Finite orbits for rational functions

Jung Kyu CANCI

Abstract

Let K be a number field and $\phi \in K(z)$ a rational function. Let S be the set of all archimedean places of K and all non-archimedean places associated to the prime ideals of bad reduction for ϕ. We prove an upper bound for the length of finite orbits for ϕ in $\mathbb{P}_1(K)$ depending only on the cardinality of S.

Introduction

Let K be a number field and R its ring of integers. With every rational function $\phi \in K(z)$ we associate in the canonical way a rational map $\Phi : \mathbb{P}_1 \to \mathbb{P}_1$ defined over K. For every point $P \in \mathbb{P}_1(K)$ we call its forward orbit under Φ (or simply orbit) the set $O_{\phi}(P) = \{\Phi^n(P) \mid n \in \mathbb{Z}_{\geq 0}\}$, where Φ^n is the n-th iterate of Φ and $\Phi^0(P) = P$. If $O_{\phi}(P)$ is a finite set one says that P is a pre-periodic point for Φ. This definition is due to the following fact: if $O_{\phi}(P)$ is finite then there exist two integers $n \in \mathbb{Z}_{\geq 0}$ and $m \in \mathbb{Z}_{> 0}$ such that $\Phi^n(P) = \Phi^{n+m}(P)$. In this case one says that $\Phi^n(P)$ is a periodic point for Φ. If m is the smallest positive integer with the above property, then one says that m is the period of P. If P is a periodic point then its orbit is called a cycle.

It is not difficult to prove that every polynomial in $\mathbb{Z}[x]$ has cycles in \mathbb{Z} of length at most 2 and every finite orbit has cardinality at most 6. For a fixed finite set S of valuations of K, containing all the archimedean ones, Narkiewicz in [11] has shown that if Φ is a monic polynomial with coefficients in the ring of S-integers R_S (see the definition at the beginning of the next section), then the length of its cycles in K is bounded by a function $B(R_S) = C^{S(3S+2)}$, for an absolute constant C. Note that the bound depends only on the cardinality of S. The value of $B(R_S)$ has been diminished by Pezda in [13]. Indeed, the main result of Pezda [13] Theorem 1], which concerns polynomial maps in local rings, combined with the estimate given in [11] Theorem 4.7] on the height of the $|S|$-th rational prime,
gives rise to the following inequality

\[B(R_S) \leq [12|S| \log(5|S|)]^{2[K:Q]+1}. \]

(1)

Later Narkiewicz and Pezda in [12] extended [13, Theorem 1] to finite orbits so including pre-periodic points. By considering the limit in (1) and the Evertse’s bound proved in [6] for the number of \(S \)-unit non-degenerate solutions to linear equations in three variables, the result of Narkiewicz and Pezda [12, Theorem 1] states that the length of a finite orbit in \(K \) for a monic polynomial with coefficients in \(R_S \) is at most

\[\frac{1}{3} [12|S| \log(5|S|)]^{2[K:Q]+1} (31 + 2^{103}|S|) - 1. \]

R. Benedetto has recently obtained a different bound, again for polynomial maps, but his bound also depends on the degree of the map. He proved in [2] that if \(\phi \in K[z] \) is a polynomial of degree \(d \geq 2 \) which has bad reduction at \(s \) primes of \(K \), then the number of pre-periodic points of \(\phi \) is at most \(O(s \log s) \). The big-\(O \) constant is essentially \((d^2 - 2d + 2)/\log d \) for large \(s \). Benedetto’s proof relies on a detailed analysis of \(p \)-adic Julia sets.

In the present paper we will generalize to finite orbits for rational maps the result of Narkiewicz and Pezda [12] obtained for polynomial maps. We will study the same semigroup of rational maps studied in [4], namely: we fix an arbitrary finite set \(S \) of places of \(K \) containing all archimedean ones and consider the rational maps with good reduction outside \(S \). We recall the definition of good reduction for a rational map at a non zero prime ideal \(p \) (for the details see [10] or [4]): a rational map \(\Phi: \mathbb{P}_1 \rightarrow \mathbb{P}_1 \), defined over \(K \), has good reduction at a prime ideal \(p \) if there exists a rational map \(\tilde{\Phi}: \mathbb{P}_1 \rightarrow \mathbb{P}_1 \), defined over \(K(p) \), such that deg \(\Phi = \deg \tilde{\Phi} \) and the following diagram

\[
\begin{array}{ccc}
\mathbb{P}_1,K & \xrightarrow{\Phi} & \mathbb{P}_1,K \\
\sim & & \sim \\
\mathbb{P}_1,K(p) & \xrightarrow{\tilde{\Phi}} & \mathbb{P}_1,K(p)
\end{array}
\]

is commutative, where \(\sim \) is the reduction modulo \(p \). In other words, an endomorphism \(\Phi \) of \(\mathbb{P}_1 \) defined over \(K \) has good reduction at \(p \) if \(\Phi \) can be written as \(\Phi([X : Y]) = [F(X, Y), G(X; Y)] \), where \(F \) and \(G \) are homogeneous polynomials of the same degree, with coefficients in the local ring \(R_p \) of \(R \) at \(p \), and such that the resultant \(\text{Res}(F, G) \) of polynomials \(F \) and \(G \) is a \(p \)-unit in \(R_p \). Note that, from this definition, a rational map on \(\mathbb{P}_1(K) \) associated to a polynomial in \(K[z] \) has good
reduction outside S if and only if its coefficients are S-integers and its leading coefficient is an S-unit.

In this paper we prove:

Theorem 1. Let K be a number field. Let S be a finite set of cardinality s of places of K containing all the archimedean ones. There exists a number $c(s)$, depending only on s, such that the length of every finite orbit in $\mathbb{P}_1(K)$, for rational maps with good reduction outside S, is bounded by $c(s)$. We can choose $c(s)$ equal to

$$e^{10^{12}(s + 1)^8(\log(5(s + 1)))^8}.$$ \hfill (2)

The proof of Theorem 1 uses two non-elementary facts: the first is [9, Corollary B] where Morton and Silverman proved that if Φ is a rational map of degree ≥ 2 which has bad reduction only at t prime ideals of K and $P \in \mathbb{P}_1(K)$ is a periodic point with minimal period n, then the inequality

$$n \leq [12(t + 2)\log(5(t + 2))]^{[K:Q]}$$ \hfill (3)

holds. The second one is the theorem proved by Evertse, Schlickewei and Schmidt in [7] on the number of non-degenerate solutions $(u_1, \ldots, u_n) \in \Gamma$ to equation $a_1u_1 + \ldots + a_nu_n = 1$ where Γ is a given subgroup of $(\mathbb{C}^*)^n$ of finite rank and the $a_i's$ are given non-zero elements of K. For $n = 2$ and $a_1 = a_2 = 1$ we use the upper bound proved by Beukers and Schlickewei in [3]. The main point to obtain the estimate of Theorem 1 is the fact that the upper bounds in the theorems in [7] and [3] only depend on the rank of Γ. From Theorem 1 we easily deduce the following result concerning finite orbits for rational maps contained in a given finitely generated semigroup of endomorphisms of \mathbb{P}_1:

Corollary 1. Let \mathcal{F} be a finitely generated semigroup of endomorphisms of \mathbb{P}_1 defined over a number field K. There exists a uniform upper bound C which bounds the length of every finite orbit in $\mathbb{P}_1(K)$ for any rational map in \mathcal{F}. Furthermore it is possible to give an explicit bound for C in terms of a set of generators of \mathcal{F}.

Acknowledgements. The present work was written during the preparation of my Ph.D. thesis supervised by professor P. Corvaja. I would like to thank him for his useful suggestions. Also, I would like to thank prof. J.H. Silverman and prof. U. Zannier for their corrections and advice on my thesis. I am grateful to the referee for useful suggestions which helped to improve Theorem 1 and, in general, the presentation of this paper.
1 Proofs

In all the present paper we will use the following notation:

- K a number field;
- R the ring of integers of K;
- \mathfrak{p} a non zero prime ideal of R;
- $v_\mathfrak{p}$ the \mathfrak{p}-adic valuation on R corresponding to the prime ideal \mathfrak{p} (we always assume $v_\mathfrak{p}$ to be normalized so that $v_\mathfrak{p}(K^*) = \mathbb{Z}$);
- S a fixed finite set of places of K of cardinality s including all archimedean places;
- $R^*_S := \{ x \in K \mid v_\mathfrak{p}(x) \geq 0 \text{ for every prime ideal } \mathfrak{p} \notin S \}$ the ring of S-integers;
- $R^*_S^* := \{ x \in K^* \mid v_\mathfrak{p}(x) = 0 \text{ for every prime ideal } \mathfrak{p} \notin S \}$ the group of S-units.

Let $P_1 = [x_1 : y_1]$ and $P_2 = [x_2 : y_2]$ be points in $\mathbb{P}_1(K)$. Using the notation of [10] we will denote by

$$\delta_\mathfrak{p}(P_1, P_2) = v_\mathfrak{p}(x_1 y_2 - x_2 y_1) - \min\{v_\mathfrak{p}(x_1), v_\mathfrak{p}(y_1)\} - \min\{v_\mathfrak{p}(x_2), v_\mathfrak{p}(y_2)\}$$

the \mathfrak{p}-adic logarithmic distance between the points P_1, P_2; note that $\delta_\mathfrak{p}(P_1, P_2)$ is independent of the choice of the homogeneous coordinates, i.e. it is well defined.

We will use the two following propositions contained in [10]:

Proposition 1. [10] Proposition 5.1

$$\delta_\mathfrak{p}(P_1, P_3) \geq \min\{\delta_\mathfrak{p}(P_1, P_2), \delta_\mathfrak{p}(P_2, P_3)\}$$

for all $P_1, P_2, P_3 \in \mathbb{P}_1(K)$. □

Proposition 2. [10] Proposition 5.2 Let $\Phi : \mathbb{P}_1(K) \to \mathbb{P}_1(K)$ be a rational map defined over K. Then

$$\delta_\mathfrak{p}(\Phi(P), \Phi(Q)) \geq \delta_\mathfrak{p}(P, Q)$$

for all $P, Q \in \mathbb{P}_1(K)$ and all prime ideals \mathfrak{p} of good reduction for Φ. □

With $(Q_{-m}, \ldots, Q_0, \ldots, Q_{n-1})$ we always represent a finite orbit for a rational map Ψ in which the 0-th term Q_0 is a n-th periodic point for Ψ. Moreover, for all indexes $i \geq -m$, $Q_{i+1} = \Psi(Q_i)$ holds, bearing in mind that $Q_n = Q_0$. We will use the following remark which is a direct consequence of the previous two propositions.
Remark 1. Let \((Q_m, \ldots, Q_0, \ldots, Q_{n-1})\) be a finite orbit in \(\mathbb{P}_1(K)\) for a rational map \(\Psi\) with good reduction outside \(S\); then for all integers \(a, b\) with \(-m \leq a \leq n-1, b \geq 0, k \geq 0\) and for every prime ideal \(\mathfrak{p} \notin S\)

\[
\delta_{\mathfrak{p}}(Q_a, Q_{a+kb}) \geq \min\{\delta_{\mathfrak{p}}(Q_a, Q_{a+b}), \delta_{\mathfrak{p}}(Q_{a+b}, Q_{a+2b}), \ldots, \delta_{\mathfrak{p}}(Q_{a+(k-1)b}, Q_{a+kb})\} = \delta_{\mathfrak{p}}(Q_a, Q_{a+b}).
\]

Proof. It is a direct application of the triangle inequality (Proposition 1) and Proposition 2. In fact the \(b\)-th iterate of \(\Psi\) has good reduction at every prime ideal \(\mathfrak{p}\) of \(S\), therefore

\[
\delta_{\mathfrak{p}}(Q_{a+lb}, Q_{a+(l+1)b}) = \delta_{\mathfrak{p}}(\Psi^b(Q_{a+(l-1)b}), \Psi^b(Q_{a+lb})) \geq \delta_{\mathfrak{p}}(Q_{a+(l-1)b}, Q_{a+lb})
\]

for all indexes \(0 < l \leq k\). □

In the first version of this paper, in Theorem 1 we proved an upper bound of the form \(c(s, h)\) also depending on the class number \(h\) of the ring \(R_S\). Indeed we worked with a set \(\mathfrak{S}\) of places of \(K\) containing \(S\) such that the ring \(R_\mathfrak{S}\) was a principal ideal domain. From a simple inductive argument it results that it is possible to choose \(\mathfrak{S}\) such that \(|\mathfrak{S}| \leq s + h - 1\). From some suitable applications of Proposition 1 and Proposition 2 we obtained some equations in two and three \(\mathfrak{S}\)-units and by using the upper bounds proved by Evertse in [5] and [6] we deduced a bound in Theorem 1. Following the useful suggestions made by the anonymous referee we shall use, instead of the classical \(\mathfrak{S}\)-unit equation theorem, the refined result of Evertse, Schlickewei and Schmidt [7] (and of Beukers and Schlickewei [3] for \(n = 2\)) leading to an upper bound in Theorem 1 depending only on the cardinality of \(\mathfrak{S}\), even if \(R_\mathfrak{S}\) is not a principal ideal domain. Now we state the last two quoted theorems and then we present the referee’s suggestion to use these results.

Let \(L\) be a number field. Let \((L^*)^n\) be the \(n\)-fold direct product of \(L^*\), with coordinatewise multiplication \((x_1, \ldots, x_n)(y_1, \ldots, y_n) = (x_1y_1, \ldots, x_ny_n)\) and exponentiation \((x_1, \ldots, x_n)^l = (x_1^l, \ldots, x_n^l)\). We say that a subgroup \(\Gamma\) of \((L^*)^n\) has rank \(r\) if \(\Gamma\) has a free subgroup \(\Gamma_0\) of rank \(r\) such that for every \(x \in \Gamma\) there is \(m \in \mathbb{Z}_{>0}\) with \(x^m \in \Gamma_0\).

Theorem A [3] Let \(L\) be a number field and let \(\Gamma\) be a subgroup of \((L^*)^2\) of rank \(r\). Then the equation

\[
x + y = 1 \quad \text{in} \quad (x, y) \in \Gamma
\]

has at most \(2^{8r+1}\) solutions. □
Theorem B [7] Let L be a number field, let $n \geq 3$ and let a_1,\ldots,a_n be non zero elements of L. Further, let Γ be a subgroup of $(L^*)^n$ of rank r. Then the equation
\[a_1x_1 + \ldots + a_nx_n = 1 \quad \text{in } (x_1,\ldots,x_n) \in \Gamma \]
has at most $e^{(6n)^{3(r+1)}}$ solutions such that $\sum_{i \in I} a_i x_i \neq 0$ for each non empty subset $I \subset \{1,\ldots,n\}$. □

Let a_1,\ldots,a_h be a full system of representatives for the ideal classes of R_S. For each $i \in \{1,\ldots,h\}$ there is an S-integer $\alpha_i \in R_S$ such that $a_i = \alpha_i R_S$. (5)

Let L be the extension of K given by
\[L = K(\zeta, \sqrt[1]{\alpha_1}, \ldots, \sqrt[1]{\alpha_h}) \] (6)
where ζ is a primitive h-th root of unity. Of course if $h = 1$ then $L = K$. Let us define the following subgroups of L^*
\[\sqrt{K}^* := \{ a \in L^* \mid \exists m \in \mathbb{Z}_{>0} \text{ with } a^m \in K^* \} \]
and
\[\sqrt{R_S} := \{ a \in L^* \mid \exists m \in \mathbb{Z}_{>0} \text{ with } a^m \in R_S^* \}. \]

Let S denote the set of places of L lying above the places in S and denote by R_S and R_S^* the ring of S-integers and the group of S-units, respectively, in L. By definition it is clear that $R_S^* \cap \sqrt{K}^* = \sqrt{R_S}$ and so it follows that $\sqrt{R_S}$ is a subgroup of L^* of rank $s-1$. With the just stated notation we prove the following:

Proposition 3. Let L and S be as above. Let Φ be a rational map from \mathbb{P}_1 to \mathbb{P}_1 defined over L, having good reduction at all prime ideals outside S. Let
\[\{P_{-m}, \ldots, P_{-1}, P_0\} \] (7)
be a set of $m+1$ distinct points of $\mathbb{P}_1(L)$ such that $\Phi(P_i) = P_{i+1}$ for all $i \in \{-m,\ldots,-1\}$ and $\Phi(P_0) = P_0$. Further, suppose that $P_i = [x_i : y_i]$ for all indexes $i \in \{-m,\ldots,0\}$, where $x_i,y_i \in L$ such that

1. $x_0 = 0, y_0 = 1$;
2. $x_i R_S + y_i R_S = R_S$ for all indexes $i \in \{-m,\ldots,0\}$;
3. $x_i y_j - x_j y_i \in \sqrt{K}^*$ for any distinct indexes $i, j \in \{-m,\ldots,0\}$.

6
Then \(m < e^{10^{12}} - 2 \).

The proof of this proposition will be a direct consequence of the following three lemmas.

Lemma 1. With the same hypothesis of Proposition \(\text{[3]} \) let \(P_{l-k}, \ldots, P_{l-1}, P_l \) be distinct points of the orbit \(\text{[7]} \) such that for every prime ideal \(p \notin S \)

\[
\delta_p(P_{l-i}, P_0) = \delta_p(P_l, P_0) \text{ for every index } 0 \leq i \leq k. \tag{8}
\]

Then \(k < 2^{16} \).

Proof. For every prime ideal \(p \notin S \) and for any two indexes \(k \geq i > j \geq 0 \) from Proposition \(\text{[1]} \) and condition \(\text{[8]} \) it follows that

\[
\delta_p(P_{l-i}, P_{l-j}) \geq \min\{\delta_p(P_{l-i}, P_0), \delta_p(P_{l-j}, P_0)\} = \delta_p(P_l, P_0). \tag{9}
\]

Moreover, since \(P_n = P_0 \) for all \(n \geq 0 \), by applying Remark \(\text{[1]} \) to the orbit \((P_{-m}, \ldots, P_{-1}, P_0) \) with \(a = l - i, b = i - j \) and \(k = (m + 1) \), where \(m \) is the maximum integer such that \(l - i + m(i - j) < 0 \), it follows that

\[
\delta_p(P_{l-i}, P_0) \geq \min\{\delta_p(P_{l-i}, P_l), \delta_p(P_{l-j}, P_{l+1 + 2j}), \ldots, \delta_p(P_{l-i+m(i-j)}, P_0)\}
= \delta_p(P_{l-i}, P_{l-j}).
\]

By the last inequality, \(\text{[8]} \) and \(\text{[9]} \) we have that

\[
\delta_p(P_{l-i}, P_{l-j}) = \delta_p(P_l, P_0). \tag{10}
\]

Note that by condition \((2) \)-Proposition \(\text{[3]} \)

\[
\delta_p(P_i, P_j) = v_p(x_i y_j - x_j y_i) \tag{11}
\]

for all indexes \(i, j \in \{-m, \ldots, 0\} \) and every prime ideal \(p \notin S \). Since \(P_0 = [0 : 1] \), from \((3) \)-Proposition \(\text{[3]} \) it follows that \(x_{l-i} \in \sqrt{K^*} \) and so, by \(\text{[11]} \), condition \(\text{[8]} \) is equivalent to \(x_{l-i}R_S = x_i R_S \), for every index \(0 \leq i \leq k \). Hence

\[
u_{l-i} := \frac{x_{l-i}}{x_l} \in R_S^* \cap \sqrt{K^*} = \sqrt{R_S^*} \tag{12}
\]

and \(P_{l-i} = [x_l : y_{l-i}/u_{l-i}] \). Furthermore, again from \((3) \)-Proposition \(\text{[3]} \) combined with \(\text{[10]} \) and \(\text{[12]} \) we deduce that

\[
u_{l-i,j} := \frac{x_{l-i} y_{l-j} - x_{l-j} y_{l-i}}{x_l u_{l-i} u_{l-j}} = \frac{y_{l-i}}{u_{l-i}} - \frac{y_{l-j}}{u_{l-j}} \in R_S^* \cap \sqrt{K^*} = \sqrt{R_S^*} \tag{13}
\]
for all distinct indexes $i, j \in \{0, \ldots, k\}$. In particular, either $k \in \{0, 1\}$ or we have a system of three equations

$$\begin{align*}
y_l - y_{l-1}/u_{l-1} &= u_{l-1,i} \\
y_l - y_{l-i}/u_{l-i} &= u_{l-i,i} \\
y_{l-1}/u_{l-1} - y_{l-i}/u_{l-i} &= u_{l-i,i-1} \
\end{align*}$$

(14)

The first one is obtained from (13) substituting $j = 0$ and $i = 1$ and the two other ones with $j = 0, j = 1$ and i an arbitrary index $k \geq i \geq 2$ (recall that $u_l = 1$).

We deduce from (14) the following linear relation:

$$u_{l-1,i} + u_{l-i,l-1} = u_{l-i,j},$$

so $(u_{l-1,i}/u_{l-i,j}, u_{l-i,l-1}/u_{l-i,j}) \in \sqrt{R_S^*} \times \sqrt{R_S^*}$ is a solution of the equation $u + v = 1$. Note that the group $\sqrt{R_S^*} \times \sqrt{R_S^*}$ has rank $2(s - 1)$ therefore, by Theorem A (Beukers and Schlickewei [3]) with $\Gamma = \sqrt{R_S^*} \times \sqrt{R_S^*}$, there are at most $2^{8(2s-2)+1} = 2^{16s-8}$ possibilities for $(u_{l-1,i}/u_{l-i,j}, u_{l-i,l-1}/u_{l-i,j})$. Now from (14) it follows that

$$\frac{y_{l-i}}{u_{l-i}} = y_l - \frac{u_{l-i,j}}{u_{l-i,j}}u_{l-1,i}.$$

Thus the set of points $\{P_{l-i} = [x_l : y_{l-i}/u_{l-i}] | k \geq i \geq 2\}$ has cardinality bounded by 2^{16s-8} so $k \leq 2^{16s-8} + 1 < 2^{16s}$.

The next step is to prove an upper bound, which depends only on s, for the number of points P_{-i} of (17) such that $x_{-i}R_S \neq x_{-i+1}R_S$. We need two lemmas.

We say that a S-integer T is representable in two essentially different ways as sum of two elements of $\sqrt{R_S^*}$ if there exist

$$u_1, u_2, v_1, v_2 \in \sqrt{R_S^*}$$

such that $\{u_1, u_2\} \neq \{v_1, v_2\}$ and $T = u_1 + u_2 = v_1 + v_2$. (15)

Lemma 2. The cardinality of the set of non zero principal ideals of R_S

$$\{T \cdot R_S \mid T \text{ satisfies (15)}\}$$

is bounded by $e^{18\gamma(3s-2)}$.

Proof. Let $T \in R_S/\{0\}$ be written as $T = u_1 + u_2 = v_1 + v_2$ which satisfies the condition in (15). Therefore the left term of equation

$$\frac{u_1}{v_1} + \frac{u_2}{v_1} - \frac{v_2}{v_1} = 1$$

has no vanishing subsums. Now, applying Theorem B (Evertse, Schlickewei and Schmidt [7]) with $n = 3$ and $\Gamma = \sqrt{R_S^*} \times \sqrt{R_S^*} \times \sqrt{R_S^*}$ we obtain that the principal ideal

$$T \cdot R_S = v_1 \left(1 + \frac{v_2}{v_1}\right) \cdot R_S$$

has at most $e^{18\gamma(3s-2)}$ possibilities. \hfill \Box
Remark 2. By previous lemma, we can choose a set \mathcal{I} of \mathbf{S}-integers, with cardinality at most $e^{18^{9}9^{3}e^{2}}$, such that every non zero \mathbf{S}-integer with the property (15) is representable as uT, where $u \in \mathbb{R}_S^{*}$ and $T \in \mathcal{I}$.

Lemma 3. With the same hypothesis of Proposition 3, if there exist five distinct points $P_{n_5} = [x_{n_5} : y_{n_5}], P_{n_4} = [x_{n_4} : y_{n_4}], P_{n_3} = [x_{n_3} : y_{n_3}], P_{n_2} = [x_{n_2} : y_{n_2}], P_{n_1} = [x_{n_1} : y_{n_1}]$ of the orbit (7), with $n_5 < n_4 < n_3 < n_2 < n_1 < 0$, then x_{n_1}/x_{n_2} is a non zero \mathbf{S}-integer that is representable, in two essentially different ways, as sum of two elements of $\sqrt{R_S^{*}}$.

Proof. Since $\Phi(P_0) = P_0 = [0 : 1]$, from Proposition 2, considering Φ^{n-n_j}, $P = P_{n_j}$ and $Q = P_0$, it follows that $x_{n_j}y_{n_j} \in R_S$ for all couple of integers $j \geq i$. Therefore there exist four non zero \mathbf{S}-integers T_1, T_2, T_3, T_4 such that

$$x_{n_i} = T_i x_{n_{i+1}} \text{ for all } i \in \{1, 2, 3, 4\}$$

and so for every couple of distinct indexes $1 \leq i < j \leq 5$

$$x_{n_i} = T_i \cdot \ldots \cdot T_{j-1} x_{n_j}. \quad (16)$$

By Remark 1 we have that

$$\delta_{\Phi}(P_{n_j}, P_0) \geq \min\{\delta_{\Phi}(P_{n_j}, P_{n_i}), \delta_{\Phi}(P_{n_j}, P_{2n_j}), \ldots, \delta_{\Phi}(P_{m-n_j-(m-1)n_j}, P_0)\} = \delta_{\Phi}(P_{n_i}, P_{n_j})$$

for a suitable integer m, so it follows that $(x_{n_j}y_{n_j} - x_{n_i}y_{n_i})/x_{n_j}$ and by identity (16)

$$y_{n_j} - T_i \cdot \ldots \cdot T_{j-1} y_{n_j} = \frac{x_{n_j}y_{n_j} - x_{n_i}y_{n_i}}{x_{n_j}} \in \mathbb{R}_S^{*} \cap \sqrt{K^{*}} = \sqrt{R_S^{*}}. \quad (17)$$

(Recall that, by conditions (1) and (3) in the hypothesis of Proposition 3, the \mathbf{S}-integers $x_{n_j}y_{n_j} - x_{n_i}y_{n_i}$ and x_{n_j} belong to $\sqrt{K^{*}}$.) From (17) we obtain:

$$y_{n_1} - T_1 y_{n_2} = v_1, \quad (18)$$
$$y_{n_2} - T_2 y_{n_3} = v_2, \quad (19)$$
$$y_{n_3} - T_1 T_2 y_{n_4} = v_3, \quad (20)$$
$$y_{n_4} - T_3 y_{n_5} = v_4, \quad (21)$$
$$y_{n_2} - T_2 T_3 y_{n_4} = v_5, \quad (22)$$
$$y_{n_1} - T_1 T_2 T_3 y_{n_5} = v_6, \quad (23)$$
$$y_{n_2} - T_2 T_3 T_4 y_{n_5} = v_7, \quad (24)$$
$$y_{n_1} - T_1 T_2 T_3 T_4 y_{n_5} = v_8, \quad (25)$$
$$y_{n_3} - T_3 T_4 y_{n_5} = v_9, \quad (26)$$
$$y_{n_4} - T_4 y_{n_5} = v_{10}. \quad (27)$$

9
where \(v_i \in \sqrt{R_S} \) for all indexes \(1 \leq i \leq 10 \).

From (18), (20) and (19) we obtain

\[
T_1 = \frac{v_3}{v_2} - \frac{v_1}{v_2}.
\]

From (23), (18) and (22) we obtain

\[
T_1 = \frac{v_6}{v_5} - \frac{v_1}{v_5}.
\]

From (25), (18) and (24) we obtain

\[
T_1 = \frac{v_8}{v_7} - \frac{v_1}{v_7}.
\]

Now we finish proving that among (28), (29), (30) there exist at least two distinct representations of \(T_1 \) as sum of two elements of \(\sqrt{R_S} \). From (24), (19) and (26) we obtain that

\[
T_2 = \frac{v_7}{v_7} - \frac{v_2}{v_7};
\]

therefore \(v_7 \neq v_7 \) and so

\[
\left\{ \frac{v_3}{v_2}, -\frac{v_1}{v_2} \right\} = \left\{ \frac{v_6}{v_5}, -\frac{v_1}{v_5} \right\} \Rightarrow -\frac{v_1}{v_2} = \frac{v_3}{v_2}.
\]

From (24), (22) and (27) we obtain that \(T_2T_3 = \frac{v_7}{v_7} - \frac{v_2}{v_7} \); therefore \(v_7 \neq v_5 \) and so

\[
\left\{ \frac{v_6}{v_5}, -\frac{v_1}{v_5} \right\} = \left\{ \frac{v_8}{v_7}, -\frac{v_1}{v_7} \right\} \Rightarrow -\frac{v_1}{v_5} = \frac{v_8}{v_7}.
\]

From (31) and (32) it follows that

\[
\left\{ \frac{v_3}{v_2}, -\frac{v_1}{v_2} \right\} = \left\{ \frac{v_6}{v_5}, -\frac{v_1}{v_5} \right\} = \left\{ \frac{v_8}{v_7}, -\frac{v_1}{v_7} \right\} \Rightarrow -\frac{v_1}{v_2} = -\frac{v_1}{v_5}.
\]

But this is not possible since, from (22), (19) and (21), \(T_2 = \frac{v_7}{v_4} \neq 0 \) holds. \(\square \)

Proof of Proposition 3. The set \(\{P_{i_1}, \ldots, P_{i_r}, P_{i_1}\} \) of all points \(P_{i_r} \) of the orbit (7) such that \(x_{i_r}R_S \neq x_{i_{r-1}}R_S \) has cardinality equal to \(r + 1 \leq 4 + e^{18^9(3s-2)} \). Indeed, if such five points do not exist, we have finish; otherwise for every index \(i_{r-2} < i_r \leq i_1 \) we apply the previous lemma with \(n_1 = -1, n_2 = i_r, n_3 = i_{r-2}, n_4 = i_r, n_5 = i_r \) obtaining that \(x_{i_r}x_{i_r}^{-1} = uT \) where \(T \in \mathcal{T} \) (the set chosen in Remark 2) and \(u \) is a suitable \(S \)-unit. Therefore

\[
P_{i_r} = [x_{i_r}/T : uy_{i_r}].
\]

In this way we have proved that \(r \) is bounded by \(3 + |\mathcal{T}| \). Now, by Lemma 1 it is clear that it is possible to choose as upper bound for \(m \) the number

\[
\left(4 + e^{18^9(3s-2)} \right) \left(2^{16s} + 1 \right) < e^{10^{12s}} - 2.
\]

\(\square \)
Proof of Theorem \[1\] The bound \[2\] holds for finite orbit length for all rational maps of degree 1, i.e. automorphisms of \(\mathbb{P}_1(K) \). Indeed every pre-periodic point for a bijection is a periodic point. Thus we have to study only the cycle lengths. If a point of \(\mathbb{P}_1(K) \) is a periodic point for an automorphism \(\Psi \in \text{PGL}_2(K) \), with period \(n \geq 3 \), then \(\Psi^n \) is the identity map of \(\mathbb{P}_1(K) \). The order of an element of \(\text{PGL}_2(K) \) is bounded by \(2 + 4[K : \mathbb{Q}]^2 \), so from \(2s \geq [K : \mathbb{Q}] \) it results that
\[
n \leq 2 + 16s^2 < c(s). \tag{33}
\]

Now we consider rational maps of degree \(\geq 2 \) with good reduction outside \(S \). We reduce to the hypothesis of Proposition \[3\] Let \((Q_{-i}, \ldots, Q_0, \ldots, Q_{n-1})\) be a finite orbit in \(\mathbb{P}_1(K) \), for a rational map \(\Psi: \mathbb{P}_1 \to \mathbb{P}_1 \) defined over \(K \) with good reduction outside \(S \), including \((Q_0, \ldots, Q_{n-1})\) as a cycle for \(\Psi \). We can associate a finite orbit in which the cycle consists of one single point (i.e. a fixed point). Indeed, the tuple \((Q_{-i}, \ldots, Q_0, Q_0)\) is an orbit for \(\Psi^n \) and \(Q_0 \) is a fixed point. We set \(m := \left\lceil \frac{n}{l} \right\rceil \). Of course \(\Psi^n \) can be viewed as an endomorphism of \(\mathbb{P}_1 \) defined over \(L \) (the extension of \(K \) defined in \([6] \)). For every index \(i \in \{0, \ldots, m\} \), let \(Q_{-i:n} = [l_i : t_i] \) be a representation of \(Q_{-i:n} \) in \(S \)-integral homogeneous coordinates.

Recall that \(\{a_1, \ldots, a_m\} \) is a full system of representatives for the ideal classes of \(R_S \) and that the \(\alpha_i \)'s are the \(S \)-integers verifying \([5] \). Let \(b_i \in \{a_1, \ldots, a_m\} \) be the representative of the ideal \(t_iR_S + l_iR_S \). Let \(\beta_i \in \{\alpha_1, \ldots, \alpha_m\} \) be such that \(b_i^h = \beta_iR_S \). Hence there exists \(\lambda_i \in K^* \) satisfying \((t_iR_S + l_iR_S)^h = \lambda_i^h \beta_iR_S \). As suggested by the referee, in \(L \), we define
\[
t'_i := \frac{t_i}{\lambda_i \sqrt[2]{\beta_i}}, \quad l'_i := \frac{l_i}{\lambda_i \sqrt[2]{\beta_i}}. \tag{34}
\]
It is clear that \(t'_i, l'_i \) are elements of \(\sqrt[2]{K^*} \) such that
\[
(t'_iR_S + l'_iR_S) = R_S. \tag{35}
\]
Furthermore, for any two distinct indices \(i, j \)
\[
(t'_i l'_j - t'_j l'_i)^h = \frac{(t_i l_j - t_j l_i)^h}{\lambda_i^h \lambda_j^h \beta_i \beta_j} \in K^*.
\]

By \((35) \) with \(i = 0 \) there exist \(r_0, s_0 \in R_S \) such that \(r_0 t'_0 + s_0 l'_0 = 1 \). Define the matrix
\[
A = \begin{pmatrix} l'_0 & -t'_0 \\ r'_0 & s'_0 \end{pmatrix}
\]
and further define \(x_i, y_i \) by
\[
\begin{pmatrix} x_i \\ y_i \end{pmatrix} = A \begin{pmatrix} t'_i \\ l'_i \end{pmatrix}
\]
for all } i \in \{0, \ldots, m\}. \text{ If we now set } P_i := [x_i : y_i] \text{ for all } i \in \{0, \ldots, m\} \text{ and } \Phi := [A] \circ \Psi^n \circ [A]^{-1}, \text{ where } [A] \text{ is the automorphism of } \mathbb{P}_1 \text{ induced by } A, \text{ then, by Proposition } m = \left\lfloor \frac{l}{n} \right\rfloor < e^{10^{12}s} - 2 \text{ and so } l < n(e^{10^{12}s} - 1). \text{ Therefore the orbit } (Q_j, \ldots, Q_{-1}, Q_0, \ldots, Q_{n-1}) \text{ has cardinality bounded by } ne^{10^{12}s}. \text{ Since in } S \text{ there are at most } s - 1 \text{ prime ideals and } 2s \geq [K : \mathbb{Q}], \text{ the inequality (2) becomes}

\[n \leq \left[12(s + 1) \log(5(s + 1)) \right]^{8s} \]

and so the theorem is proved.

\[\square \]

Proof of Corollary \[\square \] Choose a finite set of generators of } F\text{. Each of these generators has at most finitely many prime ideals of } R \text{ of bad reduction. So there is a finite set } S \text{ of prime ideals such that each of the chosen generators, and therefore each of the elements of } F, \text{ has good reduction outside } S. \text{ We conclude by applying Theorem } \[\square \]

References

[1] APOSTOL T Introduction to Analytic Number Theory. Springer-Verlag (1976), New York.

[2] R. BENEDETTO, Preperiodic points of polynomials over global fields, (2005) [ArXiv:math.NT/0506480].

[3] F. BEUKERS AND H.P. SCHLICKEWEI, The equation } x+y = 1 \text{ in finitely generated groups, Acta Arith. LXXVIII.2 (1996), 189-199.

[4] J. K. CANCI, Cycles for rational maps of good reduction outside a prescribed set, Monatsh. Math., to appear.

[5] J. H. EVERTSE, On equations in } S \text{-units and the Thue-Mahler equation, Invent. Math. 75 (1984), 561-584.

[6] J. H. EVERTSE, The number of solutions of decomposable form equations, Invent. Math. 122, (1995), 559-601.

[7] J. H. EVERTSE, H.P. SCHLICKEWEI AND W. M. SCHMIDT, Linear equations in variables which lie in a multiplicative group, Ann. Math. 155, (2002), 807-836.

[8] S. LANG, Algebra-Revised third edition, Springer-Verlag, GTM 211, 2002
[9] P. Morton and J.H. Silverman, *Rational Periodic Points of Rational Functions*, Inter. Math. Res. Notices 2 (1994), 97-110.

[10] P. Morton and J.H. Silverman, *Periodic points, multiplicities, and dynamical units*, J. Reine Angew. Math. 461 (1995), 81-122.

[11] W. Narkiewicz, *Polynomial cycles in algebraic number fields*, Colloq. Math. 58 (1989), 151-155.

[12] W. Narkiewicz and T. Pezda, *Finite polynomial orbits in finitely generated domain*, Monatsh. Math. 124 (1997), 309-316.

[13] T. Pezda, *Polynomial cycles in certain local domains*, Acta Arith. LXVI:1 (1994), 11-22.

Jung Kyu CANCI
Dipartimento di Matematica e Informatica
Università degli Studi di Udine
via delle Scienze, 206
33100 Udine (ITALY)
E-mail: canci@dimi.uniud.it