Oxidation of Sodium Hypophosphite by Oxygen in Alcoholic Solutions of Ferrum (III)

G.S. Polimbetova, M.M. Aleshkova*, G.O. Bugubaeva, Zh.U. Ibraimova and A.K. Borangazieva

D.V. Sokolsky Institute of Organic Catalysis and Electrochemistry, 142 Kunaev St., 480100 Almaty, Kazakhstan

Abstract

Hypophosphites are widely used as reducers in the metal protection coating, as reagents in the synthesis of various organophosphorus compounds, in analytical chemistry, and in many other fields. NaH$_2$PO$_2$ difficulty reacts with many oxidizers without catalysts despite of the significant reduction potential. The kinetics and the mechanism of hypophosphite oxidation in aqueous acid solution of the metal and nonmetal salts are studied in detail. The reactivity of hypophosphite in the organic solvents was not almost studied. In this work the basic possibility of synthesis dialkylphosphites from cheap, accessible and harmless NaH$_2$PO$_2$ and alcohols is shown. Sodium hypophosphite is oxidized by oxygen in alcoholic solutions of FeCl$_3$ at 50-80°C to dialkylphosphites. Kinetic and mechanism of the reaction are investigated by methods of volumetry, redox-potentiometry, GC, IR-, UV-, EPR-, Mössbauer- and NMR 3P-spectroscopy and X-ray powder diffraction analysis, optimum conditions are found, kinetic and activation parameters of the reaction are calculated. It is shown, that the process follows redox-mechanism and consists of two key stages: reduction of Fe (III) by hypophosphite with formation of dialkylphosphate and reoxidation of Fe (II) by oxygen. The coordination mechanism of reduction reaction of Fe (III) by hypophosphite is proposed. According to this mechanism the dialkylphosphate forms through innersphere redox-decomposition of intermediate alcoxyhypophosphite complex of Fe (III). The coordination mechanism of the process is confirmed by low values of E^* and negative activation entropies ΔS^*. The availability in an inner sphere of Fe (III) bromide, low-molecular alcohols, water, characterized by high acidity, increases the reaction rate of oxidative alcoxylation of hypophosphite and promotes the further transformation of dialkylphosphate to di- and trialkylphosphate.

Introduction

The existent technology of phosphoric ether production is based on multistep processes of toxic, flammable and explosive white phosphorus oxidation by chlorine up to PCl$_3$, POCI$_3$ followed by the alcoxyla- tion and is accompanied by formation of a considerable quantity of toxic hydrogen chloride. In this connection the development direct catalytic oxidation of low-valence inorganic phosphorus compounds by oxygen to phosphoric ethers is an actual problem [1]. Cheap, accessible and harmless sodium hypophosphite is one of the most perspective phosphorylation agents. NaH$_2$PO$_2$ difficulty reacts with many oxidizers without presence of catalysts despite of the significant reduction potential [2-5].

In the present work kinetics and mechanism of sodium hypophosphite oxidation by oxygen in alco- holic solutions (ROH = PrOH, BuOH, i-AmOH) of iron (III) chloride are studied for the first time. It is established, that dialkylphosphites are formed at 50-80°C via reaction (1)

NaH$_2$PO$_2$ + 0.5O$_2$ + 2ROH + HCl \rightarrow NaCl + 2H$_2$O + (RO)$_2$HPO

(1)

Due to high reactivity dialkylphosphites are widely used in organic synthesis to deriving medicines and bioactive substances.

Experimental

Reaction (1) was investigated by volumetric method of oxygen absorption using the thermostatted catalytic reactor in the form of a long-necked flask...
with a potentiometric device and a gas burette. The experiments were conducted as follows. An alcohol (10 ml) was poured into the reactor (150 cm3) and an iron salt (0.3-1.5 g) as a powder was added. The content was shaken until the redox-potential was constant. Then sodium hypophosphite was added in it and the rate of oxygen absorption (W, mol/l-min), the amount of the absorbed oxygen (Q, mol/l), redox-potential (φ, V) and time (τ, min) were measured. The experimental data are presented as conversion ($W-Q$), kinetic ($W-\tau$) and potentiometric ($\varphi-\tau$, $\varphi-Q$) curves. The relative error in measuring the O_2 absorption rate was 4-6%. Organic hypophosphites, phosphites, phosphates were identified by the method of NMR 31P-spectroscopy (WP-80, WM-250 Bruker). Gas chromatography analysis of alcohols, dialkylphosphites ((RO)$_3$P) and trialkylphosphates ((RO)PO) were recorded on Chrompack 9002 chromatograph using PID with a programmed column heating from 130 to 150°C at rate of gas-carrier (Ar) 25 ml/min and evaporator temperature 360°C on CIPSIL 19CB capillary column (25 m × 0.25 mm). Dialkylphosphates were isolated by vacuum distillation in the form of the resin and were identified by the method of IR-spectroscopy on the spectrometer Specord IR-75 by the typical absorption bands of the reaction (1). The reaction order in hypophosphite, the alcoholic solution of FeCl$_3$ has a value of initial potential and yield of the product (Fig. 2, Table 1). The reaction order in hypophosphite is equal to 0.7. The formation of alkoxyhypophosphite complexes of Fe (III) is confirmed by UV-spectra of solutions under study (Fig. 1c). In the absence of hypophosphite, the alcoholic solution of FeCl$_3$ has the absorption band with the maximum at 370 nm (Spectrum 1). With an addition of NaH$_2$PO$_2$ to the system and with the increase in its concentration, the displacement of wavelength maximum in shortwave area up to 260 nm and increase of its intensity is observed. The constant of stability defined from spectrophotometric data makes magnitude 2.1, from kinetic data – 3.6 l/mol.

Influence of NaH$_2$PO$_2$ – Increasing concentration of hypophosphite from 0.06 up to 0.36 mol/l increases the reaction rate and the amount of absorbed oxygen. The yield of dialkylphosphite slightly decreases (Fig. 1, Table 1). The reaction order in hypophosphite is equal to 0.7. The formation of alkoxyhypophosphite complexes of Fe (III) is confirmed by UV-spectra of solutions under study (Fig. 1c). In the absence of hypophosphite, the alcoholic solution of FeCl$_3$ has the absorption band with the maximum at 370 nm (Spectrum 1). With an addition of NaH$_2$PO$_2$ to the system and with the increase in its concentration, the displacement of wavelength maximum in shortwave area up to 260 nm and increase of its intensity is observed. The constant of stability defined from spectrophotometric data makes magnitude 2.1, from kinetic data – 3.6 l/mol.

Influence of Fe (III), O$_2$ concentrations and temperature – Increasing concentration of Fe (III), partial pressure of oxygen, temperature increases reaction rate, value of initial potential and yield of the product (Table 1). The amount of absorbed oxygen remains constant and corresponds to the stoichiometry of the reaction (1). The orders on Fe (III) and O_2 are close to 1. The kinetic regularities indicate the participation of mononuclear alkoxyhypophosphite Fe (III) complexes in reaction (1) that also is confirmed by UV- and EPR-spectra.

Influence of the alcohol – Decreasing of BuOH concentration up to 1.1 mol/l at constant concentration of remaining components results in a diminution of reaction rate and yield of product (Fig. 2, Table 1). The reaction order in the alcohol concentration is equal 0.8. The UV-spectra of FeCl$_3$ aqueous-alcoholic solutions testify to formation of Fe (III) alkoxycomplexes (Fig. 2c). With increasing of alcoholic concentration grows the optical density of a solution, the absorption band with the maximum at 290 nm shifts toward long-wave region. The stability constant found from spectrophotometric data is 0.08, while that found from the kinetic data is 0.1 l/mol.

The influence of the component concentrations and the temperature of catalytic system on the process rate and selectivity were investigated with the purpose of establishing kinetics, mechanism and optimum conditions of reaction (1). The typical conversion, kinetic and potentiometric curves of oxidation NaH$_2$PO$_2$ by oxygen (106 Pa) in butanol solution of FeCl$_3$ at 80°C are shown in Figs. 1-3. Addition NaH$_2$PO$_2$ into the dark yellow alcoholic solution of Fe (III) in the O_2 atmosphere results in a shifting of system’s redox-potential to the cathode region on 0.05-0.2 V, depending on the solution composition. Also it is observed the simultaneous decrease of pressure in the closed system accompanied by oxygen absorption, brightening of the solution, and precipitation of a white solid. The amount of absorbed oxygen is in accordance with reaction (1). During experiment φ_{cell} gradually shifts to the anode region, the reaction rate quickly increases, reaches maximum, and then gradually falls up to zero. The solution containing a small amount of the white precipitate acquired its initial colour. The X-ray powder diffraction analysis showed that the main reflections correspond to NaCl.
Fig. 1. Conversion (a) and potentiometric (b) curves of NaH₂PO₂ oxidation by oxygen in butanol solution of FeCl₃ at 80°C, O₂ 10⁵ Pa and following concentration of components, mol/l: FeCl₃ 0.6; BuOH 10.9; NaH₂PO₂: 1 – 0.06; 2 – 0.12; 3 – 0.24; 4 – 0.36; c) Absorption spectras of solutions BuOH–FeCl₃–NaH₂PO₂ at 25°C, FeCl₃ 0.012; BuOH 10.9; NaH₂PO₂: 1 – 0; 2 – 0.023; 3 – 0.046; 4 – 0.069, mol/l.

Fig. 2. Kinetic (a) and potentiometric (b) curves of oxidation NaH₂PO₂ by oxygen in butanol solution of FeCl₃ at 80°C, O₂ 10⁵ Pa and following concentration of components, mol/l: FeCl₃ 0.6; NaH₂PO₂ 0.36; BuOH: 1– 1.1; 2–3.3; 3–5.5; 4–10.9; c) Absorption spectras of solutions FeCl₃–PrOH–H₂O at 25°C, FeCl₃ 0.062; PrOH: 1–0; 2–6.5; 3–10.5; 4–13.1, mol/l.
Table 1
Oxidative alcoxylation of NaH$_2$PO$_2$ in alcohol solution of FeCl$_3$

Composition of the solution, mol/l	T, °C	O$_2$, vol.%	Yield (η), %	
FeCl$_3$	NaH$_2$PO$_2$	ROH	(RO)$_2$HPO	(RO)$_3$PO
BuOH				
0.60	0.36	10.9	70	100
			80	57.0
			90	58.0
1.00	0.36	10.9	80	0 (Ar)
0.60	0.36	10.9	80	20
				50
				100
0.20	0.36	10.9	80	100
0.30	0.36	10.9	80	100
0.60	0.36	10.9	80	100
0.90	0.36	10.9	80	100
0.60	0.36	0.0°	80	100
		0.6		
		1.1		
		2.2		
		5.5		
		10.9		
0.6	0.06	10.9	80	100
	0.12			
	0.24			
	0.36			

HCl/BuOH

FeCl$_3$	NaH$_2$PO$_2$	ROH	(RO)$_2$HPO	(RO)$_3$PO		
0.6	0.36	0	80	100	57.0	21.0
		0.3			48.0	20.0
		0.5			44.0	20.0
		0.7			44.0	19.0
0.6	0.36	10.9	70	100	7.0	2.0
			80		10.0	3.0

i-AmOH

FeCl$_3$	NaH$_2$PO$_2$	ROH	(RO)$_2$HPO	(RO)$_3$PO		
0.6	0.36	9.2	70	100	40.0	3.0
			80		84.0	8.0
			90		85.0	12.0
Table 1

Composition of the solution, mol/l	T, °C	O₂, vol.%	Yield (η), %		
FeCl₃	NaH₂PO₂	ROH	PrOH	(RO)₂HPO	(RO)₃PO
0.6	0.36	13.4	50	3.0	15.0
			60	6.0	24.0
			70	10.0	43.0
			80	10.0	41.0

Fig. 3. Conversion (а) and potentiometric (b) curves of oxidation NaH₂PO₂ by oxygen in butanol solution of FeCl₃ at presence of HCl at 70°C, O₂ 10⁵ Pa and following concentration of components, mol/l: FeCl₃ 0.6; BuOH 10.9; NaH₂PO₂ 0.36; HCl: 1 – 0; 2 – 0.3; 3 – 0.5; 4 – 0.7; 5 – 1.0; c) Absorption spectras of solutions FeCl₃–BuOH–HCl at 25°C, FeCl₃ 0.12; HCl: 1 – 0; 2 – 0.25; 3 – 1.5, mol/l.

Influence of the acid – In interval of HCl concentration from 0 up to 0.7 mol/l the rate of reaction (1) increases, the yield of the dialkylphosphite slightly decreases (Fig. 3, Table 1). The reaction order on HCl is equal 0.8. The UV-spectrum of FeCl₃–BuOH solution contains absorption band with a maximum at 370 nm that corresponds to the molecular form of FeCl₃ (Fig. 3c, Spectrum 1). In the presence of HCl the spectrum exhibits the absorption bands due to the anionic form FeCl₄⁻ (Spectra 2, 3), which is most active in reaction (1). With increasing of HCl concentration the intensity of this band increases. Obtained results are in agreement with authors' works [6-8]. The stability constant of tetrachloroferrat complex FeCl₄⁻, calculated from the spectrophotometric data, is 0.7, while the calculations from the kinetic data give the value of 0.5 l/mol.

Under optimal conditions, the yield of dialkylphosphites is 70-80%, di-, trialkylphosphates – 20-30%. The molar ratio of final products depends on...
nature of alcohols and Fe (III) salts. The yield of
dialkylphosphites is reduced by transition to low mo-
lecular alcohols (PrOH), and by replacement FeCl3
on FeBr3 (Table 1).

In argon atmosphere Fe (III) is reduced by hypo-
phosphite up to Fe (II) with formation of dialkylphos-
phite (Table 1).

\[\text{NaH}_2\text{PO}_2 + 2\text{FeX}_3 + 2\text{ROH} \rightarrow (\text{RO})_2\text{HPO} + + 2\text{FeX}_2 + \text{HX} + \text{NaX} + \text{H}_2\text{O} \] (2)

Introduction of O₂ in this system results to reoxi-
dation of FeX₃

\[\text{FeX}_2 + 0.25\text{O}_2 + \text{HX} \rightarrow \text{FeX}_3 + 0.5\text{H}_2\text{O} \] (3)

The Mössbauer spectra of "in sity" solutions showed
that the content of Fe (III) in Ar atmosphere
gradually decreased up to 22%, and the amount of
Fe (II) reached 88%. Noticeable diminution of quad-
rupole splitting (Δ) and downward tendency of iso-
meric shift (δ) were observed for trivalent state during
experiment that testifies to coordination of acceptor
ligands. In oxygen atmosphere the content of Fe (II)
in a point corresponding to the maximum rate reached
15% and decreased up to 13.5% in the end of experi-
ment. However, the gradual diminution of quadrupole
splitting for trivalent state testified that the reduc-
tion proceeds constantly. The Fe (III) parameters
changed as compared to the initial state, thus point-
ing to the ligand coordination and the formation of
more symmetric environment of Fe³⁺ ion. The Fe (II)
forms also changed during the experiment, which
suggests the change in its ligand environment

The identity of products obtained in aerobic and
anaerobic conditions, the data of Mössbauer spec-
troscopy, extremal patterns of the conversion, kinetic
and potentiometric curves have allowed concluding
about the separate redox-mechanism of a reaction
(1). The initial section of the curves corresponds to
the predominant process of Fe (III) reduction with
hypophosphite (2), in the descending section, the Fe
(II) reoxidation with oxygen (3) prevails. The rates
of both processes are equal at the maximum point.
Insofar as the oxidation of Fe (II) with molecular
oxygen has been studied quiet thoroughly, our atten-
tion was primarily given to the mechanism of reac-
tion (2). The obtained physicochemical regularities,
physicochemical data, and the literature data on the
reactions of hydrophosphoryl compounds [9,10] and
on the redox processes including the Fe (III) com-
plexes allowed us to propose the coordination mecha-
nism of Fe (III) reduction with hypophosphite. Ac-
cording to NMR ³¹P spectra sodium hypophosphite
in alcoholic solution exists mainly as alkylhypophos-
phite (RO) H₃PO, described by a chemical shift 14.91
ppm [11]. At the presence of transitional metal ions
alkylhypophosphite fast transforms in hydroxy-de-
\[\text{RO}(\text{HO})\text{PH} \] [12]. Due to availability of un-
shared pair of electrons the tautomeric form forms
metal complexes that are confirmed by the NMR ³¹P
spectrum of the reaction solution (-11.3 ppm). Like
the other bonds of H atoms with heteroatoms, the
acidity of the P–H bond sharply increases as the re-
result of coordination, which favors its dissociation and
HX elimination from the complexes.

\[(\text{RO})(\text{HO})\text{PH} + \text{FeX}_3 + \text{ROH} \leftrightarrow \]
\[\leftrightarrow \text{Fe}[\text{P(RO)(OH)}]\text{X}_2 + 2\text{HX} \] (4)

In limiting stage (5) innersphere redox-decompo-
sition of intermediate alcoxyhypophosphite complex
of Fe (III) take place with formation of dialkylphos-
phite and Fe (I), that is quickly oxidized to Fe(II) (6):

\[\text{Fe}[\text{P(RO)(OH)}]\text{X}_2 \rightarrow (\text{RO})\text{HPO} + \text{FeX}_3 \] (5)

\[\text{FeX}_3 + \text{FeX} \rightarrow 2\text{FeX}_2 \] (6)

No homolytic one-electron decomposition is ob-
served since the use of inhibitor of radicals – quinone,
does not hinder process. Oxidizing heterolysis is fa-
cilitated at presence of ligands forming complexes
with the reduced form [13].

At pH constant the reaction rate at the maximum
point is described by the following equation:

\[W_{\text{max}} = k_{\text{red}}[^{\text{NaH}_2\text{PO}_2][\text{ROH}][\text{FeX}_3] = = k_{\text{red}}[\text{FeX}_3][\text{O}_2] \] (7)

where \[^{\text{NaH}_2\text{PO}_2}, [\text{ROH}], [\text{FeX}_3], [\text{O}_2] \] – rea-
gent concentrations in a liquid phase, \(k_{\text{red}} \) – con-
stant of rate of Fe (III) reduction, mol⁻¹·l⁻¹·min⁻¹; \(k_{\text{ox}} \) – con-
stant of rate of oxidation Fe (II) by oxygen, mol⁻¹·l⁻¹·min⁻¹.
Concentration of O₂ in a liquid phase is calculated ta-
king into consideration the influences of temperature,
partial pressure and effect of salts. Concentration of
NaH₂PO₂ is calculated from the amount of absorbed
oxygen at the moment.

The kinetic equation was derived, using method
of stationary concentration and balance for the cata-
lyst forms and having in mind that at the maximum
point \(W_{\text{max}} = W_{\text{ox}} = W_{\text{red}} \)

\[W_{\text{max}} = \frac{k_{\text{red}}[^{\text{NaH}_2\text{PO}_2][\text{ROH}][\text{FeX}_3]k_{\text{ox}}[\text{O}_2]}{k_{\text{ox}}[\text{O}_2] + k_{\text{red}}[^{\text{NaH}_2\text{PO}_2][\text{ROH}]} \] (8)

where \[^{\text{NaH}_2\text{PO}_2}, [\text{ROH}], [\text{FeX}_3] \] – total concentra-
tion of iron. For description of reaction (1) the kinetic ($k_{\text{red}}, k_{\text{ox}}$) and activation parameters ($E_{\text{red}}^*, E_{\text{ox}}^*, \Delta S_{\text{red}}^*, \Delta S_{\text{ox}}^*$) were calculated (Table 2) by graphic solution of equation (8). The coordination mechanism of the process is confirmed by low values of E^* and the negative activation entropies ΔS^* (Table 2).

Table 2

FeX₃	ROH	$k_{\text{red}} \times 10^3$, F/mol$^*\cdot$min	k_{ox}, l/mol$^*\cdot$min	E_{red}^*, kJ/mol	E_{ox}^*, kJ/mol	S_{red}^*, J/mol$^*\cdot$K	S_{ox}^*, J/mol$^*\cdot$K
FeCl₃	PrOH	2.0	1.5	39.0	41.0	-196.0	-137.0
FeCl₃	BuOH	1.5	1.1	54.0	56.0	-157.0	-92.0
FeCl₃	i-AmOH	1.2	0.9	63.0	67.0	-133.0	-71.0
FeBr₃	BuOH	1.8	1.4	51.0	54.0	-170.0	-125.0

Conclusions

Thus, the possibility of dialkylphosphites synthesis from cheap, accessible and harmless NaH₂PO₂ and alcohols was shown. The kinetics of the process was studied. The separate redox-mechanism of NaH₂PO₂ oxidation by oxygen at the presence of Fe (III) complexes was offered. Kinetic and activation parameters of the new reaction were calculated.

References

1. Abdreimova R.R., Faizova F.Kh, Akbayeva D. N., Polimbetova G.S., Aibasova S.M., Boran-gazieva A.K., Aliev M.B., Eurasian Chem. Tech. Journal 4:11 (2002).
2. Hussain J., Mishra S.K. and P.D. Sharma S.K., J. Chem. Soc. Dalton Trans. 1:89 (1991).
3. Wojciechowski K., Malecki A., Int. J. Chem. Kinet. 31:737 (1999).
4. Kimura M., Seki K., Horei H., Tsukana K., Bull. Chem. Soc. Jpn. 69:613 (1996).
5. Mohnot K., Sharma P.K., Banerji K.K., J. Indian Chem. Soc. 74:12 (1997).
6. Dichevskaya V.I., Kovbik A.A., Dulova V.I., Zaharov I.N., Koord. Khim. 8:1219 (1982).
7. Bogomolov A. Yu., Rostovshikova T.N., Smirnov V.V., Zh. Fiz. Khim. 69:1197 (1995).
8. Bogomolov A. Yu., Smirnov V.V., Rostovshikova T.N., Gerasimov P.V., Kinet. Katal. 36:253 (1995).
9. Yulelevich V.I., Sokolov L.V., Ionin B.I., Uspekhi Khimii 49:92 (1980).
10. Nifant’ev E.E. Chemistry of Hydrophosphoryl Compounds. Science, M., 1983, p. 246.
11. Nifant’ev E.E., Vasyatina L.K. NMR 31P Spectroscopy. MGPI, M. 1986, p. 148.
12. Troickaya A.D. Problem of Coordination Chemistry. Reactionary Ability of Coordination Compounds. Science, M. 1976, p. 7.
13. Temkin O.N. Introduction in Metallocomplex Catalysis. Catalysis and Coordination Chemistry. MITCT, M. 1980, p. 185.
14. Okamoto J., Kusano T., Takamuku S., Phosp. Sulfur, Silicon and Relat. Elem. 55:195 (1991).

Received 18 June 2004.