Hemangioma of Internal Auditory Canal: Systemic Review

Omar Ramadan*

Department of ENT, USA

Submission: October 15, 2016; Published: October 25, 2016

*Corresponding author: Omar Ramadan, Independent researcher, ENT registrar, Paterson NJ, New Jersey, USA

Abstract

Objective: The objective of this study was to present a review article about internal auditory canal hemangioma.

Data Sources: Published English-language literatures.

Review Methods: PubMed and Google scholars were systematically searched using multiple search terms.

Study Selection: We included studies about internal auditory canal hemangioma.

Results: 42 studies were included in this study. The results showed that most patients were male, the age of patients varied between 5 to 69 years old. Two cases were multiple familial hemangioma, while the most other cases were sporadic. Hearing loss was the most common symptoms, 37% patients had facial palsy, and 38% patients had vestibular symptoms. Since most patients had non-serviceable hearing loss so, translabyrinthine approach was the most common surgical approach. Most serviceable hearing patients lost their serviceable hearing after surgery. Only one third of patients with facial palsy had improvement after surgery. Most cases had attachment to facial nerve and can be removed totally.

Conclusion: we should suspect IAC hemangioma in any patient with considerable hearing loss and facial palsy with small lesion in internal auditory canal.

Keywords: IAC: Internal Auditory Canal; Cavernous hemangioma; Facial spasm; Translabrynithin

Abbreviations: TL: Translabrynthine; RS: Retrosigmoid; MFA: Middle Fossa Approach; IAC: Internal Auditory Canal; TR: Total Removal; NTR: Near Total Removal; HL: Hearing Loss; FP: Facial Palsy

Introduction

Cavernous hemangioma of the internal auditory canal (IAC) is a rare disease. It comprises 10 to 20% of all central nervous vascular malformations. They are composed of large, sinusoidal, thin-walled capillary spaces that may invade the surrounding neural tissue. They can mimic the symptoms of vestibular schwannomas. We review the clinical features and the management of the IAC hemangioma [1].

Material and Methods

Literature review was conducted using PubMed (MEDLINE) and Google Scholar for English articles, the following keywords were used: internal; auditory; canal and hemangioma.

Inclusion Criteria

All internal auditory canal hemangioma articles published after 1975 were included in the study.

Results

Forty-four studies about IAC hemangioma have been reported in PubMed (MEDLINE) and Google scholars in English literatures (Table 1).

Table 1: IAC Hemangioma report cases.

Article	Age	sex	symptoms	Surgical approach	Intraoperative Finding nerve attachment	Removal extension CPA	Postoperative Hearing profile	Postoperative Facial palsy

Glob J Otolaryngol 2(2): GJO.MS.ID.555585 (2016)
Author(s)	Gender	Age	Clinical Presentation	Auditory Canal	Facial Nerve	NTR/改善	Hearing Status	Facial Palsy	
Sundarsean et al. [1]	23 M	50 M	Progressive profound HL	RS	CN VIII	NTR No	Same	Same	
Mangham et al. [2]	29 M	45 F	Progressive profound HL	TL	CN VII	Deaf	Facial palsy		
				MFA	CN VII	No	Deaf	Same facial palsy	
				TL	CN VII	No	deaf	normal	
				MFA	CN VII	No	Unchanged	No facial spasm	
				TL	CN VII	No	No facial spasm	Normal	
				MFA	CN VII	No	THL worse	Worse facial palsy	
				TL	CN VII	No	Unsteadiness improve	Delayed total FP recovered	
Pappas et al. [3]	26 M	31 F	Progressive profound HL	TL	CN VII	NTR Yes	Deaf	Posterior	Deaf
				TL	CN VII	NTR Yes	Unsteadiness improve	FP Unchanged	
				TL	CN VII	TR Yes	Unsteadiness improved	FP improved	

How to cite this article: Omar R. Hemangioma of Internal Auditory Canal: Systemic Review. Glob J Otolaryngol. 2016; 2(2): 555585.
	Age	Hearing Status	Tinnitus	Facial Nerve	Facial Function	Facial Anesthesia	Facial Palsy	Facial Palsy Improvement
39 M	Progressive profound HL	TL	CN VII	No	THL Unsteadiness improved	Normal		
56 M	Progressive profound HL	TL	CN VII	NTR No	THL Unsteadiness improved	Postoperative FP improved		
44 M	Progressive severe HL deaf	TL	CN VII	NTR No	THL	Postoperative FP improved		
66 F	Acute profound HL unsteady deaf acute FP	TL	CN VII	No	THL Unsteadiness improved	IMPROVED		
Madden et al. [4]	36 F	Progressive profound HL Progressive FP Facial spasm	TL	CN VII Facial- Facial anastomosis	TR No	T HL Same facial nerve Improved Facial spasm		
Bordi et al. [5]	29 M	Progressive moderate HL PTA 60	RS	CN VII Facial- Facial anastomosis	TR No	Deaf Facial palsy		
Jacobson et al. [6]	41 F	Imbalance Normal hearing	MFA	CN VII	TR No	Normal Normal		
Cremers et al. [7]	39 M	progressive profound HL Tinnitus Recurrent FP	TL	CN VII	TR No	T HL Worse facial palsy		
Fujino et al. [8]	58 M	Progressive mild to moderate serviceable HL Tinnitus Vertigo	RS	Attached CN III	TR No	Hearing worse Vertigo improved Mild Facial palsy		
Babu et al. [9]	36 M	Progressive severe HL PB 20 Vertigo	RS	CN VII	TR No	Improved Normal		
Saleh et al. [10]	44 M	Progressive severe HL PTA 70 Progressive FP	TL	CN VII	TR No	Deaf Facial palsy worse		
Kohn et al. [11]	44 M	Progressive profound HL Tinnitus Progressive FP	TL	CN VII NTR	STR No	Deaf Same		
Name	Gender	Age	Type of Hearing Loss	Associated Symptoms	Type of Treatment	Outcome		
-----------------------	--------	-----	----------------------	---------------------	-------------------	---------		
Greiner - Perth et al.	M	32	MILD MODERATE	Tinnitus	RS	Normal		
			Sudden HL	serviceable				
				Dizziness				
				Attached CN VII				
				CN VIII				
				TR No				
				Hearing improved				
				Vertigo improved				
				Normal				
Fukuda et al.	M	34	MILD MODERATE	Vertigo	MFA	Same		
			Progressive serviceable HL	CN VII	TR No	Vertigo improved		
			Tinnitus			Normal		
Gjuric et al.	F	43	MILD MODERATE	Mild to moderate HL	MFA	Same		
			serviceable	Tinnitus	TR No	Normal		
Sasaki et al.	F	39	MILD MODERATE	Mild progressive HL	MFA	Same		
			serviceable	Tinnitus	CN VIII CN VII	Post-operative Facial palsy improved		
					NTR No			
				Vertigo improved				
				Same preserve				
Omjola et al.	M	45	RAPIDLY PROGRESSIVE PROFOUND HL		TL	Deaf		
			HL	Facial spasm	CN VII	Increase facial palsy		
			Tinnitus		TR No	Facial spasm improved		
Roche et al.	F	34	PROGRESSIVE PROGRESSIVE PROFOUND HL	Tinnitus	TL	Deaf		
			HL		CN VII	Postoperative FP		
				Tinnitus	TR No			
					Deaf			
Sasaki et al.	M	62	PROGRESSIVE PROGRESSIVE PROGRESSIVE HL	Tinnitus	TL	Deaf		
			HL		CN VII Hypoglossal - Facial anastomosis	Postoperative		
			Moderate HL		TR Yes	F		
			Tinnitus					
Sasaki et al.	M	23	PROGRESSIVE PROGRESSIVE PROGRESSIVE HL	Tinnitus	RS	Deaf		
			HL		CN VII CN VII	Improved FP		
			Sudden FP		TR No			
			Tinnitus		Deaf			
Sasaki et al.	M	40	PROGRESSIVE PROGRESSIVE PROGRESSIVE HL	Tinnitus	RS	Deaf		
			HL		CN VIII	Facial palsy worse		
			Tinnitus		TR No			
Sasaki et al.	M	42	PROGRESSIVE PROGRESSIVE PROGRESSIVE HL	Tinnitus	RS	Deaf		
			HL		CN VIII	Facial palsy worse		
			Tinnitus		TR No			
Sasaki et al.	M	53	PROGRESSIVE PROGRESSIVE PROGRESSIVE HL	Tinnitus	RS	Deaf		
			HL		CN VII CN VIII	Facial palsy worse		
			Tinnitus		Hypoglossal- Facial anastomosis	FacialSpam improved		
					TR No			
Sasaki et al.	M	53	PROGRESSIVE PROGRESSIVE PROGRESSIVE HL	Tinnitus	RS	Deaf		
			HL		CN VII CN VIII	Facial palsy worse		
			Tinnitus		Hypoglossal- Facial anastomosis	FacialSpam improved		
					TR No			
Sasaki et al.	F	53	PROGRESSIVE PROGRESSIVE PROGRESSIVE HL	Tinnitus	RS	Deaf		
			HL		CN VII CN VIII	Facial palsy worse		
			Tinnitus		Hypoglossal- Facial anastomosis	FacialSpam improved		
					TR No			

How to cite this article: Omar R. Hemangioma of Internal Auditory Canal: Systemic Review. Glob J Otolaryngol. 2016; 2(2): 555585.
Reference	Age	Sex	Presentation	MRI Findings	Treatment	Outcome	Comments	
Lenarz et al. [19]	51 M	Progressive severe HL, deaf PT, progressive FP, Tinnitus, unsteadiness	TL	CN VIII CN VII Facial - Facial anastomosis	TR No	Deaf	Same FP	
Safarova et al. [20]	40 M	Progressive profound HL, Recurrent FP	RS	CN VIII CN VII	TR No	Dead	FP improved	
Barrera et al. [21]	21 M	Progressive profound HL, Tinnitus	TL	CN VIII	TR No	THL	Facial palsy	
Aquilina et al. [22]	29 F	Progressive profound HL, Tinnitus, Progressive Facial palsy, Multiple familial hemangioma	TL	CN VIII CN VII	TR No	Deaf	Same	
Albid et al. [23]	61 M	Progressive profound deaf HL, Tinnitus, Progressive FP	RS	CN VII	TR No	Same deaf	Same	
Shaida et al. [24]	30 F	Progressive profound HL, unsteadiness, Tinnitus, FP	TL	CN VII	TR No	Deaf Unsteadiness improved	Improved	
Sepehrina et al. [25]	53 M	Progressive Moderate HL, Serviceable Tinnitus, Progressive FP	RS	CN VII	TR No	Worse hearing loss	Improved	
Zhu et al. [26]	40 M	Progressive severe HL, Tinnitus, vertigo, Sudden facial palsy, progressive	Progressive	Progressive	Progressive	worse		
27 M	Progressive severe HL, Tinnitus, vertigo, progressive FP	TL	CN VII CN VIII	TR No	Deaf	Same		
31 M	Progressive mild HL, serviceable Tinnitus, vertigo, progressive FP	MFA	CN VII CN VIII	TR No	Deaf	Same		
37 F	Progressive severe HL, Tinnitus, Recurrent facial palsy	TL	CN VII CN VIII Facial - Facial Anastomosis	TR No	Deaf	Same palsy		
32 F	Progressive severe HL, Tinnitus, Facial spasm	TL	CN VII CN VIII Facial - Facial Anastomosis reconstruction	TR No	Deaf	Worse facial palsy Facial spasm Improved		
Age	Gender	Hearing	Facial Paralysis	Follow-up	Details			
------	--------	---------	------------------	-----------	---------			
23 M			Mild HL, Tinnitus	Wait, scan				
34 M			Sudden profound HL, Sudden facial palsy	TL	STR Yes	Deaf	Same	
43 M			Progressive profound HL	TL	NTR No	Deaf	Improve	
			Progressive FP					
60 M			Progressive severe HL	TL	NTR No	Deaf	Mild postoperative FP	
18 M			Progressive profound HL, Progressive FP	TL	NTR No	Deaf	Improved	
41 M			Progressive profound HL	TL	NTR No	Deaf	Postoperative FP	
47 M			Moderate progressive mild HL (serviceable)	RS	NTR No	Deaf	Normal	
49 M			Moderate progressive mild HL (serviceable)	RS	NTR No	Deaf	Normal	
28 M			Mild progressive mild HL serviceable	MFA	NTR No	Deaf	Normal	
49 F			Progressive profound HL	TL	NTR Yes	Deaf	Normal	
66 M			Progressive severe HL	RS	NTR No	Deaf	Normal	
36 M			Sudden severe HL	TL	STR Yes	Deaf	Normal	
56 M			Progressive profound HL	TL	NTR Yes	Deaf	Postoperative FP	
22 F			Vertigo, Progressive mild HL serviceable	RS	CN VII CN VIII	NTR No	Hearing same	Mild FP
47 M			Progressive profound HL, Progressive FP	TL	CN VIII	TR No	Deaf	Same
45 M			Progressive Profound HL	TL	CN VIII	TR No	Deaf	Same
38 M			Progressive profound HL	TL	CN VII CN VIII	STR No	Deaf	Postoperative FP
41 M			Progressive Severe HL, Tinnitus Vertigo	TL	CN VIII	TR No	Deaf	Vertigo improved
21 M			Moderate progressive serviceable Vertigo	RS	CN VII CN VIII	TR No	Deaf worse	Vertigo improved

References

Oldenburg et al. [27]

Mastronardi et al. [28]

Hanamitsu et al. [29]

Bonforte et al. [30]

Nakashima et al. [31]

Hekmatare et al. [32]

Silveira et al. [33]

How to cite this article: Omar R. Hemangioma of Internal Auditory Canal: Systemic Review. Glob J Otolaryngol. 2016; 2(2): 555585.
Reference	Gender	Age	Symptoms	Nerves	Site of Lesion	Hearing Status	Observation
Magliulo et al. [34]	38 F	58	Progressive severe profound HL, Dizziness, Tinnitus, Progressive Facial palsy	TL	CN VIII	Deaf	Improved
Mahran et al. [35]	58 F	58	Sudden profound HL, Vertigo, Facial spasm, Tinnitus	RS	CN VIII CNVIII	Deaf	Improved
Refass et al. [36]	36 F	24	Sudden deaf HL, Tinnitus	TL	CN VIII	Deaf	Same
Matias-Guiu et al. [37]	24 F	24	Progressive profound HL, Tinnitus	RS	CN VIII	Deaf	Same
Ferrante et al. [38]	24 F	24	Acute profound HL, vertigo	RS	CN VIII	Deaf	Same
Shao-yan et al. [39]	47 M	47	Progressive profound HL, Progressive FP	TL	CN VIII	Deaf	Same FP
Moore et al. [40]	45 M	45	Progressive profound HL, Hearing loss, Imbalance, Headache	RS	CN VIII CNVIII	Deaf	Transient FP
Deshmukh et al. [41]	67 M	67	Sudden severe HL, Sudden FP	RS	CN VII CNVIII	Same	Improved
53 M			Sudden severe HL, Sudden FP, Multiple familial hemangioma, headache	RS	CN VII CNVIII	Same	Improved
Ahmad et al. [42]	45 M	45	Vertigo, Tinnitus, Progressive Profound HL, Facial spasm	TL	CN VII CNVIII	Same hearing	Vertigo
						Facial palsy	Facial spasm
Jun Shim et al. [43]	5 M	5	Sudden Profound HL	Observation		TR Yes	
Di rocco et al. [44]	23 F	23	Progressive severe HL (60-70 dB), Acute FP	RS	CN VII CNVIII	Same	Improved
Demographic

There were 81 patients of age ranged from 5 to 69 with majority of the patients between 20 to 50 year old. There were 57 males and 24 females in the study (Figures 1 & 2).

Symptoms

78 patients had hearing loss (96%). 11 patients of them had sudden hearing loss (14%), while the other 67 patients had progressive hearing loss (86%). 16 patients had serviceable hearing loss (20%), while the other 52 patients had non-serviceable hearing a loss (80%).

46 patients had tinnitus (56%), 31 patients had vestibular symptoms (38%) (16 patients had vertigo and 15 patients had unsteadiness). 30 patients had facial palsy (37%), 6 patients of them had sudden facial palsy (20%), 3 patients of them had recurrent facial palsy (10%), while the other 21 had progressive facial palsy (70%). 13 patients had facial spasm (16%). 2 patients had headache (3%), and 2 patients had familial multiple hemangioma (3%) (Table 2).

Hearing loss	Tinnitus	Vertigo and unsteadiness	Facial palsy	Facial spasm	Headache
96%	56%	38%	37%	16%	3%

Management

Table 3: Hearing outcomes after surgery.

Normal hearing	Serviceable hearing loss	Non serviceable	
Patients	3	15	51
Improved	2	5	0
Percentage	66% preserve hearing	33% preserve serviceable hearing	0% preservation

Table 4: IAC Hemangioma management.

Observation	MFA	RS	TL
2	8	29	42
3%	9%	35%	51%
3%	9%	35%	51%

Table 5: Facial palsy outcomes after surgery.

Improved	Same	worse	
6 patients with acute FP	4	1	
3 patients with recurrent FP	1	1	
21 patients with progressive FP	6	11	5
Total	11 (36%)	13 (43%)	6 (23%)

Table 6: Facial reconstruction types.

Facial- Facial anastomosis	Facial-hypoglossal anastomosis	Sural nerve graft	Great auricle nerve graft
10	3	2	1

Two patients were managed by observation. 79 patients had a surgery. 3 of them had normal hearing, and 15 patients of them had serviceable hearing loss, while the other 51 patients had non-serviceable hearing loss (Table 3). Only 11 articles reported the postoperative clinical progress of vestibular symptoms, and all reported patients with vestibular symptoms improved. 13 patients had preoperative facial spasm, and it disappeared in all of them postoperatively. Two patients were managed conservatively, 8 patients had MFA, and 29 patients had RS approach, while the other 42 patients had TR approach (Table 4). 30 patients with facial palsy had a surgery, 11 patients of them had facial weakness improvement (Table 5). 16 patients had facial reconstruction (20%) (Table 6). 68 patients had a limited disease to IAC, while 13 patients had disease extension.
into CPA (Figure 3). 72 articles reported the surgical removal type, 52 patients of them had a total surgical resection, and 17 patients of them had a near total resection while the other 3 patients had only partial resection (Figure 4). Hemangioma attachments were reported in 63 patients, 27 patients of them had CN VII attachment, and 21 patients of them had CN VII & CN VIII attachment, while the other 15 patients had CN VIII attachment (Figure 5).

Results

Most patient were male with age ranging between 20 to 50 years old. Most patients had non-serviceable hearing loss. 38% patients had vestibular symptoms, 37% patients had facial palsy, 16% patients had facial spasm. Only third patient with serviceable-hearing loss preserved their hearing abilities after surgery, third patient with facial palsy had significant improvement after surgery (acute facial palsy has a better prognosis than progressive facial palsy), and all patients with facial spasm and vestibular symptoms had a good improvement. Most cases were located primary to IAC, most cases had attachment to facial nerve and can be removed totally, and about20% of patients had facial reconstruction surgery due to advanced facial nerve involvement.

Conclusion

IAC hemangioma is a rare disease with poor outcomes prognosis, we should suspect this disease in patients with progressive hearing loss and facial palsy with small lesion in internal auditory canal vertigo and Tinnitus.

Discussion

Vestibular schwannoma is the most common tumor in IAC and the cerebellopontine angle (CPA). Other tumor lesions of CPA area include meningioma, primary cholesteatoma, facial nerve neuroma, various vascular tumors, metastatic tumors, and others. cavernous angioma was reported rarely in the IAC. Sundares et al. reported the first case of IAC cavernous angioma in 1976. These tumors were considered to originate from the capillary bed of the epineurium nerve. Vascular steal mechanism in which the blood is taken by tumor instead of the nerve causing nerve function loss even with a small size of tumor. Histopathologically, they consist of large thin-walled blood vessels that lined by flattened endothelium, which stain positive by endothelial marker CD 31, the stroma is composed of fibrous component and has mainly myofibroblast and fibroblast that stain positive for smooth muscle actin.

Depending on nerve origin and location, these tumors can cause severe progressive or sudden sensorineural hearing loss, tinnitus, sudden or progressive facial nerve palsy, facial spasm, vertigo and disequilibrium even when they are in small size. The tumor sizes usually less than 10 mm. On CT scan, IACHemangioma appear as iso- or hyper dense lesion with slight enhancement after intravenous administration of contrast, usually stippled calcifications could also be seen with enlargement of the IAC. On MRI, it appears as lobular and iso-intense in T1 and hyperintense on T2 with heterogeneous T1 post - gadolinium enhancement. The main differential diagnosis is IAC Vestibular shwannoma (Table 7). Other differential diagnosis may include meningioma, lipoma, melanoma, hamartoma, and lymphoma.

Table 7: IAC Hemangioma V/S IAC Vestibular shwannoma.
Intra-meatual CH
Non-serviceable CH
Facial palsy
MRI lobular and iso-intense in T1 and hyper intense on T2 with heterogeneous T1 post - gadolinium

Complete surgical resection with avoiding complications such bleeding is the goal of treatment. Radiotherapy may promote growth and hemorrhage, so it is not recommended. No symptomatic cases can be managed conservatively. Symptomatic case should be resected surgically. Surgical approach is depended on hearing deficit and tumor size. Translabyrinthine approach is recommended for patient with non-serviceable hearing loss. Middle fossa approach and retrosigmoid approach are recommended for patients with serviceable hearing loss. This lesion could be attached firmly with facial nerve. Since the tumor is benign and slow growing, it is advocated to perform a near total resection in case where the tumor is difficult to dissect from facial nerve [18,26,27].

Acknowledgement

Dana Library, Clifton memorial library and Mrs. Patricia May.

Conflict of interest

Author declared no conflict of interest
References

1. Sundaresan N, Eller T, Ciric I (1976) Hemangiomas of the internal auditory canal. Surg Neurol 6(2): 119-121.
2. Mangham CA, Carberry JN, Brackmann DE (1981) Management of intratemporal vascular tumors. Laryngoscope 91(6): 867-876.
3. Pappas DG, Schneiderman TS, Brackmann DF, Simpson SC, Chandra Sekar B, et al. (1989) Cavernous hemangiomas of the internal auditory canal. Otolaryngol Head Neck Surg 101(1): 27-32.
4. Madden GJ, Sirimanna KS (1990) Cavernous hemangioma of the internal auditory meatus. J Otolaryngol 19(4): 288-291.
5. Bordi L, Pires M, Symon L, Cheesman AD (1991) Cavernous angioma of the cerebello-pontine angle: a case report. Br J Neurosurg 5(1): 83-86.
6. Jacobson J, Reams C (1991) Neurotologic disease in four patients with normal audiometric findings. Am J Otol 12(2): 114-118.
7. Cremers WR, Theunissen EJ, Thijsen HO, Meijer H, Faverly D (1991) Cavernous hemangioma of the internal acoustic canal. Am J Otol 12(5): 370-373.
8. Fujino A, Tokumatsu K, Yoshio S, Momiyama Y, Nakayama M (1993) A case of cavernous hemangioma in the internal auditory canal. Acta Nasus Larynx 20(4): 303-308.
9. Babu R, Ransohoff J, Cohen N, Zagzag D (1994) Cavernous angiomas of the internal auditory canal: a case report and review of the literature. Acta Neurochirurgica (Wien) 129(1): 100-104.
10. Kohan D, Downey LL, Lim J, Cohen NL, Elovitz E (1997) Uncommon lesions presenting as tumors of the internal auditory canal and cerebello-pontine angle. Am J Otol 18(3): 386-392.
11. Saleh E, Naguib M, Russo A, Tabah AK, Sanna M (1993) Vascular malformation of the internal auditory canal. J Laryngol Otol 107(11): 1039-1042.
12. Greiner-Perth R, Schenke H, Neubauer U (1997) Cavernous malformation of the internal auditory canal. Acta Neurochirurgica (Wien) 139(11): 1090-1091.
13. Fukuda Y, Ganança FF, Nascimento LA, Testa JR, Munhoz MS, et al. (1995) Cavernous hemangioma of the internal auditory canal. Apropos of a case. Rev Laryngol Otol Rhinol (Bord) 116(3): 229-230.
14. Gjurić M, Koester M, Paulus W (2000) Cavernous hemangioma of the internal auditory canal arising from the inferior vestibular nerve: case report and review of the literature. Am J Otol 21(1): 110-114.
15. Sasaki T, Sasaki T, Okamoto K, Ishida T, Kirino T (1999) Cavernous angioma of the internal auditory meatus-case report. Neurol Med Chir (Tokyo) 39(12): 847-851.
16. Omolola MF, al Hawashim NS, Zuwayed MA, al Ferayan A (1997) CT and MRI features of cavernous hemangioma of internal auditory canal. Br J Radiol 70(839): 1184-1187.
17. Roche PH, Figarella-Branger D, Malca S, Soumare O, Pellet W (1997) Acoustic-facial cavernomas. A propos of 2 surgically treated cases. Neurochirurgie 43(3): 148-153.
18. Samii M, Nakamura M, Mirzai S, Vorkapic P, Cervio A (2006) Cavernous angiomas within the internal auditory canal. J Neurosurg 105(4): 581-587.
19. Lenarz M, Durisin M, Kamenetzki P, Becker H, Kreipe HH, et al. (2007) Cavernous hemangioma of the internal auditory canal. Eur Arch Otorhinolaryngol 264(5): 569-571.
20. Safronova MM, Vaz AR, Resende M, Pereira JR, Honavar M, et al. (2009) Cavernous malformation of the internal auditory canal: a diagnostic challenge. Otol Neurot 30(7): 1015-1017.
21. Jose E, Barrera, Herman Jenkins, Sherif Said (2004) Cavernous hemangioma of the internal auditory canal: a case report and review of the literature. American Journal of Otolaryngology 25(3): 199-203.
22. Aquilina K, Narra JS, Brett F, Walsh RM, Rawhik D (2004) Cavernous angioma of the internal auditory canal. J Laryngol Otol 118(5): 368-371.
23. Alhbid Islam, Gastón Félix, Morello Antonio, Menéndez Luis Miguel, Benitez Pedro (2002) Cavernous haemangioma of the internal auditory canal. Acta Otolaryngol 122(5): 501-503.
24. Shaída AM, McFerran DJ, da Cruz M, Hardy DG, Moffat DA (2000) Cavernous haemangioma of the internal auditory canal. J Laryngol Otol 114(6): 453-455.
25. Sepehrinia A, Rebolloed Godoy AP, Reusche E (2000) A cavernous hemangioma simulating an intracanalicular acoustic neuroma. A case report. Zentralbl Neurochir 61(4): 194-197.
26. Zhu W, Huang Q, Li XY, Chen HS, Wang ZY, et al. (2016) Diagnosis and treatment of cavernous hemangioma of the internal auditory canal. J Neurosurg 124(3): 639-646.
27. Oldenburg MS, Carlson ML, Van Abel KM, Giannini C, Jacob J, et al. (2015) Cavernous hemangiomas of the internal auditory canal and cerebello-pontine angle. Otol Neurotol 36(1): e30-34.
28. Mastronardi L, Cappineta E, Cacciotti G, Di Scipio E, Roperto R (2016) Cavernous hemangioma of the internal auditory canal encasing the VII and VIII cranial nerve complex: case report and review of the literature. Neurosurg Rev 39(2): 349-354.
29. Hanamitsu M, Okumura K, Yawaya Y, Fukuji J, Suzuki M (2004) Cavernous haemangioma of the internal auditory canal: a case report. J Clin Neurosci 11(3): 337-340.
30. Bonfort G, Veillon F, Debry C, Kehrli P, Chibbaro S (2015) VIIIth nerve cavernous hemangioma mimicking a stage I acoustic schwannoma. Neurosurg 61(5): 352-355.
31. Nakashima T, Kawano H, Matsuda K, Tono T (2012) Hemangioma of the internal auditory canal: Case report. Otol Jpn 22(5): 838-843.
32. Mohammad Hossein Helmatara (1993) Cavernous Hemangioma of the Internal Auditory Canal. Acta Medica Iranica 31(1-4): 49-56.
33. Silveira RL, Andrade GC, Pinheiro Júnior N, Pittelka JE, Barbosa VC (2015) Cavernous hemangioma of the internal auditory canal encasing the VII and VIII cranial nerve complex: case report. Arch Neuropsychiatr 63(1): 163-165.
34. Giuseppe Magliulo, Giannicola Iannella, Simone Alessi, Massimo Re (2014) Meatal segment of facial nerve and cavernous angioma. Annals of Otolaryngology and Rhinology 1: 1004.
35. Mahran A, Samii M, Penkert G, Ostertag H (1991) Vascular Lesions of the Internal Auditory Canal. Skull base surgery 1(2): 78-84.
36. Refas A, Bozorg Grayeli A, Bouccara D, Ismail M, Cyna-Gorse F, et al. (2006) Atypical haemangioma of the internal auditory meatus: a case report. Eur Arch Otorhinolaryngol 263(7): 627-631.
37. Matias-Guiu X, Alejo M, Sole T, Ferrer I, Noboa R, et al. (1999) Cavernous angiomia of the cranial nerves. Report of two cases. J Neurol 246(1): 620-622.
39. Feng Shao-Yan, Fan Yun-Ping, Chen Shulin, Hong Hai-Yv, Zhang Zhi-Gang (2012) Cavernous hemangioma of the internal auditory canal: a case report. Int Adv Otol 8(3): 470-474.

40. Moore GF, Johnson PJ, McComb RD, Leibrock LG (1995) Venous hemangioma of the internal auditory canal. Otolaryngol Head Neck Surg 113(3): 305-309.

41. Deshmukh VR, Albuquerque FC, Zabramski JM, Spetzler RF (2003) Surgical management of cavernous malformations involving the cranial nerves. Neurosurgery 53(2): 352-357.

42. Omar H Ahmed, Eric W Cerrati, David R Friedmann, Matija Snuderl, Mari Hagiwara, Daniel Jethanamest (2016) Intracanalicular Venous Malformation of the Internal Auditory Canal. New York University Langone Medical Center 1: 128.

43. Shim HJ, Song DK, Lee SW, Lee DY, Park JH, et al. (2007) A case of unilateral sensorineural hearing loss caused by a venous malformation of the internal auditory canal. Int J Pediatr Otorhinolaryngol 71(9): 1479-1483.

44. Di Rocco F, Paterno V, Safari-Abbasi S, El-Shawarby A, Samii A, et al. (2006) Cavernous malformation of the internal auditory canal. Acta Neurochir (Wien) 148(6): 695-697.

Your next submission with JuniperPublishers will reach you the below assets
- Quality Editorial service
- Swift Peer Review
- Reprints availability
- E-prints Service
- Manuscript Podcast for convenient understanding
- Global attainment for your research
- Manuscript accessibility in different formats (Pdf, E-pub, Full Text, Audio)
- Unceasing customer service

Track the below URL for one-step submission
http://juniperpublishers.com/online-submission.php

How to cite this article: Omar R. Hemangioma of Internal Auditory Canal: Systemic Review. Glob J Otolaryngol. 2016; 2(2): 555585.