E-Luu : A Smart Dumpsters Location Planning System For Urban Management

Padma Nyoman Crisnapati¹*, Made Satria Wibawa¹, I Made Sarjana⁴, Dedy Panji Agustino², Arkav Juliandri³, Ann Margareth³, Ricky Aurelius Nurtanto Diaz¹, Naser Jawas¹, I Nyoman Kusuma Wardana⁴, I Komang Agus Ady Aryanto¹

¹Computer System Department, STIKOM Bali, Denpasar-Bali, Indonesia
²Information System Department, STIKOM Bali, Denpasar-Bali, Indonesia
³PT XL Axiata Tbk, Jakarta, Indonesia
⁴Electrical Engineering Department, Politeknik Negeri Bali, Badung-Bali, Indonesia

Abstract. The increase of population in an area will increase the flow of urbanization occurred in that area. This then brings an impact on the urban infrastructure needs and land use that will rapidly and drastically change. For this, urban planning should be rearranged primarily in relation to the waste issue. Spatial planning of public facilities associated with Temporary Waste Disposal Site (locally abbreviated as TPS) is no longer appropriate to be structured in a traditional way. A simulation system capable of evaluating the feasibility of the location of various public facilities, as a consequence, is required intentionally to minimize the negative impacts of TPS placement. The issue in spatial also occurs in Jembrana District, Bali. In this area the population in the end of December 2016 increased by 19.42%. We developed a Geographic Information System (GIS) based simulation system named E-Luu. This system evaluates the feasibility of the location of public facilities based on the direction and strength of wind and distance from TPS. There are 3 public facilities that can be evaluated by E-Luu, including parks, green areas and residential areas. In addition, an evaluation index has been proposed to evaluate the planned site planning scheme by providing a different staining on each of its markers in which red symbolized the location considered vulnerable and green was for the suggested location. Finally, the E-Luu system used in the location analysis for this urban public service facility was successfully implemented and demonstrated its effectiveness.

1. Introduction

Based on Jembrana District Government’ data, in 2009 the population number in Jembrana-Bali reached 269,859 people. This figure increased by 19.42% in the end of December 2016 into 322,256 people. This increase in population has led to an increase in the level of urbanization. The demand for urban infrastructure particularly related to waste will increase, and therefore there will be a rapid and drastic change. Prior to the changes, an appropriate planning is required¹. The facility of TPS (Waste Disposal Site) in urban areas is closely related to the daily life of the inhabitants, so that the location planning should have a more serious attention.

More issues in urbanization occur in many big cities in other countries. To cope with these problems, a solution using GIS (Geographic Information System) has been successfully and widely
used. Since the 1960s GIS has been used in urban planning and became more popular in the 1970s when a number of researchers and planners conducted a series of studies. Based on the research, a GIS-based system called e-luu was developed as a solution for public facility planning consisting of model of temporary waste disposal (TPS), trees, parks, and residential areas. Spatial planning was mapped using an algorithm utilizing the data of strength and direction of wind and distance among TPS, trees, parks and residential area.

The result of the evaluation on the location feasibility was marked by the marker staining in the map in the E-Luu system. Red indicated an unfavorable location and green referred to the suggested location.

2. Experimental

Figure 1 shows the flow of analysis model and evaluation of TPS location towards residential area and wind direction. The results of the evaluation would give the red marker if the TPS location was close to the residential area and, the smell of the waste, by the wind direction, could reach the residential area. Likewise, for green marker, if the location of TPS is far from the residential area and based on the wind direction, the waste smell did not reach the residential area.

![Figure 1. Dumpsters Analysis and Evaluation Model](image)

Figure 2 shows a flow of analysis model and evaluation of the location of trees towards the residential area and wind direction. The results of the evaluation provided a red marker if the location of trees blocked the wind blowing to the residential area. Likewise, for green marker, it was if the location of the trees did not block the wind blowing to the residential area.

![Figure 2. Trees Analysis and Evaluation Model](image)

Figure 3 presents the model of the analysis and evaluation on the park location towards the residential area and bins. The evaluation results showed a red marker if the park was close to the waste
and was not inside the residential polygon, while the green marker was given if the park was not close the waste and not present in residential location polygon.

Figure 3. Parks Analysis and Evaluation Model

The data of wind direction used in this study came from Meteorology, Climatology and Geophysics Council (Sanglah-Denpasar-Bali). The data was obtained from a sensor placed in Jembrana district and was recalled from January 2016 to December 2016.

3. Result and Discussion

As seen in Figure 4, the first stage in using this system was by managing the data of TPS (Waste Disposal Site), trees, Resistant, Residential area and Wind Data. Data processing (adding, modifying and deleting) can be done by admin through a specific web page accessed using a web browser. Data sent by the admin from the browser would be sent through internet, and it would then be accepted and filtered by the webserver, which would then be stored in the database. The system is built using Apache web server, PHP programming language and Javascript, MySQL as data storage, Linux operating system.

Figure 4. Software Architecture

Figure 5 below shows one of the page displays to manage the data that can be accessed by the admin. On this page admin can import the data obtained from BMKG Sanglah-Denpasar-Bali.

Figure 5. Admin Page
Figure 6 below shows the main page showing the map and location information of Waste Disposal Site, Trees, Park, Residential area and Wind Data in Jembrana District (e-luu.com). The average wind direction (according to the start-end range of the selected month) is displayed with arrows. The residential area was displayed with a box polygon (rectangle). Waste Disposal Site, Trees and Parks are displayed with the markers of trash cans, trees and parks.

The coloring identity of the graphic symbol was adjusted based on the data of Waste Disposal Site, Trees, Park, residential and wind direction. Table 1, 2 and 3 present the results of system testing:

No	Testing Scenario	Target	Output
1	Selecting the button See the Map on the First Page	Displaying the Main Page	On Target
2	Giving a tick on checkbox of Waste Disposal Site	Displaying the location of the Waste Disposal Site	On Target
3	Giving a tick in the checkbox of Trees	Displaying the location of Trees	On Target
4	Giving a tick on the checkbox Park	Displaying the location of Park	On Target
5	Giving a tick on the checkbox Residential Area	Displaying the Residential Location	On Target
6	Selecting the menu the Wind Data, the Range of Date and then the button of See	Displaying the list of Wind Data (rate of wind and the wind direction per month) and the average of wind direction	On Target
7	Giving a tick on TPS (Waste Disposal Site) and Trees	Displaying the status of TPS and status of Trees with the Red or Green symbol	On Target
8	Typing the searching word on the form of Search or selecting one of items of the searching result	Displaying the list of names of Location of the searching results based on the searching word, and displaying the Popup based on the items selected	On Target
No	Testing Scenario	Target	Output
----	------------------	--	----------------------
1	ID and Password	Admin successfully sign-in, then transferred to the Admin page	On Target
2	Selecting the menu Data of TPS Location	Displaying the list of TPS locations	On Target
3	Typing the searching word in the form of Search and then selecting the button of Search (Magnifier)	Displaying the list of TPS location based on the searching word	On Target
4	Selecting the button Add (+), filling the name of location, determining the way to move the marker, and selecting the button Save	Saving the location of TPS, displaying the message success, and reloading the page (refresh)	On Target
5	Selecting the button Map	Displaying the detail of TPS Location	On Target
6	Changing the data of Name, moving the marker, and selecting the button Save	Saving the change of data, and displaying the message success	On Target
7	Selecting the button Delete and selecting the button Yes (Confirmation)	Deleting the Location of TPS, displaying the message Delete the Data Success, and then reloading the page (refresh)	On Target
8	Selecting the menu the Data of Location of Trees	Displaying the list of Location of Trees	On Target
9	Typing the searching words on the form Search and selecting the button search (magnifier)	Displaying the list of Location of Trees based in the searching word	On Target
10	Selecting the button Add (+), filling the Name of Location and Determining the way to move the marker and then selecting the button Save	Saving the Location of Trees, Displaying the message of success, and reloading the page (refresh)	On Target
11	Selecting the button Map	Displaying the detail of the Location of Trees	On Target
12	Changing the data of Name, Moving the marker, and selecting the button Save	Saving the data change and displaying the message success	On Target
13	Selecting the button Delete, and selecting the button Yes (Confirmation)	Deleting the Location of Trees, displaying the message Delete the Data Success and then reloading the page (refresh)	On Target
14	Selecting the menu Data of Park Location	Displaying the list of Park Location	On Target
15	Typing the searching words on the form of Search and then selecting the button search (magnifier)	Displaying the list of Park Location based in the searching word	On Target
16	Selecting the button Add (+),	Saving the Park Location, displaying	On Target
filling the Name of Location and determining the location by moving the marker, and selecting the button Save

Selecting the button Map
Displaying the detail of Park Location

Selecting the button Delete, and then selecting the button Yes (Confirmation)
Deleting the Location of Park, displaying the message Delete the Data success, and reloading the page (refresh)

Selecting the menu of Data of Residential Location
Displaying the list of Residential location

Typing the searching word on the form of Search and selecting the button search (magnifier)
Displaying the list of Residential Location based on the searching word

Selecting the button Add (+), filling the Name of Location and Replacing and adjusting the box (rectangle), and then selecting the button Save
Saving the Residential Location, displaying the message success, and reloading the page (refresh)

Selecting the button Map
Displaying the detail of Residential Location in the form of map

Changing the data of Name and replacing the box of Residential Location and selecting the button Save
Saving the change of data, and displaying the message of success,

Selecting the button Delete, and selecting the button Yes (confirmation)
Deleting the Residential Location, displaying the message Delete the Data success, and reloading the page (refresh)

Selecting the menu of Wind Data
Displaying the list of Wind Data

Selecting the button Add (+), filling the form, and selecting the button Save
Saving the Wind Data, displaying the message success, and reloading the page (refresh)

Selecting the button File, Browse, and file Excel (extension file “.xls” or “.xlsx”) saved on the computer and selecting the button Save
Displaying the form to select file, system checks the content format of file Excel, and saving the data of wind.

Selecting the button Info
Displaying the info of Wind Data

Changing the data of period wave and the wind direction and selecting the button Save
Saving the data change and displaying the message success

Selecting the button Delete and selecting the button Yes (confirmation)
Deleting the Wind Data, displaying the message Delete the Data of success, and reloading the page (refresh)
32 Selecting the menu Operator
33 Selecting the button Add (+), Displaying the list Operator
Filling the form, and Selecting the button Save Saving the Account data of Admin, and Reloading the page (refresh)
34 Inputting the ID and new name On Target
35 Inputting the old password, new ID and the name in the database password and confirms the message of success were changed, and displaying the 36 Admin clicks the photos and Changing the password in the selecting one of the photos database and displaying the message of success
37 Selecting the button Delete, and Data operator is deleted from (confirmation) selecting the button Yes database, and displaying the message of delete the data success
38 Admin selects the menu Out Admin is transferred to the page of On Target
Sign-in

4. Conclusion and Future Work
This research is designed to build a simulation system and evaluation of spatial feasibility in terms of the TPS (Waste Disposal Site) placement in Jembrana, Bali. There are four public areas that can be evaluated: TPS, trees, parks and Residential Area. Simulation and evaluation were calculated based on wind direction, wind strength and the distance of TPS and trees, parks and residential areas. The established system is called E-Luu based on GIS and Web. Based on the testing results, the models and new method used in the location analysis for these urban public service facilities have been successfully implemented and demonstrated for their effectiveness.

Acknowledgments
This work was supported by STIKOM Bali and Jembrana District Government and and Technical Supporting Programs Funded by PT. XL Axiata Indonesia (NO. 1813/XL-DS/V/2017).

References
[1] Guerrero, L. A., Maas, G., & Hogland, W. Solid waste management challenges for cities in developing countries. Waste management. 33(1) (2013) 220-232.
[2] C Sutcliffe, J Board, P Cheshire. Goal programming and allocating children to secondary schools in Reading. Journal of the Operational Research Society. 35 (8) (1984) 719–739.
[3] S Benjamin, L C Richard. A new network representation of a “classic” school districting problem. Socio-Economic Planning Sciences. 25(3) (1991) 189~197.
[4] A Yeh and M Chow. An Integrated GIS and Location-allocation Approach to Public Facilities Planning-an Example of Open Space Planning. Comput., Environ. and Urban Systems. 20 (1996) 339-350.
[5] Massart Thierry, Meuter Cedric, V B Laurent. On the complexity of partial order trace model checking. Inform. Process. Lett. 106 (2008) 120-126.
[6] R L Church. Location modeling and GIS. In Longley P A, Goodchild M F, Maguire D J and Rhind D W, eds. Geographical Information System, Volume 1, Principles and Technical Issues, 2nd edition. New York: John Wiley and Sons. (1999) 293–303.
[7] T, Arentze A Borgers, H Timmermans. A knowledge-based system for developing retail location strategies. Computers, Environment and Urban Systems. 24 (2000) 489-508.
[8] F Caro, T Shirabe, M Guignard and A Weintraub. School Redistricting: embedding GIS tools integer programming. Journal of the Operational Research Society. 5(8) (2004) 836-849.
[9] K Oh, S Jeong. Assessing the spatial distribution of urban parks using GIS. Landscape and
Urban Planning. 82(1-2). (2004) 25–32.

[10] A Comber, C Brunsdon, E Green. Using a GIS-based network analysis to determine urban greenspace accessibility for different ethnic and religious groups. Landscape and Urban Planning. 86(1) (2008) 103-114.