The Ttg2 ABC system in Pseudomonas aeruginosa functions as a general glycerophospholipid transporter between the two cell membranes

Daniel Yero
Universitat Autònoma de Barcelona https://orcid.org/0000-0002-6234-4082

Mireia Díaz-Lobo
Institute for Research in Biomedicine

Lionel Costenaro
Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona

Oscar Conchillo-Sole
Institute of Biotechnology and Biomedicine, Universitat Autonoma de Barcelona
https://orcid.org/0000-0003-4266-246X

Adrià Mayo
Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona

Mario Ferrer-Navarro
Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona

Marta Vilaseca
Institute for Research in Biomedicine (IRB Barcelona) https://orcid.org/0000-0002-1666-1300

Isidre Gibert
Institució Catalana de Recerca i Estudis Avançats https://orcid.org/0000-0003-1442-2258

Xavier Daura (✉ xavier.daura@uab.cat)
Institució Catalana de Recerca i Estudis Avançats https://orcid.org/0000-0001-9235-6730

Article

Keywords: Ttg2D, Pseudomonas aeruginosa, glycerophospholipid transporter, cell membranes

DOI: https://doi.org/10.21203/rs.3.rs-89298/v1

License: ☑️ This work is licensed under a Creative Commons Attribution 4.0 International License.
Read Full License
Abstract

In *Pseudomonas aeruginosa*, Ttg2D is the soluble periplasmic phospholipid-binding component of an ABC transport system thought to be involved in maintaining the asymmetry of the outer membrane. The crystallographic structure of Ttg2D at 2.5 Å resolution reveals that this protein can accommodate four acyl chains. Analysis of the available structures of Ttg2D orthologs shows that they conform a new substrate-binding-protein structural cluster. Native and denaturing mass spectrometry experiments confirm that Ttg2D, produced both heterologously and homologously and isolated from the periplasm, can carry two diacyl glycerophospholipids as well as one cardiolipin. Binding is notably promiscuous, allowing the transport of various molecular species. *In vitro* binding assays coupled to native mass spectrometry show that binding of cardiolipin is spontaneous. Gene knockout experiments in *P. aeruginosa* multidrug-resistant strains reveal that the Ttg2 system is involved in low-level intrinsic resistance against certain antibiotics that use a lipid-mediated pathway to permeate through membranes.

Introduction

Pseudomonas aeruginosa are amongst the most important multidrug-resistant (MDR) human pathogens1, showing inherent resistance to an important fraction of the available antibiotics2. *P. aeruginosa* are responsible for chronic lung infections in individuals with chronic obstructive pulmonary disease or cystic fibrosis (CF)3 and account for over a tenth of all nosocomial infections4. A number of effective drugs and formulations can treat *P. aeruginosa* infections, even in CF patients5. These include frontline antibiotics such as piperazillin-tazobactam, ceftazidime, aztreonam, imipenem, meropenem, ciprofloxacin, levofloxacin, tobramycin, amikacin, and colistin6. Yet, resistance to most of these antimicrobials is being increasingly reported7. The basis for the inherently high resistance of these microorganisms is primarily their low outer-membrane (OM) permeability8,9, complemented by the production of antibiotic-inactivating enzymes (e.g. β-lactamases), the constitutive expression of efflux pumps10,11 and the capacity to form biofilms1,12, among other mechanisms. The susceptibility of *P. aeruginosa* to antimicrobials can be additionally reduced by the acquisition of inheritable traits, including horizontal gene transfers and mutations that decrease uptake and promote efflux pump overexpression13,14,15. Although a number of genes and mechanisms of resistance to antibiotics are already known in *P. aeruginosa*, the complex mechanisms controlling the basal, low-level resistance to these compounds are still poorly understood16,17.

The OM of *P. aeruginosa* is known to be central to its antibiotic-resistance phenotype. Its intrinsically low permeability is partly determined by inefficient OM porin proteins that provide innate resistance to several antimicrobial compounds, mainly of hydrophilic nature1,8,10. In addition, studies with mutant strains have shown that the loss of specific efflux pump mechanisms, commonly overproduced in clinical isolates, is compensated by reducing the permeability of the OM9. Furthermore, polymyxin resistance in *P. aeruginosa* is associated with significant alteration of the membrane's glycerophospholipid composition18. Thus, mechanisms involved in OM organization, composition and integrity interfere with
the diffusion through the membrane of both hydrophilic and hydrophobic antimicrobial compounds. The asymmetry in the lipid organization of the OM is a main factor in the low permeability to lipophilic antibiotics and detergents19. Glycerophospholipid trafficking across bacterial membranes contributes to that asymmetry, but the systems involved in this transport and their directionality are just beginning to be understood.

In \textit{Escherichia coli}, the Mla system (MlaA-MlaBCDEF) was initially proposed to have a phospholipid import function, preventing phospholipid accumulation in the outer leaflet of the OM and thus controlling membrane-phospholipid asymmetry20. The core components of this ATP-binding-cassette (ABC) transport system in the inner membrane (IM) comprise the permease (MlaE), the ATPase (MlaF) and the substrate-binding protein MlaD that are highly conserved among Gram-negative bacteria21. The MlaA component, an integral OM protein that forms a channel adjacent to trimeric porins, would selectively remove phospholipids from the outer OM leaflet and transfer them to the soluble periplasmic substrate-binding protein MlaC22,23. MlaC would then transport the phospholipids across the periplasm and deliver them to MlaD for active internalization through the IM24. Deletion of the genes of this system is known to destabilize the OM, and bacterial strains lacking any of the Mla components are more susceptible to membrane stress agents20,25,26,27,28,29,30,31. More recently, the retrograde transport hypothesis has been questioned and a new role for this system in anterograde phospholipid transport has been suggested. Thus, the Mla system in \textit{E. coli} and its homolog in \textit{Acinetobacter baumannii} appear to participate in the export of phospholipids to the OM30,32. In this context, MlaD would extract phospholipids from the IM and transfer them to MlaC in an ATP-independent manner.

The orthologous Mla system in \textit{P. aeruginosa} is encoded by the PA4452-PA4456 operon (locus tags corresponding to PAO1) and the isolated gene PA2800 (MlaA ortholog, also known as VacJ). Proteins encoded by this gene cluster are highly similar to those encoded by operon \textit{ttg2} (toluene tolerance genes) in \textit{Pseudomonas putida}33,34. Although it is unlikely that organic solvents themselves are substrates of this transporter, this system was initially linked to toluene tolerance in this species35. Accordingly, components of the \textit{P. aeruginosa} ABC transporter encoded by the PA4452-PA4456 have been named Ttg2A (MlaF), Ttg2B (MlaE), Ttg2C (MlaD), Ttg2D (MlaC) and Ttg2E (MlaB)33. Recent studies of mutant strains with disrupted \textit{ttg2} or \textit{vacJ} genes support the contribution of this ABC transport system to the intrinsic resistance of \textit{P. aeruginosa} to antimicrobials25,29,33,36. Nevertheless, one of these studies has challenged the role of this system in intermembrane phospholipid trafficking in \textit{P. aeruginosa}33.

Here, we have primarily focused on \textit{P. aeruginosa}'s Ttg2D (Ttg2D\textsubscript{Pae}) and the nature of its cargo, which shall provide additional clues on the function of the Ttg2 system as a whole. Thus, we present structural and functional evidence of the role of this protein as a general phospholipid transporter, capable of carrying either diacyl or tetra-acyl glycerophospholipids. Our structural analysis further enriches the existing knowledge on the structural diversity of substrate-binding proteins (SBPs) and supports current discussions on the directionality of phospholipid transport by the Mla system. In addition, based on mutational studies of the \textit{ttg2} operon, we have validated the contribution of the Ttg2 system to the
intrinsic basal resistance of *P. aeruginosa* to several antibiotic classes and other damaging compounds. Although the role of other components of this ABC transport system in multi-drug resistance has been already established for *P. aeruginosa*25,33, this is the first study focusing on the soluble periplasmic SBP component, Ttg2D\textsubscript{Pae}. Among the components of the Ttg2 system, this SPB could be the most promising candidate for an antimicrobial intervention based on the specific blocking of this trafficking pathway.

Results

Ttg2D\textsubscript{Pae} contains a large hydrophobic cavity that binds four acyl tails

Sequence analysis indicates that Ttg2D\textsubscript{Pae} (PA4453) is the soluble periplasmic SBP component of the ABC transporter encoded by the *ttg2* operon and a member of the Pfam family MlaC (PF05494). Interestingly, the available 3D structures for the MlaC family from *Ralstonia solanacearum* (PDB entry 2QGU), *P. putida* (PDB entries 4FCZ and 5UWB) and *E. coli* (PDB entry 5UWA) were all solved in complex with a ligand in their hydrophobic pocket, except for one structure from *E. coli* (PDB entry 6GKI) where the protein was delipidated. Electron densities for the ligand were in all these structures compatible with phospholipid moieties, supporting their predicted role as phospholipid transporters. A sequence alignment shows that some of the residues thought to be involved in phospholipid binding in the *R. solanacearum* Ttg2D structure are conserved in the *P. aeruginosa* ortholog (Fig. S1). Remarkably, the electron densities for *P. putida* Ttg2D revealed the presence of two diacyl lipids in its pocket27.

To investigate ligand binding at the molecular level, we determined by molecular replacement the crystallographic structure of the Ttg2D\textsubscript{Pae} mature protein (without the signal peptide, aa 23–215) produced in *E. coli* at 2.53 Å resolution (PDB entry code 6HSY) (Fig. 1A). The structure was refined to a final R_{work} and R_{free} of 20.9 and 24.9%, respectively, and good validation scores (Supplementary Table S1). All residues but the last three C-terminal ones (plus the C-terminal expression tag) could be modeled. Ttg2D\textsubscript{Pae} adopts a mixed α + β fold with a highly twisted anti-parallel β-sheet formed by five strands and surrounded by eight α-helices. It exhibits a “decanter” shaped structure never described before for any other protein family (Fig. 1A). The structure presents a highly hydrophobic cavity between the β-sheet and the helices that spans the whole protein and has a volume of 2979 Å3 and a depth of ~ 25 Å (Fig. 1B).

After the first refinement stage (AutoBuild), without any ligand added, clear density was visible inside the cavity that could correspond to four acyl chains (Fig. S2). We therefore modeled inside the cavity two PG(16:0/cy17:0) (Fig. 1A), as mass spectrometry (MS) experiments suggested that this lipid was one of the most abundant among those found to bind Ttg2D\textsubscript{Pae} when expressed in *E. coli* (see below). Real-space correlation coefficients of 0.9 for the lipids indicate a good fit to the $2mF_0 - DF_c$ electron density. The four acyl tails are deeply inserted into the hydrophobic cavity, while the polar head groups are exposed to the solvent and make only few contacts with the protein (Fig. 1, A and C). This lack of specific recognition of the head group could explain why Ttg2D\textsubscript{Pae} is able to bind different types of lipids.
phospholipids. The presence of two diacyl lipids suggests that the protein could also be able to bind one tetra-acyl lipid, such as diphosphatidylglycerol (cardiolipin).

To investigate the mechanism of entry and release of the two lipids in the cavity of Ttg2D_{Pae}, we performed a normal mode analysis (NMA). NMA may be used to model the internal collective motions of a protein, relevant to ligand binding and function in general, typically described by a few low-frequency modes³⁷. Figure 1D shows the collective motions along mode 7, the first non-trivial mode (modes 1 to 6 account for translational and rotational motions of the protein as a whole). Rather than "en bloc" relative motions of sub-domains, all secondary structures of the protein appear to move in a concerted manner, helix α4 and the core of the β-sheet being more rigid. This breathing-like motion increases in a concerted manner the volume of the cavity and its mouth area, and may allow the lipids to enter into or exit from the cavity. Inspection of the next 10 lowest-frequency normal modes shows similar concerted motions. The recent MalC structure with no lipid bound (PDB entry 6GKI)³² shows similar collective motions along all modes, with similar amplitudes, indicating that the cavity could open and close in the absence of lipid. The normal modes can be also used to compute atomic mean-square displacements, which can be in turn related to <i>B</i>-factors³⁸. The NMA-derived and the observed (crystallographic) <i>B</i>-factors are closely correlated except in regions 75–95 and 180–200, which are involved in crystal contacts, and region 105–120, where the electron density is weaker (Fig. S3). This suggests that the normal modes provide a realistic description of the protein's flexibility.

The Ttg2D/MlaC fold: a new two-domain architecture and SBP structural cluster

All MlaC homologs of known structure have a highly superposable "decanter" shaped configuration (Fig. 1A), previously described as an "extended" NTF2 fold²⁷ but never assigned a distinct structural classification. Thus, while the <i>P. putida</i> structure (PDB entry 4FCZ) appears in the CATH database as a single domain protein and unique structure of superfamily 3.10.450.710, belonging to fold topology 3.10.450 (Nuclear Transport Factor 2; Chain: A), the <i>R. solanacearum</i> structure (2QGU) is described as a two-domain structure with domains belonging to CATH-superfamilies 3.10.450.50 (NTF2-like) and 1.10.10.640. The latter superfamily belongs to the all-alpha fold topology 1.10.10 (Arc Repressor Mutant, subunit A) and has 2QGU as unique structure. To clarify the structural classification of Ttg2D/MlaC proteins we run a DALI search of the putative second domain (D2 in Fig. S1) of Ttg2D_{Pae} against the whole PDB. The results showed very good superposition with the small alpha domain of several AAA+ proteins, the best match being with 6UKS chain C³⁹ (Fig. S4). AAA (ATPases Associated with diverse cellular Activities) domains are formed by a large N-terminal domain adopting a Rossmann fold and a small C-terminal domain forming an alpha-helical bundle. They tend to adopt homo-hexameric ring complexes and hydrolyze ATP to perform activities that involve protein remodeling. The helical domain plays an important role in coupling the conformational changes resulting from ATP hydrolysis to the neighbor monomer within the AAA-ring and to the underlying protease ring⁴⁰ and has a specific classification (other than AAA) both in the PFAM (PF17862) and CATH databases (1.10.8.60). Interestingly, the Ttg2C ortholog MlaD, which in <i>E.coli</i> interacts with MlaC³², forms also a homo-
hexameric ring. We therefore conclude that currently known Ttg2D/MlaC structures combine two structural domains in an architecture not seen yet in other proteins, a NTF2-like domain and an AAA helical-bundle domain. In Ttg2D\textsubscript{Pae}, the first domain is formed by two non-contiguous sequence segments: D1S1 (PDB residues 23–68), with three alpha-helices, and D1S2 (113–169), with five beta-strands. The second domain, with five helices, is also split in two non-contiguous sequence segments: D2S1 (69–112) and D2S2 (170–212) (Fig. 1A and S1).

Classical SBPs linked to ABC transporters are structurally similar and composed of two globular domains formed by discontinuous segments41, adopting either a Rossmann fold (CATH: 3.40.50) or a very similar CATH: 3.40.190. The 501 SBP structures available in the PDB have been classified in 7 clusters and several subclusters42. We superposed the Ttg2D\textsubscript{Pae} structure to a representative of each of these subclusters. RMSD values, number of aligned residues and structural superpositions are shown in Fig. S5. The longest match aligns 47 residues with an RMSD of 3.97 Å (2PRS chain A, a 284-residue member of cluster A-I), while the best RMSD is 1.41 Å with 23 residues aligned (3MQ4 chain A, a 481-residue member of cluster B-V). These results clearly confirm that Ttg2D/MlaC family proteins do not belong to any previously known SBP structural cluster.

Evolution of sequence and structural diversity of the MlaC family

A structural alignment of MlaC family proteins with known 3D structures (Fig. 2A) reveals that, despite sequence identities ranging from 63% for the \textit{P. putida} protein to as low as 17% for the \textit{E. coli} one, the RMSDs of the structural alignments are very low, ranging from 1.6 to 3.1 Å (188 to 185 C\textalpha{}), respectively (Table S2). Clearly, secondary structure elements are highly or strictly conserved among all four proteins, despite substantial amino-acid variation (Fig. 2A and S1). However, the four proteins split into two groups: \textit{P. aeruginosa} and \textit{P. putida} Ttg2D have a hydrophobic cavity of 2979 – 2337 Å3 and can bind two diacyl lipids, while the \textit{R. solanacearum} and \textit{E. coli} proteins have a half-size cavity of 1444 – 1332 Å3 and bind only one diacyl lipid (Table S2). Surprisingly, although the different number of ligands had been already noticed when the structure of Ttg2D from \textit{P. putida} was solved, cavity differences were never analyzed. Figure 1B illustrates the cavity difference between \textit{P. aeruginosa} and \textit{R. solanacearum} Ttg2D. The volume differences correlate with the different number of residues forming the cavities, from 55 down to 31 (Table S2). However, these residues, which are spread along the whole protein sequence (Fig. S1), are largely conserved in terms of position and, in most cases, in terms of identity or similarity, with a few substitutions such as V147/L, or V163/I or M directly affecting the volume. Some side-chain reorientations, like Y105, and small secondary structure displacements, like strands β3 and β4 or helix α6 shifted by ~ 2 Å (Fig. 2A and S6), also modulate the volume. Taken together these changes are, nevertheless, not sufficient to explain how the cavity volume can double. Helix α8 seems to be the main responsible for the difference between a two and a one diacyl-phospholipid cavity, not only because the helix is longer in the first case (Fig. S1), but also because it adopts a different conformation. Indeed, for the second group (\textit{R. solanacearum} and \textit{E. coli}, one diacyl lipid), this helix has a straight conformation, covers the α6 helix (Fig. 2A and S6) and does not participate in the cavity (Fig. 1B and S1), while in the
first group (P. aeruginosa and P. putida, two diacyl lipids), the α8 helix is bent towards and over the α7 helix and greatly enlarges the cavity (with additional residues from β4 and β5 strands). This bend occurs at residue G195 with an angle of 40° and 64° in Ttg2D proteins from P. aeruginosa and P. putida, respectively (Fig. 2A). The helix of the first protein has an additional bend of 43° at K202. Glycine has a poor helix-forming propensity and tends to disrupt helices because of its high conformational flexibility. On the other hand, the Phe197 and Gln196 residues occupying the Gly195 position in the R. solanacearum and E. coli proteins, respectively (Fig. S1), have better helix-forming propensities and maintain the α8 helix straight. In addition, W196, exclusive of the pseudomonal structures, may also contribute to the influence of the α8 helix on the cavity’s volume, since its bulky hydrophobic side chain, deeply inserted into a hydrophobic pocket on the concave side of the curvature, could stabilize the helix α8 bend (Fig. S6).

Components of the Mla system are broadly conserved in Gram-negative bacteria, except for the periplasmic MlaC that notoriously shows high inter-species sequence diversity (Fig. 2B). Interestingly, an alignment of 151 representative amino-acid sequences belonging to the MlaC family and identified across different Gram-negative species revealed that W196 is conserved not only in Pseudomonas species but also in a group of related sequences in other non-phylogenetically related gamma-proteobacteria (Fig. 2C). In this group of proteins that would hypothetically bind two diacyl phospholipids, other positions with distinct residues relative to other MlaC family members stand out, especially in two regions located between the central part and the C-terminal end of the protein (Fig. S6). Side-chain orientation and hydrophobicity of some residues in these regions could be also contributing to a tighter binding of the two diacyl phospholipids inside the ligand cavity. The presence of common protein sequence signatures in species that are not closely related indicates that horizontal gene transfer, mediated by recombination events between flanking conserved genes, could have contributed to MlaC family diversity.

Ttg2D Pae binds two diacyl glycerophospholipids and cardiolipin, representing a novel phospholipid trafficking mechanism among Gram-negative bacteria

Native MS was used to determine the lipids that bind specifically to recombinant Ttg2D Pae produced in the cytoplasm of E. coli and the stoichiometry of the interaction in a cellular environment (Fig. 3). The native mass spectrum of Ttg2D Pae shows two major charge states (m/z 2701, z = 9 and m/z 2430, z = 10) corresponding to a deconvoluted average mass of 24296 Da that matches the MW of the recombinant protein Ttg2D Pae produced in E. coli without the first methionine residue plus bound ligands (Fig. 3A and S7). After isolation of the wide peak ion at m/z 2700 (z = 9) and gas-phase fragmentation with a transfer collision energy (CE) of 50 V, we detected the unbound protein (m/z 2536, z = 9) and a family of released phospholipids in the low mass range (Fig. 3B-C). Additional native MS experiments on isolated ion m/z 2700 (z = 9) using increasing transfer CE confirmed that at least a fraction of the bound Ttg2D Pae population hosts two phospholipids, since lipid dissociation starts at a transfer CE of 35 V and goes through the single-bound species (Fig. S8). The results also show that a second fraction of the
Ttg2D population hosts a single molecule, that remains bound up to a transfer CE of 50 V, which could correspond to cardiolipin as further MS experiments indicated. A tighter binding of cardiolipins could explain why these molecules were not detected in the gas-phase fragmentation experiments (Fig. 3B-C). We also note that at the transfer CE required for cardiolipin release these molecules are easily fragmented (see below).

The mass of [M + H]+ ions at m/z 664.5, 704.5, 718.5 and 730.5 released from Ttg2D$_{Pae}$ confirmed the identity of some ligands as phosphatidylethanolamines (PE) with different hydrocarbon chains (PE C30:0, PE C33:1, PE C34:1 and PE C35:2 respectively) (Fig. 3C). Subsequent direct MS analysis under denaturing conditions in both positive and negative ion modes, identified additional species of PE and of other phospholipid classes that are also components of the bacterial membrane, such as phosphatidylglycerol (PG), phosphatidylcholine (PC) and phosphatidylinerine (PS) (Fig. 3D and S9). With these methods, PG C33:1, PG C34:1, PE C33:1 and PE C35:1 came out as most abundant (annotation of lipid species based on the most abundant fatty acids in E. coli is given in Table S3). The observed distribution of phospholipids bound to recombinant Ttg2D$_{Pae}$ relates to their relative abundances in E. coli BL21 (the recombinant protein-expression host) as determined by lipidome analyses (Fig. S10), and it correlates well with the reported phospholipid composition of E. coli under comparable conditions44,45. LC-MS analysis under denaturing conditions in positive ion mode of the complexes produced in E. coli shows lipid species of m/z 690–800 and m/z 1400–1500 that could correspond to phospholipids and cardiolipins, respectively (Fig. S9D). In addition, direct MS analysis in negative ion mode indicates the presence of glycerophospholipids and shows peaks at m/z 1050–1160 that could correspond to E. coli cardiolipin species having lost one fatty acid (Fig. 3D-E). During the fragmentation processes of phospholipids in negative ion mode, upon low energy collisional activation, ions corresponding to the loss of fatty acids are the most abundant46. For example, when the most abundant cardiolipin species in E. coli, i.e. CL C68:2 with MW 1405.0 Da (Fig. S10), loses one of the fatty acids at position sn-2, it shows a prominent fragment ion at m/z 1147 or 1121 depending on the fatty acid species in that position (Fig. 3D-E).

In light of these results, we performed additional native MS experiments to investigate whether delipidated Ttg2D$_{Pae}$ can bind cardiolipin in vitro. In Fig. 4, representative native mass spectra of a reaction mixture containing 26.25 µM delipidated protein and 245 µM cardiolipin CL(18:0)$_4$ (1:9 molar ratio) in a buffered aqueous solution, are shown. The protein–cardiolipin complex and the unbound protein were detected around the 10+ and 9+ charge states (Figs. 4 and S11). Notably, the dissociation energy needed to release cardiolipin was higher than that required to release diacyl glycerophospholipids in the native complex (transfer CE of 60 V vs 35 V, see Figs. S11A and S8, respectively). This correlates with the previous observation that a "P + 2PL" population in the native spectra in Fig. S8 loss its cargo only at 60 V. At the transfer CE required for cardiolipin release this molecule is in fact easily fragmented (Fig. S11B).

Ttg2D$_{Pae}$ binds two diacyl glycerophospholipids or cardiolipin in the periplasm of P. aeruginosa.
Given that the cytoplasm of *E. coli* is clearly not the natural environment of Ttg2D_{Pae}, we decided to produce and purify this protein directly from the periplasmic space of *P. aeruginosa*. For this purpose, protein Ttg2D_{Pae} tagged with six C-terminal histidine residues and containing its own N-terminal secretion signal was expressed in the genetic background of a *P. aeruginosa* PAO1 Δttg2D mutant using a new derivative of a broad-host-range cloning vector (Fig. 5A). Restoration of the colistin susceptibility phenotype after transformation (MIC of 0.25 µg/ml vs. 0.0625 µg/ml in the non-transformed mutant) was used as evidence that the protein being expressed in the mutant strain was functional. Under these conditions, the mature Ttg2D_{Pae} could be purified from the periplasm in sufficient amount and purity (Fig. 5B inset) to determine its phospholipid cargo by MS.

The native mass spectrum in Fig. 5B shows a charge-state distribution that corresponds to the ligand-bound mature Ttg2D_{Pae} complexes (MW of intact complex: 23621 Da; MW of His-tagged protein without the signal peptide: 22140 Da). The wide peak widths, besides poor desolvation in aqueous buffer in the native MS instrumental conditions, suggests also the coexistence of multiple species of similar mass, supporting the presence of different classes of phospholipids bound to the protein. Gas phase dissociation mass spectra at varying transfer CE of isolated ions around m/z = 2625 (z = 9) indicated the presence of two populations at peaks m/z = 2626 (z = 9) and m/z = 2619 (z = 9), which are in agreement with the binding of two phospholipids and one cardiolipin, respectively (Fig. 5C). Further MS experiments under denaturing conditions in negative ion mode allowed the identification of two main phospholipid classes (Fig. S12 and Table S4). The obtained distribution is in agreement with relative abundances in *P. aeruginosa* PAO1 as determined by a lipidome analysis (Fig. S10), and it correlates well with the reported phospholipid composition in this species⁴⁷.

The Ttg2 system provides *P. aeruginosa* with a mechanism of resistance to membrane-damaging agents

As expected, the *P. aeruginosa* Δttg2D mutant exhibited a debilitated outer membrane leading to increased susceptibility to several membrane damaging agents (Fig. 6), as demonstrated by the 1-N-phenylnaphthylamine (NPN) assay. Indeed, an enhancement in NPN uptake was observed in the mutant in the presence of the permeabilizer agents EDTA and colistin (Fig. 6, A and B). In line with this, the Δttg2D mutant is significantly more susceptible to the action of polymyxins (lipid-mediated uptake), but also of antibiotics that use both the lipid- and porin-mediated pathways to penetrate the cell, including fluoroquinolones, tetracyclines and chloramphenicol (Fig. 6C). With regard to polymyxin antibiotics, the *ttg2D* transposon insertion mutant was eight-fold more susceptible to colistin than the PAO1 wild-type, a colistin-susceptible reference strain (Table S5). In general, the mutation did not significantly affect the resistance phenotype displayed by the PAO1 strain to the beta-lactam antibiotics or aminoglycosides tested. The susceptibility phenotypes due to deletion of *ttg2D* could be fully or partially reverted by complementation with the cloned *ttg2D* gene or the full operon *ttg2* in the replicative broad-range vector pBRR1MCS-5 (Fig. 6 and Table S5), confirming the link between the gene and the phenotypes. We have also confirmed that insertional mutations in each of the other components of the *ttg2* operon (*ttg2A, ttg2B, ttg2C*) and *vacJ* (*mlaA* ortholog) lead to an increased susceptibility to antibiotics in the same way
as for the Δttg2D mutant (Table S5). The Δttg2D mutant is also significantly susceptible to the toxic
effect of the organic solvent xylene (Fig. 6D) and it is four-fold more susceptible to the chelating agent
EDTA (MIC = 0.5 mM) than the parental wild-type PAO1. However, no difference was observed between
the mutant and wild-type cells in their susceptibility to SDS, obtaining for both strains a MIC value of
0.8%. Finally, disruption of the ttg2D gene resulted in an approximately two-fold reduction in biofilm
formation and greatly increased the activity of EDTA against P. aeruginosa biofilms at a subinhibitory
concentration of 0.05 mM (Fig. 6E).

The Ttg2 system is associated to P. aeruginosa’s intrinsic resistance to low antibiotic concentrations

The susceptibility of Ttg2-defective mutants to antibiotics was further studied in strains with different
genetic backgrounds. To this end, the full ttg2 operon was mutated in the clinical MDR P. aeruginosa
strains C17, PAER-10821 and LESB58, which had shown different patterns of resistance to several
antibiotic classes, specifically, polymyxins, fluoroquinolones and tetracyclines (Table 1). In particular,
PAER-10821 and LESB58 are P. aeruginosa strains with low-level resistance to colistin. The generation of
mutants with disrupted gene functions in MDR bacteria is troublesome because the antibiotics
commonly used in the laboratory are no longer useful for selection of gene knockouts. In addition, the loci
mutated in this case is involved in a general mechanism of resistance to antimicrobial agents and
mutant strains are therefore expected to be generally susceptible and thus potentially lost during the
selection steps. For this reason we have adapted a mutagenesis system based on the homing
endonuclease I-SceI to construct targeted, non-polar, unmarked gene deletions in MDR P. aeruginosa
strains (see material and methods, text S1 and Fig. S13 for details). With this modified mutagenesis
strategy we have obtained and validated unmarked deletion mutants of the selected MDR strains lacking
the full ttg2 operon (Fig. S13). Complemented strains were also obtained by transformation of mutant
strains with a replicative plasmid containing the full ttg2 operon and its expression in the complemented
clones was confirmed by RT-PCR (Fig. S13). All these strains were tested for their susceptibilities to
different classes of antibiotics (Table 1).
Table 1
Antibiotic susceptibility profile of *P. aeruginosa* MDR strains lacking the full *ttg2* operon.

Antibiotic	MIC\(^{†}\) in µg/ml	LEB58	C17	PAER-10821				
		WT	Δ*ttg2*	WT	Δ*ttg2*	WT	Δ*ttg2*	
Polypeptides								
Colistin		4	0.125*	2	0.125*	32	32	
Fluoroquinolones								
Ciprofloxacin		2	1	256	64*	256	128	
Levofloxacin		8	2*	256	256	256	128	
Ofloxacin		16	4*	>32	>32	>32	>32	
Norfloxacin		8	4	>256	>256	>256	256	
Tetracyclines								
Tetracycline		16	8	32	16	32	8*	
Minocycline		32	8*	16	8	32	8*	
Tigecycline		16	8	64	8*	32	8*	
Chloramphenicol		32	32	128	64	128	64	
Sulfonamides								
Trimethoprim-sulphamethoxazole		16	8	>64	>64	>64	64	
Aminoglycosides								
Tobramycin		8	2*	64	128	128	>128	
Amikacin		64	64	8	32*	32	32	
Gentamicin		32	16	>128	>128	>128	>128	
Kanamycin		>512	>512	256	512	512	512	
Streptomycin		>64	>64	>64	>64	>64	>64	
Carbapenems (beta-lactam)								

\(^{†}\) Minimum inhibitory concentration (MIC) determined by the broth microdilution method. MICs were confirmed by two or three independent replicates. MIC differences greater than 2-fold with respect to the corresponding wild type strain were considered significant (indicated with an asterisk).
Antibiotic	MIC[†] in µg/ml	LEB58	C17	PAER-10821			
		WT	Δtg2	WT	Δtg2	WT	Δtg2
Imipenem		2	2	32	32	32	64
Meropenem		2	2	32	16	16	16
Cephalosporins (beta-lactam)							
Ceftazidime		256	256	64	128	16	32
Penicillins (beta-lactam)							
Piperacillin		256	256	>256	64	128	256
Piperacillin-tazobactam		128	128	>256	64	64	64
Ticarcillin		>256	>256	>256	256	64	128
Ticarcillin-clavulanic acid		>32	>32	>32	>32	>32	>32

[†] Minimum inhibitory concentration (MIC) determined by the broth microdilution method. MICs were confirmed by two or three independent replicates. MIC differences greater than 2-fold with respect to the corresponding wild type strain were considered significant (indicated with an asterisk).

The three <i>ttg2</i> mutants were significantly more sensitive (between 4- and 64-fold) than the corresponding wild-type bacteria to colistin, fluoroquinolones, and tetracycline analogues, but not to the other antibiotic classes (Table 1). The mutant susceptibility phenotypes could be reverted by providing an intact copy of the entire PAO1 <i>ttg2</i> operon (PA4456-PA4452) in a replicative plasmid, except for colistin. The lack of complementation of the colistin susceptibility phenotype could be due to the effect of the antibiotic erythromycin (used as a selection marker for complemented strains) on the expression of global regulators that may influence colistin susceptibility^{50,51} or to the overexpression of the <i>ttg2</i> operon components (two- to eight-fold with respect to wild type, see Fig. S13) that may also affect the distribution of phospholipids in the OM. Surprisingly, the susceptibility to amikacin significantly decreased for the C17 mutant and an opposite effect was observed for the LEB58 mutant and tobramycin, suggesting a genetic-background component in the effect of the <i>ttg2</i> mutation on the susceptibility to these antibiotics.

Discussion

We have performed a structural and functional study of the soluble periplasmic SBP component of the Ttg2 ABC transport system in <i>P. aeruginosa</i> (<i>Ttg2</i>D_{Pae}) that reveals new facets of this protein family and provides additional insight into the role of this pathway in <i>P. aeruginosa</i>. We have first characterized this protein at the molecular level, supporting its predicted role as a phospholipid transporter. The crystal
structure of recombinant Ttg2D_{Pae} (Fig. 1), and MS analysis of protein-ligand complexes formed in vivo and in vitro (Fig. 3–5), show that this SBP transports four acyl chains. Furthermore, our results demonstrate that the Ttg2 system in P. aeruginosa is a general glycerophospholipid transporter with the ability to carry either two phospholipids or a tetra-acyl cardiolipin-like species. Reevaluation of the Ttg2D structure from P. putida (PDB 4FCZ) by Ekiert et al.27 (PDB 5UWB) had previously suggested but not confirmed the presence of a tetra-acyl, cardiolipin-like lipid in its bulky hydrophobic pocket. This is in contrast with the Ttg2D/MlaC orthologs from E. coli (PDB 5WA) and R. solanacearum (PDB 2QGU), which seem to bind a single diacylglyceride based on electron density and cavity size. Although, more recently, Hughes et al. showed evidences of cardiolipin binding to E. coli MlaC32, these have yet to be confirmed, since the methodology used does not allow the distinction between specific binding and co-purification (unspecific). With the data at hand, it thus appears that, among Gram-negative bacteria, the ability of MlaC-family proteins to transport two phospholipids or cardiolipin is exclusive to some taxonomic groups. Phylogenetic and sequence analysis (Fig. 2) suggest that there are other genera in addition to Pseudomonas where the Mla system transports two molecules simultaneously, although this needs to be confirmed by further studies. This finding raises the question whether the evolution of this system in these species has been driven by transport efficiency (double cargo) or transport diversity (tetra-acyl in addition to diacyl phospholipids). Furthermore, are the two phospholipids translocated simultaneously by the permease Ttg2B, as it would need to be for a tetra-acyl phospholipid such as cardiolipin? The determination of the structure of additional transport components in other species will be necessary to corroborate our proposed classification and answer these questions.

MS analyses showed that Ttg2D_{Pae} is a highly promiscuous SBP. This protein is indeed able to bind in vivo phospholipids with different head groups, particularly PG and PE, and of different chain lengths and degree of unsaturation. Therefore, this system would not only control the global phospholipid content of the OM, but could be also controlling a precise membrane-lipid distribution. Bacterial cells tightly regulate the phospholipid composition of the OM to fortify the permeability barrier against small toxic molecules, including antibiotics. For example, anionic phospholipids like PG interact with membrane proteins and cationic antimicrobials in ways that zwitterionic phospholipids like PE do not; their balance requiring a fine control19,52. Indeed, the membrane's PE content is a major factor determining the bacterial susceptibility to certain antimicrobial agents52,53. On the other hand, anionic non-bilayer-forming phospholipids like cardiolipin can strengthen the OM of Gram-negative bacteria against certain antibiotics19. In Gram-negative bacteria, cardiolipin is mostly located within the IM (the site of its synthesis), but it is also present in the OM where it facilitates proper localization of proteins on the bacterial surface. Known mechanisms of anterograde transport ensure the presence of cardiolipin in the OM54, but a retrograde mechanism preventing accumulation in the OM has not been described yet. An increase in the cardiolipin content of the OM could cause an increase in susceptibility to cationic antimicrobial agents55. Positively charged antimicrobial peptides and polymyxins have been proposed to promote the clustering of anionic phospholipids leading to phase-boundary defects that transiently breach the permeability barrier of the cell membrane52. In P. aeruginosa, an organism showing significant
intrinsic resistance to certain antibiotics, the membrane PE:PG:cardiolipin composition is approximately 60%:20%:11%. Simultaneous transport of four acyl chains across cell membranes could help control membrane charge balance more efficiently, not only by number but also by inclusion of additional (cardiolipin) species.

Early studies20 (and more recent ones56,57) of the Ttg2/Mla system supported its role in the maintenance of lipid asymmetry in the Gram-negative OM, by retrograde trafficking of phospholipids from the OM to the cytoplasm through the IM. Conversely, other studies have recently shown that the \textit{E. coli} protein MlaD spontaneously transfers phospholipids to MlaC \textit{in vitro}32,56, suggesting a transport in the opposite direction (IM-to-OM). In addition, an Mla mutant in \textit{A. baumannii} showed decreased abundance of OM phospholipids and accumulation of newly synthesized phospholipids in the IM30. Unlike most of the ABC exporters, ABC importers in Gram-negative bacteria require periplasmic SBPs that provide specificity and high-affinity. In addition, it is widely accepted that the direction of substrate transport of ABC transporters can be predicted on the basis of both the sequence of the nucleotide-binding component (ATPase)57,58 and the transmembrane-domain fold of the permease component59. The close orthologs in \textit{E. coli} and \textit{Mycobacterium tuberculosis} of the \textit{P. aeruginosa} ATPase Ttg2A, MlaF (60% identity) and the Mce protein Mkl (40% identity), respectively, have sequence signatures typically found in prokaryotic ABC import cassettes20,58. Moreover, the remote homolog TGD3 from \textit{Arabidopsis thaliana} is also a component of an ABC transport system (TGD) that imports phosphatidic acid to the chloroplasts through its outer and inner envelopes60. On the other hand, and although operon \textit{ttg2} resembles the classic organization of an ABC importer, there are evidences at the amino acid sequence level supporting evolution toward anterograde function. For instance, structural similarity searches with Dali (see Text S1) for the Ttg2B ortholog protein in \textit{A. baumannii} (MlaE, PDB 6IC4 chains G and H)30, identified as best match a structure of the human ABCA1 (PDB 5XJY), a known ATP-binding cassette cholesterol/phospholipid exporter61. All things considered, we should not rule out the possibility of anterograde, in addition to retrograde, phospholipid trafficking by the Ttg2/Mla system. One possibility would be that of a countercurrent model62, in which different types of phospholipids would exchange between the two membranes obeying a gradient (Fig. 7). A countercurrent model would explain how asymmetries in membrane lipid distribution might be achieved by the Ttg2/Mla system, but the direction in which each phospholipid is transported would need to be determined. In the anterograde transport proposed for \textit{E. coli}32, MlaC is loaded by MlaD, suggesting that, for this to be efficient, MlaC should not bind free phospholipids. Taken back to the \textit{P. aeruginosa} system, we have shown that Ttg2D\textsubscript{Pae} can load free cardiolipin \textit{in vitro}, but have no data for the spontaneous binding of two diacyl phospholipids. In this system, the idea that the loading of two molecules may require a helper protein (the MlaD ortholog Ttg2C) seems plausible. This would facilitate a putative mechanism in which the Ttg2 system would contribute to the retrograde transport of single lipids (cardiolipin, maybe diacyl lipids also) as well as to the export, enabled by Ttg2C, of pairs of diacyl lipids to the OM (Fig. 7). The exact function of VacJ (MlaA equivalent) and its relation with the transport in either direction is still to be determined. While \textit{P. aeruginosa}'s \textit{vacJ} gene is located outside the \textit{ttg2} operon, we have data demonstrating that strains lacking this gene share the same phenotype shown
by *ttg2* mutants. In *E. coli*, MlaA forms an active complex with the outer membrane proteins OmpC and OmpF. However, in *P. aeruginosa* there are no clear orthologs to either of these porins, increasing the singular characteristics of this system in this species and suggesting potential mechanistic differences with the more studied *E. coli* transporter (Fig. 7).

We have provided additional evidence, based on NPN-uptake and antimicrobial susceptibility assays, that the Ttg2 system controls the permeability of the OM in *P. aeruginosa* regardless of genetic background. Cellular studies showed that deletion of Ttg2D specifically increases the susceptibility to polymyxin, fluoroquinolone, chloramphenicol and tetracycline antibiotics in the PA01 reference strain and in three MDR clinical strains (Fig. 6 and Table 1). This mutant phenotype was observed both in the presence and absence of specific resistance mechanisms providing high-level resistance. For example, PA01 is a relatively sensitive strain and LESB58 is a MDR strain, and both show diversity in their resistomes. Thus, for the strain and antibiotic panel considered, the increase in susceptibility upon *ttg2* deletion seems to correlate with the antibiotic class rather than with the genetic background. This is in line with the physico-chemical properties of these antimicrobial compounds. Albeit positively charged, colistin is a significantly hydrophobic antibiotic that appears to gain access to the IM by permeating through the OM bilayer, while tetracyclines, chloramphenicol and quinolones use a lipid-mediated or a porin-mediated pathway depending on protonation state. These antibiotic classes are classified within the same group of molecules according to their interactions with the cell permeability barriers. The fact that other relatively hydrophobic antibiotics such as aminoglycosides are unaffected by the disruption of the Ttg2 system speaks in favor of the observed correlation between membrane phospholipid content and specific susceptibility to certain antibiotics. Another hypothesis that would explain the different impact of Ttg2 disruption on different antibiotic classes would be the possibility that phospholipids carried by the Ttg2 system, particularly cardiolipin, may interact with or stabilize certain efflux pumps in *P. aeruginosa*. A *P. putida* cardiolipin synthesis mutant was more sensitive to several antibiotics and to toluene, probably due to structural alterations in the RND efflux pumps. Indeed, the protein composition of the OM can also have a strong impact on the sensitivity of bacteria to the different antibiotic classes. It was probably the secondary effects of the removal of Ttg2D function that led the authors of another study, based on results on a Ttg2A mutant, to conclude that the function of the Ttg2 system in *P. aeruginosa* was associated with the export of antibiotics such as tetracycline out of the cell. Although further investigations are still required, the activity of the Ttg2 system on membrane phospholipid homeostasis appears to be partly responsible for the lower basal susceptibility of *P. aeruginosa* to antimicrobial agents, particularly to polymyxins (see supplementary discussion).

Methods

Bacterial strains

All bacterial strains used in this study are provided in supplementary Table S6 and growth conditions in supplementary Text S1.
Expression, purification and preparation of Ttg₂Dₚₑ protein variants

Recombinant Ttg₂D from *P. aeruginosa* (Ttg₂Dₚₑ) was obtained in the cytoplasm of *Escherichia coli* BL21(DE3) using the pET-based expression system and was purified to >99% purity. A *P. aeruginosa* PA01 mutant lacking *ttg₂D* was used for the homologous expression of a His-tagged variant of the protein in its natural environment and its subsequent purification. Periplasmic protein preparation from *P. aeruginosa* was done by sucrose-lysozyme method\(^6\). Both protein variants are tagged with a C-terminal 6-histidine tail for purification by affinity chromatography. Detailed methods for proteins expression and production are available in supplementary Text S1. Samples containing both homologously and heterologously produced proteins were desalted with the appropriate buffer on centrincon micro concentrators for MS analyses.

Ttg₂Dₚₑ structure resolution

Recombinant Ttg₂Dₚₑ obtained in *E. coli* was used to produce crystals for structure determination. Methods for crystallization, data collection and structure refinement are available in supplementary Text S1. The data collection, processing, and refinement statistics are given in supplementary Table S1. Atomic coordinates and structure factors have been deposited in the PDB with entry code 6HSY.

Delipidation of purified recombinant Ttg₂Dₚₑ

Recombinant protein produced in *E. coli*, diluted 1:1 with 1% TFA, was delipidated using an HPLC system and a C18 column (Phenomenex Jupiter 5U C18 300A) in 0.1% TFA. Protein was eluted with a gradient of acetonitrile, 0.1% TFA (monitored at 214 and 280 nm) and its delipidation was confirmed by native MS analyses (Fig. 4 inset). Delipidated protein was lyophilized, and typically resuspended in 100 mM NaCl, 10 mM Tris-HCl (pH 8.5), to counteract the acidity of TFA, before exchanging the buffer to the desired one.

Native mass spectrometry analysis and identification of bound phospholipids

Native MS experiments were performed using a Synapt G1-HDMS mass spectrometer (Waters, Manchester, UK) at the Mass Spectrometry Core Facility of IRB Barcelona. Prior to the analysis, samples were desalted with 100 mM ammonium acetate on centrincon micro concentrator. Samples were infused by automated chip-based nanoelectrospray using a Triversa Nanomate system (Advion BioSciences, Ithaca, NY, USA) as interface. After ion isolation, fragmentation was performed by CID (collision induced dissociation) in the transfer or trap region by applying increasing collision energies. See supplementary material (Text S1) for method details. Three technical replicates were performed for native MS experiments.

Analysis of protein Ttg₂Dₚₑ variants and their bound phospholipids was also done under denaturing conditions by electrospray ionization (ESI) MS in both the positive and negative ion mode (see Text S1). Fragmentation analysis of the most abundant and representative glycerophospholipids released from Ttg₂Dₚₑ were done under denaturing MS conditions (non-native) in positive mode. Annotation of most
abundant phospholipids present in each sample was done using Lipidomics Gateway (http://www.lipidmaps.org) based on the m/z values of MS spectra and according to Oursel et al.44 and Gidden et al.45 for \textit{E. coli} phospholipids, and Groenewold et al.47 for \textit{P. aeruginosa} phospholipids. In addition, to determine the phospholipid composition from both \textit{E. coli} BL21(DE3) and \textit{P. aeruginosa} PA01, and to identify the most detected phospholipid species by MS, lipidome analysis of intact cells was done according to Angelini et al.68 (see Text S1).

Cardiolipin binding to Ttg2D\textsubscript{Pae} by native mass spectrometry

1.5 mg of cardiolipin CL(18:0)\textsubscript{4} (sodium salt) (Avanti Polar Lipids, Merk, 710334P-25MG) were reconstituted in MeOH, vortexed and sonicated to obtain a homogeneous solution (1.5 mg/ml, 980 μM). Delipidated protein was mixed with cardiolipin at 1:9 molar ratio (26.25 μM:245 μM) and incubated at 37°C for 1 h at 500 rpm. The excess of cardiolipin were cleaned changing the buffer to 200 mM ammonium acetate using centrifugal filter units of 3K cut-off (Amicon Ultra, Millipore). Buffer was exchanged 3 times at 15°C at 13000g. The reaction was directly injected for MS analysis. Three technical replicates were measured. To check the behavior of cardiolipin and its fragmentation patterns in the different MS conditions applied, commercial CL(18:0)\textsubscript{4} has been used as a standard in all assays.

Generation of markerless \textit{ttg2} mutants in MDR \textit{P. aeruginosa} strains and complementations

Markerless \textit{P. aeruginosa} mutants were constructed using a modification of the pGPI-SceI/pDAI-SceI system (Fig. S13) originally developed for bacteria of the genus \textit{Burkholderia} and other MDR Gram-negative organisms49,69. The bacterial strains and plasmids of the pGPI-SceI/pDAI-SceI system were kindly donated by Uwe Mamat (Leibniz-Center for Medicine and Biosciences, Research Center Borstel, Borstel, Germany) with permission of Miguel A. Valvano (Center for Infection and Immunity, Queen's University, Belfast, UK). The pGPI-SceI-XCm plasmid48 was first modified to facilitate the generation of \textit{ttg2} mutants in MDR \textit{P. aeruginosa} strains. Plasmid modifications include replacement of the chloramphenicol resistance cassette by an erythromycin resistance cassette and deletion of a DNA region containing the Pc promoter found in \textit{P. aeruginosa} class 1 integrons (Text S1 and supplementary Table S6 for details). The sequence of the new suicide plasmid vector, pGPI-SceI-XErm, is available through GenBank under the accession number KY368390. For complementation in PA01, full \textit{ttg2} operon or the codifying region of the \textit{ttg2} gene were cloned into the broad-host-range cloning vector pBBR1MCS-5 or a variant thereof containing the arabinose promoter, respectively (Table S6). For complementation experiments in MDR strains, the cloning vector pBBR1MCS-5 was first modified to confer resistance to erythromycin (see details in Text S1). Sequence for the new cloning vector, pBBR1MCS-6 is available through GenBank under the accession number KY368389. Complemented strains were obtained by transforming mutant cells with the corresponding pBBR1MCS derivative plasmid. The expression of \textit{ttg2D} in mutant and complemented strains was verified by reverse transcription-PCR (RT-PCR) and quantitative real-time RT-PCR analysis (Text S1 and Fig. S13).

Outer membrane permeabilization assay
Fluorometric assessment of outer membrane permeabilization was done by the 1-N-phenylnaphthylamine (NPN) uptake assay as described by Loh et al.70 with modifications (Text S1). Since \textit{P. aeruginosa} PAO1 cells have proven to be poorly permeable to NPN9, either EDTA (0.2 mM) or colistin (10 μg ml-1) was added to cells to enhance uptake and fluorescence.

Susceptibility to antibiotics and membrane-damaging agents

Antimicrobial susceptibility to a range of antibiotics was tested by determination of the minimum inhibitory concentration (MIC) using the broth microdilution method or Etest (Biomerieux) strips, following the Clinical and Laboratory Standards Institute (CLSI) guidelines71, 72 and manufacturer’s instructions, respectively (see Text S1 for details). MIC differences higher than 2-fold were considered significant changes in antibiotic susceptibility. Low-level, basal resistance to a given antibiotic was defined as that of an organism lacking acquired mechanisms of resistance to that antibiotic and displaying a MIC above the common range for the susceptible population73. Clinical susceptibility breakpoints against \textit{Pseudomonas sp}. for selected antibiotics have been established by EUCAST74. Tolerance to organic solvents and SDS/EDTA was assessed using solvent overlaid-solid medium and MIC assays, respectively (Text S1).

Biofilm formation

Biofilm quantification in 96-well microtiter plate by the crystal violet assay was done as previously described75 with modifications (supplementary Text S1).

Bioinformatic analysis

Details are provided in the supplementary Text S1.

Declarations

Acknowledgements

This work has been supported by funding under the Seventh Research Framework Programme of the European Union (ref. HEALTH-F3-2009-223101) and the Spanish Ministry of Science, Innovation and Universities (ref. BIO2015-66674-R). The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication. We acknowledge the European Synchrotron Radiation Facility for provision of synchrotron radiation facilities and thank the staff of ID23-1 for assistance in using the beamline. Part of the mass spectrometry experiments were performed at UAB’s proteomics facility SePBioEs.

Contributions

DY, MDL, LC, OCS, AM, MFN and MV conducted the experiments; DY, MDL, LC, OCS, MV, IG and XD designed the experiments and participated in the analysis and interpretation of experimental data; DY, LC,
OCS and MDL wrote the paper; MV, IG and XD supervised research and revised the manuscript.

Competing interests

The authors declare no competing interests.

References

1. Breidenstein EB, de la Fuente-Nunez C, Hancock RE. Pseudomonas aeruginosa: all roads lead to resistance. Trends Microbiol 19, 419–426 (2011).
2. Karaiskos I, Giamarellou H. Multidrug-resistant and extensively drug-resistant Gram-negative pathogens: current and emerging therapeutic approaches. Expert Opin Pharmacother 15, 1351–1370 (2014).
3. Gomez MI, Prince A. Opportunistic infections in lung disease: Pseudomonas infections in cystic fibrosis. Curr Opin Pharmacol 7, 244–251 (2007).
4. Driscoll JA, Brody SL, Kollef MH. The epidemiology, pathogenesis and treatment of Pseudomonas aeruginosa infections. Drugs 67, 351–368 (2007).
5. Waters V, Smyth A. Cystic fibrosis microbiology: Advances in antimicrobial therapy. J Cyst Fibros, (2015).
6. Wagner S, et al. Novel Strategies for the Treatment of Pseudomonas aeruginosa Infections. J Med Chem 59, 5929–5969 (2016).
7. Sader HS, Farrell DJ, Flamm RK, Jones RN. Antimicrobial susceptibility of Gram-negative organisms isolated from patients hospitalised with pneumonia in US and European hospitals: results from the SENTRY Antimicrobial Surveillance Program, 2009–2012. Int J Antimicrob Agents 43, 328–334 (2014).
8. Nicas TI, Hancock RE. Pseudomonas aeruginosa outer membrane permeability: isolation of a porin protein F-deficient mutant. J Bacteriol 153, 281–285 (1983).
9. Krishnamoorthy G, Leus IV, Weeks JW, Wolloscheck D, Rybenkov VV, Zgurskaya HI. Synergy between Active Efflux and Outer Membrane Diffusion Defines Rules of Antibiotic Permeation into Gram-Negative Bacteria. MBio 8, (2017).
10. Strateva T, Yordanov D. Pseudomonas aeruginosa - a phenomenon of bacterial resistance. J Med Microbiol 58, 1133–1148 (2009).
11. Webber MA, Piddock LJ. The importance of efflux pumps in bacterial antibiotic resistance. J Antimicrob Chemother 51, 9–11 (2003).
12. Lyczak JB, Cannon CL, Pier GB. Lung infections associated with cystic fibrosis. Clin Microbiol Rev 15, 194–222 (2002).
13. Wiegand I, Marr AK, Breidenstein EB, Schurek KN, Taylor P, Hancock RE. Mutator genes giving rise to decreased antibiotic susceptibility in Pseudomonas aeruginosa. Antimicrob Agents Chemother 52, 3810–3813 (2008).
14. Tanimoto K, Tomita H, Fujimoto S, Okuzumi K, Ike Y. Fluoroquinolone enhances the mutation frequency for meropenem-selected carbapenem resistance in Pseudomonas aeruginosa, but use of the high-potency drug doripenem inhibits mutant formation. Antimicrob Agents Chemother **52**, 3795–3800 (2008).

15. Muller C, Plesiat P, Jeannot K. A two-component regulatory system interconnects resistance to polymyxins, aminoglycosides, fluoroquinolones, and beta-lactams in Pseudomonas aeruginosa. Antimicrob Agents Chemother **55**, 1211–1221 (2011).

16. Murray JL, Kwon T, Marcotte EM, Whiteley M. Intrinsic Antimicrobial Resistance Determinants in the Superbug Pseudomonas aeruginosa. MBio **6**, e01603-01615 (2015).

17. Moradali MF, Ghods S, Rehm BH. Pseudomonas aeruginosa Lifestyle: A Paradigm for Adaptation, Survival, and Persistence. Front Cell Infect Microbiol **7**, 39 (2017).

18. Conrad RS, Gilleland HE, Jr. Lipid alterations in cell envelopes of polymyxin-resistant Pseudomonas aeruginosa isolates. *J Bacteriol* **148**, 487–497 (1981).

19. Bishop RE. Emerging roles for anionic non-bilayer phospholipids in fortifying the outer membrane permeability barrier. *J Bacteriol* **196**, 3209–3213 (2014).

20. Malinverni JC, Silhavy TJ. An ABC transport system that maintains lipid asymmetry in the gram-negative outer membrane. *Proc Natl Acad Sci U S A* **106**, 8009–8014 (2009).

21. Roier S, *et al.* A novel mechanism for the biogenesis of outer membrane vesicles in Gram-negative bacteria. *Nat Commun* **7**, 10515 (2016).

22. Abellon-Ruiz J, *et al.* Structural basis for maintenance of bacterial outer membrane lipid asymmetry. *Nat Microbiol* **2**, 1616–1623 (2017).

23. Yeow J, *et al.* The architecture of the OmpC-MlaA complex sheds light on the maintenance of outer membrane lipid asymmetry in Escherichia coli. *J Biol Chem* **293**, 11325–11340 (2018).

24. Thong S, *et al.* Defining key roles for auxiliary proteins in an ABC transporter that maintains bacterial outer membrane lipid asymmetry. *eLife* **5**, (2016).

25. McDaniel C, *et al.* A Putative ABC Transporter Permease Is Necessary for Resistance to Acidified Nitrite and EDTA in Pseudomonas aeruginosa under Aerobic and Anaerobic Planktonic and Biofilm Conditions. *Frontiers in Microbiology* **7**, (2016).

26. Carpenter CD, *et al.* The Vps/VacJ ABC transporter is required for intercellular spread of Shigella flexneri. *Infect Immun* **82**, 660–669 (2014).

27. Ekiert DC, *et al.* Architectures of Lipid Transport Systems for the Bacterial Outer Membrane. *Cell* **169**, 273–285 e217 (2017).

28. Fernandez-Calvet A, *et al.* Modulation of Haemophilus influenzae interaction with hydrophobic molecules by the VacJ/MlaA lipoprotein impacts strongly on its interplay with the airways. *Sci Rep* **8**, 6872 (2018).

29. Bernier SP, Son S, Surette MG. The Mla Pathway Plays an Essential Role in the Intrinsic Resistance of Burkholderia cepacia Complex Species to Antimicrobials and Host Innate Components. *J Bacteriol*
200, (2018).
30. Kamischke C, et al. The Acinetobacter baumannii Mla system and glycerophospholipid transport to the outer membrane. *eLife* **8**, (2019).
31. Baarda BI, Zielke RA, Le Van A, Jerse AE, Sikora AE. Neisseria gonorrhoeae MlaA influences gonococcal virulence and membrane vesicle production. *PLoS Pathog* **15**, e1007385 (2019).
32. Hughes GW, et al. Evidence for phospholipid export from the bacterial inner membrane by the Mla ABC transport system. *Nat Microbiol* **4**, 1692–1705 (2019).
33. Chen L, Duan KM. A PhoPQ-Regulated ABC Transporter System Exports Tetracycline in *Pseudomonas aeruginosa*. *Antimicrob Agents Ch* **60**, 3016–3024 (2016).
34. Calero P, Jensen SI, Bojanovic K, Lennen RM, Koza A, Nielsen AT. Genome-wide identification of tolerance mechanisms toward p-coumaric acid in *Pseudomonas putida*. *Biotechnol Bioeng* **115**, 762–774 (2018).
35. Kim K, Lee S, Lee K, Lim D. Isolation and characterization of toluene-sensitive mutants from the toluene-resistant bacterium *Pseudomonas putida* GM73. *J Bacteriol* **180**, 3692–3696 (1998).
36. Munguia J, et al. The Mla pathway is critical for *Pseudomonas aeruginosa* resistance to outer membrane permeabilization and host innate immune clearance. *J Mol Med (Berl)* **95**, 1127–1136 (2017).
37. Krebs WG, Alexandrov V, Wilson CA, Echols N, Yu H, Gerstein M. Normal mode analysis of macromolecular motions in a database framework: developing mode concentration as a useful classifying statistic. *Proteins* **48**, 682–695 (2002).
38. Suhre K, Sanejouand Y-H. ElNémo: a normal mode web server for protein movement analysis and the generation of templates for molecular replacement. *Nucleic Acids Research* **32**, W610-W614 (2004).
39. Tang WK, et al. Structures of AAA protein translocase Bcs1 suggest translocation mechanism of a folded protein. *Nat Struct Mol Biol* **27**, 202–209 (2020).
40. Karlberg T, et al. Crystal structure of the ATPase domain of the human AAA + protein paraplegin/SPG7. *PLoS One* **4**, e6975 (2009).
41. Fukami-Kobayashi K, Tateno Y, Nishikawa K. Domain dislocation: a change of core structure in periplasmic binding proteins in their evolutionary history. *Journal of Molecular Biology* **286**, 279–290 (1999).
42. Scheepers GH, Lycklama A Nijeholt JA, Poolman B. An updated structural classification of substrate-binding proteins. *FEBS letters* **590**, 4393–4401 (2016).
43. Nick Pace C, Martin Scholtz J. A Helix Propensity Scale Based on Experimental Studies of Peptides and Proteins. *Biophysical Journal* **75**, 422–427 (1998).
44. Oursel D, Loutelier-Bourhis C, Orange N, Chevalier S, Norris V, Lange CM. Lipid composition of membranes of *Escherichia coli* by liquid chromatography/tandem mass spectrometry using negative electrospray ionization. *Rapid Commun Mass Sp* **21**, 1721–1728 (2007).
45. Gidden J, Denson J, Liyanage R, Ivey DM, Lay JO. Lipid compositions in Escherichia coli and Bacillus subtilis during growth as determined by MALDI-TOF and TOF/TOF mass spectrometry. *Int J Mass Spectrom* **283**, 178–184 (2009).

46. Hsu FF, Turk J. Charge-driven fragmentation processes in diacyl glycerophosphatidic acids upon low-energy collisional activation. A mechanistic proposal. *J Am Soc Mass Spectrom* **11**, 797–803 (2000).

47. Groenewold MK, *et al.* A phosphatidic acid-binding protein is important for lipid homeostasis and adaptation to anaerobic biofilm conditions in Pseudomonas aeruginosa. *Biochem J* **475**, 1885–1907 (2018).

48. Hamad MA, Skeldon AM, Valvano MA. Construction of Aminoglycoside-Sensitive Burkholderia cenocepacia Strains for Use in Studies of Intracellular Bacteria with the Gentamicin Protection Assay. *Appl Environ Microb* **76**, 3170–3176 (2010).

49. Aubert DF, Hamad MA, Valvano MA. A Markerless Deletion Method for Genetic Manipulation of Burkholderia cenocepacia and Other Multidrug-Resistant Gram-Negative Bacteria. *Host-Bacteria Interactions: Methods and Protocols* **1197**, 311–327 (2014).

50. Chua SL, *et al.* Selective labelling and eradication of antibiotic-tolerant bacterial populations in Pseudomonas aeruginosa biofilms. *Nat Commun* **7**, 10750 (2016).

51. Perez-Martinez I, Haas D. Azithromycin inhibits expression of the GacA-dependent small RNAs RsmY and RsmZ in Pseudomonas aeruginosa. *Antimicrob Agents Chemother* **55**, 3399–3405 (2011).

52. Epand RM, Rotem S, Mor A, Berno B, Epand RF. Bacterial membranes as predictors of antimicrobial potency. *J Am Chem Soc* **130**, 14346–14352 (2008).

53. Epand RF, Savage PB, Epand RM. Bacterial lipid composition and the antimicrobial efficacy of cationic steroid compounds (Ceragenins). *Biochim Biophys Acta* **1768**, 2500–2509 (2007).

54. Dong H, *et al.* Structural insights into cardiolipin transfer from the Inner membrane to the outer membrane by PbgA in Gram-negative bacteria. *Sci Rep* **6**, 30815 (2016).

55. Raetz CR, Kantor GD, Nishijima M, Newman KF. Cardiolipin accumulation in the inner and outer membranes of Escherichia coli mutants defective in phosphatidylserine synthetase. *J Bacteriol* **139**, 544–551 (1979).

56. Ercan B, Low WY, Liu X, Chng SS. Characterization of Interactions and Phospholipid Transfer between Substrate Binding Proteins of the OmpC-Mla System. *Biochemistry*, (2018).

57. Saurin W, Hofnung M, Dassa E. Getting in or out: early segregation between importers and exporters in the evolution of ATP-binding cassette (ABC) transporters. *J Mol Evol* **48**, 22–41 (1999).

58. Casali N, Riley LW. A phylogenomic analysis of the Actinomycetales mce operons. *BMC Genomics* **8**, 60 (2007).

59. ter Beek J, Guskov A, Slotboom D.J. Structural diversity of ABC transporters. *The Journal of General Physiology* **143**, 419–435 (2014).

60. Benning C. A role for lipid trafficking in chloroplast biogenesis. *Prog Lipid Res* **47**, 381–389 (2008).
61. Qian H, Zhao X, Cao P, Lei J, Yan N, Gong X. Structure of the Human Lipid Exporter ABCA1. *Cell* **169**, 1228–1239 e1210 (2017).
62. Wong LH, Copic A, Levine TP. Advances on the Transfer of Lipids by Lipid Transfer Proteins. *Trends Biochem Sci* **42**, 516–530 (2017).
63. Chong ZS, Woo WF, Chng SS. Osmoporin OmpC forms a complex with MlaA to maintain outer membrane lipid asymmetry in Escherichia coli. *Mol Microbiol* **98**, 1133–1146 (2015).
64. Jeukens J, Kukavica-Ibrulj I, Emond-Rheault JG, Freschi L, Levesque RC. Comparative genomics of a drug-resistant *Pseudomonas aeruginosa* panel and the challenges of antimicrobial resistance prediction from genomes. *FEMS Microbiol Lett* **364**, (2017).
65. Delcour AH. Outer membrane permeability and antibiotic resistance. *Biochim Biophys Acta* **1794**, 808–816 (2009).
66. Bernal P, Munoz-Rojas J, Hurtado A, Ramos JL, Segura A. A *Pseudomonas putida* cardiolipin synthesis mutant exhibits increased sensitivity to drugs related to transport functionality. *Environ Microbiol* **9**, 1135–1145 (2007).
67. Imperi F, *et al.* Analysis of the periplasmic proteome of *Pseudomonas aeruginosa*, a metabolically versatile opportunistic pathogen. *Proteomics* **9**, 1901–1915 (2009).
68. Angelini R, *et al.* Lipidomics of intact mitochondria by MALDI-TOF/MS. *J Lipid Res* **53**, 1417–1425 (2012).
69. Flannagan RS, Linn T, Valvano MA. A system for the construction of targeted unmarked gene deletions in the genus *Burkholderia*. *Environmental Microbiology* **10**, 1652–1660 (2008).
70. Loh B, Grant C, Hancock RE. Use of the fluorescent probe 1-N-phenyl-naphthylamine to study the interactions of aminoglycoside antibiotics with the outer membrane of *Pseudomonas aeruginosa*. *Antimicrob Agents Chemother* **26**, 546–551 (1984).
71. CLSI. Performance standards for antimicrobial susceptibility testing; 27th edition. CLSI M100-S27. Clinical and Laboratory Standards Institute, Wayne, PA., (2017).
72. CLSI. Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically; approved standard. Ninth Edition. CLSI M07-A9. Clinical and Laboratory Standards Institute, Wayne, PA., (2012).
73. Baquero F. Low-level antibacterial resistance: a gateway to clinical resistance. *Drug Resist Updat* **4**, 93–105 (2001).
74. EUCAST. European Committee on Antimicrobial Susceptibility Testing. Breakpoint tables for interpretation of MICs and zone diameters: Version 9.0 [Online]. (2019).
75. O’Toole GA, Pratt LA, Watnick PI, Newman DK, Weaver VB, Kolter R. Genetic approaches to study of biofilms. *Method Enzymol* **310**, 91–109 (1999).

Supplementary Materials

Text S1 with supplementary methods
Text S2 with supplementary discussion

Tables S1 – S6

Figures S1 – S13

Supplementary references