A comparative study reveals the higher resolution of RAPD over ARDRA for analyzing diversity of *Nostoc* strains

Hillol Chakdar 1,2 · Sunil Pabbi 1

Received: 1 November 2016 / Accepted: 6 March 2017 © Springer-Verlag Berlin Heidelberg 2017

Abstract *Nostoc* is a diverse genus of filamentous cyanobacteria with tremendous potential for agricultural and industrial applications. Morphometric methods and routine 16S rDNA-based identification undermines the genetic diversity and impedes strain-level differentiation. A comparative study to deduce the discriminatory power of random amplified polymorphic DNA (RAPD) and amplified ribosomal DNA restriction analysis (ARDRA) for analyzing the genetic diversity of 20 *Nostoc* strains of diverse geographical origin was carried out. The RAPD primer used in the study generated 100% polymorphic profile. HIP TG primer produced the highest number of bands and fragments. Five primers, viz. OPA 08, OPA 11, HIP GC, OPAH 02 and OF 05 could produce unique bands for 11 strains. Cluster analysis using the RAPD profile showed 12.5–25% similarity among the strains. Following in silico restriction analysis, two restriction enzymes, viz. *Hae*III and *Hin*fI were selected for ARDRA. However, clustering based on the restriction pattern showed 22.5–100% similarity. Results of the present study clearly indicate higher resolution of RAPD which can be reliably used for strain-level differentiation of *Nostoc* strains.

Keywords *Nostoc* · RAPD · ARDRA · Genetic diversity · Discriminatory power

Introduction

Cyanobacteria or blue-green algae (BGA) are a group of photosynthetic prokaryotes that have colonized the surface of the earth for nearly 3 billion years and are considered to be predecessors of modern day chloroplast (Haselkorn 1978). The variability in their physiological, morphological and developmental characteristics make them one of the largest group of photosynthetic prokaryotes in the planet (Komarek 1991). Historically, these organisms were classified as blue-green algae according to the Botanical Code but Rippka et al. (1979) created the bacteriological classification and their scheme was adopted in Bergey’s Manual of Bacteriological Systematics (Boone and Castenholz 2001), the recognized authority on bacteriological classification. The bacteriological approach is based on genetic and phenotypic information about the cyanobacteria present in pure cultures (axenic strains) (Castenholz 2001). Among different molecular techniques, 16S rDNA sequence analysis is the most popular till date. The conserved nature, variation in an orderly fashion across phylogenetic boundaries and lack of lateral gene transfer make 16S rDNA a suitable chronometer for taxonomic and phylogenetic studies. Widespread sequencing of ribosomal RNA genes (Bruno et al. 2012; Řeháková et al. 2014; Keshari et al. 2015, 2016; Sciuto and Moro 2016) has added potentially significant information to the evolutionary phylogenetics of several cyanobacteria. Ribosomal RNA gene sequences or their polymorphisms are playing a pivotal role in studying molecular systematics and phylogenies of cyanobacteria by serving genetic markers for
cyanobacterial species (Gordon and Giovannoni 1996). Due to its genetic stability, domain structure with conserved and variable regions and its high copy number, the 16S rDNA has also been a tool in resolving taxonomic issues among cyanobacteria especially the strains belonging to a single clade (Palinska et al. 1996; Otsuka et al. 1998). Despite all its advantages, the 16S rRNA gene sequence analysis is more specific for assigning genus and moreover the sequencing of the 16S rRNA gene is time consuming, particularly, classification of a large number of strains is required. Other molecular tools like RAPD (Casamatta et al. 2003; Shalini et al. 2008; Singh 2008), ERIC-PCR (Rasmussen and Svenning 1998; Lyra et al. 2001; Valério et al. 2005; Bruno et al. 2006), ARDRA (Margheri et al. 2003; Vale´rio et al. 2009), etc., may be more useful for such purposes.

Nostoc is a diverse genus of simple cyanobacteria belonging to the order Nostocales and family Nostocaceae. These are common in both aquatic and terrestrial habitats and found in fresh water, soils and extremely cold and arid habitats as well. *Nostoc* has tremendous potential in environmental management as soil conditioners, biofertilizers, biomonitors of soil fertility, water quality, etc. This apart, *Nostoc* has also been used as human food, source of restriction endonucleases (NspCI), growth promoting substances, amino acids, etc. But for proper exploitation of genus *Nostoc*, it is necessary to work out suitable approaches for identification and to explore the diversity of this genus.

In this study, we present a comparative analysis of diversity using RAPD and ARDRA for 20 *Nostoc* strains isolated from different geographical regions of India.

Materials and methods

Cyanobacterial cultures and their maintenance

Twenty strains of *Nostoc* of diverse geographical origin were chosen from the culture collection of Centre for Conservation and Utilisation of Blue Green Algae (CCUBGA), IARI, New Delhi-12, India (Table 1). Cultures were maintained in chemically defined nitrogen-free BG-11 media (Stanier et al. 1971) at 28 ± 2 °C under a light intensity of 52–55 μmol photon m⁻² s⁻¹ and L:D cycles of 16 h:8 h.

Genomic DNA extraction

Genomic DNA was extracted from 1 mL suspension (50–60 mg fresh biomass) of exponentially growing cultures by using N-cetyl-<i>N</i>,<i>N</i>,<i>N</i>-trimethylammonium bromide

Sl. no.	Strain no.	Name	Geographical origin and location
1	CCC 42	*Nostoc* sp.	Jammu and Kashmir (34°10’N and 75°00’N), India
2	CCC 92	*Nostoc* muscorum	Kannur (11°52’N, 75°25’E), Kerala, India
3	CCC 48	*Nostoc* punctiforme	Bahraich (27°35’N, 81°36’E), Uttar Pradesh, India
4	CCC 94	*Nostoc* carneum	Palghat (10°46’N, 76°42’E), Kerala, India
5	CCC 184	*Nostoc* sp.	Calicut (11°15’N, 75°49’E), Kerala, India
6	CCC 150	*Nostoc* sp.	IARI (28°4’N, 77°09’E) fields, India
7	CCC 282	*Nostoc* sp.	IARI (28°4’N, 77°09’E) fields, India
8	CCC 100	*Nostoc* sp.	Kannur (11°52’N, 75°25’E), Kerala, India
9	CCC 62	*Nostoc* linckia	Bahraich (27°35’N, 81°36’E), Uttar Pradesh, India
10	CCC 89	*Nostoc* commune	VIB, Nimpith (21°54’N, 88°20’E), West Bengal, India
11	CCC 133	*Nostoc* paludosum	IARI (28°4’N, 77°09’E) fields, India
12	CCC 90	*Nostoc* picsinale	VIB, Nimpith (21°54’N, 88°20’E), West Bengal, India
13	CCC 131	*Nostoc* paludosum	IARI (28°4’N, 77°09’E) fields, India
14	CCC 63	*Nostoc* paludosum	Bahraich (27°35’N, 81°36’E), Uttar Pradesh, India
15	CCC 125	*Nostoc* linckia	IARI (28°4’N, 77°09’E) fields, India
16	CCC 139	*Nostoc* sp.	IARI (28°4’N, 77°09’E) fields, India
17	CCC 88	*Nostoc* verrucosum	VIB, Nimpith (21°54’N, 88°20’E), West Bengal, India
18	CCC 110	*Nostoc* spongiaeformae	Cochin (9°58’N, 76°17’E), Kerala, India
19	CCC 151	*Nostoc* sp.	IARI (28°4’N, 77°09’E) fields, India
20	CCC 130	*Nostoc* punctiforme	IARI (28°4’N, 77°09’E) fields, India

In the third column latitude and longitude of the place are given in the parenthesis

IARI: Indian Agricultural Research Institute, VIB: Vivekananda Institute of Biotechnology
(CTAB) method (Rogers and Bendish 1998) after minor modifications. Quantity and purity of DNA was estimated by comparing with known standards in ethidium bromide stained 0.8% agarose (Vivantis, USA) gel.

Random amplification of polymorphic DNA (RAPD)

Primers DNA samples were subjected to amplification using 12 decamer primers (synthesized from Sigma-Aldrich) with GC content varying from 60 to 80% (Table 2).

PCR amplification Amplification reactions were carried out with the aforementioned oligonucleotide primers. The standard, optimized PCR was performed in a total volume of 20 μl containing 1X TAE buffer with 15 mM MgCl₂, 10 mM of dNTP (dATP, dTTP, dGTP, dCTP), 10 pM each of single primer, 1 U Taq DNA polymerase (Bangalore Genei Ltd., India) and 90 ng of template DNA. Thermal cycling was achieved in a Master Cycler Gradient (Eppendorf) according to the following program: initial denaturation at 94 °C for 4 min; 30 cycles with steps of denaturation at 94 °C for 1 min, annealing at 34 °C for 1 min, extension at 72 °C for 2 min followed by a final extension at 72 °C for 5 min. PCR products were resolved along with a molecular weight marker (GeneRuler, 1 kb, Fermentas, USA) on 1.5% agarose gel run in 1X TAE (Tris–acetate–EDTA) buffer, stained with ethidium bromide for a period of 1 h at 75 V. These were visualized under UV light and gel photographs were scanned through Gel Doc System (MiniBis Bioimaging System, USA) and the amplification product sizes were evaluated using software AlphaEaseFC (FluorChem 5500) (Alfa Innotech Corporation, USA).

Amplified ribosomal DNA restriction analysis (ARDRA)

Amplification of 16S rRNA gene of cyanobacteria 16S rRNA gene fragment was amplified with universal primers FD1: 5′-AGAGTTTGATCCTGGCAG-3′ and RP2: 5′-ACGGGTACCTGTAGCAGCTT-3′ (Weisburg et al. 1991; Lyra et al. 1997). The polymerase chain reaction was carried out in a final volume of 25 μl, having 1X TAE buffer containing 2 mM MgCl₂, 10 mM deoxyribonucleotide triphosphates (dATP, dCTP, dGTP and dTTP), 16S primers (FD1 and RP2) 2.5 pmol each and 1 U of Taq DNA polymerase (Fermentas, USA) and 50 ng of genomic DNA. Amplification was achieved in a Master Cycler Gradient (Eppendorf) programmed for initial denaturation (94 °C for 5 min) followed by 35 cycles, composed of denaturation (94 °C for 30 s), primer annealing (64 °C for 45 s), extension (72 °C for 2 min) followed by a final extension of 5 min at 72 °C and subsequent cooling at 4 °C temperature. Amplified PCR product was separated along with a molecular weight marker (GeneRuler, 1 kb, Fermentas, USA) by electrophoresis on 1.5% agarose gel in 1X TAE buffer, stained with ethidium bromide for a period of 1 h at 75 V. These were visualized under UV light and gel photographs were scanned through Gel Doc System (MiniBis Bioimaging System, USA) and the amplification product sizes were evaluated using software AlphaEaseFC (FluorChem 5500) (Alfa Innotech Corporation, USA).

Selection of restriction enzymes Initially seven restriction enzymes, viz. EcoRI, EcoRV, HindIII, Hael, HaeIII, HinI and PstI were selected, but to make sure which of these may be more suitable for analyzing the diversity,
10 16S rDNA sequences of different *Nostoc* strains were downloaded from the EMBL database (Table 3) and in silico restriction digestion was carried out using the Cleaver software (Jarman 2006). Analyzing the restriction fragments, it was found that there was no recognition site for *Hae*I and *Hind*III (Table 3) and among the rest of the five enzymes, *Hinf*I and *Hae*III were comparatively performing better than the others to produce differential restriction fragmentation pattern for the selected sequences (Table 3). So, finally *Hinf*I and *Hae*III were selected for restriction digestion of the 16S rRNA gene.

Restriction digestion of amplified 16S rRNA gene 8 µl of amplified PCR products were digested overnight at 37 °C with 5 U of each of the restriction enzymes namely *Hae*III and *Hinf*I, procured from New England Biolabs (Rasmussen and Svenning 2001). Digested products were separated along with a molecular weight marker (100 bp ladder, Vivantis, USA) by electrophoresis on 3% agarose (Vivantis, USA) gel run in 1X TAE buffer, stained with ethidium bromide for a period of 3 h at 75 V and gel photographs were visualized under UV light and gel photographs were scanned through Gel Doc System (MiniBis Bioimaging System, USA) and the amplification product sizes were evaluated using software AlphaEaseFC (FluorChem 5500) (Alfa Innotech Corporation, USA).

Statistical analysis and dendrogram construction

Fingerprints generated by RAPD and ARDRA from different cyanobacterial strains were compared and all bands were scored. The presence or absence of fragments was converted into binary data. Pairwise genetic similarities among the genotypes under study were determined using Jaccard’s coefficient (Jaccard 1908),

\[J = \frac{N_{11}}{N_{11} + N_{10} + N_{01}} \]

where \(N_{11} \) is the number of bands present in both individuals \(i \) and \(j\), \(N_{10} \) is the number of bands present in the individual \(i \) and \(N_{01} \) is the number of bands present in the individual \(j\). Cluster analyses were carried out on similarity estimates using the unweighted pair-group method with arithmetic average (UPGMA) using NTSYS-pc, version 1.80 (Rohlf 1995).

Results

RAPD

Each of the RAPD primers reproducibly yielded a distinct set of products when used for prime amplification reactions from the cyanobacterial genomic DNA template. The profiles were generated on the agarose gel using one primer to prime the cyanobacterial genomic DNA from each of the 20 *Nostoc* strains tested (Fig. 1). The analysis of the profile

Strains and EMBL accession numbers of 16S rRNA gene	Fragments (in bp) generated by different hexacutter and tetracutter restriction enzymes
ENA:A08405	AB08405.2 *Nostoc commune* strain: M-13
ENA:A09349	AB09349.1 *Nostoc entophytum* IAM M-267
ENA:B101003	AB101003 *Nostoc commune*
ENA:A245144	AB245144.1 *Nostoc cf. verrucosum*
ENA:A251859	AB251859.1 *Nostoc commune*
ENA:A251860	AB251860.1 *Nostoc commune*
ENA:A251862	AB251862.1 *Nostoc commune*
ENA:A251863	AB251863.1 *Nostoc commune*
ENA:A251864	AB251864.1 *Nostoc commune*
ENA:A511947	AB511947.1 *Nostoc verrucosum*
showed that each primer varied in the total number of fragments or total number of bands generated. A total of 685 DNA fragments were generated by all the single primers used. Among these a maximum of 107 fragments (Table 2) were generated by HIP TG primer followed by 74 fragments by primer OPA 13 which generated 34 fragments. Similarly, the maximum numbers of bands, i.e., 19 were produced by HIP TG, whereas HIP AT produced only ten bands. The size of the fragments ranged from 0.176 to 3.430 kb. It was interesting to note that all the primers used produced 100% polymorphic bands. None of the primers produced monomorphic bands in RAPD study using single-primer reactions. On further analysis of the genetic profile generated by each primer, quite a few unique bands were observed with some primers. The number of the unique bands varied from one to two for different primers. A maximum of two unique bands were observed with five primers, viz. OPA 08, OPA 11, HIP GC, OPAH 02 and OPF 05 (Table 4). The molecular weight of these unique bands varied from 340 bp (by OPA 11 for CCC 282) to 2154 bp (by CRA 23 for CCC63). When the clustering was done using the data generated from all the 12 RAPD primers, the strains were divided into two main clusters containing 14 and 6 strains, respectively (Fig. 2). The strains showed high level of genetic divergence amongst themselves and each isolate was quite distinct from the other with varying degree of similarity which was in the range of 0.125 to about 0.25 except that \textit{Nostoc punctiforme} (CCC 48) and \textit{Nostoc muscorum} (CCC 92) showed a similarity coefficient of 0.70. Cluster analysis based on RAPD data did not show any clustering based on geographical origin. The analysis has revealed that all the \textit{Nostoc} strains used in this study are quite distinct with some strains sharing more closeness to one another with a varying degree of similarity which changed with the set of primers used. Overall it was observed that strains CCC 48 (\textit{Nostoc punctiforme}) and CCC 92 (\textit{Nostoc muscorum}) showed high degree of similarity under different set of primers.

ARDRA

As expected after selecting the restriction enzymes through in silico analysis, \textit{HaeIII} and \textit{Hinfl} produced differential pattern of restriction fragments for all the 20 \textit{Nostoc} strains studied. \textit{HaeIII} produced a total of 58 fragments ranging from 143 to 925 bp in size while \textit{Hinfl} produced 57 fragments ranging from 152 to 1030 bp in size (Table 5). Dendrogram (Fig. 3) based on ARDRA data for all the 20 \textit{Nostoc} strains revealed two major clusters, viz. one (MC I) with only \textit{N. spongiaeforme} (CCC110) from Cochin, Kerala, and other one (MC II) with rest of the 19 strains of...
Table 4 Unique bands obtained with single-primer RAPD-PCR in *Nostoc* strains

Sl no.	Strain no.	CRA 22	CRA 23	CRA 25	CRA 26	OPA 08	OPA 11	OPA 13	HIP AT	HIP TG	HIP GC	OPAH 02	OPF 05	
1	CCC42													
2	CCC92													
3	CCC48													
4	CCC94													
5	CCC184													
6	CCC150													
7	CCC282													
8	CCC100													
9	CCC62													
10	CCC89													
11	CCC133													
12	CCC90													
13	CCC131													
14	CCC63													
15	CCC125													
16	CCC139													1356 bp
17	CCC88													
18	CCC110													
19	CCC151													
20	CCC130													1233 bp

Fig. 2 Dendrogram generated using RAPD profile of the studied *Nostoc* strains. Dendrogram was constructed following the UPGMA method.

Nostoc. Degree of similarity among the *Nostoc* strains as revealed by ARDRA ranged from 22.5 to 100%. In MC II, there were two subclusters comprising two strains (SC I: CCC63 and CCC139) and rest of the 17 strains (SC II). In SC II, it was found that CCC42 (*Nostoc* sp. from Jammu and Kashmir) was placed in a completely separate clade and rest of the 16 strains placed in another cluster showed more than 50% similarity among themselves. CCC92 and...
CCC48 were placed in the same clade in SCII with 80% similarity. In SC II, CCC184 (Nostoc sp.) and CCC94 (N. carneum) were placed in the same clade with 100% similarity. It will be worthy to mention here that both of these strains were geographically related as their origin belongs to Kerala. Similarly, two Nostoc strains, viz. CCC150 and CCC282 isolated from IARI fields were also found to be placed in the same clade with 100% similarity. N. verrucosum (CCC90) and N. piscinale (CCC88) isolated from VIB, Nimpith, West Bengal, also showed 100% similarity although it was obtained from Baharaich, UP, N. commune (CCC89) isolated from VIB, Nimpith, also showed almost 90% similarity with the clade comprising CCC88, CCC90 and CCC62. CCC131 (N. paludosum) and CCC151 (Nostoc sp.) isolated from IARI were also placed in same clade with 67.5% similarity. Not for all the strains, but for some of the strains (8 strains) ARDRA analysis revealed clustering based on geographical origin.

Table 5

Sl. no.	Cyanobacterial strains	HaeIII Fragments (bp) generated after restriction digestion	HinfI Fragments (bp) generated after restriction digestion
1	CCC42	196, 355, 978	169, 1140
2	CCC92	193, 551, 848	137, 163, 925
3	CCC48	190, 567, 873	158, 284, 894
4	CCC94	186, 301, 926	158, 284, 991
5	CCC184	185, 301, 925	158, 284, 994
6	CCC150	185, 301, 584	163, 284, 1026
7	CCC282	185, 301, 584	163, 288, 1030
8	CCC100	175, 285, 899	285, 326, 752
9	CCC62	175, 275, 592	169, 294, 610
10	CCC89	180, 286, 560	175, 285, 610
11	CCC133	160, 239, 825	163, 265, 1063
12	CCC90	173, 277, 590	169, 294, 610
13	CCC131	151, 233, 849	460, 1080
14	CCC63	143, 226, 536	188, 294, 778
15	CCC125	148, 240, 779	169, 284, 470
16	CCC139	147, 247, 552	163, 569, 805
17	CCC88	173, 276, 587	163, 292, 610
18	CCC110	825, 395	530, 1010
19	CCC151	152, 269, 637	158, 265, 520
20	CCC130	636, 415	152, 304, 980
Total fragments	58	57	

Discussion

With the advent of sequencing technologies available with the advantages of minimal costs and less time, 16S rDNA sequencing has become the most powerful tool to identify novel taxa for bacterial domain. Other powerful tools like DNA–DNA hybridization (DDH), G+C contents are also equally important for this purpose as 16S rDNA-based identification does not guarantee species identity (Fox et al. 1992). Hence, 16S rDNA gene sequencing to reveal intrageneric or intraspecific diversity of bacteria, may not always be a tool of choice. PCR-based methods like RAPD, PCR–RFLP, ERIC-PCR, REP-PCR have been widely used for analysis of diversity in wide range of bacteria. RAPD has an advantage over most of the other PCR-based methods in that it covers the whole genome as a random primer can bind anywhere in the genome; however, reproducibility of the RAPD data sometimes makes it inconvenient for use. Careful optimization of the RAPD conditions and use of a sufficient number of primers depending on the number of isolates being studied can make this tool very useful for diversity analysis. On the other hand, the PCR–RFLP of 16S rDNA also has its own advantages and limitations. Choice of restriction enzymes for digestion of the DNA becomes the key factor for the analytical power of this tool.

RAPD has been a widely used tool for analyzing the genetic diversity of various cyanobacterial groups. Casamatta et al. (2003) used RAPD to study the genetic variability in Phormidium retzii. In 2008, Shalini and Gupta carried out phylogenetic analysis of 30 Calothrix strains using single and multiplex RAPD which showed its superior discriminatory power for analyzing variability. Singh (2008) also used RAPD to analyze the genetic diversity of Spirulina and related genera. Genetic relatedness of Phormidium-like strains originating from distinct geographical sites was determined using RAPD (Palinska et al. 2011). Arima et al. (2012) showed that RAPD profiles generated through HIP primers can be useful to distinguish among the genotypes of N. commune. Similarly, Singh et al. (2014) also showed that HIP-based DNA fingerprinting technique could produce strain-specific and unique banding pattern for heterocystous cyanobacteria belonging to Subsection IV and V. Neilan (1995) used multiplex RAPD for determining genetic heterogeneity and generating unique identifying genetic profile of bloom-forming members of the genera Anabaena and Microcystis. The RAPD profile generated in the study was able to distinguish up to strain level among all the cyanobacteria studied.

In the present study, degree of heterogeneity revealed by the RAPD was enormous which is clear from the fact that
In RAPD study, similarity coefficient ranged from 0.125 to 0.25 (except 0.70 for CCC92 and CCC48), while ARDRA showed similarity coefficient in the range of 0.225–1.00 where 13 strains showed more than 50% similarity among themselves. Intra-generic or intra-specific diversity of the studied \textit{Nostoc} strains has been clearly revealed by the RAPD which indicates highly heterogeneous nature of this genus while diversity revealed by ARDRA is very limited. The strains (CCC94 and CCC184; CCC150 and CCC282; CCC62, CCC88 and CCC90), which showed 100% similarity in ARDRA, were distantly related in the dendrogram generated by RAPD. The strains, viz. CCC62 (\textit{N. linckia} from Uttar Pradesh), CCC90 (\textit{N. piscinale} from West Bengal) and CCC88 (\textit{N. verrucosum} from West Bengal) showing 100% similarity point out an important and interesting fact that despite having identical 16S rDNA sequence, the strains may not be clonal which is evident from the different RAPD profiles of these strains. This fact is also supported by the differential specific designation based on the morphology. However, the cultured strains of cyanobacteria often show little similarity to natural populations as some phenotypic traits are apparently not expressed under the controlled conditions. This problem may lead to the misidentification of cultures (Palinska et al. 1996; Wilmotte and Herdman 2001) and can reduce the value of phylogenetic reconstructions and other analyses of evolutionary interrelationships. Although some of the \textit{Nostoc} strains showed clustering based on geographical origin, it was not conclusive enough to infer that the conservativeness of 16S rDNA is influenced by the geographical region or geographically related strains are also phylogenetically related.

An interesting fact was revealed from this study that CCC92 (\textit{N. muscorum}) and CCC48 (\textit{N. punctiforme}) were genetically very closely related as evident from the RAPD-banding profiles. However, ARDRA was able to sufficiently discriminate between these two strains. These two strains were reported morphologically distinct in terms of the shape of their vegetative cells; heterocyst shape, frequency; akinete shape, size and frequency (Chakdar and Pabbi 2012) and they were placed in two different species due to such significant variations in morphological attributes. It appears from the results of the present study that the taxonomic placement of these two strains based on their morphology does not correlate with their genetic relatedness and hence, they appear to be two different strains of the same species; however, it needs to be clarified following a polyphasic approach.

It is clear from the present study that for analyzing the intra-generic or intra-specific diversity of cyanobacteria,
RAPD is a far better tool compared to ARDRA. The strains which may show high similarity or may be identical in ARDRA pattern, are not necessarily the same as they may have significant variations distributed over the genome. Particularly, for a genus like Nostoc which is highly diverse in nature, it will not be wise to choose tool like ARDRA which may underestimate the diversity among the different strains. However, other genera of cyanobacterial group may be explored for testing the intrageneric discriminatory power of ARDRA.

In silico tools have been used for ARDRA of bacterial groups like Phytplasma followed by identification, but only very limited reports (Iteeman et al. 2002) are available for its use in cyanobacteria. Wei et al. (2007) were able to classify 800 Phytplasma isolates into 28 groups by following the in silico approach. A careful choice of REs enabled the use of the ARDRA technique to discriminate among Lactobacillus, Streptococcus and Bifidobacterium at the genus level, but not at species level (Collado and Hernandez 2007). From the present study, we will also suggest to go for in silico ARDRA (can be done by a number of programs) which can really reduce the efforts of the researchers for selecting the appropriate REs for ARDRA. The availability of huge number of 16S rDNA sequences in different databases all over the world along with a number of freely available in silico analytical tools have empowered the researchers to dig out more and more information with minimum effort. Not only time will be saved through this, but also the consumables can be saved.

Acknowledgements Authors are thankful to Director, ICAR-IARI, New Delhi, for providing the necessary facilities for the study.

Compliance with ethical standards

Conflict of interest The authors declare that there are no conflicts of interest.

References

Arima H, Horiguchi N, Takaichi S, Kofushi R, Ishida KI, Wada K, Sakamoto T (2012) Molecular genetic and chemotaxonomic characterization of the terrestrial cyanobacterium Nostoc commune and its neighboring species. FEMS Microbiol Ecol 79:34–45

Boone DR, Castenholz RW (2001) Bergey’s manual of systematic bacteriology, vol 1, 2nd edn. Springer, New York

Bruno L, Bili D, Albertano P, Urzi C (2006) Genetic characterization of epiphytic cyanobacteria and their associated bacteria. Geomicrobiol J 23:293–299

Bruno L, Di Pippo F, Antonaroli S, Gismondi A, Valentini C, Albertano P (2012) Characterization of biofilm-forming cyanobacteria for biomass and lipid production. J Appl Microbiol 113:1052–1064

Casamatta DA, Vis ML, Sheath RG (2003) Cryptic species in cyanobacterial systematics: a case study of Phormidium retzii (Oscillatoriales) using RAPD molecular markers and 16S rDNA sequence data. Aquatic Bot 77(4):295–309

Castenholz RW (2001) General characteristics of the cyanobacteria. In: Boone DR, Castenholz RW (eds) Bergey’s manual of systematic bacteriology, 2nd edn. Springer-Verlag, New York, pp 474–487

Chakdar H, Pabbi S (2012) Morphological characterization and molecular fingerprinting of Nostoc strains by multiplex RAPD. Microbiology 81(6):710–720

Collado MC, Hernandez M (2007) Identification and differentiation of Lactobacillus, Streptococcus and Bifidobacterium species in fermented milk products with bifidobacteria. Microbiol Res 162(1):86–92

Fox GE, Wisotzkey JD, Jurtshuk P Jr (1992) How close is close: 16S rRNA sequence identity may not be sufficient to guarantee species identity. Int J Syst Bacteriol 42:166–170

Gordon DA, Giovannoni SJ (1996) Detection of stratified microbial populations related to Chlorobium and Fibrobacter species in the Atlantic Ocean and Pacific Ocean. Appl Environ Microbiol 62:1171–1177

Haselkorn R (1978) Heterocysts. Annu Rev Plant Physiol 29:319–344

Iteeman I, Rippka R, Tande de Marsac N, Herdman M (2002) rDNA analysis of planktonic heterocystous cyanobacteria, including members of the genera Anaabaenopsis and Cynobioispora. Microbiology 148:481–496

Jaccard P (1908) Nouvelles recherches sur la distribution florale. Bull Soc Vaud Sci Nat 44:223–270

Jarman SN (2006) Cleaver: software for identifying taxon specific restriction endonuclease recognition sites. Bioinformatics 22(17):2160–2161

Keshari N, Das SK, Adhikary SP (2015) Identification of cyanobacterial species with overlapping morphological features by 16S rRNA gene sequencing. Eur J Phycol 50(4):395–399

Keshari N, Das SK, Adhikary SP (2016) Schmidleineana santiniakensis sp. nov. (Cyanobacteria/Cyanoprokaryota) from a building facade in Santiniketan, India. Phytotaxa 283(2):181–187

Komarek J (1991) A review of water bloom forming Microcystis sp. with regard to population in Japan. Algol Stud 64:115–127

Lyra C, Hantula J, Vainio E, Rapala J, Rouhiainen L, Sivonen K (1997) Characterization of cyanobacteria by SDS-PAGE of whole cell proteins and PCR/RFLP of the 16S rRNA gene. Arch Microbiol 168:176–184

Lyra C, Soumalainen S, Guggen M, Vezie C, Sundman P, Paulin L, Sivonen K (2001) Molecular characterization of planktonic cyanobacteria of Anabaena, Anaphazenomnon, Microcystis and Planktothrix genera. Int J Syst Evol Microbiol 51:513–526

Margheri MC, Piccardi R, Ventura S, Viti C, Giovannetti L (2003) Genotypic diversity of Oscillatoriaean strains belonging to the genera Geitlerinema and Spirulina determined by 16S rDNA restriction analysis. Curr Microbiol 46:39–364

Nielan BA (1995) Identification and phylogenetic analysis of toxigenic cyanobacteria by multiple randomly amplified polymorphic DNA PCR. Appl Env Microbiol 61:2286–2291

Otsuka S, Suda S, Li R, Watanabe M, Oyaizu H, Matsumoto S, Watanabe MM (1998) 16S rDNA sequences and phylogenetic analyses of Microcystis strains with and without phycoerythrin. FEMS Microbiol Lett 164:119–124

Palinska KA, Liesack W, Rhie E, Krubein WE (1996) Phenotypic variability of identical genotypes: the need for a combined approach in cyanobacterial taxonomy demonstrated on Merismopedia like isolates. Arch Microbiol 166:224–233

Palinska KA, Deventer B, Hariri K, Lotocha M (2011) A taxonomic study on Phormidium—group (cyanobacteria) based on
morphology, pigments, RAPD molecular markers and RFLP analysis of the 16S rRNA gene fragment.

Fottea 11(1):41–55

Rasmussen U, Svenning MM (1998) Fingerprinting of cyanobacteria based on PCR with primers derived from short and long tandemly repeated repetitive sequences. Appl Environ Microbiol 64:265–272

Rasmussen U, Svenning MM (2001) Characterization by genotypic methods of symbiotic Nostoc strains isolated from five species of Gunnera. Arch Microbiol 179:204–210

Rehakova K, Johansen JR, Bowen MB, Martin MP, Sheil CA (2014) Variation in secondary structure of the 16S rRNA molecule in cyanobacteria with implications for phylogenetic analysis. Fottea 14:161–178

Rippka R, Deruelles J, Waterbury JB, Herdman M, Stanier RY (1979) Genetic assignments, strain histories and properties of pure culture of cyanobacteria. J Gen Microbiol 111:1–61

Rogers SO, Bendish AJ (1998) Extraction of DNA from plant tissues. In: Gelvin SB, Schilperoot RA (eds) Plant molecular biology manual. Kluwer Academic Publishers, Dordrecht, Boston, London, pp 1–10

Rohlf FJ (1995) NTSYS-PC Numerical taxonomy and multivariate analysis system. Version 180 Exeter Software. Setauket, New York

Sciuoto K, Moro I (2016) Detection of the new cosmopolitan genus Thermoleptolyngbya (Cyanobacteria, Leptolyngbyaceae) using the 16S rRNA gene and 16S–23S ITS region. Mol Phylogen Evol 105:15–35

Shalini, Dhar DW, Gupta RK (2008) Phylogenetic analysis of cyanobacterial strains of genus Calothrix by single and multiplex randomly amplified polymorphic DNA-PCR. World J Microbiol Biotechnol 24-927–935. doi:10.1007/s11274-007-9569-2

Singh NK (2008) Genetic relationship in Spirulina and related genera. Ph.D. Thesis, IARI

Singh P, Kaushik MS, Srivastava M, Mishra AK (2014) Phylogenetic analysis of heterocystous cyanobacteria (Subsections IV and V) using highly iterated palindromes as molecular markers. Physiol Mol Biol Plants 20(3):331–342

Stanier RR, Kunisawa R, Mandal M, Cohen-Bazire G (1971) Purification and properties of unicellular blue green algae (order Chroococcales). Bacteriol Rev 35:171–205

Valerio E, Pereira P, Saker ML, Franca S, Tenreiro R (2005) Molecular characterization of Cylindrospermopsis raciborskii strains isolated from Portuguese freshwaters. Harmful Algae 4:1044–1052

Valério E, Chambel L, Paulino S, Faria N, Pereira P, Tenreiro R (2009) Molecular identification, typing and traceability of cyanobacteria from freshwater reservoirs. Microbiology 155(L):642–656

Wei W, Davis RE, Lee I, Zhao Y (2007) Computer-simulated RFLP analysis of 16S rRNA genes: identification of ten new phytoplasm groups. Int J Syst Evol Microbiol 57:1855–1867

Weisburg WG, Barns SM, Pelletier DA, Lane DJ (1991) 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 173:697–703

Wilmotte A, Herdman M (2001) Phylogenetic relationships among the cyanobacteria based on 16S rRNA sequences. In: Boone DR, Castenholz RW, Garrity GM (eds) Bergey’s manual of systematic bacteriology, 2nd edn. Springer, Berlin Heidelberg New York, pp 487–514