Exploring Semantic Segmentation on the DCT Representation

Shao-Yuan Lo, Hsueh-Ming Hang
National Chiao Tung University

MMAsia 2019 Oral
December 18, 2019
Motivation

• Compressed domain analytics: Perform computer vision tasks (e.g., object classification, detection, tracking, segmentation) in the compressed domain directly.

• No need to perform decoding (reduce computation)
• Reuse encoded information
• Potentially decrease the complexity of computer vision systems (our research goal)
Motivation

• Semantic segmentation: Pixel-level predictions.
Motivation

• Extract features from compressed representations.

Input: Compressed data
e.g., JPEG (DCT coef.)

Output: Segmentation results
JPEG Compression

• Convert the color space from RGB to YCbCr.

• Perform block-wise (8×8 pixels) DCT.

• Quantize the DCT coefficients by a quantization matrix.

• Encode the coefficients by entropy encoding.
Network

- EDANet [Lo et al. 2019]

- A CNN for semantic segmentation

- High efficiency and low complexity
Dataset

• Cityscapes [Cordts et al. 2016]

• 19 classes (road, car, person, building, traffic sign, etc.)

• 5000 images

• Resolution: 1024 x 2048
DCT coefficients

• Take the DCT coefficients of images as the inputs of a CNN.
DCT coefficients

• CNN can use DCT coefficients to do segmentation but get lower accuracy.

Input	mIoU (%)
RGB	63.7*
DCT	59.3

*Models are trained with one-stage and through just 2/3 number of iterations compared to that in EDANet [16] since we compare the relative accuracy in our analysis.
Frequency Component Rearrangement

• Rearrange frequency information on the 3rd dimension.
• Input tensor: 512 x 1024 x 3 \rightarrow 64 x 128 x (64x3)
Frequency Component Rearrangement

DCT representation → FCR → FCRed DCT representation → CNN → Semantic segmentation
Frequency Component Rearrangement

• The accuracy drops a lot.

Input	mIoU (%)
RGB	63.7
DCT	59.3
FCRed DCT	37.8
DCT-EDANet

- Remove downsamplings
- Increase depths

EDANet

- Downsampling Block
- EDA Block 1
 - 5 modules
- Downsampling Block
- EDA Block 2
 - 8 modules

DCT-EDANet

- Initial Layer
- EDA Block
 - 22 modules
DCT-EDANet

- DCT-EDANet obtains a dramatic improvement.

Architecture	Input	mIoU (%)	Multi-Adds
EDANet	RGB	63.7	8.97B
EDANet	DCT	59.3	8.97B
EDANet	FCRed DCT	37.8	0.20B
DCT-EDANet	FCRed DCT	61.6	8.52B
DCT-EDANet

- Take the first 16 low-frequency coefficients of each 8x8 block as inputs.
- The accuracy gap between EDANet-DCT and DCT-EDANet is widened from 2.3% to 4.0%, which indicates DCTEDANet are more favorable when the inputs are condensed.

Input	mIoU (%)
EDANet-DCT-1/4coef	55.0
DCT-EDANet-1/4coef	59.0
Frequency Component Selection

- Different combinations of DCT coefficients as inputs.
- Purpose: Discover important coefficients so that we can take only these as inputs.
| Model | # input coef. | # Y coef. | # Cb coef. | # Cr coef. | mIoU (%) |
|--------------|---------------|-----------|------------|------------|----------|
| DCT-EDANet | 192 | 64 | 64 | 64 | 61.6 |
| M-64-0-0 | 64 | 64 | 0 | 0 | 59.8 |
| M-49-9-9 | 67 | 49 | 9 | 9 | 60.6 |
| M-36-16-16 | 68 | 36 | 16 | 16 | 61.2 |
| M-25-25-25 | 75 | 25 | 25 | 25 | 59.7 |
| M-16-16-16 | 48 | 16 | 16 | 16 | 59.0 |
| M-16-4-4 | 24 | 16 | 4 | 4 | 59.9 |
| M-16-1-1 | 18 | 16 | 1 | 1 | 57.4 |
| M-9-4-4 | 17 | 9 | 4 | 4 | 58.7 |
| M-0-0-16 | 16 | 0 | 0 | 16 | 46.4 |
Frequency Component Selection

• We found the best input component proportion is around 50:25:25, providing a guideline for future studies on DCT-domain analytics.

• This result is consistent with a principle of the JPEG compression algorithm, in which the chroma information is less critical and thus subsampled in the JPEG codec.
Quantization

• In the JPEG codec, if the compression is lossy, the quantization step is included.

• Compare DCT coefficients quantized by different Q-factors and their corresponding decompressed RGB images.
Quantization

- The proposed method can tolerate serious quantization errors.

Model	Quality factor	mIoU (%)
DCT-EDANet	No	61.6
M-QF70	70	60.5
M-QF50	50	60.6
M-QF30	30	60.0
Conclusion

• To our knowledge, this paper is the first to explore semantic segmentation on the DCT representation.

• We rearrange the DCT coefficients by using FCR. Then, we modify EDANet by discarding all the downsampling operations and deepening the network to maintain the network capacity.

• The elaborated analysis of DCT coefficient selections provides a guideline for future studies on compressed-domain analytics.
Thanks for your attention