Comment on ”Experimental Demonstration of the Time Reversal Aharonov-Casher Effect”

Y. Lyanda-Geller,1 I. A. Shelykh,2 N.T. Bagraiev,3 and N.G. Galkin3

1Department of Physics and Birck Nanotechnology Center,
Purdue University, West Lafayette IN 47907, USA
2International Center for Condensed Matter Physics, 70904-970 Brasilia-DF, Brazil and St. Petersburg State Polytechnical University, 195251, St. Petersburg, Russia
3A.F.Ioffe Physico-Technical Institute of RAS, 194021, St. Petersburg, Russia

(Dated: February 1, 2008)

PACS numbers: 71.70.Ej, 73.23.b, 73.43.Qt

In a recent Letter [1], Bergsten et al. have studied the resistance oscillations with gate voltage \(V_g \) and magnetic field \(B \) in arrays of semiconductor rings, and interpreted the oscillatory \(B \)-dependence as Altshuler-Aronov-Spivak oscillations and oscillatory \(V_g \)-dependence as the time reversal Aharonov-Casher (AC) effect. This comment shows (i) that authors [1] incorrectly identified AAS effect as a source of resistance oscillations with \(B \), (ii) that spin relaxation in [1] is strong enough to destroy oscillatory effects of spin origin, e.g., AC effect, and (iii) the oscillations in [1] are caused by changes in carrier density and the Fermi energy by gate, and are unrelated to spin.

AAS effect is the \(h/2e \) oscillations of conductance with \(B \) in disordered diffusive rings. Oscillations occur because the interference of the two electron trajectories passing the whole ring clockwise and counterclockwise survives disorder averaging in conditions of diffusive regime \(l \ll L_\phi, L \), where \(l \) is the mean free path, \(L_\phi \) is the phase breaking length, and \(L \) is the circumference of the ring.

The mean free path in samples [1] is \(l \sim 1.5–2 \mu m \). From the ratio of \(h/2e \) and \(h/4e \) signal amplitudes [1], L\(_\phi \) is between 2.8 and 3.5 \(\mu m \). (Note that \(h/2e \) signal is due to interference of clockwise and counterclockwise paths, with magnitude defined by \(\exp(-2L/L_\phi) \), and \(h/4e \) oscillations are due to interference of paths going twice clockwise and twice counterclockwise, defined by \(\exp(-4L/L_\phi) \). The calculation of \(L_\phi \) in [1] misses a factor of two.). Thus, samples [1] are not in diffusive regime relevant to AAS oscillations, but are in the quasi-ballistic regime \(l \lesssim L \). Then \(h/2e \) oscillations are defined not only by interference of time-reversed paths, but also e.g., by the interference of the amplitude of propagation through the right arm clockwise and the amplitude of propagation via the three-segment path: the left arm, the right arm (counterclockwise) and again through the left arm. With all interference processes included, \(h/2e \) oscillations depend on the Fermi wave-vector and \(n_s \) [2, 3]. Averaging over few resistance curves does not eliminate contributions of of non time-reversed processes (certainly not beyond 0.3% of the overall signal for oscillations in [1]). Their importance is missed in [1] and is crucial.

(ii) Another mistake in [1] is the neglect of spin relaxation. For the spin-orbit constant \(\alpha = 5 \text{peV.m} \), the parameter \(\alpha ml \sim 2.5 \) (\(m \) is the effective mass), and spin simply flips due to a single scattering event. The spin-flip length \(L_S = l < L \). Thus, oscillations of spin origin are rather unlikely in [1]. The closest to [1] feasible setting requires ballistic regime \(l \gg L \) [3], which requires mobility an order of magnitude higher. Note that \(L_\phi > L_S \) and oscillations with \(B \) originating from charge coherence are plausible to observe.

(iii) The key to understanding the \(h/2e \) oscillations with \(V_g \) in [1] is its Fig. 4. It can be seen clearly that resistance oscillations are present only when \(n_s \) changes with \(V_g \), and are not present when \(n_s \) saturates. Therefore the reason for the observed oscillations is the variation of the \(n_s \). Oscillations of spin origin, particularly the AC effect, must persist when \(n_s \) is constant, while \(\alpha \) varies with \(V_g \). No such evidence is present in [1].

The origin of oscillations with \(n_s \) is the contribution to \(h/2e \) signal from interference of non-time reversed paths. These are independent of \(L_S \), and are governed by \(L_\phi > L_S \). That makes this effect dominant over any spin oscillations. With the account of the role of contacts connecting the ring and the leads [2, 3], in the absence of spin-orbit interactions and for strong coupling of leads and rings, the conductance of the single ring is

\[
G = \frac{2e^2}{h} \left[1 - \frac{1 - \cos (\pi \Phi/\Phi_0)}{1 - e^{i\pi k_F L} \cos^2 (\pi \Phi/\Phi_0)} \right] \tag{1}
\]

We note that disregard of transmission and reflection from contacts is yet another critical omission in [1], whose equation for conductance is incorrect in ballistic/quasi-ballistic regime. (It is also incorrect for AAS and AC effect in diffusive regime). The second harmonics in [1] depends on \(k_F \) and \(n_s \) in an oscillatory manner, leading to oscillations of conductance with \(V_g \). The system of the \(n \) interconnected rings can be described similarly to the setting in [4]. On Fig. 1, we show the dependence of the amplitude of the second harmonic on \(k_F \) for one and four rings. Conductance oscillates with electron density despite no spin effects are involved. To summarize, conclusions of [1] on the observation of the AC effect are unfounded.
FIG. 1: The amplitudes of the second harmonics in a single ring (solid curve) and four consequently connected rings (dashed curve). The spin-orbit interaction is absent.

[1] T. Bergsten et al., Phys. Rev. Lett. 97, 196803 (2006)
[2] M. Buttiker, Y. Imry and M.Ya. Azbel, Phys. Rev. A 30, 1982 (1984).
[3] A.G. Aronov and Y.B. Lyanda-Geller, Phys. Rev. Lett. 70, 343 (1993)
[4] I.A. Shelykh et al, Fiz. Tekhn. Polupr. 34, 477 (2000) [Semiconductors 34, 462 (2000)]