Singularities and Characteristic Classes for Differentiable Maps

Toru Ohmoto
Hokkaido University
July 24, 2012
Eu gostaria de agradecer os organizadores por me convidar esta conferência maravilhosa!
This mini-course is about
What’s about?

This mini-course is about

... about the polynomial named in honor of him
What’s about?

- Alg. equation over \(\mathbb{C} \) (\(\rightsquigarrow \mathcal{K} \)-classification)

\[
P(x) = x^d + a_1 x^{d-1} + \cdots + a_d = 0, \quad \#_{\text{vir sol.}} = d
\]

taking account of multiplicities \(e = 1 + \mu \) (nondeg. sol. \(\leftrightarrow \mu = 0 \))
- Function $y = P(x)$ (\(\sim\) A-classification)

$$f : M \rightarrow N \quad (M = N = \mathbb{P}^1 = \mathbb{C} \cup \{\infty\})$$
What’s about?

- Function $y = P(x)$ (≈ \mathcal{A}-classification)

$$f : M \to N \quad (M = N = \mathbb{P}^1 = \mathbb{C} \cup \{\infty\})$$

$$\#_{\text{vir}} \text{ crit. pt} =$$
What's about?

- Function \(y = P(x) \) (\(\sim \) A-classification)

\[f : M \to N \quad (M = N = \mathbb{P}^1 = \mathbb{C} \cup \{\infty\}) \]

\[\#_{\text{vir crit. pt}} = \int_M \mu(f, x) \, d\chi \]
What’s about?

- Function $y = P(x)$ (\(\sim\) A-classification)

$$f : M \rightarrow N \quad (M = N = \mathbb{P}^1 = \mathbb{C} \cup \{\infty\})$$

$$\#_{vir \text{ crit. pt}} = \int_{M} \mu(f, x) \, d\chi = 2d - 2$$
What’s about ?

- Function $y = P(x)$ \(\implies\) A-classification

\[f : M \to N \quad (M = N = \mathbb{P}^1 = \mathbb{C} \cup \{\infty\}) \]

\[
\#_{vir \text{ crit. pt}} = \int_M \mu(f, x) \, d\chi = 2d - 2 = \deg f \cdot \chi(N) - \chi(M)
\]
What’s about?

- Function $y = P(x)$ (\(\sim\) A-classification)

 $$f : M \rightarrow N \quad (M = N = \mathbb{P}^1 = \mathbb{C} \cup \{\infty\})$$

 \[\#_{vir} \text{ crit. pt} = \int_M \mu(f, x) \, d\chi = 2d - 2 = \deg f \cdot \chi(N) - \chi(M)\]

 \[= c_1(TN) \cap f_*[M] - c_1(TM) \cap [M]\]
What's about?

- Function $y = P(x)$ (related to A-classification)

$$f : M \to N \quad (M = N = \mathbb{P}^1 = \mathbb{C} \cup \{\infty\})$$

$$\#_{\text{vir crit. pt}} = \int_M \mu(f, x) \, d\chi = 2d - 2 = \deg f \cdot \chi(N) - \chi(M)$$

$$= c_1(TN) \cap f_*[M] - c_1(TM) \cap [M]$$

$$= c_1(f^*TN - TM) \cap [M]$$
What's about?

• Function $y = P(x)$ ($\rightsquigarrow \mathcal{A}$-classification)

$$f : M \rightarrow N \quad (M = N = \mathbb{P}^1 = \mathbb{C} \cup \{\infty\})$$

\[
\begin{align*}
\#_{\text{vir crit. pt}} &= \int_M \mu(f, x) \, d\chi = 2d - 2 = \deg f \cdot \chi(N) - \chi(M) \\
&= c_1(TN) \cap f^*[M] - c_1(TM) \cap [M] \\
&= c_1(f^*TN - TM) \cap [M] \\
&= \text{Thom polynomial of } A_1 \text{ for } f
\end{align*}
\]
What’s about?

I will talk about a generalization of this picture, in particular,

hunting invariants of map-germs by localizing ‘higher Tp’

Contents

- Preliminary: very basics
- Thom polynomials for singularities of maps
- Thom polynomials for multi-singularities of maps
- Higher Thom polynomials associated to CSM class
- Computing numerical invariants: Bezout type theorems
- Tp for real singularities and Vassiliev type invariants

We works in the complex holomorphic context throughout. To be elementary and self-contained as much as possible.
First we recall a few basic notions about stable singularities of maps:
First we recall a few basic notions about stable singularities of maps:

\[\mathcal{O}(m, n) := \{ f : \mathbb{C}^m, 0 \to \mathbb{C}^n, 0 \text{ holomorphic} \} \]
Classification of map-germs: Equivalence

First we recall a few basic notions about stable singularities of maps:

\[\mathcal{O}(m, n) := \{ f : \mathbb{C}^m, 0 \to \mathbb{C}^n, 0 \text{ holomorphic} \} \]

- **A-classification**
 Classifies map-germs up to isomorphisms of source and target

 \[A = \text{Diff}(\mathbb{C}^m, 0) \times \text{Diff}(\mathbb{C}^n, 0) \] acts on \(\mathcal{O}(m, n) \) by
 \[(\sigma, \tau).f := \tau \circ f \circ \sigma^{-1} \]
Classification of map-germs: Equivalence

First we recall a few basic notions about stable singularities of maps:

\[\mathcal{O}(m,n) := \{ f : \mathbb{C}^m, 0 \to \mathbb{C}^n, 0 \text{ holomorphic} \} \]

- **\(A \)-classification**

 Classifies map-germs up to isomorphisms of source and target

 \[A = \text{Diff}(\mathbb{C}^m, 0) \times \text{Diff}(\mathbb{C}^n, 0) \] acts on \(\mathcal{O}(m,n) \) by

 \[(\sigma, \tau).f := \tau \circ f \circ \sigma^{-1} \]

- **\(K \)-classification**

 Classifies the zero locus \(f^{-1}(0) \) as a scheme (i.e., defining ideal) up to the isomorphisms of source.

 \(K \subset \text{Diff}(\mathbb{C}^m \times \mathbb{C}^n, 0) \), preserving fibers \(\star \times \mathbb{C}^n \) and \(\mathbb{C}^m \times 0 \), acts on \(\mathcal{O}(m,n) \) measuring the tangency of graph \(y = f(x) \) and \(y = 0 \)
Classification of map-germs: Equivalence

First we recall a few basic notions about stable singularities of maps:

\[\mathcal{O}(m, n) := \{ f : \mathbb{C}^m, 0 \to \mathbb{C}^n, 0 \text{ holomorphic} \} \]

- **A-classification**
 Classifies map-germs up to isomorphisms of source and target
 \[A = \text{Diff}(\mathbb{C}^m, 0) \times \text{Diff}(\mathbb{C}^n, 0) \] acts on \(\mathcal{O}(m, n) \) by
 \((\sigma, \tau).f := \tau \circ f \circ \sigma^{-1} \)

- **K-classification**
 Classifies the zero locus \(f^{-1}(0) \) as a scheme (i.e., defining ideal) up to the isomorphisms of source.
 \(K \subset \text{Diff}(\mathbb{C}^m \times \mathbb{C}^n, 0) \), preserving fibers \(* \times \mathbb{C}^n \) and \(\mathbb{C}^m \times 0 \), acts on \(\mathcal{O}(m, n) \) measuring the tangency of graph \(y = f(x) \) and \(y = 0 \)

- **A \subset K**
 Thus, orbits \(A.f \subset K.f \)
Classification of map-germs: Infinitesimal stability

- \(f = (x^3 + yx, y) \) and \(g = (x^3, y) \) in \(O(2, 2) \) are \(K \)-equivalent but not \(A \)-equivalent. \(A.f \neq K.f \)
Classification of map-germs: Infinitesimal stability

- $f = (x^3 + yx, y)$ and $g = (x^3, y)$ in $O(2, 2)$ are \mathcal{K}-equivalent but not \mathcal{A}-equivalent. $\mathcal{A}.f \neq \mathcal{K}.f$

- The \mathcal{A}-class of $f = (x^3 + yx, y)$ is called a cusp or A_2-singularity. The discriminant (s = singular value curves on the plane) looks as
Classification of map-germs: Infinitesimal stability

- \(f = (x^3 + yx, y) \) and \(g = (x^3, y) \) in \(\mathcal{O}(2, 2) \) are \(K \)-equivalent but not \(A \)-equivalent. \(A.f \neq K.f \)

- The \(A \)-class of \(f = (x^3 + yx, y) \) is called a cusp or \(A_2 \)-singularity. The discriminant (=singular value curves on the plane) looks as

- \(f : \mathbb{C}^m, 0 \to \mathbb{C}^n, 0 \) is a stable germ if taking any small perturbation of any representative \(f : U \to \mathbb{C}^n \), still the same singularity remains at some point nearby 0. The above cusp singularity is stable.
Classification of map-germs: Infinitesimal stability

- $f = (x^3 + yx, y)$ and $g = (x^3, y)$ in $O(2, 2)$ are K-equivalent but not A-equivalent. $A.f \not= K.f$

- The A-class of $f = (x^3 + yx, y)$ is called a cusp or A_2-singularity. The discriminant (=singular value curves on the plane) looks as

- $f : \mathbb{C}^m, 0 \to \mathbb{C}^n, 0$ is a stable germ if taking any small perturbation of any representative $f : U \to \mathbb{C}^n$, still the same singularity remains at some point nearby 0. The above cusp singularity is stable.

- (J. Mather IV) If f is a stable germ, $A.f = \{\text{Stable germs}\} \cap K.f$
Classification of map-germs: Jet-extension

Given a map \(f : M \rightarrow N \), we may think of it as

\[
\text{a family of mono-germs } f : M, x \rightarrow N, f(x) \\
\text{parameterized by the source space } M.
\]

(cf. a family of \textit{multi-germs} parametrized by the target \(N \))
Classification of map-germs: Jet-extension

Given a map $f : M \to N$, we may think of it as

a family of mono-germs $f : M, x \to N, f(x)$

parameterized by the source space M.

(cf. a family of *multi-germs* parametrized by the target N)

$$J(TM, TN)$$

$$j f$$

$$\uparrow$$

$$M \xrightarrow{(id, f)} M \times N$$
Given a map $f: M \rightarrow N$, we may think of it as

a family of mono-germs $f: M, x \rightarrow N, f(x)$

parameterized by the source space M.

(cf. a family of *multi-germs* parametrized by the target N)

\[
\begin{array}{c}
J(TM, TN) \\
\downarrow jf \\
M \xrightarrow{(id,f)} M \times N
\end{array}
\]

$f: M, x \rightarrow N, y$ is stable

$\iff jf: M \rightarrow J(TM, TN)$ is transverse to the A-orbit at x.

$\iff jf: M \rightarrow J(TM, TN)$ is transverse to the K-orbit at x (Mather)
Notation: For a \mathcal{K} (or A)-orbit η in $\mathcal{O}(m, n)$, define

$$\eta(f) := \{ x \in M \mid \text{the germ } f \text{ at } x \text{ is of type } \eta \} = jf^{-1}(\eta(M, N))$$

\[
\begin{array}{c}
\begin{array}{c}
J(TM, TN) \\
\downarrow jf \\
M \\
\downarrow (id, f) \\
M \times N
\end{array}
\end{array}
\]
Classification of map-germs: Jet-extension

Notation: For a \(\mathcal{K} \) (or \(\mathcal{A} \))-orbit \(\eta \) in \(\mathcal{O}(m,n) \), define

\[
\eta(f) := \{ x \in M \mid \text{the germ } f \text{ at } x \text{ is of type } \eta \} = jf^{-1}(\eta(M, N))
\]

\[
\begin{array}{ccc}
M & \xrightarrow{(id,f)} & M \times N \\
\downarrow & & \downarrow \\
J(TM, TN) & \xrightarrow{jf} & \\
\end{array}
\]

Of our particular interest is

\[
\text{Dual } [\eta(f)] \in H^*(M)
\]

If \(\text{codim } \eta = \text{dim } M \) and \(M \) compact, this gives \(\sharp \) \(\eta \)-singular pts.
Classification of map-germs: Jet-extension

Notation: For a \mathcal{K} (or \mathcal{A})-orbit η in $\mathcal{O}(m, n)$, define

$$\eta(f) := \{ x \in M \mid \text{the germ } f \text{ at } x \text{ is of type } \eta \} = jf^{-1}(\eta(M, N))$$

$$J(TM, TN) \xrightarrow{jf} M \times N$$

Of our particular interest is

$$\text{Dual } [\eta(f)] \in H^*(M)$$

If codim $\eta = \dim M$ and M compact, this gives $\sharp \eta$-singular pts.

"counting η-singular points = describing this cohomology class"
Recall a basic notion in topology:

A **vector bundle** $p : E \to M$ is a locally trivial fibration with fiber \mathbb{C}^n and structure group GL_n.

The right one is called **the trivial bundle**. How can we measure 'non-trivial gluing' in the left?
Chern class of vector bundles: Definition

Recall a basic notion in topology:

Take a section $s : M \to E$ and observe its intersection with Z, that leads us the definition of the top Chern class of E

$$c_n(E) := s^* \text{Dual } [Z] = \text{Dual } [s^{-1}(Z)] \in H^{2n}(M; \mathbb{Z})$$

For the above picture, $c_n(Left) \neq 0$ and $c_n(Right) = 0$
The Chern class of complex vector bundles is uniquely characterized as the assignment

\[\text{vector bdle } E \rightarrow M \sim \Rightarrow c_i(E) \in H^{2i}(M; \mathbb{Z}), \quad (i = 0, 1, 2, \cdots) \]

satisfying the following axioms:
The Chern class of complex vector bundles is uniquely characterized as the assignment

\[
\text{vector bdle } E \to M \rightsquigarrow c_i(E) \in H^{2i}(M; \mathbb{Z}), \quad (i = 0, 1, 2, \cdots)
\]

satisfying the following axioms:

- \(c_0(E) = 1 \) and \(c_i(E) = 0 \) \((i > n = \text{rank } E) \), i.e.,

\[
c(E) := \sum_{i \geq 0} c_i(E) = 1 + c_1(E) + \cdots + c_n(E) : \text{total Chern class}
\]
Chern class of vector bundles: Definition

Theorem 2.1 (or Definition: see Milnor’s or Hirzebruch’s textbooks.)

The Chern class of complex vector bundles is uniquely characterized as the assignment

\[\text{vector bdle } E \rightarrow M \leadsto c_i(E) \in H^{2i}(M; \mathbb{Z}), \quad (i = 0, 1, 2, \cdots) \]

satisfying the following axioms:

- \(c_0(E) = 1 \) and \(c_i(E) = 0 \) (\(i > n = \text{rank } E \)), i.e.,
 \[c(E) := \sum_{i \geq 0} c_i(E) = 1 + c_1(E) + \cdots + c_n(E) \quad : \text{total Chern class} \]
- \(c(f^*E) = f^*c(E) \) for the pullback via \(f : M' \rightarrow M \) : naturality
- \(c(E \oplus F) = c(E) \cdot c(F') \) : Whitney sum formula
- \(c_1(O_{\mathbb{P}^1}(1)) \) equals the divisor class \(a \in H^2(\mathbb{P}^1) \) : normalization
Trivial bundle: \(c_1(\varepsilon^1) = 0 \), hence for the trivial \(n \)-bundle,
\[
c(\varepsilon^n) = c(\bigoplus \varepsilon^1) = 1.
\]
Chern class of vector bundles: Remark

- **Trivial bundle**: $c_1(\epsilon^1) = 0$, hence for the trivial n-bundle, $c(\epsilon^n) = c(\oplus \epsilon^1) = 1$.

- **Tensor product** of line bundles ℓ_1, ℓ_2 over M:

 $$c_1(\ell_1 \otimes \ell_2) = c_1(\ell_1) + c_1(\ell_2) \quad \text{(additive group law)}$$
Chern class of vector bundles: Remark

- **Trivial bundle**: \(c_1(\mathcal{E}^1) = 0 \), hence for the trivial \(n \)-bundle, \(c(\mathcal{E}^n) = c(\bigoplus \mathcal{E}^1) = 1 \).

- **Tensor product** of line bundles \(\ell_1, \ell_2 \) over \(M \):

 \[
 c_1(\ell_1 \otimes \ell_2) = c_1(\ell_1) + c_1(\ell_2) \quad \text{(additive group law)}
 \]

- The Chern class of a complex manifold \(M \) means \(c(TM) \) of the tangent bundle. The top Chern class is the **Euler characteristic**:

 \[
 c_n(TM) \sim [M] = \chi(M) \cdot [pt] \in H_0(M)
 \]

 That is **the Poincaré-Hopf theorem** : for a vector field \(v : M \to TM \)

 \[
 c_n(TM) = \sum \text{Ind}(v, p)^{\text{P.H.}} \equiv \chi(M)
 \]
Difference Chern class: To measure the difference between two vector bundles \(E \) and \(F \) over the same base space, we define by using formal expansion

\[
\frac{1}{1+A} = 1 - A + A^2 - A^3 + \cdots
\]

\[
c(F - E) := \frac{1 + c_1(F') + c_2(F') + \cdots}{1 + c_1(E) + c_2(E) + \cdots}
\]
Difference Chern class: To measure the difference between two vector bundles E and F over the same base space, we define by using formal expansion $\frac{1}{1+A} = 1 - A + A^2 - A^3 + \cdots$

$$c(F - E) := \frac{1 + c_1(F') + c_2(F') + \cdots}{1 + c_1(E') + c_2(E') + \cdots}$$

Obviously,

- If $F = E \oplus E'$, then $c(F - E) = c(E')$ by Whitney sum formula.

- For line bundles, $c(\ell' - \ell) = \frac{1+b}{1+a} = (1 + b)(1 - a + a^2 - \cdots)$ where $a = c_1(\ell)$ and $b = c_1(\ell')$
Now, return back to our setting:

Let $\eta \subset J(m, n)$ be a K-orbit. Given a stable map $f : M \to N$,

$$
\begin{array}{c}
J(TM, TN) & \overset{\eta(M, N)}{\longrightarrow} \\
\downarrow jjf & \downarrow \\
\eta(f) & \longrightarrow M & \longrightarrow M \times N
\end{array}
$$

How to describe $\text{Dual } [\eta(f)] \in H^*(M)$
Theorem 3.1 (Thom ('57), Damon ('72) etc)

There exists a unique polynomial \(tp(\eta) \in \mathbb{Z}[c_1, c_2, \cdots] \) in abstract Chern classes so that

- homogeneous in degree \(= \text{codim} \eta \) \((\deg c_i = 2i) \)
- it depends only on \(\eta \subset J(*, * + k) \),
- for any generic map \(f : M \to N \) of map-codim. \(\dim N - \dim M = k \), the polynomial evaluated by \(c_i = c_i(f) := c_i(f^*TN - TM) \) expresses the singular locus of type \(\eta \):

\[
 tp(\eta)(f) = \text{Dual} \left[\overline{\eta(f)} \right] \in H^{2 \text{codim} \eta}(M)
\]

We call \(tp(\eta) \) the Thom polynomial of stable singularity type \(\eta \)
Thom polynomials of stable singularities

Example 3.2 (Thom ('56): Case of map codimension $k = 0$)

Thom polynomials of stable singularities $\mathbb{C}^2, 0 \to \mathbb{C}^2, 0$ are

$$tp(A_0) = 1, \quad tp(A_1) = c_1, \quad tp(A_2) = c_1^2 + c_2$$

type	normal form
A_0 (regular)	$(x, y) \mapsto (x, y)$
A_1 (fold)	$(x, y) \mapsto (x^2, y)$
A_2 (cusp)	$(x, y) \mapsto (x^3 + xy, y)$
Example 3.2 (Thom ('56): Case of map codimension $k = 0$)

Thom polynomials of stable singularities $\mathbb{C}^2, 0 \to \mathbb{C}^2, 0$ are

\[
tp(A_0) = 1, \quad tp(A_1) = c_1, \quad tp(A_2) = c_1^2 + c_2
\]

type	normal form
A_0 (regular)	$(x, y) \mapsto (x, y)$
A_1 (fold)	$(x, y) \mapsto (x^2, y)$
A_2 (cusp)	$(x, y) \mapsto (x^3 + xy, y)$

More examples of stable singularities $\mathbb{C}^n, 0 \to \mathbb{C}^n, 0$,

\[
\begin{align*}
tp(A_3) &= c_1^3 + 3c_1c_2 + 2c_3, \\
tp(A_4) &= c_1^4 + 6c_1^2c_2 + 2c_2^2 + 9c_1c_3 + 6c_4, \\
tp(I_{22}) &= c_2^2 - c_1c_3, \cdots
\end{align*}
\]
Localization formula

Let’s compute $tp(A_2)$ by the restriction method due to Richard Rimanyi. Since $\text{codim } A_2 = 2$, the Thom polynomial has the form

$$tp(A_2) = Ac_1^2 + Bc_2$$

and we want to determine the unknowns A, B.
Localization formula

Let’s compute $tp(A_2)$ by the restriction method due to Richard Rimanyi. Since $\text{codim } A_2 = 2$, the Thom polynomial has the form

$$tp(A_2) = Ac_1^2 + Bc_2$$

and we want to determine the unknowns A, B.

The key point is that the normal forms of stable germs admit a natural torus action $\mathbb{C}^* = \mathbb{C} - \{0\}$:

$$\begin{align*}
(x, y) &\xrightarrow{A_2} (x^3 + yx, y) \\
\rho_0 &= \alpha \oplus \alpha^2 \\
\rho_1 &= \alpha^3 \oplus \alpha^2 \\
\alpha &\in \mathbb{C}^*
\end{align*}$$
Localization formula

Let us think of α as the gluing map for the canonical line bundle
$\ell = O_{\mathbb{P}^N}(1)$ over \mathbb{P}^N ($N \gg 0$).
Localization formula

Let us think of α as the gluing map for the canonical line bundle $\ell = O_{\mathbb{P}^N}(1)$ over \mathbb{P}^N ($N \gg 0$). Define two vector bundles of rank 2

$$E_0 := \ell \oplus \ell^\otimes 2,$$
$$E_1 := \ell^\otimes 3 \oplus \ell^\otimes 2$$
Localization formula

Let us think of α as the gluing map for the canonical line bundle $\mathcal{L} = \mathcal{O}_{\mathbb{P}^N}(1)$ over \mathbb{P}^N ($N \gg 0$). Define two vector bundles of rank 2

$$E_0 := \mathcal{L} \oplus \mathcal{L}^{\otimes 2}, \quad E_1 := \mathcal{L}^{\otimes 3} \oplus \mathcal{L}^{\otimes 2}$$

That is, take $\{U_i\}$ of the base giving a local trivialization of \mathcal{L}; glueing maps $g_{ij} : U_i \cap U_j \to GL_2$ for E_0 and E_1 are of the form

$$U_i \cap U_j \xrightarrow{\alpha} \mathbb{C}^* \xrightarrow{\rho} GL_2, \quad \rho_0 = \begin{bmatrix} \alpha & 0 \\ 0 & \alpha^2 \end{bmatrix}, \quad \rho_1 = \begin{bmatrix} \alpha^3 & 0 \\ 0 & \alpha^2 \end{bmatrix},$$

respectively.
Let us think of α as the gluing map for the canonical line bundle $\ell = \mathcal{O}_{\mathbb{P}^N}(1)$ over \mathbb{P}^N ($N \gg 0$). Define two vector bundles of rank 2

$$E_0 := \ell \oplus \ell \otimes^2, \quad E_1 := \ell \otimes^3 \oplus \ell \otimes^2$$

The normal form of A_2, $(x, y) \mapsto (x^3 + yx, y)$, is invariant under the action, thus we can glue the map on U_i’s together.
Localization formula

Let us think of α as the gluing map for the canonical line bundle $\ell = \mathcal{O}_{\mathbb{P}^N}(1)$ over \mathbb{P}^N ($N \gg 0$). Define two vector bundles of rank 2

$$E_0 := \ell \oplus \ell^\otimes 2, \quad E_1 := \ell^\otimes 3 \oplus \ell^\otimes 2$$

The normal form of A_2, $(x, y) \mapsto (x^3 + yx, y)$, is invariant under the action, thus we can glue the map on U_i's together. This defines a stable map $f_{A_2}: E_0 \to E_1$ between the total spaces

![Diagram](attachment:image.png)

A_2-singularity locus $A_2(f_{A_2}) = \text{the zero section of } E_0$.
Localization formula

E_0 E_1 Base
Compute the Chern classes. Put $a = c_1(\ell)$ and then

$$H^*(\mathbb{P}^N) = \mathbb{Z}[a]/(a^{N+1}), \quad N \gg 0$$

Note that $H^*(E_0) = H^*(E_1) = H^*(\mathbb{P}^N)$ via the pullback p_0^* and p_1^*.

$$c(E_0) = c(\ell \oplus \ell \otimes 2) = (1 + a)(1 + 2a),$$
$$c(E_1) = c(\ell \otimes 3 \oplus \ell \otimes 2) = (1 + 3a)(1 + 2a)$$
Compute the Chern classes. Put $a = c_1(\ell)$ and then

$$H^*(\mathbb{P}^N) = \mathbb{Z}[a]/(a^{N+1}), \quad N \gg 0$$

Note that $H^*(E_0) = H^*(E_1) = H^*(\mathbb{P}^N)$ via the pullback p_0^* and p_1^*.

$$c(E_0) = c(\ell \oplus \ell \otimes 2) = (1 + a)(1 + 2a),$$
$$c(E_1) = c(\ell \otimes 3 \oplus \ell \otimes 2) = (1 + 3a)(1 + 2a)$$

$$c(f_{A_2}) = c(f^*TE_1 - TE_0) = c(p_1^*E_1 - p_0^*E_0) = \frac{(1+3a)(1+2a)}{(1+a)(1+2a)} = \frac{1+3a}{1+a}$$

$$= 1 + 2a - 2a^2 + 2a^3 - \cdots$$

Thus we have $c_1(f_{A_2}) = 2a$, $c_2(f_{A_2}) = -2a^2$, ... etc.
Apply the Thom polynomial theorem to this map $f_{A_2} : E_0 \rightarrow E_1$,
\[
 tp(A_2)(f_{A_2}) = \text{Dual } [A_2(f_{A_2})]
\]
Localization formula

Apply the Thom polynomial theorem to this map $f_{A_2} : E_0 \to E_1$,

$$tp(A_2)(f_{A_2}) = \text{Dual } [\overline{A_2}(f_{A_2})]$$

Substitute $c_2(E_0) = 2a^2$, $c_1(f_{A_2}) = 2a$, $c_2(f_{A_2}) = -2a^2$.

$$tp(A_2)(f_{A_2}) = Ac_1^2 + Bc_2$$
$$= A(2a)^2 + B(-2a^2) = (4A - 2B)a^2$$

Dual [$\overline{A_2}(f_{A_2})$] = Dual [Zero] = $c_2(E_0) = 2a^2$
Localization formula

Apply the Thom polynomial theorem to this map $f_{A_2} : E_0 \to E_1$,

$$tp(A_2)(f_{A_2}) = \text{Dual} [\overline{A}_2(f_{A_2})]$$

Substitute $c_2(E_0) = 2a^2$, $c_1(f_{A_2}) = 2a$, $c_2(f_{A_2}) = -2a^2$.

$$tp(A_2)(f_{A_2}) = Ac_1^2 + Bc_2$$
$$= A(2a)^2 + B(-2a^2) = (4A - 2B)a^2$$

Dual $[\overline{A}_2(f_{A_2})] = \text{Dual} [\text{Zero}] = c_2(E_0) = 2a^2$

Thus we get

$$2A - B = 1$$
Localization formula

Do the same thing for other singularities:

\[(x, y) \xrightarrow{A_1} (x^2, y) \quad \alpha \in \mathbb{C}^*, \beta \in \mathbb{C}^* \]

\[\rho_0 = \alpha \oplus \beta \quad \rho_1 = \alpha^2 \oplus \beta\]

We obtain a stable map \(f_{A_1} : E_0 \to E_1 \); It has only \(A_1 \)-singularities, so the \(A_2 \)-singularity locus \(A_2(f_{A_1}) \) is empty. Thus, Tp Theorem says that

\[tp(A_2)(f_{A_1}) = \text{Dual } [\emptyset] = 0\]

Since \(c(f_{A_1}) = \frac{(1+2a)(1+b)}{(1+a)(1+b)} = 1 + a - a^2 + \cdots \), one obtains

\[A - B = 0\]
Localization formula

Do the same thing for other singularities:

\[(x, y) \xrightarrow{A_1} (x^2, y) \quad \alpha \in \mathbb{C}^*, \beta \in \mathbb{C}^*\]
\[\rho_0 = \alpha \oplus \beta \quad \rho_1 = \alpha^2 \oplus \beta\]

We obtain a stable map \(f_{A_1} : E_0 \to E_1\); It has only \(A_1\)-singularities, so the \(A_2\)-singularity locus \(A_2(f_{A_1})\) is empty. Thus, \(T_p\) Theorem says that

\[tp(A_2)(f_{A_1}) = \text{Dual } [\emptyset] = 0\]

Since \(c(f_{A_1}) = \frac{(1+2a)(1+b)}{(1+a)(1+b)} = 1 + a - a^2 + \cdots\), one obtains

\[A - B = 0\]

Combine it with \(2A - B = 1\), gets \(A = B = 1\), i.e., \(tp(A_2) = c_1^2 + c_2\)
Remark 3.3

- Rimanyi’s restriction method works well for simple orbits in classification up to the lowest codimension of moduli strata of orbits. In fact the restriction of tp to an orbit is the Atiyah-Bott localization for torus action (the origin is a fixed point).
Remark 3.3

- Rimanyi’s restriction method works well for simple orbits in classification up to the lowest codimension of moduli strata of orbits. In fact the restriction of t_p to an orbit is the Atiyah-Bott localization for torus action (the origin is a fixed point).

- The universal map $f_\eta : E_0 \to E_1$ is a key ingredient in Thom-Pontrjagin-Szücs construction of classifying space of singular maps.
Remark 3.3

- Rimanyi’s restriction method works well for simple orbits in classification up to the lowest codimension of moduli strata of orbits. In fact the restriction of \(t_p \) to an orbit is the Atiyah-Bott localization for torus action (the origin is a fixed point).

- The universal map \(f_\eta : E_0 \to E_1 \) is a key ingredient in Thom-Pontrjagin-Szücs construction of classifying space of singular maps.

- Why the difference Chern classes \(c_i(f) = c_i(f^*TN - TM) \) arise? It is that the \(\mathcal{K} \)-equivalence admits a stabilization of dimensions: the embedding \(J(m, n) \to J(m + r, n + r) \), \(j f(0) \to j(f \times \text{id}_r)(0) \), is transverse to any \(\mathcal{K} \)-orbits (not true for \(\mathcal{A} \)-orbits).
Tp for \mathcal{A}-finite singularities

What’s then about Tp for unstable but \mathcal{A}-finite singularities of maps?
What’s then about T_p for unstable but A-finite singularities of maps?

It makes sense.

But such a T_p is no longer a polynomial in $c_i(f)$ in general and it’s for families of maps: a proper setting should be as follows:
Consider the diagram

\[\begin{array}{ccc}
X & \xrightarrow{f} & Y \\
\downarrow{p_0} & & \downarrow{p_1} \\
B & & B
\end{array} \]

where \(X, Y, B \) are complex manifolds, \(p_0 : X \to B \) and \(p_1 : Y \to B \) are submersions of constant relative dimension, say \(\dim = 2 \).
Consider the diagram

\[
\begin{array}{c}
X \\
p_0 \\
\downarrow \\
B \\
p_1 \\
\uparrow \\
Y
\end{array}
\]

where \(X, Y, B \) are complex manifolds, \(p_0 : X \to B \) and \(p_1 : Y \to B \) are submersions of constant relative dimension, say \(\dim = 2 \).

For each \(x \in X \), a map-germ of \(f \) restricted to the fiber is defined:

\[
f\big|_{p_0^{-1}(p_0(x))} : \mathbb{C}^2, 0 \to \mathbb{C}^2, 0 \quad \text{(centered at } x \text{ and } f(x))
\]
Consider the diagram

\[
\begin{array}{ccc}
X & \xrightarrow{f} & Y \\
p_0 \downarrow & & \downarrow p_1 \\
B & & B
\end{array}
\]

where \(X, Y, B \) are complex manifolds, \(p_0 : X \to B \) and \(p_1 : Y \to B \) are submersions of constant relative dimension, say \(\dim = 2 \).

For each \(x \in X \), a map-germ of \(f \) restricted to the fiber is defined:

\[
f \big|_{p_0^{-1}(p_0(x))} : \mathbb{C}^2, 0 \to \mathbb{C}^2, 0 \quad \text{(centered at } x \text{ and } f(x))
\]

Given an \(\mathcal{A} \)-finite singularity type \(\eta \), the **singularity locus** \(\eta(f) \subset X \) and the **bifurcation locus** \(B_{\eta}(f) = p_0(\eta(f)) \subset B \) are defined.
Theorem 4.1

Let \(\eta \) be an \(\mathcal{A} \)-finite singularity type. For generic maps \(f : X \to Y \), Dual \([\bar{\eta}(f)] \in H^*(X) \) is expressed by a universal polynomial \(tp^A(\eta) \) in the Chern class \(c_i = c_i(T_{X/B}) \) and \(c_j = c_j(T_{Y/B}) \) of relative tangent bundles. Dual \([\bar{B}_\eta(f)] \in H^*(B) \) is also expressed by the pushforward \(p_0*tp^A(\eta) \).

\[
\begin{array}{ccc}
\bar{\eta}(f) & \xhookrightarrow{} & X \\
\downarrow p_0 & & \downarrow p_0 \\
\bar{B}_\eta(f) & \xhookrightarrow{} & B \\
\end{array}
\]

\[
\begin{array}{c}
\text{\(jf \)} \\
\downarrow \\
J(T_{X/B}, f^*T_{Y/B})
\end{array}
\]
Theorem 4.1

Let \(\eta \) be an \(A \)-finite singularity type. For generic maps \(f : X \to Y \),
Dual \([\overline{\eta}(f)] \in H^*(X) \) is expressed by a universal polynomial \(t p^A(\eta) \) in the
Chern class \(c_i = c_i(T_{X/B}) \) and \(c_j = c_j(T_{Y/B}) \) of relative tangent bundles.
Dual \([\overline{B_\eta}(f)] \in H^*(B) \) is also expressed by the pushforward \(p_0*tp^A(\eta) \).

Remark 4.2

The case of rel. dim. 1: Kazarian-Lando for the study of Hurwitz numbers.
Tp for A-finite singularities

A-classification of $\mathbb{C}^2, 0 \to \mathbb{C}^2, 0$ (Rieger-Ruas, Arnold-Platonova)

type	codim	miniversal unfolding
lips (beaks)	3	$(x^3 + xy^2 + ax, y)$
swallowtail	3	$(x^4 + xy + ax^2, y)$
goose	4	$(x^3 + xy^3 + axy + bx, y)$
gull	4	$(x^4 + xy^2 + x^5 + axy + bx, y)$
butterfly	4	$(x^5 + xy + x^7 + ax^3 + bx^2, y)$
$I_{2,2}^{1,1}$ (dertoid)	4	$(x^2 + y^3 + ay, y^2 + x^3 + bx)$

Lips
Tp for A-finite singularities

Example 4.3 (Ohm)

Tp for A-classification of map-germs $\mathbb{C}^2, 0 \to \mathbb{C}^2, 0$ is defined as

$$tp^A(\eta) \in \mathbb{Z}[c_1, c_2, c'_1, c'_2]$$

where c_i, c'_i are Chern classes of relative tangent bundles:

Type	Formula
lips/beaks	$-2c_1^3 + 5c_1^2c'_1 - 4c_1c'_2 - c_1c_2 + c_2c'_1 + c'_3$
swallowtail	$-6c_1^3 + 11c_1^2c'_1 - 6c_1c'_2 + 7c_1c_2 - 5c_1c'_2 - 5c'_1c_2 + 3c'_1c'_2 + c'_3$
goose	$8c_1^4 - 24c_1^3c'_1 + 26c_1^2c'_2 - 12c_1c'_3 + 2c'_4$ + $4c_1^2c_2 - 6c_1c'_1c_2 + 2c'_1c_2$
gull	$6c_1^4 - 17c_1^3c'_1 + 17c_1^2c'_2 - 7c_1c'_3 + c'_4$ $-c_1^2c_2 + 5c_1^2c'_2 + c_1c'_1c_2 - 7c_1c'_1c'_2 + 2c'_1c'_2 - c_2^2 + c'_2$
butterfly	$24c_1^4 - 50c_1^3c'_1 - 46c_1^2c'_2 - 10c_1c'_3 + c'_4 - 46c_1^2c_2 + 6c_1^2c'_2$ + $60c_1c'_1c_2 - 20c_1c'_1c'_2 - 20c'_1c_2 + 6c'_1c'_2 + 3c_2^2 - 3c'_2$
$I_{2,2}^{1,1}$	$c_2^2 - c_1c_2c'_1 + c_2c'_2 + c_1c'_2 - 2c_2c'_2 - c_1c'_1c'_2 + c'_2$
Today’s summary

Definition of Thom polynomials of stable singularities: That is a universal expression in terms of $c_i = c_i(f) (T_N - T_M)$ s.t. $tp(f) = \text{Dual} \left[(f) \right] \in H(M)$

Torus action and computation of T_p
Today’s summary

- Definition of Thom polynomials of stable singularities: That is a universal expression in terms of $c_i = c_i(f^*TN - TM)$ s.t.

$$tp(\eta)(f) = \text{Dual } [\overline{\eta(f)}] \in H^*(M)$$
Today’s summary

- Definition of Thom polynomials of stable singularities: That is a universal expression in terms of $c_i = c_i(f^*TN - TM)$ s.t.
 \[tp(\eta)(f) = \text{Dual} \left[\eta(f) \right] \in H^*(M) \]

- Torus action and computation of Tp
Até amanhã. Tchau!

ではまた明日！