Regarding the evaluation of car stability during lateral slips

H Șuster and M Istrate
Automotive and Transports Department, Faculty of Mechanics and Technology, University of Pitești, România

Email: helene.suster@upit.ro

Abstract. The purpose of this paper is to highlight the analysis of the way in which the automobile can enter the state of instability when curving and the influence of some construction parameters (position of the weight centre, axle track, elasticity of the tires) and functional parameters (speed, acceleration, braking) which can influence the dynamic behavior. In this paper, there are described some dynamic simplified models of the automobile when curving, the way in which the experimental determinations have been made when a real automobile is involved in many circular routes with speeds and rays that we know. This paper also describes the methodology of study and the devices used as equipment for the automobile during the study on routes in order to register some specific parameters important for limiting the possibility of the appearance of lateral slips.

1. Introduction
If at the current estimation of motor vehicles performance and in particular cars performance, among the terms most frequently used, in relation to engine performance (peak power, hourly consumption or specific consumption, etc.) or to the entire motor vehicle performance (acceleration, maximum speed, start-up time and space, braking time and space, transmission organization and composition, type of brakes, steering and suspension, fuel consumption at 100 km, facilities and equipment used, etc.) information or opinions regarding the limits of stability provision, that the motor vehicle is able to achieve in certain driving regimes, are found only seldom.

We consider that it is difficult to specify such performance and limit criteria, considering the diversity of travel regimes that an automobile may have throughout its life. However, given the importance of maintaining the stability of the car under any travel conditions, such criteria become increasing necessary to be determined and specified since the projecting phase of the vehicle.

It is harmful and uneconomical for a motor vehicle not to be technically compliant all the time, but it is extremely hazardous for it to lose stability, because then the control of the car in question is lost.

2. Motor vehicle driving in turn
The quantitative estimation of turning characteristics is quite difficult because of the undetermined static pattern of the motor vehicle. The lateral deviation angles of the four wheels δ_1e, δ_1i, δ_2e and δ_2i, each depending on several factors, render the location of the steering area, in which the dynamic steering center
is found, extremely difficult. However, based on experimental research, the specialized literature provides a series of information with regard to the steering characteristics.

In addition to the classical cases of insufficient or excessive turning, we use the so-called own control (subcommand, override), which characterizes the change of the motor vehicle rotational speed around the vertical axis, for the travel on a circular trajectory.

The main parameter for assessing the motor vehicle capacity to undergo trajectory modifications becomes the ratio between the angular speed of the motor vehicle longitudinal axis and the steering angle of the wheels, thus emphasizing the delay or the advance of the reaction of the car in relation to the steering angle of the wheels.

For driving on a circle with \(R_c \) radius (figure 1), the machine with a normal steering capacity corresponds to the case of rigid wheels (figure 1, position a). With the increase of the normal acceleration, due to the centrifugal force, the angles of lateral deviation \(\delta_1 \) and \(\delta_2 \) increase to the same extent.

\[
\delta_1 = \delta_2 = \delta
\]

\[
v_1^2 = v_c^2 + g \cdot \delta
\]

\[
\theta_1 > \theta > \theta_2
\]

\[
R_c \leq R
\]

For the motor vehicles with an insufficient steering characteristic, the front axle will involve a deviation movement toward the outside of the curve; the car does not enter the turn and tends to maintain a straight trajectory (figure 1, position b). The rotation speed around the vertical axis decreases with the increase of the normal acceleration and in order to maintain the turning radius \(R_c \), the steering wheels must be turned to the angle \(\theta_1 > \theta \).

For the motor vehicles with an excessive steering characteristic, the rear axle slips toward the outside of the curve, the car tends to leave the imposed trajectory toward the outside of the curve (figure 1, position c). The rotation speed increases with the normal acceleration of the car and in order to maintain the turning radius \(R_c \), the steering angle of the wheels must be \(\theta_2 < \theta \).

The sensitivity of the car when turning the wheels decreases for understeering cars, the critical understeering characterizing the final refusal to enter the turn and increases in oversteering motor vehicles. The critical oversteering appears at the continuous decrease of the turning radius after a spiral.

We can affirm that cars with an excessive steering have a critical speed and overspeeding leads to a steering instability, while understeering cars have a characteristic speed but it is not critical.
If a transversal force (figure 2) is experienced by a car in straight travel, transversal force which can be the wind force F_v, in case of neutral steering, the car moves still in a straight line, but inclined in relation to the initial direction to the lateral deviation angle δ; in the event of understeering, the movement becomes curvilinear, the curve being in the same direction as the force (the angle between the speed and the transversal force will be under 90°), the curvature center becoming O_δ; in the case of oversteering, the curvilinear travel is performed on a trajectory with a reverse curvature in relation to the force (the angle between the speed and the transversal force will be higher than 90°), the curvature center becoming O_δ.

The critical speed is determined starting from the dynamic turning radius

$$R_\delta = \frac{L}{\theta + (\delta_2 - \delta_1)}$$

From the relationship of normal acceleration: $a_n = R \cdot \omega_a^2 = \frac{V_a^2}{R_c}$, where V_a is the speed of the motor vehicle; ω_a – the angular speed for trajectory crossing by the motor vehicle.

The inertial forces F_{cy} and F_i are equal to the product between the mass of the car m and the acceleration of the center of gravity - normal a_{cn} and tangential a_{ct}. For the determination of these accelerations we consider the movement of the car in relation to a rectangular system of axles x and y (figure 3)

According to figure 3 we can write: $\omega = \frac{d \sigma}{dt}$; $\frac{d \omega}{dt} = a_\omega = \frac{d^2 \sigma}{dt^2}$

where:
- ω is the angular speed of the car while turning;
- σ is the angle between the axis AB and the axis x;
- $\frac{d\omega}{dt}$ is the angular acceleration of the car.

Figure 3. The movement of the car in relation to a system of axes.

We understand that axis AB is not parallel to the axis of the coordinate OX as presented in figure 3.

We determine the projections V_x and V_y of the speed V_c of the car’s center of gravity on the axes x and y. We consider the positive sense of these speeds in the direction of the axes and after the decomposition of speed V_c into speeds V_{cn} and V we obtain:

$$v_x = v \cdot \cos \sigma + v_{cn} \cdot \sin \sigma$$
$$v_y = v_{cn} \cdot \cos \sigma - v \cdot \sin \sigma$$

(2)

After differentiating these equations in relation to time, we obtain the expressions of the center of gravity accelerations on the axes x and y:

$$a_{cx} = \frac{d^2v_x}{dt^2} = \frac{d}{dt} \cdot \cos \sigma - v \cdot \sin \sigma + \frac{dv_{cn}}{dt} \cdot \sin \sigma + v_{cn} \cdot \omega \cdot \cos \sigma$$
$$a_{cy} = \frac{d^2v_y}{dt^2} = \frac{d}{dt} \cdot \cos \sigma - v_{cn} \cdot \omega \cdot \sin \sigma - \frac{dv_{cn}}{dt} \cdot \sin \sigma - v \cdot \omega \cdot \cos \sigma$$

(3)

At the same time, the accelerations a_{cx} and a_{cy} of the car’s center of gravity, having the same direction as the system of axes, can be determined directly as projections of the accelerations a_c and a_{cn}.

If the speed V_c decreases, then:

$$a_{cx} = a_c \cdot \cos \sigma - a_{cn} \cdot \sin \sigma$$
$$a_{cy} = -a_{cn} \cdot \cos \sigma - a_c \cdot \sin \sigma$$

(4)

After solving the equations (3) and (4) we obtain the final expressions for the accelerations of the center of gravity of the car:
Using the graphical recording equipment and some transducers mounted on the car, we recorded the variation in time of the steering wheels turning angles from the initial straight direction.

Based on these graphics we determined for each trajectory the bypass time t_0 from the moment of wheels steering and until the end of the maneuver, after which the oscillation amplitude of the longitudinal axis of the car becomes equal to or less than 1.5°.

It is also possible to perform a statistical processing of the graph, by calculating the total steering angle of the wheels and the average value of the angular speed of rotation of the longitudinal axis of the car, which confronts with the subjective estimation of the experimenting driver.

For this purpose the car moves with speeds of 10, 20, 30 km/h in such a way that the outer front wheel stamp on curvilinear trajectories with radii of 10, 15 and 20 m respectively, which are marked on the testing platform (figure 4.).

\[
\begin{align*}
 a_{en} &= \omega \cdot v - \frac{dv_{en}}{dt} \\
 a_{ef} &= \frac{dv}{dt} + \omega \cdot v_{en}
\end{align*}
\]

Δ_1, Δ_2, Δ_3, Δ_4, Δ_5, Δ_6.

\[R_1 = 10 \text{ m}, \quad R_2 = 15 \text{ m}, \quad R_3 = 20 \text{ m} \]

\[
\begin{align*}
 \Delta_1 &= 45 \text{ m} \\
 \Delta_2 &= 35 \text{ m} \\
 \Delta_3 &= 150 \text{ m} \\
 \Delta_4 &\quad \text{Main direction deviation}
\end{align*}
\]

Figure 4. Moving on a circular trajectory.

The movement on the circular trajectory with a radius of 15 m, was carried out with steady speeds of 20, 25 and 30 km/h, each distance being crossed for 5 times. Figure 5 represents the movement of the car on the circular trajectory obtained with the values generated by the GPS component of the measuring system. The trajectory is represented in geographical coordinates, latitude and longitude, expressed in minutes.

The data obtained has been stored on the SD card, in a specific format of the measurement and acquisition system, this data constituting the database required for processing with RACELOGIC - VBOX TOOLS software, in order to convert it into a format supported by the Microsoft Excel application (Annexes). During the trials 26 rows of values were recorded on the SD card, following that for the subsequent processing such values to be totally or partly activated depending on the objective pursued.
Figure 5 Circular trajectory in geographical coordinates.

After carrying out the trials, the trajectory shown in figure 5 was represented based on the initial values having as input values the geographical coordinates expressed in minutes. With the calculated data we were able to draw the car’s movement trajectory by using the values of the wheels steering angles.

Figure 6 presents the car’s movement trajectory, obtained after the experimental data processing, having as calculation parameters the values of the steering angles of the wheels.

Figure 6. Trajectory representation in Cartesian coordinates.

3. Data measuring and acquisition equipment
The data measuring and acquisition equipment is composed of: GPS VBOX module (1), data digital conversion module RLVBMIM01 (2), accelerometer and the yaw sensor (3), memory card type CD (4) -
which stores the measured sizes in real time based on the GPS component, GPS antenna (5), switch for marking the positions of the car ordered by the operator (6).

![Figure 7. Measuring and acquisition equipment.](image)

Table 1 shows a part of the actual values recorded by the equipment used during car’s driving on a circular trajectory with a speed of 20km/h.

X	Speed [km/h]	Lat. acc. [m/s²]	Long. acc. [m/s²]	Latit. [min]	Long. [min]	Yaw angle speed [rad/s]	Dist. [m]	Tens. [V]
0	21.31	-0.327645851	-0.50986591	2699.30531	-1482.20514	0	138.17	1.808020592
0.1	21.39	-0.475865404	0.022660707	2699.30506	-1482.20542	0.593055556	142.67	1.796801567
0.2	21.17	-0.369450618	-0.062316944	2699.30479	-1482.20568	1.184166667	146.2	1.781267643
0.3	20.67	-0.171676398	-0.141629418	2699.30453	-1482.20592	1.765277777	147.88	1.770911694
0.4	20.5	-0.406405024	-0.048154002	2699.30426	-1482.20613	2.337083333	151.89	1.767459631
0.5	20.2	-0.47635484	-0.084977651	2699.30398	-1482.20632	2.902361111	156.66	1.758829713
0.6	20.1	-0.355745912	-0.028325884	2699.30377	-1482.20647	3.462083333	160.24	1.756240726
0.7	19.33	-0.286690923	-0.218109304	2699.30342	-1482.20666	4.009722222	163.24	1.755377769
0.8	19.21	-0.297257305	-0.033991106	2699.30313	-1482.20676	4.545	166.37	1.755377769
0.9	19.27	-0.342008577	0.01699553	2699.30285	-1482.20678	5.079444444	169.96	1.755377769
1	19.31	-0.338899916	0.011330353	2699.30256	-1482.20683	5.615277777	173.51	1.754514694
1.1	19.09	-0.26331219	-0.062316944	2699.30227	-1482.20687	6.148611111	176.3	1.752788782
1.2	19.32	-0.351492267	0.065149532	2699.30198	-1482.20688	6.682083333	179.98	1.751925707
1.3	19.69	-0.351409706	0.104805769	2699.30168	-1482.20686	7.223888889	183.59	1.751925707
1.4	20.19	-0.292458854	0.141629418	2699.30138	-1482.20682	7.777777778	186.52	1.752788782
1.5	20.16	-0.400661318	-0.008497765	2699.30108	-1482.20675	8.338194445	190.54	1.751925707
1.6	20.44	-0.346605816	0.079312474	2699.30078	-1482.20665	8.902083333	193.97	1.752788782
1.7	20.69	-0.362096717	0.070814709	2699.30049	-1482.20653	9.473333334	197.51	1.754514694
1.8	20.64	-0.415302874	-0.014162942	2699.30019	-1482.20638	10.047361111	201.58	1.757966757
1.9	20.76	-0.252477854	0.03399106	2699.29991	-1482.20626	10.623611111	204.04	1.764007688
2	20.97	-0.362850152	0.059484356	2699.29962	-1482.20582	11.209444444	207.54	1.7778157
2.1	20.98	-0.437702224	0.002832588	2699.29935	-1482.20578	11.784583333	211.76	1.789034605
Figure 8 includes the representation of graphical records of values measured by means of the apparatus VBox during the experimental testing: the motor vehicle’s travelling speed, longitudinal and lateral acceleration, yaw rate of the car to travel on the circle, the coordinates (longitude and latitude) of the testing place, the distance travelled during a test.

Figure. 8. Graphical records of the values measured during the experimental testing

4. Conclusions
This work had as objective to determine the limit traveling speeds of a real motor vehicle on known circular trajectories, in order to be able to establish the limit conditions for the occurrence of car’s side slippage. This allowed, for actual testing conditions (motor vehicle, turning radius known), the possibility to determine the limit speeds for entry in turning at which the car’s side slipping may occur. After the processing and interpretation of the results, it comes out that the analytical functions (using Table Curve software) determined for all three travel trajectories of travel have the same equation, with different coefficients, with an accuracy of 0.9998; from these relations it results that, for any type of car, the lateral stability limit is determined according to the traveling speed.

For all tests performance we used vehicles in the same state of equipment, corresponding to the "standard" vehicle, situation in which, based on specific values, mathematical functions were generated with the help of which, by extrapolation, we can predict car’s behavior as regards stability up to reaching the limits of safety.

Starting from the data obtained it can be assessed that, if the vehicle is fitted with equipment for measuring in real time the values of the sizes that contribute to the maintaining of stability, regardless of
the loading and travel regime, it will be possible to warn the driver but also to put into service certain systems able to prevent the loss of stability.

References

[1] Abe M 2009 Vehicle Handling Dynamics: Theory and Application” (Oxford: Elsevier)
[2] Bădărău Șuster H 2014 Contributions over motor vehicles driving capacity on developed routes and outside developed routes (Pitesti University: Doctoral Thesis)
[3] Bădărău Șuster H, Macarie T, Nicolescu B, Drăghici D 2007 Aspects concerning the dynamic behaviour of the vehicles on road with different turning radii Proceedings of the International Congress Automobile, environment and farm machinery AMMA 2007 Cluj Napoca 50 pp 19-27
[4] Crolla A D 2009 Automotive Engineering-Powertrain, Chassis System and Vehicle Body (Amsterdam: Elsevier)
[5] Macarie T, Dascăl A, Bădărău Șuster 2014 With regard to the stability of the car going along straight lines and in turn Proceedings of the International Congress Science and Management of Automotive and Transportation Engineering SMAT 2014 Craiova II pp 67 -72
[6] Mashadi B, Mahmoudi M, Kakae A H, Hoseini R 2013 Vehicle path following control in the presence of driver inputs Proceedings of the Institution of Mechanical Engineers, Part K: Journal of Multi-body Dynamics 227 (2)
[7] Milliken W, Milliken D 1995 Race Car Vehicle Dynamics (USA: Society of Automotive Engineering)
[8] Reza N J 2008 Vehicle Dynamics -Theory and Applications (Springer Science-Business Media)
[9] Stone R, Ball J K 2004 Automotive Engineering Fundamentals (SAE International)