The Higgs oscillator on the hyperbolic plane and Light-Front holography

A. Pallares-Rivera and M. Kirchbach

Instituto de Física, Universidad Autónoma de San Luis Potosí, Av. Manuel Nava 6, San Luis Potosí, S.L.P. 78290, México

(Dated: August 14, 2014)

The Light Front Holographic (LFH) wave equation, which is the conformal scalar equation on the plane, is revisited from the perspective of the supersymmetric quantum mechanics, and attention is drawn to the fact that it naturally emerges in the small hyperbolic angle approximation to the “curved” Higgs oscillator on the hyperbolic plane, i.e. on the upper part of the two-dimensional hyperboloid of two sheets, H^2_{+R}, a space of constant negative curvature, $(-1/R^2)$. Such occurs because the particle dynamics under consideration reduces to the one dimensional Schrödinger equation with the second hyperbolic Pöschl-Teller potential, whose flat-space (small-angle) limit equals the conformally invariant inverse square distance plus harmonic oscillator interaction, on which LFH is based. In consequence, energies and wave functions of the LFH spectrum can be approached by the solutions of the Higgs oscillator on the hyperbolic plane in employing its curvature and the potential strength as fitting parameters. Also the proton electric charge form factor is well reproduced within this scheme upon performing the adequate Fourier-Helgason hyperbolic wave transform of the charge density. In conclusion, in the small angle approximation, the Higgs oscillator on H^2_{+R} is demonstrated to satisfactory parallel essential outcomes of the Light Front Holographic QCD. The findings are suggestive of associating the H^2_{+R} curvature with a second scale in LFH, which then could be employed in the definition of a chemical potential.

PACS numbers: 03.65.Fd, 02.30.Ik, 02.30.Uu, 12.39.Pn, 13.40.Gp

Keywords: Higgs oscillator, hyperbolic plane, Pöschl Teller II potential, Fourier-Helgason transform, proton charge electric form factor, conformal symmetry

Contents

I. Introduction

II. Quantum motion on the hyperbolic plane
 A. Free quantum motion on H^2_{+R} as the eigenvalue problem of the $so(1, 2)$ Casimir operator
 B. Free quantum motion on H^2_{+R} as the Schrödinger equation with the Eckart potential
 C. The Higgs oscillator on H^2_{+R}

III. Conformal Light-Front holography as the small hyperbolic angle limit of the Higgs oscillator on H^2_{+R}
 A. The conformal holographic interaction
 B. The Light-Front Holographic energies
 C. The Light-Front Holographic wave functions
 D. The proton electric charge form factor from the Fourier-Helgason hyperbolic wave transform

IV. Conclusions

References

I. INTRODUCTION

Supersymmetric quantum mechanics has exercised over the years notable influence on various fields of spectroscopic studies by providing an efficient machinery in handling a rich variety of interactions in complex systems by means of exactly solvable potentials [1]. Specifically in particle physics, one repeatedly faces situations in which

*Electronic address: mariana@ifisica.uaslp.mx
most complicated field-theoretical considerations amount to known Sturm-Liouville problems, a prominent example being the Light-Front Holographic QCD [2]–[5]. This approach is derived from the first-principle motivated gauge-gravity duality concept and is quite successful in describing a broad range of hadron properties. At its root one finds an effective one-dimensional Schrödinger equation with an inverse square distance plus harmonic oscillator potential, which is the conformal scalar equation on the plane,

\[
\left(-\frac{d^2}{d\xi^2} + \frac{\nu^2 - \frac{1}{4}}{\xi^2} + \kappa^4\xi^2 + c^\nu_0\right)\Psi_+^{\nu}(\xi) = E^2\Psi_+^{\nu}(\xi), \quad c^\nu_0 = 2\kappa^2(\nu + 1),
\]

where, \(1/\kappa\) is an external lengths scale. The equation (1.1) can be viewed either as an one-dimensional Klein-Gordon equation, or equivalently, as an one-dimensional Schrödinger equation under the identifications,

\[
E^2 = \frac{2\mu^2E_{\text{Schr}}}{\hbar^2c^2}, \quad \kappa^4 = \frac{\mu^2\omega^2}{\hbar^2}, \quad [E^2] = \text{fm}^{-2}, \quad E^2 = \mathcal{M}^2,
\]

where \(E_{\text{Schr}}\) is the energy in MeV of a particle of mass \(\mu\) in the stationary Schrödinger equation or, the reduced mass of a two-body system, such as quark–diquark (q-qq), in case \(\xi\) where to be a relative distance. For \(\nu \rightarrow \nu + 1\), an equation similar to (1.1) can be written as

\[
\left(-\frac{d^2}{d\xi^2} + \frac{(\nu + 1)^2 - \frac{1}{4}}{\xi^2} + \kappa^4\xi^2 + c^{-\nu}_{\nu}\right)\Psi_-^{(\nu+1)}(\xi) = E^2\Psi_-^{(\nu+1)}(\xi), \quad c^{-\nu}_{\nu} = 2\kappa^2\nu,
\]

with its solutions being denoted by \(\Psi_-^{(\nu+1)}(\xi)\), and characterized by the same energy value as \(\Psi_+^{\nu}(\xi)\). Below we show that the two wave function \(\Psi_+^{\nu}(\xi)\), and \(\Psi_-^{(\nu+1)}(\xi)\), describe states belonging to two supersymmetric partner spectra. Moreover, in being distinct by \(\Delta\nu = 1\), they can be given the interpretation of a large and a small component of a Dirac spinor, thus allowing to correct for the scalar nature of eqs. (1.1)–(1.3). The goal of the present study is to illuminate some specific supersymmetric quantum mechanical aspects of the above equations (1.1) and (1.3) and explore consequences. The explicit expressions for the solution to (1.1) and (1.3) read,

\[
\Psi_+^{\nu}(\xi) = N_{\nu\nu}(\kappa^2\xi^2)^{\frac{\nu}{2} + \frac{1}{4}}e^{-\frac{\kappa^2\xi^2}{2}}L_n^{\nu}(\kappa^2\xi^2),
\]

\[
\Psi_-^{(\nu+1)}(\xi) = \tilde{N}_{\nu\nu}(\kappa^2\xi^2)^{\frac{\nu+2}{4}}e^{-\frac{\kappa^2\xi^2}{2}}L_n^{\nu+1}(\kappa^2\xi^2),
\]

\[
L_n^{\nu}(\kappa^2\xi^2) \sim {}_1F_1(-n, \nu + 1, \kappa^2\xi^2),
\]

\[
E^2 = 4\hbar^2 c^2 \kappa^2 \left(n + \frac{\nu + 1}{2}\right) + c_{\nu}^+, \quad E^2 = 4\hbar^2 c^2 \kappa^2 \left(n + \frac{\nu + 2}{2}\right) + c_{\nu}^-, \quad c_{\nu}^+ = 4\hbar^2 c^2 \kappa^2 (n + \nu + 1),
\]

with \(c_{\nu}^+\) from (1.1) and \(c_{\nu}^-\) from (1.3). Here \(L_n^{\nu}\) are the generalized Laguerre polynomials, \(N_{\nu\nu}\), and \(\tilde{N}_{\nu\nu}\) are normalization constants, and \(\nu\) stands for the confluent hypergeometric function. Modulo the additive constants, the equations (1.1), (1.3) are known from the SuperSymmetric Quantum Mechanics (SUSY-QM) of the harmonic oscillator in the presence of a centrifugal barrier [1]. In using \(\hbar = 1\), \(2\mu = 1\) units, and introducing the operators \(A_\nu\) and \(A_\nu^+\), as

\[
A_\nu = \frac{d}{d\xi} + W(\xi), \quad A_\nu^+ = \frac{d^2}{d\xi^2} + W(\xi), \quad W(\xi) = -\nu + \frac{1}{2} + \kappa^2\xi^2,
\]

where \(W(\xi)\) is the superpotential, it is straightforward to calculate that the \(n = 0\) functions, \(\Psi_0^{01}(\xi)\) and \(\Psi_0^{02}(\xi)\) are nullified by \(A_{\nu=1}\) and \(A_{\nu=2}\), respectively,

\[
A_{\nu=1}\Psi_0^{01}(\xi) = 0, \quad A_{\nu=2}\Psi_0^{02}(\xi) = 0,
\]

meaning that they refer to genuine SUSY-QM ground states. Therefore, the ground state wave functions in (1.1), (1.3) are consistent with the SUSY-QM definition of a ground state in terms of the superpotential as,

\[
\Psi_+^{0\nu}(\xi) \sim \exp \left(-\int_0^\xi W(y)dy\right),
\]

and the entire LFH spectrum can be built on top of \(\Psi_+^{0\nu}(\xi)\) by the action of the corresponding \(A_\nu^+\) operator. In now introducing the two SUSY-QM supercharges \(Q_\nu\) and \(Q_\nu^+\),

\[
Q_\nu = \begin{pmatrix} 0 & 0 \\ 0 & A_\nu \end{pmatrix}, \quad Q_\nu^+ = \begin{pmatrix} 0 & A_\nu^+ \\ 0 & 0 \end{pmatrix},
\]

(1.8)
satisfying the \(sl(1/1)\) superalgebra, one defines the standard matrix SUSY-QM Hamiltonian as,

\[
H = \{Q_\nu, Q^+_{\nu}\} = \begin{pmatrix} H_+ & 0 \\ 0 & H_- \end{pmatrix} = \begin{pmatrix} A^+_\nu A_\nu & 0 \\ 0 & A_\nu A^+_\nu \end{pmatrix}, \quad H\Psi(\zeta) = E_S^2 \Psi(\zeta), \quad \Psi(\zeta) = \begin{pmatrix} \Psi_+^{n\nu}(\zeta) \\ \Psi_-^{n(\nu+1)}(\zeta) \end{pmatrix}.
\] (1.9)

In terms of \(A_\nu\), and \(A^+_\nu\), the superpotential \(W(\zeta)\), and its first derivative, \(W'(\zeta)\), the wave functions \(\Psi_+^{n\nu}(\zeta)\) and \(\Psi_-^{n(\nu+1)}(\zeta)\) satisfy the following “factorized” wave equations [1]:

\[
H_+ \Psi_-^{n(\nu+1)}(\zeta) = A_\nu A^+_\nu \Psi_-^{n(\nu+1)}(\zeta) = \left(-\frac{d^2}{d\zeta^2} + W(\zeta) + W'(\zeta) \right) \Psi_-^{n(\nu+1)}(\zeta) = \left(E_{S}^{n(\nu+1)} \right)^2 \Psi_-^{n(\nu+1)}(\zeta), \quad (1.10)
\]

\[
H_+ \Psi_+^{n\nu}(\zeta) = A^+_\nu A_\nu \Psi_+^{n\nu}(\zeta) = \left(-\frac{d^2}{d\zeta^2} + W(\zeta)^2 - W'(\zeta) \right) \Psi_+^{n\nu}(\zeta) = \left(E_S^{n\nu} \right)^2 \Psi_+^{n\nu}(\zeta), \quad (1.11)
\]

Now one introduces the shifted Hamiltonians, \(\tilde{H}_+\), and \(\tilde{H}_-\), as

\[
\tilde{H}_- \Psi_-^{n(\nu+1)}(\zeta) = (H_+ + 2\kappa^2\nu) \Psi_-^{n(\nu+1)}(\zeta) = \left(-\frac{d^2}{d\zeta^2} + \frac{(\nu+1)^2 - \frac{1}{\kappa^2}}{\zeta^2} + \kappa^4 \zeta^2 \right) \Psi_-^{n(\nu+1)}(\zeta) = \left(E_{S}^{n(\nu+1)} \right)^2 + 2\kappa^2\nu \Psi_-^{n(\nu+1)}(\zeta), \quad (1.12)
\]

\[
\tilde{H}_+ \Psi_+^{n\nu}(\zeta) = (H_+ + 2\kappa^2(\nu+1)) \Psi_+^{n\nu}(\zeta) = \left(-\frac{d^2}{d\zeta^2} + \frac{\nu^2 - \frac{1}{\kappa^2}}{\zeta^2} + \kappa^4 \zeta^2 \right) \Psi_+^{n\nu}(\zeta) = \left(E_S^{n\nu} \right)^2 + 2\kappa^2(\nu+1) \Psi_+^{n\nu}(\zeta). \quad (1.13)
\]

The energies in the above equations emerge as,

\[
(E_S^{n\nu})^2 = 4\kappa^2 n, \quad (E_{S}^{n(\nu+1)})^2 = 4\kappa^2(n+1),
\]

\[
(E_S^{n\nu})^2 + 2\kappa^2(\nu+1) = \left(E_{S}^{n(\nu+1)} \right)^2 + 2\kappa^2\nu = 4\kappa^2 \left(n + \frac{\nu + 1}{2} \right), \quad (1.14)
\]

where the shifted Hamiltonians, \(\tilde{H}_+\), and \(\tilde{H}_-\), have been introduced. These equations show that for \(n=0\), the first excited level in \(H_+\), corresponding to \(\nu = 2\), acts as the ground state of \(H_-\) thereby explaining the \(\Psi_+^{n\nu}(\zeta)\) and \(\Psi_-^{n(\nu+1)}(\zeta)\) degeneracy in the shifted Hamiltonians, \(\tilde{H}_+\) and \(\tilde{H}_-\). Within this context, the wave functions \(\Psi_+^{n\nu}(\zeta)\) and \(\Psi_-^{n(\nu+1)}(\zeta)\) act as supersymmetric partners. The only difference between (1.10)–(1.13)–(1.14), on the one side, and eqs. (1.1)–(1.3)–(1.4), on the other, concerns the energy values, \(4\kappa^2 \left(n + \frac{\nu + 1}{2} \right)\), versus \(E_S^2 = 4\kappa^2(n+\nu+1)\), which can be adjusted by additional shifts of \(H_+\) and \(H_-\) by \(2\kappa^2(\nu+1)\), and \(2\kappa^2\nu\), respectively. An alternative way to reach same result is to introduce the following \(\Psi_+^{n\nu}(\zeta) \xrightarrow{\nabla_+} \Psi_-^{n(\nu+1)}(\zeta)\) ladder operators ,

\[
B_- \Psi_-^{n(\nu+1)}(\zeta) = (A^+ - 2\kappa^2\zeta) \Psi_-^{n(\nu+1)}(\zeta) = E\Psi_+^{n\nu}(\zeta),
\]

\[
B_+ \Psi_+^{n\nu}(\zeta) = (A - 2\kappa^2\zeta) \Psi_+^{n\nu}(\zeta) = E\Psi_-^{n(\nu+1)}(\zeta), \quad (1.15)
\]

and in this way produce a system of two coupled equations, which again amounts equivalent to (1.1) and (1.3).

For \(\nu^2 > \frac{1}{\kappa^2}\), and \(\kappa^2 > 0\), (1.1)–(1.4) have the remarkable property to describe propagation on the real line of a conformal particle in flat space-time and have found application in the context of AdS2/CFT1 correspondence [3], [6], [7], [4], [8], [5], where one expects duality between a string theory a AdS2×S2 background and a conformal theory on the boundary. Indeed, the Hamiltonian, \(\tilde{H}_+\), in eq. (1.13), again in units of \(\hbar = 1, 2\mu = 1\) for convenience, can be cast in the form of a linear combination of elements of a properly designed dynamical conformal \(so(2,1)\) algebra, according to [8]

\[
\tilde{H}_+ = 2 \left(J_+ + \kappa^4 J_- \right),
\]

\[
J_- = \frac{1}{2} \zeta^2, \quad J_+ = -\frac{1}{2} \left(\frac{d^2}{d\zeta^2} - \frac{\nu^2 - \frac{1}{\kappa^2}}{\zeta^2} \right),
\]

\[
[J_+, J_-] = -2D_0, \quad [D_0, J_\pm] = \mp J_\pm, \quad D_0 = \frac{1}{4} \left(\zeta \frac{d}{d\zeta} + \frac{d}{d\zeta} \zeta \right). \quad (1.16)
\]
A recent achievement in the field concerns the derivation in [5] of the \(J_- \) related oscillator potential from the conformal action upon generalizing the Hamiltonian to a translation operator of an adequate time variable.

The goal of the present study is to show that the equation (1.1) represents the decreasing curvature limit of quantum motion on the hyperbolic plane within the Higgs oscillator potential and to explore consequences. The paper is structured as follows. In the next section we briefly highlight the basics of quantum motion on the hyperbolic plane, define the Higgs oscillator potential problem there, and show that it is equivalent to the one dimensional Schrödinger equation with the generalized hyperbolic Pöschl-Teller potential [1]. In section III we take the small hyperbolic angle limit of the latter equation and its solutions and reveal their equivalence to the LFH wave equation and its solutions. We furthermore calculate the proton electric charge form factor and draw conclusions on the relevance of the conformal symmetry in the two extreme regimes of QCD, the infrared and the ultraviolet. The paper closes with brief conclusions.

II. QUANTUM MOTION ON THE HYPERBOLIC PLANE

The hyperbolic plane, \(H_{+R}^2 \) is the upper part of a two-dimensional hyperboloid of two sheets,
\[
H_{+R}^2 : \quad x_1^2 + x_2^2 - x_0^2 = -R^2,
\]
where \((-1/R^2)\) is the constant negative curvature of the surface under consideration. The isometry algebra of \(H_{+R}^2 \) is \(so(1,2) \) and thereby the Lorentz group in \((1 + 2)\) dimensions. In comparison, the conformal \(so(2,1) \) mentioned above is a remnant of the conformal \(so(2,4) \) algebra of the Minkowski space-time, and acts as isometry algebra of an \(AdS_2 \) space represented by the two-dimensional hyperboloid of one sheet. The \(H_{+R}^2 \) geometry we are interested in here, derives its importance from particle dynamics on the light cone,
\[
x_1^2 + x_2^2 + x_3^2 - x_0^2 = 0,
\]
restricted to
\[
x_1^2 + x_2^2 - x_0^2 = -R^2 = -x_3^2.
\]
In this section we shall highlight the essentials of quantum dynamics on the above non-compact surface.

A. Free quantum motion on \(H_{+R}^2 \) as the eigenvalue problem of the \(so(1,2) \) Casimir operator

In global coordinates, the hyperbolic plane in (2.1) is parametrized as (we closely follow presentation in [9] and references therein)
\[
x_1 = R \sinh \rho \cos \varphi, \quad x_2 = R \sinh \rho \sin \varphi, \quad x_0 = R \cosh \eta,
\]
\[
C(\rho, \varphi) = \frac{1}{\sinh \rho} \frac{\partial}{\partial \rho} \sinh \rho \frac{\partial}{\partial \rho} + \frac{\partial^2}{\partial \varphi^2},
\]
with \(C(\rho, \varphi) \) standing for the geometric \(so(1,2) \) Casimir operator. The quantum mechanical free motion is described in terms of the eigenvalue problem of \(C(\rho, \varphi) \), as
\[
-\frac{\hbar^2}{2\mu R^2} C(\rho, \varphi) Y^m_\ell(\rho, \varphi) = E_{\ell}^{so(1,2)} Y^m_\ell(\rho, \varphi), \quad Y^m_\ell(\rho, \varphi) = P^m_\ell(\cosh \rho)e^{im\varphi},
\]
\[
E_{\ell}^{so(1,2)} = -\frac{\hbar^2}{2\mu R^2} \ell(\ell + 1),
\]
where \(Y^m_\ell(\rho, \varphi) \) are the pseudo-spherical harmonics.

B. Free quantum motion on \(H_{+R}^2 \) as the Schrödinger equation with the Eckart potential

A suitable variable change,
\[
Y^m_\ell(\rho, \varphi) = P^m_\ell(\cosh \rho)e^{im\varphi} = \frac{U^m_\ell(\rho)}{\sqrt{\sinh \rho}} e^{im\varphi},
\]
In terms of the quantum numbers in (2.10) below, one has to take according to (2.5), as

$$H(\rho, \varphi)U_n^m(\rho)e^{im\varphi} = \left(\frac{E_n^{Schr}}{8\mu R^2} + \frac{\hbar^2}{2\mu R^2}\right)U_n^m(\rho)e^{im\varphi} = E_\ell^{so(1,2)}U_n^m(\rho)e^{im\varphi},$$

$$H(\rho, \varphi) = -\frac{\hbar^2}{2\mu R^2}\frac{1}{\sqrt{\sinh \rho}}C(\rho, \varphi)\frac{1}{\sqrt{\sinh \rho}} = -\frac{\hbar^2}{2\mu R^2}\frac{\partial^2}{\partial \rho^2} + \frac{\hbar^2}{2\mu R^2}\frac{a(a-1)}{\sinh^2 \rho} + \frac{\hbar^2}{8\mu R^2}, \quad a = |m| + \frac{1}{2} \quad (2.7)$$

The energies in (2.7) express in terms of the potential parameter a in (2.7) as

$$E_n^{Schr} + \frac{\hbar^2}{8\mu R^2} = -\frac{\hbar^2}{2\mu R^2}(a+n)^2 + \frac{\hbar^2}{8\mu R^2} = -\frac{\hbar^2}{2\mu R^2}\left(|m| + n + \frac{1}{2}\right)^2 + \frac{\hbar^2}{8\mu R^2}$$

$$= -\frac{\hbar^2}{2\mu R^2}(|m| + n)(|m| + n + 1) = E_\ell^{so(1,2)}. \quad (2.8)$$

In view of (2.5), the latter equation implies,

$$\ell = |m| + n, \quad |m| \in [0, \ell]. \quad (2.9)$$

The wave functions are determined by Jacobi polynomials, $P_n^{\alpha, \beta}$, with parameters depending on their degree, n, as

$$U_n^m(\rho) = \sinh^{n+a} \rho P_n^{n-a,-n-a}(\coth \rho) = \sinh^{|m| + n + \frac{1}{2}} \rho P_n^{|m| - n - \frac{1}{2}, -|m| - n - \frac{1}{2}}(\coth \rho). \quad (2.10)$$

In terms of the quantum numbers in (2.9), the wave functions take their final forms as,

$$U_n^m(\rho) = \sinh^{\frac{1}{2}} \rho P_{\ell}^{|m|}(\cosh \rho) = \sinh^{\frac{1}{2}} \rho \sinh^{|m| + n} \rho P_n^{|m| - n - \frac{1}{2}, -|m| - n - \frac{1}{2}}(\coth \rho)$$

$$= \sinh^{\frac{1}{2}} \rho \sinh^{\ell} \rho P_n^{-(\ell + \frac{1}{2}), -|m|}(\coth \rho). \quad (2.11)$$

This equation by itself reproduces the following relationship between the associated Legendre functions and the Jacobi polynomials,

$$P_{\ell}^{|m|}(\cosh \rho) = \sinh^{-\alpha_{\ell} - \frac{1}{2}} \rho P_n^{\alpha_{\ell}, \alpha_{\ell}}(\coth \rho), \quad \alpha_{\ell} = -\ell - \frac{1}{2}, \quad n = \ell - |m|. \quad (2.12)$$

The latter equality means that if one were to prefer pseudo-spherical harmonics to be expressed in terms of the Jacobi polynomials in place of the associated Legendre functions of common use, the degree of the Jacobi polynomial has to be taken according to (2.12), (2.9). In consequence, the conclusion can be drawn that the isometry algebra of the surface on which the free motion takes place, acts as a symmetry algebra of the potential (the one of Eckart in this case) appearing in the equivalent Schrödinger equation (2.7).

C. The Higgs oscillator on \mathbb{H}^2_{-R}

Now we shall introduce a perturbation of the free motion on \mathbb{H}^2_{-R} in (2.5) by an oscillator interaction. The general definition of an oscillator on a curved surface, referred to as Higgs oscillator [11], is given in terms of the square tangent to a geodesic. Specifically on the hyperboloid under consideration it is introduced as

$$V_{osc}(\rho) = \frac{\mu^2 \omega^2}{\hbar^2} \tan^2 \rho = \kappa^4 R^2 \left(1 - \frac{1}{\cosh^2 \rho}\right), \quad \frac{\mu^2 \omega^2}{\hbar^2} = \kappa^4. \quad (2.13)$$

In so doing amounts to

$$\left[-\frac{1}{R^2}C(\rho, \varphi) + \kappa^4 R^2 \tan^2 \rho\right] \psi_n^{\alpha \lambda}(\rho, \varphi) = \left(e_n^{\alpha \lambda}\right)^{Higgs} \psi_n^{\alpha \lambda}(\rho, \varphi), \quad \left(e_n^{\alpha \lambda}\right)^{Higgs} = \frac{2\mu}{\hbar^2} (E_n^{\alpha \lambda})^{Higgs}. \quad (2.14)$$

Changing variable to $\psi_n^{\alpha \lambda}(\rho, \varphi) e^{im\varphi} = \psi_n^{\alpha \lambda}(\rho, \varphi)/\sqrt{\sinh \rho}$, with λ to be defined shortly below, allows again to cast the Higgs oscillator potential problem on \mathbb{H}^2_{-R} as the following one-dimensional Schrödinger equation, which, in
units of fm$^{-2}$, reads,
\[
\frac{1}{R^2} \left[-\frac{d^2}{d\rho^2} + V_{PTII}(\rho) \right] \psi_n^{a\lambda}(\rho) = \left(\epsilon_n^{a\lambda}\right)^{Higgs} \psi_n^{a\lambda}(\rho), \quad (2.15)
\]
\[
V_{PTII}(\rho) = \frac{a(a-1)}{\sinh^2 \rho} - \frac{\lambda(\lambda+1)}{\cosh^2 \rho} + \kappa^4 R^2 + \frac{1}{4R^2}, \quad (2.16)
\]
\[
a = \pm |m| + \frac{1}{2}, \quad \lambda(\lambda+1) = \kappa^4 R^4, \quad \lambda = -\frac{1}{2} \pm |s|, \quad |s| = \sqrt{\kappa^4 R^4 + \frac{1}{4}}. \quad (2.17)
\]

The potential $V_{PTII}(\rho)$ (modulo the two additive constants) is known [1], [12], [13] under the names of either the “generalized”, or the “second” hyperbolic Pöschl-Teller potential, abbreviated, Pöschl-Teller II. In other words, in the hyperbolic variable, the Higgs oscillator on $H_{2,\kappa}^2$ amounts equivalent to the second Pöschl-Teller potential on a hyperbolic geodesic. Notice, that such a potential can be obtained within the AdS/CFT framework as a Wilson loop potential with a Rindler universe as a background [14]. The related energies, $(\epsilon_n^{a\lambda})^{PTII}$, are given by [12], [13]
\[
(\epsilon_n^{a\lambda})^{PTII} = -\frac{1}{R^2} (\lambda - a - 2n)^2 = -\frac{1}{R^2} \left(\sqrt{\kappa^4 R^4 + \frac{1}{4}} - \left(\frac{1}{2} + a + 2n \right) \right)^2, \quad n = 0, 1, 2, \ldots < \frac{\lambda - a}{2}, \quad (2.18)
\]
\[
(\epsilon_n^{a\lambda})^{Higgs} = (\epsilon_n^{a\lambda})^{PTII} + \kappa^4 R^2 + \frac{1}{4R^2}. \quad (2.19)
\]

Correspondingly, the wave functions are
\[
\psi_n^{a\lambda}(\rho) \sim \sinh^{1-a} \rho \cosh^{\lambda+1} \rho_1 F_1 \left(-n, \lambda - a - n + 1, \frac{3}{2} - a, -\sinh^2 \rho \right). \quad (2.20)
\]

The spectrum (2.18) no longer shares the $so(1,2)$ Lorentz symmetry with the unperturbed excitations in (2.8), (2.5).

III. CONFORMAL LIGHT-FRONT HOLOGRAPHY AS THE SMALL HYPERBOLIC ANGLE LIMIT OF THE HIGGS OSCILLATOR ON $H_{2,\kappa}^2$

A. The conformal holographic interaction

In the limit of small hyperbolic angles, which formally coincides with the limit of an increasing radius, $R \to \infty$, the equations (2.15)- (2.16) approach, modulo additive constants, the Light-Front Holographic equation (1.1). Indeed, it is not difficult to see that the \(\frac{\text{csch}^2 \rho}{\rho} \) term approaches the inverse square distance potential, while the \(\frac{\text{sech}^2 \rho}{\rho} \) potential goes to the harmonic oscillator according to,
\[
\frac{1}{R^2} \frac{a(a-1)}{\sinh^2 \rho} \to a(a-1) \frac{1}{z^2}, \quad \rho = \frac{\tilde{z}}{R}, \quad \tilde{z} \to \infty \to \frac{R \to \infty}{z}, \quad (3.1)
\]
\[
\kappa^4 R^2 \tanh^2 \rho \to \kappa^4 R^2 \frac{z^2}{R^2} \to \kappa^4 z^2. \quad (3.2)
\]

Here, use has been made of the fact that the arc of the hyperbolic geodesic, \tilde{z}, approaches the segment, z, of a straight line. In effect, the form of the conformal interaction in (1.1), (1.3) is recovered as,
\[
R \to \infty : \quad \frac{1}{R^2} \frac{a(a-1)}{\sinh^2 \rho} - \frac{1}{R^2} \frac{\kappa^4 R^4}{\cosh^2 \rho} + \kappa^4 R^2 \to \frac{a(a-1)}{z^2} + \kappa^4 z^2. \quad (3.3)
\]

This is in accord with (1.1), for a and z becoming in their turn $(\nu - \frac{1}{2})$, and ζ, respectively, while κ remains κ. With that, the equivalence of the differential equations (2.15)-(2.17) and (1.1) (modulo additive constants) has been demonstrated.
B. The Light-Front Holographic energies

Upon substituting again in (2.18)-(2.19) the \(\lambda \) value from (2.17), the contraction limit of the energy is easily worked out as (see [15] for a related consideration)

\[
\lim_{R \to \infty} (\epsilon_n^{\lambda})_{\text{Higgs}} = \lim_{R \to \infty} \left[\frac{1}{R^2} \left(\sqrt{\kappa^4 R^4 + 1} - \left(\frac{1}{2} + a + 2n \right) \right)^2 + \kappa^4 R^2 + \frac{1}{R^2} \right] \\
\rightarrow \lim_{R \to \infty} \left[\kappa^4 R^2 + \frac{1}{4 R^2} - \frac{1}{R^2} \left(2n + a + \frac{1}{2} \right)^2 - 2 \left(2n + a + \frac{1}{2} \right) \sqrt{\kappa^4 R^4 + 1} \kappa^4 R^4 + 1 \right] \\
\rightarrow 2\kappa^2 \left(2n + a + \frac{1}{2} \right) = 4\kappa^2 \left(n + |m| + 1 \right).
\]

with \(a \) being substituted by \(a = |m| + \frac{1}{2} \). We now recall that the energy in (3.4) has the dimensionality of \(\text{fm}^{-2} \), i.e. \((\epsilon_n^{\lambda})_{\text{Higgs}} \) is fm\(^{-2}\), and coincides with the dimensionality of the quadratic energy in (1.14). Upon identifying \(|m| \) with \(\nu \), taking into account the rational units, \(h = 1 = 2\mu \), and finally incorporating the additive constant \(c'_n = 2\kappa^2(\nu + 1) \) from (1.1) into (3.4), one finds that the contraction limit of the second Pöschl-Teller II potential on the hyperbola \(\mathbf{H}^1_{+R} \) generates same spectrum as the Light-Front framework in (1.1), (1.3), namely,

\[
\lim_{R \to \infty} (\epsilon_n^{\lambda})_{\text{Higgs}} + 2\kappa^2(|m| + 1) = 4\kappa^2 (n + |m| + 1) = E^2, \quad \text{for} \quad |m| = \nu.
\]

In conclusion, we demonstrated that the Light-Front holographic equation and its spectrum can, alternatively to \(\text{AdS}_2/CFT}_1 \), be also traced back to the decreasing curvature (equivalently, small hyperbolic angle) limit of the Higgs oscillator on the hyperbolic plane \(\mathbf{H}^1_{+R} \), reduced to the one-dimensional Pöschl-Teller potential on the hyperbola \(\mathbf{H}^1_{+R} \). In this fashion, the one dimensional Schrödinger equation of the holographic Light-Front QCD in the \(\mathbf{R}^1 \) space of the \(\zeta \) variable has been recovered.

C. The Light-Front Holographic wave functions

In the following, the potential parameters \(a \) and \(\lambda \) in (2.17), which have been defined in (2.16) via their squares according to, \(a(a - 1) = |m|^2 - \frac{1}{4} \), now with \(a = \pm |m| + \frac{1}{2} \), and \(\lambda(\lambda + 1) = \kappa^4 R^4 \), with \(\lambda = -\frac{1}{2} \pm \sqrt{\kappa^4 R^4 + \frac{1}{4}} \) will be chosen as,

\[
a = -|m| + \frac{1}{2}, \quad \lambda = -\frac{1}{2} - |s|, \quad |s| = \frac{\sqrt{\kappa^4 R^4 + \frac{1}{4}}}{2}.
\]

We now switch to more explicit (with respect to (2.17)) labellings of the wave functions and energies as,

\[
\psi_n^{\rho\lambda}(\rho) \rightarrow \psi_n|_{|m|}|s(\rho), \quad \epsilon_n^{\lambda} \rightarrow \epsilon_{n|m|}|s|.
\]

In accord with (2.20) these wave functions now read,

\[
\psi_{n|m||s}(\rho) \sim \cosh^{\lambda + 1} \rho \left(-\sinh^2 \rho \right)^{|m| + \frac{1}{2}} {}_2F_1 \left(-n, (-|s| - n + |m| + 1), |m| + 1, -\sinh^2 \rho \right).
\]

We first focus on the ground state wave function which is especially simple,

\[
\psi_{\text{PITT}} \left(\frac{2}{R} \right) \Rightarrow \psi_{0|0||s}(\rho) \sim \cosh^{-|s| + \frac{1}{2}} \rho \left(\sinh^2 \rho \right)^{|m| + \frac{1}{2}} \rho.
\]

In making use of the approximation [15],

\[
cosh \rho \approx \exp \left(\tanh^2 \left(\frac{\rho}{2} \right) \right) \approx 1 + \frac{1}{2} \rho^2 \approx \exp \left(\frac{\rho^2}{2} \right), \quad \text{(3.10)}
\]
the \(R \to \infty \) limit of the \(\cosh^{-\lambda + \frac{1}{2}} \rho \) factor easily calculates as,

\[
\lim_{R \to \infty} \cosh^{-|s|} \rho \to \exp\left(-|s| \tanh \frac{\rho^2}{2}\right) \to \exp\left(-|s| \frac{R^2}{2}\right)
\]

\[
\to \exp\left(-\kappa^2 R^2 \frac{z^2}{2R^2}\right) \to \exp\left(-\kappa^2 z^2\right), \tag{3.11}
\]

where once again the arc of the geodesic, \(\tilde{z} \), approaches the segment, \(z \), of a straight line in the \(R \to \infty \) limit. The \((\sinh^2 \rho)^{-\frac{1}{2}} \) factor behaves as,

\[
\lim_{R \to \infty} (\sinh^2 \rho)^{-\frac{1}{2}} \sim \left(\frac{2}{R^2}\right)^{\frac{|m|}{2} + \frac{1}{4}}, \tag{3.12}
\]

where the \(R^2 \) constant in (3.12) can be canceled by properly designed normalization factor of the “curved” wave function. Putting all together, the diminishing curvature limit of the ground state wave function (\(|m| = 1 \)) of the second Pöschl-Teller potential is found as expected,

\[
\Psi^{01}_+ (z) = \lim_{|s| \to \infty} \Psi_{01}|_{|s|} (\rho) = N e^{-\frac{z^2}{2}} (\kappa^2 z^2)^{|\frac{1}{2} + \frac{1}{4}} \frac{1}{|z|^2}, \quad |s| \approx \kappa^2 R^2, \tag{3.13}
\]

where \(N \) is a normalization constant. In this way, the \(\Psi^{01}_+ (\zeta) \) ground state in the Light-Front Holography following from (1.4) for \(n = 0 \) and \(\nu = 1 \) is recovered upon identifying \(|m| \) with \(\nu \). It is this wave function that is relevant for the description of the proton electric charge form factor below. In parallel to (1.11) and (1.10), also eqs. (2.15)–(2.17) can be treated within the SUSY-QM framework and factorized by means of \(A_a \) and \(A_a^+ \) operators based on the superpotential,

\[
W(\rho) = \lambda \tanh \rho - a \coth \rho. \tag{3.14}
\]

Also for this case one can construct two sets of supersymmetric spectra on top of the two following ground states,

\[
A_a \psi_n^{\alpha\lambda} (\rho) = 0, \quad A_a^+ \psi_n^{(\alpha+1)\lambda} (\rho) = 0. \tag{3.15}
\]

Then, arguments can be brought in favor of considering \(\Delta a = 1 \) wave functions as large and small components of a Dirac spinors. Similarly, the remaining states can be analyzed. Indeed, in using the relationship between \(2F_1 \) and \(1F_1 \) hypergeometric functions, and the relationship of the Laguerre polynomials to \(1F_1 \) [16], [17], one finds the polynomial part of the wave function in (3.8) expressed in the following way in the \(|s| \to \infty \) limit:

\[
2F_1 (-n, -|s| + n + 1, |m| + 1, -\sinh^2 \rho) \overset{|s| \to \infty}{\to} 1F_1 (-n, |m| + 1, |s| \sinh^2 \rho) \overset{|s| \to \infty}{\to} 1F_1 (-n, |m| + 1, \kappa^2 z^2) \sim L_n^{|m|/(\kappa^2 z^2)}. \tag{3.16}
\]

Comparison to (1.4), and upon identifying once again \(|m| \) with \(\nu \), and \(z \) with \(\zeta \), confirms that also the polynomial part for the “curved” wave functions in (3.8) approach the correct Laguerre polynomials defining the wave functions of the Light-Front Holographic equation, as it should be. In this fashion, the exact solutions to (1.1) from (1.4) are reproduced in the contraction limit of \(\mathbf{H}_n^2 \) to a straight line on a cone (see also [15] where the contraction limit of the Higgs oscillator on the hyperbola has been elaborated). As long as the inverse-square distance plus harmonic oscillator potential in one dimension represents a conformally invariant interaction, because the associated Hamiltonian is realized in terms of the so(2, 1) algebra elements in (1.16), a conformally symmetric interaction is found in the contraction limit.

D. The proton electric charge form factor from the Fourier-Helgason hyperbolic wave transform

The proton electric charge form factor in the Conformal Light-Front Holographic QCD is well known and its calculation will not be reproduced here. Instead we explore utility of the hyperbolic wave function in (3.9) for the description of the same observable. Our calculation refers to a quark-diquark system of reduced mass \(\mu \), as commented immediately after eq. (1.1) above. The adequate momentum space, dual to the curved position space
on the hyperboloid, is obtained via the so-called Fourier-Helgason integral transform [18] based on the hyperbolic waves, also referred to in [15] as Shapiro functions, \(\Phi^{(D)}_p(\mathbf{r}) \), with \(D \) standing for the dimensionality of the surface. Specifically for the hyperboloid under investigation, \(D = 2 \), they read,

\[
\Phi^{(2)}_p(\mathbf{r}) = \left(\frac{x_0}{R} \frac{\mathbf{p} \cdot \mathbf{r}}{R} \right)^{-\frac{1}{2} - ipR}, \quad \mathbf{r} = \left(\frac{x_1}{x_2} \right) = R\hat{r}\sinh \rho. \tag{3.17}
\]

Here, \(\mathbf{p} \) is the unit vector along the direction of the momentum \(\mathbf{p} \) and tangent to the surface under consideration, \(p \) is its magnitude, while \(\mathbf{r} \) is the two-dimensional radius vector in the Euclidean \((x_1, x_2) \in \mathbb{R}^2\) plane. In making use of (2.6), the latter equation becomes,

\[
\Phi^{(2)}_p(\mathbf{r}) = (\cosh \rho - \hat{\mathbf{p}} \cdot \hat{\mathbf{r}} \sinh \rho)^{-\frac{1}{2} - ipR}, \quad \mathbf{r} = \left(\frac{x_1}{x_2} \right) = R\hat{r}\sinh \rho. \tag{3.18}
\]

In recalling that the hyperbolic angle \(\rho \) in (3.18) expresses in terms of the arc along a geodesic and the constant radius as, \(\rho = \frac{\sqrt{z}}{R} \), amounts to the following equivalent expression for the Shapiro function (also see Ref. [18] for more details),

\[
\Phi^{(2)}_p(\mathbf{r}) = e^{\frac{\sqrt{z}}{R}\hat{\mathbf{p}} \cdot \hat{\mathbf{r}}} e^{i\hat{z} \cdot \mathbf{p} \cdot \mathbf{r}}, \quad \hat{\mathbf{p}} \cdot \hat{\mathbf{r}} = \cos \varphi, \tag{3.19}
\]

where \(\varphi \) is taken as the azimuthal angle in \(\mathbb{H}_+^2R \) in (2.6). The latter expression shows that in the \(R \to \infty \) limit, in which the hyperbolic geodesic stretches to a line of a direction given by \(\hat{\mathbf{r}} \) in \(\mathbb{R}^2 \), the arc \(\sqrt{z} \) approaches a corresponding line segment, \(z \). In this limit, the hyperbolic plane waves (the Shapiro functions) approach ordinary plane waves in a two-dimensional flat space and the integral transform correspondingly evolves to an ordinary two-dimensional Fourier transform,

\[
\lim_{R \to \infty} \Phi^{(2)}_p(\mathbf{r}) \to e^{ip\mathbf{r}}. \tag{3.20}
\]

The Shapiro functions are normalized according to [15] as,

\[
\frac{R}{2\pi} \int_{\mathbf{r} \in \mathbb{R}^2} \frac{d^2\mathbf{r}}{x_0} \Phi^{(2)}_p(\mathbf{r}) \Phi^{(2)}_p(\mathbf{r}) = N^{(2)}(p)\delta^{(2)}(\mathbf{p} - \mathbf{p}'), \tag{3.21}
\]

\[
\frac{R}{2\pi} \int_{\mathbf{p} \in \mathbb{R}^2} \frac{d^2\mathbf{p}}{N^{(2)}(p)} \Phi^{(2)}_p(\mathbf{r}) \Phi^{(2)}_p(\mathbf{r}') = \delta^{(2)}(\mathbf{r} - \mathbf{r}').
\]
Fig. 2: Side by side comparison of the proton electric charge form factor, $G_F^p(Q^2)$, predicted by two distinct conformal quark-diquark models, one relevant in the infrared (dashed line), and the other- in the ultraviolet (solid line). The calculation in the ultraviolet has been performed in (3.27) in terms of the small angle approximation to the ground state wave function of the Pöschl-Teller II potential, while the one in the infrared is based on the wave function of the trigonometric Rosen-Morse potential in the parametrization of ref. [19]. While the model used in the ultraviolet and elaborated here is placed on a non-compact Minkowski space, as required by special relativity, and the small hyperbolic approximation used guarantees conformal symmetry in accord with LFH, the model in the infrared is placed on a compact hyperspherical space, as relevant in the near rest-frame regime. The conformal symmetry of the trigonometric Rosen-Morse potential is derived from free motion on the hypersphere S^3_d, perturbed by a cotangent potential, also known as “curved” Coulomb, because it solves the Laplace equation there, just like does the ordinary inverse distance potential in flat three-space. The Hamiltonian describing such a motion can be cast in the form of a Casimir invariant of a non-trivial representation of the $so(4)$ sub-algebra of the conformal algebra $so(2,4)$, a result due to [20]. Both form-factors obviously compare in quality and go practically through the data (see [21],[19] and references therein). The coincidence of the two form-factors strongly points on conformal symmetry as the chief designer of quark dynamics in the two extreme QCD regimes.

Fig. 3: Comparison of the behaviors of $Q^4 G_F^p(Q^2)$, calculated in the ultraviolet with the small angle approximation to ground state wave function of the second hyperbolic Pöschl-Teller potential in (3.9) (solid line), and in the infrared with the one corresponding to the conformal trigonometric Rosen-Morse potential in [19] (dashed line). Notice the correct increase near origin, shared by both form factors. This behavior is once again illustrative of the proximity of the small hyperbolic angle approximation to the Pöschl-Teller II wave functions to the conformally invariant Light-Front Holographic ones. At high momentum transfers, however, only the form factor corresponding to the infrared shows the desired scaling property. The divergence of the form-factor in the hyperbolic model is understandable in view of the circumstance that its conformal symmetry is limited to small angles.
In terms of the Shapiro functions, the momentum space for the hyperboloid is defined according to \[15 \], \[18 \],
\[
F(p) = \frac{R}{2\pi} \int_{r \in \mathbb{R}^2} \frac{d^2 r}{x_0} \Phi_{p}^{(2)}(r) f(r),
\]
\[
f(r) = \frac{R}{2\pi} \int_{p \in \mathbb{R}^2} \frac{d^2 p}{N^{(2)}(p)} \Phi_{p}^{(2)}(p) F(p). \tag{3.22}
\]

Within this framework, the proton electric form factor on the hyperbolic space is obtained as a Fourier-Helgason transform of the squared ground state wave function in (3.9) (with the “curved” wave function containing a $\sqrt{\sinh \rho}$ less than the Schrödinger one according to (2.6)), as

\[
G_{pE}^{\rho}(Q^2) = \int_0^\infty d\rho \frac{\sinh \rho |\psi_{01}|^2(\rho)^2}{\cosh \rho \sinh \rho} \int_{-\pi}^{+\pi} d\varphi e^{-\frac{\rho}{2} \cos \varphi} e^{-iQ \rho \cos \varphi}, \tag{3.23}
\]

where \hat{q} is the unit vector along the transferred momentum, and $Q^2 = -q^2$. In order to obtain a closed value for $G_{pE}^{\rho}(Q^2)$, we ignored presence of $|\cos \varphi| \leq 1$ in the real exponential factor, i.e, we replaced $e^{\frac{\rho}{2} \cos \varphi}$ by $e^{\frac{\rho}{2}}$. This allows us to carry out the integration over the azimuthal angle as [8]

\[
\int_0^{2\pi} e^{i\rho Q \rho \cos \varphi} d\varphi = J_0(Q \rho), \quad Q = |q|, \tag{3.25}
\]

Next we are interested in relatively small angles in view of the rapid decrease of the ground state wave function with ρ as illustrated by Fig. 1. With that in mind, we keep only the lowest terms in the $\exp(\rho/2)$ expansion, and approximate the $\sinh \rho$ from the integration volume by ρ, which allows us to convert the Fourier-Helgason transform to a Hankel transform. Finally, in systematically making use of eq. (3.10) to replace everywhere $\cosh \rho$ by $\exp(\rho^2/2)$, allows to simplify the equation (3.24) as,

\[
G_{pE}^{\rho}(Q^2) = \int_0^\infty d\rho e^{-\frac{\rho}{2}} \rho^2 \left(1 + e^{-\frac{\rho^2}{2}} \right) \left(1 + \frac{Q^2}{2} \rho \right) J_0(Q \rho). \tag{3.26}
\]

The latter integral is taken in closed form by means of the symbolic software Mathematica and reads,
\[G_E^p(Q^2) = N e^{-\frac{Q^2}{4\mu^2}} \left(\frac{2}{3} + \frac{2}{5} e^{-\frac{Q^2}{5\mu^2}} - \frac{1}{500} \sqrt{10\pi e^{-\frac{Q^2}{60\mu^2}}} (-10 + Q^2 R^2) I_0 \left(\frac{Q^2 R^2}{20} \right) \right)
- \frac{1}{108} e^{-\frac{Q^2}{12}} \sqrt{6\pi} (-6 + Q^2 R^2) I_0 \left(\frac{Q^2 R^2}{12} \right) + \frac{1}{500} R^2 Q^2 \sqrt{10\pi e^{-\frac{Q^2}{60\mu^2}}} I_1 \left(\frac{Q^2 R^2}{20} \right)
+ \frac{1}{108} Q^2 R^2 \sqrt{6\pi e^{-\frac{Q^2}{60\mu^2}}} I_1 \left(\frac{Q^2 R^2}{12} \right), \] (3.27)

where \(I_0 \) and \(I_1\) denote the modified Bessel functions of zeroth and first degree, correspondingly, and \(N\) is a normalization constant.

- In this fashion, the proton electric charge form-factor has been calculated within a hyperbolic quark-diquark model suited for dynamics in the ultraviolet and respecting the conformal symmetry.

The observable obtained is displayed in Fig. 2, where it has been compared to same physical entity, earlier calculated in the infrared in [19] once again employing a conformal quark-diquark model, namely the one based on the trigonometric Rosen-Morse potential, \(V_{RMt} \). The latter interaction is given as,

\[V_{RMt} \left(\frac{r}{d} \right) = \frac{1}{d^2} \ell(\ell + 1) \csc^2 \left(\frac{r}{d} \right) - \frac{2b}{d^2} \cot \left(\frac{r}{d} \right), \quad \frac{2\mu G}{\hbar^2}, \] (3.28)

In flat space, \(d\) is only a matching length parameter, while for a \(V_{RMt} \) placed on a compact hyperspherical surface, \(S^3_3 \), it acquires meaning of the constant hyper-radius \(R = d \). The issue is that on \(S^3_3 \) the trigonometric Rosen-Morse potential describes quantum motion perturbed by a cotangent potential, termed to as “curved” Coulomb, because it solves the Laplace equation there, just like does the ordinary inverse distance potential in flat three-space. The Hamiltonian, \(\mathcal{H}_{RMt} \), describing in the equivalent one dimensional Schrödinger equation such a motion, can be shaped as a Casimir invariant, \(\bar{K} \), of a non-trivial representation of the \(so(4) \) sub-algebra of the conformal \(so(2,4) \), a result reported in [20]. For the ground state, this representation is specifically simple and is given by,

\[\mathcal{H}_{RMt} = \bar{K} - b^2, \quad \bar{K} = \sin^{-1} \chi e^{-b \chi} K e^{b \chi} \sin \chi, \] (3.29)

where \(K\) is the regular geometric \(so(4) \) Casimir operator on \(S^3_3 \), \(\chi = \hat{r}/d \) is the second polar angle parametrizing the hypersphere, and \(\hat{r} \) is the arc of an \(S^3_3 \) geodesic. Important, the first terms in the Taylor series expansion of \(V_{RMt} \), coincide with the Cornell potential in the presence of a centrifugal barrier, i.e. with

\[V_{RMt} \left(\frac{r}{d} \right) \approx \frac{\ell(\ell + 1)}{r^2} - \frac{4\mu G}{\hbar^2 d^3 r} + \frac{4\mu G}{3\hbar^2 d^3 r}, \] (3.30)

\[\lim_{d \to \infty} V_{RMt} \left(\frac{r}{d} \right) \to \frac{\ell(\ell + 1)}{r^2} - \frac{4\mu G}{\hbar^2 d^3 r}. \] (3.31)

As visible from eq. (3.31), in the flat space limit, \(V_{RMt} \) approaches the inverse distance potential, i.e. again a conformal interaction. This is different form the case of the Higgs oscillator potential problem on the hyperbolic plane, which acquires conformal symmetry exclusively in the flat space limit.

- In effect, the trigonometric Rosen-Morse potential provides a through and through conformal interaction in the infrared and is a manifest example for the possibility of realizing conformal symmetry in the presence of two scales– the strength of the cotangent term, \(G\), and the \(S^3_3 \) curvature, \(1/(6d^2)\). The last scale allows for the introduction of temperature as the inverse hyper-radius, \(T = 1/d\) [22].

Though the potential under discussion captures essential relativistic features brought about by the local isomorphism between \(so(4) \) and the Lorentz algebra \(so(1,3) \), such as the dimensionality of the irreducible representation functions, in operating on a compact manifold, and in having infinitely many bound states, it is at the same time closely tied to near rest-frame physics. In effect, this potential gives rise to a conformal spectrum of hydrogen-like degeneracy patterns, according to

\[\frac{2\mu E^{RMt}_{\infty}}{\hbar^2} = - \frac{4\mu^2 G^2}{h^4 (n + \ell + 1)^2} + \frac{\ell(\ell + 1)^2 d \to \infty}{d^2 (n + \ell + 1)^2} - \frac{4\mu^2 G^2}{h^4 (n + \ell + 1)^2}, \] (3.32)
again in the units of fm$^{-2}$ used through the paper. The latter equation makes manifest one more difference between the trigonometric quark model in the infrared and the hyperbolic one in the ultraviolet. The issue is that while in the ultraviolet setup the physical spectrum is explained by the small hyperbolic angle limit to Pöschl-Teller II in (3.4), in the infrared it requires the full angular range of the trigonometric Rosen-Morse potential. The latter spectrum matches well the observed degeneracies in both the non-strange baryon- and meson excitations in the 1500 MeV to 2500 MeV range, a phenomenon whose appearance is justified by the opening of the conformal window [23] in the infrared. Moreover, upon being employed as a gauge potential in the Klein-Gordon equation on the three dimensions hypersphere, S^3, it furthermore provided a realistic description of the $P_{2l,1}$-$S_{2l,1}$ orderings through the entire known N and Δ spectra as a kinematic splitting effect [24]. Within this framework, the respective $G_E^p(Q^2)$ has been predicted as,

$$G_E^p(Q^2) = \frac{b(b^2 + 1)}{Qd} \tan^{-1} \left(\frac{16bdQ}{(Qd)^4 + 4(2b^2 - 1)(Qd)^2 + 16b^2(b^2 + 1)} \right).$$ \quad (3.33)

with b from (3.28). The b and d values are those given in [19].

- In summary, in the infrared, as well as in the ultraviolet, the conformal symmetry of the Schrödinger equations is realized in the presence of external length scales, brought about by the respective potential strengths, be it $1/\kappa$ in (1.1), or d in (3.28). In addition, as already mentioned above, the conformal symmetry in the infrared can be realized directly on the hypersphere, i.e. in the presence of curvature as a second scale.

The Figure 3 shows the scaling behavior of both form factors under discussion with the increase of the momentum transferred. Finally, on Fig. 4 we display the approximate and exact hyperbolic integrands corresponding to (3.24).

IV. CONCLUSIONS

In this work we studied the Higgs oscillator on the hyperbolic plane, reduced to the 1D Schrödinger equation describing motion on a hyperbola perturbed by the second hyperbolic Pöschl-Teller potential. In considering the decreasing curvature limit, equivalent to small hyperbolic angles, we found in eqs. (3.1)-(3.2) that this potential amounted to the one dimensional conformally symmetric interaction consisting of an inverse square distance plus a square distance potentials. In this fashion, the Lorentz symmetry of the initial hyperbolic interaction (i.e. $\ell(\ell+1)/\sinh^2 \rho$ in (2.7), that has been broken by the perturbation due to the Higgs oscillator in (2.15)-(2.17), to the end has been converted to conformal interaction in the flat space limit. Comparison of the Light Front Holographic ground state wave function in (3.13) to the hyperbolic $H_{1,R}$ one in (3.9) was presented in Fig. 1. We observed that for a relatively short radius, of the order of 1 fm, the wave functions coincided quite reasonably. Such is due to the fact that the most essential part of the LFH wave function is located in the small distance region, equivalent to small angles on the curved surface. At the end, the nature of the wave function under discussion is similar to that corresponding to a small curvature, a reason for which fitting “curved” to the plane wave functions works out. Within same scheme, we also studied the proton electric charge form factor, shown in Figs. 2 and 3, and found again a pretty realistic data description. In result, we found that essential outcomes of the Light-Front Holographic QCD in the ultraviolet can independently be backed up by a hyperbolic relativistic quark-diquark ($q-(qq)$) model, consistent with conformal symmetry. The model is paralleled in the infrared through a $q-(qq)$ system placed on a compact space, the hypersphere S^3, and interacting via the trigonometric Rosen-Morse potential. In this fashion, we showed that the conformal symmetry, the decisive mechanism in shaping the light flavor hadron spectra and the electric charge form factor, can be treated on similar terms in the two extreme regimes of QCD. Spaces of constant curvatures, are known to efficiently absorb part of the interactions into the free motion, and frequently happen to provide convenient scenarios for the description of complex dynamical systems [18]. The models can further be upgraded by perturbations of the free motions and in this fashion the level of phenomenological description of coupled systems can be improved. The inverse radius of the $H_{1,R}^q$ space of constant curvature considered here provides a scale in addition to the strength of the perturbing potential and can be employed in the definition of chemical potential [25],[26].

The findings are suggestive of the possibility that a new generation of quark models based on trigonometric or hyperbolic SUSY-QM potentials is likely to capture notably more of the essential field-theoretical-, and first-principle AdS/CFT aspects of QCD in the infrared and the ultraviolet than those based on the traditional power potentials.
Acknowledgment: We thank Cliffor Compean for the critical reading of the manuscript and valuable comments.

[1] F. Cooper, A. Khare, and U. Sukhatme, *Supersymmetry and quantum mechanics*, Phys. Rept. **251** 267-385 (1995).
[2] S. J. Brodsky, G. de Téramond, and M. Karliner, *Puzzles in hadrons physics and novel Quantum Chromodynamics phenomenology*, Ann. Rev. Nucl. Part. Sci. **62**, 1-35 (2012).
[3] Guy F. de Téramond and S. J. Brodsky, *The hadronic spectrum of a holographic dual QCD*, Phys. Rev. Lett. **94**, 201601 (2005).
[4] A. Karch, E. Katz, D. T. Son, and M. A. Stephanov, *Linear Confinement and AdS/QCD*, Phys. Rev. D **74**, 015005 (2006).
[5] S. J. Brodsky, Guy F. de Téramond, and H.-G. Dosch, *Threelfold complementary approach to holographic QCD*, Phys. Lett. B **729**, 3-8 (2014).
[6] J. L. F. Barbón and C. A. Fuertes, *On the spectrum of non-relativistic AdS/CFT*, JHEP 0809:030 (2008).
[7] C. Leiva and M. S. Plyushchay, *Conformal symmetry of relativistic and non-relativistic systems and AdS/CFT correspondence*, JHEP **0310** 069 (2003).
[8] G. B. Arfken and H.-J. Weber, *Mathematical Methods for Physicists* (Academic Press, N.Y. 2001).
[9] M. Kirchbach, *Conformal symmetry algebra of the quark potential and degeneracy in hadron spectra*, AIP Conf. Proc. **1488**, 236-247 (2012).
[10] M. F. Manning and N. Rosen, *Potential functions for vibrations of diatomic molecules*, Phys. Rev. **44**, 951 (1933).
[11] P. W. Higgs, *Dynamical symmetries in a spherical geometry*, J. Phys A:Math.Gen. **12**, 309-323 (1979).
[12] F. Cooper, J. N. Ginochio, and A. Wipf, *Supersymmetry, operator transformations and exactly solvable potentials*, J. Phys. A:Math.Gen. **22**, 3707-3716 (1989).
[13] A. O. Barut, A. Inomata, and R. Wilson, *Algebraic treatment of the second P"{o}schl-Teller Morse-Rosen and Eckart equations*, J. Phys. A:Math.Gen. **20**, 4083-4096 (1987);
F. M. Solikhah, Suprami, and V. I. Variani, *Analysis of energy spectrum and wave functions of modified P"{o}schl-Teller potential using hypergeometry and supersymmetric method*, IPTEK, The Journal for Technology and Science, **23**, 15-20 (2012).
[14] S. D. Avramis, K. Sfetsos, and K. Siompos, *Stability of string configurations dual to quarkonium states in AdS/CFT*, Nucl. Phys. B **793**, 1-33 (2008).
[15] M. A. Alonso, G. S. Pogosyan, and K. B. Wolf, *Wigner functions for curved spaces. I. On hyperboloids*, J. Math. Phys. **43**(12), 5857-5871 (2002).
[16] M. Abramovicz and I. A. Stegun, *Handbook of Mathematical Functions, with Formulas, Graphs and Mathematical Tables*, (Dover Publications, Inc. N.Y. 1972).
[17] John D. Cook, *Relations between special functions*, http://www.johndcook.com/special-function-diagram.html
[18] Iva Bogdanova, Pierre Vanderheyst, and Jean-Pierre Gazeau, *Continuous wavelet transform on the hyperboloid*, Applied and Computational Harmonic Analysis, **23** (3), 285-306 (2007).
[19] C. Compean and M. Kirchbach, *Trigonometric quark confinement potential of QCD traits*, Eur. Phys. J. A **33**, 1-4 (2007).
[20] A. Pallares-Rivera and M. Kirchbach, *Symmetry and degeneracy of the curved Coulomb potential on the S^3 ball*, J. Phys. A:Math.Theor. **44**, 44530 (2011).
[21] J. Friedrich and Th. Walcher, *A coherent interpretation of the form factors of the nucleon in terms of a pion cloud and constituent quarks*, Eur. Phys. J. A **17**, 607-623 (2003).
[22] S. Hands, T. J. Hollowood, and J. C. Myers, *QCD with Chemical Potential in a small hyperspherical box*, JHEP **1007** 086 (2010).
[23] A. Deur, V. Burkert, J. P. Chen, and W. Korsch, *Determination of the effective strong coupling constant \(\alpha_s(Q^2) \) from CLAS spin structure function data*, Phys. Lett. **665**, 349 (2008).
[24] M. Kirchbach and C. B. Compean, *Conformal symmetry and light flavor baryon spectra*, Phys. Rev. D **82**, 034008 (2010).
[25] D. Ebert, A. V. Tykov, and V. Ch. Zhukovsky, *Gravitational catalysis of chiral and color symmetry breaking of quark matter in hyperbolic space*, JHEP **0902**, 028 (2009).
[26] D. Krioukov, F. Papadopoulos, A. Vahdat, and M. Boguna, *Curvature and temperature of complex networks*, Phys. Rev. E **80**, 035101 (2009).