Digital and automated technologies in the Russian energy industry

E V Dryanova, Lui Hongyu, Xue Shuai and Zhao Hongmei
Irkutsk National Research Technical University, 83, Lermontova St., Irkutsk, Russia
E-mail: Eled99@mail.ru

Abstract. The article emphasizes the need for implementing digital and automated technologies and describes their potential. The article distinguishes between the directions of digital transformation of the energy industry using key implementation criteria that allow companies to adapt to new tasks and goals, improve the availability of the power grid infrastructure, and increase the operation effect. The article specifies the targets of digitalization and explores existing and promising digital technology projects.

1. Introduction
The existing energy industry of the Russian Federation has significant potential due to the use of modern technical solutions and changes in organizational models [28].

The implementation of digital technologies can reduce the time of response to the actual challenges of electricity consumers [13]. The tasks can be implemented in an evolutionary way using innovative, automated breakthrough technologies and solutions, including through the use of digital networks, digital substations and digital company management methods [9]. In addition, the solution of these problems will open up opportunities for the provision of new services, such as a tariff menu, small distributed generation, and energy infrastructure [11].

2. Materials and methods
The directions of digitalization of the energy industry were distinguished based on the implementation criteria and goals. The directions can solve the following tasks [7]:

- Adaptability of the company to new tasks and challenges (SAIDI, SAIFI, reduction in the number of technological violations, reduction in the time of elimination of technological violations) [5].
- Increasing the availability of the power grid infrastructure for consumers (reduction in the period of technological connection for consumers up to 150 kW to 120 days, reduction in the cost of connection and the number of steps to connect to the network).
- Improving the efficiency of the company [26-27].
- Increasing the shareholder value of capital [3].
- Bringing to a new level of response to market challenges [23] (adaptability to new market conditions, implementation of new digital technologies, development of human resources and new competencies, business diversification, use of new services for the consumer) [1].
The key factor in the implementation of the digital network is the platform nature of solutions, the unified digital environment, and the information security technologies [2].

3. Results
Based on the goal, objectives, sources and analytical reports of energy companies and the concept of "Digital Transformation 2030", the targets of Russian power grids (PJSC Rosseti) in the field of digitalization were identified (figure 1) [4].

![Digitalization targets](image)

Figure 1. Digitalization targets (compiled by the author).

The above guidelines will improve the quality and availability of transmission and technological connection services. Through the digitalization, there will be an effect for energy consumers. The effects will improve the quality.

4. Discussion
Currently, there are digital technologies in electrical networks (table 1), and digitalization projects are being developed. They can solve the following tasks [6;8;10]:

- Business process management.
- Transmission of electricity through telecommunications equipment.
- Prevention of accidents [17].
Table 1. Existing and promising digital technologies of the Russian energy industry.

Solutions	Existing (2019-2024)	Promising (2025-2030)
Information Systems management	ADMS systems with functionality support (SCADA, DMS, EMS, OMS, GIS, AMI, WFM) based on a network model with a topology processor.	Network-centric two-loop online and offline decision support systems (including digital design) of a digital network company based on the ontology of business processes and the mathematical model of the network as a single data bus with elements of artificial intelligence (including predictive risk-based analytics).
Digital substations	Architectures for building secondary circuits of protection and automation (centralized, distributed, combined) using the IEC 61850 protocol. Mainly with the traditional architecture of secondary circuits. Based on existing technical solutions in terms of switching, measuring and distribution equipment, protection and automation terminals.	Compact Plug - and - Play power centers that use digital communication channels. Different architecture for primary circuits, which do not require special long-term adjustment during commissioning, made according to digital projects. Incorporating intelligent switching equipment, digital measurement systems and connection controllers (integrated functions of protection and automation, accounting and data transmission), probably not requiring individual configuration of the predictive diagnostics system.
Automation systems for the elimination of accidents in air (cable) networks	Predominantly distributed automation of air networks using automatic sectioning points, controlled disconnectors and short circuit indicators. Centralized (using indicators of emergency events) automation of cable networks integrated into ADMS systems.	Adaptive autocluster (consisting of elementary automated cells) networks of optimal topology, calculated using digital network models, with intelligent automatic devices (not requiring individual settings), non-automatic, unattended network dividers integrated into online and offline decision support systems.
Intelligent metering and energy monitoring systems	AIIS KUE (AMI) systems and intelligent electricity meters. Systems for energy monitoring of load nodes at the boundaries of balance sheet ownership and load nodes of networks. Integrated into the ADMS systems.	Intelligent energy monitoring and energy management systems. Measuring controllers at the level of end users that support industrial Internet of things technologies (in terms of data transmission) integrated into online and offline decision support systems, distributed registry technologies for the implementation of smart contracts. Measuring controllers for energy monitoring

Digital technology programs will have a significant impact on the power grid system of the Russian Federation [15].

As part of the digital transformation of electrical networks, it will be necessary to create communication channels with objects of all voltage classes using a wide range of telecommunication technologies [19]. The implementation of software and hardware systems for technological management and corporate information systems for enterprise management involves the use of significant computing power, requiring special server rooms [21;25].

Taking into account the development of communication services, data storage and processing (cloud solutions), within the digital transformation it is planned to involve the existing communication
operators that meet the quality criteria for these systems [29-30]. The decision to develop own information infrastructure will be made taking into account all development and maintenance costs (if it is economically feasible) [31].

5. Conclusion
Digital transformation will improve the reliability, quality, and availability of services for the transmission of electricity to consumers, create a new infrastructure for the most efficient process of electricity transmission between energy supply companies, and develop competitive markets for related services.

References
[1] Nechaev A S, Antipina O V and Prokopyeva A V 2014 The risks of innovation activities in enterprises. Life Science Journal 11(11) 574–575
[2] Nechaev A S and Antipin D A 2014 Mechanism for assessing the efficiency of financing the enterprise innovative activities. Actual Problems of Economics 154(4) 233–237
[3] Parkhomchuk M, Kuzmina V and Golovin A 2019 Global oil market: Digital technologies application to strengthen the position of Russia. Economic Annals-XXI 180(11) 110-121
[4] Nechaev A and Rasputina A 2020 Theory of tax variation calculation. IOP Conference Series: Earth and Environmental Science 421(3) 032010
[5] Vlasov A I, Berdyugina O N and Krivoshein A I 2018 Technological Platform for Innovative Social Infrastructure Development on Basis of Smart Machines and Principles of Internet of Things. Proceedings - Global Smart Industry Conference, GloSIC 8570062
[6] Nechaev A S and Antipina O V 2016 Assessing the innovation attractiveness of areas: Problems and solutions. Journal of Advanced Research in Law and Economics 7(3) 561–571
[7] Luneva N N, Levina T M and Evdokimova N G 2022 Methodology for Assessing Information Security Risks at Oil Refining Enterprises. Lecture Notes in Networks and Systems 368 LNNS 679-690
[8] Rasputina A V, Nechaev A S and Ilina E A 2021 An analysis of the construction industry and the impact of taxation on its development in the Baltic and Scandinavian countries. IOP Conference Series: Earth and Environmental Science 751(1) 012168
[9] Larkina A A and Vizgalina A A 2022 Digital Technologies in the Thermal Power Complex of the Samara Region. Lecture Notes in Networks and Systems 304 471-477
[10] Nechaev A S, Antipina O V, Rasputina A V, Tyapkina M F, and Ilyina E A 2021 Methods of lease payments calculating in terms of innovations financing. Montenegrin Journal of Economics 17(1) 133–149
[11] Abramov V, Averkiev A, Korinets E, Bolshakov V and Vekshina T 2022 Digitalization of Geo-Information Support for Energy Logistics in Climate Change. Lecture Notes in Networks and Systems 246 600-608
[12] Nechaev A, Antipin D and Antipina O 2014 Financial and tax instruments for stimulation of enterprises innovative activity. Problems and Perspectives in Management 12(2) 173-180
[13] Torkunova J and Khabrieva M 2022 Impact Analysis of Digital Transformation of the Energy Sector Economy on Hospitality Industry. Lecture Notes in Civil Engineering 190 105-112
[14] Barykina Y N, Chernykh A G and Na B 2022 Energy production as a basis for sustainable development in the BRICS countries. IOP Conference Series: Earth and Environmental Science 990(1) 012016
[15] Kagan E S, Goosen E V, Pakhomova E O and Goosen O K 2021 Industry 4.0. And an upgrade of the business models of large mining companies. IOP Conference Series: Earth and Environmental Science 823(1) 012057
[16] Barykina Y N and Chernykh A G 2022 Ensuring of reliability and security of energy systems in the Russian Federation. IOP Conference Series: Earth and Environmental Science 990(1) 012016
[17] Shinkevich M V, Shaimieva E S, Ershova I G, Kudryavtseva S S and Gumerova G I 2021 Modeling the influence of digitalization in the oil and gas chemical sector on the energy efficiency of Russian industry. *Academy of Entrepreneurship Journal* **27**(4) 1-11

[18] Barykina Y N, Gavrikova E I and Tang M L 2020 Leasing as a Tool for Financing of Innovative Projects. *Springer Proceedings in Business and Economics* 223–229

[19] Dudukalov E V, Terenina I V, Perova M V and Ushakov D 2021 Industry 4.0 readiness: The impact of digital transformation on supply chain performance. *E3S Web of Conferences* **244** 08020

[20] Krasovskaya O A and Vyaznikov V E 2021 The lending efficiency in the construction industry. *IOP Conference Series: Earth and Environmental Science* **751**(1) 012152

[21] Sukhareva E, Kakhalnikov M, Korolkova A and Sobolev A 2021 Organizational and economic mechanism for creating a digital environment in the energy sector. *ACM International Conference Proceeding Series* 3490858

[22] Zakharov S V, Ivanov M Y, Zakharova E S and Hang L Y 2021 Justification of the need to subsidize small innovative businesses for renting real estate in the context of a new coronavirus infection "covid-19". *IOP Conference Series: Earth and Environmental Science* **751**(1) 012188

[23] Soldatova N F, Rebrikova N V and Zakharenko I K 2021 Informatization of Society: The Development of Key Digital Competencies of Personnel. *Lecture Notes in Networks and Systems* **161** 496-505

[24] Zakharov S V, Ivanov M Y, Rebrikova A V and Shuiyao X 2021 Special economic zones and the role of construction industry enterprises in their creation. *IOP Conference Series: Earth and Environmental Science* **751**(1) 012187

[25] Turkova V N, Arkhipova AN and Tyapkina M F 2021 Creation of favorable conditions for the economy of Irkutsk region in the housing and communal sector. *IOP Conference Series: Earth and Environmental Science* **751**(1) 012183

[26] Tyapkina M F, Iliia E A and Mongush J D 2016 The effect of innovative processes on the cyclical Nature of Economic Development. *Mathematics Education* **11**(6) 1519–1527

[27] Nechaev A, Antipin D and Antipina O 2014 Financial and tax instruments for stimulation of enterprises innovative activity. *Problems and Perspectives in Management* **12**(2) 173–180

[28] Antipin D, Morozevich O, Deitch V, Gomboeva and A. Blockchain 2022 Technology as a Factor Affecting the Digitalization of the Financial Sector. *Lecture Notes in Networks and Systems* **432** 202–212

[29] Antipina O, Kireeva E, Ilyashevich N and Odoeva O 2022 Digitalization of Regional Economies in the Context of Innovative Development of the Country. *Lecture Notes in Networks and Systems* **432** 224–235

[30] Turkova V N, Archipova A N and Fedorovna Z G 2020 Digital transformation of the Russian construction industry. *IOP Conference Series: Materials Science and Engineering* **880**(1) 012083