Automated issue assignment: results and insights from an industrial case

Ethem Utku Aktas 1 · Cemal Yilmaz 2

© Springer Science+Business Media, LLC, part of Springer Nature 2020

Abstract
We automate the process of assigning issue reports to development teams by using data mining approaches and share our experience gained by deploying the resulting system, called IssueTAG, at Softtech. Being a subsidiary of the largest private bank in Turkey, Softtech on average receives 350 issue reports daily from the field, which need to be handled with utmost importance and urgency. IssueTAG has been making all the issue assignments at Softtech since its deployment on Jan 12, 2018. Deploying IssueTAG presented us not only with an unprecedented opportunity to observe the practical effects of automated issue assignment, but also with an opportunity to carry out user studies, both of which (to the best of our knowledge) have not been done before in this context. We first empirically determine the data mining approach to be used in IssueTAG. We then deploy IssueTAG and make a number of valuable observations. First, it is not just about deploying a system for automated issue assignment, but also about designing/changing the assignment process around the system. Second, the accuracy of the assignments does not have to be higher than that of manual assignments in order for the system to be useful. Third, deploying such a system requires the development of additional functionalities, such as creating human-readable explanations for the assignments and detecting deteriorations in assignment accuracies, for both of which we have developed and empirically evaluated different approaches. Last but not least, stakeholders do not necessarily resist change and gradual transition helps build confidence.

Keywords Bug triaging · Issue report assignment · Text classification · Accountable machine learning · Change point detection

Communicated by: Per Runeson

Ethem Utku Aktas
utku.aktas@softtech.com.tr

Cemal Yilmaz
cyilmaz@sabanciuniv.edu

1 Research and Development Center, Softtech Inc., Istanbul, 34947, Turkey
2 Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul, 34956, Turkey
1 Introduction

When a software system produces an unexpected result or when an additional feature is requested from the system, a report is submitted to the vendor. These reports, which are often referred to as issue reports, bug reports, or problem reports, include all the information necessary for the vendor to resolve the reported issues. Once a report is received, the vendor carries out a number of tasks until the issue is resolved, including determining the validity of the reported issue and figuring out whether the same/similar issues have been reported in the past (Antoniol et al. 2008; Bettenburg et al. 2008a; Bettenburg et al. 2008b; Jalbert and Weimer 2008; Lamkanfi et al. 2010; Menzies and Marcus 2008; Pandey et al. 2017; Wang et al. 2008).

An integral part of this process is to assign the issue reports to the development teams or to the individual developers, who are responsible for resolving the reported issues. In the remainder of the paper, we refer to this task as issue report assignment (or issue assignment, in short).

Issue assignment is important because incorrect assignments can increase the turnaround time for resolutions. This is because incorrectly-assigned issue reports would typically bounce back and forth between the development teams and/or individual developers until the correct assignee is located, i.e., issue tossing. And, issue tossing can cause a great deal of wasted time (Bhattacharya et al. 2012; Jeong et al. 2009).

In this work, we automate the process of issue assignment by using data mining approaches and share our experience gained by deploying the resulting system, called IssueTAG, at Softtech.1 Softtech is the largest software company of Turkey owned by domestic capital. Being an ISO-9001-certified subsidiary of the largest private bank in Turkey, called IsBank,2 Softtech receives an average of 350 issue reports every day from the field. IssueTAG has been making all the issue assignments since its deployment on Jan 12, 2018.

Automated issue assignment is indeed not a new idea (Murphy and Cubranic 2004; Anvik et al. 2006; Wang et al. 2008; Bhattacharya et al. 2012; Jonsson et al. 2016; Dedik and Rossi 2016). Most of the existing works, however, report the results obtained on open source projects, such as Eclipse, Mozilla, and Firefox (Murphy and Cubranic 2004; Anvik et al. 2006; Wang et al. 2008; Bhattacharya et al. 2012). Our work differs from these works in that we present an industrial case where we use the issue reports filed for commercial, closed-source software systems.

We, furthermore, assign issue reports to development teams, rather than to individual developers. The former is more practical and realistic in industrial setups, because the latter does not take into account 1) the current workloads owned by the individual developers, 2) the changes in the team structures, such as the developers leaving or joining the teams, and 3) the current status of developers, such as the developers who are currently on leave of absence. Therefore, especially in the presence of close-knit development teams, which is the case with Softtech, assigning issue reports to the development teams help the teams make more educated decisions.

Moreover, rather than carrying out the issue assignments in the context of a single product, where the incoming issues are assigned to individual software engineers, we do the assignments at the level of an entire company (Softtech), which has 489 software products comprised of around 100 millions of lines of code (as of Feb 3, 2019). That is, we

1 https://softtech.com.tr
2 https://www.isbank.com.tr
assign issue reports filed for any product owned by Softtech to the development teams responsible for resolving the reported issues. This is challenging because the collection of software products maintained by Softtech heavily interact with each other in a business-critical environment by sharing many resources, such as databases, file systems, and GUI screens. Therefore, the boundaries of these products from the perspective of issue reporting and management are not clear at all.

There are only few recent studies reporting the results obtained on closed-source, commercial software projects (Jonsson et al. 2016; Dedík and Rossi 2016; Lin et al. 2009; Helming et al. 2010). These studies, however, carry out the assignments in a retrospective and offline manner by simply treating the actual issue databases as historical data. We have, on the other hand, deployed IssueTAG. This presented us not only with an unprecedented opportunity to observe the practical effects of automated issue assignment, but also with an opportunity to carry out user studies, which (to the best of our knowledge) have not been done before in this context.

First, we observed that it is not just about deploying a data mining-based system for automated issue assignment, but also about designing/changing the assignment process around the system to get the most out of it. We, in particular, made simple, yet effective changes in the manual issue assignment process employed at IsBank and Softtech (Section 4).

Second, the accuracy of the assignments does not have to be higher than that of manual assignments in order for the system to be useful. This is further validated by the user studies we carried out on actual stakeholders on the field (Section 7). In a nutshell, although the daily assignment accuracy of IssueTAG was slightly lower than that of manual assignments (0.831 vs. 0.864), it reduced the manual effort required for the assignments by about 5 person-months per year and improved the turnaround time for resolving the reported issues by about 20% (Section 4.2.3). Furthermore, about 79% of the stakeholders participated in our user study “agreed” or “strongly agreed” that the system was useful (Section 7).

Third, we observed that deploying a data mining-based approach for automated issue assignments, requires the development of additional functionalities, which are not necessarily foreseen before the deployment. We have, in particular, developed two additional functionalities, both of which, to the best of our knowledge, have not been evaluated before in the context of issue assignment. One functionality we needed was to create human-readable, non-technical explanations for the assignments made by the system. This was indeed a need we came to realize when we received several phone calls from the stakeholders shortly after the deployment of IssueTAG, demanding explanations as to why certain issue reports (especially, the incorrectly assigned ones) were assigned to them. Note that this is not a trivial task at all, especially when the underlying data mining models are not human readable. To this end, we have generated model-agnostic explanations (Ribeiro et al. 2016) and carried out a user study to evaluate the quality of these explanations (Section 5). Another functionality we needed was to monitor the assignment accuracy of the system and detect deteriorations in an online manner, so that corrective actions, such as recalibrating the models, can be taken in time. To this end, we have developed a change point detection-based approach (Section 6).

Last but not least, we observed that stakeholders do not necessarily resist change. In particular, we did not receive any objection at all to the deployment of IssueTAG. We believe that this was because all the stakeholders believed that they would benefit from the new system and none of them felt threatened by it (Section 8). We, furthermore, observed that gradual transition helped stakeholders build confidence in IssueTAG, which, in turn, facilitated the acceptance of the system (Section 8).
More specifically, the research questions we address in this work are:

- **RQ1**: How does automated issue assignment compare to manual issue assignment in practice?
- **RQ2**: Can the issue assignments made by the underlying data mining model be explained in a non-technical manner?
- **RQ3**: Can the deteriorations in the assignment accuracies be automatically detected in an online manner?
- **RQ4**: Is IssueTAG perceived as useful by the end-users?

IssueTAG has made a total of 134,622 automated assignments since its deployment on 12.01.2018 (as of 30.06.2019). RQ1 aims to evaluate pros and cons of automated issue assignments on the field by using the data we collected as well as the observations we made during this period of time. RQ2 aims to evaluate whether the assignments made by IssueTAG can be explained to non-technical stakeholders in an automated manner – a need which we came to realize after the deployment of IssueTAG. RQ3 evaluates whether the deteriorations in assignment accuracies can automatically be detected – a mechanism not only increases the confidence of the stakeholders in the system, but also helps determine when the underlying classification model needs maintenance. Finally, RQ4 evaluates the usefulness of IssueTAG from the perspective of end-users.

The remainder of the paper is organized as follows: Section 2 describes the issue assignment process employed at IsBank and Softtech before the deployment of IssueTAG; Section 3 presents IssueTAG with the studies we carried out to fine-tune the system’s performance; Section 4 deploys IssueTAG and evaluates its effectiveness in practice (RQ1); Section 5 presents an approach for automatically generating explanations for the assignments and evaluates it by conducting a user study (RQ2); Section 6 describes and evaluates a change point detection-based approach for detecting deteriorations in assignment accuracies (RQ3); Section 7 carries out a user study on the end-users of IssueTAG to evaluate whether the deployed system is perceived as useful (RQ4); Section 8 presents lessons learnt; Section 9 discusses threats to validity; Section 10 presents related work; and Section 11 concludes with potential avenues for future work.

2 Case Description

IsBank is the largest private bank in Turkey with 7.5 million digital customers, 25 thousand employees, 6566 ATMs (Automated Teller Machines), and 1314 domestic and 22 foreign branches, providing a large variety of banking and financial services.

Softtech is the largest software company of Turkey owned by domestic capital. It provides customer-oriented, business-critical solutions to IsBank by using universally-recognized lean techniques and agile processes with a diverse set of programming languages, platforms, and technologies. Some of the technologies used by Softtech include COBOL, Java, C#, C++, mainframe platforms, mobile/wearable platforms, security- and privacy-related technologies, natural language processing technologies, speech technologies, image/video processing technologies, and artificial intelligence technologies.

When the wide range of software systems maintained by Softtech couple with the large user base owned by IsBank, who depend on these systems to carry out their day-to-day businesses, Softtech receives an average of 350 issue reports from the field every day (around 90 thousand reports per year). The reported issues range from bank clerks having software
failures to bank customers facing software-related problems in any of the bank channels, including online, mobile, and ATM.

Most of the reported issues concern business-critical software systems. Therefore, both Softtech and IsBank need to handle these issues with utmost importance and urgency. To this end, two dedicated teams of 80 full-time employees in total, namely IT Help Desk (IT-HD) and Application Support Team (AST), are employed, the sole purpose of which is to manage the reported issues.

2.1 IT Help Desk

The IT-HD team is employed at IsBank and it consists of 50 full-time, (mostly) non-technical clerks, who are internally referred to as Level 1 employees, indicating the level of technical competency they have. When a bank employee or a bank customer faces an IT-related issue, they call IT-HD on the phone. The IT-HD clerk listens to the issue, collects the details as needed, records them, and resolves the reported issue right away if it is an issue that can be resolved by an IT-HD clerk, such as the ones documented in basic troubleshooting guides. If not, the clerk is responsible for dispatching the issue to the proper entity/unit in the company. In the case of a software-related issue, the clerk files an issue report to Softtech.

2.2 Issue Reports

An issue report, among other information, such as the date and time of creation, has two parts: a one-line summary and a description, both of which are written in Turkish. The former captures the essence of the issue, whereas the latter describes the issue, including the expected and observed behavior of the system, and provides information to reproduce the reported issue (Bettenburg et al. 2008a). Note that the aforementioned issue reports do not have any field conveying categorical information, such as product, component, and version information. The reason is that the collection of software products maintained by Softtech are heavily interacting with each other in a business-critical environment, sharing many resources, such as databases, file systems, and GUI screens. Therefore, the boundaries of these products/components from the perspective of issue reporting and management are not clear at all. For example, a single GUI screen can have multiple tabs, each of which is maintained by a different development team. A single tab can, in turn, have a number of widgets, each of which is under the responsibility of a different team. Almost all of the GUI screens interact with the core banking system, which is maintained by a different set of development teams. The core can be accessed via different banking channels, such as online, mobile, ATM, and SMS (Short Message Service), each of which has a dedicated set of development teams. Last but not least, financial transactions are typically carried out by using multiple GUI screens, widgets, and channels, crossing the boundaries of multiple development teams.

2.3 Application Support Team (AST)

The AST team is employed at Softtech and it consists of 30 full-time, Level 2 employees. That is, in terms of technical competency, the AST employees are somewhere between Level 1 IT-HD clerks and Level 3 software engineers. AST employees are embedded in development teams, which are consisted of software engineers. The same AST member can work with multiple development teams and a development team can have multiple AST
members. The sole responsibility of an AST member embedded in a development team is to manage the collection of issue reports assigned to the team. When a new issue report is assigned to a development team, the AST member embedded in the team is typically the first one to examine the report. If the AST member can resolve the reported issue, he/she first resolves it and then closes the report on behalf of the team. Otherwise, the AST member notifies the development team about the newly reported issue by, for example, assigning it to a software engineer in the team or by creating a task for the team and linking it to the issue report. Note that AST members, although they are not considered to be software engineers, can still resolve some of the reported issues as not all of these issues may require changes in the code base. Some issues, for example, are resolved by running pre-existing scripts, which can automatically diagnose and fix the problems or by manually updating certain records in the database. Therefore, the ultimate goal of the AST members is to reduce the workload of software engineers by resolving the issues that do not require code changes.

2.4 Manual Issue Assignment Process

Before the deployment of IssueTAG, IT-HD clerks, after creating an issue report, was assigning it to a development team. To this end, they were maintaining a knowledge base, which was simply comprised of spreadsheets mapping certain keywords with development teams. In the presence of an incorrect assignment, although the AST member(s) or the software engineers in the respective development team could reassign the issue to a different team, the incorrectly assigned reports were often returned back to IT-HD for reassignment. Figure 1 summarizes the assignment process. The issue reports are managed by using Maximo³ at IsBank and by using Jira⁴ at Softtech.

³https://www.ibm.com/products/maximo
⁴https://www.atlassian.com/software/jira
2.5 Issues with the Manual Assignment Process

There were a number of issues with the aforementioned process. First, the learning curve for the IT-HD clerks (especially for the new hires) for excelling in team assignments was generally steep. This was due to the large number of issue reports received on a daily basis (an average of about 350 issue reports) as well as the relatively large number of products and development teams present (more than 450 products and between 47 and 57 teams at any given point in time). Second, although IT-HD clerks were using a knowledge base to help with the assignments, it was maintained in an ad hoc manner, which was error prone, cumbersome, and time consuming. Last but not least, incorrect assignments were not only causing frictions between the IT-HD clerks and the AST members, but also increasing the turnaround time for resolutions due to issue tossing.

3 IssueTAG

IsBank and Softtech wanted to improve their current practices. To this end, we have developed IssueTAG, which automates the issue assignments.

Note that our goal in this work is neither to propose yet another approach for automated issue assignment nor to evaluate all of the existing approaches to determine the best possible approach. It is rather to identify an existing approach that can produce similar or better assignment accuracies with the manual assignment process employed at IsBank/Softtech and that can be developed and deployed with as little risk as possible. After all, most of the issue reports IssueTAG will process, concern business-critical software systems. Therefore, neither IsBank nor Softtech was willing to take too much risk.

In this section, we, therefore, briefly describe the studies we carried out to determine the approach to be employed by IssueTAG. For detailed discussions as well as in-depth analyses, the interested reader can refer to Appendices A and B. Note that these aforementioned studies use the historical issue reports maintained by Softtech in an offline manner to fine-tune the online performance of IssueTAG.

At a very high level, we had to make two design decisions: which data mining approach to use for automated issue assignments (Section 3.1) and what the time locality of the training data should be (i.e., how much back in time we should go) to train the models (Section 3.2).

3.1 Issue Assignment Approach

To develop the issue assignment approach to be used by IssueTAG, we surveyed the literature and determined a number of candidate approaches for the task at hand (Murphy and Cubranic 2004; Anvik et al. 2006; Bhattacharya et al. 2012; Anvik and Murphy 2011; Jonsson et al. 2016). We then empirically evaluated these approaches on the issue database, which has been maintained by Softtech.

In particular, we cast the problem of issue assignment to a classification problem. To this end, the natural language descriptions in an issue report is analyzed to determine the development team, to which the report should be assigned.

Given an issue report, we first combine the “description” and “summary” parts of the report, tokenize the combined text into terms, and remove the non-letter characters as well as the stop words. We then represent an issue report as a multi-dimensional vector using the well-known tf-idf method (Manning et al. 2010) (Appendix A). Finally, the problem of
assignment is cast to a classification problem where the development team, to which the issue report should be assigned, becomes the class to be predicted.

To determine the classifier to be used in IssueTAG, we picked a number of classifiers, each of which had been shown to be effective for automated issue assignment. These classifiers were, namely, multinomial naive bayesian (Manning et al. 2010), decision tree (Breiman 2017), k-nearest neighbor (Manning et al. 2010), logistic regression (Bishop 2006), random forest (Breiman 2001), and linear support vector classifiers (SVCs) (Joachims 1998). We also combined these classifiers in different ways by using stacked generalization – an ensemble technique to combine multiple individual classifiers (Wolpert 1992). All told, we obtained a total of 11 different classifiers. We then evaluated the performance of these classifiers by using historical issue reports (Appendix A).

Based on both the effectiveness (i.e., assignment accuracy) and efficiency (i.e., training time) of the aforementioned classifiers, we have decided to employ a linear support vector classifier (linear SVC) in IssueTAG, which, in the experiments, provided an F-measure of 0.80 (a precision of 0.80 and a recall of 0.80) with a training time of about 3.5 minutes. For detailed discussions as well as in-depth analyses, the interested reader can refer to Appendix A.

3.2 Time Locality of Training Data

After determining the classifier to be used, the next question we had was to determine the time locality of the issue reports (i.e., how much back in time we should go) (Jonsson et al. 2016) required for preparing the training data every time the classification model needs to be trained.

Note that IssueTAG is an online system, which is expected to have a long lifespan. Therefore, the classification model it uses for making the assignments should be trained (i.e., maintained) as needed since the underlying issue database evolves. Once a decision is made to train the classification model (an issue we address in Section 6), the time locality of the training data to be used plays an important role to retain/improve the efficiency and effectiveness of IssueTAG.

To this end, we used the sliding window and cumulative window approaches introduced in Jonsson et al. (2016). In particular, we took a long period of time (in our case, 13 months); divided it into calendar months; used the issue reports submitted during different windows of consecutive months as training sets to train linear SVC models; evaluated the performance of these models in predicting the assignments for the issue reports submitted in the subsequent months; and finally picked the best time window (Appendix B).

Based on the results of these studies, to train a classification model at a given point in time, we decided to use all the issue reports that have been submitted in the last 12 months as the training data. Clearly, among all the issue reports of interest, we filter out the ones that have not yet been closed (as their team assignments have not yet been finalized). For detailed discussions as well as in-depth analyses, the interested reader can refer to Appendix B.

3.3 Deployment Configuration

We have, therefore, decided to employ linear SVC models in IssueTAG, which are trained by using the issue reports submitted in the last 12-month time frame.

Due to security reasons, we are able to publish (in full, or in partial) neither the issue reports used in these studies nor the source code of IssueTAG. However, some scripts, which
are similar to the ones we used in order to carry out the experiments in Appendices A and B as well as some code excerpts demonstrating the basic functionalities used in Sections 5 and 6, can be found at https://github.com/ethemutku/IssueTag.

4 Automated Issue Assignments in Practice (RQ1)

In this section, we investigate our first research question (RQ1): “How does automated issue assignment compare to manual issue assignment in practice?” Note that the results of this study will help evaluate the pros and cons of automated issue assignments on the field.

4.1 Approach

To deploy IssueTAG at IsBank and Softtech, we carried out a number of meetings with the IT-HD, AST, and software development teams. In these meetings, the problems with the manual issue assignment process were discussed and IssueTAG was presented. We, furthermore, demonstrated the effect of automating the assignment process by using the results of a number of preliminary studies conducted on historical data.

One commonly accepted observation, which was made numerous times in these meetings, was that automating the issue assignment process would also require to modify the other parts of the process around the deployed system to improve the efficiency and effectiveness of the entire process to the extent possible.

One refinement suggestion came from us (Process Improvement Team at Softtech). In our preliminary studies, we observed that wrong assignments made by IssueTAG were often caused due to the difficulty of distinguishing related, but different development teams from each other, such as the teams working on related products or working on different components of the same product. That is, when an issue report was assigned to a wrong team, the assignee and the correct team (i.e., the one, to which the report should have been assigned) were often related to each other, e.g., they were aware of each other’s works. Consequently, we suggested that in the presence of an incorrect assignment, rather than returning the issue report to IT-HD for reassignment (Section 2), letting the assignee (e.g., the AST member embedded in the incorrectly assigned team) do the reassignment, could profoundly speed up the process.

Another refinement suggestion came from the IT-HD management. They simply suggested to prevent IT-HD clerks from modifying the issue assignments made by IssueTAG. On one hand, this was a natural consequence of the design decision discussed above. When the reassignments are made by the current assignee, IT-HD clerks will not necessarily be aware of these modifications, thus may not learn from them to improve their assignment accuracies. On another hand, we observed that IT-HD was actually looking forward to deferring the responsibility of issue assignments. One reason was that, especially for the new IT-HD clerks, the learning curve for excelling in assignments was generally steep. This was due to the large number of issue reports received on a daily basis and the relatively large number of development teams present (Section 4.2.3). In fact, IT-HD was maintaining a knowledge base (comprised mostly of spreadsheets) to help the clerks with the assignments. However, it was cumbersome and costly for them to keep this knowledge base up to date. Nevertheless, incorrect assignments were often causing friction between the IT-HD clerks and AST members as well as the development teams.
4.2 Evaluation

We deployed IssueTAG on Jan 12, 2018. The system has been fully operational since then, making automated assignments for all the issue reports submitted. Figure 2 presents the overall system architecture. Furthermore, Table 1 reports some summary statistics regarding the operations of the deployed system.

4.2.1 Deployment Setup

Based on the results of our empirical studies in Section 3.1, IssueTAG was configured to use linear SVC to train the classification models. And, based on the results obtained in Section 3.2, the models have been trained by using the issue reports submitted in the last 12-month time frame. Furthermore, as all the process improvement suggestions discussed in Section 4.1 were accepted by all the stakeholders involved, we configured IssueTAG such that once an issue report was created by an IT-HD clerk for the first time, the report was automatically assigned to a development team by the deployed system. The IT-HD clerk did not have any means of interfering with the assignment process and/or modifying the assignment.

Item	Value
Total number of issue reports assigned	134,622
Average number of issue reports per day	380
Total number of distinct teams	62
Average time it takes to train the model	3m 42s
Average response time of the system	746 msec
Size of the trained model	588 MB
The system is deployed on a Dual-Core Intel(R) Xeon(R) E5-2695 v4 2.10 GHz machine with 32 GB of RAM running Windows Server 2012 R2 as the operating system.

4.2.2 Evaluation Framework

To evaluate the quality of the assignments over a period of time, we compute the assignment accuracy on a daily basis, which we refer to as \textit{daily assignment accuracy}. More specifically, the daily assignment accuracy achieved on a day d, is the ratio of the assignments that are correctly made for the issue reports opened on the day d. Note that we compute the daily accuracies based on the dates, on which the issue reports are opened, rather than they are closed. This is because the automated assignments are made as soon as the issue reports are created (i.e., opened) by using the underlying classification model, which was available at the time of the creation.

To evaluate the reduction in the amount of manual effort required for the issue assignments, we measure the person-months saved by automating the process. To this end, a survey we conducted on the IT-HD clerks revealed that, given an issue report, it takes about 30 seconds on average for an IT-HD clerk to assign the report to a development team, which is mostly spent for reasoning about the issue report and (if needed) performing a keyword-based search in the knowledge base. Note that this effort includes neither the effort needed to maintain the knowledge base nor the needs of the IT-HD clerks to make reliable assignments, such as breaks, education, and sickness leave salary. Therefore, the actual amortized manual effort is expected to be higher than 30 seconds. IssueTAG, on the other hand, requires no human intervention to make an assignment once an issue report has been created.

To evaluate the effect of the deployed system as well as the improvements made in the issue assignment process, we compute and compare the \textit{solution times} as well as the \textit{number of issue tosses} before and after the deployment of IssueTAG. We define the solution time for an issue report as the time passed between the report is opened and it is closed. The shorter the solution times, the better the proposed approach is. We define the \textit{number of issue tosses} (Jeong et al. 2009) for an issue report as the number of distinct teams, to which the report is assigned after the first assignment until it is closed. The lower the number of issue tosses, the better the proposed approach is. Furthermore, as the characteristics of the reported issues, thus the solution times as well as the number of tosses, can change over time, we, in the evaluations, compute and compare these metrics for the issue reports that were opened within two months before and after the deployment of IssueTAG.

4.2.3 Data and Analysis

Figure 3 presents the daily assignment accuracies achieved between December 2016 and June 2019. The time point 0 in this figure represents the date, on which the manual issue
assignment process as it is described in Section 2, was started. Furthermore, the vertical dashed lines in the figure represent the points in time where a shift in daily accuracies was automatically detected by the change point detection approach we had developed (Section 6). IssueTAG was, indeed, deployed exactly at the 273^{rd} time point where the third vertical dashed line resides. That is, all the accuracies before this dashed line were obtained by manual assignments, whereas those after were obtained by automatic assignments. The other vertical dashed lines will be discussed below in this section.

We first observed that after IssueTAG was deployed, the daily assignment accuracies dropped slightly (Fig. 3). More specifically, the average daily accuracies before and after the deployment were 0.864 ($\text{min} = 0.691$, $\text{max} = 0.947$, $\text{stddev} = 0.040$) and 0.831 ($\text{min} = 0.752$, $\text{max} = 0.912$, $\text{stddev} = 0.027$), respectively.

We, however, observed that the accuracy of an automated issue assignment system does not have to be higher than that of manual assignments in order for the system to be useful. First, we observed that IssueTAG reduced the manual effort required for the assignments. In particular, given that it takes an average of 30 seconds for an IT-HD clerk to assign an issue report to a development team and an average of 8,000 issue reports are received on a monthly basis, IssueTAG has been saving 5 person-months yearly, on average (8,000 issue reports \times 30 seconds $= 240,000$ seconds per month $= 5$ person-months per year).

Second, we observed that the deployed system together with the process improvements we implemented, profoundly reduced the turnaround time for closing the issue reports. More specifically, the average solution times before and after the deployment were 3.26 days and 2.61 days, respectively. We, furthermore, observed that IssueTAG slightly reduced the average number of issue tosses for a total of 5122 reassigned issue reports (13% of all the issue reports) from 1.50 to 1.49. Figure 4 presents the box-whisker plot of the numbers of tosses before and after the deployment of IssueTAG. Note that the changes we made in the bug assignment process around IssueTAG, in particular, making the AST members responsible for the reassignments, rather than sending the issue reports back to the IT-HD.

![Number of Issue Tosses Before and After IssueTAG](image)

Fig. 4 Box-whisker plot of the numbers of issue tosses before and after the deployment of IssueTAG. For each box, the bottom and the top bars indicate the first and third quartiles, respectively, whereas the middle bar and the diamond shape represent the median and the mean numbers of issue tosses, respectively.
clerks for reassignment, was instrumental both in reducing the number of tosses and in
having this slight reduction reflected as profound improvements in solution times.

Third, we observed that it can take quite a while for a human stakeholder to excel in
the issue assignment task, which is, indeed, a problem, especially in the presence of high
employee turn over rates. For example, the first vertical dashed line in Fig. 3, represents
the date on which an integral part of the core banking system was migrated from main-
frames to state-of-the-art hardware and software platforms. As a result of this migration,
the structure and the responsibilities of the related development teams changed significantly.
In particular, the responsibilities of one development team working on mainframes were
migrated to 3 development teams working on state-of-the-art platforms, which consisted of
completely different software engineers. Evidently, the assignment accuracies were affected
by this change; the daily accuracies dropped at the first vertical dashed line (i.e., 55th time
point) and stayed low until the second vertical dashed line (i.e., the 130th time point). More
specifically, the average daily accuracies obtained from the manual assignments before
the first dashed line, in between the first and second dashed lines, and after the second
dashed line until IssueTAG was deployed at the third dashed line were, 88.9 (min = 82.5,
max = 92.9, stddev = 0.24), 81.9 (min = 69.1, max = 90.0, stddev = 0.39), and
87.9 (min = 82.2, max = 94.7, stddev = 0.24), respectively. That is, it took the IT-
HD clerks about 2.5 months to adapt to the new development teams. Therefore, this time
frame can be considered to be a lower bound on the amount of time a new hire would require
to learn to make accurate assignments. It is a lower bound in the sense that only 19% of the
issue reports were affected by the changes in the team structure during the aforementioned
period of time. Furthermore, the IT-HD clerks already had a great deal of experience; for a
new hire, everything will be new.

Note further that the 0th time point in Fig. 3 represents the date, on which Jira was
started to be used for storing and managing the issue reports. That is, IT-HD clerks
had been making manual assignments before this date, but had different means of man-
aging the reports, which explains the high daily assignment accuracies even at the 0th time
point in the figure. As we didn’t have any access to the issue databases main-
tained before the 0th time point, we used only the issue reports managed by Jira in
this research.

Regarding the investment cost of IssueTAG, the effort required for developing the sys-
tem, including coding, quality assurance, and carrying out the experiments to fine-tune the
performance of the system (Appendices A and B), was 4 person months. On top of this, one
person-month effort was required to integrate IssueTAG with Jira and Maximo (Section 2).
The former was required both to automatically extract/preprocess the issue reports required
for training the classification models (which takes about an hour, on average, for a year of
issue reports) and to make the team assignments visible to the stakeholders. And, the latter
was required to feed the issue reports filled out by IT-HD clerks to IssueTAG for assign-
ment. The server, on which IssueTAG is deployed (Section 4.2.1), costs about 300 USD per
month (standard cost of a general-purpose server defined by Softtech). For the maintenance,
which has been so far carried out by restarting the IssueTAG server in the presence of rare
errors, was about 4 person days per year.

Last but not least, based on an in-depth analysis of mis-classified reports, we observed
that issue reports with attachments tended to be assigned with lower accuracy, compared
to the ones without any attachments. More specifically, 65.49% of the issue reports had
attachments, such as spreadsheets containing additional information and the snapshots of the
screens, on which the failures were observed. We observed that the assignment accuracies
for the issue reports with and without attachments were 80.98% and 88.06%, respectively.
We believe that this was because the reports with attachments conveyed less information in their one-line-summaries and descriptions as much of the information was already included in the attachments. We, indeed, observed that while the reports with attachments had an average of 29 words, those without any attachments had 41 words. Therefore, using the attachments for issue assignment could further improve the accuracy of IssueTAG, which we leave as a future work.

5 Explaining Team Assignments (RQ2)

One interesting observation we made after IssueTAG had been deployed was that, occasionally, especially for incorrect assignments, the stakeholders demanded some explanations as to why and how certain issue reports had been assigned to their teams. This was an issue we didn’t expect to face before deploying the system. As a matter of fact, based on the informal discussions we had with the stakeholders, we quickly realized that explaining the assignments could further improve the trust in IssueTAG.

In this section, we address our second research question (RQ2): “Can the issue assignments made by the underlying data mining model be explained in a non-technical manner?” To this end, we develop and empirically evaluate (by conducting a survey on actual stakeholders) an approach for automatically generating explanations for the issue assignments made by the underlying classification model.

Note that since the classification models we use, namely the linear SVC models, are not human-readable, providing such explanations is a non-trivial task. To the best of our knowledge, there is, indeed, no work in the literature of automated issue assignment, addressing this problem.

One requirement we have is that the explanations should easily be interpreted and understood even by non-technical stakeholders as the recipients of these explanations are not necessarily technical stakeholders. Another requirement is that they should be given in terms of the natural language descriptions present in the issue reports, so that stakeholders can relate to them.

With all these in mind, we conjecture that providing a list of most influential (positive or negative) words for an issue assignment together with their relative impact scores as an explanation for the assignment, could help stakeholders understand the rationale behind the assignments.

Interestingly enough, we observe that such explanations could also be used in an interactive manner to enable the stakeholder creating the issue report to provide feedback to the classification model. Although such human-in-the-loop assignments are out of the scope of this paper, we, nevertheless, added additional questions to our survey to evaluate the plausibility of the idea.

5.1 Approach

We use LIME (Local Interpretable Model-Agnostic Explanations) to automatically produce explanations for the issue assignments made by IssueTAG. LIME is a model-agnostic algorithm for explaining the predictions of a classification or regression model (Ribeiro et al. 2016). In this work, we, (to the best of our knowledge) for the first time, use LIME in the context of automated issue assignment and evaluate it by carrying out a survey on actual stakeholders on the field. Next, we briefly describe the LIME algorithm without any
intention to provide all the mathematics behind it. The interested reader can refer to Ribeiro et al. (2016) for further details.

LIME, in our context, aims to identify a human-interpretable, locally faithful model, which provides qualitative understanding between the terms used in issue reports and the development teams, to which they are assigned. In a nutshell, given an issue report, the assignment made for this report, and the underlying classification model, LIME first represents the report as a bag of words and samples instances around the report by drawing subsets of the words in the bag uniformly at random. Then, the samples are weighted by their proximities to the original issue report and fed to the classification model to label them. Next, all the samples together with their associated labels are used to learn a linear model comprised of \(K \) terms (in our case, \(K = 6 \)), which distinguishes the labels. Finally, the linear model learnt is reported as an explanation for the assignment.

The explanation generated for an assignment is, indeed, a set of \(K \) terms selected from the original issue report together with their relative weights. The reported terms indicate the influential terms that either contribute to the assignment or are evidence against it. Figure 6a presents an example explanation created for an assignment made by IssueTAG on the field. The vertical axis reports the most influential terms selected, whereas the horizontal axis denotes their relative weights. The terms with positive weights depict the terms that contribute to the assignment, whereas those with negative weights depict the ones that are evidence against it. That is, in a sense, the former set of terms vote for the assignment, whereas the latter ones vote against it in an attempt to change the assignment.

5.2 Evaluation

To evaluate the proposed approach, we conducted a survey on the AST members. We chose this group of stakeholders as the recipients of the survey because, being embedded in the development teams, they were the direct end-users of the issue assignments made by IssueTAG. That is, they, as the first recipients of the issue reports, were the ones to validate whether the assignments were correct or not and to reassign them as needed. The IT-HD clerks, on the other hand, could not participate in the survey because they were not considered to be the end-users of the deployed system in the sense that they neither made use of the assignments automatically made by the deployed system nor had a control over the assignments.

5.2.1 Experimental Setup

Participation in the study was optional. The AST members were asked whether they would voluntarily participate in the study (as well as the one in Section 7) via emails. About half of the AST members (more specifically, 14 out of 30) agreed to participate.

We could not simply ask the participants to evaluate each and every explanation created for the issue assignments, which were of interest to them. The reason was that there was a large number of issue reports submitted on a daily basis (Section 4.2) and that checking out the explanations was optional, i.e., the AST members were not required to have a look at the explanations. Therefore, forcing them to evaluate the explanations as the issue assignments were made, could have adversely affected their performance.

For each participant, we randomly picked 10 issue assignments, which were handled by the participant in the last week before the study. While doing so, we made sure that the ratio of correctly and incorrectly assigned issue reports roughly resembled the average daily assignment accuracy. When there were less than 10 issue assignments for a participant, we
selected all of the available ones. All told, we picked a total of 130 issue assignments (10 for each participant, except for two, for whom we could have only 5 assignments each). Out of all the selected assignments, 13 (10%) were incorrect.

We then created a questionnaire for each participant by using the issue assignments selected for the participant. For each assignment in the questionnaire, we included 1) the issue report, 2) the assignment made by IssueTAG, 3) the explanation automatically created by the proposed approach, using the 6 most influential terms involved in the assignment, and 4) four questions (Table 2).

The first two questions, namely Q1 and Q2, were directly concerned with our main research question in this study; whether or not the automatically generated explanations could help stakeholders understand the rationale behind the assignments. Q1 was a “yes” or “no” question, whereas Q2 was a Likert scale question with answer options: VT - very trustworthy, T - trustworthy, NS - not sure, U - untrustworthy, VU - very untrustworthy. The last two questions, namely Q3 and Q4, on the other hand, aimed to evaluate the plausibility of using the explanations to get feedback from the stakeholders in an attempt to further improve the assignment accuracies. These questions were open-ended questions, which were conditional on Q2; the participants were asked to answer these questions only when the response to Q2 was either “untrustworthy” or “very untrustworthy.”

Before taking the questionnaire, participants were instructed about how the study would be conducted and how the explanations as well the questions in the questionnaire should be interpreted. The questionnaires were then sent via emails to the participants. All the explanations in the questionnaires were created by using the LIME Python tool (Ribeiro et al. 2016) with $K = 6$. The decision of using the 6 most influential terms, was based on the maximum number of terms that we thought a stakeholder could efficiently and effectively reason about. Therefore, the explanations were shown exactly as in Fig. 6. Figure 5 provides a screen shot of the questionnaire sent as an email. In this figure, A corresponds to the issue report, which was blacked out (together with other sensitive information) for security reasons. B and C depict the assignment made by IssueTAG and the explanation created for it, respectively. Furthermore, D – G represent the questions Q1-Q4 in Table 2, respectively.

No	Question	Type
Q1	Is the explanation helpful in understanding the assignment?	Yes/No
Q2	Given the issue report, the assignment, and the explanation for the assignment, how would you rate the trustworthiness of the assignment?	Likert scale
Q3	Which terms in the explanation you think are not contributing to the assignment?	Open ended
Q4	What are the additional terms that you would like to see in the explanation before you can trust the assignment?	Open ended
The participants filled out the questionnaires at their spare time. They were allowed to work on the issue reports in any order they wanted. During the study, there was no interaction between the participants and the researchers. The responses were also collected via emails.

5.2.2 Evaluation Framework

For Q1 and Q2, we use the frequencies of responses to quantitatively analyze the results. For Q3 and Q4 (when answered), we manually investigate how the feedbacks can be used to further improve the accuracies.

5.2.3 Data and Analysis

Regarding Q1, we observed that participants found 95% (123 out of 130) of the explanations, each of which was created for a distinct issue assignment, helpful in understanding the rationale behind the assignments.

Regarding Q2, based on the explanations created for the correct assignments, the participants found 93% of the assignments (109 out of 117) “trustworthy” or “very trustworthy” (Table 3). And, for the remaining 7% of the assignments (8 out of 117), they were “not sure”

Table 3 Responses obtained from Q2 (for the correct and incorrect assignments): “Given the issue report, the assignment, and the explanation for the assignment, how would you rate the trustworthiness of the assignment?” (VU - very untrustworthy, U - untrustworthy, NS - not sure, T - trustworthy, VT - very trustworthy)

Q2	Total	VU	U	NS	T	VT	T or VT	% of	median	mode
Correct assignments	117	0	0	8	32	77	93%	VT	VT	
Incorrect assignments	13	0	1	2	2	8	77%	VT	VT	
whether the explanations helped them decide if the assignments were reliable or not. None of the assignments was found “untrustworthy” or “very untrustworthy.”

Interestingly enough, based on the explanations created for the incorrect assignments, we observed that the participants found 77% of the assignments (10 out of 13) “trustworthy” or “very trustworthy.” This suggests that given the same issue reports, these participants would have made the same or similar mistakes in assigning the reports. We believe that this was because of some missing information in these issue reports, which was required for accurate assignments (Table 3). Furthermore, the participants were “not sure” about the trustworthiness of the 15% of the assignments (2 out of 13).

Regarding Q3 and Q4, among all the responses given to Q2, only one was scored negatively. That is, based on the explanations created for the assignments, only one of the assignments was found “untrustworthy.” And, this assignment was, indeed, an incorrect assignment made by IssueTAG.

The explanation created for the aforementioned assignment is given in Fig. 6a. Given this explanation, the participant argued in her response that the term “telegram,” which is a domain specific term used when creating a credit account, was an important term for the issue report at question. Therefore, it should have positively, rather than negatively, affected the assignment. As a matter of fact, this argument was also well-aligned with the automatically generated explanation given in Fig. 6a. “Telegram,” being a term with a large negative impact, voted against the assignment in an attempt to change it. It was, however, not strong enough to modify the outcome.

Interestingly enough, Fig. 6b presents the explanation created for the second likely assignment made by the underlying classification model, which turned out to be the correct assignment. Note that in this assignment, the term “telegram” had the largest positive impact on selecting the correct team, which was also suggested by the stakeholder. Therefore, had the participant presented with the explanations created for the top two most likely assignments, she could have selected the second assignment, thus increased the assignment accuracy. Note that the aforementioned type of approaches are beyond the scope of this work. However, as the results of this study are promising, we, as a future work, plan to develop “human-in-the-loop” approaches, which leverage the automatically created explanations to further improve the assignment accuracies.

6 Monitoring Deterioration (RQ3)

In this study, we address our third research question (RQ3): “Can the deteriorations in the assignment accuracies be automatically detected in an online manner?” This was, indeed, another issue we faced after the deployment of IssueTAG. It is important because such a mechanism not only increases the confidence of the stakeholders in the system, but also helps determine when the underlying classification model needs to be recalibrated by, for example, retraining the model (Sections 3.1-3.2).

6.1 Approach

One observation we make is that every issue report at Softech is closed by the development team, who has fixed the reported issue. Therefore, in the presence of an incorrect assignment made by IssueTAG, the report is reassigned and the history of the reassignments is stored in the issue tracking system. Consequently, at any point in time, the assignment accuracy
The explanations created for the assignment marked as “untrustworthy” by a participant: a the explanation created for the original assignment, which was incorrect and b the explanation created for the second likely assignment, which was correct.

Fig. 6 The explanations created for the assignment marked as “untrustworthy” by a participant: a the explanation created for the original assignment, which was incorrect and b the explanation created for the second likely assignment, which was correct.

of IssueTAG can automatically be computed using the history of the issue reports that have been closed. Therefore, deteriorations in the accuracy can be analyzed in an online manner.

To this end, we use an online change point detection approach, called Pruned Exact Linear Time (PELT) (Killick et al. 2012). In a nutshell, PELT is a statistical analysis technique to identify when the underlying model of a signal changes (Truong et al. 2018b). In our context, we feed PELT with a sequence of daily assignment accuracies (Section 6.2) as the signal. The output is a set of points in time (if any) where mean shifts. PELT, being an approach based on dynamic programming, detects both the number of change points and their locations with a linear computational cost under certain conditions (Killick et al. 2012). Further information can be found in Killick et al. (2012) and Truong et al. (2018b).
PELT has been used for change point detection in many application domains, including DNA sequence data, financial time series, and oceanographic data (Hocking et al. 2013; Lavielle and Ere 2007; Killick et al. 2012). In this work, we, on the other hand, use it (to the best of our knowledge) for the first time in the context of automated issue assignment to detect the deteriorations in the assignments made by a data mining model.

6.2 Evaluation

We applied the PELT approach to the daily assignment accuracies collected from the field. PELT detected three change points, each of which was depicted by a vertical dashed line in Fig. 3. It turned out that these change points, indeed, coincided with some important events that affected the assignment accuracies, validating the results obtained from the proposed approach. The first dashed line represents the date, on which significant changes in the team responsibilities occurred due to migrating certain functionalities from mainframes to state-of-the-art platforms. The time gap between the first and second dashed lines (i.e., about 2.5 months) represent the amount of time it took for the IT-HD clerks to adapt to these changes. And, the third dashed line represents the date on which IssueTAG was deployed. Further discussion on these change points can be found in Section 4.2.3.

We observed that PELT did not detect any other change point after IssueTAG was deployed. We believe that this was because the underlying classification model had been regularly retrained at every month as a part of Softtech’s policy by using the issue reports submitted in the last 12 months before the calibration (Section 3.2).

To further evaluate the proposed approach, we, therefore, carried out additional experiments where we systematically varied the nature of the deteriorations and evaluated whether the proposed approach detected them or not. Note that controlling the nature of the deteriorations in this study allows us to reliably evaluate the results. This is because when the true nature of a deterioration, such as the exact point in time at which the deterioration occurred, is not known (typically the case with the data collected from the field), the analysis may suffer from the lack of ground truth. Note further that even if the underlying classification model is regularly trained, monitoring for deteriorations is still relevant as the assignment accuracies can still deteriorate in between the calibrations.

6.2.1 Experimental Setup

In each experimental setup, we used an ordered sequence of 200 daily assignment accuracies. The first 100 of these accuracies came from a normal distribution representing the accuracies expected from IssueTAG, whereas the remaining 100 accuracies came from a distribution (or a number of distributions) representing a deterioration. That is, the change point in each experiment was the 100th time point as the deterioration was introduced after this point in time.

For each experimental setup, we then mimicked the real-life operations of IssueTAG. More specifically, given a sequence of 200 daily assignment accuracies, we fed them to the proposed approach one daily accuracy after another in the order they appeared in the sequence. After every daily accuracy, a decision was made whether a deterioration had occurred, and if so, when. We finally determined how long it took for the proposed approach to detect the deterioration. For each experimental setup, we repeated the experiments 1000 times.
As an implementation of the PELT approach, we used the ruptures Python tool (Truong et al. 2018a). As the penalty level, i.e., the only parameter to calibrate in PELT, we used the empirically determined value of 0.05. The penalty level is a mechanism used for guarding against overfitting, determining to which extent a shift in the accuracies should be considered as a change point. The larger the penalty level, the fewer (and more significant) change points are detected.

To model the daily accuracies expected from the system, we used a normal distribution with mean of 0.85 and standard deviation of 0.025 (i.e., \(\mu = 0.85 \) and \(\sigma = 0.025 \)), mimicking the daily accuracies of the deployed system observed on the field (Section 4.2.3). To model the deteriorations, we experimented with two types of changes: sudden deteriorations and gradual deteriorations. In either case, we used 5-, 10-, 15-, and 20-point drops in daily accuracies, such that the mean accuracy (i.e., the mean of the distribution, from which the accuracies were drawn) eventually became 0.80, 0.75, 0.70, and 0.65, respectively.

For the sudden deteriorations, we abruptly dropped the mean accuracy from 0.85 to the requested level (i.e., 0.80, 0.75, 0.70, or 0.65, depending on the choice) right after the change point at the 100th time point and kept it intact until and including the 200th time point (i.e., until the end of the experiment). Figure 7 presents an example sequence of daily assignment accuracies showing a sudden 10-point deterioration.

For the gradual deteriorations, on the other hand, the changes were obtained by linearly dropping the mean accuracy starting from right after the change point at the 100th time point until and including the 200th time point, such that the mean accuracy at end of the experiment became 0.80, 0.75, 0.70, or 0.65, depending on the choice. For example, if the requested level of accuracy was 0.80, then starting from the mean accuracy of 0.85, the mean accuracy would be dropped by 0.05-point each day (5-point drop/100 days) until it would become 0.80 at the 200th time point. Figure 8 presents an example sequence of daily assignment accuracies showing a gradual 10-point deterioration starting from the 100th time point.

6.2.2 Evaluation Framework

To evaluate the proposed approach, we first determine whether the deteriorations are detected or not. If so, we measure detection time as the number of days passed after the change point (i.e., after the 100th time point) until the deterioration is detected. The smaller the detection time, the better the proposed approach is.

![Fig. 7](image) An example sequence of daily assignment accuracies showing a sudden 10-point deterioration at the 100th time point
6.2.3 Data and Analysis

Table 4 presents the data we obtained on the sudden deteriorations used in the study. We first observed that the proposed approach detected all the deteriorations. We then observed that as the deterioration amount increased, the detection time tended to decrease, i.e., the proposed approach tended to detect the deteriorations faster. On average, the deteriorations were detected in 1.33, 1.60, 1.84, 2.67 days after there was a 20-, 15-, 10-, and 5-point sudden drop in the mean assignment accuracies, respectively.

Table 5 presents the data we obtained on the gradual deteriorations. As was the case with the sudden deteriorations, the proposed approach detected all the deteriorations and as the deterioration amount (thus, the deterioration rate) increased, the detection time tended to decrease. Compared to the sudden deteriorations, however, the detection times for gradual deteriorations increased, which is to be expected. To better evaluate the quality of the detections, we, therefore, analyzed the mean accuracies that were present when the deteriorations were detected. We observed that throughout all the experiments, the proposed approach detected the deteriorations before the mean accuracy dropped more than 5-points (the last column in Table 5).

To further evaluate the proposed approach, we carried out an additional experiment by using the historical issue reports automatically processed by IssueTAG. In particular, we aimed to answer the following question: Had the underlying classification model not been retrained at every month as a part of Softtech’s policy (see Section 6.2 for more information), would the proposed approach have detected any deteriorations?

To carry out the study, we took the classification model, which was trained on the first day IssueTAG was deployed (on Jan 12, 2018) and used it as it was (without retraining

Table 4 Results obtained on sudden deteriorations. The experiments were repeated 1000 times

Deterioration	Detection time			
	min	avg	max	stddev
5-point	1	2.67	6	1.13
10-point	1	1.84	3	0.38
15-point	1	1.60	2	0.49
20-point	1	1.33	2	0.47
Table 5 Results obtained on gradual deteriorations. The experiments were repeated 1000 times

Deterioration	Detection time	Minimum mean accuracy at the Point of Detection			
	min	avg	max	stddev	
5-point	1	31.03	55	13.64	0.81
10-point	1	20.14	35	8.41	0.81
15-point	1	15.70	26	6.49	0.80
20-point	1	13.36	21	4.95	0.80

The model monthly) for the subsequent issue reports until the proposed approach detected a deterioration. Once a deterioration is detected, we retrained the classification model as usual, i.e., by using the issue reports submitted in the last 12 months before the point of detection (Section 3.2). We repeated this process until June 30, 2019, which is the date of the last issue report we used in this paper.

We observed that the proposed approach would have detected two deteriorations. Figure 9 presents the data. The vertical dashed lines represent the points in time where a shift in daily accuracies occurred and the solid lines represent the points in time where these shifts were detected.

The first warning was issued on July 23, 2018 (D1) regarding a shift on April 27, 2018 (S1). And, the second warning was issued on Jan 28, 2019 (D2) regarding a shift on December 12, 2018 (S2). As was the case with our gradual deteriorations (Table 5), although the detection times may seem to be high, the deteriorations were detected before the mean accuracy dropped more than 5-points. The average daily accuracies before and after S1 (i.e., between S1-S1 and S1-D1) were 0.83 and 0.79, respectively. Similarly, the average daily accuracies before and after S2 (i.e., between D1-S2 and S2-D2) were 0.83 and 0.78, respectively.

We, furthermore, observed that retraining the classification model after a shift has been detected helped improve the daily accuracies. For example, while the average daily accuracy between S1-D1 was 0.79, that between D1-S2 (i.e., after the model was retained and until the subsequent shift in accuracies) was 0.83. Similarly, while the average daily accuracy between S2-D2 was 0.78, that between D2-E was 0.80.

7 User Evaluations (RQ4)

In this section, we investigate our fourth research question (RQ4): “Is IssueTAG perceived as useful by the end-users?”

![Fig. 9](https://example.com/fig9.png)

Fig. 9 Had the underlying classification model not been retrained at every month, would the proposed approach have detected any deteriorations? S is the time point, at which IssueTAG was deployed.
7.1 Approach

IssueTAG is a nonintrusive system. Except for the parts where explanations for the assignments were requested, which was empirically evaluated by conducting user studies in Section 5, IssueTAG requires neither the IT-HD clerks nor the AST members to interact with the system or to perform additional tasks. That is, once an issue report was filed by an IT-HD clerk using Maximo, IssueTAG first assigns it to a team and then updates the Jira database to reflect the assignment. Indeed, IssueTAG, except for the aforementioned task above, does not have any interfaces designed for interacting with the end-users. We were, therefore, able to evaluate the perceived usefulness of IssueTAG only by conducting a survey composed of simple questions.

We created the survey by following a survey template frequently used at Softtech. It had a total of 8 questions from two categories: requirement satisfaction and product quality. The former category aims to evaluate the extent to which the deployed system meets its requirements, whereas the latter category aims to evaluate the quality of the final product. All questions, except for the last one, were Likert scale questions each with answer options: N-no opinion, SD-strongly disagree, D-disagree, A-agree, and SA-strongly agree. The last question was an open-ended question. Furthermore, for the Likert scale questions, we asked the participants to elaborate on their responses, if they had “disagreed” or “strongly disagreed.” Table 6 presents the questions we used in the survey.

7.2 Evaluation

The AST members were identified as the target population for the survey. This was because the AST members, being embedded in the development teams, were the direct end-users of IssueTAG (see Section 5.2 for more information).

7.2.1 Experimental Setup

We, therefore, carried out the study with the same participants we had in Section 5, after having their consensus to voluntarily participate, which were accepted by all of them.

7.2.2 Evaluation Framework

For the Likert scale questions, we use the frequencies of responses obtained to quantitatively analyze the results. For the open-ended question, we present the answers we received (Table 9) and qualitatively discuss them.

7.2.3 Data and Analysis

The results of the survey strongly suggest that IssueTAG meets its business needs with high quality. Regarding the questions in the category of “requirements satisfaction,” we observed that the majority of the participants thought IssueTAG was useful and reliable (Table 7). More specifically, all of the participants “strongly agreed” or “agreed” to Q1, indicating that they knew the business requirements that IssueTAG was supposed to meet. And, 93% (13 out of 14) of the participants for Q2 and 79% (11 out of 14) of the participants for Q3, responded “agree” or higher.

Only 1 participant for Q2 and 2 participants for Q3 “disagreed.” The comments that they provided as to why they disagreed are given in Table 8. Evidently, part of the reason was
No	Question	Type	Category
Q1	I know the business requirements that the system is supposed to meet.	Likert scale	requirements satisfaction
Q2	The system (as a software product) is reliable.	Likert scale	requirements satisfaction
Q3	The system is useful.	Likert scale	requirements satisfaction
Q4	The system reduces the solution times for issue reports.	Likert scale	product quality
Q5	The issue assignments made by the system are trustworthy.	Likert scale	product quality
Q6	The system is robust.	Likert scale	product quality
Q7	I recommend the system to other companies.	Likert scale	product quality
Q8	What do you like and don’t like about the system?	Likert scale	product quality
	Do you have any suggestions for improvement?	open-ended	product quality
that these participants were unrealistically expecting to have perfect assignments (with no
incorrect assignments) from the deployed system.

Regarding the other quality aspects of the system, 100% (14 out of 14) of the partici-
pants for Q4, 79% (11 out of 14) for Q5, 93% (13 out of 14) for Q6, and 100% (14 out of
14) for Q7 responded “agree” or higher (Table 7). Only 1 participant disagreed with Q5, the
comment of whose can be found in Table 8. We, furthermore, observed that all the partici-
pants would recommend the system to other companies; all responded “agree” or higher to
Q7 (Table 7).

Last but not least, the responses given to the open-ended question Q8 can be found in
Table 9. All of these comments can be considered as generally positive. A couple of them
actually make some suggestions for future improvements. For example, the last comment
basically suggests that the system should provide an explanation as to why a given issue
report is assigned to the selected development team. As a matter of fact, this request turned
out to be a common one, for which we have developed an automated approach (Section 5.1).

8 Lessons Learnt

Stakeholders do not necessarily resist change. To deploy IssueTAG, we carried out a
number of meetings with the IT-HD, AST, and software development teams. One thing we
repeatedly observed in these meetings was that all the stakeholders were willing to auto-
mate the process of issue assignments as much as possible. This was true even if they had
some rightful concerns, such as what if the proposed approach adversely affects the issue-
resolution process – a major concern for a company developing business-critical software
systems.

We, indeed, had no objection at all. The AST members and the development teams
were looking forward to reducing the turnaround time for issue resolutions; the incorrectly
assigned issue reports were bouncing back and forth between the IT-HD clerks and the AST
 members, causing a great deal of wasted time. The IT-HD clerks were looking forward to
1) avoiding the costly and cumbersome process of maintaining a knowledge base about the
development teams and their responsibilities and 2) deferring the responsibility of making
assignments as much as possible since incorrect assignments were often causing friction
with the AST members and the development teams.
Table 8 Comments that the participants provided as to why they “disagreed”

Question	Comment	Comment
Q2	1	Due to some keywords [appearing in issue reports], the system sometimes make incorrect assignments to my team.
Q3	1	In fact, the application is useful. However, in the presence of a wrong assignment made by the system, reassigning the bug report to the correct team, especially when we don’t know which team it should really be assigned to or when the other team refuses to take the responsibility for the issue report, causes delays in the process.
Q3	2	The system sometimes makes incorrect assignments.
Q5	1	I can’t say “I agree” because I sometimes encounter incorrect assignments.
Table 9 Responses given to the open-ended question Q8

Comment	Comment
No 1	I think that the assignments are made rapidly and accurately. I have not been having any issues with the system. We [as a team] rarely receive incorrect assignments. I, however, believe that this is normal because the same words [terms] can be related with multiple development teams. It is quite normal for the system not being able to distinguish between teams in such situations.
2	Most of the time, the system works for us. Sometimes, however, it assigns irrelevant issue reports to my team.
3	General words, such as “problem”, should not be used by the system when assigning issue reports to development teams.
4	The system profoundly reduced the loss of time by rapidly assigning issue reports to development teams with high accuracy.
5	I think that it takes a while for an AI algorithm to learn about new issue reports. Improvements can be made in this area.
6	I believe that the system had a profound effect on assigning the issue reports to the right development teams.
7	It is a nice and practical system, better results can be obtained with further development. One area for improvement could be to explain the keywords [terms] used for the assignments.
Another reason behind the absence of any resistance was that none of the stakeholders felt threatened by the new system. The IT-HD clerks were still needed as they were the ones communicating with both the bank customers and employees to collect the issues. The AST members were still needed as they were the ones helping the development teams manage the issue reports. The development teams were still needed as they were the ones developing the software products.

Gradual transition helps stakeholders build confidence, facilitating the acceptance of the system. To address the rightful concerns of the stakeholders regarding the accuracy of the proposed system, we followed a gradual transition strategy. First, we simply added a single button to the screen, which the IT-HD clerks used to create the issue reports. We initially did not modify the assignment process at all in the sense that the use of this button was optional. If the IT-HD clerk chose to arm the button after creating an issue report, it would simply display the assignment made by IssueTAG. The clerk could then accept the assignment as it was or modify it. We observed that 3 months after the deployment of this button, enough confidence was built among the stakeholders to fully deploy the system.

It is not just about automating the issue assignments, but also about changing the process around it. One observation we made numerous times during the meetings with the stakeholders was that automating the issue assignments also requires to modify the other parts of the assignment process to improve the efficiency and effectiveness of the entire process to the extent possible. This was because most of the steps in the assignment process were dependent on the fact that issue assignments were made by the IT-HD clerks. Changing this, therefore, necessitated other changes. In particular, we prevented the IT-HD clerks from modifying the issue assignments made by IssueTAG and the incorrectly assigned issue reports from being returned back to the IT-HD clerks for a reassignment. All of these changes were based on the discussions we had with the stakeholders as well as the analysis of the results we obtained from a number of feasibility studies (Section 4).

The accuracy of the deployed system does not have to be higher than that of manual assignments in order for the system to be useful. Although the assignment accuracy of IssueTAG was slightly lower than that of manual assignments, it reduced the manual effort required for the assignments and improved the turnaround time for closing the issue reports. All of these helped improve the usability of IssueTAG, which was also evident from the survey we conducted on the stakeholders on the field (Section 7).

Deploying a data mining-based automated issue assignment system requires the development of additional functionalities. When the issue assignments are automatically made by using a data mining model, stakeholders may demand some explanations as to why certain issue reports (especially the incorrectly assigned ones) have been assigned to their teams. Note that since the data mining models used for predicting the assignments are not necessarily readable and interpretable by human beings (as was the case in this work), generating such explanations can be a non-trivial task. To this end, we have developed a LIME-based (Ribeiro et al. 2016) approach for automatically generating explanations that can easily be interpreted even by non-technical stakeholders. Furthermore, the accuracy of the assignments needs to be monitored and deteriorations need to be detected in an online manner, so that corrective actions, such as recalibrating the underlying model, can be taken in time. To this end, we have developed a change point detection-based approach using PELT (Killick et al. 2012) (Section 6).
9 Threats to Validity

9.1 Construct Validity

To circumvent the construct threats, we used the well-known accuracy metric (Manning et al. 2010) throughout the paper to evaluate the quality of the issue assignments. We have also complemented the accuracy results with other well-known metrics, namely precision, recall, and F-measure, as we see fit (Appendix A). We mainly focused on the accuracies because 1) it was the choice of a recent related work in the literature (Jonsson et al. 2016) and 2) the assignment accuracies and F-measures (computed by giving equal importance to both precision and recall) we obtained in the experiments were comparable (Table 10).

To measure the amount of effort saved by automating the issue assignments (Section 4), we used the person-month metric, which is also a well-known metric to quantify effort in software engineering projects (Pressman 2005).

To measure the effect of the proposed approach on the issue-resolution process, we compared the average times required to close the issue reports and number of issue tosses before and after the deployment of IssueTAG (Section 4). To this end, we used the dates and times, and historical data recorded by the issue report management tool (namely, Jira). Furthermore, since the characteristics of the reported issues, thus the times it takes to resolve them, can change over time, we used the issue reports submitted within two months before and after the deployment of the system for this purpose.

To further evaluate the usefulness of the deployed system, we carried out a survey on the actual users of the system (Sections 5–7). The survey had both Likert scale and open-ended questions and about half of the actual users of the deployed system voluntarily participated in the survey.

classifier	A	P	R	F	A
Baseline	0.10	0.01	0.12	0.03	0.12
Multinomial NB	0.47 (+/- 0.01)	0.70	0.52	0.50	0.52
Decision Tree	0.66 (+/- 0.02)	0.64	0.63	0.63	0.63
K-Neighbours	0.73 (+/- 0.02)	0.71	0.72	0.71	0.72
Logistic Regression	0.74 (+/- 0.01)	0.76	0.74	0.74	0.74
Random Forest	0.66 (+/- 0.02)	0.64	0.65	0.63	0.65
Linear SVC	0.82 (+/- 0.01)	0.80	0.80	0.80	0.80
Linear SVC-Calibrated	0.81 (+/- 0.01)	0.80	0.79	0.79	0.79
BEST-5	0.67 (+/- 0.02)	0.65	0.64	0.64	0.64
SELECTED-5	0.80 (+/- 0.01)	0.79	0.78	0.78	0.78
BEST-3	0.81 (+/- 0.01)	0.80	0.79	0.79	0.79
SELECTED-3	0.81 (+/- 0.01)	0.80	0.79	0.79	0.79
Throughout the paper, we used the actual database of issue reports maintained by Softtech. Furthermore, all the survey results were obtained from the actual users on the field. We followed the same approach to evaluate our PELT-based technique to detect deteriorations in assignment accuracies, which, indeed, successfully detected three deteriorations each with a different cause (Sections 4–6). To further evaluate the proposed approach, we also carried out controlled experiments, each of which was repeated 1000 times. We did this because in the data collected from the field, it was not always possible to determine whether there really were some deteriorations or not, and if so, what the nature of these deteriorations were. Therefore, the controlled experiments helped us further evaluate the proposed approach, as in these experiments, we knew both the nature of the deteriorations (e.g., sudden or gradual) and the exact point in time where they occurred.

9.2 Internal Validity

To circumvent the internal threats that may be caused by implementation errors, we used well-known and frequently used tools. In particular, we used the Python scikit-learn (Pedregosa et al. 2011) tool for preprocessing the issue reports and extracting the features; the scikit-learn (Pedregosa et al. 2011) and mlxtend (Raschka 2018) tools for training the classification models; the lime (Ribeiro et al. 2016) tool for creating the LIME-based explanations for the assignments; and the ruptures (Truong et al. 2018a) tool for PELT-based change point detection.

In Appendix A, we performed the same preprocessing steps and extracted the same set of features for all the classification algorithms used in the study. However, the performances of these classifiers might have been dependent on the preprocessing steps used and the features extracted. On the other hand, we used well-known preprocessing steps, such as tokenization and removal of non-letter characters as well as stop words and extracted frequently used features, such as the bag-of-words model.

A related concern is that we used the default configurations of the aforementioned classifiers, except for the k-nearest neighbor and the stacked generalization classifiers. For the former, we used cosine similarity and empirically tuned k. For the latter, we used logistic regression as the level-1 algorithm together with the probabilities emitted by the level-0 classifiers. On the other hand, the performance of these classifiers might have been dependent on the underlying configurations. Note, however, that optimizing the configurations for these classifiers could have only generated better accuracies.

In the evaluations, as the correct team for a given issue report (i.e., as the ground truth), we used the team who actually closed the report. Some reports, however, might have needed to be processed by multiple teams before the reported issues could be fixed. Since in these situations, typically the last team in the chain closed the report, even if the initial assignment of the report was considered to be correct, it was counted as incorrect when computing the assignment accuracies. Note, however, that counting such assignments as correct could have only increased the accuracies.

When computing the amount of manual effort required for issue assignments, we did not take the amount of effort required for maintaining the knowledge base used by the IT-HD clerks into account. Therefore, the actual savings in person-months can be larger than the ones reported.
9.3 External Validity

One external threat is that IssueTAG was deployed at Softech/IsBank only. Softech, however, being a subsidiary of IsBank – the largest private bank in Turkey – is the largest software company of Turkey owned by domestic capital, maintaining around 100 millions of lines of code with 1.200 employees. Consequently, it shares many characteristics of large software development houses, especially the ones producing custom, business-critical software systems, such as having a large, continuously evolving code base maintained by dozens of development teams with hundreds of issue reports filed daily, each of which needs to be addressed with utmost importance and urgency.

Another possible threat is that issue reports at IsBank (thus, the ones used in this work) are created by the IT-HD clerks (Section 2). Although, this team is a non-technical team, they are specialized in creating issue reports by listening to the bank customers and employees. Therefore, the quality of the issue reports used in this study may differ from the ones directly created by, for example, the end-users of a system. However, many companies, especially the ones that produce business-critical software systems and that need to deal with a large number of issue reports, employ similar call centers. Furthermore, all the issue reports used in this work were written in Turkish. However, we used simple text processing steps, such as tokenization and removal of non-letter characters and stop words. Therefore, the proposed approach can also be used with issue reports written in other languages.

9.4 Conclusion Validity

All the issue reports we used in the experiments were the real issue reports collected from the field. After the deployment of IssueTAG, once an issue report was created by an IT-HD clerk, the assignment was automatically made by the system. There was no means that the deployed system could be bypassed or that the assignments made by the system could be changed by an IT-HD clerk. Note that the AST members could then reassign the issue reports if needed, in which case the initial assignments made by the system were considered as incorrect. The number of issue reports closed was an important performance metric for the AST members as well as for the development teams at Softech. Consequently, as a part of the company’s policy, the issue reports were required to be closed by the development teams, who actually resolved the reported issues. The stakeholders payed utmost attention to this matter. Therefore, the assignment accuracies reported in this work, reflect the actual accuracies obtained by IssueTAG on the field.

To further evaluate the deployed system, we carried out two surveys (Sections 5-7). Although 14 participants were involved in these surveys, they constituted about half (14 out of 30) of the AST members, who are the direct end-users of IssueTAG.

10 Related Work

Several works in the literature studied the issue assignment problem. These works use a variety of approaches to make the assignments, including Naive Bayes classifiers (Murphy and Cubranic 2004; Anvik et al. 2006), Bayesian Networks (Jeong et al. 2009), Support Vector Machines (Anvik et al. 2006; Jonsson et al. 2016), and information retrieval-based approaches (Chen et al. 2011; Kagdi et al. 2012; Nagwani and Verma 2012; Shokripour et al. 2012; Canfora and Cerulo 2006; Linares-Vásquez et al. 2012; Xie et al. 2012; Xia et al. 2013), Expectation Maximization (Anvik 2007), Nearest Neighbor classifiers
(Anvik and Murphy 2011), Decision Trees (Ahsan et al. 2009), Random forests (Ahsan et al. 2009), REPTrees (Ahsan et al. 2009), Radial Basis Function Networks (Ahsan et al. 2009), Neural Networks (Helming et al. 2010) and Ensemble-based classification (Jonsson et al. 2016).

These works, except for Lin et al. (2009), Helming et al. (2010), Jonsson et al. (2016), and Dedik and Rossi (2016), evaluated the proposed approaches by using the issue databases of open source projects. We, on the other hand, used the issue reports filed for commercial, closed-source projects. Although the remaining works (Lin et al. 2009; Helming et al. 2010; Jonsson et al. 2016; Dedik and Rossi 2016), report on the results obtained on closed-source, commercial software projects, they do so by carrying out a retrospective analysis in an offline manner. We, on the other hand, deployed the proposed approach and shared both the results we obtained and the lessons we learnt regarding the practical effects of automated issue assignment on the field. Furthermore, to the best of our knowledge, our work is the first work carrying out user studies in this context.

Among the related works carried out in industrial contexts, Lin et al. (2009) conduct a case study on a proprietary software project, called SoftPM – a tool for software process management, by using 2576 issue reports written in Chinese. The aforementioned work is comprised of two studies. In one study, they use the textual information included in the one-line summaries and descriptions of the issue reports with SVM models. In the other study, they use non-textual information, such as the priorities and the submitters of the reports, with decision tree models. They conclude that, when the amount of manual effort required for adding additional pieces of information to the issue reports is considered, using the textual information already present in these reports is more practical. Indeed, by using textual information, they achieve an accuracy of 0.63, which is close to that of the human triagers for the subject system under study. As the aforementioned work assigns issue reports to individual developers, it (as a future work) proposes to use information about the availability of the individual assignees to make more educated assignments. Note that this is not applicable in our case as we assign issue reports to development teams, rather than individual developers.

Helming et al. (2010) also use historical data to assign work items, such as issue reports and tasks, to individual software developers. In a nutshell, they propose two approaches: a model-based approach and a data mining-based approach. The former is a semi-automated approach, which requires that work items are manually linked to functional requirements, so that simple statistics about the software developers handling work items linked to particular functional requirements can be used to make the assignments. For the latter, they evaluate a number of classifiers using tf-idf scores obtained from the textual information present in work items, which is similar to our work. The proposed approach is evaluated by using three small-scale software projects: UNICASE (a system for unified software engineering research tools), DOLLI (a system for facility management), and Kings Tale (a browser-based computer game). In these studies, 1191, 411, and 256 work items (out of which 290, 203, and 97 of them were linked to functional requirements) were used together with a total of 39, 26, and 6 individual developers, respectively. The model-based approach provided an assignment accuracy of between 0.58 and 0.83, but required manual intervention. For the data mining-based approach, they achieved the best performance with SVM, which provided an accuracy of between 0.29 and 0.43. We believe that the accuracies were low due to the limited number of work items used in these studies; they used a maximum of 1191 work items, whereas we used a total of 47123 issue reports together with a total of 64 assignees (i.e., development teams) in our studies.
Perhaps the most similar work to ours is the one by Jonsson et al. (2016). Some of the design decisions in this work, i.e., assigning issue reports to development teams, rather than individual developers and determining the time locality of training data, are inspired from the aforementioned work. They, too, operate in large scale industrial contexts; one in the automation domain and another in the telecom domain. They, however, carry out the assignments in a retrospective and offline manner by simply treating the actual issue databases as historical data. We have, on the other hand, deployed IssueTAG. The maximum number of issue reports and assignees used in the experiments were 15113 and 67, respectively, for the automation domain; and 10000 and 64 for the telecom domain. The best results were achieved by using stacked generalization, which provided assignment accuracies of between 0.50 and 0.89. In our experiments, stack generalization was, indeed, the runner up from the perspective of assignment accuracies with linear SVC models performing slightly better, but trained profoundly faster (see Appendix A for more information). The aforementioned work also reports that using issue reports from “recent past,” compared to using the ones from “distant past,” yield better assignment accuracies. The authors recommend (without proposing any approach) to continuously monitor the automated issue assignment systems. We have, on the other hand, developed and evaluated a change point detection-based approach for detecting deteriorations. They also recommend (without proposing any approach) that the issue assignments should be transparent and assessable. We have, on the other hand, developed and evaluated an approach for generating model-agnostic explanations in the form of a collection of most influential terms in assignments, which can be interpreted even by non-technical stakeholders.

Dedík and Rossi (2016) share the results of their experiments where they compare assignment accuracies obtained from a proprietary project in software technologies domain and from an open source project, namely Mozilla Firefox. The classification models were created by using the tf-idf scores obtained from the textual information present in the issue reports. In the experiments, 2424 issue reports with 35 developers for the proprietary project and 1810 issue reports with 20 developers for the open source project, were used. They report that using SVM models was flexible and at the same time quite effective in both cases. The best accuracy achieved was 0.53 for the proprietary project and 0.57 for the open source project. They demonstrate that the more the number of recommendations they make for a given issue report, the higher the chance of a hit, which is to be expected. IssueTAG, however, makes only one recommendation, which is a deliberate decision we made to fully automate the assignment process (see Section 4 for more information). The authors, furthermore, argue that online learning can be a relevant factor in an industrial setting, which implies the necessity of continuously monitoring the automated assignment system.

Some of the aforementioned works use natural language explanations present in issue reports for assignments, such as one-line summary and description (Murphy and Cubranic 2004; Anvik et al. 2006; Canfora and Cerulo 2006; Ahsan et al. 2009; Baysal et al. 2009; Jeong et al. 2009; Lin et al. 2009; Matter et al. 2009; Helming et al. 2010; Anvik and Murphy 2011; Chen et al. 2011; Park et al. 2011; Bhattacharya et al. 2012; Linares-Vásquez et al. 2012; Nagwani and Verma 2012; Alenezi et al. 2013; Jonsson et al. 2016; Bettenburg et al. 2008a). Others also leverage categorical information, such as product, component, and version (Ahsan et al. 2009; Lin et al. 2009; Park et al. 2011; Jonsson et al. 2016).

In this work, we used natural language descriptions present in the issue reports, more specifically the one-line summaries and descriptions. We did not use any categorical information, e.g., product, component, and version information, because such information was not included in the issue reports; there were no fields in the issue reporting tool, requesting
these types of categorical information. The reason was that with the collection of software products maintained by Softech, which heavily interact with each other in a business-critical environment, sharing many resources, such as databases, file systems, and GUI screens, the boundaries of the products from the perspective of issue reporting were not clear at all. Further discussion on this can be found in Section 2.

Different sources of information have been also used for making the assignments. For example, Tamrawi et al. (2011) model the technical expertise of individual developers and use these models together with the information about the developers who recently made changes in the code base. Wu et al. (2011) infer a social network model of the developers using the comments they make on historical issue reports as well as the comments automatically generated at the time of the source code commits, to help with the assignments. Baysal et al. (2009) use developers’ preferences as an additional source of information, which are expressed by the ratings the developers gave for the issues they resolved.

We, in this work, deliberately used a single source of information, i.e., the natural language descriptions present in the issue reports, to simplify the design and implementation of the proposed system to the extent possible. This was a design decision we made to increase the reliability of the proposed system as the system needed to be deployed, making hundreds of assignments per day in a business-critical environment. However, we are currently in the process of figuring out what types of additional sources of information could be used in an industrial setup to further improve the assignment accuracies.

There are also automated approaches for dealing with various other aspects of the issue report management process. One type of approaches aim to identify duplicate issue reports, which can help developers with 1) figuring out the number of actual issues reported; 2) assigning priorities; and 3) debugging (Podgurski et al. 2003). Generally speaking the problem of duplicate identification is casted to a clustering problem where similar reports are grouped together with the assumption that similar descriptions report the same (or similar) issues (Podgurski et al. 2003; Bettenburg et al. 2008b; Wang et al. 2008; Jalbert and Weimer 2008).

Other types of approaches mainly focus on better utilizing the available resources for resolving the reported issues. For example, some approaches aim to predict the severities of the issues (Lamkanfi et al. 2010; Menzies and Marcus 2008; Antoniol et al. 2008; Pandey et al. 2017), which, in this context, indicate the levels of impact the issues have on the development and release process. Others aim to predict the effort required to resolve the issues (Weiss et al. 2007; Giger et al. 2010; Zhang et al. 2013).

Note that the aforementioned problems, i.e., duplicate detection, severity identification, and effort prediction are different than the issue assignment problem addressed in this work. We, however, plan to conduct industrial-strength studies at IsBank and Softech to evaluate the efficiency and effectiveness of these approaches.

11 Conclusion and Future Work

In this work, we have developed and deployed a system to automate the process of issue assignments at Softech/IsBank. To this end, we first cast the problem to a classification problem and determined the classifier to be used in the deployed system by empirically evaluating a number of existing classifiers. We then carried out further studies to determine both the amount and time locality of the historical data required for training the underlying classification models. We finally deployed the proposed system by configuring it based on the results we obtained from these studies.
We observed that 1) it is not just about deploying a data mining-based system for automated issue assignment, but also about designing/changing the assignment process around the system to get the most out of it; 2) the accuracy of the system does not have to be higher than that of manual assignments in order for the system to be useful, which was further validated by the user studies we carried out on actual stakeholders on the field; 3) deploying such a system also requires the development of additional functionalities, such as creating human-readable, non-technical explanations for the assignments made and detecting deteriorations in assignment accuracies in an online manner, for both of which we developed and empirically evaluated different approaches; 4) stakeholders do not necessarily resist change; and 5) gradual transitions can help stakeholders build confidence, which, in turn, facilitates the acceptance of the system.

One avenue for future research is to use additional sources of information to further improve the assignment accuracy, such as using the attachments in issue reports and having “human-in-the-loop” approaches, where the stakeholders and the data mining models interact with each other to improve the accuracy. Another avenue is to carry out industrial-strength studies using the deployed system to evaluate the efficiency and effectiveness of the other related approaches on the field, including duplicate detection, severity identification, and effort prediction.

Appendix A: Evaluating Existing Issue Assignment Approaches

In this section, we discuss the details of the studies we have carried out to determine the issue assignment approach to be used by IssueTAG.

A.1 Approach

We have evaluated a number of classification-based approaches, each of which had been shown to be effective for automated issue assignment (Murphy and Cubranic 2004; Anvik et al. 2006; Bhattacharya et al. 2012; Anvik and Murphy 2011; Jonsson et al. 2016), by using the issue database maintained by Softtech since December 2016.

A.1.1 Representing Issue Reports

Given an issue report, we first combine the “description” and “summary” parts of the report and tokenize the combined text into terms. We then remove the non-letter characters, such as punctuation marks, as well as the stop words, such as “the” and “a,” which are extremely common words of little value in classifying issue reports (Manning et al. 2010). We opt not to apply stemming in this work as an earlier work suggests that stemming has a little effect (if any at all) in issue assignments (Murphy and Cubranic 2004), which is also consistent with the results of our initial studies where stemming slightly reduced the assignment accuracies.

We then represent an issue report as an \(n \)-dimensional vector. Each element in this vector corresponds to a term and the value of the element depicts the weight (i.e., “importance”) of the term for the report. The weights are computed by using the well-known tf-idf method (Manning et al. 2010).

The tf-idf method combines two scores: term frequency (\(tf \)) and inverse document frequency (\(idf \)). For a given term \(t \) and an issue report \(r \), the term frequency \(tf_{t,r} \) is the number
of times \(t \) appears in \(r \). The more \(t \) appears in \(r \), the larger \(tf_{t,r} \) is. The inverse document frequency of \(t \) \((idf_t)\), on the other hand, is:

\[
idf_t = \log\left(\frac{N}{df_t}\right),
\]

where \(N \) is the total number of issue reports and \(df_t \) is the number of issue reports, in which \(t \) appears. The fewer the issue reports \(t \) appears in, the larger \(idf_t \) is.

Given \(tf_{t,r} \) and \(idf_t \), the tf-idf score of the term \(t \) for the issue report \(r \) is computed as follows:

\[
\text{tf-idf}_{t,r} = tf_{t,r} \times idf_t.
\]

Consequently, the more a term \(t \) appears in an issue report \(r \) and the less it appears in other issue reports, the more important \(t \) becomes for \(r \), i.e., the larger \(\text{tf-idf}_{t,r} \) is.

A.1.2 Issue Assignments

Once an issue report is represented as an ordered vector of tf-idf scores, the problem of assignment is cast to a classification problem. In particular, the development team, to which the issue report should be assigned, becomes the class to be predicted and the tf-idf scores of the report become the attributes, on which the classification will be based on.

We train two types of classifiers: level-0 and level-1 classifiers. A level-0 classifier corresponds to a an individual classifier. A level-1 classifier, on the other hand, is obtained by combining multiple level-0 classifiers using stacked generalization – an ensemble technique to combine multiple individual classifiers (Wolpert 1992). All the classifiers we experiment with in this study have been shown to be effective for automated issue assignment (Murphy and Cubranic 2004; Anvik et al. 2006; Bhattacharya et al. 2012; Anvik and Murphy 2011; Jonsson et al. 2016).

For the level-0 classifiers, we use multinomial naive bayesian (Manning et al. 2010), decision tree (Breiman 2017), k-nearest neighbor (Manning et al. 2010), logistic regression (Bishop 2006), random forest (Breiman 2001), and linear support vector classifiers (SVCs) (Joachims 1998).

For the level-1 classifiers, we first train and evaluate our level-0 classifiers by using the same training and test sets for each classifier. We then use the prediction results obtained from these level-0 classifiers to train a level-1 classifier, which combines the probabilistic predictions of the level-0 classifiers using linear logistic regression (Wolpert 1992). Inspired from Jonsson et al. (2016), we, in particular, train two types of level-1 classifiers: BEST and SELECTED. The BEST ensemble is comprised of \(k \) (in our case, \(k = \{3, 5\} \)) level-0 classifiers with the highest assignment accuracies. The SELECTED ensemble, on the other hand, is comprised of a diversified set of \(k \) (in our case, \(k = \{3, 5\} \)) level-0 classifiers. More specifically, the SELECTED ensemble includes the level-0 classifiers, which are selected regardless of their classification accuracies, so that errors of individual classifiers can be averaged out by better spanning the learning space (Wolpert 1992). Note that the BEST and SELECTED ensembles are not necessarily the same because the best performing level-0 classifiers may not be the most diversified set of classifiers. More information on how these ensembles are created can be found in Appendix A.2.

Furthermore, for the baseline classifier, which we use to estimate the baseline classification accuracy for our classifiers, we assign all issue reports to the team that have been assigned with the highest number of issue reports. That is, our baseline classifier always returns the class with the highest number of instances as the prediction.
A.2 Evaluation

We have conducted a series of experiments to evaluate the assignment accuracies of the level-0 and level-1 classifiers.

A.2.1 Experimental Setup

In these experiments, we used the issue reports submitted to Softtech between June 1, 2017 and November 30, 2017 as the training set and the issue reports submitted in the month of December 2017 as the test set. We picked this time frame because it was a representative period of time in terms of the number of issue reports submitted, the number of teams present, and the distribution of the reported issues to these teams. Furthermore, the beginning of this time frame coincide with the time when the significant changes in the organization of the development teams was internalized by the stakeholders (i.e., second vertical line in Fig. 3). As discussed in Section 4.2.3, the reorganization was caused by migrating an integral part of the core banking system from mainframes to state-of-the-art hardware and software platforms. More specifically, the training data started from June 1, 2017 and the aforementioned event occurred on June 16, 2017.

For the aforementioned time frame, we had a total number of 51041 issue reports submitted to 65 different teams. Among all the issue reports of interest in this section as well as in the remainder of the paper, we only used the ones that were marked as “closed,” indicating that the reported issues had been validated and resolved. Furthermore, as the correct assignment for an issue report, we used the development team that had closed the report. The remainder of the issue reports were ignored as it was not yet certain whether these reports were valid or whether the development teams, to which they were currently assigned, were correct. After this filtering, a total of 47123 issue reports submitted to 64 different development teams remained for analysis in this study.

To create the level-1 classifiers, we combined 3 or 5 individual classifiers, i.e., $k = 3$ or $k = 5$. We used the latter setting as it was also the setting used in a recent work (Jonsson et al. 2016). We used the former setting as it was the best setting we could empirically determine for ensemble learning, i.e., the one that produced the best assignment accuracies. In the remainder of the paper, these models are referred to as BEST-3, SELECTED-3, BEST-5, and SELECTED-5.

The BEST-3 and BEST-5 models were obtained by combining Linear SVC-Calibrated, Logistic Regression, and K-Neighbours; and Linear SVC-Calibrated, Logistic Regression, K-Neighbours, Random Forest, and Decision Tree classifiers, respectively, as these were the classifiers providing the best assignment accuracies. The SELECTED-3 and SELECTED-5 models, on the other hand, were created with the goal of increasing the diversity of the classification algorithms ensembled. In particular, the SELECTED-3 model was obtained by combining Linear SVC-Calibrated, K-Neighbours, and Multinomial Naive Bayesian classifiers. And, the SELECTED-5 model was obtained by combining Linear SVC-Calibrated, Logistic Regression, K-Neighbours, Random Forest, and Multinomial Naive Bayesian classifiers. Note further that to include SVCs in level-1 classifiers, we used calibrated linear SVCs instead of linear SVCs as we needed to have class probabilities to ensemble individual classifiers (Ting and Witten 1999), which are not supported by the latter.

The classifiers were trained and evaluated by using the scikit-learn (for level-0 classifiers) (Pedregosa et al. 2011) and mlxtend (for level-1 classifiers) (Raschka 2018) packages. All of the classifiers (unless otherwise stated) were configured with the default
settings and the experiments were carried out on a dual-core Intel(R) Xeon(R) E5-2695 v4 2.10 GHz machine with 32 GB of RAM running Windows Server 2012 R2 as the operating system.

A.2.2 Evaluation Framework

To evaluate the quality of the assignments obtained from different classifiers, we used well-known metrics, namely accuracy and weighted precision, recall, and F-measure (Manning et al. 2010). Accuracy, which is also referred to as assignment accuracy in the remainder of the paper, is computed as the ratio of correct issue assignments. Precision for a particular development team (i.e., class) is the ratio of the issue reports that are correctly assigned to the team to the total number of issue reports assigned to the team. Recall for a team is the ratio of the issue reports that are correctly assigned to the team to the total number of issue reports that should have been assigned to the team. F-measure is then computed as the harmonic mean of precision and recall, giving equal importance to both metrics. Note that each of these metrics takes on a value between 0 and 1 inclusive. The larger the value, the better the assignments are. Furthermore, we report the results obtained by both carrying out 10-fold cross validation on the training data and carrying out the analysis on the test set.

To evaluate the cost of creating the classification models, we measured the time it took to train the models. The smaller the training time, the better the approach is.

A.2.3 Data and Analysis

Table 10 summarizes the results we obtained. We first observed that all the classifiers we trained performed better than the baseline classifier. While the baseline classifier provided an accuracy of 0.10 on the training set and 0.12 on the test set, those of the worst-performing classifier were 0.47 and 0.52, respectively.

We then observed that the SELECTED ensembles generally performed similar or better than the BEST ensembles, supporting the conjecture that using diversified set of classifiers in an ensemble can help improve the accuracies by better spanning the learning space. For example, while the accuracy of the BEST-5 ensemble was 0.67 on the training set and 0.64 on the test set, those of the SELECTED-5 ensemble were 0.80 and 0.78, respectively. Furthermore, the ensembles created by using 3 level-0 classifiers, rather than 5 level-0 classifiers, performed slightly better on our data set. For example, while the accuracy of the SELECTED-5 ensemble was 0.80 on the training set and 0.78 on the test set, those of the SELECTED-3 ensemble were 0.81 and 0.79, respectively.

Last but not least, among all the classifiers, the one that provided the best assignment accuracy (as well as the best F-measure) and did so at a fraction of the cost, was the linear SVC classifier (Table 10). While the linear SVC classifier provided an accuracy of 0.82 on the training data set and 0.80 on the test set with a training time of about three minutes, the runner-up classifiers, namely the SELECTED-3 and BEST-3 ensembles, provided the accuracies of 0.81 and 0.79, respectively, with a training time of about half an hour or more.

Based on both the assignment accuracies and the costs of training obtained from various classifiers using our data set, we have decided to employ linear SVC in IssueTAG.
Appendix B: Time Locality and Amount of Training Data

In this section, we discuss the details of the studies we carried out to determine the time locality of the issue reports required for preparing the training data every time the underlying classification model needs to be trained.

B.1 Approach

To carry out the study, we use the *sliding window* and *cumulative window* approaches introduced in Jonsson et al. (2016). More specifically, we conjecture that using issue reports from “recent past” to train the prediction models, as opposed to using the ones from “distant past”, can provide better assignment accuracies since organizations, products, teams, and issues may change overtime.

To evaluate this hypothesis, we take a long period of time T (in our case, 13 months) and divide it into a consecutive list of calendar months $T = [m_1, m_2, \ldots]$. For every month $m_i \in T$, we train and evaluate a linear SVC model. To this end, we use all the issue reports submitted in the month of m_i as the test set and all the issue reports submitted in the month of m_j as the training set, where $i - j = \Delta$, i.e., the sliding window approach in Jonsson et al. (2016). Note that given m_i and Δ, m_j is the month, which is Δ months away from m_i going back in time. For every month $m_i \in T$, we repeat this process for each possible value of Δ (in our case, $\Delta \in \{1, \ldots, 12\}$). By fixing the test set and varying the training sets, such that they come from different historical periods, we aim to measure the effect of time locality of the training data on the assignment accuracies.

Figure 10 illustrates the sliding window approach using the period of time from Jan 1, 2017 to Jan 31, 2018. For example, for the month of Jan 2018, we train a total of 12 classification models, each of which was trained by using all the issue reports submitted in a distinct month of 2017 (marked as Train1-1, Train1-2, \ldots, Train1-12) and separately test these models using all the issue reports submitted in the month of Jan, 2018 as the test set (marked as Test1). We then repeat this process for every month in the time period of

![Fig. 10 Overview of the sliding window approach to study the effect of the time locality of training data on assignment accuracies](image-url)
interest, except for Jan 2017 as it does not have any preceding months. That is, for Dec 2017 (marked as Test2), we train and evaluate 11 models (marked as Train2-1, Train2-2, ...), for Nov 2017, we train and evaluate 10 models, etc.

To evaluate the effect of the amount of training data on the assignment accuracies, we use a related approach, called the cumulative window approach (Jonsson et al. 2016). This approach, as is the case with the sliding window approach, divides a period of interest T in to a consecutive list of months $T = [m_1, m_2, ...]$. Then, for every possible pair of $m_i \in T$ and Δ, we train and evaluate a classification model, where all the issue reports submitted in the month of m_i are used as the test set and all the issue reports submitted in the preceding Δ months, i.e., $\{m_j \in T \mid 1 \leq i - j \leq \Delta\}$, are used as the training set.

Figure 11 illustrates the approach. For example, for the month of Jan 2018, we train a total of 12 classification models. The first model is created by using the previous month’s data (marked as Train1-1), the second model is created by using the previous two months’ data (marked as Train1-2), and the last model is created by using the previous year’s data (marked as Train1-12). The same process is repeated for every possible month in the period of interest.

B.2 Evaluation

We conducted a series of experiments to evaluate the effect of the amount and time locality of training data on assignment accuracies.

B.2.1 Experimental Setup

In these experiments, we used all the issue reports that were submitted during the period from Jan 1, 2017 to Jan 31, 2018. The summary statistics for this data set can be found in Table 11. All told, we have trained and evaluated a total of 144 linear SVC models for this study. All the experiments were carried out on the same platform with the previous study (Appendix A.2.1).

Fig. 11 Overview of the cumulative window approach to study the effect of the amount of training data on assignment accuracies

 Springer
Table 11 Number of issue reports submitted

month	# of issue reports submitted	# of teams assigned
Jan 2017	6364	57
Feb 2017	5038	56
Mar 2017	7188	57
Apr 2017	6623	55
May 2017	6601	56
Jun 2017	6145	56
Jul 2017	6341	53
Aug 2017	6025	54
Sep 2017	5961	54
Oct 2017	6774	52
Nov 2017	7996	54
Dec 2017	7881	49
Jan 2018	7426	51
Total	86363	69

B.2.2 Evaluation Framework

We used the assignment accuracies (Appendix A.2.2) for evaluations.

B.2.3 Data and Analysis

Figures 12 and 13 represent the results we obtained from the sliding window and cumulative window approach, respectively. In these figures, the vertical and horizontal axes depict the assignment accuracies obtained and the Δ values used in the experiments, respectively. The accuracies associated with a Δ value were obtained from the classification models, each of which was created for a distinct month in the period of interest by using the same Δ value. Furthermore, the polynomials in the figures are the second degree polynomials fitted to the data.

Looking at Fig. 12, we first observed that using issue reports from recent past to train classification models, rather than the ones from distant past, provided better assignment accuracies; the accuracies tended to decrease as Δ increased. For example, while the average assignment accuracy obtained when $\Delta = 1$, i.e., when the issue reports submitted in the immediate preceding months were used as the training sets, was 0.73, that obtained when $\Delta = 12$, i.e., when the issue reports submitted in Jan 2017 were used as the training set for the issue reports submitted in Jan 2018, was 0.52.

Looking at Fig. 13, we then observed that as we went back in time to collect the training data starting from the immediate preceding months (i.e., as Δ increased in the cumulative window approach), the assignment accuracies tended to increase first and then stabilized around a year of training data. For example, while the average accuracy obtained when $\Delta = 1$, i.e., when the issue reports submitted only in the immediate preceding months were used as the training sets, was 0.73, that obtained when $\Delta = 12$, i.e., when all the issue reports submitted in the preceding 12 months were used as the training data set, was 0.82.
Note that in this study, we were solely concerned with the assignment accuracy when choosing the time locality of the training data. This was mainly due to the fact that training the linear SVC models in our case was not costly at all; the differences between the training times for various amounts of training data were practically negligible. More specially, the minimum, average, and maximum training times we observed in all the experiments carried out in this section, were 0.3, 3.4, and 10.8 minutes, respectively, where the minimum, average, and maximum numbers of issue reports used in these experiments were 11366, 37149, and 86348, respectively. However, if training times are not negligible, then the cost of training may greatly vary depending on the amount of the training data used (e.g., the window size chosen). In such cases, assignment accuracies and training times should be balanced according to the requirements of the project when choosing the time locality of the training data.
Based on the results of these studies, to train a prediction model at a given point in time, we decided to use all the issue reports that have been submitted in the last 12 months as the training set. Clearly, among all the issue reports of interest, we filter out the ones that have not yet been closed (Appendix A.2.1).

References

Ahsan SN, Ferzund J, Wotawa F (2009) Automatic software bug triage system (bts) based on latent semantic indexing and support vector machine. In: 2009 fourth international conference on software engineering advances. IEEE, pp 216–221

Alenezi M, Magel K, Banitaan S (2013) Efficient bug triaging using text mining. JSW 8(9):2185–2190

Antoniol G, Ayari K, Di Penta M, Khomh F, Guéhéneuc YG (2008) Is it a bug or an enhancement?: A text-based approach to classify change requests. In: CASCON, vol 8, pp 304–318

Anvik J (2007) Assisting bug report triage through recommendation. PhD thesis, University of British Columbia

Anvik J, Murphy GC (2011) Reducing the effort of bug report triage: recommenders for development-oriented decisions. ACM Transactions on Software Engineering and Methodology (TOSEM) 20(3):10

Anvik J, Hiew L, Murphy GC (2006) Who should fix this bug? In: Proceedings of the 28th international conference on software engineering. ACM, pp 361–370

Baysal O, Godfrey MW, Cohen R (2009) A bug you like: a framework for automated assignment of bugs. In: 2009 IEEE 17th international conference on program comprehension. IEEE, pp 297–298

Bettenburg N, Just S, Schröter A, Weiss C, Premraj R, Zimmermann T (2008a) What makes a good bug report? In: Proceedings of the 16th ACM SIGSOFT international symposium on foundations of software engineering. ACM, pp 308–318

Bettenburg N, Premraj R, Zimmermann T, Kim S (2008b) Duplicate bug reports considered harmful. really? In: 2008 IEEE international conference on software maintenance. IEEE, pp 337–345

Bhattacharya P, Neamtiu I, Shelton CR (2012) Automated, highly-accurate, bug assignment using machine learning and tossing graphs. J Syst Softw 85(10):2275–2292

Bishop CM (2006) Pattern recognition and machine learning. Springer, Berlin

Breiman L (2001) Random forests. Machine Learning 45(1):5–32

Breiman L (2017) Classification and regression trees. Routledge, Evanston

Canfora G, Cerulo L (2006) Supporting change request assignment in open source development. In: Proceedings of the 2006 ACM symposium on Applied computing. ACM, pp 1767–1772

Chen L, Wang X, Liu C (2011) An approach to improving bug assignment with bug tossing graphs and bug similarities. JSW 6(3):421–427

Dedk V, Rossi B (2016) Automated bug triaging in an industrial context. In: 2016 42th euromicro conference on software engineering and advanced applications (SEAA). IEEE

Giger E, Pinzger M, Gall H (2010) Predicting the fix time of bugs. In: Proceedings of the 2nd international workshop on recommendation systems for software engineering. ACM, pp 52–56

Helming J, Arndt H, Hodaie Z, Koegel M, Narayan N (2010) Automatic assignment of work items. In: International conference on evaluation of novel approaches to software engineering. Springer, pp 236–250

Hocking TD, Schleiermacher G, Janoueix-Lerosey I, Delattre O, Bach F, Vert JP (2013) Learning smoothing models of copy profiles using breakpoint annotations. BMC Bioinformatics 14:164

Jalbert N, Weimer W (2008) Automated duplicate detection for bug tracking systems. In: 2008 IEEE international conference on dependable systems and networks with FTCS and DCC (DSN). IEEE, pp 52–61

Jeong G, Kim S, Zimmermann T (2009) Improving bug triage with bug tossing graphs. In: Proceedings of the 7th joint meeting of the European software engineering conference and the ACM SIGSOFT symposium on The foundations of software engineering. ACM, pp 111–120

Joachims T (1998) Text categorization with support vector machines: Learning with many relevant features. Proceedings of the 10th European conference on machine learning, Springer, ECML’98, pp 137–142

Jonsson L, Berg M, Bromad D, Sandahl K, Eldh S, Runeson P (2016) Automated bug assignment: ensemble-based machine learning in large scale industrial contexts. Empir Softw Eng 21(4):1533–1578

Kagdi H, Gethers M, Poshyvanyk D, Hammad M (2012) Assigning change requests to software developers. Journal of Software: Evolution and Process 24(1):3–33
Killick R, Fearnhead P, Eckley IA (2012) Optimal detection of changepoints with a linear computational cost. J Am Stat Assoc 107(500):1590–1598
Lamkanfi A, Demeyer S, Giger E, Goethals B (2010) Predicting the severity of a reported bug. In: 2010 7th IEEE working conference on mining software repositories (MSR 2010). IEEE, pp 1–10
Lavielle M, Eze G (2007) Adaptive detection of multiple change-points in asset price volatility. Long Memory in Economics
Lin Z, Shu F, Yang Y, Hu C, Wang Q (2009) An empirical study on bug assignment automation using chinese bug data. In: 2009 3rd international symposium on empirical software engineering and measurement. IEEE, pp 451–455
Linares-Vásquez M, Hossen K, Dang H, Kagdi H, Gethers M, Poshvanyk D (2012) Triaging incoming change requests: bug or commit history, or code authorship? In: 2012 28th IEEE international conference on software maintenance (ICSM). IEEE, pp 451–460
Manning C, Raghavan P, Schütte H (2010) Introduction to information retrieval. Nat Lang Eng 16(1):100–103
Matter D, Kuhn A, Nierstrasz O (2009) Assigning bug reports using a vocabulary-based expertise model of developers. In: 2009 6th IEEE international working conference on mining software repositories. IEEE, pp 131–140
Menzies T, Marcus A (2008) Automated severity assessment of software defect reports. In: 2008 IEEE international conference on software maintenance. IEEE, pp 346–355
Murphy G, Cubranic D (2004) Automatic bug triage using text categorization. In: Proceedings of the sixteenth international conference on software engineering & knowledge engineering, Citeseer
Nagwani NK, Verma S (2012) Predicting expert developers for newly reported bugs using frequent terms similarities of bug attributes. In: 2011 ninth international conference on ICT and knowledge engineering. IEEE, pp 113–117
Pandey N, Sanyal DK, Hudait A, Sen A (2017) Automated classification of software issue reports using machine learning techniques: an empirical study. Innov Syst Softw Eng 13(4):279–297
Park JW, Lee MW, Kim J, Sw Hwang, Kim S (2011) Costriage: a cost-aware triage algorithm for bug reporting systems. In: Twenty-Fifth AAAI conference on artificial intelligence
Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, Blondel M, Prettenhofer P, Weiss R, Dubourg V, et al. (2011) Scikit-learn: machine learning in python. Journal of Machine Learning Research 12(Oct):2825–2830
Podgurski A, Leon D, Francis P, Masri W, Minch M, Sun J, Wang B (2003) Automated support for classifying software failure reports. In: 25th international conference on software engineering. 2003, Proceedings, pp 465–475. https://doi.org/10.1109/ICSE.2003.1201224
Pressman RS (2005) Software engineering: a practitioner’s approach. Palgrave Macmillan
Raschka S (2018) Mxient: providing machine learning and data science utilities and extensions to python’s scientific computing stack. J Open Source Software 3(24):638
Ribeiro MT, Singh S, Guestrin C (2016) Why should i trust you?: Explaining the predictions of any classifier. In: Proceedings of the 22nd ACM SIGKDD international conference on knowledge discovery and data mining. ACM, pp 1135–1144
Shokripour R, Kasirun ZM, Zamani S, Anvik J (2012) Automatic bug assignment using information extraction methods. In: 2012 international conference on advanced computing and technology applications (ACSAT). IEEE, pp 144–149
Tamrawi A, Nguyen TT, Al-Kofahi JM, Nguyen TN (2011) Fuzzy set and cache-based approach for bug triaging. In: Proceedings of the 19th ACM SIGSOFT symposium and the 13th European conference on foundations of software engineering. ACM, pp 365–375
Ting KM, Witten IH (1999) Issues in stacked generalization. Journal of Artificial Intelligence Research 10:271–289
Truong C, Oudre L, Vayatis N (2018a) Ruptures: change point detection in python. arXiv:180100826
Truong C, Oudre L, Vayatis N (2018b) Selective review of offline change point detection methods. arXiv:180100718
Wang X, Zhang L, Xie T, Anvik J, Sun J (2008) An approach to detecting duplicate bug reports using natural language and execution information. In: Proceedings of the 30th international conference on software engineering. ACM, pp 461–470
Weiss C, Premraj R, Zimmermann T, Zeller A (2007) How long will it take to fix this bug? In: Fourth international workshop on mining software repositories (MSR’07: ICSE Workshops 2007). IEEE, pp 1–1
Wolpert DH (1992) Stacked generalization. Neural Networks 5(2):241–259
Wu W, Zhang W, Yang Y, Wang Q (2011) Drex: developer recommendation with k-nearest-neighbor search and expertise ranking. In: 2011 18th Asia-Pacific software engineering conference. IEEE, pp 389–396
Xia X, Lo D, Wang X, Zhou B (2013) Accurate developer recommendation for bug resolution. In: 2013 20th working conference on reverse engineering (WCRE). IEEE, pp 72–81
Xie X, Zhang W, Yang Y, Wang Q (2012) Dretom: developer recommendation based on topic models for bug resolution. In: Proceedings of the 8th international conference on predictive models in software engineering. ACM, pp 19–28
Zhang H, Gong L, Versteeg S (2013) Predicting bug-fixing time: an empirical study of commercial software projects. In: Proceedings of the 2013 international conference on software engineering. IEEE Press, pp 1042–1051

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.