Microscopic version of the Bohr-Mottelson model and its application

H. G. Ganev1,2,
1Joint Institute for Nuclear Research, Dubna, Russia
2Institute of Nuclear Research and Nuclear Energy, Bulgarian Academy of Sciences, Sofia, Bulgaria

Abstract

The shell model coupling scheme of the fully microscopic proton-neutron symplectic model (PNSM) \cite{1,2}, defined by the following dynamical symmetry chain $Sp(12, R) \supset SU(1, 1) \otimes SO(6) \supset U(1) \otimes SU_{pn}(3) \otimes SO(2) \supset SO(3)$, is considered. It is shown \cite{3} that it corresponds to a microscopic version of the Bohr-Mottelson collective model which captures the original relationships between its exactly solvable submodel limits. This variant of the PNSM provides an interesting and relevant shell-model symplectic-based framework for exploring the nuclear collective dynamics. Some simple applications of the present theory to different nuclei with various collective properties are given.

References

\cite{1} H. G. Ganev, Eur. Phys. J. \textbf{A 50}, 183 (2014).
\cite{2} H. G. Ganev, Eur. Phys. J. \textbf{A 51}, 84 (2015).
\cite{3} H. G. Ganev, Eur. Phys. J. \textbf{A 57}, 181 (2021).