Loop-mediated isothermal amplification (LAMP) assays for detection of the New Guinea fruit fly *Bactrocera trivialis* (Drew) (Diptera: Tephritidae)

Melissa L. Starkie¹*, Elizabeth V. Fowler¹, Xiaocheng Zhu², Arati Agarwal³, Lea Rako³, Isarena C. Schneider⁴, Mark K. Schutze¹, Jane E. Royer¹, David Gopurenko², Peter Gillespie² & Mark J. Blacket³

The cue-lure-responding New Guinea fruit fly, *Bactrocera trivialis*, poses a biosecurity risk to neighbouring countries, e.g., Australia. In trapping programs, lure caught flies are usually morphologically discriminated from non-target species; however, DNA barcoding can be used to confirm similar species where morphology is inconclusive, e.g., *Bactrocera breviculaeus* and *B. rufofuscula*. This can take days—and a laboratory—to resolve. A quicker, simpler, molecular diagnostic assay would facilitate a more rapid detection and potential incursion response. We developed LAMP assays targeting cytochrome c oxidase subunit I (COI) and Eukaryotic Translation Initiation Factor 3 Subunit L (EIF3L); both assays detected *B. trivialis* within 25 min. The BtrivCOI and BtrivEIF3L assay anneal derivatives were 82.7 ± 0.8 °C and 83.3 ± 1.3 °C, respectively, detecting down to 1 × 10¹ copies/μL and 1 × 10³ copies/μL, respectively. Each assay amplified some non-targets from our test panel; however notably, BtrivCOI eliminated all morphologically similar non-targets, and combined, the assays eliminated all non-targets. Double-stranded DNA gBlocks were developed as positive controls; anneal derivatives for the COI and EIF3L gBlocks were 84.1 ± 0.7 °C and 85.8 ± 0.2 °C, respectively. We recommend the BtrivCOI assay for confirmation of suspect cue-lure-trapped *B. trivialis*, with BtrivEIF3L used for secondary confirmation when required.

Tephritid fruit flies (Diptera: Tephritidae) are a highly diverse group of insects that include some of the most significant pests of global horticulture and food security⁶. The subfamily Dacinae contains over 900 described species⁷, with its centre of diversity in the Asia/Pacific/Oceania region⁸. It includes some of the world’s most destructive fruit pests, including *Bactrocera dorsalis* (Hendel) (oriental fruit fly) and *Zeugodacus cucurbitae* (Coquillett) (melon fly)⁹; but there are many other economically important species that are on National Priority Plant Pest lists⁹.

One destructive dacine pest, the New Guinea fruit fly, *Bactrocera trivialis* (Drew) is among these economically significant pests⁸ with records from 17 host plants across ten families, including commercial hosts such as starfruit, orange, guava, mango and chilli⁴⁰. *Bactrocera trivialis* is native to the island of New Guinea⁹ and is detected and eradicated from the Torres Strait Islands, to the immediate north of Queensland (Australia) every year¹⁰. As these islands are geographically situated between the Australian mainland and Papua New Guinea, such proximity represents an ongoing threat to Australia’s biosecurity⁵.

Australia’s first line of defence against *B. trivialis* is monitoring by using a network of traps in the Torres Strait Islands baited with male-specific cue-lure¹¹. These lure traps also attract many non-target species¹², and during the summer trapping season, individual traps may capture over 30,000 flies during a two-week trapping period (unpubl. data, Northern Australian Quarantine Survey). Note that of the lures used in monitoring, *Bactrocera*...
different enzymes are required to reach a determination16. It is possible, but there are no species-specific enzymes that are diagnostic for \textit{B. Australian dacine pest species of economic concern}26. Identification of morphologically similar non-targets such as \textit{Bactrocera} undertaken in a laboratory. Identification of \textit{B. primers produce stem-loop structures of any fruit fly species, and there are no rapid or in-field tools available for diagnosis of used-to-date in rapid diagnostic assays (i.e., a result obtained per specimen in under an hour) for identification laboratory and in-field diagnostics19. A LAMP reaction generally utilises three primer pairs that target eight regions of a chosen DNA fragment20. During LAMP reactions, these primers produce stem-loop structures that enable a faster reaction time when compared to conventional PCR18,20. Additionally, isothermal conditions required for LAMP reactions can be achieved using a portable, battery operated heating device; thus enabling in-field diagnosis21. Consequently, LAMP assays have recently been successfully designed and implemented for diagnosis of several insect pests22–25, including the Queensland fruit fly (\textit{Bactrocera tryoni} (Froggatt)) an Australian dacine pest species of economic concern26.

A range of diagnostic mitochondrial and nuclear loci have recently been used for identifying dacines17,18; often in conjunction with traditional cytochrome \textit{c} oxidase subunit I (COI) DNA barcode sequencing to resolve cryptic species16. The nuclear eukaryotic translation initiation factor 3 subunit I (EIF3L) region has been particularly effective in diagnosis of difficult species groups16. However, none of the alternative loci developed have been used to-date in rapid diagnostic assays \textit{i.e.}, a result obtained per specimen in under an hour) for identification of any fruit fly species, and there are no rapid or in-field tools available for diagnosis of \textit{B. trivialis}. There is, therefore, a need for a simple, rapid, and accurate diagnostic tool that will provide confident identifications in lieu of time-consuming and highly specialised laboratory processes.

Loop-mediated Isothermal Amplification (LAMP) is a tool that is highly specific and suitable for rapid laboratory and in-field diagnostics16. A LAMP reaction generally utilises three primer pairs that target eight regions of a chosen DNA fragment20. During LAMP reactions, these primers produce stem-loop structures that enable a faster reaction time when compared to conventional PCR18,20. Additionally, isothermal conditions required for LAMP reactions can be achieved using a portable, battery operated heating device; thus enabling in-field diagnosis21. Consequently, LAMP assays have recently been successfully designed and implemented for the diagnosis of several insect pests22–25, including the Queensland fruit fly (\textit{Bactrocera tryoni} (Froggatt)) an Australian dacine pest species of economic concern26.

Previous studies have designed gBlocks™ Gene Fragments (IDT, USA), synthetic fragments for use as positive controls in LAMP assays23,24,27. Implementing a gBlock can provide many benefits depending on the application, including: removing the need for cloning28, providing an indication of reaction efficiency27, having a readily available, stable positive at a known concentration, and if designed to anneal at a different temperature, can be easily differentiated from sample DNA25. In circumstances such as this where \textit{B. trivialis} DNA stocks are difficult to obtain for use as positive controls, gblock gene fragments offer a stable and reliable alternative.

Given the alternative diagnostic loci for the dacines are at our disposal18, the extensive sequence data already publicly available28, and reported successes using LAMP assays for identifying pest dacines in the past22,26, the aim of this research was to: (i) produce species-specific LAMP assays for rapid diagnosis of adult \textit{B. trivialis} in the laboratory or field; (ii) design and test the suitability of a synthetic gblock fragment as a positive control30, and (iii) test against a panel of non-target species including morphologically similar, genetically similar, and commonly encountered fruit flies.

Results

LAMP primers, assay performance and panel testing. We designed two complementary LAMP assays for diagnosis of \textit{B. trivialis} adults. Here we refer to the two assays as the BtrivCOI assay, and the BtrivEIF3L assay. For both assays, the F3/B3/FIP/BIP/Floop/Bloop primer pairs (Table 1) were optimal in a ratio of 1:6:3, at final concentrations of 0.4 µM, 2.4 µM and 1.2 µM respectively. The BtrivCOI assay was capable of amplifying \textit{B. trivialis} within the 25 min run time, with an anneal derivative of 82.6 ± 0.7 °C (Fig. 1). Of all the non-target species only \textit{B. parabarringtoniae} and \textit{B. barringtoniae} amplified (< 20 min), while we observed early to late amplification (> 20 min) of \textit{B. manskii} (between 17 and 24 min) (Table 2) in the BtrivCOI assay. The BtrivEIF3L assay amplified \textit{B. trivialis} species within the 25 min run time (Fig. 1) with an anneal derivative of 83.3 ± 1.3 °C which was consistent across validating laboratories; and provides a consistent benchmark to compare to the gBlock (Fig. 2). This assay was not as specific as the BtrivCOI assay, but notably, \textit{B. parabarringtoniae} and \textit{B. barringtoniae} were not amplified in this assay; other species in the test panel that produced early amplification were \textit{B. brevicaulus} and \textit{B. rufoscelus}, \textit{B. sp. near trivialis} (three morphologically similar species), \textit{B. aquilonis}, \textit{B. cacomina}, \textit{B. kraussi}, \textit{B. musae}, \textit{B. opilae}, and late amplification (> 20 min) of \textit{B. peninsularis}, \textit{B. tryoni}, \textit{B. neohumeralis}, \textit{B. bancroftii} and \textit{B. dorsalis} (Table 2). Most species with > 20 min amplification were not consistent across all individuals tested for that species.

Synthetic gBlock standards and serial dilutions. For the BtrivCOI assay, we found the assay could detect down to 1 × 10^7 copies/µL with an anneal derivative of 84.1 ± 0.7 °C compared to \textit{B. trivialis} DNA, which annealed at 82.6 ± 0.7 °C (Fig. 1). The BtrivEIF3L gBlock detected down to 1 × 10^5 copies/µL, with an anneal derivative of 85.8 ± 0.2 °C compared to \textit{B. trivialis} DNA, which annealed at 83.3 ± 1.3 °C (Fig. 2). In our cross-laboratory validations, we did not observe large deviations in anneal derivatives and sensitivity across laborato ries and GENIE III machines. We found that the most appropriate concentration for use as a standard in both assays was the 1 × 10^6 copies/µL dilution.
Table 1. Sequences and Tm (°C) of primers designed in this study for BtrivCOI and BtrivEIF3L LAMP assays developed for detection of *Bactrocera trivialis*. The F2 and B2 primer regions of FIP and BIP are underlined.

Assay	Primer name	Primer sequence 5'-3'	Tm (°C)
BtrivCOI assay (260 bp target)	BtrivCOI_F3	GGA AAA CGG GGG CTGG TAC AGGC	62.9
	BtrivCOI_B3	GCT CCG TCAA AAA ACT GG TGA GTAGAT	56.3
	BtrivCOI_FIP	GAA TAC CCG TCA AGT GGG AGT GGA ACC CTT ACT CAT GTG TAT CGC A	65.8
	BtrivCOI_BIP	YTC AAT TTT AGA AGC AGT AAA TTT CAT GGC TGT TAA TAC AAC TGC TCAG	63.7
	BtrivCOI_FL	AAA ATAG CTA GAT CA ACT GAAG CT	52.2
	BtrivCOI_BL	ACA AC AG TA AT A TAT AT A TAC GAT CC ACA	52.4
BtrivEIF3L assay (176 bp target)	BtrivEIF_F3	TTA TCA CGC CAT TAA AGT ACTG G	51.5
	BtrivEIF_B3	GTC GCT TGA ATG TAC AAG A	50.5
	BtrivEIF_FIP	AAG TTG AAA TTG CAG GC AAA CCA ATAG AA AT CCA AGA AA	62.9
	BtrivEIF_BIP	TGT TGG ATT TGC CATAC GATG ATG GATT TCC A GAA AAG TGC GA	65.6
	BtrivEIF_FL	GGT ATAT GAG A AAT ACT GC AC	50.1
	BtrivEIF_BL	CCG TTA TGC GAT GC	50.7

Figure 1. (a) Comparison of amplification of gBlock positive control and *Bactrocera trivialis* TRV003 DNA in the BtrivCOI LAMP assay. (b) Anneal derivative of gBlock positive control and *Bactrocera trivialis* TRV003 DNA in the BtrivCOI LAMP assay; in this LAMP run the gBlock positive anneals at ~ 84 °C, while *B. trivialis* DNA anneals at ~ 83 °C. The gBlock positive 1 × 10⁶ copies/µL is the appropriate concentration for use as a control. (c) BtrivCOI assay gBlock standard curve run with serial dilutions from 1 × 10⁸ copies/µL to 1 × 10¹ copies/µL.
Genus	Species	n	BtrivCOI LAMP (min:s*)	BtrivEIF3L LAMP (min:s*)	Lure response
Bactrocera	trivialis	21	9:22 ± 1:31	10:09 ± 3:50	Cue-lure
Bactrocera	breviaculeus	4	NEG	16:56 ± 6:48	Cue-lure
Bactrocera	rufofusca	2	NEG	19:15 (1)	Cue-lure
Bactrocera	sp. near trivialis	1	NEG	15:00	Cue-lure
Bactrocera	barringoniae	5	10:34 ± 3:55	NEG	Methyl-isoeugenol
Bactrocera	parabarringoniae	2	10:22 ± 1:22	NEG	Methyl eugenol
Bactrocera	aquilonis	2	NEG	18:18 (1)	Cue-lure
Bactrocera	bancroftii	2	NEG	23:45 (1)	Methyl eugenol
Bactrocera	bryoniae	3	NEG		Cue-lure
Bactrocera	cacuminata	3	NEG	10:34 ± 1:50	Methyl eugenol
Bactrocera	dorsalis	1	NEG	20:15	Methyl eugenol
Bactrocera	endiandrae	4	NEG		Methyl eugenol
Bactrocera	erubescentis	2	NEG		Cue-lure
Bactrocera	frauenfeldi	2	NEG		Cue-lure
Bactrocera	jarvisi	2	NEG		Zingerone
Bactrocera	kirki	1	NEG		Cue-lure
Bactrocera	kraussi	3	NEG	14:10 ± 3:25	Isoeugenol
Bactrocera	manskii	2	20:30 ± 3:30	NEG	Cue-lure
Bactrocera	musae	2	NEG	17:00 ± 0:45	Methyl eugenol
Bactrocera	neohumeralis	4	NEG	22:45 (1)	Cue-lure
Bactrocera	opilae	1	NEG	9:37	Methyl eugenol
Bactrocera	peninsularis	4	NEG	23:30 (1)	Cue-lure
Ceratitis	loranthi	2	NEG		
Ceratitis	capitata	4	NEG		Trimedlure/capilure
Dacus	absonificacies	1	NEG		Cue-lure
Dacus	aequalis	1	NEG		Cue-lure
Dacus	newmani	3	NEG		Cue-lure
Dirioxa	pornia	2	NEG		
Drosophil	melanogaster	2	NEG		
Lamprolonchae	brouniana	2	NEG		
Zeugodacus	cucumis	2	NEG		Cucumber volatile blend
Zeugodacus	cucurbitae	2	NEG		Cue-lure
Zeugodacus	fallacis	2	NEG		Cue-lure
Zeugodacus	strigifinis	2	NEG		Cue-lure

Table 2. Results from the panel testing for both BtrivCOI and BtrivEIF3L LAMP assays. Blue = no observed amplification, orange = amplification < 20 min (early), and yellow > 20 min (late); brackets indicate number of samples used to calculate average amplification time, where positive amplification of a species was variable. The target species, and samples morphologically or genetically similar are highlighted in grey; all other species are listed alphabetically. Lure response of each panel species (if any) is also presented[4,15,32]. NB: see supplementary table for individual specimen results. *Average +/- standard deviation.

BtrivCOI gBlock sequence:
5’gggGGAACACGGGGCTGGTACAGGCgggCCCTATCATCTGTATTATGCCAsggAGCTTCCAGTTGATCT AGCTATTTTgggTTCCACTCCATTAGCCGGTTATTCgggCTCAATTTTGAAGCAGTAAATTGATTggg gGAAACAGTAAATATATACGATCCACACAgggCTGAGCAGTTGTATTTACACGCCgggATCTTACGAGTGCTTTAGCAGAGGgg3’.

BtrivEIF3L gBlock sequence:
Discussion

We developed two complementary LAMP assays for accurate and rapid diagnosis of *B. trivialis* in the laboratory or field. The BtrivCOI assay is capable of distinguishing *B. trivialis* from other morphologically similar adult fruit flies, *B. brevicomis* and *B. rufifacies*, which are attracted to cue-lure. However, when run against our panel of genetically similar, and commonly trapped species, the BtrivCOI assay also amplified *B. barringtoniae*, *B. parabarringtoniae* and *B. manskii*. To address this, we developed a second assay based on the EIF3L locus that amplified some non-target species yet did distinguish between *B. trivialis* and the BtrivCOI assay-positive *B. barringtoniae*, *B. parabarringtoniae* and *B. manskii*. The BtrivEIF3L assay offers a reliable secondary test for use on morphologically damaged adult specimens.

Non-specific amplification in the BtrivCOI assay is not of high concern as we expect this assay will predominantly be used to aid in identification of adults caught in cue-lure traps. Since *B. parabarringtoniae* is a methyl eugenol responsive species, and *B. barringtoniae* responds to methyl-iso Eugenol, we do not expect these flies to be present in cue-lure traps. In the case of *B. manskii*, it possesses distinctive wing patterning that is absent in *B. trivialis* and so would not be used after initial morphological identification for follow up analysis, and this, along with the BtrivEIF3L assay, provides secondary confirmation. Additionally, the two assays can be run optimally under the same reaction conditions and simultaneously, to offer a confident result.

We designed two gBlock standards for use as positive controls in our LAMP assays. We recommend the use of the gBlock standards when implementing the assays for three main reasons: (i) *B. trivialis* is an exotic species to Australia, and DNA is often difficult to obtain in large quantities for use as positive controls; (ii) gBlocks

5'gggTTATCAAGCCTTAAAGTACTGGgggAAACCAATAGAAATCCCAAGAAgggGTGCCAGATTTCCTCATATACgggTGCCCTTCCAAATTTCAACTTgggTGTTGATTTTGCTATACATTGATGATGgggCCGTTATGCAGATGGgggTCGCACTTTCTCTGAAATCCgggTCTTTGATCATCAACGCACggg3'.

Figure 2. (a) Comparison of amplification of gBlock positive control and *Bactrocera trivialis* TRV003 DNA in the BtrivEIF3L LAMP assay. (b) Anneal derivative of gBlock positive control and *Bactrocera trivialis* TRV003 DNA in the BtrivEIF3L LAMP assay; in this LAMP run the gBlock positive anneals at ~ 86 °C, while *B. trivialis* DNA anneals at ~ 84 °C. The gBlock 1 × 10^6 copies/µL is the appropriate concentration for use as a control. (c) BtrivEIF3L assay gBlock standard curve run with serial dilutions from 1 × 10^6 copies/µL to 1 × 10^4 copies/µL.
are stable, and can be an indicator of primer or mastermix degeneration (particularly important if reagents are freeze-thawed multiple times); and (iii) gBlocks have been designed to have a different Tm from real *B. trivialis* DNA so that suspected reaction contaminations by gBlock controls (especially when running the assays in non-sterile field environments) can be easily recognised.

As we did not have access to *B. trivialis* larval samples for testing in the assays, the performance of these assays for identification of immatures was not tested. It is expected that immature specimens will be readily detected by both of our assays as they can detect very low copy numbers (1 \times 101 for BtrivCOI and 1 \times 103 for BtrivEIF3L). That said, it is unlikely that *B. trivialis* LAMP assays will be required for immature identification given the differences in host plants used across species. Nevertheless, the performance of similar fruit fly assays which have tested both adult and immature samples have demonstrated LAMP amplification success26.

In conclusion, we have developed two assays that in combination, are capable of rapidly identifying adult *B. trivialis*. In the absence of any previously developed LAMP or real-time (qPCR) assays, these assays are the first rapid assays developed for this species. Our assays significantly improve on current DNA barcoding methods and incorporate alternative fruit fly diagnostic loci for the first time. Rapid diagnosis of *B. trivialis* can now be conducted in under an hour, rather than the typical timeframes required for traditional PCR and sequencing. This also adds to the growing number of species-specific LAMP assays available for fruit flies21,26. A fast diagnosis will result in an early management response; ultimately improving biosecurity response capability.

Materials and methods

Specimens examined. A total of 99 specimens were assessed in this study, consisting of 21 *B. trivialis* and a test panel of 33 non-target species. For completeness, *B. trivialis* samples were included from locations throughout its native (Papua New Guinea) and invasive (Torres Strait islands) range (Fig. 3). We recognise the invasive range as regions that experience seasonal incursions of *B. trivialis* but are subsequently eradicated by the National Exotic Fruit Fly in Torres Straits Eradication Program10. To account for possible intraspecific sequence variability, samples were included from Madang Province, Central Province, National Capital District in Papua New Guinea; as well as Saibai Island, Dauan Island and Boigu Island in the Torres Strait (Fig. 3). The test panel included the same species panel included in Blacket et al.26; additional native Australian species genetically similar to *B. trivialis*, based on recent phylogenetic analysis15; species commonly trapped in male-lure traps in Australia; and selected species exotic to Australia that may be encountered as immatures (Table 1). In addition, we included an undescribed, morphologically similar species, *B. sp. near trivialis* (FFP108) that occurs in sympathy with *B. trivialis*. All samples used in the design and testing of these assays were morphologically identified using descriptions and keys in Drew9 and Plant Health Australia31 and subsequently confirmed through cytochrome c oxidase subunit I (COI) barcode sequencing (see below). Collection details and GenBank accession numbers for samples used in assay design or testing can be found in the data availability and supplementary material Table S1.
DNA extractions, PCR and sequencing. Genomic DNA was extracted from three fly legs using the DNeasy Blood and Tissue Kit (Qiagen, Valencia, CA) as per the manufacturer's protocol. For old, reference collection specimens, three legs were also destructively sampled, and the protocol was modified, with samples lysed in Qiagen buffer ATL and Proteinase K at 37 °C overnight. Polymerase chain reactions (PCR) were carried out to sequence LAMP target regions and confirm sample identifications. Sequencing was conducted on the Applied Biosystems ProFlex PCR thermal cycler (Thermo Fisher Scientific, USA) (see Table 3 for primer details). Products were visualised on a 1.5% agarose gel; subsequently cleaned up using the ExoSAP-IT™ Express PCR product clean-up protocol (Thermo Fisher, USA); and sent to Macrogen (Seoul, South Korea) and Australian Genome Research Facility (AGRF, Brisbane) for Sanger sequencing. New DNA sequences obtained in this study were submitted to GenBank.

Primer design and LAMP assay reaction set-up. Reference alignments were compiled for the 5′-COI locus (~621 bp) and the nuclear EIF3L locus (~550 bp) from six species; the target: B. trivialis; non-targets: B. brevicus, B. rufoscuta, B. parabarringtoniae and B. barringtoniae and B. peninsularis a species which shares genotypes with B. brevicus and B. rufoscuta. Alignments consisted of sequences generated in this study, together with data available on GenBank (date accessed: June 10, 2021; see supplementary material (Table S1) for GenBank accession numbers).

Six novel LAMP primers were developed to target B. trivialis for a 260 bp fragment of COI (Fig. 4a) and a 176 bp fragment of EIF3L (Fig. 4b). Primers were designed by eye for each assay; the outer F3 and B3; inner FIP and BIP primers target F1c + F2/B1c + B2 priming regions respectively.

Table 3. Loci, primers and annealing temperatures used to sequence LAMP target regions and confirm sample identifications. LCO1490-mod and HCO2198-mod were paired in PCR to amplify the entire 5′-COI DNA barcode region or paired with internal Dac-COI primers to amplify shorter fragments for collection samples.
and BIP; and two loop primers: Floop and Bloop (Fig. 4a,b; Table 1). Complete sets of primers were tested for primer dimers and Tm compatibility using the Thermofisher Multiple Primer Analyzer. Additionally, two synthetic double stranded gBlock gene fragments (IDT, USA) were designed for use as positive controls. The gblocks were designed based on our priming regions (Fig. 4), with the addition of connecting strings of ‘g’ nucleotides between each. This design allowed us to manipulate the Tm (°C) of our gblock fragment. We tested the BtrivCOI gBlock and BtrivEIF3L gBlock in tenfold serial dilutions to give an indication of the sensitivity of each assay.

Both the BtrivCOI and BtrivEIF3L assays were run by combining 14 µL of Isothermal master mix (DR001) (OptiGene, UK) with 10 µL of primer master mix and 1 µL of template DNA. The primer master mix consisted of the three primer pairs F3/B3/FIP/BIP/Floor/Blow that were tested at various ratios during optimisation. Both reactions were run on the GENIE III (OptiGene, UK) at 65 °C for 25 min (isothermal amplification), followed by ramping from 98–73 °C at 0.05 °C/s (annealing curve analysis). Products were visualized in the blue channel on the GENIE III. We validated our methods across three independent laboratories (Queensland Department of Agriculture and Fisheries, New South Wales Department of Primary Industries and at AgriBio Victoria). We treated amplification within 20 min as positive; samples amplifying later than 20 min were reported as late amplification.

Data availability
Sequences generated in this study are available at GenBank. Accession numbers ON092615-ON092623 (EIF3L), and ON103574-ON103618 (COI barcode).

Received: 25 March 2022; Accepted: 18 July 2022
Published online: 23 July 2022

References
1. White, I. M. & Elson-Harris, M. M. Fruit flies of Economic Significance: Their Identification and Bionomics (CABI International, 1992).
2. Doorenweerd, C., Leblanc, L., Norrbom, A. L., San Jose, M. & Rubinoff, D. A global checklist of the 932 fruit fly species in the tribe Dacini (Diptera, Tephritidae). Zootaxa 730, 19–56. https://doi.org/10.3897/zootaxa.730.21786 (2018).
3. Drew, R. A. I. Biogeography and speciation in the Dacini (Diptera: Tephritidae: Dacinae). Bishop Museum Bull. Entomol. 12, 165–178 (2004).
4. Plant Health Australia. The Australian Handbook for the Identification of Fruit Flies Vol. 3 (Plant Health Australia, 2018).
5. Department of Agriculture, W. a. t. E.
6. Tenakanai, D. in The Australian Handbook for the Identification of Fruit Flies Vol. 3 (Plant Health Australia, 2018).
7. Plant Health Australia. The Australian Handbook for the Identification of Fruit Flies Vol. 3 (Plant Health Australia, 2018).
8. Drew, R. A. I. The tropical fruit flies (Diptera: Tephritidae: Dacinae) of the Australasian and Oceanian regions. Vol. 26 (Queensland Museum, 1989).
9. Queensland Department of Agriculture and Fisheries. National exotic fruit flies in the Torres Strait eradication program response plan version 1.0, 1 July 2021–30 June 2026. (2021).
10. Smith, E. S. C. Internal and External Fruit Fly Quarantine in Australia (Indian Ocean Commission, 2000).
11. Clarke, A. R. Biology and Management of Bactrocera and Related Fruit Flies (CABI International, 2019).
12. Starkie, M. L. et al. A comprehensive phylogeny helps clarify the evolutionary history of host breadth and lure response in the Australian Dacini fruit flies (Diptera: Tephritidae). Mol. Phylogenet. Evol. 172, 107481. https://doi.org/10.1016/j.ympev.2022.107481 (2022).
13. Drew, R. A. I., Hancock, D. L. & Ronig, M. C. New species and records of fruit flies (Diptera: Tephritidae: Dacinae) from North Queensland. Aust. Entomol. 36, 1–12 (1999).
14. Rojas, L. E. Responses of fruit flies (Tephritidae: Dacinae) to novel male attractants in north Queensland, Australia, and improved lures for some pest species. Aust. Entomol. 54, 411–426. https://doi.org/10.1111/aen.12141 (2015).
15. Plant Health Australia. Fruit Fly ID Australia, http://fruitflyidentification.org.au (2018).
16. Krosch, M. N., Schutze, M. K., Struti, E., Clarke, A. R. & Cameron, S. L. A transcriptome-based analytical workflow for identifying loci for species diagnosis: A case study with Bactrocera fruit flies (Diptera: Tephritidae). Austent. Entomol. 58, 393–408. https://doi.org/10.1111/aen.12321 (2019).
17. Plant Health Australia. DNA barcoding, https://fruitflyidentification.org.au/diagnostic-methods/molecular-identification/dna-barcoding/ (2020).
18. Notomi, T. et al. Loop-mediated isothermal amplification of DNA. Nucleic Acids Res. 28, e63 (2000).
19. Nagamine, K., Hase, T. & Notomi, T. Accelerated reaction by loop-mediated isothermal amplification using loop primers. Mol. Cell. Probes 16, 223–229 (2002).
20. Blaser, S. et al. From laboratory to point of entry: Development and implementation of a loop-mediated isothermal amplification (LAMP)-based genetic identification system to prevent introduction of quarantine insect species. Pest Manag. Sci. 74, 1504–1512 (2018).
21. Blaser, S. et al. A loop-mediated isothermal amplification (LAMP) assay for rapid identification of Bemisia tabaci. J. Insec. Exp. 140, 53–59. https://doi.org/10.3791/58502 (2018).
22. Agarwal, A., Cunningham, J. P., Valenzuela, I. & Blacket, M. J. A diagnostic LAMP assay for the destructive grapevine insect pest, phylloxera (Daktulosphaira vitifoliae). Sci. Rep. 10, 21229 (2020).
23. Rako, L. et al. A LAMP (Loop-mediated isothermal amplification) test for rapid identification of Khapra beetle (Trogoderma granarium). Pest Manag. Sci. 77, 5599–5521 (2021).
24. Agarwal, A. et al. A diagnostic LAMP assay for rapid identification of an invasive plant pest, fall armyworm Spodoptera frugiperda (Lepidoptera: Noctuidae). Sci. Rep. 12, 1116. https://doi.org/10.1038/s41598-021-04496-a (2022).
25. Blacket, M. J. et al. A LAMP assay for the detection of Bactrocera tryoni Queensland fruit fly (Diptera: Tephritidae). Sci. Rep. 10, 9554 (2020).
26. Sarkes, A., Fu, H., Feindel, D., Harding, M. & Feng, J. Development and evaluation of a loop-mediated isothermal amplification (LAMP) assay for the detection of Tomato brown rugose fruit virus (ToBRFV). PLoS ONE 15, e023043 (2020).
28. Prediger, E. Simplifying CRISPR. Genet. Eng. Biotechnol. News 35, 18–19 (2015).
29. NCBI. National Center for Biotechnology Information, https://www.ncbi.nlm.nih.gov/ (1988).
30. Conte, J., Potoczniak, M. J. & Tobe, S. S. Using synthetic oligonucleotides as standards in probe-based qPCR. Biotechniques 64, 177–179 (2018).
31. Plant Health Australia. Fruit fly ID Key 2018 - LUCID Web Player, https://fruitflyidentification.org.au/identify/ (2018).
32. Royer, J. E., De Faveri, S. G., Lowe, G. E. & Wright, C. L. Cucumber volatile blend, a promising female-biased lure for Bactrocera cucumis (French 1907) (Diptera: Tephritidae: Dacinae), a pest fruit fly that does not respond to male attractants. Aust. Entomol. 53, 347–352 (2014).
33. Krosch, M. N. et al. Development of internal COI primers to improve and extend barcoding of fruit flies (Diptera: Tephritidae: Dacini). Insect Sci. 27, 143–158. https://doi.org/10.1111/1744-7917.12612 (2020).

Acknowledgements
The authors thank Catherine Phillips, Technical Officer at Department of Primary Industries, Orange Agricultural Institute for providing additional information on sample collections. This study was conducted as part of the "Phenology, demography, and distribution of Australia’s fruit flies" project, funded through the Strengthening Australia’s Fruit Fly System Research Program. Funding for the program is provided by the Australian Government, with contributions matched from state and territory governments. We thank Penny Measham (QDAF), Peter Leach (QDAF), and Anthony Clarke (QUT) for their guidance and management of the fruit fly Phenology project.

Author contributions
The initial laboratory optimisation and testing was conducted by E.V.F and M.L.S. LAMP primers and gBlocks were designed by E.V.F. and M.J.B. Cross-laboratory validations were conducted by X.Z., A.A., and L.R. Samples were provided by P.G., D.G., I.C.S., and J.E.R., with identifications by J.E.R., M.L.S., and I.C.S. M.K.S., J.E.R., and M.J.B. provided input on project design. All authors contributed to and approved the final manuscript.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary Information The online version contains supplementary material available at https://doi.org/10.1038/s41598-022-16901-0.

Correspondence and requests for materials should be addressed to M.L.S.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher's note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2022