Male predominance was observed wipeout period of spinal anesthesia in hemorrhoidectomy in relation to different Prakriti.

Abstract

Background: A maximum number of hemorrhoidectomies are performed under spinal anesthesia. However, the effect of spinal anesthesia varies from person to person due to difference in their physical and psychological properties, which is well explained in Ayurveda as Prakriti (physiology of an individual). In this study, we have tried to establish a relation between wipeout period of spinal anesthesia and different Prakriti. **Objectives:** To observe wipeout period of spinal anesthesia in hemorrhoidectomy in relation to different Prakriti. **Materials and Methods:** A total of 30 individuals who underwent hemorrhoidectomy under spinal anesthesia were selected for the study and their Prakriti was assessed as per the standard Prakriti assessment chart before surgery. Apart from demographic data, pain assessment was also recorded by following visual analog scale. Postoperative follow-up was done until the wipeout effect of spinal anesthesia was observed. GraphPad Prism software was used to analyze the data; P < 0.05 was considered statistically significant. **Results:** Male predominance was observed in hemorrhoidectomy cases. Majority of the patients were 20–25 years of age with body weight between 61 and 70 kg. Distribution of Prakriti was observed to be highest in Vata-Pitta Prakriti (36.6%). A significant difference was observed in the wipeout period among Prakriti where the duration of wipeout period was more in the Kapha Prakriti individuals (P < 0.0001). **Conclusion:** Kapha involvement increases the wipeout period in posthemorrhoidectomy; however, in Pitta and Vata Prakriti individuals, the wipeout period is less. Future studies could include a larger sample size and various other factors to analyze the involvement of Kapha.

Keywords: Hemorrhoidectomy, Prakriti, spinal anesthesia, wipeout period

Introduction

Arsha (hemorrhoids) are the protruding, inflamed blood vessels in a distention state around the rectum, which strike in 39%–52% of the elderly population.[1] These are usually asymptomatic, but may complicate with the painless hemorrhage with prolapsed, pruritus anus and usually pain if thrombosed. Risk factors are poorly understood, but it is hypothesized that risk amplifies on inadequate dietary fiber intake, straining during laxation and constipation.[1,2] Open hemorrhoidectomy is an extensively used surgical procedure for the clinical management of hemorrhoids.[3,4] Surgery contributes to massive pain postoperatively by virtue of spinal anesthesia usage[4] because anesthesia along with disrupting neural conductivity by blocking the inflow of sodium ions gives rise to transient neurological symptoms.[5,6] However, patients behave differently with the same anesthetic even with the adoption of uniform technique and surgical procedure. This uncertainty is believed to be due to the physical and psychological status of the patient, referred to as Prakriti in Ayurveda. Prakriti is a basic term in Ayurveda which defines a physical and psychological feature of human beings.[7] Being an ancient scheme of medicine practiced in India, Ayurveda achieved a global appreciation for its successful practice and attained superiority in research and complementary medicine development;[6] it proposes that Prakriti, Dosha (bioelements), and Agni (metabolism) are central paradigms of proper health and disease development. In holistic approach, Ayurveda classifies human beings based on the seven different Sharirika Prakriti, namely, Vata, Pitta, Kapha, Vata-Pitta, Pitta-Kapha, Kapha-Vata and Tridosha–Vata Pitta Kapha people corresponding to three Dosha–Vata, Pitta and Kapha,
Spinal anesthesia comprises lidocaine, an analgesic of amide group which is extensively used in various medical treatments such as antiarrhythmic therapy, which is responsible for implicating transient neurological symptoms such as pain. Even though the amount of drug lidocaine is same (5%) in all the patients, spinal anesthesia usage varies the time of postoperative pain from person to person. This uncertainty in clinical postoperative pain led this study to find out a definite relationship regarding the wipeout period of spinal anesthesia. This study of spinal anesthesia relation to Prakriti is carried out to find the physiological and psychological relationship that is occurred in the three categories of people: Vata, Pitta, and Kapha predominant.

Materials and Methods

This was an 18-month observational study performed at Ayurveda Mahavidyalaya, KLE University, Belagavi. A total of 30 patients were included in the study who had undergone hemorrhoidectomy under spinal anesthesia. Patients falling under grade I and II of the American Society of Anesthesiologists with the age between 20 and 50 years were selected for the study. Patients on antidepressant and antipsychotic drugs and patients suffering from bronchial asthma, cardiac diseases, renal failure, diabetes, hypertension, and addictions were excluded from the study. Prakriti of the patients was assessed as per the standard Prakriti assessment proforma by the CCRAS. Pain was assessed using visual analog scale till wipeout effect of spinal anesthesia. This study was ethically cleared by the Institutional Ethics Committee (Reference No: BMK/12/PG/SH/11) for human subjects and obtained written informed consent form from all the patients willing to participate in this study. GraphPad Prism software was used to analyze the data. \(P < 0.05 \) was considered statistically significant data.

Results

A total of 30 patients undergoing hemorrhoidectomy were observed in this study in relation to Prakriti. The patients were observed for wipeout period of spinal anesthesia.

Age, weight, and sex

In the present study, 23.3% of patients were in the age group of 20–25 years followed by 20% in 36–40 years and 46–50 years age group and 13.3% were in the age group of 31–35 years and 41–45 years. Remaining 10% of patients belonged to the age group of 26–30 years.

Weight-wise distribution showed that 43.3% of patients were in the weight group of 61–70 kg and 23.3% of patients were in the weight group of 40–50 kg and 51–60 kg where 9.9% were in the weight group of 71–80 kg. Sex-wise distribution showed that 70% of patients were male and 30% were female.

Prakriti

Prakriti-wise distribution showed that 36.6% of patients belonged to Vata-Pitta Prakriti followed by Vata-Kapha Prakriti (20%), Pitta-Kapha Prakriti (16.6%), Pitta-Vata Prakriti and Kapha-Pitta Prakriti (10%) [Table 1].

Wipeout period

Highest wipeout period was observed in Vata-Kapha (253.3 ± 12.5) followed by Kapha-Pitta with moderate wipeout period. The mean value of Vata-Kapha, Kapha-Pitta and Pitta-Kapha was 253.3, 228.7 and 205 respectively [Table 2].

Table 1: Distributions of Prakriti among patients

Types of Prakriti	Number of patients, n (%)
VP	11 (36.6)
VK	6 (20)
KP	3 (10)
PK	5 (16.6)
PV	5 (16.6)

Types of Prakriti	Number of patients, n (%)
VP: Vata-Pitta, VK: Vata-Kapha, KP: Kapha-Pitta, PK: Pitta-Kapha, PV: Pitta-Vata	

Table 2: Mean±standard deviation of wipeout duration for hemorrhoidectomy

Prakriti	Duration (min), mean±SD
VP (n=11)	161.8±12.3
VK (n=6)	253.3±12.52
PK (n=5)	205±14.58
PV (n=5)	178.8±14.13
KP (n=3)	228.7±35.64

SD: Standard deviation, VP: Vata-Pitta, VK: Vata-Kapha, PK: Pitta-Kapha, PV: Pitta-Vata, KP: Kapha-Pitta
One-way analysis of variance concerning wipeout duration and Prakriti showed a significant difference between Vata-Pitta and Vata-Kapha, Vata-Pitta and Pitta-Kapha, Vata-Pitta and Kapha-Pitta, Vata-Kapha and Pitta-Kapha, Vata-Kapha and Pitta-Vata, and Pitta-Vata and Kapha-Pitta. No significant difference was observed between Vata-Pitta and Pitta-Vata, Vata-Kapha and Kapha-Pitta, Pitta-Kapha and Kapha-Pitta, and Pitta-Kapha and Pitta-Vata [Table 3].

No significant difference was observed between age and weight of the patients on the wipeout period. This shows that there was no correlation between age groups and weight of the patients on wipeout period.

Discussion

The present study was conducted to determine the role of the Prakriti in the differences observed in the wipeout period in hemorrhoidectomy surgery by spinal anesthesia. Hemorrhoidectomy is generally observed in the geriatric patients as stated by previous studies. Contrastingly, the present study observed the patients from age group of 20–25 years dominating the incidence of hemorrhoidectomy.[1] Postoperative, spinal anesthesia-related complications such as acute urinary retention, irreversible pain and increased necessity of analgesia and transient neurological symptoms may be because of the presence of lidocaine.[16,17] Ninety percent of lidocaine gets metabolized rapidly in liver by CYP3A cytochrome and give rise to certain active metabolites such as monoethylglycinexylidide and glycinexylidide with half-life up to 10 h, and only <10% of nonmetabolized lidocaine is excreted out by kidney.[18,19] The plasma binding of lidocaine depends on drug concentration and metabolism, where binding decreases with increase in concentration,.[20,21] suggests that if drug metabolism is fast, clearance (wipeout) period will be lesser.

Major constitutions of human being such as Vata, Pitta and Kapha possess distinct variety of metabolic behavior. Pitta is characterized with highest metabolic rate, Kapha is slower, and Vata is with inconsistent property.[22] Individuals with Pitta dominance show higher metabolic rate and digestion. Agni, which can also be represented as Pitta Prakriti, shows a direct participation in metabolism, absorption, as well as digestion and assists in the physiological activity of individuals.[23] Vata possesses abnormality with Agni (Vishamagni), but due to the influence of Pitta, it raises Agni.[24] In the study, wipeout period is highest in Vata-Kapha (253.3 min) followed by Kapha-Pitta (228.7 min), Pitta-Kapha (205 min), Pitta-Vata (178.8 min) and Vata-Pitta (161.8 min). These findings denote Pitta dominance. The least wipeout period was observed in Vata-Pitta with wipeout period of 161.8 min; this may be due to the association of Vata and Pitta. Pitta increases Agni and Vata also facilitates digestive fire and involves in the continuous circulation of processed food all over the body through micro and macrochannels (Srotas)[25,26] and association of these Vata and Pitta contributes to enhanced metabolism and digestion leading to lesser wipeout period.

Higher wipeout period was encountered with Kapha Prakriti, as Agni is weak (Mandagni) in Kapha Dosha and develops difficulty in digestion and metabolism.[8,24] Furthermore, Agni is irregular with Vata and gets suppressed due to the influence of Kapha[23] leading to lesser metabolism of drug and hence highest wipeout period. This suggests that Vishama Agni in Vata acts based on Dosha. If it is associated with Pitta, it increases Agni and with Kapha it decreases Agni, hence changing the wipeout period. Subsequent wipeout period groups were 228.7 and 205 min concerning to Kapha-Pitta and Pitta-kapha groups, respectively. Wipeout period is less because the Pitta is suppressed by Kapha; hence, metabolism is lowest so wipeout period is moderate.

In study by Ghodke et al.'s[22] study, significant association was observed between CYP2C19 genotype and major classes of Prakriti types. The extensive metabolizer genotype was found to be predominant only in Pitta Prakriti and the poor metabolizer genotype was highest in Kapha Prakriti.

Conclusion

The present study has revealed that wipeout period of drug, which is used in this study, was fast in Vataja and Pittaja Prakriti and slow in Kaphaja Prakriti. The descriptions in Ayurveda indicate that individuals with Pitta Prakriti are

Table 3: One-way analysis of variance for wipeout duration and Prakriti

Tukey’s multiple comparison test	Mean difference	d	Significant P<0.05	Summary	95% CI of difference
VP versus VK	−91.52	15.83	Yes	***	−115.5−67.49
VP versus PK	−43.18	7.029	Yes	***	−68.71−17.65
VP versus PV	−16.98	2.764	No	NS	−42.51−8.545
VP versus KP	−66.85	9.011	Yes	***	−97.68−36.02
VK versus PK	48.33	7.008	Yes	***	19.67-76.99
VK versus PV	74.53	10.81	Yes	***	45.87-103.2
VK versus KP	24.67	3.063	No	NS	−8.800-58.13
PK versus PV	26.2	3.637	No	NS	−3.733-56.13
PK versus KP	−23.67	2.845	No	NS	−58.23-10.90
PV versus KP	−49.87	5.995	Yes	**	−84.43−15.30

PK: Pitta-Kapha, PV: Pitta-Vata, KP: Kapha-Pitta, VP: Vata-Pitta, VK: Vata-Kapha, NS: Nonsignificant, CI: Confidence interval, significant value: *** = <0.0001, ** = <0.001
fast metabolizers and while those of *Kapha Prakriti* are slow metabolizers, which may be comprehended to the extent. Further research is required in large sample size with other anesthetic drugs to understand the relation of wipeout period with *Prakriti*.

Financial support and sponsorship

Nil.

Conflicts of interest

There are no conflicts of interest.

References

1. Peery AF, Sandler RS, Galanko JA, Bresalier RS, Figueredo JC, Ahnen DJ, *et al.* Risk factors for hemorrhoids on screening colonoscopy. PLoS One 2015;10:e0139100.
2. Mishra Neha SH. Hemorrhoid (arsha): A comprehensive review on its causes and treatment. UJAHM 2013;1:31-3.
3. Jayaraman S, Colquhoun PH, Malthaner RA. Stapled versus conventional surgery for hemorrhoids. Cochrane Database Syst Rev, 2006; 10.1002/14651858:CD005393.
4. Moreira H Jr., Moreira JP, Alves-Neto O, Vieira TH, *et al.* Morphine spinal block anesthesia in patients who undergo an open hemorrhoidectomy: A prospective analysis of pain control and postoperative complications. Ann Coloproctol 2014;30:135‑40.
5. Hiller A, Karjalainen K, Balk M, Rosenberg PH. Transient neurological symptoms after spinal anaesthesia with hyperbaric 5% lidocaine or general anaesthesia. Br J Anaesth 1999;82:575‑9.
6. Donohue DP. Goals for 1980. Radiol Technol 1979;51:79‑81.
7. Rotti H, Raval R, Anchan S, Bellampalli R, Bhale S, Bharadwaj R, *et al.* Determinants of Prakriti, the human constitution types of indian traditional medicine and its correlation with contemporary science. J Ayurveda Integr Med 2014;5:167‑75.
8. Hankey A. A test of the systems analysis underlying the scientific theory of Ayurveda’s Tridosha. J Altern Complement Med 2005;11:385‑90.
9. Gupta PD. Pharmacogenetics, pharmacogenomics and ayurgenomics for personalized medicine: A paradigm shift. Indian J Pharm Sci 2015;77:135‑41.
10. Aarti Mal AK, Wani P. Sudy to assess relation between academic performance and prakruti (constitution) in children. Int J Ayurveda Pharm Res 2014;2:49‑52.
11. Bhushan P, Kalpana J, Arvind C. Classification of human population based on HLA gene polymorphism and the concept of *Prakriti* in Ayurveda. J Altern Complement Med 2005;11:349‑53.
12. Singh R, Ota S, Bharati, Srikanth N, Dhiman KS, Vyas N, *et al.* Development of standardized *Prakriti* assessment tool: An overview of ongoing CCRAS initiatives. J Res Ayurvedic Sci 2017;1:165‑208.
13. Castellvi J, Suéiras A, Espinosa J, Vallet J, Gil V, Pi F. Lignasure versus diathermy hemorrhoidectomy under spinal anesthesia or pudendal block with ropivacaine: A randomized prospective clinical study with 1-year follow-up. Int J Colorectal Dis 2009;24:1011‑8.
14. Jeng CL, Torrillo TM, Rosenblatt MA. Complications of peripheral nerve blocks. Br J Anaesth 2010;105 Suppl 1:i97‑107.
15. Collinsworth KA, Strong JM, Atkinson AJ Jr., Winkle RA, Perlroth F, Harrison DC. Pharmacokinetics and metabolism of lidocaine in patients with renal failure. Clin Pharmacol Ther 1975;18:59‑64.
16. Ghodke Y, Joshi K, Patwardhan B. Traditional medicine to modern pharmacogenomics: Ayurveda Prakriti type and CYP2C19 gene polymorphism associated with the metabolic variability. Evid Based Complement Alternat Med 2011;2011:249528.
17. Ohol SV. A review on relation between Prakriti and agni. Int J Ayurvedic Med 2013;4:264‑71.
18. Durgesh Gupta AC. Concept of agni – An ayurvedic review. Int Ayurvedic Med J 2015;3:3085‑9.
19. Byadgi PS. An insight into the understanding of agni and its clinical importance. Int J Res Ayurveda Pharm 2011;2:1637‑41.
20. Verma Vandana GS. Review on concept of srotas. Int J Res Ayurveda Pharm 2014;5:232‑4.