SYSTEMATIC REVIEW

Mobile phones affect multiple sperm quality traits: a meta-analysis [v1; ref status: indexed, http://f1000r.es/ny]

Madhukar Shivajirao Dama, M Narayana Bhat

Institute of Wildlife Veterinary Research, Kodagu District, Karnataka, India

Abstract
As mobile phone usage is growing rapidly, there is a need for a comprehensive analysis of the literature to inform scientific debates about the adverse effects of mobile phone radiation on sperm quality traits. Therefore, we conducted a meta-analysis of the eligible published research studies on human males of reproductive age. Eleven studies were eligible for this analysis. Based on the meta-analysis, mobile phone use was significantly associated with deterioration in semen quality (Hedges’s g = -0.547; 95% CI: -0.713, -0.382; p < 0.001). The traits particularly affected adversely were sperm concentration, sperm morphology, sperm motility, proportion of non-progressive motile sperm (%), proportion of slow progressive motile sperm (%), and sperm viability. Direct exposure of spermatozoa to mobile phone radiation with in vitro study designs also significantly deteriorated the in vitro sperm quality (Hedges’s g = -2.233; 95% CI: -2.758, -1.708; p < 0.001), by reducing straight line velocity, fast progressive motility, hypo-osmotic swelling (HOS) test score, major axis (µm), minor axis (µm), total sperm motility, perimeter (µm), area (µm²), average path velocity, curvilinear velocity, motile spermatozoa, and acrosome reacted spermatozoa (%). The strength of evidence for the different outcomes varied from very low to very high. The analysis shows that mobile phone use is possibly associated with a number of deleterious effects on the spermatozoa.

Corresponding author: Madhukar Shivajirao Dama (madhukar262@gmail.com)

How to cite this article: Dama MS, Bhat MN (2013) Mobile phones affect multiple sperm quality traits: a meta-analysis [v1; ref status: indexed, http://f1000r.es/ny] F1000Research 2013, 2:40 (doi: 10.12688/f1000research.2-40.v1)

Copyright: This is an open access article distributed under the terms of the Creative Commons Attribution Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Data associated with the article are available under the terms of the Creative Commons Zero “No rights reserved” data waiver (CC0 1.0 Public domain dedication).

Grant information: The author(s) declared that no grants were involved in supporting this work.

Competing Interests: No competing interests were disclosed.

First Published: 12 Feb 2013, 2:40 (doi: 10.12688/f1000research.2-40.v1)
First Indexed: 25 Mar 2013, 2:40 (doi: 10.12688/f1000research.2-40.v1)
Introduction

Almost 10% of men of reproductive age are estimated to be subfertile. Owing to its complexity, even after identification of a plethora of underlying factors, etiology in almost half of the infertile subjects tested at fertility clinics remains obscure. Hence, the list of the causes of male infertility is growing by the day with recent advances in fertility research. Though advances in assisted reproduction technologies (ARTs), especially in the form of in vitro fertilization (IVF) and intracytoplasmic sperm injection (ICSI), have helped subfertile couples conceive offspring, it is feared that ARTs only bypass the problem of subfertility and contributes towards hiding the underlying causes which have at times led to serious health problems in offspring. Hence, identification of unknown etiologies would help in prescription of specific preventive measures that will ultimately decrease the incidence of male infertility.

Most nations, especially developing countries, are witnessing an increase in the use of various radiation-emitting domestic-purpose devices that could cause mild to serious health problems based on the duration and intensity of usage, and reduced fertility is now recognised as one such problem. Wireless mobile phones are one of the most accepted devices with a tremendous increase in usage across the world in recent times. Research into the impact of ionizing radiation on the development of various types of health disorders, especially cancers, has been well established. Similarly, several studies have found an increase in the risk of developing some types of tumors after long-term exposure to non-ionizing radiation from mobile phones. Research into the effects of mobile phone radiation on male fertility, though growing, is limited and inconclusive. Recently, several case-control studies have reported results from a general population setting alongside a few studies from subfertile populations. Like ionizing radiation, non-ionizing radiation is also expected to affect spermatozoa, though in subtle ways. The aim of this meta-analysis was, therefore, to investigate the impact of mobile phone radiation in vitro as well as in vivo settings in men of reproductive age from both general and subfertile populations.

Material and methods

A systematic search of an electronic database was conducted to retrieve published studies on the impact of mobile phone radiation on semen parameters in adult men. The results have been reported according to the standards of the guidelines for meta-analysis of observational studies in epidemiology. All English language research studies published up until January 2012 in scientific journals indexed in the searched databases were included for analysis.

Inclusion/exclusion criteria and outcomes of interest: The studies on human males of reproductive age reporting the effect of mobile phone radiation on any or all measures of semen volume, total sperm count, sperm concentration, sperm motility or sperm morphology were included. All the studies that did not satisfy the inclusion criteria were excluded.

Search strategy, data extraction and meta-analysis: Google Scholar and NLM’s PubMed database were searched for articles by using different combinations of 4 mobile phone related keywords ['mobile phone', 'cellular phone', 'radiofrequency electromagnetic waves (RF-EMW)', 'radiation'] with 5 sperm quality related keywords ['spermatozoa', 'semen', 'sperm concentration', 'sperm motility', 'sperm morphology'] Data from 11 eligible studies were extracted and separated into in vitro and in vivo categories.

Effect sizes were expressed as Hedges’s g, separately for in vivo & in vitro studies using individual semen parameters as units of analysis (Supplementary Table 1). A random model was used to test and quantify effect size using ‘Comprehensive Meta-Analysis (v.2)’ trial version. A random effect model was preferred over a fixed effect model in order to account for differences in both effect size and sampling error.

Results

In vivo effects of mobile phone radiation

Our analysis shows that overall, mobile phone users had significant deterioration in semen quality (Hedges’s g = -0.547; 95% CI: -0.713, -0.382; p < 0.001). There was significant heterogeneity among effect sizes (Q = 475.985, p < 0.001), which suggest that some of the semen parameters may not be affected by mobile phone exposure. Hence, combined effect-size for each of the semen parameters were calculated separately (Table 1), and it was found that sperm concentration, sperm morphology, sperm motility, proportion of non-progressive motile sperm (%), proportion of slow progressive motile sperm (%), and sperm viability were deteriorated in individuals exposed to mobile phone radiation. By contrast, semen volume, liquefaction time, semen pH, proportion of rapid progressive motile sperm (%), and semen viscosity were not affected by mobile phone usage.

Publication bias could potentially change the results of meta-analysis but analysis of funnel plot of precision by Hedges’s g using Dual and Tweedie’s trim-and-fill test did not change the overall effect size, suggesting little bias. Moreover, Rosenthal’s fail-safe N test revealed that 3964 missing studies with a mean Hedges’s g of 0 are required for the combined 2-tailed p-value to exceed 0.050. In other words, there need to be 99.1 missing studies for every observed study for the effect to be nullified.

In vitro effects of mobile phone radiation

Experimental exposure of spermatozoa isolated from healthy men of reproductive age to mobile phone radiation significantly affected sperm quality (Hedges’s g = -2.233; 95% CI: -2.758, -1.708; p < 0.001). There was significant heterogeneity among effect sizes (Q = 639.294, p < 0.001). There was significant heterogeneity among effect sizes (Q = 639.294, p < 0.001), suggesting that similar to in vivo exposure, in vitro exposure may also not affect all the parameters of spermatozoa. Hence, combined effect-size for spermatozoa parameters were calculated separately (Table 1), and it was found that exposure to mobile phones significantly reduced straight line velocity, fast progressive motility, Hypo-osmotic swelling (HOS) test score, major axis (µm), minor axis (µm), total sperm motility, perimeter (µm), area (µm²), average path velocity, curvilinear velocity, motile spermatozoa, and acrosome reacted spermatozoa (%). By contrast, DNA fragmentation levels, non-progressive motility, total antioxidant capacity (TAC), progressive motility, reactive oxygen species (ROS) generation, slow progressive motility, sperm concentration, and sperm zona binding was not affected by mobile phone radiation.
Table 1. Effect sizes of mobile phone radiation on sperm quality traits.

	Sample size	Hedges’s g	p-value
In vivo studies			
Semen volume	591	0.09774	0.29458
Sperm concentration	874	-0.66388	0.01858
Sperm morphology	746	-1.28325	0.00000
Sperm motility	1079	-0.81584	0.00102
Proportion of non-progressive motile sperm (%)	283	-0.16136	0.03396
Proportion of rapid progressive motile sperm (%)	283	-0.25708	0.09969
Proportion of slow progressive motile sperm (%)	283	-0.39031	0.00765
Liquefaction time (min)	321	-0.11449	0.28277
pH	321	-0.36681	0.0592
Sperm viability (%)	321	-1.13150	0.00220
Semen viscosity	321	-0.00924	0.93083
In vitro studies			
Acrosome reaction (%)	24	-1.69393	0.00000
Sperm area (µm²)	24	-6.79952	0.00004
Average path velocity	20	-8.16777	0.00000
Curvilinear velocity	20	-10.37987	0.00000
DNA fragmentation	32	0.10182	0.68034
Fast progressive motility	49	-0.50794	0.01195
Hypo-osmotic swelling (HOS)	20	1.721867	0.000002
Major axis (µm)	24	-3.62708	0.01918
Minor axis (µm)	24	-4.8425	0.0361
Sperm motility	105	-2.82739	0.00118
Non motile spermatozoa	49	-0.61615	0.03275
Non progressive motility	49	0.04371	0.82612
Perimeter (µm)	24	-5.53132	0.01897
Progressive motility	12	-0.04606	0.90700
Reactive oxygen species (ROS)	36	-11.37087	0.33592
Slow progressive motility	49	-0.14543	0.67535
Sperm concentration	59	-0.02309	0.89887
Sperm zona binding	10	-0.68402	0.12153
Straight line velocity	20	-6.37614	0.00000
Total antioxidant capacity (TAC)	32	-0.25102	0.31138
Viability (%)	56	-2.75116	0.02543

A Funnel plot of precision by Hedges’s g using Dual and Tweedie’s trim-and-fill test did not change the overall effect size, suggesting little publication bias. Rosenthal’s fail-safe N test revealed that 3813 missing studies with a mean Hedges’s g of 0 are required for the combined 2-tailed p-value to exceed 0.050. In other words, there need to be 100.3 missing studies for every observed study for the effect to be nullified.

Discussion

This study was aimed to analyse the data assessing the risk of mobile phone radiation on male fertility. Our results suggest that mobile phone radiation has a tendency to significantly affect sperm quality. Based on the design of the analysed records, we divided studies into in vivo studies and in vitro studies. The effect size was significant in both the categories, suggesting that mobile phone radiation could severely compromise male fertility. This conclusion is robust, as a fail-safe test suggested that the results are not likely to be mediated by publication bias.

The number of worldwide mobile subscriptions grew from less than 1 billion in 2000 to over 6 billion in 2012, with more than half of these subscribers estimated to be children and young adults. Hence, it is very likely that in the coming decades, we could witness an increase in the incidence of male infertility due to mobile phone radiation exposure, similar to growing concerns over other hazards. Although the mechanism of cell phone radiation-mediated health defects is still obscure, it is proposed that their ability to produce heat, disrupt cell membranes, affect endothelial function, alter the blood-brain barrier, and modulate neuronal excitability have the potential to affect multiple physiological functions simultaneously.
To our knowledge, this is the first meta-analysis of the effects of mobile phone radiations on various sperm quality parameters. Cellular phones have become an integral part of everyday life, and newer versions of these are developed very rapidly these days. Hence, it is necessary to educate the users about the hazards of cell phones as well as test the newer versions like smartphones for health hazards.

Competing interests
No relevant competing interests were disclosed.

Grant information
The author(s) declared that no grants were involved in supporting this work.

Supplementary table

Supplementary Table 1. Effect sizes of sperm quality traits from the studies included in the analysis.

Reference	Subgroup	Outcome	Effect size (Hedges’s g)	p-value
[7]	1	Proportion of non-progressive motile sperm (%)	-0.11444	0.19545
		Proportion of rapid progressive motile sperm (%)	-0.39434	0.00001
		Proportion of slow progressive motile sperm (%)	-0.51671	0.00000
		Sperm concentration	0.01922	0.82778
		Sperm motility	-0.14692	0.09667
	2	Proportion of non-progressive motile sperm (%)	-0.28478	0.04855
		Proportion of rapid progressive motile sperm (%)	-0.07945	0.58037
		Proportion of slow progressive motile sperm (%)	-0.22090	0.12525
		Sperm concentration	-0.12467	0.38594
		Sperm motility	0.00940	0.94784
[13]	1	Sperm morphology	-0.74105	0.00000
		Sperm motility	-0.57347	0.00000
		Liquefaction time (min)	-0.01209	0.94773
	1	pH	0.00000	1.00000
		Semen volume	0.18269	0.32253
		Sperm concentration	-0.42955	0.02095
		Sperm morphology	-0.72462	0.00013
		Sperm motility	-0.40596	0.02896
		Viability	-0.43282	0.02020
		Viscosity	0.01942	0.91612
[14]	2	Liquefaction time (min)	-0.23709	0.20389
		pH	-0.46407	0.01363
		Semen volume	-0.02014	0.91380
		Sperm concentration	-0.56141	0.00298
		Sperm morphology	-1.70950	0.00000
		Sperm motility	-1.32047	0.00000
		Viability	-1.34677	0.00000
		Viscosity	-0.09456	0.61148
	3	Liquefaction time (min)	-0.09749	0.59412
		pH	-0.63951	0.00060
		Semen volume	0.28711	0.11786
		Sperm concentration	-0.87694	0.00000
		Sperm morphology	-1.95983	0.00000
		Sperm motility	-1.58904	0.00000
		Viability	-1.62719	0.00000
		Viscosity	0.04490	0.80606
[15]	1	Semen volume	-0.07567	0.69348
		Sperm concentration	-2.09426	0.00000
		Sperm morphology	-1.35171	0.00000
		Sperm motility	-1.80265	0.00000
		Overall effect	-0.54948	0.00000
Reference	Subgroup	Outcome	Effect size (Hedges’s g)	p-value
-----------	----------	--------------------------	--------------------------	---------
[16]	1	Fast progressive motility	-0.48612	0.07419
		Motility	-0.73467	0.00808
		Non motile	-0.69668	0.00146
		Non progressive motility	0.14043	0.60105
		Slow progressive motility	-0.46268	0.07620
		Sperm concentration	-0.05135	0.84822
[20]	1	DNA fragmentation	0.10182	0.72273
		Motility	-0.19307	0.43544
		ROS	-0.29465	0.23842
		Sperm concentration	0.00085	0.99725
		TAC	-0.05282	0.99725
		Viability (%)	-0.46743	0.06193
[17]	1	Progressive motility	-0.04606	0.90700
[31]	1	Motility	-16.15095	0.00008
		ROS	-23.97770	0.00007
		Viability (%)	-11.52174	0.00009
		Area (µm²)	-1.58348	0.00051
		Major axis(µm)	-8.61098	0.00000
		Minor axis(µm)	-5.25493	0.00000
		Perimeter(µm)	-11.21546	0.00000
		Sperm zona binding	-0.68402	0.12153
		Acrosome (%)	-1.82487	0.00012
[32]	1	Fast progressive motility	-0.53471	0.07618
		Motility	-0.64188	0.03467
		Non motile	-0.31928	0.28406
		Non progressive motility	-0.07395	0.80286
		Slow progressive motility	-0.05135	0.84822
		Average path velocity	-0.18757	0.00031
		Curvilinear velocity	-0.14400	0.81140
		HOS	-0.25102	0.31138
		Viability (%)	-0.46743	0.06193
		Overall effect size	-2.23292	0.00000

References

1. de Kretser DM: Male infertility. Lancet. 1997; 349(9054): 787–90. PubMed Abstract | Publisher Full Text
2. Matzuk MM, Lamb DJ: The biology of infertility: research advances and clinical challenges. Nat Med. 2008; 14(11): 1197–213. PubMed Abstract | Publisher Full Text
3. Kilgallon SJ, Simmons LW: Image content influences men's semen quality. Biol Lett. 2005; 1(3): 253–5. PubMed Abstract | Publisher Full Text
4. Davies MJ, Moore VM, Wilson KJ, et al.: Reproductive technologies and the risk of birth defects. N Engl J Med. 2012; 366(19): 1803–13. PubMed Abstract | Publisher Full Text
5. Wen J, Jiang J, Ding C, et al.: Birth defects in children conceived by in vitro fertilization and intracytoplasmic sperm injection: a meta-analysis. Fertil Steril. 2012; 97(6): 1331–7, e1–4. PubMed Abstract | Publisher Full Text
6. Sage C, Carpenter D: BioInitiative Working Group: BioInitiative report: a rationale for a biologically-based public exposure standard for electromagnetic fields (ELF and RF). [United States]: BioInitiative Working Group, 2007. Reference Source
7. Fejes I, Závuczki Z, Szilóssy J, et al.: Is there a relationship between cell phone use and semen quality? Arch Androl. 2005; 51(5): 385–93. PubMed Abstract | Publisher Full Text
8. World Bank. Information and Communication Technologies, infoDev. World Bank Maximizing mobile: 2012 information and communications for development. In: Washington, D.C.: World Bank; 2012. Reference Source
9. Ahlbom A, Green A, Khetsis L, et al.: Epidemiology of health effects of radiofrequency exposure. Environ Health Perspect. 2004; 112(17): 1741–54. PubMed Abstract | Publisher Full Text | Free Full Text
10. Myung SK, Ju W, McDonnell DO, et al.: Mobile phone use and risk of tumors: a meta-analysis. J Clin Oncol. 2009; 27(33): 5565–72. PubMed Abstract | Publisher Full Text

11. Agarwal A, Singh A, Hamada A, et al.: Cell phones and male infertility: a review of recent innovations in technology and consequences. Int Braz J Urol. 2011; 37(4): 432–54. PubMed Abstract

12. Merhi ZO: Challenging cell phone impact on reproduction: a review. J Assist Reprod Genet. 2012; 29(4): 263–7. PubMed Abstract | Publisher Full Text | Free Full Text

13. Widowiak A, Widowiak L, Wiktor H: Evaluation of the effect of using mobile phones on male fertility. Ann Agric Environ Med. 2007; 14(1): 169–72. PubMed Abstract

14. Agarwal A, Deepinder F, Sharma RK, et al.: Effects of mobile phone usage on semen analysis in men attending infertility clinic: an observational study. Fertil Steril. 2008; 89(1): 124–8. PubMed Abstract | Publisher Full Text

15. Sajeda S, Al-Wattar YT, et al.: Whole-body microwave exposure emitted by cellular phones and testicular function of rats. Urol Res. 1999; 27(3): 219–23. PubMed Abstract

16. Erogul O, Oztas E, Yildirim I, et al.: Mobile Phone RF-EMW Exposure to Human Spermatozoa: An in vitro Study. Scand J Work Environ Health. 2008; 34(4): 268–76. PubMed Abstract | Publisher Full Text

17. Falzone N, Huyser C, Fourie F, et al.: In vitro effect of pulsed 900 MHz GSM radiation on mitochondrial membrane potential and motility of human spermatozoa. Bioelectromagnetics. 2008; 29(4): 268–76. PubMed Abstract | Publisher Full Text

18. Ahmed L, Baig NM: Mobile Phone RF-EMW Exposure to Human Spermatozoa: An in vitro Study. Pakistan J Zool. 2011; 43(6): 1147–54. Reference Source

19. Dhali MA, Darfourn MA, Al-Quraishy S: Sperm function is affected by the electromagnetic radiation emitted by mobile phone. Afr J Microbiol Res. 2011; 5(27): 4896–900. Publisher Full Text

20. Agarwal A, Desai NR, Makker K, et al.: Effects of radiofrequency electromagnetic waves (RF-EMW) from cellular phones on human ejaculated semen: an in vitro pilot study. Fertil Steril. 2009; 92(4): 1318–25. PubMed Abstract | Publisher Full Text

21. Dasdag S, Ketani MA, Akdag Z, et al.: Whole-body microwave exposure.
Referee Responses for Version 1

☑️ Essam-Eldeen M Mohamed, Department of Dermatology and Andrology, Al-Azhar University Hospital, Assiut, Egypt
Approved: 25 March 2013

Ref Report: 25 March 2013

I have read this submission. I believe that I have an appropriate level of expertise to confirm that it is of an acceptable scientific standard.

Competing Interests: No competing interests were disclosed.

☑️ Gary Klinefelter, Gamete and Early Embryo Biology Branch, Reproductive Toxicology Division, United States Environmental Protection Agency, Research Triangle Park, NC, USA
Approved with reservations: 14 March 2013

Ref Report: 14 March 2013

On the surface, the results seem quite striking with virtually any sperm endpoint one can imagine being significantly altered in the collective analysis of mobile phone studies compiled. However, upon looking at the data in the supplementary table, it is obvious that the relatively few studies compiled varied widely both in respect to endpoints measured and the sample size. As shown in Table 1, motility is the endpoint representing the greatest combined sample size for both in vivo and in vitro studies. Motility was measured in 4 out of 4 in vivo studies and 5 out of 7 in vitro studies. So motility ‘might’ be an endpoint that is repeatedly altered by cell phone exposure. The reason for ‘might’ is the lack of any reported exposure data in this study.

In summary, the small sample size and lack of exposure data significantly weaken the conclusions of this study.

I have read this submission. I believe that I have an appropriate level of expertise to confirm that it is of an acceptable scientific standard, however I have significant reservations, as outlined above.

Competing Interests: No competing interests were disclosed.

1 Comment

Author Response

Madhukar Dama, IWVR, KVAFSU, India
Posted: 02 Apr 2013
We have studied the reviewer comments and would like to justify our results. Our analysis is showing that mobile phone radiations could affect many sperm parameters. This could be due to interdependence of sperm parameters (Acta Eur Fertil. 1982;13(2):49-54). We also agree with the point that the number of studies is few and total sample size in in vitro studies is smaller. However, it must be noted that the sample size is weighted during meta-analysis, which nullifies the problems posed by smaller sample size studies. Apart from motility, other parameters like morphology, concentration, and viability are also significantly affected by in vivo exposure. Hence we have provided all the effect sizes individually along with p values and sample size. We hope that our points justify the reviewer comments.

Competing Interests: None

Nelson Bennett, Institute of Urology, Lahey Clinic Medical Center, Burlington, MA, USA

Approved: 19 February 2013

Ref Report: 19 February 2013

I have read this submission. I believe that I have an appropriate level of expertise to confirm that it is of an acceptable scientific standard.

Competing Interests: No competing interests were disclosed.