Remark on the Limit Case of Positive Mass Theorem for Manifolds with Inner Boundary

Eui Chul Kim

Department of Mathematics, Inha University
Yonghyoundong 253, 402-751 Inchon, Korea
e-mail: eckim@chol.com

Abstract: In [5] Herzlich proved a new positive mass theorem for Riemannian 3-manifolds \((N, g)\) whose mean curvature of the boundary allows some positivity. In this paper we study what happens to the limit case of the theorem when, at a point of the boundary, the smallest positive eigenvalue of the Dirac operator of the boundary is strictly larger than one-half of the mean curvature (in this case the mass \(m(g)\) must be strictly positive). We prove that the mass is bounded from below by a positive constant \(c(g)\), \(m(g) \geq c(g)\), and the equality \(m(g) = c(g)\) holds only if, outside a compact set, \((N, g)\) is conformally flat and the scalar curvature vanishes. The constant \(c(g)\) is uniquely determined by the metric \(g\) via a Dirac-harmonic spinor.

MSC(2000): 53C27, 83C40
Keywords: Positive mass theorem, Harmonic spinor, Rigidity

1 Introduction

Let \((N, g)\) be a complete Riemannian 3-manifold with boundary which is diffeomorphic to the Euclidean space \(\mathbb{R}^3\) minus an open 3-ball centered at the origin. Let \(r(y) = \sqrt{\sum_{i=1}^{3} y_i^2}, \, y = (y_1, y_2, y_3) \in \mathbb{R}^3\), be the standard distance function to the origin of \(\mathbb{R}^3\). Then \((N, g)\) is called asymptotically flat of order \(\tau > \frac{1}{2}\), if there is a diffeomorphism \(\Phi : N \to \mathbb{R}^3 \setminus \{\text{an open 3-ball}\}\) such that the coefficients of the metric \(g\) in the induced rectangular coordinates satisfy

\[
g_{ij} = \delta_{ij} + O(r^{-\tau}), \quad g_{ij,k} = O(r^{-\tau-1}), \quad g_{ij,k,l} = O(r^{-\tau-2})
\]

as \(r = r(\Phi) \to \infty\). Let \(S(r) \subset N\) denote the \(\Phi\)-inverse image of a round 2-sphere in \(\mathbb{R}^3\), centered at the origin and of sufficiently large radius \(r > 0\). Throughout the paper we identify

\[
N = \bigcup_{r \geq r_o} S(r) \quad \text{for some fixed constant} \quad r_o > 0.
\]
The mass of \((N, g)\) is usually defined by [1]

\[
m(g) = \frac{1}{16\pi} \lim_{r \to \infty} \frac{3}{\pi} \int_{S(r)} (g_{ij,j} - g_{jj,i})\nu^i dS,
\]

where \(\nu\) is the outward unit normal to spheres \(S(r)\) and \(dS\) is the area form of spheres \(S(r) \subset N\). We remark here that one can express this definition in a coordinate-independent way, by considering a flat metric on \(N\) as a reference metric. Namely, let \(g_{eu}\) be a metric on \(N\) which is the pullback of the Euclidean metric on \(\mathbb{R}^3\) \(\{\text{an open 3-ball}\}\) via the diffeomorphism \(\Phi : N \to \mathbb{R}^3\) \(\{\text{an open 3-ball}\}\). Then the equation (1.1) is in fact equal to

\[
m(g) = \frac{1}{16\pi} \lim_{r \to \infty} \frac{3}{\pi} \int_{S(r)} g_{eu}(\text{div}_{g_{eu}}(g) - \text{grad}_{g_{eu}}(\text{Tr}_{g_{eu}}(g)), V_{eu})\mu_{S(r)}(g_{eu}),
\]

(1.2)

\[
eq \frac{1}{16\pi} \lim_{r \to \infty} \frac{3}{\pi} \int_{S(r)} g(\text{div}_{g_{eu}}(g) - \text{grad}_{g_{eu}}(\text{Tr}_{g_{eu}}(g)), V_{g})\mu_{S(r)}(g),
\]

(1.3)

where \(V_{eu}\) (resp. \(V_g\)) is the outward unit normal to spheres \((S(r), g_{eu})\) (resp. \((S(r), g)\)) and \(\mu_{S(r)}(g_{eu})\) (resp. \(\mu_{S(r)}(g)\)) is the area form of spheres \((S(r), g_{eu})\) (resp. \((S(r), g)\)). When one applies the Witten-type spinor method to prove positivity of the mass, one should use the latter equation (1.3) [2, 5, 6, 9, 11]. Note that the equations (1.2)-(1.3) are independent of deformation of the foliation \(N = \bigcup_{r \geq r_0} S(r)\) via a diffeomorphism \(F : N \to N\), since Stokes’ theorem implies that

\[
m(g) = \frac{1}{16\pi} \lim_{r \to \infty} \frac{3}{\pi} \int_{S(r)} g(\text{div}_{g_{eu}}(g) - \text{grad}_{g_{eu}}(\text{Tr}_{g_{eu}}(g)), V_{g})\mu_{S(r)}(g)
\]

\[
= \frac{1}{16\pi} \int_{\partial N} g(\text{div}_{g_{eu}}(g) - \text{grad}_{g_{eu}}(\text{Tr}_{g_{eu}}(g)), V_{g})\mu_{S(r)}(g)
\]

\[
+ \frac{1}{16\pi} \int_{N} \text{div}_{g}\left\{\text{div}_{g_{eu}}(g) - \text{grad}_{g_{eu}}(\text{Tr}_{g_{eu}}(g))\right\}\mu_{S(r)}(g)
\]

whose right-hand side is independent of a choice of foliation on \(N\) by 2-spheres.

The mass is a geometric invariant of Riemannian asymptotically flat manifolds and of importance in Riemannian geometry as well as in general relativity. In [3, 7] one finds an excellent exposition of the positive mass conjecture as well as the Penrose conjecture and a full list of related papers. A fundamental problem about the mass is to investigate the relation between the scalar curvature \(S_g\) of the manifold \((N, g)\), the mean curvature \(\text{Tr}_g(\Theta)\) of the inner boundary \((\partial N, g|_{\partial N})\) and the mass \(m(g)\) (Here \(\Theta\) indicates the second fundamental form of the boundary). The Riemannian positive mass theorem, proved by Schoen and Yau [10], states that, if \((N, g)\) is an asymptotically flat 3-manifold of non-negative scalar curvature \(S_g \geq 0\) with minimal boundary \(\text{Tr}_g(\Theta) \equiv 0\), then the mass is non-negative \(m(g) \geq 0\). In fact, the limit case of zero mass can not be attained and so the mass must be strictly positive. The Penrose conjecture, recently proved by Huisken and
Ilmanen [7], improves the positive mass theorem and states that, if the boundary is not only minimal but also outermost (i.e., N contains no other compact minimal hypersurfaces), then

$$m(g) \geq 4\sqrt{\frac{\text{Area}(\partial N, g)}{\pi}}$$

with equality if and only if (N, g) is isometric to the spatial Schwarzschild manifold.

In [5] Herzlich proved a new positive mass theorem for manifolds with inner boundary (see Theorem 2.1), making use of Dirac-harmonic spinors with well-chosen spectral boundary condition (see the PDE system (2.7) below). A remarkable feature of the theorem is that the mass $m(g)$ is non-negative even if there is some positivity of the mean curvature of the boundary. The limit case of zero mass (the flat space) occurs only if the smallest positive eigenvalue λ of the Dirac operator of the boundary is equal to one-half of the mean curvature $\text{Tr}_g(\Theta)$, i.e.,

$$\lambda = 2\sqrt{\frac{\pi}{\text{Area}(\partial N, g)}} = \frac{1}{2} \text{Tr}_g(\Theta).$$

The object of this paper is to study what happens to the limit case of the theorem when

$$2\sqrt{\frac{\pi}{\text{Area}(\partial N, g)}} \geq \frac{1}{2} \sup_{\partial N} \{\text{Tr}_g(\Theta)\} \quad \text{and} \quad 2\sqrt{\frac{\pi}{\text{Area}(\partial N, g)}} \neq \frac{1}{2} \text{Tr}_g(\Theta),$$

in which case the zero mass $m(g) = 0$ cannot be attained. We will prove (see Theorem 3.1) that there exists a positive constant $c(g) > 0$, uniquely determined by the metric g via a Dirac-harmonic spinor, such that $m(g) \geq c(g)$ and the equality $m(g) = c(g)$ occurs only if, outside a compact set, (N, g) is conformally flat and the scalar curvature $S_g \equiv 0$ vanishes. It will also be shown that the equality $m(g) = c(g)$ is indeed attained if (N, g) is conformally flat, the conformal factor being constant on the inner boundary ∂N, and the scalar curvature is everywhere zero. The idea to prove the rigidity statement is that, near infinity, one can conformally deform the considered metric as well as the connection, using the length of a harmonic spinor without zeros as the conformal factor.

2 The Witten-Herzlich method

In this section we recall some basic facts concerning the Witten-type spinor method used by Herzlich to prove a positive mass theorem for manifolds with inner boundary [2, 5, 6, 9, 11]. Let $(\partial_\theta, \partial_\phi, \partial_r)$ be a frame field on (N, g) determined by spherical coordinates (θ, ϕ, r). Applying the Gram-Schmidt orthogonalization process to $(\partial_\theta, \partial_\phi, \partial_r)$, we obtain a g-orthonormal frame $(E_1, E_2, -E_3)$, defined on an open dense subset of N, such that $V := -E_3$ is the outward unit normal to hypersurfaces $(S(r), g)$, $r \geq r_0$, and each E_j, $j = 1, 2$, is tangent to $S(r)$, where $(S(r), g)$ denotes hypersurface $S(r)$ equipped with the metric induced by g. Let ∇ and ∇^θ be the Levi-Civita connection of (N, g) and $(\partial N, g)$,
respectively. Let D be the Dirac operator of (N, g) and D^∂ the induced Dirac operator of $(\partial N, g)$, respectively. Let $\Theta := \nabla V$ be the second fundamental form of $(\partial N, g)$. Then we have

$$\nabla_X \psi = \nabla^\partial_X \psi + \frac{1}{2} \Theta(X) \cdot E_3 \cdot \psi$$

for all vectors X on ∂N and so

$$D\psi - E_3 \cdot \nabla_{E_3} \psi = \sum_{i=1}^{2} E_i \cdot \nabla^\partial_{E_i} \psi - \frac{1}{2} (\text{Tr}_g \Theta) E_3 \cdot \psi. \quad (2.1)$$

Let $\Sigma(N)$ and $\Sigma(\partial N)$ be the spinor bundle of (N, g) and $(\partial N, g)$, respectively. Recall that the Clifford bundle $\text{Cl}(\partial N)$ may be thought of as a subbundle of $\text{Cl}(N)$, the Clifford multiplication $\text{Cl}(\partial N) \times \Sigma(\partial N) \rightarrow \Sigma(\partial N)$ being naturally related to the one $\text{Cl}(N) \times \Sigma(N) \rightarrow \Sigma(N)$ via either

$$\pi_*(E_i \cdot E_3 \cdot \psi) = E_i \cdot (\pi_* \psi), \quad i = 1, 2, \quad (2.2)$$

or

$$- \pi_*(E_i \cdot E_3 \cdot \psi) = E_i \cdot (\pi_* \psi), \quad (2.3)$$

where $\pi_* : \Sigma(N) \rightarrow \Sigma(\partial N)$ is the restriction map. The equation (2.1) is then projected to ∂N as

$$\pi_*(E_3 \cdot D\psi + \nabla_{E_3} \psi) = \pm \sum_{i=1}^{2} \nabla^\partial_{E_i} \psi - \frac{1}{2} (\text{Tr}_g \Theta)(\pi_* \psi). \quad (2.4)$$

Regarding $\nabla^\partial \psi$, $\psi \in \Gamma(\Sigma(\partial N))$, as spinor fields on N, not projected to the boundary ∂N, one verifies easily that the formula

$$\nabla^\partial_X (E_3 \cdot \psi) = E_3 \cdot \nabla^\partial_X \psi$$

makes sense. Therefore D^∂ anticommutes with the action of the unit normal E_3, and hence the discrete eigenvalue spectrum of D^∂ is symmetric with respect to zero. Moreover, we note that, since the smallest absolute value of eigenvalues of D^∂ must satisfy

$$\lambda \geq 2 \sqrt{\frac{\pi}{\text{Area}(\partial N, g)}}, \quad (2.5)$$

there is no non-trivial solutions to the equation $D^\partial \varphi = 0$.

Let $(\cdot, \cdot)_g = \text{Re}(\cdot, \cdot)_g$ be the real part of the standard Hermitian product $(\cdot, \cdot)_g$ on the spinor bundle $\Sigma(N)$ over (N, g). Then, using the scalar product $(\cdot, \cdot) = (\cdot, \cdot)_g$, one can describe the asymptotic behaviour of spinor fields as

$$|\psi| = \sqrt{(\psi, \psi)} = O(r^{-\kappa}), \quad |\nabla \psi| = O(r^{-1-\kappa}), \quad \text{etc.,} \quad \kappa > 0. \quad (2.6)$$
Remark: Using the formulas in Proposition 2.1 and Proposition 2.3 of the paper [8], one verifies that (2.6) is in fact equivalent to the decay condition

\[|\psi|_{g_{\text{eu}}} = \sqrt{(\psi, \psi)_{g_{\text{eu}}}} = O(r^{-\kappa}), \quad |\nabla g_{\text{eu}} \psi|_{g_{\text{eu}}} = O(r^{-1-\kappa}), \quad \text{etc.,} \]

described in terms of the flat metric \(g_{\text{eu}} \).

Let \(P_{\pm} \) be the \(L^2 \)-orthogonal projection onto the subspace of positive (resp. negative) eigenspinors of the induced Dirac operator \(D^0 \). Let \(W^{1,2}_{1,\tau} \) be the weighted Sobolev space defined in [2]. In the rest of the paper, we fix a constant spinor \(\psi_o \) with \(|\psi_o| = 1 \) (i.e., \(\psi_o \) is a parallel spinor with respect to the flat metric \(g_{\text{eu}} \)), all the components of which are constant with respect to a spinor frame field induced by rectangular coordinates, and we use the rule (2.2) for the Clifford multiplication. Now we consider the PDE system:

\[D\psi = 0, \quad \text{with boundary condition} \quad \lim_{|x| \to \infty} \psi(x) = \psi_o, \quad P_- \psi = 0, \quad (2.7) \]

where \(\psi \) is a section of \(\Sigma(N) \) with \(\psi - \psi_o \in W^{1,2}_{1,\tau}, \ \tau > \frac{1}{2} \). (If one uses the rule (2.3) for the Clifford multiplication, then the spectral boundary condition \(P_- \psi = 0 \) must be replaced by \(P_+ \psi = 0 \) to guarantee positivity of the boundary term in the equation (2.8) below for the mass).

Proposition 2.1 (see [5]) Let \((N, g) \) be a Riemannian asymptotically flat 3-manifold of order \(\tau > \frac{1}{2} \). Let the scalar curvature \(S_g \) of \((N, g) \) be non-negative and the mean curvature \(\text{Tr}_g(\Theta) \) of the boundary \((\partial N, g) \) satisfy

\[\lambda \geq \frac{1}{2} \sup_{\partial N} \{ \text{Tr}_g(\Theta) \}, \]

where \(\lambda \) is the smallest absolute value of eigenvalues of the induced Dirac operator \(D^0 \). Then there exists a unique solution to the PDE system (2.7).

Let \(\psi \) be a solution to the system (2.7). Let \(\mu_{S(r)}(g), \mu_{\partial N}(g), \mu_N(g) \) denote the volume form of \((S(r), g), (\partial N, g), (N, g) \), respectively. Then, applying Stokes’ theorem, the Schrödinger-Lichnerowicz formula and the spectral boundary condition, we have

\[m(g) = \frac{1}{8\pi} \lim_{r \to \infty} \int_{S(r)} g(\text{grad}_g(\psi, \psi), V) \mu_{S(r)}(g) \]

\[= \frac{1}{4\pi} \int_{\partial N} \left(D^0(\pi_* \psi) - \frac{1}{2} \text{Tr}_g(\Theta)(\pi_* \psi), \pi_* \psi \right) \mu_{\partial N}(g) \]

\[+ \frac{1}{4\pi} \int_{N} \left\{ (\nabla \psi, \nabla \psi) + \frac{1}{4} S_g(\psi, \psi) \right\} \mu_N(g) \]

\[\geq \frac{1}{4\pi} \int_{\partial N} \left\{ \lambda - \frac{1}{2} \text{Tr}_g(\Theta) \right\} \mu_{\partial N}(g), \quad (2.8) \]
which proves the following positive mass theorem.

Theorem 2.1 (see [5]) If \((N, g)\) is asymptotically flat of order \(\tau > \frac{1}{2}\) with \(S_g \geq 0\) and the mean curvature \(\text{Tr}_g(\Theta)\) satisfies

\[
2\sqrt{\frac{\pi}{\text{Area}(\partial N, g)}} \geq \frac{1}{2} \sup_{\partial N}\{\text{Tr}_g(\Theta)\},
\]

then \(m(g) \geq 0\), with equality if and only if \((N, g)\) is flat.

Note that, if

\[
2\sqrt{\frac{\pi}{\text{Area}(\partial N, g)}} \geq \frac{1}{2} \sup_{\partial N}\{\text{Tr}_g(\Theta)\}
\]

and

\[
2\sqrt{\frac{\pi}{\text{Area}(\partial N, g)}} \not\equiv \frac{1}{2}\text{Tr}_g(\Theta) \quad (2.9)
\]
on the boundary \(\partial N\), then the equality \(m(g) = 0\) of Theorem 2.1 can not be attained, and hence one may find a reasonable positive constant \(c(g) > 0\) depending on the metric \(g\) with \(m(g) \geq c(g)\). In the next section, we investigate the situation (2.9) and improve the rigidity statement of Theorem 2.1.

3 Conformal change of metric using length of a spinor without zeros as the conformal factor

We consider a conformal metric \(\overline{g} = e^f g\) on \(N\) with \(f \in W_{-\tau}^{1,2}\), \(\tau > \frac{1}{2}\). The scalar curvatures \(S_{\overline{g}}\) and \(S_g\) are related by

\[
\triangle_g(e^{kf}) = - (\text{div}_g \circ \text{grad}_g)(e^{kf})
\]

\[
= \frac{k}{2} e^{(k+1)f} S_{\overline{g}} - \frac{k}{2} e^{kf} S_g + \frac{k(1 - 4k)}{4} e^{kf} |df|^2_{\overline{g}}, \quad (3.1)
\]

where \(k \in \mathbb{R}\) is an arbitrary real number, and the mean curvatures \(\text{Tr}_{\overline{g}}(\Theta_{\overline{g}})\) and \(\text{Tr}_g(\Theta_g)\) on the boundary \(\partial N\) are related by

\[
\text{Tr}_{\overline{g}}(\Theta_{\overline{g}}) = e^{-\frac{L}{2}} \text{Tr}_g(\Theta_g) - e^{-\frac{L}{2}} df(E_3),
\]

where \(E_3\) is the inward unit normal to \((\partial N, g)\). Moreover, applying (3.1) to (1.3), one verifies that the masses \(m(\overline{g})\) and \(m(g)\) are related as follows:

\[
m(\overline{g}) - m(g)
\]

\[
= \frac{1}{k} \cdot \frac{1}{8\pi} \int_{\partial N} g(\text{grad}_g(e^{kf}), E_3) \mu_{\partial N}(g) + \frac{1}{k} \cdot \frac{1}{8\pi} \int_N \triangle_g(e^{kf}) \mu_N(g)
\]

\[
= \frac{1}{k} \cdot \frac{1}{8\pi} \int_{\partial N} g(\text{grad}_g(e^{kf}), E_3) \mu_{\partial N}(g) + \frac{1}{k} \cdot \frac{1}{8\pi} \int_N \triangle_g(e^{kf}) \mu_N(g)
\]

\[
= \frac{1}{k} \cdot \frac{1}{8\pi} \int_{\partial N} g(\text{grad}_g(e^{kf}), E_3) \mu_{\partial N}(g) + \frac{1}{k} \cdot \frac{1}{8\pi} \int_N \triangle_g(e^{kf}) \mu_N(g)
\]
\[
\frac{1}{8\pi} \int_{\partial N} e^{kf} df(E_3) \mu_{\partial N}(g) + \frac{1}{16\pi} \int_N e^{kf} \left(e^f S_{\overline{g}} - S_g + \frac{1 - 4k}{2} (d|g|^2) \right) \mu_N(g).
\] (3.3)

Now let \(\Sigma(N)_g \) and \(\Sigma(N)_{\overline{g}} \) denote the spinor bundle of \((N, g)\) and \((N, \overline{g})\), respectively. Then there are natural isomorphisms \(j : T(N) \to T(N) \) and \(j : \Sigma(N)_g \to \Sigma(N)_{\overline{g}} \) preserving the inner products of vectors and spinors as well as the Clifford multiplication

\[
\overline{g}(jX, jY) = g(X, Y), \quad \langle j\psi_1, j\psi_2 \rangle_{\overline{g}} = \langle \psi_1, \psi_2 \rangle_g,
\]

\((jX) \cdot (j\psi) = j(X \cdot \psi), \quad X, Y \in \Gamma(T(N)), \quad \psi, \psi_1, \psi_2 \in \Gamma(\Sigma(N)_g). \)

We fix the notation \(\overline{X} := j(X) \) and \(\overline{\psi} := j(\psi) \) to denote the corresponding vector fields and spinor fields on \((N, \overline{g})\), respectively. For shortness we also introduce the notation \(\psi_p := e^{pf}\psi, \quad p \in \mathbb{R}. \) Then, one verifies that the connections \(\overline{\nabla}, \nabla \) and the Dirac operators \(\overline{D}, D \) are related as follows.

Proposition 3.1

(i) \(\overline{\grad}(e^f) = e^{-\frac{f}{2}} \grad(e^f), \)

(ii) \(\nabla_X \psi_p = e^{pf} \left\{ \nabla_X \psi + \frac{4p - 1}{4} \frac{e^{-f}}{\overline{g}(\grad(e^f), X) \overline{\psi}} - \frac{1}{4} e^{-f} X \cdot \grad(e^f) \cdot \overline{\psi} \right\}, \)

(iii) \(\overline{D}\psi_p = e^{pf} \left\{ e^{-\frac{f}{2}} \overline{D}\psi + \frac{2p + 1}{2} e^{-f} \frac{\grad(e^f) \cdot \overline{\psi}}{} \right\}. \)

Let \(\varphi = \varphi_o + \varphi_1 \) be a spinor field on \((N, g)\) with \(|\varphi_o| = 1 \) and \(\varphi_1 \in W^{1,2}_{-\tau}, \tau > \frac{1}{2}. \) Since \(|\varphi| \to 1 \) as \(r \to \infty, \) there exists a positive constant \(r_* \geq r_o \) such that \(\varphi \) has no zeros in \(N(r_*) := \bigcup_{r \geq r_*} S(r). \) Define a conformal metric \(\overline{g} \) on \(N(r_*) \) by

\[
\overline{g} = (\varphi, \varphi)^q g, \quad q \in \mathbb{R}.
\]

Then the connections \(\overline{\nabla}, \nabla \) and the Dirac operators \(\overline{D}, D \) are related by

\[
\nabla_X \overline{\varphi}_p = (\varphi, \varphi)^q \left\{ \nabla_X \varphi + \frac{q(4p - 1)}{4} (\varphi, \varphi)^{-1} \overline{g}(\grad(\varphi, \varphi), X) \varphi \right. \\
- \frac{q}{4} (\varphi, \varphi)^{-1} X \cdot \grad(\varphi, \varphi) \cdot \overline{\varphi}, \quad (3.4)
\]

\[
\overline{D}\overline{\varphi}_p = (\varphi, \varphi)^q \left\{ (\varphi, \varphi)^{-\frac{f}{2}} \overline{D}\varphi + \frac{q(2p + 1)}{2} (\varphi, \varphi)^{-1} \grad(\varphi, \varphi) \cdot \overline{\varphi} \right\}, \quad (3.5)
\]
where $\varphi_p = (\varphi, \varphi)^{pq}\varphi$. On the other hand, we know (see [4]) that, if φ is an eigenspinor of D on $(N(r_*), g)$, then

$$\nabla_X \varphi = -\frac{1}{2} (\varphi, \varphi)^{-1} T_\varphi(X) \cdot \varphi + \frac{3}{4} (\varphi, \varphi)^{-1} g(\text{grad}(\varphi, \varphi), X) \varphi$$

$$+ \frac{1}{4} (\varphi, \varphi)^{-1} X \cdot \text{grad}(\varphi, \varphi) \cdot \varphi,$$

(3.6)

where T_φ is the energy-momentum tensor defined by

$$T_\varphi(X, Y) = (X \cdot \nabla_Y \varphi + Y \cdot \nabla_X \varphi, \varphi).$$

Making use of the equations (3.4)-(3.6), we obtain the following proposition immediately.

Proposition 3.2 In the notations above, we have:

(i) If $p = -\frac{1}{2}$ and $D \varphi = 0$, then $D \varphi_p = 0$.

(ii) If $\nabla_X \varphi_p = 0$ and $D \varphi = 0$, then $p = -\frac{1}{2}$ and $q = 1$.

(iii) If $\nabla_X \varphi_p = 0$ with $p = -\frac{1}{2}$ and $q = 1$, then $D \varphi = 0$.

We now find that, in order to improve the rigidity statement of Theorem 2.1, the optimal parameters p, q, are

$$p = -\frac{1}{2}, \quad q = 1. \quad (3.7)$$

For this choice of parameters, the equation (3.4) gives

$$(\varphi, \varphi)^2 \overline{(\nabla \varphi_p, \nabla \varphi_p)}$$

$$= (\nabla \varphi, \nabla \varphi) + \frac{1}{2} (\varphi, \varphi)^{-1} (D \varphi, \text{grad}(\varphi, \varphi) \cdot \varphi) - \frac{3}{8} (\varphi, \varphi)^{-1} |\text{grad}(\varphi, \varphi)|^2.$$

Applying the Schrödinger-Lichnerowicz formula

$$\Delta(\varphi, \varphi) = -2(\nabla \varphi, \nabla \varphi) + 2(D^2 \varphi, \varphi) - \frac{1}{2} S_g(\varphi, \varphi),$$

where $\Delta = -\text{div} \circ \text{grad}$, one proves the following lemma.
Lemma 3.1 For the choice (3.7) of parameters, we have

\[
\begin{align*}
\frac{1}{2} \text{div}\{(\varphi, \varphi) r \text{grad}(\varphi, \varphi)\} &= (\varphi, \varphi)^r \left\{ (\varphi, \varphi)^2 (\nabla \varphi_p, \nabla \varphi_p) + \frac{1}{4} S_g(\varphi, \varphi) - (D^2 \varphi, \varphi) - \frac{1}{2} (\varphi, \varphi)^{-1} (D \varphi, \text{grad}(\varphi, \varphi) \cdot \varphi) \right. \\
&\quad + \frac{3}{8} (\varphi, \varphi)^{-1} |\text{grad}(\varphi, \varphi)|^2 \right\} + \frac{r}{2} (\varphi, \varphi)^r |\text{grad}(\varphi, \varphi)|^2,
\end{align*}
\]

where \(r \in \mathbb{R} \) is an arbitrary real number.

Now we can prove the main result of the paper.

Theorem 3.1 Let \((N, g)\) be a Riemannian asymptotically flat 3-manifold of order \(\tau > \frac{1}{2} \). If the scalar curvature \(S_g \) of \((N, g)\) is non-negative and the mean curvature \(\text{Tr}_g(\Theta) \) of \((\partial N, g)\) satisfies

\[
2 \sqrt{\frac{\pi}{\text{Area}(\partial N, g)}} \geq \frac{1}{2} \sup_{\partial N} \{\text{Tr}_g(\Theta)\}, \quad 2 \sqrt{\frac{\pi}{\text{Area}(\partial N, g)}} \not\equiv \frac{1}{2} \text{Tr}_g(\Theta),
\]

then there exists a positive constant \(c(g) > 0 \) uniquely determined by the metric \(g \) (as well as a beforehand fixed constant spinor \(\psi_0 \)) such that

(i) \(m(g) \geq c(g) \) and

(ii) the equality \(m(g) = c(g) \) occurs only if, outside a compact set, \(g \) is conformally flat and the scalar curvature \(S_g \equiv 0 \) vanishes.

In case that \((N, g = e^{-f} g_{eu})\) is conformally flat, \(f \in W^{1,2}_{-\tau} \), \(\tau > \frac{1}{2} \), and the conformal factor \(e^{-f} \) is constant on the boundary \(\partial N \), then the equality \(m(g) = c(g) \) holds.

Proof. Let \(\psi \) be a unique solution to the PDE system (2.7). We choose the parameter \(r = -\frac{3}{4} \) in the formula of Lemma 3.1 so as to remove the terms involving \(|\text{grad}(\psi, \psi)|^2 \).

Then we have

\[
m(g) = \frac{1}{8\pi} \lim_{r \to \infty} \int_{S(r)} (\psi, \psi)^{-\frac{3}{4}} g(\text{grad}(\psi, \psi), V) \mu_{S(r)}(g)
\]

\[
= \frac{1}{4\pi} \int_{S(r_*)} (\pi_* \psi, \pi_* \psi)^{-\frac{3}{4}} \left(D^2 (\pi_* \psi) - \frac{1}{2} \text{Tr}_g(\Theta)(\pi_* \psi, \pi_* \psi) \right) \mu_{S(r_*)}(g)
\]

\[
+ \frac{1}{4\pi} \int_{N(r_*)} (\psi, \psi)^{-\frac{3}{4}} \left\{ (\psi, \psi)^2 (\nabla \psi_p, \nabla \psi_p) + \frac{1}{4} S_g(\psi, \psi) \right\} \mu_{N(r_*)}(g)
\]

for all sufficiently large constants \(r_* \geq r_0 \). On the other hand, we know that

\[
m(g) = \frac{1}{8\pi} \lim_{r \to \infty} \int_{S(r)} g(\text{grad}(\psi, \psi), V) \mu_{S(r)}(g)
\]
conditions and define (3.8) is satisfied. Then the scalar curvature S has no zeros in $N(r_\infty) = \bigcup_{r \geq r_\infty} S(r)$ and

$$\frac{1}{4\pi} \int_{S(r_\infty)} (\pi_\star \mu_{\partial N}(g)$$

$$= \frac{1}{4\pi} \int_{\partial N} \left(D^\partial (\pi_\star \psi) - \frac{1}{2} \Tr g(\Theta)(\pi_\star \psi), \pi_\star \psi \right) \mu_{\partial N}(g)$$

$$+ \frac{1}{4\pi} \int_{\partial N} \left\{ (\nabla \psi, \nabla \psi) + \frac{1}{4} S_g(\psi, \psi) \right\} \mu_{N}(g)$$

$$> \frac{1}{4\pi} \int_{\partial N} \left\{ 2 \sqrt{\frac{\pi}{\Area(\partial N, g)}} - \frac{1}{2} \Tr g(\Theta) \right\} (\pi_\star \psi, \pi_\star \psi) \mu_{\partial N}(g) > 0,$$

since $\int_{N} (\nabla \psi, \nabla \psi) > 0$ is strictly positive. Therefore, there exists a positive constant $r_\infty \geq r_0$ satisfying the following two conditions: ψ has no zeros in $N(r_\infty) = \bigcup_{r \geq r_\infty} S(r)$ and

$$\frac{1}{4\pi} \int_{S(r_\infty)} (\pi_\star \psi, \pi_\star \psi) \left(D^\partial (\pi_\star \psi) - \frac{1}{2} \Tr g(\Theta)(\pi_\star \psi), \pi_\star \psi \right) \mu_{S(r_\infty)}(g)$$

$$> \frac{1}{4\pi} \int_{\partial N} \left\{ 2 \sqrt{\frac{\pi}{\Area(\partial N, g)}} - \frac{1}{2} \Tr g(\Theta) \right\} (\pi_\star \psi, \pi_\star \psi) \mu_{\partial N}(g) > 0.$$

Let r_{glb} be the greatest lower bound of the set of all the constants r_∞ satisfying these two conditions and define

$$c(g) = \frac{1}{4\pi} \int_{S(r_{glb})} (\pi_\star \psi, \pi_\star \psi) \left(D^\partial (\pi_\star \psi) - \frac{1}{2} \Tr g(\Theta)(\pi_\star \psi), \pi_\star \psi \right) \mu_{S(r_{glb})}(g).$$

Then it is clear that the statements (i) and (ii) of the theorem are true. Now it remains to prove the last statement of the theorem. Let $\varphi = e^\frac{t}{2} \psi_0$. Then Proposition 3.1 (iii) implies $D \varphi = 0$. Furthermore,

$$0 = \nabla_{E_i} \psi_0 = \nabla_{E_i} \psi_0 + \frac{1}{2} \Theta_{g_{eu}} (E_i) \cdot E_j \cdot \psi_0 = \nabla_{E_i} \psi_0 + \frac{1}{2r_o} E_i \cdot E_j \cdot \psi_0, \quad i = 1, 2,$$

gives

$$\nabla_{E_i} (\pi_\star \varphi) = -\frac{1}{2r_o} e^\frac{t}{2} E_i \cdot (\pi_\star \varphi) + \frac{3}{4} df(E_i)(\pi_\star \varphi) + \frac{1}{4} E_i \cdot \left(\sum_{j=1}^{2} df(E_j)(E_j) \cdot (\pi_\star \varphi) \right)$$

$$= -\frac{1}{2r_o} e^\frac{t}{2} E_i \cdot (\pi_\star \varphi),$$

since the function f is constant on ∂N. Consequently, $\varphi = e^\frac{t}{2} \psi_0$ is the unique solution to the system (2.7) and the equality $m(g) = c(g)$ holds indeed.

Remark: Let $(N, g = e^{-t} g_{eu})$ be conformally flat, $f \in W^{1,2}_{-\tau}$, $\tau > \frac{1}{2}$, and let the function f be constant on the boundary ∂N. Assume that $S_g \geq 0$ and the boundary condition (3.8) is satisfied. Then the scalar curvature S_g is given by (see (3.1))

$$\Delta_g (e^\frac{t}{2}) = -\frac{1}{8} e^\frac{t}{2} S_g$$
and so the mass by (see (3.3))

\[m(g) = -\frac{1}{8\pi} \int_{\partial N} e^{\frac{\ell}{\ell}} df(E_3) \mu_{\partial N}(g) + \frac{1}{16\pi} \int_{N} e^{\frac{\ell}{\ell}} S_\mu \mu_{N}(g). \]

Substituting the equation (3.2) into (3.8), one verifies easily that \(-df(E_3) \geq 0, df(E_3) \neq 0\), and the constant \(c(g)\) in Theorem 3.1 is in fact equal to

\[c(g) = -\frac{1}{8\pi} \int_{\partial N} e^{\frac{\ell}{\ell}} df(E_3) \mu_{\partial N}(g) \]

\[= \frac{1}{4\pi} \int_{\partial N} (\pi_* \psi, \pi_* \psi)^{-\frac{3}{4}} \left(D^{\partial}(\pi_* \psi) - \frac{1}{2} \text{Tr}_g(\Theta)(\pi_* \psi) \right) \mu_{\partial N}(g), \]

where \(\psi = e^{\ell} \psi_0\) is a unique solution to system (2.7). In particular, if \(g\) is the spacelike Schwarzschild metric with

\[e^{-f} = \left(1 + \frac{m^2}{2r}\right)^4, \quad m > 0, \]

then a direct computation, on the minimal boundary \(\partial N = S(r = \frac{m}{2})\), shows that \(c(g) = m\).

Remark: It might be possible to compare the constant \(c(g)\) in Theorem 3.1 with the lower bound

\[4\sqrt{\frac{\text{Area}(\partial N, g)}{\pi}} \]

of the Penrose inequality [3, 7], in case that the boundary \((\partial N, g)\) is minimal. It seems that

\[4\sqrt{\frac{\text{Area}(\partial N, g)}{\pi}} \geq c(g), \]

since the boundary condition (outermost minimal surface) for the constant \(4\sqrt{\frac{\text{Area}(\partial N, g)}{\pi}}\) is stronger than that (minimal surface) for \(c(g)\).

Acknowledgement: The author thanks the referee for useful suggestions. This research was supported by the BK 21 project of Seoul National University and the BK 21 project of Inha University.

References

[1] R. Arnowitt, S. Deser and C. Misner, Coordinate invariance and energy expressions in general relativity, Phys. Rev. 122 (1961) 997-1006.

[2] R. Bartnik, The mass of an asymptotically flat manifold, comm. pure Appl. Math. 34 (1986) 661-693.
[3] H. L. Bray, Proof of the Riemannian Penrose conjecture using the positive mass theorem, J. Diff. Geom. 59 (2001) 177-267.

[4] Th. Friedrich and E.C. Kim, Some remarks on the Hijazi inequality and generalizations of the Killing equation for spinors, J. Geom. Phys. 37 (2001) 1-14.

[5] M. Herzlich, A Penrose-like inequality for the mass of Riemannian asymptotically flat manifolds, Comm. Math. Phys. 188 (1997) 121-133.

[6] M. Herzlich, The positive mass theorem for black holes revisited, J. Geom. Phys. 26 (1998) 97-111.

[7] G. Huisken and T. Ilmanen, The inverse mean curvature flow and the Riemannian Penrose Inequality, J. Diff. Geom. 59 (2001) 353-437.

[8] E. C. Kim, A local existence theorem for the Einstein-Dirac equation, J. Geom. Phys. 44 (2002) 376-405.

[9] T. H. Parker and C. H. Taubes, On Witten’s proof of the positive energy theorem, Comm. Math. Phys. 84 (1982) 223-238.

[10] R. Schoen and S.-T. Yau, Proof of the positive mass II, Comm. Math. Phys. 79 (1981) 231-260.

[11] E. Witten, A simple proof of the positive energy theorem, Comm. Math. Phys. 80 (1981) 381-402.