THE SPECTROSCOPY AND PHOTOPHYSICS OF π HYDROGEN-BONDED COMPLEXES: BENZENE–CHCl₃

ALBERT J. GOTCH, R. NATHAN PRIBBLE, FREDERICK A. ENSMINGER, and TIMOTHY S. ZWIER*

Department of Chemistry, Purdue University West Lafayette, IN 47907–1393

(Received 10 March 1993)

A vibronic level study of the spectroscopy and photophysics of the C₆H₆–CHCl₃ complex has been carried out using a combination of laser-induced fluorescence and resonant two-photon ionization (R2PI). In C₆H₆–CHCl₃, the S₁–S₀ origin remains forbidden while the 16'₀ transition is weakly induced. Neither 6'₀ nor 16'₀ are split by the presence of the CHCl₃ molecule. On this basis, a C₃ᵥ structure is deduced for the complex, placing CHCl₃ on the six-fold axis of benzene. The large blue-shift of the complex’s absorption relative to benzene (+178 cm⁻¹) and the efficient fragmentation of the complex following one-color R2PI reflect a hydrogen-bonded orientation for CHCl₃ relative to benzene’s π cloud. Dispersed fluorescence scans place a firm upper bound on the ground state binding energy of the complex of 2,024 cm⁻¹. Both the 6'₁ and 6'₁ levels do not dissociate on the time-scale of the S₁ fluorescence and show evidence of extensive state mixing with van der Waals’ levels primarily built on the 0' level of benzene. The C₆H₆–(CHCl₃)₂(cluster) shows extensive intermolecular structure beginning at +84 cm⁻¹, a strong origin transition, and splitting of 6'. A structure which places both CHCl₃ molecules on the same side of the benzene ring is suggested on this basis. The vibronic level scheme used to deduce the structure of C₆H₆–CHCl₃ is tested against previous data on other C₆H₆–X complexes. The scheme is found to be capable, in favorable cases, of deducing the structures of C₆H₆–X complexes based purely on vibronic level data. Finally, the results on C₆H₆–CHCl₃ are compared with those on C₆H₆–HCl and C₆H₆–H₂O to evaluate the characteristics of the π hydrogen bond.

KEY WORDS: Vibronic spectroscopy, Cluster, Hydrogen bond

I. INTRODUCTION

Benzene’s role as prototypical aromatic invites fundamental studies of its intermolecular interactions with various solvents. One approach to such studies focuses on the spectroscopy of the cold, gas phase benzene–X_∞ clusters formed in a super-sonic expansion. These studies have in favorable cases provided information on the lowest energy benzene-solvent structures, bracketed their binding energies, made some headway in assigning intermolecular vibrations which characterize the intermolecular potential energy surface, and probed the nature and extent of

* Author to whom correspondence should be addressed.
Submitted to the Laser Chemistry special issue in honor of Mitsuo Ito.

187
intramolecular–intermolecular vibrational state mixing as a function of energy and vibrational mode. Recent years have seen cluster-size specific studies of benzene complexed to rare gas atoms,1-7 N2,8 CO,9 CO2,8 simple hydrocarbons,9,10 CC14,11 HCl,12,13 H2O,14,15 CH3OH,16 and H2O/CH3OH mixtures.17

One of the intriguing aspects of the studies of benzene–HCl, –H2O, and –CH3OH is the insight they provide to the pseudo-hydrogen bonding of these protic solvents to benzene’s electron-rich π cloud. By contrast to the conventional linear X···HY hydrogen bond, the benzene···HY interactions involve delocalized electrons spread out over benzene’s carbon framework.18

In this paper we extend our study of benzene complexes with hydrogen bonding solvents to include CHCl3. Studies of benzene/chloroform solutions using n.m.r.,19 infrared,20 and Raman20 spectroscopies have pointed toward the formation of a hydrogen-bonded C6H6–CHCl3 complex in solution. Here we characterize the gas-phase C6H6–CHCl3 complex by the perturbations imposed on the S1→S0 spectrum of benzene by the CHCl3 molecule. From the symmetries of the vibrational fundamentals which gain intensity upon complexation, a C3v geometry is deduced for the 1:1 complex. In the process of this study we have generalized a scheme for deducing vibrationally-averaged structures for C6H6–X complexes based solely on vibronic level symmetry arguments. We apply this scheme to the C6H6–X complexes studied by our group to date. A comparison of the structures and spectroscopy of C6H6–HCl, C6H6–H2O, and C6H6–CHCl3 provides some insight to the nature of the π hydrogen bond.

II. EXPERIMENTAL

The molecular beam time-of-flight mass spectrometer used in these studies has been described previously.14 C6H6–(CHCl3)n clusters are formed by expanding a mixture containing C6H6 and CHCl3 in helium from a pulsed valve of 0.8 mm diameter operating at 20 Hz. The concentrations of these vapors are controlled by metering flows of helium over the room temperature liquids using needle valves and mixing these flows with the main flow of helium. Typical expansion conditions employ ~0.5% C6H6 and 0.1–1.0% CHCl3 at a total pressure of 2–4 bar. The clusters are resonantly ionized by the unfocused output of an excimer-pumped dye laser operating on Coumarin 503, doubled in a β-barium borate crystal. Typical energies of 0.1–1.0 mJ/pulse are used. Mass-selected R2PI scans are recorded in the linear mode of the TOF mass spectrometer using a 100 MHz digital oscilloscope.

Fluorescence excitation scans, dispersed fluorescence scans, and fluorescence lifetime measurements are recorded in a second apparatus which has also been described elsewhere.21 An excimer-pumped dye laser is used as excitation source at typical energies of 0.01–0.1 mJ/pulse. A 3/4-meter monochromator is used to record dispersed fluorescence scans at a resolution of about 40 cm−1 FWHM. Fluorescence lifetime measurements are 500 shot averages employing a 100 MHz digital oscilloscope.
III. RESULTS AND ANALYSIS

A. Vibronic Probes of Cluster Structure in C₆H₆-X complexes

In several previous studies of C₆H₆-X complexes, we have made use of the forbidden nature of benzene’s S₁(B₂u) ← S₀(A₁g) transition as a vibronic level indicator of the binding sites taken up by the complexing molecule.⁸⁻¹⁸ While the S₀−S₁ transition is electric dipole forbidden in benzene, vibrational levels of e₂g symmetry can induce intensity in the transition by coupling to the S₃(E₁u) state whose transition from S₀ is dipole-allowed and very intense (f = 0.88). ²² ν₆₅, an e₂g in-plane ring elongation mode, is first-order allowed, and the 610 transition is one of the most intense vibronic transitions in the spectrum of free benzene. ²³

Following complexation to a solvent molecule X, the reduced symmetry of the complex may induce intensity in vibronic transitions in benzene which are otherwise forbidden.⁹⁻¹⁷ In the course of this study, we have developed a more systematic procedure for using these transitions to deduce the symmetry of the complex. Table 1 presents a correlation of symmetry labels from benzene (D₆h) to C₆H₆-X complexes of varying reduced symmetries. In the complexes, the solvent molecules induce intensity in new vibronic transitions in benzene by distorting the benzene’s electron distribution away from its symmetry in free benzene. The new transitions induced by the solvent thus reflect the over-all symmetry of the complex.

Table 1: Symmetry correlation table for C₆H₆ and C₆H₆-X complexes with reduced symmetry.

D₆h	C₆v	C₃v(σv)	C₃v(σd)	C₂v(σ)	C(σ₃u)	C(σ₅u)
A₁g	A₁a	A₁b	A₁c	A₁d	A₁e	A₁f
A₂g	A₂a	A₂b	A₂c	A₂d	A₂e	A₂f
B₁g	B₁a	B₁b	B₁c	B₁d	B₁e	B₁f
B₁g	B₁a	B₁b	B₁c	B₁d	B₁e	B₁f
E₁g	E₁a	E₁b	E₁c	E₁d	E₁e	E₁f
E₂g	E₂a	E₂b	E₂c	E₂d	E₂e	E₂f
A₁u	A₁a	A₁b	A₁c	A₁d	A₁e	A₁f
A₂u	A₂a	A₂b	A₂c	A₂d	A₂e	A₂f
B₁u	B₁a	B₁b	B₁c	B₁d	B₁e	B₁f
B₁u	B₁a	B₁b	B₁c	B₁d	B₁e	B₁f
E₁u	E₁a	E₁b	E₁c	E₁d	E₁e	E₁f
E₁u	E₁a	E₁b	E₁c	E₁d	E₁e	E₁f

*aSymmetry types in bold-faced type have S₀(A₁g)---S₁(B₂u) fundamentals vibronically-allowed in C₆H₆-X complexes via coupling to the E₁u state of benzene.

bUnderlined entries will have X of fundamentals in C₆H₆-X which are split by virtue of the loss of degeneracy in the vibrational modes of benzene induced by complexation with X.

Table 1 highlights in bold-faced type the symmetries of levels which vibronically couple the S₁ and S₃ states in the reduced-symmetry complexes. In complexes of C₅v or C₃v symmetry, vibronic coupling is the only mechanism for inducing intensity, since the S₀−S₁ transition remains forbidden. X₁₀ fundamentals in vibrations of e₂ (e)
symmetry will be first-order vibronically coupled to the S_1 state in C_6H_6 (C_{3v}). As the symmetry of the complex is reduced to C_{2v}, the S_0-S_1 transition becomes allowed (with π polarization), inducing intensity in the origin transition. At the same time, the doubly degenerate vibrations split, with the transition to one member of the X_0^1 doublet being vibronically allowed, the other both electric dipole and vibronically allowed. Below C_{2v} symmetry, a further increase in the number of allowed and vibronically allowed transitions is predicted.

We will see that in the C_6H_6–CHCl$_3$ complex, the application of the scheme shown in Table 1 allows us to deduce the symmetry of the complex. However, information on the orientation of the solvent molecule within this symmetry type must be gained from other data. One such piece of evidence arises from the accumulated experience of workers investigating a large number of aromatic–X complexes. In general, complexes which are hydrogen-bonded to the benzene π cloud produce absorptions which are blue-shifted from those of the parent aromatic. For example, C_6H_6–HCl and $-H_2O$ possess frequency shifts of +125, and +50 cm$^{-1}$, respectively. Purely dispersive interactions, on the other hand, typically give rise to red-shifted transitions (e.g., C_6H_6–Ar3 and C_6H_6–CCl$_4$ have transitions shifted by −21 and −68 cm$^{-1}$ from C_6H_6).

A π hydrogen bonding interaction in the complex would also be indicated by efficient fragmentation to $C_6H_6^+$ + X following photoionization. As demonstrated clearly in C_6H_6–HCl, the fragmentation of the ionized complex in R2PI results from vertical ionization from the hydrogen-bonded neutral structure to a repulsive part of the ionic potential energy surface resulting from the positive end of the dipole on X initially being oriented toward the newly-created positive charge on the benzene ring.

B. The C_6H_6–CHCl$_3$ Complex

Figure 1 presents a laser-induced fluorescence excitation scan in the region near the 6^1_0 transition of C_6H_6. Dominating the spectrum is a transition blue-shifted from benzene’s by 178 cm$^{-1}$. A short progression with spacing 25 cm$^{-1}$ is also observed which scales in intensity with the main peak under all conditions. There is little interference from benzene transitions in the region, aside from a weak transition at +235 cm$^{-1}$ (marked by a B). The narrow peaks marked by arrows in the figure are due to higher clusters whose assignment will be addressed later.

A one-color R2PI spectrum over the same 6^1_0 region monitoring the $[C_6H_6$–CHCl$_3]^+$ and $[C_6H_6]^+$ mass channels is shown in Figure 2. The +178 cm$^{-1}$ peak and the progression built on it dominate the spectra from both mass channels with no corresponding feature in the 1 : 2 mass channel. The spectrum in the 1 : 1 mass channel shows some interference to the red. Concentration studies indicate that these transitions are likely due to the 1 : 2 cluster, as discussed in the next section. We thus assign the +178, 205, and 231 cm$^{-1}$ transitions to the C_6H_6–CHCl$_3$ complex. The blue shift of these transitions relative to benzene is greater than any other C_6H_6–X complex so far.
Figure 1 Laser-induced fluorescence excitation scan in the region of the 6′₁₀ transition of C₆H₆–CHCl₃. The frequency scale is relative to the 6′₁₀ transition of free benzene. The peaks marked by an asterisk have been assigned to C₆H₆–CHCl₃, a weak benzene transition is marked by a ‘B’, and two transitions due to higher clusters are marked with arrows. Expansion conditions employ 0.5% C₆H₆, 0.5% CHCl₃ at a total pressure of 3 bar.

studied. In addition, the complex undergoes fragmentation with 90–95% efficiency to C₆H₆⁺ + CHCl₃ following one-color photoionization through 6′₁₀, even under unfocussed laser conditions following extrapolation to zero laser power.

The large intensity of the 6′₁₀ transition of C₆H₆–CHCl₃ makes it possible to search with good sensitivity for the corresponding 0′₀ transition. This transition is not observed, with an upper bound on its intensity of 0.1% of the 6′₁₀ transition. Etalon scans of the 6′₁₀ transition show no evidence of splitting of the 6′₁₀ transition.

Despite not being able to observe the origin transition, the 16′₁₀ transition of the complex is observed (Figure 3) with an intensity about 4% of the 6′₁₀ transition. ν₁₆ is an e₂ᵤ vibration in benzene, and its 16′₁₀ fundamental is forbidden in the isolated
molecule. The S_1 frequency of ν_{16} in the complex is unchanged from its value in the free molecule ($+238 \text{ cm}^{-1}$). No splitting can be resolved in the transition.

Based on this vibronic level data, which is summarized in Table 2, a C_{6v} or C_{3v} structure is deduced for the C_6H_6–CHCl$_3$ complex from Table 1. Given the symmetry of the CHCl$_3$ molecule, the only allowable choice for a rigid complex is C_{3v}, placing the CHCl$_3$ on the six-fold axis of benzene. Both the large blue shift of its absorption relative to benzene and the efficient fragmentation of the complex following photoionization point to a hydrogen-bonded orientation for the CHCl$_3$ molecule in which the hydrogen points in toward the benzene ring.

The vibronic level data of Table 2 cannot rule out non-rigidity in the complex. For instance, the lack of an origin transition could also be produced by an off-axis structure which is capable of free internal rotation about the six-fold axis with an internally-rotationally averaged structure which retains benzene’s six-fold symmetry.
SPECTROSCOPY AND PHOTOPHYSICS OF π

Figure 3 R2PI scan in the 161\textsubscript{0} region monitoring a) [C\textsubscript{6}H\textsubscript{6}-CHCl\textsubscript{3}]+ with CHCl\textsubscript{3} present, b) [C\textsubscript{6}H\textsubscript{6}-CHCl\textsubscript{3}]+ without CHCl\textsubscript{3} present, c) [C\textsubscript{6}H\textsubscript{6}]+ with CHCl\textsubscript{3} present, and d) [C\textsubscript{6}H\textsubscript{6}]+ without CHCl\textsubscript{3} present. Scans a) and b) were recorded at 15 times higher sensitivity than those in c) and d). The 161\textsubscript{0} transition observed in the complex is forbidden in C\textsubscript{6}H\textsubscript{6}.

Table 2: Vibronic level features of C\textsubscript{6}H\textsubscript{6}-(CHCl\textsubscript{3})\textsubscript{n} Clusters

Cluster size	Freq. shift (cm-1)	Fragment Ratio	$\delta_{\text{v}}^\text{0}/\delta_{\text{i}}^\text{0}$ Intensity	$\delta_{\text{v}}^\text{0}$ splitting (cm-1)	$\delta_{\text{i}}^\text{0}/\delta_{\text{i}}^\text{1}$ Intensity	$\delta_{\text{i}}^\text{0}$ splitting (cm-1)	Structure	Binding Energy (cm-1)
1 : 1	+178	15 : 1	<0.1%	None	4%	None	C\textsubscript{3v}	(1620)--2024
1 : 2	+84	>40 : 1	7%	1.5	???	???	“Same side of ring(?)”	???

Alternatively, even if the CHCl\textsubscript{3} molecule is on the six-fold axis, it may still be capable of internal rotation of the chlorine atoms about the C–H bond axis. However, the small internal rotation constant of the CHCl\textsubscript{3} molecule (c.f. that in H\textsubscript{2}O, for instance)14 means that barriers to internal rotation of only a few wavenumbers would
effectively localize the chlorine atoms. The splittings induced in the spectrum by internal rotation are too small to be observed in the present study, justifying treatment as a C₃ᵥ hydrogen-bonded structure at our resolution.

Dispersed fluorescence (DFL) scans from the 6¹, 6¹1¹, and 6¹1² levels are shown in Figures 4–6, respectively. In Figure 4a, the DFL scan of 6¹ in free benzene is shown for comparison to 6¹ in the complex. At 6¹, the fluorescence reflects the same vibronic state character as that carrying the oscillator strength in absorption, indicating that state mixing at this level of excitation (521 cm⁻¹) is modest. No evidence of dissociation is present in the spectrum. A “shelf” of intensity just to the red of the 6¹₂¹₀ transitions may signal the beginnings of state mixing with intermolecular levels. The fluorescence lifetime of the 6¹ level of the complex is 32 ± 5 nsec compared to 87 nsec for the free molecule.

The comparison of the 6¹1¹ DFL scan of the complex (Figure 5b) with the 0⁰ scan of free benzene shows a clear resemblance between the two. However, the prominent

![Figure 4](image_url)
Figure 4 Dispersed fluorescence scan of the emission from the 6¹ level of b) C₆H₆–CHCl₃ and from a) C₆H₆ itself for comparison.
transitions in the complex's spectrum are red-shifted by about 25 cm\(^{-1}\) from that of free benzene (see the inset of Figure 5b) and show satellite structure shaded to the red which is not present in Figure 5a. Furthermore, the fluorescence lifetime of the level is 39 ± 5 nsec, far shorter than the 107 nsec lifetime expected for the 0\(^0\) level of benzene. As a result, no vibrational predissociation occurs on the timescale of the fluorescence. The 0\(^0\)-like fluorescence suggests that state mixing between intramolecular and intermolecular modes is extensive at 6\(^1\)\(^1\) (1,444 cm\(^{-1}\) above the origin), with the predominant character of the emitting modes being 0\(^0\)vdw\(^m\). Such behavior has been observed previously in several other aromatic–X complexes.\(^{11,27-29}\) The secondary humps red-shifted from the main peaks by about 160 cm\(^{-1}\) are likely 16\(^1,1^0\)vdw\(^m\) emission.
Figure 6 Dispersed fluorescence scan of the emission from the $6^1 1^2$ level of b) C$_6$H$_6$-CHCl$_3$ and from a) 0' of C$_6$H$_6$ for comparison. The emission observed in b) is due to the indicated levels of free C$_6$H$_6$ following vibrational predissociation of the complex.

The DFL spectrum from $6^1 1^2$ is from several levels of free benzene following vibrational predissociation of the complex. No remnant of the 0'vdw fluorescence is observed. This is reflected in the longer fluorescence decay time (~80 nsec) of the observed emission. Several benzene products states are present: 0', 16', 16'', 6'. The highest energy of these, 6', places a firm upper bound on the excited state binding energy of the complex of $D_0' \leq 1,846$ cm$^{-1}$. Including the 178 cm$^{-1}$ blue-shift in the absorption leads to a ground state binding energy of $D_0'' \leq 2,024$ cm$^{-1}$.

C. Larger Clusters

1. C$_6$H$_6$–(CHCl$_3$)$_2$:
Based on the structure of the 1:1 complex, one low-energy structure for the 1:2 cluster would place a second CHCl$_3$ molecule hydrogen-bonded to the opposite side
of the benzene ring. The predicted spectral characteristics for such a cluster structure would include (i) a strong blue-shifted absorption nearly twice the +178 cm\(^{-1}\) observed for the 1:1 cluster, (ii) a forbidden origin, and (iii) no splitting of the 6\(^{1}\)\(_0\) transition. However, under the range of expansion conditions sampled in the present study, no transitions due to higher clusters were observed to the blue of the 1:1 absorptions. Instead, as Figure 7a highlights, a set of transitions is observed in the 1:1 mass channel to the red of the 1:1 peaks which grow at higher CHCl\(_3\) flow relative to the 1:1 features. The transitions begin at +84 cm\(^{-1}\) and show extensive intermolecular vibrational structure. The 6\(^{1}\)\(_0\) transition and all combination bands built on it are split by 1.5 cm\(^{-1}\). The origin is clearly observed with an intensity 9\% that at 6\(^{1}\)\(_0\). We tentatively assign these transitions to the 1:2 cluster fragmenting with high efficiency into the 1:1 mass channel following photoionization. The vibronic level data is summarized in Table 2.
A comparison with C₆H₆-(CH₃OH)₂ and C₆H₆-(H₂O)₂ is given in Figure 7b, c. Note the strong similarities between the spectral characteristics of these 1 : 2 clusters with their intense van der Waals' structure, clear 6₁,₅ splitting, strong origin and similar frequency shifts. While the present data provides insufficient evidence for a firm structural determination, the observed transitions are clearly not due to a structure in which the second CHCl₃ attaches along the six-fold axis on the opposite side of benzene. Furthermore, the similarities with C₆H₆-(CH₃OH)₂ and C₆H₆-(H₂O)₂ suggest a similar "same side of the ring" structure for the C₆H₆-(CHCl₃)₂ cluster. It seems likely that this structure is the lowest-energy structure for the cluster by virtue of our inability to observe absorptions due to other structural types. However, a strong kinetic preference for formation of this conformer over the Cl₃CH–C₆H₆–HCCl₃ conformer cannot be ruled out categorically.
2. The 2:n Clusters:

Figure 8d reproduces a portion of the fluorescence excitation scan from Figure 1 in the 610 region of the C6H6-CHC13 complex. As pointed out earlier, this spectrum is complicated by the presence of transitions due to larger clusters. In order to identify the carriers of these transitions, R2PI spectra have been recorded in this region under a wide range of expansion conditions while monitoring an array of mass channels for larger clusters. As Figure 8a, c reveal, the transitions in question appear in the 2:2+ and 2:3+ mass channels. Given the efficient fragmentation of even the 1:1 cluster by loss of a CHC13 molecule, it seems likely that these absorptions are due to the 2:3 and 2:4 clusters, respectively.

It is noteworthy that these transitions are associated, not with 610, but with 110, with red-shifts of -197 and -204 cm\(^{-1}\) from the parent transition. This has been confirmed by scans such as those shown in Figure 9 which identify the corresponding red-shifted transitions associated with the origin, 610, and 110. The transitions built on 610, 110, and 120 have also been identified. As shown in Figure 9b, the -197 and -204 cm\(^{-1}\) transitions are split at 610 by 2.2 and 2.4 cm\(^{-1}\), respectively, and are red-shifted slightly from their positions relative to free benzene.

Given the uncertainty in the assignment of cluster size and the presence of (at least) two C6H6 molecules in the cluster, the vibronic level data at hand provide no trustworthy structural deductions. Nevertheless, that any (C6H6)\(_m\)-(CHC13)\(_n\) clusters would have such a large red shift given the large blue shift of the 1:1 complex points to significant structural differences in the interactions of benzene and CHC13 in these clusters, providing fertile ground for further study.

IV. DISCUSSION

The major deductions of this work center on the C6H6-CHCl3 complex. In this case, the vibronic level data indicate a structure for the complex in which CHCl3 is on the six-fold axis of benzene, “hydrogen-bonded” to benzene’s π cloud. It is not often that the structure of a complex can be deduced with good certainty based solely on vibronic level data. However, the simple, benzene-specific scheme developed in Table 1 and applied to C6H6-CHCl3 makes use of symmetry arguments to deduce its point group with little ambiguity. Given the number of C6H6-X complexes which have been studied in some detail, it is instructive to review their spectral features using these methods. To that end, Table 3 and Figure 10 summarize the spectral characteristics of several C6H6-X complexes with the polar solvents CHCl3, HCl, and H2O, and with the non-polar solvents C2H2 and CCl4.

As we have seen, in C6H6-CHCl3, the lack of an S0-S1 origin, the presence of a 1610 transition, and no splitting of the degenerate 61 or 161 levels predicts a C3v structure for the complex, as shown schematically in Figure 10.

The diatomic HCl provides another clear, testable example of the vibronic level methods since C6H6-HCl is known from the microwave studies of Read et al.\(^{13\alpha}\) and
Figure 9 LIF excitation scans of the a) 0′′₀, b) 6′₀ and c) 1′₀ transitions of the red-shifted peaks tentatively assigned to the 2:3 and 2:4 clusters. The zero of the relative frequency scale is the corresponding transitions in free C₆H₆. The transition marked by a 'B' is 6′₀,1′₀ hot band of C₆H₆ while the transition marked 1:1 is the van der Waals' stretch fundamental of C₆H₆–CHCl₃ built on 6′₀. The transitions at 6′₀ are split by 2.0 cm⁻¹.

Balle et al.⁵ to be C₆v symmetry with HCl hydrogen-bonded to benzene. R2PI spectra by our group have confirmed this structure and extended it to the S₁ state by the rotational band contour fitting of the 6′₀ transition.⁶ At the same time, the vibronic level data for the complex (Table 3) are uniquely consistent with this structure. As Figure 10 shows in schematic form, no S₀–S₁ origin is observed for the complex. Neither is the 6′₀ transition of C₆H₆ measurably split by HCl. A search was never carried out for the 16′₀ transition, but it is predicted to be weakly allowed and unsplit, as it was in C₆H₆–CHCl₃. From Table 3, a C₆v or C₃v structure is deduced, with the C₆v structure being consistent with a diatomic's attachment to benzene.

Similarly, one of the two conformers⁵,⁶ of C₆H₆–C₂H₂ possesses no origin (<0.1% of 6′₀), a weak 16′₀ transition (2% of 6′₀), and no splitting at 6′ or 16′, again pointing to a C₆v structure with the C₂H₂ center-of-mass on the six-fold axis. In this case, it
Table 3: Vibronic Level Probes of C₆H₆–X Structures

C₆H₆ Partner	Freq. shift (cm⁻¹)	Fragment Ratio	0⁰ₙ/6⁰ₙ Intensity	6⁰ₙ/6¹ₙ Intensity	16¹ₙ/6¹ₙ Intensity	Structure Energy (cm⁻¹)
CHCl₃	+178	15 : 1	<0.1%	None	4%	C₃ᵥ
HCl	+125	50 : 1	<1%	None	???	C₆ᵥ (645)–1330
H₂O	+55	14 : 1	<0.1%	Internal rotation	???	G₃₄ (570)–970
C₂H₂	+138	15 : 1	<0.1%	None	2%	C₆ᵥ (520)–730
CCl₄	−68	2 : 1	18%	2.6	2%	C₂ᵥ or lower (850)–1140

aRef. 12.
bRef. 14.
cPrevious data of Carrasquillo et al. (Ref. 10) have shown that two conformers of C₆H₆–C₂H₂ exist, one with C₆ᵥ structure (shown in the table), the other with C₃ᵥ structure.
dRef. 11.

Figure 10 A schematic presentation of the single vibronic level S₁ ← S₀ spectra predicted for C₆H₆–X complexes as a function of their symmetry.
is not clear from the vibronic level alone whether the acetylene molecule lies perpendicular to the benzene ring, or freely internally rotates in a parallel orientation.

The spectral features of the C₆H₆-CCl₄ complex (Table 3) have been detailed in a recent paper by Gotch et al.¹¹ In this case, the origin is strongly induced by complexation, with intensity 18% of that at 6¹0. The 16¹0 and 6¹0 transitions are both observed and are split by about 2.5 cm⁻¹. The members of the 16¹0 and 6¹0 doublets are of unequal intensity. As Figure 10 shows, the complex is deduced on this basis to have at most a C₃v(z) structure.³¹ For a complex of this symmetry, the S₀–S₁ transition is dipole allowed with transition moment along the x axis, producing an origin transition. The e₂g and e₂u vibrations split to a₁ + a₂, with the ‘a₁’ component being vibronically induced while the ‘a₂’ level has both dipole allowed and vibronically induced intensity contributions. It should be noted that the deduction of References 11 that the complex must be at most Cs in symmetry is incorrect due to an error in the symmetry of ν₁₆.

As a final example, the C₆H₆–H₂O complex addresses the effect of non-rigidity on the vibronic level data.¹⁴ As shown in Table 3, the C₆H₆–H₂O complex possesses no origin (with intensity <0.1% of 6¹0), but its 6¹0 transition is split to an unequal intensity doublet with 1.6 cm⁻¹ splitting. Taken as a rigid structure, these two features are incompatible with one another. However, the doubling at 6¹0 is removed when HDO is substituted for H₂O. A partial fit of the rotational structure for the complex is accomplished after allowing for non-rigidity of the H₂O molecule involving internal rotation about the six-fold axis and exchange of water’s hydrogens which produce m = 0, m = ±1 levels with different nuclear spin symmetry (where m is the internal rotation quantum number).¹⁴ If nuclear spin statistics alone dictate intensities, a 3 : 1 ratio for m = 0/m = ±1 is predicted. Δm = 0 transitions out of m = 0 and m = ±1 lead to a doubling in the 6¹0 transition, as observed. The high resolution studies of Suzuki, et al.³¹ have confirmed and sharpened this picture. In addition, they have shown unambiguously that the water molecule has the hydrogen(s) pointing into the ring, consistent with the blue-shift and efficient fragmentation observed in our R2PI studies. Thus, the presence of non-rigidity in the complex can lead to anomalous behavior even at the vibronic level which is a clue to its presence. This same non-rigidity significantly complicates the rotational structure and its analysis in a high resolution scan.

Some final comments on the π hydrogen bond are in order. Table 3 and Figure 10 include three structurally well-characterized π hydrogen-bonded complexes: C₆H₆–HCl, C₆H₆–CHCl₃, and C₆H₆–H₂O. CHCl₃ and HCl have a single hydrogen-bonding hydrogen while water has two such hydrogens. In all three complexes, the vibrationally-averaged structure for the complex retains the six-fold symmetry of benzene. In the case of C₆H₆–HCl, the microwave studies¹² indicate that while the chlorine atom is on the six-fold axis, the hydrogen takes up a vibrationally-averaged structure which is 20 degrees off the six-fold axis. The microwave data is not able to distinguish between a global minimum in the potential energy surface (PES) for hydrogen on the six-fold axis and a surface with a small barrier at θ = 0. However, molecular mechanics on clusters (MMC) calculations on C₆H₆–HCl show a single minimum with the HCl hydrogen on the axis, indicating a strong orientation
preference for H down.18 Even in this case, a vibrationally-averaged off-axis orientation results from the heavier weighting of off-axis structures in the degenerate torsional wave functions.

In the same way, the CHCl_3 molecule appears to have a clear orientational preference for hydrogen down, both from its large blue-shift and efficient fragmentation of the photoionized complex. The present data cannot determine whether the global minimum in the PES is on the six-fold axis. Energy minimization calculations on the complex using an intermolecular potential developed by Severance and Jorgenson predict a minimum for H on the six-fold axis.32 Once again, heavier off-axis weighting of the degenerate intermolecular torsional modes will lead to a vibrationally-averaged structure which is somewhat off the six-fold axis. Thus, in both $\text{C}_6\text{H}_6-\text{HCl}$ and $\text{C}_6\text{H}_6-\text{CHCl}_3$ the π hydrogen bond differs structurally from a conventional bond primarily in providing a highly symmetric potential for motion of H off the bond axis which leads to a vibrationally-averaged structure for the hydrogen bond with a slight tilt away from $\theta = 0$.

By contrast, in $\text{C}_6\text{H}_6-\text{H}_2\text{O}$, the two hydrogen-bonding hydrogens on H_2O interact with the delocalized π cloud to produce significant flopiness in the complex. Internal rotation of the water molecule about the six-fold axis and exchange of hydrogens is allowed even at the zero point level. MMC calculations18 predict a barrier to internal rotation of the water molecule about the six-fold axis of benzene of less than 2 cm$^{-1}$. They show further that the water molecule can tumble about 1.6 Å across the face of the benzene ring by swapping the hydrogen which is bonded to the ring with almost no change in the total binding energy to the ring. Thus, the net effect of water’s two hydrogen bonding hydrogens on its interactions with benzene’s delocalized π cloud is to produce an intermolecular potential energy surface which supports large-amplitude motions of water about a nominally hydrogen-bonded configuration. This ability of the water molecule to re-orient on the benzene π cloud with little cost in energy is thus quite different than a traditional $X...HY$ hydrogen bond in which the hydrogen bond is localized between two electronegative atoms X and Y.

The strengths of the π hydrogen-bonds in $\text{C}_6\text{H}_6-\text{HCl}$, $-\text{CHCl}_3$, and $-\text{H}_2\text{O}$ show a considerable range, but appear to be about one-third to two-thirds the strength of an $X...HY$ hydrogen bond. The upper bounds on the binding energies listed in Table 3 are firm since they are based on detection of emission from free benzene following vibrational predissociation of the S_1 complexes. Tentative lower bounds are given in parentheses, where the assumption is made that a lack of predissociation from an S_1 vibronic level on the time-scale of the fluorescence indicates that the complex has been excited below the dissociation threshold. If an ordering of the upper bounds for the complex can serve as a rough guide to binding strengths, it seems that $D_0(\text{C}_6\text{H}_6-\text{CHCl}_3) > D_0(\text{C}_6\text{H}_6-\text{HCl}) > D_0(\text{C}_6\text{H}_6-\text{H}_2\text{O})$. This ordering reflects, not the dipole moments of the molecules (1.01 D, 1.08 D, and 1.85 D, respectively), but rather their polarizabilities (8.50, 2.63, and 1.48×10^{-24} cm3, respectively). The ordering also is in keeping with the ordering of blue-shifts of the S_0-S_1 absorptions relative to benzene ($+178 > +125 > +55$ cm$^{-1}$) which we have taken as a rough indicator of the strength of π hydrogen bonding. The magnitude of the binding in $\text{C}_6\text{H}_6-\text{CHCl}_3$ ($4.6 \leq D_0'' \leq 5.8$ kcal/mol) is somewhat larger than the binding
calculated by the intermolecular OPLS potential of Jorgenson and co-workers (ΔE″ = 4.3 kcal/mol).32 Whether this difference reflects a kinetic shift in the experimental data or a deficiency in the intermolecular potential is still an open question. Despite this, a binding energy of this magnitude provides additional support for solution phase studies whose interpretation hinges on the formation of a well-defined 1 : 1 C6H6–CHCl3 complex in solution.19,20

Finally, the strikingly different spectral characteristics of 1 : 1 (large blue shift, no origin) and 2 : n (large red shift, intense origin) clusters suggests that even in solution it may be possible to choose ultraviolet excitation wavelengths which select certain solvent orientations around solute molecule(s).33

Acknowledgements

Acknowledgement is made to the National Science Foundation (CHE–9108376) and to the Donors of the Petroleum Research Fund, administered by the American Chemical Society, for their support of this research.

References

1. R. L. Whetten and M. Y. Hahn in Studies in Physical and Theoretical Chemistry., Vol. 68, Atomic and Molecular Clusters, ed. E. R. Bernstein (Elsevier, Amsterdam, 1990) p. 765.
2. M. Y. Hahn and R. L. Whetten. Phys. Rev. Lett., 61, 1190 (1988).
3. Th. Weber and H. J. Neusser. J. Chem. Phys., 94, 7689 (1991).
4. W. Scherzer, H. L. Selzle, and E. W. Schlag. Chem. Phys. Lett., 195, 11 (1992).
5. M. Schmidt, M. Mons, and J. LeCalve. Chem. Phys. Lett., 177, 371 (1991); M. Schmidt, J. LeCalve, and M. Mons. J. Chem. Phys., (in press).
6. J. A. Menapace and E. R. Bernstein. J. Am. Chem. Soc., 91, 2533 (1987).
7. E. R. Bernstein. in Studies in Physical and Theoretical Chemistry., Vol. 68, Atomic and Molecular Clusters., ed. E. R. Bernstein (Elsevier, Amsterdam, 1990) p. 551 and references therein.
8. R. Nowak, J. A. Menapace, and E. R. Bernstein. J. Chem. Phys., 89, 1309 (1988).
9. M. Schauer and E. R. Bernstein. J. Chem. Phys., 93, 6977 (1990).
10. E. Carrasquillo M., T. S. Zwier, and D. H. Levy. J. Chem. Phys., 83, 4990 (1985).
11. A. J. Gotch, A. W. Garrett, and T. S. Zwier. J. Chem. Phys., 95, 9699 (1991).
12. A. J. Gotch and T. S. Zwier. J. Chem. Phys., 93, 6977 (1990).
13. a) W. G. Read, E. J. Campbell, and G. Henderson. J. Chem. Phys., 78, 3501 (1983); b) T. J. Balle, E. J. Campbell, M. R. Keenan, and W. H. Flygare. J. Chem. Phys., 72, 922 (1980).
14. A. J. Gotch, A. W. Garrett, D. L. Severance and T. S. Zwier. Chem. Phys. Lett., 178, 121 (1991); A. J. Gotch and T. S. Zwier. J. Chem. Phys., 96, 3388 (1992).
15. A. W. Garrett and T. S. Zwier. J. Chem. Phys., 96, 3402 (1992).
16. A. W. Garrett, D. L. Severance and T. S. Zwier. J. Chem. Phys., 96, 7245 (1992).
17. A. W. Garrett and T. S. Zwier. J. Phys. Chem., 96, 9710 (1992).
18. J. D. Augspurger, C. E. Dykstra, and T. S. Zwier. J. Phys. Chem., 96, 7252 (1992).
19. K. Sato and A. Nishioka, Bull. Chem. Soc., Japan, 44, 1506 (1971).
20. R. Mierzekci. Rocz. Chem., 46, 1375 (1972).
21. L. H. Spangler, R. D. van Zee and T. S. Zwier. J. Phys. Chem., 91, 2782 (1987).
22. G. W. Robinson. J. Chem. Phys., 46, 572 (1967).
23. A. E. W. Knight, C. S. Parmeter, and M. W. Schuyler. J. Am. Chem. Soc., 97, 1993 (1975).
24. M. Ito. J. Mol. Struct., 177, 173 (1988); T. Ebata, M. Furukawa, T. Suzuki, and M. Ito. J. Opt. Soc. Am., B 7, 1890 (1990).
25. K. Fuke and K. Kaya. Chem. Phys. Lett., 94, 97 (1983).
26. J. R. Gord, A. W. Garrett, R. E. Bandy and T. S. Zwier. Chem. Phys. Lett., 171, 443 (1990).
27. C. A. Haynam, D. V. Brumbaugh and D. H. Levy. J. Chem. Phys., 79, 1581 (1983).
28. D. O. DeHaan and T. S. Zwier. J. Chem. Phys., 90, 1460 (1989).
29. E. J. Bieske, A. S. Uichanco, M. W. Rainbird and A. E. W. Knight. *J. Chem. Phys.*, 94, 7029 (1991).
30. A second conformer of C₆H₆-C₂H₂ has been deduced to have a C₅ structure from rotational band contour fitting (References 10). This conformer has not been included in this discussion because of its unusual C₂H₂ concentration dependence and fragmentation, which are also consistent with a 1 : 2 cluster.
31. S. Suzuki, P. G. Green, R. E. Bumgarner, S. Dasgupta, W. A. Goddard III and G. A. Blake, *Science*, 257, 942 (1992).
32. D. Severance and T. S. Zwier, unpublished results.
33. M. Koyanagi and Y. Kanda. *Spectrochim. Acta.*, 20, 993 (1964).