Band offsets of non-polar A-plane GaN/AlN and AlN/GaN heterostructures measured by X-ray photoemission spectroscopy

Ling Sang¹*, Qin Sheng Zhu², Shao Yan Yang², Gui Peng Liu², Hui Jie Li², Hong Yuan Wei², Chun Mei Jiao², Shu Man Liu², Zhan Guo Wang², Xiao Wei Zhou³, Wei Mao³, Yue Hao³ and Bo Shen¹*

Abstract
The band offsets of non-polar A-plane GaN/AlN and AlN/GaN heterojunctions are measured by X-ray photoemission spectroscopy. A large forward-backward asymmetry is observed in the non-polar GaN/AlN and AlN/GaN heterojunctions. The valence-band offsets in the non-polar A-plane GaN/AlN and AlN/GaN heterojunctions are determined to be 1.33 ± 0.16 and 0.73 ± 0.16 eV, respectively. The large valence-band offset difference of 0.6 eV between the non-polar GaN/AlN and AlN/GaN heterojunctions is considered to be due to piezoelectric strain effect in the non-polar heterojunction overlayers.

Keywords: GaN/AlN; Heterostructure; X-ray photoemission spectroscopy; Non-polar

Background
During the last decade, group III-V nitrides are very promising semiconductor materials for application in high frequency heterojunction field-effect transistors (HFETs) [1-8]. Large band offsets at the heterojunctions are important to realize these device applications. To understand the band offsets between nitride materials at heterointerface is requested for fabricating devices. The heterojunction formed between GaN and AlN is particularly application-oriented because of their large band gap difference induced by the polarization properties of nitride materials [9-11]. Several groups have reported ΔE_V values for GaN/AlN heterojunctions fabricated by different growth techniques and determined the value of ΔE_V in a range from 0.5 to 1.4 eV [12]. However, these GaN/AlN heterojunctions reported were nearly deposited all on (0001) orientation substrates. Especially, Martin et al. reported valence-band offsets of GaN/AlN and AlN/GaN heterojunctions on C-plane sapphire substrates were 0.60 ± 0.24 and 0.57 ± 0.22 eV, respectively, both values were almost the same to each other [13]. In recent years, non-polar nitride heterostructure has drawn great interest owing to its potential applications in normally-off HEMT, high-efficiency field-free deep-ultraviolet (UV) light emitting diodes (LEDs) with wavelengths of 200 to 300 nm or sensors and so on. Non-polar nitride can eliminate internal polarization fields because of the absence of spontaneous polarization in the non-polar materials. However, the valence-band offset of non-polar A-plane GaN/AlN heterostructures has been studied by few. In this paper, we studied valence-band offsets of non-polar A-plane GaN/AlN and AlN/GaN heterostructures deposited on R-plane sapphire substrates measured by X-ray photoemission spectroscopy (XPS).

Methods
The samples investigated were grown on R-plane sapphire substrates by metal-organic chemical vapor deposition (MOCVD). Four samples were used in our XPS experiments, namely, a 1.5-μm-thick GaN layer, 250-nm AlN layer, 5-nm GaN/250-nm AlN heterojunction, and 5-nm AlN/1.5-μm GaN heterojunction. Triethylgallium (TEGa), trimethylaluminum (TMAl), and ammonia (NH₃) were used as the sources of Ga, Al, and N, respectively. The carrier gas was high-purity hydrogen. Before growing GaN and AlN layers, R-plane (10 1 ̅ 2) sapphire substrates were thermally cleaned in H₂ ambient at 1,000°C for 10 min to remove the adsorbed water molecules and activate sapphire
Figure 1 XPS spectra of all samples. Ga 3d XPS spectra for (a) GaN, (c) GaN/AlN, and (e) AlN/GaN samples and Al 2p XPS spectra for (b) AlN, (d) GaN/AlN, and (f) AlN/GaN. Experimental data points are fitted by Voigt (mixed Lorentzian-Gaussian) line shapes (solid lines) after the application of a Tougaard background. Also shown are VB spectra for (g) GaN and (h) AlN. The peak and VBM positions are summarized in Table 1.
surface. Then, sapphire substrates were nitridized for 5 min at 1,000°C under a mixed gas of H₂ and NH₃. The growth temperature of GaN and AlN layer was 1,000°C and 1,100°C, respectively. The XPS measurements were performed on a PHI Quatro SXM instrument (Physical Electronics, Inc., Chanhassen, MN, USA) with Al Kα radiation (hν = 1,486.6 eV) at a pressure lower than 2 × 10⁻⁹ Torr. Charged displacement was calibrated by C 1 s (approximately 285 eV) photoelectron peak from contamination to compensate the charge effect.

Results and discussion

The valence-band offset (ΔEV) can be calculated from the following formula:

\[\Delta E_V = (E_{\text{CL}})_A - (E_{\text{CL}})_B + (E_{\text{Val}})_B - (E_{\text{Val}})_A \]

(1)

where A and B represents the GaN or AlN, \(\Delta E_{\text{CL}} = \pm (E_{\text{Ga}3d} - E_{\text{Al}2p}) \) is the energy difference between Ga 3d and Al 2p core levels (CLs), which are measured in the GaN/AlN (A-on-B) and AlN/GaN (B-on-A) heterojunction samples. \((E_{\text{CL}} - E_V) \) is the GaN or AlN bulk constants, which is obtained by XPS measurement on the respective thick film. Ga 3d and Al 2p XPS spectra are shown in Figure 1a,b,c,d,e,f) fitted using Tougaard backgrounds and Voigt (mixed Lorentzian-Gaussian) functions. Since considerable accordance of the fitted lines to the original measured data, the uncertainty of the Ga 3d and Al 2p core level positions were less than 0.03 and 0.01 eV, respectively, as evaluated by numerous fittings with different parameters. Figure 1a,c,e shows the Ga 3d spectrum of GaN bulk film, GaN/AlN, and AlN/GaN heterojunctions, which were fitted by two peaks, attributed to the bonding configurations Ga-N and N 2s, respectively. For Al 2p spectrum of AlN/GaN heterojunctions shown in Figure 1b,f, two fitting peaks are attributed to the bonding configurations Al-N and Al-O, respectively. The Al-O contribution is thought to be due to oxide contamination when samples are exposed to the air. For Al 2p spectrum of GaN/AlN heterojunctions shown in Figure 1d, only one fitting peak is attributed to the bonding configuration Al-N, which coincided with the sum fitting curve shown in black solid line (red dash and dot line represents the fitting peak of bonding configuration Al-N, not shown here). The VB XPS spectra for the thick GaN and AlN samples are shown in Figure 1g,h. The VB positions were determined by linear extrapolation of the leading edges of VB spectra to the base lines in order to account for the finite instrument resolution. The VB positions in the GaN and AlN VB XPS spectrum are determined to be 2.06 ± 0.03 and 2.74 ± 0.09 eV, respectively. The parameters deduced from Figure 1 are summarized in Table 1 for clarity. \(\Delta E_V \) in the non-polar GaN/AlN and AlN/GaN heterojunctions are calculated to be 1.33 ± 0.16 and 0.73 ± 0.16 eV, respectively, by substituting those experimental values into Equation (1).

Then, the conduction-band offsets (ΔEC) can be deduced from the following formula:

\[\Delta E_C = \left(E_{\text{VB}}^A - E_{\text{VB}}^B \right) - \Delta E_V \]

(2)

Using room temperature band gaps for GaN and AlN (3.39 and 6.2 eV, respectively, \(\Delta E_C \) in the non-polar GaN/AlN and AlN/GaN heterojunctions are calculated to be 1.48 ± 0.16 and 2.08 ± 0.16 eV, respectively, and the ratio of \(\Delta E_C : \Delta E_V \) is close to 11:10 and 57:20, respectively.

From the calculated results, we can see that there exists a large band offset difference of 0.6 eV between the non-polar A-plane GaN/AlN and AlN/GaN heterojunctions, which may be due to the strain-induced piezoelectric fields in the non-polar films [14,15]. There is no spontaneous polarization but only piezoelectric polarization exists in the non-polar films. The heterojunction underlayers are thick enough to relax the strain caused by the lattice mismatch between GaN and AlN layers, but the heterojunction thin overlayers are only 5-nm thick and at least partially strained. The strain induces static electric fields via the piezoelectric effect. The strain-induced piezoelectric fields tend to decrease the apparent valence-band offsets for nitride materials [13].

The piezoelectric polarization \(P_{\text{PE}} \) via the piezoelectric effect can be given by the following [16]:

\[P_{\text{PE}} = e_{\text{xx}} e_{\text{xx}} + e_{\text{yy}} (e_{\text{xx}} + e_{\text{yy}}) \]

(3)

Based on Hooke’s law and the symmetry of wurtzite III-nitride material, the stress tensor can be represented in Table 1.

Sample	State	Binding energy (eV)
GaN	Ga 3d	19.70 ± 0.03
		Ga-N
	VBM	20.70 ± 0.03
		N2s
AlN	Al 2p	73.85 ± 0.01
		Al-N
	VBM	75.05 ± 0.01
		Al-O
GaN/AlN	Al 2p	73.36 ± 0.01
		Al-N
GaN	Ga 3d	18.56 ± 0.03
		Ga-N
	VBM	19.96 ± 0.03
		N2s
AlN/GaN	Al 2p	73.43 ± 0.01
		Al-N
	VBM	74.63 ± 0.01
		Al-O
GaN	Ga 3d	19.23 ± 0.03
		Ga-N
	VBM	20.23 ± 0.03
		N2s
by the following strain tensor and elastic stiffness coefficient:

\[
\begin{pmatrix}
\sigma_{xx} \\
\sigma_{yy} \\
\sigma_{zz} \\
\sigma_{xz} \\
\sigma_{xy} \\
\sigma_{yz}
\end{pmatrix} = \begin{pmatrix}
C_{11} & C_{12} & C_{13} & 0 & 0 & 0 \\
C_{12} & C_{11} & C_{13} & 0 & 0 & 0 \\
C_{13} & C_{13} & C_{33} & 0 & 0 & 0 \\
0 & 0 & 0 & C_{44} & 0 & 0 \\
0 & 0 & 0 & 0 & C_{44} & 0 \\
0 & 0 & 0 & 0 & 0 & C_{66}
\end{pmatrix} \begin{pmatrix}
e_{xx} \\
e_{yy} \\
e_{zz} \\
e_{xy} \\
e_{yz} \\
e_{xz}
\end{pmatrix}
\] (4)

where \(C_{ij} \) is the elastic stiffness coefficient.

For A-plane III-nitride materials, the growth plane is in the y-z plane and the in-plane strain tensor is the bi-axial stress in which \(e_{yy} = e_{zz} \), the out-plane strain tensor is \(e_{xx} \), and the other strain tensors are zero \(e_{xy} = e_{xz} = e_{yx} = 0 \). Also, because there is not any restriction and effect along the growth direction of material, there is no stress along the growth direction, i.e., \(\sigma_{xx} = 0 \). Then, Equation (4) can be expressed as follows:

\[
e_{xx} = -\frac{C_{12}e_{yy} + C_{13}e_{zz}}{C_{11}} = -\frac{C_{12} + C_{13}}{C_{11}} e_{zz}
\] (5)

Equation (5) is substituted into the Equation (3), and we can obtain the expression of the piezoelectric polarization \(P_{PE} \) induced via the piezoelectric effect in the non-polar A-plane GaN/AlN and AlN/GaN heterojunctions as follows:

\[
P_{PE} = \frac{(a-a_0)}{a_0} \left[e_{31} -(e_{33} + e_{31}) \times \frac{C_{11}}{C_{12} + C_{13}} \right]
\] (6)

Then, the field magnitude induced via the piezoelectric effect in the non-polar A-plane GaN/AlN and AlN/GaN heterojunctions is expressed as follows:

\[
E = \frac{(a-a_0)}{\varepsilon a_0} \left[e_{31} -(e_{33} + e_{31}) \times \frac{C_{11}}{C_{12} + C_{13}} \right]
\] (7)

where \(a \) and \(a_0 \) are the lattice constants of the materials, \(\varepsilon \) is the static dielectric constant, \(e_{ij} \) is the piezoelectric coefficient, and \(C_{ij} \) is the elastic stiffness coefficient. The values used in this work are given in Table 2 [13,16-19].

The calculated electric fields in the strained regions are GaN(on AlN) = 2.176 × 10^8 and AlN(on GaN) = 5.346 × 10^8 V/m. Assuming critical heterojunction overlayer thicknesses of about 2 nm, therefore we can estimate the band offsets caused by the strain-induced piezoelectric fields in the overlayers GaN and AlN of the non-polar A-plane GaN/AlN and AlN/GaN heterojunctions to be 0.4352 and 1.0692 eV, respectively. There exists a band offset difference of 0.634 eV between them, which is almost equal to the valence-band-discontinuity difference of 0.6 eV between non-polar GaN/AlN and AlN/GaN heterojunctions we measured. Figure 2 shows the energy band diagram of the non-polar A-plane GaN/AlN and AlN/GaN heterojunctions. The dashed and solid lines represent the apparent energy band with and without strain-induced piezoelectric field in the heterojunction overlayers, respectively. Therefore, we can conclude that the large valence-band offsets between the non-polar A-plane GaN/AlN and AlN/GaN heterojunctions is most likely caused by the strain-induced piezoelectric fields in the heterojunction overlayers. Although we assume that the strain in the heterojunction overlayer can be released within 2 nm and obtain the above results, further analysis of the strain in the heterojunction overlayers and other physical properties will be discussed in our next paper in detail.

Conclusions

This paper reports the study of valence-band offsets in the non-polar A-plane GaN/AlN and AlN/GaN heterojunctions evaluated by XPS technique. The valence-band offsets in the non-polar GaN/AlN and AlN/GaN heterojunctions are predicted to be 1.33 ± 0.16 and 0.73 ± 0.16 eV, respectively. There exists a large valence-band offset difference of 0.6 eV between the non-polar A-plane GaN/AlN and AlN/GaN heterojunctions, which is most likely caused by the strain-induced piezoelectric fields in the heterojunction overlayers.
Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
LS and QSZ contributed to the main ideas of AlN/GaN heterostructures design and drafted the manuscript. GPL and HJL carried out the measurement of X-ray photoemission spectroscopy. XWX, WM, and YH carried out the MOCVD growth. SYH, HYW, CML, SML, ZGW, and BS gave important advices to the paper. All authors read and approved the final manuscript.

Acknowledgements
This work was supported by the National Basic Research Program of China (Nos. 2012CB619306 and 2012CB619303), NSFC (Nos. 61225019, 11023003, 10990102, 61404004, and 61076012), the ‘863’ Program of China (Grant Nos. 2011AA050514, 2011AA03A103, and 2011AA03A111), and the Research Fund for the Doctoral Program of Higher Education. This project was supported by the National Natural Science Foundation of China under Grant No.50900064. This work was supported by the National Science Foundation of China (No. 91233111, No. 61274041, No. 11275228, No. 61060004, and No. 61076001) and by the Special Funds for Major State Basic Research Project (973 program) of China (No. 2012CB619305) and also by the 863 High Technology R&D Program of China (No. 2011AA03A101).

Author details
1State Key Laboratory of Artificial Microstructure and Mesoscopic Physics, School of Physics, Peking University, Beijing 100871, China. 2Key Laboratory of Semiconductor Material Science, Beijing Key Laboratory of Low Dimensional Semiconductor Materials and Devices, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China. 3State Key Discipline Laboratory of Wide Band Gap Semiconductor Technology, Xidian University, Xi’an 710071, China.

Received: 4 July 2014 Accepted: 26 August 2014 Published: 4 September 2014

References
1. O’Leary SK, Foutz BE, Shur MS, Bhapkar UV, Eastman LF: Electron transport in wurtzite indium nitride. J Appl Phys 1998, 83:826–829.
2. Foutz BE, O’Leary SK, Shur MS, Eastman LF: Transient electron transport in wurtzite GaN, InN, and AlN. J Appl Phys 1999, 85:7727–7734.
3. Bhuiyan AG, Hashimoto A, Yamamoto A: Band offsets of non-polar A-plane GaN/AlN heterojunctions measured by x-ray photoemission spectroscopy. Nanoscale Research Letters 2014, 9:470.

Cite this article as: Sang et al.: Band offsets of non-polar A-plane GaN/AlN and AlN/GaN heterostructures measured by X-ray photoemission spectroscopy. Nanoscale Research Letters 2014 9:470.