Получение сложных олигоэфиров направленной гликолитической деструкцией отходов полиэтилентерефталата

Obtaining oligoesters by directed glycolytic destruction of polyethylene terephthalate waste

K.A. KIRSHANOV, A.YU. GERVER’D, R.V. TOMS

МИРЕА – Российский Технологический Университет
MIREA – Russian Technological University
kirill_kirshanov@mail.ru

В работе направленной гликолитической деструкцией полиэтилентерефталата получены сложные олигоэфиры с концевыми гидроксильными группами. Показана возможность получения бифункциональных реакционнспособных олигомеров со средней молекулярной массой 865 г/моль направленной гликолитической деструкцией по методу растворения-разложения в диметилсульфоксид при низкой концентрации этиленгликоля (32,3 массовых части на 100 массовых частей полиэтилентерефталата). Такой процесс позволяет частично решить актуальную задачу переработки вторичного полиэтилентерефталата.

Ключевые слова: полиэтилентерефталат, ПЭТФ, гликолиз, утилизация отходов, сложные олигоэфиры, реакционнспособные олигомеры

In this work, oligoesters with terminal hydroxyl groups were obtained by directed glycolytic degradation of polyethylene terephthalate. The possibility of obtaining bifunctional reactive oligomers with an average molecular weight of 865 g/mol by directed glycolytic destruction via a dissolution-degradation strategy in dimethyl sulfoxide at a low concentration of ethylene glycol (32.3 mass parts per 100 mass parts of polyethylene terephthalate) was shown. This process allows us to partially solve the urgent problem of recycling post-consumer polyethylene terephthalate.

Keywords: polyethylene terephthalate, PET, glycolysis, recycling, oligoesters, reactive oligomers

DOI: 10.35164/0554-2901-2020-11-12-51-53

В настоящее время актуальной задачей охраны окружающей среды является переработка полимерных отходов, образованных как в процессах получения и переработки полимеров (технологические отходы), так и при использовании изделий из полимерных материалов (бытовые отходы). Среди полимерных отходов значительную часть составляют отходы из полиэтилентерефталата (ПЭТФ). Доля отходов из ПЭТФ в общем количестве пластиковых отходов составляет порядка 25% или 300 миллионов тонн в год [1]. В России ежегодно на захоронение отправляют порядка 500 тысяч тонн использованных изделий из полиэтилентерефталата [2]. Таким образом, проблема переработки ПЭТФ актуальна как в мире, так и в России.

Известные сегодня способы переработки отходов из ПЭТФ основаны на механических, термических и химических процессах [3]. Химические процессы переработки отходов из ПЭТФ вызывают наибольший интерес, так как позволяют проводить направленную деструкцию макромолекул ПЭТФ, в результате которой получают ценные мономеры и олигомеры. Наиболее широко применяют гидролиз, метанолиз и гликолиз отходов из ПЭТФ [3].

Сегодня наиболее актуальным направлением в химической переработке отходов из ПЭТФ является гликолиз, который доказывает высокую публикационную активность в этой области (рис. 1). Направленная гликолитическая деструкция ПЭТФ позволяет получать мономер – бис(2-гидроксиэтил) терефталат (БГЭТ) и реакционнспособные олигомеры с гидроксильными группами на концах цепи [4]. На схеме 1 приведена общая структурная формула таких олигомеров.

Рис. 1. Количество статей, входящих в Scopus (scopus.com), в которых упоминают (в заголовке, аннотации или ключевых словах) гликолиз ПЭТФ.

При этом в промышленном масштабе гликолиз ПЭТФ в большой степени направлен на получение БГЭТ. Однако в последние годы интерес вызывает и получение олигоэфиров, которые находят широкое применение.

На основе сложных олигоэфиров получают различные функциональные соополимеры полиэтилентерефталата, термопластичные полиэфирные эластомеры [6], пенополиуретаны [7] и полиуретановые эластомеры [8, 9]. Их отличает степень кристалличности, модуль прочности, гибкость и термические свойства [5]. В зависимости от требований к этим материалам, используют олигомеры с молекулярными массами от 400 до 3500 г/моль.

Такие реакционнспособные олигомеры возможно синтезировать из БГЭТ, который получен гликолизом ПЭТФ, и, как уже упоминали, гликолитической деструкцией ПЭТФ до олигомеров. Первыми способ имеет больше технологических стадий, а полученные олигомеры обладают молекулярными массами ниже 450 г/моль, что недостаточно для их применения в производстве полиэфирных и полиуретановых материалов, а также в качестве активных разбавителей эпоксидных смол [4].

Схема 1. Общая структурная формула олигомеров, полученных гликолизом ПЭТФ.

HO

O

O

O

n

OH

51
Таблица 1. Условия получения образцов и их характеристики

Маркировка образца	Тип реакции	Мольное отношение ЭГ к звеньям ПЭТФ	Температура, °C	Мольное отношение Zn(OAc)2 к звеньям ПЭТФ или к ДМТФ	ММ, г/моль	Конверсия ПЭТФ за 20 минут, %	Положение пиков на кривой ДСК, °C
1	Прямой синтез	2,5:1	195	1:100	245	87	107,1
2	Гликолиз	6:1	190	1:100	341	83	107,6, 129,0, 217,4
3	Гликолиз	1:1	190	1:100	865	57	240,9

(32,5 м.ч. ЭГ на 100 м.ч. ПЭТФ), конверсия ПЭТФ за 20 минут составила 57%.

На рис. 2 приведены кривые ДСК для указанных трёх образцов.

Рис. 2. Кривые ДСК для образцов 1 (синтетический БГЭТ), 2 (гликолиз при избыtkе ЭГ) и 3 (гликолиз при невысокой концентрации ЭГ), энергия среда – аргон, скорость сканирования – 10 град/мин.

На кривой ДСК для образца 1 (рис. 2) можно наблюдать пик, соответствующий температуре 110°C, что, согласно литературным данным, соответствует плавлению БГЭТ [13]. Второй пик, более пологий, соответствует плавлению остаточного диметилтерефталата и примеси олигомеров, а также кипению остаточного этиленгликола. На кривой ДСК для образца 2 (рис. 2) также присутствует пик БГЭТ, а также пик, соответствующий температуре плавления димера – около 130°C. Третий пик отвечает за плавление тримера (примерно 210°C), высших олигомеров и кипение остаточного этиленгликола [13]. На кривой 3 (рис. 2) можно наблюдать один пик с началом около 110°C. Можно предположить, что он соответствует плавлению высших олигомеров и небольшой примеси мономера, димера и тримера, а также кипению остаточного этиленгликола.

На рис. 3 приведены ИК-Фурье спектры полученных образцов.

Рис. 3. ИК-Фурье спектры образцов 1 (синтетический БГЭТ), 2 (гликолиз при избыtkе ЭГ) и 3 (гликолиз при невысокой концентрации ЭГ).
спектров образцов 2 и 1 составлял 96% (коррелируют), что говорит о преимущественном образовании БГЭТ, образцов 3 и 1 – 85% (не коррелируют).

Среднечисловую молекулярную массу определили по соотношению полос, соответствующих частотам приблизительно 3350 см⁻¹ для концевых гидроксильных групп и 1720 см⁻¹ для карбоильных групп в составе цепи [14]. Среднечисловая молекулярная масса для образца 2 составила порядка 340 г/моль, что соответствует литературным данным [4], для образца 3 – порядка 865 г/моль.

Таким образом, отсутствие пика плавления БГЭТ и отсутствие корреляции ИК-Фурье спектра БГЭТ со спектром образца 3, полученного гликолитической деструкцией при малой концентрации ЭГ, подтверждают предположение о преимущественном образовании олигомеров при низкой концентрации этиленгликоли.

Показано, что за счёт последовательного перевода реакционной системы в одну фазу при растворении ПЭТФ возможно успешно проводить гликолитическую деструкцию с низкими концентрациями этиленгликоли для получения олигомеров. В случае проведения гетерогенной реакции без растворителя процесс будет протекать до глубоких конверсий на поверхности частиц ПЭТФ, причем преимущество происходит образование БГЭТ, а основная масса ПЭТФ в реакцию не вступает. Предложенным способом получены реакционноспособные бифункциональные олигомеры с концевыми гидроксильными группами и молекулярной массой, которая соответствует требованиям производства различных полиэфирных и полиуретановых материалов или применения в качестве активных разбавителей.

Литература
1. Волкова А.В. Рынок утилизации отходов. 2018 год. Национальный исследовательский университет Высшая школа экономики. Центр развития [Электронный ресурс]. URL: https://dcenter.hse.ru. Дата обращения: 15.04.2020.
2. Волкова А.В. Рынок крупнотоннажных полимеров. Часть II. Полипропилен, полиэтилен, полиаминохлорид, полиэтиленетерефталат. 2016 год. Национальный исследовательский университет Высшая школа экономики. Центр развития [Электронный ресурс]. URL: https://dcenter.hse.ru. Дата обращения: 15.04.2020.
3. Ишалина О.В. Анализ методов переработки отходов полиэтиленетерефталата / О.В. Ишалина, С.О. Лакеев, Р.З. Минигулов, И.О. Майданова // Промышленное производство и использование пластмасс. – 2015. – № 3. – С. 39–47.
4. Stoski A. Oligomer production through glycolysis of poly(ethylene terephthalate): effects of temperature and water content on reaction extent / A. Stoski, M.F. Vianite, C.S. Nunes, E.C. Muniz, M.L. Felsner, C.A.P. Almedia // Polymer International. – 2016. – V. 65. – I. 9. 5. Pat. WO 2007/072748 A1 всерийный, МПК C08G 63/91. Thermoplastic polyester elastomer, thermoplastic polyester elastomer composition, and method for production of thermoplastic polyester elastomer / Gaku Maruyama, Shoji Koketsu, Kenta Susuki, Katsuaki Kuze, Shigeo Ukyo. – № 2006/325015; заявл. 15.12.2006; опубл. 28.06.2007. – 68 с.
6. Porfiryeva С.В. Метод утилизации вторичного полиэтиленетер- рефталата для получения пенополиуретанов / С.В. Порfiryeva, О.В. Радужан, В.Г. Петров, Н.И. Кольцов // Вестник Чувашского Университета. – 2007. – № 2. – С. 37–41.
7. Данилов В.А. Полиуретановые эластомеры на основе сложных полиэфиров и гидроксисодержащих соединений / В.А. Данилов, В.М. Коллов, О.А. Колышкин, Н.И. Кольцов // Вестник Чувашского Университета. – 2004. – № 2. – С. 10–12.
8. Бедова А.М. Влияние химического строения полиэтиленуретановых каучуков на температуру стекления / А.М. Бедова, Н.Н. Ильячева, К.А. Пчелинцев // Успехи в химии и химической технологии. – 2017. – Т. 31. – № 14. – С. 63–64.
9. Scheirs J. Modern Polyesters: Chemistry and Technology of Polyesters and Copolymers / J. Scheirs, T.E. Long. – London: John Wiley & Sons, Ltd. 2003. – 750 с.
10. Lopez-Fonseca R. Chemical recycling of post-consumer PET wastes by glycolysis in the presence of metal salts / R. Lopez-Fonseca, I. Duque-Ingunza, B. de Rivas, S. Arnaiz, J.I. Gutierrez-Ortiz // Polymer Degradation and Stability. – 2010. – V. 95. – P. 1022–1028.
11. Raheem A.B. Current developments in chemical recycling of post-consumer polyethylene terephthalate wastes for new materials production: A review / A.B. Raheem, Z.Z. Noor, A. Hasaan, M.K.A. Hamid, S.A. Samsudin, A.H. Sabeen // Journal of Cleaner Production. – 2019. – V. 225. – P. 1052–1064.
12. Bo Liu Ultrafast homogeneous glycolysis of waste polyethylene terephthalate via a dissolution-degradation strategy / Bo Liu, Xingmei Lu, Zhaoyang Ju, Peng Sun, Jiayu Xin, Xiaojian Yao, Qing Zhou, Suqiang Zhang // Industrial & engineering chemistry research. – 2018. – V. 57. – I. 48. – P. 16239–16245.
13. Viana M.E. Chemical recycling of PET by catalyzed glycolysis: kinetics of the heterogeneous reaction / M.E. Viana, A. Rul, G.M. Carvalho, A.F. Rubira, E.C. Muniz // Chemical Engineering Journal. – 2011. – V. 173. – P. 210–219.
14. Scie F. Comparing Conventional and Microwave-Assisted Heating in PET Degradation Mediated by Imidazole-Based Halometallate Complexes / F. Scie, I. Cano, C. Martin, G. Beobide, O. Castilloc, I. de Pedro // New Journal if Chemistry. – 2019. – I. 43. – P. 3476–3485.