Spectroscopy of B_c Mesons in the Relativized Quark Model

Stephen Godfrey*
Ottawa-Carleton Institute for Physics,
Department of Physics, Carleton University,
Ottawa, Canada K1S 5B6

and

Special Research Centre for the Subatomic Structure of Matter
University of Adelaide,
Adelaide South Australia 5000, Australia
(Dated: October 24, 2018)

We calculate the spectrum of the charm-beauty mesons using the relativized quark model. Using the wavefunctions from this model we compute the radiative widths of excited $c\bar{b}$ states. The hadronic transition rates between $c\bar{b}$ states are estimated using the Kuang-Yan approach and are combined with the radiative widths to give estimates of the relative branching ratios. These results are combined with production rates at the Tevatron and the LHC to suggest promising signals for excited B_c states. Our results are compared with other models to gauge the reliability of the predictions and point out differences.

PACS numbers: 12.39.-x, 13.20.-v, 13.25.-k, 13.40.-f

I. INTRODUCTION

The charm-beauty (B_c) quarkonium states provide a unique window into heavy quark dynamics and therefore an important test of quantum chromodynamics. Although they are intermediate to the charmonium and bottomonium systems the properties of B_c mesons are a special case in quarkonium spectroscopy as they are the only quarkonia consisting of heavy quarks with different flavours. Because they carry flavour they cannot annihilate into gluons so are more stable with widths less than a hundred keV. Excited B_c states lying below BD (and BD^* or B^*D) threshold can only undergo radiative or hadronic transitions to the ground state B_c which then decays weakly. This results in a rich spectroscopy of narrow radial and orbital excitations below $B^{(*)}D^{(*)}$ threshold which are more stable than their charmonium and bottomonium analogues: There are two sets of S-wave states, as many as two P-wave multiplets (the $1P$ and some or all of the $2P$) and one D-wave multiplet below BD threshold. As well, the F-wave multiplet is sufficiently close to threshold that they may also be relatively narrow due to angular momentum barrier suppression of the Zweig allowed strong decays.

The discovery of the B_c meson by the Collider Detector at Fermilab (CDF) Collaboration [1] in $p\bar{p}$ collisions at $\sqrt{s} = 1.8$ TeV has demonstrated the possibility of the experimental study of this system and has stimulated considerable interest in B_c spectroscopy [2, 3, 4, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16]. Calculations of B_c cross sections at hadron colliders predict that large samples of B_c states should be produced at the Tevatron and at the LHC opening up this new spectroscopy [17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27]. At the Tevatron it is estimated that $O(10^7)$ B_c mesons should be produced for 1 fb$^{-1}$ of integrated luminosity while at the LHC $O(10^8)$ B_c mesons are expected to be produced for $L = 100$ fb$^{-1}$. These numbers are highly sensitive to the p_T and rapidity cuts used to extract the signal [11, 21]. The B_c^* cross sections are expected to be 50-100% larger than the B_c cross sections [18, 21, 22] and Cheung and Yuan [22, 23] predict excited P-waves to contribute 20% of inclusive B_c production while D-wave states are expected to contribute about 2% [26]. Chang and Chen [24] and Cheung [21] estimate that the $2S$ states will be produced in roughly the ratio of $2S/1S \simeq 0.6$. It should therefore be possible to start exploring $c\bar{b}$ spectroscopy at the Tevatron, producing the $1P$ and $2S$ states and possibly even some $1D$ and $2F$ states with sufficient rate to be observed. At the LHC, with its higher luminosity, the D-wave $c\bar{b}$ states should be produced in a sizable number so that the LHC should allow the study of the spectroscopy and decay of B_c mesons.

In this paper we study the spectroscopy, including radiative transitions, of charm-beauty mesons using the relativized quark model [6, 25, 26]. The model includes one-gluon exchange with a running coupling constant and a linear confining potential. It uses relativistic kinematics and momentum dependent and nonlocal interactions. Although this model is not a rigorous calculation from first principles it gives a good account of most known mesons and baryons with only a few free parameters [6, 25, 26, 30, 31] so that it provides a useful guide to missing states. We compare its predictions to those of other models with the aim of highlighting which predictions are most sensitive to details of the models and there-
for the most useful in distinguishing models. However, we are also interested in pointing out which predictions give the greatest agreement between models and therefore offer the most robust signatures for experiments to look for. Observation of these states and measurement of their properties would provide valuable information distinguishing details of the various models.

We start with a brief outline of the relativized quark model and comment on its similarities and differences with other quark model calculations. The spectroscopic predictions are given and compared to those of other calculations. This model has ingredients common to many quark potential models [4, 8, 9, 10, 12].

Almost all such models are based on some variant of the Coulomb plus linear potential expected from QCD. An exchange interaction at short distance and a Lorentz dynamics are governed by a Lorentz vector one-gluon interaction at short distance and a Lorentz scalar linear confining interaction. The basic equation of the model is the rest frame Schrödinger-type equation [40]:

\[H |\psi\rangle = [H_0 + V_{qq}(\vec{p}, \vec{r})] |\psi\rangle = E |\psi\rangle \]

where

\[H_0 = \sqrt{p^2 + m_q^2} + \sqrt{p^2 + m_q^2} \]

The effective quark-antiquark potential, \(V_{qq}(\vec{p}, \vec{r}) \), was found by equating the scattering amplitude of free quarks, using a scattering kernel with the desired Dirac structure, with the effects between bound quarks inside a hadron [11, 12]. Due to relativistic effects the potential is momentum dependent in addition to being co-ordinate dependent. To first order in \((\mu/e)^2\), \(V_{qq}(\vec{p}, \vec{r}) \) reduces to the standard non-relativistic result:

\[V_{qq}(\vec{p}, \vec{r}) \rightarrow V(\vec{r}) = H_{qq}^{conf} + H_{qq}^{cont} + H_{qq}^{ten} + H_{qq}^{s.o.} \]

where

\[H_{qq}^{conf} = C + br - \frac{4 \alpha_s(r)}{3} \]

includes the spin-independent linear confinement and Coulomb-like interaction,

\[H_{qq}^{cont} = \frac{32\pi}{9} \alpha_s(r) \frac{\bar{S}_q \cdot \bar{S}_q \delta^3(\vec{r})}{m_q m_{\bar{q}}} \]

is the colour contact interaction,

\[H_{qq}^{ten} = \frac{4 \alpha_s(r)}{3} \frac{1}{m_q m_{\bar{q}} r^3} \left(\frac{3\bar{S}_q \cdot \vec{r} \bar{S}_q \cdot \vec{r}}{r^2} - \bar{S}_q \cdot \bar{S}_q \right) \]

is the colour tensor interaction,

\[H_{qq}^{s.o.} = H_{qq}^{s.o.(cm)} + H_{qq}^{s.o.(tp)} \]

is the spin-orbit interaction with

\[H_{qq}^{s.o.(cm)} = \frac{4 \alpha_s(r)}{3r^3} \left(\frac{\bar{S}_q}{m_q m_{\bar{q}}} + \frac{\bar{S}_{\bar{q}}}{m_q m_{\bar{q}}} + \frac{\bar{S}_q}{m_q^2} + \frac{\bar{S}_{\bar{q}}}{m_{\bar{q}}^2} \right) \cdot \vec{L} \]

its colour magnetic piece arising from one-gluon exchange and

\[H_{qq}^{s.o.(tp)} = -\frac{1}{2r} \frac{\partial H_{qq}^{conf}}{\partial r} \left(\frac{\bar{S}_q}{m_q^2} + \frac{\bar{S}_{\bar{q}}}{m_{\bar{q}}^2} \right) \cdot \vec{L} \]

the Thomas precession term. In these formulae \(\alpha_s(r) \) is the running coupling constant of QCD.

To relativize the \(q\bar{q} \) potential, the full Dirac scattering amplitude was used as a starting point which for on-shell \(q\bar{q} \) scattering is exact. However for a strongly interacting system there will in general be off-shell behavior which we did not consider in addition to other simplifications such as neglecting more complex components of Fock space. We therefore built a semiquantitative model of relativistic effects by smearing the co-ordinate over the distances of the order of the inverse quark mass by convoluting the potential with a Gaussian form factor and replacing factors of \(m_q^{-1} \) with, roughly speaking, factors of \((p^2 + m_q^2)^{-1/2} \). The details of this relativization procedure and the method of solution can be found in Ref. [40]. It should be kept in mind that because we neglected coupled channel effects and the crudeness of the relativization procedure we do not expect the mass predictions to be accurate to better than \(\sim 10 - 20\) MeV.
For the case of a quark and antiquark of unequal mass charge conjugation parity is no longer a good quantum number so that states with different total spins but with the same total angular momentum, such as the $^3P_1 - ^1P_1$ and $^3D_2 - ^1D_2$ pairs, can mix via the spin orbit interaction or some other mechanism. Equations 8 and 9 can be rewritten to explicitly give the antisymmetric spin-orbit mixing term:

$$H_{\text{a.o.}} = \frac{1}{4} \left(\frac{4 \alpha_s}{3 r^3} - \frac{b}{r} \right) \left(\frac{1}{m_Q^2} - \frac{1}{m_Q^2} \right) \vec{S}_- \cdot \vec{L}$$

(10)

where $\vec{S}_- = \vec{S}_Q - \vec{S}_{\bar{Q}}$. Consequently, the physical $j = 1$ P-wave states are linear combinations of 3P_1 and 1P_1 which we describe by:

$$P' = \begin{align*}
^1P_1 \cos \theta_{n'P} + & ^3P_1 \sin \theta_{n'P} \\
^3P_1 \sin \theta_{n'P} + & ^1P_1 \cos \theta_{n'P}
\end{align*}$$

(11)

with analogous notation for the corresponding $L = D$, F, etc. pairs. In eqn. 11 $P \equiv L = 1$ designates the relative angular momentum of the $Q\bar{Q}$ pair and the subscript $J = 1$ is the total angular momentum of the $Q\bar{Q}$ pair which is equal to L. Our notation implicitly implies $L - S$ coupling between the quark spins and the relative orbital angular momentum. In the heavy quark limit in which the heavy quark mass $m_Q \to \infty$, the states can be described by the total angular momentum of the light quark, j, which couples to the spin of the heavy quark and corresponds to $j - j$ coupling. This limit gives rise to two doublets, one with $j = 1/2$ and the other with $j = 3/2$ and corresponds to two physically independent mixing angles $\theta = -\tan^{-1}(\sqrt{2}) \approx -54.7^\circ$ and $\theta = \tan^{-1}(1/\sqrt{2}) \approx 35.3^\circ$ [18]. Some authors prefer to use the $j - j$ basis [19] but since we solve our Hamiltonian equations assuming $L - S$ eigenstates and then include the LS mixing we use the notation of eqn. 11. It is straightforward to transform between the $L - S$ basis and the $j - j$ basis. It will turn out that radiative transitions are particularly sensitive to the $^3L_L - ^1L_L$ mixing angle with predictions from different models in some cases giving radically different results. We also note that the definition of the mixing angles are fraught with ambiguities. For example, charge conjugating $\bar{c}b$ into bc flips the sign of the angle and the phase convention depends on the order of coupling \bar{L}, \vec{S}_Q and $\vec{S}_{\bar{Q}}$.

The Hamiltonian problem was solved using the following parameters: the slope of the linear confining potential is 0.18 GeV2, $m_c = 1.628$ GeV, and $m_b = 4.977$ GeV. The predictions of our model are given in Fig. 1 and are compared to the predictions of other calculations in Table I. Because the mixing angles defined in eqn. 11 are important for predictions of radiative transitions those predictions are also given in Table I. Although I have attempted to consistently give the masses and the mixing angles of the predicted eigenstates in the convention of eqn. 11 because not all authors have unambiguously defined their phase conventions I cannot guaranty that these results are free of inconsistancies.

The different models are in remarkable agreement with the differences, for the most part, within the expected accuracy of the models. This almost certainly indicates how the various models have converged to using similar confining potentials and including a strong running coupling constant in the Coulomb piece of the potential. The only significant difference is the larger spread (~ 70 MeV) for the $1D$ multiplet centre of gravity predictions. The spin-dependent splittings are also in reasonable agreement. Potential models can therefore be used as a reliable guide in searching for the B_c excited states. An important difference in the predictions is that in the Eichten-Quigg calculation [2] the $1P_1$ states are almost pure 3P_1 and 1P_1 with little mixing while in other models there is significant mixing. This arises from the much smaller expectation value of the off-diagonal mixing term (eqn. 10) in the Eichten-Quigg calculation [2] compared to the other models. Since, after rotating from the $j - j$ basis to the $L - S$ basis, the $L - S$ mixing term given by Eichten and Quigg is in agreement with eqn. 11 the differences in expectation values can only be attributed to differences in the cancellations between the short and long distance pieces in eqn. 11 i.e. between the $\frac{4}{3} \frac{a}{s}$ and $\frac{b}{s}$ pieces. This reflects subtle differences in the $q\bar{q}$ potentials of different models. Because the $E1$ radiative transitions are sensitive to the $^3P_1 - ^1P_1$ mixing, the measurement of radiative transitions can be used to distinguish between the different models. The study of the B_c spectroscopy will help test and refine the quark potential models but more importantly will test Lattice QCD, NRQCD, and pNRQCD etc. which are more directly connected to QCD.

III. RADIATIVE TRANSITIONS

Radiative transitions will likely play an important role in the discovery and identification of B_c states. In this section we calculate the $E1$ and $M1$ radiative widths. The partial width for an $E1$ radiative transition between states in the nonrelativistic quark model is given by [17]:

$$\Gamma(n^{2S+1}L_J \rightarrow n'^{2S'+1}L'_{J'} + \gamma) = \frac{4}{3} \langle e_Q \rangle^2 \alpha \omega^3 C_{f_1} \delta_{SS'} | \langle n^{2S+1}L_J | r | n^{2S'+1}L_{J'} \rangle |^2 ,$$

(12)

where

$$\langle e_Q \rangle = \frac{m_b e_c - m_c e_b}{m_b + m_c}$$

(13)

$e_c = 2/3$ is the c-quark charge and $e_b = -1/3$ is the b-quark charge in units of $|e|$, α is the fine-structure con-
II. The matrix elements \(\langle \) \(\)...\(\rangle \)

For convenience the \(C_{fi} \) coefficients are listed in Table II. The matrix elements \(\langle n^{2S'+1}L_{j'} \mid r \mid n^{2S+1}L_{j} \rangle \) are given in Table II and were evaluated using the wavefunctions given by the relativized quark model. Relativistic corrections are implicitly included in these E1 transitions through Siegert's theorem, by including spin-dependent interactions in the Hamiltonian used to calculate the meson masses and wavefunctions. The E1 radiative widths are given in Table II and compared to other predictions in Table IV.

Most of the predictions for E1 transitions are in qualitative agreement. While most differences are due to differences in phase space arising from different mass predictions the more interesting differences arise from wavefunction effects. The largest differences are for decays involving the \(P_1 \) and \(P_4 \) states which are mixtures of the spin singlet \(^3P_1 \) and spin triplet \(^3P_3 \) states. These can be traced back to the different \(^3P_1 - ^1P_1 \) mixing angles predicted by the different models. Wavefunction effects also appear in decays from radially excited states to ground state mesons such as \(2^3P_0 \to 1^3S_1 \gamma \) which varies from 4 to 22 keV. Because the \(2^3P_0 \) has a node in its wavefunction there will be a cancellation between different pieces of the \(\langle 2^3P_0 | r | 1^3S_1 \rangle \) overlap integral. Ebert, Faustov, and Galkin include an additional relativistic correction to transitions involving the mixed states caused by the difference of the \(c \) and \(b \) quark masses. This leads to further differences with the other models.

Radiative transitions which flip spin are described by magnetic dipole (M1) transitions. The rates for magnetic dipole transitions in quarkonium bound states are given in the nonrelativistic approximation by

\[
\Gamma(i \to f \gamma) = \frac{\alpha}{3} \mu^2 \omega^3 (2J_f + 1) \mid \langle f \mid j_0(kr/2) \mid i \rangle \mid^2
\]

Table I: Predicted masses and Spin-Orbit mixing angles. The first column labelled GI is the present work. The \(P_1^* - P_1 \), \(D_2^* - D_2 \), and \(F_2^* - F_3 \) states and mixing angles are defined using the convention of eqn. (11).

State	GI [6]	EFG [12]	FUI [10]	GKL [5]	EQ [2]	GJ [9]	ZVR [8]	Lattice [44]
\(1^3S_1 \)	6338	6332	6341	6317	6337	6308	6340	6321 ± 20
\(1^3S_0 \)	6271	6270	6286	6253	6264	6247	6260	6280 ± 30 ± 190
\(1^3P_2 \)	6768	6762	6772	6743	6747	6773	6760	6783 ± 30
\(1^3P_1 \)	6750	6749	6760	6729	6736	6757	6740	6765 ± 30
\(1^3P_0 \)	6741	6734	6737	6717	6730	6738	6730	6743 ± 30
\(1^3P_1 \)	6760	6699	6701	6683	6700	6689	6680	6727 ± 30
\(\theta_{1P} \)	22.4°	20.4°	28.5°	17.1°	−2°	25.6°	33.4° ± 1.5°	
\(2^3S_1 \)	6878	6881	6914	6902	6899	6886	6900	6990 ± 80
\(2^3S_0 \)	6855	6835	6882	6867	6856	6853	6850	6960 ± 80
\(2^3P_2 \)	7164	7156	7134	7153	7160			
\(2^3P_1 \)	7150	7145	7124	7142	7150			
\(2^3P_0 \)	7145	7126	7113	7135	7140			
\(\theta_{2P} \)	18.9°	23.2°	21.8°	−17°				
\(3^3S_1 \)	7272	7235	7280	7280				
\(3^3S_0 \)	7250	7193	7244	7240				
\(1^3D_3 \)	7045	7081	7032	7007	7005	7040		
\(1^3D_2 \)	7036	7079	7028	7016	7009	7030		
\(1^3D_1 \)	7041	7077	7028	7001	7012	7020		
\(\theta_{1D} \)	44.5°	−35.9°	−34.5°					
\(1^3F_4 \)	7271	7250						
\(1^3F_3 \)	7266	7250						
\(1^3F_2 \)	7276	7240						
\(1^3F_1 \)	7269	7240						
\(\theta_{1F} \)	41.4°							

*aThe error estimates are taken from Ref. [10].

bWe identify the \(1D_2 \) and \(1D_2 \) states with the \(1^3D_2 \) and \(3^3D_2 \) states of Eichten and Quigg. [2].
TABLE II: E1 transition rates. The matrix elements were obtained using the wavefunctions of the GI model. For mixed states such as $1P'_2$ and $1P_3$ the widths are calculated using the wavefunction conventions defined in eqn. 11 with the mixing angles given in Table I and the matrix elements and C_{fi} factors corresponding to the labelling of column 6.

| Initial state | Final state | M_i (MeV) | M_f (MeV) | ω (MeV) | $i \to f$ | $\langle f | r | i \rangle$ (GeV$^{-1}$) | C_{fi} | Width (keV) |
|--------------|-------------|-------------|-------------|--------------|----------|----------------------|--------|------------|
| 1^3P_2 | $1^3S_1 \gamma$ | 6768 | 6338 | 416 | $1^3P_2 \to 1^3S_1$ | 1.421 | $\frac{1}{3}$ | 83 |
| $1P'_1$ | $1^3S_1 \gamma$ | 6750 | 6338 | 399 | $1^3P_1 \to 1^3S_1$ | 1.435 | $\frac{1}{3}$ | 11 |
| | $1^1S_0 \gamma$ | 6271 | 462 | 1.288 | $1^1P_1 \to 1^1S_0$ | $\frac{1}{3}$ | 80 |
| $1P_1$ | $1^3S_1 \gamma$ | 6741 | 6338 | 391 | $1^3P_1 \to 1^3S_1$ | 1.435 | $\frac{1}{3}$ | 11 |
| | $1^1S_0 \gamma$ | 6271 | 454 | 1.288 | $1^1P_1 \to 1^1S_0$ | $\frac{1}{3}$ | 13 |
| 1^3P_0 | $1^3S_1 \gamma$ | 6706 | 6338 | 358 | $1^3P_0 \to 1^3S_1$ | 1.443 | $\frac{1}{3}$ | 55 |
| 2^3P_1 | $1^3P_2 \gamma$ | 6887 | 6768 | 118 | $2^3P_1 \to 1^3P_2$ | -1.914 | $\frac{1}{3}$ | 5.7 |
| $1P'_1$ | $1^3P_2 \gamma$ | 6750 | 136 | -1.777 | $1P'_1 \to 1^3P_2$ | $\frac{1}{3}$ | 0.7 |
| | $1P_1 \gamma$ | 6741 | 144 | -1.777 | $1P_1 \to 1^3P_1$ | $\frac{1}{3}$ | 4.7 |
| 1^3P_0 | $1^3S_1 \gamma$ | 6706 | 179 | -1.620 | $1^3P_0 \to 1^3S_0$ | $\frac{1}{3}$ | 2.9 |
| 2^1S_0 | $1P'_1 \gamma$ | 6855 | 6750 | 104 | $2^1S_0 \to 1^3P_1$ | -1.909 | 1 | 6.1 |
| | $1P_1 \gamma$ | 6741 | 113 | -1.909 | $1P_1 \to 1^3P_1$ | 1 | 1.3 |
| | $1D_1 \gamma$ | 7045 | 272 | 2.383 | $1D_1 \to 1^3P_2$ | 78 |
| 1^3D_2 | $1^3P_2 \gamma$ | 7036 | 263 | 2.389 | $1^3D_2 \to 1^3P_2$ | 8.8 |
| | $1P'_3 \gamma$ | 6750 | 280 | 2.306 | $1P'_3 \to 1^3P_2$ | 63 |
| | $1P_1 \gamma$ | 6741 | 289 | 2.306 | $1P_1 \to 1^3P_1$ | 7.0 |
| 1^3D_1 | $1^3P_2 \gamma$ | 7041 | 268 | 2.389 | $1^3D_1 \to 1^3P_2$ | 9.6 |
| | $1P'_3 \gamma$ | 6750 | 285 | 2.274 | $1P'_3 \to 1^3P_1$ | 15 |
| | $1P_1 \gamma$ | 6741 | 294 | 2.274 | $1P_1 \to 1^3P_1$ | 64 |
| | $1^3P_0 \gamma$ | 7028 | 255 | 2.391 | $1^3P_0 \to 1^3P_2$ | 1.8 |
| | $1^3P_1 \gamma$ | 6750 | 273 | 2.281 | $1^3P_1 \to 1^3P_1$ | 4.4 |
| | $1P_1 \gamma$ | 6741 | 281 | 2.281 | $1P_1 \to 1^3P_1$ | 28 |
| | $1D_1 \gamma$ | 7045 | 315 | 2.152 | $1D_1 \to 1^3P_0$ | 55 |
| 2^3P_2 | $2^3S_1 \gamma$ | 7164 | 6887 | 272 | $2^3P_2 \to 2^3S_1$ | 2.195 | $\frac{1}{3}$ | 55 |
| | $1^3S_1 \gamma$ | 6338 | 778 | 0.2308 | $1^3S_1 \to 1^3S_1$ | 14 |
| | $1^3D_2 \gamma$ | 7045 | 118 | -2.072 | $1^3D_2 \to 1^3D_2$ | 6.8 |
| | $1^3D_1 \gamma$ | 7045 | 127 | -1.970 | $1^3D_1 \to 1^3D_2$ | 0.7 |
| | $1D_2 \gamma$ | 7041 | 122 | -1.970 | $1D_2 \to 1^3D_2$ | 0.6 |
| $2P'_1$ | $2^3S_1 \gamma$ | 7150 | 6887 | 258 | $2^3P_1 \to 2^3S_1$ | 2.319 | $\frac{1}{3}$ | 5.5 |
| | $2^1S_0 \gamma$ | 6855 | 289 | 2.046 | $2^1S_0 \to 2^1S_0$ | 52 |
| | $1^3S_1 \gamma$ | 6338 | 769 | 0.155 | $1^3S_1 \to 1^3S_1$ | 0.6 |
| | $1^3S_0 \gamma$ | 6271 | 825 | 0.254 | $1^3S_0 \to 1^3S_0$ | 19 |
| | $1D_2 \gamma$ | 7036 | 113 | -2.096 | $1D_2 \to 1^3D_2$ | 5.5 |
| | $1D_1 \gamma$ | 7041 | 108 | -2.096 | $1D_1 \to 1^3D_2$ | 1.3 |
| 2^3P_1 | $2^3S_1 \gamma$ | 7145 | 6887 | 253 | $2^3P_1 \to 2^3S_1$ | 2.319 | $\frac{1}{3}$ | 45 |
| $2^1S_0 \gamma$ | 6855 | 284 | 2.046 | $2^1S_0 \to 2^1S_0$ | 5.7 |
| | $1^3S_1 \gamma$ | 6338 | 761 | 0.155 | $1^3S_1 \to 1^3S_1$ | 5.4 |
| | $1D_2 \gamma$ | 7036 | 820 | 0.254 | $1D_2 \to 1^3D_2$ | 2.1 |
| | $1D_1 \gamma$ | 7041 | 108 | -2.096 | $1D_1 \to 1^3D_2$ | 0.8 |
| | $1^3D_1 \gamma$ | 7028 | 121 | -2.096 | $1^3D_1 \to 1^3D_2$ | 3.6 |
| 2^3P_0 | $2^3S_1 \gamma$ | 7122 | 6887 | 231 | $2^3P_0 \to 2^3S_1$ | 42 |
| | $1^3S_1 \gamma$ | 6338 | 741 | 0.666 | $1^3S_1 \to 1^3S_1$ | 1.0 |
| | $1^3D_1 \gamma$ | 7028 | 93 | -2.128 | $1^3D_1 \to 1^3D_1$ | 4.2 |
FIG. 1: The B_c mass spectrum.

\begin{table}[h]
\centering
\begin{tabular}{cccccccc}
\hline
Initial state & Final state & M_i (MeV) & M_f (MeV) & ω (MeV) & $i \rightarrow f$ & $\langle f|\nu|i \rangle$ (GeV$^{-1}$) & C_{fi} & Width (keV) \\
\hline
1^3F_2 & $1^3D_3 \gamma$ & 7269 & 7045 & 221 & $1^3F_2 \rightarrow 1^3D_3$ & 3.160 & $\frac{3}{2}$ & 0.4 \\
$1F_3'$ & $1^3D_3 \gamma$ & 7266 & 7045 & 218 & $1^3F_3' \rightarrow 1^3D_3$ & 3.159 & $\frac{3}{2}$ & 3.7 \\
$1D_2' \gamma$ & $1^3D_3 \gamma$ & 7036 & 7045 & 221 & $1^3F_3' \rightarrow 1^3D_3$ & 3.140 & $\frac{3}{2}$ & 0.4 \\
$1D_2' \gamma$ & $1^3D_3 \gamma$ & 7036 & 7045 & 221 & $1^3D_2' \rightarrow 1^3D_2$ & 3.140 & $\frac{3}{2}$ & 0.4 \\
$1D_2' \gamma$ & $1^3D_3 \gamma$ & 7041 & 7045 & 227 & $1^3D_2' \rightarrow 1^3D_2$ & 3.091 & $\frac{3}{2}$ & 0.5 \\
$1F_2'$ & $1^3D_3 \gamma$ & 7269 & 7045 & 221 & $1^3F_2 \rightarrow 1^3D_3$ & 3.140 & $\frac{3}{2}$ & 0.4 \\
$1D_2' \gamma$ & $1^3D_3 \gamma$ & 7036 & 7045 & 221 & $1^3D_2' \rightarrow 1^3D_2$ & 3.091 & $\frac{3}{2}$ & 0.5 \\
$1D_2 \gamma$ & $1^3D_3 \gamma$ & 7036 & 7045 & 221 & $1^3D_2 \rightarrow 1^3D_2$ & 3.091 & $\frac{3}{2}$ & 0.5 \\
$1D_2 \gamma$ & $1^3D_3 \gamma$ & 7036 & 7045 & 221 & $1^3D_2 \rightarrow 1^3D_2$ & 3.091 & $\frac{3}{2}$ & 0.5 \\
$1^3D_1 \gamma$ & $1^3D_3 \gamma$ & 7028 & 7045 & 221 & $1^3D_1 \rightarrow 1^3D_1$ & 3.091 & $\frac{3}{2}$ & 0.5 \\
\hline
\end{tabular}
\caption{E1 transition rates (continued).}
\end{table}

where

$$\mu = \frac{e_c}{m_c} - \frac{e_b}{m_b},$$

\(e_c\) and \(e_b\) are the \(c\)-quark and \(b\)-antiquark charges in units of \(|e|\) \((e_c = 2/3\) and \(e_b = 1/3\)), and \(m_c\) and \(m_b\) are the quark masses given above.

The M1 widths and overlap integrals are given in Table VI. They are compared to other calculations in Table VII. Transitions in which the principal quantum number change are referred to as hindered transitions which are not allowed in the non-relativistic limit due to the orthogonality of the wavefunctions. M1 transitions, especially hindered transitions, are notorious for their sensitivity to relativistic corrections. In our calculations the wavefunction orthogonality is broken by including a smeared hyperfine interaction directly in the Hamiltonian so that the \(3S_1\) and \(1S_0\) states have slightly different wavefunctions. Ebert et al. are more rigorous in how they include relativistic corrections but to improve the \(J/\psi \rightarrow \eta_c \gamma\) result they modify the confining potential by making it a linear combination of Lorentz vector and Lorentz scalar pieces.
TABLE IV: Comparison of predictions for E1 transition rates. The column labelled GI is the present work. We quote the predicted rates from the various references and do not attempt to normalize the rates to common phase space factors.

Initial state	Final state	GI [6]	EFG [12]	GKL T [5]	EQ [2]	GJ [9]	FU [10]
1^3P_2	$1^3P_1'$	83	107	102.9	112.6	73.6	126
$1P_1'$	1^3S_1	11	13.6	8.1	0.1	10.5	26.2
	1^1S_0	80	132	131.1	56.4	66.6	128
$1P_1$	1^3S_1	60	78.9	77.8	99.5	49.0	75.8
	1^1S_0	13	18.4	11.6	0.0	16.6	32.5
1^3P_0	1^3P_1	55	67.2	65.3	79.2	43.0	74.2
2^3S_1	1^3P_2	5.7	5.18	14.8	17.7	4.0	14.5
	$1P_1'$	0.7	0.63	1.0	0.0	0.6	2.5
	$1P_1$	4.7	5.05	12.8	14.5	3.6	13.3
	1^3P_0	2.9	3.78	7.7	7.8	2.6	9.6
2^1S_0	$1P_1'$	6.1	3.72	15.9	5.2	3.6	13.1
	$1P_1$	1.3	1.02	1.9	0.0	1.3	6.4
1^3D_3	1^3P_2	78	102	76.9	98.7		
1^1D_2	1^3P_2	8.8	12.8	6.8			
	$1P_1'$	63	116	46.0	92.5		
	$1P_1$	7.0	7.25	25.0			
1^3P_1	1^3P_2	9.6	27.5	12.2	24.7		
	$1P_1'$	15	14.1	18.4	0.1		
	$1P_1$	64	112	44.6	88.8		
1^3D_1	1^3P_2	1.8	5.52	2.2			
	$1P_1'$	4.4	7.66	3.3			
	$1P_1$	28	73.8	39.2	49.3		
	1^3P_0	55	128	79.7	88.6		
2^3P_2	2^3S_1	55	57.3	49.4	73.8		
	1^3S_1	14		19.2	25.8		
	1^3D_3	6.8	1.59	10.9	17.8		
1^1D_2	1^3S_1	0.7	0.113	0.5			
	$1D_2$	0.6	0.269	1.5	3.2		
	1^3P_1	0.1	0.035	0.1	0.2		
$2P_1'$	2^3S_1	5.5	9.1	5.9	5.4		
	2^1S_0	52	72.5	58.0			
	1^3S_1	0.6	2.5	2.1			
	1^1S_0	19			20.1		
	$1D_2$	5.5	1.2		3.5		
	1^1D_2	1.3	0.149	2.5	11.5		
	1^3P_1	0.2	0.073	0.3	0.4		
$2P_1$	2^3S_1	45	37.9	32.1	54.3		
	2^1S_0	5.7	11.7	8.1			
	1^3S_1	5.4		15.3	22.1		
	1^3P_1	2.1	3.1				
	$1D_2$	0.8	0.021	1.2			
	1^1D_2	3.6	0.418	3.9	9.8		
	1^3P_1	1.6	0.184	1.6	0.3		
2^3P_0	2^3S_1	42	29.2	25.5	41.2		
	1^3S_1	1.0	16.1	21.9			
	1^3P_1	4.2	0.036	3.2	6.9		

*aWe identify the 1^3D_1 and $1D_2$ states with the 1D_2 and 3D_2 states of Eichten and Quigg [2].
Given the sensitivity of radiative transitions to details of the models, precise measurements of electromagnetic transition rates would provide stringent tests of the various calculations.

IV. HADRONIC TRANSITIONS

Hadronic transitions between quarkonium levels are needed to estimate branching ratios and discuss search strategies for these states. In fact, these are the dominant decays for both the $\psi(2S)$ and $\Upsilon(2S)$ states. There have been numerous theoretical estimates of hadronic transitions over the years [32, 33, 34, 35, 36, 37, 54, 61, 62]. In some cases the estimates disagree by orders of magnitude [54]. Hadronic transitions are typically described as a two-step process in which the gluons are first emitted from the heavy quarks and then recombine into light quarks. A multipole expansion of the colour gauge field is employed to describe the emission process where the intermediate colour octet quarkonium state is modeled by some sort of quarkonium hybrid wavefunction. However, the main disagreement between predictions arises from how the rehadronization step is estimated. To some extent this latter uncertainty can be reduced by employing the multipole expansion of the colour gauge fields developed by Yan and collaborators [32, 33, 34, 35, 63]. Together with the Wigner-Eckart theorem to estimate the E1-E1 transition rates [32] and fixing the reduced matrix elements by rescaling measured transition rates. When no measured transitions exist we instead rescale the theoretical estimates of related matrix elements [53]. This is the approach used by Eichten and Quigg [2]. In addition to E1-E1 transitions there will be other transitions such as $^3S_1 \rightarrow ^3S_1 + \eta$ which goes via M1-M1 & E1-M2 multipoles and spin-flip transitions such as $^3S_1 \rightarrow P_1 \pi\pi$ which goes via E1-M1 [33]. These transitions are suppressed by inverse powers of the quark masses and are expected to be small compared to the E1-E1 transitions. The $^3S_1 \rightarrow ^3S_1 + \eta$ transitions are further suppressed due to being at the limit of available phase space.

The differential rate for E1-E1 transitions from an initial quarkonium state Φ' to the final quarkonium state Φ, and a system of light hadrons, h, is given by the expression

$$\frac{d\Gamma}{dM^2}[\Phi' \rightarrow \Phi + h] = (2J + 1) \sum_{k=0}^{2} \left\{ \frac{k}{s} \right\}^2 \left(s J J' \right)^2 A_k(\ell', \ell)$$

(17)

where ℓ', ℓ are the orbital angular momentum and J', J are the total angular momentum of the initial and final states respectively, s is the spin of the $Q\bar{Q}$ pair, M^2 is the invariant mass squared of the light hadron system, \(\{ \ldots \}\) is a $0 - j$ symbol, and $A_k(\ell', \ell)$ are the reduced matrix elements. The magnitudes of the $A_k(\ell', \ell)$ are model dependent with a large variation in their estimates. In the soft-pion limit the A_1 contributions are suppressed so, as is the usual practice, we will take $A_1(\ell', \ell) = 0$.

For the remaining rates we use scaling arguments taking measured rates as input or, when no measured rates exist, we rescale the rates predicted for the $b\bar{b}$ system by Kuang and Yan [33] to obtain the $c\bar{b}$ rates. The amplitudes for E1-E1 transitions depend quadratically on the interquark separation so the scaling law between a $c\bar{b}$ rate and the corresponding QQ rate is given by

$$\frac{\Gamma(c\bar{b})}{\Gamma(QQ)} = \frac{(r^2(c\bar{b}))^2}{(r^2(QQ))^2}$$

(18)

up to phase space. The scaling factors used relate to the input rates to the $c\bar{b}$ rates are given in Table VII.

There is a large variation in the reduced rates. For example, for the transition $1^3D_1 \rightarrow 1^3S_1 + \pi\pi$ estimates for $A_2(2,0)$ differ by almost three orders of magnitude [32, 54, 61, 62]. We point this out as a cautionary note to the reader. The reduced rates are summarized in Table VII. For the $2^3S_1 \rightarrow 1^3S_1 + \pi\pi$ reduced rate we take an average of the results taken from rescaling the corresponding $b\bar{b}$ transitions [32, 63]. $A_0(1,1)$ and $A_2(1,1)$, corresponding to $2^3P_0 + \pi\pi$ and $2^3P_2 \rightarrow 1^3P_0 + \pi\pi$ respectively, were obtained by rescaling the appropriate $b\bar{b}$ rate predictions given by Kuang and Yan [33]. As pointed out above there is considerable variation in the $A_2(2,0)$ amplitude needed for the $1^3D_J \rightarrow 1^3S_1 + \pi\pi$ transitions. The largest predicted rate for the $\Upsilon(1D) \rightarrow \Upsilon(1S) + \pi\pi$ transition comes from Kuang and Yan [33] and has been ruled out by a recent CLEO limit [61]. The CLEO limit is about a factor of 3 larger than the rate predicted by Ko [62]. The reduced rate for the $c\bar{b}$ system found by rescaling the recent BES measurement [63] of the $\psi' \rightarrow J/\psi + \pi\pi$ rate is considerably larger than the rate found by rescaling the $\Upsilon(1D) \rightarrow \Upsilon(1S) + \pi\pi$ CLEO limit. However, it is likely that one can reconcile the $b\bar{b}$ and $c\bar{b}$ results by properly taking into account $2^3S_1 - 1^3D_1$ mixing [32, 54, 61, 62]. We will therefore assume a reduced rate of $A_2(2,0) = 21$ keV which is based on the CLEO limit on the transition $\Upsilon(1D) \rightarrow \Upsilon(1S) + \pi\pi$ [61]. The $1D \rightarrow 1S\pi\pi$ transitions is the subject of recent interest [53, 66, 67] and as the experimental measurements improve it would be useful to revisit these calculations. The uncertainty in these hadronic transitions could easily lead to factors of two errors in the resulting branching ratios. A final note is that we have not considered coupled channel effects to DD and BB for the $c\bar{c}$ and $b\bar{b}$ states respectively which could make a considerable contribution to states close to threshold [67].

The reduced rates of Table VII are used to obtain the $c\bar{b}$ hadronic transitions which are summarized in Table VIII. We do not include decays of the type $2^3P_J \rightarrow 1^{3,1}P_J$, as they are expected to be small compared to the decays we included. Likewise, transitions with η and π^0 in the final state are possible but are expected to have much smaller partial widths and η transitions are
TABLE V: M1 transition rates. The matrix elements were obtained using the wavefunctions of the GI model [6].

| Initial state | Final state | \(M_i \) (MeV) | \(M_f \) (MeV) | \(\omega \) (MeV) | \((f_J\nu_{\ell}/2) | i \) | Width (keV) |
|---------------|-------------|-----------------|-----------------|-----------------|----------------|-------------|
| \(1^3S_1 \) | \(1^3S_0 \) γ | 6338 | 6271 | 67 | 0.995 | 0.08 |
| 2\(^3S_1\) | 1\(^3S_0\) γ | 6887 | 6855 | 32 | 0.992 | 0.01 |
| 1\(^3S_0\) | 1\(^3S_0\) γ | 6271 | 588 | 0.102 | 0.6 |
| 2\(^3S_0\) | 1\(^3S_1\) γ | 6855 | 6338 | 498 | -0.57 | 0.3 |
| 3\(^3S_1\) | 2\(^3S_0\) γ | 7272 | 7520 | 22 | 0.992 | 0.003 |
| 1\(^3S_0\) | 2\(^3S_1\) γ | 6855 | 6271 | 405 | 0.109 | 0.2 |
| 3\(^3S_0\) | 1\(^3S_1\) γ | 7250 | 932 | 0.05 | 0.6 |

TABLE VI: Comparison of M1 transition rates. Note that no effort has been made to scale the results to a common phase space.

Initial state	Final state	GI EFG [12]	GKLH [5]	EQ [2]	FU [10]
Widths (eV)					
\(1^3S_1 \)	\(1^3S_0 \) γ	80	10	60	80
\(2^3S_1 \)	\(2^3S_0 \) γ	10	174	60	10
\(1^3S_0 \)	\(1^3S_0 \) γ	600	428	98	600
\(2^3S_0 \)	\(2^3S_1 \) γ	300	488	96	300

Further suppressed by phase space. Although the \(3^3S_1 \) and \(3^3S_0 \) states are expected to be above \(BD \) threshold, and therefore relatively broad, we include the two pion transitions for the sake of completeness.

V. WEAK DECAYS

The final ingredient needed in a study of \(B_s \) phenomenology is the \(B_s \) width and its weak decay partial widths. The details of \(B_s \) decay have been given elsewhere [69, 70, 71, 72, 73, 74, 75, 76, 77, 78]. For completeness we give a brief overview of the essential features of these decays and summarize the weak decay branching ratios in Table IX. We refer the interested reader to the original literature for details of the calculations [34, 63, 70, 71, 72, 73, 74, 75, 76, 77, 78].

For a rough estimate of the \(B_s \) width we can treat the \(b \)-quark and \(c \)-quark decay independently so that \(B_s \) decay can be divided into three classes: (i) the \(b \)-quark decay with spectator \(c \)-quark, (ii) the \(c \)-quark decay with spectator \(b \)-quark, and (iii) the annihilation \(B_s^+ \to \ell^+\nu_\ell \ (cs, us) \), where \(\ell = e, \mu, \tau \). The total width is the sum over partial widths

\[
\Gamma(B_s \to X) = \Gamma(b \to X) + \Gamma(c \to X) + \Gamma(ann) \tag{19}
\]

In addition there is a Pauli interference contribution to the \(b \to \bar{c}c\bar{s} \) decay from the \(c \)-quark spectator which we ignore in this crude estimate.

In the spectator approximation:

\[
\Gamma(\bar{b} \to X) = \frac{9G^2_F |V_{cb}| \omega_b^2}{192\pi^3} \simeq 4.8 \times 10^{-4} \text{ eV} \tag{20}
\]

and

\[
\Gamma(c \to X) = \frac{5G^2_F |V_{cs}| \omega_c^2}{192\pi^3} \simeq 3.3 \times 10^{-4} \text{ eV} \tag{21}
\]

where we used \(|V_{cb}| = 0.0412, |V_{cs}| = 0.974, \omega_b = 4.25 \text{ GeV}, \) and \(\omega_c = 1.25 \text{ GeV} \) [63].

Annihilation widths such as \(c \to \ell\nu_\ell \) are given by the expression

\[
\Gamma = \frac{G^2_F}{8\pi} |V_{cb}|^2 f_B^2 M_{B_s} \sum_i m_i^2 \left(1 - \frac{m_i^2}{M_{B_s}^2}\right)^2 C_i \tag{22}
\]

where \(m_i \) is the mass of the heavier fermion in the given decay channel. For lepton channels \(C_i = 1 \) while for quark channels \(C_i = 3|V_{qq'}|^2 \). The pseudoscalar decay constant, \(f_{B_s} \), is defined by:

\[
\langle 0|\bar{b}(x)\gamma^\mu\gamma_5c(x)|B_c(k)\rangle = i f_{B_s} V_{cb} k^\mu \tag{23}
\]

where \(V_{cb} \) is the \(cb \) element of the Cabibbo-Kobayashi-Maskawa matrix, and \(k^\mu \) is the four-momentum of the \(B_c \) meson. In the non-relativistic limit the pseudoscalar decay constant is proportional to the wavefunction at the origin and is given by the van Royen-Weisskopf formula

\[
f_{B_s} = \frac{2\sqrt{3}}{M} \psi(0). \tag{24}
\]

This result is modified by QCD corrections and relativistic effects, which are included using the Mock-Meson approach or other relativistic quark models. The predictions of the various calculations including Lattice QCD are summarized in Table IX. Using the mock-meson result of \(f_{B_s} = 410 \text{ MeV} \) [34], which is consistent with most other predictions, leads to the annihilation width of

\[
\Gamma(ann) = 67 \times 10^{-6} \text{ eV} \tag{25}
\]
VI. EXPERIMENTAL SIGNATURES AND SEARCH STRATEGIES

B_c mesons offer a rich spectroscopy of narrow states to study; there are 2 S-wave, 2 P-wave, and 1 D-wave B_c multiplets below BD threshold. Because B_c mesons carry flavour they cannot annihilate into gluons and are expected to be quite narrow; < 100 keV. In addition, the F-wave states are just above threshold so might also be relatively narrow due to the angular momentum barrier which would suppress the decay \cite{74}. Two ingredients are necessary for the study of B_c spectroscopy; that they be produced in sufficient quantity and that they yield a signal that can be distinguished from background.

B_c production production proceeds via the hard associative production of the two heavy quark pairs $c\bar{c}$ and $b\bar{b}$ which suppresses the B_c yield relative to beauty hadrons by $O(10^{-3})$ \cite{21}. Because fragmentation dominates at high-p_T it has proven useful to describe B_c meson production by hadronization of individual high-p_T partons using the factorization formalism based on non-relativistic QCD \cite{17}. This approach was utilized by a number of authors to calculate B_c production at hadron colliders. At the Tevatron, with acceptance cuts of $p_t > 6$ GeV and $|y| < 1$, Cheung estimates that $O(10^7)$ B_c mesons should be produced for an integrated luminosity of 1 fb\(^{-1}\) \cite{22}. At the LHC $O(10^9)$ B_c mesons are expected to be produced for 100 fb\(^{-1}\) with the kinematic cuts of $p_t > 10$ GeV and $|y(B_c)| < 2.5$ \cite{22}. The B_c^+ cross sections are expected to be 50-100% larger than the B_c cross sections \cite{18, 21, 22}. The p_T distribution falls rapidly so that the small p_T region is quite important \cite{18} but also making the cross sections sensitive to the exact values of the kinematic cuts \cite{18, 21, 22}. With the high luminosity of the LHC one expects a sizable number of P- and D-wave ($c\bar{b}$) states ($\sim 20\%$ and $\sim 2\%$ of the total inclusive B_c cross section respectively) as well as excited S-wave states to be produced (2$S/1S \sim 0.6$) \cite{22, 21, 26}. The LHC should therefore produce sufficient B_c mesons to allow the study of the $c\bar{b}$ spectroscopy and decays. We will use these numbers as the starting point to estimate the number of B_c^+'s produced in a particular decay chain.

Irrespective of which state is produced, it will eventually cascade decay to the B_c ground state via electro-
TABLE VIII: Rates for two-pion E1-E1 hadronic transitions. The reduced rates are denoted by $A_k(\ell', \ell)$ where k is the rank of the irreducible tensor and ℓ' and ℓ are the orbital angular momenta of the initial and final states.

Transition	Expression for Rate	$(c\bar{b})$ rate (keV)
$2^3S_1 \to 1^3S_1 + \pi\pi$	$\frac{1}{3} A_0(1, 1) + \frac{1}{3} A_1(1, 1) + \frac{2}{3} A_2(1, 1)$	1.0
$2^1S_0 \to 1^1S_0 + \pi\pi$	$A_0(0, 0)$	57 ± 7
$3^1S_1 \to 2^3S_1 + \pi\pi$	$A_0(0, 0)$	57 ± 7
$3^3S_0 \to 2^3S_0 + \pi\pi$	$A_0(0, 0)$	3.1 ± 0.6
$3^1S_1 \to 1^3S_1 + \pi\pi$	$A_0^0(0, 0)$	3.1 ± 0.6
$3^3S_0 \to 1^3S_0 + \pi\pi$	$A_0^0(0, 0)$	4.2 ± 0.6
$3^3P_2 \to 1^3P_2 + \pi\pi$	$\frac{1}{3} A_0(1, 1) + \frac{1}{3} A_1(1, 1) + \frac{2}{3} A_2(1, 1)$	0.004 b
$2^1P_2 \to 1^1P_2 + \pi\pi$	$\frac{1}{12} A_1(1, 1) + \frac{3}{2} A_2(1, 1)$ a	0.021 b
$2^3P_2 \to 1^3P_2 + \pi\pi$	$\frac{1}{12} A_1(1, 1) + \frac{3}{2} A_2(1, 1)$ a	0.011
$2P_2 \to 1^3P_0 + \pi\pi$	$\frac{1}{12} A_1(1, 1) + \frac{3}{2} A_2(1, 1)$ c	0.004 b
$2P_1 \to 1^3P_2 + \pi\pi$	$\frac{1}{12} A_1(1, 1) + \frac{3}{2} A_2(1, 1)$ c	0.037 b
$2P_1 \to 1^3P_1 + \pi\pi$	$A_0(1, 1) + A_1(1, 1) + \frac{1}{3} A_2(1, 1)$ d	1.2 c
$2P_1 \to 1^3P_0 + \pi\pi$	$A_0(1, 1) + A_1(1, 1) + \frac{1}{3} A_2(1, 1)$ d	0.1 c
$2P_1 \to 1^3P_2 + \pi\pi$	$\frac{1}{12} A_1(1, 1) + \frac{3}{2} A_2(1, 1)$ f	0.02 c
$2P_0 \to 1^3P_1 + \pi\pi$	$\frac{1}{12} A_1(1, 1) + \frac{3}{2} A_2(1, 1)$ f	2.7 c
$2P_0 \to 1^3P_0 + \pi\pi$	$\frac{1}{12} A_1(1, 1)$ g	0
$2P_0 \to 1^3P_2 + \pi\pi$	$\frac{1}{12} A_1(1, 1)$ g	0.0547
$2^3D_{1,3} \to 1^3S_1 + \pi\pi$	$\frac{1}{7} A_2(2, 0)$ i	4.3
$1D_2 \to 1^3S_1 + \pi\pi$	$\frac{1}{7} A_2(2, 0)$ i	2.1 b
$1D_2 \to 1^3S_1 + \pi\pi$	$\frac{1}{7} A_2(2, 0)$ i	2.2 b
$1D_2 \to 1^3S_0 + \pi\pi$	$\frac{1}{7} A_2(2, 0)$ i	2.2 b
$1D_2 \to 1^3S_0 + \pi\pi$	$\frac{1}{7} A_2(2, 0)$ i	2.1 b

aThe expression is for the $^3P_2 \to ^3P_1$ transition.
bThese rates include the appropriate mixing angles defined in eqn. and given in Table IX.
cThe expression is for the $^3P_1 \to ^3P_2$ transition.
dThe expression is for the $^1P_1 \to ^1P_1$ transition.
eThese rates include the appropriate mixing angles. We assume a +ve phase between the $^1P_1 \to ^1P_1$ and $^3P_1 \to ^3P_1$ amplitudes.
fThe expression for the $^3P_1 \to ^3P_3$ transition.
gThese correspond to the $^3P_3 \to ^3S_1$ or $^1D_2 \to ^1S_0$ transitions as appropriate.

TABLE IX: Comparison of predictions for the pseudoscalar decay constant of the B_c meson.

GI [34]	EFG [12]	GKLT [5]	EQ [2]	Fu [10]	Ki [70]	Lattice [44]	Lattice [71]
410 ± 40	433	500 ± 80	500 a	517	395 ± 15	440 ± 20	420 ± 13

aUsing Buchmüller-Tye potential.
TABLE X: Branching ratios in % for some prominent exclusive B_c decays.

Mode	Kis [69]	IKS [72]	CC a [73]	EFG [75]	NW [74]
$B_c^+ \to J/\psi e^+\nu$	1.9	2.3	2.4	1.2	1.5
$\to \eta e^+\nu$	0.75	0.98	1.0	0.42	0.52
$\to B^0 e^+\nu$	0.34	0.15	0.16	0.042	0.05
$\to B^{*0} e^+\nu$	0.58	0.16	0.23	0.12	0.05
$\to B_{s0} e^+\nu$	4.03	2.0	1.9	0.84	0.94
$\to B^{*0} e^+\nu$	5.06	2.6	3.1	1.75	1.44
$\to J/\psi \pi^+$	0.13	0.22	0.061		
$\to J/\psi \rho^+$	0.40	0.66	0.16		
$\to \eta \pi^+$	0.20	0.23	0.085		
$\to \eta \rho^+$	0.42	0.61	0.21		
$\to B_s^{0} \pi^+$	1.64	5.1	2.52		
$\to B_s^{*0} \pi^+$	7.2	3.9	1.41		
$\to B_s^{*0} \pi^+$	6.5	4.5	1.61		
$\to B_{s0}^{*0} \pi^+$	20.2	13.1	11.1		
$\to B_{s0}^{*0} \pi^+$	1.06	0.37	0.21		
$\to B_{s0}^{*0} \pi^+$	0.37	0.26	0.11		
$\to B_s^{*0} \pi^+$	1.06	0.29	0.10		
$\to B_s^{*0} \pi^+$	0.96	0.52	0.13		
$\to B_s^{*0} \pi^+$	0.95	0.25	0.03		
$\to B_s^{*0} \pi^+$	2.57	1.0	0.68		
$\to B_{s0}^{*0} \pi^+$	1.98	0.30	0.24		
$\to B_{s0}^{*0} \pi^+$	0.43	0.21	0.09		
$\to B_{s0}^{*0} \pi^+$	1.60	0.23	0.11		
$\to B_{s0}^{*0} \pi^+$	1.67	0.44	0.84		
$\to \pi^+\nu_e$	1.6				
$\to c\bar{s}$	4.9				

aUsing the PDG [63] central value for the total width of $\Gamma = 1.43 \times 10^{-11}$ eV to obtain the BR's.

magnetic and hadronic transitions so that the B_c must be observed in order to reconstruct the parent particle for the particular decay chain. Prominent decays of the B_c are given in Table X. B_c decays with a J/ψ in the final state such as $J/\psi + X$ where X can be a π^+, ρ^+, or $\ell^+\nu$ or especially useful as the $J/\psi \to \ell^+\ell^-$ provides a useful trigger for B_c events. The golden channel to detect B_c is $B_c \to J/\psi \pi^+$ but their BR's are quite small $O(0.2 - 0.4\%)$ resulting in a combined BR for $B_c \to J/\psi + \pi^+ \to \ell^+\ell^+\pi^+$ of $\sim 0.02\%$. This would yield about 2000 events for 1 fb$^{-1}$ integrated luminosity at the Tevatron and about 2 \times 105 events for 100 fb$^{-1}$ integrated luminosity at the LHC. The decay $B_c^+ \to J/\psi \ell^+\nu$ with $J/\psi \to e^+e^-$ has a distinctive signature of 3 charged leptons coming from a common secondary vertex and has a BR of about 2% resulting in a combined BR for $B_c \to J/\psi \ell^+\nu \to \ell^-\ell^+\ell^+\nu$ (l = e, μ) of about 0.2% yielding 2 \times 104 events at the Tevatron and 2 \times 105 at the LHC. The trade off is that the semileptonic decay mode $B_c \to J/\psi + \nu$ has a larger branching ratio but also has missing energy while $B_c^+ \to J/\psi \pi^+$ has a smaller BR but has the advantage that the B_c can be fully reconstructed. In these B_c decays the b quark decays to charm. B_c decays in which the c quark decays, such as $B_c^+ \to B_s^{0}\pi^+$, have much larger BR's and could also prove to be important modes if B_c's can be reconstructed in these channels.

To estimate event rates we also need to include detection efficiencies. Simulations by D0 and CDF [3] find efficiencies for the exclusive decays $B_c \to J/\psi \mu^+\mu^-\pi$ and $B_c \to J/\psi \ell^+\nu \to \mu^+\mu^-\ell^+\nu$ of $\sim 2\%$ and $\sim 4\%$ respectively.

In Table XI we combine the electromagnetic transitions widths with the hadronic transition widths to give total widths and BR's. The are used in Table XIII to give estimates for the number of events expected at the Tevatron and LHC for the more prominent decay chains of B_c excited states. We assume that the ground B_c state is observed in the $B_c \to J/\psi \ell^+\nu \ell^-\ell^+\ell^+\nu$ and $B_c \to J/\psi + \pi^+ \to \ell^-\ell^+\pi^+$ decay modes with BR's 2% and 0.2% respectively and detection efficiencies of $\sim 2\%$ and $\sim 4\%$ respectively. We include a factor of 2 to take into account both the e^+e^- and $\mu^+\mu^-$ decay modes of the J/ψ and a factor of 2 to take into account the production of both charge conjugate B_c states. To take into account the relative production rates of different excited states we use the production rates given above of 107 B_c's at the Tevatron and 109 B_c's at the LHC with relative numbers of $\times 2$ for the B_c^+, 0.2 for the 1P states, 0.02 for the 1D states, and the 0.6 for the 2S relative to the 1S states. For the 2P states we use the same factor of 0.6 for 2P relative to 1P but this is a rather arbitrary assumption. As noted already, the cross sections are very sensitive to the kinematic cuts so the number of events expected should only be taken as rough estimates.

The signal for excited B_c states is a photon or pions in coincidence with B_c decay. A serious omission from the estimates given in Table XIII is the neglect of tagging efficiencies for the photons and pions in the transitions. The photon ID can be relatively high depending on the kinematics. For the pions, the combinatorial background is large and π/K separation is not so good so one really needs to do studies of specific processes. Thus, understanding photon and pion identification requires a detailed simulation study which is beyond the scope of this paper. However, one might be optimistic, given the success of CDF in studying χ_c production [51] and the observation of the $X(3872) \to J/\psi \pi^+\pi^-$ [51] in $p\bar{p}$ collisions at the Tevatron.

Notwithstanding the previous caveat, it should be possible to observe the 1S, 2S, and 1P states at the Tevatron. It is also possible, although only marginally so, that some of the 1D and 2P might also be seen. With the higher statistics available at the LHC, all cb states below threshold could potentially be observed, although the larger backgrounds will make this quite challenging.

The fact that the B_c is not an eigenstate of charge con-
jugation helps simplify the search for states such as the $1P'_1$, $1P_1$, $1D'_2$, and $1D_2$. The singlet component of these states allows E1 or hadronic transitions directly to the ground state B_c with large BR’s. This should simplify the reconstruction efforts significantly. For example $1P'_1$ production and decay to the B_c with its subsequent decay to $J/\psi \pi$ and $J/\psi \ell\nu$ should produce $\mathcal{O}(600)$ events in Run II at the Tevatron. Likewise, $2P'_1$ and its subsequent decay should produce $\mathcal{O}(100)$ events. These yields would be enhanced if other B_c decay modes with larger BR’s could be utilized. The discovery of the $2P'_1$ would yield important spectroscopic information in addition to being an experimental tour de force. Of course, these BR’s are highly sensitive to the $1P'_1 - 1P_1$ mixing angle. With enough measurements these details can be constrained and different models can be differentiated. There will also be large number of events for decay chains going via an intermediate B'_c such as $2^3S_1 \rightarrow 2^1S_1 \rightarrow B_c$ and $1^3P_2 \rightarrow 1^3S_1 \rightarrow B_c$. However, it will be crucial to detect the 67 keV photon in $B'_c \rightarrow B_c + \gamma$ in these cases, a very challenging experimental task.

VII. SUMMARY

The primary purpose of this paper is to calculate B_c masses and radiative transitions in the relativized quark model. For the most part the mass predictions are consistent with other models, within the accuracy of these models. The largest discrepancy in predictions is for the triplet-singlet mixing angles. This has implications for transitions between states so can be tested with appropriate measurements. Combining the BR’s we have calculated with B_c production cross sections from the literature we see that the 1S, 1P, and 2S states should be produced in sufficient numbers to be observed at the Tevatron. With the higher statistics of the LHC, it should also be possible to observe the $1D$ and $2P$ states. It will be a significant experimental challenge to extract the signals for these states from the large background but their observation would add considerably to our knowledge of quarkonium spectroscopy and discriminate between the various models that exist in the literature.

Acknowledgments

The author thanks Vaia Papadimitriou and Manuela Vincter for helpful communications. This research was supported in part by the Natural Sciences and Engineering Research Council of Canada.

[1] F. Abe et al., [CDF Collaboration], Phys. Rev. D 58, 112004 (1998) arXiv:hep-ex/9804014.
[2] E.J. Eichten and C. Quigg, Phys. Rev. D 49, 5845 (1994) hep-ph/9402210.
[3] K. Anikeev et al., [B physics at the Tevatron: Run II and beyond] arXiv:hep-ph/0210171.
[4] S. S. Gershtein, V. V. Kiselev, A. K. Likhoded and A. V. Tkabladze, Phys. Usp. 38, 1 (1995) [Usp. Fiz. Nauk 165, 3 (1995)] arXiv:hep-ph/95043419.
[5] S. S. Gershtein, V. V. Kiselev, A. K. Likhoded and A. V. Tkabladze, Phys. Rev. D 51, 3613 (1995) arXiv:hep-ph/9406339.
[6] S. Godfrey and N. Isgur, Phys. Rev. D 32, 189 (1985).
[7] Y. Q. Chen and Y. P. Kuang, Phys. Rev. D 46, 1165 (1992) [Erratum-ibid. D 47, 350 (1993)]; S. M. Ikhdair and R. Sever, arXiv:hep-ph/0310295.
[8] J. Zeng, J. W. Van Orden and W. Roberts, Phys. Rev. D 52, 5229 (1995) arXiv:hep-ph/9412269.
[9] S. N. Gupta and J. M. Johnson, Phys. Rev. D 53, 312 (1996) arXiv:hep-ph/9511267.
[10] L. P. Fulcher, Phys. Rev. D 60, 074006 (1999) arXiv:hep-ph/9806144.
[11] I. P. Gouz, V. V. Kiselev, A. K. Likhoded, V. I. Romanovsky and O. P. Yushchenko, arXiv:hep-ph/0211432.
[12] D. Ebert, R. N. Faustov and V. O. Galkin, Phys. Rev. D67, 014027 (2003) hep-ph/0210381.
[13] W. k. Kwong and J. L. Rosner, Phys. Rev. D 44, 212 (1991).
[14] S. M. Ikhdair and R. Sever, arXiv:hep-ph/0406005.
[15] S. M. Ikhdair and R. Sever, arXiv:hep-ph/0403280.
[16] N. Brambilla and A. Vairo, Phys. Rev. D 62, 094019 (2000) arXiv:hep-ph/0002075.
[17] A. A. Penin, A. Pineda, V. A. Smirnov and M. Steinhauser, arXiv:hep-ph/0403080.
[18] E. Braaten, S. Fleming and T. C. Yuan, Ann. Rev. Nucl. Part. Sci. 46, 197 (1996) arXiv:hep-ph/9602374.
[19] C. H. Chang, Y. Q. Chen and R. J. Oakes, Phys. Rev. D 54, 4344 (1996) arXiv:hep-ph/9602411.
[20] C. H. Chang and Y. G. Wu, arXiv:hep-ph/0309121.
[21] C. H. Chang, Y. Q. Chen, G. P. Han and H. T. Jiang, Phys. Lett. B 364, 78 (1995) arXiv:hep-ph/9408242.
[22] K. m. Cheung, Phys. Rev. Lett. 71, 3413 (1993) arXiv:hep-ph/9307222.
[23] K. m. Cheung and T. C. Yuan, Phys. Rev. D 53, 1232 (1996) arXiv:hep-ph/9502250.
[24] Y. Q. Chen, Phys. Rev. D 48 (1993) 5181.
[25] C. H. Chang and Y. Q. Chen, Phys. Rev. D 48 (1993) 4086.
[26] T. C. Yuan, Phys. Rev. D 50, 5664 (1994) arXiv:hep-ph/9405348.
[27] K. m. Cheung and T. C. Yuan, Phys. Rev. D 53, 3591 (1996) arXiv:hep-ph/9510208.
[28] K. Kolodziej, A. Leike and R. Ruckl, Phys. Lett. B 355, 337 (1995) arXiv:hep-ph/9505298.
[29] S. Godfrey and N. Isgur, Phys. Rev. D 34, 899 (1986).
[30] S. Godfrey, Phys. Rev. D 31, 2375 (1985).
[31] S. Godfrey and R. Kokoski, Phys. Rev. D 43, 1679 (1991).
TABLE XI: Partial widths and branching fractions for strong and electromagnetic transitions. Details of the calculations are given in the text.

Initial state	Final state	Width (keV)	B.F. (%)
1S_1	1S_0	0.08	100
1P_2	1S_1	11	12.1
1P_1	1S_0	80	87.9
3P_0	3S_1	60	82.2
3S_0		13	17.8
3P_2		Total	73
3P_1			
1S_1	$^1S_0 + \pi\pi$	57 ± 7	88.1
$^1P'_1 + \gamma$		6.1	9.4
$^1P_1 + \gamma$		1.3	2.0
$^1S_1 + \gamma$		0.3	0.5
$^3P_0 + \gamma$		Total	64.7
$^3P_1 + \gamma$			
$^1S_1 + \gamma$			
$^3P_2 + \gamma$			
$^3P_1 + \gamma$			
$^1S_1 + \gamma$			
$^1S_0 + \pi\pi$			
2P_1	$^1S_0 + \pi\pi$	57 ± 7	79.6
$^1P'_1 + \gamma$			
$^1P_1 + \gamma$			
$^1S_1 + \gamma$			
$^3P_2 + \gamma$			
$^3P_1 + \gamma$			
$^1S_1 + \gamma$			
3P_0	3S_1	15	16.1
3P_1	3S_0	64	68.9
3D_3	$^1S_1 + \pi\pi$	4.3	5.2
$^3P_2 + \gamma$		80	94.8
3D_2	$^1S_1 + \pi\pi$	2.2	2.4
$^3P_2 + \gamma$		10.3	10.3
$^3P_1 + \gamma$		15.1	16.1
$^1P_1 + \gamma$		64	68.9
3D_1	$^1S_1 + \pi\pi$	4.3	4.6
$^3P_2 + \gamma$		1.8	1.9
$^3P_1 + \gamma$		4.4	4.7
$^1P_1 + \gamma$		28	29.9
$^3P_0 + \gamma$		55	58.8
3D_0	$^1S_1 + \pi\pi$	4.3	4.6
$^3P_2 + \gamma$		1.8	1.9
$^3P_1 + \gamma$		4.4	4.7
$^1P_1 + \gamma$		28	29.9
$^3P_0 + \gamma$		55	58.8

TABLE XII: Partial widths and branching fractions for strong and electromagnetic transitions (continued).

Initial state	Final state	Width (keV)	B.F. (%)
2P_2	$^2P_2 + \pi\pi$	1.0	1.3
$^2S_1 + \gamma$		55	70.3
$^1S_1 + \gamma$		14	17.9
$^1D_3 + \gamma$		6.8	8.7
$1D'_2 + \gamma$		0.7	0.9
$1D_2 + \gamma$		0.6	0.8
$^1D_3 + \gamma$		0.1	0.1
Total		78.2	100
$^2P'_1$	$^1P'_1 + \pi\pi$	1.2	1.4
$^2S_1 + \gamma$		5.5	6.4
$^2S_0 + \gamma$		52	61.0
$^1S_1 + \gamma$		0.6	0.7
$^1S_0 + \gamma$		19	22.3
$1D'_2 + \gamma$		5.5	6.4
$1D_2 + \gamma$		1.3	1.5
$^1D_3 + \gamma$		0.2	0.2
Total		85.3	100
$2P_1$	$1P_1 + \pi\pi$	2.7	4.0
$^2S_1 + \gamma$		45	67.3
$^2S_0 + \gamma$		5.7	8.5
$^1S_1 + \gamma$		5.4	8.1
$^1S_0 + \gamma$		2.1	3.1
$1D'_2 + \gamma$		0.8	1.2
$1D_2 + \gamma$		3.6	5.4
$^1D_3 + \gamma$		1.6	2.4
Total		66.9	100
$2P_0$	$^1P_0 + \pi\pi$	1.0	2.1
$^2S_1 + \gamma$		42	87.1
$^1S_1 + \gamma$		1.0	2.1
$^1D_0 + \gamma$		4.2	8.7
Total		48.2	100

H. G. Blundell, S. Godfrey and B. Phelps, Phys. Rev. D 53, 3712 (1996) [arXiv:hep-ph/9510245].
[30] S. Capstick and N. Isgur, Phys. Rev. D 34, 2809 (1986).
[31] S. Capstick, S. Godfrey, N. Isgur and J. Paton, Phys. Lett. B 175, 457 (1986).
[32] T.M.Yan, Phys. Rev. D22, 1652 (1980).
[33] Y.P.Kuak and T.M.Yan, Phys. Rev. D24, 2874 (1981).
[34] S. Capstick and S. Godfrey, Phys. Rev. D 41, 2856 (1990).
[35] B. Aubet et al. [BABAR Collaboration], Phys. Rev. Lett. 90, 242001 (2003) [arXiv:hep-ex/0305100].
[36] D. Besson et al. [CLEO Collaboration], Phys. Rev. D 68, 032002 (2003) [arXiv:hep-ex/0305100].
[37] P. Krokovny et al. [Belle Collaboration], Phys. Rev. Lett. 91, 262002 (2003) [arXiv:hep-ex/0308019].
[38] S. K. Choi et al. [Belle Collaboration], Phys. Rev. Lett.
TABLE XIII: Expected event rates for various decay chains at the Tevatron and the LHC. The B_c is assumed to decay to $B_c \to J/\psi \pi \to \mu^+ \mu^- \pi$ and $B_c \to J/\psi f\ell \nu \to \mu^+ \mu^- f\ell \nu$ final states. Details of these estimates are described in the text.

Decay Chain	Tevatron	LHC
$1^3S_1 \to B_c$	3.4×10^4	3.4×10^5
$2^3S_0 \to B_c$	1.8×10^5	1.8×10^5
$2^3S_1 \to 1^3S_1 \to B_c$	1.6×10^5	1.6×10^5
$1^3P_2 \to 1^3S_1 \to B_c$	16	16
$1^3P_1 \to 1^3S_1 \to B_c$	6.7×10^2	6.7×10^2
$1^3P_0 \to 1^3S_1 \to B_c$	5.5×10^2	5.5×10^2
$1^3D_2 \to 1^3S_0 \to B_c$	1.2×10^2	1.2×10^2
$1^3D_1 \to 1^3S_0 \to B_c$	6.7×10^2	6.7×10^2
$1^3D_0 \to 1^3S_0 \to B_c$	3.5	3.5×10^2
$1^3D_2 \to 1^3P_2 \to 1^3S_0 \to B_c$	64	64×10^3
$1^3D_1 \to 1^3P_2 \to 1^3S_0 \to B_c$	1.7	1.7×10^2
$1^3D_0 \to 1^3P_2 \to 1^3S_0 \to B_c$	45	4.5×10^3
$1^3D_1 \to 1^3P_1 \to 1^3S_0 \to B_c$	1.4	1.4×10^4
$1^3D_2 \to 1^3P_1 \to 1^3S_0 \to B_c$	9.5	9.5×10^4
$1^3D_1 \to 1^3P_1 \to 1^3S_0 \to B_c$	8.2	8.2×10^4
$1^3D_0 \to 1^3P_1 \to 1^3S_0 \to B_c$	3.1	3.1×10^4
$1^3D_1 \to 1^3P_0 \to 1^3S_0 \to B_c$	2.8	2.8×10^5
$2^3P_2 \to 2^3S_1 \to B_c$	3.6	3.6×10^5
$2^3P_2 \to 2^3S_0 \to B_c$	2.3	2.3×10^5
$2^3P_2 \to 1^3S_1 \to B_c$	72	7.2×10^5
$2^3P_1 \to B_c$	90	9×10^5
$2^3P_0 \to 1^3S_1 \to B_c$	12	1.2×10^5
$2^3P_0 \to 2^3S_1 \to B_c$	2.2	2.2×10^5
$2^3P_0 \to 2^3S_0 \to B_c$	2.8	2.8×10^5
[81] D. Acosta et al. [CDF II Collaboration], arXiv:hep-ex/0312021.