Peripheral Nerve Stimulation of the Saphenous and Superior Lateral Genicular Nerves for Chronic Pain After Knee Surgery

Ahish Chitneni1, Amnon A. Berger2, Waire Orhurhu1, Alan D. Kaye3, Jamal Hasoon5

INTRODUCTION

Total knee arthroplasty (TKA) is one of the most commonly conducted surgeries in the United States. Typically, TKA is conducted to relieve pain from patients with long-standing osteoarthritis. Postoperative knee pain is a common issue after TKA. For some patients, postoperative knee pain exceeds the normal 3–6-month phase and becomes chronic. Pain is typically managed with the use of medications and physical therapy. In this case, we describe the use of peripheral nerve stimulation (PNS) of the saphenous and superior lateral genicular nerves for a patient experiencing chronic postoperative knee pain using SPRINT PNS technology.

CASE PRESENTATION

The patient was a 73-year-old female with a history of chronic knee pain after TKR on her left knee 10 months prior. The patient noted that her pain was burning and stabbing in nature. She reported a pain score of 10/10 intensity on numerical rating scale. She tried conservative management with physical therapy, acetaminophen, nonsteroidal

Keywords: tka, knee pain, chronic pain, peripheral nerve stimulation

https://doi.org/10.52965/001c.24435
anti-inflammatories, membrane stabilizers, and opioids. Even with opioid therapy the patient averaged a pain score of 8/10 intensity and reported significant pain and impaired functionality. The patient was offered PNS utilizing the SPRINT PNS system and agreed to pursue this therapy.

The patient was positioned supine, and the left leg was prepped and draped in a sterile fashion. Utilizing a 12 MHz linear ultrasound transducer, the saphenous nerve was identified and marked. The saphenous nerve is a sensory branch of the femoral nerve that supplies sensory innervation over the medial knee as well as infrapatellar branches to the knee joint. The PNS lead was placed near the saphenous nerve and secured after satisfactory paresthesia testing. The superior lateral genicular nerve was then targeted utilizing fluoroscopy. A lateral fluoroscopic view was obtained, and the introducer needle was advanced into the region of the superior lateral genicular nerve. The lead was repositioned until a satisfactory paresthesia was reported over the lateral aspect of the knee. The leads were then secured without complications.

The patient reported significant pain relief 3 days into her trial. She noted improvement in activity and functionality as she was now able to do outdoor activities and do her normal activities of daily living without having to take medications. She stated her pain was improved 80% after 1 month of therapy. After 2 months of therapy the patient presented for her follow up and reported 90% improvement in her pain scores. Additionally, she had discontinued all pain medications. Her leads were subsequently removed without complications. The patient has continued to report significant improvement in pain and functionality 2 months after lead removal and is still off all pain medications.

DISCUSSION

Given the traditional use of opioids and medication management for treatment of chronic post-operative knee pain, there exists a need for research on the use of alternative methods for pain relief in patients who undergo TKA. Our literature search led to several research studies that used PNS for pain relief postoperatively after a TKA. One study conducted by Ilfeld et al. observed the use of percutaneous peripheral nerve stimulation for the treatment of postoperative pain following total knee arthroplasty. In the study, seven subjects underwent treatment with ultrasound guided PNS postoperatively with stimulation delivered to the femoral and sciatic nerves. Results from the study showed that in six of the seven subjects, the average daily pain scores the first two weeks was rated as ≤4 and a large majority of the subjects discontinued opioid use within the first week postoperatively. Given the positive results from the study in reducing pain and opioid usage, the use of PNS should be strongly considered early in the postoperative course.

Although not conducted after a TKA, another study by Ilfred et al. observed the use of PNS of the femoral nerve for postoperative analgesia following anterior cruciate ligament (ACL) reconstruction. In this study, patients were randomized to receive PNS or sham for 5 minutes. Overall, results showed that the use of PNS was able to provide adequate pain relief and reduced opioid usage in patients undergoing ACL reconstruction. The importance of this study is to demonstrate the utility of PNS for a variety of knee surgeries and should not be limited to patients undergoing TKA.

CONCLUSION

Although postoperative knee pain after TKA can be typical in the short term, many patients experience chronic knee pain after surgical intervention. Chronic knee pain postoperatively has been traditionally managed medically with opioids or other pain medications. Given the prevalence of postoperative chronic knee pain, alternative non-opioid interventions should be utilized earlier in the treatment algorithms to provide patients with an alternative form of pain management. Our case demonstrates the utility of peripheral nerve stimulation targeting the superior lateral genicular nerve and the saphenous nerve for a patient with chronic postoperative knee pain after TKA. We believe that PNS is a viable option for postoperative chronic pain complaints and should be considered before resorting to opioid therapy for chronic knee pain after surgery.

Submitted: May 01, 2021 EDT, Accepted: May 21, 2021 EDT
REFERENCES

1. Kremers HM, Larson DR, Crowson CS, et al. Prevalence of total hip and knee replacement in the United States. *J Bone Jt Surg Am.* 2015;97:1386-1397. doi:10.2106/jbjs.n.01141

2. Sarzi-Puttini P, Cimmino MA, Scarpa R, et al. Osteoarthritis: an overview of the disease and its treatment strategies. *Semin Arthritis Rheum.* 2005;35(1 Suppl 1):1-10. doi:10.1016/j.semarthrit.2005.01.013

3. Bellamy N, Campbell J, Robinson V, Gee T, Bourne R, Wells G. Intraarticular corticosteroid for treatment of osteoarthritis of the knee. *Cochrane Database Syst Rev.* April 2006:CD005328. doi:10.1002/14651858.cd005328.pub2

4. Hsu H, Siwiec RM. Knee Arthroplasty. In: *StatPearls.* Treasure Island, FL: StatPearls Publishing; 2020. http://www.ncbi.nlm.nih.gov/books/NBK507914/. Accessed January 2021.

5. Wylde V, Beswick A, Bruce J, Blom A, Howells N, Gooberman-Hill R. Chronic pain after total knee arthroplasty. *EJORT Open Rev.* 2018;3(8):461-470. doi:10.1302/2058-5241.3.180004

6. Lenguerrand E, Wylde V, Gooberman-Hill R, et al. Trajectories of Pain and Function after Primary Hip and Knee Arthroplasty: The ADAPT Cohort Study. *PLoS ONE.* 2016;11(2):e0149306. doi:10.1371/journal.pone.0149306

7. Sahoo RK, Krishna C, Kumar M, Nair AS. Genicular nerve block for postoperative pain relief after total knee replacement. *Saud J Anaesth.* 2020;14:255-257. doi:10.4103/sja.sja_611_19

8. Hasoon J, Chitneni A, Urits I, Viswanath O, Kaye AD. Peripheral Stimulation of the Saphenous and Superior Lateral Genicular Nerves for Chronic Knee Pain. *Cureus.* 2021;13(4):e14753. doi:10.7759/cureus.14753

9. Ilfeld BM, Ball ST, Gabriel RA, et al. A feasibility study of percutaneous peripheral nerve stimulation for the treatment of postoperative pain following total knee arthroplasty. *Neuromodulation.* 2019;22:653-660. doi:10.1111/ner.12790

10. Ilfeld BM, Said ET, Finneran JJ 4th, et al. Ultrasound - Guided Percutaneous Peripheral Nerve Stimulation: Neuromodulation of the Femoral Nerve for Postoperative Analgesia Following Ambulatory Anterior Cruciate Ligament Reconstruction: A Proof of Concept Study. *Neuromodulation.* 2019;22(5):621-629. doi:10.1111/ner.12851