Lclean: A Plausible Approach to Individual Trajectory Data Sanitization

Qilong Han¹, Dan Lu¹, Kejia Zhang¹, Xiaojiang Du² and Mohsen Guizani³
¹College of Computer Science and Technology, Harbin Engineering University, Harbin, 150001 China
²Dept. of Computer and Information Sciences, Temple University, Philadelphia PA 19122, USA
³Dept. of Electrical and Computer Engineering, University of Idaho, Moscow, Idaho, USA

ABSTRACT In recent years, with the continuous development of significant data industrialization, trajectory data have more and more critical analytical value for urban construction and environmental monitoring. However, the trajectory contains a lot of personal privacy, and rashly publishing trajectory data set will cause serious privacy leakage risk. At present, the privacy protection of trajectory data mainly uses the methods of data anonymity and generalization, without considering the background knowledge of attackers and ignores the risk of adjacent location points may leak sensitive location points. In this paper, based on the above problems, combined with the location correlation of trajectory data, we proposed a plausible replacement method. Firstly, the correlation of trajectory points is proposed to classify the individual trajectories containing sensitive points. Then, according to the relevance of location points and the randomized response mechanism, a reasonable candidate set is selected to replace the sensitive points in the trajectory to satisfy the local differential privacy. Theoretical and experimental results show that the proposed method not only protects the sensitive information of individuals, but also does not affect the overall data distribution.

INDEX TERMS correlation of points, local differential privacy, sensitive points, trajectory data

I. INTRODUCTION

Over the past few years, the increasing popularity of GPS-enabled mobile devices, network communications and wearable sensors has greatly accelerated the development of location-based services (LBS) and e-commerce[1], resulting in massive amounts of trajectory data. These trajectory data refer to the set of temporal points that the user visits, and a series of Web pages that are browsed in chronological order. Using location trajectory data can help government agencies make more informed urban planning and avoid traffic jams, using web browsing records can be more customized to provide users with personalized services. However, these original trajectory data may include the user's personalized sensitive points, for example, the patient regards the hospital as a sensitive point, but the doctor may not. Privacy issues as studied in [25-28] really cause serious concern. To meet the personalized privacy needs of users, the trajectory data must be processed before release, and the sensitive points and related points should be hidden.

A great deal of work has been done on how to conduct privacy protection while mining association rules [2,3] and frequent itemsets [4]. However, they cannot be applied to the personal trajectory data directly because the trajectory data are multiple location points in chronological order. Among them, works in [5,6] adopt a suppression approach by removing the individual sensitive item, e.g., locations or web pages. The authors of [7] adopt a generalization approach to replace fine-grained data with coarse-grained data. Works in [8] adopt a permutation approach which rearranges the ordering of items in each sensitive pattern in the released sequence. The drawback of suppression-based approaches is the data loss inflicted by deleting item in the released data, especially when sensitive patterns are frequent patterns. The generalization-based approaches cannot handle with attackers with strong background knowledge. Combined with the context, the probability of speculating on a sensitive item may increase. The permutation-based approaches break the inherent ordering in the sequential data and create "ghost" patterns that do not exist in the original database.

To the best of my knowledge, [9] is the article most similar to ours, and also protects sensitive points from opponents with strong background knowledge. Their method provides two privacy checks to decide whether to release or suppress the user's current location. The output is
limited to the user's current position or suppression symbol. In other words, for the output sequence \(L_1 \rightarrow L_2 \rightarrow \perp \rightarrow L_3 \), the attacker can see the sensitive point is between \(L_2 \) and \(L_3 \). Combined with the context, the probability of speculating on sensitive item may increase.

Inspired by [10], this paper proposes Lclean, which applies local differential privacy to the privacy protection of sensitive points in trajectory data, which makes it impossible for attackers to infer the sensitive information of users in the original trajectory data through the published trajectory data. We assume that users set sensitive point sets themselves, and Lclean obtains these sensitive points as inputs. However, the adjacent points may also leak sensitive points, sensitive points and these sequences which may lead to the leakage of sensitive information are called sensitive regions. Our goal is to prevent any formidable attacker from inferring the user's sensitive information without affecting the data distribution too much. In this paper, we propose to replace sensitive regions with non-sensitive sequences. The replacement length depends on the correlation between sensitive points and their adjacent points. Our main contributions are as follows:

1. We propose to apply local differential privacy to protect sensitive points in individual trajectories without affecting the usability of the overall trajectory.

2. We propose a randomized response mechanism k-RI based on k-RR to replace the sensitive regions with other non-sensitive sequences, which do not restrict the attacker's background knowledge.

3. We propose a novel notion, i.e., a correlation between sensitive points and their adjacent points. The strength of the correlation determines the replacement length, and if the correlation is strong, the strong correlation sequence need be replaced. Conversely, replace the sensitive point.

In the remaining of the paper, Section 2 reviews recent related works, Section 3 convers some definitions and theorems. Section 4 contains our proposed solutions. Section 5 provides experimental results. Section 6 concludes the paper and states future research directions.

II. RELATED WORKS

Most of the location privacy protection schemes tend to avoid cryptographic primitives. The main reason is the difficulty on key management [13-15] and computational overhead. At present, the release of trajectory data can be divided into two categories. The first category is designed to handle the release of a trajectory dataset containing a large number of trajectories, each of which can be thought of as a record. The second type, [11] [12], aims to publish a single trajectory, treating each point in the trajectory as a single record. The biggest difference between the two is that the first type is the entire trajectory of the protection, while the second one is the single location. Several papers (e.g., [29-31]) have studied related privacy issues. In this article, we combine two approaches to publish a dataset that contains a large number of trajectories while protecting a user's single sensitive location.

K-anonymity based on trajectory generalization has been prevailing for its good balance of privacy protection and data availability. In [16], a (k,δ)-anonymous algorithm was proposed for trajectory dataset publication. Based on trajectory generalization and k-anonymity, this algorithm generalized every position in the trajectory to a circle with a radius of δ, and Make sure that each circle has at least k points to satisfy k-anonymity, each of which is represented by a cylinder of these circles. In [17], a data suppression technique was proposed to limit the probability of speculation of sensitive locations by assuming the attacker's background knowledge. The literature [18] considered the scenario in which users' privacy attributes were distributed with trajectory data. A (K,C,L)-privacy model was proposed, where L represents the longest sub-trajectory length assumed by an attacker. The model can resist the re-identification of track data attacks and attribute attacks. However, as mentioned above, all of the techniques above for privacy distribution based on k-anonymity trajectory data set need to assume the background of the attacker, and the quantitative comparison between the different models for privacy protection can-not be made.

Differential privacy[19] was quickly applied in the privacy protection of data publishing based on fake data technology to achieve privacy protection by adding noise to the real data set. In data distribution, differential privacy can achieve different levels of privacy protection and data publishing accuracy by adjusting the privacy parameter \(\epsilon \). In general, the larger the value of \(\epsilon \), the lower the level of privacy protection and the higher the accuracy of the published dataset. The first common mechanism for implementing differential privacy is the Laplacian mechanism proposed in [20]. This mechanism mainly focuses on numeric queries. By adding random noise obeying Laplace distribution to the results of real queries. For non-numeric queries, [21] proposed an exponential mechanism, which is the second universal mechanism to achieve differential privacy.

[9] has the same purpose as our paper and protects the sensitive points of individual users while ensuring the availability of the published trajectory dataset. They provide two privacy check methods to decide whether to release or suppress the user's current location. They limit the output to real or suppressed symbols. Unfortunately, it is possible to extrapolate sensitive location information based on the suppression of symbols combined with the attacker's strong background knowledge.
algorithm shows the output of different inputs as follows:

\[R \text{ and } R' \text{ are input and output of the algorithm respectively.} \]

To make the algorithm satisfy \(\epsilon \)-local differential privacy, we calculate \(P \) by the following formula:

\[
\begin{align*}
\max_{r \in \mathbb{R}} \Pr[M(r) = R'] &= 1 - P + \frac{P}{K} \\
\min_{s \in \mathbb{X}} \Pr[M(s) = R'] &= \min \left\{ \frac{1}{K}, \frac{P}{K} \right\} = \frac{P}{K} = \epsilon
\end{align*}
\]

\[P = \frac{K}{e^{\epsilon} + K - 1} \]

So we adjust the randomized response mechanism to:

\[
P(R' \mid R) = \begin{cases}
\frac{1}{K} & R \not\in Y \\
1 - P + \frac{P}{K} & R \in Y, R = R' \\
\frac{P}{K} \left(1 - \frac{1}{K} \right) & R \in Y, R \not= R'
\end{cases}
\]

If the input \(R \) does not belong to the output set, then an output is selected randomly from the output set; otherwise, the probability response to the real result is \(e^\epsilon/(k - 1 + e^\epsilon) \), and any of the other \(k - 1 \) results is \(1/(k - 1 + e^\epsilon) \) to satisfy the local differential privacy.

Utility loss. The published trajectory data should be consistent with the original data distribution as much as possible, and the utility loss is defined below, which is also the most important evaluations in this experiment.

KL-divergence: For each sensitive region \(j \) to be replaced, \(X = \{x_1, x_2, ..., x_n\} \) is the candidate set. \(loc_p \) is the previous location of the sensitive region which is called parent node, \(loc \) is the next location of a sensitive region which is called root node. For any \(x \in X \cup S_j \), the occurrence probability of \(loc_p \rightarrow x \rightarrow loc \) in original trajectory data is \(P_j(x) \), and transformed into \(Q_j(x) \) in the published trajectory. We define the kl-divergence of each sensitive region \(j \) as follows:

\[
DKL_j(Q, P) = \sum_{x \in X \cup S_j} Q_j(x) \log \left(\frac{Q_j(x)}{P_j(x)} \right)
\]

Overall utility loss:

\[
DKL(Q, P) = \sum_{j} DKL_j(Q, P)
\]
Trajectory similarity[24]: Assuming that \(A = \{m_1, m_2, ..., m_n\} \)
represents the original trajectory. \(B = \{n_1, n_2, ..., n_m\} \) represents
the processed trajectory, and the trajectory similarity between
A and B is as follows:

\[
TrajSim(A, B) = \frac{\max \text{Diff}(A, B) - \min \text{Diff}(A, B)}{\max \text{Diff}(A, B)}
\]

Where \(\min \text{Diff}(A, B) \) and \(\max \text{Diff}(A, B) \) are the minimum
distance and the maximum distance between A and B.

IV. OUR PROPOSAL

In this section, we present the design of the proposed plausible approach for individual trajectory Sanitization. The overview framework is shown in Figure 4-1, that implements the end-to-end system from original trajectories and sensitive set to privacy-preserving trajectories. The original trajectory and individual sensitive points are used as the input of the whole substitution mechanism, and the sensitive points are located to determine the set of sensitive regions to be replaced. The output of the previous step is used as the input to determine the candidate set. The randomized response makes the algorithm satisfy \(\varepsilon \) local differential privacy.

![Framework of Lclean substitution mechanism](image)

FIGURE 1. Framework of Lclean substitution mechanism

A. DETERMINE SENSITIVE REGIONS

In this subsection, we present the algorithm to perform the
determine sensitive regions for original trajectory data. First,
we get the sensitive point index to extract the sequence
containing the sensitive point. Secondly, we determine the
 correlation between the sensitive points and the adjacent
points. If the correlation is strong, The strong correlation
sequence should be replaced, on the contrary, just replace the
sensitive point . Determine sensitive region algorithm (DSR)
is described as follows:

Algorithm 4.1 LSA

Input: original trajectory datasets \(D \), the sensitive set of u
\(S_u \)

Output: set of sensitive area \(SS \)(including sensitive area
and the former location and the latter location)

1. For each \(s \in S_u \) do
2. Find the former of \(s \) and the latter of \(s \) represented by \(x_0 \)
and \(x_1 \) respectively;
3. Determine the relationship between \(s \) and \(x_0 \), \(s \) and \(x_1 \)
according to Section 2;

4. If(Strong correlation)
5. Add the Strong correlation sequence to \(SS \).
6. Else
7. Add the \(s \) to \(SS \).
8. Return \(SS \)

Assuming that the attacker has strong background
knowledge, he can do the query in the entire dataset.
According to the definition in section 2, sensitive regions are
obtained by calculating the correlation between each
sensitive point and its adjacent points(lines 3-7).

B. DETERMINE CANDIDATE SET

The output from the previous subsection along with the
original trajectory data are used as input to this subsection.
Non-sensitive regions of the same parent and child nodes as
the sensitive region are found as candidate set by sub-
sequence matching. This subsection considers the timestamp
when determining whether a candidate set, that is to
determine whether a candidate meets the spatiotemporal
accessibility is judged by combining the timestamp.

\[
\frac{\text{dis}(a, b)}{|t_a - t_b|} \leq \delta
\]

where \(\delta \) is the maximum speed of a human. If the length
of the sensitive region is \(n \), the length of candidate sequence
is no more than \(n \). Determine candidate set algorithm(DCS)
is described as follows:

Algorithm 4.2 DCS

Input: original trajectory dataset \(D \),set of sensitive area \(SS \)

Output: The candidate set \(CS \)

1. For each \(ss \in SS \):
2. Find alternate sequences do not contain sensitive
information ;
3. Find alternate sequences do not have strong
correlation;
4. Determine whether the alternate sequences satisfied
the spatiotemporal accessibility;
5. If(satisfied)
6. Add the alternate sequence to \(CS \);
7. Return \(CS \)

The candidate set should satisfy three rules:

1. have the same parent node and child node as the sensitive
region(line 2);
2. each candidate is weakly connected to the parent node
and child node (line 3);
3. A candidate value should satisfy the spatio-temporal
accessibility with the parent and child nodes(line 4).
C. PRIVACY REPLACEMENT MECHANISM

Now we get the candidate set for each sensitive region, the algorithm in this subsection applies the randomized response mechanism k-RI, which makes it impossible for the attacker to predict sensitive region with the replaced trajectory accurately. That is to say; our algorithm meets ε-local differential privacy. Above all, we assume that all k candidate sets are diverse from each other. For the candidate set containing duplicate values, the results also meet ε-local differential privacy. The privacy replacement algorithm (PRA) is described as follows:

Algorithm 4.3 PRA

Input: original trajectory dataset D,The candidate set CS, ε
Output: noisy trajectory dataset D,
1. $ε = ε/|CS|$
2. For each $S_j \in S_u$
3. For each $seq_i \in CS_j$
4. Algorithm A determine the relationship between seq_i and the former location and the correlation between seq_i and the latter location.
5. If(weak correlation)
6. $K = |CS_j|$, find a $seq_i \in CS_j$ as the input,according to the formula 4-1,the possibility of output seq_i is $e^ε/(k - 1 + e^ε)$, and the possibility of picking one randomly from the rest is $1/(k - 1 + e^ε)$.
7. Replace the sensitive area with the output.
8. Return D.

This subsection implements the substitution work for each sensitive region. First, we divide the privacy budget. The candidate set:
$CS = \{SS_1, seq_1, seq_2, ..., seq_{|l|}\}...\{SS_{|S|}, seq_1, seq_2, ..., seq_{|l|}\}$

The size of CS is the number of sensitive regions to be replaced. Therefore, the privacy budget for each sensitive region is $ε/|CS|$ to ensure that the entire trajectory meets ε-local differential privacy. This equal division of the privacy budget is called the average privacy replacement (BR). Each candidate is evaluated for correlation before replacement to ensure that it is weakly correlation after the replacement(line3-5). Line6 implements local differential privacy replacement, and the output of random response mechanism is used as the final replacement value.

D. PROPORTIONAL PRIVACY REPLACEMENT

In the previous subsection, to guarantee the local differential privacy of the entire trajectory, we first assign an average privacy budget when replacing each sensitive region. In this section we give a ratio-based allocation of the privacy budget(RatioR).

$$ε_j = ε \times \frac{|CS|}{\sum_{i=0}^{|CS|} |CS_j|}$$

Where $|CS_j|$ is the candidate set size for the j sensitive region. In the real trajectory, the size of candidate set for each sensitive region to be replaced varies from region to region. In this section, the region to be replaced with fewer candidates is allocated smaller privacy budget to ensure a stronger degree of privacy protection and more privacy budget for larger candidates.

V. PERFORMANCE EVALUATION

To simulate the location trajectory anonymization we have used the Gowalla check-in dataset. This dataset was collected by almost 200000 users, and it contains 650000 trajectories. To verify the utility of our method, we first define a baseline method [8] in which the sensitive points (sequences) are published in the form of. The utility loss function defined in Section 3 is taken as our experimental evaluation target: KL-divergence. We compare our average privacy replacement (BR) and the ratio-based privacy replacement (RatioR) with the baseline method under different privacy budgets.

A. KL-DIVERGENCE

Based on the KL-divergence metric in Section 3, the error between the replaced trajectory data and the original trajectory data is quantified. In this paper, we replace and add noise to multiple sensitive regions, the practicality measure in this subsection is evaluated separately for each sensitive region. For any sensitive region to be replaced, the candidate set is CSj, the probability of outputting any one of the candidate set is:

$$Pr(c_j) = \frac{\sum_{i \in |CS_j|} count(c_i)}{|CS_j|} \times \frac{e^ε}{|CS_j|} + \frac{1}{|CS_j| - 1} + \frac{1}{|CS_j| - 1 + e^ε}$$

We adjust the KL-divergence formula to:

$$\sum_{j=0}^{|CS|} Pr(c_j) \left(\frac{\text{count}(loc_p \rightarrow c_j \rightarrow loc_q) + 1}{\text{count}(loc_p \rightarrow * \rightarrow loc_q)} \log \left(\frac{\text{count}(loc_p \rightarrow c_j \rightarrow loc_q) + 1}{\text{count}(loc_p \rightarrow * \rightarrow loc_q)} \right) \right)$$

Where count$(loc_p \rightarrow c_i \rightarrow loc_q)$ represents the number of occurrences of loc_p\rightarrow c_i\rightarrow loc_q in the trajectory dataset, count$(loc_p \rightarrow * \rightarrow loc_q)$ represents the number of locations that the previous location is loc_p and the next location is loc_q. Figure 5-1 shows the utility loss compared with the privacy replacement method BR and RatioR.
The abscissa is the number of the sensitive region to be replaced, and the ordinate is the utility loss of DKL. It can be seen from the figure that the loss of utility of our average privacy replacement method (BR) and the ratio-based privacy replacement method (RatioR) is lower than that of the baseline method. For the point of 3 and 10, the utility loss is slightly higher than the baseline method. This is a result of having a too small candidate set, which will lead to a great fluctuation with a certain value changes. Also, we can see from the experiment that RatioR increases the degree of protection for each sensitive region and thus reduces its practicability, the possible loss DKL increases slightly.

The utility loss of the entire trajectory is shown in Figure 5-2 below:

As shown in the figure, the abscissa is the value of the privacy budget. It can be seen that as the privacy budget increases, the similarity value increases. We can see that when ε increases from 0.1 to 0.3, the trajectory similarity increases greatly, but there was no significant change from 0.3 to 0.7. The experimental results show that the released trajectory under ratio-based privacy replacement method (RatioR) is more similar to the original trajectory.

VI. CONCLUSION

We presented Lclean, a system that uses substitution as a mechanism to protect sensitive points of an individual. Instead of random substitution of sensitive regions, which can degrade the utility of the overall datasets, we perform a privacy substitution mechanism with a randomized response. We employ an average privacy substitution and a ratio-based privacy substitution to meet the ε-local differential privacy while maintaining the consistency of release trajectory. Through experimentation on real-life check-in trajectory datasets, we demonstrated that our two privacy substitution strategies could indeed be used for preserving the utility of processed data while achieving ε-local differential privacy. In future, we have the plan to work on multi-user trajectory privacy protection, considering the connection between different users’ sensitive points and make it difficult to figure out person sensitive information.

REFERENCES
[1] Han, QL.; Liang, S; Zhang, HL. Mobile Cloud Sensing, Big Data, and 5G Networks Make an Intelligent and Smart World [J]. IEEE NETWORK, 2015, 29(2):40-45.

[2] V. Verykios, A. Elmagarmid, E. Bertino, Y. Saygin, and E. Dasseni. Association rule hiding. Knowledge and Data Engineering, IEEE Transactions on, 16(4):434-447, April 2004.

[3] J. Cao, P. Karras, C. Ra’issi, and K.-L. Tan. p-uncertainty: Inference-proof transaction anonymization. Proc. VLDB Endow., 3(1-2):1033-1044, Sept. 2010.

[4] X. Sun and P. S. Yu. A border-based approach for hiding sensitive frequent itemsets. In Proceedings of the Fifth IEEE International Conference on Data Mining, ICDM ’05, pages 426-433, Washington, DC, USA, 2005. IEEE Computer Society.

[5] A. Gkoulalas-Divanis and G. Loukides. Revisiting sequential pattern hiding to enhance utility. In KDD ’11, pages 1316-1324, New York, NY, USA, 2011. ACM.

[6] D. Wang, Y. He, E. Rundensteiner, and J. F. Naughton. Utility-maximizing event stream suppression. In SIGMOD ’13, pages 589-600, New York, NY, USA, 2013. ACM.

[7] Bonomi L, Fan L, Jin H, et al. An Information-Theoretic Approach to Individual Sequential Data Sanitization[C]. web search and data mining, 2016: 337-346.

[8] R. Gwadera, A. Gkoulalas-Divanis, and G. Loukides. Permutation-based sequential pattern hiding. 2013 IEEE 13th International Conference on Data Mining, 0:241-250, 2013.

[9] Gotz M, Nath S, Gehrke J, et al. MaskIt: privately releasing user context streams for personalized mobile applications[C]. international conference on management of data, 2012: 289-300.

[10] Saleheen N, Chakraborty S, Ali N, et al. mSieve: differential behavioral privacy in time series of mobile sensor data[C]. ubiquitous computing, 2016: 706-717.

[11] L. Sweeney. k-anonymity: A model for protecting privacy. International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, 10(05):557–570, 2002.

[12] A. Machanavajjhala, D. Kifer, J. Gehrke, and M. Venkitasubramaniam. l-diversity: Privacy beyond kanonymity. ACM Transactions on Knowledge Discovery from Data (TKDD), 1(1):3, 2007.

[13] X. Du, M. Guizani, Y. Xiao and H. H. Chen, “A Routing-Driven Elliptic Curve Cryptography based Key Management Scheme for Heterogeneous Sensor Networks,” IEEE Transactions on Wireless Communications, Vol. 8, No. 3, pp. 1223 - 1229, March 2009.

[14] Y. Xiao, V. Rayi, B. Sun, X. Du, F. Hu, and M. Galloway, “A Survey of Key Management Schemes in Wireless Sensor Networks,” Journal of Computer Communications, Vol. 30, Issue 11-12, pp. 2314-2341, Sept. 2007.

[15] X. Du, Y. Xiao, M. Guizani, and H. H. Chen, “An Effective Key Management Scheme for Heterogeneous Sensor Networks,” Ad Hoc Networks, Elsevier, Vol. 5, Issue 1, pp 24–34, Jan. 2007.

[16] Abul O, Bonchi F, Nanni M, et al. Never Walk Alone: Uncertainty for Anonymity in Moving Objects Databases[C]. international conference on data engineering, 2008: 376-385.

[17] Andrienko G, Andrienko N, Giannotti F, et al. Movement data anonymity through generalization[J]. Transactions on Data Privacy, 2010, 4(2):51-60.

[18] Chen R, Fung B C M, Mohammed N, et al. Privacy-preserving trajectory data publishing by local suppression[J]. Information Sciences, 2013, 231(1):83-97.

[19] Han, Qilong; Shao, Bo; Li, Lijie. Publishing histograms with outliers under data differential privacy[J]. SECURITY AND COMMUNICATION NETWORKS, 2016, 9(14):2313-2322.

[20] Dwork C, McSherry F, Nissim K, et al. Calibrating noise to sensitivity in private data analysis. Proceedings of the 3rd Theory of Cryptography Conference (TCC). New York, USA Springer Berlin Heidelberg, 2006: 363-385P.

[21] McSherry F, Talwar K. Mechanism design via differential privacy. Proceedings of the 48th Annual IEEE Symposium on Foundations of Computer Science (FOCS). Providence, RI, USA, 2007-94-103P.

[22] Warner S L. Randomized response: A survey technique for eliminating evasive answer bias. Journal of the American Statistical Association, 1965, 60(309): 63-69.

[23] Kairouz P, Oh S, Viswanath P. Extremal mechanisms for local differential privacy. Advances in neural information processing systems. 2014: 2879-2887.

[24] Vlachos M, Kolios G, Gunopulos D, et al. Discovering similar multidimensional trajectories[C]. international conference on data engineering, 2002: 673-684.

[25] L. Wu, X. Du, and X. Fu, “Security Threats to Mobile Multimedia Applications: Camera-based Attacks on Mobile Phones,” IEEE Communications Magazine, Vol. 52, Issue 3, March 2014.
[26] L. Wu, and X. Du, “MobiFish: A Lightweight Anti-Phishing Scheme for Mobile Phones,” in Proc. of the 23rd International Conference on Computer Communications and Networks (ICCCN), Shanghai, China, August 2014.

[27] X. Huang, X. Du, "Achieving big data privacy via hybrid cloud," in Proc. of 2014 IEEE INFOCOM Workshops, Pages: 512 – 517

[28] X. Du and H. H. Chen, “Security in Wireless Sensor Networks,” IEEE Wireless Communications Magazine, Vol. 15, Issue 4, pp. 60-66, Aug. 2008.

[29] Huang X, et al., “Achieving big data privacy via hybrid cloud,” in Proc. of 2014 IEEE INFOCOM Workshops, Pages: 512 - 517.

[30] Zhou Z, et al., “Prometheus: Privacy-Aware Data Retrieval on Hybrid Cloud,” in Proc. of IEEE INFOCOM 2013, Turin, Italy, Apr. 2013.

[31] Huang X, et al., “Achieving Data Privacy on Hybrid Cloud,” Security and Communication Networks, Wiley, Volume 8, Issue 18, pages 3771–3781, Dec. 2015.