Primary lymphoma of the pituitary gland: an unusual cause of hemianopia in an immunocompetent patient

PG Rainsbury1 • A Mitchell-Innes2 • NJ Clifton3 • HS Khalil3

1Salisbury District Hospital, Salisbury, Wiltshire SP2 8BJ, UK
2City Hospital, Birmingham B18 7QH, UK
3Derriford Hospital, Crownhill, Plymouth, Devon PL6 8DH, UK

Correspondence to: HS Khalil. Email: hisham.khalil@nhs.net

Primary lymphoma of the pituitary gland is an important diagnosis to consider in patients with seemingly inoperable pituitary tumours.

Introduction

Primary central nervous system lymphoma (PCNSL) is an uncommon form of non-Hodgkin’s lymphoma that can affect any part of the brain or spinal cord. The progressive refinement of endocrine tests, as well as improvements in and increasing availability of diagnostic imaging, has led to an increasing number of pituitary masses being diagnosed.1,2 In addition, with the appearance of acquired immunodeficiency syndrome (AIDS) and organ transplantation in the last 30 years, the incidence of central nervous system (CNS) lymphoma is thought to have increased.2 Recent improved survival rates of patients with AIDS have led to a further increase in primary CNS lymphoma (PCNSL), with an estimated 2.5% of patients with AIDS developing PCNSL.3 PCNSL of the pituitary gland is an extremely rare form of this disease. In this article we report the case of an immunocompetent patient who presented with hemianopia and headache secondary to a large primary lymphoma of the pituitary gland which was initially thought to represent an inoperable and incurable tumour. A review of other reported cases is presented to establish common features of the disease.

Case report

A 67-year-old woman presented to the Ophthalmology Department with a left visual field defect and headache. Magnetic resonance imaging revealed a pituitary tumour measuring 3.6 × 3.4 × 2.85 cm (Figure 1), extending inferiorly to occupy the sphenoid sinus. Laboratory testing of endocrine function was normal and a staging computerized tomography scan showed no evidence of disease elsewhere. The past medical history included a T1 N1 MO breast cancer. The initial differential diagnosis for this tumour included metastasis, pituitary adenoma and meningioma. Neurosurgical review of the scans concluded that the appearances were that of an inoperable neoplasm. She was referred to the ENT department for a transnasal, trans-sphenoidal biopsy to gain a tissue diagnosis. During surgery the tumour was found to be filling the sphenoid sinus. In addition to a biopsy, debulking of the tumour was carried out. Postoperatively the patient noticed an immediate improvement in her visual field defect and headache. Histological analysis revealed a diffuse, large, high-grade B-cell pituitary lymphoma (Figure 2). A bone marrow biopsy was normal and the patient was treated with four cycles of chemotherapy and stereotactic radiotherapy. She had a complete response to treatment with no signs of recurrence at 15-month follow-up (Figure 3). Postoperative blood tests showed continued normal pituitary function, requiring no hormone replacement.

Discussion

Primary pituitary lymphoma (PPL) is a rare tumour of the pituitary gland, although as discussed is now diagnosed more frequently. The exact cause is unknown but several hypotheses have been suggested. These include a possible...
infectious aetiology, perhaps due to Epstein–Barr virus or another herpes virus with the transformation of folliculostellate cells (thought to be a form of adult stem cell) into lymphoma cells.¹

A literature review was performed to search for other reported cases of primary lymphoma of the pituitary gland. A PubMed search was carried out using the MeSH terms (Pituitary Gland OR Pituitary Disease OR Pituitary neoplasm AND Lymphoma). Cases were excluded if the patient was immunosuppressed, or if the lymphoma was widespread. Autopsy studies were not included. This search yielded a total of 27 other reported cases of primary lymphoma of the pituitary gland (Table 1). The majority of these cases were reported in the last 10 years.

The incidence of PPL seems to be similar in both men and women and most commonly affects patients in the sixth decade, although cases from all age groups have been reported. Endocrine dysfunction, headache and visual symptoms such as decreased acuity and bitemporal hemianopia are the most common presenting features and may be associated with other cranial nerve palsies. Endocrine dysfunction appears to occur in roughly 50% of the studies reviewed in this study.⁴,⁵,⁸,¹¹–¹⁷,¹⁹,²¹,²³,²⁴,²⁹ Studies of non-functioning pituitary macroadenomas suggest that pituitary dysfunction is present in more than 30%.³⁰ which would correlate well with lymphomas. By far the most common lymphoma subtype reported was B-cell (65%), the other cases were made up of mixed cell, T-cell, Burkitt cell and mucosa-associated lymphoid tissue cell types. The majority of reported cases were treated with radiotherapy, chemotherapy or a combination of the two. It was not possible to estimate survival rates from the literature due to limited follow-up.

Acknowledgements

The authors would like to thank Duncan Cundall-Curry and Manish Powari for their help with the images in this article.
Author and date	Patient	Cell type	Management	Outcome
Li et al. (2012)\(^a\)	41♀	B-cell	Surgical resection	No recurrence at four years
Carrasco et al. (2010)\(^5\)	49♀	B-cell	Biopsy and chemoradiotherapy	
Hayasaka et al. (2010)\(^6\)	71♂	B-cell	Endoscopic resection, chemotherapy and stem cell transplantation for recurrence	No recurrence at eight months
Bayraktar et al. (2010)\(^7\)	47♀	B-cell	Stereotactic biopsy and steroids	
Fadoukhair et al. (2010)\(^8\)	26♀	B-cell	Endoscopic biopsy with partial tumor resection only	Not stated
Quintero Wolfe et al. (2009)\(^10\)	45♀	B-cell	Sublabial transsphenoidal resection and chemotherapy	No recurrence at three months
Kožáková et al. (2008)\(^11\)	60♀	B-cell	Neurosurgical intervention	
Romeike et al. (2008)\(^12\)	64♀	T-cell	Trans-sphenoidal surgery and chemoradiotherapy	No recurrence at 19 months
Rudnik et al. (2007)\(^13\)	37♂	B-cell	Endoscopic resection, chemoradiotherapy and craniotomy for recurrence	No recurrence at four years
Liu et al. (2007)\(^14\)	26♂	Mixed cell	Endoscopic biopsy and chemoradiotherapy	Died six months post op (lymphoma)
Huang et al. (2005)\(^15\)	47♂	Mixed cell	Trans-sphenoidal pituitary resection and chemoradiotherapy	No recurrence at five months
Capra et al. (2004)\(^16\)	14♀	B-cell	Biopsy through right frontal craniotomy and chemotherapy	No recurrence at 10 months
Katz et al. (2003)\(^17\)	64♀	B-cell	Craniotomy performed after biopsies	Died soon after treatment
Stephens et al. (2002)\(^18\)	79♀	B-cell	Craniotomy performed after biopsies and radiotherapy	Died soon after treatment
Kaufmann et al. (2002)\(^19\)	74♂	B-cell	Trans-sphenoidal pituitary resection and radiotherapy	Died seven months post surgery (pulmonary failure)
Kaufmann et al. (2002)\(^20\)	65♂	B-cell	Trans-sphenoidal pituitary resection, stereotactic radiosurgery, chemotherapy and bone marrow transplantation for recurrence	Died nine months after surgery (pulmonary failure)
Lee et al. (2002)\(^20\)	42♀	MALT	Endoscopic trans-sphenoidal surgery and chemoradiotherapy	No recurrence after six months died three months after diagnosis (pulmonary failure)
Landman et al. (2001)\(^21\)	86♂	B-cell	Trans-sphenoidal resection and chemotherapy	No recurrence at one year
Baleydier et al. (2001)\(^22\)	9♂	B-cell	Diagnosis made on lumbar puncture and treated with chemotherapy	No recurrence at 17 months
Silfen et al. (2001)\(^23\)	11♂	Burkitt cell	Biopsy of the lesion and chemotherapy	
Mathiasen et al. (2000)\(^24\)	65♀	B-cell	Endoscopic transnasal transsphenoidal and chemoradiotherapy	
Au et al. (2000)\(^25\)	82♂	B-cell	Trans-sphenoidal biopsy and palliative radiotherapy	
References

1 Giustina A, Gola M, Doga M, Rosei E. Primary lymphoma of the pituitary: an emerging clinical entity. J Clin Endocrinol Metab 2001;86:4567
2 Eby NL, Eby NL, Grufferman S, et al. Increasing incidence of primary brain lymphoma in the US. Cancer 1988;62:2461–5
3 Baumgartner JE. Primary central nervous system lymphomas: natural history and response to radiation therapy in 55 patients with acquired immunodeficiency syndrome. J Neurosurg 1990;73:206–11
4 Li Y, Zhang Y, Xu J, Chen N. Primary pituitary lymphoma in an immunocompromised patient: a rare clinical entity. J Neurol 2012;259:297–305. Epub 2011 20 September
5 Carrasco CA, Rojas-Z D, Chiorino R, González G. Primary pituitary lymphoma in immunocompetent patient: diagnostic problems and prolonged follow-up. Pituitary 2010;13. [Epub ahead of print]
6 Hayasaka K, Koyama M, Yamashita T. Primary pituitary lymphoma diagnosis by FDG-PET/CT. Clin Nucl Med 2010;35:205
7 Bayraktar S, Bassini W, Goodman M. Primary pituitary lymphoma: idiopathic anasarca with relapse in bone marrow only. Acta Haematol 2010;123:121–5
8 Fadoukhair Z, Amzerin M, Ismaili N, et al. Symptomatic hypophysitis revealing primary suprasellar lymphoma. BMJ Endocrinol Disord 2010;10:19
9 Moshkin O, Muller P, Scheithauer BW, et al. Primary pituitary lymphoma: a histological, immunohistochemical, and ultrastructural study with literature review. Endocr Pathol 2009;20:46–9
10 Quintero Wolfe S, Hood B, Barker J, Benveniste RJ. Primary central nervous system lymphoma mimicking pituitary apoplexy: case report. Pituitary 2009;12:76–9
11 Kozákova D, Machálekova K, Btko P, Szépe P, Vanuga P, Pura M. Primary B-cell pituitary lymphoma of the Burkitt type: case report of the rare clinic entity with typical clinical presentation. Cas Lek Cesk 2008;147:569–73
12 Romeike BFM, Joellenbeck B, Stein H, et al. Precursor T-lymphoblastic lymphoma within a recurrent pituitary adenoma. Acta Neurochirurgica 2008;150:833–6
13 Rudnik A, Larysz D, Blamek S, et al. Primary pituitary lymphoma. Folia Neuropathol 2007;45:144–8
14 Liu JK, Sayama C, Chin SS, Couldwell WT. Extranodal NK/T-cell lymphoma presenting as a pituitary mass. Case report and review of the literature. J Neurosurg 2007;107:660–5
15 Huang YY, Lin SE, Dunn P, Wai YY, Hsueh C, Tsai JS. Primary pituitary lymphoma presenting as hypophysitis. Endocr J 2005;52:543–9
16 Capra M, Wherrett D, Weitzman S, Dirks P, Hawkins C, Bouffet E. Pituitary stalk thickening and primary central nervous system lymphoma. J Neurooncol 2004;67:227–31
17 Katz BJ, Jones RE, Digre KB, Warner JE, Moore KR. Panhypopituitarism as an initial manifestation of primary central nervous system non-Hodgkin’s lymphoma. Endocrinol Pract 2003;9:296–300
18 Stephens JW, Morganstein DL, McLaughlin JE, Dorwood N, Vanderpump MP. Isolated B-cell lymphoma of the pituitary region: a rare clinical entity. Hosp Med 2002;63:306–7
19 Kaufmann TJ, Lopes MB, Laws ER Jr, Lipper MH. Primary sellar lymphoma: radiologic and pathologic findings in two patients. Am J Neuroradiol 2002;23:364–7
20 Lee JH, Lee HK, Choi CT, Huh J. Mucosa-associated lymphoid tissue lymphoma of the pituitary gland: MR imaging features. Am J Neuroradiol 2002;23:838–40
21 Landman RE, Wardlaw SL, McConnell RJ, Khandji AG, Bruce JN, Freda PU. Pituitary lymphoma presenting as fever of unknown origin. J Clin Endocrinol Metab 2001;86:1470–6
22 Baleydiere F, Galambrun C, Manel AM, Guibaud L, Nicolino M, Bertrand Y. Primary lymphoma of the pituitary stalk in an immunocompetent 9-year-old child. Med Pediatr Oncol 2001;36:392–5

Table 1

Author and date	Patient	Cell type	Management	Outcome
Kuhn et al. (1999)26	67♀	T-cell	Sublabial transsphenoidal resection and radiotherapy	No recurrence at 21 months
Sakakibara et al. (1998)27	53♂	T-cell	Transsphenoidal surgery and radiotherapy	
Shaw et al. (1997)28	73♀	Mixed cell	Transsphenoidal exploration and radiotherapy	
Samaratunga et al. (1997)29	66♂	MALT-cell	Endoscopic resection and radiotherapy	

MALT, mucosa-associated lymphoid tissue

Conclusion

Otorhinolaryngologists involved in the treatment of pituitary tumours should be aware of this disease as it is increasing in incidence. It is particularly important to consider the diagnosis in cases that are labelled as inoperable.
23 Silfen ME, Garvin JH, Hays AP, et al. Primary central nervous system lymphoma in childhood presenting as progressive panhypopituitarism. *J Pediatr Hematol Oncol* 2001;23:130–3

24 Mathiasen RA, Jarrahy R, Cha ST, et al. Pituitary lymphoma: a case report and literature review. *Pituitary* 2000;2:283–7

25 Au WY, Kwong YL, Shek TW, Leung G, Ooi C. Diffuse large cell B-cell lymphoma in a pituitary adenoma: an unusual cause of pituitary apoplexy. *Am J Hematol* 2000;63:231–2

26 Kuhn D, Buchfelder M, Brabletz T, Paulus W. Intrasellar malignant lymphoma developing within pituitary adenoma. *Acta Neuropathol* 1999;97:311–6

27 Sakakibara Y, Matsuzawa M, Taguchi Y, et al. A case of sellar T cell type malignant lymphoma. *No Shinkei Geka* 1998;26:53–8

28 Shaw JA, Strachan FM, Sawers HA, Bevan JS. Non-Hodgkin lymphoma with panhypopituitarism, hyperprolactinaemia and sixth nerve palsy. *J R Soc Med* 1997;90:274–5

29 Samarutunga H, Perry-Keene D, Apel RL. Primary lymphoma of pituitary gland: a neoplasm of acquired malig? *Endocrinol Pathol* 1997;8:335–41

30 Ezzat S, Asa SL, Couldwell WT, et al. The prevalence of pituitary adenomas: a systematic review. *Cancer* 2004;101:613–9

© 2012 Royal Society of Medicine Press

This is an open-access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by-nc/2.0/), which permits non-commercial use, distribution and reproduction in any medium, provided the original work is properly cited.