Three Generalizations of the FOCUS Constraint

Nina Narodytska
NICTA and UNSW
Sydney, Australia
ninan@cse.unsw.edu.au

Mohamed Siala
LAAS-CNRS
Univ de Toulouse, INSA
Toulouse, France
msiala@laas.fr

Thierry Petit
LINA-CNRS
Mines-Nantes, INRIA
Nantes, France
thierry.petit@mines-nantes.fr

Toby Walsh
NICTA and UNSW
Sydney, Australia
toby.walsh@nicta.com.au

Abstract

The FOCUS constraint expresses the notion that solutions are concentrated. In practice, this constraint suffers from the rigidity of its semantics. To tackle this issue, we propose three generalizations of the FOCUS constraint. We provide for each one a complete filtering algorithm as well as discussing decompositions.

1 Introduction

Many discrete optimization problems have constraints on the objective function. Being able to represent such constraints is fundamental to deal with many real world industrial problems. Constraint programming is a promising approach to express and filter such constraints. In particular, several constraints have been proposed for obtaining well-balanced solutions [Pesant and Régis, 2005; Schaus et al., 2007; Petit and Régis, 2011]. Recently, the FOCUS constraint [Petit, 2012] was introduced to express the opposite notion. It captures the concept of concentrating the high values in a sequence of variables to a small number of intervals. We recall its definition. Throughout this paper, $X = [x_0, x_1, \ldots, x_{n-1}]$ is a sequence of variables and $s_{i,j}$ is a sequence of indices of consecutive variables in X, such that $s_{i,j} = [i, i+1, \ldots, j]$, $0 \leq i \leq j < n$. We let $|E|$ be the size of a collection E.

Definition 1 ([Petit, 2012]). Let y_c be a variable. Let k and len be two integers, $1 \leq \text{len} \leq |X|$. An instantiation of $X \cup \{y_c\}$ satisfies $\text{FOCUS}(X, y_c, \text{len}, k)$ if there exists a set S_X of disjoint sequences of indices $s_{i,j}$ such that three conditions are all satisfied: (1) $|S_X| \leq y_c$, (2) $\forall x_i \in X, x_i > k \Leftrightarrow \exists s_{i,j} \in S_X$ such that $l \in s_{i,j}$ (3) $\forall s_{i,j} \in S_X$, $j-i+1 \leq \text{len}$

FOCUS can be used in various contexts including cumulative scheduling problems where some excesses of capacity can be tolerated to obtain a solution [Petit, 2012]. In a cumulative scheduling problem, we are scheduling activities, and each activity consumes a certain amount of some resource. The total quantity of the resource available is limited by a capacity. Excesses can be represented by variables [De Clercq et al., 2011]. In practice, excesses might be tolerated by, for example, renting a new machine to produce more resource. Suppose the rental price decreases proportionally to its duration: it is cheaper to rent a machine during a single interval than to make several rentals. On the other hand, rental intervals have generally a maximum possible duration. FOCUS can be set to concentrate (non null) excesses in a small number of intervals, each of length at most len.

Unfortunately, the usefulness of FOCUS is hindered by the rigidity of its semantics. For example, we might be able to rent a machine from Monday to Sunday but not use it on Friday. It is a pity to miss such a solution with a smaller number of rental intervals because FOCUS imposes that all the variables within each rental interval take a high value. Moreover, a solution with one rental interval of two days is better than a solution with a rental interval of four days. Unfortunately, FOCUS only considers the number of disjoint sequences, and does not consider their length.

We tackle those issues here by means of three generalizations of FOCUS. SPRINGYFOCUS tolerates within each sequence in $s_{i,j} \in S_X$ some values $v \leq k$. To keep the semantics of grouping high values, their number is limited in each $s_{i,j}$ by an integer argument. WEIGHTEDFOCUS adds a variable to count the length of sequences, equal to the number of variables taking a value $v > k$. The most generic one, WEIGHTEDSPRINGYFOCUS, combines the semantics of SPRINGYFOCUS and WEIGHTEDFOCUS. Propagation of constraints like these complementary to an objective function is well-known to be important [Petit and Poder, 2008; Schaus et al., 2009]. We present and experiment with filtering algorithms and decompositions therefore for each constraint.
2 Springy FOCUS

In Definition 1, each sequence in S_X contains exclusively values $v > k$. In many practical cases, this property is too strong. Consider one simple instance of the problem in the introduction, in Figure 1, where one variable $x_i \in X$ is defined per point in time t (e.g., one day), to represent excesses of capacity. Initially, 4 activities are fixed and one activity a remains to be scheduled (drawing A), of duration 5 and that can start from day 1 to day 5. If $F(X, y_c = 1, 5, 0)$ is imposed then a must start at day 1 (solution B). We have one 5 day rental interval. Assume now that the new machine may not be used every day. Solution (C) gives one rental of 3 days instead of 5. Furthermore, if $len = 4$ the problem will have no solution using FOCUS, while this latter solution still exists in practice. This is paradoxical, as relaxing the constraint that sequences in the set S_X of Definition 1 take only values $v > k$ deteriorates the concentration power of the constraint. Therefore, we propose a soft relaxation of FOCUS, where at most h values less than k are tolerated within each sequence in S_X.

Definition 2. Let y_c be a variable and k, len, h be three integers, $1 \leq len \leq |X|$, $0 \leq h < len - 1$. An instantiation of $X \cup \{y_c\}$ satisfies Springy FOCUS (X, y_c, len, h, k) if there exists a set S_X of disjoint sequences of indices $s_{i,j}$ such that four conditions are all satisfied: (1) $|X| \leq y_c$, (2) $\forall x_i \in X$, $x_i > k \Rightarrow \exists s_{i,j} \in S_X$ such that $l \in s_{i,j}$, (3) $\forall s_{i,j} \in S_X$, $j - i + 1 \leq len$, $x_i > k$, and $s_{i,j} > k$, (4) $\forall s_{i,j} \in S_X$, $|\{l \in s_{i,j}, x_i \leq k\}| \leq h$.

Bounds consistency (BC) on FOCUS is equivalent to domain consistency: any solution can be turned into a solution that only uses the lower bound $min(x_i)$ or the upper bound $max(x_i)$ of the domain $D(x_i)$ of each $x_i \in X$ (this observation was made for FOCUS [Petit, 2012]). Thus, we propose a BC algorithm. The first step is to traverse X from x_0 to x_{n-1}, to compute the minimum possible number of disjoint sequences in S_X (a lower bound for y_c), the focus cardinality, denoted $fc(X)$. We use the same notation for subsequences of X. $fc(X)$ depends on k, len, and h.

Definition 3. Given $x_i \in X$, we consider three quantities: (1) $p(x_i, v_\leq)$ is the focus cardinality of $[x_0, x_1, \ldots, x_i]$, assuming $x_i \leq k$, and $\forall s_{i,j} \in S_{[x_0, x_1, \ldots, x_i]}$, $j \neq l$. (2) $p(x_i, v_\geq)$ is the focus cardinality of $[x_0, x_1, \ldots, x_i]$, assuming $x_i \geq k$ and $\exists s_{i,l} \in S_{[x_0, x_1, \ldots, x_i]}$. (3) $p(x_i, v_\geq)$ is the focus cardinality of $[x_0, x_1, \ldots, x_i]$ assuming $x_i > k$. Any quantity is equal to $n + 1$ if the domain $D(x_i)$ of x_i makes not possible the considered assumption.

Algorithm 1: **MINCARDS(X, len, k, h):** Integer matrix

```plaintext
1. $pre := new Integer(|X|)];$
2. for $l \in 0..n-1$ do
3. $pre[l][0] := new Integer[2];$
4. for $j \in 1..3$ do pre[l][j] := new Integer[1];
5. Initialization Lemma 1;
6. for $l \in 1..n-1$ do Lemmas 2, 3, 4 and Propositions 1 and 2;
7. return pre;
```

Property 1. $p_S(x_0, v_\leq) = p_S(x_{n-1}, v_\leq) = n + 1$, and $fc(X) = \min(p(x_{n-1}, v_\leq), p(x_{n-1}, v_\geq))$.

Proof. By construction from Definitions 2 and 3.

To compute the quantities of Definition 3 for $x_i \in X$, we use $plen(x_i)$, the minimum length of a sequence in $S_{[x_0, x_1, \ldots, x_i]}$ containing x_i among instantiations of $[x_0, x_1, \ldots, x_i]$ where the number of sequences is $fc(x_0, x_1, \ldots, x_i)$. (1) $\forall x_i \in X$, $x_i > k \Rightarrow \exists s_{i,j} \in S_X$ such that $l \in s_{i,j}$.

Lemma 1 (initialization). $p(x_0, v_\leq) = 0$ if $min(x_0) \leq k$, and $n + 1$ otherwise; $p_S(x_0, v_\leq) = n + 1$ if $max(x_0) > k$ and $n + 1$ otherwise; $plen(x_0) = 1$ if $max(x_0) > k$ and 0 otherwise; $card(x_0) = 0$.

Lemma 2 ($p(x_1, v_\leq)$). If $min(x_1) \leq k$ then $p(x_1, v_\leq) = min(p(x_{n-1}, v_\leq), p(x_{n-1}, v_\geq))$, else $p(x_1, v_\leq) = n + 1$.

Lemma 3 ($p_S(x_1, v_\leq)$). If $min(x_1) > k$, $p_S(x_1, v_\leq) = n + 1$. Otherwise, if $plen(x_1) = 0$ then $p_S(x_1, v_\leq) = n + 1$, else $p_S(x_1, v_\leq) = min(p_S(x_{n-1}, v_\leq), p(x_{n-1}, v_\leq)).$

Lemma 4 ($p(x_1, v_\geq)$). If $max(x_1) \leq k$ then $p(x_1, v_\geq) = n + 1$. Otherwise, if $plen(x_1) = 0$ then $p(x_1, v_\geq) = min(p(x_{n-1}, v_\geq), p(x_{n-1}, v_\leq))$, else $p(x_1, v_\geq) = min(p(x_{n-1}, v_\leq), p_S(x_{n-1}, v_\leq), p_S(x_{n-1}, v_\geq)).$

Proposition 1 ($plen(x_i)$). (by construction) If $min(p_S(x_{n-1}, v_\leq), p_S(x_{n-1}, v_\geq)) < p(x_{n-1}, v_\leq) + 1$ and $plen(x_1) < len$ then $plen(x_1) = plen(x_{n-1}) + 1$. Otherwise, if $p(x_1, v_\geq) < n + 1$ then $plen(x_1) = 1$, else $plen(x_1) = 0$.

Proposition 2 ($card(x_1)$). (by construction) If $plen(x_1) = 1$ then $card(x_1) = 0$. Otherwise, if $p(x_1, v_\geq) = n + 1$ then $card(x_1) = card(x_{n-1}) + 1$, else $card(x_1) = card(x_{n-1})$.

The principle of Algorithm 2 is the following. First, $lb = fc(X)$ is computed with x_{n-1}. We execute Algorithm 1 from x_0 to x_{n-1} and conversely (arrays pre and suf). We thus
have for each quantity two values for each variable \(x_i\). To aggregate them, we implement regret mechanisms directly derived from Propositions 2 and 1, according to the parameters \(len\) and \(h\). Line 4 is optional but it avoids some work when the variable \(y_e\) is fixed, thanks to the same property as FOCUS (see [Petit, 2012]). Algorithm 2 performs a constant number of traversals of the set \(X\). Its time complexity is \(O(n)\), which is optimal.

3 Weighted FOCUS

We present WEIGHTEDFOCUS, that extends FOCUS with a variable \(z_e\), limiting the the sum of lengths of all the sequences in \(S_X\), i.e., the number of variables covered by a sequence in \(S_X\). It distinguishes between solutions that are equivalent with respect to the number of sequences in \(S_X\) but not with respect to their length, as Figure 2 shows.

Definition 4. Let \(y_e\) and \(z_e\) be two integer variables and \(k\), \(len\) be two integers, such that \(1 \leq len \leq |X|\). An instantiation of \(X \cup \{y_e\} \cup \{z_e\}\) satisfies WEIGHTEDFOCUS\((X, y_e, len, k, z_e)\) if there exists a set \(S_X\) of disjoint sequences of indices \(s_{i,j}\) such that four conditions are all satisfied: (1) \(|S_X| \leq y_e\), (2) \(\forall x_i \in X, x_i > k \Leftrightarrow \exists s_{i,j} \in S_X\) such that \(l \in s_{i,j}\) (3) \(\forall s_{i,j} \in S_X, j - i + 1 \leq len\) (4) \(\sum s_{i,j} \leq z_e\).

Definition 5 ([Petit, 2012]). Given an integer \(k\), a variable \(x_i \in X\) is: Penalizing, \((P_k)\), if \(\min(x_i) > k\). Neutral, \((N_k)\), if \(\max(x_i) \leq k\). Undetermined, \((U_k)\), otherwise. We say \(x_i \in P_k\) if \(x_i\) is labeled \(P_k\), and similarly for \(U_k\) and \(N_k\).

Dynamic Programming (DP) Principle Given a partial instantiation \(I_X\) of \(X\) and a set of sequences \(S_X\) that covers all penalizing variables in \(I_X\), we consider two terms:

![Figure 2](image-url)
Figure 3: Representation of one step of Algorithm 3.

last sequence in $S_{c,j}$ in this order. If $x_j \in \text{last}(S_{c,j})$ then $|\text{last}(S_{c,j})|$ is, naturally, the length of $\text{last}(S_{c,j})$, otherwise $|\text{last}(S_{c,j})| = \infty$.

Ordering of sets $S_{c,j}$, $c \in [0, \max(z_c)], j \in \{0, 1, \ldots, n - 1\}$. We define a comparison operation between two sets $S_{c,j}$ and $S_{c',j'}$. $S_{c,j} \leq S_{c',j'}$ iff $|S_{c,j}| < |S_{c',j'}|$ or $|S_{c,j}| = |S_{c',j'}|$ and $\text{last}(S_{c,j}) \leq \text{last}(S_{c',j'})$. Note that we do not take account of cost in the comparison as the current definition is sufficient for us. Using this operation, we can compare all sets $S_{c,j}$ and $S_{c',j'}$ of the same cost for a prefix $[x_0, \ldots, x_j]$. We say that $S_{c,j}$ is optimal iff satisfies the following 4 conditions.

Proposition 3 (Conditions on $S_{c,j}$).

1. $S_{c,j}$ covers all P_k variables in $[x_0, x_1, \ldots, x_j]$.
2. $\text{cst}(S_{c,j}) = c$.
3. $\forall s_{k,g} \in S_{c,j}, x_k \notin U_k$.
4. $S_{c,j}$ is the first set in the order among all sets that satisfy conditions 1-3.

As can be seen from definitions above, given a subsequence of variables x_0, \ldots, x_j, $S_{c,j}$ is not unique and might not exist. However, if $|S_{c,j}| = |S_{c',j'}|$, $c = c'$ and $j = j'$, then $\text{last}(S_{c,j}) = \text{last}(S_{c',j'})$.

**Example 3. Consider WeightedFOCUS from Example 2. Consider the subsequence $[x_0, x_1]$. $S_{0,1} = \{s_{0,0}\}, S_{1,1} = \{s_{0,1}\}$. Note that $S_{2,1}$ does not exist. Consider the subsequence $[x_0, \ldots, x_5]$. We have $S_{0,5} = \{s_{0,0}, s_{2,3}, s_{5,5}\}$, $S_{1,5} = \{s_{0,4}, s_{5,5}\}$ and $S_{2,5} = \{s_{0,3}, s_{5,5}\}$. By definition, $\text{last}(S_{0,5}) = s_{5,5}, \text{last}(S_{1,5}) = s_{5,5}$ and $\text{last}(S_{2,5}) = s_{5,5}$. Consider the set $S_{1,5}$. Note that there exists another set $S_{1,5}' = \{s_{0,0}, s_{2,5}\}$ that satisfies conditions 1-3. Hence, it has the same cardinality as $S_{1,5}$ and the same cost. However, $S_{1,5} < S_{1,5}'$ as $|\text{last}(S_{1,5})| = 1 < |\text{last}(S_{1,5}')| = 3$.

Bounds disentailment Each cell in the dynamic programming table $f_{c,j}, c \in [0, z_c^U], j \in \{0, 1, \ldots, n - 1\}$, where $z_c^U = \max(z_c) - |P_k|$, is a pair of values $q_{c,j}$ and $l_{c,j}$, $f_{c,j} = \{q_{c,j}, l_{c,j}\}$, stores information about $S_{c,j}$. Namely, $q_{c,j} = |S_{c,j}|, l_{c,j} = |\text{last}(S_{c,j})|$ if $\text{last}(S_{c,j}) \neq \infty$ and ∞ otherwise. We say that $f_{c,j}/q_{c,j}/l_{c,j}$ is a dummy (the same as a dummy value) if $f_{c,j} = \{\infty, \infty\}/q_{c,j} = \infty/l_{c,j} = \infty$. If $y_1 = \infty$ and $y_2 = \infty$ then we assume that they are equal. We introduce a dummy variable $x_{-1}, D(x_{-1}) = \{0\}$ and a row $f_{-1,j}, j = -1, \ldots, n - 1$ to keep uniform notations.

Algorithm 3 gives pseudocode for the propagator. The intuition behind the algorithm is as follows. Again, by cost we mean the number of covered variables in U_k.

If $x_j \in P_k$ then we do not increase the cost of $S_{c,j}$ compared to $S_{c,j-1}$ as the cost only depends on $x_j \in U_k$. Hence, the best move for us is to extend $\text{last}(S_{c,j-1})$ or start a new sequence if it is possible. This is encoded in lines 9 and 10 of the algorithm. Figure 3(a) gives a schematic representation of these arguments.

If $x_j \in U_k$ then we have two options. We can obtain $S_{c,j}$ from $S_{c-1,j-1}$ by increasing $\text{cst}(S_{c-1,j-1})$ by one. This means that x_i will be covered by $\text{last}(S_{c,j})$. Alternatively, from $S_{c-1,j-1}$ by interrupting $\text{last}(S_{c,j-1})$. This is encoded in line 13 of the algorithm (Figure 3(b)).

If $x_j \notin N_k$ then we do not increase the cost of $S_{c,j}$ compared to $S_{c,j-1}$. Moreover, we must interrupt $\text{last}(S_{c,j-1})$, line 16 (Figure 3(c), ignore the gray arc).

First we prove a property of the dynamic programming table. We define a comparison operation between $f_{c,j}$ and $f_{c',j'}$ induced by a comparison operation between $S_{c,j}$ and $S_{c',j'}$: $f_{c,j} \leq f_{c',j'}$ if $(q_{c,j} < q_{c',j'})$ or $(q_{c,j} = q_{c',j'}$ and $l_{c,j} \leq l_{c',j'})$. In other words, as a comparison operation between sets, we compare by the cardinality of sequences, $|S_{c,j}|$ and $|S_{c',j'}|$ and, by then the length of the last sequence in each set, $\text{last}(S_{c,j})$ and $\text{last}(S_{c',j'})$. See [Narodytska et al., 2013] for the proofs of the next two lemmas.

Lemma 5. Consider WeightedFOCUS(X, y_c, len, k, z_c). Let f be dynamic programming table returned by Algorithm 3. Non-dummy elements $f_{c,j}$ are monotonically non-increasing in each column, so that $f_{c,j} \leq f_{c,j'}, 0 \leq c < c' \leq z_c^U$, $j = [0, \ldots, n - 1]$.

Lemma 6. Consider WeightedFOCUS(X, y_c, len, k, z_c). The dynamic programming table $f_{c,j} = \{q_{c,j}, l_{c,j}\} \in [0, z_c^U], j = 0, \ldots, n - 1,$ is correct in the sense that if $f_{c,j}$ exists and it is non-dummy then a corresponding set of sequences $S_{c,j}$ exists and satisfies conditions 1-4. The time complexity of Algorithm 3 is $O(n \max(z_c))$.

Example 4. Table 1 shows an execution of Algorithm 3 on WeightedFOCUS from Example 2. Note that $|P_0| = 5$. Hence, $z_0^U = \max(z_0) - |P_0| = 2$. As can be seen from the table, the constraint has a solution as there exists a set $S_{2,7} = \{s_{0,3}, s_{5,5}\}$ such that $|S_{2,7}| = 2$.

Bounds consistency To enforce BC on variables x, we compute an additional DP table $b, b_{c,j}, c \in [0, z_c^U], j \in [0, \ldots, n - 1]$. It is a table of dummy values for x_j.
Consider \(\text{WeightedFocus}(X, y_e, \text{len}, h, k, z_e) \) if there exists a set \(S_X \) of disjoint sequences of indices \(s_{ij} \) such that five conditions are all satisfied: (1) \(|S_X| \leq y_e\) (2) \(\forall x_i \in X, x_i > k \Rightarrow \exists s_{ij} \in S_X \) such that \((i, s_{ij}, X, x_i \leq k) \leq b (4) \forall s_{ij} \in S_X, j - i + 1 \leq \text{len}_x \Rightarrow x_i > k \) and \(x_j > k \). (5) \(\sum_{s_{ij} \in S_X} |s_{ij}| \leq z_e \).

We can again partition cost of \(S \) into two terms. \(\sum_{s_{ij} \in S} |s_{ij}| = \sum_{s_{ij} \in \text{cv}} |s_{ij}| + |P_k| \). However, \(\text{cost}(s_{ij}) \) is the number of undetermined and neutral variables covered \(s_{ij} \). \(\text{cost}(s_{ij}) = \{ \forall x_p \in U_k \cup N_k, x_p \in s_{ij} \} \) as we allow to cover up to \(h \) neutral variables.

The propagator is again based on a dynamic program that for each prefix of variables \([x_0, x_1, \ldots, x_j] \) and ground cost \(c \) computes a cover \(S_{c,j} \) of minimum cardinality that covers all penalized variables in the prefix \([x_0, x_1, \ldots, x_j]\) and has cost exactly \(c \). We face the same problem of how to compute two sets \(S^1_{c,j} \) and \(S^2_{c,j} \) of minimum cardinality. The issue here is how to compare \(\text{last}(S^1_{c,j}) \) and \(\text{last}(S^2_{c,j}) \) if they cover a different number of neutral variables. Luckily, we can avoid this problem due to the following monotonicity property. If \(\text{last}(S^1_{c,j}) \) and \(\text{last}(S^2_{c,j}) \) are not equal to infinity then they both end at the same position \(j \). Hence, if \(\text{last}(S^1_{c,j}) \leq \text{last}(S^2_{c,j}) \) then the number of neutral variables covered by \(\text{last}(S^1_{c,j}) \) is no larger than the number of neutral variables covered by \(\text{last}(S^2_{c,j}) \). Therefore, we can define order on sets \(S_{c,j} \) as we did in Section 3 for \(\text{WeightedFocus} \).

Our bounds disentailment detection algorithm for \(\text{WeightedSpringyFocus} \) mimics Algorithm 3. We omit the pseudocode due to space limitations but highlight two not-trivial differences between this algorithm and Algorithm 3. The first difference is that each cell in the dynamic programming table \(f_{c,j}, c \in [0, z_e], j \in \{0, 1, \ldots, n - 1\} \), where \(z_e = \max(z_e) - |P_k| \), is a triple of values \(q_{c,j}, l_{c,j} \) and \(h_{c,j} \). \(f_{c,j} = \{ q_{c,j}, l_{c,j}, h_{c,j} \} \). The new parameter \(h_{c,j} \) stores the number of neutral variables covered by \(\text{last}(S_{c,j}) \). The second difference is in the way we deal with neutral variables. If \(x_j \in N_k \) then we have two options now. We can obtain \(S_{c,j} \) from \(S_{c,j-1} \) by increasing \(\text{cost}(S_{c,j-1}) \) by one and increasing the number of covered neutral variables by \(\text{last}(S_{c,j-1}) \) (Figure 3(c), the gray arc). Alternatively, we can obtain \(S_{c,j} \) from \(S_{c,j-1} \) by interrupting \(\text{last}(S_{c,j-1}) \) (Figure 3(c), the black arc). BC can enforced using two modifications of the corresponding algorithm for \(\text{WeightedFocus} \) (a proof is given in [Narodytska et al., 2013]).

Lemma 8. Consider \(\text{WeightedSpringyFocus}(X, y_e, \text{len}, h, k, z_e) \). BC can be enforced in \(O(n \max(z_e)) \) time.
start of the \(i\)th sub-sequence. \(D(S_i) = \{0, \ldots, n + \max(y_i)\}; \)
\(E_i\) the end of the \(i\)th sub-sequence. \(D(E_i) = \{0, \ldots, n + \max(y_i)\}; \)
\(T_j\) the index of the subsequence in \(S_X\) containing \(x_j\). \(D(T_j) = \{0, \ldots, \max(y_j)\}; \)
\(Z_k\) the index of the subsequence in \(S_X\) containing \(x_j\) s.t. the value of \(x_j\) is less than or equal to \(k\). \(D(Z_k) = \{0, \ldots, \max(y_k)\}; \)
\(last_k\) the cardinality of \(S_X\). \(D(last_k) = \{0, \ldots, \max(y_k)\}; \)
\(Card\), a vector of \(\max(y_i)\) variables having \(\{0, \ldots, h\}\) as domains.

5 Experiments

We used the Choco-2.1.5 solver on an IntelXeon 2.27GHz for the first benchmarks and IntelXeon 3.20GHz for last ones, both under Linux. We compared the propagators (denoted by F) of **WeightedFocus** and **WeightedSpringFocus** against two decompositions (denoted by D1 and D2), using the same search strategies, on three different benchmarks. The first decomposition, restricted to **WeightedFocus**, is shown in proposition 4, while the second one is shown in Section 4. In the tables, we report for each set the total number of solved instances (\#n), then we average both the number of backtracks (\#b) and the resolution time (T) in seconds.

\(\Box\) Sports league scheduling (SLS). We extend a single round-robin problem with \(n = 2p\) teams. Each week each team plays a game either at home or away. Each team plays exactly once all the other teams during a season. We minimize the number of breaks (a break for one team is two consecutive home or two consecutive away games), while fixed weights in \(\{0, 1\}\) are assigned to all games: games with weight 1 are important for TV channels. The goal is to group consecutive weeks where at least one game is important (sum of weights \(> 0\)) to increase the price of TV broadcast packages. Packages are limited to 5 weeks and should be as short as possible.

Table 2 shows results with 16 and 20 teams, on sets of 50 instances with 10 random important games and a limit of 400K backtracks. \(\max(y_i) = 3\) and we search for one solution with \(w \leq 7\) (instances n-1), \(t \leq 6\) (n-2) and \(w \leq 5\) (n-3).

In our model, inverse-channeling and \(\text{ALLDIFFERENT}\) constraints with the strongest propagation level express that each team plays once against each other team. We assign first the sum of breaks by team, then the breaks and places.

\(\Box\) Cumulative Scheduling with Rentals. Given a horizon of \(n\) days and a set of time intervals \([s_i, e_i], i \in \{1, 2, \ldots, p\}\), a company needs to rent a machine between \(l_i\) and \(u_i\) times within each time interval \([s_i, e_i]\). We assume that the cost of the rental period is proportional to its length. On top of this, each time the machine is rented we pay a fixed cost. The problem is then defined as a conjunction of one **WeightedSpringFocus** \((X, y_c, len, h, 0, z_c)\) with a set of \(\text{AMONG}\) constraints. The goal is to build a schedule for rentals that satisfies all demand constraints and minimizes simultaneously the number of rental periods and their total length. We build a Pareto frontier over two cost variables, as Figure 4 shows for one of the instances of this problem. We generated instances having a fixed length of sub-sequences of size 20 (i.e., \(\text{len} = 20\)), 50% as a probability of posting an \(\text{Among}\) constraint for each \((i, j)\) s.t. \(i \geq j + 5\) in the sequence. Each set of instances corresponds to a unique sequence size \((\{40, 43, 45, 47, 50\})\) and 20 different seeds. We summarize these tests in table 3. Results with decomposition are very poor. We therefore consider only the propagator in this case.

\(\Box\) Sorting Chords. We need to sort \(n\) distinct chords. Each chord is a set at most \(p\) notes played simultaneously. The goal is to find an ordering that minimizes the number of notes changing between two consecutive chords. The full description and a CP model is in [Petit, 2012]. The main difference here is that we build a Pareto frontier over two cost variables. We generated 4 sets of instances distinguished by the numbers of chords \((\{14, 16, 18, 20\})\). We fixed the length of the subsequences and the maximum notes for all the sets then change the seed for each instance.

Table 2, 3 and 4 show that best results were obtained with our propagators (number of solved instances, average backtracks and CPU time over all the solved instances\(^1\)). Figure 4

\(\text{Table 2: SLS with WeightedFocus and its decomposition.}\)

Fraction	16_1	16_2	16_3
\#n			
	100	100	100
\#b			
	0	0	0
T			
	0	0	0

\(\text{Table 3: Scheduling with Rentals.}\)

Fraction	40	43	45
\#n			
	40	43	45
\#b			
	0	0	0
T			
	0	0	0

Figure 4: Pareto frontier for Scheduling with Rentals.

\(^1\)While the technique that solves the largest number of instances
confirms the gain of flexibility illustrated by Figure 1 in Section 2: allowing $h = 1$ variable with a low cost value into each sequence leads to new solutions, with significantly lower values for the target variable y_c.

6 Conclusion

We have presented flexible tools for capturing the concept of concentrating costs. Our contribution highlights the expressive power of constraint programming, in comparison with other paradigms where such a concept would be very difficult to represent. Our experiments have demonstrated the effectiveness of the proposed new filtering algorithms.

References

- Dasgupta et al., 2006 S. Dasgupta, C.H. Papadimitriou, and U.V. Vazirani. Algoritms. McGraw-Hill, 2006.
- De Clercq et al., 2011 A. De Clercq, T. Petit, N. Beldiceanu, and N. Jussien. Filtering algorithms for discrete cumulative problems with overloads of resource. In Proc. CP, pages 240–255, 2011.
- Narodytska et al., 2013 N. Narodytska, T. Petit, M. Siala, and T. Walsh. Three generalizations of the focus constraint. Technical report, Avalaible online from CoRR, 2013.
- Pesant and Régin, 2005 G. Pesant and J.-C. Régin. Spread: A balancing constraint based on statistics. In Proc. CP, pages 460–474, 2005.
- Petit and Poder, 2008 T. Petit and E. Poder. Global propagation of practicability constraints. In Proc. CPAIOR, volume 5015, pages 361–366, 2008.
- Petit and Régin, 2011 T. Petit and J.-C. Régin. The ordered distribute constraint. International Journal on Artificial Intelligence Tools, 20(4):617–637, 2011.
- Petit, 2012 T. Petit. Focus: A constraint for concentrating high costs. In Proc. CP, pages 577–592, 2012.
- Régin, 1996 J.-C. Régin. Generalized arc consistency for global cardinality constraint. In Proceedings of the 14th National Conference on Artificial intelligence (AAAI’98), pages 209–215, 1996.
- Schaus et al., 2007 P. Schaus, Y. Deville, P. Dupont, and J-C. Réglin. The deviation constraint. In Proc. CPAIOR, volume 4510, pages 260–274, 2007.

(and thus some harder ones) should be penalized.

[Schaus et al., 2009] P. Schaus, P. Van Hentenryck, and J-C. Régin. Scalable load balancing in nurse to patient assignment problems. In Proc. CPAIOR, volume 5547, pages 248–262, 2009.