Bacteriological and Molecular Study of Fluoroquinolones Resistance in *Pseudomonas aeruginosa* Isolated From Different Clinical Sources

Mustafa Abd Al-Mayali, Ehab D. Salman

Department of Biotechnology, College of Science, University of Baghdad, Baghdad, Iraq

Received: 28/10/2019 Accepted: 17/12/2019

Abstract

The present study was conducted to investigate the resistance of fluoroquinolones (FQs) and the effects of mutations in the resistance gene in clinical isolates of *P. aeruginosa* isolated from different sources in Al-Hussein Hospital, Al-Samawah city, Iraq. The basic mechanism of the resistant of fluoroquinolones in *P. aeruginosa* is via mutations occurring in the basic bacterial gyrA gene encoding-subunit A of DNA gyrase. Forty clinical isolates from various sources (burn 7 (17.5 %), wound 7 (17.5 %), ear 2 (5 %), operation room 12 (30 %), urine 3 (7.5 %), and industrial dialysis center 9 (22.5 %)) were isolated based on bacteriological methods confirmed by 16s rRNA gene using PCR technique. A sensitivity test was conducted to all isolates by Kirby-Pour method using 7 antibiotics of fluoroquinolones. Amongst the 40 clinical isolates, 10 were resistant and 3 were sensitive to all tested antibiotics, while 27 were intermediate, resistant and sensitive to two or more of tested antibiotics, with the resistance being confirmed by the minimum inhibitor concentration (MIC) test. The ten resistant isolates were used to examine the mutations in gyrA gene. A direct sequence method was used and revealed eight mutations in gyrA gene at different positions. In addition, we found that fluoroquinolone activity in the sensitive isolates, after sequencing for these isolates, is a bacteriostatic activity. The results of this study showed the gyrA mutations resulting from the excessive use of antibiotics are one of the mechanisms may be that leading to fluoroquinolone resistance.

Keywords: Fluoroquinolone, gyrA, direct sequencing, *P. aeruginosa*, 16s rRNA, antibiotic resistance.

دراسة بكتريولوجية و جزيئية لبكتريا الزوائف الزنجارية المقاومة للفلوروكوينالون و المعزولة من مصادر سريرية مختلطة

مصطفى عبد الميالي, إيهاب داود سلمان

قسم التقنيات الأحيائية، كلية العلوم، جامعة بغداد، بغداد، العراق.

الخلاصة

أجريت هذه الدراسة لتحقق من مقاومة الفلوروكوينولونات (FQs) في العزلات السريرية لبكتريا الزوائف الزنجارية المعزولة من مصادر مختلفة من مستشفيات الحسين في مدينة السماوة مع دراسة تأثير الطفرات في موروث المقاومة. الألية الأساسية لمقاومة الفلوروكوينولونات في بكتريا الزوائف الزنجارية هي طفرات تحدث في مورث البكتيريا الأساسي الذي يشير إلى الوحدة الفرعية A من الـ gyrA بواسطة مورث الـ gyrA في DNA gyrase.

Email: mustafa.mayalli@gmail.com
Introduction

Pseudomonas aeruginosa (P. aeruginosa) is an ubiquitous bacterium known as a pathogenic microbe responsible for serious opportunistic infections, especially in the immunocompromised subjects [1]. The spread of this organism in health institutions is very dangerous, with infiltrates, via any defect at the basic defense line of the human host, enter the body through the skin, especially in the hospital intensive care units (ICUs) leading to nosocomial infections [1, 2]. P. aeruginosa pathogenesis is multifactorial, due to the existence of multiple mechanisms of verifiable resistance to most antibiotics, resulting in the production of a variable set of cellular structures and extracellular molecules which play a significant role in increasing pathogenicity [3]. In general, antibiotics are natural products inhibiting the microbes in either bactericidal or bacteriostatic pattern [4]. Fluoroquinolones (FQs) are synthetic antibiotics with bactericidal activity against many species of Gram negative bacterium [4]. Fluoroquinolones are used basically in the treatment of infections generated by P. aeruginosa, but in recent years an increase of fluoroquinolones resistance was observed between clinical isolates at high levels, leading to the failure of the treatment of P. aeruginosa [5]. The basic mechanism of the resistant of fluoroquinolones in P. aeruginosa is mutations occurring in the bacterial gyrA gene encoding subunit A of DNA gyrase [2], thus leading to inhibiting the transcription and blocking DNA replication [6]. The aim of the current study was to detect the occurrence of mutations associated with fluoroquinolones resistance (gyrA gene) using partial fragments from 40 clinical isolates of P. aeruginosa using direct sequencing technique.

Materials and methods

Collection of clinical samples

A total of 258 clinical samples were collected from varied clinical sources of patients and teaching laboratories of Al-Hussein Hospital in Al-Samawah city during the period from November 2018 to February 2019. These samples were taken accurately from each source using a sterile swab, which was then placed in a plane tube containing BHI broth and transferred to public health laboratory (bacteriological unit) in Al-Samawah city, where they were incubated at 37 °C for 24hr. The main sources of the samples were Burn, Wound, Ear, Operation Room, Urine and Industrial Dialysis Center.

Identification of bacterial isolates

As cultural method, all samples were grown on blood and macconkey agar and incubated-at 37 °C for 24hr as an initial diagnostic approach. Additionally, sub-cultures onto macconkey agar were performed to remove bacterial mixed growth and obtain pure colonies of each isolate [7]. For purification, P. aeruginosa was isolated using selective media (Pseudomonas and Cetrimide agars) to confirm the inhibition of other bacterial growth and the production of Pigments [8, 9, 10]. For microscopic examination, Gram stain was used [11]. Diagnostic tests were performed using a variety set of tests (oxidase, catalase, blood hemolysis, urease, motility, indole, citrate, gelatin, and KIA) [12] with confirmed by VITEK2 Compact was achieved using Gram-negative card kits (GN ID) through the colorimetric technique [7]. Then, molecular detection of all isolates was performed by the 16s rRNA gene using PCR technique [13].
Antibiotic sensitivity test

Antibiotic sensitivity testing (AST) was performed by Kirby-Bauer test using Agar Disc Diffusion Method in Mueller-Hinton medium, following recommendations of the Clinical Laboratory Standards Institute (CLSI, 2018, 28th) for Antibiotic sensitivity testing in the medical laboratories. The following 7 antibiotics of fluoroquinolones were used: Nalidixic Acid (30 µg), Ciprofloxacin (10 µg), Norfloxacin (10 µg), Ofloxacin (5 µg), Lomafloxacin (10 µg), Levofloxacin (5 µg), and Trovafloxacin (10 µg), which were all obtained from BioAnalyse, Turkey [14].

Minimum inhibitor concentration test

The MICs were performed by agar well dilution method (AWDM) in Mueller-Hinton medium, with following the CLSI 2018 recommendations for MIC breakpoints and using 7 antibiotics of fluoroquinolones (NA, CIP, NOR, OFX, LOM, LEV, and TRV) [15].

DNA extraction

Genomic DNA was extracted from all isolates using a specific Kit (Genomic DNA Mini Kit, FavorGEN, Korea) in accordance with the user manual of the manufacturer company (specific protocol for gram negative bacterium). In addition, concentration and purity of DNA for each sample were estimated by a NanoDrop device with a range of 147.8 µg/ml within 1.7 purity to 1236.8 µg/ml within 1.9 purity.

PCR reaction

The PCR technique was used to amplify 16s rRNA and gyrA genes, using specific primers (table 1) [16, 17]. A volume of 20 µL was used for amplification in accordance with the user manual of the manufacturer company, which included 10µL of master mix, 1µL of each primer, 3 µL of the DNA template, and 5 µL of nuclease free water. The proper program for this experiment is presented in table 2. Several trails were conducted to determine the optimum conditions to amplify 16s rRNA and gyrA genes in a thermal-cycler device depending on different primers and the DNA template. Afterward, 5 µL was analyzed to detect 16s rRNA and gyrA genes of each PCR product through electrophoresis on 1% agarose gel containing 3 µL of ethidium bromide, and then viewed on UV transilluminator.

Table 1 - Nucleotides sequences for primers (acc.no.NC_002516.2)

ID	Gene	PCR Primers 5'…………….. 3'	X (bp)	Ref.
1.	16s rRNA	F TCAACCTGGGAACCTGCATCC	468	16
		R ACATCTCACGACACGAGCT		
2.	gyrA	F GTGTGCTTTATGCATTATG	287	17
		R GGTCTCCCTTCTGCCAGGTC		

Note: X = PCR product length, Ref = Reference, F = Forward primer, R = Reverse primer.

Table 2 - Basic PCR conditions in this experiment

ID	Steps	Temp (°C)	Time	Cycle
1.	Initial Denaturation	95	5 min	1
2.	Denature	95	40 sec	
3.	Anneal	X	45 sec	25
4.	Extend	72	1 min	
5.	Final Extension	72	5 min	1

X = 58.8 °C for 16s rRNA, X = 51.6 °C for gyrA.

DNA sequencing

In the current study, PCR products of the 15 isolates (13 for gyrA and 2 for 16s rRNA) were sent to the MacroGene company, South Korea, to define the basic nucleotides sequences for the genes. The results of sequencing were then analyzed by BioEdit and MEGA7 software with the NCBI engine.
Results
Amongst the 258 clinical samples, forty *P. aeruginosa* isolates from different sources were obtained. The isolates of *P. aeruginosa* distributed among clinical samples based on their source are listed in Table-3. All clinical isolates were identified as *P. aeruginosa* by a set of a variety of techniques (biochemical tests, cultural, pigment production and VITEK2 Compact). The results are demonstrated in Table-4.

Table 3-Distribution of *P. aeruginosa* isolates.

ID	Source of Samples	No. of Samples	Isolates	
1	Burn	58	7	17.5
2	Wound	50	7	17.5
3	Ear	20	2	5
4	Operation Room	54	12	30
5	Urine	34	3	7.5
6	Industrial Dialysis Center	42	9	22.5
7	Total	258	40	100

Table 4-Biochemical tests for the identification of *P. aeruginosa*.

Test	Gram stain	Oxidase	Catalase	Hemolysis	Urease	Motility	Indole	Citrate	Gelatin	Ferment	Cetrimide	Pseudomonas
	(-)	+	+	-	+	-	+	-	+	-	-	-

(+), Positive, (-), Negative.

Antibiotic sensitivity test
Amongst the 40 clinical isolates, 10 were resistant and 3 were sensitive for all tested antibiotics, whereas 27 were intermediate, resistant and sensitive for two or more of the tested antibiotics (Table-5). These results agree with those of previous reports on clinical isolates of *P. aeruginosa* [16, 17, 18]. This study showed (Fig. 1) that most of *P. aeruginosa* isolates showed the highest level of resistance against the tested antibiotics in accordance with the percentage for each antibiotic: Nalidixic Acid 34 (85%), Trovafloxacin 25 (62.5%), Lomefloxacin 18(45%), Norfloxacin 13(32.5%), Ciprofloxacin 12 (30%), Levofloxacin 12 (30%), and Ofloxacin 11 (27.5%).

Table 5-Results of the antibiotic sensitivity test for *P. aeruginosa* isolates.

ID	Antibiotics	Resistant No. (%)	Sensitive No. (%)	Intermediate No. (%)
1	Nalidixic Acid	34 (85 %)	3 (7.5 %)	3 (7.5 %)
2	Ciprofloxacin	12 (30 %)	26 (65 %)	2 (5 %)
3	Norfloxacin	13 (32.5 %)	27 (67.5 %)	0 (0 %)
4	Ofloxacin	11 (27.5 %)	28 (70 %)	1 (2.5 %)
5	Lomafloxacin	18 (45 %)	16 (40 %)	6 (15 %)
6	Levofloxacin	12 (30 %)	28 (70 %)	0 (0 %)
7	Trovafloxacin	25 (62.5 %)	14 (35 %)	1 (2.5 %)
MIC Test

Amongst the 40 clinical isolates, 10 isolates that were resistant to all tested antibiotics were selected for the MIC test to confirm the resistance of isolates in accordance with the antibiotic sensitivity test, based on recommendations of the CLSI, 2018. The results are listed in the Table-6.

Table 6-The results of resistant isolates in actual MIC range

Id	Resistance Isolates	Source	No.	Actual MIC range (mg/ml)	NA	CIP	NOR	OFX	LOM	LEV	TRV
1.	Burn	Mu 3		32 32 4 4	32	32	32	32	32	> 0.016	
2.	Wound	Mu 10		128 128 16 16	128	128	128	128	128	128	128
3.	Mu 12	Mu 12		8 8 4 4	8	8	8	8	8	16	
4.	Mu 14	Mu 14		8 8 4 4	8	8	8	8	8	16	
5.	Operation Room	Mu 17		128 128 16 16	128	128	128	128	128	128	128
6.	Mu 21	Mu 21		4 4 4 4	1	1	1	1	1	0.25	
7.	Mu 27	Mu 27		4 4 4 4	32	32	32	32	32	> 0.016	
8.	Urine	Mu 30		128 128 16 16	128	128	128	128	128	128	128
9.	Mu 31	Mu 31		8 8 4 4	8	8	8	8	8	16	
10.	IDC	Mu 32		8 8 4 4	8	8	8	8	8	32	

Note: Mu = No. of resistance isolates (pink color), IDC = Industrial Dialysis Center, NA = Nalidixic Acid, CIP = Ciprofloxacin, NOR = Norfloxacin, OFX = Ofloxacin, LOM = Lomefloxacin, LEV = Levofloxacin, TRV = Trovafloxacin.

Molecular detection of 16s rRNA and gyrA

The 16s rRNA was used as a molecular marker for the diagnosis of P. aeruginosa. The results of the current study showed that forty isolates of P. aeruginosa contained the 16s rRNA gene, which is considered as the diagnostic gene for this bacteria. Specific primers were used for the amplification of 16s rRNA, with 468 bp by conventional PCR based on 58.8 °C annealing temperature (Figure-2). Whereas, the gyrA gene in the current study was detected by PCR technique in P. aeruginosa isolates associated with fluoroquinolones resistance. Specific primers were used to amplify 287 bp of gyrA gene based on 51.6 °C annealing temperature (Figure-3).
Data analysis using direct sequencing

1. Phylogenetic tree analysis

Phylogenetic analysis was conducted through following up the alignment using the BLAST\textsubscript{n} program for 16s rRNA sequences obtained from the current isolates by Sanger sequencing after trimming by MEGA7 software [19]. The phylogenetic tree (dendrogram) was created by MEGA7 software using the neighbor-joining method as shown in the figure 4 which illustrates the relationships amongst the local isolate of 16s rRNA with the reference strains in GenBank.

Figure 2 - Ethidium-Bromide stained agarose gel (1% agarose) showing the PCR amplification products with 16s rRNA gene (468 bp) primers for P.aeruginosa extracted DNA. The electrophoresis was conducted at 70 volts for 70 min. Lane (L) is DNA molecular size marker (100→1500 bp ladder). Lanes (1→10) represent bacterial isolates. Lane (N) represents negative control.

Figure 3 - Ethidium-Bromide stained agarose gel (1% agarose) showing the PCR amplification products with gyrA gene (287 bp) primers for P.aeruginosa extracted DNA. The electrophoresis was conducted at 70 volts for 70 min. Lane (L) is DNA molecular size marker (100→1500 bp ladder). Lanes (1→10) represent bacterial isolates. Lane (N) represents negative control.
2. GyrA gene

The gyrA sequences were translated by BioEdit software through comparing the reference sequence (acc.no_NC_002516.2) with local isolates, using option toggle translation from the alignment menu after the sequences alignment (Figure-5), to detect the alterations in amino acids in each isolate (Figure-6). In addition, the gyrA sequences were treated by MEGA7 software before starting the sequences alignment, to remove the trimming from the ends. All amino acids and nucleotides with alterations or substitution are listed in the Table-7.
Figure 5: DNA sequences alignment of local isolates with reference sequence (acc.no.NC_002516.2) of *gyrA* gene by BioEdit software, with alterations in each isolate (table 7). The symbol "Mu" in black color indicates resistant isolates, in blue sensitive isolates, in yellow intermediate isolate.
Whereas when sequencing for the 3 control isolates (2 sensitive and 1 intermediate), we identified 4 fluoroquinolones, we identified 8 mutations in
Figure 6

ID	Mu	Nucleotides	Amino Acids	Type of Mutation
2.	3,17,29,32	259 64	GAC→AA	Missense
3.	12,21,27,31	309 114	GTA→GTC	Silent
4.	12,21,27,31	354 159	GCA→GC	Silent
5.	2,3,10,14,17,29,32,40	396 201	CAC→CAT	Silent
6.	12,21,27,31	408 213	GCC→GC	Silent
7.	30	415 220	GAA	Deletion
8.	17,32	415 220	GAA→AA	Missense

In our study, after the sequencing of 10 isolates resistant to all tested antibiotics of fluoroquinolones, we identified 8 mutations in gyrA gene at different positions, of which 3 (37.5%) were missense mutations, 4 (50%) were silent mutations, and 1 (12.5%) was a deletion mutation. Whereas when sequencing for the 3 control isolates (2 sensitive and 1 intermediate), we identified 4 mutations in gyrA gene at different positions, of which 2 (50%) were missense mutations, 1 (25%)
was a silent mutation, and 1 (25 %) was insertion mutation. Based on this, we identified the fluoroquinolone activity in the sensitive isolates as a bacteriostatic activity, in accordance with the basic tests (antibiotic sensitivity, MIC and sequencing), due to the presence of several mutations which are limiting the use of this class of antibiotics in the future. Nevertheless, all the mutations diagnosed in the gyrA gene were related with all antibiotics (NA, CIP, NOR, OFX, LOM, LEV, and TRV) in accordance with the 10 isolates of P.aeruginosa that were resistant for all tested antibiotics of fluoroquinolones class.

Discussion

Fluoroquinolones are synthetic antibiotics with bactericidal-activity against many species of Gram negative bacterium [20]. In most hospitals, excessive use of a wide spectrum of antibiotics led to the appearance of highly resistant isolates of P. aeruginosa [17]. Based on biochemical, epidemiological, and molecular previous studies, the first target for FQs in P.aeruginosa is DNA gyrase [18]. In the current study, the mutations in gyrA gene of the 13 isolates of P. aeruginosa (10 resistant, 2 sensitive, and 1 intermediate) obtained from the 40 clinical isolates are demonstrated in Table-7 above. To reveal the correlation amongst mutations and isolates associated with fluoroquinolones resistance, a comparison was made for the molecular analysis results of the target gene with MIC test in accordance with the antibiotic sensitivity test. The results in our study showed that, amongst the 40 clinical isolates, 10 were resistant and 3 were sensitive for all tested antibiotics, while 27 were intermediate, resistant and sensitive for two or more of the tested antibiotics. In addition, amongst the 10 isolates of P.aeruginosa resistant to all tested antibiotics of fluoroquinolones, 2 had a single mutation, 1 had a double mutation, and 7 had several mutations. While for the 2 sensitive isolates to fluoroquinolones, 1 had several mutations and 1 had a double mutation, with 1 intermediate isolate that had a double mutation in gyrA gene. These results agree with those of a previous molecular study [17]. However, we identified 9 mutations in gyrA gene in the 13 clinical isolates (10 associated with fluoroquinolones resistant, 2 sensitive, and 1 intermediate) that occurred at different codons (83, 87, 103, 118, 132, 136, 139, and 140). The alterations of nucleic acid in these codons were detected through the change of the amino acid Threonine in the codon 83 to Isoleucine (Thr-83→Ile), which was found in 9 isolates. Additionally, Aspartate in the codon 87 was changed to Asparagine (Asp-87→Asn) in 4 isolates. These results agree with those of a previous reports on clinical isolates of P.aeruginosa [6, 17, 18, 21]. The present analysis also revealed changes of Valine in the codon 103 to Valine (Val-103→Val) in 4 isolates, Alanine in the codon 118 to Alanine (Ala-118→Ala) in 4 isolates, Histidine in the codon 132 to Histidine (His-132→His) in 8 isolates, and Alanine in the codon 136 to Alanine (Ala-136→Ala) in 4 isolates. These results agree with those of a previous molecular study [2]. In addition, we found changes of Glutamate in the codon 139 to Lysine (Glu-139→Lys) in 2 isolates, Glutamate in the codon 139 to X (deletion G) (Glu-139→X) in 1 isolate, and insertion A in the codon 140 to Lysine (X-139→Lys) in 1 isolate. These results are in disagreement with the results of previous molecular studies [2, 17]. In this study, the highest levels of resistant were to Nalidixic Acid (85%), Trovafloxacin (62.5%), Lomefloxacin (45%), Norfloxacin (32.5%), Ciprofloxacin (30%), Levofloxacin (30%), and Ofloxacina (27.5%). The importance of this resistance in P. aeruginosa isolates is that it gradually leads to increased secretion of the virulence factors [2]. Moreover, the highest levels of resistant are usually associated with the existence of gyrA mutations and lead to the failure of the treatment of P. aeruginosa, thus limiting the use of this class of antibiotics in the future.

Conclusions

In conclusion, the results of the present study, in agreement with the previous reports, showed the gyrA mutations resulting from the excessive use of antibiotics are one of the mechanisms may be that leading to fluoroquinolone resistance in P. aeruginosa clinical isolates, where we proved that DNA gyrase encoding gyrA gene is considered as the basic target for fluoroquinolones.

References

1. Lyczak, J.B., Cannon, C.L. and Pier, G.B. 2000. Establishment of Pseudomonas aeruginosa infection: lessons from a versatile opportunist. Microbes and infection, 2(9): 1051-1060.

2. Farahi, R.M., Ali, A.A. and Gharavi, S. 2018. Characterization of gyrA and parC mutations in ciprofloxacin-resistant Pseudomonas aeruginosa isolates from Tehran hospitals in Iran. Iranian Journal of Microbiology, 10(4): 242.
3. Bunyan, I.A., Hadi, O.M. and Al-Mansoori, H. A. 2018. Molecular detection of Metallo-beta lactamase producing Pseudomonas aeruginosa isolated from different sites of infection. Journal of Pharmaceutical Sciences and Research, 10(5): 1072-1078.

4. Fergusson, D. 2008. A study of clinical strains of Pseudomonas aeruginosa and the investigation of antibiotic resistance mechanisms in the multidrug resistant strain PA13 (Doctoral dissertation, Dublin City University).

5. Nejma, M.B., Sioud, O. and Mastouri, M. 2018. Quinolone-resistant clinical strains of Pseudomonas aeruginosa isolated from University Hospital in Tunisia. 3 Biotech, 8(1): 1.

6. Gorgani, N., Ahlbrand, S., Patterson, A. and Pourmand, N. 2009. Detection of point mutations associated with antibiotic resistance in Pseudomonas aeruginosa. International journal of antimicrobial agents, 34(5): 414-418.

7. Garry, G., Staley, J.T., Boone, D.R., De Vos, P., Goodfellow, M., Rainey, F.A., Garry, G.M. and Schleifer, K.H. 2009. Bergey’s Manual® of systematic bacteriology: volume two: the proteobacteria. Springer Science & Business Media.

8. Jorgensen, J.H., Pfaller, M.A., Carroll, K.C., Funke, G., Landry, M.L., Richter, S.S. and Warnock, D.W. 2015. Manual of Clinical Microbiology. 11th ed. Vol. 1.

9. Forbes, B.A., Sahm, D.F. and Weissfeld, A.S. 2007. Bailey & Scott’s diagnostic microbiology. 12th ed. St. Louis (MO): Mosby Elsevier.

10. Tille, P.M. 2017. Bailey & Scott's diagnostic microbiology-E-Book. Elsevier Health Sciences.

11. Brown, A.E. and Smith, H. 2015. Benson’s Microbiological applications: laboratory manual in general microbiology. 13th ed. New York, N.Y.: McGraw Hill.

12. Sambrook, J.F. 2000. Biochemical Tests for Identification of Medical Bacteria. 3rd Edition, Lippincott Williams & Wilkins, Philadelphia, USA.

13. Sambrook, J. and Russell, D. W. 2001. Molecular cloning: a laboratory manual (3-volume set) (Vol. 999). New York: Cold spring harbor laboratory press. Cold spring harbor.

14. Hombach, M., Jetter, M., Blöchliger, N., Kolesnik-Goldmann, N., Keller, P.M. and Böttger, E.C. 2017. Rapid disc diffusion antibiotic susceptibility testing for Pseudomonas aeruginosa, Acinetobacter baumannii and Enterococcus spp. Journal of Antimicrobial Chemotherapy, 73(2): 385-391.

15. Andrews, J.M. 2001. Determination of minimum inhibitory concentrations. Journal of antimicrobial Chemotherapy, 48(suppl_1): 5-16.

16. Dakhl, Z.F. and Alwan, S.K. 2016. Detection of some genes resistance to quinolones in Pseudomonas aeruginosa isolated from different clinical sources in Al-Diwaniya. American Journal of BioMedicine: 4(10): 427-434.

17. Salma, R., Dabboussi, F., Kassaa, I., Khudary, R. and Hamze, M. 2013. gyrA and parC mutations in quinolone-resistant clinical isolates of Pseudomonas aeruginosa from Nini Hospital in north Lebanon. Journal of Infection and Chemotherapy, 19(1): 77-81.

18. Akasaka, T., Tanaka, M., Yamaguchi, A. and Sato, K. 2001. Type II topoisomerase mutations in fluoroquinolone-resistant clinical strains of Pseudomonas aeruginosa isolated in 1998 and 1999: role of target enzyme in mechanism of fluoroquinolone resistance. Antimicrobial agents and chemotherapy, 45(8): 2263-2268.

19. Hall, B.G. 2013. Building phylogenetic trees from molecular data with MEGA. Molecular biology and evolution, 30(5): 1229-1235.

20. Pham, T.D., Ziora, Z.M. and Blaskovich, M.A. 2019. Quinolone antibiotics. Med Chem Comm.

21. Takrami, S.R., Ranji, N. and Hakimi, F. 2017. New mutations in ciprofloxacin resistant strains of Pseudomonas aeruginosa isolated from Guilan Province, Northern Iran. Molecular Genetics, Microbiology and Virology, 32(4): 218-223.