Pathology and Abnormality of the First Permanent Molar among Children

Mouna Hamza, Amal Chlyah, Bouchra Bousfiha, Bouchra Badre, Maria Mtalsi, Hasna Saih and Samira El Arabi

Abstract

The first permanent molar (FPM) plays an essential role in the masticatory function by contributing to the implementation and the maintenance of the occlusion. However, it is considered as the most frequently affected and the earliest affected tooth by cavities; 27.4% of the 6–8 years old children have developed at least one cavity on one of the four first permanent molars, according to a study conducted among 3276 school children in Casablanca. Therefore, the FPM should benefit from special vigilance on the part of the practitioner to ensure that any early carious lesion is intercepted. In addition, the FPM, due to its period of mineralization coinciding with early childhood diseases, can erupt with a structural abnormality. Molar incisor hypomineralization (MIH) is considered to be the most common defect observed on first permanent molars among children. A study conducted among 1077 children aged 7–10 years enrolled in schools inCasablanca showed that 7.9% of children were affected with MIH. About 84.7% of the children had the four molars affected. Children with HIM had a significantly higher prevalence of caries: 78.8 versus 33.5%. These structural abnormalities of the enamel must be carried out earlier to ensure that the coronary anatomy is the least compromised.

Keywords: molar, dental caries, risk factors, therapeutic, prevention measures, molar incisor hypomineralization, tooth abnormalities, dental care for children, Morocco

1. Introduction

The first permanent molar (FPM) is considered as the most important tooth for the dentition and dental development with a key role in occlusion. It participates in the maxillary growth and physiology of the mandibular system.

However, it is considered to be the most and earliest affected tooth by cavities. Indeed, the early time of its eruption when hygiene is difficult and poorly controlled makes it particularly vulnerable to carious disease.

In addition, FPM, due to its period of mineralization coinciding with early childhood diseases, can erupt with a structural abnormality. Molar incisor hypomineralization is considered to be the most common defect observed on FPM in children.
Other uncommon abnormalities can affect the FPM such as shape, size, or eruption abnormalities. The early diagnosis of lesions on this tooth allows in a large number of cases to avoid complications and the systematic use of endodontic and prosthetic treatments and sometimes even tooth extraction.

The purpose of this chapter is to review the main pathologies and abnormalities of the first permanent molar. Epidemiological data, risk factors, clinical aspects, therapeutic, and preventive approach are described and illustrated by clinical cases treated at the Casablanca Pedodontics Department.

2. Carious pathology of the first permanent molar

2.1 Epidemiology and risk factors

The importance of the carious pathology of the first permanent molar has been known clinically for a long time. Epidemiological surveys carried out in several countries have shown the extent of this problem [1–5]. In France, in 2007, a survey on the oral health of 12–15 years old children attending school in the southern province revealed that 52.4% of children had already carious disease and 11.9% have four FPM affected teeth [1]. In 2015, Xue et al. reported, in Tangshan (China), a prevalence of caries of 47.49% on the FPM. Another study conducted among Sudanese children showed a prevalence of 6-year-old tooth disease of 61% [2, 3].

In Morocco, epidemiological surveys were carried out to determine the state of the FPM among schoolchildren and consultants in the Pedodontic Department in the Universities of Hassan II of Casablanca and Souissi of Rabat. They all showed a high rate of decay in the FPM [6, 7].

Indeed, a descriptive cross-sectional study of 3276 children aged 6–8 years enrolled in school in Casablanca revealed that 27.4% had at least one cavity in one of the four FPMs [6].

A survey of 216 children aged 6–13 years old who were consultants in the Pedodontics Department in the University of Hassan II of Casablanca showed that 73.14% of subjects had at least one FPM affected by cavities and 12.65% of subjects had all four teeth affected [8]. As in the Pedodontics Department of the University of Suissy of Rabat, 65% of children aged 6–15 years had at least one carious FPM [7]. The prevalence of caries increases with age, and this is in accordance with studies carried out by Al-Samadani and Ahmad [2] and Aldossary et al. [9] in Saudi Arabia. Most of these studies showed that the first mandibular molars were statistically more affected than their maxillary counterparts (p < 0.01) [8, 9].

In the permanent dentition, first permanent molar was observed to be highly susceptible to carious lesions in its occlusal aspect due to the early time of its eruption, to its morphological characteristics and to its positioning in the oral cavity [10–12].

First permanent molar is the first permanent tooth appearing in the child’s mouth; most parents are unaware that these teeth are the first permanent teeth and often neglect its importance considering it a primary insignificant tooth [13]. Sometimes, parents think that the first permanent molar is a deciduous tooth, and instead of restoring it, they extract the tooth and deprive the child of the right to permanent teeth in the future [14].

Regarding parents of children consulting in the Pedodontic Department in the University of Hassan II of Casablanca, only 19% of them know that this tooth is permanent. The others do not know when it erupted and confuse it with a temporary molar [8]. According to the study by Heydari et al., most parents are unaware of the presence of FPMs in their children’s oral cavity [14].
The first permanent molar has a longer eruption time. Carvalho and Abernathy found that the first permanent molars were more susceptible to caries during the first 1–3 years after the eruption and the occlusal aspects of the first permanent molars were particularly vulnerable to the caries development at the age of 6 [15].

The complicated pits and fissures and the operculum covering the distal half of the first permanent molars allow for the accumulation and retention of bacterial plaque [16–18]. Favorable conditions for biofilm accumulation during tooth eruption are likely to explain, at least in part, the present findings. First, the amount of biofilm accumulated on the occlusal aspects has been shown to be higher in partially erupted molars than in fully erupted molars. In addition, Brailsford et al. showed the qualitative differences in the biofilm composition, with partially erupted teeth having higher counts of non-mutans streptococci and Actinomyces israelii than fully erupted teeth [19].

Besides, first permanent molar exhibits an increased susceptibility to caries due to its positioning in the oral cavity in the posterior region of the child's mouth which makes it further difficult for the child to properly clean this area [19, 20].

The first permanent molars are at greater risk of damage and loss, because of their special morphology. Pits and fissures on occlusal aspects of permanent teeth are particularly susceptible to the development of tooth decay. This susceptibility to tooth decay is related with the individual morphology of the tooth's pits and fissures, which can be prosperous shelters for microorganisms and make the oral hygiene procedures of these areas more difficult, allowing greater plaque accumulation [21].

Many surveys have reported a preferred site of mainly occlusal caries: 90% of caries occurs at this level in children and adolescents [22]. The same results were found at the Pedodontics Department in the University of Hassan II of Casablanca, where 87.7% of the FPM caries were found in the occlusal grooves [8].

The occlusal fissured surface of the first permanent molars and their lower buccal and upper lingual pits are among the most susceptible sites for caries.

Waterman and Knutson believed that first permanent molars especially lower molars among the other teeth are most susceptible to caries [13].

In the survey of Alwayli et al., the caries prevalence in the mandibular FPMs was significantly higher than the caries prevalence in the maxillary FPMs. This finding is in agreement with other studies [23, 25]. The reason expected behind this finding is the difference in the morphology and the earlier eruption time of mandibular compared with maxillary FPMs.

On the other hand, caries in primary molars is an important indicator for the development of cavities in the permanent dentition, particularly in the first molar teeth [24, 25]. The severity of the caries of primary molars may also increase the risk of caries in the early erupting stage of the first permanent molars [26]. According to Gray et al., the presence of three or more deciduous molars with caries at the age of 5 years was the best predictor of caries experience in the first permanent molars at the age of 7 years [27].

The increase in the prevalence of dental caries is a result of dietary changes, including frequent consumption of high-energy, low-cost foods that are poor in nutrients and rich in sugar and fat and unbalanced consumption of sugar content. The consumption rate of sweet foods for children aged 6–11 years increased from 23.1% in 2002 to 43.9% in 2012 [28, 29].

### 2.2 Clinical forms and complications

The caries of FPM in children is characterized by its precocity and speed of evolution, due to the immaturity of the tissues that compose it. The carious lesions,
often active in children, will evolve insidiously towards the chronic inflammation of the pulp and eventually towards the pulp necrosis, which can compromise the root edification. As a result, early diagnosis is essential [30].

The clinical examination includes both a visual examination under good lighting and a tactile examination. Visual examination can detect advanced lesions, initial lesions usually go unnoticed. Tactile examination allows sounding, useful for the detection of dentinal hardness of cavitory lesions, but is found to be iatrogenic in the detection of initial lesions [31].

In 2005, a consensus conference proposed to rationalize the visual signs of detection of carious lesions in the form of a codified system, the ICDAS (International Caries Detection and Assessment System), which gives an idea of the demineralized tissues and which, therefore, allows a therapeutic adapted to the tissue damage [32]. This system contains seven codes from 0 (healthy tooth) to 6 (extended dentin caries) [33] (http://www.icdas.org) (Table 1).

The ICDAS classification allows a visual diagnosis. However, it should not be limited to this criterion alone; an assessment of lesion activity is required. It is based mainly on two clinical indicators; the presence of plaque related to the localization of the lesion and the tactile sensation to the sounding [33–36].

FPM caries are mainly located on the occlusal aspects of the tooth. There are, in particular, two clinical forms of predominant carious lesions: cavities in grooves, pits, and fissures, and hidden or surprise carie. At the proximal level, more rarely, another form of caries called stopped is observed [37,38].

The decay of grooves, pits, and cracks begins at the bottom of the crevice. The complex anatomy of pits and fissures and the presence of discoloration can complicate both clinical examination and diagnosis. Indeed, early lesions may not be clinically and radiographically visible, and their early diagnosis will require new diagnostic techniques based on fluorescence [34–37].

Hidden carie is the characteristic of immature FPM. It is located on the occlusal aspect of the tooth and develops in the pulpal direction by extending in width under the surface of the enamel, which appears intact. This evolution is very often done without painful clinical signs. Detection, often very late, is done during a routine clinical examination, when a small pertuis attaches to the probe. The radiograph reveals, in a surprising way, the extent of the dentinal damage compared with the usual clinical aspect of the caries [38,39] (Figure 1).

Mesial caries is often related to the progressive caries of the distal surface of the second temporary molar. The fall or loss of this molar will allow a better hygiene of the region and the initial carious lesion by remineralizing it which can be transformed into an arrested lesion [39,40] (Figure 2).

In the absence of treatment of the active carious lesions, the inflammation insidiously gains the young pulp and evolves rapidly towards the necrosis. This necrotic state compromises the continuation of root edification. Infectious problems can settle and spread to the cellulo-adipous tissues. The evolution of cellulitis can be acute or chronic.

Serious cellulitis is the initial essentially inflammatory stage. It is characterized by an important swelling, a feeling of impasto and diffuse heat, a spontaneous pain, a trismus, a very painful percussion, and a positive buccal palpation.

Suppurative acute cellulitis is the progressive form of serious cellulitis in the absence of treatment. It is characterized by the abedation with appearance of general signs: trismus, insomnia, difficult feeding, asthenia, sometimes aches, paleness, fever, throbbing pain accompanied by headache, and feeling of beatings at the swelling. The collection can be fistulized to the oral mucosa or to the skin. It can also spread to nearby anatomical compartments and become a diffuse cellulitis that is life-threatening [41,42].
| ICDAS classification | Histological involvement |
|----------------------|--------------------------|
| 0                    | No demineralization       |
| 1 Visible change after drying | Demineralization limited to the external half of the enamel |
| 2 Visible change without drying | Demineralization limited to the internal half of the enamel |
| 3 Localized rupture of the enamel without demineralization of the underlying visible dentin | Damage of the dentino enamel junction. Start of external demineralization of dentin |
| 4 Carious dentin visible by transparency with or without localized rupture of the enamel | External demineralization of dentin |
| 5 Visible micro-cavity with visible dentin | Demineralization of the middle third of dentin |
| 6 Extended dentin caries | Demineralization of the deep third of dentin |

Table 1.  
ICDAS classification.
The evolution towards chronicity can be following a badly treated bad cellulitis. It is characterized by a painless swelling on palpation, adhering to the skin with the presence of an indurated cord. Chronic cellulitis evolves irreversibly, with no general or functional signs [42] (Figure 3).

2.3 Therapeutic approach

The therapeutic management of caries of FPM should be done according to the principle of tissue economy to respect the healthy hard tissue and to preserve pulp vitality in case of deep carious lesions.

Nowadays, the evolution of dental restoration techniques and materials provides us different therapeutic possibilities to deal with the carious lesions. The International Caries Detection and Assessment System (ICDAS) allows a treatment adapted to tissue involvement according to the dental demineralization degree [43].

• Remineralization techniques will be performed on ICDAS 1 and 2 by topical application of fluoride on smooth surfaces and furrow sealing in grooves [44].

• For cavitory lesions (ICDAS 3 and 4), the treatment will involve minimally invasive dentistry by using microdrills, aeroabrasion for occlusal cavities, and sonoabrasion for inter-proximal cavities. The filling materials used are fluvable composite resins (small cavities) or micro-hybrids (wider cavities).

• For ICDAS 5 and 6, the symptomatology must be taken into consideration for the therapeutic management of these lesions.
In case of deep decay that does not reach the pulp with the absence of clinical signs, the treatment of choice is indirect pulp capping which can be done in one step by removing the external area of the infected dentin, leaving a layer of firm internal affected dentin in order to avoid pulp exposure during caries removal. A calcium hydroxide is used as a base followed by a final coronal restoration [45].

Another approach can also be proposed, the “stepwise excavation” technique. It consists in cleaning the cavity in two steps with 3–6 months interval [45]. The tooth decay is incompletely removed at the bottom of the cavity, a calcium hydroxide is placed then a temporary, and hermetic sealing is performed by permitting the remineralization and the development of tertiary dentin [46]. A few months later, in a second step, the intervention will remove the remaining carious tissue and leaving the place for a harder dentin with the characteristics of an inactive lesion [45–47]. Stepwise excavation decreases the risk of pulp exposure compared with direct complete excavation.

In a randomized clinical trial Björndal et al. (2010), it showed a survival rate of 74% after 1 year of SW compared with 62.4% after selective removal to firm dentin [48].

If a pulp exposure occurs following dental excavation, a direct pulp capping will be indicated in case of a spontaneous bleeding stop [46] (Figures 4 and 5). Calcium hydroxide was widely used, but currently, the mineral trioxide aggregate and Biodentine are recommended with excellent clinical and radiographic results up to 6 months, 1 year, and even 2–3 years for some studies [49–51].

If the FPM is symptomatic, pulp vitality is compromised and a pulp treatment should be interesting either part or all of the cameral pulp. These pulp treatments are universally accepted on young permanent teeth [46, 52].

The pulpotomy procedure involves removing pulp tissue that has inflammatory, leaving intact the remaining vital non-inflamed tissue, which is covered with a pulp capping agent to promote healing at the amputation site. Usually, pulpotomy consists in removing the entire coronal pulp up to the cervical area. Today, the depth of tissue removal is based on a clinical view, only tissue with profuse bleeding judged to be inflamed or infected should be removed, and the capping material should be placed on healthy tissue. MTA and biodentine seem to be the treatment of choice to stimulate dentin bridge formation in young permanent teeth with exposed pulps [51–53].

There is a controversy as to the indications for performing root canal treatment after root maturation. Prophylactic endodontic treatment is not recommended because of the low percentage of pulp necrosis [54]. It is important to perform a permanent restoration to prevent bacterial leakage and ensure the success of the treatment.
There should be no adverse clinical signs or symptoms such as sensitivity, pain, or swelling. There should be no radiographic sign of internal or external resorption, abnormal canal calcification, or periapical radiolucency post-operatively. Teeth having immature roots should continue normal root development and apexogenesis.

For the first immature permanent molars whose pulp is no longer vital or necrotic, apexification treatment is undertaken to induce development and apical closure. It can be achieved in two manners, either as a long-term procedure using calcium hydroxide dressing to allow the formation of a hard tissue barrier (Figure 6), or as a short-term procedure creating an apical plug of MTA [52]. Although calcium hydroxide has properties including bactericidal action on aerobic and anaerobic germs to heal periapical lesions [55, 56] (Figure 7), it has some inconveniences relied to a long-term treatment and a high-risk of root fracture of permanent immature teeth.

Figure 4. Direct pulp capping on the right first permanent immature molar. (a, b) Deep caries close to the pulp. (c, d) Direct pulp capping with calcium hydroxide after pulp exposure. (e, f) Radiographs after 6 and 18 months of treatment showing good evolution and apexogenesis.
Despite the success of apexification, the canal walls remain short and thin increasing the fracture risk of the tooth.

Recently, revascularization has been proposed as an alternative procedure to treat the necrotic immature permanent teeth with open apex regardless the periapical pathology. It is based on the elimination and the replacement of infected necrotic pulp by a neoformed tissue. Indeed, the use of the capacity of stem cell
differentiation could allow a reconstruction of dental structures, root development, and apical closure [57–59] (Figure 8).

Early diagnosis of carious lesions and the application of appropriate preventive measures will avoid the use of heavy and often expensive dentine-pulpal treatments.

2.4 Preventive approach

The time between the eruption of the first permanent molars and the establishment of functional occlusion is a critical period to protect the permanent teeth from caries. Prevention should begin as soon as the first permanent molar erupts rather than wait until the eruption is completed.

These facts dictate the need for caries-prevention technology, targeted at the most susceptible tooth surfaces in the most susceptible members of the population. First permanent molars need special attention; thus, careful preventive strategies include fissure sealant, topical fluoride applications, and meticulous home care [60, 61].

Fissure sealants used on occlusal tooth surfaces were introduced in 1960s for protecting pits and fissures from dental caries. Such sealants prevent the growth of bacteria that promote decay in pits and fissures in teeth (Figures 9 and 10).

The application of fissure sealants should be complemented with oral health education for children, adolescents, and their families to assimilate adequate oral hygiene habits and understand the need of regular dental appointments for primary prevention and early diagnosis of oral diseases [21].

There is an agreement that in high-risk populations, all children should receive sealants [62, 63].

Several sealant materials are available. Currently, the two pre-dominant types of dental sealant nowadays are resin-based and glass ionomer cement (GIC) sealants.
For high-quality resin sealant placement, electrically powered dental equipment and good clinical conditions are required. However, this may be difficult to achieve in regions, where access to modern dental clinics is limited. This problem may be overcome by using GIC sealants because they can be placed without the use of electrically powered dental equipment [64].

When considering fissure sealants, the earlier the application is performed, the more effective they are. Therefore, in children, fissure sealants are recommended to be applied soon after tooth eruption, mainly at the level of the first permanent molars. Studies have shown that fissure sealants applied both in clinics and schools are highly effective in preventing dental caries, reducing caries in pits and fissures up to 60% for 2–5 years after its implementation [65].

Numerous studies have investigated the clinical effectiveness of fissure sealants, and this has been the subject of a Cochrane review. A meta-analysis of seven studies
comparing sealed teeth to untreated controls demonstrated caries reductions ranging from 87% at 12 months to 60% at 48–54 months [66]. Several studies have demonstrated that the effectiveness of fissure sealants depends on the longevity of sealant coverage, that is, clinical retention [20].

In terms of retention and the need to reassess sealants within a year after placement, it is very important to adequately isolate the teeth. Salivary contamination is the major cause of sealants loss in the first year [67, 68].

The retention of resin sealants was good on average in all studies at each follow-up. After 12 months of follow-up, resin sealants were retained completely in 79–92% of cases. The corresponding retention after 24 and 36 months of follow-ups for resin sealants was 71–85 and 61–80%. There is an evidence in the literature regarding fissure sealants’ effectiveness in caries prevention and control, for both individual and community-based interventions for children and adolescents [20, 69–71].

In field conditions where isolation control is difficult, using a material less affected by humidity, it gives significant advantage [72]. In fact, fissure restorers with glass-ionomer-based chemical hardening feature applied in recent years in field conditions displayed a better cavity prevention performance compared with antiresins [73].
Fluoride varnishes have also been marketed since 1960s and comprise a topical medication, which is painted onto the tooth surface. They contain a high concentration of fluoride (22,600 ppm) and are licensed for application by dental professionals. The varnish forms a quick-setting base which subsequently releases fluoride.

The aim of topical fluoride varnish application is to treat hard tooth surfaces in such a way that caries is arrested or reversed. Fluoride acts to prevent caries in three ways: by inhibiting the demineralization and promoting the remineralization of dental enamel, and by inhibiting acid formation by bacterial plaque especially before the complete eruption of the teeth.

Sometimes, topical fluoride has been combined with sealant application to strengthen overall effectiveness in the prevention of dental caries [74].

At the end of 4 year period, Songpaisan et al. based on a study conducted in Thailand found that pit and fissure restorers provided a much more superior protection than fluoride protocols applied individually. It was also seen that glass ionomer fissure restorers provided a better protection than the fluoride gel [75].

Data from three randomized controlled trials suggest that in children and adolescents with sound occlusal surfaces, the use of pit and fissure sealants compared with fluoride varnishes may reduce the incidence of occlusal carious lesions in permanent molars by 73% after 2–3 years of follow-up (OR, 0.27; 95% CI, 0.11–0.69) [76].

3. First permanent molar abnormalities

Several factors can disrupt the development of PMP. Depending on when these disturbances occur, anomalies in number, shape, size, or structure may be observed.

Among these, MIH remains the most commonly encountered and described anomaly today.

3.1 Molar-incisor hypomineralization

3.1.1 Epidemiology

Molar incisor hypomineralization, conventionally known by the acronym MIH, corresponds to the qualitative defects of the enamel, of systemic origin, affecting one or more first permanent molars, often associated with defects on one or more incisors [77].

The involvement of the second temporary molars and cuspidian tip of the permanent canines has also been described [78].

The prevalence of MIH varies considerably according to studies ranging from 2.4% in Germany [79] to 2.5% in China [80] and to 40% in the United Kingdom [81]. In Africa, studies in Libya, Morocco, Kenya, and Nigeria reported the prevalences of 2.9, 7.9, 13.7, and 17.7%, respectively [82–85]. According to a recent meta-analysis published in 2018 [86], the global average prevalence is 13.1% with 17.5 million new cases estimated in 2016, of which 4.8 million require management.

While the prevalence of MIH is comparable between the two sexes [82, 87], the location of defects by arch and by sector remains variable. It seems that the risk of incisor damage increases with the number of molars affected. Cho et al. reported, in 2008 [80], an incisor participation of 62.5% for cases with the four affected molars versus 36% for children with single molar involvement. In a study conducted in Casablanca [82], the high number of children with the first four permanent molars affected (84.7%) may explain the high incisor participation found (92.9%).
3.1.2 Risk factors

The precise etiology of MIH stills unknown. The probable systemic origin is probably multifactorial and with a possible genetic component. The pre-natal factors involved are urinary tract infections, vitamin D deficiency, and the use of antiepileptic medications during pregnancy. In the perinatal period, we could note cesarean delivery, delayed delivery, and prematurity. Post-natal causes are related not only to early childhood diseases such as repeated fevers, ear infections, pneumonia, asthma, and gastrointestinal disorders, but also the exposure to bisphenol A or dioxin and frequent use of antibiotics [88–90].

3.1.3 Diagnosis

The clinical aspect of the lesions is characteristic. These lesions are white, yellow, or brown opacities, well-defined with a clear demarcation between the affected enamel and the healthy one. They are located in the occlusal and/or incisal third, which may extend over a more or less important area of the coronary surface. These lesions are asymmetrical and the severity of the lesions is very variable. In severe cases, the affected molars suffer from masticatory forces, a post-eruptive fracture of the fragile enamel resulting in substance loss, hypersensitivity, and the development of carious lesions. Affected incisors, often unsightly, have fewer complications [77, 78, 91] (Figure 11).

In order to standardize and facilitate the diagnosis of MIH, the European Association of Pediatric Dentistry (EAPD) has been adopted, since 2003, five criteria that are the presence of delimited opacities, post-eruptive enamel loss, atypical restorations, extraction of first molars associated with incisor damage in a patient at low risk of caries, and the absence or delay of eruption of first molars or permanent incisors [92].

Since 2016, an international working group, the Wurzburg MIH work group, has been introduced the MIH treatment need index (MIH TNI) to assess the severity of MIH with a score based on the presence or absence of sensitivity and the extent of clinical destruction with the ultimate objective of proposing a therapeutic approach based on this index [93].

The MIH should not be confused with other structural abnormalities of the enamel, whether of hereditary or acquired origin, namely imperfect amelogenesis, fluorosis, and especially enamel hypoplasia, for which the limits of substance loss are rounded and bordered by a well-mineralized enamel, unlike the MIH where the edges of substance loss are sharp and bordered by a hypermineralized enamel [94].

3.1.4 Treatment

The management of MIH is a real challenge for the practitioner for several reasons. The affected teeth are difficult to anesthetize because the pulp has histological

![Figure 11](image-url)
features responsible for chronic inflammation, most often requiring the use of truncular, intra-ligamentary, or transcortical anesthesia. The limits of the preparation during caries excavation are difficult to determine since the practitioner remains divided between the desire not to be too invasive and the need to remove all the hypomineralized enamel to ensure the durability of the restorations. The anxiety of patients suffering, on the one hand from hypersensitivity to hot, cold, and tooth brushing and on the other hand from repeated care due to the more delicate adherence to the enamel structure, remains difficult to manage and often involves the use of conscious inhalation sedation [78, 95].

Several therapeutic options are possible depending on the patient’s age and cooperation, the severity of the disease, pulp involvement, orthodontic diagnosis, long-term prognosis, and the cost of treatment [96].

For mild abnormalities with a smooth enamel surface, the application of fluoride varnish and sealing of the grooves is recommended (Figure 12). When abnormalities are moderate with one or both affected surfaces without affecting the cusps, the teeth are restored with the composite by direct method [97].

In the case of severe MIH, direct restoration has certain mechanical limitations and perfect restoration of the tooth anatomy is difficult to achieve. Preformed pedodontic copings (PPC) and bonded indirect partial restorations (BIPR) in the form of onlays, overlays, or inlays are then indicated (Figure 13). PPCs remain simpler to implement, less expensive with a high success rate. However, they must be replaced by a peripheral crown in adulthood. For BIPRs, they are made using composite or ceramic materials in two stages or even in a single session if computer-aided design and manufacturing (CAD/CAM) is used. In young patients, composite BIPRs are preferred because it allow repairs by direct composite addition, allow thinner restorations, present less risk of fracture, and their esthetic appearance remains satisfactory [96].

For very severe abnormalities, it is sometimes more appropriate to extract the tooth. Nevertheless, it will be necessary to choose the ideal moment to allow the second permanent molar to make a spontaneous mesial eruption instead of the first extracted molar. This moment corresponds to the period of formation of the furcation zone of the second permanent molar visible on a panoramic radiograph. However, orthodontic consultation is recommended [98, 99].

The MIH remains a frequent, progressive abnormality that can lead, in the absence of treatment, to the total destruction of the tooth. Thus, only early diagnosis, adequate care, and regular follow-up can keep the 6-year-old tooth on the arch and allow it to play its full role in children.

3.2 Other abnormalities of the first permanent molar

The FPM may be affected by other rare abnormalities: anatomical, eruptive, or agenesis.

Figure 12.
(a) MIH involving the upper FPM in a 6-year-old patient with HIV infection. (b) Sealing of the grooves and application of fluoride varnish.
3.2.1 Anatomical abnormalities

The first upper molar has a very stable anatomy with strongly expressed anatomical characteristics. However, some variations have been described for the Carabelli’s tubercle; mesio-distal accessory cuspidian tubercle can have a high variability in shape and volume [100].

The Bölk tubercle, which is sometimes present on the buccal aspect of the tooth or at the mesio-buccal angle of the second upper molar, can exceptionally be observed on the upper FPM (Figure 14). The presence of an accessory root can be associated with a large Bölk tubercle (Figure 14b).

As for the lower FPM, it may have anatomical variabilities that mainly concern the number of cusps, which can vary from four to seven cusps instead of the usual five cusps [100] (Figure 15).

These morphological abnormalities can interfere with good oral hygiene and are a factor in susceptibility to carious disease. Early diagnosis allows the implementation of preventive measures based on sealant.

Root abnormalities are quite numerous, either in direction and number or in shape and size. Taurodontism is also a particular variety of root-shaped abnormalities (Figure 16).

3.2.2 Eruption abnormalities

Ectopic eruption of the FPM is a phenomenon that affects 3–4% of the population and is mainly observed in the upper FPMs [101].
It corresponds to an evolution according to an abnormal mesial trajectory, thus causing the pathological resorption of the disto-buccal root of the adjacent second temporary molar.

Interception of the ectopic eruption of the FPMs is essential to avoid permanent tooth blockage and the loss of space prejudicial to the eruption of adjacent premo-lars causing malocclusions [102].

Inclusion is the most common eruption abnormalities encountered. Its incidence varies from 5.6 to 18.8%. The upper canines, FPMs, and lower lateral incisors are the most prone to inclusion [103]. The inclusion of FPMs can be isolated or associated with complex syndromes (Figure 17).
3.2.3 Agenesis

Agenesis consists in the absence of the development of a dental germ. The prevalence of dental agenesis varies from 3.4 to 10.1% depending on the country. It mainly affects the permanent teeth. The most frequently affected teeth are the lower second premolars, upper lateral incisors, and upper second premolars.

The agenesis of superior FPMs is rare with a prevalence of 0.01–0.04% [104]. It can be observed in the context of oligodontics associated with rare diseases (Figure 18).

4. Conclusion

The vulnerability of the first permanent molar exposes it very early to carious disease and its complications.

Therefore, in children, this tooth must be given special attention by the practitioner in order to assess the carious risk, detect and intercept any early lesion, provide appropriate treatment, and ensure regular follow-up.

Collective prevention measures in schools are also needed to reduce the prevalence of carious disease.

Conflict of interest

There is no conflict of interest.
Author details

Mouna Hamza*, Amal Chlyah, Bouchra Bousfiha, Bouchra Badre, Maria Mtalsi, Hasna Saih and Samira El Arabi
Faculty of dentistry of Casablanca, University Hassan II, Morocco

*Address all correspondence to: mounahamza22@gmail.com
References

[1] Cerba O, Gillet P. Survey on the EBD of 12- and 15-year-old children attending school in the province of South France in 2007. Available from: https://www.ass.nc/publication/doc_download/106

[2] Al-Samadani KH, Ahmad MS. Prevalence of first permanent molar caries in and its relationship to the dental knowledge of 9-12-year olds from Jeddah, Kingdom of Saudi Arabia. ISRN Dentistry. 2012. 6 p. ID: 391068. DOI: 10.5402/2012/391068

[3] Sadeghi M. Prevalence and bilateral occurrence of first permanent molar caries in 12-year-old students. Journal of Dental Research, Dental Clinics, Dental Prospects. 2007;1(2):86-92. DOI: 10.5681/joddd.2007.015

[4] Xue Y, Lin W, Jie L, Qing D. Caries status of the first permanent molar among 7- to 9-year-old children in Tangshan city and their correlation. Hua Xi Kou Qiang Yi Xue Za Zhi. 2015;33(1):54-57

[5] Abuaffan AH, Hayder S, Hussen AA. Prevalence of dental caries of the first permanent molars among 6-14 years old Sudanese children. Indian Journal of Dental Education. 2018;11(1):13-16

[6] Ziani H. Prevalence of tooth decay in 6-year-old teeth in the Greater Casablanca region (doctoral thesis in dental medicine). 2016

[7] Zouaidi K, Chala S, Ameziane R, Chhoul H. First permanent molar caries: A case study of Moroccan children between 6 and 15 year-old. Odonto-stomatologie Tropicale. 2012;35(140):5-10

[8] Kadim FZ, Hajjou S. Pathology of the six-year-old tooth: Survey in the pedodontics and emergency department at the Casablanca dental consultation and treatment centre [doctoral thesis in dental medicine]. 2015

[9] Aldossary MS, Alamri AA, Alshiha SA, Hattan MA, Alfraih YK, Alwayli HM. Prevalence of dental caries and fissure sealants in the first permanent molars among male children in Riyadh, Kingdom of Saudi Arabia. International Journal of Clinical Pediatric Dentistry. 2018;11(5):365-370. DOI: 10.5005/jp-journals-10005-1541

[10] Alwayli HM, Alshiha SA, Alfraih YK, Hattan MA, Alamri AA, Aldossary MS. A survey of fissure sealants and dental caries prevalence in the first permanent molars among primary school girls in Riyadh, Saudi Arabia. European Journal of Dentistry. 2017;11(4):455-460. DOI: 10.4103/ejd.ejd_189_17

[11] Batchelor PA, Sheiham A. Grouping of tooth surfaces by susceptibility to caries: A study in 516 year old children. BMC Oral Health. 2004;4(1):2. DOI: 10.1186/1472-6831-4-2

[12] Beauchamp J, Caufield PW, Crall JJ, Donly K, Feigal R, Gooch B, et al. American dental association council on scientific affairs. Evidence based clinical recommendations for the use of pit and fissure sealants: A report of the American dental association council on scientific affairs. The Journal of the American Dental Association. 2008;139(3):257-268. DOI: 10.14219/jada.archive.2008.0155

[13] Bassir L, Khanehmasjedi M. Survey on the condition of first permanent molars in 15-year-old students in Ahwaz, Iran in 2005. Journal of Dental Research, Dental Clinics, Dental Prospect. 2008;2(2):58-62. DOI: 10.5681/joddd.2008.012

[14] Heydari A, Shahrabi M, Sha zadeh M, Anaraki EA, Aref M. Parental knowledge and awareness of the
first permanent molar. International Journal of Clinical Pediatric Dentistry. 2018;11(5):382-385. DOI: 10.5005/jp-journals-10005-1544

[15] Carvalho JC, Ekstrand KR, Thylstrup A. Dental plaque and caries on occlusal surfaces of first permanent molars in relation to stage of eruption. The Journal of Dental Research. 1989;68(5):773-779. DOI: 10.1177/00220345890680050401

[16] Wang Z, Rong W, Zhang Y, Zeng X, Li Z, Liu Z. Prevalence and contributing factors of dental caries of 6-year-old children in four regions of China. Peer Journal. 2019;7:e6997. DOI: 10.7717/peerj.6997

[17] Ekstrand KR, Christiansen J, Christiansen ME. Time and duration of eruption of first and second permanent molars: A longitudinal investigation. Community Dentistry and Oral Epidemiology. 2003;31(5):344-350

[18] Quaglio JM, Sousa MB, Ardenghi TM, Mendes FM, Imparato JCP, Pinheiro SL. Association between clinical parameters and the presence of active caries lesions in first permanent molars. Brazilian Oral Research. 2006;20(4):358-363

[19] Alves LS, Zenkner JE, Wagner MB, Damé-Teixeira N, Susin C, Maltz M. Eruption stage of permanent molars and occlusal caries activity/arrest. The Journal of Dental Research. 2014;93(7 Suppl):114S-119S. DOI: 10.1177/0022034514537646

[20] Ahovuo-Saloranta A, Forss H, Walsh T, Hiiri A, Nordblad A, Mäkelä M, et al. Sealants for preventing dental decay in the permanent teeth. Cochrane Database of Systematic Reviews. 2013;28(3):CD001830. DOI: 10.1002/14651858.CD001830.pub4

[21] Veiga NJ, Pereira CM, Ferreira PC, Correia IJ. Prevalence of dental caries and fissure sealants in a Portuguese sample of adolescents. PLoS One. 2015;10(3):e0121299. DOI: 10.1371/journal.pone.0121299

[22] Ebrahimi M, Ajami BA, Sarraf Shirazi AR, Afzal Aghae M, Rashidi S. Dental treatment needs of permanent first molars in Mashhad schoolchildren. Journal of Dental Research, Dental Clinics, Dental Prospects. 2010;4(2):52-55. DOI: 10.5681/joddd.2010.014

[23] Togoo RA, Yaseen SM, Zakirulla M, Al Garni F, Khoraj A, Meer A. Prevalence of first permanent molar caries among 7-10 years old school going boys in Abha city, Saudi Arabia. Journal of International Oral Health. 2011;3(5):29-34

[24] Srinivasan D, Louis CJ. Evaluation of caries in deciduous second molar and adjacent permanent molar in mixed dentition. Journal of Pharmacy and Bioallied Sciences. 2015;7(Suppl 2):S572-S575. DOI: 10.4103/0975-7406.163544

[25] Leroy R, Bogaerts K, Lesaffre E, Declerck D. Effect of caries experience in primary molars on cavity formation in the adjacent permanent first molar. Caries Research. 2005;39(5):342-349. DOI: 10.1159/000086839

[26] Skeie MS, Raadal M, Strand GV, Espelid I. The relationship between caries in the primary dentition at 5 years of age and permanent dentition at 10 years of age—A longitudinal study. The International Journal of Paediatric Dentistry. 2006;16(3):152-160. DOI: 10.1111/j.1365-263X.2006.00720.x

[27] Baginska J, Rodakowska E, Milewski R, Kierklo A. Dental caries in primary and permanent molars in 7-8-year-old schoolchildren evaluated with caries assessment Spectrum and treatment (CAST) index. BMC Oral Health. 2014;14:74. DOI: 10.1186/1472-6831-14-74
[28] Dhamo B, Elezi B, Kragt L, Wolvius EB, Ongkosuwito EM. Does dental caries affect dental development in children and adolescents? Bosnian Journal of Basic Medical Sciences. 2018;18(2):198-205. DOI: 10.17305/bbjms.2018.2841

[29] Mobley C, Marshall TA, Milgrom P, Coldwell SE. The contribution of dietary factors to dental caries and disparities in caries. Academic Pediatrics. 2009;9(6):410-414. DOI: 10.1016/j.acap.2009.09.008

[30] Lussi A, Hotz P, Stich H. Les caries de sillons. Rev Mens Suisse Odontostomal. 1999;9:105-107

[31] Blique M. La prophylaxie dentaire individualisée. Réal Clin. 1999;10:541-556

[32] Vital S. Formation and physiology of the immature permanent tooth: Clinical implications. Réalités Cliniques. 2012;23(4):253-259

[33] Braga M, Mendes F, Ekstrand K. Detection activity assessment and diagnosis of dental caries lesions. Dental Clinics of North America. 2010;54:479-493. DOI: 10.1016/j.cden.2010.03.006

[34] Tassery H, Levallois B, Terrer E. Use of new minimum intervention dentistry technologies in caries management. Australian Dental Journal. 2013;58 (1 Suppl):40-59. DOI: 10.1111/adj.12049

[35] Gomez J. Detection and diagnosis of the early caries lesion. BMC Oral Health. 2015;15(Suppl 1):1-7

[36] Abogazalah N, Ando M. Alternative methods to visual and radiographic examinations for approximal caries detection. Journal of Oral Science. 2017;59 (3):315-322. DOI: 10.2334/josnusd.16-0595

[37] Duruturk L, Çiftçi A, Baharoglu S. Clinical evaluation of diagnostodent in detection of occlusal caries in newly erupted noncavitated first permanent molars in caries-active children. Operative Dentistry. 2011;36(4):348-355. DOI: 10.2341/10-309-C

[38] Kudiyirickal M, Ivančaková R. Early enamel lesion part I classification and detection. ActaMedica (Hradec Králové). 2008;51(3):145-149. DOI: 10.14712/18059694.2017.16

[39] Roopa KS, Pathak S, Poornima P, Neena IE. White spot lesions: A literature review. Journal of Pediatric Dentistry. 2015;3:1-7

[40] Satish V, Prabhadevi CM, Hegde KV. Occult caries: The hidden truth. International Journal of Clinical Pediatric Dentistry. 2010;3(3):225-229. DOI: 10.5005/jp-journals-10005-1083i

[41] Lakouichmi M, Tourabi K, Abir BE. Les cellulites cervico-faciales graves, facteurs et critères de gravité. Pan African Medical Journal. 2014;18:57. DOI: 10.11604/pamj.2014.18.57.3702

[42] Gaetti-Jardim E Jr, Landucci LF, de Oliveira KL, Costa I, Ranieri RV, Okamoto AC, et al. Microbiota associated with infections of the jaws. International Journal of Dentistry. 2012;2012:369751. DOI: 10.1155/2012/369751

[43] International Caries Detection and Assessment System. 2018. Available from: http://www.icdas.org

[44] Hackmyer SP, Orpheus L. Conservative caries treatment. Decisions in Dentistry. 2017;3(6):22-27

[45] Ricketts DNJ, Innes NPT. In: Splieth CH, editor. Revolutions in Pediatric Dentistry. London: Quintessence Publishing; 2011. pp. 120-133

[46] American Academy of Pediatric Dentistry: Pulp Therapy for Primary
and Immature Permanent Teeth. Recommendations Best Practices. 2014. Available from: https://www.aapd.org/globalassets/guidelines/bp_pulptherapy.pdf

[47] Carvalho JC, Dige I, Machiulskiene V, Qvist V, Bakhshandeh A, Fatturi-Parolo C, et al. Occlusal caries diagnosis and management. Caries Research. 2016;50:527-542. DOI: 10.1159/000448662

[48] Bjørndal L, Reit C, Bruun G, Markvart M, Kjaeldgaard M, Näsman P, et al. Treatment of deep caries lesions in adults: Randomized clinical trials comparing stepwise vs. direct complete excavation, and direct pulp capping vs. partial pulpotomy. European Journal of Oral Sciences. 2010;118(3):290-297. DOI: 10.1111/j.1600-0722.2010.00731

[49] Katge FA, Patil DP. Comparative analysis of 2 calcium silicate-based cements (biodentine and mineral trioxide aggregate) as direct pulp-capping agent in young permanent molars: A split mouth study. Journal of Endodontia. 2017;43(4):507-513. DOI: 10.1016/j.joen.2016.11.026

[50] Brizuela C, Ormeño A, Cabrera C, Cabezás R, Silva CI, Ramírez V, et al. Direct pulp capping with calcium hydroxide, mineral trioxide aggregate, and biodentine in permanent young teeth with caries: A randomized clinical trial. Journal of Endodontia. 2017;43(11):1776-1780. DOI: 10.1016/j.joen.2017.06.031

[51] Awawdeh L, Al-Qudah A, Hamouri H, Chakra RJ. Outcomes of vital pulp therapy using mineral trioxide aggregate or biodentine: A prospective randomized clinical trial. Journal of Endodontia. 2018;44(11):1603-1609. DOI: 10.1016/j.joen.2018.08.004

[52] Fuks A, Kupietzki A, Guelmann M. Pulp therapy for the young permanent dentition. In: Casamassimo PS, Fields HW, Mc-Tigue DJ, Nowak A, editors. Pediatric Dentistry: Infancy through Adolescence. 5th ed. St. Louis, Mo: Elsevier/Saunders; 2013. pp. 490-502

[53] Taha NA, Abdulkhader SZ. Full pulpotomy with biodentine in symptomatic young permanent teeth with carious exposure. Journal of Endodontics. 2018;44(6):932-937. DOI: 10.1016/j.joen.2018.03.003

[54] Oginnini AO, Adekoya-Sofowora CA, Kolawole KA. Evaluation of radiographs, clinical signs and symptoms associated with pulp canal obliteration: An aid to treatment decision. Dental Traumatology. 2009;25:620-625. DOI: 10.1111/j.1600-9657.2009.00819.x

[55] Cwikla SJ, Bélanger M, Ciguère S. Dentinal tubule disinfection using three calcium hydroxide formulations. Journal of Endodontics. 2005;31(1):50-52

[56] Gimbel M, Correa A, Lin LM. Calcium hydroxide as a temporary filling of post space in root-filled teeth. Oral Surgery, Oral Medicine, Oral Pathology, and Oral Radiology. 2002;94:98-102

[57] Chen YP, Jovani-Sancho Mdel M, Sheth CC. Is revascularisation of immature permanent teeth an effective and reproducible technique? Dental Traumatology. 2015;31:429-436. DOI: 10.1111/edt.12214

[58] Wigler R, Kaufman AY, Lin S, Steinbock N, Hazan-Molina H, Torneck CD. Revascularisation: A treatment for permanent teeth with necrotic pulp and incomplete root development. Journal of Endodontics. 2013;39(3):319-326. DOI: 10.1016/j.joen.2012.11.014

[59] Mtalsi M, Rahmaoui M, Benkirane L, Elarabi S. Pulp revascularization of the first necrotic immature molar: Clinical
case report and development. Revue francophone d'odontologie pédiatrique. 2017;12(4):166-167

[60] Al-Samadani KH, Ahmad MS. Prevalence of first permanent molar caries in and its relationship to the dental knowledge of 9-12-year olds from Jeddah, Kingdom of Saudi Arabia. ISRN Dentistry. 2012;2012:391068. DOI: 10.5402/2012/391068

[61] Chestnutt IG, Chadwick BL, Hutchings S, Playle R, Pickles T, Lisles C, et al. Protocol for “seal or varnish?” (SoV) trial: A randomised controlled trial to measure the relative cost and effectiveness of pit and fissure sealants and fluoride varnish in preventing dental decay. BMC Oral Health. 2012;12:51. DOI: 10.1186/1472-6831-12-51

[62] Azarpazhooh A, Main PA. Pit and fissure sealants in the prevention of dental caries in children and adolescents: A systematic review. Journal of the Canadian Dental Association. 2008;74(2):171-177

[63] Flório FM, Pereira AC, Meneghim Mde C, Ramacciato JC. Evaluation of non-invasive treatment applied to occlusal surfaces. ASDC Journal of Dentistry for Children. 2001;68(5-6):326-331, 301

[64] Liu BY, Xiao Y, Chu CH, Lo EC. Glass ionomer ART sealant and fluoride-releasing resin sealant in fissure caries prevention—Results from a randomized clinical trial. BMC Oral Health. 2014;14:54. DOI: 10.1186/1472-6831-14-54

[65] Michalaki M, Sifakaki M, Oulis CJ, Lygidakis NA. Attitudes, knowledge and utilization of fissure sealants among Greek dentists: A national survey. European Archives of Paediatric Dentistry. 2010;11(6):287-293

[66] Ahovuo-Saloranta A, Hiiri A, Nordblad A, Worthington HV, Mäkelä M. Pit and fissure sealants for preventing dental decay in the permanent teeth of children and adolescents. Cochrane Database of Systematic Reviews. 2004;3:CD001830

[67] Jokovic A, Locker D. Evidence-based recommendations for the use of pit and fissure sealants in Ontario's Public Dental Health Programs. In: Locker D, editor. Quality Assurance Report #21: Community Dental Health Services Research Unit (CDHSRU). University of Toronto; 2001. Available: www.caphd-acsdp.org/PDF/ebd-seal.pdf

[68] Feigal RJ, Mushere P, Gillespie B, Levy-Polack M, Quelhas I, Hebling J. Improved sealant retention with bonding agents: A clinical study of two bottle and single-bottle systems. The Journal of Dental Research. 2000;79(11):1850-1856

[69] Wendt LK, Koch G, Birkhed D. Long-term evaluation of a fissure sealing programme in public dental service clinics in Sweden. Swedish Dental Journal. 2001;25(2):61-65

[70] Wright JT, Tampi MP, Graham L, Estrich C, Crall JJ, Fontana M, et al. Sealants for preventing and arresting pit-and- fissure occlusal caries in primary and permanent molars. Pediatric Dentistry. 2016;38(4):282-308

[71] Baldini V, Tagliaferro EP, Ambrosano GM, Meneghim Mde C, Pereira AC. Use of occlusal sealant in a community program and caries incidence in high- and low-risk children. Journal of Applied Oral Science. 2011;19(4):396-402

[72] Dulgergil CT, Ercan E, Colak H. Evaluation of school-based prevention program in Turkey: Results of a 24-month study. European Journal of Dentistry. 2016;10(2):245-249. DOI: 10.4103/1305-7456.178312
[73] Beiruti N, Frencken JE, van’t Hof MA, Taifour D, van Palenstein Helderman WH. Caries-preventive effect of a one-time application of composite resin and glass ionomer sealants after 5 years. Caries Research. 2006;40(1):52-59

[74] Ahovuo-Saloranta A, Forss H, Hiiri A, Nordblad A, Mäkelä M. Pit and fissure sealants versus fluoride varnishes for preventing dental decay in the permanent teeth of children and adolescents. Cochrane Database of Systematic Reviews. 2016;1:CD003067. DOI: 10.1002/14651858.CD003067.pub4

[75] Songpaisan Y, Bratthall D, Phantomvanit P, Somridhivej Y. Effects of glass ionomer cement, resin based pit and fissure sealant and HF applications on occlusal caries in a developing country field trial. Community Dentistry and Oral Epidemiology. 1995;23(1):25-29

[76] Wright JT, Crall JJ, Fontana M, Gillette EJ, Nov BB, Dhar V, et al. Evidence-based clinical practice guideline for the use of pit-and-fissure sealants: A report of the American Dental Association and the American Academy of Pediatric Dentistry. The Journal of the American Dental Association. 2016;147(8):672-682.e12. DOI: 10.1016/j.adaj.2016.06.001

[77] Weerheijm KL, Jalevik B, Alaluusua S. Molar-incisor hypomineralisation. Caries Research. 2001;35(5):390-391. DOI: 10.1159/000047479

[78] Jedeon K, Maupile S, Babajko S. Les hypominéralisations molaires–incisives (MIH): prévalence, étiologie et pratique médicale. Revue d’Odontostomatologie. 2016;45:234-250

[79] Dietrich G, Sperling S, Hetzer G. Molar incisor hypomineralization in a group of children and adolescents living in Dresden (Germany). European Journal of Paediatric Dentistry. 2003;4(3):133-137

[80] Cho SY, Ki Y, Chu V. Molar incisor hypomineralization in Hong Kong Chinese children. The International Journal of Paediatric Dentistry. 2008;18:348-352. DOI: 10.1111/j.1365263 X.2008.00927.x

[81] Jalevik B. Prevalence and diagnosis of molar-incisor-hypomineralisation (MIH): A systematic review. European Archives of Paediatric Dentistry. 2010;11(2):59-64. DOI: 10.1007/BF03262714

[82] Benkirane L, Boukhari S, Gridch FZ. Prévalence de l’hypominéralisation incisive et molaire chez les enfants scolarisés de Casablanca. Odontostomatologie tropicale. 2017;40(159):46-52

[83] Fteita D, Ali A, Alaluusua S. Molar incisor hypomineralization in a group of school aged children in Benghazi, Libya. European Archives of Paediatric Dentistry. 2006;7(2):92-95

[84] Kemoli A. Prevalence of molar-incisor hypomineralization in six to eighty year old in two rural divisions in Kenya. East African Medical Journal. 2008;85:514-519

[85] Oyedele TA, Folayan MO, Adekoya-Sofowora CA. Prevalence, pattern and severity of MIH in 8- to 10- year- old school children in Ile-Ife, Nigeria. European Archives of Paediatric Dentistry. 2015;16(3):277-282. DOI: 10.1007/s40368-015-0175-y

[86] Schwendicke F, Elhennawy K, Reda S. Global burden of molar incisor hypomineralization. Journal of Dentistry. 2018;68:10-18

[87] Kevrekidou A, Kosma I, Arapostathis K. Molar incisor hypomineralization of eight- and 14-year-old children: Prevalence,
severity, and defect characteristics. Pediatric Dentistry. 2015;37(5):455-461

[88] Alaluussua S. Aetiology of molar-incisor hypomineralization: A systematic review. European Archives of Paediatric Dentistry. 2010;11(2):53-58

[89] Jacobsen PE, Henriksen TB, Haubek D. Developmental enamel defects in children prenatally exposed to anti-epileptic drugs. PLoS One. 2013;8(3):e58213. DOI: 10.1371/journal.pone.0058213

[90] Lygidakis NA, Dimou G, Griseniou E. Molar incisor hypomineralization, aretrospective clinical study in greek children II. Possible medical aetiological factors. European Archives of Paediatric Dentistry. 2009;9(4):207-217. DOI: 10.1007/BF03262637

[91] Americano GC, Jacobsen PE, Soviero VM. A systematic review on the association between molar incisor hypomineralization and dental caries. The International Journal of Paediatric Dentistry. 2017;27(1):11-21

[92] Weerheijm KL, Duggal M, Mejare I. Judgement criteria for molar-incisor hypomineralization (MIH) in epidemiologic studies: A summary of the European meeting on MIH held in Athens 2003. European Journal of Paediatric Dentistry. 2003;4:110-113

[93] Steffen R, Kramer N, Bekes K. The Wurzburg MIH concept: The MIH treatment need index (MIH TNI): A new index to assess and plan treatment in patients with molar incisor hypomineralisation (MIH). European Archives of Paediatric Dentistry. 2017;18:355-361. DOI: 10.1007/s40368-017-0301-0

[94] Garot E, Veschambre CC, Manton DJ. Differential diagnoses of enamel hypomineralisation in an archaeological context: A post-medieval skeletal collection reassessment. International Journal of Osteoarchaeology. 2019. DOI: 10.1002/oa.2785 (Version of Record online:28 June 2019)

[95] Jalevic B, Klingberg GA. Dental treatment, dental fear and behavior management problems in children with severe enamel hypomieralization of their permanent first molars. The International Journal of Paediatric Dentistry. 2002;12(1):24-32. DOI: 10.1046/j.0960-7439.2001.00318.x

[96] Lagarde M, Pujade C, Wulfman C. Les hypominéralisations molaires-incisives (MIH): quelle restauration pour les PMP en cas d’atteinte sévère? RFOP. 2019;14(1):9-17

[97] Almuallem Z, Busuttil NA. Molar incisor hypomineralization (MIH)—An overview. The British Dental Journal. 2018;225:601-609

[98] Lygidakis NA, Wong F, Jalevick B. Best clinical practice guidance for clinicians dealing with children presenting with MIH: An EAPD policy document. European Archives of Paediatric Dentistry. 2010;11(2):75-81. DOI: 10.1007/BF03262716

[99] Elhennawy K, Schwendicke F. Managing molar-incisor hypomineralization: A systematic review. Journal of Dentistry. 2016;55:16-24. DOI: 10.1016/j.jdent.2016.09.012

[100] Tilotta F, Lautrou A, Lévy G. Anatomie dentaire. Elsevier Masson; 2018

[101] Kennedy DB. Management of an ectopically erupting permanent mandibular molar: A case report. Pediatric Dentistry. 2008;30(1):63-65

[102] Yaseen SM, Naik S, Uloopi KS. Ectopic eruption—A review and case report. Contemporary Clinical
[103] Frank CA. Treatment options for impacted teeth. The Journal of the American Dental Association. 2000;131(5):623-632

[104] Polder BJ, Van’t Hof MA, Van der Linden FP, Kuijpers-Jagtman AM. A meta-analysis of the prevalence of dental agenesis of permanent teeth. Community Dentistry and Oral Epidemiology. 2004;32(3):217-226