Acute Citrulline-Malate Oral Supplementation does not Improve Post-Aerobic-Exercise Autonomic Response in Normotensive and Hypertensive Subjects: a Pilot Randomized Controlled Study

Juliano Casonatto*a; Adeluci Moraesb; Kamila Grandolfic

aUnopar, Unopar, Stricto Sensu Graduate Program in Physical Exercise in Health Promotion. PR, Brasil.
bUnopar, Physical Education Course. PR, Brasil.
cLondrina State University, Stricto Sensu Graduate Program in Physical Education. PR, Brasil.

*E-mail: juliano2608@hotmail.com.
Recebido em: 02/08/2020
Aprovado em: 29/10/2020

Abstract

The present study was designed to investigate whether citrulline malate (CM) supplementation might influence post-aerobic-exercise autonomic response in normotensive and hypertensive subjects. Forty individuals (20 normotensives and 20 hypertensives) were randomly assigned to one of the four experimental groups (normotensive-placebo [NP], normotensive-CM [NC], hypertensive-placebo [HP], and hypertensive-CM [HC]). The participants ingested CM (6 g) or placebo dissolved in water (100 ml) 120 min before the exercise session. The exercise session was conducted on a treadmill and consisted of 40 min of running/walking at 60-70% HR reserve. The heart rate variability (HRV) was recorded continuously for 60 min post-exercise. In normotensive subjects at “post-30”, LF increased and HF decreased after the CM supplementation (16% [P=0.041] and -32% [P=0.037], respectively). No significant differences were found in “pre”, “post-30” and “post-60” considering the pooled (NP, NC, HP, and HC) z-scores for time and frequency HRV domains. These results suggest that a single dose of CM supplementation does not promote significant effects on post-exercise autonomic modulation in normotensive and hypertensive subjects.

Keywords: Autonomic Nervous System. Citrulline Malate. Hypertension. Exercise.

1 Introduction

Unlike heart rate (the number of heartbeats per minute), the heart rate variability (HRV) is the fluctuation in the time intervals between adjacent heartbeats. HRV is generated by heart-brain interactions and dynamic non-linear autonomic nervous system process, therefore, it reflects regulation of parasympathetic-sympathetic balance, blood pressure, gas exchange, heart and vascular tone.

HRV monitoring following an “exercise session” might provide useful insight into autonomic stress reactivity. This is consonant with the “reactivity hypothesis”, which suggests that cardiovascular responses to a stressor may be predictive of certain diseases. It is well documented that, both aerobic and resistance exercise elicit post-exercise modulations in HRV and that these modulations are related to the vascular blood flow and blood pressure response. Therefore, vasodilatation physiological response can be related to the HRV modulation.

Some substances, like “L-citrulline” help to trigger vasodilatory responses. The citrulline-malate (CM) is composed by a combination of L-citrulline (a non-essential amino acid that has a key role in the arginine-nitric oxide system, increasing nitric oxide biodisponibility) and malate (or acid malic) - a salt predominantly found in apples. Despite low CM concentrations can be provided by nutritional...
sources in regular food, citrulline availability is mainly produced endogenously through two different pathways: 1) NO co-product (secondary amount) and 2) ornithine carbamylation (principal amount) by metabolites (glutamine, proline, and arginine) in only two cell types (enterocytes and hepatocytes). The citrulline produced in the liver is all channeled to the urea cycle, thus, small or negligible amounts of citrulline are directed to the circulation. On the other hand, the citrulline produced by enterocytes enters the circulation system, bypasses the liver, and enters the kidneys (and other tissues) for arginine synthesis. For this reason, it is suggested that CM supplementation could be an efficient strategy to increase extracellular arginine levels, which is recognized as the NO synthesis precursor. In this line, some studies have indicated that CM supplementation increases plasmatic NO metabolite concentration, an important peripheral dilate mediator.

Therefore, it is possible that CM supplementation improves post-aerobic-exercise autonomic response in normotensive and hypertensive subjects. To our knowledge, there are no other studies investigating the acute CM supplementation effects on HRV after aerobic exercise. This comprehension could be of clinical relevance since it is known that especially hypertensive subjects exhibit impairments in autonomic modulation. Furthermore, it is important to establish whether high blood pressure can influence the post-exercise autonomic nervous system response to acute CM supplementation, as understanding aspects of these interrelationships are crucial to perform safe non-pharmacological treatment for hypertension. Thus, the present study was designed to investigate whether CM supplementation might influence post-aerobic-exercise autonomic response in normotensive and hypertensive subjects.

2 Material and Methods

2.1 Participants

After sample size calculation (see statistical analysis session), 40 individuals (20 normotensives and 20 hypertensives), sedentary (less than 150 minutes per week of moderate physical activities) participated in the study. Volunteers were women or men, adults, without osteoarticular disabilities, and with medical authorization to exercise. Participants were recruited from the university community. The study followed the Declaration of Helsinki and was approved by the Institution Ethics Committee (78697617.4.0000.0108). All participants were informed about the methods before providing written informed consent.

2.2 Study design

This was an acute, randomized, parallel-groups clinical trial (Figure 1) to evaluate the effects of a single CM supplementation dose on the post-aerobic-exercise autonomic response in normotensive and hypertensive individuals. The participants were randomly allocated (using a random number table via https://www.random.org/) into four different experimental groups (Normotensive-Placebo [NP]; Normotensive-CM [NC]; Hypertensive-Placebo [HP]; Hypertensive-CM [HC]). Participants were not taking beta-blockers and were asked to refrain from caffeine and alcohol for 24 h before the experimental session and advised not to make changes to their regular lifestyles other than the assigned interventions. Anthropometric measures were taken before the rest period.

Figure 1 - Study design

The participants ingested a sachet, which contained 6 grams of CM or placebo (corn starch) dissolved in water (100 ml). The selected CM dose was based on previous studies. The substances were ingested 120 min before the exercise session. The exercise was conducted on a treadmill and consisted of: a 5-min warm-up (50-65% HRreserve); 40-min running/walking at 60-70% HRreserve; and a 5-min progressive cooldown. After the exercise session, the HRV was recorded continuously for 60 min. Testing was conducted in the morning at the same time of day 9:00 am (±1 h) in a quiet, temperature-controlled room (23 °C ±1 °C).

2.3 Anthropometry

Weight was measured using a digital anthropometric scale (Urano, OS 180A, Canoas, Brazil), with an accuracy of 0.1 kg and height was measured by a stadiometer with an accuracy of 0.1 cm, in accordance with the procedures described by Gordon et al. The body mass index (BMI) was defined as the body mass (kg) divided by the square of the body height.
2.4 Heart rate variability measures

Heart rate variability was monitored during the rest periods (Figure 1) using a cardiac monitor (Polar RS800CX, Kempele, Finland), previously validated. The participants remained seated in a calm, quiet, and thermoneutral (22 °C to 24 °C) environment during monitoring. The recorded R-R intervals were transferred to a computer using specific software (Polar Pro-Trainer software, Kempele, Finland). Fast Fourier Transformation was applied to quantify the low (LF) and high (HF) frequencies into normalized units, in accordance with the Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology.

The time-domain analysis was obtained by SDNN (standard deviation of the NN interval), RMSSD (the square root of the mean of the squares summing of differences among the adjacent NN intervals), and pNN50 (NN50 count divided by the total number of all NN intervals) indices. The range interval analysis (Figure 1) was 10 min (rest, prior to exercise), and 30 min (post-exercise) using Kubios HRV, version 2.2 (Kuopio, Finland).

2.5 Blood pressure

The BP measurements were taken with an oscillometric device (Omron MX3 Plus, Bannockburn, USA) previously validated for clinical measures in adults. The participants remained seated (rest period - Figure 1) in a calm, quiet, and thermoneutral (22 °C to 24 °C) environment for 20 min. BP was measured three times during the rest period (at 10 min, 15 min, and 20 min). The resting BP value was considered as the average of these three measurements. The BP measurements were taken according to the American Heart Association recommendations.

2.6 Statistical analysis

Assuming a standard deviation of 6 normalized units for the LF, an alpha of 5%, and a desired statistical power of 95%, detecting a minimum difference of 20 normalized units, 6 subjects were required in each group.

Box plots, which provide a spatial representation of the concentration distributions spread, were used to identify anomalous values among the global population of measurements for each HRV indices. In each plot, the box represented the interquartile range and whiskers delineated the region occupied by ±1.5 times the interquartile range beyond the box boundaries. For this study, points plotting above or below the whiskers were identified as potential outliers. Histograms were also examined to confirm that these points were located at distribution extremes for each dataset.

The data are reported as mean and standard deviation. An independent sample t-test was used to compare mean characteristics between normotensive and hypertensive participants. One-way analysis of variance (ANOVA) was used to compare the participants’ characteristics among groups (NP, NC, HP, and HC). Fisher multiple comparisons were employed to examine differences between pairs of trials.

To compare the absolute values among the experimental groups, firstly, the sphericity Mauchly’s test was applied and the Greenhouse-Geisser correction if necessary. Next, these data were compared with a one-factor repeated measures general linear model. Fisher multiple comparisons were employed to examine the differences between pairs of trials.

Effect size from the paired two-sample t-test was calculated (d=mean/SD) between “pre” vs “post-30” and “post-60” for all HRV indices (d-effects: small ≥ 0.2, medium ≥ 0.50, large ≥ 0.80).

The pooled Z-score for each period (“pre”, “post-30” and “post-60”) was calculated. One-way analysis of variance (ANOVA) was used to compare the mean z-score among the groups (NP, NC, HP, and HC). Fisher multiple comparisons were employed to examine the differences between pairs of trials.

Statistical significance was defined as $P<0.05$. The statistical analysis was generated using SPSS (New York, USA), version 20, for windows.

3 Results and Discussion

The participants’ characteristics are shown in Table 1. The hypertensive subjects presented higher values for age (28.5±6.6 vs 61.4±17.3 [years] - $P=0.001$), weight (69.0±10.3 vs 76.9±12.9 [kg] - $P=0.004$), height (1.68±0.07 vs 1.62±0.11 [m] - $P=0.048$), body mass index (24.3±2.56 vs 29.3±4.5 [kg/m²] - $P=0.001$), waist circumference (79.7±7.4 vs 99.8±9.4 [cm] - $P<0.001$), systolic (115±12 vs 135±17 [mmHg] - $P<0.001$), and diastolic (73±7 vs 81±7 [mmHg] - $P=0.003$) resting blood pressure.

Table 1 – Participants’ characteristics

	NP (n=10)	NC (n=10)	HP (n=10)	HC (n=10)	F	P
Age (years)	27.7 ± 7.4	29.9 ± 7.8	52.0 ±15.3	58.6 ± 8.7	22.836	<0.001
Weight (kg)	70.9 ±19.5	76.4 ±14.4	79.7 ±17.2	72.5 ±13.1	0.595	0.622
Height (m)	1.69 ± 0.10	1.71 ± 0.09	1.61 ± 0.09	1.58 ± 0.09	4.560	0.008
BMI (kg/m²)	24.4 ± 4.6	25.9 ± 3.3	30.8 ± 6.5	29.2 ± 5.8	3.124	0.038
WC (cm)	79.3 ± 13.6	84.4 ± 11.2	98.5 ± 14.9	99.1 ± 11.2	6.081	0.002
SBP (mmHg)	116 ± 17	120 ± 12	137 ± 12	142 ± 20	6.362	0.001
DBP (mmHg)	72 ± 9	74 ± 8	86 ± 11	86 ± 10	6.057	0.002

NP= normotensive-placebo; NC= normotensive-citrulline malate; HP= hypertensive-placebo; HC= hypertensive-citrulline malate; SD= standard deviation; BMI= body mass index; WC= waist circumference; SBP= systolic blood pressure; DBP= diastolic blood pressure; $^*P<0.05$ vs NP; $^†P<0.05$ vs NC.

Source: Research data.
Table 2 presents the absolute HRV changes in the different experimental groups. Considering NP, a significant increase in SDNN (25% [post-30]) and decrease in RMSSD (-56% [post-30]) and pNN50 (-85% [post-30] and -55% [post-60]) was identified when compared with “pre”. Additionally, a significant reduction in SDNN (-42% [post-60]) and a significant increase in RMSSD (75% [post-60]) and pNN50 (-84% [post-30] and -55% [post-60]) was identified when compared with “pre”. Also, a significant increase in RMSSD (85% [post-60]) and pNN50 (200% [post-60]) was identified (versus “pre”). In the NC, a significant reduction in RMSSD (-59% [post-30]) and pNN50 (-85% [post-30] and -55% [post-60]) was identified when compared with “pre”. Additionally, a significant reduction in SDNN (-48% [post-60]) was identified when compared with “pre”. In hypertensive subjects at “post-30”, LF increased and HF decreased after the CM supplementation (16% [P=0.041] and -32% [P=0.037], respectively).

Table 2 - Heart rate variability component variations

	Placebo	Citrulline Malate
	Pre Post-30 Post-60	Pre Post-30 Post-60
Normotensives		
SDNN (ms)	72 40 90 42*	52 9*
RMSSD (ms)	45 29 20 75*	94 34*
pNN50 (%)	20 16 3 4*	19 9 3*
LFnu	70 15 70 27 72 26	70 23 81 7*
HFnu	37 22 28 24 27 23	30 23 19 7*
LF/HF	4.5 5.3 5.5 3.4 5.3 3.2	3.4 1.8 4.8 2.1 3.8 1.9
Hypertensives		
SDNN (ms)	69 22 117 65 83 62	61 34 102 42*
RMSSD (ms)	45 28 18 7* 30 7*	42 35 17 12
pNN50 (%)	17 16 4 5 14 15	9 8 1 1*
LFnu	62 19 79 12 76 9*	67 17 77 17
HFnu	38 19 21 12 24 9*	33 17 23 17
LF/HF	2.8 2.9 5.5 8* 3.9 5*	3.0 2.4 5.0 1* 5.3 3.5*

*Significantly different from the pre-intervention (P<0.05); †Significantly different from the post-30 (P<0.05); #Significantly different from the placebo (P<0.05)

Source: Research data.

Table 3 presents the effect sizes from the paired t-test (rest vs post-30 and post-60) for each group. NP showed a large increase (post-30) and decrease effect (post-60) for SDNN. NP also showed a large decrease effect for RMSSD (post-30), pNN50 (post-30 and post-60) and a moderate decrease effect for HF (post-60). Considering NC, a large decrease effect was identified for RMSSD (post-30) and pNN50 (post-30 and post-60). HP showed a large decrease effect for RMSSD (post-30) and HF (post-30 and post-60). HP also showed a large increase effect for LF (post-30 and post-60) and LF/HF (post-30). Considering HC, a large decrease effect was identified for pNN50 (post-30) and HF (post-60). Additionally, a large increase effect was identified for SDNN (post-30), LF (post-60), and LF/HF (post-60).

Table 3 - Effect size for Paired t-test (versus pre [d=mean/SD])

	Placebo	Citrulline Malate	
	ES P	ES P	ES P
Normotensives			
SDNN (ms)	0.8 0.039 -0.9 0.015	0.3 0.457 -0.5 0.146	
RMSSD (ms)	-0.8 0.031 -0.3 0.311	-1.1 0.012 -0.5 0.145	
pNN50 (%)	-1.3 0.005 -1.1 0.010	-2.0 0.001 -1.1 0.020	
LFnu	0.956 0.1 0.804	0.5 0.178 0.3 0.395	
HFnu	-0.5 0.164 -0.7 0.047	-0.5 0.178 -0.3 0.405	
LF/HF	0.3 0.414 0.3 0.433	0.6 0.118 0.2 0.552	
Hypertensives			
SDNN (ms)	0.8 0.052 0.2 0.592	1.1 0.032 -0.8 0.089	
RMSSD (ms)	-1.3 0.028 -0.6 0.185	-0.7 0.074 -0.5 0.223	
pNN50 (%)	-0.7 0.106 -0.2 0.519	-1.0 0.030 -0.1 0.799	
LFnu	1.0 0.014 1.0 0.013	0.6 0.099 1.2 0.004	
HFnu	-1.0 0.014 -1.0 0.013	-0.6 0.099 -1.2 0.004	
LF/HF	0.8 0.028 0.6 0.072	0.6 0.087 1.0 0.030	

ES= Effect size.
Source: Research data.
Acute Citrulline-Malate Oral Supplementation does not Improve Post-Aerobic-Exercise Autonomic Response in Normotensive and Hypertensive...

The pooled (NP, NC, HP, and HC) z-scores for time (panel A) and frequency (panel B) HRV domains are presented in Figure 2 (pre), Figure 3 (post-30) and Figure 4 (post-60). No significant differences were found in “pre”, “post-30” and “post-60” for all time and frequency components.

Figure 2 - Pooled z-score comparisons at Pre

NP= normotensive-placebo (open circles); NC= normotensive-citrulline malate (closed circles); HP= hypertensive-placebo (open triangles); HC= hypertensive-citrulline malate (closed triangles).

Source: Research data.

Figure 3 - Pooled z-score comparisons at P30

Figure 4 - Pooled z-score comparisons at P60

NP= normotensive-placebo (open circles); NC= normotensive-citrulline malate (closed circles); HP= hypertensive-placebo (open triangles); HC= hypertensive-citrulline malate (closed triangles).

Source: Research data.
The purpose of this study was to analyze the CM acute supplementation responses between normotensive and hypertensive subjects. Our results showed that there were not a considerable CM supplementation acute effects on autonomic activity for both, normotensives and hypertensives. The main finding of this study was that a single CM dose does not seem to be sufficient to induce improvements in sympathovagal balance in normotensive and hypertensive subjects. To the best of our knowledge, this is the first report on acute CM autonomic responses between normotensives and hypertensives considering standardized scores.

In view of the absolute changes, our findings indicate that normotensives are more susceptible to acute sympathovagal modulations after a single CM supplementation dose since only normotensive individuals presented LF increase and HF decrease during the first 30 minutes after half-life period. It is noteworthy that this modulation does not persist in the second period (post-60), revealing a transitory acute sympathovagal modulation. A recent preliminary report demonstrated that eight weeks of L-citrulline supplementation (6 g/day) improved cardiac autonomic function in sedentary postmenopausal women. In this scenario, it is possible to hypothesize that the most striking autonomic modulations can only be revealed with chronic CM supplementation.

There is currently near-universal agreement in the literature that reports of statistical procedures such as null hypothesis significance tests should be accompanied by an appropriate measure of the effect magnitude. Thus, our standardized results (by effect size) showed a similarity with our unstandardized results. Curiously, hypertensive subjects presented HRV modulations in the frequency domain. Perhaps this is related to age since HRV time-domain measurements declined with age. It is important to highlight that hypertensive subjects (regardless of CM supplementation) showed a large increase effect for LF. The LF band (0.04-0.15 Hz) was previously called the baroreceptor range because it mainly reflects baroreceptor activity during resting conditions. LF power may be produced by the parasympathetic and sympathetic nervous system, and blood pressure regulation via baroreceptors, primarily by the parasympathetic nervous system, or by baroreflex activity alone. In resting conditions, the LF band reflects baroreflex activity and not cardiac sympathetic innervation. It is well documented that the cessation of exercise causes a transient reduction in arterial pressure that is referred to as post-exercise hypotension (PEH). This reduction effect has been observed following aerobic and resistance exercises. Hypertensive subjects present more pronounced PEH than normotensive subjects, this fact can explain our results, once baroreflex activity is critically involved in the blood pressure response modulation to exercise.

As the heart rate variability indicators are related to several factors such as age and blood pressure status, in this study measures were standadized (z-scores) to enable the identification of relative changes in the analyzed HRV components. No significant differences were found for all time and frequency components. It is important to emphasize that mechanisms by which CM could increase the sympathovagal balance are hypothetical. Baroreflex sensitivity is a potential mediator. Chowdary et al. demonstrated an improvement in baroreflex sensitivity after a single dose of L-citrulline supplementation. Considering that the adrenergic stress on the cardiovascular system is influenced by baroreceptor function to sustain appropriate blood pressure, it is possible that L-citrulline supplementation can improve baroreflex sensibility and that this effect may be time-dependent.

Despite all methodological care, some aspects should be considered. This was an acute experiment conducted to compare the possible effects of a single CM supplementation dose on post-aerobic exercise autonomic responses in normotensive and hypertensive subjects. However, it should not be assumed that underlying mechanisms for chronic changes in HRV are identical to those of acute responses. Furthermore, interpretation of HRV as reflecting certain aspects of cardiac autonomic activity is complicated due to the fact that rather than being a direct measure of autonomic nerve activity, HRV quantifies the end-organ response modulation, i.e., the heart.

4 Conclusion

These results suggest that a single CM supplementation dose does not promote significant effects on post-exercise autonomic modulation in normotensive and hypertensive subjects.

Acknowledgment:

Fundação Nacional de Desenvolvimento do Ensino Superior Particular – FUNADESP

References

1. McCraty R, Shaffer F. Heart rate variability: new perspectives on physiological mechanisms, assessment of self-regulatory capacity, and health risk. Global Adv Health Med 2015;4(1):46-61. doi: 10.7453/gahmj.2014.073.
2. Shaffer F, Ginsberg JP. An overview of heart rate variability metrics and norms. Frontiers Public Health 2017;5:258. doi: 10.3389/fpubh.2017.00258
3. Heponiemi T, Elovinio M, Pulkki L, Puttonen S, Raitakari O, Keltikangas-Jarvinen L. Cardiac autonomic reactivity and recovery in predicting carotid atherosclerosis: the cardiovascular risk in young Finns study. Health Psychol 2007;26(1):13-21.
4. Treiber FA, Kamarck T, Schneiderman N, Sheffield D, Kapuku G, Taylor T. Cardiovascular reactivity and development of preclinical and clinical disease states. Psychosomatic Med 2003;65(1):46-62.
5. Ruiz RJ, Simao R, Saccomani MG, Casonatto J, Alexander JL, Rhea M, et al. Isolated and combined effects of aerobic and strength exercise on post-exercise blood pressure and cardiac vagal reactivation in normotensive men. J Strength Cond Re 2011;25(3):640-5.
Acute Citrulline-Malate Oral Supplementation does not Improve Post-Aerobic-Exercise Autonomic Response in Normotensive and Hypertensive...
augments cardiac vagal control in healthy human subjects. Hypertension 2002;39(1):51-6.

36. Tonkin AL, Wing LM, Morris MJ, Kapoor V. Afferent baroreflex dysfunction and age-related orthostatic hypotension. Clin Sci 1991;81(4):531-8.

37. Mourot L, Bouhaddi M, Tordi N, Rouillon JD, Regnard J. Short- and long-term effects of a single bout of exercise on heart rate variability: comparison between constant and interval training exercises. Eur J Appl Physiol 2004;92(4-5):508-17.

38. Michael S, Graham KS, Davis GMO. Cardiac autonomic responses during exercise and post-exercise recovery using heart rate variability and systolic time intervals: a review. Front Physiol 2017;8:301. doi: 10.3389/fphys.2017.00301.