Diabetes-Related Symptom Distress in Association With Glucose Metabolism and Comorbidity

The Hoorn Study

OBJECTIVE — The purpose of this study was to determine the associations between diabetes-related symptom distress, glucose metabolism status, and comorbidities of type 2 diabetes.

RESEARCH DESIGN AND METHODS — This was a cross-sectional sample of 281 individuals with normal glucose metabolism (NGM), 181 individuals with impaired glucose metabolism (IGM), and 107 subjects with type 2 diabetes. We used the revised type 2 Diabetes Symptom Checklist (DSC-R) to assess diabetes-related symptom distress.

RESULTS — The total symptom distress score (range 0–100) was relatively low for diabetic subjects (mean ± SD 8.4 ± 9.4), although it was significantly different from that for subjects with IGM (6.5 ± 7.1) and NGM (6.1 ± 7.9) (F = 3.1, 2 d.f., P = 0.046). Ischemic heart disease was associated with elevated DSC-R scores on three subscales, whereas depression showed higher symptom distress levels across all DSC-R domains.

CONCLUSIONS — Worsening glucose metabolism is associated with increasing diabetes-related symptom distress. This relationship is attenuated by ischemic heart disease and particularly by depression.

© 2008 by the American Diabetes Association. Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered. See http://creativecommons.org/licenses/by-nc-nd/3.0/ for details.
morbidity and DSC-R scores in subjects with and without comorbidity. $P < 0.05$ was considered statistically significant. All analyses were performed using SPSS, version 11.5 for Microsoft Windows.

RESULTS — ANOVA showed that worsening glucose metabolism, represented by NGM (mean ± SD 6.1 ± 7.9), IGM (6.5 ± 7.1), and diabetes (8.4 ± 9.4), was associated with increasing DSC-R total scores ($F = 3.1, 2$ d.f., $P = 0.046$). In addition, we included depression (CES-D score) as a covariate in the ANOVA to sort out the potential interaction. Virtually the same DSC-R scores were found for the subjects with NGM (6.0 ± 7.7), IGM (6.1 ± 7.0), and diabetes (8.5 ± 9.7), although scores were not statistically significant ($F = 0.99, 2$ d.f., $P = 0.245$). Mann-Whitney U tests revealed that diabetic patients reported a significantly greater burden of neuropathic pain ($P = 0.004$), sensitivity symptoms ($P = 0.004$), and total symptom distress ($P = 0.005$) than subjects with NGM but not those with IGM (supplemental Table A1, available in an online appendix at http://dx.doi.org/10.2337/dc08-1074).

Subjects with ischemic heart disease had a significantly higher total DSC-R score compared with subjects with non-ischemic heart disease. Most strikingly, both the DSC-R score total and all subscale scores appeared to be ~3-fold higher for subjects with depression (CES-D score ≥ 16) than for those without depression at all three stages of glucose metabolism (Table 1).

CONCLUSIONS — This is the first study to demonstrate the association between glucose metabolism status and the level of diabetes-related symptom distress using the DSC-R score. Worsening glucose metabolism is associated with increasing diabetes-related symptom distress. This relationship is attenuated by ischemic heart disease and by depression in particular. The results presented provide supportive evidence of the validity and reliability of the DSC-R.

The fact that subjects with depression reported significantly higher DSC-R levels compared with those without depression suggests that negative affect has a strong amplifying effect on diabetes symptom burden, representing higher illness intrusiveness. The association between diabetes symptoms and depressive mood could also be bidirectional, with diabetes symptoms contributing to the development of depressive symptoms (13). Yet, even after correction for depression we found that diabetic subjects report higher levels of diabetes symptom distress than subjects with NGM or IGM, underscoring the importance of glucose metabolism status.

In individuals screened for type 2 diabetes, relatively high levels of symptom distress may indicate comorbid depression and a need for antidepressant treatment. Likewise, in patients with established diabetes, high symptom distress despite relatively good glycemic control may point to elevated levels of depression. New longitudinal research on this complex relationship is warranted to further understand underlying mechanisms and to develop effective therapeutic strategies.

The strengths of our study are the use of data from a population-based sample, the use of a standard measurement to determine glucose metabolism status (i.e., an oral glucose tolerance test), the availability of information on comorbidities, and the use of the validated DSC-R to determine diabetes-related symptom distress. There are also limitations. This present study has a cross-sectional design. Further prospective research should help to clarify the course of symptom distress over time across different stages of glucose metabolism. In addition, determining the impact of different treatment strategies (i.e., diet, blood glucose-lowering drugs, and insulin) on the DSC-R levels among diabetes patients was beyond the scope of this study. However, given the increasing importance of patient-reported outcomes, future researchers should carefully explore the impact of diabetes medication on symptom distress as a measure of health-related quality of life.

Table 1—Mean scores for diabetes-related symptom distress total and subscale scores in subjects with and without comorbidity among all participants

	Ischemic heart disease†	Prevalent cardiovascular disease‡	Neuropathy	Retinopathy	Microalbuminuria	Depression								
	No	Yes												
n	345	202	465	100	215	203	192	24	468	81	440	68		
Hyperglycemia			6.1	8.1	7.1	6.6	5.7	8.48	7.0	10.4	7.0	7.4	5.9	14.2
Hypoglycemia			5.1	5.3	5.3	5.3	4.3	5.5	5.2	9.4	5.5	4.4	3.8	15.3
Neuropathic pain			4.2	7.0	5.4	4.7	4.6	5.4	5.6	11.28	5.1	6.0	3.9	12.7
Sensibility			4.7	5.8	5.0	5.4	4.1	5.4	5.6	5.6	5.0	5.0	3.9	10.5
Fatigue			11.5	14.1	13.1	11.1	10.9	12.6	12.8	14.1	12.6	12.7	9.4	31.2
Cognitive distress			6.2	8.6	7.3	7.3	6.1	7.9	6.9	12.8	7.3	6.6	5.1	20.6
Cardiovascular			5.4	6.7	6.0	6.5	5.4	5.8	4.6	9.6	6.2	5.3	4.6	15.4
Ophthalmological			4.7	6.6	5.3	6.2	5.5	5.3	6.5	9.0	5.5	5.1	4.3	11.8
DSC-R total score			5.9	7.7	6.7	6.6	5.7	6.9	6.7	10.0	6.7	6.5	5.1	16.0

*Numbers do not total exactly because of missing values, particularly for retinopathy. †Based on electrocardiogram recording. ‡Assessed by the Rose questionnaire.

References

1. Rubin RR, Peyrot M: Quality of life and diabetes. *Diabetes Metab Res Rev* 15:205–218, 1999
Diabetes symptoms and glucose metabolism

2. Testa MA, Simonson DC: Health economic benefits and quality of life during improved glycemic control in patients with type 2 diabetes mellitus: a randomized, controlled, double-blind trial. *JAMA* 280:1490–1496, 1998

3. Dueck AC, Sloan JA: Meeting on the FDA draft guidance on patient-reported outcomes. *Value Health* 10 (Suppl. 2):S64–S65, 2007

4. Snijder MB, Dekker JM, Visser M, Bouter LM, Stehouwer CD, Yudkin JS, Heine RJ, Nijpels G, Seidell JC: Trunk fat and leg fat have independent and opposite associations with fasting and postload glucose levels: the Hoorn study. *Diabetes Care* 27:372–377, 2004

5. Alberti KG, Zimmet PZ: Definition, diagnosis and classification of diabetes mellitus and its complications. Part I. Diagnosis and classification of diabetes mellitus provisional report of a WHO consultation. *Diabet Med* 15:539–553, 1998

6. Rose G, McCartney P, Reid DD: Self-administration of a questionnaire on chest pain and intermittent claudication. *Br J Prev Soc Med* 31:42–48, 1977

7. Klein R, Klein BE, Magli YL, Brothers RJ, Meuer SM, Moss SE, Daivs MD: An alternative method of grading diabetic retinopathy. *Ophthalmology* 93:1183–1187, 1986

8. Jager A, Kostense PJ, Nijpels G, Heine RJ, Bouter LM, Stehouwer CD: Microalbuminuria is strongly associated with NIDDM and hypertension, but not with the insulin resistance syndrome: the Hoorn Study. *Diabetologia* 41:694–700, 1998

9. Radloff LS: The CES-D scale: a self-report depression scale for research in the general population. *Appl Psychol Meas* 1:385–401, 1977

10. Grootenhuis PA, Snoek FJ, Heine RJ, Bouter LM: Development of a type 2 diabetes symptom checklist: a measure of symptom severity. *Diabet Med* 11:253–261, 1994

11. Ciechanowski PS, Katon WJ, Russo JE, Hirsch IB: The relationship of depressive symptoms to symptom reporting, self-care and glucose control in diabetics. *Gen Hosp Psychiatry* 25:246–252, 2003

12. Adriaanse M, Dekker J, Spijkerman AMW, Twisk JWR, Nijpels G, van der Ploeg H, Heine RJ, Snoek FJ: Diabetes-related symptoms and negative mood in participants of a targeted population-screening program for type 2 diabetes: the Hoorn Screening Study. *Qual Life Res* 14:1501–1509, 2005

13. Golden SH, Lazo M, Carnethon M, Bertoni AG, Schreiner PJ, Roux AV, Lee HB, Lyketsos C: Examining a bidirectional association between depressive symptoms and diabetes. *JAMA* 299:2751–2759, 2008