AUTOMATIC CONTINUITY IN HOMEOMORPHISM GROUPS OF COMPACT 2-MANIFOLDS

CHRISTIAN ROSENDAL

ABSTRACT. We show that any homomorphism from the homeomorphism group of a compact 2-manifold, with the compact-open topology, or equivalently, with the topology of uniform convergence, into a separable topological group is automatically continuous.

1. INTRODUCTION

It is well-known and easy to see that for any compact metric space (X, d), its group of homeomorphisms is a separable complete metric group when equipped with the topology of uniform convergence or equivalently with the compact open topology. In fact, a compatible right-invariant metric on $\text{Homeo}(X, d)$ is given by $d_\infty(g, f) = \sup_{x \in X} d(g(x), f(x))$, and a complete metric by $d'_\infty(g, f) = d_\infty(g, f) + d_\infty(g^{-1}, f^{-1})$. We denote by $B(x, \epsilon)$ the open ball of radius ϵ around x and by $\overline{B}(x, \epsilon)$ the corresponding closed ball.

If $g \in \text{Homeo}(X, d)$, we denote by $\text{supp}^\circ(g)$ the open set $\{x \in X \mid g(x) \neq x\}$ and by $\text{supp}(g)$ its closure, which we call the support of g.

We intend to show here that in the case of compact 2-manifolds, this group topology is intrinsically given by the underlying discrete or abstract group, in the sense that any homomorphism π from this group into a separable group is continuous.

Theorem 1.1. Let M be a compact 2-manifold and $\pi : \text{Homeo}(M) \to H$ a homomorphism into a separable group. Then π is automatically continuous when $\text{Homeo}(M)$ is equipped with the compact-open topology.

Let us first note the following simple fact, which helps to clear up the situation.

Fact 1.2. Suppose G is a topological group. Then the following conditions are equivalent.

1. Any homomorphism $\pi : G \to \text{Homeo}([0, 1]^\mathbb{N})$ is continuous,
2. any homomorphism $\pi : G \to H$ into a separable group is continuous.

Proof. As $[0, 1]^\mathbb{N}$ is a compact metric space, its homeomorphism group is a (completely metrisable) separable group in the compact-open topology, so (1) is a special case of (2).

For the other implication, suppose that (1) holds and let H be separable. Let N be the closed normal subgroup of H consisting of all elements that cannot be separated from the identity by an open set and let H/N be the quotient topological group, which is Hausdorff and separable, and, in particular, any non-empty open set covers the group by countably many translates. However, it is an old result (see I.I. Guran [Gu81]) that for Hausdorff groups this condition is equivalent to being topologically isomorphic to a subgroup of a direct product of separable metric groups, or equivalently, second countable Hausdorff groups (by the Birkhoff-Kakutani metrisation Theorem). Also, a result of Uspenskii [Us86] states that any separable metric group is topologically isomorphic to
a subgroup of $\text{Homeo}(0, 1)^{\mathbb{N}}$, and we can therefore, see H/N as a subgroup of some power of $\text{Homeo}(0, 1)^{\mathbb{N}}$. Thus, as a mapping into the Tikhonov product is continuous if and only if the composition with each coordinate projection is continuous, π composed with the quotient mapping is continuous, and hence by the choice of N, also π is continuous.

However, we shall not use this result in any way, but instead simplify matters by not be working with arbitrary homomorphisms, but rather with arbitrary subsets of the group satisfying a certain algebraic largeness condition. Let G be a group and $W \subseteq G$ be a symmetric set. We say that W is countably syndetic if there are countably many left-translates of W whose union cover G. Moreover if G is a topological group, we say that G is Steinhaus if for some $k \geq 1$ and all symmetric, countably syndetic $W \subseteq G$, $\text{Int}(W^k) \neq \emptyset$. It is not hard to prove (see, e.g., [RoSo05]) that Steinhaus groups satisfy the equivalent conditions of the above fact, and this is the condition that we will verify. Note however the order of quantification; the k is universal for all symmetric, countably syndetic W. Indeed, the group $\text{Homeo}_+(S^1)$ equipped with the trivial topology $\tau = \{\emptyset, \text{Homeo}_+(S^1)\}$ satisfies the condition when we have inverted the quantifiers, but the identity homomorphism into itself equipped with the compact-open topology is obviously discontinuous.

It is instructive also to consider from which groups one can construct discontinuous homeomorphisms. Of course the first case that comes to mind is $(\mathbb{R}, +)$, on which one can with the help of a Hamel basis, i.e., a basis for \mathbb{R} as a $2\mathbb{Q}$-vector space, construct discontinuous automorphisms, and, in fact, construct group isomorphisms between \mathbb{R} and \mathbb{R}^2.

2. THE PROOF

2.1. Commutators. We shall first prove a general lemma about homeomorphisms of \mathbb{R}^n.

Lemma 2.1. Suppose that $g \in \text{Homeo}(\mathbb{R}^n)$ has compact support. Then there are $f, h \in \text{Homeo}(\mathbb{R}^n)$ with compact support such that $g = [f, h] = fhf^{-1}h^{-1}$.

Proof. Fix some open ball $U_0 \subseteq \mathbb{R}^n$ containing the support of g and let (U_m) be a sequence of disjoint open balls such that for some distinct x_0 and x_1 in \mathbb{R}^n, the sequences $(U_m)_{m \geq 0}$ and $(\overline{U_m})_{m \geq 0}$ converge in the Vietoris topology to x_0 and x_1 respectively. We can now find a shift $h \in \text{Homeo}(\mathbb{R}^n)$ with compact support, i.e., such that $h[U_m] = U_{m+1}$ and define our f by letting $f|U_m = h^mgh^{-m}|U_m$ for $m \geq 0$ and setting $f = \text{id}$ everywhere else. We now see that for $m > 0$,

$$hf^{-1}h^{-1}|U_m = h(h^{m-1}g^{-1}h^{-m+1})h^{-1}|U_m = h^mg^{-1}h^{-m}|U_m,$$

and for $m \leq 0$,

$$hf^{-1}h^{-1}|U_m = h\text{id}h^{-1}|U_m = \text{id}|U_m,$$

while $hf^{-1}h^{-1} = \text{id}$ everywhere else. Therefore, $f \cdot hf^{-1}h^{-1}|U_m = \text{id}|U_m$ for $m > 0$, $f \cdot hf^{-1}h^{-1}|U_0 = f|U_0 = g|U_0$, $f \cdot hf^{-1}h^{-1}|U_m = \text{id}|U_m$ for $m < 0$, and $hf^{-1}h^{-1} = \text{id}$ everywhere else. This shows that $g = [f, h] = fhf^{-1}h^{-1}$. □

We notice that in the proof above we used f and h with slightly bigger support than g. I believe it is an open problem whether this can be avoided and indeed it seems to be a much harder problem. We can restate the problem as follows. Can every homeomorphism of $[0, 1]^n$ that fixes the boundary pointwise be written as a commutator of f and h that also fixes the boundary pointwise? What happens if we replace pointwise by setwise? Let us
mention that the first question has a positive answer in dimension 1 as, for example, the
group of orientation preserving homeomorphisms of $[0, 1]$ has a comeagre conjugacy class
[KeRo04]. The above result slightly strengthens a result of Mather [Ma71] saying that the
homology groups of the group of homeomorphisms \mathbb{R}^n with compact support vanish. One
can of course also extend the lemma to $[0, \infty] \times \mathbb{R}^{n-1}$ and thus also improve the result of
Rybicki [Ry96].

2.2. Countably syndetic sets. We will now prove some properties of countably syndetic
sets in the homeomorphism groups of arbitrary manifolds. These results will allow us to
completely solve our problem for compact two-dimensional manifolds and provide tech-
niques for higher dimensions. So let M be a manifold of dimension n and fix a compatible
complete metric d on M.

In the following we fix a countably syndetic symmetric subset $W \subseteq \text{Homeo}(M)$ and a
sequence $k_m \in \text{Homeo}(M)$ such that $\bigcup_m k_m W = \text{Homeo}(M)$.

Lemma 2.2. For all distinct $y_1, \ldots, y_p \in M$ and $\epsilon > 0$, there are $\epsilon > \delta > 0$
and $z_i \in B(y_i, \epsilon)$ such that if $g \in \text{Homeo}(M)$ has support contained in
$D = \bigcup_{i=1}^p \overline{B}(z_i, \delta)$, then $g \in W^\epsilon$.

Proof. We notice that it is enough to find $z_i \in B(y_i, \epsilon)$ and open neighbourhoods U_i of z_i
such that if $g \in \text{Homeo}(M)$ has support contained in $\bigcup_i U_i$, then $g \in W^\epsilon$. We choose
some open neighbourhood of y_i, $E_i \subseteq B(y_i, \epsilon)$, that is homeomorphic to $[0, \epsilon]^2$. We also
suppose that the sets E_i are 4ϵ-separated. We will also temporarily transport the standard
eucline metric from $[0, \epsilon]^2$ to each of the sets E_i. As we will be working separately on
each of E_i, this will not cause a problem. Thus in the following, the notation $B(x, \beta)$ will refer
to the balls in the transported euclidian metric, which we denote by d.

Sublemma 2.3. For all $u_i \in E_i$ and $\gamma > 0$ such that $d(u_i, \partial E_i) > 2\gamma$, there are
$\gamma > \alpha > 0$ and $x_i \in \partial B(u_i, \gamma)$ such that if $g \in \text{Homeo}(M)$ has support contained in
$A = \bigcup_{i=1}^p \overline{g B(x_i, \alpha)} \cap \overline{B(u_i, \gamma)}$, then there is an $h \in W^2$ with support contained in
$\bigcup_{i=1}^p \overline{B(u_i, \gamma)}$ such that $g|A = h|A$.

Proof. Let u_1, \ldots, u_p be given. We fix for each $i \leq p$ a sequence of distinct points $x^i_m \in
\partial B(u_i, \gamma)$ converging to some point $x^i_\infty \in \partial B(u_i, \gamma)$ and choose a sequence
$\gamma > \alpha_m > 0$ such that $B(x^i_m, \alpha_m) \cap B(x^j_l, \alpha_l) = \emptyset$ for any $m \neq l$. Thus, as $\alpha_m \to 0$, we have that if
g_m \in \text{Homeo}(M) has support only in
$$A_m = \overline{B}(x^1_m, \alpha_m) \cap \overline{B}(u_1, \gamma)) \cup \ldots \cup \overline{B}(x^p_m, \alpha_m) \cap \overline{B}(u_p, \gamma))$$
for each $m \geq 0$, then there is a homeomorphism $g_m \in \text{Homeo}(M)$, whose support is
contained in $C = \overline{B}(u_1, \gamma) \cup \ldots \cup \overline{B}(u_p, \gamma)$, such that $g|A_m = g_m|A_m$. We claim
that for some $m_0 \geq 0$, if $g \in \text{Homeo}(M)$ has support contained in A_{m_0}, then there is
an element $h \in k_{m_0} W$, with support contained in C, such that $g|A_{m_0} = h|A_{m_0}$. Assume
toward a contradiction that this is not the case. Then for every m we can find some
$g_m \in \text{Homeo}(M)$ with support contained in A_m such that for all $h \in k_m W$, if
$\text{supp}(h) \subseteq C$, then $g_m|A_m \neq h|A_m$. But then letting $g \in \text{Homeo}(M)$ have support in
C and agree with each g_m on A_m for each m, we see that if $h \in k_m W$ has support in C,
then g disagrees with h on A_m. Therefore, g cannot belong to any $k_m W$, contradicting
that these cover $\text{Homeo}(M)$. Suppose that m_0 has been chosen as above and denote $x^i_{m_0}$
by y_i, A_{m_0} by A, and x_{m_0} by α.

Then for any $g \in \text{Homeo}(M)$ with support contained in A, there is an element $h \in W^2$
with support contained in C such that $g|A = h|A$ for all $i \leq p$. To see this, it is enough
to notice that we can find $h_0, h_1 \in \kappa_{m_W}$, with $\text{supp}(h_0), \text{supp}(h_1) \subseteq C$, such that $g|A = h_1|A$ and $id|A = h_0|A$. But then $h_0^{-1}h_1 \in (\kappa_{m_W})^{-1}\kappa_{m_W} = W^{-1}W = W^2$ and $g|A = id|A = h_0^{-1}h_1|A$.

We will first apply Sublemma 2.3 to the situation where $u_i = y_i$ and $\gamma > 0$ is sufficiently small. We thus obtain $\gamma > \alpha > 0$ and $x_i \in \partial B(y_i, \gamma)$ such that $g \in \text{Homeo}(M)$ has support contained in $A = \bigcup_{i=1}^p \overline{B}(x_i, \alpha) \cap \overline{B}(y_i, \gamma)$, then there is an $h \in W^2$ with support contained in $\bigcup_{i=1}^p \overline{B}(y_i, \gamma)$ such that $g|A = h|A$.

Now pick $y'_i \in B(x_i, \alpha) \cap B(y_i, \gamma)$ and $\gamma' > 0$ such that $B(y'_i, 2\gamma') \subseteq B(x_i, \alpha) \cap B(y_i, \gamma)$. We now apply Lemma 2.3 once again to this new situation, in order to obtain $\gamma' > \alpha' > 0$ and $x'_i \in \partial B(y'_i, \gamma')$ such that $g \in \text{Homeo}(M)$ has support contained in $A' = \bigcup_{i=1}^p \overline{B}(x'_i, \alpha') \cap \overline{B}(y'_i, \gamma')$, then there is an $h \in W^2$ with support contained in $\bigcup_{i=1}^p \overline{B}(y'_i, \gamma')$ such that $g|A' = h|A'$.

Now clearly there is a homeomorphism $a \in \text{Homeo}(M)$ whose support is contained in $A = \bigcup_{i=1}^p \overline{B}(x_i, \alpha) \cap \overline{B}(y_i, \gamma)$ such that $a[B(y'_i, \gamma')] = B(x'_i, \alpha')$ and $a[\overline{B}(y'_i, \gamma') \cap \overline{B}(x'_i, \alpha')] = \overline{B}(y'_i, \gamma') \cap \overline{B}(x'_i, \alpha')$, and hence we can also find such an a in W^2, except that its support may now be all of $\bigcup_{i=1}^p \overline{B}(y'_i, \gamma')$.

We therefore have that if $g \in \text{Homeo}(M)$ has support contained in A', then $a^{-1}ga$ also has support contained in A', and so there is an $h \in W^2$ with support contained in $\bigcup_{i=1}^p \overline{B}(y'_i, \gamma')$ such that $a^{-1}ga|A' = h|A'$. But then $g|A' = ah^{-1}a|A'$, while

$$\text{supp}(aha^{-1}) = a[\text{supp}(h)] \subseteq a[\bigcup_{i=1}^p \overline{B}(y'_i, \gamma')] = \bigcup_{i=1}^p \overline{B}(x'_i, \alpha').$$

We now notice that $aha^{-1} \in W^6$, and thus that if $g \in \text{Homeo}(M)$ has support contained in $A' = \bigcup_{i=1}^p \overline{B}(x'_i, \alpha') \cap \overline{B}(y'_i, \gamma')$, then there is some $f \in W^6$ with support contained in $\bigcup_{i=1}^p \overline{B}(x'_i, \alpha')$ such that $g|A' = f|A'$.

Now suppose finally that $g \in \text{Homeo}(M)$ is any homeomorphism having support contained in $\bigcup_{i=1}^p \overline{B}(x'_i, \alpha') \cap \overline{B}(y'_i, \gamma')$. Since the sets $B(x'_i, \alpha') \cap B(y'_i, \gamma')$ are homeomorphic to \mathbb{R}^n, working separately on each of these sets and noticing that g has compact support, we can invoke Lemma 2.1 to write g as a commutator $[b, c]$ for some $b, c \in \text{Homeo}(M)$ whose supports are contained in $\bigcup_{i=1}^p \overline{B}(x'_i, \alpha') \cap \overline{B}(y'_i, \gamma') \subseteq A'$. Find now $h \in W^2$ agreeing with b on A' and with support contained in $\bigcup_{i=1}^p \overline{B}(y'_i, \gamma')$, and, similarly, find $f \in W^6$ agreeing with c on A' and with support contained in $\bigcup_{i=1}^p \overline{B}(x'_i, \alpha')$. Then the set of common support of h and f is included in A' on which they agree with b and c respectively, and we have therefore that $[h, f] = hfh^{-1}f^{-1} = bcb^{-1}c^{-1} = g$. In other words, $g \in W^{16}$. We can therefore finish the proof by choosing some $z_i \in B(x'_i, \alpha') \cap B(y'_i, \gamma')$ and letting $u_i = B(x'_i, \alpha') \cap B(y'_i, \gamma')$.

2.3. Circular orders. In order to simplify notation, we will consider circular orders on finite sets. Since we are really just interested in simplifying notation, let me just say what a circular order is in terms of an example, namely, S^1. For x, y, z distinct points on S^1, y is said to be between x and z, in symbols $B(x, y, z)$, if going counterclockwise around S^1 from x to y, one does not pass through z. Thus a circular order is just a circular betweenness relation. When B is a circular order on a finite set \mathbb{F}, we denote for each $x \in \mathbb{F}$ its immediate successor and immediate predecessor, i.e., the first elements encountered by going respectively counterclockwise and clockwise around \mathbb{F}, by x^+ and x^-. So, e.g., $(x^+)^- = x.$
2.4. A quantitative annulus theorem. Fix three points \(v_0, v_1, v_2 \in \mathbb{R}^2 \) such that for \(i \neq j, d(v_i, v_j) = 1 \), and denote by \(\triangle \) the 2-cell consisting of the points lying within the triangle \(\triangle v_0 v_1 v_2 \). Suppose also that the barycenter of \(\triangle \) lies at the origin, so that for all \(\lambda > 0, \lambda \triangle \) and \(\triangle \) are concentric triangles, the former with sidelengths \(\lambda \).

Lemma 2.4. Let \(\phi : (1 - 2\eta)\triangle \to \triangle \) be a homeomorphic embedding satisfying

\[
\sup_{x \in (1-2\eta)\triangle} d(x, \phi(x)) < \frac{\eta}{100},
\]

where \(\eta < \frac{1}{1000} \). Then there is a homeomorphism \(\psi : \triangle \to \triangle \) that is the identity outside of \((1 - \eta)\triangle\), with \(\sup_{x \in \triangle} d(x, \psi(x)) < 100\eta \), and such that \(\psi \circ \phi |_{(1-2\eta)\triangle} = \text{id} \).

Proof. Let \(\partial(1 - \eta)\triangle \) be the boundary of \((1 - \eta)\triangle\) and pick a finite set of points \(F \) containing \((1 - \eta)v_0, (1 - \eta)v_1, (1 - \eta)v_2\) and lying in \(\partial(1 - \eta)\triangle \), such that when \(F \) is equipped with the circular order obtained from going counterclockwise around \(\partial(1 - \eta)\triangle \), we have \(d(x, x^+) \in [20\eta, 21\eta] \) for all \(x \in F \). As \(\triangle \) is equilateral, \(d(x, y) > 20\eta \) for all \(x \neq y \) in \(F \).

Let now \(C = \phi(\partial(1 - 2\eta)\triangle) \) be the image of the boundary of \((1 - 2\eta)\triangle\), so \(C \) is a simple closed curve. Choose also for each \(x \in F \) a point \(\hat{x} \in C \) such that the distance \(d(x, \hat{x}) \) is minimal. Since \(\sup_{x \in (1-2\eta)\triangle} d(x, \phi(x)) < \frac{\eta}{100} \) and

\[
\frac{\eta}{3} < d(x, \partial(1-2\eta)\triangle) < \frac{2\eta}{3}
\]

for all \(x \in \partial(1 - \eta)\triangle \), also \(d(x, \hat{x}) < \eta \) and \(d(C, \partial(1 - \eta)\triangle) \gtrsim \frac{\eta}{2} \).

For all \(x \in F \), denote by \(\alpha_x \) the straight (oriented) line segment from \(x \) to \(\hat{x} \) and by \(\beta_x \) the straight line segment from \(x \) to \(x^+ \). We also let \(\gamma'_x \) be the shortest path in \(\partial(1 - 2\eta)\triangle \) from \(\phi^{-1}(\hat{x}) \) to \(\phi^{-1}(x^+) \) and put \(\gamma_x = \phi(\gamma'_x) \).

By definition of \(\hat{x} \), \(\alpha_x \) intersects \(C \) exactly in \(\hat{x} \), intersects \(\partial(1 - \eta)\triangle \) in exactly \(x \), and therefore \(\alpha_x \) and \(\gamma_y \) intersect only if \(y = x^- \) or \(y = x \). Similarly, none of the paths \(\beta_x \) and \(\gamma_y \) intersect as they lie in \(\partial(1 - \eta)\triangle \) and \(C \) respectively. Therefore, for any \(x \in F \), \(C_x = \alpha_x \gamma_x \alpha_x^+ \beta_x \) is a simple closed curve beginning and ending at \(x \). Here \(\alpha \) denotes the reverse path of \(\alpha \) and \(\beta \) the concatenation of paths. By the Schönhflies Theorem, \(\mathbb{R}^2 \setminus C_x \) has exactly two components, one unbounded and the other \(U_x \) bounded, homeomorphic with \(\mathbb{R}^2 \) and with boundary \(C_x \). Moreover, as the diameter of \(C_x \) is bounded by \(30\eta \), \(C_x \) intersects \(\partial(1 - \eta)\triangle \) in exactly \(\beta_x \), and the diameter of \(\partial(1 - \eta)\triangle \setminus \beta_x \) is \(1 - \eta > 30\eta \), this means that \(\partial(1 - \eta)\triangle \setminus \beta_x \) lies in the unbounded component. Therefore, if \(R_x = U_x \cup C_x \), we have for \(x \neq y \)

\[
R_x \cap R_y = \begin{cases}
\emptyset & \text{if } y \neq x^+ \text{ and } y \neq x^- \\
\alpha_y & \text{if } y = x^+ \\
\alpha_x & \text{if } y = x^-
\end{cases}
\]

We can now define \(\psi : \triangle \to \triangle \) by letting \(\psi = \phi^{-1} \) on \(\phi(1 - 2\eta)\triangle \), \(\psi = \text{id} \) on \(\triangle \setminus (1 - \eta)\triangle \), and, moreover, along the boundaries of \(R_x \) construct \(\psi \) as follows: \(\psi(\alpha_x) \) is the straight line segment from \(x \) to \(\phi^{-1}(\hat{x}) \), \(\psi(\gamma_x) = \gamma'_x \), and \(\psi(\beta_x) = \beta_x \). Then

\[
\psi(C_x) = \psi(\alpha_x \gamma_x \alpha_x^+ \beta_x) = \psi(\alpha_x) + \psi(\gamma_x) + \psi(\alpha_x^+) + \psi(\beta_x) = \psi(\alpha_x) \gamma'_x \psi(\alpha_x^-) \beta_x
\]

is the boundary of a region \(K_x \) homeomorphic to the unit disk \(D^2 \) and hence, by Alexander’s Lemma, the homeomorphism \(\psi \) from \(C_x = \alpha_x \gamma_x \alpha_x^+ \beta_x \) to \(\psi(\alpha_x) \gamma'_x \psi(\alpha_x^-) \beta_x \) extends to the regions that they bound, i.e., to a homeomorphism of \(R_x \) with \(K_x \). This finishes the description of \(\psi \) and it therefore only remains to see that \(\sup_{x \in \triangle} d(x, \psi(x)) < 100\eta \).
Since \(\psi = \phi^{-1} \) on \(\phi(1 - 2\eta)\Delta \) and \(\psi = \text{id} \) on \(\Delta \setminus (1 - \eta)\Delta \) it is enough to consider what \(\psi \) does to \(x \in (1 - \eta)\Delta \setminus \phi((1 - 2\eta)\Delta) \leq \bigcup_{x \in G} R_x \). Now, \(\psi[R_x] = K_x \) for all \(x \in F \), and hence it is enough to show that for all points in \(R_x \) and in \(K_x \) are more than \(100\eta \) apart. But \(\text{diam}(R_x) < 30\eta \) and \(\text{diam}(K_x) < 40\eta \), while \(R_x \cap K_x \neq \emptyset \), which gives the desired result. This finishes the proof. \(\square \)

2.5. **Patching along a triangulation of a compact \(2 \)-manifold.** As \(\text{Homeo}(M) \) is a separable complete metric group it is not covered by countably many nowhere dense sets (this is the Baire category theorem) and hence \(W \) must be dense in some non-empty open set, whereby \(W^{-1}W = W^2 \) is dense in some neighbourhood of the identity in \(\text{Homeo}(M) \). So fix some \(\eta_1 > 0 \) such that \(W^2 \) is dense in

\[
V_{\eta_1} = \{ g \in \text{Homeo}(M) \mid d_{\infty}(g, \text{id}) < \eta_1 \}.
\]

It is a well-known fact, first proved rigorously by Tibor Rado, that any compact \(2 \)-manifold can be triangulated. So from now on, we assume that \(M \) is a fixed compact \(2 \)-manifold and we pick a triangulation \(\{T_1, \ldots, T_m\} \) of \(M \) with corresponding homeomorphisms \(\chi_i : \Delta \to T_i \). By further triangulating each \(T_i \), we can suppose that the diameter of \(T_i \) is less than \(\frac{\eta_1}{10} \) for all \(i \). Moreover, by first modifying the \(\chi_i \) along each edge of \(\Delta \) and then extending to the interior of \(\Delta \) by Alexander’s Lemma, we can suppose that the following holds. If \(T_i = \chi_i[\Delta] \) and \(T_j = \chi_j[\Delta] \) have an edge in common, then \(\chi_i \) and \(\chi_j \) agree along this edge, i.e., if \(\chi_i(v_a) = \chi_j(v_a) \) and \(\chi_i(v_b) = \chi_j(v_b) \), then for all \(t \in [0,1], \chi_i(tv_a + (1-t)v_b) = \chi_j(tv_a + (1-t)v_b) \).

Lemma 2.5. For all \(0 < \eta < 1, \) if \(h \in \text{Homeo}(M) \) has support contained in

\[
\bigcup_{i=1}^{m} \chi_i[(1-\eta)\Delta],
\]

then \(h \in W^{20} \).

Proof. Let \(y_i = \chi_i(0) \) and choose \(\epsilon > 0 \) such that \(\overline{B}(y_i, \epsilon) \subseteq \chi_i[(1-\eta)\Delta] \) for all \(i \leq m \). By Lemma 2.2 we can find some \(0 < \delta < \epsilon \) and \(z_i \in \overline{B}(y_i, \epsilon) \) such that if \(g \in \text{Homeo}(M) \) has support contained in \(\bigcup_{i=1}^{m} \overline{B}(z_i, \delta) \) then \(g \in W^{16} \).

As \(W^2 \) is dense in \(V_{\eta_1} \), we can find an \(f \in W^2 \) such that for every \(i \leq m, f[\chi_i[(1-\eta)\Delta]] \subseteq \overline{B}(z_i, \delta) \) and thus if \(h \) is given as in the statement of the lemma, \(\text{supp}(fhf^{-1}) = f[\text{supp}(h)] \subseteq \bigcup_{i=1}^{m} \overline{B}(z_i, \epsilon) \) and thus \(g = fhf^{-1} \in W^{16} \), whence \(h \in W^{20} \). \(\square \)

Lemma 2.6. Let \(\delta, \eta > 0, \eta < \frac{1}{1000} \) be such that for \(i \leq m \) and \(x, y \in \Delta \),

\[
d(x,y) < 100\eta \to d(\chi_i(x), \chi_i(y)) < \delta.
\]

Then there is an \(\alpha > 0 \) such that for all \(g \in V_\alpha \), there is \(\psi \in V_\alpha \cap W^{20} \) whose support is contained in \(\bigcup_{i=1}^{m} \chi_i[(1-\eta)\Delta] \) and such that for all \(i \leq m \),

\[
\psi \circ g \big|_{\chi_i[(1-2\eta)\Delta]} = \text{id}.
\]

Proof. Fix \(\delta \) and \(\eta \) as in the Lemma. Then for any continuous \(\phi : \Delta \to \Delta \) such that \(\sup_{x \in \Delta} d(x, \phi(x)) < 100\eta \), we have for every \(i \leq m \),

\[
\sup_{y \in T_i} d(y, \chi_i \circ \phi \circ \chi_i^{-1}(y)) = \sup_{x \in \Delta} d(\chi_i(x), \chi_i \circ \phi(x)) < \delta.
\]

Now pick some \(\alpha > 0 \) such that for \(g \in V_\alpha \) and \(i \leq m \), we have

\[
g \circ \chi_i[(1-2\eta)\Delta] \subseteq \chi_i[\Delta] = T_i,
\]
whereby \(\chi_i^{-1} \circ g \circ \chi_i : (1 - 2\eta) \Delta \to \Delta \), and such that
\[
\sup_{x \in (1-2\eta)\Delta} d(x, \chi_i^{-1} \circ g \circ \chi_i(x)) < \frac{\eta}{100}.
\]

By the quantitative annulus theorem we can therefore find some homeomorphism \(\psi_i : \Delta \to \Delta \) that is the identity outside of \((1-\eta)\Delta\), satisfies \(\sup_{x \in \Delta} d(x, \psi_i(x)) < 100\eta \), and
\[
\psi_i \circ \chi_i^{-1} \circ g \circ \chi_i(1-2\eta)\Delta = id.
\]

This implies that for each \(i \leq m \), \(\chi_i \circ \psi_i \circ \chi_i^{-1} : T_i \to T_i \) is a homeomorphism that is the identity outside of \(\chi_i[(1-\eta)\Delta] \), \(\sup_{x \in T_i} d(x, \chi_i \circ \psi_i \circ \chi_i^{-1}(x)) < \delta \), and
\[
\chi_i \circ \psi_i \circ \chi_i^{-1} \circ g|_{\chi_i[(1-2\eta)\Delta]} = id.
\]

We can therefore define \(\psi = \bigcup_{i=1}^{m} \chi_i \circ \psi_i \circ \chi_i^{-1} \in \text{Homeo}(M) \) and notice that \(\psi \in V_\delta \) and \(\psi \circ g|_{\chi_i[(1-2\eta)\Delta]} = id \) for every \(i \leq m \). We see that \(\psi \) has its support contained within the set \(\bigcup_{i=1}^{m} \chi_i[(1-\eta)\Delta] \) and thus, by Lemma 2.5, \(\psi \) belongs to \(W^{20} \).

Fix some \(0 < \tau < \frac{1}{100} \). We now define the following set of points in \(\Delta \): For distinct \(i, j = 0, 1, 2 \), we put \(w_{ij} = (1-10\tau)v_i + 10\tau v_j, w^+_{ij} = (1-9\tau)v_i + 9\tau v_j, u_{ij} = (1-\tau)w_{ij} \) and \(u^+_{ij} = (1-\tau)w^+_{ij} \). So \(w_{ij}, w^+_{ij} \in \partial \Delta \), while \(u_{ij}, u^+_{ij} \in \partial(1-\tau)\Delta \). We also define a number of paths as follows:

- \(\alpha_{ij} \) is the straight line segment from \(u_{ij} \) to \(w_{ij} \).
- \(\beta_{ij} \) is the straight line segment from \(w_{ij} \) to \(w^+_{ij} \).
- \(\gamma_{ij} \) is the straight line segment from \(u^+_{ij} \) to \(w^+_{ij} \).
- \(\zeta_{ij} \) is the straight line segment from \(u_{ij} \) to \(u^+_{ij} \).
- \(\kappa_{ij} \) is the straight path from \(w_{ij} \) to \(w^+_{ij} \).
- \(\omega_{ij} \) is the straight path from \(u_{ij} \) to \(u^+_{ij} \).
- \(\xi_0 \) is the shortest path in \(\partial(1-\tau)\Delta \) from \(u^+_{ij} \) to \(u_{0j}^+ \).
- \(\xi_1 \) is the shortest path in \(\partial(1-\tau)\Delta \) from \(u^+_{ij} \) to \(u^+_{ij} \).
- \(\xi_2 \) is the shortest path in \(\partial(1-\tau)\Delta \) from \(u_{ij} \) to \(u_{ij}^+ \).
- \(\theta_0 \) is the shortest path in \(\partial \Delta \) from \(w^+_{ij} \) to \(u_{0j} \).
- \(\theta_1 \) is the shortest path in \(\partial \Delta \) from \(w^+_{ij} \) to \(u^+_{ij} \).
- \(\theta_2 \) is the shortest path in \(\partial \Delta \) from \(u^+_{ij} \) to \(u_{ij} \).

We thus see that
\[
C_{ij} = \kappa_{ij} \cdot \beta_{ij} \cdot \gamma_{ij} \cdot \alpha_{ij}
\]

is a simple closed curve bounding a closed region \(R_{ij} = R_{ij}^+ \subseteq \Delta \),
\[
C_{ij}^+ = \beta_{ij} \cdot \kappa_{ij} \cdot \beta_{ji} \cdot \tau_{ji} \cdot \omega_{ji} \cdot \zeta_{ij} \cdot \gamma_{ij}
\]

is a simple closed curve bounding a closed region \(R^+_{ij} = R^+_{ij} \subseteq \Delta \) that contains \(R_{ij} \).

Notice however that the preceding definitions depend on the choice of \(\tau \), which is therefore also the case for the following lemma.

Lemma 2.7. If \(\phi \in \text{Homeo}(M) \) has support contained in \(\bigcup_{i=1}^{m} \bigcup_{0 \leq i < j \leq 2} \chi_i[R^+_{ij}] \), then \(\phi \in W^{20} \).

Proof. We notice that for distinct \(l, l' \), \(\chi_l[R^+_{ab}] \cap \chi_{l'}[R^+_{ab}] \neq \emptyset \) if and only if the triangles \(T_l \) and \(T_{l'} \) have the edge \(\chi_l[v_{ab}] = \chi_{l'}[v_{ab}] \) in common. Moreover, in this case, the set \(\chi_l[R^+_{ab}] \cup \chi_{l'}[R^+_{ab}] \) is homeomorphic to the unit disk \(D^2 \) and is contained in an open set homeomorphic to \(\mathbb{R}^2 \).
So let A_1, \ldots, A_m be an enumeration of all the closed sets $\chi_i[R_{ab}^+] \cup \chi_\nu[R_{a'b'}^+]$ with $\chi_i[R_{ab}^+]$ and $\chi_\nu[R_{a'b'}^+]$ overlapping and let $U_i \subseteq M$ be an open set containing A_i, homeomorphic to \mathbb{R}^2. We can suppose that the U_i are all pairwise disjoint. Moreover, as the diameter of each T_j is at most $\frac{2n}{10}$, the diameter of each A_i is at most $\frac{2n}{20}$.

The proof is now very much the same as the proof of Lemma 2.5. Let $y_i \in A_i$ and choose $0 < \epsilon < \frac{2n}{10}$ such that $B(y_i, \epsilon) \subseteq U_i$ for all $i \leq m$. By Lemma 2.2 we can find some $0 < \delta < \epsilon$ and $z_i \in B(y_i, \epsilon)$ such that if $g \in \text{Homeo}(M)$ has support contained in $\bigcup_{i=1}^m B(z_i, \delta)$ then $g \in W^{16}$.

As W is dense in V_{ν}, we can find an $f \in W$ such that for every $i \leq \frac{3m}{2}$, $f[A_i] \subseteq B(z_i, \delta)$ and thus if ϕ is given as in the statement of the lemma,

$$\text{supp}(f \phi f^{-1}) = f[\text{supp}(|\phi|)] \subseteq \bigcup_{i=1}^m B(z_i, \epsilon),$$

and thus $g = f \phi f^{-1} \in W^{16}$, whence $\phi \in W^{20}$.

Lemma 2.8. There is a $\nu > 0$ such that if $g \in V_{\nu}$ and g is the identity on $\bigcup_{i=1}^m \chi_i[(1 - \tau)\Delta]$, then there is a $\phi \in W^{20}$ such that $\phi \circ g$ is the identity on $\bigcup_{i=1}^m \chi_i[(1 - \tau)\Delta] \cup \bigcup_{0 \leq i < j \leq 2} \chi_{ij}$.

Proof. Consider the closed set $M_0 = M \setminus \text{Int}(\bigcup_{i=1}^m \chi_i[(1 - \tau)\Delta])$ and the closed subgroup $H = \{g \in \text{Homeo}(M) \mid g[\bigcup_{i=1}^m \chi_i[(1 - \tau)\Delta]] = \text{id}\}$. Assume that T_l and $T_{l'}$ have an edge in common, i.e., $\chi_l(v_a) = \chi_{l'}(v_{a'})$ and $\chi_l(v_b) = \chi_{l'}(v_{b'})$ for some a, a', b, b'. Then $\chi_l[R_{ab}] \cup \chi_{l'}[R_{a'b'}] \subseteq \text{Int}_{M_0}(\chi_l[R_{ab}] \cup \chi_{l'}[R_{a'b'}])$. Therefore, we can find some $\nu > 0$, not depending on the particular choice of l, l', a, a', b, b', such that for all such choices of l, l', a, a', b, b' and $g \in V_{\nu} \cap H$ we have

$$g[\chi_l[R_{ab}] \cup \chi_{l'}[R_{a'b'}]] \subseteq \text{Int}_{M_0}((\chi_l[R_{ab}] \cup \chi_{l'}[R_{a'b'}])).
$$

Fix some $g \in V_{\nu} \cap H$.

Assume now that $\chi_i[\Delta]$ and $\chi_k[\Delta]$ have an edge in common. For concreteness we can suppose that, e.g., $\chi_i(v_a) = \chi_k(v_1)$ and $\chi_i(v_b) = \chi_k(v_2)$. As the covering mappings χ_i were supposed to agree along their edges, this implies that $\chi_i[\beta_{01}] = \chi_k[\beta_{12}]$, $\chi_i[\kappa_{01}] = \chi_k[\kappa_{12}]$, and $\chi_i[\beta_{10}] = \chi_k[\beta_{21}]$. Also, as $g \in H$, g is the identity on the paths $\chi_i[\beta_{01}], \chi_i[\kappa_{01}], \chi_k[\kappa_{10}], \chi_k[\kappa_{12}], \chi_k[\beta_{12}]$ and $\chi_k[\beta_{21}]$.

By consequence, $\chi_i[\beta_{01}] \cdot \chi_k[\beta_{12}]$ and $\chi_i[\kappa_{01}] \cdot \chi_k[\kappa_{12}]$ are paths from $\chi_i(u_{01})$ to $\chi_k(u_{12})$ only intersecting in their endpoints. Similarly, $\chi_i[\beta_{10}] \cdot \chi_k[\beta_{21}]$ and $\chi_k[\kappa_{21}]$ are paths from $\chi_i(u_{10})$ to $\chi_k(u_{21})$ only intersecting in their endpoints. This shows that

$$K = \chi_i[\beta_{01}] \cdot \chi_i[\kappa_{01}] \cdot \chi_k[\beta_{12}] \cdot \chi_k[\kappa_{12}] \cdot \chi_k[\beta_{12}] \cdot \chi_k[\kappa_{12}]$$

is a simple closed curve and thus, by the Schönflies Theorem, bounds a region A homeomorphic to the unit disk D^2.

Similarly,

$$K' = \chi_i[\beta_{10}] \cdot \chi_k[\beta_{21}] \cdot \chi_k[\kappa_{21}] \cdot \chi_k[\beta_{12}] \cdot \chi_k[\kappa_{12}].$$

is a simple closed curve and thus bounds a region A' homeomorphic to the unit disk D^2.

Now, as $\chi_i[\beta_{01}] \cdot \chi_k[\beta_{12}] \subseteq \chi_i[R_{01}] \cup \chi_k[R_{12}]$, by condition 2 on g,

$$g[\chi_i[\beta_{01}] \cdot \chi_k[\beta_{12}]] \subseteq \text{Int}_{M_0}((\chi_i[R_{01}] \cup \chi_k[R_{12}]))$$

is a simple closed curve and thus bounds a region A' homeomorphic to the unit disk D^2.}

8 CHRISTIAN ROSENDAL
and hence intersects $\chi(\zeta_0) \cdot \chi(\gamma_0) \cdot \chi k[\xi_2] \cdot \chi k[\zeta_12]$ only in their common endpoints. Thus,

$$L = \chi(\zeta_0) \cdot \chi(\gamma_0) \cdot \chi k[\xi_2] \cdot \chi k[\zeta_12] \cdot g[x_k[a_12]] \cdot g[\chi(\xi_01)]$$

is a simple closed curve bounding a region B homeomorphic to D^2. Similarly,

$$L' = \chi(\zeta_10) \cdot \chi(\gamma_10) \cdot \chi k[\xi_21] \cdot \chi k[\zeta_21] \cdot g[x_k[\alpha_21]] \cdot g[\chi(\xi_10)]$$

bounds a region B' homeomorphic to D^2.

We now have two decompositions of $\chi(R_{10}^+ \cup \chi_k[R_{12}^+])$.

1. $A \cup [\chi(R_{10}^+ \cup \chi_k[R_{12}]) \cup A'$.
2. $B \cup g[\chi(R_{10}^+ \cup \chi_k[R_{12}]) \cup B']$.

Here A and $\chi(R_{10}^+ \cup \chi_k[R_{12}])$ overlap along the edge $\chi(\alpha_{10}) \cdot \chi_k[\xi_{12}] \cdot \chi_k[R_{12}]$ and A' overlap along $\chi(\alpha_{10}) \cdot \chi_k[\xi_{12}]$, while $A \cap A' = \emptyset$. Similarly, B and $g[\chi(R_{10}^+ \cup \chi_k[R_{12}])$ overlap along the edge $g[\chi(\alpha_{10})] \cdot g[\chi_k[R_{12}]]$, $g[\chi(R_{10}^+ \cup \chi_k[R_{12}])$ and B' overlap along $g[\chi(\alpha_{10})] \cdot g[\chi_k[R_{21}]]$, while $B \cap B' = \emptyset$.

We can now define a homeomorphism $\varphi_{1k} : \chi(R_{10}^+ \cup \chi_k[R_{12}]) \to \chi(\alpha_{10}) \cdot \chi_k[R_{12}]$, by first setting $\varphi_{1k} = g^{-1}$ on $g[\chi(R_{10}^+ \cup \chi_k[R_{12}])$, and then let φ_{1k} send B to A, while fixing each point of $\chi(\zeta_01) \cdot \chi(\gamma_01) \cdot \chi_k[\xi_{12}] \cdot \chi_k[\zeta_{12}]$ and be g^{-1} on $g[\chi(\alpha_{10}) \cdot \chi_k[\xi_{12}]]$. Similarly for B' and A'.

This can be done for all pairs of χ_i and χ_k with a common edge, and we thus produce homeomorphisms φ_{1k} on all of the regions, similar to $\chi(R_{10}^+ \cup \chi_k[R_{12}])$, that fix each point of the boundary curve

$$\chi(\omega_{10}) \cdot \chi(\zeta_{10}) \cdot \chi(\gamma_{10}) \cdot \chi_k[\xi_{12}] \cdot \chi_k[\zeta_{12}] \cdot \chi_k[\omega_{12}] \cdot \chi_k[\zeta_{21}] \cdot \chi(\gamma_{21}) \cdot \chi(\xi_{10}) \cdot \chi(\zeta_{10})$$

Pasting all of these φ_{1k} together and extending to all of M by setting $\phi = \text{id}$ elsewhere, we obtain a homeomorphism $\phi \in \text{Homeo}(M)$ whose support is contained in $\bigcup_{i=1}^m \bigcup_{0 \leq i \leq j \leq 2} \chi(\xi_{1i})$, while being the inverse of g on $\bigcup_{i=1}^m \bigcup_{0 \leq i < j \leq 2} \chi(\xi_{ij})$. By Lemma 2.7, $\phi \in W^{20}$, which finishes the proof.

We are now ready to finish the proof of the Theorem using the preceding sequence of lemmas.

Proof. Let $y_1, \ldots, y_p \in M$ be the vertices of the triangulation and choose for each $i \leq p$ a neighbourhood U_i of y_i homeomorphic to \mathbb{R}^2. Find also $0 < \epsilon < \eta_i$ such that $\overline{B}(y_i, \epsilon) \subseteq U_i$ for all i. By Lemma 2.2, there are $0 < \delta_0 < \epsilon$, $z_i \in B(y_i, \epsilon)$, such that if $g \in \text{Homeo}(M)$ has support contained in $\bigcup_{i=1}^p B(z_i, \delta_0)$, then $g \in W^{16}$. As $y_i, z_i \in U_i \simeq \mathbb{R}^2$, we can, as W^2 is dense in V_{η_i}, find some $h_0 \in W^2$ such that $h_0(y_i) \in U'_i \subseteq B(z_i, \delta_0)$, where U'_i is a neighbourhood of z_i homeomorphic to \mathbb{R}^2. Therefore, there is some $g_0 \in W^{16}$ such that $g_0 h_0(y_i) = z_i$. This shows that if $f \in \text{Homeo}(M)$ has support contained in $U = (g_0 h_0)^{-1}(\bigcup_{i=1}^p B(z_i, \delta_0))$, then $(g_0 h_0)^{-1} f(g_0 h_0)$ has support contained in $\bigcup_{i=1}^p B(z_i, \delta_0)$ and hence belongs to W^{16}. So f belongs to W^{52}. We notice that U is an open set containing y_1, \ldots, y_p.

Recall now the definition of the paths α_{ij}, β_{ij}, etc. and also the fact that these paths all depend on the choice of $0 < \tau < 1$. For a fixed choice of τ, we define the following simple closed curves in Δ

$$\begin{align*}
F_0^+ &= \beta_{02} \cdot \theta_0 \cdot [\overline{\beta}_{01} \cdot [\overline{\alpha}_{01} \cdot [\overline{\zeta}_0 \cdot [\overline{\xi}_0 \cdot [\overline{\zeta}_0 \cdot [\overline{\delta}_0 \cdot o_{02},
F_1^+ &= \beta_{10} \cdot \theta_1 \cdot [\overline{\beta}_{12} \cdot [\overline{\alpha}_{12} \cdot [\overline{\zeta}_1 \cdot [\overline{\xi}_1 \cdot [\overline{\zeta}_1 \cdot [\overline{\delta}_1 \cdot o_{10},
F_2^+ &= \beta_{21} \cdot \theta_2 \cdot [\overline{\beta}_{20} \cdot [\overline{\alpha}_{20} \cdot [\overline{\zeta}_2 \cdot [\overline{\xi}_2 \cdot [\overline{\zeta}_2 \cdot [\overline{\delta}_2 \cdot o_{21}.
\end{align*}$$

(3)
Moreover, we let F_i^τ, F_1^τ, F_2^τ be the closed regions that they enclose. We notice that F_i^τ converges in the Vietoris topology to $\{v_i\}$ when $\tau \to 0$, and thus for some $\tau > 0$, we have for all $i = 0, 1, 2$ and $l = 1, \ldots, m$, $\chi_l[F_i^\tau] \subseteq U$. So fix this τ and denote F_i^τ by F_i. We notice that

$$\Delta = (1 - \tau) \Delta \cup \bigcup_{0 \leq i < j \leq 2} R_{ij} \cup \bigcup_{i=0,1,2} F_i.$$

By consequence, if $f \in \text{Homeo}(M)$ is the identity on

$$\bigcup_{i=1}^m \chi_i[(1 - \tau) \Delta] \cup \bigcup_{l=1}^m \bigcup_{0 \leq i < j \leq 2} \chi_l[R_{ij}],$$

then f has support contained in $\bigcup_{i=1}^m \bigcup_{0 \leq i < j \leq 2} \chi_l[F_i] \subseteq U$, and hence $f \in W^{52}$. Find now a $\nu > 0$ as in the statement of Lemma 2.6. Then if $g \in V_{\alpha}$ and g is the identity on $\bigcup_{i=1}^m \chi_i[(1 - \tau) \Delta]$, then there is $\phi \in W^{20}$ such that $\phi \circ g$ is the identity on

$$\bigcup_{i=1}^m \chi_i[(1 - \tau) \Delta] \cup \bigcup_{l=1}^m \bigcup_{0 \leq i < j \leq 2} \chi_l[R_{ij}],$$

and hence belongs to W^{52}. But then also $g \in W^{72}$. Fix $\delta < \frac{\nu}{2}$ and find an $\eta > 0$ satisfying $\eta < \frac{1}{1000}$, $\eta < \frac{\nu}{2}$, and such that for $i \leq m$ and $x, y \in \Delta$,

$$d(x, y) < 100\eta \rightarrow d(\chi_i(x), \chi_i(y)) < \delta.$$

By Lemma 2.6 we can find an $0 < \alpha < \frac{\nu}{2}$ such that for all $h \in V_{\alpha}$ there is $\psi \in V_{\delta} \cap W^{20}$ such that for all $i \leq m$,

$$\psi \circ h|_{\chi_i[(1 - 2\eta) \Delta]} = \text{id}.$$

In particular, $\psi \circ h \in V_{\delta} V_{\alpha} \subseteq V_{\delta + \alpha} \subseteq V_{\nu}$ and is the identity on $\bigcup_{i=1}^m \chi_i[(1 - \tau) \Delta]$, whereby $\psi \circ h \in W^{72}$ and $h \in W^{92}$. This shows that $V_{\alpha} \subseteq W^{92}$ and thus W^{92} contains an open neighbourhood of the identity in $\text{Homeo}(M)$ and hence we have proved that $\text{Homeo}(M)$ is Steinhaus, which finishes the proof of the Theorem. \hfill \square

Department of mathematics, University of Illinois at Urbana-Champaign, 273 Altgeld Hall, MC 382, 1409 W. Green Street, Urbana, IL 61801, USA.
rosendal@math.uiuc.edu

REFERENCES

[Ma71] Mather, John N.: The vanishing of the homology of certain groups of homeomorphisms. Topology 10 1971 297–298.
[Ry96] Rybicki, Tomasz: Commutators of homeomorphisms of a manifold. Univ. Iagel. Acta Math. No. 33 (1996), 153–160.
[KeRo04] Kechris, A.S.; Rosendal, C.: Turbulence, amalgamation, and generic automorphisms of homogeneous structures. To appear in Proc. London Math. Soc.
[Gu81] Guran, I.I.: Topological groups similar to Lindelöf groups. (Russian) Dokl. Akad. Nauk SSSR 256 (1981), no. 6, 1305–1307.
[Us86] Uspenski˘ı, V . V .: A universal topological group with a countable basis. (Russian) Funktsional. Anal. i Prilozhen. 20 (1986), no. 2, 86–87.
[RoSo05] Rosendal, C.; Solecki, S.: Automatic continuity of group homomorphisms and discrete groups with the fixed point on metric compacta property. To appear in Israel Journal of Math.