

Topologies on a triangulated category

So Okada∗

March 30, 2022

Abstract

On objects of a triangulated category with a stability condition, we construct a topology.

1 Introduction

For any triangulated category, Bridgeland [Brid] introduced the notions of stability conditions and stability manifolds, motivated by the Douglas’ work [Dou01a, Dou01b, Dou02] on II-stabilities of D-branes for Calabi-Yau manifolds.

In particular, for a K3 surface X and the bounded derived category of coherent sheaves on X, denoted by $D(X)$, Bridgeland [Bric] proved that stability conditions on the stability manifold approximate Gieseker stabilities [Gie, Mar77, Mar78].

Roughly speaking in terms of string theory, for a Calabi-Yau manifold X, objects of $D(X)$ correspond to B-branes among D-branes, that are boundary conditions of open strings. For a stability condition, among B-branes, semistable objects correspond to BPS states, that recognize themselves as D-branes in the untwisted topological field theory. A physical quantity of each BPS state is called a central charge. The author recommends [Asp] for string theory related to this subject.

For a triangulated category T, stability conditions on the stability manifold describe variation of t-structures of T, in collaboration with other subjects. The author recommends [Bria], [Huy, Section 13], [Bri06] for introductions to this subject.

In some general settings, for a triangulated category, we have seen spectra [Ros, Section 12], [Bal] and moduli spaces of objects with vanishing conditions on extension groups [Ina02], [Lie], [Ina].

In this article, on objects of a triangulated category with a stability condition, we construct a topology induced from the central charge. Also, with a faithful or a numerically faithful stability condition, we find our topology compatible with the Grothendieck group or the numerical Grothendieck group. We

∗Address: Max-Planck-Institut für Mathematik, Vivatsgasse 7, Bonn Germany 53111, Email: okada@mpim-bonn.mpg.de
realize that objects of a triangulated category with a stability condition is a
connected space.

Acknowledgments
The author thanks I. Mirković and T. Mochizuki for their discussions. The
author is grateful to the Max-Planck-Institut für Mathematik for their excellent
support and working environment and to Bonner for their warm hospitality.

2 Stability conditions and stability manifolds
Throughout this paper, \(\mathcal{T} \) is a triangulated category such that for any objects
\(E \) and \(F \) of \(\mathcal{T} \), \(\oplus_{i \in \mathbb{Z}} \text{Hom}^i_{\mathcal{T}}(E, F) \) is a finite-dimensional vector space over \(\mathbb{C} \).
For example, \(\mathcal{T} \) can be \(D(X) \) of a smooth projective variety \(X \) over \(\mathbb{C} \).

In the Grothendieck group \(K(\mathcal{T}) \) of \(\mathcal{T} \) and for each object \(E \) in \(\mathcal{T} \), let \([E] \) be
the class of \(E \). For objects \(E \) and \(F \) of \(\mathcal{T} \), the Euler paring \(\chi(E, F) \) is defined
to be \(\sum_{i \in \mathbb{Z}} (-1)^i \text{dim} \text{Hom}^i_{\mathcal{T}}(E, F) \). On this paring, the
numerical Grothendieck

2.1 Stability conditions

A stability condition \(\sigma = (Z, \mathcal{P}) \) on \(\mathcal{T} \) consists of a group homomorphism from
\(K(\mathcal{T}) \) to \(\mathbb{C} \), called a central charge \(Z \), and a family of full abelian subcate-
gories of \(\mathcal{T} \), called a slicing \(\mathcal{P}(k) \), indexed by real numbers \(k \), with the following
conditions.

For each real number \(k \), if \(E \) is an object of \(\mathcal{P}(k) \), then for some positive
real number \(m(E) \), called the mass of \(E \), we have \(Z(E) = m(E) \exp(i\pi k) \).
For each real number \(k \), we have \(\mathcal{P}(k + 1) = \mathcal{P}(k)[1] \). For any real numbers
\(k_1 > k_2 \) and any objects \(E_i \) of \(\mathcal{P}(k_i) \), \(\text{Hom}_{\mathcal{T}}(E_1, E_2) \) is the zero vector space.
For any nonzero object \(E \) of \(\mathcal{T} \), there exists a finite sequence of real numbers
\(k_1 > \cdots > k_n \) and objects \(H^k_{\mathcal{P}}(E) \) of \(\mathcal{P}(k_i) \) such that there exists a sequence of
exact triangles \(E_{i-1} \to E_i \to H^k_{\mathcal{P}}(E) \) with \(E_0 \) and \(E \) being the zero object and
\(E \).

The above sequence of the exact triangles is unique up to isomorphisms and
called the Harder-Narasimhan filtration of \(E \); also, we call a real number in
the above sequence of the real numbers a nontrivial phase of \(E \). For each real
number \(k \), any nonzero object of \(\mathcal{P}(k) \) is called semistable.

If the central charge \(Z \) factors through \(N(\mathcal{T}) \), then \(\sigma \) is called a numerical
stability condition.

2.2 Hearts of stability conditions

For an interval \(I \) in real numbers, \(\mathcal{P}(I) \) is defined to be the smallest full subcat-
egory of \(\mathcal{T} \) consisting of objects of \(\mathcal{P}(k) \) for each real number \(k \) in \(I \), it is closed
under extension; i.e., if $E \rightarrow G \rightarrow F$ is an exact triangle in \mathcal{T} and both E and F are objects of $\mathcal{P}(I)$, then G is an object of $\mathcal{P}(I)$. In particular, for each real number j, $\mathcal{P}((j-1, j])$ is a heart of a bounded t-structure of \mathcal{T}. We will call all $\mathcal{P}((j-1, j])$ for real numbers j, “hearts of σ”.

For each nonzero object E of $\mathcal{P}((j-1, j])$, the phase of E is defined to be $\phi(E) = (1/\pi) \arg Z(E) \in (j-1, j]$.

2.3 Stability manifolds

A subset of stability conditions on \mathcal{T} makes the stability manifold $\text{Stab}(\mathcal{T})$, this has a natural topology induced from the central charges and each connected component is a manifold locally modeled on some topological vector subspace of $\text{Hom}_{\mathbb{Z}}(K(\mathcal{T}), \mathbb{C})$.

The subset of $\text{Stab}(\mathcal{T})$ consisting of numerical stability conditions makes a subspace, the numerical stability manifold $\text{Stab}_{\text{N}}(\mathcal{T})$, this is locally modeled on some topological vector subspace of $\text{Hom}_{\mathbb{Z}}(N(\mathcal{T}), \mathbb{C})$.

3 Faithful or numerically faithful stability conditions

Let $K(\mathcal{T})_\mathbb{Q}$ and $N(\mathcal{T})_\mathbb{Q}$ denote the tensor products $K(\mathcal{T}) \otimes \mathbb{Q}$ and $N(\mathcal{T}) \otimes \mathbb{Q}$.

Definition 3.1. Let σ be a stability condition on \mathcal{T}. We call σ faithful, if whenever nonzero objects E and F of a heart of σ are linearly independent in $K(\mathcal{T})_\mathbb{Q}$, then objects E and F are with different phases. Likewise, we call σ numerically faithful, if whenever nonzero objects E and F of a heart of σ are linearly independent in $N(\mathcal{T})_\mathbb{Q}$, then E and F are with different phases.

In any stability manifolds that we are aware of, by the following lemma, there are faithful or numerically faithful stability conditions.

Lemma 3.2. If $K(\mathcal{T})_\mathbb{Q}$ has no more than countable dimension over \mathbb{Q}, and if $\text{Stab}(\mathcal{T})$ carries a connected component M that is locally isomorphic to $\text{Hom}_{\mathbb{Z}}(K(\mathcal{T}), \mathbb{C})$, then the subset of M consisting of faithful stability conditions is dense in M. Likewise, if $N(\mathcal{T})_{\mathbb{Q}}$ has no more than countable dimension over \mathbb{Q}, and if $\text{Stab}_{\text{N}}(\mathcal{T})$ carries a connected component M that is locally isomorphic to $\text{Hom}_{\mathbb{Z}}(N(\mathcal{T}), \mathbb{C})$, then the subset of M consisting of numerically faithful stability conditions is dense in M.

Proof. Let T be the subset of $\text{Hom}_{\mathbb{Z}}(K(\mathcal{T}), \mathbb{C})$ consisting of Z such that for some linearly independent classes $[E]$ and $[F]$ in $K(\mathcal{T})_\mathbb{Q}$, in the interval $(0, 2]$, real numbers $(1/\pi) \arg Z(E)$ and $(1/\pi) \arg Z(F)$ are the same. Then, T is a countable union of codimension-one subspaces of $\text{Hom}_{\mathbb{Z}}(K(\mathcal{T}), \mathbb{C})$. Thus, the complement of T in $\text{Hom}_{\mathbb{Z}}(K(\mathcal{T}), \mathbb{C})$ is dense in $\text{Hom}_{\mathbb{Z}}(K(\mathcal{T}), \mathbb{C})$. The same argument holds for the latter case. □

In particular, we have the following.
Corollary 3.3. For a stability condition \(\sigma \) of \(T \), let \(E \) and \(F \) be nonzero objects of a heart of \(\sigma \) with the same phases. If \(\sigma \) is a faithful stability condition, then for some positive rational number \(q \), \([E] = q[F] \) in \(K(\mathcal{T}) \). If \(\sigma \) is a numerically faithful stability condition, then for some positive rational number \(q \), \([E] = q[F] \) in \(N(\mathcal{T}) \).

Proof. Since \(\sigma = (Z, P) \) is faithful, \([E] \) and \([F] \) are linearly dependent in \(K(\mathcal{T}) \). So there exists a nonzero rational number \(q \) such that \([E] = q[F] \) in \(K(\mathcal{T}) \). Here, \(q \) can not be zero, since \(E \) and \(F \) are nonzero objects of a heart of \(\sigma \), which implies \(Z(E) \) and \(Z(F) \) are not zero. Also, \(q \) can not be negative; otherwise, their phases would differ by an odd integer. The same argument holds for the latter case.

4 Topologies on a triangulated category

We notice that for a stability condition \((Z, P) \) on \(T \) and each semistable object of \(T \), the central charge \(Z \) factors through \(\mathbb{P}^1 \); i.e., for each semistable object \(E \) of \(T \), its central charge is the exponential of the complex number \(\log(m(E)) + i\pi\phi(E) \) in \(\mathbb{P}^1 \). Now, we define the following.

Definition 4.1. Let \(\sigma = (Z, P) \) be a stability condition on \(T \). For a nonzero object \(E \) of \(T \), let \(\tilde{Z}(E) \) be the subset of \(\mathbb{P}^1 \) consisting of points \(\log(m(H^k_Z(E))) + i\pi\phi(H^k_Z(E)) \) for nontrivial phases \(k \) of \(E \). For the zero object, let the image of \(\tilde{Z} \) be the infinite point in \(\mathbb{P}^1 \). We call the function \(\tilde{Z} \) the extended central charge of \(\sigma \).

For our arguments here, let us assume the Euclidean topology on \(\mathbb{P}^1 \).

Proposition 4.2. For a triangulated category with a stability condition, there exists a unique topology on objects of the triangulated category such that the extended central charge is continuous.

Proof. Let \(\mathcal{T} \) be a triangulated category with a stability condition \(\sigma = (Z, P) \), and \(\tilde{Z} \) be the extended central charge. Then, finite unions of \(\tilde{Z}^{-1}(V) \) for closed subsets \(V \) of \(\mathbb{P}^1 \) are our closed subsets of objects of \(\mathcal{T} \).

On the topology in Proposition 4.2 we have the following corollaries.

Corollary 4.3. For a semistable object \(E \) of \(\mathcal{T} \), any object of the closed set \(\tilde{Z}^{-1}(\tilde{Z}(E)) \) is semistable.

Proof. The Harder-Narasimhan filtration of any object of \(\tilde{Z}^{-1}(\tilde{Z}(E)) \) is trivial, since its image under \(\tilde{Z} \) is a point in \(\mathbb{P}^1 \).

In particular, we have the following.

Corollary 4.4. For a faithful stability condition \((Z, P) \) on \(\mathcal{T} \) and a semistable object \(E \) of \(\mathcal{T} \), any object of the closed set \(\tilde{Z}^{-1}(\tilde{Z}(E)) \) is semistable and has the class \([E] \) in \(K(\mathcal{T}) \). For a numerically faithful stability condition \((Z, P) \) on \(\mathcal{T} \) and a semistable object \(E \) of \(\mathcal{T} \), any object of the closed set \(\tilde{Z}^{-1}(\tilde{Z}(E)) \) is semistable and has the class \([E] \) in \(N(\mathcal{T}) \).
4.1 Connectedness

Lemma 4.5. Let \mathcal{T} be a triangulated category with a stability condition. On the topology in Proposition 4.2, if an open subset U of objects of \mathcal{T} contains the zero object of \mathcal{T}, then U contains some semistable objects.

Proof. Let (Z, \mathcal{P}) denote the stability condition. Let \tilde{Z} be the extended central charge. Now, the open subset U is a complement of the union $\tilde{Z}^{-1}(V_1) \cup \cdots \cup \tilde{Z}^{-1}(V_n)$ for some closed subsets V_i of \mathbb{P}^1. Since the zero object is not in U, there is an open subset U' of \mathbb{P}^1 such that $\tilde{Z}^{-1}(U')$ is a subset of U consisting of the infinite point of \mathbb{P}^1.

Here, since for any semistable object E of \mathcal{T}, the direct sum $E \oplus E$ is again semistable with the doubled mass, so $\tilde{Z}^{-1}(U')$ contains some semistable objects.

Lemma 4.6. Let \mathcal{T} be a triangulated category with a stability condition. On the topology constructed in Proposition 4.2 if a proper open subset U of objects of \mathcal{T} contains all semistable objects of \mathcal{T}, then the open set U does not contain the zero object.

Proof. For closed subsets V_i of \mathbb{P}^1 such that $U = \tilde{Z}^{-1}(V_1) \cup \cdots \cup \tilde{Z}^{-1}(V_n)$, by the assumption on U, there is no semistable object E of \mathcal{T} such that for some V_i, $\tilde{Z}(E)$ is in V_i. So, by Definition 4.1 either $\tilde{Z}^{-1}(V_i)$ is empty or of only the zero object.

Theorem 4.7. For any triangulated category with a stability condition, on the topology in Proposition 4.2 objects of the triangulated category is a connected space

Proof. Let \mathcal{T} be a triangulated category with a stability condition (Z, \mathcal{P}), and \tilde{Z} be the extended central charge. Let us prove the statement by a contradiction. So we suppose that some open subsets U_1 and U_2 of objects of \mathcal{T} separate objects of \mathcal{T}.

For the former case, the direct sum $E_1 \oplus E_2$ is not a object of $U_1 \cup U_2$.

For the latter case, if the open set U_1 contains all semistable objects, then by Lemma 4.6, U_2 is an open subset consisting of the zero object. However, then by Lemma 4.5, U_1 and U_2 can not be disjoint.

Remark 4.8. For any triangulated category with a stability condition, the extended central charge naturally factors through the Ran’s space [BeiDri, 3.4] of \mathbb{P}^1 with respect to a topology on \mathbb{P}^1.

Proof. By Corollaries 3.3 and 4.3 these statements hold.

\[\square\]
4.2 Closed sets

For a faithful stability condition \(\sigma = (Z, \mathcal{P}) \) on \(\mathcal{T} \) and some semistable objects \(E \) of \(\mathcal{T} \), let us take a look at closed sets \(\tilde{Z}^{-1}(\tilde{Z}(E)) \) in Corollary 4.4. For a vector space \(V \), let \(V^* \) denote the dual of \(V \). From here, let the shift [2] be the Serre functor [BonKap] Definition 3.1] of \(\mathcal{T} \); i.e., for any objects \(E \) and \(F \) of \(\mathcal{T} \), there exist bifunctorial isomorphisms \(\Psi_{E,F} : \text{Hom}_\mathcal{T}(E,F) \cong \text{Hom}_\mathcal{T}(F,E[2])^* \) such that \((\Psi_{E,F}^{-1}|_{E[2]})^* \circ \Psi_{E,F} \) coincides with the isomorphism induced by [2]. In other words, \(\mathcal{T} \) is a 2-Calabi-Yau category [Kon].

If an object \(E \) of \(\mathcal{T} \) satisfies that for any integer \(i \) other than 0 or 2, \(\text{Hom}_\mathcal{T}^1(E,E) \) is the zero vector space and \(\text{Hom}_\mathcal{T}(E,E) \cong \text{Hom}_\mathcal{T}^2(E,E)^* = C \), then \(E \) is called spherical [SeiTho] Definition 1.1].

For semistable objects \(E \) and \(E' \) of \(\mathcal{T} \) with the same phases, since they are of a heart of \(\mathcal{T} \), for any negative integer \(i \), \(\text{Hom}_\mathcal{T}^1(E,E') \) is the zero vector space, and since \(\text{Hom}_\mathcal{T}^1(E,E') \cong \text{Hom}_\mathcal{T}^{-1}(E',E)^* \), for any integer \(i > 2 \), \(\text{Hom}_\mathcal{T}^i(E,E') \) is the zero vector space.

Let us recall that for a stability condition \((Z, \mathcal{P}) \) on \(\mathcal{T} \), a semistable object \(E \) of \(\mathcal{P}(\phi(E)) \) is called stable if it has no nontrivial subobject of the abelian category \(\mathcal{P}(\phi(E)) \). In particular, any stable object \(E \) of \(\mathcal{T} \) satisfies \(\text{Hom}_\mathcal{T}(E,E) = C \). Since now \(\mathcal{T} \) is 2-Calabi-Yau, a simple case of the paring in [ReiVan] Proposition 1.1.4] tells us that \(\chi(E,E) \) is even [Oka] Remark 3.7].

Each stability condition in \(\text{Stab}(\mathcal{T}) \) has the property called locally-finiteness; in particular, for any locally-finite stability condition and a semistable object \(E \), in \(\mathcal{P}(\phi(E)) \), we have a Jordan-Hölder decomposition whose composition factors are stable objects, called stable factors of \(E \).

Then, in our formality, we realize a part of [Muk] Corollary 3.6].

Proposition 4.9. Let \(\sigma = (Z, \mathcal{P}) \) be a faithful or numerically faithful stability condition in \(\text{Stab}(\mathcal{T}) \) and \(E \) be a semistable object of \(\mathcal{T} \) such that \(\chi(E,E) \) is positive. Then, \(\tilde{Z}^{-1}(\tilde{Z}(E)) \) contains only \(E \), and \(E \) is a direct sum of a stable spherical object.

Proof. Any stable object \(S \) of \(\mathcal{P}(\phi(E)) \) is spherical; because, \(\chi(S,S) = 2 - \text{Hom}_\mathcal{T}^1(S,S) \) is even and by Corollary 3.3 for some positive rational number \(q \), \([S] = q[E] \), which implies \(\chi(S,S) = q^2 \chi(E,E) \) is positive. If we have nonisomorphic stable objects \(S_1 \) and \(S_2 \) in \(\mathcal{P}(\phi(E)) \), then \(\text{Hom}_\mathcal{T}(S_1,S_2) \) and \(\text{Hom}_\mathcal{T}^2(S_1,S_2) \cong \text{Hom}_\mathcal{T}(S_2,S_1)^* \) would be the zero vector spaces, and then, \(\chi(S_1,S_2) = -\dim \text{Hom}_\mathcal{T}^1(S_1,S_2) \) would not be positive. However, since by Corollary 3.3 for some positive rational numbers \(q_1 \) and \(q_2 \), we have \([E] = q_1[S_1] = q_2[S_2]\), \(\chi(S_1,S_2) = q_1q_2 \chi(E,E) \) is positive.

Extensions of a spherical object are direct sums of the spherical object, so the statement follows.

4.2.1 An example

Let \(X \) be the cotangent bundle of \(\mathbb{P}^1 \). From here, let \(\mathcal{T} \) be the full subcategory of \(D(X) \) consisting of objects supported over \(\mathbb{P}^1 \).
Since $K(T) \cong \mathbb{Z}[O_x] \oplus \mathbb{Z}[O_{y}]$ with $\chi(O_{y}, O_{y}) = 2$ and $[O_x]$ being zero in $N(T),$ for any object $E,$ $\chi(E, E)$ is not negative. So, by Proposition 4.9 we take semistable objects E with $[E]$ being zero in $N(T)$ and look at $Z^{-1}(Z(E)).$

For a spherical object E and an object F of $\mathcal{T},$ the cone of the evaluation map $R\text{Hom}_T(E, F) \otimes E \to F$ is denoted by $T_F(E),$ the twist functor of $E.$ By [SeiTho Theorem 1.2], twist functors are autoequivalences of $\mathcal{T}.$ Any autoequivalence Φ of $\text{Stab} \left(\mathcal{T} \right)$, for any object E with $[E]$ being zero in $N(T)$ and look at $Z^{-1}(Z(E)).$

Here, for an object E of $\mathcal{T},$ if for any point x in \mathbb{P}^1 and any integer $i,$ $\text{Hom}_{\mathcal{T}}^i(E, O_x)$ is the zero vector space, then E is isomorphic to the zero object; for the largest integer q_0 such that the support of the cohomology sheaf $H^q_{\mathcal{T}}(E)$ has a point x in $\mathbb{P}^1,$ the nonzero term $E^q_{\mathcal{T}}$ in the spectral sequence $E^q_{\mathcal{T}} = \text{Hom}_{\mathcal{T}}^q(H^q_{\mathcal{T}}(E), O_x) \Rightarrow \text{Hom}_{\mathcal{T}}^{q_{\mathcal{T}}}(E, O_x)$ survives at infinity (see [Bri99 Section 2]).

Let us recall that the connectedness of $\text{Stab} \left(\mathcal{T} \right)$ in [Oka Theorem 4.12] follows by proving that for any stability condition σ in $\text{Stab} \left(\mathcal{T} \right)$ and for some integer $w,$ objects $O_{\mathcal{T}}(w)$ of \mathcal{T} generate a heart of σ and by using [Bri9] Lemmas 3.1 and 3.6, Theorem 1.3, as explained in [Oka Section 4.3].

Now, to prove Proposition 4.10 one way is to use [IshUeh] Proposition 18 and Corollary 20; for our conclusion on this case, we give a proof.

Proposition 4.10. Let $\sigma = (Z, \mathcal{P})$ be a faithful stability condition in $\text{Stab} \left(\mathcal{T} \right).$ For each semistable object E of \mathcal{T} with $[E] = [O_x],$ up to autoequivalences of $\mathcal{T},$ $Z^{-1}(Z(E)) = \{ O_x \mid x \in \mathbb{P}^1 \}.$

Proof. As mentioned above, for some integer $w,$ by extensions, objects $O_{\mathcal{T}}(w)$ generate a heart of $\sigma.$ For each point x in $\mathbb{P}^1,$ by the exact triangle $O_{\mathcal{T}}(w) \to O_x \to O_{\mathcal{T}}(w - 1),$ the object O_x is of the heart and, since σ is faithful, phases of $O_{\mathcal{T}}(w)$ and $O_{\mathcal{T}}(w - 1)$ are distinct.

First, let us suppose $\phi(O_{\mathcal{T}}(w)) \supset \phi(O_{\mathcal{T}}(w - 1)),$ and $\phi(O_{\mathcal{T}}(w - 1)),$ and $\phi(O_{\mathcal{T}}(w))$ are distinct. With classes of objects of the heart, $[O_x]$ can be represented by only $[O_{\mathcal{T}}(w - 1)] + [O_{\mathcal{T}}(w)],$ if it is other than $[O_x].$ So, if O_x were not semistable, by the assumption on phases, the Harder-Narasimhan filtration of O_x must give the exact triangle $O_{\mathcal{T}}(w - 1) \to O_x \to O_{\mathcal{T}}(w);)$ however, $\text{Hom}_{\mathcal{T}}(O_{\mathcal{T}}(w - 1), O_x)$ is the zero vector space, since the objects $O_{\mathcal{T}}(w - 1)$ and O_x are of a heart of \mathcal{T} such as the category of the coherent sheaves of X supported over $\mathbb{P}^1.$

Now, any object of $Z^{-1}(Z(E))$ is stable; otherwise, by Corollary 5.3 for some rational number $q > 1$ and a stable object $S,$ we would have $[O_x] = q[S].$

For a point x in \mathbb{P}^1 and the integer $k = \phi(E) - \phi(O_x),$ we show that for each object E' of $Z^{-1}(Z(E))$ and some point y in $\mathbb{P}^1,$ E' is isomorphic to the object $O_y.$ Here, for some object E' in $Z^{-1}(Z(E)),$ we suppose otherwise and show that for any point x in \mathbb{P}^1 and any integer $i,$ $\text{Hom}_{\mathcal{T}}^i(E', O_x)$ is the zero vector space. For any point x in $\mathbb{P}^1,$ since the objects E' and O_x are stable with the same phases, $\text{Hom}_{\mathcal{T}}(E', O_x)$ and $\text{Hom}_{\mathcal{T}}(O_x, E')$ are the
zero vector spaces; so, $\text{Hom}_T^2(E', O_x) \cong \text{Hom}_T(\mathcal{O}_x, E')^*$ is also the zero vector space. Since the objects E' and \mathcal{O}_x are of the heart of σ, for any negative integer i, $\text{Hom}_T^i(E', \mathcal{O}_x)$ is the zero vector space, and also for any integer $i > 2$, $\text{Hom}_T^i(E', \mathcal{O}_x) \cong \text{Hom}_T^{2-i}(\mathcal{O}_x, E')^*$ is the zero vector space. Now, since σ is faithful, $\chi(\mathcal{O}_x, \mathcal{O}_x) = \chi(E', \mathcal{O}_x) = -\dim \text{Hom}_T^1(E', \mathcal{O}_x)$ is zero.

For the other case, we apply the twist functor $T_{\mathcal{O}_{P^1}(w-1)}$ and use the above argument; by [IshUeh, Lemma 4.15 (i)(1)], $T_{\mathcal{O}_{P^1}(w-1)}(\mathcal{O}_{P^1}(w-1)[1]) = \mathcal{O}_{P^1}(w-1)$ and $T_{\mathcal{O}_{P^1}(w-1)}(\mathcal{O}_{P^1}(w)) = \mathcal{O}_{P^1}(w-2)[1]$.

Before discussing the other cases, let us introduce some notions. For each semistable object E and a Jordan-Hölder decomposition $E \supset E_1 \supset \cdots \supset E_n \supset 0$ in $\mathcal{P}(\phi(E))$, the cycle of simple components [Ses, Section 2] associated to the decomposition is defined to be $E_n \oplus E_{n-1}/E_{n-2} \oplus \cdots \oplus E/E_1$, which is by [Ses, Theorem 2.1], up to isomorphisms, independent of the choices of Jordan-Hölder decompositions. Semistable objects with isomorphic cycles of simple components are said to be S-equivalent [Ses, Remark 2.1], [Gie, Section 0].

Now, for some integer $|n| > 1$, a semistable object E with $[E] = n[\mathcal{O}_x]$ in $K(T)$, the integer $k = \phi(E) - \phi(\mathcal{O}_x)$, and any object E' of $\tilde{Z}^{-1}(\tilde{Z}(E[-k]))$, since for some point x in \mathbb{P}^1, $\text{Hom}_T(E', \mathcal{O}_x)$ is not zero, E' has a Jordan-Hölder decomposition whose composition factors are \mathcal{O}_x for points x in \mathbb{P}^1. So, up to S-equivalence on $\tilde{Z}^{-1}(\tilde{Z}(E))$ and autoequivalences on $\text{Stab}(T)$, for each object of $\tilde{Z}^{-1}(\tilde{Z}(E))$, we have the corresponding n-fold direct sum of points in \mathbb{P}^1.

References

[Asp] P. S. Aspinwall, D-branes on Calabi-Yau manifolds, DUKE-CGTP-04-04, arXiv:hep-th/0403166.

[Bal] P. Balmer. The spectrum of prime ideals in tensor triangulated categories, J. Reine Angew. Math., 588, 149–168, 2005.

[BeiDri] A. Beilinson and V. Drinfeld, Chiral algebras, 51, American Mathematical Society Colloquium Publications. American Mathematical Society, Providence, RI, 2004.

[BonKap] A. I. Bondal and M. M. Kapranov, Representable functors, Serre functors, and reconstructions, (Russian) Izv. Akad. Nauk SSSR Ser. Mat., 53 (6), 1183–1205, 1337, 1989; translation in Math. USSR-Izv., 35 (3), 519–541, 1990.

[Bria] T. Bridgeland, Spaces of stability conditions, arXiv:math.AG/0611510.

[Bri06] T. Bridgeland, Derived categories of coherent sheaves, Proceedings of the International Congress of Mathematicians, Vol II, (Madrid 2006), 563–582, Madrid, 2006, European Mathematical Society Publishing House, arXiv:math.AG/0602129.
[Brib] T. Bridgeland, *Stability conditions and Kleinian singularities*, arXiv:math.AG/0508257.

[Bric] T. Bridgeland, *Stability conditions on K3 surfaces*, arXiv:math.AG/0307164.

[Brid] T. Bridgeland, *Stability conditions on triangulated categories*, to appear in Ann. of Math. (2), arXiv:math.AG/0212237.

[Bri99] T. Bridgeland, *Equivalences of triangulated categories and Fourier-Mukai transforms*, Bull. London Math. Soc. 31 (1), 25–34, 1999.

[Dou01a] M. R. Douglas, *D-branes, categories and N = 1 supersymmetry*, J. Math. Phys., 42 (7), 2818–2843, 2001.

[Dou01b] M. R. Douglas, *D-branes on Calabi-Yau manifolds*, European Congress of Mathematics, Vol. II (Barcelona, 2000), volume 202 of Progr. Math., 449–466, Birkhäuser, Basel, 2001.

[Dou02] M. R. Douglas, *Dirichlet branes, homological mirror symmetry, and stability*, Proceedings of the International Congress of Mathematicians, Vol. III (Beijing, 2002), 395–408, Higher Ed. Press, Beijing, 2002.

[Gie] D. Gieseker, *On the moduli of vector bundles on an algebraic surface*, Ann. of Math. (2), 106 (1), 45–60, 1977.

[Huy] D. Huybrechts, *Fourier-Mukai transforms in algebraic geometry*. Oxford Mathematical Monographs, The Clarendon Press Oxford University Press, Oxford, 2006.

[Ina] M. Inaba, *Moduli of stable objects in a triangulated category*, arXiv:math.AG/0612078.

[Ina02] M. Inaba, *Toward a definition of moduli of complexes of coherent sheaves on a projective scheme*, J. Math. Kyoto Univ., 42 (2), 317–329, 2002.

[IshUedUeh] A. Ishii, K. Ueda, and H. Uehara, *Stability conditions on A_n-singularities*, arXiv:math.AG/0609551.

[IshUeh] A. Ishii and H. Uehara, *Autoequivalences of derived categories on the minimal resolutions of A_n-singularities on surfaces*, J. Differential Geom., 71 (3), 385–435, 2005.

[Kon] M. Kontsevich, 1998 lectures at the École Normale Supérieure.

[Lie] M. Lieblich. *Moduli of complexes on a proper morphism*. J. Algebraic Geom., 15 (1), 175–206, 2006.
[Mar78] M. Maruyama, *Moduli of stable sheaves. II*, J. Math. Kyoto Univ., **18** (3), 557–614, 1978.

[Mar77] M. Maruyama, *Moduli of stable sheaves. I*, J. Math. Kyoto Univ., **17** (1), 91–126, 1977.

[Muk] S. Mukai, *On the moduli space of bundles on K3 surfaces. I*, Vector bundles on algebraic varieties (Bombay, 1984), Tata Inst. Fund. Res. Stud. Math., **11**, 341–413, Tata Inst. Fund. Res., Bombay, 1987.

[Oka] S. Okada, *On stability manifolds of Calabi-Yau surfaces*, Int. Math. Res. Not., **2006**, Article ID 58743, 16 pages, 2006.

[ReiVan] I. Reiten and M. Van den Bergh, *Noetherian hereditary abelian categories satisfying Serre duality*, J. Amer. Math. Soc., **15** (2), 295–366, 2002.

[Ros] A. Rosenberg, *Spectra related with localizations*, MPI-2003-112, Preprint of the Max-Planck-Institut für Mathematik.

[SeiTho] P. Seidel and R. Thomas, *Braid group actions on derived categories of coherent sheaves*, Duke Math. J., **108** (1), 37–108, 2001

[Ses] C. S. Seshadri, *Space of unitary vector bundles on a compact Riemann surface*, Ann. of Math. (2), **85**, 303–336, 1967.