On the origin of surface states in a correlated local-moment film

1 Introduction

In the recent past the s-f (or s-d) model has been the subject of intensive theoretical work [1, 2, 3]. The model describes the exchange coupling of itinerant band electrons to localised magnetic moments. The model is applicable to metallic local moment systems such as Gd, Tb, and Dy [4]. Many characteristics of these materials may be explained by a correlation between the localised “magnetic” states (4f, e.g.) and extended conduction band states (5d-6s, e.g.). In the s-f model this correlation is represented by an intraatomic exchange interaction.

At present magnetic phenomena at surfaces, interfaces, and in thin films attract broad attention both theoretically and experimentally due to the question of phase transitions in dimensionally reduced systems. In particular, the magnetism of thin Gd films has been the subject of intensive experimental effort. In contrast to 3d-metals, Gd surfaces seem to have a Curie temperature which is larger than the T_C value of the bulk material [5]. Similar surface enhanced magnetism has been observed in Tb [6]. Wu et al. [7] have modelled an antiferromagnetic coupling between the surface layer and the bulk. First experimental observations were made using spin-polarised low-energy electron diffraction (LEED) and photoemission spectroscopy (PES) [8]. Further spin-polarised photoemission studies [1, 2, 8, 9] did not confirm the original observation and indicated a ferromagnetic coupling between surface and bulk. Farle et al. [10] measured the Curie-temperature of layer-by-layer-grown Gd(0001) films as a function of film thickness. Donath et al. [11] using spin resolved inverse photoemission did not find any indication for an enhanced Curie-temperature or magnetic order at the surface which is different from bulk.

In particular, the behaviour of a Gd (0001) surface state has been discussed controversial. Fedorov et al. [12] and Weschke et al. [13] find a Stoner-like temperature dependence of the exchange splitting for the Gd(0001) surface. For the strained Gd(0001) Waldfried et al. [14] observe a wave vector dependent exchange splitting. They found the electronic structure at the surface to be different from that of bulk and a substantially increased Curie temperature at the surface. The FLAPW-calculations performed by Wu et al. [15] show a surface state near the $Γ$ point and an enhanced magnetic moment of the Gd (0001) surface.

It is not only the dimensionally reduced Gd which is of interest here, even bulk Gd is far from being completely understood. In an earlier study Nolting et al. [16] have observed that the a priori non-magnetic (5d, 6s)-conduction and valence bands exhibit a marked non uniform magnetic response which depends on the positions within the Brillouin zone and on the subband. This may be the reason for the fact that the experimental situation is controversial. Kim et al. [17] found a T-dependent spin splitting of occupied conduction electron states, which collapse in a Stoner-like fashion for $T → T_C$. From photoemission experiments Li et al. [18] conclude that the exchange splitting must be wave-vector dependent, collapsing for some k values, while for others no collapse occurs as a function of increasing temperature. This fairly compli-
cated behaviour of the exchange splitting in the bulk material must be expected for Gd-films, too.

It is a challenge to perform an electronic structure calculation for a local-moment ferromagnet of reduced dimension in such a manner as to realistically incorporate correlation effects. In our previous paper \cite{25} we proposed a simplified model which should be applicable to a local moment film of finite thickness. The special situation is considered of a single electron in an otherwise empty conduction band and coupled to the ferromagnetically saturated local spins of a simple cubic (s.c.) film. This model is applicable to a film of a ferromagnetic semiconductor such as EuO, EuS at $T = 0K$. This limiting case can be solved exactly for the bulk \cite{24,25,26}. Its significance arises from the fact that all relevant correlation effects which are either found or expected to occur for finite band occupations and arbitrary temperatures \cite{24,25}, do already appear in this simplified but tractable special model. In our previous paper \cite{25} an exact solution of the model has been given for a film of finite thickness showing the interplay between structure and many-body effects. The film was formed by cutting a slab from the bulk material and leaving all bulk properties (such as intraatomic hopping) unmodified within the whole film. However, this assumption is somewhat unrealistic. Due to a wide range of physical effects near surfaces surface properties may be significantly different from bulk properties \cite{24,25,26,27,28,29,30}.

In this work the variation of the hopping integrals is considered within the surface layer and between the surface layer and the layer nearest to the surface layer. We will demonstrate the modifying influence of the surface manifesting itself in the appearance of Tamm surface states \cite{32}. We perform the model calculations to understand qualitatively the surface influence on a local moment film.

In the next section we briefly recall the model and its exact solution \cite{25} and show how the description can be extended to incorporate the variation of near surface hopping integrals. For a film of finite thickness the results of numerical calculations are presented in Section 3 followed by a summary and an outlook.

In this paper no concrete substance is focused on to as we perform the model calculations to qualitatively understand the surface influence of the surface on the electronic properties of the local moment film.

2 Theoretical Model

We investigate a film with a simple cubic structure. The film is obtained by stacking n layers parallel to the (100)-plane of the s. c. crystal. Each lattice point of the film is indicated by a Greek letter $\alpha, \beta, \gamma, \ldots$ denoting the layer index and an index i,j,k, \ldots numbering the sites within a given layer. Each layer possesses two-dimensional symmetry, i. e. the thermodynamic average of any site-dependent operator $O_{i\alpha}$ depends only on the layer index α.

We use the s-f (s-d) model as it is believed to yield a good description for local-moment semiconductors and metals \cite{33,34}. The complete model-Hamiltonian

$$H = H_s + H_t + H_{sf}$$ \hspace{1cm} (1)

consists of three parts. The first

$$H_s = \sum_{i\alpha\beta} \left(T_{ij}^{\alpha\beta} - \mu \delta_{ij}^{\alpha\beta} \right) c_{i\alpha\sigma}^+ c_{j\beta\sigma}$$ \hspace{1cm} (2)

describes the itinerant conduction electrons as s-electrons. $c_{i\alpha\sigma}^+$ and $c_{i\alpha\sigma}$ are, respectively, the creation and annihilation operators of an electron with the spin $\sigma (\sigma = \uparrow, \downarrow)$ at site $R_{i\alpha}$. T_{ij} is the hopping integral.

Each lattice site $R_{i\alpha}$ is occupied by a localised magnetic moment, represented by a spin operator $S_{i\alpha}$. The exchange coupling between these localised moments is expressed by the Heisenberg Hamiltonian:

$$H_t = \sum_{i\alpha\beta} J_{ij}^{\alpha\beta} S_{i\alpha} S_{j\beta}$$ \hspace{1cm} (3)

$J_{ij}^{\alpha\beta}$ are exchange integrals.

The interaction of electrons and localised spins occurs via an intraatomic exchange. It gives rise to the third term in Eq. (1):

$$H_{sf} = -J \sum_{i\alpha} S_{i\alpha} \sigma_{i\alpha}$$ \hspace{1cm} (4)

J is the s-f exchange coupling constant and $\sigma_{i\alpha}$ is the Pauli spin operator of the conduction band electrons. Using the second-quantised form of $\sigma_{i\alpha}$ and the abbreviations

$$S_{j\alpha}^x = S_{j\alpha}^x + i z_{\alpha} S_{j\alpha}^y, \ z_{\uparrow} = +1, \ z_{\downarrow} = -1,$$ \hspace{1cm} (5)

H_{sf} can be written as

$$H_{sf} = -\frac{1}{2} J \sum_{i\alpha\sigma} \left(\epsilon_{i\sigma} S_{i\alpha} - \epsilon_{i\sigma} n_{i\alpha\sigma} + S_{i\alpha}^x c_{i\alpha+\sigma}^+ c_{i\alpha-\sigma} \right).$$ \hspace{1cm} (6)

All physically relevant information of the system can be derived from the retarded single electron Green function:

$$G_{ij\sigma}(E) = \left\langle \left\langle c_{i\alpha\sigma}^+ : c_{j\beta\sigma} \right\rangle \right\rangle_E$$

$$= -i \int_0^\infty dt \ e^{-\frac{1}{2} E t} \left[\left\langle c_{i\alpha\sigma}(t), c_{j\beta\sigma}(0) \right\rangle_+ \right].$$ \hspace{1cm} (7)

Here $[\ldots, \ldots]_+$ is the anticommutator. The creation and annihilation operators are used in their (time dependent) Heisenberg representation. We perform a Fourier transformation within the layer

$$G_{ij\sigma}(E) = \frac{1}{N} \sum_{i\alpha} e^{ik(R_i - R_j)} G_{ij\sigma}^{\alpha\beta}$$ \hspace{1cm} (8)

Eq. (8) conforms to the two-dimensional translation symmetry. N is the number of sites per layer, k a wave-vector.
The equation of motion of the single electron Green function is
directly connected to observable quantities within angle and spin
 resolved (inverse) photoemission experiments. The wave-vector
summation of the spectral density Eq. (3) yields a layer-dependent
(local) quasiparticle density of states,
\[\rho_{\sigma}(E) = \frac{1}{\hbar N} \sum_{k} S_{k\sigma}^{\alpha\alpha}(E) = \frac{1}{\hbar} S_{ii\sigma}(E) \]
which will play an important role in following discussion.

The many-body problem posed by the Hamiltonian Eq. (1) is non
trivial. Up to now no analytic solution is found even for the
bulk. The model is widely used and has proved to be realistic for
applications to semiconductors or metallic local moment ferro-
and antiferromagnets [2,3,4,21]. We investigate the special situation of
a thin saturated ferromagnetically ordered film, i.e. \(\mathbf{S}_{\text{loc}} = S \)
with a single electron in an otherwise empty conduction band
at zero-temperature \((n = 0, T = 0) \) and interacting via the s-f ex-
change Eq. (6) with the localised spin system of the film.

The solution of the many-body problem is described very briefly. Details can be
found in our previous paper [22]. The equation of motion of the single
electron Green function Eq. (9) can be written
\[E G_{ij\sigma} = \hbar \delta_{ij} + \frac{J}{2} T_{ij} G_{ij\sigma} - \frac{J}{2} \left(\mathbf{S}_{k\sigma} T_{ij\sigma} + F_{ij\sigma} \right) \]
where we have introduced two “higher” Green functions
\[F_{ij\sigma} = \left\langle \left\langle S_{k\sigma} c_{j\beta\sigma} c_{i\alpha\sigma}^{+} \right\rangle_{E} \right\rangle_{n=0, T=0} \] \[\hbar S G_{jk\sigma} \]
\[F_{ij\sigma} = \left\langle \left\langle S_{k\sigma} c_{j\beta\sigma} - c_{i\alpha\sigma}^{+} \right\rangle_{E} \right\rangle_{n=0, T=0} \]
where \(k \) and \(q \) are wave vectors of the two dimensional
Brillouin zone and
\[T_{ij} = \frac{1}{N} \sum_{ij} e^{i\mathbf{k}(\mathbf{R}_i - \mathbf{R}_j)} T_{ij} \]
the energy is in Bloch presentation.

In order to solve Eq. (14) we have to evaluate the “spin
flip” function \(F_{ij\sigma} \). If the spin \(\sigma \) of the single electron
points into the same direction as the ferromagnetically
saturated lattice \((\sigma = \uparrow) \) the electron cannot exchange its
spin with the local moment system. This corresponds to
the disappearance of the “spinflip” function Eq. (13),
\[F_{ij\sigma} \rightarrow 0 \]

The case of a spin \(\sigma = \downarrow \) electron is more complex. There are
many possibilities to exchange its spin with the local
moment system. As a consequence the “spin flip” function
Eq. (13) does not vanish as in the \(\uparrow \)-case. Nevertheless it
turns out that the equation of motion for \(F_{ij\sigma} \) decouples
exactly. As a result the “spin-flip” function can be
expressed in terms of the single electron Green function
for details see [22]
\[- \frac{J}{2\sqrt{N}} \sum_{q} F_{k\sigma} = C_{\alpha} G_{k\sigma} \]
where
\[C_{\alpha} = \frac{1}{N} \sum_{q} \left(A_{qi}^{-1} \right)^{\alpha\alpha} \]
\[B_{\alpha} = \frac{1}{N} \sum_{q} \left(A_{qi}^{-1} \right)^{\alpha\alpha} \]
and
\[(A_{k\sigma}(E))^{\alpha\beta} = - T_{k}^{\alpha\beta} + \delta^{\alpha\beta} \left(E + \frac{1}{2} z_{a} J h S \right) \]

Combining Eqs. (14), (10), and (7) one obtains
\[G_{k\sigma} = \hbar D_{k\sigma}^{-1} \]
where
\[(D_{k\sigma})^{\alpha\beta} = (A_{k\sigma})^{\alpha\beta} - \delta^{\alpha\beta}\delta_{k\sigma} C_{\alpha} \]

To start our discussion we recall the basic features of the
spectra of a single spin-\(\sigma \) electron as presented in
our previous paper [2]. Fig. 6 shows the spectral
densities of both spin-\(\uparrow \) and spin-\(\downarrow \) electron at \(\mathbf{k} = \Gamma \) for
the first and the centre layer of a 50-layer film with uniform
hopping. For vanishing s-f interaction \(J \) there is no
way to distinguish between a spin-\(\uparrow \) and a spin-\(\downarrow \) electron.
The spectra therefore coincide. If the s-f interaction
\(J \) is switched on the spectrum of the spin-\(\uparrow \) electron is
rigidly shifted by a constant energy of \(- \frac{1}{2} JS \), since
the electron has no chance to exchange its spin with the
perfectly aligned local-moment system. However, this is
possible for the spin-\(\downarrow \) electron. For small exchange coupling \(J \) a
slight deformation of the free spin-\(\downarrow \) spectral density sets in.
In intermediate and strong s-f interaction the spectrum
splits into two parts. The higher energetic part repre-
sents a polarisation of the immediate spin neighbourhood
of the electron due to a repeated emission and reab-
sorption of magnons. The result is a polaron-like quasiparticle
called the “magnetic polaron”. The low-energetic part of

R. Schiller et al.: On the origin of surface states in a correlated local-moment film
were \(\Delta = (0,1), (0,\bar{1}), (1,0), (\bar{1},0) \). \(T^{\alpha \beta} \) is the hopping between the layers \(\alpha \) and \(\beta = \alpha \pm 1 \) and \(T^{\alpha \alpha} \) within the layer \(\alpha \). In order to study surface states we vary the hopping within the surface \(T_{\parallel} = \epsilon_\parallel T \) and between the surface and the layer nearest to the surface layer \(T_{\perp} = \epsilon_\perp T \) by introducing the parameters \(\epsilon_\parallel \) and \(\epsilon_\perp \) in contrast to \[25\] we are here interested in surface states. We apply the above theory to a s. c. film consisting of \(n \) layers oriented parallel to the (100)-surface as drawn schematically in Fig. 3. We restrict the electron hopping to nearest neighbours only i. e.

\[
T^{\alpha \beta}_{i,j} = \delta_{i,j} T^{\alpha \alpha}_{i,j} + \delta_{i,j}^\parallel T^{\alpha \beta}_{i,j} + \delta_{i,j}^\perp T^{\alpha \beta}_{i,j} + \delta_{i,j}^\perp T^{\alpha \beta}_{i,j}
\]

(23)

Introducing the parameters \(\epsilon_\parallel \) and \(\epsilon_\perp \) are considered as model parameters. In the numerical calculations the bulk hopping is set to \(T = -0.1eV \). The investigation of the influence of modified surface hopping is performed for the example of an infinite (100)-layer s. c. film. The elements of the Bloch matrix are defined in Eq. (15) where the summation includes nearest neighbours only. Thus the diagonal elements of the Bloch matrix are given by

\[
T^{\alpha \alpha}_{k,k} = 2 \epsilon_\parallel T \cos(k_x a) + \cos(k_y a),
\]

(25)

and the first upper and lower diagonal elements by

\[
T^{\alpha \alpha}_{k,k} = 2 \ T \cos(k_x a) + \cos(k_y a),
\]

and the first upper and lower diagonal elements by

\[
T^{\alpha \alpha}_{k,k} = T^{\alpha \alpha}_{k,k} = \epsilon_\perp T,
\]

(26)

For either a semi-infinite system or a sufficiently thick film some essential analytical predictions can be made which are subject of a forthcoming paper \[33\]. For the ↑-electron the layer dependent retarded single electron Green function \(G^\alpha_{k\uparrow}(E) \) can be calculated analytically and both the existence and the behaviour of surface states can be studied.

Modifying the hopping within the first layer by more than 25% i. e. by a factor \(\epsilon_\parallel \leq \frac{1}{2} \) or \(\epsilon_\parallel \geq \frac{3}{2} \) and keeping all the other hopping integrals unchanged results in a single surface state which splits off, at the lower or upper edge of the bulk band. This surface state first emerges for \(k = \bar{\Gamma} \), \(\bar{M} \) from the bulk band and from there it spreads for larger modification to the rest of Brillouin zone.

If the hopping within the whole film remains constant but the hopping between the first and the second layer is changed by a factor \(\epsilon_\perp \geq \sqrt{2} \) then two surface states split off one on each side of the bulk band. The splitting is \(\mathbf{k} \) independent.

It proves that the maximum of the spectral weight of surface states is located either at the first or at the second layer. From there it drops exponentially as a function of the distance from the surface. The closer the surface state is located to bulk states the slower the descent.
Generally the correlation is observed such that the more strongly modified the hopping $(|e_{\|} - 1|, e_{\perp} - 1)$ becomes the larger gets the spectral weight of surface states of the layers close to the surface.

Fig. 3. Local spin-σ spectral densities $(J = 0, \sigma = \uparrow, \downarrow)$ of the layer $(\alpha = 1, 2, 3, 4, 5, 10, 20, 50)$ of a 100-layer film at $k = (\frac{\pi}{2}, \frac{\pi}{a})$ as a function of energy (eV). The hopping is uniform within the film: $e_{\|} = e_{\perp} = 1$

3 Results

We discuss our results in terms of the spectral density $S^\alpha_{k\sigma}(E)$ as defined in Eq. (8), and the quasiparticle density of states $\rho_{\alpha\sigma}(E)$ Eq. (10).

3.1 Spin-\uparrow-electron

For the $\sigma = \uparrow$-electron the s-f-exchange J results only in a rigid shift of the spectrum (20). Therefore we can choose $J = 0$ to study the influence of modified hopping. Fig. 3 shows the σ-spectral density $S^\alpha_{k\sigma}$ for the α-th layer of a 100-layer film at $k = (\frac{\pi}{2}, \frac{\pi}{a})$ for uniform hopping $(e_{\|} = e_{\perp} = 1)$ and the s-f interaction $J = 0$ switched-off. The spectral densities vary from layer to layer as a consequence of the broken symmetry at the surface. For each k the local spectral density of a given layer equals the density of states of an atom in a one-dimensional finite tight-binding linear chain. For the given situation at the M point of the two dimensional Brillouin zone the centre of gravity for each layer is given by $T^{\alpha\alpha}(\frac{\pi}{2}, \frac{\pi}{a}) = 0.4$eV and the total bandwidth is $-4T^{\alpha\alpha} + 1 = 0.4$eV. The lower and upper band edges are 0.2eV and 0.6eV respectively. For the innermost layers $(\alpha = 50, 51)$ the spectral density approaches the one dimensional tight-binding density of states whereas for the surface layers $(\alpha = 1, 100)$ it approaches the semi-elliptic one.

The variation of hopping is done by either varying $e_{\|}$ or e_{\perp} while keeping the other fixed to determine the influence of both parameters.

Fig. 4 exhibits the layer dependent local spin-\uparrow spectral density for the same wave vector $k = (\frac{\pi}{2}, \frac{\pi}{a})$ as in Fig. 3. The hopping is modified within the surface layer $(e_{\|} \neq 1)$ while $e_{\perp} = 1$. Deviations of intra layer hopping in the surface layer result in a transfer of spectral weight for $e_{\|} < 1$ towards lower and for $e_{\|} > 1$ towards higher energies, respectively. The transfer is most significant for the surface layers and decreases towards the bulk. For the inner (bulk like) layers the modification of hopping at the surface layers has no effect. If the difference between bulk and surface hopping is strong enough the transfer of spectral weight
Fig. 5. Local spin-\(\uparrow\) spectral densities \((J = 0, \sigma = \uparrow, \downarrow)\) of the layer \((\alpha = 1, 2, 3, 4, 5)\) of a 100-layer film at \(k = (\frac{\pi}{a}, \frac{\pi}{a})\) as a function of energy (eV) for modified hopping between the first and second layer by the factors \(\epsilon_{\perp} = 0.4, 0.7, 1.3, 2.5\) and constant hopping within the first layer \((\epsilon_{||} = 1)\) (black line). The grey background is the spectral density for the case of uniform hopping.

causes the splitting off of a surface \(\delta\)-like peak. This happens for \(\epsilon_{||} < 0.75\) at the lower and for \(\epsilon_{||} > 1.25\) at the upper band edge, respectively. The features observed for reduction of hopping are symmetric to those observed for an increase of the hopping matrix element.

We obtain the curves shown in Fig. 5 by varying the hopping between the surface layer and the layer nearest to the surface layer and leaving all other hopping integrals within a 100-layer film unchanged. If the hopping between the first and the second layer decreases \((0 \leq \epsilon_{\perp} < 1)\) spectral weight is symmetrically transferred from band edges towards the centre of the band for the spectral density. In the limiting case \(\epsilon_{\perp} \rightarrow 0\) the spectral density of the first layer is converted to a \(\delta\)-peak whereas the spectral density of the second layer \(\alpha = 2\) approaches the shape of the surface spectral density of a film with uniform hopping. The reason is that \(\epsilon_{\perp} = 0\) means a complete decoupling of the first layer from the rest of the film inasmuch the second layer plays the role of a surface.

Fig. 6. Local spin-\(\downarrow\) spectral density of the surface layer \((\alpha = 1)\) of a 100-layer film at \(k = (\frac{\pi}{a}, \frac{\pi}{a})\) with modified hopping within the first layer \((\epsilon_{||} = 0.5, 0.75, 1.25)\) while \(\epsilon_{\perp} = 1\) for different s-f exchange coupling constants \(J = 0.05, 0.1, 0.2\). The dashed lines show the spectral density for the case of uniform hopping. The values on the low energy side of the spectra (light grey background) are multiplied by the factor 10.

If the hopping is augmented, as expressed by \(\epsilon_{\perp} > 1\), the spectral hopping weight is symmetrically distributed towards the edges of the bulk band. For a sufficiently large modification of the hopping we observe the simultaneous splitting off of two surface states, one at the lower and the other at the upper edge of the bulk band. These surface states can be observed for the spectral densities \((\epsilon_{\perp} = 2.5)\) of the first four layers \((\alpha = 1, 2, 3, 4)\). The spectral weight of these states decreases exponentially with the distance from the surface layer. The energy position of the excitation is independent of the layer index \(\alpha\). An analytical investigation of the limits in parameter space \((\epsilon_{\perp}, \epsilon_{||})\), separating regions with one two or without surface states, will be given in [13].
3.2 Spin-↓-electron

The local spin-↓ spectral density of the surface layer of a 100-layer film at \(k = \left(\frac{\pi}{6}, \frac{\pi}{8} \right) \) of the Brillouin zone in case of different s-f exchange coupling constants \(J \) can be seen in Fig. 7. The hopping is modified within the topmost layer. In analogy to the case of the spin-↑ electron there is a splitting off of a surface state at the polaron band of the spectrum. This effect is independent on the s-f interaction \(J \). The scattering part located at lower energies is altered as a consequence of modification of the spin-↑ spectrum by \(\epsilon_\parallel \). This reflects the transfer of spectral weight in the spin-↑ spectral density. However, a surface state does not show up at the scattering part of the spectral density.

The same holds for the spin-↓ spectral density of states for the situation of modified hopping between first and the second layer of a 100-layer film as can be seen in Fig. 7. Here also, the existence of surface states does only depend on the parameter \(\epsilon_\perp \) and is independent on the s-f exchange interaction \(J \).

Fig. 7. Local spin-↓ spectral density of the surface layer (\(\alpha = 1 \)) of a 100-layer film at \(k = \left(\frac{\pi}{6}, \frac{\pi}{8} \right) \) with modified hopping between the surface layer and the surface nearest layer (\(\epsilon_\perp = 0.25, 0.5, 2, 4 \)) and \(\epsilon_\parallel = 1 \) for different s-f exchange coupling constants \(J \). The dashed lines show the spectral density for uniform hopping. The values on the low energy side of the spectra (light grey background) are multiplied by the factor 10

Fig. 8. Local spin-↓ densities of states for \(J = 0.32 \) of the layers (\(\alpha = 1, 2, 3, 6 \)) of a 12-layer film with modified hopping within the first layer and \(\epsilon_\perp = 1 \)

Fig. 8 shows the local density of states (LDOS) of a 12-layer film. The hopping within the surface layer is modified while all the other hopping integrals are left unchanged. For the surface layer (\(\alpha = 1 \)) we observe a drastic dependence of the LDOS on the hopping \(\epsilon_\parallel \). A reduction of the hopping within the first layer results in a narrowing of the scattering and the polaron part of the LDOS of the first layer. An increase of the hopping causes a broadening of both scattering and polaron parts. For a substantial modification of the hopping \(\epsilon_\parallel > 2 \) both parts merge and the LDOS of the second layer approaches the LDOS of the surface layer in the case of uniform hopping. One possible explanation is that if the hopping within the surface layer becomes infinite (\(\epsilon_\parallel \rightarrow \infty \)) and the hopping between the surface layer and the surface nearest layer remains finite the electron can only move within the surface layer and will not jump to the second layer. The consequence is an “effective” decoupling of the surface layer from the rest of the film as in the case of (\(\epsilon_\perp = 0, \epsilon_\parallel = 1 \)) discussed in subsection 3.1. The analytical solution for \(\sigma = \downarrow \) for \(\sigma = \uparrow \) shows that in the limit \(\epsilon_\parallel \rightarrow \infty \) and \(\epsilon_\perp = \text{const.} \) the Green function of the second layer becomes equal to the Green function of the surface layer in case of uniform hopping.
In contrast to this, in this work the investigation has been focused on the influence of modified hopping integrals near the surface of the film. In tight binding approximation for the hopping integrals, either the hopping within the topmost layer or the hopping between the first and the second layer has been modified.

Generally the modification of the hopping causes a transfer of spectral weight within the spectra.

For sufficiently modified hopping within the surface layer ($|\epsilon_s - 1| > \frac{1}{4}$), both for increased and decreased hopping and for both spin directions σ of the single electron a surface state splits off from the bulk band ($\sigma = \uparrow$) or the polaron band ($\sigma = \downarrow$), respectively. The existence of surface states for a given ϵ_\parallel depends on the wave vector \mathbf{k} of the two dimensional Brillouin zone and starts at the Γ and \bar{M} point.

If the hopping between the surface layer and the surface nearest layer ϵ_\perp is adequately increased two surface states show up, one at the lower edge and one at the upper edge of the bulk spectrum.

The spectral weight of the surface states exponentially decays from the surface into the bulk. The surface effects induced by modified hopping visible in the spin-\uparrow spectrum are rendered by correlation in the spin-\downarrow spectrum.

This work was supported by the Deutsche Forschungsgemeinschaft within the Sonderforschungsbereich 290 (“Metallische dünne Filme: Struktur, Magnetismus, und elektronische Eigenschaften”). One of us (R. S.) gratefully acknowledges the support by the Studienstiftung des deutschen Volkes.

Fig. 9 offers a series of density plots of the local spectral density of the $\alpha = 1, 2, 25$ layer of a 50 layer film as a function of energy and $\mathbf{k} \in (\Gamma, \bar{M})$ for two s-f exchange coupling constants $J = 0, 0.3$ and modified hopping within the first layer ($\epsilon_\parallel = 0.4, 1.6$). The hopping between all layers remains constant.

4 Summary

We have investigated the electronic quasiparticle spectrum of a ferromagnetic local-moment film of finite thickness. A single band electron is coupled by an intraatomic s-f interaction to the magnetic local-moment system. For a ferromagnetically saturated localised spin system, $T = 0K$, an exact solution of the problem was given in our previous work [2].
14. Vescovo, E., Rader, O., Carbone, C., Phys. Rev. B 48 (1993) 7731
15. Farle, M., Babenschke, K., Stetter, U., Aspelmeier, A., Gerhardter, F., Phys. Rev. B 47 (1993) 11571
16. Donath, M., Gubanska, B., Passek, F., Phys. Rev. Lett. 77 (1996) 5138
17. Fedorov, A. V., Starke, K., Kaindl, G., Phys. Rev. B 50 (1994) 2739
18. Weschke, E., Schüßler-Langeheine, C., Meier, R., V. Federov, A., Starke, K., Hübinger, F., Kaindl, G., Phys. Rev. Lett. 77 (1996) 3415
19. Waldfried, C., Welipitiya, D., McAvoy, T., Vescovo, E., Dowben, P. A., to be published (1997)
20. Wu, R., Li, C., Freeman, A. J., prb 44(17) (1991) 9400
21. Nolting, W., Dambeck, T., Borstel, G., Z. Phys. B 94 (1994) 409
22. Kim, B., Andrews, A. B., Erskine, J. L., Kim, K. J., Harmon, B. N., Phys. Rev. Lett. 68 (1992) 1931
23. Li, D., Zhang, J., Dowben, P. A., Onellion, M., Phys. Rev. B 45, 7272 (1992)
24. Li, D., Zhang, J., Dowben, P. A., Wu, R. T., Onellion, M., J. Phys. C 4, 3929 (1992)
25. Schiller, R., Müller, W., Nolting, W., J. Magn. Magn. Mater. 169, 39 (1997)
26. Allan, S. R., Edwards, D. M., J. Phys. C 15 (1982) 2151
27. Nolting, W., Dubil, U., phys. stat. sol. (b) 130 (1985) 561
28. Nolting, W., Jaya, S. M., Rex, S., Phys. Rev. B 54 (1996) 14455
29. Nolting, W., Rex, S., Jaya, S. M., J. Phys. C 9 (1997) 1301
30. Cottam, M. G., Tilly, D. R., *Introduction to surface and superlattice excitations* (Cambridge, New Rochelle Melbourne, Sydney, Cambridge University Press 1989)
31. Wolfram, T., DeWames, R. E., Prog. Surf. Sci. 2 (1972) 233
32. Tamm, I., Phys. Z. Sowjet. 1 (1932) 733
33. Müller, W., Schiller, R., Nolting, W., to be published