DESIGN AND DEVELOPMENT OF SENSOR BASED INTELLIGENT AUTO IRRIGATION SYSTEM

Dr.P.Asha, Anusha Ambati, R.Anuhya
Department of Computer Science and Engineering, Sathyabama Institute of Science and Technology, Chennai.
ashapandian225@gmail.com

Abstract: The quick improvement and scaling down of sensor gadgets, current advances sensor innovations, are enabling researchers and specialists to grow little sensors that can be utilized to ceaselessly screen the wellbeing and steadiness of the Plants Environment. Sensors with figuring, handling and correspondence abilities that can persistently detect and Triggers Solenoid esteem, where naturally can be prepared and seen progressively. This venture gives a nitty gritty investigation and usage of a sensor for checking of Green House parameters like moistness, water levels, etc.... A Sensor network was implemented using an Aurduino based AVR the microcontroller.

1. Introduction

The point of the framework is to create and execute the horticultural yields and to make ordinary cultivating into savvy cultivating. The sensor-based water system framework is principally conceptualized such that the agriculturist can gain higher benefit utilizing the framework. It will be worked naturally. More tasks can be performed utilizing robotization. Naturally, control ecological conditions. The proposed framework depends on Arduino based smaller scale controller. Sensors are associated with the Arduino board. Arduino UNO can be controlled by USB link from PC. The dirt nourishment sensor is utilized to distinguish the sustenance level of dirt. Water level sensor is to perceive the water level in the developing field. Dampness sensor is utilized to distinguish the air dampness level if the dampness level is low at that point water sprinkler is on. An Ultrasonic sensor measures the separation of target objects. The sensor faculties and sends the data to the cloud and it gives an alarm message to the agriculturist.

2. Literature Survey

The authors proposed a framework that utilizes correspondence innovations, enabling the client to dissect the data acquired by various sensors from any gadget in a simple way. The proposed design depends on different remote hubs outfitted with the GPRS network. Diverse business sensors are utilized for estimating the extensive variety of parameters of the dirt, plant and environment are associated with the hubs. The data is sent to remote server, where the data is dealt with and stores the information of the sensors in a database. An electronic board is a fundamental board which is in charge of sensors information. It is spoken with whatever remains of the sheets. The Sensor-Board...
gives the interface the associated sensors. The outline of the arduino is the best use for agrarian observing, permits the working association of a typical exactness horticulture sensors [1]. By methods for a GSM/GPRS convention the GPRS-Board sets up the correspondence in the versatile system and sends the information to the remote stockpiling server for facilitate counsel. When it is controlled up, the small scale controller secures the game plan information from the SD-Card. This card contains the case time allotment, transmission rate, GPRS and remote server outlines which are related with the sensor stacks up. The information from the sensors related with the contraption is discontinuously sent to a data server and data server techniques and stores in a social database [2]. To make the gadget vivaciously self-ruling, a comprehensive lively examination of every situation was done to decide the most reasonable battery and sunlight based board in order to dissect the power utilization of the gadget. This depicts the outline, task and advancement of a functional application to streamline water assets in inundated horticulture by checking soil water status and the water system water. To evaluate the power usage of the contraption the testing rate of the sensors and sending rate using a GPRS affiliation is urgent [3].

The target of the work is to screen soil dampness progression in the best soil in detail, in both space and time. The proposed checking framework depends on absolutely autonomous sensor hubs, which permit both ongoing and noteworthy information administration and are associated through an information/yield interface to a WSN stage. In the present work, first describes about the deployment of a WSN, successively the calibration of the relationship between sensor reading and soil water content as a function of the voltage supply is described with reference to the EC-5 capacitance sensors, and finally an example of application concerning the optimization of the irrigation schedule is presented [4]. The soil moisture sensors provide an output reading in mV, which must be converted in soil volumetric water content through a calibration curve. The proposed framework is created by 27 WSN hubs, every one furnished with 5 soil dampness sensors and a subsoil thermometer. Such sensors are associated through an info/yield interface to a Tiny Node 584 WSN stage. The WSN observing framework is conveyed and tried for the ability to give spatially dispersed hydrological information applicable for eco-hydrological examines. In general, this proposes water utilization can be diminished without bargaining the quality and amount of apple generation by presenting a water system plan in view of the data gave by WSN [5].

Authors mechanized a water system sensor that can really scale well with rural development. The sensor utilizes an advanced mobile phone to catch and process computerized pictures of the dirt adjacent the root zone of the yield, and gauges optically the water substance. The water system sensor depends on an installed camera with an advanced mobile phone, encased in a waterproof and light-tight covered chamber. The sensor is kept in a chamber under controlled brightening and covered at the root level of plants [6]. An Android App was produced in the PDA to work specifically the figuring and availability parts, for example, the advanced camera and Wi-Fi organize. The portable App awakens the advanced cell, enacting the gadget with a client characterized parameters. At that point, the implicit camera takes a photo of the dirt through a hostile to the intelligent glass window and an RGB to the dull procedure is proficient to assess the extent among the wet and dry region of the photo. After the Wi-Fi association is empowered, the proportion is transmitted through a switching hub to an entryway for control a water system water pump. At long last, the App sets the advanced cell into the rest mode to save its vitality. The sensor is powered by rechargeable batteries, charged by a photovoltaic panel. The advanced cell water system sensor was assessed in a pumpkin field along 45 days. The exploratory outcomes demonstrate that the utilization of advanced mobile phones as a water system sensor could turn into a down to earth device for farming [7-10].

Proposed procedure is installed in the system portal making the framework a really keen and self-ruling remote choice emotionally supportive network. This has been planned keeping in mind the end goal to help the end-client to decide the harvest require water system water, how much water is required and how to flood the product. In this, a remote choice emotionally supportive network for the upgraded administration of the water system in horticulture has been exhibited. The properties of the WSAN innovation have been abused to gain heterogeneous natural parameters and to control the
working of the water system framework. The FL-based system has been planned and aligned with the signs of the ranchers with a specific end goal to emulate the human experience and to appropriately comprehend the status of the product [11-13].

The authors supported with various advancements related to the Internet of Things have the phenomenal potential for application in the region of sustenance and cultivation, especially in the context of the societal and normal troubles looked by this fragment. From ranch to fork, IOT advancements could change the part, adding to sustenance security, and the lessening of farming sources of info and nourishment squander. A principle advance for the more prominent take-up of these advances will be the execution of IOT-based substantial scale pilots (LSPs) in the whole inventory network. This article diagrams the difficulties and requirements that a LSP sending of IOT in this space must consider. Innovative difficulties are portrayed so as to recognize an arrangement of mechanical and food prerequisites. An engineering in light of an arrangement of frameworks approach is quickly exhibited, the significance of tending to the interoperability challenges looked by this area is featured, and we expand on prerequisites for new plans of action, security, protection, and information administration [14].

Authors explained that India’s people are come to past 1.2 billion and the masses rate is extending well ordered, there will be completely serious an issue of sustenance, so it is vital to creating cultivating. Today, the farmers are encountering the nonattendance of deluges and lack of water. The goal is to develop a programmed water system framework to spare the time, cash and power. Manual intercession is required for the customary homestead arrive water system strategies. With the computerized innovation of the water system, the human intercession can be limited. The temperature and dampness sensors sense the temperature and stickiness of the surroundings advertisement gives an interference with the flag to the micro controller. The Discourage weeds spare water and time, measurable information can be utilized to control infections and contagious development, least complex model. The principal weakness is this framework is simply restricted to the mechanization of the water system framework and needs in additional common highlights. The proposed framework is to underpin forceful water administration for the rural land [15].

3. Existing System

The effectively existing we need to Monitor every last procedure and may prompt some product is going to spoiling and we don't know why the yield is decaying some little misstep that makes part of economic issues there is the real disservice in the current framework. And in some of the smart agriculture they placed some sensor, but they configure into the internet. So each and every time human have to monitor, the factors like water level, humidity level in farming.

4. Proposed System

The given proposed framework is finished by utilizing Arduino based miniaturized scale controller. Furthermore, we need to interface the sensor to Arduino board, the sensor is the dampness sensor, soil sustenance sensor and water level sensor (Fig. 1).
The dirt nourishment level sensor is utilized to distinguish the sustenance level of a sensor. Water level sensor is utilized to recognize the water level in the cultivating field. The Moistness sensor is utilized to distinguish the air dampness level if the dampness level is low means water sprinkler is on. These all parameter spared in the cloud for future reference to recognize the harvest yielding. Also, give the alarm message to the rancher if the water level is the low or sustenance level of a dirt.

Sensors connected to the board are LDR, ultrasonic sensor, humidity sensor (Fig. 2) and soil moisture sensor (Fig. 3). The USB association is likewise how you will stack the code onto your Arduino board. Humidity sensors specifically measures the temperature along with the relative humidity and delivers completely calibrated digital outputs. Dampness sensor detects, measures and reports the relative moistness noticeable all around. LDR sensor is utilized to quantify the force of daylight in the earth. Ultrasonic measures remove between the articles. Soil dampness sensor measures the water level in the dirt. An Irrigation sprinkler is a gadget used to water farming harvests, gardens, scenes, and different territories. All the data subsequent to detecting will be put away in the cloud. Any unusual condition happens then it will alarm a mail or telephone message.
Disadvantages of the existing system
1. It cannot be operated automatically.
2. Less operations can be performed using the robot.

Advantages of the proposed system
1. It can be operated automatically.
2. More operations can be performed using automation.
3. Has intelligence to avoid flooding of the field.
5. Conclusion

The system is used widely in industries and household but mainly suitable for agriculture. Finally, it is most usable and profitable for farmers. It is less time consuming with good power saving capability.

References

[1] B. Majone, F. Viani, E. Filippi, A. Bellin, A. Massa, G. Toller, F. Robol, M. Salucci, “Wireless sensor network deployment for monitoring soil moisture dynamics at the field scale,” Procedia Environmental Sciences, vol. 19, pp. 426-435, 2013.

[2] O. Kaiwartya, A. H. Abdullah, Y. Cao, R. S. Raw, S. Kumar, D. K. Lobiyal, I. F. Isnin, X. Liu, and R. R. Shah, “T-MQM: Testbed-based multi-metric quality measurement of sensor deployment for precision agriculture - a case study,” IEEE Sensors J., vol. 16, no. 23, pp. 86498664, Dec. 2016.

[3] J. G. Jaguey, J. F. Villa-Medina, A. Lopez-Guzman, and M. A. Portagandara, “Smartphone irrigation sensor,” IEEE Sensors J., vol. 15, no. 9, pp. 5122-5127, Sep. 2015.

[4] Mayan J.A., Ravi. T , "Test Case Optimization Using Hybrid Search Technique", AC International Conference Proceeding Series , ACM New York, NY, USA ©2014, ISBN: 978-1-4503-2908-8, doi:10.1145/2660859.2660906

[5] P.Asha, Dr.S.Srinivasan, “Analyzing the Associations between Infected Genes using Data Mining Techniques”, International Journal of Data Mining and Bioinformatics, Inderscience Publishers, 15(3), pp.250-271, Mar 2016.

[6] J.H. Ziegeldorf et al., “Privacy in the Internet of Things: Threats and Challenges,” Security and Commun. Networks, vol. 7, no. 12, 2014, pp. 2728–42.

[7] Albert Mayan J, Anto Praveena M D , Telkar Bharath Rao , Uravakonda Uday Sagar(2018),"Optimized test data generation over suspicious implementation of oracle problem",IEEE International Conference on Power, Control, Signals and Instrumentation Engineering (ICPCSI-2017),pp.2559-2563.

[8] L.D. Xu et al., “Internet of Things in Industries: A Survey,” IEEE Trans. Industrial Informatics, vol. 10, no. 4, 2014, pp. 2233–43.

[9] O. Vermesan and P. Friess, Building the Hyperconnected Society: IoT Research and Innovation Value Chains, Ecosystems and Markets, River Publishers, 2015.

[10] EC, “Call — Internet of Things, in HORIZON 2020-Work Programme 2016-2017 Cross-Cutting Activities (Focus Areas)”; http://ec.europa.eu/research/participants/data/ref/h2020/wp/2016_2017/main/h2020-wp1617-focus_en.pdf, July 2016, accessed Nov. 25, 2016.

[11] Asha P, Albert Mayan J, Canessane A (2018),"Efficient Mining of Positive and Negative Itemsets Using K-Means Clustering to Access the Risk of Cancer Patients",Communications in Computer and Information Science ,ICCS 2018, Kollam, 2018,pp.373-382.

[12] J. Dymond, A.-G. Ausseil, R. Parfitt, A. Herzig, and R. McDowell, "Nitrate and phosphorus leaching in New Zealand: a national perspective," New Zealand Journal of Agricultural Research, vol. 56, pp. 49-59, 2013.

[13] S. Ancy, R. Kumar, R. Asokan and R. Subhashini, "Prediction of onset of south west monsoon using multiple regression," Proceedings of IEEE International Conference on Computer Communication and Systems ICCCS14, Chennai, 2014, pp. 170-175.

[14] Prem Jacob, T., Pravin, A., & Asha, P. (2018). Arduino Object Follower with Augmented Reality. International Journal of Engineering & Technology, 7(3.27), 108-110.

[15] Pravin, A., Prem Jacob, T., & Asha, P. (2018). Enhancement of Plant Monitoring Using IoT. International Journal of Engineering & Technology, 7(3.27), 53-55.