On the probability of satisfying a word in nilpotent groups of class 2

Matthew Levy
Imperial College London

Abstract

Let G be a finite group of nilpotency class 2 and w a group word. In this short paper we show that the probability that a random n-tuple of elements from G satisfies w is at least one over the order of G. This answers a special case of a conjecture of Alon Amit.

1 Introduction

Let G be a finite group, $w(x_1, ..., x_n)$ a group word and denote by $N(G, w = c)$ the number of n-tuples $g = (g_1, ..., g_n) \in G^{(n)}$ satisfying $w(g) = c$, that is

\[N(G, w = c) = |\{ g \in G^{(n)} : w(g) = c \}|. \]

Also, denote by $P(G, w = c)$ the probability that a random n-tuple $g = (g_1, ..., g_n) \in G^{(n)}$ satisfies $w(g) = c$, that is

\[P(G, w = c) = \frac{N(G, w = c)}{|G|^n}. \]

When $c = 1$ we will just write $N(G, w)$ and $P(G, w)$ and we will say that g satisfies w if $w(g) = 1$. If G were abelian, then the word map

\[w : G^{(n)} \to G, \]

defined by a word w is a homomorphism and it is clear that

\[N(G, w) = |\text{Ker } w| = \frac{|G|^n}{|\text{Im } w|} \geq |G|^{n-1} \]

and so $P(G, w) \geq \frac{1}{|G|}$.

It is a conjecture of Alon Amit (see [1] or [2]) that if G is a nilpotent group then $P(G, w) \geq \frac{1}{|G|}$. Here we establish the result for nilpotency class 2 groups in the following theorem.

Theorem 1.1. Let G be a finite group of nilpotency class 2. Then for any group word w, $P(G, w) \geq \frac{1}{|G|}$.

1
This result improves the bound in the nilpotency class 2 case established in a paper by Nikolov and Segal (see [3]).

Remark 1.2. If the theorem holds true for two groups G_1 and G_2 then it holds true for their direct product $G = G_1 \times G_2$ since the word values can be solved componentwise. Let $g = (g_1,...,g_n)$ be an n-tuple in G then $g = a\cdot h$ where $a = (a_1,...,a_n)$ and $h = (h_1,...,h_n)$ are n-tuples in G_1 and G_2 respectively. Then it is clear that $w(g) = w(a)\cdot w(h)$. Hence $P(G, w) \geq P(G_1, w)\cdot P(G_2, w)$ and the result follows since $|G| = |G_1|\cdot |G_2|$. In fact, if A is abelian and the theorem holds for a group H which acts on A by automorphisms then the theorem holds for $G = A \times H$.

Proposition 1.3. Let G be a finite group such that $G = A \times H$ where A and H are subgroups of G and A is abelian. Suppose that $P(H, w) \geq \frac{1}{|H|^2}$ where w is a group word then $P(G, w) \geq \frac{1}{|H|^2}$.

Proof. For any $g \in G$ we may write $g = ah$ for unique $a \in A$ and $h \in H$, so if w is a word in n variables we have, for some $a_i \in A$ and $h_i \in H$,

$$w(g_1,...g_n) = w(a_1h_1,...,a_nh_n) = \prod_{i=1}^{n} a_i^{\phi_i(h_1,...,h_n)}w(h_1,...,h_n),$$

where the $\phi_i(h_1,...,h_n)$ are automorphisms of A depending on the h_i. Note that there are at least $|H|^{n-1}$ n-tuples, $h = (h_1,...,h_n) \in H^{(n)}$, satisfying w. Having fixed such an $h \in H^{(n)}$ consider the induced map on $A^{(n)}$,

$$T_h : A^{(n)} \longrightarrow A \quad (a_1,...,a_n) \mapsto \prod_{i=1}^{n} a_i^{\phi_i(h_i)}.$$

Since A is an abelian group, T_h is a linear map and the number of n-tuples $a \in A^{(n)}$ such that $T_h(a) = 1$ is at least $|A|^{n-1}$. The result follows. \qed

Since any nilpotent group is a direct product of its Sylow subgroups, by the above remark it will be enough to prove the following theorem:

Theorem 1.4. Let G be a finite p-group of nilpotency class 2 where p is a prime. Then for any group word w, $P(G, w) \geq \frac{1}{|G|^2}$.

2 Nilpotent class 2 groups

We begin by making the following definition:

Definition 2.1. We will say that two group words w_1 and w_2 on n variables are G-equivalent if $N(G, w_1 = c) = N(G, w_2 = c)$ for every $c \in G$.

Remark 2.2. It is clear that relabelling the variables of w gives G-equivalent words for any group G since the word maps are unchanged. Suppose that w and w' are two group words in n variables such that $w \equiv w' \mod R$ where R is a normal subgroup of the free group of rank n, F_n. Then it is easy to see that w
and \(w' \) are \(G\text{-equivalent} \) for any group \(G \) that is a homomorphic image of \(F_n/R \) since \(v(G) = 1 \) for any \(v \in R \). Also, suppose \(w(x_1, ..., x_n) \) is a group word and that \(w(x_1, ..., x_n) = v(y_1, ..., y_n) \) where \(v \) is a group word and the \(y_i \) are words in the \(x_i \)'s. Let \(\mathfrak{N}_{2,m} \) denote the class of all finite \(p \)-groups of nilpotency class at most 2 and of exponent at most \(p^m \). If the set \(\{y_1, ..., y_n\} \) maps onto a basis for the vector space \(L_n/\Phi(L_n) \) where \(L_n \) is the free \(\mathfrak{N}_{2,m} \)-group on \(n \) generators then \(w \) is \(G\text{-equivalent} \) to the word \(v(y_1, ..., y_n) \) for any \(G \in \mathfrak{N}_{2,m} \), since for each \(i \) the image of \(x_i \) in \(L_n \) can be expressed as a word in the \(y_j \)'s. This follows from the Burnside Basis Theorem (see [4]).

The following commutator identities will be used throughout and are easy to prove:

(1) \([x,y] = x^{-1}x^y;\)

(2) \([xy,z] = [x,z][y,z] \mod \gamma_3(F_n);\)

(3) \([xz, y] = [x, y][z, y] \mod \gamma_3(F_n);\)

(4) \([x, y]^{-1} = [y, x] \equiv [x^{-1}, y] \equiv [x, y^{-1}] \mod \gamma_3(F_n);\)

(5) \((xy)^n \equiv x^ny^n[y, x]^{[n(n-1)]_2} \mod \gamma_3(F_n).\)

Let \(w(x_1, ..., x_n) \) be any group word and fix a group \(G \in \mathfrak{N}_{2,m} \). By Hall’s Collecting Process (see [4]), we can write \(w \) in the form

\[
w(x_1, ..., x_n) = x_1^{\alpha_1} ... x_n^{\alpha_n} \prod_{i=1}^{n} \prod_{1 \leq i < j} (x_i, x_j)^{\beta_{ij}} c,
\]

(1)

where \(c \in \gamma_3(F_n) \), \(F_n \) being the free group of rank \(n \) and \(\alpha_i, \beta_{ij} \in \mathbb{Z} \). We aim to show that the word map given by \(w \) is ‘equivalent over \(G \)’, in the sense of definition [2.1] to the word map given by a particular word \(w' \), where it will be easy to see that \(P(G, w') \geq \frac{1}{|G|}. \) To do this we will first prove the following lemmas.

Lemma 2.3. Let \(w(x_1, ..., x_n) = x_1^{\alpha_1} ... x_n^{\alpha_n} \) be an element of the free group of rank \(n \) and \(m \in \mathbb{N} \). Then, for any \(G \in \mathfrak{N}_{2,m} \), \(w \) is \(G\text{-equivalent} \) to the word

\[
v(y_1, x_2, ..., x_n) = y_1^{p_1} \prod_{1 \leq i < j} (x_i, x_j)^{\beta_{ij}} \prod_{i=2}^{n} [y_1, x_i]^{\gamma_i},
\]

for some \(l, \beta_{ij}, \gamma_i \in \mathbb{Z} \).

Proof. Let \(R = \gamma_3(F_n) F_n^m \) and write \(w(x_1, ..., x_n) = x_1^{p_1^{l_1}} ... x_k^{p_k^{l_k}} m_k \), where \(i_1 < i_2 < ... < i_k \), \(l_j, m_j \in \mathbb{Z}, l_j \geq 0 \) and the \(m_j \) are non-zero and coprime to \(p \) for all \(j \). Choose \(l_t \) minimal among the \(l_j \) and let

\[y_{i_t} = x_1^{p_1^{l_1}} ... x_k^{p_k^{l_k}} m_k.
\]

Note that in the above expression for \(y_{i_t} \) the exponent of \(x_{i_t} \) is \(m_t \). Then

\[y_{i_t}^{p_{i_t}} \equiv x_1^{p_1^{l_1}} ... x_k^{p_k^{l_k}} \prod_{i_t \leq i_p < i_t \leq i_k} [x_{i_p}, x_{i_k}]^{-p_{i_t}^{l_{i_t}} p_{i_k}^{l_{i_k}} m_t \cdot p_{i_t}^{l_{i_t}} - 1} \mod \gamma_3(F_n),\]
so that

\[
w(x_1, \ldots, x_n) \equiv y_{t_i}^{\beta_{ij}} \prod_{i < j} [x_i, x_j]^{\beta_{ij}} \mod \gamma_3(F_n), \tag{2}
\]

for some \(\beta_{ij} \in \mathbb{Z} \). Note that \(x_{t_i}^{m_i} = (\prod_{c, t_i} x_i^{r_{i1} - 1} m_i) - 1 \) and that since \(p \) does not divide \(m_i \) there exists a positive integer \(r_i \) such that \(x_{t_i}^{m_i r_i} \equiv x_{t_i} \mod F_n^{p^{m_i}} \). Substituting the resulting expression for \(x_{t_i} \mod F_n^{p^{m_i}} \) into (2) we have

\[
w(x_1, \ldots, x_n) \equiv y_{t_i}^{\beta_{ij}} \prod_{i < j, i \neq j} [x_i, x_j]^{\beta_{ij}} \prod_{i \geq 1} [y_i, x_i]^{\gamma_i} \mod R,
\]

for some \(\beta_{ij}, \gamma_i \in \mathbb{Z} \). The result follows in view of remark 2.2. \(\square \)

Lemma 2.4. Let \(w(x_1, \ldots, x_n) = \prod_{i=1}^{n} \prod_{i < j} [x_i, x_j]^{\alpha_{ij}} \) be an element of the free group of rank \(n \) and \(m \in \mathbb{N} \). Then, for any \(G \in \mathfrak{R}_{2, m} \), \(w \) is \(G \)-equivalent to the word

\[
v(y_1, \ldots, y_{2k+1}, y_{2k+2}, \ldots, x_n) = \prod_{i=1}^{k} [y_{2i-1}, y_{2i}]^{\gamma_{2i-1} \gamma_{2i}}
\]

for some \(\gamma_{ij} \in \mathbb{Z} \), where \(2k \leq n \).

Proof. Let \(R = \gamma_3(F_n) F_n^{p^m} \). We are going to describe an algorithm which shows us that we may write \(w \) in the form

\[
w(x_1, \ldots, x_n) = \prod_{i=1}^{k} [y_{2i-1}, y_{2i}]^{\gamma_{2i-1} \gamma_{2i}} c
\]

for some \(\gamma_{ij} \in \mathbb{Z} \), where \(2k \leq n \), the \(y_i \) are words in the \(x_i \)'s and \(c \in \gamma_3(F_n) F_n^{p^m} \).

In particular, each \(y_i \) is of the form \(x_{i_1}^{m_1} \cdots x_{i_d}^{m_d} \) the \(m_j \) being non-zero and coprime to \(p \) with \(l_{i_j} \geq 0 \) and \(l_{i_j} = 0 \) for some \(u_i \). Moreover, for all \(y_i, y_j \) with \(i \neq j \) we have \(i_{u_i} \neq j_{u_j} \), i.e. \(x_{i_{u_i}} \neq x_{j_{u_j}} \). The result then follows in view of remark 2.2. We proceed as follows:

Choose the first non zero \(\alpha_{ij} \), with respect to the ordering in the product, say \(\alpha_{s_1 s_1} \). Then

\[
w(x_1, \ldots, x_n) = \prod_{i < j} [x_i, x_j]^{\alpha_{ij}} = [x_{s_1}, x_{s_1}]^{\alpha_{s_1 s_1}} \prod_{s_1 < i < j} [x_i, x_j]^{\alpha_{ij}},
\]

with \(s_1 < s_11 < s_{12} < \ldots < s_{1q} \) and \(\alpha_{s_1 s_1} \) non-zero for all \(j \). Now \(\alpha_{s_1 s_j} = p^{l_{s_11}+l_{s_11}} m_{s_1 s_j} \) where \(l_{s_1 s_j} \geq 0 \) is an integer and \(m_{s_1 s_j} \) is coprime to \(p \). So choose \(l_{s_1 s_j} \) minimal among the \(l_{s_1 s_j} \), say \(l_{s_1 s_{1u_1}} \), and let

\[
y_{s_1 u_1} = x_{s_11}^{p^{l_{s_11}+l_{s_11}} m_{s_1 s_{11}}}, \ldots, x_{s_1 q}^{p^{l_{s_11}+l_{s_11}} m_{s_1 s_{1q}}},
\]

4
Similarly to the previous lemma,
\[[x_{s_1}, x_{s_11}] \ldots [x_{s_{1n}}] \equiv [x_{s_1}, y_{s_{1u_1}}, y_{s_{1u_2}}]^{l_{s_1u_1} - l_{s_1u_2}} \mod \gamma_3(F_n). \]

So
\[w(x_1, \ldots, x_n) \equiv [x_{s_1}, y_{s_{1u_1}}]^{p_{l_{s_1u_1}}} \prod_{s_1 < i < j} [x_i, x_j]^{\alpha_{ij}} \mod \gamma_3(F_n). \quad (3) \]

If the remaining \(\alpha_{ij} \) are all zero we can stop here noting that in the expression for \(y_{s_{1u_1}} \) the exponent of \(x_{s_{1u_1}} \) is non-zero and coprime to \(p \) and \(x_{s_{1u_1}} \neq x_{s_1} \). Otherwise, as in the previous lemma, we may substitute \(x_{s_{1u_1}} \) for \(y_{s_{1u_1}} \) and that \(\alpha \) is non-zero and coprime to \(y \). We can set \(y_1 := y_{s_{1u_1}} \) and \(y_2 := y_{s_{1u_1}} \) and repeat the algorithm for the rest of the commutators.

Note that the exponent of \(x \) is non-zero and coprime to \(y \) and that \(\alpha \) is non-zero and coprime to \(y \). We can set \(y_1 := y_{s_{1u_1}} \) and \(y_2 := y_{s_{1u_1}} \). Then, similarly to before,
\[[y_{s_{1u_1}}, x_{s_{21}} \ldots x_{s_{2r}}] \equiv [y_{s_{1u_1}}, y_{s_{2u_2}}]^{\alpha_{s_1u_1} - \alpha_{s_1u_2}} \mod \gamma_3(F_n). \]

Thus
\[w = [x_{s_1}, y_{s_{1u_1}}]^{p_{l_{s_1u_1}}} [y_{s_{1u_1}}, y_{s_{2u_2}}]^{p_{l_{s_1u_1} - l_{s_1u_2}}} \prod_{s_1 < i < j} [x_i, x_j]^{\alpha_{ij}} \mod R. \quad (4) \]

There are two cases to consider.

Case (1a): The first case is when \(l_{s_1s_{1u_1}} \leq l_{s_{1u_1}s_{2u_2}} \). We have
\[[x_{s_1}, y_{s_{1u_1}}]^{p_{l_{s_1u_1}}} [y_{s_{1u_1}}, y_{s_{2u_2}}]^{p_{l_{s_1u_1} - l_{s_1u_2}}} \equiv [y_{s_{1u_1}}, y_{s_{1u_1}}]^{p_{l_{s_1u_1} - l_{s_1u_2}}} \mod \gamma_3(F_n), \]
where \(y_1 = x_{s_1}^{-1} y_{s_{2u_2}}^{p_{l_{s_1u_1} - l_{s_1u_2}}} \). This gives
\[w(x_1, \ldots, x_n) \equiv [y_{s_{1u_1}}, y_{s_{1u_1}}]^{p_{l_{s_1u_1} - l_{s_1u_2}}} \prod_{s_1 < i < j} [x_i, x_j]^{\alpha_{ij}} \mod R. \quad (5) \]

Note that in the expression for \(y_{s_{1u_1}} \) the exponent of \(x_{s_1} \) is non-zero and coprime to \(p \) as is the exponent of \(x_{s_{1u_1}} \) in \(y_{s_{1u_1}} \). In particular note that neither \(x_{s_1} \) nor \(x_{s_{1u_1}} \) appear in the rest of the expression for \(w \) mod \(R \) and that \(x_{s_{1u_1}} \neq x_{s_1} \). We can set \(y_1 := y_{s_{1u_1}} \) and \(y_2 := y_{s_{1u_1}} \) and repeat the algorithm for the rest of the commutators.
Case (2a): The second case however is when \(l_{s_1, s_{1u_1}} > l_{s_1, s_{2u_2}} \). We have

\[
[x_{s_1}, y_{s_{1u_1}}]^{l_{s_1, s_{1u_1}}'} [y_{s_{1u_1}}, y_{s_{2u_2}}]^{l_{s_1, s_{2u_2}}'} \equiv [y_{s_{1u_1}}, y_{t_{2u_2}}]^{l_{s_1, s_{2u_2}}'} \mod \gamma_3(F_n)
\]

where \(y_{t_{2u_2}} = x_{s_1}^{l_{s_1, s_{1u_1}}'} - l_{s_1, s_{2u_2}}' \). This gives

\[
w(x_1, ..., x_n) \equiv [y_{s_{1u_1}}, y_{t_{2u_2}}]^{l_{s_1, s_{2u_2}}'} \prod_{s_1 < i < j} [x_i, x_j]^{\alpha_{ij}} \mod R.
\]

Here the exponent of \(x_{s_1, s_{1u_1}} \) in \(y_{s_{1u_1}} \) is non-zero and coprime to \(p \) and the same is true for the exponent of \(x_{s_{2u_2}} \) in \(y_{t_{2u_2}} \). However, in contrast to Case (1a), whilst \(x_{s_1, s_{1u_1}} \) does not appear in the rest of the expression for \(w \) mod \(R \) it is possible that \(x_{s_{2u_2}} \) may. If it doesn’t then set \(y_1 := y_{s_{1u_1}} \) and \(y_2 := y_{t_{2u_2}} \) and repeat the algorithm for the rest of the commutators, if there are any. If it does substitute it out of the expression in (6) using

\[
y_{t_{2u_2}} = x_{s_1}^{l_{s_1, s_{1u_1}}'} - l_{s_1, s_{2u_2}}' \quad y_{s_{2u_2}} = x_{s_1}^{l_{s_1, s_{1u_1}}'} - l_{s_1, s_{2u_2}}'
\]

This gives

\[
w \equiv [y_{s_{1u_1}}, y_{t_{2u_2}}]^{l_{s_1, s_{2u_2}}'} [y_{t_{2u_2}}, x_{s_{3u_3}}^{\alpha''_{s_{2u_2}, s_{3u_3}}} \ldots x_{s_{3u_3}}^{\alpha''_{s_{2u_2}, s_{3u_3}}} \ldots x_{s_{3u_3}}^{\alpha''_{s_{2u_2}, s_{3u_3}}}] \prod_{i < j} [x_i, x_j]^{\alpha_{ij}^\prime} \mod R,
\]

where, as usual, \(\alpha''_{s_{2u_2}, s_{3u_3}} = p_{s_{2u_2}, s_{3u_3}}^{l_{s_{2u_2}, s_{3u_3}}'} m_{s_{2u_2}, s_{3u_3}}^{l_{s_{2u_2}, s_{3u_3}}'} \) for all \(j \). Now choose \(l_{s_{2u_2}, s_{3u_3}}'' \) minimal among the \(l_{s_{2u_2}, s_{3u_3}}'' \)'s and let

\[
y_{s_{3u_3}} = x_{s_{3u_3}}^{l_{s_{2u_2}, s_{3u_3}}''} - l_{s_{2u_2}, s_{3u_3}}'' \quad m_{s_{2u_2}, s_{3u_3}}^{l_{s_{2u_2}, s_{3u_3}}''} \ldots x_{s_{3u_3}}^{l_{s_{2u_2}, s_{3u_3}}''} \ldots x_{s_{3u_3}}^{l_{s_{2u_2}, s_{3u_3}}''}.
\]

Then, as before, the expression for \(w \) becomes

\[
w \equiv [y_{s_{1u_1}}, y_{t_{2u_2}}]^{l_{s_1, s_{2u_2}}'} [y_{t_{2u_2}}, y_{s_{3u_3}}]^{l_{s_{2u_2}, s_{3u_3}}'} \prod_{i < j} [x_i, x_j]^{\alpha_{ij}''} \mod R.
\]

Again there are two cases.

Case (1b): If \(l_{s_1, s_{2u_2}}' \leq l_{s_{2u_2}, s_{3u_3}}'' \) then \(w \) becomes

\[
w(x_1, ..., x_n) \equiv [y_{t_{2u_2}}, y_{s_{1u_1}}]^{l_{s_1, s_{2u_2}}'} \prod_{i < j} [x_i, x_j]^{\alpha_{ij}''} \mod R.
\]

where \(y_{s_{1u_1}} = y_{s_{1u_1}}^{-1} y_{s_{3u_3}}^{l_{s_{2u_2}, s_{3u_3}}'} - l_{s_1, s_{2u_2}}' \) and we are done as in Case (1a).
Case (2b): If however $l'_{2u_2} > l''_{2u_2}$ we can repeat the algorithm described in Case (2a) above and we will end up with an expression of the form

$$w \equiv [y_{2u_2}, y_{2u_2}] [y_{2u_3}, y_{2u_4}] \prod_{i<j} [x_i, x_j]^{a_{ij}} \mod R, \quad (9)$$

where y_{2u_3} and y_{2u_4} are words in the x_is with the exponents of x_{2u_3} and x_{2u_4} non-zero and coprime to p respectively. Again there are two cases. If in (9) we have $l''_{2u_2} \leq l''_{3u_2}$ then, as in Cases (1a) and (1b), we are done. If not we have $l_{2u_1, u_2} > l'_{2u_2} > l''_{2u_2} > l''_{3u_2} \geq \cdots \geq 0$ and we keep going until the algorithm stops, i.e. we are in the first case.

We will eventually end up with an expression like (5) or (8). If the remaining a'_{ij}, in (8) say, are all zero we can stop here. Otherwise, set $y_1 := y_{2u_2}$ and $y_2 := y_{2u_1}$ and repeat the algorithm on the rest of the commutators. Eventually, after relabelling, we have an expression for w of the desired form.

We are now ready to prove the theorem. Let $w(x_1, ..., x_n)$ be any group word and fix a group $G \in \mathfrak{G}_{2-m}$. From (1) we have

$$w(x_1, ..., x_n) \equiv x_1^{a_1} ... x_n^{a_n} (\prod_{i<j} [x_i, x_j]^{\beta_{ij}}) \mod \gamma_3(F_n).$$

By Lemma 2.3 w is G-equivalent to the word

$$w'(y_1, x_2, ..., x_n) \equiv y_1^{p'} \prod_{i<j} [x_i, x_j]^{\beta_{ij}} [y_1, h]$$

for some $l, \beta_{ij} \in \mathbb{Z}$, where h is some word in the x_is with $i \neq 1$. As in the proof of Lemma 2.3 we can substitute x_1 out of the expression above giving us

$$w'(y_1, x_2, ..., x_n) \equiv y_1^{p'} \prod_{1<i<j} [x_i, x_j]^{\beta_{ij}} [y_1, h'] \mod R$$

for some $\beta_{ij} \in \mathbb{Z}$, where R denotes $\gamma_3(F_n) R_{p-m}^n$ and h' is some word in the x_is with $i \neq 1$. Then by Lemma 2.4 w' is G-equivalent to the word

$$v(y_1, y_2, ..., y_{2k+1}, x_{2k+2}, ..., x_n) = y_1^{p'} \prod_{i=1}^k [y_{2i}, y_{2i+1}]^{\gamma_{2i+1}} [y_1, h'']$$

for some $\gamma_{ij} \in \mathbb{Z}$, where $2k + 1 \leq n$ and h'' is some word in the y_is and x_js for $i = 2, ..., 2k + 1$ and $j = 2k + 2, ..., n$. We write this as

$$v(y_1, y_2, z_2, ..., z_{k+1}, x_{2k+2}, ..., x_n) = y_1^{p'} \prod_{i=2}^{k+1} [y_i, z_i]^{\nu_i} [y_1, h''],$$

where $\nu_i+1 = \gamma_{2i+1}$. Consider the word map given by v. The commutator map from $G \times G$ to G sending a pair (x, y) to its commutator $[x, y]$ is a bilinear map. Fixing the z_i for all i and restricting y_1 to the derived group of G we obtain a linear map

$$v' : G' \times G^{(n-1-k)} \to G'.$$
defined by \(v'(y_1, \ldots, y_{k+1}, x_{2k+2}, \ldots, x_n) = v(y_1, y_2, \ldots, y_{k+1}, z_{k+1}, x_{2k+2}, \ldots, x_n) \). Now \(|\{g \in G' \times G^{(n-1-k)} : v'(g) = 1\}| \geq |G|^{n-1-k}\) and so \(N(G, v) \geq |G|^{n-1}\) since we had \(|G|\) choices for each of the \(z_i\). Thus \(P(G, v) \geq \frac{1}{|G|} \) and the result follows since \(P(G, w) = P(G, v) \).

References

[1] A. Amit, *On equations in nilpotent groups*, in preparation.

[2] M. Abért, *On the probability of satisfying a word in a group*, J. Group Theory 9 (2006), 685-694.

[3] N. Nikolov and D. Segal, *A characterization of finite soluble groups*, Bull London Math. Soc. 39 (2007), 209-213.

[4] M. Hall, *The Theory of Groups*, Second Edition, AMS Chelsea Publishing, (1976).