Epidemiological investigations and locally determined genotype diversity of *Mycoplasma synoviae* in Central China from 2017 to 2019

Chaoge Sui,*,1 Hao Cui,*,1 Jun Ji,*,2 Xin Xu,* Yunchao Kan,* Lunguang Yao,* Yingzuo Bi,† Xinheng Zhang,† and Qingmei Xie†

*Henan Provincial Engineering Laboratory of Insects Bio-reactor, Henan Provincial Engineering and Technology Center of Health Products for Livestock and Poultry, Nanyang Normal University, Nanyang, 473061, PR China; and† College of Animal Science, South China Agricultural University, Guangzhou 510642, PR China

ABSTRACT *Mycoplasma synoviae* (*M. synoviae*) has been identified worldwide to cause respiratory diseases, infectious synovitis, airsacculitis, and eggshell apex abnormalities (EAA) in commercial chickens, which results in substantial economic losses to the poultry industry. Therefore, in this study, 258 flocks were investigated between 2017 and 2019 for *M. synoviae* by screening samples from Central China. Subsequently, 129 *M. synoviae* strains were isolated, with a positive rate of 50%. Moreover, a higher incidence of *M. Synoviae* infections was in layers (74.1%) than in broilers (20%) in this study. The 5’-end conserved segment of the variable lipoprotein hemagglutinin A (*vlhA*) gene of these isolates was then cloned and sequenced because it is a common genomic target identified so far for *M. synoviae* genotyping. Genotyping of all isolates was based on the phylogenetic analysis and length analysis of the proline-rich-repeat (PRR) regions, respectively. Phylogenetic analysis based on 5’-end conserved segment of the *vlhA* gene (76–421 nt) assigned the majority of the occurring strains as being from group 6, and others from groups 2 and 3. Results identified that these isolates were of 6 types: A (38aa), D (23aa), E (19aa), I (28aa), J (20aa), and L (35aa), based on the size of the PRR region analysis. Furthermore, most of the isolates (81.4%) were identified as type L. Additionally, the epidemic types included only I and L in 2017; however, the types rose to 5 (A, D, E, I, L) in 2018 and rose to 6 (A, D, E, I, J, L) in 2019. These data showed the genotype diversity of *M. synoviae* in Central China. The high rate of positive flocks suggests the urgent need to take real-time supervisory controls of this Mycoplasma species in avian flocks.

Key words: epidemiological investigation, *Mycoplasma synoviae*, *vlhA*, genotyping, phylogenetic analysis

INTRODUCTION

Mycoplasmas belong to a unique group of bacteria that lack a cell wall and possess the smallest genome among all independently replicating organisms (Razin et al., 1998). *M. synoviae* is one of the 4 major pathogenic avian mycoplasma species, which causes significant economic losses during intensive poultry production (Kleven, 1997). Infection of *M. synoviae* causes synovitis in breeders, thereby resulting in reluctance to move, which negatively affects their growth and breeding performances. This infection can therefore lead to body lesions with consequent higher condemnation rates of the birds. *M. synoviae* infections can also result in subclinical upper respiratory infection, infectious synovitis, airsacculitis in broiler, and EAA in breeder and layer (Kleven, 2008; Kursa et al., 2019). *M. synoviae* has been reported in Australia, South America, Asia, Europe, and Africa and with a high worldwide prevalence in the poultry industry (Catania et al., 2019). Meanwhile, the incidence of *M. synoviae* varied with age in white-feathered chickens, turkeys, and sparrows. (Dufour-Gesbert et al., 2006; Feberwee et al., 2008; Roussan et al., 2015). Some investigations have also found that *M. synoviae* has been widely circulating in Chinese native chickens (Sun et al., 2017a, 2017b; Xue et al., 2017). The *M. synoviae* *vlhA* gene encodes an abundant immunodominant surface lipoprotein. This resulting *vlhA* protein cleaves the N-terminal part of the MSPB (major surface protein B) lipoprotein and the C-terminal part of the MSPA (major surface protein A), which mediates binding to erythrocytes (Bencina et al., 2001). Nowadays, several methods have been setup for *M. synoviae* genotyping. Reference to the length of the
sequence encoding proline-rich-repeat (PRR) region has also shown *M. synoviae* to be divided into groups or types (A~N) (Bencina et al., 2001; Hammond et al., 2009; Bayatzadeh et al., 2014; Limpavithayakul et al., 2016; Felice et al., 2020). Therefore, on the basis of these different isolation regions worldwide, *M. synoviae* isolates were typed to be A~E in the United States and Canada, F~K in Iran, L in Thailand, as well as M and N isolated from chicken and broiler breeders in Italy (Kreizinger et al., 2018). Furthermore, multilocus sequence analysis of *M. synoviae* loci was conducted to genotype isolates expressing the previously determined 5'-*vlhA* sequences (I. Cizelj et al., 2015). In addition to the above methods, amplified fragment length polymorphism and single-strand conformation polymorphism were used to type *M. synoviae* (Feberwee et al., 2005). Previous reports have genotyped Chinese isolates of *M. synoviae* from 2013 to 2014 based on size analysis of PRR at 5'-end of *vlhA* sequences by combining phylogenetic analysis for isolates. The most frequently identified group was proposed as group K (Sun et al., 2017a). Therefore, to help to trace back genotyping of *M. synoviae* isolates and to understand the variation and evolution of *M. synoviae* in China, we conducted an epidemiological investigation and genotyping, using the size of PRR and phylogenetic analysis of 5'-end-conserved segments of the *vlhA* of *M. synoviae*, using samples from the last 3 y in Central China.

MATERIALS AND METHODS

Collection of Clinical Samples

Samples were acquired from 258 unvaccinated commercial chicken flocks in Henan (42 broiler and 59 layer flocks), Hubei (41 broiler and 35 layer flocks), and Anhui (32 broiler and 49 layer flocks) provinces of Central China from 2017 to 2019. Sampling source was chosen mainly based on clinical signs. Approximately 20 individual chickens were swabbed at the choanal cleft (for birds with EAA or without clinical signs), trachea (for birds with respiratory signs), or a joint (for birds with swollen joints) using a sterilized cotton swab. Then, *M. synoviae* strains were isolated and used to determine live-cell titers as described previously (Branton et al., 2008; Sun et al., 2017a). All *M. synoviae* cultures were stored at −80°C until further use.

DNA Extraction and Detection by PCR

The obtained *M. synoviae* culture (0.2 mL) of each clinical sample mixed with 25 μL Protease K were incubated in a shaking water bath at 55°C to complete bacteri lysis. DNA was extracted using the Easy Pure DNA Purification Kit (TransGene Biotech, Beijing, China) according to the manufacturer’s instructions and subjected to partial *vlhA* gene amplification by PCR using the primer pair (forward: 5’- GGCCATTGCTCCTTCTGTTAT-3’ and reverse: 5’- CCGCTCTCAAGTGCTACAGTGAC-3’) (Sun et al., 2017a). The PCR assay was performed in 20 μl reaction volume consisting of 1 μl DNA template; 0.4 μM primers; PCR buffer; 0.25 mM dNTPs mixture and 1.5 U of PrimerSTAR HS DNA polymerase (TaKaRa Biotechnology, Dalian, China). The amplification protocol was performed as follows: Pre-denaturation at 95°C for 5 min, followed by 30 cycles of denaturation at 95°C for 30 s, annealing at 52°C for 30 s, and extension at 72°C for 20 s, with a final extension at 72°C for 10 min. Additionally, partial sequences of *vlhA* from each positive sample were amplified and cloned into pMD18-T (TaKaRa Biotechnology Co., Ltd.) for Sanger sequencing in both directions (Syn-Biotechnology, Suzhou, China). PCR and sequencing were conducted at least 3 times.

Sequence Identity and Phylogenetic Analysis

Sequences of partial *vlhA* were assembled using the Seqman program of Lasergene 7.1 software package (DNA STAR Inc., Madison, WI). The *vlhA* gene of isolates and the reference sequence were multisequence aligned using the Clustal W model, and phylogenetic trees were subsequently generated via the neighbor-joining tree method with nucleotide sequence substitution of 5'-end *vlhA* with 1,000 bootstrap replicates using MEGA 7.0 software. The reference sequence was obtained from GenBank according to the published literature about genotyping of *M. synoviae* isolates.

Genotyping of *M. synoviae* Isolates

Besides phylogenetic analysis, typing of the *M. synoviae* strain was also conducted on the basis of PRR region’s size as described previously. The size of PRR fragment of 38, 45, 32, 23, 19, 36, 51, 46, 28, 20, 12, 35, 30, and 41 amino acids were classified as type A, B, C, D, E, F, G, H, I, J, K, L, M, and N, respectively (Bencina et al., 2001).

RESULTS

Epidemic Information and Genotype of Clinical Samples

In this study, 258 flocks were investigated and 129 flocks were positive for *M. synoviae*; 129 *M. synoviae* strains were isolated in 2017 (n = 29), 2018 (n = 44), and 2019 (n = 56) from various broiler and layer farms in Anhui (65.3% for layers and 21.9% for broilers), Henan (74.6% for layers and 23.8% for broilers), and Hubei (85.7% for layers and 14.6% for broilers) provinces.

According to the samples used in this study, as shown in Tables 1–3, layers displayed a higher infection rate than broilers. Additionally, respiratory signs were more common in the clinic, and joint swellings were the main clinical signs. However, a few clinical cases manifested as EAA. Notably, chickens from 32.6% flocks that were
infected with *M. synoviae* did not display clinical signs, similar to all the other 129 flocks negative for *M. synoviae*. Partial *vlhA* genes of the 129 isolated *M. synoviae* strains were sequenced and analyzed. These strains were identified as A, D, E, I, J, and L types by size analysis of the PRR regions expressing *vlhA* sequences from samples obtained in Central China between 2017 and 2019 (detailed clinical information and GenBank accession numbers of each strain are displayed in Tables 1–3); 81.4% strains were classified as type L. In 2017, only 2 genotypes of *M. synoviae* isolates were tested, after which the genotype numbers increased to 5 in 2018 and 6 in 2019 (Figure 1).

Analysis of the Size of PRR

According to PRR length analysis results, most of the strains in the most extensive group (group 6) belonged to type L. The detailed genotype of isolates from different areas is shown in Figure 1. This study also indicated that the Anhui, Henan, and Hubei provinces had the same diversity of genotypes. Furthermore, type J was identified only in Henan Province (1 isolate), whereas, type D, the second-largest genotype was identified only in Hubei Province (4 isolates). Contrarily, type E occupied the second-largest genotype in Anhui and Henan provinces (4 and 7 isolates, respectively).

Phylogenetic Analysis

As shown in the phylogenetic tree analysis (Figure 2), all *M. synoviae* strains in this study were divided into 6 groups, including the reference strains. Most isolated strains of this study belonged to group 6, whereas other strains belonged to groups 2 and 3 (Figure 2). Furthermore, while isolates 18HB04, 19HB07, and 19HB08 (shown in Figure 2 with the red label in group 2) belonged to type D, the isolates 17HN04, 17AH09, 18AH11, 19HB06, and 19HN06 had a distant relationship with the current reference strains (detailed information of each reference strain is presented in Supplement 1).

DISCUSSION

This research was conducted to determine the genotype of *M. synoviae* isolates in Central China based on the phylogenetic tree and analysis of the size of PRR. Analyzing the size of the PRR region showed that the *M. synoviae* isolates identified in Central China were genotypes A (38aa), D (23aa), E (19aa), I (28aa), J (20aa), and L (35aa). This finding indicated that at least 6 genotypes of *M. synoviae* were circulating in Central China, with a genotype diversity increase observed over time. We propose that this increase was caused by antibody pressure from persistent infection and exchanges with other provinces or countries. Furthermore, in the 3 provinces of Anhui, Henan, and Hubei, the proportion of
the L-type strain was as high as 81.4%. Therefore, genotype results showed that the L type was the most prevalent in Central China.

Different chicken products displayed different incidences postinfection by *M. synoviae*. These findings further indicated that *M. synoviae* had a lower incidence in broilers (20%, 23/115) than in layers (74.1%, 106/143) (Chaidez-Ibarra et al., 2021), thereby leading to the speculation that the broiler’s lower incidence was due to the short feeding cycle. Additionally, based on the fact that *vlhA* gene encodes 2 main membrane antigens of *M. synoviae* that is, MSPA and MSPB, we propose that the complex genotypes and clinical signs in the egg layers were related to gene mutations in *M. synoviae* in flocks with common infections, and the frequent use of antibiotics during prolonged feeding (Bencina et al., 2001). Meanwhile, some *M. synoviae*-infected chicken displayed no clinical signs, which led to the spread of *M. synoviae*, thereby increasing the probability of infection and coinfection with other pathogens.

According to the phylogenetic tree analysis, the results showed that majority of these isolates belonged to group 6 according to group K in Sun’s report; meanwhile, some isolates were typed as groups 2 and 3 (Bencina et al., 2001; Sun et al., 2017a). Isolates of group 2 caused no clinical signs, and all isolates of group 3 showed clinical signs in swollen joints; meanwhile, respiratory signs were the dominant symptom caused by isolates in group 6. Interestingly, although most of the strains had close genetic distances, they were isolated from different provinces. Some strains of *M. synoviae*, also harbored genetic distances, although they were isolated from the same region. These findings indicated that geography was not significantly related to genotype.

As reported previously, types C, E, F, and L isolates of *M. synoviae* induced EAA syndrome-like Dutch *M. synoviae* type C and E isolates, however, their forms

Table 2. Information on the isolates collected in Central China during 2018.

Production type	Strains Code	Origin (province)	Time#	Clinical type	PRR size (aa)	Type	Accession No.
Broiler	18HB01	Hubei	2018.06	Respiratory signs	35	L	MZ558624
Layer	18HB02	Hubei	2018.06	Respiratory signs	35	L	MZ558625
Layer	18HB03	Hubei	2018.06	EAA	38	A	MZ558626
Layer	18HB04	Hubei	2018.06	No clinical signs	23	D	MZ558627
Layer	18HB05	Hubei	2018.07	Respiratory signs	35	L	MZ558628
Layer	18HB06	Hubei	2018.07	No clinical signs	35	L	MZ558629
Broiler	18HB07	Hubei	2018.07	Joint swollen	35	L	MZ558630
Layer	18HB08	Hubei	2018.07	Respiratory signs	35	L	MZ558631
Layer	18HB09	Hubei	2018.07	No clinical signs	23	D	MZ558632
Layer	18HB10	Hubei	2018.07	Respiratory signs	35	L	MZ558633
Layer	18HB11	Hubei	2018.08	EAA	35	L	MZ558634
Layer	18HB12	Hubei	2018.08	Joint swollen	35	L	MZ558635
Layer	18AH01	Anhui	2018.08	No clinical signs	35	L	MZ558636
Layer	18AH02	Anhui	2018.09	Respiratory signs	35	L	MZ558637
Layer	18AH03	Anhui	2018.09	EAA	35	L	MZ558638
Layer	18AH04	Anhui	2018.09	Respiratory signs	35	L	MZ558639
Broiler	18AH05	Anhui	2018.09	No clinical signs	35	L	MZ558640
Layer	18AH06	Anhui	2018.09	Joint swollen	35	L	MZ558641
Layer	18AH07	Anhui	2018.09	No clinical signs	35	L	MZ558642
Layer	18AH08	Anhui	2018.10	EAA	19	E	MZ558643
Layer	18AH09	Anhui	2018.10	No clinical signs	35	L	MZ558644
Layer	18AH10	Anhui	2018.10	Respiratory signs	19	E	MZ558645
Layer	18AH11	Anhui	2018.10	Respiratory signs	19	E	MZ558646
Layer	18HN01	Henan	2018.10	No clinical signs	19	E	MZ558647
Layer	18HN02	Henan	2018.10	No clinical signs	35	L	MZ558648
Layer	18HN03	Henan	2018.10	Respiratory signs	19	E	MZ558649
Layer	18HN04	Henan	2018.10	EAA	19	E	MZ558650
Layer	18HN05	Henan	2018.10	No clinical signs	35	L	MZ558651
Layer	18HN06	Henan	2018.10	Respiratory signs	35	L	MZ558652
Layer	18HN07	Henan	2018.10	EAA	35	L	MZ558653
Layer	18HN08	Henan	2018.10	Joint swollen	35	L	MZ558654
Broiler	18HN09	Henan	2018.11	No clinical signs	35	L	MZ558655
Layer	18HN10	Henan	2018.11	Respiratory signs	35	L	MZ558656
Layer	18HN11	Henan	2018.11	No clinical signs	35	L	MZ558657
Layer	18HN12	Henan	2018.11	No clinical signs	35	L	MZ558658
Broiler	18HN13	Henan	2018.11	Respiratory signs	35	L	MZ558659
Layer	18HN14	Henan	2018.11	No clinical signs	35	L	MZ558660
Layer	18HN15	Henan	2018.11	Respiratory signs	35	L	MZ558661
Layer	18HN16	Henan	2018.11	No clinical signs	35	L	MZ558662
Layer	18HN17	Henan	2018.11	No clinical signs	35	L	MZ558663
Layer	18HN18	Henan	2018.11	No clinical signs	19	E	MZ558664
Broiler	18HN19	Henan	2018.11	EAA	35	L	MZ558665
Layer	18HN20	Henan	2018.11	Joint swollen	35	L	MZ558666
Layer	18HN21	Henan	2018.12	Respiratory signs	35	L	MZ558667

a Abbreviation: EAA, eggshell apex abnormality.

b Genotype based on the size of the PRR region in the *vlhA* gene.
were different from those of Thai *M. synoviae* isolates (Limpavithayakul et al., 2016). In this study, 106 *M. synoviae* strains included 6 genotypes, including genotypes A, D, E, I, J, and L (35aa). Some reports have found that a more extended PRR region was associated with higher invasiveness (Bencina et al., 2001; Sun et al., 2017a). Furthermore, pathogenic analysis of animal experiments in Sun’s paper found that highly pathogenic strains, CHN-HN03 (KU572344) and CHN-QZ-ZZX (KU572380) with a size of 35aa, were larger than those of the mildly pathogenic CHN-GX-NN01 (KU572288) with a size of 19aa. However, the pathogenicity of CHN-FJ-ZZ01 (KU572307) was opposite to that of CHN-HN03 (KU572344) and CHN-QZ-ZZX (KU572380) (Sun et al., 2017a). A previous study reported that *M. synoviae* for type L causes infectious synovitis in chickens besides type B, which has a long PRR region (Limpavithayakul et al., 2016). The clinical signs induced by isolates in this study indicated that *M. synoviae* for all Type D with a PRR size of 23 aa caused no clinical signs; Some isolates of type E (19 aa) caused no clinical signs and others induced respiratory signs.

Production type	Strains	Origin (province)	Time#	Clinical typea	PRR size (aa)	Typeb	Accession No.
Layer 19HB01	Hubei	2019.01		Respiratory signs	35	L	MZ558668
Layer 19HB02	Hubei	2019.01		Respiratory signs	35	L	MZ558669
Layer 19HB03	Hubei	2019.01		No clinical signs	35	L	MZ558670
Layer 19HB04	Hubei	2019.01		EAA	35	L	MZ558671
Broiler 19HB05	Hubei	2019.01		No clinical signs	35	L	MZ558672
Layer 19HB06	Hubei	2019.01		Joint swollen	28	I	MZ558673
Layer 19HB07	Hubei	2019.01		No clinical signs	23	D	MZ558674
Layer 19HB08	Hubei	2019.01		No clinical signs	23	D	MZ558675
Layer 19HB09	Hubei	2019.01		Joint swollen	35	L	MZ558676
Layer 19HB10	Hubei	2019.01		EAA	35	L	MZ558677
Layer 19HB11	Hubei	2019.01		Respiratory signs	35	L	MZ558678
Layer 19HB12	Hubei	2019.01		Respiratory signs	35	L	MZ558679
Layer 19HB13	Hubei	2019.02		Joint swollen	35	L	MZ558680
Layer 19HB14	Hubei	2019.02		No clinical signs	35	L	MZ558681
Layer 19HB15	Hubei	2019.02		Respiratory signs	35	L	MZ558682
Broiler 19HB01	Anhui	2019.02		Joint swollen	35	L	MZ558683
Layer 19HB02	Anhui	2019.02		No clinical signs	19	E	MZ558684
Layer 19HB03	Anhui	2019.02		No clinical signs	35	L	MZ558685
Layer 19HB04	Anhui	2019.02		Respiratory signs	19	E	MZ558686
Layer 19HB05	Anhui	2019.02		No clinical signs	35	L	MZ558687
Layer 19HB06	Anhui	2019.02		EAA	35	L	MZ558688
Layer 19HB07	Anhui	2019.02		Respiratory signs	35	L	MZ558689
Layer 19HB08	Anhui	2019.03		Joint swollen	38	A	MZ558690
Layer 19HB09	Anhui	2019.03		No clinical signs	35	L	MZ558691
Layer 19HB10	Anhui	2019.03		Respiratory signs	35	L	MZ558692
Layer 19HB11	Anhui	2019.03		Joint swollen	35	L	MZ558693
Broiler 19HB12	Anhui	2019.03		Joint swollen	35	L	MZ558694
Layer 19HN01	Henan	2019.04		No clinical signs	35	L	MZ558702
Layer 19HN02	Henan	2019.04		No clinical signs	35	L	MZ558703
Layer 19HN03	Henan	2019.04		Respiratory signs	35	L	MZ558704
Layer 19HN04	Henan	2019.04		EAA	35	L	MZ558705
Layer 19HN05	Henan	2019.04		Respiratory signs	35	L	MZ558706
Broiler 19HN06	Henan	2019.04		Joint swollen	28	I	MZ558707
Layer 19HN07	Henan	2019.04		No clinical signs	19	E	MZ558708
Layer 19HN08	Henan	2019.04		Joint swollen	35	L	MZ558709
Layer 19HN09	Henan	2019.04		No clinical signs	20	J	MZ558710
Layer 19HN10	Henan	2019.04		Respiratory signs	19	E	MZ558711
Layer 19HN11	Henan	2019.04		No clinical signs	35	L	MZ558712
Layer 19HN12	Henan	2019.04		Respiratory signs	19	E	MZ558713
Layer 19HN13	Henan	2019.05		EAA	35	L	MZ558714
Broiler 19HN14	Henan	2019.05		Joint swollen	35	L	MZ558715
Layer 19HN15	Henan	2019.05		No clinical signs	35	L	MZ558716
Layer 19HN16	Henan	2019.05		Respiratory signs	35	L	MZ558717
Layer 19HN17	Henan	2019.05		Joint swollen	35	L	MZ558718
Layer 19HN18	Henan	2019.05		No clinical signs	35	L	MZ558719
Broiler 19HN19	Henan	2019.06		Joint swollen	35	L	MZ558720
Broiler 19HN20	Henan	2019.07		Joint swollen	35	L	MZ558721
Layer 19HN21	Henan	2019.07		EAA	35	L	MZ558722
Layer 19HN22	Henan	2019.07		Respiratory signs	35	L	MZ558723

*aAbbreviation: EAA, eggshell apex abnormality.
bGenotype based on the size of the PRR region in the *vlhA* gene.*
Figure 1. Genotype diversity of *Mycoplasma synoviae* strains from Central China between 2017 and 2019.

Figure 2. Phylogenetic tree of *vhlA* partial sequences of *Mycoplasma synoviae* isolated in Central China from 2017 to 2019. The filled squares for respiratory disease, filled circles for synovitis, filled stars for EAA and right pointing triangle for no clinical signs.
and EAA. Type I (28 aa) showed only swollen joints, and respiratory signs are the main clinical signs of the L type along with swollen joints, EAA. M. synoviae for type A has a long PRR region (38 aa) that caused swollen joints and EAA. Meanwhile, this investigation proposes that the Central China M. synoviae types E and L isolates in layers caused EAA and respiratory tract diseases, which is consistent with other research (Limpavithayakul et al., 2016). These results suggested the size of the PRR region was related to pathogenicity. By contrast, layers infected by M. synoviae isolate (19AH13) for type A (38 aa) displayed no clinical signs. It was also speculated that other genes are also involved in the pathogenicity of M. synoviae.

In conclusion, this study provides a theoretical basis and technical guidance for genotyping M. synoviae strains from Central China. Nevertheless, the diversity of genotypes suggests that adequate control methods are required in this country. We also established that genotyping is more by the size of PRR amino acid sequences is more precise and intuitive.

ACKNOWLEDGMENTS

This study was supported by the National Natural Science Foundation of China (Grant nos. 31802185 and 31870917), the Scientific and Technological Project of Henan province (Grant no. 182102310077, the Key Scientific and Technological Project of the Education Department of Henan province (Grant no. 18A230011), the program for Innovative Research Team of Science and Technology in University of Henan Province (Grant no. 20IRTSTHN024), the Technological Project of Nanyang Normal University (Grant nos. 18046, 2019QN009, and 2020CX011), and Guangdong Basic and Applied Basic Research Foundation (2019A1515012006). Ethical Statement: The autopsy and sampling protocols for dead birds were approved by the South China Agricultural University Committee for Animal Experiments (approval ID: SYXX-2014-0136).

Data Availability Statement: All data generated or analyzed during this study are included in this article. The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

DISCLOSURES

The authors have no competing interests to declare.

SUPPLEMENTARY MATERIALS

Supplementary material associated with this article can be found in the online version at doi:10.1016/j.psj.2021.101522.
avian influenza H9 subtype in meat-type chicken in Jordan between 2011–2015. Poult. Sci. 94:1499-1503.

Sun, S., X. Lin, J. Liu, Z. Tian, F. Chen, Y. Cao, J. Qin, and T. Luo. 2017a. Phylogenetic and pathogenic analysis of Mycoplasma synoviae isolated from native chicken breeds in China. Poult. Sci 96:2057–2063.

Sun, S. K., X. Lin, F. Chen, D. A. Wang, J. P. Lu, J. P. Qin, and T. R. Luo. 2017b. Epidemiological investigation of Mycoplasma Synoviae in native chicken breeds in China. BMC Vet. Res. 13:115.

Xue, J., M. Y. Xu, Z. J. Ma, J. Zhao, N. Jin, and G. Z. Zhang. 2017. Serological investigation of Mycoplasma synoviae infection in China from 2010 to 2015. Poult. Sci. 96:3109-3112.