Creep of concrete caused by freeze and thaw cycle

Anatoli Goncharov

Moscow State University of Civil Engineering, Yaroslavskoe shosse, 26, Moscow, 129337, Russia

E-mail: ttg38@mail.ru

Abstract. To the best knowledge available today, the creep of concrete is understood as slow plastic deformation caused by continuous external factors. Changes occurring in the structure of concrete are however not discussed. Creep as a phenomenon is typically perceived “in purity”, in an invariable and favorable environment. Evolution of creep deformations thus has a fading character and usually goes along with consolidation of concrete. It is only under loads near the threshold of concrete’s long-term strength that micro-destructions tend to grow during the first phase following application of the load. Creep phenomenon is researched «in pure form», i.e. in constant favorable external conditions. Developing of creep deformations has fading character and accompanied by seal of concrete. In real exploitation conditions of constructions appears changes in temperature and humidity, influencing on development of creep deformation. Alternate freezing and thawing of concrete, which most affects durability, causes in unloaded concrete significant extension deformations. Deformation development under the joint action of loads and alternate freezing and thawing almost was not researched. In the article presented results of concrete deformation research, differing by frost resistance, under loads in the range from 0.2 to 0.7 of prismatic strength. Obtained results allows reasonable take stress value in consideration with expected deformations in the process of operation.

Introduction

The most detailed research of concrete creep was performed in the period from 1960 to 1975 and led by V.M. Moskvin, A.A. Gvozdev, O.Ya. Berg. Recently, significant attention has been paid to structural changes of concrete under load. Rheological models have been offered to predict and calculate creep deformations [1, 2, 3] in a sufficiently reliable manner and reflect them in design standards [4].

The most detailed knowledge was obtained for concrete creep in the ambient air environment under normal positive temperatures [5, 6, 7, 8]. Humidity impact on creep deformation evolution was reflected in papers [9, 10] to allow these factors to be accounted for in design standards. The impact of positive temperature variations was investigated in papers [11, 12]. Creep deformation slowdown under negative temperatures was noted in papers [13, 14, 15] which is caused by improved strength of frozen concrete [15]. However, in paper [14] investigating the concrete sample creep within the temperature range from +20°C to -20°C it was noted that the deformation increased as ice was formed in concrete. The creep stops if the temperature continues decreasing. The creep increase of
Frozen concrete samples with high water saturation was also noted in paper [16]. This type of creep deformations indicates that they are associated with changes taking place in concrete during freezing.

Destruction of unloaded concrete under alternate freezing and thawing is accompanied by significant expansion deformations [17]. Sufficiently detailed data on deformation evolution caused by the simultaneous impact of tensile stresses and alternate freezing of concrete can be found in paper [18]. These data allow deflection design values of bending reinforced concrete structures to be adjusted.

Deformation development caused by the simultaneous impact of compressive stresses and alternate freezing and thawing of water-saturated concrete has been insufficiently investigated. According to paper [19], expansion deformations along the load axis are not observed under simultaneous compressive stresses (40% of concrete prism strength) and alternate freezing and thawing. Instead, fading compressive deformations 6 times higher than creep deformations under the same load and normal conditions take place. The paper also notes that the difference in deformations flattens under lower load values.

The above data indicate that deformations of reinforced concrete structures subjected to multiple freezing and thawing cycles may develop which are not taken into account in present-day creep calculations. Such deformations in pre-stressed structures may result in the loss of pre-stress exceeding design values.

Loaded concrete deformation under alternate freezing and thawing may be considered as creep deformations. However, this creep has a specific nature as it is related to water-saturated concrete destruction under negative temperatures. Build-up of deformations is accompanied by concrete softening and strength degradation.

Basic Part.

In the light of foregoing, a research was carried out to study deformation data and take them into account when designing structures operating under alternate freezing and thawing.

Techniques. 10 x 10 x 40 cm concrete samples mounted in a levered disk spring loading device and 2.5 x 2.5 x 25 cm samples loaded with high-strength rods running through the sample center were subjected to freezing and subsequent thawing in sea water. (Fig. 1).

![Figure 1. Loading diagram for sample sized 2.5 x 2.5 x 25 cm: 1- taper socket for mounting on the deformation gage; 2 - screw nut; 3- 6 mm rod; 4 - concrete sample; 5 - 6 mm washer.](image)

Before concreting, the rods had been treated with a special substance to prevent their bonding with concrete. The sample was evenly loaded across the complete cross section using 6 mm thick steel butt plates. The load value was determined using three techniques: by reading the gauge indication of the torque wrench used to strain the rod; checking the rod and concrete sample deformations. Prior to this, the torque wrench had been calibrated using a special device equipped with a reference load indicator. The rod elasticity modulus was checked at the same time.

10x10x40 prism deformation was measured using a portable dial gauge strainmeter mounted between prism buttresses (30 cm base). Measurements were performed every 10-15 alternate freezing and thawing cycles. Before commencing the measurement, the strainmeter and reference steel sample...
were kept exposed to build up the ambient temperature at which the measurements were conducted. Temperature correction for the device deformation was determined using the following formula:

\[\Delta L = aL(t_1 - t_0) + (A_0 - A_1), \]

where:
- \(a \) – steel line expansion coefficient;
- \(L \) – reference standard length;
- \(t \) - ambient temperature of deformation measurements;
- \(t_0 \) - constant temperature the measurements were reduced to;
- \(A \) - reading for steel reference standard at \(t = t \);
- \(A_0 \) - reading for steel reference standard at \(t = t_0 \).

2.5 x 2.5 x 25 cm prism deformation was also measured every 10-15 alternate freezing and thawing cycles. A desktop dial gage strainmeter was used. Sample contraction deformations over the period between the measurements did not exceed \(2 \cdot 10^{-4} \). At the same time concrete stress decreased by \(\Delta \sigma < \frac{E \cdot \varepsilon \cdot F}{F} = 1.8 \cdot 10^{-4} \cdot 2.10 \cdot 0.196/6 = 11.7 \text{ kg/cm}^2 \), which amounts to no more than 10% of the original value. After each deformation measurement, the original concrete stress level of the sample was restored followed by the dynamic elastic modulus measurement.

Results

The deformation measurement results for the 10 x 10 x 40 cm prisms are shown in Fig. 2. The broken line indicates creep deformation of concrete of the given mix which is not subjected to alternate freezing and thawing. As it is seen, there is a significant difference in the development nature of the regular creep and that caused by alternate freezing and thawing.

![Figure 2](image)

Concrete mix composition (per 1 m³): Portland cement 310 kg, fine ground sand 90 kg, sand 750 kg, crushed stone 1140 kg, water 160 liters

With stresses being \(\sigma = 0.2 \) and 0.4Rpr, deformation growth is in proportion with the number of cycles. For stresses \(\sigma = 0.6 \) and particularly 0.8Rpr, the nature of deformation growth is progressive due to the process of developing micro cracks and compromised strength of concrete under the given load level, as was supported with ultrasound speed measurements in the samples (Fig.3).

![Figure 3](image)
Figure 3. Measurement of ultrasound speed in prisms sized 10 x 10 x 40 cm:
1 - $\sigma = 0$; 2 - $\sigma = 0.2$ Rpr; 3 - $\sigma = 0.4$ Rpr; 4 - $\sigma = 0.6$ Rpr; 5 - $\sigma = 0.7-0.8$ Rpr

The results of deformation measured in prisms 2.5 x 2.5 x 25 cm can be seen in Fig. 4; 5; 6; (mixes with no additive compounds) and in Fig. 7; 8; (mixes with modified air entraining resin added). The dotted curves in Fig. 4 show the creep developing in samples of identical composition (for $\sigma = 0.5$ and 0.7 Rpr), not exposed to the frost cycles.

Figure 4. Deformation growth in prisms 2.5 x 2.5 x 25 cm (no additives, Rpr= 39 MPa)
1 - $\sigma = 0$; 2 - $\sigma = 0.2$ Rpr; 3 - $\sigma = 0.3$ Rpr; 4 - $\sigma = 0.4$ Rpr; 5 - $\sigma = 0.5$ Rpr; 6 - $\sigma = 0.6$ Rpr; 7 - $\sigma = 0.7$ Rpr a - $\sigma=0.5$ Rpr; b - $\sigma=0.7$ Rpr (under normal conditions)
Figure 5. Deformation growth in prisms 2.5 x 2.5 x 25 cm (no additives, R_pr= 45 MPa)
1 – σ = 0; 2 - σ=0.2 R_pr; 3- σ=0.3 R_pr; 4- σ=0.4 R_pr; 5- σ=0.5 R_pr; 6-σ=0.6 R_pr;7-σ=0.7 R_pr

Figure 6. Deformation growth in prisms 2.5 x 2.5 x 25 cm no additives, R_pr= 49.5 MPa)
1 – σ=0; 2- σ=0.2 R_pr; 3-σ=0.3 R_pr; 4- σ=0.4 R_pr; 5-σ=0.5 R_pr; 6-σ=0.6 R_pr;7-σ=0.7 R_pr
Figure 7. Deformation growth in prisms 2.5 x 2.5 x 25 cm (mix with modified air entraining resin added, Rpr= 25.6 MPa)
1 – σ=0; 2- σ=0.2 Rpr; 3-σ=0.3 Rpr; 4- σ=0.4 Rpr; 5-σ=0.5 Rpr; 6-σ=0.6 Rpr; 7-σ=0.7 Rpr

Figure 8. Deformation growth in prisms 2.5 x 2.5 x 25 cm (mix with modified air entraining resin added, Rpr= 37 MPa)
1 – σ=0; 2- σ=0.2 Rpr; 3-σ=0.3 Rpr; 4- σ=0.4 Rpr; 5-σ=0.5 Rpr; 6-σ=0.6 Rpr; 7-σ=0.7 Rpr
It is apparent from the diagrams above that in every case the no-additive mix samples residual deformations had deformations much higher than standard creep under the same load. Deformation growth was progressing in each batch of no-additive samples under loads greater than 0.3-0.5 Rpr. The greatest deformations by the time of destruction existed in the least loaded samples after the most freezing cycles. As we compare Fig. 3-6, 3-7 and 3-8, we can see that deformation growth slows down in samples with higher prism strength (under the same relative stress). Progressing creep occurs at somewhat higher stress levels. Evidently, the change of creep behavior is related to the micro destructions boundary R_0^g that tends to rise as the strength of concrete grows.

Experiment’s results are proofed by data of work [19]. On graph (fig. 2) could be seen that when stress is 0.4 R deformations of reduction are exceed nearly 5 times creep deformations, which take place under the same load in normal conditions. But such big difference typical only for concrete with strength lower than 30 MPa. In concretes with higher strength this difference is slowing down. When the strength is 45-50 MPa (fig 5;6) deformations (when σ=0.4 R) have a difference in 3-4 times. In concretes with SNV as additive difference in deformations is smoothing (fig 7;8).

The change of concrete structure caused by an air-entraining additive that creates in the concrete some surplus “conditionally closed” pores not filled with water during the freezing cycles, produced a substantial increase of frost-resistance and changed the nature of deformation growth (Fig. 7 and 8). In samples with modified air entraining resin added to the mix absolute deformation was some 3-5 times less than in those without such additive (strength level being identical). When stress level of σ = 0.2-0.4 Rpr, does not go beyond the boundary R_0^g, the nature of deformation growth in the samples with the additive was little different from the creep under the normal conditions. Yet as stress rose, deformation growth also accelerated. Measurements of ultrasound speed in 10 x 10 x 40 cm samples and the dynamic elasticity modulus in all test samples have proved that the rate of creep deformation growth and the rate of concrete destruction by the freezing cycle correlated. Creep deformation was greatest in the sample series with the highest rates of strength loss and disintegration of concrete structure, while expansion deformation was also the greatest in their unloaded twin samples.

Conclusion

Based on performed tests, the following key factors affecting the creep nature under compression and alternate freezing and thawing can be identified:

1. During ice formation, moisture migration in the direction of growing ice crystals in the largest pores takes place [20; 21]. At the same time, dehydration of smaller “gel” pores occur which facilitates creep deformations. Therefore, increased creep may take place during concrete freezing without structural damage.

2. It is known that at stresses exceeding the micro-crack formation boundary R, creep rate increase is related to the growth of micro destructions in time. At the same time, if the stresses do not exceed durability limits, micro destructions fade in time and the creep becomes linear. If water–saturated concrete freezes under load, ice formation is accompanied by the development of micro-cracks and new micro-defects which result in persistent nature of creep deformations.

3. Concrete structure softening and concrete strength degradation take place under multiple freezing and thawing. Therefore, the level of relative stress increases from cycle to cycle and results in increased creep.

4. Moisture migration under alternate freezing and thawing is restricted in freeze-thaw resistant concrete (with added modified air entraining resin) and micro-defect either develop slowly or do not develop at all. In this case, under stresses below the R boundary, deformations do not differ significantly from creep under normal conditions.

5. The presented data allow a well-informed selection of concrete specifications during the design process to be performed and potential increase in operational structure deformations resulting.
References
[1] Goncharov E E 2014. Modelirovaniye polzuchestsi betona v differentialnoy forme s ispolzovaniem reologicheskikh modeley. Trudi III Vserossiyskoj (II Mezhdunarodnoy) konferencii po betonu i zhelezobetonu, tom1. M. P. 21-26.
[2] Galustov K Z 2006. Nelinennaya teoriya polzuchestsi betona i raschet zhelezobetonnikh konstrukcii./Fizmatlit. M. 248p.
[3] Fanourakis G K 2014. Otnositelnaya rol’ koefficienta polzuchestsi i modul’a uprugosti v modelakh progonozirovaniya polzuchestsi betona. Trudi III Vserossiyskoj (II Mezhdunarodnoy) konferencii po betonu i zhelezobetonu tom1. M. P. 153-163.
[4] AS 3600-2009 Concrete Structures. Standards Association of Australia. Sydney.
[5] Gvozdev A A 1966. Polzuchest’ betona. Trudi 2-go vsezouznogo s’ezda po teoreticheskomu i prikladnomu mekhanike, izd. Nauka, , P. 74-81.
[6] Sanzharovskiy R S 2014. Nelinennaya nasledstvennaya teoriya polzuchestsi. J-I Streitolnaya mekhanika inzhenernikh konstrukcij i sooruzheniy, , No 1, p. 63-68.
[7] Sanzharovskiy R S, Manchenko M M 2015. Polzuchest’ betona i ego mgnovennaya nelineinost’ deformatsionnaya v raschetah konstrukcij. J-I Streitol’naya mekhanika inzhenernikh konstrukcij i sooruzheniy No 2 p. 33-40.
[8] Sanzharovskiy R S, Manchenko M M. 2016. Oshibki teorii polzuchestsi zhelezobetona i sovremenniye normi. J-I Streitolnaya mekhanika inzhenernikh konstrukcij i sooruzheniy No 3 p. 25-32.
[9] Ukazaniy po proektirovanii zhelezobetonnikh i betonnikh konstrukcij zheleznodorozhnikh, avtodorozhnikh i gorodskikh mostov i trub. SN 365-67,1967 27p.
[10] Tamrazyan A G, Esayan S G. 2012. Mehanika polzuchestsi betona. MGUS. M.27p.
[11] Klovanich S F. 2014. Polzuchest’ betona pri slozhnikh rezhimakh nagruzheniya i nagreva. Trudi III Vserossiyskoj (II Mezhdunarodnoy) konferencii po betonu i zhelezobetonu, tom1. M. P. 59-68.
[12] Barani O R, Mostofinejaad D, Saadatpour M M, Shekarchi M. 2010. Concrete basic creep prediction based on time-temperature equifalence relation and short-term tests. The Arabian Journal for Science and Engineering V35, No 28 Pp. 106-121.
[13] Seregin I N. 1965. Polzuchest’ betona v dorozhno-mostovikh sooruzheniyakh. Izd. «Transport» 93p.
[14] Johansen R. Best C.N. 1962. Creep of Concrete mith and mithouf ice in the system. Bulletin Rilem, No 16
[15] Istomin A D. 2011. Deformatsiya polzuchestsi betona pri szhatii v usloviyakh malociklovogo silovogo i temperaturnogo nagruzheniya. Vestnik MGUS No 2-1 P.28-32.
[16] Antonov L N. 1968. Issledovaniy vliyaniya nizkih temperature na prochnost’ i na deformativnost’ betona i zhelezobetona. Diss. M. 147p.
[17] Klieger P. Journal of the Amerikan Concrete Institute v27 No 2 Pp.7-13.
[18] Podvalnyi A M 1964 Polzuchest’ pri izgibe poperemenno-zamorazhivaemogo betona. Trudi koordinacjonnikh soveshchaniy po gidrotekhnike 13 P. 64-73.
[19] Podvalnyi A M 1963 O polzuchesti zamorazhivaemogo betona. Dokladi AN SSSR148 No 5 P. 19-27.
[20] Moskvin V M, Kapkin M M, Mazur B M, Podvalnyi A M. 1967. Stoikost’ betona i zhelezobetona pri otricatelnoy temperature. Stroizdat. M. 106p.
[21] Valore R C. 1950. Volume Changes in Smale Concrete Cylinders During Freezing and Thawing. Journal of the Amer. Concrete Inst. Februaru. Vol 31. No 6. Pp 43-52.