Surgical ablation for atrial fibrillation

Nikolaos Fragakis1, Ioannis Pantos2, Jenan Younis3, Marios Hadjipavlou4, and Demosthenes G. Katritsis2*

1Department of Cardiology, Hippokration Hospital, Aristotle University Medical School, Thessaloniki, Greece; 2Department of Cardiology, Athens Euroclinic, 9 Athanassiadou Street, 11521 Athens, Greece; 3Department of Cardiothoracic Surgery, St Thomas’ Hospital, London, UK; and 4Department of Orthopaedics, Darent Valley Hospital, Dartford, Kent, UK

Received 19 January 2012; accepted after revision 8 March 2012; online publish-ahead-of-print 5 April 2012

This paper reviews the history of surgical procedures developed for eradication of atrial fibrillation (AF) during cardiac surgery for structural heart disease, and in patients with AF without other indication for cardiac surgery. Current evidence indicates that, despite their proven efficacy, the Cox–Maze procedure and its modifications require cardiopulmonary bypass and cannot be easily justified in the case of AF without other indication for cardiac surgery. In patients undergoing cardiac surgery for mitral valve disease, concomitant ablation techniques using modifications of the Maze and alternative energy sources appear to be safe and effective in treating AF, especially in non-rheumatic disease. Minimally invasive epicardial ablation has been recently developed and can be performed on a beating heart through small access incision ports. Various techniques combining pulmonary vein isolation, ganglionated plexi ablation, and left atrial lines have been tried. Initial results are promising but further clinical experience is required to establish ideal lesion sets, appropriate energy sources, and the benefit–risk ratio of such an approach in patients without other indication for cardiac surgery. The role of surgical ablation in the current management of AF is under investigation.

Keywords
Atrial fibrillation • Surgical ablation

Introduction
Atrial fibrillation (AF) is the most common sustained cardiac arrhythmia and a source of considerable morbidity and mortality. The presence of AF accounts for a 50–90% increased risk of overall mortality in the Framingham Heart Study.1 Atrial fibrillation is also associated with significant morbidity, including a four- to five-fold increased risk of stroke,2 a two-fold increased risk of dementia,4,5 and a tripling of risk of heart failure.2 In the Framingham Study, the percentage of strokes attributable to AF increases steeply from 1.5% at 50–59 years of age to 23.5% at 80–89 years of age.3 Atrial fibrillation and its associated morbidity represent a significant socioeconomic burden on the healthcare system consuming between 0.9 and 2.4% of total National Health Service expenditure in the UK, while in the USA total Medicare costs are 8.6–22.6% higher for patients with AF in all age–sex strata.6,7 The Euro Heart Survey on AF has identified inpatient care and interventional procedures as the principal components of the increased economic burden posed by AF.8 Consequently, treatment of patients with AF and, more importantly, primary or secondary prevention of AF, should have a substantial health and socioeconomic impact. Medical AF therapies focused on restoring and maintaining sinus rhythm have had poor results, because antiarrhythmic drugs have minimal long-term efficacy and high rates of adverse events.9,10 Radiofrequency catheter ablation (RCA) is proposed as an effective treatment for recurrent, drug-resistant AF.11 However, single-procedure success rates are 60–80% for patients with paroxysmal AF, with 30–40% of patients requiring a second procedure due to arrhythmia recurrence.12–14 Long-term follow-up data appear even less promising, with arrhythmia-free survival in 29–53% of patients.15–17 For patients with persistent AF, the treatment strategies and the benefit–risk ratio of RCA are even less well established. Extensive and frequently repeated ablation procedures may be necessary in these patients.18 Given the limitations of pharmacotherapy and RCA, surgical ablation of AF using either standard or minimally invasive techniques has gained increased popularity.

Development of open heart surgical techniques for atrial fibrillation ablation
The surgical strategies against AF include three principal targets: (i) isolation of the triggers of AF and interruption of the electrophysiological substrate that sustains the arrhythmia in both the
right and left atria, (ii) reestablishment or maintenance of atrioventricular synchrony ensuring optimal cardiac performance, and (iii) restoration and preservation of atrial mechanical function in order to improve diastolic filling and avoid blood stasis in the atrium. Surgical techniques initially aimed at isolating the abnormal rhythm to a particular area of the atria, thereby limiting the impact upon the ventricles.

Left atrial isolation

In 1980, Williams et al. described a procedure called ‘left atrial isolation’. This was achieved by performing a left-sided arteriotomy incision which limited the arrhythmia to the left atrium (LA), leaving the rest of the heart in sinus rhythm. The disadvantage of this procedure was that the risk of systemic thromboembolism from AF was unaffected.

Corridor technique

In 1985, Guiraudon et al. put forward the ‘Corridor’ technique in which a portion of the atrial septum (the ‘corridor’) containing the sinoatrial and atrioventricular nodes is isolated intra-operatively and as a result the sinoatrial node would be able to initiate ventricular contraction. This approach failed to achieve sinus rhythm in a significant number of cases. In addition, atrial areas outside the narrow right atrial corridor continued to fibrillate with remaining loss of atrial transport function and persistent risk of thromboembolism.

Cox–Maze I and II

In 1991, Cox presented the first of the Maze series of procedures. The concept of these procedures was based on the assumptions that: (i) fractionation of the atrial tissue into smaller segments would not allow multiple re-entrant wavelets to be maintained and (ii) these segments should be linked to each other allowing depolarization of sufficient atrial myocardium without allowing re-entry to occur at the same time. The original Maze I procedure aimed at interrupting all potential atrial circuits in a Maze-like manner. In this procedure, cutting and sewing incisions were strategically made to interrupt the multiple macroreentrant circuits and direct the sinus impulse from the sinus to the atrioventricular node along a specified route. It also allowed most of the atrial myocardium to be activated, resulting in preservation of atrial transport function in most patients. The procedure involved biaxial excisions, incisions encircling each pulmonary vein, extensive incisions starting in the right atrium and extending across the fossa ovalis, incisions from the inferior aspect of the pulmonary veins to the level of the mitral valve annulus, and finally cryoablation at -60°C within the coronary sinus. The Maze I procedure had two important disadvantages: significant chronotropic incompetence as a result of the incisions placed near the sinus node, and prolonged interatrial conduction time resulting in atrioventricular dyssynchrony due to incorporation of Bachmann’s bundle during left atrial roof incision. The procedure was modified therefore into the Maze II, wherein incisions around the sinus node were not performed while several alterations were also made to the left atrial incisions.

Cox–Maze III

The Maze II procedure was further modified by moving the left atrial roof incisions posteriorly. This constituted the Maze III procedure which overall includes also en-bloc isolation of the pulmonary veins (PVs) and posterior LA along with excision of the left atrial appendage. The Maze III procedure became the gold standard in treating surgically chronic AF since it was associated with a higher incidence of sinus rhythm maintenance, need for fewer pacemaker implantations, and improved long-term atrial transport function. Another important impact of the Maze III procedure was the significant reduction in the rate of cerebrovascular accidents. This positive effect was directly related to the high success rate of the procedure in ablating AF, and to the amputation of the left atrial appendage. Damiano et al. demonstrated long-term results in patients having the Cox–Maze procedure, either as an isolated or combined procedure, with a success rate $>90\%$. Other reports, however, have shown lower success rates, $\sim 70\%$. Reported predictors for failure of the Cox–Maze procedure were duration of AF, increased size of the LA (>6 cm), and advanced age. The reported operative mortality rate, ranged from 2 to 3% included patients undergoing concomitant high-risk cardiac surgical procedures. Despite its proven efficacy, the Maze III procedure had not been widely adopted by the surgical community because of its complexity, the involvement of prolonged aortic cross-clamp and cardiopulmonary bypass times, and significant morbidity such as fluid retention, altered atrial function, chronotropic insufficiency due to autonomic denervation, and pacemaker requirements.

Cox–Maze IV

To simplify the Cox–Maze operation and make it easier to perform, various groups have replaced the incisions of the traditional cut-and-sew procedure with linear lines of ablation. The new modified procedure, Maze IV, replaces most of the previous incisions with linear ablation lines using newer and easier technologies, such as radiofrequency (RF) energy, cryoenergy, and microwave energy. However, even though this procedure can be performed through a small right thoracotomy, it still requires cardiopulmonary bypass.

Mini-Maze

To further simplify AF surgery, Cox also suggested another procedure, the modified Cox–Maze procedure, using three essential lesions necessary to cure most patients of AF. These lesions are (i) an incision encircling the PVs, (ii) left atrial isthmus and companion coronary sinus lesions, and (iii) a right atrial isthmus lesion. The modified Cox–Maze procedure has been shown to be nearly as effective as the full Cox–Maze III. According to Cox’s experience with the Maze procedure, the left atrial isthmus lesion is critical to a successful operation. This lesion, along with conduction through the coronary sinus, has been called the Achilles’ heel of the operation because every failure in Cox’s series was associated with persistent conduction across this isthmus or the coronary sinus.
Radial approach
The radial approach was developed as a development of and an alternative to the Maze procedure, to provide a more physiological atrial activation contraction sequence.38 In contrast to the Maze procedure in which the incisions desynchronize the activation sequence and often cut across the atrial coronary arteries, the incisions produced by the radial approach radiate from the sinus node towards the atrioventricular annular margins and parallel to the coronary arteries. The radial approach was technically easier than the Maze, was equally likely to restore sinus rhythm (90 vs. 92% for the Maze), and was associated with better left atrial transport function after surgery, as assessed with Doppler echocardiography.39 However, the clinical experience with this approach is limited.

Surgery for atrial fibrillation concomitant with other heart operations: clinical experience
Since the Maze procedure is recognized as the most effective way to eliminate AF, combining the Maze procedure during major cardiac surgeries has been adopted in clinical practice. The technical evolution of the Maze procedure resulted in easier and simpler approaches by replacing ‘cut-and-sew’ with ablation lines using various energy sources, and modifying the lesion sets to simpler ones.40,41 The prevalence of AF in patients undergoing cardiac surgery varies and may be up to 50% in patients undergoing mitral valve surgery.24,42–44 Atrial fibrillation onset can be considered a relative indication for mitral valve surgery in those who have significant mitral valve disease.45 However, mitral valve surgery alone does not revert AF back into sinus rhythm.46,47 When the duration of AF preoperatively is longer than 6 months, the risk of remaining in AF is 70–80%.47,48

Since long-standing persistent AF rarely returns to sinus rhythm if left untreated, and several studies indicate that untreated AF will affect late survival, it may be advisable to treat AF at the time of other surgery.49,50 A number of retrospective studies have documented success using a variety of surgical procedures and different technologies for the treatment of AF with concomitant mitral or other cardiac operations. In these series, success rates have varied between 65 and 95% at 6 months.30,51–54 A meta-analysis of nine randomized controlled trials concluded that, when performed in addition to cardiac surgery, the Maze procedure is associated with a significant increase in the odds of freedom from AF at 12 months of follow-up without a significant increase in morbidity or mortality.55 However, although the Maze procedure cures AF in >90% of patients, several studies have shown insufficient sinus-rhythm restoration rates (46–95%) for the Maze procedure in AF associated with rheumatic valve disease.56,57 Decreased freedom from AF is assumed to derive from progressive rheumatic changes to the atrial wall or regeneration of atrial tissue. Rheumatic heart disease produces fibrosis of the atrial muscle, resulting in anatomical remodelling. Increased inflammatory response and degeneration of the atrial myocardium contribute to post-operative AF recurrence.58

In order to reduce the procedural time and extent of surgery, ablating the LA only has emerged as a convincing strategy in the surgical treatment of AF. Additional benefits of LA ablation are that it may reduce post-operative troublesome bradycardias, and is well suited to minimally invasive cardiac surgery.59 Left atrium ablation is typically recommended for patients with recent onset of paroxysmal AF who are undergoing elective surgery with no reason to open the right atrium. The success rates of these procedures range between 74 and 82% at variable follow-up. A meta-analysis of 69 studies of LA and bialtrial ablation showed an AF-free rate superior to bialtrial ablation, whereas survival was comparable for both techniques.59 However, in a recent study, LA ablation resulted in more frequent AF recurrence in chronic AF patients undergoing mitral valve surgery compared with bi-atrial ablation.60

Camm et al.61 addressed the question as to whether cryoablative procedures during concomitant cardiac surgery are effective for the treatment of AF compared with no treatment, catheter-based therapy, or other sources of energy, and identified nine relevant articles. One study showed that cryoablation was significantly more effective than mitral valve surgery alone at a 12-month follow-up (73.3 vs. 42.9%, respectively).62 The use of a concomitant cryoabative procedure was also shown to be superior to subsequent catheter-based cryoablation in restoring sinus rhythm (SR) at a 12-month follow-up (82 and 55.2%, respectively).63 Restoration of SR was significantly decreased in those patients suffering from permanent rather than paroxysmal AF (47 vs. 85%).63 Six of nine studies indicated that cryoablation is most successful in patients suffering from paroxysmal rather than permanent AF. Only one study suggested an increased complication rate from cryoablation; however, no study suggested any negative impact on mortality or morbidity. Thus, cryoablation during concomitant surgery was considered a safe and acceptable intervention for the treatment of AF with an SR restoration rate of 60–82% at 12-month post-surgery.61

Various studies have comparatively evaluated the success rate of other antiarrhythmic surgical procedures in patients undergoing mitral valve replacement against mitral valve replacement alone. Deneke et al.64 assessed the efficacy of sole mitral valve replacement and of additional modified Maze operation using RF ablation in patients with chronic AF. After 12 months, sinus rhythm was reinstituted significantly more often in patients of the combined procedure (80 vs. 27%). The survival rate in the mitral valve replacement plus Maze group at 1 year was found to be 73% with no significant difference with the other group. Doukas et al.65 also studied the long-term restoration of sinus rhythm in patients with chronic AF by sole mitral valve surgery and valve surgery plus left atrial incision and PV isolation. They found that left atrial radiofrequency ablation significantly increased the prevalence of sinus rhythm at 12 months (44.4 vs. 4.5%) without an increase in perioperative morbidity. Gaita et al.66 studied the role of PV isolation alone vs. left atrial linear lesions localized in the posterior region in the treatment of permanent AF in the setting of significant left atrial dilatation and valvular heart disease. They demonstrated that a limited approach involving linear lesions in the posterior region of the LA is extremely effective in restoring and maintaining SR even in the long run. In this patient population, electrical PV
isolation alone is not effective. Regarding paroxysmal AF, Gillinov et al.54 assess the effectiveness of three surgical treatments [pulmonary vein isolation (PVI) alone, PVI with left atrial connecting lesions, and a Cox–Maze II or III procedure] in patients undergoing mitral valve surgery. They reported that ablation procedure did not affect prevalence of AF or incidence of ablation failure and thus PV isolation alone may be adequate treatment for patients with paroxysmal AF undergoing mitral valve surgery, particularly when AF is of short duration.

Minimally invasive surgical techniques for atrial fibrillation

The Cox–Maze surgery, although highly effective, was technically challenging and entailed complete open heart surgery by dedicated surgeons in selected populations; thus, it was not widely adopted. Additionally, it is difficult to justify the use of cardiopulmonary bypass and cardioplegic arrest, especially through a sternotomy, for the surgical treatment of AF alone. To bring an effective and reasonable therapy to these patients, recent efforts have been directed towards developing an epicardial approach to ablation that can be performed on a beating heart, preferably through small access incisions or ports. Three minimally invasive surgical technologies have been developed and used for the ablation of lone AF: robotics,66 thoracoscopic,66,67 and through minithoracotomy.68–70 Each has its own advantages and disadvantages but all provide access to the entire atrial epicardium of a beating heart, whereupon lesions can be placed with precision and immediate visual feedback. Pulmonary vein isolation, for example, is easily accomplished in this manner, and LA left atrial appendage excision is possible. The numerous strategies of ablation of minimally invasive procedures involve isolating the PVs either as a box or separately with or without ablation of the ganglionated plexi (GP) and with or without additional ablation lines.

Pulmonary vein isolation

Pulmonary vein isolation by encirclement of the pulmonary veins confines the trigger to the pulmonary veins and, when expertly performed, will cure the majority of patients with paroxysmal AF. The first case reports of a minimally invasive, epicardial PVI ablation performed on a beating heart appeared in 2003 and 2005.71,68 The good results of PVI in patients with paroxysmal, persistent, and permanent AF were first reported by Wolf et al.69 who applied bilateral video-assisted thoracoscopic off-pump epicardial PVI and removal of the left atrial appendage. This novel approach used a bipolar non-irrigated RF clamp to achieve pulmonary vein isolation while the left atrial appendage was surgically excised. The epicardial approach enabled this procedure to be performed on a beating heart, avoiding the need for cardiopulmonary bypass. In this study, 91% of patients were in sinus rhythm at 3-months’ follow-up. However, a subsequent study by Li et al.,72 which followed the ablation protocol of Wolf et al.,69 showed that PVI might not be sufficient for persistent AF termination since ectopic foci outside the pulmonary veins and substrate effects play an important role in this setting, although the PVI procedure slows AF and makes supplemental pharmacological cardioversion effective.

Pulmonary vein isolation plus ganglionic ablation

Ganglionated plexi ablation is supported by electrophysiological studies which documented that GP may play a critical role in the initiation and maintenance of AF.73,74 These plexi innervate the pulmonary vein myocardial sleeves and the adjacent atrial muscle. Modification of left atrial GP by epicardial or endocardial ablation has been proposed for treatment of paroxysmal AF.75–77 The combination of left atrial PV isolation with GP ablation may decrease AF recurrences at least in short-term follow-up.75,78–82

Various studies have evaluated minimally invasive, thoracoscopic surgical ablation procedures which combined epicardial PVI with bipolar RF, GP ablation, and selective excision of the left atrial appendage in patients with AF. Edgerton et al.81 reported long-term freedom from atrial tachyarhythmias of 86.3% at 6 months and 80.8% at 12 months in patients with paroxysmal AF, without any operative deaths or major adverse cardiac events. McClelland et al.83 reported freedom from AF during 1 year of follow-up in 75% of patients overall, and 87.5% of patients with paroxysmal or persistent AF. Yilmaz et al.82 reported a 77% freedom from AF during a mean follow-up of 11.6 months in a patient cohort with paroxysmal (63%), persistent (27%), and permanent (10%) AF. In this study, two patients ultimately underwent a median sternotomy, whereas no cerebrovascular accidents or pacemaker implantation were identified, and none of the patients died. Beyer et al.70 reported freedom from AF in 87% of patients (paroxysmal 93%, persistent 96%, and permanent 71%) at 13.6 ± 8.2 months. No mortality was reported, whereas post-operative complications included pacemaker requirement in 5%, phrenic nerve palsy in (3%), haemothorax in (3%), transient ischaemic attack in 1%, and pulmonary embolism in 1% of patients. Han et al.84 reported 65% freedom from atrial tachyarhythmias at 12 months in a patient cohort of paroxysmal (73%) and persistent (27%) AF, while recurrences after surgery were usually responsive to catheter ablation and/or antiarrhythmic drugs. The only major complications in this study were one phrenic nerve injury and two pleural effusions while there were no deaths. Ganglionated plexi ablation has been promising in catheter trials and is becoming popular among groups adopting surgical ablation. However, no randomized data exist to clearly define its potential benefit.

Pulmonary vein isolation plus ganglionic ablation plus additional ablation lines

Studies have shown beneficial effects of adding LA ablation lines to PVI, specifically in patients with persistent AF.85,86 Krul et al.87 applied PVI and GP ablation and created additional left atrial lines in patients with persistent and long-standing persistent AF. Lines consisted of a superior line that connects the ablation lines similar to a mitral isthmus line as commonly used in pulmonary vein myocardial sleeves and the adjacent atrial muscle. Modification of left atrial GP by epicardial or endocardial ablation has been proposed for treatment of paroxysmal AF.75–77 These plexi innervate the pulmonary vein myocardial sleeves and the adjacent atrial muscle. Modification of left atrial GP by epicardial or endocardial ablation has been proposed for treatment of paroxysmal AF.75–77 The combination of left atrial PV isolation with GP ablation may decrease AF recurrences at least in short-term follow-up.75,78–82
success rate at 1 year was 86% at a patient cohort of paroxysmal (52%), persistent (42%), and long-standing persistent (6%) AF. Three patients had a sternotomy and four had adverse events (haemorrhax, pneumothorax, and pneumonia), while no thromboembolic complications or mortality occurred. Boersma et al.\cite{Boersma2018} reported a 65.6% freedom from left atrial arrhythmia at 1 year in a patient cohort of paroxysmal (76%) and persistent (24%) AF. This prospective randomized clinical trial performed a head-to-head comparison of RCA and minimally invasive surgical ablation in a population of patients with failed prior RCA and/or dilated atria and hypertension, and showed surgical ablation to be superior to RCA (36.5%, \(P = 0.002 \)) in achieving freedom from arrhythmia after a 12-month follow-up. However the procedural surgical ablation adverse event rate (23%) was clearly higher than that of RCA (3.2%), consisted mainly by procedural complications such as pneumothorax, major bleeding, and need for permanent pacing.

Alternative energy sources

Cryo-ablation, RF, high-intensity focused ultrasound, laser, and microwave energy devices became such alternatives in an attempt to move towards establishing less invasive modifications of the Maze procedure.\cite{Khargi2010} Khargi et al.\cite{Khargi2010} reviewed the efficacy of alternative energy sources vs. the classic Maze III procedure in the surgical treatment of AF. In this meta-analysis of 16 studies, there were 2279 patients who had undergone surgical ablation with an alternative energy source and 1153 patients who had undergone surgical Maze III. Post-operative sinus rhythm rates with alternative energy sources compared with Maze III were 78.3 vs. 84.9% (\(P = 0.03 \)). As potential explanation for this small but distinct difference was considered the lack of continuous and transmural atrial lesions created by the application of alternative sources of energy, and the higher percentage of patients with paroxysmal AF in the group of Cox–Maze III procedure. The post-operative mortality was substantial but not different for both techniques (4.2 vs. 2.1%, \(P = 0.09 \)), while ~5% of patients underwent a pacemaker implantation. The Cox–Maze IV has significantly shortened operative times while maintaining the efficacy of the traditional cut-and-sew Cox–Maze III.\cite{32,34,35} Although new devices and energy sources have revolutionized surgery for AF, by reducing operations time, their principal limitation is the inability to reliably create transmural lesions on the beating heart. This is owing to the heat-sink effect of circulating blood. The blood pool serves as a ‘heat sink’ when RF and microwave sources are applied to the epicardium and as a ‘cooling-sink’ with cryothermia. Two strategies have been used to overcome this problem. The first is bipolar RF devices capable of creating reliable transmural lesions, both on the arrested and the beating heart. Because of the focused nature of the energy, there is no chance for collateral injury.\cite{91,92} The second strategy uses high-intensity focused ultrasound which excludes the heat sink by precisely focusing energy on the atrial muscle, rapidly heating the tissue, and creating transmural lesions.\cite{91} This advantage can be used to create lesions across the left atrial isthmus from the epicardium without injury to the circumflex coronary artery, which no other energy source can accomplish.\cite{36,91} An alternative to heating the myocardium is cryoablation which obliterates atrial tissue by freezing. An advantage of cryoablation is its presumed ability to relatively preserve tissue architecture and collagen structure.\cite{94} Microwave energy has also been proven as an effective source of energy for use in catheter-based surgical ablation procedures. Electromagnetic radiation induced by microwave energy, transforms electromagnetic into kinetic energy and eventually thermal necrosis of myocardium. The physics of this energy source may allow for deeper and more reliable ablation of atrial tissue than RF energy.\cite{95} A postmortem analysis, however, suggests that the created microwave lesions are highly variable and are often not transmural in nature.\cite{96} There is still lack of adequate clinical data regarding which energy source is best, while the role of energy devices in this field needs further to be clarified. Most of these new technologies also bear their shortcomings. Apart from the uncertainty regarding the transmurality of the lesions, these also include the prolonged ablation time of up to 2 min per lesion, local tissue charring because of high temperatures and collateral cardiac–extracardiac damage caused by undesired spread of the energy.

Recommended indications for surgical atrial fibrillation ablation

The indications of surgical ablation remain controversial. No evidence exists for decreased mortality and morbidity or increased quality of life with surgically restored and maintained sinus rhythm in patients with AF. In the only randomized trial that has compared surgical with catheter ablation, surgical was superior to catheter ablation in achieving freedom from left atrial arrhythmias after 12 months of follow-up, albeit at a significantly higher procedural adverse event rate.\cite{89} Thus, institute experience, comorbidities, and patient preference should be taken into consideration for the final decision. The recent (2010) ESC guidelines on AF\cite{85} recommend surgical ablation in:

1. Symptomatic AF patients undergoing cardiac surgery (IIA-A).
2. Asymptomatic AF patients undergoing cardiac surgery in whom the ablation can be performed with minimal risk (IIb-C).
3. Patients with stand-alone AF who have failed catheter ablation and in whom minimally invasive surgical ablation is feasible (IIb-C).

The EHRS/EHRA/ECAS expert consensus statement (2012) on AF recommends surgical ablation in symptomatic AF, paroxysmal or persistent, in patients undergoing surgery for other indications (IIa-C). Stand-alone surgical ablation is recommended for drug-refractory AF (Class 1 or 3 drugs), paroxysmal or persistent, in patients who have failed catheter ablation or prefer a surgical approach (IIb-C). The new 2011 ACC/AHA/HRS guidelines on AF and their updates\cite{11,98,99} do not provide specific recommendations regarding surgical ablation. However, the ACC/AHA 2008 guidelines on adults with congenital heart disease\cite{100} give a IIa-C recommendation for concomitant Maze procedure for atrial tachyarrhythmias in adults with dextro transposition of the great arteries requiring reoperation for any reason, and the 2008 ACC/AHA guidelines on valve disease\cite{101} recommend that Maze...
procedure may be considered at the time of MV repair in patients with a history of AF (IIb-B).

Conclusions

(1) Surgical ablation techniques have been developed and are appealing because of the limited efficacy of conventional catheter ablation to eradicate AF in certain clinical settings.

(2) Surgical treatment of AF by traditional cut-and-sew incisions or ablation lines following the techniques developed by Cox (Maze and modifications) are highly effective but require open heart surgery and cannot be easily justified in the case of stand-alone AF.

(3) In patients undergoing cardiac surgery for mitral valve disease, concomitant ablation techniques using the Maze IV or modifications, various targets, and alternative energy sources appear to be safe and effective in treating AF, especially in non-rheumatic disease.

(4) Minimally invasive epicardial ablation has been recently developed and can be performed on a beating heart through small access incision ports. Various techniques combining pulmonary vein isolation, GP ablation, and left atrial lines have been tried. Initial results are promising, but additional refinements in selection of ablation targets and ablation technology are necessary to facilitate the widespread application of minimally invasive AF ablation. Long-term success of these procedures is also an area not thoroughly studied, as well as identification of groups of individuals that are most likely to benefit from this form of therapy.

(5) Randomized, controlled trials are needed in order to determine the role of surgical techniques in the management of this pandemic disease.

Conflict of interest: none declared.

References

1. Benjamin EJ, Wolf PA, D’Agostino RB, Silbersatz H, Kannel WB, Levy D. Impact of atrial fibrillation on the risk of death: the Framingham heart study. Circulation 1998;98:946–52.
2. Krah AD, Manfreda J, Tate RB, Mathewson FA, Cuddy TE. The natural history of atrial fibrillation: incidence, risk factors, and prognosis in the Manitoba follow-up study. Am J Med 1995;98:476–84.
3. Wolf PA, Abbott RD, Kannel WB. Atrial fibrillation as an independent risk factor for stroke: the Framingham stroke study. Stroke 1991;22:983–91.
4. Miyasaka Y, Barnes ME, Petersen RC, Cha SS, Bailey KR, Gersh BJ et al. Risk of dementia in stroke-free patients diagnosed with atrial fibrillation: data from a community-based cohort. Eur Heart J 2007;28:1962–7.
5. Ott A, Breiter MM, de Bruiyne MC, van Harskamp F, Grobbee DE, Hofman A. et al. Risk of atrial fibrillation in first-degree relatives of patients with atrial fibrillation. Eur Heart J 1999;20:1997–2005.
6. Stewart S, Murphy NF, Murphy N, Walker A, McGuire A, McMurray JJV. Cost of an emerging epidemic: an economic analysis of atrial fibrillation in the UK. Heart 2004;90:826–92.
7. Wolf PA, Mitchell JB, Baker CS, Kannel WB, D’Agostino RB. Impact of atrial fibrillation on mortality, stroke, and medical costs. Arch Intern Med 1998;158:229–34.
8. Ringborg A, Nieuwlaat R, Lindgren P, Jonsson B, Fidan D, Maggioni AP et al. Costs of atrial fibrillation in five European countries: results from the euro heart survey on atrial fibrillation. Euroepoe 2008;10:603–11.
9. Van Gelder IC, Hagens VE, Bosker HA, Kingma JH, Kamp O, Kingma T et al. A comparison of rate control and rhythm control in patients with recurrent persistent atrial fibrillation. N Engl J Med 2002;347:1834–40.
10. Lafuente-Lafuente C, Mouly S, Longas-Tegero MA, Mahe I, Bergmann JB. Antiarhythmic drugs for maintaining sinus rhythm after cardioversion of atrial fibrillation: a systematic review of randomized controlled trials. Arch Intern Med 2006;166:719–28.
11. Fuster V, Ryden LE, Cannom DS, Crijns HJ, Curtis AB, Ellenbogen KA et al. 2011 ACCF/AHA/HRS focused updates incorporated into the ACCF/AHA/ESC 2006 guidelines for the management of patients with atrial fibrillation: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines developed in partnership with the European Society of Cardiology and in collaboration with the European Heart Rhythm Association and the Heart Rhythm Society. J Am Coll Cardiol 2011;57:e101–98.
12. Katritsis DG, Camm AJ. Catheter ablation of atrial fibrillation: do we know what we are doing? Europace 2009;11:1002–5.
13. Maini SK, Sauer WH, Cooper JH, Dixo S, Gerstenfeld EP, Callans DJ et al. Incidence and predictors of very late recurrence of atrial fibrillation after ablation. J Cardiovasc Electrophysiol 2007;18:69–74.
14. Calkins H, Reynolds MR, Spector P, Sonder M, Xu Y, Martin A et al. Treatment of atrial fibrillation with antiarrhythmic drugs or radiofrequency ablation: two systematic literature reviews and meta-analyses. Circ Arrhythm Electrophysiol 2009;2:349–61.
15. Katritsis D, Wood MA, Giazzitogloou E, Shepard RK, Kourlaba G, Ellenbogen KA. Long-term follow-up after radiofrequency catheter ablation for atrial fibrillation. Europace 2008;10:419–24.
16. Weerasooriya R, Khairy P, Lilajen J, Macle L, Hocini M, Sacher F et al. Catheter ablation for atrial fibrillation: are results maintained at 5 years of follow-up? J Am Coll Cardiol 2011;57:160–6.
17. Bertaglia E, Tondo C, De Simone A, Zoppo F, Manteica M, Turco P et al. Does catheter ablation cure atrial fibrillation? Single-procedure outcome of drug-refractory atrial fibrillation: a 6-year multicentre experience. Europace 2012;10:181–7.
18. Oral H, Chugh A, Good E, Wimmer A, Dey S, Gadeela N et al. Radiofrequency catheter ablation of chronic atrial fibrillation guided by complex electrogroms. Circulation 2007;115:2606–12.
19. Williams JM, Ungerleider PM, Loford GK, Cox JL. Left atrial isolation: new technique for the treatment of supraventricular arrhythmias. J Thorac Cardiovasc Surg 1980;80:373–80.
20. Guiraudon G, Jones D, McLellan J, MacDonald J. Combined sino-atrial node atrioventricular node isolation: a surgical alternative to his bundle ablation in patients with atrial fibrillation. Circulation 1985;72(Suppl 3):220s.
21. Cox JL. The surgical treatment of atrial fibrillation. In: Surgical technique. J Thorac Cardiovasc Surg 1991;101:584–92.
22. Feinberg MS, Waggoner AD, Kater KM, Cox JL, Lindsay BD, Perez J. Restoration of atrial function after the Maze procedure for patients with atrial fibrillation. Assessment by Doppler echocardiography. Circulation 1994;90:285–92.
23. Cox JL, Jaquiss RD, Schuessler RB, Boineau JP, Modification of the Maze procedure for atrial flutter and atrial fibrillation. I. Surgical technique of the Maze iii procedure. J Thorac Cardiovasc Surg 1995;110:485–95.
24. Ad N, Cox JL. Stroke prevention as an indication for the Maze procedure in the treatment of atrial fibrillation. Semin Thorac Cardiovasc Surg 2000;12:56–62.
25. Damiano RJ Jr, Gaynor SL, Bailey M, Prasad S, Cox JL, Boineau JP et al. The long-term outcome of patients with coronary disease and atrial fibrillation undergoing the Cox Maze procedure. J Thorac Cardiovasc Surg 2003;126:2016–21.
26. Prasad SM, Maniar HS, Camillo CJ, Schuessler RB, Boineau JP, Sundt TM et al. The Cox Maze iii procedure for atrial fibrillation: long-term efficacy in patients undergoing lone versus concomitant procedures. J Thorac Cardiovasc Surg 2003;126:1822–8.
27. Ballaux PKEW, Geuzebroek GSC, van Hemel NM, Kelder JC, Dossche KME, Ernst JMPG et al. Freedom from atrial arrhythmias after classic Maze ii surgery: A 10-year experience. J Thorac Cardiovasc Surg 2006;132:1433s–40.
28. Gillinov AM, McCarthy P. Advances in the surgical treatment of atrial fibrillation. Cardiol Clin 2004;22:457–77.
29. Kim KC, Cho KB, Kim YJ, Sohn D-W, Kim K-B. Long-term results of the Cox–Maze iii procedure for persistent atrial fibrillation associated with rheumatic mitral valve disease: 10-year experience. Eur J Cardiothorac Surg 2007;31:261–6.
30. Gillinov AM, Bhavani S, Blackstone EH, Rajeswaran J, Svensson LG, Nava IL et al. Surgery for permanent atrial fibrillation: impact of patient factors and lesion set. Ann Thorac Surg 2006;82:502–13.
31. Cox JL, Ad N, Palazzo T, Fitzpatrick S, Suyderhoud JP, DeGroot KW et al. Current status of the Maze procedure for the treatment of atrial fibrillation. Semin Thorac Cardiovasc Surg 2000;12:15–9.
32. Damiano RJ Jr, Schwartz FH, Bailey MS, Maniar HS, Munfalhi NA, Moon MR et al. The Cox Maze iv procedure: predictors of late recurrence. J Thorac Cardiovasc Surg 2011;141:113–21.
33. Gaynor SL, Diotado MD, Prasad SM, Ishii Y, Schuessler R, Bailey M et al. A prospective, single-center clinical trial of a modified Cox Maze procedure with bipolar radiofrequency ablation. J Thorac Cardiovasc Surg 2004;128:535–42.
Surgical ablation for atrial fibrillation

52. Geidel S, Ostermeyer J, Lass M, Geisler M, Kotetishvili N, Aslan H et al.

54. Gillinov AM, Bakaeen F, McCarthy PM, Blackstone EH, Rajeswaran J, Lee JW, Park NH, Choo SJ, Jo MS, Song H, Song MG. Surgical outcome of the Swedish Multicentre Atrial Fibrillation Study (Swedmaf). Eur Heart J 2007; 28:2902–8.

56. Lee JW, Park NH, Choo SJ, Jo MS, Song H, Song MG. Surgical outcome of the Swedish Multicentre Atrial Fibrillation Study (Swedmaf). Eur Heart J 2007; 28:2902–8.

58. Grigioni F, Avierinos JF, Ling LH, Scott CG, Bailey KR, Tajik AJ et al. Combined mitral valve surgery and the Maze iii procedure. Semin Thorac Cardiovasc Surg 2002; 14:1093–6.

60. Kim JB, Bang JH, Jung SH, Choo SJ, Chung CH, Lee JW. Left atrial ablation versus bilateral ablation in the surgical treatment of atrial fibrillation. Ann Thorac Surg 2011; 92:1397–404.

62. Camm AF, N Cannon, D Puddicombe, M Marustchi. How effective is cryoablation for atrial fibrillation during concomitant cardiac surgery? Interact Cardiovasc Thorac Surg 2011; 13:410–3.

64. Bienenstock-Jungquist, M Johansson B, Berglin E, Nilsson L, Jensen SM, Thelin S et al. A randomized double-blind study of epicardial left atrial cryoablation for permanent atrial fibrillation in patients undergoing mitral valve surgery: the Swedish Multicentre Atrial Fibrillation Study (Swedmaf). Eur Heart J 2007; 28:2902–8.

66. Reade CC, Johnson JO, Bolotin G, Freund WL, Jenkins NL, Bower CE et al. Combining robotic mitral valve repair and microwave atrial ablation: techniques and initial results. Ann Thorac Surg 2005; 81:1325–30.

68. Bisleri G, Manzato A, Argenziano M, Viglione DW, Munnerotto C. Thoracoscopic epicardial pulmonary vein ablation for lone paroxysmal atrial fibrillation. Europace 2005; 7:145–8.

70. Wolf RK, Schneeberger EW, Osterday R, Miller D, Merrill W, Flege JB et al. Video-assisted bilateral pulmonary vein isolation and left atrial appendage exclusion for atrial fibrillation. J Thorac Cardiovasc Surg 2005; 130:797–802.

72. Beyer E, Lee R, Lam BK. Point: minimally invasive bipolar radiofrequency ablation of left atrial fibrillation: early multicenter results. J Thorac Cardiovasc Surg 2009; 137:521–6.

74. Saltman AE, Rosenhall LS, Franca T, Laheny SJ. A completely endoscopic approach to microwave ablation for atrial fibrillation. Heart Surg Forum 2003; 6:38–41.

76. Li H, Li Y, Sun L, Liu X, Xu C, Han J et al. Minimally invasive surgical vein isolation alone for persistent atrial fibrillation: preliminary results of epicardial atrial electrogram analysis. Ann Thorac Surg 2007; 84:1219–25.

78. Scherlag BJ, Nakagawa H, Aven DA, Yamashita H, Wilson J, Sather H et al. Electrical stimulation to identify neural elements on the heart: their role in atrial fibrillation. J Intern Car Electrophysiol 2005; 11(Suppl 1):37–42.

80. Bois SG, Nakagawa H, Jackman WM. Localization of left atrial ganglionic plexi in patients with atrial fibrillation. J Cardiovasc Electrophysiol 2005; 16:1186–9.

82. Mathys K, Jocelyn RM, Schneeberger EW, Taketani T, Merrill WH, Wolf RK. Comparative epicardial electrophysiologic mapping and isolation of autonomic ganglionic plexi. Am J Cardiol 2007; 100:538–41.

84. Pokushalov E, Ramanov A, Shugayev P, Artyomenko S, Shirokova N, Turov A et al. Selective ganglionic plexi ablation for paroxysmal atrial fibrillation. Heart Rhythm 2009; 6:1257–64.

86. Danik S, Neuzil P, Aven DA, Malhoz J, Kralova S, Ruskin JN et al. Evaluation of catheter ablation of perforatorial ganglionic plexi in patients with atrial fibrillation. J Am Coll Cardiol 2008; 52:1072–89.

88. Pokushalov E, Ramanov A, Artyomenko S, Turov A, Shirokova N, Katritsis DG. Left atrial ablation at the anatomic areas of ganglionic plexi for paroxysmal atrial fibrillation. Pacing Clin Electrophysiol 2010; 33:1231–8.

90. Katritsis DG, Giagitzoglou E, Zografos T, Pokushalov E, Po SS, Camm AJ. Radiofrequency pulmonary vein isolation combined with autonomic ganglia modification: a randomized study. Heart Rhythm 2011; 8:672–8.

92. Dill N, Pritzwaldf-Steigmann P, Cesna M, Kemptf J, Zeschel MA, Bohr MA et al. Ablation of ganglionic plexi during combined surgery for atrial fibrillation. Ann Thorac Surg 2008; 86:1659–63.

94. Edgerton JR, Brinkman WT, Weaver T, Prince SL, Culica D, Herbert MA et al. Ablation of ganglionic plexi during combined surgery for atrial fibrillation. J Cardiovasc Electrophysiol 2010; 21:389–96.
83. McClelland JH, Duke D, Reddy R. Preliminary results of a limited thoracotomy: new approach to treat atrial fibrillation. J Cardiovasc Electrophysiol 2007;18:1289–95.

84. Han FT, Kasirajan V, Kowalski M, Kiser R, Wolfe L, Kalahasty G et al. Results of a minimally invasive surgical pulmonary vein isolation and ganglionic plexi ablation for atrial fibrillation: single-center experience with 12-month follow-up. Circ Arrhythm Electrophysiol 2009;2:370–7.

85. Camm AJ, Kirchhof P, Lip GY, Schotten U, Savelieva I, Ernst S et al. Guidelines for the management of atrial fibrillation: the task force for the management of atrial fibrillation of the European Society of Cardiology (ESC). Europace 2010;12:1360–420.

86. Oral H, Pappone C, Chugh A, Good E, Bogun F, Pelosi F et al. Circumferential pulmonary-vein ablation for chronic atrial fibrillation. N Engl J Med 2006;354:934–41.

87. Krul SPJ, Driessen AHG, van Boven WJ, Linnenbank AC, Geuzebroek GSC, et al. Thoracoscopic video-assisted pulmonary vein antrum isolation, ganglionated plexus ablation, and periprocedural confirmation of ablation lesions: first results of a hybrid surgical–electrophysiological approach for atrial fibrillation. Circ Arrhythm Electrophysiol 2011;4:262–70.

88. Lockwood D, Nakagawa H, Peyton MD, Edgerton JR, Scherlag BJ, Sivararam CA et al. Linear left atrial lesions in minimally invasive surgical ablation of persistent atrial fibrillation: techniques for assessing conduction block across surgical lesions. Heart Rhythm 2007;6:550–63.

89. Boersma LV, Castella M, van Boven W, Berruezo A, Yilmaz A, Nadal M et al. Atrial fibrillation catheter ablation versus surgical ablation treatment (fast): a 2-center randomized clinical trial. Circulation; published online ahead of print 14 November 2011; doi:10.1161/CIRCULATIONAHA.111.074047.

90. Lall SC, Damiano RJ. Surgical ablation devices for atrial fibrillation. J Interv Card Electrophysiol 2007;20:73–82.

91. Gaynor SL, Ishii Y, Diodato MD, Prasad SM, Barnett KM, Damiano NR et al. Successful performance of Cox–Maze procedure on beating heart using bipolar radiofrequency ablation: a feasibility study in animals. Ann Thorac Surg 2004;78:1671–7.

92. Melby SJ, Gaynor SL, Lubahn JG, Lee AM, Rahgazar P, Caruthers SD et al. Efficacy and safety of right and left atrial ablations on the beating heart with irrigated bipolar radiofrequency energy: a long-term animal study. J Thorac Cardiovasc Surg 2006;132:853–60.

93. Ninet J, Roques X, Seitelberger R, Deville C, Pomar JL, Robin J et al. Surgical ablation of atrial fibrillation with off-pump, epicardial, high-intensity focused ultrasound: results of a multicenter trial. J Thorac Cardiovasc Surg 2005;130:803–9.

94. Holman WL, Ikeshita M, Ungerleider RM, Smith PK, Ideker RE, Cox JL. Cryosurgery for cardiac arrhythmias: acute and chronic effects on coronary arteries. Am J Cardiol 1983;51:149–55.

95. Knaut M, Tugtekin SM, Spitzer SG, Jung F, Matschke K. Intraoperative endocardial microwave ablation for treatment of permanent atrial fibrillation during coronary artery bypass surgery: 1-year follow-up. Europace 2006;8:16–20.

96. Lockwood D, van Sylen RJ, van Brakel TJ, Maessen JG. Post-mortality histologic evaluation of microwave lesions after epicardial pulmonary vein isolation for atrial fibrillation. Ann Thorac Surg 2005;80:881–7.

97. Calkins H, Kuck KH, Cappato R, Brugada J, Camm AJ, Chen SA et al. EHRA/ECAS Expert Consensus Statement on Catheter and Surgical Ablation of Atrial Fibrillation. Europace 2012;14:528–90.

98. Wann LS, Curtis AB, Ellenbogen KA, Estes NA III, Ezekowitz MD, Jackman WM et al. 2011 ACCF/AHA/HRS focused update on the management of patients with atrial fibrillation (update on dabigatran). A report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines. Heart Rhythm 2011;8:e1–8.

99. Wann LS, Curtis AB, January CT, Ellenbogen KA, Lowe JE, Estes NA III et al. 2011 ACCF/AHA/HRS focused update on the management of patients with atrial fibrillation (updating the 2006 guidelines): a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines. Heart Rhythm 2011;8:157–76.

100. Wann LS, Williams RG, Bashore TM, Child JS, Connolly HM, Dearani JA et al. ACC/AHA 2008 guidelines for the management of adults with congenital heart disease: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Writing Committee to Develop Guidelines on the Management of Adults With Congenital Heart Disease). Developed in Collaboration With the American Society of Echocardiography, Heart Rhythm Society, International Society for Adult Congenital Heart Disease, Society for Cardiovascular Angiography and Interventions, and Society of Thoracic Surgeons. J Am Coll Cardiol 2008;52:e143–263.

101. Bonow RO, Carabello BA, Chatterjee K, de Leon AC Jr, Faxon DP, Freed MD et al. American College of Cardiology/American Heart Association Task Force on Practice Guidelines. 2008 focused update incorporated into the ACC/AHA 2006 guidelines for the management of patients with valvular heart disease. Endorsed by the Society of Cardiovascular Anesthesiologists, Society for Cardiovascular Angiography and Interventions, and Society of Thoracic Surgeons. J Am Coll Cardiol 2008;52:e1–142.