Evolution of popularity in given names

Mi Jin Leea, Woo Seong Joa, Il Gu Yia, Seung Ki Baekb,*, Beom Jun Kima,**

aDepartment of Physics, Sungkyunkwan University, Suwon 440-746, Korea
bDepartment of Physics, Pukyong National University, Busan 608-737, Korea

Abstract

An individual’s identity in a human society is specified by his or her name. Differently from family names, usually inherited from fathers, a given name for a child is often chosen at the parents’ disposal. However, their decision cannot be made in a vacuum but affected by social conventions and trends. Furthermore, such social pressure changes in time, as new names gain popularity while some other names are gradually forgotten. In this paper, we investigate how popularity of given names has evolved over the last century by using datasets collected in Korea, the province of Quebec in Canada, and the United States. In each of these countries, the average popularity of given names exhibits typical patterns of rise and fall with a time scale of about one generation. We also observe that notable changes of diversity in given names signal major social changes.

Keywords: given names, popularity, diversity

PACS: 89.65.-s, 89.65.Cd, 87.23.Cc

1. Introduction

Since Galton statistically investigated extinction of families, many researchers have studied dynamics of family names\cite{1,2}. The dynamics is well suited to mathematical analysis, because family names are paternally inherited like the Y chromosome in most cases [see, e.g., Ref. 8 for a review]. If we look at statistics of family names, the rank-size distribution is broad in many countries\cite{1,2}.

*seungki@pknu.ac.kr
**beomjun@skku.edu

Preprint submitted to Elsevier October 13, 2015
whereas a clear exponential form is observed in Korea3. These statistics can readily be explained by the branching process in mathematics, and the essential ingredient to explain the Korean case turns out to be a social taboo on changing family names3. Although we have good mathematical understanding on its origin, the exponential rank-size distribution in Korea actually raises another question: It has a characteristic rank scale beyond which minor family names are found with very small frequencies. Indeed, the top ten family names occupy roughly two thirds of the total Korean population, which implies that it is virtually impossible to identify individuals by using family names. Then, how do they distinguish two different persons? An obvious answer would be that the distinguishability is supplied by given names1, and one of our goals in this work is to examine whether this statement is justified empirically.

Differently from family names, parents have a broad spectrum of possible choices in picking up a given name, and the only criterion is that it sounds good and proper. This is, however, rather subjective, and what is worse is that the criterion itself changes from generation to generation, and from one place to the other. Nevertheless, researchers have tried to understand the given-name dynamics by using empirical data9--12, and a recent study suggests a typical temporal pattern of rise and fall13. However, the suggested pattern heavily relies on a simplified model and no information is provided on its characteristic time scale. Therefore, we will verify the existence of such a pattern and estimate its time scale on an empirical basis.

The rank-size distribution and temporal dynamics together determine the diversity of names. If this is directly related to distinguishability as argued above, it will vary with the typical radius of social interactions: For example, if one can live the whole life in a community consisting of a small number of people, we would not need so many names. In a modern society, however, the range of social interactions can be very large, and it is no longer possible to define

1 It does not mean that Koreans use a first-name basis in the daily life. Rather, they have taboos on mentioning elders’ given names.
an individual in ‘relative’ coordinates like someone’s son or someone’s mother. Such a modern society is sometimes called anonymous, but it is actually in this situation that we expect the maximal diversity of names to distinguish every different person. We note that the social status of Korean women has drastically changed, with increasing the radius of social interactions, over the last century. Therefore, we hypothesize that Korean female names have gradually become more and more diverse, compared to the cases of the other countries, which will also be checked in this work.

The present paper is organized as follows: We introduce the datasets used in this study in Sec. 2. Two main results of the data analysis, i.e., the rank-size distribution and the temporal pattern of popularity, are described in Sec. 3.1 and Sec. 3.2 respectively. In Sec. 3.3 we present how the diversity of given names in each dataset has evolved over the 20th century and discuss major changes in diversity. We then summarize this work in Sec. 4.

2. Datasets

This work analyzes 10 family books in Korea, and some of us have already used them in previous works [3, 5, 14]. From these datasets, we extract the daughters and women married into the families, and obtain their names and years of birth. Although the family books cover several centuries, we obtain a significant number of female names only for the 20th century. Even in the early 20th century, it was not uncommon for a girl to have no particular given name. To have more female names in our dataset, we additionally include a list of female students enrolled in a university in Korea from 1926 to 1985. This comprises about 6% of the number of individuals in our Korean female dataset. On the other hand, we exclude male names in the family books from our analysis, because they are affected too much by a cultural constraint: Most of Korean male names consist of two syllables and one of them is often shared by all the male cousins. For example, one of the authors of the present paper has a name consisting of ‘Beom’ and ‘Jun’, and his two other brothers Han Jun and
Seong Jun share the latter syllable with him. In this sense, we may regard only ‘Beom’ as his true identifier, whereas ‘Jun’ is an index for the generation in the Kim family. Although the total number of male names in the ten family books is not small, we still find it doubtful that the statistics is enough to neutralize such a distortion. In contrast, the brides and the students are sampled from the whole population and it is hard to imagine any preference for their names. We thus believe that the set of female names in our data can be regarded as an unbiased sample of the whole female population in the past.

For comparison, we will also use a dataset of Quebec in Canada \cite{15, 16}, in which the most popular 275 female and 200 male names have been recorded annually with their frequencies. In addition, we use another dataset of the United States (US), which includes all the names that are given to more than five newborn babies every year \cite{17}. Due to the one-hundred year time span of the Korean data, we consider the same period from year 1900 to 2000 for all the others as well. The number of persons in each dataset is listed as follows: 342, 370 females in Korea, 1,203, 575 females and 1,205, 453 males in Quebec, and 163, 523, 372 females and 166, 237, 403 males in the US, respectively.

3. Results

3.1. Rank-size distribution

We first study rank-size distribution of given names for each dataset. In most countries except a few, the rank-size distribution for family names is described as a power law \cite{3, 8}. The broadness indicates that it is usually enough to use family names for distinguishing someone from the others. The situation is completely different for Korean family names, so they have an expression roughly translated as ‘going to Seoul to find someone called Mr. Kim’, which basically means ‘a needle in a haystack’. The consideration above naturally leads us to the following idea: In any human society, the combination of family and given names will have resolution to distinguish one individual from the others. If family names already have broad rank-size distribution as in Western countries,
Figure 1: Rank-size distribution of given names, where the vertical axis means the total number of individuals given each specific name during the 20th century and the horizontal axis means its corresponding rank. (a) For Korean females, the rank-size distribution has a fat tail described as $S(r) \sim r^{-\gamma}$ with $\gamma \approx 1.43$. (b) The Quebec data exhibit exponential decay such as $S(r) \sim e^{-r/R}$ with a characteristic scale $R \approx 82(60)$ for females (males). (c) Similarly to the Korean case, the US data also show broad distribution with $\gamma \approx 1.54(1.63)$ for females (males).
Table 1: Top 10 most popular names from year 1900 to 2000 in Korea, Quebec, and the US, where F (M) denotes females (males).

Rank	Korea (F)	Quebec (F)	Quebec (M)	US (F)	US (M)
1	Jung Suk	Sylvie	Michel	Mary	James
2	Young Suk	Louise	Pierre	Elizabeth	John
3	Young Ja	Nathalie	Daniel	Patricia	Robert
4	Jung He	Julie	Andr´e	Jennifer	Michael
5	Sun Ja	Diane	Éric	Linda	William
6	Young He	Chantal	Fran¸cois	Barbara	David
7	Mi Suk	Isabelle	Jean	Margaret	Richard
8	Mi Kyung	Johanne	Claude	Susan	Joseph
9	Kyung He	H´el`ene	Martin	Dorothy	Charles
10	Jung Ja	Lise	Alain	Sarah	Thomas

given names do not have to provide further distinguishability. On the other hand, if family names have narrow rank-size distribution as found in Korea, given names must be broadly distributed to make every individual identifiable. In other words, we expect the role of given names to be complementary to that of family names.

Let the size S of a name denote the total number of individuals given the name during the 20th century. We assign a rank r to each given name after sorting the data in descending order of S (Table 1). By construction, $S(r)$ is a non-increasing function. We indeed find that the rank-size distribution of Korean female names can be fitted to a power-law form as depicted in Fig. 1(a). It is also consistent with our expectation that given names in Quebec exhibit exponential rank-size distribution, $S(r) \sim e^{-r/R}$. Note that the characteristic rank scale R is not known a priori from the distinguishability argument. Our data show that $R \approx 80$ and $R \approx 60$ for females and males, respectively [see Fig. 1(b)]. The larger value of R for female names implies that they are more
diverse than male ones, which will be cross-checked by using a diversity measure below, but the important point is that they have almost the same order of magnitude $R \sim O(10^2)$. We suggest that the Dunbar number $[18]$ could be a crucial factor to explain this scale: Suppose that a strongly connected social group, in which everyone can refer to others on the first-name basis, has a typical size comparable to the Dunbar number D. If D was much greater than R, the first-name basis would be exposed to too much ambiguity. The opposite limit of $R \gg D$ is again implausible, because we would not need so many names after all.

The US data show an interesting difference from our expectation, in that given names are diverse as shown in Fig. 1(c). This is not necessary from our viewpoint, because family names already provide enough distinguishability $[17]$. Our guess is that the fat tail originates from multietnicity: As an extremely simple example, suppose that we have mixed the Korean and Quebec data together. In this mixture, we will find broad distribution of family names due to the Quebec part, and the given names will also be broadly distributed because of the Korean part. Additionally, the interesting relation between Zipf’s law and Heaps’ law in Ref. $[19]$ is not clearly observed in our data.

3.2. Temporal evolution of popularity of names: Rise and fall

In contrast to family names, given names are not necessarily inherited, but chosen at parents’ disposal. Although the parents have infinitely many possibilities to choose in principle, it does not mean that they can choose any. First of all, it should be acceptable in view of the social norm. For example, New Zealand has banned disturbing given names such as ‘Lucifer’, ‘Rogue’, and ‘Mafia’. It should also be familiar to some extent: In 1996, a local court in Sweden rejected a name spelled as ‘Brfxxcxlmnppccclllmnnprxvclmnckssqflb11116’. Due to such social pressure, the actual choice tends to converge to one of existing names. However, it would be just pointless if everyone converged to the same choice. When a name becomes so popular to feel boring, it begins to lose attractiveness, and another name will take it over. In a sense, naming a child may be compared
Figure 2: Average popularity of top 100 names in the 20th century. The time series of each name i is adjusted so as to have $\tau = 0$ at its maximum and $p_i(\tau = 0) = 1$, after which we take averages over the names (see text for details). Here, each data point represents popularity for five years. In most cases, it roughly takes a decade for the popularity to rise from one half (the dotted horizontal line) to the maximum. Then, it slowly declines, so it takes about 15 years to return back to the half maximum. Male names in the US have exceptionally slow dynamics, where the time scales are about 14 and 25 years for the rise and fall, respectively.

to picking out clothes, because we want the name to be different from others’, but not really ‘out there’. As an outcome of all this interplay, we expect a pattern of the rise and fall in popularity, which is measured by relative frequency in the whole population.

To estimate the popularity of name i, we measure its usage fraction $f_i(t)$, defined as the ratio between the number of newborn babies with i and the total number of newborn babies in year t. We observe that $f_i(t)$ is unimodal for most names. Only a few names show multiple peaks in $f_i(t)$, or noisy fluctuations in the time series. At each t, we average $f_i(t)$ over i in the following way: We first find the peak with height $f_i^{\text{max}} \equiv \max_t f_i(t)$, located at $t_i^{\text{max}} \equiv \arg\max_t f_i(t)$. We then introduce a new variable $\tau \equiv t - t_i^{\text{max}}$ so that every name has a peak at $\tau = 0$. In addition, we define normalized popularity $p_i(\tau) \equiv f_i(\tau)/f_i^{\text{max}}$ so
Table 2: Asymmetry of the average popularity \(p(\tau) \) in Fig. 2 around \(\tau = 0 \), measured by
\[
\frac{\sum_{\tau > 0} p(\tau) - \sum_{\tau < 0} p(\tau)}{\sum_{\tau} p(\tau)}
\]
where F and M denote females and males, respectively.

	Korea (F)	Quebec (F)	Quebec (M)	US (F)	US (M)
0.10(1)	0.10(1)	0.08(1)	0.16(1)	0.21(1)	

that \(p_i(\tau = 0) = 1 \) for every \(i \). The range of \(\tau \) depends on the value of \(t_i^{\text{max}} \), hence is different for each name. Noting that \(\tau \in [-100, 100] \), because \(t_i^{\text{max}} \) is bounded between 1900 and 2000, we restrict the range of \(\tau \) to \([-60, 60]\) in order to focus on the behavior around \(\tau = 0 \). Then, we perform ‘surviving average’, which means that we average \(p_i(\tau) \) only for names with nonzero fractions at \(\tau \). The resulting average popularity \(p(\tau) \) is plotted in Fig. 2. We notice that the curves in Fig. 2 exhibit striking similarity: After the initial growth to the half maximum, it takes about a decade to reach the peak, and about 15 years to go back down to one half. An exception is the US male names, where it takes about twice as long for popularity to decline, and this seems related to the fact that a boy can often be named after his father or uncle in the US. Note that the overall time span corresponds to a couple of generations, which suggests that popular names in a certain generation would not easily carry over into the next generation. This observation implies that parents avoid popular names of their generation when naming their children. It is also interesting that popularity tends to decline more slowly compared with the growth, in accordance with Ref. [13]. We quantify the asymmetry between the rise and fall in Fig. 2 by measuring the normalized difference between numbers of individuals before and after \(\tau = 0 \), as listed in Table 2.

For better visualization, we construct a minimum spanning tree (MST) composed of all the hundred names for each dataset based on the curves \(f_i(t) \). To do this, we consider a cumulative fraction \(c_i(t) \) defined as

\[
c_i(t) = \frac{\sum_{t' = 1900}^{t} f_i(t')}{\sum_{t' = 1900}^{2000} f_i(t')}. \tag{1}
\]

By definition, \(c_i(t) \) is a non-decreasing function which starts from a small value.
3.3. Diversity

We show the resulting MST’s in Figs. 3 and 4, and the structure mostly follows of species in a biological domain [21]. Some widely used indices are the number ecology, many diversity indices have been developed to characterize distribution of species in a biological domain [21]. Some widely used indices are the number

\[d_{ij} = \max_t |c_i(t) - c_j(t)|, \]

(2)
in spirit of the Kolmogorov-Smirnov distance [20]. The idea is that two names, if they are close, will experience similar time evolution in terms of popularity. The distance \(d_{ij} \) is used as the weight of an edge connecting two vertices \(i \) and \(j \). We show the resulting MST’s in Figs. 3 and 4 and the structure mostly follows the actual chronological order.

Figure 3: MST of Korean female names, where the weight is given by Eq. 2. For each name, we show the year when the cumulative fraction \(c_i(t) \) first exceeded 1/2.

3.3. Diversity

Our next question is how the diversity of names has changed in time. In ecology, many diversity indices have been developed to characterize distribution of species in a biological domain [21]. Some widely used indices are the number
of species, the Shannon entropy, and the Simpson index. In this work, we employ the Simpson index \(\lambda \), because it is less sensitive to the total number of species \(^{21}\). Noting that we have names instead of species, we define this quantity as

\[
\lambda(t) \equiv \sum_{i=1}^{N(t)} |f_i(t)|^2,
\]

where \(N(t) \) is the number of names at time \(t \), and \(f_i(t) \) is as defined in in Sec. \(^{22}\). This index is closely related to the participation ratio in the localization problem in quantum mechanics, where \(f_i \) is replaced by probability density \(|\psi_i|^2 \). If everyone has a different name, i.e., \(f_i(t) = 1/N \), we have \(\lambda = 1/N \ll 1 \).
The other extreme is $\lambda = 1$ when everyone has the same name. To measure diversity, therefore, it is more convenient to look at $1 - \lambda$. Figure 5(a) shows the time evolution of this diversity measure for Korean female names. The biggest change is observed around year 1940, so let us look into this period in more detail. Among syllables constituting female names, we check the most popular four, i.e., ‘Sun’, ‘Ja’, ‘Suk’, and ‘He’, by collecting names that end with any of these syllables. We see that names ending with ‘Ja’ had a peak in the early 1940s, decreasing the diversity, as shown in Fig. 5(b). The extensive use of this syllable is traced to a colonial policy: For the last several years of the Japanese colonial era, between 1940 and 1945, a name-change policy came into effect, forcing Koreans to change their names to Japanese styles [23, 24]. Many Japanese female names ended with a Chinese character meaning a child, pronounced as ‘Ko’, so the use of this character was the easiest option for many Korean parents to name their daughters born in the late 1930s or the early 1940s. Because the character for meaning a child was pronounced as ‘Ja’ in Korean, popular Japanese names such as ‘Yoshiko’ and ‘Junko’ became ‘Mi Ja’ and ‘Sun Ja’, respectively, and these names remained even after the end of the colonial era. In Fig. 5(b), we see that those names with ‘Ja’ once occupied almost 40%. Except for this dip, Korean names have continually exhibited a high degree of diversity. Differently from our hypothesis, the diversity does not show appreciable increase in the latter half of the 20th century, in spite of the change in the status of women during that period.

The Quebec and US data show very different time series during the same period: Due to the exponential rank-size distribution, Quebec has low diversity relative to the other datasets, and male names tend to be less diverse than female ones. Although the diversity in Quebec had been in gradual decline until around 1970 and then bounced back, the overall behavior has been quite stable over the last century in the sense that the diversity in year 2000 is almost the same as in 1900 with no abrupt changes in between. In the US, on the other hand, the diversity has been in a long-term uptrend since the 1950s, which can be explained by the rise in the number of immigrants [9, 25]. An interesting
Figure 5: (a) Diversity of given names in Korea, Quebec, and the US, measured by $1 - \lambda$, where λ is the Simpson index [Eq. 3] and F (M) denotes females (males). A clear dip in diversity is observed for Korean female names around year 1940, as a result of the Japanese colonial era (see text for details). In Quebec and the US, female names tend to be more diverse than male names, in accordance with the findings in Sec. 3.1. (b) Fractions of Korean female names that end with syllables ‘Sun’, ‘Ja’, ‘Suk’, and ‘He’, respectively. Names with ‘Ja’ had a sharp peak, recording roughly 40%, which explains the dip in diversity in the 1940s. The errorbars are estimated by reshuffling the data.

This might be related to the fact that ‘Lisa’ enjoyed nationwide popularity in the 1960s, as ‘Jennifer’ did in the 1970s [17]: The former popularity was boosted by ‘Lisa Grimaldi’ in the soap opera As the World Turns launched in 1956, and the latter is attributed to the great success of Love Story released in 1970. Since the 1980s, however, no single given name has swept the entire US [17]. This observation suggests that the end of the plateau around 1980 could signal a transition of such a unipolar state to multipolarity in the cultural landscape. This scenario, in turn, provides a way to interpret the plateau in the Korean case as a marked influence of mass communication, but this claim calls for more thorough empirical studies.
4. Summary and conclusion

In summary, we have empirically investigated statistics of given names in Korea, Quebec, and the US. We have argued that given names play a complementary role to family names in identifying an individual. In Quebec, for example, it is family names that work for that purpose, and it is the opposite in Korea. A statistical consequence of this argument is that if we have limited choices of given names, family names must diversify, and vice versa. The datasets of Quebec and Korea have indeed confirmed this prediction. In the US, both of family and given names are broadly distributed, and we interpret this observation as a consequence of multiethnicity. We have also studied how popularity of a name evolves in time, and found a typical asymmetric pattern of rise and fall with a time scale of approximately one generation. As an application of this pattern, we have constructed MST’s to visualize long-term trends of popular given names. Furthermore, we have suggested the diversity index as a coarse-grained variable to identify major changes in culture and demography.

Although given-name dynamics is affected by many unpredictable factors, we conclude that it is also subjected to well-defined constraints, so that we may expect a striking degree of regularity as long as its collective patterns are concerned. In a broader context, given-name dynamics can be understood as a special kind of opinion dynamics in the sense that it basically represents opinions of what sounds good and proper as a child’s name. Our finding indicates that an individual’s opinion and the surrounding social pressure may interact in a subtle way: Although they are bound to each other, it does not mean that one is simply reduced to the other, because it would mean a loss of individual or social identity. Such a tension yields a perpetual motion with self-organized patterns in human societies, and the given-name dynamics gives us fruitful insights into this aspect in a quantitative manner.
Acknowledgments

We are grateful to L. Duchesne for providing us with the data of Quebec and
the US. S.K.B. and B.J.K. were supported by Basic Science Research Program
through the National Research Foundation of Korea funded by the Ministry of
Science, ICT and Future Planning with grant No. NRF-2014R1A1A1003304
and NRF-2014R1A2A2A01004919, respectively.

References

References

[1] D. H. Zanette, S. C. Manrubia, Physica A 295 (2001) 1.

[2] S. Miyazima, Y. Lee, T. Nagamine, H. Miyajima, Physica A 278 (2000)
282.

[3] S. K. Baek, H. A. T. Kiet, B. J. Kim, Phys. Rev. E 76 (2007) 046113.

[4] B. J. Kim, S. M. Park, Physica A 347 (2005) 683.

[5] H. A. T. Kiet, S. K. Baek, B. J. Kim, J. Korean Phys. Soc. 51 (2007) 1812.

[6] S. C. Manrubia, D. H. Zanette, J. Theoret. Biol. 216 (2002) 461.

[7] Y. E. Maruvka, N. M. Shnerb, D. A. Kessler, J. Theoret. Biol. 262 (2010)
245.

[8] P. Rossi, Phys. Life Rev. 10 (2013) 395.

[9] N. Xi, Z.-K. Zhang, Y.-C. Zhang, Z. Ge, L. She, K. Zhang, Physica A 406
(2014) 139.

[10] M. J. Krawczyk, A. Dydejczyk, K. Kuakowski, Physica A 395 (2014) 384.

[11] D. H. Zanette, arXiv:1208.0576.

[12] D. A. Kessler, Y. E. Maruvka, J. Ouren, N. M. Shnerb, PLoS ONE 7 (2012)
e38790.
[13] M. J. Lee, S. D. Yi, B. J. Kim, S. K. Baek, Phys. Rev. E 91 (2015) 012815.

[14] S. H. Lee, R. Ffrancon, D. M. Abrams, B. J. Kim, M. A. Porter, Phys. Rev. X 4 (2014) 041009.

[15] L. Duchesne, Les prénoms. Des plus rares au plus courants au Québec, Éditions du Trécarré, Québec, 2001.

[16] Institut de la statistique Québec, available at http://www.stat.gouv.qc.ca.

[17] http://www.ssa.gov/oact/babynames.

[18] R. I. M. Dunbar, J. Hum. Evol. 22 (1992) 469.

[19] L. Lü, Z.-K. Zhang, T. Zhou, PLoS ONE 5 (2010) e14139.

[20] M. H. DeGroot, M. J. Schervish, Probability and Statistics, Addison-Wesley, Boston, 2002.

[21] M. O. Hill, Ecology 54 (1973) 427.

[22] J. T. Edwards, D. J. Thouless, Numerical studies of localization in disordered systems, J. Phys. C 5 (1972) 807.

[23] C. J. Eckert, K. Lee, Y. I. Lew, M. Robinson, E. W. Wagner, Korea Old and New: A History, Harvard University Press, Cambridge, 1990.

[24] Y. Fukuoka, Saitama University Review 31 (1996) 1, [link]
URL http://www.han.org/a/fukuoka96a.html

[25] P. J. Richerson, R. Boyd, Nature (London) 456 (2008) 877.