Thermal expansion of LaFeAsO: Evidence for high-temperature fluctuations

L. Wang, U. Köhler, N. Leps, A. Kondrat, M. Nale, A. Gasparini, A. de Visser, G. Behr, C. Hess, R. Klingeler, and B. Büchner

1Institute for Solid State Research, IFW Dresden, D-01171 Dresden, Germany
2Van der Waals-Zeeman Institute, University of Amsterdam, 1018 XE Amsterdam, The Netherlands

(Dated: June 19, 2009)

We present measurements of the thermal expansion coefficient \(\alpha \) of polycrystalline LaFeAsO\(_{1-x}\)F\(_x\) (\(x \leq 0.1 \)). The magnetic and structural transitions of the samples with \(x \leq 0.04 \) give rise to large anomalies in \(\alpha(T) \), while the onset of superconductivity in the crystals with \(x \geq 0.05 \) is not resolved. Above the structural transition, the thermal expansion coefficient of LaFeAsO is significantly enhanced. This is attributed to fluctuations, which also affect the electrical transport properties of the compound. The complete absence of these fluctuations in the superconducting samples even for \(x = 0.05 \) is taken as evidence for an abrupt first-order type of suppression of the structural and magnetic transitions upon F doping.

PACS numbers: 65.40.De,74.25.Bt,75.30.Fv

I. INTRODUCTION

The family of layered FeAs-materials has been extensively studied since the discovery of superconductivity with transition temperatures \(T_C \) up to 28 K in LaFeAsO\(_{1-x}\)F\(_x\). In the meantime, \(T_C \) has been increased to above 50 K \(^{2,3,4,5,6,7,8,9}\) by replacing La with other rare earths. Superconductivity has also been found in several related materials, such as Ba\(_{1-x}\)K\(_x\)Fe\(_2\)As\(_2\), LiFeAs\(^{8,9}\) or FeSe\(^{10}\). Interestingly, the evolution of superconductivity in LaFeAsO\(_{1-x}\)F\(_x\) seems to be related to the suppression of a magnetically ordered orthorhombic phase, which has been found in the undoped parent compound\(^{11,12}\) in LaFeAsO, long range magnetic order probably of a spin density wave (SDW) type evolves below 137 K \(^{13,14}\) while an orthorhombic distortion of the tetragonal high temperature phase has been observed at 156 K. The SDW ground state has also been established for isostructural Rare Earth (R) based RO\(_{1-x}\)F\(_x\)FeAs\(^{15}\) and even in the parent materials of other iron-pnictide superconductors such as Ba\(_{1-x}\)K\(_x\)Fe\(_2\)As\(_2\) with a different crystal structure but similar Fe\(_2\)As\(_2\) layers\(^{7,16,17}\). However, while the structural and magnetic phase transitions are separated by about 20 K in the RFeAsO systems, they coincide for compounds of AF\(_2\)As\(_2\) type.

In this paper, we investigate polycrystalline LaFeAsO\(_{1-x}\)F\(_x\) (\(x \leq 0.1 \)) by means of thermal expansion measurements which sensitively probe the volume changes of the material. Large anomalies of the coefficient of linear thermal expansion \(\alpha \) are found at the structural and magnetic transitions of the samples with \(x \leq 0.04 \). For comparison we studied superconducting LaFeAsO\(_{1-x}\)F\(_x\) with \(x = 0.05, 0.1 \), which exhibits neither the structural nor the magnetic phase transition. Interestingly, strong differences between the \(\alpha(T) \) curves for the magnetic and the superconducting samples extend to temperatures well above the structural transition. We analyze these findings in view of our specific heat, X-ray diffraction and resistivity data.

Our data provide clear evidence for strong fluctuations in LaFeAsO\(_{1-x}\)F\(_x\) (\(x \leq 0.04 \)) over a large \(T \) range above the structural transition temperature \(T_S \). By contrast, no indication of fluctuations is found in the superconducting samples. We discuss the implications for the phase diagram of LaFeAsO\(_{1-x}\)F\(_x\), particularly at the crossover from a magnetic to a superconducting ground state.

II. EXPERIMENTAL METHODS

The preparation and characterization of our polycrystalline samples has been described in detail in Ref. \(^{18}\). For the thermal expansion measurement a three-terminal capacitance dilatometer was utilized, which allows an accurate study of crystal length changes. To be specific, we measured the macroscopic length \(L(T) \) of the samples and calculated the coefficient of linear thermal expansion \(\alpha = 1/L \cdot dL/dT \), which is the first temperature derivative of \(L(T) \). The specific heat was studied in a Quantum Design PPMS by means of a relaxation technique. Electrical resistivity measurements were performed using a standard four-probe technique.

III. RESULTS

Figure\(^1\) shows the linear thermal expansion coefficient \(\alpha \) of LaFeAsO between 5 K and 300 K. In the whole investigated temperature range, \(\alpha \) is found to be positive. This is in agreement with X-ray diffraction (XRD) data, which revealed a monotonically increasing lattice volume \(V_{uc} \) upon heating\(^{18}\). For our polycrystalline samples the volume expansion coefficient \(\beta \) is given as \(\beta = 3\alpha \). Taking the volume at 300 K as an initial value we calculated the temperature dependence \(V_{uc}(T) \), which agrees with the unit-cell volume determined from XRD data published in \(^{18}\) (cf. inset of Fig.\(^2\)). Below 30 K a small plateau is seen in our \(\alpha(T) \) data, which is also present for
FIG. 1: Temperature dependence of the coefficient of linear thermal expansion, \(\alpha(T) \), of LaFeAsO compared to the specific heat, \(c_p(T) \), of this compound. Two subsequent phase transitions are found in both quantities at similar temperatures, as indicated by the vertical lines. In addition, the specific heat contribution arising from the phase transitions, \(c_{\text{trans}} \), is shown on a larger y scale.

The SDW formation at \(T_N = 137 \) K generates a negative anomaly in the thermal expansion coefficient. For a second order phase transition, the slope \(dT_N/\partial p \) can be determined from the jump height at \(T_N \) in the specific heat \(\Delta c_p \) and the volume thermal expansion coefficient \(\Delta \beta = 3 \Delta \alpha \) using the Ehrenfest relation

\[
\frac{dT_N}{\partial p} = TV_{\text{mol}} \frac{\Delta \beta}{\Delta c_p}
\]

with the molar volume \(V_{\text{mol}} \). However, for the given compound a determination of \(\Delta c_p \) and \(\Delta \alpha \) is not possible with satisfactory accuracy, due to the proximity of both structural and SDW transitions. Nevertheless, according to Equation 1 the negative anomaly in \(\alpha(T) \) at \(T_N \) qualitatively clearly implies a negative hydrostatic pressure dependence of \(T_N \). This finding is found in line with resistivity investigations on LaFeAsO showing a lowering of \(T_N \) under pressure with an initial slope of \(dT_N/\partial p|_{p=0} \approx -1.5 \) K/kbar.

Contrary to the magnetic ordering, the structural transition at \(T_S = 157 \) K gives rise to a positive anomaly in \(\alpha(T) \). This anomaly is very broad, extending to temperatures far above \(T_S \). Extrinsic effects, in particular those originating from grain boundaries, cannot cause this broadening. The grain size of our polycrystalline material has been determined from electron microscopy to be some tens of micrometer. This renders a major contribution from grain boundaries to the thermal expansion coefficient as observed occasionally in nanocrystalline material unlikely. Moreover, while the grain size is rather unaffected by F-doping the width of the anomaly at \(T_S \) changes systematically upon substitution of O by F, as shown below, which also confirms the intrinsic nature of the broadening. By contrast, the corresponding anomaly in \(c_p \) is sharp, which excludes also the possibility of a smeared transition, e.g. due to sample inhomogeneities, as origin of the broadening. A sharp anomaly is likewise visible in our previously published \(\partial \chi(T)/\partial T \) data. Specific heat, magnetization, and XRD data indicate a second order phase transition at \(T_S \). Therefore, one expects a jump in the thermal expansion coefficient at the phase transition. From our data it is however not possible to determine the anomalous volume changes at the transition itself so that an analysis even of the sign of the pressure dependence \(dT_S/\partial p \) is hardly possible.

In order to understand the behavior of \(\alpha(T) \) of LaFeAsO above \(T_S \) we studied the linear thermal expansion coefficient of LaFeAsO\(_{1-x}\)F\(_x\) with nominal \(x = 0.02, 0.04, 0.05, 0.1 \). Upon fluorine substitution for \(x \leq 0.04 \) the structural and magnetic phase transitions are only weakly affected, i.e. they are slightly shifted to lower temperatures. At higher F content \(x \geq 0.05 \) both transitions are completely suppressed, and a superconducting ground state is found. Thus, F doping strongly affects the electronic properties of the series, especially at low temperatures, as well as the structural properties below \(T_S \). By contrast, the properties of the atomic lattice above \(T_S \), such as the phonon spectrum, are expected to be relatively insensitive to the fluorine content. Figure 2...
FIG. 2: Coefficient of linear thermal expansion, α, vs. temperature, T, of LaFeAsO$_{1-x}$F$_x$ for different fluorine content x. For clarity, not all investigated samples are shown. The inset compares the temperature dependence of the unit-cell volume, $V_{uc}(T)$, for $x = 0$ obtained from XRD to the one calculated from α using the XRD value at 300 K as initial value. The orthorhombic unit cell is used in the whole T range.

compares the coefficient of linear thermal expansion of LaFeAsO$_{1-x}$F$_x$ for different F content $x = 0, 0.05, 0.1$. An enhanced view of the T region between 80 K and 220 K for all investigated F concentrations is shown in Fig. 3a. Upon F doping with $x \leq 0.04$, the anomalies arising from the magnetic and structural transitions are shifted to lower temperatures, as expected from the lowering of T_S and T_N. For $x \geq 0.05$ these transitions are suppressed. At high ($T > 210$ K) and low ($T \lesssim 70$ K) temperatures, α is almost independent of the composition. In particular, the superconducting transitions at $T_C = 20.6$ K ($x = 0.05$) and $T_C = 26.8$ K ($x = 0.1$), which are clearly visible in the resistivity, are not seen in $\alpha(T)$. Although our data in this temperature range are influenced by the small plateau of unknown origin, the existence of large anomalies at T_C appears unlikely given the close agreement of the curves for different F content. Regarding the T range above the structural transition of LaFeAsO$_{1-x}$F$_x$, Fig. 3b clearly reveals a significantly enhanced α for the magnetic samples compared to the superconducting ones. This difference cannot be explained by a simple change of the phonon spectrum upon F doping due to the larger atomic mass of fluorine compared to oxygen, since the samples with $x = 0.05$ and 0.1 exhibit almost identical $\alpha(T)$ curves. Instead, the enhanced α for $x \leq 0.04$ suggests the presence of strong fluctuations preceding the structural transitions at T_S.

Indications for fluctuations are also found in the electrical transport properties of LaFeAsO$_{1-x}$F$_x$. Figure 3a shows the electrical resistivities $\rho(T)$ for $x \leq 0.1$ taken from Ref. 22. At room temperature all samples exhibit metal-like resistivities with a positive slope $d\rho/dT$. Upon cooling, the resistivities of the superconducting samples continue to decrease, except for an upturn just above the superconducting transition for $x = 0.05$, the origin of which is still not clear. Transitions to a superconducting state are found at $T_C = 20.6$ K ($x = 0.05$) and $T_C = 26.8$ K ($x = 0.1$). By contrast, the resistivities of LaFeAsO$_{1-x}$F$_x$ ($x \leq 0.04$) increase below approximately 230 K and reach maxima at T_S. This negative temperature dependence indicates enhanced scattering of charge carriers from fluctuations above T_S. Consistently, below the transition, ρ drops as the fluctuations die away.

In Fig. 5 we plot the characteristic temperatures obtained from our thermal expansion measurements in the phase diagram of LaFeAsO$_{1-x}$F$_x$ established from magnetic susceptibility, μSR and resistivity experiments.12,22,23 The values for T_S and T_N taken as the positions of the extrema in $\alpha(T)$ fit well into this phase diagram. In addition we plot the temperature T_B, below which indications for fluctuations are found in the thermal expansion coefficient. For this purpose the data for $x = 0.1$ have been subtracted and the curves shifted by multiples of 10^{-6}/K. Arrows with error bars mark T_B.
αXRD and able jumps in the reliability of our thermal expansion data. The size-related to

By contrast, the small changes of the unit-cell volume between the
tions above

magnetic transition to the crystal lattice. The shape of
anomalies are found in

Lorenzana et al. on a Hartree-Fock approximation and a Landau theory,
bility is of magnetic origin as suggested in Ref. 24. Based

Nevertheless, already for the sample with

x a vanishing of the fluctuation regime around

T0 would suggest

T0 ≤ x ≤ T1. The main plot shows the data for the mag-

FIG. 5: Phase diagram of LaFeAsO1−xFx showing the change of the characteristic temperatures with F content x. The onset of superconductivity in the electrical resistivity at

Tc, and the temperatures of the orthorhombic distortion, T8, and magnetic ordering, TN, determined from magnetic susceptibility µSR and ρSR data are marked with open symbols. Closed symbols label the characteristic temperatures determined from thermal expansion measurements in this work. The striped region highlights the abrupt change from an orthorhombic/magnetic to a tetragonal/superconducting ground state.

FIG. 4: Temperature dependence of the resistivity, ρ, of LaFeAsO1−xFx. The main plot shows the data for the magnetic samples with x ≤ 0, while the superconducting samples (x ≥ 0.05) are shown in the inset. A dashed line to the eye highlights the regime with positive slope dρ/dT for x = 0.

vs. T, whereas the curves have been shifted by multiples of 10−6/K. For x ≤ 0.04, T0 is determined as the temper-

ature, below which ∆α exhibits a negative slope. With increasing fluorine content, T0 is lowered. Extrapolat-
ing T0(x) and T8(x) linearly to higher x would suggest a vanishing of the fluctuation regime around x = 0.06. Nevertheless, already for the sample with x = 0.05 no indication of fluctuations is found in α(T).

IV. DISCUSSION

The linear thermal expansion coefficient turned out to

a very sensitive probe for the phase transitions in

LaFeAsO1−xFx (x ≤ 0.04). Large positive and negative anomalies are found in α(T) at T8 and TN, respectively. By contrast, the small changes of the unit-cell volume related to T8 and TN cannot be resolved directly from XRD measurements. Nevertheless, the close agreement between the V∞(T) curves for LaFeAsO determined from XRD and α(T) shown in the inset to Fig. 2A confirms the reliability of our thermal expansion data. The size-
able jumps in α at TN reflect the strong coupling of the magnetic transition to the crystal lattice. The shape of the anomalies deviates from the one expected for second-order phase transitions, which is attributed to the close-

ness of the transitions and a contribution from fluctua-
tions above T8. So far, the origin of these fluctuations is unknown. A straightforward interpretation is to at-

tribute them to a competing instability in vicinity to the actual ground state. One might speculate that this instability is of magnetic origin as suggested in Ref. 24. Based on a Hartree-Fock approximation and a Landau theory, Lorenzana et al. find an orthomorphic phase compet-

ing to the modulated magnetic stripes which are experi-

mentally observed.24 In this scenario, long range order of the competing, possibly magnetic phase is hindered by the orthorhombic distortion, whereas the increase of the corresponding anomalous positive contribution to the thermal expansion coefficient is truncated by the struc-
tural transition at T8. Another model that accounts for the anomalous thermal expansion coefficient above

T8 comprises ferro-orbital ordering accompanied by a lattice distortion at T8.22 In this picture, the enhanced α is suggested to arise from short-range orbital correlations above T8. Interestingly, the experimentally observed on-

set temperature of the short range order strongly depends on the F-content. As visible in Fig. 4(b), the fluctuation regime is much stronger suppressed for larger x than T8 and T5. Further investigations are necessary to determine the exact nature of the fluctuations above T8.

In contrast to the structural and SDW transitions, the superconducting transitions of LaFeAsO1−xFx with

x = 0.05 and 0.1 are not seen in α(T). The expected magnitude of ∆α can be estimated from Eq. 12 using liter-

ature data. No anomaly was observed at TC in the specific heat of LaFeAsO1−xFx.22 As a rough estimate we take the difference of the curves measured in 0 T and 9 T on LaFeAsO0.9F0.1−δ of ∆Cp/T ≈ 5 mJ/mole K2. The derivative ∂Tc/∂p|p=0 of LaFeAsO0.9F0.11 was found to be of the order of 3 K/GPa.22 Thus, the anomaly in α is estimated to ∆α ≈ 3 × 10−8/K. This value, which is too small to be resolved with our setup, is in line with the absence of large anomalies in α(T) at
However, it should be noted, that we measure a directional average of the coefficient of linear thermal expansion on our polycrystalline samples which is associated to the hydrostatic pressure dependence. An almost complete cancellation of the contributions for different crystallographic directions was observed on single crystals with the related ThCr$_2$Si$_2$ structure, namely Ba(Fe$_{0.88}$Co$_{0.12}$)$_2$As$_2$. Measurements on single crystals of LaFeAsO$_{1-x}$F$_x$ are therefore necessary to decide, whether the small magnitude of $\Delta \alpha$ is due to a similar effect.

The superconducting ground state in the $x=0.05$ sample is formed at the expense of an abrupt suppression of the structural and magnetic phase transitions observed in samples with $x \leq 0.04$. The change from the magnetically ordered to the superconducting ground state upon F doping has been proposed to be abrupt first-order-like. Our thermal expansion data clearly support this picture. While fluctuations give rise to an enhanced thermal expansion coefficient over an extended T region for the sample with $x=0.04$, no indication of fluctuations is found for $x=0.05$. Instead, the thermal expansion coefficient of this sample is almost identical to the one for $x=0.1$, which lies well in the superconducting regime of the phase diagram. Moreover, the disappearance of the fluctuation regime around $x=0.045$ cannot be explained by a smooth convergence of T_D and T_S with increasing F content, as seen from the phase diagram Fig. 5b. Therefore, our data corroborate a first-order-like scenario for the transition towards superconductivity upon doping.

V. SUMMARY

We performed measurements of the linear thermal expansion coefficient of LaFeAsO$_{1-x}$F$_x$ with $x \leq 0.1$ in the temperature range between 5 K and 300 K. The structural and SDW transitions of the compounds with low F content $x \leq 0.04$ give rise to large anomalies in $\alpha(T)$, whereas fluctuations are present also well above T_S. By contrast, the superconducting transitions of the samples with $x \geq 0.05$ are not observable. Moreover, no indications for residual fluctuations in the superconducting samples are found at elevated temperatures, not even at the lowest F content $x=0.05$. This finding supports the idea of an abrupt first-order type transition between the magnetic and superconducting ground states upon fluorine substitution.

Acknowledgments

We thank M. Deutschmann, S. Müller-Litvanyi, R. Müller, J. Werner, and S. Gaß for technical support. This work has been supported by the Deutsche Forschungsgemeinschaft, through BE1749/12 and through FOR 538 (BU887/4).

* Electronic address: u.koehler@ifw-dresden.de

1 Y. Kamihara, T. Watanabe, M. Hirano, and H. Hosono. J. Am. Chem. Soc., 130(11):3296, 2008.
2 X. H. Chen, T. Wu, G. Wu, R. H. Liu, H. Chen, and D. F. Fang. Nature, 453(7196):761, 2008.
3 P. Cheng, L. Fang, H. Yang, X. Zhu, G. Mu, H. Luo, Z. Wang, and H.-H. Wen. Science in China G, 51(6):719, 2008.
4 R. H. Liu, G. Wu, T. Wu, D. F. Fang, H. Chen, S. Y. Li, K. Liu, Y. L. Xie, X. F. Wang, R. L. Yang, L. Ding, C. He, D. L. Feng, and X. H. Chen. Phys. Rev. Lett., 101:087001, 2008.
5 Z.-A. Ren, J. Yang, W. Lu, W. Yi, G.-C. Che, X.-L. Dong, L.-L. Sun, and Z.-X. Zhao. arXiv:0803.4283, 2008.
6 Z.-A. Ren, W. Lu, J. Yang, W. Yi, X.-L. Shen, Z.-C. Li, G.-C. Che, X.-L. Dong, L.-L. Sun, F. Zhou, and Z.-X. Zhao. Chin. Phys. Lett., 25:2215, 2008.
7 M. Rotter, M. Tegel, and D. Johrendt. Phys. Rev. Lett., 101:107006, 2008.
8 M. J. Pitcher, D. R. Parker, P. Adamson, S. J. C. Herkelrath, A. T. Boothroyd, and S. J. Clarke. Chem. Commun., page 5918, 2008.
9 J. H. Tapp, Z. Tang, B. Lv, K. Sasmal, B. Lorenz, P. C. W. Chu, and A. M. Gulya. Phys. Rev. B, 78:060505(R), 2008.
10 F.-C. Hsu, J.-Y. Luo, K.-W. Yeh, T.-K. Chen, T.-W. Huang, P. M. Wu, Y.-C. Lee, Y.-L. Huang, Y.-Y. Chu, D.-C. Yan, and M.-K. Wu. arXiv:0807.2369, 2008.
11 H. Luetkens, H.-H. Klaus, R. Khasanov, A. Amato, R. Klingeler, I. Hellmann, N. Leps, A. Kondrat, C. Hess, A. Köhler, G. Behr, J. Werner, and B. Büchner. Phys. Rev. Lett., 101:097009, 2008.
12 H. Luetkens, H.-H. Klaus, M. Kraken, F. J. Littert, T. Dellmann, R. Klingeler, C. Hess, R. Khasanov, A. Amato, C. Baines, M. Kosmala, O. J. Schumann, M. Braden, J. Hamann-Borrero, N. Leps, A. Kondrat, G. Behr, J. Werner, and B. Büchner. Nature Materials, doi:10.1038/nmat2397, 2009.
13 C. de la Cruz, Q. Huang, J. W. Lynn, J. Li, W. Ratcliff II, J. L. Zarestky, H. A. Mook, G. F. Chen, J. L. Luo, N. L. Wang, and P. Dai. Nature, 453:899, 2008.
14 H.-H. Klaus, H. Luetkens, R. Klingeler, C. Hess, F. J. Littert, M. Kraken, M. M. Korshunov, I. Eremin, S.-L. Drechsler, R. Khasanov, A. Amato, J. Hamann-Borrero, N. Leps, A. Kondrat, G. Behr, J. Werner, and B. Büchner. Phys. Rev. Lett., 101:077005, 2008.
15 A. J. Drew, Ch. Niedermayer, P. J. Baker, P. S. J. Blundell, T. Lancaster, R. H. Liu, G. Wu, X. H. Chen, I. Watanabe, V. K. Malik, A. Dubroka, M. Rössle, K. W. Kim, C. Baines, and C. Bernhard. Nature Materials, doi:10.1038/nmat2396, 2009.
16 M. Rotter, M. Pangerl, M. Tegel, and D. Johrendt. Angew. Chem., 47:7949, 2008.
17 M. Rotter, M. Tegel, D. Johrendt, I. Schellenberg, W. Hermes, and R. Pöttgen. Phys. Rev. B, 78:020503, 2008.
18 A. Kondrat, J. E. Hamann-Borrero, N. Leps, M. Kosmala, O. Schumann, J. Werner, G. Behr, M. Braden, R. Klin-
R. Klingeler, J. Geck, R. Gross, L. Pinsard-Gaudart, A. Revcolevschi, S. Uhlenbruck, and B. Büchner. Phys. Rev. B, 65:174404, 2002.

H. Okada, K. Igawa, H. Takahashi, Y. Kamihara, M. Hirano, H. Hosono, K. Matsubayashi, and Y. Uwatoko. Superconductivity under high pressure in LaFeAsO. J. Phys. Soc. Jpn., 77(11):113712, 2008.

M. Wagner. Phys. Rev. B, 45:635, 1992.

C. Hess, A. Kondrat, A. Narduzzo, J. E. Hamann-Borrero, R. Klingeler, J. Werner, G. Behr, and B. Büchner. arXiv:0811.1601, 2008.

R. Klingeler, N. Leps, I. Hellmann, A. Popa, C. Hess, A. Kondrat, J. Hamann-Borrero, G. Behr, V. Kataev, and B. Büchner. arXiv:0808.0708, 2008.

J. Lorenzana, G. Seibold, C. Ortix, and M. Grilli. Phys. Rev. Lett., 101:186402, 2008.

W. Ku C.-C. Lee, W.-G. Yin. arXiv:0905.2957, 2009.

G. Mu, X. Zhu, L. Fang, L. Shan, C. Ren, and H.-H. Wen. Chin. Phys. Lett., 25:2221, 2008.

H. Takahashi, K. Igawa, K. Arii, Y. Kamihara, M. Hirano, and H. Hosono. Nature, 453(7193):376, 2008.

F. Hardy, P. Adelmann, T. Wolf, H. v. Löhneysen, and C. Meingast. Phys. Rev. Lett., 102:187004, 2009.