Research Article

Lixia Guo, Yuhang Guo, Ling Zhong* and Jiantao Zhu

Research on back analysis of meso-parameters of hydraulic cemented sand and gravel based on Box-Behnken design response surface

https://doi.org/10.1515/secm-2022-0008
received January 14, 2022; accepted March 28, 2022

Abstract: Cemented sand and gravel (CSG) is a new type of dam-building material. Aiming at the cumbersome process and long calculation time of traditional methods to invert the meso-parameters, a mesophase parameter inversion method based on Box-Behnken Design response surface was proposed. By constructing a response surface simulation test scheme with different inversion parameters (elastic modulus of aggregates, mortars and interfaces, and interfacial tensile strength), the stochastic aggregate model is used to complete the numerical simulation of the damage process, and different results are obtained. The equation between the response variable (stress at different loading times) and the independent variable (inversion parameter) was verified, and the rationality of the response model was verified; the action mechanism of mesophase parameters at different stages on the mechanical properties of the specimen was analysed. The test results are brought into the response surface model, and the meso-parameters are obtained by inverse analysis. The stress–strain curve obtained by numerical simulation with this parameter has an error of 1.1% at the peak stress and 3.27% at the peak strain. The accuracy is high, the number of test groups is much smaller than other conventional inversion methods, and has feasibility of application in CSG.

Keywords: cemented sand and gravel, stress–strain, meso-parameters inversion, response surface method

1 Introduction

Cemented sand and gravel (CSG) is a composite material consisting of water, non-screened aggregates, and a small amount of cementitious material [1], and its mechanical properties determine the usability of CSG [2–7]. Both CSG materials and concrete are three-phase composites [8–10], consisting of aggregate phase, mortar phase, and interface phase. However, the non-screening and non-washing characteristics of CSG aggregate make its mechanical properties different from traditional concrete materials. And the aggregates are selected locally, so the properties cannot be generalised. It is necessary to study the difference between CSG and ordinary concrete materials. The meso-analysis method can accurately grasp the difference and interaction between CSG and its components, especially the mechanical properties of the aggregate and mortar, and can accurately determine the force characteristics and failure conditions of CSG. It is a method commonly used by most researchers. The acquisition of meso-component parameters is particularly important [11].

CSG has little research on its parameters and parameter acquisition as a new building material. Scholars [12] have used many uniaxial compression and loading and unloading experiments of CSG to use the linear elastic constitutive model as their constitutive model. The parameters are obtained by experimental means [13]. Batmaz [14] simulated the nonlinear mechanical characteristics of CSG by piecewise linear method and applied the method and model to actual engineering. More research on the mechanical properties of CSG is still in macroscopic experiments [15–17], and there are fewer meso-chromatographic analyses.

Due to the scale effect and the fractal [18], the meso-components of the materials are often obtained by back-
analysis methods. Genetic algorithms [19–23], for example, are prone to “prematureness” and require independent coding, which does not guarantee both accuracy and simplicity. At the same time, support vector machine models [24] and particle swarm algorithms [25,26] are also more complex. The response surface method is an optimisation method that combines the experimental design method and mathematical statistics proposed by Box and Wilson [27], and has good robustness [28,29]. Pei et al. [30] combined the response surface model and the genetic algorithm to perform inversion analysis of the thermodynamic parameters; Li et al. [31] verified that the response surface method is an optimal method of mathematical modelling, which can effectively reduce the number of experiments and can investigate the interaction between influencing factors. Li [32] and Wang [33] established response surfaces of different orders and analysed the concrete meso-parameters in inversion analysis, indicating that the inversion method of geotechnical materials has high prediction accuracy.

The documents mentioned above confirm the feasibility of a response surface in engineering back analysis. Still, it has not been studied to use it to obtain the meso-component parameters of CSG materials. This article solves the non-simultaneous response surface equations obtained from the BBD simulation test scheme by numerical simulation-response surface method experiment to obtain the fine-scale parameters of the test blocks, make theoretical pavement, and case study for the experimental study of CSG meso-parameters inversion, and propose new ideas for engineering applications.

2 Parametric inverse analysis

2.1 Principles of the response surface method

Response surface methodology is an experimental improvement and model optimisation method. It works by finding representative points in the global range, testing the representative points, obtaining the resultant function, and then explicitly fitting the global range of input variables (parameters) to the response variables through regression. A large number of applications are available [34–36].

According to Taylor’s polynomial theory, the response variable (dependent variable) can be fitted with a polynomial as a function of the input variable (independent variable). A second-order response surface model is used on synthesis, represented by equation (1).

\[y = \beta_0 + \sum_{i=1}^{m} \beta_i x_i + \sum_{i=1}^{m} \sum_{j=1}^{m} \beta_{ij} x_i x_j + \epsilon, \]

where equation \(y \) represents the response, \(m \) represents the number of independent variables, that is, the number of controlled factors, \(x_i \) represents the \(i \) independent variable, and \(\beta_0 \) represents the constant term coefficient, \(\beta_i \) represents the coefficient of the first term, \(\beta_{ij} \) represents the coefficient of the quadratic term and the quadratic cross term, and \(\epsilon \) represents the random error.

2.2 Basic steps of inversion of the response surface method

BBD is a commonly used experimental design method for response surface optimisation, which is suitable for exploring the relationship between 2 and 5 factors. Therefore, this article adopts the BBD experimental design, and selects three levels of factors, namely, the maximum value, the minimum value, and the median value.

The steps of parameter inversion based on the response surface method are [37]: (1) Determine the inversion parameters and other basic parameters. (2) Determine the parameter levels of the independent variables, and design the simulation experiment scheme. (3) Complete the numerical simulation calculation process, construct the response surface function, and verify the rationality of the response surface equation. (4) The laboratory test results are used as response variables, and are brought into the response surface model function for optimisation and solution, and the parameters to be inverted are obtained. (5) Perform mesoscopic numerical simulation using the obtained parameters to obtain the simulation results. The degree of agreement with the laboratory test results is compared and analysed to verify the rationality of the inversion parameters.

2.3 Analysis on the reasonableness of response surface model

The response surface model reflects the implicit functional relationship between the independent and response variables. Therefore, whether there is a statistical relationship in the mathematical sense between the independent variable and the response variable requires a significance test, analysis of variance, and a precision test.

Whether the constructed response surface model is reasonable or not needs to be tested. The control parameters
for model testing are: R^2 and adjusted R-Squared (R_{adj}), F-test method, P-value test method, residual distribution test method, etc.

R^2 is used to evaluate the goodness of fit of the model and describes how well the input variables explain the output variables; the closer R^2 is to 1, the better the model is. It is calculated as follows:

$$R^2 = 1 - \frac{\sum_{i=1}^{T} (y_i - \hat{y}_i)^2}{\sum_{i=1}^{T} (y_i - \bar{y}_t)^2},$$ \hspace{1cm} (2)

where T is the number of check points in the design space, y_i is the target value of the response surface calculation of the t-th parameter, and \hat{y}_i is the target value of the finite element model calculation of the t-th parameter, \bar{y}_t is the average value of the finite element model and the calculation results of the finite element model.

The adjusted R^2 (R_{adj}) imposes penalties on the number of items that increase but do not improve the accuracy of the model, to increase the simplicity of the model while ensuring the reliability of the model. It is usually analysed together with the predictive determination coefficient (R_{pred}). R_{pred} reflects the predictive ability of the model and requires that the difference between the two does not exceed 0.2 as shown in the following equations (3) and (4):

$$R_{adj} = 1 - \frac{(1 - R^2)(n - 1)}{T - P - 1},$$ \hspace{1cm} (3)

$$R_{adj} - R_{pred} < 0.2.$$ \hspace{1cm} (4)

The adjusted R^2 (R_{adj}) increases model simplicity while ensuring model reliability by imposing a penalty on the number of terms that increase but do not improve the accuracy of the model. It is usually analysed in conjunction with the predicted R^2 (R_{pred}), which reflects the predictive power of the model and requires a difference of no more than 0.2 as shown in equations (5) and (6).

$$R_{adj} = 1 - \frac{(1 - R^2)(n - 1)}{T - P - 1},$$ \hspace{1cm} (5)

$$R_{adj} - R_{pred} < 0.2,$$ \hspace{1cm} (6)

where P is the number of features, R_{adj} lies between 0 and 1, and the larger the better, but if it is really close to 1, the over-fitting situation may occur.

Use the F-test method for hypothesis testing:

$$F = \frac{SSR/p}{SSE/(m - p - 1)},$$ \hspace{1cm} (7)

where SSR is the regression sum of squares of R, SSE is the sum of squares of the errors. p is the number of non-constant terms in the RSM function, and p and $(m - p - 1)$ are the degrees of freedom of SSR and SSE, respectively.

For a given confidence level α, the RSM model is considered significant when $F > F_\alpha(p, m - p - 1)$. The signal-to-noise ratio, or Adeq Precision, is used to analyse the model’s interference items further when the model’s regression items are obtained. As long as the accuracy of the model is greater than 4, it is generally considered that the accuracy of the model is reasonable, and the calculation formula is shown in equation (8):

$$\text{Adeq precision} = \frac{S}{N},$$ \hspace{1cm} (8)

where S represents the output value of the independent variable, and N represents the error value caused by the independent variable in the calculation process.

3 Analysis of calculation examples

3.1 Numerical simulation tests

3.1.1 Stochastic aggregate model

With the support of ANSYS’s APDL for secondary development, the model was created from a meso-level perspective treating the CSG material as a three-phase composite model consisting of natural sand and gravel aggregate, mortar matrix, and the interface between the mortar matrix and the aggregate, using 100 × 100 × 100 test blocks with a calculated aggregate volume rate of 70% and a secondary mix of aggregates with Fuller’s gradation, using the Walraven formula. As in equation (7), the number of aggregates in different intervals is generated by deriving the probability of occurrence of an inner truncated circle $P_c(D < D_0)$ with an aggregate diameter of $D < D_0$ at any point, through the three-dimensional Fullerian gradation of the aggregate, from a two-dimensional cross-section.

$$P_c(D < D_0) = \frac{1}{100} \left[1.065 \left(\frac{D_0}{D_{max}} \right)^{0.5} - 0.05 \left(\frac{D_0}{D_{max}} \right)^{4} - 0.012 \left(\frac{D_0}{D_{max}} \right)^{6}
ight. - 0.0045 \left(\frac{D_0}{D_{max}} \right)^{8} - 0.0025 \left(\frac{D_0}{D_{max}} \right)^{10} \right],$$ \hspace{1cm} (9)

where D_0 is the diameter of the sieve hole, mm, D_{max} is the maximum aggregate particle size, mm, D_{min} is the minimum size of the aggregate, and P_c is the percentage of aggregate volume, which is taken as 0.7.

Considering the non-sieving characteristics of the aggregate of CSG, the finite element model (FEM) 1 established by the random aggregate model is shown in Figure 1.
3.1.2 Realisation of the uniaxial compression process

The constitutive numerical simulation model adopts the linear elastic model, and the failure theory adopts the first strength theory. The uniaxial compression simulation test uses the displacement loading method, the same as the indoor test using the loading method. The analysis type is static analysis. The automatic time step is used to control the load substeps and kill the elements whose tensile stress exceeds the tensile strength of each phase material to simulate the failure process.

3.2 Establishment of response surface model and reliability analysis

Response surface design is based on design-export software, and image processing. The initial parameters were selected concerning the results of the sensitivity analysis of the relevant literature [38]. The linear elastic model was adopted according to the fine view, and the modulus of elasticity of the aggregate (\(E_G \)), the modulus of elasticity of the mortar (\(E_m \)), the modulus of elasticity of the interface (\(E_i \)), and the tensile strength of the interface (\(f_i \)) were selected as input variables. The parameters were taken according to three levels and the four factors and three levels were taken in Table 1. Since the indoor test process used displacement loading to obtain uniaxial compression stress–strain curves, and the parameters to be sought were four, the stress values at four points (corresponding after different loading steps) were used as the response quantities, and the strain values corresponding to the above response quantities are shown in Table 2. where \(\varepsilon_1 \), \(\varepsilon_2 \), and \(\varepsilon_3 \) are located before the peak strain and \(\varepsilon_{\text{max}} \) is the peak strain.

Other parameters include aggregate Poisson’s ratio (\(\mu_G \)), mortar Poisson’s ratio (\(\mu_m \)), interface Poisson’s ratio (\(\mu_i \)), aggregate tensile strength (\(f_G \)), and mortar tensile strength (\(f_m \)). These four quantities are less sensitive to the overall intensity of CSG. Referring to the relevant literature and based on the parameters to be inverted, the values of other parameters are shown in Table 3.

The response surface simulation test design is shown in Table 4, and 29 sets of simulation test programs are obtained.

Performing uniaxial compression numerical simulation experiments based on the parameters in the table above, 29 sets of peak stress and stress–strain curves are obtained, and a quadratic polynomial with cross terms as the response surface function is used. For convenience, the response surface function based on the coded factor is expressed as follows:

![Figure 1: Two-dimensional random aggregate model: (a) FEM 1 and (b) mesophase material composition.](image)
\[\sigma_1 = (37.65967353 + 4.48721121 \times 10^{-6}) + 3.339521452C + 1.558910891AB + 1.016089109AC + 1.160891089BC - 1.4634031317\sqrt{A} - 0.695952636B^2 - 1.882215012C^2) \times 10^{-6},\]

\[\sigma_2 = (0.386008563 + 0.045992574A + 0.085825908B + 0.034232673C + 0.015980198\sqrt{A} + 0.010418317AC + 0.01499796\sqrt{B} - 0.007129148B^2 - 0.019291276\sqrt{C}) \times 10^{-6},\]

\[\sigma_3 = 1.893762376 + 0.1928795384 + 0.386815182B + 0.172962046C + 0.145825083D + 0.072079208AB + 0.089331683AD + 0.058391089BC + 0.095519802BD - 0.07232673ABD - 0.049641089BC - 0.864640396C^2 - 0.146596535D^2,\]

\[\sigma_{\text{max}} = 5.802389064 + 1.20244719C + 1.282436469D + 0.900346535AD + 1.189727723BC + 1.513094059BD - 1.22575CD - 1.105250028B^2 - 1.284709187D^2,\]

where \(f_1, f_2, f_3, f_{\text{max}}\) are the corresponding stress values at \(\varepsilon_1, \varepsilon_2, \varepsilon_3,\) and \(\varepsilon_{\text{max}}\), respectively. \(A\) is the modulus of elasticity of the aggregate, \(B\) is the modulus of elasticity of the mortar, \(C\) is the modulus of elasticity of the interface, and \(D\) is the tensile strength of the interface.

In the process of obtaining the four response surface equations, the regression equation coefficients (\(R_{\text{adj}}\)), regression equation prediction coefficients (\(R_{\text{pred}}\)), regression equation correction coefficients (\(R_{\text{adj}}\) and \(R_{\text{pred}}\)) and \(p\)-values (\(p\)-test) and \(F\)-values (\(F\)-test) were analysed to remove unreasonable terms, adjust out-of-fit terms, compare \(R_{\text{adj}}\) with \(R_{\text{pred}}\), etc. Polynomial processing was carried out to correct the response surface model and determine the model’s overall reliability and accuracy, as shown in Table 5.

It can be seen from the table that the \(p\)-value and \(F\)-value are reasonable, and the four response surface models are overall significant, so the parameter selection is reliable. In addition, the difference between \(R_{\text{adj}}\) and \(R_{\text{pred}}\) is less than 0.2, indicating that the response surface model has good predictive ability, and all the prediction accuracy is greater than 4. Therefore, it is considered that the model accuracy meets the expected requirements, and the four response surface models are overall reliable. The residual normal distribution probability diagram of the response surface model is shown in Figure 2.

The residual normal distribution plot shows that the data fall on a straight line, which means that the errors are distributed regularly. In addition, the distribution of the residuals shows that the residuals are normally random, which shows the accuracy of the model [37].
Table 5: Overall parameter levels of the model

	Sum of square	Mean square error	F value	p value	$R_{adj} - R_{pred}$	Prediction accuracy
σ_1	1.26957×10^{-5}	1.41064×10^{-6}	1,648.049555	<0.0001	0.002946756	14.65581
σ_2	0.133388289	0.014820921	1,647.783261	<0.0001	0.002946681	26.6141
σ_3	3.130542779	0.260878565	96.93932557	<0.0001	0.037642069	21.351527
σ_{max}	78.61966947	9.827458683	15.6371354	<0.0001	0.098638087	23.59744

Figure 2: The normal distribution of the residuals of the regression model.

Figure 3: Analysis of single factor impact: (a) σ_1 analysis of single factor impact and (b) σ_2 analysis of single factor impact.
The level of the parameters reflects the sensitivity of the meso-parameters, which is consistent with the initial assumptions and the verification conclusions of the cited literature. It further illustrates the rationality of the response surface model and judges that the control items are reasonable.

3.3 Response surface model analysis

According to the response surface model (equations (10)-(14)), a 1D graph is drawn corresponding to the intermediate level value of each parameter and the influence of the primary term

![Figure 4: Comparative analysis of the influence of interaction terms on σ_1 and σ_2. (a) The influence of AB interaction term on σ_1. (b) The influence of AB interaction term on σ_2. (c) The influence of AC interaction term on σ_1. (d) The influence of AC interaction term on σ_2. (e) The influence of BC interaction term on σ_1. (f) The influence of BC interaction term on σ_2.](image-url)
of each variable on the overall stress value is analysed; a 3D response surface diagram of the interaction of factors is drawn, and the interaction of various parameters is observed visually (Figures 3 and 4).

As can be seen from the figure, σ_1 and σ_2 have similar single-factor action plots and interaction term action plots, indicating that the stress–strain relationship is stable in the early stage of the test, and it can be observed.
that the stress magnitude of the model is basically determined only by the relationship with E_G, E_m, and E_i at small strains, and the degree of influence is: $E_m > E_G > E_i$; that is, at small strains, the stress magnitude of CSG mainly related to E_G, E_m, and E_i is positively correlated, and the relationship with f_i is not significant, indicating that the relative deformation between different components is small at this stage, and the interface is subject to little tension, and the material stress is mainly determined by the modulus of elasticity of each component, while under small strains, although the different modulus of elasticity of each component will cause the deformation difference, and thus produce tensile stress, the effect of tensile stress is not obvious because the tensile stress between materials does not exceed the tensile strength of each component. However, because the parameter taking interval is relatively small and the coefficients of each variable are also small, the increase in σ is not obvious as E_G, E_m, and E_i increase (Figure 5).

During the transition from σ_1 and σ_2 to σ_3, the degree of σ affected by $E_m > E_G > E_i$ remains unchanged, but σ_3 is more affected by f_i; a 3D response surface diagram of the

Figure 8: Comparative analysis of the influence of interaction terms on σ_{max}. (a) The influence of AD interaction term on σ_{max}. (b) The influence of BC interaction term on σ_{max}. (c) The influence of BD interaction term on σ_{max}. (d) The influence of CD interaction term on σ_{max}.

Table 6: Mix proportions used in the uniaxial compression test

Cement (kg/m3)	Flash (kg/m3)	Sand (kg/m3)	Water (kg/m3)	Aggregate (kg/m3)	Sand rate
70	20	434	90	1,736	0.2
interaction of factors is drawn, and the interaction of various parameters are visually observe as shown in Figure 6.

During the transition from σ_1 and σ_2 to σ_3, the development trends of the interaction terms AB and BC remain unchanged, and the overall trends of the interaction terms AD and BD are the same. σ_3 increases with the increase in f_i and E_i, σ increases with the increase in the four parameters as a whole, that is, as a whole, the elastic modulus of the model increases with the increase in E_G, E_m, E_i, and f_i.

It can be seen visually on Figures 7 and 8 that the two terms E_i and f_i have the greatest influence on the model σ_{max} and are positively correlated, with f_i having a greater influence than E_i; this is inversely proportional to E_g and E_m because the damage criterion uses the maximum tensile stress damage criterion and material damage is caused by insufficient interface deformation and small tensile strength leading to interface damage first. In contrast, the aggregate and mortar damage is minimal (due to the general literature) [39,40].

3.4 Indoor test verification analysis

According to the test procedure, three $100 \times 100 \times 100$ test blocks were made. The cement used is ordinary Portland cement (P·O42.5), the aggregate is sand and gravel from a river bed, and the fly ash is purchased from a power plant class I ash. Standard grade II aggregates are used. The test coordination ratio is shown in Table 6. The specimens were cured for 28 days for the uniaxial compression test. In the test, the universal testing machine and displacement control method were used, the rate was 0.6 mm/min. Three groups of specimens were made for uniaxial compression test, and the test results were in accordance with the specification [41], so the test results were considered reliable. According to the specification, a stress–strain curve is selected as the inversion curve, as shown in Figure 10.

The measured values are as follows in Table 7.

Strain	ε_1	ε_2	ε_3	ε_{max}
Stress (MPa)	1.16×10^{-4}	0.48033	1.82484	5.26245

The measured values in the above table as the inversion target into the response surface model, which requires a guaranteed rate of more than 97%, the

Table 7: Measured values of stress and strain

A: E_G (MPa)	B: E_m (MPa)	C: E_i (MPa)	D: f_i (MPa)
237.37	62.77	43.49	0.45

Table 8: Inversion calculation results
four response surface model equations are solved, and the meso-parameters obtained are shown in Table 8.

To verify the accuracy of parameter inversion, two groups of finite element models with the same gradation as in Figure 1 are re-established, as shown in Figure 9. The abovementioned inversion mesoscopic parameters are used to bring into three finite element models to simulate the failure process of the indoor uniaxial compression test.

The stress–strain relationship curve is obtained and compared with the laboratory test results, as shown in Figure 10.

It can be seen from Figure 10 that the stress–strain curves of the three numerical models are in good agreement with the indoor test curves, and the results are reliable.

The error calculation results are shown in Table 9.

The analysis found that the strength of CSG was significantly lower than that of ordinary concrete materials [42]. The maximum error of peak strain is 6.182%, and the maximum error of peak stress is 3.471%, which appear in different finite element models, and the overall error is small. The optimal experimental group is FEM 1, the inversion model has high accuracy, and the inversion results can be considered reliable. Compared with other inversion methods [43,44], the above four-parameter inversion analysis method of response surface only uses 29 sets of numerical simulation schemes, which greatly reduces the number of calculation sets and improves the calculation efficiency.

Test group	Peak strain	Peak stress
Indoor test	0.055	5.273
FEM 1	0.0532	3.273
FEM 2	0.0516	6.182
FEM 3	0.0541	5.673

Acknowledgments: We would like to submit the enclosed manuscript entitled “Research on Back Analysis of Mesoscopic Parameters of Hydraulic Cemented Sand and Gravel Based on Box-Behnken Design Response Surface,” which we wish to be considered for publication in “Science and Engineering of Composite Materials.” No conflict of interest exists in the submission of this manuscript, and the manuscript is approved by all authors for publication. I would like to declare on behalf of my co-authors that the work described was original research that has not been published previously, and not under consideration for publication elsewhere, in whole or in part. The data is authentic and reliable, and the code is usable. All the authors listed have approved the manuscript that is enclosed.

Funding information: National Natural Science Foundation of China: (5210090341); Natural Science Foundation of Henan Province: (202300410270); Fund of Innovative Education Program for Graduate Students at North China University of Water Resources and Electric Power, China (grading no.YK-2021-28).
Conflict of interest: The authors declare no conflict of interest.

Data availability statement: All data, models, and code generated or used during the study appear in the published article.

References

[1] Jiang M, Zhang W, Sun Y, Utlili S. An investigation on loose cemented granular materials via DEM analyses. Granul Matter. 2013;15:65–84.

[2] D’Addetta GA, Kun F, Ramm E. On the application of a discrete model to the fracture process of cohesive granular materials. Granul Matter. 2002;4:77–90.

[3] Desrues J, Viggiani G. Strain localization in sand: an overview of the experimental results obtained in Grenoble using stereophotogrammetry. Int J Numer Anal Meth. 2004;28:279–321.

[4] Drescher A, Vardoulakis I. Geometric softening in triaxial tests on granular material. Geotechnique. 1982;32:291–303.

[5] Han C. Localization of deformation in sand. University of Minnesota, ProQuest Dissertations Publishing; 1991.

[6] Jiang M, Zhu H, Li X. Strain localization analyses of idealized sands in biaxial tests by distinct element method. Front Archit Civ Eng China. 2010;4:208–22.

[7] Mandel J. Conditions de stabilité et postulat de Drucker. Proceedings of IUTAM Symposium on Rheology and Soil Mechanics; 1966. p. 58–68.

[8] Pei LZ, Cai ZY. Research review of the cement sand and gravel (CSG) dam. Front Struct Civ Eng. 2012;6:19–24.

[9] Dong L, Liu J, Xiuli D. A theoretical study on the influence of aggregate gradation on the tensile strength of 2-dimensional model concrete. Eng Mech. 2017;34:64–72.

[10] Xu Y, Chen S. A method for modeling the damage behavior of concrete with a three-phase mesostructure. Constr Build Mater. 2016;102:26–38.

[11] Dong L, Liu J, Xiuli D. Analysis theory for size effect of concrete in material-level based on properties and scales of meso structures. J Hydraulic Eng. 2019;102:26–38.

[12] Hirose T, Fujisawa T, Yoshida H, Kawasaki H, Hirayama D, Sasaki T. Concept of CSG and its material properties. In Proceedings of the 4th International Symposium on Roller Compacted Concrete Dams. 2018. p. 465–73.

[13] Jiang MJ, Sun YG, Li LQ, Zhu HH. Contact behavior of idealized granules bonded in different interparticle distances: an experimental investigation. Mech Mater. 2012;55:1–15.

[14] Batmaz S. Cindere dam–107 m high roller compacted hardfill dam (RCHD) in Turkey. In Proceedings 4th International Symposium on Roller Compacted Concrete Dams. 2003. p. 121–6.

[15] Gu C, Li B, Xu G, Yu H. Back analysis of mechanical parameters of roller compacted concrete dam. Sci China Technol Sci. 2010;53:848–53.

[16] Jia JS, Ma FL, Li XY, Chen ZP. Study on material characteristics of cement-sand-gravel dam and engineering application. J Hydraul Eng. 2006;37:578–82.

[17] Yang J, Cai X, Guo XW, Zhao JL. Effect of cement content on the deformation properties of cemented sand and gravel material. Appl Sci. 2019;9:2369.

[18] Ren Q, Yin Y, Shen L. Fractal study of random distribution of concrete aggregate and its effect on damage characteristics. J Hydraul Eng. 2020;51:1267–77 and 88.

[19] Ince R. Prediction of fracture parameters of concrete by artificial neural networks. Eng Fract Mech. 2004;71:2143–59.

[20] Wang ZH, Zhu YM, Chen FJ, Yu SP. Back analysis of concrete thermal parameters and its application based on genetic algorithms. J Hunan Univ Technol (Nat Sci Ed). 2007;2:557–61.

[21] Li SJ, Liu YX, Chen CL, Li ZG, He X, Zhou Y. Inversion procedure for mechanical parameters of concrete dam with hybrid genetic algorithm. J Dalian Univ Technol. 2004;44:195–9.

[22] Jia SP. Inverse analysis for geotechnical engineering based on genetic algorithm and numerical implementation in ABAQUS. Hydrogeol Eng Geol. 2012;39:31–5.

[23] Sun Q, Li SJ, Zhao HB, Zheng MZ, He ZY. Probabilistic back analysis of rock mechanical parameters based on displacement and relaxation depth. Chin J Rock Mech Eng. 2019;38:1884–94.

[24] Liu DH, Zhao MQ. Meso-structured parameters inversion of PFC model for compaction of asphaltic concrete in core wall. J Hohai Univ. 2020;48:53–9.

[25] Jia Y, Chi S. Back-analysis of soil parameters of the Malutang II concrete face rockfill dam using parallel mutation particle swarm optimization. Comput Geotech. 2015;65:87–96.

[26] Li H, Wang G, Wei B, Zhong Y, Zhan L. Dynamic inversion method for the material parameters of a high arch dam and its foundation. Appl Math Model. 2019;71:60–76.

[27] Box GEP, Wilson KB. On the experimental attainment of optimum conditions. J R Stat Soc Ser B Stat Methodol. 1992;270–310.

[28] Zhang YY, Shen HM. Thin plate’s vibration based on MATLAB software. J Sichuan Univ (Eng Sci Ed). 2012;44:36–40.

[29] Jiang BK, Li YH. Response analysis of rotating viscoelastic sandwich beam. J Sichuan Univ. 2012;44:167–70.

[30] Pei L, Chen JK, Wu ZY, Li YL, Zhang H. Response surface genetic algorithm of back analysis of concrete thermal parameters. Mater Res Innov. 2015;39:58–840–5.

[31] Li L, Zhi S, Sai Z, Shuixiu P. Study on technological parameters of the treatment of landfill leachate by MAP method using response surface methodology. Chin J Eng. 2010;4:1289–95.

[32] Li D. Parameter inversion of micro constitutive model for concrete materials based on macro experimental data. Dalian University of Technology; 2015.

[33] Wang S. Parameter inversion of micro constitutive model for concrete materials based on macro experimental data. Dalian University of Technology; 2015.

[34] Roussouly N, Petitjean F, Salaun M. A new adaptive response surface method for reliability analysis. Probabil Eng Mech. 2013;32:103–15.

[35] Li Q, Low BK. Probabilistic analysis of underground rock excavations using response surface method and SORM. Comput Geotech. 2011;38:1008–21.

[36] Wang Y, Wang C. The application of response surface methodology. J Cent Univ Nat (Nat Sci Ed). 2005;3.

[37] Zhouhong Z, Minglin G, Zhanghua X. Finite element model validation of the continuous rigid frame bridge based on
structural health monitoring Part I: FE model updating based on the response surface method. Chin Civ Eng J. 2011;44:90–8.

[38] Guo L, Zhang Y, Zhong L, Zhang F, Wang M, Li S. CSG elastic modulus model prediction considering meso-components and its effect. Sci Eng Compos Mater. 2020;27:27–271.

[39] Scrivener KL, Crumbie AK, Laugesen P. The interfacial transition zone (ITZ) between cement paste and aggregate in concrete. Interf Sci. 2004;12:411–21.

[40] Zhou S, Chen L, Liu M. Analysis on effect of aggregate on mechanical property of concrete. J Build Mater. 2016;19:143–8.

[41] China Academy of Building Research, Tsinghua University, Tongji University, et al. Design specifications for concrete structures. AQSIQ; 2010: 440P; B5.

[42] Baktheer A, Chudoba R. Experimental and theoretical evidence for the load sequence effect in the compressive fatigue behavior of concrete. Mater Struct. 2021;54:1–23.

[43] Tian M, Zhou J. New algorithm for parameter inversion in geotechnical engineering. Chin J Rock Mech Eng. 2005;24:1492–6.

[44] Jin CY, Ma ZY, Zhang YL, Sha RH, Chen QF. Application of neural network to back analysis of mechanical parameters and initial stress field of rock masses. Rock Soil Mech. 2006;27:1263–6.