An End-to-End Model for Question Answering over Knowledge Base with Cross-Attention Combining Global Knowledge

Authors: Hao et al.

Presenter: Shivank Mishra

Link to complete paper: https://aclweb.org/anthology/P/P17/P17-1021.pdf
What is Knowledge base?

• It is a special type of database system

How is it special?

• It uses AI and data within it to give answers and not just some data
Question Answering

• We use it to build systems that automatically answer questions posed by humans in natural language [1]
 • Input: Natural Language Query
 • Output: Direct Answer

[1] https://en.wikipedia.org/wiki/Question_answering
Why QA when there are other ways to search?

• Keyword Search:
 • Simple information needs
 • Vocabulary redundancy

• Structured queries:
 • Demand for absolute precision
 • Small & centralized schema

• QA:
 • Specification of complex information needs
 • Schema-less data
Outline

• Introduction
 • High level view
• Existing Research
• Prior Issues
• Overview of KB-QA system
• Solution
• Model Analysis
• Results
• Error Analysis
• Conclusion

“First, I want to give you an overview of what I will tell you over and over again during the entire presentation.”
Introduction

- This paper presents:
 - A novel cross-attention based Neural Network model for Knowledge Base – Question Answering (KB-QA).
 - Reduces the Out Of Vocabulary problem by using Global Knowledge Base.
Introduction - High level view

• Design an end-to-end neural network model to represent the questions and their corresponding scores dynamically according to the various candidate answer aspects via cross-attention mechanism.
Existing Research

• Emphasis on learning representations of the answer end
 • Subgraph for candidate answer, Bordes et. al 2014a
 • Question -> single vector, bag-of-words, Bordes et. al 2014b
 • Relatedness of answer end has been neglected
 • Context and type of the answer, Dong et. al., 2015
Dong et al (2015)

• Use three CNNs for different answer aspects:
 • Answer path
 • Answer context
 • Answer type

• However, keeping only three independent CNNs has made the model mechanical and inflexible

• Therefore the authors decided to propose a cross-attention based neural network
Prior Issues

1) The global information of the KB is deficient
 • Entities and relations – KB resources are limited

2) out-of vocabulary (OOV) problem
 • Many entities in testing candidate have never been seen.
 • Attention of resources become same due to common OOV embedding
Overview of KB-QA system

- Identify topic entity of the question
- Generate candidate answer from Freebase
- Run a cross-attention based neural network to represent Question under the influence of Answer
- Rank the answers by score
- Highest score gets added to the set
Cross-attention based neural network architecture
Solution

• Incorporate Freebase KB itself as training data with Q&A pairs
 • Ensure that the global KB information acts as additional supervision, and the
 interconnections among the resources are fully considered.

• The Out Of Vocabulary problem is relieved.
Overall Approach

• Candidate Generation
• Neural Cross-Attention Model
 • Question Representation
 • Answer aspect representation
 • Cross-attention model
 • A-Q attention
 • Q-A attention
• Training
• Inference
 • Combining Global Knowledge
Candidate Generation

• Utilize Freebase API to identify topic of the question
 • Use top1 result (Yao and Van Durme, 2014) to get 86% correct results
 • Get topic entity connected with that one hop, called two hop.
Cross-Attention Model

“re-reading” mechanism to better understand the question.

• Judge candidate answer:
• Look at answer type
• re-read question
• Look where should the attention be
• Go the next aspect
• re-read question
•
• Read all answer aspects and get weighted sum of all scores
Cross Attention

- **Question-towards-answer attention**

- \(\beta_{e_i} = \) Attention of question towards answer aspects in one \((q, a)\) pair

\[
W \in \mathbb{R}^{2d \times d}
\]

\(W \) is the intermediate matrix for Q-A attention is pooling all the bi-directional LSTM hidden state sequence.

\(\overline{q} \) Result = vector that represents the question to determine which aspect of question should be more focused.
Cross Attention

- **Answer-towards-question attention**
 - Helps learn question-answer weight
 - Extent of attention can be measured by the relatedness between each word representation h_j
 - Answer aspect embedding e_i.
 - α_{ij} denotes the weight of attention from answer aspect e_i to the jth word in the question, where $e_i \in \{e_e, e_r, e_t, e_c\}$.
 - $f(\cdot)$ is a non-linear activation function, such as hyperbolic tangent transformation here.
 - n is the length of the question
 - W is the intermediate matrix
 - B is offset
 - q is the question
Question Representation

- Question $q = (x_1, x_2, \ldots, x_n)$, x_i is the ith word
- $E_w \in \mathbb{R}^{d \times V_w}$
 - Let E_w be the word embedding matrix
 - $d =$ dimension of embeddings
 - $V_w =$ vocabulary size of natural language words

- Word embedding are fed into LSTM (good for harnessing long sentences)
 - Use bidirectional LSTM to forward and backward of a word x_i
 - Read question Left -> Right
 - Read question Right -> Left
Answer Retention

- Use KB embedding matrix $E_k \in \mathbb{R}^{d \times v_k}$
- $V_k =$ vocabulary size; $d =$ dimension
- $a_e =$ answer entity
- $a_r =$ answer relation
- $a_t =$ answer type
- $a_c =$ answer context (can contain multiple KB resources)
- Similarly we have embedding aspects

\[
\left(e_{c_1}, e_{c_2}, \ldots, e_{c_m} \right)
\]

Average embedding:
\[
e_c = \frac{1}{m} \sum_{i=1}^{m} e_{c_i}
\]
Training

Training Loss, hinge loss

\[L_{q,a,a'} = [\gamma + S(q,a') - S(q,a)]_+ \]

Objective function

\[
\min \sum_q \frac{1}{|P_q|} \sum_{a \in P_q} \sum_{a' \in N_q} L_{q,a,a'}
\]

SGD to minimize loss, with mini-batch sizes

Inference

• We need to get maximum similarity, \(S_{\text{max}} \)

• \(S(q,a) \) for each \(a \) that is part of candidate answer set \(C_q \)

\[
S_{\text{max}} = \arg \max_{a \in C_q} \{ S(q,a) \}
\]

• Use margin \(\gamma \) if there is more than 1 answer

• If the score of candidate answer is within margin \(\gamma \) v/s \(S_{\text{max}} \)
 • Add to the final answer set
Combining Global knowledge

• Adopt the TransE model (translation in embedding space) (like Bordes et al., 2013)
• Train both KB-QA and TransE models together
• e.g. Facts are subject-predicate-object triples \((s, p, o)\)
 • (/m/0f8l9c, location.country.capital,/m/05qtj)
 • France, relation, Paris
• \((s', p, o')\) are the negative examples
• Completely unrelated facts are deleted
• Training loss (S is set of KB & S’ is set of corrupted facts)

\[
L_k = \sum_{(s, p, o) \in S} \sum_{(s', p, o') \in S'} [\gamma_k + d(s + p, o) - d(s' + p, o')]_+
\]
Experiments

• Use WebQuestions (Google Suggest API)
 • 3778 QA pairs for training
 • 2032 pairs for testing
• Answers (from Freebase) are labeled manually by AMT
• Training data: ¾ training set, rest – validation set
• F1 score is used as the evaluation metric
• Average result is computed by script from Berant et al. (2013)
Settings

• KB-QA training:
 • Mini-batch SGD to reduce pairwise training loss
 • Mini-batch = 100
 • Learning rate = 0.01
 • E_w (word embedding matrix) E_v (KB embedding matrix are normalized after every epoch)
 • Embedding size $d = 512$
 • Hidden unit size = 256
 • Margin $\gamma = 0.6$
Model Analysis

Methods	Avg F_1
LSTM	38.2
Bi.LSTM	39.1
Bi.LSTM+A-Q-ATT	41.6
Bi.LSTM+C-ATT	41.8
Bi.LSTM+GKI	40.4
Bi.LSTM+A-Q-ATT+GKI	42.6
Bi.LSTM+C-ATT+GKI	42.9

Table 2: The ablation results of our models.

Figure 3: The visualized attention heat map. Answer entity: /m/06npd(Slovakia), answer relation: partially_containedby, answer type: /location/country, answer context: (/m/04d9kf, /m/01mp, ...
Results

Comparison of our method with state-of-the-art end-to-end NN-based methods

Methods	Avg F_1
Bordes et al., 2014b	29.7
Bordes et al., 2014a	39.2
Yang et al., 2014	41.3
Dong et al., 2015	40.8
Bordes et al., 2015	42.2
our approach	**42.9**

The evaluation results on WebQuestions
Error Analysis

• Wrong attention
 • Q: “What are the songs that Justin Bieber wrote?”
 • A: answer type /music/composition pays the most attention on “What” rather than “songs”.

• Complex questions
 • Complex Q: “When was the last time Arsenal won the championship?”
 • A: Prints all championships. - model did not train with “last”

• Label Error:
 • Q: “What college did John Nash teach at?”
 • A: prints Princeton University, but misses Massachusetts Institute of Technology
Conclusion

• Proposed a novel cross-attention model for KB-QA
 • Utilized Q-A and A-Q attention
 • Leveraged the global KB information to alleviate the OOV problem for the attention model

• The experimental results proved to give better performances than the current state of the art end-to-end methods
Thank you