DATA NOTE

The genome sequence of the wall brown, *Lasiommata megera* (Linnaeus, 1767) [version 1; peer review: 4 approved]

Konrad Lohse\(^1\), Wellcome Sanger Institute Tree of Life programme, Wellcome Sanger Institute Scientific Operations: DNA Pipelines collective, Tree of Life Core Informatics collective, Charlotte Wright\(^2\), Darwin Tree of Life Consortium

1 Institute of Evolutionary Biology, University of Edinburgh, Edinburgh, UK
2 Wellcome Trust Sanger Institute, Hinxton, UK

Abstract

We present a genome assembly from an individual female *Lasiommata megera* (the wall brown; Arthropoda; Insecta; Lepidoptera; Nymphalidae). The genome sequence is 488 megabases in span. The majority of the assembly (99.97%) is scaffolded into 30 chromosomal pseudomolecules with the W and Z sex chromosomes assembled. The complete mitochondrial genome was also assembled and is 15.3 kilobases in length.

Keywords

Lasiommata megera, wall brown, genome sequence, chromosomal, Lepidoptera

This article is included in the Tree of Life gateway.
Corresponding author: Darwin Tree of Life Consortium (mark.blaxter@sanger.ac.uk)

Author roles: Lohse K: Investigation, Resources; Wright C: Writing – Original Draft Preparation;

Competing interests: No competing interests were disclosed.

Grant information: This work was supported by Wellcome through core funding to the Wellcome Sanger Institute (206194) and the Darwin Tree of Life Discretionary Award (218328). KL is supported by an ERC grant (ModelGenom Land 757648) and a NERC fellowship (NE/L011522/1).

The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Copyright: © 2022 Lohse K et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

How to cite this article: Lohse K, Wellcome Sanger Institute Tree of Life programme, Wellcome Sanger Institute Scientific Operations: DNA Pipelines collective et al. The genome sequence of the wall brown, Lasiommata megera (Linnaeus, 1767) [version 1; peer review: 4 approved] Wellcome Open Research 2022, 7:230 https://doi.org/10.12688/wellcomeopenres.18106.1

First published: 12 Sep 2022, 7:230 https://doi.org/10.12688/wellcomeopenres.18106.1
Species taxonomy
Eukaryota; Metazoa; Ecdysozoa; Arthropoda; Hexapoda; Insecta; Pterygota; Neoptera; Endopterygota; Lepidoptera; Glossata; Ditrysia; Papilionoidea; Nymphalidae; Satyrinae; Satyrini; Parargina; Lasiommata; Lasiommata megera (Linnaeus, 1767) (NCBI:txid111917).

Background
The wall brown, Lasiommata megera (Linnaeus 1767), is a widely distributed butterfly found across the Palearctic. This species inhabits open sunny places such as grasslands and sand dunes, and is known for basking on bare surfaces such as walls and rocks. Larvae feed on various grasses including false broom (B. sylvaticum), tor-grass (Brachypodium pinnatum) and bents (Agrostis spp.). Forewings possess a single large eyespot, and hindwings contain four smaller eyespots, set against orange and brown markings. This species is generally bivoltine; adults can be found on the wing from May to October.

In the British Isles, this butterfly is widespread but scarce, with a higher density towards the coast. Since the 1970s, the wall brown has experienced a major decline in both abundance and occurrence in the British Isles, with an 87% decrease in abundance across ancient colonies (Fox et al., 2015). The Wall has also experienced a significant decline in abundance across Europe based on the European Grassland Butterfly Indicator (van Swaay et al., 2013). One potential explanation for this decline is that warmer conditions due to climate change, may be triggering a third generation, resulting in a high mortality rate in autumn (Van Dyck et al., 2015). Other changes in the environment, such as nitrogen deposition, have also been implicated in their decline (Klop et al., 2015). The Wall has an estimated genome size of 381 Mb based on flow cytometry (Mackintosh et al., 2019).

Genome sequence report
The genome was sequenced from a single female L. megera from Aberlady Bay, Scotland, UK (Figure 1). A total of 45-fold coverage in Pacific Biosciences single-molecule HiFi long reads and 77-fold coverage in 10X Genomics read clouds were generated. Primary assembly contigs were scaffolded with chromosome conformation Hi-C data. Manual assembly curation corrected 17 missing/misjoins and removed 1 haplo-haploid duplication, reducing the assembly size by 0.33% and the scaffold number by 24.56%, and increasing the scaffold N50 by 0.002%.

The final assembly has a total length of 488 Mb in 43 sequence scaffolds with a scaffold N50 of 17.8 Mb (Table 1). The majority, 99.97%, of the assembly sequence was assigned to 30 chromosomal-level scaffolds, representing 28 autosomes (numbered by sequence length) and the W and Z sex chromosomes (Figure 2–Figure 5; Table 2). The assembly has a BUSCO v5.3.2 (Manni et al., 2021) completeness of 98.6% (single 98.2%, duplicated 0.4%) using the lepidoptera_odb10 reference set (n=5,286). While not fully phased, the assembly deposited is of one haplotype. Contigs corresponding to the second haplotype have also been deposited.

Table 1. Genome data for Lasiommata megera, ilLasMege1.1.
Project accession data
Assembly identifier
Species
Specimen
NCBI taxonomy ID
BioProject
BioSample ID
Isolate information
Raw data accessions
PacificBiosciences SEQUEL II
10X Genomics Illumina
Hi-C Illumina
Genome assembly
Assembly accession
Accession of alternate haplotype*
Span (Mb)
Number of contigs
Contig N50 length (Mb)
Number of scaffolds
Scaffold N50 length (Mb)
Longest scaffold (Mb)
BUSCO* genome score

*BUSCO scores based on the lepidoptera_odb10 BUSCO set using v5.3.2. C= complete [S= single copy, D= duplicated], F= fragmented, M= missing, n= number of orthologues in comparison. A full set of BUSCO scores is available at https://blobtoolkit.genomehubs.org/view/ilLasMege1.1/dataset/CAKMRP01/busco.
Methods
Sample acquisition and nucleic acid extraction

A single female *L. megera* specimen (ilLasMege1, genome assembly) was collected using a hand net from Aberlady Bay, Scotland, UK (latitude 56.019964, longitude -2.85808) by Konrad Lohse (University of Edinburgh). The specimen was identified by Konrad Lohse and snap-frozen in liquid nitrogen.

A single male *L. megera* specimen (ilLasMege3, Hi-C) was collected from the A1, East Linton, Scotland, UK (latitude 55.977161, longitude -2.667545) by Konrad Lohse (University of Edinburgh). The specimen was identified by Konrad Lohse and snap-frozen in liquid nitrogen.

DNA was extracted at the Scientific Operations Core, Wellcome Sanger Institute. The ilLasMege1 sample was weighed and dissected on dry ice. Whole organism tissue was disrupted by manual grinding with a disposable pestle. Fragment size analysis of 0.01–0.5 ng of DNA was then performed using an Agilent FemtoPulse. High molecular weight (HMW) DNA was extracted using the Qiagen MagAttract HMW DNA extraction kit. Low molecular weight DNA...
was removed from a 200-ng aliquot of extracted DNA using 0.8X AMPure XP purification kit prior to 10X Chromium sequencing; a minimum of 50 ng DNA was submitted for 10X sequencing. HMW DNA was sheared into an average fragment size between 12–20 kb in a Megaruptor 3 system with speed setting 30. Sheared DNA was purified by solid-phase reversible immobilisation using AMPure PB beads with a 1.8X ratio of beads to sample to remove the shorter fragments and concentrate the DNA sample. The concentration of the sheared and purified DNA was assessed using a Nanodrop spectrophotometer and Qubit Fluorometer and Qubit dsDNA High Sensitivity Assay kit. Fragment size distribution was evaluated by running the sample on the FemtoPulse system.

Sequencing
Pacific Biosciences HiFi circular consensus and 10X Genomics Chromium read cloud sequencing libraries were constructed according to the manufacturers’ instructions. Sequencing was performed by the Scientific Operations core at the Wellcome Sanger Institute on Pacific Biosciences SEQUEL II (HiFi)
and Illumina HiSeq (10X) instruments. Hi-C data were generated in the Tree of Life laboratory from whole organism tissue of ilLasMege3 using the Arima v2 kit and sequenced on a NovaSeq 6000 instrument.

Genome assembly
Assembly was carried out with Hifiasm (Cheng et al., 2021); haplotypic duplication was identified and removed with purge_dups (Guan et al., 2020). One round of polishing was performed by aligning 10X Genomics read data to the assembly with longranger align, calling variants with freebayes (Garrison & Marth, 2012). The assembly was then scaffolded with Hi-C data (Rao et al., 2014) using SALSA2 (Ghurye et al., 2019). The assembly was checked for contamination and corrected using the gEVAL system (Chow et al., 2016) as described previously (Howe et al., 2021). Manual curation (Howe et al., 2021) was performed using gEVAL, HiGlass (Kerpedjiev et al., 2018) and Pretex. The mitochondrial genome was checked for contamination and corrected using the gEVAL system (Chow et al., 2016).

Figure 4. Genome assembly of Lasiommata megera, ilLasMege1.1: cumulative sequence. BlobToolKit cumulative sequence plot. The grey line shows cumulative length for all scaffolds. Coloured lines show cumulative lengths of scaffolds assigned to each phylum using the buscogenes taxrule. An interactive version of this figure is available at https://blobtoolkit.genomehubs.org/view/ilLasMege1.1/dataset/CAKMRP01/cumulative.
Table 2. Chromosomal pseudomolecules in the genome assembly of *Lasiomma megera*, iILasMege1.1.

INSDC accession	Chromosome	Size (Mb)	GC%
OV743308.1	1	20.7	36.6
OV743309.1	2	20.53	36.9
OV743310.1	3	19.87	36.6
OV743311.1	4	19.7	36.8
OV743312.1	5	19.55	36.9
OV743313.1	6	19.5	36.6
OV743314.1	7	19.4	36.8
OV743315.1	8	18.45	36.7
OV743316.1	9	18.3	36.8
OV743317.1	10	18	36.9
OV743318.1	11	17.9	36.5
OV743319.1	12	17.84	36.9
OV743320.1	13	17.82	36.9
OV743321.1	14	17.19	37.1
OV743322.1	15	17.08	37.1
OV743323.1	16	16.99	37
OV743324.1	17	16.92	37.1
OV743325.1	18	16.47	37.2
OV743326.1	19	15.99	37.2
OV743327.1	20	15.84	37.4
OV743328.1	21	14.4	37.4
OV743329.1	22	13.76	37.7
OV743330.1	23	12.12	37.9
OV743331.1	24	11.82	37.7
OV743332.1	25	10.64	38.2
OV743333.1	26	10.07	38.9
OV743334.1	27	9.44	37.9
OV743335.1	28	7.99	37.8
OV743336.1	W	2.9	40.9
OV743307.1	Z	27.64	36.8
OV743337.1	MT	0.02	18.9
-	Unplaced	3.63	36.9

Figure 5. Genome assembly of *Lasiomma megera*, iILasMege1.1: Hi-C contact map. Hi-C contact map of the iILasMege1.1 assembly, visualised in HiGlass. Chromosomes are arranged in size order from left to right and top to bottom. The interactive Hi-C map can be viewed at https://genome-note-higlass.tol.sanger.ac.uk/?d=KdlGAPYRgGFQxeB4jboA.
assembled using MitoHiFi (Uliano-Silva et al., 2021), which performs annotation using MitoFinder (Allio et al., 2020). The genome was analysed and BUSCO scores generated within the BlobToolKit environment (Challis et al., 2020). Table 3 contains a list of all software tool versions used, where appropriate.

Data availability
European Nucleotide Archive: Lasiommata megera (wall brown). Accession number PRJEB48330; https://identifiers.org/ena.embl/PRJEB48330.

The genome sequence is released openly for reuse. The L. megera genome sequencing initiative is part of the Darwin Tree of Life (DToL) project. All raw sequence data and the assembly have been deposited in INSDC databases. The genome will be annotated and presented through the Ensembl pipeline at the European Bioinformatics Institute. Raw data and assembly accession identifiers are reported in Table 1.

Author information
Members of the Wellcome Sanger Institute Tree of Life programme are listed here: https://doi.org/10.5281/zenodo.6866293.

Members of Wellcome Sanger Institute Scientific Operations: DNA Pipelines collective are listed here: https://doi.org/10.5281/zenodo.5746904.

Members of the Tree of Life Core Informatics collective are listed here: https://doi.org/10.5281/zenodo.6125046.

Members of the Darwin Tree of Life Consortium are listed here: https://doi.org/10.5281/zenodo.5638618.

Table 3. Software tools used.

Software tool	Version	Source
Hifiasm	0.15.3	Cheng et al., 2021
purge_dups	1.2.3	Guan et al., 2020
SALSA2	2.2	Ghury et al., 2019
longeranger	2.2.2	https://support.10xgenomics.com/genome-exome/software/pipelines/latest/advanced/other-pipelines
align		
freebayes	1.3.1-17-gaa2ace8	Garrison & Marth, 2012
MitoHiFi	2.0	Uliano-Silva et al., 2021
HiGlass	1.11.6	Kerpedjiev et al., 2018
PretextView	0.2.x	https://github.com/wtsi-hpag/PretextView
BlobToolKit	3.2.7	Challis et al., 2020

References

Allio R, Schomaker-Bastos A, Romiguer J, et al.: MitoFinder: Efficient Automated Large-Scale Extraction of Mitogenomic Data in Target Enrichment Phylogenomics. Mol Ecol Resour. 2020; 20(4): 892–905. PubMed Abstract | Publisher Full Text | Free Full Text

Challis R, Richards E, Rajan J, et al.: BlobToolKit - Interactive Quality Assessment of Genome Assemblies. G3 (Bethesda). 2020; 10(4): 1361-74. PubMed Abstract | Publisher Full Text | Free Full Text

Cheng H, Concepcion GT, Feng X, et al.: Haplotype-Resolved de Novo Assembly Using Phased Assembly Graphs with Hifiasm. Not Methods. 2021; 18(2): 170-75. PubMed Abstract | Publisher Full Text | Free Full Text

Chow W, Brugger K, Caccamo M, et al.: gEVAL — a Web-Based Browser for Evaluating Genome Assemblies. Bioinformatics. 2016; 32(16): 2508-10. PubMed Abstract | Publisher Full Text | Free Full Text

Fox R, Beretton TM, Asher J, et al.: The State of the UK’s Butterflies 2015. Reference Source

Garrison E, Marth G: Haplotype-Based Variant Detection from Short-Read Sequencing. 2012; arXiv: 1207.3907. Publisher Full Text

Ghurye J, Rihe A, Walenz BP, et al.: Integrating Hi-C Links with Assembly Graphs for Chromosome-Scale Assembly. Plos Comput Biol. 2019; 15(8): e1007237. PubMed Abstract | Publisher Full Text | Free Full Text

Guan D, McCarthy SA, Wood J, et al.: Identifying and Removing Haplotypic Duplication in Primary Genome Assemblies. Bioinformatics. 2020; 36(9): 2896-98. PubMed Abstract | Publisher Full Text | Free Full Text

Howe K, Chow W, Collins J, et al.: Significantly Improving the Quality of Genome Assemblies through Curation. Gigascience. 2021; 10(1): giaa153. PubMed Abstract | Publisher Full Text | Free Full Text

Kerpedjiev P, Abdennur N, Leikschas F, et al.: HiGlass: Web-Based Visual Exploration and Analysis of Genome Interaction Maps. Genome Biol. 2018; 19(1): 125. PubMed Abstract | Publisher Full Text | Free Full Text

Klopf E, Omon B, Wallis DeVries MF: Impact of Nitrogen Deposition on Larval Habitats: The Case of the Wall Brown Butterfly Lasiommata Megera. J Insect Conserv. 2015; 19(2): 393-402. Publisher Full Text

Mackintosh A, Laatsch DR, Hayward A, et al.: The Determinants of Genetic Diversity in Butterflies. Nat Commun. 2019; 10(1): 3466. PubMed Abstract | Publisher Full Text | Free Full Text

Manni M, Berkeley MR, Seppey M, et al.: BUSCO Update: Novel and Streamlined Workflows along with Broader and Deeper Phylogenetic Coverage for Scoring of Eukaryotic, Prokaryotic, and Viral Genomes. Mol Biol Evol. 2021; 38(10): 4647-54. PubMed Abstract | Publisher Full Text | Free Full Text

Rao SS, Huntley MH, Durand NC, et al.: A 3D Map of the Human Genome at Kilobase Resolution Reveals Principles of Chromatin Looping. Cell. 2014; 159(7): 1665–80. PubMed Abstract | Publisher Full Text | Free Full Text

Uliano-Silva M, Nunes JGF, Krasheninnikova K, et al.: marcelauliano/MitoHiFi: mitohifi_v2.0. 2021. Publisher Full Text

Van Dyck H, Bonite D, Puls R, et al.: The Lost Generation Hypothesis: Could Climate Change Drive Ectotherms into a Developmental Trap? Oikos. 2015; 124(1): 54-61. Publisher Full Text

van Swaay C, van Strien A, Harpke A, et al.: The European Grassland Butterfly Indicator: 1990–2011. 2013. Reference Source
Open Peer Review

Current Peer Review Status: ✔️ ✔️ ✔️ ✔️

Version 1

Reviewer Report 13 March 2023

https://doi.org/10.21956/wellcomeopenres.20077.r54914

© 2023 Nai Y. This is an open access peer review report distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Yu-Shin Nai
National Chung Hsing University, Taichung, Taiwan

This report is about the whole genomic sequencing of an individual female *Lasiommata megera* (the wall brown; Arthropoda; Insecta; Lepidoptera; Nymphalidae). I have only two suggestions:

1. Is there any wet lab data provided (i.e. karyotyping of the butterfly) to validate the chromosomal level assembly?

2. Is there any microbe DNA fragment sequenced in the dataset? How does the microorganism tp be excluded?

Is the rationale for creating the dataset(s) clearly described?
Yes

Are the protocols appropriate and is the work technically sound?
Yes

Are sufficient details of methods and materials provided to allow replication by others?
Yes

Are the datasets clearly presented in a useable and accessible format?
Yes

Competing Interests: No competing interests were disclosed.

Reviewer Expertise: My research is focusing on the genomics of insect pathogens, i.e., the transcriptome of entomopathogenic fungi (EPF) infected insect host, epigenetics of EPF and their regulation of gene expression and baculoviral genomics.

I confirm that I have read this submission and believe that I have an appropriate level of
This is a short article describing the production of a genome for a species of butterfly Lasiommata megera.

The manuscript describes the rationale for sequencing this species' genome, identifying an appropriate specimen, and proper documentation of that specimen.

The methods of DNA extraction, DNA sequencing and assembly are well described and explained, and the manuscript provides excellent information as to the approaches taken.

The genome produce is high quality and publically available.

My only concern with this work is that the script used by the team do not seem to be available, or if they are available, not shown. I would hope that a github (or similar) archive might be available to help readers re-run the analysis if they wish.

Other than this minor point, this is an excellent addition to our datasets of insect genomes.

Is the rationale for creating the dataset(s) clearly described?
Yes

Are the protocols appropriate and is the work technically sound?
Yes

Are sufficient details of methods and materials provided to allow replication by others?
Partly

Are the datasets clearly presented in a useable and accessible format?
Yes

Competing Interests: No competing interests were disclosed.

Reviewer Expertise: Insect genomics, evolution and development
In this paper, the authors provide the chromosome-scale assembly of the genome of the wall brown, Lasiommata megera.

The process of genome assembly and quality assessment is broadly within current standards although additional statistics such as base level accuracy (QV) could have been estimated.

In the first sentence of the paragraph "Genome assembly", it should be specified that the main assembly with Hifiasm was performed on PacBio data.

This new genome is in line with the current process of generating new reference genomes for a wide variety of species and thus provides a valuable tool for further analysis of this species.

Is the rationale for creating the dataset(s) clearly described?
Yes

Are the protocols appropriate and is the work technically sound?
Yes

Are sufficient details of methods and materials provided to allow replication by others?
Yes

Are the datasets clearly presented in a useable and accessible format?
Yes

Competing Interests: No competing interests were disclosed.

Reviewer Expertise: Populations genomics, Museomics

I confirm that I have read this submission and believe that I have an appropriate level of expertise to confirm that it is of an acceptable scientific standard.
Christopher W Wheat
Stockholm University, Stockholm, Sweden

This is a standard genomic report for a common field butterfly, reporting a chromosomal level assembly for a female, therefore including the Z and W chromosomes. Standard reporting of the methods and quality of the assembly are contained, reporting that there is a very high quality assembly that has been sufficiently resolved to a haploid state, albeit without phasing though the alternative haplotypes are provided. No annotation is provided. The reported 28 autosomes are consistent with the reported haploid chromosomal count of *L. menava*, from the karyology literature from Robinson, 1971.

Is the rationale for creating the dataset(s) clearly described?
Yes

Are the protocols appropriate and is the work technically sound?
Yes

Are sufficient details of methods and materials provided to allow replication by others?
Yes

Are the datasets clearly presented in a useable and accessible format?
Yes

Competing Interests: No competing interests were disclosed.

Reviewer Expertise: butterfly functional genomics

I confirm that I have read this submission and believe that I have an appropriate level of expertise to confirm that it is of an acceptable scientific standard.