Invariance of simultaneous similarity and equivalence of matrices under extension of the ground field

Clément de Seguins Pazzis ∗†
March 12, 2010

Abstract

We give a new and elementary proof that simultaneous similarity and simultaneous equivalence of families of matrices are invariant under extension of the ground field, a result which is non-trivial for finite fields and first appeared in a paper of Klinger and Levy ([2]).

AMS Classification : 15A21; 12F99

Keywords : matrices, Kronecker reduction, field extension, simultaneous similarity, simultaneous equivalence.

1 Introduction

In this article, we let K denote a field, L a field extension of K, and n and p two positive integers.

Definition 1. Two families $(A_i)_{i \in I}$ and $(B_i)_{i \in I}$ of matrices of $M_n(K)$ indexed over the same set I are said to be simultaneously similar when there exists $P \in \text{GL}_n(K)$ such that

$$\forall i \in I, \quad P A_i P^{-1} = B_i$$

(such a matrix P will then be called a base change matrix with respect to the two families).

∗ Teacher at Lycée Privé Sainte-Geneviève, 2, rue de l’École des Postes, 78029 Versailles Cedex, FRANCE.
† e-mail address: dsp.prof@gmail.com
Two families \((A_i)_{i \in I} \) and \((B_i)_{i \in I} \) of matrices of \(M_{n,p}(\mathbb{K})\) indexed over the same set \(I\) are said to be \textit{simultaneously equivalent} when there exists a pair \((P, Q) \in \text{GL}_n(\mathbb{K}) \times \text{GL}_p(\mathbb{K})\) such that
\[
\forall i \in I, \ P A_i Q = B_i.
\]
Of course, those relations extend the familiar relations of similarity and equivalence respectively on \(M_n(\mathbb{K})\) dans \(M_{n,p}(\mathbb{K})\), and they are equivalence relations respectively on \(M_n(\mathbb{K})\) dans \(M_{n,p}(\mathbb{K})\).

The simultaneous similarity of matrices is generally regarded upon as a “wild problem” where finding a useful characterisation by invariants seems out of reach. See [1] for an account of the problem and an algorithmic approach to its solution (for that last matter, also see [2]).

In this respect, our very limited goal here is to establish the following two results:

Theorem 1. Let \(\mathbb{K} - L\) be a field extension and \(I\) be a set. Let \((A_i)_{i \in I}\) and \((B_i)_{i \in I}\) be two families of matrices of \(M_n(\mathbb{K})\). Then \((A_i)_{i \in I}\) and \((B_i)_{i \in I}\) are simultaneously similar in \(M_n(\mathbb{K})\) if and only if they are simultaneously similar in \(M_n(L)\).

Theorem 2. Let \(\mathbb{K} - L\) be a field extension and \(I\) be a set. Let \((A_i)_{i \in I}\) and \((B_i)_{i \in I}\) be two families of matrices of \(M_{n,p}(\mathbb{K})\). Then \((A_i)_{i \in I}\) and \((B_i)_{i \in I}\) are simultaneously equivalent in \(M_{n,p}(\mathbb{K})\) if and only if they are simultaneously equivalent in \(M_{n,p}(L)\).

Remarks.

(i) In both theorems, the “only if” part is trivial.

(ii) It is an easy exercise to derive theorem 1 from theorem 2. However, we will do precisely the opposite!

2 A proof for simultaneous similarity

2.1 A reduction to special cases

In order to prove theorem 2 we will not, contra [2], try to give a canonical form for simultaneous similarity. Instead, we will focus on base change matrices and prove directly that if one exists in \(M_n(L)\), then another (possibly the same), also exists in \(M_n(\mathbb{K})\). To achieve this, we will prove the theorem in the two following special cases:

(i) \(\mathbb{K}\) has at least \(n\) elements;

(ii) \(\mathbb{K} - L\) is a separable quadratic extension.
Assuming these cases have been solved, let us immediately prove the general case. Case (i) handles the situation where K is infinite. Assume now that K is finite, and choose a positive integer N such that $(\#K)^{2^N} \geq n$. Since K is finite, there exists (see section V.4 of [3]) a tower of N quadratic separable extensions

$$K \subset K_1 \subset K_2 \subset \cdots \subset K_N.$$

We let M denote a compositum extension of K_N and L (as extensions of K):

$$\begin{array}{c}
 K \\
 | \\
 L \\
 | \\
 M.
\end{array}$$

Assume the families $(A_i)_{i \in I}$ and $(B_i)_{i \in I}$ of matrices of $M_n(K)$ are simultaneously similar in $M_n(L)$. Then they are also simultaneously similar in $M_n(M)$. However, $\#K_N = (\#K)^{2^N} \geq n$, so this simultaneous similarity also holds in $M_n(K_N)$. Using case (ii) by induction, when then obtain that that $(A_i)_{i \in I}$ and $(B_i)_{i \in I}$ are simultaneously similar in $M_n(K)$.

2.2 The case $\#K \geq n$

The line of reasoning here is folklore, but we reproduce the proof for sake of completeness. Let then $P \in \text{GL}_n(L)$ be such that

$$\forall i \in I, P A_i P^{-1} = B_i,$$

so

$$\forall i \in I, P A_i = B_i P.$$

Let V denote the K-vector subspace of L generated by the coefficients of P, and choose a basis (x_1, \ldots, x_N) of V. Decompose then

$$P = x_1 P_1 + \cdots + x_N P_N$$

with P_1, \ldots, P_N in $M_n(K)$, and let W be the K-vector subspace of $M_n(K)$ generated by the N-tuple (P_1, \ldots, P_N). Since the A_i’s and the B_i’s have all their coefficients in K, the previous relations give:

$$\forall i \in I, \forall k \in \{1, N\}, P_k A_i = B_i P_k$$

hence

$$\forall i \in I, \forall Q \in W, Q A_i = B_i Q.$$
It thus suffices to prove that W contains a non-singular matrix. However, the polynomial $\det(Y_1 P_1 + \cdots + Y_N P_N) \in K[Y_1, \ldots, Y_N]$ is homogeneous of total degree n and is not the zero polynomial because
\[
\det(x_1 P_1 + \cdots + x_N P_N) = \det(P) \neq 0.
\]
Since $n \leq \# K$, we conclude that the map $Q \mapsto \det Q$ does not totally vanish on W, which proves that $W \cap \text{GL}_n(K)$ is non-empty, QED.

2.3 The case L is a separable quadratic extension of K

We choose an arbitrary element $\varepsilon \in L \setminus K$ and let σ denote the non-identity automorphism of the K-algebra L. Assume $(A_i)_{i \in I}$ and $(B_i)_{i \in I}$ are simultaneously similar in $M_n(L)$, and let $P \in \text{GL}_n(L)$ be such that
\[
\forall i \in I, \quad P A_i P^{-1} = B_i.
\]
We first point out that the problem is essentially unchanged should P be replaced with a K-equivalent matrix of $\text{GL}_n(L)$.

Indeed, let $(P_1, P_2) \in \text{GL}_n(K)^2$, and set $P' := P_1 P P_2^{-1} \in \text{GL}_n(L)$, and $A'_i := P_2 A_i (P_2)^{-1}$ and $B'_i := P_1 B_i (P_1)^{-1}$ for all $i \in I$. Then:
\[
\forall i \in I, \quad P' A'_i (P')^{-1} = B'_i.
\]

Since it follows directly from definition that $(A_i)_{i \in I}$ and $(A'_i)_{i \in I}$ are simultaneously similar in $M_n(K)$, and that it is also true of $(B_i)_{i \in I}$ and $(B'_i)_{i \in I}$, it will suffice to show that $(A'_i)_{i \in I}$ and $(B'_i)_{i \in I}$ are simultaneously similar in $M_n(K)$, knowing that they are simultaneously similar in $M_n(L)$.

Returning to P, we split it as $P = Q + \varepsilon R$ with $(Q, R) \in M_n(K)^2$.

The previous remark then reduces the proof to the case where the pair (Q, R) is canonical in terms of Kronecker reduction (see chapter XII of [4] and our section 4). More roughly, when can assume, since P is non-singular, that, for some $q \in [0, n]$
\[
Q = \begin{bmatrix} M & 0 \\ 0 & I_{n-q} \end{bmatrix} \quad \text{and} \quad R = \begin{bmatrix} I_q & 0 \\ 0 & N \end{bmatrix}
\]
where $M \in M_q(K)$, N is a nilpotent matrix of $M_{n-q}(K)$, and we have let I_k denote the unit matrix of $M_k(K)$.

Let $i \in I$. Applying σ coefficient-wise to $P A_i P^{-1} = B_i$, we get:
\[
\sigma(P) A_i \sigma(P)^{-1} = B_i = P A_i P^{-1},
\]

hence A_i commutes with $\sigma(P)^{-1} P$. We now claim the following result:
Lemma 3. Under the preceding assumptions, any matrix of $M_n(K)$ that commutes with $\sigma(P)^{-1} P$ also commutes with P.

Assuming this lemma holds, we deduce that $\forall i \in I, P A_i P^{-1} = A_i$, hence $(A_i)_{i \in I}$ and $(B_i)_{i \in I}$ are equal, thus simultaneously similar in $M_n(K)$, which finishes our proof.

Proof of lemma 3. Let $A \in M_n(K)$ which commutes with $\sigma(P)^{-1} P$. Applying σ, we deduce that A also commutes with $P^{-1} \sigma(P)$, hence with $I_n + (\sigma(\varepsilon) - \varepsilon) P^{-1} R$, hence with $P^{-1} R$ since $\sigma(\varepsilon) \neq \varepsilon$.

Notice then that $P^{-1} R = \begin{bmatrix} (M + \varepsilon I_q)^{-1} & 0 \\ 0 & (I_{n-q} + \varepsilon N)^{-1} N \end{bmatrix}$ with $(M + \varepsilon I_q)^{-1}$ non-singular and $(I_{n} + \varepsilon N)^{-1} N$ nilpotent, so A, which stabilizes both $\text{Im}(P^{-1} R)^n$ and $\text{Ker}(P^{-1} R)^n$, must be of the form $A = \begin{bmatrix} C & 0 \\ 0 & D \end{bmatrix}$ for some $(C, D) \in M_q(K) \times M_{n-q}(K)$.

Commutation of A with $P^{-1} R$ ensures that C commutes with $(M + \varepsilon I_q)^{-1}$, whereas D commutes with $(I_{n-q} + \varepsilon N)^{-1} \neq (I_{n-q} + \varepsilon N)^{-1}$ hence with $(I_{n-q} + \varepsilon N)^{-1}$. It follows that A commutes with P^{-1}, hence with P.

3 A proof for simultaneous equivalence

We will now derive theorem 2 from theorem 1. Under the assumptions of theorem 2, we choose an arbitrary object a that does not belong to I, and define $C_a = D_a := \begin{bmatrix} I_n & 0 \\ 0 & 0 \end{bmatrix} \in M_{n+p}(K)$

and, for $i \in I$,

$C_i = \begin{bmatrix} 0 & A_i \\ 0 & 0 \end{bmatrix}$ and $D_i = \begin{bmatrix} 0 & B_i \\ 0 & 0 \end{bmatrix}$ in $M_{n+p}(K)$.

The following two conditions are then equivalent :
(i) $(A_i)_{i \in I}$ and $(B_i)_{i \in I}$ are simultaneously equivalent ;
(ii) $(C_i)_{i \in I \cup \{a\}}$ and $(D_i)_{i \in I \cup \{a\}}$ are simultaneously similar.
Indeed, if condition (i) holds, then we choose \((P, Q) \in \text{GL}_n(\mathbb{K}) \times \text{GL}_p(\mathbb{K})\) such that \(\forall i \in I, PA_i Q = B_i\), set \(R := \begin{bmatrix} P & 0 \\ 0 & Q^{-1} \end{bmatrix}\), and remark that \(R \in \text{GL}_{n+p}(\mathbb{K})\) and \(\forall i \in I \cup \{a\}, RC_i R^{-1} = D_i\).

Conversely, assume condition (ii) holds, and choose \(R \in \text{GL}_{n+p}(\mathbb{K})\) such that \(\forall i \in I \cup \{a\}, RC_i R^{-1} = D_i\).

Equality \(RC_a R^{-1} = C_a\) then entails that \(R\) is of the form \(R = \begin{bmatrix} P & 0 \\ 0 & Q \end{bmatrix}\) for some \((P, Q) \in \text{GL}_n(\mathbb{K}) \times \text{GL}_p(\mathbb{K})\), and the other relations then imply that \(\forall i \in I, PA_i Q^{-1} = B_i\).

Using equivalence of (i) and (ii) with both fields \(\mathbb{K}\) and \(\mathbb{L}\), theorem 2 follows easily from theorem 1.

4 Appendix: on the Kronecker reduction of matrix pencils

Attention was brought to me that, in [4], the proof that every pencil of matrix is equivalent to a canonical one fails for finite fields. We will give a correct proof here in the case of a “weak” canonical form (that is all we need here, and reducing further to a true canonical form is not hard from there using the theory of elementary divisors).

Notation 2. For \(n \in \mathbb{N}\), set \(L_n = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ \vdots & \ddots & \ddots \\ \vdots & \ddots & \ddots \\ 0 & 1 \end{bmatrix}\) \(\in M_{n,n+1}(\mathbb{K})\) and \(K_n = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ \vdots & \ddots & \ddots \\ \vdots & \ddots & \ddots \\ 0 & 1 \end{bmatrix}\) \(\in M_{n,n+1}(\mathbb{K})\); and, for arbitrary objects \(a\) and \(b\), define the Jordan matrix:

\[J_n(a, b) = \begin{bmatrix} a & b & 0 \\ 0 & a & b \\ \ddots & \ddots & \ddots \end{bmatrix} \in M_n(\{0, a, b\}). \]
Lemma 5. From there, the proof has two independent major steps:

- \(P + X I_r \) for some non-singular \(P \in GL_r(\mathbb{K}) \);
- \(J_r(1,X); J_r(X,1); L_r + X K_r; \) \((L_r + X K_r)^t\).

This decomposition is unique up to permutation of blocks and up to similarity on the non-singular \(P \).

We will only prove here that such a decomposition exists. Uniqueness is not needed here so we will leave it as an exercise for the reader.

We will consider \(A \) and \(B \) as linear maps from \(E = \mathbb{K}^p \) to \(F = \mathbb{K}^n \). Without loss of generality, we may assume \(\text{Ker} \, A \cap \text{Ker} \, B = \{0\} \) and \(\text{Im} \, A + \text{Im} \, B = F \). We define inductively two towers \((E_k)_{k \in \mathbb{N}}\) and \((F_k)_{k \in \mathbb{N}}\) of linear subspaces of \(E \) and \(F \) by:

(a) \(E_0 = \{0\} \); \(F_0 = A(\{0\}) = \{0\} \);

(b) \(\forall k \in \mathbb{N}, \, E_{k+1} = B^{-1}(F_k) \) and \(F_{k+1} = A(E_{k+1}) \).

Notice that \(E_1 = \text{Ker} \, B \). The sequences \((E_k)_{n \geq 0}\) and \((F_k)_{n \geq 0}\) are clearly non-decreasing so we can find a smallest integer \(N \) such that \(E_N = E_k \) for every \(k \geq N \). Hence \(F_N = F_k \) for every \(k \geq N \), and \(E_N = g^{-1}(F_N) \). It follows that \(A(E_N) = F_N \) and \(B(E_N) \subset F_N \). We now let \(f \) and \(g \) denote the linear maps from \(E_N \) to \(F_N \) induced by \(A \) and \(B \).

From there, the proof has two independent major steps:

Lemma 5. There are basis \(B \) and \(C \) respectively of \(E_N \) and \(F_N \) such that \(M_B C(f) + X M_B C(g) \) is block-diagonal with all non-zero blocks having one of the forms \(J_r(1,X) \) or \(L_s + X K_s \).

Lemma 6. There are splittings \(E = E_N \oplus E' \) and \(F = F_N \oplus F' \) such that \(A(E') \subset F' \) and \(B(E') \subset F' \).

Assuming those lemmas are proven, let us see how we can easily conclude:

- We deduce from the two previous lemmas that \(A + X B \) is \(\mathbb{K} \)-equivalent to some \(\begin{bmatrix} A' + X B' & 0 \\ 0 & C(X) \end{bmatrix} \) where \(C(X) \) is block-diagonal with all non-zero blocks of the form \(J_r(1,X) \) or \(L_s + X K_s \), and \(A' \) and \(B' \) have coefficients in \(\mathbb{K} \), with \(\text{Ker} \, B' = \{0\} \); it will thus suffice to prove the existence of a canonical form for the pair \((A',B') \);
- applying the first step of the proof to the matrices \((A')^t \) and \((B')^t \), we find that \(A' + X B' \) is \(\mathbb{K} \)-equivalent to some \(\begin{bmatrix} A'' + X B'' & 0 \\ 0 & D(X) \end{bmatrix} \).
where $D(X)$ is block-diagonal with all non-zero blocks of the form $J_r(1,X)'$ (which is \mathbb{K}-similar to $J_r(1,X)$) or $(L_{s} + X K)_{s}'$, and A'' and B'' have coefficients in \mathbb{K}, with $\ker B'' = \{0\}$ and $\text{coker} B'' = \{0\}$. It follows that B'' is non-singular.

- Finally, $(B'')^{-1}(A'' + X B'') = (B'')^{-1}A'' + X I_k$ for some integer k, and the pair (A'', B'') can thus be reduced by using the Fitting decomposition of $(B'')^{-1}A''$ combined with a Jordan reduction of its nilpotent part: this yields a block-diagonal matrix \mathbb{K}-equivalent to $A'' + X B''$ with all diagonal blocks of the form $J_r(X, 1)$ or $P + X I_s$ for some non-singular P. This completes the proof of existence.

Proof of lemma

We proceed by induction.

Assume, for some $k \in [1, N]$, that there are splittings $E = E_N \oplus E' \oplus E''$ and $F = F_N \oplus F'$ such that $A(E') \subset F' \oplus F_k$ and $B(E') \subset F' \oplus F_k$. Since $B^{-1}(F_N) = E_N$, the subspaces F_N and $B(E')$ are independent. We can therefore find some F'' such that $F' \oplus F_k = F'' \oplus F_k$, $F_N \oplus F'' = F$ and $B(E') \subset F''$. Choose then a basis (e_1, \ldots, e_p) of E', and decompose $A(e_i) = f_i + f'_i$ for all $i \in [1, p]$, with $f_i \in F''$ and $f'_i \in F_k$. For $i \in [1, p]$, we have $f'_i = A(g_i)$ for some $g_i \in E_k$. Then $(e_1 - g_1, \ldots, e_p - g_p)$ still generates a supplementary subspace E'' of E_N in E, and we now have $A(e_i - g_i) \in F''$ and $B(e_i - g_i) \in F'' \oplus F_{k-1}$ for all $i \in [1, p]$. Hence $E = E_N \oplus E''$ and $F = F_N \oplus F''$, now with $A(E'') \subset F'' \oplus F_{k-1}$ and $B(E'') \subset F'' \oplus F_{k-1}$. The condition is thus proven at the integer $k - 1$. By downward induction, we find that it holds for $k = 0$, QED.

Proof of lemma

The argument is similar to the standard proof of the Jordan reduction theorem.

- Split $F_N = F_{N-1} \oplus W_{N,N}$ and $E_N = E_{N-1} \oplus V_{N,N} \oplus V'_{N,N}$ such that $E_{N-1} \oplus V'_{N,N} = E_{N-1} + (E_N \cap \ker f)$, $V_{N,N} \subset \ker f$ and $f(V_{N,N}) = W_{N,N}$ (so f induces an isomorphism from $V_{N,N}$ to $W_{N,N}$).

Set $W_{N,N-1} = g(V_{N,N})$ and $W'_{N,N-1} = g(V'_{N,N})$. Remark that $F_{N-2} \oplus W_{N,N-1} \oplus W'_{N,N-1} \subset F_{N-1}$, and split $F_{N-1} = F_{N-2} \oplus W_{N,N-1} \oplus W'_{N,N-1} \oplus W_{N-1,N-1}$.

- We then proceed by downward induction to define four families of linear subspaces $(V_{\ell,k})_{1 \leq k \leq \ell \leq N}$, $(V'_{\ell,k})_{1 \leq k \leq \ell \leq N}$ $(W_{\ell,k})_{1 \leq k \leq \ell \leq N-1}$ and $(W'_{\ell,k})_{1 \leq k \leq \ell - 1 \leq N-1}$ such that:

(i) for every $k \in [1, N]$, $E_k = E_{k-1} \oplus V_{k,k} \oplus V_{k+1,k} \oplus \cdots \oplus V_{N,k} \oplus V'_{k,k} \oplus V'_{k+1,k} \oplus \cdots \oplus V'_{N,k}$;

(ii) for every $k \in [1, N]$, $F_k = F_{k-1} \oplus W_{k,k} \oplus W_{k+1,k} \oplus \cdots \oplus W_{N,k} \oplus W'_{k,k} \oplus W'_{k+1,k} \oplus \cdots \oplus W'_{N,k}$;

8
(iii) for every $k \in [1, N]$, $E_{k-1} + (E_k \cap \text{Ker} f) = E_{k-1} \oplus V'_{k,k}$ and $V'_{k,k} \subset \text{Ker} f$;
(iv) for every $\ell \in [1, N]$ and $k \in [2, \ell]$, g induces an isomorphism $g'_{\ell,k} : V_{\ell,k} \xrightarrow{\sim} W_{\ell,k-1}$ and an isomorphism $g_{\ell,k} : V'_{\ell,k} \xrightarrow{\sim} W'_{\ell,k-1}$;
(v) for every $\ell \in [1, N]$ and $k \in [1, \ell]$, f induces an isomorphism $f_{\ell,k} : V_{\ell,k} \xrightarrow{\sim} W_{\ell,k}$ and, if $k < \ell$, an isomorphism $f'_{\ell,k} : V'_{\ell,k} \xrightarrow{\sim} W'_{\ell,k-1}$.

\[\begin{array}{ccccc}
& V_{\ell,1} & \cdots & V_{\ell,\ell} & \\
\{0\} & \downarrow g & \cdots & \downarrow g & \{0\} \\
& W_{\ell,1} & \cdots & W_{\ell,\ell} & \\
& \{0\} & \downarrow g & \cdots & \downarrow g & \{0\}. \\
\end{array} \]

- Set $\ell \in [1, N]$. Define $G_{\ell} = V_{\ell,1} \oplus \cdots \oplus V_{\ell,\ell}$, $G'_{\ell} = V'_{\ell,1} \oplus \cdots \oplus V'_{\ell,\ell}$, $H_{\ell} = W_{\ell,1} \oplus \cdots \oplus W_{\ell,\ell}$ and $H'_{\ell} = W'_{\ell,1} \oplus \cdots \oplus W'_{\ell,\ell-1}$.

Notice that:

\[f(G_{\ell}) = H_{\ell}, \quad g(G_{\ell}) \oplus W_{\ell,\ell} = H_{\ell}, \quad f(G'_{\ell}) = H'_{\ell} \quad \text{and} \quad g(G'_{\ell}) = H'_{\ell}. \]

From there, it is easy to conclude.

- Let $n_{\ell} = \dim W_{\ell,\ell}$. Remark that $\dim V'_{\ell,k} = \dim W_{\ell,k} = n_{\ell}$ for every $1 \in [1, \ell]$ and choose a basis $C_{\ell,\ell}$ of $W_{\ell,\ell}$. Define $B_{\ell,\ell} = f_{\ell,\ell}^{-1}(C_{\ell,\ell})$, $C_{\ell,\ell-1} := g_{\ell,\ell}(B_{\ell,\ell})$ and proceed by induction to recover a basis for $V_{\ell,k}$ and $W_{\ell,k}$ for every suitable k: by gluing together those bases, we recover respective basis $(B_{\ell,1}, \ldots, B_{\ell,\ell})$ and $(C_{\ell,1}, \ldots, C_{\ell,\ell})$ of G_{ℓ} and H_{ℓ} and remark that f and g induce linear maps from G_{ℓ} to H_{ℓ} with respective matrices $L_{\ell} \otimes I_{n_{\ell}}$ and $K_{\ell} \otimes I_{n_{\ell}}$ in those basis (remember that $E_1 = \text{Ker} g$). A simple permutation of basis shows that those linear maps can be represented by $I_{n_{\ell}} \otimes L_{\ell}$ and $I_{n_{\ell}} \otimes K_{\ell}$ in a suitable common pair of basis.
• Proceeding similarly for G'_ℓ and H'_ℓ, but starting from a basis of V'_ℓ, we obtain that f and g induce linear maps from G'_ℓ to H'_ℓ and there is a suitable choice of basis so that their matrices are respectively $I_s \otimes I_\ell$ and $I_s \otimes J_{\ell}(0,1)$ for some integer s.

• Notice that we have defined splittings

$$E_N = G_1 \oplus G'_1 \oplus G_2 \oplus G'_2 \oplus \cdots \oplus G_N \oplus G'_N$$

and

$$F_N = H_1 \oplus H'_1 \oplus H_2 \oplus H'_2 \oplus \cdots \oplus H'_{N-1} \oplus H_N,$$

therefore lemma 5 is proven by glueing together the various basis built here.

\[\square\]

References

[1] S. Friedland, Simultaneous similarity of matrices. Advances in Mathematics. 50 (1983) 189-265

[2] L. Klinger, L. S. Levy, Sweeping similarity of matrices. Linear Algebra Appl. 75 (1986) 67-104

[3] S. Lang, Algebra, 3rd edition. GTM, 211, Springer-Verlag, 2002.

[4] F.R. Gantmacher, Matrix Theory, Vol. 2, New York: Chelsea, 1977.