LOCAL LAWS FOR SPARSE SAMPLE COVARIANCE MATRICES
WITHOUT THE TRUNCATION CONDITION

F. GÖTZE*, A. TIKHOMIROV, AND D. TIMUSHEV

Abstract. We consider sparse sample covariance matrices \(\frac{1}{np_n}XX^* \), where \(X \) is a sparse matrix of order \(n \times m \) with the sparse probability \(p_n \). We prove the local Marchenko–Pastur law in some complex domain assuming that \(np_n > \log^4 n, \beta > 0 \) and some \((4 + \delta) \)-moment condition is fulfilled, \(\delta > 0 \).

1. Introduction

Sample covariance matrices are of great practical importance for problems of multivariate statistical analysis and such rapidly developing areas as the theory of wireless communication and deep learning. Another significant area of application of sample covariance matrices is graph theory. The adjacency matrix of an undirected graph is asymmetric, so the study of its singular values leads to the sample covariance matrix. If we assume that the probability \(p_n \) of having graph edges tends to zero as the number of vertices \(n \) increases to infinity, we get to the concept of sparse random matrices.

Sparse Wigner random matrices have been considered in a number of papers (see [1, 2, 3, 4]) where many results have been obtained. With the symmetrization of sample covariance matrices it is possible to apply this results in the case when the observation matrix is square. However, when the sample size is greater than observation dimension, the spectral limit distribution has the singularity in zero, which requires different approaches.

The limit spectral distribution of sparse sample covariance matrices with sparsity \(np_n \sim n^\varepsilon \), \((\varepsilon > 0 \) is arbitrary small) was studied in [5, 6]. In particular, a local law was proved under the assumption that the matrix elements satisfy the moments condition \(\mathbb{E}|X_{jk}|^q \leq (Cq)^{cq} \). In the paper [7] the case of the sparsity \(np_n \sim \log^\alpha n \), for some \(\alpha > 1 \) was considered, assuming that the moments of the matrix elements satisfy the conditions \(\mathbb{E}|X_{jk}|^{4+\delta} \leq C < \infty, |X_{jk}| \leq c_1(np_n)^{\frac{1}{2}-\varkappa}, \) for some \(\varkappa > 0 \). Under this assumptions the local Marchenko–Pastur law was proved in some complex domain \(z \in \mathcal{D} \) with \(\text{Im} z > v_0 > 0 \), where \(v_0 \) is of order \(\log^4 n/n \) and the domain bound not depend on \(p_n \) while \(np_n > \log^3 n \).

This work is devoted to the case, when the elements \(X_{jk} \) are not truncated, and only the conditions \(\mathbb{E}|X_{jk}|^{4+\delta} \leq C < \infty, np_n \sim \log^\alpha n \), for some \(\alpha > 1 \) are fulfilled. We prove the local Marchenko–Pastur law in some complex domain \(u + iv \in \mathcal{D}_\mu \) with the
real part contained in the support of the Marchenko–Pastur distribution and separated from the support ends.

2. MAIN RESULTS

Let $m = m(n)$, $m \geq n$. Consider independent identically distributed zero mean random variables X_{jk}, $1 \leq j \leq n$, $1 \leq k \leq m$ with $\mathbb{E}X_{jk}^2 = 1$ and independent of that set independent Bernoulli random variables ξ_{jk}, $1 \leq j \leq n$, $1 \leq k \leq m$ with $\mathbb{E}\xi_{jk} = p_n$. In addition suppose that $np_n \to \infty$ as $n \to \infty$.

Observe the sequence of sparse sample covariance random matrices

$$X = \frac{1}{\sqrt{np_n}}(\xi_{jk}X_{jk})_{1 \leq j \leq n, 1 \leq k \leq m}.$$

Denote by $s_1 \geq \cdots \geq s_n$ the singular values of X and define the symmetrized empirical spectral distribution function (ESD) of the sample covariance matrix $W = XX^*$:

$$F_n(x) = \frac{1}{2n} \sum_{j=1}^{n} \left(I\{s_j \leq x\} + I\{-s_j \leq x\} \right),$$

where $I\{A\}$ stands for the event A indicator.

Note that $F_n(x)$ is the ESD of the block matrix

$$V = \begin{bmatrix} O_n & X \\ X^* & O_m \end{bmatrix},$$

where O_k is $k \times k$ matrix with zero elements.

Denote $R = R(z)$ the resolvent matrix of V:

$$R = (V - zI)^{-1}.$$

Let $y = y(n) = \frac{n}{m}$ and $G_y(x)$ — the symmetrized Marchenko–Pastur distribution function with the density

$$g_y(x) = \frac{1}{2\pi y|x|} \sqrt{(x^2 - a^2)(b^2 - x^2)} I\{a^2 \leq x^2 \leq b^2\},$$

where $a = 1 - \sqrt{y}$, $b = 1 + \sqrt{y}$. We shall assume that $y \leq y_0 < 1$ for $n, m \geq 1$.

Denote by $S_y(z)$ the Stieltjes transform of the distribution function $G_y(x)$ and $s_n(z)$ the Stieltjes transform of the distribution function $F_n(x)$. We have

$$S_y(z) = \frac{-z + \frac{1}{z} - y}{2y},$$

$$s_n(z) = \frac{1}{2n} \left[\sum_{j=1}^{n} \frac{1}{s_j - z} + \sum_{j=1}^{n} \frac{1}{-s_j - z} \right] = \frac{1}{n} \sum_{j=1}^{n} \frac{z}{s_j^2 - z^2} = \frac{1}{n} \sum_{j=1}^{n} R_{jj}.$$

The last equality follows from Schur complement (see [7, Section 3]). Put

$$b(z) = z - \frac{1}{z} - y + 2yS_y(z) = -\frac{1}{S_y(z)} + yS_y(z). \quad (2.1)$$
In this paper we prove so called Marchenko–Pastur law for sparse sample covariance matrices. Let
\[\Lambda_n := \Lambda_n(z) = s_n(z) - S_y(z). \]
For constant \(\delta > 0 \) define the value \(\kappa = \kappa(\delta) := \frac{\delta}{2(4+\delta)} \) and consider the following conditions:
- the condition \((C0)\): for some \(c_0 > 0 \) and all \(n \geq 1 \) we have \(np_n \geq c_0 \log^2 n \);
- the condition \((C1)\): for some \(\delta > 0 \) we have \(\mu_{4+\delta} := \mathbb{E} |X_{11}|^{4+\delta} < \infty \);
- the condition \((C2)\): there exists a constant \(c_1 > 0 \) such that for all \(1 \leq j \leq n, 1 \leq k \leq m \) we have \(|X_{jk}| \leq c_1 (np_n)^{\frac{1}{2} - \kappa} \) almost surely.

Introduce the quantity \(v_0 = v_0(a_0) := a_0 n^{-1} \log^4 n \) with some positive constant \(a_0 \), and define the region
\[\mathcal{D}(a_0) := \{ z = u + iv : (1 - \sqrt{y} - v)_+ \leq |u| \leq 1 + \sqrt{y} + v, V \geq v \geq v_0 \}. \]

Let
\[\Gamma_n = 2C_0 \log n \left(\frac{1}{nv} + \min \left\{ \frac{1}{np |b(z)|}, \frac{1}{\sqrt{np}} \right\} \right), \]
\[d(z) = \frac{\text{Im} b(z)}{|b(z)|}, \]
and
\[d_n(z) := \frac{1}{nv} \left(d(z) + \frac{\log n}{nv |b(z)|} \right) + \frac{1}{np |b(z)|}. \]

Put
\[\mathcal{T}_n := \mathbb{I}\{|b(z)| \geq \Gamma_n\} \left(d_n(z) + d_n^3(z) \frac{1}{(nv)^{\frac{3}{2}}} + d_n^2(z) \frac{1}{(nv)^{\frac{5}{2}}} \right) \]
\[+ \mathbb{I}\{|b(z)| \leq \Gamma_n\} \left(\left(\frac{\Gamma_n}{nv} \right)^{\frac{1}{2}} + \Gamma_n^{\frac{1}{2}} \left(\frac{\Gamma_n^2}{\sqrt{nv}} + \frac{1}{\sqrt{np}} \right) \right). \]

In the paper [7], assuming that the conditions \((C0)-(C2)\) are satisfied, the next theorem was proved:

Theorem 2.1. Assume that the conditions \((C0)-(C2)\) are satisfied. Then for any \(Q \geq 1 \) there exist positive constants \(C = C(Q, \delta, \mu_{4+\delta}, c_0, c_1), K = K(Q, \delta, \mu_{4+\delta}, c_0, c_1), a_0 = a_0(Q, \delta, \mu_{4+\delta}, c_0, c_1) \) such that for \(z \in \mathcal{D}(a_0) \)
\[\Pr \{ |\Lambda_n| \geq K \mathcal{T}_n \} \leq C n^{-Q}. \]

This work is devoted to the case, when the elements \(X_{jk} \) are not truncated, and only the conditions \((C0)-(C1)\) are fulfilled. Let
\[\mathcal{D}_\mu = \{ z = u + iv : 1 - \sqrt{y} + \mu \leq |u| \leq 1 + \sqrt{y} - \mu, V \geq v \geq v_0 \}, \]
for some \(\mu > 0 \). Note that \(|b(z)| \) are bounded in domain \(\mathcal{D}_\mu \), therefore
\[\Gamma_n = C_0 \log n \left(\frac{1}{nv} + \frac{1}{np} \right). \tag{2.2} \]

Without assumption \((C1)\) we get the following result.
Theorem 2.2. Assume that the conditions (C0)–(C1) are satisfied. Then for any \(\mu > 0 \) and \(Q \geq 1 \) there exist constants \(K = K(Q, \delta, \mu_{4+\delta}, \mu) \), \(a_0 = a_0(Q, \delta, \mu_{4+\delta}, \mu) \) depending on \(Q, \delta, \mu_{4+\delta} \) and \(\mu \) such that

\[
\Pr\{|\Lambda_n| \leq K \Gamma_n\} \geq 1 - n^{-Q},
\]

for all \(z \in D_\mu \) and \(\Gamma_n \) defined in (2.2).

Organization. The proof of the theorem is based on papers [8] and [7]. In Section 3 we follow [7]. In our case the domain \(D_\mu \) is separated from the ends of the spectrum. This makes it possible to significantly simplify the estimates obtained there and so to prove Theorem 2.2. In Section 4, we show that the elements \(R_{jk} \) of the resolvent are bounded. For this, following [8], we introduce the so-called admissible and inadmissible configurations. Assuming that the configuration is admissible, we obtain conditional estimates for \(R_{jk} \). Further, taking into account the small probability of inadmissible configurations, we obtain the estimate for the resolvent elements. In the Section 5 we state and prove some auxiliary results.

Notation. We use \(C \) for large universal constants which maybe different from line by line. \(S_y(z) \) and \(s_n(z) \) denote the Stieltjes transforms of the symmetrized Marchenko–Pastur distribution and the spectral distribution function correspondingly. \(R(z) \) denotes the resolvent matrix. Let \(T = \{1, \ldots, n\}, J \subset T \) and \(T^{(1)} = \{1, \ldots, m\}, K \subset T^{(1)} \). Consider \(\sigma \)-algebras \(\mathcal{M}(J,K) \), generated by the elements of \(X \) with the exception of the rows with number from \(J \) and the columns with number from \(K \). We will write for brevity \(\mathcal{M}_J^{(j,K)} \) instead of \(\mathcal{M}(J,J_{\{j\}},K) \) and \(\mathcal{M}_K^{(J,K)} \) instead of \(\mathcal{M}(J_{\{j\}},J,K) \). By symbol \(X^{(j,K)} \) we denote the matrix \(X \) which rows with numbers in \(J \) are deleted, and which columns with numbers in \(K \) are deleted too. In a similar way, we will denote all objects defined via \(X^{(J,K)} \), such that the resolvent matrix \(R^{(j,K)} \), the ESD Stieltjes transform \(s_n^{(j,K)} \), \(\Lambda_n^{(j,K)} \) and so on. The symbol \(E_j \) denotes the conditional expectation with respect to the \(\sigma \)-algebra \(\mathcal{M}_J \), and \(E_{l+n} \) — with respect to \(\sigma \)-algebra \(\mathcal{M}_{l+n} \). Let \(J^c = T \setminus J \), \(K^c = T^{(1)} \setminus K \).

3. Proof of Theorem 2.2

For the diagonal elements of \(R \) we can write

\[
R_{jj}^{(J,K)} = S_y(z)(1 - \varepsilon_{jj}^{(J,K)} R_{jj}^{(j,K)} + y \Lambda_n^{(J,K)} R_{jj}^{(j,K)}),
\]

for \(j \in J^c \), and

\[
R_{l+n,l+n}^{(J,K)} = -\frac{1}{z + y S_y(z)}(1 - \varepsilon_{l+n}^{(J,K)} R_{l+n}^{(J,K)} + y \Lambda_n^{(J,K)} R_{l+n}^{(J,K)}),
\]

for the off-diagonal elements.
for $l \in \mathbb{K}^c$. Correction terms $\varepsilon_{j}^{(J,K)}$ for $j \in \mathbb{J}^c$ and $\varepsilon_{l+n}^{(J,K)}$ for $l \in \mathbb{K}^c$ are defined as

$$
\varepsilon_{j}^{(J,K)} = \varepsilon_{j1}^{(J,K)} + \cdots + \varepsilon_{j3}^{(J,K)},
$$

$$
\varepsilon_{j1}^{(J,K)} = \frac{1}{m} \sum_{l=1}^{m} R_{l+n,l+n}^{(J,K)} - \frac{1}{m} \sum_{l=1}^{m} R_{l+n,l+n}^{(J\cup\{j\},K)},
$$

$$
\varepsilon_{j2}^{(J,K)} = \frac{1}{mp} \sum_{l=1}^{m} (X_{jl}^2 \xi_{jl} - \mu) R_{l+n,l+n}^{(J\cup\{j\},K)},
$$

$$
\varepsilon_{j3}^{(J,K)} = \frac{1}{mp} \sum_{1 \leq l \neq k \leq m} X_{jl} X_{jk} \xi_{jl} \xi_{jk} R_{l+n,l+n}^{(J\cup\{j\},K)},
$$

and

$$
\varepsilon_{l+n}^{(J,K)} = \varepsilon_{l+n,1}^{(J,K)} + \cdots + \varepsilon_{l+n,3}^{(J,K)},
$$

$$
\varepsilon_{l+n,1}^{(J,K)} = \frac{1}{m} \sum_{j=1}^{n} R_{jj}^{(J,K)} - \frac{1}{m} \sum_{j=1}^{n} R_{jj}^{(J,K\cup\{l+n\})},
$$

$$
\varepsilon_{l+n,2}^{(J,K)} = \frac{1}{mp} \sum_{j=1}^{n} (X_{jl}^2 \xi_{jl} - \mu) R_{jj}^{(J,K\cup\{l+n\})},
$$

$$
\varepsilon_{l+n,3}^{(J,K)} = \frac{1}{mp} \sum_{1 \leq j \neq k \leq n} X_{jl} X_{jk} \xi_{jl} \xi_{jk} R_{jj}^{(J,K\cup\{l+n\})}.
$$

Summing the equation (3.1) ($J = \emptyset$, $K = \emptyset$), we get the self-consistent equation

$$
s_n(z) = S_y(z)(1 + T_n - y \Lambda_n s_n(z)),$$

with the error term

$$
T_n = \frac{1}{n} \sum_{j=1}^{n} \varepsilon_j R_{jj}.
$$

The proof of Theorem 2.2 is based on the following theorem.

Theorem 3.1. Under the conditions of the Theorem 2.2, for any $\mu > 0$, there exist constants $C = C(\delta, \mu_{4+\delta}, c_0), a_0 = a_0(\delta, \mu_{4+\delta}, c_0)$, such that

$$
\mathbb{E} |T_n|^q \mathbb{I}\{Q\} \leq C^n \left(\frac{1}{nv} + \frac{1}{np} \right)^q \log^n n,
$$

for all $z \in \mathcal{D}_\mu$.

Proof. The proof repeats [7][Theorem 3], taking into account that $0 < \varepsilon < \text{Im} b(z)$ for some $\varepsilon > 0$ and $\text{Im} b(z)$, $|b(z)|$ are bounded in domain \mathcal{D}_μ. The arguments of [7][Theorem 3] also require that the condition $\text{Pr}\{B\} \leq Cn^{-Q}$ be satisfied (see [7][p. 17]). But Lemma 4.1 implies $\text{Pr}\{B; Q\} \leq Cn^{-Q}$. □

Proof of Theorem 2.2. First of all, we note that [7, Lemma 8] gives the bound

$$
|\Lambda_n| \leq C|T_n|
$$
in domain D_μ. We have
\[
\Pr\{|\Lambda_n| \geq K\Gamma_n\} \leq \Pr\{|\Lambda_n| \geq K\Gamma_n; Q\} + \Pr\{Q^c\}.
\]
[7, Corollary 3] implies
\[
\Pr\{Q\} \geq 1 - Cn^{-Q}.
\]
Applying Markov inequality and combining the last inequality and Theorem 3.1, we get
\[
\Pr\{|\Lambda_n| \geq K\Gamma_n\} \leq \frac{\mathbb{E}|T_n|^q\{Q\}}{K^q\Gamma_n^q} + Cn^{-q} \leq \left(\frac{C}{K}\right)^q.
\]
By choosing a sufficiently large K value and $q \sim \log n$, we obtained the proof. □

4. Estimate of R_{jk}

We shall use the notations of [7].
Let $s_0 > 1$ be some positive constant depending on δ, V. For any $0 < v \leq V$ we define k_v as
\[
k_v = k_v(V) := \min\{l \geq 0 : s_0^lv \geq V\}.
\]
For given $\gamma > 0$ consider the event
\[
Q_\gamma(v) := \{|\Lambda_n(u + iv)| \leq \gamma, \text{ for all } u\}
\]
and the event
\[
Q := \widehat{Q}_\gamma(v) = \bigcap_{l=0}^{k_v} Q_\gamma(s_0^lv).
\]
For the proof of main result it is enough to estimate the entries of the resolvent matrix. We prove the next Lemma.

Lemma 4.1. Under conditions of Theorem 2.2 there exists a constant H such that for $z \in D_\mu$
\[
\Pr\left\{\max_{1 \leq j,k \leq n+m} |R_{jk}| > H; Q\right\} \leq Cn^{-c\log n\log n}.
\]
Following the work of Aggarwal (see [8]), we introduce the configuration matrix $L = (L_{jk})$. Set events
\[
A_{jk} = \{|X_{jk}| \geq C(np)^{1/2} - \kappa\}.
\]
Define the matrix L with elements
\[
L_{jk} = \xi^\ast_{jk} I\{A_{jk}\}.
\]
Note that
\[
\mathbb{E} L_{jk} \leq \frac{\mu_{4+\delta}}{n^2p}.
\]
Introduce the configuration matrix L_V:
\[
L_V = \begin{bmatrix} O & L \\ L^T & O \end{bmatrix}.
\]
Definition. We call j and k linked (with respect to L_V), if $L_{jk} = 1$. Otherwise we call them unlinked.
Definition. If there exists a sequence \(j = j_1, j_2, \ldots, j_r = k \) such that \(j_\nu \) is linked to \(j_{\nu+1} \) for each \(\nu \in [1, r - 1] \), then \(j \) and \(k \) are called connected.

Definition. We call an index \(j \) deviant if there exists some index \(k \) such that \(j \) and \(k \) are linked. Otherwise we call \(j \) typical.

Let
\[
D_L = \{ j \in [1, n + m] : j \text{ is deviant} \}, \quad T_L = \{ j \in [1, n + m] : j \text{ is typical} \}.
\]

Definition. We call \(L_V \) deviant-inadmissible if there exist at least \(\sqrt{n \rho} \), deviant indices. We call \(L_V \) connected-inadmissible if there exist distinct indices \(j_1, j_2, \ldots, j_r, \) \(r = [\log n] \), that are pairwise connected. We call the configuration \(L_V \) inadmissible, if it is either deviant-inadmissible or connected-inadmissible. Otherwise, the configuration is called admissible.

Define \(A \) as the set of all admissible configurations of size \(n+m \). Let \(C = C_1 \cup C_2 \) be the event that the configuration \(L_V \) is inadmissible, \(C_1 \) be the event that the configuration \(L_V \) is deviant-inadmissible, and \(C_2 \) be the event that the configuration \(L_V \) is connected-inadmissible.

Lemma 4.2. Under the conditions of Theorem 2.2 the bound
\[
\Pr\{C\} \leq C n^{-c \log \log n}
\]

is valid.

Proof. First, we estimate \(\Pr\{C_1\} \). The event \(C_1 \) implies that there are at least \(\sqrt{n \rho} \) deviant indices, which in turn gives that there is at least \(\sqrt{n \rho} \) pairs \(\{j, k\} \) such that \(j \in [1, n], k \in [1, m] \) and \(L_{jk} = 1 \). Hence
\[
\Pr\{C_1\} \leq \sum_{j = \sqrt{n \rho}}^{n} \binom{nm}{j} \left(\frac{C}{n^2 \rho} \right)^j.
\]
By Stirling’s formula, we have
\[
\binom{nm}{j} \left(\frac{C}{n^2 \rho} \right)^j \leq C \left(\frac{C}{\sqrt{n \rho}} \right)^j
\]
for \(\sqrt{n \rho} \leq j \leq n \). This yields
\[
\Pr\{C_1\} \leq C \left(\frac{C}{\sqrt{n \rho}} \right)^{\sqrt{n \rho}}.
\]

The estimate \(\Pr\{C_2\} \) almost repeats the proof of the bound for \(\Pr\{\Delta_2\} \) in Lemma 3.11 of [8]. The event \(C_2 \) implies that there exists a sequence of indices \(S = \{i_1, i_2, \ldots, i_r\} \) such that at least \(r - 1 \) pair \((i_j, i_k)\) are linked. We have
\[
\Pr\{C_2\} \leq \binom{n + m}{r} \left(\frac{r^2}{r - 1} \right) \left(\frac{C}{n^2 \rho} \right)^{r-1}.
\]
Applying Stirling’s formula, get
\[\Pr\{C_2\} \leq n^{-C\log\log n}. \]

Now we fix the admissible configuration \(\mathbf{L}_V \). Let \(R < \sqrt{\frac{n}{p}} \) denotes the number of the deviant indices. Consider the matrix \(\mathbf{V}_L = (V_L(j,k)) \) with entries

\[
V_L(j,k) = \begin{cases}
0, & \text{if } 1 \leq j, k \leq n \text{ or } n+1 \leq j, k \leq n+m, \\
\xi_{jk}a_{jk}, & \text{if } 1 \leq j \leq n, n+1 \leq k \leq n+m \text{ and } L_{jk} = 0, \\
\xi_{jk}b_{jk}, & \text{if } 1 \leq j \leq n, n+1 \leq k \leq n+m \text{ and } L_{jk} = 1, \\
V_{kj}, & \text{if } n+1 \leq j \leq n+m, 1 \leq k \leq n.
\end{cases}
\]

Here \(a_{jk} \) (resp. \(b_{jk} \)) are independent random variables with the distributions

\[
\Pr\{a_{jk} \in G\} = \Pr\{X_{jk} \in G \mid A_{jk}\}
\]

and

\[
\Pr\{b_{jk} \in G\} = \Pr\{X_{jk} \in G \mid A_{jk}\}.
\]

The permutation of rows and columns gives the matrix

\[
\mathbf{V} = \begin{bmatrix} \mathbf{V}_{11} & \mathbf{V}_{12} \\ \mathbf{V}_{12}^T & \mathbf{V}_{22} \end{bmatrix}.
\]

The Hermitian matrix \(\mathbf{V}_{11} \) of size \(R \times R \) consists of type \(b \) elements and has the form

\[
\mathbf{V}_{11} = \begin{bmatrix} \mathbf{B}_1 & 0 & \ldots & 0 \\ \ldots & \mathbf{B}_2 & \ldots & \ldots \\ 0 & \ldots & 0 & \mathbf{B}_L \\ \end{bmatrix},
\]

where \(\mathbf{B}_\nu \) are Hermitian matrices of order \(r_\nu \leq r, \nu = 1, \ldots, L \). The matrix \(\mathbf{V}_{12} \) of size \(R \times (m+n-R) \) consists of type \(a \) elements and has the form

\[
\mathbf{V}_{12} = \begin{bmatrix} \mathbf{O}_1 & \mathbf{A}_1 \end{bmatrix},
\]

where \(\mathbf{O}_1 \) is a matrix of size \(R \times m \) with zero elements, the matrix \(\mathbf{A}_1 \) is \(R \times (n-R) \) with elements distributed by type \(a \). The Hermitian matrix \(\mathbf{V}_{22} \) of size \((n+m-R) \times (n+m-R) \) has the form

\[
\mathbf{V}_{22} = \begin{bmatrix} \mathbf{O}_{11} & \mathbf{A}_2 \\ \mathbf{A}_2^* & \mathbf{O}_{22} \end{bmatrix}.
\]

Here the square matrices \(\mathbf{O}_{11} \) and \(\mathbf{O}_{22} \) have zero elements and the orders \(m \) and \(n-R \) respectively, and the matrix \(\mathbf{A}_2 \) is \(m \times (n-R) \) with elements distributed by type \(a \). The resolvent \(\mathbf{R}(z) = (\mathbf{V} - z\mathbf{I})^{-1} \) can be represented as

\[
\mathbf{R} = \begin{bmatrix} \mathbf{R}_{11} & \mathbf{R}_{12} \\ \mathbf{R}_{12}^T & \mathbf{R}_{22} \end{bmatrix},
\]
where
\[R_{11} = (V_{11} - zI - V_{12}(V_{22} - zI)^{-1}V_{12}^*)^{-1}, \]
\[R_{12} = (V_{12}(V_{22} - zI)^{-1}V_{12}^* - V_{11} + zI)^{-1}V_{12}(V_{22} - zI)^{-1}, \]
\[R_{22} = (V_{22} - zI)^{-1} + (V_{22} - zI)^{-1}V_{12}^* \times (V_{11} - zI - V_{12}(V_{22} - zI)^{-1}V_{12}^*)^{-1}V_{12}(V_{22} - zI)^{-1}. \]

We will be primarily interested in estimating the spectral norm of the matrix \(R_{11} \) since it majorizes all elements of the matrix \(R_{11} \). Note that the dimension of the matrix \(R_{11} \) is equal to \(R \times R \), where \(R < \sqrt{\frac{n}{p}} \). Introduce a random matrix
\[Y = V_{12}(V_{22} - zI)^{-1}V_{12}^*. \]

Note that
\[R^{(J)} = (V_{22} - zI)^{-1} = \begin{bmatrix} R_{11}^{(J)} & R_{12}^{(J)} \\ R_{12}^{(J)T} & R_{22}^{(J)} \end{bmatrix}. \]

Given the form of the matrices \(V_{12} \) and \(V_{22} \), we find that
\[Y = A_1 R_{22}^{(J)} A_1^*. \]

In these notation
\[R_{11} = (V_{11} - zI - Y)^{-1}. \]

In what follows we shall assume that \(L_V \) is admissible. We prove that for the resolvent matrix \(R \) all entries are bounded conditioning by admissible \(L_V \).

Lemma 4.3. Let \(L_V \) be admissible. Under conditions of Theorem 2.2 there exists a constant \(H \) such that for \(z \in \mathcal{D}_\mu \)
\[\Pr\{ \max_{1 \leq j, k \leq n+m} |R_{jk}| > H; Q \} \leq Cn^{-c\log\log n}. \]

Note that \(\mathcal{T}_L \cup \mathcal{D}_L = [1, n + m], \mathcal{J} \subset [1, n + m] \). We introduce the events
\[C_1(v, k) = \bigcap_{|J| \leq k} \left\{ \max_{j,l \in \mathcal{J}} |R_{jl}^{(J)}(u + iv)| \leq H_1 \right\}, \]
and
\[C_2(v, k) = \bigcap_{|J| \leq k} \left\{ \max_{j,l \in \mathcal{D}_L, 1 \leq l \leq n+m} |R_{jl}^{(J)}(u + iv)| \leq H_2 \right\}. \]

The following lemma holds.

Lemma 4.4. Under the conditions of the Theorem 2.2, the inequalities
\[\Pr\{ C_1(v, k - 1); C_1(sv, k) \cap C_2(sv, k) \cap Q \} \geq 1 - Cn^{-c\log\log n} \quad (4.1) \]
and
\[\Pr\{ C_2(v, k - 1); C_1(sv, k) \cap C_2(sv, k) \cap Q \} \geq 1 - Cn^{-c\log\log n} \quad (4.2) \]
are valid.
Proof. For simplicity, we assume that \(k = 1 \). We begin by proving the inequality (4.1). Since both indices are typical, the corresponding matrix elements in the rows (and columns) with numbers \(j, k \) are of type \(a \). Consider the diagonal elements. For \(j \in T_L \cap [1, n] \) the equality

\[
R_{jj} = y S_j(z) \left(1 + \varepsilon_j R_{jj} + \Lambda_n R_{jj} \right)
\]

holds. For \(\omega \in \mathcal{Q} \) we have

\[
|\Lambda_n| \leq \frac{1}{2}.
\]

Hence,

\[
|R_{jj}| \II{\mathcal{Q}} \leq 2 \sqrt{y} (1 + |\varepsilon_j||R_{jj}|) \II{\mathcal{Q}}.
\]

Let

\[
\varepsilon_j = \varepsilon_{j1} + \varepsilon_{j2} + \varepsilon_{j3}
\]

with

\[
\varepsilon_{j1} = \frac{1}{m} \sum_{l=1}^{m} R_{l+n,l+n}^{(j)} - \frac{1}{m} \sum_{l=1}^{m} R_{l+n,l+n},
\]

\[
\varepsilon_{j2} = \frac{1}{mp} \sum_{l=1}^{m} (a_{jl}^2 \xi_{jl} - p) R_{l+n,l+n}^{(j)},
\]

\[
\varepsilon_{j3} = \frac{1}{mp} \sum_{l,t=1}^{m} a_{jl} a_{jt} \xi_{jl} \xi_{jt} R_{l+n,l+n}^{(j)}.
\]

Note that for admissible configurations

\[
|D_L| \leq \sqrt{n}.
\]

By [7, Lemma 1],

\[
|\varepsilon_{j1}| \leq \frac{C}{nv}.
\]

Next, note that

\[
\frac{1}{n} \sum_{l=1}^{m} |R_{l+n,l+n}^{(j)}|^{2} \II{\mathcal{C}_1(sv, 1)} \II{\mathcal{C}_2(sv, 1)} \II{\mathcal{Q}} \leq H_2^2 s^2 + H_1^2 s^2
\]

and

\[
\frac{1}{n} \sum_{l=1}^{m} |R_{l+n,l+n}^{(j)}|^{q} \II{\mathcal{C}_1(sv, 1)} \II{\mathcal{C}_2(sv, 1)} \II{\mathcal{Q}} \leq H_3^q s^q + H_4^q s^q.
\]

We used here the so-called multiplicative inequality: for any \(s \geq 1 \)

\[
|R_{jj}(u + iv)| \leq s |R_{jj}(u + isv)|.
\]
Given the above, get
\[E[\varepsilon_{j2}] \mathbb{P}\{C_1(sv, 1)\} \mathbb{P}\{C_2(sv, 1)\} \mathbb{P}\{Q\} \leq \frac{C^q q^{s^q} s^q H_1^q}{(np)^{2\gamma q + 1}} + \frac{C^q q^{s^q} s^q H_1^q}{(np)^{2\gamma q + 1}}. \]

Similarly,
\[E[\varepsilon_{j3}] |R_{jj}| \mathbb{P}\{C_1(sv, 1)\} \mathbb{P}\{C_2(sv, 1)\} \mathbb{P}\{Q\} \leq \frac{C^q q^{s^q} s^q H_1^q}{(nv)^{2\gamma q + 1}} + \frac{C^q q^{s^q} s^q H_1^q}{(nv)^{2\gamma q + 1}} + \frac{C^q q^{s^q} s^q H_1^q}{(np)^{2\gamma q + 1}}. \]

Here we used the fact that
\[|R_{jk}(u + iv)| \leq |R_{jk}(u + iv)| + (s - 1)v|\mathbf{R}(u + iv)\mathbf{R}(u + sv)|_{jk} \leq |R_{jk}(u + iv)| + (s - 1)\sqrt{\text{Im} R_{jj} \text{Im} R_{kk}} \leq s H_1 \]
for \(j, k \in T_L \), and
\[|R_{jk}(u + iv)| \leq s H_2 \]
in the case \(j \in D_L \) or \(k \in D_L \).

If \((np)^{2\gamma}|b(z)| \geq Cq^2sH_1 \) and \((np)^{\gamma} > CqsH_1 \), then \(H_1 \) and \(H_2 \) can be chosen so that
\[E[|R_{jj}|] \mathbb{P}\{C_1(sv, 1)\} \mathbb{P}\{C_2(sv, 1)\} \mathbb{P}\{Q\} \leq H_1^q. \]

Now consider the case of deviant indices. Let \(j \in D_L \) and \(k \) be arbitrary. Consider the matrix
\[\mathbf{Y} = \mathbf{V}_{12}(\mathbf{V}_{22} - z\mathbf{1})^{-1}\mathbf{V}_{12}^* = \mathbf{A}_1 \mathbf{R}_{22}^{(J)} \mathbf{A}_1^*. \]
We estimate the matrix \(\mathbf{Y} \) elementwise. We start with off-diagonal elements. Consider \(Y_{12} \). The equality
\[Y_{12} = \frac{1}{np} \sum_{l,t} a_{1l} \bar{a}_{2t} [\mathbf{R}_{22}^{(J)}]_{lt} \]
holds. Note that \(\{a_{1l}\} \) and \(\{a_{2t}\} \) are independent. We can apply the lemma 5.1 with \(\mathbf{A} = \mathbf{R}_{22}^{(J)} \). By the assumption \(C_1 \cap C_2 \cap Q \) we get
\[\|\mathbf{A}\|^2 \leq \frac{\gamma a_n(z)}{v} + \frac{r}{v}, \]
and
\[\sum_{j=1}^n \mathcal{L}_j^q \leq \frac{H_2^q s^q}{pv z}|b(z)|^{2\gamma q} + \frac{H_1^q s^q n}{v^2}. \]
Finally,
\[\sum_{i,j \in T_L} |[\mathbf{R}_{22}^{(J)}]_{ij}|^q \leq \frac{H_2^{q-2}s^{q-2}n}{|b(z)|^{q-2}v} (\gamma a_n(z) + \frac{r}{nv}). \]
Further, we have
\[\mu^{(q)}(\xi), \mu^{(q)}(\eta) \leq p(np)^{2-\gamma q} \]
for \(q \geq 4 + \delta \), and
\[
\mu^{(q)}_1, \mu^{(q)}_q \leq p \mu^{(q)}_{4+\delta} \left(\frac{n}{np}\right)^{\frac{q}{2}} \]
for \(q \leq 4 \). Combining all the estimates, we obtain
\[
A_1 \leq \frac{C q^{\frac{q}{2}}}{n^\delta} \left(\frac{1}{q^2} + \frac{q^2}{(np)^{\frac{q}{2}}} + \frac{1}{(np)^2 (np)^{\frac{2q}{3}}} \right), \\
A_2 \leq \frac{C q^{\frac{q}{2}}}{n^{\frac{3}{2}+1} (np)^{\frac{q}{2} + 1}}, \\
A_3 \leq \frac{C q^{2q}}{n^{2} (np)^{2q+2}}.
\]

Finally we get, for \(np \geq C \log n \),
\[
\mathbb{E}|Y_{12}|^q \mathbb{I}\{C_1\} \mathbb{I}\{C_2\} \mathbb{I}\{Q\} \leq \frac{C q^{\frac{q}{2}}}{(nv)^{\frac{3}{2}}} \left(a_n^2(z) + \frac{r^2}{(nv)^{\frac{3}{2}}} \right) + \frac{C q H^2 s^2 q^{3q}}{(np)^{\frac{q}{2} + 1} |b(z)|^{\frac{q}{2}}} \\
+ \frac{C q H^2 s q^3}{(nv)^{\frac{3}{2}} (np)^{\frac{q}{2}}} + \frac{C q H^2 s q^3}{(np)^{2q+2} b(z)^{\frac{q}{2}}}.
\]

Applying Chebyshev's inequality with \(q \sim \log n \), we conclude that
\[
\Pr \left\{ |Y_{12}| \geq C \log n \left(\frac{a_n(z)}{\sqrt{nv}} + \frac{\log^2 n}{\sqrt{nv(np)^{\frac{q}{2}}}} \left| b(z) \right|^{\frac{q}{2}} + \frac{\log^2 n}{(np)^{2q + 2}} \left| b(z) \right|^{\frac{q}{2}} \right) \right\} \leq C n^{-c \log \log n}. \quad (4.3)
\]

Now consider the diagonal elements.
\[
Y_{11} = \sum_{l,t} a_{1l} a_{1t} |R_{22}^{(l)}|_l.
\]

Represent \(Y_{11} \) as
\[
Y_{11} = \sum_{l} a_{1l}^2 |R_{22}^{(l)}|_l + \sum_{l \neq t} a_{1l} a_{1t} |R_{22}^{(l)}|_l =: \tilde{Y}_{11} + \tilde{Y}_{11}.
\]

Applying the inequality for quadratic forms, obtain
\[
\mathbb{E}|\tilde{Y}_{11}|^q \mathbb{I}\{C_1(sv, 1)\} \mathbb{I}\{C_2(sv, 1)\} \mathbb{I}\{Q\} \leq C q \left(q^2 (\mathbb{E} |a_{11}|^2)^q \mathbb{E} \|R^{(l)}\|^q \mathbb{I}\{C_1(sv, 1)\} \mathbb{I}\{C_2(sv, 1)\} \mathbb{I}\{Q\} \right) \\
+ q^{\frac{q}{2}} \mu^{(q)} (\mathbb{E} |a_{11}|^2)^{\frac{q}{2}} \sum_l \mathbb{E} \left(\sum_t |\mathbb{I}(R_{22}^{(l)}|_l|^q) \mathbb{I}\{C_1(sv, 1)\} \mathbb{I}\{C_2(sv, 1)\} \mathbb{I}\{Q\} \right) \\
+ q^{2q} (\mu^{(q)})^2 \sum_{l,t} |\mathbb{I}(R_{22}^{(l)}|_l|^q) \mathbb{I}\{C_1(sv, 1)\} \mathbb{I}\{C_2(sv, 1)\} \mathbb{I}\{Q\}.
\]

From here it is easy to get
\[
\mathbb{E}|\tilde{Y}_{11}|^q \mathbb{I}\{C_1(sv, 1)\} \mathbb{I}\{C_2(sv, 1)\} \mathbb{I}\{Q\} \leq C q \left(\frac{q^{\frac{q}{2}} a_n^2(z)}{(nv)^{\frac{3}{2}}} + \frac{q^{3q} C q}{(np)^{\frac{q}{2} + 1} |b(z)|^{\frac{q}{2}}} \\
+ C q^{2q} \right)
\]

This yields
\[
\Pr \left\{ \left| \hat{Y}_{11} \right| \geq C \left(\log^2 n \log \log n \right) \frac{1}{\sqrt{nv}} + \log^2 n \frac{1}{\sqrt{nv(np)^2}} \sqrt{|b(z)|} + \log^3 n \frac{1}{(np)^{2x}|b(z)|} \right\} \leq Cn^{-\log \log n}.
\]

Now consider \(\hat{Y}_{11} \). We have
\[
\hat{Y}_{11} = \frac{y}{n} \sum \mathcal{R}_{ll}^{(l)} + \sum \left(a_{ll}^2 - \mathbb{E} a_{ll}^2 \right) R_{ll}^{(l)}
\]
\[
= yS_y(z) - \frac{1 - y}{z} + yA_n(z) + \frac{r}{nv} + \sum \left(a_{ll}^2 - \mathbb{E} a_{ll}^2 \right) R_{ll}^{(l)}.
\]

By Rosenthal’s inequality,
\[
\mathbb{E} \left| \sum \left(a_{ll}^2 - \mathbb{E} a_{ll}^2 \right) R_{ll}^{(l)} \right|^q \leq C \left(\frac{q^2 s^q}{(np)^{\frac{3}{2}}} + \frac{q^2 s^q}{(np)^{\frac{2}{2}}} \right) + \frac{s^q q^q}{(np)^{2q} |b(z)|^q}.
\]

The obtained bounds give
\[
\Pr \left\{ \left| \hat{Y}_{11} - \left(\frac{1 - y}{z} + yS_y(z) \right) \right| \geq C \left(\gamma a_n(z) + \frac{r}{nv} \right) \right\} \leq Cn^{-\log \log n}.
\]

Summing up the estimates for \(\hat{Y}_{11} \) and \(\hat{Y}_{11} \), we conclude that
\[
\Pr \left\{ \left| Y_{11} - \left(yS_y(z) - \frac{1 - y}{z} \right) \right| \geq \mathcal{G}_1 + \mathcal{G}_2; \mathcal{C}_1 \cap \mathcal{C}_2 \cap \mathcal{Q} \right\} \leq Cn^{-\log n},
\]
where
\[
\mathcal{G}_1 = \gamma a_n(z),
\]
\[
\mathcal{G}_2 = C \left(\frac{r}{nv} + \log^3 n \frac{1}{(np)^{\frac{3}{2}}} + \log^3 n \frac{1}{(np)^{\frac{2}{2}}} \right) \frac{1}{\sqrt{nv}} + \log^2 n \frac{1}{(np)^{2x} |b(z)|} \right) \leq Cn^{-\log n}.
\]

It is easy to show that if
\[
|b(z)| \geq C \log n \frac{3}{\sqrt{nv}} \left(\frac{1}{(np)^{\frac{3}{2}}} + \frac{1}{(np)^{\frac{2}{2}}} \right),
\]
then
\[
\Pr \left\{ \left| Y_{11} - \left(yS_y(z) - \frac{1 - y}{z} \right) \right| \leq \gamma |b(z)|; \mathcal{C}_1 \cap \mathcal{C}_2 \cap \mathcal{Q} \right\} \leq Cn^{-\log n}
\]
with an arbitrarily small constant \(\gamma \). From this and the inequality (4.3) it follows that
Pr \left\{ \left\| Y - \left(yS_y(z) - \frac{1-y}{z} \right) I \right\| \geq \gamma |b(z)| ; C_1 \cap C_2 \cap Q \right\} \geq 1 - Cn^{-c \log n}.

Since the matrix V_{11} is Hermitian (the eigenvalues are real), and

$$\text{Im} \left(z - \frac{1-y}{z} + yS_y(z) \right) \geq \frac{\sqrt{2}}{2} |b(z)|,$$

we find that

$$\Pr \left\{ \left\| \left(V_{11} - \left(z - \frac{1-y}{z} + yS_y(z) \right) \right)^{-1} \right\| \leq \frac{C}{|b(z)|} ; C_1 \cap C_2 \cap Q \right\} \geq 1 - Cn^{-c \log \log n}.$$

This, in particular, implies that

$$\Pr \left\{ \max_{1 \leq j, k \leq n+m} |R_{jk}(v)| > H ; Q \right\} \leq Cn^{-c \log \log n},$$

for $v \geq V/s_0 = v_0$. We may repeat this procedure $L(v_0, s_0)$ times and obtain

$$\Pr \left\{ \max_{1 \leq j, k \leq n+m} |R_{jk}(v)| > H ; Q \right\} \leq Cn^{-c \log \log n},$$

for $v \geq V/s_0 = v_0$. \hfill \Box

Proof of Lemma 4.3. Let $k = |J|$. Lemma 4.4 and inequality max$_{j,l} |R_{jl}^{(j)}(V)| \leq V^{-1}$ imply

$$\Pr \left\{ C_1(v, k-1) ; Q \right\} \geq 1 - Cn^{-c \log \log n},$$

$$\Pr \left\{ C_2(v, k-1) ; Q \right\} \geq 1 - Cn^{-c \log \log n},$$

for $V/s_0 \leq v \leq V$. We may repeat this procedure $L(v_0, s_0)$ times and obtain

$$\Pr \left\{ \max_{1 \leq j, k \leq n+m} |R_{jk}(v)| > H ; Q \right\} \leq Cn^{-c \log \log n},$$

for $v \geq V/s_0 = v_0$. \hfill \Box

Proof of Lemma 4.1. We recall that Lemma 4.2 gives

$$\Pr \{ LV \notin A \} \leq Cn^{-c \log \log n}.$$

It implies Lemma 4.1. \hfill \Box

5. Appendix

Let ξ_1, \ldots, ξ_n and η_1, \ldots, η_n be mutually independent random variables, $A = (a_{ij})_{n \times 1}$. Define

$$L_j^2 = \sum_{i=1}^n |a_{ij}|^2.$$

Note that

$$\|A\|^2 = \sum_{j=1}^n L_j^2.$$
Lemma 5.1. For any $q \geq 2$ the inequality
\[
\mathbb{E} \left| \sum_{i,j=1}^{n} a_{ij} \xi_i \eta_j \right|^q \leq C^q \left(A_1 \|A\|^q + A_2 \sum_{j=1}^{n} L_j^q + A_3 \sum_{i,j=1}^{n} |a_{ij}|^q \right)
\]
holds, where
\[
A_1 = q^\frac{3q}{2} (\sigma_\xi^{2q} + \sigma_\eta^{2q}),
A_2 = q^\frac{3q}{2} (\sigma_\xi^{2q} + \sigma_\eta^{2q}) \frac{q-1}{q} (\mu_\xi^{(2)}) \frac{2(n-2)}{q-1},
A_3 = q^2 \mu_\xi^{(q)} \mu_\eta^{(q)}.
\]

Proof. Let $A = \sum_{i,j=1}^{n} a_{ij} \xi_i \eta_j = \sum_{i=1}^{n} \xi_i (\sum_{j=1}^{n} a_{ij} \eta_j)$. Applying Rosenthal’s inequality, we get
\[
A \leq C^q (q^\frac{2}{q} \sigma_\xi^q \mathbb{E} \left(\sum_{i=1}^{n} \left(\sum_{j=1}^{n} \eta_i a_{ij} \right)^2 \right)^{\frac{q}{2}} + q^\frac{q}{2} \mu_\xi^{(q)} \sum_{i=1}^{n} \mathbb{E} \left| \sum_{j=1}^{n} a_{ij} \eta_j \right|^q)
=: C^q q^\frac{2}{q} \sigma_\xi^q A_1 + C^q q^\frac{q}{2} \mu_\xi^{(q)} A_2.
\]

Using the triangle inequality, we obtain
\[
A_1 \leq 2^\frac{q}{2} \mathbb{E} \left(\sum_{i=1}^{n} \sum_{j=1}^{n} a_{ij}^2 \eta_j^2 \right)^{\frac{q}{2}} + 2^\frac{q}{2} \mathbb{E} \left(\sum_{i \neq j} \eta_i \eta_j \left(\sum_{l=1}^{n} a_{il} a_{lj} \right) \right)^{\frac{q}{2}}
=: 2^\frac{q}{2} (A_{11} + A_{12}).
\]

Further,
\[
A_{11} \leq 2^\frac{2}{q} \left(\left(\sum_{i=1}^{n} \sum_{j=1}^{n} a_{ij}^2 \right)^{\frac{q}{2}} + \mathbb{E} \left(\sum_{j=1}^{n} (\eta_j^2 - \mu_\eta^2) \left(\sum_{i=1}^{n} a_{ij}^2 \right) \right)^{\frac{q}{2}} \right).
\]

Applying Rosenthal’s inequality again, we conclude that
\[
\mathbb{E} \left(\sum_{j=1}^{n} (\eta_j^2 - \mu_\eta^2) \left(\sum_{i=1}^{n} a_{ij}^2 \right) \right)^{\frac{q}{2}} \leq C^q q^\frac{2}{q} \left(\sum_{j=1}^{n} \left(\sum_{i=1}^{n} a_{ij}^2 \right)^{\frac{q}{2}} (\mu_\eta^{(4)})^{\frac{q}{2}} \right)
+ C^q q^\frac{2}{q} \mu_\eta^{(q)} \sum_{j=1}^{n} \left(\sum_{i=1}^{n} a_{ij}^2 \right)^{\frac{q}{2}}.
\]

To estimate A_{12}, we use the inequality for quadratic forms from [9]. We have
\[
A_{12} \leq C^q q^\frac{2}{q} \sigma_\eta^{\frac{q}{2}} \left(\sum_{i \neq j} \left(\sum_{l=1}^{n} a_{il} a_{lj} \right)^{\frac{2}{q}} + C^q q^\frac{3q}{2} \mu_\eta^{(\frac{3q}{2})} \sigma_\eta^{\frac{q}{2}} \sum_{j=1}^{n} \left(\sum_{i=1}^{n} a_{il} a_{lj} \right)^{\frac{q}{4}} \right)
+ C^q q^\frac{q}{2} (\mu_\eta^{(\frac{q}{2})})^2 \left(\sum_{i \neq j} \left(\sum_{l=1}^{n} a_{il} a_{lj} \right)^{\frac{2}{q}} \right).
\]
Summing up the above inequalities, we find that

\[
A_1 \leq C^q \sigma_0^q \left(\sum_{i=1}^n a_{ij}^2 \right)^{\frac{q}{2}} + C^q (\mu_0^{(4)})^2 q^2 \left(\sum_{j=1}^n \left(\sum_{i=1}^n a_{ij}^2 \right)^{\frac{q}{2}} \right)
+ C^q \left(\sum_{i \neq j} \left(\sum_{l=1}^n a_{il} a_{lj} \right)^{\frac{q}{2}} \right) + C^q q^2 \mu_0^{\frac{q}{2}} q^2 \sigma_0^q \left(\sum_{j=1}^n \left(\sum_{i=1}^n a_{ij}^2 \right)^{\frac{q}{2}} \right)
+ C^q q^2 \mu_0^{\frac{q}{2}} q^2 \left(\sum_{i=1}^n a_{ij}^2 \right)^{\frac{q}{2}}.
\]

For \(A_2 \), by Rosenthal’s inequality, we have

\[
A_2 \leq C^q \sigma_0^q q^2 \sum_{i=1}^n \mathcal{L}_i^q + C^q q^2 \mu_0^{(q)} \sum_{i=1}^n |a_{ij}|^q. \tag{5.1}
\]

Further note that

\[
\left(\sum_{j=1}^n \left(\sum_{i=1}^n a_{ij}^2 \right)^{\frac{q}{2}} \right)^{\frac{2}{q}} \leq \left(\sum_{i=1}^n \mathcal{L}_i^q \right)^{\frac{q}{2(q-2)}} (\| A \|^{q})^{\frac{q-4}{2(q-2)}},
\]
\[
\left(\sum_{i \neq j} \left(\sum_{l=1}^n a_{il} a_{lj} \right)^{\frac{q}{2}} \right)^{\frac{2}{q}} \leq \| A \|^{q},
\]
\[
\sum_{j=1}^n \left(\sum_{i=1}^n \left(\sum_{l=1}^n a_{il} a_{lj} \right)^{\frac{q}{2}} \right)^{\frac{2}{q}} \leq \left(\sum_{j=1}^n \mathcal{L}_j^q \right)^{\frac{q}{2(q-2)}} (\| A \|^{q})^{\frac{q-4}{2(q-2)}},
\]
\[
\left(\sum_{i} \mathcal{L}_j^q \right)^{\frac{2}{q}} \leq \left(\sum_{j=1}^n \mathcal{L}_j^q \right)^{\frac{q-4}{2(q-2)}} (\| A \|^{q})^{\frac{2}{q-2}}.
\]

For \(A \) we get the estimate

\[
A \leq C^q (B_1 + \ldots + B_8),
\]
where

\begin{align*}
B_1 &= q^2 \sigma_\xi^q \sigma_\eta^q \| A \|^q, \\
B_2 &= \sigma_\xi^q (\mu_\eta^{(4)})^{\frac{2}{q}} q^{\frac{3}{q}} \left(\sum_{j=1}^{n} L_j^q \right)^{\frac{q-2}{2(q-2)}} \left(\| A \|^q \right)^{\frac{q}{q-2}}, \\
B_3 &= q^q \sigma_\xi^q \sigma_\eta^q \left(\sum_{j=1}^{n} L_j^q \right)^{\frac{q-4}{2(q-2)}} \left(\| A \|^q \right)^{\frac{q}{q-2}}, \\
B_4 &= q^q \sigma_\xi^q \sigma_\eta^q \left(\sum_{j=1}^{n} L_j^q \right)^{\frac{q-4}{2(q-2)}} \left(\| A \|^q \right)^{\frac{q}{q-2}}, \\
B_5 &= q^q \sigma_\xi^q \sigma_\eta^q \left(\sum_{j=1}^{n} L_j^q \right)^{\frac{q-4}{2(q-2)}} \left(\| A \|^q \right)^{\frac{q}{q-2}}, \\
B_6 &= q^q \sigma_\xi^q \mu_\eta^{(q)} \left(\sum_{j=1}^{n} L_j^q \right)^{\frac{q}{q}}, \\
B_7 &= q^q \sigma_\xi^q \mu_\eta^{(q)} \left(\sum_{j=1}^{n} L_j^q \right)^{\frac{q}{q}}, \\
B_8 &= q^q \mu_\xi^{(q)} \mu_\eta^{(q)} \left(\sum_{i,j=1}^{n} |a_{ij}|^q \right).
\end{align*}

Applying Young’s inequality, we obtain the bounds

\begin{align*}
B_2 &\leq C q^{\frac{3q}{2}} \left(\sigma_\xi^{4} (\mu_\eta^{(4)})^{\frac{2}{q}} \sum_{j=1}^{n} L_j^q + \sigma_\xi^{2q} \| A \|^q \right), \\
B_3 &\leq C q^q \sigma_\xi^q \sigma_\eta^q \sum_{j=1}^{n} L_j^q + C q^q \sigma_\xi^q \sigma_\eta^q \| A \|^q, \\
B_4 &\leq C q^{\frac{3q}{2}} \left((\sigma_\xi^{2q} + \sigma_\eta^{2q}) \| A \|^q + (\mu_\eta^{(q)})^{\frac{2(q-2)}{q-4}} (\sigma_\xi^{q-6} + \sigma_\eta^{q-6}) \sum_{j=1}^{n} L_j^q \right), \\
B_5 &\leq C q^{\frac{3q}{2}} \left((\sigma_\xi^{2q} \| A \|^q + \sigma_\xi^{\frac{q(q-6)}{q-4}} (\mu_\eta^{(q)})^{\frac{2(q-2)}{q-4}} \sum_{j=1}^{n} L_j^q \right).
\end{align*}

The last inequalities give

\begin{align*}
A &\leq C q^{q} \left(A_1 \| A \|^q + A_2 \left(\sum_{j=1}^{n} L_j^q \right) + A_3 \left(\sum_{i,j=1}^{n} |a_{ij}|^q \right) \right),
\end{align*}
where
\[A_1 = q^{3q} (\sigma_\xi^{2q} + \sigma_\eta^{2q}), \]
\[A_2 = q^{3q} (\sigma^{(2q)}_\xi + \sigma^{(2q)}_\eta)^{\frac{q-6}{q-4}} (\mu^{(2q)}_\xi)^{\frac{2(q-2)}{q-4}}, \]
\[A_3 = q^{2q} \mu^{(q)}_\xi \mu^{(q)}_\eta. \]

Thus Lemma is proved. \[\square\]

REFERENCES

[1] Erdős, L.; Knowles, A.; Yau, H.-T.; Yin, J. Spectral statistics of Erdős–Rényi graphs I: Local semicircle law. Ann. Probab. 2013, 41(3B), 2279–2375.

[2] Erdős, L.; Knowles, A.; Yau, H.-T.; Yin, J. Spectral statistics of Erdős-Rényi graphs II: Eigenvalue spacing and the extreme eigenvalues. Comm. Math. Phys. 2012, 314(3), 587–640.

[3] Huang J.; Landon B.; Yau H.-T. Bulk universality of sparse random matrices. J. Math. Phys. 2015, 56, 123301, 1–19.

[4] Huang J.; Yau H.-T. Edge Universality of Sparse Random Matrices. arXiv:2206.06580 [math.PR], 2022.

[5] Lee, J. O.; Schnelli, K. Tracy–Widom distribution for the largest eigenvalue of real sample covariance matrices with general population. Ann. Appl. Probab. 2016, 26(6), 3786–3839.

[6] Hwang, J. Y.; Lee, J. O.; Schnelli, K. Local law and Tracy–Widom limit for sparse sample covariance matrices. Ann. Appl. Probab. 2019, 29(5), 3006–3036.

[7] Tikhomirov, A.N., Timushev, D.A. Local Laws for Sparse Sample Covariance Matrices. Mathematics 2022, 10(13), 2326.

[8] Aggarwal. A. Bulk universality for generalized Wigner matrices with few moments. Probability Theory and Related Fields 2019, 173 (1-2), 375–432.

[9] Tikhomirov A.N. Simple proofs of Rosenthal inequalities for linear forms of independent random variables and its generalization to quadratic forms. Proceedings of the Komi Science Centre of the Ural Branch of the Russian Academy of Sciences 2018, 2(34), 8–13.