ON THE LOCAL MINIMIZING PROPERTY OF THE INTEGRAL
NORM OF THE CURVATURE TENSOR

SOMA MAITY

Abstract. We consider the Riemannian functional defined on the space of Riemannian
metrics with unit volume on a closed smooth manifold \(M \) given by
\[R_p(g) := \int_M |R(g)|^p dv_g \]
where \(R(g), dv_g \) denote the Riemannian curvature and volume form. We prove that the
rank 1 symmetric spaces are stable for \(R_p \) for certain values of \(p \). It follows by standard
technique that they are local minima for this functional for those \(p \).

1. Introduction

Fix a closed smooth manifold \(M \) of dimension \(n \geq 3 \) and \(p \geq 2 \). Let \(R_p \) denote the
\(L^p \)-norm of the Riemannian curvature tensor
\[R_p(g) = \int_M |R(g)|^p dv_g \]
where \(R(g) \) and \(dv_g \) denote corresponding Riemannian curvature and volume form. It is
a real valued function defined on the space of Riemannian metrics and remains invariant
under the action of group of diffeomorphisms of \(M \). \(R_p \) is not scale invariant unless \(p = \frac{n}{2} \).
If \(p \) is not equal to \(\frac{n}{2} \) we restrict the functional to the space of unite volume Riemannian
metrics \(M_1 \).

Convergence and collapsing of minimizing sequence of \(R_p \) have been studied by Anderson,
Yang, Gao etc. \[1,11,8\]. If \(p \leq \frac{n}{2} \) then \(\inf R_p = 0 \) for every closed manifold. Chern-
Gauss-Bonnet formula implies that Einstein metrics are minima for \(R_{\frac{n}{2}} \) in dimension 2
and 4. If \(\inf R_p \) is zero for \(p > \frac{n}{2} \) then \(M \) admits an F-structure of positive rank \[11\]. Hence
\(R_p \) has a positive global minima for \(p > \frac{n}{2} \) when the Euler characteristic of \(M \) is non-zero \[6,7\]. For a survey in this topic we refer to \[2\].

Compact irreducible symmetric spaces are critical metrics of \(R_p \). Metrics with constant
sectional curvature are local minima for \(R_p \) \[9\] for certain values of \(p \) and there are irre-
ducible symmetric spaces which are not local minima for \(R_{\frac{n}{2}} \) \[5\]. In this paper we study
stability and local minimizing property of this functional at rank 1 symmetric spaces. They
are spheres, complex, quaternionic and the Caley projective spaces (denoted by \(\mathbb{C}P^n \), \(\mathbb{H}P^n \)
and \(\mathbb{O}P^n \) respectively) and their non-compact duals. We prove the following.

Theorem. Let \((M, g)\) be a compact quotient of a rank 1 symmetric space \((\tilde{M}, \tilde{g})\). \((M, g)\) is
a local minimizer for \(R_p \) for the indicated values of \(p \).

(i) \((\tilde{M}, \tilde{g})\) is complex hyperbolic space and \(p \geq 2 \).
(ii) \((\tilde{M}, \tilde{g})\) is quaternionic projective space and \(p \geq \frac{n}{2} \).
(iii) \((\tilde{M}, \tilde{g})\) is the Caley projective plane and \(p \geq 6 \).
(iv) \((\tilde{M}, \tilde{g})\) is a compact quotient of a non-compact rank 1 symmetric space then \(p \geq \frac{n}{2} \).

Key words and phrases. Riemannian functional, critical point, stability, local minima.
\(\mathbb{C}P^{2n+1} \) is a fibre bundle over \(\mathbb{H}P^n \) with \(S^2 \) fibres \([12]\). By shrinking \(S^2 \) fibres one constructs a one parameter family of homogeneous metrics \(g(t) \) with unit volume such that the sectional curvature remains bounded. Hence \(\inf R \) is zero on \(\mathbb{C}P^{2n+1} \). The previous theorem implies that \(R \) restricted to \(g(t) \) has a local maxima at \(g(t_0) \) for some \(t_0 \). From the principle of symmetric criticality we have that \(g(t_0) \) is critical point of \(R \). For this critical metric is not a local minimizer.

On the other hand the Euler characteristic of other projective spaces are non-zero. So they do not admit F-structures. Therefore \(\inf R \) is positive for them for \(p > \frac{3}{2} \).

To prove the main theorem we study second variation of \(R \). The gradient of \(R \) is a vector field on the space of Riemannian metric. It is a 4 th order non-linear PDE in \(g \). The Hessian at a critical point of \(R \) is given by

\[
H_p(h_1, h_2) = \langle (\nabla R_p)'(h_1), h_2 \rangle \quad \forall h_1, h_2 \in S^2(T^*M)
\]

where \(S^2(T^*M) \) denotes the space of symmetric 2-tensor fields on \(M \) and \((\nabla R_p)'(h_1) \) denotes the derivative of \(\nabla R_p \) at \(g \) along \(h_1 \). At an Einstein metric which is not a sphere \(S^2(T^*M) \) decomposes as

\[
S^2(T^*M) = \text{Im} \delta^*_g \oplus C^\infty(M).g \oplus (\delta^{-1}_g(0) \cap \text{Tr}^{-1}_g(0))
\]

(1.1)

\(\text{Im} \delta^*_g \) is the tangent space of the group of diffeomorphisms \(H \) restricted to \(\text{Im} \delta^*_g \) is zero. Define

\[
\mathcal{W} = (\delta^{-1}_g(0) \cap \text{Tr}^{-1}_g(0)) \oplus \{ fg : f \in C^\infty(M), \int_M f dv_g = 0 \}
\]

A Riemannian metric \(g \) which is not a sphere, is called stable for \(R \) if \(H_p \) restricted to unit sphere of \(\mathcal{W} \times \mathcal{W} \) has a positive lower bound i.e. the eigenvalues of \(H_p \) are bounded below by a positive constant.

Theorem 1. Let \((M, g) \) be a closed manifold with the universal cover a rank 1 symmetric space. \((M, g) \) is stable for \(R \) restricted to \(\delta^{-1}_g(0) \cap \text{tr}^{-1}(0) \) for all \(p \geq 2 \) i.e. there exists \(\epsilon > 0 \) such that for any symmetric 2-tensor \(h \) with \(\delta_g h = 0 \) and \(\text{tr}(h) = 0 \) the following holds.

\[
H_p(h, h) \geq \epsilon \| h \|^2.
\]

The gradient of \(R \) contains higher order derivatives of \(|R|^p-2R \). For \(p = 2 \), \(|R|^p-2 \) factor vanishes and then applying differential Bianchi identity one has a formula for \(\nabla R_2 \) which contains 2nd order derivatives of Ricci(\(r \)) and scalar(\(s \)) curvature only. The expression for \(\nabla R_2 \) restricted to \(M_1 \) is given by

\[
\nabla R_2(g) = 4D^*Dr + 2Dds + 4r \circ r - 4 \circ \nabla (r) - 2R + \frac{1}{2} |R|^2 g + (\frac{2}{n} - \frac{1}{2}) ||R||^2 g
\]

For notations we refer to section 2. To prove Theorem 1 first we prove the theorem for \(R_2 \) using the above formula for \(\nabla R_2 \). We use the Holonomy representation of rank 1 symmetric to express the \(H_2 \) on \(h \in \delta^{-1}_g(0) \cap \text{tr}^{-1}(0) \) in terms of rough laplacian acting on \(S^2(T^*M) \) and scalar curvature. When \(M \) is compact the expression is positive. In non-compact case we use a Böchner-Witzenböck type formula to get the stability of \(H_2 \). Since \(R \) is parallel in case of a locally symmetric space \(H_p \) restricted to \(\delta^0_g \cap \text{tr}^{-1}(0) \) is a constant multiple of \(H_2 \) and we obtain Theorem 1 for all \(p \geq 2 \).

Next using Böchner technique we express \(H_p \) restricted to the conformal variations of \(g \) in terms of Laplace-Beltrami operator acting on functions. Then estimates for first positive
eigenvalues of the Laplace-Beltrami operator in [10] gives the stability of \mathcal{R}_p restricted to the the conformal variations of a rank 1 symmetric space of compact type.

Theorem 2. Let (M, g) be a rank 1 symmetric space of compact type. (M, g) is stable for \mathcal{R}_p restricted to the conformal variations of g for the indicated values of p.

(i) (\tilde{M}, \tilde{g}) is complex hyperbolic space and $p \geq 2$.
(ii) (\tilde{M}, \tilde{g}) is quaternionic projective space and $p \geq \frac{n}{2}$.
(iii) (\tilde{M}, \tilde{g}) is the Cayley projective plane and $p \geq 6$.

If (M, g) be a compact quotient of a rank 1 symmetric space of non-compact type then \mathcal{R}_p restricted to $C^\infty(M)g$ is stable for $p \geq \frac{n}{2}$ [5]. Proof of main theorem follows from Theorem 1 and 2.

Let (M, g) be an closed Einstein manifold. From the formula for $\nabla \mathcal{R}_2$ mentioned before we have, g is a critical for \mathcal{R}_2 if and only if

$$\hat{R} = \frac{|\mathcal{R}|^2}{n} g$$

If (M, g) is de Rahm irreducible then Schur’s Lemma implies that g is a critical metric of \mathcal{R}_2. We give a criterion for stability of g for \mathcal{R}_2 in terms of the first positive eigenvalue of the Laplacian acting on functions when it is restricted to the conformal variation of g. The stability of \mathcal{R}_p for a general quaternionic Kähler manifolds and conformally flat manifolds is still unknown.

Acknowledgement: The author is a post-doctoral fellow at Fourier Institute, University Joseph Fourier, Grenoble. She would like to thank Institute Fourier for supporting this work.

2. Notations and Second Variation of \mathcal{R}_2

Let $\{v_i\}$ be an orthonormal basis and D be the Riemannian connection. The divergence operator δ_g acting on symmetric two tensors is given by

$$\delta_g(h)(x) = -D_{v_i} h(v_i, x) \text{ for } h \in S^2(T^*M)$$

D^* and δ_g^* denote the formal adjoints of D and δ_g. \hat{R} is a symmetric 2-tensor defined by

$$\hat{R}(x, y) = \sum R(x, v_i, v_j, v_k)R(y, v_i, v_j, v_k)$$

\hat{R} is a symmetric operator on $S^2(T^*M)$ defined by

$$\hat{R}(h)(x, y) := \sum R(v_i, x, v_j, y)h(v_i, v_j).$$

Note that \hat{R} (g) is the Ricci curvature of g. If g is Einstein and $tr(h)$, $\delta_g h$ are zero then $tr(\hat{R}(h))$ and $\delta_g(\hat{R}(h))$ are also zero. The Kulkarni-Nomizu product of two symmetric two tensors h_1 and h_2 is defined by

$$h_1 \wedge h_2(x, y, z, w) = [h_1(x, z)h_2(y, w) + h_1(y, w)h_2(x, z) - h_1(x, w)h_2(y, z) - h_1(y, z)h_2(x, w)]$$

We define inner product on symmetric operators on bi-vectors ($S^2 \wedge^2 TM$) by

$$\langle A, B \rangle = tr(A \circ B)$$

$\{v_i \wedge v_j : j < i\}$ forms a basis of basis of $\wedge^2 TM$ and tr is taken with respect to this basis. An algebraic curvature tensor R can also be viewed as an element of $S^2 \wedge TM$. Note that,
\[|R|^2 = 4t (R \circ R). \]

Let \(g_t \) be a one-parameter family of metrics with \(\frac{d}{dt}(g_t)|_{t=0} = h \). If \(T(t) \) is a tensor depending on \(g_t \), \(T'_g(h) \) denotes \(\frac{d}{dt}T(t)|_{t=0} \). \(D'_g(h) \), \(R'_g(h) \) and \(r'_g(h) \) are denoted by \(\Pi_h \), \(\bar{R} \) and \(r' \). From [4] we have the following formulae,

\[
\begin{align*}
g(\Pi_h(x,y),z) &= \frac{1}{2}\{D_xh(y,z) + D_yh(x,z) - D_zh(x,y)\} \\
\bar{R}_h(x,y,z,u) &= \frac{1}{2}\{D^2_{y,z}h(x,w) + D^2_{x,w}h(y,z) - D^2_{z,w}h(y,x) + \lambda h(R(x,y,z),w) - h(R(x,y,w),z)\} \\
r'_g(h) &= \frac{1}{2}\{D^*Dh + r \circ h + h \circ r - 2\bar{R}(h) - 2\delta g\delta g - Dd(trh)\}
\end{align*}
\]

Ricci curvature of \(\bar{R} \) is denoted by \(\bar{r} \). From the above formula we have \(r' = \bar{r} - \bar{R}(h) \).

Let \((M,g)\) be a closed Einstein manifold which is also a critical point of \(R_2 \) and \(\lambda \) be its Einstein constant. We compute each term which appear in the expression of Hessian \(H \).

Lemma 1. \((D^*Dr)'(h) = -\lambda D^*Dh + D^*Dr'_h \)

Proof. Since \(g \) is Einstein \(Dr = 0 \). Therefore \((D^*Dr)'(Dr) = 0 \) and we have

\[(D^*Dr)'(h) = D^*(D'(h)r) + D^*D(r'(h)). \]

If \(T \) is a \(t \)-independent 2-tensor then,

\[(D_xT(y,z))'(h) = -T(\Pi(x,y),z) - T(y,\Pi(x,z)) \]

When \(T = r = \lambda g \), using the formula for \(\Pi \) we have,

\[D'(h)r = -\lambda Dh \]

Hence the lemma follows. \(\square \)

Lemma 2. \((r \circ r)'(h) = 2\lambda r'_h - \lambda^2 h \)

Proof. Expressing \(r \circ r \) in a local co-ordinate chart we have, \((r \circ r)_{mn} = g^{ij}r_{mi}r_{nj} \). Differentiating this with respect to \(t \),

\[
(r \circ r)'(h)_{mn} = \frac{d}{dt}(g^{ij}r_{mi}r_{nj} + g^{ij}r'_{mi}r_{nj}) + g^{ij}r_{mi}r'_{nj} = -g^{ik}g^{jl}g^{ij}r_{mi}r_{nj} + r'(h) \circ r_{mn} + r \circ r'(h)_{mn}
\]

Since \(g \) is Einstein we have, \((r \circ r)'(h) = -\lambda^2 h + 2\lambda r'(h) \). \(\square \)

Lemma 3. \((\bar{R}(r))'(h) = -\lambda \bar{R}(h) + \bar{R}'(h) + \lambda r'_h \)

Proof. Expressing \(\bar{R} \) in a local co-ordinate chart we have,

\[(\bar{R}(r))_{pq} = g^{ij}g^{ij}R_{piqjh}r_{ij}. \]

Therefore,

\[
(\bar{R}(r))'(h)_{pq} = -(g^{ij}g^{ij}R_{piqjh}r_{ij} + g^{ij}g^{ij}R_{piqjh}r_{ij}) + g^{ij}g^{ij}R_{piqjh}r_{ij} + g^{ij}g^{ij}R_{piqjh}r_{ij} + g^{ij}g^{ij}R_{piqjh}r_{ij}
\]

Since \(g_{ij}(0) = \delta_j^i \) we have,

\[(R(r))'_g(h)_{pq} = -h_{mj}R_{pmqn}r_{nj} - h_{mn}R_{piqm}r_{in} + R'_g(h)_{piqj}r_{ij} + R_{piqj}r'_g(h)_{ij} \]
Since $r = \lambda g$ we have,

$$\lambda_{mj} R_{pqmn} r_{nj} - \lambda_{mn} R_{pqim} r_{jn} = -2\lambda \overset{\circ}{\dot{R}} (h)_{pq}$$

$$R'_{g}(h)_{piqj} r_{ij} = \lambda r'_{pq} + \lambda \overset{\circ}{\dot{R}} (h)$$

$$R_{piqj} r'_{g}(h)_{ij} = \overset{\circ}{\dot{R}} (r')_{pq}$$

Hence the lemma follows. \qed

Lemma 4.

$$(Dds)'(h) = -\lambda Ddtrh + Ddtr(r'_{h})$$

Proof. Since g is Einstein $(Dds)'(h) = Dds'(h)$. Next the lemma follows from 1.181 of [4]. \qed

Lemma 5.

$$(|R|^2)'(fg) = 4\lambda\Delta f - 2f|R|^2$$

Proof. The proof follows from the proof of Lemma in [9]. \qed

Define a 4 tensor K by

$$K(x, y, z, w) = \frac{1}{2} \sum_{i,j} \{R(x, v_i, z, v_j) R(y, v_i, w, v_j) + R(x, v_i, w, v_j) R(y, v_i, z, v_j)\}$$

Let $r_{R\circ\bar{R}}$ denotes the ricci tensor of $R \circ \bar{R}$.

Lemma 6.

$$\langle (\bar{R})'(h), h \rangle = -2\langle R \circ R, h \wedge h \rangle - 2\langle K, h \otimes h \rangle + 4\langle r_{R\circ\bar{R}}, h \rangle$$

Proof.

$$\bar{R}_{pq} = g^{ijz}g^{jiz}g^{k1k2}R_{pi1j1k1}R_{nq2j2k2}$$

Differentiating each terms and evaluating it in an orthonormal basis $\{v_i\}$ and using

$$\langle (g^{ij})', g^{ij} \rangle = -g^{im}h_{mn}g^{nj}$$

we have,

$$(\bar{R}'_{g})(h)_{pq} = -h_{mn} (R_{pmij} R_{qni} + R_{pimj} R_{qijn} + R_{pijm} R_{qijn}) + (R'_{g}(h)_{pijk} R_{qijk} + R_{pijk}(R'_{g}(h)_{qijk})$$

By a straightforward computations we have,

$$\langle R \circ R, h \wedge h \rangle = \frac{1}{2} h_{pq} h_{mn} R_{pijk} R_{qijk}$$

$$\langle K, h \otimes h \rangle = h_{pq} h_{mn} R_{pimj} R_{qijn}$$

$$\langle r'_{R\circ\bar{R}}, h \rangle = \frac{1}{2} h_{pq} R_{pijk} \bar{R}_{qijk}$$

Hence the lemma follows. \qed
Combining Lemma 1-5 and using (2.1) we have,

\[H(h, h) = 4(r'_h, D^* Dh + \lambda h - \hat{R}(h)) + \frac{1}{2}(\delta g h) - 4\lambda(\langle D^* Dh + \lambda h - \hat{R}(h), h \rangle (2.1)
+ 2\langle R \circ R, h \wedge h \rangle + 4\langle K, h \otimes h \rangle - 8\langle r_{R \circ R}, h \rangle + \frac{2\|R\|^2}{n}\|h\|^2
+ \frac{1}{2}(\|R\|^2 h, h) - 2\lambda(\langle Ddtr(h), h \rangle
\]

If \(\delta_g h = 0 \) and \(tr(h) = 0 \) then \(r'_h = \frac{1}{2}\{D^* Dh + 2\lambda h - 2 \hat{R}(h)\} \). Consequently we have the following.

Theorem 3. Let \((M, g)\) be a Einstein critical metric of \(R_2 \) with Einstein constant \(\lambda \) and \(h \) be a symmetric two tensor with \(\delta_g h = 0 \) and \(tr(h) = 0 \) then

\[H(h, h) = 2\langle [D^* Dh - 2 \hat{R}(h), D^* Dh + \lambda h - \hat{R}(h)] + \frac{|R|^2}{n}\|h\|^2
+ \langle R \circ R, h \wedge h \rangle + 2\langle K, h \otimes h \rangle - 4\langle r_{R \circ R}, h \rangle \]

Theorem 4. Let \((M, g)\) be a Einstein critical metric of \(R_2 \) with Einstein constant \(\lambda \) and \(f \in C^\infty(M) \) with \(\int_M f dv_g = 0 \) then

\[H(fg, fg) = 2(n - 1)\|\Delta f\|^2 - 8\lambda\|df\|^2 + (4 - n)|R|^2\|f\|^2 \]

Let \(\mu \) denotes the first positive eigenvalue of the Laplacian.

Remark 1 : Let \(\lambda > 0 \). Using Böchner technique we have,

\[H(fg, fg) > 2(n - 5)\|f\|^2 - (n - 4)|R|^2\|f\|^2 \]

Therefore \(g \) is stable for \(R_2 \) restricted to the conformal variations if and only if

\[\mu^2 \geq \frac{(n - 4)}{2(n - 1)}\|R\|^2 \]

Remark 2 : If \(\lambda \leq 0 \) then \(g \) is stable for \(R_2 \) restricted to the conformal variations if

\[\mu^2 \geq \frac{(n - 4)}{2(n - 1)}|R|^2 \]

3. Stability of \(R_2 \) at Rank 1 Symmetric Spaces

We recall some basic geometric facts of rank 1 symmetric spaces. Let \((M, g)\) be a rank 1 symmetric space which is not a sphere nor a hyperbolic space. Then \(T_p M \) admits a module structure over \(\mathbb{C}, \mathbb{H} \) or \(\mathbb{O} \) for any \(p \in M \). There are linear isometries \(\{J_\alpha, \alpha = 1, 2, \ldots, \tau\} \) on \(T_p M \) with the following properties,

\[J_\alpha^2 = Id \]

\[J_\alpha J_\beta = -J_\beta J_\alpha \text{ for } \alpha \neq \beta \]

\[J_\alpha J_\beta(x) \in \text{span}(J_0(x), J_1(x), \ldots, J_\tau(x)) \]

where \(J_0 \) denotes identity of \(T_p M \). \(\tau = 1, 3, 7 \) in case of \(\mathbb{C}, \mathbb{H} \) or \(\mathbb{O} \) modules respectively. Given an unit vector \(e_1 \) of \(T_p M \) one may extend it to an orthonormal frame of the form
\{e_{\alpha j}\} in a neighborhood of p where \(e_{\alpha j} = J_{\alpha} e_j\) and the curvature tensor is given by the following.

\[
R(e_{\alpha i}, e_{\beta j}, e_{\gamma k}) = 0 \text{ if } k \neq i \neq j \\
R(e_{\gamma i}, e_{\alpha i}, e_{\beta i}) = 0 \text{ if } \alpha \neq \beta \neq \gamma \\
R(e_{\alpha i}, e_{\beta j}, e_{\alpha i}, e_{\beta j}) = c \text{ when } \{\alpha, i\} \neq \{\beta, j\} \\
R(e_{\alpha i}, e_{\beta i}, e_{\alpha j}, e_{\beta j}) = 2c \text{ if } i \neq j \text{ and } \alpha \neq \beta \\
R(e_{\alpha i}, e_{\beta i}, e_{\alpha i}, e_{\beta i}) = 4c \text{ for } \alpha \neq \beta
\]

where \(c\) is a non-zero constant. Since each \(J_{\alpha}\) is an isometry we also have, \(R(x, y, J_{\alpha} z, J_{\alpha} w) = R(x, y, z, w)\) for any \(x, y, z, w \in T_p M\). Hence \(R(e_{\alpha i}, e_{\alpha j}, e_{\beta i}, e_{\beta j}) = c\).

For a symmetric 2-tensor \(h\) define \(\tilde{h}\) by \(\tilde{h}(x, y) = \sum_{\alpha \neq 0} h(J_{\alpha} x, J_{\alpha} y)\).

Lemma 7. Let \((M, g)\) be a rank 1 symmetric space. Then

\[
\nabla^\circ \tilde{R}(h) = 3\tilde{h} - ch + ctr(h)g
\]

Proof. Let \(e_1\) be a unit vector. It is sufficient to prove the above equation for \(e_1\). We extend \(e_1\) to a basis we mentioned above.

\[
\nabla^\circ \tilde{R}(h)(e_1, e_1) = R(e_1, .., e_1, ..)h(., .) \\
= \sum_i R(e_1, e_i, e_1, e_i)h(e_i, e_i) + \sum_{\alpha, i} R(e_1, e_{\alpha i}, e_1, e_{\alpha i})h(e_{\alpha i}, e_{\alpha i}) \\
= c \sum_{i \neq 1} [h(e_i, e_i) + h(e_{\alpha i}, e_{\alpha i})] + 4c \sum_{\alpha} h(e_{\alpha 1}, e_{\alpha 1}) \\
= 3\tilde{h}(e_1, e_1) + ctr(h) - ch(e_1, e_1)
\]

Since \(\nabla^\circ \tilde{R}(g) = r = \lambda g\), the Einstein constant \(\lambda = c(3\tau + n - 1)\) and scalar curvature \(s = cn(3\tau + n - 1)\).

Let \(R_1\) be an algebraic curvature tensor. Define \(\tilde{R}_1\) by

\[
\tilde{R}_1(x \wedge y) = \sum_{\gamma \neq 0, \alpha < \beta} \langle R(x, y, J_{\gamma} e_{\alpha i}, J_{\gamma} e_{\beta i}), e_{\alpha i} \wedge e_{\beta i} \rangle + \sum_{\gamma \neq 0, i < j} \langle R(x, y, J_{\gamma} e_{\alpha j}, J_{\gamma} e_{\beta j}), e_{\alpha j} \wedge e_{\beta j} \rangle
\]

By definition \(\tilde{R}(x \wedge y) = \tau R(x \wedge y)\). Since \(R(x \wedge y)\) belongs to the Lie algebra of the holonomy group of a rank 1 symmetric space the last two entries of \(R \circ R_1\) are invariant under \(J_{\gamma}\).

Lemma 8.

\[
R \circ R_1(x \wedge y) = cR_1(x \wedge y) + c\tilde{R}_1(x \wedge y) + c \sum_{\alpha < \beta} R_1(x, y, J_{\gamma} e_{\alpha j}, J_{\gamma} e_{\beta j}) e_{\alpha i} \wedge e_{\beta i}
\]
Proof.

\[g(R \circ R_1(x \wedge y), e_i \wedge e_{\alpha}) = \frac{1}{2} \sum R(e_i, e_{\alpha i}, e_{\beta j}, e_{\delta k}) R_1(x, y, e_{\beta j}, e_{\delta k}) \]
\[= \frac{1}{2} \sum R(e_i, e_{\alpha i}, J_\gamma e_{\beta j}, J_\gamma e_{\alpha j}) R_1(x, y, J_\gamma e_{\beta j}, J_\gamma e_{\alpha j}) \]
\[= c \sum R_1(x, y, J_\gamma e_{\alpha i}, J_\gamma e_{\alpha j}) + c \sum R_1(x, y, J_\gamma e_{\beta j}, J_\gamma e_{\alpha j}) \]

Similarly,

\[g(R \circ R_1(x \wedge y), e_i \wedge e_j) = \sum R(e_i, e_j, e_{\alpha i}, e_{\alpha j}) R_1(x, y, e_{\alpha i}, e_{\alpha j}) \]
\[= c \sum R_1(x, y, e_{\alpha i}, e_{\alpha j}) \]

Therefore we have,

\[R \circ R_1(x \wedge y) = c \sum \{ R_1(x, y, J_\gamma e_{\alpha i}, J_\gamma e_{\beta j}) + R_1(x, y, J_\gamma e_{\alpha j}, J_\gamma e_{\beta j}) \} e_{\alpha i} \wedge e_{\beta j} \]
\[+ c \sum R_1(x, y, J_\gamma e_{\alpha i}, J_\gamma e_{\beta j}) e_{\alpha i} \wedge e_{\beta j} \]

Hence the lemma follows. \(\square \)

If we put \(R_1 = R \) the next lemma follows.

Lemma 9.

\[R \circ R(x \wedge y) = c(\tau + 1) R(x \wedge y) + c(\tau + 1) \sum \sum R(x, y, e_{\alpha j}, e_{\beta j}) e_{\alpha i} \wedge e_{\beta i} \]

As a consequence we have the following lemmas.

Lemma 10.

\[|R|^2 = 2c^2 n(5\tau^2 + 3n\tau + 4\tau + n - 1) \]

Therefore,

Lemma 11.

\[\langle R \circ R, h \wedge h \rangle = c(n + \tau + 1) \langle \hat{R}(h), h \rangle + 4c^2 n\|h\|^2 \]

Proof. Let \(\{v_i\} \) be any orthonormal basis.

\[\sum_{i<j} \langle R(v_i \wedge v_j), h \wedge h(v_i \wedge v_j) \rangle = \sum_{i<j,k<l} 2R(v_i, v_j, v_k, v_l)[h(v_i, v_k)h(v_j, v_l) - h(v_i, v_l)h(v_j, v_k)] \]
\[= \langle \hat{R}(h), h \rangle \]
The remaining term of $\langle R \circ R, h \wedge h \rangle$ is the following.
\[
\frac{c}{2}(\tau + 1) \sum_{a < \beta} R(J_\gamma e_{a_k}, J_\gamma e_{\beta_k}, e_{a_j}, e_{\beta_j})\{h \wedge h(J_\gamma e_{a_k} \wedge J_\gamma e_{\beta_k}), e_{a_i} \wedge e_{\beta_i}\}
\]
\[
= 3c^2 n \sum_{a < \beta} \{h \wedge h(J_\gamma e_{a_k} \wedge J_\gamma e_{\beta_k}), e_{a_i} \wedge e_{\beta_i}\}
\]
\[
= 3c^2 n \sum_{a < \beta} \{h(e_{a_i}, J_\gamma e_{a_j})h(e_{\beta_i}, J_\gamma e_{\beta_j}) - h(J_\gamma e_{a_k}, e_{\beta_i})h(e_{a_i}, J_\gamma e_{\beta_k})\}
\]
\[
= 3c^2 n(h, \tilde{h} + h)
\]
\[
= c n(\tilde{R}(h), h) + 4c^2 n|h|^2
\]

Hence the lemma follows. \(\square\)

Lemma 12.

\[
r_{R_0R_1}(x, x) = cr_1(x, x) + c \sum_{\gamma \neq 1} \{R_1(x, e_{\beta_i}, J_\gamma x, J_\gamma e_{\beta_i}) + \frac{c}{2} R_1(x, J_\gamma x, e_{\beta_i}, J_\gamma e_{\beta_i})\}
\]

Proof. From Lemma 8 we have,

\[
r_{R_0R_1}(x, x) = cr_1(x, x) + \sum_{a < \beta} R_1(x, e_{\delta_k}, J_\gamma e_{a_j}, J_\gamma e_{\beta_j})(e_{a_i} \wedge e_{\beta_i}, x \wedge e_{\delta_k})
\]

By the definition of \tilde{R}_1 we have,

\[
\tilde{r}_{R_1}(x, x) = \sum_{\gamma \neq 1} \tilde{R}(x, e_{\beta_i}, J_\gamma x, J_\gamma e_{\beta_i})
\]

The remaining term is

\[
c \sum_{a \wedge \beta} R_1(x, e_{\delta_k}, J_\gamma e_{a_j}, J_\gamma e_{\beta_j})(e_{a_i} \wedge e_{\beta_i}, x \wedge e_{\delta_k})
\]

\[
= c \sum_{a \wedge \beta} x_{a_i} R_1(x, e_{\beta_i}, J_\gamma e_{a_j}, J_\gamma e_{\beta_j})
\]

\[
= \frac{c}{2} \sum_2 R(x, J_\gamma x, e_{\beta_j}, J_\gamma e_{\beta_j})
\]

Hence the lemma follows. \(\square\)

Next we consider $R_1 = \tilde{R}$ and compute $\langle r_{R_0\tilde{R}}, h \rangle$.

Lemma 13. Let h be a symmetric two tensor with $\delta_n h = 0$ and $tr(h) = 0$.

\[
\langle r_{R_0\tilde{R}}, h \rangle = \frac{c}{2} \|Dh\|^2 - c^2 \tau(\tau - 1)\|h\|^2 + \tau c^2 \|\tilde{h}, h\|^2 + 3c^2 \|\tilde{h}\|^2
\]

Proof. From the previous lemmas we have,

\[
\langle r_{R_0\tilde{R}}, h \rangle = c(\tilde{r}, h) + c \sum_{\gamma \neq 1} \tilde{R}(e_{\alpha p}, e_{\beta i}, J_\gamma e_{\delta q}, J_\gamma e_{\beta i})h(e_{\delta q}, e_{\alpha p})
\]

\[
+ \tilde{R}(e_{\delta q}, e_{\alpha p}, J_\gamma e_{\beta i}, J_\gamma e_{\beta i})h(e_{\delta q}, e_{\alpha p})
\]

We know that

\[
\langle \tilde{r}, h \rangle = \frac{1}{2} \|Dh\|^2 + \lambda\|h\|^2
\]
Next we compute the remaining two terms.
\[
2 \check{R}(e_{\alpha p}, e_{\beta i}, J_\gamma e_{\delta q}, J_\gamma e_{\beta i}) = D_{e_{\alpha p}, J_\gamma e_{\beta i}}^2 h(e_{\beta i}, J_\gamma e_{\delta q}) + D_{e_{\beta i}, J_\gamma e_{\delta q}}^2 h(J_\gamma e_{\beta i}, e_{\alpha p}) - D_{e_{\alpha p}, e_{\beta i}}^2 J_\gamma e_{\delta q} h(e_{\beta i}, J_\gamma e_{\delta q}) - D_{e_{\beta i}, e_{\delta q}}^2 h(J_\gamma e_{\beta i}, J_\gamma e_{\delta q}) + h(R(e_{\alpha p}, e_{\beta i}, J_\gamma e_{\delta q}), J_\gamma e_{\beta i}) - h(R(e_{\alpha p}, e_{\beta i}, J_\gamma e_{\beta i}), J_\gamma e_{\delta q})
= (T_1 + T_2 - T_3 - T_4 + T_5)(e_{\alpha p}, e_{\delta q})
\]

Notice that
\[
T_3 = \sum_i D_{e_{\alpha p}, J_\gamma e_{\delta q}}^2 h(e_{\beta i}, J_\gamma e_{\beta i}) = 0
\]
\[
T_1 = \sum_i D_{e_{\alpha p}, J_\gamma e_{\beta i}}^2 h(e_{\beta i}, J_\gamma e_{\delta q}) = - \sum_i D_{e_{\alpha p}, e_{\beta i}}^2 J_\gamma e_{\delta q} h(J_\gamma e_{\beta i}, J_\gamma e_{\delta q}) = D\delta h(h(e_{\alpha p}, e_{\delta q})
\]
Therefore \(\langle T_1, h \rangle = 2 \langle \delta h, h \rangle = 0 \). Next notice that
\[
(T_2, h) = D_{e_{\beta i}, e_{\delta q}} h(e_{\alpha p}, e_{\delta q}) h(e_{\alpha p}, e_{\delta q})
\]
Therefore,
\[
(T_2, h) + (D\delta h, h) = D_{e_{\beta i}, e_{\delta q}} h(e_{\alpha p}, e_{\delta q}) h(e_{\alpha p}, e_{\delta q}) - D_{e_{\delta q}, e_{\beta i}} h(e_{\alpha p}, e_{\delta q}) h(e_{\alpha p}, e_{\delta q})
\]
Next using Ricci identity we have,
\[
(T_2 + D\delta h)(e_{\alpha p}, e_{\delta q}) = h(R(e_{\beta i}, J_\gamma e_{\alpha p}, e_{\delta q}), J_\gamma e_{\beta i}) + h(R(e_{\beta i}, J_\gamma e_{\delta q}, J_\gamma e_{\beta i}), e_{\alpha p}) - h(R(J_\gamma e_{\beta i}, e_{\delta q}, e_{\alpha p}), J_\gamma e_{\beta i}) - h(R(J_\gamma e_{\beta i}, e_{\delta q}, J_\gamma e_{\beta i}), e_{\alpha p}) = -\check{R}(h)(e_{\alpha p}, e_{\delta q}) - \tau \lambda h(e_{\alpha p}, e_{\delta q})
\]
Therefore \(\langle T_2, h \rangle = -\check{R}(h)(h) - \tau \lambda \| h \|^2 \).
\[
2T_3 = 2D_{e_{\alpha p}, J_\gamma e_{\beta i}}^2 h(e_{\alpha p}, J_\gamma e_{\delta q}) = D_{e_{\beta i}, J_\gamma e_{\delta q}}^2 h(e_{\alpha p}, J_\gamma e_{\delta q}) - D_{J_\gamma e_{\beta i}, e_{\delta q}}^2 h(e_{\alpha p}, J_\gamma e_{\delta q})
\]
Using Ricci identity again we have,
\[
\langle T_3, h \rangle = (n + \tau + 1)\| h \|^2
\]
\[
T_5 = h(R(e_{\alpha p}, e_{\beta i}, J_\gamma e_{\delta q}), J_\gamma e_{\beta i}) - h(R(e_{\alpha p}, e_{\beta i}, J_\gamma e_{\beta i}), J_\gamma e_{\delta q}) = h(R(J_\gamma e_{\alpha p}, J_\gamma e_{\beta i}, J_\gamma e_{\delta q}), J_\gamma e_{\beta i}) - h(R(J_\gamma e_{\alpha p}, J_\gamma e_{\beta i}, J_\gamma e_{\beta i}), J_\gamma e_{\delta q}) = \check{R}(h)(J_\gamma e_{\alpha p}, J_\gamma e_{\delta q}) + \lambda h(J_\gamma e_{\alpha p}, J_\gamma e_{\delta q})
\]
Therefore \(\langle T_5, h \rangle = \check{R}(h)(h) + \langle h, h \rangle \). Similarly, let
\[
2\check{R}(e_{\delta q}, J_\gamma e_{\alpha p}, e_{\beta i}, J_\gamma e_{\beta i}) h(e_{\delta q}, e_{\alpha p}) = S_1 + S_2 + S_3 + S_4 + S_5
\]
Notice that
\[
S_3 = - \sum_{\gamma \neq 1} h(e_{\delta q}, e_{\alpha p}) D_{e_{\delta q}, e_{\beta i}}^2 h(J_\gamma e_{\alpha p}, J_\gamma e_{\beta i}) = E_2
\]
and
\[
S_4 = - \sum_{\gamma \neq 1} h(e_{\delta q}, e_{\alpha p}) D_{J_\gamma e_{\delta q}, e_{\beta i}}^2 h(e_{\delta q}, e_{\beta i}) = S_1
\]
Now

\[S_1 = \sum_{\gamma \neq 1} h(e_{q\gamma}, e_{\alpha p}) D_{J_\gamma e_{\alpha p}, e_{\beta i}}^2 h(e_{q\delta}, J_\gamma e_{\beta i}) \]

\[= - \sum_{\gamma \neq 1} h(J_\gamma e_{q\delta}, J_\gamma e_{\alpha p}) D_{e_{\alpha p}, e_{\beta i}}^2 h(J_\gamma e_{q\delta}, J_\gamma e_{\beta i}) \]

\[= - \sum_{\gamma \neq 1} h(J_\gamma e_{q\delta}, J_\gamma e_{\alpha p}) D_{e_{\alpha p}, e_{\beta i}}^2 h_{\gamma}(e_{q\delta}, e_{\beta i}) \]

\[= \sum_{\gamma \neq 1} h_{\gamma}(e_{q\delta}, e_{\alpha p}) \delta^\gamma_{\delta q} \delta_{\gamma} h_{\gamma}(e_{\alpha p}, e_{q\delta}) \]

\[= 0 \]

\[S_2 = \sum_{\gamma \neq 1} h(e_{q\delta}, e_{\alpha p}) D_{e_{q\delta}, J_\gamma e_{\beta i}}^2 h(J_\gamma e_{\alpha p}, e_{\beta i}) \]

\[= - \sum_{\gamma \neq 1} h(e_{q\delta}, e_{\alpha p}) D_{e_{q\delta}, e_{\beta i}}^2 h(J_\gamma e_{\alpha p}, J_\gamma e_{\beta i}) \]

\[= - \sum_{\gamma \neq 1} h(e_{q\delta}, e_{\alpha p}) D_{e_{q\delta}, e_{\beta i}}^2 \tilde{h}(e_{\alpha p}, e_{q\delta}) \]

\[= \sum_{\gamma \neq 1} h(e_{q\delta}, e_{\alpha p}) \delta^\gamma_{\delta q} \tilde{h}(e_{\alpha p}, e_{q\delta}) \]

\[S_5 = \sum_{\gamma \neq 1} h(e_{q\delta}, e_{\alpha p}) [h(R(e_{q\delta}, J_\gamma e_{\alpha p}, e_{\beta i}), J_\gamma e_{\beta i}) - h(R(e_{q\delta}, J_\gamma e_{\alpha p}, J_\gamma e_{\beta i}), e_{\beta i})] \]

\[= 2 \sum_{\gamma \neq 1} h(e_{q\delta}, e_{\alpha p}) h(R(e_{q\delta}, J_\gamma e_{\alpha p}, e_{\beta i}), J_\gamma e_{\beta i}) \]

\[= -2 \sum_{\gamma \neq 1} h(e_{q\delta}, e_{\alpha p}) [h(R(J_\gamma e_{\alpha p}, e_{\beta i}, e_{q\delta}), J_\gamma e_{\beta i}) + h(R(e_{\beta i}, e_{q\delta}, J_\gamma e_{\alpha p}), J_\gamma e_{\beta i})] \]

\[= 2 \sum_{\gamma \neq 1} h(e_{q\delta}, e_{\alpha p}) [R(e_{\alpha p}, J_\gamma e_{\beta i}, e_{q\delta}, e_{\beta i}) h(., J_\gamma e_{\beta i}) + R(e_{q\delta}, e_{\beta i}, e_{\alpha p}, .) h(J_\gamma e_{\beta i}, .)] \]

\[= 4 \hat{R} (\tilde{h}, h) \]

Lemma 14.

\[(\mathcal{K}, h \otimes h) = \{ n + 10(\tau + 1) \} \| \tilde{h} + h \|^2 + 4tr^2(\tilde{h} + h) \]
Proof. Let \(h_1 = h + \tilde{h} \). Since \(R \) is \(J_\gamma \) invariant in first and last two entries we have,

\[
\langle K, h \otimes h \rangle = \sum h_1(e_p, e_q)h_1(e_m, e_n)R(e_p, e_{\alpha i}, e_m, e_{\beta j})R(e_q, e_{\alpha i}, e_n, e_{\beta j})
\]

\[
= \sum h_1^2(e_p, e_p)R^2(e_p, e_{\alpha i}, e_p, e_{\alpha i}) + 2 \sum_{p \neq m} h_1(e_p, e_p)h_1(e_m, e_m)R^2(e_p, e_{\alpha p}, e_m, e_{\alpha m})
\]

\[
+ \sum_{p \neq q} h_1^2(e_p, e_q)R(e_p, e_{\alpha i}, e_p, e_{\alpha i})R(e_q, e_{\alpha i}, e_q, e_{\alpha i})
\]

\[
+ 2 \sum_{p \neq q} h_1^2(e_p, e_q)R(e_p, e_{\alpha p}, e_q, e_{\alpha q})R(e_q, e_{\alpha p}, e_q, e_{\alpha q})
\]

\[
= \{n + 10(\tau + 1)\} \|h_1\|^2 + 4tr^2(h_1)
\]

3.1. Proof of the main theorem: First we consider a symmetric two tensor \(h \) with \(\delta_g h = 0 \) and \(tr(h) = 0 \). From the previous lemmas we have,

\[
H(h, h) = 2[\|D^*Dh - \frac{3}{2} \, \overset{\circ}{\varphi}(h)\|^2 + (n + 3\tau - 3)c\|Dh\|^2 + c^2\{2n + 20 + 6\tau - \frac{1}{4}\}]\|\tilde{h}\|^2
\]

\[
+ (7n + 42 + 39\tau + \frac{1}{2})c^2\|\tilde{h}, h\|^2 + c^2\{7n\tau + 6n\tau + 14\tau^2 + 23\tau + 17 + \frac{1}{2}\}\|h\|^2
\]

If \(c > 0 \) then it is clear from the above expression that there exists \(\epsilon > 0 \) such that \(H(h, h) > \epsilon\|h\|^2 \).

Let \(c < 0 \). From [3] we have,

\[
\langle D^*Dh - \overset{\circ}{\varphi}(h) + \lambda h, h \rangle \geq 0
\]

Using this identity we have,

\[
\langle D^*Dh - 2 \, \overset{\circ}{\varphi}(h), D^*Dh + \lambda h - \overset{\circ}{\varphi}(h) \rangle
\]

\[
= \|D^*Dh - \frac{3}{2} + \lambda h\|^2 - \lambda\langle D^*Dh - \overset{\circ}{\varphi}(h), h \rangle + \lambda^2\|h\|^2 - \frac{1}{4}\| \overset{\circ}{\varphi}(h)\|^2
\]

\[
\geq -\frac{1}{4}\| \overset{\circ}{\varphi}(h)\|^2
\]

Therefore,

\[
H(h, h) \geq \frac{13}{12}c^2\| \overset{\circ}{\varphi}(h)\|^2 + 2c^2\{n + 10(\tau + 1)\}\|\tilde{h}\|^2
\]

\[
- 3(n + 3 - 5\tau)c^2\|\tilde{h}, h\|^2 + 2c^2\{3n(\tau + 1) + 5\tau^2 - 12\tau + 15 + \frac{1}{3}\}\|h\|^2
\]

\[
\geq \epsilon_1\|h\|^2
\]

As a consequence we have Theorem 1 for \(p = 2 \). Let \(H_p \) denote the Hessian of \(\mathcal{R}_p \) then from [3] (4.1) we have

\[
H_p(h, h) = \frac{p}{2}[|R|^{p-2}H(h, h) \text{ forall } h \in \delta_g(0) \cap tr^{-1}(0)]
\]

Therefore, the theorem also holds for \(\mathcal{R}_p \) for \(p > 2 \).

Next we consider the conformal variations of \(g \). In this case the previous technique does not work. \((|R|^p)'_g \) contributes to the expression of \(H_p \) restricted to the conformal case. From
Lemma 10 and [10] we have the following values of $\frac{|R|^2}{\lambda^2}$ and $\frac{\mu}{\lambda}$ for rank 1 symmetric space of compact type.

(i) $\mathbb{C}P^n$: $\tau = 1$ and let $n = 2m$. Then $\frac{|R|^2}{\lambda^2} = \frac{m}{m+1}$ and $\frac{\mu}{\lambda} = 2$.

(ii) $\mathbb{H}P^n$: $\tau = 3$ and let $n = 4m$. Then $\frac{|R|^2}{\lambda^2} = \frac{4m(5m+7)}{(m+2)^2}$ and $\frac{\mu}{\lambda} = \frac{2(m+1)}{m+2}$.

(iii) $\mathbb{O}p^2$: $\tau = 7$ and $n = 16$. $\frac{|R|^2}{\lambda^2} = \frac{416}{27}$ and $\frac{\mu}{\lambda} = \frac{4}{3}$.

Now the compact case of Theorem 2 follows from Proposition 2.1 in [9]. The non-compact case follows from the same proposition. This completes the proof of the main theorem. □

References

[1] M. Anderson, Convergence and rigidity of manifolds under Ricci curvature bounds (1990).
[2] ———, Degeneration of metrics with bounded curvature and applications to critical metrics of Riemannian functional (1993).
[3] M. Berger, Quelques formules de variation pour une structure riemannienne (1970).
[4] A. L. Besse, Einstein manifolds, Vol. 10 of Ergebnisse der Mathematik und ihrer Grenzgebiete (3)/Results in Mathematics and Related Areas (3), Springer-Verlag, Berlin (1987).
[5] A. Bhattacharya and S. Maity, Some unstable critical metrics for the L^n-norm of the curvature tensor, Mathematical Research Letters 21 (2014), no. 2.
[6] J. Cheeger and M. Gromov, Collapsing Riemannian manifolds while keeping their curvature bounded. I, J. Differential Geom. 23 (1986) 309–346.
[7] ———, Collapsing Riemannian manifolds while keeping their curvature bounded. II, J. Differential Geom. 32 (1990) 269–298.
[8] Z. GAO, Convergence of Riemannian manifolds, Ricci pinching, and L^n- curvature pinching (1990).
[9] S. Maity, On the stability of the L^p-norm of curvature tensor, arXiv:1201.1691.
[10] H. Urakawa, The first eigenvalue of the Laplacian for a positively curved homogeneous Riemannian manifold, Compositio Math. 59 (1986), no. 1, 57–71.
[11] D. Yang, Riemannian manifolds with small integral norm of curvature, Duke Math. J. 65 (1992) 501–510.
[12] W. Ziller, Homogeneous Einstein Metrics on Spheres and Projective Spaces (1982).

E-mail address: soma123maity@gmail.com