The Comparative Effectiveness of Adult Mosquito Sampling Methods Dealing With Odor-baited Resting Box Traps in a Malaria-endemic Area in Southern Iran

Seyed Hassan Moosa Kazemi (✉ moosakazemi@tums.ac.ir)
School of Public Health and Institute of Public Health Research https://orcid.org/0000-0001-8282-3630
Yousef Salari
Hormozgan University of Medical Sciences
Nariman Shahosseini
Agriculture et Agroalimentaire Canada Centre de recherche et de développement de Lethbridge: Agriculture and Agri-Food Canada Lethbridge Research and Development Centre
Sajad Fekri
Hormozgan University of Medical Sciences
Ahmad Raeisi
TUMS: Tehran University of Medical Sciences
Mousa Khosravani
Shiraz University of Medical Sciences Faculty of Dentistry
Reza Safari
Hormozgan University of Medical Sciences
Azam Rafatpanah
Jahrom University of Medical Sciences: Jahrom University of Medical Science
Tahereh Sadat Asgarian
TUMS: Tehran University of Medical Sciences
Mohammad Mehdi Sedaghat
TUMS: Tehran University of Medical Sciences

Research

Keywords: Anopheles stephensi, Culex pipiens, Pit shelter, CO2, Odor-baited resting boxes

Posted Date: October 19th, 2021

DOI: https://doi.org/10.21203/rs.3.rs-860994/v2

License: © This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License
Abstract

Background

Iran is under threat of a potential outbreak of mosquito-borne diseases, such as malaria, Dengue fever, Chikungunya, and Zika. The study aimed to determine the efficiency and sustainability of some adult mosquito sampling methods for designing effective entomological surveillance systems in a malaria endemic area.

Methods

Different rates of tap water, sugar, and yeast (Saccharomyces cerevisiae) were mixed to provide CO₂. Anopheles stephensi and Culex pipiens Bandar Abbas strains were reared in the insectary and used for tests. On a lab scale, CO₂ orientation experiments were performed using a Y-tube olfactometer on the insectary mosquito strains. In the field trial, human landing catches (HLC), artificial pit shelter (APS), CO₂-baited trap (CO₂-BT), human and cow odor baited resting boxes (HOBT, COBT), cow urine baited trap (CUBT), and colored un-baited box (UB) were studied in Bandar Abbas, Hormozgan Province, south of Iran. Mean densities of An. stephensi and Cx. pipiens insectary strains, which oriented to CO₂ as flowrate of 170, and 300 mL/minute was significantly higher compared to the control group (P < 0.05). The black un-baited inbox resting traps significantly more collected wild mosquito species compared to others colored UB (P < 0.05).

Results

A total of 2722 collected mosquitoes comprises Culex pipiens (48.56%), Anopheles fluviatilis s.l.(14.21%), An. stephensi (11.68%), Cx. theileri (9.95%), Aedes caspius (7.01%), An. dthali (6.79%) An. culicifacies s.l., An. pulcherimus, An. sergenti,An. superpictus s.l., Cx. sitiens and, Ae.caspius less than 1%. Anopheles stephensi and, An.seringti were most collected in CUBT. Anopheles fluviatilis s.l. and Ae. caspius were most found in HLC. Anopheles dthali, Cx. pipiens and, Cx. theileri were most abundant in APS.

Conclusions

Black CUBT and APS methods can be suggested as a perfect sampling strategy for malaria vectors surveillance. APS, and HLC methods were found useful to entomological surveillance systems for arboviral and filarial vector-borne diseases. Further modified sampling methods should be devoted to identify more effective sampling methods.

Background

Blood-sucking mosquitoes have been responsible for a series of diseases to humans, such as Malaria, Dengue fever, West Nile, Japanese encephalitis (JE), Zika and Yellow fever and, Chikungunya [1]. These pathogens have been spread rapidly worldwide over the last 50 years [2]. Climate change has had a huge impact on the distribution and incidence rates of arthropod-borne diseases [1]. In 2019, in 87 malaria-endemic countries, 229 million malaria cases have been estimated [3].

There are 70 species and 8 (or 12) genera of Iranian mosquitoes depending on the classification of the tribe Aedini [4]. Malaria is a major endemic infectious disease in Iran, especially in the south and southeastern provinces including the Sistan & Baluchestan, Hormozgan, and Kerman Provinces [5-10]. Plasmodium vivax was the causative agent of 93.75% of cases, followed by P. falciparum (6.25%). The 15-year-old group and elderly contained the most malaria-reported cases (66.7%) [11]. Although malaria cases have declined in Iran, imported cases from neighboring countries are still the main challenge to the national health policy [12].

Anopheles stephensi, An. fluviatilis s.l., An. culicifacies s.l., An. maculipennis, An. superpictus s.l., An. sacharovi, and An. dthali are the main and An. pulcherimus is considered as the probable malaria vector in Iran [13, 14]. Also, the infection of Culex pipiens, Aedes caspius and Cx. theileri to West Nile virus was reported from the north, northwest and, south of Iran respectively [15-17].

Many strategies have been conducted to control infectious diseases through the usage of insecticides against mosquitoes, however, the use of insecticides may result in increased levels of tolerance or resistance to pesticides [18]. Understanding the malaria transmission dynamic depends on vector behavior. The mosquitoes-borne diseases have different host feeding patterns and resting behavior (outdoor or indoor) after taking blood meals. Moreover, the microclimate may result in increased levels of tolerance or resistance to pesticides [18]. The orientation of mosquitoes to CO₂ and heat enhances the expertise of traps for the collection of mosquitoes [21]. The mosquitoes’ maxillary palp capitate peg neurons, which include Gustatory receptors (Gr1, Gr2, and Gr3) have the centric function to detect carbon dioxide [22].

Baited resting boxes have been introduced as an efficient technique for the sampling of Anopheles mosquitoes [23]. In a previous survey carried out by Zaim et al. (1986), the CDC light traps were more effective to collect important malaria vectors than pyrethrum space-spray catches, human and animal landing catches and, pit shelter collections. So far, odor-baited resting inbox traps have not been evaluated during malaria vector control operation in Iran [24].

Hormozgan Province is one of the most important malarious areas and malaria cases has been determined based on the national malaria surveillance system. A malaria elimination program began intending to achieve this target in Iran by 2025 [11]. There has been an excellent program since, but the continued risk of importation of malaria, Dengue, and Chikungunya cases from Pakistan and Afghanistan have a huge challenge to vector-borne diseases control.
The determination of host preference is a critical issue in the control and surveillance of blood-sucking mosquitoes; hence, we researched to extend our knowledge about the collection of mosquitoes and their response to attractants. Present research aimed at the evaluation of odor-baited resting inbox traps by testing their influence on host-seeking behaviors of mosquitoes under laboratory, and field conditions.

Methods

Study location information

This project was performed between September 2015 and September 2016 in three localities, Hormoodar (27°31′70″N; 56°31′40″E), Nian (27°50′15″N; 56°86′30″E), and Kovveh villages (27°72′81″N; 57°33′25″E), Bandar Abbas County, the capital town of Hormozgan Province, southern Iran. The villages are hillsides with a dry-warm climate and excessive humidity from June to October and the common precipitation is about seventy-five mm annually. Farmers occasionally use running water for irrigation. Many ditches, creek, waterlogged, and hoof imprints make appropriate breeding places for mosquitoes.

Rearing the species

Anopheles stephensi and *Cx. pipiens* Bandar Abbas strains have been reared in the insectary of Bandar-Abbas Health Training and at average temperature (25 ± 2°C), relative humidity (70 ± 10 %), and photoperiod (10L:14D).

CO₂ production and following lab scale trial in the insectarium

We combined different rates of tap water, sugar, and yeast (*Saccharomyces cerevisiae*) to supply CO₂ in a plastic bottle (4 L) containing 2.5 L of water, based on literature [25]. In this approach, 6 concentrations of carbon dioxide had been provided fresh every day. A standard manual bubble flowmeter, Sigma-Aldrich model is used to measure the amount of CO₂. (i.e. 170, 300, 250, 340, and 360 mL/min) (Table 1).

The CO₂ orientation experiments were performed using a Y-tube olfactometer, as described by Guha et al. (2014) [26] with few modifications. CO₂ was released inside the treatment arm of the Y-tube olfactometer. At the same time, nylon perforated mesh was placed in the control arm of the Y-tube olfactometer to provide the mosquitoes with free access to the external environment. The temperature and relative humidity of the experiments was maintained at 25 ± 2°C and 70 ± 10%, respectively. Five replicates of each 5–7-day old adult non-blood fed female, *An. stephensi* and *Cx. p. pipiens* mosquitoes were exposed for each concentration and the run time for each experiment was 5 min. For each replicate, 20-25 female mosquitoes were released into mosquito introduction ports at the stem of the Y-tube olfactometer and the acclimatization time was 5 min. The airflow was maintained at 1 L/min during the experiment by a pressure regulator, which was described by Seenivasagan et al., (2012) [27]. The number of mosquitoes was counted and then recorded in each Y-tube olfactometer arm.

Sampling methods of adult mosquitoes in field trial

Artificial pit shelter

One pit shelter (120 lengths × 90 widths ×150 cm depth) has been constructed in each village [28] (Fig. 1). Mosquitoes were collected once a month using this method from each locality with a suction tube in the morning from 5:30 am to 7:30 am, released to well-labeled paper cups. The captured specimens were transported to the laboratory and identified to species based on a valid diagnostic key of Iran at the species level [29].

Human landing catches (HLC)

This process was carried out on three young volunteers at each collection site once a month, from 5 p.m. to 6 a.m. [28]. Mosquitoes seeking for hosts were collected by the aspirator and sorted by one hour intervals, well released into paper cups, labeled, transported to the laboratory, then identified based on a valid diagnostic key of Iran at the species level [29].

Odor-baited resting boxes Trap (OBT)

Mosquitoes attracted to odor hosts were collected at each locality site, once a month using black resting boxes (30 × 30 ×30 cm). Black cotton cloth material (30 × 30 cm) impregnated by sweat of the cow body (head, feet, and back) was used inside the resting boxes (RBs) as the mosquitoes’ attractant (Fig. 2). The
RBs had been set in the field at dusk and collected in the early morning. Mosquitoes were collected by the aspirator, transported to the laboratory, counted, and identified [29]. The same method was performed for boxes baited with human body odor (HOBT), cow odor baited resting boxes (COBT), and cow urine baited trap (CUBT). Sweat impregnated cloth has been discarded after each field trial, and the new odor-baited fabric has been used for similar experiments. Similar inbox size was used as treated with carbon dioxide generated flow rates as 170 mL/min (Table 1).

Un-baited box (UB)

The similar black, blue, green, red and white cotton cloth materials used in RBs (30 × 30 ×30 cm) without any odor as the un-baited box.

Data analysis

The obtained data were entered into SPSS 19.0 (SPSS, Inc., Chicago, IL, USA) and were analyzed by One-Way ANOVA following the Tukey test (post-hoc analysis) to determine the mean differences. P-values of ≤ 0.05 were selected as a point of significant difference.

Results

Attraction of mosquitoes to different CO₂ concentrations

Mean densities of mosquito oriented to CO₂ treatment under the laboratory condition was significantly higher compared with the control and this was observed among the two combinations of sugar and yeast cultures (that mentioned in Table 1) in test numbers 1 and 2 (P < 0.05) (Table 2). However, when the efficacy of the different mixtures of sugar and yeast in attracting mosquitoes was compared, more orientation was found in the control group than treatment in tests No. 3 to 6.

Test No	Mean density± SE	P value	Mean density± SE	P value		
	An. stephensi		Cx. pipiens			
	Treatment	Control	€ 0.05	Treatment	Control	€ 0.05
1	14.75±0.11	10±0.11	€ 0.05	15.25±0.12	6.25±0.16	€ 0.05
2	11.5±0.16	10±0.14	€ 0.05	11±0.14	7.75±0.11	€ 0.05
3	9±0.14	11.25±0.13	€ 0.05	8.5±0.17	11±0.19	€ 0.05
4	7.75±0.14	13±0.17	€ 0.05	8±0.12	11.5±0.18	€ 0.05
5	7.75±0.13	13.25±0.19	€ 0.05	8.25±0.13	10.5±0.14	€ 0.05
6	7.75±0.16	13.25±0.15	€ 0.05	7.75±0.11	9.75±0.13	€ 0.05

Therefore, the most effective mixture should be of the lower concentration of 17.5 g of yeast plus 250 g of sugar plus 2.5-liter water, to release of CO₂ at a flow rate of 170 mL/minute (Table 1).

Un-baited box traps

Table 3 shows the number and densities of mosquitoes collected in un-baited inbox traps with different colors in the field. A total of 217 mosquitoes, belonging to 3 genera and 7 species, were collected during 6 months. Anopheles stephensi was the most frequent species (36.8%) followed by Cx. pipiens (16.1), An. dthali (13.4), An. fluviatilis s.l. (13.4%), Cx. theileri (9.2%), An. sergentii (4.6%), and Ae. caspius (6.5%). Mean densities of female mosquitoes collected were significantly higher compared to males except for An. sergentii (P < 0.05) (Table 3).
A total of 4,513 adult mosquitoes were identified comprising *Cx. pipiens* (37.03%), *An. stephensi* (19.88%), *An. flaviiatiles s.l.* (14.03%), *C. theileri* (11.41%), *An. culicifacies s.l.* (9.74%), *Ae. caspius* (6.04%) and *An. sergentii* (2.14%) (Table 5). The observation of the abdominal condition of the females is presented in Table 3.

Artificial pit shelter

A total of 920 mosquitoes were sampled using this sampling method. Among these, 332 (36.8%) were females while 588 (63.2%) were males. Out of the female samples, *Cx. pipiens* 197 (59.4%) were predominant species followed by *Cx. theileri* 59 (17.8%), *An. flaviiatiles s.l.* 36(10.8%), *An. dthali* 22 (6.6%), *An. stephensi* 15 (4.5%), *An. superpictus s.l.* 2 (0.60%) and *An. sergentii* 1 (0.30%).

The number of gravid and semi gravid specimens of *An. flaviiatiles s.l.*, *An. superpictus s.l.* and *An. dthali* was higher than the number of unfed and blood-fed, which proportion of gravid plus semi gravid to unfed plus fed was more than 1. In contrast, the number of gravid and semi gravid of *An. stephensi*, and *An. sergentii*, was lower than that of unfed and blood-fed ones, which that proportion was less than 1.

Human landing catches

A total of 541 adult mosquitoes were collected comprising *An. stephensi*, *An. dthali*, *An. flaviiatiles s.l.*, *An. pulcherimus*, *An. sergentii*, *An. culicifacies s.l.*, *Cx. pipiens*, *C. sitiens*, *C. theileri* and *Ae. caspius*. *Culex pipiens* (29.94%) and *Aedes caspius* (27.35%) were the most prevalent species in this method. *Anopheles species* were more collected during the second part of the night (9 pm - 01 am) except *An. sergentii*, while the peak-biting activity of culicinae species, and *Ae. caspius* was in the first third of the night from 1700 to 2100 hours (P=0.0001) (Table 4).

Cow urine baited resting trap (CUBT)

A total of 4,513 adult mosquitoes were identified comprising *Cx. pipiens* (37.03%), *An. stephensi* (19.88%), *An. flaviiatiles s.l.* (14.03%), *C. theileri* (11.41%), *An. dthali* (9.74%), *Ae. caspius* (6.04%) and *An. sergentii* (2.14%) (P=0.043) (Table 5). The observation of the abdominal condition of the females is presented in

Table 3

Mosquito number and densities within Un-baited traps.

Un-baited trap	Ae. caspius	Cx. theileri	Cx. pipiens	An. sergentii	An. flaviiatiles s.l.	An. dthali	An. stephensi
Black	No(D)	No(D)	No(D)	No(D)	No(D)	No(D)	No(D)
Green	4(0.67)	5(0.84)	3(0.5)	6(1)	2(0.34)	1(0.17)	2(0.34)
Red	2(0.34)	5(0.84)	0(0)	7(1.17)	0(0)	2(0.34)	5(0.84)
Blue	0(0)	0(0)	0(0)	0(0)	0(0)	0(0)	0(0)
Yellow	0(0)	0(0)	0(0)	0(0)	0(0)	0(0)	0(0)
White	3(0.5)	2(0.34)	5(0.84)	5(0.84)	1(0.17)	5(0.84)	1(0.17)
Total	8	6	15	5	22	13	4
%	6.5	9.2	16.1	4.6	13.4	13.4	36.8

In the field, 217 male and female’s mosquitoes have been attracted to RBs, which, 92 (42.4%), 56 (25.8%), 42 (19.35%), 1 (0.46%) and 26 (11.98%) have been collected to black, green, red, yellow and white RBs, respectively. In general, the attraction of mosquitoes was found significantly different from black and white RBs. Densities of *Anopheles* species attracted to Black colored RBs mosquito was significantly higher compared with other colored RBs (P = 0.05) (Table 3). The black un baited RBs were collected both sexes, and the most physiological stages of the females were blood-fed females followed by unfed, semi gravid plus gravid respectively.

Table 4

Mosquitoes collected by human landing catches based on time of sampling, Bandar Abbas, 2015-2016.

Time of sampling	Mean of temperature (°C)	Mean of humidity (%)	Cx. pipiens	Cx. theileri	Cx. sitiens	Ae. caspius	An. dthali	An. flaviiatiles s.l.	An. pulcherimus	An. sergentii	An. culicifacies s.l.
17-21 p.m.	26.5	59	88	13	2	78	2	14	55	0	2
21-01 a.m.	23.5	53	55	11	0	63	18	27	68	6	0
01-05 a.m.	22.5	59	59	19	6	0	7	0	0	1	1
Total	162 (29.94)	30 (5.54)	2 (0.36)	148 (27.35)	20 (3.69)	41 (7.57)	126 (23.29)	7 (1.29)	2 (0.36)	3 (0.55)	0

In general, the attraction of mosquitoes was found significantly different from black and white RBs.
Table 6. Overall, the most of mosquitoes collected in the CUBT were unfed, followed by blood-fed, semi gravid plus gravid respectively. *Anopheles stephensi* was most collected in October, December, and April respectively while the other species have been abundant in autumn.

Sampling data of control baited trap

The control traps have been concurrently set up in the field for each test. The most collected species were *Cx. pipiens* (53.53%) followed by *An. stephensi* (21.21%) (Table 5). The abdominal condition demonstrated that more fed females of *An. stephensi* and *Cx. pipiens* collected than gravid and semi gravid (P=0.0001).

Cow odor-baited box trap (CBBT)

Seven species had been collected by cow odor-baited box traps (Table 5). Out of 391 individual mosquitoes, 36.82% had been identified as unfed females. *Culex pipiens* were most collected in April-March and December.

Table 5

Species Month	An. stephensi	An. dthali	An. fluviatilis s.l.	An. sergentii	Cx. pipiens	Cx. theileri	Ae. caspius	Total (%)
Jan	0	0	0	0	0	0	0	4
								20 (3.89)
Feb	0	0	0	1	4	0	2	0
								17 (3.31)
Mar	0	7	0	11	0	2	6	6
								45 (8.77)
Apr	0	0	0	16	0	2	0	28
								10 (3.7)
May	0	2	4	0	0	0	34	28
								90 (17.54)
Jun	2	8	2	2	0	0	0	1
								15 (2.92)
Jul	2	4	0	0	0	0	0	0
								6 (1.16)
Aug	2	2	0	0	0	0	0	1
								6 (1.16)
Sep	2	2	0	0	0	0	2	2
								13 (.33)
Oct	10	15	1	2	5	17	0	1
								19 (7)
Nov	14	20	2	6	8	22	0	1
								24 (4.59)
Dec	0	0	2	2	2	2	0	2
								4 (0.8)
Total (%)	32 (6.23)	70 (13.64)	11 (2.14)	39 (7.6)	19 (3.7)	53 (10.33)	2 (0.38)	9 (1.75)

(Cx. pipiens) were most collected in April-March and December.
Table 6
Abdominal condition of female collected by resting traps baited with cow urine, Bandar Abbas, 2015-2016.

Species	An. stephensi	An. dthali	An. fluviatilis s.l.	An. sergentii	Cx. pipiens							
Month	*U*	F	HG+G	U	F	HG+G	U	F	HG+G	U	F	HG+G
Jan	0	0	3	0	0	1	0	3	1	0	2	0
Feb	0	0	0	0	0	0	0	0	0	0	0	0
Mar	7	0	3	1	0	1	0	2	0	0	2	0
Apr	9	1	2	0	0	0	0	0	0	10	0	0
May	2	0	0	0	0	0	0	0	0	28	0	0
Jun	8	0	0	0	0	0	0	0	0	0	0	0
Jul	4	0	0	0	0	0	0	0	0	0	0	0
Aug	2	0	0	0	0	0	0	0	0	0	0	0
Sep	2	0	0	0	0	0	0	0	0	0	0	0
Oct	14	1	0	0	0	0	0	0	0	7	0	0
Nov	20	0	0	2	0	0	0	0	0	12	2	0
Dec	0	0	2	0	0	1	1	0	2	0	0	0
Total (%)	68	2	37	2	50	5	67	4	0			

*U=unfed; F= fed; G=gravid; HG=half gravid

Human odor-baited resting boxes

A total of 126 mosquitoes belong to 6 species had been collected by this method. Cx. pipiens (61.9%) was found prevalent species followed by An. fluviatilis s.l. (14.28%) (p=.0001). The majority of collected samples were unfed. An. stephensi was most collected in spring and the end of summer, while Cx. pipiens was found more in spring and early autumn and was a less common species during the cold season.

CO₂-baited resting traps

In this research, as mentioned before, to produce CO₂ as flowrate of 170 mL/minute, we used 17.5 g of yeast plus 250 g of sugar plus 2.5-liter water for attraction of mosquitoes to RBs (Table 1). A total of 2722 mosquitoes were collected by the seven sampling methods (Table 7). Among these 1322 (48.56%) were Cx. pipiens, 387 (14.21%) An. fluviatilis s.l., 318 (11.68%) Anopheles stephensi, 271 (9.95%) Cx. theileri, 191 (7.01%) Ae. caspius, 185(6.79%) An. dthali and other species less than 1%. Out of 132 collected mosquitoes, Cx. pipiens was the most frequent species 48 (36.8%) followed by An. stephensi 42 (31.8), An. dthali 23 (17), and An. fluviatilis s.l. 19 (14%) (Table 7). The number and percentage of unfed females of mosquitoes collected by this sampling method were higher than that of blood-fed followed by semi gravid and gravid (P=0.024).
Anopheles stephensi was most collected in CUBT (n = 102, 32.07%), followed by CBBT (n = 57, 17.9%), APS (n = 43, 13.52%), CO₂-BT (n = 42, 13.21%), HLC (n = 41, 12.89%), UBT (n = 21, 6.60%) and HBBT (n = 12, 3.61%). There were statistically significant differences among the number of An. stephensi collected by CUBT (P = 0.009), APS (P = 0.007), HLC (P = 0.005), CO₂-BT (P = 0.005), UBT (P = 0.003), and HBBT (P = 0.001). An. fluviatilis s.l. was most collected in APS (n = 543, 41.07%), followed by CUBT (n = 248, 14.37%), CBBT (n = 190, 18.76%), HLC (n = 162, 12.25%), HBBT (n = 48, 3.63%), and least in UBT (n = 14, 3.61%). Significant differences were found among the number of this species collected by APS, compared to other methods (P = 0.008). Anopheles sergentii was most frequent in CUBT, whereas, An. dthali was more abundant in APS. There were significant differences among the number of An. dthali collected by APS, CUBT (P = 0.008), CO₂-BT (P = 0.007), HLC (P = 0.005), and CBBT (P = 0.001).

Culex pipiens was most abundant in APS (n = 543, 41.07%), followed by CUBT (n = 248, 14.37%), CBBT (n = 190, 18.76%), HLC (n = 162, 12.25%), HBBT (n = 78, 5.9%), UBT (n = 53, 21.4%) and CO₂-BT (n = 48, 3.63%). Significant differences were found among the number of Cx. pipiens collected by APS, CUBT (P = 0.009), CBBT (P = 0.007), HLC (P = 0.005), CO₂-BT (P = 0.005), UBT (P = 0.003), and CO₂-BT (P = 0.003). Culex theileri was most collected in APS (n = 126, 32%), and least in CUBT (n = 14, 3.61%). This species was not collected by HBBT, CO₂-BT and UBT. Significant differences were found among the number of this species collected by APS, compared to other methods (P = 0.001).

Aedes caspius was most frequent in HLC followed by CUBT, CBBT, and HBBT. There was no collection of this species by CO₂-BT, UBT, and APS. There were significant differences among the number of Aedes caspius collected by HLC, CUBT (P = 0.008), CBBT (P = 0.007), and HBBT (P = 0.001).

Discussion

The useful mosquito trap was to be effective, non-toxic, and covers a wide area. The present investigation revealed that the attraction pattern of four anophelineae, two culicinae, and one aedeniae mosquitoes was varied and also highly depended on the type of the traps.

Anopheles stephensi is the main malaria vector in Iran, and three biological forms i.e. type, mysorensis, and intermediate of the species have been reported in the Hormozgan Province [30]. This study demonstrated that the cow urine-baited resting traps have been more attractive to An. stephensi than either odor-baited boxes or other methods. This observation was consistent with that of Kweka et al [23, 31], who reported a higher density of An. arabiensis in CUBT followed by CBBT, and UBT respectively. The efficiency of CUBT is dependent on the place of the trap in indoors and outdoors. In our study, CUBT has a longer desirable effect on An. stephensi, which tend to rest inside the houses and shelter. On the other hand, the proportion of gravid and semi gravid of An. stephensi species collected by CUBT was lower than that of unfed and blood-fed ones. It seems that this species blood meal on both humans and cows rests in shelters to complete their gonotrophic cycle. Despite the widespread distribution of LLINs and ITNs among residents in southern Iran, most of them do not use a mosquito net when they sleep. This finding could be highlighted for programs of vector control such as IRS (indoor residual spraying), which impact on endophilic vector species as well as health promotion through the distribution of ITNs and LLINS. This finding agrees with a study performed on An stephensi in the south and southeastern Iran [32] and also control of malaria program in Africa [33].
Anopheles fluvitilis s.l. is the malaria vector in Iran and only species T has been reported from Iran [34, 35]. So far, at least three sibling species S, T, and U have been reported in the world [36]. In our study, An. fluvitilis s.l. more collected by HLC followed by APS, CUBT, CBBT, CO2- Bt, HBBT, and CBT. The ratio of semi gravid plus gravid to unfed plus fed of female An. fluvitilis s.l. was more than one indicated exophilic behavior. Agree with our finding, Basseri et al (2010) was relieved exophilic behavior with a high anthropophagic index for An. fluvitilis s.l. species [32].

An. dthali has been reported as a secondary vector for malaria in Iran [37]. In our study, An. dthali was more abundant in artificial pit shelters, followed by CUBT, CO2-Bt, HLC, CBBT, HBBT, and CBT. The abdominal condition of the female An. dthali during our study shows exophilic behavior. Agree with our finding, Basseri et al (2010) was reported the exophilic behavior of An. dthali [32].

An. culicifacies s.l. is the main malaria vector in Iran [38]. In the present study, this species was most abundant in UBT (n=4, 57.2%) followed by HLC (n=3, 42.8%). This species was captured by UBT, and found unfed, freshly fed, semi gravid, and gravid. Although we collected a few An. culicifacies s.l. during of this study, based on the ratio of abdominal condition was observed both endophilic and exophilic behaviors. The same result has been reported in a previous study [32]. In our study, this species was collected in the second third of the night by HLC. Agree with our study, more biting activity of this species was observed before midnight [39]. In contrast, this species was reported as the zoophilic behavior [6, 38]. We collected a few An. culicifacies s.l. during of this study, so at the present, we were unable to decide about comparable behavior.

Anopheles superpictus s.l. is one of the seven species of malaria vectors in Iran [6]. This species were captured in CBBT (n=5, 45.4%) followed by APS (n=6, 54.6%). Exophilic behavior of this species collected by APS was found based on the ratio of abdominal condition. The same result has been reported by Nejati et al. (2013) [6]. We collected a few An. superpictus s.l. during of this study, so at the present, we were unable to decide about comparable behavior. Anopheles superpictus s.l. is the main vector in the Central Plateau of Iran [40]. This species had the highest abundance and distribution among Anopheles in Kashan County and the best sampling method for its adults was the BG trap [41, 42].

An. pulcherinus is a suspected malaria vector in Iran [39]. Our founding relieved the more abundant of this species in UBT (n=2, 22.2%) followed by HLC (n=7, 77.8%). In our study, this species was collected on the third third of the night by HLC. Agree with our study, more biting activity of this species was found to occur before midnight [39]. Also, this species was captured by UBT, and found unfed, freshly fed, semi gravid, and gravid. Although we collected a few An. pulcherinus during this study, based on the ratio of abdominal condition was observed exophilic behavior. Agree with our study Zaim et al (1993) was reported the exophilic behaviour of this species [38]. We collected a few An. pulcherinus during of this study, so at the present, we were unable to decide about comparable behavior.

In our research, the use of various sampling methods to collect some culicinae sub-family and the tribe Aedini species from indoor and outdoor places helped us to know more about the behavior diversity and densities of these species.

Culex pipiens complex includes several members, more than 75 binomial names due to the complexity of synonyms [43]. Among the species complex, Culex pipiens, Cx. quinquefasciatus and Cx. pipiens form molestus are the most common members of this complex and are widespread in the world [44]. The molecular and morphological studies using ITS2, CO1, Ace2 cDNA genes and DNA barcoding indicated some variations of the Culex pipiens complex in Iran [45-47]. Because of having morphological variations among the Cx. pipiens complex, sometimes it is not easy to morphologically separate from Cx. quinquefasciatus and Cx. torrentium and, need to molecular assay [47]. Recently, was reported the occurrences of Cx. pipiens pipiens biotype pipiens and a hybrid between Cx. pipiens pipiens biotype pipiens and Cx. pipiens pipiens biotype molestus in Iran [48, 49]. Culex pipiens pipiens has a wide distribution in Iran and is also reported the steno-eurygamy, anautogeny, and ornithophilic behaviors [45, 49, 50]. West Nile and Sindbis viruses are predominantly transmitted between birds [51, 52]. This species was reported a potential enzootic and bridge vectors of SINV and WNV already circulating in Iran [53, 54]. Shahossaini et al. (2018) reported the occurrence of the West Nile virus and its subtype Kunjin in Iran [49].

In our study, more Cx. pipiens collected by CBBT followed by UBT and, HBBT. It seems that, this species selected calf odor over human odor, despite similar weights and thus similar CO2 expiration rates. In agreement, Shahossaini et al. (2018) reported a high proportion of birds for Cx. pipiens pipiens. I. pipiens of detected blood meal sources [49]. Similarly, Culicidae species are more oriented to mosquito Magnet traps treated with synthetic mixture than MM-X traps baited only with human odors in the field [55]. In contrast, more attraction of Cx. quinquefasciatus to human skin odors were reported [56]. This finding agrees with previous studies, which indicated the Cx. pipiens has a wide range of hosts, whereas Culex quinquefasciatus more attract to selected human odor over calf odor [57-62].

Culex theileri is widespread in Iran and, was reported naturally infected with Dirofilaria immitis and Setaria latistatopapillosa [63, 64]. In our study, Cx. theileri was most collected in APS followed by CUBT, HLC and, least in CBBT. This species was not collected during the present investigation utilizing HBBT, CO2-BT and UBT. This finding agrees with previous studies in Guilan Province, northern Iran, which indicated that this dominant species was more collected from cow shelter than human shelter using CDC light trap and Hand catch methods [65]. Shahossaini et al. (2018) reported a relatively high proportion of non-human mammals for Cx. theileri of detected blood meal sources [49]. Prior studies carried out in Isfahan province, central Iran, was found that, Cx. theileri as the dominant species in both larval and adult collections with exophilic and exophagic behaviour [41, 42, 66, 67]. In Kashan County, Cx. theileri and Cx. pipiens were the only species collected using the animal-baited bed net trap [41]. In contrast, we found low abundance among culicinae species. Hormozgan has a warmer climate than Isfahan province, and perhaps may explain these unexpected results, moreover there are widespread rice fields in Isfahan, so that we cannot observe them in Hormozgan. On the other hand, a lesser abundance of this species in our study, is perhaps due to the sampling method and time of collection.

Among the species collected, Ae. caspius is widespread in Iran and, known to vector WNV in northwestern Iran [68]. In our research, Aedes caspius was most abundant in the human landing catch followed by CUBT, CBBT, and HBBT. Agree with our finding, a study performed by Nejati et al (2020) reported this species was most abundant in Malaye trap and CO2-baited trap than BG and RBs [62]. Also, in agreement, Brown et al (2018) relieved that Ae. albopictus was most
collected by CDC backpack aspiration, then Sticky resting bucket and, Resting bucket [69]. We observed no evidence of the occurrences of Aedes aegypti and Aedes albopictus, the important vectors of arboviral diseases in Hormozgan Province. Aedes caspius was found only Aedini species, which were collected in our study. In contrast, Hassandoost et al. (2020), reported two species, Aedes caspius and Aedes vexans by larval collection in Hormozgan Province [70]. It should be considered, adult sampling methods in our study, may explain the variation in the results.

The human landing catch was introduced as the standard method for measuring human exposure to mosquito bites. However, this method potentially exposes individuals to a range of nuisance mosquitoes as well as mosquito-borne diseases and created bias through the sampling. On the other hand, baited resting boxes were not a suitable alternative method to collect of this species, which are more important in addressing entomological surveillance due to arbovirus transmission.

The artificial pit shelter was found more efficient than the baited resting boxes in the density and diversity of An. fluvialitis s.l., An. dthali, Cx. pipiens, Cx. theleri and Aedes caspius species.

In agreement, Pombi et al. (2014) reported the low abundance of Afrotopical malaria vectors by Sticky resting box (SRB) than the pit-shelters [71]. Also, our finding agrees with a study performed on An. arabiensis, and An. funestus s.l. in south-eastern Tanzania [72], which the mean abundance of these species collected with SRB traps inside and outdoors was significantly lower than with Back Pack Aspiration and Resting Bucket traps. Overall, very low numbers of mosquitoes were capture from the RBs baited with human odour [73], an observation similar to what was found in the current study.

The proportion of gravid and semi gravid to unfed and blood-fed showed the exophilic behavior of these species. The higher density of semi-gravid and gravid mosquitoes using the APS method is useful in evaluating the oviposition behavior of malaria vectors and in determining the best control method in targeting ovipositing mosquitoes. This finding could be highlighted for programs of vector control such as larviciding and thermal fogging, which impact exophilic mosquito species.

Our finding indicated that, the case of black un-baited resting boxes was the priority for all species. Agree with our finding, Burkett et al. (1998) showing Aedes aegypti preferred black spots or traps [74]. Also, more attraction of Cx. quinquefasciatus, Cx. sitiens, and An. epiroticus to black trapping boxes were reported [75]. Khemrattrakool et al. (2019) demonstrated the most of the mosquitoes found in the back UBs were blood-fed females [76], evidence similar to what was observed in the current study. Our finding revealed that, baited RBs more collected unfed mosquitoes, which are important to identifying the parity rates and addressing the situation of malaria transmission., which are important to identifying of the parity rates and addressing the situation of malaria transmission. The urine-baited traps provide a useful alternative tool for sampling malaria vector mosquitoes. This method can also be useful to survey adult mosquito mites and fungus infection that merged from any breeding site and then collected by baited RBs.

In the laboratory and field experiments, CO2 at a flow rate of 170 ml/min was the best dose and used to attracting mosquitoes than other doses. Culex pipiens was found the most frequent species followed by An. stephensi, An. dthali, and, An. fluvialitis. Current data approved that Cx. pipiens with non-human preference behavior are more targeted to traps than Anopheles species. In Kashan County, the best method for adult sampling of Cx. pipiens was BG-Sentinel trap with CO2, followed by human baited bed net trap [41].

Agree with our finding, a study determined that the zoophilic species of An. coustani and, An. pretoriensis are more oriented to CO2 rather than anthropophilic species [60] (Dekker and Takken 1998). In the laboratory experiments, we observed a variation among the different concentrations of CO2 for the attractiveness of An. stephensi and, Cx. pipiens. Agree with our finding, a study determined in Tanzania showed that no correlation among the different concentrations of CO2 for the attractiveness of An. gambiae and Cx. quinquefasciatus [25]. Carbon dioxide is an activator of mosquito host-seeking, more ever, Zöllner et al. (2004) reported increase in ambient CO2 levels may reduce the effective range of attraction to their blood hosts [77]. Consequently, Grant et al. (1995) relieved that the variations in CO2 concentration could affect the ability of the vector to host-seeking behavior [78]. Our finding showed that carbon dioxide raised from yeast supply was not attracted by some mosquitoes. This finding agrees with a study performed by Smallegange et al (2005), which suggested an alternative method using carbon dioxide in the field [20]. Agree with our finding, a study determined that, An. gambiae s.s. has been tended to CO2, also dry ice-baited trap was well-operated rather than yeast provided CO2 trap [60, 79].

In contrast, was reported the strong response to carbon dioxide raised from molasses supply in the open field [80]. It should be considered, that climatic factors, such as wind speed fluctuations, affected the amount of released carbon dioxide. It means CO2 was not released at durable concentrations to attract species. In our field area, winds in the low levels become much more uniform at night to early morning, which perhaps may explain a lesser abundance of some species collected by this method.

Conclusion

Black CUBT and APS methods can be suggested as a perfect sampling strategy for malaria vectors surveillance. APS, and HLC methods were found useful to entomological surveillance systems for Arboviral and filarial vector-borne diseases. Further modified sampling methods should be devoted to identifying effective sampling methods. In conclusion, the cow urine-baited RBs and Artificial pit shelters can be considered as a specific-species sampling for malaria vector surveillance systems. Also, the human-baited double net trap, could be evaluated compared with human landing catches, for estimating human-biting rates of arboviral and filarial vector-borne diseases. On the other hand, to the monitoring of larval stage and container-breeding species, using ovitraps is suggested.

Declarations

Acknowledgments
The authors are grateful to Prof. A.A. Hanafi-Bojd for reviewing the manuscript and his valuable comments.

Ethics approval and consent to participate

This study was approved by the ethical committee of Tehran University of Medical Sciences also was conducted by the national norms and standards for conducting medical research in Iran (No. 5798).

Consent for publication

Not applicable.

Availability of data and materials

All data generated or analyzed during this study are included in this published article.

Competing interests

The authors declare that they have no competing interests.

Funding

This work was supported by No.: IR.TUMS.VCR.REC.5798.

Authors’ contributions

SHM, and MMS developed the study concept, design, revised and edited the manuscript. YS collected the data, did the laboratory work, analyzed and wrote the manuscript. TSA, AR, RS, MK, AR, SF, and NS conceived and designed the experiments, performed the experiments, wrote the paper. All authors read and approved the final manuscript.

References

1. Bai L, Morton LC, Liu Q. Climate change and mosquito-borne diseases in China: a review. Glob Health. 2013;9:10.
2. Wilder-Smith A, Gubler DJ, Weaver SC, Monath TP, Heymann DL, Scott TW. Epidemic arboviral diseases: priorities for research and public health. The Lancet infectious diseases. 2017;17:e101-e6.
3. WHO. World malaria report 2020: 20 years of global progress and challenges. https://www.who.int/publications/i/item/9789240015791-eng.pdf. Accessed 30 November 2020.
4. Azari-Hamidian S, Abai M-R, Norouzi B. Mansonia uniformis (Diptera: Culicidae), a genus and species new to Southwestern Asia, with a review of its medical and veterinary importance. Zootaxa. 2020;4772:385–95.
5. Nejati J, Ansari-Moghadam S, Tabatabai A, Keyhani A. Effects of immigration on malaria incidence and its foci classification. Hormozgan Med J. 2012;16:283-91.
6. Nejati J, Vatandoost H, Oshghi MA, Salehi M, Mozafari E, Moosa-Kazemi SH. Some ecological attributes of malarial vector Anopheles superpictus Grassi in endemic foci in southeastern Iran. Asian Pac J Trop Biomed. 2013;3:1003-8.
7. Nejati J, Moosa-Kazemi SH, Saghafipour A, Soofi K. Knowledge, attitude and practice (KAP) on malaria, from high malaria burden rural communities, southeastern Iran J Parasit. Dis. 2018;42:62-7.
8. Nejati J, Saghaipour A, Vatandoost H, Moosa-Kazemi SH, Motevalli Haghi A, Sanei-Dehkordi A. Bionomics of Anopheles subpictus (Diptera: Culicidae) in a malaria endemic area, southeastern Iran. J Med Entomol. 2018;55:1182-7.
9. Soleimani Ahmadi M, Vatandoost H, Shaeghi M, Rasei A, Esghaghi M, et al. Vector ecology and susceptibility in a malaria-endemic focus in the eastern Islamic Republic of Iran. East Mediterr Health J. 2012;18:1034-41.
10. Vatandoost H, Emami S, Oshghi M, Abai M, Raesi A, Piazzak N, et al. Ecology of malaria vector Anopheles culicifacies in a malarious area of Sistan va Baluchestan Province, south-east Islamic Republic of Iran. East Mediterr Health J. 2011;17(5):439-45.
11. Malaria Elimination Plan Drafting Team. Second Malaria Elimination Plan covering the period 2015–20 (1394–98) "Towards a malaria-free Iran by 2025. Tehran: Ministry of Health and Medical Education. 2014.
12. Mohebbi Nodae SM, Khosravani M, Rafatpanah A, Jafarpoor S, Jaberhashemi SA. Imported malaria and epidemiologic components of this infection in Qeshm Island, Iran. Int J Mosq Res. 2018;5:143-9.
13. Azizi K, Moemenbella-Fard MD, Khosravani-Shiri M, Fakoorziba MR, Soltani A. Lethal and residual effects of lambdacyhalothrin, deltamethrin and cyfluthrin insecticides on adult mosquitoes of Anopheles stephensi Liston (Diptera: Culicidae) on different surfaces. J Health Sci Survell Syst. 2014;2:30-5.
14. Jaberhashemi SA, Khosravani M, Mohebbi Nodae SM, Rafatpanah A. The general inclination and global fund effects upon malaria incidence in Bashagard County, Iran. Int J Mosq. 2018;5:137-7.
15. Karami M, Moosa-Kazemi SH, Oshghi MA, Vatandoost H, Sedaghat MM, Rajabnia R, et al. Wolbachia endobacteria in natural populations of Culex pipiens of Iran and its phylogenetic congruence. J Arthropod-Borne Dis. 2016;10:347-63.
16. Soltani Z, Keshavarzi D. Species composition of mosquitoes (Diptera: Culicidae) in Farashband district, southwest of Iran. J Entomol Acarol Res. 2016;48:372-7.

17. Ziyaeyan M, Behzadi MA, Leyva-Grado VH, Azizi K, Pouldafgar G, Dorzaban H, et al. Widespread circulation of West Nile virus, but not Zika virus in southern Iran. PLOS Negl Trop Dis. 2018;12 (12):e0007022. https://doi.org/10.1371/journal.pntd.0007022.

18. Khosravani M, Rafatpanah A, Amir S-A, Zare A, the field practices of lambdacyhalothrin and deltamethrin insecticides against adult mosquitoes of Anopheles stephensi as the main vector of malaria: residual effects. Zahedan J Res Med Sci. 2017;19.

19. Hanafi-Bojd AA, Azari-Hamidian S, Hassan V, Zabihollah C. Spatio–temporal distribution of malaria vectors (Diptera: Culicidae) across different climatic zones of Iran. Asian Pac J Trop Med. 2011;4:498-504.

20. Smallegange RC, Qiu YT, van Loon JJ, Takken W. Synergism between ammonia, lactic acid and carboxylic acids as kairomones in the host-seeking behaviour of the malaria mosquito Anopheles gambiae sensu stricto (Diptera: Culicidae). Chemical senses. 2005;30:145-52. doi:10.1093/chemse/bji010.

21. Lima JBP, Rosa-Freitas MG, Rodovalho CM, Santos F, Lourenço-de-Oliveira R. Is there an efficient trap or collection method for sampling Anopheles darlingi and other malaria vectors that can describe the essential parameters affecting transmission dynamics as effectively as human landing catches? A Review. Mem Inst Oswaldo Cruz. 2014;109:685-705.

22. Tauxe GM, MacWilliam D, Boyle SM, Guda T, Ray A. Targeting a dual detector of skin and CO2 to modify mosquito host seeking. Cell. 2013;155:1365-79; doi: 10.1016/j.cell.

23. Kwela EJ, Mwang’onde BJ, Mahande AM. Optimization of odour-baited resting boxes for sampling malaria vector, Anopheles arabiensis Patton, in arid and highland areas of Africa. Parasit vectors. 2010;3.75. https://doi.org/10.1186/1753-4655-3-75.

24. Zaim M, Ershadi M, Manouchehri A, Hamdi M. The use of CDC light traps and other procedures for sampling malaria vectors in southern Iran. J Am Mosq Control Assoc. 1986;511-15.

25. Kwela EJ, Owino EA, Lee M-C, Dixit A, Himeidn YE, Mahande AM. Efficacy of resting boxes baited with Carbon dioxide versus CDC light trap for sampling mosquito vectors: A comparative study. Gloc Health Perspect. 2013;11-8.

26. Guha L, Seenivasagan T, Iqbal ST, Agrawal O, Parashar B. Behavioral and electrophysiologial responses of Aedes albopictus to certain acids and alcohols present in human skin emanations. Parasitol Res. 2014;113:3781-7.

27. Seenivasagan T, Sharma KR, Prakash S. Electroantennogram, flight orientation and oviposition responses of Anopheles stephensi and Aedes aegypti to a fatty acid ester-propyl octadecanoate. Acta trop. 2012;124:54-61.

28. Service M. Mosquito Ecology: Field Sampling Methods. Springer; 1993.

29. Azari-Hamidian S, Harbach RE. Keys to the adult females and fourth-instar larvae of the mosquitoes of Iran (Diptera: Culicidae). Zootaxa. 2009;2078:1-33.

30. Vatandoost H, Oshaghi MA, Abaie MR, Shahi M, Vaghighobi F, Baghali M, et al. Bionomics of Anopheles stephensi Liston in the malaria endemic area of Hormozgan province, southern Iran, 2002. Acta Trop. 2006;97:196-203; doi: 10.1016/j.actatropica.2005.11.002.

31. Kwela EJ, Mwang’onde BJ, Kimaro E, Msangi S, Massenga CR Mahande AM. A resting box for outdoor sampling of adult Anopheles arabiensis in rice irrigation schemes of lower Moshi, northern Tanzania. Malar J. 2009;8:82. https://doi.org/10.1186/1475-2875-8-82.

32. Basseri H, Raeisi A, Ranjbar Khakha M, Pakarai A, Abdolghafar H. Seasonal abundance and host-feeding patterns of anopheline vectors in malaria endemic area of Iran. J Parasitol Res. 2010; doi:10.1155/2010/671291.

33. Mahande A, Mosha F, Mahande J, Kwela E. Feeding and resting behaviour of malaria vector, Anopheles arabiensis with reference to zooprophylaxis. Malar J. 2007;6:100. https://doi.org/10.1186/1475-2875-6:100.

34. Naddaf S, Oshaghi M, Vatandoost H, Assmar M. Molecular characterization of Anopheles fluviatilis species complex in the Islamic Republic of Iran. East Mediter Health J. 2003;9:257-65.

35. Barghamadi Z, Moosa-Kazemi SH, Oshaghi MA, Vatandoost H, Shahraki G. species identification of the Anoph eles fluviatilis complex using phylogene-tic analysis PCR-sequencing in southwestern Iran. Acta Med Mediter. 2011;32:2069.

36. Subbarao SK, Nanda N, Vasantha K, Dua V, Malhotra M, Yadav R, et al. Cytogenetic evidence for three sibling species in Anopheles fluviatilis (Diptera: Culicidae). Ann Entomol Soc Am. 1994;87:116-21.

37. Manoochehri A, Ghiasseddin M, Shahgudian ER. Anopheles dthali Patton, 1905, a new secondary vector in southern Iran. Ann Trop Med Parasitol. 1972;66:537–8.

38. Zaim M, Subbarao S, Manouchehri A, Cochran A. Role of Anopheles culicifacies sl. and An. pulcherimus in malaria transmission in Ghassregand (Baluchistan), Iran. J Am Mosq Control Assoc. 1993;23:6.

39. Mowlaii G, Zaim M, Manouchehri A, Motabar M, Edressian G, Ladonn H, et al. Biting behaviour of Anopheline mosquitoes in Ghassregand, Baluchistan, Iran. J Public Health. 1991;20:53-68.

40. Hanafi-Bojd AA, Sedaghat MM, Vatandoost H, Azari-Hamidian S, Pakdad K. Predicting environmentally suitable areas for Anopheles superpictus Grassi (sl), Anopheles maculipennis Meigen (sl.) and Anopheles sacharovi Favre (Diptera: Culicidae) in Iran. Parasit vectors. 2018;11:382. https://doi.org/10.1186/s13071-018-2973-7.

41. Asgarian TS: Investigation of the current status of the distribution of Aedes mosquitoes using different collection methods in some areas of Kashan County. Iran: Tehran University of Medical Sciences; 2020.

42. Asgarian TS, Moosa-Kazerni SH, Sedaghat MM, Dehghani R, Yaghoobi-Ershadi MR. Fauna and Larval Habitat Characteristics of Mosquitoes (Diptera: Culicidae) in Kashan County, Central Iran, 2019. J Arthropod-Borne Dis. 2021;15:69-81.

43. Knight K. Supplement to A Catalog of the Mosquitoes of the World (Diptera, Culicidae). Entomol Soc Am MD. 1978:1-12.
44. Cornel AJ, Mccabe RD, Raszon J, Stanich MA, Scott TW, Coetzee M. Differences in extent of genetic introgression between sympatric Culex pipiens and Culex quinquefasciatus (Diptera: Culicidae) in California and South Africa. J Med Entomol. 2003;40:36-51.

45. Dehghan H, Sadrarj M, Moosa-Kazemi S, Baniani NA, Norwuzi F. The molecular and morphological variations of Culex pipiens complex (Diptera: Culicidae) in Iran. J Vector Borne Dis. 2013;50:111-20.

46. Koosha M, Oshaghi MA, Sedaghat MM, Vatandoost H, Azari-Hamidian S, Abai MR, et al. Sequence analysis of mtDNA COI barcode region revealed three haplotypes within Culex pipiens assemblage. Exp Parasitol. 2017;181:102-10.

47. Shahhosseini N, Kayedi MH, Sedaghat MM, Racine T, P. Kobinger G, Moosa-Kazemi SH. DNA barcodes corroborating identification of mosquito species and multiplex real-time PCR differentiating Culex pipiens complex and Culex torrentium in Iran. PLOS One. 2018;13:e0207308.

48. Kayedi MH, Sepahvand F, Mostafavi E, Chinikar S, Mokhayeri H, Sharafi AC, et al. Morphological and molecular identification of culicidae mosquitoes (Diptera: Culicidae) in loestain province, western Iran. Heliovil. 2020;6:04480.

49. Shahhosseini N, Friedrich J, Moosa-Kazemi SH, Sedaghat MM, Kayedi MH, Tannich E, et al. Host-feeding patterns of Culex mosquitoes in Iran. Parasit. vectors. 2018;11:1669. https://doi.org/10.1186/s13071-018-3237-2.

50. Dehghan H, Moosa-Kazemi SH, Sadrarj S, Soleiman H. The ecological aspects of Culex pipiens (Diptera: Culicidae) in central Iran. J Arthropod-Borne Dis. 2014;8:35-42.

51. Kilpatrick AM, Kramer LD, Campbell SR, Alleyne EO, Dohson AP, Daszak P. West Nile virus risk assessment and the bridge vector paradigm. Emerging infectious diseases. 2005;11:425-9.

52. Reisen WK. The contrasting bionomics of Culex mosquitoes in western North America. J Am Mosq Control Assoc. 2012;28:82-91.

53. Naficy K, Saidi S. Serological survey on viral antibodies in Iran. Trop Geogr Med. 1970;22:183-8.

54. Saidi S, Tesh R, Javadian E, Nadim A. The prevalence of human infection with West Nile virus in Iran. Iran J Public Health. 1976;5:8-13.

55. Qiu YT, Smallengange RC, Braak CJT, Spitzcen J, Van Loon JJJ, Jawara M, et al. Attractiveness of MM-X traps baited with human or synthetic odor to mosquitoes (Diptera: Culicidae) in The Gambia. J Med Entomol. 2007;44:970-83.

56. Mboera L, Knols B, Takken W, Huisman P. Olfactory responses of female Culex quinquefasciatus Say (Diptera: Culicidae) in a dual-choice olfactometer. J Vector Ecol. 1998;23:107-13.

57. Costantini C, Gibson G, Brady J, Merzagora L, Coluzzi M. A new odour-baited trap to collect host-seeking mosquitoes. Parasitologia. 1993;35:5-9.

58. Costantini C, Sagnon NF, della Torre A, Diallo M, Brady J, Gibson G, et al. Odor-mediated host preferences of West African mosquitoes, with particular reference to malaria vectors. Am J Trop Med Hyg. 1998;58:56-63.

59. Mboera L, Knols B, Takken W, Della Torre A. The response of Anopheles gambiae s.l. and An. funestus (Diptera: Culicidae) to tents baited with human odour or carbon dioxide in Tanzania. Bull Entomol Res. 1997;87:173-8.

60. Dekker T, Takken W. Differential responses of mosquito sibling species Anopheles arabiensis and An. quadriannulatus carbon dioxide, a man or a calf. Med Vet Entomol. 1998;12:136-40. doi: 10.1046/j.1365-2915.1998.00073.x.

61. Kenea O, Balkew M, Tekie H, Gebre-Michael T, Deressa W, Loha E, et al. Comparison of two adult mosquito sampling methods with human landing catches in south-central Ethiopia. Malar J. 2017;16:30. https://doi.org/10.1186/s12936-016-1668-9.

62. Nejati J, Zaim M, Vatandoost H, Moosa-Kazemi SH, Bueno-Mari R, Azari-Hamidian S, et al. Employing Different Traps for Collection of Mosquitoes and Detection of Dengue, Chikungunya and Zika Vector, Aedes albopictus, in Borderline of Iran and Pakistan. J Arthropod-Borne Dis. 2020;14:376-90.

63. Azari-Hamidian S, Yaghoobi M, Javadian E, Nadim A. The prevalence of human infection with West Nile virus in Iran. Iran J Public Health. 1976;5:8-13.

64. Qiu YT, Smallengange RC, Braak CJT, Spitzcen J, Van Loon JJJ, Jawara M, et al. Attractiveness of MM-X traps baited with human or synthetic odor to mosquitoes (Diptera: Culicidae) in The Gambia. J Med Entomol. 2007;44:970-83.

65. Ataie A, Moosa-Kazemi SH, Vatandoost H, Yaghoobi-Ershadi MR, Bakhsi H, Anjomruz M. Assessing the susceptibility status of mosquitoes (Diptera: Culicidae) in a dicrofilariasis focus, northwestern Iran. J Arthropod-Borne Dis. 2015;9:7-21.

66. Azari-Hamidian S, Norouzi B, Noorallahi A, Hanafi-Bojd AA. Seasonal activity of adult mosquitoes (Diptera: Culicidae) in a focus of dicrofilariasis and West Nile Infection in northern Iran. J Arthropod-Borne Dis. 2018;12:398-413.

67. Mousa-Kazemi S, Zaim M, Zahraee A. Fauna and ecology of Culicidae of the Zarrin-Shahr and Mobarakeh area in Isfahan Province. Armaghane-danesh J Yasuj Univ Med Sci. 2000;5:46-54.

68. Ladonni H, Azari-Hamidian S, Alizadeh M, Abai M-R, Bakhshi H. The fauna, habitats, and affinity indices of mosquito larvae (Diptera: Culicidae) in Central Iran. N West J Zool. 2015;11(1):76-85.

69. Bagheri M, Terenius O, Oshaghi MA, Motazakker M, Asgari S, Dabiri F, et al. West Nile virus in mosquitoes of Iranian wetlands. Vector Borne Zoonotic Dis. 2015;15:750-4.

70. Brown R, Hing CT, Fornace K, Ferguson HM. Evaluation of resting traps to examine the behaviour and ecology of mosquito vectors in an area of rapidly changing land use in Sabah, Malaysian Borneo. Parasites & Vectors. 2018;11:346; doi: 10.1186/s13071-018-2926-1.

71. Hassandoust S, Moosa-Kazemi SH, Vatandoost H, Sedaghat MM, Akbarzadeh K. Evaluation of Susceptibility of Aedes caspius (Diptera: Culicidae) to Insecticides in a potent arboviral-prone Area, Southern Iran. J Arthropod-Borne Dis. 2020;14:214-227.

72. Pombi M, Guelbeogo WM, Kreppel K, Calzetta M, Traoré A, Sanou A, et al. The Sticky Resting Box, a new tool for studying resting behaviour of Afrotopical malaria vectors. Parasit. vectors. 2014;7:247. https://doi.org/10.1186/1756-3305-7:247.

73. Kreppel KS, Johnson P, Govella N, Pombi M, Maliti D, Ferguson H. Comparative evaluation of the Sticky-Resting-Box-Trap, the standardised resting-bucket-trap and indoor aspiration for sampling malaria vectors. Parasites & vectors. 2015;8(1):1-5.
73. Owiti YJ. Efficacy of a simply resting box baited with crude fruit and leaf ethanol extracts of Phytolaccadodecandra (L'Herit) in capturing and killing of indoor mosquitoes (Diptera: Culicidae) at Korando, Western Kenya. Saudi J Biol Sci. 2021; 28:5221–8.

74. Burkett DA, Butler JF, Kline DL. Field evaluation of colored light-emitting diodes as attractants for woodland mosquitoes and other Diptera in north central Florida. J Am Mosq Control Assoc. 1998;14:186-95.

75. Chaiphongpachara T, Bunyuen P, Khlaeo Chansukh K. Development of a more effective mosquito trapping box for vector control. Sci World J. 2018;1:1-8.

76. Khemrattrakool P, Yanola J, Lumjuan N, Somboon P. Pyriproxyfen-treated polypropylene sheets and resting boxes for controlling mosquitoes in livestock operations. Insects. 2019;10:55.

77. Zollner GE, Torr SJ, Ammann C, Meixner FX. Dispersion of carbon dioxide plumes in African woodland: implications for host-finding by tsetse flies. Physiol Entomol. 2004;29:381-94.

78. Grant A, Aghajanian J, O'Connell R, Wigton B. Electrophysiological responses of receptor neurons in mosquito maxillary palp sensilla to carbon dioxide. J Comp Physiol. 1995;177:389-96.

79. Oli K, Jeffery J, Vytilingam I. Research Note: A comparative study of adult mosquito trapping using dry ice and yeast generated carbon dioxide. Trop Biomed. 2005;22:249-51.

80. Mweresa CK, Omusula P, Otieno B, Van Loon JJ, Takken W, Mukabana WR. Molasses as a source of carbon dioxide for attracting the malaria mosquitoes Anopheles gambiae and Anopheles funestus. Malar J. 2014;13:160. https://doi.org/10.1186/1475-2875-13-160.

Figures

Figure 1
Mosquito collection by Pit shelter method, Bandar Abbas, Hormozghan Province, 2015-2016.

Figure 2
Human odor baited resting box in the field, Bandar Abbas, Hormozgan Province, 2015-2016.

Supplementary Files

This is a list of supplementary files associated with this preprint. Click to download.

- renamed7e037.jpg