_2$O and the resulting solution was washed with water, washed three times with NaOH solution (1 M), washed with brine and concentrated to give the crude product which was used without further purification.

The crude brominated oxime ether was dissolved in 2:3 dioxane-6M HCl (710 mL) and the solution was heated under reflux for 1 hour. On cooling to room temperature, the solution was extracted three times with Et$_2$O and the combined organic layers were washed with NaOH solution (1 M), brine and concentrated to give the crude product. Recrystallization from hexane-EtOAc afforded 8-bromo-6-methoxy-3,4-dihydronaphthalen-1(2H)-one (58) (21.0 g, 58%) as an off-white solid.

m.p. = 115-117 °C (n-hexane-EtOAc)

IR (film) ν_{max}/cm$^{-1}$: 1946, 1675, 1586, 1555, 1245, 1121, 1038, 884, 874, 841, 791.

1H NMR (CDCl$_3$, 400 MHz) δ = 7.06 (d, $J = 2.6$ Hz, 1H), 6.68 (dd, $J = 2.6$, 1.1 Hz, 1H), 3.82 (s, 3H), 2.93 (app. t, $J = 6.1$ Hz, 2H), 2.62 (dd, $J = 7.2$, 6.0 Hz, 2H) 2.05 (tt, $J = 7.3$, 6.2 Hz, 2H).

13C NMR (CDCl$_3$, 101 MHz) δ = 195.4, 161.8, 148.8, 124.2, 123.6, 119.9, 113.0, 55.7, 39.9, 31.5, 22.5.

HRMS (ESI$^+$) C$_{11}$H$_{11}$O$_2$Br [M+H]$^+$ requires 255.00152; found 255.00160, Δ +0.3 ppm.

Data in agreement with literature reported9
8-Bromo-6-methoxy-3,4-dihydronaphthalen-1(2H)-one (58) (21.0 g, 82.3 mmol, 1.00 equiv.) was dissolved in ethanol (164 mL) and the solution was cooled to 0 °C. NaBH₄ (6.22 g, 165 mmol, 2.00 equiv.) was added portionwise and the reaction was allowed to warm to room temperature over 16 hours. Saturated ammonium chloride solution was added and the mixture was extracted three times with CH₂Cl₂. The combined organic layers were washed with water, dried over anhydrous sodium sulfate, filtered and concentrated to give the crude product which was used without further purification.

The crude alcohol was dissolved in PhMe (411 mL), TsOH.H₂O (1.57 g, 8.23 mmol, 0.100 equiv.) was added and the reaction was heated under reflux for 30 minutes. On cooling to room temperature, powdered KOH (462 mg, 8.23 mmol, 0.100 equiv.) and stirring was continued for 10 minutes. DDQ (24.2 g, 107 mmol, 1.30 equiv.) was added and the reaction was heated at 40 °C for 2 hours and cooled to room temperature. The solvent was removed in vacuo and the residue was suspended in 1:4 CH₂Cl₂ – petroleum ether 40-60 and filtered through a short silica plug eluting with the same solvent mixture. The solvent was removed in vacuo to give the crude product which was used without further purification.

The crude alkene was dissolved in CH₂Cl₂ (411 mL) and cooled to 0 °C. BBr₃ (9.50 mL, 24.7 g, 99.0 mmol, 1.20 equiv.) was added dropwise over 5 minutes and the reaction was allowed to warm to room temperature and stirred for 16 hours. The reaction was cooled to 0 °C and quenched by dropwise addition of water. The resulting biphasic solution was extracted three times with CH₂Cl₂ and the combined organic layers were washed with water, dried over anhydrous sodium sulfate, filtered and concentrated to give the crude product which was recrystallised from hexane-EtOAc to give 1-bromo-3-methoxynaphthalene (56) (12.9 g, 70%) as a yellow solid.

\[\text{m.p.} = 91-92 \, ^\circ\text{C} \] (n-hexane/EtOAc)

\[\text{IR (film) } \nu_{\max}/\text{cm}^{-1} : 3173, 2944, 2914, 1599, 1566, 1243, 1117, 1078, 1041, 1015, 855, 807. \]

\[^{1}\text{H NMR (400 MHz, CDCl₃) } \delta = 8.14 (d, J = 7.4 \text{ Hz}, 1H), 7.66 (d, J = 7.6 \text{ Hz}, 1H), 7.55-7.35 (m, 3H, H₇), 7.14 (d, J = 2.4 \text{ Hz}, 1H), 5.38 (s, 1H). \]

\[^{13}\text{C NMR (101 MHz, CDCl₃) } \delta = 153.1, 135.3, 127.7, 127.4, 127.1, 127.0, 125.1, 123.8, 122.0), 109.9. \]

\[\text{HRMS (ESI')} \ C_{10}H_{5}O^{79}\text{Br [M+H]}^{+} \text{ requires } 220.96075; \text{ found } 220.96065, \Delta = 0.5 \text{ ppm.} \]

Data in agreement with literature reported\(^8\)
4,4'-Dibromo-[1,1'-binaphthalene]-2,2'-diol (41)

[Chemical structure image]

4-Bromonaphthalen-2-ol (56) (12.9 g, 58.0 mmol, 1.00 equiv.) was dissolved in CH₂Cl₂ (400 mL) and [Cu(TMEDA)OHCl]₂ (269 mg, 0.580 mmol, 1 mol%) was added. The reaction was stirred for 16 hours at room temperature open to air. The reaction mixture was filtered through a short silica plug eluting with CH₂Cl₂. Evaporation of the solvent gave 4,4'-dibromo-[1,1'-binaphthalene]-2,2'-diol (41) (12.9 g, 100%) as an off-white solid.

m.p. = 212-213°C (CH₂Cl₂).

IR (film) νmax/cm⁻¹: 3509, 3464, 1573, 1371, 1217, 1189, 1175, 1148, 1131, 933, 871, 758.

¹H NMR (400 MHz, CDCl₃) δ = 8.29 (d, J = 8.8 Hz, 2H), 7.74 (s, 2H), 7.49 (ddd, J = 8.3, 6.8, 1.2 Hz, 2H), 7.36 (ddd, J = 8.2, 6.8, 1.3 Hz, 2H), 7.14 (d, J = 8.4 Hz, 2H), 5.04 (s, 2H, OH).

¹³C NMR (101 MHz, CDCl₃) δ = 152.4, 134.0, 128.6, 128.3, 128.0, 126.1, 125.7, 124.6, 122.1, 110.6.

HRMS (ESI⁻) C₂₀H₁₂O₂⁷⁹Br₂ [M-H]⁻ requires 442.91108; found 442.91085, Δ -0.2 ppm.

Data in agreement with literature reported¹⁰
4,4'-Dibromo-2'-methoxy-[1,1'-binaphthalen]-2-ol (38)

![Chemical Structure](image)

4,4'-Dibromo-[1,1'-binaphthalene]-2,2'-diol (41) (12.9 g, 29.0 mmol, 1.00 equiv.) was dissolved in acetone (230 mL) and K$_2$CO$_3$ (5.20 g, 37.7 mmol, 1.30 equiv.) followed by iodomethane (1.99 mL, 4.53 g, 31.9 mmol, 1.10 equiv.) were added. The reaction was heated under reflux for 16 hours. Upon cooling to room temperature, the solvent was removed *in vacuo*. The residue was partitioned between water and CH$_2$Cl$_2$ and the phases were separated. The aqueous layer was extracted twice with CH$_2$Cl$_2$ and the organic layers were combined, dried over anhydrous sodium sulfate, filtered and concentrated to give the crude product. Purification *via* flash column chromatography (1:1 CH$_2$Cl$_2$ – petroleum ether) gave 4,4'-dibromo-2'-methoxy-[1,1'-binaphthalen]-2-ol (38) (6.42 g, 47%) as an off-white solid.

m.p. = 83-84 °C (CH$_2$Cl$_2$/petroleum ether 40-60)

IR (film) ν_{max}/cm$^{-1}$ 3511, 3405, 3394, 3383, 3360, 3352, 3333, 1581, 1499, 1316, 1258, 1241, 1211, 1193, 1169, 1149, 1131, 1098, 1060, 1027, 946, 912, 842, 755, 744.

1H NMR (CDCl$_3$, 400 MHz) δ = 8.32–8.24 (m, 2H), 7.82 (s, 1H), 7.71 (s, 1H), 7.49 (ddd, J = 8.4, 6.8, 1.2 Hz, 1H), 7.43 (ddd, J = 8.3, 6.9, 1.2 Hz, 1H), 7.33 (ddd, J = 8.1, 6.7, 1.2 Hz, 1H), 7.27 (ddd, J = 8.2, 5.6, 1.2 Hz, 1H), 7.19 (br. d, J = 8.5 Hz, 1H), 7.04 (br. d, J = 8.7 Hz, 1H), 4.89–4.84 (m, 1H), 3.81 (s, 3H).

13C NMR (CDCl$_3$, 121 MHz) δ = 155.6, 151.1, 134.6, 134.4, 128.4, 128.2, 127.9, 127.7, 127.5, 127.5, 125.9, 125.8, 125.3, 125.2, 124.8, 124.2, 121.8, 118.2, 114.9, 114.7, 57.0.

HRMS (ESI$^-$) C$_{21}$H$_{14}$O$_2$Br$_2$ [M-H]$^-$ requires 456.92673; found 456.92651, Δ+0.1 ppm.
4,4'-Dibromo-2'-methoxy-[1,1'-binaphthalen]-2-ol (38) (3.66 g, 8.00 mmol, 1.00 equiv.) was dissolved in THF (80 mL) and cooled to -78 °C. BuLi (2.5 M in hexane, 6.40 mL, 16.0 mmol, 2.00 equiv.) was added by syringe pump over 1 hour after which time the reaction was stirred for a further 1 hour at -78 °C. The reaction was quenched by dropwise addition of water. After warming to room temperature, saturated ammonium chloride solution was added. EtOAc was added and the phases were separated. The aqueous phase was extracted twice with EtOAc and the combined organic layers were washed with brine, dried over anhydrous sodium sulfate, filtered and concentrated to give the crude product which was purified by column chromatography (4:1 petroleum ether 40-60 – EtOAc) to give 7-bromo-2'-methoxy-[1,1'-binaphthalen]-2-ol (28) (2.09 g, 69%).

m.p. = 171-172 °C (EtOAc/petroleum ether 40-60).

IR (film) ν_{max}/cm^{-1}: 3457, 3435, 3424, 3416, 1588, 1261, 1247, 1209, 1173, 1149, 806, 745.

1H NMR (400 MHz, CDCl\textsubscript{3}) δ = 8.16 (d, J = 8.7 Hz, 1H), 7.97 (d, J = 9.1 Hz, 1H), 7.81 (d, J = 8.5 Hz, 1H), 7.63 (s, 1H), 7.38 (d, J = 9.1 Hz, 1H), 7.31 (m, 2H), 7.23–7.15 (m, 2H), 7.06 (d, J = 8.5 Hz, 1H), 6.97 (d, J = 7.7 Hz, 1H), 4.84 (s, 1H), 3.72 (s, 3H).

13C NMR (101 MHz, CDCl\textsubscript{3}) δ = 155.9, 151.0, 134.5, 133.8, 131.4, 129.4, 128.2, 127.7, 127.5, 127.4, 127.2, 125.3, 124.7, 124.6, 124.3, 123.7, 121.7, 115.3, 114.4, 113.6, 56.6.

HRMS (ESI+) C\textsubscript{21}H\textsubscript{13}O\textsubscript{2}Br [M+H]+ requires 377.01827; found 377.01785, Δ -1.1 ppm.
4-Bromo-2’-methoxy-[1,1′-binaphthalen]-2-ol (28) (379 mg, 1.00 mmol, 1.00 equiv.) was dissolved in DMF (10 mL) then CuCl (279 mg, 3.00 mmol, 3.00 equiv.) and NaOMe (4.4 M in MeOH, 2.70 mL, 12.0 mmol, 12.0 equiv.) were added sequentially. The reaction was heated at 100 °C for 1 h then cooled to room temperature. Ice water was added followed by hydrochloric acid (3 M). The resulting suspension was extracted 3 times with EtOAc and the combined organic layers were washed with brine, dried over anhydrous sodium sulfate, filtered and concentrated to give the crude product. Purification via flash column chromatography (1:1 CH₂Cl₂ – petroleum ether 40-60 to 4:1 CH₂Cl₂ – petroleum ether 40-60) afforded 2’,4-dimethoxy-[1,1′-binapthalen]-2-ol (29) as an off-white solid (276 mg, 84%).

m.p. = 171-172 °C (CH₂Cl₂/petroleum ether 40-60).

IR (film) ν_{max}/cm⁻¹: 3490, 3430, 2961, 2938, 1619, 1591, 1388, 1263, 1230, 1174, 1115, 763.

¹H NMR (400 MHz, CDCl₃) δ = 8.17 (d, J = 8.4 Hz, 1H), 7.93 (d, J = 9.1 Hz, 1H), 7.80 (d, J = 8.1 Hz, 1H), 7.37 (d, J = 9.1 Hz, 1H), 7.27 (ddd, J = 8.0, 6.4, 1.6 Hz, 1H), 7.23–7.10 (m, 4H), 6.90 (d, J = 8.3 Hz, 1H), 6.66 (s, 1H), 4.85 (s, 1H), 3.98 (s, 3H), 3.71 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ = 156.9, 156.3, 151.5, 134.5, 134.3, 130.9, 129.5, 128.1, 127.2, 127.1, 125.1, 124.5, 124.1, 122.6, 122.2, 121.6, 115.4, 113.9, 106.9, 96.5, 56.7, 55.7.

HRMS (ESI⁺) C₂₂H₁₈O₃ [M+H]⁺ requires 331.13287; found 31.13272, Δ −0.5 ppm.
2'-Methoxy-4-methyl-[1,1'-binaphthalen]-2-ol (26)

![Structure of 2'-Methoxy-4-methyl-[1,1'-binaphthalen]-2-ol (26)](structure_image)

4-Bromo-2'-methoxy-[1,1'-binaphthalen]-2-ol (28) (379 mg, 1.00 mmol, 1.00 equiv.) and Pd(dppf)Cl₂.CH₂Cl₂ (82.6 mg, 0.100 mmol, 10 mol%) were dissolved in THF (10 mL) and MeMgCl solution (3 M in Et₂O, 1.7 mL, 5.00 mmol, 5.00 equiv.) was added. The resulting solution was heated under reflux for 16 hours. On cooling to room temperature, saturated ammonium chloride solution was added and phases were separated. The aqueous phase was extracted twice with EtOAc and the combined organic layers were washed with brine, dried over anhydrous sodium sulfate, filtered and concentrated to give the crude product which was purified by column chromatography (9:1 petroleum ether 40-60 – EtOAc) to give 2'-methoxy-4-methyl-[1,1'-binaphthalen]-2-ol (28) (249 mg, 79%) as an off-white solid.

m.p. = 137-138 °C (EtOAc/petroleum ether 40-60).

IR (film) ν_{max}/cm⁻¹: 3504, 3434, 3388, 1592, 1508, 1262, 1247, 1223, 1183, 1093, 1065, 804, 754, 744, 666, 643

¹H NMR (400 MHz, CDCl₃) δ = 7.96–7.87 (m, 2H), 7.79 (d, J = 7.3 Hz, 1H), 7.37 (d, J = 9.1 Hz, 1H), 7.26 (m, 2H), 7.19–7.08 (m, 4H), 6.98 (d, J = 8.6 Hz, 1H), 4.78 (br. s, 1H), 3.70 (s, 3H), 2.69 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ = 156.1, 150.7, 136.5, 134.2, 134.0, 131.0, 129.4, 128.5, 128.1, 127.3, 126.2, 125.4, 125.1, 124.4, 124.1, 123.1, 118.3, 115.6, 113.8, 113.0, 56.7, 19.6.

HRMS (ESI⁺) C₂₂H₁₈O₂ [M+H]⁺ requires 315.13796; found 315.13791, Δ −0.2 ppm.
2’-Methoxy-4-phenyl-[1,1'-binaphthalen]-2-ol (27)

![Structural formula of 2'-Methoxy-4-phenyl-[1,1'-binaphthalen]-2-ol (27)](image)

4-Bromo-2’-methoxy-[1,1'-binaphthalen]-2-ol (28) (379 mg, 1.00 mmol, 1.00 equiv.), phenyl boronic acid (144 mg, 1.20 mmol, 1.20 equiv.) and Pd(PPh₃)₄ (57.8 mg, 0.0500 mmol, 0.0500 equiv.) were charged to a flask fitted with a water-cooled condenser. The flask was evacuated and backfilled with argon three times. 1,2-Dimethoxyethane (Ar sparged, 10 mL) was added followed by aqueous Na₂CO₃ solution (Ar sparged, 2 M, 1.25 mL, 2.50 equiv.). The condenser was fitted with an argon balloon and heated at 90 °C for 16 hours. After cooling to room temperature, 1 M HCl solution was added and the solution was extracted three times with CH₂Cl₂, the combined organic layers were dried over anhydrous sodium sulfate, filtered and concentrated to give the crude product which was purified by column chromatography (9:1 petroleum ether 40-60 – EtOAc) to give 2’-methoxy-4-phenyl-[1,1'-binaphthalen]-2-ol (27) (314 mg, 84%) as a white solid.

m.p. = 103-104 °C (EtOAc/petroleum ether 40-60).

IR (film) νmax/cm⁻¹: 3657, 2980, 2888, 1382, 1169, 1142, 1088, 1060, 945, 809, 762, 746, 702.

¹H NMR (400 MHz, CDCl₃) δ = 7.96 (d, J = 9.0 Hz, 1H), 7.85–7.75 (m, 2H), 7.53 (dt, J = 6.1, 1.4 Hz, 2H), 7.47–7.34 (m, 4H), 7.29 (ddd, J = 8.1, 6.3, 1.7 Hz, 1H), 7.25–7.09 (m, 5H), 7.03 (dd, J = 8.1, 1.7 Hz, 1H), 4.87 (s, 1H), 3.74 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ = 156.1, 150.6, 142.1, 140.5, 134.2, 134.1, 131.1, 130.2, 129.5, 128.3, 128.2, 127.6, 127.4, 126.4, 126.3, 125.2, 125.0, 124.2, 123.3, 118.5, 115.3, 114.6, 113.8, 56.7.

HRMS (ESI⁺) C₂₇H₂₀O₂ [M+H]⁺ requires 377.15361; found 377.15358, Δ –0.1 ppm.
2'-Methoxy-4,4'-diphenyl-[1,1'-binaphthalen]-2-ol (42)

4,4'-Dibromo-2'-methoxy-[1,1'-binaphthalen]-2-ol (38) (458 mg, 1.00 mmol, 1.00 equiv.), phenyl boronic acid (293 mg, 2.40 mmol, 2.40 equiv.) and Pd(PPh₃)₄ (57.8 mg, 0.05 mmol, 5 mol%) were charged to a flask fitted with a water-cooled condenser. The flask was evacuated and backfilled with argon three times. 1,2-Dimethoxyethane (Argon sparged, 10 mL) was added followed by aqueous Na₂CO₃ solution (Argon sparged, 2 M, 2.50 mL, 5.00 equiv.). The flask was fitted with an argon balloon and heated at 90 °C for 16 hours. After cooling to room temperature, 1 M HCl solution was added and the solution was extracted three times with CH₂Cl₂, the combined organic layers were dried over anhydrous sodium sulfate, filtered and concentrated to give the crude product which was purified by column chromatography (9:1 petroleum ether 40-60 – EtOAc) to give 2'-methoxy-4,4'-diphenyl-[1,1'-binaphthalen]-2-ol (42) (384 mg, 85%) as a white solid.

m.p. = 118-120 °C (EtOAc – petroleum ether 40-60)

IR (film) νₘₐₓ/cm⁻¹: 3526, 3407, 3056, 2970, 2935, 1587, 1344, 1224, 1175, 1144, 763, 702, 658.

¹H NMR (CDCl₃, 400 MHz) δ = 7.87–7.82 (m, 2H), 7.58–7.35 (m, 11H), 7.29–7.11 (m, 7H), 4.95 (s, 1H), 3.77 (s, 3H).

¹³C NMR (CDCl₃, 121 MHz) δ =155.4, 150.7, 143.6, 142.2, 140.5, 140.5, 134.6, 134.3, 130.2, 130.1, 128.5, 128.3, 127.8, 127.8, 127.6, 127.4, 127.3, 126.5, 126.4, 126.4, 125.4, 125.3, 124.3, 123.3, 118.5, 114.9, 114.7, 114.6, 56.7.

HRMS (ESI⁺) C₃₃H₂₄O₂ [M+H]⁺ requires 453.18491; found 453.18411, Δ –1.8 ppm.
2′-Methoxy-4,4′-dimethyl-[1,1′-binaphthalen]-2-ol (43)

4,4′-dibromo-2′-methoxy-[1,1′-binaphthalen]-2-ol (38) (687 mg, 1.50 mmol, 1.00 equiv.) and Pd(dppf)Cl$_2$.CH$_2$Cl$_2$ (122 mg, 0.15 mmol, 10 mol%) were dissolved in THF (15 mL) and MeMgCl solution (3 M in Et$_2$O, 5.00 mL, 15.0 mmol, 10.0 equiv.) was added. The resulting solution was heated under reflux for 16 hours. On cooling to room temperature, saturated ammonium chloride solution was added and phases were separated. The aqueous phase was extracted twice with EtOAc and the combined organic layers were washed with brine, dried over anhydrous sodium sulfate, filtered and concentrated to give the crude product which was purified by column chromatography (9:1 petroleum ether 40-60 – EtOAc) to give 2′-methoxy-4,4′-dimethyl-[1,1′-binaphthalen]-2-ol (43) (224 mg, 45%) as an off-white solid.

m.p. = 178-180 °C (EtOAc – petroleum ether 40-60)

IR (film) ν_{max}/cm$^{-1}$: 3519, 2980, 1591, 1342, 1264, 1220, 1179, 1171, 1136, 1111, 1058, 999, 869, 758

1H NMR (CDCl$_3$, 400 MHz) δ = 8.13–7.92 (m, 2H), 7.48–7.21 (m, 7H), 7.15–7.09 (m, 1H), 4.92 (s, 1H), 3.83 (s, 3H), 2.89 (s, 3H), 2.82 (s, 3H).

13C NMR (CDCl$_3$, 121 MHz) δ = 155.6, 150.8, 137.9, 136.4, 134.3, 134.1, 128.7, 128.5, 127.0, 126.1, 125.6, 125.5, 124.4, 124.3, 124.0, 123.0, 118.2, 115.0, 113.4, 113.2, 56.7, 20.1, 19.6.

HRMS (ESI$^+$) C$_{23}$H$_{20}$O$_2$ [M+H]$^+$ requires 329.15361; found 329.15279, Δ –1.4 ppm.
4.5 BINOLs Prepared by Other Synthetic Routes

2'-Methoxy-6'-nitro-[1,1'-binaphthalen]-2-ol was prepared following a reported method.7

BINOLs 1, 9 and 10 were prepared by alkylation of racemic [1,1'-binaphthalam]-2,2'-diol.

BINOLs 12, 17 and 25 were prepared by deprotection of racemic benzylated compounds.11

BINOL 31 was prepared by dimerization of commercially available 7-methoxy-2-naphthol, followed by mono-alkylation.
2'-Methoxy-[1,1'-binaphthalen]-2-ol (1)

[1,1'-binaphthalene]-2,2'-diol (5.00 g, 17.4 mmol, 1.00 equiv.) and K₂CO₃ (3.14 g, 22.7 mmol, 1.30 equiv.) were suspended in acetone (140 mL) and iodomethane (2.73 g, 1.20 mL, 19.2 mmol, 1.10 equiv) was added. The resulting suspension was heated under reflux for 16 hours after which time the reaction was cooled to room temperature. The solvent was removed by evaporation and the residue was partitioned between water and CH₂Cl₂. The phases were separated and the aqueous layer was extracted twice with CH₂Cl₂. The combined organic layers were dried over anhydrous sodium sulfate, filtered and concentrated to give the crude product. Purification via flash column chromatography (1:1 CH₂Cl₂ – petroleum ether 40-60 to 3:1 CH₂Cl₂ – petroleum ether 40-60) afforded 2'-methoxy-[1,1'-binaphthalen]-2-ol (1) (2.27 g, 43%) as a white solid.

m.p. = 151-153 °C (CH₂Cl₂/petroleum ether 40-60)

¹H NMR (500 MHz, CDCl₃) δ = 8.06 (d, J = 9.1 Hz, 1H), 7.95 (d, J = 9.2 Hz, 1H), 7.93 (d, J = 9.3 Hz, 1H), 7.91 (d, J = 10.6 Hz, 1H), 7.49 (d, J = 9.1 Hz, 1H), 7.42 (d, J = 1.9 Hz, 2H), 7.36 (t, J = 7.4 Hz, 1H), 7.32 (t, J = 7.7 Hz, 1H), 7.27 (t, J = 8.3 Hz, 1H), 7.24 (d, J = 9.0 Hz, 1H), 7.12 (d, J = 8.4 Hz, 1H), 5.00 (s, 1H), 3.81 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δC = 156.1, 151.3, 134.1, 133.9, 131.1, 129.9, 129.5, 129.2, 128.2, 127.4, 126.5, 125.0, 124.9, 124.3, 123.3, 117.6, 115.4, 115.1, 113.9, 56.7

Data in agreement with literature¹²
Following a modified literature procedure,10 to a solution of [1,1'-binaphthalene]-2,2'-diol (1.43 g, 5.00 mmol, 1.00 equiv), triphenylphosphine (1.31 g, 5.00 mmol, 1.00 equiv) and isopropyl alcohol (1.50 g, 1.91 mL, 25.0 mmol, 5.00 equiv) in tetrahydrofuran (50 mL) was added diisopropyl azodicarboxylate (1.01 g, 0.98 mL, 5.00 mmol, 1.00 equiv) dropwise. The resulting mixture was stirred at room temperature for 24 h before being concentrated in vacuo. The crude product was purified by flash column chromatography (3:2 CH\textsubscript{2}Cl\textsubscript{2} – petroleum ether 40-60) to give 2'-Isopropoxy-[1,1'-binaphthalen]-2-ol (9) (910 mg, 55%) as a white solid.

1H NMR (500 MHz, CDCl\textsubscript{3}) \(\delta \) 8.00 (d, \(J = 9.0 \) Hz, 1H), 7.93-7.88 (m, 2H), 7.86 (d, \(J = 8.1 \) Hz, 1H), 7.45 (d, \(J = 9.0 \) Hz, 1H), 7.40-7.33 (m, 2H), 7.31 (ddd, \(J = 0.8, 7.2, 7.7 \) Hz, 1H), 7.29-7.24 (m, 1H), 7.21 (ddd, \(J = 1.3, 6.9, 8.3 \) Hz, 1H), 7.18 (d, \(J = 8.5 \) Hz, 1H), 7.07 (d, \(J = 8.4 \) Hz, 1H), 5.08 (s, 1H), 4.44 (sept, \(J = 6.1 \) Hz, 1H), 1.13 (d, \(J = 6.1 \) Hz, 3H), 0.99 (d, \(J = 6.1 \) Hz, 3H).

13C NMR (126 MHz, CDCl\textsubscript{3}) \(\delta \) 154.8, 151.4, 134.4, 134.0, 130.8, 129.9, 129.7, 129.2, 128.2, 128.1, 127.2, 126.3, 125.4, 125.3, 124.5, 123.2, 118.2, 118.0, 117.7, 115.7, 72.7, 22.4, 22.3.

HRMS (ESI+): \(C_{23}H_{21}O_2^+ \) [M+H]+ requires 329.15361, found: 329.15366, \(\Delta +0.2 \) ppm.

Data in agreement with literature13
2'-{(Benzyloxy)-[1,1'-binaphthalen]-2-ol (10)

[1,1'-binaphthalene]-2,2'-diol (2.00 g, 6.98 mmol, 1.00 equiv.) and K$_2$CO$_3$ (1.25 g, 9.08 mmol, 1.30 equiv.) were suspended in acetone (56.0 mL) and benzyl bromide (1.31 g, 0.91 mL, 7.68 mmol, 1.10 equiv) was added. The resulting suspension was heated under reflux for 7 hours after which time the reaction was cooled to room temperature. The solvent was removed by evaporation and the residue was partitioned between water and CH$_2$Cl$_2$. The phases were separated and the aqueous layer was extracted twice with CH$_2$Cl$_2$. The combined organic layers were dried over anhydrous sodium sulfate, filtered and concentrated to give the crude product. Purification via flash column chromatography (1:2 CH$_2$Cl$_2$ – petroleum ether 40-60 to 1:1 CH$_2$Cl$_2$ – petroleum ether 40-60) afforded 2'-{(benzyloxy)-[1,1'-binaphthalen]-2-ol (10) (1.27 g, 48%) as a light brown solid.

m.p. = 108-110 °C (CH$_2$Cl$_2$/petroleum ether 40-60)

1H NMR (500 MHz, CDCl$_3$) δ 7.99 (d, J = 9.0 Hz, 1H), 7.96 (d, J = 8.9 Hz, 1H), 7.91 (t, J = 7.3 Hz, 1H), 7.48 (d, J = 9.1 Hz, 1H), 7.43-7.38 (m, 2H), 7.37-7.24 (m, 3H), 7.23-7.18 (m, 3H), 7.13 (d, J = 8.5 Hz, 1H), 7.10-7.04 (m, 2H), 5.16-5.06 (m, 2H), 5.00 (s, 1H).

13C NMR (126 MHz, CDCl$_3$) δ 155.0, 151.4, 137.0, 134.2, 133.9, 130.9, 129.9, 129.8, 129.3, 128.2, 128.2, 127.8, 127.4, 127.0, 126.5, 125.1, 125.1, 124.5, 123.4, 117.6, 116.9, 116.0, 115.2, 71.2

Data in agreement with literature13
2'-Hydroxy-[1,1'-binaphthalen]-2-yl pivalate (59)

(±)-BINOL (5.72 g, 20.0 mmol, 1.00 equiv.) was dissolved in MeCN and Et$_3$N (8.40 mL, 11.6 g, 60.0 mmol, 3.00 equiv.) was added. The resulting solution was cooled to 0 °C and pivaloyl chloride (2.40 mL, 2.44 g, 20.2 mmol, 1.01 equiv.) was added dropwise. The reaction was warmed to room temperature and stirred for an additional 5 hours. Et$_2$O was added and the mixture was washed with aqueous HCl (1 M), aqueous NaHCO$_3$ then brine. The organic phase was dried over anhydrous sodium sulfate, filtered and concentrated in vacuo to give the crude product which was purified via flash column chromatography (4:1 petroleum ether 40-60 – EtOAc) to give 2'-hydroxy-[1,1'-binaphthalen]-2-yl pivalate (59) (4.00 g, 54%) as a white solid.

m.p. = 118-120 °C (EtOAc/petroleum ether 40-60).

1H NMR (400 MHz, CDCl$_3$) $\delta = 8.11$ (d, $J = 8.8$ Hz, 1H), 8.01 (d, $J = 8.3$ Hz, 1H), 7.92 (d, $J = 8.9$ Hz, 1H), 7.86 (d, $J = 8.0$ Hz, 1H), 7.54 (ddd, $J = 8.1$, 5.9, 2.1 Hz, 1H), 7.42 (d, $J = 8.9$ Hz, 1H), 7.40–7.33 (m, 4H), 7.29 (ddd, $J = 8.2$, 6.6, 1.4 Hz, 1H), 7.10 (dd, $J = 8.4$, 1.1 Hz, 1H), 5.19 (s, 1H), 0.82 (s, 9H).

13C NMR (101 MHz, CDCl$_3$) $\delta = 177.8$, 151.8, 148.3, 133.6, 133.5, 132.2, 130.7, 130.3, 129.0, 128.3, 127.9, 127.5, 126.7, 126.2, 125.6, 124.6, 123.5, 123.0, 121.8, 118.2, 114.2, 38.8, 26.5.

LRMS (ESI$^+$) C$_{25}$H$_{22}$O$_3$ [M–H]$^-$ requires 369.1; found 369.0.

Data in agreement with literature7
2'-Hydroxy-6'-nitro-[1,1'-binaphthalen]-2-y1 pivalate (60)

2'-Hydroxy-[1,1'-binaphthalen]-2-y1 pivalate (59) (2.00 g, 5.40 mmol, 1.00 equiv.) was dissolved in Et₂O (54 mL) and the resulting solution was cooled to 0 °C. HNO₃ (conc., 3.35 mL) followed by H₂SO₄ (conc., 1.35 mL) were added. After 2 hours the mixture was poured into ice/water and diluted with Et₂O. The organic phase was washed three times with water, dried over anhydrous sodium sulfate, filtered and concentrated to give the crude product. The crude oil was triturated with 1:1 CH₂Cl₂ – petroleum ether 40-60 to give 2'-hydroxy-6'-nitro-[1,1'-binaphthalen]-2-y1 pivalate (60) (1.16 g, 52%) was a yellow solid.

m.p. = 204-206 °C (CH₂Cl₂/petroleum ether 40-60).

IR (film) ν_max/cm⁻¹: 3374, 1737, 1618, 1530, 1494, 1479, 1331, 1292, 1283, 1128, 741.

¹H NMR (400 MHz, DMSO-d₆) δ = 10.51 (br. s, 1H), 8.97 (d, J = 2.5 Hz, 1H), 8.30 (d, J = 9.1 Hz, 1H), 8.12 (d, J = 8.9 Hz, 1H), 8.08 (d, J = 8.4 Hz, 1H), 7.95 (dd, J = 9.4, 2.5 Hz, 1H), 7.51 (m, 3H), 7.38 (ddd, J = 8.2, 6.8, 1.3 Hz, 1H), 7.16 (d, J = 8.4, 1H), 7.02 (d, J = 9.4 Hz, 1H), 0.70 (s, 9H).

¹³C NMR (101 MHz, DMSO-d₆) δ = 175.9, 157.6, 147.4, 142.8, 137.3, 133.3, 132.8, 131.9, 129.7, 128.8, 127.3, 126.5, 126.1, 126.1, 125.6, 125.5, 124.4, 122.8, 120.8, 119.9, 114.6, 26.5.

LRMS (ESI⁻) C₂₅H₂₁NO₅ [M−H]⁻ requires 414.1; found 414.0.

Data in agreement with literature⁷
2'-Methoxy-6'-nitro-[1,1'-binaphthalen]-2-ol (11)

2'-Hydroxy-6'-nitro-[1,1'-binaphthalen]-2-yl pivalate (60) (1.20 g, 2.89 mmol, 1.00 equiv.) was dissolved in acetone (30 mL) and K$_2$CO$_3$ (798 mg, 5.78 mmol, 2.00 equiv.) followed by iodomethane (0.27 mL, 616 mg, 4.33 mmol, 1.50 equiv.) were added. The reaction was heated under reflux for 24 hours then cooled to room temperature. The crude mixture was concentrated to approximately 10 mL before addition of water (50 mL). A yellow solid was precipitated and collected by filtration. The crude solid was dissolved in CH$_2$Cl$_2$ and the resulting solution was washed with brine, dried over anhydrous sodium sulfate, filtered and concentrated to give the crude product which was used without further purification.

The crude methylated BINOL was dissolved in 3:1 THF/water (14 mL) and KOH (196 mg) was added. The reaction was stirred for 6 hours at 70 °C, cooled to room temperature then partially concentrated in vacuo to remove THF. 1 M HCl was added and the solution was extracted three times with CH$_2$Cl$_2$. The combined organic layers were washed 5 times with 1 M HCl, dried over anhydrous sodium sulfate, filtered and concentrated to give the crude product. Purification via flash column chromatography (4:1 CH$_2$Cl$_2$ – petroleum ether 40-60) gave 2'-methoxy-6'-nitro-[1,1'-binaphthalen]-2-ol (11) (582 mg, 55%).

m.p. = 234-236 °C (CH$_2$Cl$_2$/petroleum ether 40-60).

IR (film) ν_{max}/cm$^{-1}$: 3058, 2934, 2840, 1597, 1493, 1472, 1467, 1327, 1267, 1244, 1198, 1142, 1128, 1093, 1081, 1047, 910, 812, 798, 740.

1H NMR (400 MHz, CDCl$_3$) δ = 8.86 (d, $J = 2.3$ Hz, 1H), 8.25 (d, $J = 9.1$ Hz, 1H), 8.01 (dd, $J = 9.3$, 2.4 Hz, 1H), 7.94 (d, $J = 8.9$ Hz, 1H), 7.89 (d, $J = 8.1$ Hz, 1H), 7.64 (d, $J = 9.2$ Hz, 1H), 7.38–7.30 (m, 2H), 7.30–7.21 (m, 3H), 6.94 (d, $J = 8.4$ Hz, 1H), 3.88 (s, 3H).

13C NMR (101 MHz, CDCl$_3$) δ = 158.9, 151.3, 144.1, 137.0, 133.4, 133.3, 130.4, 129.2, 128.4, 127.5, 126.8, 126.6, 125.2, 124.3, 123.6, 120.6, 117.6, 116.3, 115.3, 113.8, 56.7.

HRMS (ESI') $\text{C}_{21}\text{H}_{15}\text{NO}_4$ [M-H]$^-$ requires 344.09283; found 344.09256, Δ −0.8 ppm.

Data in agreement with literature7
2'-Methoxy-6'-methyl-[1,1'-binaphthalen]-2-ol (12)

Ammonium formate (473 mg, 7.50 mmol, 6.00 equiv.) and Pd/C (10% wt, 40 mg) were added to a solution of 2'-Methoxy-6'-methyl-1,1'-binaphthalen-2-ol11 (505 mg, 1.25 mmol) in 9:1 ethyl acetate/methanol in a sealed pressure tube. The suspension was then stirred at 50 °C for 24 h. after cooling to room temperature, the reaction mixture was filtered through celite, washing the filtercake with ethyl acetate, and the filtrate was subsequently washed twice with water and concentrated under reduced pressure. Purification of the residue via column chromatography eluting with a gradient from 1:2 dichloromethane/petrol 40-60 to 1:1 dichloromethane/petrol 40-60 afforded 2'-methoxy-6'-methyl-[1,1'-binaphthalen]-2-ol (12) (379 mg, 97 %) as a white solid.

\textbf{m.p.} = 81-82 °C (dichloromethane/petrol 40-60).

\textbf{1}H NMR (400 MHz, CDCl\textsubscript{3}) \(\delta = 7.97 \) (d, \(J = 9.1 \) Hz, 1H), 7.92 (d, \(J = 8.9 \) Hz, 1H), 7.88 (dd, \(J = 8.1 \), 0.9 Hz, 1H), 7.69 (d, \(J = 1.8 \) Hz, 1H), 7.45 (d, \(J = 9.1 \) Hz, 1H), 7.38 (d, \(J = 8.9 \) Hz, 1H), 7.33 (ddd, \(J = 8.1 \), 6.7, 1.2 Hz, 1H), 7.24 (ddd, \(J = 8.3 \), 6.8, 1.4 Hz, 1H), 7.14 (dd, \(J = 8.7 \), 1.7 Hz, 1H), 7.12-7.06 (m, 2H,), 4.97 (br s, 1H, OH), 3.79 (s, 3H), 2.49 (s, 3H).

\textbf{13}C NMR (101 MHz, CDCl\textsubscript{3}) \(\delta = 155.5, 151.3, 133.9, 133.9, 132.3, 130.4, 129.8, 129., 129.7, 129.2, 128.2, 127.2, 126.5, 125.0, 124.9, 123.3, 117.6, 115.4, 115.3, 114.0, 56.8, 21.5.

\textbf{IR} (film) \(\nu_{\text{max}}/\text{cm}^{-1} \): 3490, 3424, 3058, 3017, 2937, 2918, 2839, 1620, 1595, 1515, 1501, 1463, 1379, 1353, 1334, 1300, 1250, 1228, 1147, 1084, 1051.

\textbf{HRMS} (ESI-): \(\text{C}_{22}\text{H}_{18}\text{O}_{2} \) [M-H-] requires = 313.1234; found = 313.1233, \(\Delta +0.3 \) ppm.
A solution of 2-(benzyloxy)-7-fluoro-2'-methoxy-1,1'-binaphthalene11 (579 mg, 1.42 mmol) in degassed 1:9 methanol/ethyl acetate (1 mL) was added to palladium on carbon (10 wt %, 42 mg). The reaction mixture was stirred under an atmosphere of hydrogen (balloon) for 24 hours. The reaction mixture was then filtered through a plug of celite which was subsequently washed with ethyl acetate. The filtrate was concentrated under reduced pressure. Purification of the residue via column chromatography eluting with a gradient from 1:1 dichloromethane/petrol 40-60 to 2:1 dichloromethane/petrol 40-60 afforded 7-fluoro-2'-methoxy-[1,1'-binaphthalen]-2-ol (17) (454 mg, 99 %) as a white solid.

\textbf{m.p.} = 201-202 °C (dichloromethane/petrol 40-60).

\textit{1H NMR} (400 MHz, CDCl\textsubscript{3}) \(\delta = 8.06 (d, J = 9.1 \text{ Hz}, 1H), 7.93-7.87 (m, 2H), 7.84 (dd, J = 8.9, 5.8 \text{ Hz}, 1H), 7.48 (d, J = 9.1 \text{ Hz}, 1H), 7.39 (ddd, J = 8.1, 6.8, 1.3 \text{ Hz}, 1H), 7.35-7.28 (m, 2H), 7.20-7.15 (m, 1H), 7.09 (ddd, J = 8.9, 8.3, 2.6 \text{ Hz}, 1H), 6.67 (dd, J = 11.3, 2.6 \text{ Hz}, 1H), 4.99 (br s, 1H), 3.82 (s, 3H).

\textit{13C NMR} (101 MHz, CDCl\textsubscript{3}) \(\delta = 161.7 (d, J = 244.8 \text{ Hz}), 156.2, 152.3, 135.2 (d, J = 9.4 \text{ Hz}), 133.9, 131.5, 130.6 (d, J = 9.4 \text{ Hz}), 129.8, 129.6, 128.4, 127.6, 126.2, 124.7, 124.4, 116.8 (d, J = 2.5 \text{ Hz}), 114.9 (d, J = 5.3 \text{ Hz}), 113.8, 113.5 (d, J = 25.4 \text{ Hz}), 108.5 (d, J = 22.1 \text{ Hz}), 56.7.

\textit{19F NMR} (376 MHz, CDCl\textsubscript{3}) \(\delta = -114.0.

\textbf{IR} (film) \(\nu_{\text{max}}/\text{cm}^{-1}: 3492, 3428, 3062, 2840, 1624, 1592, 1508, 1472, 1431, 1378, 1360, 1230, 1200, 1166, 1149, 1135, 1080, 1053, 1021.

\textbf{HRMS} (ESI-): \(\text{C}_{21}\text{H}_{15}\text{FO}_{2} \text{[M-H]}^{-}\) requires 317.0983; found 317.0981, \(\Delta = -0.6 \text{ ppm.}\)
1-(2-Methoxynaphthalen-1-yl)phenanthren-2-ol (25)

Ammonium formate (260 mg, 4.12 mmol) and Pd/C (10 wt %, 105 mg) were added to a solution of 2-(benzyloxy)-1-(2-Methoxynaphthalen-1-yl)phenanthren-2-ol11 (303 mg, 0.687 mmol) in 9:1 ethyl acetate/methanol in a sealed pressure tube. The suspension was then stirred at 50 °C for 48 h. After cooling to room temperature, the reaction mixture was filtered through celite, washing the filtercake with ethyl acetate, and the filtrate was subsequently washed twice with water and concentrated under reduced pressure. Purification of the residue \textit{via} column chromatography eluting with a gradient from 1:2 dichloromethane/petrol 40-60 to 1:1 dichloromethane/petrol 40-60 afforded the title compound 1-(2-Methoxynaphthalen-1-yl)phenanthren-2-ol (25) (228 mg, 95 %) as a white solid.

\textbf{m.p.} = 123-125 °C (dichloromethane/petrol 40-60).

1H NMR (400 MHz, CDCl\textsubscript{3}) \(\delta = 8.79 \) (d, \(J = 9.0 \) Hz, 1H), 8.71 (d, \(J = 8.2 \) Hz, 1H), 8.08 (d, \(J = 9.1 \) Hz, 1H), 7.93 (dd, \(J = 8.2, 0.9 \) Hz, 1H), 7.81 (dd, \(J = 7.8, 1.3 \) Hz, 1H), 7.67 (ddd, \(J = 8.4, 7.0, 1.4 \) Hz, 1H), 7.58-7.47 (m, 4H), 7.40 (ddd, \(J = 8.1, 6.7, 1.3 \) Hz, 1H), 7.30 (ddd, \(J = 8.1, 6.7, 1.3 \) Hz, 1H), 7.24-7.18 (m, 1H), 7.05 (d, \(J = 9.1 \) Hz, 1H), 4.98 (br s, 1H), 3.82 (s, 3H).

13C NMR (101 MHz, CDCl\textsubscript{3}) \(\delta = 156.1, 152.3, 134.2, 132.6, 131.3, 130.0, 130.8, 129.5, 128.6, 128.3, 127.7, 127.6, 126.8, 125.7, 124.9, 124.9, 124., 124.4, 124.4, 122.4, 117.3, 116.5, 115.6, 113.9, 56.8.

\textbf{IR} (film) \(\nu_{\text{max}}/\text{cm}^{-1} \): 3495, 3424, 3057, 2936, 2839, 1620, 1592, 1529, 1506, 1460, 1431, 1420, 1332, 1306, 1268, 1250, 1214, 1203, 1171, 1146, 1119, 1076, 1057, 1034, 1020.

\textbf{HRMS} (ESI−): \(\text{C}_{25}\text{H}_{18}\text{O}_2 [\text{M-H}]^{-} \) requires 349.1234; found 349.1233, \(\Delta = 0.3 \).
Following a modified literature procedure, to a solution of 7-methoxynaphth-2-ol (1.50 g, 8.61 mmol) in CH$_2$Cl$_2$ (15.0 mL) was added Cu-TMEDA complex (400 mg, 0.86 mmol). The mixture was sonicated in air for 30 seconds and then stirred for 16 hours at room temperature under an air atmosphere. The solvent was removed under reduced pressure and the resulting crude mixture was purified by flash column chromatography (1:1 pet ether 40-60/CH$_2$Cl$_2$ to CH$_2$Cl$_2$) to give the title compound 61 as a yellow-brown solid (826 mg, 2.38 mmol, 55% yield).

1H NMR (400 MHz, CDCl$_3$) δ_H: 7.85 (d, $J = 8.8$ Hz, 2H), 7.77 (d, $J = 8.9$ Hz, 2H), 7.21 (d, $J = 8.9$ Hz, 2H), 7.03 (d, $J = 8.9$ Hz, 2H), 6.47 (s, 2H), 5.08 (s, 2H), 3.57 (s, 6H)

13C NMR (101 MHz, CDCl$_3$) δ_C: 159.2, 153.4, 134.8, 131.2, 130.1, 124.9, 116.1, 115.2, 110.2, 103.2, 55.3

HRMS (ESI') C$_{22}$H$_{17}$O$_4^-$ [M-H]$^-$: requires 345.1132, found: 345.1134, Δ +0.58 ppm.

Data in agreement with literature reported.
2',7,7'-Trimethoxy-[1,1'-binaphthalen]-2-ol (31)

To a solution of 61 (826 mg, 2.38 mmol) in acetone (24 mL) was added K$_2$CO$_3$ (493 mg, 3.57 mmol) and methyl iodide (0.22 mL, 3.57 mmol). The resulting suspension was heated at 70 °C for 16 hours and cooled to room temperature. The solvent was removed under reduced pressure followed by addition of water (20 mL) and CH$_2$Cl$_2$ (30 mL). The layers were separated and the aqueous layer was extracted with CH$_2$Cl$_2$ (20 mL × 3). The combined organic layers were dried over anhydrous MgSO$_4$, filtered and the solvent removed under reduced pressure. The resulting crude mixture was purified by flash column chromatography (2:1 petroleum ether 40-60 – CH$_2$Cl$_2$ to 1:1 petroleum ether 40-60 – CH$_2$Cl$_2$) to give the title compound 31 as an off-white solid (577 mg, 1.60 mmol, 67% yield).

m.p. = 96-98 °C (CH$_2$Cl$_2$/petroleum ether 40-60)

IR (v_{max}/cm$^{-1}$, ATR): 3484, 2937, 1621, 1511, 1462, 1262, 1221, 813, 756.

1H NMR (400 MHz, CDCl$_3$) δ_H: 7.97 (d, $J = 8.8$ Hz, 1H, H$_4$), 7.87-7.75 (m, 3H, H$_6$, H$_{16}$ and H$_{18}$), 7.33 (d, $J = 8.8$ Hz, 1H, H$_3$), 7.23 (d, $J = 8.5$ Hz, 1H, H$_{15}$), 7.06 (d, $J = 9.1$ Hz, 1H, H$_{19}$), 7.01 (d, $J = 8.8$ Hz, H$_7$), 6.51 (s, 1H, H$_{21}$), 6.43 (s, 1H, H$_9$), 4.98 (s, 1H, OH), 3.82 (s, 3H, H$_{12}$), 3.56 (s, 3H, H$_{11}$ or H$_{23}$), 3.54 (s, 3H, H$_{11}$ or H$_{23}$).

13C NMR (101 MHz, CDCl$_3$) δ_C: 158.9, 158.2, 156.6, 151.7, 135.3, 134.9, 130.7, 129.8, 129.7, 129.5, 124.9, 124.6, 116.8, 115.1, 114.9, 114.3, 114.2, 111.0, 104.1, 103.2, 56.5, 55.0.

HRMS (ESI$^-$): C$_{23}$H$_{19}$O$_4^-$ [M-H]$: requires 359.1289, found: 359.1290, Δ +0.28 ppm.
5. General Procedure for the Counterion Mediated Kinetic Resolution of BINOLs

General Procedure A:

The appropriate methyl BINOL (0.150 mmol, 1.00 equiv.), benzyl tosylate* (59.1 mg, 0.225 mmol, 1.50 equiv.) and N-(2,3,4-trifluorobenzyl)hydrocinchoninium bromide (7.8 mg, 0.015 mmol, 0.10 equiv.) were added to a 7 mL vial equipped with a magnetic stirrer bar (pictured below) under air. Benzene (5.40 mL) and diethyl ether (0.60 mL) were added followed by K$_2$CO$_3$ (sat. aq., 208 µL). The reaction was stirred at 1000-1400 rpm at room temperature (20-25°C) for the required reaction time**. Piperidine*** (0.30 mL) was added and stirring was continued for a further 30 minutes. Hydrochloric acid (3 M aq., 0.50 mL) was added dropwise and the phases were separated and the aqueous phase was extracted with EtOAc (2 × 5.00 mL). The combined organic layers were concentrated in vacuo and purified by flash column chromatography using the appropriate eluent to give the corresponding enantioenriched benzylated product and recovered starting material.

* Benzyl tosylate was prepared following a literature procedure12 and stored at −20 °C in the dark.

** The reaction time was varied between different substrates to achieve the desired conversion. Typical reaction times were between 24 and 48 hours.

*** Piperidine was added to consume excess benzyl tosylate. This is done to stop the reaction at the desired conversion and to prevent side product formation during purification.
Kinetic resolution equations

Consider a reaction in which enantiomers R and S of the starting material react to give enantiomers R' and S' of the product, respectively.

After a certain period of time, assuming, without loss of generality that enantiomer S reacts faster than enantiomer R, we have the enantiomeric excess of the starting material given by

\[ee = \frac{[R] - [S]}{[R] + [S]} \]

Similarly, the enantiomeric excess of the product can be expressed as

\[ee' = \frac{[S'] - [R']}{[S'] + [R']} \]

Considering also that the conversion c is given by the formula

\[c = \frac{[S'] + [R']}{[S] + [R] + [S'] + [R']} \]

We can deduce a relationship between the c, ee and ee' in the form of Equation 1.

\[ee = ee' \frac{c}{1 - c} \quad (Equation \ 1) \]

Assuming that each enantiomer reacts according to first order kinetics and that there is no background reaction and no other side-reactions, the ratio between the reaction rate of enantiomer S (kS) and that of enantiomer R (kR) is called the S-factor (s). From these assumptions an equation can be derived for s as a function of c and ee:

\[s = \frac{\log([1-c](1-ee))}{\log([1-c](1+ee))} \quad (Equation \ 2) \]
6. Counterion Mediated Kinetic Resolution of BINOLs

Kinetic resolution of 2'-methoxy-[1,1'-binaphthalen]-2-ol (1)

Following **General procedure A**, 2'-methoxy-[1,1'-binaphthalen]-2-ol (1) (45.0 mg, 0.15 mmol) was reacted for 24 h. Purification via flash column chromatography (30% CH₂Cl₂ – petroleum ether 40-60 to 80% CH₂Cl₂ – petroleum ether 40-60) afforded 2-(benzyloxy)-2'-methoxy-1,1'-binaphthalene (Bn-1) as an off-white solid (28.6 mg, 49%, 90:10 e.r.) and recovered starting material (1) (21.2 mg, 47%, 98:2 e.r.).

(S)-2-(Benzyloxy)-2'-methoxy-1,1'-binaphthalene (Bn-1):
m.p. = 130-132 °C (CH₂Cl₂/petroleum ether 40-60).

IR (film) ν_max/cm⁻¹: 3058, 3037, 2933, 1591, 1506, 1262, 1249, 1220, 1190, 1061, 806, 746, 734.

¹H NMR (400 MHz, CDCl₃) δ_H = 8.01 (d, J = 9.0 Hz, 1H), 7.92 (d, J = 9.4 Hz, 1H), 7.90–7.85 (m, 2H), 7.47 (d, J = 9.0 Hz, 1H), 7.44 (d, J = 9.0 Hz, 1H), 7.34 (m, 1.3 Hz, 2H), 7.25–7.20 (m, 3H), 7.20–7.12 (m, 4H), 7.02–6.95 (m, 2H), 5.35–4.85 (m, 2H), 3.77 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ_C = 155.1, 154.2, 137.7, 134.3, 134.2, 129.6, 129.6, 129.5, 129.4, 129.1, 128.3, 128.1, 128.0, 127.4, 126.9, 126.5, 126.4, 125.6, 125.5, 123.9, 123.6, 121.0, 119.6, 116.3, 114.0, 71.4, 56.8.

HRMS (ESI⁺) C₂₈H₂₂O₂ [M+Na]⁺ requires 413.15120; found 413.15147, Δ 0.6 ppm.

Chiral HPLC: (Chiralpak IC, 1% iPrOH, 99% hexane, 1.0 mL min⁻¹, λ = 289 nm) τ_R (major) = 8.0 min, τ_R (minor) = 11.8 min.

[α]_D^{25} = -58.7 (c = 1.00, CHCl₃).

Data in agreement with literature reported.¹¹

(R)-2'-Methoxy-[1,1'-binaphthalen]-2-ol (1):

m.p. = 108-109 °C (CH₂Cl₂/petroleum ether b.p. 40-60 °C).

Chiral HPLC: (Chiralpak ADH, 7.5% iPrOH, 90% hexane, 1.0 mL min⁻¹, λ = 290 nm) τ_R (major) = 25.7 min, τ_R (minor) = 16.6 min.

[α]_D^{25} = +42.0 (c = 0.50, acetone).
Kinetic resolution of 2'-isopropoxy-[1,1'-binaphthalen]-2-ol (9)

Following General procedure A, 2'-isopropoxy-[1,1'-binaphthalen]-2-ol (9) (49.3 mg, 0.150 mmol) was reacted for 27 h. Purification via flash column chromatography (3:1 petroleum ether 40-60 – CH2Cl2 to 1:1 CH2Cl2 – petroleum ether 40-60) afforded 2-(benzyloxy)-2'-isopropoxy-1,1'-binaphthalene (Bn-9) as an off-white solid (33.4 mg, 53%, 89.5:10.5 e.r.) and recovered starting material (9) (23.3 mg, 47%, 96.0:4.0 e.r.)

(S)-2-(benzyloxy)-2'-isopropoxy-1,1'-binaphthalene (Bn-9):

m.p. = 43-45 °C (CH2Cl2/petroleum ether 40-60).

IR (film) νmax/cm⁻¹: 3059, 2975, 2928, 1622, 1592, 1506, 1454, 1327, 1262, 1241, 1223, 1147, 1132, 1112, 1088, 1054, 1018, 806, 748, 696

1H NMR (500 MHz, CDCl3) δH: 7.94 (d, J = 9.1 Hz, 1H), 7.92-7.86 (m, 2H), 7.85 (d, J = 8.2 Hz, 1H), 7.43 (d, J = 8.8 Hz, 1H), 7.39 (d, J = 8.8 Hz, 1H), 7.35-7.29 (m, 2H), 7.19-7.12 (m, 4H), 7.07-7.00 (m, 2H), 5.11-5.02 (m, 2H), 4.41 (sept, J = 6.1 Hz, 1H), 1.04 (d, J = 6.2 Hz, 1H), 0.95 (d, J = 6.0 Hz, 1H)

13C NMR (126 MHz, CDCl3) δC: 154.2, 153.9, 137.9, 134.5, 134.3, 129.6, 129.5, 129.2, 129.1, 128.2, 127.9, 127.9, 127.4, 126.9, 126.3, 126.2, 125.8, 125.7, 123.7, 123.7, 122.0, 121.3, 118.1, 116.2, 72.3, 71.3, 22.6, 22.4

HRMS (ESI⁺) C30H27O2 [M+H]+ requires 419.20056; found 419.20059, Δ +0.1 ppm.

Chiral HPLC: (Chiralpak ADH, 5% iPrOH, 95% hexane, 1.00 mL min⁻¹, λ = 290 nm) τR (major) = 5.1 min, τR (minor) = 5.6 min

[α]D²⁵ = −80.0 (c = 1.00, CHCl₃).

(R)-2'-isopropoxy-[1,1'-binaphthalen]-2-ol (9):

m.p. = 54-56 °C (CH2Cl2/petroleum ether 40-60).

Chiral HPLC: (Chiralpak ADH, 10% iPrOH, 90% hexane, 1.00 mL min⁻¹, λ = 290 nm) τR (major) = 21.1 min, τR (minor) = 6.7 min

[α]D²⁵ = −68.9 (c = 1.00, CHCl₃).
Kinetic resolution of 2'-{benzyloxy}-[1,1'-binaphthalen]-2-ol (10)

Following General procedure A, 2'-{benzyloxy}-[1,1'-binaphthalen]-2-ol (10) (56.5 mg, 0.150 mmol) was reacted for 27 h. Purification via flash column chromatography (2:1 petroleum ether 40-60 – CH₂Cl₂ to 1:2 CH₂Cl₂ – petroleum ether 40-60) afforded 2,2'-bis(benzyloxy)-1,1'-binaphthalene (Bn-10) as an off-white solid (29.2 mg, 42%, 90.5:9.5 e.r.) and recovered starting material (9) (25.3 mg, 45%, 94.5:5.5 e.r.)

(S)-2,2'-bis(benzyloxy)-1,1'-binaphthalene (Bn-10):

m.p. = 97-99 °C (CH₂Cl₂/petroleum ether 40-60).

¹H NMR (500 MHz, CDCl₃) δ_H: 7.85 (d, J = 9.01 Hz, 2H), 7.80 (d, J = 8.12 Hz, 2H), 7.34 (d, J = 9.01 Hz, 2H), 7.28-7.23 (m, 2H), 7.18-7.12 (m, 4H), 7.08-6.98 (m, 6H), 6.89 (d, J = 6.94 Hz, 1H), 5.00-4.92 (m, 2H).

¹³C NMR (126 MHz, CDCl₃) δ_C: 154.2, 137.7, 134.3, 129.6, 129.4, 128.2, 128.0, 127.4, 126.8, 126.4, 125.7, 123.8, 120.9, 116.1, 71.3

Chiral HPLC: (Chiralpak ADH, 10% i-PrOH, 90% hexane, 1.00 mL min⁻¹, λ = 290 nm) τ_R (major) = 7.3 min, τ_R (minor) = 8.7 min

[α]₂⁰_D = -34.6 (c = 1.00, CHCl₃).

Data in agreement with literature reported.¹⁶

(R)-2'-{benzyloxy}-[1,1'-binaphthalen]-2-ol (10):

m.p. = 108-110 °C (CH₂Cl₂/petroleum ether 40-60).

Chiral HPLC: (Chiralpak ADH, 20% i-PrOH, 80% hexane, 1.00 mL min⁻¹, λ = 290 nm) τ_R (major) = 35.2 min, τ_R (minor) = 19.5 min

[α]₂⁰_D = +1.5 (c = 1.00, CHCl₃).
Kinetic resolution of 2’-methoxy-6’-nitro-[1,1’-binaphthalen]-2-ol (11)

Following General procedure A, 2’-methoxy-6’-nitro-[1,1’-binaphthalen]-2-ol (11) (51.8 mg, 0.150 mmol) was reacted for 24 h. Purification via flash column chromatography (3:7 petroleum ether 40-60 – CH₂Cl₂ to 4:1 CH₂Cl₂ – petroleum ether 40-60) afforded 2’-(benzyloxy)-2-methoxy-6-nitro-1,1’-binaphthalene (Bn-11) as an off-white solid (35.0 mg, 54%, 90:10 e.r.) and recovered starting material (11) (20.1 mg, 39%, 99.5:0.5 e.r.).

(S)- 2’-(benzyloxy)-2-methoxy-6-nitro-1,1’-binaphthalene (Bn-11):

- **m.p.** = 111-112 °C (CH₂Cl₂/petroleum ether 40-60).
- **IR** (film) ν\textsubscript{max}/cm-1: 3062, 3031, 3010, 2960, 2938, 2841, 1619, 1599, 1594, 1529, 1496, 1462, 1328, 1247, 1220, 1098, 1055, 1046, 807, 740.
- **¹H NMR** (400 MHz, CDCl\textsubscript{3}) \(\delta\) = 8.86 (d, \(J = 2.3\) Hz, 1H), 8.18 (d, \(J = 8.7\) Hz, 1H), 7.97 (d, \(J = 9.3\) Hz, 1H), 7.94 (dd, \(J = 9.4, 2.4\) Hz, 1H), 7.89 (d, \(J = 8.2\) Hz, 1H), 7.59 (d, \(J = 9.1\) Hz, 1H), 7.46 (d, \(J = 9.1\) Hz, 1H), 7.36 (ddd, \(J = 8.1, 6.7, 1.2\) Hz, 1H), 7.29–7.23 (m, 1H), 7.19 (d, \(J = 9.4\) Hz, 1H), 7.16 (dd, \(J = 5.1, 2.0\) Hz, 3H), 7.11–7.06 (m, 1H), 7.02–6.96 (m, 2H), 5.09 (d, \(J = 2.1\) Hz, 2H), 3.81 (s, 3H).
- **¹³C NMR** (101 MHz, CDCl\textsubscript{3}) \(\delta\) = 158.3, 154.1, 143.8, 137.4, 137.1, 133.9, 132.0, 130.1, 129.5, 128.3, 128.3, 127.7, 127.2, 127.0, 126.8, 126.8, 125.2, 124.9, 124.1, 120.2, 119.8, 119.1, 115.8, 115.4, 71.2, 56.6.
- **HRMS** (ESI+) \(C_{28}H_{21}O_4N\) [M+Na]+ requires 458.13738; found 458.13644, Δ -2.0 ppm.
- **Chiral HPLC:** (Chiralpak AD, 10% iPrOH, 90% hexane, 1.0 mL min-1, \(\lambda = 279\) nm) \(\tau_R\) (major) = 14.2 min, \(\tau_S\) (minor) = 26.1 min.

 \[\alpha\]\textsubscript{D}25 = +46.4 (c = 1.00, CHCl\textsubscript{3}).

(R)- 2’-methoxy-6’-nitro-[1,1’-binaphthalen]-2-ol (11):

- **m.p.** = 195-197 °C (CH₂Cl₂/petroleum ether 40-60).
- **Chiral HPLC:** (Chiralpak AD, 10% iPrOH, 90% hexane, 1.0 mL min-1, \(\lambda = 277\) nm) \(\tau_R\) (major) = 27.4 min, \(\tau_S\) (minor) = 29.8 min.

 \[\alpha\]\textsubscript{D}25 = −114.5 (c = 1.00, CHCl\textsubscript{3}).
Kinetic resolution of 2'-methoxy-6'-methyl-[1,1'-binaphthalen]-2-ol (12)

Following General procedure A, 2'-methoxy-6'-methyl-[1,1'-binaphthalen]-2-ol (12) (47.1 mg, 0.150 mmol) was reacted for 24 h. Purification via flash column chromatography (3:7 CH₂Cl₂ – petroleum ether 40-60 to 4:1 CH₂Cl₂ – petroleum ether 40-60) afforded 2'(benzyloxy)-2-methoxy-6-methyl-1,1'-binaphthalene (Bn-12) as an off-white solid (32.6 mg, 54%, 80:20 e.r.) and recovered starting material (12) (18.6 mg, 39%, 99:1 e.r.).

(R)-2'(Benzyloxy)-2-methoxy-6-methyl-1,1'-binaphthalene (Bn-12):

m.p. = 109-110 °C (CH₂Cl₂/petroleum ether 40-60).

IR (film) νₘₐₓ/cm⁻¹: 3060, 3031, 2934, 2920, 1594, 1504, 1272, 1263, 1252, 1221, 1093, 1060, 805, 734.

¹H NMR (400 MHz, CDCl₃) δ = 7.92 (dd, J = 9.0, 2.2 Hz, 2H), 7.87 (d, J = 8.2 Hz, 1H), 7.71–7.62 (m, 1H), 7.45 (d, J = 5.0 Hz, 1H), 7.43 (d, J = 5.0 Hz, 1H), 7.34 (dd, J = 8.1, 6.4, 1.6 Hz, 1H), 7.28–7.21 (m, 2H), 7.19–7.17 (m, 3H), 7.07 (m, 2H), 7.05–7.00 (m, 2H), 5.09 (d, J = 12.6 Hz, 1H), 5.05 (d, J = 12.7 Hz, 1H), 3.75 (s, 3H), 2.48 (s, 2H).

¹³C NMR (101 MHz, CDCl₃) δ = 154.9, 154.5, 138.1, 134.6, 133.3, 132.7, 129.9, 129.9, 129.6, 129.1, 128.6, 128.3, 127.7, 127.3, 127.2, 126.7, 125.9, 125.7, 124.2, 121.5, 119.8, 116.8, 114.5, 71.8, 57.2, 21.9.

HRMS (ESI⁺) C₂₉H₂₄O₂ [M+Na]⁺ requires 427.16685; found 427.16644, Δ 1.0 ppm.

Chiral HPLC: (Chiralpak IC, 1% iPrOH, 99% hexane, 1.0 mL min⁻¹, λ = 295 nm) τᵣ (major) = 12.2 min, τᵣ (minor) = 7.8 min.

[α]²⁵D = −32.5 (c = 1.00, CHCl₃).

Data in agreement with literature reported.¹¹

(S)- 2'-Methoxy-6'-methyl-[1,1'-binaphthalen]-2-ol (12):

m.p. = 137-138 °C (CH₂Cl₂/petroleum ether 40-60).

Chiral HPLC: (Chiralpak ADH, 10% iPrOH, 90% hexane, 1.0 mL min⁻¹, λ = 341 nm) τᵣ (minor) = 11.5 min, τᵣ (major) = 12.9 min.

[α]²⁵D = −80.6 (c = 1.00, CHCl₃).
Kinetic resolution of 7-bromo-2'-methoxy-[1,1'-binaphthalen]-2-ol (13)

Following General procedure A, 7-bromo-2'-methoxy-[1,1'-binaphthalen]-2-ol (13) (56.9 mg, 0.150 mmol) was reacted for 36 h. Purification via flash column chromatography (3:7 CH₂Cl₂ – petroleum ether 40-60 to 4:1 CH₂Cl₂ – petroleum ether 40-60) afforded 2-(benzyloxy)-7-bromo-2'-methoxy-1,1'-binaphthalene (Bn-13) as an off-white solid (37.3 mg, 53%, 85:15 e.r.) and recovered starting material (13) (22.5 mg, 40%, 99.5:0.5 e.r.).

(S)- [2-(Benzyloxy)-7-bromo-2'-methoxy-1,1'-binaphthalene] (Bn-13):

m.p. = 64-65 °C (CH₂Cl₂/petroleum ether 40-60).
IR (film) ν_max/cm⁻¹: 3061, 3032, 2837, 1613, 1497, 1267, 1255.

¹H NMR (400 MHz, CDCl₃) δ = 7.92 (d, J = 9.1 Hz, 1H), 7.81 (d, J = 8.2 Hz, 1H), 7.77 (d, J = 9.3 Hz, 1H), 7.62 (d, J = 8.7 Hz, 1H), 7.37 (d, J = 9.0 Hz, 1H), 7.33–7.23 (m, 4H), 7.19–7.12 (m, 1H), 7.10–6.99 (m, 4H), 6.91–6.85 (m, 2H), 5.03–4.91 (m, 3H), 3.68 (s, 4H).

¹³C NMR (101 MHz, CDCl₃) δ = 154.9, 154.7, 137.3, 135.4, 133.9, 129.8, 129.7, 129.2, 129.2, 128.2, 128.0, 127.8, 127.4, 127.4, 127.2, 126.7, 126.5, 125.1, 123.6, 121.0, 120.1, 118.4, 116.2, 113.7, 71.0, 56.6.

HRMS (ESI⁺) C₂₈H₂₁O₂⁷⁹Br [M+Na]⁺ requires 491.06171; found 491.06180, Δ +0.2 ppm.

Chiral HPLC: (Chiralpak ADH, 10% iPrOH, 98% hexane, 1.0 mL min⁻¹, λ = 295 nm) τ_R (major) = 7.5 min, τ_S (minor) = 8.7 min.

[α]₀²⁵ = −23.2 (c = 1.00, CHCl₃).
Data in agreement with literature reported.¹¹

(R)- 7-Bromo-2'-methoxy-[1,1'-binaphthalen]-2-ol (13):

m.p. = 178-179 °C (CH₂Cl₂/petroleum ether 40-60).

Chiral HPLC: (Chiralpak ADH, 10% iPrOH, 90% hexane, 1.0 mL min⁻¹, λ = 295 nm) τ_R (minor) = 11.6 min, τ_S (major) = 13.7 min.

[α]₀²⁵ = −53.8 (c = 1.00, CHCl₃).
Kinetic resolution of 2',7-dimethoxy-[1,1'-binaphthalen]-2-ol (14)

Following General procedure A, 2',7-dimethoxy-[1,1'-binaphthalen]-2-ol (14) (49.6 mg, 0.150 mmol) was reacted for 27 h. Purification via flash column chromatography (3:1 petroleum ether 40-60/CH$_2$Cl$_2$ to 1:3 petroleum ether 40-60/CH$_2$Cl$_2$) afforded 2-(benzyloxy)-2',7-dimethoxy-1,1'-binaphthalene (Bn-14) as an off-white solid (32.5 mg, 52%, 88.5:11.5 e.r.) and recovered starting material (14) (21.2 mg, 43%, 99.0:1.0 e.r.).

(S)-2-(benzyloxy)-2',7-dimethoxy-1,1'-binaphthalene (Bn-14)

m.p. = 51-53 ºC (CH$_2$Cl$_2$/petroleum ether 40-60).

IR (film) ν_{max}/cm$^{-1}$: 3060, 2934, 2836, 1624, 1593, 1509, 1461, 1426, 1354, 1318, 1264, 1224, 1178, 1147, 1092, 1063, 1045, 1029, 828, 812, 749, 696

1H NMR (500 MHz, CDCl$_3$) δ_H: 8.00 (d, $J = 9.13$ Hz, 1H), 7.90 (d, $J = 8.07$ Hz, 1H), 7.84 (d, $J = 8.92$ Hz, 1H), 7.77 (d, $J = 8.92$ Hz, 1H), 7.47 (d, $J = 9.13$ Hz, 1H), 7.34 (ddd, $J = 8.07$, 6.58, 1.43 Hz, 1H), 7.28 (d, $J = 8.91$ Hz, 1H), 7.26-7.19 (m, 2H), 7.19-7.12 (m, 3H), 7.02 (dd, $J = 8.90$, 2.45 Hz, 1H), 7.00-6.93 (m, 2H), 6.49 (d, $J = 2.39$ Hz, 1H), 5.10-5.00 (m, 2H), 3.78 (s, 3H), 3.51 (s, 3H)

13C NMR (126 MHz, CDCl$_3$) δ_C: 158.2, 155.1, 154.8, 137.8, 135.6, 13.1, 129.6, 129.5, 129.4, 129.1, 128.2, 128.0, 127.4, 126.8, 126.4, 125.6, 125.1, 123.6, 119.8, 119.7, 116.3, 114.0, 113.6, 104.2, 71.2, 56.8, 55.1.

HRMS (ESI$^+$) C$_{29}$H$_{25}$O$_3$ $^{+} [M+H]^+$ requires 421.17982; found: 421.17953, Δ -0.68 ppm.

Chiral HPLC: (Chiralpak ODH, 5% 3PrOH, 95% hexane, 1.00 mL min$^{-1}$, $\lambda = 290$ nm) τ_R (major) = 8.8 min, τ_R (minor) = 9.9 min.

[α]$_D^{25} = -5.2$ (c = 1.00, CHCl$_3$).

(R)-2',7-dimethoxy-[1,1'-binaphthalen]-2-ol (14)

m.p. = 103-105 ºC (CH$_2$Cl$_2$/petroleum ether 40-60).

Chiral HPLC: (Chiralpak ADH, 15% 3PrOH, 85% hexane, 1.00 mL min$^{-1}$, $\lambda = 290$ nm) τ_R (major) = 17.9 min, τ_R (minor) = 13.5 min.

[α]$_D^{25} = -105.3$ (c = 1.00, CHCl$_3$).
Kinetic resolution of 2'-methoxy-7-methyl-[1,1'-binaphthalen]-2-ol (15)

Following General procedure A, 2'-methoxy-7-methyl-[1,1'-binaphthalen]-2-ol (15) (47.2 mg, 0.150 mmol) was reacted for 24 h. Purification via flash column chromatography (3:7 CH$_2$Cl$_2$ – petroleum ether 40-60 to 4:1 CH$_2$Cl$_2$ – petroleum ether 40-60) afforded 2-(benzylox)-2'-methoxy-7-methyl-1,1'-binaphthalene (bn-15) as an off-white solid (34.0 mg, 56%, 86:14 e.r.) and recovered starting material (15) (18.6 mg, 39%, 99.5:0.5 e.r.).

(S)- 2-(benzylox)-2'-methoxy-7-methyl-1,1'-binaphthalene (Bn-15):

m.p. = 69-70 °C (CH$_2$Cl$_2$/petroleum ether 40-60).

IR (film) ν_{max}/cm$^{-1}$: 3054, 2836, 1624, 1593, 1506, 1470, 1452, 1263, 826, 810.

1H NMR (400 MHz, CDCl$_3$) δ = 8.02 (d, J = 9.0 Hz, 1H), 7.91 (d, J = 8.2 Hz, 1H), 7.88 (d, J = 9.0 Hz, 1H), 7.77 (d, J = 8.3 Hz, 1H), 7.48 (d, J = 9.0 Hz, 1H), 7.41–7.31 (m, 2H), 7.25–7.13 (m, 6H), 6.99–6.95 (m, 3H), 3.77 (s, 2H), 2.27 (s, 3H).

13C NMR (101 MHz, CDCl$_3$) δ = 155.0, 154.1, 137.7, 136.0, 134.3, 134.2, 129.3, 129.2, 129.0, 128.1, 127.9, 127.8, 127.8, 127.3, 126.7, 126.2, 125.5, 124.3, 124.2, 123.5, 120.2, 119.7, 115.2, 114.0, 71.2, 56.7, 22.0.

HRMS (ESI$^+$) C$_{29}$H$_{24}$O$_2$ [M+H]$^+$ requires 405.18491; found 405.18488, Δ −0.1 ppm.

Chiral HPLC: (Chiralpak OJH, 3% EtOH, 97% hexane, 1.0 mL min$^{-1}$, λ = 300 nm) τ_R (minor) = 9.4 min, τ_R (major) = 15.1 min.

$[\alpha]_{D}^{25}$ = −23.8 (c = 1.00, CHCl$_3$).

Data in agreement with literature reported.11

(R)- 2'-methoxy-7-methyl-[1,1'-binaphthalen]-2-ol (15):

m.p. = 124-125 °C (CH$_2$Cl$_2$/petroleum ether 40-60).

Chiral HPLC: (Chiralpak ADH, 10% iPrOH, 90% hexane, 1.0 mL min$^{-1}$, λ = 290 nm) τ_R (minor) = 12.8 min, τ_R (major) = 15.6 min.

$[\alpha]_{D}^{25}$ = −59.0 (c = 1.00, CHCl$_3$).
Following General procedure A, 2'-methoxy-7-phenyl-[1,1'-binaphthalen]-2-ol (16) (56.4 mg, 0.150 mmol) was reacted for 24 h. Purification via flash column chromatography (3:7 CH₂Cl₂ – petroleum ether 40-60 to 4:1 CH₂Cl₂ – petroleum ether 40-60) afforded 2-(benzyloxy)-2'-methoxy-7-phenyl-1,1'-binaphthalene (Bn-16) as an off-white solid (35.1 mg, 50%, 90:10 e.r.) and recovered starting material (16) (23.6 mg, 42%, 97:3 e.r.).

(S)-2-(benzyloxy)-2'-methoxy-7-phenyl-1,1'-binaphthalene (Bn-16):
m.p. = 68-89 °C (CH₂Cl₂/petroleum ether 40-60).

IR (film) ν max/cm⁻¹: 3058, 3032, 2935, 2837, 1621, 1594, 1509, 1493, 1454, 1265, 1250, 1221, 1093, 1063, 974, 733, 697.

¹H NMR (400 MHz, CDCl₃) δ = 7.90 (d, J = 9.1 Hz, 1H), 7.83 (d, J = 8.7 Hz, 2H), 7.79 (d, J = 8.2 Hz, 1H), 7.50 (dd, J = 8.5, 1.8 Hz, 1H), 7.36 (d, J = 9.0 Hz, 1H), 7.33 (d, J = 9.0 Hz, 1H), 7.30–7.26 (m, 3H), 7.21 (m, 3H), 7.17–7.10 (m, 4H), 7.08–7.04 (m, 3H), 6.92–6.84 (m, 2H), 5.02–4.91 (m, 2H), 3.67 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ = 155.0, 154.5, 141.5, 139.0, 137.6, 134.4, 134.2, 129.6, 129.2, 129.0, 128.7, 128.6, 128.5, 128.2, 127.9, 127.5, 127.3, 127.1, 126.8, 126.4, 125.4, 123.7, 123.5, 123.5, 121.2, 119.3, 116.3, 113.8, 71.3, 56.7.

HRMS (ESI⁺) C₃₄H₂₆O₂ [M+Na]⁺ requires 489.18250; found 489.18233, Δ -0.3 ppm.

Chiral HPLC: (Chiralpak IC, 2% iPrOH, 98% hexane, 1.0 mL min⁻¹, λ = 289 nm) τₕ (major) = 20.5 min, τₕ (minor) = 23.5 min.

[α]D²⁵ = +28.3 (c = 1.00, CHCl₃).

Data in agreement with literature reported.¹¹

(R)-2'-methoxy-7-phenyl-[1,1'-binaphthalen]-2-ol (16):
m.p. = 190-191 °C (CH₂Cl₂/petroleum ether 40-60).

Chiral HPLC: (Chiralpak ADH, 10% iPrOH, 90% hexane, 1.0 mL min⁻¹, λ = 272 nm) τₕ (major) = 11.6 min, τₕ (minor) = 14.1 min.

[α]D²⁵ = −118.1 (c = 1.00, CHCl₃).
Kinetic resolution of 7-fluoro-2'-methoxy-[1,1'-binaphthalen]-2-ol (17)

Following General procedure A, 7-fluoro-2'-methoxy-[1,1'-binaphthalen]-2-ol (17) (47.7 mg, 0.150 mmol) was reacted for 36 h. Purification via flash column chromatography (3:7 CH₂Cl₂ – petroleum ether 40-60 to 4:1 CH₂Cl₂ – petroleum ether 40-60) afforded 2-(benzyloxy)-7-fluoro-2'-methoxy-1,1'-binaphthalene (Bn-17) as an off-white solid (33.7 mg, 50%, 88:12 e.r.) and recovered starting material (17) (18.9 mg, 40%, 99:1 e.r.).

(S)- 2-(Benzyloxy)-7-fluoro-2'-methoxy-1,1'-binaphthalene (Bn-17):

m.p. = 88-90 °C (CH₂Cl₂/petroleum ether 40-60).

IR (film) ν_max/cm⁻¹: 3061, 2935, 2838, 1629, 1510, 1268, 1255, 1212, 811.

¹H NMR (500 MHz, CDCl₃) δ = 8.01 (d, J = 8.8 Hz, 1H), 7.93–7.87 (m, 2H), 7.83 (dd, J = 8.9, 5.8 Hz, 1H), 7.46 (d, J = 9.1 Hz, 1H), 7.37 (d, J = 9.2 Hz, 1H), 7.35–7.32 (m, 1H), 7.26–7.21 (m, 1H), 7.19–7.07 (m, 6H), 7.02–6.96 (m, 2H), 6.78 (dd, J = 11.4, 2.6 Hz, 1H), 5.09 (d, J = 12.7 Hz, 1H), 5.06 (d, J = 12.7 Hz, 1H), 3.78 (s, 4H).

¹³C NMR (126 MHz, CDCl₃) δ = 161.5 (d, J = 245.1 Hz), 155.0, 155.0, 137.5, 135.5 (d, J = 9.3 Hz), 134.0, 130.5, 130.4, 129.8, 129.3 (d, J = 1.5 Hz), 128.3, 128.1, 127.5, 126.8, 126.6, 126.5, 125.2, 123.7, 120.4 (d, J = 5.6 Hz), 118.9, 115.2 (d, J = 2.6 Hz), 114.3, 114.1, 113.9, 108.9, 108.7, 71.1, 56.7.

¹⁹F NMR: (471 MHz, CDCl₃) δ = -114.0

HRMS (ESI⁺) C₂₈H₂₁O₂F [M+Na]⁺ requires 431.14178; found 431.14145, Δ −0.8 ppm.

Chiral HPLC: (Chiralpak IC, 1% i-PrOH, 99% hexane, 1.0 mL min⁻¹, λ = 294 nm) τ_R (major) = 7.0 min, τ_R (minor) = 9.3 min.

[α]_D²⁵ = −58.0 (c = 1.00, CHCl₃).

Data in agreement with literature reported.¹¹

(R)- 7-Fluoro-2'-methoxy-[1,1'-binaphthalen]-2-ol (17):

m.p. = 118-119 °C (CH₂Cl₂/petroleum ether 40-60).

Chiral HPLC: (Chiralpak ADH, 10% i-PrOH, 90% hexane, 1.0 mL min⁻¹) τ_R (major) = 11.6 min, τ_R (minor) = 14.1 min.

[α]_D²⁵ = −13.5 (c = 1.00, CHCl₃).
Following **General procedure A**, 2',6-dimethoxy-[1,1'-binaphthalen]-2-ol (18) (49.6 mg, 0.150 mmol) was reacted for 27 h. Purification *via* flash column chromatography (1:1 petroleum ether 40-60 – CH$_2$Cl$_2$ to 1:3 petroleum ether 40-60 – CH$_2$Cl$_2$) afforded 2-(benzyloxy)-2',6-dimethoxy-1,1'-binaphthalene (Bn-18) as an off-white solid (35.8 mg, 57%, 87.5:12.5 e.r.) and recovered starting material (18) (20.8 mg, 42%, 99.5:0.5 e.r.).

(S)-2-(benzyloxy)-2',6-dimethoxy-1,1'-binaphthalene (Bn-18)

m.p. = 108-100 °C (CH$_2$Cl$_2$/petroleum ether 40-60).

IR (film) ν_{max}/cm$^{-1}$: 3061, 3004, 2935, 2836, 1624, 1594, 1506, 1462, 1433, 1376, 1351, 1332, 1267, 1251, 1239, 1222, 1168, 1148, 1130, 1090, 1061, 1024, 849, 808, 748, 696

1H **NMR** (500 MHz, CDCl$_3$) δ: 8.00 (d, $J = 9.05$ Hz, 1H), 7.89 (d, $J = 8.10$ Hz, 1H), 7.82 (d, $J = 8.95$ Hz, 1H), 7.46 (d, $J = 9.05$ Hz, 1H), 7.40 (d, $J = 9.05$ Hz, 1H), 7.37-7.31 (m, 1H), 7.26-7.21 (m, 1H), 7.21-7.13 (m, 4H), 7.11 (d, $J = 9.12$ Hz, 1H), 7.01-6.92 (m, 2H), 6.94 (dd, $J = 9.22$, 2.56 Hz, 1H), 5.06-4.96 (m, 2H), 3.91 (s, 3H), 3.77 (s, 3H).

13C **NMR** (126 MHz, CDCl$_3$) δ: 156.4, 155.1, 152.8, 137.9, 134.2, 130.6, 129.6, 129.5, 129.3, 128.2, 128.0, 127.9, 127.4, 127.2, 127.0, 126.5, 125.5, 123.6, 121.5, 119.6, 119.2, 117.3, 114.0, 106.1, 71.8, 56.8, 55.4.

HRMS (ESI$^+$) C$_{29}$H$_{25}$O$_3$ [M+H]$^+$ requires 421.17982; found 421.17975, Δ −0.2 ppm.

Chiral HPLC: (Chiralpak IC, 1% iPrOH, 99% hexane, 1.00 mL min$^{-1}$, λ = 290 nm) τ_R (major) = 15.3 min, τ_R (minor) = 30.6 min

$[\alpha]^25_D = -34.9$ (c = 1.00, CHCl$_3$).

(R)-2',6-dimethoxy-[1,1'-binaphthalen]-2-ol (18)

m.p. = 160-162 °C (CH$_2$Cl$_2$/petroleum ether 40-60).

Chiral HPLC: (Chiralpak ADH, 15% iPrOH, 85% hexane, 1.00 mL min$^{-1}$, λ = 290 nm) τ_R (major) = 27.0 min, τ_R (minor) = 13.9 min

$[\alpha]^25_D = -38.6$ (c = 1.00, CHCl$_3$).
Kinetic resolution of 2'-methoxy-6-morpholino-[1,1'-binaphthalen]-2-ol (19)

Following General procedure A, 2'-methoxy-6-morpholino-[1,1'-binaphthalen]-2-ol (27) (57.8 mg, 0.150 mmol) was reacted for 24 h. Purification via flash column chromatography (4:1 petroleum ether 40-60 – EtOAc to 7:3 petroleum ether 40-60 – EtOAc) afforded 4-(2-(benzyloxy)-2'-methoxy-[1,1'-binaphthalen]-6-yl)morpholine (Bn-19) as an off-white solid (33.3 mg, 47%, 87:13 e.r.) and recovered starting material (19) (19.6 mg, 34%, 99:1 e.r.).

(S)- 4-(2-(benzyloxy)-2'-methoxy-[1,1'-binaphthalen]-6-yl)morpholine (Bn-19):

m.p. = 144-145 °C (EtOAc/petroleum ether 40-60).

IR (film) ν_{max}/cm^{-1}: 3059, 3031, 2954, 2928, 2853, 2837, 1592, 1506, 1266, 1250, 1227, 1120, 1092.

1H NMR (400 MHz, CDCl$_3$) δ = 7.99 (d, J = 9.0 Hz, 1H), 7.89 (d, J = 8.2 Hz, 1H), 7.78 (d, J = 9.0 Hz, 1H), 7.45 (d, J = 9.0 Hz, 1H), 7.37 (d, J = 9.0 Hz, 1H), 7.33 (app. t, J = 8.0 Hz, 1H), 7.22 (m, 1H), 7.16 (m, 5H), 7.10 (d, J = 9.4 Hz, 1H), 7.02 (dd, J = 9.3, 2.5 Hz, 1H), 6.99–6.91 (m, 2H), 5.06–4.92 (m, 2H), 3.92–3.85 (m, 4H), 3.76 (s, 3H), 3.24–3.16 (m, 4H).

13C NMR (101 MHz, CDCl$_3$) δ = 155.1, 152.8, 147.8, 137.9, 134.3, 130.6, 129.5, 129.4, 129.3, 128.2, 128.1, 128.0, 127.4, 127.0, 126.7, 126.4, 125.6, 123.6, 121.3, 119.8, 119.7, 117.3, 114.0, 110.6, 71.8, 67.1, 56.8, 50.1.

HRMS (ESI$^+$) C$_{31}$H$_{29}$O$_3$N [M+H]$^+$ requires 476.22202; found 476.22162, Δ −0.8 ppm.

Chiral HPLC: (Chiralpak IC, 3% iPrOH, 97% hexane, 1.0 mL min$^{-1}$, λ = 289 nm) τ$_R$ (major) = 23.3 min, τ$_R$ (minor) = 30.4 min.

[α]$_D^{25}$= −4.2 (c = 1.00, CHCl$_3$).

(R)- 2'-methoxy-6-morpholino-[1,1'-binaphthalen]-2-ol (19):

m.p. = 124-125 °C (EtOAc/petroleum ether 40-60).

Chiral HPLC: (Chiralpak ADH, 15% iPrOH, 85% hexane, 1.0 mL min$^{-1}$, λ = 272 nm) τ$_R$ (minor) = 20.4 min, τ$_R$ (major) = 30.4 min.

[α]$_D^{25}$= −31.2 (c = 1.00, CHCl$_3$).
Kinetic resolution of [2'-methoxy-6-phenyl-[1,1'-binaphthalen]-2-ol] (20)

Following General procedure A, 2'-methoxy-6-phenyl-[1,1'-binaphthalen]-2-ol (20) (56.4 mg, 0.150 mmol) was reacted for 24 h. Purification via flash column chromatography (3:7 CH₂Cl₂ – petroleum ether 40-60 to 4:1 CH₂Cl₂ – petroleum ether 40-60) afforded 2-(benzyloxy)-2'-methoxy-6-phenyl-1,1'-binaphthalene (Bn-20) as an off-white solid (39.1 mg, 56%, 86:14 e.r.) and recovered starting material (20) (22.0 mg, 39%, 99:1 e.r.).

(S)- 2-(benzyloxy)-2'-methoxy-6-phenyl-1,1'-binaphthalene (Bn-20):

m.p. = 78-79°C (CH₂Cl₂/petroleum ether 40-60).

IR (film) ν max/cm⁻¹: 3060, 3030, 2933, 2856, 2837, 1743, 1592, 1507, 1492, 1454, 1349, 1268, 1222, 1093, 1061, 1027, 1020, 806, 757, 750, 736, 696.

¹H NMR (400 MHz, CDCl₃) δ = 8.10 (d, J = 1.9 Hz, 1H), 8.05 (d, J = 9.1 Hz, 1H), 8.01 (d, J = 9.0 Hz, 1H), 7.94 (d, J = 8.1 Hz, 1H), 7.76–7.66 (m, 2H), 7.59 – 7.45 (m, 5H), 7.38 (ddd, J = 8.2, 6.5, 1.5 Hz, 2H), 7.32–7.25 (m, 2H), 7.25–7.16 (m, 4H), 7.08–6.99 (m, 2H), 5.18–5.03 (m, 2H), 3.82 (s, 3H).

¹³C NMR (126 MHz, CDCl₃) δ = 155.0, 154.2, 141.2, 137.6, 136.5, 134.7, 134.1, 133.4, 129.7, 129.6, 129.5, 129.2, 128.8, 128.2, 128.0, 127.4, 127.3, 127.1, 126.8, 126.4, 126.1, 126.0, 125.9, 125.4, 123.5, 120.7, 119.3, 116.6, 113.9, 71.3, 56.7.

Chiral HPLC: (Chiralpak IC, 1% iPrOH, 99% hexane, 1.0 mL min⁻¹, λ = 259 nm) τR (major) = 10.2 min, τR (minor) = 19.7 min.

[α]D²⁵ = −77.0 (c = 1.00, CHCl₃).

Data in agreement with literature reported.

(R)- 2'-methoxy-6-phenyl-[1,1'-binaphthalen]-2-ol (20):

m.p. = 58-59 °C (CH₂Cl₂/petroleum ether 40-60).

Chiral HPLC: (Chiralpak ADH, 10% iPrOH, 90% hexane, 1.0 mL min⁻¹, λ = 259 nm) τR (minor) = 13.2 min, τR (major) = 21.2 min.

[α]D²⁵ = −5.7 (c = 1.00, CHCl₃).
Kinetic resolution of 6-bromo-2'-methoxy-[1,1'-binaphthalen]-2-ol (21)

Following **General procedure A**, 6-bromo-2'-methoxy-[1,1'-binaphthalen]-2-ol (21) (56.9 mg, 0.150 mmol) was reacted for 24 h. Purification via flash column chromatography (3:7 CH$_2$Cl$_2$ – petroleum ether 40-60 to 4:1 CH$_2$Cl$_2$ – petroleum ether 40-60) afforded 2-(benzyloxy)-6-bromo-2'-methoxy-1,1'-binaphthalene (Bn-21) as an off-white solid (34.3 mg, 49%, 87:13 e.r.) and recovered starting material (21) (22.0 mg, 39%, 99:1 e.r.).

(S)- 2-(Benzyloxy)-6-bromo-2'-methoxy-1,1'-binaphthalene (Bn-21):

m.p. = 115-115 °C (CH$_2$Cl$_2$/petroleum ether 40-60).

IR (film) ν$_{max}$/cm$^{-1}$: 3061, 3033, 2837, 1584, 1494, 1268, 1065, 734.

1H NMR (400 MHz, CDCl$_3$) δ = 7.93–7.88 (m, 2H), 7.79 (d, J = 8.2 Hz, 1H), 7.71 (d, J = 9.0 Hz, 1H), 7.34 (app. t, J = 9.4 Hz, 2H), 7.26–7.22 (m, 1H), 7.21–7.11 (m, 3H), 7.11–6.86 (m, 2H), 6.96 (d, J = 9.0 Hz, 1H), 6.91–6.86 (m, 2H), 5.15–4.79 (m, 2H), 3.66 (s, 3H).

13C NMR (101 MHz, CDCl$_3$) δ = 155.1, 154.4, 137.5, 134.1, 132.8, 130.6, 129.9, 129.8, 129.7, 129.3, 128.4, 128.3, 128.1, 127.5, 127.5, 126.8, 126.6, 125.3, 123.7, 121.2, 118.8, 117.7, 117.2, 113.8, 71.3, 56.7.

HRMS (ESI$^+$) C$_{28}$H$_{21}$O$_2$79Br [M+Na]$^+$ requires 491.06171; found 491.06180, Δ +0.2 ppm.

Chiral HPLC: (Chiralpak IC, 1% iPrOH, 99% hexane, 1.0 mL min$^{-1}$, λ = 295nm) τ$_R$ (major) = 6.2 min, τ$_R$ (minor) = 9.7 min.

$[\alpha]_D^{25} = -25.8$ (c = 1.00, CHCl$_3$).

(R)- 6-Bromo-2'-methoxy-[1,1'-binaphthalen]-2-ol (21):

m.p. = 71-72 °C (CH$_2$Cl$_2$/petroleum ether 40-60).

Chiral HPLC: (Chiralpak ADH, 1% iPrOH, 99% hexane, 1.0 mL min$^{-1}$, λ = 281 nm) τ$_R$ (major) = 19.1 min, τ$_R$ (minor) = 14.3 min.

$[\alpha]_D^{25} = -49.6$ (c = 1.00, CHCl$_3$).
Following General procedure A, 2'-methoxy-5-methyl-[1,1'-binaphthalen]-2-ol (21) (47.2 mg, 0.150 mmol) was reacted for 24 h. Purification via flash column chromatography (3:7 CH$_2$Cl$_2$ – petroleum ether 40-60 to 4:1 CH$_2$Cl$_2$ – petroleum ether 40-60) afforded 2-(benzyloxy)-2'-methoxy-5-methyl-1,1'-binaphthalene (Bn-21) as an off-white solid (33.8 mg, 56%, 89:11 e.r.) and recovered starting material (21) (18.9 mg, 40%, 99.5:0.5 e.r.).

(S)-2-(benzyloxy)-2'-methoxy-5-methyl-1,1'-binaphthalene (Bn-21):

m.p. = 84-85 °C (CH$_2$Cl$_2$/petroleum ether 40-60).

IR (film) ν_{max}/cm$^{-1}$: 3020, 3937, 1801, 1742, 1521, 1494, 1347, 1265, 1237, 1175, 1053, 749, 691, 666.

1H NMR (400 MHz, CDCl$_3$) δ = 8.10 (d, $J = 9.2$ Hz, 1H), 8.01 (d, $J = 9.0$ Hz, 1H), 7.90 (d, $J = 8.3$ Hz, 1H), 7.51–7.42 (m, 2H), 7.33 (t, $J = 7.4$ Hz, 1H), 7.24–7.04 (m, 8H), 7.03–6.97 (m, 2H), 5.15–5.02 (m, 2H), 3.77 (s, 3H), 2.75 (s, 3H).

13C NMR (101 MHz, CDCl$_3$) δ = 155.1, 153.9, 137.8, 134.4, 134.3, 129.5, 129.3, 128.7, 128.3, 128.0, 127.4, 126.9, 126.4, 126.3, 125.6, 124.8, 124.1, 123.6, 121.4, 119.9, 115.8, 114.0, 71.2, 56.8, 19.8.

HRMS (ESI$^+$) C$_{29}$H$_{24}$O$_2$ [M+H]$^+$ requires 405.18491; found 405.18494, $\Delta +0.1$ ppm.

Chiral HPLC: (Chiralpak IC, 1% iPrOH, 99% hexane, 1.0 mL min$^{-1}$, $\lambda = 295$ nm) τ_R (major) = 6.9 min, τ_R (minor) = 13.6 min.

$[\alpha]_D^{25} = -41.4$ (c = 1.00, CHCl$_3$).

Data in agreement with literature reported.11

(R)-2'-methoxy-5-methyl-[1,1'-binaphthalen]-2-ol (21):

m.p. = 74-75 °C (CH$_2$Cl$_2$/petroleum ether 40-60).

Chiral HPLC: (Chiralpak ADH, 10% iPrOH, 90% hexane, 1.0 mL min$^{-1}$, $\lambda = 295$ nm,) τ_R (major) = 20.0 min, τ_R (minor) = 12.8 min.

$[\alpha]_D^{25} = -13.3$ (c = 1.00, CHCl$_3$).
Kinetic resolution of 2',5-dimethoxy-[1,1'-binaphthalen]-2-ol (23)

Following General procedure A, 2',5-dimethoxy-[1,1'-binaphthalen]-2-ol (23) (49.6 mg, 0.150 mmol) was reacted for 30 h. Purification via flash column chromatography (3:7 CH₂Cl₂ – petroleum ether 40-60 to 4:1 CH₂Cl₂ – petroleum ether 40-60) afforded 2-(benzyloxy)-2',5-dimethoxy-1,1'-binaphthalene (Bn-23) as an off-white solid (37.6 mg, 59%, 77:23 e.r.) and recovered starting material (23) (16.4 mg, 33%, 99.5:0.5 e.r.).

(S)- 2-(Benzyloxy)-2',5-dimethoxy-1,1'-binaphthalene (Bn-23):

m.p. = 151-152 °C (CH₂Cl₂/petroleum ether 40-60).

IR (film) ν max/cm⁻¹:

¹H NMR (400 MHz, CDCl₃) δ = 8.38 (d, J = 8.4 Hz, 1H), 7.99 (d, J = 9.0 Hz, 1H), 7.89 (d, J = 8.2 Hz, 1H), 7.46 (d, J = 9.0 Hz, 1H), 7.41 (d, J = 9.3 Hz, 1H), 7.33 (ddd, J = 8.1, 6.6, 1.3 Hz, 1H), 7.23 (m, 1.4 Hz, 1H), 7.16 (m, 5H), 7.00 (m, 2H), 6.77 (d, J = 8.6 Hz, 1H), 6.68 (d, J = 6.8 Hz, 1H), 5.15–4.95 (m, 2H), 4.02 (s, 3H), 3.76 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ = 155.8, 155.1, 154.7, 137.7, 135.7, 134.2, 129.4, 129.3, 128.2, 128.0, 127.4, 126.9, 126.6, 126.4, 125.6, 123.6, 121.6, 120.5, 120.0, 118.0, 115.1, 114.1, 102.0, 71.1, 56.8, 55.6.

HRMS (ESI⁺) C₂₉H₂₄O₃ [M+H]⁺ requires 421.17982; found 421.17923, Δ –1.4 ppm.

Chiral HPLC: (Chiralpak ADH, 10% iPrOH, 90% hexane, 1.0 mL min⁻¹, λ = 293 nm) τᵣ (minor) = 17.2 min, τᵣ (major) = 27.9 min.

[α]D²⁵ = –37.3 (c = 1.00, CHCl₃).

(R)- 2',5-Dimethoxy-[1,1'-binaphthalen]-2-ol (23):

m.p. = 165-167 °C (CH₂Cl₂/petroleum ether 40-60).

Chiral HPLC: (Chiralpak ADH, 10% iPrOH, 90% hexane, 1.0 mL min⁻¹, λ = 293 nm) τᵣ (major) = 17.3 min, τᵣ (minor) = 28.0 min.

[α]D²⁵ = –35.7 (c = 1.00, CHCl₃).
Kinetic resolution of 5-bromo-2'-methoxy-[1,1'-binaphthalen]-2-ol (24)

Following **General procedure A**, 5-bromo-2'-methoxy-[1,1'-binaphthalen]-2-ol (24) (56.9 mg, 0.150 mmol) was reacted for 24 h. Purification via flash column chromatography (3:7 CH₂Cl₂ – petroleum ether 40-60 to 4:1 CH₂Cl₂ – petroleum ether 40-60) afforded 2-(benzyloxy)-5-bromo-2'-methoxy-1,1'-binaphthalene (Bn-24) as an off-white solid (33.6 mg, 48%, 89:11 e.r.) and recovered starting material (24) (22.4 mg, 39%, 98:2 e.r.).

(S)-2-(benzyloxy)-5-bromo-2'-methoxy-1,1'-binaphthalene (Bn-24):

IR (film) ν_{max}/cm⁻¹: 3077, 3063, 3019, 2941, 1802, 1747, 1521, 1495, 1347, 1267, 1233, 1176, 1053, 749.

¹H NMR (500 MHz, CDCl₃) δ = 8.35 (d, J = 9.3 Hz, 1H), 8.02 (d, J = 9.0 Hz, 1H), 7.90 (d, J = 8.2 Hz, 1H), 7.62 (d, J = 7.3 Hz, 1H), 7.52 (d, J = 9.4 Hz, 1H), 7.47 (d, J = 9.0 Hz, 1H), 7.35 (dd, J = 8.1, 6.8 Hz, 1H), 7.25–7.21 (m, 1H), 7.20–7.15 (m, 4H), 7.12–7.04 (m, 2H), 7.04–6.93 (m, 2H), 5.35–4.88 (m, 2H), 3.77 (s, 3H).

¹³C NMR (126 MHz, CDCl₃) δ = 155.0, 154.6, 137.3, 135.4, 134.0, 129.7, 129.2, 128.6, 128.2, 128.0, 127.8, 127.4, 126.7, 126.7, 126.5, 125.5, 125.2, 123.6, 122.9, 121.0, 118.9, 116.9, 113.7, 70.9, 56.6.

HRMS (ESI⁺) $\text{C}_{28}\text{H}_{21}\text{O}_2\text{Br}$ [M+Na]⁺ requires 491.06171; found 491.06180, Δ +0.2 ppm.

Chiral HPLC: (Chiralpak ADH, 10% iPrOH, 90% hexane, 1.0 mL min⁻¹, λ = 295 nm) τ_R (major) = 22.2 min, τ_H (minor) = 12.3 min.

$[\alpha]_{D}^{25}$ = −56.3 (c = 1.00, CHCl₃).

Data in agreement with literature reported.¹¹

(R)-5-Bromo-2'-methoxy-[1,1'-binaphthalen]-2-ol (24):

m.p. = 109-110 °C (CH₂Cl₂/petroleum ether 40-60).

Chiral HPLC: (Chiralpak ADH, 10% iPrOH, 90% hexane, 1.0 mL min⁻¹, λ = 295 nm) τ_R (major) = 22.5 min, τ_H (minor) = 12.5 min.

$[\alpha]_{D}^{25}$ = +6.5 (c = 1.00, CHCl₃).
Kinetic resolution of 1-(2-methoxynaphthalen-1-yl)phenanthren-2-ol (25)

Following General procedure A, 1-(2-methoxynaphthalen-1-yl)phenanthren-2-ol (25) (52.6 mg, 0.150 mmol) was reacted for 24 h. Purification via flash column chromatography (3:7 CH$_2$Cl$_2$ – petroleum ether 40-60 to 4:1 CH$_2$Cl$_2$ – petroleum ether 40-60) afforded 2-(benzyloxy)-1-(2-methoxynaphthalen-1-yl)phenanthrene (Bn-25) as an off-white solid (33.0 mg, 50%, 87:13 e.r.) and recovered starting material (25) (21.0 mg, 40%, 99:1 e.r.).

Data in agreement with literature reported.11

(S)- 2-(benzyloxy)-1-(2-methoxynaphthalen-1-yl)phenanthrene (Bn-25):

m.p. = 130-132 °C (CH$_2$Cl$_2$/petroleum ether 40-60).

IR (film) ν_{max}/cm$^{-1}$: 3036, 2934, 1592, 1460, 1301, 1269, 1251, 1086, 1060, 810, 749.

1H NMR (400 MHz, CDCl$_3$) δ = 8.77 (d, J = 9.1 Hz, 1H), 8.69 (d, J = 8.4 Hz, 1H), 8.03 (d, J = 9.0 Hz, 1H), 7.92 (d, J = 8.4 Hz, 1H), 7.80 (d, J = 7.9 Hz, 1H), 7.71–7.59 (m, 1H), 7.56–7.45 (m, 4H), 7.38–7.32 (m, 1H), 7.26–7.21 (m, 1H), 7.20–7.14 (m, 5H), 7.06–6.99 (m, 2H), 5.21–5.05 (m, 2H), 3.78 (s, 3H).

13C NMR (101 MHz, CDCl$_3$) δ = 155.1, 137.7, 134.3, 133.0, 131.1, 130.8, 129.6, 129.3, 128.6, 128.3, 128.1, 127.6, 127.4, 126.8, 126.7, 126.5, 125.9, 125.5, 125.4, 124.7, 123.9, 123.6, 122.4, 122.3, 119.8, 114.7, 114.0, 70.9, 56.8.

HRMS (ESI$^+$) C$_{32}$H$_{24}$O$_2$ [M+Na]$^+$ requires 463.16685; found 463.16660, Δ = 0.6 ppm.

Chiral HPLC: (Chiralpak IC, 1% iPrOH, 99% hexane, 1.0 mL min$^{-1}$, λ = 222 nm) τ_R (major) = 20.8 min, τ_R (minor) = 33.0 min.

$[\alpha]_{D}^{25} = -31.3$ (c = 1.00, CHCl$_3$).

(R)- 1-(2-methoxynaphthalen-1-yl)phenanthren-2-ol (25):

m.p. = 62-64 °C (CH$_2$Cl$_2$/petroleum ether 40-60).

Chiral HPLC: (Chiralpak ADH, 15% iPrOH, 85% hexane, 1.0 mL min$^{-1}$, λ = 277 nm) τ_R (major) = 16.6 min, τ_R (minor) = 26.3 min.

$[\alpha]_{D}^{25} = -15.2$ (c = 0.50, CHCl$_3$).
Kinetic resolution of 2'-methoxy-4-methyl-[1,1'-binaphthalen]-2-ol (26)

Following General procedure A, 2'-methoxy-4-methyl-[1,1'-binaphthalen]-2-ol (26) (49.2 mg, 0.150 mmol) was reacted for 36 h. Purification via flash column chromatography (3:7 CH$_2$Cl$_2$ – petroleum ether 40-60 to 4:1 CH$_2$Cl$_2$ – petroleum ether 40-60) afforded 2-(benzyloxy)-2'-methoxy-4-methyl-1,1'-binaphthalene (Bn-26) as an off-white solid (37.4 mg, 61%, 81:19 e.r.) and recovered starting material (26) (16.4 mg, 33%, >99.5:0.5 e.r.).

Data in agreement with literature reported.11

(S)- 2-(benzyloxy)-2'-methoxy-4-methyl-1,1'-binaphthalene (Bn-26):

m.p. = 54-55 °C (CH$_2$Cl$_2$/petroleum ether 40-60).

IR (film) ν_{max}/cm$^{-1}$: 3062, 3033, 2936, 2836, 1593, 1508, 1342, 1266, 1252, 1101, 754.

1H NMR (400 MHz, CDCl$_3$) δ = 8.06–7.97 (m, 2H), 7.90 (d, J = 8.2 Hz, 1H), 7.47 (d, J = 9.1 Hz, 1H), 7.43–7.30 (m, 3H), 7.29–7.11 (m, 7H), 7.03–6.94 (m, 2H), 5.10–5.01 (m, 3H), 3.77 (s, 3H), 2.80 (s, 1H).

13C NMR (101 MHz, CDCl$_3$) δ = 155.2, 153.7, 137.8, 136.0, 134.4, 134.4, 129.4, 129.3, 128.9, 128.2, 128.0, 127.4, 126.9, 126.4, 126.2, 125.6, 124.3, 123.7, 123.5, 119.7, 119.0, 117.5, 117.5, 114.0, 71.5, 56.8, 20.1.

HRMS (ESI$^+$) C$_{29}$H$_{24}$O$_2$ [M+H]$^+$ requires 405.18491; found 405.18494, Δ +0.1 ppm.

Chiral HPLC: (Chiralpak IC, 2% tPrOH, 98% hexane, 1.0 mL min$^{-1}$, λ = 291 nm) τ_R (major) = 15.6 min, τ_R (minor) = 24.7.

$[\alpha]_D^{25} = -33.4$ (c = 1.00, CHCl$_3$).

(R)- 2'-methoxy-4-methyl-[1,1'-binaphthalen]-2-ol (26):

m.p. = 170-171 °C (CH$_2$Cl$_2$/petroleum ether 40-60).

Chiral HPLC: (Chiralpak ADH, 10% tPrOH, 90% hexane, 1.0 mL min$^{-1}$, λ = 291 nm) τ_R (major) = 15.6 min, τ_R (minor) = 20.7 min.

$[\alpha]_D^{25} = +37.8$ (c = 1.00, CHCl$_3$).
Kinetic resolution of 2'-methoxy-4-phenyl-[1,1'-binaphthalen]-2-ol (27)

Following General procedure A, 2'-methoxy-4-phenyl-[1,1'-binaphthalen]-2-ol (27) (56.4 mg, 0.150 mmol) was reacted for 24 h. Purification via flash column chromatography (3:7 CH$_2$Cl$_2$ – petroleum ether 40-60 to 4:1 CH$_2$Cl$_2$ – petroleum ether 40-60) afforded 2-(benzyloxy)-2'-methoxy-4-phenyl-1,1'-binaphthalene (Bn-27) as an off-white solid (35.4 mg, 51%, 91:9 e.r.) and recovered starting material (27) (26.0 mg, 46%, 95:5 e.r.).

(S)-2-(Benzyloxy)-2'-methoxy-4-phenyl-1,1'-binaphthalene (Bn-27):

m.p. = 120-121 °C (CH$_2$Cl$_2$/petroleum ether 40-60).

IR (film) ν_{max}/cm$^{-1}$: 3066, 1585, 1342, 1188, 1024, 911, 766, 731, 705.

1H NMR (400 MHz, CDCl$_3$) δ = 7.92 (d, $J = 9.1$ Hz, 1H), 7.86–7.77 (m, 2H), 7.49 (m, 2H), 7.46–7.41 (m, 2H), 7.40–7.34 (m, 2H), 7.31 (s, 1H), 7.24 (m, 1H), 7.20–7.11 (m, 5H), 7.04 (m, 3H), 6.86 (m, 2H), 5.02–4.91 (m, 2H), 3.69 (s, 3H).

13C NMR (101 MHz, CDCl$_3$) δ = 155.2, 153.5, 141.7, 140.9, 137.6, 134.7, 134.3, 130.3, 129.6, 129.3, 128.4, 128.2, 128.0, 127.9, 127.5, 127.4, 127.0, 126.5, 126.3, 126.3, 125.9, 125.6, 124.0, 123.6, 120.5, 119.5, 117.6, 114.0, 71.5, 56.8.

HRMS (ESI$^+$) C$_{34}$H$_{27}$O$_2$ [M+H]$^+$ requires 467.20056; found 467.20050, Δ −0.1 ppm.

Chiral HPLC: (Chiralpak ADH, 2% 1PrOH, 98% hexane, 1.0 mL min$^{-1}$, λ = 297 nm) τ_R (minor) = 14.8 min, τ_R (major) = 24.5 min.

$[\alpha]_D^{25}$ = −54.9 ($c = 1.00$, CHCl$_3$).

(R)- 2'-methoxy-4-phenyl-[1,1'-binaphthalen]-2-ol (27):

m.p. = 88-89 °C (CH$_2$Cl$_2$/petroleum ether 40-60).

Chiral HPLC: (Chiralpak ADH, 10% 1PrOH, 90% hexane, 1.0 mL min$^{-1}$, λ = 295 nm) τ_R (minor) = 18.8 min, τ_R (major) = 26.2 min.

$[\alpha]_D^{25}$ = −1.5 ($c = 1.00$, CHCl$_3$).
Kinetic resolution of 4-bromo-2'-methoxy-[1,1'-binaphthalen]-2-ol (28)

Following General procedure A, 4-bromo-2'-methoxy-[1,1'-binaphthalen]-2-ol (28) (56.9 mg, 0.150 mmol) was reacted for 24 h. Purification via flash column chromatography (3:7 CH₂Cl₂ – petroleum ether 40-60 to 4:1 CH₂Cl₂ – petroleum ether 40-60) afforded 2-(benzyloxy)-4-bromo-2'-methoxy-1,1'-binaphthalene (Bn-28) as an off-white solid (38.0 mg, 54%, 86:14 e.r.) and recovered starting material (28) (23.0 mg, 40%, 99:1 e.r.).

(S)- 2-(Benzyloxy)-4-bromo-2'-methoxy-1,1'-binaphthalene (n-28):

m.p. = 54-55 °C (CH₂Cl₂/petroleum ether 40-60).

IR (film) ν_max/cm⁻¹: 3062, 3033, 2930, 2837, 1583, 1501, 1453, 1315, 1270, 1261, 1251.

¹H NMR (400 MHz, CDCl₃) δ = 8.15 (d, J = 7.2 Hz, 1H), 7.91 (d, J = 9.0 Hz, 1H), 7.80 (d, J = 8.2 Hz, 1H), 7.68 (s, 1H), 7.37–7.31 (m, 2H), 7.26–7.21 (m, 1H), 7.20–7.09 (m, 3H), 7.08–7.00 (m, 4H), 6.89–6.83 (m, 2H), 5.04–4.87 (m, 2H), 3.66 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ = 154.9, 153.7, 137.0, 134.8, 133.9, 129.8, 129.1, 128.2, 128.1, 128.0, 127.5, 127.1, 127.1, 126.8, 126.5, 125.9, 125.2, 123.6, 123.2, 121.2, 120.6, 120.6, 118.5, 113.6, 71.6, 56.6.

HRMS (ESI⁺) C₂₈H₂₁O₂⁻⁷⁹Br [M+Na]⁺ requires 491.06171; found 491.06171, Δ 0.0 ppm.

Chiral HPLC: (Chiralpak IC, 1% iPrOH, 99% hexane, 1.0 mL min⁻¹, λ = 232 nm) τ_R (major) = 15.0 min, τ_R (minor) = 18.0 min.

[α]D²⁵ = −39.6 (c = 1.00, CHCl₃).

(R)- 4-Bromo-2'-methoxy-[1,1'-binaphthalen]-2-ol (28):

Chiral HPLC: (Chiralpak ADH, 10% iPrOH, 90% hexane, 1.0 mL min⁻¹, λ = 293 nm) τ_R (major) = 13.2 min, τ_R (minor) = 23.0 min.
Kinetic resolution of 2',4-dimethoxy-[1,1'-binaphthalen]-2-ol (29)

Following General procedure A, 2',4-dimethoxy-[1,1'-binaphthalen]-2-ol (29) (49.6 mg, 0.150 mmol) was reacted for 30 h. Purification via flash column chromatography (3:7 CH₂Cl₂ – petroleum ether 40-60 to 4:1 CH₂Cl₂ – petroleum ether 40-60) afforded 2-(benzylxoy)-2',4-dimethoxy-1,1'-binaphthalene (Bn-29) as an off-white solid (34.0 mg, 54%, 85:15 e.r.) and recovered starting material (29) (17.0 mg, 34%, 99:1 e.r.).

(S)- 2-(Benzylxoy)-2',4-dimethoxy-1,1'-binaphthalene (Bn-29):

m.p. = 125-126 °C (CH₂Cl₂/petroleum ether 40-60).

IR (film) νmax/cm⁻¹: 2996, 2980, 2971, 2936, 1620, 1588, 1508, 1460, 1344, 1265, 1253, 1241, 1195, 1144, 1107, 1066, 1022, 906, 809, 764, 733, 697.

¹H NMR (400 MHz, CDCl₃) δ = 8.16 (d, J = 8.4 Hz, 1H), 7.89 (d, J = 9.0 Hz, 1H), 7.81–7.76 (m, 1H), 7.35 (d, J = 9.1 Hz, 1H), 7.22 (m, 2H), 7.17–7.10 (m, 3H), 7.09–7.01 (m, 4H), 6.91–6.86 (m, 2H), 6.70 (s, 1H), 4.90 (m, 2H), 3.92 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ = 156.4, 155.3, 154.4, 137.7, 134.5, 129.3, 129.2, 128.2, 127.9, 127.4, 127.0, 127.0, 126.3, 125.6, 125.2, 123.4, 123.2, 122.0, 122.0, 119.6, 114.0, 113.3, 96.8, 72.0, 56.7, 55.6.

Chiral HPLC: (Chiralpak IC, 3% iPrOH, x% hexane, 1.0 mL min⁻¹, λ = 292 nm) τR (major) = 6.1 min, τR (minor) = 8.2 min.

[α]D²⁵ = −46.0 (c = 1.00, CHCl₃).

(R)- 2',4-Dimethoxy-[1,1'-binaphthalen]-2-ol (29):

m.p. = 161-162 °C (CH₂Cl₂/petroleum ether 40-60).

Chiral HPLC: (Chiralpak ADH, 15% iPrOH, 85% hexane, 1.0 mL min⁻¹, λ = 231 nm) τR (minor) = 8.7 min, τR (major) = 12.7 min.

[α]D²⁵ = −2.0 (c = 1.00, CHCl₃).
Kinetic resolution of 7,7'-dibromo-2'-methoxy-[1,1'-binaphthalen]-2-ol (30)

Following **General procedure A**, 7,7'-dibromo-2'-methoxy-[1,1'-binaphthalen]-2-ol (30) (68.7 mg, 0.150 mmol) was reacted for 48 h. Purification via flash column chromatography (3:1 petroleum ether 40-60/CH$_2$Cl$_2$ to 1:1 petroleum ether 40-60/CH$_2$Cl$_2$) afforded 2-(benzyloxy)-7,7'-dibromo-2'-methoxy-1,1'-binaphthalene (Bn-30) as an off-white solid (41.6 mg, 51%, 92.0:8.0 e.r.) and recovered starting material (30) (30.0 mg, 44%, 94.0:6.0 e.r.).

(-)-2-(benzyloxy)-7,7'-dibromo-2'-methoxy-1,1'-binaphthalene (Bn-30)

- **m.p.** = 66-68°C (CH$_2$Cl$_2$/petroleum ether 40-60).
- **IR** (film) ν_{max}/cm$^{-1}$: 2935.6, 2360.5, 2341.5, 1612.9, 1583.0, 1496.4, 1456.2, 1343.2, 1321.1, 1256.3, 1343.2, 1321.1, 1256.3, 1221.9, 1171.5, 1151.9, 1095.9, 1067.1, 923.4, 872.5, 827.1, 796.2, 756.3, 695.7, 668.8.
- **1H NMR** (500 MHz, CDCl$_3$) δ: 7.96 (d, $J = 9.0$ Hz, 1H), 7.87 (d, $J = 9.0$ Hz, 1H), 7.75 (d, $J = 8.6$ Hz, 1H), 7.71 (d, $J = 8.8$ Hz), 7.45 (d, $J = 9.2$ Hz, 1H), 7.43-7.37 (m, 3H), 7.30-7.25 (m, 2H), 7.23-7.15 (m, 3H), 7.05-6.97 (m, 2H), 5.13-5.04 (m, 2H), 3.77 (s, 3H)
- **13C NMR** (126 MHz, CDCl$_3$) δ: 155.7, 154.7, 137.3, 135.4, 135.4, 129.9, 129.9, 129.7, 128.5, 127.9, 127.7, 127.6, 127.4, 127.2, 127.2, 126.8, 121.4, 121.3, 119.0, 118.0, 115.9, 114.0, 70.9, 56.6
- **HRMS** (MSS-ESI$^{+}$) C$_{30}$H$_{20}$O$_7$Br$_2$Na$^+$ [M+Na]$^+$ requires 568.97463; found: 568.97223, Δ -4.2 ppm.
- **Chiral HPLC**: (Chiralpak ADH, 5%/PrOH, 95% hexane, 1.00 mL min$^{-1}$, λ = 290 nm) τ_R (major) = 7.6 min, τ_R (minor) = 6.6 min
 - $[\alpha]_{D}^{25} = +13.9^\circ$ ($c = 1.00$, CHCl$_3$).

(R)-7,7'-dibromo-2'-methoxy-[1,1'-binaphthalen]-2-ol (30)

- **m.p.** = 116-118°C (CH$_2$Cl$_2$/petroleum ether 40-60).
- **Chiral HPLC**: (Chiralpak ADH, 5%/PrOH, 95% hexane, 1.00 mL min$^{-1}$, λ = 290 nm) τ_R (major) = 26.7 min, τ_R (minor) = 21.7 min
 - $[\alpha]_{D}^{25} = -156.2^\circ$ ($c = 1.00$, CHCl$_3$).
Following General procedure A, 2',7,7'-trimethoxy-[1,1'-binaphthalen]-2-ol (31) (54.1 mg, 0.150 mmol) was reacted for 27 h. Purification via flash column chromatography (2:1 petroleum ether 40-60 – CH$_2$Cl$_2$ to 1:2 petroleum ether 40-60 – CH$_2$Cl$_2$) afforded 2-(benzyloxy)-2',7,7'-trimethoxy-[1,1'-binaphthalen]-2-ol (Bn-31) as an off-white solid (35.1 mg, 52%, 89.5:10.5 e.r.) and recovered starting material (31) (24.2 mg, 45%, 94.0:6.0 e.r.).

(S)-2-(benzyloxy)-2',7,7'-trimethoxy-[1,1'-binaphthalen]-2-ol (Bn-31)

m.p. = 61-63 °C (CH$_2$Cl$_2$/petroleum ether 40-60).

IR (film) ν_{max}/cm$^{-1}$: 2924, 1621, 1509, 1458, 1261, 1220, 1029, 826, 734.

1H NMR (500 MHz, CDCl$_3$) δH: 7.93 (d, $J = 8.9$ Hz, 1H), 7.85 (d, $J = 8.9$ Hz, 1H), 7.80 (d, $J = 8.9$ Hz, 1H), 7.77 (d, $J = 8.9$ Hz, 1H), 7.32 (d, $J = 9.0$ Hz, 1H), 7.29 (d, $J = 9.6$ Hz, 1H), 7.20-7.15 (m, 3H), 7.05-7.00 (m, 4H), 6.54 (d, $J = 2.4$ Hz, 1H), 6.47 (d, $J = 2.4$ Hz, 1H), 5.13-5.05 (m, 2H), 3.78 (s, 3H), 3.55 (s, 3H), 3.49 (s, 3H).

13C NMR (126 MHz, CDCl$_3$) δC: 158.2, 158.2, 155.7, 154.7, 137.8, 135.4, 129.6, 129.6, 129.2, 129.1, 128.2, 127.4, 126.8, 125.2, 124.9, 119.9, 118.7, 116.3, 116.1, 113.6, 114.4, 104.1, 104.0, 71.2, 56.7, 55.2, 55.1

HRMS (ESI$^+$) C$_{30}$H$_{26}$O$_4$Na$^+$ [M+Na]$^+$ requires 473.17233; found: 473.17258, $\Delta +0.5$ ppm.

Chiral HPLC: (Chiralpak ADH, 5% iPrOH, 95% hexane, 1.00 mL min$^{-1}$, $\lambda = 290$ nm) τ_R (major) = 27.4 min, τ_R (minor) = 11.6 min

$[\alpha]^{25}_D = +32.9$ (c = 1.00, CHCl$_3$).

(R)-2',7,7'-trimethoxy-[1,1'-binaphthalen]-2-ol (31)

m.p. = 73-75 °C (CH$_2$Cl$_2$/petroleum ether 40-60).

Chiral HPLC: (Chiralpak ADH, 5% iPrOH, 95% hexane, 1.00 mL min$^{-1}$, $\lambda = 290$ nm) τ_R (major) = 47.8 min, τ_R (minor) = 40.7 min

$[\alpha]^{25}_D = -179.1$ (c = 1.00, CHCl$_3$).
Kinetic resolution of 2′-methoxy-7,7′-dimethyl-[1,1′-binaphthalen]-2-ol (32)

Following General procedure A, 2′-methoxy-7,7′-dimethyl-[1,1′-binaphthalen]-2-ol (32) (49.3 mg, 0.150 mmol) was reacted for 39 h. Purification via flash column chromatography (3:1 petroleum ether 40-60 – CH₂Cl₂ to 1:1 petroleum ether 40-60 – CH₂Cl₂) afforded 2-(benzyloxy)-2′-methoxy-7,7′-dimethyl-1,1′-binaphthalene (Bn-32) as an off-white solid (32.0 mg, 51%, 84.0:16.0 e.r.) and recovered starting material (32) (21.0 mg, 43%, 95.5:4.5 e.r.).

(S)-2-(benzyloxy)-2′-methoxy-7,7′-dimethyl-1,1′-binaphthalene (Bn-32)

m.p. = 55-57 °C (CH₂Cl₂/petroleum ether 40-60).

IR (film) ν_max/cm⁻¹: 3044, 2935, 2837, 1626, 1597, 1509, 1454, 1353, 1320, 1262, 1223, 1152, 1094, 1065, 826, 737, 696

¹H NMR (500 MHz, CDCl₃) δ_H: 7.96 (d, J = 8.9 Hz, 1H), 7.87 (d, J = 9.1 Hz, 1H), 7.81 (d, J = 8.3 Hz, 1H), 7.77 (d, J = 8.3 Hz, 1H), 7.40 (d, J = 8.9 Hz, 1H), 7.36 (d, J = 8.9 Hz, 1H), 7.22-7.13 (m, 5H), 7.05-6.90 (m, 4H), 5.10-4.99 (m, 2H), 3.75 (s, 3H), 2.28 (s, 3H), 2.26 (s, 3H)

¹³C NMR (126 MHz, CDCl₃) δ_C: 155.2, 154.2, 137.9, 136.0, 136.0, 134.5, 129.1, 128.9, 128.2, 127.9, 127.8, 127.8, 127.6, 126.3, 126.3, 126.0, 124.5, 124.4, 120.6, 119.3, 115.4, 113.1, 71.3, 56.8, 22.1, 22.1

HRMS (ESI⁺) C₃₀H₂₇O₂⁺ [M+H]⁺ requires 419.20056; found: 419.20062 Δ +0.2 ppm.

Chiral HPLC: (Chiralpak ADH, 5% iPrOH, 95% hexane, 1.00 mL min⁻¹, λ = 290 nm) τ_R (major) = 8.4 min, τ_R (minor) = 5.5 min

[α]D⁰ = −17.9 (c = 1.00, CHCl₃).

(R)-2′-methoxy-7,7′-dimethyl-[1,1′-binaphthalen]-2-ol (32)

m.p. = 76-78 °C (CH₂Cl₂/petroleum ether 40-60).

Chiral HPLC: (Chiralpak ADH, 5% iPrOH, 95% hexane, 1.00 mL min⁻¹, λ = 290 nm) τ_R (major) = 19.5 min, τ_R (minor) = 22.1 min

[α]D⁰ = −84.0 (c = 1.00, CHCl₃).
Following General procedure A, 6,6'-dibromo-2'-methoxy-[1,1'-binaphthalen]-2-ol (33) (68.7 mg, 0.150 mmol) was reacted for 42 h. Purification via flash column chromatography (3:1 petroleum ether 40-60/CH₂Cl₂ to 1:1 petroleum ether 40-60/CH₂Cl₂) afforded 2-(benzyloxy)-6,6'-dibromo-2'-methoxy-1,1'-binaphthalene (Bn-33) as an off-white solid (45.1 mg, 55%, 88.5:11.5 e.r.) and recovered starting material (33) (29.6 mg, 43%, 99.0:1.0 e.r.).

(S)-2-(benzyloxy)-6,6'-dibromo-2'-methoxy-1,1'-binaphthalene (Bn-33)

m.p. = 61-63 °C (CH₂Cl₂/petroleum ether 40-60).

IR (film) νmax/cm⁻¹: 2917, 1584, 1494, 1327, 1268, 1069, 906, 730.

¹H NMR (500 MHz, CDCl₃) δH: 8.06 (d, J = 1.8 Hz, 1H, H₆), 8.03 (d, J = 1.7 Hz, 1H, H₁₇), 7.93 (d, J = 9.1 Hz, 1H, H₄), 7.84 (d, J = 9.0 Hz, 1H, H₁₃), 7.48 (d, J = 9.1 Hz, 1H, H₃), 7.46 (d, J = 9.1 Hz, 1H, H₁₄), 7.33-7.27 (m, 2H, H₈ and H₁₉), 7.22-7.17 (m, 3H, H₂₄ and H₂₆), 7.03-6.96 (m, 4H, H₉, H₂₀ and H₂₅), 5.09 (s, 2H, H₂₂), 3.78 (s, 3H, H₁₁).

¹³C NMR (126 MHz, CDCl₃) δC: 155.2, 154.3, 137.2, 132.51, 132.48, 130.5, 130.2, 129.92, 129.87, 129.8, 128.8, 128.6, 128.3, 127.5, 127.0, 126.7, 120.3, 119.0, 117.7, 117.3, 116.9, 114.7, 71.1, 56.6.

HRMS (APCI-) C₂₈H₂₁⁷⁹Br₂O₂⁻ [M-H]⁻ requires 546.9914; found: 546.9907, Δ -1.10 ppm.

Chiral HPLC: (Chiralpak ADH, 7.5% iPrOH, 92.5% hexane, 1.00 mL min⁻¹, λ = 290 nm) τR (major) = 13.3 min, τR (minor) = 10.8 min.
[α]D²⁵ ≈ -9.5° (c = 1.00, CHCl₃)

(R)-6,6'-Dibromo-2'-methoxy-[1,1'-binaphthalen]-2-ol (33)

m.p. = 61-63 °C (CH₂Cl₂/petroleum ether 40-60).

Chiral HPLC: (Chiralpak ADH, 7.5% iPrOH, 92.5% hexane, 1.00 mL min⁻¹, λ = 290nm) τR (major) = 25.4 min, τR (minor) = 20.2 min.
[α]D²⁵ ≈ -103.3 (c = 1.00, CHCl₃).
Kinetic resolution of 2'-Methoxy-6,6'-diphenyl-[1,1'-binaphthalen]-2-ol

Following General procedure A, 2'-Methoxy-6,6'-diphenyl-[1,1'-binaphthalen]-2-ol (34) (67.9 mg, 0.150 mmol) was reacted for 24 h. Purification via flash column chromatography (3:1 petroleum ether 40-60/CH₂Cl₂ to 1:1 petroleum ether 40-60/CH₂Cl₂) afforded 2-(Benzyloxy)-2'-methoxy-6,6'-diphenyl-1,1'-binaphthalene (Bn-34) as an off-white solid (36.8 mg, 45%, 93.0:7.0 e.r.) and recovered starting material (34) (32.2 mg, 47%, 95.0:5.0 e.r.)

(S)-2-(Benzyloxy)-2'-methoxy-6,6'-diphenyl-1,1'-binaphthalene (Bn-34)

m.p. = 98-100 °C (CH₂Cl₂/petroleum ether 40-60).

IR (film) ν_max/cm⁻¹: 3028, 2917, 1622, 1592, 1491, 1454, 1251, 1223, 1176, 1096, 1061, 1028, 757, 732, 695.

¹H NMR (500 MHz, CDCl₃) δ_H: 8.15 (s, 1H), 8.13-8.09 (m, 2H), 8.02 (d, J = 9.0 Hz, 1H), 7.76-7.69 (m, 4H), 7.58 – 7.53 (m, 3H), 7.52-7.46 (m, 5H), 7.40-7.28 (m, 4H), 7.23-7.18 (m, 3H), 7.10-7.05 (m, 2H), 5.14 (s, 2H), 3.83 (s, 3H)

¹³C NMR (126 MHz, CDCl₃) δ_C: 155.2, 154.2, 141.3, 141.2, 137.6, 136.5, 136.2, 133.4, 129.9, 129.73, 129.67, 129.4, 128.8, 128.2, 127.4, 127.27, 127.25, 127.08, 127.06, 126.8, 126.2, 126.0, 125.93, 125.88, 120.6, 119.3, 116.6, 114.3, 71.3, 56.7.

HRMS (ESI⁺) C₄₀H₃₀O₂Na⁺ [M+Na]⁺ requires 565.21380, found: 565.21381, Δ +0.0 ppm.

Chiral HPLC: (Chiralpak ADH, 12.5% iPrOH, 87.5% hexane, 1.00 mL min⁻¹, λ = 290 nm) τ_R (major) = 12.3 min, τ_R (minor) = 19.5 min

[α]D²⁵ = +70.5 (c = 1.00, CHCl₃).

(R)-2'-Methoxy-6,6'-diphenyl-[1,1'-binaphthalen]-2-ol (34)

m.p. = 120-122 °C (CH₂Cl₂/petroleum ether 40-60).

Chiral HPLC: (Chiralpak ADH, 12.5% iPrOH, 87.5% hexane, 1.00 mL min⁻¹, λ = 290 nm) τ_R (major) = 25.6 min, τ_R (minor) = 17.7 min

[α]D²⁵ = −189.4 (c = 1.00, CHCl₃).
Kinetic resolution of 6,6'-bis(4-fluorophenyl)-2'-methoxy-1,1'-binaphthalen-2-ol (35)

Following General procedure A, 6,6'-bis(4-fluorophenyl)-2'-methoxy-1,1'-binaphthalen-2-ol (35) (73.3 mg, 0.150 mmol) was reacted for 24 h. Purification via flash column chromatography (3:1 petroleum ether 40-60 – CH$_2$Cl$_2$ to 1:1 petroleum ether 40-60 – CH$_2$Cl$_2$) afforded 2-(Benzyloxy)-6,6'-bis(4-fluorophenyl)-2'-methoxy-1,1'-binaphthalene (Bn-35) as an off-white solid (49.7 mg, 57%, 85.0:15.0 e.r.) and recovered starting material (35) (30.6 mg, 42%, 99.5:0.5 e.r.).

(S)-2-(Benzyloxy)-6,6'-bis(4-fluorophenyl)-2'-methoxy-1,1'-binaphthalene (Bn-35)

m.p. = 185-187 °C (CH$_2$Cl$_2$/petroleum ether 40-60).

IR (film) ν_{max}/cm$^{-1}$: 2918, 1602, 1514, 1496, 1251, 1224, 1159, 1096, 1061, 820, 735.

1H NMR (500 MHz, CDCl$_3$) δ_H: 8.11-8.06 (m, 2H), 8.04 (d, $J = 1.7$ Hz, 1H), 8.00 (d, $J = 9.0$ Hz, 1H), 7.69-7.61 (m, 4H), 7.53 (d, $J = 9.0$ Hz, 1H), 7.51-7.44 (m, 3H), 7.32-7.24 (m, 2H), 7.21-7.13 (m, 7H), 7.08-7.03 (m, 2H), 5.13 (s, 2H), 3.82 (s, 3H).

13C NMR (126 MHz, CDCl$_3$) δ_C: 162.3 (d, $J = 246$ Hz), 155.2, 154.3, 137.5, 137.3 (app t, $J = 4$ Hz), 135.5, 135.2, 133.3, 129.8, 129.65, 129.60, 129.3, 128.7 (app dd, $J = 8.0$, 2.5 Hz), 128.2, 127.4, 126.8, 126.1, 126.0, 125.8, 125.7, 120.6, 119.2, 116.7, 115.7 (d, $J = 21.3$ Hz), 114.3, 71.3, 56.7.

19F NMR (470 MHz, CDCl$_3$, 1H decoupled) δ_F: -116.0 (s), -116.1 (s).

HRMS (ESI$^+$) C$_{40}$H$_{28}$F$_2$O$_2$Na$^+$ [M+Na]$^+$: requires 601.19496, found: 601.19489, Δ -0.1 ppm.

Chiral HPLC: (Chiralpak ADH, 12.5% i-PrOH, 87.5% hexane, 1.00 mL min$^{-1}$, $\lambda = 290$ nm) τ_R (major) = 16.6 min, τ_R (minor) = 26.6 min

$[\alpha]_{D}^{25}$ = +48.4 (c = 1.00, CHCl$_3$).

(R)-2'-Methoxy-6,6'-bis(4-(trifluoromethoxy)phenyl)-1,1'-binaphthalen-2-ol (35)

m.p. = 113-115 °C (CH$_2$Cl$_2$/petroleum ether 40-60).

Chiral HPLC: (Chiralpak ADH, 12.5% i-PrOH, 87.5% hexane, 1.00 mL min$^{-1}$, $\lambda = 290$ nm) τ_R (major) = 41.2 min, τ_R (minor) = 24.3 min

$[\alpha]_{D}^{25}$ = -231.6 (c = 1.00, CHCl$_3$).
Kinetic resolution of 1,1'-(2-hydroxy-2'-methoxy-[1,1'-binaphthalene]-6,6'-diyl)bis(4,1-phenylene))bis(ethan-1-one) (36)

Following **General procedure A**, 1,1'-(2-hydroxy-2'-methoxy-[1,1'-binaphthalene]-6,6'-diyl)bis(4,1-phenylene))bis(ethan-1-one) (36) (80.5 mg, 0.150 mmol) was reacted for 30 h. Purification via flash column chromatography (19:1 CH₂Cl₂ – diethyl ether to 9:1 CH₂Cl₂ – diethyl ether) afforded 1,1'-(2-(benzyloxy)-2'-methoxy-[1,1'-binaphthalene]-6,6'-diyl)bis(4,1-phenylene))bis(ethan-1-one) (Bn-36) as an off-white solid (50.0 mg, 53%, 90.5:9.5 e.r.) and recovered starting material (36) (34.3 mg, 43%, 97.0:3.0 e.r.)

{(S)}-1,1'-(2-(benzyloxy)-2'-methoxy-[1,1'-binaphthalene]-6,6'-diyl)bis(4,1-phenylene))bis(ethan-1-one) (Bn-36)

m.p. = 128-130 °C (CH₂Cl₂/diethyl ether).

IR (film) ν max/cm⁻¹: 2923, 2851, 1677, 1599, 1493, 1268, 1250, 1059, 818, 732.

¹H NMR (500 MHz, CDCl₃) δ H: 8.19 (s, 1H), 8.16 (s, 1H), 8.12 (d, J = 9.0 Hz), 8.10-8.00 (m, 5H), 7.84-7.76 (m, 4H), 7.58-7.49 (m, 4H), 7.35-7.25 (m, 2H), 7.24-7.15 (m, 3H), 7.10-7.02 (m, 2H), 5.15 (s, 2H), 3.83 (s, 3H), 2.67 (s, 3H), 2.66 (s, 3H).

¹³C NMR (126 MHz, CDCl₃) δ C: 197.8, 155.6, 154.6, 145.8, 145.7, 137.4, 135.7, 135.6, 135.0, 134.8, 133.8, 130.2, 130.0, 129.6, 129.3, 129.0, 128.2, 127.5, 127.20, 126.7, 126.6, 126.5, 126.2, 125.7, 120.4, 119.1, 116.6, 114.4, 71.2, 56.6, 26.7.

HRMS (ESI⁺) C₄₄H₃₄O₄Na⁺ [M+Na]⁺: requires 649.23493, found: 649.23499, Δ +0.1 ppm

Chiral HPLC: (Chiralpak ADH, 50% i-PrOH, 50% hexane, 1.00 mL min⁻¹, λ = 290 nm) τᵣ (major) = 37.6 min, τᵣ (minor) = 42.0 min

[α]D²⁵ = +135.3 (c = 1.00, CHCl₃).

(R)-1,1'-(2-hydroxy-2'-methoxy-[1,1'-binaphthalene]-6,6'-diyl)bis(4,1-phenylene))bis(ethan-1-one) (36)

m.p. = 161-163 °C (CH₂Cl₂/diethyl ether).

Chiral HPLC: (Chiralpak ADH, 50% i-PrOH, 50% hexane, 1.00 mL min⁻¹, λ = 290 nm) τᵣ (major) = 27.8 min, τᵣ (minor) = 17.7 min

[α]D²⁵ = −316.1 (c = 1.00, CHCl₃).
Kinetic resolution of 2'-methoxy-6,6'-bis(4-(trifluoromethoxy)phenyl)-1,1'-binaphthalen-2-ol (37)

Following **General procedure A**, 2'-methoxy-6,6'-bis(4-(trifluoromethoxy)phenyl)-1,1'-binaphthalen-2-ol (37) (93.1 mg, 0.150 mmol) was reacted for 24 h. Purification via flash column chromatography (3:1 petroleum ether 40-60 – CH$_2$Cl$_2$ to 1:1 petroleum ether 40-60 – CH$_2$Cl$_2$) afforded 2-(Benzyloxy)-2'-methoxy-6,6'-bis(4-(trifluoromethoxy)phenyl)-1,1'-binaphthalene (Bn-37) as an off-white solid (61.2 mg, 57%, 85:15 e.r.) and recovered starting material (37) (37.9 mg, 41%, 99.5:0.5 e.r.).

**(S)-2-(Benzyloxy)-2'-methoxy-6,6'-bis(4-(trifluoromethoxy)phenyl)-1,1'-binaphthalene (Bn-37)

m.p. = 85-87 °C (CH$_2$Cl$_2$/petroleum ether 40-60).

IR (film) ν_{max}/cm$^{-1}$: 2917, 1597, 1514, 1496, 1252, 1222, 1167, 907, 730.

1H NMR (500 MHz, CDCl$_3$) δ_H: 8.12-8.08 (m, 2H), 8.06 (d, $J = 1.6$ Hz, 1H), 8.01 (d, $J = 9.0$ Hz, 1H), 7.74-7.66 (m, 4H), 7.54 (d, $J = 9.1$ Hz, 1H), 7.52-7.44 (m, 3H), 7.36-7.24 (m, 6H), 7.22-7.15 (m, 3H), 7.09-7.02 (m, 2H), 5.13 (s, 2H), 3.83 (s, 3H).

13C NMR (126 MHz, CDCl$_3$) δ_C: 155.4, 154.4, 148.5, 140.0, 139.9, 137.4, 135.1, 134.8, 133.4, 129.9, 129.7, 129.6, 129.3, 128.49, 128.47, 128.2, 127.4, 126.7, 126.11, 126.08, 126.03, 125.8, 121.3, 120.6 (q, $J = 257.1$ Hz), 120.5, 119.5, 119.1, 116.7, 114.4, 71.2, 56.6.

19F NMR (470 MHz, CDCl$_3$) δ_F: -57.79 (s).

HRMS (ESI$^+$) C$_{42}$H$_{28}$F$_6$O$_4$Na$^+$ [M+Na]$^+$: requires 744.17840, found: 744.17834, Δ -0.1 ppm.

Chiral HPLC: (Chiralpak IC, 1% iPrOH, 99% hexane, 1.00 mL min$^{-1}$, $\lambda = 290$ nm) τ_R (major) = 6.9 min, τ_R (minor) = 9.6 min

$[\alpha]_D^{25} = +49.0$ ($c = 1.00$, CHCl$_3$).

**(R)-2'-methoxy-6,6'-bis(4-(trifluoromethoxy)phenyl)-1,1'-binaphthalen-2-ol (37)

m.p. = 93-95 °C (CH$_2$Cl$_2$/petroleum ether 40-60).

Chiral HPLC: (Chiralpak ADH, 12.5% iPrOH, 87.5% hexane, 1.00 mL min$^{-1}$, $\lambda = 290$ nm) τ_R (major) = 16.6 min, τ_R (minor) = 12.4 min

$[\alpha]_D^{25} = -172.8$ ($c = 1.00$, CHCl$_3$).
Kinetic resolution of 5,5'-Dibromo-2'-methoxy-[1,1'-binaphthalen]-2-ol (38)

Following General procedure A, 5,5'-Dibromo-2'-methoxy-[1,1'-binaphthalen]-2-ol (38) (68.7 mg, 0.150 mmol) was reacted for 48 h. Purification via flash column chromatography (3:1 petroleum ether 40-60/CH₂Cl₂ to 1:1 petroleum ether 40-60/CH₂Cl₂) afforded 2-(benzyloxy)-5,5'-dibromo-2'-methoxy-1,1'-binaphthalene (Bn-38) as an off-white solid (43.4 mg, 53%, 87.5:12.5 e.r.) and recovered starting material (38) (29.4 mg, 43%, 98.0:2.0 e.r.).

(S)-2-(benzyloxy)-5,5'-dibromo-2'-methoxy-1,1'-binaphthalene (Bn-38)

m.p. = 62-64 °C (CH₂Cl₂/petroleum ether 40-60).

IR (film) ν_max/cm⁻¹: 2935.9, 2360.2, 2341.5, 1611.3, 1588.1, 1560.7, 1497.2, 1454.9, 1394.1, 1347.2, 1324.7, 1264.5, 1216.4, 1200.4, 1140.0, 1100.5, 1072.5, 1049.6, 965.1, 798.7, 753.8, 693.0, 655.7

¹H NMR (500 MHz, CDCl₃) δ_H: 8.44 (d, J = 9.4 Hz, 1H), 8.35 (d, J = 9.4 Hz), 7.64-7.60 (m, 2H), 7.54 (d, J = 9.4 Hz, 1H), 7.50 (d, J = 9.4 Hz, 1H), 7.20-7.16 (m, 3H), 7.10-6.99 (m, 6H), 5.15-5.06 (m, 2H), 3.78 (s, 3H).

¹³C NMR (126 MHz, CDCl₃) δ_C: 155.7, 154.7, 135.4, 135.3, 129.2, 129.0, 128.4, 128.0, 127.9, 127.8, 127.7, 127.6, 126.9, 126.8, 125.4, 125.3, 123.1, 123.1, 120.5, 119.3, 116.8, 114.7, 71.0, 56.6.

HRMS (APCI⁻) C₃₀H₂₀⁷Br₂O₂Na⁺ [M+Na]⁺ requires 568.97463; found: 568.97223, Δ -4.2 ppm.

Chiral HPLC: (Chiralpak IC, 2% iPrOH, 98% hexane, 1.00 mL min⁻¹, λ = 290 nm) t_R (major) = 5.2 min, t_R (minor) = 6.9 min

[α]D²⁵ = -103.3 (c = 1.00, CHCl₃).

(R)-5,5'-Dibromo-2'-methoxy-[1,1'-binaphthalen]-2-ol (38)

m.p. = 94-96 °C (CH₂Cl₂/petroleum ether 40-60).

Chiral HPLC: (Chiralpak IC, 2% iPrOH, 98% hexane, 1.00 mL min⁻¹, λ = 290 nm) t_R (major) = 11.8 min, t_R (minor) = 23.1 min

[α]D²⁵ = +48.1 (c = 1.00, CHCl₃).
Kinetic resolution of 2'-methoxy-5,5'-dimethyl-[1,1'-binaphthalen]-2-ol (39)

Following **General procedure A**, 2'-methoxy-5,5'-dimethyl-[1,1'-binaphthalen]-2-ol (39) (49.3 mg, 0.150 mmol) was reacted for 21 h. Purification via flash column chromatography (3:1 petroleum ether 40-60/CH$_2$Cl$_2$ to 1:1 petroleum ether 40-60/CH$_2$Cl$_2$) afforded 2-(benzyloxy)-2'-methoxy-5,5'-dimethyl-1,1'-binaphthalene (Bn-39) as an off-white solid (30.0 mg, 48%, 93.0:7.0 e.r.) and recovered starting material (39) (25.5 mg, 52%, 93.0:7.0 e.r.).

(S)-2-(benzyloxy)-2'-methoxy-5,5'-dimethyl-1,1'-binaphthalene (Bn-39)

m.p. = 60-62 °C (CH$_2$Cl$_2$/petroleum ether 40-60).

IR (film) ν_{max}/cm$^{-1}$: 3062, 3031, 2935, 2837, 1614, 1594, 1511, 1454, 1401, 1325, 1265, 1223, 1091, 1077, 1063, 1038, 800, 758, 696

1H NMR (500 MHz, CDCl$_3$) δ: 8.19 (d, $J = 9.22$ Hz, 1H), 8.10 (d, $J = 9.22$ Hz, 1H), 7.51 (d, $J = 9.22$ Hz, 1H), 7.45 (d, $J = 9.22$ Hz, 1H), 7.22-7.17 (m, 5H), 7.16-7.10 (m, 2H), 7.09-7.01 (m, 4H), 5.14-5.04 (m, 2H), 3.79 (s, 3H), 2.80 (s, 3H), 2.76 (s, 3H).

13C NMR (126 MHz, CDCl$_3$) δ: 154.9, 153.9, 137.9, 134.5, 134.3, 134.3, 128.7, 128.4, 128.2, 127.4, 126.9, 126.3, 125.6, 125.5, 124.8, 124.5, 124.2, 124.1, 121.7, 120.4, 115.8, 113.4, 71.2, 56.7, 19.8, 19.8.

HRMS (ESI$^+$) C$_{30}$H$_{27}$O$_2$ $^+$ [M+H]$^+$ requires 419.20056, found: 419.20060, $\Delta +0.10$ ppm.

Chiral HPLC: (Chiralpak ADH, 12.5% iPrOH, 87.5% hexane, 1.00 mL min$^{-1}$, $\lambda = 290$ nm) τ_R (major) = 8.9 min, τ_R (minor) = 8.2 min.

$[\alpha]_D^{25} = -53.0$ (c = 1.00, CHCl$_3$).

(R)-2'-methoxy-5,5'-dimethyl-[1,1'-binaphthalen]-2-ol (39)

m.p. = 76-78 °C (CH$_2$Cl$_2$/petroleum ether 40-60).

Chiral HPLC: (Chiralpak ADH, 12.5% iPrOH, 87.5% hexane, 1.00 mL min$^{-1}$, $\lambda = 290$ nm) τ_R (major) = 29.1 min, τ_R (minor) = 9.7 min.

$[\alpha]_D^{25} = +2.6$ (c = 1.00, CHCl$_3$).
Kinetic resolution of 2'-methoxy-5,5'-diphenyl-[1,1'-binaphthalen]-2-ol (40)

Following **General procedure A**, 2'-methoxy-5,5'-diphenyl-[1,1'-binaphthalen]-2-ol (40) (67.9 mg, 0.150 mmol) was reacted for 36 h. Purification via flash column chromatography (3:1 petroleum ether 40-60/CH$_2$Cl$_2$ to 1:1 petroleum ether 40-60/CH$_2$Cl$_2$) afforded 2-(benzyloxy)-2'-methoxy-5,5'-diphenyl-1,1'-binaphthalene (Bn-40) as an off-white solid (39.8 mg, 49%, 81.5:18.5 e.r.) and recovered starting material (40) (25.3 mg, 37%, 95.0:5.0 e.r.).

[(S)-2-(benzyloxy)-2'-methoxy-5,5'-diphenyl-1,1'-binaphthalene (Bn-40)]

m.p. = 97-99 °C (CH$_2$Cl$_2$/petroleum ether 40-60).

IR (film) ν_{max}/cm$^{-1}$: 3058, 3030, 2838, 2359, 2336, 2211, 2155, 1947, 1890, 1726, 1609, 1590, 1511, 1491, 1475, 1461, 1454, 1444, 1402, 1371, 1360, 1322, 1263, 1226, 1179, 1156, 1121, 1089, 1044, 1028, 971, 922, 906, 847, 806, 759, 702, 667, 647, 620

1H NMR (500 MHz, CDCl$_3$) δ_H: 8.09 (d, $J = 9.44$ Hz, 1H), 8.01 (d, $J = 9.18$ Hz, 1H), 7.66-7.44 (m, 10H), 7.43 (d, $J = 9.44$ Hz, 1H), 7.38 (d, $J = 9.18$ Hz, 1H), 7.34-7.27 (m, 5H), 7.26-7.23 (m, 1H), 7.20-7.15 (m, 3H), 7.06-7.00 (m, 2H), 5.15-5.05 (m, 2H), 3.80 (s, 3H).

13C NMR (126 MHz, CDCl$_3$) δ_C: 155.0, 154.0, 141.4, 141.3, 140.4, 140.4, 137.8, 134.7, 134.7, 130.4, 130.3, 128.4, 128.3, 128.3, 127.9, 127.8, 127.7, 127.5, 127.5, 127.3, 127.3, 126.8, 126.1, 125.3, 125.1, 124.8, 121.1, 119.8, 116.0, 113.7, 71.2, 56.7.

HRMS (ESI$^+$) C$_{40}$H$_{30}$O$_2$Na$^+$ [M+Na]$^+$ requires 565.21380; found: 565.21362, Δ -0.3 ppm.

Chiral HPLC: (Chiralpak IC, 2% iPrOH, 99% hexane, 1.00 mL min$^{-1}$, λ = 290 nm) τ_R (major) = 5.0 min, τ_R (minor) = 6.2 min

$[\alpha]_{D}^{25}$ = −69.7 (c = 1.00, CHCl$_3$).

[(R)-2'-methoxy-5,5'-diphenyl-[1,1'-binaphthalen]-2-ol (40)]

m.p. = 117-119 °C (CH$_2$Cl$_2$/petroleum ether 40-60).

Chiral HPLC: (Chiralpak IC, 2% iPrOH, 98% hexane, 1.00 mL min$^{-1}$, λ = 290 nm) τ_R (major) = 8.0 min, τ_R (minor) = 14.9 min

$[\alpha]_{D}^{25}$ = +73.2 (c = 0.50, CHCl$_3$).
Kinetic resolution of 4,4'-dibromo-2'-methoxy-[1,1'-binaphthalen]-2-ol (41)

Following General procedure A, 4,4'-dibromo-2'-methoxy-[1,1'-binaphthalen]-2-ol (41) (68.7 mg, 0.150 mmol) was reacted for 36 h. Purification via flash column chromatography (3:7 CH₂Cl₂ – petroleum ether 40-60 to 4:1 CH₂Cl₂ – petroleum ether 40-60) afforded 2-(benzyloxy)-4,4'-dibromo-2'-methoxy-1,1'-binaphthalene (Bn-41) as an off-white solid (30.7 mg, 45%, 88:12 e.r.) and recovered starting material (41) (41.4 mg, 50%, 93:7 e.r.).

(S)-2-(Benzyloxy)-4,4'-dibromo-2'-methoxy-1,1'-binaphthalene (Bn-41):

m.p. = 148-150 °C (CH₂Cl₂/petroleum ether 40-60).

IR (film) ν_max/cm⁻¹: 3064, 2934, 1582, 1497, 1314, 1259, 1243, 1025, 907, 756, 733.

¹H NMR (400 MHz, CDCl₃) δ = 8.35–8.19 (m, 3H), 7.79–7.76 (m, 2H), 7.52–7.39 (m, 2H), 7.32–7.22 (m, 2H), 7.21–7.11 (m, 5H), 7.05–6.92 (m, 2H), 5.12–4.92 (m, 2H), 3.75 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ = 154.7, 153.8, 136.9, 134.7, 128.4, 128.2, 127.9, 127.8, 127.4, 127.3, 126.9, 125.8, 125.8, 125.4, 125.1, 123.9, 123.7, 120.4, 120.2, 118.9, 118.2, 71.6, 56.9.

HRMS (ESI⁺) C₸H₂₀O₂⁷⁹Br [M+Na⁺] requires 568.97223; found 568.97217, Δ -0.1 ppm.

Chiral HPLC: (Chiralpak ADH, 1% iPrOH, 99% hexane, 1.0 mL min⁻¹, λ = 295 nm) τ_R (major) = 16.2 min, τ_R (minor) = 11.1 min.

[α]_D⁰ = −47.2 (c = 0.50, CHCl₃).

(R)-4,4'-Dibromo-2'-methoxy-[1,1'-binaphthalen]-2-ol (41):

m.p. = 178-180 °C (CH₂Cl₂/petroleum ether 40-60).

Chiral HPLC: (Chiralpak ADH, 10% iPrOH, 90% hexane, 1.0 mL min⁻¹, λ = 293 nm) τ_R (major) = 15.3 min, τ_R (minor) = 31.2 min.

[α]_D⁰ = +23.4 (c = 0.50, CHCl₃).
Kinetic resolution of [2'-methoxy-4,4'-diphenyl-[1,1'-binaphthalen]-2-ol] (42)

Following General procedure A, 2'-methoxy-4,4'-diphenyl-[1,1'-binaphthalen]-2-ol (42) (67.9 mg, 0.150 mmol) for 30 h. Purification via flash column chromatography (3:7 CH$_2$Cl$_2$ – petroleum ether 40-60 to 4:1 CH$_2$Cl$_2$ – petroleum ether 40-60) afforded 2-(benzyloxy)-2'-methoxy-4,4'-diphenyl-1,1'-binaphthalene (Bn-42) as an off-white solid (50.3 mg, 62%, 80:20 e.r.) and recovered starting material (42) (22.2 mg, 33%, 99:1 e.r.).

(S)- 2-(Benzyloxy)-2'-methoxy-4,4'-diphenyl-1,1'-binaphthalene (Bn-42):

- **m.p.** = 117-119 °C (CH$_2$Cl$_2$/petroleum ether 40-60).
- **IR** (film) ν_{max}/cm$^{-1}$: 3060, 3029, 2935, 1586, 1342, 1224, 764, 703.
- **1H NMR** (500 MHz, CDCl$_3$) δ = 7.94 (m, 2H), 7.71–7.65 (m, 2H), 7.63–7.47 (m, 8H), 7.44 (m, 2H), 7.39 (m, 1H), 7.35–7.22 (m, 5H), 7.17 (m, 2H), 7.00 (m, 3H), 5.42–4.89 (m, 2H), 3.81 (s, 3H).
- **13C NMR** (126 MHz, CDCl$_3$) δ = 154.4, 153.5, 141.9, 141.6, 141.1, 140.8, 137.6, 134.6, 134.6, 130.2, 128.4, 128.3, 128.1, 127.9, 127.5, 127.5, 127.4, 127.4, 126.9, 126.3, 126.3, 126.2, 126.2, 125.9, 125.9, 123.9, 123.6, 120.5, 118.9, 117.6, 115.0, 71.5, 56.7.
- **HRMS** (ESI$^+$) $C_{40}H_{30}O_2$ [M+H]$^+$ requires 543.23186; found 543.23132, Δ = 0.1 ppm.
- **Chiral HPLC**: (Chiralpak ODH, 2% iPrOH, 98% hexane, 1.0 mL min$^{-1}$, λ = 295 nm) τ_R (minor) = 9.0 min, τ_R (major) = 10.7 min.

[α]$^D_{25}$ = −31.1 (c = 1.00, CHCl$_3$).

(R)-[2'-methoxy-4,4'-diphenyl-[1,1'-binaphthalen]-2-ol] (42):

- **m.p.** = 125-127 °C (CH$_2$Cl$_2$/petroleum ether 40-60).
- **Chiral HPLC**: (Chiralpak ADH, 20% iPrOH, 80% hexane, 1.0 mL min$^{-1}$, λ = 300 nm) τ_R (major) = 20.8 min, τ_R (minor) = 36.0 min..

[α]$^D_{25}$ = +16.9 (c = 1.00, CHCl$_3$).
Kinetic resolution of 2'-methoxy-4,4'-dimethyl-[1,1'-binaphthalen]-2-ol (43)

Following General procedure A, 2'-methoxy-4,4'-dimethyl-[1,1'-binaphthalen]-2-ol (43) (49.3 mg, 0.150 mmol) was reacted for 30 h. Purification via flash column chromatography (3:7 CH₂Cl₂ – petroleum ether 40-60 to 4:1 CH₂Cl₂ – petroleum ether 40-60) afforded 2-(benzyloxy)-2'-methoxy-4,4'-dimethyl-1,1'-binaphthalene (Bn-43) as an off-white solid (33.8 mg, 54%, 88:12 e.r.) and recovered starting material (43) (19.4 mg, 39%, 99:1 e.r.).

(S)- 2-(Benzyloxy)-2'-methoxy-4,4'-dimethyl-1,1'-binaphthalene (Bn-43):

m.p. = 155-157 °C (CH₂Cl₂/petroleum ether 40-60).

IR (film) ν max/cm⁻¹: 3063, 2937, 2911, 1593, 1342, 757.

¹H NMR (500 MHz, CDCl₃) δ = 8.06 (d, J = 8.5, 1H), 8.03 (d, J = 8.5, 1H), 7.42–7.36 (m, 2H), 7.35 (s, 1H), 7.33 (s, 1H), 7.28–7.21 (m, 4H), 7.22–7.15 (m, 3H), 7.06–6.98 (m, 2H), 5.09 (d, J = 12.5 Hz, 1H), 5.05 (d, J = 12.6 Hz, 1H).

¹³C NMR (126 MHz, CDCl₃) δ = 154.5, 153.7, 137.8, 135.9, 135.8, 134.5, 128.8, 128.4, 128.1, 127.2, 126.8, 126.2, 126.2, 126.0, 126.0, 124.2, 124.1, 123.6, 123.3, 119.2, 117.7, 117.5, 115.1, 71.3, 56.7, 20.0, 20.0.

HRMS (ESI⁺) C₃₀H₂₆O [M+Na]⁺ requires 441.18250; found 441.18280, Δ +0.7 ppm.

Chiral HPLC: (Chiralpak ADH, 3% iPrOH, 99% hexane, 1.0 mL min⁻¹, λ = 250 nm) τᵣ (major) = 19.7 min, τᵣ (minor) = 12.0 min.

[α]D²⁵ = −36.0 (c = 1.00, CHCl₃).

(R)- 2'-Methoxy-4,4'-dimethyl-[1,1'-binaphthalen]-2-ol (43):

m.p. = 201-202 °C (CH₂Cl₂/petroleum ether 40-60).

Chiral HPLC: (Chiralpak ADH, 10% iPrOH, 90% hexane, 1.0 mL min⁻¹, λ = 293 nm) τᵣ (major) = 20.9 min, τᵣ (minor) = 23.3 min.

[α]D²⁵ = −31.7 (c = 1.00, CHCl₃).
7. 10 g Scale Kinetic Resolution

6,6'-Dibromo-2'-methoxy-[1,1'-binaphthalen]-2-ol (33) (10.1 g, 22.0 mmol, 1.00 equiv.), benzyl tosylate (8.66 g, 33.0 mmol, 1.50 equiv.) and N-(2,3,4-trifluorobenzyl)hydrocinchoninium bromide (1.15 g, 2.20 mmol, 1.00 equiv.) were added to a 2 L 3 necked round bottom flask fitted with an overhead stirrer (pictured below). 9:1 PhH-Et₂O (880 mL) was added followed by K₂CO₃ (saturated aq., 30.4 mL) and stirring was commenced (1100 RPM). After 36 hours piperidine (44.0 mL) was added and stirring was continued for a further 30 minutes. NH₄Cl (saturated aq., 300 mL) was added and the mixture was transferred to a separating funnel. The phases were separated and the aqueous phase was extracted with EtOAc (2 × 300 mL). The combined organic layers were washed with water (200 mL), dried over anhydrous sodium sulfate, concentrated \textit{in vacuo} and purified by flash column chromatography (3:7 CH₂Cl₂–petroleum ether 40-60 to 3:2 CH₂Cl₂–petroleum ether 40-60) to give 2-(benzyloxy)-6,6'-dibromo-2'-methoxy-1,1'-binaphthalene (Bn-33) (6.32 g, 52%, 90:10 e.r.) and recovered starting material (33) (4.32 g, 43%, 99:1 e.r.).

2-(Benzyloxy)-6,6'-dibromo-2'-methoxy-1,1'-binaphthalene (Bn-33):

m.p. = 54-55 °C (CH₂Cl₂/petroleum ether 40-60).

[α]₀[D] = −9.8 (c = 1.00, CHCl₃)

6,6'-Dibromo-2'-methoxy-[1,1'-binaphthalen]-2-ol (33):

m.p. = 71-73 °C (CH₂Cl₂/petroleum ether 40-60).

[α]₀[D] = −106.0 (c = 1.00, CHCl₃)
8. Determination of Absolute Stereochemistry

The absolute stereochemistry of MeBINOL (1) and MeBnBINOL (Bn-1) were determined by chiral HPLC comparison with authentic samples prepared from commercially available (R)-BINOL and (S)-BINOL respectively. The optical rotation of MeBINOL (1) is consistent with the value reported in the literature.\(^\text{17}\)
Chiral HPLC: (Chiralpak ADH, 7.5% i-PrOH, 99% hexane, 1.00 mL min\(^{-1}\), \(\lambda = 290\text{nm}\)) \(\tau_R\) (major) = 25.7 min, \(\tau_R\) (minor) = 16.6 min

(R)-MeBINOL prepared by kinetic resolution

![CHIRAL HPLC GRAPH]

No.	Peak Name	Retention Time	Area (mAU*min)	Height (mAU)	Relative Area
1		16.647	0.622	1.677	2.41
2		25.670	25.162	43.915	97.59
Total:		25.784	45.591	100.00	

(R)-MeBINOL prepared from commercially available (R)-BINOL

![CHIRAL HPLC GRAPH]

No.	Peak Name	Retention Time	Area (mAU*min)	Height (mAU)	Relative Area
1		16.667	0.518	1.402	0.36
2		25.847	143.619	249.436	99.64
Total:		144.137	250.838	100.00	
Chiral HPLC: (Chiralpak IC, 1% PrOH, 99% hexane, 1.00 mL min⁻¹, λ = 290 nm) \(\tau_R \) (major) = 7.6 min, \(\tau_R \) (minor) = 11.0 min

(S)-MeBnBINOL prepared by kinetic resolution

![Chiral HPLC graph](image)

No.	Peak Name	Retention Time	Area	Height	Relative Area
		min	mAU*min	mAU	%
1		7.607	28.297	34.615	89.96
2		11.020	3.156	3.356	10.04
Total:		**31.454**	**37.971**	**100.00**	

(S)-MeBnBINOL prepared from commercially available (S)-BINOL

![Chemical structure](image)

No.	Peak Name	Retention Time	Area	Height	Relative Area
		min	mAU*min	mAU	%
1		7.237	85.670	103.034	99.89
2		10.573	0.098	0.026	0.11
Total:		**85.767**	**103.060**	**100.00**	
8. References

1. Pangborn, M.; Giardello, R.; Grubbs, R.; Rosen, R.; Timmers, J. *Organometallics*, 1996, 15, 1518.

2. Armarego, W. L. F.; Perrin, D. D.; *Purification of Laboratory Chemicals*, 1996, Butterworth-Heinemann, Oxford.

3. Noji, M.; Nakajima, M.; Koga, K. *Tetrahedron Letters*, 1994, 34, 7983.

4. Lustenberger, P.; Diederich, F. *Helvetica Chimica Acta*, 2000, 83, 2865.

5. Aoyagi, N.; Ogawa, N.; Izumi, T. *Tetrahedron Lett.*, 2006, 28, 4797.

6. Yu, H.-B.; Zheng, X.-F.; Lin Z.-M.; Hu, Q.-S.; Huang, W.-S.; Pu, L. J. *Org. Chem.*, 1999, 64, 8149.

7. Hocke, H.; Uozumi, Y. *Tetrahedron*, 2003, 5, 619.

8. Trivedi-Parmar, V.; Robertson, M. J.; Cisneros, J. A.; Krimmer, S. G.; Jorgensen, W. L. *ChemMedChem*, 2018, 11, 1092.

9. Ning, Y.; Fukuda, T.; Ikeda, H.; Otani, Y.; Kawahata, M.; Yamaguchi, K.; Ohwada, T. *Org. Biomol. Chem.*, 2017, 6, 1381.

10. Chow, H.-F.; Ng, M.-K. *Tetrahedron Asymmetry* 1996, 8, 2251.

11. Jolliffe J. D., Armstrong R. J., Smith M. D. *Nature Chem.* 2017, 9, 558.

12. Tao, T., Sun, Z., Fang, W., Xu, M., Zhou, Y. *Org. Lett.* 2012, 16, 4250.

13. Takahashi, M., Kunio O. *Tetrahedron Asymmetry*, 1997, 8, 3125.

14. Meesala, Y., Wu, H-L., Koteswararao, B., Kuo, T-S., Lee, W-Z., *Organometallics*, 2014, 17, 4385.

15. Kagan H. B., Fiaud J. C., *Top. Stereochem.* 1988, 18, 249-330.

16. Genov, M., Almorin, A., Espinet, P., *Chem. Eur. J.*, 2006, 36, 9346.

17. Ishiwari, F., Fukasawa, K-I., Sato, T., Nakazono, K., Koyama, Y., Takata, T., *Chem. Eur. J.*, 2011, 17, 12067.
9. NMR Spectra and HPLC traces
4-AcC₆H₄

O

Bn

4-AcC₆H₄

4-AcC₆H₄

OBn

O

OMe

Bn-36
Chiral HPLC: (Chiralpak ADH, 7.5% iPrOH, 90% hexane, 1.0 mL min\(^{-1}\), \(\lambda = 290\) nm) \(\tau_R\) (major) = 25.7 min, \(\tau_R\) (minor) = 16.6 min.

Racemic

No.	Peak Name	Retention Time	Area	Height	Relative Area
		min	mAU*min	mAU	%
1		16.757	229.643	630.007	49.92
2		25.887	230.356	403.502	50.08
Total:			**459.998**	**1033.509**	**100.00**

Asymmetric

No.	Peak Name	Retention Time	Area	Height	Relative Area
		min	mAU*min	mAU	%
1		16.600	2.041	5.668	2.29
2		25.727	87.190	156.082	97.71
Total:			**89.231**	**161.750**	**100.00**
Chiral HPLC: (Chiralpak IC, 1% iPrOH, 99% hexane, 1.0 mL min$^{-1}$, $\lambda = 289$ nm) τ_R (major) = 8.0 min, τ_R (minor) = 11.8 min.

Racemic

- **Bn-1**

No.	Peak Name	Retention Time (min)	Area (mAU*min)	Height (mAU)	Relative Area (%)
1		7.653	42.993	70.452	49.98
2		11.003	43.028	66.431	50.02
Total:		**86.021**	**136.883**	**100.00**	

Asymmetric

- **Bn-1**

No.	Peak Name	Retention Time (min)	Area (mAU*min)	Height (mAU)	Relative Area (%)
1		8.033	60.986	90.364	90.38
2		11.813	6.489	8.991	9.62
Total:		**67.475**	**99.356**	**100.00**	

S191
Chiral HPLC: (Chiralpak ADH, 10% iPrOH, 90% hexane, 1.00 mL min⁻¹, \(\lambda = 290\) nm) \(\tau_R\) (major) = 21.1 min, \(\tau_R\) (minor) = 6.7 min

Racemic

No.	Peak Name	Retention Time	Area	Height	Relative Area
		min	mAU*min	mAU	%
1		6.713	124.143	777.568	49.89
2		21.100	124.675	259.424	50.11
Total:		**248.818**	**1036.992**	100.00	

Asymmetric

No.	Peak Name	Retention Time	Area	Height	Relative Area
		min	mAU*min	mAU	%
1		6.737	2.135	10.927	4.05
2		21.153	50.573	103.997	95.95
Total:		**52.708**	**114.924**	100.00	
Chiral HPLC: (Chiralpak ADH, 5% /PrOH, 95% hexane, 1.00 mL min\(^{-1}\), \(\lambda = 290\text{nm}\)) \(\tau_R\) (major) = 5.1 min, \(\tau_R\) (minor) = 5.6 min

Racemic

No.	Peak Name	Retention Time	Area	Height	Relative Area
		min mAU*min	mAU	%	
1		5.067	13.320	94.479	49.93
2		5.580	13.360	89.123	50.07
Total:			**26.679**	**183.602**	**100.00**

Asymmetric

No.	Peak Name	Retention Time	Area	Height	Relative Area
		min mAU*min	mAU	%	
1		5.073	212.451	1178.404	89.27
2		5.593	25.530	130.811	10.73
Total:			**237.982**	**1309.215**	**100.00**
Chiral HPLC: (Chiralpak ADH, 20% t-PrOH, 80% hexane, 1.00 mL min$^{-1}$, $\lambda = 290$ nm) τ_R (major) = 35.2 min, τ_R (minor) = 19.5 min

Racemic

No.	Peak Name	Retention Time	Area	Height	Relative Area
		min	mAU*min	mAU	%
1		19.007	241.636	506.321	49.94
2		34.847	242.227	240.120	50.06
Total:		**483.863**	**746.442**	**100.00**	

Asymmetric

No.	Peak Name	Retention Time	Area	Height	Relative Area
		min	mAU*min	mAU	%
1		19.540	1.000	2.161	5.39
2		35.250	17.563	20.072	94.61
Total:		**18.563**	**22.233**	**100.00**	
Chiral HPLC: (Chiralpak ADH, 10% PrOH, 90% hexane, 1.00 mL min$^{-1}$, $\lambda = 290$ nm) τ_R (major) = 7.3 min, τ_R (minor) = 8.7 min

Racemic

![Bn-10](attachment:image1.png)

No.	Peak Name	Retention Time	Area	Height	Relative Area
		min	mAU*min	mAU	%
1		7.133	199.858	1121.306	50.00
2		8.430	199.884	997.805	50.00
Total:		**399.743**	**2119.111**		100.00

Asymmetric

![Bn-10](attachment:image2.png)

No.	Peak Name	Retention Time	Area	Height	Relative Area
		min	mAU*min	mAU	%
1		7.347	13.264	74.661	90.81
2		8.723	1.343	7.004	9.19
Total:		**14.607**	**81.665**		**100.00**
Chiral HPLC: (Chiralpak ADH, 10% iPrOH, 90% hexane, 1.0 mL min\(^{-1}\), \(\lambda = 277\) nm) \(\tau_R\) (major) = 27.4 min, \(\tau_R\) (minor) = 29.8 min.

Racemic

No.	Peak Name	Retention Time	Area	Height	Relative Area
		min	mAU*min	mAU	%
1		27.380	92.599	131.404	49.94
2		29.783	92.812	125.627	50.06
Total:			185.411	257.030	100.00

Asymmetric

No.	Peak Name	Retention Time	Area	Height	Relative Area
		min	mAU*min	mAU	%
1		26.420	5.501	6.095	0.51
2		29.037	1081.495	1163.649	99.49
Total:			1086.996	1169.744	100.00
Chiral HPLC: (Chiralpak ADH, 10%
PrOH, 90% hexane, 1.0 mL min$^{-1}$, λ = 279 nm) τ_R (major) = 14.2 min, τ_R (minor) = 26.1 min.

Racemic.

No.	Peak Name	Retention Time	Area	Height	Relative Area
		min	mAU*min	mAU	%
1		14.167	225.271	695.13	49.95
2		26.133	225.718	365.93	50.05
Total:			450.988	1061.06	100.00

Asymmetric.

No.	Peak Name	Retention Time	Area	Height	Relative Area
		min	mAU*min	mAU	%
1		14.553	640.989	1953.881	89.95
2		26.710	71.593	114.481	10.05
Total:			712.582	2068.363	100.00
Chiral HPLC: (Chiralpak ADH, 10% iPrOH, 90% hexane, 1.0 mL min⁻¹, λ = 341 nm) \(\tau_R \) (minor) = 11.5 min, \(\tau_R \) (major) = 12.9 min.

Racemic

No.	Peak Name	Retention Time	Area	Height	Relative Area
		min	mAU*min	mAU	%
1		11.510	69.672	269.374	49.95
2		12.887	69.824	243.978	50.05
Total:			**139.496**	**513.353**	**100.00**

Asymmetric

No.	Peak Name	Retention Time	Area	Height	Relative Area
		min	mAU*min	mAU	%
1		11.567	1.060	4.097	1.40
2		12.947	74.538	256.883	98.60
Total:			**75.598**	**260.980**	**100.00**
Chiral HPLC: (Chiralpak IC, 1% iPrOH, 99% hexane, 1.0 mL min⁻¹, λ = 295 nm) \(\tau_R \) (major) = 7.8 min, \(\tau_R \) (minor) = 12.2 min.

Racemic

No.	Peak Name	Retention Time	Area	Height	Relative Area
1		7.833	58.952	80.479	49.98
2		12.213	59.000	77.484	50.02
Total:			117.952	157.963	100.00

Asymmetric

No.	Peak Name	Retention Time	Area	Height	Relative Area
1		7.653	134.553	191.393	89.83
2		11.980	15.241	19.212	10.17
Total:			149.794	210.605	100.00
Chiral HPLC: (Chiralpak ADH, 10% iPrOH, 90% hexane, 1.0 mL min$^{-1}$, $\lambda = 295$ nm) τ_R (major) = 13.7 min, τ_R (minor) = 11.6 min.

Racemic.

Asymmetric
Chiral HPLC: (Chiralpak ADH, 10% iPrOH, 98% hexane, 1.0 mL min⁻¹, $\lambda = 295$ nm) τ_R (major) = 8.7 min, τ_R (minor) = 7.5 min.

Racemic

No.	Peak Name	Retention Time	Area	Height	Relative Area
		min mAU*min	mAU	%	
1		7.517 180.898	855.996	49.84	
2		8.697 182.024	871.941	50.16	
Total			362.922	1727.937	100.00

Asymmetric

No.	Peak Name	Retention Time	Area	Height	Relative Area
		min mAU*min	mAU	%	
1		7.580 45.946	274.209	14.70	
2		8.687 266.507	1289.281	85.30	
Total			312.453	1563.489	100.00
Chiral HPLC: (Chiralpak ADH, 15% PrOH, 85% hexane, 1.00 mL min\(^{-1}\), \(\lambda = 290\) nm) \(\tau_R\) (major) = 17.9 min, \(\tau_R\) (minor) = 13.5 min

No.	Peak Name	Retention Time	Area	Height	Relative Area
		min	mAU*min	mAU	%
1		13.350	100.173	327.807	50.05
2		17.770	99.983	245.506	49.95
Total:			200.156	573.312	100.00

Asymmetric

No.	Peak Name	Retention Time	Area	Height	Relative Area
		min	mAU*min	mAU	%
1		13.520	0.259	0.859	1.10
2		17.987	23.386	57.120	98.90
Total:			23.645	57.979	100.00
Chiral HPLC: (Chiralpak ODH, 5% *i*PrOH, 95% hexane, 1.00 mL min$^{-1}$, $\lambda = 290$ nm) τ_R (major) = 8.8 min, τ_R (minor) = 9.9 min

![Chiral HPLC Chromatogram](image)

No.	Peak Name	Retention Time	Area	Height	Relative Area
1		8.917	77.872	275.748	49.98
2		9.883	77.938	245.714	50.02
Total:			155.810	521.461	100.00

Asymmetric

![Asymmetric HPLC Chromatogram](image)

No.	Peak Name	Retention Time	Area	Height	Relative Area
1		8.830	54.413	192.706	88.54
2		9.883	7.043	21.473	11.46
Total:			61.456	214.179	100.00
Chiral HPLC: (Chiralpak ADH, 10% iPrOH, 90% hexane, 1.0 mL min\(^{-1}\), \(\lambda = 290\) nm) \(\tau_R\) (minor) = 12.8 min, \(\tau_R\) (major) = 15.6 min.

Racemic

![Racemic Peaks](image)

No.	Peak Name	Retention Time	Area	Height	Relative Area
		min	mAU*min	mAU	%
1		13.580	21.684	80.363	49.92
2		16.413	21.752	65.098	50.08
Total		43.436	145.461	100.00	

Asymmetric

![Asymmetric Peaks](image)

No.	Peak Name	Retention Time	Area	Height	Relative Area
		min	mAU*min	mAU	%
1		12.813	0.089	0.340	0.68
2		15.597	13.044	38.365	99.32
Total		13.133	38.705	100.00	

S204
Chiral HPLC: (Chiralpak OJH, 3% EtOH, 97% hexane, 1.0 mL min\(^{-1}\), \(\lambda = 300\) nm) \(t_R\) (minor) = 9.4 min, \(t_R\) (major) = 15.1 min.

No.	Peak Name	Retention Time	Area	Height	Relative Area
		min	mAU*min	mAU	%
1		9.418	174.663	41.530	50.48
2		15.053	171.314	20.380	49.52
Total:			345.977	61.910	100.00

Asymmetric

No.	Peak Name	Retention Time	Area	Height	Relative Area
		min	mAU*min	mAU	%
1		9.425	21.003	5.046	13.94
2		15.047	129.697	15.351	86.06
Total:			150.700	20397	100.00
Chiral HPLC: (Chiralpak AD, 10% PrOH, 90% hexane, 1.0 mL min\(^{-1}\), \(\lambda = 272\) nm) \(\tau_R\) (major) = 11.6 min, \(\tau_R\) (minor) = 14.1 min.

Racemic.

![Racemic Chromatogram](image)

No.	Peak Name	Retention Time	Area	Height	Relative Area
		min	mAU* min	mAU	%
1		12.687	463.864	1485.694	49.45
2		16.840	474.176	1133.273	50.55
Total:		**938.040**	**2618.967**	**100.00**	

Asymmetric.

![Asymmetric Chromatogram](image)

No.	Peak Name	Retention Time	Area	Height	Relative Area
		min	mAU* min	mAU	%
1		12.750	5.253	16.970	3.45
2		16.893	146.800	345.780	96.55
Total:		**152.053**	**362.750**	**100.00**	
Chiral HPLC: (Chiralpak ADH, 2% iPrOH, 98% hexane, 1.0 mL min\(^{-1}\), \(\lambda = 259\) nm) \(\tau_R\) (major) = 20.5 min, \(\tau_R\) (minor) = 23.5 min.

Racemic

No.	Peak Name	Retention Time	Area	Height	Relative Area
1		20.460	137.453	274.675	49.94
2		23.523	137.773	238.214	50.06
Total:		**275.226**	**512.889**		**100.00**

Asymmetric

No.	Peak Name	Retention Time	Area	Height	Relative Area
1		20.763	1770.358	2998.801	89.81
2		23.983	200.781	324.122	10.19
Total:		**1971.139**	**3322.924**		**100.00**
Chiral HPLC: (Chiralpak ADH, 10% iPrOH, 90% hexane, 1.0 mL min\(^{-1}\)) \(\tau_R\) (major) = 11.6 min, \(\tau_R\) (minor) = 14.1 min.

Racemic

No.	Peak Name	Retention Time	Area	Height	Relative Area
		min	mAU*min	mAU	%
1		11.593	307.179	1170.227	50.05
2		14.143	306.510	940.471	49.95
Total:		**613.689**	**2110.699**	**100.00**	

Asymmetric

No.	Peak Name	Retention Time	Area	Height	Relative Area
		min	mAU*min	mAU	%
1		11.570	1.329	5.385	0.98
2		14.103	133.970	420.660	99.02
Total:		**135.299**	**426.045**	**100.00**	
Chiral HPLC: (Chiralpak IC, 1% iPrOH, 99% hexane, 1.0 mL min\(^{-1}\), \(\lambda = 294\) nm) \(\tau_R\) (major) = 7.0 min, \(\tau_R\) (minor) = 9.3 min.

Racemic.

No.	Peak Name	Retention Time	Area	Height	Relative Area
		min	mAU*min	mAU	%
1		7.020	14.521	19.701	50.00
2		9.257	14.523	21.939	50.00
Total:			29.044	41.64	100.00

Asymmetric

No.	Peak Name	Retention Time	Area	Height	Relative Area
		min	mAU*min	mAU	%
1		6.770	349.536	530.540	88.16
2		8.967	46.933	76.590	11.84
Total:			396.469	607.130	100.00
Chiral HPLC: (Chiralpak ADH, 15% PrOH, 85% hexane, 1.00 mL min$^{-1}$, $\lambda = 290$ nm) τ_R (major) = 27.0 min, τ_R (minor) = 13.9 min

Racemic

No.	Peak Name	Retention Time	Area	Height	Relative Area
1		13.647	46.109	144.635	50.08
2		26.683	45.955	72.062	49.92
Total:			92.064	216.697	100.00

Asymmetric

No.	Peak Name	Retention Time	Area	Height	Relative Area
1		13.867	0.168	0.526	0.60
2		27.040	28.042	44.326	99.40
Total:			28.210	44.852	100.00
Chiral HPLC: (Chiralpak IC, 1% iPrOH, 99% hexane, 1.00 mL min$^{-1}$, λ = 290 nm) τ_R (major) = 15.3 min, τ_R (minor) = 30.6 min

No.	Peak Name	Retention Time	Area	Height	Relative Area
1		14.727	11.743	16.950	49.94%
2		29.643	11.773	9.536	50.06%
Total:			23.516	26.485	100.00%

Asymmetric

No.	Peak Name	Retention Time	Area	Height	Relative Area
1		15.267	20.306	28.706	88.19%
2		30.593	2.719	2.214	11.81%
Total:			23.025	30.920	100.00%
Chiral HPLC: (Chiralpak ADH, 15% PrOH, 85% hexane, 1.0 mL min^{-1}, \lambda = 272 nm) \tau_R (minor) = 20.4 \text{ min}, \tau_R (major) = 30.4 \text{ min}.

No.	Peak Name	Retention Time	Area	Height	Relative Area
		min	mAU*min	mAU	%
1		20.360	39.036	74.401	49.78
2		30.357	39.382	48.037	50.22
Total:		**78.419**	**122.439**		**100.00**

Asymmetric

No.	Peak Name	Retention Time	Area	Height	Relative Area
		min	mAU*min	mAU	%
1		20.803	1.270	2.451	1.49
2		30.903	83.750	101.373	98.51
Total:		**85.020**	**103.825**		**100.00**
Chiral HPLC: (Chiralpak IC, 3% /PrOH, 97% hexane, 1.0 mL min$^{-1}$, $\lambda = 289$ nm) τ_R (major) = 23.3 min, τ_R (minor) = 30.4 min.

Racemic.

No.	Peak Name	Retention Time	Area	Height	Relative Area
		min	mAU*min	mAU	%
1		23.290	59.430	70.863	49.99
2		30.447	59.446	81.033	50.01
Total:			118.875	151.896	100.00

Asymmetric

No.	Peak Name	Retention Time	Area	Height	Relative Area
		min	mAU*min	mAU	%
1		23.627	180.787	215.076	86.61
2		31.157	27.957	23.444	13.39
Total:			208.744	238.520	100.00
Chiral HPLC: (Chiralpak ADH, 10% iPrOH, 90% hexane, 1.0 mL min⁻¹, λ = 259 nm) τ_R (major) = 21.2 min, τ_R (minor) = 13.2 min.

No.	Peak Name	Retention Time	Area	Height	Relative Area
		min	mAU*min	mAU	%
1		13.203	221.030	693.723	50.08
2		21.193	220.318	423.552	49.92
Total:			441.348	1117.274	100.00

Asymmetric

No.	Peak Name	Retention Time	Area	Height	Relative Area
		min	mAU*min	mAU	%
1		13.257	26.512	83.777	1.14
2		21.513	2290.501	3263.822	98.86
Total:			2317.013	3347.599	100.00
Chiral HPLC: (Chiralpak IC, 1% iPrOH, 99% hexane, 1.0 mL min\(^{-1}\), \(\lambda = 259 \text{ nm}\)) \(\tau_R\) (major) = 10.2 min, \(\tau_R\) (minor) = 19.7 min.

Racemic

No.	Peak Name	Retention Time	Area	Height	Relative Area
		min	mAU*min	mAU	%
1		10.037	8.170	18.163	50.61
2		17.867	7.972	10.034	49.39
Total:		**16.142**	**28.197**	**100.00**	

Asymmetric

No.	Peak Name	Retention Time	Area	Height	Relative Area
		min	mAU*min	mAU	%
1		9.960	46.267	109.470	86.48
2		17.740	7.234	9.382	13.52
Total:		**53.501**	**118.852**	**100.00**	

S215
Chiral HPLC: (Chiralpak ADH, 1% PrOH, 99% hexane, 1.0 mL min\(^{-1}\), \(\lambda = 281\ nm\)) \(\tau_R\) (major) = 19.1 min, \(\tau_R\) (minor) = 14.3 min.

Racemic

No.	Peak Name	Retention Time	Area	Height	Relative Area
		min	mAU*min	mAU	%
1		14.227	35.322	105.259	49.95
2		18.883	35.392	80.883	50.05
Total:		**70.714**	**186.142**	**100.00**	

Asymmetric

No.	Peak Name	Retention Time	Area	Height	Relative Area
		min	mAU*min	mAU	%
1		14.337	1.109	3.591	0.64
2		19.107	172.680	390.569	99.36
Total:		**173.788**	**394.161**	**100.00**	
Chiral HPLC: (Chiralpak IC, 1% \text{PrOH}, 99% hexane, 1.0 \text{ mL min}^{-1}, \lambda = 340 \text{ nm}) \tau_R \text{ (major)} = 6.3 \text{ min}, \tau_R \text{ (minor)} = 9.8 \text{ min.}

![Graph of Racemic Peaks](image1)

No.	Peak Name	Retention Time	Area	Height	Relative Area
		min	mAU*min	mAU	%
1		6.217	38.203	70.265	50.31
2		9.750	37.736	62.005	49.69
Total:			75.939	132.270	100.00

![Graph of Asymmetric Peaks](image2)

No.	Peak Name	Retention Time	Area	Height	Relative Area
		min	mAU*min	mAU	%
1		6.300	174.680	305.925	87.25
2		9.820	25.517	38.856	12.75
Total:			200.197	344.781	100.00
Chiral HPLC: (Chiralpak ADH, 10% PrOH, 90% hexane, 1.0 mL min$^{-1}$, λ = 295 nm,) τ_R (major) = 20.0 min, τ_R (minor) = 12.8 min.

![Graph showing chromatogram](image)

Racemic

No.	Peak Name	Retention Time	Area	Height	Relative Area
		min	mAU*min	mAU	%
1		11.627	109.329	416.648	50.36
2		18.430	107.746	259.463	49.64
Total:		**217.075**	**676.111**	**100.00**	

Asymmetric

![Graph showing chromatogram](image)

No.	Peak Name	Retention Time	Area	Height	Relative Area
		min	mAU*min	mAU	%
1		12.787	0.969	3.979	0.31
2		19.960	312.986	734.010	99.69
Total:		**313.954**	**737.988**	**100.00**	
Chiral HPLC: (Chiralpak ADH, 4% iPrOH, 96% hexane, 1.0 mL min\(^{-1}\), \(\lambda = 295\) nm) \(\tau_R\) (major) = 14.2 min, \(\tau_R\) (minor) = 10.4 min.

Racemic.

No.	Peak Name	Retention Time	Area	Height	Relative Area
		min	mAU*min	mAU	%
1		10.327	52.602	227.997	49.13
2		14.137	54.463	175.937	50.87
Total:		**107.064**	**403.934**	**100.00**	

Asymmetric.

No.	Peak Name	Retention Time	Area	Height	Relative Area
		min	mAU*min	mAU	%
1		10.420	26.627	115.948	10.89
2		14.247	217.768	694.190	89.11
Total:		**244.394**	**810.138**	**100.00**	

Bn-22
Chiral HPLC: (Chiralpak ADH, 10% iPrOH, 90% hexane, 1.0 mL min$^{-1}$, λ = 293 nm) τ_R (minor) = 17.2 min, τ_R (major) = 27.9 min.

Racemic

No.	Peak Name	Retention Time	Area	Height	Relative Area
		min	mAU*min	mAU	%
1		17.217	9.284	23.810	50.12
2		27.907	9.238	14.499	49.88
Total:		**18.522**	**38.309**	**100.00**	

Asymmetric

No.	Peak Name	Retention Time	Area	Height	Relative Area
		min	mAU*min	mAU	%
1		17.213	0.221	0.540	0.40
2		27.943	54.686	85.922	99.60
Total:		**54.907**	**86.462**	**100.00**	
Chiral HPLC: (Chiralpak IC, 2% iPrOH, 98% hexane, 1.0 mL min\(^{-1}\), \(\lambda = 295\) nm) \(\tau_R\) (major) = 10.7 min, \(\tau_R\) (minor) = 17.3 min.

Racemic

No.	Peak Name	Retention Time	Area	Height	Relative Area
		min	mAU*min	mAU	%
1		10.713	97.421	200.969	50.06
2		17.307	97.204	130.684	49.94
Total:		**194.624**	**331.653**	**100.00**	
Chiral HPLC: (Chiralpak ADH, 10% iPrOH, 90% hexane, 1.0 mL min\(^{-1}\), \(\lambda = 295\) nm) \(t_R\) (major) = 22.2 min, \(t_R\) (minor) = 12.3 min.

Racemic

No.	Peak Name	Retention Time	Area	Height	Relative Area
		min	mAU*min	mAU	
1		12.323	10.030	36.653	49.67
2		22.197	10.164	20.045	50.33
Total			20.194	56.698	100.00

Asymmetric

No.	Peak Name	Retention Time	Area	Height	Relative Area
		min	mAU*min	mAU	
1		12.317	0.246	0.906	1.79
2		22.197	13.555	26.513	98.21
Total			13.801	27.419	100.00
Chiral HPLC: (Chiralpak IC, 1% iPrOH, 99% hexane, 1.0 mL min\(^{-1}\), \(\lambda = 295\, \text{nm}\)) \(\tau_R\) (major) = 5.6 min, \(\tau_R\) (minor) = 8.5 min.

Racemic

![Graph](image1.png)

No.	Peak Name	Retention Time	Area	Height	Relative Area
		min	mAU*min	mAU	%
1		5.580	15.222	29.196	50.38
2		8.503	14.992	20.360	49.62
Total:			**30.214**	**49.556**	**100.00**

Asymmetric

![Graph](image2.png)

No.	Peak Name	Retention Time	Area	Height	Relative Area
		min	mAU*min	mAU	%
1		6.117	278.615	444.988	88.87
2		9.137	34.893	55.055	11.13
Total:			**313.508**	**500.043**	**100.00**
Chiral HPLC: (Chiralpak ADH, 15% iPrOH, 85% hexane, 1.0 mL min$^{-1}$, $\lambda = 277$ nm) τ_R (major) = 16.6 min, τ_R (minor) = 26.3 min.

Racemic

No.	Peak Name	Retention Time	Area	Height	Relative Area
		min	mAU*min	mAU	%
1		16.623	757.925	1861.162	49.58
2		26.260	770.901	1205.848	50.42
Total:			1528.826	3067.010	100.00

Asymmetric

No.	Peak Name	Retention Time	Area	Height	Relative Area
		min	mAU*min	mAU	%
1		16.877	5.163	12.640	0.91
2		26.613	565.014	880.060	99.09
Total:			570.177	892.700	100.00
Chiral HPLC: (Chiralpak IC, 1% iPrOH, 99% hexane, 1.0 mL min$^{-1}$, $\lambda = 222$ nm) τ_R (major) = 20.8 min, τ_R (minor) = 33.0 min.

Racemic

No.	Peak Name	Retention Time	Area	Height	Relative Area
		min	mAU*min	mAU	%
1		20.987	24.316	27.954	50.51
2		32.813	23.825	15.997	49.49
Total:		**48.142**	**43.950**		**100.00**

Asymmetric

No.	Peak Name	Retention Time	Area	Height	Relative Area
		min	mAU*min	mAU	%
1		20.820	204.797	244.870	86.96
2		32.980	30.698	19.873	13.04
Total:		**235.495**	**264.743**		**100.00**
Chiral HPLC: (Chiralpak ADH, 10% iPrOH, 90% hexane, 1.0 mL min\(^{-1}\), \(\lambda = 291\) nm) \(\tau_R\) (major) = 15.6 min, \(\tau_R\) (minor) = 20.7 min.

No.	Peak Name	Retention Time	Area	Height	Relative Area
1		15.590	42.921	120.812	49.88
2		20.717	43.132	90.228	50.12
Total:		**86.053**	**211.039**	**100.00**	

Asymmetric

No.	Peak Name	Retention Time	Area	Height	Relative Area
1		15.887	0.408	1.133	0.11
2		21.203	366.901	774.809	99.89
Total:		**367.309**	**775.942**	**100.00**	
Chiral HPLC: (Chiralpak IC, 2\% PrOH, 98\% hexane, 1.0 mL min\(^{-1}\), \(\lambda = 291\) nm) \(\tau_R\) (major) = 15.6 min, \(\tau_R\) (minor) = 24.7.

Racemic

No.	Peak Name	Retention Time	Area	Height	Relative Area
		min	mAU*min	mAU	%
1		5.103	52.787	240.479	50.31
2		7.823	52.132	176.684	49.69
Total:		104.919	417.164		**100.00**

Asymmetric

No.	Peak Name	Retention Time	Area	Height	Relative Area
		min	mAU*min	mAU	%
1		5.050	283.626	1325.859	80.55
2		7.647	68.469	234.308	19.45
Total:		352.095	1560.167		**100.00**
Chiral HPLC: (Chiralpak ADH, 10 % PrOH, 90 % hexane, 1.0 mL min\(^{-1}\), \(\lambda = 295\) nm) \(\tau_R\) (major) = 26.2 min, \(\tau_R\) (minor) = 18.8 min.

Racemic

No.	Peak Name	Retention Time	Area	Height	Relative Area
		min	mAU*min	mAU	%
1		18.813	130.803	282.953	50.03
2		26.203	130.657	193.909	49.97
Total:			261.460	476.862	100.00

Asymmetric

No.	Peak Name	Retention Time	Area	Height	Relative Area
		min	mAU*min	mAU	%
1		19.040	7.102	15.479	4.76
2		26.480	142.192	210.317	95.24
Total:			149.294	225.795	100.00
Chiral HPLC: (Chiralpak ADH, 2% iPrOH, 98% hexane, 1.0 mL min⁻¹, λ = 297 nm) \(\tau_R \) (major) = 24.5 min, \(\tau_R \) (minor) = 14.8 min.

![Racemic HPLC](image)

No.	Peak Name	Retention Time	Area	Height	Relative Area
1		14.777	70.775	165.263	50.10
2		24.943	70.501	101.085	49.90
Total:		**141.276**	**266.348**	**100.00**	

![Asymmetric HPLC](image)

No.	Peak Name	Retention Time	Area	Height	Relative Area
1		15.260	20.614	48.811	9.38
2		25.123	199.080	246.262	90.62
Total:		**219.694**	**295.073**	**100.00**	
Chiral HPLC: (Chiralpak ADH, 10% ¹PrOH, 90% hexane, 1.0 mL min⁻¹, λ = 293 nm) \(\tau_R \) (major) = 13.2 min, \(\tau_R \) (minor) = 23.0 min.

Racemic

No.	Peak Name	Retention Time	Area	Height	Relative Area
		min	mAU*min	mAU	%
1		13.150	150.027	484.912	49.93
2		23.047	150.418	277.508	50.07
Total:			300.445	762.420	100.00

Asymmetric

No.	Peak Name	Retention Time	Area	Height	Relative Area
		min	mAU*min	mAU	%
1		13.387	2.927	9.496	1.23
2		23.423	234.693	433.790	98.77
Total:			237.620	443.285	100.00
Chiral HPLC: (Chiralpak IC, 1% iPrOH, 99% hexane, 1.0 mL min$^{-1}$, $\lambda = 232$ nm) τ_R (major) = 15.0 min, τ_R (minor) = 18.0 min.

Racemic

No.	Peak Name	Retention Time	Area	Height	Relative Area
		min	mAU*min	mAU	%
1		15.03	564.591	1049.961	49.96
2		18.00	565.473	966.211	50.04
Total:			**1130.065**	**2016.171**	**100.00**

Asymmetric

No.	Peak Name	Retention Time	Area	Height	Relative Area
		min	mAU*min	mAU	%
1		15.023	319.318	596.470	86.01
2		18.097	51.944	89.643	13.99
Total:			**371.262**	**686.113**	**100.00**
Chiral HPLC: (Chiralpak ADH, 15% iPrOH, 85% hexane, 1.0 mL min\(^{-1}\), \(\lambda = 231\) nm) \(\tau_R\) (minor) = 8.7 min, \(\tau_R\) (major) = 12.7 min.

No.	Peak Name	Retention Time	Area	Height	Relative Area
		min	mAU*min	mAU	%
1		8.690	205.251	986.114	49.98
2		12.710	205.385	687.335	50.02
Total:			410.636	1673.448	100.00

Asymmetric

No.	Peak Name	Retention Time	Area	Height	Relative Area
		min	mAU*min	mAU	%
1		8.843	4.719	23.320	0.85
2		13.050	548.083	1783.682	99.15
Total:			552.802	1807.002	100.00
Chiral HPLC: (Chiralpak IC, 3% /PrOH, 97% hexane, 1.0 mL min⁻¹, λ = 292 nm) \(\tau_R \) (major) = 6.1 min, \(\tau_R \) (minor) = 8.2 min.

Racemic

No.	Peak Name	Retention Time	Area	Height	Relative Area
		min	mAU*min	mAU	%
1		6.097	144.632	629.007	49.99
2		8.197	144.708	497.911	50.01
Total:			289.339	1126.917	100.00

Asymmetric

No.	Peak Name	Retention Time	Area	Height	Relative Area
		min	mAU*min	mAU	%
1		6.103	312.866	1564.775	85.03
2		8.200	55.087	217.401	14.97
Total:			367.953	1782.176	100.00
Chiral HPLC: (Chiralpak ADH, 5% iPrOH, 95% hexane, 1.00 mL min\(^{-1}\), \(\lambda = 290\) nm) \(\tau_R\) (major) = 26.7 min, \(\tau_R\) (minor) = 21.7 min

![Chiral HPLC Chromatogram](image)

No.	Peak Name	Retention Time	Area	Height	Relative Area
		min	mAU*min	mAU	%
1		21.583	85.348	167.794	49.86
2		26.463	85.823	134.988	50.14
Total:		**171.172**	**302.782**	**100.00**	

Asymmetric

![Asymmetric HPLC Chromatogram](image)

No.	Peak Name	Retention Time	Area	Height	Relative Area
		min	mAU*min	mAU	%
1		21.733	1.167	1.883	6.18
2		26.683	17.708	23.878	93.82
Total:		**18.875**	**25.760**	**100.00**	
Chiral HPLC: (Chiralpak ADH, 5% iPrOH, 95% hexane, 1.00 mL min\(^{-1}\), \(\lambda = 290\) nm, 15 \(\mu\)L injection) \(\tau_R\) (major) = 7.6 min, \(\tau_R\) (minor) = 6.6 min

Racemic

![Graph of Racemic peaks](image)

No.	Peak Name	Retention Time	Area	Height	Relative Area
		min	mAU*min	mAU	%
1		6.577	5.250	28.193	49.97
2		7.593	5.257	25.556	50.03
Total:		**10.507**	**53.749**	**100.00**	

Asymmetric

![Graph of Asymmetric peaks](image)

No.	Peak Name	Retention Time	Area	Height	Relative Area
		min	mAU*min	mAU	%
1		6.603	1.632	8.073	8.08
2		7.633	18.574	81.266	91.92
Total:		**20.206**	**89.339**	**100.00**	
Chiral HPLC: (Chiralpak ADH, 5% iPrOH, 95% hexane, 1.00 mL min\(^{-1}\), \(\lambda = 290\) nm) \(\tau_R\) (major) = 47.8 min, \(\tau_R\) (minor) = 40.7 min

Racemic

No.	Peak Name	Retention Time	Area	Height	Relative Area
		min	mAU*min	mAU	%
1		40.250	69.130	76.397	49.94
2		47.233	69.285	63.653	50.06
Total:			138.414	140.050	100.00

Asymmetric

No.	Peak Name	Retention Time	Area	Height	Relative Area
		min	mAU*min	mAU	%
1		40.710	2.527	2.827	6.07
2		47.853	39.143	35.658	93.93
Total:			41.670	38.485	100.00
Chiral HPLC: (Chiralpak ADH, 5% iPrOH, 95% hexane, 1.00 mL min\(^{-1}\), \(\lambda = 290\) nm) \(t_R\) (major) = 27.4 min, \(t_R\) (minor) = 11.6 min

Racemic

No.	Peak Name	Retention Time	Area	Height	Relative Area
		min	mAU*min	mAU	%
1		11.370	106.766	340.371	50.11
2		27.163	106.286	154.589	49.89
Total:			213.053	494.960	100.00

Asymmetric

No.	Peak Name	Retention Time	Area	Height	Relative Area
		min	mAU*min	mAU	%
1		11.567	16.670	50.640	10.64
2		27.370	140.042	195.476	89.36
Total:			156.712	246.116	100.00
Chiral HPLC: (Chiralpak ADH, 5% iPrOH, 95% hexane, 1.00 mL min⁻¹, λ = 290 nm) \(\tau_r \) (major) = 19.5 min, \(\tau_r \) (minor) = 22.1 min

Racemic

No.	Peak Name	Retention Time	Area	Height	Relative Area
1		18.823	24.144	51.676	48.46
2		21.467	25.683	48.561	51.54
Total:		**49.827**	**100.237**	**100.00**	

Asymmetric

No.	Peak Name	Retention Time	Area	Height	Relative Area
1		19.453	21.026	48.052	95.59
2		22.103	0.970	2.003	4.41
Total:		**21.996**	**50.055**	**100.00**	
Chiral HPLC: (Chiralpak ADH, 5% iPrOH, 95% hexane, 1.00 mL min⁻¹, λ = 290 nm) \(t_R \) (major) = 8.4 min, \(t_R \) (minor) = 5.5 min

Racemic

No.	Peak Name	Retention Time	Area	Height	Relative Area
		min	mAU*min	mAU	%
1		5.290	16.034	86.890	50.01
2		8.197	16.025	71.741	49.99
Total:			32.060	158.631	100.00

Asymmetric

No.	Peak Name	Retention Time	Area	Height	Relative Area
		min	mAU*min	mAU	%
1		5.463	4.831	30.360	15.96
2		8.427	25.435	126.259	84.04
Total:			30.266	156.619	100.00
Chiral HPLC: (Chiralpak ADH, 7.5% iPrOH, 92.5% hexane, 1.00 mL min$^{-1}$, $\lambda = 290$ nm) τ_R (major) = 25.4 min, τ_R (minor) = 20.2 min

Racemic

No.	Peak Name	Retention Time	Area	Height	Relative Area
		min	mAU*min	mAU	%
1		20.003	126.546	244.803	49.99
2		25.207	126.597	199.952	50.01
Total			253.144	444.755	100.00

Asymmetric

No.	Peak Name	Retention Time	Area	Height	Relative Area
		min	mAU*min	mAU	%
1		20.213	1.379	2.636	1.12
2		25.390	121.390	186.520	98.88
Total			122.769	189.156	100.00
Chiral HPLC: (Chiralpak ADH, 7.5% iPrOH, 92.5% hexane, 1.00 mL min$^{-1}$, $\lambda = 290$ nm) τ_R (major) = 13.3 min, τ_R (minor) = 10.8 min

No.	Peak Name	Retention Time	Area	Height	Relative Area
		min	mAU*min	mAU	%
1		10.720	46.477	187.937	50.03
2		13.170	46.425	148.219	49.97
Total:		92.902	336.156		100.00

Asymmetric

No.	Peak Name	Retention Time	Area	Height	Relative Area
		min	mAU*min	mAU	%
1		10.823	92.028	356.972	88.64
2		13.320	11.789	36.737	11.36
Total:		103.816	393.709		100.00
Chiral HPLC: (Chiralpak ADH, 12.5% iPrOH, 87.5% hexane, 1.00 mL min$^{-1}$, $\lambda = 290$ nm) τ_R (major) = 25.6 min, τ_R (minor) = 17.7 min

Racemic

No.	Peak Name	Retention Time	Area	Height	Relative Area
		min	mAU*min	mAU	%
1		17.137	15.226	31.639	51.50
2		24.990	14.338	21.545	48.50
Total:		**29.565**	**53.183**	**100.00**	

Asymmetric

No.	Peak Name	Retention Time	Area	Height	Relative Area
		min	mAU*min	mAU	%
1		17.670	4.308	7.605	4.95
2		25.627	82.806	121.263	95.05
Total:		**87.114**	**128.868**	**100.00**	
Chiral HPLC: (Chiralpak ADH, 12.5% iPrOH, 87.5% hexane, 1.00 mL min\(^{-1}\), \(\lambda = 290\) nm) \(\tau_R\) (major) = 12.3 min, \(\tau_R\) (minor) = 19.5 min

Racemic

No.	Peak Name	Retention Time	Area	Height	Relative Area
1		12.040	112.038	360.412	50.04
2		18.970	111.864	196.950	49.96
Total:		**223.902**	**557.362**	**100.00**	**100.00**

Asymmetric

No.	Peak Name	Retention Time	Area	Height	Relative Area
1		12.343	191.597	593.832	92.78
2		19.490	14.906	25.527	7.22
Total:		**206.504**	**619.359**	**100.00**	**100.00**
Chiral HPLC: (Chiralpak ADH, 12.5% iPrOH, 87.5% hexane, 1.00 mL min$^{-1}$, $\lambda = 290$ nm) τ_R (major) = 41.2 min, τ_R (minor) = 24.3 min

Racemic

No.	Peak Name	Retention Time	Area	Height	Relative Area
		min	mAU*min	mAU	%
1		24.050	160.639	242.200	49.94
2		40.840	161.038	143.426	50.06
Total:		321.677	385.626		100.00

Asymmetric

No.	Peak Name	Retention Time	Area	Height	Relative Area
		min	mAU*min	mAU	%
1		24.293	0.435	0.673	0.34
2		41.233	127.384	112.925	99.66
Total:		127.819	113.598		100.00
Chiral HPLC: (Chiralpak ADH, 12.5% iPrOH, 87.5% hexane, 1.00 mL min\(^{-1}\), \(\lambda = 290\) nm) \(\tau_R\) (major) = 16.6 min, \(\tau_R\) (minor) = 26.6 min

Racemic

No.	Peak Name	Retention Time	Area	Height	Relative Area
		min	mAU*min	mAU	%
1		16.400	24.662	58.657	49.86
2		26.243	24.799	32.337	50.14
Total:		49.460	90.994	100.00	

Asymmetric

No.	Peak Name	Retention Time	Area	Height	Relative Area
		min	mAU*min	mAU	%
1		16.597	302.471	696.897	84.77
2		26.613	54.325	65.720	15.23
Total:		356.796	762.617	100.00	
Chiral HPLC: (Chiralpak ADH, 50% PrOH, 50% hexane, 1.00 mL min$^{-1}$, $\lambda = 290$ nm) τ_R (major) = 27.8 min, τ_R (minor) = 17.7 min

Racemic

No.	Peak Name	Retention Time	Area	Height	Relative Area
		min	mAU*min	mAU	%
1		17.723	205.884	292.089	49.99
2		27.913	205.966	179.368	50.01
Total:			411.850	471.457	100.00

Asymmetric

No.	Peak Name	Retention Time	Area	Height	Relative Area
		min	mAU*min	mAU	%
1		17.673	4.365	6.183	2.86
2		27.767	148.109	129.083	97.14
Total:			152.475	135.266	100.00

S246
Chiral HPLC: (Chiralpak ADH, 50% iPrOH, 50% hexane, 1.00 mL min\(^{-1}\), \(\lambda = 290\) nm) \(\tau_R\) (major) = 37.6 min, \(\tau_R\) (minor) = 42.0 min

No.	Peak Name	Retention Time	Area	Height	Relative Area
1		37.747	127.339	89.946	49.97
2		42.000	127.500	75.692	50.03
Total:		254.840		165.639	100.00

Asymmetric

No.	Peak Name	Retention Time	Area	Height	Relative Area
1		37.607	47.923	33.724	90.42
2		42.050	5.078	3.014	9.58
Total:		53.001	36.738		100.00
Chiral HPLC: (Chiralpak ADH, 12.5% iPrOH, 87.5% hexane, 1.00 mL min⁻¹, λ = 290 nm) τ_R (major) = 16.6 min, τ_R (minor) = 12.4 min

Racemic

![Racemic graph]

No.	Peak Name	Retention Time	Area	Height	Relative Area
		min	mAU*min	mAU	%
1		12.217	301.003	797.855	49.97
2		16.403	301.365	607.620	50.03
Total			602.368	1405.475	100.00

Asymmetric

![Asymmetric graph]

No.	Peak Name	Retention Time	Area	Height	Relative Area
		min	mAU*min	mAU	%
1		12.353	0.943	2.195	0.48
2		16.570	196.598	390.760	99.52
Total			197.541	392.955	100.00
Chiral HPLC: (Chiralpak IC, 1% iPrOH, 99% hexane, 1.00 mL min\(^{-1}\), \(\lambda = 290\) nm) \(\tau_R\) (major) = 6.9 min, \(\tau_R\) (minor) = 9.6 min

Racemic

No.	Peak Name	Retention Time	Area	Height	Relative Area
1		6.550	8.010	14.108	50.14
2		8.693	7.964	11.173	49.86
Total:		**15.974**	**25.281**		**100.00**

Asymmetric

No.	Peak Name	Retention Time	Area	Height	Relative Area
1		6.910	90.822	137.452	84.75
2		9.620	16.346	18.123	15.25
Total:		**107.168**	**155.575**		**100.00**
Chiral HPLC: (Chiralpak IC, 2%/PrOH, 98% hexane, 1.00 mL min\(^{-1}\), \(\lambda = 290\) nm) \(\tau_R\) (major) = 11.8 min, \(\tau_R\) (minor) = 23.1 min

Racemic

No.	Peak Name	Retention Time	Area	Height	Relative Area
		min	mAU*min	mAU	%
1		11.607	47.416	120.001	50.12
2		22.180	47.196	53.912	49.88
Total:			**94.612**	**173.913**	**100.00**

Asymmetric

No.	Peak Name	Retention Time	Area	Height	Relative Area
		min	mAU*min	mAU	%
1		11.813	14.869	24.797	98.05
2		23.127	0.296	0.315	1.95
Total:			**15.165**	**25.112**	**100.00**
Chiral HPLC: (Chiralpak IC, 2% iPrOH, 98% hexane, 1.00 mL min⁻¹, λ = 290 nm) \(\tau_R \) (major) = 5.2 min, \(\tau_R \) (minor) = 6.9 min

Racemic

No.	Peak Name	Retention Time	Area	Height	Relative Area
1		5.067	46.703	195.952	50.09
2		6.560	46.529	112.317	49.91
Total:			93.233	308.269	100.00

Asymmetric

No.	Peak Name	Retention Time	Area	Height	Relative Area
1		5.163	41.437	199.111	87.44
2		6.887	5.953	16.313	12.56
Total:			47.390	215.424	100.00
Chiral HPLC: (Chiralpak ADH, 12.5% iPrOH, 87.5% hexane, 1.00 mL min\(^{-1}\), \(\lambda = 290\) nm) \(\tau_R\) (major) = 29.1 min, \(\tau_R\) (minor) = 9.7 min

![Chiral HPLC](image)

No.	Peak Name	Retention Time	Area	Height	Relative Area
		min	mAU*min	mAU	%
1		9.690	92.702	405.688	49.89
2		28.983	93.066	133.845	50.11
Total:		**185.798**	**539.533**	**100.00**	

Asymmetric

![Asymmetric HPLC](image)

No.	Peak Name	Retention Time	Area	Height	Relative Area
		min	mAU*min	mAU	%
1		9.723	3.752	17.032	6.75
2		29.117	51.815	75.284	93.25
Total:		**55.567**	**92.315**	**100.00**	
Chiral HPLC: (Chiralpak ADH, 12.5% iPrOH, 87.5% hexane, 1.00 mL min\(^{-1}\), \(\lambda = 290\) nm) \(\tau_R\) (major) = 8.9 min, \(\tau_R\) (minor) = 8.2 min

No.	Peak Name	Retention Time	Area	Height	Relative Area
		min	mAU*min	mAU	%
1		7.913	6.794	36.266	48.21
2		8.640	7.297	34.084	51.79
Total:		**14.091**	**70.350**	100.00	

Asymmetric

No.	Peak Name	Retention Time	Area	Height	Relative Area
		min	mAU*min	mAU	%
1		8.180	7.654	39.810	6.75
2		8.953	105.665	484.432	93.25
Total:		**113.319**	**524.242**	100.00	

Bn-39
Chiral HPLC: (Chiralpak IC, 2% /PrOH, 98% hexane, 1.00 mL min\(^{-1}\), \(\lambda = 290\) nm) \(\tau_R\) (major) = 8.0 min, \(\tau_R\) (minor) = 14.9 min

No.	Peak Name	Retention Time	Area	Height	Relative Area
		min	mAU/min	mAU	%
1		7.993	182.144	343.636	49.88
2		14.893	183.044	184.034	50.12
Total			**365.188**	**527.670**	100.00

Asymmetric

No.	Peak Name	Retention Time	Area	Height	Relative Area
		min	mAU/min	mAU	%
1		7.967	77.306	192.685	94.85
2		14.967	4.200	5.412	5.15
Total			**81.506**	**198.096**	100.00
Chiral HPLC: (Chiralpak IC, 2% iPrOH, 99% hexane, 1.00 mL min\(^{-1}\), \(\lambda = 290\) nm) \(\tau_R\) (major) = 5.0 min, \(\tau_R\) (minor) = 6.2 min

![Phenyl ring structure](image1)

No.	Peak Name	Retention Time	Area	Height	Relative Area
		min	mAU*min	mAU	%
1		5.013	7.563	29.270	50.09
2		6.317	7.537	19.964	49.91
Total:		**15.101**	**49.234**	**100.00**	**100.00**

![Asymmetric peak](image2)

No.	Peak Name	Retention Time	Area	Height	Relative Area
		min	mAU*min	mAU	%
1		4.957	293.416	986.273	81.31
2		6.203	67.455	152.329	18.69
Total:		**360.872**	**1138.602**	**100.00**	**100.00**

![Phenyl ring structure](image3)

Bn-40
Chiral HPLC: (Chiralpak ADH, 10% iPrOH, 90% hexane, 1.0 mL min\(^{-1}\), \(\lambda = 293\) nm) \(\tau_R\) (major) = 15.3 min, \(\tau_R\) (minor) = 31.2 min.

Racemic

No.	Peak Name	Retention Time	Area	Height	Relative Area
		min	mAU*min	mAU	%
1		15.300	104.995	277.734	50.00
2		31.237	105.008	131.069	50.00
Total:		**210.003**	**408.803**		**100.00**

Asymmetric

No.	Peak Name	Retention Time	Area	Height	Relative Area
		min	mAU*min	mAU	%
1		15.127	13.901	37.364	6.82
2		31.023	190.039	237.212	93.18
Total:		**203.940**	**274.577**		**100.00**
Chiral HPLC: (Chiralpak ADH, 1% iPrOH, 99% hexane, 1.0 mL min\(^{-1}\), \(\lambda = 295\) nm) \(\tau_R\) (major) = 16.2 min, \(\tau_R\) (minor) = 11.1 min.

![Chiral HPLC graph](image)

Racemic

No.	Peak Name	Retention Time	Area	Height	Relative Area
		min	mAU*min	mAU	%
1		11.067	8.283	25.645	49.91
2		16.220	8.313	21.432	50.09
Total:		**16.596**	**47.077**		**100.00**

Asymmetric

No.	Peak Name	Retention Time	Area	Height	Relative Area
		min	mAU*min	mAU	%
1		11.077	7.479	23.833	11.90
2		16.227	55.370	143.458	88.10
Total:		**62.850**	**167.290**		**100.00**
Chiral HPLC: (Chiralpak ADH, 20% 1PrOH, 80% hexane, 1.0 mL min$^{-1}$, $\lambda = 300$ nm) τ_R (major) = 20.8 min, τ_R (minor) = 36.0 min.

Racemic

No.	Peak Name	Retention Time	Area	Height	Relative Area
		min	mAU*min	mAU	%
1		21.383	32.337	50.408	49.95
2		36.807	32.404	25.195	50.05
Total:			64.742	75.602	100.00

Asymmetric

No.	Peak Name	Retention Time	Area	Height	Relative Area
		min	mAU*min	mAU	%
1		20.847	69.276	106.129	98.50
2		36.343	1.055	1.005	1.50
Total:			70.331	107.134	100.00
Chiral HPLC: (Chiralpak ODH, 2% iPrOH, 98% hexane, 1.0 mL min\(^{-1}\), \(\lambda = 295\) nm) \(\tau_R\) (major) = 10.7 min, \(\tau_R\) (minor) = 9.0 min.

Racemic

No.	Peak Name	Retention Time	Area	Height	Relative Area
		min \(\text{min}\)	mAU*min	mAU	%
1		9.027	78.521	223.291	51.04
2		10.880	75.320	132.306	48.96
Total:			**153.841**	**355.597**	**100.00**

Asymmetric

No.	Peak Name	Retention Time	Area	Height	Relative Area
		min \(\text{min}\)	mAU*min	mAU	%
1		9.023	41.910	117.882	19.81
2		10.740	169.701	317.325	80.19
Total:			**211.611**	**435.206**	**100.00**
Chiral HPLC: (Chiralpak ADH, 10% PrOH, 90% hexane, 1.0 mL min\(^{-1}\), \(\lambda = 293\) nm) \(\tau_R\) (major) = 20.2 min, \(\tau_R\) (minor) = 23.5 min.

No.	Peak Name	Retention Time	Area	Height	Relative Area
		min	mAU*min	mAU	%
1		20.937	37.991	75.721	50.14
2		23.287	37.785	68.805	49.86
Total:			75.776	144.526	100.00

Asymmetric

No.	Peak Name	Retention Time	Area	Height	Relative Area
		min	mAU*min	mAU	%
1		20.157	5.697	13.510	0.94
2		22.460	601.624	1158.301	99.06
Total:			607.322	1171.811	100.00
Chiral HPLC: (Chiralpak ADH, 3% iPrOH, 99% hexane, 1.0 mL min$^{-1}$, $\lambda = 250$ nm) τ_R (major) = 19.7 min, τ_R (minor) = 12.0 min.

Racemic

![Chiral HPLC Racemic](image)

No.	Peak Name	Retention Time	Area	Height	Relative Area
		min	mAU*min	mAU	%
1		11.623	18.740	64.096	50.04
2		19.937	18.707	45.935	49.96
Total:		37.448	110.031	100.00	

Asymmetric

![Chiral HPLC Asymmetric](image)

No.	Peak Name	Retention Time	Area	Height	Relative Area
		min	mAU*min	mAU	%
1		12.010	20.000	41.920	11.83
2		19.693	149.017	245.426	88.17
Total:		169.017	287.346	100.00	
Chiral HPLC: (Chiralpak ADH, 7.5% iPrOH, 92.5% hexane, 1.00 mL min$^{-1}$, $\lambda = 290$ nm) τ_R (major) = 25.4 min, τ_R (minor) = 20.2 min

Racemic

![Graph showing racemic peaks](image)

No.	Peak Name	Retention Time	Area	Height	Relative Area
		min	mAU*min	mAU	%
1		20.003	126.546	244.803	49.99
2		25.207	126.597	199.952	50.01
Total:			**253.144**	**444.755**	**100.00**

Asymmetric

![Graph showing asymmetric peaks](image)

No.	Peak Name	Retention Time	Area	Height	Relative Area
		min	mAU*min	mAU	%
1		20.383	7.395	15.728	1.12
2		25.670	653.285	1062.077	98.88
Total:			**660.680**	**1077.805**	**100.00**
Chiral HPLC: (Chiralpak ADH, 7.5% iPrOH, 92.5% hexane, 1.00 mL min$^{-1}$, $\lambda = 290$ nm) τ_R (major) = 13.3 min, τ_R (minor) = 10.8 min

![Chiral HPLC Chart]

No.	Peak Name	Retention Time	Area	Height	Relative Area
		min	mAU*min	mAU	%
1		10.720	46.477	187.937	50.03
2		13.170	46.425	148.219	49.97
Total:			92.902	336.156	100.00

Asymmetric

![Asymmetric Chart]

No.	Peak Name	Retention Time	Area	Height	Relative Area
		min	mAU*min	mAU	%
1		10.927	240.504	970.447	90.22
2		13.450	26.069	84.658	9.78
Total:			266.573	1055.105	100.00