On the number of SQS

Vladimir N. Potapov

Abstract. A Steiner quadruple system (briefly $SQS(n)$) is a pair (X, B) where $|X| = n$ and B is a collection of 4-element blocks such that every 3-subset of X is contained in exactly one member of B. Hanani [1] proved that the necessary condition $n \mod 6 = 2$ or 4 for the existence of a Steiner quadruple systems of order n is also sufficient. Lenz [4] proved that the logarithm of the number of different $SQS(n)$ is greater than cn^3 where $c > 0$ is a constant and n is admissible. We prove that the logarithm of the number of different $SQS(n)$ is $\Theta(n^3 \ln n)$ as $n \to \infty$ and $n \mod 6 = 2$ or 4.

Keywords: Steiner system, MDS code, block design, Latin hypercube, MOLS

1. LS and MDS codes

By $Q = [0, q - 1]$ denote the subset of integers. A subset M of Q^d is called an $MDS(t + 1, d, q)$ code (of order q, code distance $t + 1$ and length d) if $|C \cap \Gamma| = 1$ for each t-dimensional face Γ. These codes achieve equality in the Singleton bound. As $t = 1$, MDS code are equivalent to Latin $(d - 1)$-dimensional cube. If $t = d - 2$ then such MDS code is equivalent to a set of t Mutually Orthogonal Latin Squares (MOLS) of order q, and in other cases to a set of t Mutually Strong Orthogonal Latin $(d - t)$-Cubes. Moreover, a Latin hypercube is a Cayley table of a multiary quasigroup. A pair of orthogonal Latin squares corresponds to a pair of orthogonal quasigroups (see [8] or [10]).

By definition MDS code it follows

Proposition 1. Any projection of an MDS code is an MDS code.

Proposition 2. Let $M \subset Q^5$ be an MDS code with the code distance 4 and M' is a 4-dimensional projection of M. Then there exists an MDS code $C \subset Q^4$ with code distance 2 such that $M' \subset C$.

Proof. By results of [10] any MDS code correspond to a system of orthogonal quasigroups. So $(x, y, u, v, w) \in M$ whenever

$$
\begin{align*}
 u &= f(x, y); \\
 v &= g(x, y); \\
 w &= h(x, y),
\end{align*}
$$

where f, g, h determine a set of 3 MOLS.

Determine M' by equations

$$
\begin{align*}
 u &= f(x, y); \\
 v &= g(x, y).
\end{align*}
$$

Define the function $\varphi : Q^2 \to Q$ by equation $\varphi(f(x, y), g(x, y)) = h(x, y)$. The orthogonality of f and g yields that the function φ is well defined; and the orthogonality of f and h, the orthogonality of g and h provide that φ is a quasigroup. Hence the set $C = \{(x, y, u, v) \mid \varphi(u, v) = h(x, y)\}$ is an MDS code and $M' \subset C$ by construction. ▲

Proposition 3. [6] For every integer d there is an integer $k(d)$ such that for all $k > k(d)$ there exists a set of d MOLS of order k.

Note that $k(6)$ is not greater than 75 [7].
A subset T of an MDS code $C \subset \mathbb{Q}^d$ is called a subcode if T is an MDS code in $A_1 \times \cdots \times A_d$ and $T = C \cap (A_1 \times \cdots \times A_d)$, where $A_i \subset \mathbb{Q}$, $i \in \{1, \ldots, d\}$. A definition of a Latin subsquare is analogous.

Proposition 4. Assume C is an MDS code with a subcode C_1 of order m, and assume that a code C_2 has the same parameters as C_1. Then it is possible to exchange C_1 by C_2 in C and to obtain the code C'' with the same parameters as C.

A Latin square f is called symmetric if $f(x, y) = f(y, x)$ for each x, y. It is called nilpotent if $f(x, x) = 0$ for every x. By using the construction from [3] it is easy to prove

Proposition 5. Let q be even and $k \leq q/4$. Then there is a symmetric nilpotent Latin square of order q with subsquare in $K_0 \times K_1 \times K_1$ and $K_1 \times K_0 \times K_1$, where $K_0 = [0, q - 1]$ and $K_1 = |q - k, q - 1|$.\[\]

2. Designs\[\]

A t-wise balanced design t-BD is a pair (X, B) where X is a finite set of points and B is a set of subsets of X, called blocks, with property that every t-element subset of X is contained in a unique block. A 3-wise bipartite balanced design 3-BBD(n) is a triple (X, g_1, g_2, B) where g_1, g_2 \([|g_1| = |g_2|] \) is a partition of X, $|X| = n$, B is a set of 4-element blocks such that $|b \cap g_i| = 2$ for every $b \in B$, $i = 1, 2$ with property that every 3-element subset $s \ (s \cap g \neq \emptyset)$ is contained in a unique block.

A Steiner system $S(t, k, v)$ is a t-BD such that $|X| = v$ and $|b| = k$ for every $b \in B$. If $t = 3$ and $k = 4$ then this design is called a Steiner quadruple system. We consider also a 3-BD denoted by $S(3, \{4, 6\}, v)$ consisting of blocks of size 4 or 6.

Let X be a set of points, and let $G = \{G_1, \ldots, G_d\}$ be a partition of X into d sets of cardinality q. A transverse of G is a subset of X meeting each set G_i in at most one point. A set of w-element transverses of G is an $H(d, q, w, t)$ design (briefly, H-design) if each t-element transverse of G lies in exactly one transverse of the H-design.

An MDS code $M \subset \mathbb{Q}^d$ with code distance $t + 1$ is equivalent to $H(d, q, d, d - t)$, where $G = \{Q_1, \ldots, Q_d\}$, Q_i are the copies of Q, and the block $\{x_1, \ldots, x_d\}$ lies in the H-design whenever $(x_1, \ldots, x_d) \in M$. If $t = 2$, an H-design is called a transversal design. Transversal designs are equivalent to systems of MOLS.

If q is even then a 3-BBD (X, g_1, g_2, B) is equivalent to the MDS code $M \subset \mathbb{Q}^d$ (with the code distance 2) that satisfies the conditions

\[(x, y, u, v) \in M \Rightarrow (y, x, u, v), (x, y, v, u), (y, x, v, u) \in M; \ \forall x, u \in Q \ (x, x, u, u) \in M. \quad (1)\]

Here $g_1 = Q_1 \cup Q_2$, $g_2 = Q_3 \cup Q_4$, Q_i are copies of Q, and $\{x_1, x_2, x_3, x_4\} \in B$ if $(x_1, \ldots, x_4) \in M$ and $x_1 \neq x_2$.

Proposition 6. The logarithm of the number of MDS codes $M \subset \mathbb{Q}^d$ with code distance 2 \[\Theta((|Q|^{d-1} \ln |Q|) \text{ as } n \rightarrow \infty.\]

Using methods of [5, 6] and Proposition 6 we can prove the following theorem.

Theorem 1. The logarithm of the number of 3-wise bipartite balanced designs on n-element set is $\Theta(n^3 \ln n)$ as $n \rightarrow \infty.$

\[\]

1 Notation $f(x) = \Theta(g(x))$ as $x \rightarrow x_0$ means that there exist constants $c_2 \geq c_1 > 0$ and a neighborhood U of x_0 such that for all $x \in U \ c_1 g(x) \leq f(x) \leq c_2 g(x)$.\[\]

2
Proof. Suppose the quasigroup f satisfies the hypothesis of Proposition 5. Consider the MDS code $M = \{(x, y, u, v) \mid f(x, y) = f(u, v)\}$. It is easy to see that M meets the conditions (11). Furthermore, M has subcodes B_σ on $K_{\sigma_1} \times K_{\sigma_2} \times K_{\sigma_3} \times K_{\sigma_4}$, where $\sigma = 0101, 1001, 0110$ or 1010.

For any MDS code C and permutation τ we define $C_\tau = \{(x_{\tau 1}, \ldots, x_{\tau n}) \mid x \in C\}$. Let \mathcal{Y} be a group of permutations on 4 elements generated by transpositions $\{01\}$ and $\{23\}$.

By Proposition 11 the set $M' = (M \setminus \bigcup_{\tau \in \mathcal{Y}} K_\tau(0101)) \bigcup_{\tau \in \mathcal{Y}} C_\tau$ is an MDS code. By construction, M' satisfies (11). Since we use an arbitrary code C of order k, the number of 3-wise bipartite balanced design is greater than the number of MDS codes of order k. ▲

The following doubling construction of block designs is well known (see [3]).

Proposition 7.

1. If $S_n \in S(3, 4, n)$, $B_n \in 3$–BBD(n) then there exists $S_{2n} \in S(3, 4, 2n)$ such that $S_n, B_n \subset S_{2n}$.
2. If $S_n \in S(3, \{4, 6\}, n)$, $B_n \in 3$–BBD(n) then there exists $S_{2n} \in S(3, \{4, 6\}, 2n)$ such that $S_n, B_n \subset S_{2n}$.

Proposition 8. ([2], [3] Th. 4.1) There is an injection from $S(3, \{4, 6\}, n)$ to $S(3, \{4, 6\}, 2n - 2)$.

3. Main results

The following theorem provides a new construction of SQS based on MDS codes. Existence of suitable MDS codes follows from Propositions 11–13.

Theorem 2.

1. If $S_{2n+2} \in S(3, 4, 2n + 2)$, $B_n \in 3$–BBD(n), $n > 75$ is even, then there exists $S_{8n+2} \in S(3, 4, 8n + 2)$ such that $S_{2n+2}, B_n \subset S_{8n+2}$.
2. If $S_{2n+2} \in S(3, \{4, 6\}, 2n + 2)$, $B_n \in 3$–BBD(n), $n > 75$ is even, then there exists $S_{8n+2} \in S(3, \{4, 6\}, 8n + 2)$ such that $S_{2n+2}, B_n \subset S_{8n+2}$.

Proof. Below we describe a construction of S_{8n+2} for item 1. Item 2 is similar.

Let $I = \{(i, \delta) \mid i \in \{0, 1, 2, 3\}, \delta \in \{0, 1\}\}$. Denote by S_8 a SQS on I. Let S_{10} be a SQS on $I \cup \{e_1, e_2\}$ such that $\{(i, 0), (i, 1), e_1, e_2\} \in S_{10}$ for every $i \in \{0, 1, 2, 3\}$. Since $n > 75$, there exists an MDS$(7, 8, n)$ code M. We enumerate these 8 coordinates by elements of I.

Consider $s = \{s_1, s_2, s_3, s_4\} \in S_8$. Denote by M_s the projection of M on the coordinates s. By Proposition 11 $M_s \in MDS(3, 4, n)$. By Proposition 2 there exists $C_s \in MDS(2, 4, n)$ such that $M_s \subset C_s$.

Now we will construct SQS on a set Ω where $|\Omega| = 8n + 2$, $\Omega = \{e_1, e_2\} \bigcup_{(i, \delta) \in I} A_{(i, \delta)}$ and $|A_{(i, \delta)}| = n$.

Consider H-designs M^*, M^*_s and C^*_s with groups $A_{(i, \delta)}$ that correspond to MDS codes M, M_s and C_s. Let us determine quadruples of four types.

1. Denote $R_1 = \bigcup_{s \in S_8} (C^*_s \setminus M^*_s)$. It is clear that the blocks of $\bigcup_{s \in S_8} C^*_s$ cover only all 3-subsets of $\Omega \setminus \{e_1, e_2\}$ where three elements lie in different groups. Besides, a 3-subset is covered by a block of $\bigcup_{s \in S_8} M^*_s$ iff it is included in a 8-element subset from M^*. Note that $\bigcup_{s \in S_8} (C^*_s)$ and $\bigcup_{s \in S_8} (M^*_s)$ is H-designs of type $H(8, n, 4, 3)$ and $H(8, n, 4, 2)$, respectively, on $\Omega \setminus \{e_1, e_2\}$.

2. Consider any 8-subset $b = \{a^{i, \delta} \in A_{(i, \delta)} \mid i, \delta \in I\} \in M^*$. For every $b \in M^*$ determine a set P_b consisting of blocks $\{a^{s_1}, a^{s_2}, a^{s_3}, a^{s_4}\}$, where $\{s_1, s_2, s_3, s_4\} \in S_{10}$ and blocks $\{a^{s_1}, a^{s_2}, a^{s_3}, e_\delta\}$, where $\{s_1, s_2, s_3, \delta\} \in S_{10}$. Denote by $R_2 = \{P_b \mid b \in M^*\}$ the set of all these
blocks. By definition of S_{10}, the blocks of R_2 cover all 3-sets consisting of e_1 or e_2 (but not both) and two elements from $A(i,\delta)$ and $A(i',\delta')$ where $i \neq i'$. Moreover the blocks of $R_1 \cup R_2$ cover all 3-subsets of $\Omega \setminus \{e_1, e_2\}$, where the three elements lie in different groups.

(3) For any pair $s_0 = (i_0, \delta_0), s_1 = (i_1, \delta_1)$ where $i_0 \neq i_1$ consider a 3-BBD B_{s_0,s_1} with groups A_{s_0} and A_{s_1}. Denote $R_3 = \bigcup B_{s_0,s_1}$. It is clear that a 3-subset is cover by a block of R_3 iff two elements of the 3-subset lie in $A(i,\delta)$ and the third element lies in $A(i',\delta')$, where $i \neq i'$.

(4) For $i = 0, 1, 2, 3$ consider a Steiner quadruple systems D_i on the sets $A(i,0) \cup A(i,1) \cup \{e_1, e_2\}$. Define $R_4 = \bigcup D_i$.

By the construction, the blocks from $S_{8n+2} = R_1 \cup R_2 \cup R_3 \cup R_4$ cover any 3-subset of Ω only once. To prove $S_{8n+2} \in S(3,4,8n+2)$, we calculate $|S_{8n+2}|$. It is well known that SQS of order m consists of $\frac{m(m-1)(m-2)}{4}$ blocks. Therefore $|R_1| = |S_8|(n^3 - n^2) = 14(n^3 - n^2), R_2 = (|S_0| - 4)n^2 = 26n^2, R_3 = (\binom{8}{2} - 4)(\frac{n^2}{2}) = 6n^2(n - 1), R_4 = 4|S_{2n+2}| = (2n+2)(2n+1)n/3$. Then $|S_{8n+2}| = |R_1| + |R_2| + |R_3| + |R_4| = 20n^3 + 6n^2 + (2n + 2)(2n + 1)n/3 = 64n^3/3 + 8n^2 + 2n/3 = (8n + 2)(8n + 1)8n/24$.

Note that it is possible to use SQSs of order $6k + 2$ and $6k + 4$, $k \geq 1$ instead of S_8 and S_{10}.

Now we obtain a lower estimate of the number of block designs as a corollary of Propositions \[7\](2), \[8\] Theorem \[2\](2) and the asymptotic estimate from Theorem \[1\].

Theorem 3. The logarithm of the cardinality of $S(3,\{4,6\},2n)$ is greater than $c(n^3 \ln n)$, where $c > 0$ is a constant.

Proof. If n is even then the statement follows from Propositions \[7\](2) and Theorem \[1\].

If n is odd then we will consider some cases. Let $2n = 16k + 6$. Since $16k + 6 = 2(8k + 4) – 2$ the statement follows from Proposition \[8\] and the case of even n. The cases $2n = 16k + 10 = 2(2(4k + 4) – 2) – 2$ and $2n = 16k + 14 = 2(8k + 8) – 2$ are simular. If $2n = 16k + 2$ then we use Theorems \[1\] and \[2\](2). ▲

We need some constructions of SQS.

Proposition 9. (\[3\] Th. 4.2) There is an injection from $S(3,\{4,6\},n)$ to $S(3,4,3n – 2)$.

Proposition 10.

1. There is an injection from $S(3,4,n)$ to $S(3,4,6n – 10)$. (\[3\] Th. 4.11)

2. If $n \equiv 10 \mod 12$ then there exists an injection from $S(3,4,n)$ to $S(3,4,3n – 4)$. (\[4\] 3.4)

The asymptotic estimate of the number of SQSs is a corollary of constructions of SQS provided by Propositions \[7\](1), \[8\] \[10\] Theorem \[2\](1) and the asymptotic estimates from Theorems \[1\], \[3\], \[8\], \[10\].

Theorem 4. The logarithm of the cardinality of $S(3,4,n)$ is $\Theta(n^3 \ln n)$ as $n \to \infty$ and $n \equiv 2 \mod 6$ or $n \equiv 4 \mod 6$.

Proof. The upper bound is oblivious (see \[4\]). To prove lower bound we will consider apart some subsequence of integers.

(a) Consider a subsequence $n = 4k$. For this subsequence the required asymptotic estimate is a corollary of Theorem \[1\] and Proposition \[7\](1).

(b) Consider the subsequence $n \equiv 4\mod 6$. Then $n = 3(2t + 2) – 2$ and the required asymptotic estimate is a corollary of Theorem \[3\] and Proposition \[9\].

It retains to consider three subsequences $n \mod 36 = 2, 14$ or 26.
(c) If \(n = 3(12t + 10) - 4 \) then for establishing the required asymptotic estimate we use Proposition 10(1) and the proved case (b).

(d) If \(n = 6(6t + 4) - 10 \) then we use Proposition 10(2) and the proved case (b).

(e) Consider the case \(n \mod 36 = 2 \). If \(n = 6^4t + 2 = 8(3^42t) + 2 \) then the required asymptotic estimate is a corollary of Theorems 1 and 2(1). The other cases are reduced to the subsequence \(n = 6^4t + 2 \) by applying Proposition 10(2). ▲

References

1. Hanani H. On quadruple systems. Can. J. Math. 12, P. 145–157 (1960).
2. Hanani H. On some tactical configurations. Can. J. Math. 15(4), P. 702–722 (1963).
3. Hartman A. The fundamental constructions for 3-designs. Discrete Math. 124(1-3), P. 107–132 (1994).
4. Lenz, H. On the number of Steiner quadruple systems. Mitt. Math. Semin. Gießen 169, P. 55–71 (1985).
5. Cameron, Peter J. Author Profile Minimal edge-colourings of complete graphs. J. Lond. Math. Soc., Ser. II. 11(3), 337-346 (1975).
6. Wilson R.M. Concerning the number of mutually orthogonal Latin squares // Discrete Math. 1979. 9(2), P.181–198.
7. Colbourn, Charles J. (ed.); Dinitz, Jeffrey H. (ed.) The CRC handbook of combinatorial designs. 2nd ed. Discrete Mathematics and its Applications. Boca Raton, FL: Chapman & Hall/CRC. (2007).
8. Potapov V.N. On the number of latin hypercubes, pairs of orthogonal latin squares and MDS codes // arXiv.org eprint math., math.CO/1510.06212
9. Krotov D. S., Potapov V. N., Sokolova P. V. On reconstructing reducible \(n \)-ary quasigroups and switching subquasigroups, Quasigroups and Related Systems. 2008. 16(1), P. 55–67.
10. Ethier J. T., Mullen G. L. Strong forms of orthogonality for sets of hypercubes, Discrete Math. 2012. 312 (12-13), P. 2050–2061.