Activation of Ammonia and Hydrazine by Electron Rich Fe(II) Complexes Supported by a Dianionic Pentadentate Ligand Platform Through a Common Terminal Fe(III) Amido Intermediate

Lucie Nurdin, Yan Yang, Peter Neate, Warren E. Piers, Laurent Maron, Michael L. Neidig, Jian-Bin Lin and Benjamin S. Gelfand

Department of Chemistry, University of Calgary, 2500 University Drive NW, Calgary, Alberta, T2N 1N4 Canada. *e-mail: wpiers@ucalgary.ca

LPCNO, Université de Toulouse, INSA, UPS, Toulouse, France

Department of Chemistry, University of Rochester, Rochester, New York 14627, United States

Supporting Information
Table of Contents

Experimental and computational details S2-S3
Syntheses S4-S10
References S11
Figures S1-S29 S12-S31
IR spectra S30-S32 S32-S33
NMR spectra of characterized compounds– Figures S33-S52 S34-S44
Tables S1 and S2 S45-S46
Cartesian coordinates for calculated structures S47-S86
Experimental Details.

General

Unless mentioned otherwise, manipulation and storage of all oxygen and moisture sensitive materials were performed under an argon atmosphere in an M-Braun glovebox. Air and moisture sensitive reactions were performed using a double manifold high vacuum line using standard Schlenk techniques. Passage of argon through an OxisorBW scrubber (Matheson Gas Products) removed any residual oxygen and moisture. Before use, all glassware was stored in a 135 °C oven for a minimum of one hour, and then subjected to dynamic vacuum for at least 20 min after transfer to the glovebox anti-chamber or the vacuum line. All anhydrous solvents were prepared by passing through an M-Braun SP-800 solvent purification system and were stored in 500 mL thick-walled vessels over sodium/benzophenone ketal or CaH₂. All dried solvents were degassed, and vacuum distilled prior to use. ¹⁵NH₃ (98% purity) was purchased from Millipore Sigma and used as received using a corrosive gas regulator for lecture bottles. ¹⁴NH₃ anhydrous was purchased from Praxair and passed through two columns of KOH pallets prior to use. Chemicals were obtained from common vendors and used as received unless mentioned otherwise. The syntheses of the dianionic pentadentate [²⁴Β₂Pz₂Py]H₂Li ligands,¹ ²¹Ph-THF¹ and ¹¹Ph¹ have previously been reported. 2,4,6-tri-tert-butyl phenoxy radical was synthesized according to a literature procedure.³

Physical Methods

¹H, ¹³C{¹H} chemical shifts are referenced to the residual solvent signals of C₆D₆ (¹H, 7.16 ppm; ¹³C{¹H}, 128.06 ppm), THF-d₈ (¹H, 3.58, 1.72 ppm; ¹³C{¹H}, 67.21, 25.31 ppm) and toluene-d₈ (¹H, 7.09, 7.01, 6.97, 2.08 ppm; ¹³C{¹H}, 137.48, 128.87, 127.96, 125.13, 20.43 ppm). ¹H, ¹¹B, ¹³C{¹H}, ¹⁵N, ¹⁵N{¹H}, ¹H-¹H-COSY, ¹H-¹³C-HSQC, ¹H-¹³C-HMBC and ¹H-¹⁵N-HMBC NMR experiments were performed at room temperature on Bruker RDQ-400, or Ascend-500 or Avance-600 MHz spectrometers and analyzed with MestReNova software (v8.1, Mestrelab Research S.L.). All ¹¹B chemical shifts are relative to BF₃-OEt₂. All ¹⁵N NMR spectra are externally referenced to 60% CH₃¹⁵NO₂ (δCH₃¹⁵NO₂ = δ₁⁵NH₃ - 380) in CDCl₃. Solution magnetic moments were measured using Evans method.⁴

Elemental analysis was performed on site by Johnson Li using a Perkin Elmer Model 2400 series II analyzer.

Solution high resolution-mass spectrometry experiments were performed on a Kratos MS-80 spectrometer by Wade White (direct ESI-MS or APCI-MS) on samples prepared in the glovebox in a gas tight syringe.
Resonance Raman spectra were recorded at room temperature on a ND:YAG source with a Bruker RAM II FT-Raman instrument with an excitation wavelength of 1064 nm.

Infrared spectra were collected on a Nicolet Avatar FT-IR spectrometer, and samples were prepared as a KBr pellet.

Absorption spectrum was measured using a Varian Cary-50 single-beam spectrophotometer. The solution was placed in a co-joint UV-vis cuvette of 2 mm path length.

Low temperature 57Fe Mössbauer measurements were performed using a See Co. MS4 Mössbauer spectrometer integrated with a Janis SVT-400T He/N2 cryostat for measurements at 80 K. All samples were prepared in an inert atmosphere glovebox equipped with a liquid nitrogen fill port to enable sample freezing to 77 K within the glovebox. Each sample was loaded into a Delrin Mössbauer sample cup for measurements and loaded under liquid nitrogen. Isomer shifts were determined relative to α-Fe at 298 K. All Mössbauer spectra were fit using the program WMoss (See Co). Errors of the fit analyses were the following: δ ± 0.02 mm/s and ΔE_Q ± 3%. For multi-component fits the quantitation errors were ± 3% (e.g. 70 ± 3%).

Electrochemical measurements were carried out in a glovebox under an argon atmosphere with a CH instrument potentiostat and C-3 cell stand. A glassy carbon working electrode, a platinum counter electrode and a silver wire pseudo reference electrode were used for cyclic voltammetry in THF with 0.1 M [Bu$_4$N][PF$_6$] electrolyte. Ferrocene (E$_{Fc+/0}$ = 0.64 V vs SHE) was added during each experiment as an internal reference.

X-ray crystallography was carried out on either a Nonius Kappa CCD diffractometer using graphite-monochromated Mo Kα radiation or a Bruker Smart APEX II three-circle diffractometer using Cu Kα radiation. Crystals suitable for X-ray diffraction were coated in Paratone 8277 oil (Exxon) and mounted on a glass fiber before data collection. The crystals were kept at 173 K during data collection. Diffractions spots were integrated and scaled with SAINT5 and the space group was determined with XPREP.6 Using Olex2,7 the structures were solved with the ShelXT8 structure solution program using Intrinsic Phasing and refined with the ShelXL9 refinement package using Least Squares minimization. Full crystallography details can be found in independently uploaded .cif files.

Computational Details

All calculations were carried out with the Gaussian09 program10 at the DFT level using the hybrid functional B3PW91.11,12 For Fe, the relativistic energy-consistent pseudopotential of the Stuttgart-Köln ECP library was used in combination with its adapted segmented basis.13 For all other atoms, a standard 6-31G** basis set was used.14,15 Electronic energies and enthalpies
were computed at $T = 298$ K in the gas phase. All stationary points have been identified as minima (number of imaginary frequencies $N_{\text{imag}} = 0$) or transition states ($N_{\text{imag}} = 1$) and IRC calculations were carried out from all transition states.
Syntheses.

Synthesis of $^{57}\text{FeBr}_2$. ^{57}Fe metal (100 mg, 1.76 mmol) and a small stirrer bar were transferred to a 25 mL Schlenk flask equipped with a 14/20 septa under an argon atmosphere. Under a flow of Ar, a needle was added to the septa and fresh concentrated hydrobromic acid (48%, 500 μL) was added dropwise using a 3 mL syringe resulting in hydrogen evolution. Once hydrogen evolution had slowed, the septa was replaced with a glass stopper and the flask was heated to 80 °C with stirring for 2 hours under a light dynamic flow of Ar. The solution was then allowed to cool to room temperature and the glass stopper was replaced with a 14/20 septa. Degassed methanol (1 mL) was added via syringe all at once. The resulting mixture was stirred for 30 min at room temperature until it went colorless (see picture below). The solvents were then removed under vacuum. The remaining white/yellow solid was heated at 100 °C under a vacuum of 30 mtorr for 4 hours. The flask was allowed to cool to room temperature under vacuum and then moved to the glovebox where the pale-yellow solid was collected to yield $^{57}\text{FeBr}_2$ (360 mg, 93%). The same procedure was used to make $^{56}\text{FeBr}_2$ (1.8 g, 92%) using 0.50 g of ^{56}Fe metal.

Schlenk flask used for the reaction (mixture after 30 mins of stirring with MeOH):
Synthesis of $^{57}\text{Fe(HMDS)}_2$. $^{57}\text{Fe(HMDS)}_2$ was synthesized by modification of a literature procedure.16 LiHMDS was sublimed at 80 °C. 350 mg of freshly synthesized $^{57}\text{FeBr}_2$ (1 eq) was added to a 50 mL Schlenk flask equipped with a Teflon cap. 10 mL of Et\textsubscript{2}O was transferred. The solution was cooled to 0 °C and freshly sublimed LiHMDS (2 eq) dissolved in 15 mL of Et\textsubscript{2}O was added dropwise via canula. The suspension was allowed to stir at 0 °C for 30 min and slowly turned grey. The resulting mixture was stirred at room temperature for 20 h. All volatiles were removed \textit{in vacuo} and the resulting green residue was extracted with pentane (3 x 5 mL). The pentane extractions were combined, passed through a Celite plug and concentrated under vacuum to give a dark green oil. The oil was distilled under vacuum (30 mtorr) to afford a green fraction at 110 °C (oil bath temperature). The product was brought to a glovebox and stored at -40 °C. It solidified as a green solid (350 mg, 60%). 1H NMR (500 MHz, C\textsubscript{6}D\textsubscript{6}): δ 64.9 (36 H, broad singlet). The same procedure was used to make $^{56}\text{Fe(HMDS)}_2$ using $^{56}\text{FeBr}_2$.

Notes: Fe(HMDS)_2 is a highly reactive compound that reacts vigorously with water and oxygen. Handle with care in an inert atmosphere.

Extraction of $^{15}\text{N}_2\text{H}_4$.

Notes: We recommend doing this procedure first without the hydrazine sulfate to get a feel for the extraction process using liquid NH\textsubscript{3}. \textit{Hydrazine is highly toxic and explosive.} We do not recommend doing this procedure on a bigger scale than reported below. If you choose to do so, adjust the size of the apparatus. The frit is a medium porous frit.

Extraction. $^{15}\text{N}_2\text{H}_4$ was prepared according to a modified procedure.17 In an Ar glovebox, 95 % 15N-labeled hydrazine sulfate (0.500 g), purchased from Millipore-Sigma, was placed on the designed extraction apparatus (see picture below) equipped with a cold finger. The cold finger is roughly 2 cm above the frit. A 25 mL round bottom flask (RBF) was put on the other side of the extraction apparatus. The assembled apparatus was taken out of the glovebox and placed under vacuum on a Schlenk line, and then back filled with argon three times. The cold finger is equipped with a pressure-release Kontes cap and linked to a series of two empty bubblers and a third bubbler filled with 2 M HCl to quench NH\textsubscript{3}. An ice bath was put under the HCl bubbler during the NH\textsubscript{3} quench. After 30 mins under vacuum, 10 mL of liquid 14NH\textsubscript{3}, passed through two columns of KOH pallets, was condensed into the RBF by cooling the RBF with a liquid N\textsubscript{2} bath. The liquid N\textsubscript{2} bath was discarded and replaced with an acetone/dry ice bath to allow NH\textsubscript{3} to melt. In the meantime, the cold finger was charged with crushed dry ice and acetone and kept at -78 °C for the entire extraction procedure. The apparatus was then
filled with Ar and kept under static Ar. The acetone/dry ice bath was warmed to -15 to -5 °C to allow NH₃ to reflux gently. NH₃ (g) passed through the side arm (open through a Kontes cap), condensed on the cold finger (kept at -78 °C), and dipped onto the hydrazine sulfate. The white crystalline powder slowly “swells” upon NH₃ absorption. Once the solid was covered with a 5 mm layer of liquid NH₃, the liquid containing the ¹⁵N₂H₄/NH₃ mixture was pulled through the frit by cooling the RBF with a liquid N₂ bath and closing the side-arm Kontes cap. This represents the first extraction. The extraction procedure was repeated three times. The frit was kept cold by swabbing the exterior as needed with a dry ice/acetone mixture. After the fourth extraction (4 h) only ammonium sulfate was left on the frit (presumably). The apparatus was put under a gentle flow of Ar, the cold finger was emptied by pipetting the dry ice/acetone mixture out, and the ¹⁵N₂H₄/NH₃ solution mixture was allowed to warm up slowly to -10 °C. The pressure-release Kontes valve linked to the HCl bubbler was opened and the leftover ammonia was quenched slowly (30 mins) at -10 °C. The flask containing the hydrazine residue was quickly transferred onto the Schlenk line using a Y-Joint. Three freeze-pump-thaw cycles were performed to remove any trace amount of NH₃. The flask containing clean ¹⁵N₂H₄ was brought to the Ar glovebox and kept in the freezer at -40 °C (107 mg, 84%). ¹H NMR (500 MHz, C₆D₆) δ 2.28 (d, J₁₅N-₁H = 63.9 Hz, 4H). ¹⁵N NMR (51 MHz, C₆D₆) δ -331.0 (t, J₁₅N-₁H = 61.0 Hz, 2N). ¹⁵N{¹H} NMR (51 MHz, C₆D₆) δ -331.0 (s, 2N).

Special apparatus designed for ¹⁵N₂H₄ extraction:
Synthesis of 1_{Tol}.

In a 100 mL round bottom flask equipped with a Y-joint and a Teflon cap, the lithium salt of the ligand $[\text{Tol}B_2\text{Pz}_3\text{Py}]\text{HLi}$ (0.40 g, 0.72 mmol) was dissolved in 10 mL of THF. Fe(HMDS)$_2$ (0.30 g, 0.79 mmol) dissolved in 5 mL of THF was added dropwise to the ligand solution. The resulting yellow solution was stirred at room temperature for 4 h and all volatiles were removed \textit{in vacuo}. The residual yellow/green solid was washed with 20 mL of pentane and dissolved in 40 mL of toluene. The green solution was left in the freezer (-40 °C) overnight. The solution was then passed through a short plug of Celite and the solvent was removed \textit{in vacuo}. The solid sample was transferred to a 100 mL thick-walled glass vessel equipped with a Kontes Teflon cap and placed in an oil bath at 25 °C. The vessel was evacuated under full dynamic
vacuum and the temperature in the oil bath was gradually increased to 150 °C and kept at this temperature for 4 h. During this time the yellow solid slowly turned green. After this time, the glass vessel was sealed, cooled down, and immediately brought to the glovebox. 0.34 g (70%) of 1Tol was collected and stored at -40 °C in the freezer. The product is paramagnetic and highly air and moisture sensitive. 1H NMR (500 MHz, C6D6) δ 74.4, 45.1, 19.8, 13.9, 9.8, 7.5, 7.0, 2.1. 11B NMR (161 MHz, C6D6) δ +38.4 (s). **Elemental Analysis** for C31H29B2N9Fe: C, 61.53; H, 4.83; N, 20.83. Found (%): C, 60.93; H, 5.02; N, 20.71. HRMS (APCI) m/z calcd for C31H29B2N9Fe: 605.2076 (M+) m/z found: 605.2093 (M+). **Evans Method**: Sample mass, 5.0 mg; Solvent, C6D6; Standard, Si2OMes (6%); μeff = 4.99; s = 2, n = 4. The same procedure was used to make 57Fe(HMDS)2 and 1ph using [^7B2Pz4Py]HLi.

Synthesis of 1tol-15NH3.

A 100 mL round bottom flask equipped with a Y-joint and a Teflon cap was charged with 1Tol (0.10 g, 0.17 mmol) dissolved in 20 mL of toluene. The solution was degassed and cooled to -78 °C. 15NH3 (3 eq.) was added and condensed using a liquid N2 bath. The frozen solution with frozen 15NH3 was allowed to melt using an isopropanol bath and was stirred at room temperature for 2 h. The solvent and excess 15NH3 were removed in vacuo. The brown solid was washed with 5 mL of pentane and dried to afford 99 mg (96%) of 1Tol-15NH3 as a brown solid. Crystals suitable for X-ray diffraction were grown by slow diffusion of pentane into a saturated solution of 1tol-15NH3 in benzene. 1H NMR (500 MHz, C6D6) δ 9.00 (4H, s), 8.33 (2H, d, JHH = 7.5 Hz), 8.23 (4H, d, JHH = 7.5 Hz), 7.35 (8H, m), 7.25 (4H, m), 6.60 (1H, s), 2.73 (3H, d, 1J15N-1H = 62.4 Hz, 15NH3), 2.40 (6H, s, -CH3). 11B NMR (161 MHz, C6D6) δ -1.6 (s). 15N signal was not observed. **Elemental Analysis** for C31H29B215NFen3C6H6: C, 63.46; H, 5.57; N, 20.00. Found (%): C, 63.75; H, 5.68; N, 19.46. IR (KBr) (cm⁻¹) for 1tol-15NH3: 3642; 3566. The same procedure was used to make 1tol-14NH3 using 14NH3; 571tol-15NH3 using 571tol and 1ph-15NH3 using 1ph.

Synthesis of 2ph-15N.

A two neck 100 mL round bottom flask equipped with a Y-joint and a Teflon cap, and a 14/20 septum was charged with 1ph-15NH3 (0.10 g, 1 eq, 0.17 mmol) dissolved in 20 mL of toluene. A solution of ArO- (0.22 g, 5 eq, 0.84 mmol) in 10 mL of toluene was added to the RBF through
the 14/20 septum under static Ar. The resulting dark green solution was stirred for 16 h at room temperature in the dark. All volatiles were removed in vacuo. The solid mixture was washed with 2x15 mL of pentane and dried under vacuum to afford 0.10 g (78%) of \(\text{2}_{\text{Ph}}^{-15}\text{N} \) as a green solid. \(^1\text{H} \text{NMR} \) (500 MHz, \(\text{C}_6\text{D}_6 \)) \(\delta \) 17.82 (1H, d, \(^1\text{J}_{\text{H}-1\text{H}} = 66.6 \text{ Hz, } 15\text{NH} \), 8.19 (2H, s), 8.00 (2H, s), 7.85 (2H, s), 7.77 (2H, s), 7.67 (2H, s), 7.53 (3H, s), 7.44 (4H, s), 6.93 (2H, s), 6.50 (2H, s), 5.76 (2H, s), 5.62 (2H, s), 4.60 (2H, s), 1.64 (9H, s, \(\text{O}^2\text{B}\text{u} \)), 0.83 (9H, \(\text{p}^2\text{B}\text{u} \)). \(^{11}\text{B} \text{NMR} \) (161 MHz, \(\text{C}_6\text{D}_6 \)) no signal. \(^{15}\text{N}^{(1)}\text{H} \text{NMR} \) (61 MHz, \(\text{C}_6\text{D}_6 \)) \(\delta \) +351.59.

Elemental Analysis for \(\text{C}_{43}\text{H}_{46}\text{B}_2\text{ON}_{10}\text{Fe} \): C, 64.85; H, 5.82; N, 17.59. Found (%): C, 64.94; H, 6.16; N, 17.01. HRMS (APCI) m/z calcd for \(\text{C}_{43}\text{H}_{46}\text{B}_2\text{ON}_{10}\text{Fe} \): 797.3345 (M\(^+\)) m/z found: 797.3356 (M\(^+\)). The same protocol was repeated with \(\text{1}_{\text{Ph}}^{-14}\text{NH}_3 \). The same protocol was repeated with \(\text{1}_{\text{Tol}}^{-15}\text{NH}_3 \) and the solid mixture was dissolved in 15 mL of pentane and put in the freezer (-40 °C). X-ray quality crystals of \(\text{2}_{\text{Tol}} \) were obtained after three weeks left in the freezer in the dark.

Synthesis of \(\text{3}_{\text{Tol}}^{-\text{NH}_3} \).

A 100 mL round bottom flask equipped with a Y-joint and a Teflon cap was charged with \(\text{1}_{\text{Tol}}^{-\text{NH}_3} \) (0.10 g, 0.16 mmol) dissolved in 20 mL of toluene. AgSbF\(_6\) (66 mg, 0.19 mmol) was added as a solid all at once. The resulting bright red solution was stirred for 1 h at room temperature. The solution was filtered through a syringe filter to remove Ag(0) and the solvent was removed in vacuo. The red solid was washed with 10 mL of pentane and dried in vacuo to afford 0.13 g (93%) of \(\text{3}_{\text{Tol}}^{-\text{NH}_3} \). Crystals suitable for X-ray diffraction were grown by slow diffusion of pentane into a saturated solution of \(\text{3}_{\text{Tol}}^{-\text{NH}_3} \) in benzene. \(^1\text{H} \text{NMR} \) (500 MHz, \(\text{C}_6\text{D}_6 \)) \(\delta \) 76.9, 12.1, 9.14, 7.4, 4.8, 3.6, 1.4, 0.5, -3.4, -18.8, -34.0. \(^{11}\text{B} \text{NMR} \) (161 MHz, \(\text{C}_6\text{D}_6 \)) +7.0 (s).

Elemental Analysis for \(\text{C}_{31}\text{H}_{35}\text{B}_2\text{Ni}_{10}\text{SbF}_6\text{Fe} \): C, 43.40; H, 3.76; N, 16.33. Found (%): C, 43.52; H, 3.99; N, 16.10. **Evans Method**: Sample mass, 4.6 mg; Solvent, \(\text{C}_6\text{D}_6 \); Standard, \(\text{Si}_2\text{OMe}_6 \) (6%); \(\mu_{\text{eff}} \) = 1.80; \(s = 1/2 \), \(n = 1 \). The same protocol was used to make \(\text{3}_{\text{Tol}}^{-15}\text{NH}_3 \) using \(\text{1}_{\text{Tol}}^{-15}\text{NH}_3 \).

Synthesis of \(\text{3}_{\text{Tol}}^{-\text{Br}} \).

A 100 mL round bottom flask equipped with a Y-joint and a Teflon cap was charged with \(\text{1}_{\text{Tol}} \) (0.10 g, 0.17 mmol) dissolved in 20 mL of toluene. Trityl bromide (59 mg, 0.18 mmol) dissolved in 5 mL of toluene was added dropwise. The resulting bright orange solution was stirred for 1 h at room temperature. The solvent was removed in vacuo. The orange solid was washed with
15 mL of hexanes and dried in vacuo to afford 0.11 g (95%) of 3_Tol-Br. Crystals suitable for X-ray diffraction were grown by slow diffusion of pentane into a saturated solution of 3_Tol-Br in benzene. \(^1\)H NMR (500 MHz, C\(_6\)D\(_6\)) \(\delta\) 107.7, 86.3, 55.8, 30.3, 2.6. \(^{11}\)B NMR (161 MHz, C\(_6\)D\(_6\)) no signal. **Elemental Analysis** for C\(_{31}\)H\(_{29}\)B\(_2\)FeN\(_9\)Br, C\(_6\)H\(_6\): C, 59.89; H, 4.78; N, 15.72. Found (%): C, 59.85; H, 4.50; N, 15.59. **HRMS (APCI)** m/z calcd for C\(_{31}\)H\(_{29}\)B\(_2\)FeN\(_9\)Br: 685.1338 (M+H)\(^+\) m/z found: 685.1338 (M+H)\(^+\). **Evans Method**: Sample mass, 5.0 mg; Solvent, C\(_6\)D\(_6\); Standard, Si\(_2\)OMe\(_6\) (6%); \(\mu_{\text{eff}}\) = 5.73; s = 5/2, n = 5.

Synthesis of 3_Tol-Br.

A 100 mL round bottom flask equipped with a Y-joint and a Teflon cap was charged with 1_Tol (0.10 g, 0.17 mmol) dissolved in 20 mL of toluene. XeF\(_2\) (14 mg, 0.083 mmol) dissolved in 5 mL of toluene was added dropwise. The resulting bright orange solution was stirred for 1 h at room temperature. All volatiles were removed in vacuo. The orange solid was washed with 10 mL of pentane and dried in vacuo to afford 92 mg (89%) of 3_Tol-Br. Crystals suitable for X-ray diffraction were grown by slow diffusion of pentane into a saturated solution of 3_Tol-Br in benzene. \(^1\)H NMR (500 MHz, C\(_6\)D\(_6\)) \(\delta\) 106.8, 85.8, 59.6, 55.8, 29.8, 20.4, 2.6. \(^{11}\)B NMR (161 MHz, C\(_6\)D\(_6\)) no signal. \(^{19}\)F\(^{\{1\}H}\) NMR (471 MHz, C\(_6\)D\(_6\)) no signal. **Elemental Analysis** for C\(_{31}\)H\(_{29}\)B\(_2\)FeN\(_9\)BrF: C, 59.66; H, 4.68; N, 20.20. Found (%): C, 59.52; H, 4.92; N, 19.79. **HRMS (APCI)** m/z calcd for C\(_{31}\)H\(_{29}\)B\(_2\)FeN\(_9\)BrF: 625.2070 (M+H)\(^+\) m/z found: 625.2097 (M+H)\(^+\). **Evans Method**: Sample mass, 5.0 mg; Solvent, C\(_6\)D\(_6\); Standard, Si\(_2\)OMe\(_6\) (6%); \(\mu_{\text{eff}}\) = 5.99; s = 5/2, n = 5.

Synthesis of 4_Tol.
A 100 mL round bottom flask equipped with a Y-joint and a Teflon cap was charged with 1_{Tol} (0.15 g, 0.25 mmol) dissolved in 25 mL of toluene. Neat anhydrous hydrazine (3.9 μL, 0.12 mmol) was added. The resulting dark forest green solution was stirred for 2 h at room temperature. The solvent was removed in vacuo. The solid mixture was washed with 5 mL of cold Et₂O and 4_{Tol} was isolated as a deep blue solid (52%). Crystals suitable for X-ray diffraction were grown by slow diffusion of pentane into a saturated solution of 4_{Tol} in benzene. ¹H NMR (500 MHz, C₆D₆) δ 18.66 (2H, s, H12), 7.97 (8H, d, ³J_HH = 7.6 Hz, H5), 7.88 (8H, d, ³J_HH = 2.5 Hz, H9), 7.84 (8H, d, ³J_HH = 2.5 Hz, H11), 7.47 (4H, d, ³J_HH = 7.6 Hz, H2), 7.28 (8H, d, ³J_HH = 7.6 Hz, H6), 6.88 (2H, t, ³J_HH = 7.6 Hz, H3), 5.95 (8H, t, ³J_HH = 2.5 Hz, H10), 2.36 (12H, s, H8). ¹³C{¹H} NMR (151 MHz, C₆D₆) δ 144.5 (s, C9), 138.1 (s, C11), 136.5 (s, C7), 135.8 (s, C5), 133.3 (s, C3), 129.1 (s, C6), 127.0 (s, C2), 106.4 (s, C10), 21.4 (s, C8). C1 and C4 not seen. ¹¹B NMR (161 MHz, C₆D₆) no signal. **Elemental Analysis** for C₆₂H₆₀B₄N₂₀Fe,C₆H₆: C, 61.95; H, 5.05; N, 21.25. Found (%): C, 61.61; H, 4.86; N, 20.72. **UV-vis** (C₆H₆) [λ_max]: 723, 388 nm. **rRaman** (1064 nm, cm⁻¹): 1321; 1248. 4_{Tol}⁻¹⁵N₂ was made via the same protocol using ¹⁵N₂H₄. ¹⁵N{¹H} NMR (61 MHz, C₆D₆) δ +476.44. **rRaman** (1064 nm, cm⁻¹): 1279; 1206.
References:

(1) Spasyuk, D. M.; Carpenter, S. H.; Kefalidis, C. E.; Piers, W. E.; Neidig, M. L.; Maron, L. Chem. Sci. 2016, 7, 5939–5944.

(2) Nurdin, L.; Spasyuk, D. M.; Fairburn, L.; Piers, W. E.; Maron, L. J. Am. Chem. Soc. 2018, 140, 16094–16105.

(3) Manner, V. W.; Markle, T. F.; Freudenthal, J. H.; Roth, J. P.; Mayer, J. M. Chem. Commun. 2008, 0, 256–258.

(4) Evans, D. F. J. Chem. Soc. 1959, 2003–2005.

(5) SAINT. 2017, Bruker-AXS Inc., Madison, Wisconsin, USA.

(6) XPREP. 2017, Bruker-AXS Inc., Madison, Wisconsin, USA.

(7) Dolomanov, O. V.; Bourhis, L. J.; Gildea, R. J.; Howard, J. A. K.; Puschmann, H. J. Appl. Crystallogr. 2009, 42, 339–341.

(8) Sheldrick, G. M. Acta Crystallogr. Sect. A Found. Crystallogr. 2015, 71, 3–8.

(9) Sheldrick, G. M. Acta Crystallogr. Sect. C Struct. Chem. 2015, 71, 3–8.

(10) M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. 2009, p Gaussian, Inc. Wallingford C T.

(11) Becke, A. D. J. Chem. Phys. 1993, 98, 5648–5652.

(12) Perdew, J. P.; Wang, Y. Phys. Rev. B 1992, 45, 13244–13249.

(13) Dolg, M.; Wedig, U.; Stoll, H.; Preuss, H. J. Chem. Phys. 1987, 86, 866.

(14) Hehre, W. J. J. Chem. Phys. 1972, 56, 2257.

(15) Hariharan, P. C.; Pople, J. A. Theor. Chim. Acta 1973, 28, 213–222.

(16) Broere, D. L. J.; Ćorić, I.; Brosnahan, A.; Holland, P. L. Inorg. Chem. 2017, 56, 3140–3143.

(17) Schrock, R. R.; Liu, A. H.; O'Regan, M. B.; Finch, W. C.; Payack, J. F. Inorg. Chem. 1988, 27, 3574–3583.
Figures S1-S32:

Figure S1. 1H NMR spectrum of 1$_{Ph}$-THF in C$_6$D$_6$.

Figure S2. 1H NMR spectrum of 1$_{Ph}$-MeCN in CD$_3$CN.
Figure S3. Mössbauer spectrum of a solid sample of 1_{Tol} collected at 80 K. The species in green corresponds to leftover 1_{Tol}-THF as the parameters match the ones already reported for 1_{Ph}-THF.1

δ (mm/s)	1.04	1.13	-0.03
ΔE_0 (mm/s)	0.93	2.40	0.64
%	84	12	6

Figure S4. Mössbauer spectrum of a benzene solution of 1_{Tol} collected at 80 K under a dinitrogen atmosphere. The major species (orange) corresponds to a dinitrogen adduct and the parameters are indicative of a low spin Fe(II) complex. These parameters are also similar to the ones obtained for the diazone adduct, complex 4_{Tol} (Figure S29). The species in green corresponds to leftover 1_{Tol}-THF as the parameters match the ones already reported for 1_{Ph}-THF.1

δ (mm/s)	0.44	1.13
ΔE_0 (mm/s)	0.43	2.40
%	90	10
Figure S5. Cyclic voltammograms of 1_{Tol} in THF at different scan rates (0.02 to 0.5 V/s) under argon. Reversible Fe(II)/Fe(III) redox couple at -0.44 V vs Fc/Fc⁺. Concentration of 1_{Tol}: 0.1 mM.

Figure S6. Stack ^1H NMR spectra of 1_{Tol}^{14}NH₃ (spectrum 1) and 1_{Tol}^{15}NH₃ (spectrum 2) in C₆D₆ with the proton assignments of the NH₃ ligand.
Figure S7. Mössbauer spectrum of a benzene solution of 1Tol-15NH$_3$ collected at 80 K under a dinitrogen atmosphere. The major species (red) corresponds to 1Tol-15NH$_3$ (LS) and the parameters for the species in orange match the dinitrogen adduct reported in Figure S4. The species in blue corresponds to leftover 1Tol-THF as the parameters match the ones already reported for 1Ph-THF.¹
Procedure for the reactivity of \(\text{Ph-nNH}_3 \) with ArO· to isolate \(\text{2Ph-nN} \)

A 25 mL two neck round bottom flask equipped with a Y-Joint with a Teflon cap and a 14/20 septum was charged with 20 mg of \(\text{1Ph-nNH}_3 \) (1 eq, 0.034 mmol) in 5 mL of toluene. A solution of ArO· (44 mg, 5 eq, 0.17 mmol) in 2 mL of toluene was added to the RBF through the 14/20 septum under static Ar. The resulting dark green solution was stirred for 16 h at room temperature in the dark. The solvent was removed in vacuo. The solid mixture was washed with 10 mL of pentane and dried under vacuum.

Figure S8. \(^1\text{H} \) NMR spectrum of \(\text{2Ph-}^{15}\text{N} \) in \(\text{C}_6\text{D}_6 \).
Figure S9. Zoomed 1H NMR stack spectra of $2_{\text{Ph}^{\text{15}} \text{N}}$ (spectrum 1) and $2_{\text{Ph}^{\text{14}} \text{N}}$ (spectrum 2) in C$_6$D$_6$.

δ (mm/s)	0.29	0.69
ΔE$_0$ (mm/s)	0.97	1.09
%	83	17

Figure S10. Mössbauer spectrum of a solid sample of $2_{\text{Ph}^{\text{15}} \text{N}}$ collected at 80 K under a dinitrogen atmosphere. The parameters are consistent with a low spin Fe(II) species.

Figure S11. 1H NMR spectrum of the reaction between $1_{\text{Tol}^{\text{15}} \text{NH}_3}$ and ArO· after 16 h at room temperature in C$_6$D$_6$. $2_{\text{Tol}^{\text{15}} \text{N}}$ is present, as well as ArOH.
Procedure for the reactivity of $2_{Ph}^{15}N$ with ArO· and $^{15}NH_3$

A J-Young tube equipped with a Teflon cap was charged with 5 mg of $2_{Ph}^{15}N$ (1 eq, 0.006 mmol) in ~0.5 mL of C$_6$D$_6$. ArO· (8 mg, 5 eq, 0.03 mmol) was added as a solid. The J-Young tube was degassed via three freeze-pump-thaw cycles and $^{15}NH_3$ (~ 5 eq) was added to the J-Young tube. The J-Young tube was covered with aluminum foil and stirred at room temperature for 16 h.

![Figure S12. 1H NMR spectrum of $2_{Ph}^{15}N$ + ArO· and $^{15}NH_3$ in C$_6$D$_6$.](image)
Procedure for the reactivity of 1_{Ph}-NH_3 with ArO·

A J-Young tube equipped with a Teflon cap was charged with 20 mg of 1_{Ph}-NH_3 (1 eq, 0.034 mmol) in ~0.5 mL of C$_6$D$_6$. ArO· (44 mg, 5 eq, 0.17 mmol) was added as a solid and the J-Young was stirred for 16 h at room temperature, covered with aluminum foil.

![Figure S13. Stack 1H NMR spectra of 1_{Ph}-NH_3 + ArO· (spectrum 1) and ArOH (spectrum 2) in C$_6$D$_6$.](image-url)
Procedure for the analysis of the headspace of the reaction between \(\text{Ph}^-\text{NH}_3 \) and \(\text{ArO}^- \)

A 25 mL two neck round bottom flask (RBF) equipped with a Y-Joint with a Teflon cap and a 14/20 septum was charged with 20 mg of \(\text{Ph}^-\text{NH}_3 \) (1 eq, 0.034 mmol) in 5 mL of toluene. A solution of \(\text{ArO}^- \) (44 mg, 5 eq, 0.17 mmol) in 2 mL of toluene was added to the RBF through the 14/20 septum under static Ar. The resulting dark green solution was stirred for 16 h at room temperature in the dark. The headspace of the reaction was taken through the 14/20 septum using a 500 μL syringe. The headspace sample was analyzed by GC-MS.

Figure S14. GC-MS analysis of the headspace of the reaction between \(\text{Ph}^-\text{NH}_3 \) and \(\text{ArO}^- \) in toluene. The peak at m/z 56.1 corresponds to the formation of isobutene. Notably, no isobutane is observed at m/z 58.
Procedure for the reaction between $3_{\text{Tol}}\text{-NH}_3^+$ and DBU

A J-Young tube equipped with a septum screw cap was charged with 10 mg of $3_{\text{Tol}}\text{-NH}_3^+$ (1 eq, 0.012 mmol) in ~0.5 mL of C_6D_6. A ^1H NMR spectrum was recorded. DBU (stock solution, 1 eq) was added through the septum screw cap. Another ^1H NMR spectrum was recorded.

![Stack ^1H NMR spectra of $3_{\text{Tol}}\text{-NH}_3^+$ (spectrum 1) and $3_{\text{Tol}}\text{-NH}_3^+$ + DBU (spectrum 2) in C_6D_6. Large window.](image)

Figure S15. Stack ^1H NMR spectra of $3_{\text{Tol}}\text{-NH}_3^+$ (spectrum 1) and $3_{\text{Tol}}\text{-NH}_3^+$ + DBU (spectrum 2) in C_6D_6. Large window.
Figure S16. Stack 1H NMR spectra of 1Tol-NH$_3$ (spectrum 1) and $3_{^1}$Tol-NH$_3^+$ + DBU (spectrum 2) in C$_6$D$_6$.

Procedure for the reaction between $3_{^1}$Tol-15NH$_3^+$, ArO· and DBU

A J-Young tube equipped with a septum screw cap was charged with 10 mg of $3_{^1}$Tol-15NH$_3^+$ (1 eq, 0.012 mmol) and ArO· (15 mg, 5 eq, 0.058 mmol) in ~0.5 mL of C$_6$D$_6$. DBU (stock solution, 1 eq) was added through the septum screw cap. The reaction was stirred in the dark for 16 h at room temperature.

Figure S17. Stack 1H NMR spectra of $3_{^1}$Tol-15NH$_3^+$ + ArO· + DBU (spectrum 1), 1Tol-15NH$_3$ + ArO· (spectrum 2) and ArOH (spectrum 3) in C$_6$D$_6$.
Figure S18. ORTEP diagrams for 3_{Tor}-Br. Hydrogen, boron, carbon, nitrogen, bromine and iron atoms are white, pink, grey, light blue, gold and orange respectively. Thermal ellipsoids are shown at the 50% probability level. Calculated hydrogen atoms and the molecule of solvent are omitted for clarity. Selected bond distances (Å): Fe-Br, 2.455(1); Fe-N1, 2.214(3); Fe-N2, 2.067(3); Fe-N4, 2.110(4); Fe-N6, 2.075(4); Fe-N8, 2.094(3). Selected bond angles (°): N1-Fe-N2, 85.9(1); N2-Fe-N4, 91.9(1); N1-Fe-N10, 176.3(9). Selected metrical data are given in Table S2.

Figure S19. ORTEP diagrams for 3_{Tor}-F. Hydrogen, boron, carbon, nitrogen, fluorine and iron atoms are white, pink, grey, light blue, bright yellow and orange respectively. Thermal ellipsoids are shown at the 50% probability level. Calculated hydrogen atoms and the molecule of solvent are omitted for clarity. Selected bond distances (Å): Fe-F, 1.8349(16); Fe-N1, 2.193(2); Fe-N2, 2.0737(18); Fe-N4, 2.1086(17). Selected bond angles (°): N1-Fe-N2, 85.69(6); N2-Fe-N4, 92.36(10); N1-Fe-F, 179.54(8). Selected metrical data are given in Table S2.
Procedure for the reaction between 3_{Tol}-Br and LiNH₂

A J-Young tube equipped with a Teflon cap was charged with 10 mg of 3_{Tol}-Br (1 eq, 0.015 mmol) in ~0.5 mL of THF-d₈. A ¹H NMR spectrum was recorded. LiNH₂ (1.2 eq, 0.018 mmol) was added as a solid. Another ¹H NMR spectrum was recorded.

Figure S20. ¹H NMR spectrum of 3_{Tol}-Br in THF-d₈.
Figure S21. Stack 1H NMR spectra of 3_{Tol}-Br + LiNH$_2$ (spectrum 1) and 1_{Tol}-15NH$_3$ (spectrum 2) in THF-d_8.
Procedure for the reaction between 3_{Tol}-Br, ArO· and LiNH₂

A J-Young tube equipped with a Teflon cap was charged with 10 mg of 3_{Tol}-Br (1 eq, 0.015 mmol) and ArO· (5 eq, 19 mg, 0.073 mmol) in ~0.5 mL of THF-d_8. LiNH₂ (1.2 eq, 0.018 mmol) was added as a solid. The reaction mixture was stirred for 2 days at room temperature in the dark.

![Figure S22. Stack 1H NMR spectra of 3_{Tol}-Br + ArO· + LiNH₂ (spectrum 1), 2_{Ph}-15N (spectrum 2) and 1_{Tol}-15NH₃ (spectrum 3) in THF-d_8. Based on the 1H integration in spectrum 1 between the peaks corresponding to 2_{Tol} and the peaks corresponding to 1_{Tol}-15NH₃, a 30% NMR yield is found for the formation of 2_{Tol}.](image-url)
Procedure for the reaction between 3_{Tol}-F, ArO· and LiNH$_2$

A J-Young tube equipped with a Teflon cap was charged with 10 mg of 3_{Tol}-F (1 eq, 0.016 mmol) and ArO· (5 eq, 21 mg, 0.080 mmol) in ~0.5 mL of THF-d_8. LiNH$_2$ (1.2 eq, 0.5 mg, 0.019 mmol) was added as a solid. The reaction mixture was stirred overnight at room temperature in the dark.

Figure S23. Stack 1H NMR spectra of 3_{Tol}-F + ArO· + LiNH$_2$ (spectrum 1), 2_{Ph}-15N (spectrum 2) and 1_{Tol}-15NH$_3$ (spectrum 3) in THF-d_8. Based on the 1H integration in spectrum 1 between the peaks corresponding to 2_{Tol} and the peaks corresponding to 1_{Tol}-15NH$_3$, a 40% NMR yield is found for the formation of 2_{Tol}.
Procedure for the reaction between 1_{Tol} and ^{14}N_2H_4

A J-Young tube equipped with a Teflon cap was charged with 10 mg of 1_{Tol} (1 eq, 0.017 mmol) in ~0.5 mL of C_6D_6. Neat anhydrous ^{14}H_2H_4 (0.5 eq) was added and the J-Young was stirred for 2 h at room temperature.

Figure S24. Stack ^1H NMR spectra of 1_{Tol} + ^{14}N_2H_4 (spectrum 1), 1_{Tol}^{14}NH_3 (spectrum 2) and 4_{Tol} (spectrum 3) in C_6D_6.
Procedure for the reaction between 1_{Tol} and $^{14}\text{N}_2\text{H}_4$ at low temperature

A J-Young tube equipped with a Teflon cap was charged with 10 mg of 1_{Tol} (1 eq, 0.017 mmol) in ~0.5 mL of tol-d_8. Neat anhydrous $^{1}\text{H}_2\text{H}_4$ (0.5 eq) was added as a drop at the top of the J-Young tube and closed with a Teflon cap. The J-Young was cooled to -78 ºC using an acetone/dry ice bath. The solution was mixed just before inserting the J-Young tube into the NMR instrument for recording.

![Figure S25. 1H NMR spectrum of $1_{\text{Tol}} + ^{14}\text{N}_2\text{H}_4$ at 210 K in Tol-d_8.](image)
Figure S26. Stack 1H NMR spectra of $1_{\text{Tol}} + ^{14}$N$_2$H$_4$ (spectrum 1) and of $1_{\text{Tol}} + ^{15}$N$_2$H$_4$ (spectrum 2) at 210 K in Tol-d_8.

Figure S27. Stack 1H NMR spectra of $1_{\text{Tol}} + ^{14}$N$_2$H$_4$ at different temperatures (starting at 210 K) in Tol-d_8.
Figure S28. UV-vis spectrum of 4_{Tol} in C$_6$H$_6$.

![UV-vis spectrum](image)

Figure S29. Mössbauer spectrum of a solid sample of 4_{Tol} collected at 80 K under a dinitrogen atmosphere. The parameters are consistent with a low spin Fe(II) species.

δ (mm/s) 0.41

ΔE_0 (mm/s) 0.49
Figure S30. IR (KBr pallet) spectrum of 1_{10}-^{15}NH$_3$.
Figure S31. IR (KBr pallet) spectrum of $1_{\text{Tol}}^{14}\text{NH}_3$.

Figure S32. IR (KBr pallet) spectrum of $2_{\text{Ph}}^{15}\text{N}$.
NMR spectra of characterized compounds

Figure S33. 1H NMR spectrum of 15N$_2$H$_4$ in C$_6$D$_6$.

Figure S34. 15N(1H) NMR spectrum of 15N$_2$H$_4$ in C$_6$D$_6$.
Figure S35. ^{15}N NMR spectrum of $^{15}\text{N}_2\text{H}_4$ in C_6D_6.
Figure S36. 1H NMR spectrum of 1_Tol in C$_6$D$_6$.

Figure S37. 11B NMR spectrum of 1_Tol in C$_6$D$_6$.
Figure S38. 1H NMR spectrum of $\text{1}_{\text{Tol}}{^{15}\text{NH}_3}$ in C_6D_6.

Figure S39. 11B NMR spectrum of $\text{1}_{\text{Tol}}{^{15}\text{NH}_3}$ in C_6D_6.
Figure S40. 1H NMR spectrum of $1_{\text{ph}}^{15}\text{NH}_3$ in C_6D_6.

Figure S41. 1H NMR spectrum of $2_{\text{ph}}^{15}\text{N}$ in C_6D_6.
Figure S42. 15N(1H) NMR spectrum of $2_{\text{Ph}-15\text{N}}$ in C_6D_6.

Figure S43. 15N-1H HMBC of $2_{\text{Ph}-15\text{N}}$ in C_6D_6.
Figure S44. 1H NMR spectrum of Tol-NH_3^+ in C_6D_6.

Figure S45. 11B NMR spectrum of Tol-NH_3^+ in C_6D_6.
Figure S46. 1H NMR spectrum of $3_{\text{Tol-Br}}$ in C$_6$D$_6$.

Figure S47. 1H NMR spectrum of $3_{\text{Tol-F}}$ in C$_6$D$_6$.
Figure S48. 1H NMR spectrum of 4$_{\text{Tol}}$ in C$_6$D$_6$.

Figure S49. 13C(1H) NMR spectrum of 4$_{\text{Tol}}$ in C$_6$D$_6$.
Figure S50. 1H NMR spectrum of 4_{Tol}(^{15}N)$_2$ in C$_6$D$_6$.

Figure S51. $^{15}\text{N}(^1\text{H})$ NMR spectrum of 4_{Tol}(^{15}N)$_2$ in C$_6$D$_6$.
Figure S52. 15N-1H HMBC of 4$_{\text{Tol}}$-15N$_2$ in C$_6$D$_8$.
Table S1

	1_{Tol}-NH₃	2_{Tol}	3_{Tol}-NH₃⁺
chemical formula	C₃₇H₃₈B₂N₁₀Fe	C₄₅H₆₅B₂N₁₀OFe	C₃₇H₃₈B₂FeN₁₀SbFe
crystal colour	Red	blue	Red
Fw; F(000)	700.24; 2928.0	824.42; 3472.0	935.99; 1884.0
T (K)	173	173	173
wavelength (Å)	1.54178	1.54178	1.54178
space group	C2/c	P2/c	P2₁/n
a (Å)	16.6461(14)	18.7182(7)	11.9800(2)
b (Å)	17.2299(16)	24.1607(11)	25.1657(5)
c (Å)	24.132(2)	23.6620(9)	14.4893(3)
α (deg)	90	90	90
β (deg)	102.636(4)	98.957(3)	114.2040(10)
γ (deg)	90	90	90
Z	8	8	4
V (Å³)	6753.7(10)	10570.5(7)	3984.29(14)
ρ_{calc} (g·cm⁻³)	1.377	1.036	1.560
μ (mm⁻¹)	3.928	2.588	8.900
θ range (deg);	7.48 to 136.582; 98.9%	3.656 to 136.696; 98.4%	7.024 to 140.13; 99.8%
completeness			
collected reflections;			
R_o	18406; 0.0778	19096; 0.0660	28060; 0.0373
unique reflections;			
R_{int}	6138; 0.0545	19096; 0.0704	7559; 0.0422
R₁; wR₂ [I > 2σ(I)]	0.0441; 0.1222	0.0677; 0.1758	0.0447; 0.1117
R₁; wR₂ [all data]	0.0937; 0.1395	0.0915; 0.1953	0.0593; 0.1195
GOF	1.057	1.029	1.040
largest diff peak and hole	0.59 and -0.48	1.15 and -0.57	1.42 and -0.97

^a R₁=Σ||F_o|-|F_c||/ΣF_o|

^b wR₂=Σ[w(F_o²-F_c²)^2]/Σ[w(F_o²)]^{1/2}
Table S2

	3_{Tol}-Br	3_{Tol}-F	4_{Tol}
chemical formula	C$_{43}$H$_{41}$B$_2$BrN$_9$Fe	C$_{31}$H$_{29}$B$_2$FeN$_9$	C$_{65}$H$_{63}$B$_4$Fe$_2$N$_{20}$
crystal colour	Red	yellow	blue
F_{w}; $F(000)$	841.23; 866.0	624.10; 1292.0	1279.29; 1330.0
T (K)	173	173	173
wavelength (Å)	0.71073	0.71073	1.54178
space group	P-1	Pnma	P-1
a (Å)	10.252(5)	8.2450(4)	12.5636(9)
b (Å)	12.025(5)	19.3287(10)	13.6840(10)
c (Å)	18.400(8)	18.0484(9)	20.5835(17)
α (deg)	104.192(5)	90	98.128(5)
β (deg)	92.618(5)	90	100.359(5)
γ (deg)	112.901(5)	90	115.218(5)
Z	2	4	2
V (Å3)	2000.3(15)	2876.3(2)	3053.3(4)
ρ_{calc} (g·cm$^{-3}$)	1.397	1.441	1.391
μ (mm$^{-1}$)	1.420	0.571	4.291
θ range (deg); completeness	3.836 to 51.996; 99.7%	6.878 to 56.59; 99.7%	4.502 to 136.71; 97.3%
collected reflections; R_{σ}	26732; 0.1247	19799; 0.0347	10913; 0.0660
unique reflections; R_{int}	7875; 0.1088	3656; 0.0420	10913; 0.0678
R_1^a; wR_2^b [$I > 2\sigma(I)$]	0.0521; 0.0779	0.0432; 0.1125	0.0546; 0.1325
R_1; wR_2 [all data]	0.1238; 0.0964	0.0657; 0.1285	0.0888; 0.1502
GOF	0.997	1.073	1.036
largest diff peak and hole	0.43 and -0.40	0.43 and -0.58	0.57 and -0.48

a $R_1 = \Sigma ||I_F - |F_c||| / \Sigma I_F$

b $wR_2 = (\Sigma [w(F_o^2 - F_c^2)^2] / \Sigma [w(F_o^2)^2])^{1/2}$
Cartesian Coordinates for calculated structures

1_{Tol} (HS)

Atom	x	y	z
Fe	5.80866300	11.15160000	18.06350400
N	4.46838600	12.56937600	17.68814100
N	3.26567600	12.52820600	18.31051300
N	4.26962100	9.86949300	17.73424900
N	3.11619500	10.09750300	18.40966000
N	5.46621400	11.17912200	20.11993600
N	7.12111800	9.71253000	18.27839500
N	7.98043100	9.78550500	19.31660700
N	7.35315700	12.45211900	18.26849300
N	8.15496600	12.29194900	19.35224400
C	4.35842200	13.43089200	16.67036400
H	5.19673600	13.61180900	16.01245500
C	3.06714700	13.96028500	16.61662700
H	2.67084300	14.68190200	15.91735400
C	2.40577600	13.34624600	17.66735600
H	1.37847200	13.42736900	17.98603200
C	4.02586400	8.90138900	16.84530900
H	4.80539700	8.55759100	16.18116500
C	2.69358800	8.49062700	16.92574800
H	2.19411100	7.73032600	16.34338200
C	2.15419100	9.28473800	17.92404500
H	1.14793100	9.33249100	18.30980500
C	1.56125700	11.46995000	20.08386400
C	0.93319600	10.33272600	20.62504200
H	1.38952800	9.35378300	20.49525500
C	-0.24391900	10.40991300	21.36716700
H	-0.68830300	9.49683000	21.76051200
C	-0.85522200	11.63984600	21.62978400
C	-0.21587000	12.78604500	21.14965700
H	-0.63790500	13.76564700	21.36928200
C	0.96124500	12.70013500	20.40682100
H	1.43952500	13.62958800	20.10746600
C	-2.14766400	11.72542400	22.39822700
H	-2.23630300	10.91276400	23.12763300
H	-2.23237200	12.67513800	22.93769000
H	-3.01452000	11.65488800	21.72724600
C	4.18546300	11.38063500	20.49941500
C	3.92141000	11.64147400	21.84983300
H	2.89971200	11.79097000	22.17922200
C	4.97390000	11.74292900	22.75303500
H	4.77827400	11.98490500	23.79590400
C	6.27792400	11.54124300	22.31321800
H	7.11057200	11.64364500	23.00102200
C	6.51530400	11.21981900	20.97287000
C	7.40555900	8.59354100	17.60435200
H	6.85077500	8.33149500	16.71572500
C	8.46158600	7.91446100	18.21725800
H	8.91762200	6.98294700	17.91554100
C	8.79628100	8.70971600	19.30033000
Atom	X	Y	Z
------	---------------	---------------	---------------
H	9.55763600	8.58790700	20.05501500
C	7.61149000	13.66822600	17.76836800
H	7.09596600	14.01763700	16.88686200
C	8.57254900	13.42091800	18.53779200
H	8.98913000	15.30645500	18.38978900
C	8.73334000	13.41356200	19.54374700
H	9.54128000	13.49749200	20.38527600
C	9.24797400	10.81070300	21.28727200
H	10.56512000	11.60022000	20.93853300
C	10.75851400	11.65267000	19.98828000
H	11.65709400	10.86345200	21.75314400
C	12.65660000	11.15838000	21.43683800
H	11.49359700	10.17907200	22.96154300
C	10.19767100	9.78024400	23.30227100
H	10.03558100	9.21436100	24.21845700
C	9.11059100	10.85533000	22.48441600
H	8.13012600	9.71956000	22.77894900
C	12.66562000	9.88727200	23.86135200
H	12.82887300	10.70358100	24.57798800
H	12.50761900	8.97260400	24.44319400
B	3.00276200	11.36765400	19.35785700
B	7.99001200	11.02250200	20.28952700

$1_{\text{Tol-NH}_3}(LS)$

Atom	X	Y	Z
Fe	5.81693400	11.12955200	18.04236600
N	4.43585200	12.58083500	17.67886800
N	3.22723800	12.51880300	18.28208200
N	4.27603800	9.86396900	17.77605300
N	3.10669000	10.08572200	18.41683900
N	5.48501300	11.22082700	19.99168500
N	7.10870700	9.65753800	18.32743500
N	8.03539000	9.78650000	19.29743500
N	7.31837700	12.45927200	18.30156500
N	8.20055100	12.30066900	19.31345800
N	6.23969400	11.07411800	16.03427800
C	4.31989300	13.47173000	16.68551000
H	5.15976900	13.70609000	16.04486600
C	3.02329900	13.99022100	16.62877600
H	2.62818300	14.72877000	15.94636900
C	2.35956500	13.34185800	17.65618400
H	1.32904700	13.40003700	17.96999900
C	4.04601900	8.89649300	16.88030800
H	4.83683000	8.53971300	16.23618200
C	2.71072200	8.48469400	16.92606000
H	2.22702300	7.72063200	16.33921000
C	2.14865700	9.28014500	17.90271100
H	1.13302000	9.33714200	18.26892700
C	1.56073900	11.45973900	20.08220700
C	0.94156500	10.31752400	20.62242600
H	1.39921300	9.34104300	20.47965200
C	-0.22852600	10.38656400	21.37673300
Atom	X	Y	Z
------	---------	---------	---------
H	-0.66603400	9.46985700	21.76961100
C	-0.84190200	11.61275500	21.65092900
C	-0.21281500	12.76393200	21.16854200
H	0.63792000	13.74062600	21.39550300
C	0.95737500	12.68605200	20.41420100
H	1.42791100	13.61817700	20.11056100
C	-2.12709400	11.68980300	22.43258700
H	-2.20827200	10.86963400	23.15446300
H	-2.20690100	12.63382500	22.98282300
H	-3.00068500	11.62590800	21.76963600
C	4.20871100	11.39744200	20.41472800
C	3.95920600	11.64769800	21.76883200
H	2.93697100	11.78258800	22.10189700
C	5.01134800	11.75463400	22.66670000
H	4.82691600	11.99246100	23.71234100
C	6.30402000	11.55075000	22.20340200
H	7.14820100	11.64261200	22.87558000
C	6.53591100	11.24502000	20.85997600
C	7.34427800	8.48774700	17.72011300
H	6.70847600	8.14021900	16.91930100
C	8.43986200	7.84358800	18.30352600
H	8.86535800	6.88550800	18.04251300
C	8.84581800	8.70688200	19.30572100
H	9.64780000	8.62813400	20.02300100
C	7.55954800	13.66397600	17.76837800
H	6.96406200	14.03450900	16.94780900
C	8.59133600	14.31115000	18.45301800
H	9.00250400	15.29264700	18.26687400
C	8.95687400	13.41060600	19.43945200
H	9.68988100	13.49327500	20.22685000
C	9.25936000	10.82384100	21.27696400
C	10.58634400	11.16959200	20.96242800
H	10.80579500	11.66231700	20.01830700
C	11.65869500	10.86431200	21.80001000
H	12.66596900	11.15840900	21.50828600
C	11.46581000	10.17266900	22.99935300
C	10.16123800	9.77297200	23.30479700
H	9.97627300	9.19668300	24.21145100
C	9.09477100	10.08588700	22.46360800
H	8.10822300	9.71568200	22.73120000
C	12.61485800	9.87294000	23.92574000
H	12.74688500	10.67293500	24.66682100
H	12.45164300	8.94232600	24.48045500
H	13.55924900	9.77997500	23.37817000
B	2.98989000	11.36511500	19.32920100
B	8.03049700	11.04026500	20.24132200
H	5.40495800	11.09497100	15.45016300
H	6.83100500	11.86087000	15.76997600
H	6.77059300	10.23517400	15.80277600

$1_{\text{tol}}{\text{NH}}_3 (\text{HS})$

Fe
5.80658200 10.98431900 17.96800300
Element	X Component	Y Component	Z Component
N	4.44568400	12.41768400	17.64145900
N	3.23279100	12.35474300	18.37088800
N	0.65187800	9.90880100	17.83366200
N	5.50053100	11.09712700	19.92094600
N	7.19498800	9.61301300	18.27897700
N	8.16592800	9.85786600	19.17909000
N	8.16592800	9.85786600	19.17909000
N	7.68903600	12.49712500	18.08683200
N	8.24281100	12.39931600	19.31671900
C	4.39054500	13.39787800	16.73020900
H	5.27005800	13.66095300	16.15911500
C	3.11609600	13.96849500	16.70416300
H	2.76057800	14.78152400	16.08793700
C	2.41102500	13.26365900	17.66779600
H	1.82461100	9.25259200	17.82716000
C	0.84923900	9.49630700	18.10877300
C	1.55734100	11.42828900	20.06523900
H	0.78938900	10.35585000	20.55320700
H	-0.34663100	10.54716900	21.33912800
C	-0.90530900	9.68079100	21.69036300
C	-0.27755800	13.91963600	21.54555000
C	1.13751600	12.70759000	20.47425500
C	1.72903900	13.57920500	20.20281200
C	-2.02243000	12.04279200	22.51023400
H	-2.22482700	11.88902000	23.16006000
H	-1.94588700	12.93916800	23.13564600
H	-2.90213000	12.17219200	21.86513200
C	4.20752900	11.15985200	20.34037200
C	3.95620300	11.26018600	21.71371100
C	2.93179300	11.28891900	22.06422600
C	5.00574100	11.36501700	22.61662100
C	4.80737200	11.48578500	23.67973700
C	6.30897700	11.32243200	22.14215300
C	7.14663200	11.42362700	22.82333500
C	6.55565100	11.14393600	20.77772000
C	7.50575800	8.47028600	17.65758800
C	6.84529000	8.05611400	16.90749500
C	8.70743800	7.95907000	18.15687500
C	9.21578100	7.05012800	17.86979600
C	9.90990800	8.87511900	19.12254700
H	9.94782600	8.89107100	19.77762300
C	7.83666200	13.77430600	17.71286900
C	7.48859400	14.10043200	16.74059400
C	8.46776300	14.52540200	18.70954800
3\textbf{Tol-NH}_2 (LS)

Fe	5.81865100	11.14268500	17.97319400	
N	4.41736300	12.57204700	17.68129500	
N	3.21654000	12.53940700	18.30269400	
N	4.26918200	9.88986300	17.77821800	
N	3.10390800	10.10430900	18.48277700	
N	5.47127800	11.22455300	19.99947500	
N	7.13086400	9.70711200	18.27754700	
N	8.00054000	9.79239500	19.30217500	
N	7.34073400	12.41402700	18.26827200	
N	8.18408900	12.29126400	19.31591600	
N	6.15070300	11.14319100	16.18393700	
C	4.32451400	13.45691100	16.68405300	
H	5.16083700	13.60305700	16.01872800	
C	3.04528200	14.01640200	16.64989600	
H	2.66272300	14.76146500	15.96753600	
C	2.37034000	13.38996000	17.68503100	
H	1.34447000	13.47818400	18.00547100	
C	4.06000700	8.89668600	16.90783100	
H	4.85376200	8.56674000	16.25644300	
C	2.73807700	8.45451000	16.98304800	
H	2.26610200	7.66739500	16.41334500	
C	2.16479000	9.26159600	17.95184900	
H	1.15126500	9.30308600	18.31934900	
C	1.54709200	11.46341500	20.09774300	
C	0.95040900	10.31499600	20.65073800	
H	1.42410500	9.34523800	20.5152500	
C	-0.21690700	10.36982500	21.41007400	
H	-0.63649700	9.44888600	21.81225400	
Atoms	X	Y	Z	
-------	-------	-------	-------	
C	-0.84998300	11.58750100	21.67774500	
C	-0.24239100	12.74529500	21.18416700	
H	-0.68232400	13.71645100	21.40607100	
C	0.92531600	12.68172700	20.42440000	
H	1.37902900	13.61989600	20.11486900	
C	-2.13258700	11.64823400	22.46479300	
H	-2.19620000	10.83228400	23.19310400	
H	-2.22664300	12.59499100	23.00787700	
C	-3.00741400	11.56382700	21.80588900	
C	4.19622300	11.41672700	20.41735900	
C	3.94800600	11.68648600	21.76788400	
H	2.92649600	11.83245200	22.09778300	
C	5.00048200	11.79847800	22.66401600	
H	4.81650000	12.05094100	23.70628400	
C	6.29231300	11.58081000	22.20563700	
H	7.13780200	11.67405400	22.87762600	
C	6.51833600	11.25485400	20.86649900	
C	7.39991600	8.57536100	17.61833200	
H	6.83859800	8.30627600	16.73775500	
C	8.45642300	7.90033100	18.23280200	
C	8.90140600	6.95974400	17.94282500	
C	8.80857100	8.71213800	19.29847800	
H	9.57650000	8.60070500	20.04813000	
C	7.62759500	13.56746300	17.65818000	
H	7.09286200	13.85405400	16.76743100	
C	8.65165100	14.23033900	18.33801500	
H	9.10007400	15.18357400	18.09890000	
C	8.96567500	13.38682700	19.39247600	
H	9.68369300	13.49750000	20.19038900	
C	9.23309600	10.81578100	21.29019700	
C	10.56267100	11.15600900	20.98106200	
H	10.78843100	11.64820200	20.03840200	
C	11.62928100	10.84480700	21.82328000	
H	12.63909500	11.13436900	21.53629900	
C	11.42777400	10.15274600	23.02105900	
C	10.12012700	9.75898200	23.32098800	
H	9.92859100	9.18499700	24.22636400	
C	9.05872100	10.07837500	22.47571200	
H	8.06886500	9.71417600	22.74014400	
C	12.57174800	9.84624100	23.95137600	
H	12.71314700	10.65151200	24.68491100	
H	12.3951200	8.92300900	24.51430900	
H	13.51534800	9.73633000	23.40570800	
B	2.97238000	11.38374700	19.33798900	
B	8.01065300	11.04146600	20.25259000	
H	5.40699100	10.92392400	15.52710100	
H	7.04994400	10.80978800	15.84873900	

C-N_{para}

Atoms	X	Y	Z	
Fe	6.68269800	11.19368800	18.74487200	
N	5.56386100	12.75091900	18.14250400	
N	4.26325300	12.82249500	18.50898100	
---	---	---	---	
N	5.13551900	10.08164400	18.13316600	
N	3.88617600	10.41716800	18.53380700	
N	5.90017600	12.32882900	19.37557900	
N	7.85073500	12.03648000	20.57174800	
N	5.52069400	11.31838500	14.44235100	
C	5.75576000	13.65235000	17.17284800	
H	6.72605100	13.75763200	16.70824500	
C	4.39263300	15.10890300	16.16893200	
H	4.56111000	14.31899600	16.88648000	
N	8.78012300	13.74845500	17.75153100	
C	5.01387300	9.09334400	17.23937700	
C	3.66623600	8.78922900	17.03073000	
H	3.02243300	11.60292800	17.93149100	
H	4.60674400	11.57005000	17.02324000	
C	4.10655800	11.86565600	17.09003300	
H	3.06855700	12.15501300	17.20905600	
C	4.95317600	11.81096600	18.19181100	
H	4.58041800	12.06933300	18.48111200	
C	6.28064700	11.43076800	19.02151100	
H	6.95713700	11.40926400	19.86923800	
C	6.74746700	11.09831100	20.74550100	
H	8.21812200	8.55218800	18.42969900	
H	7.91035800	8.41206200	17.40393300	
C	9.02108300	7.73668400	19.23009400	
H	9.47225900	6.78959200	18.97303600	
C	9.11468900	8.42171900	20.43018200	
H	9.63944600	8.17694600	21.34036400	
C	8.68927000	13.52195400	18.99734100	
H	8.38304600	13.96277700	18.06092800	
C	9.55997800	14.02915200	19.96218200	
H	10.09940800	14.96480300	19.94660400	
C	9.57306300	13.05777100	20.95121900	
---	---------	---------	---------	---------
H	11.08383200	13.03185500	21.90158900	
C	9.28606600	10.37018100	22.60070000	
C	8.81539800	9.62825400	23.15490000	
C	11.52615500	10.14056500	23.57644200	
H	12.59383000	10.33247600	23.49951400	
C	11.03183600	9.44177300	24.68239700	
C	9.65924500	9.17834800	24.71340400	
H	10.12336800	11.07661000	21.70400600	
C	11.52615500	10.58080700	22.56285100	
H	11.12336800	11.07661000	21.70400600	
C	10.67670700	10.58080700	22.56285100	
H	11.94065200	9.99520000	25.79727000	
H	12.02605600	9.76817700	26.57297700	
H	11.56419600	8.08869400	26.28364300	
H	12.95313000	8.78917900	25.43021000	
B	3.68742700	11.68810100	19.45969500	
B	8.30508700	10.75488200	21.37135500	
H	5.16317700	12.20971600	14.78289400	
H	5.05277200	10.61057700	15.00754900	
C	5.13468600	11.12765100	13.02437900	
C	5.50983000	9.71762900	12.68086000	
C	5.33117000	11.36398000	12.85457000	
C	4.69048000	8.79014800	12.15339000	
H	2.76710800	10.48521200	12.36465100	
H	3.31835800	12.33574700	13.20069700	
C	3.26281200	9.15815300	11.88924500	
C	5.97300300	12.15084000	12.13351100	
C	5.52232400	12.07320100	10.66908300	
H	6.15962300	12.71527200	10.04909600	
H	5.59766600	11.05182300	10.28022800	
H	4.48647700	12.40574700	10.54144300	
C	7.47316000	11.82770400	12.22083900	
H	7.78556300	11.70489800	13.26284200	
H	7.72844100	10.91641000	11.66897700	
H	8.05477000	12.64634100	11.77982300	
C	5.77207400	13.59041300	12.63771900	
H	4.72049600	13.89849600	12.63612100	
H	6.17702200	13.72913100	13.64629000	
H	6.30919900	14.28220400	11.97800400	
C	1.26649500	10.79290900	12.26753700	
C	5.15970100	7.36662000	11.82214000	
C	5.03393300	7.11270300	10.30499200	
H	5.39071400	6.10242900	10.06778200	
H	3.99819400	7.20302400	9.97392900	
H	5.64686200	7.82531200	9.73931900	
C	6.62847700	7.14922800	12.21285400	
H	7.30502500	7.81898300	11.66847100	
H	6.79446300	7.29040900	13.28792400	
H	6.91828700	6.12104400	11.96789000	
C	4.31296800	6.33437200	12.59499900	
H	4.41265900	6.48135000	13.67792500	
H	3.25709200	6.40437300	12.32784600	
H	4.66180400	5.32031000	12.36329300	
Atom	X	Y	Z	
------	------------	------------	------------	
C	0.92995700	12.16580300	12.86772500	
H	1.20210700	12.23036500	13.92847900	
C	1.42552800	12.98484900	12.33199900	
C	-0.15021800	12.33624700	12.79426200	
C	0.99863400	10.80414400	10.78921600	
H	1.20210700	12.23036500	13.92847900	
H	1.42552800	12.98484900	12.33199900	
H	-0.15021800	12.33624700	12.79426200	
C	0.82530800	10.80414400	10.78921600	
C	0.82530800	10.80414400	10.78921600	
H	0.99863400	10.80414400	10.78921600	
H	0.99863400	10.80414400	10.78921600	
O	2.50757800	8.37075200	11.31936300	

C-N_{ortho}

Atom	X	Y	Z
Fe	5.63623600	11.04954700	18.15073600
N	4.11441800	12.60829400	17.87255800
N	2.95914400	12.50367200	18.56875100
N	3.92046100	9.65061600	18.29257900
N	2.82114400	10.06678100	18.96215100
N	5.40896700	11.22975600	20.24858000
N	7.09162400	9.52379000	18.37009700
N	7.95153200	9.69860400	19.40169000
N	7.30938300	12.44194400	18.28799700
N	8.15718700	12.25384000	19.32956800
N	5.43950000	10.40244700	15.65996100
C	3.89204100	13.46917500	16.87548200
H	4.68977200	13.71666600	16.18821500
C	2.56946900	13.92384000	16.89991700
H	2.09044200	14.63149300	16.23864600
C	2.01048500	13.26716200	17.98496200
H	1.00306700	13.28910800	18.37053200
C	3.58839400	8.51666500	17.66246800
H	4.32356700	7.97987400	17.07765600
C	2.24816200	8.19876600	17.89637400
H	1.68823800	7.34993400	17.53127100
C	1.79900400	9.21977800	18.71932900
H	0.82219300	9.39762300	19.14206000
C	1.51271300	11.64747200	20.64099000
C	0.96883000	10.58308700	21.38444300
H	1.40796500	9.59141000	21.30171400
C	-0.09806500	10.75166000	22.26503900
H	-0.47947300	9.89115200	22.81285500
C	-0.67664600	12.00797200	22.47005800
C	-0.11602800	13.08806100	21.78304000
H	-0.51153600	14.08958100	21.94650600
C	0.95093200	12.91030000	20.90245500
H	1.37529000	13.79662600	20.43720700
C	-1.85351500	12.18931500	23.39237600
H	-1.84738900	11.45072400	24.20152400
X	Y	Z	
---------	---------	---------	
-1.85945700	13.18708900	23.84490400	
-2.80359600	12.07209100	22.85350500	
4.17500700	11.54447900	20.71623000	
4.05235600	11.98127400	22.04155500	
3.07480100	12.22981300	22.43693000	
5.18259400	12.12145200	22.83714200	
5.09351600	12.49157000	23.85564000	
6.42581500	11.78283200	22.31932500	
7.32044300	11.90435600	22.92007700	
6.53017100	11.30147200	21.00937400	
7.34749900	8.31862900	17.84642000	
6.79807200	7.95771900	16.98620300	
8.38167400	7.69086900	18.54169400	
8.81468200	6.71793800	18.36026200	
8.73502100	8.60500600	19.52071000	
9.49141000	8.54841200	20.28734300	
7.50486600	13.69117300	17.84969400	
6.93373600	14.06945300	17.01399300	
8.47752100	14.33781100	18.61361400	
8.85485400	15.34408000	18.50511000	
8.85063800	13.38891000	19.55319900	
9.55317800	13.45288800	20.37027100	
9.24636000	10.82358700	21.28905100	
10.56223600	11.13091000	20.89804600	
10.74274600	11.57174500	19.92009000	
11.66489000	10.85768000	21.70626100	
12.66286100	11.11794600	21.35628400	
11.51390900	10.23976300	22.95140800	
10.21790600	9.88476900	23.33834900	
10.06423300	9.37208300	24.28634300	
9.12019700	10.16708600	22.52657200	
8.13815800	9.84005500	22.86029900	
12.69824200	9.97224100	23.84279600	
13.61591700	9.83259100	23.26085400	
12.87486000	10.80971000	24.53136500	
12.54596300	9.07677300	24.45555500	
2.84731500	11.44506400	19.73959100	
7.97823900	11.00420700	20.29042800	
4.44877700	10.25330300	15.85541000	
5.89623100	9.52788600	15.92347200	
5.58819100	10.45809200	14.18323800	
5.48157200	9.00903400	13.64823800	
4.52670100	11.35972500	13.63001600	
4.77416400	8.75199200	12.37790700	
3.77397700	11.04772300	12.55839100	
4.39369400	12.29886200	14.15599400	
3.97363000	9.74777000	11.91734600	
3.39273600	9.56112800	11.01949400	
7.04061400	11.02904300	13.81485300	
7.32741700	10.87079700	12.31507600	
8.25763400	11.39586400	12.06722400	
7.45927700	9.82188100	12.02924500	
6.52833200	11.29816300	11.69963600	
Atoms	X-Coordinate	Y-Coordinate	Z-Coordinate
-------	--------------	--------------	--------------
C	8.12568800	10.29474800	14.61494600
H	8.03034600	10.48030700	15.68911900
H	8.11015200	9.21427800	14.44565000
C	9.10849900	10.66828200	14.30211400
H	8.03034600	10.48030700	15.68911900
H	8.11015200	9.21427800	14.44565000
C	7.10556300	12.51933400	14.74554000
H	6.48278500	13.13248500	13.51375600
H	6.79424700	12.67807700	15.21038100
H	8.13894000	12.87253300	14.07936900
C	2.69690800	11.96760100	11.97659300
H	6.48278500	13.13248500	13.51375600
H	6.79424700	12.67808700	15.21038100
H	8.13894000	12.87253300	14.07936900
C	4.86074300	7.37144400	10.79656300
H	4.14245200	7.34704300	10.36125400
H	4.27435700	6.36148600	9.90061200
H	3.06320400	7.51517200	10.46006600
C	4.58315000	8.09376300	9.66772000
H	6.33494900	6.98787200	11.48099900
H	6.82024900	7.69425800	10.79656300
H	6.89643500	6.96371500	12.41765600
H	6.38958000	5.99201400	11.02457400
C	4.19522000	6.31602600	12.62790800
H	4.70852100	6.24227000	13.58851200
H	3.14344500	6.56681600	12.81137200
H	4.22739000	5.33387300	12.13976500
C	2.57589400	13.27890500	12.76218600
H	2.30854000	13.10221400	13.81007600
H	3.50862200	13.85453000	12.73645300
H	1.79139900	13.90270100	12.31868600
C	3.04634000	12.31126400	10.51452900
H	3.11864600	11.42047200	9.88059600
H	2.27115500	12.95671500	10.08404800
H	4.00239700	12.84419200	10.45474000
C	1.33270500	11.24981700	12.02469200
H	1.33198300	10.31721100	11.44939300
H	1.05455800	11.00773800	13.05673500
H	0.55197400	11.89521100	11.60430600
O	5.98134200	8.10677000	14.32016900

(1Tol)2-NH2NH2 (LS)

Fe	6.38575300	3.72948300	11.95054600
Fe	2.67915000	5.76218600	14.71528200
N	1.17930600	4.45259100	14.31795900
N	7.27460700	4.68521800	9.38735100
N	2.93185700	4.69149500	16.42276800
N	7.68919600	2.35236700	11.21737600
N	2.37380500	6.77386700	12.99803100
N	0.29352200	4.14740000	15.29459500
N	4.04453500	4.50971200	13.73717400
N	4.91521800	2.44440500	11.58274200
N	4.09129000	8.33394900	14.86483100
N	7.90678000	5.07678000	12.19203900
N	4.17595200	7.02556400	15.18750400
N	5.05030000	5.05154900	12.82419200
N	6.69537700	2.87187900	13.77869400
N 1.43774200 6.98301300 15.59944700
N 5.04856900 1.16086600 11.96974000
N 1.84614300 4.36826300 17.16311000
N 6.17974100 4.58316800 10.16951600
 8.87829100 5.14750100 11.25178900
N 6.60988400 1.16086600 11.96974000
N 2.54703900 8.11225500 12.96179000
C 1.54135300 8.31408000 15.34758800
C 7.64460600 1.08139200 11.70598000
C -0.75537100 4.51223800 17.71976400
C 8.73249000 2.77190700 10.45744700
C 0.49542100 6.48231500 16.43359000
C 3.95228100 3.97349200 16.91185200
H 4.94553800 4.04081300 16.49145500
C 2.21351900 6.37279400 11.72920000
H 2.00075300 5.33793600 11.50736400
C 5.17135500 5.15018600 9.49743500
H 4.18735700 5.23428500 9.93423600
C 9.84349200 1.94003000 10.27961400
H 10.69945500 2.31259500 9.72795900
C 7.06806400 1.17079500 15.14407800
H 7.11946500 0.13119000 15.42849600
C 6.15245200 0.91168400 12.96684100
C 8.74384300 0.23538600 11.53290000
H 8.72754700 0.27505000 11.98075600
C 0.64783400 9.19674800 15.96138200
H 0.72990800 10.25819400 15.75914100
C 5.60456300 5.60939600 8.25062500
H 5.02477700 6.10075500 7.48299400
C 7.18269200 3.35049300 14.93323500
H 7.37309800 4.40472000 15.05114900
C -0.40499600 7.35962200 17.05543300
H -1.15847800 6.94896800 17.72077000
C 10.07775400 3.76748800 7.74508900
H 9.68547000 2.75501300 7.80226000
C 9.74863800 4.69525500 8.75021000
C 3.74656900 2.53059800 10.93112100
H 3.43571300 3.46079200 10.48236500
C 0.97423000 3.57041400 13.33106200
H 1.56496000 3.58996300 12.42738400
C 5.41298100 6.82585500 15.66278400
H 5.70154200 5.85709700 16.04029600
C 2.17949900 3.43869900 18.08320200
C 1.43386900 3.02527600 18.74421300
C 3.53043300 3.16375800 17.96905600
H 4.12156300 2.47932200 18.55965900
C -0.43369300 3.06983500 14.93269800
H -1.16733000 2.64976100 15.60278000
C 8.26806100 5.91554000 13.17202700
H 7.62371000 6.09326000 14.02075400
C 9.86158300 5.96960600 11.66890100
H 10.74793400 6.11672200 11.07184700
C 6.95042500 5.29301300 8.22471000
H	6.94540100	-1.65172000	11.09839400									
C	3.09375800	12.70609300	15.13476700									
H	3.59271700	13.30947200	15.89171700									
C	2.16285200	14.83142600	14.11803500									
H	2.21102400	15.27522300	15.11867700									
H	2.96955000	15.28282000	13.52469300									
H	1.21495500	15.13291100	13.65922500									
C	-4.04291500	3.90571300	20.54966100									
H	-4.12238200	2.84169800	20.81090800									
H	-3.89096600	4.45720400	21.48415700									
H	-5.00844700	4.20941600	20.13057500									
B	8.70268300	4.30677600	9.92878000									
C	6.16786500	-3.26200200	12.26258600									
H	6.43628200	-4.00254300	11.51060900									
B	6.37332800	0.65907600	12.63770400									
B	2.70632100	8.86253700	14.33547100									
C	5.22768200	-5.12751000	13.69426700									
H	4.34694200	-5.25209600	14.33363600									
H	5.05151300	-5.67785700	12.76348100									
H	6.07055200	-5.61384800	14.20367800									
B	0.43442400	4.87292300	16.68327600									
C	12.26908900	5.74858100	5.32673500									
H	12.05420700	5.12846600	4.44955400									
H	12.15323200	6.79858700	5.03618500									
H	13.32720000	5.59715300	5.57980500									
H	4.51681400	5.59099800	12.13777900									
H	4.58890200	3.95752000	14.40317000									
H	3.57316200	3.78423800	13.19196000									
H	5.52515500	5.77625800	13.36735700									

\((1\text{ Tol})_2\text{NH}_2\text{NH}_2\text{ (HS)}\)
N 2.82402400 8.37531000 13.16730300
C 1.56474000 8.40862500 15.51059600
C 7.93847700 5.93853800 11.97369000
C 2.57083500 6.88866800 11.62086300
C 7.93847700 5.93853800 11.97369000
C 2.57083500 6.88866800 11.62086300
C 7.93847700 5.93853800 11.97369000
H 2.27004000 5.93853800 11.19736900
C 4.90520700 4.58314800 9.37853700
H 3.93913800 4.55254800 9.85958900
C 9.94585100 2.02104000 10.11854300
H 10.72488200 2.43524000 9.48820800
C 7.47960800 1.36761200 15.21916100
H 6.74959600 0.98129200 13.22858400
C 9.11528300 0.31773400 11.56632000
H 9.23219000 0.62460200 12.08961000
C 0.68350400 9.31795000 16.10772800
H 0.85107700 10.38305700 15.99893500
C 5.21012600 4.98416000 8.07520100
H 4.53143800 5.31986700 7.30476600
C 7.28080000 3.51999100 11.84956100
H 7.31371700 4.59611000 14.92044000
C 0.53288000 3.81295800 13.02294000
H 1.07210700 3.85120000 12.11660500
C 5.47639900 6.67352700 15.89761300
H 5.72353900 5.62162000 16.19376000
C 1.44311800 3.17946700 17.88016800
H 0.57577000 1.93651400 18.49088900
C 3.30082700 0.74398700 11.36200800
H 4.45198300 3.58381300 16.70500100
C 3.40794500 3.57838800 16.99353400
C 8.75946100 2.74022000 10.29790000
C 3.07734100 6.58423200 13.60216000
C 5.47253200 1.93651400 18.49088900
C 2.75749500 2.74073100 17.90275800
C 3.17533200 1.93651400 18.49088900
C 6.58421700 4.84766700 7.99527000
H 7.26513600 5.04709500 7.18296200
C 3.68697100 4.55116000 17.68019000
H -4.67368400 4.55299100 17.21962000
C 6.17215000 1.40134100 14.44115600
C 5.78360400 -0.66187000 15.13803200
C 3.30082700 0.74398700 11.36200800
S63
Atom	x	y	z
H	2.33263900	0.37394200	11.05836600
C	2.92947400	10.55397400	14.69186300
C	-2.55530200	4.66392000	16.87410800
H	-2.70490800	4.78671000	15.80394400
C	2.26479800	11.35919500	13.74984600
H	1.74492500	10.89541800	12.91499800
C	-0.40277100	8.85231400	16.83889700
H	-1.08948200	9.55546500	17.30642600
C	10.14059200	0.81314100	10.77230300
H	11.07469000	0.26576900	10.66420000
C	3.19404100	8.95560800	12.00533200
H	3.54430600	9.97621600	11.98326000
C	4.32355700	0.04208800	11.97414800
H	4.38638000	-0.99127600	12.27692200
C	9.75524400	5.95023900	8.04588800
H	9.40671300	6.76006000	8.68209600
C	6.25821700	7.83236100	15.95127700
H	7.28066600	7.93875800	16.28464300
C	2.20490700	12.74814200	13.86132900
H	1.67778800	13.32209300	13.10063400
C	5.40621000	8.83157500	15.50269300
H	5.58065600	9.88712700	15.36232600
C	-3.57868800	4.45074100	19.07070200
C	-1.16645300	4.61859700	18.80288500
H	-0.19602300	4.70365700	19.28673000
C	-0.54443400	2.97097300	13.30703300
H	-0.99987600	2.22450500	12.67251800
C	6.45165900	-3.75656500	13.90476700
C	2.79580100	13.41538900	14.93767500
C	9.27678900	6.69603300	12.40635100
H	9.78897100	7.49430500	12.92322800
C	7.67528900	2.59887200	15.82392100
H	8.06433100	2.79790000	16.81130700
C	10.53458200	3.98461500	6.27204600
H	10.81079900	3.19701000	5.57257600
C	3.03531800	8.03960500	10.97608800
H	3.22102500	8.19040400	9.92260800
C	-2.29262700	4.50545300	19.61671900
H	-2.16863000	4.47092900	20.69817700
C	3.46988500	11.24155000	15.79530700
H	3.92025600	10.68001100	16.61072000
C	10.44516900	6.29030400	6.88310400
H	10.64897000	7.33861300	6.66952300
C	6.03416600	-2.74720900	14.77745000
H	5.58163900	-3.01728700	15.73043800
C	10.86445000	5.31061900	5.97780000
C	7.12080900	-2.01218400	12.34676500
H	7.50753500	-1.76160100	11.36193800
C	3.41462800	12.62886000	15.91431300
H	3.85038000	13.10758000	16.79010100
C	2.76823500	14.91753300	15.04238300
H	2.73800200	15.24713500	16.08685700
H	3.66285000	15.36419600	14.58762000
IRCA (prior to TSA)

Fe
5.79313000 11.85843600 17.58365800
N
5.67160700 13.89499500 17.54533100
N
4.89528700 14.52545800 18.45782400
N
3.78439500 11.94392400 17.75668100
N
3.23509600 12.75683300 18.68763000
N
6.03483200 11.84491700 19.55647400
N
5.78219300 9.87907800 17.62855800
N
6.76934100 9.23436400 18.27981700
N
7.81522000 11.89615200 17.45012400
N
8.56275400 11.02996000 18.17264600
N
5.67713600 11.78490200 15.52010700
C
5.95353100 14.80027900 16.59787400
H
6.55911900 14.54885900 15.73798300
C
5.35029800 16.02722600 16.88419800
H
5.39674700 16.94181600 16.31132400
C
4.67468200 15.79914700 18.06986900
H
4.03975800 16.45026200 18.65003000
C
2.77994000 11.52387800 16.97655100
H
2.95463800 10.86638000 16.13493900
C
1.56378600 12.07104900 17.39356900
H
0.58357300 11.91841300 16.96620100
C
1.90536300 12.86041800 18.47651800
H
1.29719100 13.49996000 19.09677700
C
3.38470400 14.51913800 20.66689500
C
2.30975000 13.96222700 21.38474600
H
1.97032000 12.95589800 21.14879400
C
1.67650000 14.63652100 22.42704300
C	2.88875100	14.69749300	11.07632500
H	3.30324500	15.04398300	12.02040300
C	1.80218000	15.39296800	10.54720900
H	1.42494600	15.39296800	10.54720900
C	1.17766400	14.97082600	9.36979300
C	1.66713700	13.80852200	8.76581400
H	1.18264800	13.42813500	7.86779500
C	2.75623100	13.51214700	9.29919700
C	3.06834000	12.20193500	8.81074800
C	0.02613900	15.73778800	8.77426000
H	-0.65530600	15.07826400	8.22638300
H	-0.38033500	9.13062000	10.83779700
B	8.30033500	16.49914900	8.06701900
B	4.59086600	12.66506900	11.14886900
H	6.35305500	9.94429100	15.25195200
H	7.49160800	11.05693800	15.22968000

TSA

Fe	5.44756200	11.83967500	17.73680600
N	3.87036800	12.92387300	17.80431000
N	2.84564600	12.76915000	18.83803000
N	4.27216400	10.30662500	18.27294000
N	3.39234000	10.43352000	19.29377000
N	5.80123700	12.32032700	19.65577000
N	7.08114400	10.72614600	17.74300000
N	8.21957200	11.24646300	18.27313700
N	6.57356500	13.43422800	17.21293700
N	7.75065000	13.68474400	17.82684100
N	5.07379200	11.53391700	15.86014300
C	3.03749000	13.58813400	16.85158800
H	3.50598300	13.81776400	15.90626600
C	1.72952700	13.86151600	17.25978900
H	0.95684700	14.38622800	16.71642000
C	1.64899300	13.30546000	18.52514000
H	0.81814100	13.24215600	19.21032300
C	3.98416200	9.15783500	17.65216300
H	4.55068700	8.84937900	16.78672500
C	2.90083600	8.52362400	18.26694200
H	2.44175300	7.58160700	18.00397000
C	2.55085000	9.37992600	19.29646600
H	1.74980900	9.31809100	20.01745400
C	2.24908000	11.79251800	21.25968700
C	2.18650800	10.68322900	22.12377100
H	2.80145200	9.80904000	21.92026200
C	1.38984800	10.66329000	23.26687000
H	1.37908000	9.78157700	23.89907000
C	0.61543600	11.77638900	23.62431100
C	0.70490100	12.90776200	22.80890900
H	0.14851400	13.80503500	23.07615800
C	1.50515000	12.91447300	21.66662000
H	1.57537100	13.84174400	21.10325100
	X	Y	Z
---	------------	------------	------------
C	8.02188200	7.81638100	13.53116400
H	8.21594500	8.34008000	14.45376600
C	8.36424100	6.51396400	13.16456700
H	8.92675200	5.78879500	13.73436600
C	7.81258900	6.35790700	11.90330200
H	7.79599300	6.50130500	11.24800700
C	3.53650100	8.49549000	12.66360000
H	3.18916200	9.04897800	13.52693600
C	7.81258900	6.35790700	11.90330200
H	7.81258900	6.35790700	11.90330200
Element	X (Å)	Y (Å)	Z (Å)
---------	-------	-------	-------
H	6.54310800	16.40403100	8.18517700
C	6.79139100	14.80013000	9.59388800
H	6.40097700	14.07305700	8.86043000
C	7.40375500	18.56788700	9.62625200
H	6.66980800	18.80638400	8.84750000
H	6.40097700	14.07307500	8.88604300
C	7.24828500	19.25797100	10.46275600
H	8.39783500	18.78094500	9.21057100
H	6.27448900	7.88276300	10.34127500
B	6.79139100	14.80013000	9.59388800
H	6.40097700	14.07307500	8.88604300
C	7.40375500	18.56788700	9.62625200
H	6.66980800	18.80638400	8.84750000
H	6.40097700	14.07307500	8.88604300
C	7.24828500	19.25797100	10.46275600
H	8.39783500	18.78094500	9.21057100
H	6.27448900	7.88276300	10.34127500
B	6.79139100	14.80013000	9.59388800
H	6.40097700	14.07307500	8.88604300
C	7.40375500	18.56788700	9.62625200
H	6.66980800	18.80638400	8.84750000
H	6.40097700	14.07307500	8.88604300
C	7.24828500	19.25797100	10.46275600
H	8.39783500	18.78094500	9.21057100

IRCA’ (after TSA)

Element	X (Å)	Y (Å)	Z (Å)
Fe	5.73673800	12.25601800	17.91394300
N	4.33253700	13.73167300	18.01698100
N	3.36942100	13.67254000	18.96487200
N	4.17602500	11.01468900	18.15014800
N	3.27385500	11.23750500	19.13248600
N	6.03675700	12.35707400	19.87715200
N	7.03810800	10.76398000	17.80418800
N	8.22025700	10.89063000	18.43959000
N	7.26857800	13.56117600	17.67665000
N	8.41584600	13.40187800	18.37953000
N	5.47029100	12.19533100	15.88360000
C	3.93270600	14.64629200	17.12442000
H	4.53684000	14.87410000	16.25811000
C	2.69197600	15.18224800	17.48107500
H	2.11873300	15.93985000	16.96651500
C	2.36647300	14.52056000	18.65257700
H	1.48552600	14.58609000	19.27157000
C	3.66629400	10.05978100	17.36435100
H	4.20172200	9.72855600	16.48681100
C	2.41141000	9.65481500	17.83212600
H	1.76562000	8.89996400	17.42046800
C	2.19679900	10.44268000	18.94923500
H	1.34780600	10.50189300	19.61253000
C	2.34058500	12.61932700	21.19683400
C	1.91059000	11.47943800	21.90095300
H	2.29128200	10.50025800	21.62002800
C	1.03395000	11.55357700	22.98220800
H	0.73241500	10.63816600	23.48950700
C	0.54684800	12.78275600	23.43630000
C	1.00409000	13.93149400	22.78531500
H	0.68026800	14.91038200	23.15665000
C	1.88169800	13.84826200	21.70414500
H	2.24266100	14.77809600	21.27112700
C	-0.43122000	12.86607000	24.57859000
H	-0.30356800	12.03634300	25.27912000
H	-0.31631900	13.80053200	25.13921500
H	-1.46873300	12.83008300	24.21854100
C	4.95880000	12.54157900	20.67929100
C	5.14767100	12.79819900	22.04238700
Atm	X	Y	Z
-----	-------	-------	-----
H	3.46041800	12.51608200	20.03201500
H	8.52915200	12.90337000	22.56513200
H	6.58164500	13.14657000	23.61467800
C	7.50942500	12.68944000	21.72121700
H	8.52305000	12.77530000	22.09632200
C	7.30397200	12.37496000	20.37539100
C	7.03804400	9.57475700	17.20417400
H	6.18143200	9.24674500	16.63737800
C	8.24296700	8.90390700	17.45030600
H	8.53274200	7.91424200	17.12672700
C	8.96462200	9.78031600	18.24940000
H	9.94459800	9.68962400	18.68474300
C	7.35078700	14.75221700	17.07185000
H	6.54397800	15.11175900	16.45229100
C	8.54901300	15.39317900	18.24144000
H	8.89443200	16.36582200	17.07965700
C	9.18767500	14.50098700	18.24404600
H	10.12519100	14.58299900	18.77167100
C	10.01882800	11.92372100	19.92356200
C	11.18563500	12.25282700	19.21060600
H	11.10532100	12.74044500	18.24214400
C	12.46261900	11.94056000	19.67708700
H	13.32643000	12.22374700	19.08617500
C	12.64517600	11.25682000	20.88191600
C	11.49585500	10.87110700	21.57949000
H	11.59604100	10.30270300	22.50315400
C	10.22490000	11.19216900	21.10831200
H	9.36531100	10.83491900	21.67074900
C	14.02164900	10.94912400	21.41050500
H	14.76582900	10.93002300	20.60684300
H	14.34648100	11.70592700	22.13734300
H	14.04951600	9.97974300	21.92096900
B	3.46041800	12.51608200	20.03201500
B	8.52915200	12.15224200	19.32101200
H	6.16523500	12.78322800	15.42374200
H	4.55192100	12.54569100	15.61184300
Fe	6.02242200	9.92085000	12.47558700
N	7.54857600	8.60873400	12.47014900
N	7.72701200	7.72074900	11.46587600
N	4.91939000	8.40039800	11.80118100
N	5.37338600	7.55267400	10.85268700
N	6.42362600	10.37001700	10.45291400
N	4.52998300	11.20843200	12.43839400
N	4.63946800	12.37447900	11.77670100
N	7.18937400	11.49140000	12.89974300
N	7.08808400	12.65555200	12.21779700
N	5.64967600	9.57030100	14.08017400
C	8.31381800	8.20695700	13.49520200
H	8.31692300	8.74726200	14.43125200
C	9.00045600	7.04086600	13.15802600
H	9.69537100	6.47994300	13.76552200
C	8.58359100	6.76059600	11.86678500
H	8.82579700	5.93342700	11.21850600
Element	X	Y	Z
---------	------------	------------	------------
C	3.793981	7.875608	12.302043
H	3.255391	8.381665	13.087698
C	3.508733	6.662213	11.677133
H	2.673274	6.001998	11.857803
C	4.546749	6.491080	10.775148
H	4.757524	5.679923	10.096054
C	7.146549	6.780420	9.027013
C	6.173383	6.366286	8.098198
H	5.145195	6.703150	8.208433
C	6.479784	5.566641	6.998944
H	5.685600	5.274068	6.313871
C	7.790459	5.147376	6.750864
C	8.809660	5.597467	7.267894
H	9.820125	5.329002	7.444400
C	8.465092	6.396816	8.726466
H	9.288280	6.760526	9.337504
C	8.119726	4.250436	5.586966
H	9.149348	4.398597	5.243908
H	8.017547	3.191803	5.861233
C	7.450429	4.430536	4.738535
C	6.833429	9.354097	6.955895
C	7.320669	9.635231	8.374607
H	7.643359	8.818753	7.739782
C	7.415803	10.947798	7.935572
H	7.829967	11.175436	6.955629
C	6.972648	11.964108	8.770422
H	7.046982	13.001272	8.464034
C	6.443546	11.658741	10.026514
C	3.335257	11.193328	13.037933
H	3.051501	10.370564	13.674872
C	2.637267	12.366214	12.740634
H	1.647216	12.648952	13.067009
C	3.506493	13.089740	11.940069
H	3.403360	14.061952	11.483851
C	8.243269	11.597003	13.718564
H	8.495471	10.802640	14.402543
C	8.863622	12.834586	13.546366
H	9.729577	13.218527	14.064656
C	8.104097	13.466204	12.573029
H	8.225438	14.431156	12.106019
C	5.779219	14.303581	10.552419
C	5.945408	15.440083	11.364871
H	6.292538	15.326480	12.389020
C	5.642038	16.726564	10.922464
H	5.793681	17.571833	11.591996
C	5.131974	16.949161	9.639603
C	4.909134	15.827467	8.835591
H	4.477996	15.957321	7.844235
C	5.219957	14.544630	9.284158
H	4.991681	13.706266	8.630361
C	4.838306	18.340538	9.144337
H	4.054401	18.337577	8.379368
H	4.515146	18.998012	9.958942
	5.73036200	18.79675300	8.69446500
----	------------	-------------	-------------
B	6.78509900	7.82115300	10.20976200
B	5.98775700	12.79279500	11.09468200
H	5.83274000	8.55980300	14.23052000
H	5.56033800	11.27661200	15.43206300

Fe(IV)=NH (LS)

	5.81771100	11.17683200	17.95903600
N	4.40817600	12.59057200	17.66545000
N	3.20872600	12.56367000	18.28761700
N	4.31209000	9.85849100	17.86901700
N	3.11952300	10.12562000	18.44745100
N	5.45561400	11.22071200	20.01216200
N	7.17886700	9.78227700	18.18906800
N	8.00207900	9.81060300	19.25389900
N	7.28321500	12.48684300	18.32842000
N	8.14527600	12.31062000	19.35441100
N	6.07516800	11.16665400	16.21154600
C	4.30889100	13.44769200	16.64394300
H	5.14185500	13.58011700	15.97022300
C	3.02633300	13.99745100	16.59763800
H	2.63784100	14.72156400	15.89647500
C	2.35638100	13.39172800	17.64775500
H	1.32933700	13.48016900	17.96522800
C	4.15700200	8.75191500	17.13228600
H	4.98821900	8.33291200	16.58747600
C	2.84136600	8.29733100	17.21188000
H	2.40620400	7.43333300	16.73152100
C	2.21682700	9.20608000	18.04898800
H	1.19155400	9.26840800	18.37908300
C	1.53842400	11.50952600	20.08763700
C	0.93733700	10.37432000	20.66286500
H	1.40892300	9.40066200	20.55136500
C	-0.23148200	10.44729200	21.41826500
H	-0.65426600	9.53541400	21.83730800
C	-0.86163600	11.67154600	21.66128900
C	-0.24809300	12.81775300	21.14865000
H	-0.68412700	13.79459300	21.35236700
C	0.92065300	12.73585600	20.39239700
H	1.37860100	13.66683300	20.06803700
C	-2.14632000	11.75101700	22.44305500
H	-2.21570700	10.94800700	23.18508100
H	-2.23827600	12.70738600	22.96936800
H	-3.01921900	11.65875900	21.78269700
C	4.18460500	11.44504700	20.42310800
C	3.93671900	11.71315700	21.77369000
H	2.91854800	11.88898100	22.09975000
C	4.98794600	11.77939900	22.67681300
H	4.80559800	12.02362800	23.72131500
C	6.27584900	11.52935400	22.22363800
H	7.11906200	11.58975500	22.90231400
C	6.50013000	11.21921600	20.87967400
	X	Y	Z
---	-----	-----	-----
C	7.54770900	8.75185200	17.42290000
H	7.06131300	8.07222200	18.01338600
C	8.61524200	8.78402200	19.17214200
H	9.13049200	7.19725700	17.64524300
C	8.87517200	8.75185200	17.42290000
H	9.62312500	8.64016000	19.93621000
C	8.87517200	7.06131300	16.47688000
H	9.13049200	7.19725700	17.64524300
C	7.53490500	13.68322000	17.79086800
H	6.97878900	14.02047500	16.93132500
C	8.61524200	14.31968300	18.49572300
H	9.13049200	15.29459500	18.31147200
C	7.53490500	14.31968300	18.49572300
H	8.61524200	15.29459500	18.31147200
C	11.05060000	10.82270200	21.82644000
H	12.61258000	11.13320900	21.55630200
C	11.40590900	10.91339000	23.00345100
H	10.10187900	9.67244800	23.28432900
C	9.91313400	9.06859500	24.17064400
H	9.04074800	10.05130000	22.44379900
C	8.05348500	9.62244800	22.69161900
H	12.54892100	9.77025000	23.92997500
C	12.67619600	10.55389400	24.68908200
H	12.38201600	8.82770500	24.46281600
H	13.49663000	9.68936600	23.38605000
B	2.96710600	11.42153000	19.33429000
B	7.98840800	11.02207400	20.25268000
H	5.60063500	10.45162800	15.64525100

\[4_{\text{Tot}} \text{ (LS)}\]

	X	Y	Z
Fe	6.21009400	3.52411400	12.15761000
Fe	2.81725200	5.91211200	14.55051900
N	1.24194600	5.06656200	13.59359000
N	6.43786400	4.13784900	9.34426800
N	2.57533400	4.50422500	15.98198500
N	7.00361700	2.27433700	11.33732200
N	3.08546000	7.28244900	13.09037200
N	1.73539000	4.63750300	14.30592400
N	4.01828100	4.67178700	13.71265600
N	4.94987400	2.00710200	12.39903000
N	4.41012400	8.17683400	15.54586100
N	7.34569920	5.11055900	11.88280200
N	4.31696700	8.27779100	15.53901400
N	5.00244100	4.78420700	12.92727400
N	7.00361700	3.01897800	13.96471000
N	1.55050600	7.10258100	15.47342900
N	5.43048000	0.80842300	12.78490600
N	1.33848000	4.16424400	16.40623500
N	5.54359200	3.89453100	10.32295000
N	8.20523400	5.21476700	10.78256400
N	7.23215200	1.72030800	14.27534000
H 2.25158000 0.12028500 12.46121700			
C 3.33553000 10.59488800 15.14346100			
C -2.51909800 4.75698000 15.87730500			
H -2.53363300 4.75698000 15.87730500			
C 2.72521700 11.50575900 14.26047600			
H 2.21469800 11.13642800 13.37427500			
C -0.21421200 8.76679400 16.79806500			
H -0.90830300 9.42146100 17.32095100			
C 9.98784900 0.96143400 10.74284800			
H 10.94227200 0.47660700 10.54824700			
C 3.70509100 9.25701100 12.31490000			
H 3.95914900 10.30351900 12.37790100			
C 4.42492800 -2.08952600 12.85040300			
H 4.61914700 -1.10913800 13.14518900			
C 8.80811000 8.48789000 17.76242400			
C 8.45402200 6.66762200 16.38414100			
C 6.30135500 7.40683000 16.42337500			
H 7.27646400 7.35325000 16.88543200			
C 9.98784900 12.87917000 14.49586100			
H 9.61914700 13.53676900 13.77649000			
C 5.60356400 8.54761300 16.05050000			
H 5.88247200 9.58835500 16.10066200			
C -3.81111900 4.16399800 17.85129700			
C -1.38036000 4.26291300 17.90459500			
H 8.31759200 7.76202100 12.48232000			
H -0.49988800 3.39693000 11.35673200			
C 7.12019300 -3.63020600 14.57350300			
C 3.28422300 13.42586900 15.64510600			
C 8.82291700 6.88736400 12.08614900			
H 9.31759200 7.76202100 12.48232000			
C 8.13657700 2.92414400 15.90831400			
H 8.65273800 3.21742400 16.81088000			
C 9.58339700 8.83674600 6.03968000			
H 9.85991500 3.02789600 5.36497700			
C 3.73691700 8.38762300 11.23824400			
H 4.00853400 8.60483300 10.21572000			
C -2.60185600 4.04732600 18.54251300			
H -2.61334800 3.79497800 19.60181600			
C 3.85825600 11.16002200 16.32061200			
H 4.25712500 10.51462200 17.09915900			
C 9.31581900 6.16328300 6.50268700			
H 9.37847800 7.20654600 6.19659200			
C 6.76917600 -2.59768500 15.44882200			
H 6.49618900 -2.83645100 16.47570100			
C 9.73052600 5.16206900 5.61948500			
C 7.39746200 -1.97151600 12.83908200			
H 7.60535600 -1.73362200 11.79332600			
C 3.84408600 12.53330100 16.56305400			
H 4.26627400 12.91534900 17.49129300			
C 3.30172800 14.91291200 15.88262900			
H 3.35742200 15.14889300 16.95084600			
H 4.16991800 15.38200900 15.40016300			
Atom	X	Y	Z
------	-----------	-----------	-----------
C	3.15679800	7.33488900	11.86518400
H	3.07751900	6.38983200	11.35089600
C	4.40299000	0.03972400	9.49256300
H	3.48825000	3.96246700	10.06423800
C	9.74798700	2.07633200	10.05582400
H	10.43038800	2.49909800	9.32630900
C	8.11880800	1.54801100	15.39721000
H	8.47314900	0.57964900	15.71932000
C	7.17798000	-0.90994200	13.69415200
H	9.22651200	0.44828700	11.73069900
C	0.78161600	9.34082300	16.37189600
H	4.57669200	4.17009100	8.11217600
C	7.65334200	3.66715100	15.06979400
H	7.56955000	4.74433300	15.09590000
C	-0.62903200	7.45715100	16.77584900
H	-1.52599500	7.01530500	17.19352300
C	9.23909200	3.34019700	7.22586700
H	9.11031000	2.30419500	7.52998800
C	8.84076200	4.37153100	8.09480300
C	3.62013500	1.71795100	12.19834000
H	2.96408200	2.52250300	11.89486800
C	1.00147800	4.67781700	12.40894800
H	1.74420000	4.90273300	11.65932000
C	5.34415300	6.46658400	16.05006000
H	5.51792200	5.40458500	16.11783300
C	1.29294900	3.09090200	17.13662200
H	0.40278500	2.62185900	17.52744000
C	2.61855700	2.69674500	17.20155700
H	3.02873300	1.82748500	17.69411100
C	-0.72760100	3.96113900	13.55236100
H	-1.62021600	3.49437100	13.93848800
C	8.15244400	6.19874300	12.48643900
H	7.70795200	6.43334400	13.44510300
C	9.36258900	6.09300600	10.65907000
H	10.08340800	6.18748200	9.86110700
C	5.95161400	4.20308700	7.94786800
H	6.54742100	4.29936700	7.05389900
C	-3.87266500	4.55364700	16.52343800
H	-4.79287100	4.69294900	15.95794100
C	6.82608700	-1.29624000	15.00052500
H	6.48816700	-0.54327700	15.70960300
C	3.32278600	0.36905900	12.39582600
H	2.37077600	-0.12849100	12.28289900
C	3.15789000	10.70247700	15.29936100
C	-2.64729000	4.79326200	15.90403000
H	-2.65990100	5.15227300	14.87762300
C	2.53259100	11.62986100	14.44477600
H	2.01230100	11.27819200	13.55703700
C	-0.37669000	8.81342100	16.92388200
H	-1.07483900	9.45140800	17.46193200
Atoms	X	Y	Z
-------	------	------	------
B	7.00683000	0.61667500	13.17157800
B	3.05182900	9.10940200	15.04193800
C	7.30522300	-5.08307700	15.00543100
H	6.58077900	-5.28812700	15.80131200
H	7.11028800	-5.77896700	14.18212300
H	8.30065600	-5.32226100	15.40352100
H	-0.01416100	5.04713900	15.88609700
C	10.54230400	5.17649800	4.14282900
H	10.33700000	4.36760600	3.43300800
H	10.16204300	6.10956700	3.71267700
H	11.63395100	5.27419800	4.21606200
H	5.05914000	6.01910800	12.89632400
H	3.68924000	3.85437700	13.87578800

TSB

Atoms	X	Y	Z
Fe	-2.92297700	-0.00300500	-0.00331700
Fe	2.83584400	0.18481200	-0.28775300
N	3.35549300	-0.67732800	-2.25433700
N	-3.80083200	-1.92077800	-1.97795000
N	3.48766200	2.11783500	-1.11566000
N	-5.01626300	0.03712500	-0.06920700
N	2.45151000	-1.80423600	0.63174500
N	4.42522000	-0.17782400	-2.90777100
N	0.89063800	0.45809900	-0.88367600
N	-2.89353400	1.77887600	-0.83960200
N	2.95027400	0.28208600	2.78622800
N	-3.06438900	-1.84936900	0.82286400
N	2.51454000	1.00415400	1.73119100
N	-1.10138900	-0.08842200	0.19768800
N	-3.02961300	1.00013200	1.75876900
N	4.82944000	-0.10051200	0.24770400
N	-3.77401400	2.72266200	-0.45468000
N	4.51284200	2.11770400	-1.99451200
N	-2.89297400	-0.95886000	-1.72151200
N	-3.95789700	-2.75804500	0.36970900
N	-3.90897300	2.01186300	1.93880300
N	2.89948700	-2.02006800	1.88611200
C	5.09833200	-0.59489200	1.48221800
C	-5.66536500	1.13317600	0.40330500
C	6.74933100	1.09834500	-2.99563100
C	-5.68512800	-1.11262400	-0.34467800
C	5.78719700	0.21319500	-0.66156500
C	2.84246800	3.27879300	-1.26866000
H	1.99297700	3.51610100	-0.64133200
C	1.53403000	-2.74122900	0.37787500
H	1.04789300	-2.77732200	-0.58849500
C	-2.09085300	-0.87285100	-2.78732600
H	-1.26817600	-0.17782200	-2.79692400
C	-7.04040900	-1.21911100	-0.01831600
H	-7.55062300	-2.16121500	-0.18400600
C	-3.91381700	2.38222500	3.23342700
H	-4.58448900	3.15223200	3.58221600
Atom	X	Y	Z
------	---------	---------	---------
H	-8.26893500	-6.53095000	-4.46399200
H	-7.06765800	-7.68442000	-3.85570300
H	-8.50352800	-7.31341000	-2.89785800
H	-0.66012000	-1.00269500	0.24420000
H	0.62894700	0.05646100	-1.80503300
H	-0.66552700	0.51414300	0.88982500

[Fe(II)NH(·)-NH₂-Fe(II)] (LS)
H -1.46040700 0.10777400 2.41695600

[Fe(II)NH(-)NH-Fe(II)] (HS)

Fe	-0.13745100 0.27255600 0.09442800		
Fe	0.00897500 -0.20864900 5.05562500		
N	2.02815800 0.85052800 5.53226800		
N	0.79908300 -2.15516900 -1.13804400		
N	0.71740200 1.74657300 5.62433000		
N	0.12408800 0.68012900 -1.87908900		
N	-0.74885300 -2.21466100 4.74028800		
N	2.69189700 -0.29022200 6.56852500		
N	0.25030700 0.16537400 3.16589000		
N	1.48926200 1.36537900 0.48810700		
N	-3.06496400 -0.41504400 5.48264400		
N	-1.74493600 0.11927200 -0.39343000		
N	-2.10257400 0.39772700 4.99658800		
N	-0.58009800 -0.18383200 2.06056000		
N	-1.25095900 1.97913300 0.24865000		
N	-0.39864600 0.54002400 7.12678000		
N	1.61830900 2.56280700 -0.12135900		
N	1.56170700 1.89870000 6.66988800		
N	0.91962800 -1.38487500 -0.04032400		
N	-1.65183300 -1.74661600 -1.45474700		
N	-0.82688500 3.12420600 -0.33310500		
N	-1.92907400 -2.59907800 5.27544100		
C	-1.54029700 -1.18730700 7.47646700		
C	0.25820000 1.97573900 -2.27231600		
C	2.77876300 1.04330500 8.86764700		
C	-0.10237900 -0.30549200 -2.78646400		
C	0.51564900 -0.11575600 8.03635000		
C	0.74211200 2.88671400 4.92164800		
H	0.14041400 2.98979900 4.02921300		
C	-0.43989800 -3.09935100 3.78168800		
H	0.47485000 -2.99571500 3.21398400		
C	1.78572100 1.99683600 0.77405300		
H	2.01810500 -1.56453400 1.73578600		
C	-0.33560600 0.02342700 -4.12625200		
H	-0.57862900 -0.76521600 -4.82903000		
C	-1.78951700 4.06531300 -0.25766000		
H	-1.65020000 5.03503100 -0.70970000		
C	1.02973200 4.56295200 -1.59492300		
C	0.01957000 2.32290800 -3.60554600		
H	0.05529000 3.36735000 -3.89509100		
C	-1.78643900 -1.43413600 8.83180600		
H	-2.69060800 -1.95435000 9.12358400		
C	2.25504000 -3.17895700 0.19107100		
H	2.97102800 -3.88261500 0.59065900		
C	-2.47642800 2.23165700 0.72706100		
H	-3.03737500 1.47311900 1.24950700		
C	0.27079400 -0.34897600 9.39507800		
H	0.98918500 -0.01094600 10.13181800		
C	0.66975700 -2.94065100 -4.42195900		
