New combinations of plant-associated fungi resulting from the change to one name for fungi

Amy Y. Rossman1, W. Cavan Allen2,3, and Lisa A. Castlebury3

1Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331, USA; corresponding author e-mail: amydiianer@yahoo.com
2Department of Plant Pathology, North Carolina State University, Raleigh, NC 27695, USA
3Systematic Mycology and Microbiology Laboratory, USDA-ARS, Beltsville, MD 20705, USA

Abstract: In advancing to one scientific name for each fungus species, a number of name changes are required especially for plant-associated fungi. These include species names that are not in the correct genus. For example, the generic name Elsinoë is used for fungi causing scab diseases but a number of these species were described in the asexually typified genus Sphaceloma and must be placed in Elsinoë. In other cases species names were determined to be unrelated to the type species of the genus in which they are currently placed and are placed in a more appropriate genus. For each new name the history, rationale and importance of the name is discussed. The following new combinations are made: Acanthohelicospora aurea, A. scopula, Bifusella ahmadii, Botryobasidium capitatum, B. rubiginosum, Colletotrichum magnum, Cramdallia acuminata, C. antarctica, Elsinoë arachadis, E. freyliniae, E. necator, E. perseae, E. poinsettiae, E. punicae, Entyloma gibbum, Harknessia farinosa, Passalora alocasiae, Protoventuria veronicae, Pseudocercosporella ranunculi, Psiloglonium stygium, Ramularia pseudomaculiformis, Septatosporium tostum, Thielaviopsis radicicola comb. nov., and Venturia effusa.

Key words: Fungi nomenclature plant pathogens pleomorphic fungi scientific names

INTRODUCTION

In the course of updating the scientific names of plant-associated fungi in the Systematic Mycology & Microbiology Laboratory Fungal Databases (SMML) to conform with one scientific name for fungi as required by the International Code of Nomenclature for algae, fungi and plants (ICN; McNeill et al. 2012), a number of instances were encountered in which the oldest epithet was not placed in the oldest or preferred genus or for other reasons a name change is required. In the case of species in which the scientific name should be changed but is widely used and applies to economically important plant pathogenic fungi, the name is placed on a list of species names to be protected. This list of proposed protected species names will be evaluated and accepted or declined by the Nomenclature Committee for Fungi (NCF) and put to the 2017 International Botanical Congress for approval. Examples of names proposed for protection are: Balansia claviceps, Helicobasidium purpureum, Lasiodiplodia theobromae, Phanerochaeta chrysosporium, and Venturia inaequalis. A number of lesser known plant-associated fungal names exist for which a new combination is needed and these are made here. Both ascomycetes and basidiomycetes are included, but no members of the Erysiphales, Eurotiales, Saccharomycetales or Uredinales; these groups have been or will be considered elsewhere. In making these new combinations, the basionym and commonly used synonyms are listed but more synonyms may exist as provided in the SMML Fungal Databases (url: http://nt.ars-grin.gov/fungaldatabases/index.cfm). Here the names are arranged by class. For each name the source of the synonymy is provided as well as the rationale for selection of the genus in which the name is placed.

In this paper there are three situations for which new names are needed. In one case a name was described in a genus but that genus does not have priority or will not be used, thus the name must be placed in the genus to be used. As an example most species originally described in the asexually typified genus Sphaceloma belong in the sexually typified genus Elsinoë because Sphaceloma is now considered a synonym of Elsinoë (Wijayawardene et al. 2014, Rossman et al. 2015). In the second case the sexual and asexual names for a species are synonyms and the oldest epithet is not in the correct genus. This is the situation for Bifusella ahmadii based on Leptostroma admadii for which the younger name B. superba is a synonym. The third case is that in which the species are not congeneric with the genus in which they were originally

© 2016 International Mycological Association

You are free to share - to copy, distribute and transmit the work, under the following conditions:

Attribution: You must attribute the work in the manner specified by the author or licensor (but not in any way that suggests that they endorse you or your use of the work).

Non-commercial: You may not use this work for commercial purposes.

No derivative works: You may not alter, transform, or build upon this work.

For any reuse or distribution, you must make clear to others the license terms of this work, which can be found at http://creativecommons.org/licenses/by-nc-nd/3.0/legalcode. Any of the above conditions can be waived if you get permission from the copyright holder. Nothing in this license impairs or restricts the author's moral rights.
placed. As an example _Venturia effusa_, originally described in _Fusicladium_, was determined to belong in the genus _Venturia_ but the combination has never been made.

Leotiomycetes

Bifusella ahmadii (Pet.) Rossman & W.C. Allen, _comb. nov._

MycoBank MB815413

Basionym: Leptostroma ahmadii Petr., _Sydowia_ 8: 181 (1954).

Synonym: Bifusella superba P.F. Cannon & Minter, _Mycol. Pap._ 155: 27 (1986).

Notes: When Cannon & Minter (1986) described _Bifusella superba_ from India, they listed _Leptostroma ahmadii_ as the asexual morph based on their examination of two isosyntype specimens. They also noted that this asexual morph was observed in the type collection of _B. superba_. Minter (1988) suggested that this fungus causes a disease called needle blight of mountain pines known from India and Pakistan. _Bifusella Höhn._ 1917, typified by _B. linearis_ (Peck). Höhn. 1917, is an accepted genus in _Rhytismataceae_ known primarily from conifers (Hou _et al._ 2005). The type species of _Leptostroma_ Fr. 1815, _L. scirpinum_ Fr. 1823 on _Scirpus_, is a synonym of _Hypothelium_ P.R. Johnst. 1990 typified by _H. scirpinum_ (DC.) P.R. Johnst. 1990, based on _Hypoderma scirpinum_ DC. 1815, with preference now given to the later generic name (Johnston _et al._ 2014). Thus, _L. ahmadii_ does not belong in _Leptostroma_. With the change to one name for fungi, the oldest epithet for the species, _L. ahmadii_, should be placed in _Bifusella._

Crandallia acuminata (Ellis & Everh.) Rossman & W.C. Allen, _comb. nov._

MycoBank MB815414

Basionym: Duplicaria acuminata Ellis & Everh., _Proc. Acad. Nat. Sci. Philadelphia_ 47: 429 (1895).

Synonyms: Bifusella acuminata (Ellis & Everh.) Bonar & W.B. Cooke, _Mycologia_ 34: 665 (1942).

Crandallia junicola Ellis & Sacc., _Bull. Torrey Bot. Club_ 24: 466 (1897).

Crandallia antarctica (Speg.) Rossman & W.C. Allen, _comb. nov._

MycoBank MB 815415

Basionym: Lophodermium antarcticum Speg., _Boln. Acad. Nac. Cienc. Córdoba_ 11: 249 (1887).

Synonym: Duplicaria antarctica (Speg.) P.R. Johnst., _Mycol. Pap._ 176: 89 (2001).

Notes: The type species of _Crandallia_ Ellis & Everh. 1897, _C. junicola_, is considered the asexual morph of _Duplicaria acuminata_ (Powell 1973), a species that is known from both living and dead stems of primarily _Juncus_ (Juncaceae), _Carex_ (Cyperaceae), in western North America (Farr & Rossman 2015, Powell 1973). Through careful developmental studies, Powell (1973) unraveled the relationship of the asexual and sexual morphs of this species, which occur on the same type specimen. The genus _Duplicaria_ Fuckel 1870 is typified by _D. empetri_ (Pers.) Fuckel 1870 on _Empetrum_ (Ericaceae), a species about which little is known. The asexual morph of _D. empetri_ was placed in _Melasmia_ by Powell (1973), a genus quite unlike _Crandallia_. Based on the differences in host family and asexual morphs, it would appear that _D. empetri_ is unrelated to _C. acuminata_, thus _Duplicaria_ and _Crandallia_ are not synonyms. Johnston (2001) compared _D. acuminata_ and _D. antarctica_, the two species of _Duplicaria_ on _Juncaceaee_, suggesting that they were congeneric. Although _D. acuminata_ was placed in _Bifusella_ by Bonar & Cooke (1942), Powell (1973) distinguished these three generic names and rejected _Bifusella_ for _Duplicaria acuminata_. In addition species of _Bifusella_ including the type species occur only on conifers. Thus _Bifusella_ and _Duplicaria_ are rejected as the possible generic placement for these species. Rather the oldest epithet of each species, including the type species, are now placed in the genus _Crandallia_.

Dothideomycetes

Acanthohelicospora aurea (Corda) Rossman & W.C. Allen, _comb. nov._

MycoBank MB815417

Basionym: Helicomyces aureus Corda, _Icon. fung._ 1: 9 (1837).

Synonyms: Helicosporium aureum (Corda) Linder, _Ann. Mo. Bot. Gdn._ 16: 279 (1929).

Helicosporium citreoviride Tubaki, _Trans. Mycol. Soc. Japan_ 5: 2 (1964).

Acanthohelicospora scopula (Peck) Rossman & W.C. Allen, _comb. nov._

MycoBank MB815416

Basionym: Acanthostigma scopulum Peck, _Bull. N.Y. St. Mus. nat. Hist._ 1(2): 22 (1887).

Synonyms: Helicosporium pilosum Ellis & Everh., _Bull. Torrey bot. Club_ 24: 476 (1897).

[Sphaeria scopula Cooke & Peck 1880 non Sowerby 1803._]

[Acanthostigmina scopula (Cooke & Peck) J.L. Crane _et al._, _Canad. J. Bot._ 76: 606 (1998)._]

[Lasiophysaria scopula (Cooke & Peck) Sacc., _Syll. Fung._ 9: 852 (1891)._]

[Tuberula scopula (Cooke & Peck) M.E. Barr, _Mycotaxon_ 12: 164 (1980)._]

Notes: The genus _Acanthohelicospora_ Boonmee & K.D. Hyde 2014 was established by Boonmee _et al._ (2014) based on _A. pinicola_ Boonmee & K.D. Hyde 2014. They showed that _A. aurea_ and _A. scopula_ were congeneric but distinct species in this genus, but did not formally make the new combinations. The other potential generic names such as _Acanthostigma_, _Helicomyces_, _Helicosporium_, and _Tuberula_ were each shown to be distinct from this genus based on the phylogenetic placement of their respective type species. The basionym for _A. scopula_ had previously been considered to be _Sphaeria scopula_ Cooke & Peck 1880 (Réblová & Barr 2000) but that name is a later homonym of _S. scopula_ Sowerby 1803, thus the basionym for this species dates from the next available name, _Acanthostigma scopulum_ Peck 1887. Both of these epithets are therefore now placed in _Acanthohelicospora._
Elsinoë arachidis (Bitanc. & Jenkins) Rossman & W.C. Allen, comb. nov.
MycoBank MB815418
Basionym: Sphaceloma arachidis Bitanc. & Jenkins, Archos Inst. biol., S. Paulo 11: 45 (1940).

Elsinoë freyliniae (Crous) Rossman & W.C. Allen, comb. nov.
MycoBank MB815419
Basionym: Sphaceloma freyliniae Crous, Persoonia 25: 125 (2010).

Elsinoë necator (Ellis & Everh.) Rossman & W.C. Allen, comb. nov.
MycoBank MB815420
Basionym: Gloeosporium necator Ellis & Everh., J. Mycol. 3(11): 129 (1887).
Synonyms: Sphaceloma necator (Ellis & Everh.) Jenk. & Shear, Phytopathology 36: 1047 (1946).
Plectodiscella veneta Burkholder, Phytopathology 7: 91 (1917).
Elsinoë veneta (Burkhr.) Jenkins, J. Agric. Research 44: 696 (1932).

Elsinoë perseae (Jenkins) Rossman & W.C. Allen, comb. nov.
MycoBank MB815421
Basionym: Sphaceloma perseae Jenkins, Phytopathology 24: 84 (1934).

Elsinoë poinsettiae (Jenkins & Ruehle) Rossman & W.C. Allen, comb. nov.
MycoBank MB815422
Basionym: Sphaceloma poinsettiae Jenkins & Ruehle, Proc. Wash. Acad. Sci. 55: 83 (1942).

Elsinoë punicea (Bitanc. & Jenkins) Rossman & W.C. Allen, comb. nov.
MycoBank MB815423
Basionym: Sphaceloma punicea Bitanc. & Jenkins, Proc. Amer. Sci. Congr. 8: 163 (1942).

Notes: The generic names Elsinoë and Sphaceloma have been applied to the sexual and asexual morphs of the fungi causing scab diseases, which occur primarily in subtropical and tropical regions. In advancing to one scientific name for fungi, it was decided to propose the generic name Elsinoë, which is widespread in subtropical and tropical regions. In advancing to one scientific name for fungi, it was decided to propose the generic name Elsinoë, which is widespread in subtropical and tropical regions.

Passalora alocasiae (Syd. & P. Syd.) Rossman & W.C. Allen, comb. nov.
MycoBank MB815424
Basionym: Mycosphaerella alocasiae Syd. & P. Syd., Philipp. J. Sci., C, Bot. 8(3): 195 (1913).
Synonyms: Sphaerella alocasiae (Syd. & P. Syd.) Trotter, Sylt. Fung. 24(2): 850 (1928).
Cercospora caladii var. colocasiae Höhn., Sber. Akad. Wiss. Wien, Math.-naturw. Kl., Abt. 1 116: 150 (1907).
Cercospora colocasiae (Höhn.) Chupp, Monograph of Cercospora: 58 (1954).
Passalora colocasiae (Höhn.) U. Braun, New Zealand J. Bot. 37: 308 (1999).
Phylosticta colocasiae Höhn., Sber. Akad. Wiss. Wien, Math.-naturw. Kl., Abt. 1 116: 142 (1907).

Notes: When Braun et al. (2014) reviewed the phylogenetic placement and taxonomy of this species, they considered Cercospora caladii var. colocasiae to be the oldest name for this taxon. Because taxa only compete at the same rank (McNeill et al. 2012), the earliest species name available is Phylosticta colocasiae. However, as that name is already used at species rank in Passalora, the next oldest epithet is provided by Mycosphaerella alocasiae. Based on the generic placement and synonymy in Braun et al. (2014), this oldest available epithet is here placed in Passalora.

Protoventuria veronicae (Bat.) Rossman & W.C. Allen, comb. nov.
MycoBank MB815425
Basionym: Ramalia veronicae Bat., Revta Biol. (Lisbon) 1(2): 111 (1957).
Synonyms: Fusicladium veronicae (Bat.) B. Sutton & Pascoe, Aust. Syst. Bot. 1: 81 (1988).
Protoventuria parahebicia Pascoe & B. Sutton, Aust. Syst. Bot. 3: 281 (1990).

Notes: The sexual morph of Fusicladium veronicae was described as Protoventuria parahebicia (Pascoe & Sutton 1990), a fungus causing brown leaf blight on Parahebe (Sutton & Pascoe 1988). With the change to one name for fungi, the oldest epithet must be placed in the accepted genus unless conserved or protected. The genus Protoventuria Berl. & Sacc. 1887 is typified by P. rosae (De Not.) Berl. & Sacc. 1887, based on Venturia rosae De Not. 1844, and includes 46 names. Most recently this type species has been regarded as Gibbera rosae (De Not.) E. Müll. & R. Menon 1955. Zhang et al. (2011) demonstrated that this species, together with P. alpina (Sacc.) M.E. Barr 1971, formed a distinct lineage in Dothideomycetes that should be regarded as Protoventuria. The genus Ramalia Bat. 1957, typified by R. veronicae, includes only one additional species and has not been widely used. Further, Protoventuria has priority over Ramalia. Fusicladium based on F. pomi is
considered a synonym of Venturia, a generic name that is proposed for protection (Wijayawardene et al. 2014, Rossman et al. 2015) and is not the correct genus for this species. The name Ramalia veronicae provides the oldest epithet for this species in Protoventuria.

Pseudocercospora ranunculi (P. Karst.) Rossman & W.C. Allen, comb. nov.

MycoBank MB815426

Basionym: Sphaerella ranunculi P. Karst., Öfvers. K. Svensk. Vetens.-Akad. Förhandl. 29 (2): 105 (1872).

Synonyms: Mycosphaerella ranunculi (P. Karst.) Lind, Medd Grønland, Biosc. 71: 167 (1926).

Pseudocercospora ranunculacearum U. Braun, Mycotaxon 51: 50 (1994).

Notes: Braun (1994, 1995) described the asexual morph *Pseudocercospora ranunculacearum* associated with *Mycosphaerella ranunculi*. *Mycosphaerella*, typhified by *M. punctiformis*, is now considered a synonym of *Ramularia* based on *R. pusilla* (Croux et al. 2011), thus the oldest epithet for this species belongs in *Pseudocercospora*.

Psiloglonium stygium (Berk. & M.A. Curtis) Rossman & W.C. Allen, comb. nov.

MycoBank MB815427

Basionym: Sporodesmium stygium Berk. & M.A. Curtis, Grevillea 3: 17 (1874).

Synonyms: Piricauda stygia (Berk. & M.A. Curtis) R.T. Moore, Rhodora 61: 104 (1959).

Glonium clavisporum Seaver, Mycologia 17: 4 (1925).

Psiloglonium clavisporum (Seaver) E. Boehm et al., Mycol. Res. 113: 469 (2009).

Notes: The generic name *Psiloglonium* Höhn. 1918, based on *P. lineare* (Fr.) Petr. 1923, was reinstated by Boehm et al. (2009a, b) including *P. clavisporum* and its asexual morph, *Sporodesmium stygium*, which provides an older epithet for this species. The genus *Sporodesmium*, typhified by *S. atrum*, is considered a synonym of *S. ehrenbergii* and has been shown to have species scattered throughout *Dothideomycetes* and *Sordariomycetes* (Shenoy et al. 2006), but the type was not included in that study. Given the polyphyletic nature of the genus, it would not compete for use with the well-defined *Psiloglonium*. The genus *Piricauda*, based on *P. ulcerans* (Sacc. & P. Syd.) Bubák 1914, now regarded as *P. paraguayensis* (Speg.) R.T. Moore 1959, occurs on the leaf hairs of a tropical tree quite unlike *Psiloglonium stygium*, which occurs on dead bark (Mercado Sierra et al. 2005). The oldest epithet, *S. stygium*, must be placed in *Psiloglonium* and the new combination is made here.

Ramularia pseudomaculiformis (Desm.) Rossman & W.C. Allen, comb. nov.

MycoBank MB815428

Basionym: Sphaeria pseudomaculiformis Desm., Ann. Sci. Nat., Bot., sér. 3 6: 83 (1846).

Synonyms: Mycosphaerella pseudomaculiformis (Desm.) J. Schröt., in Cohn, Krypt.-Fl. Schlesien 3 (2–3): 337 (1894).

Scolicotrichum bulbigerum Fuckel, *Fungi rhenani exsic. no. 1910* (1867).

Phacellium bulbigerum (Fuckel) U. Braun, *Nova Hedwigia* 50: 509 (1990).

Ramulaspera poterii Ranoj., Bull. Soc. mycol. Fr. 35: 24 (1919).

Notes: Braun (1990) recognized the genus *Phacellium* Bonord. 1860, based on *P. inhonestum* Bonord. 1860 and now *P. alborosellum* (Desm.) U. Braun 1990, for synnematous ramularia-like fungi. The genus was monographed by Braun (1998) who included 22 species. He listed *Phacellium bulbigerum* with *Mycosphaerella pseudomaculiformis* as the sexual morph with additional synonyms. The genus *Phacellium* is now considered a synonym of *Ramularia* based on *R. pusilla* (Croux et al. 2011). In addition, *Mycosphaerella* typhified by *M. punctiformis* is also considered a synonym of *Ramularia* (Videira et al. 2015). With the change to one name for species of fungi, this morph provides the oldest epithet for the species, which is here placed in *Ramularia*.

Venturia effusa (G. Winter) Rossman & W.C. Allen, comb. nov.

MycoBank MB815429

Basionym: Fusicladium effusum G. Winter, J. Mycol. 1: 101 (1885).

Synonyms: Fusicladosporium effusum (G. Winter) Partridge & Morgan-Jones, Mycotaxon 85: 364 (2003).

Fusicladium caryigenum Ellis & Langl., J. Mycol. 4: 124 (1888).

Cladosporium caryigenum (Ellis & Langl.) Gottwald, Mycologia 74: 388 (1982).

Notes: This widespread species causes pecan scab and other leaf spot diseases of Juglandaceae (Gottwald 1982, Partridge & Morgan-Jones 2003). It had previously been referred to as *Cladosporium caryigenum* by Gottwald (1982) while Schubert et al. (2003) considered it a synonym of the older name *Fusicladium effusum*. Croux et al. (2007) confirmed that *Fusicladium effusum* belonged in Venturia. Given the extensive use of Venturia, such as *V. inaequalis* for the cause of apple scab and *V. pyrina* for the cause of pear scab, the generic name Venturia is proposed for protection over the generic synonym *Fusicladium* (Wijayawardene et al. 2014, Rossman et al. 2015). Several species names already placed in Venturia will be protected over their names in *Fusicladium*, but *F. effusum* does not have a name in Venturia, thus a new combination is made here.

Sordariomycetes

Colletotrichum magnum (S.F. Jenkins & Winstead) Rossman & W.C. Allen, comb. nov.

MycoBank MB815430

Basionym: Glomerella magna S.F. Jenkins & Winstead, Phytopathology 54: 453 (1964).

Notes: An anthracnose disease of cucurbits was first reported by Jenkins & Winstead (1964) caused by *Colletotrichum magnum* (as *Glomerella magna*). This fungus was the basis...
for a study of appressorium formation (Bhairi et al. 1990) and was recently reported on Lobelia in China (Li et al. 2013). With the change to one name for fungal species, the generic name Glomerella is now considered a synonym of Colletotrichum (Cannon et al. 2012). Bhairi et al. (1990: 208) cited the name C. magnum, but did not formally combine this epithet in Colletotrichum nor did they cite the basionym as required for valid publication of new combinations by the ICN (McNeill et al. 2012), thus this new combination is formally made here.

Harknessia farinosa (Ellis) Rossman & W.C. Allen, **comb. nov.**

MycoBank MB815431

Basionym: Valsa farinosa Ellis, *Bull. Torrey bot. Club* 9: 99 (1882).

Synonym: Cryptospora farinosa (Ellis) Sacc., *Syll. Fung.* 2: xxxv (1883).

Cryptospora farinosa (Ellis) Ellis & Everh., *N. Amer. Pyren.*: 532 (1892).

Wuestneia farinosa (Ellis) J. Reid & C. Booth, *Canad. J. Bot.* 67: 889 (1989).

Harknessia caudata Ellis & Everh., *J. Mycol.* 1: 92 (1885).

Mastigonetron caudatum (Ellis & Everh.) Höhn., *Sber. Akad. Wiss. Wien, Math.-naturw. Kl.*, Abt. 1 123: 134 (1914).

Notes: The synonymy presented here follows Nag Raj & Di Cosmo (1981) and Reid & Booth (1989) as *Harknessia caudata*. The type species of *Wuestneia* Auersw. ex Fucell 1864, *W. aurea* Auersw. 1869, belongs in *Cryptosporiaceae* (Rossman et al. 2007), while most species of Wuestneia have been found to belong in *Harknessia* (Crous et al. 2012). *Harknessia* Cooke 1881, typified by *H. eucalypti* Cooke 1881, is included in *Harknessiaceae* (Crous et al. 2012) in Diaporthales; *Wuestneia* is not, therefore, the appropriate generic name for this species. The genus *Mastigonetron* Kleb. 1914, based on *M. fuscum* Kleb. 1914, was considered a synonym of *Harknessia* by Nag Raj & Di Cosmo (1981). This species belongs in the genus *Harknessia* and is combined into it here using the oldest epithet.

Seimatosporium tostum (Berk. & Broome) Rossman & W.C. Allen, **comb. nov.**

MycoBank MB815432

Basionym: Sphaeria tosta Berk. & Broome, *Ann. Mag. nat. Hist.*, ser. 2 9: 381 (1852).

Synonym: Didymella tosta (Berk. & Broome) Sacc., *Syll. Fung.* 1: 556 (1882).

Paradidymella tosta (Berk. & Broome) Petr., *Ann. mycol.* 25: 238 (1927).

Leiosphaerella tosta (Berk. & Broome) E. Müll., *Beitr. Kryptfl. Schweiz* 11(2): 672 (1962).

Clethridium tostum (Berk. & Broome) E. Müll. & Shoemaker, *Canad. J. Bot.* 43: 1343 (1965).

Discostroma tostum (Berk. & Broome) Brockmann, *Sydowia* 28: 319 (1976).

Didymosphaeria fuckeliana Pass. ex Sacc., *Michelia* 1: 440 (1878).

Didymella fuckeliana (Pass.) Sacc., *First List Cyprus Fungi* 1: 556 (1882).

Discosia passerinii Sacc., *Syll. Fung.* 3: 656 (1884).

Seimatosporium passerinii (Sacc.) Brockmann, *Sydowia* 28: 320 (1976).

Notes: Brockmann (1976) provided the extensive synonymy for this species, as *Discostroma tostum*, listing *Seimatosporium passerinii* as the name for the asexual morph. The generic names *Discostroma* and *Seimatosporium* have long been considered names for comparable sexual and asexual morphs (Brockmann 1976, Nag Raj 1993). The type species of *Discostroma* Clem. 1909, *D. rehnnii* (Schnabl) Clem. 1909, is regarded as *Seimatosporium salicinum* (Corda) Nag Raj 1993. The type of *Seimatosporium Corda* 1833, *S. rosae* Corda 1833, is a well-known name with many synonyms having a sexual morph described as *D. rosae* Brockmann 1976 (Shoemaker 1964, Brockmann 1976, Nag Raj 1993). Although neither of the type species of *Discostroma* or *Seimatosporium* were included, Tanaka et al. (2011) used three species of Discostroma, including *D. tostum* and 11 species of *Seimatosporium*, to show that representatives of these genera form a monophyletic genus that should be regarded as *Seimatosporium*. Norphanphoun et al. (2015) added four more isolates of *Seimatosporium*, including one for the type species *S. rosae*, and also concluded that this genus was monophyletic. Given that *Seimatosporium* is the oldest name, has priority, has the greater number of species, and is most commonly used, this generic name should be used. A new combination for this common species is therefore required.

Thielaviopsis radicicola (Bliss) Z.W. De Beer & W.C. Allen, **comb. nov.**

MycoBank MB815433

Basionym: Ceratostomella radicicola Bliss, *Mycologia* 33: 468 (1941).

Synonyms: Ceratocystis radicicola (Bliss) C. Moreau, *Revue Mycol.* 17 (Suppl. Colon. 1): 22 (1952).

Ophiostoma radicicola (Bliss) Arx, *Antonie van Leeuwenhoek* 18: 211 (1952).

Chalaropsis punctulata Hennebert, *Antonie van Leeuwenhoek* 33: 334 (1967).

Thielaviopsis punctulata (Hennebert) A.E. Paulin et al., *Mycologia* 94: 70 (2002).

Notes: In their revision of *Thielaviopsis* and related genera, De Beer et al. (2014) neglected to place the oldest epithet in the correct genus although this was recognized as necessary. This species causes a serious wilt and root rot disease of palms throughout the world.

Basidiomycota

Botryobasidium capitatum (Link) Rossman & W.C. Allen, **comb. nov.**

MycoBank MB815436

Basionym: Acladium capitatum Link, *Mag. Gesell. naturf. Freunde, Berlin* 3(1-2): 10 (1809).

Synonyms: Haplotrichum capitatum (Pers.) Link, *in Willdenow, Sp. pl., edn* 4 6(1): 52 (1824).

Botryobasidium candidans J. Erikss., *Svensk bot. Tidskr.* 52(1): 6 (1958).
Entyloma gibbum (Fuckel) Rossman & Castl., **comb. nov.**

MycoBank MB815435

Basionym: *Ramularia gibba* Fuckel, *Fungi rhenani exsiccate*, no. 1636 (1866).

Synonyms: *Entylomella gibba* (Fuckel) U. Braun, *Monogr. Cercospora, Ramularia Allied Genera* 2: 298 (1998).

Entyloma ranunculci-repentis Sternon, *L’heritogenite du Genre Ramularia*: 34 (1925).

Entyloma wroblewskii Kochman, *Acta Soc. Bot. Pol.* 11: 289 (1934).

Entyloma ranunculus Liro, *Ann. Acad. Sci. Fenn.*, A 42: 111 (1935).

Entyloma ranunculacearum Kochman, *Pl. Polon.* 4: 105 (1936).

Entyloma ranunculii-sclerati Kochman, *Pl. Polon.* 4: 105 (1936).

Notes: The genus *Entyloma* de Bary 1874, based on *E. microsporum* (Unget.) J. Schröt. 1874, is a well-known member of *Ustilaginales* for which the asexual morphs were placed in *Entyloma* Hohn. 1924, typified by *E. ranunculi* (Bonord.) Cif. 1924, and now considered *Entyloma ficatoria* A.A. Fisch. Waldh. 1877. *Entyloma* has priority and is more commonly used than *Entylomella*. The synonymy for this species is based on Vánky (2011) who recognized *Entylomella gibba* for the asexual morph of *Entyloma ranunculci-repentis*. With the change in the ICN (McNeill 2012), the oldest epithet must be placed in the correct genus.

Botryobasidium rubiginosum (Fr.) Rossman & W.C. Allen, **comb. nov.**

MycoBank MB815434

Basionym: *Sporotrichum rubiginosum* Fr., *Syst. Mycol.* 3: 417 (1832) : Fr.

Synonyms: *Haplotrichum rubiginosum* (Fr.) Hol.-Jech., *Česká Mykol.* 30: 4 (1976).

Oidium rubiginosum (Fr.) Linder, *Lloydia* 5: 191 (1942).

Botryobasidium robustior Pouzar & Hol.-Jech., *Česká Mykol.* 21: 69 (1967).

Notes: The type of *Botryobasidium* Donk 1931 is *B. subcoronatum* (Höhn. & Litsch.) Donk 1931, while *Haplotrichum* Link 1824, typified by *H. capitatum* Link 1824, has a sexual morph identified as *B. candidans* J. Erikss. 1959 (Partridge et al. 2001a). With the change to one name for one fungus, *Haplotrichum* and *Botryobasidium* are synonyms. Although *Haplotrichum* is older, *Botryobasidium* includes more names and is more widely used, thus *Botryobasidium* is to be proposed for protection over *Haplotrichum*. Both names are included in Kirk et al. (2013). The connection between *B. candidans* and *H. capitatum* follows Partridge et al. (2001a). The connection between *B. robustior* and *H. rubiginosum* was first discovered by Pouzar & Holubová-Jechová (1967) who described *B. robustior* as the sexual morph of *Oidium rubiginosum*, later placing the name in *Haplotrichum* (Holubová-Jechová 1976). Additional synonyms of this species are included in Partridge et al. (2001b). These new names in *Botryobasidium* are needed for the above two commonly reported species.

ACKNOWLEDGEMENTS

We are grateful for the pre-submission comments provided by Pedro Crous and Peter Johnston. In addition we thank Christian Feuillet for assistance with Latin endings.

REFERENCES

Bhairi S, Buckley EH, Staples RC (1990) Protein synthesis and gene expression during appressorium formation in *Glomerella magna*. *Experimental Mycology* 14: 207–217.

Boehm EWA, Mugambi GK, Miller AN, Huhndorf SM, Marinocwitz S, et al. (2009a) A molecular phylogenetic reappraisal of the *Hysteriaceae*, *Mytilinidiaceae* and *Glioniaceae* (*Pleosporomycetidae, Dothideomycetes*) with keys to world species. *Studies in Mycology* 64: 49–83.

Boehm EWA, Schoch CL, Spatafora JW (2009b) On the evolution of the *Hysteriaceae* and *Mytilinidiaceae* (*Pleosporomycetidae, Dothideomycetes, Ascomycota*) using four nuclear genes. *Mycological Research* 113: 461–479.

Bonar L, Cooke WB (1942) Some new and interesting fungi from Mt. Shasta. *Mycologia* 34: 663–668.

Boonmee S, Rossman AY, Lin J-K, Li W-J, Dau D-Q, et al. (2014) *Tubeufiæales* ord. nov, integrating sexual and asexual generic names. *Fungal Diversity* 68: 239–298.

Braun U (1990) Studies on *Ramularia* and allied genera (III). *Nova Hedwigia* 50: 499–521.

Braun U (1994) Studies on *Ramularia* and allied genera (VII). *Nova Hedwigia* 58: 191–222.

Braun U (1995) A monograph of *Cercospora, Ramularia* and allied genera (*phytopathogenic hyphomycetes*). Vol. 1. Eching: IHW-Verlag.

Braun U (1998) A monograph of *Cercospora, Ramularia* and allied genera (*phytopathogenic hyphomycetes*). Vol. 2. Eching: IHW-Verlag.

Braun U, Crous PW, Nakashima C (2014) Cercosporid fungi (*Mycosphaerellaceae*) 2. Species on monocots (*Acoraceae* to *Xyridaceae*, excluding *Poaceae*). *IMA Fungus* 5: 203–390.

Brockmann I (1976). Untersuchungen u.ber dieGattung DiscostromaCLEMENTS (Ascomycetes). *Sydowia* 28: 275–338.

Cannon PF, Minter DW (1986) The *Rhytismataceae* of the Indian subcontinent. *Mycological Papers* 155: 1–123.

Cannon PF, Damm U, Johnston PR, Weir B (2012) *Colletotrichum* current status and future directions. *Studies in Mycology* 73: 181–213.

Crous PW, Groenewald JZ (2010) *Sphaeceloma freyliniae* Crous, sp. nov. *Fungal Planet* 2: 1–2.

Crous PW, Schubert K, Braun U, de Hoog GS, Hocking AD, et al. (2007) Opportunistic, human-pathogenic species in the *Herpotrichiellaceae* are phenotypically similar to saprobic or phytopathogenic species in the *Venturaceae*. *Studies in Mycology* 58: 185–217.

Crous PW, Summerell BA, Shivas RG, Carnegie AJ, Groenewald JZ (2012). A re-appraisal of *Harknessia* (*Diaporthales*), and the introduction of *Harknessiaceae* fam. nov. *Persoonia* 28: 49–65.

Crous PW, Tanaka K, Summerell BA, Groenewald JZ (2011) Additions to the *Mycosphaerella* complex. *IMA Fungus* 2: 49–64.

De Beer ZW, Duong TA, Barnes I, Wingfield BD, Wingfield MJ (2014) Redefining *Ceratocystis* and allied genera. *Studies in Mycology* 79: 187–219.
Farr DF, Rossman AY (2015) Fungal Databases, Systematic Mycology and Microbiology Laboratory, ARS, USDA. http://nt.ars-grin.gov/fungaldatabases/

Gottwald TR (1982) Taxonomy of the pecan scab fungus Cladosporium caryigenum. Mycologia 74: 382–390.

Holubová-Jechová V (1976) Haplotrichum Link instead of Oidiurn Link, a necessary nomenclatural change. Česká Mykol 30: 3–4.

Hou C-L, Lin Y-R, Piepenbring M (2005) Species of Rhytismataceae on needles of Juniperus spp. from China. Canadian Journal of Botany 83: 37–46.

Jenkins Jr SF, Winstead NN (1964) Glomerella magna, cause of a new anthracnose of cucurbits. Phytopathology 54: 452–454.

Johnston PR (2001) Monograph of the monocotyledon-inhabiting (2013) Kirk PM, Stalpers JA, Braun U, Crous PW, Hansen K, Johnston PR, Seifert KA, Stone JK, Rossman AY, Marvanova L, Li Q-L, Mo J-Y, Huang S-P, Guo T-X, Pan Z-B, 2013) First report of leaf spot disease caused by Glomerella magnafolia on Lobelia chimensis in China. Plant Disease 97: 1383.

Kokalis-Burelle N, Porter DM, Rodriguez-Kabana R, Smith DH, Mercado Sierra A, Guarro J, Heredia G (2005) The hyphomycete genus Piricauda, with notes on associated teleomorphs. Mycosphere 26: 823–843.

Königstein: Koeltz Scientific Books.

Mercado Sierra A, Guarro J, Heredia G (2005) The hyphomycete genus Piricauda, with the description of a new species. Mycological Research 108: 723–728.

Minter DW (1988) Bifusella superba. Descriptions of Pathogenic Fungi and Bacteria 941: 1–2.

Nag Raj TR (1993) Coelomycetous Anamorphs with appendage-bearing conidia. Waterco, ON: Mycologue Publications.

Nag Raj TR, Di Cosmo F (1981) A monograph of Harknessia and Mastigosporella, with notes on associated teleomorphs. Bibliotheca Mycologica 80: 1–62.

Norphanhoun C, Maharachchikumbura SSN, Daranagama A, Bulgakov TS, Bhat DJ, et al. (2015) Towards a backbone tree for Seimatosporiaceae, with S. physocarpi sp. nov. Mycosphere 6: 385–400.

Partridge EC, Baker WA, Morgan-Jones G (2001a) Notes on hyphomycetes. LXXIX. Concerning the Acladium-Alysadium–Haplotrichum complex; nomenclatural and taxonomic considerations, with redescriptions of respective type species. Mycotaxon 77: 201–214.

Partridge EC, Baker WA, Morgan-Jones G (2001b) Notes on hyphomycetes. LXXXII. A further contribution toward a monograph of the genus Haplotrichum. Mycotaxon 78: 127–160.

Partridge EC, Morgan-Jones G (2003) Notes on Hyphomycetes. XC. Fusicladiumsporum, a new genus for cladosporium-like anamorphs of Venturia, and the pecan scab-inducing fungus. Mycotaxon 85: 357–370.

Pascoe IG, Sutton BC (1990) Protoventuria parahericola sp. nov. (Venturinaee), the teleomorph of Fusicladium veronicae on Paraehebe perfoliata. Australian Systematic Botany 3: 281–285.

Ploetz RC, Zentmyer GA, Nishijima WT, Rohrbach KG, Ohr HD (1994) Compendium of Tropical Fruit Diseases. St Paul, MN: American Phytopathological Society Press.

Pouzar Z, Holubová-Jechová V (1967) Botryobasidium robustum spec. nov., a perfect state of Oidiurn rubiginosum (Fr.) Linder. Česká Mykol 23: 97–101.

Powell PE (1973) The genera Duplicaria (Rhytismataceae) and Crandallis (Leptostromataceae). Mycologia 65: 1356–1370.

Rêblòvá M, Barr ME (2000) The genus Acanthostigma (Tubefiuaciaceae, Pleosporales). Sydowia 52: 258–285.

Reid J, Booth C (1989) On Cryptosoporella and Wuestneia. Canadian Journal of Botany 67: 879–908.

Rossman AY, Farr DF, Castlebury LA (2007) A review of the phylogeny and biology of the Diaportheales. Mycosenes 48: 135–144.

Rossman AY, Crous PW, Hyde KD, Hawksworth DH, Aptroot A, et al. (2015) Recommended names for pleomorphic genera in Dothideomycetes. Mycologia 6: 507–523.

Schubert K, Ritscheil A, Braun U (2003) A monograph of Fusicladium s. lat. (hyphomycetes). Schlechtendahle 9: 1–132.

Shenoy BD, Jeewon R, Wu WP, Bhat DJ, Hyde KD (2006) Ribosomal and RPB2 DNA sequence analyses suggest that Sporidiosmum and morphologically similar genera are polyphyletic. Mycological Research 110: 916–928.

Shoemaker RA (1964) Seimatosporiaceae (= Cryptostictis) parasites of Rosa, Vitis, and Corus. Canadian Journal of Botany 42: 411–421.

Sivanesan A, Critchett C (1974) Elsinööi fawetti. Descriptions of Pathogenic Fungi and Bacteria 484: 1–2.

Sutton BC, Pascoe IG (1988) Fusicladium veronicae (Batista), comb. nov., causing brown leaf blight of Paraehebe species. Australian Systematic Botany 1: 79–86.

Tanaka K, Erdo M, Hirayama K, Okane I, Hosoya T, et al. (2011) Phylogeny of Discosia and Seimatosporium and introduction of Adiscisico and Immersidiscosia genera nova. Persoonia 26: 85–98.

Vánky K (2011) Smut fungi of the World. St Paul, MN: American Phytopathological Society Press.

Videira SIR, Groenewald JZ, Verkley GJM, Braun U, Crous PW (2015) The rise of Ramularia from the Mycosphaerella labyrinth. Fungal Biology 119: 823–843.

Wijayawardene NN, Crous PW, Kirk PM, Wang Y, Woudenberg JC, et al. (2014) Naming and outline of Dothideomycetes-2014 including proposals for the protection or suppression of generic names. Fungal Diversity 69: 1–55.

Zhang Y, Crous PW, Schoch CL, Bakhal AH, Guo LD, et al. (2011) A molecular, morphological and ecological re-appraisal of Venturiales-a new order of Dothideomycetes. Fungal Diversity 51: 249–277.