AglC and AglK Are Involved in Biosynthesis and Attachment of Diacetylated Glucuronic Acid to the N-Glycan in *Methanococcus voltae*

Bonnie Chaban,1 Susan M. Logan,2 John F. Kelly,2 and Ken F. Jarrell1*

Department of Microbiology and Immunology, Queen’s University, Kingston, Ontario, K7L 3N6, Canada, and Institute for Biological Sciences, National Research Council, Ottawa, Ontario, K1A 0R6, Canada*

Received 27 June 2008/Accepted 19 October 2008

Recent advances in the field of prokaryotic N-glycosylation have established a foundation for the pathways and proteins involved in this important posttranslational protein modification process. To continue the study of the *Methanococcus voltae* N-glycosylation pathway, characteristics of known eukaryotic, bacterial, and archaeal proteins involved in the N-glycosylation process were examined and used to select candidate *M. voltae* genes for investigation as potential glycosyl transferase and flippase components. The targeted genes were knocked out via linear gene replacement, and the resulting effects on N-glycan assembly were identified through flagellin and surface (S) layer protein glycosylation defects. This study reports the finding that deletion of two putative *M. voltae* glycosyl transferase genes, designated *aglC* (for archaeal glycosylation) and *aglK*, interfered with proper N-glycosylation. This resulted in flagellin and S-layer proteins with significantly reduced apparent molecular masses, loss of flagellar assembly, and absence of glycan attachment. Given previous knowledge of both the N-glycosylation pathway in *M. voltae* and the general characteristics of N-glycosylation components, it appears that AglC and AglK are involved in the biosynthesis or transfer of diacetylated glucuronic acid within the glycan structure. In addition, a knockout of the putative flippase candidate gene (Mv891) had no effect on N-glycosylation but did result in the production of giant cells with diameters three to four times that of wild-type cells.

It has become widely accepted that glycosylation is an important posttranslational protein modification within all three domains of life. Long recognized and studied in eukaryotes, glycosylation pathways in prokaryotes have received more attention in recent years. Several reviews summarizing the current state of knowledge of protein glycosylation in Archaea (2, 11, 42) and flagellar glycosylation in *Bacteria* and Archaea (25) attest to the progress that has been made in understanding this important process from a prokaryotic perspective. Specifically, significant advances in comprehending the process of N-linked glycosylation, which is the attachment of polysaccharide structures to specific Asn residues within a conserved Asn-Xaa-Ser/Thr motif (where Xaa is any amino acid except Pro) have occurred. Of note is the N-glycosylation system in *Campylobacter jejuni*, where the gene products from the *pgl* locus assemble a branched heptasaccharide on a membrane-bound lipid carrier and then translocate the glycan across the cytoplasmic membrane to facilitate transfer to the appropriate Asn residue of the target protein (24, 34).

The study of archaeal glycosylation in recent years has begun to yield an understanding of how these organisms modify proteins. The first requirement for assembling a glycan of any linkage type is a pool of nucleotide-activated monosaccharide precursors. Several enzymes have been identified from *Methanococcus maripaludis* that are required for UDP-acetamido sugar synthesis and are predicted to be precursors for flagellin and surface (S) layer protein modifications (29).

With these nucleotide-activated sugars, a set of genes known as the archaeal glycosylation (*agl*) genes then assemble and attach the desired glycan to its target protein in a stepwise fashion. First, a set of glycosyl transferases construct the glycan on a dolichol phosphate anchor at the cytoplasmic face of the cytoplasmic membrane. In the obligate anaerobic methanogen *Methanococcus voltae*, at least three glycosyl transferases are predicted to be necessary to assemble the trisaccharide β-ManpNAcA6Thr(1-4)-β-GlcNAc3NAcA-(1-3)-β-GlcNAc, which has been characterized from both the S-layer protein and the flagellins (two major flagellins, FlaB1 and FlaB2, and two minor flagellins, FlaA and FlaB3) (39). In this system, AglH has been proposed as the glycosyl transferase responsible for the attachment of the linking N-acetylgalcosamine (33), while AglA is responsible for the terminal sugar attachment (9). In the moderate halophile *Halofex volcanii*, a pentasaccharide is found on the S-layer protein that requires the activities of at least five glycosyltransferases, with AglD, AglE, AglF, AglG, and AglI identified as involved so far (1, 3, 4, 41, 42).

The next step in the process is to translocate the glycan from the cytoplasmic to the extracellular side of the membrane. No homologs of either the proposed eukaryotic flippase (*Rft1*; a unique transporter) (14) or the bacterial flippase (*PglK*; an ABC transporter) (21) have been detected in either *M. voltae* or *H. volcanii* (1, 9). Furthermore, a knockout of the most likely flippase candidate in *M. voltae*, based on very weak BLAST scores with *Rft1* and *PglK*, had no detectable effect on the flagellin or S-layer glycan (9). This appears to indicate that...
FIG. 1. Current model of N-glycosylation of flagellin and S-layer proteins in M. voltae. Steps 1 to 3 diagram the assembly of the trisaccharide via glycosyl transferases onto a lipid carrier at the cytoplasmic face of the cytoplasmic membrane. Step 4 represents the translocation of the glycans to the exterior of the membrane via a flippase enzyme.

the protein responsible for glycans translocation is unique in each domain of life and that the archaeal flippase may prove to be an archaeal-specific protein.

The final step in the N-glycosylation pathway is the attachment of the complete glycan to its target protein via an STT3 oligosaccharyl transferase. AglH (Mv1751), AglA (Mv151), and AglB (Mv1749) have been previously reported to carry out steps 1, 3, and 5, respectively (8, 28). This study reports the finding that AglC (Mv990) and AglK (Mv991) carry out step 2 in glycans assembly.

TABLE 1. PCR primers used in this study

Primer	Sequence*
Mv990_Up_Bgl	GAGAATCTTTTTATAGGTATTATGACG
Mv990_Up_Nhe	CAGTCTAGACGTTAAAACCCAACTTTCGAGAC
Mv990_Down_Spe	GACTAGTTCGAGAACCTTTATACATAGC
Mv990_Down_Hind	CCAAAGCTTGAAACCTAATTCCGATTACG
Mv991_Up_Spe	GACTAGTCCATAATCTAACCAATCTAACC
Mv991_Up_Hind	CCAAAGCTTTTTAAGTTCTGGAGAGAAGC
Mv991_Down_Nhe	CTAGTGATGCGGCGAAATTTTGGGATGTA
Mv991_Down_Bgl	AAATCTAATTCCGAAAACTTTCGAGAC
Mv991_Down_Nhe	CTAGTGATGCGGCGAAATTTTGGGATGTA
Mv891_Down_Spe	GACTAGTTCGAGAACCTTTATACATAGC
Mv891_Down_Bgl	AAATCTAATTCCGAAAACTTTCGAGAC
Mv891_Down_Hind	CCAAAGCTTGAAACCTAATTCCGATTACG
Mv891_Down_Nhe	CTAGTGATGCGGCGAAATTTTGGGATGTA
Mv891_Down_Bgl	AAATCTAATTCCGAAAACTTTCGAGAC
Mv891_Down_Nhe	CTAGTGATGCGGCGAAATTTTGGGATGTA
Mv891_Down_Bgl	AAATCTAATTCCGAAAACTTTCGAGAC

* Restriction sites used for cloning are underlined.
TABLE 2. Properties of the components of N-linked glycosylation systems

GI no.	Protein	Functiona	TMDb	CDc
S. cerevisiae (Eskayoua)				
1370470	Alg5	Gt	2	Glycos_transf_2
6325441	Dpm1	Gt	1	Glycos_transf_2
536653	Alg7	Gt	11	Glycos_transf_4
6321391/6319544	Alg13	Gt	2/2	Glyco_transf_2C
536015	Alg14	none	none	
536377	Alg1	Gt	3	Glycos_transf_1
1322572	Alg2	Gt	4	Glycos_transf_1
1301907	Alg11	Gt	3	Glycos_transf_1
536015	RFlipase	12	RFlipase	
586444	Alg3	Gt	10	ALG3 protein
1302235	Alg9	Gt	10	Glyco_transf_2
47678209	Alg12	Gt	11	Glyco_transf_2
1420090	Alg6	Gt	13	Alg6_Ag8
1420215	Alg8	Gt	14	Alg6_Ag8
1706435	Alg10	Gt	11	DIE2/ALG10
6324116	Stt3p	Ot	14	STT3

C. jejuni (Bacteria) | | | | |
5771412	PglC	Gt	1	Bac_transf
5771411	PglA	Gt	0	Glycos_transf_1
57166812	PglJ	Gt	2	Glycos_transf_1
57166814	PglH	Gt	2	Glycos_transf_1
57166813	PglI	Gt	1	Glycos_transf_2
3413446	PglK	Flipase	6	ABC_ATPase
5771410	PglB	Ot	11	STT3

M. voltae (Archea) | | | | |
87045855	AlgH	Gt	7	Glycos_transf_4
Unknown	Unknown	Gt	Unknown	Unknown
87045840	PglA	Gt	Unknown	Unknown
87045854	AgIB	Ot	13	STT3

M. voltae genes targeted | | | | |
190336425	Mv900	Gt candidate	2	Glycos_transf_2
190336423	Mv901	Gt candidate	1	Glycos_transf_2
190403021	Mv891	Flipase candidate	11	Polysac_syn

MS analysis of flagellin. Flagellar samples were prepared from both M. voltae PS and M. voltae PS" strains as previously described (20). Each protein sample (50 to 200 μg) was digested overnight with trypsin (Promega, Madison, WI) at a ratio of 30:1 (protein-enzyme [vol/vol]) in 50 mM ammonium bicarbonate at 37°C. The protein digests were analyzed by MS as previously described (39).

MS analysis of S-layer protein. S-layer proteins from M. voltae strain PS" and the corresponding aglC and aglK mutant strains were prepared according to the method of Koval and Jarrell (22). Each protein sample (approximately 200 μg) was digested overnight with trypsin (Promega, Madison, WI) at a ratio of 30:1 (protein-enzyme [vol/vol]) in 50 mM ammonium bicarbonate at 37°C. The protein digests were analyzed by nano-LC chromatography–tandem MS (nano-LC–MS/MS) using a QTOF Ultima hybrid quadrupole time-of-flight mass spectrometer coupled to a Nanoacuity high-performance LC system (Waters, Milford, MA). MS/MS spectra were acquired automatically on doubly, triply, and quadruply charged ions. The tryptic protein digest was also analyzed by nano-LC–MS with alternating low collision energy (CE) (10 V) and high CE (10 V) in the collision cell of the mass spectrometer in order to simultaneously generate intact peptide ions (low CE) as well as their fragment ions (high CE) for each peak. The high-CE spectra were searched for oxonium ions corresponding to β-ManNAcA6Thr (318 Da; m/z 319) and GlpNAc3NAcAc (258 Da; m/z 259), and the equivalent LC-MS/MS spectra were examined to confirm the identities of the glycopeptides.

Preflagellin peptide assay. A preflagellin peptide assay, previously described (7, 10), was used to generate two versions of nonglycosylated M. voltae FlaB2 flagellin. E. coli membranes containing overexpressed preflagellin FlaB2 were used as substrates, with M. voltae membranes as the source of the preflagellin peptide FlaK. The unprocessed and processed forms of FlaB2 (with or without the signal peptide) could be distinguished by their small difference in size by immunoblotting.

RT-PCR. To determine whether Mv991 and Mv990 were cotranscribed, total RNA was isolated from wild-type, Mv991-, and Mv990- cells. The cells were prepared for RNA isolation by subculture and growth for 24 h at 37°C. The cultures were then overpressurized with H2-CO2 (80:20), followed by an additional incubation at 37°C for 1 hour. Total RNA was isolated using the RNeasy Mini Kit (Qiagen), and reverse transcription (RT)-PCR was carried out using the One-Step RT-PCR kit (Qiagen).

Electron microscopy. Intact M. voltae cells were washed in 50 mM MgSO4 prior to absorption onto Formvar-coated gold grids. Negative staining was done with 2% phosphotungstic acid (pH 7.0). The grids were viewed on a Hitachi H-7800 electron microscope operating at 75 kV.

Nucleotide sequence accession numbers. Sequence data from Mv990 (AgIC), Mv991 (AgIK), and Mv891 can be found in the GenBank/DDJB/EMBL data-bases under the accession numbers EU726231, EU726230, and EU751623, respectively.

RESULTS

Selection of M. voltae genes to target for study. In an attempt to move beyond direct homology searches and to understand the underlying properties of enzymes involved in N-glycosylation, known N-glycosylation proteins from Saccharomycoses cerevisiae, C. jejuni, and M. voltae were examined for two properties, namely, the number of transmembrane domains (TMDs) and types of conserved domains (CDs). TMDs, as predicted by TMpred (15), were deemed an important characteristic to consider because the N-glycosylation process is invariably localized to a membrane, implying that some type of anchoring feature is required. CDs, as recognized by NCBI’s Conserved Domain database (http://www.ncbi.nlm.nih.gov/Structure/cdd/wrpsb.cgi; 27), were also considered, since functional similarity does not always translate into sequence (and therefore BLAST) similarity.

Using this information, several M. voltae gene candidates that were identified as glycosyl transferases or possible transporters were similarly characterized. Genes with the appropriate characteristics, Mv990, Mv991, and Mv891, were chosen for study and are listed in Table 2, and their genomic context is diagramed in Fig. 2. The genomic context was considered important because of its potential to offer clues to a gene’s function and also because intergenic regions in M. voltae tend to be longer than in other domains.

FIG. 2. Schematic of the M. voltae genomic regions of interest. Genes in boldface were targeted in this study.
to be quite short, creating the potential for multigene transcripts.

Generation of *M. voltae* mutants. The genes Mv990, Mv991, and Mv891 were individually targeted for knockout by removing the genomic copy of the gene and replacing it with a selectable antibiotic marker (puromycin cassette) in *M. voltae* PS*. The puromycin cassette used in this study was designed with an additional promoter after the antibiotic resistance terminator sequence to allow the restarting of a multigene transcript (36). For Mv891 and Mv991, the puromycin cassette was inserted so that the additional promoter was facing downstream genes. For Mv990, which was the last gene in a directional series of genes (Fig. 2), the puromycin cassette was inserted in the opposite orientation to prevent further transcription. Confirmation of gene replacement was achieved by Southern blot analysis (Fig. 3), in which the expected wild-type and knockout patterns were obtained.

Analysis of flagellin from *M. voltae* PS*. Flagellins from the replacement *M. voltae* PS* strain migrated as slightly larger proteins in immunoblots with respect to the original *M. voltae* PS strain (data not shown). Therefore, we compared flagellar tryptic peptides from the PS and PS* strains by LC-MS/MS in order to determine if any changes had occurred in the glycan modification structure of the latter. Interestingly, the N-linked glycan observed on the flagellin from the PS* strain was composed of the same trisaccharide that was reported previously (39) but with an additional mass of either 220 Da or 260 Da appended to its nonreducing end. By way of illustration, the MS/MS spectra for the doubly glycosylated tryptic peptide T53-78 (ESTEQVASGLQISQVMGMHNNSNINK) from the FlaB2 proteins from *M. voltae* strains PS and PS* are presented in Fig. 4b and c, respectively (the two sites of N-linked glycosylation are underlined). The equivalent MS spectrum for each glycopeptide is shown in the insets. In the PS strain, a doubly charged ion was observed at \(m/z \) 1,094.5 (Fig. 4b, inset), corresponding to the T53-78 peptide modified with two trisaccharide glycan moieties. MS/MS analysis of this glycopeptide (Fig. 4b) yielded a glycan fragment pattern identical to those presented previously for the strain (39). In contrast, three glycopeptides were observed in the digest of *M. voltae* PS* flagellin (Fig. 4c, inset), corresponding to the same tryptic peptide with two N-linked glycans additionally modified by 220 and/or 262 Da (220 plus 220 Da, 220 plus 262 Da, and 262 plus 262 Da, respectively). The MS/MS spectrum for the doubly protonated glycopeptide ion at \(m/z \) 1,215 additionally modified with one 220- and one 262-Da moiety is presented in Fig. 4c. This MS/MS spectrum shows clear evidence that the original trisaccharide glycan is modified with one or the other moiety, but not both at the same time. Furthermore, the extra moiety is always linked to the \(\beta\)-Manp/NAcA6Thr moiety. Structural studies are under way to identify the new modifications, though we suspect that they are carbohydrate in nature. Thus, it appears that although genetically related, the two strains produce unique glycan structures. All further analyses in the current work comparing S-layer and flagellin proteins from wild-type *M. voltae* to Mv891, Mv990, and Mv991 mutants refer to *M. voltae* PS* as the parent strain.

Effects on flagellin glycosylation. The first indicator proteins examined to determine if any knockouts had an effect on N-glycosylation were the flagellin proteins. *M. voltae* PS and PS* contain four flagellin proteins (two major flagellins, FlaB1 and FlaB2, and two minor flagellins, FlaA and FlaB3), which are all
modified by the same N-linked trisaccharide (PS) or by the trisaccharide with additional 220-Da or 262-Da mass (PS*) (reference 39 and this work). Immunoblotting of whole-cell lysates was used to detect any shifts in the apparent molecular masses of their flagellins (Fig. 5), indicating an alteration in glycosylation status. To help clarify the extents of the alteration, two forms of M. voltae flagellin were used as controls. M. voltae flagellins, like all archaeal flagellins, are first synthesized as preproteins with a 12-amino-acid leader sequence (35). This signal peptide is cleaved by a dedicated preflagellin peptidase (10) to generate mature flagellins. To indicate the apparent molecular mass of mature, fully glycosylated flagellin (31 to 33 kDa), wild-type whole-cell lysates were used (Fig. 5, lanes 1 and 6). Also, to indicate the apparent molecular mass of unglycosylated flagellin, M. voltae FlaB2 flagellin was overexpressed in E. coli (which alone cannot process or glycosylate archaeal flagellins) (6). Subsequently, FlaB2-containing E. coli membranes were used in an established preflagellin peptidase assay (9) to generate unglycosylated FlaB2 flagellins both with (24 kDa) and without (22 kDa) their signal peptide sequences (Fig. 5, lane 4).

For both Mv990* and Mv991* cells, the FlaB1/FlaB2 flagellins migrate to an apparent molecular mass approximately consistent with completely unglycosylated but N-terminally processed flagellin protein (Fig. 5, compare lanes 2 and 3 with the lower band in lane 4). Conversely, Mv891* flagellin appears to be equivalent in molecular mass to wild-type flagellin, indicating no change in the glycosylation status of the knockout.

Effect on gross cellular appearance and flagellar structure. To evaluate the effect of each knockout on the overall cell appearance and flagellar function, cells were examined by both phase-contrast microscopy and transmission electron microscopy (TEM). Wild-type M. voltae cells were visibly motile under phase-contrast microscopy and contained many flagella when examined under TEM (Fig. 6A). In contrast, both Mv990* and Mv991* cells appeared nonmotile when viewed under phase-contrast microscopy and, correspondingly, possessed no flagella under TEM examination (Fig. 6B and C). Mv891* cells appeared as motile as wild-type cells under phase-contrast microscopy. However, quite unexpectedly, approximately half the Mv891* cell culture was composed of cells that were three to four times the diameter of wild-type cells (which are usually 1 to 2 μm). This was confirmed by TEM examination, where both giant cells and normal-size cells were clearly observed in the Mv891* culture and cells of both sizes possessed flagella (Fig. 6D).

Cotranscription of Mv990 and Mv991. Because of the gene orientation of Mv990 and Mv991 (Fig. 2A) and the short intergenic region between the genes (42 bp), it was thought likely that the genes were cotranscribed. RT-PCR was used to de-
termine the transcription status of Mv990 and Mv991 in wild-type and knockout cells. Figure 7 clearly shows that in wild-type cells, a single RNA transcript exists for both Mv991 and Mv990. Also, in Mv991 \(^{-}\) cells, the disruption of Mv991 results in the expected loss of RNA transcript for Mv991, and RT-PCR did not detect the region between Mv991 and Mv990 (since the binding site for the forward primer would have been deleted). The additional promoter added at the end of the Mv991 deletion (on the puromycin cassette) restarted transcription, and the transcript for Mv990 was detectable (Fig. 7). Analysis of the RNA content of Mv990 \(^{-}\) cells revealed the expected loss of RNA for Mv990 and also did not detect the intergenic region (in this case, the binding site for the reverse primer would have been deleted). Transcription of Mv991 was not abolished in the Mv990 \(^{-}\) mutant. Collectively, these results indicate that the deletion of Mv991 should not have disrupted the translation of Mv990 and vice versa, suggesting that the phenotype obtained from each mutant was the result of that gene deletion alone. However, although these results indicate that gene transcripts could be detected for both Mv990 and Mv991, no attempt was made to determine the transcript levels in either the wild type or the mutant strains.

Effects on S-layer protein glycosylation. Without flagellar filaments on Mv990 \(^{-}\} and Mv991 \(^{-}\) cells available to isolate, further characterization of the exact alteration to the N-glycan in these cells required another indicator protein. Since it had been previously established that the same trisaccharide was indeed glycosylated identically to flagellin from this strain (Fig. 8a and d). As with the flagellar glycan, the two S-layer glycopeptides from *M. voltae* PS \(^{\ast}\) carried the extended glycan, composed of the original trisaccharide with an additional mass of either 220 or 262 Da.

In contrast to the parent strain, the corresponding tryptic peptides from a digest of the S-layer proteins from *aglC* (Fig. 8b and e) and *aglK* (Fig. 8c and f) mutant strains were no longer glycosylated. Nano-LC–MS/MS analysis confirmed the identity of the doubly protonated ion at \(m/z\) 898.4 and the triply protonated ion at \(m/z\) 1,255.2 to be unglycosylated T64-91 and T92-127, respectively (data not shown). These ions were not detected in the digest of the parent strain.

DISCUSSION

This report details the continued examination of the *M. voltae* genome for N-glycosylation pathway genes and the identification of two genes encoding putative glycosyl transferases that affect flagellar glycosylation. In the current study, which revealed that an additional sugar residue is a component of the glycan moeity, it appeared that a fourth glycosyl transferase is required for assembly of the tetrasaccharide found on both S-layer and flagellin proteins. The assembly and attachment portion of the N-glycosylation pathway would therefore contain six steps; four glycosyl transferases to assemble the novel glycan, a flippase to transport the completed glycan across the cytoplasmic membrane, and an oligosaccharyl transferase to attach the glycan to flagellin and S-layer proteins. Previous studies (9, 33) confirmed the identity of the first and third glycosyl transferases (AglH and AglA, respectively) and the oligosaccharyl transferase (AgIB). Our current study identified
two proteins involved in the biosynthesis/attachment of the diacetylated glucuronic acid second sugar of the glycan, leaving the fourth glycosyl transferase (responsible for attaching the uncharacterized 220- and 262-Da species), as well as the flipase enzyme, unaccounted for.

The two genes targeted in this study as candidates for the second glycosyl transferase were Mv990 and Mv991. Based on the analysis of N-glycosylation genes from all three domains of life (Table 2), it was apparent that glycosyl transferases that have their activities on the cytoplasmic faces of their respective membranes (the glycosyl transferases listed above the flipase enzyme in each system in Table 2) contain few TMDs (generally one to four) and possess a recognizable glycosyl transferase type 1 or 2 domain. The exceptions to this trend appear to be limited to the glycosyl transferase responsible for the attachment of the first nucleotide-activated sugar to the lipid carrier (Alg7, PglC, and AglH) and the unique eukaryotic Alg13/Alg14 complex (in which both proteins must associate to form an active transferase) (8). A search of the M. voltae genome identified Mv990 and Mv991 as putative glycosyl transferase genes that also possessed these traits (Table 2). These genes are located adjacent to each other and at the end of a set of similarly oriented genes on the chromosome (Fig. 2A). Deletions of Mv990 and Mv991 were made, and both resulted in N-glycosylation defects to the flagellin and S-layer proteins (Fig. 5 and 8, respectively). Originally, this result was interpreted to mean that the attempt to restart transcription after the Mv991 deletion had failed and Mv991/H11002 actually represented an Mv990/Mv991 double deletion. However, cotranscriptional analysis of these genes in the Mv991/H11002 strain (Fig. 7) indicated that RNA for Mv990 was still present. Conversely, Mv990/H11002 cells showed no loss of Mv991 transcription (Fig. 7). These results imply that the phenotypes generated by each deletion are the sole result of that single gene loss. One possible explanation is that in the Mv991 mutant (where Mv990 transcription was restarted from the nonnative promoter introduced on the puromycin cassette), the levels of Mv990 transcription were altered significantly from the wild type. This could have affected Mv990 translation and subsequent function. In this case, the Mv991 mutant would indeed represent an Mv990/Mv991 double deletion. Unfortunately, there are no specific antibodies to either Mv990 or Mv991 to confirm either protein’s translation status. Also, genetic-system limitations in M. voltae prevent complementation of the deleted genes in trans.

The Mv990/Mv991 results as determined indicate that both
genes encode proteins that are involved in flagellar glycosylation. The N-glycosylation pathway in *M. voltae* PS* is expected to require at least four glycosyl transferases, one for each monosaccharide in the glycan. Genes for the first and third step of this process have already been verified (9, 33), leaving two missing glycosyl transferases to identify. The data from this study identified two putative glycosyl transferases, Mv990 and Mv991, which belong to the large and diverse GT2 family of enzymes. The loss of one is not compensated for by the presence of the other, indicating that they are not redundant in function. While we were unable to determine the precise role of each of the products of these genes in the current study, it is clear that inactivation of either results in failure to glycosylate both flagellin and the S-layer protein. Based on the original study of *M. voltae* PS, in which a trisaccharide was found to decorate both proteins and mutation of *aglA* resulted in proteins that were still glycosylated with the disaccharide, it appears unlikely that either of the target genes in the current work is involved in addition of the terminal species (presumed to be a sugar residue). Failure to add this residue to the glycan would not be expected to lead to a complete loss of glycosylation, as cells would still be able to synthesize both the di- and trisaccharide structures on the lipid-linked carrier, which could be transferred to target proteins.

It is likely, therefore, that both Mv990 and Mv991 are involved in synthesis and/or assembly of the second glycan residue, although they clearly have distinct roles, as indicated by the lack of redundancy. There is a proven case in *S. cerevisiae* in which two gene products are required to dimerize to form a single functional glycosyl transferase (8). The second step in the N-glycosylation pathway in eukaryotes was shown to require both Alg13 and Alg14 for the addition of a nucleotide-activated N-acetylglucosamine. It was found that Alg14 is a membrane-bound protein with no detectable glycosyl transferase activity, while Alg13 has glycosyl transferase activity but remained cytosolic without Alg14. It was determined that Alg14 localizes Alg13 to the membrane for function (8). An alternative explanation for the results presented here for *M. voltae* is that only one of the genes encodes a protein that functions as the glycosyl transferase, while the other is required for biosynthesis of the GlcNAc3NAcA. A UDP-GlcNAc 6-dehydrogenase (a WecC homolog), as well as an acetyltransferase, would both be required to produce UDP-GlcNAc3NAcA from a UDP-GlcNAc precursor. It has been shown in related sugar-biosynthetic pathways (29–32) that nucleotide-activated precursors are common substrates for such enzymes and utilize cofactors similar to glycosyl transferases (i.e., NAD/NADP) in their enzymatic reactions. Consequently, these biosynthetic enzymes could carry domains in common with glycosyl transferases and could result in the annotation of these biosynthetic enzymes as glycosyl transferases due to the conservation of particular functional domains. Mutants in either of these genes would produce similar phenotypes: inability to transfer the second sugar to the lipid linked glycan precursor.

Based on the MS analysis of the two S-layer glycopeptides (Fig. 8), it is obvious that both gene products are involved in the N-glycosylation pathway in *M. voltae*. Although we were unable to precisely define their respective roles, we have renamed Mv990 *aglC* and Mv991 *algK*.

Mv891 was investigated as a putative flipase candidate based on its predicted 11 TMDs and polysaccharide synthesis domain (Table 2). However, Mv891 had no effect on the apparent molecular masses of the flagellin or S-layer proteins or on flagellar assembly and function, indicating that the gene does not code for the *M. voltae* flipase. However, the deletion of Mv891 had a drastic effect on cell size; approximately half the cell population transformed into giant cells with diameters three to four times that of wild-type cells (Fig. 6D). This translates into an exponential increase in cell volume. The only precedent for *M. voltae* cells with a similar size phenotype comes in the form of a report in which a protein involved in the structural maintenance of chromosomes (smc) was inactivated (26). The result was a mutant population in which ~20% of the cells contained little or no DNA and a subset of cells (~2%) had diameters three to four times larger than normal. The authors postulated that these titan cells indicated cell division arrest at a cell cycle checkpoint (26). Examination of the current annotations of the genes from Mv891 to Mv898 (Fig. 2B) revealed no genes annotated as being related to cell division or cell cycle control. Consequently, the reason for this unexpected effect remains unknown.

The overall findings in this study continue to reinforce both the similarities and the differences between the N-glycosylation pathways in *Eukarya, Bacteria*, and *Archaea*. A clearer picture is emerging of the characteristics that glycosyl transferases must possess to assemble glycan structures on the cytoplasmic face of a membrane. This offers promise in the future study of N-glycosylation in prokaryotes, where the entire assembly of the glycan appears to occur on the cytoplasmic face of the cytoplasmic membrane. The ability to identify putative glycosylation enzyme candidates by bioinformatics is especially helpful in *Archaea*, where the genes encoding these pathway components appear to be randomly distributed around the chromosome (9) instead of in a single gene locus, which is the case in *Bacteria* (34). In addition, the highly conserved nature of the oligosaccharyl transferase STT3p/PglB/AglB across all domains of life reinforces the universality of N-glycosylation in living systems. What has come as a surprise is the apparent divergence of the flipase enzyme in this pathway. The proposed eukaryotic flipase Rft1 is a unique type of transporter (14), while the bacterial flipase PglK falls into the well-defined ABC transporter family (21). Added to this is the fact that the *M. voltae* proteins similar to Rft1 or PglK appear to have different functions, leaving the archaean flipase a mystery. Whether the differences in exporting different types of glycan structures through different types of membranes explains this divergence remains to be investigated. What has been established is that examination of the N-glycosylation pathway at the molecular level in *Archaea* can add to our knowledge of this important protein modification process, not only in this domain, but in general.

ACKNOWLEDGMENTS

We thank John Leigh and Barny Whitman for initial genetic analysis of the *M. voltae* genome. We also acknowledge Wen Ding and Luc Tessier for their assistance with the MS analysis.

B.C. was supported by a Natural Sciences and Engineering Research Council (NSERC) Post-Graduate Scholarship. This work was supported by a Discovery Grant from NSERC (to K.F.J.).
