Effective Atomic Number and Electron Density Determination for Fricke Gel Dosimeters Using Different Methods

Ouiza Moussous
Department of Medical Physics, Nuclear Research Center of Algiers, Algiers, Algeria

Abstract

The effective atomic number and electron density of some Fricke gel dosimeters were calculated for photon interaction in the energy range from 10 keV to 1000 MeV using Auto-Z_{eff}, direct and power law methods. The results are presented relative to those of water to allow direct comparison. It is found, that the effective atomic numbers and effective electron densities calculated with the Auto-Z_{eff} and direct methods, demonstrates a good agreement in the energy interval extending from 0.1 MeV to 10 MeV. For effective atomic number relative to water, Ferrous Agarose Xylenol gel showed better water equivalence with difference up to 0.3%, while FX-PVA-GTA and Ferrous Xylenol Gelatin gels showed differences up to 2.26% and 2.25%, respectively.

Keywords: Effective atomic number, electron density, fricke gel dosimeter, water equivalence

MATERIALS AND METHODS

The chemical composition of four Fricke gel dosimeters studied is available for Ferrous Agarose Xylenol (FAX) gel,[8] Ferrous Xylenol Gelatin (FXG) gel,[9] FXG Glycin (FXGG) gel[10] and Ferrous Xylenol.

Poly(vinyl alcohol) Glutaraldehyde (FXPVA-GTA) gel.[11] Table 1 reports the corresponding elemental compositions, calculated as fraction by weight for all Fricke gel dosimeters used in this work.

Mass attenuation coefficient

The mass attenuation coefficients for the Fricke gel dosimeters have been calculated using WinXcom computer program.[12]

Effective atomic number and electron density

In this work, the effective atomic number (Z_{eff}) was evaluated by three methods described below.

• Auto-Z_{eff} computer program evaluated the Z_{eff} through the smooth correlation between atomic cross section and

Effective Atomic Number and Electron Density Determination for Fricke Gel Dosimeters Using Different Methods

Ouiza Moussous
Department of Medical Physics, Nuclear Research Center of Algiers, Algiers, Algeria

Abstract

The effective atomic number and electron density of some Fricke gel dosimeters were calculated for photon interaction in the energy range from 10 keV to 1000 MeV using Auto-Z_{eff}, direct and power law methods. The results are presented relative to those of water to allow direct comparison. It is found, that the effective atomic numbers and effective electron densities calculated with the Auto-Z_{eff} and direct methods, demonstrates a good agreement in the energy interval extending from 0.1 MeV to 10 MeV. For effective atomic number relative to water, Ferrous Agarose Xylenol gel showed better water equivalence with difference up to 0.3%, while FX-PVA-GTA and Ferrous Xylenol Gelatin gels showed differences up to 2.26% and 2.25%, respectively.

Keywords: Effective atomic number, electron density, fricke gel dosimeter, water equivalence

MATERIALS AND METHODS

The chemical composition of four Fricke gel dosimeters studied is available for Ferrous Agarose Xylenol (FAX) gel,[8] Ferrous Xylenol Gelatin (FXG) gel,[9] FXG Glycin (FXGG) gel[10] and Ferrous Xylenol.

Poly(vinyl alcohol) Glutaraldehyde (FXPVA-GTA) gel.[11] Table 1 reports the corresponding elemental compositions, calculated as fraction by weight for all Fricke gel dosimeters used in this work.

Mass attenuation coefficient

The mass attenuation coefficients for the Fricke gel dosimeters have been calculated using WinXcom computer program.[12]

Effective atomic number and electron density

In this work, the effective atomic number (Z_{eff}) was evaluated by three methods described below.

• Auto-Z_{eff} computer program evaluated the Z_{eff} through the smooth correlation between atomic cross section and

Address for correspondence: Dr. Ouiza Moussous,
02 Boulevard Frantz Fanon B.P. 399 Alger-Gare, Algiers, Algeria.
E-mail: o.moussous@crna.dz

How to cite this article: Moussous O. Effective atomic number and electron density determination for fricke gel dosimeters using different methods. J Med Phys 2022;47:105-8.

This is an open access journal, and articles are distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 License, which allows others to remix, tweak, and build upon the work non-commercially, as long as appropriate credit is given and the new creations are licensed under the identical terms.
atomic number. The Z_{eff} of each material is calculated at discrete energy levels over the energy range of 10 keV–1 GeV.

- **Direct method**, by this way the effective atomic number of the Fricke gel dosimeters can be obtained using the following formula:

$$Z_{\text{eff}} = \sum f_i A_i \frac{\mu_i}{\rho_i} \left(\frac{Z_i}{A_i} \right) \left(\frac{\mu_i}{\rho_i} \right),$$

where f_i is the molar fraction in the mixture/compound, μ/ρ is the mass attenuation coefficient calculated with WinXcom, A_i is the mass number and Z_i is the atomic number.

- **Power law method** dates back to 1930s, it allows us to calculate the effective atomic number for mixture by means of the next equation:

$$Z_{\text{eff}} = \left[\sum f_i (Z/A) \right]^{1/\alpha}$$

With the mass numbers, A_i, the atomic number, Z_i, and the percentage mass composition of the element, i, to the sample f_i and α as an empirical number which is taken to be 2.94.

The electron density of the Fricke gels has been calculated according to the succeeding expression:

$$N_e = Z_{\text{eff}} N_A / \langle A \rangle$$

where $\langle A \rangle$ is the average atomic mass of the gels, and N_A is the Avogadro’s number.

Results

Mass attenuation coefficient

Figure 1 shows the variation of the mass attenuation coefficient, μ/ρ, calculated at the photon energies between 0.1 MeV and 100 MeV for four Fricke gel dosimeters and water.

Effective atomic number and electron density

The calculated values of Z_{eff} and N_e for different Fricke gels dosimeters examined and water are presented in Figures 2 and 3, respectively.

The effective atomic number and electron density of the Fricke gels dosimeters relative to water were also calculated to evaluate the water equivalence of each of them. The results obtained are shown in Table 2.

Discussion

From the data illustrated in Figure 1, it can be seen that the mass attenuation coefficient is decreasing with the increasing photon energies.

In general, as shown in Figures 2 and 3, Z_{eff} and N_e behavior with photon energy for all dosimeters studied are similar. The Z_{eff} and N_e data, calculated by Auto-Z_{eff} and direct methods shows the variation of up to 2.5% in the energy region 0.1 MeV ≤ E ≤ 4 MeV, 9% and 23% in the energy regions 5 MeV ≤ E ≤ 10 MeV and 11 MeV ≤ E ≤ 100 MeV, respectively.

A good agreement is achieved in comparison in the region 0.1 MeV ≤ E ≤ 10 MeV this is the energy interval of interest in X-rays external radiation therapy.

The effective atomic numbers calculated by power method are 7.45, 7.42, 7.42, 7.38, and 7.44 for FAX gel, FXG gel, FXGG gel, FXPVA-GTA gel, and water, respectively. The effective electron density calculated by power method is 3.13, 3.12, 3.12, 3.14, and 3.13 for FAX gel, FXG gel, FXGG gel, FXPVA-GTA gel, and water, respectively. It was found that the calculated Z_{eff} and N_e using Auto Z_{eff} and direct methods are lower than what were calculated using power law methods. This discrepancy can be assigned to the energy independence of the Mayneord formula.

From the data shown in Table 2, the percentage difference of up to 0.3%, 0.9%, and 1.5% for FAX, FXPVA-GTA, FXG, and FXGG gels, respectively, was obtained when comparing data for Z_{eff} of Fricke gel dosimeters to that of the water. Discrepancies of up to 0.2%, 2.25%, and 2.26% for FAX,
FXPV A-GTA, FXG, and FXGG gels, respectively, were observed when comparing data for Ne of Fricke gel dosimeters to that of the water.

Conclusion

In this study, Z_{eff} and Ne of water and Fricke gel dosimeters were calculated for photon using theoretical methods. The direct and Auto-Z_{eff} methods show a very good agreement in the effective atomic numbers in energy region 0.1–10 MeV. Electron density is closely related to the effective atomic number and has the same quantitative energy dependence as Z_{eff}. It was found that the calculated effective atomic number and electron density of the Fricke gel dosimeters using the direct and Auto Z_{eff} methods, were lower than that calculated using the power law method. This mismatch can be attributed to the energy independence of the method. As such, the differences in effective atomic number (0.3%–1.5%) and Ne (0.2%–2.26) between water and Fricke gels are small, consideration of the mean disparity over energy range 0.1–10 MeV shows, widely, FAX gel to be the most water equivalent gel.

Financial support and sponsorship

Nil.

Conflicts of interest

There are no conflicts of interest.

References

1. Saur S, Strickert T, Wasboe E, Frengen J. Fricke gel as a tool for dose distribution verification: Optimization and characterization. Phys Med Biol 2005;50:5251-61.
2. Wong CJ, Ackerly T, He C, Patterson W, Powell CE, Ho A, et al. High-resolution measurements of small field beams using polymer gels. Appl Radiat Isot 2007;65:1160-4.
3. Andreo P, Burns D, Hohlfeld K, Huq M, Kanai T, Laitano F, et al. Absorbed Dose Determination in External Beam Radiotherapy: An International Code of Practice for Dosimetry Based on Standards of Absorbed Dose to Water IAEA 2000 Technical Reports Series 398 International Atomic Energy Agency. Vienna (Austria).
4. Kron T, Metcalfe P, Pope JM. Investigation of the tissue equivalence of gels used for NMR dosimetry. Phys Med Biol 1993;38:139-50.
5. Kurudirek M. A study of effective atomic number and electron density of gel dosimeters and human tissues for scattering of gamma rays: Momentum transfer, energy and scattering angle dependence. Radiat Environ Biophys 2016;55:501-7.
6. Sathiyaraj P, Samuel EL, Valeriano CC, Kurudirek M. Effective atomic number and buildup factor calculations for metal nano particle doped polymer gel. Vacuum 2017;143:138-49.
7. Taylor ML, Franich RD, Trapp JV, Johnston PN. The effective atomic number of dosimetric gels. Australas Phys Eng Sci Med 2008;31:131-8.
8. Gambarini G, Brusa D, Carrara M, Castellano G, Mariani M, Tomatis S, et al. Dose imaging in radiotherapy photon fields with Fricke and normoxic-polymer gels. J Phys Conf Ser 2006;41:466-74.
9. Gohary EI, Shabban YS, Amin EA, Abdel Gawad MH, Desouky OS. Preparation and characterization of Fricke gel dosimeter. Nat Sci 2015;13:139-43.
10. Babu SE, Singh IR, Poomima CG, Ravindran BP. Enhancing the

Table 2: \(\langle Z_{eff}\rangle \) and \(\langle N_e\rangle \) calculated for different Fricke gel dosimeter formulations in terms of values for water in the energy range 0.1-10 MeV

Quantity	FAX	FXG	FXGG	FXPV A-GTA
\(\langle Z_{eff}\rangle/\langle Z_{eff}\rangle_{water} \)	1.000a	1.012a	1.012a	1.003a
	1.003b	1.015b	1.015b	1.006b
	1.001c	0.997c	0.997c	0.991c
	1.005d			
\(\langle N_e\rangle/\langle N_e\rangle_{water} \)	1.002a	1.011a	1.011a	1.014a
	1.001b	1.026b	1.026b	1.025b
	1.000c	0.996c	0.996c	1.003c

\(\langle Z_{eff}\rangle \) and \(\langle N_e\rangle \) are the average effective atomic number and electron density, respectively. FAX: Ferrous Agarose Xylenol, FXG: Ferrous Xylenol Gelatin, FXGG: Ferrous Xylenol Gelatin Glycin, FXPV A-GTA: Ferrous Xylenol Poly(vinyl alcohol) Glutaraldehyde.
Moussous: Determination of Z_{eff} and N_e for Fricke gels

1. Moussous M. Determination of Z_{eff} and N_e for Fricke gels. Journal of Medical Physics ¦ Volume 47 ¦ Issue 1 ¦ January-March 2022

108

1. longevity of three-dimensional dose in a diffusion-controlled Fricke gel dosimeter. J Cancer Res Ther 2015;11:580-5.
11. Gallo S, Artuso E, Brambilla MG, Gambarini G, Lenardi C, Monti AF, et al. Characterization of radiographic poly(vinyl-alcohol)-glutaraldehyde Fricke gels for dosimetry in external x-ray radiation therapy. J Phys D Appl Phys 2019;52:225601.
12. Gerward L, Guilbert N, Jensen KB, Leving L. WinXCom a program for calculating X-ray attenuation coefficients. Radiat Phys Chem 2004;71:653-4.

13. Taylor ML, Smith RL, Dossing F, Franich RD. Robust calculation of effective atomic numbers: The Auto-$Z(\text{eff})$ software. Med Phys 2012;39:1769-78.
14. Manohara SR, Hanagodimath SM, Thind KS, Gerward L. On the effective atomic number and electron density: A comprehensive set of formulas for all types of materials and energies above 1 keV. Nucl Instrum Methods B 2008;266:3906-12.
15. Mayneord W. The significance of the Rontgen. Acta Unio Int Contra Cancrum 1937;2:271-82.