A Gain-of-Function Mutation of Arabidopsis
CRYPTOCHROME1 Promotes Flowering

Vivien Exner, Cristina Alexandre, Gesa Rosenfeldt, Pietro Alfarano, Mena Nater, Amedeo Cafisch, Wilhelm Gruissem, Alfred Batschauer, and Lars Hennig*

Department of Biology and Zurich-Basel Plant Science Center, Eidgenössisch Technische Hochschule Zurich, 8129 Zurich, Switzerland (V.E., C.A., M.N., W.G., L.H.); Fachbereich Biologie/Pflanzenphysiologie, Philipps-Universität, 35032 Marburg, Germany (G.R., A.B.); Department of Biochemistry, University of Zurich, 8057 Zurich, Switzerland (P.A., A.C.); and Department of Plant Biology and Forest Genetics, Uppsala BioCenter, Swedish University of Agricultural Sciences, 75007 Uppsala, Sweden (L.H.)

Plants use different classes of photoreceptors to collect information about their light environment. Cryptochromes are blue light photoreceptors that control deetiolation, entrain the circadian clock, and are involved in flowering time control. Here, we describe the cry1-L407F allele of Arabidopsis (Arabidopsis thaliana), which encodes a hypersensitive cryptochrome1 (cry1) protein. Plants carrying the cry1-L407F point mutation have elevated expression of CONSTANS and FLOWERING LOCUS T under short-day conditions, leading to very early flowering. These results demonstrate that not only the well-studied cry2, with an unequivocal role in flowering promotion, but also cry1 can function as an activator of the floral transition. The cry1-L407F mutants are also hypersensitive toward blue, red, and far-red light in hypocotyl growth inhibition. In addition, cry1-L407F seeds are hypersensitive to germination-inducing red light pulses, but the far-red reversibility of this response is not compromised. This demonstrates that the cry1-L407F photoreceptor can increase the sensitivity of phytochrome signaling cascades. Molecular dynamics simulation of wild-type and mutant cry1 proteins indicated that the L407F mutation considerably reduces the structural flexibility of two solvent-exposed regions of the protein, suggesting that the hypersensitivity might result from a reduced entropic penalty of binding events during downstream signal transduction. Other nonmutually exclusive potential reasons for the cry1-L407F gain of function are the location of phenylalanine-407 close to three conserved tryptophans, which could change cry1’s photochemical properties, and stabilization of ATP binding, which could extend the lifetime of the signaling state of cry1.

Light determines the plant’s life, because light is the essential energy source for plant metabolism. The spatial, temporal, and spectral variability of light provides cues about the time of day, the season, and the presence of competitors for light. Sensitive and precise light perception, therefore, is essential to properly adjust plant development for maximal photosynthetic efficiency, to correlate vegetative and reproductive growth with favorable seasons, and eventually to maximize fitness. To cope with this task, plants have evolved several types of photoreceptors, including the phytochromes and cryptochromes (for review, see Banerjee and Batschauer, 2005; Josse et al., 2008; Müller and Carell, 2009). Phytochromes are red and far-red light receptors and regulate different aspects of plant development, such as hypocotyl elongation in red and far-red light and shade avoidance responses (Franklin et al., 2005). In addition, the two major phytochromes in Arabidopsis (Arabidopsis thaliana), phytochrome A (phyA) and phyB, are involved in flowering time control: phyA promotes flowering under short-day (SD) and long-day (LD) photoperiods (Johnson et al., 1994), while phyB acts as a floral inhibitor (Reed et al., 1993; Mockler et al., 1999).

Cryptochromes are flavoproteins with two chromophores that sense blue and UV-A light in plants (Lin and Todo, 2005). The essential chromophore is a FAD, and the second chromophore is supposed to function in light harvesting and is a pterine (methenyltetrahydrofolate; Müller and Carell, 2009). Cryptochromes have an N-terminal photolyase-related (PHR) domain that is similar to photolyases, but they are distinguished from the latter by a variable C-terminal domain. Furthermore, crystallization of the photolyase-like domain of Arabidopsis cryptochrome1 (cry1) has revealed additional structural differences between photolyase and cryptochrome that explain the lack of DNA-binding activity of the cryptochromes (Brautigam et al., 2004). Moreover, the crystal structure confirmed the previ-
ously described ATP binding of cry1 (Bouly et al., 2003) by soaking cry1 crystals with the nonhydrolyzable ATP analog adenosine 5′-[β,γ-imido]triphosphate (AMP-PNP) and showing AMP-PNP located in the FAD access cavity (Brautigam et al., 2004). Despite the available protein structure, cryptochrome’s mode of action still remains to be determined. Interestingly, the C terminus of plant cryptochromes as well as a C-terminal 80-residue motif (NC80) confer constitutive cryptochrome signaling when overexpressed in plants even in the absence of light (Yang et al., 2000; Yu et al., 2007). For plant cryptochromes, it has been proposed that the PHR domain and the C terminus form a “closed” conformation to mask the NC80 motif in the absence of light. Blue light would trigger phosphorylation of the C-terminal tail and its electrostatic repulsion from the surface of the PHR domain to form an “open” conformation, exposing the NC80 motif and initiating signal transduction (Yu et al., 2007).

The Arabidopsis genome harbors two cryptochrome genes: CRY1 and CRY2. A third member of this family, CRY3, belongs to the DASH-type subgroup with repair activity for cyclobutane pyrimidine dimer lesions in single-stranded DNA (Selby and Sancar, 2006) and loop structures of duplex DNA (Pokorny et al., 2008), but with so far unproven photoreceptor function. Mutations in both CRY1 and CRY2 interfere with the inhibition of hypocotyl elongation under blue light conditions (Ahmad and Cashmore, 1993; Guo et al., 1998). Current data suggest that cry1 is the major blue light receptor for seedling photomorphogenesis, while cry2 is more important for the control of flowering under certain growth conditions (Bagnall et al., 1996; Mockler et al., 1999; El-Din El-Assal et al., 2003; Endo et al., 2007). Nevertheless, several studies also reported cry1 as a floral regulator: some cry1 mutant alleles conferred late flowering under certain growth conditions (Bagnall et al., 1996; Blázquez et al., 2003), but others did not (Zagotta et al., 1996; Mockler et al., 1999).

Even though the functions of the different photoreceptors are assigned to specific segments of the spectrum of light, physiological and mutant analyses have revealed extensive cross talk between blue and red light photoreceptors (Casal, 2000): phyA and phyB display antagonistic and synergistic effects on the action of each other, depending on which responses are studied (Reed et al., 1994; Casal and Boccalandro, 1995), and several of the phytochromes functionally interact with the cryptochromes (Ahmad and Cashmore, 1997; Casal and Mazzella, 1998; Neff and Chory, 1998; Hennig et al., 1999; Mockler et al., 1999; Devlin and Kay, 2000). In addition, a physical interaction of phyA with cry1 (Ahmad et al., 1998b) and of phyB with cry2 (Más et al., 2000) has been reported. While these cross talks are of minor importance under controlled monochromatic light conditions, they are probably essential for fine-tuning of developmental programs in natural environments.

Here, we provide evidence that a hyperactive cry1 allele confers hypersensitivity not only to blue light but also to red light and strongly shortens flowering time under SD.

RESULTS

Isolation of a New cry1 Allele

For a suppressor screen, seeds of the late-flowering msi1-tap1 transgenic line (Bouveret et al., 2006) were mutagenized with ethyl methane sulfonate (EMS; Exner et al., 2009). Flowering time was scored under LD photoperiods for 1,045 M2 families. Among these, 11 families segregated plants that shortened the vegetative phase of msi1-tap1. For six of them, we confirmed the phenotype in subsequent generations. One of these six contained a mutation in LIKE HETEROCROMATIN PROTEIN1 (Exner et al., 2009); the others belong to at least four complementation groups (data not shown). All these mutants still reacted to changes in daylength but exhibited different responses as tested by flowering time experiments under LD and SD (data not shown). The mutant with ID 0.3-457 was chosen for further characterization (Table I).

The mutation in 0.3-457 was localized between markers CER446440 (bacterial artificial chromosome T3H13) and CER460528 (bacterial artificial chromosome T3H13) on the lower arm of chromosome IV. This region contains nine genes including CRY1. Sequencing of the CRY1 locus revealed a C-to-T transition in the third exon, 1,469 bp after the ATG start codon (Fig. 1A), which caused a change of Leu-407 to Phe (Fig. 1B). Therefore, 0.3-457 is henceforth called cry1-L407F.

Comparison of cryptochrome and photolyase sequences from different organisms revealed that Leu-407, which is located in the photolyase-like PHR domain, is conserved among nearly all plant cryptochromes. Among the few exceptions are Arabidopsis, Arabidopsis lyrata and Fragaria vesca (strawberry) CRY2, which all have an Ile instead of the Leu at this position (Fig. 1B). In contrast, photolyases and animal cryptochromes have amino acids with small side chains (Ala, Ser, Thr, or Gly) at this position but rarely if ever a bulky hydrophobic residue such as Leu. We did not find any cryptochrome or photolyase sequence with a Phe at this position. Furthermore, Leu-407 is located in a block of 12 amino acids that are highly conserved in plant cryptochromes but not in photolyases and animal cryptochromes. A structure of the cry1 PHR domain has been reported (Brautigam et al., 2004), and

Genotype	Flowering Time in LD	Flowering Time in SD
Col	23.9 ± 0.6	81.8 ± 1.8
msi1-tap1	38.5 ± 1.2	117.9 ± 6.1
0.3-457	28.4 ± 0.3	51.4 ± 1.7
according to this structure, Leu-407 is buried inside the protein without solvent contact (Fig. 1C).

cry1-L407F Strongly Accelerates Flowering

The cry1-L407F mutant did not only flower earlier in the msi1-tap1 background but also when backcrossed into the Columbia (Col) wild type both under LD and SD conditions (Fig. 2, A and B). Under LD, the acceleration of flowering in cry1-L407F was caused by a shortened adult phase (0.8 versus 2.6 leaves), while the duration of the juvenile phase (5.3 leaves) was not affected. The early-flowering phenotype was even more dramatic under SD. While wild-type plants produced 61 leaves before bolting, cry1-L407F produced only 12 leaves. Tests for genetic interaction between cry1-L407F and msi1-tap1 revealed additivity of both mutants (Supplemental Fig. S1), suggesting that CRY1 and MSI1 function in separate genetic pathways in the control of flowering. Besides the early-flowering phenotype, cry1-L407F featured a small and compact rosette (Supplemental Fig. S1), which is partly caused by shortened petioles (data not shown). Such a reduction of petiole length has also been described for plants overexpressing cry1 (Lin et al., 1996).

These results, together with the observation that cry1-L407F behaved semidominantly (data not shown), suggested that we identified a gain-of-function CRY1 allele. Because genetic complementation tests and transgenic complementation are difficult with hypermorphic...
and neomorphic alleles, the ability of cry1-L407F to accelerate flowering was tested by transgenic pheno-
copy experiments. When wild-type cry1 was intro-
duced and overexpressed in Col wild-type plants, the
four tested transgenic lines all flowered as late as or
even slightly later than the Col wild type under SD (Fig.
2C). Similarly, Lin et al. (1996) had previously reported
that increased cry1 dosage caused slightly delayed
flowering. In contrast, when the cry1-L407F
mutant
gene under the control of the same cauliflower mosaic
virus 35S promoter was introduced into Col, the four
tested transgenic lines all flowered earlier than the Col
wild type under SD (Fig. 2C).
Together, these results show that cry1-L407F is a
gain-of-function CRY1 allele that strongly accelerates
flowering.

cry1-L407F Causes FLOWERING LOCUS
T Overexpression
Cryptochromes can affect flowering in at least three
different ways. First, cryptochromes control the phase
of the circadian clock, which in turn controls diurnal
expression patterns of CONSTANS (CO). Second,
cryptochromes stabilize CO protein in the light, and
CO then activates flowering by inducing the ex-
pression of FLOWERING LOCUS T (FT), which en-
codes the mobile flowering signal FT (for review, see
Kobayashi and Weigel, 2007). Third, cry2 can directly
induce FT expression (Liu et al., 2008a). To elucidate
whether one of these mechanisms is involved in the
accelerated flowering of cry1-L407F, we measured the
gene expression of EARLY FLOWERING4 (ELF4),
GIGANTEA (GI), CO, and FT under SD conditions.
ELF4 and GI participate in signaling from the circa-
dian clock to downstream processes such as CO ex-
pression (Park et al., 1999; Doyle et al., 2002). In SD, CO
is usually expressed only after the end of the light
phase, and because CO protein is rapidly degraded in
the dark, FT remains inactive. We found that ELF4
expression was not significantly affected in cry1-L407F,
maintaining its typical evening peak (Fig. 3), suggest-
ing that the accelerated flowering was not caused by a
malfunction of the circadian clock. Likewise, GI ex-
pression was very similar between the wild type and
cry1-L407F (Fig. 3). In contrast, expression of CO and
FT was considerably increased in cry1-L407F (Fig. 3).
However, FT expression was strongest during the light
period (zeitgeber time = 3 h), while CO expression was
strongest during the dark period (zeitgeber time = 14
h), suggesting that cry1-L407F does not establish ab-
errant CO protein stabilization in the dark.
Together, these results indicate that cry1-L407F causes the untimely expression of CO during the light
period and thus allows for the accumulation of CO
under SD photoperiods. Increased CO levels then
strongly activate FT and cause the very early flowering
of wild-type plants and the suppression of msi1-tap1’s
late-flowering phenotype.
cry1-L407F Causes Hypersensitivity toward Blue
and Red Light
The cry1 photoreceptor is known to control hypo-
cotyl growth in response to blue light (Koornneef et al.,
1980; Ahmad and Cashmore, 1993). To investigate the
effects of the amino acid substitution on the function of
cry1-L407F in further detail, seedlings were grown under
different fluence rates of blue, red, and far-red
light and hypocotyl elongation was measured. Under
blue light, inhibition of hypocotyl elongation was
observed under much lower fluence rates in cry1-
L407F than in the wild type (Fig. 4). Thus, cry1-L407F is
a hypersensitive blue light photoreceptor, and cry1-
L407F is a hypermorphic allele. The hypersensitivity of
cry1-L407F toward blue light is a dominant trait.

Figure 2. cry1-L407F mediates early flow-
ering. A, Juvenile-adult phase transition of
Col wild-type (WT) and cry1-L407F plants
under LD photoperiods. B, Flowering time
of Col wild-type and cry1-L407F plants
under LD and SD photoperiods. C, Flow-
ering time of wild-type plants and four
randomly selected transgenic cry1- or
cry1-L407F-overexpressing lines (OE) un-
der SD photoperiods. Diagrams show
means ± se (n = 14).
Heterozygous cry1-L407F seedlings uniformly displayed short hypocotyls when grown under low fluence rates of blue light (data not shown). Surprisingly, cry1-L407F seedlings were not only strongly hypersensitive to blue light but also to red light (Fig. 4), which should not efficiently activate cry1 (Lin et al., 1995; Ahmad et al., 2002). It is unlikely that this phenotype was caused by a “contamination” of the red light by photons from the blue part of the spectrum, because there is extremely little if any blue light emitted by the light source used in these experiments (Supplemental Fig. S2). Similar to the situation under red light, cry1-L407F seedlings were also hypersensitive to far-red light, which is believed to be predominantly sensed by phyA.

Repression of hypocotyl elongation under blue light is a normal function of wild-type Arabidopsis cry1 and cry2 (Koornneef et al., 1980; Ahmad and Cashmore, 1993; Lin et al., 1998). In order to test whether cry1-L407F does also affect the red light sensitivity of a process normally not controlled by cryptochromes, we compared light-dependent germination of the wild type and cry1-L407F seedlings were also hypersensitive to far-red light, which is believed to be predominantly sensed by phyA.

Figure 3. CO and FT transcript levels are increased in the cry1-L407F mutant. Quantitative RT-PCR was performed on cDNA from 15-d-old seedlings grown under SD conditions. Relative expression values are shown as mean ± se (n ≥ 4). White and gray bars on top of the diagrams represent periods of light and darkness, respectively. Values were normalized to a PP2A gene (At1g13320). WT, Wild type.

The development of cry1-L407F seedlings differed from the wild type not only in the light but also in the dark. For up to 3 d of growth in the dark, hypocotyls were of similar length and cotyledons were folded into a protective hook in Col and cry1-L407F. In cry1-L407F, cotyledons started to unfold from day 2 on, and hypocotyl elongation was slightly reduced from day 3 on (Fig. 4; Supplemental Table S1; Supplemental Fig. S3). In addition, hypocotyls of dark-grown cry1-L407F were often bent while hypocotyls of the wild type grew straight (Supplemental Table S1; Supplemental Fig. S3). The hypocotyl-bending phenotype was temperature dependent: growth at 21°C led to strong bending in most of the seedlings, but growth at 26°C led to only mild bending (Supplemental Fig. S3). Thus, cry1-L407F can at least partially function even without light activation. Nevertheless, no strong constitutive activation of photomorphogenesis in the dark, such as was observed in plants overexpressing the CCT domain (Yang et al., 2000), was observed in cry1-L407F. For
example, there was no induction of cell division in the shoot apical meristem in the dark (data not shown).

Phytochromes regulate the transcription of many genes; *EARLY LIGHT INDUCED2 (ELIP2)*, for instance, is rapidly up-regulated after exposure to red or far-red light, and this up-regulation requires phyB and phyA, respectively (Harari-Steinberg et al., 2001). We tested whether the *cry1-L407F* mutation would affect the red light-induced expression of *ELIP2*. In darkness and during the investigated time course up to 6 h after transfer to red light, ELIP2 expression was consistently higher in *cry1-L407F* than in the wild type, but with very similar kinetics for both genotypes (Fig. 6). Thus, the effect of *cry1-L407F* on red light signaling is not restricted to germination and hypocotyl growth inhibition.

Together, these results show that *cry1-L407F* causes strong hypersensitivity to both blue and red light in a dominant manner.

The Hypersensitivity of *cry1-L407F* Is Not Caused by Elevated cry1 Levels

Overexpression of CRY1 under the control of the constitutive 35S promoter results in hypersensitivity of the transgenic plants toward blue light (Lin et al., 2001).
Thus, we reasoned that the observed hypersensitivity of the cry1-L407F mutant could be caused by increased cry1 protein levels, although flowering time was not affected in overexpressors of wild-type cry1 (Fig. 2). Quantitative immunoblots, however, revealed unchanged cry1 levels in cry1-L407F mutants (Fig. 7; data not shown). These results demonstrate that the blue and red light hypersensitivity and early flowering of cry1-L407F are not caused by increased expression of cry1 but most likely by increased activity of the cry1-L407F protein. This conclusion is supported by the observation that blue fluence rates of up to 50 μmol m⁻² s⁻¹ caused a stronger shift of the cry1 band in the cry1-L497F mutant than in the wild type (Fig. 7). This blue light-induced shift reflects phosphorylation of the cry1 protein that is associated with photoreceptor activation (Shalitin et al., 2002, 2003; Bouly et al., 2003). We thus conclude that the L407F mutation in cry1 increases the fraction of active (phosphorylated) photoreceptor over a broad range of blue fluence rates but has no effect in darkness, as seen from the absence of a shifted cry1 band in both the wild type and the cry1-L407F mutant (Fig. 7).

The Hypersensitivity of cry1-L407F Could Be Caused by Reduced Structural Flexibility of the Photoreceptor

To understand the potential consequences of the L407F mutation on cry1 structure and function, we carried out three independent molecular dynamics simulations for each of the four following systems: wild-type protein and the L407F mutant, both with ATP and without ATP. The time series of root mean square deviation (RMSD) are useful to visualize the spatial deviation of the structure during the simulation with respect to the energy-minimized x-ray conformation (Supplemental Fig. S4). RMSD plots of the Cα atoms show that wild-type and mutant protein are

Figure 6. Induction of ELIP2 expression in cry1-L407F mutants is hypersensitive to red light. Seedlings were grown for 4 d in the dark before being transferred to continuous red light (10.5 μmol m⁻² s⁻¹). Relative expression values based on quantitative RT-PCR are shown as means ± se (n ≥ 3). Values were normalized to a PP2A gene (At1g13320). WT, Wild type.

Figure 7. cry1-L407F is stronger phosphorylated in blue light than in wild-type cry1. Immunoblot analysis of wild-type cry1 (cry1-WT) and cry1-L407F protein levels (both in the msi1-tap1 background). Seedlings were grown for 96 h in complete darkness before being transferred to monochromatic blue light (λmax = 471 nm) of given fluence rates. A, Representative immunoblot of samples kept in darkness for 96 h (0), then irradiated with blue light for 30 or 120 min, or kept in darkness for another 120 min (120d). The blot shows samples from irradiation with 25 μmol m⁻² s⁻¹ blue light. The cry1 and tubulin signals are indicated with arrows. Note the shifted cry1 bands appearing in the light-treated samples that correspond to phosphorylated forms of cry1. B, Ratios of shifted (phosphorylated) cry1 to the total amount of cry1 in the respective genotypes. Seedlings were irradiated with the given fluence rates of blue light for 30 min. C, Same as B but seedlings were treated for 120 min with blue light. Quantification of the bands was done with the LI-COR Odyssey infrared imaging system and software in the linear range of cry1 and tubulin signals.
stable in all the simulated systems (RMSD = 2–3 Å). Generally, simulated RMSD were smaller for proteins with ATP than for proteins without ATP (Supplemental Fig. S4A). Interestingly, the crystallographic ATP-binding mode was unstable in the simulations of both wild-type and mutant proteins (Supplemental Fig. S5). During the simulations of the wild-type and mutated proteins, the distance between the N6 atom of ATP and the Cγ of Asp-409 was higher than the crystallographic distance of 3.5 Å (Supplemental Fig. S4B, top), indicating that this interaction is not maintained. Similarly, the RMSD plots of the adenine moiety of ATP showed instability of the ATP-binding mode in the wild-type and mutant proteins (Supplemental Fig. S4B, bottom; RMSD > 5 Å). To identify potential regions of altered structural flexibility, we plotted root mean square fluctuation (RMSF) values of Ca atoms, which illustrate structural plasticity along the protein sequence. The RMSF plots of the wild-type protein show that ATP reduces the atomic fluctuations of three segments (Fig. 8A, top). The segments 1, 2, and 3 are spatially close to FAD and the adenine moiety of ATP, respectively (Fig. 1, left) but distant in sequence. A qualitative representation of the backbone flexibility where the thickness of the backbone is proportional to the RMSF is shown in Figure 8B. The RMSF plots of the mutant protein show that ATP reduces the atomic fluctuations only of segment 1, because the L407F mutation already has a stabilizing influence on segments 2 and 3 (Fig. 8A, top). To assess the effect of the mutation on the protein backbone flexibility, the residue-wise RMSF difference between the wild-type and mutant simulations without ATP was calculated (Fig. 8A, bottom). The 20 residues affected by the highest flexibility reduction include the mutation site; they are located in segments 2 and 3 and are close to the three conserved Trp residues (Fig. 1C, right).

Together, the simulations indicate that ATP binding stabilizes three regions of wild-type cry1 and that the L407F mutation partially mimics the effect of ATP binding by stabilizing two of three ATP binding-responsive regions even in the absence of ATP. Therefore, the differences in flexibility suggest that the L407F mutation reduces the conformational entropy penalty of ATP binding and thus might promote ATP binding, autophosphorylation, and eventually cry1 signaling.

DISCUSSION

cry1 Controls Flowering Time

Blue light promotes flowering (Guo et al., 1998), and this effect was attributed mainly to cry2, as cry2 mutations delay flowering under LD conditions in a phyB-dependent manner (Koornneef et al., 1991; Guo et al., 1998, 1999; El-Din El-Assal et al., 2001, 2003; Endo et al., 2007; Liu et al., 2008b). Some studies had reported that cry1 functions in flowering time regulation as well, but others failed to find such evidence (Bagnall et al., 1996; Zagotta et al., 1996; Mockler et al., 1999; Blázquez et al., 2003). While cry2 mainly affects flowering time under LD conditions, the effects on flowering time reported for certain cry1 alleles and the C-terminal domain of cry1 were prominent under SD conditions (Bagnall et al., 1996; Yang et al., 2000). Since both cry1 and cry2 are involved in blue light-mediated repression of hypocotyl elongation (Ahmad and Cashmore, 1993; Lin et al., 1998), it is also possible that both act to some extent in flowering time control but that the effect of cry1 on flowering time control is often masked by other floral regulators. In fact, it was reported that cry1 cry2 double mutants flower significantly later than cry2 single mutants when grown under monochromatic blue light (Mockler et al., 2003). Here, we describe the new CRY1 allele cry1-L407F, which supports previous findings showing that cry1 can act as a positive regulator of the floral transition.

The cry1-L407F allele was isolated in a mutant screen for suppression of the late-flowering phenotype of msi1-tap1 plants. Because cry1-L407F and msi1-tap1 showed an additive genetic interaction (Supplemental Fig. S1), MSII and CRY1 possibly function in independent genetic pathways of flower induction.

cry1-L407F Causes Increased Expression of CO and FT

The cry1-L407F photoreceptor caused increased expression of FT (Fig. 3), and this can explain the observed early-flowering phenotype. FT plays only a minor role in flowering time regulation under SD, but high levels of FT expression cause early flowering even in SD. FT expression is affected by light in several ways. First, light controls the phase of the circadian clock to establish the correct diurnal expression of CO. Second, light stabilizes CO and allows the accumulation of CO specifically under LD, when expression peak and light coincide. This coincidence of the diurnal CO expression peak and external light stimulus is the main mechanism of photoperiodic acceleration of flowering by LD in Arabidopsis (Kobayashi and Weigel, 2007). Cryptochromes appear to play a dominant role in this process because they were proposed to be needed for CO degradation by CONSTITUTIVE PHOTOMORPHOGENIC1 (COP1) in the dark under SD (Jang et al., 2008; Liu et al., 2008b). Third, cry2 can also directly induce FT expression (Liu et al., 2008a).

Because increased FT expression in cry1-L407F remained constrained to the light period, it is unlikely that stabilization of CO by cry1-L407F in the dark caused the increased FT expression. In contrast, loss of COP1 leads to the stabilization of CO in the dark (Jang et al., 2008; Liu et al., 2008b) and to an FT expression peak in the middle of the night (Jang et al., 2008). In cry1-L407F, FT expression peaked during the light period and was similarly low as in the wild type during the dark period, suggesting that cry1-L407F does not interfere with the degradation of CO protein by the COP1 pathway. In cry1-L407F, the increased FT expression during the light period is probably caused
by the expression of CO during the light period. It is not clear how cry1-L407F caused increased CO expression during the light period. An indirect effect via altered function of the circadian clock seems unlikely given the unchanged expression of ELF4 and GI (Fig. 3). It is conceivable, however, that cry1-L407F directly affects CO expression, a possibility we are currently testing.

A Conserved Leu Is Important for cry1 Function

Cryptochromes are flavoproteins with two chromophores and high sequence similarity to photolyases. However, cryptochromes lack several of the characteristics of the DNA-repairing photolyases, most prominently binding to DNA, which is explained by a negative electrostatic potential of the surface around the flavin-binding pocket of DNA-photolyase (Brautigam et al., 2004; Mees et al., 2004). In addition to the N-terminal photolyase-like PHR domain, cryptochromes contain a characteristic C-terminal domain, termed CCT, which is not present in the photolyases. Expression of the CCT domain in transgenic Arabidopsis led to constitutive photomorphogenesis and mimicked the phenotype of mutations in COP1 (Yang et al., 2000). COP1 is involved in the regulation of hypocotyl elongation, anthocyanin production, and chloroplast development and binds to cry1 and cry2 via their CCT domains independent of light (Yang et al., 2000; Wang et al., 2001). It is possible that normally the CCT domain is kept inactive by an interaction with the PHR domain. Absorption of light would then cause conformational changes of the PHR domain, leading to release of the CCT domain, which could eventually activate the signaling chain (for review, see Lin and Todo, 2005). Because cry1 functions at least partially by affecting the ability of COP1 to ubiquitinate target proteins, which will then be degraded by the proteasome (Wang et al., 2001; Yang et al., 2001; Jang et al., 2008; Liu et al., 2008b; Kang et al., 2009), it is possible that cry1-L407F attenuates COP1 activity. This would lead to increased accumulation of HY5, causing light hypersensitivity of seedlings.

In addition to increased light sensitivity, the cry1-L407F mutants have some defects in skotomorphogenesis: cotyledons partially unfold, hypocotyls elongate less, and the light-induced ELIP2 gene has a slightly increased basal expression in extended darkness. It is possible that the observed hypocotyl bending of dark-grown cry1-L407F seedlings was caused by an autonomous activation of phototropism. Notably,

![Graph showing backbone flexibility](image)

Figure 8. The L407F mutation reduces the structural flexibility of cry1. A, Comparison of backbone flexibility. Each curve is the average of the RMSF calculated over three trajectories. The segments corresponding to the peaks labeled 1, 2, and 3 are shown in Figure 1. WT, Wild type. B, The tube-like rendering of the backbone flexibility of the wild type (left) and cry1-L407F (right) was generated using values from A.
light-activated wild-type cryptochrome has been implicated in phototropism (Ahmad et al., 1998a; Lascève et al., 1999; Kang et al., 2008; Tsuchida-Mayama et al., 2010). Because the hypocotyl bending of cry1-L407F mutants was much weaker at elevated growth temperatures, it is possible that the interaction with a cry1 signaling partner in the dark was enabled by the L407F mutation at 21°C but was not stable enough to remain effective at 26°C. Because cry1-L407F mutants differ from the wild type also under light conditions that do not activate cry1 (i.e. darkness and red and far-red light), cry1-L407F can partially function without the blue light requirement that is typical for wild-type cryptochromes. Thus, Leu-407 of cry1 seems to be essential to lock the photoreceptor in an inactive form and to prevent precocious activation of signaling cascades.

Leu-407 is located in a region of the protein that is conserved in all plant crytochromes but not in photolyases or animal cryptochromes (Fig. 1). Despite the strong conservation of Leu-407, it is not immediately obvious why the change to Phe, which is of similar size and hydrophobicity like Leu, would increase the light sensitivity of cry1. The mutated Leu-407 is close to the phosphate residues of AMP-PNP, sticking out of the flavin-binding pocket in the cocrystal structure of cry1 with AMP-PNP (Brautigam et al., 2004). To test whether the L407F mutation could modulate the ATP binding to cry1, molecular dynamics simulations of cry1 wild type and the L407F mutant in complex with FAD and with or without ATP were run. ATP binding reduced the Ca flexibility of three sequence segments, which are distant in sequence (segments 1 and 2, more than 50 amino acids; segments 2 and 3, more than 100 amino acids) but close in space. In contrast to the wild type, ATP binding did not reduce the flexibility of segments 2 and 3 in the L407F mutant because their flexibility is already diminished by the single point mutation.

To explain the hyperactivity of the cry1-L407F mutant, four not mutually exclusive hypotheses can be formulated. First, the novel Phe of the mutant is close to three conserved Trp residues, which are involved in electron transport from the surface to the FAD at least in vitro, as extensively studied in Escherichia coli photolyase, and considered to have the same function in plant cryptochromes (Park et al., 1995; Giovani et al., 2003; Banerjee et al., 2007). Thus, it is possible that cry1-L407F has altered photochemical properties. Second, partial prestabilization of the ATP-binding pocket in cry1-L407F could stabilize ATP binding, extending the lifetime of the signaling state of cry1. This conclusion is at least consistent with the increased level of shifted and phosphorylated cry1-L407F compared with wild-type cry1 (Fig. 7). Third, the reduced flexibility of cry1-L407F could favor binding to a signaling partner, because of a reduced conformational entropy penalty upon binding. Such an effect was recently observed for a mutant of a PDZ domain (Petit et al., 2009). Fourth, it is possible that conformational changes at the surface of cry1 induced by the L407F mutation altered cry1 binding specificity and led to the activation of signaling events that normally are not under cry1 control. The increased germination frequency of cry1-L407F mutants, for instance, could be explained by cry1-L407F having acquired a novel function in the control of germination, which is usually restricted to photochrome. Discrimination between these possibilities will be addressed in future studies.

It is possible that the L407F exchange affects binding to interacting proteins. The fact that Leu-407 is in the N-terminal domain of cry1 suggests that partner recognition occurs, at least in part, via the N-terminal domain of cry and not exclusively via the C-terminal tail. The L407F exchange may be the first identified mutation that alters the downstream target specificity or affinity of cry.

Hypersensitivity of cry1-L407F to Various Light Qualities Reveals Tight Integration of Several Light Signaling Pathways

The cry1-L407F allele was not only hypersensitive to blue light but also to red and far-red light. Normally, red and far red light are not sensed by cryptochromes but by phytochromes. This raises the question of which photoreceptor is then responsible for the increased sensitivity to red light. Because the hypersensitivity of cry1-L407F to red pulses could be fully reverted by far-red pulses, at least in this case it was clearly phytochrome signaling that was affected in the cry1-L407F mutant. Interactions of red light-absorbing phytochrome and blue light-absorbing cryptochrome signaling cascades have been reported (Casal and Boccalandro, 1995; Ahmad and Cashmore, 1997; Hennig et al., 1999). Furthermore, nuclear import of phyB was initiated by blue light, but not by light of 695 nm, which establishes a similar phytochrome photoequilibrium as blue light (Gil et al., 2000). Finally, cryptochromes were found to be required for phytochrome signaling to the circadian clock (Devlin and Kay, 2000). On the molecular level, these effects could potentially be based on an interaction of the cry1 C-terminal domain with phyA (Ahmad et al., 1998b) or of cry2 with phyB (Más et al., 2000). Further work will establish whether the L407F mutation in cry1 affects direct interactions with phytochrome or whether the photochemical properties of cry1-L407F are changed. We propose that the increased sensitivity of cry1-L407F mutants to blue, red, and far-red light reveals the intimate cross talk between cryptochrome and phytochrome light signaling cascades, which has been suggested to be important for concerted plant development under natural light conditions (Casal, 2000).

MATERIALS AND METHODS

Plant Material and Growth Conditions

Seeds of Col and Landsberg erecta Arabidopsis (Arabidopsis thaliana) wild-type accessions were obtained from the Nottingham Arabidopsis Seed Stock.
Centres. The line msl-Ltop1 (accession Col) has been described before (Bouvier et al., 2006). The EMS allele cry1-L407F (accession Col) was isolated from a mutant screen (this study). To construct plants that ectopically overexpress cry1 or cry1-L407F (35S::CRY1 and 35S::CRY1-L407F), the full-length coding sequences were inserted into the binary destination vector pK7WG2 (Karimi et al., 2002) downstream of the cauliflower mosaic virus 35S promoter. Constructs were transformed into Col wild-type plants.

Seeds were usually germinated on sterile basal salts Murashige and Skoog medium (Duchefa) after 2 or 3 d of stratification treatment of the imbibed seeds at 4°C, and plants were analyzed on plates or transferred to soil (Einheitserde; H. Gilgen Optima-Werke) 10 d after germination. Alternatively, seeds were directly sown on soil. Plants were kept in Conviron growth chambers with mixed cold fluorescent and incandescent light (110–140 µmol m\(^{-2}\) s\(^{-1}\), 21°C ± 2°C) under LD (16 h of light) or SD (8 h of light) photoperiods or were alternatively raised in greenhouses (LD, 14 h of light, 19°C/10 h of dark, 14°C; SD, 8 h of light, 20°C/16 h of dark, 20°C); if necessary, daylight was supplemented with mercury vapor lamps (Sylvania Lighting) to a maximum of 150 µmol m\(^{-2}\) s\(^{-1}\).

For immunoblot analyses, seeds were plated on half-strength Murashige and Skoog plates and stratified at 4°C for 4 d in darkness. Germination was induced by white light illumination for 4 h. Plants were grown at 22°C for 4 d, and seedlings were harvested after treatment with blue light emitted from white light for 10 h (24 h for far-red studies) at 23°C.

Flowering Time Analysis
Flowering time was scored as the length of time between the end of stratification and the development of a primary shoot of 5 mm height (=bolting). The number of rosette leaves was determined at bolting. For phase transition, all formed rosette leaves were inspected for the presence of abaxial trichomes at bolting.

RNA Isolation, Reverse Transcription-PCR, and Quantitative PCR
RNA was extracted from plant tissue as described previously (Henning et al., 2003). For reverse transcription (RT)-PCR analysis, 1 µg of total RNA was treated with DNase I (Promega). The DNA-free RNA was reverse transcribed using a RevertAid First-Strand cDNA Synthesis Kit (Fermentas) according to the manufacturer’s instructions. For quantitative PCR analysis, the Universal ProbeLibrary system (Roche Diagnostics) was used on a 7500 Fast Real-Time PCR instrument (Applied Biosystems). Quantitative PCR was performed with three replicates, and the results were analyzed as described (Exner et al., 2009). Details of the assays used are given in Supplemental Table S2.

Analysis of Hypocotyl Length
Seeds were plated on two layers of water-soaked JMM chromatography paper (Whatman Schleicher & Schuell), which were placed into clear plastic boxes. A 48- to 96-h dark treatment at 4°C was followed by induction of germination by white light for 10 h (24 h for far-red studies) at 23°C and further incubation of the seedlings under specific light conditions, which were as follows: blue light, Philips TLD 18W/18 Blue E005, continuous light, 21°C; red light, Philips TLD 18W/18 Red, continuous light, 21°C; far-red light, as described (Sperling et al., 1997), continuous light, 26°C. The hypocotyl length was measured by spreading the seedlings on millimeter paper and reading the length.

Quantitative Immunoblot
Per sample, approximately 50 seedlings were collected, frozen in liquid nitrogen, and ground to a fine powder with a cell mill (MM200; Retsch). Protein was extracted by TCA-acetone precipitation according to Shultz et al. (2005) with the following modifications: after the washing steps, samples were dried in a SpeedVac and then dissolved in SDS sample buffer (45 mM Tris-HCl, pH 6.8, 10% glycerol, 1% SDS, 0.01% bromphenol blue, and 50 mM dithiothreitol). Samples were incubated at 95°C for 10 min followed by a centrifugation step (10 min, 20,000g) to remove cell debris. For SDS-PAGE, 15 µg of total protein was loaded per lane on 10% SDS minigels (Shultz et al., 2005). PageRuler (Fermentas) was used as marker. Separated proteins were transferred to nitrocellulose membranes (poroblot NCP; Macherey-Nagel). Membranes were blocked with 7% milk powder in Tris-buffered saline (TBS; 20 mM Tris-HCl, pH 7.5, and 150 mM NaCl). Incubation with the two primary antibodies was done step-wise with monoclonal antibody against α-tubulin (anti-α-tubulin, produced in mouse; clone B-5-1-2; Sigma) and then with anti-cry1 antibody (raised in rabbits and provided by M. Ahmad, Universite Paris VI). Both antibodies were used in a 1:2,000 dilution in TBS-T (TBS with 0.1% [v/v] Tween 20). Fluorescence-labeled secondary antibodies against rabbit (donkey anti-rabbit IRDye800CW; LI-COR Biosciences) and mouse (donkey anti-mouse IRDye 700DX; Rockland) were incubated simultaneously for 1 h (each diluted 1:10,000 in TBS-T). The membranes were scanned and analyzed with the LI-COR Odyssey Infrared Imaging System. Bands detected in the 700-nm channel correspond to α-tubulin, and bands detected in the 800-nm channel correspond to cry1. The system was calibrated to ensure measurements in the linear range for both α-tubulin and cry1. The cry1 signal was normalized against the α-tubulin signal. In addition, the percentage of shifted cry1 bands compared with the total cry1 signal was determined.

Sequence Alignment
The Arabidopsis CRY1 (At4g08920), CRY2 (At1g04400), and photolyase (Asg5f15620) protein sequences were obtained from The Arabidopsis Information Resource (http://www.arabidopsis.org/) and blasted against the nonredundant protein databases at the National Center for Biotechnology Information (http://www.ncbi.nlm.nih.gov/sites/entrez?cmd=Search&db=pubmed) and at the Department of Energy Joint Genome Institute (http://genome.jgi-psf.org/). The obtained sequences were aligned using ClustalX 2.0. The identifiers of the protein sequences included in this analysis are listed in Supplemental Table S3. The nomenclature of phytochrome as well as cryochrome photoreceptors and their genes is according to Quail et al. (1994).

Molecular Dynamics Simulations
The crystal structure of the PHR domain of Arabidopsis cry1 with AMP-PNP bound (Protein Data Bank accession code 1U3D) was used for modeling and molecular dynamics simulations. The L407F mutation was introduced with PyMOL (The PyMOL Molecular Graphics System, version 1.2r1; Schrodinger), and the most common rotamer was selected. To generate ATP from AMP-PNP, the nitrogen atom between phosphate groups of AMP-PNP was replaced by oxygen. Ions and crystalization water were kept for further calculations. All the simulations were carried out using CHARMM version c35b2 (Brooks et al., 1983, 2009) and the PARAM22 force field (Mackerel et al., 1998, 2004) with the TIP3P model of water (Jorgensen et al., 1983; Mackerell et al., 1996). The most common rotamer was selected. The side chains of Asp and Glu residues were negatively charged, those of Lys and Arg residues were positively charged. His residues were considered neutral, the N terminus was positively charged, and the C terminus was negatively charged. First, structures were minimized in vacuo using a dielectric constant ε = 4r (where r is the distance in Å between atoms/ partial charges) to an energy gradient of 0.01 kcal mol\(^{-1}\) Å\(^{-1}\). The minimized protein was then inserted into a water box, where each atom of the protein had a distance of at least 14 Å from the boundary. Water molecules within 2.8 Å from any atom of the protein were removed. Chloride and sodium ions were added to neutralize the total charge of the system at a concentration of 200 mM. The final system consisted of around 96,000 atoms, approximately 7900 of which belong to the solute. To avoid finite-size effects, periodic boundary conditions were applied. Long-range electrostatic effects were taken into account by the Particle Mesh Ewald summation method (Darden et al., 1993). The temperature was kept constant at 300 K by the Nose-Hoover thermostat (Nose, 1984; Hoover, 1985), while the pressure was held constant at 1 atm by applying the Langevin piston pressostat. Lookup tables (Nilsson, 2009) for the calculation of water-water nonbonded interactions (van der Waals and Coulomb) were used to increase efficiency. SHAKE was applied to the hydrogens, allowing an integration step of 2 fs. Different initial random velocities were assigned to every simulation. Four systems were simulated: the wild-type protein with only FAD bound; the wild-type protein with FAD and ATP bound; the mutant with only FAD bound; and the mutant with FAD and ATP bound. Three independent 30-ns-long simulations were carried out for each system.
Trajectory Analyses

RMSD and RMSF were calculated with CHARMM, and their formulae are as follows:

$$\text{RMSD} = \sqrt{\frac{1}{N} \sum_{i=1}^{N} \left[(x_i - x_{ave})^2 + (y_i - y_{ave})^2 + (z_i - z_{ave})^2 \right]}$$

$$\text{RMSF} = \sqrt{\frac{1}{N_t} \sum_{i=1}^{N_t} \left[(x_i - x_{ave})^2 + (y_i - y_{ave})^2 + (z_i - z_{ave})^2 \right]}$$

where N is the number of atoms; \(x_i, y_i,\) and \(z_i\) are the coordinates of the atom \(i\) after best superposition on a reference structure; and \(x_{ave}, y_{ave},\) and \(z_{ave}\) are the coordinates of the atom \(i\) in the reference structure. The coordinates \(x_i, y_i,\) and \(z_i\) refer to the average structure; \(N_t\) is the number of frames in the trajectory segment analyzed for RMSF calculations; the coordinates \(x_{ave}, y_{ave},\) and \(z_{ave}\) refer to the average structure. The reference structure for RMSD analyses was the starting structure used in the dynamics (i.e. the energy-minimized x-ray structure). The average structures and RMSF were calculated along 2-ns segments of trajectory, skipping the first 2 ns and the last incomplete segment shorter than 2 ns. For the first 30 ns of simulation time, 13 values of RMSF were calculated and then averaged. RMSD expresses how different an object is with respect to another after the best superposition of the two. A RMSD value of zero means perfect superposition. RMSF is a measure of atomic flexibility and can be related to the crystallographic B-factor, \(B = 8\pi^2/3\text{RMSF}^2.\) The distance between the N6 atom of ATP and the C7 atom of Cry1, where \(C7 = 2/3(\text{RMSF})^2.\)

incomplete segment shorter than 2 ns. For the first 30 ns of simulation time, 13 values of RMSF were calculated and then averaged. RMSD expresses how different an object is with respect to another after the best superposition of the two. A RMSD value of zero means perfect superposition. RMSF is a measure of atomic flexibility and can be related to the crystallographic B-factor, \(B = 8\pi^2/3\text{RMSF}^2.\) The distance between the N6 atom of ATP and the C7 atom of Cry1, where \(C7 = 2/3(\text{RMSF})^2.\)

Supplemental Data

The following materials are available in the online version of this article.

Supplemental Figure S1. cry1-L407F and msi1-tap1 affect flowering time additively.

Supplemental Figure S2. Emission spectrum of the red light source.

Supplemental Figure S3. Phenotype of cry1-L407F seedlings in the dark.

Supplemental Figure S4. Structural stability of the PHR domain of cry1 and stability of the ATP-binding mode.

Supplemental Figure S5. Binding mode displacement of ATP.

Supplemental Table S1. Phenotype of cry1-L407F seedlings in the dark.

Supplemental Table S2. Primers used for quantitative RT-PCR.

Supplemental Table S3. Protein sequences used for the alignment.

ACKNOWLEDGMENT

We thank Romaric Bouveret for help during the EMS treatment of msi1-tap1 seeds.

Received June 15, 2010; accepted October 5, 2010; published October 6, 2010.

LITERATURE CITED

Ahmad M, Cashmore AR (1993) HY4 gene of A. thaliana encodes a protein with characteristics of a blue-light photoreceptor. Nature 366: 162–166

Ahmad M, Cashmore AR (1997) The blue-light receptor cryptochrome 1 shows functional dependence on phytochrome A or phytochrome B in Arabidopsis thaliana. Plant J 11: 421–427

Ahmad M, Grancher N, Heil M, Black RC, Giovani B, Galland P, Lardemer W (2002) Action spectrum for cryptochrome-dependent hypocotyl growth inhibition in Arabidopsis. Plant Physiol 129: 774–785

Ahmad M, Jarillo JA, Smirnova O, Cashmore AR (1998a) Cryptochrome blue-light photoreceptors of Arabidopsis implicated in phototropism.

Nature 392: 720–723

Ahmad M, Jarillo JA, Smirnova O, Cashmore AR (1998b) The CRY1 blue-light photoreceptor of Arabidopsis interacts with phytochrome A in vitro. Mol Cell 1: 939–948

Bagnall DJ, King RW, Hangarter RP (1996) Blue-light promotion of flowering is absent in hy4 mutants of Arabidopsis. Planta 200: 278–280

Banerjee R, Batschauer A (2005) Plant blue-light receptors. Planta 220: 498–502

Banerjee R, Schleicher E, Meier S, Viana RM, Pokorny R, Ahmad M, Bittl R, Batschauer A (2007) The signaling state of Arabidopsis cryptochrome 2 contains flavin semiquinone. J Biol Chem 282: 14916–14922

Blázquez MA, Ahn JH, Weigel D (2003) A thermosensory pathway controlling flowering time in Arabidopsis thaliana. Nat Genet 33: 168–171

Bouly JP, Giovani B, Dajemi A, Mueller M, Zeugner A, Dukkun EA, Batschauer A, Ahmad M (2003) Novel ATP-binding and autophosphorylation activity associated with Arabidopsis and human cryptochrome-1. Eur J Biochem 270: 2921–2928

Bouveret R, Schünrock N, Gruissem W, Henning L (2006) Regulation of flowering time by Arabidopsis MS1. Development 133: 1693–1702

Bräutigam CA, Smith BS, Ma Z, Palnikar M, Tomchick DR, Machius M, Deisenhofer J (2004) Structure of the photolyase-like domain of cryptochrome 1 from Arabidopsis thaliana. Proc Natl Acad Sci USA 101: 12142–12147

Brookes CL III, Mackerell AD Jr, Nilsson L, Petrella RJ, Roux B, Won Y, Archontis G, Bartels C, Boresch S, et al (2009) CHARMM: the biomolecular simulation program. J Comput Chem 30: 1545–1614

Brooks BR, Brucoleri RE, Olafson BD, States DJ, Swaminathan S, Karplus M (1983) CHARMM: a program for macromolecular energy, minimization, and dynamics calculations. J Comput Chem 4: 187–212

Casal JJ (2000) Photoreceptors, cryptochromes, phototropin: photoreceptor interactions in plants. Photochem Photobiol 71: 1–11

Casal JJ, Boccalandro H (1995) Co-action between photochrome B and HY4 in Arabidopsis thaliana. Planta 197: 213–218

Casal JJ, Mazzella MA (1998) Conditional synergism between cryptochrome 1 and photochrome B is shown by the analysis of phyB, phyB, and hy4 simple, double, and triple mutants in Arabidopsis. Plant Physiol 118: 19–25

Darden T, York D, Pedersen L (1993) An N×N method for Ewald sums in large systems. J Chem Phys 98: 10089–10092

Devlin PF, Kay SA (2000) Cryptochromes are required for phytochrome signaling to the circadian clock but not for rhythmicity. Plant Cell 12: 2499–2510

Doyle MR, Davis SJ, Bastow RM, McMasters HG, Kozma-Bognár L, Nagy F, Millar AJ, Amasino RM (2002) The ELF4 gene controls circadian rhythms and flowering time in Arabidopsis thaliana. Nature 419: 74–77

El-Din El-Assal S, Alonso-Blanco C, Peeters AJ, Raz V, Koornneef M (2001) A QTL for flowering time in Arabidopsis reveals a novel allele of CRY2. Nat Genet 29: 435–440

El-Din El-Assal S, Alonso-Blanco C, Peeters AJ, Wagener C, Weller J, Koornneef M (2003) The role of cryptochrome 2 in flowering in Arabidopsis. Plant Physiol 133: 1504–1516

Endo M, Mochizuki N, Suzuki T, Nagatani A (2007) CRYPTOCHROME2 in vascular bundles regulates flowering in Arabidopsis. Plant Cell 19: 84–93

Exner V, Aichinger E, Shu H, Wildhaber T, Alfarano P, Calisch A, Gruissem W, Köhler C, Henning L (2009) The chromodomain of LIKE HETEROCROMATIN PROTEIN 1 is essential for H3K27me3 binding and function during Arabidopsis development. PLoS ONE 4: e5335

Franklin KA, Larner VS, Whitelam GC (2005) The signal transducing photoreceptors of plants. Int J Dev Biol 49: 653–664

Gill P, Kircher S, Adam E, Bury E, Kozma-Bognár L, Schäfer E, Nagy F (2000) Photocurrent of subcellular partitioning of phytochrome-B:GFP fusion protein in tobacco seedlings. Plant J 22: 135–145

Giovino B, Byrdin M, Ahmad M, Bretel K (2003) Light-induced electron transfer in a cryptochrome blue-light photoreceptor. Nat Struct Biol 10: 489–490

Guo H, Duong H, Ma N, Lin C (1999) The Arabidopsis blue light receptor cryptochrome 2 is a nuclear protein regulated by a blue light-dependent post-transcriptional mechanism. Plant J 19: 279–287

Guo HW, Yang H, Mockler TC, Lin CT (1998) Regulation of flowering time by Arabidopsis photoreceptors. Science 279: 1360–1363

Harari-Steinberg O, Ohad I, Chomovitz DA (2001) Dissection of the light signal transduction pathways regulating the two early light-induced protein genes in Arabidopsis. Plant Physiol 127: 986–997

Henning L, Funk M, Whitelam GC, Schäfer E (1999) Functional interaction of cryptochrome 1 and phytochrome D. Plant J 20: 289–294

1644 Plant Physiol. Vol. 154, 2010
A Hypersensitive CRYPTOCHROME1 Allele

Hennig L, Taranto P, Walser M, Schinrock N, Griissuem W (2003) Arabidopsis MS11 is required for epigenetic maintenance of reproductive development. Development 130: 2555–2565

Hoover WG (1985) Canonical dynamics: equilibrium phase-space distri-

butions. Phys Rev A 31: 1695–1697

Jang S, Marchal V, Panigrahi KC, Wenkel S, Poppe W, Deng XW, Valverde F, Coupland G (2008) Arabidopsis COP1 shapes the temporal pattern of CO accumulation conferring a photoperiodic flowering response. EMBO J 27: 1277–1288

Johnson E, Bradley M, Harberd NP, Whitelam GC (1994) Photoreponses of light-grown phyA mutants of Arabidopsis. Plant Physiol 105: 141–149

Jørgensen WL, Chandrasekhar M, Madura JD, Impey RW, Klein MK (1983) Comparison of simple potential functions for simulating liquid water. J Chem Phys 79: 920–925

Josses EM, Foreman J, Halliday KJ (2008) Paths through the phytochrome network. Plant Cell Envir 31: 667–678

Kang B, Grancher N, Koyfmann V, Lardener D, Burney S, Ahmad M (2008) Multiple interactions between crytochrome and phototropin blue-light signalling pathways in Arabidopsis thaliana. Planta 227: 1091–1099

Kang CY, Lian HL, Wang FF, Huang JR, Yang HQ (2009) Cryptochromes, phytochromes, and COP1 regulate light-controlled stomatal development in Arabidopsis. Plant Physiol 152: 2624–2641

Karim M, Inze D, Depicker A (2002) Gateway vectors for Agrobacterium-mediated plant transformation. Trends Plant Sci 7: 193–195

Kobayashi Y, Weigel D (2004) Action spectra for phytochrome A- and B-specific photoinactivation. J Photochem Photobiol B: Biol 74: 358–363

Lin CT, Yang HY, Guo HW, Mockler T, Chen J, Cashmore AR (2005) The cryptochromes. Genome Biol 6: 220

Lin CT, Ahmad M, Cashmore AR (1996) Arabidopsis cryptochrome 1 is a soluble protein mediating blue-light-dependent regulation of plant growth and development. Plant J 10: 893–902

Lin CT, Yang HY, Guo HW, Mockler T, Chen J, Cashmore AR (1998) Enhancement of blue-light sensitivity of Arabidopsis seedlings by a blue light receptor cry2. Proc Natl Acad Sci USA 95: 2866–2869

Liu L, Yang HY, Guo HW, Mockler T, Chen J, Cashmore AR (1998) COP1-mediated ubiquitination of CONSTANS is implicated in crytochrome regulation of flowering in Arabidopsis. Plant Cell 20: 292–306

Mackerrall AD, Bhashford D, Bellot M, Dunbrack RL, Evanson DJ, Field MJ, Fischer S, Gao J, Guo H, Ha G, et al (1998) All-atom empirical force field for molecular modeling and dynamics studies of proteins. J Phys Chem B 102: 3586–3616

Mackerrall AD Jr, Feig M, Brooks CL III (2004) Extending the treatment of backbone energetics in protein force fields: limitations of gas-phase quantum mechanics in reproducing protein conformational distributions in molecular dynamics simulations. J Comput Chem 25: 1400–1415

Más P, Devlin PF, Panda S, Kay SA (2000) Functional interaction of phytochrome B and cryochrome 2. Nature 408: 207–211

Mees A, Klar T, Gnaux P, Hennecke U, Eker AP, Carell T, Essen LO (2004) Crystal structure of a photolyase bound to a CPD-like DNA lesion after in situ repair. Science 306: 1789–1793

Mockler T, Yang H, Yu X, Parikh D, Cheng YC, Dolan S, Lin C (2003) Regulation of photoperiod flowering by Arabidopsis photoreceptors. Proc Natl Acad Sci USA 100: 2140–2145

Mockler TC, Guo HW, Yang HY, Duong H, Lin CT (1999) Antagonistic actions of Arabidopsis cryptochromes and phytochrome B in the reg-

ulation of floral induction. Development 126: 2073–2082

Müller M, Carell T (2009) Structural biology of DNA photolyases and cryptochromes. Curr Opin Struct Biol 19: 277–285

Neff MM, Chory J (1998) Genetic interactions between phytochrome A, phytochrome B, and cryochrome 1 during Arabidopsis development. Plant Physiol 118: 27–35

Nilsson L (2009) Efficient table lookup method to inverse square roots for calculation of pair wise atomic interactions in classical simulations. J Comput Chem 30: 1490–1498

Nose S (1984) A unified formulation of the constant temperature molecular dynamics methods. J Chem Phys 81: 511–520

Oh E, Yamaguchi S, Hu J, Yusuke J, Jung B, Paik I, Lee HS, Sun TP, Kamiya Y, Choy G (2007) PILS, a phytochrome-interacting bHLH protein, regulates gibberellin responsiveness by binding directly to the GAI and RGA promoters in Arabidopsis seeds. Plant Cell 19: 1192–1208

Park DH, Somers DE, Kim YS, Choy YH, Lim HK, Soh MS, Kim HJ, Kay SA, Nam HG (1999) Control of circadian rhythms and photoperiodic flowering by the Arabidopsis Gigantea gene. Science 285: 1579–1582

Park HW, Kim ST, Sancar A, Deisenhofer J (1995) Crystal structure of DNA photolyase from Escherichia coli. Science 268: 1866–1872

Petit CM, Zhang J, Sapienza PJ, Fuentes EJ, Lee AL (2009) Hidden dynamic allosterie in a PDZ domain. Proc Natl Acad Sci USA 106: 18249–18254

Pokorny R, Klar T, Hennecke U, Carell T, Batschauer A, Esser LO (2008) Recognition and repair of UV lesions in loop structures of duplex DNA by DASH-type cryptochrome. Proc Natl Acad Sci USA 105: 21023–21027

Quat JJ, Briggs WR, Chory J, Hangarter RP, Harberd NP, Kendrick RE, Koornneef M, Parks B, Sharroock RA, Schäfer E, et al (1994) Spotlight on phytochrome nomenclature. Plant Cell 6: 468–471

Reed JW, Nagatani A, Eich TD, Fagan M, Chory J (1994) Phytochrome A and phytochrome B have overlapping but distinct functions in Arabidop-

dis development. Plant Physiol 104: 1139–1149

Reed JW, Nagpal P, Finnie DR, Futuyaa M, Chory J (1993) Mutations in the gene for the red/far-red light receptor phytochrome B alter cell elongation and physiological responses throughout Arabidopsis develop-

ment. Plant Cell 5: 147–157

Seebier M, Cecchini M, Rao E, Settanni G, Califisch A (2007) Wordom: a program for efficient analysis of molecular dynamics simulations. Bioinformatics 23: 2625–2627

Selby J, Sancar A (2006) A crytochrome/photolyase class of enzymes with single-stranded DNA-specific photolytic activity. Proc Natl Acad Sci USA 103: 17696–17700

Shalitin D, Yang H, Mockler TC, Maymon M, Guo H, Whitelam GC, Lin C (2002) Regulation of Arabidopsis cryochrome 2 by blue-light-dependent phosphorylation. Nature 417: 763–767

Shalitin D, Yu X, Maymon M, Mockler T, Lin C (2003) Blue light-depen-

dent in vivo and in vitro phosphorylation of Arabidopsis cryto-

chrome 1. Plant Cell 15: 2421–2429

Shinomura T, Nagatani A, Hanawa H, Kubota M, Watanabe M, Furuya M (1996) Action spectra for phytochrome A- and B-specific photo-

duction of seed germination in Arabidopsis thaliana. Plant Cell Environ 19: 709–715

Schild RW, Sellage RE, Hanley-Bowdoin L, Thompson WF (2005) A trihydroxy acetic acid-saponin method greatly reduces infrared autofluores-

cence of protein extracts from plant tissue. Plant Mol Biol Rep 23: 405–409

Sperling U, van Cleve B, Frick G, Apel K, Armstrong GA (1997) Over-

expression of light-dependent PORA or PORB in plants depleted of endogenous POR by far-red light enhances seedling survival in white light and protects against photooxidative damage. Plant J 12: 649–658

Tsuchida-Mayama T, Takai T, Hanada A, Uehara Y, Asami T, Yamaguchi S (2010) Role of the phytochrome and cryochrome signaling pathways in hypocotyl phototropism. Plant J 62: 653–662

Wang H, Ma LG, Li JM, Zhao HY, Deng XW (1996) Direct interaction of Arabidopsis cryochromes with COP1 in light control development. Science 274: 154–158

Yang HQ, Tang RH, Cashmore AR (2001) The signalling mechanism of Arabidopsis CRV1 involves direct interaction with COP1. Plant Cell 13: 2573–2587

Yang HQ, Wu YJ, Tang RH, Liu D, Liu Y, Cashmore AR (2000) The C termi-
ni of Arabidopsis cryochromes mediate a constitutive light response. Cell 103: 815–827

Yu X, Shalitin D, Liu X, Maymon M, Kleijnot J, Yang H, Lopez J, Zhao X, Bendehakalu KT, Lin C (2007) Derepression of the NC80 motif is critical for the photoactivation of Arabidopsis CRV2. Proc Natl Acad Sci USA 104: 7289–7294

Zagotta MT, Hicks KA, Jacobs CI, Young JC, Harper HG, Meeks-Wagner DR (1996) The Arabidopsis ELF3 gene regulates vegetative morphopho-

genesis and the photoperiodic induction of flowering. Plant J 10: 691–702