A test of the equivalence principle(s) for quantum superpositions

Patrick J Orlando1, Robert B Mann2,3, Kavan Modi1 and Felix A Pollock1

1 School Of Physics & Astronomy, Monash University, Clayton, Victoria 3800, Australia
2 Department of Physics and Astronomy, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
3 Perimeter Institute for Theoretical Physics, 31 Caroline Street North, Waterloo, Ontario N2L 2Y5, Canada

E-mail: felix.pollock@monash.edu

Received 22 May 2016, revised 25 July 2016
Accepted for publication 11 August 2016
Published 9 September 2016

Abstract
We propose an experimental test of the quantum equivalence principle introduced by Zych and Brukner (arXiv:1502.00971), which generalises the Einstein equivalence principle to superpositions of internal energy states. We consider a harmonically trapped spin-$\frac{1}{2}$ atom in the presence of both gravity and an external magnetic field and show that when the external magnetic field is suddenly switched off, various violations of the equivalence principle would manifest as otherwise forbidden transitions. Performing such an experiment would put bounds on the various phenomenological violating parameters. We further demonstrate that the classical weak equivalence principle can be tested by suddenly putting the apparatus into free fall, effectively ’switching off’ gravity.

Keywords: equivalence principles, quantum superposition of mass, Newtonian gravity

(Some figures may appear in colour only in the online journal)

Classical equivalence principles—At least since the days of Galileo and Newton, it has been observed that local acceleration under gravity is independent of an object’s mass [1, 2]. This peculiarity has led to the proposition of gravitational equivalence principles which, if broken, represent a departure from our current understanding of gravity. The weak equivalence principle (WEP) states that all objects, starting with the same position and velocity, and subject only to a gravitational field will follow the same trajectory, irrespective of the object’s
Mathematically, this statement translates to the inertial prescription of mass being equal to the gravitational prescription. Early tests of the WEP consisted of dropping similar objects of differing mass or measuring the period of pendulums [4]. These have now been superseded by extremely accurate torsion balance experiments [4–6], whose null results place limits as stringent as one part in 10^{13} on WEP violation. Hoping to detect violations at very low mass scales, free-fall experiments have been performed with systems as light as individual neutrons, finding no deviation from equivalence [7–10].

The mass–energy relation of special relativity [11], $E = mc^2$, dictates that internal energy of a system must contribute to its mass; different internal energy states correspond to different effective masses for the system: $m_k = m_k^{\text{int}} + E_k^{\text{ext}}/c^2$, where the index $k = \{R, I, G\}$ denotes quantities corresponding to the rest, inertial, and gravitational masses respectively and m_k^{int} is the mass of the system when the internal energy is at its lowest. The ‘rest’ internal energy E_k^{int} is derived from the Hamiltonian that generates internal dynamics in the absence of external motion. By explicitly labelling the inertial and gravitational contributions, we examine the possibility that they differ from each other. The gravitational effects of the mass–energy equivalence can be measured in the weak-field limit—where a Newtonian description is mostly satisfactory—avoiding the need for the complete machinery of general relativity. An example is the gravitational redshift observed in the seminal Pound–Rebka experiment, which can be calculated by coupling the effective mass $m = h\nu/c^2$ to a Newtonian potential [12].

The condition $m_R = m_I = m_G$ embodies the Einstein equivalence principle (EEP), which requires the mass–energy of a system to be a universal property for all observers. The EEP can be deconstructed into three distinct conditions: (a) WEP holds, i.e., $m_I = m_G$, which implies that the internal energy contributes equally to inertia and weight; (b) the validity of special relativity, or local Lorentz invariance (LLI), which requires internal energy to contribute equally to both inertia and rest mass; (c) measurement outcomes are independent of their position in spacetime, or local position invariance (LPI); a consequence of LPI is that internal energy contributes equally to both weight and rest mass [13]. If any two of WEP, LLI, and LPI are satisfied, then the third is also satisfied, and it has been conjectured—in the context of classical general relativity—that violation of one implies the violation of all three in any reasonable theory of gravity [14]. However, there is a yet stronger, quantum equivalence principle, proposed by Zych and Brukner [15], that may not hold even if the three principles above do.

Quantum equivalence principle—One of the major goals of modern physics is to identify gravitational effects in quantum mechanics that are not present in classical theory. This has motivated several equivalence principle tests using quantum systems [16–20], where the effect of gravity on spatial superpositions can be probed. In each of these experiments, the quantum system in question is a cold gas of two different atomic species, whose relative motion is used to test for violations (in the case of the STE-QUEST experiment—[20]—a range of other tests, including gravitational redshift comparisons, were also proposed).

Here, on the other hand, rather than using atoms of different masses, we propose a test which distinguishes between the gravitational motion of different internal energy states of the same particle. This introduces an extra richness to the problem, since, due to the possibility of superposition, the particle’s internal energy does not always have a well defined value. Following [15], we treat this by promoting the mass to an operator of the form

$$M_k = m_k^{\text{int}} + \frac{1}{c^2}H_k^{\text{int}},$$ \hspace{1cm} (1)$$

where $k = \{R, I, G\}$ again refers to rest, inertial and gravitational masses; m_k is the mass of the system when the internal energy is its lowest energy eigenstate; and the internal
Hamiltonians encapsulate the effective contributions to the respective masses. Once more, the subscripts allow for the possibility that the effective weight and inertia of the internal energy may differ, e.g., H_I^{int} and H_G^{int} are not a priori equivalent. Note that this is exactly how the spin energy splitting enters into the relativistic Dirac equation (with $H^{\text{int}}_{\text{int}} = H_I^{\text{int}} = H_G^{\text{int}}$) for neutral fermions [21]. Classical tests of the equivalence principle, and those described earlier in this section, only probe systems in eigenstates of their internal Hamiltonian, thereby testing the diagonal elements of the mass operator in (1). Whereas, the quantum version of EEP is expressed in terms of operator equations: namely, LLI requires $M_L = M_R$, LPI requires $M_G = M_R$ and WEP requires $M_L = M_G$. These impose additional constraints on the off-diagonal elements of the operators, which allow for the equivalence principle to hold classically while being violated for superpositions of internal energy.

For a spin-$1/2$ atom, the internal Hamiltonian in the presence of an external field of magnitude B is

$$H_R^{\text{int}} = \frac{1}{2} \mu B \left(\left| + \frac{1}{2} \right\rangle \left\langle + \frac{1}{2} \right| - \left| - \frac{1}{2} \right\rangle \left\langle - \frac{1}{2} \right| \right).$$

(2)

In general, we do not assume that the internal energy contributes identically to rest, inertial and gravitational mass. We encompass this by introducing equivalence violating operators $\xi_k(H_R^{\text{int}})$ and $\xi_G(H_R^{\text{int}})$, which respectively quantify deviations from LLI and LPI per unit energy. These ξ_k then satisfy

$$H_k^{\text{int}} = H_R^{\text{int}} + \mu B \xi_k(H_R^{\text{int}}) \quad \text{with} \quad \xi_k(H_R^{\text{int}}) = \begin{bmatrix} a_k & b_k \\ b_k^* & c_k \end{bmatrix}.$$

(3)

In order to make the violating parameters $\xi_k(H_R^{\text{int}})$ dimensionless, we have chosen to explicitly take out a factor of μB in their definition. Any nonlinear violation would manifest as different values of the $\{a_k, b_k, c_k\}$ (all implicit functions of H_R^{int} in general) for different external field strengths. It is worth noting that these violations could also be derived from a generalised Dirac equation, following a similar approach to that in [22], albeit with an anomalous spin coupling—since the atoms we are considering are neutral.

Since the Hamiltonians in (3) have negative eigenvalues, our analysis differs slightly from that in [15], where all couplings to internal degrees of freedom are relative to the lowest energy state. The original, strictly positive definition for H_I^{int} and H_G^{int} was proposed in order to prevent negative contributions to the energy of the particle. Here we need not worry about such contributions, since the Dirac equation, which accurately models the dynamics of highly relativistic particles in a magnetic field, includes the same symmetry between positive and negative spin states as in (2).

In this letter, we propose an experiment to probe the quantum equivalence principle using a harmonic oscillator with two internal levels. Using the mass operator formalism, we calculate transitions caused by the induced coupling between internal and external degrees of freedom and find that certain transitions are only allowed when either WEP, LLI, or LPI is violated. We go on to discuss the sensitivity of a candidate system to these violations and the relative strength of thermal noise.

Setup—In order to design the simplest possible test of the quantum equivalence principle, we consider the situation where a spin-$1/2$ atom is trapped in a harmonic potential. This has the advantage of being both mathematically tractable and physically realisable. Most physical systems behave like a harmonic oscillator close to equilibrium, and (approximate) two-level systems are relatively common. In some cases this may be the ground and excited state of a trapped atom, but in this treatment we require that the energy splitting can be
externally controlled and will thus consider a spin $\frac{1}{2}$ degree of freedom, whose energy we can manipulate with an external magnetic field.

One potential experimental system satisfying these requirements is a spin $\frac{1}{2}$ atomic isotope held in a magneto-optical trap, as is commonly used in cold atoms experiments [23]—taking into account the higher spins of many commonly trapped atomic species would be a straightforward generalisation of the results we present here. Since all atoms have internal structure beyond their ground state spin, one might be concerned about further contributions to the effect described in this letter. However, we show in appendix C that any additional internal energy levels do not affect our results, as long as the presence of the external field does not significantly perturb them.

Our proposed tests require the whole experimental apparatus to be suspended at some height x in a gravitational field, and, for some tests, that it may be dropped. This has the effect of ‘switching off’ gravity as it freely falls, in accordance with the EEP. A diagram of the setup is shown in figure 1. We begin by writing down the full Hamiltonian, including the mass operators:

![Figure 1](image-url)
The Hamiltonian consists of the rest mass–energy operator $M_R c^2$, which is no longer completely degenerate; the modified kinetic energy operator, dependent on the inertial mass operator M_I; the harmonic potential energy, with spring constant κ; and the gravitational potential energy, dependent on gravitational mass operator M_G. This consistently associates the appropriate internal Hamiltonian H^{int} with its external coupling, and assumes that the harmonic potential couples to the same degree of freedom as couples to gravity. Henceforth, it will be convenient to define $\omega_0 = \sqrt{\kappa/m_I}$ as the natural frequency of the oscillator when in its lowest internal energy eigenstate.

After inserting the definition of the mass operator in (1) and approximating $1/M_I$ through a Taylor expansion, (see appendix A for details), we arrive at the following approximation for the Hamiltonian:

$$H = D + H^{\text{int}} + \frac{p^2}{2m_I} + \frac{1}{2} m_I \omega_0^2 \left(x + \frac{g}{\omega_0^2} \right)^2 + \frac{1}{m_I c^2} \left\{ -\frac{p^2}{2m_I} H^{\text{int}} + m_I g x H^{\text{int}} \right\}$$

$$+ \mathcal{O} \left(\frac{1}{m_I c^4} \right),$$

which is a valid approximation provided that $\|H^{\text{int}}\|/m_I c^2 \ll 1$. Above, $\nu = m_G/m_I$ and its deviation from unity indicates a violation of the classical version of the WEP. Finally, terms corresponding to the rest mass energy $m_R c^2$ and the mean gravitational energy $1/2 m_I g^2 / \kappa$ have been collected into the constant D. This constant merely generates a global phase, and its value does not affect our results.

We now describe an experiment which can isolate each of the parameters in these equivalence violating operators, thereby testing each of the conditions of the quantum equivalence principle.

Proposed equivalence tests—The additional terms in (5), introduced by the mass operator, entangle the typically uncoupled spin and oscillator subspaces. In general, the eigenstates of this Hamiltonian do not have a closed form, due to the coupling between internal and external degrees of freedom. However, we use the fact that $m_I c^2$ is much larger than the internal energy difference μB to define a dimensionless parameter

$$\lambda = \frac{\mu B}{m_I c^2}. \quad (6)$$

The eigenstates of H can be computed as a perturbative expansion in λ and the known eigenstates of H_0 through the expressions

$$|\Psi_{n,s}\rangle = |\psi_{n,s}^{(0)}\rangle + \lambda |\psi_{n,s}^{(1)}\rangle + \mathcal{O}(\lambda^2),$$

$$|\psi_{n,s}^{(1)}\rangle = \sum_{(l,r)=[n,s]} \frac{|\psi_{l,r}^{(0)}\rangle \langle \psi_{l,r}^{(0)}|}{E_{n,s}^{(0)} - E_{l,r}^{(0)}} |\psi_{l,r}^{(0)}\rangle,$$

where $V = (H - H_0)/\lambda$ is the perturbation and the indices $\{n, s\}$ and $\{q, r\}$ enumerate the entire set of unperturbed eigenstates of H_0 in terms of their harmonic and spin quantum numbers (see appendix B for a detailed derivation). The superposition of product states above suggests that if we start in some eigenstate of the full Hamiltonian $|\Psi\rangle$, and measure in the basis of product states $|\psi_{n,s}^{(0)}\rangle = |n, s\rangle$ (by effectively decoupling internal and external degrees

5
of freedom), then the probabilities of different outcomes depend on the square of the coefficients in (8). The coefficients themselves depend on the perturbation V, which has been carefully expressed in (3) to account for the possibility that the internal energy may not couple identically to rest, inertial and gravitational mass.

In practice, it is difficult to prepare the system in an arbitrary eigenstate of the full Hamiltonian—especially since we are assuming that it comprises unknown parameters—but by cooling the system, we can prepare it in its ground state. The fact that the ground state can be reliably prepared many times makes it an ideal choice for this test. Starting from (8) we compute the first order corrected ground state:

$$
|\Psi_{0, -}\rangle = \left| 0, -\frac{1}{2}\right\rangle - \lambda \left(\frac{\hbar \omega_0 b_I^*}{4\mu B} + \frac{b_G^* \nu g^2}{\mu B \omega_0^2} \right) \left| 0, +\frac{1}{2}\right\rangle + \frac{a_I - \frac{1}{2}}{4\sqrt{2}} \left| 2, -\frac{1}{2}\right\rangle + \frac{b_I^*}{4\sqrt{2}} \left(1 + \frac{\mu B}{2\hbar \omega_0} \right) \left| 2, +\frac{1}{2}\right\rangle + \sqrt{\frac{g^2 m_I}{2\hbar \omega_0}} \left(a_G - \frac{1}{2} \right) \left| 1, -\frac{1}{2}\right\rangle + \frac{b_G^*}{1 + \frac{\mu B}{\hbar \omega_0}} \left| 1, +\frac{1}{2}\right\rangle \right) \right) (9)
$$

First order corrections to all eigenstates including their calculation can be found in appendix B. The ground state corrections contain parameters of the equivalence violating operators $\xi_+(H^{\text{eq}}_R)$ in (3). Thus if the system is cooled in the true ground state of H and a measurement is made in the basis of H_0, the probabilities for observing different outcomes depend explicitly on the magnitude of these parameters. Moreover, an outcome with spin equal to $+\frac{1}{2}$ will only be observed if the quantum version of the equivalence principle has been violated (up to first order in λ).

Measuring the violating amplitudes—The difficulty then lies in being able to measure the state of the oscillator in the basis of the unperturbed states. One method for doing this is as follows: (i) Cool the system into the ground state of the full Hamiltonian H. (ii) Turn off the magnetic field and perform an energy measurement on the oscillator to determine its number state. (iii) Perform a spin polarising measurement to determine the spin state. The statistics of these measurements are sufficient to deduce the magnitudes of the a_k and b_k^* terms of the equivalence violating operators $\xi_+(H^{\text{eq}}_R)$.

We can also determine the relative phase between b_I and b_G provided we can independently measure the weak equivalence violating parameter ν. To do this, a secondary experiment is required, where the oscillator is prepared in the ground state $|0\rangle$ of the Hamiltonian H_0 by cooling in the absence of the external magnetic field—in which case the internal degree of freedom is irrelevant. The whole apparatus is then dropped—moving into a freely falling frame where the value of g is effectively zero. This free fall Hamiltonian H_f is related to H_0 by the displacement operator

$$D(\alpha) = \exp[i\sqrt{2}\alpha p], \quad \text{with} \quad \alpha = \nu g \sqrt{\frac{m_I}{2\hbar \omega_0}}, \quad (10)$$

as $H_f = D(\alpha) H_0 D(-\alpha)$. An energy measurement of the oscillator in the freely falling frame would yield, on average...
Table 1. Transition probabilities to different decoupled spin and oscillator states when the external magnetic field is switched off. Observation of these transitions indicates violation of a related equivalence principle. The parameter $\nu = m_G/m_\gamma$, if different from unity, represents a classical violation of the WEP, while any violation leading to non-zero probabilities comes from considering the relativistic coupling of the internal energy. In addition the violations labelled QLLI and QLPI are unique to quantum mechanical tests, and do not necessarily indicate violation of the corresponding classical principles. If only one of (Q)LLI or (Q)LPI is violated, then a violation of (Q)WEP is implicated. If both violations occur then their size must be calculated in order to confirm that the (Q)WEP is indeed also violated. The probability labelled QWEP* enables measurement of the relative phase between the two quantum violating parameters. The final columns show the order-of-magnitude of the coefficients in the second column for atoms in a 1T external field with a typical optical dipole trapping frequency of $\sim 10\text{kHz};$ they are the transition probabilities with unit violations, i.e., they assume $b_k = a_k = c_k = 1 \forall k.$

| State $| (n, s) $ | Probability $\times (m_\gamma e^2/\mu B)^2$ | Principle Tested | $\mathcal{O}(\text{Coefficient})$ | ^3He | ^{171}Yb |
|---|---|---|---|---|---|
| 0, $+\frac{1}{2}$ | $\frac{1}{4} \frac{\hbar \omega_0}{2\mu B} \left[m_\gamma + m_\gamma \nu e^2 G b \right]$ | QWEP* | 10^{-40} | 10^{-42} |
| 1, $-\frac{1}{2}$ | $\frac{m_g^2}{2\hbar \omega_0} \left(a_G - \frac{1}{2} \right)^2$ | LPI | 10^{-36} | 10^{-39} |
| 1, $+\frac{1}{2}$ | $\frac{m_g^2}{2\hbar \omega_0} \left| [b_G]^2 \right|$ | QLPI | 10^{-44} | 10^{-46} |
| 2, $-\frac{1}{2}$ | $\left(a_G - \frac{1}{2} \right)^2$ | LLI | 10^{-35} | 10^{-40} |
| 2, $+\frac{1}{2}$ | $\left[b_G^2 \right]$ | QLLL | 10^{-43} | 10^{-46} |

\[
\langle H \rangle = \langle 0 | D(\alpha) H_0 D(-\alpha) | 0 \rangle = \frac{\hbar \omega_0}{2} + \frac{m_\gamma \nu \omega^2}{2\omega_0^2} G^2, \tag{11}
\]

thereby constituting a direct measurement of the weak equivalence violating parameter ν. This allows isolation of the terms a_k and b_k^\pm, but not b_k and c_k. The latter parameters only appear in the first order correction to the state $| 0, +\frac{1}{2} \rangle$, which, being the first excited state of H_0, may be difficult to reliably and repeatedly prepare. We have calculated this corrected spin-up state in appendix B.2.

Our results are summarised in table 1: the first two columns list the possible transitions and their corresponding probabilities, the middle column indicates which equivalence principle an observed transition violates, and the final two columns list the order of magnitude of the coefficients appearing in the second column for ^3He and ^{171}Yb. These are the probabilities one would observe with unit violation, i.e., we have set $a_G = b_G = b = G = 1$ (note that in the second and fourth lines, this is also the transition probability when the equivalence principle holds). These isotopes were chosen since they have a spin $\frac{1}{2}$ ground state with sizable magnetic moments of $2.128 \mu_N$ and $0.492 \mu_N$ respectively. Lastly, we have used reasonable experimental parameters of $\omega_0 = 10 \text{kHz}$ and $B = 1 \text{T}$ to calculate the order of magnitude estimates.
Discussion—Though we find minuscule transition probabilities with unit violation, we cannot a priori say anything about the size of the violating parameters. In fact, the suppressing factor of λ^2 could be obfuscating significant violations at the quantum level, especially when it comes to the parameters b_I and b_G, which have hitherto not been tested experimentally and may be non-zero even if the EEP holds classically. The measurement of any violations would have significant implications for our understanding of quantum gravity.

In particular, certain string theories predict a fluctuating violation that scales inversely with mass–energy \[24, 25\], thus preventing its observation in experiments with larger masses. Minimal extensions of the standard model also allow for violations of LLI \[26–29\] which, when the fields are also coupled weakly to gravity, lead to violations of WEP in general \[30\].

Such extensions, along with approaches which take a generalised Dirac equation as a starting point \[22, 27, 31\], allow for spin-dependent violations even in the non-relativistic regime (zeroth order in c) \[32\]. However, the anomalous Zeeman splitting manifested by standard model extension violations does not depend on the magnetic field strength, since it arises from fundamental violations of Lorentz symmetry rather than an intrinsic difference in the way internal energy couples to gravity and inertia \[33\]. Many of the possible violating parameters have already been experimentally bounded \[34\], but not those that appear at the first relativistic order for neutral atoms with spin and which depend on the external field strength. These are the kind of violations we suggest could be tested here.

It can be seen from table 1 that, though larger masses have a stronger coupling to gravity, the probability of observing a violation decreases with the mass of the atom. This is because the effect we are proposing to test depends on the relative size of the internal energy splitting μB to the particle’s mass–energy $m_I c^2$, which is larger for lighter isotopes. On the other hand, many of the probabilities scale inversely with the trap frequency—the transition to $(n, s) = \left(1, \frac{1}{2}\right)$ scales with ω_0^{-3}, for example. This means that with incremental improvements in technology, the precision to which violations can be tested will increase manifold.

Additionally, one might expect that thermal noise could obscure meaningful results in a realistic setup. However, at temperatures of ~ 890 pK, to which single Helium atoms have been cooled \[35\], the thermal population of the first excited state of H in (5) is ~ 100 times smaller than the corresponding transition probability in table 1 (using the same parameters—see appendix D for details). Moreover, any further cooling would reduce this number by orders of magnitude. To a good approximation, thermal noise is limited by the smaller of the oscillator energy $\hbar \omega_0$ and the Zeeman energy μB. Reducing the former to increase the experimental signal would thus necessitate a corresponding decrease in temperature.

Finally, the setup we have described in this letter will surely motivate the design of more sensitive experiments to test the quantum equivalence principle. For example, a simple extension would be to consider ensembles of atoms in a single harmonic trap—the weak interactions of neutral fermions would be unlikely to affect our results significantly. Furthermore, it is well known that quantum entanglement can enhance measurement precision by a factor that scales with the square root of the number of entangled parties \[36\]; perhaps it can be employed here to overcome the low probabilities of violating events.

Acknowledgments

We thank Lucas Céleri and Kristian Helmerson for helpful conversations. This work was supported in part by the Natural Sciences and Engineering Research Council of Canada.
Appendix A. Derivation of the complete Hamiltonian

The Hamiltonian for a simple harmonic oscillator in a uniform gravitational field is given by

\[H = \frac{p^2}{2m_I} + \frac{1}{2}kx^2 + m_Ggx, \]

(A.1)

where we have made a clear distinction between inertial and gravitational mass. To promote this to the mass operator formalism some modifications are necessary. Typically the rest mass energy is omitted from the Hamiltonian, but its promotion to an operator warrants its inclusion, which then automatically accounts for the internal energy of the system. The Hamiltonian with mass operators is therefore

\[H = M_Ke^2 + \frac{p^2}{2M_I} + \frac{1}{2}\kappa x^2 + M_Ggx, \]

(A.2)

where the \(M_k \) are the respective mass operators defined in the previous section. Inserting the definition of the mass operator, we obtain

\[H = \left(M_R + \frac{1}{c^2}H_R^{\text{int}}\right)e^2 + \frac{p^2}{2m_I}\left(1 + \frac{1}{m_Ic^2}H_I^{\text{int}}\right) + \frac{1}{2}\kappa x^2 + \left(m_G + \frac{1}{c^2}H_G^{\text{int}}\right)gx. \]

(A.3)

Provided that \(\frac{\|H^{\text{int}}\|}{m_Ic^2} \ll 1 \), we can Taylor expand the denominator on the \(P^2 \) operator to first order, finding

\[H = m_Re^2 + H_R^{\text{int}} + \frac{p^2}{2m_I}\left(1 - \frac{1}{m_Ic^2}H_I^{\text{int}}\right) + \frac{1}{2}\kappa x^2 + \left(m_G + \frac{1}{c^2}H_G^{\text{int}}\right)gx \]

\[= m_Re^2 + H_R^{\text{int}} + \frac{p^2}{2m_I} + \frac{1}{2}\kappa x^2 + m_Ggx + \frac{1}{m_Ic^2}\left\{-\frac{p^2}{2m_I}H_I^{\text{int}} + gxH_G^{\text{int}}\right\}. \]

(A.4)

Let us now introduce the parameter \(\omega_0 = \frac{g}{\sqrt{m_I}} \), which is the natural frequency of the oscillator when in its lowest energy eigenstate, and complete the square for the position operator:

\[H = m_Re^2 + H_R^{\text{int}} + \frac{p^2}{2m_I} + \frac{1}{2}m_I\omega_0^2\left(x + \frac{g}{\omega_0^2} \right)^2 + \frac{1}{2}m_I\omega_0^2 \]

\[+ \frac{1}{m_Ic^2}\left\{-\frac{p^2}{2m_I}H_I^{\text{int}} + gxH_G^{\text{int}}\right\}. \]

(A.5)

Appendix B. Complete first order corrected eigenstates

The unperturbed Hamiltonian \(H_0 \) has eigenstates \(|\psi_{n,s}^{(0)}\rangle = |n\rangle \otimes |s\rangle \), where \(n = 0, 1, 2, \ldots \) are the number states corresponding to canonical momentum and position operators \(P \) and \(X \), and \(s \in \left\{ +\frac{1}{2}, -\frac{1}{2} \right\} \) denote spin up and down respectively (we will sometimes abbreviate \(\left\{ +\frac{1}{2}, -\frac{1}{2} \right\} \) to \{+, -\} in subscripts). We can express the Hamiltonian in (A.5) in the form

\[H = H_0 + \lambda V, \]

(B.1)
where H_0 is Hamiltonian with known Eigenstates, $\lambda \ll 1$ is a dimensional parameter and V is the perturbation. The eigenstates of H can then be expressed as a sum $|\psi_{h,0}^{(k)}\rangle = \sum_{k=0}^{\infty} X^k |\psi_{n,s}^{(k)}\rangle$, where $|\psi_{n,s}^{(k)}\rangle$ is the kth order correction to the eigenstate of H_0 with quantum numbers n and s.

We identify $\lambda = (\mu B)/(m_I c^2)$ to be the perturbation parameter and then define

$$V = -\frac{p^2}{2m_I} S_I + g x S_G,$$

where $S_k = \frac{H_k^{int}}{\mu B} = \left[\begin{array}{c} a_k - \frac{1}{2} \ b_k^* \\ b_k \ c_k + \frac{1}{2} \end{array} \right].$$

We need only concern ourselves with first order corrections to the eigenstates, which are given by

$$|\psi^{(1)}_{n,s}\rangle = \sum_{(l,r)=[n,s]} \frac{\langle \psi_{l,r}^{(0)} | V | \psi_{n,s}^{(0)} \rangle}{E_{l,r}^{(0)} - E_{n,s}^{(0)}} |\psi_{l,r}^{(0)}\rangle,$$

in which $[l, r]$ and $[n, s]$ enumerate the entire set of eigenstates of H_0. This can be expressed more explicitly as

$$|\psi^{(1)}_{0,0}\rangle = \frac{\langle \psi_{0,0}^{(0)} | V | \psi_{0,0}^{(0)} \rangle}{E_{0,0}^{(0)} - E_{0,0}^{(0)}} + \sum_{x \in \{-+, -\}} \frac{\langle \psi_{n,s}^{(0)} | V | \psi_{0,0}^{(0)} \rangle}{E_{n,s}^{(0)} - E_{0,0}^{(0)}} |\psi_{n,s}\rangle.$$ \hfill (B.4)

The energy differences in the denominator are given by $E_{n,s}^{(0)} - E_{l,r}^{(0)} = \hbar \omega_0 (n - l) + \mu B \Delta \nu$, with $\Delta \nu = 1, \Delta \nu = -1$ and $\Delta \nu = 0$.

Now we calculate the perturbation matrix elements. For simplicity we denote $|\psi_{n,s}^{(0)}\rangle = |n, s\rangle$ and for clarity we compute each term separately. Expanding P and X in terms of creation and annihilation operators, we find

$$\langle k | \hat{P}^2 | n \rangle = m_I \frac{\hbar \omega_0}{2} \left(2n + 1 \right) \delta_{k,n} - \sqrt{(n + 1)(n + 2)} \delta_{k,n+2} - \sqrt{n(n - 1)} \delta_{k,n-2},$$

$$\langle k | \hat{X} | n \rangle = \frac{\hbar}{2m_I \omega_0} \left[\sqrt{n + 1} \delta_{k,n+1} + \sqrt{n} \delta_{k,n-1} \right].$$

This leads to the following expression for the inertial contribution to the numerator of (B.4):

$$\langle k, r | -\frac{p^2}{2m_I} \otimes S_I | n, s \rangle = \frac{1}{2m_I} \langle k | \hat{P}^2 | n \rangle \langle l | S_I | s \rangle = -S_{l,r,s} \frac{\hbar \omega_0}{4} \left(2n + 1 \right) \delta_{k,n}$$

$$- \sqrt{(n + 1)(n + 2)} \delta_{k,n+2} - \sqrt{n(n - 1)} \delta_{k,n-2},$$

where $\langle l | S_I | s \rangle = S_{l,r,s}$.

Moving to the second term, there is a slight complication. The number states belong to the operator $X = x + \frac{\hbar \omega_0}{2}$, however the perturbation appears in terms of the operator x. Since the two are related by a displacement, the problem is easily solved:

$$\langle k, r | m_I g x H_0^{\text{int}} | n, s \rangle = S_{G,r,s} m_I g \left(X - \frac{\hbar \omega_0}{2} \right) |n\rangle$$

$$= S_{G,r,s} m_I g \left(\sqrt{n + 1} \delta_{k,n+1} + \sqrt{n} \delta_{k,n-1} - \frac{\hbar \omega_0}{2} \delta_{k,n} \right).$$

Before substituting the above expressions into (B.4), it is convenient to group terms in the correction that correspond to a change in number state, a spin flip, or both.
\[|\psi_{n,s}^{(1)} \rangle = \frac{\langle \psi_{n,s}^{(0)} | V | \psi_{n,s}^{(0)} \rangle}{\mu B \Delta_{sr}} |\psi_{n,s}^{(0)} \rangle + \sum_{k \neq n} \left\{ \frac{\langle \psi_{k,s}^{(0)} | V | \psi_{n,s}^{(0)} \rangle}{\hbar \omega_0 (n-k)} |\psi_{k,s}^{(0)} \rangle + \frac{\langle \psi_{n,s}^{(0)} | V | \psi_{n,s}^{(0)} \rangle}{\hbar \omega_0 (n-k) + \mu B \Delta_{sr}} |\psi_{n,s}^{(0)} \rangle \right\}. \] (B.9)

Beginning with the first term, we take the elements from (B.7) and (B.8), which correspond to \(\kappa = n \),

\[\langle \psi_{n,s}^{(0)} | V | \psi_{n,s}^{(0)} \rangle = -S_{s,s,t} \frac{\hbar \omega_0}{4} (2n + 1) - S_{G,r,s} m_j \nu \frac{g^2}{2 \omega_0^2}. \] (B.10)

The next two terms in (B.9) contain a sum over all number states except \(n \). Due to Kronecker Deltas, most of these terms in the sum will vanish:

\[\sum_{k \neq n} \left\{ \frac{\langle \psi_{k,s}^{(0)} | V | \psi_{n,s}^{(0)} \rangle}{\hbar \omega_0 (n-k)} |\psi_{k,s}^{(0)} \rangle + \frac{\langle \psi_{n,s}^{(0)} | V | \psi_{n,s}^{(0)} \rangle}{\hbar \omega_0 (n-k) + \mu B \Delta_{sr}} |\psi_{n,s}^{(0)} \rangle \right\} \]

\[= -\frac{\sqrt{(n+1)(n+2)}}{4} \left(\frac{S_{s,s,t}}{2} |\psi_{n+2,s}^{(0)} \rangle + \frac{S_{G,r,s} \hbar \omega_0}{\hbar \omega_0 - \mu B \Delta_{sr}} |\psi_{n+2,r}^{(0)} \rangle \right) \]

\[+ \frac{1}{4} \sqrt{n(n-1)} \left(\frac{S_{s,s,t}}{2} |\psi_{n-2,s}^{(0)} \rangle + \frac{S_{G,r,s} \hbar \omega_0}{\hbar \omega_0 + \mu B \Delta_{sr}} |\psi_{n-2,r}^{(0)} \rangle \right) \]

\[- m_j \sqrt{\frac{\hbar (n+1)}{2 m_j \omega_0}} \left(\frac{S_{G,r,s}}{\hbar \omega_0} |\psi_{n+1,s}^{(0)} \rangle + \frac{S_{G,r,s} \hbar \omega_0}{\hbar \omega_0 - \mu B \Delta_{sr}} |\psi_{n+1,r}^{(0)} \rangle \right) \]

\[+ m_j \sqrt{\frac{\hbar}{2 m_j \omega_0}} \left(\frac{S_{G,r,s}}{\hbar \omega_0} |\psi_{n-1,s}^{(0)} \rangle + \frac{S_{G,r,s} \hbar \omega_0}{\hbar \omega_0 + \mu B \Delta_{sr}} |\psi_{n-1,r}^{(0)} \rangle \right). \] (B.12)

The third term is almost identical to the above equation; the differences being that \(r \leftrightarrow s \) and the energy differences are larger by \(\mu B \Delta_{sr} \), as can be seen in (B.9). Thus we have

\[\sum_{k \neq n} \left\{ \frac{\langle \psi_{k,s}^{(0)} | V | \psi_{n,s}^{(0)} \rangle}{\hbar \omega_0 (n-k)} |\psi_{k,s}^{(0)} \rangle + \frac{\langle \psi_{n,s}^{(0)} | V | \psi_{n,s}^{(0)} \rangle}{\hbar \omega_0 (n-k) + \mu B \Delta_{sr}} |\psi_{n,s}^{(0)} \rangle \right\} \]

Now we can combine (B.10) and (B.12) to obtain an expression for the eigenstates of \(H \) up to first order in \(\mu B/m_j c^2 \).
\[|\psi_{n,s}\rangle = |\psi_n^{(0)}\rangle + \frac{\mu B}{m_1 c^2} \left(\frac{1}{2} \mu B \Delta_\nu \right) \left(S_{G,n,s,1} \psi_n^{(0)}(n + \frac{1}{2}) + S_{G,n,s} \frac{\mu g^2}{\hbar\omega_0} \psi_n^{(0)}(n) \right) \]

\[\quad - \frac{1}{8} \sqrt{(n + 1)(n + 2)} \left(S_{G,n,s,1} \psi_n^{(0)}(n + 2, r) + S_{G,n,s} \frac{\mu g^2}{\hbar\omega_0} \psi_n^{(0)}(n + 2, r) \right) \]

\[+ \frac{1}{8} \sqrt{n(n - 1)} \left(S_{G,n,s,1} \psi_n^{(0)}(n - 2, r) + S_{G,n,s} \frac{\mu g^2}{\hbar\omega_0} \psi_n^{(0)}(n - 2, r) \right) \]

\[- \frac{g}{\omega_0} \left(\frac{m_f (n + 1)}{2\hbar\omega_0} \left(S_{G,n,s,1} \psi_n^{(0)}(n + 1, r) + S_{G,n,s} \frac{\mu g^2}{\hbar\omega_0} \psi_n^{(0)}(n + 1, r) \right) \right) \]

\[+ \frac{g}{\omega_0} \left(\frac{m_f n}{2\hbar\omega_0} \left(S_{G,n,s,1} \psi_n^{(0)}(n, r) + S_{G,n,s} \frac{\mu g^2}{\hbar\omega_0} \psi_n^{(0)}(n, r) \right) \right) \right\}, \quad (B.13) \]

where \(r \) denotes the opposite spin state to \(s \).

B.1. The ground state

The ground state of this system is given by the state \(|\psi_{0,-}\rangle \) and is slightly simpler that the expression for the general state. We will need the matrix elements \(S_{k,j} \), given by

\[S_k = \begin{bmatrix} a_k - \frac{1}{2} & b_k \\ b_k^* & c_k + \frac{1}{2} \end{bmatrix}, \quad (B.14) \]

leading to

\[|\psi_{0,-}\rangle = |\psi_{0,-}^{(0)}\rangle - \frac{\mu B}{m_1 c^2} \left(\frac{\hbar\omega_0 b_k^*}{4\mu B} + S_{G,0,-} \frac{\mu g^2}{\hbar\omega_0} \right) |\psi_{0,+}^{(0)}\rangle + \frac{1}{4\sqrt{2}} \left(a_0 - \frac{1}{2} \right) |\psi_{0,-}^{(0)}\rangle \]

\[+ \frac{b_0^*}{4\sqrt{2}} \left(a_G - \frac{1}{2} \right) |\psi_{1,-}^{(0)}\rangle + \frac{b_0^*}{1 + \frac{\mu B}{2\hbar\omega_0}} |\psi_{0,-}^{(0)}\rangle \right\}, \quad (B.15) \]

which, if we assume that all equivalence principles hold, reduces to

\[|\psi_{0,-}\rangle = |\psi_{0,-}^{(0)}\rangle + \frac{\mu B}{2m_1 c^2} \left(\frac{1}{4\sqrt{2}} |\psi_{0,+}^{(0)}\rangle + \frac{m_f g}{\hbar\omega_0} \right) |\psi_{0,-}^{(0)}\rangle \right\}, \quad (B.16) \]

Thus, even when all equivalence principles hold, the introduction of the mass operators introduces coupling between the oscillator states and the spin states.

B.2. Corrected spin-up state

By a similar calculation we can compute the first order corrected state \(|\psi_{0,+}\rangle \), corresponding to the unperturbed oscillator being in the ground state and the spin being anti-aligned with the magnetic field. This is the first excited state when \(\Delta E \) is smaller than \(\hbar\omega_0 \). We find
\[
|\psi_{0,+}\rangle = |\psi_{0,+}^{(0)}\rangle + \frac{\mu B}{m_ec^2} \left[\left(\frac{h_0 b_1}{4\mu B} + b_g \frac{m_1 \nu g^2}{\mu B_0^2} \right) |\psi_{0,-}^{(0)}\rangle - \frac{1}{4\sqrt{2}} \left(c_I - \frac{1}{2} \right) |\psi_{2,+}^{(0)}\rangle \right] - \frac{b_1}{4\sqrt{2} \left(1 - \frac{\mu B}{\omega_0} \right)} |\psi_{0,+}^{(0)}\rangle - \frac{g}{\omega_0} \sqrt{\frac{m_I}{2/m_0}} \left(c_I + \frac{1}{2} \right) |\psi_{1,+}^{(0)}\rangle + \frac{b_g}{1 - \frac{\mu B}{\omega_0}} |\psi_{1,-}^{(0)}\rangle \right],
\]
(B.17)

which, if we assume that all equivalence principles hold, reduces to

\[
|\psi_{0,+}\rangle = \left(\frac{\mu B}{2m_ec^2} + \frac{m_g}{\hbar \omega_0} \right) |\psi_{0,+}^{(0)}\rangle + \frac{m_I}{2m_0} \left(\frac{\hbar}{\omega_0} \right)^2 |\psi_{1,+}^{(0)}\rangle \quad \text{(B.18)}
\]

From (B.16) and (B.18), we can see that turning off the magnetic field cannot induce spin transitions in the case where the generalised EEP holds.

Appendix C. Other internal states

All atomic species of the type we are proposing to use in our experiment have a rich internal structure. Since we are claiming that all internal energy couples to gravity and inertia, we must consider whether these extra levels affect our results significantly.

If the spin degree of freedom has a set of Hamiltonians \(H_k^{\text{int}} \) with associated perturbation Hamiltonian \(V \), then we can include all other internal degrees of freedom in the Hamiltonians \(H_k^{\text{int}} \) with an analogous perturbation Hamiltonian \(\tilde{V} \). The total Hamiltonian is therefore

\[
H = H_0 + \lambda V + \lambda' V',
\]

with

\[
H_0 = H_R^{\text{int}} + H_I^{\text{int}} + \frac{p^2}{2m_I} + \frac{1}{2} m_I \omega_0^2 \left(x + \nu \frac{g}{\omega_0} \right)^2,
\]

and \(\lambda = \mu B/m_ec^2 \) as in the text and \(\lambda' = \|H_R^{\text{int}}\|/m_ec^2 \sim \lambda \) is a small parameter dependent on the atom’s excitation energies.

We can perform the same perturbation expansion as in appendix B and write a general perturbed state to first order as

\[
|\psi_{n,s,r}\rangle = |\psi_{n,s,r}^{(0)}\rangle + \lambda |\psi_{n,s,r}^{(1)}\rangle + \lambda' |\chi_{n,s,r}^{(1)}\rangle + O(\lambda^2),
\]

with

\[
|\psi_{n,s,r}^{(1)}\rangle = \sum |n',s',r'| |\psi_{n,s,r}^{(0)}\rangle |V|_{n,s,r}^{(0)} |\psi_{n',s',r'}^{(0)}\rangle,
\]

\[
|\chi_{n,s,r}^{(1)}\rangle = \sum |n',s',r'| |\psi_{n,s,r}^{(0)}\rangle |V'|_{n,s,r}^{(0)} |\psi_{n',s',r'}^{(0)}\rangle,
\]

where \(s \) and \(s' \) denote the spin degree of freedom, and \(r \) and \(r' \) enumerate all other internal energy levels.

If we assume that \(V' \) does not change appreciably when the external magnetic field is switched off, then we can write the eigenstates of \(H \) in the latter’s absence as

\[
|\psi_{n,s,r}^{B=0}\rangle = |\psi_{n,s,r}^{(0)}\rangle + \lambda' |\chi_{n,s,r}^{(1)}\rangle + O(\lambda^2);
\]

this is the basis in which we make the final measurements in our experiment. The probability of finding the system in a given spin and oscillator state (different from the original) after
turning off the field is

$$\sum_{r'} \left| \langle \psi_{n',s',r'} | \psi_{n,s,r} \rangle \right|^2 = \sum_{r'} \left(\langle \psi_{n',s',r'}^{(0)} | \psi_{n,s,r}^{(0)} \rangle + \lambda \langle \psi_{n',s',r'}^{(0)} | \psi_{n,s,r}^{(1)} \rangle
ight. + \lambda \langle \psi_{n',s',r'}^{(1)} | \psi_{n,s,r}^{(1)} \rangle + \lambda \langle \chi_{n',s',r}^{(1)} | \psi_{n,s,r}^{(1)} \rangle + O(\lambda^2)^2
\approx \sum_{r'} \left(\delta_{rr'} \lambda \langle \psi_{n',s',r'}^{(0)} | \psi_{n,s,r}^{(0)} \rangle \right. + \lambda \langle \psi_{n',s',r'}^{(0)} | \psi_{n,s,r}^{(1)} \rangle
+ \delta_{rr'} \lambda \left(\langle \psi_{n',s',r'}^{(1)} | V | \psi_{n,s,r}^{(0)} \rangle \right. + \lambda \langle \psi_{n',s',r'}^{(1)} | V | \psi_{n,s,r}^{(1)} \rangle
\right)^2
= \lambda^2 \left| \langle \psi_{n',s',r'}^{(0)} | \psi_{n,s,r}^{(1)} \rangle \right|^2,$$

which, up to second order in λ, is exactly the form of the probabilities given in the main text (we have neglected higher order terms in the second line).

Appendix D. Thermal noise

The energy of the eigenstates of the complete Hamiltonian in (A.5) to first order are

$$E_{n,s} = E_{n,s}^{(0)} + \frac{1}{m_i c^2} \langle \psi_{n,s}^{(0)} | V | \psi_{n,s}^{(0)} \rangle,$$

where $| \psi_{n,s}^{(0)} \rangle$ are the unperturbed eigenstates of H_0 and V is the introduced perturbation

$$E_{n,-} = \langle \psi_{n,-}^{(0)} | H_0 | \psi_{n,-}^{(0)} \rangle + \frac{1}{m_i c^2} \left(\langle \psi_{n,-}^{(0)} | V | \psi_{n,-}^{(0)} \rangle - \frac{P^2 + m_i g \lambda H^\text{int} G}{2m_i} \right) | \psi_{n,-}^{(0)} \rangle,$$

$$= \hbar \omega_0 (n + 1/2) \left(- \frac{1}{2} \mu B + \frac{\mu B}{m_i c^2} \left(- \frac{m_i \hbar \omega_0 (a_i - 1/2)}{2m_i} (n + 1/2) \right. \right.
\left. + m_i g (a_G - 1/2) \left(X - \frac{g}{\omega_0} \right) | \psi_{n,-}^{(0)} \rangle \right),$$

$$= \hbar \omega_0 (n + 1/2) \left(- \frac{1}{2} \mu B - \frac{\mu B}{m_i c^2} \left(\frac{\hbar \omega_0 (a_i - 1/2)}{2} (n + 1/2) + m_i \frac{g^2}{\omega_0^2} (a_G - 1/2) \right) \right).$$

Similarly, for the excited spin state

$$E_{n,+} = \hbar \omega_0 \left(1 - \frac{\mu B (a_i - 1/2)}{2m_i c^2} \right) (n + 1/2) \right) - \mu B \left(\frac{1}{2} + \frac{\nu g^2}{c^2 \omega_0^2} (a_G - 1/2) \right).$$

The partition function is given by

$$Z = \sum_{n=0}^{\infty} (e^{-\beta E_{n,-}} + e^{-\beta E_{n,+}})$$

(7)
We compute the quantity
\[
\sum_{n=0}^{\infty} e^{-\beta(\alpha+\gamma)(n+\frac{1}{2})} = e^{-\beta\gamma} e^{-\beta\gamma/2} \sum_{n=0}^{\infty} (e^{-\beta\gamma})^n,
\]

\[
= e^{-\beta\gamma} e^{-\beta\gamma/2} = \frac{e^{-\beta\gamma}}{1 - e^{-\beta\gamma/2}},
\]

where we have assumed convergence of geometric series ($|\gamma| < 1$) in line two. Applying this to (D.7) we obtain
\[
Z = \frac{\exp \left[\beta \mu B \left(\frac{m^2}{c^2} (\alpha G - 1/2) + \frac{1}{2} \right) \right]}{2 \sinh \left(\frac{\beta}{2} \hbar \omega_0 \left(1 - \frac{\mu B (\alpha G - 1/2)}{2m_\gamma c^2} \right) \right)} + \frac{\exp \left[\beta \mu B \left(\frac{m^2}{c^2} (\alpha G + 1/2) - \frac{1}{2} \right) \right]}{2 \sinh \left(\frac{\beta}{2} \hbar \omega_0 \left(1 - \frac{\mu B (\alpha G + 1/2)}{2m_\gamma c^2} \right) \right)}.
\]

(D.10)

For small $\lambda = \frac{\mu B}{m_\gamma c^2}$ and $\frac{b_\gamma}{c^2}$ ($\sim 10^{-23}$ with our chosen parameters), the statistics given by the above distribution closely resemble those of the unperturbed case. It is sufficient to ignore the effects of the mass operator in order to get an estimate of thermal noise. At temperatures around 100 pK the probability of being in a state other than the ground state is less than 10^{-300}.

References

[1] Galilei G 1632 Dialogo Sopra i Due Massimi Sistemi Del Mondo (Dialogue Concerning the Two Chief World Systems, Ptolemaic and Copernican) (Berkeley, CA: University of California Press) 1953
[2] Newton I 1687 Philosophiae Naturalis Principia Mathematica (The Principia: Mathematical-Principles of Natural Philosophy) (Berkeley, CA: University of California Press) 1999
[3] Will C M 1984 Phys. Rep. 113 345–422
[4] Roll P G, Krotkov R and Dicke R H 1964 Ann. Phys. 26 442–517
[5] von Eötvös R 1890 Math. Naturwissenschaft. Ber. Ungarn 8 65–8
[6] von Eötvös R 2008 Abraham Zelmanov J. 1 6 (http://zelmanov.ptep-online.com/html/zj-2008-02.html)
[7] Wagner T A, Schlamming S, Gundlach J H and Adelberger E G 2012 Class. Quantum Grav. 29 184002
[8] Dabb J W T, Harvey J A, Paya D and Horstmann H 1965 Phys. Rev. 139 B756–60
[9] Koester L 1976 Phys. Rev. D 14 907–9
[10] Sears V F 1982 Phys. Rev. D 25 2023–9
[11] Einstein A 1911 Ann. Phys. 35 898
[12] Einstein A 1995 The Collected Papers of Albert Einstein, Vol. 3: The Swiss Years: Writings, 1909–1911 (Chicago, IL: University of Chicago Press)
[13] Pound R V and Rebka G A 1960 Phys. Rev. Lett. 4 337–41
[14] Will C M 1993 Theory and Experiment in Gravitational Physics (Cambridge: Cambridge University Press)
[15] Schiff L I 1960 Am. J. Phys. 28 340–3
[16] Zych M and Brukner C 2015 arXiv:1502.00971
[17] Bonnin A, Zahram N, Bidel Y and Bresson A 2015 Phys. Rev. A 92 023626
[18] Williams J, Chiow S w, Mueller H and Yu N 2016 New J. Phys. 18 025018
[19] Zhou L et al 2015 Phys. Rev. Lett. 115 013004
[20] Hartwig J, Abend S, Schubert C, Schlippert D, Ahlers H, Possio-Trujillo K, Gaaloul N, Ertmer W and Rasel E M 2015 New J. Phys. 17 035011
[21] Aartschot B et al 2015 Adv. Space Res. 55 501–24
[22] Yong-De Z, Min W, Tai-Yong Z, Mu-Lin Y and Tu-Nan R 1985 Commun. Theor. Phys. 4 77
[23] Lämmerzahl C 1998 Class. Quantum Grav. 15 13
[23] Kaufman A M, Lester B J and Regal C A 2012 Phys. Rev. X 2 041014
[24] Damour T and Polyakov A 1994 Nucl. Phys. B 423 532–58
[25] Damour T 2012 Class. Quantum Grav. 29 184001
[26] Alvarez C and Mann R B 1996 Phys. Rev. D 54 5954–74
[27] Alvarez C and Mann R B 1997 Phys. Lett. B 409 83–7
[28] Alvarez C and Mann R B 1997 Phys. Rev. D 55 1732–40
[29] Colladay D and Kostelecký V A 1998 Phys. Rev. D 58 116002
[30] Kostelecký V A and Tasson J D 2011 Phys. Rev. D 83 016013
[31] Lämmertz C 1998 Acta. Phys. Pol. B 29 1057–70
[32] Tasson J D 2012 Phys. Rev. D 86 124021
[33] Kostelecký V A and Vargas A J 2015 Phys. Rev. D 92 056002
[34] Kostelecký V A and Russell N 2011 Rev. Mod. Phys. 83 11–31
[35] Manning A G, Khakimov R, Dall R G and Truscott A G 2014 Phys. Rev. Lett. 113 130403
[36] Giovannetti V, Lloyd S and Maccone L 2006 Phys. Rev. Lett. 96 010401