Supplementary Material

1. Supplementary Figures and Tables

1.1 Supplementary Figures

Supplementary Figure 1. Optimization of IPTG concentration for 4F5 scFv and 4B9 scFv expression.

(A): The SDS-PAGE of 4F5 scFv, M: marker, 1-5: The concentrations of IPTG were 0, 0.25, 0.5, 0.75, 1.0 mM; (B): the SDS-PAGE of 4B9 scFv, M: marker, 1-5: The concentrations of IPTG were 0, 0.25, 0.5, 0.75, 1.0 mM.
Supplementary Figure 2. Standard curves of the icELISA with 4F5 scFv and 4B9 scFv for the detection of FB$_1$.
Supplementary Figure 3. The synthesis and purification of FB₁-FITC and FB₁–5-DTAF. (A): The synthesis process of FB₁-FITC and FB₁–5-DTAF; (B) and (C): Purification of FB₁-FITC and FB₁–5-DTAF tracers by thin layer chromatograph.
Supplementary Figure 4. The root mean square deviation (RMSD) values of the scFvs-FBₙ. (A): The RMSD of 4F5-FB₁. (B): The RMSD of 4F5-FB₂. (C): The RMSD of 4B9-FB₁. (D): The RMSD of 4B9-FB₂.
Supplementary Figure 5. The hydrophobicity surface pocket of 4F5-FB₁, 4F5-FB₂, 4B9-FB₁ and 4B9-FB₂. (A): The hydrophobicity surface pocket of 4F5-FB₁. (B): The hydrophobicity surface pocket of 4F5-FB₂. (C): The hydrophobicity surface pocket of 4B9-FB₁. (D): The hydrophobicity surface pocket of 4B9-FB₂.
Supplementary Figure 6. The interpolated charged surface pocket of 4F5-FB1, 4F5-FB2, 4B9-FB1 and 4B9-FB2. (A): The interpolated charged surface pocket of 4F5-FB1. (B): The interpolated charged surface pocket of 4F5-FB2. (C): The interpolated charged surface pocket of 4B9-FB1. (D): The interpolated charged surface pocket of 4B9-FB2.
Supplementary Figure 7. The order of the atoms in the FB\textsubscript{1} and FB\textsubscript{2}. (A): The order of the atoms in the FB\textsubscript{1}; (B): The order of the atoms in the FB\textsubscript{2}.
1.2 Supplementary Tables

Table S1. Primers of 4F5 scFv and 4B9 scFv.

Primer	Sequence
4F5-VL-F1	GACATTGTGCTCACCCAATCT
4F5-VL-R1	TTTTATTTCCAGTTTGGTCC
4F5-VL-F2	CTACACGAGGCCCAGGCCGCGCCGCGCATGAGACATTGTGCTCACCACAACT
4F5-VL-R2	GGAGCCGCCGCCAGACCACCAACCACCAACCACCAACCACCAACCACCTTTTT
4F5-VH-F1	GAGGTGAAGCTGTTGGAAGTC
4F5-VH-R1	TGAAGGAGAGCAGTGACTGAGG
4F5-VH-F2	GGCGGCGGCCACCATGAGATGTGCTTGGAGCTGAAACACT
4F9-VL-F1	GATGTTGAGACCAACACT
4B9-VL-R1	TTTTATTTCCAGTTTGGTCC
4B9-VL-F2	CTACACGACAGGCCAGGCCGAGGGATGCTTGGAGCTGAAACACT
4B9-VL-R2	GGAGCCGCCGCCAGACCACCAACCACCAACCACCAACCACCAACCACCTTTTT
4B9-VH-F1	CAGGTCAACTGCAGCAACC
4B9-VH-R1	TGAAGGAGACTGACTGAGG
4B9-VH-F2	GGCGGCGGCCGCTCAGTTGCTGATGCTCAGAACTGACAGCAACC
4B9-VH-R2	TCGCTAATCAGTTTGGTGGATCAGTTTGGTGGATCAGTTTGGTGGATCAGTTTGGTGGATCAGTTTGGTGG
4B9-VH-R3	CGGAGTCAGGCCCAGGCGGCTCAGTTTGGTGGATCAGTTTGGTGGATCAGTTTGGTGGATCAGTTTGGTGG
scFv	sequence
------	----------
4F5	GACATTGCTCACCACAACTCCAGCTCTTTTGGCTGTCTCTAGGGCAGAGAGGCCCTCCTCCTGCAGAGCCAGTGAAAGTGTTGAATATTATGGCACAGGTTTAATGCAAGTGGTACCAACAGAAACCAGGACAGCCACCCAAACTCTCTACGTAGATCTGGGGTCCCTGACAGGTTAGTGGCAGTGGGTCTGGGACAGACTTCAACCTCAACATCCATCCTGTGGAGGAGGATGATATTGCAATGTATTTCTGTCAGCAAA
4B9	GATGTTGTGATGACCCAAACTCCACTCTCCCTGCTGAGCTCTCTTCCTCTCCCTCTCTATGCAGTCTTGGAGATCAGGCCCTCATTGGTACCTGCAGAAGCCAGGCCAGTCTCCAAGCTCCTGATCTACAAAGTTTCCAACCGATTTTCTGGGGTCCCAGACAGGTTCAGTGGCAGTGGATCAGGGACAGATTTCACACTCAAGATCAGCAGAGTGGAGACTGAGGATCTGGGAGTTTATTTCTGCATCAAAGTACACATGTTCCGTACACGTTCGGAGGGGGGACCAAACTGGAAATAAAAA

Table S2. Sequences of 4F5 scFv and 4B9 scFv.
Table S3. Results of tracer binding with scFv (n=3).

	Free tracer	Antibody binding tracer					
	FP (mP)	SD	FP (mP)	SD	ΔFP (mP)		
FB₁-FITC	50.5	1.4	4F5 scFv	310.9	0.7	260.4	
Rf 0.1			4B9 scFv	270.26	2.9	219.76	
FB₁-5-DTAF	51.6	1.3	4F5 scFv	131.5	2.3	79.9	
Rf 0.1			4B9 scFv	142.3	1.8	90.7	
Strategies	Analytes	Antibody	Time / steps	Homogeneous/ Heterogeneous	LOD in (μg/L, μg/kg)	Sample	Ref
---------------------	-------------------	----------	--------------------	----------------------------	----------------------	------------	-------
AuNP-LFIA^a	FB₁	mAb	15 min/one step	Heterogeneous	60	Corn	1
AuNP-LFIA	FB₁, FB₂ and FB₃	mAb	15 min/one step	Heterogeneous	11.25 (FB₁)	Maize	2
ICS^b	FB₁	scFv	15 min/one step	Heterogeneous	25 (in buffer)	Maize	3
MB-ELISA^c	FB₁	Mimotope	60 min/two steps	Heterogeneous	11.1	Maize, wheat	4
dc-pELISA^d	FB₁	mAb	120 min/two steps	Heterogeneous	12.5	Corn	5
icELISA^e	FB₁	mAb	70 min/two steps	Heterogeneous	5.4 (in buffer)	Maize	6
FPIA^f	FB₁ and FB₂	mAb	10 s/ one step	Heterogeneous	157.4 (FB₁) and 290.6 (FB₂)	Maize	7
FPIA	FB₁ and FB₂	scFv	10 s/one step	Heterogeneous	441.5 (FB₁) and 344.9 (FB₂)	Maize	This study

^a Colloidal gold nanoparticle based immunochromatographic test strips.
^b Immunochromatographic strip.
^c Microarray-based immunoassay.
^d Direct competitive plasmonic enzyme-linked immunosorbent assay.
^e Indirect competitive enzyme-linked immunosorbent assay.
^f Fluorescence polarization immunoassay.
Table S5. Detection of FB₁+FB₂ using FPIA and HPLC-MS/MS in positive maize samples (N=3).

Samples	FBₐ	HPLC-MS/MS (µg kg⁻¹)	FPIA (µg kg⁻¹)	CV (%)
1	FB₁+FB₂	602	662	8.2
2	FB₁+FB₂	67	-	-
3	FB₁+FB₂	- a	- a	-
4	FB₁+FB₂	- a	- a	-
5	FB₁+FB₂	328	415	2.4
6	FB₁+FB₂	1082	756	8.8
7	FB₁+FB₂	1668	1350	4.5
8	FB₁+FB₂	525	782	9.1
9	FB₁+FB₂	10422	8964	2.9

Note: a Not detected.
Table S6. The amino acid composition of 4F5 scFv.

Amino acid	No.	content	Amino acid	No.	content	Amino acid	No.	content
Ala (A)	12	4.8%	His (H)	1	0.4%	Thr (T)	16	6.4%
Arg (R)	13	5.2%	Ile (I)	10	4.0%	Trp (W)	4	1.6%
Asn (N)	3	1.2%	Leu (L)	16	6.4%	Tyr (Y)	14	5.6%
Asp (D)	11	4.4%	Lys (K)	10	4.0%	Val (V)	15	6.0%
Cys (C)	4	1.6%	Met (M)	6	2.4%	Pyl (O)	0	0.0%
Gln (Q)	11	4.4%	Phe (F)	9	3.6%	Sec (U)	0	0.0%
Glu (E)	11	4.4%	Pro (P)	10	4.0%			
Gly (G)	40	16.0%	Ser (S)	34	13.6%			
Table S7. The amino acid composition of 4B9 scFv.

Amino acid	No.	content	Amino acid	No.	content	Amino acid	No.	content
Ala (A)	7	2.8%	His (H)	4	1.6%	Thr (T)	21	8.5%
Arg (R)	9	3.7%	Ile (I)	6	2.4%	Trp (W)	5	2.0%
Asn (N)	7	2.8%	Leu (L)	20	8.1%	Tyr (Y)	12	4.9%
Asp (D)	10	4.1%	Lys (K)	13	5.3%	Val (V)	15	6.1%
Cys (C)	4	1.6%	Met (M)	4	1.6%	Pyl (O)	0	0.0%
Gln (Q)	13	5.3%	Phe (F)	9	3.7%	Sec (U)	0	0.0%
Glu (E)	6	2.4%	Pro (P)	10	4.1%			
Gly (G)	37	15.0%	Ser (S)	34	13.8%			
Table S8. Detailed information about the predicted interactions between scFvs and FBx.

Complex	Category	Types	From	To	Distance (Å)
Hydrogen Bond	Conventional Hydrogen Bond	H: ARG108	FB1: O15	1.77	
Hydrogen Bond	Conventional Hydrogen Bond	H: ARG108	FB1: O13	1.85	
Hydrogen Bond	Conventional Hydrogen Bond	H: THR110	FB1: O10	1.63	
Hydrogen Bond	Conventional Hydrogen Bond	H: TYR111	FB2: H101	1.89	
Hydrogen Bond	Conventional Hydrogen Bond	H: TYR113	FB2: O3	2.04	
4F5-FB1	Hydrogen Bond	H: TYR113	FB2: H103	1.70	
Hydrogen Bond	Conventional Hydrogen Bond	H: MET115	FB2: O7	2.51	
Hydrogen Bond	Conventional Hydrogen Bond	L: TYR55	FB2: O11	1.63	
Hydrogen Bond	Conventional Hydrogen Bond	L: GLN105	FB2: O4	1.99	
Hydrogen Bond	Conventional Hydrogen Bond	L: GLN105	FB2: H106	1.96	
Hydrogen Bond	Conventional Hydrogen Bond	L: TYR42	FB2: H104	2.00	
Hydrogen Bond	Conventional Hydrogen Bond	L: ARG108	FB2: O10	1.78	
Hydrogen Bond	Conventional Hydrogen Bond	L: TYR31	FB2: O13	1.67	
Hydrogen Bond	Conventional Hydrogen Bond	L: TYR34	FB2: O13	1.61	
4F5-FB2	Electrostatic force	Attractive Charge	L: LYS109	FB2: O14	2.79
Electrostatic force	Attractive Charge	L: ASP1	FB2: O14	5.08	
Hydrophobic force	Pi-Alkyl	L: TYR31	FB2: C25	4.34	
Hydrogen Bond	Conventional Hydrogen Bond	H: TRP38	FB2: O12	1.72	
Hydrogen Bond	Conventional Hydrogen Bond	L: HIS31	FB2: O5	2.43	
Hydrogen Bond	Conventional Hydrogen Bond	L: TYR38	FB2: O6	1.70	
Hydrogen Bond	Conventional Hydrogen Bond	L: TYR55	FB2: O9	1.74	
Hydrogen Bond	Conventional Hydrogen Bond	L: TYR55	FB2: O13	2.74	
Hydrogen Bond	Conventional Hydrogen Bond	L: SER105	FB2: H104	1.81	
Hydrogen Bond	Conventional Hydrogen Bond	L: SER106	FB2: H105	1.76	
Hydrogen Bond	Conventional Hydrogen Bond	L: TYR116	FB2: H106	1.88	
Electrostatic force	Salt bridge	H: LYS55	FB2: O8	2.36	
4B9-FB1	Electrostatic force	Salt bridge	H: LYS55	FB2: O14	1.81
Electrostatic force	Salt bridge	L: LYS56	FB2: O9	1.93	
Electrostatic force	Salt bridge	L: LYS56	FB2: O11	2.09	
Electrostatic force	Attractive charge	L: ARG108	FB2: O13	4.50	
Electrostatic force	Pi-cation	L: PHE118	FB2: N16	4.29	
Hydrophobic force	Pi-Alkyl	L: HIS31	FB2: C27	4.94	
Hydrophobic force	Pi-Alkyl	L: HIS31	FB2: C25	4.44	
Hydrophobic force	Pi-Alkyl	L: TYR38	FB2: C25	4.28	
Hydrogen Bond	Conventional Hydrogen Bond	H: ARG108	FB2: H103	2.10	
Hydrogen Bond	Conventional Hydrogen Bond	H: ARG108	FB2: H104	1.96	
Hydrogen Bond	Conventional Hydrogen Bond	L: TYR55	FB2: H101	3.01	
Hydrogen Bond	Conventional Hydrogen Bond	L: TYR55	FB2: O10	2.72	
4B9-FB2	Hydrogen Bond	L: TYR55	FB2: O12	1.72	
Hydrogen Bond	Conventional Hydrogen Bond	L: TYR56	FB2: O12	1.81	
Hydrogen Bond	Conventional Hydrogen Bond	L: TYR38	FB2: O14	1.69	
Hydrogen Bond	Conventional Hydrogen Bond	H: TYR38	FB2: O11	1.80	
Hydrogen Bond	Conventional Hydrogen Bond	H: LYS55	FB2: O7	2.26	
--------------	-------------------------------	---------	--------	------	
Electrostatic	Salt bridge	L: LYS56	FB2: O14	2.86	
Electrostatic	Salt bridge	H: LYS55	FB2: O9	1.88	
Electrostatic	Salt bridge	H: LYS55	FB2: O13	1.74	
Electrostatic	Pi-Alkyl	L: HIS31	FB2: N15	4.64	

a is a bond that Protein-donating OH or NH group approaches the lone pair of an O or N atom. *b* is between two oppositely charged objects. *c* is interaction of pi-electron cloud over an aromatic group and electron group of any alkyl group. *d* is a combination of two non-covalent interactions: hydrogen bonding and ionic bonding. *e* is the interaction between an electron deficient (π-acidic) aromatic system and an anion.
1. Hou, S.; Ma, J.; Cheng, Y.; Wang, H.; Yan, Y., One-stop rapid detection of fumonisins B1, dexynivalenol and zearalenone in grains. *Food Control* **2020**, *117*, 107107.

2. Yao, J.; Sun, Y.; Li, Q.; Wang, F.; Teng, M.; Yang, Y.; Deng, R.; Hu, X., Colloidal gold-McAb probe-based rapid immunoassay strip for simultaneous detection of fumonisins in maize. *Journal of the Science of Food & Agriculture* **2016**.

3. Ren, W.; Xu, Y.; Huang, Z.; Li, Y.; Tu, Z.; Zou, L.; He, Q.; Fu, J.; Liu, S.; Hammock, B. D., Single-chain variable fragment antibody-based immunochromatographic strip for rapid detection of fumonisin B1 in maize samples. *Food Chemistry* **2020**, *319*, 126546.

4. Peltomaa, R.; Benito-Peña, E.; Barderas, R.; Sauer, U.; Andrade, M. G.; Moreno-Bondi, M. C., Microarray-Based Immunoassay with Synthetic Mimotopes for the Detection of Fumonisin B1. *Anal. Chem. 2017*.

5. Chen; Xirui; Liang; Yi; Zhang; Wenjing; Leng; Yuankui; Xiong; Yonghua, A colorimetric immunoassay based on glucose oxidase-induced AuNP aggregation for the detection of fumonisin B-1. *Talanta the International Journal of Pure & Applied Analytical Chemistry 2018*.

6. Sheng, Y.; Jiang, W.; De Saeger, S.; Shen, J.; Zhang, S.; Wang, Z., Development of a sensitive enzyme-linked immunosorbent assay for the detection of fumonisin B1 in maize. *Toxicon 2012*, *60* (7), 1245-1250.

7. Li, C.; Mi, T.; Conti, G. O.; Yu, Q.; Wang, Z., Development of a Screening Fluorescence Polarization Immunoassay for the Simultaneous Detection of Fumonisins B1 and B2 in Maize. *Journal of Agricultural & Food Chemistry 2015*, *63* (20), 4940.