An NL-Complete Puzzle

Holger Petersen
Reinsburgstr. 75
70197 Stuttgart
Germany

July 13, 2015

Abstract

We investigate the complexity of a puzzle that turns out to be NL-complete.

1 Introduction

In this note we discuss one of 24 different mathematical puzzles appearing under the title “Kopfnuss” (literally clout, but used here in the sense of a brain teaser) in the newspaper tz (see also [Pre] for examples). Among these are well-known classical puzzles like Sudoku and Kakuro. Some are tiling puzzles in the style of Tangram that do not offer an obvious way of generalizing them to unbounded sizes. Others however can be turned into decision problems that can be investigated from a Complexity Theory perspective.

David Eppstein [Epp] states:

If a game is in P, it becomes no fun once you learn “the trick” to perfect play...

To me, the best puzzles are NP-complete (although some good puzzles are in P, relying on gaps in human intuition rather than on computational complexity for their difficulty).

Here we challenge these observations by presenting a real puzzles (in the sense that it was invented to be played and in fact published in a newspaper) which turn out to be NL-complete when generalized to unbounded size.

2 Result

The problem is called “The Way Through the Purgatory” (“Der Weg durchs Fegefeuer”, [Bull10b] [Bull10a] [Bull13]) and asks for a path along a list of n numbers (in published instances of the puzzle n = 53 and the list is represented as a spiral). The path starts at the first number and continues from number i at
position j to number $j - i$ or number $j + i$, provided that the resulting values are in the range from 1 to $n + 1$. If the result is $n + 1$, the puzzle is solved, since the new position is just after the list. As an example consider the list:

$$\ell = (3, 2, 2, 1, 4, 2, 1, 2, 3)$$

A solution is $1, 4, 5, 9, 6, 8, 10$.

We consider here the decision problem “The Way Through the Purgatory”, consisting of all lists with numbers encoded in binary having a solution.

Theorem 1 The problem “The Way Through the Purgatory” is complete in NL.

Proof. First we show membership in NL. A nondeterministic TM M marks $(\log n) + 1$ cells on its tape. Starting on the first number of the input, M iteratively copies a number (if it fits into the marked space) to the work-tape and nondeterministically decides whether to move forward or backward. It then uses the stored value for counting the moves on the input. If the input head is about to leave the input at the left boundary, M rejects. If it leaves the input at the right boundary, M accepts exactly if the count reaches zero. Notice that numbers exceeding n need not be copied to the tape, since they cannot point to a position in the list.

For hardness we reduce the problem PATH [Sip06, p. 326 ff] to the given problem, where

$$\text{PATH} = \{ \langle G, s, t \rangle \mid G \text{ is a directed graph that has a path from } s \text{ to } t \}.$$

Let $\langle G, s, t \rangle$ be an instance of PATH with m vertices. We first reduce $\langle G, s, t \rangle$ to $\langle G', u_1, u_n \rangle$ by replacing each vertex u of outdegree $d > 2$ with a path consisting of $d - 1$ vertices starting at u and including $d - 2$ new vertices, where from the last vertex two target vertices are reachable and from the others one target is reachable.

As an example take edges (u, v_1), (u, v_2), and (u, v_3). We introduce new vertex u_1, remove (u, v_2) and (u, v_3), and introduce (u, u_1), (u_1, v_2), and (u_1, v_3). Notice that the size of the resulting graph with n vertices is linearly bounded and reachability is not affected by this construction.

Now we reduce $\langle G', u_1, u_n \rangle$ to the purgatory problem. We concatenate several lists of numbers. The first list contains a number per vertex and has the form:

$$(4n + 1, 4n + 3, \ldots, 4n + 2i - 1, \ldots, 6n - 1)$$

These numbers point to the central element of a list of three numbers encoding at most two edges of G'.

The second list consists of $3n$ copies of the number $7n$.

Then we add $n - 1$ lists of length 3 each, where list ℓ_i takes one of three possible forms depending on u_i:

- **u_i has outdegree 0:** $\ell_i = (7n, 7n, 7n)$
u_i has outdegree 1, G' contains edge (u_i, u_j): $\ell_i = (3i + 4n - j - 3, 1, 7n)$

u_i has outdegree 2, G' contains edges $(u_i, u_j), (u_i, u_k)$: $\ell_i = (3i + 4n - j - 3, 1, 3i + 4n - k - 1)$

The last sublist consists of a single $7n$.

All $n + 2$ lists described above are concatenated, resulting in a single list of $7n - 2$ numbers.

If there is a path from u_1 to u_n in G', we find a way through the purgatory as follows. We necessarily start on the first number and jump to the central number (necessarily a 1) in the first sublist of length 3. The index of the current sublist corresponds to the last vertex u_s in the portion of the path traversed so far. We inductively extend the portion by moving one position back or forth depending on the edge (u_s, u_t) chosen in the path in G'.

Now the current number by construction takes us to position t and then to the t-th sublist. If eventually vertex u_n is reached, the position in the purgatory is one after the list and the construction terminates. Conversely, the only transitions possible in the purgatory are those corresponding to edges since the numbers traversed are at least $3n$. Therefore the only jumps possible are those described above. □

References

[Bul10a] Epix PS/Distr. Bulls. Der Weg durchs Fegefeuer. tz, page 25, 18. Oktober 2010.

[Bul10b] Epix PS/Distr. Bulls. Der Weg durchs Fegefeuer. tz, page 29, 19. April 2010.

[Bul13] Epix PS/Distr. Bulls. Der Weg durchs Fegefeuer. tz, page 23, 10. Juni 2013.

[Epp] David Eppstein. Computational complexity of games and puzzles. http://www.ics.uci.edu/~eppstein/cgt/hard.html (download July 7, 2015).

[Pre] Bulls Press. Kopfnuss. http://www.bullspress.de/syndication/produkter-tjanster/aktivty-material/kopfnuss/ (download July 7, 2015).

[Sip06] Michael Sipser. *Introduction to the Theory of Computation, Second Edition.* Thomson, 2006.