Complex interactions between p.His558Arg and linked variants in the Sodium Voltage-Gated Channel Alpha Subunit 5 (Na\textsubscript{V}1.5)

Mónica Lopes-Marques1,2,3*; Raquel M. Silva4, Catarina Serrano1,2,3, Verónica Gomes1,2, Ana Rita Cardoso1,2,3, Maria J. Prata1,2,3, António Amorim1,2,3, Luísa Azevedo1,2,3*

1 i3S- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Population Genetics and Evolution Group, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
2 IPATIMUP-Institute of Molecular Pathology and Immunology, University of Porto, Rua Júlio Amaral de Carvalho 45, 4200-135 Porto, Portugal
3 Department of Biology, Faculty of Sciences of the University of Porto, Rua do Campo Alegre, s/n, 4169-007 Porto, Portugal
4 Universidade Católica Portuguesa, Faculdade de Medicina Dentária, Center for Interdisciplinary Research in Health (CIIS), Estrada da Circunvalação, 3504-505 Viseu, Portugal
Table S1. Summary of the collected data from 14 studies regarding the functional impact in patch clamp assays of p.His558Arg. Exp: expression system used in the functional characterization, cis- both deleterious and polymorphic variants are localized in the same construct, trans- deleterious variant and polymorphism are localized in distinct constructs and co-expressed, * Not deleterious variants - A572D, is considered a polymorphism and is found in the general population; also Q1077 and Q1077del corresponds to alternative splice isoform of SCN5A. ● AC1377587 sequence associated to this accession number is not available in NCBI.

Mutations	Exp. Background	Observations	Outcome	Ref		
H E161K	cis M77235	Loss of function (incomplete penetrance)	Aggravate	PMID: 20384651		
R H558R	cis M77235	Steady state inactivation shifted towards hyperpolarizing potentials	-			
H S216L	cis M77235 (hH1)	Decrease in I_{Na} and misfolding and reduced membrane localization	Ameliorate	PMID: 21705349		
R S216L	cis M77235 (hH1)	Recovery of I_{Na}, delayed inactivation recovery	-			
H R222Q+Q1007del	cis AY148488	I_{Na} density normal, alterations in the activation and inactivation negative shift	-	PMID: 21167004		
R R222Q+Q1007del	cis AY148488	35% reduction in I_{Na} density, alterations in the activation and inactivation negative shift, slower recovery from inactivation	Aggravate in the Q1077 del			
H R222Q	cis AC1377587*	I_{Na} density normal, alterations in the activation and inactivation negative shift	-			
R R222Q	cis AC1377587*	I_{Na} density normal, alterations in the activation and inactivation negative shift	-			
H R282H	trans NM 198056	Reduced ~58% whole cell currents	-	PMID: 16864729		
H Wt	NM 198056	Normal current	Full rescue through trafficking			
R Wt	NM 198056	Reduced ~48% whole cell currents	-			
H Wt	trans NM 198056	Normal current	Normal			
R Wt	NM 198056	No current	-			
R R282H	cis NM 198056	No current	Normal			
R R282H	cis NM 198056	Reduced ~48% whole cell currents	-			
H G400A	cis hH1a	Reduced peak current	Aggravate	PMID: 17675083		
R G400A	cis hH1a	Further reduced peak current	-			
H T512I	cis M77235 (hH1)	Increased development of slow inactivation	Ameliorate	PMID: 12569159		
R T512I	cis M77235 (hH1)	Enhanced slow activation	-			
H *A572+Q1077del	hH1C normal	Not significant lower peak current, increase in late persistent current, significant negative shift in the steady states inactivation	Aggravate Double hit mutation linked to R558			
R *A572+Q1077del	hH1C normal	Not significant lower peak current, increase in late persistent current, significant negative shift in the steady states inactivation	Aggravate Double hit mutation linked to R558			
H *Q1077	cis AC1377587●	Reduced current (not significant)	Normal			
R *Q1077	AC1377587●	Little or No I_{Na} density??	Aggravate			
H *Q1077del	cis AC1377587●	Normal currents	Normal			
R *Q1077del	cis AC1377587●	Normal currents	Normal			
H D1275N	cis M77235 (hH1)	Reduced peak current	Ameliorate Through intracellular trafficking	PMID: 20384651		
R D1275N	cis M77235 (hH1)	2 fold peak increase in peak current comparable to Wt, Hyperpolarizing potential, negative shifts of the midinactivation	Ameliorate Through intracellular trafficking			
H D1632H	cis M77235 (hH1)	Hyperpolarizing potential, negative shifts of the mid inactivation	Aggravate			
R D1632H	cis M77235 (hH1)	Loss of function	-			
H558R	Mutation	Exp.	Background	Observations	Outcome	Ref
-------	----------	------	------------	--------------	---------	-----
H	P1298L	cis	M77235 (hH1)	Hyperpolarizing potential, negative shifts of the mid inactivation	Aggravate	PMID: 20384651
R	P1298L	cis	M77235 (hH1)	Normal peak currents		
H	D1690N	cis	M77235 (hH1)	Reduced peak currents, defective trafficking to the membrane		PMID: 23085483
H	G1748D	cis	M77235 (hH1)	Very low peak currents, defective trafficking to the membrane		
H	cis	cis	M77235 (hH1)	30% reduced peak current		
H	cis	cis	M77235 (hH1)	15% reduced peak current		
H	D1690N	cis	M77235 (hH1)	Reduced Current		
R	D1690N	cis	M77235 (hH1)	Restoration of Wt currents, correct trafficking to the membrane	Ameliorate	
R	D1690N	cis	M77235 (hH1)	Very low peak currents		
R	M1766L	hH1b	Normal currents and cell trafficking	Ameliorate	PMID: 12454206	
H	M1766L	cis	M77235 (hH1)	Reduced currents		
H	M1766L	cis	hH1a	Reduced currents		
R	M1766L	cis	hH1a	Normal currents and cell trafficking restores	ameliorate	
H	cis	cis	M77235 (hH1)	Normal peak currents		
H	I1835T	trans	hH1c	Reduced currents		PMID: 27381756
R	I1835T	trans	hH1c	More prominent reduced currents	Aggravate	
H	I1835T	AC1377587●	hH1c	Reduced currents		
R	I1835T	AC1377587●	hH1c	Normal currents and cell trafficking restores	ameliorate	
H	I1835T+Q1007del	AC1377587●	hH1c	Reduced currents		
R	I1835T+Q1007del	AC1377587●	hH1c	Normal currents and cell trafficking restores	ameliorate	
H	I1835T+Q1007del	AC1377587●	hH1c	Reduced currents		
R	I1835T+Q1007del	AC1377587●	hH1c	Normal currents and cell trafficking restores	ameliorate	
H	P2006A	NM 198056	Normal peak currents, and +10mV shift in voltage dependence of steady state inactivation, faster recovery from inactivation		PMID: 21109022	
R	P2006A	NM 198056	Sodium currents recovered values comparable with Wt	Ameliorate		
H	P2006A	trans	NM 198056	Sodium currents recovered values comparable with Wt	Ameliorate	
R	P2006A	trans	NM 198056	Sodium currents recovered values comparable with Wt	Ameliorate	
R	P2006A	trans	NM 198056	Sodium currents recovered values comparable with Wt	Ameliorate	
H	cis	trans	NM 198056	+9mV shift in steady state inactivation		
R	V1951L	cis	NM 198056	Recovery to Wt values	Ameliorate	
Table S2. Accession numbers of SCN5A sequences for species with no annotated SCN5A. Gene manual annotation was performed and scaffold numbers where SCN5A was identified are provided. In the case of species with no SCN5A annotation and no genome assembly, SRA projects were searched and project numbers are indicated in Table S3.

Species	Order	Accession number SCN5A Neonatal	Allele	
1	HSA	Primate-Homoioideae	NM_198056.2	H/R
2	PPA	Primate-Homoioideae	XM_008951545.1	R
3	PTR	Primate-Homoioideae	XM_016940745.2	R
4	GBE	Primate-Homoioideae	SRA	
5	GGO	Primate-Homoioideae	XM_019024737.2	R
6	PAB	Primate-Homoioideae	XM_024245225.1	H/Q
7	PYY	Primate-Homoioideae	SRA	H/Q
8	HMO	Primate-Homoioideae	XM_032162037.1	R
9	NLE	Primate-Homoioideae	XM_030812100.1	R
10	RBI	Primate-Haplorrhini-Cercopithecoidae	XM_017849653.1	H
11	RRO	Primate-Haplorrhini-Cercopithecoidae	XM_010371496.2	H
12	NLA	Primate-Haplorrhini-Cercopithecoidae	SRA	
13	SEM	Primate-Haplorrhini-Cercopithecoidae	SRA	
14	TFR	Primate-Haplorrhini-Cercopithecoidae	XM_033212073.1	H
15	PTE	Primate-Haplorrhini-Cercopithecoidae	XM_023231462.1	H
16	CAN	Primate-Haplorrhini-Cercopithecoidae	XM_011953304.1	H
17	PAN	Primate-Haplorrhini-Cercopithecoidae	XM_009201170.3	H
18	TGE	Primate-Haplorrhini-Cercopithecoidae	XM_025375222.1	H
19	MLE	Primate-Haplorrhini-Cercopithecoidae	XM_011999484.1	H
20	MSP	Primate-Haplorrhini-Cercopithecoidae	SRA	
21	CAT	Primate-Haplorrhini-Cercopithecoidae	XM_012034251.1	H
22	MFU	Primate-Haplorrhini-Cercopithecoidae	SRA	
23	MMUL	Primate-Haplorrhini-Cercopithecoidae	XM_015131334.1	H
24	MNE	Primate-Haplorrhini-Cercopithecoidae	XM_011738773.2	H
25	MFA	Primate-Haplorrhini-Cercopithecoidae	XM_005546682.3	H
26	CSA	Primate-Haplorrhini-Cercopithecoidae	XM_007971735.1	H
27	SIM	Primate-Haplorrhini-Platyrrhini	SRA	
28	CIA	Primate-Haplorrhini-Platyrrhini	XM_017965958.1	H
29	ANA	Primate-Haplorrhini-Platyrrhini	XM_021666656.9	H
30	SBO	Primate-Haplorrhini-Platyrrhini	XM_010341492.1	H
31	CCA	Primate-Haplorrhini-Platyrrhini	XM_017508376.1	H
32	APA	Primate-Haplorrhini-Platyrrhini	PNVK010013273.1	H
33	AGE	Primate-Haplorrhini-Platyrrhini	PNVK010001690.1	H
34	PPI	Primate-Haplorrhini-Platyrrhini	PNVK010012057.1	H
35	CSY	Primate-Haplorrhini-Platyrrhini	PNVK01040726.1	H
36	OGA	Primate-Haplorrhini-Platyrrhini	XM_008053200.2	R
37	MMUR	Primate-Haplorrhini-Platyrrhini	XM_023515919.1	R
38	MMUR	Primate-Haplorrhini-Platyrrhini	XM_012753939.1	R
39	NGM	Rodentia-Myomorphia	XM_008836179.1	R
40	MMU	Rodentia-Myomorphia	XM_001253860.1	R
41	RNO	Rodentia-Myomorphia	XM_013125.2	H/R
42	CRG	Rodentia-Myomorphia	XM_035440051.1	R
43	MOC	Rodentia-Myomorphia	XM_005348090.9	R
44	PMA	Rodentia-Myomorphia	XM_006986726.2	R
45	MDA	Rodentia-Sciurophoideae	XM_015489475.1	R
46	ITR	Rodentia-Sciurophoideae	XM_005317377.2	R
47	CPO	Rodentia-Hysticomorphida	XM_005001107.2	R
48	HGL	Rodentia-Hysticomorphida	XM_004835238.2	R
49	ODE	Rodentia-Hysticomorphida	XM_004621523.2	R
50	CLA	Rodentia-Hysticomorphida	XM_005386578.2	R
51	OCU	Lagomorpha	XM_017340134.1	R
52	OPR	Lagomorpha	XM_017340134.1	R
53	SSC	Lagomorpha	XM_021071676.1	R
54	CDR	Lagomorpha	XM_010974813.1	R
55	CFE	Lagomorpha	XM_032459195.1	R
56	BTA	Lagomorpha	XM_174458.2	R
57	BMU	Lagomorpha	XM_005901131.1	R
58	OAR	Lagomorpha	XM_012140142.2	R
59	CHI	Lagomorpha	XM_018038398.1	R
---	---	---	---	
60	OOR	Orcinus orca	Cetartiodactyla-Cetacea-Odontoceti	XM_004277836.1
61	LVE	Lipotes vexillifer	Cetartiodactyla-Cetacea-Odontoceti	XM_007468130.1
62	PCA	Physeter catodon	Cetartiodactyla-Cetacea-Mysticeti	XM_007110496.2
63	BAC	Balaenoptera acutorostrata	Cetartiodactyla-Cetacea-Mysticeti	XM_007191459.1
64	CSI	Ceratotherium simum simum	Perissodactyla-Rhinoceratidae	XM_014790663.1
65	ECA	Equus caballus	Perissodactyla-Equidea	XM_023619740.1
66	ORO	Odobenus rosmarus divergens	Carnivora-Carniformia	XM_012566600.1
67	CLU	Canis lupus familiaris	Carnivora-Carniformia	NM_001002994.1
68	MFU	Mustela putorius furo	Carnivora-Carniformia	XM_004759336.2
69	AME	Ailuropoda melanoleuca	Carnivora-Carniformia	XM_034662224.1
70	UMA	Ursus maritimus	Carnivora-Carniformia	XM_008710149.1
71	AJU	Acinonyx jubatus	Carnivora-Feliformia	XM_027040708.1
72	PPAR	Panthera pardus	Carnivora-Feliformia	XM_019418729.1
73	FCA	Felis catus	Carnivora-Feliformia	XM_023260721.1
74	DRO	Desmodus rotundus	Chiroptera	XM_024565669.1
75	HAR	Hipposideros armiger	Chiroptera	XM_019662785.1
76	MNA	Miniopterus natalensis	Chiroptera	XM_016196168.1
77	TCH	Tupaia chinensis	Scandentia	XM_006161350.2
78	GVA	Galeopterus variegatus	Dermoptera	XM_008567166.1
79	LAF	Loxodonta africana	Afrotheria-Proboscidea	XM_023554825.1
80	CAS	Chrysoglossus asiaticus	Afrotheria-Afrosoricida	XM_006869133.1
81	OAF	Orycteropus afer afer	Afrotheria-Tubulidentata	XM_007945712.1
82	CCR	Condylura cristata	Insectivora-Talpidae	XM_004676302.2
83	EEU	Erinaceus europaeus	Insectivora-Erinaceomorpha	XM_007517226.2
84	MDO	Monodelphis domestica	Marsupialia	NM_001246327.1
Table S3. SRA projects searched to determine the polymorphic status at position 558 of the SCN5A gene in other primate species. * indicates that project was searched and no hit overlapping the H558R region was retrieved.

Species	Project	SRX	Sample	Origin	Observations	Allele
Pan troglodytes	PRJNA189439	SRX237524	Bwanbale	Wild Born	Eastern	R
*		SRX237527	Kidongo	Wild Born	Eastern	R
*		SRX237541	Nakuu	Wild Born	Eastern	R
*	PRJEB2482	ERX012404	Cindy	Chimpanzee Sanctuary	R	
*		ERX012403	Sally	Chimpanzee Sanctuary	R	
*		ERX012402	Nakuu	Chimpanzee Sanctuary	*	
*		ERX012398	Katie	Chimpanzee Sanctuary	*	
*		ERX012395	Kidogo	Chimpanzee Sanctuary	R	
*		ERX012394	Kazakuhire	Chimpanzee Sanctuary	*	
*		ERX012393	Becky	Chimpanzee Sanctuary	R	
Pan troglodytes	PRJNA189439	SRX243446	Donald	Captive Born	Hybrid	R
*		SRX243487	Jimmie	Wild Born	Western	R
*		SRX243489	Vaillant	Wild Born	Central	R
*		SRX243491	Doris	Wild Born	Central	*
*	PRJEB2482	SRX243493	Julie	Wild Born	Central	R
*		SRX243499	Koby	Wild Born	Western	R
*		SRX243495	Clara	Wild Born	Central	R
*		SRX243448	Bosco	Wild Born	Western	R
*		SRX243449	Marcelle	Tchimpounga Chimp rehabilitation center	R	
*	PRJEB2482	ERX012401	Bayokele	Tchimpounga Chimp rehabilitation center	R	
*		ERX012397	Gofi	Tchimpounga Chimp rehabilitation center	*	
*		ERX012392	Gao	Tchimpounga Chimp rehabilitation center	R	
*		ERX012390	FanTuke	Tchimpounga Chimp rehabilitation center	R	
*		ERX012389	Botsomi	Tchimpounga Chimp rehabilitation center	R	
*		ERX012388	Agnagui	Tchimpounga Chimp rehabilitation center	R	
Pan troglodytes	PRJNA189439	SRX360475	Akwaya-Jean	Wild Born	Nigerian	R
*		SRX360476	Damian	Wild Born	Nigerian	R
*		SRX360477	Julie_LWC21	Wild Born	Nigerian	R
*		SRX360478	Koto	Wild Born	Nigerian	R
*		SRX360479	Taweh	Wild Born	Nigerian	R

Continues next page
Species	Project	SRX	Sample	Origin	Observations	H558R
Pan paniscus	PRJNA189439	SRX242682	Kumbuka	Captive Born		R
		SRX242681	Salonga	Captive Born		R
		SRX241545	Salonga	Captive Born		R
		SRX241481	Salonga	Captive Born		R
		SRX241477	Salonga	Captive Born		R
		SRX241461	Salonga	Captive Born		R
		SRX241441	Natalie	Wild Born		R
		SRX241378	Natalie	Wild Born		R
		SRX241367	Natalie	Wild Born		R
		SRX241358	Natalie	Wild Born		R
		SRX241352	Natalie	Wild Born		R
		SRX241312	Natalie	Wild Born		R
		SRX241311	Chipita	Wild Born		R
		SRX241308	Chipita	Wild Born		R
		SRX241307	Chipita	Wild Born		R
		SRX241305	Chipita	Wild Born		R
		SRX241304	Kombate	Wild Born		R
		SRX241303	Catherine	Wild Born		R
		SRX241302	Catherine	Wild Born		R
		SRX241295	Desmond	Wild Born		R
		SRX241294	Desmond	Wild Born		R
		SRX241293	Hermien	Wild Born		R
		SRX241291	Dzeeta	Wild Born		R
		SRX241289	Dzeeta	Wild Born		R
		SRX241288	Kosana	Wild Born		R
		SRX237623	Hortense	Wild Born		R
		SRX243437	LB502	Captive Born	Lymphoblastoid	R
	PRJNA189439	SRX243504	Akiba	Wild Born		R
		SRX243505	Akiba	Wild Born		R
		SRX243506	Paki	Wild Born		R
		SRX243508	Paki	Wild Born		R
		SRX243509	Paki	Wild Born		R
		SRX243438	Kowali	Captive Born		R
		SRX243440	Bulera	Captive Born		R
		SRX243442	Azizi	Captive Born		R
		SRX243444	Suzie	Wild Born		R
		SRX243455	Banjo	Wild Born		R
		SRX243457	Banjo	Wild Born		R
		SRX243461	Delphi	Wild Born		R
		SRX243466	Kolo	Captive Born		R
		SRX243463	Coco	Wild Born		R

Continues next page
Species	Project	SRX	Sample	Origin	Observations	H558R
Gorilla gorilla diehli	PRJNA189439	SRX2343507	Nyango	Wild Born		
		SRX243529				
		SRX243528				
		SRX243532				
		SRX243531				
Gorilla beringei graueri	PRJNA189439	SRX243530	Victoria	Captive Born	Eastern lowland gorilla	R
		SRX242688				
		SRX242687				
		SRX242686				
		SRX242685		Wild born	Eastern lowland gorilla	R
		SRX243453		Wild born	Eastern lowland gorilla	R
Pongo pygmaeus	PRJNA189439	SRX243476	Napoleon	Wild Born	Bornean orangutan	H
		SRX243475				
		SRX243474				
		SRX243473				
		SRX243472	Sari	Captive Born	Bornean orangutan	H
		SRX243471				
		SRX243469	Temmy	Captive Born	Bornean orangutan	H
		SRX243468	Nonja	Captive Born	Bornean orangutan	H/Q
		SRX243467				
Pongo abelii	PRJNA189439	SRX243486	Buschi	Wild born	Sumatran orangutan	H
		SRX243485				
		SRX243484	Babu	Wild born	Sumatran orangutan	H
		SRX243483				
		SRX243482				
		SRX243481	Dunja	Captive Born	Sumatran orangutan	H/Q
		SRX243480				
		SRX243479	Kiki	Wild born	Sumatran orangutan	H
		SRX243478				
		SRX243477	Elsi	Wild born	Sumatran orangutan	H
Nomascus leucogenys	PRJNA232723	SRX590192	NLE-Asteriks	Captive born	female blood	R
		SRX590181	NLE-Vok	Captive born	male blood	R
	PRJNA13975	SRX119997	NLEU_NLL-600	Captive born	male blood	R
		SRX119996	NLEU_NLL-607	Captive born	female blood	R
Hylabates moloch	PRJNA232723	SRX120003	HMOL_HMO	Captive born	female blood	R
		SRX590190	HMO-Madena	_	male blood	R
		SRX590198	HLE-Drew	captive born	female blood	R
		SRX590196	HLE-Maung	captive born	male blood	R

Continues next page
Species	Project	SRX	Sample	Origin	Observations	H558R
Rhinopithecus roxellana	PRJNA28338	SRX1024236	RR11	Centre of Experimental Primates at Kunming Institute, China	blood adult	H
		SRX1024227	RR1		blood adult	H
		SRX1024247	RR22		blood adult	H
		SRX1024246	RR21		blood adult	H
		SRX1024229	RR4		blood adult	H
		SRX1024237	RR12		blood adult	H
Colobus angolensis	PRJNA251421	SRX792356	CANG.PA-37697	San Diego Zoo	adult female heart	H
		SRX792360				
	SRP005434	SRX039392	Colobus monkey PR00099	Coriell DNA Male		H
Papio anubis	PRJNA433868	SRX5516791	1X1125		female	H
		SRX6809758	9045		blood	H
		SRX6809725	13951		blood	H
		SRX6809762	1X3321		blood	H
		SRX6809746	1X4080		blood	H
		SRX5516802	9841		female	H
		SRX5516820	12242		female	H
		SRX5516816	26988		female	H
Macaca mullata	PRJNA251548	SRX8532765	38158	Wisconsin National Primate Research Center	female blood	H
		SRX8532767	38160		female blood	H
		SRX8532764	38157		female blood	H
		SRX8532766	38159		female blood	H
	PRJNA382404	SRX7133280	m05200		female blood	H
		SRX7133282	m05014		male blood Indian Breed	H
Chlorocebus sabaeus	PRJNA368714	SRX3306491	VRV1723		male blood	H
		SRX3306490	VRV1719		male blood	H
		SRX3306492	VRV1722		male blood	H
	PRJNA240242	SRX497144	VCAC-2000043-VRV0491		male acd-blood	H
		SRX497168	VCAC-2000080-VRV0501		female acd-blood	H
		SRX497142	VCAC-1998073-VRV0270		male acd-Blood	H
		SRX658822	VCAC-2005088-VRV1273		female whole blood	H
	PRJNA168527	SRX3266835	CASA-091214_gDN_A_85616_Tube1		blood	H

Continues next page
Species	Project	SRX	Sample	origin	observations	H558R
Pithecia pithecia	PRJNA399413	SRX8010141	PitPit_1_DIS litter COVAR	San Diego Zoo Institute for Conservation Research		
Callithrix jacchus	PRJNA566173	SRX7047414	SAMN12783 337	Wisconsin Primate Research Center	female skin cell line cj17000	
	PRJNA401030	SRX7001670				H
Cebus capucinus imitator	PRJNA298580	SRX1560048	CJ-08-46			
	PRJNA298580	SRX1560050	569822			H
	PRJNA298580	SRX1435930	569789			H
Table S4. rs1805124 minor allele frequency distribution in all populations analysed collected from the 1KGP Phase 3. ACB- African Caribbeans in Barbados; ASW- Americans of African Ancestry in SW USA; ESN- Esan in Nigeria; GWD- Gambian in Western Divisions in the Gambia; LWK- Luhya in Webuye, Kenya; MSL- Mende in Sierra Leone; YRI- Yoruba in Ibadan, Nigeria; CLM- Colombians from Medellin, Colombia; MXL- Mexican Ancestry from Los Angeles USA; PEL- Peruvians from Lima, Peru; PUR- Puerto Ricans from Puerto Rico; CDX- Chinese Dai in Xishuangbanna, China; CHB- Han Chinese in Beijing, China; CHS- Southern Han Chinese; JPT- Japanese in Tokyo, Japan; KHV- Kinh in Ho Chi Minh City, Vietnam; CEU- Utah Residents (CEPH) with Northern and Western European Ancestry; FIN- Finnish in Finland; GBR- British in England and Scotland; IBS- Iberian Population in Spain; TSI- Tuscany in Italia; BEB- Bengali from Bangladesh; GIH- Gujarati Indian from Houston, Texas; ITU- Indian Telugu from the UK; PJL- Punjabi from Lahore, Pakistan; STU- Sri Lankan Tamil from the UK.

POPULATION	RS1805124	T (His)	C (Arg)	TT	CC	CT
AFRICAN						
ACB	0.691	0.309	0.487	0.106	0.407	
ASW	0.719	0.281	0.542	0.104	0.354	
ESN	0.783	0.217	0.596	0.030	0.374	
GWD	0.628	0.372	0.442	0.186	0.372	
LWK	0.697	0.303	0.485	0.091	0.424	
MSL	0.618	0.382	0.388	0.153	0.459	
YRI	0.671	0.329	0.426	0.083	0.491	
AMERICAN						
CLM	0.761	0.239	0.543	0.021	0.436	
MXL	0.836	0.164	0.703	0.031	0.266	
PEL	0.776	0.224	0.624	0.071	0.306	
PUR	0.740	0.260	0.558	0.077	0.365	
EAST ASIAN						
CDX	0.930	0.070	0.871	0.011	0.118	
CHB	0.874	0.126	0.748	-	0.252	
CHS	0.905	0.095	0.819	0.010	0.171	
JPT	0.865	0.135	0.740	0.010	0.250	
KHV	0.924	0.076	0.848	-	0.152	
EUROPEAN						
CEU	0.818	0.182	0.657	0.020	0.323	
FIN	0.823	0.177	0.667	0.020	0.313	
GBR	0.775	0.225	0.593	0.044	0.363	
IBS	0.738	0.262	0.561	0.084	0.355	
TSI	0.766	0.234	0.579	0.047	0.374	
SOUTH ASIAN						
BEB	0.721	0.279	0.500	0.058	0.442	
GIH	0.796	0.204	0.612	0.019	0.369	
ITU	0.706	0.294	0.529	0.118	0.353	
PJL	0.740	0.260	0.531	0.052	0.417	
STU	0.672	0.328	0.480	0.137	0.382	
Table S5. Bayesian One Sample T-Test, using the Two-sided alternative hypothesis that the superpopulation mean is not equal to the test value (H0). a- Average frequency of all populations from 1KGP, b-Average frequency of all populations within the 95% confidence interval, N- Number of populations included in the test, SD standard deviation, SE standard error of the mean, BF01 and BF10 Bayes factors of likelihood of H0 and H1, respectively. ESN-Esan in Nigeria, GWD- Gambian in Western Divisions in the Gambia, MSL-Mende in Sierra Leone, CDX-Chinese Dai in Xishuangbanna and IBS in Spain.

Population	N	Mean (H0)	SD	SE	BF01	BF10	Error %	Lower	Upper	Outlier sub populations
African	7	0.307	0.059	0.022	2.831	0.353	6.191e-6	0.252	0.361	ESN, GWD, MSL
American	4	0.222	0.041	0.021	2.338	0.428	2.607e-7	0.156	0.287	
East Asian	5	0.100	0.029	0.013	2.515	0.398	6.831e-6	0.064	0.137	
European	5	0.216	0.036	0.016	2.516	0.397	7.009e-6	0.171	0.261	IBS
South Asian	5	0.273	0.046	0.021	2.516	0.397	7.009e-6	0.216	0.330	
Table S6. Haplotype analysis of the 1KGP data. Haplotypes were obtained through combination of variants (rs2051211, rs3922844, rs7374004, rs7374540, rs6599222, rs11710077) found to be in LD with rs1805124. Frequency and count values refer to the sum off all populations, individual population counts are shown in the respective population columns. Bold haplotypes carry the rs1805124-C allele (Arg558).

Haplotype	Count	Frequency	African	American	South Asian	European	East Asian
rs2051211							
rs3922844							
rs7374004							
rs7374540							
rs6599222							
rs11710077							

Haplotype	Count	Frequency	African	American	South Asian	European	East Asian
H1	1	0.226	45	187	281	304	315
H2	1	0.1342	117	87	88	82	298
H3	1	0.0931	383	42	28	6	7
H4	2	0.0921	161	87	89	112	12
H5	2	0.0565	7	17	38	49	172
H6	4	0.0501	39	56	64	81	11
H7	3	0.0491	58	30	80	38	40
H8	2	0.0343	83	28	11	49	1
H9	2	0.0335	75	17	16	43	17
H10	1	0.0325	132	13	12	6	
H11	2	0.0274	1	20	29	32	55
H12	2	0.024	3	24	31	61	1
H13	2	0.0208	63	10	10	4	17
H14	3	0.0202	12	22	23	17	27
H15	1	0.019	39	9	40	3	4
H16	3	0.0162	41	6	17	15	2
H17	0	0.0136	2	3	41	20	2
H18	2	0.0114	11	7	20	19	
H19	3	0.0052	3	7	8	8	
H20	0	0.004	16	2	1	1	
H21	3	0.0038	3	6	9	1	
H22	1	0.003	2	4	9		
H23	2	0.0028	1	1	11	1	
H24	1	0.0024	6	2	1	3	
H25	2	0.0022	11				
H26	2	0.0022	1	1	3	6	
H27	4	0.0022	4	2	2	5	
H28	3	0.002	6	4			
H29	2	0.0018	1	3	5		
H30	2	0.0014	5	2			
H31	3	0.0014	1	2	4		
H32	2	0.0012	1	1	2	2	
H33	3	0.0012	1	1	3	1	
H34	3	0.0012	2	1	3		
H35	3	0.0012	1	5			
H36	2	0.0008	1	1	2		
H37	3	0.0008	1	3			
H38	2	0.0008	1	1	2		
H39	3	0.0006	2	1			
H40	2	0.0006	1	2			
H41	1	0.0006	1	2			
H42	1	0.0006	3				
H43	A_T_A_C_C_C_A	2	2	0.0004	2		
H44	G_C_A_C_T_C_T	4	2	0.0004	1		
H45	G_T_A_C_C_C_A	3	2	0.0004	2		
H46	A_C_A_A_C_T_A	2	1	0.0002	1		
H47	A_C_T_C_T_C_A	1	1	0.0002	1		
H48	A_T_T_A_T_T_T	2	1	0.0002	1		
H49	G_C_A_A_C_T_T	4	1	0.0002	1		
H50	G_C_A_A_T_T_A	3	1	0.0002	1		

| Nº of haplotypes per population | 31 | 34 | 37 | 39 | 25 |