INFINITE CLASS FIELD TOWERS OF NUMBER FIELDS OF PRIME POWER DISCRIMINANT

by

Farshid Hajir, Christian Maire, Ravi Ramakrishna

Abstract. — For every prime number p, we show the existence of a solvable number field L ramified only at $\{p, \infty\}$ whose p-Hilbert class field tower is infinite.

For a number field L of degree n over \mathbb{Q}, the root discriminant is defined to be $D_L^{1/n}$ where D_L is the absolute value of the discriminant of L. Given a finite set S of places of \mathbb{Q}, it is an old question as to whether there is an infinite sequence of number fields unramified outside S with bounded root discriminant. This question is related to the constants of Martinet [8] and Odlyzko’s bounds [10]. Since the root discriminant is constant in unramified extensions, an approach to answering the previous question in the positive is to find a number field L (of finite degree) unramified outside S having an infinite class field tower. In the case of K/\mathbb{Q} quadratic, it is a classical result of Golod and Shafarevich that if K/\mathbb{Q} is ramified at at least 8 places, then K has an infinite class field tower. On the other hand, if p is a prime, and $S = \{p, \infty\}$, the question becomes whether there exist number fields with p-power discriminant having an infinite unramified extension. Schmitals [11] and Schoof [12] produced a few isolated examples of this type. See also [3], [7], etc. For $p \in \{2, 3, 5\}$, Hoelscher [4] announced the existence of number fields unramified outside $\{p, \infty\}$ and having an infinite Hilbert class field tower. Here we prove:

Theorem. — For every prime number p, there exists a solvable extension L/\mathbb{Q}, ramified only at $\{p, \infty\}$, having an infinite Hilbert p-class field tower. Consequently, there exists an infinite nested sequence of number fields of p-power discriminant with bounded root discriminant.

Our proof is based on the idea of cutting of wild towers introduced in [2]; in particular it does not involve the usual technique of genus theory. For the more refined question where S consists of a single prime number p (i.e. if we focus our attention on totally real fields only), we do not know whether for every prime p, there is a totally real number field of p-power discriminant having an infinite Hilbert class field tower. In [12, Corollary 4.4] it is shown that $\mathbb{Q}(\sqrt{39345017})$ (which is ramified only at the prime 39345017) has infinite Hilbert class field tower. In [13], Shanks studied primes of the form $p = a^2 + 3a + 9$

We all thank Mathematisches Forschungsinstitut Oberwolfach for sponsoring a “Research in Pairs” stay during which this work was done. The second author was partially supported by the ANR project FLAIR (ANR-17-CE40-0012) and by the EIPHI Graduate School (ANR-17-EURE-0002). The third author was supported by Simons collaboration grant 524863.
and the corresponding totally real cubic subfields $K \subset \mathbb{Q}(\mu_p)$ and showed the minimal polynomials of K are $x^3 - ax^2 - (a + 3)x - 1$. Taking $a = 17279$ so $p = 298615687$, one can compute that the 2-part of the class group of K has rank 6. It is not hard to see, using the Golod-Shafarevich criterion, that K has infinite 2-Hilbert class field tower. Thus some examples exist in the totally real case.

1. The results we need

Let p be a prime number. Let K/\mathbb{Q} be a finite Galois extension. Assume $\mu_p \subset K$ and moreover that K is totally imaginary when $p = 2$. For a prime \mathfrak{p} of K dividing p denote by e (resp. f) the ramification index (resp. the residue degree) of \mathfrak{p} in K/\mathbb{Q}.

1.1. On the group G_S. — Denote by S the set of places of K above p, and consider K_S the maximal pro-p extension of K unramified outside S; put $G_S = \text{Gal}(K_S/K)$. Let $g = |S|$ be the number of places of K above p.

Let h'_K be the S-class number of K. By class field theory, h'_K is equal to $[K' : K]$ where K'/K is the maximal abelian of K unramified everywhere in which all places of S split completely. The Kummer radical of the p-elementary subextension $K'(p)/K$ of K'/K is

$$
V_S := \{x \in K^\times \mid x\mathcal{O}_K = \mathfrak{p}^v, x \in K_v^\times, \forall v \in S\}.
$$

In particular $p \nmid h'_K$ if and only if $V_S/K^\times p$ is trivial.

By work of Koch and Shafarevich the pro-p group G_S is finitely presented. More precisely, in our situation one has:

Theorem. — Let K/\mathbb{Q} be a totally imaginary Galois extension containing μ_p. Let $S = \{p, \infty\}$. Then

$$\
dim H^1(G_S, \mathbb{F}_p) = \frac{efg}{2} + 1 + \dim H^2(G_S, \mathbb{F}_p)
$$

and

$$\
dim H^2(G_S, \mathbb{F}_p) = g - 1 + \dim V_S/K^\times p.
$$

Proof. — This is well-known, see for example [9, Corollary 8.7.5 and Theorem 10.7.3]. □

We immediately have:

Corollary 1.1. — If $p \nmid h'_K$ then $\dim H^1(G_S, \mathbb{F}_p) = g(\frac{ef}{2} + 1)$ and $\dim H^2(G_S, \mathbb{F}_p) = g - 1$.

1.2. The cutting towers strategy. —

1.2.1. The Golod-Shafarevich Theorem. — Let G be a finitely generated pro-p group. Consider a minimal presentation $1 \rightarrow R \rightarrow F \xrightarrow{\varphi} G$ of G, where F is a free pro-p group. Set $d = d(G) = d(F)$, the number of generators of G and F. Suppose that $R = \langle \rho_1, \cdots, \rho_r \rangle^{\text{Norm}}$ is generated as normal subgroup of F by a finite set of relations ρ_i. We recall the depth function ω on F. See [6, Appendix] or [5] for more details. The augmentation ideal I of $F[[G]]$ is, by definition, generated by the set of elements $\{g - e\}_{g \in G}$. Then for $e \neq g \in F$, define $\omega(g) = \max\{g - e \in I^k\}$; put $\omega(0) = \infty$. It is not difficult to see that $\omega([g, g']) \geq 2$ and that $\omega(g^k) \geq p^k$ for every $g, g' \in G$ and $k \in \mathbb{Z}_{>0}$. Observe also that as the presentation φ is minimal, $\omega(\rho_i) \geq 2$ for all the relations ρ_i.

2
The Golod-Shafarevich polynomial associated to the presentation φ of G is the polynomial $P_G(t) = 1 - dt + \sum t^{\omega(\rho_i)}$.

Theorem (Golod-Shafarevich, Vinberg [14]). — If G is finite then $P_G(t) > 0$ for all $t \in [0, 1[$.

Of course if we have no information about the ρ_i’s we may take $1 - dt + rt^2$ (where $r = \dim H^2(G, \mathbb{F}_p)$) as Golod-Shafarevich polynomial for G: if $1 - dt + rt^2$ is negative at $t_0 \in [0, 1[,$ then $P_G(t_0) < 0$ and G is infinite.

We can also define a depth function ω_G on G associated to its augmentation ideal. Then:

Proposition 1.2. — For every $g \in G$, one has

$$\omega_G(g) = \max \{ \omega(y), \varphi(y) = g \}.$$

Proof. — See [6, Appendix 3, Theorem 3.5].

We now study quotients Γ of G such that $d(G) = d(\Gamma)$. In this case, the initial minimal presentation of G induces a minimal presentation of Γ

$$1 \longrightarrow R \longrightarrow F \overset{\varphi}{\longrightarrow} G \longrightarrow 1.$$

Suppose that $\Gamma = G/\langle x_1, \ldots, x_m \rangle^{Norm}$. Here $\langle x_1, \ldots, x_m \rangle^{Norm}$ is the normal subgroup of G generated by the x_i’s. Lift the x_i’s to $y_i \in F$ such that $\omega_G(x_i) = \omega(y_i)$ for each i. Hence, $\Gamma = F/R'$, where $R' = R\langle y_1, \ldots, y_m \rangle^{Norm}$. In particular, if $R = \langle \rho_1, \ldots, \rho_r \rangle^{Norm}$, then $R' = \langle \rho_1, \ldots, \rho_r, y_1, \ldots, y_m \rangle^{Norm}$.

If we have no information about the ρ_i’s, we can take $P_\Gamma(t) = 1 - dt + rt^2 + \sum t^{\omega(y_i)}$ as Golod-Shafarevich polynomial for Γ.

1.2.2. Cutting of G_S. — We want to consider some special quotients Γ of G_S, this is what we call “cutting wild towers”.

Each place $v \in S$ corresponds to some extension K_v/Q_p (in fact these fields are isomorphic as K/Q is Galois) of degree ef. Then, as $\mu_v \subset K_v$, the \mathbb{F}_p-vector space K_v^s/K_v^p has dimension $ef + 2$, and local class field theory implies the Galois group of the maximal pro-p extension of K_v is generated by $ef + 2$ elements. Thus the decomposition subgroup G_v of v in K_S/K is generated by at most $ef + 2$ elements $z_{i,v}$. Consider now the commutators $[z_{i,v}, z_{k,v}]$ of all these elements; there are at most $\binom{ef+2}{2}$ such elements. Now we cut G_S by $\{[z_{i,v}, z_{k,v}], i, k; v \in S\}^{Norm}$, and denote by Γ the corresponding quotient. As $\omega_{G_S}([z_{i,v}, z_{k,v}]) \geq 2$, one can take $P_\Gamma = 1 - dt + rt^2 + g(ef+2)t^2$ as Golod-Shafarevich polynomial for Γ; here $d = \dim H^1(G_S, \mathbb{F}_p)$ and $r = \dim H^2(G_S, \mathbb{F}_p)$. This quotient Γ of G_S corresponds to the maximal subextension K_{S}^{loc-ab}/K of K_S/K locally abelian everywhere. Observe that K_{S}^{loc-ab}/K contains the compositum of all \mathbb{Z}_p-extensions.

Suppose that there exists some $t_0 \in [0, 1[$ such that $P_\Gamma(t_0) < 0$. We will then cut the infinite pro-p group Γ by all the $z_{v,i}^{p^k}$ for some large k. There are $g(ef+2)$ such elements. Denote by Γ_k the new quotient and by K_{S}^{k} the new extension of K corresponding to Γ_k. Since $\omega_\Gamma(z_{v,i}^{p^k}) \geq p^k$, we may take $P_{\Gamma_k}(t) = P_\Gamma(t) + g(ef+2)p^k$ as the Golod-Shafarevich
polynomial for \(\Gamma_k \). When \(k \) is sufficiently large, clearly \(P_1(t_0) < 0 \implies P_{\Gamma_k}(t_0) < 0 \), so \(K_{S}^{[k]}/K \) is infinite.

The main interest of \(K_{S}^{[k]}/K \) is:

Proposition 1.3. — Suppose \(K_{S}^{[k]}/K \) infinite. Then there exists a finite subextension \(L/K \) of \(K_{S}^{[k]}/K \) having an infinite Hilbert \(p \)-class field tower.

Proof. — In \(K_{S}^{[k]}/K \) the (wild) ramification is finite: indeed for each \(v \in S \), the decomposition groups in \(K_{S}^{[k]} \) are abelian, finitely generated and of finite exponent. There exists a finite extension \(L/K \) inside \(K_{S}^{[k]}/K \) absorbing all the ramification, so \(K_{S}^{[k]}/L \) is unramified everywhere and infinite.

2. Proof

Proposition 2.1. — Let \(K/\mathbb{Q} \) be finite Galois with \(\mu_p \subset K \). Assume that \(g \geq 8 \). Then there exists a finite subextension \(L/K \) of \(K_{S}/K \) such that the Hilbert \(p \)-class field tower of \(L \) is infinite.

Proof. — Let \(H \) be the “top” of the Hilbert Class Field Tower of \(K \). If \(H/K \) is infinite, we are done, so suppose \([H : K] < \infty \). Note that \(H \) has class number 1 so by Corollary 1.1, working over \(H \), \(\dim H^1(G_S, \mathbb{F}_p) = g \left(\frac{g}{2} + 1 \right) \) and \(\dim H^1(G_S, \mathbb{F}_p) = g - 1 \). As in Section 1.2.2, consider the quotient \(\Gamma \) of \(G_S \) by the normal subgroup generated by the local commutators at each \(v \in S \); one has \(\left(\frac{g}{2} + 1 \right) \) such commutators. The group \(\Gamma \) can be described by \(d := g \left(\frac{g}{2} + 1 \right) \) generators and by \(r := g - 1 + g \left(\frac{ef+2}{2} \right) \) relations.

The Golod-Shafarevich polynomial of \(\Gamma \) may be written as \(P_1(t) = 1 - dt + rt^2 \), when assuming the worst case that all the relations are of depth 2. Clearly \(d/2r < 1 \), and \(P_1(d/2r) = 1 - \frac{d^2}{4r} \). In particular, if \(P_1(d/2r) < 0 \), then one has room to cut by some large \(p \)-power of the local generators, in order to obtain at the end some finite local groups. For the result to follow, we thus need \(4r < d^2 \), or equivalently

\[
4 \left(g - 1 + g \frac{(ef+2)(ef+1)}{2} \right)^2 < \frac{g^2}{4} (ef+2)^2
\]

which is equivalent to

\[
16(g - 1) + 8g(ef + 2)(ef + 1) < g^2 (ef+2)^2.
\]

Replacing the \(16(g - 1) \) term on the left by \(16g \) and dividing by \(g \), and setting \(x = ef \), we need to verify

\[
16 + 8(x + 2)(x + 1) < g(x + 2)^2.
\]

This holds for \(g \geq 8 \) and \(x = ef \geq 1 \). Proposition 1.3 allows us to conclude \(K_{S}^{[k]}/K \) is infinite when \(k \) is sufficiently large.

Proof Theorem. — Recall that the principal prime \(p = (1 - \zeta_p) \) of \(\mathbb{Q}(\zeta_p) \) is the unique prime dividing \(p \) and by class field theory \(p \) splits completely in the Hilbert class field \(H \) of \(\mathbb{Q}(\zeta_p) \). Thus if the class group has order at least 8, Proposition 2.1 applied to the solvable number field \(H \) gives the result.
In the proof of [15, Corollary 11.17], the class number of \(\mathbb{Q}(\zeta_{p^r}) \) is shown to be at least \(10^9 \) for \(\phi(p^r) = p^{r-1}(p-1) > 220 \). Choosing \(r \geq 9 \) for any \(p \) completes the proof of the Theorem.

A slightly more detailed analysis using Table §3 of [15] shows the fields below suffice:

\[
\begin{array}{ccc}
P & K & g = h \\
\hline
p > 23 & \mathbb{Q}(\zeta_p) & \geq 8 \\
7 \leq p \leq 23 & \mathbb{Q}(\zeta_{p^2}) & \geq 43 \\
p = 5 & \mathbb{Q}(\zeta_{125}) & 57708445601 \\
p = 3 & \mathbb{Q}(\zeta_{81}) & 2593 \\
p = 2 & \mathbb{Q}(\zeta_{64}) & 17 \\
\end{array}
\]

\[\square \]

Remark 2.2. — In [4] a proof of the Theorem for \(p = 2, 3 \) and 5 was given. Our proof is partially modeled on the ideas there, namely considering the Hilbert class field of a cyclotomic field. There are two cases in [4]: Case I, where the Hilbert class field tower is infinite; and Case II, where ramification is allowed at one prime above \(p \) in the Hilbert class field \(H \) and a \(\mathbb{Z}/p \)-extension of \(H \) ramified at exactly this prime is used. Gras has given a criterion for such an extension to exist: see [1, Chapter V, Corollary 2.4.4]. Gras’ criterion is not verified in [4]. Given the size of the number fields \(H \), it seems very difficult to do so. We therefore we regard the results of [4] as incomplete.

References

[1] G. Gras, Class Field Theory, From Theory to practice, corr. 2nd ed., Springer Monographs in Mathematics, Springer (2005), xiii+507 pages.
[2] F. Hajir, C. Maire, R. Ramakrishna, Cutting towers of number fields, arXiv:1901.04354, 2019.
[3] F. Hajir and C. Maire, Unramified subextensions of ray class field towers, J. Algebra 249 (2002), no. 2, 528–543.
[4] J. L. Hoelscher, Infinite class field towers, Mathematische Annalen 344 (2009), 923-928.
[5] H. Koch, Galois Theory of \(p \)-extensions, Springer Monographs in Mathematics, Springer-Verlag, Berlin 2002.
[6] M. Lazard, Groupes analytiques \(p \)-adiques, IHES, Publ. Math. 26 (1965), 389-603.
[7] J. Leshin, On infinite class field towers ramified at three primes, New York Journal of Math 20 (2014), 27-33.
[8] J. Martinet, Tours de corps de classes et estimations de discriminants, Inventiones math. 44 (1978), 65-73.
[9] J. Neukirck, A. Schmidt and K. Wingberg, Cohomology of Number Fields, GMW 323, Second Edition, Corrected 2nd printing, Springer-Verlag Berlin Heidelberg, 2013.
[10] A. M. Odlyzko, Bounds for discriminants and related estimates for class numbers, regulators and zeros of zeta functions: a survey of recent results, J. Théor. Nombres Bordeaux 2 (1990), no. 2, 119-141.
[11] B. Schmithals, Konstruktion imaginärquadratischer Körper mit unendlichem Klassenkörperturm, (German) Arch. Math. (Basel) 34 (1980), no. 4, 307-312.
[12] R. Schoof, Infinite class field towers of quadratic fields, J. Reine Angew. Math. 372 (1986), 209-220.
[13] D. Shanks The simplest cubic fields, Mathematics of Computation, v.28, no. 128, 1137-1152 (1974).
[14] E. B. Vinberg, *On a theorem concerning on infinite dimensionality of an associative algebra*, Izv. Akad. Nauk SSSR Ser. Mat. 29 (1965), 208-214; english transl., Amer. Mat. Soc. Transl. (2) 82 (1969), 237-242.

[15] L. C. Washington, *Introduction to Cyclotomic Fields*, GTM 80, Second Edition, Springer, 1997.

April 16, 2019

FARSHID HAJIR, CHRISTIAN MAIRE, RAVI RAMAKRISHNA, Department of Mathematics, University of Massachusetts, Amherst, MA 01003, USA • FEMTO-ST Institute, Université Bourgogne Franche-Comté, CNRS, 15B avenue des Montboucons, 25000 Besançon, FRANCE • Department of Mathematics, Cornell University, Ithaca, USA • E-mail: hajir@math.umass.edu, christian.maire@univ-fcomte.fr, ravi@math.cornell.edu