Complete Nucleotide Sequence of pGA45, a 140,698-bp IncFII\textsubscript{Y} Plasmid Encoding \textit{bla}\textsubscript{IMI-3}-Mediated Carbapenem Resistance, from River Sediment

Bingjun Dang1,2, Daqing Mao1,* and Yi Luo2,*

1 School of Environmental Science and Engineering, Tianjin University, Tianjin, China, 2 Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, China

Plasmid pGA45 was isolated from the sediments of Haihe River using \textit{Escherichia coli} CV601 (\textit{gfp}-tagged) as recipients and indigenous bacteria from sediment as donors. This plasmid confers reduced susceptibility to imipenem which belongs to carbapenem group. Plasmid pGA45 was fully sequenced on an Illumina HiSeq 2000 sequencing system. The complete sequence of plasmid pGA45 was 140,698 bp in length with an average G + C content of 52.03%. Sequence analysis shows that pGA45 belongs to IncFII\textsubscript{Y} group and harbors a backbone region which shares high homology and gene synteny to several other IncF plasmids including pNDM1_EC14653, pYDC644, pNDM-Ec1GN574, pRJF866, pKUX_NDM1, and pP10164-NDM. In addition to the backbone region, plasmid pGA45 harbors two notable features including one \textit{bla}\textsubscript{IMI-3}-containing region and one type VI secretion system region. The \textit{bla}\textsubscript{IMI-3}-containing region is responsible for bacteria carbapenem resistance and the type VI secretion system region is probably involved in bacteria virulence, respectively. Plasmid pGA45 represents the first complete nucleotide sequence of the \textit{bla}\textsubscript{IMI}-harboring plasmid from environment sample and the sequencing of this plasmid provided insight into the architecture used for the dissemination of \textit{bla}\textsubscript{IMI} carbapenemase genes.

Keywords: carbapenem resistance, plasmid, pGA45, T6SS, antibiotic resistance

INTRODUCTION

The overuse and misuse of antibiotics have contributed to the emergence and spread of antibiotic resistance genes (ARGs) and multidrug resistance pathogens (Zhang and Zhang, 2011; He et al., 2014). Now ARGs have been recognized as a new type of pollutants (Pruden et al., 2006). Among various ARGs, carbapenem resistance genes, especially plasmid mediated carbapenem resistance genes, have raised worldwide concern, leading to the extensive research on some of these genes and related plasmid architecture (McGann et al., 2012; Tiwari et al., 2012; Villa et al., 2012, 2013; Lo et al., 2013; Tiwari and Moganty, 2014). Acquired carbapenem resistance can be resulted from carbapenemases of Amber class A (IMI, GES and KPC), Amber class B (metallo \textbeta-lactamases including IMP, VIM and NDM) or Amber class D (OXA-48 and OXA-181) (Nordmann et al.,...
and cycloheximide (100 mg L\(^{-1}\)) stored in −80°C for further study.

Antibiotic Susceptibility Testing of the Ampicillin Resistant Transconjugants

Kirby-Bauer disk diffusion method was applied to determine which ampicillin resistant transconjugants confer resistance to imipenem. According to the criteria of the Clinical and Laboratory Standards Institute (CLSI), the disks used in this study are as follows: imipenem (10 µg), ampicillin (10 µg), gentamicin (10 µg), streptomycin (10 µg), tetracycline (30 µg), ciprofloxacin (5 µg), sulfamethoxazole (300 µg) and erythromycin (15 µg). *E. coli* ATCC25922 was used as quality control strain. In this study, one transconjugant designated GA45 was found to confer resistance to imipenem and ampicillin. The conjugative plasmid harbored by GA45 was named pGA45 and stored for further analysis.

Conjugative Transfer Experiments and the Role Determination of pGA45 in Recipient Strains

To assess the conjugative frequency of plasmid pGA45, liquid mating assays were employed using *E. coli* CV601 (pGA45) as donor strains and *E. coli* J53 (azide and nalidixic acid resistance) as recipient strains. For liquid mating assay, overnight cultures of donor and recipient strains were centrifuged, washed and adjusted to the optical density of 0.6 at the wavelength of 600 nm (OD\(_{600}\)) with LB broth. Then 0.5 ml cultures of each donor and recipient strains were mixed and make up to the volume of 5 ml with LB broth. After incubation of 16 h in 37°C, transconjugants were selected on LB plates containing azide (200 mg L\(^{-1}\)), nalidixic acid (20 mg L\(^{-1}\)) and ampicillin (100 mg L\(^{-1}\)). Conjugative frequency was determined by the following formula: conjugal frequency = transconjugants (CFU/ml)/recipients (CFU/ml). The *E. coli* J53 transconjugants were then tested against imipenem to confirm the role of pGA45 in recipient strains. The results showed that pGA45 also conferred resistance to imipenem in recipient strains.

Plasmid Sequencing and Bioinformatics

Plasmid DNA from the *E. coli* J53 transconjugants was extracted using a Qiagen plasmid midikit (Qiagen, Inc). The plasmid DNA was sequenced on an Illumina HiSeq 2000 sequencing system. Sequencing reads were de novo assembled into contigs using the SOAPdenovo 2.04 software (Li et al., 2008, 2010). Gaps between contigs were closed by PCR with standard Sanger sequencing. Glimmer 3.02 was used to predict putative open reading frames (ORFs) (Salzberg et al., 1998; Delcher et al., 1999, 2007). All ORFs were translated and aligned with different protein databases including NR (version: 20121005), KEGG (version: 59), COG (version: 20090331), SwissProt (version: 201206) and GO (version: 1.419).
Nucleotide Sequence Accession Number

The complete nucleotide sequence of pGA45 was deposited in GenBank under accession no. KT780723.

RESULTS

Sequencing of plasmid pGA45 generated 237,937,000 reads in total. Reads either of low quality or representing the host chromosome contamination through comparison with the sequence of reference strain *E. coli* MG1655 were filtered. In the end, 34 contigs were obtained and then assembled into 10 scaffolds. Through PCR and Sanger sequencing, gaps between contigs and scaffolds were closed. The complete sequence of plasmid pGA45 was 140,698 bp in length with an average G + C content of 52.03% (Figure 1). Analysis of the sequence identified 157 ORFs, 64 of which were transcribed in the opposite direction. The backbone of this plasmid included the replication region, stability region 1, and transfer region (51524 bp), making up 36.6% of the total sequence. This backbone region shared high homology and gene synteny to several other IncF plasmids including pNDM1_Ec14653 (Wu et al., 2015), pYDC644 (GenBank accession no.: KR51290), pNDM-Ec1GN574 (GenBank accession no.: KJ812998), pRJP866 (Qu et al., 2015), pKOH_NDM1 (Huang et al., 2013) (86% query coverage and 97% nucleotide identity, NCBI database) and pP1O164-NDM (Sun et al., 2015) (86% query coverage and 94% nucleotide identity, NCBI database). Notably, all these plasmids were recently sequenced and four of them were found in China. Thus, to our best of knowledge, pGA45 and other recently sequenced plasmids represent a new IncF subtype and this type of plasmids exhibit a high prevalence in China. By contrast, the rest parts of pGA45 [including the variable region, the stability region 2 and the type VI secretion system (T6SS) region] showed no significant similarities with other sequenced plasmids in GenBank.

The replication region (1,431 bp) of pGA45 (positions 75496–76926), including the replication initiation protein gene repA and replication regulatory protein gene repA2, shared 93% nucleotide similarity with the six IncF plasmids mentioned above with 100% query coverage. Plasmid pGA45 was further assigned to the IncFIIy incompatibility group through sequence queries against the plasmid MLST databases.

Plasmid pGA45 contained one transfer region (position 42643–73867 bp) that comprised 21 tra genes, 3 trb genes (ordered as follows: traM, traY, traA, traL, traE, traK, traB, traV, traP, traC, trbI, traW, traU, trbC, traN, traF, traQ, trbB, trbH, traG, traT, traD, traL, traX) and fimO. Mating out experiments demonstrated that this region made pGA45 self-transmissible at a relatively high frequency of \((7.81 \pm 7.15) \times 10^{-3}\) transconjugants per recipient between *E. coli* CV601 and *E. coli* J53.

The genes on plasmid pGA45 that are responsible for plasmid stability and maintenance included *umuC-umuD* genes which confer resistance to UV light, *relE-relB* genes encoding a toxin-antitoxin system, *ardA* gene with antirestriction function, *parA-parB* genes for partition, *psA-psIB* genes involved in the bacterial SOS inhibition and *ssb* gene involved in recombination and repair.

The variable region of plasmid pGA45 contained two resistance genes including one ARG blad{sub}3 and one copper resistance gene *copC* (with 54% coverage and 94% amino acid identity to *Klebsiella pneumoniae* subsp. pneumoniae DSM 30104, NCBI database). Plasmid pGA45 also harbored a T6SS region (position 82987–114739bp) which may be related to bacterial pathogenesis.

DISCUSSION

The *blad{sub}3* gene from the variable region was the only ARG harbored by pGA45. The *blad{sub}3* -containing region (position 58145–74139 bp) was bracketed by one copy of insertion sequence ISEc36 and one copy of insertion sequence highly similar to ISEcl1 (with 100% coverage and 94% nucleotide identity to ISEcl1) in the same orientation (Figure 2). ISEc36 was first identified in a *blad{sub}3*-2-bearing *E. coli* W635 strain (Rojo-Bezares et al., 2012). In this strain, *blad{sub}3*-2 was detected upstream the IMI-2R gene. However, in plasmid pGA45, *blad{sub}3* and IMI-3R changed positions with each other and IMI-3R was located upstream the *blad{sub}3* gene. Another well characterized *blad{sub}3*-containing structure was from *Enterobacter cloacae* plasmid pT103 (GenBank accession no.: NG_036022.1) (Yu et al., 2006). In this partially sequenced plasmid, the *blad{sub}3*-containing region comprises two ISEc13 (one is partial) elements flanking the *blad{sub}3* and *blad{sub}3*-3R genes in the opposite directions and one partial ISEc36 located downstream of this region. In all these characterized *blad{sub}3*-containing regions, *blad* genes have close relationships with insertion sequence ISEc36. Therefore, ISEc36 may play an essential role in the dissemination of *blad* genes between different plasmids. It is also noteworthy to point out that the six plasmids mentioned above similar to pGA45 in backbones mainly have two different bacterial hosts, *Klebsiella pneumoniae* and *Enterobacter cloacae*. In addition, the identified *blad* genes were mostly from *Enterobacter* species. In view of this, the most probable hosts for plasmid pGA45 were *Enterobacter* species.

Another notable feature harbored by pGA45 was the T6SS region. Compared to other similar IncFII plasmids, the T6SS region was unique to pGA45. This region was most closely related to the T6SS system of plant pathogen *Erwinia amylovora* not only in nucleotide identity (71% coverage and 82% nucleotide identity) but also in gene organization. Previous studies showed that *blad{sub}3*-2 and *blad{sub}3* genes were located on plasmids with sizes ranging from 48.5 to 80 kb (one of these plasmids had been identified to belong to IncF group). In this study, pGA45 was much bigger than these plasmids. This perhaps resulted from the
integration of this T6SS region (31753 bp). The T6SS region of plasmid pGA45 was flanked by a copy of ISEc25-like element (with 100% coverage and 85% nucleotide identity to ISEc25) downstream and two transposase genes (with weak amino acid identity to known transposase) upstream. The T6SS region of plasmid pGA45 comprised 14 T6SS-related genes including vasD (with 93% coverage and 64.46% amino acid identity to Erwinia amylovora ATCC 49946, KEGG database),
impJ (with 100% coverage and 82.55% amino acid identity to *Erwinia pyrifoliae* Ep1/96, KEGG database), *impK* (with 99% coverage and 84.26% amino acid identity to *Erwinia pyrifoliae* Ep1/96, KEGG database), *impL* (with 100% coverage and 84.38% amino acid identity to *Erwinia tasmaniensis*, KEGG database), *impA* (with 99% coverage and 77.45% amino acid identity to *Erwinia amylovora* ATCC 49946, KEGG database), *impB* (with 97% coverage and 86.52% amino acid identity to *Erwinia amylovora* ATCC 49946, KEGG database), *impC* (with 100% coverage and 94.99% amino acid identity to *Erwinia billingiae*, KEGG database), *hcp* (with 99% coverage and 86.79% amino acid identity to *Enterobacter cloacae* subsp. *cloacae* ATCC 13047, KEGG database), an ORF encoding a FHA-domain containing protein (with 97% coverage and 70.38% amino acid identity to *Erwinia pyrifoliae* Ep1/96, KEGG database), *impF* (with 99% coverage and 85.03% amino acid identity to *Erwinia amylovora* ATCC 49946, KEGG database), *impG* (with 100% coverage and 87.5% amino acid identity to *Erwinia pyrifoliae* Ep1/96, KEGG database), *impH* (with 99% coverage and 76.95% amino acid identity to *Erwinia tasmaniensis*, KEGG database), *clpV* (with 99% coverage and 89.64% amino acid identity to *Erwinia amylovora* ATCC 49946, KEGG database) and *vgrG* (with 100% coverage and 96.92% amino acid identity to *Kosakonia radicincitans* DSM 16656, NR database).

The T6SS was a recently discovered phage-like secretion apparatus. First reported in *Vibrio cholerae* and *Pseudomonas aeruginosa*, T6SS was likely to be involved in bacterial pathogenesis through acting like a potential nano-syringe for the translocation of effector proteins into the host cell (Pukatzki et al., 2006; Sarris et al., 2011). The Hcp (haemolysin co-regulated protein) and VgrG (valine-glycine repeat G protein) proteins are putative effectors for T6SS (Russell et al., 2014) and the genes encoding these two proteins are also found to be located in the T6SS region of plasmid pGA45. T6SS-related genes are harbored by many kinds of Gram-negative bacterial pathogens which can result in human or animal diseases. In this study, plasmid pGA45 was isolated from river sediment which was collected from urban section of Haihe River. This area was densely populated and strongly affected by human activities. In previous published literatures, most of the *bla*IMI isolates were from in clinical settings. Therefore, the occurrence of T6SS and *bla*IMI−3-containing plasmid pGA45 in the river environment are a potential risk for human health and the horizontal transfer of this plasmid between *Enterobacteriaceae* bacteria may aggravate this situation.

CONCLUSION

This report demonstrated the complete nucleotide sequence of the *bla*IMI-harboring plasmid. The sequencing of this plasmid provided insight into the architecture used for the dissemination of *bla*IMI carbapenemase genes. In addition to the *bla*IMI gene, plasmid pGA45 also harbored a T6SS cluster probably involved in bacteria virulence. Notably, this plasmid was isolated from environment sample, which will increase the risks of obtaining infections resulted from various types of pathogens carrying this plasmid.

AUTHOR CONTRIBUTIONS

DM and YL designed experiments; BD carried out experiments and analyzed experimental results; BD wrote the manuscript.

ACKNOWLEDGMENTS

We are greatly thankful to Professor Holger Heuer (Julius Kühn-Institut) for providing *E. coli* CV601 and *E. coli* J53. This work was supported by the National Natural Science Foundation of China (Grants 41473085 and 31470440, 31270542), the Ministry of Education, People’s Republic of China as an innovative research team project (grant No. IRT13024).
REFERENCES

Aubron, C., Poirel, L., Ash, R. J., and Nordmann, P. (2005). Carbapenemase-producing Enterobacteriaceae, U.S. rivers. Emerg. Infect. Dis. 11, 260–264. doi: 10.3201/eid1102.030684

Chen, Z., Li, H., Feng, J., Li, Y., Chen, X., Guo, X., et al. (2015). NDM-1 encoded by a pNDM-8β-lox-like plasmid p35P-NDM in clinical Enterobacter aerogenes. Front. Microbiol. 6:294. doi: 10.3389/fmicb.2015.00294

Chu, Y. W., Tung, V. W., Cheung, T. K., Chu, M. Y., Cheng, N., Lai, C., et al. (2011). Carbapenemases in enterobacteriaceae, Hong Kong, China. 2009. Emerg. Infect. Dis. 17, 130–132. doi: 10.3201/eid1701.101443

Delcher, A. L., Bratke, K. A., Powers, E. C., and Salzberg, S. L. (2007). Identifying bacterial genes and endosymbiont DNA with Glimmer. Bioinformatics 23, 673–679. doi: 10.1093/bioinformatics/btm009

Delcher, A. L., Harmon, D., Kasif, S., White, O., and Salzberg, S. L. (1999). Improved microbial gene identification with GLIMMER. Nucleic Acids Res. 27, 4636–4641. doi: 10.1093/nar/27.23.4636

He, L.-Y., Li, Y.-S., Su, H.-C., Zhao, J.-L., Liu, S.-S., Chen, J., et al. (2014). Dissemination of antibiotic resistance genes in representative broiler feedlots environments: identification of indicator ARGs and correlations with environmental variables. Environ. Sci. Technol. 48, 13120–13129. doi: 10.1021/es5041267

Heuer, H., Krögerreckenfort, E., Wellington, E., Egan, S., Van Elsas, J., Van Overbeek, L., et al. (2002). Gentamicin resistance genes in environmental bacteria: prevalence and transfer. FEMS Microbiol. Ecol. 42, 289–302. doi: 10.1111/j.1574-6941.2002.tb00191.x

Huang, T. W., Wang, J. T., Lauderdale, T. L., Liao, T. L., Lai, J. F., Tan, M. C., et al. (2015). NDM-1-producing Enterobacteriaceae in a teaching hospital in Shanghai, China: IncX3-type plasmids may contribute to the dissemination of blaNDM-1. Int. J. Infect. Dis. 34, 8–13. doi: 10.1016/j.ijid.2015.02.020

Rasmussen, B. A., Bush, K., Keeney, D., Yang, Y. J., Hare, R., O’gara, C., et al. (1996). Characterization of IMI-1 β-lactamase, a class A carbapenem-hydrolyzing enzyme from Enterobacter cloaceae. Antimicrob. Agents Chemother. 40, 2080–2086.

Rojo-Bezares, B., Martin, C., Lopez, M., Torres, C., and Saenz, Y. (2012). First detection of blaIMI-2 gene in a clinical Escherichia coli strain. Antimicrob. Agents Chemother. 56, 1146–1147. doi: 10.1128/AAC.05478-11

Russell, A. B., Peterson, S. B., and Mougous, J. D. (2014). Type VI secretion system effectors: poisons with a purpose. Nat. Rev. Microbiol. 12, 137–148. doi: 10.1038/nrmicro3185

Salzbarg, S. L., Delcher, A. L., Kasif, S., and White, O. (1998). Microbial gene identification using interpolated Markov models. Nucleic Acids Res. 26, 544–548. doi: 10.1093/nar/26.2.544

Sarris, P. F., Zoumardakis, C., Panopoulos, N. J., and Scoulouca, E. V. (2011). Distribution of the putative type VI secretion system core genes in Klebsiella spp. Infect. Genet. Evol. 11, 157–166. doi: 10.1016/j.meegid.2010.09.006

Sun, F., Yin, Z., Feng, J., Qiu, Y., Zhang, D., Luo, W., et al. (2015). Production of plasmid-encoding NDM-1 in clinical Raoultella ornithinolytica and Leclercia adecarboxydata from China. Front. Microbiol. 6:458. doi: 10.3389/fmicb.2015.00458

Teo, J. W., La, M. V., Krishnan, P., Ang, B., Jureen, R., and Lin, R. T. (2013). Enterobacter cloaceae producing an uncommon class A carbapenemase, IMI-1, from Singapore. J. Med. Microbiol. 62, 1086–1088. doi: 10.1099/jmm.0.053363-0

Tiwari, V., Kapil, A., and Moganty, R. R. (2012). Carbapenem-hydrolyzing oxacillinase in high resistant strains of Acinetobacter baumannii isolated from India. Microb. Pathog. 53, 81–86. doi: 10.1016/j.micpath.2012.05.004

Tiwari, V., and Moganty, R. R. (2014). Conformational stability of OXA-51 β-lactamase explains its role in carbapenem resistance of Acinetobacter baumannii. J. Biomed. Struct. Dyn. 32, 1406–1420. doi: 10.1080/07391102.2013.819789

Villa, L., Carattoli, A., Nordmann, P., Carta, C., and Poirel, L. (2013). Complete sequence of the IncT-type plasmid pLTXA-181 carrying the blaOXA-181 carbapenemase gene from Citrobacter freundii. Antimicrob. Agents Chemother. 57, 1965–1967. doi: 10.1128/AAC.01297-12

Villa, L., Poirel, L., Nordmann, P., Carta, C., and Carattoli, A. (2012). Complete sequencing of an IncH plasmid carrying the blaNDM-1, blaCTX-M-15 and qnrB1 genes. J. Antimicrob. Chemother. 67, 1645–1650. doi: 10.1093/jac/dks114

Wu, W., Feng, Y., Carattoli, A., and Zong, Z. (2015). The emergence of Enterobacter cloaceae producing both KPC and NDM carbapenemases: characterization by whole genome sequencing. Antimicrob. Agents Chemother. AAC.1275-15. doi: 10.1128/AAC.01275-15

Yu, Y. S., Du, X. X., Zhou, Z. H., Chen, Y. G., and Li, L. J. (2006). First isolation of blaIMI-2 in an Enterobacter cloaceae clinical isolate from China. Antimicrob. Agents Chemother. 50, 1610–1611. doi: 10.1128/AAC.50.4.1610-1611.2006

Zhang, X. X., and Zhang, T. (2011). Occurrence, abundance, and diversity of tetracycline resistance genes in 15 sewage treatment plants across China and other global locations. Environ. Sci. Technol. 45, 2598–2604. doi: 10.1021/es103672x

Conflict of Interest Statement: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2016 Dang, Mao and Luo. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.