Full Length Article

Bivalent transition metal complexes of 3-(2-(4-(dimethylamino)benzylidene)hydrazinyl)-3-oxo-N-(thiazol-2-yl)propanamide: Structural, spectral, DFT, ion-flotation and biological studies

Rania Zaky *, Ahmed Fekri, Yasmeen G. Abou El-Reash, Hany M. Youssef, Abdulrahman Y. Kareem

Department of Chemistry, Faculty of Science, Mansoura University, Mansoura, Egypt

ABSTRACT

Co(II), Pb(II), Hg(II) and Cd(II) complexes of the 3-(2-(4-(dimethylamino)benzylidene)hydrazinyl)-3-oxo-N-(thiazol-2-yl)propanamide (H₂L) were synthesized. The prepared compounds were interpreted by elemental analysis: C, H, N, M, Cl; physical measurements as molar conductance; and magnetic susceptibility spectroscopic techniques as IR, UV–visible, 1H NMR, MS spectra. The computational studying was estimated to approve the geometry of the isolated solid compounds. Also, Pb(II) and Cd(II) were separated using a simple, rapid and inexpensive quantitative flotation method prior to their determinations using atomic absorption spectrophotometric (AAS). The main parameters influencing the flotation process were examined (ca. initial pH, metal ion, surfactant and ligand concentrations, presence of foreign ions, and temperature). Furthermore, the biological activity (antimicrobial, antioxidant and cytotoxic) of the investigated compounds was tested.

© 2016 Mansoura University. Production and hosting by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Keywords: Schiff base Spectroscopy Computational Ion-flotation Biological activity

1. Introduction

Heterocyclic systems containing thiazole moiety are very interesting compounds where sulfur drugs, biocides, fungicides, dyes and chemical reaction accelerators are synthesized from 2-aminothiazoles. Also, this moiety is a very good complexing agent that provides several probable binding sites for complexation of diverse metal ions. Schiff-bases of 2-amino thiazoles and their transition metal complexes play an important role in pharmaceutical chemistry along with co-ordination chemistry [1–5]. Furthermore, Schiff-bases as selective metal extracting agents were utilized in analytical chemistry in addition to spectroscopic determination of some transition metal ions, where many separation/preconcentration techniques (ion-flotation, ion-selective electrode, solid phase extraction, co-precipitation, column extraction, cloud point extraction and liquid–liquid
extraction) were stated to determine trace metal [6–10]. Ion flotation method attracted a significant attention because it was simple, cheap, highly efficient, and a rapid quantitative method [11–14].

In extension of our work on Schiff-bases of 2-amino thiazoles [15–19], the purpose of the current work was the preparation and characterization of isolated solid complexes Co(II), Pb(II), Hg(II) and Cd(II) with H2L. The mode of complexes was explained on the basis of many spectroscopic techniques. Also, the biological activity (antimicrobial, anti-oxidant and cytotoxic) of the investigated compounds was tested.

2. Experimental

2.1. Materials and reagents

The materials used were pure (Sigma, Aldrich, or Merck). They involved (a) organic substance such as as 3-hydrazinyl-oxo-N-(thiazole-2-)propanamide and 4-dimethylamino-benzaldehyde, oleic acid (HOL); (b) metal salts such as [Co(CH3COO)2]4H2O, [CdCl2]2H2O, Pb(NO3)2, and HgCl2; (c) solvent such as diethyl ether, dimethyl formamide, and dimethyl absolute alcohol.

2.2. Solutions

Stock solution of oleic acid (HOL) (6.36 × 10⁻² mol L⁻¹) was prepared by dispersing 20 mL in one liter of kerosene. Also, stock solutions of [CdCl2]2H2O and Pb(NO3)2 (1 × 10⁻² mol L⁻¹) were prepared in double distilled water. A 1 × 10⁻² mol L⁻¹ stock solutions of H2L was prepared in absolute ethyl alcohol.

2.3. Instrumentation

- The FTIR spectrophotometer "Mattson 5000, Madison, USA" in the range 4000–400 cm⁻¹ was used to record the infrared spectra of the ligand and its complexes in KBr disks.
- The "EM-390 (200 MHz) on a Varian Mercury-300 instrument (Switzerland)" was used to detect the ¹H NMR spectra of the ligand, Hg(II) and Cd(II) complexes.
- The "Mattson 5000 FTIR spectrophotometer" was used to record the mass spectra.
- The magnetic susceptibility balance "Johnson Matthey Wayne, Pennsylvania, USA" with Hg[Co(SCN)]₄ as calibrant was used to evaluate the magnetic moment values at room temperature (25 ± 1 °C).
- The "Shimadzu UV 240 (P/N 204–58000) spectrophotometer (USA) in the range 200–900 nm" was used to record the electronic spectra of the complexes in DMSO.
- GBC, SensAA Series Atomic Absorption Spectrometry (computerized AAS) with air-acetylene flame was used for the determinations of analyte under the optimum instrumental conditions (228.8 nm as wave length, 0.2–1.8 ppm as working calibrating range with 0.009 μg/mL sensitivity for Cd(II), 217 nm as wave length, and 2.5–10 ppm as working calibrating range with 0.06 μg/mL sensitivity for Pb(II)).
- Two types of cells were used in the flotation and separation experiments, which are cylindrical tube of (29, 45) cm in length and (1.2, 6) cm inner diameter with a stopper at the top.
- The "Hanna instrument 8519 digital pH meter" was used for the pH measurements.
- The "Perkin-Elmer 2400 Series II Analyzer" was used to determine the percentage of C, H and N in the synthesized compounds (Table 1).
- The standard methods were used to determine the metal contents in the complexes [20].

2.4. Synthesis of H2L

The ligand was prepared by mixing equimolar amounts of 3-hydrazinyl-oxo-N-(thiazole-2-)propanamide (0.01 mol; 2 g) and 4-Dimethylamino-benzaldehyde (0.01 mol; 1.5 g), in 50 mL ethanol with 1 mL acetic acid glacial. The ligand was precipitated during reflux (3 hrs) and then separated by filtration followed by recrystallization from absolute ethyl alcohol and finally dried in a vacuum desiccator over anhydrous CaCl₂. The purity of the compounds was tested by TLC (Scheme 1).

2.5. Synthesis of metal complexes

The solid complexes were prepared by reflux equimolar amounts of H2L (3.31; 10.0 mmol) and 10.0 mmol of cobalt (II),

Table 1 – Elemental analysis and physical data of H2L and its metal complexes.

Compound	Empirical formula	Molecular mass (g/mol)	Color	M.P. (°C)	Yield (%)	% Found (calculated)	λmax*				
H2L	C3H4O2N2S	331.349 (331.353)	Pale yellow	192	80	54.17 (54.37)	4.99 (5.17)	21.17 (21.14)	–	–	
[Co(H2L)]	CoC3H2O2N2S2	719.617 (719.620)	Brown	>300	75	50.17 (50.07)	4.52 (4.48)	19.50 (19.47)	8.22 (8.19)	–	6
[Hg(H2L)(H2O)Cl]	HgC3H2O2N2S2Cl	620.411 (620.415)	Yellowish white	220	90	29.87 (29.91)	3.26 (3.35)	11.38 (11.63)	33.27 (33.30)	5.81 (5.89)	9
[Cd(H2L)]	CdC3H2O2N2S2	773.092 (773.090)	Yellowish white	>300	75	46.68 (46.61)	4.21 (4.17)	18.06 (18.12)	14.48 (14.54)	–	4
[PbL(H2O)]	PbC3H2O2N2	590.579 (590.582)	Yellowish white	>300	85	30.53 (30.51)	3.64 (3.58)	11.89 (11.86)	35.11 (35.08)	–	6

* In DMSO (Ohm⁻¹ cm² mol⁻¹).
cadmium (II), lead (II), and mercury (II) salts. The mixture was refluxed for 1–3 h. The formed precipitate was filtered off and washed with hot ethanol and distilled water.

2.6. Molecular modeling

The DMOL3 program in Materials Studio package [21,22] was used to evaluate the cluster calculations. The simulations of geometry optimization of the isolated solid compounds were carried out using the density functional theory (DFT) via the GAUSSIAN 09 program package. The DNP basis sets are of analogous class to 6-31G Gaussian basis sets [23]. The DNP basis sets are more precise than Gaussian basis sets of identical size [24]. Based on the generalized gradient approximation (GGA), the RPBE functional [25] was considered the most excellent exchange-correlation functional [26]. The geometric optimization is carried out without any regularity restraint.

2.7. Biological activity

2.7.1. Antibacterial and antifungal activities in terms of minimum inhibitory concentration

- The MIC of the synthesized compounds was determined by applying agar streak dilution method [27].
- The strains involved Staphylococcus aureus and Bacillus subtilis as Gram (+) bacteria; Escherichia coli and Pseudomonas aeruginosa Gram (−) bacteria; and Candida albicans and Aspergillus flavus as fungi.
- For anti-bacterial the Ciprofloxacin (100 μg/mL) was used as standard, but Fluconazole (100 μg/mL) was used as standard for anti-fungal.
- A stock solution (100 μg/mL) of the examined compounds in DMSO was prepared and then incorporated in specified quantity of molten sterile.
- A certain amount of the medium containing tested compound was decanted into a Petri dish to reach a depth of 3–4 mm at 40–50 °C and then allowed to solidify.
- The micro-organism suspension was set to take about 10⁵ cfu/mL and smeared to plates with diluted compounds in DMSO to be tested and then incubated for 24–48 h at 37 °C.
- The MIC was measured until the lowest concentration of the test substance showed no visible growth of bacteria or fungi on the plate.

2.7.2. Anti-oxidant activity screening assay

2.7.2.1. Anti-oxidant activity screening assay – ABTS method.

- In ABTS method, 2 mL of ABTS (2, 2′-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid)) solution (60 mM), 3 mL MnO₂ solution (25 mg/mL) and 5 mL aqueous phosphate buffer solution (pH 7, 0.1 M) were added to tested compounds.
- The mixture was shaken, centrifuged, filtered and then the absorbance was measured at λ734 nm of the resultant green-blue solution (ABTS radical solution).
- Then, 50 mL of the tested compounds (2 mM) in spectroscopic grade methanol/phosphate buffer (1:1) was added.
with double distilled water, and then the cell was shaken well for 2 min to ensure complete complexation. After this, 2 mL of surfactant (HOL with known concentration) was added and the cell was then inverted upside down strongly twenty five times by hand and was left for five minutes standing for complete flotation. Finally the concentration of Cd(II) or Pb(II) ions that remained in the mother liquor was analyzed via AAS. The floatability (F %) of Cd(II) or Pb(II) ions was calculated according to the following relation:

\[F \% = (C_1 - C_2)/C_1 \times 100 \]

where \(C_1 \) and \(C_2 \) are the initial and the final concentrations of Cd(II) or Pb(II) ions in the mother liquor, respectively.

3. Results and discussion

3.1. IR and mass spectra

The H\(_2\)L and its metal complexes’ significant infrared bands were taken to detect the influence of a metal bonding on the ligand vibration in the solid complexes. The ligand IR spectrum showed a medium-intensity broad bands due to \(\nu(\text{NH})_2 \), \(\nu(\text{CH})_2 \) and \(\nu(\text{CH})_2 \) at 3200, 3174 and 3089 cm\(^{-1}\) [35], respectively. Also, there are three sharp bands observed due to \(\nu(\text{C—N}) \) [36], \(\nu(\text{C—O}) \), and \(\nu(\text{C—O}) \) at 1605, 1688 and 1667 cm\(^{-1}\), respectively (Table 2). Also, the MS of H\(_2\)L displayed the molecular ion peak \([M]^+ \) of H\(_2\)L at \(m/z = 331.342 (34.28\%) \) which is equal to its molecular weight and relating to the moiety of the ligand \([\text{La}_{2} \text{H}_{2} \text{O}_{2} \text{N}_{2} \text{S}]\) atomic mass 331.535 u (Fig. 1).

In the IR spectra of [Co(HL)\(_2\)], [Hg(HL)(H\(_2\)O)\(_2\)Cl] and [Cd(HL)\(_4\)] complexes, H\(_2\)L behaved as a mononegative tridentate ligand coordinating via \(\text{C—N} \), carbonyl oxygen \(\text{C—O} \), and \(\text{C—O} \). This chelation mode was maintained by (i) the disappearance of \(\nu(\text{C—O}) \) and \(\nu(\text{NH})_2 \) with immediate entrance of new bands at 1603–1611 and 1065–1189 cm\(^{-1}\) which is attributable to \(\nu(\text{C—N}) \) and \(\nu(\text{C—O}) \) respectively [38], (ii) the shift of azomethine nitrogen \(\nu(\text{C—N}) \) and \(\nu(\text{C—O}) \) to lower wave numbers and (iii) the presence of novel bands in the 521–524 cm\(^{-1}\) region which is ascribed to \(\nu(\text{M—O}) \) and \(\nu(\text{M—N}) \), respectively [39].

Also, the IR spectrum of [PbL(H\(_2\)O)\(_3\)] complex showed that H\(_2\)L acted as a binegative tridentate ligand coordinating via \(\text{C—N} \) and \(\equiv \text{C—O—} \). This mode was proposed by (i) the shift of \(\nu(\text{C—N}) \) to lower wavenumber, (ii) the disappearance of \(\nu(\text{C—O}) \), \(\nu(\text{C—O}) \), and \(\nu(\text{NH})_2 \) with instantaneous appearance of new band at 1624, 1605, 1179 and 1124 cm\(^{-1}\) which is attributable to \(\nu(\text{C—N}) \), \(\nu(\text{C—N}) \), \(\nu(\text{C—O}) \), and \(\nu(\text{C—O}) \) respectively, and (iii) the appearance of new bands at 521 and 423 cm\(^{-1}\) which may be ascribed to \(\nu(\text{M—O}) \) and \(\nu(\text{M—N}) \), respectively [39].

3.2. Nuclear magnetic resonance spectral studies

In H\(_2\)L and its Hg(II) and Cd(II) complexes 1H NMR spectra were detected in DMSO. There are two signals at 11.27 and 12.23 ppm attributed to the protons of (NH\(_2\)) and (NH), respectively, in the spectrum of H\(_2\)L (Fig. 2). In 6.60–8.04 ppm region multiplet signals...
were observed related to the —N==CH— and aromatic protons. At 3.46 and 3.79 ppm there are two sharp singlet related to active methylene protons (—CH₂) and ph–N—(CH₃)₂, respectively. Also, the ¹H NMR spectra of the Cd(II) and Hg(II) complexes showed the signal ascribed to the (NH)₁, and proton representing that these group played no part in coordination. But the absence of signal due to (NH)₂ proton gave emphasis to the deprotonation of the enolized carbonyl oxygen (—C=O)₂.

3.3. Magnetic moments and electronic spectra

The electronic spectrum of [Co(HL)₂] complex showed two bands at 20 618 and 16 949 cm⁻¹ ascribed to ⁴T₁g → ⁴A₂g (F) and ⁴T₁g → ⁴T₁g (P) transitions, respectively, in an octahedral configuration [⁴⁰]. The calculated values of Dq, B, β and ν₂/ν₁ values are in good promise with those informed for octahedral Co(II) complexes. The position of ν₁ (7901 cm⁻¹) was calculated theoretically [⁴⁰]. Also, the values of the magnetic moments value (μeff. = 5.0 BM) are reliable with octahedral geometry around the Co(II) ion.

3.4. Geometry optimization with DFT method

The design of new molecular compounds can be recognized by applying computational chemistry tools, which is a potent protocol for interpreting their stabilities and calculated lots of structural parameters for multidentate Schiff base ligand (Table 3).

DFT calculations are performed to predict the host–guest interaction between the Schiff base and various metal cations. The molecular structure beside atom numbering of H₂L and its metal complexes is presented in Structure 1.

3.4.1. Molecular parameters

The Quantum chemical parameters (the energies of the HOMO and LUMO) of investigated compounds were attained. Also, the total energy, binding energy, spin polarization energy, exchange-correlation energy, electrostatic energy, kinetic energy, sum of atomic energy and dipole moment were calculated (Table 3).

From the attained data we can assumed that:

1. The energies of the HOMO and LUMO are negative values, which showed the stability of isolated complexes (Fig. 3).
2. The lower EHOMO values point to the molecule donating electron ability is frailer. On contrasting, the greater HOMO energy recommended that the molecule is a decent electron donor.
3. The binding energy of complexes was higher than free ligand, which indicated great the stability of the isolated solid complexes.
4. The free ligand showed higher values of dipole moment than the isolated solid complexes that improved the potent activities of the free ligands.

3.4.2. Molecular electrostatic potential (MEP) of H₂L

The MEP was considered a good descriptor for decisive sites for electrophilic and nucleophilic attack [⁴¹]. In the present study, 3D plots of MEP were drawn for the ligand and their metal complexes (Fig. 4). Based on the MEP, one can generally order the electron-rich area which has red color on the map (favor
site for electrophilic attack). However, the electron-poor region has blue color (favor site for nucleophilic attack) [42]. But the region with green color points to neutral electrostatic potential region.

3.5. Biological activity

The Schiff bases’ biological activity stimulated us to assume systematic studies on their complexation affinity and test their abilities against economically vital fungi and bacteria [43,44].

3.5.1. Antifungal activity

The results showed that the ligand and its metal complexes have significant activity against Candida albicans and Aspergillus flavus (Table 4). The ligand (H$_2$L) and [Co(HL)$_2$] complex were more effective against Aspergillus flavus than Candida albicans in comparison with the Fluconazole as standard drug [45].

3.5.2. Antibacterial activity

The investigated compounds along with Ciprofloxacin (standard drug) and DMSO (solvent control) were screened separately for their antibacterial activity [46–48]. The activity of the tested compounds was compared to the activity of Ciprofloxacin as a standard antibiotic. The MIC values showed that H$_2$L and [Co(HL)$_2$] complex have the highest antibacterial activity (Table 5).

![Fig. 1 – 'H NMR spectrum of 3-(2-(4-(dimethylamino)benzylidene)hydrazinyl)-3-oxo-N-(thiazol-2-yl)propanamide in DMSO.](image)

![Fig. 2 – Mass spectra of 3-(2-(4-(dimethylamino)benzylidene)hydrazinyl)-3-oxo-N-(thiazol-2-yl)propanamide.](image)

Compound	Total energy (Ha)	Binding energy (Ha)	Dipole moment (debye)	HOMO eV	LUMO (eV)
H$_2$L	−1404.622293	−6.9256921	8.5025	−4.719	−2.096
[Co(HL)$_2$]	−2975.879536	−14.6804663	10.4731	−3.801	−2.716
[Hg(HL)(H$_2$O)$_2$Cl]	−2246.291573	−8.1242131	4.8789	−4.947	−2.644
[Cd(HL)$_2$]	−2897.959614	−13.6468858	5.4398	−4.482	−2.011
[PbL(H$_2$O)$_3$]	−1754.309944	−8.3909023	8.0227	−4.998	−2.853
3.5.3. The antioxidant activity of ligand and its metal complexes

The antioxidant rank of prepared compounds was measured using ABTS assay [49]. All tested compounds have low antioxidant activity in comparison with complex [Co(HL)_2], which displayed the maximum antioxidant activity in comparison with standard ascorbic-acid. Moreover, the anti-oxidant activity of prepared compounds was tested for erythrocyte hemolysis. All
Fig. 3 – The HOMO and LUMO of (A) H$_2$L, (B) [Co(HL)$_2$], (C) [Hg(HL)(H$_2$O)$_2$Cl], (D) [Cd(HL)$_2$], and (E) [PbL(H$_2$O)$_3$].
the tested compounds demonstrated weak anti-oxidative activity in the hemolysis assay, but [Co(HL)₂] gave better results (Tables 6 and 7). The significant antioxidant activity was attributable to the existence of two carbonyl (C=O) and azomethine (C=N) groups.

3.5.4. The cytotoxicity of H₂L and its metal complexes on HCT-116 cell line
The cytotoxicity assays of H₂L and its metal complexes against human colorectal carcinoma cells lines (HCT) are illustrated in Table 8. The data observed that [Co(HL)₂] (IC₅₀ = 11.4 μM) demonstrated a much higher inhibitory effect than the other isolated compounds. However, [Hg(HL)(H₂O)₂Cl] complex which has higher IC₅₀ value (>100 μg/mL) showed nearly no activity [50].

3.6. Ion-flotation separation

3.6.1. Influence of initial pH
Some experiments were conducted to study the effect of the pH of a solution on the floatability of 2 × 10⁻⁴ mol L⁻¹ of metal ions using 2 × 10⁻⁴ mol L⁻¹ of prepared ligand and 1 × 10⁻³ mol L⁻¹ of HOL. The results showed that higher floatability was detected at the pH range of 5–9 for Cd(II) and 6–9 for Pb(II) ions (Fig. 5). This eases the ability to apply the prepared ligand for the separation of metal ions from different media. Hence, pH ~7 was fixed for further experiments.

3.6.2. Influence of initial metal concentration
Efforts to float different concentrations of Pb(II) and Cd(II) ions were carried out with 2 × 10⁻⁴ mol L⁻¹ ligand (H₂L) + 1 × 10⁻⁴ mol L⁻¹ HOL at pH ~7. The maximum flotation efficiency of Cd(II) and Pb(II) ions was determined for the prepared ligand whenever the ratio of M:L is (1:1) (Fig. 6). The chelating agent gave quantitative separation of Cd(II) and Pb(II) ions (~100%), which may be ascribed to the presence of sufficient amounts of prepared ligand to bind all Cd(II) and Pb(II) ions. Therefore, the ratio of M:L of 1:1 was used throughout.

3.6.3. Influence of ligand concentration
The collecting ability of prepared ligand toward Cd(II) and Pb(II) ions was tested to show the effect of different concentrations of prepared ligand on the floatability of the analytes using 1 × 10⁻³ mol L⁻¹ HOL at pH ~7. The data revealed that the floatability of Cd(II) and Pb(II) ions increases sharply reaching its maximum value at M:L ratio of 1:1 (Fig. 7). Excess ligand has no adverse effect on the flotation process, and accordingly 2 × 10⁻⁴ mol L⁻¹ of prepared ligand was used throughout.

3.6.4. Influence of surfactant concentration
Several trials were examined to float Cd(II) and Pb(II) ions with surfactants only, but the maximum recovery received was 43%. Thus, extra series of experiments were done to float 2 × 10⁻⁴ mol L⁻¹ Cd(II) and Pb(II) ions in the presence of
2×10^{-4} mol L$^{-1}$ of H$_2$L and various concentrations of HOL (1×10^{-3}–5×10^{-2} mol L$^{-1}$) at pH 7. The results proved that the high floatation % of Cd(II) and Pb(II) ions was achieved in the concentration range 1×10^{-3}–9×10^{-3} mol L$^{-1}$ of HOL (Fig. 8).

It was noticed that; the incomplete separation of Cd(II) and Pb(II) ions at higher surfactant concentration regarding to the fact that; the addition of surfactant led to change in the state of formed complexes from coagulated precipitate to re-dispersion through coagulation flotation. Furthermore, at high surfactant concentration, the poor flotation resulted from the

![Molecular electrostatic potential map for (A) H$_2$L, (B) [Co(HL)$_2$], (C) [Hg(HL)(H$_2$O)$_2$Cl], (D) [Cd(HL)$_2$], and (E) [PbL(H$_2$O)$_3$].](image)

Table 4 – Antifungal activities in terms of MIC (μg/mL).

Compound	C. albicans	A. flavus
Fluconazole	1.56	0.78
H$_2$L	4.68	3.12
[Co(HL)$_2$]	6.25	4.68
[Hg(HL)(H$_2$O)$_2$Cl]	>100	>100
[Cd(HL)$_2$]	>100	75
[PbL(H$_2$O)$_3$]	75	50
formation of hydrated and stable envelope of surfactant on the air bubble surface or due to the formation of a hydrated micelle coating on the solid surface [51,52]. Consequently, increasing the hydrophobicity of the surface had an adverse effect on the flotation process. Thus, HOL with concentration of 1×10^{-3} mol L$^{-1}$ was fixed throughout.

3.6.5. Influence of temperature

A series of experiments were done to test the floatation of Cd(II) or Pb(II) ions under a temperature range of 10–80 °C and the recommended conditions. For this purpose, a mixture containing Cd(II) or Pb(II) ions and H$_2$L and separated HOL solutions was either heated or cooled to the proposed temperature in a water bath. Then HOL solution was poured into Cd(II) or Pb(II) ions solution into the flotation cell, then jacketed with 1 cm thick fiberglass insulation and shaken well. According to results illustrated in Fig. 9, the decrease in separation efficiency by raising temperature over 80 °C may be due to increasing the

Table 5 – Antibacterial activities in terms of MIC (μg/mL).

Compound	Gram-negative	Gram-positive		
	E. coli	P. aeruginosa	S. aureus	B. subtilis
Ciprofloxacin	1.56	0.78	1.56	0.39
H$_2$L	9.37	6.25	4.68	2.34
[Co(HL)$_2$]	6.25	3.12	4.68	3.12
[Hg(HL)(H$_2$O)$_2$Cl]	>100	>100	>100	>100
[Cd(HL)$_2$]	75	37.5	50	75
[PbL(H$_2$O)$_3$]	25	18.75	37.5	37.5

Table 6 – Anti-oxidant assays by ABTS method.

Compounds	Abs(control)–Abs(test)/Abs(control)×100	% inhibition
Control of ABTS	0.51	0
Ascorbic-acid	0.055	89.20
H$_2$L	0.156	69.40
[Co(HL)$_2$]	0.195	61.80
[Hg(HL)(H$_2$O)$_2$Cl]	0.306	40.00
[Cd(HL)$_2$]	0.258	49.40
[PbL(H$_2$O)$_3$]	0.256	49.80

Table 7 – Anti-oxidant assays by erythrocyte hemolysis.

Compounds	Erythrocyte hemolysis	A/B × 100	% hemolysis
Absorbance of H$_2$O (A)	0.896	–	
Ascorbic-acid	0.042	4.70	
H$_2$L	0.538	60.00	
[Co(HL)$_2$]	0.293	23.70	
[Hg(HL)(H$_2$O)$_2$Cl]	0.595	66.40	
[Cd(HL)$_2$]	0.211	32.50	
[PbL(H$_2$O)$_3$]	0.646	72.10	

Table 8 – Cytotoxicity (IC50) of tested compounds on HCT-116 cell line.

Compounds	Cytotoxicity IC50 (μg/mL)	
5-FU	5.2	
H$_2$L	13.1	
[Co(HL)$_2$]	11.4	
[Hg(HL)(H$_2$O)$_2$Cl]	>100	11.4
[Cd(HL)$_2$]	37.5	
[PbL(H$_2$O)$_3$]	20.1	

IC50 (μg/mL): 1–10 (very strong), 11–20 (strong), 21–50 (moderate), 51–100 (weak) and above 100 (non-cytotoxic). 5-FU = 5-fluorouracil.
3.6.6. Interference study

The effect of foreign ions on the separation process is very important in order to investigate the ability of proposed method to be applied on real water samples. So the effect of various concentrations of both cations and anions, usually present in some water samples, on the removal percentage of 10 mg L\(^{-1}\) Cd(II) or Pb(II) ions at pH 7 and 30 mg L\(^{-1}\) H\(_2\)L was studied. Chloride salts of cations were used, whereas the anions were used as the corresponding potassium or sodium salts. The tolerable amounts of each ion, giving an error of ±4% in the removal efficiency of Cd(II) or Pb(II) ions, are listed in Table 9. It was proven that foreign ions with relatively high concentrations (in comparison with that of Cd(II) or Pb(II) ions) did not affect badly the flotation of cadmium or lead and the procedure can be applied on water samples.

3.6.7. Application

In order to inspect the applicability of the recommended procedure, a series of experiments were carried out to recover 10 mg L\(^{-1}\) of Cd(II) or Pb(II) ions spiked to 1 L of aqueous solution and some real water samples. Flotation experimentations were done using 50 mL clear, filtered, uncontaminated sample solutions at pH 7. The results showed that the recovery percentage was quantitative and agreeable under the recommended conditions of the applied flotation procedure (Table 10).

Ion	Interference/analyte ratio (mg L\(^{-1}\))	Re % Cd(II)	Re % Pb(II)
Na\(^+\)	25	98.7	99.2
K\(^+\)	45	96.8	97.1
Mg\(^{2+}\)	35	97.4	97.9
Ca\(^{2+}\)	30	92.7	93.4
Cl\(^-\)	30	96.8	97.7
SO\(_4^{2-}\)	20	94.8	95.4
HCO\(_3^-\)	25	92.8	94.3
CH\(_3\)COO\(^-\)	40	94.5	95.6

\([M = 2 \times 10^{-4}\text{mol.L}^{-1}; \text{Ligand} = 2 \times 10^{-4}\text{mol.L}^{-1}; \text{HOL} = 1 \times 10^{-3}\text{mol.L}^{-1}; \text{pH} = 7]\).
3.6.8. Suggested flotation mechanism

The mechanism of the flotation of metal–ligand precipitates is suggested depending on the following points:

1. Cd(II) and Pb(II) reacted with the prepared ligand in a M:L ratio of 1:1 to give the complex M:L according to the following equation:

\[\text{M}^{2+} + \text{H}_2\text{L} = \text{M}_2\text{L} + 2\text{H}^+ \]

The prepared ligand has several sites comprising electron-negative atoms, such as carbonyl oxygen (C=O) and azomethine nitrogen (C=N) as shown in Scheme 1.

2. Oleic acid began to dissociate at pH >5.2 [54] and the percentage of various forms of oleic acid is determined by IR analysis, and the data are presented in Table 11. The IR spectra of oleic acid with changing pH indicated that at 1300–1800 cm\(^{-1}\), there are bands characteristic of the groups CO\(_2\)H, CO\(^2\) and CO\(^\ominus\) contained with Na [55]. These data agree with those reported [56] that the C=O stretching band of oleic acid at 1705 cm\(^{-1}\) was shifted because of ionization to bands in the range 1520–1540 cm\(^{-1}\) for sodium oleate. As a result, oleic acid has the ability to interact with other systems, via hydrogen bond formation, either in its dissociated (R-COO\(^-\)) or un-dissociated (R-COOH) forms depending on the pH of the medium and according to the following:

\[\text{R-COOH} + \text{MHL}^- = \text{R-COO}^- + \text{M}^2+ + \text{L}^- \]

\[\text{R-COO}^- + \text{MHL}^- = \text{R-COO}^- + \text{M}^2+ + \text{L}^- \]

The combination of oleic acid surfactant with the cadmium–ligand or lead–ligand chelate gave hydrophobic aggregates that float with the help of air bubbles, which are created inside the flotation cell by shaking gently up to the surface of the solution [57].

Table 10 – Recovery of 15 mg L\(^{-1}\) of studied metal ions from some water samples.

Water samples (location)	Metal (mg L\(^{-1}\))	Re % Cd(II)	Re % Pb(II)
Sharm El-Sheikh	15	85.29064	96.64000
Alexandria	15	90.18719	97.29333
Wady	15	88.58128	98.95333
Mansoura	15	90.63054	97.69333

\[\text{Ligand} = 2 \times 10^{-4} \text{mol L}^{-1} ;\text{HOL} = 1 \times 10^{-3} \text{mol L}^{-1} ;\text{pH} = -7\].

Table 11 – Different forms of oleic acid determined by spectrophotometric.

pH	HOL (%)	OLI (%)	NaOL (%)	Total (%)
5.2	100.0	0.0	0.0	100
8.0	6.5	34.2	0.0	100
8.2	38.5	57.7	3.8	100
9.0	13.6	68.2	18.2	100
11.5	0.0	80.0	20.0	100
12.0	0.0	52.2	47.8	100

4. Conclusions

In this paper, Co(II), Pb(II), Hg(II) and Cd(II) complexes of the 3-(2-(4-(dimethylamino)benzylidene)hydrazinyl)-3-oxo-N-(thiazol-2-yl)propanamide (H\(_2\)L) were synthesized and characterized by elemental analysis, spectroscopy techniques and physical measurements. The results showed that the H\(_2\)L acted as a mononegative or binegative tridentate ligand. Also, DFT calculations were done to predict the host–guest interaction between the Schiff base and various metal cations. Furthermore, the ligand and its complexes were screened for biological activity. The results show that the H\(_2\)L and Co(II) complex have highest biological activity. Also, it is successfully applied the recovery of Cd(II) or Pb(II) ions that obtained from different environmental water samples as shown in Table 10. The flotation mechanism was proposed dependent on the formation of hydrogen bonding between oleic acid surfactant and cadmium–ligand or lead–ligand complex.

REFERENCES

[1] Ortego L, Meireles M, Kasper C, Laguna A, Villacampa MD, Gimeno MC. Group 11 complexes with amino acid derivatives: synthesis and antitumour studies. J Inorg Biochem 2016;156:139–44.
[2] Saini R, Kumar V, Gupta A, Gupta G. Synthesis, characterization, and antibacterial activity of a novel heterocyclic Schiff’s base and its metal complexes of first transition series. Med Chem Res 2014;23:690–8.
[3] Zaky RR, Yousef TA, Abdallahy AM. Computational studies of the first order kinetic reactions for mononuclear copper(II) complexes having a hard–soft NS donor ligand. Spectrochim Acta A 2014;130:178–87.
[4] Raja S. Synthesis, spectroscopic characterization, analgesic, and antimicrobial activities of Co(II), Ni(II), and Cu(II) complexes of 2-([N,N-bis-(3,5-dimethyl-pyrazolyl-1-methyl])aminothiazole. Med Chem Res 2015;24:1578–85.
[5] Ramalho TC, Martins TLC, Borges LEP, De Pinho MH, De Avillez RR, Da Cunha EF. Influence of Zn–Cd substitution: spectroscopic and theoretical investigation of 8-hydroxyquinoline complexes. Spectrochim Acta A 2009;72:726–9.
[6] Wu Y, Jiang Z, Hu B, Duan J. Electrothermal vaporization inductively coupled plasma atomic emission spectrometry determination of gold, palladium, and platinum using chelating resin YPA4 as both extractant and chemical modifier. Talanta 2004;63:585–92.
[7] Qing Y, Hang Y, Wanjuan R, Jiang Z, Hu B. Adsorption behavior of Noble metal ions (Au, Ag, Pd) on nanometer-size titanium dioxide with ICP-AES. Anal Sci 2003;19:1417–20.
[8] Yin P, Xu Q, Qu R, Zhao G, Sun Y. Adsorption of transition metal ions from aqueous solutions onto a novel silica gel matrix inorganic-organic composite material. J Hazard Mater 2010;173:710–16.
[9] Chand R, Watari T, Inoue K, Kawakita H, Luitel HN, Parajuli D, et al. Selective adsorption of precious metal from hydrochloric acid solutions using porous carbon prepared from barley straw and rice husk. Miner Eng 2009;22:1277–82.
[10] Soyliak M, Tuzen M. Coprecipitation of gold(III), palladium(II) and lead(II) for their flame atomic absorption spectrometric determinations. J Hazard Mater 2008;152:656–61.
[11] Ghazy SE, Mostafa HA, El-Farrag SA, Fouda AS. Flocculation–separation of Nickel(II) from aqueous media using some
[51] Ghazy SE, Samra SE, Mahdy AF, El-Morsy SM. Removal of aluminum from some water samples by sorptive-flotation using powdered modified activated carbon as sorbent and oleic acid as surfactant. Anal Sci 2006;22:377–82.

[52] Klassen VI, Mokrousov VA. An introduction to the theory of flotation. London: Butterworths; 1963.

[53] Ghazy SE, Mostafa GA. Flotation-separation of chromium(VI) and chromium(III) from water and leathers tanning waste using active charcoal and oleic acid surfactant. Bull Chem Soc Jpn 2001;74:1273–8.

[54] Ghazy SE, Kabil MA. Determination of trace copper in natural waters after selective separation by flotation. Bull Chem Soc Jpn 1994;67:474–8.

[55] Ghazy SE, Rakha TH, El-Kady EM, El-Asmy AA. Use of some hydrazine derivatives for the separation of mercury(II) from aqueous solutions by flotation technique. Indian J Chem Techn 2000;7:178–82.

[56] Po’kin SI, Berger GS, Revazashavili IB, Shchepkina MM. Phase diagram and collector properties of oleic acid with changing pH. Izv Vyssh Ucheb Zaved Tsvet Met 1968;11:6–11.

[57] Ramachandra RS. Surface chemistry of froth flotation, reagents and mechanisms, vol. 2. 2nd ed. New York: Kluwer Academic/Plenum Publishers; 1982.