Equivalent circuits of transmission lines sag above lossy ground excited by external electromagnetic fields

Qingxi Yang¹,a), Xing Zhou¹, Kai Yao¹, Tianpeng Li¹, Yan Zhang², and Min Zhao¹

Abstract To obtain actual responses of nonlinear terminations for the transmission lines sag above lossy ground, it imperatively need to build the equivalent circuits of transmission lines sag. In this paper, the multi-conductor transmission lines sag above lossy ground are divided into a sequence of smaller segments, each of which is approximate equal height. Equivalent circuit of the transmission lines sag is composed of each segment in series. And the simplified equivalent circuit of transmission lines sag above lossy ground excited by the external electromagnetic fields is built by combined the neighboring elements. The proposed method is compared with the result obtained by the FDTD method, a good agreement is observed. And the amplitude of the response is less than the results when the transmission lines are considered as the straight lines.

Keywords: equivalent circuit, electromagnetic field, lossy ground, transmission lines, sag

Classification: Electromagnetic theory

1. Introduction

By building equivalent circuits of transmission lines, we can obtain the time domain response of nonlinear termination loads [1, 2, 3, 4, 5, 6, 7]. For the transmission lines above lossy ground excited by external electromagnetic fields, the equivalent circuits have been built in [8, 9]. The overhead transmission lines are considered as the straight lines in these papers [10, 11, 12, 13, 14, 15, 16]. Actually, the line is not straight and does not parallel to the ground level due to the sag produced by the weight of the line, etc [17, 18, 19, 20, 21, 22]. To obtain actual responses of nonlinear terminations for the transmission lines sag above lossy ground, it imperatively need to build the equivalent circuits of transmission lines sag.

In this paper, the multi-conductor transmission lines above lossy ground with sag are divided into a sequence of smaller segments, each of which is approximate equal height. Equivalent circuit of the transmission lines sag is composed of each segment in series. And the simplified equivalent circuit of transmission lines sag above the lossy ground excited by the external electromagnetic fields is built by combined the neighboring elements.

2. Sag calculated

The sag for one line of multi-conductor transmission lines above lossy ground is shown in Fig. 1 [17]. The sag height difference \(h'(x) \) with respect to the point \(x \) can be calculated as:

\[
 h'(x) = 2 \frac{\sigma_0}{g} \left(\frac{g}{2\sigma_0} x \right) \left(\frac{g}{2\sigma_0} (L - x) \right)
\]

Where \(\sigma_0 \) is the horizontal stress of the line at the lowest point, \(g \) is the load of the line per unit area, \(L \) is the length of line, \(x \) is the horizontal distances of the point \(x \) to the left neighboring towers, \(h \) is the height of the tower. So the actual height of line sag at the point \(x \) given by:

\[
 h(x) = h - h'(x)
\]

3. Proposed equivalent circuit

From [9], we can see that the per-unit-length inductance matrix \(L \), the per-unit-length conductance matrix \(C \), and ground impedance \(Z(s) \) will be vary with the actual height \(h(x) \), for the multi-conductor transmission lines sag above lossy ground. The multi-conductor transmission lines sag above lossy ground can be divided into a sequence of smaller segments, each of which is approximate equal height [23, 24, 25, 26]. The per-unit-length parameter matrices of every segment are regarded as constant value. Assumed that the multi-conductor transmission lines sag are considered as a cascade of \(N \) segments. For the \(k \) segment, the multi-conductor transmission lines above lossy ground excited by external electromagnetic fields can be represented by Telegrapher’s equations in the frequency-domain as:
\[
\begin{align*}
\begin{bmatrix}
V_k(L,s) \\
I_k(L,s)
\end{bmatrix}
&= e^{Q_{vol}L} \begin{bmatrix}
V_k(0,s) \\
I_k(0,s)
\end{bmatrix}
- \begin{bmatrix}
V_k^{ex}(0,s) \\
0
\end{bmatrix}
+ J_k^{sca}(s)
+ \begin{bmatrix}
V_k^{ex}(L,s) \\
0
\end{bmatrix} \\
&= e^{Q_{vol}L} \begin{bmatrix}
V_k(0,s) \\
I_k(0,s)
\end{bmatrix}
- \begin{bmatrix}
V_k^{ex}(0,s) \\
0
\end{bmatrix}
+ J_k^{sca}(s) + \begin{bmatrix}
V_k^{ex}(L,s) \\
0
\end{bmatrix}
\end{align*}
\]

Equation (3) and Eq. (4) can be combined and sorted as:
\[
\begin{align*}
\begin{bmatrix}
V_k(L,s) \\
I_k(L,s)
\end{bmatrix}
&= e^{Q_{vol}L} \begin{bmatrix}
V_k(0,s) \\
I_k(0,s)
\end{bmatrix}
- \begin{bmatrix}
V_k^{ex}(0,s) \\
0
\end{bmatrix}
+ \begin{bmatrix}
V_k^{ex}(L,s) \\
I_k^{ex}(s)
\end{bmatrix}
\end{align*}
\]

Where:
\[
V_k^{ex}(s) = V_k^{ex}(s) + V_k^{ex}(L,s)
\]
5. Conclusion

For the transmission lines sag above lossy ground, the equivalent circuit model is built in this paper. The multi-conductor transmission lines sag above lossy ground are divided into a sequence of smaller segments, each of which is approximate equal height. Equivalent circuit of the transmission lines sag is composed of each segment in series. And the simplified equivalent circuit of transmission lines sag above the lossy ground excited by the external electromagnetic fields is built by combined the neighboring fields. The proposed method is compared with the result obtained by the FDTD method, a good agreement is observed. And the amplitude of the response is less than the results when the transmission lines are considered as the straight lines.

Acknowledgments

This work was supported by the National Natural Science Foundation of China (NO. 50977091).

References

[1] N. M. Nakhla and R. Achar: “Simplified delay extraction-based passive transmission line macromodeling algorithm,” IEEE Trans. Adv. Packag. 33 (2010) 498 (DOI: 10.1109/TADVP.2009.2032157).

[2] A. Dounavis, et al.: “A general class of passive macromodels for lossy multiconductor transmission lines,” IEEE Trans. Microw. Theory Techn. 49 (2001) 1686 (DOI: 10.1109/22.954772).

[3] C. R. Paul: Introduction to Electromagnetic Compatibility (Hoboken, A John Wiley & Sons, 2006) 310.

[4] C. R. Paul: Analysis of Multiconductor Transmission Lines, (New York, Wiley Inter Science, 2007) 230.

[5] Y. Qingxi, et al.: “Verification and analysis of lumped-circuit approximate model of multiconductor transmission line excited by fast rising pulse,” High Voltage Engineering 41 (2015) 327.

[6] R. Achar and M. S. Nakhla: “Simulation of high-speed interconnects,” Proc. IEEE 89 (2001) 693 (DOI: 10.1109/5.929650).

[7] H. Xie, et al.: “A hybrid FDTD-SPICE method for transmission lines excited by a nonuniform incident wave,” IEEE Trans. Electromagn. Compat. 51 (2009) 811 (DOI: 10.1109/TEMC.2009.2020913).

[8] Q. Yang, et al.: “Equivalent circuits of multiconductor transmission lines above lossy ground excited by external electromagnetic fields,” IEICE Electron. Express 15 (2018) 20171261 (DOI. 10.1587/elex.15.20171261).

[9] Q. Yang, et al.: “Equivalent circuit of external electromagnetic fields coupling to a transmission line above a lossy ground,” IEICE Electron. Express 12 (2015) 20150474 (DOI: 10.1587/exlex.12.20150474).

[10] H. K. Hoidalen: “Analytical formulation of lightning-induced voltages on multiconductor overhead lines above lossy ground,” IEEE Trans. Electromagn. Compat. 45 (2003) 92 (DOI: 10.1109/TMAG.2002.804772).

[11] P. Dan-Klang and E. Leelarasmee: “Transient simulation of voltage and current distributions within transmission lines,” IEICE Trans. Electron. E92.C (2009) 522 (DOI: 10.1587/transele.e92.c.522).

[12] X. M. Tesche: “On the analysis of a transmission line with nonlinear terminations using the time-dependent BJT equation,” IEEE Trans. Electron. Compat. 49 (2007) 427 (DOI: 10.1109/TMAG.2007.897141).

[13] S. Ogawa, et al.: “Millimeter-wave transmission line with through-silicon via for RF-MEMS devices,” IEICE Electron. Express 10 (2013) 20130565 (DOI: 10.1587/exlex.10.20130565).

[14] T. Suzuki and K. Shiraishi: “Examination of short calibration problem of transmission line pulse,” IEICE Electron. Express 10 (2013) 20130029 (DOI: 10.1587/exlex.10.20130029).

[15] V. A. Rakov and F. Rachidi: “Overview of recent progress in lightning research and lightning protection,” IEICE Trans. Electromagn. Compat. 51 (2009) 428 (DOI: 10.1109/TMAG.2009.2076267).

[16] Y. Watanabe and H. Igarashi: “Accelerated FDTD analysis of antennas loaded by electric circuits,” IEEE Trans. Antennas Propag. 60 (2012) 958 (DOI: 10.1109/TAP.2011.2173140).

[17] S. Alush, et al.: “Transmission line sag influence on lightning stroke probability,” IET Gener. Transm. Distrib. 6 (2012) 1046 (DOI: 10.1049/iet-gtd.2011.0501).

[18] A. H. Khawaja, et al.: “Estimation of current and sag in overhead power transmission lines with optimized magnetic field sensor array placement,” IEEE Trans. Magn. 53 (2017) 6102010 (DOI: 10.1109/TMAG.2017.2657490).

[19] S. Arias-Guzman, et al.: “Analysis of voltage sag severity case study in an industrial circuit,” IEEE Trans. Ind. Appl. 53 (2017) 15 (DOI: 10.1109/TIA.2016.2603470).

[20] A. H. Khawaja and Q. Huang: “Estimating sag and wind-induced motion of overhead power lines with current and magnetic-flux density measurements,” IEEE Trans. Instrum. Meas. 66 (2017) 897 (DOI: 10.1109/TIM.2017.2676140).

[21] T. Kang, et al.: “Series voltage regulator for a distribution transformer to compensate voltage sag/swell,” IEEE Trans. Ind. Electron. 64 (2017) 4591 (DOI: 10.1109/TIE.2017.2668982).

[22] I. A. Pires, et al.: “On the application of single-phase voltage sag compensators in three-phase systems,” IEEE Trans. Ind. Appl. 53 (2017) 630 (DOI: 10.1109/TIA.2016.2603466).

[23] L. Li and W. L. Ji: “Transient analysis of unequal length multiconductor transmission lines loaded by nonlinear devices,” Chinese Journal of Radio, Science 24 (2009) 529.

[24] K. Afroz and A. Abdipour: “Efficient method for time-domain analysis of lossy nonuniform multiconductor transmission line driven by a modulated signal using FDTD technique,” IEEE Trans. Electromagn. Compat. 54 (2012) 482 (DOI: 10.1109/TMAG.2012.2193567).
[25] M. Tang and J. Mao: “A precise time-step integration method for transient analysis of lossy nonuniform transmission lines,” IEEE Trans. Electromagn.Compat. 50 (2008) 166 (DOI: 10.1109/TEMC.2007.913222).

[26] L. Dou and J. Dou: “Sensitivity analysis of lossy nonuniform multiconductor transmission lines with nonlinear terminations,” IEEE Trans. Adv. Packag. 33 (2010) 492 (DOI: 10.1109/TADVP.2009.2035439).

[27] B. Gustavsen and A. Semlyen: “Rational approximation of frequency domain responses by vector fitting,” IEEE Trans. Power Deliv. 14 (1999) 1052 (DOI: 10.1109/61.772353).

[28] B. Gustavsen: “Improving the pole relocating properties of vector fitting,” IEEE Trans. Power Deliv. 21 (2006) 1587 (DOI: 10.1109/TPWRD.2005.860281).

[29] Q. Yang, et al.: “Fast transient analysis method for lossy nonuniform transmission line with nonlinear terminations,” IEICE Electron. Express 12 (2015) 20150362 (DOI: 10.1587/elex.12.20150362).

[30] G. S. Shinh, et al.: “Simplified Macromodel of MTLs with incident fields (SiMMIF),” IEEE Trans. Electromagn. Comp. 50 (2008) 375 (DOI: 10.1109/TEMC.2008.922788).

[31] N. M. Nakhla, et al.: “DEPACT: Delay extraction-based passive compact transmission-line macromodeling algorithm,” IEEE Trans. Adv. Packag. 28 (2005) 13 (DOI: 10.1109/TADVP.2004.841677).