Comparative Analysis of the Chloroplast Genome for Four Pennisetum Species: Molecular Structure and Phylogenetic Relationships

Jin Xu, Chen Liu, Yun Song and Mingfu Li*

Institute of Plant Inspection and Quarantine, Chinese Academy of Inspection and Quarantine, Beijing, China

The genus Pennisetum (Poaceae) is both a forage crop and staple food crop in the tropics. In this study, we obtained chloroplast genome sequences of four species of Pennisetum (P. alopecuroides, P. clandestinum, P. glaucum, and P. polystachion) using Illumina sequencing. These chloroplast genomes have circular structures of 136,346–138,119 bp, including a large single-copy region (LSC, 79,380–81,186 bp), a small single-copy region (SSC, 12,212–12,409 bp), and a pair of inverted repeat regions (IRs, 22,284–22,372 bp). The overall GC content of these chloroplast genomes was 38.6–38.7%. The complete chloroplast genomes contained 110 different genes, including 76 protein-coding genes, 30 transfer RNA (tRNA) genes, and four ribosomal RNA (rRNA) genes. Comparative analysis of nucleotide variability identified nine intergenic spacer regions (psbA-matK, matK-rps16, tmN-trnT, trnY-trnD-psbM, petN-trnC, rbcL-psal, petA-psbJ, psbE-petL, and rpl32-trnL), which may be used as potential DNA barcodes in future species identification and evolutionary analysis of Pennisetum. The phylogenetic analysis revealed a close relationship between P. polystachion and P. glaucum, followed by P. clandestinum and P. alopecuroides. The completed genomes of this study will help facilitate future research on the phylogenetic relationships and evolution of Pennisetum species.

Keywords: chloroplast genome, phylogeny, comparative analysis, Pennisetum species, important pasture

INTRODUCTION

The genus Pennisetum L. Rich. belongs to tribe Paniceae of the family Poaceae; it consists of approximately 140 species that are widely distributed in the tropical and subtropical zone regions all over the world. Pennisetum which is divided into three sections Sect. Gymnothrix, Sect. Penicillaria and Sect. Pennisetum is one of the largest genera in the tribe Paniceae (Pilger, 1940; DeLisle, 1963; Brunken, 1977). Pennisetum is an economically important grain crop that is widely cultivated in Africa and Asia (P. glaucum), as well as a pasture crop (P. purpureum, P. ramosum, P. orientale, and P. clandestine) and ornamental plant (P. villosum and P. setaceum) (Martel et al., 1997;
Abdi et al., 2019). Many of these species are climate resilient (Kumar et al., 2019), adapted to low-fertility soils, exhibit strong stress resistance, possess high ornamental value, and are perennial in habit. Consequently, *Pennisetum* (Poaceae) species have become increasingly visible in many countries. This genus is a heterogeneous assemblage of species with different reproductive behaviors (sexual or apomictic), chromosome numbers (x = 5, 7, 8, and 9), ploidy levels (diploid to octoploid), and life cycles (annual, biennial, or perennial) (Martel et al., 1997). The classification and identification of the genus *Pennisetum* remains a challenge. *Pennisetum* and *Cenchrus* are closely related genera of Paniceae, both distributed in tropical and sub-tropical regions. The distinction between *Pennisetum* and *Cenchrus* is not clearly defined, and several species that are now included in *Cenchrus* have previously been assigned to *Pennisetum* (Donaldio et al., 2009; Chemisquy et al., 2010). Previous studies of *Pennisetum* have focused on isozyme classification, genetic diversity (Tostain, 1994; Zhang et al., 2016b), and chromosomes (Martel et al., 2004; Techio et al., 2010; Zhang et al., 2015). However, these markers have low variation. Therefore, there is a need to develop effective genetic markers to facilitate the identification, conservation, utilization, and breeding of *Pennisetum* species.

The chloroplast is a unique organelle that is also the main site of photosynthesis, effectively turning the light of the sun into chemical energy in higher plants and some algae. It has its own independent genome that ranges in size from 120 to 180 kb in higher plants (Li C. et al., 2020; Li D. et al., 2020). It has a simple structure with a low molecular weight and multiple copies (Huang et al., 2020). The structure of the chloroplast genome is circular with quadripartite organization, including a small single-copy region (SSC), a large single-copy region (LSC), and a pair of inverted regions (IRs) (Kim and Lee, 2004; Jansen et al., 2005; Yang et al., 2010; Schwarz et al., 2015; Wang et al., 2016; Mader et al., 2018; Meng et al., 2018). In 1986, the first chloroplast genomes were reported from liverwort (Ohyama et al., 1986) and tobacco (Shinozaki et al., 1986). With the rapid development of next-generation sequencing technologies, such as Roche/454 GS FLX and Illumina GenomeAnalyzer, chloroplast genome sequences can be more efficiently and economically obtained. Approximately 4,100 plant chloroplast genomes have been published and are available in the NCBI database1. The chloroplast genome contains a large number of functional genes, and their application value in the study of species identification and phyletic evolution has gradually been widely accepted by researchers (Kim and Lee, 2004; Raubeson et al., 2007; Wang et al., 2008, 2016; Ma et al., 2017; Chen et al., 2018; Fan et al., 2018).

In this study, we completely sequenced and compared the chloroplast genome of four species of *Pennisetum* (*P. alopecuroides*, *P. clandestinum*, *P. glaucum*, and *P. polystachion*) based on next-generation sequencing methods. Our goal was to expand our understanding of the genetic divergence of *Pennisetum* and identify potential DNA barcodes for identifying *Pennisetum* species. This study also presents the first sequenced member of the genus *Pennisetum*. The results will provide basic data for molecular phylogenetic and evolutionary research at the species level.

MATERIALS AND METHODS

Plant Materials and DNA Extraction

Seeds of *P. alopecuroides* (Sect. Gymnothrix), *P. glaucum* (Sect. Penicillaria), *P. polystachion* (Sect. *Pennisetum*), and *P. clandestinum* (Sect. *Pennisetum*) were acquired from the national medium term genebank of perennial herbage germplasm resources hosted by the Institute of Grassland Research of Chinese Academy of Agricultural Sciences and Professor Li from the National Animal Husbandry Station, under accession number of 01068, 08, HN495, and HN294, respectively. The samples were planted in the laboratory under suitable conditions at the Chinese Academy of Inspection and Quarantine until leaves appeared on the plants. Voucher specimens of each collected species were deposited at the Institute of Plant Quarantine, Chinese Academy of Inspection and Quarantine (Voucher No.2019099PA01, 2019099PG01, 2019099PP01, and 2019099PC01). Total genomic DNA was extracted from the fresh leaf of a single plant using the method of Li et al. (2013). The total DNA quantity was evaluated on 1.0% (w/v) agarose gel electrophoresis SYBR Green I, which can assess the concentration and purity of the DNA samples.

Illumina Sequencing and Assembly

Paired-end (PE) libraries of 350-bp insert sizes were constructed using the Nextera XT DNA library Prep Kit (Illumina Inc., San Diego, CA, United States) according to the manufacturer’s instructions. The Illumina HiSeq X-ten platform was used to perform sequencing, with PE 150-bp reads for each sample. Raw reads were trimmed using Trimmomatic v0.32, and the resulting clean data were used for assembly and subsequent analysis (Bolger et al., 2014). The clean reads were then assembled into contigs using SPAdes 3.6.1 (Bankevich et al., 2012) with different K-mer parameters. The resulting contigs were selected for chloroplast genome-encoding contigs on BLAST searches. The selected contigs were secondarily assembled using Sequencer 5.4.5 (Gene Codes, Ann Arbor, MI).

Annotation and Comparative Analysis

The assembled chloroplast genome annotation was performed with Plann (Daise and Quentin, 2015), and the *P. glaucum* chloroplast genome was used as the reference. The circular chloroplast genome map with structural features was developed using the OrganellarGenomeDRAW (OGDRAW) software (Stephan et al., 2019). CodonW software (Sharp and Li, 1987) was adopted to analyze the relative synonymous codon usage (RSCU). The assembled chloroplast genome sequences of four *Pennisetum* species were deposited in NCBI under the Genbank accession number MN180104, MW816925-MW816927. Comparative analysis of the complete chloroplast genomes of four *Pennisetum* species was performed using the mVISTA program (Kelly et al., 2004).
Analysis of Tandem and Simple Sequence Repeats (SSRs)

GMATA (Wang and Wang, 2016) software was used to detect the chloroplast SSRs in the four *Pennisetum* chloroplast genome sequences, in which the minimum numbers of repeats for mononucleotide, dinucleotide, trinucleotide, tetranucleotides, pentanucleotide, and hexanucleotides were 10, five, four, three, three, and three, respectively. Five types of repeat sequences, namely forward, reverse, complementary, palindromic, and tandem repeats, were identified in the *Pennisetum* chloroplast genome. Forward, reverse, palindromic, and complementary sequences were identified as described by running the REPuter program (Kurtz et al., 2001) with a minimum repeat size of 30 bp and similarities of 90% or greater sequence identity. Tandem repeats were identified using Tandem Repeats Finder, with alignment parameters being set to two, seven, and seven for matches, mismatches, and indels, respectively. At the same time, the SSRs of the LSC, SSC, IR, and coding regions, introns, and intergenic regions that correspond to different regions were analyzed.

Sequence Divergence Analysis

The sequences of the *Pennisetum* chloroplast genomes were aligned using MAFFT v7 (Katoh and Standley, 2013), following which the alignments were inspected and manually adjusted using Se-Al 2.0 (Rambaut, 1996). MEGA 7.0 software was used to calculate the variable and parsimony-informative base sites and the k2p-distances among the chloroplast genomes (Sudhir et al., 2016).

To identify rapidly evolving molecular markers that can be used in further *Pennisetum* phylogenetic studies, four *Pennisetum* whole genomes were included in the comparisons to perform sliding window analysis and evaluate the nucleotide variability (Pi) among chloroplast genomes using DnaSP v5.10 software (Librado and Rozas, 2009). The step size was set to 200 bp, and the window length was set to 800 bp.

Phylogenetic Analysis

In this study, a total of 32 species, including 31 from Panicoideae and one outgroup species (*Linnopoa meeboldii*), were used for assessing phylogenetic relationships by constructing a maximum likelihood tree based on the sequences of 76 protein-coding genes. Of these, 28 chloroplast genomes were downloaded from the NCBI database. The sequences of 76 shared protein-coding genes were extracted from the GenBank formatted file containing all chloroplast genomes using Geneious v11, and alignments of genes were performed using MAFFT v7 (Kearse et al., 2012; Katoh and Standley, 2013), following which they were manually adjusted using Se-Al 2.0 (Rambaut, 1996) as needed. Finally, the data for the chloroplast genome sequences were used to perform phylogenetic analysis among the *Pennisetum* species.

The concatenated data were analyzed using the maximum likelihood (ML) and the Bayesian inference (BI) methodologies. Prior to ML and BI analyses, the best-fit model of sequence evolution, namely a general time reversible and gamma distribution (GTR + G) model, was selected using ModelFinder v.1.6 (Kalyaanamoorthy et al., 2017) under the Akaike Information Criterion. The ML analyses were performed using RAxML v.8.1 (Stamatakis, 2014) with 1,000 bootstrap replicates. The BI analysis was conducted using MrBayes v.3.2 (Fredrik et al., 2012) using the CIPRES Science Gateway. The Markov chain Monte Carlo (MCMC) algorithm was run for 2 × 5,000,000 generations, with trees sampled every 1,000 generations and the first 25% of generations discarded as burn-in. The remaining trees were used to construct a 50% majority rule consensus tree and estimate posterior probabilities. Posterior probabilities (PP) > 0.95 were considered significant support for a clade.

RESULTS

Chloroplast Genome Organization of *Pennisetum*

In total, we obtained the chloroplast genomes of four *Pennisetum* species using the Illumina HiSeq X-ten platform. The coverage of four species were 697 (*P. polystachion*), 472 (*P. glaucum*), 230 bp (*P. alopeceoides*), and 1635 (*P. clandestinum*), respectively (Supplementary Table 1). All four species of *Pennisetum* that were sequenced had a typical double-stranded circular DNA molecule with a quadripartite structure. The assembled chloroplast genomes were 136,346 bp (*P. polystachion*), 138,119 bp (*P. glaucum*), 138,060 bp (*P. alopeceoides*), and 138,003 bp (*P. clandestinum*) in length. They consisted of a pair of IR regions (22,284–22,372 bp) separated by LSC (79,380–81,186 bp) and SSC (12,212–12,409 bp) regions (Figure 1 and Table 1). The size of the *P. glaucum* chloroplast genome (138,119 bp) was the largest among the four sequenced *Pennisetum* species, being 1,773 bp longer than that of *P. polystachion*, 59 bp longer than that of *P. alopeceoides*, and 116 bp longer than that of *P. clandestinum*. The total Guanine-Cytosine (GC) content was nearly identical in the chloroplast genomes of the four *Pennisetum* species. The GC content of both *P. alopeceoides* and *P. glaucum* was 38.6%, and that of both *P. clandestinum* and *P. polystachion* was 38.7%. Furthermore, the GC content in the IR regions (44.0–44.1%) was noticeably higher than that in the SSC (32.9–33.2%) and LSC (36.5–36.6%) regions in each chloroplast genome.

Each of the analyzed chloroplast genomes contained a total of 110 unique genes, including 76 protein-coding genes, four ribosomal RNA (rRNA) genes, and 30 transfer RNA (tRNA) genes (Table 1). Among them, 19 of these genes were duplicated in the IR regions and contained seven protein-coding genes (rps15, rps12, rps7, ndhB, rpl23, rpl2, and rps19), eight tRNA genes (trnN-GUU, trnA-UGC, trnL-GAU, trnV-GAC, trnL-CAC, and trnH-GUG), and four rRNA genes (rrn23, rrn5, rrn4.5, rrn16). In total, 16 genes (ycf3, atpF, petB, petD, ndhA, ndhB, rps12, rpl2, rpl16, trnA-UGC, trnG-GCC, trnI-GAU, trnK-UUU, trnL-UAA, trnV-UAC, and clpP) with one intron were found (Table 2). Among the 16 intron containing genes, four genes (trnA-UGC, trnL-GAU, ndhB, and rpl2) occurred in both IR
Gene map of the complete chloroplast genome of four *Pennisetum* species. Genes inside the circle are transcribed clockwise, and those outside are transcribed counterclockwise. The different colors of the blocks represent different functional groups. The darker gray color of the inner circle corresponds to the GC content, and the lighter gray color corresponds to the AT content.

Species	Size (bp)
P. alopecuroides	138,060
P. clandestinum	138,003
P. glaucum	138,119
P. polystachion	136,346

Comparative Analysis of the Chloroplast Genome

In this study, the annotated *P. glaucum* chloroplast genome was used as a reference in mVISTA for the alignment of the chloroplast genome among the four *Pennisetum* species and three Panicoideae species (Figure 2). The mVISTA-based identity plot showed conservation in DNA sequence and gene synteny with the whole chloroplast genome and revealed the regions with increased genetic variation. The comparison evidently showed considerable similarities in genome composition and size among the seven species. These species shows a closer relationship because they belongs to the same subfamily Panicoideae. Furthermore, the Pi value was calculated for the chloroplast genome sequences. A total of 139,958 sites, including 1,887 variable sites (1.35%) and 224 parsimony-informative sites (0.16%), were detected across the complete chloroplast genomes (Table 3). We found that the LSC and SSC regions were more variable than the two IR regions, with average Pi values of 0.00161 in the IR regions, 0.00914 in the LSC regions, and 0.01111 in SSC regions. The non-coding region was more variable than the coding region, and the intergenic space was the most variable in the chloroplast genomes.

The bounder positions of chloroplast genomes of the four *Pennisetum* species were comprehensively compared. The four chloroplast genomes sequenced in this study have identical gene positions in the boundary regions (Figure 3).
TABLE 1 | Summary statistics for the assembly of the chloroplast genomes of four *Pennisetum* species.

	P. alopecuroides	*P. clandestinum*	*P. glaucum*	*P. polystachion*
Genome size (bp)	138060	138003	138119	136346
LSC length (bp)	81186	80852	81034	81034
SSC length (bp)	12212	12407	12409	12409
IR length (bp)	22331	22372	22338	22284
LSC GC content (%)	36.5%	36.5%	36.5%	36.6%
SSC GC content (%)	33.2%	33.0%	33.0%	33.0%
IR GC content (%)	44.1%	44.1%	44.0%	44.1%
Total GC content (%)	38.6%	38.7%	38.6%	38.7%
Total number of genes	110	110	110	110
Protein coding genes	76	76	76	76
rRNA	4	4	4	4
tRNA	30	30	30	30

TABLE 2 | List of annotated genes in the chloroplast genome of *P. glaucum*.

Category for genes	Group of gene	Name of gene
Photosynthesis related genes	Rubisco	*rbcL*
Photosystem I	psaA, psaB, psaC, psaI, psaJ	
Assembly/stability of photosystem I	*ycf3*, *ycf4*	
Photosystem II	psbA, psbB, psbC, psbD, psbE, psbF, psbH, psbl, psbJ, psbK, psbL, psbM, psbN, psbT, psbZ	
ATP synthase	atpA, atpB, atpE, *atpF*, atpH, atpl	
Cytochrome b/c complex	petA, *petB*, *petD*, petG, petL, petN	
Cytochrome c synthesis	ccsA	
NADPH dehydrogenase	*ndhA*, *ndhB*, *ndhC*, *ndhD*, *ndhF*, *ndhG*, *ndhH*, *ndhI*, *ndhJ*, *ndhK*	
Transcription and translation related genes	Transcription	rps2, rps3, rps4, rps7, rps8, rps11, *rps12*, rps14, rps15, rps16, rps18, rps19, *rpl2*, rpl14, *rpl16*, rpl20, rpl22, rpl23, rpl32, rpl33, rpl36
	Ribosomal proteins	
	Translation initiation factor	infA
	RNA genes	Ribosomal RNA
	Transfer RNA	
	Other genes	RNA processing
		Carbon metabolism
		Proteolysis

Intron-containing genes are marked by asterisks (*).

Sequence Divergence
To detect highly variable regions, we analyzed variable sites in the *Pennisetum* chloroplast genome by sliding window analysis using the software DnaSP (Figure 4). Nine divergent loci (*psbA*-matK, *matK*-rps16, *trnN-trnT*, *trnY-trnD-psbM*, *petN-trnC*, *rbcL-psaI*, *psbE-petL*, petA-psbJ, and *rpl32-trnL*) had a Pi value greater than or equal to 0.02. All of these nine divergent loci were intergenic regions and were present in the LSC region, except for *rpl32-trnL*, which occurred in the SSC region, with none detected in the IR region. These results also confirmed that the LSC and SSC regions were less conserved than the IR regions.

We evaluated the marker divergence in this study by comparison with three accepted candidate DNA barcodes (*matK*, *rbcL*, and *psbA-trnH*). We found that the newly identified markers had higher variability than these DNA barcodes (Table 4). The highest variability was detected in the *rbcL*-psaI region (4.68%), followed by that in the *petN-trnC* (4.51%), *trnY-trnD-psbM* (3.87%), *trnN-trnT* (3.74%), and *psbE-petL* (3.72%) regions.

SSR Analysis
A total of 226 SSRs were discovered in this study (Figure 5A). The chloroplast genomes of the four species harbored a similar number of SSRs (54, 62, 57, and 53). The number of SSRs was highest in *P. clandestinum* (62) and lowest in *P. polystachion* (53). Most of these SSRs were located in the LSC region (Figure 5B). The number of SSRs was similar between the IR and SSC regions. The numbers of mono-, di-, tri-, tetra-, penta-, and hexanucleotides were 148, 21,
Xu et al. Four Pennisetum Chloroplast Genome Sequencing

FIGURE 2 Comparison of chloroplast genomes of four Pennisetum species and other three Paniceae species (P. geminatum, S. secundatum, and S. talica) with P. glaucum as the reference using mVISTA program. The top line shows the genes in order. A cut-off of 70% identity was used for the plots and the Y-scale represents the percent identity between 50 and 100%.

TABLE 3 Variable sites analyses in Pennisetum chloroplast genomes.

	Number of sites	Variable sites	Parsimony-informative sites	Nucleotide diversity	
	Numbers	%	Numbers	%	
LSC	82,523	1,474	171	0.21%	0.00914
SSC	12,551	273	37	0.29%	0.01111
IR	22,442	70	8	0.04%	0.00161
Complete cp genome	139,958	1,887	224	0.16%	0.00683

4, 45, six, and two, respectively (Figure 5C). Additionally, pentanucleotide SSRs were found in three Pennisetum species, except for P. polystachion. Hexanucleotide SSRs were found in P. glaucum and P. polystachion. Mononucleotide repeats were the most abundant repeats, accounting for 65.5% of the total repeats, while tetranucleotide repeats accounted for 19.9%, and other SSRs accounted for 14.6%. Additionally, the majority of mononucleotide repeats belonged to A/T type (91.2%), and dinucleotide, trinucleotide, tetranucleotide, pentanucleotide, and hexanucleotide SSRs were especially rich in A or T (Figure 5D).

Codon Usage

The RSCU of the chloroplast genomes of four Pennisetum species was calculated using all protein-coding genes. These genes are encoded in 45,448–46,020 codons. Of the 45,448–46,020 codons, leucine (Leu) which encoded by UUA, UUG, CUU, CUC, CUA, and CUG was the most plentiful amino acid, with a frequency of 9.96–10.22% encoded by these codons, comprising 4,557–4,704 of the total number of codons, then serine (Ser) which encoded by UCU, UCC, UCA, UCG, AGU, and AGC was the second abundant amino acid, with a frequency of 9.04–9.36% (4,158–4,253 codons), while tryptophan (Trp) which encoded by UGG was the least frequently encoded amino acid, with a proportion of 1.45–1.5% (665–688 codons) (Figure 6 and Supplementary Table 2). The RSCU can eliminate the influence of amino acid composition on codon usage. Among the codons which the RSCU values are greater than one, the majority of the codons ended with A or U. On the contrary, the codons ended with C.
Figure 3 | Comparison for border positions of LSC, SSC, and IR regions among four *Pennisetum*. Genes are denoted by boxes, and the gap between the genes and the boundaries is indicated by the number of bases unless the gene coincides with the boundary. Extensions of genes are also indicated above the boxes.

Figure 4 | Comparative analysis of the nucleotide diversity values among four *Pennisetum* chloroplast genomes. X-axis: the position of the midpoint of a window (kb). Y-axis: nucleotide diversity of each window.

Table 4 | Variability of nine novel markers and the three universal chloroplast DNA barcodes in *Pennisetum*.

Markers	Length	Variable sites	Information sites	Nucleotide diversity
		Numbers (%)	Numbers (%)	
psbA-matK	1,144	39 (3.41)	4 (0.35)	0.01652
matK-rps16	946	33 (3.49)	11 (1.16)	0.02019
trnN-trnT	2,511	94 (3.74)	6 (0.24)	0.02078
trnY-trnD-psbM	1,162	45 (3.87)	3 (0.26)	0.02313
petN-trnC	997	45 (4.51)	4 (0.4)	0.02354
rbcl-psaI	1,046	49 (4.68)	4 (0.38)	0.01917
petA-psbJ	1,424	45 (3.16)	2 (0.14)	0.01617
psbE-petL	834	31 (3.72)	4 (0.48)	0.02063
rpl32-trnL	887	32 (3.61)	4 (0.45)	0.02
matK	1,539	31 (2.01)	6 (0.39)	0.01076
rbcl	1,431	13 (0.91)	3 (0.21)	0.00489
psbA-trnH	544	7 (1.29)	2 (0.37)	0.00715
or G had RSCU values less than one. This result is consistent with previous studies (Lu et al., 2018; Huang et al., 2020).

Phylogenetic Analysis

In order to resolve the phylogenetic relationships of *Pennisetum*, the complete chloroplast genomes of 31 species in the Poaceae subfamily Panicoideae and one outgroup in the Poaceae subfamily Micrairoideae were used to construct phylogenetic trees (Figure 7). The ML tree and BI trees contained 19 of 29 nodes, with ML bootstrap values of 100%, and BI posterior probabilities of 1.0. Both the ML and BI phylogenetic analyses strongly demonstrated *Pennisetum* as a monophyletic group with 100% bootstrap support and 1.0 posterior probability. *Pennisetum polystachion* and *P. glaucum* clustered together with 95% bootstrap support and 1.0 posterior probability, and *P. clandestinum* and *P. alopecuroides* clustered together with 100% bootstrap support and 1.0 posterior probability. The clade formed by all
four *Pennisetum* species was most closely related to the species *Setaria italica*.

DISCUSSION

Chloroplast Sequence Variation

In the current study, the chloroplast genome sequences of four species of *Pennisetum* (*P. alopecuroides*, *P. clandestinum*, *P. glaucum*, and *P. polystachion*) were sequenced using Illumina sequencing and compared. The results showed that the size of the genome ranged from 136,346 (*P. polystachion*) to 138,119 bp (*P. glaucum*), which was longer than the genome of *S. italica* (Wang and Gao, 2016) and shorter than that of *Stenotaphrum secundatum* and *Paspalidium geminatum* (Burke et al., 2016). This length was within the size range of the chloroplast genomes of most angiosperms (Dong et al., 2013). Angiosperm chloroplast genomes usually contain 110–130 genes, with up to 80 protein-coding genes, four rRNA genes, and approximately 30 tRNA genes (Jansen and Ruhlman, 2012). In the current study, all four *Pennisetum* chloroplast genomes had 110 unique genes consisting of 76 protein-coding genes, four rRNA genes, and approximately 30 tRNA genes (Jansen and Ruhlman, 2012). In the current study, all four *Pennisetum* chloroplast genomes had 110 unique genes consisting of 76 protein-coding genes, four rRNA genes, and approximately 30 tRNA genes. Comparative analysis of the *Pennisetum* chloroplast genomes using mVISTA revealed the DNA sequence similarities among related species. They were similar in structure, content, and order (Figure 1 and Table 1). The genome size and organization of the intergenic spacers were consistent with the observed variations in the size of the *Pennisetum* chloroplast genomes. Although the IR regions are more conserved than the SSC and LSC regions in the chloroplast genome, the evolutionary events and variation in the size of the chloroplast genomes in different plants could also be attributed to the expansion and contraction of the border between the SC and IR regions (Raubeson et al., 2007; Wang et al., 2008; Wang and Messing, 2011; Meng et al., 2018; Zhao et al., 2018; Androsiuk et al., 2020). In this study, the genes *rps19*, *ndhF*, *ndhH*, and *psbA* were located at the juncture of the LSC/IRB, IRB/SSC, SSC/IRA, and IRA/LSC borders. Similar to most angiosperms, IR boundaries were found within *ndhF* and *rps19* genes in the presented chloroplast genomes of *Pennisetum*.

Molecular Markers

SSRs, known as microsatellites, are significant repetitive elements of the entire genome that consist of only one or a few tandemly repeated nucleotides. They are the same units with different unit numbers located in the homologous regions and play important roles in many applications, including species identification, population genetics, and phylogenetic studies (Yang et al., 2011; Jiao et al., 2012; Zhang et al., 2016a,b; Androsiuk et al., 2020). The SSRs in chloroplast genomes are usually distributed in intergenic regions (Zhao et al., 2015). In the SSR analysis, 226 SSR loci were found in the four *Pennisetum* chloroplast genomes (Figure 4). Most of these SSR loci were located in the LSC region, followed by the SSC and IR regions. The most abundant were mononucleotide repeats, which contributed to A/T richness. These results are consistent with most reported angiosperms (Cui et al., 2019; Gao et al., 2019; Li W. et al., 2019; Li Y. et al., 2019). Analysis of the SSRs identified in the chloroplast genome of *Pennisetum* indicated that the chloroplast genome is highly conserved among the four species. The results showed that the genes of the chloroplast genome were largely identical, whereas the intergenic regions were more variable. In general, the chloroplast genome SSRs of the four *Pennisetum* exhibited abundant variation and are thus likely useful for detecting polymorphisms at the intraspecific level as well as developing markers for *Pennisetum* species for future evolutionary and genetic diversity studies.

DNA barcoding is a molecular technique for characterizing species of organisms using a short, standardized DNA region. Since it was first proposed in 2003 (Hebert et al., 2003), it has been used for a wide range of purposes, including to...
identify species (Badotti et al., 2017), to discover new species (Zhao et al., 2011), to support food safety and authenticity of labeling by confirming identity or purity (Galimberti et al., 2012; Huxley-Jones et al., 2012), and to help identify candidate exemplar taxa for comprehensive phylogenetic studies (Hajibabaei et al., 2007). The cytochrome oxidase subunit I (COI) gene has been widely used in previous studies and exhibits a high ability to distinguish between animal species requirements (Hebert et al., 2003). In plants, many loci have been proposed as plant barcodes. The CBOL (Consortium for the Barcode of Life) Plant Working Group as well as previous studies have evaluated and recommended the use of the chloroplast-derived DNA barcode fragments \(rbcL \) and \(matK \) (Kress and Erickson, 2007; CBOL Plant Working Group, 2009; Kool et al., 2012). In addition, \(trnH-psbA \), the internal spacer region of the chloroplast gene, and the ITS region of the nuclear genome were also investigated (Kress and Erickson, 2007; Chen et al., 2010; Bellanger et al., 2015). Despite the above, the molecular data for \textit{Pennisetum} are highly limited. In the four \textit{Pennisetum} species with completely sequenced chloroplast genomes, the genetic variation in the chloroplast regions of \(matK \), \(rbcL \), and \(psbA-trnH \) is widely used as DNA barcodes in plants, was lower than expected. However, genome-wide comparative analyses based on Pi value supported the identification of nine highly variable regions that could be utilized as a source of potential DNA barcodes for species identification and the reconstruction of phylogenetic relationships within this plant group: \(psbA-matK \), \(matK-rps16 \), \(trnN-trnT \), \(trnY-trnD-psbM \), \(petN-trnC \), \(rbcL-psaI \), \(psbE-petL \), \(petA-psbL \), and \(rpl32-trnL \). Highly Pi values in the \(psbE-petL \), \(rpl32-trnL \), and \(petA-psbL \) regions were also reported in other plants (Dong et al., 2012). The \(petN-trnC \) and \(rbcL-psaI \) regions have been used as molecular markers for phylogenetic analyses (Morris and Duvall, 2010; Iu Barkalov and Kozyrenko, 2014). Overall, these highly divergent regions presented abundant information for molecular marker development in plant identification and investigating the phylogenetic relationships of \textit{Pennisetum}.

![Phylogenetic tree constructed from 32 chloroplast genomes using ML and BI method. The bootstrap values were based on 1000 replicates and were indicated next to the branches.](image-url)
Phylogenetic Analysis

Chloroplast genome sequences have been successfully used for phylogenetic studies of angiosperms (Jansen et al., 2007; Huang et al., 2014; Kim et al., 2015). The phylogenetic position of *Pennisetum* in Poaceae was inferred by analyzing the complete chloroplast genome and 76 genes shared among 32 species in Poaceae, for which the full chloroplast genome sequence had been generated and officially published in the database of the NCBI. The ML and BI trees exhibited similar phylogenetic topologies. The phylogenetic trees (ML and BI) demonstrated a significant relationship among Poaceae with high bootstrap values and posterior probabilities (Figure 6). The results showed that the main relationship was the same as other studies among the Family Poaceae (Robert et al., 2015; Soreng et al., 2015). Paniceae, Andropogoneae, Arundinelleae, Paspaleae, Gynerieae, Chasmanthieae, Centothecae, and Tristachyideae that should placed in Panicoideae lineage clustered together \([BP_{(ML)} = 100\%, \text{ PP} = 1.00]\). The genus *Limnopus* was found to be the earliest diverging lineage. Our research object genus *Pennisetum* form a high support clade as a paraphyletic group \([BP_{(ML)} = 100\%, \text{ PP} = 1.00]\). The clade formed by all four *Pennisetum* species is a sister to the species *Setaria italica*. And the genus *Pennisetum* and other 19 genus should be placed in the Paniceae lineage. In the genus *Pennisetum*, *P. polystachion*, and *P. glaucum* could be confidently assigned to one clade \([BP_{(ML)} = 95\%, \text{ PP} = 1.00]\), while *P. clandestinum* and *P. alopeceoides* clustered together with high support rate \([BP_{(ML)} = 100\%, \text{ PP} = 1.00]\). The results are consistent with previous studies (Martel et al., 1997). Our study on the *Pennisetum* chloroplast genome provides valuable information on these four *Pennisetum* species and will facilitate future phylogenetic studies as well as other studies of *Pennisetum* species.

CONCLUSION

In this study, we sequenced and compared the chloroplast genomes of four *Pennisetum* species. The chloroplast genomes of the four species were highly conserved with respect to gene orientation, gene content, and GC content. The goal of the present study was to expand our understanding of the diversity of the genus *Pennisetum* and identify reliable and effective DNA barcodes for *Pennisetum* species. Several non-coding regions or several intergenic spacer regions (*psbA-matK*, *matK-rps16*, *trnN-trnT*, *trnY-trnD-psbM*, *petN-trnC*, *rbcl-psaI*, *petA-psbJ*, *psbE-petL*, and *rpl32-trnL*) were found to be the most appropriate DNA barcodes for evolutionary and genetic diversity studies of *Pennisetum*. The molecular data in this study enhance the chloroplast genome resources for the family Poaceae and genus *Pennisetum* and could be useful for species identification, phylogenetic analysis, and evolutionary history analysis.

DATA AVAILABILITY STATEMENT

The datasets presented in this study can be found in online repositories. The names of the repository/repositories and accession number(s) can be found below: https://www.ncbi.nlm.nih.gov/genbank/, MN180104; https://www.ncbi.nlm.nih.gov/genbank/, MW816925; https://www.ncbi.nlm.nih.gov/genbank/, MW816926; and https://www.ncbi.nlm.nih.gov/genbank/, MW816927.

AUTHOR CONTRIBUTIONS

JX designed the experiment and drafted the manuscript. CL collected the samples and performed the experiment. JX and YS analyzed the data. ML contributed reagents and analysis tools. All of the authors have read and approved the final manuscript.

FUNDING

The study was financially supported by the National Key Research and Development Program of China (2017YFF0210300 and 2017YFF0210301) and the Basic Scientific Research Foundation of Chinese Academy of Inspection and Quarantine (2018)01010.

ACKNOWLEDGMENTS

We thank National Medium Forage Bank and Yurong Li from National Animal Husbandry Station for help in specimen collection. We also thank LetPub (www.letpub.com) for its linguistic assistance during the preparation of this manuscript.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found online at: https://www.frontiersin.org/articles/10.3389/fgene.2021.687844/full#supplementary-material

REFERENCES

Abdi, S., Dwivedi, A., Kumar, S., and Bhat, V. (2019). Development of EST-SSR markers in *Cenchrus ciliaris* and their applicability in studying the genetic diversity and cross-species transferability. *J. Genet.* 98:101. doi: 10.1007/s12041-019-1142-x

Andrusiuk, P., Jarząb, J. P., Paukszto, Ł, Makowczenko, K., Olorski, A., Puczkółkowska, A., et al. (2020). Evolutionary dynamics of the chloroplast genome sequences of six *Colobanthus* species. *Sci. Rep.* 10:11522. doi: 10.1038/s41598-020-68563-5

Badotti, F., Oliveira, F. D., Garcia, C. F., Vaz, A., Fonseca, P., and Nahum, L. A., et al. (2017). Effectiveness of its and sub-regions as dna barcode markers for the identification of basidiomycota (fungi). *BMC Microbiol.* 17:42. doi: 10.1186/s12866-017-0958-x

Bankevich, A., Nurk, S., Antipov, D., Gurevich, A. A., Dvorkin, M., Kulikov, A. S., et al. (2012). SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. *J. Comput. Biol.* 19, 455–477. doi: 10.1089/jcb.2012.0021

Bellanger, J.-M., Moreau, P.-A., Corriol, G., Bidaud, A., Chalange, R., Dudova, Z., et al. (2015). Plunging hands into the mushroom jar: a phylogenetic framework
for Lyophyllycles (Agaricales. Basidiomycota). Genetica 143, 169–194. doi: 10.1007/s10709-015-9823-8

Bolger, A. M., Lohse, M., and Usadel, B. (2014). Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120. doi: 10.1093/bioinformatics/btu170

Brunken, J. N. (1977). A Systematic Study of Pennisetum Sect. Pennisetum (Gramineae). Amer. J. Bot. 64, 161–176. doi: 10.2307/2442104

Burke, S. V., Wysocki, W. P., Zuloaga, F. O., Craine, J. M., and Duvall, M. R. (2016). Evolutionary relationships in panicgrass species based on plastome phylogenomics (Panicoidaeae. Poaceae). BMC Plant Biol. 16:1040. doi: 10.1186/s12870-016-0823-3

CBOL Plant Working Group (2009). A DNA barcode for land plants. Proc. Natl. Acad. Sci. U. S. A. 106, 12794–12797.

Chemisqy, M. A., Giussani, L. M., Scataglini, M. A., Kellogg, A. E., and Morrone, O. (2010). Phylogenetic studies favour the unification of Pennisetum, Cenchrus and Odontelystrum (Poaceae); a combined nuclear, plastid and morphological analysis, and nomenclatural combinations in Cenchrus. Ann. Bot. 106, 107–130. doi: 10.1093/aob/mcq090

Chen, H., Shao, J., Zhang, H., Jiang, M., Huang, L., Zhang, Z., et al. (2018). Sequencing and analysis of Stroblanthes cusia (ees) Kunze chloroplast genome revealed the rare simultaneous contraction and expansion of the inverted repeat region in angiosperm. Front. Plant Sci. 9:324. doi: 10.3389/fpls.2018.00324

Chen, S., Yao, H., Han, J., Liu, C., Song, J., Shi, L., et al. (2010). Validation of the ITS2 region as a novel DNA barcode for identifying medicinal plant species. PLoS One 5:e8613. doi: 10.1371/journal.pone.0008613

Cui, Y., Nie, L., Sun, W., Xu, Z., Wang, Y., Yu, J., et al. (2019). Comparative and phylogenetic analyses of ginger (Zingiber officinale) in the family Zingiberaceae based on the complete chloroplast genome. Plants 8:283. doi: 10.3390/plants8080283

Daisey, I. H., and Quentin, C. B. C. (2015). Plann: a command-line application for annotating plastome sequences. Appl. Plant Sci. 3:1500026. doi: 10.3732/apps.1500026

DeLisle, D. G. (1963). Taxonomy and distribution of the genus Cenchrus. Iowa State Coll. J. Sci. 37, 259–351.

Donald, S., Giussani, L. M., Kellogg, E. A., Zuloaga, F. O., and Morrone, O. (2009). A preliminary molecular phylogeny of Pennisetum and Cenchrus (Poaceae-Paniceae) based on the trnL-F, rpl16 chloroplast markers. Taxon 58, 392–404. doi: 10.1002/tax.582007

Dong, W., Liu, J., Yu, J., Wang, L., and Zhou, S. (2012). Highly variable chloroplast markers for evaluating plant phylogeny at low taxonomic levels and for DNA barcoding. PLoS One 7:e35071. doi: 10.1371/journal.pone.0035071

Dong, W., Xu, C., Cheng, T., Lin, K., and Zhou, S. (2013). Sequencing angiosperm plastid genomes made easy: a complete set of universal primers and a case study on the phylogeny of Saxifragales. Genome Biol. Evol. 5, 969–979. doi: 10.1093/gbe/evt063

Fan, W., Wu, Y., Yang, J., Shahzad, K., and Li, Z. (2018). Comparative chloroplast genomics of Dipscases species: insights into sequence variation, adaptive evolution, and phylogenetic relationships. Front. Plant Sci. 9:689. doi: 10.3389/fpls.2018.00689

Fredrik, R., Maxim, T., Maxim, T., Paul, V. D. M., Ayres, D. L., Aaron, D., Sebastian, H., et al. (2012). MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Mol. Biol. Evol. 29, 770–780. doi: 10.1093/molbev/msq010

Jansen, R. K., and Standley, D. M. (2013). MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol. Biol. Evol. 30, 770–780. doi: 10.1093/molbev/msq010

Kearse, M., Moir, R., Wilson, A., Stones-Havas, S., Cheung, M., Sturrock, S., et al. (2012). Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28, 1647–1649. doi: 10.1093/bioinformatics/bts199

Kelly, A. F., Lior, P., Alexander, P., Edward, M. R., and Inna, D. (2004). VISTA:Computational tools for comparative genomics. Nucleic Acid Res. 32, W273–W279. doi: 10.1093/nar/gkh358

Kim, K. J., and Lee, H. L. (2004). Complete chloroplast genome sequences from Korean ginseng (Panax schinseng Nees) and comparative analysis of sequence evolution among 17 vascular plants. DNA Res. 11, 247–261. doi: 10.1093/dnares/11.4.247

Kumar, S., Saxena, S., Rai, A., Radhakrishna, A., and Kaushal, P. (2019). Ecological, genetic, and reproductive features of Cenchrus species indicate evolutionary supremacy of apomixis under environmental stresses. Ecol. Ind. 105, 126–136. doi: 10.1016/j.ecolind.2019.05.036

Kress, W. J., and Erickson, D. L. (2007). A two-locus global DNA barcode for land plants: the coding rbcL gene complements the non-coding trnH-psbA spacer region. PLoS One 2:e508. doi: 10.1371/journal.pone.000508

Kumar, S., Kell, S.-C., Lee, J., Yu, V., Yang, K., Choi, B.-S., et al. (2015). Complete chloroplast and ribosomal sequences for 30 accessions elucidate evolution of Oryza AA genome species. Sci. Rep. 5:15655. doi: 10.1038/srep15655

Kool, A., De Boer, H. J., Krüger, A., Rydberg, A., Abbad, A., Björkó, L., et al. (2012). Molecular identification of commercialized medicinal plants in southern Morocco. PLoS One 7:e39459. doi: 10.1371/journal.pone.0039459

Kress, W. J., and Erickson, D. L. (2007). A two locus global DNA barcode for land plants: the coding rbcL gene complements the non-coding trnH-psbA spacer region. PLoS One 2:e508. doi: 10.1371/journal.pone.000508

Kumar, S., Saxena, S., Rai, A., Radhakrishna, A., and Kaushal, P. (2019). Ecological, genetic, and reproductive features of Cenchrus species indicate evolutionary supremacy of apomixis under environmental stresses. Ecol. Ind. 105, 126–136. doi: 10.1016/j.ecolind.2019.05.036

Kurtz, S., Choudhuri, J. V., Enno, O., Chris, S., Jens, S., and Robert, G. (2001). REPuter: the manifold applications of repeat analysis on a genomic scale. Methods Enzymol. 350, 427–480. doi: 10.1016/S0076-6879(05)95020-9

Li, C., Zhao, Y., Xu, Z., Yang, G., Peng, J., and Peng, X. (2020). Initial characterization of the chloroplast genome of Vicia sepium, an important wild plant resource, and related inferences about its evolution. Front. Genet. 11:73. doi: 10.3389/fgene.2020.00073

Li, D., Zhu, G., Xu, Y., Ye, Y., and Liu, J. (2020). Complete chloroplast genomes of three medicinal Alpinia species: genome organization, comparative analyses and phylogenetic relationships in family Zingiberaceae. Plants 9:286. doi: 10.3390/plants9020286
