SOLUTION TO A BCC 2022 PROBLEM

HENRY (MAYA) ROBERT THACKERAY

Abstract. For positive integers \(n \) and \(k \) such that \(k \) is at most \(n \), we find an explicit one-to-one correspondence between the following two sets: the set of words consisting of \(k \) \(R \)s, \(k \) \(U \)s, and \(n - k \) \(D \)s, where the first letter of the word is not \(D \); and the set of subgraphs \(H \) of a cycle of length \(2n \) (where that cycle has differently labelled vertices) such that \(H \) has \(n \) edges and \(k \) connected components. This solves a problem of Thomas Selig from the 29th British Combinatorial Conference held at Lancaster University in July 2022.

1. Introduction

This note solves a problem posed by Thomas Selig at the 29th British Combinatorial Conference (BCC 2022) held at Lancaster University in July 2022 [1].

Let the graph \(C \) be the cycle of length \(2n \) where the vertices of \(C \) are the elements \(0, 1, \ldots, 2n - 1 \) of \(\mathbb{Z}/(2n \mathbb{Z}) \), and the edges of \(C \) are the edges \(\{i, i + 1\} \) with \(i \in \mathbb{Z}/(2n \mathbb{Z}) \). For each \(i \) and \(j \) in \(\mathbb{Z}/(2n \mathbb{Z}) \), define the path \(P(i, j) \) in \(C \) as follows: if \(i = j \) then \(P(i, j) \) is the no-edge path in which the only vertex is \(i \), and if \(i \neq j \) then \(P(i, j) \) is the path \((i, i + 1, \ldots, j - 1, j) \) from \(i \) to \(j \). (For example, \(P(-1, 1) \) is the two-edge path \((2n - 1, 0, 1) \), since \(-1 = 2n - 1 \) in \(\mathbb{Z}/(2n \mathbb{Z}) \).)

A statement of the problem of Selig is as follows: For integers \(n \) and \(k \) with \(1 \leq k \leq n \), find an explicit one-to-one correspondence between

- The set \(W \) of words consisting of \(k \) letters \(R \), \(k \) letters \(U \), and \(n - k \) letters \(D \), in any order such that the first letter of the word is not \(D \); and
- The set \(G \) of subgraphs of \(C \) with \(n \) edges and \(k \) connected components.

(Instead of \(W \), the problem originally referred to the set of all lattice paths in the \(xy \) plane from \((0, 0)\) to \((n, n)\) consisting of the following steps in any order, where the first step is not a \(D \) step: \(k \) \(R \) steps, where each step moves one unit to the right; \(k \) \(U \) steps, where each step moves one unit up; and \(n - k \) \(D \) steps, where each step moves along a 45-degree diagonal one unit to the right and one unit up. There is a clear explicit one-to-one correspondence between such paths and words in \(W \): the letters of the word are the letters of the steps in the path, in the same order.)

We take a partition \(W = W_\star \cup W_0 \) and a partition \(G = G_\star \cup G_0 \). We explicitly describe a bijection from \(W_\star \) to \(G_\star \), and then a bijection from \(W_0 \) to \(G_0 \). (Checking that these maps are bijections is left as a straightforward exercise for the reader.) Combining these bijections gives an explicit bijection from \(W \) to \(G \).

2. Partitions and sequences of numbers

Let \(W_\star \) consist of the words \(w \) in \(W \) such that for some letter \(D \) in \(w \), there are no \(R \)s before that \(D \) in \(w \) (in such a word, the first letter is \(U \)); take the partition \(W = W_\star \cup W_0 \), where \(W_0 = W - W_\star \). Let \(G_\star \) consist of the subgraphs of \(C \) that do not contain the vertex 0; take the partition \(G = G_\star \cup G_0 \), where \(G_0 = G - G_\star \).
For each word w in W, define integers p_0, \ldots, p_k and q_0, \ldots, q_k as follows.

- The number p_0 is the number of non-U letters before the first U in w.
- The number q_0 is 1 less than the number of Ds before the first R in w.
- For positive integers $i \leq k-1$, p_i (respectively, q_i) is the number of non-U letters (resp. Ds) between the ith and $(i+1)$st Us (resp. Rs) in w.
- The number p_k (respectively, q_k) is the number of non-U letters (resp. Ds) after the last U (resp. R) in w.

3. The first bijection

The set W_* has $\binom{n+k-1}{k-1}\binom{n-1}{k-1}$ words. (Proof: For each word in W_*, the first letter is U and the first non-U letter is D. To specify a word in W_*, choose $k-1$ positions in the word for the other Us, then choose k positions for the Rs. We take $\binom{n-1}{k-1} = 0$.) For each w in W_*, we have the sequence (p_1, \ldots, p_k) of k nonnegative integers that sum to n, and the sequence (q_0, \ldots, q_k) of $k+1$ nonnegative integers that sum to $n-k-1$, defined as above. In the element of G_* corresponding to w, the connected components are the following k paths, where $m \in \{1, \ldots, k\}$:

$$P \left(m + \sum_{i=1}^{m-1} p_i + \sum_{i=0}^{m-1} q_i, m + \sum_{i=1}^{m} p_i + \sum_{i=0}^{m-1} q_i \right).$$

For $m \in \{1, \ldots, k\}$, the mth path has p_m edges; for $m \in \{1, \ldots, k-1\}$, there are $q_m + 1$ edges between the mth and $(m+1)$st paths. ($\sum_{i=1}^{0}$ is the empty sum 0.)

4. The second bijection

The set W_0 has $\binom{n+k}{k}\binom{n-1}{k-1}$ words. (Proof: The first non-U letter is R. Choose k positions for the Us; choose $k-1$ positions for the other Rs.) For each w in W_0, we have the sequence (p_0, \ldots, p_k) of $k+1$ nonnegative integers that sum to n, and the sequence (q_1, \ldots, q_k) of k nonnegative integers that sum to $n-k$ defined as above. In the element of G_0 corresponding to w, the connected components are:

$$P \left(m + \sum_{i=0}^{m-1} p_i + \sum_{i=1}^{m} q_i, m + \sum_{i=0}^{m} p_i + \sum_{i=1}^{m} q_i \right)$$

where $m \in \{1, \ldots, k-1\}$, and $P(-p_k, p_0)$. For $m \in \{1, \ldots, k-1\}$, the mth path has p_m edges and there are $q_{m+1} + 1$ edges between the mth and $(m+1)$st paths; the path $P(-p_k, p_0)$ has $p_k + p_0$ edges.

Acknowledgements

At BCC 2022, I presented postdoctoral research that I carried out at the University of Pretoria. Many thanks to everyone at the University of Pretoria, including my postdoctoral supervisor James Raftery, Roumen Anguelov, Jan Harm van der Walt, Mapundi Banda, and Anton Ströh, for their past and continuing generous support. Many thanks to Tony Nixon, Sean Prendiville, and everyone else behind the scenes of BCC 2022 for making this wonderful conference possible. Many thanks to Thomas Selig for posing this paper’s problem.

References

[1] Lancaster University. 2022. “29th British Combinatorial Conference | Lancaster University”. Accessed August 8, 2022, <https://www.lancaster.ac.uk/maths/bcc2022/>.

DEPARTMENT OF MATHEMATICS AND APPLIED MATHEMATICS, UNIVERSITY OF PRETORIA, PRETORIA, 0002 SOUTH AFRICA, maya.thackeray@up.ac.za, mayart314@outlook.com