The Gastric H₃ Receptor: A Review

MIGUEL J.M. LEWIN, Ph.D., ANDRÉ BADO, Ph.D., YACINE CHERIFI, B.S., AND FLORENCE REYL-DESMARS, Ph.D.

INSERM, Hôpital Bichat, Paris, France

Received May 11, 1992

Previous in vivo and in vitro studies from our laboratory have revealed a line of pharmacological evidence supporting histamine H₃ receptor(s) involvement in the control of gastric acid secretion. We have recently extended our studies to the human gastric tumoral cell HGT-1. This cell was found to contain an H₃ receptor inhibiting basal and carbachol-stimulated inositol phosphate formation. Furthermore, we were able to solubilize and affinity-purify this receptor in the form of a single 70 kDa protein. These findings are the first biochemical description of the H₃ receptor subtype and the first direct demonstration that this subtype can occur on the non-neural cell. Furthermore, they provide a molecular basis to explain its suggested inhibitory role in gastric physiology.

INTRODUCTION

The novel "H₃" histamine receptor subtype was originally characterized on brain histaminergic nerves as an autoreceptor downregulating histamine synthesis and release [1]. The localization of this receptor was, however, rapidly extended to serotonergic, cholinergic, and non-cholinergic fibers, in brain as well as in peripheral tissues such as airways, lung, and intestine [2,3].

We summarize here recent studies from our laboratory, supporting the hypothesis that H₃ receptors are very likely to be involved in the control of gastric acid secretion. Furthermore, we report preliminary results on biochemical and functional characterization of a gastric H₃ receptor in the human gastric cell line HGT-1.

PHARMACOLOGICAL EVIDENCE

The first evidence for a gastric H₃ receptor subtype came from in vivo studies carried out in our laboratory on fistula cats by Hervatin et al. [4] and Bado et al. [5]. These studies showed that stimulation of acid secretion by meal or pentagastrin was potently and dose-dependently inhibited by the specific H₃ agonist Rα-methylhistamine (Ra-MeHA). Furthermore, this inhibition was itself inhibited by the specific H₃ antagonist thioperamide (Figs. 1, 2). The fact that Ra-MeHA inhibited pentagastrin stimulation suggests that the putative H₃ receptor(s) should be located downstream of the gastrin receptor. Furthermore, an extrinsic cholinergic vagal mediation is apparently excluded, since similar findings were observed for the main stomach and the denervated Heidenhain pouch.

The possibility that Ra-MeHA inhibition of (penta)gastrin stimulation could be mediated by histamine cell H₃ receptors was investigated by Sandvik et al. on the isolated rat stomach [6]. These authors found that Ra-MeHA inhibited basal and

Abbreviation: Ra-MeHA: Rα-methylhistamine

Address reprint requests to: M.J.M. Lewin, Ph.D., INSERM U.10, Hôp. Bichat, F-75877 Paris Cedex 18, France

Copyright © 1992 by The Yale Journal of Biology and Medicine, Inc.
All rights of reproduction in any form reserved.
gastrin-stimulated vascular histamine release in a ranitidine-insensitive manner (Fig. 2). This finding is consistent with the presence of an H₃ autoreceptor on the histamine-secreting cell, in agreement with the report of H₃ autoreceptors on brain histaminergic nerves [1] and with the early suggestion by Håkanson et al. that histamine inhibits its own synthesis and release in the gastric mucosa [7]. The intervention of an H₂-type receptor was previously postulated because the stimulation of gastric mucosal histamine release, evoked by pentagastrin injection in the rat, was reported to be increased after infusion of metiamide, burimamide, or cimetidine [8,9]. These findings, which contrast with the lack of effect of ranitidine in the in vitro

FIG. 1. Dose-dependent inhibition for the H₃-receptor agonist (Rα)-methylhistamine (Rα-MeHA) on pentagastrin-stimulated gastric acid secretion from the main stomach in cats with gastric fistula. Redrawn from [5].

FIG. 2. Effect of H₃-receptor agonist (Rα)-methylhistamine (Rα-MeHA) alone or together with the H₃-receptor antagonist, thioperamide (Thioperamide) on bactopeptone (BP) meal-stimulated gastric acid secretion from the denervated Heidenhain pouch in conscious cats. Redrawn from [5].
study of Sandvik et al. [6], might be, however, inherent in the in vivo situation and the doses used.

Evidence for H₃ modulation of other mediators of acid secretion was investigated on the same experimental model by Moizo et al. [10]. These studies demonstrated that Rα-MeHA strongly potentiated carbachol-induced vascular gastrin release and that this effect was totally suppressed by thioperamide. Such a finding might be interpreted as evidence for an H₃ receptor on the gastrin cell. Since in this study, Rα-MeHA concomitantly reversed carbachol inhibition of somatostatin release, however, gastrin release potentiation could be secondary to this effect. Thus, in addition to its putative location on the histamine-secreting cell, the H₃ receptor could also occur on other gastric endocrine cells, such as gastrin and somatostatin cells.

In an attempt to gain a deeper insight into the role of H₃ receptors in the cellular mechanisms regulating acid secretion, we carried out further studies on isolated rabbit gastric glands [11]. We found that Rα-MeHA inhibited and thioperamide enhanced basal histamine release (Fig. 3), in agreement with the suggested existence of an inhibitory H₃ receptor on gastric histamine cells. In addition, thioperamide-enhanced histamine release was accompanied by the stimulation of ¹⁴C-aminopyrine accumulation by the glands. Thioperamide stimulation of ¹⁴C-aminopyrine accumulation was still present, however, after blockade of the parietal cell H₂ receptor by ranitidine (Fig. 3). Moreover, Rα-MeHA also inhibited carbachol- and even histamine-stimulated ¹⁴C-aminopyrine accumulation (Fig. 4). These findings do not conflict with the presence of an H₃ receptor on histaminocytes but argue strongly for the additional presence of an H₃ receptor on the parietal cell itself (Fig. 4).

BIOCHEMICAL EVIDENCE

A direct demonstration of gastric H₃ receptor(s) was recently attempted in our laboratory, using the human gastric tumoral cell HGT-1. The great suitability of this model for the study of gastric acid secretion receptors, particularly histamine H₂ and somatostatin receptors had been previously shown [12,13,14]. Using ³H[Nα-MeHA as
a receptor ligand, Cherifi et al. [15] characterized high-affinity specific binding sites of an equilibrium constant (K_D) of 0.85 ± 0.06 nM and 2 ± 0.5 nM in the absence and the presence of GTP(γ)S, respectively. They were able to solubilize these sites and to purify them further (86 percent purity), using a thioperamide affinity column. The binding of 3(H)α-MeHA to the purified sites showed a K_D of 1.6 ± 0.1 nM. It was competitively displaced by α-MeHA ($IC_{50} = 5.8$ nM), $R\alpha$-MeHA ($IC_{50} = 9 \pm$ nM), and thioperamide ($IC_{50} = 85 \pm 10$ nM) but not by GTP(γ)S, nor the H_2 and H_1 antagonists famotidine and mepyramine, respectively. On the other hand, Cherifi et al. demonstrated a thioperamide-sensitive, ranitidine-insensitive inhibition of basal and carbachol-stimulated inositol phosphate formation by $R\alpha$-MeHA in the HGT-1 cell (Fig. 5) [15].

These findings are the first direct evidence for the existence of H_3 receptors as a distinct biochemical entity and for the occurrence of this receptor on a non-neural cell. They further support the hypothesis that this novel receptor subtype is negatively coupled to phosphatidylinositol turnover, a signaling pathway consistent with its general inhibitory action, as reported in the above studies.
REFERENCES

1. Arrang JM, Garbarg M, Schwartz JC: Auto-inhibition of brain histamine release mediated by a novel class (H3) of histamine receptor. Nature 302:832–837, 1983
2. Hill SJ: Distribution, properties, and functional characteristics of three classes of histamine receptor. Pharmacol Rev 42:45–84, 1990
3. Bertaccini G, Coruzzi G, Adami M, Pozzoli C, Gambarelli E: Histamine H3-receptors: An overview. Ital J Gastroenterol 23:378–385, 1991
4. Hervatin F, Dubrasquet M, Bado A, Lewin MJM: Histamine H3 receptors in the regulation of gastric acid secretion in conscious cat (Abstract). Gastroenterology 96:A207, 1989
5. Bado A, Hervatin F, Lewin MJM: Pharmacological evidence for histamine H3 receptors in the regulation of gastric acid secretion in the cat. Am J Physiol 260:G631–G635, 1991
6. Sandvik AK, Lewin MJM, Waldum HL: Histamine release in the totally isolated vascularly perfused rat stomach. Regulation by autoreceptors. Br J Pharmacol 96:557–562, 1989
7. Hakanson R, Larsson LI, Liedberg G, Rehfeld JF, Sundler F: Suppression of rat stomach histidine decarboxylase activity by histamine: H2-receptor mediated feed-back. J Physiol (London) 269:643–667, 1977
8. Hakanson R, Larsson LI, Liedberg G, Sundler F: Evidence for H2-receptor-mediated feed-back regulation of histamine release from endocrine cells in the rat stomach. J Physiol (London) 276:151–157, 1978
9. Malinsky S, Sewing KF: Effect of cimetidine on gastric mucosal histamine and histidine decarboxylase activity in rats. Digestion 15:121–128, 1977
10. Moizo L, Bado A, Laigneau JP, Lewin MJM: Contrôle de la libération de gastrine et de somatostatine par le récepteur H3: Estomac isolé vascularisé de rat (Abstract). Gastroenterol Clin Biol 16 (Supplement 2bis):A18, 1992
11. Bado A, Moizo L, Laigneau JP, Lewin MJM: Pharmacological characterization of histamine H3 receptors in isolated rabbit gastric glands. Am J Physiol 262:G56–G61, 1992
12. Laboisse C, Augeron C, Couturier-Turpin MH, Gespach C, Cheret AM, Potet F: Characterization of a newly established human gastric cancer cell line HGT-1 bearing histamine H2-receptors. Cancer Res 42:1541–1548, 1982
13. Reyl-Desmars F, Laboisse C, Lewin MJM: A somatostatin receptor negatively coupled to adenylate cyclase in the human gastric cell line HGT-1. Regul Pept 16:207–215, 1986
14. Reyl-Desmars F, Cherifi Y, Le Romancer M, Pigeon C, Le Roux S, Lewin MJM: Solubilisation, purification et caractérisation moléculaire du récepteur histaminique H2 à partir des cellules tumorales gastriques humaines HGT-1. C R Acad Sci Paris (Serie III) 312:221–224, 1991
15. Cherifi Y, Pigeon C, Le Romancer M, Bado A, Reyl-Desmars F, Lewin MJM: Purification of a histamine H3 receptor negatively coupled to phosphoinositide turnover in the human gastric cell line HGT1. J Biol Chem 267:25315–25320, 1992