Endovascular management of fusiform aneurysms in the posterior circulation: the era of flow diversion

Ahmed J. Awad, MD, Justin R. Mascitelli, MD, Reham R. Haroun, MD, Reade A. De Leacy, MD, Johanna T. Fifi, MD, and J Mocco, MD, MS

Department of Neurological Surgery, Icahn School of Medicine at Mount Sinai, Mount Sinai Health System, New York, New York; and Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, Wisconsin

Fusiform aneurysms are uncommon compared with their saccular counterparts, yet they remain very challenging to treat. They are commonly located in the posterior circulation, especially the vertebral artery (VA), basilar artery (BA), and posterior cerebral artery (PCA). Fusiform aneurysms are uncommon compared with their saccular counterparts, yet they remain very challenging to treat. The first case of a vertebral fusiform aneurysm was described by Wells in 1922, and since then several terms have also been used, including dolichoectatic aneurysm, transitional aneurysm, and giant serpentine aneurysm.

Posterior circulation fusiform aneurysms (PCFAs) have a significant male predominance (approximately 70%) and most commonly present as posterior circulation ischemic stroke. In addition, they may cause cranial nerve palsies, brainstem compression, and subarachnoid hemorrhage (SAH). Contrary to the more common saccular aneurysms, fusiform aneurysms are associated with high rates of rebleeding and morbidity.

In this article, we review PCFAs, including pathogenesis, natural history, cerebrovascular surgical treatment, and endovascular treatment, including the role of flow diversion. In addition, we propose an algorithm for treatment based on our practice.

Pathogenesis and Natural History

Fusiform aneurysms may occur due to a variety of underlying pathologies affecting the wall of the blood vessel. The most common proposed causes are dissection and atherosclerosis. Our understanding of the natural history of PCFAs is very limited and largely depends on the presenting signs and symptoms. Symptomatic patients have a poor natural history if they do not undergo treatment, especially if they present with brainstem ischemia or compression. In patients with ruptured aneurysms, the rebleeding rate is high and ranges between 30% and 85%. The mortality rate is also high for untreated ruptured aneurysms. In a study that evaluated conservative management in ruptured PCFAs, the mortality rate was 38% after a mean follow-up period of 18 months.

In a prospective study of vertebrobasilar aneurysms over a 12-year period at the Mayo Clinic, the annual rupture rate of fusiform aneurysms was 2.3%. The initial diameter of an aneurysm is a significant predictor of lesion rupture. The authors also found that an initial diameter larger than 10 mm in fusiform aneurysms was a significant risk factor for aneurysm enlargement and future rupture. The mortality rate was approximately 6 times higher in...
patients with aneurysm growth than in those with no enlargement.21

Therefore, based on observations of the natural history, the vast majority of ruptured PCFAs should be treated. Additionally, unruptured PCFAs larger than 10 mm also likely warrant treatment.

Classification

There are 2 widely accepted classification systems for nonsaccular aneurysms, including the fusiform type, that stratify patients into risk groups. Flemming's classification

Based on radiographic appearance.12 Lesions are defined as having an arterial dilation greater than 1.5 times the normal diameter without any neck (Huber's definition), and the types are as follows: A) fusiform (14%), aneurysmal dilation of the vessel without an identifiable neck involving a portion of an arterial segment; B) dolichoectasia (45%), uniform dilation involving the entire artery with any degree of tortuosity; C) transitional (19%), uniform aneurysmal dilation of the artery with superimposed dilation of a portion of the involved arterial segment; and the indeterminate type (20%). Fusiform and transitional types are most likely to be symptomatic, while the dolichoectatic type has a more benign nature. Acute dissecting aneurysms were excluded because of the known distinctive behavior.

The other classification system is that of Mizutani et al. and consists of 4 types based on histopathology.24 Type I, classic dissecting aneurysm characterized by widespread disruption of the internal elastic lamina (IEL) without intimal thickening. This type typically presents with SAH and high rates of rebleeding. Type II, segmental ectasia, with a more benign clinical course than Type I. This type is characterized by extended and/or fragmented IEL with intimal thickening. In addition, the luminal surface is smooth without thrombus formation. Type III, dolichoectatic dissecting aneurysm. This type is distinguished pathologically from Type II by dissections in the thickened intima and organized luminal thrombus. Most Type III aneurysms are symptomatic, grow over time, and are frequently associated with hemorrhage and a mortality rate of 50%. Lastly, Type IV is saccular aneurysm characterized by minimally disrupted IEL without intimal thickening and is associated with a high risk of rupture.

Treatment

Choice of Treatment

All fusiform aneurysms have been historically treated with different open surgical treatment modalities, including Hunterian ligation, trapping, surgical bypass, and clip reconstruction techniques.31 However, endovascular therapy has emerged as the primary treatment modality for PCFAs over the past decade. Recently, endovascular treatments have been successfully used in treating PCFAs with good outcomes. In fact, microsurgical treatment is generally reserved for cases that cannot be treated with endovascular therapy. The endovascular options include parent vessel coil occlusion, stenting alone, stent-assisted coiling (SAC), and flow-diverting stents (Fig. 1).

Microsurgical Management

Open surgical treatment of PCFAs is becoming a less popular option given the recent advancements in endovascular therapy. Microsurgical treatment modalities often involve flow reduction or bypass/trapping in cases of poor collateral supply, flow reversal in cases of adequate collateral supply, or trapping with aneurysm decompression for lesions with mass effect. Since fusiform aneurysms do not have a true neck, they are usually not amenable to clip reconstruction techniques. Additionally, it is not uncommon for PCFAs to be partially calcified and/or thrombosed, further complicating the open surgical approach. Hence, trapping with or without bypass is considered the main microvascular modality.

Drake and colleagues published extensively on their operative experience with fusiform aneurysms in the posterior circulation.5,9,33 The authors used different modalities based on patient presentation, clinical status, and collateral supply. Outcomes were almost comparable between the different modalities, with approximately 70% of treated patients achieving good to excellent outcomes.

Kalani et al.16 reported the most recent experience at the Barrow Neurological Institute with giant aneurysms in the posterior circulation. The 12-aneurysm cohort included 8 fusiform aneurysms. The primary treatment modality was extracranial-intracranial (EC-IC) bypass. Superficial temporal artery–superior cerebellar artery (STA-SCA) bypasses were performed in 7 cases and STA-PCA was performed in 1 case. Flow was reserved or reduced by complete (n = 6) or partial (n = 1) occlusion of the BA, or by occlusion of the VA distal to the posterior inferior cerebellar artery (PICA) (n = 1). Recurrence and complications were high and the mortality rate among fusiform aneurysms was approximately 40%. The authors did admit that despite their aggressive surgical approach, the long-term outcome was poor for most patients.

More recently, Lawton et al. published an evolved technique of surgical bypass for treating fusiform aneurysms in the basilar trunk.19 The study included 37 patients, and the bypass evolved in 3 distinct phases, each with different hemodynamic alterations. Surgical bypasses consisted of EC-IC (STA-SCA and STA-PCA) bypasses in Phase 1 for flow reversal, IC-IC (VA-SCA) bypasses in Phase 2 for flow reduction, and Phase 3 (middle cerebral artery–PCA) for distal occlusion. Phase 1 led to extensive flow reduction that prompted BA thrombosis and was associated with 100% mortality. On the other hand, Phase 2 was safer (67% mortality rate) but did not prevent aneurysm growth or progression of symptoms. As a result, the authors revised their technique to distal occlusion, achieving an improved surgical outcome and aneurysm stabilization with a better mortality rate (62%). However, this technique reduced the flow to brainstem perforators causing ischemic damage, despite treatment with antiplatelet agents.

Endovascular Management

The lack of a true aneurysm neck usually makes simple coil embolization impossible and more advanced techniques are required, including SAC and, more recently, flow diversion (Figs. 2 and 3). Parent vessel occlusion is a
Fusiform aneurysms in the posterior circulation

Unauthenticated | Downloaded 10/11/22 02:24 AM UTC
A. J. Awad et al.
Neurosurg Focus Volume 42 • June 2017

A. J. Awad et al.
Neurosurg Focus Volume 42 • June 2017

4

(modified Rankin Scale Score 4). At last follow-up, the complete occlusion rate was 100%, and the PEDs were patent. The authors attributed the dramatic improvement in outcomes to careful patient selection. All patients presented early, and none had evidence of stroke on MRI before treatment. The second factor was the strict dual antiplatelet regimen with confirmation of the therapeutic effect of antiplatelet therapy by using response testing before flow diversion. Technically, the authors used fewer but longer (35 mm) PEDs compared with more and shorter (20 mm) devices in their initial report. In addition, the new experience included adjunctive coiling, which might reduce stent prolapse by acting as a scaffold.

More recently, Bhogal and his colleagues from Germany published the largest series of flow diversion in PCFAs. Of the 56 patients with nonsaccular aneurysms, there were 24 fusiform aneurysms. The study used 2 types of flow-diverter devices: PED and p64 flow modulation device (Phenox). The mortality rate was low, with only 1 death (4%). The complete aneurysm occlusion rate was 75% with minor residual filling seen in 12.5% of cases and an unchanged appearance in 1 patient (4%). In the 4 patients without angiographic occlusion, the aneurysm decreased in maximum diameter, with increased intraaneurysmal thrombus in 3 cases (75%) on MRI follow-up.

The Fate of Covered Branch Vessels With Flow Diverters
The location of aneurysms in the distal VA (V4) and vertebrobasilar junction in relation to the branch vessels, especially PICA and AICA, often requires covering the arterial ostium, theoretically increasing the risk of branch vessel occlusion and infarction. A meta-analysis published in 2013 showed that the rate of perforator infarction is 3% with significantly higher odds in posterior circulation aneurysms. Initial experiences with flow diverters have shown mixed results regarding the fate of covered branch vessels, ranging between complete patency on all follow-up studies to immediate occlusion after flow-diverter deployment or shortly after. However, recent experiences reported a 0% rate of branch occlusion in the posterior circulation on immediate or follow-up angiography. Mazur and colleagues’ series specifically reported the patency of PICA and aneurysm occlusion on angiography. This series of 11 aneurysms located predominantly in the
VA included fusiform aneurysms (80%). The flow diverter spanned the PICA ostium in all cases, with 1 patient experiencing an occluded PICA and in-stent stenosis on immediate angiography. The in-stent stenosis was resolved after abciximab administration, and the covered PICA was noted to have recanalized on follow-up imaging 6 months later. Follow-up angiography was reported in 8 patients (the remaining 3 cases are awaiting follow-up) and demonstrated thrombosis of the aneurysm with patency of the PICA in all of them.

Clinical and Radiographic Follow-Up

Our practice protocol involves a clinical follow-up at 1 month, 3–6 months, and 12–18 months. We find that, in general, these time periods end up synching well with the stages of a patient’s recovery and clinical progress. Additionally, they coincide with our imaging follow-up. Depending on the case and symptoms, later follow-up can be scheduled at 1- to 3-year intervals. Our imaging follow-up protocol consists of immediate postoperative control conventional angiography, then at 3–6 months and another session at 12–18 months. We also recommend MR angiography (MRA) at 12–18 months after treatment, and every 1–3 years subsequently, depending on the degree of aneurysm obliteration. We have settled on this follow-up paradigm based on both of the most common practices reported in current literature and from discussion with colleagues around the globe. We feel that, in a stable aneurysm, MRA is an adequate surrogate for conventional angiography, hence our switching to MRA after the 12- to 18-month follow-up angiography. However, the limitations of resolution of MRA make us feel that gold-standard angiography with maximal detail and resolution is still worthwhile for most patients during the first 12–18 months, although this is certainly debatable and, in high-risk patients, we switch to MRA follow-up sooner. Patients undergoing SAC and flow-diverter placement are kept on a strict regimen of pre- and postoperative antiplatelet therapy, and dual therapy is maintained at least until the 3- to 6-month angiogram, after which aspirin is continued for life.

Conclusions

Given the evolving endovascular technologies over the last 2 decades in addition to high rates of complications and mortality associated with open surgery, endovascular therapy should be considered as the primary treatment

Authors & Year	No. of PCFAs	Flow Diverter Device	No. of Device-Related Complications	No. of Deaths	No. w/ Complete Obliteration on Angiography
Byrne et al., 2010	11	Silk	2	2	NA
Siddiqui et al., 2012	7	PED (6), Silk (1)	6	4	2
Montelt et al., 2014	7	PED	2	1	2
Munich et al., 2014	12	PED	3	1	9 (75%)*
Natarajan et al., 2016	12	PED	1	0	12 (100%)
Bhogal et al., 2017	24	PED, p64	NA	1	18 (75%)

NA = not available.

* Data were not available for 2 patients. Of the 10 patients who underwent angiography, 9 patients (90%) had complete occlusion.
modality for PCFAs. For aneurysms that are not treatable by endovascular methods, microsurgical treatment should be considered. Flow diversion is a new endovascular method and can achieve excellent outcomes in carefully selected patients with PCFAs.

References

1. Aoki N, Sakai T: Rebleeding from intracranial dissecting aneurysm in the vertebral artery. Stroke 21:1628–1631, 1990
2. Bhogal P, Pérez MA, Ganslandt O, Bäzner H, Henkes H, Fischer S: Treatment of posterior circulation non-saccular aneurysms with flow diverters: a single-center experience and review of 56 patients. J Neurointerv Surg 9:471–481, 2017
3. Brinjikji W, Murad MH, Lanzino G, Cloft HJ, Kallmes DF: Endovascular treatment of intracranial aneurysms with flow diverters: a meta-analysis. Stroke 44:442–447, 2013
4. Byrne JV, Belletci R, Yarnold JA, Birks J, Kamran M: Early experience in the treatment of intra-cranial aneurysms by endovascular flow diversion: a multicentre prospective study. PLoS One 5:5, 2010
5. Chalouhi N, Tjoumakaris S, Dumont AS, Gonzalez LF, Rosende RS, et al: Recurrent subarachnoid hemorrhage in patients with vertebrobasilar dissecting aneurysms: frequency, predictors, and clinical outcome of growth. J Neurosurg 102:72–79, 2005
6. Chalouhi N, Tjoumakaris S, Dumont AS, Gonzalez LF, Rosende RS, et al: Panacea or problem: flow diverters in the treatment of nonatherosclerotic cerebral fusiform and dissecting aneurysms. Neurosurgery 45:253–260, 1999
7. Day AL, Gaposchkin CG, Yu CJ, Rivet DJ, Dacey RG Jr: Giant intracranial aneurysms: experience with surgical treatment in 174 patients. J Neurosurg 126:12–95, 1997
8. Day AL, Gaposchkin CG, Yu CJ, Rivet DJ, Dacey RG Jr: Giant intracranial aneurysms: experience with surgical treatment in 174 patients. J Neurosurg 126:12–95, 1997
9. Day AL, Gaposchkin CG, Yu CJ, Rivet DJ, Dacey RG Jr: Giant intracranial aneurysms: review of 120 patients treated surgically from 1965 to 1992. J Neurosurg 87:141–162, 1997
10. Day AL, Gaposchkin CG, Yu CJ, Rivet DJ, Dacey RG Jr: Giant intracranial aneurysms: review of 120 patients treated surgically from 1965 to 1992. J Neurosurg 87:141–162, 1997
11. Echiverri HC, Rubino FA, Gupta SR, Gujrati M: Fusiform aneurysm of the vertebrobasilar arterial system. Stroke 20:1741–1747, 1989
12. Fischer S, Perez MA, Kurre W, Albes G, Bäzner H, Henkes H: Pipeline Embolization Device for the treatment of intracranial fusiform and dissecting aneurysms: initial experience and long-term follow-up. Neurosurgery 75:364–374, 2014
13. Flemming KD, Wiebers DO, Brown RD Jr, Link MJ, Huston J III McCleland RL, et al: The natural history of radiographically defined vertebrobasilar nonsaccular intracranial aneurysms. Cerebrovasc Dis 20:270–279, 2005
14. Flemming KD, Wiebers DO, Brown RD Jr, Link MJ, Nakatomi H, Huston J III, et al: Prospective risk of hemorrhage in patients with vertebrobasilar nonsaccular intracranial aneurysms. J Neurosurg 101:82–87, 2004
15. Gascou G, Loboteski K, Brunel H, Machi P, Riquelme C, Eker O, et al: Extra-aneurysmal flow modification following Pipeline Embolization Device implantation: focus on regional branches, perforators, and the parent vessel. AJNR Am J Neuroradiol 36:725–731, 2015
16. Hiçgözda R, Hinton ML, Grieve D, Urwin R, Dowd CF, Balousek PA, et al: Intravasal stent and endovascular coil placement for a ruptured fusiform aneurysm of the basilar artery. Case report and review of the literature. J Neurosurg 87:944–949, 1997
17. Kalani MY, Bramsma JM, Nakaji P, Spetzler RF: Bypass and flow reduction for complex basilar and vertebrobasilar junction aneurysms. Neurosurgery 72:116–125, 2013
18. Kulcsár Z, Erenmann U, Wetzel SG, Bock A, Goericke S, Panagiotopoulos V, et al: High-flow profile diverter (Silk) implantation in the basilar artery: efficacy in the treatment of aneurysms and the role of the perforators. Stroke 41:1690–1696, 2010
19. Lawton MT, Abla AA, Rutledge WC, Benet A, Zador Z, Rayz VL, et al: Bypass surgery for the treatment of dolichoectatic basilar trunk aneurysms: a work in progress. Neurosurgery 79:83–99, 2016
20. Leitner MR, Park MS, Albuquerque FC, Moon K, Kalani MY, McDouggall CG: Posterior inferior cerebellar artery patency after flow-diverting stent treatment. AJNR Am J Neuroradiol 37:487–489, 2016
21. Mangrum WI, Huston J III, Link MJ, Wiebers DO, McCleland RL, Christianson TJ, et al: Enlarging vertebrobasilar nonsaccular intracranial aneurysms: frequency, predictors, and clinical outcome of growth. J Neurosurg 102:1–10, 2005
22. Mazur MD, Kilburg C, Wang V, Taussky P: Pipeline Embolization Device for the treatment of vertebral artery aneurysms: the fate of covered branch vessels. J Neurointerv Surg 8:1041–1047, 2016
23. Mizutani T, Aruga T, Kirino T, Miki Y, Saito I, Tsukihara T: Subarachnoid hemorrhage from untreated ruptured vertebrobasilar dissecting aneurysms. Neurosurgery 96:905–913, 1995
24. Mizutani T, Aruga T, Kirino T, Miki Y, Saito I, Tsukihara T: Subarachnoid hemorrhage from untreated ruptured vertebrobasilar dissecting aneurysms. Neurosurgery 96:905–913, 1995
25. Monechi SJ, Tsimpas A, Dumont AS, Tjoumakaris S, Gonzalez LF, Rosenwasser RH, et al: Endovascular treatment of fusiform cerebral aneurysms with the Pipeline Embolization Device. J Neurosurg 120:945–954, 2014
26. Munich SA, Tan LA, Keigher KM, Chen M, Moftakhar R, Lopes DK: The Pipeline Embolization Device for the treatment of posterior circulation fusiform aneurysms: lessons learned at a single institution. J Neurosci 121:1077–1084, 2014
27. Natarajan SK, Lin N, Songi A, Rai AT, Carpenter JS, Levy EI, et al: Safety of Pipeline flow diversion in fusiform vertebrobasilar aneurysms: a consecutive case series with longer-term follow-up from a single US center. J Neurosurg 125:111–119, 2016
28. Phillips TJ, Wenderoth JD, Phatouros CC, Rice H, Singh TP, Devillers L, et al: Safety of the Pipeline Embolization Device in treatment of posterior circulation aneurysms. AJNR Am J Neuroradiol 33:1225–1231, 2012
29. Raphaelli G, Collignon L, De Witte O, Lubicz B: Endovascular treatment of posterior circulation fusiform aneurysms: single-center experience in 31 patients. Neurosurgery 69:274–283, 2011
30. Sacho RH, Saleih G, Kostynsky A, Menezes R, Tymianski M, Kringis T, et al: Natural history and outcome after treatment of unruptured intradural fusiform aneurysms. Stroke 45:3251–3256, 2014
31. Serrone JC, Gozal YM, Grossman AW, Andaluz N, Abruzzo VL, et al: Panacea or problem: flow diverters in the treatment of symptomatic large or giant fusiform vertebrobasilar aneurysms. J Neurosurg 116:1258–1266, 2012
32. Steinberg GK, Drake CG, Peerless SJ: Deliberate basilar or vertebral artery occlusion in the treatment of intracranial aneurysms. J Neurosurg 94:103–109, 1996
33. Steiner AM, Fischbein NJ, Link MJ, Jurisicova I, Krings T, et al: Combined use of Pipeline Embolization Device for the treatment of symptomatic large or giant fusiform vertebrobasilar aneurysms. J Neurosurg 122:270–279, 2005
34. Ueda K, Murayama Y, Gobin YP, Duckwiler GR, Viñuela F:...
Endovascular treatment of basilar artery trunk aneurysms with Guglielmi detachable coils: clinical experience with 41 aneurysms in 39 patients. *J Neurosurg* 95:624–632, 2001
35. Wells HG: Intracranial aneurysm of the vertebral artery. *Arch Neurol Psychiatry* 7:311–320, 1922
36. Yeung TW, Lai V, Lau HY, Poon WL, Tan CB, Wong YC: Long-term outcome of endovascular reconstruction with the Pipeline Embolization Device in the management of unruptured dissecting aneurysms of the intracranial vertebral artery. *J Neurosurg* 116:882–887, 2012

Disclosures
Dr. Mocco reports that he is a consultant for Rebound Medical, EndoStream, Synchron, and Cerebrotech; has ownership in Apama, The Stroke Project, EndoStream, Synchron, Cerebrotech, Neurvana, and NeuroTechnology Investors; and receives non-study-related support from Stryker Neurovascular, Penumbra, Medtronic, and MicroVention.

Author Contributions
Conception and design: Mocco, Awad, Mascitelli. Acquisition of data: Awad. Drafting the article: Awad, Mascitelli, Haroun. Critically revising the article: all authors.

Correspondence
J Mocco, Department of Neurological Surgery, Icahn School of Medicine at Mount Sinai, Mount Sinai Health System, 1468 Madison Ave., New York, NY 10029. email: j.mocco@mountsinai.org.