An Assessment of the Role of DNA Adenine Methyltransferase on Gene Expression Regulation in E coli

Aswin Sai Narain Seshasayee*

Genomics and Regulatory Systems Group, EMBL-European Bioinformatics Institute, Wellcome Trust Genome Campus, Cambridge, United Kingdom

N6-Adenine methylation is an important epigenetic signal, which regulates various processes, such as DNA replication and repair and transcription. In γ-proteobacteria, Dam is a stand-alone enzyme that methylates GATC sites, which are non-randomly distributed in the genome. Some of these overlap with transcription factor binding sites. This work describes a global computational analysis of a published Dam knockout microarray alongside other publicly available data to throw insights into the extent to which Dam regulates transcription by interfering with protein binding. The results indicate that DNA methylation by DAM may not globally affect gene expression by physically blocking access of transcription factors to binding sites. Down-regulation of Dam during stationary phase correlates with the activity of TFs whose binding sites are enriched for GATC sites.

INTRODUCTION
Dam is an N6-Adenine methyltransferase, which methylates GATC sites soon after replication. Methylation is a bacterial version of an immune response to phages. It has been described as a signal that influences DNA-protein interactions [1]. GATC sites have been shown to overlap with the binding sites of global transcriptional regulators, CRP and FNR, and thus influence their activity [2]. This would imply that a knockout of Dam should have drastic effects on gene expression.

This work analyses a recently published microarray data of a Dam mutant in order to assess the effect this has on transcription regulation. Further, GATC-containing TF binding sites are analysed in order to correlate any gene expression changes to Dam binding. Finally, a hypothesis concerning the balance between Dam binding and transcription regulation by the global factor CRP is presented.

METHODS

Datasets
Microarray dataset for Dam mutant was obtained from Robbins-Manke et al [3]. One set of stationary phase microarray data was obtained from Tjaden et al. [4] and the other was downloaded from the ASAP database [5] in November 2005. FNR knockout microarray data on Affymetrix platform, which is used here as an example to assess the effect of the knockout of a global transcriptional regulator on gene expression, was obtained from Covert et al. and Kang et al. as raw data and processed as below [6,7]. Literature derived datasets for (1) transcription factor binding sites (TFBS) (2) sigma factor binding sites/promoters (SFBS) and (3) transcription units were obtained from RegulonDB 5.0 [8]. COG functional category assignments for E coli were obtained from GenBank.

Microarray data analysis
The raw CEL files were processed using the RMA procedure and differentially expressed genes were identified using LIMMA. RMA does not require a baseline array for normalization and is based on achieving quantile-quantile plots that are along the unit vector of the diagonal [9]. LIMMA uses a moderated t-test approach to identify differentially expressed genes [10]. For all microarray data except the dam mutant, differential expression was defined by a q-value of 0.05 following FDR multiple testing. For the dam mutant, the cutoff was 0.01 without multiple testing. The reasoning is explained in context in the results section. All these calculations were carried out using Bioconductor [11].

Functional category enrichment
Enrichment of specific functional categories among differentially expressed genes was carried out using the an F-test followed by FDR as used in FatiGO to identified enriched functional categories among differentially expressed genes [12]. This was done in R.

Permutation tests
Permutation tests were used for certain analyses as described in the results. For this the pairings of TFs/Sigma factors to binding sequences were randomly shuffled around.

Tetranucleotide profiling
Tetranucleotides in coding sequences and TFBS were counted using the compseq program in the EMBOSS package [13]. For the F-test, the FatiGO script implemented in R was used. An

...
alternative scoring scheme was also used to test for enrichment. The formula for enrichment in this approach is:

$$\log_2 \left(\frac{\Sigma N_{T,\text{TFBS}}}{N_{T,\text{TFBS}}} / \left(\frac{\Sigma N_{T,\text{CODING}}}{N_{T,\text{CODING}}} \right) \right)$$

where $N_{T,\text{TFBS}}$ is the number of occurrences of tetranucleotide T within TFBS, $\Sigma N_{T,\text{TFBS}}$ is the sum of the counts of all tetranucleotides within TFBS, $\Sigma N_{T,\text{CODING}}$ is the number of occurrences of tetranucleotide T within coding regions and $N_{T,\text{CODING}}$ is the sum of the counts of all tetranucleotides within coding regions. A two-fold enrichment would correspond to a score of ~ 0.7.

RESULTS

Dam mutant does not result in global changes in transcription

In recent years, three different microarray studies have analysed gene expression changes in *dam* E. coli [3,14,15]. The most recent of these [3], for which the raw data is available in GEO, describes an overall increase in expression of about 200 genes in *Dam* using Affymetrix GeneChip arrays. For the current study, this raw data was reanalyzed. The data was normalised using RMA as in the above study. However, instead of the ANOVA analysis used in the above study, the moderated t-test approach of LIMMA implemented in Bioconductor [11] was used to identify differentially expressed genes. Following p-value adjustment with multiple testing, it was found that none of the genes showed a statistically significant change in gene expression at an FDR of 0.05. This is very unlike an FNR—one of seven global regulators defined by Martinez-Antonio and Collado-Vides [16]-knockout under anaerobic conditions [6,7], which on normalisation with RMA followed by detection of differential expression with LIMMA and multiple testing with FDR results in 340–360 differentially expressed genes. Of these 38 had an experimentally verified sigma factor binding sequence (SFBS) and 25 had at least one known TFBS.

If the change in expression levels were due to altered TF binding to DNA in the *dam* strain, then we would expect to see an over-representation of GATC containing SFBS and TFBS in the list of differentially expressed transcription units. However, this was not the case (Tables S2 and S3). Only 3 differentially expressed TFBS and SFBS contained GATC sites. This was just random (Z-scores of 1.5 and 0.005 for SFBS and TFBS respectively; control: 1000 randomly shuffled gene-SFBS/TFBS pairs). In fact a lack of such correlation was reported by Robbins-Manke et al. as well [3]. This implies that any change in expression levels, despite being subtle, observed in the microarray data cannot be attributed to the direct influence of methylation on transcription factor or sigma factor binding to the DNA. These transcriptional changes might be in response to damage to the DNA that is caused by reduced methylation or due to hitherto unexplained indirect effects.

Tetranucleotide profiling for GATC

In an earlier work, over-representation of specific words in gene-upstream regions was described as a measure of the regulatory
potential of such motifs and validated using comparison with known structures of DNA-protein complexes [20]. Hence, as further test for the role of GATC as a regulatory motif at the transcriptional level, tetranucleotide profiling analysis as described in the above publication was carried out. Instead of an arbitrary cut-off, as was used in the former work, the F-test-FDR test was used to test for enrichment. Further, for this test, enrichment of tetranucleotides within the experimentally validated TFBS in comparison to the coding sequences was tested. It was found that out of 256 possible tetranucleotides, 91 were statistically enriched (q-value<0.05) within TFBS. This includes CTAG, which is the core binding sequence for trp [21] and the met [22] repressors and is known to be highly restrained in the genome [23]. However, despite the fact that over 35% of all tetranucleotides are enriched in TFBS, GATC is not, thus adding further to doubts on its role as a transcriptional regulatory motif. This is true even when an alternative approach to identifying enriched tetranucleotides is used. In this approach a score was computed for each tetranucleotide so that it would define whether the word is enriched within TFBS or not. At a two-fold enrichment cut-off, 53 tetranucleotides were obtained. This list was a subset of the list obtained using the F-test and thus GATC is found to be absent here as well. These lists are provided as tables S4A and S4B.

Dam, CRP, Sigma38 and stationary phase

In the next step of the study, TFs and Sigma factors whose binding sites were significantly enriched for GATC were identified (Fig. 1). Among TFs for which more than 10 sites contained a GATC sequence, only CRP and FNR showed significant enrichments (tested using 1000 shuffling of TF to site mapping). CRP (Z-score: 8) showed a much greater significance than FNR (Z-score: 2.5). In addition, a survey of Sigma factor binding sequences for GATC using the same permutation tests as used for TFBS shows that only the stationary phase/stress response sigma factor, Sigma 38 or rpoS, is enriched for GATC, though only slightly (Z-score: 2.5).

CRP, which is activated by cAMP signalling in response to glucose starvation, can be expected to be active during the stationary phase of growth in minimal medium and would therefore not be active under the conditions in which the above microarray data was obtained. Hence it is believed that CRP targets with GATC sites do not significantly change in expression levels in a Dam mutant grown in rich medium. The same is applicable to Sigma38 as well. However, the question is: how does CRP access its binding sites even during stationary phase when the sites are methylated? Two different publicly available Affymetrix microarray datasets for stationary phase E. coli cells [4,5] were mined (using comparisons with log phase arrays from the same experiment) for genes that were differentially expressed (moderated t-test from LIMMA and FDR<0.05) during the stationary phase (Table S5). It could be seen that Dam is consistently downregulated in the stationary phase (FDR of 10^{-6} and 10^{-5} in the two contrasts). This is consistent with results from a ten year old small-scale experiment showing that Dam levels are dependent on growth rate and that a ten-fold decrease in growth rate results in a four-fold fall in Dam levels [24]. This would result in reduced methylation during stationary phase, allowing CRP to bind its targets in newly divided cells. This could also be one reason why double strand breaks are induced during stationary phase [25]. This implies that Dam methylation does not really interfere with TF binding under conditions in which the TF might be expected to be active. Further, the observation that only Sigma38 binding sites among those for all sigma factors show enrichment for GATC is further evidence to the above. This model is illustrated in Fig. 2.

Conclusion

Despite the description of isolated cases where DNA methylation plays an important role in transcriptional regulation [1], it may not be a global player. Dam is downregulated in the stationary phase, which correlates with the enrichment of GATC in binding sites for CRP and Sigma 38, though the functional significance of the enrichment seen with FNR is not clear. [26]

SUPPORTING INFORMATION

Table S1 Genes differentially expressed in delta-dam mutant in comparison to wt. This is a reanalysis of data published by Robbins-Manke et al.

Found at: [doi:10.1371/journal.pone.0000273.s001](https://doi.org/10.1371/journal.pone.0000273.s001) (0.01 MB TXT)
Table S2 Experimentally verified transcription units containing the genes that are differentially expressed in a dam mutant. Sequences shown are sigma factor binding sites

Found at: doi:10.1371/journal.pone.0000273.s002 (0.00 MB TXT)

Table S3 Experimentally verified transcription units containing the genes that are differentially expressed in a dam mutant. Sequences shown are transcription factor binding sites

Found at: doi:10.1371/journal.pone.0000273.s003 (0.00 MB TXT)

Table S4A Tetranucleotides enriched in TFBS against coding regions as seen from F-test FDR

Found at: doi:10.1371/journal.pone.0000273.s004 (0.00 MB TXT)

Table S4B Tetranucleotides enriched in TFBS against coding regions as seen from propensity score

REFERENCES

1. Wion D, Casadesus J (2006) N6-methyl-adenine: an epigenetic signal for DNA-protein interactions. Nat Rev Microbiol 4: 183–192.

2. Henaut A, Rosen T, Gleizes P, Mouzer J, Danchin A (1996) Uneven distribution of GATC motifs in the Escherichia coli chromosome, its plasmids and its phages. J Mol Biol 257: 574–585.

3. Robbins-Masle J, Zdrazilova Z, Marinis M, Essignmann JM (2005) Analysis of global gene expression and double-strand-break formation in DNA adenine methyltransferase-and mismatch repair-deficient Escherichia coli. J Bacteriol 187: 7027–7037.

4. Tijaden J, Saxena RM, Stolorz S, Haynor DR, Kolker E, et al. (2002) Transcriptome analysis of Escherichia coli using high-density oligonucleotide probe arrays. Nucleic Acids Res 30: 3732–3738.

5. Glauser JD, Liss P, Plunkett G, 3rd, Darling A, Prasad T, et al. (2003) ASAP, a systematic annotation package for community analysis of genomes. Nucleic Acids Res 31: 147–151.

6. Covert MW, Knight EM, Reed JL, Herrgard MJ, Palsson BO (2004) Integrating high-throughput and computational data elucidates bacterial networks. Nature 429: 92–96.

7. Kang Y, Weber KD, Qiu Y, Kiley PJ, Blattner FR (2005) Genome-wide expression analysis indicates that FNR of Escherichia coli K-12 regulates a large number of genes of unknown function. J Bacteriol 187: 1135–1160.

8. Salgado H, Gama-Castro S, Peralta-Gil M, Diaz-Perez E, Sanchez-Solano F, et al. (2006) RegulonDB (version 5.0): Escherichia coli K-12 transcriptional regulatory network, operon organization, and growth conditions. Nucleic Acids Res 34: D394–397.

9. Bolstad BM, Irizarry RA, Astrand M, Speed TP (2003) A comparison of normalization methods for high density oligonucleotide probe arrays. Stat Appl Genet Mol Biol 3: Article3.

10. Smyth GK (2004) Linear models and empirical bayes methods for assessing differential expression in microarray experiments. Stat Appl Genet Mol Biol 3: Article3.

11. Gentleman RC, Carey VJ, Bates DM, Bolstad B, Dettling M, et al. (2004) Bioconductor: open software development for computational biology and bioinformatics. Genome Biol 5: R80.

12. Al-Shahrour F, Diaz-Uriarte R, Dopazo J (2004) FatigO: a web tool for finding significant associations of Gene Ontology terms with groups of genes. Bioinformatics 20: 578–580.

13. Rice P, Longden I, Bleasby A (2000) EMBOSS: the European Molecular Biology Open Software Suite. Trends Genet 16: 276–277.

14. Oshita T, Wada C, Kawagoe Y, Arai T, Maeda M, et al. (2002) Genome-wide analysis of deoxyadenosine methyltransferase-mediated control of gene expression in Escherichia coli. Mol Microbiol 43: 673–695.

15. Lohner-Olesen A, Marinus MG, Hansen FG (2003) Role of SeqA and Dam in Escherichia coli gene expression: a global/microarray analysis. Proc Natl Acad Sct U S A 100: 4672–4677.

16. Martinez-Antonio A, Collado-Vides J (2003) Identifying global regulators in transcriptional regulatory networks in bacteria. Curr Opin Microbiol 6: 492–499.

17. von Heydebreck A, Huber W, Gentleman R (2004) Differential Expression with the Bioconductor Package. Bioconductor Working Papers.

18. Kouzminova EA, Rotman E, Maconbei L, Zhang J, Kuzminov A (2004) RecA-dependent mutants in Escherichia coli reveal strategies to avoid chromosomal fragmentation. Proc Natl Acad Sci U S A 101: 16262–16267.

19. Yamanaoka K, Ogora T, Niki H, Hiraga S (1995) Characterization of the smtA gene encoding an S-adenosylmethionine-dependent methyltransferase of Escherichia coli. FEMS Microbiol Lett 133: 59–63.

20. Sivaraman K, Seshasayee AS, Sawninathan K, Mathukumar M, Pennathur G (2005) Promoter addresses: revelations from oligonucleotide profiling applied to the Escherichia coli genome. Theor Biol Med Model 2: 20.

21. Zhang H, Zhao D, Revington M, Lee W, Jia X, et al. (1994) The solution structure of the tryptophan repressor-operator DNA complex. J Mol Biol 238: 592–614.

22. Somers WS, Phillips SE (1992) Crystal structure of the met repressor-operator complex at 2.8 A resolution reveals DNA recognition by beta-strands. Nature 359: 397–393.

23. Blattner FR, Plunkett G 3rd, Bloch CA, Perna NT, Burland V, et al. (1997) The complete genome sequence of Escherichia coli K-12. Science 277: 1453–1474.

24. Rasmussen LJ, Marinus MG, Lohner-Olesen A (1994) Novel growth rate control of Escherichia coli reveals strategies to avoid chromosomal fragmentation. Proc Natl Acad Sci U S A 101: 16262–16267.

25. Kouzminova EA, Rotman E, Maconbei L, Zhang J, Kuzminov A (2004) RecA-dependent mutants in Escherichia coli reveal strategies to avoid chromosomal fragmentation. Proc Natl Acad Sci U S A 101: 16262–16267.

26. Somers WS, Phillips SE (1992) Crystal structure of the met repressor-operator complex at 2.8 A resolution reveals DNA recognition by beta-strands. Nature 359: 397–393.

27. Blattner FR, Plunkett G 3rd, Bloch CA, Perna NT, Burland V, et al. (1997) The complete genome sequence of Escherichia coli K-12. Science 277: 1453–1474.

28. Rasmussen LJ, Marinus MG, Lohner-Olesen A (1994) Novel growth rate control of Escherichia coli reveals strategies to avoid chromosomal fragmentation. Proc Natl Acad Sci U S A 101: 16262–16267.

29. Sivaraman K, Seshasayee AS, Sawninathan K, Mathukumar M, Pennathur G (2005) Promoter addresses: revelations from oligonucleotide profiling applied to the Escherichia coli genome. Theor Biol Med Model 2: 20.

30. Zhang H, Zhao D, Revington M, Lee W, Jia X, et al. (1994) The solution structure of the tryptophan repressor-operator DNA complex. J Mol Biol 238: 592–614.

31. Somers WS, Phillips SE (1992) Crystal structure of the met repressor-operator complex at 2.8 A resolution reveals DNA recognition by beta-strands. Nature 359: 397–393.

32. Blattner FR, Plunkett G 3rd, Bloch CA, Perna NT, Burland V, et al. (1997) The complete genome sequence of Escherichia coli K-12. Science 277: 1453–1474.

33. Rasmussen LJ, Marinus MG, Lohner-Olesen A (1994) Novel growth rate control of Escherichia coli reveals strategies to avoid chromosomal fragmentation. Proc Natl Acad Sci U S A 101: 16262–16267.

34. Sivaraman K, Seshasayee AS, Sawninathan K, Mathukumar M, Pennathur G (2005) Promoter addresses: revelations from oligonucleotide profiling applied to the Escherichia coli genome. Theor Biol Med Model 2: 20.

35. Zhang H, Zhao D, Revington M, Lee W, Jia X, et al. (1994) The solution structure of the tryptophan repressor-operator DNA complex. J Mol Biol 238: 592–614.

36. Somers WS, Phillips SE (1992) Crystal structure of the met repressor-operator complex at 2.8 A resolution reveals DNA recognition by beta-strands. Nature 359: 397–393.

37. Blattner FR, Plunkett G 3rd, Bloch CA, Perna NT, Burland V, et al. (1997) The complete genome sequence of Escherichia coli K-12. Science 277: 1453–1474.