Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
Bovine noroviruses: A missing component of calf diarrhoea diagnosis

Elisabetta Di Felice a, Axel Mauroy b,*, Fabiana Dal Pozzo b, Damien Thiry b, Chiara Ceci a, Barbara Di Martino c, Fulvio Marsilio a, Etienne Thiry b

a Faculty of Veterinary Medicine, Università degli studi di Teramo, Teramo, Italy
b Faculty of Veterinary Medicine and Fundamental and Applied Research on Animal and Health Center, University of Liège, B-4000 Liège, Belgium

A R T I C L E I N F O

Article history:
Accepted 8 October 2015

Keywords:
Bovine noroviruses
Diagnosis
Diarrhoea
Molecular epidemiology

A B S T R A C T

Noroviruses are RNA viruses that belong to the Genus Norovirus, Family Caliciviridae, and infect human beings and several animal species, including cattle. Bovine norovirus infections have been detected in cattle of a range of different ages throughout the world. Currently there is no suitable cell culture system for these viruses and information on their pathogenesis is limited. Molecular and serological tests have been developed, but are complicated by the high genetic and antigenic diversity of bovine noroviruses. Bovine noroviruses can be detected frequently in faecal samples of diarrhoeic calves, either alone or in association with other common enteric pathogens, suggesting a role for these viruses in the aetiology of calf enteritis.

© 2015 Elsevier Ltd. All rights reserved.

Introduction

Morbidity and mortality due to calf diarrhoea are responsible for substantial economic losses in the cattle industry throughout the world (Virtala et al., 1996). Noroviruses (NoVs) are RNA viruses that belong to the Genus Norovirus, Family Caliciviridae, and have emerged as important causes of acute, non-bacterial, food and waterborne gastroenteritis in human beings worldwide (Patel et al., 2009). The prototype NoV, Norwalk virus, was first described by Kapikian et al. (1972). Through the use of electron microscopy (EM), viruses with typical calicivirus morphology have been identified in faecal samples of domestic animals (Scipioni et al., 2008b), including in faecal samples from diarrhoeic calves (Woode and Bridger, 1978).

The first bovine enteric caliciviruses (BoCVs), morphologically indistinguishable from human noroviruses (HuNoVs), were described in cattle in England (Bo/Newbury2/76/UK virus; Woode and Bridger, 1978) and Germany (Bo/Jena/80/DE virus; Günther et al., 1984; Günther and Otto, 1987). Subsequently, bovine noroviruses (BoNoVs) have been identified in America (Smiley et al., 2003; Wise et al., 2004), Africa (Hassine-Zaafrene et al., 2012) and Asia (Park et al., 2007). BoNoVs may play a role in the aetiology of calf enteritis (Scipioni et al., 2008b), but are not included in routine diagnostic algorithms for calf enteric diseases and their impact on livestock production remains unclear. The aim of this review is to describe these poorly known bovine enteric pathogens, to discuss their pathogenesis, to summarise available techniques for their diagnosis and to report their current molecular epidemiological features.

Genome organisation and molecular virology of noroviruses

The Caliciviridae family includes five genera (Norovirus, Sapovirus, Lagovirus, Vesivirus and Nebovirus) (Green, 2013), along with incompletely characterised, unassigned caliciviruses (Farkas et al., 2008; L’Homme et al., 2009; Carstens, 2010) (Fig. 1). The BoNoV genome is a single-stranded, positive sense, polyadenylated, 7.3–7.5 kbase RNA molecule (Liu et al., 1999; Oliver et al., 2007a). In the HuNoV genome, the 5’ end of the genomic RNA is covalently linked to the genome-linked viral protein (VPg) (Jiang et al., 1993). The untranslated regions (UTRs) at the 5’ end of all NoV genomes are typically 5–78 nucleotides (Green, 2013).

NoV genomes are organised into three open reading frames (ORFs), with the exception of murine norovirus (MuNoV), which has a fourth ORF (ORF4) (McFadden et al., 2011) (Fig. 2). Starting from the 5’ end of the genome, ORF1 encodes the viral non-structural proteins, ORF2 encodes the major capsid protein (VP1), and ORF3 encodes the minor structural protein (VP2). In the MuNoV genome, ORF4 produces virulence factor 1 (VF1), which regulates the innate immune response (McFadden et al., 2011).

Open reading frame 1 is translated as a large polyprotein of 1740 amino acids (aa), which is cleaved by the viral protease (3CLPro) to encode six mature non-structural (NS) proteins (Thorne and Goodfellow, 2014). The coding sequences for the N-terminal non-structural protein NS1-2 (p48), NS3 nucleotide triphosphatase (NTPase)/RNA helicase, NS4 protein (p22), NS5 protein (VPg), NS6 protease (3CLPro) and NS7 RNA-dependent RNA-polymerase (RdRp) are transcribed from the 5’ end to the 3’ end of ORF1, respectively.
ORF2 is translated as a 55–60 kDa protein, VP1, which is involved in self-assembly and capsid formation, receptor recognition, host specificity, strain antigenic diversity and immunogenicity (Chen et al., 2004). X-ray crystallographic structure studies using Norwalk virus-like particles (VLPs) showed that VP1 contains two major domains, a well-conserved shell (S) domain, which forms the core of the particle, and a more variable protruding (P) domain, which extends away from the central core (Prasad, 1999). The P domain is further divided into the P1 and the highly variable P2 subdomains (Fig. 3); the latter is involved in interaction with the host cell membrane (Tan et al., 2004; Tan and Jiang, 2014) and possesses the most important epitopes (Lindesmith et al., 2013). VP2 most likely is involved in capsid assembly and genome encapsidation (Vongpunsawad et al., 2013).

Fig. 1. Phylogenetic relationships between different human and animal, positive sense, single stranded RNA viruses, including bovine noroviruses highlighted in bold face in the tree. The tree was inferred with the maximum likelihood method on complete genomic sequences from representative viruses (see Appendix: Supplementary Table S1 for GenBank accession numbers), with 1000 bootstraps and the General Time Reversible + γ substitution model (Tamura et al., 2013).

Fig. 2. Representative genomic organisation of the bovine norovirus genome.
Receptors for animal NoVs are not well characterised, but a role for carbohydrates related to histo-blood group antigens (HBGAs) as receptors or co-receptors has been demonstrated for HuNoVs (Tan and Jiang, 2014). Studies using recombinant VLPs have demonstrated that a Newbury2-related strain of BoNoV attaches to bovine duodenal epithelium through recognition of the αGal epitope, which is related to HBGAs, but absent in human and porcine tissues (Zakhour et al., 2009). Sialic acid has also been proposed as a minor or alternative receptor for Newbury2-related BoNoVs (Mauroy et al., 2011).

Classification of noroviruses

On the basis of phylogenetic relationships inferred from full length VP1 aa sequences, NoVs have been divided into six genogroups (GI to GVI) and multiple genotypes (Zheng et al., 2006; Martella et al., 2009). Genogroups I, II and IV infect humans and GI strains account for most human infections (Green, 2013). Noroviruses detected in animals have been classified as GI (pigs), GII (ruminants), GIV (lions, cats and dogs), GV (mice) and GVI (dogs) (Woode and Bridger, 1978; Saif et al., 1980; Karst et al., 2003; Martella et al., 2007, 2008; Mesquita et al., 2010; Pinto et al., 2012). A third group of canine NoVs identified in dog faecal samples in Hong Kong (Tse et al., 2012) has been proposed as a new candidate genogroup (GVII) (Vinjé, 2015).

Comparisons of genomic sequences from the two original BoNoVs (Woode and Bridger, 1978; Günther et al., 1984; Günther and Otto, 1987) identified two genotypes within GIII, represented by the prototype strains Bo/Jena/80/DE and Bo/Newbury2/76/UK for genotypes 1 and 2, respectively (Liu et al., 1999; Oliver et al., 2003, 2007a).
Although NoVs are classified into genogroups and genotypes on the basis of the aa diversity in the complete VP1 sequence, recombination at the ORF1/ORF2 junction region is common. Consequently, a dual nomenclature system has been proposed, taking into account phylogenetic relationships of both partial RdRp (P) and capsid coding sequences (Kroneman et al., 2013). On the basis of this novel nomenclature system, the GII.1 prototype strain Bo/Jena/80/DE is designated GII/Bo/DE/1980/GII.P1_GII.1/Jena and the GII.2 prototype strain Bo/Newbury2/76/UK is designated GII/Bo/UK/1976/GII.P2_GII.2/Newbury2. Few BoNoVs strains have been sequenced in full and few entire ORF2 sequences are available (Mauroy et al., 2012), which means that it has not been possible to establish robust phylogenetic relationships or rates of evolution of BoNoVs.

Recombination of noroviruses

Noroviruses have high genetic variability (Boon et al., 2011; Mauroy et al., 2014) and are able to undergo recombination (Bull et al., 2007). Phylogenetic divergences, as a consequence of recombination events between strains from different clusters, have been reported for sequences from human isolates for the polymerase and capsid coding regions (Bull et al., 2007). A copy choice mechanism has been proposed to explain recombination events in NoVs; most recombination events occur at the ORF1/ORF2 junction (Han et al., 2004; Bull et al., 2005, 2007), which is where the end of the RdRp gene and the beginning of the capsid protein gene are located. Another recombination breakpoint was proposed to exist at the ORF2/ORF3 junction in HuNoVs (Eden et al., 2013).

Due to the current genetic classification within the genus Norovirus and the main location of recombination events, the recombinant strain will cluster with different genotypes, depending on the phylogenetic origin of either its RdRp or capsid protein genes. To date, the detection of recombinant NoVs is based mainly on in silico and themainlocationof recombinant strains genetically related to BoNoVs. Since then, several RT-PCR formats have been developed and have become the principal means for diagnosis of BoNoV infections (Wolf et al., 2007; Scipioni et al., 2008a, b and c). Most RT-PCR oligonucleotide primers have been designed to amplify the highly conserved region of the end of the RdRp gene, the start of the ORF2 gene and the NTPase/RNA helicase (NS3) coding sequence (Atmar and Estes, 2001). Complete genomes have also been determined using a combination of different primer sets (Dastjerdi et al., 1999; Oliver et al., 2007a; Mauroy et al., 2012).

Molecular techniques

RT-PCR has been used to improve the sensitivity of detection of NoVs in faeces (Atmar and Estes, 2001). De Leon et al. (1992) developed an RT-PCR to detect viruses genetically related to Norwalk virus. Since then, several RT-PCR formats have been developed and have become the principal means for diagnosis of BoNoV infections (Wolf et al., 2007; Scipioni et al., 2008a, b and c). Most RT-PCR oligonucleotide primers have been designed to amplify the highly conserved region of the end of the RdRp gene, the start of the ORF2 gene and the NTPase/RNA helicase (NS3) coding sequence (Atmar and Estes, 2001; Table 1). Complete genomes have also been determined using a combination of different primer sets (Dastjerdi et al., 1999; Oliver et al., 2007a; Mauroy et al., 2012).

Novel molecular techniques have been developed for the diagnosis of HuNoV infections, with improved sensitivity and specificity (Notomi et al., 2000; Moore, 2004; Fukuda et al., 2006; Liu et al., 2009). Binding RT-PCR can be used to distinguish between infectious and non-infectious particles (Tian et al., 2010; Li et al., 2011). These methods can be also used to evaluate the genome integrity by combining binding RT-PCR with long-range RT-PCR (Li et al., 2011, 2014). These methods hold promise for application to diagnosis of BoNoV infections.

Antigen ELISAs

When expressed by baculovirus, capsid proteins of NoVs self-assemble into VLPs, which are morphologically and antigenically

Pathogenesis and clinical features of bovine norovirus infections

The pathogenesis of BoNoVs is not well understood, but assumptions can be made from their comparison with HuNoVs. Human NoVs are highly infectious (Teunis et al., 2008) and are transmitted primarily by the faecal–oral route, from person to person, by contaminated food or water (Graham et al., 1994; Mathijs et al., 2012). Diarrhoea is the most important clinical presentation in cattle infected with BoNoVs; on the basis of experimental studies, transient anorexia and a malabsorption syndrome have also been associated with BoNoV infection (Woode and Bridger, 1978; Günther and Otto, 1987; Otto et al., 2011; Jung et al., 2014). Diarrhoea can last for 3–4 days, being more severe in 3-week old animals than in neonatal calves (Günther and Otto, 1987).

Gnotobiotic calves infected with the GII.1 BoNoV strain Bo/Jena/80/DE exhibited anorexia and diarrhoea, associated with necrosis of the intestinal epithelium and villous atrophy (Otto et al., 2011). In colostrum deprived immunocompetent calves, infection with Bo/Jena/80/DE induced diarrhoea for 2–3 days after inoculation (Otto et al., 2011). Inoculation of 4–7 day old gnotobiotic calves with the GII.2 BoNoV strain CV186-OH/00/US induced acute diarrhoea, prolonged faecal shedding (median 28 days) and seroconversion, but no significant intestinal lesions (Jung et al., 2014).

BoNoVs have been detected using molecular methods in faecal samples of diarrhoeic calves, either alone or as co-infections with other enteric viruses, such as rotavirus, nebovirus, coronavirus and bovine viral diarrhoea virus (BVDV) (Smiley et al., 2003; Park et al., 2007; Mauroy et al., 2009a; Jor et al., 2010; Di Bartolo et al., 2011; Cho et al., 2013). It is possible that mixed infections influence the severity of BoNoV infections.

Inapparent infections have been reported in calves in The Netherlands and Italy (van der Poel et al., 2003; Di Martino et al., 2014a). In 272 faecal samples from 150 herds in Norway, GII BoNoVs were detected using quantitative reverse transcriptase (RT)-PCR (qPCR) with almost equal prevalence in healthy (50.3%) and diarrhoeic calves (49.3%) (Jor et al., 2010). In a case–control study of calf diarrhoea in the USA, BoNoVs were identified by qPCR at higher frequency and at higher quantities in diarrhoeic calves than healthy calves (Cho et al., 2013). There is a need to conduct further studies in calves and adult cattle to determine the age-related susceptibility of cattle to BoNoVs.

Detection of bovine norovirus

Electron microscopy

The first diagnostic method for NoVs was electron microscopy (EM) (Doane, 1994), but this technique has low sensitivity, with a detection limit of ~10^4 viral particles/mL faeces (Atmar and Estes, 2001). The sensitivity of detection can be increased by immunoelectron microscopy (IEM) (Kapikian et al., 1972), but is still insufficient for routine diagnosis.

Molecular techniques

RT-PCR has been used to improve the sensitivity of detection of NoVs in faeces (Atmar and Estes, 2001). De Leon et al. (1992) developed an RT-PCR to detect viruses genetically related to Norwalk virus. Since then, several RT-PCR formats have been developed and have become the principal means for diagnosis of BoNoV infections (Wolf et al., 2007; Scipioni et al., 2008a, b and c). Most RT-PCR oligonucleotide primers have been designed to amplify the highly conserved region of the end of the RdRp gene, the start of the ORF2 gene and the NTPase/RNA helicase (NS3) coding sequence (Atmar and Estes, 2001; Table 1). Complete genomes have also been determined using a combination of different primer sets (Dastjerdi et al., 1999; Oliver et al., 2007a; Mauroy et al., 2012).

Novel molecular techniques have been developed for the diagnosis of HuNoV infections, with improved sensitivity and specificity (Notomi et al., 2000; Moore, 2004; Fukuda et al., 2006; Liu et al., 2009). Binding RT-PCR can be used to distinguish between infectious and non-infectious particles (Tian et al., 2010; Li et al., 2011). These methods can be also used to evaluate the genome integrity by combining binding RT-PCR with long-range RT-PCR (Li et al., 2011, 2014). These methods hold promise for application to diagnosis of BoNoV infections.

Antigen ELISAs

When expressed by baculovirus, capsid proteins of NoVs self-assemble into VLPs, which are morphologically and antigenically
similar to infectious viral particles (Jiang et al., 1992; Green et al., 1993; Belliot et al., 2001; Han et al., 2005). VLPs are a source of antigens that can be used in serological assays (Jiang et al., 2000; Mauroy et al., 2009a; Di Martino et al., 2014b) and to produce polyclonal or monoclonal antibodies for antigen (Ag) ELISAs (Jiang et al., 2000; Han et al., 2005; Oliver et al., 2006). Ag ELISAs for detection of HuNoVs were less sensitive and specific than RT-PCR or qPCR (Rabenau et al., 2003; Kele et al., 2011), but may have value for low cost, high throughput screening of multiple faecal samples for HuNoVs; samples from suspected cases that are negative in the Ag ELISA should be retested by molecular methods. A BoNoV Ag ELISA was developed by Deng et al. (2003) for detection of BoNoV Bo/Jena/80/DE virus (GII.1)-related capsid antigens in faecal samples of diarrhoeic calves.

Antibody ELISAs

Different assay formats for antibody (Ab) ELISAs have been used to assess the seroprevalence of NoVs in human beings and veterinary
species (Jiang et al., 2000; Deng et al., 2003; Farkas et al., 2005; Di Martino et al., 2010). Ab ELISAs have been developed to screen bovine serum samples using GIII.1 or GIII.2 BoNoV VLPs expressed in the baculovirus system (Deng et al., 2003; Oliver et al., 2007b; Mauroy et al., 2009a; Thomas et al., 2014). Ab ELISAs are more broadly reactive than Ag ELISAs and heterologous responses among genetically closely related strains can be difficult to differentiate. Therefore, antibodies detected by such Ab ELISAs cannot be interpreted as a response to infection with a particular strain.

Distribution of bovine noroviruses

GIII.2 strains of BoNoVs are the most prevalent worldwide (Table 2; Fig. 5). In Europe, the molecular prevalence of GIII.2 ranges from 1.8% to 50.3% (van der Poel et al., 2003; Ike et al., 2007; Mijovski et al., 2010). In The Netherlands, 31.6% of pooled faecal samples from veal calf farms and 4.2% of individual faecal samples from dairy cattle were positive for GIII.2 BoNoVs by RT-PCR (van der Poel et al., 2003). In the UK, BoNoVs were detected by RT-PCR in 11% of diarrhoeic samples (Milnes et al., 2007). In Belgium, 7.5% of faecal samples from diarrhoeic calves ranging in age from 1 week to 6 months were positive for GIII.2 BoNoVs and 93.2% of serum samples collected from diarrhoeic calves ranging in age from 1 week to 6 months were positive for GIII.2 BoNoVs and 93.2% of serum samples collected from diarrhoeic calves ranging in age from 1 week to 6 months were positive for GIII.2 BoNoVs and 93.2% of serum samples collected from diarrhoeic calves ranging in age from 1 week to 6 months were positive for GIII.2 BoNoVs and 93.2% of serum samples collected from diarrhoeic calves ranging in age from 1 week to 6 months were positive for GIII.2 BoNoVs and 93.2% of serum samples collected from diarrhoeic calves ranging in age from 1 week to 6 months were positive for! In South Korea, 9.3% of 645 faecal samples were positive for BoNoVs by nested RT-PCR, of which 5.9% of samples also tested positive for other enteric pathogens, including bovine coronavirus, BVDV, bovine torovirus, rotavirus, nebovirus and Escherichia coli (Park et al., 2007). Of 12 South Korean BoNoV sequences determined in this study, 11 had the highest nucleotide (88.0–90.5%) and amino acid (93.5–99.1%) similarities with GIII.2 strains, while one sequence was genetically related to GIII.1. In Africa, BoNoVs were detected in 16.6% of diarrhoeic calves in Tunisia (Hassine-Zaafarne et al., 2012). In South America, BoNoVs were detected in 1.0% of cattle in Venezuela (Alcalà et al., 2003). GIII.1 BoNoVs are detected less frequently, suggesting that these viruses constitute a minor cluster. Reported frequencies of GIII.1 BoNoVs in Europe include 1/47 (2.1%) in Hungary (Reuter et al., 2009), 1/300 (0.3%) in Belgium (Mauroy et al., 2009b), 3/101 (2.9%) (Di Bartolo et al., 2011) and 1/104 (0.9%) (Di Martino et al., 2014a) in Italy and 25/456 (5%) in France (Kaplon et al., 2011) (Table 2).

In the USA, GIII.1 BoNoV sequences were detected in 5/74 (6.8%) dairy calves with diarrhoea in Michigan and Wisconsin (Wise et al., 2004). IgG antibodies against GIII.1 BoNoV were detected in 99.1% of cattle in Germany (Deng et al., 2003). In the same study, GIII.1 BoNoVs were detected in 8.9% of faecal samples using an Ag ELISA (Deng et al., 2003).

In South America, BoNoVs were detected in 1.0% of cattle in Venezuela (Alcalà et al., 2003). GIII.1 BoNoVs are detected less frequently, suggesting that these viruses constitute a minor cluster. Reported frequencies of GIII.1 BoNoVs in Europe include 1/47 (2.1%) in Hungary (Reuter et al., 2009), 1/300 (0.3%) in Belgium (Mauroy et al., 2009b), 3/101 (2.9%) (Di Bartolo et al., 2011) and 1/104 (0.9%) (Di Martino et al., 2014a) in Italy and 25/456 (5%) in France (Kaplon et al., 2011) (Table 2).

In the USA, GIII.1 BoNoV sequences were detected in 5/74 (6.8%) dairy calves with diarrhoea in Michigan and Wisconsin (Wise et al., 2004). IgG antibodies against GIII.1 BoNoV were detected in 99.1% of cattle in Germany (Deng et al., 2003). In the same study, GIII.1 BoNoVs were detected in 8.9% of faecal samples using an Ag ELISA (Deng et al., 2003).

Molecular investigations in several countries have revealed a number of potential recombinant strains, most of them genetically related to the prototype strain Bo/Thirsk10/00/UK (Oliver et al., 2004). Sequence analysis of the ORF1/ORF2 region demonstrated recombinant type GIII.1/GIII.2 in Belgium (Mauroy et al., 2009b), Norway (Jor et al., 2010) and Italy (Di Martino et al., 2014a). In the USA, Han et al. (2004) identified the recombinant GIII.1/GIII.2 strain CV521-OH/02/US in Ohio. In a study of NoV recombinants from all genogroups worldwide, Bull et al. (2007) identified a recombinant strain (B-1SVD/03/US) with a GIII.2 polymerase and a GIII.1 capsid (GIII.2/GIII.1) sequence. The growing detection rate of recombinant Bo/Thirsk10/00/UK-like (GII.P1/GII.2) sequences highlights the
Continent	Country	Period	Number of herds	Herd type	Age (days)	Type of samples	Samples (n)	Positive samples	Age of positive animals	Norovirus genotype	Reference
Europe	Belgium	2002–2003	NS	Dairy-Beef	NS	Individual	29	14	NS	ND	Scipioni et al. (2008c)
		2007	7–180	NS	NS	Individual	133 (D)	10 (7.5%)	Calves and young stock	GIIL2	Mauroy et al. (2009a)
		2008	300 (D)			Individual	28 (9.3%)			GIIL.P1_GIIL2	Mauroy et al. (2009b)
	France	2007	7–180	NS	NS	Individual	136 (NS)	25 (18.4%)	NS	NS	Zakhour et al. (2010)
	Germany	2008	NS	NS	NS	Individual	456	89	NS	NS	Kaplan et al. (2011)
		2009	NS	NS	NS	Individual	381 (D)	34 (8.9%)	Calves	NS	Deng et al. (2003)
		2009	NS	NS	NS	Individual	41 (D)	2 (4.9%)	<9 days (1)	GIII.P1_GIII.2	Ike et al. (2007)
		2010	NS	NS	NS	Individual	47 (NS)	4 (8.5%)	6–7 months (3)	GIII.2	Reuter et al. (2009)
	Hungary	2008	NS	NS	>20	Individual	26 (NS)	1 (3.8%)	Calves	NS	Di Bartolo et al. (2011)
	Italy	2004–2005	NS	NS	7–20	Individual	101 (NS)	3	NS	ND	Di Martino et al. (2014a)
		2011–2012	NS	NS	0–42	Individual	104	8	1 (0.9%)	ND	Jor et al. (2010)
	Norway	1999–2000	NS	Veal-Beef	7–365	Pooled	243 (NS)	77 (31.6%)	NS	NS	van der Poel et al. (2003)
	The	1997–1999	NS	Veal-Beef	7–365	Individual	312 (D + N)	13 (4.2%)	1–9 months	NS	van der Poel et al. (2000)
	Netherlands	1998	NS	Veal-Beef	1460–2190	Pooled	120 (N)	25 (20.8%)	NS	NS	GII.2
		2000	NS	Veal-Beef	126	Individual	419 (D + N)	15 (3.6%)	Calves (mean 42 days)	NS	Giili.P1_Giili.2
		2004–2007	NS	Veal-Beef	64	Individual	119	2 (1.9%)	Calves	NS	Giili.2
	Slovenia	2004–2005	NS	NS	120–150	Individual	476 (D)	38 (8.0%)	6 weeks 4 months	NS	Giili.1
		2008	NS	NS	7–60	Individual	101 (NS)	14 (10.1%)	2 cows	NS	Giili.2
	United	1998–2000	NS	NS	7–365	Pooled	358 (NS)	258 (72.1%)	NS	ND	Giili.4-like
	States	2000–2001	NS	NS	5–10	Individual	60 (D)	48 (80%)	Neonatal calves	NS	Giili.1 and Giili.2
America	Canada	05–10/2006	NS	Dairy (65%)	1–42	Individual	197 (NS)	3 (1.6%)	NS	ND	Mattison et al. (2007)
		2007	NS	Dairy (35%)	NS	Pooled	179 (NS)	3 (1.6%)	NS	ND	Giili.2
		03–04/2002	NS	Dairy (65%)	14	Individual	35 (NS)	13 (37.1%)	Neonatal calves	NS	Giili.4-like
		2002	NS	Dairy (35%)	4	Individual	103 (NS)	103 (100%)	Neonatal calves	NS	Giili.1 and Giili.2
		1999–2001	NS	Dairy (65%)	8	Individual	125 (NS)	125 (100%)	Neonatal calves	NS	Giili.2
		2001	NS	Dairy (65%)	14	Individual	47 (D)	47 (100%)	Neonatal calves	NS	Giili.2
Asia	South	1994–2000	NS	Veal calves (7–10)	1–10	Individual	60 (D)	48 (80%)	Neonatal calves	NS	Giili.2
	Korea	2004–2005	NS	NS	2–90	Individual	145 (D)	103 (99%)	Neonatal calves	NS	Giili.2
		2005–2006	NS	NS	<365 up to >730	Individual	645 (D)	99 (99%)	Calves	NS	Giili.2
	Egypt	2005	47	NS			47 (47%)	47 (100%)	Calves	NS	Giili.2
		2006–2007	NS	NS			47 (D)	47 (100%)	Calves	NS	Giili.2
		2007–2008	NS	NS			47 (D)	47 (100%)	Calves	NS	Giili.2
		2009–2010	NS	NS			47 (D)	47 (100%)	Calves	NS	Giili.2
		2010–2011	NS	NS			47 (D)	47 (100%)	Calves	NS	Giili.2
	Tunisia	2006–2007	NS	NS	1–60	Individual	70 (D)	6 (8.5%)	Calves	NS	Giili.2
		2008–2009	NS	NS	1–60	Individual	169 (D)	28 (16.5%)	Calves	NS	Giili.2
		2009–2010	NS	NS	1–60	Individual	28 (N)	15 (56%)	Calves, young stock and cows	NS	Giili.1
	New Zealand	2006–2007	NS	NS	1–60	Individual	28 (N)	15 (56%)	Calves, young stock and cows	NS	Giili.1

NS, not specified; ND, not determined; N, non-diarrhoeic; D, diarrhoeic.
need to consider these strains when detecting BoNoV and raises interesting questions about how these viruses emerge in an underlying context of low circulation of GIII.1 viruses.

Conclusions

NoVs are important enteric pathogens in children and vaccines have been developed to prevent human infections. NoVs have also been detected in cattle throughout the world and their role as enteric pathogens has been demonstrated in calves. BoNoVs should be considered in the differential diagnosis of calf diarrhoea and are candidates for inclusion in future vaccines in cattle.

Conflict of interest statement

None of the authors of this paper have a financial or personal relationship with other people or organisations that could inappropriately influence or bias the content of the paper.

Acknowledgements

This work was supported by the grant ‘FSE Regione Abruzzo – Università degli Studi di Teramo progetto speciale dottorati di ricerca in Clinica e Terapia d’urgenza Veterinaria XXVII ciclo, anno 2011’. The studies on noroviruses at the University of Liège, Belgium, were partly supported by the Federal Public Service ‘Public Health, Food Chain and Environment Safety’ (project RT10/6 Travifood). Dr Louisa Ludwig is acknowledged for her careful English editing of the review.

Appendix: Supplementary material

Supplementary data to this article can be found online at doi:10.1016/j.tvjl.2015.10.026.

References

Alcalà, A.C., Hidalgo, M.A., Obando, C., Vizzi, E., Liprandi, F., Ludert, J.E., 2003. Detección molecular de calicivirus entéricos de bovinos en Venezuela. Acta Científica Venezolana 54, 148–152.
Atmar, R.L., Estes, M.K., 2001. Diagnosis of noncultivatable gastroenteritis viruses, the human caliciviruses. Clinical Microbiology Reviews 14, 15–37.
Belliot, G., Noel, J.S., Li, J.F., Seto, Y., Humphrey, C.D., Ando, T., Glass, R.I., Monroe, S.S., 2001. Characterization of capsid genes, expressed in the baculovirus system, of three new genetically distinct strains of ‘Norwalk-like viruses. Journal of Clinical Microbiology 39, 4288–4295.
Boon, D., Mahar, J.E., Abente, E.J., Kirkwood, C.D., Purcell, R.H., Kapikian, A.Z., Green, K.Y., Bok, K., 2011. Comparative evolution of GII.3 and GII.4 norovirus over a 31-year period. Journal of Virology 85, 8656–8666.
Bull, R.A., Hansman, G.S., Clancy, L.E., Tanaka, M.M., Rawlinson, W.D., White, P.A., 2005. Norovirus recombination in ORF1/ORF2 overlap. Emerging Infectious Diseases 11, 1079–1085.
Bull, R.A., Tanaka, M.M., White, P.A., 2007. Norovirus recombination. Journal of General Virology 88, 3347–3359.
Carstens, E.B., 2010. Ratification vote on taxonomic proposals to the International Committee on Taxonomy of viruses (2009). Archives of Virology 155, 133–146.
