Fractionalized charge excitations in a spin liquid on partially-filled pyrochlore lattices

Gang Chen,1 Hae-Young Kee,1 and Yong Baek Kim1,2

1Department of Physics, University of Toronto, Toronto, Ontario, M5S1A7, Canada
2School of Physics, Korea Institute for Advanced Study, Seoul 130-722, Korea

(Dated: March 28, 2014)

We study the Mott transition from a metal to cluster Mott insulators in the 1/4- and 1/8-filled pyrochlore lattice systems. It is shown that such Mott transitions can arise due to charge localization in clusters or in tetrahedron units, driven by the nearest-neighbor repulsive interaction. The resulting cluster Mott insulator is a quantum spin liquid with a spinon Fermi surface, but at the same time a novel fractionalized charge liquid with charge excitations carrying half the electron charge. There exist two emergent U(1) gauge fields or "photons" that mediate interactions between spinons and charge excitations, and between fractionalized charge excitations themselves, respectively. In particular, it is suggested that the emergent photons associated with the fractionalized charge excitations can be measured in X-ray scattering experiments. Various other experimental signatures of the exotic cluster Mott insulator are discussed in light of candidate materials with partially-filled bands on the pyrochlore lattice.

PACS numbers: 75.10.Hf

In Mott insulators, strong correlation causes the charge localization.1 As the charge excitation gap becomes smaller near the insulator-metal transition, the strong local charge fluctuations can generate significant long-range and/or ring exchange spin interactions. It has been recognized that these interactions may stabilize the so-called quantum spin liquid (QSL)2,3, where there exist charge-neutral spin-1/2 excitations or spinons while spinless charge excitations are gapped.4 In particular, when the transition from a metal to the spin liquid is continuous, the resulting spin liquid may form a Fermi surface of the spinons. In the study of a Hubbard model at the 1/4 filling for the 2D triangular and 3D hyperkagome lattices5,7, this new type of Mott transition is shown to occur as one increases the on-site Hubbard interaction. On the experimental front, such transitions can be of relevance to QSL candidate materials such as the 2D triangular lattice organic compound κ-(ET)2Cu2(CN)35,6 and the 3D hyperkagome material Na4Ir3O8.9 In this spin liquid state, the spinons are interacting with an emergent U(1) gauge field or "photon", hence it is called the U(1) QSL2,3,5,7. On the other hand, the charge excitations behave trivially and are simply localized on the lattice sites forming a charge "solid" with gapped charge excitations. One may wonder whether it is possible to have a Mott insulator where the charge physics becomes non-trivial in addition to the spin sector.

In this paper, we study Mott insulators and Mott transitions in partially-filled pyrochlore lattice systems. We uncover a novel cluster Mott insulator, where the electrons are localized within the tetrahedral cluster rather than on lattice sites. In this phase, there exist fractionalized charge excitations and an emergent gauge photon,4,5 that arises from the collective charge fluctuations. Besides the fundamental interest, this problem is of interest from the experimental point of view. Pyrochlore lattice systems with partially-filled bands occur in various materials with mixed-valence magnetic ions10,13. The model and underlying physics discussed in our work would potentially be relevant to such systems.

We focus on a single-band Hubbard model,

\[
H = -t \sum_{\langle ij \rangle, \sigma}(c_{i\sigma}^\dagger c_{j\sigma} + h.c.) - \mu \sum_i n_i + V \sum_{\langle ij \rangle} n_in_j + \frac{U}{2} \sum_i (n_i - \frac{1}{2})^2 \tag{1}
\]

where \(c_{i\sigma}^\dagger (c_{i\sigma})\) is the electron creation (annihilation) operator at site \(i\) with spin \(\sigma\) and \(n_i = \sum_\sigma n_{i\sigma}\) is the electron number operator. We consider 1/4 and 1/8-filled cases. Throughout this paper, we assume that the on-site Hubbard \(U\) is the biggest energy scale. Notice, however, that the interaction \(U\) cannot cause electron localization for a partially-filled band. It is the nearest-neighbor repulsion \(V\) that drives the charge localization and the formation of Mott insulators. Similarly to the 1/4-filled case, the spin sector may form a QSL with a spinon Fermi surface for sufficiently large \(V\). In contrast to the 1/2-filled case, however, the electrons in the Mott regime are localized on tetrahedral clusters with two(one) electrons per tetrahedron in the 1/4(1/8)-filled case. In the classical \(V = \infty\) limit, the electron site-occupation configurations of this cluster Mott insulator are highly degenerate14. This is analogous to the degenerate ground-state manifold in the classical spin ice15 (1/2-magnetization plateau state16) for the 1/4(1/8)-filled case.

It is shown that, at finite \(V\), the charge sector supports an additional emergent U(1) gauge field and fractionalization of charge quantum number in analogy to the quantum spin ice or 1/2-magnetization plateau state. Therefore, the charge sector of the cluster Mott insulator is a U(1) fractionalized charge liquid (FCL). We show that the electron in this cluster Mott insulator fractionalizes into a fermionic spinon and two charge bosons that...
and is the bosonic rotor operator carrying electric charge. We also discuss thermodynamic and spectroscopic properties of this novel Mott insulating phase. To preserve the physical Hilbert space, we impose the gauge constraint $L_i^z = \sum f_{i\sigma}^\dagger f_{i\sigma}$, where L_i^z is the conjugate operator of θ_i with $[\theta_i, L_j^z] = i\delta_{ij}$. Via a decoupling of the electron hopping term, the original Hubbard model is reduced to two coupled Hamiltonians H_{sp} and H_{ch} for the spin and charge sectors, respectively,

$$H_{sp} = -\sum_{\langle ij \rangle, \sigma} t_{ij}^{\text{eff}}(f_{i\sigma}^\dagger f_{j\sigma} + h.c.) - \sum_i (\mu + h_i) f_{i\sigma}^\dagger f_{i\sigma},$$

$$H_{ch} = -\sum_{\langle ij \rangle} J_{ij}^{\text{eff}}(e^{i\theta_i} - e^{i\theta_j} + h.c.) + V \sum_i L_i^z L_j^z + 3V \sum_i L_i^z + \sum_i h_i(L_i^z + \frac{1}{2}) + \frac{U}{2} \sum_i (L_i^z)^2.$$

Here, $t_{ij}^{\text{eff}} = t(e^{i\theta_i} - e^{i\theta_j}) \equiv |f_{ij}^{\text{eff}}|e^{i\alpha_{ij}}$, $J_{ij}^{\text{eff}} = t \sum_{\sigma} (f_{i\sigma}^\dagger f_{j\sigma}) \equiv |f_{ij}^{\text{eff}}|e^{-i\alpha_{ij}}$ and h_i is the Lagrange multiplier that imposes the Hilbert space constraint. With this reformulation of the Hubbard model, the Hamiltonians H_{sp} and H_{ch} are now invariant under an internal $U(1)$ gauge transformation $f_{i\sigma}^\dagger \rightarrow f_{i\sigma}^\dagger e^{-i\chi_i}$, and $a_{ij} \rightarrow a_{ij} + \chi_i - \chi_j$. This internal $U(1)$ gauge structure will be referred as $U(1)_{\text{sp}}$ in the following.

In the half-filled case, the electrons are localized on the lattice sites in the Mott insulator. In the slave rotor formulation, the QSL Mott insulator corresponds to the deconfined phase of the $U(1)_{\text{sp}}$ gauge theory, and its transition to the metallic phase is induced by the condensation of the charge rotor. The situation for half filling is somewhat different, even though the spin sector behaves similarly and forms a $U(1)_{\text{sp}}$ QSL with a spinon Fermi surface in the Mott regime. For the charge sector, the strong inter-site repulsion $\frac{U}{4} \sum_{\text{tet}} \sum_{\text{tet}} L_i^z L_j^z = 0$, which is reminiscent of the spin ice constraint in the classical spin ice QSL. Similarly to the classical spin ice, the classical charge ice configurations in the infinite V limit are macroscopically degenerate. These features drastically modify the charge sector physics.

We now adopt a self-consistent mean-field approach and assume a uniform slave-rotor mean-field solution such that $t_{ij}^{\text{eff}} \equiv t^{\text{eff}}$, $J_{ij}^{\text{eff}} \equiv J^{\text{eff}}$ and $h_i \equiv h$. In the cluster Mott insulator, the rotor hopping J^{eff} introduces quantum fluctuations and lifts the extensive charge ice degeneracy, which is captured by a standard perturbative treatment of J^{eff}. We preserve the charge ice constraint in the ground state and obtain an effective ring rotor hopping model from the third-order degenerate perturbation theory,

$$H_{ch,\text{eff}} = -J_{\text{ring}} \sum_{\text{hexagon}} \cos(\theta_1 - \theta_2 + \theta_3 - \theta_4 + \theta_5 - \theta_6)$$

FIG. 1. (Color online) The ring hopping processes of charge rotors around a hexagon in the cluster Mott insulator, for the $\frac{1}{4}$- and $\frac{3}{4}$-filled cases shown in (a) and (b). As shown in (c), r and r′ are located on the center of the tetrahedra and form a dual diamond lattice. We use “r, r′” (“i, j”) to label the diamond (pyrochlore) lattice sites. In (c), r ∈ A diamond sublattice and e_s are four vectors connecting A sublattice sites to the four neighboring B sublattice sites. In (d), the electron charge fractionalization in the FCL/QSL phase is illustrated. The two end charge defects are connected by a fictitious string. The phase diagram at the $\frac{1}{4}$- or $\frac{3}{4}$-filling is plotted in (e). Here, $\langle V/t \rangle_c = 1.65(0.98)$ for the $\frac{1}{4}$($\frac{3}{4}$)-filling in the mean-field theory. There are only two phases: a Fermi liquid metal and a cluster Mott insulator (FCL/QSL).

To preserve the physical Hilbert space, we impose the gauge constraint $L_i^z = \sum f_{i\sigma}^\dagger f_{i\sigma}$, where L_i^z is the conjugate operator of θ_i with $[\theta_i, L_j^z] = i\delta_{ij}$. Via a decoupling of the electron hopping term, the original Hubbard model is reduced to two coupled Hamiltonians H_{sp} and H_{ch} for the spin and charge sectors, respectively.

$$H_{sp} = -\sum_{\langle ij \rangle, \sigma} t_{ij}^{\text{eff}}(f_{i\sigma}^\dagger f_{j\sigma} + h.c.) - \sum_i (\mu + h_i) f_{i\sigma}^\dagger f_{i\sigma},$$

$$H_{ch} = -\sum_{\langle ij \rangle} J_{ij}^{\text{eff}}(e^{i\theta_i} - e^{i\theta_j} + h.c.) + V \sum_i L_i^z L_j^z + 3V \sum_i L_i^z + \sum_i h_i(L_i^z + \frac{1}{2}) + \frac{U}{2} \sum_i (L_i^z)^2.$$
where \(J_{\text{ring}} = 24J^\text{eff}\) is the ring rotor-hopping amplitude around a hexagon plaquette (see Fig. 1(a)). This low-energy effective model acts on the charge ice manifold and is analogous to the one obtained in the context of the quantum spin ice in the XXZ model on the pyrochlore lattice except that we have a large and finite interaction \(U \) and \(L^z \) can take the values of \(\pm \frac{1}{2} \) and \(\frac{3}{2} \) at the lattice length scale. Despite these small differences, the current model does share the same internal symmetries as the quantum spin ice models and thus the universal properties of our model \(H_{\text{ch,eff}} \) is identical to the quantum spin ice in the low energy limit with \(L^z = \pm \frac{1}{2} \).

Therefore, the ground state of the charge sector is a \(U(1) \) quantum charge ice. The low energy \(U(1) \) gauge structure is obtained by introducing lattice electric field \(\mathbf{E}_{\mathbf{rr}'} \) and lattice vector potential \(e_i \), where \(\mathbf{r}(\mathbf{r}') \) lies on the (A) diamond sublattice (Fig. 1(e)) and \(\mathbf{E}_{\mathbf{rr}'} = \mathbf{E}_{\mathbf{rr}'}, \mathbf{A}_{\mathbf{rr}'} = -\mathbf{A}_{\mathbf{rr}'} \). To distinguish it from the \(U(1)_{\text{sp}} \) gauge field, we label this as \(U(1)_{\text{ch}} \) gauge field for the charge sector. The cluster Mott insulator is in the deconfined phase of this compact \(U(1)_{\text{ch}} \) gauge theory and we expect a gapless and linearly dispersing \(U(1)_{\text{ch}} \) gauge photon to appear at low energies.

Beyond the low energy regime, the rotor operator \(e_i \) creates a gapped charge-\(q_e \) excitation that violates the charge ice constraints on the two neighboring tetrahedra centered at \(\mathbf{r} \) and \(\mathbf{r}' \). Just like the spin-\(\frac{1}{2} \) bosonic spinon excitations in quantum spin ice, this defect charge-\(q_e \) excitation can be separated into two deconfined charge bosons (\(\Phi^+ \)) in arbitrary distances, each carrying half the electron charge. Therefore, the quantum charge ice state is a \(U(1) \) fractionalized charge liquid (FCL). As shown in Table I, these two fractionally charged bosons also carry the \(U(1)_{\text{sp}} \) gauge charge (\(\Phi^\text{sp} \)) and \(U(1)_{\text{ch}} \) gauge charge (\(\Phi^\text{ch} \)). Here the \(U(1)_{\text{sp}} \) gauge charge is defined on the pyrochlore lattice site as \(\Phi^\text{sp} = \sum_{\langle \mathbf{r},\mathbf{r}' \rangle} f_{\mathbf{rr}'}^\dagger f_{\mathbf{rr}'} - L_i^z \), and the local \(U(1)_{\text{ch}} \) gauge charge is defined on the dual diamond lattice site (see Fig. 1(c)) as \(\Phi^\text{ch} = \eta_{\mathbf{r}} \sum_{\langle \mathbf{r},\mathbf{r}' \rangle} L_{\mathbf{r},\mathbf{r}'+\mathbf{e}_\mu} \), where \(\eta_{\mathbf{r}} = +1(-1) \) for \(\mathbf{r} \) on the (A) sublattice of the dual diamond lattice and \(\mathbf{e}_\mu \) are the four nearest-neighbor vectors from the A sublattice sites (see Fig. 1(c)). The charge-\(\frac{1}{2} \) bosons are fully gapped in the Mott insulator. As the electron hopping \(t \) increases, the charge excitation gap becomes smaller and the charged bosons condense upon closing the gap. The condensation of charge-\(\frac{1}{2} \) bosons would make the two internal gauge fields \(U(1)_{\text{sp}} \) and \(U(1)_{\text{ch}} \) massive simultaneously, and drives a phase transition to a Fermi liquid metal (see Fig. 1(c)). Therefore, there are only two phases in the phase diagram (see Fig. 1(c)), which is consistent with the quantum Monte Carlo simulation results for an interacting hardcore boson model at the half-filling on the pyrochlore lattice.

In order to clearly represent both the \(U(1)_{\text{ch}} \) gauge structure and charge fractionalization, and to study the boson condensation transition for the charge sector \(H_{\text{ch}} \), we employ the parton-gauge construction that was recently developed for the quantum spin ice on the pyrochlore lattice. We include both the fractionalized charge bosons and a gauge field in the rotor variable as \(e_i = \Phi^+_{\mathbf{r},\mathbf{r}'} \Phi^+_{\mathbf{r}',\mathbf{r}}, L_i^z = l_{\mathbf{r},\mathbf{r}'}^z \), where the pyrochlore lattice site \(i = \mathbf{r} + \frac{r}{2} \) is the midpoint of the link (\(\mathbf{rr}' \)) on the dual diamond lattice and \(\mathbf{r}(\mathbf{r}') = \mathbf{r} + \mathbf{e}_\mu \) belongs to the \(\mathbf{A} \) (B) diamond sublattice. Here, \(l_{\mathbf{r},\mathbf{r}'} = \mathbf{E}_{\mathbf{rr}'}^z = \Delta_{\mathbf{r},\mathbf{r}'} \), \(\Phi^+_{\mathbf{r},\mathbf{r}'} = \Phi^+_{\mathbf{r}} \), \(\Phi^-_{\mathbf{r}} \approx \Phi^+_{\mathbf{r}} \), and \(\Phi^+_{\mathbf{r}} = \Phi^+_{\mathbf{r}} \). Now it is clear that the electron in the cluster Mott insulator fractionalizes into two charge-\(\frac{1}{2} \) bosons and a fermionic spinon (with an open string operator \(l_{\mathbf{r},\mathbf{rr}'+\mathbf{e}_\mu}^\dagger \)) connecting two bosons, see Fig. 1(d).

\[
c^\dagger_{\mathbf{rr}'} e^\sigma_{\mathbf{rr}'} = f^\dagger_{\mathbf{rr}'} e^\sigma_{\mathbf{rr}'} = f^\dagger_{\mathbf{rr}'} e^\sigma_{\mathbf{rr}'} + f^\dagger_{\mathbf{rr}'} e^\sigma_{\mathbf{rr}'} + f^\dagger_{\mathbf{rr}'} e^\sigma_{\mathbf{rr}'} + f^\dagger_{\mathbf{rr}'} e^\sigma_{\mathbf{rr}'}.
\]

where \(\mathbf{r} \in \mathbf{A} \) sublattice. With the above construction, the charge sector Hamiltonian can be written as

\[
H_{\text{ch}} = -J^\text{eff} \sum_{\mathbf{r},\mathbf{rr}'} \Phi^+_{\mathbf{r}+\mathbf{e}_\mu} \Phi^-_{\mathbf{r}+\mathbf{e}_\mu} - l_{\mathbf{rr}'}^z \Phi^+_{\mathbf{rr}'} \Phi^-_{\mathbf{rr}'} + \frac{V}{2} \sum_{\mathbf{r}} (Q^\text{ch}_{\mathbf{r}})^2,
\]

where we have dropped the linear \(L^z \) term because of the emergent particle-hole symmetry at the Mott transition. The above charge Hamiltonian describes the minimal coupling of the fractionally charged bosons with the emergent \(U(1)_{\text{ch}} \) gauge field on the dual diamond lattice. Within the gauge mean-field approximation, we show that the Mott transition occurs at \((V/J^\text{eff})_c = 5.21 \), where the charge bosons develop an energy gap. In this calculation, we have treated \(L^z \) and \(l^z \) as spin-\(\frac{1}{2} \) variables, which is a good approximation since double occupancy (or \(L^2 = \frac{3}{2} \)) configuration is strongly suppressed by the large on-site interaction \(U \). Together with the self-consistent mean-field theory for \(H_{\text{sp}} \), we obtain a continuous Mott transition at \((V/t)_c = 1.65 \) (see Fig. 1(c)).

Weak Mott regime for \(\frac{1}{2} \) filling. For the cluster Mott insulator with \(\frac{1}{2} \) electron filling, the main difference is that

\[
\begin{array}{|c|c|c|c|}
\hline
\text{Operator} & Q^\text{em} & Q^\text{sp} & Q^\text{ch} \\
\hline
\phi^+_{\mathbf{rr}'} & q_e & 0 & 0 \\
\phi^+_{\mathbf{rr}'} & q_e & 1 & 0 \\
\phi^+_{\mathbf{rr}'} & q_e & -1 & 0 \\
\Phi^+_{\mathbf{rr}'} & q_e/2 & -1/2 & 1 \\
\Phi^+_{\mathbf{rr}'} & q_e/2 & 1/2 & 1 \\
\hline
\end{array}
\]

TABLE I. Different kinds of gauge charges carried by various excitations. \(Q^\text{em} \), \(Q^\text{sp} \) and \(Q^\text{ch} \) refer to the electric charge, \(U(1)_{\text{sp}} \) gauge charge and \(U(1)_{\text{ch}} \) gauge charge, respectively. \(q_e \) is the charge of the electron.
the electron occupation number per tetrahedron is 1, i.e. \(\sum_{i \in \text{tet}} L_i^z = -1 \). The low energy model of the charge sector is then obtained through the ring hopping processes of the rotors around a hexagon (see Fig. 1(b)). In the end, the charge occupation-number constraint and the low energy model are identical to the \(1/2 \)-magnetization plateau state of a spin-1/2 XXZ model on the pyrochlore lattice in a uniform magnetic field \(\mathcal{H}_0 \). It is known that the \(1/2 \)-magnetization plateau state is a U(1) QSL with the same universal properties as the quantum spin ice [16]. Therefore, the charge sector for the \(1/2 \)-filled case is also a U(1) ch FCL with the same low energy excitations as the \(1/2 \)-filled case.

Strong Mott regime. Here we turn to the strong Mott regime with \(V \gg t \). Let us start with the cluster Mott insulator at the \(1/2 \)-filling, where the electrons on neighboring tetrahedra are always separated by one unoccupied site (see Fig. 1(b)). The dominant interaction arises from the ring hopping processes of the three electrons on the hexagon and is described by

\[
H_{\text{eff}} = -J_{\text{ring}}^c \sum_{\text{hexagon}} \sum_{\alpha \beta \gamma} (c_{1\alpha} c_{2\alpha} c_{3\beta} c_{4\beta} c_{5\gamma} c_{6\gamma} + c_{1\alpha}^\dagger c_{6\gamma} c_{4\beta} c_{3\beta} c_{2\gamma} + h.c.),
\]

where \(J_{\text{ring}}^c = \frac{\alpha^2}{\Gamma^2} \) is the electron ring hopping amplitude. This interaction does not transfer charge between tetrahedra, but does transfer spin quantum numbers and hence overwhelms any other spin-spin interactions that arise from higher order processes. We emphasize that Eq. [7] cannot be cast into the usual form of pairwise spin interactions or ring exchange, which is an important difference between the cluster Mott insulators and conventional magnets. In conventional magnets, the spin moment can be considered as being coupled to a mean magnetic field generated by the exchange interactions from neighboring spins and if this mean magnetic field does not fluctuate strongly, the spin tends to align with this field and develop magnetic ordering. For the cluster Mott insulator here, such a mean magnetic field cannot be defined from the interaction in Eq. [4] and thus we do not expect simple magnetic ordering. Then, for the spin sector, we may expect the QSL from the weak Mott regime to remain in the strong Mott regime. For the charge sector, we note that the effect of Eq. [7] on the charge excitations is identical to the charge rotor hopping processes in Eq. [4]. Following the same reasoning as presented for the weak Mott regime, we expect the same U(1) ch, FCL to arise in the strong Mott regime.

In the strong Mott regime for the \(1/2 \)-filling, there exists a superexchange spin-spin interaction between nearest neighbor sites with the exchange coupling \(J_{\text{ex}} = \frac{4t^2}{\mathcal{U} - V} + \frac{8t^2}{\mathcal{V}} \Gamma^2 \). Since this energy scale \(J_{\text{ex}} \) is larger than or comparable to the electron ring hopping amplitude \(J_{\text{ring}}^c \), the FCL/QSL may survive or be destabilized depending on different parameter regimes [29].

Discussion. We now discuss the experimental signatures related to these exotic cluster Mott insulators. We begin with the principal physical properties in the vicinity of the Mott transition. The Mott transition is continuous in the mean-field theory, but might turn to a weakly first order transition upon including U(1) ch gauge fluctuations [30]. Even in that case, the first order effect may be important only at extremely low temperatures. So for a rather wide temperature range, the physics near the Mott transition is controlled by the critical fractionalized charge bosons coupled to the U(1) ch gauge fields, and the fermionic spinons coupled to the U(1) sp gauge field. Similarly to the half-filled case studied earlier [7], the dynamical critical exponent for the charge boson (fermionic spinon with U(1) sp) is \(z = 1 \) (\(z = 3 \)). Hence we expect two crossover temperature scales for specific heat and electric resistivity, respectively. Due to further fractionalization of charge excitations, the tunneling density of states at the transition would be highly suppressed as \(N_{\text{crit}}(\omega) \sim \omega^4 \) instead of \(\omega^2 \) as in the half-filled case [7].

The low energy U(1) ch gauge field originates from the electron charge fluctuations and may be probed by elastic and/or inelastic X-ray scattering. Similarly to the spin structure factor in the quantum spin ice [22], [23], [25], [31], the inelastic charge structure factor of the cluster Mott insulator at low energies can be regarded as the emergent “electric-field” correlator and is given by \(\text{Im}[E_{\mathbf{k}} - \omega F_{\mathbf{k}}^\beta] \propto [\delta_{\alpha \beta} - \frac{(n_\mathbf{k} \delta_{\alpha \beta})}{k^2}] \omega \delta(\omega - v |\mathbf{k}|) \), where \(E_{\mathbf{r}} + \frac{1}{2} \mathbf{e}_\mu \equiv L_{\mathbf{r}}^\alpha e_\mu = (n_\mathbf{r} + \frac{1}{2}) \mathbf{e}_\mu \) and \(\mathbf{r} \in \text{A diamond sublattice} \). Here \(v \) is the speed of the U(1) ch gauge photon.

The cluster Mott insulator is expected to lose the quantum coherence around a temperature \(T^* \sim \max[J_{\text{ring}}^c, J_{\text{ex}}] \) in the Mott regime. In the temperature range \(T^* \lesssim T \lesssim V \), the cluster electron occupation-number constraint still holds and the system is described by a thermal charge liquid, where degenerate charge configurations are equally allowed. Similarly to the classical spin ice [15], the equal-time charge structure factor is given by \(\langle F_{\mathbf{k}}^\alpha F_{\mathbf{k}}^\beta \rangle \propto \delta_{\alpha \beta} - \frac{k^2}{(n_\mathbf{k} + 1)^2} \), which leads to the pinch point structures in the k space [15], [19], [21].

There exist several candidate materials for \(1/2 \) or \(1/4 \)-filled pyrochlore lattice systems. Various spinels such as \(\text{LiV}_2O_4 \) (with \(V^{3.5+}\cdot d^{1.5} \)) [17], \(\text{CuIr}_2S_4 \) (with \(1r^{3.5+}\cdot d^{5.5} \)) [13] and \(\text{GaTa}_4S_{18} \) (with \(Ta^{3.25+}\cdot d^{l.75} \)) [11] may be good candidates for \(1/2 \) and \(1/4 \)-filling cases. The \(3 \)-pyrochlore system \(\text{CsW}_2O_6 \) (with \(W^{3.5+}\cdot d^{3.5} \)) [12] may also be a promising system where the physics discussed here can be explored.

Acknowledgements. This work was supported by the NSERC, CIFAR, and Centre for Quantum Materials at the University of Toronto. GC thanks Q. Si for the hospitality during his visit to Rice University when a related idea was motivated. YBK thanks S. Isakov for an-
lier collaboration in related ideas. We also thank J.-H. Jiang, A. Burkov and A. Paramekanti for illuminating discussions.

[1] M. Imada, A. Fujimori, and Y. Tokura, Rev. Mod. Phys. 70, 1039 (1998).
[2] O. I. Motrunich, Phys. Rev. B 72, 045105 (2005).
[3] S.-S. Lee and P. A. Lee, Phys. Rev. Lett. 95, 036403 (2005).
[4] L. Balents, Nature 464, 199 (2010).
[5] T. Senthil, Phys. Rev. B 78, 045109 (2008).
[6] T. Senthil, Phys. Rev. B 78, 035103 (2008).
[7] D. Podolsky, A. Paramekanti, Y. B. Kim, and T. Senthil, Phys. Rev. Lett. 102, 186401 (2009).
[8] Y. Shimizu, K. Miyagawa, K. Kanoda, M. Maesato, and G. Saito, Phys. Rev. Lett. 91, 107001 (2003).
[9] Y. Okamoto, M. Nohara, H. Aruga-Katori, and H. Takagi, Phys. Rev. Lett. 99, 137207 (2007).
[10] C. Urano, M. Nohara, S. Kondo, F. Sakai, H. Takagi, T. Shiraki, and T. Okubo, Phys. Rev. Lett. 85, 1052 (2000).
[11] M. M. Abd-Elmeguid, B. Ni, D. I. Khomskii, R. Pocha, D. Johrendt, X. Wang, and K. Syassen, Phys. Rev. Lett. 93, 126403 (2004).
[12] D. Hirai, M. Brenholm, J. M. Allred, J. Krizan, L. M. Schoop, Q. Huang, J. Tao, and R. J. Cava, Phys. Rev. Lett. 110, 166402 (2013).
[13] P. G. Radaelli, Y. Horibe, M. J. Gutmann, H. Ishibashi, C. H. Chen, R. M. Ibberson, Y. Koyama, Y.-S. Hor, V. Kiryukhin, and S.-W. Cheong, Nature 416, 155 (2002).
[14] E. Runge and P. Fulde, Phys. Rev. B 70, 245113 (2004).
[15] C. Henley, Annual Review of Condensed Matter Physics 1, 179 (2010), and references therein.
[16] D. L. Bergman, G. A. Fiete, and L. Balents, Phys. Rev. B 73, 134402 (2006).
[17] For the uniform nearest-neighbor hopping model, the Fermi level lies at a flat band extending from X to W in the Brillouin zone for the 1/4-filling case. In principle, this flat Fermi surface may cause other instabilities. For a generic tight-binding model (for example, with a spin-dependent hopping amplitude), such a flat band and instabilities may be avoided.
[18] S. Florens and A. Georges, Phys. Rev. B 70, 035114 (2004).
[19] S. T. Bramwell and M. J. P. Gingras, Science 294, 14951501 (2001).
[20] C. Castelnovo, R. Moessner, and S. L. Sondhi, Nature 451, 42 (2008).
[21] M. Gingras, Science 326, 375 (2009).
[22] M. Hermele, M. P. A. Fisher, and L. Balents, Phys. Rev. B 69, 064404 (2004).
[23] L. Savary and L. Balents, Phys. Rev. Lett. 108, 037202 (2012).
[24] P. Fulde, K. Penc, and N. Shannon, Annalen der Physik 11, 892 (2002).
[25] A. Banerjee, S. V. Isakov, K. Damle, and Y. B. Kim, Phys. Rev. Lett. 100, 047208 (2008).
[26] L. Savary and L. Balents, Phys. Rev. B 87, 205130 (2013).
[27] Y. Huang, G. Chen, and M. Hermele, ArXiv 1311.1231 (2013).
[28] S. Lee, S. Onoda, and L. Balents, Phys. Rev. B 86, 104412 (2012).
[29] C. Chen, H.-Y. Kee, and Y. B. Kim, unpublished.
[30] B. I. Halperin, T. C. Lubensky, and S.-k. Ma, Phys. Rev. Lett. 32, 292 (1974).
[31] N. Shannon, O. Sikora, F. Pollmann, K. Penc, and P. Fulde, Phys. Rev. Lett. 108, 067204 (2012).