SIMULTANEOUS UNITARY EQUIVALENCE TO CARLEMAN OPERATORS WITH ARBITRARILY SMOOTH KERNELS

IGOR M. NOVITSIĬ

ABSTRACT. In this paper, we describe families of those bounded linear operators on a separable Hilbert space that are simultaneously unitarily equivalent to integral operators on $L^2(\mathbb{R})$ with bounded and arbitrarily smooth Carleman kernels. The main result is a qualitative sharpening of an earlier result of \cite{7}.

1. INTRODUCTION. MAIN RESULT

Throughout, \mathcal{H} will denote a separable Hilbert space with the inner product $\langle \cdot, \cdot \rangle_{\mathcal{H}}$ and the norm $\| \cdot \|_{\mathcal{H}}$, $\mathcal{B}(\mathcal{H})$ the algebra of all bounded linear operators on \mathcal{H}, and \mathbb{C}, and \mathbb{N}, and \mathbb{Z}, the complex plane, the set of all positive integers, the set of all integers, respectively. For an operator A in $\mathcal{B}(\mathcal{H})$, A^* will denote the Hilbert space adjoint of A in $\mathcal{B}(\mathcal{H})$.

Throughout, $C(X, B)$, where B is a Banach space (with norm $\| \cdot \|_B$), denote the Banach space (with the norm $\| f \|_{C(X, B)} = \sup_{x \in X} \| f(x) \|_B$) of continuous B-valued functions defined on a locally compact space X and vanishing at infinity (that is, given any $f \in C(X, B)$ and $\varepsilon > 0$, there exists a compact subset $X(\varepsilon, f) \subset X$ such that $\| f(x) \|_B < \varepsilon$ whenever $x \notin X(\varepsilon, f)$).

Let \mathbb{R} be the real line $(-\infty, +\infty)$ with the Lebesgue measure, and let $L^2 = L^2(\mathbb{R})$ be the Hilbert space of (equivalence classes of) measurable complex-valued functions on \mathbb{R} equipped with the inner product

$$\langle f, g \rangle = \int_{\mathbb{R}} f(s) \overline{g(s)} \, ds$$

and the norm $\| f \| = \langle f, f \rangle^{\frac{1}{2}}$.

A linear operator $T : L^2 \to L^2$ is said to be integral if there exists a measurable function T on the Cartesian product $\mathbb{R}^2 = \mathbb{R} \times \mathbb{R}$, a kernel, such that, for every $f \in L^2$,

$$(Tf)(s) = \int_{\mathbb{R}} T(s, t) f(t) \, dt$$

2000 Mathematics Subject Classification. Primary 47B38, 47G10; Secondary 45P05.

Key words and phrases. Integral linear operator, Carleman operator, Hilbert-Schmidt operator, Carleman kernel, essential spectrum, Lemarié-Meyer wavelet.

Research supported in part by grant N 03-1-0-01-009 from the Far-Eastern Branch of the Russian Academy of Sciences. This paper was written in November 2003, when the author enjoyed the hospitality of the Mathematical Institute of Friedrich-Schiller-University, Jena, Germany.
for almost every s in \mathbb{R}. A kernel T on \mathbb{R}^2 is said to be Carleman if $T(s, \cdot) \in L_2$ for almost every fixed s in \mathbb{R}. An integral operator with a kernel T is called Carleman if T is a Carleman kernel. Every Carleman kernel, T, induces a Carleman function t from \mathbb{R} to L_2 by $t(s) = \overline{T(s, \cdot)}$ for all s in \mathbb{R} for which $T(s, \cdot) \in L_2$.

The integral representability problem for linear operators stems from the work [10] of von Neumann, and is now well enough understood. The problem involves the question: which operators are unitarily equivalent to an integral operator? Now we recall a characterization of Carleman representable operators to within unitary equivalence [5, p. 99], [3, Section 15]:

Proposition 1. A necessary and sufficient condition that an operator $S \in \mathcal{A}(\mathcal{H})$ be unitarily equivalent to an integral operator with Carleman kernel is that there exist an orthonormal sequence $\{e_n\}$ such that

$$\|S^*e_n\|_{\mathcal{H}} \to 0 \quad \text{as } n \to \infty$$

(or, equivalently, that 0 belong to the right essential spectrum of S).

Given any non-negative integer m, we impose on a Carleman kernel K the following smoothness conditions:

(i) the function K and all its partial derivatives on \mathbb{R}^2 up to order m are in $C(\mathbb{R}^2, \mathbb{C})$,

(ii) the Carleman function k, $k(s) = \overline{K(s, \cdot)}$, and all its (strong) derivatives on \mathbb{R} up to order m are in $C(\mathbb{R}, L_2)$.

Definition 1. A function K that satisfies Conditions (i), (ii) is called a SK^m-kernel [7].

Now we are in a position to formulate our result on simultaneous integral representability of operator families by SK^m-kernels.

Proposition 2 ([7]). If for a countable family $\{B_r \mid r \in \mathbb{N}\} \subset \mathcal{A}(\mathcal{H})$ there exists an orthonormal sequence $\{e_n\}$ such that

$$\sup_{r \in \mathbb{N}} \|B_r^*e_n\|_{\mathcal{H}} \to 0 \quad \text{as } n \to \infty,$$

then for each fixed non-negative integer m there exists a unitary operator $U_m : \mathcal{H} \to L_2$ such that all the operators $U_mB_rU_m^{-1}$ ($r \in \mathbb{N}$) are bounded Carleman operators having SK^m-kernels.

In [7], there is a counterexample which shows that Proposition 2 may fail to be true if the family $\{B_r\}$ is not countable.

The purpose of this paper is to restrict the conclusion of Proposition 2 to arbitrarily smooth Carleman kernels. Now define these kernels.

Definition 2. We say that a function K is a SK^∞-kernel ([8], [9]) if it is a SK^m-kernel for each non-negative integer m.
Theorem. If for a countable family \(\{ B_r \mid r \in \mathbb{N} \} \subset \mathcal{B}(\mathcal{H}) \) there exists an orthonormal sequence \(\{ v_n \} \) such that
\[
\sup_{r \in \mathbb{N}} \| B_r^* v_n \|_{\mathcal{H}} \to 0 \quad \text{as} \quad n \to \infty,
\]
then there exists a unitary operator \(U_\infty : \mathcal{H} \to L_2 \) such that all the operators \(U_\infty B_r U_\infty^{-1} \) \((r \in \mathbb{N}) \) are Carleman operators having \(SK^\infty \)-kernels.

This theorem, which is our main result, will be proved in the next section of the present paper. The proof yields an explicit construction of the unitary operator \(U_\infty : \mathcal{H} \to L_2 \). The construction of \(U_\infty \) is independent of those spectral points of \(B_r \) \((r \in \mathbb{N}) \) that are different from 0, and is defined by \(U_\infty f_n = u_n \) \((n \in \mathbb{N}) \), where \(\{ f_n \}, \{ u_n \} \) are orthonormal bases in \(\mathcal{H} \) and \(L_2 \), respectively, whose elements can be explicitly described in terms of the operator family.

2. Proof of Theorem

The proof has two steps.

Step 1. Assume that
\[
\sup_{r \in \mathbb{N}} \| B_r \| \leq 1.
\]
This is a harmless assumption, involving no loss of generality; just replace \(B_r \) with \(\frac{B_r}{\| B_r \|} \). Find a subsequence \(\{ e_k \}_{k=1}^\infty \) of the sequence \(\{ v_n \} \) in (1) so that
\[
\sum_k \sup_{r \in \mathbb{N}} \| S_r e_k \|_{\mathcal{H}}^4 \leq \sum_k \sup_{r \in \mathbb{N}} \| r S_r e_k \|_{\mathcal{H}}^4 = M < \infty,
\]
where \(S_r = \frac{1}{r} B_r \) \((r \in \mathbb{N}) \) (the sum notation \(\sum \) will always be used instead of the more detailed symbol \(\sum_{k=1}^\infty \)). For each \(r \), let
\[
Q_r = (1 - E) S_r, \quad J_r = S_r^* E,
\]
where \(E \) is the orthogonal projection onto the closed linear span \(H \) of the \(e_k \)'s, and observe that
\[
S_r = Q_r + J_r^*.
\]
Assume, with no loss of generality, that \(\dim (1 - E) H = \infty \), and let \(\{ e_k^\perp \}_{k=1}^\infty \) be any orthonormal basis for \((1 - E) H \). Let \(\{ f_n \}_{n=1}^\infty \) denote any basis in \(\mathcal{H} \) consisting of the elements of the set \(\{ e_k \} \cup \{ e_k^\perp \} \). It follows from (2) that
\[
\sum_n \| J_r f_n \|_{\mathcal{H}} \leq \sum_k \| J_r e_k \|_{\mathcal{H}} \leq \sum_k \sup_{r \in \mathbb{N}} \| S_r e_k \|_{\mathcal{H}} \leq M^4,
\]
and hence that \(J_r \) and \(J_r^* \) are Hilbert–Schmidt operators, for each \(r \).
For each \(h \in \mathcal{H} \), let

(5) \[d(h) = \sup_{r \in \mathbb{N}} \| J_r h \|_{\mathcal{H}}^{\frac{1}{2}} + \sup_{r \in \mathbb{N}} \| J_r^* h \|_{\mathcal{H}}^{\frac{1}{2}} + \sup_{r \in \mathbb{N}} \| \Gamma_r h \|_{\mathcal{H}}, \]

where, for each \(r \),

(6) \[\Gamma_r = \Lambda S_r, \quad \text{and} \quad \Lambda = \sum_{k} \frac{1}{k} \langle \cdot, e_k^\perp \rangle_{\mathcal{H}} e_k^\perp. \]

It is clear that \(\Lambda \) and \(\Gamma_r \) (\(r \in \mathbb{N} \)) are Hilbert-Schmidt operators on \(\mathcal{H} \). Prove that

(7) \[d(e_k) \to 0 \quad \text{as} \quad k \to \infty. \]

Using known facts about Hilbert–Schmidt operators (see [2, Chapter III]), write the following relations

(8) \[
\sum_{r \in \mathbb{N}} \sup_{k} \| J_r^* e_k \|_{\mathcal{H}}^2 \leq \sum_{r \in \mathbb{N}} \sum_{k} \| J_r^* e_k \|_{\mathcal{H}}^2 \leq \sum_{r \in \mathbb{N}} \| J_r^* \|_{\mathcal{H}}^2 = \sum_{r \in \mathbb{N}} \| J_r \|_{\mathcal{H}}^2
\]

\[
= \sum_{r} \sum_{k} \| J_r e_k \|_{\mathcal{H}}^2 = \sum_{r} \sum_{k} \| S_r^* e_k \|_{\mathcal{H}}^2
\]

\[
\leq \sum_{r} \frac{1}{r^2} \sum_{k} \sup_{r \in \mathbb{N}} \| r S_r^* e_k \|_{\mathcal{H}}^2 \leq \frac{M^8 \pi^2}{6},
\]

where \(\| \cdot \|_2 \) is the Hilbert–Schmidt norm. Observe also that

(9) \[
\sum_{k} \sup_{r \in \mathbb{N}} \| \Gamma_r e_k \|_{\mathcal{H}}^2 \leq \sum_{r} \sum_{k} \| \Gamma_r e_k \|_{\mathcal{H}}^2
\]

\[
\leq \sum_{r} \| \Gamma_r \|_{\mathcal{H}}^2 = \sum_{r} \| r \|_{\mathcal{H}}^2 = \sum_{r} \| S_r^* \Lambda f_n \|_{\mathcal{H}}^2
\]

\[
\leq \sum_{r} \frac{1}{r^2} \sum_{k} \| \Lambda e_k^\perp \|_{\mathcal{H}}^2 = \sum_{r} \frac{1}{r^2} \sum_{k} \frac{1}{k^2} = \frac{\pi^4}{36}.
\]

Then (7) follows immediately from (8), (9), (2), and (3).

Notation. If an equivalence class \(f \in L_2 \) contains a function belonging to \(C(\mathbb{R}, \mathbb{C}) \), then we shall use \([f]\) to denote that function.

Take any orthonormal basis \(\{u_n\} \) for \(L_2 \) which satisfies conditions:

(a) the terms of the derivative sequence \(\{[u_n]^{(i)}\} \) are in \(C(\mathbb{R}, \mathbb{C}) \), for each \(i \) (here and throughout, the letter \(i \) is reserved for all non-negative integers),

(b) \(\{u_n\} = \{g_k\}_{k=1}^\infty \cup \{h_k\}_{k=1}^\infty \), where \(\{g_k\}_{k=1}^\infty \cap \{h_k\}_{k=1}^\infty = \emptyset \), and, for each \(i \),

(10) \[\sum_{k} H_{k,i} < \infty \quad \text{with} \quad H_{k,i} = \| [h_k]^{(i)} \|_{C(\mathbb{R}, \mathbb{C})} \quad (k \in \mathbb{N}), \]
there exist a subsequence \(\{x_k\}_{k=1}^\infty \subset \{e_k\} \) and a strictly increasing sequence \(\{n(k)\}_{k=1}^\infty \) of positive integers such that, for each \(i \),

\[
\sum_k d(x_k) (G_{k,i} + 1) < \infty \quad \text{with} \quad G_{k,i} = \|g_k^{(i)}\|_{C(\mathbb{R}, \mathbb{C})} \quad (k \in \mathbb{N}),
\]

\[
\sum_k kH_{n(k),i} < \infty.
\]

Remark. Let \(\{u_n\} \) be an orthonormal basis for \(L_2 \) such that, for each \(i \),

\[
[u_n]^{(i)} \in C(\mathbb{R}, \mathbb{C}) \quad (n \in \mathbb{N}),
\]

\[
\|u_n\|^{(i)}_{C(\mathbb{R}, \mathbb{C})} \leq D_n A_i \quad (n \in \mathbb{N}),
\]

\[
\sum_k D_{n_k} < \infty,
\]

where \(\{D_n\}_{n=1}^\infty \) and \(\{A_i\}_{i=0}^\infty \) are sequences of positive numbers, and \(\{n_k\}_{k=1}^\infty \) is a subsequence of \(\mathbb{N} \) such that \(\mathbb{N} \setminus \{n_k\}_{k=1}^\infty \) is a countable set. By (7), the basis \(\{u_n\} \) satisfies Conditions (a)-(c) with \(h_k = u_{n_k} \ (k \in \mathbb{N}) \) and \(\{g_k\}_{k=1}^\infty = \{u_n\} \setminus \{h_k\}_{k=1}^\infty \).

To show the existence of a basis \(\{u_n\} \) satisfying (13)-(15), consider a Lemarié-Meyer wavelet,

\[
u(s) = \frac{1}{2\pi} \int_\mathbb{R} e^{i\xi(\frac{1}{2}+s)} \text{sign} \xi b(|\xi|) \, d\xi \quad (s \in \mathbb{R}),
\]

with the bell function \(b \) belonging to \(C^\infty(\mathbb{R}) \) (for construction of the Lemarié-Meyer wavelets we refer to [6], [1], § 4], [4] Example D, p. 62). In this case, \(u \) belongs to the Schwartz class \(\mathcal{S}(\mathbb{R}) \), and hence all the derivatives \([u]^{(i)} \) are in \(C(\mathbb{R}, \mathbb{C}) \). The “mother function” \(u \) generates an orthonormal basis for \(L_2 \) by

\[
u_{j,k}(s) = 2^{\frac{j}{2}} u(2^j s - k) \quad (j, k \in \mathbb{Z}).
\]

Rearrange, in a completely arbitrary manner, the orthonormal set \(\{u_{j,k}\}_{j,k \in \mathbb{Z}} \) into a simple sequence, so that it becomes \(\{u_n\}_{n \in \mathbb{N}} \). Since, in view of this rearrangement, to each \(n \in \mathbb{N} \) there corresponds a unique pair of integers \(j_n, k_n \), and conversely, we can write, for each \(i \),

\[
\|u_n\|^{(i)}_{C(\mathbb{R}, \mathbb{C})} = \|u_{j_n,k_n}\|^{(i)}_{C(\mathbb{R}, \mathbb{C})} \leq D_n A_i,
\]

where

\[
D_n = \begin{cases} 2^{j_n^2} & \text{if } j_n > 0, \\ \left(\frac{1}{\sqrt{2}} \right)^{|j_n|} & \text{if } j_n \leq 0, \end{cases} \quad A_i = 2^{(i+\frac{1}{2})^2} \|u\|^{(i)}_{C(\mathbb{R}, \mathbb{C})}.
\]

Whence it follows that if \(\{n_k\}_{k=1}^\infty \subset \mathbb{N} \) is a subsequence such that \(j_{n_k} \to -\infty \) as \(k \to \infty \), then

\[
\sum_k D_{n_k} < \infty.
\]

Thus, the basis \(\{u_n\} \) satisfies Conditions (13)-(15).
Let us return to the proof. Let \(\{ x_k^\perp \}_{k=1}^\infty = \{ e_k^\perp \}_{k=1}^\infty \cup \{ x_k \}_{k=1}^\infty \setminus \{ e_k \}_{k=1}^\infty \), and observe that \(\{ f_n \}_{n=1}^\infty = \{ x_k \}_{k=1}^\infty \cup \{ x_k^\perp \}_{k=1}^\infty \).

Now construct a candidate for the desired unitary operator in the theorem. Define a unitary operator \(U_\infty : \mathcal{H} \to L_2 \) on the basis vectors by setting
\[
U_\infty x_k^\perp = h_k, \quad U_\infty x_k = g_k \quad \text{for all } k \in \mathbb{N},
\]
in the harmless assumption that, for each \(k \in \mathbb{N} \),
\[
U_\infty f_k = u_k, \quad U_\infty e_k^\perp = h_{n(k)},
\]
where \(\{ n(k) \} \) is just that sequence which occurs in Condition (c).

Step 2. The verification that \(U_\infty \) in (16) has the desired properties is straightforward. Fix an arbitrary \(r \in \mathbb{N} \) and put \(T = U_\infty S_r U_\infty^{-1} \). Once this is done, the index \(r \) may be omitted for \(S_r, J_r, Q_r, \Gamma_r \).

Write the Schmidt decomposition
\[
J = \sum_n s_n \langle \cdot, p_n \rangle_\mathcal{H} q_n,
\]
where the \(s_n \) are the singular values of \(J \) (eigenvalues of \((J^*J)^{1/2} \)), \(\{ p_n \} \), \(\{ q_n \} \) are orthonormal sets (the \(p_n \) are eigenvectors for \(J^*J \) and the \(q_n \) are eigenvectors for \(JJ^* \)).

Introduce an auxiliary operator \(A \) by
\[
A = \sum_n \frac{s_n}{2} \langle \cdot, p_n \rangle_\mathcal{H} q_n,
\]
and observe that, by the Schwarz inequality,
\[
\| Af \|_\mathcal{H} = \left\| (J^*J)^{1/2} f \right\|_\mathcal{H} \leq \| J f \|_\mathcal{H}^{1/2},
\]
\[
\| A^* f \|_\mathcal{H} = \left\| (JJ^*)^{1/2} f \right\|_\mathcal{H} \leq \| J^* f \|_\mathcal{H}^{1/2}
\]
if \(\| f \| = 1 \).

Since \(\{ e_k^\perp \}_{k=1}^\infty \) is an orthonormal basis for \((1 - E)H \), (3) implies that
\[
Q = \sum_k \langle \cdot, S^* e_k^\perp \rangle_\mathcal{H} e_k^\perp.
\]
Whence, using (17), one can write
\[
P f = \sum_k \left\langle f, T^* h_{n(k)} \right\rangle h_{n(k)} \quad (f \in L_2)
\]
where \(P = U_\infty Q U_\infty^{-1} \). By (5),
\[
T^* h_{n(k)} = \sum_n \langle S^* e_k^\perp, f_n \rangle_\mathcal{H} u_n = k \sum_n \langle e_k^\perp, \Gamma f_n \rangle_\mathcal{H} u_n \quad (k \in \mathbb{N}).
\]
Prove that, for any fixed \(i \), the series
\[
\sum_n \langle e_k^\perp, \Gamma f_n \rangle_\mathcal{H} [u_n]^{(i)}(s) \quad (k \in \mathbb{N})
\]
converge in the norm of $C(\mathbb{R}, \mathbb{C})$. Indeed, all these series are pointwise dominated on \mathbb{R} by one series
\[\sum_n \| f_n \|_{\mathcal{H}} \| u_n \|^{(i)}(s), \]
which converges uniformly in \mathbb{R} because its component subseries
\[\sum_k \| f_x \|_{\mathcal{H}} \| g_k \|^{(i)}(s), \sum_k \| f_x \|_{\mathcal{H}} \| h_k \|^{(i)}(s) \]
are in turn dominated by the convergent series
\[\sum_k d(x_k) G_{k,i}, \sum_k \| f \| \| H_{k,i} \|, \]
respectively (see (16), (5), (11), (10)). Whence it follows via (21) that, for each $k \in \mathbb{N}$,
\[\left\| \left[T^* h_{n(k)} \right]^{(i)} \right\|_{C(\mathbb{R}, \mathbb{C})} \leq C_i k, \]
with a constant C_i independent of k. Consider functions $P : \mathbb{R}^2 \to \mathbb{C}$, $p : \mathbb{R} \to L_2$, defined, for all $s, t \in \mathbb{R}$, by
\[P(s, t) = \sum_k \left[h_{n(k)} \right](s) \overline{\left[T^* h_{n(k)} \right](t)}, \]
\[p(s) = \overline{P(s, \cdot)} = \sum_k \left[h_{n(k)} \right](s) T^* h_{n(k)}. \]
The termwise differentiation theorem implies that, for each i and each integer $j \in [0, +\infty)$,
\[\frac{\partial^{i+j} P}{\partial s^i \partial t^j}(s, t) = \sum_k \left[h_{n(k)} \right]^{(i)}(s) \overline{\left[T^* h_{n(k)} \right]^{(j)}(t)}, \]
\[\frac{d^j p}{ds^j}(s) = \sum_k \left[h_{n(k)} \right]^{(i)}(s) T^* h_{n(k)}, \]
since, by (22) and (12), the series displayed converge (absolutely) in $C(\mathbb{R}^2, \mathbb{C})$, $C(\mathbb{R}, L_2)$, respectively. Thus, $\frac{\partial^{i+j} P}{\partial s^i \partial t^j} \in C(\mathbb{R}^2, \mathbb{C})$, and $\frac{d^j p}{ds^j} \in C(\mathbb{R}, L_2)$. Observe also that, by (12) and (23), the series (20) (viewed, of course, as one with terms belonging to $C(\mathbb{R}, \mathbb{C})$) converges (absolutely) in $C(\mathbb{R}, \mathbb{C})$-norm to the function
\[[P f](s) \equiv \langle f, p(s) \rangle \equiv \int_{\mathbb{R}} P(s, t) f(t) \, dt. \]
Thus, P is an integral operator, and P is its SK^∞-kernel.

Since $\| S^* e_k \|_{\mathcal{H}} = \| J e_k \|_{\mathcal{H}}$ for all k (see (3)), from (2) it follows via (19) that the operator A defined in (18) is nuclear, and hence
\[\sum_n s_n \| a \| < \infty, \]
Then, according to (18), a kernel which induces the nuclear operator \(F = U_\infty J^* U_\infty^{-1} \) can be represented by the series

\[
(25) \quad \sum_n s_n^t U_\infty A^* q_n(s) U_\infty A p_n(t)
\]

convergent almost everywhere in \(\mathbb{R}^2 \). The functions used in this bilinear expansion can be written as the series convergent in \(L_2 \):

\[
U_\infty A p_k = \sum_n \langle p_k, A^* f_n \rangle_\mathcal{H} u_n, \quad U_\infty A^* q_k = \sum_n \langle q_k, A f_n \rangle_\mathcal{H} u_n \quad (k \in \mathbb{N}).
\]

Show that, for any fixed \(i \), the functions \([U_\infty A p_k]^{(i)}\), \([U_\infty A^* q_k]^{(i)}\) (\(k \in \mathbb{N} \)) make sense, are all in \(C(\mathbb{R}, \mathbb{C}) \), and their \(C(\mathbb{R}, \mathbb{C}) \)-norms are bounded independent of \(k \). Indeed, all the series

\[
\sum_n \langle p_k, A^* f_n \rangle_\mathcal{H} [u_n]^{(i)}(s), \quad \sum_n \langle q_k, A f_n \rangle_\mathcal{H} [u_n]^{(i)}(s) \quad (k \in \mathbb{N})
\]

are dominated by one series

\[
\sum_n (\|A^* f_n\| + \|A f_n\|) |[u_n]^{(i)}(s)|.
\]

This series converges uniformly in \(\mathbb{R} \), since it consists of two uniformly convergent in \(\mathbb{R} \) subseries

\[
\sum_k (\|A^* x_k\| + \|A x_k\|) |[g_k]^{(i)}(s)|,
\]

\[
\sum_k (\|A^* x_k^\perp\| + \|A x_k^\perp\|) |[h_k]^{(i)}(s)|,
\]

which are dominated by the following convergent series

\[
\sum_k d(x_k) G_{k,i}, \quad \sum_k 2\|A\| H_{k,i},
\]

respectively (see (5), (19), (11), (10)). Thus, for functions \(F : \mathbb{R}^2 \to \mathbb{C}, f : \mathbb{R} \to L_2 \), defined by

\[
F(s, t) = \sum_n s_n^t [U_\infty A^* q_n] (s) U_\infty A p_n (t),
\]

\[
f(s) = F(s, \cdot) = \sum_n s_n^t [U_\infty A^* q_n] (s) U_\infty A p_n,
\]

one can write, for all non-negative integers \(i, j \) and all \(s, t \in \mathbb{R} \),

\[
\frac{\partial^{i+j} F}{\partial s^i \partial t^j} (s, t) = \sum_n s_n^t [U_\infty A^* q_n]^{(i)} (s) U_\infty A p_n^{(j)} (t),
\]

\[
\frac{d^i f}{d s^i} (s) = \sum_n s_n^t [U_\infty A^* q_n]^{(i)} (s) U_\infty A p_n,
\]

where the series converge in \(C(\mathbb{R}^2, \mathbb{C}), C(\mathbb{R}, L_2) \), respectively, because of (24). This implies that \(F \) is a \(SK^\infty \)-kernel of \(F \).
In accordance with (4), we have, for each \(f \in L^2 \),
\[
(Tf)(s) = \int_{\mathbb{R}} P(s,t)f(t)\,dt + \int_{\mathbb{R}} F(s,t)f(t)\,dt
\]
\[
= \int_{\mathbb{R}} (P(s,t) + F(s,t))f(t)\,dt
\]
for almost every \(s \in \mathbb{R} \). Therefore \(T \) is a Carleman operator, and that kernel \(K \) of \(T \), which is defined by \(K(s,t) = P(s,t) + F(s,t) \) \((s, t \in \mathbb{R})\), inherits the \(SK^\infty \)-kernel properties from its terms. Consequently, \(K \) is a \(SK^\infty \)-kernel of \(T \).

Since scalar factors do not alter the relevant smoothness conditions, the Carleman operators \(U_\infty B_r U_\infty^{-1} = rU_\infty S_r U_\infty^{-1} \) \((r \in \mathbb{N})\) have \(SK^\infty \)-kernels as well. The proof of the theorem is complete.

Acknowledgments

The author thanks the Mathematical Institute of the University of Jena for its hospitality, and specially W. Sickel and H.-J. Schmeißer for useful remarks and fruitful discussion on applying wavelets in integral representation theory.

References

1. P. Auscher, G. Weiss, M. V. Wickerhauser, *Local sine and cosine bases of Coifman and Meyer and the construction of smooth wavelets*, Wavelets, 237–256, Wavelet Anal. Appl., 2, Academic Press, Boston, MA, 1992.
2. I. C. Gohberg and M. G. Krein, *Introduction to the theory of linear non-selfadjoint operators in Hilbert space* (Nauka, Moscow, 1965; American Mathematical Society, Providence, R.I., 1969).
3. P. Halmos and V. Sunder, *Bounded integral operators on \(L^2 \) spaces* (Springer, Berlin, 1978).
4. E. Hernández, G. Weiss, *A first course on wavelets*. Studies in Advanced Mathematics. CRC Press, Boca Raton, FL, 1996.
5. V. B. Korotkov, *Integral operators* (in Russian, Nauka, Novosibirsk, 1983).
6. P. G. Lemarié, Y. Meyer, *Ondelettes et bases hilbertiennes*, Rev. Mat. Iberoamericana 2 (1986), no. 1-2, 1–18.
7. I. M. Novitskiĭ, *A note on integral representations of linear operators*, Integral Equations Operator Theory (1) 35 (1999) 93–104.
8. ______, *Integral representations of unbounded operators*, Jenaer Schriften zur Mathematik und Informatik, Math/Inf/14/01, p. 1-8, Universität Jena, Germany, 2001.
9. ______, *Integral representations of unbounded operators by arbitrarily smooth Carleman kernels*, preprint (2002). arXiv:math.SP/0210186
10. J. von Neumann, *Charakterisierung des Spektrums eines Integraloperators* (Hermann, Paris, 1935).