Classification of True-progression after Radiotherapy of Brain Metastasis on MRI using Artificial Intelligence: a Systematic Review and Meta-Analysis

¹Hae Young Kim, MD, PhD, ¹Se Jin Cho, MD*, ¹Leonard Sunwoo, MD, PhD*, ¹Sung Hyun Baik, MD, ¹Yun Jung Bae, MD, PhD, ¹Byung Se Choi, MD, PhD, ¹Cheolkyu Jung, MD, PhD, and ¹Jae Hyoung Kim, MD, PhD

¹Department of Radiology, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Gyeonggi-do, Korea

*Se Jin Cho and Leonard Sunwoo contributed equally as co-corresponding authors.

Corresponding Author:

Se Jin Cho, MD
Department of Radiology, Seoul National University Bundang Hospital
82, Gumi-ro 173beon-gil, Bundang-gu, Seongnam, Gyeonggi, 13620, Republic of Korea
E-mail: sejinchorad@gmail.com; Tel: +82-31-787-8141; Fax: 82-31-787-4011

Leonard Sunwoo, MD, PhD
Department of Radiology, Seoul National University Bundang Hospital
82, Gumi-ro 173beon-gil, Bundang-gu, Seongnam, Gyeonggi, 13620, Republic of Korea
E-mail: leonard.sunwoo@gmail.com; Tel: +82-31-787-7631; Fax: +82-31-787-4011

© The Author(s) 2021. Published by Oxford University Press, the Society for Neuro-Oncology and the European Association of Neuro-Oncology.

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.
Funding: This study was supported by a grant from the National Research Foundation of Korea (Grant number: NRF-2018R1C1B6007917) and by the Seoul National University Bundang Hospital Research Fund (Grant No. 14-2020-026).

Conflict of interest: The authors report no conflict of interest, and the present study has not been presented elsewhere.

Authorship: H.Y.K: the implementation, and interpretation of the data, writing of the draft manuscript, and approval of the final version. S.J.C.: experimental design, analysis, and interpretation of the data, writing of the draft manuscript, and approval of the final version. L.S.: experimental design, the implementation, and interpretation of the data, writing of the manuscript at the revision stage, and approval of the final version. S.H.B., Y.J.B., B.S.C., C.J and J.H.K.: analysis and interpretation of the data, writing of the manuscript at the revision stage, and approval of the final version.
Abstract

Background. Classification of true-progression from non-progression (e.g., radiation-necrosis) after stereotactic radiotherapy/radiosurgery of brain metastasis is known to be a challenging diagnostic task on conventional magnetic resonance imaging (MRI). The scope and status of research using artificial intelligence (AI) on classifying true-progression is yet unknown.

Methods. We performed a systematic literature search of MEDLINE and EMBASE databases to identify studies that investigated the performance of AI-assisted MRI in classifying true-progression after stereotactic radiotherapy/radiosurgery of brain metastasis, published before November 11th, 2020. Pooled sensitivity and specificity were calculated using bivariate random-effects modeling. Meta-regression was performed for identification of factors contributing to the heterogeneity among the studies. We assessed the quality of the studies using Quality Assessment of Diagnostic Accuracy Studies 2 (QUADAS-2) criteria and a modified version of the radiomics quality score (RQS).

Results. 7 studies were included, with a total of 485 patients and 907 tumors. The pooled sensitivity and specificity were 77% (95% CI, 70–83%) and 74% (64–82%), respectively. All 7 studies used radiomics, and none used deep learning. Several covariates including the proportion of lung cancer as the primary site, MR field strength, and radiomics segmentation slice showed a statistically significant association with the heterogeneity. Study quality was overall favorable in terms of the QUADAS-2 criteria, but not in terms of the RQS.

Conclusion. The diagnostic performance of AI-assisted MRI seems yet inadequate to be used reliably in clinical practice. Future studies with improved methodologies and a larger training set are needed.

Keywords: artificial intelligence; magnetic resonance imaging; radiosurgery; radiotherapy; systematic review.
Key Points

1. The performance of AI-assisted MRI seems yet inadequate for use in clinical practice.
2. All studies used radiomics, and none used deep learning.
3. Quality and study design of the published literature should be improved.

Importance of the Study

Classification of true-progression after stereotactic radiotherapy or radiosurgery of brain metastasis is important, as incorrect diagnosis may lead to unnecessary systemic therapy or additional radiation therapy, or invasive biopsy or surgery for a definitive diagnosis. However, such classification is known to be difficult using advanced imaging modalities such as positron emission tomography or MR spectroscopy, as well as conventional MRI. Our study contributes to the knowledge gap regarding the status of research using artificial intelligence on the diagnostic task. Our study reviews the methodology and quality of the current studies, offering valuable information for future research.
Introduction

Stereotactic radiotherapy or radiosurgery, owing to its high efficacy with relatively short treatment time and favorable toxicity profile, is increasingly used for patients with a limited number of brain metastases. Contrast-enhanced MR imaging remains the modality of choice for follow-up after stereotactic radiotherapy or radiosurgery (hereinafter, collectively termed as stereotactic radiotherapy) of brain metastasis, as it shows excellent soft-tissue contrast that can delineate structural abnormalities with high resolution. However, new or enlarging lesion on MRI may complicate patient management during follow-up, as such lesion is not always indicative of true progression. Classification of true-progression from non-progression including radiation necrosis is known to be difficult on conventional MRI. In a previous systematic review, the pooled sensitivity and specificity of conventional gadolinium MRI across four studies was around 63% and 82%, respectively. Radiation necrosis, which strikingly mimics true-progression not only in MR imaging appearance but also in clinical symptoms, is reported to occur in up to one-fourth of patients after stereotactic radiotherapy. Incorrect classification of true progression may lead to substantial patient harm, as unnecessary systemic therapy or additional radiation therapy could be administered, or subsequent biopsy or resection may accompany complications such as infection or neurologic deficit. Other advanced imaging modalities such as perfusion MRI, magnetic resonance spectroscopy, 18FLT, 18FDG PET, or SPECT have also been proposed, but to date, none of those has emerged as a standard for diagnosing true-progression.

Artificial intelligence (AI), which is receiving increasing attention as a potential game-changer in the field of medical sciences, may be an alternative solution to the diagnostic challenge at hand. For example, automated quantitative analysis of tumor response for glioblastoma on MRI using artificial neural networks showed reliable performance in an independent dataset for external validation. However, the scope and status of research using
AI on classifying true-progression is uncertain at this point. Thus, through this systematic review and meta-analysis, we aimed to measure the diagnostic performance of AI-assisted MRI in classifying true-progression from non-progression after radiotherapy of brain metastasis, and to identify factors attributable to the heterogeneity in the included studies.

Materials and Methods

We adhered to the standard guidelines of Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA).

Literature Search

We performed a literature search of the MEDLINE and EMBASE databases using the search terms as follows: ((brain metastas*) OR (cerebral metastas*) OR (metastatic brain tumor) OR (intra-axial metastatic tumor)) AND ((automated) OR (computer aided) OR (computer-aided) OR (CAD) OR (radiomic) OR (texture analysis) OR (deep learning) OR (machine learning) OR (neural network) OR (artificial intelligence)) AND ((gamma-knife) OR (radiotherapy) OR (radiation) OR (radiosurgery)). The literature search was not restricted to any publication date or study setting, and the search was updated until November 11th, 2020. The search was limited to publications in English. Bibliographies of the retrieved studies were manually cross-checked to identify any study meeting the inclusion criteria but were not retrieved using our search terms.

Inclusion Criteria

Inclusion criteria for the enrollment of studies were as follows: 1) involved patients who received stereotactic radiotherapy for clinically or pathologically diagnosed brain metastasis, 2) used MRI with the aid of AI as the index test (hereinafter, AI-assisted MRI), 3) purposed to show the diagnostic performance of the index test in classifying (i.e., either prediction or
differentiation) true-progression from non-progression, and 4) provided the information necessary for the reconstruction of 2 × 2 contingency tables. The term 'non-progression' refers collectively to treatment response any other than true-progression, including radiation necrosis.

Exclusion Criteria

The exclusion criteria for the enrollment of studies were as follows: 1) case reports or series including less than ten patients; 2) conference abstracts, editorials, letters, consensus statements, guidelines, or review articles; 3) studies with, or with suspicion of, overlapping populations; 4) study purpose not in the field of interest, which was to estimate diagnostic performance of the AI-assisted MRI in classifying true-progression from non-progression, and 5) insufficient data for the reconstruction of 2 × 2 contingency tables.

Literature search and selection were performed independently by two radiologists (K.H.Y. and S.J.C. with 6 and 7 years of experience in radiology, respectively). Any disagreement between the two reviewers was resolved via consultation of the third reviewer (S.L., ten years of experience in neuroradiology, and six years of experience in AI research).

Data Extraction

Data extraction was performed in a standardized form in adherence to the PRISMA guideline. We extracted the following data: 1) characteristics of the included studies: authors, year of publication, institution, country of origin, study period, study design (prospective vs. retrospective), whether radiomics was used, whether DL was used, patient population from which classification was made (limited to radiation necrosis vs. extended to other conditions of non-progression including stable disease or regression), method of internal validation, whether external validation was performed, number of included patients,
male to female ratio, number of included tumor, proportion of true-progression, proportion of lung cancer as the primary site, reference standard, and inclusion and exclusion criteria; 2) characteristics of MRI: machine, field strength, in-plane resolution, slice thickness, dimension, MRI scan point (pre- or post-radiotherapy), and sequence used for analysis; 3) characteristics of radiomics (as all studies in the final selection turned out to have used radiomics): segmentation slice (2D [region of interest in two dimension] vs. 3D [volume of interest in three dimension]), subregion segmentation, method of segmentation (manual vs. semiautomatic), use of voxel size resampling, filter, normalization, and discretization; 4) characteristics of model development: feature selection method, classification method, number of extracted radiomics feature, and finally selected feature number.

Quality Assessment

Two reviewers (H.Y.K. and S.J.C.) independently assessed and achieved consensus for the methodological quality of the enrolled studies using the Quality Assessment of Diagnostic Accuracy Studies-2 (QUADAS-2) criteria and the six domains of the Radiomics Quality Score (RQS) by Park et al. The RQS originally suggested by Lambin et al. consists of 16 components, with a maximal achievable score of 36. Park et al. categorized the 16 components of the RQS into six domains, where a score of at least 1 point without minus points in each domain was regarded as adherence. The six domains are as shown in Supplemental Table 1. Detailed definitions of each component could be found in Lambin et al.
Data Synthesis and Analyses

The primary endpoint of the current systematic review and meta-analysis was to measure the diagnostic performance of AI-assisted MRI in classifying true-progression from non-progression. The secondary endpoint was to identify factors attributable to the heterogeneity in the included studies.

We measured the pooled sensitivity and specificity with their 95% confidence intervals (CIs) using bivariate random-effects modeling.11-15 We presented the results graphically using hierarchical summary receiver operating characteristic (HSROC) curves with 95% confidence and prediction regions. Publication bias was analyzed using Deeks' funnel plot, with Deeks' asymmetry test being used to calculate the p-value and determine statistical significance.16 Heterogeneity across the selected studies was evaluated using the Cochran Q test, where p value < 0.05 indicates the presence of heterogeneity with p < 0.05.17 According to the Higgins I2 statistic, heterogeneity was classified as follows: 0–40%, might not be important; 30–60%, moderate heterogeneity; 50–90%, substantial heterogeneity; and 75–100%, considerable heterogeneity.12 The presence of a threshold effect (a positive correlation between sensitivity and false-positive rate) was sequentially evaluated: initially via visual assessment of the coupled forest plots of sensitivity and specificity; and secondarily via Kendall's Tau, with a p value of less than 0.05 indicating the presence of the threshold.18

To determine the factors attributable to heterogeneity across the studies, we performed meta-regression analyses using the following covariates: 1) study characteristics (total tumor number, the multiplicity of tumor per patient, the ratio of true-progression to non-progression, proportion of lung cancer, proportion of pathologically confirmed tumor, patient group), 2) MRI characteristics (MR field strength used, MR sequence used), and 3) radiomics characteristics (number of extracted radiomics feature, delta radiomics, segmentation method, segmentation slice, and voxel size resampling). One of the authors (S.J.C., with three years of
experience in performing systematic reviews and meta-analyses) performed the statistical analyses using the MIDAS and METANDI modules in STATA 16.0 (StataCorp, College Station, TX, USA).

Results

Literature Search

Our literature search identified 508 studies initially (Figure 1). After removing 137 duplicates, the remaining 371 studies were screened mainly at the title and abstract level and at the full-text level if necessary, yielding 13 potentially eligible studies. No additional study was identified after a manual review of those 13 studies' bibliographies. After a full-text review of the 13 eligible studies, six studies were excluded for the reasons as follows: five studies had insufficient information for the reconstruction of 2 x 2 table,\(^19-23\) and one study had overlap in the study population with one of the finally included studies.\(^24\) Finally, seven studies\(^24-30\) were included in the present systematic review and meta-analysis.

Characteristics of the Included Studies

All studies used radiomics with retrospective design to classify true-progression from non-progression on AI-assisted MRI (Table 1). Except for two studies,\(^24,28\) all studies delimited non-progression to cases of radiation necrosis. Thus, all studies except for those two studies were of case-control design. All studies lacked external validation of their results. The number of patients across all studies was 485, with the number in individual studies ranging from 20 to 100 patients (Table 1). The number of tumors across all studies was 907, with the number in individual studies ranging from 20 to 408. Five studies\(^24,26,28-30\) included multiple tumors per patient in the analysis. The proportion of tumors adjudicated to be true-progression ranged from 7.8% (32/408) to 75% (73/97) across the studies. The proportion of
lung cancer as the primary site ranged from 25% (21/84) to 75% (15/20). The reference standard for true-progression and non-progression was based on pathology and clinical follow up in five studies,\(^{(24,26,27,29,30)}\) on pathology alone in one study,\(^{(25)}\) and clinical follow up alone in one another study.\(^{(28)}\) The details of the inclusion and exclusion criteria in each study were described in Table 1.

MRI, Radiomics, and Model Development in the Included Studies

Information regarding MR field strength, in plane resolution, and slice thickness is detailed in Table 2. Except for one study\(^{(28)}\) that only used images acquired before radiotherapy, all studies used images acquired after radiotherapy. One study\(^{(24)}\) used images acquired both before and after radiotherapy. Contrast-enhanced T1 weighted images were used for the analysis in all studies, while T2 FLAIR or T2 weighted images were analyzed additionally in five studies.\(^{(24,26,28-30)}\) Many studies lacked detailed information regarding image segmentation for radiomics feature extraction. Region used for radiomics feature extraction in each study is summarized in Supplemental Table E2. Image segmentation was conducted semi-automatically in five studies\(^{(24,26,28-30)}\) and manually in the remaining two studies.\(^{(25,27)}\) There was variable use of the radiomics techniques; voxel size resampling was used in four studies,\(^{(24,25,27,28)}\) filtering in four studies,\(^{(24,27,28,30)}\) image normalization in four studies,\(^{(25-28)}\) and discretization in four studies\(^{(25-27,29)}\) were performed across the studies. The categories of radiomics features used in each study are summarized in Supplemental Table E3. The number of extracted radiomics features ranged from 42 to 3072 across the studies, with more than 400 features used in three studies,\(^{(24,25,28)}\) and the less than 400 features used in the remaining four studies.\(^{(26,27,29,30)}\) Finally selected feature numbers ranged from four to 12. Detailed feature selection method and classification methods are summarized in Table 2.
Diagnostic Performance of the MRI

Across the seven studies, the pooled sensitivity was 77% (95% CI, 70–83%), and the pooled specificity was 74% (95% CI, 64–82%). The range of sensitivity and specificity across the seven studies was 60–92% and 58–87%, respectively (Figure 2). The area under the HSROC curve was 0.82 (95% CI, 0.78–0.85) (Figure 3). The difference between the 95% confidence and the prediction regions was relatively large, indicating heterogeneity among the studies. According to the Q test, heterogeneity was present ($P = 0.026$), mainly due to the heterogeneity in the specificity ($P < 0.01$) and not sensitivity ($P = 0.09$). Higgins I^2 statistics were also suggestive of heterogeneity that 'might not be important' in the sensitivity ($I^2 = 44.5\%$) and moderate heterogeneity in the specificity ($I^2 = 73\%$). There was no threshold effect (Kendall's Tau value of -0.04, $p = 0.76$). According to Deeks' funnel plot, the likelihood of publication bias was low, with a p-value of 0.54 for the slope coefficient (Supplementary Figure 1).

Meta-Regression

In the meta-regression analysis (Table 3), several covariates showed a statistically significant association with the heterogeneity in the joint model. Those factors were the proportion of lung cancer as the primary site, proportion of pathologically confirmed tumor, MR field strength used, and segmentation slice. Sensitivity was increased while specificity was lowered, in the studies with 50% or higher proportion of lung cancer as the primary site, with less than 50% of the pathologically confirmed tumor, and in the studies that used MR field strength if 1.5T only, and VOI in segmentation.
Quality Assessment

Overall ratings were favorable in terms of the QUADAS-2 criteria (Figure 4). In the patient selection domain, five studies were considered to have an unclear risk of bias due to the case-control study design and the unclear information regarding inappropriate exclusion.\(^{25-27,29,30}\) In the flow and timing domain, six studies were considered to have an unclear risk of bias, as not all patients underwent same reference standard procedure, but were adjudicated based on either pathology or clinical follow-up results. Otherwise, the bias risks in the index test and reference standard were regarded as low in all studies. There was low concern regarding applicability in the patient selection, index test, and the reference standard for all studies.

The quality of the studies was further assessed using RQS. The scores were low at below 4 in all studies. All studies\(^{24-30}\) showed adherence to the model performance index (domain 4). However, only three studies showed adherence to domain 1 (protocol quality and stability in image and segmentation),\(^{26,29,30}\) and another three studies to domain 3 (biologic/clinical validation and utility).\(^{25,28,29}\) Furthermore, none of the studies adhered to domain 2 (feature selection and validation), domain 5 (high level of evidence), and domain 6 (open science and data). The detailed score according to the domains were presented in Supplementary Table 1.

Discussion

This systematic review and meta-analysis included seven studies that aimed to classify true-progression after stereotactic radiotherapy of brain metastasis on MRI with the aid of AI. Across the seven studies\(^{24-30}\) including 485 patients and 907 tumors, the pooled sensitivity and specificity were 77% (95% CI, 70–83%) and 74% (64–82%), respectively. Heterogeneity
was present, mainly in the specificity but not sensitivity. Study quality was overall favorable in terms of the QUADAS-2 criteria, but not in terms of the RQS.

As classification of true-progression on standard MRI alone is difficult, other advanced imaging modalities such as MR perfusion, MRS, or PET have also been proposed.31-34 Although the pooled sensitivities and specificities across the studies that investigated those advanced imaging modalities were generally above 80\% according to a previous systematic review,3 the Response Assessment in Neuro-Oncology Brain Metastases (RANO-BM) working group considers those previous studies as inadequately robust to render any solid evidence and thus recommends multi-disciplinary team decision rather than relying on any one of those imaging modalities.35 In fact, the previous studies included small numbers of patients and lacked external validation. Moreover, due to difficulties in establishing a definitive diagnosis, many of the previous studies were conducted with a case-control design (i.e., including only the patients who underwent pathological confirmation), rather than with a cohort including all patients presenting with new or enlarging enhancing lesion.

Meanwhile, AI has been increasingly utilized in medical imaging, such as for diagnosis and prediction of risk and prognosis. If diagnostic accuracy in classifying true-progression after radiotherapy on standard imaging could be improved by using AI, it may usher in a breakthrough in the challenge. However, our study results suggest otherwise, with the performance of AI-assisted MRI not much superior to the reported performances of imaging modalities without the assistance of AI. The disappointing results may be attributable to the inadequate size of training data, inappropriate AI algorithm, or the intricate nature of the challenge that is unsolvable even by applying AI. Robustly designed future studies that address those issues are needed, preferably with a larger number of patients in the training set. Future studies that apply deep learning are also warranted; although our systematic search was targeted for any kind of AI, all retrieved studies had used radiomics. Another way of
improving the diagnostic accuracy would be to take temporal changes of imaging findings into account, rather than using data from a single time point (e.g., when new or enlarging enhancing lesion was initially detected on MRI). Although two of our studies24,30 had already incorporated such a concept by using delta radiomics and did not show significant improvement in the performance, further research using data from multiple time points (e.g., pre-RT, two post-RT images) could be attempted.

Although there was no significant threshold effect, substantial heterogeneity still existed, especially in specificity but not in sensitivity. Several covariates, including the proportion of lung cancer as the primary site, proportion of pathologically confirmed tumor, MR field strength, and segmentation slice, showed a statistically significant association with the heterogeneity. Lung cancer is the most common primary cancer of brain metastasis,36 and thus studies with the proportion of lung cancer as the primary site of 50% or higher would better represent the real population compared to those with the proportion lower than 50%. Radiomics feature selection and subsequent analysis are known to be affected substantially by imaging acquisition parameters and reconstruction techniques.37,38 Thus, the MR field strength and the segmentation slice used (ROI vs. VOI) may have contributed to the heterogeneity in our results. Moreover, in case ROI was used, there is a possibility that the slice selected for feature extraction may not have represented the overall tumor nature appropriately, as the target lesion may be a mixture of both recurrent tumor and radiation necrosis.39

Although the quality assessment in terms of the QUADAS-28 was relatively favorable, that in terms of the RQS9,10 was generally poor. Adherence was especially low in domain 2 (feature selection and validation), domain 5 (high level of evidence), and domain 6 (open science and data), mostly due to the lack of external validation, prospective study design, and open-source data. Low adherence in domain 6 calls for further efforts in inter-institutional
data and model sharing, which is critical in generating reproducible study results. Adherence in domain 1 was also suboptimal in most studies, raising concern regarding the repeatability and reproducibility of the study procedure. In fact, although expectations for AI to be a panacea for our diagnostic challenges are high, there are also concerns that complexity and 'black box' nature inherent to AI make it difficult for others to apply the algorithm to clinical workflow or to perform external validation. Such lack of transparency calls for firm adherence to standardized methodological and reporting procedures. However, there are yet established guidelines for the reporting and quality assessment of the diagnostic accuracy or prognostic studies using AI, which is a relatively nascent methodology. The release of AI-specific extension to the STARD (Standards for Reporting of Diagnostic Accuracy Studies) and TRIPOD (Transparent Reporting of a Multivariable Prediction Model for Individual Prognosis or Diagnosis) is underway, and future studies on classifying true-progression after radiotherapy would hopefully be conducted according to those new guidelines.

There were limitations in our study. First, the numbers of studies in each subgroup in the meta-regression were mostly small, possibly inadequate for drawing statistically robust conclusions. Second, there were substantial differences in the methodology across the studies, raising concern in pooling the results. For example, unlike the rest of the studies that reported the diagnostic performance by using radiomics features alone, the study by Mouraviev et al. had reported the performance of radiomics features in addition to clinical features. Karami et al. and Zhang et al. incorporated delta radiomics by using MR images from more than one time point, and Mouraviev et al. used pre-RT MR images, whereas the remaining studies used only the MR images at a single time point after RT. Moreover, inclusion of patients who had received whole-brain radiotherapy varied across the studies, with most studies lacking detailed information regarding the patients' previous treatment history. Nevertheless, we chose to use broad inclusion criteria, and instead analyzed various factors and clinical settings
attributable to the heterogeneity affecting the diagnostic performance. Third, only two
studies25,29 reported the performance of neuro-radiologists on standard MRI without the aid of
AI. Thus, it was not possible to measure the added value of the AI compared to the
conventional MRI. Fourth, not all step-by-step procedures of radiomics were detailed in the
included studies. Thus, substantial heterogeneity caused by varied methodologies across the
studies may not have been captured adequately in this systematic review. Nevertheless, all
included studies have shared the general pipeline of radiomics (i.e., beginning from image
acquisition, segmentation, preprocessing, feature extraction, feature selection, to validation of
model performance). Methodological heterogeneity in studies using artificial intelligence,
including but not limited to those using radiomics, is almost inevitable. However, we may
hopefully have a better understanding of the source of heterogeneity via research
community’s more dedicated data and model sharing.

In conclusion, our systematic review of studies that used AI in classifying true-progression
after stereotactic radiotherapy of brain metastasis has identified seven studies, all of which
had used the radiomics but not deep learning. The diagnostic performance of AI-assisted MRI
seems yet inadequate to be used reliably in clinical practice. Further studies with improved
methodologies and a larger training set are needed.
Reference

1. Aoyama H, Shirato H, Tago M, et al. Stereotactic radiosurgery plus whole-brain radiation therapy vs stereotactic radiosurgery alone for treatment of brain metastases: a randomized controlled trial. *JAMA*. 2006;295(21):2483-2491.

2. Patel TR, McHugh BJ, Bi WL, Minja FJ, Knisely JP, Chiang VL. A comprehensive review of MR imaging changes following radiosurgery to 500 brain metastases. *AJNR Am J Neuroradiol*. 2011;32(10):1885-1892.

3. Furuse M, Nonoguchi N, Yamada K, et al. Radiological diagnosis of brain radiation necrosis after cranial irradiation for brain tumor: a systematic review. *Radiat Oncol*. 2019;14(1):28.

4. Verma N, Cowperthwaite MC, Burnett MG, Markey MK. Differentiating tumor recurrence from treatment necrosis: a review of neuro-oncologic imaging strategies. *Neuro Oncol*. 2013;15(5):515-534.

5. Kohutek ZA, Yamada Y, Chan TA, et al. Long-term risk of radionecrosis and imaging changes after stereotactic radiosurgery for brain metastases. *J Neurooncol*. 2015;125(1):149-156.

6. Kickingereeder P, Isensee F, Tursunova I, et al. Automated quantitative tumour response assessment of MRI in neuro-oncology with artificial neural networks: a multicentre, retrospective study. *Lancet Oncol*. 2019;20(5):728-740.

7. Liberati A, Altman DG, Tetzlaff J, et al. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: explanation and elaboration. *Ann Intern Med*. 2009;151(4):W65-94.
8. Whiting PF, Rutjes AW, Westwood ME, et al. QUADAS-2: a revised tool for the quality assessment of diagnostic accuracy studies. *Ann Intern Med*. 2011;155(8):529-536.

9. Lambin P, Leijenaar RTH, Deist TM, et al. Radiomics: the bridge between medical imaging and personalized medicine. *Nat Rev Clin Oncol*. 2017;14(12):749-762.

10. Park JE, Kim HS, Kim D, et al. A systematic review reporting quality of radiomics research in neuro-oncology: toward clinical utility and quality improvement using high-dimensional imaging features. *BMC Cancer*. 2020;20(1):29.

11. Suh CH, Park SH. Successful publication of systematic review and meta-analysis of studies evaluating diagnostic test accuracy. *Korean J Radiol*. 2016;17(1):5-6.

12. Kim KW, Lee J, Choi SH, Huh J, Park SH. Systematic review and meta-analysis of studies evaluating diagnostic test accuracy: a practical review for clinical researchers-part I. general guidance and tips. *Korean J Radiol*. 2015;16(6):1175-1187.

13. Lee J, Kim KW, Choi SH, Huh J, Park SH. Systematic review and meta-analysis of studies evaluating diagnostic test accuracy: a practical review for clinical researchers-part II. statistical methods of meta-analysis. *Korean J Radiol*. 2015;16(6):1188-1196.

14. Reitsma JB, Glas AS, Rutjes AW, Scholten RJ, Bossuyt PM, Zwinderman AH. Bivariate analysis of sensitivity and specificity produces informative summary measures in diagnostic reviews. *J Clin Epidemiol*. 2005;58(10):982-990.

15. Rutter CM, Gatsonis CA. A hierarchical regression approach to meta-analysis of diagnostic test accuracy evaluations. *Stat Med*. 2001;20(19):2865-2884.

16. Deeks JJ, Macaskill P, Irwig L. The performance of tests of publication bias and other
sample size effects in systematic reviews of diagnostic test accuracy was assessed. *J Clin Epidemiol*. 2005;58(9):882-893.

17. Hoaglin DC. Misunderstandings about Q and 'Cochran's Q test' in meta-analysis. *Stat Med*. 2016;35(4):485-495.

18. Devillé WL, Buntinx F, Bouter LM, et al. Conducting systematic reviews of diagnostic studies: didactic guidelines. *BMC Med Res Methodol*. 2002;2:9.

19. Della Seta M, Collettini F, Chapiro J, et al. A 3D quantitative imaging biomarker in pre-treatment MRI predicts overall survival after stereotactic radiation therapy of patients with a singular brain metastasis. *Acta Radiol*. 2019;60(11):1496-1503.

20. Farjam R, Tsien CI, Lawrence TS, Cao Y. DCE-MRI defined subvolumes of a brain metastatic lesion by principle component analysis and fuzzy-c-means clustering for response assessment of radiation therapy. *Med Phys*. 2014;41(1):011708.

21. Huang CY, Lee CC, Yang HC, et al. Radiomics as prognostic factor in brain metastases treated with Gamma Knife radiosurgery. *J Neurooncol*. 2020;146(3):439-449.

22. Pallavi T, Prateek P, Lisa R, et al. Texture descriptors to distinguish radiation necrosis from recurrent brain tumors on multi-parametric MRI. *Proc SPIE Int Soc Opt Eng*. 2014;9035:90352b.

23. Tiwari P, Prasanna P, Rogers L, Wolansky L, Cohen M, Madabhushi A. NI-76: computer extracted oriented texture features on T1-gadolinium MRI for distinguishing radiation necrosis from recurrent brain tumors. *Neuro Oncol*. 2014;16(Suppl 5):v155.

24. Karami E, Ruschin M, Soliman H, Sahgal A, Stanisz GJ, Sadeghi-Naini A. An MR
radiomics framework for predicting the outcome of stereotactic radiation therapy in brain metastasis. *Annu Int Conf IEEE Eng Med Biol Soc*. 2019;2019:1022-1025.

25. Hettal L, Stefani A, Salleron J, et al. Radiomics method for the differential diagnosis of radionecrosis versus progression after fractionated stereotactic body radiotherapy for brain oligometastasis. *Radiat Res*. 2020;193(5):471-480.

26. Larroza A, Moratal D, Paredes-Sánchez A, et al. Support vector machine classification of brain metastasis and radiation necrosis based on texture analysis in MRI. *J Magn Reson Imaging*. 2015;42(5):1362-1368.

27. Lohmann P, Kocher M, Ceccon G, et al. Combined FET PET/MRI radiomics differentiates radiation injury from recurrent brain metastasis. *Neuroimage Clin*. 2018;20:537-542.

28. Mouraviev A, Detsky J, Sahgal A, et al. Use of radiomics for the prediction of local control of brain metastases after stereotactic radiosurgery. *Neuro Oncol*. 2020;22(6):797-805.

29. Peng L, Parekh V, Huang P, et al. Distinguishing true progression from radionecrosis after stereotactic radiation therapy for brain metastases with machine learning and radiomics. *Int J Radiat Oncol Biol Phys*. 2018;102(4):1236-1243.

30. Zhang Z, Yang J, Ho A, et al. A predictive model for distinguishing radiation necrosis from tumour progression after gamma knife radiosurgery based on radiomic features from MR images. *Eur Radiol*. 2018;28(6):2255-2263.

31. Galldiks N, Stoffels G, Filss CP, et al. Role of O-(2-(18)F-fluoroethyl)-L-tyrosine PET for differentiation of local recurrent brain metastasis from radiation necrosis. *J Nucl Med*. 2018;69(8):1236-1243.
2012;53(9):1367-1374.

32. Sundgren PC. MR spectroscopy in radiation injury. AJNR Am J Neuroradiol. 2009;30(8):1469-1476.

33. Kunz M, Thon N, Eigenbrod S, et al. Hot spots in dynamic (18)FET-PET delineate malignant tumor parts within suspected WHO grade II gliomas. Neuro Oncol. 2011;13(3):307-316.

34. Cicone F, Minniti G, Romano A, et al. Accuracy of F-DOPA PET and perfusion-MRI for differentiating radionecrotic from progressive brain metastases after radiosurgery. Eur J Nucl Med Mol Imaging. 2015;42(1):103-111.

35. Lin NU, Lee EQ, Aoyama H, et al. Response assessment criteria for brain metastases: proposal from the RANO group. Lancet Oncol. 2015;16(6):e270-278.

36. Barnholtz-Sloan JS, Sloan AE, Davis FG, Vigneau FD, Lai P, Sawaya RE. Incidence proportions of brain metastases in patients diagnosed (1973 to 2001) in the Metropolitan Detroit Cancer Surveillance System. J Clin Oncol. 2004;22(14):2865-2872.

37. Rizzo S, Botta F, Raimondi S, et al. Radiomics: the facts and the challenges of image analysis. Eur Radiol Exp. 2018;2(1):36.

38. Meyer M, Ronald J, Vernuccio F, et al. Reproducibility of CT Radiomic Features within the Same Patient: Influence of Radiation Dose and CT Reconstruction Settings. Radiology. 2019;293(3):583-591.

39. Barajas RF, Jr., Chang JS, Segal MR, et al. Differentiation of recurrent glioblastoma multiforme from radiation necrosis after external beam radiation therapy with dynamic susceptibility-weighted contrast-enhanced perfusion MR imaging. Radiology.
40. Collins GS, Moons KGM. Reporting of artificial intelligence prediction models. *Lancet*. 2019;393(10181):1577-1579.

41. Sounderajah V, Ashrafian H, Aggarwal R, et al. Developing specific reporting guidelines for diagnostic accuracy studies assessing AI interventions: The STARD-AI Steering Group. *Nat Med*. 2020;26(6):807-808.

42. Karami E, Soliman H, Ruschin M, et al. Quantitative MRI biomarkers of stereotactic radiotherapy outcome in brain metastasis. *Sci Rep*. 2019;9(1):19830.
Figure legends

Figure 1: Flow diagram of the study selection process.

Figure 2: Forest plots showing pooled sensitivity and specificity of AI-assisted MRI in classifying true-progression from non-progression after stereotactic radiotherapy of brain metastasis. Horizontal error bars and black diamonds represent 95% confidence intervals and point estimates of each study, respectively. Solid vertical lines represent pooled point estimates.

Figure 3: Hierarchical summary receiver operating characteristic (HSROC) curve showing the performance of AI-assisted MRI.

Figure 4: Quality assessment of the studies using the Quality Assessment of Diagnostic Accuracy Studies-2 (QUADAS-2) and the radiomics quality score (RQS). In the flow and diming domain, six studies were considered to have an unclear risk of bias, since not all patients underwent the same reference standard procedure but were adjudicated based on either pathology or clinical follow-up results.

Table 1: Characteristics of the Included Studies

Table 2: Characteristics of MRI, Radiomics, and Model Development

Table 3: Meta-Regression of MRI Radiomics for Classifying True-progression from Non-progression
Source	Affiliation	Study period	Study design	Classifi cation of true-progression	Validation Intern. Extern.	Patient Total no. M/F ratio	Total tumor no.	Proportion of true progression	Proportion of lung cancer¹	Reference standard	Criteria		
Hettal 2020	Lorraine Comprehensive Cancer Center, France	2008-2017	Retro	From radiation necrosis	Leave one out CV	20	10:10	20	60% [12/20]	75% [15/20]	Pathology	New or enlarging contrast-enhancing lesion after SRT; Adult; New oligometastasis²; KPS 70% or higher	Diagnosis of radiation necrosis obtained after re-irradiation
Karami 2019	Sunnybrook Health Sciences Centre (SHSC), Canada	NA	Retro	Yes	Leave one out CV	100	37:63	133¹	40% [53/133]	49% [65/133]	Pathology and clinical (RANO-BM) follow-up	Metastasis and treated with SRT	NA
Larroza 2015	Universitat de Valencia, Spain	Septembe r 2007-June 2013	Retro	From radiation necrosis	Interna l split³	73	37:36	115¹	72% [83/115]	NA	Pathology and clinical (RECIST) follow-up	New or enlarging contrast-enhancing lesion after SRT; Pathologically proven primary extra-cerebral tumor	Non-parenchymal metastasis; SRS performed for consolidatio n to a surgical cavity
Lohmann 2018	Forschungszentrum Juelich, Inst. of Neuroscience and Medicine, Germany	2006-2014	Retro	From radiation necrosis	Leave one out, 5-fold and 10-fold CV	52	13:39	52	40% [21/52]	52% [27/52]	Pathology and clinical (RANO-BM) follow-up	New or enlarging contrast-enhancing lesion after SRT	Lack information regarding positron emission tomography
Study	Institution	Dates	Type	Follow-up	Patients	Progression Rate	Pathology and Clinical Follow-up						
-------	-------------	-------	------	-----------	----------	-----------------	----------------------------------						
Mouraviev 2020	University of Toronto, Canada	December 2016 - November 2017	Retro	From non-progression\^3 Leave one out CV	No 87	35:52 of 408\^\^	7.8% [32/408] Clinical (RANO-BM) follow-up						
Peng 2018	Johns Hopkins University School of Medicine, USA	June 2003 - September 2017	Retro	From radiation necrosis 10-fold CV *	No 66	NA 82\#	63% [52/82] Pathology and clinical follow-up **						
Zhang 2018	University of Texas MD Anderson Cancer Center, USA	August 2009 - August 2016	Retro	From radiation necrosis Leave one out CV	No 87	46:38 of 97\^\^	75% [73/97] Pathology and clinical follow-up **						

\^\^Non-progression including radiation necrosis. These two studies were regarded as cohort studies in the meta-regression;
\^\^\#Inclusion of multiple tumors per-patient; \^\|
Table 2. Characteristics of MRI, Radiomics, and Model Development

Source	MRI Machine	In-plane resolution (mm)	Slice thickness (mm)	Scan Point	Sequences used for analysis	ROI vs. VOI	Subregion segmentation	Model	Voxel size resampling	Filter	Normalization	Discretization	Feature selection method	Classification method	NO. of extracted radiomics features	Finally selected feature number	
Hettal 2020	NA	1.5	NA	3D Post SRT	T1W C+ VOI	Not used	Manual	Used	Not used	Used	Used	Used	Univariate analysis (filter approach)	Bagging algorithm	1766	4	
Karami 2019	Ingenia, Philips	1.5	0.5	NA	Both T1W C+, T2 FLAIR	Used³	Semi-automatic	Used	Used	Not used	Not used	Not used	Pearson correlation analysis, Mann-Whitney U test	SVM classifier with bootstrap	3072	5	
Larroza 2015	Magnetom Symphony, Siemens	1.5	0.5	3D Post SRT	T1W C+, ROI T2 FLAIR	Not used	Semi-automatic	Not used	Not used	Not used	Not used	Used	Mann-Whitney U test with Benjamin-Hochberg correction	SVM classifier with recursive feature elimination	179	7	
Lohmann 2018	NA	NA	NA	Post SRT	T1W C+ VOI	Not used	Manual	Used	Used	Used	Used	Used	Mann-Whitney U test	Generalized linear model by applying AIC	Random forest classifier	42	5
Mouraviev 2020	Ingenia, Philips	1.5	NA	3D Post SRT	T1W C+, T2 FLAIR	Used³	Semi-automatic	Used	Used	Used	Not used	Not used	Resampled random forest feature importance	Univariate logistic regression performance (AUC)	440	126	
Peng 2018	Philips, Siemens, General Electric	1.5	0.43-1.02	NA Post SRT	T1W C+, T2 FLAIR	Not used	Semi-automatic	Not used	Not used	Not used	Not used	Used	Univariate logistic regression performance (AUC)	SVM classifier	51	5	
Zhang 2018	HDXt, General Electric	1.5	NA	5	Post SRT	T1W, T1W C+, T2W, FLAIR	Not used	Not used	Semi-automated	Not used	Not used	Not used	Concordance correlation coefficients	Ensemble classifier	285	5	

MRI: magnetic resonance imaging, T: tesla, field strength, D: dimension, ROI: region of interest, VOI: volume of interest, NO.: number, NA: not available, 3D: 3 dimensional, SRT: stereotactic radiotherapy or radiosurgery, T1W C+: T1 weighted contrast-enhanced, FLAIR: fluid attenuated inversion recovery, SVM: support vector machine, AIC: Akaike Information Criterion, AUC: area under receiver operating characteristics curve.

* For T1W C+ images; † For each ROI or VOI; ‡ Delta radiomics: 1) Enhancing region in T1W images (tumor), 2) Edema, 3) Isotropic expansion around the tumor and edema, 4) Isotropic expansion around the tumor; ∥ Tumor core and the peritumoral regions; ¶ Including 3 clinical features.
Table 3. Meta-Regression of MRI Radiomics for Classifying True-progression from Non-progression

Covariate	Subgroup	Meta-analytic summary estimate			p-value
Study characteristics					
Total tumor number	< 100	80% [70%–90%]	73% [58%–87%]	0.78	
	≥ 100	75% [67%–83%]	74% [63%–85%]	0.78	
Multiplicity of tumor per patient	No	85% [72%–98%]	65% [44%–86%]	0.40	
	Yes	75% [68%–82%]	76% [67%–85%]	0.40	
Ratio of true-progression to non-progression	≤ 1.5	80% [72%–89%]	70% [58%–82%]	0.51	
	> 1.5	74% [65%–82%]	77% [66%–89%]	0.51	
Proportion of lung cancer*	< 50%	74% [67%–82%]	74% [64%–84%]	<0.001	
	≥ 50%	85% [72%–98%]	65% [44%–86%]	<0.001	
Proportion of pathologically confirmed tumor†	< 50%	80% [70%–90%]	69% [56%–82%]	<0.001	
	≥ 50%	73% [63%–83%]	74% [59%–89%]	<0.001	
Patient group	Cohort	80% [70%–90%]	73% [58%–87%]	0.78	
	Case control	75% [67%–83%]	74% [63%–85%]	0.78	
MRI					
MR field strength used	1.5 Tesla only	79% [73%–85%]	73% [63%–82%]	<0.001	
	3 Tesla	66% [54%–77%]	84% [70%–98%]	<0.001	
	T1W C+ only	85% [72%–98%]	65% [44%–86%]	0.40	
	Others also	75% [68%–82%]	76% [67%–85%]	0.40	
Radiomics					
Number of extracted radiomics feature‡	< 400	74% [65%–82%]	74% [62%–86%]	0.45	
	≥ 400	81% [72%–90%]	72% [59%–85%]	0.45	
Delta radiomics	Not used	75% [66%–84%]	74% [63%–84%]	0.86	
	Used	78% [69%–88%]	74% [58%–89%]	0.86	
	Manual	85% [72%–98%]	65% [44%–86%]	0.40	
Segmentation Method	Semi automatic	75% [68%–82%]	76% [67%–85%]	0.40	
Segmentation slice	VOI	80% [74%–86%]	71% [61%–81%]	<0.001	
	ROI	67% [56%–77%]	86% [76%–96%]		
Voxel size resampling	Not used	72% [63%–81%]	78% [66%–90%]	0.27	
	Used	81% [74%–89%]	70% [59%–81%]	0.27	

CI: confidence interval, T1 W C+: T1 weighted contrast-enhanced, VOI: volume of interest, ROI: region of interest.

*Out of all tumors, except for in Zhang et.al in which the patient number was used as the denominator; †Out of all tumors; ‡Per region- or volume of interest.
Figure 1

Records identified through database search
OVID-MEDLINE (n=149)
EMBASE (n=359)

Duplicate articles eliminated (n=137)

Records screened (n=371)
Records excluded (n=358)
Not in the field of interest (n=291)
Case reports/series (n=31)
Review articles (n=25)
Letters/editorials/abstracts (n=11)

No additional eligible article identified

Full-text articles assessed for eligibility (n=13)

Records excluded (n=6)
Insufficient data for 2 x 2 table (n=5)
Overlapping data (n=1)

Studies included in the systematic review and meta-analysis (n=7)
Figure 2

Sensitivity (95% CI) vs Specificity (95% CI)

- Hettal L et al. 2020: Sensitivity 92% [62%-100%], Specificity 75% [35%-97%]
- Karami E et al. 2019: Sensitivity 79% [66%-95%], Specificity 81% [71%-89%]
- Larroza A et al. 2015: Sensitivity 83% [61%-95%], Specificity 84% [67%-95%]
- Lohmann P et al. 2018: Sensitivity 81% [56%-95%], Specificity 61% [42%-78%]
- Mouravev A et al. 2020: Sensitivity 80% [60%-91%], Specificity 65% [80%-70%]
- Peng L et al. 2018: Sensitivity 60% [45%-73%], Specificity 87% [69%-96%]
- Zhang Z et al. 2018: Sensitivity 79% [67%-87%], Specificity 58% [37%-78%]

Pooled Sensitivity: 77% [70%-83%] \(I^2 = 44.49 \) [0.00-92.54]
Pooled Specificity: 74% [64%-82%] \(I^2 = 73.25 \) [52.81-93.70]
Figure 4

QUADAS-2 Domain

FLOW AND TIMING

REFERENCE STANDARD

INDEX TEST

PATIENT SELECTION

Proportion of studies with low, high, or unclear RISK of BIAS

0% 20% 40% 60% 80% 100%