GIGANTEA recruits deubiquitylases, UBP12 and UBP13, to regulate accumulation of the ZTL photoreceptor complex

Chin-Mei Lee, Man-Wah Li, Ann Feke, Adam M. Saffer, Wei Liu, Joshua M. Gendron

Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, USA, 06511
Abstract

To remain synchronous with the environment, plants constantly survey daily light conditions using an array of photoreceptors and adjust their circadian rhythms accordingly. ZEITLUPE (ZTL), a blue light photoreceptor with E3 ubiquitin ligase activity, communicates end-of-day light conditions to the circadian clock. To function properly, ZTL protein must accumulate but not destabilize target clock transcription factors before dusk, while in the dark ZTL mediates degradation of target proteins. It is not clear how ZTL can accumulate to high levels in the light while its targets remain stable. Two deubiquitylating enzymes, UBIQUITIN-SPECIFIC PROTEASE 12 and UBIQUITIN-SPECIFIC PROTEASE 13 (UBP12 and UBP13), which have opposite genetic and biochemical functions to ZTL, were shown to associate with the ZTL protein complex. Here we demonstrate that the ZTL light-dependent interacting partner, GIGANTEA (GI), recruits UBP12 and UBP13 to the ZTL photoreceptor complex. We show that loss of UBP12 and UBP13 reduces ZTL and GI protein levels through a post-transcriptional mechanism. Furthermore, the ZTL target protein TOC1 is unable to accumulate to normal levels in ubp mutants, indicating that UBP12 and UBP13 are necessary to stabilize clock transcription factors during the day. Our results demonstrate that the ZTL photoreceptor complex contains both ubiquitin-conjugating and -deconjugating enzymes, and that these two opposing enzyme types are necessary for the complex to properly regulate the circadian clock. This work also shows that deubiquitylating enzymes are a core design element of circadian clocks that is conserved from plants to animals.
Circadian clocks in all organisms rely on photoreceptors to sense light and entrain the central oscillator. The exact timing of the light-to-dark transition (dusk) is especially important for plants, as this indicates the length of the day and provides seasonal timing information necessary for the adjustment of plant developmental processes (Carre, 2001; Yanovsly and Kay, 2002; Imaizumi et al., 2003; Salome and McClung, 2004; Imaizumi and Kay, 2006; Nozue et al., 2007; Mizoguchi and Yoshida, 2009; Ito et al., 2012). One way that plants sense the end of the day is by using a unique photoreceptor called ZEITLUPE (ZTL) to control the stability of circadian clock transcription factors differentially in the light and the dark (Somers et al., 2000). ZTL contains an N-terminal light-oxygen-voltage sensing (LOV) domain which senses blue light. Adjacent to the LOV domain are the F-box domain, which allows ZTL to function as an E3 ubiquitin ligase, and a Kelch-repeat domain. ZTL mediates degradation of transcription factors that are at the core of the plant circadian clock including TIMING OF CAB2 EXPRESSION 1, PSEUDO-RESPONSE REGULATOR 5, and CCA1 HIKING EXPEDITION (TOC1, PRR5, and CHE) (Mas et al., 2003; Han et al., 2004; Kiba et al., 2007; Fujiwara et al., 2008; Baudry et al., 2010; Lee et al., 2018). In the light, ZTL accumulates to high levels but is unable to mediate degradation of the clock transcription factors (Kim et al., 2003; Kim et al., 2007). The accumulation of ZTL protein during the day is dependent on interaction with the co-chaperone protein GIGANTEA (GI) (Kim et al., 2013; Cha et al., 2017; Cha et al., 2017). GI interacts with ZTL through the LOV domain in the light and dissociates from ZTL in the dark, allowing ZTL to mediate degradation of its target proteins and then be degraded by the ubiquitin proteasome system, likely through autocatalytic activity (Kim et al., 2003; Mas et al., 2003; Somers et al., 2004; Kiba et al., 2007; Kim et al., 2007; Kim et al., 2011; Kim et al., 2013). One of the roles of
GI is to recruit HSP70/HSP90 for maturation of the ZTL protein in the light, but ZTL is unable to mediate ubiquitylation and degradation of target proteins until dark (Mas et al., 2003; Kiba et al., 2007; Fujiwara et al., 2008; Cha et al., 2017; Pudasaini et al., 2017). It was proposed that GI can promote maturation of ZTL and block or counteract ZTL activity; however, this second role for GI has not been investigated in depth (Fujiwara et al., 2008; Pudasaini et al., 2017).

We previously identified ZTL-interacting proteins using immunoprecipitation followed by mass spectrometry (IP-MS) with a “decoy” ZTL that lacks E3 ubiquitin ligase activity and stably binds interacting proteins (Lee et al., 2018). We identified UBIQUITIN-SPECIFIC PROTEASE 12 and 13 (UBP12 and UBP13) as high confidence ZTL-interacting proteins which were shown previously to have an unspecified role in clock function (Cui et al., 2013; Lee et al., 2018). UBP12 and UBP13 also interact with GI in IP-MS experiments (Krahmer et al., 2019), suggesting that either the UBPs interact with ZTL and GI independently or that ZTL, GI, and the UBPs exist together in a complex. UBP12 and UBP13 are closely related deubiquitylating enzymes that can cleave lysine 48-linked mono- or poly-ubiquitin from substrates (Ewan et al., 2011; Cui et al., 2013), interestingly, a biochemical role opposite to that of ZTL. In addition to regulating the circadian clock, they are also involved in flowering time, pathogen defense, root differentiation, and hormone signaling (Ewan et al., 2011; Derkacheva et al., 2016; Jeong et al., 2017; Zhou et al., 2017; An et al., 2018). We performed yeast two-hybrid assays and found that UBP12 and UBP13 interacted with GI but not with ZTL or the ZTL target proteins TOC1, PRR5, or CHE (Fig.1a). We next tested the interaction between GI and UBP12 and UBP13 in planta via bimolecular fluorescence complementation (BiFC) in Arabidopsis protoplasts (Fig.1b). GI, UBP12, and UBP13 are localized in the cytoplasm and nucleus (Cui et al., 2013;
Kim et al., 2013), and our BiFC results show that UBP12 and UBP13 interact with GI in both compartments with strong signal in the nucleus and weaker but detectable signal in the cytoplasm. The interacting complexes of UBP12 and GI formed nuclear foci, similar to the localization of GI alone (Kim et al., 2013). UBP12 and UBP13 contain a MATH-type (meprin and TRAF homology) protein interaction domain and a ubiquitin-specific protease (USP) domain (Fig. S1). The MATH domains of UBP12 and UBP13 were necessary for interaction with GI while the protease domain and the C-terminal portions did not mediate GI-interaction (Fig. 1c). This suggests that the interaction between GI and UBP12 or UBP13 is not dependent on the UBP USP domains binding to poly-ubiquitylated GI protein.

We next determined whether GI was necessary to bridge the interaction between UBP12 or UBP13 and ZTL in vivo by performing IP-MS on wild type (Col-0) and gi-2 mutant transgenic lines expressing the decoy ZTL protein (Fig. S2). We collected samples at 9 hours after dawn from plants grown in 12h light/12h dark cycles to capture the time when ZTL and GI are normally interacting. We found that UBP12 and UBP13 were enriched in the Col-0 samples (p-value= 3.58E-5 and 0.0113 for UBP12 and UBP13 respectively), but not in the gi-2 mutant (p-value= 1 for both) (Fig.1d and Table S1). These results indicate that GI is required for UBP12/UBP13 to form a complex with ZTL, substantiating our interaction studies in heterologous systems. Notably, LKP2, a known ZTL interacting partner, associated with ZTL in the presence or absence of GI and suggests that the decoy ZTL is able to form biologically relevant protein complexes even in the gi-2 mutant (Takase et al., 2011). Together these results suggest that the GI protein physically bridges the interaction between UBP12 or UBP13 and ZTL in vivo.
As a complementary approach to the IP-MS (Fig. 1d) we co-expressed FLAG-UBP12 or FLAG-UBP13 with HA-GI and Myc-ZTL in *N. benthamiana* leaves. We then performed immunoprecipitation with anti-FLAG antibody and detected the presence of FLAG-UBP12, FLAG-UBP13, HA-GI, and Myc-ZTL using western blotting (Fig. 1e). In the FLAG immunoprecipitation samples, HA-GI was always detected when co-expressed with FLAG-UBP12 or FLAG-UBP13, showing that UBP12 and UBP13 interact with GI independently of the presence of Myc-ZTL. Furthermore, Myc-ZTL was undetectable in the FLAG immunoprecipitation samples unless co-expressed with HA-GI showing that the interaction between UBP12 or UBP13 and ZTL is dependent on GI. These assays support our previous results (Fig. 1a-d) and show that a trimeric complex between full-length ZTL, GI, and UBP12 or UBP13 can form *in vivo* (Fig. 1f).

Our physical interaction model (Fig. 1f) led us to hypothesize that *UBP12* and *UBP13* regulate the circadian clock through the same genetic pathway as *ZTL* and *GI*. We tested this via epistasis analyses with loss-of-function mutants in *ZTL*, *GI*, *UBP12*, and *UBP13*. Previously, it was shown that knockdown of *UBP12* and *UBP13* results in shortened clock periods (Cui et al., 2013). We first determined the period of a series of mutant alleles in *UBP12* and *UBP13* by crossing them to the *pCCA1::LUC* clock reporter transgenic line and measuring luciferase activity (Fig. 2a-d). We found that single mutations in either *UBP12* or *UBP13* shortened the clock period with period lengths that varied from 0.4 to 1 hour shorter than wild type. We next generated *ubp12-1/gi-2* and *ubp13-1/gi-2* double mutants and measured the expression of the core clock gene *CCA1* during a 2-day circadian time course in constant light using qRT-PCR.
LS Periodogram analysis using the Biodare2 platform [biodare2.ed.ac.uk (Zielinski et al., 2014)] showed that the ubp12-1/gi-2 double mutant had a similar phase and amplitude of CCA1 expression to the gi-2 mutant alone and a period more similar to ubp12-1 (Table S3). These results show a non-additive interaction and suggest they function in the same circadian genetic pathway. The ubp13-1/gi-2 double mutant had a similar amplitude to the gi-2 mutant but had a more similar phase and period to the ubp13-1 mutant (Table S3). This again shows a non-additive genetic interaction but also suggests that the roles of UBPI2 and UBPI3 have slightly diverged with respect to clock function. We also crossed the gi-2 mutant with the ubp12-2w mutant which had reduced expression of both UBPI2 and UBPI3 and the shortest clock period of the tested ubp mutant alleles (Fig. S3, 2a-d). The pattern of CCA1 expression in the ubp12-2w/gi-2 double mutant was nearly identical to the gi-2 mutant, further confirming that the effects of the UBPs and GI are not additive (Table S3). These results indicate that UBPI2 and UBPI3 work in the same pathway as GI to control clock function.

ZTL functions downstream of GI to regulate the circadian clock (Kim et al., 2007). Thus, we hypothesized that ZTL would function downstream of UBPI2 and UBPI3 as well. To test the genetic interaction between UBPI2 or UBPI3 and ZTL, we crossed ubp12-1 and ubp13-1 to the ztl-4 null mutant (Fig. 2g and h). The daily expression patterns of CCA1 in the ubp12-1/ztl-4 and ubp13-1/ztl-4 double mutants were nearly identical to the ztl-4 mutant alone in phase and amplitude (Table S3). Interestingly, the period data showed that the ubp12-1/ztl-4 was more similar to ztl-4 than ubp12-1, but the ubp13-1/ztl-4 is more similar to ubp13-1. This data suggests that ZTL is epistatic to UBPI2 and UBPI3 but that UBPI3 has diverged in function from UBPI2. It is important to note that the qRT-PCR data is below the suggested resolution for
Biodare2 analysis which can result in inaccurate period calls (i.e. *ubp13-1* period is estimated by Biodare2 as the same period as wild type in this experiment). These results corroborate our physical interaction studies and suggest that *UBP12* and *UBP13* regulate the circadian clock upstream of *ZTL*.

UBP12 and UBP13 are functional deubiquitylases that can cleave poly-ubiquitin from generic substrates (Ewan et al., 2011; Cui et al., 2013). We tested whether this deubiquitylation activity is necessary for their role in circadian clock function. To do this we performed complementation studies with wild-type *UBP12* and mutant *UBP12^{C208S}*. UBP12^{C208S} has a mutation in the cysteine-box of the USP enzymatic core (Fig. S1) that renders it non-functional as a deubiquitylase (Cui et al., 2013; Derkacheva et al., 2016; Jeong et al., 2017). We transformed *UBP12-YFP* or *UBP12^{C208S}-YFP* driven by the *UBP12* native promoter into the *ubp12-1* mutant and analyzed a population of T1 transgenic lines. In this experiment we consider a line to have rescued the *ubp12-1* mutant clock phenotype if it has a period length longer than the average period length of the *ubp12-1* plus one standard deviation. Using this criteria, 10 of 32 transgenic lines (31%) transformed with catalytically active UBP12 rescued the short period defect of the *ubp12-1* mutant. Strikingly, only one transgenic line transformed with the inactive UBP12^{C208S} was able to rescue the short period phenotype of *ubp12-1* (Fig. 2i-j). As reference, approximately 13% of the *ubp12-1* plants themselves and 62% of the wild type plants fell into the rescue category. This is likely due to normal variations in population level data of this type. We further confirmed that UBP12-YFP and UBP12^{C208S}-YFP were both localized to the cytoplasm and nucleus, suggesting that differences in the clock phenotypes are not due to mislocalization of the
UBP12^{C208S} protein (Fig S4). These results indicate that the deubiquitylating functions of UBP12 are necessary for its role in regulating the circadian clock.

By cleaving poly-ubiquitin from proteins, deubiquitylase enzymes can regulate protein stability and accumulation (Komander et al., 2009; Jeong et al., 2017; Mevissen and Komander, 2017; An et al., 2018). The physical and genetic interactions shown for UBP12, UBP13, GI and ZTL prompted us to hypothesize that the UBP12 and UBP13 regulate GI or ZTL protein levels, allowing for accumulation of the proteins in the end of the day. We measured the level of HA-tagged GI under the control of the GI native promoter (pGI::GI-HA) in the ubp12-1 and ubp13-1 mutants during a 12h light/12h dark time course (Fig. 3a). GI protein levels were approximately 50% lower in the ubp12-1 and ubp13-1. mRNA expression of GI-HA was also approximately 25% lower than wild type at the peak of GI mRNA expression, ZT8 (Fig. 3b). This suggests that GI protein accumulation is partially dependent on UBP12 and UBP13, but that altered transcription of GI could also have an effect on GI protein.

Next, we measured ZTL protein levels in the ubp12-1 and ubp13-1 mutants (Fig. 3c). ZTL protein levels were substantially decreased in the ubp12-1 and ubp13-1 mutants throughout the entire day/night cycle. Overexposure of the immunoblot showed that a small amount of ZTL protein can still accumulate in the ubp mutants (Fig. 3c). The expression of ZTL mRNA was largely unaffected in these lines (Fig. 3d), suggesting that the decrease in ZTL protein levels was caused by a post-transcriptional mechanism. This is similar to the post-transcriptional control of ZTL reported in gi loss-of-function mutants (Kim et al., 2007), and indicates that UBP12 and UBP13 are necessary for robust accumulation of the ZTL protein.
Interestingly, the *ubp12-1* and *ubp13-1* mutants caused severe reduction in the levels of the ZTL protein but had a short period phenotype, opposite to the long period phenotype of *ztl* loss-of-function mutants. Normally, loss of ZTL causes aberrantly high levels of TOC1 protein while overexpression of ZTL causes low levels of TOC1 protein (Mas et al., 2003; Kiba et al., 2007; Pudasaini and Zoltowski, 2013; Pudasaini et al., 2017). To determine if UBP12 and UBP13 affect TOC1 protein levels, we crossed a transgenic line expressing TOC1 fused to YFP under the *TOC1* promoter (*TMG*) to the *ubp12-1* and *ubp13-1* mutants and measured TOC1 protein levels (Fig. 3e). TOC1 protein levels were severely reduced in the *ubp12-1* and *ubp13-1* mutants while mRNA expression of the *TOC1-YFP* transgene was similar in the wild type and mutant backgrounds, suggesting that the decrease in TOC1 protein levels was caused by a post-transcriptional mechanism (Fig. 3f). Notably, TOC1 protein was unable to accumulate to high levels in the light in the *ubp* mutants (Fig. 3e at 12 hours after dawn). This is similar to the effects of the *gi-2* mutant, where TOC1 protein levels never accumulate to full wild-type levels (Kim et al., 2007). Lowered levels of the TOC1 protein result in shortened period, suggesting this was the cause of the short period phenotype of the *ubp12* and *ubp13* mutants.

We have shown that UBP12 and UBP13 are components of the ZTL-GI photoreceptor complex that are necessary for accumulation of the proteins in the end of the day. UBP12 and UBP13 can remove poly-ubiquitin from targets non-specifically (Ewan et al., 2011; Cui et al., 2013). Thus, we hypothesize that UBP enzymes are recruited by GI to the ZTL photoreceptor complex to prevent formation of poly-ubiquitin chains, resulting in increased stability of the protein complex (Fig. S5). Interestingly, ZTL protein levels were severely damped in the *ubp12* and *ubp13*
mutants, but counterintuitively the ZTL target, TOC1, also had reduced levels (Fig. 3c-f). This effect is similar to what was observed in a gi loss-of-function mutant, and suggests that GI and UBP12 and UBP13 can counterbalance the activity of ZTL during the day, allowing TOC1 to accumulate to high levels before being degraded (Kim et al., 2007). Although ZTL levels were decreased in the ubp mutants, there was still a small amount that could potentially decrease TOC1 levels in the light (Fig. 3c long exposure). This is different than what was seen when HSP90 activity was inhibited, resulting in lower ZTL levels but higher TOC1 levels. This suggests that HSP90 is necessary for ZTL protein maturation and to promote its activity (Kim et al., 2011). This data in combination with our results suggest that GI performs two roles in the ZTL photoreceptor complex: (1) acting as a co-chaperone that recruits HSP proteins to facilitate ZTL maturation (Cha et al., 2017; Cha et al., 2017), and (2) counterbalancing ZTL’s role in ubiquitin conjugation with UBP12 and UBP13 present to deconjugate ubiquitin. The light-regulated nature of the ZTL-GI interaction also indicates that light is controlling the balance of ubiquitin conjugation and deconjugation that allows the ZTL photoreceptor complex to accurately degrade proteins at the correct time of day. It was previously shown that mammalian and insect circadian clocks utilize deubiquitylation to regulate stability and subcellular localization of clock proteins (Scoma et al., 2011; Luo et al., 2012; Yang et al., 2012). In light of this, our results further demonstrate that deubiquitylation activity is an evolutionarily conserved architectural design feature of the clocks of higher eukaryotes. Furthermore, the mammalian orthologue of UBP12 and UBP13, USP7, impacts clock function in response to environmental stress (Papp et al., 2015; Hirano et al., 2016) suggesting that these deubiquitylases are conserved clock regulators across evolution.
Materials and Methods

See supplemental information

End notes:

Acknowledgement

We thank Dr. David E. Somers for providing the anti-ZTL antibody. We would like to thank Dr. Nicole Clay and Dr. Jimi Miller for kindly sharing pABind vectors and the assistance with transient expression in the Nicotiana benthamiana experiments, the Keck Proteomics Facility at Yale for processing samples and analyzing proteomic data, Dr. Shirin Bahmanyar, Dr. Marshall Delise and Dr. Joseph Wolenski for assistance with confocal microscopy experiments. Also, Suyuna Eng Ren, Chris Adamchek, Chris Bolick, Christine Ventura, Denise George, and Sandra Pariseau for technical and administrative support. We would like to thank Dr. Vivian Irish, Dr. Mark Hochstrasser and Dr. Eric Bennet for helpful comments on experimentation and the manuscript. This work was supported by NSF EAGER grant 1548538 (JMG), NIH R35GM128670 (JMG), Rudolph J. Anderson Fund Fellowship (CML), Forest B.H. and Elizabeth D.W. Brown Fund Fellowship (CML and WL), NIH GM007499 (AF), The Gruber Foundation (AF), and NSF GRFP DGE-1122492 (AF).

Author contribution

JMG and CML conceived of the project. CML, MWL, AF, AMS and WL conducted the experiments and analyzed the data. JMG and CML wrote the manuscript.
Author information

Affiliation

Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06511, USA

JMG, CML, WML, AF, AMS and WL.

Competing interests

The authors declare no competing financial interests.

Corresponding author

Dr. Joshua M. Gendron.

Figure legends:

Figure 1. GI bridges the interactions between ZTL and UBP12 or UBP13. (a) Yeast two-hybrid showing interaction between GI and UBP12 or UBP13. The GAL4 DNA binding domain (GAL4-BD) fused to UBP12 or UBP13 and either ZTL variants (ZTL and ZTL decoy), ZTL targets (TOC1, PRR5 and CHE) or GI fused to GAL4 activation domain (GAL4-AD) were grown on SD-LW medium for autotrophic selection and on SD-LWHA medium to test for interaction. (b) Bimolecular fluorescence complementation (BiFC) assays to examine the interactions of UBP12 or UBP13 and GI fused to the N- or C-terminus of Venus (YFP) were performed in Arabidopsis protoplasts. The blue arrows indicate the interacting complex forming nuclear foci. The white arrows show fluorescence signal in the cytoplasm. mCherry-VirD2NLS
was co-expressed as a nuclear marker, and the scale bar indicates 10µm. (c) The protein domains of UBP12 and UBP13 required to interact with GI were tested using yeast two-hybrid assays. The full-length (FL) or truncated UBP12 or UBP13 fragments as diagramed in the lower portion of the panel were fused to GAL4-BD to test for interaction with GAL4-AD-GI. (d) Scatter plot of proteins identified by IP-MS of ZTL decoys in the Col-0 and gi-2 genotypes. The significance of the interactions were evaluated by SAINTexpress (see Supplemental Information and Table S1 for complete information) with a false discovery rate (FDR) cutoff< 0.01 and p-value≤ 5.37E-4 to separate interacting proteins into four groups. Group I: significant interactions with ZTL decoy in the gi-2 but not Col-0. Group II: significant interactions with ZTL decoy in both Col-0 and gi-2. Group III: significant interactions with ZTL decoy in the Col-0 but not gi-2. Group IV: Non-significant interactions with ZTL decoy in both Col-0 and gi-2. The interacting proteins significantly enriched in the gi-2 mutant over Col-0 were labeled along the y-axis, and the proteins enriched in the Col-0 over the gi-2 mutant were labeled along the x-axis. (e) Co-immunoprecipitation assays showing that UBP12 or UB13 interact with ZTL in a GI-dependent manner. FLAG-UBP12 or FLAG-UBP13 were co-infiltrated with HA-GI and Myc-ZTL in *Nicotiana benthamiana* leaves. Anti-FLAG antibody was used to immunoprecipitate FLAG-UBP12 or FLAG-UBP13. Western blotting with anti-FLAG, anti-HA, or anti-Myc was used to detect the presence of FLAG-UBP12, FLAG-UBP13, HA-GI, or Myc-ZTL in the immunoprecipitated samples and inputs. (f) The diagram depicts the interaction between GI and the MATH domain of UBP12 or UB13, and between GI and the LOV domain of ZTL.

Figure 2. *UBP12 and UBP13* regulate the circadian clock through the same pathway as *Gi* and *ZTL*. (a-d) The *ubp12* and *ubp13* mutants have short period phenotypes. (a, c) The periods
of circadian marker \textit{pCCA1:Luciferase} (\textit{pCCA1::LUC}) in the wildtype (Col-0) (n=20 for a and
n=19 for c), \textit{ubp12-1} (n=16), \textit{ubp12-2w} (n=20), \textit{ubp13-1} (n=15), \textit{ubp13-2} (n=20) and \textit{ubp13-3}
(n=14) were measured with bioluminescent assays. Each symbol represents the period from one
seedling, and the average period and standard deviation (SD) are labeled with gray bars. The
significance of period changes between wildtype and mutants were analyzed with a Welch’s \textit{t}-
test (** for \textit{p}-value<0.001; **** for \textit{p}-value<0.0001). Three biological replicates were
performed with similar results, and one dataset is presented. (b, d) The average bioluminescence of
the lines displayed in a and c were plotted against time after transfer from 12h light/12h dark entrainment
conditions to constant light (LL). (e-f) Circadian expression of \textit{CCA1} in Col-0, \textit{ubp12-1}, \textit{ubp13-1},
\textit{gi-2}, \textit{gi-2/ubp12-1} and \textit{gi-2/ubp13-1} after transferring to LL for 48h from the entrainment
conditions was measured using qRT-PCR. Subjective dark is colored with light grey. The data
represents the average relative expression from three biological replicates, and the error bars are
SD. The same Col-0 and \textit{gi-2} data was plotted twice (in e and f) for clarity in the data
presentation and for comparison with the other mutant lines. (g-h) The circadian expression of
\textit{CCA1} in Col-0, \textit{ubp12-1}, \textit{ubp13-1}, \textit{ztl-4}, \textit{ztl-4/ubp12-1} and \textit{ztl-4/ubp13-1} after transferring to LL
for 48h from the entrainment conditions was measured using qRT-PCR. The data analyses and
presentation are the same as e-f. The same Col-0 and \textit{ztl-4} data was plotted twice (in g and h). (i)
The circadian period of \textit{pCCA1::LUC} in the wild type (n=76), \textit{ubp12-1} (n=54), \textit{ubp12-1} mutant
complemented with \textit{pUBP12::UBP12-YFP} (n=32) or deubiquitylating activity-dead
\textit{pUBP12::UBP12CS-YFP} (n=20). Each symbol represents the period from one seedling, and the
black bars indicate the average period and SD. The wild type and \textit{ubp12-1} mutants are
homogenous populations, and the complementation lines are individual T1 transgenic lines. The
presented data is from three independent biological replicates. (j) Quantitation of the number of
Figure 3. ZTL, GI and TOC1 protein levels are regulated by UBP12 and UBP13. (a, c, e) The protein levels of HA-tagged GI driven by native promoter (pGI::GI-HA), ZTL and YFP-tagged TOC1 driven by the TOC1 promoter (TOC1 minigene or TMG) in the wild type (Col-0), ubp12-1 or ubp13-1 mutants under diurnal conditions (12h light/12h dark) were detected by immunoblotting. The samples from 0h to 12h after dawn were harvested in light, and the samples from 16h and 20h after dawn were harvested in the dark (indicated by grey shading). The relative protein levels were quantified by normalization to actin. The Col-0 or ztl-4 samples were used as negative controls for the antibodies. Plots represent the average protein levels from three biological replicates, and the error bars represent standard deviation. Compared to wild type, the levels of ZTL proteins in the ubp12-1 and ubp13-1 were below the linear range for quantification. In the ztl-4 sample, the anti-ZTL antibody recognizes a non-specific band close to the size of endogenous ZTL in the long-exposure blots. (b, d, f) The relative mRNA levels of GI-HA, ZTL or TOC1-YFP from the same time course samples were measured by qRT-PCR.

Figure S1. Protein structures of UBP12 and UBP13. UBP12 and UBP13 homologous proteins contain a conserved Meprin And TRAF Homology (MATH) domain (blue) and a Ubiquitin-Specific Protease (USP) domain (green) in the N-terminus. The USP has a conserved cysteine protease enzymatic core (red): Cysteine Box (Cys box) and Histidine Box (His box). Mutations of the conserved cysteine residue to serine in the Cys box have been shown to disrupt the
deubiquitylating activities of UBP12 and UBP13 (Cui et al., 2013). The numbers represent the position of the amino acid sequences.

Figure S2. Immunoprecipitation of FLAG-His-ZTL decoy in the Col-0 or gi-2 genotypes.
Immunoblots detected by anti-FLAG antibody showed that the FLAG-His-ZTL decoy and FLAG-His-GFP in the Col-0 (top panel) or gi-2 (bottom panel) can be immunoprecipitated (IP) from the total protein extract (IN). The Col-0 (top) and gi-2 (bottom) parental lines were negative controls. FT: flow-through.

Figure S3. Circadian expression of CCA1 in the gi-2/ubp12-2w double mutant. Col-0, ubp12-2w, gi-2 and gi-2/ubp12-2w were entrained under 12h light/12h dark for 10d and then transferred to continuous light (LL) for 48h before harvest. The expression of CCA1 was measured using qRT-PCR. The data represents the mean of the relative expression from three biological replicates with the error bars showing standard deviation.

Figure S4. The subcellular localization of UBP12 variants transiently expressed in Nicotiana benthamiana leaves. Leaves from 5-week-old Nicotiana benthamiana grown under 12h light/12h dark at 22°C were infiltrated with Agrobacterium expressing pABindGFP-UBP12 or pABindGFP-UBP12C208S with nuclear marker pABindcherry-AS2. The scale bar indicates 50µm.

Figure S5. The proposed model for UBP12/UBP13 regulation of ZTL. (a) In the light, GI interacts with ZTL and acts as a co-chaperone, recruiting HSP90 to facilitate folding and
maturation of the ZTL protein. Additionally, GI physically bridges an interaction between ZTL and UBP12 or UBP13. UBP12 or UBP13 stabilize the GI-ZTL protein complex before dusk. At night, GI dissociates from ZTL, and ZTL mediates ubiquitylation and degradation of the TOC1 protein. (b) Loss of UBP12 or UBP13 causes instability of ZTL and GI. Interestingly, the TOC1 protein levels are also reduced by loss of UBP12 or UBP13, mimicking the gi loss-of-function mutant.

Tables:
Table S1. The list of proteins identified by immunoprecipitation followed by mass spectrometry using 35S::FLAG-His-ZTL decoy in the Col-0 or gi-2 background.

Table S2. List of primers for cloning and qRT-PCR.

Table S3. Results of LS Periodogram analysis of the qRT-PCR data from figure 2 e-h and figure S3.

References
An Z, Liu Y, Ou Y, Li J, Zhang B, Sun D, Sun Y, Tang W (2018) Regulation of the stability of RGF1 receptor by the ubiquitin-specific proteases UBP12/UBP13 is critical for root meristem maintenance. Proc Natl Acad Sci U S A 115: 1123-1128
Baudry A, Ito S, Song YH, Strait AA, Kiba T, Lu S, Henriques R, Pruneda-Paz JL, Chua NH, Tobin EM, Kay SA, Imaizumi T (2010) F-box proteins FKF1 and LKP2 act in concert with ZEITLUPE to control Arabidopsis clock progression. Plant Cell 22: 606-622
Carre IA (2001) Day-length perception and the photoperiodic regulation of flowering in Arabidopsis. J Biol Rhythms 16: 415-423
Cha JY, Khaleda L, Park HJ, Kim WY (2017) A chaperone surveillance system in plant circadian rhythms. BMB Rep 50: 235-236
Cha JY, Kim J, Kim TS, Zeng Q, Wang L, Lee SY, Kim WY, Somers DE (2017) Gigantea is a co-chaperone which facilitates maturation of Zeitlupe in the Arabidopsis circadian clock. Nat Commun 8: 3

Cui X, Lu F, Li Y, Xue Y, Kang Y, Zhang S, Qiu Q, Cui X, Zheng S, Liu B, Xu X, Cao X (2013) Ubiquitin-specific proteases UBP12 and UBP13 act in circadian clock and photoperiodic flowering regulation in Arabidopsis. Plant Physiol 162: 897-906

Derkacheva M, Liu S, Figueiredo DD, Gentry M, Mozgova I, Nanni P, Tang M, Mannervik M, Kohler C, Hennig L (2016) H2A deubiquitinases UBP12/13 are part of the Arabidopsis polycomb group protein system. Nat Plants 2: 16126

Ewan R, Pangestuti R, Thornber S, Craig A, Carr C, O'Donnell L, Zhang C, Sadanandom A (2011) Deubiquitinating enzymes AtUBP12 and AtUBP13 and their tobacco homologue NtUBP12 are negative regulators of plant immunity. New Phytol 191: 92-106

Fujiwara S, Wang L, Han L, Suh SS, Salome PA, McClung CR, Somers DE (2008) Post-translational regulation of the Arabidopsis circadian clock through selective proteolysis and phosphorylation of pseudo-response regulator proteins. J Biol Chem 283: 23073-23083

Han L, Mason M, Risseeuw EP, Crosby WL, Somers DE (2004) Formation of an SCF(ZTL) complex is required for proper regulation of circadian timing. Plant J 40: 291-301

Hirano A, Nakagawa T, Yoshitane H, Oyama M, Kozuka-Hata H, Lanjakornsiripan D, Fukada Y (2016) USP7 and TDP-43: Pleiotropic Regulation of Cryptochrome Protein Stability Paces the Oscillation of the Mammalian Circadian Clock. PLoS One 11: e0154263

Imaizumi T, Kay SA (2006) Photoperiodic control of flowering: not only by coincidence. Trends Plant Sci 11: 550-558

Imaizumi T, Tran HG, Swartz TE, Briggs WR, Kay SA (2003) FKF1 is essential for photoperiod-specific light signalling in Arabidopsis. Nature 426: 302-306

Ito S, Song YH, Imaizumi T (2012) LOV domain-containing F-box proteins: light-dependent protein degradation modules in Arabidopsis. Mol Plant 5: 573-582

Jeong JS, Jung C, Seo JS, Kim JK, Chua NH (2017) The Deubiquitinating Enzymes UBP12 and UBP13 Positively Regulate MYC2 Levels in Jasmonate Responses. Plant Cell 29: 1406-1424

Kiba T, Henriques R, Sakakibara H, Chua NH (2007) Targeted degradation of Pseudo-Response Regulator5 by an SCFZTL complex regulates clock function and photomorphogenesis in Arabidopsis thaliana. Plant Cell 19: 2516-2530

Kim J, Geng R, Gallenstein RA, Somers DE (2013) The F-box protein Zeitlupe controls stability and nucleocytoplasmic partitioning of Gigantea. Development 140: 4060-4069

Kim TS, Kim WY, Fujiwara S, Kim J, Cha JY, Park JH, Lee SY, Somers DE (2011) HSP90 functions in the circadian clock through stabilization of the client F-box protein Zeitlupe. Proc Natl Acad Sci U S A 108: 16843-16848

Kim WY, Fujiwara S, Suh SS, Kim J, Kim Y, Han L, David K, Putterill J, Nam HG, Somers DE (2007) Zeitlupe is a circadian photoreceptor stabilized by Gigantea in blue light. Nature 449: 356-360

Kim WY, Geng R, Somers DE (2003) Circadian phase-specific degradation of the F-box protein Zeitlupe is mediated by the proteasome. Proc Natl Acad Sci U S A 100: 4933-4938
Kim Y, Lim J, Yeom M, Kim H, Kim J, Wang L, Kim WY, Somers DE, Nam HG (2013) ELF4 regulates GIGANTEA chromatin access through subnuclear sequestration. Cell Rep 3: 671-677

Komander D, Clague MJ, Urbe S (2009) Breaking the chains: structure and function of the deubiquitinases. Nat Rev Mol Cell Biol 10: 550-563

Krahmer J, Goralogia GS, Kubota A, Zardilis A, Johnson RS, Song YH, MacCoss MJ, Le Bihan T, Halliday KJ, Imaizumi T, Millar AJ (2019) Time-resolved interaction proteomics of the GIGANTEA protein under diurnal cycles in Arabidopsis. FEBS Lett 593: 319-338

Lee C-M, Feke A, Li M-W, Adamchek C, Webb K, Pruneda-Paz J, Bennett EJ, Kay SA, Gendron JM (2018) Decoys untangle complicated redundancy and reveal targets of circadian clock F-box proteins. Plant Physiology 177:1170-1186

Luo W, Li Y, Tang CH, Abruzzi KC, Rodriguez J, Pescatore S, Rosbash M (2012) CLOCK deubiquitylation by USP8 inhibits CLK/CYC transcription in Drosophila. Genes Dev 26: 2536-2549

Mas P, Kim WY, Somers DE, Kay SA (2003) Targeted degradation of TOC1 by ZTL modulates circadian function in Arabidopsis thaliana. Nature 426: 567-570

Mevissen TET, Komander D (2017) Mechanisms of Deubiquitinase Specificity and Regulation. Annu Rev Biochem 86: 159-192

Mizoguchi T, Yoshida R (2009) Punctual coordination: switching on and off for flowering during a day. Plant Signal Behav 4: 113-115

Nozue K, Covington MF, Duck PD, Lorrain S, Fankhauser C, Harmer SL, Maloof JN (2007) Rhythmic growth explained by coincidence between internal and external cues. Nature 448: 358-361

Papp SJ, Huber AL, Jordan SD, Kriebs A, Nguyen M, Moresco JJ, Yates JR, Lamia KA (2015) DNA damage shifts circadian clock time via Hausp-dependent Cry1 stabilization. Elife 4

Pudasaini A, Shim JS, Song YH, Shi H, Kiba T, Somers DE, Imaizumi T, Zoltowski BD (2017) Kinetics of the LOV domain of ZEITLUPE determine its circadian function in Arabidopsis. Elife 6

Pudasaini A, Zoltowski BD (2013) Zeitlupe senses blue-light fluence to mediate circadian timing in Arabidopsis thaliana. Biochemistry 52: 7150-7158

Salome PA, McClung CR (2004) The Arabidopsis thaliana clock. J Biol Rhythms 19: 425-435

Scoma HD, Humby M, Yadav G, Zhang Q, Fogerty J, Besharse JC (2011) The deubiquitylating enzyme, USP2, is associated with the circadian clockwork and regulates its sensitivity to light. PLoS One 6: e25382

Somers DE, Kim WY, Geng R (2004) The F-box protein ZEITLUPE confers dosage-dependent control on the circadian clock, photomorphogenesis, and flowering time. Plant Cell 16: 769-782

Somers DE, Schultz TF, Milnamow M, Kay SA (2000) ZEITLUPE encodes a novel clock-associated PAS protein from Arabidopsis. Cell 101: 319-329

Takase T, Nishiyama Y, Tanigaihishi H, Ogura Y, Miyazaki Y, Yamada Y, Kiyosue T (2011) LOV KELCH PROTEIN2 and ZEITLUPE repress Arabidopsis photoperiodic flowering under non-inductive conditions, dependent on FLAVIN-BINDING KELCH REPEAT F-BOX1. Plant J 67: 608-621
Yang Y, Duguay D, Bedard N, Rachalski A, Baquiran G, Na CH, Fahrenkrug J, Storch KF, Peng J, Wing SS, Cermakian N (2012) Regulation of behavioral circadian rhythms and clock protein PER1 by the deubiquitinating enzyme USP2. Biol Open 1: 789-801

Yanovsky MJ, Kay SA (2002) Molecular basis of seasonal time measurement in Arabidopsis. Nature 419: 308-312

Zhou H, Zhao J, Cai J, Patil SB (2017) UBIQUITIN-SPECIFIC PROTEASES function in plant development and stress responses. Plant Mol Biol 94: 565-576

Zielinski T, Moore AM, Troup E, Halliday KJ, Millar AJ (2014) Strengths and limitations of period estimation methods for circadian data. PLoS One 9: e96462
Supplemental Information

Materials and Methods

Plant materials and growth conditions

The *Arabidopsis* seeds of Col-0, *ubp12-1* (CS423387), *ubp12-2w* (CS2103163), *ubp13-1* (SALK_128312), *ubp13-2* (SALK_024054), *ubp13-3* (SALK_132368), *gi-2* (cs3370)\(^2\), *ztl-4* (SALK_012440)\(^4\), *pGI::GI-HA* (CS66130)\(^5\) and TMG (CS31390)\(^6\) were described previously and obtained from ABRC. The *ubp12-1*/*gi-2*, *ubp12-2w*/*gi-2*, *ubp13-1*/*gi-2*, *ubp12-1*/*ztl-4* and *ubp13-1*/*ztl-4* double mutants were generated by crossing and genotyped by PCR. The *pGI::GI-HA* and TMG lines were crossed to *ubp12-1* and *ubp13-1*, and the homozygous lines were selected by genotyping and gentamycin resistance.

For IP-MS, the 35S::FLAG-His-ZTL-decoy transgenic lines and 35S::FLAG-His-GFP control were described previously\(^7\), and the same constructs were transformed into the *gi-2* background by floral-dip method\(^8\).

For the bioluminescent assays, the circadian reporter line pCCA1::Luciferase (pCCA1::LUC)\(^9\) was crossed to the *ubp12* and *ubp13* mutants. The pUBP12::UBP12-YFP variants (see Cloning section) were transformed into pCCA1::LUC/*ubp12-1* by floral-dip\(^8\) for complementation experiments.

For growth conditions of *Arabidopsis* seedlings, the seeds were surface sterilized with ethanol, cold stratified, plated on ½ strength MS (Murashige and Skoog medium, Caisson Laboratories, MSP01) medium with 0.8% Agar (AmericanBio, AB01185), and grown at 22°C under 12h light/12h dark as described previously\(^7\) unless specified otherwise. For soil-grown conditions, plants were grown in Fafard-2 mix under 16h light/8h dark at 22 °C.

For circadian experiments, seedlings were grown on ½ strength MS medium under 12h light/12h dark at 22 °C for 10d, transferred to continuous light (LL) at 22 °C for 48h before starting harvest. For the 12h light/12 dark (LD) experiments, 12-day-old seedlings grown on ½ strength MS medium were used.

Cloning

The GATEWAY pENTR™/D-TOPO entry vectors (Thermo Fisher Scientific, K240020) of ZTL full-length, ZTL decoy, CHE, TOC1 and PRR5 were obtained from previous reports\(^7,9,10\). For GI, UBP12 and UBP13, the full-length coding regions were amplified from cDNA by PCR and cloned into pENTR™/D-TOPO vectors. These entry clones were then sub-cloned into GATEWAY compatible yeast two-hybrid vectors (pGADT7-GW and pGBKTT-GW)\(^11\) or BiFC vectors (pUC-DEST-VYCE®GW and pUC-DEST-VYNE®GW)\(^12\) with GATEWAY recombination cloning (Thermo Fisher Scientific).

To construct the fragments of UBP12 and UBP13 into yeast two-hybrid pGADT7-GW vectors, the desired fragments were first amplified from the full-length UBP12 or UBP13 entry vectors by PCR and cloned into pENTR™/D-TOPO vectors before being sub-cloned into pGADT7-GW with GATEWAY cloning.
For the UBP12 complementation plasmids, the pENTR™/D-TOPO-UBP12-NS vector served as template for site-directed mutagenesis to introduce a Cys to Ser mutation at a.a. 208 position using Q5® Site-Directed Mutagenesis Kit (NEB, E0554). Subsequently, UBP12-NS and UBP12C208S-NS in the pENTR™/D-TOPO entry vectors were sub-cloned into a modified GATEWAY compatible pGreenBarT vector with 1.7k bp upstream of ATG of UBP12 promoter region in the KpnI/XhoI sites. The primers used for cloning were listed in Table S2.

Yeast two-hybrid

ZTL, ZTL decoy, GI, TOC1, PRR5 and CHE were fused to the GAL4-BD in pGBKT7-GW vectors, and the full-length or fragments of UBP12 and UBP13 were fused to the GAL4-AD in pGADT7-GW vectors by GATEWAY cloning. The interactions were tested on synthetic dropout medium as described previously.

Bimolecular fluorescence complementation (BiFC) and confocal microscopy

The coding region of GI, UBP12 or UBP13 in the GATEWAY entry vectors were cloned into protoplast GATEWAY destination vectors pUC-DEST-VYCE®GW and pUC-DEST-VYNE(R)GW, respectively for transient transfections into protoplasts. pSAT6-mCherry-VirD2NLS was used as a nuclear marker. The protoplasts were isolated from 3- to 4-week-old Arabidopsis (Col-0) grown at 22°C under 8h light/16h dark and transfected following the protocol of tape-Arabidopsis sandwich method. After 14-18 h incubation in low-light conditions, protoplasts were imaged on a Nikon Ti microscope with using a 60X 1.4 NA plan Apo objective lens as described previously. The images were analyzed with FIJI.

Immunoprecipitation and mass spectrometry (IP-MS)

For the ZTL decoys in Col-0 background, homozygous 35S::FLAG-His-ZTL-decoy transgenic lines along with Col-0 and 35S::FLAG-His-GFP controls were used. For the ZTL decoys in the gi-2 background, three independent T2 transgenic lines of 35S::FLAG-His-ZTL-decoy/gi-2 and 35S::FLAG-His-GFP/gi-2 were selected on ½ strength MS plates with 15 µg/ml ammonium glufoisinate before being transferred to soil. Twenty-one-day-old soil-grown plants were entrained in 12 h light/12 h dark at 22°C for 7 days prior to harvest. Leaf tissues were collected at 9 h after dawn for subsequent IP-MS. One-step IP-MS and MS spectral analyses were carried out as documented with minor changes. The MS/MS spectral were searched against the SwissProt_2017 tax: Arabidopsis thaliana (thale cress) database (February 2017) using MASCOT MS/MS ion search engine version 2.6.0 with the following parameters: up to 2 missed cleavages; variable modifications included Acetyl (K), GlyGly(K), Oxidation (M), Phospho (ST), Phospho (Y); peptide tolerance ± 10 ppm; MS/MS tolerance ± 5 Da; peptide charge 2+ and 3+. The protein lists identified by MASCOT were first filtered out non-specific interactions by removing proteins only present in the controls (Col-0, gi-2, 35S::FLAG-His-GFP/Col-0 and 35S::FLAG-His-GFP/gi-2). The SAINTexpress algorithm were further performed to determine the significance of protein-protein interactions.
Bioluminescent assays

The Arabidopsis seedlings bearing pCCA1::LUC in the wild type (Col-0), ubp12 or ubp13 mutants were grown in ½ strength MS medium and entrained in 12h light/12h dark for 7 days prior to being transferred to new ½ strength MS plates and constant light (LL) for circadian free-run experiments. For the various pUBP12::UBP12-YFP complementation T1 lines in the pCCA1::LUC/ubp12-1 background, seedlings were first screened and entrained on the ½ strength MS plates containing 7.5 µg/ml ammonium glufosinate prior to being transferred to ½ strength MS medium and LL. The measurement of luciferase activities and analyses were described as previously.

Real-Time Quantitative Reverse Transcription PCR (qRT-PCR)

RNA extraction, reverse-transcription and constitution of qPCR reactions were followed as described previously7, except for minor modifications. Four hundred ng total RNA were used for reverse transcription reactions. For semi-quantification of gene expression, IPP2 (AT3G02780) was used as an internal control. The relative expression represents means of $2^{-\Delta CT}$ from three biological replicates, in which $\Delta CT = (CT$ of Gene of Interest - CT of IPP2). The primers were listed in Table S2.

Immunoblotting

The procedure of protein extraction from Arabidopsis seedlings, separation, detection with antibodies and quantification are described as previously7, except 60µg total protein were used for immunoblotting. The primary antibodies used for detection are: for GI-HA, anti-HA-Biotin antibody (1:1000, 12158167001, Millipore-Sigma); for ZTL, anti-ZTL antibody19 (1:200); for TMG, anti-GFP (1:10000, ab-290, Abcam); for FLAG-ZTL decoy, anti-FLAG antibody (1:1000, F7425, Millipore-Sigma). To quantify expression levels, the levels of target proteins were normalized to actin (anti-Actin antibody, 1:2000, SAB4301137, Millipore-Sigma).

Transient expression in Nicotiana benthamiana and confocal microscopy

UBP12-NS and, UBP12C208S-NS in the pENTR™/D-TOPO vectors were subcloned into inducible GATEWAY destination pBindGFP vectors20 and transformed into the Agrobacterium tumefaciens strain GV3101 for transient expression in Nicotiana benthamiana. The Agrobacterium culture of pBindGFP-UBP12 or pBindGFP-UBP12C208S and the nuclear marker pBindcherry-AS221 were pelleted and resuspended in the infiltration solution (5% (w/v) Sucrose, 450 µM acetosyringone and 0.01% (v/v) Silwet). The bacterial infiltration solution was incubated at 4°C for 2h before infiltrated into 5-week-old Nicotiana benthamiana leaves. After 20h of infiltration, the protein expression was induced by spaying leaves with 20 µM β-estradiol in 0.1% Tween 20. The leaves were imaged after 18h of induction.

The leaf samples were imaged on a Zeiss LSM510 confocal microscope with a Plan-Apochromat 40x/1.3 Oil objective. GFP was excited using 488 nm Argon laser and observed through a
505/530 nm bandpass filter. mCherry was excited using 543 nm HeNe laser and observed through a 585/615 nm bandpass filter. The images were processed with FIJI.

Co-immunoprecipitation (co-IP) using Nicotiana benthamiana transient expression system

The full-length coding sequences of ZTL, GI, UBP12 and UBP13 in the pENTR™/D-TOPO vectors were subcloned into pEarlygate203, pEarlygate201 and pEarlygate202 plant binary vectors respectively and transformed into Agrobacterium tumefaciens strain GV3101. Agro-infiltration into Nicotiana benthamiana leaves was described in the previous section. In this co-immunoprecipitation experiment co-infiltration with P19 in the EHA105 Agrobacterium strain was used to increase expression of the transgenes. The leaf samples were harvested after 48h of infiltration and snap frozen with liquid nitrogen. Protein extraction and co-immunoprecipitation with Anti-FLAG® M2 Magnetic Beads (M8823, Millipore-Sigma), and a one-step IP protocol was used as described previously. The inputs and IP samples were resolved on NuPAGE 4-12% Bis-Tris Protein Gels (NP0321, Thermo Fisher Scientific) for immunoblotting. The primary antibodies used for detection are: for MYC-ZTL, anti-MYC antibody (1:10000, C3956, Millipore-Sigma); for HA-GI, anti-HA antibody (1:5000, H3663, Millipore-Sigma); for FLAG-UBP12 and FLAG-UBP13, anti-FLAG antibody (1:5000, F1804, Millipore-Sigma); for loading control, anti-tubulin antibody (1:5000, T5168, Millipore-Sigma).

Data Availability

The raw data of mass spectrometry experiments will be deposited to PRIDE (https://www.ebi.ac.uk/pride/archive/).

1. Cui, X. et al. Ubiquitin-specific proteases UBP12 and UBP13 act in circadian clock and photoperiodic flowering regulation in Arabidopsis. *Plant Physiol* **162**, 897-906, doi:10.1104/pp.112.213009 (2013).
2. Hirono, Y. & Redei, G. P. Induced Premeiotic Exchange of Linked Markers in the Angiosperm Arabidopsis. *Genetics* **51**, 519-526 (1965).
3. Koornneef, M., Hanhart, C. J. & van der Veen, J. H. A genetic and physiological analysis of late flowering mutants in Arabidopsis thaliana. *Mol Gen Genet* **229**, 57-66 (1991).
4. Salome, P. A. & McClung, C. R. PSEUDO-RESPONSE REGULATOR 7 and 9 are partially redundant genes essential for the temperature responsiveness of the Arabidopsis circadian clock. *Plant Cell* **17**, 791-803, doi:10.1105/tpc.104.029504 (2005).
5. David, K. M., Armbruster, U., Tama, N. & Putterill, J. Arabidopsis GIGANTEA protein is post-transcriptionally regulated by light and dark. *FEBS Lett* **580**, 1193-1197, doi:10.1016/j.febslet.2006.01.016 (2006).
6. Mas, P., Kim, W. Y., Somers, D. E. & Kay, S. A. Targeted degradation of TOC1 by ZTL modulates circadian function in Arabidopsis thaliana. *Nature* **426**, 567-570, doi:10.1038/nature02163 (2003).
7. Lee, C. M. et al. Decoys Untangle Complicated Redundancy and Reveal Targets of Circadian Clock F-Box Proteins. *Plant physiology* **177**, 1170-1186, doi:10.1104/pp.18.00331 (2018).
Clough, S. J. & Bent, A. F. Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. *Plant J* **16**, 735-743 (1998).

Pruneda-Paz, J. L., Breton, G., Para, A. & Kay, S. A. A functional genomics approach reveals CHE as a component of the Arabidopsis circadian clock. *Science* **323**, 1481-1485, doi:10.1126/science.1167206 (2009).

Nakamichi, N. *et al.* PSEUDO-RESPONSE REGULATORS 9, 7, and 5 are transcriptional repressors in the Arabidopsis circadian clock. *Plant Cell* **22**, 594-605, doi:10.1105/tpc.109.072892 (2010).

Lu, Q. *et al.* Arabidopsis homolog of the yeast TREX-2 mRNA export complex: components and anchoring nucleoporin. *Plant J* **61**, 259-270, doi:10.1111/j.1365-313X.2009.04048.x (2010).

Wu, F. H. *et al.* Tape-Arabidopsis Sandwich - a simpler Arabidopsis protoplast isolation method. *Plant Methods* **5**, 16, doi:10.1186/1746-4811-5-16 (2009).

Perkins, D. N., Pappin, D. J., Creasy, D. M. & Cottrell, J. S. Probability-based protein identification by searching sequence databases using mass spectrometry data. *Electrophoresis* **20**, 3551-3567, doi:10.1002/(SICI)1522-2683(19991201)20:18<3551::AID-ELPS3551>3.0.CO;2-2 (1999).

Goldfarb, D., Hast, B. E., Wang, W. & Major, M. B. Spotlite: web application and augmented algorithms for predicting co-complexed proteins from affinity purification--mass spectrometry data. *J Proteome Res* **13**, 5944-5955, doi:10.1021/pr5008416 (2014).

Bleckmann, A., Weidtkamp-Peters, S., Seidel, C. A. & Simon, R. Stem cell signaling in Arabidopsis requires CRN to localize CLV2 to the plasma membrane. *Plant Physiol* **152**, 166-176, doi:10.1104/pp.109.144930 (2010).

Rast, M. I. & Simon, R. Arabidopsis JAGGED LATERAL ORGANS acts with ASYMMETRIC LEAVES2 to coordinate KNOX and PIN expression in shoot and root meristems. *Plant Cell* **24**, 2917-2933, doi:10.1105/tpc.112.099978 (2012).
Lee et al. Figure 1

a) GAL4-BD

GAL4-AD	UBP12	UBP13	empty
ZTL	ZTL decoy	TOC1	PR5
CHE	GI	SD-LWHA	SD-LW
empty	empty	empty	empty

b) YFP mCherry Merge DIC

- nVenus-UBP12 cVenus-GI
- nVenus-UBP13 cVenus-GI
- nVenus-UBP12 cVenus
- nVenus-UBP13 cVenus

C

GAL4-AD-GI	GAL4-AD	GAL4-AD-GI	GAL4-AD
UBP12	UBP13	empty	empty
FL	ΔC	ΔUSP	ΔMATH
SD-LWHA	SD-LW	empty	empty

FL	ΔC	ΔUSP	ΔMATH
54 179 199	53 178 198	1116 524	1115

UBP12

UBP13

c) GAL4-AD-GI

d) g/-2/ZTL decoy IP -log(p-value)

- Col-0/ZTL decoy IP -log(p-value)

- I
 - PPP7L
 - ENT1, LECT6
 - CSP2, EBFC1, HOS1, Y1719
 - FBL27, RTNL1M, UX51, UX52

- II
 - LKP2

- III
 - ACD6, CDI, ED51L, ESP, MPK5, PCR1, PLP2, PPC51, RRPL2, SUS4, SUSY1, TCPB, TCPD

- IV

- UBP13
- UBP12

f) GI

UBP12/13

ZTL

- anti-FLAG
- anti-HA
- anti-MYC
- anti-tubulin

Tubulin

FLAG-IP

- FLAG-UBP12/UBP13
- HA-GI
- MYC-ZTL

INPUT
Lee et al. Figure 3

Relative protein levels (ZTL/Actin)

Relative expression (ZTL/IPP2)

Relative protein levels (HA/Actin)

Relative expression (HA/IPP2)

Relative protein levels (TOC1-YFP/Actin)

Relative expression (YFP/IPP2)
Lee et al. Figure S1
Relative expression of CCA1/IPP2 in Col-0, ubp12-2w, gi-2, and gi-2/ubp12-2w over 100 hours in LL. The data is from Lee et al. Figure S3.
Lee et al. Figure S4

UBP12-GFP
AS2-mCherry

UBP12C208S-GFP
AS2-mCherry

AS2-mCherry
a

Wild type

- TOC1 protein

- HSP90
- UBP12/13
- GI

- LOV
- Stability

- TOC1

- ZTL

b

ubp12/ubp13 mutants

- TOC1 protein

- HSP90

- GI

- ZTL

- LOV

- TOC1

- ZTL

- Ub