Research Article

Global Dynamics of Secondary DENV Infection with Diffusion

A. M. Elaiw and A. S. Alofi

1Department of Mathematics, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
2Department of Mathematics, Faculty of Science, Al-Azhar University, Assiut Branch, Assiut, Egypt

Correspondence should be addressed to A. M. Elaiw; a_m_elaiw@yahoo.com

Received 28 January 2021; Accepted 18 June 2021; Published 28 June 2021

Academic Editor: Nan-Jing Huang

Copyright ©2021 A. M. Elaiw and A. S. Alofi. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

During the past eras, many mathematicians have paid their attentions to model the dynamics of dengue virus (DENV) infection but without taking into account the mobility of the cells and DENV particles. In this study, we develop and investigate a partial differential equations (PDEs) model that describes the dynamics of secondary DENV infection taking into account the spatial mobility of DENV particles and cells. The model includes five nonlinear PDEs describing the interaction among the target cells, DENV-infected cells, DENV particles, heterologous antibodies, and homologous antibodies. In the beginning, the well-posedness of solutions, including the existence of global solutions and the boundedness, is justified. We derive three threshold parameters which govern the existence and stability of the four equilibria of the model. We study the global stability of all equilibria based on the construction of suitable Lyapunov functions and usage of Lyapunov–LaSalle’s invariance principle (LLIP). Last, numerical simulations are carried out in order to verify the validity of our theoretical results.

1. Introduction

Mathematical models and their analysis have been proven to be an efficient and significant approach to understand the within-host dynamics of viral infections such as dengue virus (DENV), human immunodeficiency virus (HIV), hepatitis C and B virus (HCV/HBV), human T lymphotropic virus type I (HTLV-I), and recently, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). DENV is the causal of dengue fever which is one of the morbidity and mortality diseases. It can transmit to humans via Aedes aegypti and Aedes albopictus mosquitoes. Annually, about 50–100 million infected individuals by DENV are reported worldwide. The most epidemic regions are sub-Saharan Africa and Southeast Asia [1]. Several symptoms of dengue that can appear on the infected individual are high fever, vomiting, nausea, joint pains, headache, and pain behind the eyes [2]. DENV aims and infects the following types of cells: monocytes, dendritic cells, hepatocytes, macrophages, and mast cells [3–6]. There are four serologically various dengue viruses DENV (1–4) that can infect the human [7]. When a DENV enters the human body first time, the immune response is enhanced [8]. Cytotoxic T lymphocytes (CTLs) and antibody immune responses are two main components of the immune system against viruses. CTLs destroy the DENV-infected cells, while antibodies kill DENV particles and clear it from the body.

During the recent years, several mathematical models have been developed which describe within-host DENV primary infection [9–17]. These models are based on the virus dynamics model introduced by Nowak and Bangham [18]. The World Health Organization (WHO) [19] has reported that an infected individual by one serotype will have lifelong immunity against that serotype but only temporary and partial cross-immunity to the other three serotypes. Mathematical models of DENV dynamics pertaining to secondary infection with another serotype have been developed in [20–25]. Gujarati and Ambika [20] have formulated the following DENV infection model:
\[
\begin{align*}
\frac{dK(t)}{dt} &= \delta - \mu K(t) M(t) - \xi K(t), \\
\frac{dL(t)}{dt} &= \mu K(t) M(t) - \varphi L(t), \\
\frac{dM(t)}{dt} &= \tau L(t) - \eta M(t) - \omega_1 M(t) N(t) - \omega_2 M(t) P(t), \\
\frac{dB(t)}{dt} &= \beta - \gamma B(t) + \varphi B(t) M(t), \\
\frac{dN(t)}{dt} &= \delta e B(t) - \kappa_1 N(t) M(t) - \alpha_1 N(t), \\
\frac{dP(t)}{dt} &= e B(t) - \kappa_2 P(t) M(t) - \alpha_2 P(t),
\end{align*}
\]

where \(t > 0 \) is the time, and \(K(t), L(t), M(t), B(t), N(t), \text{ and } P(t) \) are the concentrations of the target cells, DENV-infected cells, DENV particles, B cells, heterologous antibody previously formed on primary infection, and homologous antibody against the new virus serotype of the secondary infection, respectively. The parameter \(\delta \) represents the creation rate of the target cells. The DENV particles infect the target cells at rate \(\mu KM \). The DENV-infected cells produce viruses at rate \(\tau L \). The B cells are created at constant rate \(\beta \) and proliferated at rate \(\varphi BM \). The death rates of the compartments \(K, L, M, B, N, \text{ and } P \) are given by \(\xi K, \varphi L, \eta M, \gamma B, \alpha_1 N, \text{ and } \alpha_2 P \), respectively. The two types of antibodies \(N \) and \(P \) are generated from the B cells at rates \(\delta e B \) and \(e B \) and neutralize the DENV at rates \(\omega_1 MN \) and \(\omega_2 MP \). The terms \(\kappa_1 NM \) and \(\kappa_2 PM \) represent the rates at which antibody virus complex affects the antibody growth. \(\theta \in (0, 1) \) is a correlation factor that quantifies the similarity between the individual serotypes. We observe that the global stability of the models presented in [20–25] is not well studied.

All of the DENV infection models in the above-mentioned works are given by ordinary or delay differential equations under the assumption that the cells and DENV particles are well mixed. Spatial structure plays an important role in understanding the dynamical behavior of viral infection within a host. In recent years, spatial dependence has been incorporated into mathematical models of several viral infections such as hepatitis B virus (HBV) [26], hepatitis C virus (HCV) [27, 28], human immunodeficiency virus (HIV) [29–31], and human T lymphotropic virus type I (HTLV-I) [32]. To the best of our knowledge, the DENV infection model with diffusion has not been studied before. Therefore, the aim of the present study is to focus on the dynamical behavior of DENV infection with diffusion. Following the work of Hattaf [33], our proposed model takes into account the spatial mobility of all compartments.

2. Mathematical DENV Dynamics Model

We develop a DENV infection model with secondary infection and diffusion as

\[
\begin{align*}
\frac{dK(u, t)}{dt} &= d_K \Delta K(u, t) + \delta - \mu K(u, t) M(u, t) - \xi K(u, t), \\
\frac{dL(u, t)}{dt} &= d_L \Delta L(u, t) + \mu K(u, t) M(u, t) - \varphi L(u, t), \\
\frac{dM(u, t)}{dt} &= d_M \Delta M(u, t) + \tau L(u, t) - \eta M(u, t) - \omega_1 M(u, t) N(u, t) - \omega_2 M(u, t) P(u, t), \\
\frac{dB(u, t)}{dt} &= \beta - \gamma B(u, t) + \varphi B(u, t) M(u, t), \\
\frac{dN(u, t)}{dt} &= d_N \Delta N(u, t) + \lambda_1 M(u, t) N(u, t) - \alpha_1 N(u, t), \\
\frac{dP(u, t)}{dt} &= d_P \Delta P(u, t) + \lambda_2 M(u, t) P(u, t) - \alpha_2 P(u, t),
\end{align*}
\]

where \(u \in \Gamma \) is the position. The heterologous and homologous antibodies are activated at rates \(\lambda_1 MN \) and \(\lambda_2 MP \), respectively. Here, \(\Delta \) is the Laplacian operator and \(d_x \) is the diffusion coefficient, where \(x \in \{ K, L, M, N, P \} \). The spatial domain \(\Gamma \subset \mathbb{R}^m \) (where \(m \geq 1 \)) is bounded and connected; moreover, its boundary \(\partial \Gamma \) is smooth.

The initial conditions are given by

\[
\begin{align*}
K(u, 0) &= \mathcal{G}_1(u), \\
L(u, 0) &= \mathcal{G}_2(u), \\
M(u, 0) &= \mathcal{G}_3(u), \\
N(u, 0) &= \mathcal{G}_4(u), \\
P(u, 0) &= \mathcal{G}_5(u), \quad u \in \Gamma,
\end{align*}
\]

where \(\mathcal{G}_\ell(u) \geq 0, \ell = 1, \ldots, 5, \) are the continuous functions. In addition, we take the following homogeneous Neumann boundary conditions:

\[
\begin{align*}
\frac{\partial K}{\partial \nu} &= \frac{\partial L}{\partial \nu} = \frac{\partial M}{\partial \nu} = \frac{\partial N}{\partial \nu} = \frac{\partial P}{\partial \nu} = 0, \quad t > 0, u \in \partial \Gamma,
\end{align*}
\]

3. Well-Posedness of Solutions

Theorem 1. Assume that \(d_K = d_L = d_M = d_N = d_P = \bar{d} \). Then, models (2)–(6) with any initial satisfying (7) has a unique, nonnegative, and bounded solution defined on \(\Gamma \times [0, +\infty) \).

Proof. We denote \(\mathcal{X} = BUC(\overline{\Gamma}, \mathbb{R}^5) \), the set of all bounded and uniformly continuous functions from \(\Gamma \) to \(\mathbb{R}^5 \), with norm \(\| \theta \|_{\mathcal{X}} = \sup_{u \in \Gamma} \| \theta(u) \| \). We define the positive cone \(\mathcal{X}_+ = BUC(\overline{\Gamma}, \mathbb{R}^5_+) \subset \mathcal{X} \) which induces a partial order on \(\mathcal{X} \). This shows that the space \((\mathcal{X}, \| \cdot \|_{\mathcal{X}}) \) is a Banach lattice [35, 36].
For any initial data \(\mathcal{G} = (\mathcal{G}_1, \mathcal{G}_2, \mathcal{G}_3, \mathcal{G}_4, \mathcal{G}_5)^T \in \mathcal{X}_+ \), we define \(H = (H_1, H_2, H_3, H_4, H_5)^T : \mathcal{X}_+ \rightarrow \mathcal{X}_+ \) by

\[
\begin{align*}
H_1(\mathcal{G})(u) &= \delta - \mu \mathcal{G}_1(u) \mathcal{G}_3(u) - \xi \mathcal{G}_1(u), \\
H_2(\mathcal{G})(u) &= \mu \mathcal{G}_1(u) \mathcal{G}_3(u) - \varrho \mathcal{G}_2(u), \\
H_3(\mathcal{G})(u) &= \tau \mathcal{G}_2(u) - \eta \mathcal{G}_3(u) - \omega_1 \mathcal{G}_3(u) \mathcal{G}_4(u) - \omega_2 \mathcal{G}_3(u) \mathcal{G}_5(u), \\
H_4(\mathcal{G})(u) &= \lambda_1 \mathcal{G}_3(u) \mathcal{G}_4(u) - \alpha_1 \mathcal{G}_4(u), \\
H_5(\mathcal{G})(u) &= \omega \mathcal{G}_3(u) \mathcal{G}_5(u) - \alpha_2 \mathcal{G}_5(u).
\end{align*}
\]

It is clear that \(H \) is locally Lipschitz on \(\mathcal{X}_+ \). We can rewrite systems (2)–(6) with initial conditions (7) and boundary conditions (8) as the following abstract functional differential equation:

\[
\begin{align*}
\frac{d\mathcal{W}}{dt} &= \Theta \mathcal{W} + H(\mathcal{W}), \quad t > 0, \\
\mathcal{W}(0) &= \mathcal{G} \in \mathcal{X}_+,
\end{align*}
\]

where \(\mathcal{W} = (K, L, M, N, P)^T \) and \(\Theta \mathcal{W} = (d_K \Delta K, d_L \Delta L, d_M \Delta M, d_N \Delta N, d_P \Delta P)^T \). One can show that

\[
\lim_{q \rightarrow 0} \frac{1}{q} \text{dist}(\mathcal{G}(0) + qH(\mathcal{G}), \mathcal{X}_+) = 0, \quad \forall \mathcal{G} \in \mathcal{X}_+.
\]

Then, using systems (2)–(6), we obtain

\[
\frac{d\Psi(u, t)}{dt} = d_K \Delta K (u, t) + \delta - \mu K(u, t)M(u, t) - \xi K(u, t)
\]

\[
+ d_L \Delta L(u, t) + \mu K(u, t)M(u, t) - \varrho L(u, t),
\]

\[
+ \frac{\varrho}{2\tau} \left[d_M \Delta M(u, t) + \tau L(u, t) - \eta M(u, t) - \omega_1 M(u, t)N(u, t) - \omega_2 M(u, t)P(u, t) \right]
\]

\[
+ \frac{\varrho \alpha_1}{2\tau \lambda_1} \left[d_N \Delta N(u, t) + \lambda_1 M(u, t)N(u, t) - \alpha_1 N(u, t) \right]
\]

\[
+ \frac{\varrho \alpha_2}{2\tau \lambda_2} \left[d_P \Delta P(u, t) + \lambda_2 M(u, t)P(u, t) - \alpha_2 P(u, t) \right].
\]

Since \(d_K = d_L = d_M = d_N = d_P = \bar{d} \), then we get

\[
\begin{align*}
\frac{d\Psi(u, t)}{dt} - \bar{d} \Delta \Psi(u, t) &= \delta - \xi K(u, t) - \frac{\varrho}{2} L(u, t) - \frac{\varrho \alpha_1}{2\tau \lambda_1} M(u, t) - \frac{\varrho \alpha_2}{2\tau \lambda_2} N(u, t) - \frac{\varrho \alpha_1}{2\tau \lambda_1} \left[K(u, t) + L(u, t) + \frac{\varrho}{2\tau} M(u, t) + \frac{\varrho \alpha_1}{2\tau \lambda_1} N(u, t) + \frac{\varrho \alpha_2}{2\tau \lambda_2} P(u, t) \right]
\end{align*}
\]

\[
P(u, t) \leq \delta - \sigma \left(K(u, t) + L(u, t) + \frac{\varrho}{2\tau} M(u, t) + \frac{\varrho \alpha_1}{2\tau \lambda_1} N(u, t) + \frac{\varrho \alpha_2}{2\tau \lambda_2} P(u, t) \right)
\]

\[
= \delta - \sigma \Psi(u, t),
\]
where $\sigma = \min\{\xi, \frac{1}{2}\varrho, \eta, \alpha_1, \alpha_2\}$. Thus, $\Psi(u, t)$ satisfies

$$
\begin{align*}
\frac{\partial \Psi(u, t)}{\partial t} - d \Delta \Psi(u, t) &\leq \delta - \sigma \Psi(u, t), \\
\Psi(u, 0) &= G_1(u) + G_2(u) + \frac{\sigma_1}{2\tau} G_3(u) + \frac{\sigma_2}{2\tau \lambda_1} G_4(u) + \frac{\sigma_2}{2\tau \lambda_2} G_5(u) \geq 0, \\
\frac{\partial \Psi}{\partial \partial} &= 0.
\end{align*}
$$

(15)

Let $\bar{\Psi}(t)$ be a solution of the following ODE:

$$
\begin{align*}
\frac{d \bar{\Psi}(t)}{dt} &= \delta - \sigma \bar{\Psi}(t), \\
\bar{\Psi}(0) &= \max_{u \in \Gamma} \Psi(u, 0).
\end{align*}
$$

(16)

This gives that $\bar{\Psi}(t) \leq \max\{\{\delta/\sigma\}, \max_{u \in \Gamma} \Psi(u, 0)\}$. On the basis of comparison principle [38], we obtain $\Psi(u, t) \leq \bar{\Psi}(t)$. Hence,

$$
\Psi(u, t) \leq \max_{u \in \Gamma} \left\{ \frac{\delta}{\sigma}, \max_{u \in \Gamma} \Psi(u, 0) \right\},
$$

(17)

which implies that $K(u, t)$, $L(u, t)$, $M(u, t)$, $N(u, t)$, and $P(u, t)$ are bounded on $\Gamma \times [0, \mathcal{T}_m]$. The standard theory for semilinear parabolic systems implies that $\mathcal{T}_m = +\infty$ [39]. This shows that solution $(K(u, t), L(u, t), M(u, t), N(u, t), P(u, t))$ is defined for all $u \in \Gamma$, $t > 0$, and also is unique and nonnegative. \hfill \Box

4. Equilibria

Theorem 2. There exist three threshold parameters R_0, R_1, and R_2 with $R_0 > R_1$ and $R_0 > R_2$, such that

(i) If $R_0 \leq 1$, then the system has a single equilibrium Ω_0

(ii) If $R_1 < R_0$ and $R_2 \leq 1 < R_0$, then the system contains only two equilibria Ω_0 and Ω_1

(iii) If $R_1 > 1$ and $R_2 < 1$, then the system contains three equilibria Ω_0, Ω_1, and Ω_2

(iv) If $R_2 > 1$ and $R_1 < 1$, then the system contains three equilibria Ω_0, Ω_1, and Ω_3

(v) If $R_2 > 1$ and $R_1 > 1$, then the system contains four equilibria Ω_0, Ω_1, Ω_2, and Ω_3

Proof. To calculate the equilibria of systems (2)–(6), we let

$$
\begin{align*}
0 &= \delta - \mu KM - \xi K, \\
0 &= \mu KM - \varrho L, \\
0 &= \tau L - \eta M - \varrho_1 MN - \varrho_2 MP, \\
0 &= \lambda_1 MN - \alpha_1 N, \\
0 &= \lambda_2 MP - \alpha_2 P.
\end{align*}
$$

(18)–(22)

Then, solving the system of algebraic equations (18)–(22), we get four equilibria such as the following:

(i) Infection-free equilibrium $\Omega_0(K_0, 0, 0, 0, 0, 0)$, where $K_0 = \delta/\xi$

(ii) Persistent DENV infection equilibrium with ineffective antibodies is $\Omega_1(K_1, L_1, M_1, 0, 0)$, where

$$
\begin{align*}
K_1 &= \frac{K_0}{R_0}, \\
L_1 &= \frac{\eta \xi}{\tau \mu} (R_0 - 1), \\
M_1 &= \frac{\xi}{\mu} (R_0 - 1).
\end{align*}
$$

(23)

(iii) Persistent DENV infection equilibrium with only effective heterologous antibody is $\Omega_2(K_2, L_2, M_2, N_2, 0)$, where

$$
\begin{align*}
K_2 &= \frac{\lambda_1 \delta}{\xi \lambda_1 + \mu \alpha_1}, \\
L_2 &= \frac{\mu \delta \alpha_1}{\theta(\xi \lambda_1 + \mu \alpha_1)}, \\
M_2 &= \frac{\alpha_1}{\lambda_1}, \\
N_2 &= \frac{\eta}{\omega_1} (R_1 - 1).
\end{align*}
$$

(24)
(iv) Persistent DENV infection equilibrium with only effective homologous antibody is \(\Omega_3(K_3, L_3, M_3, 0, P_3) \), where

\[
\begin{align*}
K_3 &= \frac{\lambda_3 \delta}{\xi_1 + \mu_3}, \\
L_3 &= \frac{\mu_3 \alpha_3}{\theta(\xi_1 + \mu_3)}, \\
M_3 &= \frac{\alpha_3}{\lambda_3}, \\
P_3 &= \frac{\eta_3}{\alpha_3}(\mathcal{R}_2 - 1).
\end{align*}
\]

(25)

Where

\[
\mathcal{R}_0 = \frac{K_s r_\mu}{\rho_\eta}, \\
\mathcal{R}_1 = \frac{\mathcal{R}_0}{1 + (\mu_3 / \xi_1)}, \\
\mathcal{R}_2 = \frac{\mathcal{R}_0}{1 + (\mu_3 / \xi_1)}.
\]

(26)

Clearly, \(\mathcal{R}_0 > \mathcal{R}_1 \) and \(\mathcal{R}_0 > \mathcal{R}_2 \)

(v) Clearly from (iii) and (iv), if \(\mathcal{R}_1 > 1 \) and \(\mathcal{R}_2 > 1 \), then \(\Omega_0, \Omega_1, \Omega_2, \) and \(\Omega_3 \) all exist

Here, \(\mathcal{R}_0 \) represents the basic infection reproduction number, \(\mathcal{R}_1 \) represents the heterologous antibody immune response activation number, and \(\mathcal{R}_2 \) is the homologous antibody immune response activation number. \(\square \)

5. Global Stability

In this section, we investigate the global asymptotic stability of all equilibria by the Lyapunov method. The construction of Lyapunov functions are based on the works presented in [40–44]. To prove Theorems 1–4, we need to define a function \(g(s) = s - 1 - \ln s \) and the arithmetic-geometric mean inequality:

\[
\frac{1}{s} \sum_{\ell=1}^{s} K_\ell \geq \sqrt[s]{\prod_{\ell=1}^{s} K_\ell}, \quad K_\ell \geq 0, \quad \ell = 1, 2, \ldots
\]

(27)

which implies

\[
\frac{1}{3} \left[\frac{K_\ell + LM_\ell + MKL_\ell}{K + L + M + KL} \right] \geq 1, \quad \ell = 1, 2, 3.
\]

(28)

Neumann boundary conditions (8) and divergence theorem imply that

\[
0 = \int_{\Gamma} \nabla \mathcal{U} \cdot \mathcal{B} \, du = \int_{\Gamma} \nabla \mathcal{U} \cdot \nu \, du = \int_{\Gamma} \left(\frac{\Delta \mathcal{U}}{\mathcal{U}} - \frac{\| \nabla \mathcal{U} \|^2}{\mathcal{U}^2} \right) du.
\]

(29)

For \(\mathcal{U} \in \{K, L, M, N, P\} \). Thus, we obtain

\[
\int_{\Gamma} \frac{\Delta \mathcal{U}}{\mathcal{U}} du = 0,
\]

\[
\int_{\Gamma} \frac{\Delta \mathcal{U}}{\mathcal{U}} du = \int_{\Gamma} \frac{\| \nabla \mathcal{U} \|^2}{\mathcal{U}^2} du.
\]

(30)

\[
Y_\ell = \{ (K, L, M, N, P): \frac{d \Pi_\ell}{dr} = 0 \}, \quad \ell = 0, 1, 2, 3.
\]

(32)

Theorem 3. Let \(\mathcal{R}_0 \leq 1 \), then \(\Omega_0 \) is globally asymptotically stable (GAS).

Proof. Define \(\Pi_0(u, t) \) as

\[
\Pi_0(u, t) = K_0 g \left(\frac{K}{K_0} \right) + L + \frac{\theta_1}{\tau_1} M + \frac{\theta_1}{\tau_2} N + \frac{\theta_2}{\tau_2} P.
\]

(33)

Clearly, \(\Pi_0(K, L, M, N, P) > 0 \) for all \((K, L, M, N, P) > 0 \) and \(\Pi_0(K_0, 0, 0, 0) = 0 \). We calculate \(\partial \Pi_0 / \partial t \) along the solutions of model (2)–(6) as

Let \(Y_\ell \) be the largest invariant subset of
\[\frac{\partial \Pi_0}{\partial t} = \left(1 - \frac{K_0}{K} \right) (d_K \Delta K + \delta - \xi K - \mu KM) + d_M \Delta L + \mu KM - \varrho L + \frac{\varrho}{\tau} (d_M \Delta M + \tau L - \eta M - \omega_1 MN - \omega_2 MP) + \frac{\varrho}{\tau \lambda_1} d_N \Delta N + \frac{\varrho}{\tau \lambda_2} (d_P \Delta P + \lambda_1 MP - \alpha_1 N) \] (34)

Collecting terms of equation (34), we obtain

\[\frac{\partial \Pi_0}{\partial t} = \frac{\xi (K - K_0)}{K^2} + \left(\mu K_0 - \frac{\varrho \eta}{\tau} \right) M - \frac{\varrho}{\tau \lambda_1} \alpha_1 N - \frac{\varrho}{\tau \lambda_2} \alpha_2 P \\
+ \left(1 - \frac{K_0}{K} \right) d_K \Delta K + d_M \Delta M + \frac{\varrho}{\tau} d_M \Delta M + \frac{\varrho}{\tau \lambda_1} d_N \Delta N + \frac{\varrho}{\tau \lambda_2} d_P \Delta P \]

Consequently, we calculate \(\frac{d\Pi_0}{dt} \) as follows:

\[\frac{d\Pi_0}{dt} = -\xi \int (K - K_0) M \, d\tau + \frac{\varrho \eta}{\tau} (R_0 - 1) \int M \, d\tau - \frac{\varrho}{\tau \lambda_1} \alpha_1 N \int M \, d\tau - \frac{\varrho}{\tau \lambda_2} \alpha_2 P \int M \, d\tau \\
+ \left(1 - \frac{K_0}{K} \right) \int \Delta K M \, d\tau + d_M \int \Delta M \, d\tau + \frac{\varrho}{\tau} d_M \int \Delta M \, d\tau \\
+ \frac{\varrho}{\tau \lambda_1} \int \Delta N \, d\tau + \frac{\varrho}{\tau \lambda_2} d_P \int \Delta P \, d\tau \]

Using equality (30), equation (36) is reduced to the following form:

\[\frac{d\Pi_0}{dt} = -\xi \int K - K_0 \, d\tau + \frac{\varrho \eta}{\tau} (R_0 - 1) \int M \, d\tau \\
- \frac{\varrho}{\tau \lambda_1} \int N \, d\tau \\
- \frac{\varrho}{\tau \lambda_2} \int P \, d\tau - \frac{\varrho}{\tau} d_K \int K \, d\tau \\
\]

(37)

Therefore, \((d\Pi_0/dt) \leq 0 \), for all \(K, M, N, P > 0 \), and \(d\Pi_0/dt = 0 \) with equality holding when \((K, M, N, P) = (K_0, 0, 0, 0)\). The solutions of models (2)–(6) converge to \(Y_0^* \). The elements of \(Y_0^* \) satisfy \((K, M, N, P) = (K_0, 0, 0, 0)\), and then, \((dM/dt) = \Delta M = 0 \). Equation (6) reduces to

\[\frac{d\Pi_1}{dt} = \frac{K_1 g(K)}{K_1} + L_1 g(L) + \frac{\varrho}{\tau} M_1 g(M) + \frac{\varrho}{\tau \lambda_1} N + \frac{\varrho}{\tau \lambda_2} P \]

Calculate \(d\Pi_1/dt \) as

\[0 = \frac{\partial M}{\partial t} = \tau L \]

This yields \(L = 0 \). Hence, \(Y_0^* = \{ \Omega_0 \} \), and by applying LLIP [45–47], we get that \(\Omega_0 \) is GAS.

Theorem 4. If \(\mathcal{R}_1 < \mathcal{R}_0 \) and \(\mathcal{R}_2 < 1 \), then \(\Omega_1 \) is GAS.

Proof. Define \(\Pi_1 (u, t) \) as

\[\Pi_1 (u, t) = K_1 g(K) + L_1 g(L) + \frac{\varrho}{\tau} M_1 g(M) + \frac{\varrho}{\tau \lambda_1} N + \frac{\varrho}{\tau \lambda_2} P \]

Calculate \(d\Pi_1/dt \) as
\[
\frac{\partial \Pi}{\partial t} = \left(1 - \frac{K_1}{K} \right) (d_K \Delta K + \delta - \xi K - \mu KM) + \left(1 - \frac{L_1}{L} \right) (d_L \Delta L + \mu KM - \varrho L)
\]
\[
+ \frac{\varrho \omega_1}{\tau \lambda_1} (d_M \Delta M + \tau L - \eta M - \bar{\omega}_1 MN - \bar{\omega}_2 MP) + \frac{\varrho \omega_2}{\tau \lambda_2} (d_N \Delta N + \lambda_1 MN - \alpha_1 N) + \frac{\varrho \omega_2}{\tau \lambda_2} (d_P \Delta P + \lambda_2 MP - \alpha_2 P)
\]
\[
= \left(1 - \frac{K_1}{K} \right) (\delta - \xi K) + \mu K_1 M - \frac{\mu KML_1}{L} + \varrho L_1 - \frac{\varrho \eta}{\tau} M - \varrho \frac{M_1 L}{M}
\]
\[
+ \frac{\varrho \eta}{\tau} M_1 + \frac{\varrho \omega_1}{\tau} M_1 N + \frac{\varrho \omega_2}{\tau} M_1 P - \frac{\varrho \omega_1 \alpha_1}{\tau \lambda_1} N - \frac{\varrho \omega_2 \alpha_2}{\tau \lambda_2} P
\]
\[
+ d_K \left(1 - \frac{K_1}{K} \right) \Delta K + d_L \left(1 - \frac{L_1}{L} \right) \Delta L + \frac{\varrho \omega_1}{\tau} M_1 \left(1 - \frac{M_1}{M} \right) \Delta M
\]
\[
+ \frac{\varrho \omega_1}{\tau \lambda_1} \Delta N + \frac{\varrho \omega_2}{\tau \lambda_2} \Delta P.
\]

The equilibrium conditions of \(\Omega_1 \) imply that
\[
\delta = \xi K_1 + \mu K_1 M_1, \quad \varphi L_1 = \mu K_1 M_1, \quad \tau L_1 = \eta M_1.
\]

We get \(\mu K_1 M - (\varrho \eta / \tau) M = 0 \) and

\[
\frac{\partial \Pi}{\partial t} = \frac{\xi (K - K_1)^2}{K} + \varphi L_1 \left(1 - \frac{K_1}{K} \right) - \varphi L_1 \frac{KML_1}{K_1 M_1 L} + 2 \varphi L_1 - \varphi L_1 \frac{M_1 L}{ML_1}
\]
\[
+ \frac{\varrho \omega_1}{\tau} \left(M_1 - \frac{\alpha_1}{\lambda_1} \right) N + \frac{\varrho \omega_2}{\tau} \left(M_1 - \frac{\alpha_2}{\lambda_2} \right) P + d_K \left(1 - \frac{K_1}{K} \right) \Delta K + d_L \left(1 - \frac{L_1}{L} \right) \Delta L
\]
\[
+ \frac{\varrho \omega_1}{\tau} \left(1 - \frac{M_1}{M} \right) \Delta M + \frac{\varrho \omega_1}{\tau \lambda_1} \Delta N + \frac{\varrho \omega_2}{\tau \lambda_2} \Delta P = \frac{\xi (K - K_1)^2}{K}
\]
\[
+ \varphi L_1 \left[3 - \frac{K_1}{K} - \frac{KML_1}{K_1 M_1 L} - \frac{M_1 L}{ML_1} \right] + \frac{\varrho \omega_1}{\tau \lambda_1} \left(\bar{\xi} \lambda_1 + \mu \alpha_1 \right) (\bar{\beta} \lambda_1 - 1) N
\]
\[
+ \frac{\varrho \omega_1}{\tau \lambda_2} \left(\bar{\xi} \lambda_2 + \mu \alpha_2 \right) (\bar{\beta} \lambda_2 - 1) P + d_K \left(1 - \frac{K_1}{K} \right) \Delta K + d_L \left(1 - \frac{L_1}{L} \right) \Delta L + \frac{\varrho \omega_1}{\tau} \left(1 - \frac{M_1}{M} \right) \Delta M
\]
\[
+ \frac{\varrho \omega_1}{\tau \lambda_1} \Delta N + \frac{\varrho \omega_2}{\tau \lambda_2} \Delta P.
\]
Calculate the time derivative of $\Pi_1(t)$ and use equality (30) to get

$$
\frac{d\Pi_1}{dt} = -\xi \int_{\tau} \left(\frac{(K-K_1)^2}{K} \right) du + \varrho L_1 \int_{\tau} \left[3 \frac{K_1}{K} \frac{KML_1}{K_1M_1L} - \frac{M_1L}{ML_1} \right] du \\
+ \frac{\varrho \omega_1}{\tau \lambda_1 \mu} (\xi_1 + \mu \alpha_1) (R_1 - 1) \int_{\tau} N du + \frac{\varrho \omega_2}{\tau \lambda_2 \mu} (\xi_2 + \mu \alpha_2) (R_2 - 1) \int_{\tau} P du \\
+ d_K \int_{\tau} \left(1 - \frac{K_1}{K} \right) \Delta K du + d_l \int_{\tau} \left(1 - \frac{L_1}{L} \right) \Delta L du + \frac{\varrho d_M}{\tau} \int_{\tau} \left(1 - \frac{M_1}{M} \right) \Delta M du \\
+ \frac{\varrho \omega_1 d_M}{\tau \lambda_1} \int_{\tau} \Delta N du + \frac{\varrho \omega_1 d_p}{\tau \lambda_2} \int_{\tau} \Delta P du = -\xi \int_{\tau} \left(\frac{(K-K_1)^2}{K} \right) du \\
+ d_K \int_{\tau} \frac{KML_1}{K_1M_1L} du + \frac{\varrho \omega_1}{\tau \lambda_1} (\xi_1 + \mu \alpha_1) (R_1 - 1) \int_{\tau} N du \\
+ \frac{\varrho \omega_2}{\tau \lambda_2} (\xi_2 + \mu \alpha_2) (R_2 - 1) \int_{\tau} P du - d_K K_1 \int_{\tau} \frac{\|\nabla K\|^2}{K^2} du - d_l L_1 \int_{\tau} \frac{\|\nabla L\|^2}{L^2} du
$$

Since $R_1 \leq 1$ and $R_2 \leq 1$, then utilizing inequality (28), we obtain $d\Pi_1/dt \leq 0$ for all $K, L, M, N, P > 0$. Furthermore, $d\Pi_1/dt = 0$ at $(K, L, M, N, P) = (K_1, L_1, M_1, N_1, 0)$. The solutions of (2)–(6) tend to $Y^*_T = \{\Omega_1\}$. It follows that Ω_1 is GAS by using LLIP.

Theorem 5. Let $R_1 > 1$ and $R_2 \leq R_1$ then Ω_2 is GAS.

Proof. Define $\Pi_2(u,t)$ as

$$
\frac{\partial \Pi_2}{\partial t} = \left(1 - \frac{K_2}{K} \right) (d_K \Delta K + \delta - \xi K - \mu KM) + \left(1 - \frac{L_2}{L} \right) (d_L \Delta L + \mu KM - \varrho L)
\\
+ \frac{\varrho}{\tau} \left(1 - \frac{M_2}{M} \right) (d_M \Delta M + \tau L - \eta M - \varrho_1 MN - \varrho_2 MP)
\\
+ \frac{\varrho \omega_1}{\tau \lambda_1} \left(1 - \frac{N_2}{N} \right) (d_N \Delta N + \lambda_1 MN - \alpha_1 N) + \frac{\varrho \omega_2}{\tau \lambda_2} (d_P \Delta P + \lambda_2 MP - \alpha_2 P).
$$

Collecting terms of equation (45), we get

$$
\frac{\partial \Pi_2}{\partial t} = \left(1 - \frac{K_2}{K} \right) (\delta - \xi K) + \frac{\varrho K_2 M - \mu KML_2}{L} + \frac{\varrho L_2}{\tau} M - \frac{\varrho M_1 L}{M} + \frac{\varrho \eta}{\tau} M
\\
+ \frac{\varrho \omega_1}{\tau} M_2 N + \frac{\varrho \omega_2}{\tau} M_2 P - \frac{\varrho \omega_1}{\tau} \lambda_1 N_2 M - \frac{\varrho \omega_1}{\tau} \lambda_1 N_2 M + \frac{\varrho \omega_2}{\tau} \alpha_2 \lambda_1 N_2 - \frac{\varrho \omega_2}{\tau} \alpha_2 \lambda_1 P
\\
+ d_K \left(1 - \frac{K_2}{K} \right) \Delta K + d_l \left(1 - \frac{L_2}{L} \right) \Delta L + \frac{\varrho d_M}{\tau} \left(1 - \frac{M_2}{M} \right) \Delta M + \frac{\varrho \omega_1 d_N}{\tau \lambda_1} \left(1 - \frac{N_2}{N} \right) \Delta N.
$$
Applying the equilibrium conditions, we get
\[
\delta = \xi K_2 + \mu K_2 M_2,
\]
\[
\varrho L_2 = \mu K_2 M_2,
\]
\[
\tau L_2 = \eta M_2 + \varpi_1 M_2 N_2, \tag{47}
\]
\[
M_2 = \frac{\alpha_1}{\lambda_1}
\]

\[
\frac{\partial \Pi_2}{\partial t} = -\frac{\xi (K - K_2)^2}{K} + \varrho L_2 \left(1 - \frac{K_2}{K}\right) - \frac{\varrho_2 K M L_2}{M_2} + \frac{\varrho_1 M_2 L}{M_2} + 2 \varrho L_2 + \frac{\varrho \omega_3}{\tau}
\]
\[
\cdot (M_2 - M_3) P + d_K \left(1 - \frac{K_2}{K}\right) \Delta K + d_l \left(1 - \frac{L_2}{L}\right) \Delta L + \frac{\varrho \omega M}{\tau} \left(1 - \frac{M_2}{M}\right) \Delta M + \frac{\varrho \omega d_N}{\tau \lambda_1}
\]
\[
\cdot \left(1 - \frac{N_2}{N}\right) \Delta N + \frac{\varrho \omega d_P}{\tau \lambda_2} \Delta P = -\frac{\xi (K - K_2)^2}{K} + \frac{\varrho_2 K M L_2}{M_2} - \frac{M_2 L}{M L_2} + \frac{\varrho \omega_3 (\xi \lambda_2 + \mu \alpha_3)}{\tau \mu \lambda_2 \lambda_1} \left(\mathcal{B}_2 - \mathcal{B}_1\right) P + d_K \left(1 - \frac{K_2}{K}\right) \Delta K + d_l \left(1 - \frac{L_2}{L}\right) \Delta L
\]
\[
+ \frac{\varrho \omega M}{\tau} \left(1 - \frac{M_2}{M}\right) \Delta M + \frac{\varrho \omega d_N}{\tau \lambda_1} \left(1 - \frac{N_2}{N}\right) \Delta N + \frac{\varrho \omega d_P}{\tau \lambda_2} \Delta P. \tag{48}
\]

Calculate the time derivative of \(\Pi_2(t)\) and use equality (30) to get
\[
\frac{d\Pi_2}{dt} = -\xi \int \frac{(K - K_2)^2}{K} du + \varrho L_2 \int \left[3 - \frac{K_2}{K} - \frac{K M L_2}{M_2 L} - \frac{M_2 L}{M L_2}\right] du + \frac{\varrho \omega_3 (\xi \lambda_2 + \mu \alpha_3)}{\tau \mu \lambda_2 \lambda_1}
\]
\[
\cdot (\mathcal{B}_2 - \mathcal{B}_1) \int P du + d_K \int \left(1 - \frac{K_2}{K}\right) \Delta K du + d_l \int \left(1 - \frac{L_2}{L}\right) \Delta L du + \frac{\varrho \omega M}{\tau} \int \left(1 - \frac{M_2}{M}\right) \Delta M du
\]
\[
+ \frac{\varrho \omega d_N}{\tau \lambda_1} \int \left(1 - \frac{N_2}{N}\right) \Delta N du + \frac{\varrho \omega d_P}{\tau \lambda_2} \int \Delta P du = -\xi \int \frac{(K - K_2)^2}{K} \, du.
\]
Let solutions of (2)–(6) tend to \(\mathcal{G} \) by using LLIP. Since \(\mathcal{R}_2 \leq \mathcal{R}_1 \), then using inequality (28), we obtain \(d\Pi_2/dt \leq 0 \) for all \((K, L, M, N, P) > 0\). Furthermore, \(d\Pi_2/dt \leq 0 \) at \((K, L, M, N, P) = (K_2, L_2, M_2, N_2, 0)\). The solutions of (2)–(6) tend to \(Y^*_2 = \{\Omega_2\} \). It follows that \(\Omega_3 \) is GAS by using LLIP.

Theorem 6. Let \(\mathcal{R}_2 > 1 \) and \(\mathcal{R}_1 \leq \mathcal{R}_2 \), then \(\Omega_3 \) is GAS.

Proof. Define \(\Pi_3(u, t) \) as

\[
\frac{\partial \Pi_3}{\partial t} = \left(1 - \frac{K_3}{K}\right) \left(\frac{\varphi L_3}{\tau L_3} - \frac{\varphi M_3}{\tau M_3} + \frac{\varphi L_3}{\tau L_3} \frac{\varphi M_3}{\tau M_3} \frac{\varphi N}{\tau N} \frac{\varphi P}{\tau P} \right) + \left(1 - \frac{L_3}{L}\right) \left(\frac{\varphi L_3}{\tau L_3} - \frac{\varphi M_3}{\tau M_3} \frac{\varphi N}{\tau N} \frac{\varphi P}{\tau P} \right)
\]

Collecting terms, we get

\[
\frac{\partial \Pi_3}{\partial t} = \left(1 - \frac{K_3}{K}\right) \left(\frac{\varphi L_3}{\tau L_3} - \frac{\varphi M_3}{\tau M_3} \frac{\varphi N}{\tau N} \frac{\varphi P}{\tau P} \right) + \left(1 - \frac{L_3}{L}\right) \left(\frac{\varphi L_3}{\tau L_3} - \frac{\varphi M_3}{\tau M_3} \frac{\varphi N}{\tau N} \frac{\varphi P}{\tau P} \right)
\]

Applying the equilibrium conditions of \(\Omega_3 \),

\[
\delta = \xi K_3 + \mu K_3 M_3,
\]
\[
\varphi L_3 = \mu K_3 M_3,
\]
\[
\tau L_3 = \eta M_3 + \omega_2 M_3 P_3,
\]
\[
\alpha_2 P_3 = \lambda_2 M_3 P_3,
\]

Calculating \(d\Pi_3/dt \) along the solutions of models (2)–(6), we get
we get

\[\frac{\partial \Pi_3}{\partial t} = \frac{-\xi (K - K_s)^2}{K} + gL_3 \left(1 - \frac{K_s}{K} \right) - qL_2 \frac{KML_3}{K_sM_3L} - qL_3 \frac{M_3 L}{M_3L} + 2qL_3 \\
+ \frac{\phi d_1}{\tau} (M_3 - M_s)N + d_k \left(1 - \frac{K_s}{K} \right) \Delta K + d_k \left(1 - \frac{L_3}{L} \right) \Delta L + \frac{\phi d_4}{\tau} \left(1 - \frac{M_3}{M} \right) \Delta M \\
+ \frac{\phi d_1}{\tau_1} \frac{dN}{\tau_1} + \frac{\phi d_2}{\tau_2} \left(1 - \frac{P_s}{P} \right) \Delta P = \frac{-\xi (K - K_s)^2}{K} + qL_3 \left[3 - \frac{K_s}{K} \frac{KML_3}{K_sM_3L} - \frac{M_3 L}{M_3L} \right] \\
+ \frac{\phi d_1}{\tau_1} \left(\xi \lambda_3 + \mu \lambda_1 \right) \left(\mathcal{R}_1 - \mathcal{R}_2 \right) N + d_k \left(1 - \frac{K_s}{K} \right) \Delta K + d_k \left(1 - \frac{L_3}{L} \right) \Delta L \\
+ \frac{\phi d_4}{\tau} \left(1 - \frac{M_3}{M} \right) \Delta M + \frac{\phi d_1}{\tau_1} \frac{dN}{\tau_1} + \frac{\phi d_2}{\tau_2} \left(1 - \frac{P_s}{P} \right) \Delta P. \tag{54} \]

Calculating the time derivative of \(\tilde{\Pi}_3(t) \) and using equality (30), we obtain

\[\frac{d\tilde{\Pi}_3}{dt} = -\xi \int_{\Gamma} \left(\frac{K - K_s}{K} \right) du + qL_3 \int_{\Gamma} \left[3 - \frac{K_s}{K} \frac{KML_3}{K_sM_3L} - \frac{M_3 L}{M_3L} \right] du + \frac{\phi d_1}{\tau_1} \left(\xi \lambda_3 + \mu \lambda_1 \right) \int_{\Gamma} \left(\mathcal{R}_1 - \mathcal{R}_2 \right) N du \\
+ \frac{\phi d_1}{\tau_1} \int_{\Gamma} \Delta N du + \frac{\phi d_2}{\tau_2} \int_{\Gamma} \left(1 - \frac{P_s}{P} \right) \Delta P du = -\xi \int_{\Gamma} \frac{(K - K_s)^2}{K} du \\
+ \phi L_2 \int_{\Gamma} \left[3 - \frac{K_s}{K} \frac{KML_3}{K_sM_3L} - \frac{M_3 L}{M_3L} \right] du + \frac{\phi d_1}{\tau_1} \left(\xi \lambda_3 + \mu \lambda_1 \right) \int_{\Gamma} \left(\mathcal{R}_1 - \mathcal{R}_2 \right) N du \\
+ \phi L_3 \int_{\Gamma} \left[\frac{\|V\|^2}{K^2} - d_k K_s \right] \int_{\Gamma} \left[\frac{\|V\|^2}{L^2} - d_k L_3 \right] \int_{\Gamma} \frac{\|V\|^2}{M^2} du \\
- \frac{\phi d_2}{\tau_2} \int_{\Gamma} \frac{\|P\|^2}{P^2} du. \tag{55} \]

Since \(\mathcal{R}_1 \leq \mathcal{R}_2 \), then using inequality (28), we obtain \(\frac{d\tilde{\Pi}_3}{dt} \leq 0 \), for all \((K, L, M, N, P) > 0\). Furthermore, \(\frac{d\tilde{\Pi}_3}{dt} \leq 0 \) at \((K, L, M, N, P) = (K_s, L_s, M_s, 0, P_3)\). The solutions of (2)-(6) tend to \(Y_3 = \{ \Omega_3 \} \). It follows that \(\Omega_3 \) is GAS by using LLIP. \(\square \)

6. Numerical Simulations

In this section, we numerically illustrate the global stability of equilibria by choosing the domain \(\Gamma \) as \(\Gamma = [0, 2] \) with a step size 0.02. The step size for time is given by 0.1. Following the works presented in [31, 48–50], we consider the following initial conditions for systems (2)-(6):

\[K(u, 0) = 500 \left[1 + 0.4 \cos^2(\pi u) \right], \]
\[L(u, 0) = 30 \left[1 + 0.5 \cos^2(\pi u) \right], \]
\[M(u, 0) = 4 \left[1 + 0.5 \cos^2(\pi u) \right], \]
\[N(u, 0) = 2 \left[1 + 0.5 \cos^2(\pi u) \right], \]
\[P(u, 0) = 2 \left[1 + 0.5 \cos^2(\pi u) \right], \quad u \in [0, 2]. \tag{56} \]

The initial values are arbitrarily chosen as the global stability of the equilibria presented in Theorems 3–6 guarantees the convergence regardless of the selected initial conditions.

In addition, we consider the following homogeneous Neumann boundary conditions:
\[
\frac{\partial K}{\partial B} = \frac{\partial L}{\partial B} = \frac{\partial M}{\partial B} = \frac{\partial N}{\partial B} = \frac{\partial P}{\partial B} = 0, \quad t > 0, \quad u = 0, 2.
\] (57)

We are using the following values of the parameters: \(\delta = 10, \ \xi = 0.01, \ \rho = 0.3, \ \tau = 5, \ \eta = 3, \ \omega_1 = 0.3, \ \omega_2 = 0.1, \ \alpha_1 = 0.1, \ \text{and} \ \alpha_2 = 0.1. \) The parameters \(\mu, \lambda_1, \) and \(\lambda_2 \) will be selected according to the following strategies:

Strategy 1. (Stability of \(\Omega_0 \)) \(\mu = 0.00004, \lambda_1 = 0.0005, \) and \(\lambda_2 = 0.001. \) For this set of parameters, we have \(R_0 = 0.2778 < 1, \ R_1 = 0.1389 < 1, \) and \(R_2 = 0.1852 < 1. \) Figure 1 shows that the solution of systems (2)--(6) converges to the equilibrium \(\Omega_0 = (1000, 0, 0, 0, 0). \) This shows that \(\Omega_0 \) is GAS according to Theorem 3. In this case, the DENV will be cleared.

Strategy 2. (Stability of \(\Omega_1 \)) \(\mu = 0.00004, \lambda_1 = 0.0005, \) and \(\lambda_2 = 0.001. \) With such choice, we get \(R_0 = 2.2222 > 1, \ R_1 = 0.2469 < 1, \) and \(R_2 = 0.4444 < 1. \) Theorem 4 implies that \(\Omega_1 = (450, 18.333, 30.556, 0, 0) \) is GAS which is displayed in Figure 2. This will lead to the situation of persistent DENV infection but with an ineffective antibody immune response.

Strategy 3. (Stability of \(\Omega_2 \)) \(\mu = 0.00004, \lambda_1 = 0.005, \) and \(\lambda_2 = 0.001. \) Then, we compute \(R_0 = 2.2222 > 1, \ R_1 = 1.2346 > 1, \) and \(R_2 = 0.4444 < R_1. \) Numerical results show that \(\Omega_2 = (555.556, 14.815, 20, 2.346, 0) \) exists. Moreover, Figure 3 shows that \(\Omega_2 \) is GAS which supports Theorem 5. Therefore, a persistent DENV infection with only effective heterologous antibody immune response is reached.
Figure 2: Taking Strategy 1 ($R_1 \leq 1 < R_0$ and $R_2 \leq 1$), the equilibrium $\Omega_1 = (450, 18.333, 30.556, 0, 0)$ is asymptotically stable. (a) Target cells. (b) DENV-infected cells. (c) DENV particles. (d) Heterologous antibodies. (e) Homologous antibodies.

Figure 3: Continued.
Taking Strategy 1 (\(\mathcal{R}_1 > 1 \) and \(\mathcal{R}_2 \leq \mathcal{R}_1 \)), the equilibrium \(\Omega_2 = (555.556, 14.815, 20, 2.346, 0) \) is asymptotically stable.

(a) Target cells. (b) DENV-infected cells. (c) DENV particles. (d) Heterologous antibodies. (e) Homologous antibodies.

Figure 4: Continued.
Strategy 4. (Stability of Ω_3) $\mu = 0.0004, \lambda_1 = 0.01$, and $\lambda_2 = 0.02$. Then, we compute $R_0 = 2.2222 > 1$, $R_1 = 1.5873 > 1$, and $R_2 = 0.8519 > R_1$. According to these data, Ω_3 exists with $\Omega_3 = (833.333, 5.556, 5, 0, 25.556)$. In Figure 4, we show that Ω_3 is GAS which is consistent with Theorem 6. In this case, a persistent DENV single infection with only effective homologous antibody immune response is reached.

7. Conclusion

A dynamical model to capture the behavior of secondary DENV infection was studied. The model incorporated the spatial mobility of DENV particles and cells. The model was given by five PDEs to describe the interaction between five compartments, target cells, DENV-infected cells, DENV particles, heterologous antibodies, and homologous antibodies. We first established that the model is biologically relevant by showing that the key variables of the model are nonnegative and bounded. We found that the model has four equilibria $\Omega_i, i = 1, 2, 3, 4$, and their existence and global stability are governed by three threshold parameters, R_i, $i = 1, 2, 3$. We performed the global stability analysis of the four equilibria by constructing suitable Lyapunov functions. We conducted some numerical simulations and found that the numerical results are fully aligned with the theoretical results. We summarize the obtained results in the following:

(i) The infection-free equilibrium Ω_0 always exists, and it is GAS if $R_0 \leq 1$. This case corresponds to the healthy state where the DENV particles are cleared.

(ii) The persistent DENV infection equilibrium with ineffective antibodies Ω_1 exists if $R_0 > 1$, and it is GAS if $R_1 \leq 1$ and $R_2 \leq 1$. At this point, the DENV infection exists while the immune response is not active.

(iii) The persistent DENV infection equilibrium with only effective heterologous antibody Ω_2 exists if $R_1 > 1$, and it is GAS if $R_2 \leq R_1$. This case leads to the situation where the DENV infection is chronic, while only heterologous antibody immune response is working.

(iv) The persistent DENV infection equilibrium with only effective homologous antibody Ω_3 exists if $R_2 > 1$, and it is GAS if $R_3 \leq R_2$. At this point, the DENV infection is chronic with only an active homologous antibody immune response.

Our model can be extended to take into account the time delays during the DENV infection as

\[
\begin{align*}
\frac{\partial K(u, t)}{\partial t} &= d_K \Delta K(u, t) + \delta - \mu K(u, t)M(u, t) - \xi K(u, t), \\
\frac{\partial L(u, t)}{\partial t} &= d_L \Delta L(u, t) + \mu e^{-\kappa_1} K(u, t - \psi_1)M(u, t - \psi_1) - \varrho L(u, t), \\
\frac{\partial M(u, t)}{\partial t} &= d_M \Delta M(u, t) + \tau e^{-\kappa_2} L(u, t - \psi_2) - \eta M(u, t) - \omega_1 M(u, t) \\
&\quad \cdot N(u, t) - \omega_2 M(u, t)P(u, t), \\
\frac{\partial N(u, t)}{\partial t} &= d_N \Delta N(u, t) + \lambda_1 M(u, t)N(u, t) - \alpha_1 N(u, t), \\
\frac{\partial P(u, t)}{\partial t} &= d_P \Delta P(u, t) + \lambda_2 M(u, t)P(u, t) - \alpha_2 P(u, t).
\end{align*}
\]
Here, it is assumed that a DENV contacts a target cell at time $t - \psi_1$, and the cell becomes infected at time t. Moreover, an infected cell at $t - \psi_2$ produces new infectious DENV particles at time t. The factors $e^{-\lambda \psi_i}$, $i = 1, 2$, represent the survival rates of the cells during the delay periods.

Data Availability

Data sharing is not applicable to this article as no new data were created or analyzed in this study.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Acknowledgments

This study was funded by the Deanship of Scientific Research (DSR) at King Abdulaziz University, Jeddah (G: 274-130-1441). The authors, therefore, acknowledge DSR for technical and financial support.

References

[1] World Health Organization, Dengu and Dengue Haemorrhagic Fever, WHO, Geneva, Switzerland, 2013, https://www.who.int/mediacentre/factsheets/fs117/en/.

[2] S. B. Halstead, "Dengu,” The Lancet, vol. 370, no. 9599, pp. 1644–1652, 2007.

[3] S. K. Sasmal, Y. Takeuchi, and S. Nakaoka, "T-Cell mediated adaptive immunity and antibody-dependent enhancement in secondary dengue infection," *Journal of Theoretical Biology*, vol. 470, pp. 50–63, 2019.

[4] S. Jindadamrongwetch, C. Thepparit, and D. R. Smith, "Identification of GRP 78 (Bip) as a liver cell expressed receptor element for dengue virus serotype 2,” *Archives of Virology*, vol. 149, no. 5, pp. 915–927, 2004.

[5] S. C. Kliks, W. E. Brandt, L. Wahl, A. Nisalak, and D. S. Burke, "Antibody-dependent enhancement of dengue virus growth in human monocytes as a risk factor for dengue hemorrhagic fever," *The American Journal of Tropical Medicine and Hygiene*, vol. 40, no. 4, pp. 444–451, 1989.

[6] J. M. Willey, L. M. Sherwood, and C. J. Woolverton, *Microbiology*, McGraw-Hill, New York, NY, USA, 7th edition, 2008.

[7] E. Navarro-Sánchez, P. Cedillo-Barrón, and L. Cedillo-Barreón, "Innate immune responses to dengue virus," *Archives of Medical Research*, vol. 36, no. 5, pp. 425–435, 2005.

[8] R. V. Gibbons and D. W. Vaughn, "Dengu: an escalating problem," *BMJ*, vol. 324, no. 7353, pp. 1563–1566, 2002.

[9] N. Nuraini, H. Tasman, E. Soewono, and K. A. Sidarto, "A with-in host dengue infection model with immune response," *Mathematical and Computer Modelling*, vol. 49, no. 5-6, pp. 1148–1155, 2009.

[10] H. Ansari and M. Hesaaraki, "A with-in host dengue infection model with immune response and beddington-deangelis incidence rate," *Applied Mathematics*, vol. 3, no. 2, pp. 177–184, 2012.

[11] A. Mishra and S. Gakkhar, "A micro-epidemic model for primary dengue infection," *Communications in Nonlinear Science and Numerical Simulation*, vol. 47, pp. 426–437, 2017.

[12] B. R. Murphy and S. S. Whitehead, "Immune response to dengue virus and prospects for a vaccine," *Annual Review of Immunology*, vol. 29, no. 1, pp. 587–619, 2011.

[13] S. K. Sasmal, Y. Dong, and Y. Takeuchi, "Mathematical modeling on t-cell mediated adaptive immunity in primary dengue infections," *Journal of Theoretical Biology*, vol. 429, pp. 229–240, 2017.

[14] S. S. Perera and S. S. N. Perera, "Simulation model for dynamics of dengue with innate and humoral immune responses," *Computational and Mathematical Methods in Medicine*, vol. 2018, Article ID 8798057, 2018.

[15] S. Perera and S. S. N. Perera, "Mathematical modeling and analysis of innate and humoral immune responses to dengue infections," *International Journal of Biometrics*, vol. 12, no. 7, Article ID 1950077, 2019.

[16] J. J. Thibodeaux, D. Nuñez, and A. Rivera, "A generalized within-host model of dengue infection with a non-constant monocyte production rate," *Journal of Biological Dynamics*, vol. 14, no. 1, pp. 143–161, 2020.

[17] H. E. Clapham, V. Tricou, N. Van Vinh Chau, C. P. Simmons, and N. M. Ferguson, "Within-host viral dynamics of dengue serotype 1 infection," *Journal of the Royal Society Interface*, vol. 11, Article ID 20140094, 2014.

[18] M. A. Nowak and C. R. M. Bangham, "Population dynamics of immune responses to persistent viruses," *Science*, vol. 272, no. 5258, pp. 74–79, 1996.

[19] World Health Organization, Dengu and Dengue Haemorrhagic Fever. Fact Sheet No. 117, WHO, Geneva, Switzerland, 2017, https://www.who.int/mediacentre/factsheets/fs117/en/.

[20] T. P. Gujarati and G. Ambika, "Virus antibody dynamics in primary and secondary dengue infections," *Journal of Mathematical Biology*, vol. 69, no. 6–7, pp. 1773–1800, 2014.

[21] R. Ben-Shachar and K. Koelle, "Minimal within-host dengue models highlight the specific roles of the immune response in primary and secondary dengue infections," *Journal of the Royal Society Interface*, vol. 12, Article ID 20140886, 2015.

[22] R. Nkin-Beers and S. M. Cupe, "Modelling original antigenic sin in dengue viral infection," *Mathematical Medicine and Biology*, vol. 35, no. 2, pp. 257–272, 2018.

[23] A. Mishra, "A within-host model of dengue viral infection dynamics," in *Applied Analysis in Biological and Physical Sciences*, J. Cushing, M. Saleem, H. Srivastava, M. Khan, and M. Merajuddin, Eds., Springer, New Delhi, India, 2016.

[24] M. Ceron Comez and H. M. Yang, "A simple mathematical model to describe antibody-dependent enhancement in heterologous secondary infection in dengue," *Mathematical Medicine and Biology*, vol. 36, pp. 411–438, 2019.

[25] M. Borisov, G. Dimitriu, and P. Rashkov, "Modelling the host immune response to mature and immature dengue viruses," *Bulletin of Mathematical Biology*, vol. 81, no. 12, pp. 4951–4976, 2019.

[26] K. Wang and W. Wang, "Propagation of HBV with spatial dependence," *Mathematical Biosciences*, vol. 210, no. 1, pp. 78–95, 2007.

[27] W. Wang and W. Ma, "Block effect on HCV infection by HMGB1 released from virus-infected cells: an insight from mathematical modeling," *Communications in Nonlinear Science and Numerical Simulation*, vol. 59, pp. 488–514, 2018.

[28] K. Hattaf and N. Yousfi, "Global stability for reaction-diffusion equations in biology," *Computers & Mathematics with Applications*, vol. 66, no. 8, pp. 1488–1497, 2013.

[29] Y. Gao and J. Wang, "Threshold dynamics of a delayed nonlocal reaction-diffusion HIV infection model with both cell-free and cell-to-cell transmissions," *Journal of
[30] N. Bellomo, K. J. Painter, Y. Tao, and M. Winkler, “Occurrence vs. Absence of taxis-driven instabilities in a may-nowak model for virus infection,” SIAM Journal on Applied Mathematics, vol. 79, no. 5, pp. 1990–2010, 2019.

[31] X. Ren, Y. Tian, L. Liu, and X. Liu, “A reaction-diffusion within-host HIV model with cell-to-cell transmission,” Journal of Mathematical Biology, vol. 76, no. 7, pp. 1831–1872, 2018.

[32] W. Wei Wang and W. Wanhiao Ma, “Global dynamics of a reaction and diffusion model for an HTLV-1 infection with mitotic division of actively infected cells,” Journal of Applied Analysis & Computation, vol. 7, no. 3, pp. 899–930, 2017.

[33] K. Hattaf, “Spatiotemporal dynamics of a generalized viral infection model with distributed delays and CTL immune response,” Computation, vol. 7, no. 2, p. 21, 2019.

[34] Z. Wang, Z. Guo, Z. Guo, and H. Peng, “Dynamical behavior of a new oncolytic virotherapy model based on gene variation,” Discrete & Continuous Dynamical Systems-Series S, vol. 10, no. 5, pp. 1079–1093, 2017.

[35] Z. Xu and Y. Xu, “Stability of a CD4+ T cell viral infection model with diffusion,” International Journal of Biomathematics, vol. 11, no. 5, Article ID 1850071, 2018.

[36] Y. Zhang and Z. Xu, “Dynamics of a diffusive HBV model with delayed Beddington-DeAngelis response,” Nonlinear Analysis: Real World Applications, vol. 15, pp. 118–139, 2014.

[37] H. L. Smith, Monotone Dynamical Systems: An Introduction to the Theory of Competitive and Cooperative Systems, American Mathematical Society, Providence, RI, USA, 1995.

[38] E. A. Barbashin, Introduction to the Theory of Stability, Wolters-Noordhoff, Groningen, The Netherland, 1970.

[39] J. P. LaSalle, The Stability of Dynamical Systems, SIAM, Philadelphia, PA, USA, 1976.

[40] A. M. Lyapunov, The General Problem of the Stability of Motion, Taylor & Francis, Ltd., London, UK, 1992.

[41] J. Liang, J. Wei, and J. Wei, “Lyapunov functional for virus infection model with diffusion and state-dependent delays,” Mathematical Biosciences and Engineering, vol. 16, no. 2, pp. 947–966, 2019.