Perspectives

TH17 responses in cytokine storm of COVID-19: An emerging target of JAK2 inhibitor Fedratinib

Dandan Wu a,b, Xuexian O. Yang a,*

a Department of Molecular Genetics and Microbiology, University of New Mexico School of Medicine, Albuquerque, NM, 87131, USA
b College of Agronomy, Hunan Agricultural University, Changsha, Hunan, 410128, China

COVID-19 (previously termed as 2019-nCoV), a novel coronavirus disease with high mortality, emerges as a pandemic disease. As of Mar. 8, 2020, COVID-19 has spread to 102 countries and caused 3584 deaths out of 105,586 confirmed cases [WHO, Coronavirus disease 2019 (COVID-19) Situation Report — 48]. There is no existing treatment specific for COVID-19. Current treatments are largely symptomatic. Development of effective prevention and treatment is an urgent need, especially for the life-threatening severe cases.

COVID-19 is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Many COVID-19 patients develop acute respiratory distress syndrome (ARDS), which leads to pulmonary edema and lung failure, and have liver, heart, and kidney damages.1,2 These symptoms are associated with a cytokine storm, manifesting elevated serum levels of IL-1β, IL-2, IL-7, IL-8, IL-9, IL-10, IL-17, G-CSF, GM-CSF, IFNγ, TNFα, IP10, MCP1, MIP1A and MIP1B. Compared with non-ICU patients, ICU patients have even higher levels of IL-2, IL-7, IL-10, G-CSF, IP10, MCP1, MIP1A, and TNFα. Amongst these, several cytokines are involved in TH17 type responses. IL-1β and TNFα (TH17 and TH1 cells highly express TNFα), both promote TH17 responses and vascular permeability and leakage. TH17 cells themselves produce IL-17, GM-CSF (GM-CSF is mainly associated with TH1 cells in human), IL-21 and IL-22 (currently, there are no data on IL-21 and IL-22). IL-17 has broad pro-inflammatory effects on induction of cytokines G-CSF (responsible for
granulopoiesis and recruitment of neutrophils), IL-1β, IL-6, TNFα (the latter 3 cause systemic inflammatory symptoms, including fever); chemokines KC, MIP2A, IL-8, IP10, MIP3A (attracting and recruiting more immune infiltrates); and matrix metalloproteinases (participating in tissue damage and remodeling). IL-17 (and GM-CSF) are associated with autoimmune and inflammatory diseases. IL-21 is required for TH17 cell maintenance and germinal center responses in autoimmune and inflammatory diseases. IL-21 is required and remodeling. IL-17 (and GM-CSF) are associated with matrix metalloproteinases (participating in tissue damage and likely promotes pulmonary viral infection including SARS-CoV-2, which results in tissue damage and likely promotes pulmonary edema; targeting the TH17 pathway may benefit the patients with TH17 dominant immune profiles.

Since it will take several years to develop specific drugs to treat COVID-19, repurposing currently marketed drugs would provide valuable opportunities. There are several antibody-based TH17 blockades (anti-IL-17, anti-IL-17R and anti-IL-23p40) available; however, the antibody-based treatment is expensive and has only a narrow spectrum of effects. Several RORγt (and RORα) inhibitors currently on clinic trials would be promising TH17 blockers in a near future. Here, we propose an alternative method to inhibit TH17 responses.

STAT3, a transcription factor, mediates IL-6 and IL-23 signals for TH17 cell initial differentiation and effector function. Both IL-6 and IL-23 activate STAT3 through JAK2 (IL-6 also uses JAK1),

whereas IL-21 activates STAT3 (and STAT1 and STAT5) through JAK1 and JAK3. We postulate that JAK2 inhibitors can be used to restrict the proinflammatory function of existing TH17 cells. In addition to JAK2 inhibitors, several FDA approved STAT3 inhibitors are also promising but may affect IL-21 signals in B cells. Type I interferons are important in anti-viral immunity, but type I interferons employ JAK1 and TYK2 to activate STAT1 and STAT2. Therefore, specific JAK2 inhibitors would not disrupt the signals of type I interferons.

We tested Fedratinib (SAR302503, TG101348), a JAK2 inhibitor approved by FDA for myeloproliferative neoplasms, on TH17 cell cytokine production. Fedratinib is specific for JAK2 but does not affect JAK1, JAK3 and TYK2. We found that Fedratinib treatment decreased the expression of IL-17 by murine TH17 cells, and this suppressive effect was even more profound when IL-23 was added (Fig. 1). In addition, Fedratinib also inhibited the expression of IL-22 by TH17 cells (Fig. 1). Besides, Fedratinib only has marginal effects on IL-21 expression (Fig. 1), suggesting that Fedratinib does not compromise IL-21 mediated B cell function. In addition, GM-CSF also uses JAK2 to transduce signals; therefore, JAK2 inhibitor would also suppress GM-CSF function. In a murine model of multiple sclerosis, a TH17 and TH1-driven autoimmune brain disease, subcutaneous administration of JAK2 inhibitor tyrphostin B42, during the disease induction, greatly decreased the disease severity. In summary, JAK2 inhibitor Fedratinib can suppress the production of several TH17 signature cytokines (and likely also the effects of IL-6 on other types of cells), therefore promising to prevent the deteriorating outcomes of TH17 associated cytokine storm in COVID-19 and other severe viral infections. The JAK2 inhibitor can also be used in combination of anti-viral drugs and supportive treatments. Because JAK2 inhibition is reversible, transient treatment with this inhibitor before the disease transition from serious to critical or during the critical phase would not affect TH17 responses essential for innate immune responses and immunity against extracellular pathogens.

Declaration of Competing Interest

All authors have no conflicts of interest to declare.

Acknowledgments

XOY is supported by NIH AI142200.

Abbreviations

COVID-19 coronavirus disease-2019

TH — T helper cell
SARS severe acute respiratory syndrome
CoV coronavirus
MERS Middle East Respiratory Syndrome
FDA U.S. Food and Drug Administration
JAK Janus kinase
ARDS acute respiratory distress syndrome
IL interleukin
IL-17R interleukin 17 receptor
G-CSF granulocyte colony-stimulating factor
GM-CSF Granulocyte-Macrophage Colony Stimulating Factor
IFN interferon
TNF tumor necrosis factor
IP10 Interferon gamma-induced protein 10
MCP1 Monocyte Chemoattractant Protein-1
MIP1 macrophage inflammatory protein 1
ICU intensive care unit
CCR CC chemokine receptor
ROR RAR-related orphan receptor
STAT signal transducer and activator of transcription protein

References

1. Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 2020;395:497–506.
2. Xu Z, Shi L, Wang Y, Zhang J, Huang L, Zhang C, et al. Pathological findings of COVID-19 associated with acute respiratory distress syndrome. Lancet Respir Med 2020. https://doi.org/10.1016/S2213-2600(20)30076-X [Epub ahead of print].
3. Zenewicz LA. IL-22: there is a gap in our knowledge. Immunohorizons 2018;2:198–207.
4. Tse GM, To KF, Chan PK, Lo AW, Ng KC, Wu A, et al. Pulmonary pathological features in coronavirus associated severe acute respiratory syndrome (SARS). J Clin Pathol 2004;57:260–5.
5. Faure E, Poissy J, Goffard A, Fournier C, Kipnis E, Titecat M, et al. Distinct immune response in two MERS-CoV-infected patients: can we go from bench to bedside? PLoS One 2014;9: e88716.
6. Josset L, Menachery VD, Gralinski LE, Agnihothram S, Sovia P, Carter V, et al. Cell host response to infection with novel human coronavirus EMC predicts potential antivirals and important differences with SARS coronavirus. mBio 2013;4: e00165-00113.
7. Bermejo-Martin JF, Ortiz de Lejarazu R, Pumarola T, Rello J, Almansa R, Ramirez P, et al. Th1 and Th17 hypercytokinemia as early host response signature in severe pandemic influenza. Crit Care 2009;13:R201.
8. Li C, Yang P, Sun Y, Li T, Wang C, Wang Z, et al. IL-17 response mediates acute lung injury induced by the 2009 pandemic influenza A (H1N1) virus. Cell Res 2012;22:528–38.
9. Fabbri M, Carbotti G, Ferrini S. Dual roles of IL-27 in cancer biology and immunotherapy. Mediat Inflamm 2017;2017:3958069.
10. Bright JJ, Du C, Siram S. Tyrphostin B42 inhibits IL-12-induced tyrosine phosphorylation and activation of Janus kinase-2 and prevents experimental allergic encephalomyelitis. J Immunol 1999;162:6255–62.