Article

Dracocephalum palmatum S. and Dracocephalum ruyschiana L. Originating from Yakutia: A High-Resolution Mass Spectrometric Approach for the Comprehensive Characterization of Phenolic Compounds

Zhanna M. Okhlopkova 1, Mayya P. Razgonova 2,3,*, Konstantin S. Pikula 4,5, Alexander M. Zakharenko 6,7, Wojciech Piekoszewski 8, Yuri A. Manakov 7, Sezai Ercisli 9 and Kirill S. Golokhvast 4,6,7

1 Department of Biology, North-Eastern Federal University, Belinsky str. 58, 677000 Yakutsk, Russia; zhm.okhlopkova@s-vfu.ru
2 N.I. Vavilov All-Russian Institute of Plant Genetic Resources, B. Morskaya 42-44, 190000 Saint-Petersburg, Russia
3 Institute of Life Science and Biomedicine, Far Eastern Federal University, 10 Ajax Bay, Russky Island, 690922 Vladivostok, Russia
4 Polytechnical Institute, Far Eastern Federal University, 10 Ajax Bay, Russky Island, 690922 Vladivostok, Russia; pikula_ksi@dvfu.ru (K.S.F.); golokhvast.ks@dvfu.ru (K.S.G.)
5 Federal Research Center, the Yakut Scientific Center of the Siberian Branch of the Russian Academy of Sciences, 2, Petrovskogo Str., 677000 Yakutsk, Russia
6 Laboratory of Supercritical Fluid Research and Application in Agrobiotechnology, The National Research Tomsk State University, 36, Lenin Avenue, 634050 Tomsk, Russia; rarf@yandex.ru
7 Siberian Federal Scientific Centre of Agrobiotechnology, Centralnaya, Presidium, 633001 Krasnoyarsk, Russia; kem401@gmail.ru
8 Department of Analytical Chemistry, Faculty of Chemistry, Jagiellonian University, Gronstajowa 3, 30-387 Krakow, Poland; wpiekosz@tlen.pl
9 Department of Horticulture, Agricultural Faculty, Ataturk University, 25240 Erzurum, Turkey; sercisli@gmail.com
4 Correspondence: m.razgonova@vir.nw.ru

Abstract: Dracocephalum palmatum S. and Dracocephalum ruyschiana L. contain a large number of target analytes, which are biologically active compounds. High performance liquid chromatography (HPLC) in combination with an ion trap (tandem mass spectrometry) was used to identify target analytes in extracts of D. palmatum S. and D. ruyschiana L. originating from Yakutia. The results of initial studies revealed the presence of 114 compounds, of which 92 were identified for the first time in the genus Dracocephalum. New identified metabolites belonged to 17 classes, including 16 phenolic acids and their conjugates, 18 flavones, 5 flavonols, 2 flavan-3-ols, 1 flavanone, 2 stilbenes, 10 anthocyanins, 1 condensed tannin, 2 lignans, 6 carotenoids, 3 oxylipins, 2 amino acids, 3 sceletum alkaloïds, 3 carboxylic acids, 8 fatty acids, 1 sterol, and 3 terpenes, along with 6 miscellaneous compounds. It was shown that extracts of D. palmatum are richer in the spectrum of polyphenolic compounds compared with extracts of D. ruyschiana, according to a study of the presence of these compounds in extracts, based on the results of mass spectrometric studies.

Keywords: Dracocephalum palmatum; Dracocephalum ruyschiana; ion trap; tandem mass spectrometry; polyphenolic compounds

1. Introduction

The genus Dracocephalum L. (family Lamiaceae) is represented on the territory of the Republic of Sakha (Yakutia) by five species—Dracocephalum jacutense Peschkova, D. nutans L., D. palmatum Stephan, D. ruyschiana L., and D. stellerianum Hilteb [1]. These are
perennial herbaceous plants, differing in both origin and habitat and belonging to the divisions of vegetation cover. The ranges of *Dracocephalum* are unequal, from extremely small (endemic *D. jacutense* Peschkova) to extensive Eurasian (*D. nutans* L., *D. ruyschiana* L.). The two species of *D. palmatuum* Stephan and *D. stellerianum* Hildebr are widespread in the Asian territory [2]. *Dracocephalum palmatuum* Steph. ex Willd. is found in the northeastern regions of Yakutia. It grows on dry stony, gravelly slopes, rocks, stony tundra, and mountain steppes. It is a perennial evergreen plant with creeping shoots and a very dense turf, which forms beneath [3]. *Dracocephalum palmatuum* forms continuous “carpet” populations on dry stony mountain slopes under the conditions of the Pole of Cold Oymyakon (N 63°13′32.0" E 142°53′56.2") (Figure 1).

![Figure 1](image)

Figure 1. *Dracocephalum palmatuum* S. in the Oymyakon area of Yakutia (photo taken by Okhlopkova, July 2019).

A total of 23 compounds (phenylpropanoids, coumarins, flavonoids, and triterpenes) were isolated from a crude alcoholic extract of the aerial parts of *Dracocephalum palmatuum* in studies by Olennikov et al. (2013) [4]. A research by Kim et al. (2020) aimed to evaluate the tumor suppressive effect of *D. palmatuum* extract in diffuse large B cell lymphoma (DLBCL) and its underlying mechanism. The effect of *D. palmatuum* extracts on several DLBCL cell lines significantly reduced cell viability and increased apoptosis and, at the same time, did not affect the survival of normal cells in vitro and in vivo. These studies indicate that the cytotoxic effect may be specific to cancer cells [5]. Lee et al. (2020) studied the anticancer potential of dried leaves of *D. palmatuum* Stephan using human prostate cancer PC-3 cells. The results showed that the use of *D. palmatuum* extract induces apoptosis and has intracellular ROS (reactive oxygen species)—independent antitumor effects on prostate cancer cells associated with increased expression of superoxide dismutase (SOD2) [6].

The habitat of *Dracocephalum ruyschiana* L. extends far to the north; its growth was noted in the Lena and Vilyui river basins, in grass, larch, birch, and mixed forests and meadow steppes. This species has erect stems 20–55 cm high, sparsely shortly pubescent at the nodes and in the upper part, with shortened vegetative shoots in the leaf axils. *Dracocephalum ruyschiana* forms continuous “carpet” populations in the Amga River valley in the conditions of Central Yakutia (N 60°31′09.0" E 131°26′26.7") (Figure 2). Kakasy et al. (2006) identified the composition of *D. ruyschiana* L. extracts using HPLC and GC–MS
with particular emphasis on their flavonoids, aliphatic, aromatic carboxylic acids, and sugars. GC–MS analysis identified and quantified as the main components monosaccharides, sugar alcohols, disaccharides, and trisaccharides, 33 components in total [7].

A review by Zeng et al. (2010) is devoted to the study of the chemical compositions of plants of the genus *Dracocephalum* L. Since the 1970s, 246 compounds, including terpenoids, steroids, flavonoids, alkaloids, lignans, phenols, and coumarins, have been identified from the genus *Dracocephalum*. As can be seen, terpenoids are the dominant constituents within the genus *Dracocephalum* [8].

![Figure 2. *Dracocephalum ruyschiana* L. in the Amga area of Yakutia (photo taken by Okhlopkova, July 2019).](image)

Five new flavone tetracygosides, 5 new benzyl alcohol glycosides, and 19 known compounds were isolated from the extract of the aerial parts of *D. ruyschiana*. *D. ruyschiana* L. (*Lamiaceae*) is a traditional medicinal plant in Mongolia [9].

In this work, we used an HPLC–MS/MS–ion trap to carry out a phytochemical study involving a detailed metabolomic and comparative analysis of *D. palmatum* and *D. ruyschiana* extracts. Aboveground, phytomass of *D. palmatum* was collected during expedition work on the territory of the Pole of Cold Oymyakon during the period of seed ripening (from 15 to 25 July 2019). Phytomass of *D. ruyschiana* was collected on the territory of the river Amga, Yakutia, in June 2019.

2. Results

Extracts of *D. palmatum* S. and *D. ruyschiana* L. were analyzed by an HPLC–MS/MS ion trap to better interpret the diversity of available phytochemicals. All of them have a rich bioactive composition. The structural identification of each compound was carried out on the basis of their accurate mass and MS/MS fragmentation by HPLC–ESI–ion trap–MS/MS. A total of 114 compounds were successfully characterized in extracts of *D. palmatum* and *D. ruyschiana* based on their accurate MS and fragment ions by searching online databases and the reported literature.
All the identified compounds along with molecular formulas, MS/MS data, and their comparative profile for two varieties of *Dracocephalum* are summarized in Table A1 (Appendix A). These are flavones: apigenin 8-C-pentoside-6-C-hexoside, nevadensin, apigenin 7-O-glucuronide, chrysin 6-C-glucoside chrysin glucuronide, and acacetin 7-O-glucoside; flavanols: dihydrokaempferol, dihydroquercetin, astragalin, kaempferol 3-O-rutinoside, and amelopsin; flavan-3-ols: catechin, gallocatechin, and flavanone fustin; phenolic acids: methylgallic acid, hydroxy methoxy dimethylbenzoic acid, ellagic acid, caffeoylshikimic acid, proline hydroxy acid, salvinolic acid G, and 3,4-O-dicaffeoylquinic acid; stilbenes: pinosylvin and resveratrol; anthocyanins: pelargonidin-3-O-glucoside, peonidin O-pentoside, cyanidin 3-(6″-malonylglucoside), and cyanidin 3-(acetyl)hexose; lignans: hinokinin and dimethyl-secoisolariciresinol; carotenoids: β-apo-12'carotenal, apo-carotenal, 5,8-epoxy-α-carotene, cryptoxanthin, and violaxanthin; and so forth.

3. Discussion

A total of 114 compounds were identified in extracts of *D. palmatum* and *D. ruyschiana*, and 92 compounds were identified for the first time in the genus *Dracocephalum*. New identified metabolites belonged to 17 classes, including 16 phenolic acids and their conjugates, 18 flavones, 5 flavonols, 2 flavan-3-ols, 1 flavanone, 2 stilbenes, 10 anthocyanins, 1 condensed tannin, 2 lignans, 6 carotenoids, 3 oxylipins, 2 amino acids, 3 scelletum alkaloids, 3 carboxylic acids, 8 fatty acids, 1 sterol, and 3 terpenes, along with 6 miscellaneous compounds. Metabolomic screening of polyphenols by *D. palmatum* and *D. ruyschiana* included flavones, flavonols, flavan-3-ols, flavanones, anthocyanins, condensed tannins, lignans, stilbenes, and phenolic acids.

3.1. Flavones

3.1.1. Trihydroxyflavones

The flavones apigenin (compound 2) and diosmetin (compound 7) have already been characterized as a component of Andean blueberry [10], *Lonicera japonicum* [11], Mexican lupine species [12], *Cirsium japonicum* [13], *Mentha* [14], and *Dracocephalum moldavica* [15].

The flavone apigenin was found in extracts of *D. palmatum* and *D. ruyschiana*. The flavone diosmetin was found in extracts of *D. palmatum*. The CID spectrum in positive ion modes of diosmetin from extracts of *D. palmatum* is shown in Figure 3.

![Figure 3](image_url)

Figure 3. CID spectrum of diosmetin from extracts of *D. palmatum*, m/z 301.

The [M + H]^+ ion produced one fragment ion at m/z 286 (Figure 3). The fragment ion with m/z 286 yields a daughter ion at m/z 258. It was identified in the bibliography in extracts of Andean blueberry [10], *Lonicera japonicum* [11], Mexican lupine species [12], *Cirsium japonicum* [13], *Mentha* [14], and *Dracocephalum moldavica* [15].
3.1.2. Tetrahydroxyflavones

The flavone luteolin (compound 5) has already been characterized as a component of *Eucalyptus* [16], and *Triticum aestivum* [17]. The flavone luteolin was found in extracts of *D. palmatum* and *D. ruyschiana*. The CID spectrum in positive ion modes of luteolin from extracts of *D. palmatum* is shown in Figure 4.

![Figure 4. CID spectrum of luteolin from extracts of *D. palmatum*, m/z 286.98](image)

The [M + H]+ ion produced two fragment ions at m/z 152 and m/z 237 (Figure 4). It was identified in the bibliography in extracts of *Eucalyptus* [16], and *Triticum aestivum* [17].

3.1.3. Dimethoxyflavones

The flavones negletein (compound 3) and acacetin (compound 4) have already been characterized as a component of *Wissadula periplocifolia* [18], and *Actinocarya tibetica* [19]. Flavone acacetin was found in extracts of *D. palmatum* and *D. ruyschiana*. The CID spectrum in positive ion modes of negletein from extracts of *D. palmatum* is shown in Figure 5.

![Figure 5. CID spectrum of negletein from extracts of *D. palmatum*, m/z 285.03](image)

The [M + H]+ ion produced one fragment ion at m/z 270 (Figure 5). The fragment ion with m/z 270 yields a daughter ion at m/z 241. The fragment ion with m/z 241 yields daughter ions at m/z 187. It was identified in the bibliography in extracts of *Wissadula periplocifolia* [18], and *Actinocarya tibetica* [19].

3.1.4. Trimethoxyflavone

The flavones salvigenin (compound 8) and nevadensin (compound 9) have already been characterized as components of *Ocimum* [20]. The trimethoxyflavones salvigenin and nevadensin were found in an extract of *D. palmatum*.
3.1.5. Isoflavones

The isoflavones apigenin 7-O-β-D-(6″-O-malonyl)-glucoside (compound 23) and 2′-hydroxygenistein O-glucoside malonylated (compound 25) have already been characterized as a component of, Mexican lupine species [12], and Zostera marina [21]. Both isoflavones were found in extracts of *D. palmatum*.

3.1.6. Flavone Glucoside

The flavones apigenin 5-O-glucoside (compound 13), apigenin 7-O-glucoside (compound 14), acacetin 7-O-glucoside (compound 16), acacetin 8-O-glucoside (compound 17), luteolin 7-O-glucoside (compound 18), and diosmetin 7-O-β-glucoside (compound 21) have already been characterized as a component of rice [22], *Oxalis corniculata* [23], *Mentha" ruyschiana*. The flavones apigenin 7-O-glucoside (compound 14) and acacetin 7-O-glucoside (compound 16) were found in an extract of *D. palmatum* and *D. ruyschiana*.

The flavones apigenin 5-O-glucoside (compound 13), acacetin 8-C-glucoside (compound 17), and luteolin 7-O-glucoside (compound 18) were found in an extract of *D. palmatum*. The CID spectrum in positive ion modes of acacetin 7-O-glucoside from *D. palmatum* is shown in Figure 6.

![Figure 6. CID spectrum of acacetin 7-O-glucoside from *D. palmatum*, m/z 446.98.](image-url)

The [M + H]⁺ ion produced three fragment ions at m/z 285, m/z 430, and m/z 149 (Figure 6). The fragment ion with m/z 285 yields a daughter ion at m/z 269. The fragment ion with m/z 269 yields daughter ions at m/z 242. It was identified in the bibliography in extracts from *Bougainvillea* [27].

3.1.7. Flavone Glucuronide

The flavone chrysin glucuronide (compound 12) has already been characterized as a component of *F. pottsii* [28]. The flavone apigenin 7-O-glucuronide (compound 15) has already been characterized as a component of peppermint [29] and *Newbouldia laevis* [30]. The flavone luteolin 7-O-β-D-glucuronide (compound 20) has already been characterized as a component of *Mentha* [31], rat plasma [32], and *Thymus vulgaris* [33]. All flavone glucuronides were found in an extract of *D. ruyschiana*.

3.2. Flavonols

3.2.1. Trihydroxyflavones

The flavonols astragalin (compound 35) and kaempferol 3-O-rutinoside (compound 37) have already been characterized as a component of *Camellia kucha* [34], strawberry [35], and *Rhus cotia* [36]. Both flavonols were found in extracts of *D. palmatum*. The CID spectrum in negative ion modes of kaempferol 3-O-rutinoside from extracts of *D. palmatum* is shown in Figure 7.
Figure 7. CID spectrum of kaempferol 3-O-rutinoside from extracts of D. palmatum, m/z 593.21.

The [M – H]⁻ ion produced three fragment ions at m/z 285, m/z 534, and m/z 429 (Figure 7). The fragment ion with m/z 285 yields two daughter ions at m/z 241 and m/z 199. It was identified in the bibliography in extracts from Camellia kucha [34], strawberry [35], and Rhus coriaria [36].

3.2.2. Tetrahydroxyflavone

The flavonol kaempferol (compound 31) has already been characterized as a component of potato leaves [37], and rapeseed petals [38]. Flavonol kaempferol was found in extracts of D. palmatum and D. ruyschiana.

3.2.3. Hexahydroxyflavone

The hexahydroxyflavone ampelopsin (compound 34) has already been characterized as a component of Impatiens glandulifera Royle [39]. It was identified in extracts of D. palmatum. The CID spectrum in positive ion modes of ampelopsin from extracts of D. palmatum is shown in Figure 8.

Figure 8. CID spectrum of ampelopsin from extracts of D. palmatum, m/z 321.11.

The [M + H]⁺ ion produced one fragment ion at m/z 301 (Figure 8). The fragment ion with m/z 301 yields a daughter ion at m/z 284. The fragment ion with m/z 284 yields daughter ions at m/z 192. It was identified in the bibliography in extracts from Impatiens glandulifera Royle [39].

3.2.4. Dihydroflavonols

The dihydroflavonols dihydrokaempferol (compound 32) and dihydroquercetin (compound 33) have already been characterized as a component of strawberry [40] and Solanum tuberosum [41]. The flavonols dihydrokaempferol and dihydroquercetin were...
found in extracts of *D. palmatum*. The CID spectrum in negative ion modes of kaempferol 3-O-rutinoside from extracts of *D. palmatum* is shown in Figure 9.

![Image of Figure 9](image-url)

Figure 9. CID spectrum of dihydrokaempferol from extracts of *D. palmatum*, *m/z* 287.26.

The [M − H]⁺ ion produced two fragment ions at *m/z* 269 and *m/z* 151 (Figure 9). The fragment ion with *m/z* 269 yields two daughter ions at *m/z* 267 and *m/z* 183. This compound was identified in the bibliography in extracts from of strawberry [40] and *Solanum tuberosum* [41].

3.3. Condensed Tannin

The procyanidin A-type dimer (compound 78) has already been characterized as a component of *Vaccinium macrocarpon* [42] and *Vaccinium myrtillus* [43]. The CID spectrum in positive ion modes of procyanidin A-type dimer from *D. ruyschiana* is shown in Figure 10. The [M + H]⁺ ion produced four fragment ions at *m/z* 415, *m/z* 352, *m/z* 283, and *m/z* 164 (Figure 10). The fragment ion with *m/z* 415 yields three daughter ions at *m/z* 337, *m/z* 295, and *m/z* 193. This compound was identified in the bibliography in extracts from *Vaccinium macrocarpon* [42] and *Vaccinium myrtillus* [43].

![Image of Figure 10](image-url)

Figure 10. CID spectrum of procyanidin from extracts of *D. ruyschiana*, *m/z* 577.07.

The polyphenol composition distribution table is shown below (Table 1). The comparison table shows the presence of some flavonoids in both types of the genus *Dracocephalum* (apigenin, acacetin, luteolin, apigenin 7-O-glucoside, acacetin 7-O-glucoside, kaempferol, prunin, eriodictyol 7-O-glucoside, caffeic acid, caffeic acid-O-hexoside, dimethyl-secoisolaricresinol, petunidin, and pelargonidin 3-O-glucoside). Mass spectrometric studies have convincingly shown that the amount of polyphenolic compounds in the extracts of *D. palmatum* is greater than in the extracts of *D. ruyschiana*. The number of polyphenolic compounds identified as a result of the study in the extracts of *D. palmatum* is 57 compounds. In extracts of *D. ruyschiana*, 35 compounds.
Table 1. The flavonoid composition distribution of the genus *Dracocephalum* L. Blue square—presence in extracts of *D. ruyschiana*; magenta square—in extracts of *D. palmatum*.

No.	Class of Compounds	Identified Compounds	Formula	*D. ruyschiana*	*D. palmatum*
1	Flavone	Apigeninidin	C_{15}H_{10}O_{4}		
2	Flavone	Apigenin	C_{15}H_{10}O_{5}		
3	Flavone	Negletein (5,6-dihydroxy-7-methoxyflavone)	C_{18}H_{12}O_{5}		
4	Flavone	Acacetin (linarigenin, buddeolflavonol)	C_{18}H_{12}O_{5}		
5	Flavone	Luteolin	C_{18}H_{12}O_{6}		
6	Flavone	Apigenin-7, 4′-dimethyl ether	C_{17}H_{12}O_{5}		
7	Flavone	Diosmetin	C_{18}H_{12}O_{6}		
8	Flavone	Salvigenin	C_{18}H_{12}O_{6}		
9	Flavone	Nevadensin	C_{18}H_{12}O_{7}		
10	Flavone	Apigenin 7-sulfate	C_{18}H_{12}O_{5}		
11	Flavone	Chrysin 6-C-glucoside	C_{22}H_{10}O_{9}		
12	Flavone	Chrysin glucuronide	C_{22}H_{10}O_{10}		
13	Flavone	Apigenin-5-O-glucoside	C_{22}H_{10}O_{10}		
14	Flavone	Apigenin-7-O-glucoside	C_{22}H_{10}O_{10}		
15	Flavone	Apigenin 7-O-glucuronide	C_{23}H_{10}O_{11}		
16	Flavone	Acacetin 7-O-glucoside	C_{23}H_{10}O_{10}		
17	Flavone	Acacetin 8-C-glucoside	C_{23}H_{10}O_{10}		
18	Flavone	Luteolin 7-O-glucoside (cyanoside, luteoloside)	C_{23}H_{10}O_{11}		
19	Flavone	Acacetin 7-O-beta-D-glucuronide	C_{23}H_{10}O_{11}		
20	Flavone	Luteolin-7-O-beta-glucuronide	C_{23}H_{10}O_{12}		
21	Flavone	Diosmetin-7-O-beta-glucoside	C_{22}H_{10}O_{11}		
22	Flavone	Luteolin O-acetyl-hexoside	C_{23}H_{10}O_{12}		
23	Isoflavone	Apigenin 7-O-beta-D-6‴-O-malonyl-glucoside	C_{23}H_{10}O_{13}		
24	Flavone	Acacetin 8-C-glucoside malonylated	C_{23}H_{10}O_{13}		
25	Isoflavone	2′-Hydroxygenistein O-glucoside malonylated	C_{24}H_{10}O_{14}		
26	Flavone	Luteolin 7-O-beta-D-6‴-O-malonyl-glucoside	C_{23}H_{10}O_{14}		
27	Flavone	Acacetin C-glucoside methylmalonylated	C_{23}H_{10}O_{13}		
28	Flavone	Apigenin 8-C-hexoside-6-C-pentoside	C_{25}H_{10}O_{14}		
29	Flavone	Apigenin 8-C-pentoside-6-C-hexoside	C_{25}H_{10}O_{14}		
30	Flavone	Apigenin 6-C-[6‴-acetyl-2‴-O-deoxyhexosyl]-glucoside	C_{26}H_{10}O_{15}		
31	Flavonol	Kaempferol	C_{13}H_{10}O_{6}		
32	Flavonol	Dihydrokaempferol (aromadendrin; katuranin)	C_{16}H_{10}O_{6}		
33	Flavonol	Dihydroquercetin (taxifolin, taxifoliol)	C_{18}H_{10}O_{7}		
34	Flavonol	Ampelopsin (dihydromyricetin, ampelophtin)	C_{18}H_{10}O_{8}		
35	Flavonol	Astragalalin (kaempferol 3-O-glucoside; kaempferol-3-beta-monoglucoside, astragaline)	C_{21}H_{10}O_{11}		
36	Flavonol	Kaempferol-3-O-glucuronide	C_{21}H_{10}O_{12}		
37	Flavonol	Kaempferol 3-O-rutinoside	C_{17}H_{10}O_{15}		
38	Flavan-3-ol	(epi)catechin	C_{18}H_{10}O_{6}		
39	Flavan-3-ol	Galallocatechin [+(-)]galallocatechin	C_{18}H_{10}O_{7}		
40	Flavanone	Naringenin (naringetol, naringenin)	C_{18}H_{10}O_{5}		
41	Flavanone	Eriodictyol (3‴,4‴,5‴,7-tetrahydroxy-flavanone)	C_{18}H_{10}O_{6}		
No.	Compounds	Molecular Formula			
-----	----------------------	-------------------			
42	Flavanone	C_{18}H_{12}O_{6}			
43	Flavanone	C_{24}H_{23}O_{14}			
44	Flavanone	C_{20}H_{19}O_{10}			
45	Flavanone	C_{22}H_{30}O_{6}			
46	Hydroxycinnamic acid	C_{6}H_{8}O_{4}			
47	Phenolic acid	C_{10}H_{6}O_{3}			
48	Phenolic acid	C_{11}H_{12}O_{5}			
49	Phenolic acid	C_{15}H_{12}O_{6}			
50	Phenolic acid	C_{11}H_{13}O_{7}			
51	Phenolic acid	C_{15}H_{18}O_{9}			
52	Phenolic acid	C_{16}H_{14}O_{8}			
53	Phenolic acid	C_{18}H_{14}O_{8}			
54	Gallate ester	C_{13}H_{10}O_{8}			
55	Phenolic acid	C_{17}H_{10}O_{8}			
56	Phenolic acid	C_{16}H_{10}O_{8}			
57	Phenolic acid	C_{15}H_{12}O_{6}			
58	Phenolic acid	C_{13}H_{12}O_{4}			
59	Phenolic acid	C_{15}H_{18}O_{9}			
60	Phenolic acid	C_{16}H_{18}O_{9}			
61	Phenolic acid	C_{17}H_{18}O_{9}			
62	Phenolic acid	C_{18}H_{18}O_{9}			
63	Phenolic acid	C_{25}H_{24}O_{12}			
64	Stilbene	C_{14}H_{12}O_{2}			
65	Stilbene	C_{14}H_{12}O_{3}			
66	Lignan	C_{9}H_{8}O_{5}			
67	Lignan	C_{15}H_{12}O_{6}			
68	Anthocyanidin	C_{14}H_{12}O_{2}			
69	Anthocyanidin	C_{18}H_{18}O_{9}			
70	Anthocyanidin	C_{22}H_{23}O_{11}			
71	Anthocyanidin	C_{20}H_{21}O_{10}			
72	Anthocyanidin	C_{22}H_{21}O_{10}+			
73	Anthocyanidin	C_{22}H_{21}O_{10}+			
74	Anthocyanidin	C_{22}H_{21}O_{10}+			
75	Anthocyanidin	C_{22}H_{21}O_{10}+			
76	Anthocyanidin	C_{22}H_{21}O_{10}+			
77	Anthocyanidin	C_{22}H_{21}O_{10}+			
78	Condensed tannin	C_{38}H_{28}O_{12}			

A total of 114 metabolome compounds were identified in the extracts of *D. palmatum* and *D. ruyshciana*, many of which are characteristic of the genus *Dracocephalum*. Of these, 92 components were identified for the first time in this plant species. These are flavones: apigenin 8-C-pentoside-6-C-hexoside, nevadensin, apigenin 7-O-glucuronide, negletein,
chrysin 6-C-glucoside, luteolin 7-O-β-glucuronide, chrysins glucuronide, and acacetin 7-O-glucoside; flavonols: dihydrokaempferol, dihydroquercetin, astragalin, kaempferol 3-O-rutinoside, and ampelopsin; flavan-3-ols: catechin, gallocatechin, and flavanone fustin; phenolic acids: 4-hydroxybenzoic acid, methylgallic acid, hydroxy methoxy dimethylbenzoic acid, ellagic acid, caffeoylshikimic acid, proliisomer acid, salvianolic acid G, and 3,4-O-dicaffeoylquinic acid; stilbene: pinosylvin and resveratrol; anthocyanins: pelargonidin-3-O-glucoside, peonidin 0-pentoside, cyanidin 3-(6''-malonylguloside), cyanidin 3-(acetyl)hexose, and condensed tannin procyanidin A-type dimer; lignans: hinokinin and dimethyl-secoisolariciresinol; stilbenes: resveratrol and pinosylvin; carotenoids: β-apo-12′carotenal, apocarotenal, 5,8-epoxy-α-carotene, cryptoxanthin, violaxanthin, and selenium; alkaloids: mesembrenol and 4′-O-desmethyl mesembranol; oxylipins: o xo-DHOD, THODE, and tetrahydroxyxanthen mangiferin; and so forth.

4. Materials and Methods

4.1. Materials

Aboveground, phytomass of D. palmatum S. was collected during expedition work on the territory of the Pole of Cold Oymyakon during the period of seed ripening (from 15 to 25 July 2019). Phytomass of D. ruychiana L. was collected on the territory of the river Amga, Yakutia, in June 2019. The identification of the species was carried out by E. G. Nikolin, PhD (IBPK SB RAS). All samples were morphologically authenticated according to the current standard of Pharmacopoeia of the Eurasian Economic Union [44]. Herbariums of plants are kept in the collection of the educational and scientific laboratory “Molecular Genetic and Cellular Technologies” of the Institute of Natural Sciences of Northeastern Federal University (Yakutsk, Republic of Sakha (Yakutia), Russian Federation).

4.2. Chemicals and Reagents

HPLC-grade acetonitrile was purchased from Fisher Scientific (Southborough, UK), and MS-grade formic acid was from Sigma-Aldrich (Steinheim, Germany). Ultrapure water was prepared from a Siemens Ultra Clear (Siemens Water Technologies, Munich, Germany), and all other chemicals were analytical grade.

4.3. Fractional Maceration

Fractional maceration technique was applied to obtain highly concentrated extracts [45]. From 500 g of the sample, 10 g of leaves was randomly selected for maceration. The total amount of the extractant (ethyl alcohol of reagent grade) was divided into three parts and consistently infused to the grains with the first, second, and third parts. A solid–solvent ratio was 1:20. The infusion of each part of the extractant lasted 7 days at room temperature.

4.4. Liquid Chromatography

HPLC was performed using Shimadzu LC-20 Prominence HPLC (Shimadzu, Kyoto, Japan), equipped with a UV sensor and C18 silica reverse phase column (4.6 × 150 mm, particle size: 2.7 μm) to perform the separation of multicomponent mixtures. The gradient elution with two mobile phases’ program (A, deionized water; B, acetonitrile with formic acid 0.1% v/v) was as follows: 0.01–5 min, 100% CH3CN; 5–45 min, 100–25% CH3CN; 45–55 min, 25–0% CH3CN; control washing, 55–60 min, 0% CH3CN. The entire HPLC analysis was performed with a UV–VIS detector, SPD-20A (Shimadzu, Kyoto, Japan), at a wavelength of 230 nm; the temperature was 50 °C, and the total flow rate was 0.25 mL/min. The injection volume was 10 μL. Additionally, liquid chromatography was combined with a mass spectrometric ion trap to identify compounds.
4.5. Mass Spectrometry

MS analysis was performed on an ion trap, amaZon SL (Bruker Daltonics, Bremen, Germany), equipped with an ESI source in negative and positive ion modes. The optimized parameters were obtained as follows: ionization source temperature: 70 °C, gas flow: 4 L/min, nebulizer gas (atomizer): 7.3 psi, capillary voltage: 4500 V, end plate bend voltage: 1500 V, fragmentary: 280 V, collision energy: 60 eV. A four-stage ion separation mode (MS/MS mode) was implemented. An ion trap was used in the scan range \(m/z \) 100–1,700 for MS and MS/MS. All experiments were repeated three times. A four-stage ion separation mode (MS/MS mode) was implemented.

5. Conclusions

The extracts of *D. palmatum* S. and *D. ruyschiana* L. contain a large number of polyphenolic complexes, which are biologically active compounds. For the most complete and safe extraction, the method of maceration with MeOH was used. To identify target analytes in extracts, HPLC was used in combination with an ion trap. The results of the preliminary study showed the presence of 114 compounds corresponding to the genus *Dracocephalum*, of which 92 were identified for the first time in the genus *Dracocephalum*.

The data obtained will help to intensify future research on the development and production of various medical products containing targeted extracts of *D. palmatum* S. and *D. ruyschiana* L. A wide variety of biologically active polyphenolic compounds open up rich opportunities for the creation of new drugs, as well as biologically active additives based on extracts from the genus *Dracocephalum*.

Author Contributions: Conceptualization, M.P.R.; methodology, M.P.R., Z.M.O., and K.S.P.; investigation, M.P.R., Z.M.O., and K.S.P.; resources, Z.M.O., A.M.Z., and K.S.G.; writing—original draft preparation, M.P.R.; supervision, W.P., K.S.G.; project administration, W.P., Y.A.M., S.E., and K.S.G.; funding acquisition, Z.M.O., and K.S.G. All authors have read and agreed to the published version of the manuscript.

Funding: This work has been carried out with financial support of the Ministry of Education and Science of the Russian Federation within the framework of implementation of the project of NEFU, “Cell and molecular genetic technologies of research of northern and arctic plants of Yakutia and development on their basis”, SRP No. 6, 30.10.2020, and No. 0662-2019-0003, “Genetic resources of vegetable and melons of the world collection of N.I. Vavilov All-Russian Institute of Plant Genetic Resources: effective ways of expanding diversity, disclosing the patterns of hereditary variability, use of adaptive potential”.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.
Appendix A

Table A1. Compounds identified from the extracts of *D. palmatum* S. and *D. ruyschiana* L. in positive and negative ionization modes by HPLC–ion trap–MS/MS.

No	Variety of *Dracocephalum*	Class of Compounds	Identified Compounds	Formula	Mass	Molecular Ion [M – H]–	Molecular Ion [M + H]+	2 Fragmentation MS/MS	3 Fragmentation MS/MS	4 Fragmentation MS/MS	References		
1	D. ruyschiana	Flavone	Apigeninidin	C₁₅H₁₁O₄	255.2454	256	168	122			Triticum [46]		
2	*D. palmatum, D. ruyschiana*	Flavone	Apigenin (5,7-dihydroxy-2-(40hydroxypHENyl)-4H-chromen-4-one)	C₁₅H₁₆O₅	270.2369	269	225	181	117		Dracocephalum palmatum [4], Andean blueberry [10], Lonicera japonicum [11], Mexican lupine species [12]		
3	D. palmatum	Flavone	Negletein (5,6-dihydroxy-7-methoxy-flavone)	C₁₆H₁₂O₅	284.2635	285	271	241	187		Actinocarya tibetica [19]		
4	*D. palmatum, D. ruyschiana*	Flavone	Acacetin (linarigenin, buddleoflavonol)	C₁₆H₁₂O₅	284.2635	285	268	211; 143			Dracocephalum palmatum [4], Mexican lupine species [12], Mentha [14], Dracocephalum moldavica [15], Wissadula periplocifolia [18]		
5	*D. palmatum, D. ruyschiana*	Flavone	Luteolin	C₁₅H₁₀O₆	286.2363	287	286; 153	171	153		Dracocephalum palmatum [4], Eucalyptus [16], Lonicera japonicum [11]		
6	D. palmatum	Flavone	Apigenin-7, 4′-dimethyl ether	C₁₇H₁₄O₅	298.2901	299	284	256			Ocimum [20]		
7	D. palmatum	Flavone	Diosmetin (luteolin 4′-methyl ether, salinigricoflavonol)	C₁₆H₁₀O₆	300.2629	301	286	258			Andean blueberry [10], Lonicera japonicum [11], Cirsium japonicum [13], Mentha [14], Dracocephalum moldavica [15]		
8	D. palmatum	Flavone	Salvigenin	C₁₈H₁₆O₆	328.3160	329	314; 240	154			Dracocephalum palmatum [4], Ocimum [20]		
	Species	Type	Compound Name	Molecular Formula	M.Wt	Act. Site 1	Act. Site 2	Act. Site 3	Act. Site 4	Act. Site 5	Act. Site 6	Act. Site 7	Source
---	-------------	-------------	-----------------------------------	-------------------	------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-----------------------------
9	*D. palmatum*	Flavone	Nevadensin	C_{18}H_{16}O_{7}	344.3154	345	311	284	149				Mentha [14], Ocimum [20]
10	*D. ruyschiana*	Flavone	Apigenin 7-sulfate	C_{18}H_{16}O_{5}S	350.3001	349	269	223					
11	*D. ruyschiana*	Flavone	Chrysin 6-C-glucoside	C_{21}H_{20}O_{9}S	344.3154	417	51; 127	333; 267	165				Passiflora incarnata [26]
12	*D. ruyschiana*	Flavone	Chrysin glucuronide	C_{21}H_{18}O_{10}	345	431	255	255; 153	171				F. pottsii [28]
13	*D. palmatum*	Flavone	Apigenin-5-O-glucoside	C_{21}H_{20}O_{10}	432.3775	433	414; 274; 215; 145	371; 245; 147	327				Rice [22]
14	*D. palmatum, D. ruyschiana*	Flavone	Apigenin-7-O-glucoside (apigetrin, cosmosiin)	C_{21}H_{20}O_{10}	432.3775	433	271	153					Mao [4], Mentha [24], Mexican lupine species [12]
15	*D. ruyschiana*	Flavone	Apigenin 7-O-glucuronide	C_{21}H_{20}O_{11}	345	447	271	153	271; 171				Pear [25], Bougainvillea [27]
16	*D. palmatum, D. ruyschiana*	Flavone	Acacetin 7-O-glucoside (tilianin)	C_{22}H_{22}O_{10}	446.4041	447	285; 149	270	242				Dracocephalum palmatum [4], Bougainvillea [27]
17	*D. palmatum*	Flavone	Acacetin 8-C-glucoside	C_{22}H_{22}O_{10}	446.4041	447	428; 344; 343; 230; 133	232					Mexican lupine species [12]
18	*D. palmatum*	Flavone	Luteolin 7-O-glucoside (cynaroside, luteoloside)	C_{21}H_{20}O_{11}	448.3769	449	287; 199	153					Lonicera japonicum [11], Pear [25], Passiflora incarnata [26]
19	*D. ruyschiana*	Flavone	Acacetin 7-O-beta-D-glucuronide	C_{22}H_{22}O_{11}	460.3876	459	283; 343; 175	268	267				Dracocephalum moldavica [15]
20	*D. ruyschiana*	Flavone	Luteolin-7-O-beta-glucuronide	C_{21}H_{20}O_{12}	462.3604	463	287	268	245; 119				Mentha [14], rat plasma [32], Neuboullia laevis [30]
21	*D. ruyschiana*	Flavone	Diosmetin-7-O-beta-glucoside	C_{22}H_{22}O_{11}	462.4035	463	287	168	123				Dracocephalum moldavica [15], Oxalis corniculata [23]
22	*D. palmatum*	Flavone	Luteolin O-acetyl-hexoside	C_{23}H_{22}O_{12}	490.4136	489	285; 450	199	155				Dracocephalum palmatum [4]
23	*D. palmatum*	Isoflavone	Apigenin 7-O-beta-D-(6"-O-malonyl)-glucoside	C_{22}H_{22}O_{13}	518.4237	519	502; 184	125					Dracocephalum moldavica [14], Zostera marina [21]
No.	Species	Class	Compound Description	Molecular Formula	Mass	Parent Mass	IS 1	IS 2	IS 3	IS 4	Source(s)		
-----	------------------	------------	---	-------------------	--------	-------------	------	------	------	------	-------------------------------		
24	*D. palmatum*	Flavone	Acacetin 8-C-glucoside malonylated	C_{27}H_{24}O_{13}	532.4503	533	497; 205	377; 335		Mexican lupine species [12]			
25	*D. palmatum*	Isoflavone	2'-Hydroxygenistein O-glucoside malonylated	C_{26}H_{22}O_{14}	534.4231	533	489	285; 326	284	Mexican lupine species [12]			
26	*D. palmatum*	Flavone	Luteolin 7-O-beta-D-(6" -O-malonyl)-glucoside	C_{29}H_{24}O_{14}	534.4231	535	436; 354; 287; 214	328; 238		Dracocephalum moldavica [15], Zostera marina [21]			
27	*D. palmatum*	Flavone	Acacetin C-glucoside methyldmalonylated	C_{26}H_{24}O_{14}	546.4758	547	529; 496; 369	343		Mexican lupine species [12]			
28	*D. ruyschiana*	Flavone	Apigenin 8-C-hexoside-6-C-pentoside	C_{27}H_{24}O_{14}	564.4921	565	547; 511; 427	529; 499	511	Triticum aestivum L. [47,48], Bituminaria [49], Licania Rigid a [50]			
29	*D. ruyschiana*	Flavone	Apigenin 8-C-pentoside-6-C-hexoside	C_{27}H_{24}O_{15}	564.4921	565	547; 274	529; 474; 247	390	Triticum aestivum L. [47,48], Bituminaria [49], Licania Rigid a [50]			
30	*D. palmatum*	Flavone	Apigenin 6-C-[6" -acetyl-2" -O-deoxyhexosyl]glucoside	C_{26}H_{24}O_{15}	620.5554	621	561; 218	533	445; 222	Passiflora incarnata [26]			
31	*D. palmatum*,	Flavonol	Kaempferol (3,5,7-trihydroxy-2-(4-hydroxy-xyphenyl)-4H-chromen-4-one)	C_{15}H_{12}O_{6}	286.2363	287	269; 202	233; 205	216	Andean blueberry [10], Lonicer a japonicum [11], Rhus coriaria (Sumac) [36], potato leaves [37], rapeseed petals [38]			
	D. ruyschiana										F. glaucescens [28], Camel lia kucha [34], Rhodiola rosea [51]		
32	*D. palmatum*	Flavonol	Dihydrokaempferol (aromadendrin, katuranin)	C_{15}H_{12}O_{6}	288.2522	287	269; 151	267; 183	211	Andean blueberry [10], Eucalyptus [16], Camellia kucha [34], strawberry [40]			
33	*D. palmatum*	Flavonol	Dihydroquercetin (taxifolin, taxifolial)	C_{15}H_{12}O_{7}	304.2516	305	287	286; 186	185	Rhus coriaria [36], Impatiens glandulifera Royle [39]			
34	*D. palmatum*	Flavonol	Ampelopsin (dihydmorycetin, am pe loptin)	C_{15}H_{12}O_{6}	320.251	321	301	284	192	Lonicer a japonicum [11], Mexican lupine species			
35	*D. palmatum*	Flavonol	Astragalin (kaempferol 3-O-glucoside, kaempferol-3-beta-monoglucoside)	C_{27}H_{24}O_{15}	448.3769	447	285; 327	241	199				
	Species	Type	Flavonoid	Molecular Formula	Molecular Weight	PubChem CID	Accurate Mass	Error (ppm)	Relative Error (%)				
---	------------------	----------	---------------------------	-------------------	------------------	------------	--------------	-------------	-------------------				
36	*D. ruyschiana*	Flavonol	Kaempferol-3-O-glucuronide	C_{21}H_{18}O_{12}	462.3604	463	287	68; 169	241; 119				
37	*D. palmatum*	Flavonol	Kaempferol 3-O-rutinoside	C_{22}H_{20}O_{15}	594.5181	593	285	199; 199	199				
38	*D. ruyschiana*	Flavan-3-ol	(Epi)catechin	C_{15}H_{14}O_{6}	290.2681	291	273; 117	255; 145					
39	*D. palmatum*	Flavan-3-ol	Galloccatechin (+(-)-gallocatechin)	C_{15}H_{14}O_{7}	306.2675	307	289	259					
40	*D. palmatum*	Flavanone	Naringenin (naringetol, naringenin)	C_{15}H_{12}O_{5}	272.5228	273	153; 256	125					
41	*D. palmatum*	Flavanone	Eriodictyol (3',4',5,7-tetrahydroxy-flavanone)	C_{15}H_{12}O_{6}	288.2522	289	163; 271	145; 117					
42	*D. ruyschiana*	Flavanone	Fustin (2,3-dihydrofistein)	C_{15}H_{12}O_{6}	288.2522	287	269; 141	267; 185	249				
Molecule	Plant/Species	Type	Molecular Formula	Molecular Weight	Plant/Species Reference								
----------	---------------	------	-------------------	------------------	------------------------								
43 D. palmatum, D. ruyschiana	Flavanone	Prunin (naringenin-7-O-glucoside)	C_{21}H_{22}O_{10}	434.3934	271; 151; 269; 151	Dracocephalum palmatum [4], rapeseed petals [38], tomato [54]							
44 D. palmatum, D. ruyschiana	Flavanone	Eriodictyol-7-O-glucoside (pyrancanthoside, miscanthoside)	C_{21}H_{22}O_{11}	450.3928	285; 151; 243; 151	Dracocephalum palmatum [4], Impatiens glandulifera Royle [39], peppermint [29], Mentha [24]							
45 D. palmatum	Flavanone	Eriodictyol O-malonyl-hexoside	C_{21}H_{24}O_{14}	536.4390	491; 287; 287; 151	Dracocephalum palmatum [4]							
46 D. palmatum; D. ruyschiana	Hydroyxycinnamic acid	Caffeic acid	C_{9}H_{8}O_{4}	180.1574	181	135	119	Dracocephalum palmatum [4], Eucalyptus [16], Triticum [46], Salvia miltiorrhiza [55]					
47 D. palmatum	Phenolic acid	Methylgallic acid (methyl gallate)	C_{9}H_{6}O_{5}	184.1461	183	139	137	119	Eucalyptus [16], papaya [35], Rhus coriaria [36]				
48 D. ruyschiana	Phenolic acid	Hydroxy methoxy dimethylbenzoic acid	C_{10}H_{12}O_{4}	196.1999	197	179	161	133	F. herrerae, F. glaucescens [28]				
49 D. palmatum	Phenolic acid	Ethyl caffeate (ethyl 3,4-dihydroxyphenylacacetate)	C_{11}H_{12}O_{4}	208.2106	207	179	135	Lepechinia [56]					
50 D. palmatum	Hydroxybenzoic acid	4-Hydroxybenzoic acid (PHBA, benzoic acid, p-hydroxybenzoic acid)	C_{6}H_{5}O_{3}	138.1207	139	122	Bougainvillea [27], Triticum [46], Bittuminaria [49], Vigna unguiculata [57], Eucalyptus globulus [58],						
51 D. ruyschiana	Hydroxybenzoic acid	Ellagic acid (benzoic acid, elagostic acid)	C_{4}H_{6}O_{5}	302.1926	301	284	221	112	Rhus coriaria [36], Eucalyptus [16], Eucalyptus globulus [58], Rubus occidentalis [59]				
52 D. palmatum	Hydroyxycinnamic acid	Sinapic acid (trans-sinapic acid)	C_{11}H_{10}O_{5}	224.21	225	206	138	Andean blueberry [10], rapeseed petals [38], Triticum [46], Cranberry [53], Cherimoya [60]					
53	D. ruyschiana	Hydroxyquinic acid	1-O-(4-coumaroyl)-glucose	C_{15}H_{18}O_{8}	326.2986	325	145	117	Cranberry [53], strawberry [40], Rubus occidentalis [59]				
54	D. palmatum	Gallate ester	Beta-glucogallin (1-O-galloyl-beta-d-glucose, galloyl glucose)	C_{15}H_{18}O_{11}	332.2601	333	314	271; 151	244; 159	Strawberry [40, 61], carao tree seeds [62]			
55	D. ruyschiana	Phenolic acid	Caffeoylshikimic acid (5-O-cafeoylshikimate)	C_{15}H_{18}O_{8}	335.2855	335	179	135	133	Andean blueberry [10], pear [25], passion fruits [35], Vaccinium myrtillus [43]			
56	D. palmatum	Phenolic acid	Salvianolic acid G	C_{15}H_{12}O_{7}	340.2837	341	296; 208	278; 208	235; 164	Mentha [14], Salvia miltiorrhiza [55]			
57	D. palmatum	Phenolic acid	1-cafeoyl-beta-D-glucose (cafeic acid-3-O-beta-D-gluoside)	C_{15}H_{18}O_{8}	342.298	341	178; 119	135	Passiflora incarnata [26], strawberry [40], Cranberry [53]				
58	D. palmatum, D. ruyschiana	Phenolic acid	Caffeic acid-O-hexoside (cafeoyl-O-hexoside)	C_{15}H_{18}O_{8}	342.298	341	178; 113		pear [25], Cherimoya, papaya [35], Sasa vechii [63]				
59	D. palmatum	Phenolic acid	Prolithospermic acid	C_{15}H_{18}O_{8}	358.2990	359	341; 207	314; 267; 149	Mentha [14], Salvia miltiorrhiza [55]				
60	D. palmatum	Phenolic acid	Rosmarinic acid	C_{15}H_{18}O_{8}	360.3148	359	161	133	Dracocephalum palmatum [4], Mentha [14], Zostera marina [21], peppermint [29], Salvia miltiorrhiza [55], Lepechinia [56]				
61	D. palmatum, D. ruyschiana	Phenolic acid	Caffeic acid derivative	C_{15}H_{18}O_{8}Na	377.2985	377	341; 215	179	Bougainvillea [27]				
62	D. palmatum	Phenolic acid	Salvianic acid C	C_{15}H_{18}O_{8}	378.3301	377	359; 315	289	229	Salvia miltiorrhiza [55], Lepechinia [56]			
63	D. ruyschiana	Phenolic acid	3,4-O-dicafeoylquinic acid (iso-chlorogenic acid B)	C_{15}H_{18}O_{12}	516.4509	517	397	337; 135	Lonicera japonicum [11], Pear [25], Stevia rebaudiana [64]				
No.	Species	Type	Name	Molecular Formula	Molecular Weight	Mass/Intensity	Reference						
-----	------------------	------------	---	-------------------	------------------	------------------	------------------------------------						
64	*D. ruyschiana*	Stilbene	Pinosylvin (3,5-stilbenediol, trans-3,5-dihydroxystilbene)	C_{14}H_{12}O_{2}	212.2439	213; 168; 126	*Pinus sylvestris* [50], *Pinus resinosa* [65]						
65	*D. ruyschiana*	Stilbene	Resveratrol (trans-resveratrol, 3,4',5-trihydroxystilbene, stilbentriol)	C_{14}H_{12}O_{3}	228.2433	229; 142; 210; 114	A. cordifolia, F. glaucescens [28], F. herrerae [28], Radix polygoni multiflori [52]						
66	*D. palmatum*	Lignan	Hinokinin	C_{20}H_{18}O_{6}	354.3533	355; 337; 189; 319; 226	Triticum aestivum L. [46], Rhodiola rosea [51], lignans [66]						
67	*D. palmatum, D. ruyschiana*	Lignan	Dimethyl-secoisolariciresinol	C_{22}H_{30}O_{6}	390.4700	391; 373; 249; 121; 355; 225; 313; 226	Lignans [66]						
68	*D. palmatum, D. ruyschiana*	Anthocyanin	Petunidin	C_{16}H_{13}O_{7}+	317.2702	318; 166; 300; 121	A. cordifolia, C. edulis [28]						
69	*D. palmatum*	Anthocyanin	Cyanidin O-pentoside	C_{18}H_{19}O_{10}	419.3589	419; 287; 219; 201	Andean blueberry [10], Gaultheria mucronata, Gaultheria antarctica [60], Myrtle [67]						
70	*D. palmatum, D. ruyschiana*	Anthocyanin	Pelargonidin-3-O-glucoside (calystephin)	C_{18}H_{21}O_{10}	433.3854	433; 271; 153; 225; 171	strawberry [61], Triticum aestivum [68], Rubus ulmifolius [69]						
71	*D. palmatum*	Anthocyanin	Peonidin O-pentoside	C_{18}H_{21}O_{10}	433.3854	433; 301; 215; 145; 229; 139	Andean blueberry [10], Myrtle [67]						
72	*D. palmatum*	Anthocyanin	Cyanidin-3-O-glucoside (cyanidin 3-O-beta-D-glucoside, kuromarin)	C_{18}H_{21}O_{11}+	449.3848	449; 287; 153	rice [22], Triticum [46,68], acerola [70]						
73	*D. palmatum*	Anthocyanin	Peonidin-3-O-glucoside	C_{21}H_{23}O_{11}+	463.4114	463; 301; 286; 258; 140	Berberis ilicifolia, Berberis empetrifolia [60], Andean blueberry [10], strawberry [61], Triticum aestivum [68]						
74	*D. palmatum*	Anthocyanin	Cyanidin 3-(acetyl)hexose	C_{23}H_{23}O_{12}+	491.4215	491; 287; 245; 153; 171	Acerola [70]						
---	---	---	---	---	---	---	---	---	---	---			
75	*D. palmatum*	Anthocyanidin	Cyanidin 3-(6”-malonylglucoside)	C_{26}H_{23}O_{14}	535.4310	535	287	285; 179	242; 153	strawberry [40], strawberry [61], *Triticum aestivum* [68]			
76	*D. palmatum*	Anthocyanidin	Cyanidin 3-O-coumaroyl hexoside	C_{26}H_{23}O_{13}	595.533	595	287	153		Grape vine varieties [71]			
77	*D. palmatum*	Anthocyanidin	7-O-Methyl-delphinidin-3-O-(2”galloyl)galactoside	C_{26}H_{28}O_{16}	630.5071	631	317; 519			*Rhus coriaria* [36]			
78	*D. ruyschiana*	Condensed tannin	Procyanidin A-type dimer	C_{20}H_{16}O_{12}	576.501	577	416; 352; 283; 164	337; 295; 193319; 225; 150		pear [25], *Vaccinium myrtillus* [43]			
79	*D. palmatum*	Amino acid	L-Leucine (S)-2-amino-methylpentanoic acid)	C_{6}H_{13}NO_{2}	131.1729	132	130						
80	*D. palmatum*	Alpha-omega dicarboxylic acid	Hydroxymethyl glutaric acid	C_{6}H_{10}O_{5}	162.1406	163	145	117		Potato leaves [37]			
81	*D. palmatum*	Cyclohexene carboxylic acid	Perillic acid	C_{10}H_{14}O_{2}	166.217	167	149	121		*Mentha* [14]			
82	*D. palmatum*, *D. ruyschiana*	Amino acid	L-tryptophan (tryptophan; (S)-tryptophan)	C_{11}H_{12}N_{2}O_{2}	204.2252	205	188	144	118	*Passiflora incarnata* [26], *Camellia kucha* [34], *Vigna unguiculata* [57]			
83	*D. palmatum*	Aminoalkylidine	5-Methoxydimethyltryptamine	C_{15}H_{16}N_{2}O_{2}	218.2948	219	201	159; 118		*Camellia kucha* [34]			
84	*D. palmatum*	Sesquiterpenoid	Epiglobulol ((-)globulol)	C_{15}H_{26}O	222.3663	223	205; 153	133		Olive leaves [72]			
85	*D. palmatum*	Omega-5 fatty acid	Myristoleic acid (cis-9-tetradecanoic acid)	C_{14}H_{26}O_{2}	226.3550	227	209	139		*F. glaucescens* [28]			
86	*D. palmatum*	Medium-chain fatty acid	Hydroxydodecanoic acid	C_{12}H_{22}O_{5}	246.3001	247	229	216		*F. glaucescens* [28]			
No.	Species	Compound	Formula	Mass 1	Mass 2	Mass 3	Mass 4	Source					
-----	------------------	------------------------------------	---------------	--------	--------	--------	--------	---					
87	D. palmatum	Omega-3 unsaturated fatty acid						F. glaucescens [28]					
		Hexadecatrienoic acid (hexadeca-2,4,6-trienoic acid)	C_{16}H_{26}O_{2}	250.3764	251	233; 191	187						
88	D. ruyschiana	Propionic acid	C_{3}H_{6}O_{2}	74.1004				Ginkgo biloba [73]					
		Ketoprofen	C_{16}H_{14}O_{3}	254.2806	253	210	180						
89	D. palmatum; D. ruyschiana	Ribonucleoside composite of adenine (purine)	C_{6}H_{13}N_{5}O_{4}	267.2413	268	136; 258		Lonicera japonica [11]					
		Adenosine	C_{6}H_{13}N_{5}O_{4}	267.2413	268	136; 258							
90	D. palmatum	Sceletium alkaloid	C_{19}H_{23}NO_{3}	289.3694	290	242	226	A. cordifolia [28]					
91	D. ruyschiana	O-Methyl-dehydrojoubertamine	C_{19}H_{23}NO_{3}	289.3694	290	242	226	A. cordifolia [28]					
92	D. palmatum	Omega-9 unsaturated fatty acid	C_{18}H_{34}O_{2}	282.4614	283	209; 114		Sanguisorba officinalis [74], Pinus sylvestris [75]					
93	D. palmatum	2-Hydroxy fatty acid	C_{18}H_{34}O_{2}	286.4501	285	265	186	F. pottsii [28]					
94	D. palmatum	Alkaloid	C_{19}H_{18}O_{4}	310.3438	311	283; 137	119	Sceletium [76]					
95	D. palmatum, D. ruyschiana	Diterpenoid	C_{19}H_{18}O_{4}	310.3438	311	283; 137	119	Salviae miltiorrhiza [77]					
		Tanshinone IIB ((S)-6-(hydroxyxymethyl)-1,6-dimethyl-6,7,8,9-tetrahydrophenanthro[1,2-B]furan-10,11-dione)	C_{19}H_{18}O_{4}	310.3438	311	283; 137	119						
96	D. palmatum	Alpha-omega dicarboxylic acid	C_{18}H_{32}O_{5}	314.4602	315	297; 179	212	F. glaucescens [28]					
		Octadecanedioic acid (1,16-heptadecanedicarboxylic acid)	C_{18}H_{32}O_{5}	314.4602	315	297; 179	212						
97	D. palmatum	Unsaturated essential fatty acid	C_{20}H_{36}O_{5}	318.4504	319	300	282; 167	240	Potato leaves [37]				
98	D. ruyschiana	Oxylinps	C_{18}H_{32}O_{5}	328.4437	327	229	209	Bituminaria [49], Phyllostachys nigra [63]					
99	D. ruyschiana	Oxylinps	C_{18}H_{32}O_{5}	328.4437	327	229	209	Potato leaves [37]					
		100 D. *ruyschiana*	**Docosahexaenoic acid**	C_{22}H_{32}O_{2}	328.4883	327	309; 201	291; 171	273	Marine extracts [78]			
---	---	---	---	---	---	---	---	---	---	---			
		101 D. *palmatum, D. ruyschiana*	**13- Trihydroxy-octadecenoic acid** (THODE)	C_{18}H_{30}O_{3}	330.4596	329	229; 311	211	167	Bituminaria [49], Sasa veitchii [63], Brassica oleracea [79]			
		102 D. *ruyschiana*	**Beta-apo-12'-carotenal**	C_{35}H_{56}O_{3}	350.5369	351	259; 147	231; 145	Carotenoids [80, 81]				
		103 D. *palmatum*	**Sterol**	**Stigmasterol** (stigmasterin, beta-stigmasterol)	C_{29}H_{48}O	412.6908	413	301	188	A. cordifolia, F. pottsii [28], Olive leaves [72], *Hedyotis diffusa* [82]			
		104 D. *ruyschiana*	**Carotenoid**	**Apocarotenal** ((all-E)-beta-apo-caroten-8'-al)	C_{30}H_{40}O	416.6380	417	399; 200	351	267	Carica papaya [83]		
		105 D. *palmatum*	**Tetrahydroxyxanthene**	**Mangiferin**	C_{19}H_{18}O_{11}	422.3396	423	387; 238	345	[84, 85]			
		106 D. *palmatum*	**Long-chain fatty acid**	**Nonacosanoic acid**	C_{29}H_{58}O_{2}	438.7696	439	395; 353; 245	245	C. edulis [28]			
		107 D. *palmatum*	**Anabolic steroid, androgen, androgen ester**	**Vebonol**	C_{30}H_{44}O_{3}	452.6686	453	435; 336; 226	336	209	Rhus coriaria [36], *Hylocereus polyrhizus* [86]		
		108 D. *ruyschiana*	**Triterpenic acid**	**Oleanolic acid** (oleanic acid, cario-phyllin, astrantiagenin C, virgaureagenin B)	C_{30}H_{48}O_{3}	456.7003	457	410; 325	342; 164	C. edulis [28], *Hedyotis diffusa* [82], *Folium Eriobotryae* [87], *Eleutherococcus* [88]			
		109 D. *palmatum*	**Indole sesquiterpene alka-loid**	**Sespendole**	C_{33}H_{45}NO_{4}	519.7147	520	184; 359	124	Rhus coriaria [36], *Hylocereus polyrhizus* [86]			
		110 D. *ruyschiana*	**Carotenoid**	**(Z)-lutein**	C_{20}H_{30}O	550.8562	551	533	Physalis peruviana [89], carotenoids [90]				
		111 D. *palmatum*	**Carotenoid**	**5,8-epoxy-alpha-carotene**	C_{20}H_{30}O	552.872	553	536; 412; 207	299; 261	Physalis peruviana [89]			
		112 D. *ruyschiana*	**Carotenoid**	**Cryptoxanthin (beta-cryptoxanthin)**	C_{20}H_{30}O	552.872	553	535; 325; 223	517	Carotenoids [81, 91], *Smilax aspera* [92]			
	Species	Type	Compound	Formula	Mass	M/Z	M/Z	M/Z		Carotenoids [91]			
---	---------------	-----------------------	---------------------	----------	--------	-------	-------	-------	---	-----------------			
113	*D. ruyschiana*	Carotenoid Violaxanthin (zeaxanthin dieperoxide, all-trans-violaxanthin)	C_{40}H_{56}O_{4}	600.8702	601	364; 582	346; 202; 142	114					
		Macro cyclic glycolipid lactone	Resinoside A	C_{31}H_{34}O_{13}	614.5939	615	287; 203	162		*Eucalyptus genus* [93]			
References

1. Zakharova, V.I.; Kuznetsova, L.V. Abstract of the Flora of Yakutia: Vascular Plants; Nauka: Novosibirsk, Russia, 2012; p. 272 (In Russian).

2. Karavaev, M.N. Summary of the Flora of Yakutia; Publishing House of the USSR Academy of Sciences: Moscow, Russia, 1958; p. 189 p. (In Russian).

3. Danilova, N.S.; Borisova, S.Z.; Ivanova, N.S. Ornamental Plants of Yakutia: Atlas-Key; JSC “Fiton +”: Moscow, Russia, 2012; 248p. (In Russian).

4. Olennikov, D.N.; Chirikova, N.K.; Okhlopkova, Z.M.; Zulfugarov, I.S. Chemical Composition and Antioxidant Activity of Tánara Otó (Dracocephalum palmatum Stephan), a Medicinal Plant Used by the North-Yakutian Nomads. Molecules 2013, 18, 14105.

5. Kim, J.; Kim, J.N.; Park, 1.; Sivtseva, S.; Okhlopkova, Z.; Zulfugarov, I.S.; Kim, S.-W. Dracocephalum palmatum Stephan extract induces caspase and mitochondria dependent apoptosis via Myc induction in diffuse large B cell lymphoma. Oncol. Rep. 2020, 44, 2746–2756.

6. Lee, S.E.; Okhlopkova, Z.M.; Lim, C.; Cho, S.I. Dracocephalum palmatum Stephan extract induces apoptosis in human prostate cancer cells via the caspase-8-mediated extrinsic pathway. Chin. J. Nat. Med. 2020, 18, 793–800.

7. Kekasy, A.; Fuzfai, Z.; Kursinszki, L.; Molnar-Perl, I.; Lemberkovics, E. Analysis of non-volatile constituents in Dracocephalum species by HPLC and GC-MS. Chromatographia 2006, 63, S17–S22.

8. Zeng, Q.; Jin, H.Z.; Qin, J.J.; Fu, J.J.; Hu, X.J.; Liu, J.H.; Yan, L.; Chen, M.; Zhang, W.D. Chemical Constituents of Plants from the Genus Dracocephalum. Chem. Biodivers. 2010, 7, 1911–1929.

9. Selenge, E.; Murata, T.; Kobayashi, K.; Batkhun, J.; Yoshizaki, F. Flavone tetraglycosides and benzyl alcohol glycosides from the mongolian medicinal plant Dracocephalum ryschiana. J. Nat. Prod. 2013, 76, 186–193.

10. Aita, S.E.; Capirotti, A.L.; Cavaliere, C.; Cerrato, A.; Giannelli Moneta, B.; Montone, C.M.; Piovesana, S.; Lagana, A. Andean Blueberry of the Genus Disterigma: A High-Resolution Mass Spectrometric Approach for the Comprehensive Characterization of Phenolic Compounds. Separations 2021, 8, 58.

11. Cai, Z.; Wang, C.; Zou, L.; Liu, X.; Chen, J.; Tan, M.; Mei, Y.; Wei, L. Comparison of Multiple Bioactive Constituents in the Flower and the Caulus of Lonicera japonica Based on UFLC-QTRAP-MS/MS Combined with Multivariate Statistical Analysis. Molecules 2019, 24, 1936.

12. Wojakowska, A.; Piasecka, A.; Garcia-Lopez, P.M.; Zamora-Natera, F.; Krajewski, P.; Marczak, L.; Khakchlik, P.; Stobiecki, M. Structural analysis and profiling of phenolic secondary metabolites of Mexican lupine species using LC–MS techniques. Phytochemistry 2013, 92, 71–86.

13. Zhang, Z.; Jia, P.; Zhang, X.; Zhang, Q.; Yang, H.; Shi, H.; Zhang, L. LC-MS/MS determination and pharmacokinetic study of seven flavonoids in rat plasma after oral administration of Cirsium japonicum DC. extract. J. Ethnopharmacol. 2014, 158, 66–75.

14. Xu, L.L.; Xu, J.J.; Zhong, K.R.; Shang, Z.P.; Wang, F.; Wang, R.F.; Liu, B. Analysis of non-volatile chemical constituents of Mentha haplocalyx herba by ultra-high performance liquid chromatography–high resolution mass spectrometry. Molecules 2017, 22, 1756.

15. Martinez-Vazquez, M.; Estrada-Reyes, R.; Martinez-Laurrabauquio, A.; Lopez-Rubalcava, C.; Heinze, G. Neuropharmacological study of Dracocephalum moldavica L. (Lamiaceae) in mice: Sedative effect and chemical analysis of an aqueous extract. J. Ethnopharmacol. 2012, 141, 908–917.

16. Santos, S.A.O.; Freire, C.S.R.; Domingues, M.R.M.; Silvestre, A.J.D.; Neto, C.P. Characterization of Phenolic Components in Polar Extracts of Cynara cardunculus L. Bark by High-Performance Liquid Chromatography–Mass Spectrometry. Agrid. Food Chem. 2011, 59, 9386–9393.

17. Levandi, T.; Fussa, T.; Vahter, M.; Ingver, A.; Koppel, R. Principal component analysis of HPLC–MS/MS patterns of wheat (Triticum aestivum) varieties. Food Chem. 2014, 163, 86–92.

18. Teles, Y.C.E.; Rebello Horta, C.C.; de Fatima Agra, M.; Siheri, W.; Boyd, M.; Igoli, J.O.; Gray, A.I.; de Fatima Vanderlei de Souza, M. New Sulphated Flavonoids from Wissadula periplocifolia (L.) C. Presl (Malvaceae). Molecules 2015, 20, 20161–20172.

19. Singh, A.; Baijai, V.; Kumar, S.; Sharma, K.R.; Kumar, B. Profiling of Gallic and Ellagic Acid Derivatives in Different Plant Parts of Terminalia arjuna by HPLC-ESI-QTOF-MS/MS. Nat. Prod. Com. 2016, 11, 239–244.

20. Pandey, R.; Kumar, B. HPLC-QTOF–MS/MS-based rapid screening of phenolics and triterpenic acids in leaf extracts of Ocimum species and their interspecies variation. J. Liq. Chromatogr. Relat. Tech. 2016, 39, 225–238.

21. Enerstvedt, K.H.; Jordheim, M.; Andersen, O.M. Isolation and Identification of Flavonoids Found in Zostera marina Collected in Norwegian Coastal Waters. Am. J. Plant Sci. 2016, 7, 1163–1172.

22. Chen, W.; Gong, L.; Guo, Z.; Wang, W.; Zhang, H.; Liu, X.; Yu, S.; Xiong, L.; Luo, J. A novel integrated method for large-scale detection, identification, and quantification of widely targeted metabolites: Application in the study of rice metabolomics. Mol. Plant. 2013, 6, 1769–1780.

23. Pandey, B.P.; Pradhan, S.P.; Adhikari, K. LC-ESI-QTOF-MS for the Profiling of the Metabolites and in Vitro Enzymes Inhibition Activity of Bryophyllum pinnatum and Oxalis corniculata Collected from Ramechhap District of Nepal. Chem. Biodivers. 2020, 17, e2001555.

24. Li, X.; Tian, T. Phytochemical Characterization of Mentha spicata L. Under Differential Dried-Conditions and Associated Neoptoxicity Screening of Main Compound With Organ-on-a-Chip. Front. Pharmacol. 2018, 9, 1067.
25. Sun, L.; Tao, S.; Zhang, S. Characterization and Quantification of Polyphenols and Sterpenoids in Thinned Young Fruits of Ten Pear Varieties by UPLC-Q TRAP-MS/MS. *Molecules* 2019, 24, 159.

26. Ozarowski, M.; Piaecka, A.; Paszel-Jaworska, A.; Siqueira de A. Chaves, D.; Romanuik, A.; Rybczynska, M.; Gryszcynska, A.; Sawickowska, A.; Kachlicki, P.; Mikolajczak, P.L.; et al. Comparison of bioactive compounds content in leaf extracts of *Passiflora incarnata, P. caerulea* and *P. alata* and in vitro cytotoxic potential on leukemia cell lines. *Braz. J. Pharmacol.* 2018, 28, 179–191.

27. El-Sayed, M.A.; Abbass, F.A.; Refaat, S.; El-Shafae, A.M.; Fikry, E. UPLC-ESI-MS/MS Profile Of The Ethyl Acetate Fraction of Aerial Parts of Bougainvillea ‘Scarlett O’Hara’ Cultivated in Egypt. *Egypt. J. Chem.* 2021, 64, 22.

28. Hamed, A.R.; El-Hawary, S.S.; Ibrahim, R.M.; Abdelmohsen, U.R.; El-Halawany, A.M. Identification of Chemopreventive Components from *Halophytes* Belonging to Aizoaceae and Cactaceae Through LC/MS –Bioassay Guided Approach. *J. Chrom. Sci.* 2021, 59, 618–626.

29. Bodalska, A.; Kowalczyk, A.; Wlodarczyk, M.; Feska, I. Analysis of Polyphenolic Composition of a Herbal Medicinal Product—Peppermint Tincture. *Molecules* 2020, 25, 69.

30. Thomford, N.E.; Dzobo, K.; Chopera, D.; Wonkam, A.; Maroyi, A.; Blackhurst, D.; Dandara, C. In vitro reversible and time-dependent CYP450 inhibition profiles of medicinal herbal plant extracts *Neuwallia laevis* and *Cassia abbreviata*: Implications for herb-drug interactions. *Molecules* 2016, 21, 891.

31. Cirilini, M.; Mena, P.; Tassotti, M.; Herrlinger, K. A.; Nieman, K. M.; Dall’Asta, C.; Del Rio, D. Phenolic and volatile composition of a dry spearmint (*Mentha spicata* L.) extract. *Molecules* 2021, 26, 1007.

32. Shi, F.; Pan, H.; Lu, Y.; Ding, L. An HPLC-MS/MS method for the simultaneous determination of luteolin and its major metabolites in rat plasma and its application to a pharmacokinetic study. *J. Sep. Sci.* 2018, 41, 3830–3839.

33. Justesen, U. Negative atmospheric pressure chemical ionisation low-energy collision activation mass spectrometry for the characterisation of flavonoids in fresh herbs. *J. Chromatogr. A.* 2000, 92, 369–379.

34. Qin, D.; Wang, Q.; Li, H.; Jiang, X.; Fang, K.; Wang, Q.; Li, B.; Pan, C.; Wu, H. Identification of key metabolites based on non-targeted metabolomics and chemometrics analyses provides insights into bitterness in Kucha [Cameillia kucha (Chang et Wang) Chang]. *Food Res. Int.* 2020, 138, 109798.

35. Spinola, V.; Pinto, J.; Castilho, P.C. Identification and quantification of phenolic compounds of selected fruits from Madeira Island by HPLC-DAD-ESI-MSn and screening for their antioxidant activity. *Food Chem.* 2015, 173, 14–30.

36. Abu-Reidah, I.M.; Ali-Shtayeh, M. S.; Jamous, R. M.; Araas-Roman, D.; Segura-Carretero, A. HPLC-DAD-ESI-MS/MS screening of bioactive components from *Rhus coriaria* L. (sumac) fruits. *Food Chem.* 2015, 166, 179–191.

37. Rodríguez-Perez, C.; Gomez-Caravaca, A.M.; Guerra-Hernandez, E.; Cerretani, L.; Garcia-Villanova, B.; Verardo, V. Comprehensive metabolite profiling of *Solanum tuberosum* L. (potato) leaves T by HPLC-ESI-QTOF-MS. *Molecules* 2018, 112, 390–399.

38. Yin, N.-W.; Wang, S.-X.; Jia, L.-D.; Zhu, M.-C.; Yang, J.; Zhou, B.-J.; Yin, J.-M.; Lu, K.; Wang, R.; Li, J.-N.; et al. Identification and Characterization of Major Constituents in Different-Colored Rapeseed Petals by UPLC-HESI-MS/MS. *Agric. Food Chem.* 2019, 67, 11053–11065.

39. Viera, M.N.; Winterhalter, P.; Jerz, G. Flavonoids from the flowers of *Impatiens glandulifera* Royle isolated by high performance countercurrent chromatography. *Phytochem. Anal.* 2016, 27, 116–123.

40. Hanhineva, K.; Karenlampi, S.O.; Aharoni, A. Resent Advances in Strawberry Metabolomics. *Genes Genomes Genom.* 2011, 5, 65–75.

41. Oertel, A.; Matros, A.; Hartmann, A.; Arapitissa, P.; Dehmer, K.J.; Martens, S.; Mock, H.P. Metabolite profiling of red and blue potatoes revealed cultivar and tissue specific patterns for anthocyanins and other polyphenols. *Planta* 2017, 246, 281–297.

42. Rafsanjany, N.; Senker, J.; Brandt, S.; Dobrindt, U.; Hensel, A. In Vivo Consumption of Cranberry Exerts ex Vivo Antiadhesive Activity against FimH-Dominated Uropathogenic Escherichia coli: A Combined in Vivo, ex Vivo, and in Vitro Study of an Extract from *Vaccinium macrocarpon*. *J. Agric. Food Chem.* 2015, 63, 8804–8818.

43. Bujor, O.-C. Extraction, Identification and Antioxidant Activity of the Phenolic Secondary Metabolites Isolated from the Leaves, Stems and Fruits Of Two Shrubs of the *Eriaceae* Family. Ph.D. Thesis, Technical University of Iasi, Iasi, Romania, 2016.

44. Pharmacopoeia of the Eurasian Economic Union, Approved by Decision of the Board of Eurasian Economic Commission No. 100 Dated August 11, 2020. Available online: http://www.eurasiancommission.org/ru/act/txnreg/dept txnreg/LSMI/Documents/Фармакопея%20созюса%202011%202008.pdf (accessed on 7 February 2022)

45. Azmir, J.; Zaidul, I.S.M.; Rahman, M.M.; Sharif, K.; Mohamed, A.; Sahena, F.; Jahurul, M.; Ghafoor, K.; Norulaini, N.; Omar, A. Techniques for extraction of bioactive compounds from plant materials: A review. *J. Food Eng.* 2013, 117, 426–436.

46. Sharma, M.; Sandhir, R.; Singh, A.; Kumar, P.; Mishra, A.; Jachak, S.; Singh, S.P.; Singh, J.; Roy, J. Comparison analysis of phenolic compound characterization and their biosynthesis genes between two diverse bread wheat (*Triticum aestivum*) varieties differing for chapatti (unleavened flat bread) quality. *Front. Plant. Sci.* 2016, 7, 1870.

47. Geng, P.; Sun, J.; Zhang, M.; Li, X.; Harnil, J. M.; Chen, P. Comprehensive characterization of C-glycosyl flavones in wheat (*Triticum aestivum* L.) germ using UPLC-PDA-ESI/HRMS and mass defect filtering. *J. Mass Spectr.* 2016, 51, 914–930.

48. Stallmann, J.; Schweiger, R.; Pons, C. A.; Müller, C. Wheat growth, applied water use efficiency and flag leaf metabolome under continuous and pulsed deficit irrigation. *Sci. Rep.* 2020, 10, 1–13.

49. Llorente-Martinez, E.J.; Spinola, V.; Gouveia S.; Castilho, P.C. HPLC-ESI-MSn characterization of phenolic compounds, terpenoid saponins, and other minor compounds in *Bituminaria bituminosa*. *Ind. Crops Prod.* 2015, 69, 80–90.

50. De Freitas, M.A.; Silva Alves, A.I.; Andrade, J.C.; Leite-Andreade, M.C.; Lucas dos Santos, A.T.; de Oliveira, T.F.; dos Santos, F.; Silva Buenafina, M.D. Evaluation of the Antifungal Activity of the *Licania Riga* Leaf Ethanolic Extract against Biofilms Formed by *Candida* Sp. Isolates in Acrylic Resin Discs. *Antibiotics* 2019, 8, 250.
51. Zakharenko, A.M.; Razgonova, M.P.; Pikula, K.S.; Golokhvat, K.S. Simultaneous determination of 76 compounds of Rhodiola rosea extract using supercritical CO2-extraction and HPLC-ESI-MS/MS spectrometry. HINDAWI. Biochem. Res. Int. 2021, 2021, 9957490.

52. Zhu, Z.-W.; Li, J.; Gao, X.-M.; Amponsem, E.; Kang, L.-Y.; Hu, L.-M.; Zhang, B.-L.; Chang, Y.-X. Simultaneous determination of stilbenes, phenolic acids, flavonoids and anthraquinones in Radix polygoni multiflori by LC–MS/MS. J. Pharm. Biomed. Anal. 2012, 62, 162–166.

53. Wang, Y.; Vorsa, N.; Harrington, P.; Chen, P. Nontargeted Metabolomic Study on Variation of Phenolics in Different Cranberry Cultivars Using UPLC-IM-HRMS. Agric. Food Chem. 2018, 66, 12206–12216.

54. Vallverdu-Queralt, A.; Jauregui, O.; Medina-Román, A.; Lamuela-Raventos, R.M. Evaluation of a method to characterize the phenolic profile of organic and conventional tomatoes. J. Agric. Food Chem. 2012, 60, 3373–3380.

55. Jiang, R.-W.; Lau, K.-M.; Hon, P.-M.; Mak, T.C.W.; Woo, K.-S.; Fung, K.-P. Chemistry and Biological Activities of Caffeic Acid Derivatives from Salvia miltiorrhiza. Curr. Med. Chem. 2005, 12, 237–246.

56. Serrano, C.A.; Villena, G.K.; Rodriguez, E.F. Phytochemical profile and rosmarinic acid purification from two Peruvian Lepidium wild. species (Salviinae, Mentheae, Lamiaceae). Sci. Rep. 2021, 11, 7260.

57. Perchuk, I.; Shelenga, T.; Gurkina, M.; Miroshnichenko, E.; Burlyaeva, M. Composition of Primary and Secondary Metabolite Compounds in Seeds and Pods of Asparagus Bean (Vigna unguiculata (L.) Walp.) from China. Molecules 2020, 25, 3778.

58. Pan, M.; Lei, Q.; Zang, N.; Zhang, H. A Strategy Based on GC-MS/MS, UPLC-MS/MS and Virtual Molecular Docking for Analysis and Prediction of Bioactive Compounds in Eucalyptus Globules Leaves. Int. J. Mol. Sci. 2019, 20, 3875.

59. Paudel, L.; Wyzgoski, F.J.; Scheerens, J.C.; Chanon, A.M.; Reese, R.N.; Smiljanic, D.; Wesdemiotis, C.; Blakeslee, J.J.; Riedl, K.M.; Rinaldi, P.L. Nonanthocyanic secondary metabolites of black raspberry (Rubus occidentalis L.) fruits: Identification by HPLC-DAD, NMR, HPLC-ESI-MS, and ESI-MS/MS analyses. J. Agric. Food Chem. 2013, 61, 12032–12043.

60. Ruiz, A.; Hermosin-Gutiérrez, I.; Vergara, C.; von Baer, D.; Zapata, M.; Hitschfeld, A.; Obando, L.; Mardones, C. Anthocyanin profiles in south Patagonian wild berries by HPLC-DAD-ESI-MS/MS. Food Res. Int. 2013, 51, 706–713.

61. Sun, J.; Liu, X.; Yang, T.; Slovin, J.; Chen, P. Profiling polyphenols of two diploid strawberry (Fragaria vesca) inbred lines using UHPLC-HRMS®. Food Chem. 2014, 146, 289–298.

62. Marcia Fuentes, J.A.; Lopez-Salas, L.; Borras-Linares, I.; Navarro-Alarcon, M.; Segura-Carretero, A.; Lozano-Sanchez, J. Development of an Innovative Pressurized Liquid Extraction Procedure by Response Surface Methodology to Recover Bioactive Compounds from Carao Tree Seeds. Foods 2021, 10, 398.

63. Van Hoyweghen, L.; De Bosscher, K.; Haegeman, G.; Deforce, D.; Heyerick, A. In Vitro Inhibition of the Transcription Factor NF-κB and Cyclooxygenase by Bamboo Extracts. Phytother. Res. 2014, 28, 224–230.

64. Lee, S.Y.; Shaari, K. LC–MS metabolomics analysis of Stevia rebaudiana Bertoni leaves cultivated in Malaysia in relation to different developmental stages. Phytochem. Anal. 2021, 1–13. https://doi.org/10.1002/pca.3084

65. Simard, F.; Legault, J.; Lavoie, S.; Mshvidladze, V.; Fichette, A. Isolation and Identification of Cytotoxic Compounds from the Wood of Pinus resinosa. Phytother. Res. 2008, 22, 919–922.

66. Eklund, P.C.; Backman, M.J.; Kronberg, L.A.; Smeds, A.I.; Sjoholm, R.E. Identification of lignans by liquid chromatography-electrospray ionization ion-trap mass spectrometry. J. Mass Spectr. 2008, 43, 97–107.

67. D’Urso, G.; Sarais, G.; Lai, C.; Pizza, C.; Montoro, P. LC-MS based metabolomics study of different parts of myrtle berry from Sardinia (Italy). J. Berry Res. 2017, 7, 217–229.

68. Garg, M.; Chawla, M.; Chunduri, V.; Kumar, R.; Sharma, S.; Sharma, N.K.; Kaur, N.; Kumar, A.; Mundey, J.K.; Saini, M.K. Transfer of grain colors to elite wheat cultivars and their characterization. J. Cereal Sci. 2016, 71, 138–144.

69. Da Silva, L.P.; Pereira, E.; Pires, T.C.S.P.; Alves, M.J.; Pereira O.R.; Barros L.; Ferreira, I.C.F.R. Rhus alpinus Schott fruits: A detailed study of its nutritional, chemical and bioactive properties. Food Res. Int. 2019, 119, 34–43.

70. Vera de Rosso, V.; Hillebrand, S.; Cuevas Montilla, E.; Bobbio, F.O.; Winterhalter, P.; Mercadante, A.Z. Determination of anthocyanins from acerola (Malpighia emarginata DC.) and ac-ai (Euterpe oleracea Mart.) by HPLC–PDA–MS/MS. J. Food Compos. Anal. 2008, 21, 291–299.

71. Pantelic, M.M.; Dabic Zagorac, D.C.; Davidovic, C.M.; Todic, S.R.; Beslic, Z.S.; Gasic, U.M.; Tesic, Z.L.; Natic, M.M. Identification of phenolic compounds in berry skin, pulp, and seeds in 13 grapevine varieties grown in Serbia. Food. Chem. 2016, 211, 243–252.

72. Suarez Montenegro, Z.J.; Alvarez-Rivera, G.; Mendiola, J.A.; Ibanez, E.; Cifuentes, A. Extraction and Mass Spectrometric Characterization of Terpenes Recovered from Olive Leaves Using a New Adsorbent-Assisted Supercritical CO2 Process. Foods 2021, 10, 1301.

73. Xie, J.; Ding, C.; Ge, Q.; Zhou, Z.; Zhi, X. Simultaneous determination of ginkgolides A, B, C and bilobalide in plasma by LC–MS/MS and its application to the pharmacokinetic study of Ginkgo biloba extract in rats. J. Chromatogr. B 2008, 864, 87–94.

74. Kim, S.; Oh, S.; Noh, H.B.; Ji, S.; Lee, S.H.; Koo, J.M.; Choi, C.W.; Juhn, H.P. In Vitro Antioxidant and Anti-Propionibacterium acnes Activities of Cold Water, Hot Water, and Methanol Extracts, and Their Respective Ethyl Acetate Fractions, from Sanguisorba officinalis L. Roots. Molecules 2018, 23, 3001.

75. Ekeberg, D.; Flate, P.-O.; Eikenes, M.; Fongen, M.; Naess-Andresen, C.F. Qualitative and quantitative determination of extractives in heartwood of Scots pine (Pinus sylvestris L.) by gas chromatography. J. Chromatogr. A 2006, 1109, 267–272.

76. Patnala, S.; Kanfer, I. Medicinal use of Sceletium: Characterization of Phytochemical Components of Sceletium Plant Species using HPLC with UV and Electrospray Ionization-Tandem Mass Spectroscopy. J. Pharm. Pharm. Sci. 2015, 18, 414–423.
77. Yang, S.T.; Wu, X.; Rui, W.; Guo, J.; Feng, Y.F. UPLC-Q-TOF-MS analysis for identification of hydrophilic phenolics and lipo-philic diterpenoids from Radix Salviee Millotrhizae. Acta Chromatogr. 2015, 27, 711–728.

78. Thomas, M.C.; Dunn, S.R.; Altwater, J.; Dove, S.G.; Nette, G.W. Rapid Identification of Long-Chain Polyunsaturated Fatty Acids in a Marine Extract by HPLC-MS Using Data-Dependent Acquisition. Anal. Chem. 2012, 84, 5976–5983.

79. Park, S.K.; Ha, J.S.; Kim, J.M.; Kang, J.Y.; Lee, D.S.; Guo, T.J.; Lee, U.; Kim, D.-O.; Heo, H.J. Antiamnesic Effect of Broccoli (Brassica oleracea var. italicai) Leaves on Amyloid Beta (Aβ)1-42-Induced Learning and Memory Impairment. J. Agric. Food Chem. 2016, 64, 3353–3361.

80. Mercadante, A.Z.; Rodrigues, D.B.; Petry, F.C.; Barros Mariutti, L.R. Carotenoid esters in foods—A review and practical directions on analysis and occurrence. Food Res. Int. 2017, 99, 830–850.

81. Zoccali, M.; Giuffrida, D.; Salafia, F.; Giofre, S.V.; Mondello, L. Carotenoids and apocarotenoids determination in intact human blood samples by online supercritical fluid extraction-supercritical fluid chromatography-tandem mass spectrometry. J. Pharm. Biomed. Anal. 2018, 103, 40–47.

82. Chen, X.; Zhu, P.; Liu, B.; Wei, L.; Xu, Y. Simultaneous determination of fourteen compounds of Hedyotis diffusa Willd extract in rats by UHPLC-MS/MS method: Application to pharmacokinetics and tissue distribution study. J. Pharm. Biomed. Anal. 2018, 159, 490–512.

83. Lara-Abia, S.; Lobo-Rodrigo, G.; Welti-Chanes, J.; Pilar Cano, M. Carotenoid and Carotenoid Ester Profile and Their Deposition in Plastids in Fruits of New Papaya (Carica papaya L.) Varieties from the Canary Islands. Roots. Foods 2021, 10, 434.

84. Geodakyan, S.V.; Voskoboinikova, I.V.; Tjukavkina, N.A.; Sokolov, S.J. Experimental pharmacokinetics of biologically active plant phenolic compounds. I. Pharmacokinetics of mangiferin in the rat. Phytother. Res. 1992, 6, 332–334.

85. Han, D.; Chen, C.; Zhang, C.; Zhang, Y.; Tang, X. Determination of mangiferin in rat plasma by liquid–liquid extraction with UPLC–MS/MS. J. Pharm. Biomed. Anal. 2010, 51, 260–263.

86. Wu, Y.; Xu, J.; He, Y.; Shi, M.; Han, X.; Li, W.; Zhang, X.; Wen, X. Metabolic Profiling of Pitaya (Hylocereus polyrhizus) during Fruit Development and Maturation. Molecules 2019, 24, 1114.

87. Li, Z.-X.; Zhu, H.; Cai, X.-P.; He, D.-D.; Hua, J.-L.; Ju, J.-M.; Lv, H.; Ma, L.; Li, W.-L. Simultaneous determination of five triterpene acids in rat plasma by liquid chromatography–mass spectrometry and its application in pharmacokinetic study after oral administration of Falium Eriobotryae effective fraction. Biomed. Chromatogr. 2015, 29, 1791–1797.

88. Jin, L.; Schmiech, M.; El Gaafary, M.; Zhang, X.; Syrovets, T.; Simmet, T. A comparative study on root and bark extracts of Eleutherococcus senticosus and their effects on human macrophages. Phytotherapy 2020, 68, 153181.

89. Eitzel, L.; Pfeiffer, A.; Weber, F.; Schieber, A. Characterization of carotenoid profiles in goldenberry (Physalis peruviana L.) fruits at various ripening stages and in different plant tissues by HPLC-DAD-APCI-MSn. Food Chem. 2018, 245, 508–517.

90. Petry, F.C.; Mercadante, A.Z. Composition by LC-MS/MS of New Carotenoid Esters in Mango and Citrus. J. Agric. Food Chem. 2016, 64, 8207–8224.

91. Mi, J.; Jia, K.-P.; Wang, J.Y.; Al-Babili, S. A rapid LC-MS method for qualitative and quantitative profiling of plant apocarotenoids. Anal. Chim. Acta 2018, 1035, 87–95.

92. Delgado-Pelayo, R.; Homero-Mendez, D. Identification and Quantitative Analysis of Carotenoids and Their Esters from Sarsaparilla (Smilax aspera L.) Berries. J. Chromatogr. A 2012, 60, 8225–8232.

93. Heskes, A.M.; Goodger, J.Q.D.; Tsegay, S.; Quach, T.; Williams, S.J.; Woodrow, I.E. Localization of Oleuropeyol Glucose Esters and a Flavanone to Secretory Cavities of Myrtaceae. PLoS ONE 2012, 7, e40856.