Constraints on the origin of cosmic rays above 10^{18} eV from large scale anisotropy searches in data of the Pierre Auger Observatory

The Pierre Auger Collaboration

P. Abreu, M. Aglietta, M. Ahlers, E.J. Ahn, I.F.M. Albuquerque, D. Allard, I. Allekotte, J. Allen, P. Allison, A. Almeida, J. Alvarez Castillo, J. Alvarez-Muniz, R. Alves Batista, M. Ambrosio, A. Aminaei, L. Anchordoqui, S. Andringa, T. Antić, C. Aramo, E. Arganda, F. Arqueros, H. Asorey, P. Assis, J. Aublin, M. Ave, M. Avenue, G. Avila, A.M. Badescu, M. Balzer, K.B. Barber, A.F. Barbosa, R. Bardenet, S.L.C. Barros, B. Baughman, J. Bäumle, C. Baus, J.J. Beatty, K.H. Becker, A. Bellétoile, J.A. Bellido, S. BenZvi, A. Berat, X. Bertout, P.L. Biermann, P. Billoir, F. Blanco, M. Blanco, C. Bleve, H. Blümer, M. Bohácova, D. Bondi, C. Bonifazi, R. Bonino, N. Borodai, J. Brack, I. Brancus, P. Brogueira, W.C. Brown, R. Bruijn, P. Buchholz, A. Bueno, L. Buroker, R.E. Burton, K.S. Caballero-Mora, B. Caccianiga, L. Caramete, R. Caruso, A. Castellina, O. Catalano, G. Cataldi, L. Cazorla, R. Cester, J. Chauvin, S.H. Cheng, A. Chiavassa, J.A. Chinellato, J. Chirinos Diaz, J. Chuodoba, M. Cilmo, R.W. Clay, G. Coccio, L. Collica, M.R. Coluccia, R. Conceição, F. Contreras, H. Cook, M.J. Cooper, J. Coppins, H. Coutu, C.E. Covault.

A. Creusot, A. Criss, J. Cronin, A. Curutiu, S. Dagoret-Campagne, R. Dallier, B. Daniel, S. Dasso, K. Daumiller, B.R. Dawson, R.M. de Almeida, M. De Domenico, C. De Donato, S.J. de Jong, G. De La Vega, W.J.M. de Mello Junior, J.R.T. de Mello Neto, I. De Mitri, V. de Souza, K.D. de Vries, L. del Peral, M. del Río, O. Deligny, H. Dembinski, N. Dhital, C. Di Giulio, M.L. Diaz Castro, P.N. Diep, F. Diogo, C. Dobrigkeit, W. Docters, J.C. D’Olive, P.N. Dong, A. Dorofeev, J.C. dos Anjos, M.T. Dova, D. D’Urso, I. Dutan, J. Ebr, R. Engel, M. Erdmann, C.O. Escobar, J. Espadana, A. Etche-goyen, P. Facal San Luis, H. Falcke, C. Femiano, K. Fang, G. Farrar, A.C. Fauth, N. Fazzini, A.P. Ferguson, B. Fick, J.M. Figueira, A. Filevich, A. Filipčič, S. Fliescher, C.E. Fracchella, E.D. Fraenkel, O. Fratu, U. Fröhlich, B. Fuchs, R. Gaio, R.F. Gambarra, S. Gambetta, B. García, S.T. Garcia Roca, D. Garcia-Gamez, D. Garcia-Pinto, G. Garilli, A. Gascon Bravo, H. Gemmeke, P.L. Ghia, M. Giller, J. Gitto, H. Glass, M.S. Gold, G. Golup, F. Gomez Albarracin, M. Gómez Berisso, P.F. Gómez Vitale, P. Gonçalves, J.G. Gonzalez, B. Gookin, A. Gorg, P. Gouffon, E. Grashorn, S. Grebe, N. Griffith, A.F. Grillo, Y. Guardincerri, F. Guarino, G.P. Guedes, P. Hansen, D. Harari, T.A. Harrison, J.L. Harton, A. Haungs, T. Hebbeker, D. Heck, A.E. Herwe, G.C. Hill, C. Hojvat, N. Hollon, V.C. Holmes, P. Homola, J.R. Hörandel, P. Horvath, M. Hrabovsky, D. Huber, T. Huege, A. Insolia, F. Ionita, A. Italiano, S. Jansen, C. Jarne, S. Jiraskova, M. Josebakhsh, K. Kadifa, K.H. Kampert, P. Karhan, P. Kasper, I. Katkov, B. Kég, B. Keilhauer, A. Keivani, J.L. Kelley, E. Kemp, R.M. Kieckhafer, H.O. Klages, M. Kleifges, J. Kleinfeller, J. Knapp, D.-H. Koang,
E. Varela53, B. Vargas Cárdenas56, J.R. Vázquez70, R.A. Vázquez73, D. Veberić68,67, V. Verzi46, J. Vicha25, M. Videla8, L. Villaseñor55, H. Wahlberg4, P. Wahrlich12, O. Wainberg7,11, D. Walz39, A.A. Watson75, M. Weber36, K. Weidenhaupt39, A. Weindl35, F. Werner35, S. Westerhoff34, B.J. Whelan88,12, A. Widom86, G. Wieczorek62, L. Wiencke78, B. Wilczyńska61, H. Wilczyński61, M. Will35, C. Williams90, T. Winchen39, M. Wommer35, B. Wundheiler7, T. Yamamoto90,a, T. Yapici84, P. Younk41,82, G. Yuan83, A. Yushkov73, B. Zamorano García72, E. Zas73, D. Zavrtanik68,67, M. Zavrtanik67,68, I. Zaw85,h, A. Zepeda54,b, J. Zhou90, Y. Zhu36, M. Zimbres Silva34,16, M. Ziolkowski41

† Av. San Martín Norte 306, 5613 Malargüe, Mendoza, Argentina; www.auger.org

1 Centro Atómico Bariloche and Instituto Balseiro (CNEA-UNCuyo-CONICET), San Carlos de Bariloche, Argentina
2 Centro de Investigaciones en Láseres y Aplicaciones, CITEDEF and CONICET, Argentina
3 Departamento de Física, FCyN, Universidad de Buenos Aires and CONICET, Argentina
4 IFLP, Universidad Nacional de La Plata and CONICET, La Plata, Argentina
5 Instituto de Astronomía y Física del Espacio (CONICET-UBA), Buenos Aires, Argentina
6 Instituto de Física de Rosario (IFIR) - CONICET/U.N.R. and Facultad de Ciencias Bioquímicas and Farmacéuticas U.N.R., Rosario, Argentina
7 Instituto de Tecnologías en Detección y Astropartículas (CNEA, CONICET, UNSAM), Buenos Aires, Argentina
8 National Technological University, Faculty Mendoza (CONICET/CNEA), Mendoza, Argentina
9 Observatorio Pierre Auger, Malargüe, Argentina
10 Observatorio Pierre Auger and Comisión Nacional de Energía Atómica, Malargüe, Argentina
11 Universidad Tecnológica Nacional - Facultad Regional Buenos Aires, Buenos Aires, Argentina
12 University of Adelaide, Adelaide, S.A., Australia
13 Centro Brasileiro de Pesquisas Físicas, Rio de Janeiro, RJ, Brazil
14 Universidade de São Paulo, Instituto de Física, São Carlos, SP, Brazil
15 Universidade de São Paulo, Instituto de Física, São Paulo, SP, Brazil
16 Universidade Estadual de Campinas, IFGW, Campinas, SP, Brazil
17 Universidade Estadual de Feira de Santana, Brazil
18 Universidade Estadual do Sudoeste da Bahia, Vitória da Conquista, BA, Brazil
19 Universidade Federal da Bahia, Salvador, BA, Brazil
20 Universidade Federal do ABC, Santo André, SP, Brazil
21 Universidade Federal do Rio de Janeiro, Instituto de Física, Rio de Janeiro, RJ, Brazil
22 Universidade Federal Fluminense, EEIMVR, Volta Redonda, RJ, Brazil
23 Rudjer Bošković Institute, 10000 Zagreb, Croatia
24 Charles University, Faculty of Mathematics and Physics, Institute of Particle and Nuclear Physics, Prague, Czech Republic
25 Institute of Physics of the Academy of Sciences of the Czech Republic, Prague, Czech Republic
26 Palacky University, RCPTM, Olomouc, Czech Republic
27 Institut de Physique Nucléaire d’Orsay (IPNO), Université Paris 11, CNRS-IN2P3, Orsay,
France
29 Laboratoire AstroParticule et Cosmologie (APC), Université Paris 7, CNRS-IN2P3, Paris, France
30 Laboratoire de l’Accélérateur Linéaire (LAL), Université Paris 11, CNRS-IN2P3, France
31 Laboratoire de Physique Nucléaire et de Hautes Energies (LPNHE), Universités Paris 6 et Paris 7, CNRS-IN2P3, Paris, France
32 Laboratoire de Physique Subatomique et de Cosmologie (LPSC), Université Joseph Fourier Grenoble, CNRS-IN2P3, Grenoble INP, France
33 SUBATECH, École des Mines de Nantes, CNRS-IN2P3, Université de Nantes, France
34 Bergische Universität Wuppertal, Wuppertal, Germany
35 Karlsruhe Institute of Technology - Campus North - Institut für Kernphysik, Karlsruhe, Germany
36 Karlsruhe Institute of Technology - Campus North - Institut für Prozessdatenverarbeitung und Elektronik, Karlsruhe, Germany
37 Karlsruhe Institute of Technology - Campus South - Institut für Experimentelle Kernphysik (IEKP), Karlsruhe, Germany
38 Max-Planck-Institut für Radioastronomie, Bonn, Germany
39 RWTH Aachen University, III. Physikalisches Institut A, Aachen, Germany
40 Universität Hamburg, Hamburg, Germany
41 Universität Siegen, Siegen, Germany
42 Dipartimento di Fisica dell’Università and INFN, Genova, Italy
43 Università dell’Aquila and INFN, L’Aquila, Italy
44 Università di Milano and Sezione INFN, Milan, Italy
45 Università di Napoli "Federico II" and Sezione INFN, Napoli, Italy
46 Università di Roma II "Tor Vergata" and Sezione INFN, Roma, Italy
47 Università di Catania and Sezione INFN, Catania, Italy
48 Università di Torino and Sezione INFN, Torino, Italy
49 Dipartimento di Matematica e Fisica "E. De Giorgi” dell’Università del Salento and Sezione INFN, Lecce, Italy
50 Istituto di Astrofisica Spaziale e Fisica Cosmica di Palermo (INAF), Palermo, Italy
51 Istituto di Fisica dello Spazio Interplanetario (INAF), Università di Torino and Sezione INFN, Torino, Italy
52 INFN, Laboratori Nazionali del Gran Sasso, Assergi (L’Aquila), Italy
53 Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
54 Centro de Investigación y de Estudios Avanzados del IPN (CINVESTAV), México, Mexico
55 Universidad Michoacana de San Nicolas de Hidalgo, Morelia, Michoacan, Mexico
56 Universidad Nacional Autónoma de Mexico, Mexico, D.F., Mexico
57 IMAPP, Radboud University Nijmegen, Netherlands
58 Kernfysisch Versneller Instituut, University of Groningen, Groningen, Netherlands
59 Nikhef, Science Park, Amsterdam, Netherlands
60 ASTRON, Dwingeloo, Netherlands
61 Institute of Nuclear Physics PAN, Krakow, Poland
62 University of Łódź, Łódź, Poland
63 LIP and Instituto Superior Técnico, Technical University of Lisbon, Portugal
64 'Horia Hulubei' National Institute for Physics and Nuclear Engineering, Bucharest- Magurele, Romania
65 University of Bucharest, Physics Department, Romania
66 University Politehnica of Bucharest, Romania
67 J. Stefan Institute, Ljubljana, Slovenia
68 Laboratory for Astroparticle Physics, University of Nova Gorica, Slovenia
69 Instituto de Física Corpuscular, CSIC-Universitat de València, Valencia, Spain
70 Universidad Complutense de Madrid, Madrid, Spain
71 Universidad de Alcalá, Alcalá de Henares (Madrid), Spain
72 Universidad de Granada & C.A.F.P.E., Granada, Spain
73 Universidad de Santiago de Compostela, Spain
74 Rudolf Peierls Centre for Theoretical Physics, University of Oxford, Oxford, United Kingdom
75 School of Physics and Astronomy, University of Leeds, United Kingdom
76 Argonne National Laboratory, Argonne, IL, USA
77 Case Western Reserve University, Cleveland, OH, USA
78 Colorado School of Mines, Golden, CO, USA
79 Colorado State University, Fort Collins, CO, USA
80 Colorado State University, Pueblo, CO, USA
81 Fermilab, Batavia, IL, USA
82 Los Alamos National Laboratory, Los Alamos, NM, USA
83 Louisiana State University, Baton Rouge, LA, USA
84 Michigan Technological University, Houghton, MI, USA
85 New York University, New York, NY, USA
86 Northeastern University, Boston, MA, USA
87 Ohio State University, Columbus, OH, USA
88 Pennsylvania State University, University Park, PA, USA
89 University of Chicago, Enrico Fermi Institute, Chicago, IL, USA
90 University of Hawaii, Honolulu, HI, USA
91 University of Nebraska, Lincoln, NE, USA
92 University of New Mexico, Albuquerque, NM, USA
93 University of Wisconsin, Madison, WI, USA
94 University of Wisconsin, Milwaukee, WI, USA
95 Institute for Nuclear Science and Technology (INST), Hanoi, Vietnam
96 (‡) Deceased
(a) at Konan University, Kobe, Japan
(b) now at the Universidad Autonoma de Chiapas on leave of absence from Cinvestav
ABSTRACT

A thorough search for large scale anisotropies in the distribution of arrival directions of cosmic rays detected above 10^{18} eV at the Pierre Auger Observatory is reported. For the first time, these large scale anisotropy searches are performed as a function of both the right ascension and the declination and expressed in terms of dipole and quadrupole moments. Within the systematic uncertainties, no significant deviation from isotropy is revealed. Upper limits on dipole and quadrupole amplitudes are derived under the hypothesis that any cosmic ray anisotropy is dominated by such moments in this energy range. These upper limits provide constraints on the production of cosmic rays above 10^{18} eV, since they allow us to challenge an origin from stationary galactic sources densely distributed in the galactic disk and emitting predominantly light particles in all directions.

Subject headings: astroparticle physics — cosmic rays

The large scale distribution of arrival directions of Ultra-High Energy Cosmic Rays (UHECRs) as a function of the energy is a key observable to provide further understanding of their origin. Above $\simeq 0.25$ EeV, the most stringent bounds ever obtained on the dipole component in the equatorial plane were recently reported, being below 2% at 99% C.L. for EeV energies (Auger Collaboration 2011a). Such a sensitivity provides some constraints upon scenarios in which dipolar anisotropies could be imprinted in the distribution of arrival directions as the result of the escape of UHECRs from the Galaxy up to the ankle energy (Ptuskin et al. 1993; Candia et al. 2003; Giacinti et al. 2012). On the other hand, if UHECRs above 1 EeV have already a predominant extragalactic origin (Hillas 1967; Blumenthal 1970; Berezinsky et al. 2000; Berezinsky et al. 2004), their angular distribution is expected to be isotropic to a high level. Thus, the study of large scale anisotropies at EeV energies would help in establishing whether the origin of UHECRs is galactic or extragalactic in this energy range.

The upper limits aforementioned are based on first harmonic analyses of the right ascension distributions in several energy ranges. The analyses benefit from the almost uniform directional exposure in right ascension of any ground based observatory operating with high duty cycle, but are not sensitive to a dipole component along the Earth rotation axis. In contrast, using the large amount of data collected by the surface detector array of the Pierre Auger Observatory, we report in this letter on searches for dipole and quadrupole patterns significantly standing out above the background noise whose components are functions of both the right ascension and the declination (a detailed description of the present analysis can be found in (Auger Collaboration 2012)).
The Pierre Auger Observatory is located in Malargüe, Argentina, at mean latitude 35.2° S, mean longitude 69.5° W and mean altitude 1400 meters above sea level. It exploits two available techniques to detect extensive air showers initiated by UHE CRs: a Surface Detector (SD) array and a Fluorescence Detector (FD). The SD array consists of 1660 water-Cherenkov detectors laid out over about 3000 km² on a triangular grid with 1.5 km spacing, sensitive to the light emitted in their volume by the secondary particles of the showers. At the perimeter of this array, the atmosphere is overlooked on dark nights by 27 optical telescopes grouped in 5 buildings. These telescopes record the number of secondary charged particles in the air shower as a function of depth in the atmosphere by measuring the amount of nitrogen fluorescence caused by those particles along the track of the shower. At the lowest energies observed, the angular resolution of the SD is about 2.2°, and reaches ≈ 1° at the highest energies. This is sufficient to perform searches for large-scale anisotropies. The statistical fluctuation in energy measurement amounts to about 15%, while the absolute energy scale is given by the FD measurements and has a systematic uncertainty of 22% (Auger Collaboration 2008).

In the analyses presented in this letter, the data set consists of events recorded by the SD array from 1 January 2004 to 31 December 2011, with zenith angles less than 55°. To ensure good reconstruction, an event is accepted only if all six nearest neighbours of the water-Cherenkov detector with the highest signal were operational at the time of the event (Auger Collaboration 2010a). Based on this fiducial cut, any active water-Cherenkov detector with six active neighbours defines an active elemental cell. In these conditions, and above the energy at which the detection efficiency saturates, 3 EeV (Auger Collaboration 2010a), the total exposure of the SD array is 23,520 km² yr sr.

Due to the steepness of the energy spectrum, any mild bias in the estimate of the shower energy with time or zenith angle can lead to significant distortions of the event counting rate above a given energy. It is thus critical to control the energy estimate in searching for anisotropies. The procedure followed to obtain an unbiased estimate of the shower energy consists in correcting measurements of shower signals for the influences of weather effects (Auger Collaboration 2009) and the geomagnetic field (Auger Collaboration 2011b). Using the constant intensity cut method (Hersil 1961), the shower signal is then converted to the value that would have been expected had the shower arrived at a zenith angle 38°. This reference shower signal is finally converted into energy using a calibration curve based on hybrid events measured simultaneously by the SD array and FD telescopes, since the latter can provide a calorimetric measurement of the energy (Auger Collaboration 2008).

In searching for anisotropies, it is also critical to know accurately the effective time-integrated collecting area for a flux from each direction of the sky, or in other words, the directional exposure \(\omega \) of the Observatory. For each elemental cell, this is obtained through the integration over Local Sidereal Time (LST) \(\alpha^0 \) of \(x(i)(\alpha^0) \times \text{cell}(\theta) \times \epsilon(\theta, \varphi, E) \), with \(x(i)(\alpha^0) \) the total operational time of the cell \(i \) at LST \(\alpha^0 \), \(\text{cell}(\theta) = 1.95 \cos \theta \) km² the geometric aperture of each elemental cell under incidence zenith angle \(\theta \) (Auger Collaboration 2010a), and \(\epsilon(\theta, \varphi, E) \) the detection efficiency under incidence zenith angle \(\theta \) and azimuth angle \(\varphi \) at energy \(E \).
in (Auger Collaboration 2011a), the small modulation of the exposure in α^0 due to the variations of $x^{(i)}$ can be accounted for by re-weighting the events with the number of elemental cells at the LST of each event k, $\Delta N_{\text{cell}}(\alpha^0_k)$. Since both θ and φ depend only on the difference $\alpha - \alpha^0$, the integration over α^0 can then be substituted for an integration over the hour angle $\alpha' = \alpha - \alpha^0$ so that the directional exposure actually does not depend on right ascension when the $x^{(i)}$ are assumed to be independent of the LST:

$$\omega(\delta, E) = \sum_{i=1}^{n_{\text{cell}}} x^{(i)} \int_0^{24h} d\alpha' a_{\text{cell}}(\theta(\alpha', \delta)) \epsilon(\theta(\alpha', \delta), \varphi(\alpha', \delta), E).$$ (1)

The zenithal dependence of the detection efficiency $\epsilon(\theta, \varphi, E)$ can be obtained directly from the data in an empirical way (Auger Collaboration 2012). Additional effects have an impact on ω, such as the azimuthal dependence of the efficiency due to geomagnetic effects, the corrections to both the geometric aperture of each elemental cell and the detection efficiency due to the tilt of the array, and the corrections due to the spatial extension of the array. Accounting for all these effects, the resulting dependence of ω on declination can be found in (Auger Collaboration 2012). For a wide range of declinations between $\simeq -89^\circ$ and $\simeq -20^\circ$, the directional exposure is $\simeq 2,500$ km2 yr at 1 EeV, and $\simeq 3,500$ km2 yr for any energy above full efficiency. Then, at higher declinations, it smoothly falls to zero, with no exposure above 20$^\circ$ declination.

The detection of significant dipole or quadrupole moments above EeV energies would be of considerable interest. Dipole and quadrupole patterns are encoded in the low order a_{1m} and a_{2m} coefficients of the multipolar expansion of any angular distribution over the sphere $\Phi(n)$:

$$\Phi(n) = \sum_{\ell \geq 0} \sum_{m=-\ell}^{\ell} a_{\ell m} Y_{\ell m}(n),$$ (2)

where n denotes a unit vector taken in equatorial coordinates. Due to the non-uniform and incomplete coverage of the sky at the Pierre Auger Observatory, the estimated coefficients $\overline{a}_{\ell m}$ are determined in a two-step procedure. First, from any event set with arrival directions $\{n_1, \ldots, n_N\}$ recorded at LST $\{\alpha^0_1, \ldots, \alpha^0_N\}$, the multipolar coefficients of the angular distribution coupled to the exposure function are estimated through:

$$\overline{b}_{\ell m} = \sum_{k=1}^{N} \frac{Y_{\ell m}(n_k)}{\Delta N_{\text{cell}}(\alpha^0_k)}.$$ (3)

$\Delta N_{\text{cell}}(\alpha^0_k)$ corrects for the slightly non-uniform directional exposure in right ascension. Then, assuming that the multipolar expansion of the angular distribution $\Phi(n)$ is bounded to ℓ_{max}, the first $b_{\ell m}$ coefficients with $\ell \leq \ell_{\text{max}}$ are related to the non-vanishing $a_{\ell m}$ through:

$$\overline{b}_{\ell m} = \sum_{\ell' = 0}^{\ell_{\text{max}}} \sum_{m' = -\ell'}^{\ell'} [K]^{\ell' m'}_{\ell m} \overline{a}_{\ell' m'},$$ (4)
where the matrix K is entirely determined by the directional exposure:

$$[K]_{\ell m}^{\ell' m'} = \int_{\Delta \Omega} d\Omega \, \omega(n) \, Y_{\ell m}(n) \, Y_{\ell' m'}(n).$$

(5)

Inverting Eqn. 4 allows us to recover the underlying $\sigma_{\ell m}$, with a resolution proportional to $(|K^{-1}|_{\ell m} \, \sigma_{00})^{0.5}$ (Billoir & Deligny 2008). As a consequence of the incomplete coverage of the sky, this resolution deteriorates by a factor larger than 2 each time ℓ_{max} is incremented by 1. With our present statistics, this prevents the recovery of each coefficient with good accuracy as soon as $\ell_{\text{max}} \geq 3$, which is why we restrict ourselves to dipole and quadrupole searches.

We first assume that the angular distribution of cosmic rays is modulated by a pure dipole and parameterise the intensity $\Phi(n)$ in any direction as:

$$\Phi(n) = \frac{\Phi_0}{4\pi} \left(1 + r \, d \cdot n\right),$$

(6)

where d denotes the dipole unit vector. The dipole pattern is here fully characterised by a declination δ_d, a right ascension α_d, and an amplitude r corresponding to the maximal anisotropy contrast: $r = (\Phi_{\text{max}} - \Phi_{\text{min}})/(\Phi_{\text{max}} + \Phi_{\text{min}})$. The estimation of these three coefficients is straightforward from the estimated spherical harmonic coefficients $\tilde{a}_{\ell m}$. The reconstructed amplitudes \tilde{r} are shown in Fig. 1 as a function of the energy. The 99% C.L. upper bounds on the amplitudes that would result from fluctuations of an isotropic distribution are indicated by the dotted line. One can see that within the statistical uncertainties, there is no evidence of any significant signal.

In Fig. 2 the corresponding directions are shown in orthographic projection with the associated uncertainties, as a function of the energy. Both angles are expected to be randomly distributed.
Fig. 2.— Reconstructed declination and right-ascension of the dipole with corresponding uncertainties, as a function of the energy, in orthographic projection.

in the case of independent samples whose parent distribution is isotropic. It is thus interesting to note that all reconstructed declinations are in the equatorial southern hemisphere, and to note also the intriguing smooth alignment of the phases in right ascension as a function of the energy. In our previous report on first harmonic analysis in right ascension (Auger Collaboration 2011a), we already pointed out this alignment, and stressed that such a consistency of phases in adjacent energy intervals is expected with smaller number of events than the detection of amplitudes standing-out significantly above the background noise in the case of a real underlying anisotropy. This motivated us to design a prescription aimed at establishing at 99% C.L. whether this consistency in phases is real, using the exact same analysis as the one reported in (Auger Collaboration 2011a). The prescribed test will end once the total exposure since 25 June 2011 reaches 21,000 km2 yr sr. The smooth fit to the data of (Auger Collaboration 2011a) is shown as a dashed line in Fig. 3 restricted to the energy range considered here. Though the phase between 4 and 8 EeV is poorly determined due to the corresponding direction in declination pointing close to the equatorial south pole, it is noteworthy that a consistent smooth behaviour is observed using the analysis presented here and applied to a data set containing two additional years of data.

Assuming now that the angular distribution of cosmic rays is modulated by a dipole and a quadrupole, the intensity $\Phi(n)$ can be parameterised in any direction \mathbf{n} as:

$$\Phi(n) = \frac{\Phi_0}{4\pi} \left(1 + r \cdot \mathbf{n} + \lambda_+ (\mathbf{q}_+ \cdot \mathbf{n})^2 + \lambda_0 (\mathbf{q}_0 \cdot \mathbf{n})^2 + \lambda_- (\mathbf{q}_- \cdot \mathbf{n})^2 \right),$$ \hspace{1cm} (7)
with the constraint $\lambda_+ + \lambda_- + \lambda_0 = 0$. It is convenient to define the quadrupole amplitude $\beta \equiv (\lambda_+ - \lambda_-)/(2 + \lambda_+ + \lambda_-)$, which provides a measure of the maximal quadrupolar contrast in the absence of a dipole. Hence, any quadrupolar pattern can be fully described by two amplitudes (β, λ_+) and three angles (δ_+, α_+) which define the orientation of q_+ and q_- which defines the direction of q_-. The third eigenvector q_0 is orthogonal to q_+ and q_-. The estimated amplitudes λ_+ and β are shown in Fig. 4 as functions of the energy. In the same way as for dipole amplitudes, the 99% C.L. upper bounds on the quadrupole amplitude that could result from fluctuations of an isotropic distribution are indicated by the dashed lines. Throughout the energy range, there is no evidence for anisotropy.

There are small uncertainties in correcting the estimator of the energy for weather and geomagnetic effects, and these propagate into systematic uncertainties in the measured anisotropy parameters. As well, anisotropy parameters may be altered in a systematic way by energy dependence of the attenuation curve. All these systematic effects have been quantified (Auger Collaboration 2012). They do not change significantly the results presented here.

From these analyses, upper limits on dipole and quadrupole amplitudes can be derived at 99% C.L. They are shown in Fig. 5 for the dipole amplitudes, accounting for the systematic uncertainties. We illustrate now their astrophysical interest by calculating the amplitudes of anisotropy expected in a toy scenario in which sources of EeV-cosmic rays are stationary, densely and uniformly distributed in the galactic disk, and emit particles in all directions.

Both the strength and the structure of the magnetic field in the Galaxy, known only approximately, play a crucial role in the propagation of cosmic rays. The field is thought to contain a large scale regular component and a small scale turbulent one, both having a local strength of a
few microgauss (see e.g. (Beck 2001)). While the turbulent component dominates in strength by a factor of a few, the regular component imprints dominant drift motions as soon as the Larmor radius of cosmic rays is larger than the maximal scale of the turbulences (thought to be in the range 10-100 pc). We adopt here a recent parameterisation of the regular component obtained by fitting model field geometries to Faraday rotation measures of extragalactic radio sources and polarised synchrotron emission (BSS-model, with anti-symmetric halo with respect to the galactic plane) (Pshirkov et al. 2011). In addition to the regular component, a turbulent field is generated according to a Kolmogorov power spectrum and is pre-computed on a three dimensional grid periodically repeated in space. The size of the grid is selected to match the maximal scale of turbulences (taken here as 100 pc), and the strength of the turbulent component is taken as three times the strength of the regular one. To describe the propagation of cosmic rays with energies \(E \geq 1 \text{ EeV} \) in such a magnetic field, the direct integration of trajectories is the most appropriate tool. To obtain the anisotropy of cosmic rays emitted from sources uniformly distributed in a cylinder with a radius of 20 kpc from the galactic centre and with a height of \(\pm 100 \text{ pc} \), we adopt a method first proposed in (Thielheim & Langhoff 1968). It consists in back-tracking anti-particles with random directions from the Earth to outside the Galaxy. Each test particle probes the total luminosity along the path of propagation from each direction as seen from the Earth. For stationary sources emitting cosmic rays in all directions, the expected flux in the initial sampled direction is proportional to the time spent by each test particle in the source region.

The amplitudes of anisotropy obviously depend on the rigidity \(E/Z \) of the cosmic rays, with \(Z \) the electric charge of the particles. Since we only aim at illustrating the upper limits, we consider two extreme single primaries: protons and iron nuclei. The calculation of anisotropy amplitudes for single primaries is useful to probe the allowed contribution of each primary as a function of the energy.
Fig. 5.— 99% C.L. upper limits on dipole and quadrupole amplitudes as a function of the energy. Some generic anisotropy expectations from stationary galactic sources distributed in the disk are also shown, for various assumptions on the cosmic ray composition. The fluctuations of the amplitudes due to the stochastic nature of the turbulent component of the magnetic field are sampled from different simulation data sets and are shown by the bands.

The dipole and quadrupole amplitudes obtained for several energy values covering the range $1 \leq E/\text{EeV} \leq 20$ are shown in Fig. 5. To probe unambiguously amplitudes down to the percent level, it is necessary to generate simulated event sets with at least $\approx 5 \times 10^5$ test particles. Such a number of simulated events allows us to shrink statistical uncertainties on amplitudes at the 0.5% level. Meanwhile, there is an intrinsic variance in the model for each anisotropy parameter due to the stochastic nature of the turbulent component of the magnetic field. This variance is estimated through the simulation of 20 sets of 5×10^5 test particles, where the configuration of the turbulent component is frozen in each set. The RMS of the amplitudes sampled in this way is shown by the bands in Fig. 5.

The resulting amplitudes for protons largely stand above the allowed limits. Consequently, unless the strength of the magnetic field is much higher than in the picture used here, the upper limits derived in this analysis exclude that the light component of cosmic rays comes from galactic stationary sources densely distributed in the galactic disk and emitting in all directions. To respect the dipole limits below the ankle energy, the fraction of protons should not exceed $\approx 10\%$ of the cosmic ray composition. This is particularly interesting in the view of the indications for the presence of a light component around 1 EeV from shower depth maximum measurements ([Auger Collaboration 2010b](#), [Abbasi et al. 2010](#), [Jui et al. 2011](#)), though firm interpretations of these measurements in terms of the atomic mass still suffer from some ambiguity due to the uncertain hadronic interaction models used to describe the shower developments. On the other hand, if the cosmic ray composition around 1 EeV results from a mixture containing heavy elements of galactic origin and light elements of extragalactic origin, upper limits can be respected. This is because large scale anisotropy amplitudes below the percent level are expected for extragalactic
cosmic rays, due to the motion of the Galaxy relative to a possibly stationary extragalactic cosmic ray rest frame (Kachelriess & Serpico 2006; Harari et al. 2010).

Future measurements of composition below 1 EeV will come from the low energy extension HEAT now available at the Pierre Auger Observatory (Mathes et al. 2011). Combining these measurements with large scale anisotropy ones will then allow us to further understand the origin of cosmic rays at energies less than 4 EeV.

Acknowledgements

The successful installation, commissioning, and operation of the Pierre Auger Observatory would not have been possible without the strong commitment and effort from the technical and administrative staff in Malargüe.

We are very grateful to the following agencies and organizations for financial support: Comisión Nacional de Energía Atómica, Fundación Antorchas, Gobierno De La Provincia de Mendoza, Municipalidad de Malargüe, NDM Holdings and Valle Las Leñas, in gratitude for their continuing cooperation over land access, Argentina; the Australian Research Council; Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Financiadora de Estudos e Projetos (FINEP), Fundação de Amparo à Pesquisa do Estado de Rio de Janeiro (FAPERJ), Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP), Ministério de Ciência e Tecnologia (MCT), Brazil; AVCR AV0Z10100502 and AV0Z10100522, GAAV KJB100100904, MSMT-CR LA08016, LG11044, MEB111003, MSM0021620859, LA08015 and TACR TA01010517, Czech Republic; Centre de Calcul IN2P3/CNRS, Centre National de la Recherche Scientifique (CNRS), Conseil Régional Ile-de-France, Département Physique Nucléaire et Corpusculaire (PNC-IN2P3/CNRS), Département Sciences de l’Univers (SDU-INSU/CNRS), France; Bundesministerium für Bildung und Forschung (BMBF), Deutsche Forschungsgemeinschaft (DFG), Finanzministerium Baden-Württemberg, Helmholtz-Gemeinschaft Deutscher Forschungszentren (HGF), Ministerium für Wissenschaft und Forschung, Nordrhein-Westfalen, Ministerium für Wissenschaft, Forschung und Kunst, Baden-Württemberg, Germany; Istituto Nazionale di Fisica Nucleare (INFN), Ministero dell’Istruzione, dell’Università e della Ricerca (MIUR), Italy; Consejo Nacional de Ciencia y Tecnología (CONACYT), Mexico; Ministerie van Onderwijs, Cultuur en Wetenschap, Nederlandse Organisatie voor Wetenschappelijk Onderzoek (NWO), Stichting voor Fundamenteel Onderzoek der Materie (FOM), Netherlands; Ministry of Science and Higher Education, Grant Nos. N N202 200239 and N N202 207238, Poland; Portuguese national funds and FEDER funds within COMPETE - Programa Operacional Factores de Competitividade through Fundação para a Ciência e a Tecnologia, Portugal; Romanian Authority for Scientific Research, UEFI CDI, Ctr.Nr.1/ASPERA2 ERA-NET, Romania; Ministry for Higher Education, Science, and Technology, Slovenian Research Agency, Slovenia; Comunidad de Madrid, FEDER funds, Ministerio de Ciencia e Investigación y Consolidar-Ingenio 2010 (CPAN), Xunta de Galicia, Spain; Science and Technology Facilities Council, United Kingdom; Department of Energy, Contract Nos. DE-AC02-07CH11359, DE-FR02-04ER41300, National Science
Foundation, Grant No. 0450696, The Grainger Foundation USA; NAFOSTED, Vietnam; Marie Curie-IRSES/EPLANET, European Particle Physics Latin American Network, European Union 7th Framework Program, Grant No. PIRSES-2009-GA-246806; and UNESCO.

REFERENCES

Abbasi, R. U. et al. (The HiRes Collaboration) 2010, Phys. Rev. Lett. 104 161101

Beck, R. 2001, Space Sci. Rev. 99 243

Berezinsky, V. S., Grigorieva, S. I. & Hnatyk, B. I. 2004, Astropart. Phys. 21 617-625

Berezinsky, V. S., Gazizov, A. Z., & Grigorieva, S. I. 2006, Phys. Rev. D 74 043005

Billoir, P. & Deligny, O. 2008, JCAP 02 009

Blumenthal, G. R. 1970, Phys. Rev. D1 1596

Bonifazi, C., for the Pierre Auger Collaboration 2009, Nucl. Phys. Proc. Suppl. 190 20

Candia, J., Mollerach, S. & Roulet, E. 2003, JCAP 0305 003

Giacinti, G. et al. 2012, JCAP 07 031

Harari, D., Mollerach, S. & Roulet, E. 2010, JCAP 11 033

Hersil, J. et al. 1961, Phys. Rev. Lett. 6 22

Hillas, A. M. 1967, Phys. Lett. 24A 677

Jui, C. C. H. et al. (The Telescope Array Collaboration) 2011, Proceedings of the APS meeting, arXiv:1110.0133

Kachelriess, M. & Serpico, P. 2006, Phys. Lett. B 640 225-229

Mathes, H. J., for the Pierre Auger Collaboration 2011, Proceedings of the 32nd ICRC, Beijing

The Pierre Auger Collaboration 2008, Phys. Rev. Lett. 101 061101

The Pierre Auger Collaboration 2009, Astropart. Phys. 32 89

The Pierre Auger Collaboration 2010a, Nucl. Instr. and Meth. A 613 29

The Pierre Auger Collaboration 2010b, Phys. Rev. Lett. 104 091101

The Pierre Auger Collaboration 2011a, Astropart. Phys. 34 627-639

The Pierre Auger Collaboration 2011b, JCAP 11 022
The Pierre Auger Collaboration 2012, ApJS 203 34

Pshirkov, M. S. et al. 2011, ApJ 738 192

Ptuskin, V. et al. 1993, Astron. Astrophys. 268 726

Sanchez, F., for the Pierre Auger Collaboration 2011, Proceedings of the 32nd ICRC, Beijing

Thielheim, K. O. & Langhoff, W. 1968, J. Phys. A 694

Zirakashvili, V. N. et al. 1998, AstL. 24 139