REVIEW

Recent advances in understanding and managing urolithiasis
[version 1; referees: 3 approved]

Walter L. Strohmaier¹,²

¹Department of Urology and Paediatric Urology, Regiomed-Kliniken, Coburg, Germany
²Academic Hospital of the University of Split, Split, Croatia

Abstract

During the last few years, there has been relevant progress in both understanding and managing urolithiasis. Our knowledge of stone formation has changed: although the importance of urine biochemistry was questioned by several investigators years ago, the decisive role of cellular processes (induced by oxidative stress) and the renal papilla has only recently been generally accepted as the most important step in stone formation. For calcium oxalate urolithiasis, the formation of papillary calcifications plays a key role and is of prognostic relevance. Further research has to concentrate on these aspects of preventing urolithiasis. Stone prevention (metaphylaxis) is a major issue when considering the burden it places on healthcare systems. An effective metaphylaxis could lower the cost of stone therapy significantly. For uric acid urolithiasis, so far there is only preliminary information available showing that papillary plaques are not as important as they are in calcium oxalate urolithiasis. Concerning stone management, endourology has improved stone therapy significantly during the last few years. Morbidity decreased and success (stone-free) rates increased. Therefore, the indications for extracorporeal shockwave lithotripsy (ESWL) narrowed. ESWL, however, still has its place in stone therapy. There is not one single treatment modality that is equally effective for all situations. It is important to observe the differential indications for different stones depending on size, localization, and composition.
Introduction
Urolithiasis places a significant economic burden on the healthcare system, especially in industrialized countries where, owing to changes in lifestyle and diet, the incidence of stone disease has steadily increased over the last several decades; unfortunately, it will probably continue to increase for a number of reasons, one of which is global warming\(^1\). Therefore, the costs of medically and surgically treating as well as diagnosing stones will also rise significantly\(^1\). This highlights the enormous importance of urolithiasis for our healthcare systems. During the last few years, there has been relevant progress in both understanding and managing this disease.

Understanding urolithiasis
Although first postulated almost 80 years ago\(^4\), the decisive role of cellular processes and the renal papilla has only recently been generally accepted as the most important step in stone formation.

Managing urolithiasis
Endourologic techniques were introduced into urolithiasis therapy about 40 years ago. Nevertheless, they have been generally promoted with extending the indications since the beginning of the 21st century. The main reason for this is improvements in the endoscopic instruments. This allowed higher stone-free rates on one hand and lower complication rates on the other. At this time, all types of stones in any localization may be treated by endoscopic procedures. In consequence, the application of extracorporeal shockwave lithotripsy (ESWL) decreased. Nevertheless, ESWL is still widely used in stone therapy. According to the EAU guidelines\(^5\), ESWL can be used in nearly all stone locations. Unfavorable factors are shockwave-resistant stones (whewellite, brushite, or cystine), a steep infundibular-pelvic angle, a long lower pole calyx (>10 mm), and a narrow infundibulum (<5 mm).

Understanding urolithiasis
Today, urolithiasis is an economic challenge for all healthcare systems\(^6\). Because of changes in lifestyle, dietary habits, and treatment modalities, its incidence and prevalence rose significantly over the last few decades\(^1\). One can expect that the frequency of urolithiasis will rise even more (by 7–10%) owing to global warming, since stone disease is encountered more frequently in hot regions\(^1\).

A prerequisite for urinary stone formation is the supersaturation of the urine with stone-forming substances like calcium, oxalate, phosphate, and uric acid. Therefore, until now, prevention strategies have been directed towards changes in urine biochemistry\(^1\). Although the importance of urine biochemistry was questioned by several investigators years ago, it was only recently widely accepted that urine biochemistry cannot explain stone formation exclusively\(^6\). Many individuals with urinary supersaturation never form stones\(^6\).

With the exception of some very rare types of stone disease (e.g. primary hyperoxaluria and cystinuria), for physicochemical reasons crystals cannot grow into stones within the renal tubules, as the transit time is too short (free particle theory). For stone growth, crystals have to be fixed to tubular cells or renal tissue (fixed particle theory\(^8\)). A prerequisite for fixation, however, is a lesion of the tissue or cells\(^11\). Picking up these theories, Robertson recently developed a computer model (NEPHROSIM) that attempts to improve the understanding of reabsorption and secretion processes in the renal tubules and their relevance for the initial processes of calcium oxalate (CaOx) stone formation\(^12\).

Although these facts have been known for several decades, they came into focus and were generally accepted only recently. Especially for CaOx urolithiasis, the most common type, stone formation starts with the formation of plaques developing in the basement membrane of the thin loop of Henle\(^13\). These Randall’s plaques consist of apatite and organic material (glycoproteins, glycosaminoglycans, and lipids). Randall’s plaques are the nidus for CaOx stone formation (papillary calcifications). In cases of urine supersaturation with calcium and oxalate, CaOx crystals adhere and overgrow the apatite plaques. Therefore, it can be stated that there are two prerequisites for CaOx stone formation: 1. cellular injury and apatite plaque formation and 2. urine supersaturation with calcium and oxalate.

Why these plaques form is a complex phenomenon and not fully understood. However, there is increasing evidence that renal tubular cell damage and localized inflammation play an important role\(^14\). Apart from these plaques, Randall\(^15\) described a second type of papillary lesion (papillary lesion type II), which is an intratubular calcification in the distal part of Bellini’s duct. Today, they are called Randall’s plugs. They are predominantly found in patients with higher supersaturation of the urine (e.g. primary hyperoxaluria and primary hyperparathyroidism). However, they are also encountered in idiopathic CaOx stone formers\(^16\).

Calcium oxalate urolithiasis
We were interested in how frequently papillary calcifications can be encountered in patients with idiopathic CaOx urolithiasis (iCaOxU), the most frequent stone type, and whether the assessment of their extent may be used for predicting the risk of recurrence.

We studied 100 patients with iCaOxU undergoing stone treatment by flexible endourologic instruments\(^17\). The renal papillae were examined and counted. In addition, the extent of plaques was determined (Figure 1). The so-called calcification index (CI) was calculated: sum of the number of renal papillae multiplied with the grade of calcifications (1–3) multiplied with the number of papillae with calcifications divided by the total number of papillae. Also,
a metabolic assessment was done. The CI correlated significantly
(r=0.37; p=0.012) with the number of stone episodes in the patients’
histories.

Concerning the metabolic parameters, only citrate (r=0.51; p=0.002)
correlated significantly with the number of stone episodes. This is
a paradox we can’t explain, as citrate is an inhibitor of CaOx stone
formation. These findings highlight the importance of Randall’s
plaques in the pathogenesis of iCaOxU. Moreover, the assessment
of papillary plaques or calcifications by means of endourology
and calculating the CI is a reliable prognostic factor in contrast to
conventional metabolic (biochemical) parameters.

The next question to be discussed is how these papillary plaques
form. The whole complex is not completely understood so far;
however, there is increasing evidence that renal tubular cell dam-
age and localized inflammation play an important role[4,9]. There
are two potential ways renal epithelial injury may occur[21]: firstly,
CaOx and calcium phosphate crystals cause cellular damage, and,
secondly, crystals adhere and grow on injured renal epithelial cells.
For both potential pathways, oxidative stress and lipid peroxida-
tion are important factors. Some studies showed that parameters of
oxidative stress and lipid peroxidation are increased in renal stone
formers[6,19–22].

Experimentally, medications protecting against oxidative stress (e.g.
calcium antagonists, N-acetyl-cysteine, and phytopharmaceuticals)
could interfere with these mechanisms and lower urinary stone
formation[23–30]. These observations could open up new options in
renal stone prevention and metaphylaxis (secondary prevention)[11].
Standardized preparations like Canephron N containing centaury,
lovage, and rosemary exhibit not only anti-oxidative and neph-
roprotective but also diuretic and anti-inflammatory effects. This
unique combination of antiurolithiatic effects is very promising[32,33].
However, this has to be validated by randomized studies. Further
research has to concentrate on these aspects of urolithiasis preven-
tion. Stone prevention (metaphylaxis) is a major issue considering
the burden it places on healthcare systems. Metaphylaxis is not only
medically but also economically effective. An effective metaphy-
laxis could lower the cost of stone therapy significantly[34,35].

Uric acid urolithiasis

Since uric acid (UA) stones are unusually common in our region
(Upper Franconia, Germany, 20–25% of all stone formers)[36], we
investigated the meaning and the importance of papillary plaques
in this type of urolithiasis. So far, there are only very limited data
existing in the literature. Viers et al.[3] published a series of
23 patients with stones containing UA. However, only four had pure
UA stones. The vast majority was mixed with CaOx. Until now,
we have examined 30 patients suffering from pure UA stones. The
study design was as outlined above for iCaOxU. Our preliminary
data showed that – contrary to iCaOx (7.7 ± 7.9) – the CI was signif-
ificantly lower in UA stones (5.04 ± 4.39). Nevertheless, the number
of stone episodes or recurrence rate was higher in UA stones. There
was no correlation between the CI and recurrence rate. Regarding
the biochemical metabolic parameters, blood calcium correlated
positively and urine pH and volume negatively with the recurrence
rate. UA plaques of the renal papillae obviously are not of such impor-
tance in the pathogenesis of stone formation as they are in iCaOxU.
According to our preliminary results, they do not correlate with the
number of recurrences. Therefore, they may not be used to predict
the risk of recurrence. However, these first results should be con-
firmed in larger numbers of UA stone patients. Our observations
again demonstrate that urolithiasis is a very complex phenomenon
and that there are different pathways in stone formation for the
different types of stones.

Managing urolithiasis

Since the beginning of the 21st century, the general acceptance and
the dissemination of endoscopic therapy modalities rose dramatically[38–41]. The word “endourology” goes back to Arthur
Smith. It means a “closed, controlled manipulation in the
genitourinary tract”. In the field of renal and ureteral stones,
endourologic treatment modalities include ureterorenoscopy
(URS), laparoscopic ureterolithotomy, percutaneous nephrolithot-
omy (PCNL), and laparoscopic pyelolithotomy. The main reason
for this dramatic rise in the use of these procedures is technical
improvements in the instruments. These newer instruments allow
for higher success rates and reduced morbidity.

Nevertheless, ESWL is still widely used for treating both ureteral
and renal stones. The number of ESWL treatments, however, has
decreased during the last few decades. In contrast, endourologic
procedures were used more frequently[42–49]. At this time, urinary
stones of all types and localizations can be treated by endoscopic
modalities with similar stone-free rates and morbidity in compari-
son to ESWL.

Management of renal stones

ESWL is indicated preferentially in renal stones up to 2 cm in diam-
eter when located in the renal pelvis and upper and middle caly-
ces. In these cases, stone-free rates from 80–100% can be achieved
sometimes; however, it requires multiple sessions. Complication
rates range from 0–20%[5].

Lower pole stones do not respond so well, especially in the case
of unfavorable factors for ESWL (shockwave-resistant stones
[whewellite, brushite, and cystine], steep infundibular-pelvic angle,
long lower pole (>10 mm), and narrow infundibulum (<5 mm]).
Those stones should be treated preferentially by endourologic
modalities[4,9,46].

Various forms of PCNL (conventional, mini, ultra-mini, and micro
PCNL) are available for treating all renal stones (Figure 2a and 2b).
The range of the diameters of these instruments varies between
5 (micro PCNL) and 34 F (large standard PCNL)[10,47]. Although
there is some evidence that smaller instruments cause less trauma,
this has not really been proven[7]. On the other hand, operating time
increases with decreasing diameter of the instrument. Further
studies are required to establish the definitive role of miniaturized
instruments. In the meantime, it seems wise to adapt the diameter
of the instruments to the size of the stone.

The overall complication rates for PCNL range from 0–30%. Con-
cerning stone-free rates, the diameter, composition, and localization
unusual situations, laparoscopic surgery may be indicated (treatment failures of endourologic modalities and extremely large stones). Open surgery is almost never required today.

Stone fragmentation
In many situations, in the kidney and the ureter as well, stones are too large to be extracted completely. Therefore, they have to be disintegrated (fragmented). For this purpose, a number of approaches are available, such as laser, ultrasound, and pneumatic. The gold standard is the holmium laser, as it is highly effective and can be used with flexible devices. When treating larger stones with semi-rigid and rigid instruments (URS and PCNL), pneumatic and ultrasound lithotripters can be used, as they reduce operating time.

In summary, endourology has improved stone therapy significantly over the last several years. Morbidity decreased and success (stone-free) rates increased. Therefore, the indications for ESWL narrowed. However, when used in the broad field and looked at carefully, the re-intervention rate for residual fragments after URS was about 40%. This is similar to that of ESWL. Potentially, these differences in the success rates of URS are because of different techniques (e.g. using access sheaths and flexible instruments or not, or removing the stone fragments using baskets or dusting the stone). In the end, it could be that URS may not be quite as effective as we like to believe. ESWL still has its place in stone therapy.

There is not one single treatment modality that is equally effective for all situations. It is important to observe the differential indications as outlined above.
Future outlook
Some questions remain to be answered in the future. Will further miniaturization of the instruments really be less traumatic and give the same results? Could stone fragmentation be improved (e.g. by more effective lasers)? Another issue is economy: flexible ureterorenoscopes, while being versatile and less traumatic, are expensive and not very durable. Their further dissemination is dependent on economic factors. Will single-use instruments help? Recently, robotic support has been introduced to endourologic stone therapy. However, so far, there are limited advantages.

Abbreviations
CaOx, calcium oxalate; Cl, calcification index; ESWL, extracorporeal shockwave lithotripsy; iCaOxU, idiopathic calcium oxalate urolithiasis; PCNL, percutaneous nephrolithotomy; RIRS, retrograde intrarenal surgery (RIRS); UA, uric acid; URS, ureterorenoscopy.

Competing interests
The author is a consultant of Bionorica SE, Neumarkt/Oberpfalz, Germany.

Grant information
The author(s) declared that no grants were involved in supporting this work.

Acknowledgements
I thank Mr Andreas Giese, Head Nurse of our endourology service, for taking the photographs.

References
27. Strohmaier WL, Seeger RD, Ossewald H, et al.: Reduction of vitamin D induced stone formation by calcium. Urol Res. 1994; 22(5): 301–3. 
Published Abstract | Publisher Full Text

28. Strohmaier WL, Witte B, Neide HJ: Influence of nifedipine on stone formation and renal function in cholesterol-induced nephrolithiasis in rats. Urol Int. 1994; 52(2): 87–92. 
Published Abstract | Publisher Full Text

29. Vidy A, Lenin M, Varalakshmi P: Evaluation of the effect of tripterasone on urinary risk factors of stone formation in pyridoxine deficient hyperoxaluric rats. Phytother Res. 2002; 16(6): 514–8. 
Published Abstract | Publisher Full Text

30. Vidy A, Varalakshmi P: Control of urinary risk factors of stones by betulin and lupeol in experimental hyperoxaluria. Fitoterapia. 2000; 71(5): 535–43. 
Published Abstract | Publisher Full Text

31. Monti E, Trinchieri A, Magni V, et al.: Herbal medicines for urinary stone treatment. A systematic review. Arch Ital Urol Androl. 2016; 88(1): 38–46. 
Published Abstract | Publisher Full Text

32. Ceban E: Efficacy of a fixed combination of Centaurii herba, Levistici radix and Rosmarini folium in urinary lithiasis. Z Phytother. 2012; 33(1): 19–23. 
Publisher Full Text

33. Naber KG: Efficacy and safety of the phytotherapeutic drug Canephron® N in prevention and treatment of urogenital and gestational disease: review of clinical experience in Eastern Europe and Central Asia. Res Rep Urol. 2013; 3: 39–46. 
Published Abstract | Publisher Full Text | Free Full Text

34. Lotan Y, Pearle MS: Cost-effectiveness of primary prevention strategies for nephrolithiasis. J Urol. 2011; 186(2): 550–5. 
Published Abstract | Publisher Full Text

35. Strohmaier WL: [Economic aspects of evidence-based metaphylaxis]. Urolologie A. 2006; 45(11): 1406–9. 
Published Abstract | Publisher Full Text

36. Strohmaier WL, Weigl A: Stone composition in Upper Franconia - unusually high percentage of uric acid lithiasis. Jungers, P and Daudon, M. Renal Stone Disease. Amsterdam, New York, Elsevier Science 1997; 10–11. 

37. Viers BR, Lieske JC, Vrtiska TJ, et al.: Endoscopic and histologic findings in a cohort of uric acid and calcium oxalate stone formers. Urology. 2015; 85(4): 771–6. 
Published Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

38. Ghani KR, Andonian S, Bultitude M. 
39. Ghani KR, Sammon JD, Karakiewicz PI, et al.: Contemporary Trends of Inpatient Surgical Management of Stone Disease: National Analysis in an Economic Growth Scenario. J Endourol. 2015; 29(8): 956–62. 
Published Abstract | Publisher Full Text

40. Marchini GS, Mello MF, Levy R, et al.: Contemporary Trends of Inpatient Surgical Management of Stone Disease: National Analysis in an Economic Growth Scenario. J Endourol. 2015; 29(8): 956–62. 
Published Abstract | Publisher Full Text

41. Garcia-Galisteo E, Sánchez-Martínez N, Molina-Díaz P, et al.: Invasive treatment trends in urinary calculi in a third level hospital. Actas Urol Esp. 2015; 39(1): 32–7. 
Published Abstract | Publisher Full Text

42. Oberlin DT, Flum AS, Bachrach L, et al.: Contemporary surgical trends in the management of upper tract calculi. J Urol. 2015; 193(3): 880–4. 
Published Abstract | Publisher Full Text

43. Seikelhner S, Laudano MA, Del Piero J, et al.: Renal calculi: trends in the utilization of shockwave lithotripsy and ureteroscopy. Can J Urol. 2015; 22(1): 7627–34. 
Published Abstract

44. Assimos D, Krambeck A, Miller NL, et al.: Surgical Management of Stones: American Urological Association/Endourological Society Guideline, PART I. J Urol. 2016; 196(4): 1153–60. 
Published Abstract | Publisher Full Text | F1000 Recommendation

45. Assimos D, Krambeck A, Miller NL, et al.: Surgical Management of Stones: American Urological Association/Endourological Society Guideline, PART II. J Urol. 2016; 196(4): 1161–9. 
Published Abstract | Publisher Full Text

46. Kamal W, Kalldinon P, Kyzariz I, et al.: Miniturized percutaneous nephrolithotomy: what does it mean? Urolithiasis. 2016; 44(3): 195–201. 
Published Abstract | Publisher Full Text | F1000 Recommendation

47. Berardinelli F, Prioretti S, Cindolo L, et al.: A prospective multicenter European study on flexible ureterorenoscopy for the management of renal stone. Int Braz J Urol. 2016; 42(3): 479–86. 
Published Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

48. Schoenthaler M, Wilhelm K, Katzenwadel A, et al.: Retrograde intrarenal surgery in treatment of nephrolithiasis: Is a 100% stone-free rate achievable? J Endourol. 2012; 26(5): 489–93. 
Published Abstract | Publisher Full Text

49. Garg S, Mandal AK, Singh SK, et al.: Ureteroscopic laser lithotripsy versus ballistic lithotripsy for treatment of ureteric stones: a prospective comparative study. Urol Int. 2009; 82(3): 341–5. 
Published Abstract | Publisher Full Text

50. Chew BH, Brotherhood HL, Sur RL, et al.: Natural History, Complications and Re-Intervention Rates of Asymptomatic Residual Stone Fragments after Ureterscopy: a Report from the EDGE Research Consortium. J Urol. 2016; 195(4P1): 982–6. 
Published Abstract | Publisher Full Text | F1000 Recommendation

51. Rippel CA, Nikkel L, Lin YK, et al.: Residual fragments following ureteroscopic lithotripsy: incidence and predictors on postoperative computerized tomography. J Urol. 2012; 188(6): 2246–51. 
Published Abstract | Publisher Full Text | F1000 Recommendation

52. Pearle MS: Is Ureterscopy as Good as We Think? J Urol. 2016; 195(4P1): 823–4. 
Published Abstract | Publisher Full Text

53. Prioretti S, Drags L, Molina W, et al.: Comparison of New Single-Use Digital Flexible Uretoscope Versus Nondisposable Fiber Optic and Digital Uretoscope in a Cadaveric Model. J Endourol. 2016; 30(6): 655–9. 
Published Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

54. Saglam R, Muslimanoglu AY, Tokatli Z, et al.: A new robot for flexible ureteroscopy: development and early clinical results (IDEAL stage 1-2b). Eur Urol. 2014; 66(6): 1092–100. 
Published Abstract | Publisher Full Text | F1000 Recommendation
Open Peer Review

Current Referee Status: ✔ ✔ ✔

Editorial Note on the Review Process
F1000 Faculty Reviews are commissioned from members of the prestigious F1000 Faculty and are edited as a service to readers. In order to make these reviews as comprehensive and accessible as possible, the referees provide input before publication and only the final, revised version is published. The referees who approved the final version are listed with their names and affiliations but without their reports on earlier versions (any comments will already have been addressed in the published version).

The referees who approved this article are:

1 Hans-Goran Tiselius, Karolinska Institutet, Department of Clinical Science Intervention and Technology, Stockholm, Sweden
   Competing Interests: No competing interests were disclosed.

2 Amy Krambeck, Indiana University, Indianapolis, IN, USA
   Competing Interests: No competing interests were disclosed.

3 Chanderdeep Tandon, Amity Institute of Biotechnology, Amity University, Noida, India
   Competing Interests: No competing interests were disclosed.