Article Addendum

An oviposition stimulant binding protein in a butterfly

Immunohistochemical localization and electrophysiological responses to plant compounds

Kazuko Tsuchihara,1,* Osamu Hisatomi,2 Fumio Tokunaga2 and Kiyoshi Asaoka3

1Iwaki Meisei University; Iwaki, Japan; 2Department of Biological Science; Graduate School of Science; Osaka University; Toyonaka, Japan; 3Faculty of Pharmacy; National Institute of Agrobiological Sciences; Tsukuba, Japan

Key words: chemosensory reception, oviposition stimulant, binding protein

Oviposition is evoked by plant compounds, which are recognized by chemoreceptive organs of insects. The swallowtail butterfly, *Atrophaneura alcinous*, oviposits its eggs on the host plant, *Aristolochia debilis*, in the presence of only two stimulating compounds: an alkaloid, aristolochic acid, and a monosaccharide, sequoyitol. In our previous study, a unique protein of 23 kDa [Oviposition stimulant(s) binding protein (OSBP)] was found in the forelegs of female, but not male *A. alcinous*. The electrophysiological response of *A. alcinous* to an extract of *A. debilis* was depressed by the presence of OSBP antiserum, suggesting that OSBP presumably binds to oviposition stimulant(s). We show here, using a highly sensitive fluorescence micro-binding assay that native OSBP binds to a main oviposition stimulant, aristolochic acid, from its host plant, *A. debilis*. Three-dimensional molecular modeling studies also gave a reasonable structure for the OSBP/aristolochic acid complex. This is the first report of a native chemoreceptive protein binding to an oviposition stimulant ligand in insects.

An Oviposition Stimulant Binding Protein

Sensory reception plays very important roles in survival, especially for insects,1-7 and butterflies have evolved a specialized chemoreception system for laying eggs. For adult female butterfly, oviposition is an essential behavior for generating progeny. Therefore, it is necessary for the female butterflies to recognize their specific host plants. Chemoreceptive proteins in taste organs are thought to have important roles for the precise recognition of host plant compounds.6-7 The swallowtail butterfly, *Atrophaneura alcinous*, oviposits its eggs on the host plant, *Aristolochia debilis*, in the presence of only two triggering compounds: an alkaloid, aristolochic acid and a monosaccharide, sequoyitol. The oviposition behavior of butterflies is induced by recognition of the plant compounds via receptors in the tarsus of the foreleg. Using scanning electron microscopy, we observed tarsal contact chemosensilla in the foreleg; the female of *A. alcinous* has a toothbrush-like dense cluster of sensilla, which is larger than that of the male (Fig. 1).

Insect odorant-binding proteins (OBPs) are small, water-soluble proteins that are widely found in the olfactory systems of various species.8-10 OBPs are involved in the first specific biochemical step of odor reception and are thought to carry lipophilic odorants to the olfactory receptor cells through hydrophilic surroundings.5-16 The molecular cloning of insect OBPs is ongoing; however, few structural studies correlating function to ligand-binding activities have been reported.17,18 We have isolated a soluble protein of 23 kDa from *A. alcinous*.19 Western blot analysis showed that this protein was expressed only in the female, and not in the male. Moreover, the protein is localized in the tarsi. We isolated this protein and determined the sequence of the N-terminal 23 amino acids. We then cloned its cDNA by RT-PCR and RACE. The deduced sequence of 212 amino acids is 38% homologous to a bilin-binding protein (BBP), of the cabbage butterfly, *Pieris brassicaceae*. Two consensus sequences from the lipocalin family of proteins were found in the sequence, suggesting that it is a binding protein for lipophilic ligands. This protein possibly plays an important role in the sensory process for oviposition, and is considered to be an oviposition stimulant(s) binding protein (OSBP).

Three-dimensional structure modeling of OSBP, based on the crystal structure of BBP, has suggested that aristolochic acid, an oviposition stimulant compound of *A. alcinous*, could bind OSBP.20 Indeed, a binding assay, measuring fluorophore conjugated to a ligand molecule under an internal reflection fluorescence microscope, showed that OSBP binds to aristolochic acid.21-24

Immunohistochemistry

Localization of OSBP in male and female tarsi was investigated by immunohistochemistry using an anti-OSBP antiserum. Sections were counter-stained with Evans blue to reduce auto-fluorescence.
shown in red-orange. Strong auto-fluorescence was observed in tarsi, especially at the cuticle (Fig. 2A). Green fluorescence in Figure 2A (without the anti-OSBP antiserum) is probably due to the non-specific binding of the secondary antibody. When sections were reacted with the anti-OSBP antiserum (Fig. 2B), strong green signals were observed at the sensilla. OSBP is, therefore, likely to be localized at the sensilla of female tarsi.

Electrophysiological Responses of Chemosensilla

An electrophysiological study showed that the female tarsus was stimulated by a methanolic extract from the host plant, *A. debilis* (Fig. 3A and B). We investigated the responses to two main compounds of *A. debilis*, hydrophilic sequoyitol and lipophilic aristolochic acid. When sensilla were treated with aristolochic acid, one or two kinds of impulses were observed (Fig. 3C). When sensilla were treated with sequoyitol, only one kind of impulse was observed (Fig. 3D). When sensilla were stimulated by a methanolic extract from *A. debilis*, two to three different trains of impulses with differently sized amplitudes were usually observed. The sensilla were then pretreated with the antiserum raised against OSBP for ten minutes and then stimulated with the stimulating solution. The response was partially suppressed by the pretreatment (Fig. 3E). The suppression by anti-OSBP antibody was removed by washing with water, suggesting that the binding of the antibody is reversible.19 The results of the electrophysiological experiments suggest that OSBP plays the role of a binding receptor in the chemosensory signal transduction system for oviposition, probably as a carrier protein of the stimulants.

OSBP is present only in females of *A. alcinous* and can bind to aristolochic acid, a major oviposition stimulant of the host plant, *A. debilis*.20 OSBP binds to aristolochic acid, suggesting that OSBP is involved in the chemosensory mechanism of *A. alcinous*. OSBP is, therefore, a candidate molecule for the transfer of aristolochic acid to receptors or for the activation of receptor molecules of the chemosensory neurons following ligand binding.

Acknowledgements

We would like to thank T. Wazawa, X.G. Zheng, M. Ishiguro, K. Yoshihara for their collaborations. We would like to thank Drs. Y. Ishii and T. Takanashi for their useful comments. We also thank Drs. R. Nishida, A. Yamanaka and Mr. Y. Tsuchihara for material supplies.
References

1. Awmack CS, Leather SR. Host plant quality and fecundity in herbivorous insects. Annu Rev Entomol 2002; 47:817-44.
2. Simmonds MS. Importance of flavonoids in insect-plant interactions: feeding and oviposition. Phytochemistry 2001; 56:245-52.
3. Bruce TJ, Wadhams LJ, Woodcock CM. Insect host location: a volatile situation. Trends Plant Sci 2005; 10:269-74.
4. Hallem EA, Dahanukar A, Carlson JR. Insect odor and taste receptors. Annu Rev Entomol 2006; 51:113-35.
5. Rausher MD. Search image for leaf shape in a butterfly. Science 1978; 200:1071-3.
6. Nishida R, Fukami H. Oviposition stimulants of an aristolochiaceae-feeding swallowtail butterfly, Atrophaneura aliciousinus. J Chem Ecol 1989; 15:2565-75.
7. Ohsugi T, Nishida R, Fukami H. Multi-component system of oviposition stimulants for a Rutaceae-feeding swallowtail butterfly, Papilio xuthus (Lepidoptera: Papilionidae). Appl Entomol Zool 1991; 26:29-40.
8. Vogt RG. Molecular genetics of moth olfaction: a model for cellular identity and temporal assembly of the nervous system. In: Goldsmith MR, Wilkins AS, eds., Molecular Model Systems in the Lepidoptera. Cambridge, UK: Cambridge University Press 1995; 341-67.
9. Pelosi P. Perireceptor events in olfaction. J Neurobiol 1996; 30:3-19.
10. Vogt RG, Callahan ME, Rogers ME, Dickens JC. Odorant binding protein diversity and distribution among the insect orders, as indicated by LAP an OBP-related protein of the true bug Lygus lineolaris (Hemiptera, Heteroptera). Chem Senses 1999; 24:481-95.
11. Vogt RG, Ridgford LM, Prestwich GD. Kinetic properties of pheromone degrading enzyme: the sensillar esterase of Asteracea polyphemus. Proc Natl Acad Sci USA 1985; 82:8827-31.
12. Prestwich GD, Du G, Laforest S. How is pheromone specificity encoded in proteins? Chem Senses 1995; 20:461-9.
13. Steinbrecht RA. Are odorant-binding proteins involved in odorant discrimination? Chem Senses 1996; 21:719-27.
14. Steinbrecht RA. Olfactory receptors. In: Eguchi E, Tominaga S, eds. Atlas of Arthropod Sensory Receptors. Tokyo, Japan: Springer-Verlag 1999; 155-76.
15. Ziegelberger G. The multiple role of the pheromone-binding protein in olfactory transduction. Olfaction in mosquito-host interactions; CIBA Found-Symp 1996; 200:267-80.
16. Kaisling KE. Pheromone deactivation catalysed by receptor molecules: a quantitative kinetic model. Chem Senses 1998; 23:385-95.
17. Campanacci V, Krieger J, Bette S, Sturgis JN, Larigau A, Cambillau C, et al. Revisiting the specificity of Mamestra brassicae and Asteracea polyphemus pheromone-binding protein with a fluorescence binding assay. J Biol Chem 2002; 276:20078-84.
18. Ban L, Scalon A, Ambrosio CD, Zhang L, Yahn Y, Pelosi P. Biochemical characterization and bacterial expression of an odorant-binding protein from Locusta migratoria. Cell Mol Life Sci 2003; 60:390-400.
19. Tsuchihara K, Ueno K, Yamanaka A, Isono K, Endo K, Nishida R, et al. A putative binding protein for lipophilic substances related to butterfly oviposition. FEBS Lett 2000; 478:299-303.
20. Tsuchihara K, Wazawa T, Ishii Y, Yanagida T, Nishida R, Zheng XG, et al. Characterization of chemoreceptive protein binding to an oviposition stimulant using a fluorescent micro-binding assay in a butterfly. FEBS Lett 2009; 583:345-9.
21. Funatsu T, Harada Y, Tókunaga M, Saito K, Yanagida T. Imaging of single fluorescent molecules and individual ATP turnovers by single myosin molecules in aqueous solution. Nature 1995; 374:555-9.
22. Wazawa T, Ueda M. Total internal reflection fluorescence microscopy in single molecule nanobioscience. Adv Biochem Eng Biotechnol 2005; 95:77-106.
23. Miyamoto Y, Muto E, Mashimo T, Iwane AH, Yoshiya I, Yanagida T. Direct inhibition of microtubule-based kinesin motility by local anesthetics. Biophys J 2000; 78:940-9.
24. Wazawa T, Ishii Y, Funatsu T, Yanagida T. Spectral fluctuation of a single fluorophore conjugated to a protein molecule. Biophys J 2000; 78:1561-9.