On renewal theory for cluster processes

Bojan Basrak∗ Marina Dajaković†

Abstract

We prove several forms of renewal theorem tailored to renewal processes with marks and clusters. In particular, for an i.i.d. sequence \((\xi_i, X_i)_{i \geq 0}\), where \(\xi_0\) denotes a finite point process on \(\mathbb{R}\) and \(X_0\) denotes a nonnegative random variable of finite mean, we consider the renewal sequence \(T_i = X_0 + \ldots + X_i\), \(i \geq 0\), and corresponding renewal cluster process \(\xi(\cdot) = \sum_{i \geq 0} \xi_i(\cdot - T_i)\). Under mild assumptions on the distribution of \((\xi, X)\), we show by coupling methods that the generalized versions of Blackwell’s renewal theorem, key renewal theorem, extended renewal theorem and elementary renewal theorem still hold, even with dependence between \(\xi_i\)’s and \(X_i\)’s.

Keywords: Marked point processes; limit theorems; Blackwell’s renewal theorem; key renewal theorem; coupling

MSC2020: 60K05; 60G55; 60B10

1 Introduction

In its classical form, renewal theory studies the steps of a renewal process made before or after some distant time \(t\). Renewal theorems have been shown to hold in various forms and very general settings, we refer to \cite{26}, \cite{28} or unpublished monograph \cite{1} for general theory, and to \cite{19}, \cite{16} or \cite{14} for some interesting extensions. Here we prove several types of renewal theorem tailored to renewal processes with marks or clusters. Random models of this type have been suggested repeatedly in applied literature, see for instance \cite{25} and \cite{24} for applications to environmental sciences and insurance respectively. Suppose that at each step \(T_i = X_0 + X_1 + \ldots + X_i\), \(i \geq 0\), of a renewal process we observe multiple events scattered around it in a way which is possibly dependent on the last interarrival time. One of our main goals is to describe the distribution of those points beyond time \(t\), for \(t \to \infty\). The similar types of dependence between the steps of the renewal process and the shapes of the clusters we allow in the sequel have already been considered in different settings, see for instance \cite{23} in the context of càdlàg processes, or \cite{2}, but in the context of perturbed random walks.

The paper is organized as follows: in the next section we present a version of extended renewal theorem for renewal process with marks which will serve as the main tool in the rest of the article, and which seems of independent interest. Using it, in Section 3 we deduce versions of Blackwell’s renewal theorem, key renewal theorem, extended renewal
2 Extended renewal theorem for marked renewal process

In this section, we introduce the notation and recall some basic facts about the vague convergence on the space of countable measures. For a general Polish space \(S \) let \(\mathcal{B}(S) \) be a Borel \(\sigma \)-algebra on \(S \). In what follows, either \(S = \mathbb{R} \) or \(S = \mathbb{R} \times M \), where \(M \) is a Polish space for marks. We declare a set \(B \) in \(\mathbb{R} \) or in \(\mathbb{R} \times M \) bounded if \(B \subseteq [-h,h] \) or \(B \subseteq [-h,h] \times M \), for some \(h > 0 \), respectively. Families of such bounded sets define a boundedness on \(S \) in terminology used by \([5]\). Denote by \(\mathcal{M}_p(S) \) the space of point measures on \(S \) which are finite on all bounded sets. Let \(t \in \mathbb{R} \) and \(m \in \mathcal{M}_p(S) \). The shifted measure \(\theta_t m \) is defined by \(\theta_t m(A) = m(A + t), A \in \mathcal{B}(\mathbb{R}) \) or \(\theta_t m(A \times B) = m((A + t) \times B), A \in \mathcal{B}(\mathbb{R}), B \in \mathcal{B}(M) \), on \(\mathcal{M}_p(\mathbb{R}) \) or \(\mathcal{M}_p(\mathbb{R} \times M) \) respectively. Recall that a sequence \(m_1, m_2, \ldots \in \mathcal{M}_p(S) \) is said to converge vaguely to a measure \(m \in \mathcal{M}_p(S) \), denoted by \(m_n \rightarrow m \), if \(\int f dm_n \rightarrow \int f dm \), as \(n \rightarrow \infty \), for all continuous and bounded real-valued functions \(f \) on \(S \) with bounded support. Convergence in distribution of point processes is always considered with respect to the corresponding vague topology and is denoted by \(\Rightarrow \).

Consider i.i.d. pairs \((\tilde{W}_i, \tilde{X}_i), i \geq 0 \in M \times \mathbb{R}_+ \) with arbitrarily dependent \(\tilde{W}_1 \) and \(\tilde{X}_1 \), where \(M \) is a general Polish space and \(\mathbb{R}_+ := [0,\infty) \). However, for notational convenience, and without loss of generality, we will assume in the sequel that \(\tilde{X}_i = \varphi(\tilde{W}_i), i \geq 0 \), for some continuous function \(\varphi : M \rightarrow \mathbb{R}_+ \). If this is not the case, one can introduce the sequence \(\overline{W}_i = (\tilde{W}_i, \tilde{X}_i), i \geq 0 \) on the space \(M \times \mathbb{R} \) which is clearly Polish, and use the projection on the second coordinate as the mapping \(\varphi \). Furthermore, suppose that random variables \(\tilde{X}_i, i \geq 0 \), satisfy \(\mu = \mathbb{E}\tilde{X}_1 \in (0,\infty) \) and have a nonarithmetic distribution, i.e. their law is not concentrated on the set of the form \(h\mathbb{Z} \). Define \(\bar{T}_0 = 0 \) and \(\bar{T}_i = \sum_{j=1}^i \tilde{X}_j, i \geq 1 \). One can form a two-sided renewal process with arrival times \(\cdots < \bar{T}_{-2} < \bar{T}_{-1} < \bar{T}_0 = 0 < \bar{T}_1 < \bar{T}_2 \cdots \), by extending the pure renewal process \((\bar{T}_i)_{i \geq 0}\) on \(\mathbb{R}_+ \) in the obvious way: let \(\bar{W}_{-i} \) be an independent copy of \(\bar{W}_i \), for all \(i \geq 1 \), and define \(\bar{T}_{-i} = -\sum_{j=-i+1}^{0} \bar{X}_j, i \geq 1 \), where \(\bar{X}_{-i} = \varphi(\bar{W}_{-i}) \). Consider the following point process \(\bar{\eta} = \sum_{i \in \mathbb{Z}} \delta_{(\bar{T}_i, \bar{W}_i)} \), by construction, \(\bar{\theta}_{\bar{T}_i} \bar{\eta} \stackrel{d}{=} \bar{\eta} \), for all \(k \), hence \(\bar{\eta} \) is called point stationary marked renewal processes.

Introduce next an additional random element \(W^* \) in \(M \) independent of the sequence \((\bar{W}_i)_{i \neq 0} \) with the distribution of \(\bar{W}_1 \) biased by \(\tilde{X}_1 \), i.e. \(\mathbb{E}f(W^*) = \mathbb{E}f(\bar{W}_1) \) for all bounded measurable real-valued functions \(f \). Denote \(X^* = \varphi(W^*) \), and let \(U \) denote a uniform random variable on \([0,1]\) independent of \(W^*, (\bar{W}_i)_{i \neq 0} \). Define \(T_0 = UX^* + \hat{T}_{-1} = -(1-U)X^* \), and then recursively \(T_i = T_0 + \sum_{j=1}^{i} \bar{X}_j, T_{-(i+1)} = T_{-1} - \sum_{j=-1}^{i-1} \bar{X}_j, i \geq 1 \) and set \(W_0 = W^*, W_i = \bar{W}_i \), for all \(i \neq 0 \). Then
\[
\eta = \sum_{i \in \mathbb{Z}} \delta_{(T_i, W_i)}
\]
is a stationary marked renewal point process (cf. \([27]\), Example 8.1.8).
Finally, we introduce a delayed marked renewal process on \mathbb{R}_+ which is not assumed to be stationary in either sense. Let (W'_0, X'_0) be a random element in $\mathbb{M} \times \mathbb{R}_+$ which is independent of an i.i.d. \mathbb{M}-valued sequence $(W'_i, X'_i)_{i \geq 1}$ with the property $W'_i \overset{d}{=} W_1$, for all $i \geq 1$. Denote $X'_i = \varphi(W'_i)$, for all $i \geq 1$ and $T'_i = \sum_{j=0}^i X'_i$, for all $i \geq 0$. Consider now marked renewal process

$$\eta' = \sum_{i=0}^{\infty} \delta(T'_i, W'_i).$$

We sometimes identify η' with the sequence $(T'_i, W'_i)_{i \geq 0}$.

An extended renewal theorem for random walks appears as Theorem 12.7 of [17]. We show that the corresponding result holds for marked renewal processes as well. It is not difficult to see that one can use it to deduce the corresponding theorem in [17] by taking excursions of random walk between two consecutive ladder points as marks. Actually, a special case of this was proved analytically in [23], see Lemma 3.1 therein. Related problems in renewal theory were studied earlier by [15]. Our main result here is that the extended renewal theorem holds more generally. We base our probabilistic proof on coupling ideas, but postpone it until Section 4.

Theorem 2.1 (Extended renewal theorem for marked renewal processes). Suppose (W'_0, X'_0) is a random element in $\mathbb{M} \times \mathbb{R}_+$ independent of an i.i.d. sequence $(W'_i, X'_i)_{i \geq 1}$ with values in $\mathbb{M} \times \mathbb{R}_+$, where X'_i has a nonarithmetic distribution with a finite positive mean. Let η' be a corresponding delayed marked renewal process on \mathbb{R}_+ with a stationary version η. Then

$$\theta_t \eta' \overset{d}{\longrightarrow} \eta,$$

as $t \to \infty$ with respect to the vague topology on $M_p(\mathbb{R} \times \mathbb{M})$.

3 Renewal theorems for cluster processes

We henceforth assume that $(X'_i)_{i \geq 1}$ is a sequence of nonnegative random variables with a nonarithmetic distribution and a finite mean $\mu > 0$. Furthermore, let $(\xi'_i)_{i \geq 1}$ be a sequence of point processes on \mathbb{R} such that the pairs $W'_i = (\xi'_i, X'_i)$ are independent and identically distributed. Note that ξ'_1 and X'_1 are allowed to be dependent. Assume further that a random pair (ξ'_0, X'_0) also takes values in $M_p(\mathbb{R}) \times \mathbb{R}_+$ and is independent of the i.i.d. sequence $(W'_i)_{i \geq 1}$. Let $(T'_i)_{i \geq 0}$ be a renewal sequence with increments X'_i, i.e. $T'_i = \sum_{j=0}^i X'_j$, $i \geq 0$. The associated renewal cluster point process is given by

$$\xi'(B) = \sum_{i \geq 0} \xi'_i(B - T'_i), \quad B \in \mathcal{B}(\mathbb{R}),$$

where we assume that almost surely

$$\xi'_i(B) < \infty, \quad \text{for all bounded } B \in \mathcal{B}(\mathbb{R}).$$

Following the terminology of [1], we call $\zeta' = \sum_{i \geq 0} \delta_{T'_i}$ the parent process and ξ'_i, $i \geq 0$, the descendant process. Condition (2) is often encountered in the literature, see e.g. p. 245 in [17] or relation (2.3.9) in [4]. In Remark 3.2 we give one simple sufficient condition for it to hold.
Each ξ'_i has a representation

$$\xi'_i = \sum_{j=1}^{L'_i} \delta_{T'_{ij}},$$

where L'_i is a random variable with values in $\{0, 1, \ldots, +\infty\}$ and $T'_{i,1}, \ldots, T'_{i,L'_i}$ is a sequence of random variables with values in \mathbb{R}, see Theorem 2.18 in [18]. We will assume henceforth that L'_i is almost surely finite, for all i. This assumption is a standard in the literature, see for instance p. 176 or Problem 6.3 in [9]. Specifically, it is satisfied for Bartlett-Lewis processes, cf. Section 3.1, as well as for the Hawkes processes. One can identify

$$W'_i = (\xi'_i, X'_i) \quad \text{with} \quad (L'_i, (T'_{ij})_j, X'_i),$$

for all $i \geq 0$. Thus, we study a renewal cluster point process constructed in such a way that around each point T'_{ij} of the parent process one observes cluster of L'_i other points translated by random times $(T'_{ij})_j$. More precisely,

$$\xi'(B) = \sum_{i \geq 0} \sum_{j=1}^{L'_i} \delta_{T'_{ij}} (B - T'_i) = \sum_{i \geq 0} \sum_{j=1}^{L'_i} \delta_{T'_{ij} + T'_{ij}} (B),$$

for every $B \in \mathcal{B}(\mathbb{R})$. Although the points of the parent process ζ' are often unobserved, it is possible to include them in the cluster point process, which will be done in Section 3.1. One can simply set $T'_{i0} = 0$, for every i and write

$$\xi'_i = \sum_{j=0}^{L'_i} \delta_{T'_{ij}} \quad \text{and} \quad \xi'_i = \sum_{i \geq 0} \sum_{j=0}^{L'_i} \delta_{T'_{ij} + T'_{ij}}.$$

In this case, the i–th cluster size is $L'_i + 1$.

Clearly one can regard W'_i in (3) as random elements in Polish space $\mathbb{M} = \mathbb{N}_0 \times \mathbb{R}^N \times \mathbb{R}_+$, for all $i \geq 0$. Hence, $\sum_{i \geq 0} \delta_{(T'_i, W'_i)}$ is a marked renewal process on $\mathbb{R}_+ \times \mathbb{M}$ and we can, as in the previous section, construct its stationary version. It now follows that the process

$$\xi = \sum_{i \in \mathbb{Z}} \sum_{j=1}^{L_i} \delta_{T_i + T_{ij}},$$

provided that it is finite a.s. on bounded sets, can be referred to as a stationary renewal cluster point process.

Proposition 3.1. Mean measure of a stationary renewal point process ξ equals

$$\mathbb{E}\xi(B) = \frac{1}{\mu} L_1 \text{Leb}(B),$$

for all $B \in \mathcal{B}(\mathbb{R})$.

Application of the Campbell-Little-Mecke formula yields the statement of the proposition. Detailed proof is postponed to Section [4].

Remark 3.2. It follows immediately from the previous proposition that a finite mean cluster size is a simple sufficient condition for the existence of a stationary renewal cluster point process. However, this condition is in general not necessary, see [9], p. 177.
It is useful in the sequel to introduce the following notation

\[R_i' = \sup_{j \leq L_i'} |T_{ij}'|, \quad i \geq 0. \]

Observe that \(R_i', i \geq 1 \) are i.i.d. nonnegative random variables. Clearly they represent the distance between the farthest point in a cluster and the corresponding point in the parent process. Recall also that we assumed \(L_i' < \infty \) a.s. We note that without this constraint, one cannot expect that the following renewal theorem holds without additional restrictions. Intuitively, this is because clusters from the past could potentially continue to produce arrivals indefinitely, resulting in an ever-increasing number of arrivals following time \(t \).

Theorem 3.3 (Extended renewal theorem for cluster processes). Assume that \(\xi' \) is a renewal cluster point process with a stationary version \(\xi \). If \(\mathbb{E}R_1' \) is finite, then

\[\theta_t \xi' - \overset{d}{\rightarrow} \xi, \]

that is

\[\sum_{i \geq 0} \sum_{j=1}^{L_i'} \delta_{T_i'-t+T_{ij}'} - \overset{d}{\rightarrow} \sum_{i \in \mathbb{Z}} \sum_{j=1}^{L_i} \delta_{T_i+T_{ij}} \]

as \(t \to \infty \) with respect to the vague topology on \(M_p(\mathbb{R}) \).

Remark 3.4. Let

\[\cdots \leq S_{i-2}' \leq S_{i-1}' \leq 0 \leq S_0' \leq S_1' \leq S_2' \leq \cdots \]

denote the points of the renewal cluster point process \(\xi' \) in a nondecreasing order. Generally, \(S_k' = T_i' + T_{ij}' \), for some \(i,j \). For an arbitrary \(t > 0 \), set

\[\sigma(t) = \inf\{k \in \mathbb{N} : S_k' > t\}, \]

then

\[R(t) = S_{\sigma(t)}' - t \]

denotes the so-called forward recurrence time. In Section 3.1, for a specific cluster point process, we will obtain closed formula for the limiting distribution of the forward recurrence time as a consequence of Theorem 3.3.

To deduce Blackwell’s renewal theorem for renewal cluster point processes from the extended renewal theorem, we need a technical result involving uniform integrability. Recall that the random variables \(X_t, t \in T \), are said to be uniformly integrable if

\[\lim_{x \to \infty} \left(\sup_{t \in T} \mathbb{E}[|X_t|1_{\{|X_t| > x\}}] \right) = 0, \]

where \(T \) is a nonempty index set.

Assumption 3.5 (Finite moments assumption). Suppose that random variables \(L_0', L_1', L_1'X_1' \) and \(L_1'R_1' \) all have finite mean.

Lemma 3.6. Let \(\xi' \) be a renewal cluster point process. Suppose that Assumption 3.5 holds. Then for all \(x > 0 \)

\[\xi'(t,t+x), \quad t \geq 0, \]

are uniformly integrable random variables.
The proof of the lemma is postponed to Section 4. Together with Theorem 3.3, the lemma yields the following (we again refer to Section 4 for a proof).

Corollary 3.7 (Blackwell’s renewal theorem for cluster processes). Let ξ' be a renewal cluster point process. Suppose that Assumption 3.5 holds, then
\[
E\xi'(t, t + x) \to \frac{1}{\mu} E L_1' x ,
\]
as $t \to \infty$, for all $x > 0$.

In the cluster point process framework, just like in the standard setting, Blackwell’s renewal theorem implies the elementary renewal theorem (the proof is simple, see [8]).

Corollary 3.8 (Elementary renewal theorem for cluster processes). Let ξ' be a renewal cluster point process. Suppose that Assumption 3.5 holds, then
\[
\frac{E\xi'(0, t)}{t} \to \frac{1}{\mu} E L_1' ,
\]
as $t \to \infty$.

Finally, it is natural to ask whether equivalence between Blackwell’s renewal theorem and the key renewal theorem can be established in the cluster point process setting. The answer is affirmative and it is fairly easy to check that the two versions of renewal theorem are equivalent, as the proof essentially follows the classical argument. We define the renewal function $U_{\xi'} : \mathbb{R} \to [0, \infty]$ by
\[
U_{\xi'}(t) = E \left[\sum_{i=0}^{\infty} \sum_{j=1}^{L_i'} \mathbb{1}_{\{T_i'+T_i'^j \leq t\}} \right] .
\]

Lemma 3.9. Let ξ' be a renewal cluster point process and suppose that Assumption 3.5 holds. Then the renewal function $U_{\xi'}(t)$ takes finite value for all $t \in \mathbb{R}$.

The lemma is proved in Section 4. Together with the dominated convergence theorem, it yields the right-continuity of the renewal function $U_{\xi'}$. As it is obviously nondecreasing, we can associate with it a unique (renewal) measure $\mu_{U_{\xi'}}$ on \mathbb{R} such that $\mu_{U_{\xi'}}(-\infty, t) = U_{\xi'}(t)$, for all t. It is common in the literature to use the same notation for the renewal function and this measure, since the context prevents the confusion. Hence, in the sequel we will denote both objects by $U_{\xi'}$.

Corollary 3.10 (Key renewal theorem for cluster processes). Let ξ' be a renewal cluster point process. Suppose that Assumption 3.5 holds and that $g : \mathbb{R}_+ \to \mathbb{R}_+$ is a directly Riemann integrable function. Then
\[
\lim_{t \to \infty} \int_0^t g(t - y) dU_{\xi'}(y) = \frac{1}{\mu} E L_1' \int_0^\infty g(y) dy .
\]

The proof of the corollary can be found in Section 4. It shows that Blackwell’s renewal theorem implies the key renewal theorem under Assumption 3.5. The reverse implication is of course straightforward if one sets $g = \mathbb{1}_{[0, x]}$, for any fixed $x \geq 0$.

6
3.1 Examples

For an illustration we consider two processes. In the first example, we study a well
known Poisson cluster process, and in the second, a renewal cluster point process where
both the number and position of points within the cluster depend on the last interarrival
time.

Example 3.11 (Bartlett-Lewis process). Suppose that $T_i', i \geq 1$ are the points of a homo-
genous Poisson process on \mathbb{R}_+ with intensity λ and $Y_{ij}', i \geq 1, j \geq 1$ are i.i.d. nonnegative
random variables with distribution F independent of T_i', for all i. Let $L_i', i \geq 1$ be i.i.d.
nonnegative integer-valued random variables independent of T_i' and Y_{ij}', for all i, j. Define

$$T_{ik}' = \sum_{j=1}^{k} Y_{ij}'$$

and set $T_{i0}' = 0$, for every $i \geq 1$. Bartlett-Lewis point process is given by

$$\sum_{i \geq 1} \sum_{j=0}^{L_i'} \delta_{T_{i}'+T_{ij}'}.$$

Let $x > 0$. Note that the points of the parent process are now included in the cluster
point process. Hence, a simple modification of Corollary 3.7 yields

$$\lim_{t \to \infty} \mathbb{E} \left[\sum_{i \geq 1} \sum_{j=0}^{L_i'} \delta_{T_{i}'+T_{ij}'} \right] (t, t + x) = \frac{1}{\mu} \mathbb{E}[L_1' + 1] x = \lambda \mathbb{E}[L_1' + 1] x,$$

under the Assumption 3.5. Furthermore, if L_1' and Y_{11}' are integrable, then by Theorem
3.3 and Theorem 4.11 in [17]

$$\lim_{t \to +\infty} \mathbb{P} \left(\sum_{i \geq 1} \sum_{j=0}^{L_i'} \delta_{T_{i}'+T_{ij}'} (t, t + x) = 0 \right) = \mathbb{P} \left(\sum_{i \geq 1} \sum_{j=0}^{L_i'} \delta_{T_{i}'+T_{ij}'} (0, x) = 0 \right)$$

$$= \exp \left\{ - \lambda \left(x + \mathbb{E} L_1' \int_0^x \mathbb{P}(Y_{11}' > y) dy \right) \right\},$$

where the proof of the last equality can be found in Section 5 of [11], see also Example
6.3 (b) in [9]. Hence,

$$\lim_{t \to +\infty} \mathbb{P}(R(t) \leq x) = 1 - \exp \left\{ - \lambda \left(x + \mathbb{E} L_1' \int_0^x \mathbb{P}(Y_{11}' > y) dy \right) \right\}.$$

Equations (4) and (5), which we obtained as a consequence of the Theorem 3.3 and
Corollary 3.7 can be found in [22], Theorem 2.3 and [21], equation (4.3.5).

Example 3.12. Suppose that $(T_i')_{i \geq 0}$ is a pure renewal process with interarrivals distributed
uniformly on $(0, 5)$. Let $L_0' = 0$ and suppose that both L_i' and T_{ij}' depend on the last
interarrival X_i', for all $i \geq 1$. Precisely, let L_{11}' and L_{02}' be i.i.d. Poisson random variables
with parameters 0.5 and 5, respectively and let Y_{ij}' be i.i.d. random variables with standard
normal distribution, for all $i, j \geq 1$. Then, we set

$$L_i' = L_{i1}' \mathbb{1}_{\{X_i' > 1\}} + L_{i2}' \mathbb{1}_{\{X_i' \leq 1\}}$$

and $T_{ij}' = X_i' + Y_{ij}'$,

for all $i, j \geq 1$. Renewal cluster point process is given by

$$\xi' = \sum_{i \geq 0} \sum_{j=1}^{L_i'} \delta_{T_{i}'+T_{ij}'}.$$
By direct calculation one easily checks the conditions of Corollaries 3.7 and 3.8, hence
\[
\lim_{t \to \infty} \mathbb{E} \xi'(t, t + x) = \frac{1}{\mathbb{E} X_1} \mathbb{E} L_1 x = 0.4 \cdot 1.4x = 0.56x, \quad \text{for all } x > 0
\]
and
\[
\lim_{t \to \infty} \frac{\mathbb{E} \xi'(0, t)}{t} = \frac{1}{\mathbb{E} X_1} \mathbb{E} L'_1 = 0.56.
\]
For Monte Carlo simulations supporting these results, we refer to [8].

4 Proofs

4.1 Proof of Theorem 2.1

Recall a random variable \(\vartheta \) is said to be Rademacher if \(\mathbb{P}(\vartheta = 1) = \mathbb{P}(\vartheta = -1) = 1/2 \). A sequence of i.i.d. Rademacher variables is called a Rademacher sequence. The following lemma seems to be known, a rigorous proof can be found in [8].

Lemma 4.1. Suppose that \(\beta \) is a random element in some Polish space \(\mathbb{M} \) independent of a Rademacher sequence \((\vartheta_k)_{k \in \mathbb{N}} \) and let \(\mathcal{F}_n = \sigma\{\beta, \vartheta_1, \ldots, \vartheta_n\} \). Assume that \(\tau \) is \(\{\mathcal{F}_n\} \)-stopping time, then the sequence
\[
(\beta, \vartheta_1, \ldots, \vartheta_\tau, -\vartheta_{\tau+1}, -\vartheta_{\tau+2}, \ldots)
\]
has the same distribution as \((\beta, \vartheta_1, \vartheta_2, \vartheta_3, \ldots) \).

Lemma 4.2. Let \(\mathbb{M} \) be an arbitrary Polish space. Assume that for an arbitrary non-negative continuous real-valued function \(f \) on \(\mathbb{M} \) and a sequence \((t^{(i)}_0, (w_i^{(n)})_{i \geq 0})_{n \geq 1} \) in \(\mathbb{R}_+ \times \mathbb{M}^{\mathbb{N}_0} \) the following conditions hold:

(i) \(t^{(i)}_0 \to t_0 \) in \(\mathbb{R}_+ \) and \(w_i^{(n)} \to w_i \) in \(\mathbb{M} \), for all \(i \geq 0 \), as \(n \to \infty \),

(ii) \(\sum_{j=1}^i f(w_j^{(n)}) \to \infty \) and \(\sum_{j=1}^i f(w_j) \to \infty \), for all \(n \in \mathbb{N} \), as \(i \to \infty \).

Then
\[
\sum_{i=0}^\infty \delta_{(t^{(i)}_0, \sum_{j=1}^i f(w_j^{(n)}), w_i^{(n)})} \Rightarrow \sum_{i=0}^\infty \delta_{(t_0 + \sum_{j=1}^i f(w_j), w_i)};
\]
as \(n \to \infty \).

Proof. Denote
\[
m_n = \sum_{i=0}^\infty \delta_{(t^{(i)}_0, \sum_{j=1}^i f(w_j^{(n)}), w_i^{(n)})}, \quad \text{for all } n \in \mathbb{N} \quad \text{and} \quad m = \sum_{i=0}^\infty \delta_{(t_0 + \sum_{j=1}^i f(w_j), w_i)}.
\]
From assumption (ii), it follows that integer-valued measures \(m_n \) and \(m \) are locally finite on \(\mathbb{R} \times \mathbb{M} \). Furthermore, we conclude from (i) and (ii) that for an arbitrary \(h > 0 \) such that \(m(\vartheta([0, h] \times \mathbb{M})) = 0 \), there exist \(k_0, n_0 \in \mathbb{N} \) such that for all \(n \geq n_0 \)
\[
m_n \bigg|_{[0, h] \times \mathbb{M}} = \sum_{i=0}^{k_0} \delta_{(t^{(i)}_0, \sum_{j=1}^i f(w_j^{(n)}), w_i^{(n)})} \quad \text{and} \quad m \bigg|_{[0, h] \times \mathbb{M}} = \sum_{i=0}^{k_0} \delta_{(t_0 + \sum_{j=1}^i f(w_j), w_i)}.
\]
Moreover, by (i)
\[t_0^{(n)} + \sum_{j=1}^{i} f(w_j^{(n)}) \to t_0 + \sum_{j=1}^{i} f(w_j) \text{ in } \mathbb{R}_+ \quad \text{and} \quad w_i^{(n)} \to w_i \text{ in } \mathbb{M}, \]
for all \(i = 0, 1, \ldots, k_0 \), since \(f \) is continuous. Thus, by Proposition 2.8 in [5]
\[m_n \xrightarrow{u} m, \]
as \(n \to \infty \).

Proof of Theorem 12.7 Like several other proofs of different types of renewal theorem, we base our argument on the coupling method. In the initial steps, it follows a coupling of the type used by [28] in sections 2.7 and 2.8 and [17] in the proof of Theorem 12.7.

Consider an i.i.d. sequence \((W_i, \tilde{X}_i)_{i \geq 1}\) with the same distribution as \((W_i, X_i)_{i \geq 1}\) and an independent Rademacher sequence \((\vartheta_i)_{i \geq 1}\).

Step 1. We first construct copies of \(\eta \) and \(\eta' \) on the same probability space. Assume that \((W_0, X_0)\) and \((W'_0, X'_0)\) have the desired distribution, but are independent of the sequences \((W_i, \tilde{X}_i)_{i \geq 1}\) and \((\vartheta_i)_{i \geq 1}\). Set \(K_0 = K''_0 = 0 \) and then for \(i \geq 1 \)
\[K_i = \inf\{ k > K_{i-1} : \vartheta_k = 1 \} \quad \text{and} \quad K''_i = \inf\{ k > K''_{i-1} : \vartheta_k = -1 \}. \]

Alternatively, one can view \(K_i \) and \(K''_i \) as the indices of the \(i \)-th 1 and -1, respectively, in the sequence \((\vartheta_i)_{i \geq 1}\). Let \(T_0 = X_0, T''_0 = X'_0 \) and \(W''_0 = W'_0 \). Then, for \(i \geq 1 \) let
\[T_i = T_0 + \sum_{j=1}^{K_i} \tilde{X}_j \mathbb{1}_{\{\vartheta_j = 1\}} = T_0 + \sum_{j=1}^{i} \tilde{X}_{K_j} =: T_{i-1} + Y_i, \quad \text{and} \quad W_i = \tilde{W}_{K_i}, \quad (6) \]
\[T''_i = T''_0 + \sum_{j=1}^{K''_i} \tilde{X}_j \mathbb{1}_{\{\vartheta_j = -1\}} = T''_0 + \sum_{j=1}^{i} \tilde{X}_{K'_j}, \quad \text{and} \quad W''_i = \tilde{W}_{K''_i}. \quad (7) \]

Note that \(Y_i = \tilde{X}_{K_i} \) in (6) are i.i.d., for all \(i \geq 1 \). As explained above, one can extend the sequence \((T_i, W_i)_{i \geq 0}\) to a sequence indexed over \(\mathbb{Z} \) so that the point process \(\eta = \sum_{i \in \mathbb{Z}} \delta_{(T_i, W_i)} \) becomes stationary. It is immediate then that \(\eta \) and
\[\eta'' = \sum_{i \geq 0} \delta_{(T''_i, W''_i)} \]
have the same distribution as the \(\eta \) and \(\eta' \) in the statement of the theorem.

Step 2. Set
\[L_i = |\{k \leq i : \vartheta_k = 1\}| \quad \text{and} \quad L'_i = i - L_i, \quad i \geq 0, \]
where \(|\cdot|\) denotes cardinality of a set. By (6) and (7), the difference between the arrival times \(T_{L_i} \) and \(T''_{L'_i} \) equals
\[V_i = T_0 - T''_0 + \sum_{j=1}^{i} \vartheta_j \tilde{X}_j, \quad i \geq 0. \]

In particular \((V_i)_{i \geq 0}\) is a random walk with nonarithmetic and symmetric steps. By the Chung-Fuchs theorem, see Theorem 4 in [7], \((V_i)_{i \geq 0}\) is recurrent and for all \(x \in \mathbb{R} \) and \(\varepsilon > 0 \)
\[\mathbb{P}(|V_i - x| < \varepsilon \text{ i.o.}) = 1. \]
Therefore, for any $\varepsilon > 0$, with probability 1
\[
\tau = \inf\{i : V_i \in [0, \varepsilon)\} < \infty.
\]

Step 3. Let now
\[
T_i' = T_i'' \quad \text{and} \quad W_i' = W_i'', \quad \text{if } i \leq L'_\tau
\]
\[
T_i' = T_{i-1}' + Y_{k+L'} = T_{i-1}' + \tilde{X}_{k+L'} \quad \text{and} \quad W_i' = W_{k+L'}, \quad \text{if } i = L'_\tau + k, k > 0.
\]
Then in particular, for any $k \geq 0$
\[
T_{k+L'} - T_{k+L' \tau} \in [0, \varepsilon) \quad \text{and} \quad W_{k+L'} = W_{k+L' \tau}.
\]
That is, after coming ε–close at times L_τ and L'_τ, the marked point processes η and η' stay ε–close in time with exactly the same marks indefinitely. Denote now by $(\tilde{\vartheta}_i)_{i \geq 1}$ Rademacher sequence
\[
\vartheta_1, \vartheta_2, \vartheta_3, \ldots, \vartheta_\tau, -\vartheta_{\tau+1}, -\vartheta_{\tau+2}, -\vartheta_{\tau+3}, \ldots.
\]
Applying Lemma 4.1 to the sequence $\beta = (\tilde{W}_i, \tilde{X}_i)_{i \geq 1}$, the sequence $(\vartheta_i)_{i \geq 1}$ and stopping time τ, we see that $(\beta, \tilde{\vartheta}_1, \tilde{\vartheta}_2, \ldots)$ has the same distribution as $(\beta, \vartheta_1, \vartheta_2, \ldots)$. Let $K'_0 = 0$ and $K'_i = \inf\{k > K'_{i-1} : \vartheta_k = -1\}, i \geq 1$. Since
\[
T_i' = T_0' + \sum_{j=1}^{K'_i} \tilde{X}_j 1_{\{\overline{\vartheta}_j = -1\}} \quad \text{and} \quad W_i' = \tilde{W}_{K'_i},
\]
a quick comparison with (7) shows that η' has the same distribution as in the statement of the theorem.

Step 4. Observe that $V_\varepsilon := T_{L_\tau} \lor T_{L'_\tau} < \infty$ a.s. Denote for $t > 0$
\[
\sigma(t) = \inf\{k \geq 0 : T_k > t\} \quad \text{and} \quad \sigma'(t) = \inf\{k \geq 0 : T'_k > t\}.
\]
For arbitrary $u \geq 0$ and a measurable set $A_0 \subseteq \mathbb{M}$ we have
\[
\mathbb{P}(T_{\sigma(t)} - t > u + \varepsilon, W_{\sigma(t)} \in A_0) - \mathbb{P}(V_\varepsilon > t)
\]
\[
\leq \mathbb{P}(T'_{\sigma'(t)} - t > u, W'_{\sigma'(t)} \in A_0)
\]
\[
\leq \mathbb{P}(T_{\sigma(t)} - t \in [0, \varepsilon)) + \mathbb{P}(T_{\sigma(t)} - t > u, W_{\sigma(t)} \in A_0) + \mathbb{P}(V_\varepsilon > t).
\]
Clearly, $\mathbb{P}(V_\varepsilon > t) \to 0$ as $t \to \infty$. Moreover, by the stationarity of the process η
\[
\mathbb{P}(T_{\sigma(t)} - t > u, W_{\sigma(t)} \in A_0) = \mathbb{P}(T_0 > u, W_0 \in A_0).
\]
Observe further that the function $u \mapsto \mathbb{P}(T_0 \leq u, W_0 \in A_0)$ is continuous, for any choice of A_0. Therefore, letting first $t \to \infty$ and then $\varepsilon \to 0$ on the left and right hand side of (8), yields
\[
\left(T'_{\sigma'(t)} - t, W'_{\sigma'(t)}\right) \xrightarrow{d} (T_0, W_0),
\]
as $t \to \infty$. On the other hand, observe that

$$\left(W'_{\tau'(t)+i} \right)_{i \geq 1} \overset{d}{=} (W_i)_{i \geq 1}$$

(10)

with the left hand side independent of $\left(T'_{\tau'(t) - t}, W'_{\tau'(t)} \right)$ and the right hand side independent of (T_0, W_0).

Step 5. Because $\mathbb{R} \times M$ is Polish space, there exists a probability space where one can find random elements $(T'_{\tau'(t) - t}, (W'_{\tau'(t)+i})_{i \geq 1})$, $t > 0$, and $(\hat{T}_0, (\hat{W}_i)_{i \geq 1})$ which have the same joint distribution as the random elements in (9) and (10), but satisfy

$$\left(T'_{\tau'(t) - t}, (W'_{\tau'(t)+i})_{i \geq 1} \right) \overset{a.s.}{\to} \left(\hat{T}_0, (\hat{W}_i)_{i \geq 1} \right),$$

as $t \to \infty$, in the product topology on $\mathbb{R} \times M^{\mathbb{N}_0}$. Moreover, by the strong law of large numbers (see e.g. Theorem 2.4.1 in [10]),

$$\sum_{j=1}^{i} \varphi(\hat{W}_{\tau'(t)+j}) = \sum_{j=1}^{i} \hat{X}_{\tau'(t)+j} \quad \text{and} \quad \sum_{j=1}^{i} \varphi(W_j) = \sum_{j=1}^{i} X_j$$

tend to ∞ almost surely, as $i \to \infty$. Observe that by Lemma 4.2

$$\theta_i \eta' \overset{d}{=} \sum_{i=0}^{\infty} \delta\left(\sum_{j=1}^{i} \varphi(\hat{W}_{\tau'(t)+j}), \hat{W}'_{\tau'(t)+i} \right) \xrightarrow{a.s.} \sum_{i=0}^{\infty} \delta\left(\sum_{j=1}^{i} \varphi(W_j), W_i \right) \overset{d}{=} \eta \bigg|_{[0, \infty) \times M},$$

as $t \to \infty$. This now yields the statement of the theorem on the state space $[0, \infty) \times M$.

Step 6. To extend convergence in $M_p([0, \infty) \times M)$ to the convergence in distribution with respect to the vague topology on $M_p(\mathbb{R} \times M)$, consider an arbitrary continuous bounded function $f : \mathbb{R} \times M \to \mathbb{R}_+$ with a support on a set of the form $[-h, h] \times M$, for some $h > 0$. Introduce $f^h(u, w) = f(u - h, w)$ which is clearly continuous bounded and supported on $[0, 2h] \times M$. Now for any fixed $h > 0$ as $t \to \infty$

$$\mathbb{E} \exp\left(- \theta_i \eta'(f) \right) = \mathbb{E} \exp\left(- \sum_{i \geq \tau'(t)} f(T'_{\tau'(t)+i} - t, W'_{\tau'(t)+i}) \right)$$

$$= \mathbb{E} \exp\left(- \sum_{i \geq \tau'(t)} f^h(T'_{\tau'(t)+i} - (t - h), W'_{\tau'(t)+i}) \right)$$

$$= \mathbb{E} \exp\left(- \sum_{i \geq 0} f^h(T'_{\tau'(t-h)+i} - (t - h), W'_{\tau'(t-h)+i}) \right)$$

$$= \mathbb{E} \exp\left(- \theta_{t-h} \eta'(f^h) \right) \longrightarrow \mathbb{E} \exp\left(- \eta(f^h) \right)$$

$$= \mathbb{E} \exp\left(- \sum_{i \geq 0} f^h(T_i, W_i) \right) = \mathbb{E} \exp\left(- \sum_{i \in \mathbb{Z}} f^h(T_i, W_i) \right)$$

$$= \mathbb{E} \exp\left(- \sum_{i \in \mathbb{Z}} f(T_i - h, W_i) \right) = \mathbb{E} \exp\left(- \eta(f) \right),$$

where the last equality follows by the stationarity of the process η. Since f was arbitrary, by Theorem 4.11 in [17], this concludes the proof.

\square
4.2 Proof of Proposition 3.1

Proof. First, we introduce the notation. Let $B + x = \{b + x : b \in B\}$, for all $B \in \mathcal{B}(\mathbb{R})$ and $x \in \mathbb{R}$.

\[
\mathbb{E}\xi(B) = \mathbb{E}\left[\sum_{i \in \mathcal{Z}} \xi_i(B - T_i)\right] = \mathbb{E}\left[\sum_{i \in \mathcal{Z}} f_B(T_i, \xi_i)\right] = \frac{1}{\mu} \int_{\mathbb{R}} \mathbb{E}[f_B(y, \xi_1')]dy
\]

\[
= \frac{1}{\mu} \mathbb{E}\left[\int_{\mathbb{R}} \xi_1'(B - y)dy\right] = \frac{1}{\mu} \mathbb{E}\left[\int_{\mathbb{R}} \int_{B-y} 1_{\{s \in \mathcal{B} - y\}}d\xi_1'(s)dy\right]
\]

\[
= \frac{1}{\mu} \mathbb{E}\left[\int_{\mathbb{R}} \int_{\mathbb{R}} 1_{\{y \in B - s\}}dyd\xi_1'(s)\right] = \frac{1}{\mu} \mathbb{E}\left[\int_{\mathbb{R}} \text{Leb}(B)d\xi_1'(s)\right]
\]

\[
= \frac{1}{\mu} \mathbb{E}\xi_1'(\mathbb{R}) \text{Leb}(B) = \frac{1}{\mu} \mathbb{E}L_1' \text{Leb}(B),
\]

where the third equality follows by the Campbell-Little-Mecke formula (see e.g. relation (1.2.19) in [3]) applied to a stationary marked point process $\sum_{i \in \mathcal{Z}} \delta_{T_i, \xi_i}$ for a nonnegative measurable function $f_B : \mathbb{R} \times M_p(\mathbb{R}) \rightarrow \mathbb{R}$ given by $f_B(y, m) = m(B - y)$. Note that $\mathbb{E}\left[\sum_{i \in \mathcal{Z}} \delta_{T_i, [0, 1]}\right] = \frac{1}{\mu}$, see e.g. [20] p. 215. By construction, $X_1 \overset{d}{=} X_1'$ and $L_1 \overset{d}{=} L_1'$, which completes the proof.

4.3 Proof of Theorem 3.3

Let in the sequel $f_+ := \max(f, 0)$ and $f_- := -\min(f, 0)$ denote the positive and negative part of a real-valued function f.

Proof. Step 1. Note that the mark space $\mathcal{M} = \mathcal{N}_0 \times \mathbb{R}^\mathcal{N} \times [0, \infty)$ of the corresponding marked renewal point processes is again Polish, hence Theorem 2.1 can be applied, yielding

\[
\sum_{i \geq 0} \delta_{(T_i', W_i')} \overset{d}{\rightarrow} \sum_{i \in \mathcal{Z}} \delta_{(T_i, W_i)},
\]

as $t \rightarrow \infty$ in $M_p(\mathbb{R} \times \mathcal{M})$. By the definition of convergence in distribution,

\[
\sum_{i \geq 0} \delta_{(T_i', L_i, (T_i')_j \leq L_i')} \overset{d}{\rightarrow} \sum_{i \in \mathcal{Z}} \delta_{(T_i, L_i, (T_i)_j \leq L_i)},
\]

as $t \rightarrow \infty$ in $M_p(\mathbb{R} \times \mathcal{M}^*)$, where $\mathcal{M}^* = \mathcal{N}_0 \times \mathbb{R}^\mathcal{N}$. Here and in what follows, all indices j are assumed to be positive integers.

Step 2. Fix $K > 0$ and consider the mapping $T_K : M_p(\mathbb{R} \times \mathcal{M}^*) \rightarrow M_p(\mathbb{R} \times \mathbb{R})$ given by

\[
T_K\left(\sum_i \delta_{(x_i, y_i, (z_i)_j \leq y_i)}\right) = \sum_i \sum_{j=1}^{w_i} \delta_{(x_i, z_i)} \mathbb{1}_{(|x_i| \leq K)}.
\]

It is well defined, i.e. for all $m \in M_p(\mathbb{R} \times \mathcal{M}^*)$, $T_K(m)$ is a locally finite point measure on $\mathbb{R} \times \mathbb{R}$. Denote

\[
N_K = \{m \in M_p(\mathbb{R} \times \mathcal{M}^*) : m(\{\pm K\} \times \mathcal{M}^*) = 0\}.
\]

We will show that T_K is continuous on N_K. Let $m_1, m_2, \ldots \in M_p(\mathbb{R} \times \mathcal{M}^*)$, $m \in N_K$ and $m_n \rightarrow m$. Then, by Proposition 2.8 in [3], there exist integers n_0, P and a labeling of the points of m and m_n, $n \geq n_0$ in $[-K, K] \times \mathcal{M}^*$ such that

\[
m_n|_{[-K,K] \times \mathcal{M}^*} = \sum_{i=1}^{P} \delta_{(x_i^{(n)}, y_i^{(n)}, (z_i^{(n)})_j \leq y_i^{(n)})},
\]
\[m|_{[-K,K] \times M^*} = \sum_{i=1}^{P} \delta(x_i, y_i, z_{ij}) \leq y_i \]

and for all \(i = 1, 2, \ldots, P \)
\[x_i^{(n)} \to x_i, \quad y_i^{(n)} \to y_i, \quad (z_{ij}^{(n)})_{j \leq y_i^{(n)}} \to (z_{ij})_{j \leq y_i}, \]
as \(n \to \infty \). Observe that
\[T_K(m_n) = \sum_{i=1}^{P} \sum_{j=1}^{y_i^{(n)}} \delta(x_i, z_{ij}), \quad \text{for all } n \geq n_0, \]
and
\[T_K(m) = \sum_{i=1}^{P} \sum_{j=1}^{y_i} \delta(x_i, z_{ij}), \]
have only finitely many terms, hence it holds that \(T_K(m_n) \to T_K(m) \), as \(n \to \infty \). Finally, an application of the continuous mapping theorem (see e.g. [6], Corollary 1, p. 31) to (11) yields
\[T_K \left(\sum_{i=0}^{L_i} \delta(T_i, T_j) \right) \quad d \to T_K \left(\sum_{i \in \mathbb{Z}} \delta(T_i, T_j) \right), \]
thus
\[\sum_{i=0}^{L_i} \sum_{j=1}^{L_j} \left| \delta(T_i, T_j) \right|_{[-K,K] \times \mathbb{R}} \quad d \to \sum_{i \in \mathbb{Z}} \sum_{j=1}^{L_j} \left| \delta(T_i, T_j) \right|_{[-K,K] \times \mathbb{R}}, \quad (12) \]
as \(t \to \infty \) in \(M_p(\mathbb{R} \times \mathbb{R}) \). Indeed, from Proposition 8.2 in [20], it follows that
\[\mathbb{P} \left(\sum_{i \in \mathbb{Z}} \delta(T_i, L_i, (T_j)_{j \leq L_i}) \in N_K \right) = \mathbb{P} \left(\sum_{i \in \mathbb{Z}} \delta(T_i, \{ \pm K \}) = 0 \right) = 1. \]

Step 3. An application of the continuous mapping theorem to (12) yields
\[\sum_{i=0}^{L_i} \sum_{j=1}^{L_j} 1_{\{|T_i-T_j| \leq K\}} \delta_{T_i-T_j} \quad d \to \sum_{i \in \mathbb{Z}} \sum_{j=1}^{L_j} 1_{\{|T_i| \leq K\}} \delta_{T_i+T_j}, \]
as \(t \to \infty \) in \(M_p(\mathbb{R}) \).

Taking the point process on the right hand side of the above relation and letting \(K \to \infty \), one obtains
\[\sum_{i \in \mathbb{Z}} \sum_{j=1}^{L_i} 1_{\{|T_i| \leq K\}} \delta_{T_i+T_j} \quad d \to \sum_{i \in \mathbb{Z}} \sum_{j=1}^{L_j} \delta(T_i+T_j), \quad (13) \]
in \(M_p(\mathbb{R}) \). Indeed, let \(f : \mathbb{R} \to \mathbb{R}_+ \) be an arbitrary continuous bounded function with a bounded support. Then, by the monotone convergence theorem,
\[\sum_{i \in \mathbb{Z}} \sum_{j=1}^{L_i} 1_{\{|T_i| \leq K\}} f(T_i + T_j) \quad a.s. \to \sum_{i \in \mathbb{Z}} \sum_{j=1}^{L_i} f(T_i + T_j), \]
as $K \to \infty$. Now Theorem 4.11 in [17] yields the equation (13).

To complete the proof, by Theorem 4.2 in [6] (which can be viewed as a variant of the Slutsky’s lemma), and Theorem 4.11 in [17], it suffices to show that for every $u > 0$ and every function f as above

$$
\lim_{K \to \infty} \lim_{t \to \infty} \mathbb{P}\left(\left| \sum_{i \geq 0} \sum_{j=1}^{L_i'} \mathbb{I}_{(|T_i^r - t| \leq K)} f(T_i^r - t + T_{ij}^r) - \sum_{i \geq 0} \sum_{j=1}^{L_i'} f(T_i^r - t + T_{ij}^r) \right| > u \right) = 0.
$$

Assume that the support of f is contained in $(-C, C)$, for some $C > 0$. Observe that for $K > C$

$$
\mathbb{P}\left(\left| \sum_{i \geq 0} \sum_{j=1}^{L_i'} \mathbb{I}_{(|T_i^r - t| \leq K)} f(T_i^r - t + T_{ij}^r) \right| > u \right)
$$

$$
= \mathbb{P}\left(\left| \sum_{i \geq 0} \sum_{j=1}^{L_i'} \mathbb{I}_{(|T_i^r - t| > K)} f(T_i^r - t + T_{ij}^r) \right| > u \right)
$$

$$
\leq \mathbb{P}\left(\exists i \geq 0, j \leq L_i' : |T_i^r - t| > K, |T_i^r - t + T_{ij}^r| < C \right).
$$

Denote

$$
\sigma(t) = \inf \{ i \geq 0 : T_i^r > t \}
$$

and observe that the last expression above is bounded by

$$
\mathbb{P}\left(\exists i : T_i^r - t < -K, T_i^r - t + R_i^r > -C \right) + \mathbb{P}\left(\exists i : T_i^r - t > K, T_i^r - t - R_i^r < C \right)
$$

$$
\leq \mathbb{P}(T_0^r - t < -K, T_0^r - t + R_0^r > -C)
$$

$$
+ \sum_{i \geq 1} \mathbb{P}(T_{i-1}^r - t < -K, T_{i-1}^r - t + X_i^r + R_i^r > -C)
$$

$$
+ \mathbb{P}(T_{\sigma(t+K)}^r - (t + K) - R_{\sigma(t+K)}^r < C - K)
$$

$$
+ \sum_{i \geq 1} \mathbb{P}(T_{i-1}^r - t > K, T_{i-1}^r + X_i^r - t - R_i^r < C)
$$

$$
=: I_0^+(t, K) + I_1^+(t, K) + I_0^-(t, K) + I_1^-(t, K).
$$

It is easy to see that

$$
\lim_{K \to \infty} \lim_{t \to \infty} I_0^+(t, K) \leq \lim_{K \to \infty} \mathbb{P}(R_0^r > K - C) = 0.
$$

Denote by $U^r = \sum_{i \geq 0} F_{T_i^r}$ the renewal function, where $F_{T_i^r}$ is the distribution function of the arrival time T_i^r. Then, using the independence between T_i^r and X_i^r, R_i^r, for all $i \geq 1$, we obtain

$$
I_1^+(t, K) = \sum_{i \geq 1} \int_{0}^{t-K} \mathbb{P}(y - t + X_i^r + R_i^r > -C) dF_{T_{i-1}^r}(y)
$$

$$
= \int_{0}^{t-K} \mathbb{P}(X_i^r + R_i^r + C - K > t - K - y) dU^r(y).
$$

Observe that the function $y \mapsto \mathbb{P}(X_1^r + R_1^r + C - K > y)$ is nonnegative, nonincreasing and Riemann integrable on \mathbb{R}_+, since

$$
\int_{0}^{\infty} \mathbb{P}(X_1^r + R_1^r + C - K > y) dy = \int_{K-C}^{\infty} \mathbb{P}(X_1^r + R_1^r > y) dy \leq \mathbb{E}[X_1^r + R_1^r] < \infty,
$$
by integrability assumptions on X'_1 and R'_1. By Remark 3.10.3 in [26], it is also a directly Riemann integrable function on \mathbb{R}_+, hence by the key renewal theorem (see e.g. Theorem 3.10.1 in [26]) and integrability assumptions on X'_1 and R'_1

$$\lim_{K \to \infty} \lim_{t \to \infty} \sup I^+_1(t, K) = \lim_{K \to \infty} \frac{1}{\mu} \mathbb{E}(X'_1 + R'_1 + C - K)_+ = 0.$$

It is a simple consequence of Theorem 2.1 and Theorem 4.11 in [17] that

$$(T'_{\sigma(t)} - t, R'_{\sigma(t)}) \overset{d}{\to} (T_0, R_0),$$

as $t \to \infty$, where $R_0 = \sup_{j \leq L_0} |T_0_j|$. Hence, by the continuous mapping argument it follows that

$$\lim_{K \to \infty} \lim_{t \to \infty} \sup I^-_1(t, K) = \lim_{K \to \infty} \mathbb{P}(R_0 > K - C) = 0.$$

As before, using independence assumption between T'_{i-1} and X'_i, R'_i, for all $i \geq 1$, we obtain

$$I^-_1(t, K) = \int_{t+K}^{\infty} \mathbb{P}(X'_1 - R'_1 - C < t + K - y) dU'(y) \leq \int_{t+K}^{\infty} \mathbb{P}(-R'_1 - C < t + K - y) dU'(y).$$

Note that the function $g : \mathbb{R} \to \mathbb{R}_+$ given by $g(y) = \mathbb{P}(-R'_1 - C < y)$ is nonnegative, nondecreasing and, by integrability assumption on R'_1, Riemann integrable on $(-\infty, 0]$. Another application of Remark 3.10.3 in [26] (now applied to $g(-y)$) yields that g is a directly Riemann integrable function on $(-\infty, 0]$. Hence, by a variant of the key renewal theorem and integrability assumptions on X'_1 and R'_1

$$\lim_{K \to \infty} \lim_{t \to \infty} \sup I^-_1(t, K) = \lim_{K \to \infty} \frac{1}{\mu} \mathbb{E}(-R'_1 - C + K)_- = 0,$$

which completes the proof.

4.4 Proof of Lemma 3.6

Proof. Based on the position of the cluster centers T'_i, we obtain the following decomposition

$$\xi'(t, t + x) = \xi'_1(t, t + x) + \xi'_2(t, t + x) + \xi'_3(t, t + x),$$

where

$$\xi'_1(t, t + x) = \sum_{i \geq 0} \sum_{j=1}^{L'_i} \mathbb{1}_{\{T'_i + T'_i j \in (t, t+x] \}} \mathbb{1}_{\{T'_i \leq t\}},$$

$$\xi'_2(t, t + x) = \sum_{i \geq 0} \sum_{j=1}^{L'_i} \mathbb{1}_{\{T'_i + T'_i j \in (t, t+x] \}} \mathbb{1}_{\{t < T'_i \leq t+x\}}$$

15
\[\xi'_i(t, t + x) = \sum_{i \geq 0} \sum_{j=1}^{L'_i} \mathbb{1}(T'_i + T'_j \in (t, t+x)) \mathbb{1}(T'_i > t+x). \]

Note that if \(T'_{ij} \) take only negative values, \(\xi'_i(t, t + x) \) is identically 0. Hence, when dealing with this term, one needs to take care only of \(T'_i \geq 0 \), for all \(i, j \leq L'_i \). Similarly, when dealing with \(\xi'_i(t, t + x) \) one can ignore positive \(T'_i \) and assume that \(T'_i \leq 0 \), for all \(i, j \leq L'_i \). These simple observations will be useful in the sequel. Here we show uniform integrability of the term \(\xi'_i \), the other two terms can be handled similarly, we refer to \([8]\) for details. Once the uniform integrability of all three terms is proved, statement of the lemma follows by Theorem 4.6 in Chapter 5 of \([13]\).

Observe that
\[\xi'_1(t, t + x) \leq \sum_{i \geq 0} L'_i \mathbb{1}(T'_{i-1} + X'_i + R'_i > t) \mathbb{1}(T'_i \leq t) \]
\[\leq L'_0 + \sum_{i \geq 1} L'_i \mathbb{1}(T'_{i-1} + X'_i + R'_i > t) \mathbb{1}(T'_i \leq t) =: L'_0 + I'_1(t). \] (14)

Trivially, an integrable random variable \(L'_0 \) is uniformly integrable. For the other term in the above relation, using the independence between \(T'_{i-1} \) and \(X'_i, L'_i, R'_i \), for all \(i \geq 1 \), we get
\[\mathbb{E} I'_1(t) = \mathbb{E} \left[\sum_{i \geq 1} \mathbb{E} \left[L'_i \mathbb{1}(T'_{i-1} + X'_i + R'_i > t) \mathbb{1}(T'_i \leq t) \mid T'_{i-1} \right] \right] \]
\[= \sum_{i \geq 1} \int_0^t \mathbb{E} \left[L'_i \mathbb{1}(X'_i + R'_i > t-y) \mathbb{1}(X'_i \leq y) \mid T'_{i-1} \right] dF_{T'_{i-1}}(y) \]
\[= \int_0^t \mathbb{E} \left[L'_i \mathbb{1}(X'_i + R'_i > t-y) \mathbb{1}(X'_i \leq y) \right] dU'(y). \]

By the key renewal theorem, as \(t \to \infty \), the above expression converges to
\[\frac{1}{\mu} \int_0^\infty \mathbb{E} \left[L'_i \mathbb{1}(X'_i + R'_i > y) \mathbb{1}(X'_i \leq y) \right] dy = \frac{1}{\mu} \mathbb{E} \left[L'_1 \int_{X'_i}^{X'_i + R'_i} dy \right] = \frac{1}{\mu} \mathbb{E}[L'_1 R'_i] =: c_1 , \]
if \(y \mapsto \mathbb{E} \left[L'_i \mathbb{1}(X'_i + R'_i > y) \mathbb{1}(X'_i \leq y) \right] \) is a directly Riemann integrable function on \(\mathbb{R}_+ \). For instance, this can be shown by Remarks 3.10.2, 3.10.5 in \([26]\) and Assumption \([5.5]\).

Let \(R_i = \sup_{j \leq L_i} |T_{ij}| \), for all \(i \in \mathbb{Z} \). We now show that, as \(t \to \infty \),
\[I'_1(t) \overset{d}{\to} \sum_{i \leq 1} L_i \mathbb{1}(T_i + R_i > 0) =: I'_1 , \]
by checking the conditions of Theorem 4.2 from \([6]\). Simple modifications in the proof of Theorem \([3.3]\) give
\[\sum_{i \geq 1} L'_i \delta_{T'_{i-1} + R'_i} \mathbb{1}(T'_i \leq t) \overset{d}{\to} \sum_{i \leq 1} L_i \delta_{T_i + R_i} , \]
hence Theorem 4.11 in \([17]\) yields
\[\sum_{i \geq 1} L'_i \mathbb{1}(0 < T'_{i-1} + R'_i \leq M) \mathbb{1}(T'_i \leq t) \overset{d}{\to} \sum_{i \leq 1} L_i \mathbb{1}(0 < T_i + R_i \leq M) , \]
as \(t \to \infty \), for an arbitrary \(M > 0 \). Considering the random variable on the right hand side, letting \(M \to \infty \) and applying the monotone convergence theorem, we get

\[
\sum_{i \leq -1} L_i 1_{\{-T_i + R_i \leq M\}} \overset{d}{\to} \sum_{i \leq -1} L_i 1_{\{T_i + R_i > 0\}}.
\]

It now remains to show that for every \(u > 0 \)

\[
\lim_{M \to \infty} \limsup_{t \to \infty} \mathbb{P}\left(\left| \sum_{i \geq 1} L_i 1_{\{0 < T_i - t + R_i \leq M\}} 1_{\{T_i \leq t\}} - I'_1(t) \right| > u \right) = 0.
\]

Indeed,

\[
\mathbb{P}\left(\left| \sum_{i \geq 1} L_i 1_{\{0 < T_i - t + R_i \leq M\}} 1_{\{T_i \leq t\}} - \sum_{i \geq 1} L_i 1_{\{T_i - t + R_i > 0\}} 1_{\{T_i \leq t\}} \right| > u \right)
\]

\[
\leq \mathbb{P}(\exists i \geq 1 : T_i' - t + R_i' > M, T_{i-1}' \leq t)
\]

\[
\leq \sum_{i \geq 1} \mathbb{P}(T_i' - X_i' - t + R_i' > M, T_{i-1}' \leq t)
\]

\[
= \int_0^t \mathbb{P}(X_i' + R_i' - M > t - y) dU'(y),
\]

which converges by the key renewal theorem to

\[
\frac{1}{\mu} \int_0^\infty \mathbb{P}(X_i' + R_i' - M > y) dy = \frac{1}{\mu} \mathbb{E}(X_i' + R_i' - M),
\]

as \(t \to \infty \). It is easy to show that the integrability assumptions on \(X_i' \) and \(R_i' \) assure that the conditions of the key renewal theorem are satisfied. Under the same integrability assumptions, we conclude that the above expression converges to 0, as \(M \to \infty \).

By construction, \(T_i \) is independent of \(R_i, L_i \), and \(T_i \overset{d}{=} -T_{i-1}, X_i \overset{d}{=} X_i', R_i \overset{d}{=} R_i' \) and \(L_i \overset{d}{=} L_i' \), for all \(i \leq -1 \). Hence, we obtain

\[
\mathbb{E}I'_1 = \mathbb{E}\left[\sum_{i \leq -1} L_i 1_{\{T_i + R_i > 0\}} \right] = \mathbb{E}\left[\sum_{i=-\infty}^{-1} \mathbb{E}[L_i 1_{\{T_i + R_i > 0\}} | T_i] \right]
\]

\[
= \int_0^\infty \sum_{i=-\infty}^{-1} \mathbb{E}[L_i 1_{\{y + R_i > 0\}}] dF_{T_i}(y) = \int_0^\infty \sum_{i=0}^{\infty} \mathbb{E}[L_i 1_{\{y + R_i > 0\}}] dF_{T_i}(-y)
\]

\[
= \int_0^\infty \mathbb{E}[L_i 1_{\{R_i > y\}}] dU(y) = \frac{1}{\mathbb{E}X_1} \int_0^\infty \mathbb{E}[L_i 1_{\{R_i > y\}}] dy = \frac{1}{\mu} \mathbb{E}[L_1 R_1] = c_1,
\]

which is finite by the assumptions.

We have shown that

\[
\mathbb{E}I'_1(t) \to c_1, \quad I'_1(t) \overset{d}{=} I'_1 \quad \text{and} \quad \mathbb{E}I'_1 = c_1 < \infty,
\]

hence, by Lemma 5.11 in [13], \(I'_1(t), t \geq 0 \) are uniformly integrable random variables. Applying first Theorem 4.6 and then Theorem 4.5 in Chapter 5 of [13] to (11), we conclude that \(\xi_1(t, t + x), t \geq 0 \) are also uniformly integrable random variables.
4.5 Proof of Lemma 3.9

Proof. For all $t \geq 0$

$$U'_e(t) \leq \mathbb{E}L'_0 + \mathbb{E} \left[\sum_{i=1}^{\infty} L'_i 1_{\{T'_i - R'_i \leq t \} \cap \{T'_i \leq t \}} \right] + \mathbb{E} \left[\sum_{i=1}^{\infty} L'_i 1_{\{T'_i - R'_i \leq t \} \cap \{T'_i > t \}} \right]. \tag{15}$$

The first term in (15) is finite by the assumption. For the second term, observe that

$$\mathbb{E} \left[\sum_{i=1}^{\infty} L'_i 1_{\{T'_i - R'_i \leq t \} \cap \{T'_i \leq t \}} \right] \leq \mathbb{E} \left[\sum_{i=1}^{\infty} L'_i 1_{\{T'_{i-1} \leq t \}} \right] = \mathbb{E}L'_1 U'(t) < \infty,$$

by the integrability assumption on L'_1 and Theorem 3.3. in [26]. As in the proof of Lemma 3.6, one can show that as $t \to \infty$

$$\mathbb{E} \left[\sum_{i=1}^{\infty} L'_i 1_{\{T'_i - R'_i \leq t \} \cap \{T'_i > t \}} \right] \to c < \infty, \tag{16}$$

where

$$c = \frac{1}{\mu} \mathbb{E}[L'_1(X'_1 - (X'_1 - R'_1)_+)] + \frac{1}{\mu} \mathbb{E}[L'_1(R'_1 - X'_1)_+] .$$

Indeed, observe that

$$\mathbb{E} \left[\sum_{i=1}^{\infty} L'_i 1_{\{T'_i - R'_i \leq t \} \cap \{T'_i > t \}} \right]$$

$$= \mathbb{E} \left[\sum_{i=1}^{\infty} L'_i 1_{\{T'_i - R'_i \leq t \} \cap \{T'_{i-1} \leq t \}} \right] + \mathbb{E} \left[\sum_{i=1}^{\infty} L'_i 1_{\{T'_i - R'_i \leq t \} \cap \{T'_{i-1} > t \}} \right]$$

$$= \int_{0}^{t} \mathbb{E}[L'_i 1_{\{X'_i - R'_i \leq t - y \} \cap \{X'_i > t - y \}] \, dU'(y) + \int_{t}^{\infty} \mathbb{E}[L'_i 1_{\{X'_i - R'_i \leq t - y \}] \, dU'(y) ,$$

where we have used the independence between T'_{i-1} and X'_i, R'_i, for all $i \geq 1$, in the last equality. It is easy to show that integrability assumptions together with Remark 3.10.2 and Remark 3.10.3 in [26] justify the use of the key renewal theorem, hence

$$\mathbb{E} \left[\sum_{i=1}^{\infty} L'_i 1_{\{T'_i - R'_i \leq t \} \cap \{T'_i > t \}} \right] \to c .$$

By our integrability assumptions, the limiting value c is finite. Therefore, the left hand is finite for all large enough t as well. From (15), we can conclude that the nondecreasing renewal function $U'_e(t)$ has to be finite for all t sufficiently large. Finally, since it is nonnegative and nondecreasing, the renewal function has to be finite for all t.

\[\square \]

4.6 Proof of Corollary 3.10

Recall, the definition of the renewal function U'_e and the corresponding renewal measure. Let G denote distribution of X'_0 and F common distribution of X'_i, $i \geq 1$. Consider first the classical renewal equation

$$U'(t) = G(t) + F \ast U'(t), \quad t \geq 0 ,$$

18
where \(U'(t) = \mathbb{E}\left[\sum_{i=0}^{\infty} \mathbbm{1}_{\{T_i \leq t\}} \right] = \mathbb{E}\left[\sum_{i=0}^{\infty} \delta_{T_i}[0,t] \right] \). Using the independence assumption between \(T_{i-1} \) and \(L_i'(T_j') \), for all \(i \geq 1 \), we get that

\[
U_{\xi'}(t) = \mathbb{E}\left[\sum_{i=0}^{\infty} \sum_{j=1}^{L_i} \delta_{T_i'+T_j'}(-\infty,t) \right] = \phi(t) + \mathbb{E}\left[\sum_{i=1}^{\infty} \sum_{j=1}^{L_i} \mathbbm{1}_{\{T_{i-1} + X_i' + T_j' \leq t\}} | T_{i-1} \right] = \phi(t) + \int_{0}^{\infty} \mathbb{E}\left[\sum_{j=1}^{L_i} \mathbbm{1}_{\{X_i' + T_j' \leq t-y\}} \right] dF'_{T_{i-1}}(y)
\]

where \(\phi(t) = \mathbb{E}\left[\sum_{j=1}^{L_i} \mathbbm{1}_{\{T_0 + T_0' \leq t\}} \right] \) and \(\psi(t) = \mathbb{E}\left[\sum_{j=1}^{L_i} \mathbbm{1}_{\{X_i' + T_j' \leq t\}} \right] \), \(t \in \mathbb{R} \). One now easily obtains a convolution equation

\[
U_{\xi'}(t) = \phi(t) + U' * \psi(t) = \phi(t) + (G + F * U') * \psi(t) = (1 - F') * \phi(t) + G * \psi(t) + F * \phi(t) + F * U' * \psi(t) = (1 - F') * \phi(t) + G * \psi(t) + F * U_{\xi'}(t),
\]

for all \(t \geq 0 \).

Proof of Corollary 3.10. The proof is divided into three steps, with successively more complex \(g \).

Step 1. Suppose

\(g(t) = \mathbbm{1}_{(t,k-1)h,th)j}(t), \quad t \geq 0, \)

for a fixed \(k \in \mathbb{N} \) and \(h > 0 \). Then \(g(t) = 1 \) if and only if \(t - kh < y \leq t - (k-1)h \), thus

\[
\int_{0}^{t} g(t-y) dU_{\xi'}(y) = U_{\xi'}(t-kh, t-(k-1)h] \mathbbm{1}_{\{t \geq kh\}} + U_{\xi'}(0,t-(k-1)h] \mathbbm{1}_{\{t \leq kh\}}.
\]

Observe that for all \(t \in [(k-1)h,kh) \),

\[
U_{\xi'}(0,t-(k-1)h] \leq U_{\xi'}(h) < \infty,
\]

hence Corollary 3.7 yields

\[
\lim_{t \to \infty} \int_{0}^{t} g(t-y) dU_{\xi'}(y) = \frac{1}{\mu} E L_1' h + 0 = \frac{1}{\mu} E L_1' \int_{0}^{\infty} g(y) dy.
\]

Step 2. Suppose

\(g(t) = \sum_{k \geq 1} c_k \mathbbm{1}_{(k-1),kh)}(t), \quad t \geq 0, \)

where \((c_k)_{k \geq 1}\) is a sequence of nonnegative numbers such that \(\sum_{k \geq 1} c_k < \infty \) and \(h \) is chosen so that \(F(h) < 1 \). Then

\[
\int_{0}^{t} g(t-y) dU_{\xi'}(y) = \sum_{k=1}^{\infty} c_k U_{\xi'}(t-kh, t-(k-1)h] \mathbbm{1}_{\{t \geq kh\}}
\]

19
\[+ \sum_{k=1}^{\infty} c_k U_{x'}(0, t - (k - 1)h) \mathbb{1}_{\{(k-1)h \leq t < kh\}}. \]

For each \(k \in \mathbb{N} \) and \(t \geq kh \), we have
\[
\lim_{t \to \infty} U_{x'}(t - kh, t - (k - 1)h) = \frac{1}{\mu} \mathbb{E} L'_1 h.
\]

It follows from the equation (17), that
\[
\phi(t) + G \ast \psi(t) \geq (1 - F) \ast \phi(t) + G \ast \psi(t) = (1 - F) \ast U_{x'}(t),
\]
hence
\[
\mathbb{E} L'_0 + \mathbb{E} L'_1 \geq \mathbb{E} L'_0 + \int_0^\infty \mathbb{E} L'_1 dG(y)
\]
\[
\geq \phi(t - (k - 1)h) + \int_0^\infty \psi(t - (k - 1)h - y)dG(y)
\]
\[
\geq \int_{t-kh}^{t-(k-1)h} (1 - F(t - (k - 1)h - y))dU_{x'}(y)
\]
\[
\geq (1 - F(h))U_{x'}(t - kh, t - (k - 1)h].
\]

Therefore
\[
\sup_{t,k} U_{x'}(t - kh, t - (k - 1)h] \leq \frac{\mathbb{E} L'_0 + \mathbb{E} L'_1}{1 - F(h)},
\]
which is finite by integrability assumptions on \(L'_0, L'_1 \) and choice of \(h \). For an arbitrary \(k \) and \(t \in ((k - 1)h, kh) \), recall (18). Hence, by the dominated convergence theorem
\[
\lim_{t \to \infty} \int_0^t g(t - y)dU_{x'}(y) = \frac{1}{\mu} \mathbb{E} L'_1 h \sum_{k \geq 1} c_k + 0 = \frac{1}{\mu} \mathbb{E} L'_1 \int_0^{\infty} g(y) dy.
\]

Step 3. Let \(g \) be an arbitrary directly Riemann integrable function on \(\mathbb{R}_+ \) and define
\[
\overline{g}(t) = \sum_{k=1}^{\infty} \sup_{(k-1)h \leq y < kh} g(y) \mathbb{1}_{[(k-1)h, kh)}(t)
\]
\[
g(t) = \sum_{k=1}^{\infty} \inf_{(k-1)h \leq y < kh} g(y) \mathbb{1}_{[(k-1)h, kh)}(t),
\]
for all \(t \geq 0 \). By the definition of direct Riemann integrability on \(\mathbb{R}_+ \) (see e.g. Chapter XI in [12])
\[
\sum_{k=1}^{\infty} \inf_{(k-1)h \leq y < kh} g(y) \leq \sum_{k=1}^{\infty} \sup_{(k-1)h \leq y < kh} g(y) < \infty,
\]
thus \(\overline{g} \) and \(g \) have the same structure as the functions considered in Step 2. Denote
\[
\overline{g}(h) = h \sum_{k=1}^{\infty} \sup_{(k-1)h \leq y < kh} g(y) \quad \text{and} \quad g(h) = h \sum_{k=1}^{\infty} \inf_{(k-1)h \leq y < kh} g(y).
\]
It follows that
\[
\frac{1}{\mu} E L_1' \sigma(h) = \lim \inf_{t \to \infty} \int_0^t g(t - y) dU_{\xi'}(y) \leq \lim \inf_{t \to \infty} \int_0^t g(t - y) dU_{\xi'}(y) \\
\leq \lim \sup_{t \to \infty} \int_0^t g(t - y) dU_{\xi'}(y) \leq \lim \sup_{t \to \infty} \int_0^t \sigma(t - y) dU_{\xi'}(y) = \frac{1}{\mu} E L_1' \sigma(h),
\]
(19)
since \(g \leq g \leq \overline{g} \). By the definition of direct Riemann integrability on \(\mathbb{R}_+ \)
\[
\lim_{h \to 0} (\sigma(h) - \underline{\sigma}(h)) = 0
\]
and by Remark 3.10.2 in [20]
\[
\lim_{h \to 0} \overline{\sigma}(h) = \int_0^\infty g(y) dy.
\]
Hence, letting \(h \to 0 \) in (19) the result follows.

\[\Box\]

Acknowledgment

We sincerely thank the anonymous referee for careful reading of the manuscript and several very helpful comments. The work of Bojan Basrak was financed in part by the Croatian-Swiss Research Program of the Croatian Science Foundation and the Swiss National Science Foundation - grant IZHRZ0 - 180549 and HRZZ grant IP-2022-10-2277.

References

[1] Alsmeyer, G. Renewal, recurrence and regeneration (2010), Accessed September 19, 2023, https://www.uni-muenster.de/Stochastik/alsmeyer/Skripten/rt_book.pdf.

[2] Araman, V. F. and Glynn, P. W. Tail asymptotics for the maximum of perturbed random walk, *Ann. Appl. Probab.*, 16 (3), 1411–1431 (2006).

[3] Baccelli, F. and Brémaud, P. *Elements of queueing theory*, volume 26 of *Applications of Mathematics (New York)*, Springer-Verlag, Berlin, second edition (2003), Palm martingale calculus and stochastic recurrences.

[4] Baccelli, F., Błaszczyszyn, B., and Karray, M. Random measures, point processes, and stochastic geometry (2020), Accessed September 19, 2023, https://hal.inria.fr/hal-02460214/document.

[5] Basrak B. and Planinić H. A note on vague convergence of measures, *Statist. Probab. Lett.*, 153, 180–186 (2019).

[6] Billingsley, P. *Convergence of probability measures*, John Wiley & Sons, Inc., New York, 1968.

[7] Chung, K. L. and Fuchs, W. H. J. On the distribution of values of sums of random variables, *Mem. Amer. Math. Soc.*, 6, 12 (1951).
[8] Dajaković, M. *Elements of renewal theory for cluster point processes*. Ph.D. thesis, University of Zagreb (2022).

[9] Daley, D. J. and Vere-Jones, D. *An introduction to the theory of point processes. Vol. I*, Probability and its Applications (New York), Springer-Verlag, New York, second edition (2003), Elementary theory and methods.

[10] Durrett, R. *Probability: theory and examples*, volume 31 of *Cambridge Series in Statistical and Probabilistic Mathematics*, Cambridge University Press, Cambridge, fourth edition (2010).

[11] Fajj, G., González-Arévalo, B., Mikosch, T., and Samorodnitsky, G. Modeling teletraffic arrivals by a Poisson cluster process, *Queueing Syst.*, **54** (2), 121–140 (2006).

[12] Feller, W. *An introduction to probability theory and its applications. Vol. II*, John Wiley & Sons, Inc., New York, second edition (1971).

[13] Gut, A. *Probability: a graduate course*, Springer Texts in Statistics, Springer, New York (2005).

[14] Iksanov, A. *Renewal theory for perturbed random walks and similar processes*, Probability and its Applications, Birkhäuser/Springer, Cham (2016).

[15] Iksanov, A., Marynych, A., and Meiners, M. Asymptotics of random processes with immigration II: Convergence to stationarity, *Bernoulli*, **23** (2), 1279–1298 (2017).

[16] Jelenković, P. R. and Olvera-Cravioto, M. Implicit renewal theorem for trees with general weights, *Stochastic Process. Appl.*, **122** (9), 3209–3238 (2012).

[17] Kallenberg, O. *Random measures, theory and applications*, volume 77 of *Probability Theory and Stochastic Modelling*, Springer, Cham (2017).

[18] Kallenberg, O. *Foundations of modern probability*, volume 99 of *Probability Theory and Stochastic Modelling*, Springer, Cham, third edition (2021).

[19] Korshunov, D. The key renewal theorem for a transient Markov chain, *J. Theoret. Probab.*, **21** (1), 234–245 (2008).

[20] Last, G. and Penrose, M. *Lectures on the Poisson process*, volume 7 of *Institute of Mathematical Statistics Textbooks*, Cambridge University Press, Cambridge (2018).

[21] Lewis, P. A. W. A branching Poisson process model for the analysis of computer failure patterns (with discussion), *J. Roy. Statist. Soc. Ser. B*, **26**, 398–456 (1964).

[22] Lewis, P. A. W. Asymptotic properties and equilibrium conditions for branching Poisson processes, *J. Appl. Probability*, **6**, 355–371 (1969).

[23] Marynych, A. V. A note on convergence to stationarity of random processes with immigration, *Theory Stoch. Process.*, **20** (1), 84–100 (2015).

[24] Matsui, M. and Mikosch, T. Prediction in a Poisson cluster model, *J. Appl. Probab.*, **47** (2), 350–366 (2010).
[25] Onof, C., Chandler, R. E., Kakou, A., Northrop, P., Wheater, H. S., and Isham, V. Rainfall modelling using Poisson-cluster processes: a review of developments, *Stoch. Environ. Res. Risk Assess.*, 14 (6), 384–411 (2000).

[26] Resnick, S. I. *Adventures in stochastic processes*, Birkhäuser Boston, Inc., Boston (1992).

[27] Sigman, K. Stationary marked point processes, in *Springer handbook of engineering statistics* (Pham, H. editor), 137–152, Springer, London (2006).

[28] Thorisson, H. *Coupling, stationarity, and regeneration*, Probability and its Applications (New York), Springer-Verlag, New York (2000).

[29] Vere-Jones, D. Stochastic models for earthquake occurrence, *J. Roy. Statist. Soc. Ser. B*, 32, 1–62 (1970).