The Resolvent Matrix of the Truncated Hausdorff Matrix Moment Problem via New Dyukarev–Stieltjes Parameters and Extremal Solutions via Continued Fractions

Abdon E. Choque-Rivero *

We obtain a new multiplicative decomposition of the resolvent matrix of the truncated Hausdorff matrix moment (THMM) problem in the case of an odd and even number of moments via new Dyukarev–Stieltjes matrix (DSM) parameters. Explicit interrelations between new DSM parameters and orthogonal matrix polynomials on a finite interval \([a, b]\), as well as the Schur complements of the block Hankel matrices constructed through the moments of the THMM problem are given. Additionally, the extremal solutions of the THMM problem are represented via matrix continued fractions in terms of the DSM parameters.

Keywords: Resolvent matrix, orthogonal matrix polynomials, Dyukarev-Stieltjes parameters, matrix continued fractions.

1. Introduction

Throughout this paper, let \(q\) and \(p\) be positive integers. We will use \(\mathbb{C}\), \(\mathbb{R}\), \(\mathbb{N}_0\) and \(\mathbb{N}\) to denote the set of all complex numbers, the set of all real numbers, the set of all nonnegative integers, and the set of all positive integers, respectively. The notation \(\mathbb{C}^{q \times q}\) stands for the set of all complex \(q \times q\) matrices. For the null matrix that belongs to \(\mathbb{C}^{p \times q}\) we will write \(0_{p \times q}\). We denote by \(0_q\) and \(I_q\) the null and the identity matrices in \(\mathbb{C}^{q \times q}\), respectively. In cases where the sizes of the null and the identity matrix are clear, we will omit the indices.

*A. E. Choque-Rivero is supported by SNI–CONACYT and CIC–UMSNH, México.

1
1. Introduction

The continued fraction

\[
\frac{1}{m_1 z + \frac{1}{l_1 + \frac{1}{m_2 z + \frac{1}{l_2 + \ddots}}}}
\]

(1.1)

where \(l_j \) and \(m_j \) are positive numbers was used by T.J. Stieltjes in [43] to determine whether there is a unique (resp. non-unique) solution of the Stieltjes moment problem. This problem is stated as follows: given a sequence \((s_k)_{k \geq 0}\) of real numbers, find the set \(\mathcal{M} \) of positive measures \(\sigma \) on \([0, \infty)\) such that

\[s_k = \int_0^\infty x^k d\sigma(x) \quad \text{for} \quad k = 0, 1, \ldots \]

Note that

\[l_j := \frac{\Delta_j^2}{\Delta_j^{-1} \Delta_j - 2}, \quad \text{and} \quad m_j := \frac{[\Delta_j^{(1)}]_2^2}{\Delta_j \Delta_j - 1}, \]

(1.2)

with \(\Delta_j := \det(s_{i+k})_{i,k=0} \), \(\Delta_j^{(1)} := \det(s_{i+k+1})_{i,k=0} \) and \(\Delta_{-1} = \Delta_1 := 1 \). Here we use Krein’s notation [30] for the nonnegative coefficients \(l_j \) and \(m_j \), also called Stieltjes parameters.

It is well-known that the truncated continued fraction of (1.1) can be written as \(F_p(z, 0) \) where \(F_p \) is a composition of Möbius transformations: \(F_p = f_1 \circ f_2 \circ \ldots \circ f_p \) with \(f_{2k-1}(z, \omega) := \frac{1}{-zm_k + \omega} \), \(f_{2k}(\omega) := \frac{1}{l_k + \omega} \) for each \(k \in \mathbb{N} \); see [31, Page 474]. On the other hand, denoting the matrix of the transformations \(f_{2k-1}, f_{2k} \) by \(t_{2k-1}, t_{2k} \), respectively, one can associate the Möbius transformation with the 2 \(\times \) 2 matrix

\[
T_{2n} := t_1 t_2 \ldots t_{2n},
\]

(1.3)

or

\[
T_{2n+1} := t_1 t_2 \ldots t_{2n+1}
\]

(1.4)

for \(\omega = 0 \). See [31, Theorem 12.1a].

In [25] Dyukarev introduced the matrix version of the Stieltjes parameters in order to establish the determinateness of the Stieltjes matrix moment problem. An important feature used in [25] is the similar factorization to (1.3) and (1.4) of the resolvent matrix of the truncated Stieltjes matrix moment problem via Stieltjes parameters. Recall that the mentioned resolvent matrix, also called Nevanlinna matrix [25, Definition 2], is a 2\(q \times 2q \) matrix polynomial.

In the present work we introduce new matrix Stieltjes parameters, called Dyukarev-Stieltjes matrix (DSM) parameters of the truncated Hausdorff matrix moment (THMM) problem. With the help of the DSM parameters, we obtain a new multiplicative representation of the resolvent matrix (RM):

\[
U^{(m)}(z) = \left(\begin{array}{cc}
\alpha^{(m)}(z) & \beta^{(m)}(z) \\
\gamma^{(m)}(z) & \delta^{(m)}(z)
\end{array}\right)
\]

(1.5)
of the THMM problem in the case of an odd and even number of moments. The RM $U^{(m)}$ is a $2q \times 2q$ matrix polynomial which we factorize as follows:

\begin{align}
U^{(2n)} &= D_1 t_{-1} (2n) t_{0} (2n) \ldots t_{n-1} (2n) B_2 (2n) D_2 \\
U^{(2n+1)} &= D_3 t_{-1} (2n+1) t_{0} (2n+1) \ldots t_{n-1} (2n+1) B_2 (2n+1) D_4
\end{align}

where D_k are anti-diagonal block matrices, D_4 is a diagonal matrix, $B_2 (2n), B_2 (2n+1),$ $t_{j} (2n), t_{j} (2n+1), m_j (2n)$ are constant anti-triangular block matrices and $m_j (2n+1), t_j (2n)$ are affine on z and anti-triangular block matrices; see Theorem 5.2 and Remark 6.1. As a consequence of the interval $[a, b]$ such that $\alpha (2n) \gamma (2n)^{-1}$, $\beta (2n) \delta (2n)^{-1}$, $\alpha (2n+1) \gamma (2n+1)^{-1}$ and $\beta (2n+1) \delta (2n+1)^{-1}$ are given by a finite matrix continued fraction; see Theorem 6.1.

Our motivation is to give a complete characterization of solvability of the THMM problem via the DSM parameters. Such characterization will be considered elsewhere. Proposition 7.2 and [9, Proposition 7] are directed to the mentioned characterization. In the indicated propositions, the recovery of positive moment sequences (as in Definition 7.4) from the DSM parameters are given; see Definition 5.1

Let us now summarize the notions appearing in the last two paragraphs.

The THMM problem is stated as follows: given an interval $[a, b]$ on the real axis and a finite sequence of $q \times q$ matrices, $(s_j)_{j=0}^m$. Describe the set $M^q_+ ([a, b], B \cap [a, b]; (s_j)^m_{j=0})$ of all nonnegative Hermitian $q \times q$ measures σ defined on the σ-algebra of all Borel subsets of the interval $[a, b]$ such that

\[s_j = \int_{[a, b]} t^j d\sigma(t) \]

holds true for each integer j with $0 \leq j \leq m$.

Let $(s_j)_{j=0}^m$ (resp. $(s_j)^{2n+1}_{j=0}$) be a sequence of complex $q \times q$ matrices, then denote

\[H_{1,j} := \tilde{H}_{0,j}, j \geq 0, \quad H_{2,j-1} := -ah\tilde{H}_{0,j-1} + (a+b)\tilde{H}_{1,j-1} - \tilde{H}_{2,j-1}, j \geq 1 \]

and

\[K_{1,j} = b\tilde{H}_{0,j} - \tilde{H}_{1,j}, \quad K_{2,j} = -a\tilde{H}_{0,j} + \tilde{H}_{1,j}, \quad j \geq 0, \]

where $\tilde{H}_{1,j}$ are defined with the help of the Hankel matrices,

\[\tilde{H}_{0,j} := \{s_{l+k}\}_{l,k=0}^j, \quad \tilde{H}_{1,j} := \{s_{l+k+1}\}_{l,k=0}^j, \quad \text{and} \quad \tilde{H}_{2,j} := \{s_{l+k+2}\}_{l,k=0}^j. \]

In [10, Theorem 1.3] (resp. [11, Theorem 1.3]), it was demonstrated that there exists a solution to problem $M^q_+ ([a, b], B \cap [a, b]; (s_j)^{2n+1}_{j=0})$ (resp. $M^q_+ ([a, b], B \cap [a, b]; (s_j)^{2n+1}_{j=0})$) if and only if the block matrices $H_{1,n}$ and $H_{2,n-1}$ (resp. $K_{1,n}$ and $K_{2,n}$) are both nonnegative Hermitian, where the problem of finding the set $M^q_+ ([a, b], B \cap [a, b]; (s_j)^{2n+1}_{j=0})$
1. Introduction

for \(m = 2n \) and \(m = 2n + 1 \) is usually reduced to searching for the set of holomorphic functions

\[
\mathcal{G}_{\geq}^q[[a, b], \mathfrak{B} \cap [a, b]; (s_j)^m_{j=0}] := \left\{ s(z) = \int_{[a, b]} \frac{d\sigma(t)}{1 - \frac{t}{z}}, \sigma \in \mathcal{M}_{\geq}^q[[a, b], \mathfrak{B} \cap [a, b]; (s_j)^m_{j=0}] \right\}.
\]

If \(H_{1,n} \) and \(H_{2,n-1} \) (resp. \(K_{1,n} \) and \(K_{2,n} \)) are positive Hermitian, the set \(\mathcal{G}_{\geq}^q[[a, b], \mathfrak{B} \cap [a, b]; (s_j)^m_{j=0}] \) is parameterized via a linear fractional transformation

\[
s(z) = (\alpha^{(m)}(z)\mathbf{p}(z) + \beta^{(m)}(z)\mathbf{q}(z))(\gamma^{(m)}(z)\mathbf{p}(z) + \delta^{(m)}(z)\mathbf{q}(z))^{-1}.
\]

The column pair \((\mathbf{p}, \mathbf{q})\) satisfies certain properties in every case; see Definitions \[\text{Definition 5.2}\] and \[\text{Definition 5.2}\].

The \(2q \times 2q \) polynomial matrices

\[
U^{(2j)}(z, a, b) := \begin{pmatrix}
\Theta^z_{2j}(z, a)\Theta^{-1}_{2j}(a, a)

(z - a)\Gamma^z_{2j}(z, a)\Theta^{-1}_{2j}(a, a)

\end{pmatrix},
\]

and

\[
U^{(2j+1)}(z, a, b) := \begin{pmatrix}
Q^z_{2j}(z, a, b)Q^{-1}_{2j}(a, b, a)

-(z - a)(b - z)P^z_{2j}(z, a, b)Q^{-1}_{2j}(a, b, a)

-Q^z_{1,j+1}(z)P^{-1}_{1,j+1}(a)

P^z_{1,j+1}(z)P^{-1}_{1,j+1}(a)

\end{pmatrix}
\]

are called the resolvent matrix (RM) of the THMM problem. The \(q \times q \) matrix polynomials \(P_{k,j}, Q_{k,j}, \Gamma_{k,j} \) and \(\Theta_{k,j} \) for \(k = \{1, 2\} \) are constructed via the given data: the sequence of moments \((s_j)^{2n}_{j=0}\) (resp. \((s_j)^{2n+1}_{j=0}\)). See Definition \[\text{2.6}\] and \[\text{2.7}\].

In \[9\], the relationships \(U^{(2j+1)} = \left(\begin{array}{cc}
\frac{1}{z-a}I_q & 0_q \\
0_q & I_q
\end{array} \right) \tilde{U}_1^{(2j+1)}A^{(2j+1)} \cdot \left(\begin{array}{cc}
(z - a)I_q & 0_q \\
0_q & I_q
\end{array} \right) \)

and \(U^{(2j)} = \tilde{U}_1^{(2j)}A^{(2j)} \) were used, with \(A^{(k)} \) denoting \(2q \times 2q \) matrices depending on \(a \) and \(b \) in order to factorize the matrices \(U^{(m)} \) for \(m \) odd and even. Instead of the mentioned relations, in the present paper we employ the following two relations:

\[
U^{(2j)}(z) = \left(\begin{array}{cc}
\frac{1}{z-a}(b-z)I_q & 0_q \\
0_q & I_q
\end{array} \right) \tilde{U}_2^{(2j-2)}(z)A_2^{(2j)} \cdot \left(\begin{array}{cc}
(b - a)(z - a)I_q & 0_q \\
0_q & \frac{b-z}{z-a}I_q
\end{array} \right),
\]

and

\[
U^{(2j+1)}(z) = \left(\begin{array}{cc}
\frac{1}{b-z}I_q & 0_q \\
0_q & I_q
\end{array} \right) \tilde{U}_2^{(2j+1)}(z)A_2^{(2j+1)} \cdot \left(\begin{array}{cc}
(b - z)I_q & 0_q \\
0_q & I_q
\end{array} \right),
\]

where \(\tilde{U}_2^{(k)}(z), A_2^{(k)}(z) \) for \(k = 2j \) (\(k = 2j + 1 \)) are introduced in \[\text{2.12}, \text{2.14}, \text{2.13}\] and \[\text{2.17}\]. Equalities \[\text{1.13}\] and \[\text{1.14}\] are the consequence of \[\text{10}\] Equality \((6.26) \) and \[\text{11}\] Equalities \((6.26),(6.27) \).
1. Introduction

Note that the auxiliary matrices $\tilde{U}_1^{(2j)}$ and $\tilde{U}_1^{(2j+1)}$ (resp. $\tilde{U}_2^{(2j)}$ and $\tilde{U}_2^{(2j+1)}$) are related to $H_{1,j}$ and $K_{2,j}$ (resp. $H_{2,j}$ and $K_{1,j}$), correspondingly.

As in [9, Corollary 1 and Corollary 2] where the auxiliary matrix $\tilde{U}_1^{(k)}$ was decomposed, in the present work we factorize the auxiliary matrix $\tilde{U}_2^{(2n+1)}$ in the following form (as in Corollary 4.1):

$$\tilde{U}_2^{(2n+1)} = d^{(1)} d^{(3)} \ldots d^{(2n−1)} d^{(2n+1)}$$ (1.15)

Instead of $\tilde{U}_2^{(2n)}$ the auxiliary matrix $\hat{U}_2^{(2n)}$ (as in (2.15)) is used. The factorization

$$\hat{U}_2^{(2n)} = d^{(0)} d^{(2)} \ldots d^{(2n−4)} d^{(2n−2)}$$ (1.16)

is employed to prove a new factorization of the RM $U^{(2n)}$. The matrices $d^{(2k+1)}$ and $d^{(2k)}$ are affine on z. The importance of the auxiliary matrices $\tilde{U}_2^{(2j+1)}$ and $\tilde{U}_2^{(2j)}$ resides in the fact that they belong to the Potapov class of matrix functions [39]. The matrix valued functions belonging to this class can be factorized into elementary factors, as seen in Corollary 5.1. A similar factorization was revealed by Yu. Dyukarev in [24] by developing a multiplicative representation of the RM of the truncated Stieltjes matrix moment (TSMM) problem. Generalized Stieltjes parameters for Nevanlinna-Pick interpolation problems in certain Nevanlinna classes were considered in [28] and [40]. The determinateness of the TSMM problem was obtained in [25] with the help of Dyukarev–Stieltjes matrix parameters of the TSMM. In [26] a criterion for complete indeterminacy of limiting Stieltjes interpolation problem in terms of orthonormal matrix functions was achieved. In [27], by using a decomposition of the RM of the TSMM problem, the following were demonstrated: necessary and sufficient conditions for the TSMM problem to have a unique solution and infinitely many solutions for the Hamburger moment problem with the same moments. Note that in [45] and [15] the operator approach was employed to solve the THMM.

The main results of the present work are the new factorization of the RM $U^{(m)}$ presented in Theorem 5.2 and the representation of the extremal solutions with the help of matrix continued fractions in terms of DSM parameters; see Theorem 6.1. Matrix continued fractions were studied in [1], [42], [46], [17], [16] and references therein.

Additionally, the following facts are attained:

(i) We obtain a multiplicative representation of the auxiliary matrices $\tilde{U}_2^{(m)}$ (as in Corollary 4.1) via new auxiliary Blaschke–Potapov factors $d^{(m)}$; see (4.5), (4.6), (4.7).

(ii) Each Blaschke–Potapov factor $d^{(2j)}$ (resp. $d^{(2j+1)}$) is decomposed via new Dyukarev–Stieltjes parameters type matrices m_k and r_k (resp. t_k and l_k). See Theorem 5.3

(iii) Explicit relations between $P_{2,j}$, $Q_{2,j}$, $\Gamma_{1,j}$, $\Theta_{1,j}$ at $z = a$ and DSM parameters m_j, l_j are given. See Proposition 7.1 and Remark 7.1.
1. Introduction

(iv) Explicit relations between the Schur complements $\hat{H}_{2,j}, \hat{K}_{1,j}$ (as in (4.1), (4.2)) and the DSM parameters m_j, l_j (as in (2.11), (2.6)) are given. On the other hand, explicit relations between the Schur complement $\hat{H}_{2,j}, \hat{K}_{1,j}$ and polynomials $P_{2,j}, Q_{2,j}, \Gamma_{1,j}, \Theta_{1,j}$ at $z = a$ are obtained. See Remark 7.2, Remark 7.3, and Proposition 7.3.

(v) Given s_0 and a sequence of DSM parameters m_j, l_j, we obtain a sequence $(s_l)_{l=0}^{2j+1}$ (resp. $(-abs_l + (a + b)s_{l+1} - s_{l+2})_{l=0}^{2j-2}$) such that $K_{1,j}$ (resp. $H_{2,j-1}$) is a positive definite matrix. See Proposition 7.2.

To the author’s knowledge, the results contained in (i) through (v) are also new in the scalar case. In Section 8, the scalar version of the DSM parameters m_j and l_j via determinants is indicated.

In comparison to the DSM parameters M_k and L_k [9], the new DSM parameters m_j and l_j depend on both terminal points of the interval $[a, b]$. Other DSM parameters which also depend on a and b were introduced in [5]. In turn the mentioned parameters are different from the ones studied in [9] (also in [11]), where the parameters depend only on a. In Remark 7.3 by setting $b \to +\infty$ and $a = 0$ in the DSM parameters m_j and l_j, we obtain the Dyukarev–Stieltjes parameters of the TSMM problem [25].

Throughout the paper we decisively use the forms (1.11) and (1.12) of the RM of the THMM problem obtained in [6] where the elements of the RM are given with the help of four orthogonal polynomials and their second kind polynomials. Orthogonal matrix polynomials (OMP) were first considered by M.G. Krein in 1949 [36], [37]. Further investigations of OMP were made by J.S. Geronimo [32], I.V. Kovalishina [34], [35], H. Dym [23], B. Simon [41], Damanik/Pushnitski/Simon [16] and the references therein. See also [18], [19], [20], [21], [22], [29], [17], [38], [27] and [14].

A brief outline of the relationships between the DSM parameters m_j, l_j and the polynomials $P_{2,j}, Q_{2,j}, \Gamma_{1,j}, \Theta_{1,j}$ as well as the matrices $H_{2,j-1}, K_{1,j}, \hat{H}_{1,j-1}, \hat{K}_{1,j}$ achieved in the present work is given by

Here $A \leftrightarrow B$ means both sides possess an explicit interrelation between A and B. The mentioned relationships complete in some sense the ones obtained in [9].
2. Notations and preliminaries

An application of the Hausdorff moment problem method, in particular of the solution set (1.10) with (1.11), (1.12) in the scalar case is used in [8] to solve the admissible bounded control problem of the Brunovsky control system of dimension \(m \) for \(m \geq 2 \) via orthogonal polynomials on \([0, T]\) and their second kind polynomials. See also [12] and [13].

2. Notations and preliminaries

In this section we include the main notations and objects which we use throughout the paper. The auxiliary RM \(\tilde{U}_2^{(2j)} \) is introduced which is used instead of the auxiliary RM \(\tilde{U}_2^{(2j)} \), previously defined in [10, Formula (6.2)].

The orthogonal matrix polynomials \(P_{k,j}, \Gamma_{k,j} \) on \([a, b]\) as well as their second kind polynomials \(Q_{k,j}, \Theta_{k,j} \) are recalled. The mentioned matrix polynomials together with the connection between the auxiliary RM \(\tilde{U}_2^{(2j+1)}, \tilde{U}_2^{(2j)} \) and the RM \(U^{(m)} \) play an important role in the present work.

2.1. Auxiliary matrices and auxiliary resolvent matrices

Let \(R_j : \mathbb{C} \to \mathbb{C}^{(j+1)q \times (j+1)q} \) be given by

\[
R_j(z) := (I_{(j+1)q} - zT_j)^{-1}, \quad j \geq 0,
\]

(2.1)

with \(T_0 := 0_q \), \(T_j := \begin{pmatrix} 0_{q \times jq} & 0_q \\ I_{jq} & 0_{jq \times q} \end{pmatrix}, \quad j \geq 1. \)

Let \(v_0 := I_q \), \(v_j := \begin{pmatrix} I_q \\ 0_{jq \times q} \end{pmatrix} = \begin{pmatrix} v_{j-1} \\ 0_q \end{pmatrix} \), \(\forall j \geq 0. \)

(2.2)

Furthermore, let

\[
y_{[j,k]} := \begin{pmatrix} s_j \\ s_{j+1} \\ \vdots \\ s_k \end{pmatrix}, \quad 0 \leq j \leq k \leq 2n. \]

(2.3)

Let

\[
\tilde{u}_{1,0} := s_0, \quad \tilde{u}_{2,0} := -s_0, \\
\tilde{u}_{1,j} := y_{[0,j]} - b \begin{pmatrix} 0_q \\ y_{[0,j-1]} \end{pmatrix}, \quad \tilde{u}_{2,j} := -y_{[0,j]} + a \begin{pmatrix} 0_q \\ y_{[0,j-1]} \end{pmatrix}
\]

(2.4)

for every \(1 \leq j \leq n - 1 \). In addition, for \(1 \leq j \leq n \) let

\[
\tilde{Y}_{1,j} := b y_{[j,2j-1]} - y_{[j+1,2j]}, \quad \tilde{Y}_{2,j} := -a y_{[j,2j-1]} + y_{[j+1,2j]}.
\]

(2.5)
Let $\hat{K}_{1,j}$ (resp. $\hat{K}_{2,j}$) denote the Schur complement of the block $bs_{2j} - s_{2j+1}$ (resp. $-as_{2j} + s_{2j+1}$) of the matrix $K_{1,j}$ (resp. $K_{2,j}$). In addition, denote

$$\hat{K}_{1,0} = bs_0 - s_1, \quad \hat{K}_{1,j} := bs_{2j} - s_{2j+1} - \tilde{Y}_{1,j} K_{1,j-1}^{-1} \tilde{Y}_{1,j}, \quad 1 \leq j \leq n,$$

$$\hat{K}_{2,0} = -as_0 + s_1, \quad \hat{K}_{2,j} := -as_{2j} + s_{2j+1} - \tilde{Y}_{2,j} K_{2,j-1}^{-1} \tilde{Y}_{2,j}, \quad 1 \leq j \leq n. \tag{2.6}$$

The quantities (2.6) and (2.7) have been defined in [17] for $a = 0$ and $b = 1$.

Let $$u_{1,0} := 0_q, \quad u_{1,j} := \begin{pmatrix} 0_q \\ -y_{[0,j-1]} \end{pmatrix}, \quad 1 \leq j \leq n$$

and

$$u_{2,0} := -(a + b)s_0 + s_1, \quad u_{2,j} := \begin{pmatrix} u_{2,0} \\ -\tilde{y}_{[0,j-2]} \end{pmatrix}, \quad 1 \leq j \leq 2n. \tag{2.8}$$

Moreover, let

$$\tilde{s}_j := -abs_j + (a + b)s_{j+1} - s_{j+2}, \quad 0 \leq j \leq 2n - 2 \tag{2.9}$$

and

$$\tilde{y}_{[j,k]} := \begin{pmatrix} \tilde{s}_j \\ \tilde{s}_{j+1} \\ \vdots \\ \tilde{s}_k \end{pmatrix}, \quad 0 \leq j \leq k \leq 2n - 2. \tag{2.10}$$

Note that by (2.8) and (2.9)

$$\tilde{y}_{[j,k]} = -aby_{[j,k]} + (a + b)y_{[j+1,k+1]} - y_{[j+2,k+2]}.$$

We also denote

$$Y_{1,j} := y_{[j,2j-1]}, \quad 1 \leq j \leq n, \quad Y_{2,j} := y_{[j,2j-1]}, \quad 1 \leq j \leq n - 1.$$

Let $\hat{H}_{1,j}$ (resp. $\hat{H}_{2,j}$) denote the Schur complement of the block s_{2j} (resp. s_{2j-2}) of the matrix $H_{1,j}$ (resp. $H_{2,j}$): denote $\hat{H}_{1,0} = s_0, \quad \hat{H}_{2,0} = \hat{s}_0$ and

$$\hat{H}_{1,j} := s_{2j} - Y_{1,j} H_{1,j-1}^{-1} Y_{1,j}, \quad 1 \leq j \leq n, \tag{2.10}$$

$$\hat{H}_{2,j} := \tilde{s}_{2j} - Y_{2,j} H_{2,j-1}^{-1} Y_{2,j}, \quad 1 \leq j \leq n - 1. \tag{2.11}$$

The quantities (2.10) and (2.11) have been defined in [17] for $a = 0$ and $b = 1$.

Definition 2.1. Let $[a,b] \subset \mathbb{R}$. The sequence $(s_k)_{k=0}^{2j}$ (resp. $(s_k)_{k=0}^{2j+1}$) is called a Hausdorff positive definite sequence if the block Hankel matrices $H_{1,j}$ and $H_{2,j-1}$ (resp. $K_{1,j}$ and $K_{2,j}$) are both positive definite matrices.

In the sequel, we will consider only Hausdorff positive definite sequences. In this case the THMM problem is called a non degenerate THMM problem.
Definition 2.2. \[11\] Formula (6.2)] Let \((s_k)_{k=0}^{2j+1}\) be a Hausdorff positive sequence. The 2q \(\times\) 2q matrix polynomial
\[
\tilde{U}^{(2j+1)}(z, a, b) := \left(\begin{array}{cc} \tilde{\alpha}_2^{(2j+1)}(z) & \tilde{\beta}_2^{(2j+1)}(z) \\ \tilde{\gamma}_2^{(2j+1)}(z) & \tilde{\delta}_2^{(2j+1)}(z) \end{array} \right), \quad z \in \mathbb{C}, \quad 1 \leq j \leq n, \tag{2.12}
\]
with
\[
\tilde{\alpha}_2^{(2j+1)}(z, a, b) := I_q - (z - a)\tilde{u}_{1,j}^* R_j^*(\bar{z}) K_{1,j}^{-1} R_j(a) v_j,
\]
\[
\tilde{\beta}_2^{(2j+1)}(z, a, b) := (z - a)\tilde{u}_{1,j}^* R_j^*(\bar{z}) K_{1,j}^{-1} R_j(a) \tilde{u}_{1,j},
\]
\[
\tilde{\gamma}_2^{(2j+1)}(z, a, b) := - (z - a) v_j^* R_j^*(\bar{z}) K_{1,j}^{-1} R_j(a) v_j,
\]
and
\[
\tilde{\delta}_2^{(2j+1)}(z, a, b) := I_q + (z - a) v_j^* R_j^*(\bar{z}) K_{1,j}^{-1} R_j(a) \tilde{u}_{1,j}
\]
is called the second auxiliary matrix of the THMM problem in the case of an even number of moments.

Let
\[
B_{2,j} := (b - a)\tilde{u}_{2,j}^* R_j^*(a) K_{2,j}^{-1} R_j(a) \tilde{u}_{2,j}
\]
and
\[
A_2^{(2j+1)} := \left(\begin{array}{cc} I_q & B_{2,j} \\ 0_q & I_q \end{array} \right). \tag{2.13}
\]

In \[11\], the following equality was proved:
\[
U^{(2j+1)} = \left(\frac{1}{b - z} \begin{array}{cc} I_q & 0_q \\ 0_q & I_q \end{array} \right) \tilde{U}^{(2j+1)}(2.12) A_2^{(2j+1)} \left(\begin{array}{cc} I_q & 0_q \\ 0_q & I_q \end{array} \right).
\]

Definition 2.3. \[11\] Formula (6.2)] Let \((s_k)_{k=0}^{2j}\) be a Hausdorff positive sequence. The 2q \(\times\) 2q matrix polynomial
\[
\tilde{U}^{(2j)}(z, a, b) := \left(\begin{array}{cc} \tilde{\alpha}_2^{(2j)}(z, a, b) & \tilde{\beta}_2^{(2j)}(z, a, b) \\ \tilde{\gamma}_2^{(2j)}(z, a, b) & \tilde{\delta}_2^{(2j)}(z, a, b) \end{array} \right), \quad z \in \mathbb{C}, \quad 0 \leq j \leq n - 1, \tag{2.14}
\]
with
\[
\tilde{\alpha}_2^{(2j)}(z, a, b) := I_q - (z - a)u_{2,j}^* R_j^*(\bar{z}) H_{2,j}^{-1} R_j(a) v_j,
\]
\[
\tilde{\beta}_2^{(2j)}(z, a, b) := (z - a)u_{2,j}^* R_j^*(\bar{z}) H_{2,j}^{-1} R_j(a) u_{2,j},
\]
\[
\tilde{\gamma}_2^{(2j)}(z, a, b) := - (z - a) v_j^* R_j^*(\bar{z}) H_{2,j}^{-1} R_j(a) v_j
\]
and
\[
\tilde{\delta}_2^{(2j)}(z, a, b) := I_q + (z - a) v_j^* R_j^*(\bar{z}) H_{2,j}^{-1} R_j(a) u_{2,j}
\]
is called the second auxiliary matrix of the THMM problem in the case of an odd number of moments.
2. Notations and preliminaries

Definition 2.4. Let \((s_k)_{k=0}^{2j} \) be an odd Hausdorff positive sequence. The \(2q \times 2q \) matrix polynomial

\[
\hat{U}_2^{(2j)}(z, a, b) := \begin{pmatrix}
\hat{\alpha}_2^{(2j)}(z, a, b) & \hat{\beta}_2^{(2j)}(z, a, b) \\
\hat{\gamma}_2^{(2j)}(z, a, b) & \hat{\delta}_2^{(2j)}(z, a, b)
\end{pmatrix}, \quad z \in \mathbb{C}, \quad 0 \leq j \leq n - 1,
\]

(2.15)

with

\[
\hat{\alpha}_2^{(2j)}(z, a, b) := I_q - (z - a)(u_{2,j}^* + z s_0 v_j^*) R_j^*(z) H_{2,j}^{-1} R_j(a) v_j,
\]

\[
\hat{\beta}_2^{(2j)}(z, a, b) := (z - a)(s_0 + (u_{2,j}^* + z s_0 v_j^*) R_j^*(z) H_{2,j}^{-1} R_j(a)(u_{2,j} + av_j s_0)),
\]

\[
\hat{\gamma}_2^{(2j)}(z, a, b) := -(z - a)v_j^* R_j^*(z) H_{2,j}^{-1} R_j(a) v_j
\]

and

\[
\hat{\delta}_2^{(2j)}(z, a, b) := I_q + (z - a)v_j^* R_j^*(z) H_{2,j}^{-1} R_j(a)(u_{2,j} + av_j s_0)
\]

is called the second transformed auxiliary matrix of the THMM problem in the case of an odd number of moments. The adjective transformed in the sequel will be omitted.

Let

\[
N_{2,j} := -(b - a)^{-1} v_j^* R_j^*(a) H_{1,j}^{-1} R_j(a) v_j
\]

(2.16)

and

\[
A_2^{(2j)} := \begin{pmatrix}
I_q & -a s_0 \\
0_q & I_q
\end{pmatrix} \begin{pmatrix}
I_q & 0_q \\
N_{2,j} & I_q
\end{pmatrix}.
\]

(2.17)

Remark 2.1. Let \((s_j)_{j=0}^{2n} \) be a Hausdorff positive sequence, and let \(U^{(2j)}, \hat{U}_2^{(2j)} \) and \(\hat{U}_2^{(2j)} \) be as in [14], [2,14] and (2.15). The following equalities are valid:

a) \[
\hat{U}_2^{(2j)}(z) = \begin{pmatrix}
I_q & z s_0 \\
0_q & I_q
\end{pmatrix} \hat{U}_2^{(2j)}(z) \begin{pmatrix}
I_q & -a s_0 \\
0_q & I_q
\end{pmatrix}
\]

(2.18)

and b) \[
U^{(2j)}(z) = \begin{pmatrix}
\frac{1}{(z - a)(b - z)} I_q & 0_q \\
0_q & I_q
\end{pmatrix} \hat{U}_2^{(2j-2)}(z) \begin{pmatrix}
I_q & 0_q \\
N_{2,j} & I_q
\end{pmatrix} \begin{pmatrix}
(z - a)(b - z) I_q & 0_q \\
0_q & \frac{b - z}{b - a} I_q
\end{pmatrix}.
\]

(2.19)

Proof. Equalities (2.18) and (2.19) readily follow by direct calculations. \(\square \)

2.2. Orthogonal matrix polynomials on \([a, b]\

Let us reproduce some notions on OMP which were introduced in [14]. Let \(P \) be a complex \(p \times q \) matrix polynomial. For all \(n \in \mathbb{N}_0 \), let

\[
Z_n^{[p]} := \{ A_0, A_1, \ldots, A_n \},
\]

10
where \((A_j)_{j=0}^\infty\) is the unique sequence of complex \(p \times q\) matrices such that for all \(z \in \mathbb{C}\) the polynomial \(P\) admits the representation \(P(z) = \sum_{j=0}^\infty z^j A_j\). Furthermore, we denote by \(\deg P := \sup\{j \in \mathbb{N}_0 : A_j \neq 0_{p \times q}\}\) the degree of \(P\). Observe that in the case \(P(z) = 0_{p \times q}\) for all \(z \in \mathbb{C}\) we have thus \(\deg P = -\infty\). If \(k := \deg P \geq 0\), we refer to \(A_k\) as the leading coefficient of \(P\). For all \(k \in \mathbb{N}_0\) and all \(\kappa \in \mathbb{N}_0\) with \(k \leq \kappa\), let \(Z_{k,\kappa} := \{n \in \mathbb{N}_0, k \leq n \leq \kappa\}\\)\).

Definition 2.5. Let \(\kappa \in \mathbb{N}_0 \cup \{\infty\}\), and let \((s_j)_{j=0}^{2\kappa}\) be a sequence of complex \(q \times q\) matrices. A sequence \((P_k)_{k=0}^n\) of complex \(q \times q\) matrix polynomials is called a monic left orthogonal system of matrix polynomials with respect to \((s_j)_{j=0}^{2\kappa}\) if the following three conditions are fulfilled:

1. \(\deg P_k = k\) for all \(k \in \mathbb{Z}_{0,\kappa}\);
2. \(P_k\) has the leading coefficient \(I_q\) for all \(k \in \mathbb{Z}_{0,\kappa}\);
3. \(Z_n^{[P_k]} H_n(Z_n^{[P_k]})* = 0_{q \times q}\) for all \(j, k \in \mathbb{Z}_{0,\kappa}\) with \(j \neq k\), where \(n := \max\{j, k\}\).

Remark 2.2. [14, Remark 3.6] Let \(n \in \mathbb{N}_0 \cup \{\infty\}\), and let \((s_j)_{j=0}^{2n}\) be a Hausdorff positive definite sequence, i.e., the corresponding Hankel block matrix \(H_n\) is positive definite. Denote by \((P_k)_{k=0}^n\) the monic left orthogonal system of matrix polynomials with respect to \((s_j)_{j=0}^{2n}\). Let \(\sigma\) be a nonnegative Hermitian \(q \times q\) measure on \(\mathbb{R}\) satisfying \(s_j = \int_{[a, b]} t^j d\sigma(t)\) for \(0 \leq j \leq 2n\). Thus,

\[
\int_{[a, b]} P_j d\sigma P_k^* = \begin{cases}
\tilde{H}_j, & \text{if } j = k, \\
0_q, & \text{if } j \neq k
\end{cases}
\]

for all \(0 \leq j, k \leq n\) where \(\tilde{H}_j\) denotes the Schur complement of \(H_{j-1}\) in \(H_j\); see (2.10).

Definition 2.6. Let \((s_k)_{k=0}^{2j}\) be a Hausdorff positive definite sequence. Let

\[
P_{1,0}(z) := I_q, \quad P_{2,0}(z) := I_q, \quad Q_{1,0}(z) := 0_q, \quad Q_{2,0}(z, a, b) := -(u_{2,0} + z s_0),
\]

\[
P_{1,j}(z) := (-Y_{1,j} H_{1,j-1}^{-1}, I_q) R_j(z) v_j, \quad 1 \leq j \leq n, \quad (2.20)
\]

\[
P_{2,j}(z, a, b) := (-Y_{2,j} H_{2,j-1}^{-1}, I_q) R_j(z) v_j, \quad 1 \leq j \leq n - 1, \quad (2.21)
\]

\[
Q_{1,j}(z) := -(-Y_{1,j} H_{1,j-1}^{-1}, I_q) R_{1,j}(z) u_{1,j}, \quad 1 \leq j \leq n
\]

and

\[
Q_{2,j}(z, a, b) := -(-Y_{2,j} H_{2,j-1}^{-1}, I_q) R_j(z) (u_{2,j} + z v_j s_0), \quad 1 \leq j \leq n - 1. \quad (2.22)
\]

Definition 2.7. Let \(K_{k, j}, \tilde{u}_{k, j}, \tilde{Y}_{k, j}\) for \(k = 1, 2, R_j\) and \(v_j\) be as in (1.9), (2.4), (2.5), (2.8), (2.2) and (2.3), respectively.

Let \((s_k)_{k=0}^{2j+1}\) be a Hausdorff positive definite sequence. Let

\[
\Gamma_{1,0}(z) := I_q, \quad \Gamma_{2,0}(z) := I_q, \quad \Theta_{1,0}(z) := s_0, \quad \Theta_{2,0}(z) := -s_0
\]
3. Algebraic identities

for all \(z \in \mathbb{C} \). For \(k \in \{1, 2\} \) and \(1 \leq j \leq n \), define

\[
\Gamma_{1,j}(z, b) := (-\tilde{Y}_j^* K_{1,j-1}^{-1}, I_q) R_j(z) v_j, \quad (2.23)
\]

\[
\Gamma_{2,j}(z, a) := (-\tilde{Y}_j^* K_{2,j-1}^{-1}, I_q) R_j(z) v_j, \quad (2.24)
\]

\[
\Theta_{1,j}(z, b) := (-\tilde{Y}_j^* K_{1,j-1}^{-1}, I_q) R_j(z) \tilde{u}_{1,j} \quad (2.25)
\]

\[
\Theta_{2,j}(z, a) := (-\tilde{Y}_j^* K_{2,j-1}^{-1}, I_q) R_j(z) \tilde{u}_{2,j}, \quad (2.26)
\]

for all \(z \in \mathbb{C} \).

We usually omit the dependence of the polynomials \(P_{k,j}, Q_{k,j}, \Gamma_{k,j} \) and \(\Theta_{k,j} \) for \(k = 1, 2 \) on the parameters \(a \) and \(b \).

In [3], (resp. [44]) it was proved that polynomials \(P_{k,j} \) (resp. \(\Gamma_{k,j} \)) for \(k = 1, 2 \) are in fact OMP on \([a, b]\). In [6] some properties of second kind polynomials \(Q_{k,j} \) and \(\Theta_{k,j} \) for \(k = 1, 2 \) were discussed. In [14] explicit interrelations between \(P_{k,j}, \Gamma_{k,j} \) and their second kind polynomials were studied.

For the sake of completeness in the following Remark, we reproduce explicit interrelations between the matrices \(\hat{H}_{k,j}, \hat{K}_{k,j} \) and the polynomials \(P_{1,j}, Q_{2,j}, \Gamma_{1,j}, \Theta_{2,j} \) considered in [6, Corollary 3.4] and [6, Corollary 3.10].

Remark 2.3. Let \(\hat{H}_{k,j}, \hat{K}_{k,j} \), for \(k = 1, 2 \), \(P_{1,j}, Q_{2,j}, \Gamma_{1,j}, \Theta_{2,j} \) be as in (2.11), (2.6), (2.7) and Definitions 2.6 and 2.7 respectively. The following equalities then hold:

\[
\hat{H}_{1,j} = -P_{1,j}(a)\Theta_{2,j}^*(a), \quad \hat{H}_{2,j} = -Q_{2,j}(a)\Gamma_{1,j+1}^*(a), \quad (2.27)
\]

\[
\hat{K}_{1,j} = \Gamma_{1,j}(a)Q_{2,j}(a), \quad \hat{K}_{2,j} = \Theta_{2,j}(a)P_{1,j+1}^*(a). \quad (2.28)
\]

3. Algebraic identities

In this section we will single out essential identities concerning the block matrices introduced in Section 2:

\[
L_{1,n} := (\delta_{j,k+1} I_q)_{\substack{j = 0, \ldots, n \ \ \ \ \ \ k = 0, \ldots, n - 1}} \quad \text{and} \quad L_{2,n} := (\delta_{j,k} I_q)_{\substack{j = 0, \ldots, n \ \ \ \ k = 0, \ldots, n - 1}},
\]

where \(\delta_{j,k} \) is the Kronecker symbol with \(\delta_{j,k} := 1 \) if \(j = k \) and \(\delta_{j,k} := 0 \) if \(j \neq k \).

Let

\[
\Xi_{1,j}^K := \begin{pmatrix} -K_{1,j-1}^{-1} \tilde{Y}_{1,j} \end{pmatrix}, \quad (3.1)
\]
3. Algebraic identities

Remark 3.1. The following identities are valid:

\begin{align}
 v_{j-1} - L^*_j v_j &= 0, \quad (3.2) \\
 \tilde{u}_{1,j-1} - L^*_j \tilde{u}_{1,j} &= 0, \quad (3.3) \\
 L_{2,j} - R^{*-1}_j(\bar{z})L_{2,j}R^{*-1}_{j-1}(\bar{z}) &= 0, \quad (3.4) \\
 L_{2,j}L^*_1 - T^*_j &= 0, \quad (3.5) \\
 H_{1,j}T^*_j - T_j H_{1,j} - \tilde{u}_{1,j} v^*_j + v_j \tilde{u}_{1,j} &= 0 \quad (3.6) \\
 R^{*-1}_{j-1}(a)K_{1,j-1}L^*_1 + L^*_2 K_{1,j}T^*_j - L^*_2 T_j K_{1,j} + L^*_2 T_j K_{2,j} R^{*-1}_j(a) &= 0, \quad (3.7) \\
 T_j K_{1,j} \Xi^*_1 &= 0. \quad (3.8)
\end{align}

Proof. Equalities (3.2), (3.3), (3.4), (3.5) are proved by direct calculations. Identity (3.6) was considered in [11, Proposition 2.1]. Identities (3.7) and (3.8) follow by a straightforward calculation. \qed

Remark 3.2. The following identities are valid:

\begin{align}
 u^*_1 + v^*_j H_{1,j} T^*_j &= 0, \quad (3.9) \\
 v^*_j H_{1,j} - v^*_j+1 H_{1,j+1} L_{2,j+1} &= 0, \quad (3.10) \\
 T^*_j+1 L_{1,j+1} + (T^*_j+1 T^*_j+1 - I) L_{2,j+1} - L^*_2 T^*_j L^*_1 &= 0, \quad (3.11) \\
 T^*_j+1 L_{1,j+1} T^*_j - T^*_j+1 L_{2,j+1} L^*_1 &= 0, \quad (3.12) \\
 T^*_j+1 L_{2,j+1} - L^*_2 T^*_j L^*_1 &= 0, \quad (3.13) \\
 T^*_j+1 L_{2,j+1} T^*_j - T^*_j+1 L_{2,j+1} L_{2,j} L^*_1 &= 0, \quad (3.14) \\
 (I - z T^{*-1}_j) L_{2,j+1} (T^*_j T^*_j - I) - (T^*_j+1 T^*_j+1 - I) L_{2,j+1} &= 0, \quad (3.15) \\
 (I - z T^{*-1}_j) L_{2,j+1} (I + (z - a) T^{*}_j R^{*}_j(\bar{z})) - (I - a T^{*-1}_j) L_{2,j+1} &= 0, \quad (3.16) \\
 v^*_j v^*_j+2 H_{1,j+2 L_{1,j+2}} + L^*_2 T^*_j H_{1,j+1} + L^*_1 T^*_j+1 H_{1,j+1} &= 0, \quad (3.17) \\
 v^*_j v^*_j+2 H_{1,j+2 L_{2,j+2}} + L^*_2 T^*_j+1 H_{2,j+1} + L^*_1 T^*_j+1 H_{1,j+1} &= 0, \quad (3.18) \\
 - T^*_j L^*_1 H_{1,j+1} + L^*_2 T^*_j T^*_j H_{1,j+1} + T^*_j L^*_2 T^*_j+1 H_{2,j+1} &= 0, \quad (3.19) \\
 - L^*_2 T^*_j+1 H_{0,j+1} + T^*_j L^*_2 H_{1,j+1} &= 0. \quad (3.20)
\end{align}

Proof. Identities (3.9) - (3.20) follow by a straightforward calculation. \qed

Denote

\[
 \Xi^*_2 := \left(-H^{-1}_{2,j-1} Y_{2,j} \right). \quad (3.21)
\]
4. The Blaschke–Potapov factors of the auxiliary matrices

Proposition 3.1. The following identities are valid:

\[-T_{j+1}^*(L_{1,j+1} - bL_{2,j+1}) - (T_{j+1}T_{j+1}^* - I)L_{2,j+1}R_j^*(a) \]
\[+ (I - aT_{j+1})L_{2,j+1}^*(L_{1,j} - bL_{2,j})L_{1,j}R_j^*(a) = 0, \]
\[- R_j(a)\bar{v}_j\bar{v}_j^* L_{1,j+2} - bL_{2,j+2} + (L_{1,j+1} - bL_{2,j+1}) \]
\[+ L_{2,j+1}R_{j+1}(a)T_{j+1}H_{2,j+1} = 0, \]
\[T_jH_{2,j}\bar{z}_j^H = 0. \]

Proof. Identity (3.13) follows from (3.11)–(3.14). Identity (3.22) follows (3.17)–(3.13). We prove equality (3.2). Let \(\lambda_j := (0_q, 0_q, \ldots, 0_q, I_q) \) be a \(q \times jq \) matrix. Thus \(T_j = \begin{pmatrix} T_{j-1} & 0_q \\ \lambda_j & 0_q \end{pmatrix} \). By using the last equality and equality \(H_{2,j} = \begin{pmatrix} H_{2,j-1} & Y_{2,j} \\ Y_{2,j}^* & \bar{s}_{2,j} \end{pmatrix} \),

we have

\[
T_jH_{2,j}\bar{z}_2^H = \begin{pmatrix} T_{j-1} & 0_q \\ \lambda_j & 0_q \end{pmatrix} \begin{pmatrix} H_{2,j-1} & Y_{2,j} \\ Y_{2,j}^* & \bar{s}_{2,j} \end{pmatrix} \begin{pmatrix} -H_{2,j-1}^{-1}Y_{2,j} \\ I_q \end{pmatrix} = \begin{pmatrix} T_{j-1}H_{2,j-1} & T_{j-1}Y_{2,j} \\ \lambda_jH_{2,j-1} & \lambda_jY_{2,j} \end{pmatrix} \begin{pmatrix} -H_{2,j-1}^{-1}Y_{2,j} \\ I_q \end{pmatrix} = \begin{pmatrix} 0_{jq \times q} \\ 0_q \end{pmatrix}.
\]

\[\blacksquare \]

4. The Blaschke–Potapov factors of the auxiliary matrices

In this section we obtain a multiplicative representation (1.15), (1.16) of the second auxiliary matrices \(\mathcal{U}_2^{(2n+1)} \) and \(\mathcal{F}_2^{(2n)} \) via the Blaschke–Potapov factors \(d^{(2j+1)} \) and \(d^{(2j)} \) defined in (4.5)–(4.7).

Since the matrices \(H_{2,j} \) and \(K_{1,j} \) are positive definite matrices for \(0 \leq j \leq n - 1 \) and \(0 \leq j \leq n \), respectively, their inverses can be written as

\[
H_{2,j}^{-1} = \begin{pmatrix} H_{2,j-1}^{-1} & 0_{jq \times q} \\ 0_{q \times jq} & 0_q \end{pmatrix} + \begin{pmatrix} -H_{2,j-1}^{-1}Y_{2,j} \\ I_q \end{pmatrix} \hat{H}_{2,j}^{-1}(-Y_{2,j}^*H_{2,j-1}^{-1}, I_q)
\] (4.1)
and

\[
K_{1,j}^{-1} = \begin{pmatrix} K_{1,j-1}^{-1} & 0_{jq \times q} \\ 0_{q \times jq} & 0_{q \times q} \end{pmatrix} + \begin{pmatrix} -K_{2,j-1}^{-1}\bar{y}_{1,j} \\ I_q \end{pmatrix} \hat{K}_{1,j}^{-1}(-\bar{y}_{1,j}^*K_{1,j-1}^{-1}, I_q).
\] (4.2)

Proposition 4.1. Let the polynomials \(P_{2,j} \) and \(Q_{2,j} \) be as in Definition (2.6) and \(\hat{H}_{2,j} \) be defined as in (2.17). The block elements of the matrix \(\hat{U}_2^{(2j)}(z) \) defined by (2.15) can be written in the form

\[
\hat{\alpha}_2^{(2j)}(z) = \hat{\alpha}_2^{(2j-2)}(z) + (z - a)Q_{2,j}(z)\hat{H}_{2,j}^{-1}P_{2,j}(a),
\]
\[
\hat{\beta}_2^{(2j)}(z) = \hat{\beta}_2^{(2j-2)}(z) + (z - a)Q_{2,j}(z)\hat{H}_{2,j}^{-1}Q_{2,j}(a),
\]
\[
\hat{\gamma}_2^{(2j)}(z) = \hat{\gamma}_2^{(2j-2)}(z) - (z - a)P_{2,j}(z)\hat{H}_{2,j}^{-1}P_{2,j}(a)
\]

and
\[\gamma_j^{(2j)}(z) = \delta_j^{(2j-2)}(z) - (z - a)P_{2j}(z)\widetilde{H}_{2j}^{-1}Q_{2j}(a). \]

Proof. Use (2.2), (4.1) and
\[R_j(z) = \begin{pmatrix} \frac{R_{j-1}(z)}{z^jI_q, z^{j-1}I_q, \ldots, zI_q} & 0_{m \times q} \\ I_q & \end{pmatrix}, \quad w_{2,j} = \begin{pmatrix} w_{2,j-1} \\ -s_{j-1} \end{pmatrix} \tag{4.3} \]
for \(j \geq 2. \)

Proposition 4.2. Let the polynomials \(\Theta_{1,j} \) and \(\Gamma_{1,j} \) be as in Definition 2.7. Then the block elements of the matrix \(\tilde{U}_2^{(2j+1)}(z) \) defined by (2.12) can be written in the form
\[
\begin{align*}
\alpha_j^{(2j+1)}(z) &= \alpha_j^{(2j-1)}(z) - (z - a)\Theta_{1,j}^*(z)\tilde{K}_{1,j}^{-1}\Gamma_{1,j}(a), \\
\beta_j^{(2j+1)}(z) &= \beta_j^{(2j-1)}(z) + (z - a)\Theta_{1,j}^*(z)\tilde{K}_{1,j}^{-1}\Theta_{1,j}(a), \\
\gamma_j^{(2j+1)}(z) &= \gamma_j^{(2j-1)}(z) - (z - a)\Gamma_{1,j}^*(z)\tilde{K}_{1,j}^{-1}\Gamma_{1,j}(a) \\
\end{align*}
\]

and
\[\gamma_j^{(2j+1)}(z) = \delta_j^{(2j-1)}(z) + (z - a)\Gamma_{1,j}^*(z)\tilde{K}_{1,j}^{-1}\Theta_{1,j}(a). \]

Proof. Use (2.2), (4.1), the first equality of (4.3) and equality
\[\tilde{u}_{1,j} = \begin{pmatrix} \tilde{u}_{1,j-1} \\ -bs_{j-1} + s_j \end{pmatrix} \tag{4.4} \]
for \(j \geq 2. \)

Definition 4.1. Let \(\tilde{H}_{2j}, \tilde{K}_{1,j}, P_{2j}, Q_{2j}, \Theta_{1,j} \) and \(\Gamma_{1,j} \) be as in (2.12), (2.7), and Definitions 2.6, 2.7, respectively. Define
\[
\begin{align*}
d^{(0)}(z) &= \begin{pmatrix} I_q & (z - a)s_0 \\ 0_q & I_q \end{pmatrix}, \\
d^{(2j+2)}(z) &= \begin{pmatrix} I_q + (z - a)Q_{2j}(a)\tilde{H}_{2j}^{-1}P_{2j}(a) & (z - a)Q_{2j}(a)\tilde{H}_{2j}^{-1}Q_{2j}(a) \\ - (z - a)P_{2j}(a)\tilde{H}_{2j}^{-1}P_{2j}(a) & I_q - (z - a)P_{2j}(a)\tilde{H}_{2j}^{-1}Q_{2j}(a) \end{pmatrix} \\
\end{align*} \tag{4.5} \]

for \(0 \leq j \leq n - 1, \) and
\[
\begin{align*}
d^{(2j+1)}(z) &= \begin{pmatrix} I_q - (z - a)\Theta_{1,j}^*(a)\tilde{K}_{1,j}^{-1}\Gamma_{1,j}(a) & (z - a)\Theta_{1,j}^*(a)\tilde{K}_{1,j}^{-1}\Theta_{1,j}(a) \\ - (z - a)\Gamma_{1,j}^*(a)\tilde{K}_{1,j}^{-1}\Gamma_{1,j}(a) & I_q + (z - a)\Gamma_{1,j}^*(a)\tilde{K}_{1,j}^{-1}\Theta_{1,j}(a) \end{pmatrix} \\
\end{align*} \tag{4.6} \]

for \(0 \leq j \leq n. \)

The matrix function \(d^{(2j)} \) (resp. \(d^{(2j+1)} \)) is called the Blaschke–Potapov factor of the auxiliary matrix \(\tilde{U}_2^{(2k)} \) (resp. \(\tilde{U}_2^{(2k+1)} \)).
4. The Blaschke–Potapov factors of the auxiliary matrices

Theorem 4.1. Let the matrix $\tilde{T}_2^{(2j)}$ (resp. $\tilde{U}_2^{(2j+1)}$) be as in (4.10) (resp. (4.12)). Let $d^{(j)}$ be defined as in (4.7), then

$$\tilde{U}_2^{(0)}(z) = d^{(0)}(z)d^{(2)}(z), \quad \tilde{U}_2^{(1)}(z) = d^{(1)}(z),$$

and

$$\tilde{U}_2^{(2j)}(z) = \tilde{U}_2^{(2j-2)}(z)d^{(2j+2)}(z), \quad z \in \mathbb{C}, \quad 1 \leq j \leq n - 1$$

and

$$\tilde{U}_2^{(2j+1)}(z) = \tilde{U}_2^{(2j-1)}(z)d^{(2j+1)}(z), \quad z \in \mathbb{C}, \quad 1 \leq j \leq n.$$

Proof. Equality (4.8) readily follows from direct calculation. Now we demonstrate (4.9). Denote

$$G_j^{(1)}(a) := Q_{2j}(a)\Lambda_{2j}^{-1}P_{2j}(a),$$

$$G_j^{(2)}(a) := Q_{2j}(a)\Lambda_{2j}^{-1}Q_{2j}(a),$$

and

$$G_j^{(3)}(a) := P_{2j}(a)\Lambda_{2j}^{-1}P_{2j}(a)$$

for $1 \leq j \leq n - 1$.

Now we prove equality (4.9). By using (4.5), (4.6), (4.10), (4.11), (4.12) and (4.13), Eq. (4.9) can be written in the equivalent form

$$\left(\begin{array}{c}
\tilde{\alpha}_2^{(2j)}(z) \\
\tilde{\beta}_2^{(2j)}(z) \\
\tilde{\gamma}_2^{(2j)}(z)
\end{array}\right)
- \left(\begin{array}{c}
\tilde{\alpha}_2^{(2j-2)}(z) \\
\tilde{\beta}_2^{(2j-2)}(z) \\
\tilde{\gamma}_2^{(2j-2)}(z)
\end{array}\right)\left(\begin{array}{cc}
I_q + (z-a)G_j^{(1)}(a) & (z-a)G_j^{(2)}(a) \\
-(z-a)G_j^{(1)}(a) & I_q - (z-a)G_j^{(2)}(a)
\end{array}\right) = 0.$$

(4.15)

The left-hand side of (4.15) is equivalent to the following four equalities:

$$\Upsilon_{11,j} := \tilde{\alpha}_2^{(2j)}(z) - \tilde{\alpha}_2^{(2j-2)}(z) + (z-a)\left(-\tilde{\alpha}_2^{(2j-2)}(z)G_j^{(1)}(a) + \tilde{\beta}_2^{(2j-2)}(z)G_j^{(2)}(a)\right),$$

$$\Upsilon_{12,j} := \tilde{\beta}_2^{(2j)}(z) - \tilde{\beta}_2^{(2j-2)}(z) - (z-a)\left(\tilde{\alpha}_2^{(2j-2)}(z)G_j^{(1)}(a) - \tilde{\beta}_2^{(2j-2)}(z)G_j^{(2)}(a)\right),$$

$$\Upsilon_{21,j} := \tilde{\gamma}_2^{(2j)}(z) - \tilde{\gamma}_2^{(2j-2)}(z) + (z-a)\left(-\tilde{\gamma}_2^{(2j-2)}(z)G_j^{(1)}(a) + \tilde{\delta}_2^{(2j-2)}(z)G_j^{(2)}(a)\right),$$

and

$$\Upsilon_{22,j} := \tilde{\gamma}_2^{(2j+1)}(z) - \tilde{\gamma}_2^{(2j-2)}(z) - (z-a)\left(\tilde{\gamma}_2^{(2j-2)}(z)G_j^{(1)}(a) - \tilde{\delta}_2^{(2j-2)}(z)G_j^{(2)}(a)\right).$$

By taking into account (4.11) and (4.13), we have

$$\Upsilon_{11,j} = (z-a)\tilde{\Upsilon}_{11,j}P_{2j}(a), \quad \Upsilon_{12,j} = (z-a)\tilde{\Upsilon}_{12,j}Q_{2j}(a),$$

$$\Upsilon_{21,j} = (z-a)\tilde{\Upsilon}_{21,j}P_{2j}(a), \quad \Upsilon_{22,j} = (z-a)\tilde{\Upsilon}_{22,j}Q_{2j}(a)$$

16
where
\[
\tilde{T}_{1,j+1} := Q_{2,j+1}^*(\bar{z}) - Q_{2,j+1}^*(a) + (z - a)(u_{2,j}^* + zs_0 v_j^*) R_j^*(\bar{z}) H_{2,j}^{-1} R_j(a) v_j Q_{2,j+1}^*(a)
+ (z - a)(s_0 + (u_{2,j}^* + zs_0 v_j^*) R_j^*(\bar{z}) H_{2,j}^{-1} R_j(a)(u_{2,j} + av_j s_0)) P_{2,j+1}^*(a),
\]
\[
\tilde{T}_{2,j+1} := - P_{2,j+1}^*(\bar{z}) + P_{2,j+1}^*(a) + (z - a)v_j^* R_j^*(\bar{z}) H_{2,j}^{-1} R_j(a) v_j Q_{2,j+1}^*(a)
+ (z - a)v_j^* R_j^*(\bar{z}) H_{2,j}^{-1} R_j(a)(u_{2,j} + av_j s_0) P_{2,j+1}^*(a).
\]

Now we verify that
\[
\tilde{T}_{\ell,j} = 0, \quad \ell, k \in \{1, 2\}, \quad 1 \leq j \leq n - 1. \tag{4.16}
\]

By using (2.22), (2.21) and (3.21), we have
\[
\tilde{T}_{1,j+1} = -(u_{2,j} + zs_0 v_j^*) R_{j+1}^*(\bar{z}) + (u_{2,j} + zs_0 v_j^*) R_{j+1}^*(a) + (z - a)(u_{2,j} + zs_0 v_j^*) R_j^*(\bar{z}) H_{2,j}^{-1} R_j(a)(u_{2,j} + av_j s_0) P_{2,j+1}^*(a)
\]
\[
\cdot v_j^* R_{j+1}^*(a) \Xi_{2,j}^H
= (z - a)v_j^* H_{1,j+2} R_{j+2}^*(\bar{z})(-T_{j+2}^*(L_{1,j+2} - bL_{2,j+2})
- ((I - zT_{j+2}^*) L_{1,j+2} - bL_{2,j+2}) + (z - a)(I - zT_{j+1}^*) L_{2,j+2}
- R_{j+1}^*(\bar{z}) T_{j+1}^*(L_{1,j+1} - bL_{2,j+1})) H_{2,j}^{-1} R_j(a) v_j^* H_{1,j+2}
- (L_{1,j+1} - bL_{2,j+1}) - (I - zT_{j+1}^*) L_{2,j+2}(T_{j+1}^* T_{j+1}^* - I) R_{j+1}^*(a)
+ ((I - zT_{j+2}^*) L_{1,j+2} - bL_{2,j+2}) + (z - a)(I - zT_{j+2}^*) L_{2,j+2}
\cdot R_{j+1}^*(\bar{z}) T_{j+1}^*(L_{1,j+1} - bL_{2,j+1})
\cdot \left(L_{1,j+1} R_{j+1}^*(a) + H_{2,j}^{-1} (L_{1,j+1} - bL_{2,j+1}) \Xi_{2,j}^H \right)
\]
\[
= (z - a)v_j^* H_{1,j+2} R_{j+2}^*(\bar{z})(-T_{j+2}^*(L_{1,j+1} - bL_{2,j+1}) - (T_{j+2} T_{j+2}^* - I)
\cdot L_{2,j+2} R_{j+1}^*(a) + (I - aT_{j+1}^*) L_{2,j+2}(L_{1,j+1} - bL_{2,j+1}) L_{1,j+1} R_{j+1}^*(a)
- (I - aT_{j+2}^*) L_{2,j+2}(L_{1,j+1} - bL_{2,j+1}) H_{2,j}^{-1} R_j(a) v_j^* H_{1,j+2}
\cdot (L_{1,j+1} - bL_{2,j+1}) + (I - aT_{j+2}^*) L_{2,j+2}(L_{1,j+1} - bL_{2,j+1}) H_{2,j}^{-1}
\cdot (L_{1,j+1} - bL_{2,j+1}) H_{2,j}^{-1} \Xi_{2,j}^H
\]
\[
= -(z - a)v_j^* H_{1,j+2} R_{j+2}^*(\bar{z})(I - aT_{j+2}^*) L_{2,j+2}(L_{1,j+1} - bL_{2,j+1}) H_{2,j}^{-1}
\cdot L_{2,j+1} T_{j+1}^* \Xi_{2,j}^H
= 0.
\]

In the second equality we used (3.9) and (3.10). In the third equality we employed (3.15) and (3.16). The penultimate equality follows from (3.22) and (3.23). The last equality follows from identity (3.24). Equality (4.16) for \(\ell = 2 \) is proved by using (2.21), (2.22), (3.2), (3.5), (3.23) and (3.24).
To prove \(4.10\), we used the following equalities:
\[
\Theta^*_{1,j}(z) - \Theta^*_{1,j}(a) + (z - a)\tilde{u}_{1,j-1}^*R^*_{j-1}(z)K^{-1}_{1,j-1}R_{j-1}(a)v_{j-1}\Theta^*_{1,j}(a)
- (z - a)\tilde{u}_{1,j-1}^*R^*_{j-1}(a)K^{-1}_{1,j-1}R_{j-1}(a)\tilde{u}_{1,j-1}\Gamma^*_{1,j}(a) = 0
\]
and
\[
\Gamma^*_{1,j}(z) - \Gamma^*_{1,j}(a) + (z - a)\tilde{v}_{j-1}^*R^*_{j-1}(z)K^{-1}_{1,j-1}R_{j-1}(a)v_{j-1}\Theta^*_{1,j}(a)
- (z - a)\tilde{v}_{j-1}^*R^*_{j-1}(a)K^{-1}_{1,j-1}R_{j-1}(a)\tilde{u}_{1,j-1}\Gamma^*_{1,j}(a) = 0
\]
In turn \((4.17), (4.18)\) are demonstrated by using \((2.25), (3.3), (3.1), (3.5), (3.2), (3.3), (3.6), (3.7)\) and \((3.8)\). The theorem is proved.

Corollary 4.1. Let the auxiliary matrices \(\tilde{U}^{(2j+1)}_2\) and \(\tilde{U}^{(2j)}_2\) defined as in \((2.12)\) and \((2.15)\). Furthermore, let \(a^{(j)}\) be as in \((4.3)\) and \((4.7)\). Thus for \(1 \leq j \leq n\) the admit a Blaschke–Potapov multiplicative representation \((4.13)\) and \((4.16)\).

The proof follows immediately from Theorem 4.1.

5. Representation of the RM via DSM parameters of the THMM problem

In this section we obtain a multiplicative representation of the RM of the THMM problem in terms of OMPs on \([a, b]\) (more information can be found in Definitions \(2.6)\) and \((2.7)\) and DSM parameters.

Definition 5.1. Let \(a\) and \(b\) be real numbers such that \(a < b\). Let \(H_{2,j}, K_{1,j}, R_j, v_j, u_{2,j}\) be defined by \((1.8), (1.9), (2.1), (2.2)\) and \((2.3)\), respectively. Furthermore, let \(H_{2,j}, K_{1,j}\) be positive definite matrices. For \(1 \leq j \leq n - 1\) denote by
\[
\mathbf{r}_0 := s_0,
\mathbf{r}_j(a, b) := s_0 + (u_{2,j} + as_0v_j)R^*_j(a)H_{2,j}^{-1}R_j(a)(u_{2,j} + av_j)K^{-1}_{1,j}K_{1,j}^{-1}(u_{2,j} + av_j)K^{-1}_{1,j}(u_{2,j} + av_j),
\]
\[
\mathbf{t}_0(b) := v_0^*R^*_0(a)K_{1,j}^{-1}R_j(a)v_0, \quad \mathbf{t}_j(a, b) := v^*_jR^*_j(a)K_{1,j}^{-1}R_j(a)v_j,
\]
\[
\mathbf{1}_{-1} := s_0, \quad \mathbf{1}_0(a, b) := (u_{2,0} + as_0v_0)H_{2,0}^{-1}(u_{2,0} + av_0)K_{1,0}^{-1}(u_{2,0} + av_0),
\]
\[
\mathbf{1}_j(a, b) := (u_{2,j} + as_0v_j)^{-1}R^*_j(a)H_{2,j}^{-1}R_j(a)(u_{2,j} + av_j)K_{1,j}^{-1}K_{1,j}^{-1}(u_{2,j} + av_j)K_{1,j}^{-1}(u_{2,j} + av_j)K^{-1}_{1,j}(u_{2,j} + av_j),
\]
and
\[
\mathbf{m}_0(b) := t_0(b), \quad \mathbf{m}_j(a, b) := v_0^*R^*_0(a)K_{1,j}^{-1}R_j(a)v_j = v^*_jR^*_j(a)K_{1,j}^{-1}K_{1,j}^{-1}(u_{2,j-1} + av_{j-1})K^{-1}_{1,j-1}(u_{2,j-1} + av_{j-1}),
\]
for \(1 \leq j \leq n\). The matrices \(\mathbf{1}_j(a, b)\) and \(\mathbf{m}_j(a, b)\) are called the second type Dyukarev–Stieltjes matrix parameters of the THMM problem.
Below we shall usually omit the dependence on a and b of the matrices (5.1)-(5.5).

Note that from (4.1), (4.2), (4.3), (4.4), (2.22), (2.23), (2.25) and (2.21) the following identities are valid:

\[l_j = Q_{2,j}(a) \tilde{H}_{2,j}^{-1} Q_{2,j}(a) , \quad m_j = \Gamma_{1,j}(a) \tilde{K}_{1,j}^{-1} \Gamma_{1,j}(a) , \]
\[r_j = \Gamma_{1,j}(a) \Theta_{1,j}(a) , \quad t_j = Q_{2,j}^{-1}(a) P_{2,j}(a) . \]

(5.6)

(5.7)

Remark 5.1. Let r_j, t_j, l_j and m_j be as in (5.1)-(5.5). Thus, the following equalities hold:

\[l_j = r_{j+1} - r_j , \quad j \geq 0 , \]
\[m_j = t_j - t_{j-1} , \quad j \geq 1 . \]

(5.8)

(5.9)

Moreover, the matrices l_j and m_j are positive definite matrices.

Proof. Equalities (5.8)-(5.9) follow by direct calculation from (5.1)-(5.5).

By the second equality of (2.27) and the fact that $\hat{K}_{1,j}$ and $\hat{H}_{2,j}$ are positive definite matrices we obtain that l_j and m_j also are. \qed

The following theorem shows an explicit representation between the Blaschke–Potapov factors $d^{(j)}$ and the matrices r_j, t_j, l_j and m_j.

Theorem 5.1. Let $d^{(j)}$ be as in (4.5)-(4.6) and r_j, t_j, l_j, m_j be defined by (5.1)-(5.5), respectively. The identity

\[d^{(2j+1)}(z) = \begin{pmatrix} I_q & r_j \\ 0_q & I_q \end{pmatrix} \begin{pmatrix} I_q & 0_q \\ -(z-a)m_j & I_q \end{pmatrix} \begin{pmatrix} I_q & -r_j \\ 0_q & I_q \end{pmatrix} , \]

(5.10)

\[d^{(2j+2)}(z) = \begin{pmatrix} I_q & 0_q \\ -t_j & I_q \end{pmatrix} \begin{pmatrix} I_q & (z-a)l_j \\ 0_q & I_q \end{pmatrix} \begin{pmatrix} I_q & 0_q \\ t_j & I_q \end{pmatrix} \]

(5.11)

then holds for $0 \leq j \leq n$.

Proof. We prove (5.10). For $j = 0$ the proof can be checked by a direct calculation. Let $1 \leq j \leq n$. Denote

\[d^{(2j+1)} := \begin{pmatrix} d_j^{11} & d_j^{12} \\ d_j^{21} & d_j^{22} \end{pmatrix} . \]

The relation (5.10) is equivalent to the following four equalities:

\[d_j^{11} - I_q + (z-a)r_j m_j = 0 , \]
\[d_j^{12} - (z-a)r_j m_j r_j = 0 , \]
\[d_j^{21} + (z-a)m_j r_j = 0 , \]
\[d_j^{22} - I_q - (z-a)m_j r_j = 0 . \]

(5.12)

(5.13)

(5.14)

(5.15)
5. Representation of the RM via DSM parameters of the THMM problem

Let us now prove (5.12). By the (1, 1) element of $d^{(2j+1)}$, (5.6) and (5.7), we have

\[d^{11}_j - I_q + (z - a)r_jm_j \]
\[= -(z - a)\Theta^*_1j(a)K^{-1}_1j(a) + (z - a)\Theta^*_1j(a)\Gamma_j^{-1}(a)\Gamma_j^{-1}(a)K^{-1}_1j(a) = 0 \]

The equalities (5.13) and (5.15) are proved in a similar way. Note that (5.14) is verified by definition. To prove (5.11) one uses (4.6), the first equality of (5.6) and the second equality of (5.7). Thus theorem 5.1 is proved.

Let $n \in \mathbb{N}_0$, and let A_0, \ldots, A_n be complex $q \times q$ matrices. Then let

\[\prod_{j=0}^{n-1}A_j = A_0A_1 \cdots A_{n-1}A_n \quad \text{and} \quad \prod_{j=0}^{n}A_j = A_nA_{n-1} \cdots A_1A_0 \]

denote the right and left product of the matrices A_0, A_1, \ldots, A_n, respectively.

The following corollary readily yields by employing (5.8), (5.9), Theorem 5.1 and Corollary 4.1.

Corollary 5.1. Let $\hat{U}^{(2n)}_2$ and $\hat{U}^{(2n+1)}_2$ be as in (5.15) and (5.14), respectively. Thus, the equalities

\[\hat{U}^{(2n)}_2 = \prod_{k=0}^{n-1} \begin{pmatrix} I_q & (z - a)I_{k-1} \\ 0_q & I_q \end{pmatrix} \begin{pmatrix} I_q & 0_q \\ -m_k & I_q \end{pmatrix} \]

and

\[\hat{U}^{(2n+1)}_2 = \prod_{k=0}^{n} \begin{pmatrix} I_q & I_{k-1} \\ 0_q & I_q \end{pmatrix} \begin{pmatrix} I_q & 0_q \\ -(z - a)m_k & I_q \end{pmatrix} \]

are valid.

Now we derive a new representation of the RM of the THMM problem via DSM parameters in both cases for odd and even number of moments. We also reproduce an analogue representation given in [9, Corollary 3]. To this end let us recall the DSM parameters first introduced in [4].

\[M_0(a) := s_0^{-1}, \quad L_0(a) := \tilde{u}_{2,0}K_{2,0}^{-1}\tilde{u}_{2,0}, \]

\[M_j(a) := v_j^{*}R_j^{*}(a)H_{j}^{-1}R_j(a)v_j - v_{j-1}^{*}R_{j-1}(a)H_{1,j-1}^{-1}R_{j-1}(a)v_{j-1}, \]

\[L_j(a) := \tilde{u}_{2,j}^{*}R_{j}^{*}(a)K_{2,j}^{-1}\tilde{R}_{2,j}(a)\tilde{u}_{2,j} - \tilde{u}_{2,j-1}^{*}R_{j-1}(a)K_{2,j-1}^{-1}R_{j-1}(a)\tilde{u}_{2,j-1}. \]

Theorem 5.2. Let $P_{k,j}$, $Q_{k,j}$, $\Gamma_{k,j}$ and $\Theta_{k,j}$ be as in Definitions 2.6 and 2.7. Furthermore, let the RM $U^{(m)}$ of the THMM problem be as in (1.11), (1.12).
6. Extremal solutions of the THMM problem via continued fractions in terms of DSM parameters

a) Let l_k, m_k, be as in Definition (5.19). Thus, the following representation of the resolvent matrix in the case of odd numbers of moments holds

$$U^{(2n)}(z, a, b) = \left(\begin{array}{cc} \frac{1}{b-z}(z-a)I_q & 0_q \\ 0_q & I_q \end{array} \right) \prod_{k=0}^{n-1} \left(\begin{array}{cc} I_q & (z-a)l_{k-1} \\ 0_q & I_q \end{array} \right) \left(\begin{array}{cc} I_q & 0_q \\ -m_k & I_q \end{array} \right) \left(\begin{array}{cc} (b-a)(z-a)I_q \\ 0_q \end{array} \right) \right) \left(\begin{array}{cc} (b-a)I_q & 0_q \\ 0_q & I_q \end{array} \right), \tag{5.21}$$

$$U^{(2n+1)}(z, a, b) = \left(\begin{array}{cc} \frac{1}{b-z}I_q & 0_q \\ 0_q & I_q \end{array} \right) \prod_{k=0}^{n} \left(\begin{array}{cc} I_q & l_{k-1} \\ 0_q & I_q \end{array} \right) \left(\begin{array}{cc} I_q & 0_q \\ -(z-a)m_k & I_q \end{array} \right) \left(\begin{array}{cc} (b-a)I_q & 0_q \\ 0_q & I_q \end{array} \right). \tag{5.22}$$

b) Moreover, let M_k, L_k be as in (5.18) - (5.20). Thus the following representations hold:

$$U^{(2n)}(z, a, b) = \prod_{k=0}^{n-1} \left(\begin{array}{cc} I_q & 0_q \\ -(z-a)M_k & I_q \end{array} \right) \left(\begin{array}{cc} I_q & L_k \\ 0_q & I_q \end{array} \right) \left(\begin{array}{cc} I_q & 0_q \\ -(z-a)M_n & I_q \end{array} \right) \left(\begin{array}{cc} I_q & 0_q \\ (b-a)P_{1,n}^{-1}(a)I_q & 0_q \end{array} \right) \tag{5.23}$$

and

$$U^{(2n+1)}(z, a, b) = \prod_{k=0}^{n} \left(\begin{array}{cc} I_q & 0_q \\ -(z-a)M_k & I_q \end{array} \right) \left(\begin{array}{cc} I_q & L_k \\ 0_q & I_q \end{array} \right) \left(\begin{array}{cc} I_q & 0_q \\ -(z-a)L_k & I_q \end{array} \right) \left(\begin{array}{cc} I_q & 0_q \\ -(z-a)P_{2,n}^{-1}(a)I_q & 0_q \end{array} \right) \tag{5.24}$$

Proof. We prove part a). Equality (5.21) is proved using (1.13), (2.19), (2.16) and (5.16). In a similar manner one proves equality (5.22) by using (1.14), (5.17) and (2.13). Part b) is proved in [9] Corollary 3. \qed

6. Extremal solutions of the THMM problem via continued fractions in terms of DSM parameters

As a consequence of the multiplicative representation of $U^{(2n)}$ and $U^{(2n+1)}$ as in (5.21) and (5.22), we attain a representation of the extremal solutions of the THMM problem through continued fractions in terms of DSM parameters.

Set $\frac{1}{A} := AB^{-1}$ for $A, B \in C^{n \times n}$ with B invertible.
6. Extremal solutions of the THMM problem via continued fractions in terms of DSM parameters

Definition 6.1. Let be \(P_{k,n}, Q_{k,n} \) as in Definition 2.4 and let \(\Theta_{k,n}, \Gamma_{k,n} \) be as in Definition 2.7. The following \(q \times q \) matrix valued functions defined for all \(z \in \mathbb{C} \setminus [a,b] \):

\[
\begin{align*}
\mathbf{I}^{(2n)}_k(z) &= \begin{pmatrix} 0_q & I_q \\ I_q & (z-a)I_k \end{pmatrix}, & \mathbf{m}^{(2n)}_k(z) &= \begin{pmatrix} 0_q & I_q \\ I_q & -\mathbf{m}_k \end{pmatrix}, \\
\mathbf{I}^{(2n+1)}_k(z) &= \begin{pmatrix} 0_q & I_q \\ I_q & \mathbf{I}_k \end{pmatrix}, & \mathbf{m}^{(2n+1)}_k(z) &= \begin{pmatrix} 0_q & I_q \\ I_q & -(z-a)\mathbf{m}_k \end{pmatrix}, \\
\mathbf{L}^{(2n)}_k(z) &= \begin{pmatrix} 0_q & I_q \\ I_q & (z-a)\mathbf{L}_k \end{pmatrix}, & \mathbf{M}^{(2n)}_k(z) &= \begin{pmatrix} 0_q & I_q \\ I_q & -\mathbf{M}_k \end{pmatrix}, \end{align*}
\]

are called the even (resp. odd) Krein and Friedrichs extremal solutions of the THMM problem.

Note that a justification of the adjective “extremal” has been not yet given. Such a justification will be presented in a forthcoming work. In [25, Definition 4] the extremal problem of the Stieltjes matrix moment problem are the terminal matrices of a matrix interval.

To obtain a continued fraction representation of the extremal functions, we write a slightly different multiplicative representation of the RM \(U^{(m)} \); see (5.21)-(5.24). Let us introduce some additional notation:

\[
\begin{align*}
\begin{align*}
\mathbf{I}_k^{(2n)}(z) &= \begin{pmatrix} 0_q & I_q \\ I_q & (z-a)I_k \end{pmatrix}, & \mathbf{m}_k^{(2n)}(z) &= \begin{pmatrix} 0_q & I_q \\ I_q & -\mathbf{m}_k \end{pmatrix}, \\
\mathbf{I}_k^{(2n+1)}(z) &= \begin{pmatrix} 0_q & I_q \\ I_q & \mathbf{I}_k \end{pmatrix}, & \mathbf{m}_k^{(2n+1)}(z) &= \begin{pmatrix} 0_q & I_q \\ I_q & -(z-a)\mathbf{m}_k \end{pmatrix}, \\
\mathbf{L}_k^{(2n)}(z) &= \begin{pmatrix} 0_q & I_q \\ I_q & (z-a)\mathbf{L}_k \end{pmatrix}, & \mathbf{M}_k^{(2n)}(z) &= \begin{pmatrix} 0_q & I_q \\ I_q & -\mathbf{M}_k \end{pmatrix}, \end{align*}
\end{align*}
\]

and

\[
\begin{align*}
\mathbf{D}_1 &= \begin{pmatrix} 0_q & \frac{1}{(b-z)(z-a)}I_q \\ I_q & 0_q \end{pmatrix}, & \mathbf{D}_2 &= \begin{pmatrix} 0_q & \frac{b-z}{b-a}I_q \\ I_q & 0_q \end{pmatrix}, \\
\mathbf{D}_3 &= \begin{pmatrix} 0_q & \frac{1}{b-z}I_q \\ I_q & 0_q \end{pmatrix}, & \mathbf{D}_4 &= \begin{pmatrix} (b-z)I_q & 0_q \\ 0_q & I_q \end{pmatrix}, \\
\mathbf{D}_5 &= \begin{pmatrix} \frac{1}{b-z}I_q & 0_q \\ 0_q & I_q \end{pmatrix}, & \mathbf{D}_6 &= \begin{pmatrix} 0_q & I_q \\ I_q & 0_q \end{pmatrix}, \\
\mathbf{B}_1^{(2n)} &= \begin{pmatrix} 0_q & I_q \\ I_q & Q_{1,n}^*(a)P_{1,n}^{-1}(a) + \frac{1}{b-a}\Theta_{1,n}^*(a)\Gamma_{1,n}^{-1}(a) \end{pmatrix}, & \mathbf{B}_1^{(2n+1)} &= \begin{pmatrix} 0_q & I_q \\ I_q & -\Gamma_{2,n}^*(a)\Theta_{2,n}^{-1}(a) - (b-a)P_{2,n}^*(a)Q_{2,n}^{-1}(a) \end{pmatrix}, \\
\mathbf{B}_2^{(2n)} &= \begin{pmatrix} 0_q & I_q \\ I_q & Q_{2,n-1}^{-1}(a)P_{2,n-1}(a) + \frac{1}{b-a}\Theta_{2,n}^{-1}(a)\Gamma_{2,n}(a) \end{pmatrix}, & \mathbf{B}_2^{(2n+1)} &= \begin{pmatrix} 0_q & I_q \\ I_q & -\Gamma_{1,n}^{-1}(a)\Theta_{1,n}(a) - (b-a)P_{1,n+1}^{-1}(a)Q_{1,n+1}(a) \end{pmatrix}. \end{align*}
\]

\[
\mathbf{B}_1^{(2n)}(z) := \begin{pmatrix} 0_q & I_q \\ I_q & Q_{1,n}(a)P_{1,n}^{-1}(a) + \frac{1}{b-a}\Theta_{1,n}(a)\Gamma_{1,n}^{-1}(a) \end{pmatrix}, & \mathbf{B}_1^{(2n+1)}(z) := \begin{pmatrix} 0_q & I_q \\ I_q & -\Gamma_{2,n}(a)\Theta_{2,n}^{-1}(a) - (b-a)P_{2,n}^{-1}(a)Q_{2,n}^{-1}(a) \end{pmatrix}, \\
\mathbf{B}_2^{(2n)}(z) := \begin{pmatrix} 0_q & I_q \\ I_q & Q_{2,n-1}^{-1}(a)P_{2,n-1}(a) + \frac{1}{b-a}\Theta_{2,n}^{-1}(a)\Gamma_{2,n}(a) \end{pmatrix}, & \mathbf{B}_2^{(2n+1)}(z) := \begin{pmatrix} 0_q & I_q \\ I_q & -\Gamma_{1,n}^{-1}(a)\Theta_{1,n}(a) - (b-a)P_{1,n+1}^{-1}(a)Q_{1,n+1}(a) \end{pmatrix}. \end{align*}
\]
6. Extremal solutions of the THMM problem via continued fractions in terms of DSM parameters

Lemma 6.1. Let the RM $U^{(2n)}$ and $U^{(2n+1)}$ be defined as in (1.11) and (1.12). The identities (1.6), (1.7)

\[U^{(2n)} = M_0^{(2n)} L_0^{(2n)} \cdots L_{n-1}^{(2n)} M_n^{(2n)} D_1^{n} \quad (6.9) \]

and

\[U^{(2n+1)} = D_5 M_0^{(2n+1)} L_0^{(2n+1)} \cdots M_n^{(2n+1)} L_n^{(2n+1)} D_1^{(2n+1)} D_6 \quad (6.10) \]

hold.

Proof. We prove (1.6). By using (6.7), (6.3) and (6.8) clearly the following equalities are valid:

\[D_1^{(2n)} = \left(\frac{1}{b-z}(z-a)I_0 I_q - 1 \right) \left(I_q (z-a)I_1 \right) \]

\[M_k^{(2n)} (2n) = \left(\begin{array}{cc} I_q & 0_q \\ -m_k & I_q \end{array} \right) \left(\begin{array}{cc} I_q & (z-a)I_k \\ 0_q & I_q \end{array} \right) \]

\[D_2^{(2n)} D_2 = \left(\begin{array}{cc} Q^{-1}_{2,n-1}(a)P_{2,n-1}(a) + \frac{1}{b-a} \Theta^{-1}_{2,n}(a)\Gamma_{2,n}(a) & 0_q \\ 0_q & \frac{b-z}{b-a} I_q \end{array} \right) \cdot \left(I_q \right) \]

The latter equalities along with (5.21) imply (1.6). In a similar manner ones proves (1.7), (6.9) and (6.10).

Following [16, Page 11], we consider $\mathbb{C}^{q \times q} \otimes \mathbb{C}^{q \times q}$ as a right module over $\mathbb{C}^{q \times q}$

For $\mathcal{A} := \left(\begin{array}{cc} A & B \\ C & D \end{array} \right)$ define the transformation

\[T_{\mathcal{A}} \left(\begin{array}{c} X \\ Y \end{array} \right) = \left(\begin{array}{c} (AX + BY)(CX + DY)^{-1} \\ I_q \end{array} \right) \quad (6.11) \]

if $CX + DY$ is invertible.

Theorem 6.1. Let $Q_{k,j}$, $P_{k,j}$, $\Gamma_{k,j}$ and $\Theta_{k,j}$ for $k = 1, 2$ be as in Definition 2.6 and Definition 2.7. The extremal solutions (6.1) and (6.2) of the THMM problem can be
6. Extremal solutions of the THMM problem via continued fractions in terms of DSM parameters

represented via finite matrix continued fractions:

\[
\frac{\Theta_{1,n}^*(z)}{(b - z)\Gamma_{1,n}^*(z)} = \frac{s_0}{b - z} + \frac{I_q}{(z - a)(b - z)m_0 + \frac{1}{b - z}l_0 + \cdots + \frac{1}{b - z}l_{n-1} + \cdots \frac{1}{b - z}l_1} - (z - a)(b - z)m_{n-1} + \frac{I_q}{b - z}l_n \tag{6.12}
\]

\[
\frac{\Theta_{2,n}^*(z)}{(z - a)\Gamma_{1,n}^*(z)} = -\frac{I_q}{(z - a)M_0 + \frac{I_q}{L_0 + \cdots + L_{n-1} + \cdots \frac{1}{b - z}l_1} - (z - a)M_n} \tag{6.13}
\]

\[
-\frac{Q_{2,n+1}^*(z)}{P_{1,n+1}^*(z)} = \frac{I_q}{(z - a)M_0 + \frac{I_q}{L_0 + \cdots + L_{n-1} + \cdots \frac{1}{b - z}l_1} - (z - a)M_n + L_n^{-1}} \tag{6.14}
\]

\[
\frac{Q_{2,n}^*(z)}{(z - a)(b - z)P_{2,n}^*(z)} = \frac{s_0}{b - z} + \frac{I_q}{(z - a)(b - z)m_0 + \frac{1}{b - z}l_0 + \cdots \frac{1}{b - z}l_{n-1} + \cdots \frac{1}{b - z}l_1} - (z - a)(b - z)m_n \tag{6.15}
\]

Proof. We prove (6.12). We apply the transformation (6.11) at \((X, Y) = (0, I_q)\) to both sides of (5.21), more precisely, on the left side \(U = U(2n)\), however, on the right side \(U\) is equal to \(D_1 \circ (2n) m_0 \cdots m_{n-1} B_2^{(2n)} D_2\). Taking into account the composition property of the Möbius transformation

\[
T_{U(2n)} = T_{D_1} \circ T_{m_0^{(2n)}} \cdots T_{m_{n-1}^{(2n)}} B_2^{(2n)} D_2,
\]

we attain the following equality:

\[
\left(\frac{1}{b - z} \Theta_{1,n}^*(z) \Gamma_{1,n}^*(z) \right) = \left(\frac{1}{b - z} l_{n-1} + ((b - z)(z - a)m_0 + \frac{1}{b - z}l_0 + \cdots + ((b - z)(z - a)m_n + \frac{1}{b - z}l_{n-1})^{-1} \ldots ^{-1} \right).
\]

24
Equality (6.12) is proved. Equality (6.13) can be verified applying the Möbius transformation \(\mathcal{T} \) to both sides of (6.9) at \(\left(\frac{y}{X} \right) = \left(\begin{smallmatrix} I_q \\ 0_q \end{smallmatrix} \right) \). In a similar way, to prove (6.14) one uses (6.10) at \(\left(\frac{y}{X} \right) = \left(\begin{smallmatrix} i_q \\ 0_q \end{smallmatrix} \right) \). To verify (6.15) we employ the transformation \(\mathcal{T} \) to equality (1.4), more precisely, from one side for \(\mathcal{U} = U^{(2n+1)}D_4^{-1} \) on the other side \(\mathcal{U} \) is equal to

\[
\mathcal{U} = U^{(2n+1)}D_4^{-1} = U^{(2n+1)} = \mathbb{M}_0^{(2n+1)}L_0^{(2n+1)} \ldots \mathbb{M}_n^{(2n+1)}L_n^{(2n+1)}B_1^{(2n+1)}D_6 \text{ at } \left(\frac{y}{X} \right) = \left(\begin{smallmatrix} I_q \\ 0_q \end{smallmatrix} \right). \]

\[\Box\]

7. Relations between the OMP, DSM parameters and Schur complements

In this section, we obtain explicit relations between the OMP on the interval \([a, b]\) (as in Definitions 2.6 and 2.7), the DSM parameters (5.3)-(5.5) and the Schur complements \(\hat{H}_{2,j} \) and \(\hat{K}_{1,j} \); see (2.11) and (2.6).

Proposition 7.1. Let the polynomials \(P_{2,j}, Q_{2,j}, \Gamma_{1,j} \) and \(\Theta_{1,j} \) be defined as in Definitions 2.6 and 2.7. Let the DSM parameters \(m_j \) and \(l_j \) be as in (5.3)-(5.7). The following identities then hold:

\[
Q_{2,j}(a) = (-1)^j m_0^{-1} l_0^{-1} m_1^{-1} l_1^{-1} \ldots I_{j-1}^{-1} m_j^{-1}, \quad 0 \leq j \leq n - 1, \quad (7.1)
\]

\[
\Gamma_{1,j}(a) = (-1)^j m_0^{-1} l_0^{-1} m_1^{-1} l_1^{-1} \ldots I_{j}^{-1}, \quad 1 \leq j \leq n, \quad (7.2)
\]

\[
P_{2,j}(a) = (-1)^j m_0^{-1} l_0^{-1} m_1^{-1} l_1^{-1} \ldots I_{j-1}^{-1} (m_0 + m_1 + \ldots + m_{j-1} + m_j), \quad 1 \leq j \leq n - 1 \quad (7.3)
\]

and

\[
\Theta_{1,j}(a) = (-1)^j m_0^{-1} l_0^{-1} m_1^{-1} l_1^{-1} \ldots m_{j-1}^{-1} l_{j-1}^{-1} (s_0 + l_0 + \ldots + l_{j-1}), \quad 1 \leq j \leq n. \quad (7.4)
\]

Proof. By rewriting the equality (1.13) in the form

\[
\left(\begin{smallmatrix} (z-a)(b-z) & 0_q & 0_q \\ 0_q & I_q & I_q \end{smallmatrix} \right) \mathcal{U}(z,j) = \left(\begin{smallmatrix} z-a & 0_q & 0_q \\ 0_q & b-z & I_q \end{smallmatrix} \right) \mathcal{U}(2j-2) \left(\begin{smallmatrix} I_q & 0_q \\ 0_q & N_{2,j} \end{smallmatrix} \right),
\]

by expanding the right hand side of this equality in powers of \((z-a)\) and by employing (1.11), (5.16), (2.16), we have

\[
\frac{b-z}{b-a} \Theta_{2,j}(z) \Theta_{2,j}^{-1}(a) = I_q + \ldots + (-1)^j (z-a)^{j+1} s_0 m_0 l_0 \cdots m_j l_j
\]

\[
\cdot \left(P_{2,j-1}^*(a) Q_{2,j-1}^*(a) + \frac{1}{b-a} \Gamma_{2,j}^*(a) \Theta_{2,j}^*(a) \right), \quad (7.5)
\]

\[
\Theta_{1,j}^*(z) \Gamma_{1,j}^*(a) = s_0 + l_0 + \ldots + l_{j-1} \cdots + (z-a)^j s_0 m_0 l_0 \cdots l_{j-1}, \quad (7.6)
\]
7. Relations between the OMP, DSM parameters and Schur complements

\[
\frac{1}{b-a} \Gamma_{2j}^*(z) \Theta_{2j-1}^*(a) = -(m_0 + \ldots + m_{j-1}) \\
+ \left(P_{2j-1}(a)Q_{2j-1}(a) + \frac{1}{b-a} \Gamma_{2j}^*(a) \Theta_{2j-1}^*(a) \right) \\
+ \ldots + (-1)^j(z-a)^j m_0 l_0 \cdot \ldots \cdot m_{j-1} l_{j-1} \\
\cdot \left(P_{2j-1}(a)Q_{2j-1}(a) + \frac{1}{b-a} \Gamma_{2j}^*(a) \Theta_{2j-1}^*(a) \right),
\]

(7.7)

\[
\Gamma_{1,j}^*(z) \Gamma_{1,j-1}^*(a) = I_q + \ldots + (-1)^j(z-a)^j m_0 l_0 m_1 \cdot \ldots \cdot m_{j-1} l_{j-1}.
\]

(7.8)

Similarly by rewriting (1.14) in the form

\[
\begin{pmatrix}
(b-z)I_q & 0_q \\
0_q & I_q
\end{pmatrix} U_{(2j+1)} \begin{pmatrix}
\frac{1}{b-z}I_q & 0_q \\
0_q & I_q
\end{pmatrix} = \tilde{U}_{2(2j+1)} A_{2(2j+1)}
\]

and by using (1.12), (5.17), (2.13) and (A.2), we have

\[
Q_{2j}^*(z)Q_{2j-1}^*(a) = I_q + \ldots + (-1)^{j+1}(z-a)^{j+1} s_0 m_0 l_0 m_1 \cdot \ldots \cdot m_{j-1} m_j,
\]

(7.9)

\[
(z-b)Q_{1,j+1}^*(z)P_{1,j+1}(a) = s_0 l_0 + \ldots + l_{j-1} - \Theta_{1,j}^*(a) \Gamma_{1,j}^*(a)
- (b-a)Q_{1,j+1}^*(a)P_{1,j+1}^*(a)
+ \ldots + (-1)^{j+1}(z-j)^{j+1} s_0 m_0 l_0 m_1 \cdot \ldots \cdot m_{j-1} m_j
\cdot (-\Theta_{1,j}^*(a) \Gamma_{1,j}^*(a) - (b-a)Q_{1,j+1}^*(a)P_{1,j+1}^*(a)),
\]

(7.10)

\[
P_{2j}^*(z)Q_{2j}^*(a) = m_0 + m_1 + \ldots + m_{j-1}
+ \ldots + (-1)^j(z-a)^j m_0 l_0 m_1 \cdot \ldots \cdot m_{j-1} m_j,
\]

(7.11)

\[
P_{1,j+1}^*(z)P_{1,j+1}^*(a) = I_q + \ldots + (-1)^{j+1}(z-a)^{j+1} m_0 l_0 m_1 \cdot \ldots \cdot m_{j-1} m_j
\cdot (-\Theta_{1,j}^*(a) \Gamma_{1,j}^*(a) - (b-a)Q_{1,j+1}^*(a)P_{1,j+1}^*(a)).
\]

(7.12)

Equalities (7.1), (7.2), (7.3) and (7.4) follow from (7.6), (7.8) and (7.10). Employ the fact that $P_{2,j}$, $\Gamma_{1,j}$ are monic polynomials. \hfill \Box

Note that from (7.12) and (7.11), one obtains the following identities:

\[
(b-a)Q_{1,j+1}(a) - Q_{2,j}(a) + P_{1,j+1}(a) \Gamma_{1,j}^{-1}(a) \Theta_{1,j}(a) = 0,
\]

(7.13)

\[
\Gamma_{1,j}(a) - \Gamma_{2,j}(a) - (b-a) \Theta_{2,j}(a) Q_{2,j-1}^{-1}(a) P_{2,j-1}(a) = 0.
\]

(7.14)

The following remark is verified by using identities from Proposition (7.1) and (7.13), (7.14).

26
Remark 7.1. The following identities hold:
\[
\begin{align*}
Q_{2,j}(a) &= \Gamma_{1,j}(a) m_j^{-1}, \\
\Gamma_{1,j}(a) &= - Q_{2,j-1}(a) l_{j-1}^{-1}, \\
P_{2,j}(a) &= Q_{2,j}(a)(m_0 + m_1 + \ldots + m_{j-1}), \\
\Theta_{1,j}(a) &= \Gamma_{1,j}(a)(s_0 + l_0 + \ldots + l_{j-1}),
\end{align*}
\]
and
\[
\begin{align*}
Q_{2,j}(a) &= - Q_{2,j-1}(a) l_{j-1}^{-1} m_j^{-1}, \\
\Theta_{1,j}(a) &= Q_{2,j-1} l_{j-1}^{-1}(s_0 + l_0 + \ldots + l_{j-1}).
\end{align*}
\]

Remark 7.2. Let \(P_{1,j} \), \(Q_{2,j} \), \(\Gamma_{1,j} \) and \(\Theta_{2,j} \) be as in Definitions 2.6 and 2.7. Let \(\hat{H}_{1,j} \), \(\tilde{K}_{2,j} \) be defined by (2.17), (2.11) and \(m_j \), \(l_j \) be as in (5.3)-(5.7). Therefore, the following identities hold:
\[
\hat{H}_{2,0} = (m_0 l_0)^{-1} l_0 (m_0 l_0)^{-1}, \quad \tilde{K}_{1,0} = m_0^{-1}
\]
and
\[
\begin{align*}
\hat{H}_{2,j} &= \prod_{k=0}^{j} (m_k l_k)^{-1} l_j \prod_{k=0}^{j-1} (m_k l_k)^{-1}, \\
\tilde{K}_{1,j} &= \prod_{k=0}^{j} (m_k l_k)^{-1} m_j^{-1} \prod_{k=0}^{j} (m_k l_k)^{-1}.
\end{align*}
\]
Moreover,
\[
\begin{align*}
P_{1,j}(a) &= (-1)^j \tilde{K}_{2,j-1} \hat{H}_{1,j-1}^{-1} \cdots \hat{K}_{2,0} \hat{H}_{1,0}^{-1}, \\
\Gamma_{1,j}(a) &= (-1)^j \hat{H}_{2,j-1}^{-1} \tilde{K}_{1,j-1}^{-1} \cdots \hat{H}_{1,1} \hat{K}_{2,0} \hat{H}_{1,0}^{-1}, \\
Q_{2,j}(a) &= (-1)^j \tilde{K}_{1,j} \hat{H}_{2,j-1}^{-1} \hat{K}_{1,j-1}^{-1} \cdots \hat{H}_{2,0} \hat{K}_{1,0}, \\
\Theta_{2,j}(a) &= (-1)^{j+1} \hat{H}_{1,j} \tilde{K}_{2,j-1} \hat{H}_{1,j-1}^{-1} \cdots \hat{K}_{2,0} \hat{H}_{1,0}^{-1}.
\end{align*}
\]
Under the same conditions as the previous remark, the following result is immediately implied.

Remark 7.3. The following identities hold:
\[
m_0 = \tilde{K}_{1,0}^{-1}, \quad l_0 = (\hat{H}_{2,0}^{-1} \tilde{K}_{1,0})^* \hat{H}_{2,0} (\hat{H}_{2,0}^{-1} \tilde{K}_{1,0})
\]
and
\[
\begin{align*}
m_j &= \prod_{k=0}^{j-1} (\hat{H}_{2,k} \tilde{K}_{1,k}^{-1})^* \tilde{K}_{1,j} \prod_{k=0}^{j-1} (\hat{H}_{2,k} \tilde{K}_{1,k}^{-1}), \\
l_j &= \prod_{k=0}^{j} (\hat{H}_{2,k}^{-1} \tilde{K}_{1,k})^* \hat{H}_{2,j} \prod_{k=0}^{j} (\hat{H}_{2,k}^{-1} \tilde{K}_{1,k}).
\end{align*}
\]
Proposition 7.2. Let a and b be real numbers such that $a < b$. Furthermore, let s_0, $m_0(b)$, $(m_j(a,b))_{j=0}^{n-1}$ and $(l_j(a,b))_{j=0}^{n}$ (resp. s_0, $m_j(a,b)$ and $(l_j(a,b))_{j=0}^{n}$) be sequences of positive Hermitian complex $q \times q$ matrices. Let $(s_j)_{j=0}^{2n}$ (resp. $(s_j)_{j=0}^{2n+1}$) be a sequence recursively defined by

\[
bs_{2j} - s_{2j+1} := \begin{cases}
 m_0^1, & \text{if } j = 0, \\
 \tilde{Y}_{1j} K_{1j-1} \tilde{Y}_{1j} + \prod_{k=0}^{j}(m_k k_k)^{-1} m_j^{-1} \prod_{k=0}^{j} (m_k k_k)^{-1} & \text{if } j \geq 1
\end{cases}
\]

and

\[
\hat{s}_{2j} := \begin{cases}
 (m_0 l_0)^{-1} l_0 (m_0 l_0), & \text{if } j = 0, \\
 Y_{2j}^* H_{2j-1}^{-1} Y_{2j} + \prod_{j=0}^{j}(m_k k_k)^{-1} l_j^{-1} l_j^{-1} \prod_{j=0}^{j} (m_k k_k)^{-1} & \text{if } j \geq 1
\end{cases}
\]

for $j = 0, \ldots, n$ (resp. $j = 0, \ldots, n - 1$). Thus, $K_{1j} = \{bs_{k+j} - s_{k+j+1}n_{k,j=0}^n\}$ (resp. $H_{2j} = \{\hat{s}_{k+j} - s_{k+j+1}n_{k,j=0}^n\}$) is a positive Hermitian matrix.

Proof. By (7.15), (7.16), (7.17) and the fact that m_j and l_j are positive definite, then

\[
K_{1j} > 0, \quad j \in \mathbb{N}_0,
\]

\[
\hat{H} _{2j} > 0, \quad j \in \mathbb{N}_0.
\]

Let

\[
K_{1n} = \begin{pmatrix}
 K_{1,n-1} & \tilde{Y}_{1,n} \\
 \tilde{Y}_{1,n} & \bs_{2n} - s_{2n+1}
\end{pmatrix}, \quad H_{2,n-1} = \begin{pmatrix}
 H_{2,n-2} & Y_{2,n-1} \\
 Y_{2,n-1} & \hat{s}_{2n-2}
\end{pmatrix}.
\]

In view of (7.18) and the first equality of (7.20) (resp. (7.19) and the second equality of (7.20)), as well as Lemma [4.1], we obtain that K_{1j} (resp. $H_{2,j}$) is positive definite. \(\square\)

Proposition 7.3. a) Let the polynomials $(Q_{2,j})_{j=0}^{n-1}$ and $(\Gamma_{1,j})_{j=1}^{n}$ be as in (2.22) and (2.23), respectively. Thus, the following equalities hold:

\[
m_0 = Q_{2,0}(a), \quad m_j = Q_{2,j}(a) \Gamma_{1,j}(a), \quad 0 \leq j \leq n - 1,
\]

\[
l_j = - \Gamma_{1,j+1}(a)^{-1} Q_{2,j}(a), \quad 0 \leq j \leq n - 1.
\]

b) Let the polynomials $(P_{1,j})_{j=0}^{n+1}$ and $(\Theta_{2,j})_{j=0}^{n}$ be as in (2.20) and (2.26), respectively. Thus, the following equalities hold:

\[
M_0(a) = - \Theta_{2,0}(a), \quad M_j(a) = - \Theta_{2,j}(a) P_{1,j}(a), \quad 1 \leq j \leq n,
\]

\[
L_j(a) = P_{1,j+1}(a) \Theta_{2,j}(a), \quad 0 \leq j \leq n.
\]

Proof. Equalities (7.21) and (7.22) readily follow from (7.1) and (7.2), respectively. Equalities (7.23) and (7.24) readily follow from

\[
P_{1,j}(a) = (-1)^j M_0^{-1} L_0^{-1} M_1^{-1} L_1^{-1} \cdots \cdot M_{j-1}^{-1} L_{j-1}^{-1}, \quad 1 \leq j \leq n + 1,
\]

and

\[
\Theta_{2,j}(a) = (-1)^{j+1} M_0^{-1} L_0^{-1} M_1^{-1} L_1^{-1} \cdots L_{j-1}^{-1} M_j^{-1}, \quad 1 \leq j \leq n
\]

which were proved in [9] Proposition 4.1]. \(\square\)
8. Scalar case

In [25] Dyukarev created the Stieltjes parameters for the Stieltjes matrix moment problem which in our notations are given by \(M_0(0), L_0(0), M_j(0) \) and \(L_j(0) \). See also [7].

The following remark gives the interrelation between the mentioned Stieltjes parameters and the DSM parameters studied in the present work.

Remark 7.4. Let \(M_j \) and \(L_j \) be the DSM parameters as in (5.18)-(5.19). Furthermore, let the DSM parameters be as in (5.3), (5.4) and (5.5). Thus, the following relations are valid:

\[
M_j(0) = \lim_{b \to +\infty} b m_j(0, b), \quad L_j(0) = \lim_{b \to +\infty} b^{-1} l_j(0, b).
\]

(7.25)

This Remark can be verified by direct calculations.

8. Scalar case

This section is related to the scalar version of the DSM parameters \(m_j \) and \(l_j \).

For \(q = 1 \), let \(n \in \mathbb{N} \), and let \((s_j^{2n})_{j=0}^{2n} \) (resp. \((s_j^{2n+1})_{j=0}^{2n+1} \)) be a Hausdorff positive definite sequence of numbers. Let

\[
D_{x,j}^{(3)} := \begin{pmatrix}
\begin{array}{cccc}
s_0^{(3)} & s_1^{(3)} & \cdots & s_j^{(3)} \\
s_1^{(3)} & s_2^{(3)} & \cdots & s_{j+1}^{(3)} \\
\vdots & \vdots & \ddots & \vdots \\
s_{j-1}^{(3)} & s_j^{(3)} & \cdots & s_{2j-1}^{(3)} \\
1 & x & \cdots & x^j
\end{array}
\end{pmatrix},
\]

(8.1)

with \(s_j^{(3)} := bs_j - s_{j+1} \). Furthermore, let

\[
E_{x,j}^{(2)} := \begin{pmatrix}
\begin{array}{cccc}
s_0^{(2)} & s_1^{(2)} & \cdots & s_j^{(2)} \\
s_1^{(2)} & s_2^{(2)} & \cdots & s_{j+1}^{(2)} \\
\vdots & \vdots & \ddots & \vdots \\
s_{j-1}^{(2)} & s_j^{(2)} & \cdots & s_{2j-1}^{(2)} \\
e_{2,0}(x) & e_{2,1}(x) & \cdots & e_{2,j}(x)
\end{array}
\end{pmatrix},
\]

(8.2)

where

\[
(e_{2,0}(x), e_{2,1}(x), \ldots, e_{2,j}(x)) := -(u_{2,j}^* + xv_j^* s_0) R_j^*(x).
\]

The matrices \(D_{x,j}^{(2)} \) and \(E_{x,j}^{(2)} \) were introduced in [6] Subsection 2.4. The following remark is related to the scalar version of the DSM parameters \(\tilde{m}_j \) and \(\tilde{l}_j \).

Remark 8.1. Let \(\tilde{m}_j \) and \(\tilde{l}_j \) be the scalar version of the DSM parameters \(l_j \) and \(m_j \) defined by (5.3)-(5.5). Let \(D_{x,j}^{(3)} \) and \(E_{x,j}^{(2)} \) be as in (8.1) and (8.2), respectively. Thus,
A. Appendix

the following identities hold:

\[\tilde{l}_0(a, b) = \frac{(E_{a,b})^2}{H_{2,0}}, \quad \tilde{m}(b) = \frac{1}{bs_0 - s_1}, \]

\[\tilde{l}_j(a, b) = \frac{(\det E_{a,j}^{(2)})^2}{\det H_{2,j} \det H_{2,j-1}}, \quad \tilde{m}_j(a, b) = \frac{(\det D_{a,j}^{(3)})^2}{\det K_{1,j} \det K_{1,j-1}}, \quad j \geq 1. \]

(8.3)

(8.4)

Proof. The first and second equality of (8.3) are an immediate consequence of (5.6) for \(q = 1 \). The first equality of (8.4) is proved by employing (5.6) for \(q = 1 \), [6, Equation (2.40)] and the relation

\[\hat{H}_{2,j} = \frac{\det H_{2,j}}{\det H_{2,j-1}}, \quad j \geq 1. \]

The second equality of (8.4) can be proved in a similar way. Use (5.6) for \(q = 1 \), [6, Equation (2.38)] and equality \(\hat{K}_{1,j} = \frac{\det K_{1,j}}{\det K_{1,j-1}} \). ⪫

Note that scalar Stieltjes parameters of Remark 8.1 coincide with (1.2) as \(b \) approaches infinity and \(a = 0 \).

A. Appendix

In this appendix we reproduce some results from [9], which are used in the present work.

Definition A.1. [10, Formula (6.2)] Let \((s_k)_{k=0}^{2j}\) be an odd Hausdorff positive on \([a, b]\) sequence. The \(2q \times 2q\) matrix polynomial

\[\tilde{U}_2^{(2j)}(z, a, b) := \begin{pmatrix} 1 & \tilde{a}_2^{(2j)}(z, a, b) & \tilde{b}_2^{(2j)}(z, a, b) & \tilde{c}_2^{(2j)}(z, a, b) \\ \tilde{a}_2^{(2j)}(z, a, b) & \tilde{a}_2^{(2j)}(z, a, b) & \tilde{b}_2^{(2j)}(z, a, b) & \tilde{c}_2^{(2j)}(z, a, b) \end{pmatrix}, \quad z \in \mathbb{C}, \quad 0 \leq j \leq n - 1, \]

with

\[\tilde{a}_2^{(2j)}(z, a, b) := I_q - (z - a)u_{2,j}^*R_j^s(\bar{z})H_{2,j}^{-1}R_j(a)v_j, \]

\[\tilde{b}_2^{(2j)}(z, a, b) := (z - a)u_{2,j}^*R_j^s(\bar{z})H_{2,j}^{-1}R_j(a)u_{2,j}, \]

\[\tilde{c}_2^{(2j)}(z, a, b) := -(z - a)v_j^*R_j^s(\bar{z})H_{2,j}^{-1}R_j(a)v_j \]

and

\[\tilde{d}_2^{(2j)}(z, a, b) := I_q + (z - a)v_j^*R_j^s(\bar{z})H_{2,j}^{-1}R_j(a)u_{2,j} \]

is called the second auxiliary matrix of the THMM problem in the case of an odd number of moments.
Remark A.1. [9, Equalities (1.30) and (1.31)] The following identities are valid:

\[
\Gamma^*_{2,j}(\bar{z}, a) \Theta^{-1}_{2,j} (a, a) = -v_j^* R_j^* (\bar{z}) H_{1,j}^{-1} R_j (a) v_j, \tag{A.1}
\]

\[
Q^*_{1,j+1}(\bar{z}) P^{-1}_{1,j+1} (a) = -\tilde{u}_{2,j} R_j^* (\bar{z}) K_{2,j}^{-1} R_j (a) \tilde{u}_{2,j}. \tag{A.2}
\]

Finally, let us recall the following well-known result below.

Lemma A.1. [2, Proposition 8.2.4] Let \(A \) be a Hermitian \((n + m) \times (n + m)\) matrix. Therefore, the following statements are equivalent:

i) \(A > 0 \).

ii) \(A_{11} > 0 \) and \(A_{12}^* A_{11}^{-1} A_{12} < A_{22} \).

iii) \(A_{22} > 0 \) and \(A_{12} A_{22}^{-1} A_{12}^* < A_{11} \).

References

[1] Aptekarev A., Nikishin E., The scattering problem for a discrete Sturm-Liouville operator, Mat. Sb. 121(163), 327-358 (1983).

[2] Bernstein D.S., Matrix mathematics: theory, facts, and formulas with applications to linear systems theory, Princeton University Press, 2005.

[3] Choque Rivero A.E., The resolvent matrix for the matricial Hausdorff moment problem expressed by orthogonal matrix polynomials, Complex Anal. Oper. Theory 7(4), 927-944 (2013).

[4] Choque Rivero A.E., Decompositions of the Blaschke-Potapov factors of the truncated Hausdorff matrix moment problem. The case of odd number of moments, Commun. Math. Anal. 17(2), 66-81 (2014).

[5] Choque Rivero A.E., Decompositions of the Blaschke-Potapov factors of the truncated Hausdorff matrix moment problem. The case of even number of moments, Commun. Math. Anal. 17(2), 82-97 (2014).

[6] Choque-Rivero A.E., From the Potapov to the Krein-Nudelman representation of the resolvent matrix of the truncated Hausdorff matrix moment problem, Bol. Soc. Mat. Mexicana 21(2), 233-259 (2015).

[7] Choque Rivero A.E., On Dyukarev’s resolvent matrix for a truncated Stieltjes matrix moment problem under the view of orthogonal matrix polynomials, Lin. Alg. and Appl. 474, 44-109 (2015).

[8] Choque-Rivero A.E., On the solution set of the admissible bounded control problem via orthogonal polynomials, submitted to IEEE Trans. Autom. Control (2015).
References

[9] Choque Rivero A.E., *Dyukarev–Stieljes parameters of the truncated Hausdorff matrix moment problem*, Boletin Soc. Mat. Mexicana, (2016). DOI: 10.1007/s40590-015-0083-5.

[10] Choque Rivero A.E., Dyukarev Yu.M., Fritzsche B. and Kirstein B., *A truncated matricial moment problem on a finite interval. The case of an odd number of prescribed moments*. System Theory, Schur Algorithm and Multidimensional Analysis. *Oper. Theory: Adv. Appl.* 176, 99-174 (2007).

[11] Choque Rivero A.E., Dyukarev Yu.M., Fritzsche B. and Kirstein B., *A truncated matricial moment problem on a finite interval. Interpolation, Schur Functions and Moment Problems*. *Oper. Theory: Adv. Appl.* 165, 121-173 (2006).

[12] Choque Rivero A.E., Karlovich Yu., *The time optimal control as an interpolation problem*, Commun. Math. Anal, vol. 3, 1-11 (2011).

[13] Choque Rivero A.E., Korobov V.I., Sklyar G.M., *The admissible control problem from the moment problem point of view*, Appl. Math. Lett. 23(1), 58-63 (2010).

[14] Choque Rivero A.E., Maedler C., *On Hankel positive definite perturbations of Hankel positive definite sequences and interrelations to orthogonal matrix polynomials*, Complex Anal. Oper. Theory 8(8), 121-173 (2014).

[15] Choque Rivero A.E., Zagorodnyuk S., *An algorithm for the truncated matrix Hausdorff moment problem*, Commun. Math. Anal. 17(2), 108-130 (2014).

[16] Damanik D., Pushnitski A. and Simon B., *The analytic theory of matrix orthogonal polynomials*, Surv. Approx. Theory 4, 1-85 (2008).

[17] Dette H., Studden W. J., *Matrix measures, moment spaces and Favard’s theorem on the interval [0, 1] and [0, ∞)*, Lin. Alg. and Appl. 345, 169-193 (2002).

[18] Duran A., *Markov’s theorem for orthogonal matrix polynomials*, Can. J. Math. 48(6), 1180-1195 (1996).

[19] Durán A.J., *Rodrigues’s formulas for orthogonal matrix polynomials satisfying higher-order differential equations*, Exp. Math. 20(1), 15–24 (2011).

[20] Durán A.J., Grünbaum F.A., *Matrix differential equations and scalar polynomials satisfying higher order recursions*, J. Math. Anal. Appl. 354, 1–11 (2009).

[21] Durán A.J., de la Iglesia M.D., *Some examples of orthogonal matrix polynomials satisfying odd order differential equations*, J. Approx. Theory 150, 153–174 (2008).

[22] Durán A.J., López–Rodríguez P., *Structural formulas for orthogonal matrix polynomials satisfying second order differential equations, II*, Constr. Approx. 26(1), 29–47 (2007).
References

[23] Dym H., *On Hermitian block Hankel matrices, matrix polynomials, the Hamburger moment problem, interpolation and maximum entropy*, Integral Equations and Operator Theory 12, 757-812 (1989).

[24] Dyukarev Yu.M., *The multiplicative structure of resolvent matrices of interpolation problems in the Stieltjes class*, Vestnik Kharkov Univ. Ser. Mat. Prikl. Mat. i Mekh. 458, 143-153 (1999).

[25] Dyukarev Yu.M.: *Indeterminacy criteria for the Stieltjes matrix moment problem*, Math. Notes 75(1-2), 66-82 (2004).

[26] Dyukarev Yu.M., *Criterion for complete indeterminacy of limiting interpolation problem of Stieltjes type in terms of orthonormal matrix functions*, Russian Mathematics (Iz. VUZ) 59(4), 61-88 (2015).

[27] Dyukarev Yu.M., Choque Rivero A.E., *A matrix version of one Hamburger theorem*, Mat. Sb. 91(4), 522-529 (2012).

[28] Dyukarev Yu.M., Serikova I.Yu., *Complete indeterminacy of the Nevanlinna-Pick problem in the class S[a,b]*, Russian Math. (Iz. VUZ) 51(11), 17-29 (2007).

[29] Fritzsche B., Kirstein B., Mädlter C., *On Hankel nonegative definite sequences, the canonical Hankel parametrization, and orthogonal matrix polynomials*, Compl. Anal. Oper. Theory 5(2), 447-511 (2011).

[30] Gantmacher F.R., Krein M.G., *Oscillation matrices and small oscillations of mechanical systems* (Russian), Gostekhizdat, Moscow-Leningrad, 1941.

[31] Henrici P., *Applied and computational complex analysis, Vol. 2, special functions, integral transforms, asymptotics and continued fractions*, John Wiley, 1977.

[32] Geronimo J.S., *Scattering theory and matrix orthogonal polynomials on the real line*, Circuits Systems Signal Process 1(3-4), 471-495 (1982).

[33] Krein M.G. and Nudelman A.A., *The Markov moment problem and extremal problems*, Translations of Mathematical Monographs 50, AMS, Providence, RI 1977.

[34] Kovalishina I.V., *New aspects of the classical moment problems. Second doctoral thesis* (in Russian), Institute of Railway-Transport Engineers, 1986.

[35] Kovalishina I.V., *Analytic theory of a class of interpolation problems*, Izv. Math. 47(3), 455-497 (1983).

[36] Krein M.G., *Fundamental aspects of the representation theory of hermitian operators with deficiency (m, m)*, Ukrain. Mat. Zh., 1(2), 3-66 (1949).

[37] Krein M.G., *Infinite J-matrices and a matrix moment problem*, Dokl. Akad. Nauk 69(2), 125-128 (1949).
References

[38] Miranian L., *Matrix-valued orthogonal polynomials on the real line: some extensions of the classical theory*, J. Phys. A: Math. Gen. 38, 5731-5749 (2005).

[39] Potapov V.P., *The multiplicative structure of J-nonexpansive matrix functions*, Trudy Moskov. Mat. Ob. 4, 125-236 (1955).

[40] Serikova I.Yu., *Indeterminacy criteria for the Nevanlinna-Pick interpolation problem in class R[a,b]*, Zb. Pr. Inst. Mat. NAN Ukr. 3(4), 126-142 (2006).

[41] Simon B., *The classical problem as a self-adjoint finite difference operator*, Adv. Math. 137, 82-203 (1998).

[42] Sorokin V. N., Van Iseghem J., *Matrix continued fraction*, J. Approx. Theory 96(2), 237-257 (1999).

[43] Stieltjes T.J., *Recherches sur les fractions continues*, Ann. Fac. Sci. Toulouse Math. (6), 4(1):JiJiv, J1J35, 1995. Reprint of the 1894 original (French).

[44] Thiele H., *Beiträge zu matriziellen Potenzmomentenproblemen*, PhD Thesis, Leipzig University, 2006.

[45] Zagorodnyuk S., *The truncated matrix Hausdorff moment problem*, Methods Appl. Anal. 19(1), 021-042 (2012).

[46] Zhaoa H., Zhub G., *Matrix-valued continued fractions*, J. Approx. Theory 120, 136-152 (2003).

[47] Zygmunt M.J., *Chebyshev polynomials and continued fractions*, Lin. Alg. and Appl. 340, 155-168 (2002).

A. E. Choque-Rivero
Instituto de Física y Matemáticas
Universidad Michoacana de San Nicolás de Hidalgo
Ciudad Universitaria
Morelia, Mich.
C.P. 58048
México
abdon@ifm.umich.mx