The protective effect of *Azadirachta indica* (neem) against metabolic syndrome: A review

Fatemeh Yarmohammadi 1, 2, Soghra Mehri 3, 2, Nahid Najafi 1, 2, Sanaz Salar Amoli 1, 4, Hossein Hosseinzadeh 3, 2*

1 Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
2 Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
3 Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
4 Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran

ARTICLE INFO

Article type: Review article

Article history:
Received: May 21, 2020
Accepted: Nov 4, 2020

Keywords:
Azadirachta indica
Diabetes
Hyperlipidemia
Hypertension
Metabolic syndrome
Neem
Obesity

ABSTRACT

Metabolic syndrome is a condition associated with obesity, diabetes, dyslipidemia, and high blood pressure. Recently, the use of phytochemicals is suggested in the control and treatment of metabolic syndrome. The *Azadirachta indica* (neem) is an evergreen tree belonging to the family of Meliaceae. Multiple studies have been confirmed the anti-diabetic and anti-hypertension, anti-hyperlipidemia, and anti-obesity effects of neem. In this review, we reported the protective effects of neem against the complications of metabolic syndrome with a special focus on mechanisms that are involved. It has been shown that neem can control hyperglycemia and hypertension through over-expression of transcription factor nuclear factor erythroid 2-related factor 2 (Nrf2) and anti-oxidant effects. Neem also reduced the glucose uptake through up-regulation of glucose transporter 4 (GLUT4) and inhibition of key intestinal enzymes such as glucosidases. Moreover, neem showed anti-hypertensive effects possibility via the block of calcium channels, up-regulation of endothelial nitric oxide synthase (eNOS), and extracellular signal-regulated kinases 1/2 (ERK1/2) signaling pathway. Anti-oxidant effects play an important role in protective mechanisms of neem against metabolic syndrome and its complications.

Please cite this article as: Yarmohammadi F, Mehri S, Najafi N, Salar Amoli S, Hosseinzadeh H. The protective effect of *Azadirachta indica* (neem) against metabolic syndrome: A review. Iran J Basic Med Sci 2021; 24:280-292. doi: 10.22038/ijbms.2021.48965.11218

Introduction

Metabolic syndrome (MetS) is a common metabolic disorder that is described for more than multiple decades. The MetS is also known as insulin resistance syndrome and syndrome X (1). Physical inactivity, smoking, increasing age, obesity, and positive family history are risk factors associated with its development (2). Epidemiologic data have been suggested that the prevalence of MetS among the population over 60 years is the highest, and it is increasing among children and adolescents (3). People with MetS have a higher risk of type 2 diabetes and cardiovascular disease (CVD) (4, 5). Also, hypertension and an increase in triglyceride (TG)/high-density lipoprotein (HDL) cholesterol ratio are important components of the MetS and are one of the most risk factors for CVD (6, 7).

Moreover, several studies have been shown other side effects of MetS such as fatty liver disease (8), cirrhosis (9), and polycystic ovary syndrome (10). The pathogenesis of MetS has not been clearly defined, but insulin resistance, oxidative stress, and chronic inflammation are key pathogenic factors of it. Insulin resistance has a role in the development of diabetes mellitus. It has been reported that oxidative stress accelerates the development of complications of MetS. The activation of the inflammatory pathway leads to insulin resistance and diabetes (11, 12).

The first-line treatment of MetS is lifestyle modification on diet, weight, and physical activity. Second-line therapy for patients with MetS is drug therapy (13). In line with the treatment of MetS, the use of herbs has been regarded. Medicinal plants contain bioactive compounds with various metabolic effects. In several studies have been reported the protective potential of plants and herbs against MetS such as *Capsicum annuum* L. (14), *Crataegus pinnatifida* (15), and green tea (16). Taken together, the management of complications of MetS is the aim of the treatment in these patients, and medicinal plants can play an important role in its treatment.

Neem (Azadirachta indica) is an evergreen tree of southeastern Asia that is widely distributed in the Indian subcontinent. The height of this tree is approximately 15-20 m and sometimes even up to 35-40 m. The word *A. indica* was derived from the Persian language. The Azad means “free,” and the dirakht is meaning “tree,” and “I” refer to “Indian origin.” (17). Neem is a common name, and also it’s known with the name of Nimbay, Veppai, Ariyaveppu, Vepa in India (18). More than 300 compounds are derived from different parts of neem, such as leaves, flower, seed, fruit, bark, and root. Non-isoprenoids and isoprenoids metabolites are two major groups of these compounds. Some active constituents of neem include nimbidin, sodium nimbidate, nimbin, nimbidolide, gallic acid, azadirachtin, and polysaccharides (19). Nimbidin, as a major constituent extracted from

Corresponding author: Hossein Hosseinzadeh. Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences (MUMS), Mashhad, Islamic Republic of Iran. Tel: +98-51-38819042, Fax: +98-51-38823251; Email: hosseinzadehh@mums.ac.ir
neem seeds, demonstrated several biological activities such as anti-inflammatory, anti-pyretic, anti-diabetic, anti-fungal, and anti-ulcer activities. The spermicidal activity of nimbin has been reported in humans. Nimbolide has been shown to exert anti-malaria and antibacterial effects (20). Several studies have been reported the different pharmacologic effects of neem, including hypolipidemic (21), hepatoprotective (22), antimicrobial, anticancer, and anti-diabetes (23) properties. In line with these properties, the US National Academy of Science (NAS) has stated the neem tree as a tree that is solving global problems (24). On the other hand, neem oil has shown vomiting, diarrhea, acidosis, drowsiness, and encephalopathy in human studies. Also, mild to severe changes in the liver, intestine, spleen, kidney, and heart of chick and genotoxicity and anti-fertility in mice and rats by neem leaves and seeds have been reported. Neem leaf extract also decreased sperm count and sperm motility, probably due to androgen deficiency. Nimbolide has induced the kidney, small intestine, liver dysfunction, and blood pressure drop suddenly in animals (20). This review focuses on the effects of neem in treatment of diabetes, high blood pressure, dyslipidemia, and obesity.

Methodology
The databases of PubMed, Scopus, and Google Scholar have been involved in this review. Articles have been collected from the date of inception up to January 2020. The search keywords included metabolic syndrome, hypertension, blood pressure, hypotensive, antihypertensive, dyslipidemia, hyperlipidemia, high cholesterol, high triglyceride, hypercholesterolemia, hypertriglyceridemia, atherogenic, atherosclerosis, obesity, overweight, appetite, anti-obesity, weight loss, diabetes, hyperglycemia, insulin, hypoglycemic, antihyperglycemic, antidiabetic, blood glucose, neem, and Azadirachta indica.

Effects of neem on metabolic syndrome
Effects of neem on high blood pressure
One of the main constituents of MetS is high blood pressure (BP). Effects of several plants investigated on BP such as Aloe vera (25) and Capsicum annum L. (14). High BP has an increased risk of heart and blood vessel diseases. Multiple mechanisms induce high BP, including: (1) Calcium channels initiate vascular smooth muscle contraction through the release of calcium, which is mediated by Ca\(^{2+}\) influx via L-type and voltage-gated calcium channels. Calcium channels have an important role in the induction of high BP (26); (2) the extracellular signal-regulated kinase (ERK 1 and 2) are from the mitogen-activated protein kinases (MAPK) family. ERK1 and ERK2 play an essential role in the regulation of vascular smooth muscle contraction. Down-regulation of ERK 1 and 2 genes reduces both vascular smooth muscle cell growth and vasocostriction. Therefore, ERK 1 and 2 are a target for the induction of high BP (27); (3) Nitric oxide (NO) is a vasodilator produced by nitric oxide synthase (NOS) enzymes. The NOS isoforms and NO level are candidates for involvement in high BP (28); (4) Nuclear factor erythroid 2-related factor 2 (Nrf2) as a transcription factor involves transcriptional induction of several anti-oxidant genes. Nrf2 regulates signaling pathway functions to reduce reactive oxygen radicals (ROS) production. The down-regulation of Nrf2 expressions induces ROS production and resulting in high BP. The contraction of smooth muscle and depletion of NO are the mechanisms of ROS-induced high BP (29). Several studies have been reported the beneficial effects of different extracts (aqueous, alcoholic) of neem leaves against high BP which have been categorized in Table 1. The mechanisms underlying the protective effect of neem against high BP have been presented in Figure 1. The mechanisms are including the block of calcium channels (30), up-regulation of ERK1 and 2 (31) and Nrf2 gene expression, reduction of oxidative stress markers, and elevation of the nitric oxide (NO) levels (32). It has been reported that neem exerted the vasodilatation effects possibility through the block of calcium channel in the isolated aorta of rat and rabbit. Also, it has been shown that neem exerted dose-dependent fall in arterial pressure of isolated guinea-pig atrial (30). The down-regulation of ERK1 and 2 have been reported in cardiac and renal tissues of rats treated by sodium fluoride (600 ppm in drinking water). Neem protected hypertensive rats through (100 and 200 mg/kg, p.o.) up-regulation of ERK (31). L-NAME (N ω -Nitro-L-Arginine Methyl Ester) is a NOS inhibitor and reduces NO bioavailability. Polyphenol-rich fraction of neem (100 and 200 mg/kg) restored NO level in rats were treated with L-NAME.
Effects of neem against high blood pressure

Part(s) of the plant used/extract(s)	Neem dose/route	Study design	Results	Ref
Leaves/methanolic 100 and 200 (mg/kg), p.o.	Male rats, L-NAM (40 mg/kg), p.o.	↓ BP ↑ NO level ↑ Oxidative stress ↑ Expressions of Nrf2	(32, 115)	
Leaves/methanolic 100 and 200 (mg/kg), p.o.	Male rats, NaF 600 (ppm)	↓ BP ↑ Oxidative stress ↑ Expressions of ERK	(31, 116)	
Crude/aqueous 1, 3, 10 and 30 (mg/kg), p.o.	Male and female rats, arterial cannula	↓ BP Blockade Ca²⁺ channel ↑ NO	(30)	
Crude/aqueous and ethylacetate 0.01-10 mg/ml, p.o.	Rabbit, isolated rabbit aorta	↓ BP Blockade Ca²⁺ channel ↑ NO	(30)	
Crude/aqueous and ethylacetate 0.001-10 mg/ml, p.o.	Rats, isolated rat aorta	↓ BP Blockade Ca²⁺ channel ↑ NO	(30)	
Crude/aqueous and ethylacetate 0.01-10 mg/ml, p.o.	Guinea pig, isolated guinea pig atrial	↓ BP Blockade Ca²⁺ channel ↑ NO	(30)	
Leaves/aqueous 20 (mg/kg), p.o.	Male rats, DOCA-salt 15 (mg/kg), s.c.	↓ MAP ↑ Alterations of ECG	(33)	
Leaves/alcoholic 100, 300 and 1000, (mg/kg), iv.	Male rats, atropine (1 mg/kg) and mepyramine (3 mg/kg), iv.	↓ BP	(117)	
Leaves 5, 10, 20, 40, 80, 100, and 200, (mg/kg), iv.	Rabbit and guinea pig, ouabain-induced cardiac dysrhythmias	↑ BP	(118)	
Leaves/aqueous 2 g, p.o.	Male patients (40-60 years)	↓ BP	(34)	

↑: increase; ↓: decrease; BP: blood pressure; DOCA: deoxycorticosterone acetate; ECG: electrocardiogram; ERK: extracellular signal-regulated kinase; g: gram; i.v.: intravenous; kg: kilogram; L-NAM: N-ω-nitro-L-arginine methyl ester; MAP: mitogen-activated protein; mg: milligram; NO: nitric oxide; Nrf2: Nuclear factor erythroid 2-related factor 2; p.o.: per os (orally); ppm: parts per million; s.c.: subcutaneous

(31, 116) ↑ Expressions of ERK
(30) ↑ NO
(30) ↓ BP Blockade Ca²⁺ channel
(30) ↓ BP Blockade Ca²⁺ channel
(30) ↓ BP Blockade Ca²⁺ channel
(33) ↓ MAP ↑ Alterations of ECG
(117) ↓ BP
(118) ↑ BP
(34) ↓ BP

Table 1. Effects of neem against high blood pressure

(orally, 40 mg/kg) (32). The methanol extract of neem (orally, 100 and 200 mg/kg for 7 days) increased NO level in serum of rats exposed to sodium fluoride (NaF) (600 ppm in drinking water) (31). The crude (0.3-3 mg/ml), aqueous (1-5 mg/ml) and ethyl acetate (0.1-1 mg/kg) extracts of neem induced endothelium-dependent vasorelaxation in isolated rat aorta (30).

Neem restored anti-oxidant enzyme activity, including superoxide dismutase (SOD), glutathione peroxidase (GPx), and glutathione S-transferase (GSTs) in animal models of high BP. Neem also improved glutathione (GSH) and reduced malondialdehyde (MDA) and protein carbonyl (markers of oxidative stress) levels (31, 32). The aqueous extract of neem (20 mg/kg) reduced mean arterial pressure in rats which were treated by DOCA-salt (15 mg/kg, s.c.) and drinking water containing 1.0% NaCl and 0.03% KCl (33).

A study has been reported on the effect of neem leaves on high BP of the 90 diabetic patients aged 40-60, which were kept under observation for a month. During the study, patients received 2 g powder of neem daily for three months. A significant reduction was observed in the BP of treated patients (34).

Effects of neem on hyperlipidemia

One of the most components of MetS is hyperlipidemia. Many medicinal plants showed positive effects on hyperlipidemia such as barberry (Berberis vulgaris) (35) and rosemary (Rosmarinus officinalis) (36). Plasma lipid levels elevate in people with diabetes and obesity (37). Hyperlipidemia contributes to impair endothelial function, development of atherosclerosis, and coronary heart disease (CHD) through the enhancement of oxidative stress (38). Anti-oxidant defense system (SOD and GPx) protects plasma lipoproteins against oxidative stress (39). The elevation of ROS generation under stress conditions (diabetes and obesity) causes oxidative damage of lipoproteins in the plasma (40, 41). The oxidation of lipoproteins increases TG, very-low-density lipoprotein (VLDL), low-density lipoprotein (LDL) concentrations in plasma (40). The measure of serum TG, total cholesterol (TC), LDL, HDL, and cholesterol is the reference procedure for the determination of lipid profile (42). As mentioned in Table 2 several studies have been shown the effects of neem in the management of hyperlipidemia.

Different doses of neem (100, 200, 250, 300, 400, and 500 mg/kg) in streptozotocin (STZ)-diabetic rats decreased serum TC, TG, LDL, VLDL levels and increased serum HDL levels (43-48). Also, two different doses of neem (7.5 and 20 mg/kg) in STZ-diabetic mice normalized lipid profile (49, 50). Neem (200, 250, 400, and 500 mg/kg, p.o.) reduced TC, TG, HDL, LDL, VLDL in rats which were treated with alloxan (120 mg/kg, i.p.) (51-53). Also, neem attenuated hyperglycemia, and hyperlipidemia via induction of SOD, catalase (CAT).
levels in diabetic rats (46). The aqueous leaf extract of neem (250, 500, and 1000 mg/kg, p.o.) decreased TC and TG levels and increased HDL levels in rats which were treated with isoprenaline (54). The leaf extract of neem (50 and 300 mg/kg/day orally) prevented the rise of TC, LDL, and TG in cholesterol-fed rats (55). The mechanisms which are important in the effects of neem against hyperlipidemia have been shown in Figure 2.

Table 2. Effects of neem against hyperlipidemia

Part(s) of the plant used/extract(s)	Neem dose/route	Study design	Results	Ref
Leaves/ aqueous	250 mg/kg, p.o.	Male and female rats, STZ (60 mg/kg), i.p.	↓ LDL, TG, and cholesterol ↑ HDL	(45)
Leaves/ aqueous	400 mg/kg, p.o.	Male rats, STZ (35 mg/kg), i.p.	Normalized lipid profile	(47)
Leaves/ aqueous	500 mg/kg, p.o.	Rats, STZ (45 mg/kg), i.p.	↓ Cholesterol, TG	(48)
Leaves/ chloroform	300 mg/kg, p.o.	Male rats, STZ (60 mg/kg), i.p.	↓ LPO, ↑ CAT activity, ↑ GSH levels, ↑ GSSG levels	(46)
Leaves/ alcoholic	200 mg/kg, p.o.	Male rats, STZ (50 mg/kg), i.v.	↑TC, ↑ TG, LDL and VLDL	(44)
Seeds/ petroleum ether	0.09 and 2 mg/kg, p.o.	Male rats, STZ (55 mg/kg), i.v.	↑TC, ↑TG	(119)
Allopolyherbal	500 mg/kg, p.o.	Male and female rats, STZ (60 mg/kg), i.p.	↑ TC, TG, LDL, VLDL, serum creatinine, SGOT, and SGPT ↑ HDL	(107)
Glucova Active	-	Rats, STZ (35 and 50 mg/kg), i.p.	↓ Serum cholesterol, TG, LDL, VLDL ↑ HDL	(43)
Dihar	10%, p.o.	Male rats, STZ (45 mg/kg), i.v.	↑ Cholesterol, TG, LDL, serum creatinine, urea and LPO ↑ HDL, SOD and CAT	(108)
Leaves/ chloroform	20 mg/kg, p.o.	Male mice, STZ (60 mg/kg), i.v.	↑ TG, TC ↑ HDL ↓ LPO	(50)
Dianex	7.5 mg/kg, p.o.	Male and female mice, STZ (60 mg/kg), i.p.	↑ TG, cholesterol, urea and creatinine	(49)
Leaves/ methanolic	500 mg/kg, p.o.	Male and female rats, alloxan (100 mg/kg), i.p.	↑ HDL ↓ LDL and TG	(53)
Leaves/ ethanolic	100 and 250 mg/kg, p.o.	Male rats, alloxan (120 mg/kg), i.p.	↑ TC, TG, HDL, LDL, VLDL	(52)
Leaves/ ethanolic	100 mg/kg, p.o.	Male rats, alloxan (120 mg/kg), i.p.	↑ Serum cholesterol, TG, LDL, creatinine, and urea ↑ HDL	(89)
Karnim Plus	200 and 400 mg/kg, p.o.	Rats, alloxan (120 mg/kg), i.p.	↑ Serum cholesterol, TG, creatinine, and urea ↑ HDL	(51)
Ethanolic (leaves)	50 and 300 mg/kg, p.o.	Male rats, cholesterol	↑TC, LDL and TG	(55)
Aqueous (leaves)	250, 500 and 1000 mg/kg, p.o.	Male rats, isoprenaline (25 mg/kg), s.c.	↑TC and ↑ HDL	(54)

↑: increase; ↓: decrease; CAT: catalase; GSH: glutathione; GSSG: glutathione disulfide; HDL: high-density lipoprotein; i.p.: intraperitoneal; i.v.: intravenous; kg: kilogram; LDL: low-density lipoprotein; LPO: lipid peroxidation; mg: milligram; p.o.: per os (orally); SGOT: serum glutamic oxaloacetic transaminase; SGPT: serum glutamic pyruvic transaminase; SOD: superoxide dismutase; STZ: streptozotocin; TC: total cholesterol; TG: triglyceride; VLDL: very-low-density lipoprotein.

Effects of neem on obesity

Obesity and overweight are a serious health problem that is increasing worldwide. Obesity is associated with a life expectancy decrease and a significant increase in mortality (56). Stress, inadequate sleep, intake of alcohol, inactivity, unhealthy diet, age, genetic are some of the risk factors for obesity Figure 2 (57). Diabetes, heart disease, high blood pressure, hyperlipidemia, and
Effects of neem on diabetes

Diabetes, as a growing public health problem, is characterized by impairment of systemic insulin secretion, reduction of insulin action, and resulting in hyperglycemia (61). Diabetes-associated main complications are nerve damage (62), myocardial infarction (63), atherosclerosis (64), renal failure (65), blindness (66), and limb amputation (67). The microvascular disease has been known as the foremost cause of these complications (68). Glucose-mediated vascular damage occurs as a result of the overproduction of ROS and oxidative stress (69). Enzymatic and nonenzymatic anti-oxidants are defense mechanisms against oxidative stress. Common enzymatic anti-oxidants include SOD, CAT, GPx, and glutaredoxin (GRx). Vitamins A, C, E, and glutathione are common nonenzymatic anti-oxidants (70). Pancreatic beta cells are more susceptible to oxidative stress than other cells because they have relatively low levels of anti-oxidants (71). Therefore, the reduction of ROS and induction of anti-oxidant activity are therapeutic approaches to decrease hyperglycemia and diabetes (72). On the other hand, salivary α-amylase and intestinal glucosidases play an essential role in the digestion of starch to produce glucose in the small intestine (73). Also, the inhibition of these enzymes could be effective in the control of diabetes (74). Several reports have been shown that medicinal plants useful for the management and treatment of diabetes. Some of these plants include Vernonia amygdalina (75), Nigella sativa L. (76), grapes (Vitis vinifera) (77), and Allium sativum (garlic) (78) which are useful in the remedy of diabetes. The use of the neem is most popular to control diabetes in different regions of the world, such as India (79), Pakistan (80), Bengal (81), Indonesia (82), and Northwest Nigeria (83).

Glucagon-like peptide-1 (GLP-1) is a hormone that plays an essential role in the release of insulin and is inactivated by dipeptidyl peptidase IV (DPP-IV) (84, 85). Inhibition of DPP-IV (a peptidase) is a method for diabetes treatment (86). In this method, substrate Gly-Pro-p-Nitroanilide (GPPN) was cleaved to paranitroanilide (a yellow-colored product) by DPP-IV and the absorbance was measured at 380 nm. Inhibitory activity of neem leaves (35 μl with varying concentrations) was determined on DPP-IV activity via this method, and neem exhibited a weak inhibitory activity (17%) on DPP-IV (82).

• Effects of neem in diabetic human

Neem is available as a dietary supplement in an herbal mixture in North America. Treatment with this dietary supplement (2 capsules 3 times per day) for 3 months in type 2 diabetic patients (the ages of 18 and 70) improved glucose control and HbA1C levels (87). The study of Kochhar has been investigated the antidiabetic effect of neem in 90 diabetic men 40 to 60 years of age. Subjects received 2 g of neem leaf powder daily for three months. The results of this study showed that neem reduces sweating, headache, burning feet, itching, polydipsia, and polyphagia in diabetic humans (34).

• Effects of neem in alloxan/streptozotocin-induced diabetic animals

• Effects of neem in alloxan-induced diabetic rats

Alloxan is a toxic glucose analog that accumulates in pancreatic beta cells via glucose transporter 2 (GLUT2)
and inhibits its function. The intraperitoneal injection of alloxan (at doses of 100, 120, and 150 mg/kg) is a conventional method for the induction of diabetes in rat models (88). The oral administration of ethanolic extract of neem in different doses (100 to 800 mg/kg for 14 or 28 days) reduced blood glucose levels in rats which were treated with alloxan (52, 89, 90). The combination of neem (50 mg/kg) with *Gynura procumbens* ethanolic (112.5 mg/kg) extracts (2 times a day for 15 days) increased insulin expression, decreased blood glucose concentration, and improved the morphology of the islets of Langerhans and beta-cells in rats (91). The aqueous extract of neem leaf and bark was effective in reducing oxidative stress markers and lipid peroxidation of the blood sample, liver, and kidney tissues in diabetic rats (92, 93). Polyherbal formulation (PHF) is containing more than one herb that is used all around the world to treat diseases (94). PHFs used in the treatment of diabetes are including Karnim Plus and DIA7. The antidiabetic activity of Karnim Plus and DIA7 contain neem extract and decrease blood glucose levels in diabetic rats (51, 95). In Table 4, different studies on the effect of neem on diabetes have been summarized.

Effects of neem in alloxan-induced diabetic rabbits

The hypoglycemic effect of neem (ethanolic extract of leaves, 200 mg/kg) was observed in rabbits that were treated with alloxan (150 mg/kg, i.v.) (96). Also, leaf extract (500 mg/kg, p.o. daily for six weeks) and seed oil (5 mg/kg, p.o. daily for six weeks) of neem decreased blood glucose in diabetic rabbits (alloxan in a single dose, 140 mg/kg, i.v.) (97).

Table 4. Effects of neem against diabetes

Part(s) of the plant used/ extract(s)	Neem dose/ route	Study design	Results	Ref
Bark root/ ethanolic	200, 400, 800 mg/kg, p.o.	Rats, alloxan (100 mg/kg), i.p.	↓BG	(90)
Leaves and seeds/ ethanolic	500 mg/kg, p.o.	Male rats, alloxan (120 mg/kg), i.p.	↓BG	(120)
Leaves/ ethanolic	200 mg/kg, p.o.	Rats, alloxan (150 mg/kg), i.p.	↓BG	(121)
Leaves/ ethanolic	100 and 250 mg/kg, p.o.	Male rats, alloxan (120 mg/kg), i.p.	↓BG	(52)
Leaves/ ethanolic	250 mg/kg, p.o.	Male rats, alloxan (100 mg/kg), i.p.	↓BG	(122)
Leaves/ ethanolic	100 mg/kg, p.o.	Male rats, alloxan (120 mg/kg), i.p.	↓BG	(89)
Leaves/ ethanolic	200 mg/kg, p.o.	Male rats, alloxan (150 mg/kg), i.p.	↓BG, Insulin Protect beta cells and islets Langerhans	(91)
Leaves and bark/ aqueous	100 and 500 mg/kg, p.o.	Rats, alloxan (150 mg/kg), s.c.	↓ Oxidative stress markers and LPO and DNA fragmentation and PKC beta II	(92)
Leaves and bark/ aqueous	100 and 500 mg/kg, p.o.	Rats, alloxan	↓ Oxidative stress markers and LPO	(93)
Leaves and bark/ aqueous	75 mg/kg, p.o.	Rats, alloxan (150 mg/kg), i.p.	↓BG	(123)
Leaves/ aqueous	25, 50 and 100 mg/kg, p.o.	Rats, alloxan (150 mg/kg), i.p.	↓ Oxidative stress markers and LPO	(124)

Effects of neem in streptozotocin-induced diabetic rats

Streptozotocin (STZ) is one of the most diabetogenic agents using in diabetes research. Its mechanisms for the induction of diabetes are inhibition of insulin secretion and the death of the beta-cells (88). In rat models, the injection of STZ (at doses of 35, 45, 55, 60, 65, 70, and 100 mg/kg) is a standard method for the induction of diabetes (47, 48, 98-102). The ethanolic extract of neem leaves (at doses of 200 and 500 mg/kg, p.o.) reduced blood glucose levels in rats were treated with STZ (44). Moreover, the oral administration of neem (leaf ethanolic extract) induced markers of the anti-oxidant system (SOD, CAT, GPx, and GSH levels) and reduced lipid peroxidation in diabetic rats (103) (Figure 3). The aqueous extract of neem leaves (at doses of 100, 200, 250, 400, 500 and 600 mg/kg, p.o.) decreased blood glucose levels and improved serum insulin levels in rats were treated with STZ (45, 47, 100, 101, 104, 105). Moreover, neem (400 mg/kg, p.o. for 30 days) increased insulin receptor protein expression in diabetic rats (STZ: 35 mg/kg, i.p.). It also up-regulated cytosolic and plasma membrane glucose transporter
Continued Table 4

Plant Part	Extract	Dose	Animal	Alloxan Dose	Effect
Leaves/ aqueous	400 mg/kg, p.o.	Male and female rats, alloxan (150 mg/kg), i.p.	Improved liver function		
Seeds/ aqueous	500 mg/kg, p.o.	Male and female rats, alloxan (150 mg/kg), i.p.	↓BG		
Leaves/ polyherbal	200 and 400 mg/kg, p.o.	Rats, alloxan (120 mg/kg), i.p.	↓BG		
Leaves/ polyherbal	14.28%	Rats, alloxan (150 mg/kg), i.p.	↓BG		
Leaves/ ethanolic	200 g, p.o.	Rabbits, alloxan (150 mg/kg), iv.	↓BG		
Leaves/ aqueous	500 ml/kg, p.o.	Male and female rabbits, alloxan	↓BG		
Seeds/ aqueous	5 mg/kg, p.o.	Male and female rabbits, alloxan	↓BG		
Leaves/ chloroform	200 mg/kg, p.o.	Male rats, STZ (50 mg/kg), i.p.	↑ Anti-oxidant markers		
Leaves/ chloroform	300 mg/kg, p.o.	Male rats, STZ (65 mg/kg), i.v.	↑ Anti-oxidant markers		
Leaves/ aqueous	600 mg/kg, p.o.	Male rats, STZ (60 mg/kg), i.p.	↑ Anti-oxidant markers protected beta cells and islets langerhans		
Leaves/ aqueous	600 mg/kg, p.o.	Male rats, STZ (60 mg/kg), i.p.	↑ Anti-oxidant markers protected beta cells and islets langerhans		
Leaves/ aqueous	400 mg/kg, p.o.	Male rats, STZ (5 mg/kg), i.p.	↑ Anti-oxidant markers protected beta cells and islets langerhans		
Leaves/ aqueous	500 mg/kg, p.o.	Rats, STZ (45 mg/kg), i.p.	↑ Anti-oxidant markers protected beta cells and islets langerhans		
Leaves/ aqueous	500 mg/kg, p.o.	Male and females rat, STZ (55 mg/kg), i.p.	↑ Anti-oxidant markers		
Leaves/ aqueous	250 mg/kg, p.o.	Male rats, STZ (60 mg/kg), i.p.	↑ Anti-oxidant markers		
Leaves/ aqueous	100 mg/kg, p.o.	Male rats, STZ (65 mg/kg), i.p.	↑ Anti-oxidant markers		
Leaves/ aqueous	10 ml/kg, p.o.	Male rats, STZ (65 mg/kg), i.p.	↑ Anti-oxidant markers		
Leaves/ aqueous	50, 100, 200 and 400 mg/kg, p.o.	Males and females rat, STZ (50 mg/kg), i.p.	↑ Anti-oxidant markers		
Leaves/ ethanolic	200 mg/kg, p.o.	Male rats, STZ (65 mg/kg), i.p.	↑ Anti-oxidant markers		
Leaves/ ethanolic	200 mg/kg, p.o.	Male rats, STZ (50 mg/kg), i.v.	↑ Anti-oxidant markers		
Leaves/ ethanolic	500 mg/kg, p.o.	Male and females rat, STZ (70 mg/kg), i.p.	↑ Anti-oxidant markers		
Leaves/ ethanolic	500 mg/kg, p.o.	Male rats, STZ (70 mg/kg), i.v.	↑ Anti-oxidant markers		
Plant/extract	Dose/vehicle	Treatments	Notes		
---------------	--------------	------------	-------		
Leaves/ethanolic	500 mg/kg.p.o.	Male rats, STZ (70 mg/kg), i.p.	IG, ↑ Glucose consumption, ↑ Glucose consumption, protected beta cells and islets langerhans (130)		
Seeds/ethanolic	1.2 ml.p.o.	Females rat, STZ (100 mg/kg), s.c.	IG, ↑ LPO, ↑ Anti-oxidant markers (102)		
Leaves/ethanolic	200 mg/kg.p.o.	Male rats, STZ (65 mg/kg), i.p.	IG, ↑ LPO, ↑ Anti-oxidant markers (103)		
Leaves/ethanolic	500 mg/kg.p.o.	Male rats and females rat, STZ (70 mg/kg), i.p.	IG (128)		
Seeds/petroleum ether	0.9 and 2 mg/kg, p.o.	Male rats, STZ (55 mg/kg), i.p.	IG, ↑ LPO, ↑ Anti-oxidant markers (131)		
Allopolyherbal	500 mg/kg.p.o.	Males and females rat, STZ (60 mg/kg), i.p.	IG, ↑ Insulin (107)		
Glucova Active	-	Rat, STZ (35 and 50 mg/kg), i.p.	IG, ↑ Insulin protected beta cells (43)		
Dihar	10%, p.o.	Male rats, STZ (45 mg/kg), i.v.	IG, ↑ Insulin protected beta cells (108)		
MAC-ST/001	20 g/100 g.p.o.	Male and female rats, STZ (55 mg/kg), i.p.	IG, ↑ Insulin protected beta cells ↓ G6Pase (109)		
Herbo-mineral	25 mg/kg, p.o.	Male rats, STZ (60 mg/kg), i.p.	IG, ↑ Insulin (132)		
-	100 g.p.o.	Female rats, STZ (65 mg/kg), i.p.	IG, ↑ Insulin protected beta cells ↓ G6Pase (133)		
Leaves/aqueous	100 µg/200 µl, p.o.	Mice, STZ (3 mg/25 g), i.p.	IG, ↓ G6Pase (110)		
Seeds/aqueous	1mg/ml, p.o.	Females mice, STZ (100 mg/kg), s.c.	IG (102)		
Leaves and seeds/ aqueous	100, 200, 300 µl, p.o.	Males mice, STZ (55 mg/kg), i.p.	IG, ↑ Anti-oxidant markers (111)		
Leaves/chloroform	20 and 30 mg/kg, p.o.	Male mice, STZ (60-120 mg/kg), i.p.	IG, ↑ Insulin ↑ Anti-oxidant markers ↓ LPO, ↓ G6Pase, ↓ Glucokinase activity ↓ HK activity (50)		
Dianex	7.5 mg/kg, p.o.	Male and females mice, STZ (60 mg/kg), i.p.	IG (49)		
Leaves/aqueous	200 mg/kg, p.o.	Male rabbit, STZ (50 mg/kg), i.p.	↓ IG, ↑ Insulin (113)		
Leaves/aqueous	400 mg/kg, p.o.	Male and female rats, glucose (3 g/kg), p.o.	↓ IG (112)		
Leaves/ethanolic	-	Rat, glucose (3 mg/ml), p.o.	↓ IG (113)		
Rhizome/ethanolic	300 mg/kg, p.o.	Male mice, glucose (1 g/kg), p.o.	↓ IG (114)		
Leaves/aqueous	10 mg/kg, p.o.	Male and female rats	↓ IG (134)		
Seeds, stems, flowers, and bark/ aqueous	0.1, 0.092, 0.084, 0.071 and 0.05 g/ml, p.o.	Male rats	↓ IG (135)		
Stem bark/ethanolic	15, 30, 60, 120 and 240 (µg/ml), p.o.	Male rats	↑ Anti-oxidant markers ↓ LPO (136)		
Plant/aqueous	25-1000 µg/ml	INS-1 b-cells, g/kg	↑ Insulin release ↑ Glucose consumption (137)		
Plant/aqueous	25-1000 µg/ml	3T3-L1 adipocytes, glucose 5.6 mM	↑ Insulin release ↑ Glucose consumption (137)		

↑: increase; ↓: decrease; BG: blood glucose; GK: glucokinase; G6Pase: glucose-6-phosphatase; GluT4: glucose transporter 4; g: gram; HK: hexokinases; INS-1 b-cells: insulin-secreting cells; i.p.: intraperitoneal; i.v.: intravenous; kg: kilogram; LPO: lipid peroxidation; µg: microgram; µl: microliter; mg: milligram; mlliliter; PKE: protein kinase C; p.o.: per os (only); s.c.: subcutaneous; STZ: streptozotocin
Neem and Metabolic Syndrome

Yarmohammadi et al.

Figure 3. Main mechanisms of neem on diabetes. Neem has been shown protective effects against diabetes via inhibition of the mitochondrial/oxidative stress pathways. GLUT2: glucose transporter 2; ROS: reactive oxygen species.

4 (GLUT4) in the gastrocnemius muscle of diabetic rats (47). Insulin enhances glucose uptake into muscle tissues through GLUT4, and therefore it controls glucose homeostasis (106). Several studies investigated the effects of PHFs on diabetes in rats which were treated with STZ. Allopolyherbal (neem at the dose of 500 mg/kg) (107), Glucova Active (43), Dihar (10 % of neem) (108), MAC-ST/001 (20 g/100 g of neem) (109), and Herbo-mineral (25 mg of neem) (109) are PHFs that decrease blood glucose levels and increase insulin level in STZ-diabetic rat.

• Effects of neem in streptozotocin-induced diabetic mice
 The decrease of serum glucose levels and increase of glycogen content, plasma insulin, and c-peptide levels with aqueous extract of neem have been shown in mice treated with STZ (110, 111). Also, the increase of glucose-6-phosphate dehydrogenase (G6PD) activity with neem has been shown in diabetic mice (110). The chloroform extract of neem in addition to reducing glucose level and induction of insulin level decreased oxidative stress markers and LPO in mice treated with STZ-nicotinamide. Also, it reduced glucose-6-phosphatase-α (G6Pase), glucokinase (GK), α-amylase, and α-glucosidase activities, and induced HK activity (50). Daxane, an herbal formulation is containing neem at a dose of 7.5 mg/kg. Daxane has been shown hypoglycemic effects in STZ-diabetic mice (49).

• Effects of neem in glucose-induced diabetic animals
 The aqueous and ethanolic extracts of neem leaves decreased glucose level and increased insulin secretion in rats were treated with glucose (3 mg/ml, p.o.) (112, 113). Also, the potential use of ethanolic extract rhizome of neem (300 mg/kg, p.o.) was investigated in mice that were treated with glucose (1 g/kg). In this study, neem reduced blood glucose (114).

Conclusion
In summary, A. indica (neem) is effective in MetS and anti-oxidant effects appear to play an important role in protective mechanisms of neem against MetS and the complications associated with it. Neem increases the expression of Nrf2-mediated anti-oxidant enzymes and can regulate blood pressure and lipid profile. Also, neem inhibits vascular smooth muscle contraction through the block of calcium channels and decreases high blood pressure. Neem up-regulates eNOS expression as a vasodilator and increases NO level. Moreover, neem reduces vasoconstriction through the regulation of the ERK1/2 signaling pathway. In the diabetic condition, neem up-regulates GLUT4 and reduces the glucose uptake. Neem also inhibits intestinal enzymes such as glucosidases. Understanding the signaling pathways help to expand the use of neem in the treatment of the MetS. However, few studies have been conducted to investigate the anti-diabetic, anti-hypertension, anti-hyperlipidemia, and anti-obesity activities of neem in humans. Therefore, further clinical studies are needed to assess the protective effects of neem.

Acknowledgment
The authors are thankful to Mashhad University of Medical Sciences, Mashhad, Iran.

Conflicts of Interest
The authors declare that there are no conflicts of interest.

References
1. Hu G, Lindstrom J, Joulslahti P, Peltonen M, Sjoberg L, Kaaja R, et al. The increasing prevalence of metabolic syndrome among Finnish men and women over a decade. J Clin Endocrinol Metab 2008;93:832-836.
2. Lee WY, Jung C-H, Park J-S, Rhee E-J, Kim S-W. Effects of smoking, alcohol, exercise, education, and family history on the metabolic syndrome as defined by the ATP III. Diabetes Res Clin Pract 2005;67:70-77.
3. Toms TE, Panoulas VF, John H, Douglas KM, Kitas GD. Methotrexate therapy associates with reduced prevalence of the metabolic syndrome in rheumatoid arthritis patients over the age of 60-more than just an anti-inflammatory effect? A cross sectional study. Arthritis Res Ther 2009;11:R110.
4. Hamilton DG, Zderic TW. Role of low energy expenditure and sitting in obesity, metabolic syndrome, type 2 diabetes, and cardiovascular disease. Diabetes 2007;56:2655-2667.
5. Mahdian D, Abbasszadeh-Goudarzi K, Raoofi A, Dadashizadeh G, Abroud M, Zarepour E, et al. Effect of Boswellia species on the metabolic syndrome: A review. Iran J Basic Med Sci. 2020;23:1374-1381.
6. Saeed A, Feofanova EV, Yu B, Sun W, Virani SS, Nambi V, et al. Remnant-like particle cholesterol, low-density lipoprotein triglycerides, and incident cardiovascular disease. J Am Coll Cardiol 2018;72:156-169.
7. Galavi A, Hosseinzadeh H, Razavi BM. The effects of Allium cepa L (onion) and its active constituents on metabolic syndrome: A review. Iran J Basic Med Sci. 2020;23:1-14.
8. Lonardo A, Ballestri S, Marchesini G, Angulo P, Loria P. Nonalcoholic fatty liver disease: a precursor of the metabolic syndrome. Dig Liver Dis 2015;47:181-190.
9. Floreni A, Cazzagon N, Franceschetti L, Canesso F, Salmaso L, Baldo V. Metabolic syndrome associated with primary biliary cirrhosis. J Clin Gastroenterol 2015;49:57-60.
10. Lim S, Kalsy N, Tan J, Fitzgerald G, Bahri Khomami M, Joham A, et al. Metabolic syndrome in polycystic ovary syndrome: a systematic review, meta-analysis and meta-regression. Obes Rev 2019;20:339-352.
11. Czech MP. Insulin action and resistance in obesity and type 2 diabetes. Nat Med 2017;23:804-814.
12. Chen L, Chen R, Wang H, Liang F. Mechanisms linking inflammation to insulin resistance. Int J Endocrinol 2015;2015:508409.
13. Watanabe M, Yokotsuka M, Yamaoka K, Adachi M, Nemoto A, Tange T. Effects of a lifestyle modification programme to reduce the number of risk factors for metabolic syndrome: a randomised controlled trial. Public Health Nut 2017;20:142-153.
14. Sanati S, Razavi BM, Hosseinzadeh H. A review of the effects of Capsicum annuum L. and its constituent, capsaicin, in metabolic syndrome. Iran J Basic Med Sci 2018;21:439-448.
15. Dehghani S, Mehri S, Hosseinzadeh H. The effects of Crateagus pinnatifida (Chinese hawthorn) on metabolic syndrome: A review. Iran J Basic Med Sci 2019;22:460-468.
16. Razavi BM, Lookian F, Hosseinzadeh H. Protective effects of green tea on olanzapine-induced metabolic syndrome in rats. Biomed Pharmacother 2017;92:27-631.
17. Gupta SC, Prasad S, Tyagi AK, Kunnumakkara AB, Aggarwal BB. Neem (Azadirachta indica): An Indian traditional panacea with modern molecular basis. Phyto medicine 2017;34:14-20.
18. Sehgal B, Periyasamy S. Indian medicinal plants for diabetes: text data mining the literature of different electronic databases for future therapeutics. Biomed Res 2016;27:430-436.
19. Patel SM, Venkata KCN, Bhattacharyya P, Sethi G, Bishayee R. Potential of neem (Azadirachta indica L.) for prevention and treatment of oncologic diseases. Semin Cancer Biol 2016;41:100-115.
20. Biswas K, Chattopadhyay I, Banerjee RK, Bandyopadhyay U. Biological activities and medicinal properties of neem (Azadirachta indica). Curr Sci 2002;82:1336-1345.
21. Nwobodo EO. Evaluation of antilipid peroxidation and hypolipidemic potentials of Azadirachta Indica leaf aqueous extract in paracetamol-induced hepato toxicity in wistar rats. Int J Inform Res Rev 2017;4:3615-3619.
22. Igwenyi I, Eze A, Aja P, Elom S, Uraku A, Awoke J, et al. Protective effects of neem (Azadirachta indica) leaf extract in paracetamol-induced hepatotoxicity in wistar rats. Int J Pharmacol 2014;10:418-428.
23. Moga MA, Bălan A, Anastasiu CV, Diminescu OG, Neculoiu CD, Gavriş C. An overview on the anticanceer activity of Azadirachta indica (Neem) in gynecological cancers. Int J Mol Sci 2018;19:3898-3924.
24. Singaravelu S, Sankarapillai J, Chandrakumar AS, Sinha P. Effects of Azadirachta indica crude bark extracts concentrations against gram-positive and gram-negative bacterial pathogens. J Pharm Bioallied Sci 2019;11:33-37.
25. Shabk Z, Shahraki N, Razavi BM, Hosseinzadeh H. Aloe vera as an herbal medicine in the treatment of metabolic syndrome: A review. Phytother Res 2019;33:2649-2660.
26. Sonkusare S, Palade PT, Marsh JD, Telemaque S, Pesic A, Rutsch NJ. Vascular calcium channels and high blood pressure: pathophysiology and therapeutic implications. Vas Pharmacol 2006;44:131-142.
27. Bouallegue A, Bou Daou G, Srivastava AK. Endothelin-1-induced signaling pathways in vascular smooth muscle cells. Curr Vasc Pharmacol 2007;5:45-52.
28. Ignarro LJ, Kadowitz PJ. The pharmacological and physiological role of cyclic GMP in vascular smooth muscle cell relaxation. Annual Rev Pharmacol Toxicol 1985;25:171-191.
29. Howden R. Nrf2 and cardiovascular defense. Oxid Med Cell Longev 2013;2013:104308.
30. Shah AJ, Gilani AH, Hanif HM. Neem (Azadirachta indica) lowers blood pressure through a combination of Ca²⁺ channel blocking and endothelium-dependent muscarinic receptors activation. Int J Pharmacol 2014;1:404-428.
31. Omobówálé TO, Oyagbemi AA, Alaba BA, Ola-Davies OE, Adejumobi OA, Asenuga ER, et al. Ameliorative effect of Azadirachta indica on sodium fluoride-induced hypertension through improvement of antioxidant defence system and upregulation of extracellular signal regulated kinase 1/2 signaling. J Basic Clin Physiol Pharmacol 2018;29:155-164.
32. Omobówálé TO, Oyagbemi AA, Ogunpolu BS, Ola-Davies OE, Olukanye JO, Asenuga ER, et al. Antihypertensive effect of polyphenol-rich fraction of Azadirachta indica on Nitro-L-arginine methyl ester-induced hypertension and cardiorenal dysfunction. Drug Res 2019;69:12-22.
33. Obiefuna I, Young R. Concurrent administration of aqueous Azadirachta indica (neem) leaf extract with DOCA-salt prevents the development of hypertension and accompanying electrocardiogram changes in the rat. Phytother Res 2005;19:792-795.
34. Kochhar A, Sharma N, Sachdeva R. Effect of supplementation of Tulsi (Ocimum sanctum) and Neem (Azadirachta indica) leaf powder on diabetic symptoms, anthropometric parameters and blood pressure of non insulin dependent male diabetics. Stud Ethn Med 2009;3:5-9.
35. Tabeshpour J, Imenshahidi M, Hosseinzadeh H. A review of the effects of Berberis vulgaris and its major component, berberine, in metabolic syndrome. Iran J Basic Med Sci 2017;20:557-568.
36. Hassani FV, Shirani K, Hosseinzadeh H. Rosemary (Rosmarinus officinalis) as a potential therapeutic plant in metabolic syndrome: a review. Naunyn-Schmiedeberg's Arch Pharmacol 2016;389:931-949.
37. Yoshino G, Hirano T, Kazumi T. Dyslipidemia in diabetes mellitus. Diabetes Res Clin Pract 1996;33:1-14.
38. Pirinioğlu AG, Gökalp D, Pirinioğlu M, Kizil G, Kizil M. Malondialdehyde (MDA) and protein carboxyl (PCO) levels as biomarkers of oxidative stress in subjects with familial hypercholesterolemia. Clin Biochem 2010;43:1220-1224.
39. El-Demerdash FM, Nasr HM. Antioxidant effect of selenium on lipid peroxidation, hyperlipidemia and biochemical parameters in rats exposed to diazoxon. J Trace Elem Med Biol 2014;28:89-93.
40. Morel DW, Chisolm GM. Antioxidant treatment of diabetic rats inhibits lipoprotein oxidation and cytotoxicity. J Lipid Res 1989;30:1827-1834.
41. Araujo FB, Barbas DA, Hsin CY, Maranhão RC, Abdalla DS. Evaluation of oxidative stress in patients with hyperlipidemia. Atherosclerosis 1995;117:61-71.
42. Davignon J, Cohn JS. Triglycerides: a risk factor for coronary heart disease. Atherosclerosis 1996;124:57-64.
43. Soni H, Patel S, Patel G, Paranjape A. Evaluation of anti-diabetic activity of Glucova Active Tablet on Type I and Type II diabetic model in rats. Int J Res Ayurveda Integr Med 2014;5:97-103.
44. Bisht S, Sisodia S. Anti-hyperglycemic and anti-diabetic potential of Azadirachta indica leaf extract in STZ-induced diabetes mellitus. J Pharm Sci Res 2010;2:622-627.
45. Hussain HEMA. Reversal of diabetic retinopathy in streptozotoxin induced diabetic rats using traditional Indian anti-diabetic plant, Azadirachta indica (L). Indian J Clin Biochem 2002;17:115-123.
46. Gutiérrez RMP, Gómez YG, Guzman MD. Attenuation of nonenzymatic glycation, hyperglycemia, and hyperlipidemia in streptozotoxin-induced diabetic rats by chloroform leaf extract of Azadirachta indica. Pharmacogn Mag 2011;7:254-259.
47. Satyanarayana K, Sravanti K, Shaker IA, Ponnulakshmi R. Molecular approach to identify antidiabetic potential of Azadirachta indica. J Ayurveda Integr Med 2015;6:165-174.
48. Gauatam MK, Gangwar M, Singh SK, Goel RK. Effect of Azadirachta indica on vascular endothelial growth factor and cytokines in diabetic deep wound. Planta Med 2015;81:713-721.
49. Mutalik S, Chetana M, Sulochana B, Devi PU, Udupa N. Effect of Dianex, a herbal formulation on experimentally induced diabetes mellitus. Phytother Res 2005;19:409-415.

Iran J Basic Med Sci. Vol. 24, No. 3, Mar 2020
50. Perez-Gutierrez RM, Damian-Guzman M, Meliacomin: a potent α-glucosidase and α-amylase inhibitor isolated from *Azadirachta indica* leaves and in *vivo* antidiabetic property in streptozotocin-nicotinamide-induced type 2 diabetes in mice. Biol Pharm Bull 2012;35:1516-1524.

51. Bangar OP, Jaraai EE, Ashgar S, Ahmad S. Antidiabetic activity of a polyherbal formulation (Karmim Plus). Int J Green Pharm 2009;3:211-214.

52. Dholi SK, Raparla R, Mankala SK, Nagappan K. In *vivo* Antidiabetic evaluation of Neem leaf extract in alloxan induced rats. J App Pharm Sci 2011;1:100-105.

53. Mgebeje BAI, Essien NA, Iwara IA, Egbugh GE, Igile GO, Ebong PE. Lipid profile and hepatoprotective effects of combined leaf extracts of *Azadirachta Indica* (Neem) and *Periphracthe bicalyculata* in Alloxan-induced diabetic rats. Int J Phytomedicine 2013;5:159-162.

54. Peer PA, Trivedi PC, Nigade PB, Ghasias MM, Deshpande AD. Cardioprotective effect of *Azadirachta indica* A. juss. on isoprenaline induced myocardial infarction in rats. Int J Cardiol 2008;126:123-126.

55. Zuraini A, Vadhveol T, Hidayat MT, Arifah A, Sulaiman M, Somchit M. Effects of neem (Azadirachta indica) leaf extracts on lipid and α-glucosidase protein concentrations in cholesterol-fed rats. J Nat Medicines 2006;6:109-114.

56. Wyatt SB, Winters KP, Dubbert PM. Overweight and obesity: prevalence, consequences, and causes of a growing public health problem. Am J Med Sci 2006;331:166-174.

57. Boden-Albala B, Sacco RL. Lifestyle factors and stroke risk: exercise, alcohol, diet, obesity, smoking, drug use, and stress. Curr Atheroscler Rep 2000;2:160-166.

58. Malik NS, Kroeker H. The medical complications of obesity. J Assoc Physicians 2006;99:565-579.

59. Mukherjee A, Sengupta S. Indian medicinal plants known to contain intestinal glucosidase inhibitors also inhibit pancreatic lipase activity—An ideal situation for obesity control by herbal drugs. Indian J Biotechnol 2013;12:32-39.

60. Jayakumar K, Srinivasan M, Ramesh N, Sachan A, Umesh M, Narayana K. Effect of neem leaf extract on feed intake and body weight in rats. Indian Vet J 2002;79:732-733.

61. Bogardus C, Lillioja S, Howard B, Reaven G, Mott D. Relationships between insulin secretion, insulin action, and fasting plasma glucose concentration in nondiabetic and noninsulin-dependent diabetic subjects. J Clin Inves 1984;74:1238-1246.

62. Dixit S, Maiya A. Diabetic peripheral neuropathy and its treatment by herbal drugs. Indian J Biotechnol 2013;12:32-39.

63. Vassen N, Heutink P, Janssen JA, Witteman JC, Testers L, Hofman A, et al. A polymorphism in the gene for IGF-I: functional properties and risk for type 2 diabetes and myocardial infarction. Diabetes 2001;50:637-642.

64. Beckman JA, Creager MA, Libby P. Diabetes and atherosclerosis: epidemiology, pathophysiology, and management. JAMA 2002;287:2570-2581.

65. Ritz E, Rychlik I, Locatelli F, Halimi S. End-stage renal failure in type 2 diabetes: a medical catastrophe of worldwide dimensions. Am J Kidney Dis 1999;34:795-808.

66. Beden-Bhaba A, Sacco RL. Lifestyle factors and stroke risk: exercise, alcohol, diet, obesity, smoking, drug use, and stress. Curr Atheroscler Rep 2000;2:160-166.

67. Ayala AC, Rahmani K, Zabouni A, Hamza A. Antidiabetic activity of *Bacopa monniera* and *Azadirachta indica* leaf extracts in alloxan-induced diabetic rats. Indian J Pharm Sci 2012;74:1238-1246.

68. St John AM, Rhode JD, Antonio AE, Strain WR, Collins TO, Superintendent et al. A polymorphism in the gene for IGF-I: functional properties and risk for type 2 diabetes and myocardial infarction. Diabetes 2001;50:637-642.

69. Pi J, Zhang Q, Fu J, Woods GD, Hou Y, Corkey BE, et al. ROS signaling, oxidative stress and Nrf2 in pancreatic β cells against oxidative stress in a model of glucose toxicity. Proc Natl Acad Sci USA 2002;99:12363-12368.

70. Tadera K, Minami Y, Takamatsu K, Matsuoka T. Inhibition of α-glucosidase and α-amylase by flavonoids. J Nutr Sci Vitaminol 2006;52:149-153.

71. Akaberi M, Hosseinzadeh H. Grapes (*Vitis vinifera*) as a potential candidate for the therapy of the metabolic syndrome. Phytother Res 2016;30:540-556.

72. Tanaka Y, Tran POT, Harmon J, Robertson RP. A role for glutathione peroxidase in protecting pancreatic β cells against oxidative stress in a rat model of glucose toxicity. Proc Natl Acad Sci USA 2002;99:12363-12368.

73. Tundis R, Loizzo M, Menichini F. Natural products as α-amylase and α-glucosidase inhibitors and their hypoglycaemic potential in the treatment of diabetes: an update. Mini Rev Med Chem 2010;10:315-331.

74. St Augustine T. Effects of *Vernonia amygdalinum* on biochemical and hematological parameters in diabetic rats. Asian J Med Sci 2009;1:108-113.

75. Razavi B, Hosseinzadeh H. A review of the effects of *Nigella sativa* L. and its constituent, thymoquinone, in metabolic syndrome. J Endocrinol Invest 2014;37:1031-1040.

76. Razavi B, Hossein Zadeh H. A review on the effects of *Allium sativum* (Garlic) in metabolic syndrome. J Endocrinol Invest 2015;38:1147-1157.

77. Joseph B, Jini D. Insight into the hypoglycaemic effect of traditional Indian herbs used in the treatment of diabetes. Res J Med Plant 2011;1:352-376.

78. Yaseen G, Ahmad M, Zafar M, Sultana S, Kayani S, Cetto AA, et al. Traditional management of diabetes in Pakistan: ethnomedical investigation from traditional healers. J Ethnopharmacol 2015;174:91-117.

79. Dinesh Kumar B, Analava M, Manjunatha M. Antidiabetic and hypolipidaemic effects of few common plants extract in type 2 diabetic patients at Bengal. Int J Diabetes Metabo Disord 2010;18:59-65.

80. Ryuhi S, Anaganda AG, Sukandar EY. Dipeptidyl peptidase-IV inhibitory activity of some Indonesian medicinal plants. Asian J Pharm Clin Res 2016;9:375-377.

81. Ezuruike U, Prieto JM. Assessment of potential herb-drug interactions among Nigerian adults with Type-2 diabetes. Front Pharmacol 2016;7:248-255.

82. Ramesh M, Razavi BM, Ferns GA, Hossein Zadeh H. Pharmacology of dipeptidyl peptidase-4 inhibitors and its use in the management of metabolic syndrome: a comprehensive review on drug repositioning. DARU J Pharm Sci 2019;27:341-360.

83. Ramesh M, Razavi BM, Lalau J-D, De Brue ME, Hossein Zadeh H. An overview of glucagon-like peptide-1 receptor agonists for the treatment of metabolic syndrome: A drug repositioning. Iran J Basic Med Sci 2020;23:556-568.

84. Green BD, Flatt PR, Bailey CJ. Dipeptidyl peptidase IV (DPP IV) inhibitors: a newly emerging drug class for the treatment of type 2 diabetes. Diabetes Vasc Dis Res 2006;3:159-165.

85. Hsia SH, Bazargan M, Davidson MB. Effect of Pancreas Tonic (an ayurvedic herbal supplement) in type 2 diabetes mellitus. Metabolism 2004;53:1166-1173.

86. Lenzen S. The mechanisms of alloxan- and streptozotocin-induced diabetes. Diabetologia 2008;51:216-226.

87. Dholi SK, Raparla R, Kannappan S. Synergic activity of fenugreek seeds and neem leaf extracts against alloxan induced diabetic rats. Int J PharmTech Res 2011;3:1963-1970.

88. Patil P, Patil S, Mane A, Venma S. Antidiabetic activity of alcoholic extract of *Neem* (*Azadirachta indica*) root bark. Nat J Physiol Pharm Pharmcol 2013;3:142-146.

89. Sunarwidhi AL, Sudarsono S, Nugroho AE. Hypoglycemic effect of combination of *Azadirachta indica* A. juss. and *Gymnura procumbens* (Lour.) Merr. ethanolic extracts standardized by
rutin and quercetin in alloxan-induced hyperglycemic rats. Adv Pharm Bull 2014;4:613-618.

92. Shailey S, Basir SF. Protective role of Azadirachta indica against oxidative damage in skeletal and cardiac muscle of alloxan diabetic rats. Int J Pharm Sci 2012;4:471-477.

93. Shailey S, Basir SF. Strengthening of anti-oxidant defense by Azadirachta indica in alloxan-diabetic rat tissues. J Ayurveda Integ Med 2012;3:130-135.

94. Karole S, Shrivastava S, Thomas S, Soni B, Khan S, Dubey J, et al. Polyherbal Formulation Concept for Synergic Action: A Review. J Drug Deliv Ther 2019;9:453-466.

95. TK MM, TE FH, Musambil M, Mirshad P, OM FR, Vasudevan M. The effect of polyherbal formulation DIA7 on fasting blood glucose level in alloxan induced diabetic rats. Der Pharm Lett 2016;6:215-221.

96. Akhtar N, Khan BA, Majid A, Khan S, Mahmood T, Gullifshan ST. Pharmaceutical and biopharmaceutical evaluation of extracts from different plant parts of indigenous origin for their hypoglycemic responses in rabbits. Acta Pol Pharm 2011;68:919-925.

97. Khosla P, Bhanwra S, Singh J, Seth S, Srivastava R. A study of hypoglycemic effects of Azadirachta indica (Neem) in normal and alloxan diabetic rabbits. Indian J Physiol Pharmacol 2000;44:69-74.

98. Upreti J, Ali S, Basir SF. Effect of lower doses of vanadate and alloxan diabetic rabbits. Indian J Physiol Pharmacol 2011;68:919-925.

99. Gupta NK, Srivastva N, Bubber P, Puri S, Bubber P, Puri V. Antioxidant potential of Azadirachta indica on hepatic and renal antioxidant enzymes in streptozotocin-induced diabetic rats. BIo Trace Elem Res 2013;156:202-209.

100. Atangwho IJ, Ebong PE, Eyong EU, Asmawi MZ, Ahmad Rahim. A newly developed polyherbal formulation (MAC-ST/001) in streptozotocin-induced diabetic Wistar rats. Protoplasma 2013;250:741-749.

101. Bhat M, Kothiwale SK, Tirmale AR, Bhargava SY, Jishi BN. Antidiabetic properties of Azadirachta indica and Bougainvillea spectabilis: In vivo studies in murine diabetes model. Evid Based Complementary Altern Med 2011;2011:4701625.

102. Dallaqua B, Saito FH, Rodrigues T, Calderon IMP, Rudge MVC, Herrera E, et al. Treatment with Azadirachta indica in diabetic pregnant rats: negative effects on maternal outcome. J Ethnopharmacol 2012;143:805-811.

103. Atanagho IJ, Ebong PE, Egbung GE, Ani IF. Effects of diabetics rats. Asian J Pharm Clin Res 2017;10:243-248.

104. Kar A, Choudhary B, Bandyopadhyay N. Comparative evaluation of hypoglycemic activity of some Indian medicinal plants in alloxan diabetic rats. J Ethnopharmacol 2012;146:223-225.

105. Gupta NK, Srivastava N, Bubber P, Puri V. Polyherbal Formulation Concept for Synergic Action: A Comparative Study. J Ayurveda Integ Med 2012;3:130-135.

106. Minokoshi Y, Kahn CR, Kahn BB. Tissue-specific ablation of the GLUT4 glucose transporter or the insulin receptor through antioxidant flavonoids. J Ethnopharmacol 2012;141:878-887.

107. Pant SS, Shah RS, Goyal RK. Antihyperglycemic, antihyperlipidemic and anti-oxidant effects of Bihari, a polyherbal ayurvedic formulation in streptozotocin induced diabetic rats. Indian J Exp Biol 2009;47:564-570.

108. Yadav D, Chaudhary AA, Garg V, Anwar MF, Rahman MM-u, Jamil SS, et al. In vitro toxicity and antidiabetic activity of
result in hypoglycemic responses in streptozotocin-induced diabetic rats. Nutr Res 2007;27:161-168.
128. Chattopadhyay R. A comparative evaluation of some blood sugar lowering agents of plant origin. J Ethnopharmacol 1999;67:367-372.
129. Akinola OB, Dosumu OO, Akinola OS, Zatta L, Dini L, Caxton-Martins EA. Azadirachta indica leaf extract ameliorates hyperglycemia and hepatic glycogenosis in streptozotocin-induced diabetic wistar rats. Int J Phytomed 2010;2:320-331.
130. Akinola OB, Zatta L, Dosumu OO, Akinola OS, Adelaja AA, Dini L, et al. Intestinal lesions of streptozotocin-induced diabetes and the effects of Azadirachta indica treatment. Pharmacology 2009;3:872-881.
131. Gupta S, Kataria M, Gupta P, Murganandan S, Yashroy R. Protective role of extracts of neem seeds in diabetes caused by streptozotocin in rats. J Ethnopharmacol 2004;90:185-189.
132. Mishra A, Srivatsava R, Srivastava AK. Comparative antidiabetic profile of ayurvedic herbo-mineral formulation and its constituents on normal and streptozotocin-induced diabetic rats. Int J Pharm Sci Rev Res 2013;22:252-263.
133. Ansarullah BB, Patel V, Ramachandran A. Improved glucoregulation, insulin resistance and leptin levels by a polyherbal drug in high fat diet and low dose streptozotocin type 2 diabetes model. Diabetol Croat 2012;41:3-15.
134. Neeraja Kamakshi U, Srinivasa Rao D, Yamini Suvarchala K, Anusha K, Venkateswara Rao B. Comparative hypoglycemic study of Aloe vera, Murraya koenigii and Azadirachta indica. Int J Pharmacog Phytochem Res 2015;7:923-927.
135. Bakr A. Changes of hemoglobin content and glucose levels in the blood of Rattus norvegicus by water extracts of Azadirachta indica. Chin J Nat Med 2012;10:135-137.
136. Sanni O, Erukainure OL, Chukwuma CI, Koobranally NA, Ibeji CU, Islam MS. Azadirachta indica inhibits key enzyme linked to type 2 diabetes in vitro, abates oxidative hepatic injury and enhances muscle glucose uptake ex vivo. Biomed Pharmacother 2019;109:734-743.
137. Kaur L, Han K-S, Bains K, Singh H. Indian culinary plants enhance glucose-induced insulin secretion and glucose consumption in INS-1 β-cells and 3T3-L1 adipocytes. Food Chem 2011;129:1120-1125.