Development and characterization of 20 polymorphic microsatellite markers for the white-bellied pangolin *Phataginus tricuspis* (Mammalia, Pholidota)

Samantha Aguillon1 · Alain Din Dipita2 · Emilie Lecompte1 · Alain Didier Missoup2 · Maurice Tindo2 · Philippe Gaubert1

Received: 28 February 2020 / Accepted: 8 May 2020 / Published online: 17 May 2020
© Springer Nature B.V. 2020

Abstract

Pangolins, or scaly anteaters, have recently been flagshiped as one of the most illegally traded mammals, and as a corollary, as potential intermediate hosts at the origin of the COVID-19 pandemic. In order to improve the traceability of their trade, we developed 20 polymorphic microsatellite loci for the white-bellied pangolin (*Phataginus tricuspis*), the species most frequently found on African bushmeat markets. We genotyped 24 white-bellied pangolins from the Douala market, Cameroon, originating from the Ebo forest c. 75 km north-east of Douala. The number of alleles per locus ranged from 4 to 12 (mean = 6.95), and mean observed and expected heterozygosities were 0.592 (0.208–0.875) and 0.671 (0.469–0.836), respectively. Genetic diversity was higher than that cross-estimated from microsatellite loci developed for other species of pangolins. Two loci deviated from Hardy–Weinberg equilibrium and two loci showed linkage disequilibrium. Genetic variance (PCoA) was increased with the addition of 13 pangolins of unknown origin, possibly suggesting that the Douala market is fed from differentiated source populations of white-bellied pangolins. Each of the 37 individuals had a unique multilocus genotype. The unbiased probability of identity (uPI) and the probability of identity among siblings (PIsibs) were both very low (uPI = 8.443 e−21; PIsibs = 1.011 e−07). Only five microsatellite loci were needed to reach the conservative value of PIsibs < 0.01, overall indicating a powerful discriminating power of our combined loci. These 20 newly developed microsatellite loci might prove useful in tracing the local-to-global trade of the white-bellied pangolin, and will hopefully contribute to the DNA-assisted implementation of future conservation strategies at reasonable costs.

Keywords Pangolins · *Phataginus tricuspis* · Bushmeat · Microsatellite loci · Illegal wildlife trade · Cameroon

Introduction

The illegal wildlife trade is a flourishing, parallel economy that threatens the worldwide biodiversity [1]. Pangolins, or scaly anteaters, have recently been flagshiped as one of the most illegally traded mammals, being literally eaten to extinction [2]. Based on reports from the Convention on International Trade in Endangered Species of Wild Fauna and Flora (CITES), a minimum number of c. 895,000 African and Asian pangolins were trafficked during the last decade (2010–2019). They were mainly destined to Asian markets including China and Vietnam [3], where they feed the growing demand from the Traditional Chinese Medicine market [4]. As a corollary, the pangolin trade has very recently been pinpointed as posing a serious threat to human health, pangolins being potentially involved in the COVID-19 pandemic [5, 6]. Pangolins are also part of the traditional
wild meat intake and pharmacopeia in most of their range
countries [7, 8], and as such suffer from the ‘bushmeat crisis’
that threaten the survival of many vertebrates in the tropics
[9].

The traceability of the pangolin trade is rendered dif-
ficult by the elusive, international criminal networks that
fuel the market, but also by the various forms under which
pangolins are traded. Indeed, a large spectrum of pangolin-
related ‘items’ are involved in the trade, from scales alone
to smoked skins, boiled and ‘pealed’ carcasses, chopped
meat, scale powder and embryo soups [10–12]. The soci-
etal demand for mitigating the pangolin trade [13] implies
to develop tools capable of accurately identifying the traf-
ficked species of pangolins, tracing their geographic origins
(sources) and estimating the number of pangolins when body
parts and scales are seized.

The genetic ‘tool box’ may constitute an efficient support
to reach these objectives. To date, a certain number of mito-
chondrial, nuclear and Y-borne genes have been sequenced
in pangolins [14–17], providing useful resources for the
accurate ‘tagging’ of the species involved in the trade [18].
On the other hand, our ability to trace the geographic origins
of seized pangolins has remained limited because of a lack
of exhaustive DNA registers and the reduced geographic
resolution of traditional gene sequencing [19–23]. Although
microsatellite loci were developed in an Asian (Manis
javanica) and an African species (Smutsia temminckii) [24,
25], their application to the issue of the traceability of the
trade remains limited or pending [26, 27]. Recently, single
nucleotide polymorphic markers (SNPs) have successfully
been used to assign seizures of M. javanica to potential geo-
graphic sources in South-East Asia [28]. So far, no geno-
typing approach has been applied to assess the number of
individuals involved in large (scale) seizures, despite the
potential advantage this would have for seizure processing
[29].

Pangolins are highly sensitive to habitat degradation and
have slow reproduction rates [30]. They are one of the mamm-
alian lineages most prone to extinction (https://www.edgeo
fexistence.org/). In the last years, there have been pressing
initiatives for increasing awareness on the unsustainability
of the pangolin trade and for promoting law enforcement
at the international level. All eight species were moved to
the Appendix I of CITES in 2016 [31] and have recently
been upgraded to “Vulnerable”, “Endangered” or “Critically
Endangered” on the IUCN Red List of Threatened Species
[32].

Recent seizures indicate that, as Asian pangolins are
becoming rarer, traffickers are now sourcing from Africa
possibly via the same criminal networks used for the trade
of ivory [33, 34]. The white-bellied pangolin (Phataginus
tricuspis) is the most abundant species of pangolin in Africa,
with a widespread sub-Saharan distribution covering the
African lowland rainforests [30]. It is one of the most fre-
quent mammalian species observed on the stalls of the range
countries’ bushmeat markets [35–38]. The species is also
likely undergoing heavy international trade pressure as it
has been the constituent of large seizures both in Africa and
Asia since 2010 [39].

Recently, an unexpected level of cryptic diversity was
revealed across the species range through the existence of
six geographically traceable genetic lineages [17]. Although
those results might constitute valuable support to delimitate
the sources of traded pangolins at the regional scale, deeper
resolution is needed to improve our ability to trace the trade
at the local scale. We therefore developed and character-
ized 20 microsatellite loci from the genome of P. tricuspis,
with the objective of providing a tool applicable at reason-
able costs to range countries and international agencies that
would be keen to implement the genetic tracing of the pan-
golin trade.

Materials and methods

A total of 37 samples of white-bellied pangolins were col-
lected from the Douala market network. A first sample set
included 24 samples from the Ebo forest (population ‘Ebo’),
c. 75 km north-east of Douala, as ascertained by circum-
scribing the supply area that receives bushmeat from Ebo
together with interviews with bushmeat sellers (data not
shown). A second sample set included 13 samples likely
originating from diverse geographic sources, possibly
including Ebo (‘altEbo’), according to the same interviews.
Samples consisted of fresh and smoked tissues (tongue or
muscle) collected from dead animals sold on the market.
Sampling was done, after explaining the aim of our study,
with the initial agreement of the seller and following the
guidelines of the Comité d’Ethique Institutionnel de la
recherche pour la Santé humaine de l’Université de Douala
(CEI-UDo). All the samples were preserved in 90% ethanol.

Genomic DNA was extracted with the NucleoSpin® Tis-
sue Kit (MACHEREY–NAGEL, Hoerdt, France), following
the manufacturer’s recommendations. The elution step was
repeated twice in 50 μL BE to maximize DNA yield and
concentration. DNA concentration was quantified using the
NanoDrop 1000 Spectrophotometer (ThermoFisher Scien-
tific). All the DNA extracts were stored at -20 °C.

Microsatellite markers were developed at Ecogenics,
Balgach, Switzerland (https://www.ecogenics.ch/home.
html). An Illumina TruSeq nano library was built from a
single DNA extract, which was enriched for simple sequence
repeat content using magnetic streptavidin beads and bio-
tin-labeled CT and GT repeat oligonucleotides. The library
was sequenced on an Illumina MiSeq sequencing platform
using a nano 2 (500 cycles) sequencing chip. The resulting

Springer
paired-end reads which passed Illumina’s chastity filter were subject to de-multiplexing and trimming of Illumina adaptor residuals. Subsequently, the quality of the surviving reads was checked with the software FastQC 0.117 (https://www.bioinformatics.babraham.ac.uk/projects/fastqc). In a next step, the paired-end reads were merged with the software USEARCH 10.0.240 [40] to reform in silico the sequenced molecule. The resulting reads were screened with the software Tandem Repeats Finder 4.09 [41]. After this process, 8,488 merged reads contained a microsatellite insert with a tetra- or a trinucleotide of at least six repeat units or a dinucleotide of at least 10 repeat units. Primer design was performed with Primer 3 4.1.0 [42]. Suitable primer design was possible in 6,025 microsatellite candidates. Individual tests for amplification and polymorphism of the 48 best primer-designed loci were performed on 14 individuals (from the western central African and Gabon lineages; see [17]), after which 20 polymorphic markers were retained (Table 1). Overall, eight loci were di-nucleotide, three tri-nucleotide and nine tetra-nucleotide repeats.

We used MULTIPLEX MANAGER 1.2 [43] to optimize a design into four PCR multiplexes (4–6 loci) using four different ABI fluorescent dyes (Table 1). PCR amplifications for each multiplex were carried out in 20 μL reaction mixture containing approximately 20 ng of genomic DNA, 1× Multiplex PCR Master Mix (QIAGEN Multiplex reaction mixture containing approximately 20 ng of genomic DNA, 1× Multiplex PCR Master Mix (QIAGEN Multiplex PCR Plus Kit; Qiagen, Courtaboeuf, France) and 0.2 μM of each primer pair. PCR thermoprofiles included an initial denaturation step (95 °C for 5 min), followed by 32 cycles of denaturation (95 °C for 30 s)–annealing (60 °C for 90 s)–elongation (72 °C for 30 s), and a final elongation step (60 °C for 30 min).

The PCR products were run on an ABI 3730 DNA Analyser (Thermo Fisher Scientific) at GeT-PlaGe (Génouit, Institut National de Recherche Agronomique, Castanet-Tolosan, France; https://get.genotoul.fr/). Allele scoring and final extraction of genotypes were performed in Geneious 9.0.5 [44] with the Microsatellites plugin (https://www.geneious.com/features/microsatellite-genotyping/).

As a geographically coherent population, Ebo (N = 24) was used for the validation of our 20 microsatellite loci. We ran the detection of potential scoring errors and null alleles in MICROCHECKER 2.2.3 [45]. Deviations from the Hardy–Weinberg equilibrium were tested for each locus with GenAlEx 6.503 [46]. We used a permutation test under GENETIX 4.05.2 [47] to estimate linkage disequilibrium (LD) between each pair of loci (1000 permutations). The Bonferroni correction was applied to each of those statistical procedures.

The number of alleles per loci (Na) and the observed (Ho) and expected heterozygosities (He) were estimated in GenAlEx. Allelic richness (Ar) was calculated in FSTAT 2.9.3.2 [48].

We used the whole sample set (Ebo + altEbo; N = 37) to conduct a Principal Coordinates Analysis (PCoA) in GenAlEx with pairwise population matrix unbiased genetic distances [49] in order to explore genetic variance among individuals sold in the Douala markets.

Values of unbiased probability of identity and probability of identity among siblings (uPI and Plsibs) were calculated in Gimlet 1.3.3 [50]. We used the Multilocus tagging option in GenAlEx to detect identical genotypes in our dataset (sub-option ’Matches’).

Results and discussion

The 20 loci were successfully amplified (with 100% PCR success rate), with only 0.84% missing data in our final multilocus dataset (Table 1). Null alleles were detected in five loci (PT_338821, PT_796077, PT_839522, PT_1453906, PT_1594892). Two of those loci significantly deviated from the Hardy–Weinberg equilibrium (Table 1). Two loci were subjected to linkage disequilibrium (PT_353755, PT_1225378). Deviation from Hardy–Weinberg equilibrium and linkage disequilibrium among loci can be due to genetic differentiation [51, 52], as was also suspected from loci developed for other pangolin species [24, 25]. Our results may suggest that we genotyped several populations from the Ebo forest, the latter covering > 1500 km², although we cannot totally discard the possibility that the Ebo sample set was not as accurately circumscribed as expected from our interviews.

The mean number of alleles per locus was 6.95 (from 4 to 12 alleles) and mean Ar was 6.74. Mean He was 0.671 (0.469–0.836) and mean Ho was 0.592 (0.208–0.875). The number of alleles and levels of genetic diversity were higher than in previous cross-amplification studies (mean number of alleles = 2.61–4; [24, 25]). Those results were expected given the reduced sample set (N = 2–10) used in the previous studies and the bias related to cross-amplification among phylogenetically divergent species of pangolins [18].

The 20 newly developed microsatellite loci represent the first markers isolated from the genome of P. tricuspis and may prove useful in tracing the local-to-global trade of the species. Each of the 37 individuals had a unique multilocus genotype. The unbiased probability of identity (uPI) and the probability of identity among siblings (Plsibs), that is, the probability that two individuals drawn at random from a population, including or not including siblings, will have the same genotype, were both very low (uPI = 8.443 e−21; Plsibs = 1.011 e−07; Fig. S1). Only five microsatellite loci were needed to reach the conservative value of Plsibs < 0.01 [53], overall indicating a powerful discriminating power of our combined loci. This could have important conservation implications, as notably regarding the individual-based...
Table 1 Characterization of 20 polymorphic microsatellite loci in the white-bellied pangolin (*Phataginus tricuspis*) from Cameroon

Locus	Primer sequences (5′→3′)	Repeat Motif	Na	Size range—bp	Ho	He	Ar	PHW P-values for tests of Hardy–Weinberg equilibrium deviation after Bonferroni correction
PT_34432	F: AGATATGGCACCCCATAAGTTTC							
R: AAGTTGTATGCACCCCCCTGGC	(AC)$_{21}$	9	107–141	0.667	0.608	8.498	0.950 MT109130 VIC II	
PT_276641	F: TGAGTTCCCTGATAAGGAC							
R: GAACTGGGAAAGTGGTTGC	(TGA)$_{9}$	5	182–198	0.542	0.549	4.75	0.397 MT109129 VIC II	
PT_308752	F: CTGCAACGGGAGTTCCCCCTAC							
R: GTTTGCTGGACGCTTAAGG	(TTCC)$_{16}$	8	144–208	0.625	0.784	7.749	0.391 MT109128 NED II	
PT_338821	F: AGTCAACAGTCCACATTGGAGAAC							
R: TGGACTCTCTCTAGGAGGTGG	(TG)$_{22}$	9	232–254	0.571	0.836	9.000	0.000* MT109127 PET III	
PT_353755	F: GGTCAATGCTGAGTGCTC							
R: TGGACTTTGAGTGAGCAGC	(TTA)$_{13}$	8	206–242	0.75	0.76	7.847	0.021 MT109126 6-FAM IV	
PT_378852	F: CCGTGCTTTTCCAGAATGC							
R: GTCCCCACGGACCTTCATAC	(CCT)$_{3}$	3	163–175	0.5	0.546	2.999	0.389 MT109125 6-FAM IV	
PT_464918	F: TGGCAATCTGTGGTATGGAAC							
R: CTGTCACTGGCTATGCAC	(AA)$_{10}$	8	110–131	0.667	0.755	7.847	0.428 MT109124 6-FAM II	
PT_619913	F: AGCGAAGGCTACTAATGG							
R: TCTTGGGTGCTCTTCAATAAA	(TGA)$_{8}$	7	202–226	0.5	0.637	6.737	0.728 MT109123 NED III	
PT_739516	F: ACATGGGCAATGCTGTTGG							
R: AAGGGGCTATGGAAGTAAAG	(TTG)$_{2}$	5	226–246	0.417	0.545	4.750	0.691 MT109122 VIC III	
PT_796077	F: GGCAACTGCGAATGAGGTTAG							
R: CAAAAACTTGGGGGAGTGG	(TTA)$_{15}$	9	157–201	0.542	0.829	8.871	0.105 MT109121 VIC I	
PT_839522	F: CAGAGCTGATGCACTACAG							
R: CAGTAGGATGAAACTCTGGC	(AC)$_{3}$	6	203–217	0.435	0.783	5.988	0.000* MT109120 PET I	
PT_1162028	F: CTTTTGGATATCCACCGACCC							
R: AGAACAGTGCCATTAGGAAGC	(CAT)$_{9}$	7	142–166	0.708	0.619	6.624	0.842 MT109119 6-FAM I	
PT_1225378	F: GGGACTTGATAGAATGAGGTT							
R: AGCTTGGGAAATCACAATGG	(AA)$_{10}$	5	227–247	0.542	0.469	4.873	0.978 MT109118 6-FAM II	
PT_1453906	F: GACCCCCATCTTTATGGGAAGC							
R: AGTAGACCACATTGGATGGG	(ATC)$_{13}$	4	177–193	0.208	0.489	3.874	0.003 MT109117 6-FAM II	
PT_1594892	F: AAAACTGGAAGGCTAATTACGCC							
R: TGGTGTCAAGGCCCACCTG	(TG)$_{12}$	6	202–218	0.458	0.624	5.999	0.012 MT109116 VIC II	
PT_1669238	F: ACCCAAGGATGTGGTACTTC							
R: AGATTTTTCTATCACCAGC	(GT)$_{14}$	8	178–204	0.667	0.715	7.623	0.780 MT109115 PET II	
PT_1753627	F: GTCCATCTGTGGACAACCCAAG							
R: GTTTAAAAACGTCCACATTTTTTC	(TG)$_{10}$	7	234–252	0.75	0.782	6.848	0.797 MT109114 6-FAM I	
PT_1849728	F: TCAAGGACATGCTGAGTCTG							
R: AGACCTTTGCTGCATCACCAC	(TG)$_{16}$	12	112–120	0.583	0.526	4.998	0.560 MT109113 6-FAM IV	
PT_1973508	F: GGCTAAGGTCAGTGCTGTGTTCTC							
R: GGCCACAGTGTATCTATGG	(CA)$_{12}$	12	221–249	0.833	0.827	11.36	0.962 MT109111 NED I	
PT_2019332	F: CAGTGTAAACCACCAAGTGTCTGC							
R: ACAGTTTTGGCACTTACATTTTC | (ATC)$_{10}$ | 8 | 190–222 | 0.875 | 0.731 | 7.625 | 0.967 MT109112 PET IV |

The number of individuals was 24 for all loci

Na number of alleles, *Ho* observed heterozygosity, *He* expected heterozygosity, *Ar* allelic richness, and *PHW* P-values for tests of Hardy–Weinberg equilibrium deviation after Bonferroni correction

Loci with significant departure from Hardy–Weinberg equilibrium (adjusted P-value = 0.0025)
Fig. 1 Principal Coordinates Analysis (PCoA) based on microsatellite data in white-bellied pangolins from the Douala market originating from Ebo forest and unknown sources. Percentages of variance explained: axis 1 = 7.79%; axis 2 = 7.09%
management of in situ and ex situ populations [54, 55] and the accurate assessment of the number of individuals contained in large seizures of scales [29]. Although China has temporarily banned the wildlife trade, the durable effect and efficiency of law enforcement on this illegal market remains questionable [56] and accurate tools will be needed to trace the consumption of pangolins.

Genetic variance was increased through the addition of pangolins with unknown origin (altEbo), involving the potential presence of ‘outliers’ along the axes 1 and 2 of the PCoA (14.88% cumulated variation; Fig. 1), in agreement with the interviewees’ answers regarding the origin of pangolins. Although our results are preliminary, this may suggest that the Douala market network is fed from differentiated source populations of white-bellied pangolins, but this working hypothesis will have to be tested further with an accurate geographic representation of pangolin populations. The set of microsatellite loci that we have developed significantly adds to the molecular toolbox available for the species, and will hopefully contribute to the fine-scale implementation of future conservation strategies at reasonable costs. Because the previously published, cross-amplified loci were not validated on a sufficient number of geographically traceable samples, we recommend the use of our 20 newly developed microsatellite loci for population genetic studies on the white-bellied pangolin and related conservation and forensic applications.

Acknowledgements We are grateful to the staff of the “Plateau technique – Biologie moléculaire et microbiologie” at EDB for assistance during lab work. SA and PG received support from the Agence Nationale de la Recherche (ANR-17-CE02-0001; PANGO-GO). ADD received a grant “séjours scientifiques de haut niveau” (No. 939537G) from the Service de Coopération et d’Action Culturelle (SCAC) of the Ambassade de France au Cameroun. Research permit in Cameroon was issued by the Ministère de la Recherche Scientifique et de l’Innovation (000094/MINRESI/B00/C00/C10/nye). We thank two reviewers for their fruitful comments on an earlier version of the manuscript.

Author contributions EL, ADM, MT and PG designed the study. SA and ADD did the lab work. SA, EL and PG ran the data analysis. ADD and ADM collected the genetic samples. All co-authors participated to the writing of the manuscript.

Funding This study was funded by the Agence Nationale de la Recherche (ANR-17-CE02-0001; PANGO-GO).

Data availability The microsatellite sequences were submitted to Genbank.

Compliance with ethical standards

Conflict of interest The authors declare that they have no conflict of interest.

Ethical approval No animal testing was performed during this study. This study received the approval of the “Comité d’Éthique Institutionnel de la recherche pour la santé humaine de l’Université de Douala (CEI-UDo)”.

References

1. Mt S-R, Challender DWS, Hinsley A, Verissimo D, Milner-Gulland EJ (2019) Illegal wildlife trade: scale, processes, and governance. Annu Rev Environ Resour 44:201–228
2. Liu Y, Weng Q (2014) Fauna in decline: plight of the pangolin. Science 345:884–884
3. Challender DWS, Heinrich S, Shepherd CR, Katsis LKD (2020) Chapter 16—International trade and trafficking in pangolins, 1900–2019. In: Challender DWS, Nash HC, Waterman C (eds) Pangolins. Academic Press, New York, pp 259–276
4. Cheng W, Xing S, Bonebrake TC (2017) Recent pangolin seizures in China reveal priority areas for intervention: network analysis of China pangolin market. Conserv Lett 10:757–764
5. Xiao K, Zhai J, Feng Y et al (2020) Isolation and characterization of 2019-nCoV-like Coronavirus from Malayan Pangolins. bioRxiv https://doi.org/10.1101/2020.02.17.951335
6. Lam TTY, Shum MHH, Zhu HC et al (2020) Identification of 2019-nCoV relation coronaviruses in Malayan pangolins in southern China. bioRxiv https://doi.org/10.1101/2020.02.13.945485
7. Soewu DA, Sodeinde OA (2015) Utilization of pangolins in Africa: fuelling factors, diversity of uses and sustainability. Int J Biodivers Conserv 7:1–10
8. Xing S, Bonebrake TC, Cheng W et al (2020) Chapter 14—Meat and medicine: historic and contemporary use in Asia. In: Challender DWS, Nash HC, Waterman C (eds) Pangolins. Academic Press, New York, pp 227–239
9. Nasi R, Brown D, Wilkie D et al (2008) Conservation and use of wildlife-based resources: the bushmeat crisis. Secrétariat de la Convention sur la diversité biologique, Montréal et Centre pour la recherche forestière (CIFOR), Bogor, Indonesia. Technical Series 33, p 50
10. Mohapatra RK, Panda S, Nair MV, Acharjyo LN, Challender DWS (2015) A note on the illegal trade and use of pangolin body parts in India. Traffic Bull 27:33–40
11. Xu L, Guan J, Lau W, Xiao Y (2016) An overview of pangolin trade in China. Traffic Brief Pap 2016:1–10
12. Zhang MX, Gouveia A, Quan R, Nijman V (2017) Illegal pangolin trade in northernmost Myanmar and its links to India and China. Glob Ecol Conserv 10:23–31
13. Harrop SR (2020) Chapter 17—Conserving pangolins through international and national regulation and effective law enforcement. In: Challender DWS, Nash HC, Waterman C (eds) Pangolins. Academic Press, New York, pp 283–292
14. Yu HT, Ma GC, Lee DJ et al (2011) Molecular delineation of the Y-borne Sry gene in the Formosan pangolin (Manis pentadactyla pentadactyla) and its phylogenetic implications for Pholidota in extant mammals. Thromboreze 75:55–64
15. Gaubert P, Antunes A (2015) What’s behind these scales? Comments to “The complete mitochondrial genome of Temminck’s ground pangolin (Smutsia temminckii; Smuts, 1832) and phylogenetic position of the Pholidota (Weber, 1904)”. Gene 563:106–108
16. Hassanin A, Hugot JP, Van Vuuren BJ (2015) Comparison of mitochondrial genome sequences of pangolins (Mammalia, Pholidota). CR Biol 338:260–265
17. Gaubert P, Njikou F, Ngua G et al (2016) Phylogeography of the heavily poached African common pangolin (Pholidota, Manis...
tricuspis) reveals six cryptic lineages as traceable signatures of Pleistocene diversification. Mol Ecol 25:5975–5993
18. Gaubert P, Antunes A, Meng H et al (2018) The complete phyl-ogeny of pangolins: scaling up resources for the molecular tracing of the most trafficked mammals on Earth. J Hered 109:347–359
19. Hsieh HM, Lee JCI, Wu JH et al (2011) Establishing the pango-lin mitochondrial D-loop sequences from the confiscated scales. Forensic Sci Int 5:303–307
20. Zhang H, Miller MP, Yang F et al (2015) Molecular tracing of confiscated pangolin scales for conservation and illegal trade monitoring in Southeast Asia. Glob Ecol Conserv 4:414–422
21. Luczkon AU, Ong PS, Quiliang JP, Fontanilla IKC (2016) Determining species identity from confiscated pangolin remains using DNA barcoding. Mitochondrial DNA Part B 1:763–766
22. Kumar VP, Rajeep J, Shkula M et al (2016) Illegal trade of Indian Pangolin (Manis crassicaudata): genetic study from scales based on mitochondrial genes. Egyptian J Forensic Sci 6:524–533
23. Mwale M, Dalton DL, Jansen R et al (2017) Forensic application of DNA barcoding for identification of illegally traded African pangolin scales. Genome 60:272–284
24. Luo SJ, Cai QX, David VA et al (2007) Isolation and characteriza-tion of microsatellite markers in pangolins (Mammalia, Pholidota, Manis spp.). Mol Ecol Notes 7:269–272
25. Du Toit Z, Dalton DL, Du Plessis M et al (2020) Isolation and charac-terization of 30 STRs in Temminck’s ground pangolin (Smutsia temminckii) and potential for cross amplification in other African species. J Genet 99(1):1–6
26. Luo SJ, Antunes A, Yang FF et al (2009) A pilot study of genetic surveillance of illegal pangolin trade in Asia. In: Pantel S, Chin SY (eds) Proceedings of the workshop on trade and conservation of Pangolins Native to South and Southeast Asia, 30 June–2 July 2008, Singapore Zoo, Singapore. TRAFFIC Southeast Asia, Petaling Jaya, Selangor, Malaysia, p 194
27. Saifei G, Dongmei Y, Ying W, Jianjun P (2010) Application of microsatellite marking to individual identification for pangolins (Manis spp.). Biotechnol Bull 12:32
28. Nash HC, Low GW, Choo SW et al (2018) Conservation genomics reveals possible illegal trade routes and admixture across pangolin lineages in Southeast Asia. Conserv Genet 19:1083–1095
29. Ullmann T, Verissimo D, Challenger D (2019) Evaluating the application of scale frequency to estimate the size of pangolin scale seizures. Glob Ecol Conserv 20:e00776
30. Gaubert P (2011) Family manidae (pangolins). In: Wilson DE, Mittermeier RA (eds) Handbook of the mammals of the world, Hoofed mammals, vol 2. Lynx Edicions, Barcelona, pp 82–103
31. Challenger DWS, O’Cridain C (2020) Chapter 19—addressing trade threats to pangolins in the convention on international trade in endangered species of Wild Fauna and Flora (CITES). In: Chall-enger DWS, Nash HC, Waterman C (eds) Pangolins. Academic Press, New York, pp 305–320
32. Hoffmann R, Challenger DWS (2020) Chapter 33—conservation strategies and priority actions for pangolins. In: Challenger DWS, Nash HC, Waterman C (eds) Pangolins. Academic Press, New York, pp 531–535
33. Challenger DWS, Hywood L (2012) African pangolins under increased pressure from poaching and intercontinental trade. Traf-fic Bull 24:53–55
34. Lale-Demoz A, Lewi G (2013) Transnational organized crime in East Asia and the Pacific: a threat assessment United Nations Office on Drugs and Crime, Bangkok, Thailand
35. Sodeinde OA, Adedipe SR (1994) Pangolins in south-west Nige-ria—current status and prognosis. Oryx 28:43–50
36. Fa JE, Seymour S, Dupain J et al (2006) Getting to grips with the magnitude of exploitation: bushmeat in the Cross-Sanaga rivers region, Nigeria and Cameroon. Biol Conserv 129:497–510
37. Boakye MK, Koté A, Dalton DL, Jansen R (2016) Unravelling the pangolin bushmeat commodity chain and the extent of trade in Ghana. Hum Ecol 44:257–264
38. Ingram DJ, Coad L, Abernethy KA et al (2017) Assessing Africa-wide pangolin exploitation by scaling local data. Conserv Lett 11:e12389
39. Jansen R, Sodeinde O, Soewu D et al (2020) Chapter 9—White-bellied pangolin Phataginus tricuspis (Rafinesque, 1820). In: Challenger DWS, Nash HC, Waterman C (eds) Pangolins. Academic Press, New York, pp 139–156
40. Edgar RC (2010) Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26:2460–2461
41. Benson G (1999) Tandem repeats finder: a program to analyze DNA sequences. Nucleic Acids Res 27:573–580
42. Undergasser A, Cutcutache I, Koressaar T et al (2012) Primer3—new capabilities and interfaces. Nucleic Acids Res 40(15):e115
43. Holleley C, Geerts PG (2009) Multiplex Manager 1.0: a cross-platform computer program that plans and optimize multiplex PCR. Biotechniques 46(7):511
44. Kearse M, Moir R, Wilson A et al (2012) Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28:1647–1649
45. Van Oosterhout C, Hutchinson WF, Willis DPM, Shipley P (2004) Micro-checker: software for identifying and correcting genotyping errors in microsatellite data. Mol Ecol Notes 4:535–538
46. Peakall R, Smouse PE (2006) Genalex 6: genetic analysis in Excel. Population genetic software for teaching and research. Mol Ecol Notes 6:288–295
47. Belkhir K, Borsa P, Chikhi L, Raufaste N, Bonhomme F (1996–2004) GENETIX 4.05, logiciel sous Windows TM pour la génétique des populations. Laboratoire Génome, Populations Interactions, CNRS UMR 5000, Université de Montpellier II, Montpellier (France)
48. Goudet J (2001) FSTAT, version 2.9.3. A program to estimate and test gene diversities and fixation indices. Lausanne University, Lausanne
49. Nei M (1972) Genetic distance between populations. Am Nat 106:283–291
50. Valière N (2002) GIMLET: a computer program for analysing genetic individual identification data. Mol Ecol Notes 2:377–379
51. Rosa AL, Lima-Rezende CA, Rodrigues FP, Caparrozo R (2019) Development and characterization of 19 polymorphic microsat-ellite loci from the Red-cowled Cardinal (Paroaria dominicana, Passeriformes, Aves) using next-generation sequencing. Mol Ecol Rep 46:5531–5536
52. Ostrowski MF, David J, Santoni S et al (2006) Evidence for a large-scale population structure among accessions of Arabidopsis thaliana: possible causes and consequences for the distribution of linkage disequilibrium. Mol Ecol 15:1507–1517
53. Waits LP, Luikart G, Taberlet P (2001) Estimating the probability of identity among genotypes in natural populations: cautions and guidelines. Mol Ecol 10:249–256
54. Hu L, Gong S, Wang F et al (2015) Captive breeding of pangolins: current status, problems and future prospects. ZooKeys 507:99–114
55. Pietersen DW, Challenger DWS (2020) Chapter 34—research needs for pangolins. In: Challenger DWS, Nash HC, Waterman C (eds) Pangolins. Academic Press, New York, pp 537–543
56. Zhou AM, Buesching CD, Macdonal DW, Newman C (2020) China: clamp down on violations of wildlife trade ban. Nature 578:217

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.