Maternal Serum and Cord Blood Leptin Concentrations at Delivery in Normal Pregnancies and in Pregnancies Complicated by Intrauterine Growth Restriction

Małgorzata Stefaniak Ewa Dmoch-Gajzlerska

Department of Obstetrics and Gynecology Didactics, Medical University of Warsaw, Warsaw, Poland

Keywords
Leptin · Intrauterine growth restriction · Birth weight · Pregnancy · Cord leptin

Abstract
Introduction: Leptin is a polypeptide hormone, and in pregnancy, it is secreted by the placenta and maternal and fetal adipose tissues. Normal leptin production is a factor responsible for uncomplicated gestation, embryo development, and fetal growth. The study compared maternal serum and cord blood leptin concentrations at delivery in normal pregnancies and in pregnancies complicated by intrauterine growth restriction (IUGR). Methods: The study was performed in 25 pregnant women with isolated IUGR and in 194 pregnant women without any complications. Leptin concentrations in maternal serum and in cord blood samples collected at delivery were measured by ELISA and subsequently analyzed by maternal body mass index (BMI), mode of delivery, and infant gender and birth weight. For comparative analyses of normally distributed variables, parametric tests were used, that is, the Student t test and a one-way ANOVA. The nonparametric Mann-Whitney test was used when the distribution was not normal. The Pearson correlation coefficient was calculated to assess the correlation between normally distributed variables (p < 0.05). Results: In pregnancies complicated by IUGR, the mean maternal serum leptin concentration at delivery was significantly higher (52.73 ± 30.49 ng/mL) than in normal pregnancies (37.17 ± 28.07 ng/mL) (p = 0.01). The mean cord blood leptin concentration in pregnancies complicated by IUGR was 7.97 ± 4.46 ng/mL and significantly lower than in normal pregnancies (14.78 ± 15.97 ng/mL) (p = 0.04). In normal pregnancies, but not in pregnancies complicated by IUGR, a statistically significant correlation was established between maternal serum leptin concentrations and maternal BMI at delivery (r = 0.22; p = 0.00). No statistically significant correlation was found between cord blood leptin concentrations and maternal BMI in either study subjects or controls. In normal pregnancies, but not in pregnancies complicated by IUGR, a strong correlation was observed between cord blood leptin concentrations and birth weight (r = 0.23; p = 0.00). Conclusions: Elevated maternal blood leptin concentrations in pregnancies complicated by IUGR may indicate a significant adverse effect of elevated leptin on fetal growth. The differences in leptin concentrations, measured in maternal serum and in cord blood, between the study subjects and controls suggest that deregulated leptin levels may increase the risk of obstetric complications associated with placental insufficiency.
Introduction

Extensive research into leptin conducted since its discovery over 2 decades ago has revealed its involvement in normal and pathological pregnancies [1]. It has been demonstrated that normal leptin production is a factor responsible for normal gestation, embryonic/fetal development, and fetal growth. The presence of leptin in cord blood is another sign of its significant role in fetal development. Because of the pleiotropic mechanisms of its action and changes in concentrations throughout pregnancy, leptin levels may be considered a potential predictor for some complications of pregnancy, but this application requires further studies [1]. Leptin plays a key role in the earliest stages of pregnancy as it modulates the processes of proliferation, protein synthesis, or placental apoptosis, while the control of cellular proliferation is of significant importance for normal development of the placenta. In intrauterine growth restriction (IUGR), the structure of the blood vessel wall in the uterus and placenta is altered. The inner wall thicken, and the lumen narrows which leads to changes in uteroplacental blood flow. Decreases in circulating blood volume lead to increases in blood viscosity and vascular resistance which result in placental flow disorders [2]. With an insufficient placenta, the exchange of nutrients between mother and developing fetus and adequate blood oxygenation are impaired. A reduced blood flow in the uteroplacental and feto-placental circulation adversely affects the maternal-fetal exchange and ultimately leads to chronic hypoxia and fetal growth arrest [3, 4]. Intrauterine fetal growth is a multifactorial process determined by numerous genetic, metabolic, and hormonal causes in mother, developing fetus, and placental tissue. IUGR is a complex obstetric problem which results from these etiologic factors acting together [3]. Disturbance of fetal growth dynamics which do not correspond to gestational age can be hazardous to gestation and is in fact the second leading cause of perinatal mortality after prematurity. Studies of the role of leptin in reproduction stress that its normal concentration is associated with normal embryonic/fetal development, while deregulated levels may be responsible for abnormal birth weight [1]. Many authors consider leptin to be a regulator of fetal growth [1, 5]. Blood concentrations of leptin reflect maternal nutritional status and additionally when deregulated are a risk factor for IUGR [1]. Low leptin levels have been associated with disorders of fetal growth. A correlation between the maternal leptin concentration at delivery and the neonate’s birth weight has been reported [6]. Research has confirmed that maternal serum leptin concentrations at delivery were significantly elevated and cord blood concentrations were lower in pregnancies complicated by IUGR than in non-IUGR pregnancies [7–11]. This may suggest a compensatory mechanism by which small placentas produce more leptin [10]. It has been also suggested that leptin may be a marker of placental insufficiency, which is associated with increased placental leptin production. On the other hand, some authors did not find any significant differences in cord blood leptin concentrations between IUGR and normal pregnancies [12]. These inconsistent findings show that the association between IUGR and leptin concentrations remains to be clarified and further prospective studies are needed. To date, studies have been conducted in small groups of subjects and they did not involve concurrent leptin measurements in maternal serum at delivery and in cord blood in mother-infant pairs. Our study aims at filling this gap in knowledge.

Considering a significant role of leptin in fetal development, we decided to investigate whether there was any association between maternal and fetal leptin levels and IUGR. We measured leptin concentrations in the maternal serum and in the cord blood of the infants in normal pregnancies and in pregnancies complicated by IUGR, and the collected data were analyzed.

Objective

The objective of the study was to compare at delivery maternal serum and cord blood leptin concentrations in normal pregnancies and in pregnancies complicated by IUGR.

Material and Methods

The study included 25 pregnant patients with isolated IUGR and 194 normal pregnant women who served as controls and was conducted in the period between January 2015 and June 2017 in 2 first- and second-level hospitals in Warsaw. All women gave written informed consent to participate in the study. The study was approved by the Bioethics Committee at the Medical University of Warsaw (approval code: KB/204/214).

In all study subjects, IUGR was diagnosed by ultrasonography (abdominal circumference below the 5th percentile abdominal circumference of corresponding gestational age) and by postnatal assessment of the neonate (birth weight below the 10th percentile weight of corresponding gestational age) [13, 14]. In all cases, the asymmetrical type of IUGR was diagnosed, mostly the result of placental insufficiency. Maternal serum leptin concentrations were measured at delivery, in women with IUGR between gestation weeks 33 and 39 and in controls between gestation weeks 33...
Table 1. Subject characteristics

	Controls (N = 194)	IUGR (N = 25)										
	mean	min	max	25th quartile	75th quartile	SD	mean	min	max	25th quartile	75th quartile	SD
Maternal age, years	30.0	18.0	44.0	26.0	34.0	5.2	31.0	25.0	37.0	30.0	34.0	3.3
Third-trimester BMI, kg/m²	28.1	17.5	40.2	25.2	30.7	4.1	25.7	21.0	33.9	24.0	27.8	3.3
Gestational age at delivery, weeks	38.9	37.0	40.0	38.0	40.0	1.1	37.0	33.0	39.0	36.0	37.0	1.3
Birth weight, g	3,454.3	1,480.0	5,030.0	3,190.0	3,780.0	503.9	2,440.0	1,750.0	3,770.0	2,030.0	2,650.0	497.6
Birth length, cm	54.9	44.0	62.0	54.0	57.0	2.7	49.0	42.0	57.0	47.0	50.0	3.1

kg/m², kilograms/meters squared; IUGR, intrauterine growth restriction; BMI, body mass index.

and 41. Multiple gestations, complications of pregnancy other than IUGR, maternal chronic disease, and intrauterine fetal death were the exclusion criteria.

The study material consisted of leptin samples derived from 2 sources, placental leptin measured in maternal blood, and fetal leptin measured in cord blood. Maternal blood samples (9 mL) were collected from an antecubital vein at delivery, and fetal blood samples (9 mL) were collected from the umbilical vein immediately after delivery. After centrifugation of full blood, sera were stored at −80°C until leptin measurement. Measurements were performed by the immunoenzymatic test ELISA using commercial kits (R&D Systems, Bio-Techne). The assay employed a monoclonal antibody specific for human leptin coated on a 96-well microplate. Immediately before the assay, each serum sample was diluted 1:100 with 1× Calibrator Diluent RDSP (10 µL of serum sample and 990 µL of 1× Calibrator Diluent). 100 µL of Assay Diluent RD1-19 was added to each well. 100 µL of serum sample and 100 µL of standard provided by the manufacturer were added to each well, and the plate was incubated for 2 h at room temperature. After incubation, the supernatant was aspirated from wells which were washed 4 times with 400 µL of wash buffer. After the last wash, 200 µL of leptin conjugate (antileptin antibodies conjugated with horseradish peroxidase) was added to each well and the plate was incubated for 1 h at room temperature. After incubation, the supernatant was aspirated from wells which were then washed 4 times. Next, 200 µL of substrate solution (substrate for horseradish peroxidase) was added to each well and the plate was incubated for 30 min at room temperature. After incubation, 50 µL of stop solution (sulfuric acid) was added to each well. The absorbance of the enzyme reaction color product of each well was read at 450 nm using the ASYS UN340 microplate reader. Based on the absorbance of each well with standard solutions, the standard curve was generated and subsequently used to calculate leptin concentrations in serum samples. For a sample size of 25 µL, the detection limit was 0.17 ± 2 SD. All samples were run in duplicate, and the coefficient of variation cutoff point for each duplicate was 15%.

The following were recorded for each mother-infant pair: maternal body mass index (BMI) at the time of leptin measurement, gestation weeks at delivery, birth weight, mode of delivery, and infant gender. BMI was calculated as weight in kilograms divided by height in meters squared. Standard anthropometric measurements of the infants were performed. The measurements of the body length and weight were precise to 0.1 cm and 0.1 kg, respectively.

Statistical analysis was performed with STATISTICA PL package (StatSoft, Krakow, Poland). Descriptive statistics were used to present descriptions of quantitative variables. For comparative analyses of normally distributed variables, parametric tests were used, that is, the Student t test to test the assumption of homogeneity or nonhomogeneity of variance and a one-way ANOVA when >2 groups were compared. The nonparametric Mann-Whitney test was used when the distribution was not normal. The Pearson correlation coefficient was calculated to assess the correlation between normally distributed variables (p < 0.05).

Results

The mean age of women was 30.0 ± 5.2 years in the control (non-IUGR) group and 31.0 ± 3.3 years in the study (IUGR) group. The mean BMI at delivery was 28.1 ± 4.1 kg/m² in the control group and 25.7 ± 3.3 kg/m² in the study group. The mean length of gestation was 38.9 ± 1.1 weeks in the control group and 37 ± 1.3 weeks in the study group. The mean birth weight and length of neonates were 3,354 ± 503.9 g and 54.9 ± 2.7 cm, respectively, in the control group and 2,440 ± 497.6 g and 49 ± 3.1 cm, respectively, in the study group (Table 1).

The mean maternal serum leptin concentration in pregnancies with IUGR was 52.73 ± 30.49 ng/mL, and it was significantly higher, by 42%, than in normal pregnancies (p = 0.01). The mean cord blood leptin concentration in IUGR was 7.97 ± 4.46 ng/mL, and it was significantly lower, by 46%, than in infants without IUGR (p = 0.04) (Table 2; Fig. 1, 2).

In women with normal pregnancies, a statistically significant positive correlation was established between maternal serum leptin concentrations and third-trimester BMI (r = 0.22; p = 0.00) (Fig. 3), but not between cord blood leptin and third-trimester BMI. In women with pregnancies complicated by IUGR, no statistically significant correlations were established between third-trimes-
In women with normal pregnancies, no statistically significant correlation was found between leptin concentrations in maternal serum and infant birth weight. However, a statistically significant positive correlation was established between leptin concentrations in cord blood and infant birth weight ($r = 0.23$, $p = 0.00$) (Fig. 4). In pregnancies complicated by IUGR, no correlation was found between maternal serum and cord blood concentrations of leptin and infant birth weight. In both IUGR and non-IUGR pregnancies, there was no correlation between maternal serum and cord blood concentrations of leptin and infant gender or mode of delivery.

Discussion

Studies have demonstrated a significant role of normal leptin levels for fetal and neonatal growth and development, and many authors believe that leptin actually acts as a regulator of fetal growth [5, 10, 15, 16]. This claim and opinion that leptin is also a marker of energy stores and a modulator of many biochemical processes during pregnancy are confirmed by the identification of leptin receptors in the placenta and in fetal tissues, including bone and cartilage [1]. Studies in pregnancies complicated by IUGR prove that placental abnormalities strongly correlate with low birth weight. Biswas et al. [4] observed increased focal degeneration of the syncyto-
Fig. 3. Correlation between maternal serum leptin concentrations and third-trimester BMI. BMI, body mass index.

Fig. 4. Correlation between cord blood leptin concentrations and infant birth weight ($r = 0.23$, $p = 0.00$).
Leptin in Normal Pregnancies and in Pregnancies Complicated by IUGR

Leptin in Normal Pregnancies and in Pregnancies Complicated by IUGR are thought to be related to reduced adipose tissue deposition in fetuses with IUGR and may signal long-lasting alterations in adipocyte function, possibly resulting in metabolic disorders in later life [15]. Some authors believe that IUGR is strongly associated with maternal nutrition at specific stages of gestation [17–19]. Maternal obesity carries an increased risk of complications in pregnancy including IUGR [18–20]. On the other hand, studies in hypotrophic neonates found that low-birthweight infants were more frequently born to mothers who had protein- and calorie-restricted (600–900 kcal/day) diets in the second and third trimesters. Pre-pregnancy maternal body weight and its gain during pregnancy are the most important factors correlated with the infant’s birth weight. However, maternal body weight is not a sole or most important risk factor for IUGR as the etiologies are diverse. Restricted maternal diets, for example, glucose restriction, may result in fetal hypotrophy as glucose is the main nutrient necessary for fetal growth [2]. Accordingly, research was conducted to investigate any possible relationship between maternal leptin levels, BMI, and glucose levels and to find out whether disturbances in carbohydrate metabolism could be another risk factor for IUGR. Like Pighetti et al. [10], we did not find any significant correlations between BMI and leptin concentrations in either maternal serum or cord blood in pregnancies complicated by IUGR, but in non-IUGR pregnancies a significant correlation was established between maternal BMI and serum leptin levels. Marino-Ortega et al. [21] reported similar findings and demonstrated a strong association between blood leptin concentrations and weight gain in pregnancy. Shroff et al. [15] described a moderate correlation between maternal blood leptin concentrations and BMI. Yildiz et al. [16] found a positive correlation between maternal serum leptin concentrations and BMI in pregnancies with IUGR. These discrepancies in the results reported from studies in IUGR and non-IUGR pregnancies show that the relationship between BMI and maternal blood leptin concentrations has not been fully elucidated and maternal leptin levels could be influenced by other factors or complications of pregnancy. Studies in premature and small for gestational age infants with low birth weight found lower cord blood concentrations of leptin than in infants with high birth weight [22–26]. The authors argue that in utero leptin acts as a regulator of neuronal circuits controlling nutrient intake and appetite. Leptin not only regulates body weight but also has an important role in newborn adaptation to extrauterine life. The level of neonatal stress depends on factors such as gestational age, birth weight, or mode of delivery. Leptin reduces...
neonatal responsivity to stress by an increased expression of glucocorticoid receptors in the central nervous system and an increased sensitivity to glucocorticoid negative feedback [21]. In this study, no correlation was established between birth weight and maternal serum leptin levels in pregnancies complicated by IUGR, which was in agreement with the results reported by Pighetti et al. [10]. These findings may confirm the hypothesis that placental and fetal leptins act individually. Lower leptin concentrations in cord blood may suggest that it is secreted mainly by fetal adipose tissue rather than the placenta [10]. Also, Yildiz et al. [16] did not find any correlation between maternal serum leptin concentrations and infant birth weight, although a correlation between cord blood leptin and infant birth weight, but not infant BMI, was established by Pighetti et al. [10] and Tamura et al. [27]. These observations suggest that leptin is not a sole regulator of intrauterine growth disorders. Most published studies in IUGR pregnancies do not describe any correlation between maternal blood leptin concentrations and fetal weight [27–29]. Since no significant correlations have been established and the results reported from different centers are inconsistent, the relationship between leptin levels and fetal growth/development obviously needs further studies. In this study, we also assessed maternal serum leptin concentrations and infant birth weight in normal pregnancies and found no statistically significant correlation. However, there was a statistically significant correlation between cord blood leptin concentrations and birth weight. The findings are confirmed in the literature and attributed to the role played by leptin in the regulation of appetite and metabolism. Leptin may be responsible for body weight changes in neonates in the first days after birth, and its levels may serve as an indicator of nutritional status [8, 23–26, 30, 31]. Further studies should examine maternal leptin levels in IUGR by gestational week to see at what pregnancy week(s) leptin levels significantly differ from the reference range in normal pregnancy. This would allow assessment of the utility of leptin as a predictor of the severity and progression of IUGR.

Strengths and Limitation

The presented results have certain limitations which should be taken into account in their analysis and interpretation. This was a cross-sectional study, and the study group was relatively small. However, considering that in pregnancies complicated by IUGR we found significantly higher maternal serum leptin concentrations than in normal pregnancies, it may be assumed that maternal blood leptin could be a valuable additional marker (diagnostic tool) to use for predicting some complications of pregnancy. Before its clinical use could be reliably recommended, further studies and clinical observations are needed. It would be advisable to check the reproducibility and generalizability of the present results in cohort studies and in prospective studies in definitely larger populations of women recruited in earlier stages of pregnancy, to assess leptin levels for changes over time, by gestational age. Another important question deserving research is the relationship, if any, of low blood cord leptin concentrations in infants with IUGR and their further weight gain as they get older.

Conclusions

1. Maternal serum leptin concentrations were elevated in pregnancies complicated by IUGR.
2. In pregnancies complicated by IUGR, significant differences in leptin concentrations between maternal serum and cord blood may suggest the effect of an intrinsic compensatory mechanism, whereby small placentas release larger amounts of leptin.
3. Prospectively, leptin can be assessed as a marker of placental insufficiency in complications of pregnancy other than IUGR.
4. Impaired leptin production was found in infants with IUGR compared to infants in normal pregnancies.
5. Low leptin concentrations in the cord blood of infants with IUGR indicate lower adipose tissue deposition and point to leptin involvement in the pathomechanism of IUGR.

Acknowledgments

The investigators wish to express their thanks to the patients for their participation in the study.

Statement of Ethics

Participants gave their consent in writing to the use of their samples for research. All women gave informed written consent to participate in the study. The study was approved by the Bioethics Committee at the Medical University of Warsaw (approval code: KB/204/214).
Conflict of Interest Statement

The authors have no conflicts of interest to declare.

Funding Sources

The research was financed from the fund for scientific research and development projects selected on a highly competitive basis at the Faculty of Health Sciences, Medical University of Warsaw (decision code: N2ZG/PM4/16). The funders had no role in the study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Author Contributions

Malgorzata Stefaniak contributed to conceptualization, data curation, formal analysis, methodology, and writing – original draft, review, and editing. Ewa Dmoch-Gajzlerska contributed to conceptualization, review, and editing.

Data Availability Statement

The data that support the findings of this study are openly available in https://figshare.com/s/4acec1d7f03814a09cb reference number 10.6084/m9.figshare.10058114.

References

1. Pérez-Pérez A, Toro A, Vilarino-García T, Maymó J, Guadix P, Dueñas JL, et al. Leptin action in normal and pathological pregnancies. J Cell Mol Med. 2018;22(2):716–27.
2. Baschat AA, Galan HL, Gabbe SG. Intrauterine inhibition of fetal growth. In: Gabbe SG, Nibbl JR, Simpson JL, editors. Obstetrics: normal and complicated pregnancy. Elsevier Urban & Partner; 2014. p. 625–6.
3. Suhag A, Berghella V. Intrauterine Growth Restriction (IUGR): etiology and diagnosis. Curr Obstet Gynecol Rep. 2013;2(2):102–11.
4. Biswas S, Ghosh SK. Gross morphological changes of placentas associated with intrauterine growth restriction of fetuses: a case control study. Early Hum Dev. 2008;84(6):357–62.
5. Pérez-Pérez A, Sanchez-Jimenez F, Maymo J, Dueñas JL, Varone C, Sánchez-Margareta V. Role of leptin in female reproduction. Clin Chem Lab Med. 2015;53(1):15–28.
6. Semczuk-Sikora A, Krzyżanowski A, Semczuk M, Kwiatek M, Malec A, Kwasińska A. Maternal serum leptin levels in pregnancies complicated by preeclampsia or intrauterine growth restriction. Probi Hig Epidemiol. 2011;92(3):504–7.
7. Ashworth CJ, Hoggard N, Thomas L, Mercer JJG, Wallace JM, Lea RG. Placental leptin. Rev Reprod. 2000;5(1):18–24.
8. Catov JM, Patrick TE, Powers RW, Ness RB, Harger G, Roberts JM. Maternal leptin across pregnancy in women with small-for-gestational-age infants. Am J Obstet Gynecol. 2007;196(6):558.e1–8.
9. Sooranna SR, Ward S, Bajoria R. Fetal leptin influences birth weight in twins with discordant growth. Pediatr Res. 2001;49(5):667–72.
10. Pighetti M, Tommaselli GA, D’Elia A, Di Carlo C, Mariano A, Di Carlo A, et al. Maternal serum and umbilical cord blood leptin concentrations with feto-growth restriction. Obstet Gynecol. 2003;102(3):545–53.
11. Milenković S, Janković B, Mirković L, Jovanovski MZ, Milenković D, Otalević B. Lipids and adipokines in cord blood and at 72 h in discordant dichorionic twins. Fetal Pediatr Pathol. 2017;36(2):106–22.
12. Aydin HI, Eser A, Kaygusuz I, Yildizirn S, Celik T, Gunduz S, et al. Adipokine, adipron and endothelin-1 levels in intrauterine growth restricted neonates and their mothers. J Perinat Med. 2016;44(6):669–76.
13. Copel JA, Bahtiyar MO. A practical approach to fetal growth restriction. Obstet Gynecol. 2014;123(5):1057–69.
14. Unterscheider J, Daly S, Geary MP, Kennedy MM, McAuliffe FM, O’Donoghue K, et al. Optimizing the definition of intrauterine growth restriction: the multicenter prospective PORTO Study. Am J Obstet Gynecol. 2013;208(4):290–6.
15. Shroff MR, Holzman C, Tyan I, Evans RW, Sikorskii A. Mid-pregnancy maternal leptin levels, birthweight for gestational age and preterm delivery. Clin Endocrinol. 2013;78(4):607–13.
16. Yildiz L, Avcı B, İnceg M. Umbilical cord and maternal blood leptin concentrations in intrauterine growth retardation. Clin Chem Lab Med. 2002;40(11):1114–7.
17. Shekawat PS, Garland JS, Shivpuri C, Mick GJ, Saisidharan P, Pelz CJ, et al. Neonatal cord blood leptin: its relationship to birth weight, body mass index, maternal diabetes, and steroids. Pediatr Res. 1998;43(3):338–43.
18. Guzik TJ, Mangalat D, Korbut R. Adipocytokines: novel link between inflammation and vascular function? J Physiol Pharmacol. 2006;57(4):505–28.
19. Matarese G, Moschos S, Mantzoros CS. Leptin in immunology. J Immunol. 2005;174(6):3137–42.
20. Zhang Y, Proenca R, Maffei M, Barone M, Zecchini R, Ross FP, et al. Positional cloning of the mouse obese gene and its human homologue. Nature. 1994;137(2):425–32.
21. Marino-Ortega LA, Molina-Bello A, Polanco-Garcia JC, Munoz-Valle JF, Salgado-Bernabe AB, Guzman-Guzman IP, et al. Correlation of leptin and soluble leptin receptor levels with anthropometric parameters in mother-newborn pairs. Int J Clin Exp Med. 2015;8(7):11260–7.
22. Sadownik B. Relationships between leptin concentration, sex type of delivery and body weight of newborns during first days of life. Post Neonatol. 2007;13:5–9.
23. Kirel B, Teken N, Teken B, Kilic FS, Dogruel N, Aydogdu SD. Cord blood leptin levels: relationship to body weight, body mass index, sex and insulin and cortisol levels of maternal-newborn pairs at delivery. J Pediatr Endocrinol Metab. 2000;13(1):71–7.
24. Su PH, Wang SL, Chen JY, Lai CP, Jian SH. Serum leptin levels in preterm, healthy and sick-term newborns. Acta Paediatr Taiwan. 2002;43(5):249–54.
25. Garanty-Bogacka B, Czeszyńska MB, Szyrzenicz M. Immaturity or hypotrophy? The cord blood leptin levels in preterm and small for gestational age neonates. Gen Clin. 2003;74:536–61.
26. Tsai PJ, Yu CH, Hsu SP, Lee YH, Chiou CH, Hsu YW, et al. Cord plasma concentrations of adiponectin and leptin in healthy term neonates: positive correlation with birthweight and neonatal adiposity. Clin Endocrinol. 2004;61(1):88–93.
27. Tamura T, Goldenberg RL, Johnston KE, Cliver SP. Serum leptin concentrations during pregnancy and their relationship to fetal growth. Obstet Gynecol. 1998;91(3):389–95.
28. Michale K, Stepan H, Fasshauer M. Leptin, adiponectin and other adipokines in gestational diabetes mellitus and pre-eclampsia. Clin Endocrinol. 2012;76(1):2–11.
29. Grisaru-Granovsky S, Eitan R, Algrur N, Schimmel MS, Diamant YZ, Samueloff A. Maternal and umbilical cord serum leptin concentrations in small-for-gestational-age and in appropriate-for-gestational-age neonates: a maternal, fetal, or placental contribution? Biol Neonate. 2003;84(1):67–72.
30. Bury A, Kulik-Rechberger B. Relationships between leptin concentration and sex, type of delivery and body weight of newborns during first days of life. Endokrynol Ped. 2011;10(3):29–38.
31. Valiuniene M, Verkauskiene R, Boguszewski M, Duhlgren J, Lasiene D, Lasas L, et al. Leptin levels at birth and in early postnatal life in small- and appropriate-for-gestational-age infants. Medicina. 2007;43(10):784–91.