Occurrence and First Molecular Characterization of Cryptosporidium felis in a Cat in Turkey

Neslihan SURAL 1,a, Emrah SIMSEK 2,b Kader YILDIZ 3,c

1 Aksaray University, Faculty of Veterinary Medicine, Department of Parasitology, TR-68100 Aksaray - TURKEY
2 Erciyes University, Faculty of Veterinary Medicine, Department of Preclinical Science, TR-38039 Kayseri - TURKEY
3 Kirikkale University, Faculty of Veterinary Medicine, Department of Parasitology, TR-71450 Kirikkale - TURKEY

ORCIDs: * 0000-0002-4144-9520; b 0000-0002-0492-9840; c 0000-0001-5802-6156

Article ID: KVFD-2020-24453 Received: 14.05.2020 Accepted: 24.08.2020 Published Online: 24.08.2020

How to Cite This Article
Sursal N, Simsek E, Yildiz K: Occurrence and first molecular characterization of Cryptosporidium felis in a cat in Turkey. Kafkas Univ Vet Fak Derg, 26(6): 833-837, 2020.
DOI: 10.9775/kvfd.2020.24453

Abstract
Cryptosporidium species are highly prevalent and significant zoonotic protozoan parasites that cause severe diarrhea in many hosts. To date, cryptosporidiosis has been molecularly reported from humans and different animal hosts in Turkey. The aim of this case report is to reveal the molecular characterization based on small subunit (SSU) rRNA gene sequence of Cryptosporidium oocysts that were microscopically found in a three-month age female cat with severe diarrhea. SSU rRNA gene of Cryptosporidium was amplified for sequence and phylogenetic analyses. According to sequence analysis, Cryptosporidium spp. oocysts were characterized as C. felis (isolate name: ANK_1; accession number: MN394123). ANK_1 isolate showed a range from 99.1% to 100% identity with the most of C. felis sequences available in GenBank. However, it also exhibited high genetic distance (1.5-4.3%) with some of C. felis sequences. The intraspecific genetic differences among all SSU rRNA sequences of C. felis isolates included in the data set were determined ranged from 0.0% to 6.9%. As a conclusion, we provided the first microscopic and molecular evidence of the occurrence of C. felis in a house cat in Turkey. Although C. felis has a relatively low zoonotic risk to public health when compared with C. parvum, infected cats should not be neglected for zoonotic transmission due to close relationships between cats and humans.

Keywords: Cryptosporidium felis, Cat, Molecular characterization, SSU rRNA gene, Turkey

Türkiye’de Bir Kedide Cryptosporidium felis’in Varlığı ve İlk Moleküler Karakterizasyonu

Öz
Cryptosporidium türleri, birçok konakta ciddi ishale neden olan oldukça yaygın ve önemli zoonotik protozoan parazitlerdir. Buğüne kadar cryptosporidiosis, Türkiye’de insanlarla ve farklı hayvan konaklarından moleküler olarak rapor edilmişdir. Bu olgu sunumu ile farklı bir conglo ve diferent animal hosts in Turkey. The aim of this case report is to reveal the molecular characterization based on small subunit (SSU) rRNA gene sequence of Cryptosporidium oocysts that were microscopically found in a three-month age female cat with severe diarrhea. SSU rRNA gene of Cryptosporidium was amplified for sequence and phylogenetic analyses. According to sequence analysis, Cryptosporidium spp. oocysts were characterized as C. felis (isolate name: ANK_1; accession number: MN394123). ANK_1 isolate showed a range from 99.1% to 100% identity with the most of C. felis sequences available in GenBank. However, it also exhibited high genetic distance (1.5-4.3%) with some of C. felis sequences. The intraspecific genetic differences among all SSU rRNA sequences of C. felis isolates included in the data set were determined ranged from 0.0% to 6.9%. As a conclusion, we provided the first microscopic and molecular evidence of the occurrence of C. felis in a house cat in Turkey. Although C. felis has a relatively low zoonotic risk to public health when compared with C. parvum, infected cats should not be neglected for zoonotic transmission due to close relationships between cats and humans.

Keywords: Cryptosporidium felis, Cat, Molecular characterization, SSU rRNA gene, Turkey

INTRODUCTION
Cryptosporidium species are significant apicomplexan parasites that infect the gastrointestinal system of numerous hosts (mammals, birds, reptiles, and fishes), including humans [1,2]. To date, 38 Cryptosporidium species have been recognized [3]. Cats are commonly infected with C. felis [4-6]. In addition, C. parvum [6,7], C. muris [8], C. ryanae [4], and Cryptosporidium rat genotype III-IV [4,8] species have also been reported from cats.
Most of the cats infected with Cryptosporidium spp. are usually asymptomatic. Diarrhea occurs more frequently in young and newborn kittens \([9,10]\). Feces are usually watery and do not contain mucus, blood, and melena. Other common clinical signs of cryptosporidiosis in cats are anorexia and weight loss \([11]\).

Different diagnostic techniques including the microscopic examination (wet mount preparation, staining methods such as modified acid-fast stain or fluorescent stains), histological examination, immunological and various molecular methods are available for detection of cryptosporidiosis \([12]\). Molecular characterization of Cryptosporidium species is important and necessary for precise identification of organisms and to understand the zoonotic transmissions \([13]\). PCR-RFLP and DNA sequencing are the most frequently used assays for molecular identification and characterization of Cryptosporidium species. The small subunit (SSU) rRNA gene is commonly preferred for genotyping Cryptosporidium in many hosts and environmental samples \([14]\).

Cryptosporidium infections have been reported from humans and different animal hosts including cats in Turkey \([15-21]\). It was aimed to reveal the first molecular characterization based on SSU rRNA gene sequence of Cryptosporidium isolate found in a cat in this case report.

CASE HISTORY

A fecal sample obtained from a mixed-breed, three-month old female cat with severe diarrhea was sent to Kırıkkale University, Faculty of Veterinary Medicine, Department of Parasitology Laboratory for parasitological examination by a veterinary clinic in June 2019. According to anamnesis, despite the long-term antibiotic treatment, no reduction in the severity of diarrhea was observed. It was also informed that the cat mostly lived in a house and had also access to the garden of the house. Written informed consent of the cat’s owner was obtained for using the data in scientific publications.

Firstly, fecal consistency scores were evaluated according to the modified fecal scoring system \([22]\) and determined as 6 (watery and no texture, occurs as puddles). After routine parasitological examination, the fecal sample was stained with carbol-fuchsin dye (CF) to detect Cryptosporidium oocysts \([23]\). Cryptosporidium spp. oocysts (~5 μm diameter) in the fecal sample stained with CF dye were visualized as bright white color on the red background using the light microscope (Olympus BX43 Tokyo, Japan equipped with Olympus DP73 digital camera) (Fig. 1). No other parasites were found in the fecal sample.

For advanced molecular diagnosis, the genomic DNA (gDNA) was extracted from the fecal sample using a QiAamp Stool Mini Kit (Qiagen, Hilden, Germany) according to the manufacturer’s protocol. Nested-PCR was performed to amplify the SSU rRNA gene region of Cryptosporidium. 18SiCF2/18SiCR2 and 18SiCF1/18SiCR1 primer pairs were used for the first and second PCR amplification, respectively \([24]\). PCR reactions were performed in a total volume of 20 μL, consisted of a commercial master mix (Phusion High-Fidelity PCR Master Mix 5X, Thermo Scientific, Waltham, MA, USA), 0.5 μM each primer and 10-30 ng of gDNA. For the second PCR, 1 μL of the first PCR’s product was used as template. An automated thermocycler (Applied Biosystems, Thermo Scientific, Waltham, MA, USA) were used in the PCR analyses and the amplification conditions (both first and second PCR amplifications) included a pre-denaturation at 98°C for 30 s, followed by 30 cycles of denaturation at 98°C for 10 s, annealing at 61.8°C for 20 s, and extension at 72°C for 45 s. The final extension step was carried out at 72°C for 10 min. Ultra-pure grade water and gDNA of C. parvum were used as the negative and positive controls in PCR assays, respectively. PCR amplicons (20 μL) were analyzed in 1.5% agarose gel, stained with SafeView™ (Applied Biological Materials, Richmond, BC, Canada), and visualized (Quantum CX5, Vilber Lourmat, France). Approximately 587 bp fragment of SSU rRNA gene region of Cryptosporidium isolate was amplified by nested PCR analysis and visualized on agarose gel (Fig. 2-A). After that, the PCR product was purified (High Pure PCR Product Purification Kit, Roche, Germany) from gel to increase sequence quality. Purified product (5 μl) was re-analyzed in agarose gel to check the purification result (Fig. 2-B) and sequenced in both directions (Macrogen, Amsterdam, The Netherlands) using the nested PCR primers.

The obtained sequences were assembled and edited in Geneious Prime 2020.0.3 (https://www.geneious.com) by evaluating the quality value of sequence chromatograms. The forward and reverse sequence electropherograms were also visually checked for the presence of the double nucleotide peaks that might show possible mixed infections. The SSU rRNA gene consensus sequence (560 bp) was

Fig. 1. Cryptosporidium spp. oocyst that determined by the carbol-fuchsin staining method was shown with black arrow.
successfully obtained from Cryptosporidium isolate. There was no double peak indicative of mixed infections. A BLASTn search was conducted using the final nucleotide sequences to make species-based identification and create a data set. The sequence and BLASTn analysis of the SSU rRNA gene region confirmed the microscopic examination result and Cryptosporidium isolate was molecularly assigned as C. felis. The nucleotide sequence of the SSU rRNA gene region of C. felis was deposited in GenBank with ANK_1 isolate name (accession number: MN394123).

For the phylogenetic analyses, the sequence data set was created by considering BLASTn results and using the available Cryptosporidium sequences (54 C. felis out of 61 Cryptosporidium isolates) from cats in GenBank. In created data set, trimmed alignment was 560 bp in length. The data set was tested with MEGA X model test to determine the most suitable DNA model according to the correct Akaike’s Information Criterion (AIC). Phylogenetic analysis was conducted using the maximum-likelihood (ML) analysis based on GTR+G (the General Time Reversible + Gamma distributed) model in MEGA X [25] with 1000 bootstrap replicates. Genetic distances were determined using the Kimura two-parameter model [26] in MEGA X [25]. ANK_1 isolate showed a range from 99.1-100% identity with the most of C. felis sequences available in the GenBank (Fig. 3). However, it exhibited 1.5%, 2%, 2.8%, 3.3%, and 4.3% high genetic distance with some of C. felis sequences with the accession numbers MG888051, KX174306, JQ312664, KX168415, and MG889862, respectively. The intraspecific genetic differences among all SSU rRNA sequences of C. felis isolates included in the data set were determined ranged from 0.0-6.9%. The ML tree based on the SSU rRNA gene region of C. felis revealed two main clades with the support of a 99% bootstrap value. Different C. felis haplotypes from various geographical regions were observed in the phylogenetic tree (Fig. 3).

DISCUSSION

Several risk factors such as breed, age, sex, and outdoor access have previously been analyzed for cryptosporidiosis in cats [27,28]. Cryptosporidium infection detected in this case might be related to the living area and age of the
cat. Because outdoor conditions could provide greater opportunity for young cats to exposure to infected hosts or contaminated soil/water. Some authors state that the infection risk with Cryptosporidium agents is higher in outdoor/stray cats than indoor/pet cats [27]. Besides cryptosporidiosis has been found more prevalent in young cats and this situation has been attributed with their immature immune system [28].

The prevalence of cryptosporidiosis in cats has been reported range from 0% to 29.4% in the world and these differences have been associated with diagnosis techniques used (reviewed by Lucio-Foster et al. [29]). The prevalence of Cryptosporidium spp. in cats has been reported from 1% to 13% in Turkey [19-21]. However, there is no data available regarding to molecular characterization of Cryptosporidium isolates in cats in Turkey. In this case, the SSU rRNA gene region of Cryptosporidium isolate found in a cat was successfully amplified and sequenced for the first time in Turkey. According to the BLASTn analysis, Cryptosporidium spp. isolate was molecularly assigned as C. felis, which is consistent with the reported dominance of this species in cats [4,6,30,31]. Similar to the findings of Ito et al. [31], ANK_1 isolate showed a range from 99.1% to 100% identity with most of C. felis sequences. However, high intraspecific genetic differences (0.0-6.9%) were determined among all SSU rRNA sequences of C. felis isolates included in the data set. Moreover, different C. felis haplotypes were observed in the phylogenetic tree. Considering high genetic variability, a suitable genetic marker may be needed to identify the subtypes family of the C. felis isolates.

Most of the human cases are associated with C. hominis and C. parvum. Besides these species, C. felis, C. canis, C. meleagrisid, C. cuniculus, C. ubiquitum, and C. viatorum species are also responsible for human cryptosporidiosis [5,14]. Particularly, C. felis has been reported from many humans in different countries [32-35]. In a study, the identical C. felis SSU rRNA, HSP70, and COWP gene sequences were confirmed in both the cat and its immunocompetent owner in Sweden [33]. This result was an important step to molecularly confirm the zoonotic transmission of C. felis from cat to human. The authors highlighted that the cat could be the initial source of infection [33]. In another study on human cryptosporidiosis in the UK, contact with cats has been found as a significant risk factor for C. felis cases determined in humans [36].

In conclusion, we provided the first microscopic and molecular evidence of the occurrence of C. felis in a cat in Turkey. Considering the studies mentioned above, although C. felis has a relatively low zoonotic risk to public health compared with C. parvum [5,29], infected cats should not be neglected for zoonotic transmission due to close relationships between cats and humans. Especially, immunocompromised humans and children should be avoided from cats infected with Cryptosporidium spp. New studies with a large-scale sampling in a wide geographic area are necessary to determine prevalence, species, and genetic diversity of Cryptosporidium species in cats and to reveal potential risk factors for public health.

Statement of Author Contributions

NS designed the study. Parasitological examinations and molecular analyses were conducted by NS and ES. The manuscript was written by NS, and reviewed by ES and KY. All authors contributed to the improvement of discussion and reviewed the final manuscript not only for spelling and grammar but also for its intellectual content.

Conflict of Interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

References

1. Xiao L, Fayer R, Ryan U, Upton SJ: Cryptosporidium taxonomy: Recent advances and implications for public health. Clin Microbiol Rev, 17 (1): 72-97, 2004. DOI: 10.1128/cmr.17.1.72-97.2004
2. Fayer R: Taxonomy and species delimitation in Cryptosporidium. Exp Parasitol, 124 (1): 90-97, 2010. DOI: 10.1016/j.exppara.2009.03.005
3. Feng Y, Ryan UM, Xiao L: Genetic diversity and population structure of Cryptosporidium. Trends Parasitol, 34 (11): 997-1011, 2018. DOI: 10.1016/j.pt.2018.07.009
4. Yang R, Ying J, Monis P, Ryan U: Molecular characterisation of Cryptosporidium and Giardia in cats (Felis catus) in Western Australia. Exp Parasitol, 155, 13-18, 2015. DOI: 10.1016/j.exppara.2015.05.001
5. Ryan U, Fayer R, Xiao L: Cryptosporidium species in humans and animals: Current understanding and research needs. Parasitology, 141 (13): 1667-1685, 2014. DOI: 10.1017/S0031182014001085
6. Alves MEM, Martins FDC, Braunig P, Pivoto FL, Sangioni LA, Vogel FSF: Molecular detection of Cryptosporidium spp. and the occurrence of intestinal parasites in fecal samples of naturally infected dogs and cats. Parasitol Res, 117 (9): 3033-3038, 2018. DOI: 10.1007/s00436-018-5986-4
7. Tangtrongsup S, Scorzra AV, Reif JS, Ballweber LR, Lappin MR, Salmon MD: Seasonal distributions and other risk factors for Giardia duodenalis and Cryptosporidium spp. infections in dogs and cats in Chiang Mai, Thailand. Prev Vet Med, 174: 104820, 2020. DOI: 10.1016/j.prevetmed.2019.104820
8. Li J, Dan X, Zhu K, Li N, Guo Y, Zheng Z, Feng Y, Xiao L: Genetic characterization of Cryptosporidium spp. and Giardia duodenalis in dogs and cats in Guangdong, China. Parasit Vectors, 12 (1): 571, 2019. DOI: 10.1186/s13071-019-3822-z
9. Arai H, Fukuda Y, Arai H, Funakoshi Y, Kaneko S, Yoshida T, Asahi H, Kumada M, Kato K, Koyama T: Prevalence of Cryptosporidium infection among domestic cats in the Tokyo metropolitan district, Japan. Jpn J Med Sci Biol, 43 (1): 7-14, 1990. DOI: 10.1186/s13071-019-3822-z
10. Mtambo MM, Nash AS, Blewett DA, Smith HV, Wright S: Molecular characterisation of Cryptosporidium infection in cats: Prevalence of infection in domestic and feral cats in the Glasgow area. Vet Rec, 129 (23): 502-504, 1991. DOI: 10.1136/vetrec.129.23.502
11. Scorzra V, Tangtrongsup S, Urban L, Wright S: Update on the diagnosis and management of Cryptosporidium spp infections in dogs and cats. Top Companion Anim Med, 25 (3): 163-169, 2010. DOI: 10.1053/j.tcam.2010.07.007
12. Khurana S, Chaudhary P: Laboratory diagnosis of cryptosporidiosis. Trop Parasitol, 8 (1): 2-7, 2018. DOI: 10.4103/tp.TP_34_17
13. Xiao L, Fayer R: Molecular characterisation of species and genotypes of Cryptosporidium and Giardia and assessment of zoonotic transmission.
Int J Parasitol, 38 (11): 1239-1255, 2008. DOI: 10.1016/j.ijpara.2008.03.006

14. Xiao L: Molecular epidemiology of cryptosporidiosis: An update. Exp Parasitol, 124 (1): 80-89, 2010. DOI: 10.1016/j.exppara.2009.03.018

15. Arslan MÖ, İtik Ekinç A: Kars yöresinde sigirlarda Cryptosporidium parvum subtiplerinin belirlenmesi. Kafkas Univ Vet Fak Derg, 18 (Suppl. A): A221-A226, 2012. DOI: 10.9775/kvfd.2012.6565

16. Taylan-Ozkan A, Yasa-Duru S, Uluca S, Lysen C, Ye J, Roellig DM, Feng Y, Xiao L: Cryptosporidium species and Cryptosporidium parvum subtypes in dairy calves and goat kids reared under traditional farming systems in Turkey. Exp Parasitol, 170, 16-20, 2016. DOI: 10.1016/j.exppara.2016.06.014

17. Yıldırım A, Adanir R, Inci A, Fukuda Y, Onder Z, Ciloglu A, Simsek E: Prevalence and genotyping of bovine Cryptosporidium species in the Mediterranean and Central Anatolia Region of Turkey. Comp Immunol Microbiol Infect Dis, 69: 101425, 2020. DOI: 10.1016/j.cimid.2020.101425

18. Yılmazer N, Küçük ŞK, Akyıldız G, Gargılı A, Kar S: Cryptosporidiosis in humans with reference to the first case of Cryptosporidium hominis infection in Turkey. Parazitol Derg, 40, 184-192, 2017. DOI: 10.4274/parazitol.7465

19. Korkmaz UF, Gökpinar S, Yildiz K: Kedi kediçinin yaşam tarzı ve kedi beslenmesi bakımından önemi. Türkiye Parazitol Derg, 40, 194-198, 2016. DOI: 10.5152/tpd.2016.4841

20. Göz Y, Yüksel N, Altug N, Ceylan E, Deger S: Prevalence of Cryptosporidium infection in Van cats. Indian Vet J, 82 (9): 995-996, 2005.

21. Kilińcz OÖ, Yilmaz AB, Göz Y, Özkın C, Denizhan V: Determination of Cryptosporidium spp. in Van cats by nested PCR. Med Weter, 74 (10): 456-459, 2018. DOI: 10.21521/mw.6008

22. Purina: Fecal scoring chart 2016. https://www.proplanveterinarydiets.ca/wp-content/uploads/2016/04/PPPVD-Fecal-Scoring-Chart-EN-FINAL.pdf; Accessed: 12.02.2020.

23. Heine J: A simple technic for the demonstration of cryptosporidia in feces. Zentralbl Veterinarmed B, 29 (4): 324-327, 1982.

24. Ryan U, Xiao L, Read C, Zhou L, Lal AA, Pavlasek I: Identification of novel Cryptosporidium genotypes from the Czech Republic. Appl Environ Microbiol, 69 (7): 4302-4307, 2003. DOI: 10.1128/aem.69.7.4302-4307.2003

25. Kumar S, Stecher G, Li M, Knyaz C, Tamura K: MEGA X: Molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol, 35 (6): 1547-1549, 2018. DOI: 10.1093/molbev/msy096

26. Kimura M: A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol, 16 (2): 111-120, 1980. DOI: 10.1007/BF01731581

27. McReynolds CA, Lappin MR, Ungar B, McReynolds LM, Bruns C, Spilker MM, Thrall MA, Reif JS: Regional seroprevalence of Cryptosporidium parvum-specific IgG of cats in the United States. Vet Parasitol, 80 (3): 187-195, 1999. DOI: 10.1016/s0304-4017(98)00219-2

28. Rambozzi L, Menzano A, Mannelli A, Romano S, Isaia MC: Prevalence of cryptosporidial infection in cats in Turin and analysis of risk factors. J Feline Med Surg, 9 (5): 392-396, 2007. DOI: 10.1016/j.jfms.2007.03.005

29. Lucio-Forster A, Griffiths JK, Cama VA, Xiao L, Bowman DD: Minimal zoonotic risk of cryptosporidiosis from pet dogs and cats. Trends Parasitol, 26 (4): 174-179, 2010. DOI: 10.1016/j.pt.2010.01.004

30. Kvác M, Hofmannova L, Ortega Y, Holubová N, Horčíčková M, Kicía M, Hlasková L, Kvetoňová D, Sak B, McEvoy J: Stray cats are more frequently infected with zoonotic protists than pet cats. Folia Parasitol, 64: 034, 2017. DOI: 10.14411/fp.2017.034

31. Ito Y, Itoh N, Kimura Y, Kanai K: Molecular detection and characterization of Cryptosporidium spp. among breeding cattery cats in Japan. Parasitol Res, 115 (5): 2121-2123, 2016. DOI: 10.1007/s00436-016-4984-7

32. Bednarska M, Jankowska I, Pawelas A, Piwczynska K, Bajer A, Wolksa-Kusnierz B, Wielopolska M, Welc-Faleciak R: Prevalence of Cryptosporidium, Blastocystis, and other opportunistic infections in patients with primary and acquired immunodeficiency. Parasitol Res, 117 (9): 2869-2879, 2018. DOI: 10.1007/s00436-018-5976-6

33. Beser J, Toresson L, Eitrem R, Troell K, Winiecka-Krusnell J, Lebbad M: Possible zoonotic transmission of Cryptosporidium felis in a household. Infect Ecol Epidemiol, 5 (1): 28463, 2015. DOI: 10.3402/iee.v5.28463

34. Raccourt CP: (Human Cryptosporidium felis infection in the world). Parasite, 14 (1): 15-20, 2007. DOI: 10.1051/parasite/2007140105

35. Ebner J, Koehler AV, Robertson G, Bradbury RS, Jex AR, Haydon SR, Stevens MA, Norton R, Joachim A, Gasser RB: Genetic analysis of Giardia and Cryptosporidium from people in Northern Australia using PCR-based tools. Infect Genet Evol, 36, 389-395, 2015. DOI: 10.1016/j.meegid.2015.08.034

36. Elwin K, Hadfield SJ, Robinson G, Chalmers RM: The epidemiology of sporadic human infections with unusual cryptosporidia detected during routine typing in England and Wales, 2000-2006. Epidemiol Infect, 140 (4): 673-683, 2012. DOI: 10.1017/S009927900900860