On the Geometry of Bäcklund Transformations

M. Palese and E. Winterroth
Department of Mathematics, University of Torino
Via C. Alberto 10, 10123 Torino, Italy
e–mails: PALESE@DM.UNITO.IT, EKKEHART@DM.UNITO.IT

Abstract

The geometry of an admissible Bäcklund transformation for an exterior differential system is described by an admissible Cartan connection for a geometric structure on a tower with infinite–dimensional skeleton which is the universal prolongation of a |1|–graded semi-simple Lie algebra.

2000 MSC: 14M17,53C05,53C10,53C30, 58J70,58J72,58A15.
Key words: generalized homogeneous spaces, Bäcklund transformations, connections.

1 Towers on skeletons

In the following we consider infinite–dimensional objects in the p–category of objects obtained as projective limits of finite–dimensional ones [3].

Definition 1 An algebraic skeleton on a finite–dimensional vector space V is a triple (E, G, ρ), with G a p–Lie group, E = V ⊕ g, g the Lie algebra of G, and ρ a representation of G on E such that ρ(g)x = Ad(g)x, for g ∈ G, x ∈ g. An infinitesimal skeleton can be analogously defined via the representation of g on E.

Definition 2 Let (E, G, ρ) be a skeleton on V and Z a manifold of type V [3]. We say that a p–principal fibre bundle P(Z, G) provided with an absolute parallelism ω on P is a tower on Z with skeleton (E, G, ρ) if ω takes values in E and satisfies: \(R^*_g ω = ρ(g)^{-1} ω \), for g ∈ G; ω(\(\tilde{A} \)) = A, for A ∈ g; here \(R^*_g \) denotes the right translation and \(\tilde{A} \) the fundamental vector field induced on P from A.

*Both of them supported by GNFM of INdAM and University of Torino proj. Giovanni Ricercatori 2001. E.W. partially supported also by University of Erlangen–Nürnberg and CNR grant n. 201.21-00.01.01.
1.1 Cartan connections

Let \mathfrak{g} be a Lie algebra and \mathfrak{k} a Lie subalgebra of \mathfrak{g}. Let K be a Lie group with Lie algebra \mathfrak{k} equipped with a representation $Ad : K \to GL(\mathfrak{g})$ such that its differential coincides with the adjoint representation of \mathfrak{k} on \mathfrak{g}.

Definition 3 Let $P(Z, K)$ be a principal fibre bundle over a manifold Z with structure group K. A **Cartan connection** in P of type (\mathfrak{g}, K) is a 1–form ω on P with values in \mathfrak{g} satisfying the following conditions: $\omega|_{T_\nu P} : T_\nu P \to \mathfrak{g}$ is an isomorphism $\forall \nu \in P$; $R^*_g \omega = Ad(g)^{-1} \omega$ for $g \in K$; $\omega(A) = 0$ for $A \in \mathfrak{k}$.

(\mathfrak{g}, K, Ad) is a skeleton on V, with $\mathfrak{g} = \mathfrak{k} \oplus V$. Then it is clear that a Cartan connection (P, Z, K, ω) of type (\mathfrak{g}, K) is a tower on Z.

In the following we assume the Lie algebra \mathfrak{g} to be a generalized semi-simple $|1|$–graded Lie algebra i.e. $\mathfrak{g} = \mathfrak{g}_{-1} \oplus \mathfrak{g}_0 \oplus \mathfrak{g}_1$.

Remark 1 According with the Lie algebra $|1|$–grading the Cartan connection form ω and its curvature κ split as $\omega = \omega_{-1} \oplus \omega_0 \oplus \omega_1$ and $\kappa = \kappa_{-1} \oplus \kappa_0 \oplus \kappa_1$.

Definition 4 Let G be a semi-simple Lie group, with $|1|$–graded Lie algebra \mathfrak{g} as above and K the closed subgroup of G corresponding to the Lie algebra $\mathfrak{g}_0 \oplus \mathfrak{g}_1$. A **$K$–structure** on Z is a principal fiber bundle $P \to Z$ with structure group K equipped with a soldering form $\theta = \theta_{-1} \oplus \theta_0 \in \Omega^1(P, \mathfrak{g}_{-1} \oplus \mathfrak{g}_0)$ such that: $\theta_{-1}(\xi) = 0$, if and only if ξ is a vertical vector; $\theta_0(X + Z) = Y$, $\forall Y \in \mathfrak{g}_0$, $Z \in \mathfrak{g}_1$; $(R_b)^* \theta = Ad(b^{-1}) \theta$, $\forall b \in K$, where Ad means the action on the vector space $\mathfrak{g}_{-1} \oplus \mathfrak{g}_0 \simeq \mathfrak{g}/\mathfrak{g}_1$ induced by the adjoint action.

Definition 5 Let (P, θ) be a K–structure on Z. A Cartan connection ω on P is called **admissible** if and only if it is of the form $\omega = \theta_{-1} \oplus \theta_0 \oplus \omega_1$.

Remark 2 If the K–structure has zero torsion, i.e. if it is a reduction of $L^2(Z) \to Z$ to K, then the curvature of the induced Cartan connection $\omega = \theta_{-1} \oplus \theta_0 \oplus \omega_1$ is such that $\kappa_{-1} = 0$.

2 Bäcklund transformations and induced Cartan connections

Let $\pi : U \to X$, $\tau : Z \to X$, be two (vector) bundles with local fibered coordinates (x^α, u^A) and (x^α, z^i), respectively, where $\alpha = 1, \ldots, m = \text{dim}X$, $A = 1, \ldots, n = \text{dim}U - \text{dim}X$, $i = 1, \ldots, N = \text{dim}Z - \text{dim}X$. A system of non-linear field equations of order k on U is geometrically described as an exterior differential system ν on J^kU. The solutions of the field equations are (local) sections σ of $U \to X$ such that $(j^k \sigma)^* \nu = 0$. We shall also denote by $J^\infty \nu$ (resp. $j^\infty \sigma$) the infinite order jet prolongation of ν (resp. σ).
2.1 Admissible Bäcklund transformations

Let B be the infinite–order contact transformations group on $J^\infty U$.

Definition 6 The group of (infinitesimal) Bäcklund transformations for the system ν is the closed subgroup K of B which leaves invariant solution submanifolds of $J^\infty \nu$. The group of (infinitesimal) generalized Bäcklund transformations for the system ν is the closed subgroup K of B which leaves invariant $J^\infty \nu$.

Let $\pi : U \to X$, $\tau : Z \to X$, be vector bundles as the above and $\pi^1 : J^1U \to X$, $\tau^1 : J^1Z \to X$, the first order jet prolongations bundles, with local fibered coordinates $(x^\alpha, u^A, u^{A^i}_i)$, $(x^\alpha, z^i, z^{\alpha i}_i)$, respectively. Furthermore, let $(\partial_\beta, \partial_A, \partial^\beta_A), (\partial_\beta, \partial_i, \partial^\beta_i)$ and $(dx^\beta, du^A, du^{A^i}_i)$, $(dx^\beta, dz^i, dz^{\alpha i}_i)$ be local bases of tangent vector fields and 1–forms on J^1U and J^1Z, respectively.

Definition 7 We define a Bäcklund map to be the fibered morphism over Z: $\phi : J^1U \times_X Z \to J^1Z : (x^\alpha, u^A, u^{A^i}_i, z^i) \mapsto (x^\alpha, z^i, z^{\alpha i}_i)$, with $z^{\alpha i}_i = \phi^1_\alpha (x^\beta, u^A, u^{A^i}_i; z^i)$.

The fibered morphism ϕ is said to be an admissible Bäcklund transformation for the differential system ν if $\phi^1_\alpha = D_\alpha \phi^\beta$ and the integrability conditions coincide with the exterior differential system ν.

Remark 3 By pull–back of the contact structure on J^1Z, the Bäcklund morphism induces an horizontal distribution, the induced Bäcklund connection, on the bundle $(J^1U \times_X Z, J^1U, \pi^1_0(\eta))$.

Theorem 1 The following statements are equivalent:

1. ϕ is an admissible Bäcklund transformation for the differential system ν.
2. The induced Bäcklund connection is K–invariant, where K is a normal subgroup $K \subset (\tilde{K} \cap K) \subset B$ leaving invariant (the infinite order prolongation of) ν and its solutions.

Let now Z be a vector bundle over the basis X, the fibers of which are modelled over the homogeneous space \tilde{K}/\hat{K} such that fibers are vector spaces of type $\tilde{\mathfrak{r}}_- = \bigoplus_{p<0} \tilde{\mathfrak{r}}_p$, with $\tilde{\mathfrak{r}}_-$ a graded abelian Lie algebra. Let P be a tower on Z with algebraic skeleton $(\tilde{\mathfrak{g}}, \tilde{\mathfrak{r}}, \text{Ad})$, where $\tilde{\mathfrak{g}}$ is the Lie algebra of \tilde{K}. Suppose U be a vector bundle (over the same basis X) with a left action λ of \tilde{K} on U (as a manifold). For each tower $(P, Z, \tilde{K}, \omega)$ we have a vector bundle $U_\lambda(Z) = P \times_{\tilde{K}} U$ over X and vice versa.

Assume $\tilde{\mathfrak{g}}$ to be the universal prolongation of a $|1|$–graded semi-simple Lie algebra \mathfrak{g} such that $\tilde{\mathfrak{g}}$ and $\tilde{\mathfrak{r}}_-$ are (the prolongation of) $\mathfrak{g}_0 \oplus \mathfrak{g}_1$ and \mathfrak{g}_{-1}, respectively.

Theorem 2 A Bäcklund transformation admissible for an exterior differential system induces the tower $(P, Z, \tilde{K}, \omega)$, where ω is an admissible Cartan connection for a \tilde{K}-structure over Z.

3
Proof. It follows from Remark 2 and Theorem 1. In fact, a Bäcklund morphism can be seen as a \bar{K}–equivariant section of the bundle $U_\lambda(Z) \to Z$; it induces a reduction of $L^2(Z) \to Z$ defining a \bar{K}–structure on Z with zero torsion. The admissible Cartan connection is the tower (P, \bar{K}, θ) induced from a \mathfrak{g}_0–principal connection on the underlying first order structure.

As a consequence one can build a cohomological theory of complete integrability for (nonlinear) exterior differential systems. Cohomological conditions are in fact given for a graded simple Lie algebra to be a universal prolongation [7]. This topic will be developed elsewhere.

Acknowledgments

Thanks are due to M. Francaviglia, R.A. Leo and G. Soliani for useful discussions.

References

[1] R.L. Anderson and N.H. Ibragimov, *Lie–Bäcklund Transformations in Applications*, SIAM, Philadelphia 1979

[2] A. Čap, J. Slovák and V. Souček, *Acta Math. Univ. Comenian. (N.S.)* 66, 33 (1997).

[3] T. Morimoto, *Hokkaido Math. Jour.* 22, 263 (1993).

[4] T. Ochiai, *Trans. Amer. Math. Soc.* 152, 159 (1970).

[5] M. Palese and E. Winterroth, *Phys. Lett. B* 532, 129 (2002).

[6] F.A.E. Pirani, D.C. Robinson, W.F. Shadwick, *Local Jet Bundle Formulation of Bäcklund Transformations*, Math. Phys. Stud., D. Reidel Publishing Company, Dordrecht, Holland, 1979.

[7] N. Tanaka, *Hokkaido Math. Jour.* 8, 23 (1979); *J. Math. Soc. Japan* 19, 215 (1967).