Bioinformatic Identification and Analysis of Hydroxyproline-Rich Glycoproteins in *Populus trichocarpa*

Allan M. Showalter 1*, Brian D. Keppler 1, Xiao Liu 1, Jens Lichtenberg 2 and Lonnie R. Welch 2

Abstract

Background: Hydroxyproline-rich glycoproteins (HRGPs) constitute a plant cell wall protein superfamily that functions in diverse aspects of growth and development. This superfamily contains three members: the highly glycosylated arabinogalactan-proteins (AGPs), the moderately glycosylated extensins (EXTs), and the lightly glycosylated proline-rich proteins (PRPs). Chimeric and hybrid HRGPs, however, also exist. A bioinformatics approach is employed here to identify and classify AGPs, EXTs, PRPs, chimeric HRGPs, and hybrid HRGPs from the proteins predicted by the completed genome sequence of poplar (*Populus trichocarpa*). This bioinformatics approach is based on searching for biased amino acid compositions and for particular protein motifs associated with known HRGPs with a newly revised and improved BIO OHIO 2.0 program. Proteins detected by the program are subsequently analyzed to identify the following: 1) repeating amino acid sequences, 2) signal peptide sequences, 3) glycosylphosphatidylinositol lipid anchor addition sequences, and 4) similar HRGPs using the Basic Local Alignment Search Tool (BLAST).

Results: The program was used to identify and classify 271 HRGPs from poplar including 162 AGPs, 60 EXTs, and 49 PRPs, which are each divided into various classes. This is in contrast to a previous analysis of the Arabidopsis proteome which identified 162 HRGPs consisting of 85 AGPs, 59 EXTs, and 18 PRPs. Poplar was observed to have fewer classical EXTs, to have more fasciclin-like AGPs, plastocyanin AGPs and AG peptides, and to contain a novel class of PRPs referred to as the proline-rich peptides.

Conclusions: The newly revised and improved BIO OHIO 2.0 bioinformatics program was used to identify and classify the inventory of HRGPs in poplar in order to facilitate and guide basic and applied research on plant cell walls. The newly identified poplar HRGPs can now be examined to determine their respective structural and functional roles, including their possible applications in the areas plant biofuel and natural products for medicinal or industrial uses. Additionally, other plants whose genomes are sequenced can now be examined in a similar way using this bioinformatics program which will provide insight to the evolution of the HRGP family in the plant kingdom.

Keywords: Arabinogalactan-protein, Bioinformatics, Extensin, Hydroxyproline-rich glycoprotein, Plant cell wall, Poplar, *Populus trichocarpa*, Proline-rich protein

Background

The hydroxyproline-rich glycoproteins (HRGPs) constitute a diverse superfamily of glycoproteins found throughout the plant kingdom [1–6]. Based on their patterns of proline hydroxylation and subsequent glycosylation, HRGPs are separated into three families:

1. **Arabinogalactan-proteins (AGPs):** Typically contain non-contiguous proline residues (e.g., APAPAP) which are hydroxylated and glycosylated with arabinogalactan (AG) polysaccharides [7–9]. In contrast, EXTs typically contain contiguous prolines (e.g., SPPPP) that are hydroxylated and subsequently glycosylated with arabinose

* Correspondence: showalte@ohio.edu
1 Department of Environmental and Plant Biology, Molecular and Cellular Biology Program, Ohio University, 504 Porter Hall, Athens, OH 45701-2979, USA

© The Author(s). 2016 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
oligosaccharides [2, 10]. The PRPs typically contain stretches of contiguous proline residues which are shorter than those found in EXTs; these proline residues may be hydroxylated and subsequently glycosylated with arabinose oligosaccharides. Thus, AGPs are extensively glycosylated, EXTs are moderately glycosylated, and PRPs are lightly glycosylated, if at all. In addition, most HRGPs have an N-terminal signal peptide that results in their insertion into the endomembrane system and delivery to the plasma membrane/cell wall. Certain families of HRGPs, particularly the AGPs, are also modified with a C-terminal glycosylphosphatidylinositol (GPI) membrane anchor, which tethers the protein to the outer leaflet of plasma membrane and allows the rest of the glycoprotein to extend toward the cell wall in the periplasm [11–13]. These characteristic amino acid sequences and sequence features allow for the effective identification and classification of HRGPs from proteomic databases by bioinformatic approaches involving biased amino acid composition searches and/or HRGP amino acid motif searches [14–17]. In addition, Newman and Cooper [18] utilized another bioinformatic approach involving searching for proline-rich tandem repeats to identify numerous HRGPs as well as other proteins in a variety of plant species.

The AGP family can be divided into the classical AGPs, which include a subset of lysine-rich classical AGPs, and the AG peptides. In addition, chimeric AGPs exist, most notably the fasciclin-like AGPs (FLAs) and the plastocyanin AGPs (PAGs), but also other proteins which have AGP-like regions along with non-HRGP sequences. Classical AGPs are identified using a search for proteins whose amino acid composition consists of at least 50 % proline (P), alanine (A), serine (S), and threonine (T), or more simply, 50 % PAST [14, 16]. Similarly, AG peptides are identified with a search of 35 % PAST, but are size limited to be between 50 and 90 amino acids in length. EXTs contain characteristic SPPP and SPPPPP repeats. As such, EXTs are identified by searching for proteins that contain at least two SPPP repeats. Finally, PRPs are identified by searching for proteins that contain at least 45 % PVKCYT or contain two or more repeated motifs (PPVX[KT] or KKPCPP). Similar to AGPs, chimeric versions of EXTs and PRPs also exist. Each HRGP identified here in this poplar study can then be subjected to BLAST searches against both the Arabidopsis and poplar databases for several purposes: 1) to ensure that the protein identified is similar in sequence to some known HRGPs in Arabidopsis, 2) to identify if the protein is similar to other proteins in poplar which were identified as HRGPs by using the BIO OHIO 2.0 program, and 3) to identify similar proteins that may be HRGPs, but which do not meet the search criteria.

Although the numbers and types of HRGPs in Arabidopsis are well established [14, 16], much less is known in other plant species. As more plant genome sequencing projects are completed, comprehensive identification and analysis of HRGPs in these species can be completed. This knowledge can be used to facilitate and guide basic and applied research on these cell wall proteins, potentially with respect to plant biofuel research that utilizes cell wall components for energy production. In fact, a paper was recently published linking poplar EXTs to recalcitrance [19]. Moreover, comparisons can be made with what is already known in Arabidopsis, which will potentially provide further insight into the roles that these particular classes of HRGPs play in the plant as well as their evolution. A comprehensive inventory of HRGPs in poplar, or trees in general, is lacking, although a search for proline-rich tandem repeat proteins in poplar recently identified several HRGP sequences [18]. Additionally, 15 fasciclin-like AGPs (FLAs) were identified in Populus tremula × P. alba, a hybrid related to Populus trichocarpa, and found to be highly expressed in tension wood [20]. Here, the completed genome sequence, or more precisely the encoded proteome, of Populus trichocarpa was utilized to successfully conduct a comprehensive bioinformatics approach for the identification of HRGPs in this species (Fig. 1). This approach utilizes a newly revised and improved BIO OHIO 2.0 program. Since Arabidopsis and poplar are both dicots, they are expected to have a similar inventory of HRGPs, as opposed to the monocots, which may prove to be considerably different. Nevertheless, Arabidopsis and poplar are morphologically different from one another with Arabidopsis being a small annual herbaceous plant and with poplar being a large woody deciduous tree. Distinct differences were reflected in their inventories of HRGPs, which can now be used to guide further research on the functional roles, commercial applications, and evolution of these ubiquitous and highly modified plant glycoproteins.

Methods
Identification of AGPs, EXTs, and PRPs using BIO OHIO 2.0
The Populus trichocarpa protein database (Ptrichocarpa_210_v3.0.protein.fa.gz) was downloaded from the Phytozome v11.0 website (www.phytozome.org) [21]. The protein database was searched for AGPs, EXTs, and PRPs using the newly revised and improved BIO OHIO 2.0 software [16, 22]. Compared to the previous version, this new version integrated more functional modules that include searching for the presence of a signal peptide at the SignalP server (www.cbs.dtu.dk/services/SignalP/) [23], searching for the presence of GPI anchor addition sequences using the big-PI plant predictor
an automated BLAST search against Arabidopsis proteome. In cases where no signal peptide was identified using the default parameters for a sequence, the sensitive mode was then used which lowered the D-cutoff values to 0.34 [23]. These improvements make the program an ideal bioinformatic tool to study cell wall proteins/glycoproteins within any sequenced plant species. The program is freely available upon request. Briefly, classical AGPs were characterized as containing greater than 50 % PAST. AG peptides were characterized to be 50 to 90 amino acids in length and containing greater than 35 % PAST. FLAs were characterized as having a fasciclin domain. Chimeric AGPs were characterized as containing greater than 50 % PAST coupled with one or more domain(s) not known in HRGPs. All AGPs feature the presence of AP, PA, TP, VP, GF, and SP repeats distributed throughout the protein. EXTs were defined as containing two or more SPPP repeats coupled with the distribution of such repeats throughout the protein; chimeric extensins, including LRXs, PERKs, FH EXTs, long chimeric EXTs (>2000 aa), and other chimeric EXTs, were similarly identified but were distinguished from the classical EXTs by the localized distribution of such repeats in the protein and the presence of non-HRGP sequences/domains, many of which were identified by the Pfam analysis; and short extensins were defined to be less than 200 amino acids in length coupled with the EXT definition. PRPs were identified to contain greater than 45 % PVKCYT or two or more KKPCPP or PVX(K/T) repeats coupled with the distribution of such repeats and/or PPV throughout the protein. Chimeric PRPs were similarly identified but were distinguished from PRPs by the localized distribution of such repeats in the protein. Other integrated functional modules include searching for the presence of a signal peptide to provide added support for the identification of an HRGP; the presence of a GPI anchor addition sequence for added support for the identification of AGPs, and BLAST searches to provide some support to the classification. Tissue/organ-specific expression data were also obtained for identified HRGPs to guide for future research.

Fig. 1 Workflow diagram for the identification, classification, and analysis of HRGPs (AGPs, EXTs, and PRPs) in poplar using a newly revised and improved BIO OHIO 2.0. Classical AGPs were characterized as containing greater than 50 % PAST. AG peptides were characterized to be 50 to 90 amino acids in length and containing greater than 35 % PAST. FLAs were characterized as having a fasciclin domain. Chimeric AGPs were characterized as containing greater than 50 % PAST coupled with one or more domain(s) not known in HRGPs. All AGPs feature the presence of AP, PA, TP, VP, GF, and SP repeats distributed throughout the protein. EXTs were defined as containing two or more SPPP repeats coupled with the distribution of such repeats throughout the protein; chimeric extensins, including LRXs, PERKs, FH EXTs, long chimeric EXTs (>2000 aa), and other chimeric EXTs, were similarly identified but were distinguished from the classical EXTs by the localized distribution of such repeats in the protein and the presence of non-HRGP sequences/domains, many of which were identified by the Pfam analysis; and short extensins were defined to be less than 200 amino acids in length coupled with the EXT definition. PRPs were identified to contain greater than 45 % PVKCYT or two or more KKPCPP or PVX(K/T) repeats coupled with the distribution of such repeats and/or PPV throughout the protein. Chimeric PRPs were similarly identified but were distinguished from PRPs by the localized distribution of such repeats in the protein. Other integrated functional modules include searching for the presence of a signal peptide to provide added support for the identification of an HRGP; the presence of a GPI anchor addition sequence for added support for the identification of AGPs, and BLAST searches to provide some support to the classification. Tissue/organ-specific expression data were also obtained for identified HRGPs to guide for future research.
protein sequences [26], and the Poplar eFP Browser (http://bar.utoronto.ca/efppop/cgi-bin/efpWeb.cgi) for organ/tissue-specific expression data [27]. Specifically, protein sequences of poplar v3.0 were entered into the Pfam database, while poplar v2.0 identifiers were entered into the Poplar eFP Browser since the eFP browser currently does not recognize poplar v3.0 identifiers.

Results
Arabinogalactan-proteins (AGPs)

Among the 73,013 proteins in the poplar database, 86 proteins were found to have at least 50 % PAST, while 194 peptides have at least 35 % PAST, and are between 50 and 90 amino acids in length (Table 1). Several chimeric AGPs were identified in the 50 % PAST search, but the FLAs in particular required a unique test as they typically do not meet the 50 % PAST threshold. Previously in Arabidopsis, a consensus sequence for the fasciulin H1 domain was utilized to search for these proteins, and this consensus sequence was again utilized here [16]. A total of 43 proteins were found to contain this sequence.

In addition to meeting one of the search criteria, several other factors were considered in determining if the proteins were classified as HRGPs. All proteins were examined for signal peptides and for GPI membrane anchor addition sequences, as these are known to occur in AGPs. In addition, sequences were examined for certain dipeptide repeats which are characteristic of AGPs, including AP, PA, SP, TP, VP, and GP [3, 28]. The presence of these repeats was used to determine if a protein identified by the search was classified as an AGP. The various searches for AGPs combined with BLAST searches identified a total of 162 poplar proteins that were determined to be AGPs (Table 2). In total, 27 classical AGPs (which include six lysine-rich AGPs) and 35 AG peptides were identified. In terms of chimeric AGPs, FLAs were particularly abundant in poplar with 50 being identified. Using the consensus sequence that identifies all 21 of the Arabidopsis FLAs, a total of 24 FLAs were identified in poplar. However, because a single amino acid change in the consensus sequence would result in a particular FLA not being identified, the additional 26 FLAs were identified with BLAST searches. Another particularly common class of chimeric AGPs identified in Arabidopsis was the plastocyanin AGPs, or PAGs. Only five PAGs were identified with the 50 % PAST search, but 34 others were identified that fall below the 50 % PAST threshold with BLAST searches. Finally, 11 other chimeric AGPs were also identified. Representative AGP sequences from each class are shown in Fig. 2, while sequences from all 162 AGPs identified are available in Additional file 1: Figure S1.

The vast majority (97 %) of the identified AGPs were predicted to have a signal peptide and many (70 %) were predicted to have a GPI anchor, both of which are characteristic features of the AGP family. Of the 162 AGPs identified, only four FLAs were predicted to lack a signal peptide. A total of 114 of the 162 AGPs (70 %) were predicted to have a GPI anchor addition sequence. BLAST searches against the Arabidopsis protein database found that all but 21 of the putative AGPs were similar to at least one known Arabidopsis AGP, providing further evidence that these proteins are likely AGPs.

Extensins (EXTs)

Poplar had a smaller number of the classical EXTs containing large numbers of SPPPP repeats compared to Arabidopsis. For instance, a search for proteins with at least 15 SPPPP repeats in Arabidopsis found 21 “hits” while a similar search in poplar yielded only six, two of which are chimeric EXTs. The largest number of SPPPP repeats found in a single protein in poplar is 25, while in Arabidopsis one EXT contains 70 SPPPP repeats. Interestingly, although the abundance of these classical EXTs is decreased, many chimeric EXTs found in Arabidopsis were also in poplar in similar numbers, including the leucine-rich repeat extensins (LRXs) and proline-rich extensin-like receptor protein kinases (PERKs). By searching for proteins that contain at least two SPPP repeats, 162 poplar proteins were identified (Table 1). In all, 59 proteins identified in the search criteria were determined to be EXTs (Table 3). The only exception is a short EXT (i.e., Potri.T139000 or PtEXT33) identified by a BLAST search with one SPPP that is homologous to several other short EXTs. These 60 proteins included 8 classical EXTs, 22 Short EXTs, 10 LRXs, 12 PERKs, 5 Formin Homology proteins (FHs), and 3 other chimeric EXTs (Fig. 3 and Additional file 2: Figure S2). YXY repeats were observed in 45 % of the EXT sequences; such sequences are involved in cross-linking EXTs [29–33]. Twenty-seven of the 60 EXTs identified contained YXY sequences in which X is quite variable. In contrast, 40 of the 59 EXTs in Arabidopsis (i.e., 68 %) contained YXY sequences in which X was often V [16]. Many of the classical EXTs and some of the LRXs also contained a SPPPP or SPPPPP sequence and Y residue at the C-terminus of their sequences as previously observed in Arabidopsis EXTs [33].

In addition to the presence of SPPP and SPPPP repeats, the presence of a signal peptide was another factor in determining if a protein was considered an EXT. As with the AGPs, all the potential EXTs identified by the search were examined for signal peptides and GPI anchors. Signal peptides are known to occur in EXTs, but certain chimeric EXTs, notably the PERKs, lack a signal peptide [34]. In total, 46 of the...
Table 1 AGPs, EXTs, and PRPs identified from the *Populus trichocarpa* protein database based on biased amino acid compositions, size, and repeat units

Search Criteria	Total	Classical AGPs	Lys-Rich AGPs	AG Peptides	FLAs	PAGs	Other Chimeric AGPs	EXTs	Short EXTs	LRXs	PERKS	FH EXTs	Other Chimeric EXTs	PRPs	PR Peptides	Chimeric PRPs	Others
≥50 % PAST	86	10	5	0	1	5	0	7	4	0	0	0	0	1	16	0	37
≥35 % PAST and 50-90 AA	194	0	0	31	0	0	0	0	0	0	0	0	0	0	0	163	
Fasciclin domain	43	0	0	0	24	0	0	0	0	0	0	0	0	0	0	0	19
≥2 SPPP	162	1	1	0	0	2	0	8	21	10	12	5	3	0	0	0	99
≥2 KKPCPP	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
≥2 PPV(KT)	29	0	0	0	0	0	0	0	0	0	0	0	0	4	0	0	25
≥45 % PVKCYT	240	4	5	0	0	0	1	8	8	0	0	0	0	10	10	0	194
Locus Identifier 3.0 (ID 2.0)	Name	Class	AP/PA/SP/TP/ GP/VP Repeats	% PAST	Amino Acids	Pfam^b	GIP	Organ/tissue-specific Expression^d	Arabidopsis HRGP BLAST Hits	Poplar HRGP BLAST Hits^e							
----------------------------	-------------	------------	-----------------------------	--------	-------------	----------------	-----	---------------------------------	-------------------------------	---------------------------------							
Potri.017G050200	PtAGP1C	Classical	3/3/12/2/1/1	66 %	137	Y	Y	Male catkins	AtAGP1C, AtAGP17K, AtAGP18K, AtAGP7C	PtAGP2C, PtAGP7C, PtAGP5C, Potri.005G077100							
Potri.017G050300 (POPR_0017s07700)	PtAGP2C	Classical	5/5/9/2/1/1	64 %	133	Y	Y	Female catkins	AtAGP1C, AtAGP10C, AtAGP3C, AtPAG11	PtAGP9C, PtAGP1C, Potri.004G161700, Potri.001G376400, Potri.009G009600							
Potri.005G161100 (POPR_0005s117440)	PtAGP3C	Classical	11/9/8/5/0/2	59 %	161	Y	N	Roots	AtAGP10C, AtAGP3C, AtAGP5C, AtAGP18K, AtPERK13	Potri.013G119700, Potri.009G124200, Potri.004G162500, Potri.001G376400, Potri.013G112500							
Potri.014G131500 (POPR_0014s12960)	PtAGP4C	Classical	4/4/6/1/2/0	54 %	140	Y	Y	Dark etiolated seedlings, light-grown seedling, young leaf	AtAGP26C, AtAGP27C, AtAGP25C	PtAGP47C, PtAGP48C, PtAGP49K, Potri.013G119700, Potri.004G196400							
Potri.001G339700 (POPR_0001s35940)	PtAGP5C	Classical	9/8/3/4/4/0	59 %	144	Y	Y	Male catkins	AtAGP6C, AtAGP11C, AtAGP17K	PtAGP50C, Potri.003G031800, PtAGP51C, PtAGP52C, Potri.003G143000							
Potri.001G259700	PtAGP6C	Classical	1/3/20/3/0/1	57 %	197	Y	N	None	AtAGP43P, PtPEXT7, PtPEXT4	PtAGP1C, PtAGP9C, Potri.002G55200, Potri.002G235500, Potri.005G049100							
Potri.001G310300 (POPR_0001s31780)	PtAGP7C	Classical	6/7/8/5/0/2	63 %	126	Y	Y	Young leaf	AtAGP6C	PtAGP1C, PtAGP9C, Potri.002G55200, Potri.002G235500, Potri.005G049100							
Potri.001G367600	PtAGP8C	Classical	7/8/29/4/1/1	68 %	265	Y	Y	None	Potri.004G145800								
Potri.001G310400 (POPR_0001s31790)	PtAGP9C	Classical	6/7/9/3/0/2	62 %	137	Y	Y	Young leaf	AtAGP18K, AtAGP1C, AtPEX4, AtAGP10C	PtAGP2C, Potri.009G085400, Potri.013G119700, PtAGP7C, Potri.005G043900							
Potri.017G047500 (POPR_0017s07480)	PtAGP10C	Classical	0/2/4/5/1/3	50 %	207	Y	Y	Female catkins	None	Potri.011G046900, Potri.010G094700, PtPRP23, Potri.004G038300, PtPRP28							
Potri.002G207500 (POPR_0002s00250)	PtAGP47C	Classical	4/4/6/1/2/0	49 %	141	Y	N	Xylem	AtAGP26C, AtAGP27C	PtAGP44C, PtAGP48C, PtAGP49K, Potri.013G119700, Potri.003G164900							
Potri.010G031700 (POPR_0010s02920)	PtAGP48C	Classical	2/2/9/2/1/2	44 %	169	Y*	N	Xylem	AtAGP26C, AtAGP25C, AtAGP27C	PtAGP49K, PtAGP4C, AtAGP4C, Potri.008G149100, Potri.008G153000, Potri.008G147100							
Potri.008G182400 (POPR_0008s18270)	PtAGP50C	Classical	3/2/1/0/3/1	47 %	101	Y	Y	Male catkins	AtAGP50C, AtAGP56C, AtAGP5C	PtAGP52C, PtAGP51C, PtAGP5C, Potri.013G011700, Potri.018G128000							
Potri.015G097300 (POPR_0015s10580)	PtAGP51C	Classical	6/3/0/0/2/1	49 %	115	Y	Y	Male catkins	AtAGP50C, AtAGP56C, AtAGP15P	PtAGP52C, PtAGP50C, PtAGP5C, Potri.014G159300, Potri.009G003500							
Potri.012G095900 (POPR_0012s09790)	PtAGP52C	Classical	6/5/0/0/2/1	49 %	115	Y	Y	Male catkins	AtAGP50C, AtAGP56C, AtAGP3C	PtAGP51C, PtAGP50C, PtAGP5C, Potri.014G159300, Potri.019G095800							
Potri.005G169000	PtAGP64C	Classical	10/9/4/1/0/3	48 %	216	PF14368.4	Y	N	AtAGP29l	PtAGP60l, PtAGP57l, PtAGP58l, Potri.010G210100, PtAGP69C							
Potri.008G155200 (POPR_0008s15500)	PtAGP65C	Classical	4/4/3/4/0/7	45 %	219	PF14368.4	Y*	Y	Xylem, male catkins, female catkins	AtAGP29l	Potri.010G085200, PtAGP66C, PtAGP67C, PtAGP68C, PtAGP69C						
Potri.005G212000 (POPR_0005s23360)	PtAGP66C	Classical	4/4/5/4/2/2	45 %	207	PF14368.4	Y	Y	Roots	AtAGP29l	PtAGP67C, Potri.010G085200, PtAGP66C, PtAGP65C, PtAGP69C, PtAGP68C						
Potri.002G050200 (POPR_0002s05110)	PtAGP67C	Classical	4/5/5/4/2/2	46 %	205	PF14368.4	Y	N	AtAGP29l	PtAGP66C, Potri.010G085200, PtAGP66C, PtAGP65C, PtAGP69C, PtAGP68C							
Potri.010G085400 (POPR_0010s09550)	PtAGP68C	Classical	0/2/4/0/1	44 %	170	PF14368.4	Y	Y	Male catkins	AtAGP29l	PtAGP69C, Potri.005G211800, Potri.002G050500, Potri.002G050300, Potri.005G211900						
Potri.008G155100 (POPR_0008s15490)	PtAGP69C	Classical	1/2/5/2/0/1	44 %	170	PF14368.4	Y	Y	Male catkins	AtAGP29l	PtAGP68C, Potri.005G211800, Potri.002G050500, Potri.010G085300, Potri.002G050300						
Potri.009G092300 (POPR_0009s09530)	PtAGP11K	Lysine-rich	11/19/8/11/1/2	69 %	196	Y	Y	Xylem	AtAGP17K, AtAGP18K, AtPRP1	PtAGP14K, Potri.004G181200, Potri.001G310900, PtAGP71l							
	Identification and analysis of AGP genes in *Populus trichocarpa* (Continued)																
----------	--																
	Potri.010G132500 (POPTR_0010s14250)																
	PtAGP12K Lysine-rich 18/24/10/12/0/4 65 % 241 Y N Xylem AtAGP19K																
	Potri.007G051600 (POPTR_0007s10230)																
	PtAGP13K Lysine-rich 12/12/9/11/2/5 60 % 204 Y Y Dark etiolated seedlings,																
	young leaf AtAGP17K, AtAGP18K																
	Potri.005G144900 (POPTR_0005s18940)																
	PtAGP14K Lysine-rich 11/12/9/10/3/4 62 % 208 Y Y Female catkins AtAGP18K,																
	AtPRP1																
	Potri.008G111000 (POPTR_0008s11040)																
	PtAGP15K Lysine-rich 23/33/14/12/0/2 66 % 276 Y Y None PtAGP12K, PtP1PAG5																
	Potri.008G195700 (POPTR_0008s20030)																
	PtAGP49K Lysine-rich 2/2/9/1/1/4 45 % 194 Y N Female catkins AtAGP25C,																
	AtAGP27C, AtAGP26C																
	Potri.009G063600 (POPTR_0006s05460)																
	PtAGP16P AG peptide 2/2/1/0/0/0 48 % 60 Y Y AtAGP43P, AtAGP23P, AtAGP40P,																
	AtAGP14P, AtAGP15P																
	Potri.009G062700																
	PtAGP17P AG peptide 2/2/0/0/0/0 36 % 68 Y Y AtAGP22P, AtAGP16P																
	Potri.009G063200																
	PtAGP18P AG peptide 3/2/0/0/0/0 40 % 69 Y Y AtAGP43P																
	Potri.009G063000																
	PtAGP19P AG peptide 3/2/0/0/0/0 41 % 70 Y Y None PtAGP18P, PtAGP30P, PtAGP40P,																
	AtAGP29P, AtAGP38P, AtAGP39P, AtAGP30P, AtAGP15P, AtAGP13P, AtAGP21P,																
	AtAGP15P																
	Potri.013G057500 (POPTR_0013s05400)																
	PtAGP20P AG peptide 2/2/1/0/0/1 41 % 60 Y Y Male catkins AtAGP14P, AtAGP12P,																
	AtAGP13P, AtAGP21P, AtAGP22P, AtAGP15P																
	Potri.002G136600 (POPTR_0003s13640)																
	PtAGP21P AG peptide 3/2/0/0/0/0 39 % 69 PF06376.10 Y Y Female catkins, male																
	catkins AtAGP20P, AtAGP16P, AtAGP22P, AtAGP15P, AtAGP41P, AtAGP30P,																
	AtAGP35P, AtAGP33P, AtAGP15P, AtAGP53P, AtAGP30P																
	Potri.006G056000 (POPTR_0081s0200)																
	PtAGP22P AG peptide 3/2/0/0/0/0 36 % 68 Y Y Xylem AtAGP40P, AtAGP43P																
	Potri.006G055700 (POPTR_0006s05460)																
	PtAGP23P AG peptide 4/3/0/0/0/0 42 % 66 Y Y male catkins, dark etiolated																
	seedlings AtAGP16P, AtAGP43P																
	Potri.006G056200 (POPTR_0006s05490)																
	PtAGP24P AG peptide 2/1/1/0/0/0 47 % 61 Y Y Male catkins AtAGP43P, AtAGP23P,																
	AtAGP40P, AtAGP13P, AtAGP14P																
	Showalter et al. BMC Plant Biology 2016 16:229																
	Page 8 of 34																
Accession	Genotype	Peptide	Tissues/conditions	Expression	pfam	At homologs											
-------------	----------	---------	--------------------	------------	------	-------------											
Potri.006G055900	PtAGP25P	3/2/0/0/0/0	37% 67	Y Y	AtAGP43P, AtPAG2	PtAGP27P, PtAGP28P, PtAGP29P, PtAGP53P											
Potri.006G055500	PtAGP26P	4/3/1/0/0/0	39% 69	Y Y	Dark etiolated seedlings	AtAGP12P, AtAGP43P, AtAGP15P											
Potri.006G055800	PtAGP27P	3/2/0/0/0/0	37% 67	Y Y	AtAGP43P, AtPAG2	PtAGP27P, PtAGP22P, PtAGP29P, PtAGP53P											
Potri.016G052400	PtAGP28P	3/2/0/0/0/0	37% 67	Y Y	Dark etiolated seedlings	AtAGP40P, AtAGP15P											
Potri.016G052200	PtAGP29P	3/2/1/0/0/1	38% 67	Y Y	Male catkins	AtAGP40P, AtAGP28P, AtAGP43P, AtAGP12P											
Potri.015G022600	PtAGP30P	2/1/1/0/0/0	37% 64	Y Y	AtAGP20P, AtAGP22P, AtAGP16P, AtAGP41P, AtAGP15P												
Potri.015G139200	PtAGP31P	2/0/0/1/0/0	35% 57	Y N	None	Potri.006G055900, Potri.006G055500, Potri.006G055800, Potri.006G052400, Potri.006G052200, Potri.006G052300											
Potri.002G226300	PtAGP32P	1/1/4/0/1/1	37% 74	Y N	None	Potri.006G055900, Potri.006G055500, Potri.006G055800, Potri.006G052400, Potri.006G052200, Potri.006G052300											
Potri.019G035500	PtAGP33P	2/2/1/0/0/1	44% 59	Y Y	AtAGP14P, AtAGP12P, AtAGP13P, AtAGP21P, AtAGP22P	PtAGP20P, PtAGP54P, PtAGP44P, PtAGP41P, PtAGP30P											
Potri.014G156600	PtAGP34P	1/0/2/1/0/1	37% 74	Y N	None	Potri.006G055900, Potri.006G055500, Potri.006G055800, Potri.006G052400, Potri.006G052200, Potri.006G052300											
Potri.014G094800	PtAGP35P	3/3/2/0/0/0	42% 76	Y N	Male catkins	AtAGP20P, AtAGP16P, AtAGP22P, AtAGP41P, AtAGP15P											
Potri.T142100	PtAGP36P	1/2/2/1/0/0	36% 90	Y N	None	Potri.006G055900, Potri.006G055500, Potri.006G055800, Potri.006G052400, Potri.006G052200, Potri.006G052300											
Table 2 Identification and analysis of AGP genes in *Populus trichocarpa* (Continued)

Gene Accession	Gene Name	AG peptide	Expression	Identity	Function	Regulatory	Other	Notes
Potri.001G387800 (POPTR_0001s39620)	PtAGP37P	1/0/3/0/0/0	37 %	78	Y	N	Female catkins, male catkins, young leaf	None
Potri.001G268400 (POPTR_0001s27530)	PtAGP38P	3/2/0/0/0/0	39 %	68	Y	Y	AtAGP22P, AtPAG1	PtAGP17P, PtAGP20P, PtAGP22P, PtAGP28P, PtAGP27P
Potri.001G268500 (POPTR_0001s27540)	PtAGP39P	3/3/0/0/0/0	40 %	69	Y	Y	AtAGP15P, AtAGP14P, AtAGP28I, AtAGP13P, AtAGP1 P	PtAGP18P, PtAGP19P, PtAGP29P, PtAGP53P, PtAGP38P
Potri.001G094700 (POPTR_0001s10310)	PtAGP40P	3/2/0/0/0/0	42 %	69	Y	Y	AtAGP20P, AtAGP16P, AtAGP22P, AtAGP12P, AtAGP12P	PtAGP21P, PtAGP30P, PtAGP45P, PtAGP35P, Potri.016G086300
Potri.001G268800	PtAGP41P	2/1/1/0/0/0	46 %	60	Y	Y	AtAGP43P, AtAGP22P, AtAGP28P, AtAGP27P, AtAGP29P, AtAGP53P	PtAGP16P, PtAGP24P, PtAGP29P, PtAGP28P
Potri.001G259500	PtAGP42P	1/1/0/0/0/0	36 %	66	Y	Y	AtAGP22P, AtAGP17P, AtAGP20P, AtAGP28P, AtAGP27P	PtAGP29P, PtAGP56P, Potri.010G002000, Potri.011G126900, PtAGP23P
Potri.001G004100 (POPTR_0001s04130)	PtAGP43P	0/0/1/0/0/0	37 %	67	Y	N	None	PtAGP6C, PtEXT7, PtEXT4, Potri.018G145800, Potri.007G06600
Potri.012G032000 (POPTR_0012s01350)	PtAGP44P	2/1/1/0/0/1	40 %	59	Y	Y	AtAGP14P, AtAGP12P, AtAGP13P, AtAGP15P, AtAGP12P	PtAGP54P, PtAGP20P, PtAGP33P, PtAGP41P, PtAGP60
Potri.012G144100	PtAGP45P	2/1/1/0/0/0	39 %	64	Y	Y	Male catkins	AtAGP20P, AtAGP16P, AtAGP22P, AtAGP41P, AtAGP15P
Potri.016G052300	PtAGPS3P	3/2/1/0/0/0	32 %	110	Y	Y	AtAGP15P, AtAGP40P, AtPAG11, AtAGP43P, AtPERK3	PtAGP22P, PtAGP28P, PtAGP27P, PtAGP25P, PtAGP29P
Potri.003G220900 (POPTR_0003s21020)	PtAGPS4P	3/1/1/0/0/1	37 %	139	Y	Y	AtAGP14P, AtAGP12P, AtAGP13P, AtAGP21P, AtAGP22P	PtAGP44P, PtAGP20P, PtAGP33P, PtAGP41P, Potri.004G067400
Potri.006G056100 (POPTR_0006s05480)	PtAGPS5P	1/1/0/0/0/0	33 %	66	Y	N	None	PtAGP56P, PtAGP28P, PtAGP25P, PtAGP22P, PtAGP25P
Table 2 Identification and analysis of AGP genes in Populus trichocarpa (Continued)

Potri accession	PtAGP56P	AG peptide	1/1/0/1/0/0	31 %	66	Y	N	Xylem	None	PtAGP55P, PtAGP29P, PtAGP25P, PtAGP27P, PtAGP22P
Potri.016G025100	PtFLA1	Chimeric	10/4/0/0/3/1	26 %	459	PF02469.20	Y	N	Male catkins, and light etiolated seedlings, light grown seedling	AtFLA17, AtFLA16, AtFLA18, AtFLA15, AtFLA12
Potri.016G081300	PtFLA2	Chimeric	8/7/3/2/2/0	39 %	254	PF02469.20	Y	N	AtFLA11, AtFLA12, AtFLA13, AtFLA9, AtFLA6	PtFLA34, PtFLA10, PtFLA33, PtFLA40, PtFLA48
Potri.013G120600	PtFLA3	Chimeric	4/2/2/3/1/1	34 %	238	PF02469.20	Y	Y	Dark etiolated seedlings, roots, female catkins	AtFLA6, AtFLA9, AtFLA13, AtFLA11, AtFLA12
Potri.013G152200	PtFLA4	Chimeric	5/0/5/0/1/0	31 %	353	PF02469.20	N	N	Female catkins	AtFLA21, AtFLA19, AtFLA20, AtFLA15, AtFLA16
Potri.011G093500	PtFLA5	Chimeric	7/4/2/1/2/1	32 %	408	PF02469.20	Y	Y	Male catkins, and light etiolated seedlings, light grown seedling	AtFLA17, AtFLA16, AtFLA18, AtFLA15, AtFLA11
Potri.012G006600	PtFLA6	Chimeric	8/2/1/0/3/1	27 %	466	PF02469.20	Y	N	AtFLA17, AtFLA18, AtFLA16, AtFLA15, AtFLA11	PtFLA8, PtFLA1, PtFLA19, PtFLA41, Potri.012G006200
Potri.013G129200	PtFLA7	Chimeric	6/5/2/1/1/2	36 %	227	PF02469.20	Y	N	AtFLA11, AtFLA12, AtFLA6, AtFLA13, AtFLA9	PtFLA9, PtFLA10, PtFLA23, PtFLA32, PtFLA49
Potri.016G066500	PtFLA8	Chimeric	7/2/2/1/3/1	27 %	466	PF02469.20	Y	N	Male catkins, and light etiolated seedlings, light grown seedling	AtFLA17, AtFLA18, AtFLA16, AtFLA15, AtFLA11
Potri.016G088700	PtFLA9	Chimeric	7/6/2/1/1/2	37 %	239	PF02469.20	Y	Y	Xylem	AtFLA11, AtFLA12, AtFLA6, AtFLA13, AtFLA9
Potri.015G129400	PtFLA10	Chimeric	5/5/3/2/1/1	37 %	240	PF02469.20	Y	Y	Xylem	AtFLA11, AtFLA12, AtFLA6, AtFLA13, AtFLA9
Potri.019G122600	PtFLA11	Chimeric	8/3/3/1/2/2	40 %	271	Y	Y	Male catkins	AtFLA3, AtFLA5, AtFLA14, AtFLA8, AtFLA10	
Potri.002G223300	PtFLA12	Chimeric	8/7/5/4/1/1	41 %	263	PF02469.20	Y	Y	Xylem	AtFLA7, AtFLA6, AtFLA11, AtFLA9, AtFLA12
Potri.019G122600	PtFLA13	Chimeric	7/5/1/0/0/2	39 %	215	PF02469.20	N	N	AtFLA12, AtFLA11, AtFLA13, AtFLA9, AtFLA6	PtFLA45, PtFLA35, PtFLA39, PtFLA29, PtFLA47
Potri.019G120800 (POPTR_0019s14320)	PtFLA14 Chimeric	10/10/2/1/0/1	43 %	214	PF02469.20	N	N	AtFLA12, AtFLA11, AtFLA9, AtFLA13, AtFLA6		
---------------------------------	----------------	----------------	--------	------	------------	------	------	---		
Potri.019G093300 (POPTR_0019s12310)	PtFLA15 Chimeric	6/5/3/0/1/1	34 %	245	PF02469.20	Y	Y	Dark etiolated seedlings AtFLA6, AtFLA9, AtFLA13, AtFLA11, AtFLA12		
Potri.014G168100 (POPTR_0014s16610)	PtFLA16 Chimeric	9/1/0/0/1/0	30 %	397	PF02469.20	Y	Y	Roots AtFLA2, AtFLA1, AtFLA6, AtFLA8, AtFLA10, AtFLA4		
Potri.014G071700 (POPTR_0014s06740)	PtFLA17 Chimeric	13/7/7/4/1/3	42 %	421	PF02469.20	Y	Y	Xylem AtFLA10, AtFLA8, AtFLA2, AtFLA1, AtFLA14		
Potri.014G162900 (POPTR_0014s16100)	PtFLA18 Chimeric	7/6/7/4/1/1	40 %	262	PF02469.20	Y	Y	Xylem AtFLA7, AtFLA6, AtFLA9, AtFLA11, AtFLA12		
Potri.008G012400 (POPTR_0008s01310)	PtFLA19 Chimeric	11/4/1/0/3/1	27 %	463	PF02469.20	Y	N	Xylem AtFLA17, AtFLA16, AtFLA18, AtFLA15, AtFLA12		
Potri.001G320800 (POPTR_0001s32800)	PtFLA20 Chimeric	7/6/3/1/1/1	37 %	243	PF02469.20	Y	Y	Xylem AtFLA11, AtFLA12, AtFLA6, AtFLA13, AtFLA9		
Potri.001G37800 (POPTR_0001s07490)	PtFLA21 Chimeric	2/5/7/2/4/2	43 %	281	PF02469.20	Y	Y	Male catkins AtFLA14, AtFLA8, AtFLA10, AtFLA3, AtFLA2		
Potri.001G367900 (POPTR_0001s37650)	PtFLA22 Chimeric	7/4/2/2/1/1	33 %	406	PF02469.20	Y	Y	Dark etiolated seedlings, young leaf AtFLA1, AtFLA2, AtFLA8, AtFLA10, AtFLA14		
Potri.012G127900 (POPTR_0012s14510)	PtFLA23 Chimeric	5/3/2/2/2/1	35 %	240	PF02469.20	Y	Y	Xylem AtFLA11, AtFLA12, AtFLA6, AtFLA9, AtFLA13		
Potri.001G460800 (POPTR_0001s43130)	PtFLA24 Chimeric	8/5/8/16/3/2	50 %	399	Y	Y	Male catkins AtFLA20, AtFLA19, AtFLA21, AtFLA15, AtFLA17			
Potri.018G005100	PtFLA25 Chimeric	8/3/3/1/2/2	40 %	271	Y	Y	AtFLA3, AtFLA5, AtFLA14, AtFLA8, AtFLA10			
Potri.006G276200 (POPTR_0006s22110)	PtFLA26 Chimeric	11/11/4/4/4/2	38 %	393	Y*	Y	Male catkins AtFLA3, AtFLA14, AtFLA5, AtFLA8, AtFLA10			
Potri.012G015000 (POPTR_0012s02210)	PtFLA27 Chimeric	8/6/2/1/1/2	38 %	269	PF02469.20	Y	Y	AtFLA11, AtFLA12, AtFLA13, AtFLA6, AtFLA9		

Table 2 Identification and analysis of AGP genes in *Populus trichocarpa* (Continued)
Accession	Name	Type	Chromosome	Position	Description	Expression	Function	Other Functions													
Potri.013G014200	PtFLA28	Chimeric	8/8/2/2/0/2	42 %	266	PF02469.20	Y Y	Xylem													
Potri.019G121200	PtFLA29	Chimeric	8/8/3/1/0/2	42 %	263	PF02469.20	Y Y Xylem	AtFLA11, AtFLA12, AtFLA13, AtFLA9, AtFLA6													
Potri.008G174900	PtFLA30	Chimeric	1/4/5/3/0/2	38 %	426	PF02469.20	Y Y Xylem	AtFLA44, AtFLA8, AtFLA10, AtFLA11, AtFLA12													
Potri.008G127500	PtFLA31	Chimeric	1/0/3/1/0/1	29 %	292	PF02469.20	Y N Male catkins	AtFLA20, AtFLA21, AtFLA22, AtFLA23, AtFLA24													
Potri.019G123200	PtFLA32	Chimeric	10/9/1/0/2	42 %	263	PF02469.20	Y Y	AtFLA11, AtFLA12, AtFLA13, AtFLA9, AtFLA6													
Potri.019G120900	PtFLA33	Chimeric	8/8/3/1/0/2	42 %	227	PF02469.20	Y Y Xylem	AtFLA11, AtFLA12, AtFLA13, AtFLA9, AtFLA6													
Potri.004G210600	PtFLA34	Chimeric	10/5/3/2/0	40 %	268	PF02469.20	Y N Xylem	AtFLA11, AtFLA12, AtFLA13, AtFLA9, AtFLA6													
Potri.019G123000	PtFLA35	Chimeric	11/9/2/0/1	39 %	269	PF02469.20	Y Y	AtFLA12, AtFLA11, AtFLA13, AtFLA9, AtFLA6													
Potri.008G128200	PtFLA36	Chimeric	1/0/1/0/2	28 %	344	PF02469.20	Y Y Female catkins, male catkins	AtFLA20, AtFLA21, AtFLA22, AtFLA23, AtFLA24													
Potri.019G002300	PtFLA37	Chimeric	1/2/3/0/2	29 %	283	PF02469.20	Y N Female catkins, young leaf	AtFLA19, AtFLA20, AtFLA21, AtFLA22, AtFLA23													
Potri.018G009700	PtFLA38	Chimeric	2/2/5/2/0/3	38 %	427	PF02469.20	Y N Xylem	AtFLA4, AtFLA8, AtFLA10, AtFLA11, AtFLA12, AtFLA13, AtFLA9													
Potri.013G151300	PtFLA39	Chimeric	9/5/2/1/0/2	39 %	269	PF02469.20	Y Y Xylem	AtFLA4, AtFLA8, AtFLA10, AtFLA11, AtFLA12, AtFLA13, AtFLA9													
Potri.013G151400	PtFLA40	Chimeric	9/9/2/1/0/2	40 %	269	PF02469.20	Y Y Xylem	AtFLA11, AtFLA12, AtFLA13, AtFLA9, AtFLA6													
Potri.019G008400 (POPTR_0073s00210)	PtFLA41	Chimeric	9/4/0/0/3/1	27%	361	PF02469.20	N	N	Xylem	AtFLA17, AtFLA16, AtFLA18, AtFLA15, AtFLA7	Potri.019G111600 (POPTR_0019s14390) PtFLA42	Chimeric	5/2/4/2/0/2	30%	352	PF02469.20	Y	N	Male catkins	AtFLA20, AtFLA21, AtFLA19, AtFLA10, AtFLA6	
-------------------------------------	--------	----------	-------------	------	-----	-----------	----	----	--------	----------------------------------	-----------------------------	--------	----------	-------------	------	-----	-------------	----	----	---------	----------------------------------
Potri.005G079500 (POPTR_0005s08130) PtFLA44	Chimeric	3/3/5/2/1/6	33%	442	Y	N	Male catkins	AtFLA21, AtFLA20, AtFLA19, AtFLA15													
Potri.019G121100 (POPTR_0019s14370) PtFLA45	Chimeric	10/9/2/1/0/1	41%	262	PF02469.20	Y	N	AtFLA11, AtFLA12, AtFLA13, AtFLA9, AtFLA6													
Potri.009G012100 (POPTR_0009s01730) PtFLA46	Chimeric	6/7/2/0/1/2	36%	263	PF02469.20	Y	N	Xylem	AtFLA11, AtFLA12, AtFLA13, AtFLA9, AtFLA6												
Potri.013G151500 (POPTR_0013s14790) PtFLA47	Chimeric	8/9/2/2/0/2	42%	264	PF02469.20	Y	N	Xylem	AtFLA11, AtFLA12, AtFLA13, AtFLA9, AtFLA6,												
Potri.015G013300 (POPTR_0015s01560) PtFLA48	Chimeric	7/5/2/0/1/3	36%	267	PF02469.20	Y	Y	Xylem													
Potri.019G123100 PtFLA50	Chimeric	8/8/3/1/0/2	42%	263	PF02469.20	Y	Y	AtFLA11, AtFLA12, AtFLA13, AtFLA9, AtFLA6													
Potri.011G117800 (POPTR_0011s11860) PtPAG1	Chimeric	10/10/22/9/4/3	52%	343	PF02298.15	Y	Y	Roots	AtPAG17, AtPAG11, AtPAG10, AtPAG14, AtPAG7												
Potri.006G067300 (POPTR_0006s06640) PtPAG2	Chimeric	9/13/13/13/1/0	54%	322	PF02298.15	Y*	Y	Male catkins													
Potri.018G129200 (POPTR_0018s12930) PtPAG3	Chimeric	4/7/14/12/0/0	60%	250	PF02298.15	Y	Y	Roots													
Potri.018G129400 (POPTR_0018s12950) PtPAG4	Chimeric	1/13/4/1/0	50%	183	PF02298.15	Y	Y	AtPAG16, AtPAG5, AtPAG7, AtPAG3, AtPAG8													

Showalter et al. BMC Plant Biology (2016) 16:229
Potri.001G398800 (POPTR_0001s40940)	PtPAG5	Chimeric	15/11/23/8/5/3	51%	377	PF02298.15	Y	Y	Light-grown seedling, young leaf	AtPAG17, AtPAG11, AtPAG10, AtPAG14, AtPAG7	PtPAG1, PtPAG6, PtPAG7, PtPAG9, PtPAG14
Potri.017G011200 (POPTR_0017s04390)	PtPAG6	Chimeric	1/3/5/2/2/0	33%	212	PF02298.15	Y	Y	AtPAG11, AtPAG14, AtPAG17, AtPAG10, AtPAG7	PtPAG7, PtPAG1, PtPAG5, PtPAG16, PtPAG14	
Potri.017G012300 (POPTR_0017s00580)	PtPAG7	Chimeric	1/3/5/2/2/0	33%	212	PF02298.15	Y	Y	AtPAG11, AtPAG14, AtPAG17, AtPAG10, AtPAG7	PtPAG6, PtPAG1, PtPAG5, PtPAG16, PtPAG14	
Potri.011G135400 (POPTR_0011s13870)	PtPAG8	Chimeric	2/2/3/2/2/2	35%	208	PF02298.15	Y	Y	Roots, young leaf	AtPAG7, AtPAG13, AtPAG2, AtPAG12, AtPAG17	PtPAG14, PtPAG16, PtPAG1, PtPAG5, PtPAG15
Potri.018G018200 (POPTR_0018s02630)	PtPAG9	Chimeric	1/2/0/2/0	26%	178	PF02298.15	Y	Y	Young leaf	AtPAG13, AtPAG2, AtPAG15, AtPAG12, AtPAG1	PtPAG16, PtPAG15, PtPAG1, PtPAG5, PtPAG6
Potri.001G192100 (POPTR_0001s19280)	PtPAG10	Chimeric	2/1/5/3/1/1	41%	210	PF02298.15	Y	Y	Male catkins	AtPAG2, AtPAG4, AtPAG3, AtPAG16, AtPAG7	PtPAG2, PtPAG3, PtPAG4, PtPAG11, PtPAG17
Potri.006G067400 (POPTR_0006s06650)	PtPAG11	Chimeric	0/1/3/0/1/0	39%	163	PF02298.15	Y	Y	Light-grown seedling	AtPAG16, AtPAG5, AtPAG8, AtPAG3, AtPAG13	PtPAG4, PtPAG2, PtPAG3, PtPAG10, PtPAG13
Potri.003G047300 (POPTR_0003s04580)	PtPAG12	Chimeric	1/0/4/2/1/2	35%	217	PF02298.15	Y	Y	Female catkins	AtPAG16, AtPAG4, AtPAG5, AtPAG3, AtPAG8	PtPAG18, PtPAG19, Potri.006G259100, PtPAG20, Potri.006G259000
Potri.014G049600 (POPTR_0014s04850)	PtPAG13	Chimeric	2/1/5/1/1/1	48%	192	PF02298.15	Y	Y	Dark etiolated seedlings	AtPAG9, AtPAG8, AtPAG6, AtPAG3, AtPAG5	PtPAG21, PtPAG22, PtPAG290, PtPAG23, PtPAG12
Potri.001G419200 (POPTR_0001s44510)	PtPAG14	Chimeric	4/5/2/3/0/2	35%	221	PF02298.15	Y	Y	Roots	AtPAG7, AtPAG17, AtPAG15, AtPAG11, AtPAG12	PtPAG8, PtPAG15, PtPAG6, PtPAG1, PtPAG7
Potri.006G184100 (POPTR_0006s19770)	PtPAG15	Chimeric	2/2/3/0/2/0	29%	178	PF02298.15	Y	Y	AtPAG13, AtPAG2, AtPAG15, AtPAG12, AtPAG1	PtPAG16, PtPAG9, PtPAG8, PtPAG14, PtPAG1	
Potri.006G264600 (POPTR_0006s28040)	PtPAG16	Chimeric	2/3/3/0/2/0	28%	179	PF02298.15	Y	Y	Young leaf	AtPAG13, AtPAG2, AtPAG15, AtPAG1, AtPAG12	PtPAG9, PtPAG15, PtPAG8, PtPAG1, PtPAG6
Potri.013G061300 (POPTR_0013s05800)	PtPAG17	Chimeric	2/2/3/1/0/1	29%	155	PF02298.15	Y	N	Female catkins, male catkins	AtPAG5, AtPAG4, AtPAG3, AtPAG16, AtPAG13	PtPAG39, PtPAG24, PtPAG25, PtPAG26, PtPAG27
Table 2: Identification and analysis of AGP genes in *Populus trichocarpa* (Continued)

Potri.002G161300 (POPTR_0002s16270)	PtPAG18	Chimeric	2/2/2/0/1/0	31 %	169	PF02298.15	Y	Y	Male catkins	AtPAG16, AtPAG4, AtPAG3, AtPAG5, AtPAG13	PtPAG19, Potri.002G156100, Potri.002G156400, Potri.006G259000, Potri.006G259100
Potri.001G268700 (POPTR_0001s27560)	PtPAG19	Chimeric	1/2/4/0/0/0	31 %	165	PF02298.15	Y	Y	Male catkins	AtPAG16, AtPAG4, AtPAG3, AtPAG5, AtPAG13	PtPAG18, Potri.002G156100, Potri.002G156400, Potri.006G259000, PtPAG20
Potri.002G052500 (POPTR_0002s05340)	PtPAG20	Chimeric	0/1/2/0/1/0	28 %	169	PF02298.15	Y	Y	Young leaf	AtPAG16, AtPAG4, AtPAG3, AtPAG5, AtPAG13	PtPAG18, PtPAG19, PtPAG20, PtPAG23, PtPAG29
Potri.001G080700 (POPTR_0001s11680)	PtPAG21	Chimeric	1/2/0/0/0/1	30 %	184	PF02298.15	Y	Y		AtPAG5, AtPAG3, AtPAG16, AtPAG9, AtPAG28	PtPAG22, PtPAG23, PtPAG29
Potri.003G150300 (POPTR_0003s15000)	PtPAG22	Chimeric	1/1/0/0/0/0	31 %	183	PF02298.15	Y	Y		AtPAG5, AtPAG3, AtPAG16, AtPAG9, AtPAG28, AtPAG23, AtPAG29	PtPAG21, PtPAG23, PtPAG29
Potri.002G101300 (POPTR_0002s10170)	PtPAG23	Chimeric	0/1/3/1/0/4	42 %	188	PF02298.15	Y	Y	Xylem	AtPAG5, AtPAG3, AtPAG16, AtPAG9, AtPAG28, AtPAG23, AtPAG29	PtPAG20, PtPAG21, PtPAG23, PtPAG29
Potri.013G030000 (POPTR_0013s03090)	PtPAG24	Chimeric	0/1/3/2/1/3	31 %	168	PF02298.15	Y	Y	Male catkins	AtPAG5, AtPAG3, AtPAG16, AtPAG9, AtPAG28, AtPAG23, AtPAG29	PtPAG20, PtPAG21, PtPAG23, PtPAG29
Potri.013G030200 (POPTR_0013s03090)	PtPAG25	Chimeric	0/1/3/2/1/3	31 %	168	PF02298.15	Y	Y	Male catkins	AtPAG5, AtPAG3, AtPAG16, AtPAG9, AtPAG28, AtPAG23, AtPAG29	PtPAG20, PtPAG21, PtPAG23, PtPAG29
Potri.019G037800	PtPAG26	Chimeric	1/1/1/2/0/0	32 %	155	PF02298.15	Y	Y		AtPAG5, AtPAG3, AtPAG16, AtPAG9, AtPAG28, AtPAG23, AtPAG29	PtPAG20, PtPAG21, PtPAG23, PtPAG29
Potri.07070900 (POPTR_0019s05370)	PtPAG27	Chimeric	1/1/1/2/0/0	32 %	155	PF02298.15	Y	Y	Male catkins	AtPAG5, AtPAG3, AtPAG16, AtPAG9, AtPAG28, AtPAG23, AtPAG29	PtPAG20, PtPAG21, PtPAG23, PtPAG29
Potri.007G120200 (POPTR_0007s02750)	PtPAG28	Chimeric	2/6/3/7/1/0	49 %	247	PF02298.15	Y	Y	Dark etiolated seedlings	AtPAG5, AtPAG17, AtPAG4, AtPAG3, AtPAG8	PtPAG21, PtPAG22, PtPAG23, PtPAG24, PtPAG25, PtPAG26, PtPAG27, PtPAG28, PtPAG29, PtPAG30
Potri.002G101200 (POPTR_1040s00200)	PtPAG29	Chimeric	0/1/4/3/0/4	37 %	249	PF02298.15	Y	Y		AtPAG5, AtPAG3, AtPAG6, AtPAG9	PtPAG21, PtPAG22, PtPAG23, PtPAG24, PtPAG25, PtPAG26, PtPAG27, PtPAG28, PtPAG29, PtPAG30
Potri.003G117000 (POPTR_0003s11780)	PtPAG30	Chimeric	0/0/6/1/0/2	33 %	167	PF02298.15	Y	Y	Male catkins, female catkins	AtPAG5, AtPAG3, AtPAG16, AtPAG9	PtPAG21, PtPAG22, PtPAG23, PtPAG24, PtPAG25, PtPAG26, PtPAG27, PtPAG28, PtPAG29, PtPAG30
POTRI.001G332200 (POPTR_0001s33960)	PtPAG31	Chimeric	1/1/2/1/0/0	33 %	168	PF02298.15	Y	Y	Xylem	AtPAG5, AtPAG4, AtPAG3, AtPAG13, AtPAG11, AtPAG16, PtPAG24, PtPAG25, Potri.009G136200, PtPAG26, PtPAG22	
POTRI.008G151000 (POPTR_0008s15040)	PtPAG32	Chimeric	3/3/2/0/1/3	35 %	185	PF02298.15	Y	N	Xylem	AtPAG16, AtPAG3, AtPAG4, AtPAG5, AtPAG13, PtPAG16, Potri.006G259100, PtPAG19	
POTRI.007G088500 (POPTR_0017s12450)	PtPAG33	Chimeric	2/2/1/1/0/0	23 %	175	PF02298.15	Y*	Y	Roots	AtPAG16, AtPAG9, AtPAG1, AtPAG13, AtPAG2, PtPAG16, Potri.001G219900, Potri.015G114700, Potri.015G113300, Potri.015G115600, Potri.015G117100, Potri.015G114600	
POTRI.015G114300 (POPTR_0015s12570)	PtPAG34	Chimeric	0/2/0/0/0/1	20 %	131	PF02298.15	Y	N	AtPAG11, AtPAG7, AtPAG2, AtPAG13, AtPAG14, PtPAG11, Potri.001G338800, Potri.015G052000, Potri.001G338800, Potri.015G115600, Potri.015G117100, Potri.015G114600		
POTRI.010G243600 (POPTR_0010s24980)	PtPAG35	Chimeric	3/3/6/0/1/2	34 %	214	PF02298.15	Y	Y	Male catkins	AtPAG11, AtPAG5, AtPAG1, AtPAG4, AtPAG16, AtPAG4, PtPAG12	
POTRI.001G987700 (POPTR_0001s18820)	PtPAG36	Chimeric	1/1/2/2/1/0	27 %	181	PF02298.15	Y	Y	Male catkins, female catkins	AtPAG11, AtPAG7, AtPAG2, AtPAG13, AtPAG14, PtPAG37, Potri.015G052000, PtPAG8, PtPAG1, Potri.001G338800, Potri.015G115600, Potri.015G117100, Potri.015G114600	
POTRI.003G050500 (POPTR_0003s04900)	PtPAG37	Chimeric	2/0/2/1/0/0	26 %	180	PF02298.15	Y	Y	AtPAG17, AtPAG2, AtPAG13, AtPAG1, AtPAG11, AtPAG7, AtPAG14, PtPAG36, Potri.015G052000, PotPAG15, Potri.001G338800, Potri.015G115600, Potri.015G117100, Potri.015G114600		
POTRI.010G899000 (POPTR_0010s10020)	PtPAG38	Chimeric	1/2/2/1/0/2	34 %	185	PF02298.15	Y	N	Xylem	AtPAG16, AtPAG5, AtPAG4, AtPAG13, AtPAG11, AtPAG13, PtPAG22, PtPAG18, Potri.006G259000, Potri.009G136200, PtPAG26, PtPAG27, PtPAG24, PtPAG25, PtPAG17	
POTRI.011G045000 (POPTR_0013s01400)	PtPAG39	Chimeric	2/1/0/1/0/0	29 %	156	PF02298.15	Y	N	Female catkins	AtPAG5, AtPAG16, AtPAG4, AtPAG3, AtPAG9, AtPAG16, AtPAG4, AtPAG3, AtPAG9	
POTRI.002G089200 (POPTR_0002s19340)	PtAGP57I Chimeric	10/7/3/0/0/1	46 %	193	PF14368.4	Y	N	AtAGP29I, AtAGP60I, AtAGP64C, AtAGP58I, AtAGP56I, AtAGP57I, AtAGP56C			
POTRI.003G020200 (POPTR_0003s01440)	PtAGP58I Chimeric	6/5/2/1/1/0	43 %	179	PF14368.4	Y	Y	Xylem, young leaf	AtAGP29I, AtAGP60I, AtAGP64C, AtAGP58I, AtAGP56I, AtAGP57I, AtAGP56C		
Table 2 Identification and analysis of AGP genes in *Populus trichocarpa* (Continued)

Locus ID (Poplar)	Protein name	Description	Accession	Percent	Length	Domain	Identified by	Expression	Male catkins	HRGPs
Potri.006G261800 (POCTR_0006s27770)	PtAGP59I	Chimeric	3/11/9/5/2/4	36 %	484	PF00704.26	Y	N	Male catkins	None
Potri.005G167500 (POCTR_0005s16550)	PtAGP60I	Chimeric	10/9/4/1/0/3	48 %	216	PF14368.4	Y	N	Male catkins, female catkins	AtAGP29I
Potri.001G210100 (POCTR_0001s21750)	PtAGP61I	Chimeric	8/3/0/0/0/0	41 %	178	PF14368.4	Y	Y	Young leaf	AtAGP29I, AtAGP3C
Potri.010G085200 (POCTR_0101s09530)	PtAGP62I	Chimeric	4/1/0/0/0/0	47 %	216	PF14368.4	Y	Y	Male catkins	AtAGP29I
Potri.005G003500 (POCTR_0005s00550)	PtAGP63I	Chimeric	7/15/6/0/0/0	41 %	624	PF07983.11	Y	Y		AtPRP13, AtPEX4
Potri.002G059600 (POCTR_0002s06050)	PtAGP70I	Chimeric	0/1/4/0/0/0	47 %	255	PF07983.11	Y	N		AtPRP13
Potri.001G353400 (POCTR_0001s34420)	PtAGP71I	Chimeric	1/7/5/0/0/0	49 %	286	PF07983.11	Y	N		AtPRP13
Potri.010G078500 (POCTR_0101s02870)	PtAGP72I	Chimeric	1/7/5/0/0/0	46 %	304	PF07983.11	Y	Y		AtPRP13
Potri.005G202400	PtAGP73I	Chimeric	1/2/4/0/0/0	44 %	261	PF07983.11	Y	N		AtPRP13

Notes:
- Protein identifiers of the version 2.0 are shown in the parenthesis. Italics indicates a protein that was identified only by a BLAST search.
- The domains indicated by the Pfam number are: PF14368.4, LTP_2 domain (Probable lipid transfer); PF06376.10, AGP domain (Arabinogalactan peptide); PF02469.20, Fasciclin domain (Fasciclin domain); PF02298.15, Cu_bind_like domain (Plastocyanin-like domain); PF00704.26, Glyco_hydro_18 domain (Glycoside hydrolase family 18); PF07983.11, X8 domain (X8 domain).
- Asterisk indicates a protein that is predicted to have a signal peptide either using the sensitive mode in the SignalP website or only if amino acids at the N terminus are discarded.
- Expression data are shown only when available at http://bar.utoronto.ca/efppop/cgi-bin/efpWeb.cgi.
- A locus ID indicates that it is not identified as an HRGP.
60 EXTs (77%) identified have a signal peptide. Only four EXTs with GPI anchor addition sequences were identified, all of which were classified as short EXTs. This novel class of short EXTs with GPI anchor addition sequences was also observed in Arabidopsis [16].

Because EXTs were identified by searching for proteins with at least two SPPP sequences, many proteins were identified that contain only a few SPPP or SPPPP repeats among a much larger protein sequence. Many of these potential chimeric EXTs are not included in Table 3, but the sequences are available in Additional file 3: Figure S3 for further review. These may in fact be chimeric EXTs, but many lack a signal peptide and have only a few SPPP or SPPPP repeats among a much larger protein that does not belong to a class of previously characterized chimeric EXTs, such as PERKs, LRXs, or FHs.

Proline-rich Proteins (PRPs)
PRPs were identified by searching for proteins that contain at least 45% PVKCYT and have a signal peptide. A total of 240 poplar proteins meeting the 45% PVKCYT criteria were determined to be PRPs based on sequence analysis, the presence of a signal peptide, and BLAST analysis. The PPVX[KT] motif search returned six candidate proteins, while the other motif (KKPCPP) search returned no candidate protein despite its effectiveness in Arabidopsis (Table 4 and Additional file 4: Figure S4). Additional proteins were identified by BLAST searches that fall below the 45% threshold. Some of these proteins were also determined to be PRPs based on a spectrum of information, including the presence of a signal peptide and Pfam domains, the number of motif repeats, and BLAST searches against the Arabidopsis HRGPs.
Locus Identifier 3.0 (ID 2.0)*	Name	Class	SP3/SP4/SP5/YXY Repeats	Amino Acids	Pfam 6	SP*	GPI	Organ/issue-specific Expression 11	Arabidopsis HRGP BLAST Hits	Poplar HRGP BLAST Hits*
Potri.01G05010000 (POPTR_0018 s05480)	PtEXT1	Classical EXT	1/6/4/5	190	PF04554.11	Y	N	Young leaf	AtEXT22, AtEXT21	Potri.01G201800
Potri.001G01970000 (POPTR_0001 s055720)	PtEXT2	Classical EXT	1/21/0/11	213	Y	Y	N	AtEXT3/S	PtEXT8	
Potri.001G12210000 (POPTR_0001 s040200)	PtEXT3	Classical EXT	2/5/6/0	238	PF14547.4	Y	N	Male catkins	AtPRP16, AtPRP15, AtPRP14, AtHAE4	
Potri.001G25960000 (POPTR_0001 s26690)	PtEXT4	Classical EXT	2/8/2/0	500	Y	N	AtAGP51C	PtEXT7, ACP6C, ACP43P		
Potri.001G02010000 (POPTR_0001 s055740)	PtEXT5	Classical EXT	1/22/0/13	257	Y	Y	N	None	PtEXT6, PtEXT8	
Potri.001G01990000	PtEXT6	Classical EXT	1/25/0/14	259	Y*	N	None	PtEXT8, PtEXT5		
Potri.001G26020000 (POPTR_0001 s26680)	PtEXT7	Classical EXT	4/6/1/0	222	Y	Y	None	AGP43P, ACP6C, PtEXT4, Potri.003G074200		
Potri.001G02000000	PtEXT8	Classical EXT	1/23/0/16	267	Y*	N	AtEXT3/S	PtEXT6, PtEXT5		
Potri.010G00120000 (POPTR_0010s003 50)	PtEXT9	Short EXT	1/6/0/3	174	Y	Y	AtEXT37, AtEXT41	PtEXT24, Potri.008G129200, Potri.010G128900, Potri.008G117600, FLA21		
Potri.010G13300000 (POPTR_0010s12360)	PtEXT10	Short EXT	0/2/0/0	131	Y	N	AtEXT31, AtEXT33	PtEXT23, Potri.006G106800, Potri.005G03000, Potri.001G371600, PossiblePtEXT5		
Potri.09100000	PtEXT11	Short EXT	1/1/0/0	106	Y	N	None	PtEXT12, PtEXT19, Potri.005G079400		
Potri.013G04570000 (POPTR_0013 s04200)	PtEXT12	Short EXT	1/1/0/0	111	Y	N	None	PtEXT11, PtEXT19		
Potri.003G06490000 (POPTR_0003 s063 50)	PtEXT13	Short EXT	1/1/3/0	167	Y	N	AtEXT32, AtAGP57C, AtPERKS	PtEXT26, Potri.009G013500, Potri.006G276200		
Potri.006G22540000 (POPTR_0006s24190)	PtEXT14	Short EXT	2/0/1/3	186	Y	Y	Male catkins, roots	AtEXT38, AtEXT7	Potri.015G47200, Potri.008G168300, Potri.010G094700, Potri.012G144400, PtFH2	
Potri.002G07010000	PtEXT15	Short EXT	0/1/2/2	102	Y	N	AtEXT3/S, AtEXT1/4, AtEXT22	PtEXT20, Potri.017G110900, PtEXT1, PtLRX3		
Potri.019G01590000 (POPTR_0019s0210)	PtEXT16	Short EXT	0/2/0/0	108	Y	N	None	PtEXT18, PtEXT33, PtEXT17, Potri.019G015700, Potri.013G045800, Potri.019G015700		
Potri.019G01580000 (POPTR_0019s03200)	PtEXT17	Short EXT	0/2/0/0	107	Y	N	Male catkins	None	PtEXT33, PtEXT18, PtEXT16, Potri.013G019900, Potri.019G015700	
POTRI Accession	EXT Gene	EXT Type	Expression	Expression Type	Additional Information	Other POTRI Accessions				
----------------	----------	----------	------------	-----------------	------------------------	-----------------------				
Potri.019G016000	PtEXT18	Short EXT	0/2/0/0	116	Y	N	None	PtEXT16, PtEXT33, PtEXT17, Potri.019G015700, Potri.T139100		
Potri.019G017300 (POPTR_0019s03400)	PtEXT19	Short EXT	0/2/0/0	110	Y*	N	Dark etiolated seedlings	AtPERK6, AtAPG45P	Potri.005G257000, Potri.010G244800, Potri.006G136900	
Potri.005G190100	PtEXT20	Short EXT	1/2/0/2	115	Y	N	AtEXT3/5, AtEXT1/4, AtPRP3, AtPRP1	Potri.019G083200, Potri.031G12500, PtLRX3, Potri.007G093000, Potri.005G077700		
Potri.014G124700	PtEXT21	Short EXT	0/2/0/0	168	Y	N	AtEXT34, AtEXT41, AtPERK3, AtPERK5	Potri.015G147200, Potri.012G144400, Potri.001G371600, Potri.004G143700, PfH2		
Potri.T082000	PtEXT22	Short EXT	1/1/1/0	177	Y*	N	None	PtAEH4, PtEXT28, PtEXT27, Potri.001G042100, Potri.008G043900		
Potri.008G129100 (POPTR_0008s12800)	PtEXT23	Short EXT	0/3/0/0	155	Y	Y	Female catkins, xylem	AtEXT31, AtEXT33, AtPAG10	Potri.010G094700, Potri.015G147200, Potri.006G163700, Potri.018G086100	
Potri.008G213600 (POPTR_0008s22980)	PtEXT24	Short EXT	0/1/1/2	172	Y	Y	Male catkins	AtEXT37, AtPERK6, AtEXT41	Potri.005G239200, Potri.010G094700, Potri.006G06800, Potri.002G189300, Potri.005G239200	
Potri.008G125400 (POPTR_0008s12430)	PtEXT25	Short EXT	2/0/0/0	80	Y*	N	None	Potri.005G239200, Potri.010G094700, Potri.006G06800, Potri.002G189300, Potri.005G239200		
Potri.001G169200 (POPTR_0001s16930)	PtEXT26	Short EXT	0/0/2/0	147	Y	N	None	PtEXT13, Potri.010G006800		
Potri.001G042200 (POPTR_0001s03370)	PtEXT27	Short EXT	2/2/0/1	177	Y	N	None	PtEXT28, PtEXT22, PtAEH4, Potri.001G042100, Potri.001G316500		
Potri.T179500 (POPTR_0523s00220)	PtEXT28	Short EXT	1/0/1/0	176	Y*	N	None	PtAEH4, PtEXT22, PtEXT27, Potri.001G042100, Potri.005G030300		
Potri.T101300 (POPTR_0017s06820)	PtEXT29	Short EXT	0/2/0/0	151	Y*	N	AtAPG56C	Potri.007G120100, Potri.002G054100, Potri.001G371600, Potri.015G147200, Potri.002G235500		
Potri.T139000	PtEXT33	Short EXT	0/1/0/0	107	Y	N	None	PtEXT17, PtEXT18, PtEXT16, Potri.019G015700, Potri.T319010		
---------------	---------	-----------	---------	-----	---	---	------	---		
Potri.009G108100 (POPTR_0009s 11130)	PtLRX1	Chimeric	5/16/6/1	982	PF13855.4	Y	N	Female catkins, PtPEX3, PtPEX1, PtPEX4, PtPEX2, AtlRX4		
Potri.004G146400 (POPTR_0004s15360)	PtLRX2	Chimeric	2/19/1/1	603	PF13855.4	Y	N	Male catkins, PtPEX3, PtPEX4, PtPEX1, PtPEX2, AtlRX4		
Potri.006G081200	PtLRX3	Chimeric	2/1/3/0	584	PF13855.4	Y*	N	PtALRX2, PtALRX1, PtALRX4, PtALRX3, PtALRX5		
Potri.006G245600 (POPTR_0006s26190)	PtLRX4	Chimeric	2/2/5/1	549	PF08263.10	Y	N	Xylem, AtLRX2, AtLRX4, AtLRX3, AtLRX5, PtLRX2, PtLRX10		
Potri.006G162300 (POPTR_0006s00730)	PtLRX5	Chimeric	2/3/3/0	569	PF13855.4	Y	N	Male catkins, PtALRX2, PtALRX3, PtALRX4, PtALRX8, PtALRX3		
Potri.018G075900 (POPTR_0018s06150)	PtLRX6	Chimeric	1/2/5/0	509	PF13855.4	Y	N	Male catkins, young leaf, xylem, AtLRX2, AtLRX4, AtLRX3, AtLRX5, PtLRX9, PtLRX4, PtLRX2, PtLRX3		
Potri.018G151000 (POPTR_0018s14790)	PtLRX7	Chimeric	1/6/1/0	481	PF08263.10	Y	N	Male catkins, PtALRX2, PtALRX3, PtALRX4, PtALRX1		
Potri.018G035100 (POPTR_0018s10101)	PtLRX8	Chimeric	0/3/2/1	496	PF08263.10	Y	N	Male catkins, PtALRX4, PtALRX5, PtALRX6, PtLRX4, PtLRX5, PtLRX3		
Potri.T016600 (POPTR_0006s00730)	PtLRX9	Chimeric	2/3/4/0	573	PF13855.4	Y	N	Male catkins, PtALRX2, PtALRX3, PtALRX4, PtALRX8, PtLRX5, PtLRX6, PtLRX7		
Potri.014G036700 (POPTR_0014s03600)	PtLRX10	Chimeric	1/5/1/1	474	PF13855.4	Y	N	Male catkins, PtPEX3, PtPEX1, PtPEX4, PtPEX2, AtPEX4, AtPEX2, AtlRX4		
Potri.010G041400 (POPTR_0010s05110)	PtPERK1	Chimeric	5/0/2/1	700	PF07714.15	N	N	AtPERK13, AtPERK12, AtPERK11, AtPERK10, AtPERK8, PtPERK13, PtPERK3, PtPERK6, PtPERK3, PtPERK12		
Potri.010G132900 (POPTR_0010s14290)	PtPERK2	Chimeric	5/4/2/1	765	PF00069.23	N	N	AtPERK8, AtPERK10, AtPERK1, AtPERK15, AtPERK4		
Potri.017G10400 (POPTR_0017s14140)	PtPERK3	Chimeric	5/5/0/1	724	PF07714.15	N	N	Dark etiolated and light-grown seedlings, AtPERK8, AtPERK13, AtPERK12, AtPERK3		
Potri.009G15200 (POPTR_0009s 11810)	PtPERK4	Chimeric	1/6/2/1	649	PF07714.15	N	N	Male catkins, AtPERK8, AtPERK10, AtPERK13		

Table 3: Identification and analysis of EXT genes in Populus trichocarpa (Continued)
Potri.004G153600 (POPTR_0004s16100)	PtPERK5	Chimeric	3/3/3/1	656	PF07714.15	N	N	AtPERK5, AtPERK7, AtPERK4, AtPERK6, AtPERK15	Potri.004G153600 (POPTR_0004s16100)
Potri.004G105200 (POPTR_0004s10490)	PtPERK6	Chimeric	6/4/0/2	724	PF07714.15	N	N	Dark etiolated seedlings	Potri.004G105200 (POPTR_0004s10490)
Potri.006G242800	PtPERK7	Chimeric	2/0/0/1	706	PF07714.15	N	N	AtPERK1, AtPERK5, AtPERK14, AtPERK15, AtPERK3	Potri.006G242800
Potri.018G081300 (POPTR_0018s01880)	PtPERK8	Chimeric	0/2/2/0	672	PF07714.15	N	N	Xylem	Potri.018G081300 (POPTR_0018s01880)
Potri.007G027000 (POPTR_0007s12680)	PtPERK9	Chimeric	2/3/5/1	639	PF07714.15	N	N	AtPERK1, AtPERK5, AtPERK7, AtPERK6, AtPERK1	Potri.007G027000 (POPTR_0007s12680)
Potri.005G124400 (POPTR_0005s12590)	PtPERK10	Chimeric	2/1/5/0	592	PF07714.15	N	N	Female catkins, male catkins	Potri.005G124400 (POPTR_0005s12590)
Potri.008G189700 (POPTR_0008s11940)	PtPERK11	Chimeric	5/3/1/1	733	PF07714.15	N	N	Male catkins	Potri.008G189700 (POPTR_0008s11940)
Potri.008G116600 (POPTR_0008s11080)	PtPERK12	Chimeric	0/6/2/1	728	PF07714.15	N	N	AtPERK13, AtPERK11, AtPERK8, AtPERK10, AtPERK15	Potri.008G116600 (POPTR_0008s11080)
Potri.003G103800 (POPTR_0003s10280)	PtFH1	Chimeric	1/0/2/0	1226	PF02181.21, PF10409.7	N	N	Female catkins, male catkins	Potri.003G103800 (POPTR_0003s10280)
Potri.011G131700 (POPTR_0011s13510)	PtFH2	Chimeric	1/0/2/0	987	PF02181.21	Y	N	Roots	Potri.011G131700 (POPTR_0011s13510)
Potri.002G240200 (POPTR_0002s24130)	PtFH3	Chimeric	1/0/1/0	1066	PF02181.21	Y	N	Young leaf, male catkins	Potri.002G240200 (POPTR_0002s24130)
Potri.014G174700 (POPTR_0014s17310)	PtFH4	Chimeric	0/0/2/0	1071	PF02181.21	Y	N	Roots, light-grown seedling	Potri.014G174700 (POPTR_0014s17310)
Potri.012G067900 (POPTR_0012s06980)	PtFH5	Chimeric	0/0/2/0	1400	PF10409.7, PF02181.21	N	N	Xylem, male catkins	Potri.012G067900 (POPTR_0012s06980)
Table 3: Identification and analysis of EXT genes in *Populus trichocarpa* (Continued)

Locus ID	Chimeric/AGP EXT Hybrid	Expression Profile	At IDs	Protein Function					
Potri.009G145700 (POPTR_0009s14810)	PtEXT30	Chimeric	5/0/0/0	467	PF06830.9	Y	N	Male catkins, roots	AtEXT51
Potri.014G115700 (POPTR_0014s11110)	PtEXT31	Chimeric	8/0/0/0	526	PF00295.15	Y*	N	Roots	None
Potri.011G066900 (POPTR_0011s07300)	PtEXT32	Chimeric	0/1/2/2	498	PF00112.21, PF00396.16, PF08246.10	Y	N	Female catkins, male catkins	AtAGP4C
Potri.004G024500	PtAEH1	AGP EXT Hybrid	0/1/1/1	673	PF01657.15, PF07714.15	Y	N	None	None
Potri.004G024800	PtAEH2	AGP EXT Hybrid	0/1/1/1	678	PF01657.15, PF07714.15	Y	N	None	None
Potri.003G082300 (POPTR_0003s08030)	PtAEH3	AGP EXT Hybrid	2/0/0/0	188	Y*	Y	Dark and light-grown seedlings, young leaf	AtPRP1	
Potri.003G184500	PtAEH4	AGP EXT Hybrid	1/1/1/0	177	Y*	N	None	None	

- **a** Protein identifiers of the version 2.0 are shown in the parenthesis. Italics indicates a protein that was identified only by a BLAST search.
- **b** The domains indicated by the Pfam number are: PF04554.11, Extensin_2 domain (Hydrophobic seed domain); PF13855.4, LRR_8 domain (Leucine rich repeat); PF08263.10, LRRNT_2 domain (Leucine rich repeat N-terminal domain); PF07714.15, Pkinase_Tyr domain (Protein tyrosine kinase); PF00069.23, Pkinase domain (Protein kinase domain); PF02181.21, FH2 domain (Formin Homology 2 Domain); PF10409.7, PTEN_C2 domain (C2 domain of PTEN tumour-suppressor protein); PF00295.15, Glyco_hydro_28 domain (Glycoside hydrolase family 28); PF01657.15, Peptidase_C1 domain (Papain family cysteine protease); PF00112.21, Peptidase_C1 domain (Papain family cysteine protease); PF00396.16, Granulin domain (Granulin); PF08246.10, Inhibitor_i29 domain (Cathepsin propeptide inhibitor domain); PF01657.15, Stress-antifungal domain (Salt stress response/antifungal); PF07714.15, Pkinase_Tyr domain (Protein tyrosine kinase).
- **c** Asterisk indicates a protein that is predicted to have a signal peptide either using the sensitive mode in the SignalP website or only if amino acids at the N terminus are discarded.
- **d** Expression data are shown only when available at http://bar.utoronto.ca/efppop/cgi-bin/efpWeb.cgi.
- **e** A locus ID indicates that it is not identified as an HRGP.
particularly beneficial in determining if a protein was a PRP. In total, 49 proteins were determined as PRPs, including 16 PRPs, 30 PR-peptides, and three chimeric PRPs (Fig. 4 and Additional file 4: Figure S4). Indeed, each of the 49 putative PRPs identified here is similar to at least one PRP previously identified in Arabidopsis [16].

Fig. 3 Protein sequences encoded by the representative EXT gene classes in *Populus trichocarpa*. The colored sequences at the N and C terminus indicate predicted signal peptides (green) and GPI anchor addition sequences (light blue) if present in the sequences. The SP3 (blue), SP4 (red), SP5 (purple), and YXY (dark red) repeats are also indicated in the sequences. The sequences typical of AGPs, specifically AP, PA, SP, TP, VP, and GP repeats, are also indicated (yellow).
Table 4: Identification and analysis of PRP genes in *Populus trichocarpa*

Locus Identifier 3.0 (ID 2.0)	Name	Class	% PVKCYT	PPV/PPPL/PELPK Repeats	Amino Acids	Pfam[^3]	SP[^2]	GPI	Organ/issue - Specific Expression[^b]	Arabidopsis HRGP BLAST Hits	Poplar HRGP BLAST Hits[^c]
Potri.004G168600 (POPTR 004 s17590)	PtPRP1	PRP	64 %	24/8/0	554	PF01190.15	Y	N	Dark etiolated seedlings	AtPRP2, AtPRP1, AtPRP11	
Potri.016G015500 (POPTR_0016s01720)	PtPRP2	PRP	70 %	13/0/0	449	PF14547.4	Y	N	Dark and +3 h light etiolated seedlings	AtPRP18, AtPRP4	
Potri.014G126200 (POPTR 0014 s12100)	PtPRP3	PRP	51 %	0/0/0	372	PF01190.15	Y	N	AtPRP2, AtPRP1, AtPRP11	AtPRP9, AtPRP10	
Potri.014G126500 (POPTR_0014s12120)	PtPRP4	PRP	52 %	0/0/0	366	PF01190.15	Y	N	AtPRP2, AtPRP1, AtPRP11	AtPRP7, AtPRP3, AtPRP1, AtAGP30I, AtAGP31II	
Potri.009G129900 (POPTR 0009 s13250)	PtPRP5	PRP	62 %	15/9/0	310	PF14547.4	Y*	N	Male catkins	AtPRP9, AtPRP10, AtPERK15	
Potri.003G11300 (POPTR 0003 s11060)	PtPRP6	PRP	48 %	2/1/0	283	PF01190.15	Y*	N	AtPRP2, AtPRP1, AtPERK15	AtPRP9, AtPRP10, AtPERK15	
Potri.006G008300	PtPRP7	PRP	46 %	4/1/0	234	PF14547.4	Y*	N	AtPRP2, AtPRP1, AtPERK15	AtPRP9, AtPRP10, AtPERK15	
Potri.T162800 (POPTR 0006 s01030)	PtPRP8	PRP	59 %	8/0/0	234	PF14547.4	Y	N	Young leaf	AtPRP16, AtPRP14, AtPRP17, AtPRP15, AtAGP30I	
Potri.006G008600	PtPRP9	PRP	50 %	2/0/0	216	PF14547.4	Y	N	Young leaf, male catkins	AtPRP9, AtPRP10, AtPERK15	
Potri.002G201800 (POPTR 0002 s20290)	PtPRP34	PRP	37 %	0/0/0	213	PF01190.15	Y	N	Young leaf, male catkins	AtPRP9, AtPRP10	
Potri.017G145800 (POPTR 0017 s02330)	PtPRP35	PRP	42 %	0/0/0	272	PF01190.15	Y	N	Male catkins	AtPRP9, AtPRP10, AtPERK15	
Potri.001G060500 (POPTR_0001s13450)	PtPRP38	PRP	39 %	0/7/0	332	PF01190.15	Y	N	Dark and +3 h light etiolated seedlings	AtPRP11, AtAGP31, AtPRP1	
Potri.003G167100 (POPTR_0003s16555)	PtPRP40	PRP	39 %	0/2/0	299	PF01190.15	Y	N	Female catkins	AtPRP7, AtPRP1, AtPRP3, AtAGP30I, AtAGP31II	
Potri.007G144600	PtPRP44	PRP	43 %	0/1/0	275	Y	N	Roots	AtPRP7, AtPRP3, AtPRP1, AtAGP30I, AtAGP31II		
Potri.013 G116000 (POPTR 0013 s11600)	PtPRP46	PRP	39 %	0/4/0	216	Y	N		AtPRP9, AtPRP10, AtPERK5		
Potri.006G065500 (POPTR 0006 s06430)	PtPRP11	PR Peptide	56 %	5/2/0	198	PF14547.4	Y	N	Dark and +3 h light etiolated seedlings	AtPRP9, AtPRP10, AtPERK5	

[^1]: Potri.002G201800 (POPTR 0002 s20290) corresponds to the accession number of the gene in the genome database.
[^2]: N: Not expressed.
[^3]: Pfam: Protein families.
[^4]: SP: Signal peptides.
[^5]: GPI: Glycosylphosphatidylinositol.
[^6]: Arabidopsis HRGP: Arabidopsis Harrison et al. (2004).
[^7]: Poplar HRGP: Poplar Harrison et al. (2004).
Table 4 Identification and analysis of PRP genes in *Populus trichocarpa* (Continued)

Potri	PRP	Peptide	%	NO/0/0	PF1	Genes
Potri.001G350600 (POPTR_0001s34750)	PRP12	PR Peptide	63	6/0/0	191	PF02704.12, AtPRP7, AtPRP3, AtPRP1, AtPRP9, AtAGP30I, PtPRP12, PossiblePtPRP6, Potri.002G201700, Potri.001G350600, Potri.003G035
Potri.006G008500	PRP15	PR Peptide	53	4/0/0	179	PF14547.4, AtPRP13, AtPRP15, AtPRP14, AtPRP17, AtPRP2, AtPRP11
Potri.006G008500	PRP15	PR Peptide	53	4/0/0	179	PF14547.4, AtPRP13, AtPRP15, AtPRP14, AtPRP17, AtPRP2, AtPRP11
Potri.007G114100 (POPTR_0007s03420)	PRP16	PR Peptide	47	0/4/0	130	AtPRP16, AtPRP14, AtPRP17, AtPRP2, AtPRP5, AtPRP7, AtPRP13, AtPRP15, AtPRP17, AtPRP2
Potri.007G114100 (POPTR_0007s03400)	PRP17	PR Peptide	46	0/3/0	119	AtPRP16, AtPRP14, AtPRP17, AtPRP2, AtPRP5, AtPRP7, AtPRP13, AtPRP15, AtPRP17, AtPRP2
Potri.007G113700 (POPTR_0007s03440)	PRP18	PR Peptide	47	0/4/0	119	AtPRP16, AtPRP14, AtPRP17, AtPRP2, AtPRP5, AtPRP7, AtPRP13, AtPRP15, AtPRP17, AtPRP2
Potri.017G047400 (POPTR_0017s07470)	PRP19	PR Peptide	46	0/3/0	113	AtPRP16, AtPRP14, AtPRP17, AtPRP2, AtPRP5, AtPRP7, AtPRP13, AtPRP15, AtPRP17, AtPRP2
Potri.017G047000 (POPTR_0017s07450)	PRP21	PR Peptide	43	0/3/0	130	AtPRP16, AtPRP14, AtPRP17, AtPRP2, AtPRP5, AtPRP7, AtPRP13, AtPRP15, AtPRP17, AtPRP2
Potri.017G045800 (POPTR_0017s07310)	PRP22	PR Peptide	43	0/3/0	116	AtPRP16, AtPRP14, AtPRP17, AtPRP2, AtPRP5, AtPRP7, AtPRP13, AtPRP15, AtPRP17, AtPRP2
Potri.017G046700 (POPTR_0017s07400)	PRP23	PR Peptide	40	0/3/0	116	AtPRP16, AtPRP14, AtPRP17, AtPRP2, AtPRP5, AtPRP7, AtPRP13, AtPRP15, AtPRP17, AtPRP2
Potri.017G046400 (POPTR_0017s07370)	PRP24	PR Peptide	43	0/3/0	116	AtPRP16, AtPRP14, AtPRP17, AtPRP2, AtPRP5, AtPRP7, AtPRP13, AtPRP15, AtPRP17, AtPRP2
Potri.017G045900 (POPTR_0017s07330)	PRP25	PR Peptide	43	0/3/0	116	AtPRP16, AtPRP14, AtPRP17, AtPRP2, AtPRP5, AtPRP7, AtPRP13, AtPRP15, AtPRP17, AtPRP2
Potri.017G047000 (POPTR_0017s07430)	PRP26	PR Peptide	42	0/3/0	116	AtPRP16, AtPRP14, AtPRP17, AtPRP2, AtPRP5, AtPRP7, AtPRP13, AtPRP15, AtPRP17, AtPRP2
Potri.017G047100	PRP27	PR Peptide	44	0/4/0	134	AtPRP16, AtPRP14, AtPRP17, AtPRP2, AtPRP5, AtPRP7, AtPRP13, AtPRP15, AtPRP17, AtPRP2
Potri.017G045600 (POPTR_0017s07290)	PRP28	PR Peptide	44	0/3/0	126	AtPRP16, AtPRP14, AtPRP17, AtPRP2, AtPRP5, AtPRP7, AtPRP13, AtPRP15, AtPRP17, AtPRP2
Locus ID	Protein Type	Peptide	% Identity	Domain	Locations	
-----------------------	--------------	-----------	------------	--------	-----------------	
Potri.017G046100	PRP	Peptide	42%		Y N	
Potri.007G142000	PRP	Peptide	44%		Y N Xylem	
Potri.017G045000	PRP	Peptide	40%		Y N Roots	
Potri.002G201900	PRP	Peptide	33%		Y N Young leaf	
Potri.017G044800	PRP	Peptide	34%		Y N Young leaf	
Potri.017G044900	PRP	Peptide	39%		Y N	
Potri.018G146200	PRP	Peptide	42%		Y N Young leaf	
Potri.007G114700	PRP	Peptide	38%		Y N	
Potri.017G046800	PRP	Peptide	41%		Y* N	
Potri.017G045700	PRP	Peptide	38%		Y N	
Potri.017G046500	PRP	Peptide	38%		Y* N	
Potri.004G114300	PRP	Peptide	41%		Y N	
Potri.004G114400	PRP	Peptide	41%		Y N	
Potri.017G046000	PRP	Peptide	43%		Y N	

- Protein identifiers of the version 2.0 are shown in the parenthesis. Italics indicates a protein that was identified only by a BLAST search.
- The domains indicated by the Pfam number are: **PF01190.15**, Pollen_Ole_e_I domain (Pollen proteins Ole e I like); **PF14547.4**, Hydrophob_seed domain (Hydrophobic seed protein); **PF02704.12**, GASA domain (Gibberellin regulated protein); **PF02095.13**, Extensin_1 domain (Extensin-like protein repeat).
- Asterisk indicates a protein that is predicted to have a signal peptide either using the sensitive mode in the SignalP website or only if amino acids at the N terminus are discarded.
- Expression data are shown only when available at http://bar.utoronto.ca/efppop/cgi-bin/efpWeb.cgi.
- A locus ID indicates that it is not identified as an HRGP.
Interestingly, 30 short PRPs were identified in poplar, most of which contain a single SPPP repeat at the C-terminus. Nearly all of the 30 proteins show similarity to AtPRP9 and AtPRP10 based on BLAST searches. These novel 30 proteins were grouped into a new class known as the proline-rich peptides (PR peptides) due to their much shorter amino acid length compared to the typical PRPs identified. These PR peptides can be further subdivided based on the presence of two pentapeptide repeat sequences, PPLP and PELPK. The PPLP repeat is present in 23 of these PR peptides and in a few other PRPs and chimeric PRPs, while the PELPK repeat is found only in one PRP and four PR peptides including two that contain PPLP repeats. It is also interesting to note that the 23 genes encoding the PPLP-containing PR peptides are clustered on chromosome 17, while the genes encoding only the PELPK-containing PR peptides are clustered on chromosome 7. All of the 49 PRPs had a predicted signal peptide, while none had a GPI anchor predicted.

Discussion

A Bioinformatics Approach for Identifying HRGPs

As more plant genome sequencing projects are completed, vast amounts of biological data are being generated. Bioinformatics and in particular the BIO OHIO 2.0 program, which was recently revised and improved to provide a more rapid, reliable, and efficient method to identify proteins with biased amino acid compositions and known repetitive motifs [16, 22]. For instance, the BIO OHIO/Prot-Class program can search through over 73,000 proteins in the poplar proteome database and identify those containing at least 50 % PAST in one minute. Using the various search criteria, we have predicted 271 HRGPs in poplar, including 162 AGPs, 60 EXTs, and 49 PRPs.

Although HRGPs were identified primarily through searching for biased amino acid compositions and repetitive motifs, the possibility that other HRGPs could be found in the poplar genome exists. Not all AGPs meet the 50 % PAST threshold, for instance, one classical AGP, PtAGP51C, contains only 49 % PAST. Similar problems exist for identifying chimeric AGPs. Because these proteins may contain only a small AGP region within a much larger sequence, they are likely to contain less than 50 % PAST. The possibility remains that other classes of chimeric AGPs or individual proteins that contain AGP-like regions exist and were not identified by the search parameters used in this study. A similar problem could exist for AG peptides that fall below the 35 % PAST cut-off or for PRPs that fall below 45 % PVKCYT. One possible solution is to simply lower the thresholds and continue to search, but the number of false positives increases markedly as thresholds are lowered, making such searches less feasible. For instance, lowering the threshold for the AG peptide search to 30 % would identify 877 proteins compared to the 194 identified with a 35 % threshold.

In such a scenario, BLAST provides an alternative means to find additional candidate proteins. When using identified proteins as queries, BLAST is effective in finding a few related family members. For example, when using identified FLAs as queries, BLAST is capable of finding additional FLAs that don’t meet the criteria of
the BIO OHIO 2.0 program. However, it is not particularly effective in finding other members of HRGP superfamily and thus could not be utilized in a comprehensive manner.

Indeed, a bioinformatics search that identifies HRGPs, especially chimeric HRGPs without also identifying a very large number of false positives remains difficult. Nevertheless, the search parameters and BLAST searches used here provide an efficient means to identify HRGPs and distinguish them from a limited number of false positive sequences. Of course, future molecular and biochemical analysis of the HRGPs predicted from this study will be necessary to validate these predictions more completely and elucidate their biological functions. Only when such work is completed will it become possible to conclusively distinguish HRGPs from false positive sequences.

HRGPs exist as a spectrum of proteins

Although HRGPs are divided into AGPs, EXTs, and PRPs, the distinction between these categories is not always clear, since many HRGPs appear to exist as members of a spectrum of proteins rather than distinct categories. Indeed, several HRGPs identified here as well as some previously identified in Arabidopsis have characteristics of multiple families and can be considered hybrid HRGPs. For instance, many of the PRPs identified here, particularly some chimeric PRPs, also contain dipeptide repeats that are characteristic of AGPs. As such, it is difficult to determine if these should be considered as AGPs, PRPs, or classified as a hybrid HRGP. Determining whether these are actually AGPs or PRPs would depend on whether the proline residues are hydroxylated and subsequently glycosylated with arabinogalactan polysaccharides, which are characteristic of AGPs. Similarly, PtEXT4 also contains large numbers of characteristic AGP repeats (Additional file 2: Figure S2). In addition, BLAST searches revealed that it is similar in sequence to AtAGP51. Given that it contains many SPPP and SPPPP repeats, it was classified as an EXT. However, there is a possibility that this protein may also be glycosylated with the addition of AG polysaccharides, in which case it could potentially be grouped as a hybrid HRGP. Another example is the novel class identified here, particularly some chimeric PRPs, also contain dipeptide repeats that are characteristic of AGPs. As such, it is difficult to determine if these should be considered as AGPs, PRPs, or classified as a hybrid HRGP. Determining whether these are actually AGPs or PRPs would depend on whether the proline residues are hydroxylated and subsequently glycosylated with arabinogalactan polysaccharides, which are characteristic of AGPs. Similarly, PtEXT4 also contains large numbers of characteristic AGP repeats (Additional file 2: Figure S2). In addition, BLAST searches revealed that it is similar in sequence to AtAGP51. Given that it contains many SPPP and SPPPP repeats, it was classified as an EXT. However, there is a possibility that this protein may also be glycosylated with the addition of AG polysaccharides, in which case it could potentially be grouped as a hybrid HRGP. Another example is the novel class identified here as the PR peptides (Table 4). Although grouped here as PRPs, these short sequences (i.e., PtPRP16-31 and PtPRP37) also contain a SPPP sequence characteristic of an EXT as well as the dipeptide repeats characteristic of AGPs, particularly AP, PA, and VP (Additional file 4: Figure S4).

Other difficulties arise when chimeric HRGPs are considered. For instance, the plastocyanins range from those that contain a majority of AGP repeats and easily pass the 50% PAST test to those that contain only a few AP, PA, SP, VP, and GP repeats to those that contain no characteristic AGP repeats. The exact cutoff between proteins that are considered chimeric AGPs and those that are simply plastocyanin proteins is difficult to determine. Again, biochemical studies would be required to examine which of the proteins are actually glycosylated to make a final determination for classification. However, all those proteins annotated here as PAGs have at least a few characteristic AGP repeats, contain a signal peptide, and most have predicted GPI membrane anchor addition sequences, all of which is consistent with the chimeric AGP designation (Additional file 1: Figure S1).

A similar situation also exists for the chimeric EXTs, such as the PERKS and LRXs. How many SPPP or SPPPP repeats are required for a protein to be considered a LRX and not simply a leucine-rich repeat (LRR) protein? Here the cutoff was arbitrarily set to at least two repeats. As such, there may be LRR proteins that contain one SPPP that are not considered here as LRXs. Another example which illustrates this classification difficulty concerns the four proteins (PtAGP70I, PtAGP71I, PtAGP72I, and PtAGP73I) which are similar to AtPRP13 based on BLAST searches. However, these four proteins also contain numerous SP and AP repeats that would be more characteristic of an AGP. Exactly how proteins such as these should be classified is certainly debatable. Indeed it is human nature to group and classify items to facilitate understanding, while Mother Nature operates without such regard.

Comparisons with previously identified poplar HRGPs

This study identified 271 poplar HRGPs (162 AGPs, 60 EXT, and 49 PRPs) in contrast to the 24 HRGPs (3 AGPs, 10 EXT, and 11 PRPs) identified by Newman and Cooper [18]. The more stringent search criteria for proline-rich tandem repeats and a less comprehensive poplar proteomic database based on EST and NCBI Non-Redundant protein sequences data from 10/04/09 likely account for the fewer poplar HRGPs identified in this earlier study. In addition, homologs of the 15 FLA AGPs reported by Lafarguette et al. [20] in a *Populus tremula × P. alba* hybrid related to *Populus trichocarpa* were also identified in addition to 35 other FLAs. Thus, the present study represents the most comprehensive and detailed picture of the HRGP inventory in poplar to date.

Comparisons with Arabidopsis

Findings here allow for a comparison of the HRGPs identified in Arabidopsis to those in poplar (Table 5). For AGPs, the classical AGPs identified in poplar showed a similar number as in Arabidopsis. Specifically, 27 classical AGPs including six lysine-rich AGPs were identified in poplar, while 25 classical AGPs including
three lysine-rich AGPs were identified in Arabidopsis. Among other AGPs, particularly notable is the large increase the number of FLAs, PAGs, and AG peptides in poplar compared to Arabidopsis. While 21 FLAs, 17 PAGs and 16 AG peptides were identified in Arabidopsis, 50 FLAs, 39 PAGs and 35 AG peptides are identified here in poplar. There is also a noticeable increase in the number of other chimeric AGPs in poplar compared to Arabidopsis. Here, 11 other chimeric AGPs were identified in poplar, while only 6 were found in Arabidopsis.

Among EXTs, the classical EXTs with large numbers of SPPPP repeats are markedly decreased in poplar, while similar numbers of the chimeric EXTs exist in both species. The reduction in the number of classical EXTs in poplar is dramatic and likely indicates that many EXT genes or EXT functions are dispensable in poplar, and therefore not conserved in evolution. A similar loss of EXTs has also been observed in analysis of certain monocot species [unpublished data,18]. Moreover, far fewer poplar EXTs contain putative cross-linking YXX sequences compared to Arabidopsis, and this can be largely explained by the reduced number of classic EXT sequences, which typically contain such cross linking sequences. The various chimeric EXTs, namely the LRXs/PEXs, PERKs, and FHs, are conserved in both species. Although FHs were not reported in Showalter et al. [16], a reexamination of the Arabidopsis proteome shows 6 FH sequences (AtFH1-At3g2550, AtFH5-At5g54650, AtFH8-At1g70140, AtFH13-At5g58160, AtFH16-At5g07770, and AtFH20-At5g07740) contain two or more SPPP sequences. These 6 formins are included in Table 5 and are a subset of the 21 reported formins in Arabidopsis [35]. Similar to the chimeric EXTs, the short EXTs are also conserved in Arabidopsis and poplar. The short EXTs are a particularly interesting class because EXTs are not known to have GPI membrane anchors, a feature commonly found in many AGPs and associated with proteins found in lipid rafts [36]. The finding that several of these short EXTs encode a predicted GPI-anchor sequence are conserved in poplar and Arabidopsis certainly prompts the question of what role these proteins are playing in the plant. Currently, no publications verifying their biochemical existence or examining their roles exist, but this class stands out in terms of having interesting candidates for further investigation, particularly with respect to confirming their plasma membrane localization, hydroxylation, and glycosylation.

PRPs are similar in both species with the notable exception of the PR-peptides, which is a much expanded class in poplar compared to Arabidopsis, which is now recognized to have only one PR-peptide following a reexamination prompted by this study. All of the PR-peptides in poplar are similar in sequence with most containing LPPLP repeats and having a single SPPP repeat at the C terminus, although some contained PELPK repeats. In addition, most of these PR-peptides are similar to AtPRP9 and AtPRP10 based on BLAST analysis; both of these Arabidopsis proteins contain PELPK repeats as well. Indeed, AtPRP9 is quite short and similar in sequence to the PR peptides found in poplar but lacks the C terminal SPPP repeat. However, this is the only such protein found in Arabidopsis, while 30 were observed in poplar. AtPRP10 contains some similarity in sequence but is much longer than the poplar PR-peptides. Indeed, the large number of LPPLP- and PELPK-containing PR-peptides in poplar clustered respectively in two chromosomal locations indicates that these two gene subfamilies likely result from tandem gene duplication events, analogous to a unique, clustered set of PEHK-containing PRP genes in the grape family [18].

Although most sub-families of HRGPs exist in both the Arabidopsis and poplar inventories, certain species-specific differences do exist, which is reflected in the difference of number of certain groups and the total number of HRGPs (271 in poplar versus 168 in Arabidopsis). Precisely why certain classes of HRGPs are
increased or decreased in abundance in a particular species remains to be determined, but these results lay the groundwork for future experimentation in this area.

Poplar HRGPs genome 2.0 release and expression analysis

The study revealed that the poplar genome 3.0 release is quite different from 2.0 release in terms of HRGPs. Only 33% of HRGPs identified in 3.0 are the same as counterparts in 2.0, others may differ from a few amino acids in sequence to a distinct start and/or stop position. For several such cases, a green highlight indicated a likely signal sequence placed internally, either because these signal sequences were at the N terminus in the 2.0 release or they should be at N terminus based on analysis of sequences in this study.

In addition, tissue/organ-specific HRGP expression data were obtained from the poplar eFP browser. However, this database does not contain all HRGP data, and it only accepts query IDs in poplar genome version 2.0 format. Judging from the available information, one could observe that HRGPs in general have high expression in seedlings, leaves, and reproductive tissues (Tables 2, 3, and 4). In particular, a number of FLAs were specifically expressed in xylem, while some PAGs were found to be highly expressed in male catkins. Many PRPs have high expression in seedlings and leaves. Interestingly, several LRXs are found to be uniquely expressed in male catkins; this finding is consistent with previous research in Arabidopsis and rice that a group of LRXs, or PEXs [37].

Pfam analysis of poplar HRGPs

All 271 poplar HRGPs identified in this study were subjected to Pfam analysis to identify specific domains within them. Pfam domains were found in 160 of the 271 proteins (59%). More specifically, Pfam domains were identified in 105 of the 162 AGPs, 32 of the 62 EXTs, and 23 of the 49 PRPs. In particular, Pfam analysis excelled at finding domains within chimeric HRGPs, such as FLAs, PAGs, LRXs, PERKs, and FH EXTs. In contrast, such analysis often failed to find domains in classical AGPs or EXTs, possibly due to the variable sequences and numbers of sequence repeats associated with many of the HRGPs. Interestingly, many of the PRPs were found to contain Pollen Ole domains and Hydrophob seed domains. Pfam analysis also has merit in identifying domains in the chimeric HRGPs identified in the study. Indeed, while Pfam analysis alone is not sufficient for identifying HRGPs in a comprehensive manner, it can add valuable information to identified HRGPs, and thus a Pfam analysis module will likely be incorporated into future versions of the BIO OHIO program.

Conclusions

The new and improved BIO OHIO 2.0 bioinformatics program was used to identify and classify the current inventory of HRGPs in poplar. This information will allow researchers to determine the structure and function of individual HRGPs and to explore potential industrial applications of these proteins in such areas as plant biofuel production, food additives, lubricants, and medicine. Other plant proteomes/genomes can also be examined with the program to provide their respective HRGP inventories and facilitate comparative evolutionary analysis of the HRGP family in the plant kingdom [16, 38]. Finally, while this program was specifically developed for HRGP identification, it can also be used to examine other plant or non-plant genomes/proteomes in order to identify proteins or protein families with any particular amino acid bias and/or amino acid sequence motif, making it useful throughout the tree domains and six kingdoms of life.

Additional files

- Additional file 1: Figure S1. Protein sequences encoded by the predicted AGP genes in *Populus trichocarpa*. The colored sequences at the N and C terminus indicate predicted signal peptides (green) and GPI anchor addition sequences (light blue) if present in the sequences. AP, PA, SP, TP, VP, and GP repeats (yellow) and lysine-rich regions (olive) are also indicated. Additionally, EXT SP3 (blue), SP4 (red), SP5 (purple) repeats and sequences typical of PRPs, PPV repeats, are indicated (pink) if present. Note that green font indicates a predicted signal peptide using the sensitive mode from the SignalP website. Internal green highlights indicate the presence of a predicted signal peptide only if amino acids at the N terminus are discarded. (PDF 47 kb)

- Additional file 2: Figure S2. Protein sequences encoded by the predicted EXT genes in *Populus trichocarpa*. The colored sequences at the N and C terminus indicate predicted signal peptides (green) and GPI anchor addition sequences (light blue) if present in the sequences. AP, PA, SP, TP, VP, and GP repeats are also indicated (yellow) in the sequences. Note that green font indicates a predicted signal peptide using the sensitive mode from the SignalP website. Internal green highlights indicate the presence of a predicted signal peptide only if amino acids at the N terminus are discarded. (PDF 69 kb)

- Additional file 3: Figure S3. Protein sequences encoded by the predicted AGP genes in *Populus trichocarpa*. The colored sequences at the N and C terminus indicate the predicted signal peptides (green) and GPI anchor addition sequences (light blue) if present in the sequences. The SP3 (blue), SP4 (red), SP5 (purple), and YXY (dark red) repeats are also indicated. Additionally, EXT SP3 (blue), SP4 (red), SP5 (purple), and YXY (dark red) repeats are also indicated in the sequences. The sequences typical of AGPs, specifically AP, PA, SP, TP, VP, and GP repeats, are also indicated (yellow) in the sequences. Note that green font indicates a predicted signal peptide using the sensitive mode from the SignalP website. Internal green highlights indicate the presence of a predicted signal peptide only if amino acids at the N terminus are discarded. (PDF 23 kb)

- Additional file 4: Figure S4. Protein sequences encoded by the predicted PRP genes in *Populus trichocarpa*. The colored sequences at the N terminus indicate the predicted signal peptides (green). PPV (pink) repeats typical of PRPs are indicated. Repetitive motifs PLLP (teal) and PELPK (dark yellow) are also indicated. Additionally, EXT SP3 (blue) repeats, YXY (dark red) and sequences typical of AGPs, specifically AP, PA, SP, TP, VP, and GP repeats, are also indicated (yellow) in the sequences. Note that green font indicates a predicted signal peptide using the sensitive mode from the SignalP website. Internal green highlights indicate the presence of a predicted signal peptide only if amino acids at the N terminus are discarded. (PDF 47 kb)
Abbreviations
AGPs: Arabinogalactan-proteins; EKTs: Extensins; FHs: Fornin homology proteins; FLAs: Fasciclin-like AGPs; GPs: Glycosylphosphatidylinositol; HRGPs: Hydroxyproline-rich glycoproteins; LRRs: Leucine-rich repeat extensins; PAGs: Plastocyanin AGPs; PERKs: Proline-rich extensin-like receptor protein kinases; PRPs: Proline-rich proteins

Acknowledgments
The authors thank Carol Morris Showalter for reading this manuscript and providing valuable comments and suggestions.

Funding
No funding was obtained for this study.

Availability of data and materials
All relevant data are within the paper and its Additional files 1, 2, 3 and 4.

Authors’ contributions
Conceived and designed the experiments: AMS BDK XL. Performed the experiments: BDK XL. Analyzed the data: AMS BDK XL. Contributed reagents/materials/analysis tools: JL LW. Wrote the paper: AMS. All authors read and approved the final manuscript.

Competing interests
The authors declare that they have no competing interests.

Consent for publication
Not applicable.

Ethics approval and consent to participate
Not applicable.

Author details
1Department of Environmental and Plant Biology, Molecular and Cellular Biology Program, Ohio University, 504 Porter Hall, Athens, OH 45701-2979, USA. 2Russ College of Engineering and Technology, Center for Intelligent, Distributed and Dependable Systems, Ohio University, Athens, OH 45701-2979, USA.

Received: 26 April 2016 Accepted: 29 September 2016
Published online: 21 October 2016

References
1. Showalter AM. Structure and function of plant cell wall proteins. Plant Cell. 1993;5:9–23.
2. Kieliszewski MJ, Lamport DT. Extensin: Repetitive motifs, functional sites, posttranslational codes and phylogeny. Plant J. 1994;5:157–72.
3. Nothnagel EA. Proteoglycans and related components in plant cells. Int Rev Cytol. 1997;174:195–291.
4. Cassab GI. Plant cell wall proteins. Annu Rev Plant Physiol Plant Mol Biol. 1998;49:281–309.
5. Jose-Enaryol M, Puigdomenech P. Plant cell wall glycoproteins and their genes. Plant Physiol Biochem (Paris). 2003;38:97–108.
6. Seifert GJ, Roberts K. The biology of arabinogalactan proteins. Annu Rev Plant Biol. 2007;58:137–61.
7. Tan L, Leykam JF, Kieliszewski MJ. Glycosylation motifs that direct arabinogalactan addition to arabinogalactan-proteins. Plant Physiol. 2003;132:1362–9.
8. Tan L, Qiu F, Lampart DTA, Kieliszewski MJ. Structure of a hydroxyproline (Hyp)-arabinogalactan polysaccharide from repetitive Ala-Hyp expressed in transgenic Nicotiana tabacum. J Biol Chem. 2004;279:13156–65.
9. Tan L, Showalter AM, Egeland J, Hernandez-Sanchez A, Doblin MS, Bacic A. Arabinogalactan-proteins and the research challenges for these enigmatic plant cell surface proteoglycans. Front Plant Sci. 2012;3:1–10.
10. Shpak E, Barbare J, Leykam JF, Kieliszewski MJ. Contiguous Hydroxyproline residues direct hydroxyproline arabinosylation in Nicotiana tabacum. J Biol Chem. 2001;276:11272–8.
11. Youl JI, Bacic A, Oxley D. Arabinogalactan-proteins from Nicotiana alata and Pyrus communis contain glycosylphosphatidylinositol membrane anchors. Proc Natl Acad Sci U S A. 1998;95:7921–6.
12. Sherrier DJ, Prime TA, Dupree P. Glycosylphosphatidylinositol-anchored cell surface proteins from Arabidopsis. Electrophor. 1999;20:2027–35.
13. Svetek J, Yadav MP, Nothnagel EA. Presence of a glycosylphosphatidylinositol lipid anchor on rose arabinogalactan proteins. J Biol Chem. 1999;274:14724–33.
14. Schultz CJ, Runswick MR, Johnson XL, Jones BJ, Gaspar YM, Bacic A. Using genomic resources to guide research directions. The arabinogalactan protein gene family as a test case. Plant Physiol. 2002;129:1448–63.
15. Graham MA, Silverstein KAT, Cannon SB, VandenBosch KA. Computational identification and characterization of novel genes from legumes. Plant Physiol. 2004;135:1179–97.
16. Showalter AM, Kepler B, Lichtenberg J, Gu D, Welch LR. A bioinformatics approach to the identification, classification, and analysis of hydroxyproline-rich glycoproteins. Plant Physiol. 2010;153:5485–513.
17. Ma H, Zhao J. Genome-wide identification, classification, and expression analysis of the arabinogalactan protein gene family in rice (Oryza sativa L.). J Exp Bot. 2010;61:2647–68.
18. Newman AM, Cooper JB. Global analysis of proline-rich tandem repeat proteins reveals broad phylogenetic diversity in plant secretomes. PLoS One. 2011;6:10313711/pone.0023167.
19. Fleming MB, Decker SR, Bedinger PA. Investigating the role of extensin proteins in poplar biomass recalcitrance. BioResources. 2016;11:4727–44.
20. Lafarguette F, Leple J-C, Déjardin A, Laurans F, Costa G, Lesage-Descauses MC, et al. Poplar genes encoding fasciclin-like arabinogalactan proteins are highly expressed in tension wood. New Phytol. 2004;164:107–21.
21. Tuskan GA, Difazio S, Jansson J, Bohlmann J, Grigoriev I, Hellsten U, et al. The genome of black cottonwood, Populus trichocarpa (Torr. & Gray). Science. 2006;313:1596–604.
22. Lichtenberg J, Keppler BD, Conley T, Gu D, Burns P, Welch LR, et al. Prot-Class: a bioinformatics tool for protein classification based on amino acid signatures. Nat Sci. 2012;4:1161–4.
23. Petersen TN, Brunak S, von Heijne G, Nielsen H. SignalP 4.0: discriminating signal peptides from transmembrane regions. Nat Methods. 2011;8:785–6.
24. Eisenhaber B, Wildpaner M, Schultz CJ, Borner GHH, Dupree P, Eisenhaber F. Glycosylphosphatidylinositol lipid anchoring of plant proteins. Sensitive prediction from sequence- and genome-wide studies for Arabidopsis and rice. Plant Physiol. 2003;131:1691–701.
25. Fowler TJ, Bernhardt C, Tiemeyer M. Characterization and expression of four proline-rich cell wall protein genes in Arabidopsis encoding two distinct subsets of multiple domain proteins. Plant Physiol. 1999;121:1081–91.
26. Finn RD, Coggill P, Eberhardt RY, Eddy SR, Mistry J, Mitchell AL, et al. The Pfam protein families database: towards a more sustainable future. Nucleic Acids Res. 2016;44:D279–85.
27. Wilkins O, Nahal H, Foong J, Provart NJ, Campbell MM. Expansion and diversification of the Populus R2R3-MYB family of transcription factors. Plant Physiol. 2000;149:981–93.
28. Schultz CJ, Ferguson KL, Ahrns LM, Bohnmann J, Grigoriev I, Hellsten U, et al. Poplar genes encoding fasciclin-like arabinogalactan proteins reveals broad phylogenetic diversity in plant secretomes. PLoS ONE. 2013;8:e69255.
29. Brady JD, Sadler IH, Fry SC. Di-isodityrosine, a novel tetrameric derivative of tyrosine in plant cell wall proteins: a new potential cross-link. Biochem J. 1999;363:323–7.
30. Schonbauer LS, Kieliszewski MJ, Upham BL, Alizadeh H, Lamport DTA. Isolation of pI 4.6 extensin peroxidase from tomato cell suspension cultures and identification of Val-Tyr-Lys as putative intermolecular cross-link site. Plant J. 1996;9:347–57.
31. Brady JD, Sadler IH, Fry SC. Pulcherosine, an oxidatively coupled trimer of tyrosine in plant cell wall proteins: Its role in cross-link formation. Phytochemistry. 1998;47:343–59.
32. Held MA, Tan L, Kamyab A, Hare M, Shpak E, Kieliszewski MJ. Di-isodityrosine and identification and characterization of novel genes from legumes. Plant Physiol. 2004;135:1179–97.
33. Heldman AM, Lamb RA, Hellman P, Hake S, Hake J, Madsen J. Isolation of pI 4.6 extensin peroxidase from tomato cell suspension cultures and identification of Val-Tyr-Lys as putative intermolecular cross-link site. Plant Physiol. 1996;113:333–7.
34. Nakhamchik A, Zhao Z, Provart NJ, Shiu SH, Keatley SK, Cameron RK, et al. A comprehensive expression analysis of the Arabidopsis proline-rich extensin-like receptor kinase gene family using bioinformatic and experimental approaches. Plant Cell Physiol. 2004;45:1875–81.
35. Čvrčková F, Grunt M, Žárský V. Expression of GFP-mTalin reveals an actin-related role for the Arabidopsis Class II formin AtFH12. Biol Plant. 2012;56:431–40.

36. Borner GHH, Sherrier DJ, Weimar T, Michaelson LV, Hawkins ND, MacAskill A, et al. Analysis of detergent-resistant membranes in Arabidopsis. Evidence for plasma membrane lipid rafts. Plant Physiol. 2005;137:104–16.

37. Baumberger N, Doesseger B, Guyot R, Diet A, Parsons RL, Clark MA, et al. Whole-genome comparison of leucine rich repeat extensins in Arabidopsis and rice: a conserved family of cell wall proteins form a vegetative and a reproductive clade. Plant Physiol. 2003;131:1313–26.

38. Liu X, Wolfe R, Welch LR, Domozych DS, Popper ZA, Showalter AM. Bioinformatic identification and analysis of extensins in the plant kingdom. PLoS One. 2016;doi:10.1371/journal.pone.0150177