Abnormal function of platelets and role of angelica sinensis in patients with ulcerative colitis

Wei-Guo Dong, Shao-Ping Liu, Hai-Hang Zhu, He-Sheng Luo, Jie-Ping Yu

INTRODUCTION

Although the pathogenesis of ulcerative colitis (UC) still remains unknown, clinical observations have found that increased platelet number and platelet activation are notable characteristics of UC\(^{[1-6]}\). Reseaches revealed that the extract of platelets from patients with UC could induce intense inflammatory reaction for a few hours after they were injected into the skin of healthy people while the extracts of neutrophils and basophils had no such effect, suggesting that platelet was an important inflammatory cell, and could directly cause inflammation response\(^{[7,8]}\). Moreover, recent investigations indicated that the high blood coagulative state in patients with UC was closely related with the abnormal function of platelets, which resulted in high a probability of microvascular thrombosis and microcirculation dysfunction, main causative factors for UC\(^{[9,10]}\). More and more studies suggested that the role of platelets might represent a previously unrecognized component of UC pathogenesis and that antiplatelet drugs may provide new therapeutic possibilities in the management of UC\(^{[7,8,11-16]}\).

The principal ingredient of ASI is sodium ferulate (SF), possesses various pharmacological effects on platelet function and blood circulation including regulating activity of platelets, inhibiting aggregation and liberation of platelets, improving microcirculation and decreasing consistency of blood\(^{[16-23]}\). Moreover, ASI almost has no toxicity\(^{[24]}\). So we presume that ASI might contribute to the treatment of UC. The aim of this study was to further explore the abnormal function of platelets and their mechanism in UC patients. At the same time, changes of the parameters related to platelet activation as well as clinical symptoms were observed before and after the treatment with ASI to investigate the effects of ASI on the abnormal function of platelets.

MATERIALS AND METHODS

Patients and grouping

A total of 64 patients with UC were recruited from Renmin Hospital of Wuhan University and Zhongnan Hospital of Wuhan University between January, 2000 and March, 2003. The diagnosis of UC was established according to the criteria reported in the literature\(^{[15]}\). According to the evaluating criteria of Jones standards for UC phase\(^{[26]}\), 39 cases were evaluated as active UC (16 males, 23 females, aged 29 to 65, mean age 46.3 years, average disease course 10.6 months), 25 cases were evaluated as remissive UC (11 males, 14 females, mean age 43.6 years, average disease course 18.8 months). Thirty healthy volunteers without administration of antiplatelet medicine in recent 1 month (19 males, 11 females, mean age 42.8 years) were also enrolled in the study as normal control group. All the patients and healthy volunteers had no smoking history.

All groups showed comparable characteristics in sex and age.

METHODS

In 39 patients with active UC, 25 patients with remissive UC and 30 healthy people, \(\alpha\)-granule membrane protein (GMP-140) and thromboxane B\(_2\) (TXB\(_2\)) were detected by means of ELISA, 6-keto-PGF\(_{1\alpha}\) was detected by radioimmunoassay, platelet count (PC) and 1 min platelet aggregation rate (1 min PAR) were detected by blood automatic tester and platelet aggregation tester respectively, and von Willebrand factor related antigen (vWF:Ag) was detected by means of monoclonal -ELISA. The 64 patients with UC were divided into two therapy groups. After routine treatment and angelica sinensis injection (ASI) + routine treatment respectively for 3 weeks, all these parameters were also detected.

RESULTS: The PC, 1 min PAR and levels of GMP-140, TXB\(_2\), and vWF:Ag in active UC were significantly higher than those in remissive UC and normal controls (\(P<0.05\), \(P<0.01\)). Meanwhile, 1 min PAR and levels of GMP-140, TXB\(_2\), and vWF:Ag in remissive UC were still significantly higher than those in normal controls (\(P<0.05\)). Furthermore, 6-keto-PGF\(_{1\alpha}\) level in active and remissive UC was remarkably lower than that in normal control (\(P<0.05\), \(P<0.01\)). These parameters except 6-keto-PGF\(_{1\alpha}\) were significantly improved after the treatment in ASI therapy group (\(P<0.05\), \(P<0.01\)), whereas they all were little changed in routine therapy group (\(P>0.05\)).

CONCLUSION: Platelets can be significantly activated in UC, which might be related with vascular endothelium injury and imbalance between TXB\(_2\) and 6-keto-PGF\(_{1\alpha}\) in blood. ASI can significantly inhibit platelet activation, relieve vascular endothelial cell injury, and improve microcirculation in UC.

Dong WG, Liu SP, Zhu HH, Luo HS, Yu J P. Abnormal function of platelets and role of angelica sinensis in patients with ulcerative colitis. World J Gastroenterol 2004; 10(4): 606-609 http://www.wjgnet.com/1007-9327/10/606.asp

Abstract

AIM: To explore the abnormal function of platelets and the role of angelica sinensis injection (ASI) in patients with ulcerative colitis (UC).

METHODS: In 39 patients with active UC, 25 patients with remissive UC and 30 healthy people, \(\alpha\)-granule membrane protein (GMP-140) and thromboxane B\(_2\) (TXB\(_2\)) were detected by means of ELISA, 6-keto-PGF\(_{1\alpha}\) was detected by radioimmunoassay, platelet count (PC) and 1 min platelet aggregation rate (1 min PAR) were detected by blood automatic tester and platelet aggregation tester respectively, and von Willebrand factor related antigen (vWF:Ag) was detected by means of monoclonal -ELISA. The 64 patients with UC were divided into two therapy groups. After routine treatment and angelica sinensis injection (ASI) + routine treatment respectively for 3 weeks, all these parameters were also detected.

RESULTS: The PC, 1 min PAR and levels of GMP-140, TXB\(_2\), and vWF:Ag in active UC were significantly higher than those in remissive UC and normal controls (\(P<0.05\), \(P<0.01\)). Meanwhile, 1 min PAR and levels of GMP-140, TXB\(_2\), and vWF:Ag in remissive UC were still significantly higher than those in normal controls (\(P<0.05\)). Furthermore, 6-keto-PGF\(_{1\alpha}\) level in active and remissive UC was remarkably lower than that in normal control (\(P<0.05\), \(P<0.01\)). These parameters except 6-keto-PGF\(_{1\alpha}\) were significantly improved after the treatment in ASI therapy group (\(P<0.05\), \(P<0.01\)), whereas they all were little changed in routine therapy group (\(P>0.05\)).

CONCLUSION: Platelets can be significantly activated in UC, which might be related with vascular endothelium injury and imbalance between TXB\(_2\) and 6-keto-PGF\(_{1\alpha}\) in blood. ASI can significantly inhibit platelet activation, relieve vascular endothelial cell injury, and improve microcirculation in UC.

Dong WG, Liu SP, Zhu HH, Luo HS, Yu J P. Abnormal function of platelets and role of angelica sinensis in patients with ulcerative colitis. World J Gastroenterol 2004; 10(4): 606-609 http://www.wjgnet.com/1007-9327/10/606.asp
Measurement of observed parameters
Venous blood samples 2 ml from the 64 patients without breakfast in the morning were obtained 24 hours after admission. At the same time, 2 ml blood sample was obtained from the 30 healthy volunteers under the same conditions. After mixed with 5% EDTA-Na2 (v/v), an anticoagulant, the blood samples were quickly centrifuged at 3 000xg for 5 min. After separated from plasma, the blood samples were stored at -40°C until detection for α-granule membrane protein (GMP-140), thromboxane B2 (TXB2), 6-keto-prostaglandin F1α (6-keto-PGF1α) and von Willebrand factor related antigen (vWF:Ag). GMP-140 and TXB2 were detected by using the ELISA kits, 6-keto-PGF1α was detected by the radioimmunoassay kit, and vWF:Ag was detected by the monoclonal-ELISA kit following the manufacturer’s instructions. All the above detection kits were purchased from Institute of Thrombosis and Coagulation, Medical College of Suzhou University in China. At the same time, platelet count (PC) and 1 min platelet aggregation rate (1 min PAR) were measured by a blood automatic tester (Beckman Co. USA) and a platelet aggregation rate tester (Wuxi Second Electronic Apparatus Factory) respectively using another venous blood sample obtained from all the subjects under the same condition. After the treatments for 3 weeks, venous blood samples from 64 patients were obtained again and all the observed parameters were detected for the second time.

Treatment
After admission, the 33 patients in routine therapy group received routine treatment for 3 weeks including having semifluid diet, correcting the disorder of liquid and electrolytes and 2 g/day Etiasa, modified-release microgranules in sachets (1 min PAR) were measured by a blood automatic tester (Wuxi Second Electronic Apparatus Factory) respectively using another venous blood sample obtained from all the subjects under the same condition. After the treatments for 3 weeks, venous blood samples from 64 patients were obtained again and all the observed parameters were detected for the second time.

Statistical analysis
Experimental results were expressed as mean±SD. Statistical differences between groups were determined by ANOVA followed by Student’s t test. A P value less than 0.05 was considered statistically significant.

Table 1
Changes of all observed parameters in patients with UC 24 h after admission (mean±SD)

Group	n	PC (<0.7% L)	GMP-140 (ng/L)	TXB2 (ng/L)	6-keto-PGF1α (ng/L)	1 min PAR (%)	VWF:Ag (%)
Normal control	30	158.2±32.5	41.4±10.2	68.4±26.4	18.3±6.8	38.6±14.2	103.6±23.7
Patients with UC	64	189.8±68.3	52.1±17.8	98.8±55.4	12.9±8.2	58.2±21.5	143.6±52.7
Remissive UC	25	173.7±36.4	48.4±11.4	87.4±32.7	14.5±6.0	47.8±16.5	127.9±46.1
Active UC	39	201.8±48.6	54.9±13.2	115.5±46.8	11.3±6.4	65.5±19.2	154.5±48.9

P < 0.05, *P < 0.01 vs normal control, **P < 0.05, ***P < 0.01 vs active UC group.

Table 2
Effects of ASI on abnormal function of platelet in patients with UC (mean±SD)

Group	n	PC (<0.7% L)	GMP-140 (ng/L)	TXB2 (ng/L)	6-keto-PGF1α (ng/L)	1 min PAR (%)	VWF:Ag (%)
Routine therapy							
Before therapy	33	188.6±38.5	52.3±15.2	96.9±38.1	13.9±5.3	59.4±14.7	149.1±48.0
After therapy	31	179.3±36.2	48.8±13.7	87.7±28.6	16.2±5.7	53.1±15.6	137.3±48.2
ASI therapy							
Before therapy	31	193.9±41.4	51.1±13.8	99.3±33.1	12.7±5.3	56.8±17.2	139.5±50.2
After therapy	30	171.3±37.8	37.0±10.9	70.2±25.9	16.4±6.2	45.3±14.4	102.4±24.7

P < 0.05, *P < 0.01, **P > 0.05 vs before therapy group.

RESULTS

Change of all observed parameters in patients with UC
Compared with normal group, 1 min PAR and levels of GMP-140, TXB2, and vWF:Ag in UC group and in remissive UC group and active UC group were all significantly increased while 6-keto-PGF1α level was remarkably decreased (P<0.05-0.01). Meantime, PC in active UC group was obviously higher than that in normal group (P<0.01), whereas there was no significant difference in PC between remissive group and normal group (P>0.05). Furthermore, PC, 1 min PAR and levels of GMP-140, TXB2, and vWF:Ag in active UC group were also significantly elevated compared with remissive group (P<0.05), while 6-keto-PGF1α was little changed (P>0.05) (Table 1).

Effects of ASI on abnormal function of platelets in patients with UC
After the treatment for 3 weeks, all observed parameters had no obvious changes compared with those before the treatment in the routine therapy group (P>0.05), whereas the elevated PC, 1 min PAR and levels of PC, GMP-140, TXB2, and vWF:Ag were significantly decreased in the ASI therapy group compared with those before the treatment (P<0.05-0.01), while 6-keto-PGF1α level was still little changed (P>0.05) (Table 2).

DISCUSSION
Recent investigations indicate that platelets not only involve the increased incidence of systemic thromboembolism and a procoagulant blood state in UC but exhibit several proinflammatory properties including release of inflammatory and coagulant mediators such as platelet activated factor, thromboxane, thrombocytin (5-HT), platelet factor 4, platelet beta-thromboglobulin, platelet-derived growth factors, and recruitment, chemotaxis and modulation of the activity of other inflammatory cells[7-12, 27-31]. Moreover, platelet activation in UC might be responsible for the secondary activation of polymorphonuclear leukocytes (PMN) and increased the production of reactive oxygen species by PMN, which could account for the increase in PMN-mediated tissue injury associated with UC[32]. In addition, Danese and his coworkers found that activated platelets in UC expressed enhanced levels of CD40 ligand and interacted with CD40-positive human intestinal microvascular endothelial cells, which could produce...
proinflammatory mediators, up-regulate cell adhesion molecule expression and secrete chemokines such as IL-8, a very important proinflammatory interleukin in UC. Meanwhile, the expression of functional IL-1R and IL-8R on the surface membrane of platelets in UC was found to be significantly increased[3,34].

GMP-140, a membrane glycoprotein, is mainly located in α-granule membrane of normal platelets. Only when platelets were activated and the granule were released, GMP-140 was expressed on the platelets surface and released into blood. Therefore, GMP-140 was commonly considered as the specific marker of platelet activation[3,35]. Furthermore, investigations have proven that GMP-140 could aggravate inflammatory response in UC by adhesion of leukocytes, facilitate diapedesis and induce proinflammatory cytokine production from monocytes such as MCP-1, IL-8[36]. At the same time, TXB2 in blood and PRA have been found to be classic markers of platelet activation[4,5,12]. In our study, 1 min PAR and levels of GMP-140 and TXB2 in blood of patients with UC were significantly increased compared with those in normal controls. Meantime, these parameters in patients with active UC were much higher than those in patients with remissive UC. These results suggested that platelets in circulation were obviously activated in UC and degree of the platelet activation was parallel to the severity of UC. Our study also indicated that the number of activated platelets in active UC was remarkably increased compared with those in remissive UC and normal controls. So, numerous activated platelets took part in the inflammatory response.

Our study revealed the mechanisms underlying the activation of platelet in UC might be as follows: The intestine mucosal vascular endothelial cells might be damaged and the collagen was exposed, thus activating the platelets in circulation because vWF:Ag, a macromolecular glycoprotein mainly synthesized by vascular endothelial cell, was significantly increased in patients with UC in this study, which could sensitively reflect the injury of vascular endothelium. The parallel change between vWF:Ag and GMP-140 in this study also supported the hypothesis. Thromboxane A2 (TXA2), a strong vasoconstrictor, can intensely promote aggregation and activation of platelets while the effect of prostaglandin I2 (PGL2), a vasodilator, on platelet is just on the contrary. In normal situation, TXA2 and PGL2 are in dynamic balance and their stable metabolites are TXB2 and 6-keto-PGF1α. In our study, significantly increased TXB2 and remarkably decreased 6-keto-PGF1α in patients with UC showed the obvious imbalance between TXA2 and PGL2, thus promoting platelet activation as well as resulting in dysfunction of microcirculation. The above results demonstrated that inhibition of platelet activation and improvement of microcirculation should be involved in the treatment for UC.

Numerous investigations have demonstrated that SF, a ASI’s principal ingredient, is not only a inhibitor of TXA2 synthetase and cyclooxygenase-2, a crucial synthetase for arachidonic acid (AA) metabolism, but depresses the activity of phospholipase A2, thus preventing the release of AA from phospholipid of cell membrane and effectively reducing the production of AA metabolites including TXA2 and PGE2[36-40]. Meantime, SF could compensatively promote the synthesis of 6-keto-PGF1α during AA metabolism[41]. As a result, ASI could partly correct the imbalance between TXA2 and 6-keto-PGF1α in UC. Moreover, SF could directly inhibit 5-HT liberation and MDA synthesis from platelets[7,41]. In addition, SF could reduce the content of fibrinogen in blood, increase the charges on cell membrane, thus inhibiting the cell aggregation, lowering the blood consistency. SF could prolong plasma prothrombin time (PPT) and reduce the weight and length of thrombus, thus ameliorating microcirculation[29,30].

In our study, PC, 1 min PAR, and levels of GMP-140, TXB2, and vWF:Ag were significantly decreased after 3 weeks treatment while 6-keto-PGF1α level was little changed compared with those before treatment in the ASI group. At the same time, there was no significant difference in all observed parameters before and after the treatment in the routine therapy group. Furthermore, clinical symptoms such as abdomen pain, diarrhea, occult blood, fever in the patients of ASI group were relieved and controlled more quickly than those in the patients of routine therapy group. The above results suggested that ASI remarkably inhibited the activation of platelets, attenuated the injury of vascular endothelial cells as well as improved the microcirculation in patients with UC, thus contributing to relieve the inflammatory response in UC. The protective effect of ASI on vascular endothelial cell might be related with SF’s strong anti-oxidation property[32,33,42-44].

In summary, the results of this study have shown that ASI can significantly inhibit platelet activation, relieve vascular endothelial cell injury in UC. ASI in combination with the well-established drugs may contribute to an optimal treatment for UC.

REFERENCES
1. Jiang XL, Quan QZ, Liu T, Dong XC. Recent advances in research of ulcerative colitis. Shijie Huanren Xiuhaohua Zazhi 2000; 8: 216-218
2. Xia B. Etiology and pathogenesis of inflammatory bowel disease. Shijie Huanren Xiuhaohua Zazhi 2001; 6: 245-250
3. Kirner JB. Historical origins of current IBD concepts. World J Gastroenterol 2001; 7: 175-184
4. Collins CE, Cahill MR, Newland AC, Rampton DS. Platelets circulate in an activated state in inflammatory bowel disease. Gastroenterology 1994; 106: 840-845
5. Collins CE, Rampton DS, Rogers J, Williams N. Platelet aggregation and neutrophil sequestration in the mesenteric circula- tion in inflammatory bowel disease. Eur J Gastroenterol Hepatol 1997; 9: 1213-1217
6. Kapsoiritakis AN, Koukourakis MI, Sfridaki A, Potamianos SP, Kosmadaki MG, Koutroubakis LE, Kouromalis EA. Mean platelet volume: a useful marker of inflammatory bowel disease activity. Am J Gastroenterol 2001; 96: 775-781
7. Mannioni PF, Di Belli M G, Masini E. Platelets and inflammation: role of platelet-derived growth factor, adhesion molecules and histamine. Inflamm Res 1997; 46: 4-18
8. Webberley MJ, Hart MT, Melkian V. Thromboembolism in inflammatory bowel disease: role of platelets. Gut 1993; 34: 247-251
9. Larsen TB, Nielsen J N, Fredholm L, Lund ED, Brandslund I, Munkholm P, Hey H. Platelets and anticoagulant capacity in patients with inflammatory bowel disease. Pathophysiol Haemost 2002; 32: 92-96
10. Van Bodegraven AA, Schoor M, Baak JP, Linskens RK, Bartels PC, Tuyman HA. Hemostatic imbalance in active and quiescent ulcerative colitis. Am J Gastroenterol 2001; 96: 487-493
11. Collins CE, Rampton DS. Platelet dysfunction: a new dimension in inflammatory bowel disease. Gut 1995; 36: 5-8
12. Collins CE, Rampton DS. Review article: platelets in inflammatory bowel disease—pathogenetic role and therapeutic implications. A m J Pharmacol Ther 1997; 11: 237-247
13. Cui HF, Jiang XL. Treatment of corticosteroid-resistant ulcerative colitis with oral low molecular weight heparin. World J Gastroenterol 1999; 5: 440-450
14. Xu G, Tian KL, Liu GP, Zhong XJ, Tang SL, Sun YP. Clinical significance of plasma D-dimer and von Willebrand factor levels in patients with ulcer colitis. World J Gastroenterol 2002; 8: 575-576
15. Jiang XL, Quan QZ, Wan ZK. Diagnosis, typing and therapy of ulcerative colitis. Shijie Huanren Xiuhaohua Zazhi 2000: 8: 332-334
16. Das KM, Farag SA. Current medical therapy of inflammatory bowel disease. World J Gastroenterol 2000; 6: 483-489
17. Rampton DS. Management of difficult inflammatory bowel disease: where are we now? World J Gastroenterol 2000; 6: 315-323
18. Rigat B, Reynaud D, Smiljanic-Georgiev N, Mahuran D. The GM2 activator protein, a novel inhibitor of platelet-activating factor. Biochem Biophys Res Commun 1999; 258: 256-259
Dong WG et al. Angelica sinensis inhibits platelets activation in ulcerative colitis

19 Tyrrell DJ, Horne AP, Holme KR, Preuss JM, Page CP. Heparin in inflammation: potential therapeutic applications beyond anticoagulation. Adv Pharmacol 1999; 46: 151-208
20 Xie L, Yang LH, Li XH. Research on the pharmacologic effects of Angelica Sinensis. Zhong Yiyao Yanjiu 2000; 16: 56-58
21 Zhang LF, Bian RL, Wei EQ. Effects of platelets on histamine release of mast cell and influence of sodium ferulate. Zhongguo Yaoxue Xuebao 1999; 11: 472-474
22 Sun Y, Lin AP, Zhang HQ, Bian RL. PAF-induced airway hyperresponsiveness and effects of sodium ferulate in guinea pigs. Zhongguo Yaoxue Xuebao 1999; 12: 518-520
23 Lin AP, Sun Y, Zhang HQ, Bian RL. Effects of sodium ferulate on platelets immunol activation-induced airway hyperresponsiveness. Liaoning Zhongyi Zazhi 1995; 22: 42-44
24 Zhou JY, Fan Y, Han ZF, Wu DZ, Hu ZB. Influence of ferulic acid sodium on the enhance of endothelial permeability induced by histamine. Zhongguo Yaoxue Xuebao 2000; 16: 664-666
25 Yi ZZ, Zhang LY, Xu LN. [The effect of Dang-Gui (Angelica sinensis) and its ingredient ferulic acid on rat platelet aggregation and release of 5-HT (author’s transl)]. Yaoxue Xuebao 1980; 15: 321-326
26 Jones SC, Crabtree JE, Rembacken BJ, Dixon MF, Trejdosiewicz LK, Whicher JT, Aaxon AT. Musosal interleukin-6 elevation in ulcerative colitis: effects of anti-inflammatory drugs and T-cell stimulation. Scand J Gastroenterol 1994; 29: 722-728
27 Yu FW, Xiao GX, Fu WL, Yuan JC, Zhou LX, Qin XJ. Pathogenic effects of platelet activating factor on enterogenic endotoxaemia after burn. World J Gastroenterol 2000; 6: 451-453
28 Wu JX, Xu JY, Yuan YZ. Effect of emodin and sodostatin on metabolism of eicosanoids in acute necrotizing pancreatitis. World J Gastroenterol 2000; 6: 293-294
29 Nakamura T, Sakaguchi T, Unno N, Sugatani J, Miwa M, Nakamura S. Relationship between the platelet-activating factor acetylhydrolase gene and intractability of ulcerative colitis. Dis Colon Rectum 2002; 45: 389-393
30 Vrij AA, Rijken J, Van Wersch JW, Stockbrugger RW. Platelet factor 4 and beta-thromboglobulin in inflammatory bowel disease and giant cell arteritis. Eur J Clin Invest 2000; 30: 188-194
31 Harhaj NS, Barber AJ, Antonetti DA. Platelet-derived growth factor mediates tight junction redistribution and increases permeability in MDCK cells. J Cell Physiol 2002; 193: 349-364
32 Suzuki K, Sugimura K, Hasegawa K, Yoshida K, Suzuki A, Ishizuka K, Ohtsuka K, Honma T, Nirasawa R, Asakura H. Activated platelets in ulcerative colitis enhance the production of reactive oxygen species by polymorphonuclear leukocytes. Scand J Gastroenterol 2001; 36: 1301-1306
33 Schaufelberger HD, Uhr MR, McGuckin C, Logan RP, Misiewicz JJ, Gordon-Smith EC, Begering C. Platelets in ulcerative colitis and Crohn’s disease express functional interleukin-1 and interleukin-8 receptors. Eur J Clin Invest 1994; 24: 656-663
34 Danese S, de la Motte C, Sturm A, Vogel JD, West GA, Strong SA, Katz JA, Fiocchi C. Platelets trigger a CD40-dependent inflammatory response in the microvasculature of inflammatory bowel disease patients. Gastroenterology 2003; 124: 1249-1264
35 Fagerstam JP, Whiss PA, Strom M, Andersson RG. Expression of platelet P-selectin and detection of soluble P-selectin, NPY and RANTES in patients with inflammatory bowel disease. Inflamm Res 2000; 49: 466-472
36 Wang Z, Gao YH, Huang RS, Zhu GQ. Sodium ferulate is an inhibitor of thromboxane A2 synthetase. Zhongguo Yaol Xuebao 1989; 9: 430-433
37 Gao SW, Chen ZJ. Effects of sodium ferulate on platelet aggregation and TX thromboxane A2 of platelet in patients with coronary heart disease. Zhongxiyi Jiehe Zazhi 1988; 8: 263-265
38 Liu SP, Dong WG, Wu DF, Luo HS, Yu JP, Mei Q. Effects of sodium ferulate on nitric oxide synthase and cyclooxygenase in colon of colitis rats. Zhongguo Yaoxue Xuebao 2003; 19: 571-574
39 Xu LN, Yu WG, Tian JY, Liu QY. Effects of sodium ferulate on arachidonic acid metabolism. Yaoxue Xuebao 1990; 25: 412-416
40 Carty E, Macey M, McCartney SA, Rampton DS, Ridgwell, a dual thromboxane synthase inhibitor and receptor antagonist: anti-inflammatory profile in inflammatory bowel disease. Aliment Pharmacol Ther 2000; 14: 807-817
41 Wang XJ, Huang WZ, Zhang BY. Recent study on effect of angelica sinensis on the balance between TxA2 and PGI2 in human. Huai Zhongyi Zazhi 2000; 22: 54-54
42 Cominacini L, Pasini A, Garbin U, Evangelista S, Crea AE, Tagliacozzi D, Nava C, Davoli A, LoCascio V. Zofenopril inhibits the expression of adhesion molecules on endothelial cells by reducing reactive oxygen species. Am J Hypertens 2002; 15 (10 Pt 1): 891-895
43 Zhang ZH, Yu SZ, Li GS, Zhao BL. Influence of sodium ferulate on human netrophil-derived oxygen metabolites. Zhongguo Yaolxue Tongbao 2001; 17: 515-517
44 Wang BH, Ouyng JP, Tu SZ, Wei L, Liu YM, Zheng HO, Yang JW. Protective effect of Angelica Sinensis on human endothelial cells injury induced by high level of oxidized low-density lipoprotein in serum. Zhongguo Bingli Shengli Zazhi 2000; 16: 932

Edited by Zhang JZ and Wang XL