Inhibitors of 3-hydroxy-3-methylglutaryl coenzyme A reductase (‘statins’) inhibit the rate-limiting step in cholesterol synthesis. Rodent studies indicate that statins are carcinogenic (Newman and Hulley, 1996). Other evidence, however, suggests that statins may inhibit the growth of cancer cells by triggering apoptosis (Muller et al, 1998; Dimitroulakos et al, 2002; Wong et al, 2002), inhibiting angiogenesis (Weis et al, 2002; Park et al, 2002), or impairing the metastatic process (Alonso et al, 1998; Kusama et al, 2002). We undertook a matched case–control study of the relation between statin use and cancer risk.

SUBJECTS AND METHODS

We carried out this study using information from the General Practice Research Database (GPRD). General practitioners enter patient data into computerised medical records and use the software to generate prescriptions, providing a complete record of medications (Jick et al, 1991; Jick et al, 2003). Cancer diagnoses are highly reliable when validated against consultants’ letters and hospital discharge summaries (Jick et al, 1997), and age-specific time trends in the incidence of breast cancer, for example, are closely similar to those reported by the Office for National Statistics (Kaye et al, 2000).

Base population

The base population comprised all subjects 50–89 years old who used antihyperlipidaemic drugs or had a recorded diagnosis of untreated hyperlipidaemia. We also included a random sample of 50 000 subjects of the same ages who neither used antihyperlipidaemic drugs nor had a recorded diagnosis of hyperlipidaemia. We excluded subjects diagnosed with any cancer other than the study cancer diagnoses (see below), and restricted our analysis to subjects who had at least 3 years of follow-up time in the GPRD (median 6.4, maximum 13.7).

Cases and controls

We identified all subjects who had a first-time recorded diagnosis of any of 13 cancer diagnoses during 1990–2002. The study cancers were melanoma (79 cases) and carcinomas of the oesophagus (100), stomach (126), pancreas (125), colon (329), rectum (183), lung (605), prostate (569), kidney (39), bladder (227), breast (698), ovary (91), and endometrium (73). We identified up to five controls for each case matching on year of birth, sex, general practice, year of entry into the GPRD, and index date.

Exposure

We analysed exposure to statins and nonstatins (fibrates, cholestyramine, colestipol, nicotinic acid, and acipimox). Subjects with a recorded diagnosis of hyperlipidaemia but no treatment composed a separate exposure category. We considered subjects to be current statin users if they received a prescription for a statin within the year before their index date and their first prescription was recorded more than a year before the index date. The median and maximum durations of statin use among current users were 29 and 124 months. The reference exposure group comprised subjects who had no history of hyperlipidaemia and no recorded use of antihyperlipidaemic drugs.

Potential confounders

Body mass index was estimated based on each subject’s first recorded weight within 1–5 years before the index date. Smoking was categorised as current, past, none, or unknown. Analyses were also adjusted for the average visit frequency during follow-up in the GPRD before the index date (0–1, 2–5, or 6+ visits per year).

Statistical methods

We used conditional logistic regression to estimate the relative risk (odds ratio) for each of the study cancers in relation to exposure
Characteristics of cases and controls

Table 1

Cancer	Cases	Controls			
Oesophageal	9	34	79	0.8	0.3 – 1.8
Stomach	4	35	64	0.4	0.1 – 1.3
Colon	25	115	76	1.0	0.6 – 1.7
Rectal	23	59	70	1.6	0.9 – 2.8
Pancreatic	12	53	91	0.8	0.4 – 1.6
Lung	43	216	78	0.9	0.6 – 1.3
Melanoma	7	19	5.0	2.5	0.8 – 7.3
Breast	40	196	60	0.9	0.6 – 1.3
Endometrial	3	21	5.9	0.5	0.1 – 1.9
Ovarian	6	25	6.1	1.0	0.4 – 2.7
Prostate	62	204	8.2	1.3	1.0 – 1.9
Bladder	19	74	7.1	1.2	0.7 – 2.3
Kidney	3	7	8.0	1.0	0.3 – 4.2

*Current statin use is defined as at least one recorded prescription for a statin during the year before the index date (with or without current use of other antihyperlipidaemic drugs) with the first such prescription recorded at least 1 year before the index date.

Current statin use

In all, 256 cases (7.9%) and 1066 controls (7.2%) were currently exposed to statins. Among current statin users, the overall relative risk for any study cancer was 1.0 (95% confidence interval 0.9 – 1.2) compared to the reference exposure group. For no specific cancer type was there a significantly altered relative risk among current statin users (Table 2). We did, however, find marginally increased risks of 3.5 (1.1 – 10.9) and 4.2 (1.0 – 16.6) for colon cancer and rectal cancer among current statin users of 60 months or longer (estimates based on five and four exposed cases, respectively). However for both these cancers, the relative risks among current statin users with 24 – 59 months exposure (0.9 [0.4 – 1.8] and 1.4 [0.6 – 3.2]) were similar to those with less than 24 months duration (0.8 [0.4 – 1.9] and 1.2 [0.5 – 3.0], respectively).

Current use of other antihyperlipidaemic drugs

For no specific cancer there was a significantly altered relative risk among current users of other antihyperlipidaemic drugs.

Past use of statins and/or other antihyperlipidaemic drugs

Among 169 past statin users with no exposure to other antihyperlipidaemic drugs we observed in- creased relative risks for breast cancer (2.0; 1.2 – 3.1), endometrial cancer (5.3; 1.4 – 20.6), and ovarian cancer (5.5; 1.5 – 21.2). However, because the median duration of statin use among past statin users was 2 months (interquartile range <1 – 12 months), these results are not compatible with a biologically plausible association between past statin use and cancer risk.

Untreated hyperlipidaemia

Among this group, we observed significantly increased risks of colon cancer (1.8; 1.2 – 2.8), prostate cancer (1.5; 1.1 – 2.0), and bladder cancer (1.9; 1.2 – 3.1).

DISCUSSION

This study provides evidence that statin use is not associated with a substantially increased or decreased risk of the cancers we studied. However, we found that untreated hyperlipidaemia was associated with significantly increased risks of colon (1.8; 1.2 – 2.8), prostate (1.5; 1.1 – 2.0), and bladder cancer (1.9; 1.2 – 3.1).

Although the results of one randomised study suggested an increased risk of breast cancer associated with pravastatin use (Sacks et al, 1996), subsequent meta-analyses of clinical trials (Hebert et al, 1997; Bjerre and LeLorier, 2001; Pfeffer et al, 2002) have indicated that statin use is not associated with any increase in cancer risk.

In a nested case–control study using administrative databases in Montreal, Blais et al (2000) found a decreased risk of cancer (0.72; 0.57 – 0.92) among statin users compared with users of other lipid lowering drugs. As the base population included only users of lipid-lowering drugs, this study could not directly evaluate whether statins users have a higher or lower risk of cancer than nonusers. In another case–control study using data from interviews conducted in hospitals in four US metropolitan areas, Coogan et al (2002) found an increased risk of breast cancer (1.5; 1.0 – 2.3) among statin users compared with nonusers, but this was largely related to carcinoma in situ and may have been due to detection bias. In a study based on the Saskatchewan population, Beck et al (2003) found a slightly increased risk of breast cancer among older statin users (1.15, 0.97 – 1.37), but the association was more evident among short- than long-term users, arguing against a causal effect.
In summary, the data we present here are consistent with the hypothesis that statin use does not have a substantial effect on cancer risk. Longer follow-up of subjects in the GPRD is needed to determine whether these results remain consistent after more prolonged periods of statin treatment.

ACKNOWLEDGEMENTS
We are indebted to the general practitioners who contribute information to the GPRD for their continuing effort and cooperation. This study was funded by a grant from AstraZeneca.

REFERENCES
Alonso DF, Farina HG, Skilton G, Gabri MB, De Lorenzo MS, Gomez DE (1998) Reduction of mouse mammary tumor formation and metastasis by lovastatin, an inhibitor of the mevalonate pathway of cholesterol synthesis. *Breast Cancer Res Treat* 50: 83–93

Beck P, Wysowski KD, Downey W, Butler-Jones D (2003) Statin use and the risk of breast cancer. *J Clin Epidemiol* 56: 280–285

Bjerre LM, LeLorier J (2001) Do statins cause cancer? A meta-analysis of large randomized clinical trials. *Am J Med* 110: 716–723

Blais L, Desgagné A, LeLorier J (2000) 3-Hydroxy-3-methylglutaryl coenzyme A reductase inhibitors and the risk of cancer. A nested case–control study. *Arch Intern Med* 160: 2363–2368

Coogan PF, Rosenberg L, Palmer JR, Strom BL, Zaubier AG, Shapiro S (2002) Statin use and the risk of breast and prostate cancer. *Epidemiology* 13: 262–267

Dimitroulakos J, Marthin WH, Tokunaga J, Irish J, Gullane P, Penn LZ, Kamel-Reid S (2002) Microarray and biochemical analysis of lovastatin-induced apoptosis of squamous cell carcinomas. *Neoplasia* 4: 337–346

Hebert PR, Gaziano JM, Chan KS, Hennekens CH (1997) Cholesterol lowering with statin drugs, risk of stroke, and total mortality. An overview of randomized trials. *JAMA* 278: 313–321

Jick H, Jick SS, Derby LE (1991) Validation of information recorded on general practitioner based computerized data resource in the United Kingdom. *BMJ* 302: 766–768

Jick H, Jick S, Derby LE, Vasilakis C, Myers MW, Meier CR (1997) Calcium-channel blockers and risk of cancer. *Lancet* 349: 525–528

Jick SS, Kaye JA, Vasilakis-Scaramozza C, García Rodriguez LA, Ruigomez A, Meier CR, Schlienger RG, Black C, Jick H (2003) Validity of the General Practice Research Database. *Pharmacotherapy* 23: 686–689

Kaye JA, Derby LE, Melero-Montes MM, Quinn M, Jick H (2000) The incidence of breast cancer in the General Practice Research Database compared with national cancer registration data. *Br J Cancer* 83: 1556–1558

Kusama T, Mükai M, Iwasaki T, Tatsuta M, Matsumoto Y, Akedo H, Inoue M, Nakamura H (2002) 3-hydroxy-3-methylglutaryl-coenzyme A reductase inhibitors reduce human pancreatic cancer cell invasion and metastasis. *Gastroenterology* 122: 308–317

Muller C, Bockhorn AG, Klusmeier S, Kiehl M, Roeder C, Kalthoff H, Koch OM (1998) Lovastatin inhibits proliferation of pancreatic cancer cell lines with mutant as well as wild-type K-ras oncogene but has different effects on protein phosphorylation and induction of apoptosis. *Int J Oncol* 12: 717–723

Newman TB, Hulley SB (1996) Carcinogenicity of lipid-lowering drugs. *JAMA* 275: 55–60

Park HJ, Kong D, Iruela-Arispe L, Begley U, Tang D, Galper JB (2002) 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors interfere with angiogenesis by inhibiting the geranylgeranylation of RhoA. *Circ Res* 91: 143–150

Pfeffer MA, Keech A, Sacks FM, Cobbe SM, Tonkin AJ, Byington RP, Davis BR, Friedman CP, Braunwald E (2002) Safety and tolerability of pravastatin in long-term clinical trials: prospective Pravastatin Pooling (PPP) Project. *Circulation* 105: 2341–2346

Sacks FM, Pfeffer MA, Moye LA, Rouleau JL, Rutherford JD, Cole TG, Brown L, Warnica J, Arnold JM, Wun CC, Davis BR, Braunwald E (1996) The effect of pravastatin on coronary events after myocardial infarction in patients with average cholesterol levels. Cholesterol and Recurrent Events Trial investigators. *N Engl J Med* 335: 1001–1009

Weis M, Heeschen C, Glassford AJ, Cooke JP (2002) Statins have biphasic effects on angiogenesis. *Circulation* 105: 739–745

Wong WW, Dimitroulakos J, Minden MD, Penn LZ (2002) HMG-CoA reductase inhibitors and the malignant cell: the statin family of drugs as triggers of tumor-specific apoptosis. *Leukemia* 16: 508–519