Badoux, S., Afshar, S. A. A., Michon, B., Ouellet, A., Fortier, S., LeBoeuf, D., ... Taillefer, L. (2016). Critical Doping for the Onset of Fermi-Surface Reconstruction by Charge-Density-Wave Order in the Cuprate Superconductor La$_{2-x}$Sr$_x$CuO$_4$. *Physical Review X*, 6(2), [021004]. https://doi.org/10.1103/PhysRevX.6.021004

Publisher's PDF, also known as Version of record

License (if available):
CC BY

Link to published version (if available):
10.1103/PhysRevX.6.021004

Link to publication record in Explore Bristol Research
PDF-document

This is the final published version of the article (version of record). It first appeared online via APS at 10.1103/PhysRevX.6.021004. Please refer to any applicable terms of use of the publisher.

University of Bristol - Explore Bristol Research

General rights

This document is made available in accordance with publisher policies. Please cite only the published version using the reference above. Full terms of use are available:
http://www.bristol.ac.uk/pure/about/ebr-terms
Critical Doping for the Onset of Fermi-Surface Reconstruction by Charge-Density-Wave Order in the Cuprate Superconductor \(\text{La}_{2-x}\text{Sr}_x\text{CuO}_4 \)

S. Badoux,1,6 S. A. A. Afshar,1 B. Michon,1 A. Ouellet,1 S. Fortier,1 D. LeBoeuf,2 T. P. Croft,3 C. Lester,3 S. M. Hayden,3 H. Takagi,1 K. Yamada,5 D. Graf,6 N. Doiron-Leyraud,1 and Louis Taillefer1,7,9

1Département de Physique & RQMP, Université de Sherbrooke, Sherbrooke, Québec J1K 2R1, Canada
2Laboratoire National des Champs Magnétiques Intenses, UPR 3228, (CNRS-INSA-UJF-UPS), Grenoble 38042, France
3H. H. Wills Physics Laboratory, University of Bristol, Bristol BS8 1TL, United Kingdom
4Department of Advanced Materials, University of Tokyo, Kashiwa 277-8561, Japan
5Institute of Materials Structure Science, High Energy Accelerator Research Organization & The Graduate University for Advanced Studies, Oho, Tsukuba 305-0801, Japan
6National High Magnetic Field Laboratory, Tallahassee, Florida 32310, USA
7Canadian Institute for Advanced Research, Toronto, Ontario M5G 1Z8, Canada

(Received 18 November 2015; revised manuscript received 29 February 2016; published 6 April 2016)

The Seebeck coefficient \(S \) of the cuprate superconductor \(\text{La}_{2-x}\text{Sr}_x\text{CuO}_4 \) (LSCO) was measured in magnetic fields large enough to access the normal state at low temperatures, for a range of Sr concentrations from \(x = 0.07 \) to \(x = 0.15 \). For \(x = 0.11, 0.12, 0.125 \), and \(0.13 \), \(S/T \) decreases upon cooling to become negative at low temperatures. The same behavior is observed in the Hall coefficient \(R_H(T) \). In analogy with other hole-doped cuprates at similar hole concentrations \(p \), the negative \(S \) and \(R_H \) show that the Fermi surface of LSCO undergoes a reconstruction caused by the onset of charge-density-wave modulations. Such modulations have indeed been detected in LSCO by x-ray diffraction in precisely the same doping range. Our data show that in LSCO this Fermi-surface reconstruction is confined to \(p_{\text{CDW}} = 0.15 \pm 0.005 \), well below the pseudogap critical doping \(p^* = 0.19 \).

DOI: 10.1103/PhysRevX.6.021004

Subject Areas: Condensed Matter Physics, Materials Science, Superconductivity

I. INTRODUCTION

Since the discovery of quantum oscillations [1] and a negative Hall coefficient \(R_H \) [2] in the cuprate superconductor \(\text{YBa}_2\text{Cu}_3\text{O}_y \) (YBCO), it has become clear that the Fermi surface of underdoped YBCO undergoes a reconstruction at low temperatures that produces a small electron pocket [3], in a doping range from \(p = 0.08 \) to \(p = 0.15 \) [4]. This Fermi-surface reconstruction (FSR) was also detected as a sign change in the Seebeck coefficient \(S(T) \), going from positive at high temperatures to negative at low temperatures [5]. A strikingly similar change of sign in \(S(T) \) observed in the cuprate \(\text{La}_{1.8-x}\text{Eu}_x\text{CuO}_4 \) (Eu-LSCO) [6] suggested that the stripe order known to exist in Eu-LSCO [7]—a combination of charge-density-wave (CDW) and spin-density-wave (SDW) modulations—is responsible for the FSR in both materials. The observation of CDW modulations in YBCO by NMR [8] and x-ray diffraction (XRD) [9,10] confirmed this conjecture and demonstrated that it is the CDW (not the SDW) modulations that cause the FSR.

In YBCO, the drop in \(R_H(T) \) and \(S/T \) begins at a temperature \(T_{\text{max}} \) that peaks at \(p = 0.12 \) [Fig. 1(a)]. This drop is attributed to the CDW modulations detected by XRD [11,12] and NMR [21] below a temperature \(T_{\text{CDW}} \) in the same doping range as the FSR [4], with \(T_{\text{CDW}} \) also peaking at \(p = 0.12 \) [Fig. 1(a)].

In \(\text{HgBa}_2\text{CuO}_4+\delta \) (Hg1201), high-field measurements of Hall and Seebeck coefficients revealed a similar FSR [22], confirmed by the observation of quantum oscillations [23] and again attributed to XRD-detected CDW modulations [24]. All this suggests that CDW modulations and the associated FSR are generic properties of hole-doped cuprates in the vicinity of \(p = 0.12 \). A major outstanding question is the following: Up to what critical doping \(p_{\text{CDW}} \) do CDW modulations extend in the phase diagram (Fig. 1), in particular, in the field-induced normal state at \(T = 0 \)? In this context, the material LSCO offers a powerful platform since good crystals can be grown with \(p \) up to 0.3 and beyond. CDW modulations have been observed in LSCO with XRD, at \(p = 0.12 \) [13,14,25], but there is little information about the associated FSR.
In this paper, we report high-field measurements of the Seebeck coefficient in LSCO single crystals at several dopings, which show that \(S \) becomes negative in the normal state at low temperatures in precisely the doping range where CDW modulations are detected by XRD. \(R_H \) is also found to be negative in that range. The FSR in LSCO is therefore very similar to the FSR in YBCO and Hg1201. Our data show that the FSR does not extend above \(p = 0.15 \), strong evidence that CDW order in LSCO ends at a critical doping \(p_{CDW} = 0.15 \). This implies that in the normal state of LSCO, the phase of CDW order ends well before the pseudogap phase, which ends at the critical doping \(p^* \approx 0.19 \) (Ref. [26]).

II. METHODS

Single crystals of LSCO were grown by the flux-zone technique with Sr concentrations \(x = 0.085, 0.11, 0.12, \) and 0.13 at the University of Bristol, \(x = 0.07 \) and 0.125 at the University of Tokyo, and \(x = 0.144 \) and 0.15 at Tohoku University. Samples were cut in the shape of rectangular platelets, with typical dimensions 0.5 mm x 1.0 mm x 0.1 mm. The hole concentration (doping) \(p \) is taken to be \(p = x \). The (zero-resistance) superconducting transition temperature of the eight samples is \(T_c = 12.7 \), 20.2, 26.2, 27.5, 28.0, 32.3, 37.2, and 36.5 K for \(p = 0.07, 0.085, 0.11, 0.12, 0.125, 0.13, 0.144 \), and 0.15, respectively. The Seebeck coefficient was measured, as described elsewhere [6], at Sherbrooke (all samples) up to \(H = 20 \) T, at the National High Magnetic Field Laboratory (NHMFL) in Tallahassee up to \(H = 34 \) T \((x = 0.125 \) and 0.15\) and up to \(H = 45 \) T \((x = 0.13)\), and at the Laboratoire National des Champs Magnétiques Intenses (LNCMI) in Grenoble up to \(H = 34 \) T \((x = 0.07 \) and 0.144\). The Hall coefficient of samples with \(x = 0.11, 0.12, 0.125, \) and 0.13 was measured, as described elsewhere [4], at Sherbrooke in \(H = 16 \) T. All crystals have an orthorhombic crystal structure, and they are twinned. The thermal gradient or electrical current was applied in the basal plane, while the magnetic field was applied along the \(c \) axis.

III. SEEBECK COEFFICIENT

In Fig. 2, the Seebeck data for six samples are plotted as \(S/T \) vs \(H \) for several temperatures. We see that for \(x = 0.125 \) [Fig. 2(c)] and \(x = 0.13 \) [Fig. 2(d)], \(S \) becomes negative at high fields and low temperatures. This shows that a negative \(S \) is a property of the normal state of LSCO at these dopings, as in YBCO, Eu-LSCO, and Hg1201. At \(x = 0.144 \), we see that at high fields, \(S/T \) decreases when the temperature drops below \(T = 15 \) K [Fig. 2(e)]. In contrast, no such decrease is observed at \(x = 0.15 \), down to the lowest temperature [Fig. 2(f)]. At \(x = 0.07 \), \(S/T \) increases steadily with decreasing \(T \) at high fields, down to the lowest temperature [Fig. 2(a)]. This is also true at \(x = 0.085 \) [Fig. 2(b)]. Although here our data only go to 20 T, the crossing of the lowest isotherms shows that \(S/T \) keeps increasing down to \(T = 15 \) K, at least.

In Figs. 3 and 4, we plot \(S/T \) vs \(T \), at high fields. In Fig. 3(a), we see that the drop in \(S/T \) at \(x = 0.125 \) to negative values starts below a temperature \(T_{max} = 40 \) K. This is also the case at \(x = 0.11 \) and \(0.13 \) [Fig. 4(a)]. In Fig. 4(b), we compare data on three samples taken in identical conditions, at \(H = 16 \) T. [Although the LSCO sample with \(x = 0.12 \) was only measured up to \(18 \) T, \(S/T \) at
$T = 8$ K is increasingly negative with increasing H—inset of Fig. 4(b)—confirming that a negative S is a property of the normal state also at that doping. The location of the peak in S/T vs T is seen to decrease from $T_{\text{max}} = 45$ K at $x = 0.12$, to $T_{\text{max}} = 42.5$ K at $x = 0.125$, to $T_{\text{max}} = 40$ K at $x = 0.13$. Those T_{max} values are plotted on the phase diagram of LSCO in Fig. 1(b). Raising the doping further, we observe that T_{max} continues its steady descent. Indeed, at $p = 0.144$, S/T now peaks at $T_{\text{max}} \approx 15$ K [Fig. 3(b)]. Extrapolating this trend yields $T_{\text{max}} \to 0$ at $p \to 0.15$ [Fig. 1(b)]. Our data at $x = 0.15$ confirm this, with S/T showing no decrease down to at least 9 K [Figs. 2(f) and 3(b)]. This shows that FSR in LSCO ends at a critical doping $p_{\text{FSR}} = 0.15 \pm 0.005$.

At $x = 0.07$, the normal-state S/T increases monotonically with decreasing T, down to our lowest temperature [Fig. 3(a)]. There is clearly no FSR at that doping. At $x = 0.12$, S/T decreases at low temperatures, reaching negative values. For $x = 0.144$, S/T also decreases at low temperatures, below 15 K. This decrease is the signature of FSR. In contrast, for $x = 0.07$ and 0.15, S/T at the highest measured field keeps increasing with decreasing temperature down to the lowest temperature. This shows that there is no FSR at those dopings, at least down to 4 K and 9 K, respectively. The same is true at $x = 0.085$, at least down to 15 K.

\[T_{\text{max}} \] marks the temperature below which S/T decreases at low temperatures (arrow), in some cases reaching negative values, as seen here for $x = 0.125$. This decrease is the signature of FSR. Note how the data for $x = 0.144$ and $x = 0.15$ split below $T \approx 30$ K, with the former dropping at low T because of FSR and the latter showing no decrease, and hence no FSR (at least down to 9 K).

$x = 0.085$, although we only measured up to 18 or 20 T, we observe that S/T at $H = 18$ T increases as $T \to 0$, at least down to 15 K [Fig. 2(b)]. So here $T_{\text{max}} < 15$ K. In Fig. 1(b), we plot T_{max} vs p for our eight samples, with...
their uncertainty, and thereby delineate the region where FSR occurs in the $T - p$ phase diagram of LSCO. We see that the FSR region peaks at $p ≃ 0.12$ and is confined between $p ≃ 0.085$ and $p = p_{\text{FSR}} = 0.15 ± 0.005$.

IV. HALL COEFFICIENT

In Fig. 5(c), the Hall coefficient of our LSCO crystal with $x = 0.12$, measured at $H = 16$ T, is plotted as R_H vs T. We see that $R_H(T)$ drops below $T = 50$ K and becomes negative below $T ≃ 20$ K. Data for our crystals with $x = 0.11$, 0.125, and 0.13 are very similar, also negative at low T, and all in excellent agreement with prior low-field data on single crystals of LSCO with $x = 0.12$ [27]. (The absence of a negative R_H in previous high-field data on thin films of LSCO [28] may be due to the higher disorder of such samples.) A similar drop in $R_H(T)$ has been seen in Eu-LSCO [29] and in La$_{1.4-x}$Nd$_{0.6}$Sr$_x$CuO$_4$ (Nd-LSCO) [30], when $p ≃ 0.12$; in both materials, it is closely linked to the onset of CDW order.

V. DISCUSSION

Taken together, the negative Hall and Seebeck coefficients in the normal state of LSCO are conclusive evidence of FSR in this material, in the vicinity of $p = 0.12$. This adds up to the previous three cases, namely, YBCO, Eu-LSCO, and Hg1201. In all four cases, the FSR occurs in a region of the $T - p$ phase diagram where CDW modulations have been detected by XRD (Fig. 1). The link between CDW and FSR is robust.

It is instructive to compare LSCO and YBCO. The two phase diagrams are similar (Fig. 1). In both cases, T_{FSR} and T_{CDW} peak at $p = 0.12$, and the region of FSR is confined to similar ranges—from $p ≃ 0.085$ to $p = 0.15$ in LSCO and from $p = 0.08$ to $p = 0.15$ in YBCO [4]. In Fig. 5, we compare data for LSCO and YBCO directly, at $p = 0.12$. The CDW modulations detected by XRD emerge below a temperature twice as high in YBCO compared to LSCO [Fig. 5(a)]: $T_{\text{CDW}} ≃ 150$ K in YBCO vs $T_{\text{CDW}} ≃ 75$ K in LSCO. Correspondingly, the FSR is detected at a temperature twice as high in YBCO compared to LSCO, with $T_{\text{FSR}} ≃ 100$ K in YBCO vs $T_{\text{FSR}} ≃ 50$ K in LSCO [Fig. 5(b)]. All this suggests that CDW ordering is a stronger tendency in YBCO than in LSCO. Intriguingly, the superconducting transition temperature T_c is roughly twice as high in YBCO as compared to LSCO [see cusp in Fig. 5(a)]. This raises the interesting possibility that the same underlying mechanism, perhaps magnetic, fuels both superconductivity and CDW order [31].

Given that FSR in LSCO ends at $p_{\text{FSR}} = 0.15$, we infer that this is also where CDW order ends. This is consistent with recent XRD measurements that detect no CDW modulations in LSCO at $x = 0.15$ [32]. (The same consistency is observed at $x = 0.085$, where again no CDW modulations are detected by XRD [32].) We thus arrive at key information: The CDW phase in LSCO ends at $p_{\text{CDW}} = 0.15$.

This is distinctly below the critical point where the pseudogap phase is believed to end in LSCO, at $p^* = 0.19$, as determined from the normal-state resistivity measured in high magnetic fields [26]. This clear separation reveals that the pseudogap phase is not caused by the CDW ordering. Instead, it suggests that CDW order is a secondary instability of the pseudogap phase. A very similar separation was recently observed in YBCO from high-field Hall...
that CDW modulations disappear at data on LSCO, our Seebeck data make a compelling case XRD in the very same doping range. Combined with XRD we attribute this FSR to the CDW modulations detected by analogy with the cuprates YBCO, Eu-LSCO, and Hg1201, temperatures, in the doping range state Fermi surface undergoes a reconstruction at low in the cuprate superconductor LSCO reveal that its normal-

effect measurements, with \(p_{CDW} = 0.16 \pm 0.005 \) and \(p^* = 0.19 \) [33]. This strongly suggests that a separation of \(p_{CDW} \) and \(p^* \) is a generic property of cuprates.

VI. SUMMARY

Our high-field measurements of the Seebeck coefficient in the cuprate superconductor LSCO reveal that its normal-state Fermi surface undergoes a reconstruction at low temperatures, in the doping range 0.085 < \(p < 0.15 \). In analogy with the cuprates YBCO, Eu-LSCO, and Hg1201, we attribute this FSR to the CDW modulations detected by XRD in the very same doping range. Combined with XRD data on LSCO, our Seebeck data make a compelling case that CDW modulations disappear at \(p = p_{CDW} = 0.15 \), so the field-induced nonsuperconducting ground state of LSCO above \(p = 0.15 \) has no CDW order. Because the pseudogap phase in the normal state of LSCO extends up to \(p = 0.19 \), we infer that the pseudogap is not tied to CDW ordering. Instead, the CDW modulations appear to be a secondary instability of the pseudogap phase.

ACKNOWLEDGMENTS

We thank J. Chang, N. E. Hussey, M.-H. Julien, P. A. Lee, B. J. Ramshaw, S. Sachdev, J. L. Tallon, and G. A. Sawatzky for stimulating discussions. A portion of this work was performed at the National High Magnetic Field Laboratory, which is supported by the National Science Foundation Cooperative Agreement No. DMR-1157490, the State of Florida, and the U.S. Department of Energy. Another portion of this work was performed at the Laboratoire National des Champs Magnétiques Intenses of the CNRS, member of the European Magnetic Field Laboratory. L. T. acknowledges support from the Canadian Institute for Advanced Research (CIFAR) and funding from the National Science and Engineering Research Council of Canada (NSERC), the Fonds de recherche du Québec–Nature et Technologies (FRQNT), the Canada Foundation for Innovation (CFI), and a Canada Research Chair.

[1] N. Doiron-Leyraud, C. Proust, J. Levallois, J.-B. Bonnemaison, R. Liang, D. A. Bonn, W. N. Hardy, and L. Taillefer, Quantum Oscillations and the Fermi Surface in an Underdoped High-\(T_c \) Superconductor, Nature (London) 447, 565 (2007).
[2] D. LeBoeuf, N. Doiron-Leyraud, J. Levallois, R. Daou, J.-B. Bonnemaison, N. E. Hussey, L. Balicas, B. J. Ramshaw, R. Liang, D. A. Bonn et al., Electron Pockets in the Fermi Surface of Hole-Doped High-\(T_c \) Superconductors, Nature (London) 450, 533 (2007).
[3] L. Taillefer, Fermi Surface Reconstruction in High-\(T_c \) Superconductors, J. Phys. Condens. Matter 21, 164212 (2009).
[4] D. LeBoeuf, N. Doiron-Leyraud, B. Vignolle, M. Sutherland, B. J. Ramshaw, J. Levallois, R. Daou, F. Laliberté, O. Cyr-Choinière, J. Chang et al., Lifshitz Critical Point in the Cuprate Superconductor \(\mathrm{YBa}_2\mathrm{Cu}_3\mathrm{O}_6 \) from High-Field Hall Effect Measurements, Phys. Rev. B 83, 054506 (2011).
[5] J. Chang, R. Daou, C. Proust, D. LeBoeuf, N. Doiron-Leyraud, F. Laliberté, B. Pingault, B. J. Ramshaw, R. Liang, D. A. Bonn et al., Nernst and Seebeck Coefficients of the Cuprate Superconductor \(\mathrm{YBa}_2\mathrm{Cu}_3\mathrm{O}_{6.67} \): A Study of Fermi Surface Reconstruction, Phys. Rev. Lett. 104, 057005 (2010).
[6] F. Laliberté, J. Chang, N. Doiron-Leyraud, E. Hassinger, R. Daou, M. Rondeau, B. J. Ramshaw, R. Liang, D. A. Bonn, W. N. Hardy et al., Fermi-Surface Reconstruction by Stripe Order in Cuprate Superconductors, Nat. Commun. 2, 432 (2011).
[7] J. Fink, V. Soltwisch, J. Geek, E. Schierle, E. Wesschke, and B. Buchner, Phase Diagram of Charge Order in \(\mathrm{La}_{1.8-x}\mathrm{Eu}_x\mathrm{Sr}_2\mathrm{Cu}_4 \) from Resonant Soft X-Ray Diffraction, Phys. Rev. B 83, 092503 (2011).
[8] T. Wu, H. Mayaffre, S. Krämer, M. Horvatić, C. Berthier, W. N. Hardy, R. Liang, D. A. Bonn, and M.-H. Julien, Magnetic-Field-Induced Charge-Stripe Order in the High-Temperature Superconductor $YBa_2Cu_3O_6$, Nature (London) 477, 191 (2011).

[9] G. Ghiringhelli, M. Le Tacon, M. Minola, S. Blanco-Canosa, C. Mazzoli, N. B. Brookes, G. M. De Luca, A. Frano, D. G. Hawthorn, F. He, et al., Long-Range Incommensurate Charge Fluctuations in $Y(Nd)Ba_2Cu_3O_7$, Science 337, 821 (2012).

[10] J. Chang, E. Blackburn, A. T. Holmes, N. B. Christensen, J. Larsen, J. Mesot, R. Liang, D. A. Bonn, W. N. Hardy, A. Watenphul, et al., Direct Observation of Competition between Superconductivity and Charge Density Wave Order in $YBa_2Cu_3O_6$, Nat. Phys. 8, 871 (2012).

[11] M. Hüber, N. B. Christensen, A. T. Holmes, E. Blackburn, E. M. Forgan, R. Liang, D. A. Bonn, W. N. Hardy, O. Gutowsky, M. v. Zimmermann, S. M. Hayden, and J. Chang, Competing Charge, Spin, and Superconducting Orders in Underdoped $YBa_2Cu_3O_y$, Phys. Rev. B 90, 054514 (2014).

[12] S. Blanco-Canosa, A. Frano, E. Schierle, J. Porras, T. Loew, M. Minola, M. Bluschke, E. Weschke, B. Keimer, and M. Le Tacon, Resonant X-Ray Scattering Study of Charge-Density Wave Correlations in $YBa_2Cu_3O_{6+y}$, Phys. Rev. B 90, 054513 (2014).

[13] T. P. Croft, C. Lester, M. S. Senn, A. Bombardi, and S. M. Hayden, Charge Density Wave Fluctuations in $La_{2-x}Sr_xCuO_4$ and Their Competition with Superconductivity, Phys. Rev. B 89, 224513 (2014).

[14] N. B. Christensen, J. Chang, J. Larsen, M. Fujita, M. Oda, M. Ido, N. Momono, E. M. Forgan, A. T. Holmes, J. Mesot, M. Huecker, and M. v. Zimmermann, Bulk Charge Striped Order Competing with Superconductivity in $La_{2-x}Sr_xCuO_4$ ($x = 0.12$), arXiv:1404.3192.

[15] D. Haug, V. Hinkov, Y. Sidis, P. Bourges, N. B. Christensen, A. Ivanov, T. Keller, C. T. Lin, and B. Keimer, Neutron Scattering Study of the Magnetic Phase Diagram of Underdoped $YBa_2Cu_3O_{6+y}$, New J. Phys. 12, 105006 (2010).

[16] J. Chang, Ch. Niedermayer, R. Gilardi, N. B. Christensen, H. M. Ronnow, D. F. McMorrow, M. Ay, J. Stahn, O. Sobolev, A. Hiess et al., Tuning Competing Orders in $La_{2-x}Sr_xCuO_4$ Cuprate Superconductors by the Application of an External Magnetic Field, Phys. Rev. B 78, 104525 (2008).

[17] M. Kofu, S. H. Lee, M. Fujita, H. J. Kang, H. Eisaki, and K. Yamada, Hidden Quantum Spin-Gap State in the Static Stripe Phase of High-Temperature $La_{2-x}Sr_xCuO_4$ Superconductors, Phys. Rev. Lett. 102, 047001 (2009).

[18] S. Wakimoto, G. Shirane, Y. Endoh, K. Hirota, S. Ueki, K. Yamada, R. J. Birgeneau, M. A. Kastner, Y. S. Lee, P. M. Gehring, and S. H. Lee, Observation of Incommensurate Magnetic Correlations at the Lower Critical Concentration for Superconductivity in $La_{2-x}Sr_xCuO_4$ ($x = 0.05$), Phys. Rev. B 60, R769 (1999).

[19] B. Lake, H. M. Ronnow, N. B. Christensen, G. Aeppli, K. Lefmann, D. F. McMorrow, P. Vorderwisch, P. Smeibidl, N. Mangkomton, T. Sasagawa et al., Antiferromagnetic Order Induced by an Applied Magnetic Field in a High-Temperature Superconductor, Nature (London) 415, 299 (2002).

[20] H. Kimura, K. Hirota, H. Matsushita, K. Yamada, Y. Endoh, S.-H. Lee, C. F. Majkrzak, R. Erwin, G. Shirane, M. Greven et al., Neutron-Scattering Study of Static Antiferromagnetic Correlations in $La_{2-x}Sr_xCu_1-yZn_yO_4$, Phys. Rev. B 59, 6517 (1999).

[21] T. Wu, H. Mayaffre, S. Krämer, M. Horvatić, C. Berthier, W. N. Hardy, R. Liang, D. A. Bonn, and M.-H. Julien, Incipient Charge Order Observed by NMR in the Normal State of $YBa_2Cu_3O_6$, Nat. Commun. 6, 6438 (2015).

[22] N. Doiron-Leyraud, S. Lepault, O. Cyr-Choinière, B. Vignolle, G. Grissonnanche, F. Lalienè, J. Chang, N. Barišić, M. K. Chan, L. Ji et al., Hall, Seebeck, and Nernst Coefficients of Underdoped $HgBa_2Cu_3O_{6.5}$: Fermi-Surface Reconstruction in an Archetypal Cuprate Superconductor, Phys. Rev. X 3, 021019 (2013).

[23] N. Barišić, S. Badoux, M. K. Chan, C. Dorow, W. Tabis, B. Vignolle, G. Yu, J. Béard, X. Zhao, C. Proust, and M. Greven, Universal Quantum Oscillations in the Underdoped Cuprate Superconductors, Nat. Phys. 9, 761 (2013).

[24] W. Tabis, Y. Li, M. Le Tacon, L. Braicovich, A. Kreyssig, M. Minola, G. Dellea, E. Weschke, M. J. Veit, M. Ramazanoglu et al., Charge Order and Its Connection with Fermi-Liquid Charge Transport in a Pristine High-T_c Cuprate, Nat. Commun. 5, 5875 (2014).

[25] V. Thampy, M. P. M. Dean, N. B. Christensen, L. Steinke, Z. Islam, M. Oda, M. Ido, N. Momono, S. B. Wilkins, and J. P. Hill, Rotated Stripe Order and Its Competition with Superconductivity in $La_{1.88}Sr_{0.12}CuO_4$, Phys. Rev. B 90, 105510 (2014).

[26] R. A. Cooper, Y. Wang, B. Vignolle, O. J. Lipscombe, S. M. Hayden, Y. Tanabe, T. Adachi, Y. Koike, M. Nohara, H. Takagi, C. Proust, and N. E. Hussey, Anomalous Criticality in the Electrical Resistivity of $La_{2-x}Sr_xCuO_4$, Science 323, 603 (2009).

[27] T. Suzuki, T. Goto, K. Chiba, M. Minami, Y. Oshima, T. Fukase, M. Fujita, and K. Yamada, Hall Coefficient of $La_{1.88}Y_{0.12}Sr_{1.88}CuO_4$ ($y = 0.04$) at Low Temperatures under High Magnetic Fields, Phys. Rev. B 66, 104528 (2002).

[28] F. F. Balakirev, J. B. Betts, A. Migliori, I. Tsukada, Y. Ando, and G. S. Boebinger, Quantum Phase Transition in the Magnetic-Field-Induced Normal State of Optimum-Doped High-T_c Cuprate Superconductors at Low Temperatures, Phys. Rev. Lett. 102, 017004 (2009).

[29] O. Cyr-Choinière, R. Daou, F. Lalienè, D. LeBoeuf, N. Doiron-Leyraud, J. Chang, J.-Q. Yan, J.-G. Cheng, J.-S. Zhou, J. B. Goodenough et al., Enhancement of the Nernst Effect by Stripe Order in a High-T_c Superconductor, Nature (London) 458, 743 (2009).

[30] T. Noda, H. Eisaki, and S. Uchida, Evidence for One-Dimensional Charge Transport in $La_{2-x}Nd_xSr_xCuO_4$, Science 286, 265 (1999).

[31] K. B. Efetov, H. Meier, and C. Pépin, Pseudogap State Near a Quantum Critical Point, Nat. Phys. 9, 442 (2013).

[32] T. P. Croft and S. M. Hayden (private communication).

[33] S. Badoux, W. Tabis, F. Lalienè, G. Grissonnanche, B. Vignolle, D. Vignolles, J. Béard, D. A. Bonn, W. N. Hardy, R. Liang et al., Change of Carrier Density at the Pseudogap Critical Point of a Cuprate Superconductor, Nature (London) 531, 210 (2016).