ONE REMARK ON CONSTRUCTION OF SEPARATED QUOTIENT-SPACE

Yu.A. Neretin

Datum 31 December 1995

Abstract. We discuss elementary constructions of boundaries of symmetric spaces.

Let M be a compact metric space. Let $M = \bigcup_{\alpha \in A} M_\alpha$ be a partition of M ($M_\alpha \cap M_\beta = \emptyset$ if $\alpha \neq \beta$). Then the quotient-space A has canonical structure of a topological space. Recall that the set $P \subset A$ is closed if and only if $\bigcup_{\alpha \in P} M_\alpha$ is a closed subset in M. Let a_1, a_2, \ldots be a sequence in A. Let $a \in A$. Then $a_j \to a$ if there exist points $m_j \in M_{\alpha_j}, m \in M_\alpha$ such that $m_j \to m$ in M.

The space A is not need to be separated in Hausdorff sense. We are interested in the following question: how to construct separated analog of the quotient-space A?

1. Preliminaries. Hausdorff convergence

Let $N \subset M$ be a closed subset. Denote by M_ε the set of all points $m \in M$ satisfying the condition: there exist $n \in N$ such that $\rho(m, n) < \varepsilon$. Let $[M]$ be the space of all closed subsets in M. Hausdorff distance $d(N, N')$ in $[M]$ between N and N' is the infimum of $\varepsilon > 0$ such that $N \subset N_\varepsilon'$ and $N_\varepsilon' \subset N$.

Recall that the metric space $[M]$ is compact. Recall also two simple facts on Hausdorff convergence. Denote by \bar{S} the closure of the set S. Denote by $B_\varepsilon(m)$ the ball $\rho(m, n) < \varepsilon$.

Lemma 1. Let $N_j \in [M]$. Let K_σ $(\sigma \in \Sigma)$ be all limit points of the sequence N_j. Then

a) $\bigcup_{\sigma \in \Sigma} K_\sigma$ coincides with the set of all $m \in M$ such that for all $\varepsilon > 0$ the set $N_j \cap B_\varepsilon(m)$ is nonempty for infinite number of j.

b) $\bigcap_{\sigma \in \Sigma} K_\sigma$ coincides with the set of all $m \in M$ such that for all $\varepsilon > 0$ the set $N_j \cap B_\varepsilon(m)$ is nonempty for sufficiently large j.

Keywords and phrases. Hausdorff distance, symmetric space, complete collineations, complete symmetric varieties, linear relation, Satake-Furstenberg boundary, Bruhat-Tits building.
2. Construction of separated quotient-space

Let a partition $M = \bigcup_{\alpha \in A} M_\alpha$ satisfies the following condition

*) for each $B \subset A$ the set $\bigcup_{\alpha \in B} M_\alpha$ is the union of elements of the partition.

Fix an open subset $A \subset A$ such that quotient-topology on A is separated. Denote by $A \subset [M]$ the set of subsets M_α, $\alpha \in A$. Let our data satisfy the condition

**) the map $\alpha \mapsto M_\alpha$ is a homeomorphism of the spaces A and A.

Definition. The separated quotient-space $[[A]]$ is the closure of A in Hausdorff metrics.

Remark. Of course the construction depends on the set $A \subset A$.

3. Description of the set $[[A]]$

By lemma 1 and the condition *) the elements $N \in [[A]]$ are unions of elements M_α of the partition. Hence we associate to each $N \in [[A]]$ subset $S_N \subset A$ of all $\sigma \in A$ such that $M_\alpha \subset N$. Denote by A the set of all subsets S_N. By construction we have canonical bijection $[[A]] \leftrightarrow [A]$.

The following proposition is evident.

Lemma 2. Let $S \subset A$. Then the following conditions are equivalent

a) $S \in [A]

b) There exist a sequence $a \in A$ such that each limit point of a_j is an element of S and each element $s \in S$ is a limit of the sequence a_j in the quotient-topology on A.

Elements of $[A]$ we call admissible subsets.

4. Example: complete collineations

Let M be the Grassmann manifold Gr_n of all n-dimensional subspaces in $\mathbb{C}^n \oplus \mathbb{C}^n$. Let $\lambda \in \mathbb{C}^* = \mathbb{C} \setminus 0$. Let $V \in Gr_n$. Define the subspace $\lambda V :$

$$h \oplus p \in V \iff h \oplus \lambda p \in \lambda V$$

where $h \in \mathbb{C}^n \oplus 0$, $p \in 0 \oplus \mathbb{C}^n$. Consider the partition of Gr_n into \mathbb{C}^*-orbits. Let $Op \subset Gr_n$ be the space of graphs of invertible operators. Of course the space Op coincide with the general linear group $GL_n(\mathbb{C})$. The quotient space $Op/\mathbb{C}^* = GL_n(\mathbb{C})/\mathbb{C}^*$ is the group $PGL_n(\mathbb{C})$ of invertible operators defined up to scalar multiplier.

We want to apply our construction to the space $M = Gr_n$ and $A = PGL_n(\mathbb{C})$. We have to describe all admissible subsets in Gr_n/\mathbb{C}^*.

Example. Let $n = 2$. Consider the sequence $Q_n = \begin{pmatrix} 1 & 0 \\ 0 & n \end{pmatrix} \in PGL_2(\mathbb{C})$. Then the set of limits of Q_n in Gr_2/\mathbb{C}^* consists of points V_1, \ldots, V_5 (= subspaces in $\mathbb{C}^2 \oplus \mathbb{C}^2$) enumerated below:
\[V_1 : (x, y; 0, 0) \]
\[V_2 : (x, y; 0, y) \]
\[V_3 : (x, 0; 0, y) \]
\[V_4 : (x, 0; x, y) \]
\[V_5 : (0, 0; x, y) \]

where \(x, y \in V \). The subspaces \(V_1, V_3, V_5 \) are stable points of the group \(\mathbb{C}^* \). The \(\mathbb{C}^* \)-orbits of \(V_2, V_4 \) are 1-dimensional complex curves.

Definition. Let \(V \in Gr_n \). Then

a) *Kernel* \(\text{Ker} \ V = V \cap (\mathbb{C}^n \oplus 0) \)

b) *Image* \(\text{Im} \ V \) is the projection of \(V \) to \(0 \oplus \mathbb{C}^n \).

c) *Domain* \(\text{Dom} \ V \) is the projection of \(V \) to \(\mathbb{C}^n \oplus 0 \).

d) *Indefiniteness* \(\text{Indef} \ V = V \cap (0 \oplus \mathbb{C}^n) \).

Remark. Let \(V \in Gr_n \) Then the subspace \(V \) induces by the obvious way the invertible operator

\[\text{Dom} V / \text{Ker} V \to \text{Im} V / \text{Indef} V \]

We denote this operator by \(< V > \).

Definition. *Hinge* in \(\mathbb{C}^n \) is a collection

\[\mathcal{P} = (Q_0, P_1, Q_1, P_2, Q_2, \ldots, P_k, Q_k) \]

where \(Q_j, P_j \) are elements of \(Gr_n \) defined up to multiplier and 0.

\[Q_j = \text{Ker} Q_j \oplus \text{Indef} Q_j \]
\[P_j \neq \text{Ker} P_j \oplus \text{Indef} P_j \]

1. For each \(j = 1, 2, \ldots, k \)

\[\text{Ker} P_j = \text{Ker} Q_j = \text{Dom} P_{j+1} \]
\[\text{Im} P_j = \text{Im} Q_j = \text{Indef} P_{j+1} \]

2.

\[Q_0 = \mathbb{C}^n \oplus 0 ; \text{Dom} P_1 = \mathbb{C}^n \]
\[Q_k = 0 \oplus \mathbb{C}^n ; \text{Im} P_k = \mathbb{C}^n. \]

Remark. Let \(P \) be the graph of an invertible operator \(\mathbb{C}^n \to \mathbb{C}^n \). Then

\[(\mathbb{C}^n \oplus 0, P, 0 \oplus \mathbb{C}^n) \]

is a hinge.

Remark. The elements \(Q_0, \ldots, Q_{k+1} \) of a hinge are completely defined by the elements \(P_1, \ldots, P_k \). The subspaces \(Q_j \) are fixed points of the group \(\mathbb{C}^* \). The \(\mathbb{C}^* \)-orbits of \(P_j \) are 1-dimensional complex curves.
Theorem. The space $[PGL_n]$ of all admissible subsets in Gr_n/C^* coincides with the space of all hinges.

The space $[PGL_n]$ coincide with the complete collineation space constructed by Semple (see [2]). It is a smooth algebraic variety and the group PGL_n is an open dense subset in $[PGL_n]$. On equivalence of these two constructions see see [8]. Complete collineations is a partial case of complete symmetric varieties, see De Concini, Procesi [3].

5. Example. Furstenberg-Satake compactification of riemannian symmetric space

We will only discuss the case $PGL_n(\mathbb{R})/SO(n)$. Consider the space $\mathbb{R}^n \oplus \mathbb{R}^n$ provided by a skew-symmetric bilinear form $\begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$. Let \mathcal{L} be the grassmannian of all Lagrangian subspaces in $\mathbb{R}^n \oplus \mathbb{R}^n$. Denote by \mathbb{R}^* the multiplicative group of real positive numbers. This group acts on \mathcal{L} by multiplications of linear relations on scalars.

Denote by R the open subset in \mathcal{L} consisting of graphs of operators $S : \mathbb{R}^n \to \mathbb{R}^n$. It is easy to see that

$$\{\text{matrix } S \text{ is symmetric}\} \iff \{\text{the graph of } S \text{ is an element of } \mathcal{L}\}$$

The group $GL_n(\mathbb{R})$ acts on R by the formula $g : S \mapsto g^t S g$. The stabilizer of the point $S = E$ is the orthogonal group $O(n)$. Hence $GL_n(\mathbb{R})$-orbit X of E is a homogeneous space $GL_n(\mathbb{R})/O(n)$. Points of X correspon to positive definite matrices S.

Now we apply the construction of the sections 2-3 to the space \mathcal{L} and to the open subset $X = GL_n(\mathbb{R})/O(n)$. Then the completion consists of hinges

$$P = (Q_0, P_1, Q_1, \ldots, P_k, Q_k)$$

such that $P_j \in \mathcal{L}, Q_j \in \mathcal{L}$ and the operators $< P_j >$ (see section 4) are positive definite.

6. Example. Boundary of Bruhat-Tits building

Let Q_p be a p-adic field. Let M be the space of all \mathbb{Z}_p-submodules in \mathbb{Q}_p. Let $B \subset M$ be the space of all lattices. The group \mathbb{Q}_p^* act on M in a natural way. Then the corresponding separated quotient-space consists of collections

$$(R_0, T_1, R_1, \ldots, T_k, R_k)$$

where $0 = R_0 \subset T_1 \subset R_1 \subset T_2 \ldots \subset R_k = \mathbb{Q}_p^n$ are elements of M defined up to multiplier, R_j are subspaces and images of T_j in R_j/R_{j-1} are lattices.

I thanks C. De Concini, S.L.Tregub and E.B.Vinberg for discussion of this subject.

Bibliography

1. E. Study, Über die Geometrie der Kegelschnitte, insbesondere deren charakteristische Probleme, Math. Ann., 27 (1886), 51-58.
2. I.G. Semple, *The variety whose points represent complete collineations of S_r on S'_r*, Rend. Math. 10 (1951), 201-280.

3. Fürstenberg, H., *A Poisson formula for semisimple Lie groups*, Ann. of Math. (2) 77 (1963), 335-386.

4. Satake, I., *On representations and compactifications of symmetric Riemannian spaces*, Ann. of Math. (2) 71 (1960), 77-110.

5. Alguneid, A.R., *Complete quadrics primals in four dimensional space*, Proc. Math. Phys. Soc. Egypt, 4 (1952), 93-104.

6. C. De Concini, C. Prochesi, *Complete symmetric varieties*, Lect. Notes Math., 996, 1-44.

7. Oshima, T., Sekiguchi, I., *Eigenspaces of invariant differential operators on an affine symmetric space*, Invent. Math. 57 (1980), 1-81.

8. Neretin, Yu. A., *On universal completions of complex classical groups*, Funct. Anal. Appl., 26:1.

9. Vinberg E.B., *On reductive algebraic semigroups*, Adv. Sov. Math., volume dedicated to E.B.Dynkin, to appear.

10. Neretin Yu.A., *Hinges and Study-Semple-Furstenberg-Satake-De Concini-Procesi-Oshima boundary*, to appear.

Address

Moscow State Institute of electronic and mathematics
Current address: Max-Planck-Institute für Mathematik, Bonn
E-mail address: neretin@mpim-bonn.mpg.de; neretin@matan.miemstu.msk.su