FREENESS AND EQUIVARIANT STABLE HOMOTOPY

MICHAEL A. HILL

Abstract. We introduce a notion of freeness for RO-graded equivariant generalized homology theories, considering spaces or spectra E such that the R-homology of E splits as a wedge of the R-homology of induced virtual representation spheres. The full subcategory of these spectra is closed under all of the basic equivariant operations, and this greatly simplifies computation. Many examples of spectra and homology theories are included along the way.

We refine this to a collection of spectra analogous to the pure and isotropic spectra considered by Hill–Hopkins–Ravenel. For these spectra, the RO-graded Bredon homology is extremely easy to compute, and if these spaces have additional structure, then this can also be easily determined. In particular, the homology of a space with this property naturally has the structure of a co-Tambara functor (and compatibly with any additional product structure). We work this out in the example of BU_R and coinduced versions of this.

We finish by describing a readily computable bar and twisted bar spectra sequence, giving Bredon homology for various E_8 pushouts, and we apply this to describe the homology of BBU_R.

1. Introduction

Equivariant cohomology is often viewed as very difficult to compute. In full generality, this is often true, as many computations which non-equivariantly were completed in the 1950s and 1960s are still out of reach. Additionally, the kinds of cellular decompositions which geometrically arise are often not adapted to easy computation, further compounding the problem. Many computations in the literature require significant amounts of hard work, even for ordinary (Bredon) homology (see, for example, the recent papers of Dugger on equivariant Grassmanians [5] and Hazel on C_2-surfaces [11]).

In this paper, we build on a class of spectra introduced by Ferland–Lewis [6], focusing on a certain subcategory of spaces and spectra for which essentially all of these problems go away. The basic definition is motivated by algebra.

Definition. Let R be an E_8-monoid in genuine G-spectra. A G-spectrum E has R-free homology if $R \wedge E$ splits as a wedge of R-modules of the form

$$R \wedge (G_+ \wedge_H S^V),$$

where V is a virtual representation of H.

These classes of spectra contain many geometrically meaningful spaces and spectra. Delightfully, these R-free spectra are closed under most of the usual operations in equivariant homotopy.
Theorem. If R is an E_∞-monoid in genuine G-spectra, then the category of R-free spectra is closed under

1. coproducts,
2. restriction along arbitrary homomorphisms,
3. induction from a subgroup,
4. the smash product, and
5. norm maps, if R is actually a G-E_8 ring spectrum.

For Bredon homology, this gives a large class of spaces and spectra for which the cohomology is easy to describe with almost arbitrary coefficients. Most excitingly, it means we can describe the full coalgebra (in fact, co-Tambara functor) structure on the homology of these spaces and on the cohomology of equivariant commutative monoid objects. Closure under norms here gives a formula for the Bredon homology of coinduced spaces with various coefficients, which in turn gives ways to understand Bredon homology and cohomology of certain Eilenberg–Mac Lane spaces.

After describing a host of examples, we restrict focus to a class of spectra for which everything is described by the underlying homology. The slice filtration of Σ gives a version of the Postnikov tower where we use various representation spheres instead of ordinary spheres. In the nicest cases, such as those built out of the norms of the Fujii–Landweber spectrum of Real bordism MU_R, the slice associated graded is a wedge of regular representation spheres smashed with computationally tractible Eilenberg–Mac Lane spectra $\{7, 25\}$ (see also $\{20\}$).

We consider $H\mathbb{Z}$-free spectra where the [induced] virtual representation spheres are only in regular representation dimensions. These assumptions allow us to reduce almost any computational question to a question about the non-equivariant homotopy, tying things to classically studied objects. We demonstrate the efficiency of this by giving the full Tambara and co-Tambara functor structures on the homology of BU_R and of $\text{Map}^{C_2}(G, BU_R)$. We also describe the action of the C_2-Dyer–Lashof algebra on the mod 2-homology of BU_R.

We close with applications to the bar/Rothenberg–Steenrod and Eilenberg–Moore spectral sequences. When the spaces in question are R-free, the E_2-terms of the usual spectral sequences have the expected form, and we use this to compute the homology of BBU_R and of the coinduced space $\text{Map}^{C_2}(G, BBU_R)$ for all finite G. As an aside, we also mention the sign-twisted analogues of these classical spectral sequences when $G = C_2$, giving ways to compute the homology of the signed bar construction or the cohomology of the twisted homotopy pullback and signed loop spaces.

Throughout the paper, our emphasis is on the conceptual understanding of the objects and on explicit examples. We include many examples of spaces and spectra of interest, showing how they fit into this framework, working to demystify equivariant computations.

Conventions and notation. In all that follows, we work in “genuine” G-spectra for a finite group G. Much of what we say will actually be model agnostic; we will largely talk about results in the homotopy category. When discussing the difference between E_∞ and G-E_∞ monoids, however, we will implicitly be working in equivariant orthogonal or symmetric spectra, since both have well-developed notions of the norm $\{12\}, \{10\}$.

2. RO-graded homology

Many of the spaces which arise geometrically can be built not out of cells of the form “disk in a [virtual] representation V” but rather out of more general cells of the form

$$G_+ \wedge_H D(V),$$

where V is a [virtual] H-representation. Algebraic constructions like the norm automatically build in this more general kind of RO-grading, considering instead objects graded on pairs consisting of a subgroup H and a virtual representation of H. A more coordinate free version is given by considering Thom spectra of virtual bundles over finite G-sets; a particular model of this is the work of Angeltveit–Bohmann [1].

Definition 2.1 ([15, Definition 2.7]). If T is a finite G-set and V is an equivariant virtual bundle over T, then let $M(V)$ be the Thom spectrum of V and

$$\pi_p(E)(T,V) = [M(V), E]^G.$$

Remark 2.2. If T is a transitive G-set, then a choice of point $t \in T$ gives an equivariant equivalence

$$T \cong G/\text{Stab}(t),$$

and restriction to t gives an equivalence of categories between $\text{Stab}(t)$-equivariant virtual representations and virtual equivariant vector bundles over T.

Notation 2.3. In the case $T = G/H$, so V gives a virtual H-representation V_H, let

$$E^H_{V_H}(S^0) = \pi_p(E)(T,V).$$

These abelian groups assemble into a kind of Mackey functor, twisted by these bundles. This generalizes the earlier work of Ferland–Lewis [6].

Proposition 2.4. If $f : S \to T$ is a map of finite G-sets and if $V \to T$ is a virtual equivariant bundle, then f induces a transfer map

$$\pi_p(E)(S, f^*V) \xrightarrow{T_f} \pi_p(E)(T, V)$$

and a restriction map

$$\pi_p(E)(T, V) \xrightarrow{R_f} \pi_p(E)(S, f^*V).$$

The Weyl action here can be somewhat subtle. If V is a representation of G, then we have a Weyl action on

$$\pi_p(E)(G/H, G/H \times V).$$

The standard isomorphism of G-spaces over G/H

$$G/H \times V \cong G \times i_H^*V$$

give isomorphisms of vector bundles, and hence this group depends only on the H-representation i_H^*V. The Weyl action, however, depends on V itself as a G-representation. Put another way, the standard isomorphism given above is not Weyl-equivariant.
Example 2.5. If \(G = C_2 \) and \(V = (\sigma - R) \), the virtual dimension zero shift of the sign representation, then the groups

\[
\pi_p(E)\left(C_2, C_2 \times (V \oplus R^n)\right)
\]

are just the ordinary homotopy groups \(\pi_n(i_\ast E) \).

In this case, however, we have twisted the Weyl action: as a \(C_2 \)-module, we have an isomorphism

\[
\pi_p(E)\left(C_2, C_2 \hat{\times} (V \hat{\times} R^n)\right) \cong \pi_n(i_\ast E) \otimes \sigma_2,
\]

where \(\sigma_2 \) is the integral sign representation. This observation has been used by many authors in the study of the homotopy fixed point spectral sequence for Hopkins–Miller spectra (see 17).

Remark 2.6. The Mackey double coset formula also changes in the RO-grading: there can be signs introduced which reflect the degree of the map on the underlying representation sphere. See, for example, [12, Lemma 7.20].

Smashing together maps gives us the external product.

Definition 2.7. If \(x \in \pi_p(E)(T, V) \) and \(y \in \pi_p(E')(S, W) \), then we have an external product

\[
x \wedge y \in \pi_p(E \wedge E')(T \times S, V \times W)
\]

given by the smash product of representing maps.

Since this pairing is the one arising from the pairing of homotopy classes of functions in \(G \)-spectra, it has the usual properties.

Proposition 2.8. The external product is linear in both factors and satisfies the Frobenius relation:

\[
x \wedge T_f(y) = T_{id \times f}(x \wedge y).
\]

The multiplication in the RO-graded context can be a little more confusing, since elements are attached to virtual representations for different groups. To effectively compare them, the elements must first be restricted to a maximal common subgroup. In general, we have many ways to represent this. Conceptually, the RO-graded group actually remembers more information, including not only the elements but also the various Weyl conjugates. Thinking in this way, the RO-graded products will not only record the product we would expect but also include any of the pairwise products of restrictions to conjugate subgroups.

If \(T = S \), then we have a canonical pullback diagram

\[
\begin{array}{ccc}
V \oplus W & \longrightarrow & V \times W \\
\downarrow & & \downarrow \\
T & \longrightarrow & T \times T.
\end{array}
\]

Composing the external product with the restriction along the diagonal \(\Delta_T \) gives the usual product structure on the RO(\(T \))-graded homotopy of the “restriction to \(T' \)" of a ring spectrum \(R \).
If $T = G/H$ and $S = G/K$, with H and K not necessarily conjugate, then we do not have as simple a picture. The classes x and y are maps
\[G_+ \wedge_H S^V \xrightarrow{x} E \quad \& \quad G_+ \wedge_K S^W \xrightarrow{y} E', \]
and smashing them together gives the map
\[(G_+ \wedge_H S^V) \wedge (G_+ \wedge_K S^W) \xrightarrow{x \wedge y} E \wedge E'. \]
The source is naturally the Thom spectrum of a virtual bundle on $G/H \times G/K$, which can be rewritten by the double coset formula as
\[G/H \times G/K \cong G \times i_{i_H^*(G/K)} \prod_{HgK \in H \times G/K} G/(H \cap gKg^{-1}). \]
The bundle over the summand associated to HgK is
\[i_{i_{H \cap gKg^{-1}}^*(V)} \oplus i_{i_{H \cap gKg^{-1}}^*(W)}, \]
and the corresponding map on this summand is
\[\text{res}_{H \cap gKg^{-1}}^H(x) \wedge \text{res}_{H \cap gKg^{-1}}^g y. \]

Corollary 2.9 ([1]). If E has a multiplication in the homotopy category of genuine G-spectra, then the composition with the multiplication in E makes $\pi_\ast(E)$ into an RO-graded Green functor.

In fact, there is a good G-symmetric monoidal category of $R\ast$-modules for any equivariant commutative ring spectrum R. This will be developed in forthcoming joint work with Angeltveit–Bohmann. We will make use of this structure somewhat heavily in what follows. However, the only cases in which we will consider it are ones for which the structure is immediate from the definition of the objects, so there should be no confusion.

We close by summarizing the notation that will show up for the various kinds of gradings.

Notation 2.10.

- The wildcard \ast will be used for gradings by RO.
- The wildcard \bullet will be used for gradings by RO(G).
- The wildcard \star will be used for gradings by \mathbb{Z}.

3. Free R-homology

In this section, let R be a fixed E_∞-ring spectrum in genuine G-spectra. Equivariantly, this is weaker than being a commutative monoid in any of the good point-set models of spectra, but this is sufficient to have a good, symmetric monoidal category of modules over R.

3.1. Free and projective.

It greatly simplifies much of the notation (and of our discussion of a basis) to allow ourselves to evaluate our homotopy Mackey functors on infinite G-sets and virtual representations on these.

Notation 3.1. If T is a discrete G-set and V is a virtual bundle over T, then let
\[R_{\ast}(E)(T, V) = \lim_{S \text{ ranges over all finite subsets of } T} R_{\ast}(E)(S, i_S^*V), \]
Since Thom spectra of disjoint unions of spaces is the coproduct of the associated Thom spectra, we have a natural isomorphism
\[R_*(E)(T, V) \cong [M(V), R \wedge E]^G. \]

Definition 3.2. A G-spectrum \(E \) has **free R-homology** or “is \(R \)-free” if there is a \(G \)-set \(T_E \) and a virtual vector bundle \(V_E \) over \(T_E \) such that we have an equivalence of \(R \)-modules
\[R \wedge E \cong R \wedge M(V_E). \]
The full subcategory of \(Sp^G \) spanned by the spectra with free \(R \)-homology will be denoted
\[Sp^G_{R, fr}. \]

It has **projective R-homology** if \(R \wedge E \) is a retract of an \(R \)-module of the form \(R \wedge M(V) \) for some virtual vector bundle \(V \) over a \(G \)-set. The full subcategory of \(Sp^G \) spanned by the spectra with projective \(R \)-homology will be denoted
\[Sp^G_{R, pr}. \]

Remark 3.3. The use of “free” here is to bring to mind a free module. In the homotopy category of \(R \)-modules, the \(R \)-module \(R^G \wedge_{\mathbb{H}} S^V \) corepresents the functor
\[E \mapsto \pi^H V(E), \]
on the category of \(R \)-modules, and hence maps out of it correspond to certain elements in this RO-graded Mackey functor.

Definition 3.4. If \(E \) has free \(R \)-homology, then a **basis** for the \(R \)-homology of \(E \) is an element
\[\vec{x} \in R_*(E)(T_E, V_E) \]
for a \(G \)-set \(T_E \) and a virtual bundle \(V_E \) over \(T_E \), such that the induced map
\[R \wedge M(V_E) \rightarrow R \wedge E \]
is an equivalence.

We can restate the definition of a basis using an orbit decomposition of \(T \). A choice of points in each orbit for \(T \) gives an equivariant isomorphism
\[T \cong \bigsqcup_{t \in T/G} G/H_t, \]
and if we let \(V_{E,t} \) be the restriction of \(V_E \) to the orbit \(G/H_t \), then
\[R_*(E)(T, V) \cong \bigsqcup_{t \in T/G} R^H_{V_{E,t}}(E). \]
A basis then is a collection of elements
\[x_t : G_+ \wedge_{H_t} S^{V_{E,t}} \rightarrow R \wedge E \]
such that the induced map
\[R \wedge \left(\bigsqcup_{t \in T/G} G_+ \wedge_{H_t} S^{V_{E,t}} \right) \rightarrow R \wedge E \]
is an equivalence. We will use both formulations.
Just as for vector spaces, a basis is a choice of additional data which aids in explicit computation. In particular, describing product structures is greatly simplified with a basis.

Remark 3.5. Although a basis is given by specifying certain elements in certain RO-graded stems, the freeness actually gives us a host of related elements. Consider $M = R \wedge (G_+ \wedge_H S^1)$. The unit map $S^0 \to R$ gives a distinguished map

$$G_+ \wedge_H S^1 \to M$$

which gives a basis. Unpacking the adjunction, this corresponds to the H-equivariant map

$$S^V \to i^*_H R \wedge i^*_H (G_+ \wedge_H S^V)$$

induced by the inclusion

$$S^V \cong H_+ \wedge_H S^V \hookrightarrow i^*_H G_+ \wedge_H S^V.$$

If $H \neq G$, then there are many other summands. In particular, any element $g \in N_G(H)$ gives us a summand

$$gH_+ \wedge_H S^V,$$

which is the representation sphere for the pullback of the representation V along the conjugation-by-g automorphism of H. When V is in the image of the restriction of a representation of $N_G(H)$, this is just recording the Weyl-conjugates of our original element.

Example 3.6. For any R, a basis for $R \wedge (G_+ \wedge S^1)$ is the data of an element

$$x \in \pi_1 \left(\bigvee_{|G|} i^* \Sigma R \right) \cong \bigoplus_{|G|} \pi_0 (i^* R)$$

such that the induced action-map

$$\mathbb{Z}[G] \otimes \pi_0 (i^* R) \to \bigoplus_{|G|} \pi_0 (i^* R)$$

is an isomorphism. It also records (linearly independent) classes for all $\gamma \in G$:

$$\gamma \cdot x \in \bigoplus_{|G|} \pi_0 (i^* R)$$

(and in fact, the Mackey functor homotopy group is $\Gamma_{G} \pi_0 (i^* R)$).

It is helpful to keep in mind the example of Bredon homology with coefficients in a commutative Green functor R. The Eilenberg–Mac Lane spectrum associated to a commutative Green functor is always E_2, so we can apply this general formalism.

Example 3.7. If $G = \{e\}$, then a basis for the homology of E with coefficients in $R = R$ (an ordinary commutative ring) is the same as a basis for the graded R-module $H_*(E; R)$.

Example 3.8. Kronholm and Hogle–May showed that if X is a finite $\text{Rep}(C_2)$-complex (meaning a C_2-complex formed by attaching disks in representations along their boundaries), then X has free $H^E_{C_2}$-homology (with no summands induced up from the trivial group) [23, 18].
Example 3.9. C. May's decomposition theorem for the (co)homology of a finite C_2-CW complex says that for any finite C_2-complex X, we have a splitting
\[H^F_{\Sigma} \wedge X \simeq H^F_{\Sigma} \wedge \left(\bigvee C_2^+ \wedge H \Sigma^k \wedge (n_i \sigma) \right) \]
where in the second sum, $n_i \geq 2$ and σ is the sign representation [29]. Thus C_2 spaces have free H^F_{Σ}-homology if and only if this second sum vanishes.

Example 3.10. Hazel’s computation of the Bredon homology of C_2-surfaces shows that every connected C_2-surface for which the action is not free has free H^F_{Σ}-homology [11, Theorem 6.6].

Example 3.11. Ricka extended the Hu–Kriz computation of the dual Steenrod algebra for F_2 and showed that H^F_{Σ} has free H^F_{Σ}-homology [34], [20].

There are two important restricted cases that show up often in computations. The proof of the following theorem is just by observation.

Theorem 3.12. Let E be a spectrum with free R-homology.

1. If the basis comes from virtual representations of G exclusively, then the RO-graded homotopy is induced up from the $RO(G)$-graded homotopy Mackey functors.
2. If the basis comes from trivial representations of G, then the RO-graded homotopy is induced up from the Z-graded homotopy Mackey functors.

In both cases, we can extend to induced cells, provided we again only consider representations of G and trivial representations, respectively.

3.2. **Closure properties of $Sp^{\Sigma}_{R, \cdot}$**. The spectrum with R-free or projective homology enjoy a number of useful closure properties.

Notation 3.13. Let \cdot stand for either “fr” or “pr”.

3.2.1. **Closure under sums**.

Proposition 3.14. The adjoint pair $G_+ \wedge (\cdot) \to i^*_H$ on equivariant spectra descends to an adjoint pair
\[G_+ \wedge (\cdot) : Sp^H_{R, \cdot} \to Sp^G_{R, \cdot} : i^*_H. \]
A basis for one gives the other via restriction or induction.

Proof. Since these are full subcategories, and since retracts are preserved by any functor, it suffices to show that restriction and induction preserve R-free spectra. For restriction, we just use the restriction of the Thom spectrum. For induction, we note the equivalence:
\[G_+ \wedge_H M(V) \simeq M(G \times V), \]
where $G \times V$ is the induced bundle over $G \times T$.

Proposition 3.15. The category $Sp^G_{R, \cdot}$ is closed under arbitrary coproducts. A basis for the wedge is the sum of the bases.

Proof. The smash product distributes over wedges, and the wedge of Thom spectra of virtual bundles over G-sets is again a Thom spectrum of a virtual bundle over a G-set.
3.2.2. Closure under base-change. The notions of free and projectives also work well with base-change.

Proposition 3.16. A map \(f : R \to R' \) of \(E_\infty \) ring spectra induces a map
\[
f_* : S^G_{R_{\text{free}}} \to S^G_{R'_{\text{free}}}.\]
A basis \(\vec{x} \) for \(E \) over \(R \) gives a basis \(f_*(\vec{x}) \) by composing with \(f \).

Proof. This follows from base-changing the equivalence \(R^E \simeq R^M \) along the map \(R \to R' \). \qed

3.2.3. Closure under products. The categories of frees and projectives are also closed under the \([\text{twisted}]\) smash products on \(G \)-spectra, being closed under the norms which \(R \) has.

Proposition 3.17. The category \(S^G_{R_{\text{free}}} \) is a symmetric monoidal subcategory of \(S^G \) for the smash product. A basis for \(E \) and \(E' \) gives a basis for \(E \wedge E' \) by boxing them together.

Proof. Again, it suffices to show this for free spectra. If \(V \) and \(V' \) are virtual vector bundles on \(T \) and \(T' \) respectively, then we have a natural equivalence
\[
M(V) \wedge M(V') \simeq M(V \times V'),
\]
where the latter is just the Thom spectrum of product of \(V \) and \(V' \) over \(T \times T' \).

The result follows from recalling that the functor \(R^E \) is a strong symmetric monoidal functor from \(G \)-spectra to \(R \)-modules. \qed

This gives us a kind of weak K"unneth theorem.

Theorem 3.18. If \(E \in S^G_{R_{\text{free}}} \), then for any \(R \)-module \(M \), then \(E \wedge M \) is a summand of \(M \wedge M(V_E) \) for some virtual vector bundle \(V_E \), and hence the multiplication gives a natural isomorphism
\[
R(E) \wedge R(M) \to \pi_*(E \wedge M).
\]

Proof. Again, it suffice to show for \(E \) \(R \)-free. By assumption, there is a splitting of \(R \)-modules
\[
R \wedge M(V_E) \simeq R \wedge E.
\]
This gives an equivalence of \(R \)-modules
\[
E \wedge M \simeq (R \wedge E) \wedge M \simeq (R \wedge M(V_E)) \wedge M \simeq M(V_E) \wedge M.
\]
Since the smash product distributes over the wedge, the latter spectrum is a wedge of \(R \)-modules of the form
\[
(G_+ \wedge S^V) \wedge M.
\]
The result follows by the definition of the representables. \qed

If the basis is via representations of \(G \) or trivial representations, then this recovers the K"unneth theorem of Lewis–Mandell [20].

Corollary 3.19. Let \(E \) be in \(S^G_{R_{\text{free}}} \) and let \(M \) be an \(R \)-module.

1. If a basis for \(E \) can be chosen such that only virtual representations of \(G \) are used, then we have an isomorphism
\[
\pi_*(E \wedge M) \cong R_*(E) \wedge \pi_*(M).
\]
(2) If a basis for E can be chosen such that only trivial representation of G are used, then we have an isomorphism

$$\pi_\ast(E \wedge M) \cong \frac{R_\ast(E)}{R_\ast(M)}.$$

In the special case that the module M is in fact R^E for some R-free or projective E', this shows that the functor of RO-graded R-homology Mackey functors is strong symmetric monoidal.

Corollary 3.20. If $E, E' \in S_{pH}^G$, then the multiplication gives a natural isomorphism

$$R_\ast(E \wedge E') \cong R_\ast(E) \boxtimes R_\ast(E').$$

3.2.4. Closure under norms

For the norms, we recall some properties of the norm and these relatively simple Thom spectra.

Notation 3.21. If T is an H-set and V is a virtual vector bundle, then let

$$\text{Map}^H(G, V) \to \text{Map}^H(G, T)$$

be the coinduced vector bundle over $\text{Map}^H(G, T)$.

Proposition 3.22. For any virtual vector bundle V, we have

$$M(\text{Map}^H(G, V)) \cong N^H_G M(V).$$

Proof. All of the functors considered commute with filtered colimits, so it suffices to consider the case that T is finite. This is then the distributive law for norms, together with the observation that if $T = H/K$, then $M(V) = H^+_K S^V$, allows us to further reduce to the case that $T = H/H$. A vector bundle over this is just a virtual H-representation, the Thom spectrum of which is the corresponding representation sphere. The coinduced space in this case is G/G, and the representation is τH. We now compute

$$M(\text{Map}^H(G, V)) = S^G_H V \cong N^G_H S^V \cong N^G_H M(V).$$

The norm is also a strong symmetric monoidal functor, and hence it induces a map

$$N^G_H : R\text{-Mod} \to N^G_H R\text{-Mod}.$$

Proposition 3.23. The norm induces a functor

$$N^G_H : S_{pR,\omega} \to S_{pR^G,\omega}.$$

Proof. It suffices to show this for E having free R-homology. In this case, we simply apply the norm to the equivalence

$$R \wedge E \cong R \wedge M(V_E)$$

for some virtual vector bundle V_E and use Proposition 3.17.

If R is an E_∞ ring spectrum that has an E_∞-map

$$N^G_H : R \to R,$$

then we have a relative norm map on R-modules given by

$$M \mapsto R \wedge N^G_H M.$$
The usual case is when R is an equivariant commutative ring spectrum (i.e. a G-E_∞ ring spectrum), but this has also been worked out for algebras over linear isometries operads [3].

Proposition 3.24. Let R be an E_∞ ring spectrum that has an E_∞-map

$$N_H^{G} R \rightarrow R,$$

then N_H^{G} induces a functor

$$Sp_H^{*} R \rightarrow Sp^{*} R.$$

The norm of a basis for E gives one for the norm.

Example 3.25. Since $MU \wedge MU \simeq MU \wedge BU_+ \simeq MU[b_1, \ldots]$, where $|b_i| = 2i$, the spectrum MU and the space BU have free MU-homology. This implies that the same is true for the norms: $N_c^{G} MU$ and $N_c^{G} \Sigma^\infty BU$ have free N_c^{G} MU-homology.

We have identical statements for CP^n for all $n \leq \infty$ and the spaces $BU(n)$.

Using the orientations given by the norm of MU, we produce a host of other interesting examples.

Example 3.26. Let R be an E_∞ G-spectrum that admits an E_∞ norm map

$$N^{G}_{i_e^*} R \rightarrow R,$$

and assume that $i_e^* R$ can be given a commutative complex orientation. Then for any spectrum E such that $MU_+ E$ is a free MU_+-module, $N^{G}_{e}(E)$ has free R-homology.

The identity map $MU \rightarrow i_e^* MU$ and the Connor–Floyd map $MU \rightarrow KU$ give examples of commutative complex orientations, which shows that the spaces and spectra considered in Example 3.25 have free MU_G and KU_G-homology.

Example 3.27. If E is any finite type, bounded below spectrum with free integral homology, then $N^{G}_{e} E$ has free KU_G and MU_G homology.

In the Bredon case, if R has the structure of a Tambara functor [39], then Ullman has shown that Hk has the structure of a G-E_∞ ring spectrum [40]. This gives us many examples for Bredon homology. In particular, the absolute norms (i.e. the norms from the trivial group) of any ordinary commutative ring pair are always Tambara functors. Generalizing the C_2-equivariant examples of [13], we get that absolute norms are free for a large number of Green functors.

Example 3.28. Let k be a field and let R be a Green functor under $N^{G}_{e} k$. Then for any spectrum E, $N^{G}_{e} E$ has free HR-homology.

The more general integral story also follows.

Example 3.29. If E is an ordinary, non-equivariant spectrum such that $H_*(E; \mathbb{Z})$ is free, then $N^{G}_{e} E$ has free A-homology. Since HM is an HA-module for any Mackey functor M, $N^{G}_{e} E$ has free M-homology for any M.

There is a norm in R-homology, specified by the norms in Mackey functors (or equivalently in spectra), and the following holds by definition.
Corollary 3.30. If E is an H-spectrum that has free $i^*_H R$-homology, then we have a natural isomorphism

$$R_\ast(N_H^G E) \cong N_H^G (i^*_H R_\ast(E)).$$

Notation 3.31. In any context where it is defined, let $N^{G/H}$ be the composite $N_H^G i^*_H$.

With this notation, if E is a G-spectrum with free R-homology, then we have a natural isomorphism

$$R_\ast(N^{G/H} E) \cong N^{G/H} R_\ast E.$$

As a specific example, this gives us the equivariant homology of the topological Singer construction [28].

Example 3.32. Let $k = \mathbb{F}_p$, let $G = C_p$, and let \mathbb{F}_p be the constant Green functor \mathbb{F}_p. This is a Tambara functor, so for any spectrum E, we have a natural isomorphism

$$H \left(N^C_p(E); \mathbb{F}_p \right) \cong N^C_p \left(H_* (E; \mathbb{F}_p) \right).$$

In particular, for $p = 2$, the \mathbb{F}_2-Bredon homology of $N^C_2 H \mathbb{F}_2$ is free.

Unpacking this a little more, a basis is given by orbits $[f]$ in the monomial basis in

$$\left(\mathbb{F}_p [\xi_1, \ldots] \otimes E(\tau_0, \ldots) \right)^{\otimes p} / C_p,$$

where the group C_p acts on this by permuting the tensor factors. Every monic monomial f has a stabilizer subgroup H_f. This is the subgroup associated to the orbit $[f]$ as a basis vector. The degree of f is given by

$$||f|| = \frac{|f|}{|H_f|}^{\rho_{H_f}},$$

where $|f|$ is the ordinary, underlying degree induced by the degrees in the dual Steenrod algebra.

These freeness results can also give us interesting information about non-free spectra. Snaith showed that we have an equivalence of E_{∞} ring spectra

$$KU \cong \Sigma_+^\infty \mathbb{C}P^\infty [\beta^{-1}],$$

where β is the map on $\Sigma_+^\infty \mathbb{C}P^\infty$ induced by the inclusion $\mathbb{C}P^1 \hookrightarrow \mathbb{C}P^\infty$ [35].

The norm functor commutes with filtered colimits, so this gives us an equivariant version of Snaith’s theorem.

Theorem 3.33. For any finite group G, we have an equivalence of G-E_{∞} ring spectra

$$N_G^C KU \cong \Sigma_+^\infty \text{Map}(G, \mathbb{C}P^\infty)[N(\beta)^{-1}],$$

where

$$N(\beta) : S^{2^{\rho_G}} \to \Sigma_+^\infty \text{Map}(G, \mathbb{C}P^\infty)$$

is induced by the norm.

Corollary 3.34. Let R be a G-E_{∞} ring spectrum such that $\mathbb{C}P^\infty$ has free $i^*_C R$-homology. Then we have an isomorphism

$$R_\ast N_G^C KU \cong \lim_{\rightarrow} \Sigma^{-2^{\rho_G}} N_G^C (i^*_C R_\ast (\mathbb{C}P^\infty)).$$

In particular, this is always a flat R_\ast-module.
Proof. Both the norm and R-homology commute with direct limits. This follows from the homology of the coinduction. □

Example 3.35. Because H_A is a G-E_∞-commutative ring spectrum and \mathbb{CP}^∞ has free HZ-homology, we have

$$H_n(\text{Map}(G, \mathbb{CP}^\infty); \mathbb{A}) \cong N^G_\epsilon H_*(\mathbb{CP}^\infty; \mathbb{Z}) \cong N^G_\epsilon (\Gamma(x)),$$

where $|x| = 2$. The Bott element we invert is the norm of x, and we deduce

$$H^n_\infty N^G_\epsilon KU \cong N^G_\epsilon \mathbb{Q}[x^{\pm 1}].$$

Since KU_G is a $N^G_\epsilon KU$-algebra, we also deduce that $H_A \wedge KU_G$ is rational.

Remark 3.36. The norms of the divided power algebra are curious Tambara functors, though the structure can be worked out from the basic properties of the norms. We spell this out for C_p.

Just as with the discussion of the topological Singer construction in Example 3.32, a basis is given by orbits of monic monomials in the tensor power $\Gamma(x)^{\otimes p}$, where C_p again acts by permutation. The stabilizer of a monic monomial again gives us the appropriate way to determine the degrees: most monomials are stabilized by $\{e\}$ and hence correspond to a free summand, while monomials of the form $f^{\otimes p}$ correspond to a summand $S^{[f/p]}$. These are the norms of classes $f \otimes 1^{\otimes (p-1)}$.

Let $\gamma_i(x)$ be the ith divided power of x. Then we have the divided power relations

$$\gamma_i x \cdot \gamma_j x = \binom{i+j}{i} \gamma_{i+j} x.$$

Since the norm is multiplicative, this gives relations

$$N(\gamma_i x) \cdot N(\gamma_j x) = N \left(\binom{i+j}{i} \right) N(\gamma_{i+j} x).$$

The norms of integers can be computed back in the Burnside Mackey functor, where we find

$$N^C_{\epsilon \tau}(n) = n + \frac{n^p - n}{p} [C_p],$$

and this gives us the actual relation:

$$N(\gamma_i x) \cdot N(\gamma_j x) = \binom{i+j}{i} N(\gamma_{i+j} x) + \frac{(i+j)^p - (i+j)}{p} \text{tr}^C_{\epsilon \tau}(\gamma_{i+j}(x)^{\otimes p}).$$

3.2.5. Closure under duals. We also have a weak Universal Coefficients Theorem, provided our spectrum is small.

Definition 3.37. Let $E \in S^G_{P_R,-}$, and let V_E be the associated virtual bundle such that $R \wedge E \cong R \wedge M(V_E)$. We say E is **finite type** if for each $k \leq j \in \mathbb{Z}$, only finitely many orbits of T_E contribute to $\pi_k(R \wedge M(V_E))$ for $k \leq \ell \leq j$.

Clearly, if the set T_E can be chosen to be finite, then it is finite type. This more general condition is analogous to only having finitely many cells in each degree.

Theorem 3.38. If $E \in S^G_{P_R,-}$ is a finite complex, then $D(X)$ is also in $S^G_{P_R,-}$.

More generally, if $E \in S^G_{P_R,-}$ is finite type, then for any R-module M, we have a weak equivalence of R-modules

$$F(E, M) \cong M \wedge M(-V_E).$$
We have a universal coefficients isomorphism that computes the M-cohomology of E out of the R-homology of E:

$$\text{M}^{-\bullet}(E) \cong \text{Hom}_R(R_\bullet(E), M_\bullet).$$

Proof. If E is a finite complex, then

$$D(E) \wedge R \simeq F(E, R),$$

and the first will follow from the second.

Since M is an R-module, we have an equivalence

$$F(R \wedge E, M) \simeq F(R \wedge (V_E), M),$$

and this is equivalent to $F(M(V_E), M)$. Since maps out of a wedge is the product, we first check the case of an orbit. The result is then the classical Wirthmüller isomorphism:

$$F(G_+ \wedge H^V, M) \cong G_+ \wedge H^{V^*} \wedge M.$$

Finally, the finite type condition ensures that the natural map from the wedge to the product is in fact an equivalence.

The second part follows from this by taking homotopy and observing the result for orbits. \square

A surprising final feature of the universal coefficients theorem is that we can also describe the cohomology of the norms of R-free spectra.

Proposition 3.39. Let R be an E_0 ring spectrum that has an E_0-map

$$N_{i_H}^G R \rightarrow R.$$

If an H-spectrum E has free $i_H^* R$-homology with a finite basis, then the function spectrum $F(N_{i_H}^G E, R)$ is equivalent to a free R-module, and the basis is the dual to the one for $N_{H}^G E$.

In particular, analyzing the Thom spectrum for the functional dual, we have that for E as in the proposition, the R-cohomology of $N_{i_H}^G E$ can be described as the norm of the $i_H^* R$-cohomology of E.

3.2.6. Pullbacks

Finally, freeness and projectivity is also preserved by restricting along quotient maps (also called “pulling back”).

Notation 3.40. If N is a normal subgroup of G and $q: G \rightarrow Q = G/N$, then let

$$q^*: Sp^Q \rightarrow Sp^G$$

be the inclusion of Q-spectra into G-spectra.

Proposition 3.41. The functor q^* induces a functor

$$q^*: Sp^Q_{i_H} \rightarrow Sp^G_{i_H}.$$

If $E \in Sp^Q$ has a basis for R, then $q^* E$ has a basis for $q^* R$.
Proof. Again, it suffices to check on the full subcategory of R-free spectra, and since q^* is strong symmetric monoidal, it suffices to show on the associated Thom spectra. By construction,

$$q^* M(V_E) \simeq M(q^* V_E),$$

where $q^* V_E$ is just V_E viewed as a G-virtual bundle. □

Remark 3.42. The fixed points functors do not preserve projective objects, as the tom Dieck splitting shows. However, the canonical map

$$q^* (R^G) \to R$$

gives us a map

$$q^*: S p_R G \to S p_R H G.$$

This gives another proof of a basic construction in Bredon homology.

Example 3.43. If E is an ordinary, non-equivariant spectrum such that $H_*(E; \mathbb{Z})$ is free in each degree, then $q^* E$ has free Bredon homology for any coefficients:

$$H_*(q^* E; M) \simeq H_*(E; \mathbb{Z}) \otimes M.$$

For any G,

$$\pi_0 q^* H \mathbb{Z} = \mathbb{A}_G,$$

and the negative homotopy groups are all zero. The zeroth Postnikov section then gives us an E_∞-map

$$q^* H \mathbb{Z} \to H \mathbb{A}_G.$$

The result then follows from Proposition 3.41, Proposition 3.16, and Theorem 3.18.

Example 3.44. If E is an ordinary, non-equivariant spectrum such that $H_*(E; \mathbb{F}_p)$ is free in each degree, then for any G and for any Green functor R in which $p \cdot 1 = 0 \in R(G/G)$, $q^* E$ has free R-homology. This is because the pullback of $H \mathbb{F}_p$ has

$$\pi_0 = \mathbb{A}/p,$$

the initial example of such a Green functor.

In particular, for any G and for any R of this form, this applies to

$$E = \Sigma^{\infty} K(\mathbb{F}_p, m),$$

the pullback of which is the suspension spectrum of the Eilenberg–Mac Lane space for the constant coefficient system \mathbb{F}_p.

Both of these examples are also free with bases in integer stems. In particular this functorially describes the RO-graded homology, by Theorem 3.12.

3.3. Freeness and spaces. The author’s primary interest in these freeness results comes from the connection between the [twisted] smash products in spectra and [twisted] Cartesian products in spaces.

Proposition 3.45. If X is an H-space, then we have a natural equivalence

$$N_H^{G \Sigma^\infty} X \simeq \Sigma^\infty Map^H(G, X).$$

If X and Y are G-spaces, then

$$\Sigma^\infty (X \times Y) \simeq \Sigma^\infty X \wedge \Sigma^\infty Y.$$

We can assemble all of our results so far into a summary theorem.
Theorem 3.46. Let X be a K-space such that X has free i^*_R-homology. Then we have a natural isomorphism
\[
N^G_K R_* (X) \cong R_* (\text{Map}^H (G, X)),
\]
and moreover, this is free on the basis $N^G_K x$, where x is a basis for the homology of X.

If X and Y are G-spaces that have R-free homology, then
\[
R_*(X \times Y) \cong \underbrace{R_*(X) \square R_*(Y)},
\]
with a basis given by the product of the bases.

Example 3.47. In general, coinduction preserves Eilenberg–Mac Lane spaces: if M is an H-Mackey functor, then we have an equivalence
\[
\text{Map}^H (G, K(M, n)) \cong K (i^*_H M, n).
\]
(More generally, the G-space $\text{Map}^H (G, K(M, V))$ represents the functor
\[
X \mapsto H^V (i^*_H X; M),
\]
so these are all kinds of Eilenberg–Mac Lane spaces.)

When $H = \{e\}$, this allows us to determine the homology of Eilenberg–Mac Lane space attached to any induced Mackey functor with coefficients in a $N^G_k k$-algebra, for k a field. As an application, we have
\[
H_* (K (\bigoplus_p \mathbb{F}_p, n); \mathbb{F}_p) \cong N^G_k \left(H_* (K (\mathbb{F}_p, n); \mathbb{F}_p) \right),
\]
and the latter was determined by Cartan and Serre [4], [36].

This is closely connected to some additional structure that is often difficult to access. Equivariant spaces are canonically G-cocommutative comonoids. In addition to the coproduct
\[
X \to X \times X,
\]
they have conorm maps
\[
X \xrightarrow{\Delta_{G/H}} \text{Map}(G/H, X) \cong \text{Map}^H (G, X).
\]
The contravariant Yoneda functor gives for any X a functor
\[
_k X : \text{Map}(\cdot, X) : (\text{Fin}^G)^{\text{op}} \to \text{Top}^G,
\]
and on passage to fixed points, these conorm maps are exactly giving the usual coefficient system of fixed points for any G-space.

Definition 3.48. If $f : S \to T$ is a map of finite G-sets, then let
\[
\psi_f : R_* (\text{Map}(T, X)) \to R_* (\text{Map}(S, X))
\]
be the “conorm” map associated to f. When $f = \nabla : S \amalg S \to S$ is the fold map, we call this the “coproduct”.

In general, this is difficult to work with, since we need not have a good [twisted] Künneth theorem. In the case we are considering, however, we do!
Theorem 3.49. Let \(R \) be an equivariant commutative ring spectrum, and let \(X \) be a space that has free \(R \)-homology. Then \(R_\ast(\pi) \) has a comultiplication map

\[
R_\ast(\pi) \to R_\ast(\pi) \square K_\ast(\pi)
\]

making it a “co-Green functor”. Moreover, we have for any map of finite \(G \)-sets \(f: S \to T \) a conorm map

\[
N^T R_\ast(\pi) \to N^S R_\ast(\pi)
\]

which is a map of co-Green functors.

Proof. Since \(X \) has \(R \)-free homology, so do all of its restrictions, and hence so do all of the spaces \(\text{Map}(T, X) \) for any finite \(G \)-set \(T \). The comultiplication and conorm maps then follow immediately from our earlier analysis of the homology of the spaces involved.

That the conorm maps are maps of coGreen functors follows from naturality: for any \(f: S \to T \), we have a commutative diagram

\[
\begin{array}{ccc}
S \sqcup S & \xrightarrow{\nabla} & S \\
\downarrow{\mu f} & & \downarrow{q} \\
T \sqcup T & \xrightarrow{\nabla} & T.
\end{array}
\]

Functoriality then shows that the conorm associated to \(f \) is a map of co-Green functors. \(\square \)

Remark 3.50. If a basis for \(R_\ast(\pi) \) is in integer stems, then the co-Green structure is simply base-changed from the integral one. The conorms essentially never are, due to the degree scaling aspects of the norm.

Rephrased, a space with free \(R \)-homology gives a strong \(G \)-symmetric monoidal functor

\[
\text{Set}^{G, \text{op}} \to R_\ast \text{-Mod},
\]

where the \(G \)-symmetric monoidal structure on \(\text{Set}^{G, \text{op}} \) is the dual to the co-Cartesian one. This is the definition of a \(G \) co-commutative comonoid. Since a Tambara functor is a \(G \)-commutative monoid by work of Mazur and Hoyer \cite{MazurHoyer16, MazurHoyer19}, this gives \(R_\ast(\pi) \) naturally the structure of a co-Tambara functor. Via the Universal Coefficients theorem for \(R \)-free spaces, this structure is dual to the structure which gives rise to the Tambara functor structure on the \(R \)-cohomology of a \(G \)-space.

Remark 3.51. The usual formulation of a Tambara functor describes norm maps \(n^K_H: R(G/H) \to R(G/K) \) with satisfy certain axioms relating them to the additive Mackey functor structure. These connect, via work of Mazur and Hoyer \cite{MazurHoyer16, MazurHoyer19} to \(G \)-commutative monoids in Mackey functors via canonical maps of sets

\[
R(G/H) \cong i^*_K R(K/H) \to (N^K/H i^*_K R)(K/K).
\]

The maps go the wrong way to be able to interpret a co-Tambara functor easily in the more traditional way: there is no clear way to extract a map

\[
R(G/K) \to R(G/H)
\]
from the data:
\[
i_R^* R(K/H) \xrightarrow{\psi^H_P} (N^K R)^*(K/H) \xrightarrow{\psi^H_P} i_R^* R(K/H).
\]

3.4. **Hopf algebroids and comodule Tambara functors.** There are many examples of spectra for which we have various kinds of comultiplications. These are ubiquitous amongst spectra which have free homology over themselves. This was shown and used by Hu–Kriz for a stricter notion of free; it works very generally.

Proposition 3.52 ([20]). If \(R \) is an \(E_\infty \) ring spectrum such that has free \(R \)-homology, then the pair
\[
(R_\ast R, R)\quad \text{forms a Hopf algebroid, and moreover, the } R\text{-homology of any space or spectrum is a comodule over this.}
\]

Proof. Since \(R \) has free \(R \)-homology, we can apply the weak Künneth theorem to deduce a natural isomorphism for any \(E \)
\[
\pi_\ast (R \wedge R \wedge E) \cong (R_\ast R) \square R_\ast E.
\]
Applying this to the case \(E = R \) and considering the unit map in the middle copy of \(R \), we have the comultiplication. Applying this to a general \(E \) and again considering the unit on the rightmost copy of \(R \) give the coaction. \(\square \)

It is important to note here that there are no hypotheses places on \(E \): the \(R \)-homology of any \(E \) inherits this structure. When \(E \) itself has more structure, then we can say even more about the coaction map. Classically, if \(E \) is a ring object in the homotopy category, then the \(R \)-homology of \(E \) is a comodule algebra, since the unit map is a map of ring spectra. When \(E \) is a \(G \)-commutative monoid in the homotopy category, then we have the analogous Tambara case.

Theorem 3.53. Let \(R \) be a \(G-E_\infty \) ring spectrum which has free \(R \)-homology and let \(E \) be a \(G \)-commutative monoid in the homotopy category. Then \(R_\ast E \) is an \(RO \)-graded Tambara functor and the coaction map
\[
R_\ast E \to R_\ast R \square R_\ast E
\]
is a map of \(RO \)-graded Tambara functors.

Proof. By assumption, \(R \wedge E \) is a \(G \)-commutative monoid in the homotopy category, and so is \(R \wedge R \wedge E \). The coaction map is the map induced by the unit in the middle, and this is a map of \(G \)-commutative monoids:
\[
R \wedge E \cong R \wedge S^0 \wedge E \to R \wedge R \wedge E.
\]
The result follows from [1]. \(\square \)

When \(E \) also has free \(R \)-homology, we can use an external version of the norm, making some of the structure more transparent. To avoid clutter, we restrict exposition to the norms from subgroups to \(G \). The more general ones follow from considering instead various restrictions to subgroups.
Proposition 3.54. Let R be a G-E_{∞} ring spectrum which has free R-homology and let E be a G-commutative monoid in the homotopy category that has free R-homology. Then for any subgroup K, we have a commutative diagram of commutative Green functors

$$
\begin{array}{ccc}
N^{G/K} R_x(E) & \xrightarrow{N^{G/K}} & N^{G/K} (R_x R) \square N^{G/K} (R_x E) \\
\downarrow N & & \downarrow N \square N \\
R_x E & \xrightarrow{\psi} & R_x R \square (R_x E).
\end{array}
$$

As an application of this structure, we can look at the coaction on the homology of the topological Singer construction at the prime 2.

Example 3.55. If R is a C_2-E_{∞} ring spectrum that has free F_2-homology, then $H_x(R; F_2)$ is a comodule Tambara functor over the equivariant dual Steenrod algebra: the comodule structure map is a map of Green functors and commutes with the norms:

$$
\begin{array}{ccc}
N^{C_2} H_x(\iota^* R; F_2) & \xrightarrow{N^{C_2} \psi} & (N^{C_2} A_*) \square N^{C_2} H_x(\iota^* R; F_2) \\
\downarrow N & & \downarrow N \square N \\
H_x(R; F_2) & \xrightarrow{\psi} & A_* \square H_x(R; F_2).
\end{array}
$$

This means in particular that the coaction on the spectrum $N^{C_2} H F_2$ is completely determined by the coaction on $H F_2$, allowing us to analyze the homotopy groups of this spectrum by a Hu–Kriz style Adams spectral sequence [20].

4. An even nicer class of spectra

4.1. Homological purity. We single out a class of spectra for which computations are strikingly simple, being completely determined by the homology of the underlying spectrum.

Definition 4.1. A regular slice sphere is a G-spectrum of the form

$$G_+ \wedge H^{k|H|},$$

for some integer k. The dimension of such a regular slice sphere is $k|H|$.

In [12], a spectrum E was called “pure” if the slice associated graded of E is a wedge of regular slice spheres smashed with $H Z$. We build on that here.

Definition 4.2. A G-spectrum E is homologically pure if there is

1. a set \mathcal{I}_E,
2. a function $i \mapsto k_i$ assigning to elements of \mathcal{I}_E an integer, and
3. a function $i \mapsto H_i$ assigning to elements of \mathcal{I}_E a subgroup of G,

such that we have an equivalence of $H Z$-modules

$$H Z \wedge E \simeq H Z \wedge \bigvee_{i \in \mathcal{I}_E} G_+ \wedge H_i^{k_i|H_i|}.$$

A homologically pure G-spectrum E is isotropic if there are no summands with a trivial stabilizer.
Remark 4.3. A slightly restricted form of this definition was independently given by Pitsch–Ricka–Scherer in their analysis of conjugation spaces \[31\]. The choice name and reason for the name are the same as the one here: analogy with \[12\].

In fact, we can work more generally, using arbitrary zero-slices. Any zero-slice is of the form HM for some Mackey functor in which all restriction maps along surjective maps are injections \[12\ Proposition 4.50\], and the map π_0 induces an equivalence between zero-slices and the full subcategory of Mackey functors of this form.

Notation 4.4. We say that a Mackey functor M is a zero-slice if HM is zero-slice.

Since the zero-slice of the zero sphere is HZ, any zero-slice is a module over HZ. This shows that we could have instead used arbitrary zero-slices.

Proposition 4.5. A G-spectrum E is homologically pure if and only if for every zero-slice M, we have an equivalence of \mathbb{Z}-modules

$$HM \wedge E \simeq HZ \wedge \bigvee_{i \in I_E} G_+ \wedge H_i^k \rho_i.$$

Notation 4.6. If we have a decomposition like that of homological purity or isotropic homological purity only for particular Green zero-slices R, then we will say that E has [isotropic] homological purity for R.

The regular representations are closed under restrictions, conjugations, and inductions. This gives the following.

Proposition 4.7. If E is a homologically pure H-spectrum, then

1. $G_+ \wedge H_+ E$ is homologically pure,
2. if $K \leq H$, then $i_K^* E$ is homologically pure, and
3. $N^H_E E$ is homologically pure.

4.1.1. Homology. The main benefit of this definition is from the defining property of zero-slices: all restriction maps are injections, and hence statements can usually be checked at the level of underlying homology.

Notation 4.8. Given an indexing set I_E for a homologically pure E, for each integer n, let

$$I_E^n = \{ i \in I_E \mid k_i | H_i | = n \}.$$

Proposition 4.9. Let E be homologically pure and let M be a zero-slice. For any subgroup K and for any integer k, we have

$$H_{\kappa_{RK}}(E; M) \cong \bigoplus_{j \in T_K^{[1]} \cap |K|} i_K^* M_K G/H_j^*.$$

We also have

$$H_{\kappa_{RK^{-1}}} (E; M) \cong \bigoplus_{j \in T_K^{[1]} \cap |K|^{-1}} \bigoplus_{g \in K \cap G/H_j} i_K^* M_K.$$

In particular, all restriction maps are injections.
Proof. By assumption, $\mathcal{H}M \land E$ is a wedge of induced up regular representation spheres smashed with $\mathcal{H}M$, and hence a wedge of slices. We therefore have

$$\mathcal{Z}_{k}(i_{K}^{*}(H_{M} \land E)) \cong \bigoplus_{j \in \pi_{k}^{k}[K]} \left[S^{k_{j}H_{j}} \land \mathcal{H}M \right] \cong \bigoplus_{j \in \pi_{k}^{k}[K]} \left[S^{0}, i_{K}^{*}(G/H_{j} \land \mathcal{H}M) \right]$$

The result follows by the definition of $i_{K}^{*}M_{K}^{*}G/H_{j}$. For the case of $(k\rho_{K} - 1)$, the argument is identical until the last step. Here, we have a direct sum

$$\bigoplus \mathcal{Z}_{-1}\left(S^{k_{j}H_{j}} \land i_{K}^{*}(G_{+} \land S^{k_{j}H_{j}} \land \mathcal{H}M)\right)$$

The double coset decomposition of G as a (K, H_{j})-biset allows us to rewrite each summand:

$$\mathcal{Z}_{-1}\left(S^{k_{j}H_{j}} \land i_{K}^{*}(G_{+} \land S^{k_{j}H_{j}} \land \mathcal{H}M)\right) \cong \bigoplus_{g \in K/G/H_{j}} i_{K}^{*}(K \cap gH_{j}g^{-1}) \mathcal{Z}_{-1}\left(S^{(n-m)\rho_{K}gH_{j}g^{-1}} \land \mathcal{H}M\right),$$

where

$$n = k_{j}[H_{j} : H_{j} \cap g^{-1}Kg] \text{ and } m = k[K : K \cap gH_{j}g^{-1}].$$

The only regular representation sphere that has a non-trivial homology in degree -1 is the one for the trivial group in degree -1, which gives the second part. □

Corollary 4.10. If $G = C_{p^{n}}$ and E is homologically pure and isotropic, then the homology groups in dimensions of the form $(i\rho_{K} - 1)$ vanish.

Definition 4.11. A homologically pure G-spectrum E is generalized isotropic if there is no pair

$$i \in \mathcal{T}_{E}^{k}, \text{ and } j \in \mathcal{T}_{E}^{n-1}$$

such that $G/H_{i} \times G/H_{j}$ contains a free summand.

This generalized isotropic condition allows us to have other ways to check homological purity.

Theorem 4.12. Let E be a G spectrum that admits a filtration such that $gr(E)$ is homologically pure and generalized isotropic. Then E is homologically pure and generalized isotropic.

Proof. The filtration on E gives a spectral sequence with E_{1}-term

$$\pi_{*}(gr(E) \land \mathcal{H}Z) \cong H_{*}(gr(E); \mathcal{Z}).$$

By assumption, this is a free $\mathcal{H}Z$-module, and the generators are in dimensions $k_{i}\rho_{H_{i}}$ for $i \in \mathcal{T}_{gr}(E)$. The generalized isotropic condition guarantees that these classes are permanent cycles, since there are no possible targets for the differentials on the generators by Proposition 4.4. Thus $E_{1} = E_{E}$, and since this is a free module, there are no possible extensions. □
The same proof applies more generally to deduce R-freeness for pure and isotropic R. More generally, we also deduce nice properties for the R-homology of a homologically pure E for any R which is pure, provided we have the same kind of generalized isotropy.

Definition 4.13. A G-spectrum R is **weakly pure** if for each $n \in \mathbb{Z}$, there is a set \mathcal{I}_n and for each $i \in \mathcal{I}_n$, a subgroup H_i and a zero-slice M_i for H_i such that the regular n-slice of R is

$$P_n^R \simeq \bigvee_{i \in \mathcal{I}_n} G_+ \wedge_{H_i} \left(S_{i}^n \wedge H M_i \right).$$

Remark 4.14. If a G-spectrum R is weakly pure, then the regular slice filtration of R is the same as the classical slice filtration of R. This is because for each n, the fiber of $P_n^R \to P_{n-1}^R$ is also a classical n-slice. By [12, Proposition 4.45], this must be the classical slice tower.

Theorem 4.15. Let R be a weakly pure G-ring spectrum that is slice 0-connective, and let E be a homologically pure spectrum such that \mathcal{I}_E^n is empty for n sufficiently negative.

If for each $j \in \mathcal{I}_E^n$, there is no $k \in \mathbb{Z}$, $i_E \in \mathcal{I}_E^{n-1-k}$, and $i_R \in \mathcal{I}_k$ such that

$$G/H_j \times G/H_{i_E} \times G/H_{i_R}$$

contains a trivial summand, then

$$R_\ast E \cong \bigoplus_{j \in \mathcal{I}_E} R_\ast (G_+ \wedge_{H_j} S^{k,j_\rho H_j}).$$

Proof. The slice filtration of R gives a filtration on $E \wedge R$ with associated graded

$$\bigvee_{n \in \mathbb{Z}} \left(\bigvee_{i \in \mathcal{I}_n} G_+ \wedge_{H_i} S^n M_{i,n} \wedge H M_{i,n,i} \right) \wedge E.$$

Since E is homologically pure, this is equivalent to

$$\bigvee_{j \in \mathcal{I}_E} \bigvee_{n \in \mathbb{Z}} \left(\bigvee_{i \in \mathcal{I}_n} G_+ \wedge_{H_i} S^n M_{i,n} \wedge H M_{i,n,i} \wedge G_+ \wedge_{H_j} S_{k,j_\rho H_j} \right).$$

The E_2-term of the associated spectral sequence is

$$E_2(R \wedge E) \cong E_2(R) \wedge_{H_\ast E} (E; \mathbb{Z}),$$

which is a free module over the E_2-term for R with a basis given by a basis for the homology of E. Our assumption on the lack of free summands guarantees that there are no possible targets for differentials on the basis elements, since the corresponding group of possible targets vanishes.

This gives us a map of R-modules:

$$R \wedge \bigvee_{j \in \mathcal{I}_E} G_+ \wedge_{H_j} S^{k,j_\rho H_j} \to R \wedge E.$$

By construction, this induces a map of filtered spectra, and hence a map of spectral sequences. This map is an isomorphism on E_2, which implies that the map is a weak equivalence, since our assumptions on R and E guarantee that slice spectral sequence converges strongly. \qed
4.1.2. Cohomology. We can make similar statements about the cohomology.

Proposition 4.16. If E is homologically pure and $|I^n_E| < \infty$ for all n, then for any zero-slice M, we have an equivalence of $H\mathbb{Z}$-modules

$$F(E, HM) \simeq HM \wedge \bigvee_{i \in I_E} G_+ \wedge S^{-k\rho H_i}.$$

Proof. Since zero-slices are $H\mathbb{Z}$-modules, we have an equivalence of $H\mathbb{Z}$-modules

$$F(E, HM) \simeq F_{H\mathbb{Z}}(H\mathbb{Z} \wedge E, HM).$$

The homological purity of E gives an equivalence of $H\mathbb{Z}$-modules

$$H\mathbb{Z} \wedge E \simeq H\mathbb{Z} \wedge \bigvee_{i \in I_E} G_+ \wedge S^{k\rho H_i},$$

and hence we have

$$F(E, HM) \simeq \prod \prod_{n \in I_E^n} G_+ \wedge S^{-k\rho H_i} \wedge HM.$$

Since I^n_E is finite, the inner most products are the same as wedges. Since for all integers k and subgroups H, the homotopy Mackey functors of

$$G_+ \wedge S^{k\rho H} \wedge HM$$

are zero outside of a finite range (depending only on k and H), the outer most product is also equivalent to the wedge. \qed

Example 4.17. An theorem of Pitsch–Ricka–Scherer shows that any conjugation space of Hausman–Holm–Puppe [9] are “mod 2” homologically pure and isotropic [31]. This gives a large class of examples.

4.2. Consequences in computations. The condition of homological purity gives surprising computational control.

4.2.1. Green functor structure. **Theorem 4.18.** Let E be a homologically pure spectrum, and assume that E comes equipped with a [commutative, associative] multiplication in the homotopy category. Then for any commutative Green functor R which is a zero-slice, the multiplication on

$$H_*(E; R)$$

is completely determined by the restrictions to

$$H_*(i_*^n E; R(G)).$$

Proof. The homological purity of E guarantees that the homology and cohomology are free modules over the RO-graded homology of a point. In particular, the ring structure is completely determined by the products of basis vectors. These occur in dimensions of the form $k\rho H$ for various k and H. If $x \in H_{k\rho H}(E; \mathbb{Z})$ and $y \in H_{\rho H}(E; \mathbb{Z})$, then the product of x and y is represented by a map out of

$$(G_+ \wedge H S^{k\rho H}) \wedge (G_+ \wedge J S^{\rho J}).$$

This is a wedge of spaces of the form

$$G_+ \wedge K S^{\rho K},$$
where K ranges over all subgroups of the form $H \cap gJg^{-1}$ and where

$$m_{\rho K} = i_{K}^{*}(k\rho_{H}) + i_{K}^{*}c_{g}^{*}(\ell\rho_{J}).$$

In particular, this is a wedge of regular slice spheres, again, and hence the product takes values in a zero-slice by Proposition 4.9. Since all restriction maps are injections here, the result follows.

Corollary 4.19. If E is a homologically pure spectrum, then the RO-graded ring structure on the cohomology of E with coefficients in any commutative Green zero-slice is functorially determined by the underlying cohomology ring.

4.2.2. Tambara functor structure

If, moreover, E is a G-E_{∞}-ring spectrum, then we also have good control over norms.

Theorem 4.20. If E is a G-commutative monoid in the homotopy category and if E is homologically pure, then for any Tambara zero-slice R, we have that the norms in $H_{\Delta}(E; R)$ are determined by the formula

$$i_{e}^{*}N^{G}_{H}(x) = \prod_{\gamma \in G/H} \gamma(i_{e}^{*}x).$$

Proof. The proof is the same as for the products. Here we use that the collection of regular representations is a sub-semi-Mackey functor of the representation ring. □

Remark 4.21. Tambara functors which are also zero-slices were independently studied by Nakaoka, who called these “MRC” Tambara functors, in his study of localizations of Tambara functors [30].

4.2.3. CoTambara structure

Again, all of the desired structure can be read out of the underlying homology. The conorm maps are detected as twisted coproducts. The proofs are identical.

Theorem 4.22. Let E be a homologically pure spectrum, and assume that E comes equipped with a [cocommutative, coassociative] comultiplication in the homotopy category. Then for any commutative Green functor R which is a zero-slice, the comultiplication on $H_{\Delta}(E; R)$ is completely determined by

$$H_{*}(i_{e}^{*}E; R(G)).$$

Theorem 4.23. If E is a G-co-commutative comonoid in the homotopy category and if E is homologically pure, then for any Tambara zero-slice R, we have that the conorms in $H_{\Delta}(E; R)$ are determined by the formula

$$i_{e}^{*}N^{G}_{H}(x) = \left(\bigotimes_{\gamma \in G/H} \gamma \circ \psi\right)(i_{e}^{*}x).$$
4.2.4. Dyer–Lashof operations. Finally, we restrict to C_2. None of the arguments here are that specific to C_2; the only issue is in defining the appropriate Dyer–Lashof operations. For groups which contain C_2, norm arguments provide analogous classes, but the author has no idea in general. We recall Wilson’s RO(C_2)-graded stable operations.

Theorem 4.24 ([2 §3], [41]). For each $i \geq 0$ and for each $\epsilon = 0, 1$, we have Dyer–Lashof operations

$$Q^{i\rho_2-\epsilon}: H_\bullet(\cdot; \mathbb{F}_2) \to H_{\bullet+i\rho_2-\epsilon}(\cdot; \mathbb{F}_2).$$

When $\bullet = i\rho_2$, $Q^{i\rho_2}$ is the square.

In this case, homological purity says that the underlying structure describes everything.

Theorem 4.25. If E is a homologically pure C_2-E_∞-ring spectrum, then we have

$$Q^{i\rho_2-\epsilon}: H_\bullet(E; \mathbb{F}_2) \to H_{\bullet+i\rho_2-\epsilon}(E; \mathbb{F}_2)$$

is determined by the restrictions $i^*_\ast Q^{i\rho_2-\epsilon}$. The “odd” operations $Q^{i\rho_2-1}$ can only land in cells induced from the trivial group.

Proof. This again follows immediately from the assumption of homological purity. □

4.3. Example: the homology of $\mathbb{C}P^\infty$ and of BU_R.

4.3.1. The C_2-E_∞ space $\mathbb{C}P^\infty$. The standard cell structure for $\mathbb{C}P^\infty$ has a unique cell in dimension $k\rho_2$ for all $k \geq 0$ and no other cells. In particular, it is homologically pure and isotropic, with a basis given by all

$$\bar{b}_n \in H_{\rho_2}(\mathbb{C}P^\infty; \mathbb{Z})$$

corresponding to the top cell of $\mathbb{C}P^n$. The ring and coring structure then follows immediately from the underlying case.

Proposition 4.26. As a Green Hopf algebra, the homology of $\mathbb{C}P^\infty$ with coefficients in \mathbb{Z} is a divided power algebra on the primitive class \bar{b}_1.

The norm (and conorm) maps are also determined by the underlying condition. Here we have

$$i^*_C (N^e_{C_2} b_n) = -b_n^2 = -\binom{2n}{n} b_{2n}.$$

Proposition 4.27. The norms are given by

$$N^e_{C_2} b_n = -\binom{2n}{n} \bar{b}_{2n}.$$

The conorms are dual to the (negative) squaring operation.
The homology of BU_R. We begin with the computation of the homology of BU_R with coefficients in \mathbb{Z}. We give a slightly different proof than that of [21] and [32], using instead our formulae above. This line of argument was undoubtedly known by Araki and Landweber.

Theorem 4.28. There are classes
\[\bar{a}_i \in H_{i\rho_2}(BU_R; \mathbb{Z}) \]
such that the induced map on A_{∞}-rings
\[H\mathbb{Z} \wedge \bigwedge_{i \geq 1} S^0[\bar{a}_i] = H\mathbb{Z} \wedge S^0[\bar{a}_1, \bar{a}_2, \ldots] \to H\mathbb{Z} \wedge BU_R \]
is an equivalence of C_2-equivariant associative algebras, and hence the C_2-space BU_R is homologically pure and isotropic.

Proof. Araki lifted the classical, non-equivariant description of $\mathbb{MU}_* \mathbb{MU}$, showing
\[MU_R \wedge MU_R \simeq MU_R[\bar{a}_1, \ldots], \]
and in particular, this is free with a basis in regular representation dimensions. The Thom isomorphism shows
\[MU_R \wedge BU_R+ \simeq MU_R \wedge MU_R \]
as $C_2\spherical_{\infty}$ rings. Since $H\mathbb{Z}$ is a commutative ring spectrum under MU_R, the result follows by base-change. \qed

Remark 4.29. The classical Schubert cell analysis works equally well here, and the underlying argument is essentially the same as that of [9].

Corollary 4.30. For any finite group G which contains C_2, the co-induced G-space $Map^{C_2}(G, BU_R)$ is homologically pure and isotropic with basis given by the norm of the monomial basis.

Notation 4.31. Let
\[\mathbb{Z}_c = \mathbb{Z}.H\mathbb{Z}. \]

Corollary 4.32. We have an isomorphism of $RO(C_2)$-graded Green functors
\[H^C_c(BU_R; \mathbb{Z}) \cong \mathbb{Z}_c[\bar{a}_1, \ldots], \]
where $|\bar{a}_i| = i\rho_2$.

We can also deduce the norms, coproducts, and conorms.

Proposition 4.33. The norms are given by
\[N^c_c(a_i) = (-1)^i \bar{a}_i^2. \]

Finally, the co-Tambara structure is lifting the usual dual polynomial structure. Since the space BU_R is finite type, we can equivalently describe the cohomology ring and the norms there.

Proposition 4.34 ([21]). The cohomology ring of BU_R is
\[H^*(BU_R; \mathbb{Z}) \cong \mathbb{Z}_c[c_1, \ldots]. \]

Moreover, the inclusions of equivariant maximal tori into the $U_R(n)$ identify these Chern classes with the usual symmetric functions in the Chern roots.
Proof. Only the second part requires proof, since BU_R is homologically pure, isotropic, and of finite type. The same is true for the space $(CP^\infty)^n$. The induced map on cohomology is determined by the underlying homology, and we reduce to the classical case.

Proposition 4.35. The norms of the Chern classes are also the squares:

$$N^C_*(c_i) = (-1)^i c_i^2.$$

Finally, using Theorem 4.25, we deduce the action of Wilson’s Dyer–Lashof operations.

Theorem 4.36. The Dyer–Lashof operations $Q^{i\rho_2}$ on $H_*(BU_R; \mathbb{F}_2)$ act as

$$Q^{i\rho_2}(\bar{a}_j) = \left(\frac{n}{r - n - 1}\right)\bar{a}_{i+j} \mod \text{decomposables}.$$

The Dyer–Lashof operations $Q^{i\rho_2-1}$ are identically zero.

Proof. Theorem 4.25 implies that these operations are completely determined by the underlying action. The ordinary Dyer–Lashof action on the homology of BU was determined by Kochman [22, 24].

As an aside, this also gives the Dyer–Lashof action on the space BO by applying geometric fixed points.

Corollary 4.37 ([22 Theorem 36]). In

$$H_*(BO; \mathbb{F}_2) \cong \mathbb{F}_2[e_1, \ldots],$$

we have for all $r \geq 0$ and $n \geq 1$,

$$Q^r(e_n) = \left(\frac{n}{r - n - 1}\right)e_{n+r} \mod \text{decomposables}.$$

5. **Bar and twisted bar spectral sequences**

For R-free spectra, we have readily computable equivariant versions of the classical Rothenberg–Steenrod and Eilenberg–Moore spectral sequences. For $G = C_2$, we also have twisted versions of these where the group acts also on the homotopy pullback diagram. We explain how these work here, giving an example for the bar spectral sequence.

5.1. **Bar and Rothenberg–Steenrod.** Let A be an associative monoid in G-spaces. Let X be a right A-space and let Y be a left A-space. In this case, the derived balanced product can be computed via the bar construction:

$$X \bar{\otimes} Y = B(X, A, Y),$$

where $B(X, A, Y)$ is the geometric realization of the simplicial complex

$$k \mapsto B_k(X, A, Y) = X \times A^\times k \times Y,$$

and where as usual, the structure maps are the actions or product in A.

Remark 5.1. Although the space underlying the (non-derived) version of $X \bar{\otimes} Y$ is just the ordinary $X \times Y$, we use the tensor product notation to stress the connection with the algebraic case and to distinguish from later pullback constructions.
If \(A \) and either \(X \) or \(Y \) are \(R \)-free, then we have a bar spectral sequence computing the \(R \)-homology of \(X \otimes A \).

Theorem 5.2. If \(A \) and either \(X \) or \(Y \) are \(R \)-free, then we have an Adams-graded spectral sequence

\[
E^2_{p,q} = \text{Tor}_{-s}^R A \left(R_\bullet(X), R_\bullet(Y) \right) \Rightarrow R_{-s}(X \otimes A).
\]

Proof. Our assumptions guarantee that for each \(k \), the \(R \)-homology of \(B_k(X, A, Y) \) is given by

\[
R_\bullet(B_k(X, A, Y)) \cong R_\bullet(X) \square R_\bullet(A) \square R_\bullet(Y),
\]

and the maps are the standard resolution computing Tor.

Remark 5.3. If a basis for \(A \) and either \(X \) or \(Y \) can be chosen to be in RO\((G)\), then Lewis–Mandell give an RO\((G)\)-graded version of the Künneth spectral sequence which gives the exact same result. This is because our bar complex becomes the relative smash product upon taking \(\Sigma^\infty_+ \). The resulting spectral sequence is the same [26], since it is built the same way.

Applying cohomology instead to the bar construction when \(X = Y = * \) gives the Rothenberg–Steenrod spectral sequence [35]. Our assumptions allow this to be determined as well.

Theorem 5.4. If \(A \) is \(R \)-free and \(A \) is finite type, then we have a spectral sequence

\[
E^2_{p,q} = \text{Ext}_{R^A}^1 \left(R_\bullet \otimes R_\bullet, \right) \Rightarrow R_{-s}^{-s}(BA).
\]

Example: \(BBU_\mathbb{R} \). Since \(BBU_\mathbb{R} \) is \(H_\mathbb{Z} \)-free, we can run the bar spectral sequence to compute the homology of \(BBU_\mathbb{R} \).

Proposition 5.5 ([26]). There is an Adams-style spectral sequence with

\[
E^2_{p,q} = \text{Tor}_{H_\mathbb{Z} \otimes BU_\mathbb{R}}^* \left(\mathbb{Z}, \mathbb{Z} \right) \cong E^2_{p,q} \left(\tilde{y}_1, \ldots \right) \Rightarrow H_{-s} \left(BBU_\mathbb{R}; \mathbb{Z} \right),
\]

where \(\tilde{y}_i \) is the element in \(\text{Tor}_{-1}^1 \) represented by \(\tilde{a}_i \) and has bidegree \((-1, ip_2)\).

Since all of the algebra generators are in filtration \((-1)\), this spectral sequence collapses at \(E_2 \). This is a free \(\mathbb{Z}_\mathbb{L} \)-module, hence there are no additive extensions. There are, however, multiplicative extensions.

Theorem 5.6. As an RO\((C_2)\)-graded Green functor,

\[
H_{-s} \left(BBU_\mathbb{R}; \mathbb{Z} \right) \cong \mathbb{Z}_\mathbb{L} \left[\tilde{y}_1, \tilde{y}_2, \ldots \right] / \left(\tilde{y}_i^2 - a_\sigma \tilde{y}_{2i+1} \right),
\]

where \(\tilde{y}_i \) is a fixed element of degree \(ip_2 + 1 \).

Proof. The Dyer–Lashof operations commute with the homology suspension, and since this factors through the indecomposables, our earlier analysis gives on-the-nose identifications of the Dyer–Lashof actions.

Wilson has shown that for a class in degree \((n p_2 + 1) \), the square is stable and can be written as

\[
(-)^2 = a_\sigma Q^{(n+1)p_2} + u_\sigma Q^{(n+1)p_2-1}.
\]

In particular, the squares are given by

\[
\tilde{y}_n^2 = a_\sigma Q^{(n+1)p_2} \tilde{y}_n = a_\sigma \left[Q^{(n+1)p_2} \tilde{a}_n \right] = a_\sigma [\tilde{a}_{2n+1}] = a_\sigma \tilde{y}_{2n+1}. \quad \square
\]
Remark 5.7. The geometric fixed points of this are again polynomial, and we recover
the result of Kochman on the homology of BBO [22].

Remark 5.8. The C_2-space BU_R is C_2-E_∞, so it makes sense to ask about norm
maps here. The situation is more complicated. In fact, the Tor term itself has
a somewhat confusing relationship with the norms, since there is no reason for
the homology suspension to set them equal to zero. Put another way, the usual
argument shows that homology suspension factors through the ordinary module of
Kähler differentials, but it will not necessarily factor through the module of genuine
Kähler differentials of [14].

Since the homology of BBU_R is free, we also get the homology of the coinduced
BBU_R.

Theorem 5.9. For any finite group G and inclusion $C_2 \subset G$, we have an isomor-
phism of RO-graded Tambara functors
$$H_\mathbb{Z}(\text{Map}^C_2(G, BBU_R); \mathbb{Z}) \cong N_{C_2}^G(H_\mathbb{Z}(BBU_R; \mathbb{Z})).$$

5.2. Twisted bar spectral sequence. In C_2-equivariant homotopy, we have an
additional version of the E_1-operad: the E_σ-operad. Algebras for this have no mul-
tiplication on their fixed points, but they do have a transfer map and an underlying
multiplication. A summary can be found in [13].

If A is an E_σ-algebra, then we can form a kind of balanced tensor product
$$A \longrightarrow X$$
$$\downarrow \quad \downarrow$$
$$X \longrightarrow X \hat{\otimes}_X X,$$
where C_2 acts on the whole diagram by swapping the two copies of X. This amounts
to the data of a space X acted on by the associative monoid $i^*_\sigma A$. The E_σ-structure
on A means that the group action gives an isomorphism $i^*_\sigma A \cong i^*_\sigma A^{op}$, and hence
the action on X also canonically gives a right action. The twisted balanced product
swaps the two factors of X and also then necessarily changes these left and right
actions.

Definition 5.10. If A is an E_σ-algebra and X is an $i^*_\sigma A$-module, then let
$$B^\sigma(A; X) = B(A, \text{Map}(C_2, A), \text{Map}(C_2, X)),$$
where the action of $\text{Map}(C_2, A)$ on A is via the E_σ-structure.

Perhaps the most interest case is when X is a point. In this case, work of Hahn–
Shi and of Liu show that in this case B^σ is the appropriate “signed de-looping”,
providing a classifying space for E_σ-algebras [8, 27].

Theorem 5.11. If A has R-free homology, then we have a spectral sequence which
Adams indexed has the form
$$E_2^{s,t} = \text{Tor}_{s-t}^N(H_{s-t}(\text{Map}(C_2, X)); R(A)) \Rightarrow R_{s-t}(B^\sigma(A; X)).$$
If X also has R-free homology, then the action of $N_{C_2}^N(i^*_\sigma R_*(i^*_\sigma A))$
on
$$R_*(\text{Map}(C_2, X)) \cong N_{C_2}^N(i^*_\sigma R_*(X))$$
is the one induced by functoriality.
5.3. Eilenberg–Moore. Following Rector, we build a geometric model of the Eilenberg–Moore spectral sequence \([33, 37]\). Just as non-equivariantly, any \(G\)-space is a coalgebra with comultiplication given by the diagonal map, and \(G\)-space \(X\) together with a map to a \(G\)-space \(B\) can be viewed as a \(B\)-comodule (and in fact, we have much more structure equivariantly coming from the twisted diagonals). This allows us to form the cosimplicial cobar complex as a model for the homotopy pullback.

If \(X \to B\) and \(B \leftarrow Y\) are maps of \(G\)-spaces, then a model for the homotopy pullback is given by

\[
X \times_Y^h B \simeq \text{co}B(X, B, Y),
\]

where \(\text{co}B(X, B, Y)\) is the totalization of the cosimplicial complex

\[
k \mapsto X \times B^k \times Y,
\]

and where the structure maps are the diagonal of \(B\) or the respective coaction maps. If \(B\) and either \(X\) or \(Y\) are \(R\)-free and finite type, then we have a spectral sequence computing cohomology. In general, convergence of this spectral sequence is very delicate, just as classically. For this reason, we state the result only for Bredon homology with coefficients in a Green functor.

Theorem 5.12. If \(B\) and either \(X\) or \(Y\) has \(R\)-free homology, then we have a spectral sequence

\[
E_2 = \text{Tor}_{\mathbb{Z}}(H^*(B; \mathbb{R}), H^*(X; \mathbb{R}), H^*(Y; \mathbb{R})) \Rightarrow H^{\bullet+s}(X \times_Y^h B; \mathbb{R}).
\]

5.4. Twisted Eilenberg–Moore. Dual to the twisted pushout, we have a twisted homotopy pullback.

Definition 5.13. If \(f : X \to \iota^* B\), then let \(X \hat{\times}_B X\) be the defined by the homotopy pullback

\[
\begin{array}{ccc}
X \hat{\times}_B X & \longrightarrow & \text{Map}(C_2, X) \\
\downarrow & & \downarrow \text{Map}(C_2, f) \\
B & \longrightarrow & \text{Map}(C_2, B).
\end{array}
\]

This is modeling a pullback diagram where now the group acts by swapping the two sides again. The homotopy pullback gives a version of the ordinary homotopy pullback where we replace the ordinary interval with the balanced interval \([-1, 1]\) in the sign representation.

Remark 5.14. If \(X\) is a point, then this gives us the space of signed loops into \(B\).

This pullback gives a cobar complex and hence an Eilenberg–Moore spectral sequence via Theorem 5.12.

Theorem 5.15. If \(B\) has \(R\)-free homology, and if \(R\) is a Tambara functor then we have a spectral sequence

\[
E_2 = \text{Tor}_{\mathbb{Z}}(C_2, H^*(B; \mathbb{R}))(H^*(\text{Map}(C_2, X); \mathbb{R}), H^*(B; \mathbb{R})) \Rightarrow H^{\bullet+s}(X \hat{\times}_B X; \mathbb{R}).
\]

Moreover, if \(X\) also has \(R\)-free homology, then the action on

\[
H^*(\text{Map}(C_2, X); \mathbb{R}) \cong N_{\mathbb{C}}^C H^*(X; \mathbb{R}(C_2))
\]
is induced by the non-equivariant one.

We believe that these spectral sequences will be useful in computing the cohomology of equivariant Eilenberg–Mac Lane spaces.

References

[1] Vigleik Angeltveit and Anna Marie Bohmann. Graded Tambara functors. *J. Pure Appl. Algebra*, 222(12):4126–4150, 2018.

[2] Mark Behrens and Dylan Wilson. *A C_2-equivariant analog of Mahowald’s Thom spectrum theorem*. *Proc. Amer. Math. Soc.*, 146(11):5003–5012, 2018.

[3] Andrew J. Blumberg and Michael A. Hill. *G*-symmetric monoidal categories of modules over equivariant commutative ring spectra. *Tunis. J. Math.*, 2(2):237–286, 2020.

[4] Henri Cartan. *Sur les groupes d’Eilenberg-Mac Lane. II*. *Proc. Nat. Acad. Sci. U.S.A.*, 40:704–707, 1954.

[5] Daniel Dugger. *Bigraded cohomology of $Z/2$-equivariant Grassmannians*. *Geom. Topol.*, 19(1):113–170, 2015.

[6] Kevin K. Ferland and L. Gaunce Lewis, Jr. *The $RO(C_2)$-graded equivariant ordinary cohomology of G-cell complexes with even-dimensional cells for $G = Z/p$*. *Mem. Amer. Math. Soc.*, 167(794):viii+129, 2004.

[7] Michikazu Fujii. *Cobordism theory with reality*. *Math. J. Okayama Univ.*, 18(2):171–188, 1975/76.

[8] Jeremy Hahn and XiaoLin Danny Shi. *Real orientations of Lubin-Tate spectra*. *Invent. Math.*, 221(3):731–776, 2020.

[9] Jean-Claude Hausmann, Tara Holm, and Volker Puppe. *Conjugation spaces*. *Algebr. Geom. Topol.*, 5:923–964, 2005.

[10] Markus Hausmann. *G*-symmetric spectra, semistability and the multiplicative norm. *J. Pure Appl. Algebra*, 221(10):2582–2632, 2017.

[11] Christy Hazel. *The $RO(C_2)$-graded cohomology of C_2-surfaces in $Z/2$-coefficients*. *Math. Z.*, 297(1-2):961–996, 2021.

[12] M. A. Hill, M. J. Hopkins, and D. C. Ravenel. On the nonexistence of elements of Kervaire invariant one. *Ann. of Math. (2)*, 184(1):1–262, 2016.

[13] Michael A. Hill. On the algebras over equivariant little disks. arxiv.org:1709.02005, 2017.

[14] Michael A. Hill. On the Andr´e-Quillen homology of Tambara functors. *J. Algebra*, 489:115–137, 2017.

[15] Michael A. Hill, Michael J. Hopkins, and Douglas C. Ravenel. The slice spectral sequence for the C_4 analog of real K-theory. *Forum Math.*, 29(2):383–447, 2017.

[16] Michael A. Hill and Kristen Mazur. *An equivariant tensor product on Mackey functors*. *Journ. Pure and Applied Algebra*, 2019.

[17] Michael A. Hill and Lennart Meier. *The C_2-spectrum Tmf$_1(3)$ and its invertible modules*. *Algebr. Geom. Topol.*, 17(4):1953–2011, 2017.

[18] Eric Hogle and Clover May. *The freeness theorem for equivariant cohomology of Rep(C_2)-complexes*. *Topology Appl.*, 285:1074:13, 2020.

[19] Rolf Hoyer. *Two topics in stable homotopy theory*. PhD thesis, University of Chicago, 6 2014.

[20] Po Hu and Igor Kriz. Real-oriented homotopy theory and an analogue of the Adams-Novikov spectral sequence. *Topology*, 40(2):317–399, 2001.

[21] Bruno Kahn. *Construction de classes de Chern équivariantes pour un fibré vectoriel réel*. *Comm. Algebra*, 15(4):695–711, 1987.

[22] Stanley O. Kochman. *Homology of the classical groups over the Dyer-Lashof algebra*. *Trans. Amer. Math. Soc.*, 185:83–136, 1973.

[23] William C. Kronholm. A freeness theorem for $RO(Z/2)$-graded cohomology. *Topology Appl.*, 157(5):902–915, 2010.

[24] Timothy Lance. Steenrod and Dyer-Lashof operations on BU. *Trans. Amer. Math. Soc.*, 276(2):497–510, 1983.

[25] Peter S. Landweber. *Conjugations on complex manifolds and equivariant homotopy of MU*. *Bull. Amer. Math. Soc.*, 74:271–274, 1968.

[26] L. Gaunce Lewis, Jr. and Michael A. Mandell. *Equivariant universal coefficient and Künneth spectral sequences*. *Proc. London Math. Soc. (3)*, 92(2):505–544, 2006.
[27] Yutao Liu. Twisted bar construction. arxiv.org: 2003.06856, 2020.
[28] Sverre Lunøe-Nielsen and John Rognes. The topological Singer construction. Doc. Math., 17:861–909, 2012.
[29] Clover May. A structure theorem for RO(C2)-graded Bredon cohomology. Algebr. Geom. Topol., 20(4):1691–1728, 2020.
[30] Hiroyuki Nakaoka. On the fractions of semi-Mackey and Tambara functors. J. Algebra, 352:79–103, 2012.
[31] Wolfgang Pitsch, Nicolas Ricka, and Jérôme Scherer. Conjugation spaces are cohomologically pure. Proc. Lond. Math. Soc. (3), 123(3):315–344, 2021.
[32] Wolfgang Pitsch and Jérôme Scherer. Conjugation spaces and equivariant Chern classes. Bull. Belg. Math. Soc. Simon Stevin, 20(1):77–90, 2013.
[33] David L. Rector. Steenrod operations in the Eilenberg-Moore spectral sequence. Comment. Math. Helv., 45:540–552, 1970.
[34] Nicolas Ricka. Subalgebras of the Z/2-equivariant Steenrod algebra. Homology Homotopy Appl., 17(1):281–305, 2015.
[35] M. Rothenberg and N. E. Steenrod. The cohomology of classifying spaces of H-spaces. Bull. Amer. Math. Soc., 71:872–875, 1965.
[36] Jean-Pierre Serre. Cohomologie modulo 2 des complexes d’Eilenberg-MacLane. Comment. Math. Helv., 27:198–232, 1953.
[37] Larry Smith. Lectures on the Eilenberg-Moore spectral sequence. Lecture Notes in Mathematics, Vol. 134. Springer-Verlag, Berlin-New York, 1970.
[38] Victor P. Snaith. Algebraic cobordism and K-theory. Mem. Amer. Math. Soc., 21(221):vii+152, 1979.
[39] Dylan Wilson. C2-equivariant homology operations: Results and formulas. arxiv.org: 2019.06065, 2019.