Session: 58. HAI: The Environment
Thursday, October 5, 2017, 12:30 PM

Background. Carbapenem-resistant Enterobacteriaceae (CRE), conferring broad resistance to most β-lactam antibiotics, are involved in healthcare-associated outbreaks via medical equipment and environmental surfaces. Colistin-resistant Enterobacteriaceae carrying the mcr-1 are currently a global health concern since colistin is often a last-line antibiotics used to treat multidrug-resistant organisms, including CRE. However, susceptibility to germsides (e.g., disinfectants, antiseptics) for these pathogens is poorly understood. We assessed efficacy of various germsides against carbapenem/colistin-resistant Enterobacteriaceae.

Methods. We tested 21 different germsides with 2 dilutions of sodium hypochlorite against 3 species of Klebsiella pneumoniae carbapenemase (KPC)-producing Enterobacteriaceae and Escherichia coli carrying mcr-1. The disc-based quantitative carrier test method was used to assess the bactericidal activity of chemical germsides since it is believed to produce results similar to those actually encountered in healthcare settings compared with suspension testing. An inoculum containing approximately 10^8 test organisms with 5% fetal calf serum (FCS) was placed on each disk. The dried inoculum was exposed to the test germside for 1 minute exposure time at room temperature then neutralized. Compared with mean carrier control counts, the log_{10} reduction of the test organism for each germside was calculated.

Results. Figure 1 shows efficacy of germsides with active ingredient, product name, and classification against test organisms. Overall, most germsides reached at least 3-log_{10} reduction (20/22 [91%] for KPC. K. pneumoniae, 18/22 [82%] for KPC. E. coli, 19/22 [86%] for MCR-1 E. coli). Furthermore, all germsides, except for two products (1% chlorhexidine gluconate plus 61% ethyl alcohol, 3% hydrogen peroxide) against MCR-1 E. coli, demonstrated at least 2-log_{10} reduction for these pathogens even in challenging test conditions (5% FCS and 1 minute exposure time).

Conclusion. Our study suggests that germsides commonly used in healthcare facilities may be effective against carbapenem/colistin-resistant Enterobacteriaceae when used appropriately.

Disclosures. D. J. Weber, PDi: Consultant, Consulting fee.

488. Does Cleaning Time Matter? A Study to Determine the Effect of Unlimited vs. Limited Time for Terminal Disinfection
Chetan Madhukar, MD, MPH; John Coppen, MPH; Frank Villamarina, MPH; Marjory Williams, PhD; Laurel Copeland, PhD; and John Zeber, PhD. Infectious Disease Division, Central Texas Veterans Health Care System, Temple, Texas, Department of Medicine, Texas AM University Health Science Center, College of Medicine, Bryan, Texas, Research, Central Texas Veterans Healthcare System, Temple, Texas, Texas A&M University Health Science Center, College of Medicine, Bryan, Texas, Research, Central Texas Veterans Healthcare System, Temple, Texas, Texas A&M University Health Science Center, College of Medicine, Bryan, Texas, Research, Central Texas Veterans Healthcare System, Temple, Texas, Texas A&M University Health Science Center, College of Medicine, Bryan, Texas, Research, Central Texas Veterans Healthcare System, Temple, Texas, Texas A&M University Health Science Center, College of Medicine, Bryan, Texas, Research, Central Texas Veterans Healthcare System, Temple, Texas

Session: 58. HAI: The Environment
Thursday, October 5, 2017, 12:30 PM

Background. Although the national target for the amount of time dedicated to cleaning a hospital room following patient discharge is 45 minutes, there is no conclusive evidence that cleaning duration is related to the quality of clean in terms of microbial load. Using data from a larger study on hospital room disinfection we examined the relationship between manual cleaning time and microbial burden as assessed by aerobic bacterial colony (ABC) count on high-touch surfaces.

Methods. Six hundred pre-clean and post-clean samples were taken from 5 different high-touch surfaces (bedrail, tray table, call button, toilet seat, and handrail) in 44 different patient rooms. Three cleaning time categories were studied: Time limited to 25 minutes; unlimited cleaning time where the housekeeper took <45 minutes; and unlimited cleaning time where the housekeeper took ≥45 minutes. The relationship between cleaning time category and post-manual clean ABC count was assessed using a conditional inference regression tree that was modeled for the outcome variable ABC count and the predictors cleaning time category and other potential confounders.
Results. There was no difference in ABC count for hydrogen peroxide and sodium hypochlorite 10% between the different categories of cleaning time. For quaternary ammonium compound and soap and water, the limited cleaning time category showed lower ABC counts than the unlimited time categories for samples taken from isolation rooms, P = 0.009. For 150 soap and water samples, 61 showed an increase in ABC count from the pre-clean sample to post-clean sample.

Conclusion. Cleaning time was not related to post-clean ABC count for sodium hypochlorite 10% or Hydrogen Peroxide. Limited cleaning time was more effective in lowering ABC counts for quaternary ammonium compound and for soap and water. For soap and water, post-clean ABC counts were actually higher than pre-clean ABC counts for numerous samples. This may be due to the spreading organisms across the surface while cleaning, without adequate disinfection.

Disclosures. C. Jinadatha, Xenex Healthcare Services: CRADA, Research support

Methods. We performed a cohort study of HCWs in critical care areas to assess factors associated with bacterial contamination of scrubs. Participants were given one set of new, study-issued scrubs along with a randomized schedule of wear at the start of the study. During an 8-month study period, each scrub set was sampled eight times, on random days and at least 4 hours into a shift. Sampling of scrubs was with pre-medicated cotton swabs in a W-shape over the front of the scrub top and along both thighs, as well as RODAC agar plate stamped over the top near the belly button. A brief survey tool was used to identify risk factors for contamination at the time of sampling. Total colony count and the presence of pre-specified, pathogenic bacteria (Staphylococcus aureus, Enterococci or Gram-negative bacteria) were assessed. Generalized estimating equation (GEE) was used to identify factors associated with bacterial contamination.

Results. A total of 720 scrub samples were obtained from 90 HCW; 30% (217/720) of scrubs were contaminated with pathogenic bacteria. The mean (standard deviation) log colony count of the sampled scrubs was 3.9 (1.1). On sampling days, HCWs reported on average, primary care of 2.4 patients and interaction with 5.4 patients. Multivariate analysis showed that providing care for patients with wounds was associated with scrub contamination of pathogenic bacteria (OR 1.75, 95% CI: 1.17–2.62). The average log colony count was higher among HCWs who gave a patient a bath (log CFU difference = 0.21, P = 0.005). Bacterial contamination was lower among HCWs assigned to care for at least one patient on Contact Precautions (CP) (log CFU difference = 0.28, P < 0.01).

Conclusion. HCW attire is frequently contaminated with pathogenic bacteria. Contamination is associated with providing care for patients with wounds and giving a bath; while contamination is lower when caring for patients on CP. The later finding supports the use of CP to decrease potential rate of transmission.

Disclosures. All authors: No reported disclosures.

491. Likelihood of Environmental Contamination of Patient Rooms in Six Acute Care Facilities based on Facility, Unit-Type, and Precaution Status

Windy Tanner, PhD; Yue Zhang, PhD; Molly Leecaster, PhD; Kristina Stratford, BS; Jeanmarie Mayer, MD, PhD; Heba Allmehdi, MD; Jennifer Mckinley, B.S.; Anthony W. Mcfarland, BSMT/SAC/SM; GI; Srilatha Koganti, MD; Christina Piedrahita, BS; Curtis J. Donskey, MD; John A. Jernigan, MD, MS; Judith Noble-Wang, PhD; Sujan Reddy, MD; Laura J. Rose, MS; Rachel Slatyon, PhD, MPH; Lauren Barko, BS; Emma Ide, BS; Tyler Wipperfurth, BS; Nada Saldar, MD, PhD, FHSA; Maria Hughes, MPH, FHSA; Colleen Macke, BS; Patti Roman, MA; Sarah Kreim, PhD, RN; Catherine Loc-Carrillo, PhD and Matthew Samore, MD, FHSA.

Division of Epidemiology, University of Utah School of Medicine, Salt Lake City, Utah, ‘TDEAS Center, Salt Lake City VA Health Care System, Salt Lake City, Utah, ‘Research Service, Louis Stokes Cleveland VA Medical Center, Cleveland, Ohio, ‘Division of Healthcare Quality Promotion, Centers for Disease Control and Prevention, Atlanta, Georgia, ‘Infectious Disease, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin, ‘VA Ann Arbor Healthcare System, Ann Arbor, Michigan, ‘University of Michigan Medical School, Ann Arbor, Michigan

Session: 58. HAI: The Environment Thursday, October 5, 2017: 12:30 PM

Background. Environmental contamination may play a critical role in ARO (antibiotic-resistant organism) transmission. The objective of this study was to estimate facility-unit contamination in 6 healthcare facilities and determine if differences existed among facilities, unit types, and room contact precautions status.

Methods. In each facility, two units with patients with a recent positive test of a target ARO (MRSA, VRE, or carbapenem-resistant Gram-negatives in the previous 6 months or C. difficile in the previous 30 days) were randomly selected every 2 weeks for 8 cycles. Within units, surfaces were sampled in all contact precautions rooms of patients with a target ARO, 1–2 rooms selected non-target ARO rooms per contact precautions room, and the nursing station. Multilevel logistic regression was used to model the association of facility, unit type and room type with risk of contamination. The inverse of sampling probability was used as weights in the regression.

Results. A total of 196 ARO contact precautions rooms and 221 non-precautions rooms were sampled from 24 units (9 ICUs; 13 acute care medicine/surgical units; 2 transplant units) totaling 1,484 samples. Of 417 rooms sampled, 23% were positive for one or more of the target AROs. Fourteen percent of non-precautions rooms were positive for target ARO, and 17% of ARO precautions rooms were positive for AROs other than the known target ARO. In general, prevalence of environmental ARO contamination did not differ between facilities sampled. Compared with ICUs, odds of contamination on transplant and acute care units were 5.86 and 3.85 times higher, respectively. In non-precautions rooms and nursing stations were significantly less likely to be contaminated with AROs compared with contact precautions rooms (OR = 0.24, P < 0.001) and (OR = 0.34, P = 0.009), respectively.

Conclusion. Detection of target AROs in non-precautions rooms and at nursing stations suggests colonized patients may be going undetected, cleaning is not sufficiently removing contamination from prior ARO patients, or AROs are being transferred from infected patients to other locations within the unit. Additional intensive sampling may further illuminate priority areas for interventions within acute care facilities.

Disclosures. All authors: No reported disclosures.