GLOBAL $H^s, s > 0$ LARGE DATA SOLUTIONS OF 2D DIRAC EQUATION WITH HARTREE TYPE INTERACTION

VLADIMIR GEORGIEV AND BORIS SHAKAROV

Abstract. Local and global well - posedness of the solution to the two space dimensional Dirac equation with Hartree type nonlinearity is established with the initial datum in the space $H^s(\mathbb{R}^2, \mathbb{C}^2)$ with $s > 0$.

1. Introduction

The 2D Dirac type models have manifested an increasing role in the last years in connection with the new hypothetical field called anionic Dirac matter that is a type of quasiparticle that can only occur in two-dimensional systems (see for example [Wehling et al. (2014)]).

The interaction between fermions (a typical example is the electron) confined to a plane with massive bosons particles can be interpreted as a 2D nonlinear Dirac with cubic nonlinearity of Hartree type (see [Chadam et al.(1976)], [Alves et al.(2018)]). A General overview on the application of variational methods for this type of models can be found in [Alves(2018)].

In this paper we study the 2D Dirac equation with a non-local interaction term of Hartree type. To be more precise, we plan to study local and global well - posedness of the Cauchy problem

\[
\begin{cases}
 -i\gamma^\mu \partial_\mu \psi + m \psi = ((b - \Delta)^{-1}|\psi|^2)\psi, \\
 \psi(0, x) = \psi_0 \in H^s(\mathbb{R}^2),
\end{cases}
\]

where $m > 0$ is the mass of the spinor, $s > 0$, $b > 0$, $\psi : \mathbb{R}^{1+2} \to \mathbb{C}^2$, the Dirac matrices γ^μ are given by

\[
\begin{align*}
 \gamma^0 &= \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, \\
 \gamma^1 &= \begin{pmatrix} 0 & i \\ i & 0 \end{pmatrix}, \\
 \gamma^2 &= \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}
\end{align*}
\]

and $\langle \cdot, \cdot \rangle$ is the inner product in \mathbb{C}^2. We use the standard summation rule for repeated indices as well the classical rule of raising and lowering indices by the aid of the metric diag(1, -1) so that

\[
\partial^0 = \partial_0 = \partial_t, -\partial^j = \partial_j = \partial_{x_j}, j = 1, 2.
\]

This Cauchy problem was treated in [Tesfahun(2018)] and the main result of that work is the global existence and scattering with an initial datum which has sufficiently small Sobolev norm $H^s(\mathbb{R}^2)$ with $s > 0$.

Our main goal is to improve this result and establish local and global well - posedness with initial data in $H^s(\mathbb{R}^2)$ without the smallness assumption.

For the case of the local interaction of the type $((\gamma^0 \psi, \psi)) \psi$ one can see the corresponding results in [Bejenaru et al.(2016)] where the initial datum is in $H^\frac{1}{2}$.

In order to state our main result, we can rewrite the Cauchy problem (1) in the equivalent form

\[
\begin{cases}
 i\partial_t \psi = D_m \psi - ((b - \Delta)^{-1}|\psi|^2)\gamma^0 \psi, \\
 \psi(0, x) = f \in H^s(\mathbb{R}^2),
\end{cases}
\]

where

\[
D_m = -i\alpha^j \partial_j + m\gamma^0
\]
is a self-adjoint operator with the domain $H^1(\mathbb{R}^2)$ due to the fact that the matrices

$$
\alpha^1 = \gamma^0 \gamma^1 = \begin{pmatrix} 0 & i \\ -i & 0 \end{pmatrix}, \quad \alpha^2 = \gamma^0 \gamma^2 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix},
$$

and γ^0 are self-adjoint. Thus, we look for a solution $\psi \in C([0, \infty); H^s(\mathbb{R}^2))$ satisfying the integral equation

$$
\psi(t) = e^{-itD_m} \psi_0 + \int_0^t e^{-i(t-s)D_m} ((b - \Delta)^{-1} |\psi|^2) \gamma^0 \psi(s) ds,
$$

(3)

Theorem 1. [Global existence] For any $s > 0$ and any $\psi_0(x) \in H^s(\mathbb{R}^2)$ there exists a unique solution $\psi(t, x) \in C([0, \infty); H^s(\mathbb{R}^2))$ to integral equation (3). Moreover, for any $t \in [0, \infty)$,

$$
\|\psi(t, \cdot)\|_{L^2(\mathbb{R}^2)} = \|\psi_0\|_{L^2(\mathbb{R}^2)}.
$$

The key point in the proof is the following Brezis-Gallouët Type Inequality (see [Brezis et al. (1980)]):

Theorem 2. For any $b > 0$ and $s > 0$ there exists a constant $C = C(b, s) > 0$ such that, for any $f \in B^s_{1, \infty}(\mathbb{R}^2)$ the following inequality is true

$$
\|(b - \Delta)^{-1} f\|_{L^\infty(\mathbb{R}^2)} + \|(b - \Delta)^{-1} (1 - \Delta)^{s/2} f\|_{L^2(\mathbb{R}^2)} \leq C \|f\|_{L^1(\mathbb{R}^2)} \log \left(2 + \frac{\|f\|_{B^s_{1, \infty}(\mathbb{R}^2)}}{\|f\|_{L^1(\mathbb{R}^2)}}\right).
$$

(5)

Concerning the behavior of energy type norm $\|\psi(t)\|_{H^s(\mathbb{R}^2)}$ we can show double exponential growth for the Dirac case, namely we have the following.

Theorem 3. [Growth of $H^{1/2}$ norm] For any $\psi_0(x) \in H^{1/2}(\mathbb{R}^2)$ there exist $C_1(\|\psi_0\|_{H^s}) > 0$ and $C_2 > 0$ such that the solution $\psi(t, x) \in C([0, \infty); H^{1/2}(\mathbb{R}^2))$ to integral equation (3) satisfies the estimate

$$
\|\psi(t)\|_{H^{1/2}(\mathbb{R}^2)} \leq e^{C_1 e^{C_2 t}}.
$$

(6)

Since the kinetic energy of the Dirac equation is determined by the indefinite form

$$
\langle D_m \psi(t), \psi(t) \rangle_{L^2}
$$

we can obtain the following better exponential bound.

Theorem 4. [Growth of the kinetic energy] For any $\psi_0(x) \in H^{1/2}(\mathbb{R}^2)$, there exists a constant $C = C(\|\psi_0\|_{H^{1/2}}) > 0$ such that the solution $\psi(t, x) \in C([0, \infty); H^{1/2}(\mathbb{R}^2))$ to integral equation (3) satisfies the estimate

$$
|\langle D_m \psi(t), \psi(t) \rangle_{L^2}| \leq e^{C t}.
$$

(7)

We will use the following notations:

- $f(t) \lesssim g(t)$ means that there exists a constant $C > 0$, possibly depending on some fixed values but independent of t, such that $f(t) \leq C g(t)$;
- $H^s := H^s(\mathbb{R}^2, \mathbb{C}^2)$ with $s > 0$. In the same way $L^p := L^p(\mathbb{R}^2, \mathbb{C}^2)$;
- Throughout the equations, we use C for positive constants coming from various known inequalities. With abuse of notation, C can change.
- We define the Fourier transform and the Anti-Fourier transform in the usual way: $\hat{\psi}(\xi) = \int e^{-ix \cdot \xi} \psi(x) dx$ and $\mathcal{F}^{-1}(\psi(x)) = \frac{1}{(2\pi)^d} \int e^{ix \cdot \xi} \hat{\psi}(\xi) d\xi$.
- Let $\hat{\rho}(\xi)$ be a radial, positive, Schwartz function, equal to 1 in $1 \leq |\xi| \leq 2$, to 0 for $|\xi| \leq 1 - \frac{1}{4}$ and $|\xi| \geq 2 + \frac{1}{4}$ and such that $\sum_{j \in \mathbb{Z}} \hat{\rho}(2^{-j} \xi) = 1$. We define $\hat{\rho}_{(0)}(\xi) = \sum_{j \leq 0} \hat{\rho}(2^{-j} \xi)$ Let ψ be a Schwartz function. We define $\psi_{(j)} = \mathcal{F}^{-1}(\hat{\rho}(2^{-j} \xi) \hat{\psi}(\xi))$ and
\[\psi_{(0)} = \mathcal{F}^{-1}(\hat{\rho}_{(0)}(\xi)\hat{\psi}(\xi)) \] The Besov space \(B^s_{p,q} \) is defined as the semi-normed space of functions such that
\[\| \psi \|_{B^s_{p,q}} = \| \psi_{(0)} \|_{L^p} + \left(\sum_{j=1}^{\infty} (2^j s \| \psi_{(j)} \|_{L^p})^q \right)^{\frac{1}{q}} < \infty, \]
following substantially the definition found in [Grafakos (2014)].

2. Local and Global Existence

Theorem 2.1 (Local Existence). For any \(s > 0 \) and any \(\psi_0 \in H^s(\mathbb{R}^2) \), there exists a time \(T = T(\| \psi_0 \|_{H^s}) > 0 \) and a unique solution \(\psi \in C([0, T); H^s(\mathbb{R}^2)) \) to the equation (3).

Proof. Let \(R := \| \psi_0 \|_{H^s} \) and take \(b = 1 \). We use a contraction principle in the space \(X_T = \{ \psi \in L^\infty([0, T]; H^s(\mathbb{R}^2)); \| \psi \|_{L^\infty((0, T), H^s(\mathbb{R}^2))} \leq 2R \} \) equipped with the distance
\[d(u,v) = \| u - v \|_{L^\infty((0, T), H^s(\mathbb{R}^2))}, \]
with \(T = T(R) \) to be chosen later. Observe that \((X_T, d) \) is a complete metric space. We define the map
\[(8) \quad S(\psi) = e^{-itD_m} \psi_0 + i \int_0^t e^{-i(t-\tau)D_m} ((1 - \Delta)^{-1} |\psi(\tau)|^2) \gamma_0 \psi(\tau) d\tau, \]
and we are going to prove that \(S \) is a contraction in the space \(X_T \). Indeed, taking an element \(\psi \in X_T \), one can see that
\[(9) \quad \| S(\psi)(t) \|_{H^s(\mathbb{R}^2)} \leq \| \psi_0 \|_{H^s(\mathbb{R}^2)} + \int_0^t \| (1 - \Delta)^{s/2} \left[((1 - \Delta)^{-1} |\psi(\tau)|^2) \gamma_0 \psi(\tau) \right] \|_{L^2(\mathbb{R}^2)} d\tau \]
\[\leq \| \psi_0 \|_{H^s(\mathbb{R}^2)} + C \int_0^t \| (1 - \Delta)^{-1+s/2} |\psi(\tau)|^2 \|_{L^2} \| \psi(\tau) \|_{L^\infty(\mathbb{R}^2)} \| \Delta \|_{L^\infty(\mathbb{R}^2)} \| \gamma_0 \psi(\tau) \|_{L^2(\mathbb{R}^2)} d\tau \]
\[\leq \| \psi_0 \|_{H^s(\mathbb{R}^2)} + C \int_0^t \| \psi(\tau) \|^2_{L^2} \log \left(2 + \frac{\| \psi(\tau) \|^2_{H^s}}{\| \psi(\tau) \|^2_{L^2(\mathbb{R}^2)}} \right) \| \psi(\tau) \|_{H^s(\mathbb{R}^2)} d\tau, \]
where we used (3), the Sobolev’s embedding \(\| \psi \|_{L^1(\mathbb{R}^2)} \leq C \| \psi \|_{H^s(\mathbb{R}^2)} \) and that \(\| \psi \|^2_{B^1_{1,\infty}} \leq C \| \psi \|^2_{B^2_{1,2}} \). Indeed one has that, for any \(\phi, \psi \in H^s \),
\[(10) \quad \sup_{j \geq 0} 2^{js} \| (\phi \psi)(j) \|_{L^1} \leq \sup_{j \geq 0} 2^{js} \sum_{m \leq j} \| \phi_{(m)} \psi_{(j-m)} \|_{L^1} \leq \sup_{j \geq 0} \sum_{m \leq j} 2^{ms} \| \phi_{(m)} \|_{L^2} 2^{j-m} \| \psi_{(j-m)} \|_{L^2} \]
\[\leq \| \phi \|_{B^2_{1,2}} \| \psi \|_{B^2_{1,2}}, \]
It follows that
\[(11) \quad \| S(\psi) \|_{L^\infty(0, T), H^s} \leq R + CT \| \psi(\tau) \|^2_{L^\infty(0, T), L^2} \| \psi(\tau) \|^2_{L^\infty(0, T), H^s} \log \left(2 + \sup_{\tau \in (0, T)} \left(\frac{\| \psi(\tau) \|^2_{H^s}}{\| \psi(\tau) \|^2_{L^2}} \right) \right) \]
\[\leq R + C_R T, \]
where \(C_R = C \| \psi(\tau) \|^2_{L^\infty(0, T), L^2} \| \psi(\tau) \|^2_{L^\infty(0, T), H^s} \log \left(2 + \sup_{\tau \in (0, T)} \left(\frac{\| \psi(\tau) \|^2_{H^s}}{\| \psi(\tau) \|^2_{L^2}} \right) \right) \) which is finite. Indeed \(\psi \in X_T \) implies that \(\| \psi(\tau) \|^2_{L^\infty(0, T), L^2} \in [0, 2R] \), and \(\lim_{M \to 0} M \log(2 + \frac{1}{M}) = 0 \). A posteriori, once the local existence is established and the conservation of the \(L^2 \) norm is proved, we have that \(C_R \leq C \| \psi_0 \|^2_{L^2} R \log(2 + \frac{R}{\| \psi_0 \|^2_{L^2}}) \). In any case, we choose \(T \leq \frac{R}{C_R} \) so that \(S : X_T \to X_T \).
Now we show that (8) is a contraction in \(X_T \). Note that for any \(\psi, \phi \in X_T \), one has
\[
\| \psi - \phi \|_{L^\infty(0,T),H^s} = \\
\left\| \int_0^t e^{i(t-\tau)D_m}((1-\Delta)^{-1}|\psi|^2)\gamma_0\psi(\tau) - ((1-\Delta)^{-1}|\phi|^2)\gamma_0\phi(\tau)d\tau \right\|_{L^\infty(0,T),H^s} \\
\leq CT \left(\|((1-\Delta)^{-1}(|\psi|^2 + |\phi|^2))(\psi - \phi)\|_{L^\infty(0,T),H^s} + \right) \\
+ CT \left(\|((1-\Delta)^{-1}(|\psi|^2 - |\phi|^2))(\psi + \phi)\|_{L^\infty(0,T),H^s} \right).
\]
From the estimate (3) it follows that
\[
\|((1-\Delta)^{-1}(|\psi|^2 + |\phi|^2))(\psi - \phi)\|_{L^\infty(0,T),H^s} \\
\leq C \|\psi - \phi\|_{L^\infty(0,T),H^s} \sup_{\tau \in (0,T)} \left(\|\psi\|^2 + \|\phi\|^2 \right) \log \left(2 + \frac{\|\psi\|^2 + \|\phi\|^2}{\|\psi\|^2 + \|\phi\|^2} \right) \\
\leq C_R \|\psi - \phi\|_{L^\infty(0,T),H^s},
\]
and
\[
\|((1-\Delta)^{-1}(|\psi|^2 - |\phi|^2))(\psi + \phi)\|_{L^\infty(0,T),H^s} \\
\leq C \|\psi + \phi\|_{L^\infty(0,T),H^s} \sup_{\tau \in (0,T)} \left(\|\psi\|^2 - \|\phi\|^2 \right) \log \left(2 + \frac{\|\psi\|^2 - \|\phi\|^2}{\|\psi\|^2 - \|\phi\|^2} \right) \\
\leq CR \|\psi + \phi\|_{L^\infty(0,T),H^s} \sup_{\tau \in (0,T)} \left(\|\psi\|^2 - \|\phi\|^2 \right) \log \left(2 + \frac{\|\psi\|^2 - \|\phi\|^2}{\|\psi\|^2 - \|\phi\|^2} \right) \\
\leq CR \|\psi + \phi\|_{L^\infty(0,T),H^s} \sup_{\tau \in (0,T)} \left(\|\psi\|^2 - \|\phi\|^2 \right) \log \left(2 + \frac{4R}{\|\psi\|^2 - \|\phi\|^2} \right) \\
\leq C_R \|\psi - \phi\|_{L^\infty(0,T),H^s},
\]
where we used (10) to have
\[
\|\psi\|^2 - \|\phi\|^2 \leq \|\psi - \phi\|^2 + \gamma_0(\psi - \phi) \leq 4R \|\psi - \phi\|_{H^s}
\]
and that \(\|\psi\|^2 - \|\phi\|^2 \leq C_R \) since \(\psi \neq \phi \). We conclude that (8) is a contraction in \(X_T \). The conservation of the \(L^2 \) norm is shown in the appendix (see Lemma 5.1). \(\square \)

Theorem 2.2 (Global Existence). For any \(s > 0 \) and any \(\psi_0 \in H^s(\mathbb{R}^2) \), there exists a unique solution \(\psi \in C([0, +\infty); H^s(\mathbb{R}^2)) \) to the equation (3).

Proof. Fix a \(s > 0 \) let \(\psi_0 \in H^s \). From the integral form (3) and (9), one can easily derive that for any \(t \in [0, T) \), where \(T > 0 \) is given by (2.1)
\[
\frac{d}{dt} \|\psi(t)\|_{H^s} \leq C \log (2 + \|\psi(t)\|_{H^s}) \|\psi(t)\|_{H^s}.
\]
Since one has
\[
\frac{d}{dt} \|\psi(t)\|_{H^s} \leq \left\{ \begin{array}{ll}
C \log(4) \|\psi(t)\|_{H^s} & \text{if } \|\psi(t)\|_{H^s} \leq 2 \\
C \log(2 \|\psi(t)\|_{H^s}) \|\psi(t)\|_{H^s} & \text{if } \|\psi(t)\|_{H^s} \leq 2C \log(\|\psi\|_{H^s}) \|\psi(t)\|_{H^s} \text{ if } \|\psi(t)\|_{H^s} \geq 2
\end{array} \right.
\]
it follows that
\[
\|\psi(t)\|_{H^s} \leq \left\{ \begin{array}{ll}
C_1 \log(2) \|\psi(t)\|_{H^s} & \text{if } \|\psi(t)\|_{H^s} \leq 2 \\
\|\psi(t)\|_{H^s} & \text{if } \|\psi(t)\|_{H^s} \geq 2
\end{array} \right.
\]
where \(C_1 \) depends on \(\|\psi_0\|_{H^s} \) and \(C_2 \) depends on \(C \). \(\square \)
In this section we prove

Theorem 5. For any \(b > 0 \) and \(s > 0 \) there exists a constant \(C = C(b, s) > 0 \) such that, for any \(\psi \in B_{t,\infty}^s(\mathbb{R}^2) \) the following inequality is true

\[
\| (b - \Delta)^{-1}\psi \|_{L^\infty} + \| (b - \Delta)^{-1}(1 - \Delta)^{s/2}\psi \|_{L^2} \leq C \| \psi \|_{L^1(\mathbb{R}^2)} \ln \left(2 + \frac{\| \psi \|_{B_{t,\infty}^1}}{\| \psi \|_{L^1}} \right).
\]

Recall the definition of \(\psi(j) \) given in the introduction. We will use the following lemmas (see e.g. [Bergh et al. 1976])

Lemma 3.1. For any \(j \in \mathbb{Z} \) and any \(q, r \) such that \(1 \leq q < r \leq \infty \), there exists a constant \(C > 0 \) such that

\[
\| \psi(j) \|_{L^r} \lesssim 2^{2j\left(\frac{1}{r} - \frac{1}{q}\right)} \| \psi(j) \|_{L^q}.
\]

Lemma 3.2. Assume \(\psi \) to be a Schwartz function and assume \(\psi(j) \in L^p \) for some \(p \in [1, \infty] \). Then, for any \(b > 0, s \in \mathbb{R} \) and \(j \geq 1 \), there exists a constant \(C > 0 \) such that

\[
\| (b - \Delta)^{-\frac{1}{2}}\psi(j) \|_{L^p} \leq C 2^{2j} \| \psi(j) \|_{L^p}.
\]

Proof. Let \(\psi \in B_{t,\infty}^1(\mathbb{R}^2) \) and observe that \(\psi \in L^1 \). Let \(M \in \mathbb{R} \) a constant such that \(sM = \ln \left(2 + \frac{\| \psi \|_{L^\infty(\mathbb{R}^2)}}{\| \psi \|_{L^1(\mathbb{R}^2)}} \right) \), and let \([M]\) be the integer part of \(M \). Observe that \(((b - \Delta)^{-1}\psi)(j) = (b - \Delta)^{-1}\psi(j) \) and so

\[
\| (b - \Delta)^{-1}\psi \|_{L^\infty} = \left\| (b - \Delta)^{-1} \left(\sum_{j \in \mathbb{Z}} \psi(j) \right) \right\|_{L^\infty} \lesssim \| (b - \Delta)^{-1}\psi(0) \|_{L^\infty} + \sum_{j > 0} \| (b - \Delta)^{-1}\psi(j) \|_{L^\infty}
\]

From the two lemmas, one can obtain that

\[
\sum_{j > 0} \| (b - \Delta)^{-1}\psi(j) \|_{L^\infty} \lesssim \sum_{j > 0} 2^{-2j} \| \psi(j) \|_{L^\infty} \lesssim \sum_{j > 0} \| \psi(j) \|_{L^1} = \sum_{0 \leq j \leq [M]} \| \psi(j) \|_{L^1} + \sum_{j > [M] + 1} \| \psi(j) \|_{L^1} \lesssim [M] \| \psi \|_{L^1} + \sum_{j \geq [M] + 1} 2^{-js} 2^j \| \psi(j) \|_{L^1} \lesssim [M] \| \psi \|_{L^1} + 2^{-s([M] + 1)} \| \psi \|_{B_{t,\infty}^1},
\]

Moreover, since \(\| \mathcal{F}^{-1}(\rho(\hat{\psi})) \|_{L^\infty} \leq C \), one has

\[
\| (b - \Delta)^{-1}\rho(\hat{\psi}) \|_{L^\infty} \leq C \| \mathcal{F}^{-1}(\rho(\hat{\psi})) \|_{L^\infty} \| (b - \Delta)^{-1}\psi \|_{L^1} \leq C \| \psi \|_{L^1}.
\]

Moreover, if \(b = 1 \), then

\[
\| (1 - \Delta)^{-\frac{1}{2}}\psi(j) \|_{L^\infty} \lesssim \| (1 - \Delta)^{-\frac{1}{2}}\psi(0) \|_{L^\infty} + \sum_{j > 0} \| (1 - \Delta)^{-\frac{1}{2}}\psi(j) \|_{L^\infty}
\]

and using the lemmas before, one has

\[
\sum_{j > 0} \| (1 - \Delta)^{-1+j/2}\psi(j) \|_{L^\infty} \lesssim \sum_{0 \leq j \leq [M]} 2^{(2-2s)j} \| \psi(j) \|_{L^\infty} + \sum_{j > [M]} 2^{-js} 2^{2j} \| \psi(j) \|_{L^1} \lesssim [M] \| \psi \|_{L^1} + 2^{-s([M] + 1)} \| \psi \|_{B_{t,\infty}^1},
\]

and, as before

\[
\| (1 - \Delta)^{-\frac{1}{2}}\psi(0) \|_{L^\infty} \leq C \| \mathcal{F}^{-1}(\rho(\hat{\psi})) \|_{L^\infty} \| \psi \|_{L^1} \leq C \| \psi \|_{L^1}.
\]

The result follows easily from the choice of \(M \). \(\square \)
4. Exponential Bound of the Kinetic Energy

This section is dedicated to find a result for the growth rate of the kinetic energy of a solution to the equation (2) with initial data in $H^\frac{1}{2}$. Note that we have already proved a super exponential growth of the norm for any $s > 0$. In particular, if $\psi \in C([0, \infty); H^\frac{1}{2}(\mathbb{R}^2))$, then

$$\|\psi(t)\|_{H^\frac{1}{2}(\mathbb{R}^2)} \lesssim e^{C_1 e^{C_2 t}}.$$

As soon as $\psi(t) \in H^\frac{1}{2}$, we gain the total energy conservation, that is, for any $t \in [0, \infty)$,

$$E(\psi_0) = E(\psi(t)) := \frac{1}{2} \langle Dm \psi(t), \psi(t) \rangle_{L^2(\mathbb{R}^2)} - \frac{1}{4} \| (1 - \Delta)^{-\frac{1}{2}} |\psi(t)|^2 \|^2_{L^2}.$$

So there exists a constant $C > 0$ such that

$$\langle Dm \psi(t), \psi(t) \rangle_{L^2} \leq C \| (1 - \Delta)^{-\frac{1}{2}} |\psi(t)|^2 \|^2_{L^2}.$$

Lemma 4.1. For any $\varepsilon > 0$, let $p = \frac{2 + 2\varepsilon}{1 + 3\varepsilon} \in (\frac{2}{3}, 2)$. Then the following inequality is true

$$\| (1 - \Delta)^{-\frac{1}{2}} |\psi(t)|^2 \|_{L^2} \lesssim \left(\frac{2\varepsilon}{\varepsilon} \right)^{\frac{1}{p}} \| \psi(t) \|_{H^\frac{1}{2}}.$$

Proof. Let G be the Kernel of the operator $(1 - \Delta)^{-\frac{1}{2}}$. Then, from the Young inequality, for any $\varepsilon > 0$, it follows that

$$\| (1 - \Delta)^{-\frac{1}{2}} |\psi(t)|^2 \|_{L^2} = \| G * |\psi(t)|^2 \|_{L^2} \lesssim \| G \|_{L^p} \| |\psi(t)|^2 \|_{L^{1+p}} = \| G \|_{L^p} \| \psi(t) \|_{L^{2+2\varepsilon}},$$

where $p = \frac{2 + 2\varepsilon}{1 + 3\varepsilon} < 2$. It is known (see e.g. [Grafakos(2014)]) that the kernel of the Bessel operator $(1 - \Delta)^{-\frac{1}{2}}$ can be estimated as

$$G(x) \leq C e^{-\frac{|x|^2}{4(T^2 + 1)}} + C |x|^{-1} 1_{|x| \leq 2},$$

and so, for any $\varepsilon > 0$, one has

$$\| G(x) \|_{L^p}^p \lesssim \int_0^\infty e^{-\frac{2 + 2\varepsilon}{1 + 3\varepsilon} r} dr + \int_0^2 r^{-\frac{2 + 2\varepsilon}{1 + 3\varepsilon} + 1} dr \lesssim \left(\frac{2 + 2\varepsilon}{1 + 3\varepsilon} + 1 \right) \left(\frac{1 + \varepsilon}{1 + 3\varepsilon} \right)^{-2} e^{-\frac{2 + 2\varepsilon}{1 + 3\varepsilon} + \frac{2\varepsilon}{\varepsilon}} \lesssim \frac{2\varepsilon}{\varepsilon},$$

and by interpolation and the conservation of the L^2 norm, we get that

$$\| \psi(t) \|_{L^{2+2\varepsilon}} \lesssim \| \psi(t) \|_{L^2} \| \psi(t) \|_{L^\infty} \lesssim \| \psi(t) \|_{H^\frac{1}{2}}.$$

Thus, for any $\varepsilon \in (0, 1)$, it follows that

$$\| (1 - \Delta)^{-\frac{1}{2}} |\psi(t)|^2 \|_{L^2} \lesssim \left(\frac{2\varepsilon}{\varepsilon} \right)^{\frac{1}{p}} \| \psi(t) \|_{H^\frac{1}{2}}.$$

For any $T > 0$ and any $t \in [0, T]$, from (16), (17) and (15), one has

$$\langle Dm \psi(t), \psi(t) \rangle_{L^2} \lesssim 2^{\frac{2\varepsilon}{p}} \varepsilon^{-\frac{2}{p}} \| \psi(t) \|_{H^\frac{1}{2}}^{\frac{8\varepsilon}{p}} \lesssim 2^{\frac{2\varepsilon}{p}} \varepsilon^{-\frac{2}{p}} \varepsilon^{\frac{8\varepsilon}{1 + 3\varepsilon}} \lesssim 2^{\frac{2\varepsilon}{p}} \varepsilon^{-\frac{2}{p}} \varepsilon^{\frac{8\varepsilon}{1 + 3\varepsilon}} C_1 e^{C_2 T},$$

and since for $\varepsilon > 0$, $\frac{8\varepsilon}{1 + 3\varepsilon} = \frac{2}{p} \in (1, 3)$, it easily follows that there exists a constant $C > 0$, independent of ε, such that

$$\sup_{t \in [0, T]} |\langle Dm \psi(t), \psi(t) \rangle_{L^2}| \leq C e^{\varepsilon^{\frac{2}{p}} \varepsilon^{\frac{8\varepsilon}{1 + 3\varepsilon}} C_1 e^{C_2 T}}.$$
We choose $\varepsilon = \frac{1}{C_1} e^{-C_2 T}$ with T sufficiently large so that $\varepsilon \in (0, 1)$ and we get
\[
\sup_{t \in [0,T]} |\langle D_m \psi(t), \psi(t) \rangle| \leq C e^{\frac{1}{C_1} e^{-C_2 T}} \left(C_1 e^{-C_2 T} \right)^{-\frac{p}{1+p}} e^{\frac{8}{1+p}} \leq e^{C_2 \frac{8}{1+p} T},
\]
where C_2 depends on $\|\psi_0\|_{H^\frac{1}{2}}$ and not on T. Since $p < 2$ we get (7).

Remark 4.1. In [Tesfahun(2018)], it was proved that the solution to (3) scatters for every $s > 0$, whenever the H^s norm of the initial datum is small enough. In particular, as soon as the $\psi_0 \in H^\frac{1}{2}$ and there exists $\sigma \in (0, \frac{1}{2}]$, such that ψ scatters in H^σ (for example when $\|\psi_0\|_{H^\sigma}$ is small enough), one can also obtain, by Sobolev’s embedding, the following estimate
\[
\|(1 - \Delta)^{-\frac{1}{2}} |\psi(t)|^2\|_{L^2} \lesssim \|G\|_{L^p} \|\psi(t)\|^2_{L^2} \lesssim C_\sigma \|\psi(t)\|^2_{H^\sigma},
\]
where we have chosen $\varepsilon = \frac{\sigma}{1-\sigma}$. This means that, eventually, in this case, the exponential growth estimate (19) is not sharp and the kinetic energy will actually be bounded by a constant for all the times $t \in [0, \infty)$.

5. Appendix: Conservation of Mass

Lemma 5.1. If $\psi \in C([0,T); L^2(\mathbb{R}^2))$ is a solution to the equation (3) with initial datum ψ_0 then for any $t \in [0, T)$ we have
\[
\|\psi(t)\|_{L^2} = \|\psi_0\|_{L^2}.
\]

Proof. We follow the idea from [Ozawa(2006)]. For the purpose we rewrite (3) in the form
\[
e^{itD_m} \psi(t) = \psi_0 + i \int_0^t e^{i s D_m} F(\psi)(s) ds,
\]
where

\[
F(\psi)(s) = (V * (\gamma^0 \psi(s), \psi(s))) \gamma^0 \psi(s),
\]

so taking the square in L^2, we find
\[
\|\psi(t)\|^2_{L^2} = \|\psi_0\|^2_{L^2} + \int_0^t e^{isD_m} F(\psi)(s) ds \left(\int_0^t e^{isD_m} F(\psi)(s) ds \right) \quad + \quad 2 \text{Im} \int_0^t \langle \psi_0, \int_0^s e^{isD_m} F(\psi)(s) ds \rangle_{L^2}.
\]

For any function $g(s) \in C([0, T]; H)$ with H a Hilbert space we can use the relation
\[
\left\| \int_0^t g(s) ds \right\|^2_{L^2} = 2 \text{Re} \int_0^t \left(\int_{t>s} \langle g(s), g(s') \rangle_H ds' ds \right) = 2 \text{Re} \int_0^t \langle g(s), \int_0^s g(s') ds' \rangle_H ds.
\]
Then we can write
\[
\left\| \int_0^t e^{isD_m} F(\psi)(s) ds \right\|^2_{L^2} = 2 \text{Re} \int_0^t \langle e^{isD_m} F(\psi)(s), e^{isD_m} F(\psi)(s') ds' \rangle_{L^2} ds
\]

and we are in position to use the integral equation
\[
\int_0^s e^{-i(s-s')D_m} F(\psi)(s') ds' = -i\psi(s) + ie^{-isD_m} \psi_0
\]
so we have
\[
\left\| \int_0^t e^{isD_m} F(\psi)(s) ds \right\|^2_{L^2} = 2 \text{Re} \int_0^t \langle F(\psi)(s), -i\psi(s) \rangle_{L^2} ds + 2 \text{Re} \int_0^t \langle F(\psi)(s), ie^{-isD_m} \psi_0 \rangle_{L^2} ds.
\]
Now we can take advantage of the fact that \(\langle F(\psi(s)), \psi(s) \rangle_{L^2} \) is purely real and hence
\[
\left\| \int_0^t e^{isD_m} F(\psi(s)) \, ds \right\|_{L^2}^2 = 2 \text{Re} \int_0^t \langle F(\psi(s)), ie^{-isD_m} f \rangle_{L^2} \, ds =
\]
\[
= 2 \text{Im} \int_0^t \langle e^{-isD_m} F(\psi(s)), f \rangle_{L^2} \, ds = -2 \text{Im} \int_0^t \langle f, e^{-isD_m} F(\psi(s)) \rangle_{L^2} \, ds
\]
and from (22) we arrive at the desired identity (20). □

5.1. **Acknowledgements.** The first author was supported in part by INdAM, GNAMPA - Gruppo Nazionale per l’Analisi Matematica, la Probabilità e le loro Applicazioni, by Institute of Mathematics and Informatics, Bulgarian Academy of Sciences, by Top Global University Project, Waseda University, the Project PRA 2018 49 of University of Pisa and project ”Dinamica di equazioni nonlineari dispersive”, ”Fondazione di Sardegna”, 2016.

REFERENCES

[Alves et al.(2018)] Alves, Van Sérgio et al. Two-dimensional Yukawa interactions from nonlocal Proca quantum electrodynamics. *Phys. Rev.* D97 9 (2018) 096003

[Bejenaru et al.(2016)] I. Bejenaru, S. Herr " The cubic Dirac equation: small initial data in \(H^{1/2}(\mathbb{R}^2) \)." *Comm. Math. Phys.* 343 (2016), 2515 – 562.

[Bergh et al.(1976)] Jörn Bergh and Jörgen Löfström Interpolation Spaces. An Introduction. Springer-Verlag, Berlin, 1976.

[Brezis et al.(1980)] H. Brezis, T. Gallouët, ” Nonlinear Schrödinger evolution equations”, Nonlinear Anal., Theory Methods Appl. (4) 677-681 (1980).

[Cazenave(2003)] Thierry Cazenave Semilinear Schrödinger Equations. American Mathematical Society, New York, 2003.

[Chadam et al.(1976)] J.M. Chadam and R.T. Glassey, On the Maxwell-Dirac Equations with Zero Magnetic Field and their Solution in Two Space Dimensions, available at https://www.sciencedirect.com/science/article/pii/0022247X76900871.

[Cho et al.(2013)] Yonggeun Cho and Sanghyuk Strichartz estimates in spherical coordinates. *Indiana University Mathematics Journal* 62, 3 (2013), 991–1020.

[Alves(2018)] M. J. Esteban, M. Lewin, E. Séré, Variational methods in relativistic quantum mechanics, Bull. Amer. Math. Soc. (N.S.) 45 (4) (2008) 535 – 593

[Ginibre et al.(2000)] Jean Ginibre and Giorgio Velo Scattering theory in the energy space for a class of Hartree equations. *Nonlinear Wave Equations (Providence, Rhode Island)* 263, 1 (2000), 29–60.

[Grafakos(2014)] Loukas Grafakos Modern Fourier Analysis. Springer, New York, 2014.

[Grafakos et al.(2014)] Loukas Grafakos and Seunghyuck The Kato-Ponce inequality. *Communications in Partial Differential Equations* 39, 6 (2014), 1128–1157.

[Lenzmann(2007)] Enno Lenzmann Well-Posedness for Semi-Relativistic Hartree Equations of Critical Type. *Mathematical Physics, Analysis and Geometry* 10, 1 (2007), 43–64.

[Ozawa(2006)] T. Ozawa Remarks on proofs of conservation laws for nonlinear Schrödinger equations. *Calc. Var. Partial Differential Equations* 25, 1 (2006), 403 – 408.

[Tesfahun(2018)] A. Tesfahun Long-time Behavior of Solutions to Cubic Dirac Equation with Hartree Type Nonlinearity in \(H^{1/2} \), *International Mathematics Research Notices* rn217, https://doi.org/10.1093/imrn/rny217

[Wehling et al. (2014)] Wehling, T.O; Black-Schaffer, A.M; Balatsky, A.V (2014). "Dirac materials". Advances in Physics. 63 (1)