Comparative experimental infection of *Listeria monocytogenes* and *Listeria ivanovii* in bovine trophoblasts

Cláudia E. Rocha¹, Juliana P. S. Mol², Luize N. N. Garcia², Luciana F. Costa¹, Renato L. Santos², Tatiane A. Paixão¹*

¹ Departamento de Patologia Geral, Instituto de Ciências Biológicas da Universidade Federal de Minas Gerais, Belo Horizonte, Brazil, ² Departamento de Clínica e Cirurgia Veterinárias, Escola de Veterinária da Universidade Federal de Minas Gerais, Belo Horizonte, Brazil

* tatianepaixao@icb.ufmg.br

Abstract

Listeria monocytogenes is a Gram-positive, facultative intracellular and invasive bacterium that has tropism to the placenta, and causes fetal morbidity and mortality in several mammalian species. While infection with *L. monocytogenes* and *L. ivanovii* are known as important causes of abortion and reproductive failure in cattle, the pathogenesis of maternal-fetal listeriosis in this species is poorly known. This study used the bovine chorioallantoic membrane explant model to investigate the kinetics of *L. monocytogenes*, *L. ivanovii*, and *L. innocua* infections in bovine trophoblastic cells for up to 8 h post infection. *L. monocytogenes* and *L. ivanovii* were able to invade and multiply in trophoblastic cells without causing cell death or inducing expression of pro-inflammatory genes. Although *L. innocua* was unable to multiply in bovine trophoblastic cells, it induced transcription of the pro-inflammatory mediator CXCL6. This study demonstrated for the first time the susceptibility of bovine trophoblastic cells to *L. monocytogenes* and *L. ivanovii* infection.

Introduction

Listeria monocytogenes is a facultative intracellular Gram-positive bacterium that causes an important zoonotic disease often associated with foodborne epidemics [1]. There are seventeen recognized *Listeria* species, but only *L. monocytogenes* and *L. ivanovii* have been reported as important causative agents of the disease [2, 3]. *L. monocytogenes* is considered the most pathogenic species, and it is more often associated with disease in ruminants and humans [1, 4]. In humans, listeriosis has various clinical manifestations, predominantly in immunocompromised patients. Human *L. monocytogenes* infections may be associated with sepsis, encephalitis, organ-restricted infections such as endocarditis and hepatitis, maternal-fetal infection, and self-limiting gastroenteritis [5].

L. monocytogenes infection in cattle is mainly associated with meningoencephalitis and abortion, but it may also result in neonatal septicemia, mastitis, and keratitis [2]. *L. ivanovii* infection is associated with fetal death, stillbirths and premature births in ruminants, although...
it is less common than \emph{L. monocytogenes} [2]. \emph{L. ivanovii} causes bovine abortion, but has not been associated with meningoencephalitis in ruminants, and it rarely infects humans causing bacteremia, fetal loss, or gastroenteritis [6]. Although sporadic, bovine listeriosis can cause significant economic losses due to reproductive failure and mortality. In experimental infections, ovine and bovine pregnant uteruses are considered highly susceptible to \emph{Listeria} sp., which is associated with abortion and fetal infection [2]. \emph{Listeria} spp. infection in pregnant ruminants causes necrotic placentitis and abortion, which occurs predominantly during the last third of gestation, and infected fetuses usually develop autolysis, bronchopneumonia, hepatitis, and necrotizing splenitis [2]. \emph{Listeria} spp. can be isolated from both the placenta and fetus [2], and it may also be cultured from milk samples and the mammary gland of lactating cows [7].

Both \emph{L. monocytogenes} and \emph{L. ivanovii} can multiply in phagocytic and non-phagocytic cells \emph{in vitro} [6, 8, 9, 10, 11, 12, 13, 14, 15]. Several virulence factors that play roles in invasion, proliferation, and cell to cell dissemination have been identified [16]. Transcriptional activator PrfA regulates expression of four major of virulence factors involved in host infection, namely InlA, InlB, LLO, and ActA. Proteins InlA and InlB that mediate host cell entry, LLO that mediate phagosome escape, and ActA that mediate actin based movement and cell-to-cell spread [16]. Previous studies have demonstrated the importance of these virulence factors, in the establishment of intrauterine and fetal infection by epidemiological evidence in human patients [17] or by using laboratory animal models [16, 18, 19].

While listeriosis is known as an important cause of abortion and reproductive failure in cattle, its maternal-fetal pathogenesis is poorly known. Previous studies addressing the pathogenesis of \emph{Listeria} spp. have used human placental explants or trophoblastic cell lines [11, 16, 20, 21] or laboratory animals [19, 22, 23, 24, 25]. Importantly, human and bovine placental tissues have marked morphologic and physiologic differences, which prevent a direct extrapolation of data generated with human placental tissues to the pathogenesis in pregnant cows. Similarly, the mouse model is a suitable experimental infection model, but it is equally inadequate for modeling \emph{Listeria}-induced bovine placentitis. Interaction of bovine trophoblast with intracellular pathogens was studied [26]. Therefore, experimental infections of bovine placental explants with \emph{Listeria} spp. \emph{in vitro} may greatly contribute to a better understanding of the pathogenesis of listeriosis in cattle. Thus, this study aimed to evaluate the interaction of \emph{Listeria} spp. with bovine trophoblastic cells determining kinetics of infection and cellular responses in a bovine chorioallantoic membrane (CAM) explant model.

Materials and methods

Bovine CAM explants

Bovine pregnant uteruses at the middle and final thirds of gestation were obtained at a local slaughterhouse (Distribuidora de Carnes Sabara Eireli, Sabará, Minas Gerais, Brazil) for preparation of CAM explants. Gestational ages were estimated by measuring fetal crown-rump length as previously described [27]. Experimental procedures were approved by the Ethics Committee in Animal Experimentation of Universidade Federal de Minas Gerais (CEUA/UFMG, protocol 76/2012) CAM explants were prepared as previously described [26] with modifications. The pregnant uterus was opened under aseptic conditions and macroscopic evaluation of the placenta and fetus was performed. Edema, exudate, hemorrhage, and adven- titial placentation were evaluated. Placentas without gross changes were incised to remove the CAM, which was immediately washed in a MEM medium (Life Technologies, USA) with 50 U/mL of penicillin and 50 μg/mL of streptomycin (Pen Strep, Gibco, USA) for 20 min. CAM were washed two times with MEM without antibiotics, mounted onto a support, and placed
into six-well cell culture plates with supplemented medium (DMEM F12 with 10% fetal bovine serum, 1% pyruvate and 1% essential amino acids) in contact with the trophoblastic surface. The support used in the preparation of the explants were cleaned and sterilized in 3% hypochlorite for 24 h, followed by washing in E-toxaclean (Sigma-Aldrich, USA) for 24 h, followed by absolute alcohol, and distilled water rinses, and finally autoclaved. Fragments of placenta were collected for DNA detection of *Listeria* spp. by multiplex PCR [28]. Only placentas that were negative by PCR were used in experiments.

Bacterial strain and growth conditions

L. monocytogenes (ATCC 7644), *L. ivanovii* (ATCC 19119), and *L. innocua* (ATCC 33090) were used in this study. They were grown in 20 mL of BHI broth (brain heart infusion, Kasvi, USA), at 37°C for 15 h under agitation (200 rpm). Bacterial culture was centrifuged at 3000 g for 10 min at room temperature, and resuspended in phosphate buffered saline (PBS). Optical density OD600 of bacterial suspensions was measured by spectrophotometry. The inoculum was prepared in supplemented DMEM F12 medium.

CAM explants infection

A volume of 200 μL of supplemented DMEM F12 medium containing 1 x 10^6 bacteria/mL was added to the trophoblastic surface of the CAM in each well, corresponding to a multiplicity of infection of 10 bacteria per cell (MOI 1:10), considering the average of 20,000 trophoblasts by explant, as previously described [26]. Non-infected explants were used as controls. Soon after inoculation, plates were centrifuged at 400 g for 10 min at 22°C, and maintained at 37°C with 5% CO_2 for 30 min to allow for bacterial internalization. The supernatant was then removed from each well, and replaced with 200 μL of sterile supplemented DMEM/F12 containing gentamycin 50 μg/mL (Gibco, USA). The plates were incubated at 37°C for 1 h to inactivate extracellular bacteria. Then, the wells corresponding to later time points (i.e. 4 and 8 h post infection—hpi) had the media replaced by fresh media containing 25 μg/mL gentamycin. To determinate infection kinetic of *Listeria* spp., the supernatant was removed at 1, 4, and 8 hpi, and CAM explants were washed once with PBS, followed by lyses of trophoblastic cells with 200 μL 0.1% Triton X-100 (Roche, Germany) for 10 min. The recovered in 200 μL of sterile PBS and diluted in 1 mL. The serial dilutions were plated on BHI agar (Kasvi, USA) and maintained at 37°C for 24 h for CFU (colony forming units) counting. Bacterial intracellular invasion was showed at 1 hpi and intracellular survival was showed at 4 and 8 hpi. Eight hours have been enough to study kinetic of *Listeria* sp. infection in culture of epithelial cells [9, 29]. Preliminary experiments were performed comparing the invasion and intracellular survival of different multiplicity of infection of *L. monocytogenes* per cell (MOI 1, 10 and 100) at 1, 4 and 8 hpi as detailed above using 3 placentas per MOI.

Histology and immunohistochemistry

CAM explants (uninfected or infected with *L. monocytogenes*) were collected at 1, 4, and 8 hpi, and fixed in 10% buffered formalin for 24 h, followed by paraffin embedding. Three μm sections were stained with hematoxylin and eosin (HE). Immunohistochemistry was performed to confirm intracellular localization of *L. monocytogenes* in trophoblasts. CAM sections were deparaffinized, hydrated, and incubated twice with 4% hydrogen peroxide in PBS for 45 min, followed by incubation with skim milk (1:10 dilution) as a blocking solution for 60 min, and then incubated with a polyclonal anti-*L. monocytogenes* primary antibody (Listeria O Poly Antiserum serotypes 1,4, Difco, USA) at 1: 100 dilution with 1% bovine serum albumin for 45 min, in a humidified chamber at room temperature. Slides were washed in PBS and incubated
with biotinylated secondary antibody for 30 min at room temperature, washed in PBS again, and then incubated with streptavidin-peroxidase complex (LSAB kit; DAKO Corporation, USA) for 30 min at room temperature. The reaction was revealed with AEC solution (Dako) for 10 min, and sections were counterstained with Mayer’s hematoxylin.

Cell mortality analysis

Cell mortality rate was analyzed by measuring lactate dehydrogenase (LDH) release in the supernatant from uninfected or infected CAM explants. Supernatants were collected at 1 and 8 hpi and stored at -80˚C for LDH dosage using the CytoTox 96 Non-Radioactive Cytotoxicity Assay kit (Promega, USA). Briefly, 50 µL of each sample (1:10 dilution) were placed in a 96 well plate, 50 µL of the mix substrate reagent as added and incubated for 15 min, followed by addition of 50 µL of stop solution. After 60 min, the quantification was performed at 490 nm using an ELISA reader (Epoch Bioteck, USA). The overall mortality of each CAM explant was obtained by lysis of trophoblasts with substrate mix (CytoTox 96) according to the manufacturer’s protocol. The optical density obtained with this treatment was considered 100% of cell mortality.

Real time quantitative PCR analysis

CAM explants of the third trimester of pregnancy infected with *Listeria* spp. were used for RNA extraction and assessment of pro-inflammatory and immunomodulatory gene transcription, namely: CXCL6, CCL2, interleukins IL-8, IL-6, tumor necrosis factor alpha (TNFα), and interferon tau (IFNτ). GAPDH and 18S were used normalizing genes. Customized primers and probes FAM-MGB were commercially available (TaqMan Arrays Fast 96 well Plates Applied Biosystems, USA), and used for TaqMan (Applied Biosystems, USA) assessment of transcription of CXCL6 (Bt03259300_m1), CCL2 (Bt03212321_m1), IL-8 (Bt03211906_m1), IL-6 (Bt03211905_m1), TNFα (Bt03259154_m1), IFNτ (Bt03210579_g1 GAPDH (Bt03210913_g1), and 18S (Hs99999901_s1). The primers and probes were customized for the Taqman gene expression system (Applied Biosystems, USA). Total RNA from bovine CAM explants was extracted at 1 and 4 hpi, time points with similar intracellular CFU for all *Listeria* species studied. RNA extraction was made with Trizol Plus (Invitrogen, USA), and stored at -80˚C. One µg of total RNA was treated with DNase (Invitrogen, USA) according to the manufacturer’s instruction. The quantity and quality of the total RNA was assessed by spectrometry 260/280 ration and agarose gel electrophoresis. Reverse transcription was performed using 200 ng of total RNA and Taqman reverse transcription kit (Applied Biosystems, USA) according to the manufacturer’s instructions. Quantitative PCR was performed for each sample in duplicate using 2 µL of cDNA in 20 µL reaction of II TaqMan Universal Master Mix (Applied Biosystems, USA) in the thermal cycler Step One plus (APPLIED BIOSYSTEMS, USA) according to the manufacturer’s instructions. Data were analyzed using the comparative threshold cycle (CT) method [30] (S1 Fig). The CT values were normalized based on the expression of GAPDH.

Statistical analysis

After logarithmic transformation, CFU and gene transcription data were subjected to ANOVA and compared between groups by the Student–Newman–Keuls test. Cell mortality rate, calculated as a percentage, was analyzed by non-parametric tests Mann Whitney or Kruskal-Wallis test. Statistical analyses were performed using GraphPad Prism 5 (Graphpad Software, USA). The results were considered significant when p<0.05.
Results

Infection of bovine trophoblastic cells with *L. monocytogenes*

Considering that there are no previous reports of *in vitro* infection of bovine trophoblastic cells with *L. monocytogenes*, we initially evaluated the kinetics of infection of CAM explants obtained at the last trimester of pregnancy with variable MOI (1, 10 and 100). Nine placentas third trimester (three per MOI) were used in this experiment. *L. monocytogenes* invasion of trophoblastic cells was proportional to the MOI. Significant differences in CFU numbers were observed with a MOI of 10 when comparing 1 to 8 hpi (Fig 1A). Based on these results, all additional experiments were performed with MOI of 10. Importantly, the model was further characterized by morphological analysis and immunostaining for assessment of intracellular localization of *L. monocytogenes* in trophoblasts of CAM explants (Fig 1B) confirming the viability of this model to study the interaction of *Listeria* spp. with bovine trophoblasts *in vitro*.

Listeria-induced abortion in cattle is commonly observed during the third trimester of pregnancy [2]. Therefore, we compared the kinetics of *L. monocytogenes* infection in CAM

Fig 1. *Listeria monocytogenes* infection of bovine chorioallantoic membrane (CAM) explants. (A) CAM explants inoculated with variable MOI (1, 10, or 100) of *L. monocytogenes*. CFU numbers of intracellular bacteria were measured at 1, 4 and 8 hpi. Data points represent means and standard errors of three independent experiments performed in triplicate (One-way ANOVA, *p* <0.05, significant difference between 1 and 8 hpi in the same MOI; and *p* <0.05, significant difference between different MOI in time 8 hpi). (B) Infected CAM, and immunostained *L. monocytogenes* in red (in detail) in infected trophoblastic cells at 4 hpi. Trophoblastic cells are indicated by arrow. HE.60X.

https://doi.org/10.1371/journal.pone.0176911.g001
explants obtained at the second or third trimester of pregnancy. Five placentas of cows in the
second (3.4 to 4.8 months) and five in the third trimester (7.1 to 8.8 months) were used in this
experiment. The number of \(\text{L. monocytogenes} \) CFU recovered from bovine CAM explants at 1,
4, and 8 hpi were similar when comparing the second and the third trimesters of gestation (Fig
2). These results demonstrate that \(\text{L. monocytogenes} \) invades and multiplies in the trophoblastic
cells regardless of the gestational stage.

Infection of bovine trophoblasts with different species of \(\text{Listeria} \) spp.
Similar to \(\text{L. monocytogenes} \), \(\text{L. ivanovii} \) is known to cause abortion in ruminants [2].
Conversely, \(\text{L. innocua} \) is considered a non-pathogenic species [18]. Thus, invasion and
multiplication of different species of \(\text{Listeria} \) were evaluated in CAM explants infected with
\(\text{L. monocytogenes} \), \(\text{L. innocua} \), or \(\text{L. ivanovii} \). There was no difference in CFU numbers recov-
ered from different \(\text{Listeria} \) spp. at 1 hpi, indicating that there was no difference in the invasion of
bovine trophoblast cells by these three species (Fig 3), even when CFU data at 1 hpi were nor-
malized according to the CFU numbers in the inocula from each \(\text{Listeria} \) species (data not
shown). However, a significant increase in CFU numbers of \(\text{L. monocytogenes} \) and \(\text{L. ivanovii} \)
recovered from CAM explants was observed at 8 hpi, whereas there was a reduction in CFU
numbers of \(\text{L. innocua} \) under the same conditions and at the same time point. CFU numbers
of \(\text{L. monocytogenes} \) and \(\text{L. ivanovii} \) were approximately 1 log higher than those of \(\text{L. innocua} \)
at 8 hpi, indicating that \(\text{L. innocua} \) was unable to multiply in bovine trophoblastic cells.

Considering that both \(\text{L. monocytogenes} \) and \(\text{L. ivanovii} \) were able to multiply in bovine tro-
phoblasts, we investigated whether these bacteria were capable of inducing lyses of tropho-
blasts. Cell mortality was determined by measuring LDH release in the supernatant of infected
cells as compared to uninfected controls at 1 and 8 hpi. Interestingly, there was no difference

**Fig 2. Kinetics of \(\text{L. monocytogenes} \) infection in CAM explants derived from bovine placentas at the
second and third trimesters of pregnancy.** CAM explants were inoculated with \(1 \times 10^6 \) CFU/mL of \(\text{L. monocytogenes} \), and intracellular bacteria were measured at 1, 4, and 8 hpi. Data points represent means
and standard errors of five independent experiments per group performed in triplicate. There was no
statistically significant difference.

https://doi.org/10.1371/journal.pone.0176911.g002
between cell death of uninfected and infected with *L. monocytogenes* infection (Fig 4A), indicating that the bacterial infection did not induce cell death in infected trophoblasts even at time points when the bacteria is undergoing intracellular multiplication. However, an increase in the rate of cell death was observed at 8 hpi when compared to 1 hpi in both *Listeria*-infected and uninfected controls. This increase in LDH at 8 h is likely due to a limited viability of the CAM explants in culture. However, more than 60% of the cells remain viable at 8 h in culture ensuring the suitability of this model. Trophoblastic cell mortality was further evaluated in CAM explants infected with *L. monocytogenes*, *L. innocua*, or *L. ivanovii* at 1 and 8 hpi, and no differences were observed between these bacterial species, which supports the notion that *Listeria* intracellular multiplication does not induce trophoblastic cell lysis at times earlier than 8 hpi (Fig 4B).

Expression of pro-inflammatory genes in bovine CAM explants infected with *Listeria* spp.

Considering that *L. monocytogenes* and *L. ivanovii* were able to invade and multiply in bovine CAM explants without causing significant trophoblastic cell death up to 8 hpi, next we assessed whether *Listeria* spp. induced a pro-inflammatory transcription profile during the course of infection. Six bovine placentas were used to prepare CAM explants (three per treatment) that were non-infected or infected with *L. monocytogenes*, *L. innocua*, or *L. ivanovii*. Transcription of pro-inflammatory genes was assessed by qPCR at 1 and 4 hpi. A significant increase in transcription of CXCL6 was observed in trophoblastic cells infected with *L. innocua* at 4 hpi. None of the other genes had any significant change in transcription during the course of infection (Fig 5).

Discussion

In this study we demonstrate for the first time, that *L. monocytogenes* can invade and multiply in bovine trophoblastic cells of the second and third trimester of pregnancy, and that...
Fig 4. Cell mortality rate of bovine trophoblasts infected with Listeria spp. (A) Cell mortality was analyzed by measuring the LDH released in the supernatant of CAM explants infected with *L. monocytogenes* or non-infected controls at 1 and 8 hpi. (B) Cell mortality was analyzed by measuring the LDH released in the supernatant of explants uninfected or infected with *L. monocytogenes, L. innocua*, or *L. ivanovii* at 1 and 8 hpi. The value of 100% cell mortality was calculated as optical density measured for LDH of total trophoblastic cells from explants lysed with mix substrate Cytotox kit Non-Radioactive Cytotoxicity 96 Assay. Results are presented as median and range of the data of five independent experiments performed in triplicate (Mann Whitney, *p* <0.05).

https://doi.org/10.1371/journal.pone.0176911.g004

L. monocytogenes and *L. ivanovii*, two species that cause abortion in ruminants, had similar levels of invasion and intracellular multiplication in bovine trophoblasts, which contrasts to the non-pathogenic *L. innocua* that is not capable of multiplying intracellularly in trophoblasts. These results support the notion that these two virulent species of *Listeria* spp. carry the virulence factors required for survival and multiplication in bovine trophoblastic cells, which may contribute to the occurrence of abortion that characterizes bovine listeriosis. The Listeriolsyn O and ActA are known virulence factors required for bacterial multiplication in trophoblastic cells in mice (18). These two virulence factors are present in *L. monocytogenes* and *L. ivanovii* [12]. However, sphingomyelinase C, present only in *L. ivanovii* is important to intracellular multiplication in an epithelial cell line [9]. Genomic studies have shown differences between *L. monocytogenes* and *L. ivanovii* and suggest that these may be associated with stronger tropism of *L. ivanovii* to ruminants when compared to human hosts [9, 12]. Guillet et al. (2010) [6] demonstrated that *L. ivanovii* is more invasive than *L. monocytogenes* in MDBK but not in HeLa, which are bovine and human cell lines respectively. Although, we observed on average more than 0.5 log of intracellular *L. ivanovii* when compared to *L. monocytogenes* under the same conditions at all time points of infection, there were no statistically significant differences.

It has been reported that bovine abortion due to *Listeria* spp. infection occurs mostly during the last trimester of pregnancy [1, 2], our results demonstrated that there were no significant differences between trophoblasts of the second or third trimester of gestation in terms of *Listeria* invasion and intracellular survival. *L. monocytogenes*-induced fetal loss in women can occur at any stage of pregnancy [1]. It is thought that infection by *Listeria* sp. in cattle can cause fetal loss at any point in pregnancy, but embryonic loss is seldom recognized [1]. In addition, immunosuppression associated with pregnancy is recognized as a factor that favors *Listeria* infection [1, 5].

L. innocua is considered a non-pathogenic bacterium [4], and it does not express several important virulence factors required for invasion and intracellular survival [18]. Indeed, our
data demonstrated that *L. innocua* was able to invade bovine trophoblasts similarly to other pathogenic *Listeria* species, although *L. innocua* does not multiply intracellularly in bovine trophoblasts. Importantly, there were no previously reported evidences that *L. innocua* is capable of invading trophoblasts. *L. monocytogenes* invasion of human trophoblastic cells requires InlA and InlB [11]. This invasion factors are also required for pathogenesis *in vivo* in gerbils and mice expressing humanized E-caderin [19]. In contrast, invasion and dissemination of the placental infection may not require interaction of the internalins with E-caderin, likely occurring through a direct cell to cell invasion as observed in normal mice—i.e. lacking a humanized version of E-caderin [18, 21]. *L. innocua* is persist in placental tissues of pregnant mice up to 2 days, but it does not cause any change in the fetuses since it is unable to cross the placental barrier [24]. Furthermore, there are evidences that others cell receptors, in addition to E-caderin, may interact with other *Listeria* proteins promoting internalization of the bacteria into epithelial cells [13]. Additionally, bovine trophoblastic cells have phagocytic activity so it is possible that of *L. innocua* internalization may occur by phagocytosis [31], which is independent of InlA and InlB that is absent in *L. innocua* [11]. Internalization by phagocytosis has also been described in macrophages [10]. Tachibana et al. (2015) [32] demonstrated that macropinocytosis contributes
to bacterial invasion into murine TG cell lines, and that this process may involve putative cell surface receptors in lipid rafts. Studies demonstrate that the PI3-K signaling pathway contributes to bacterial invasion in mouse and human trophoblastic cells [32, 33]. Additionally, MAPK signaling pathway may promote L. monocytogenes invasion into TG cell by activation of TLR2 [34]. Thus, we hypothesize that in spite of being fully invasive in trophoblasts, the inability of L. innocua to multiply in trophoblastic cells, causes the self-limiting spreading to neighboring cells, and therefore fetal infection does not occur, leading to a non-pathogenic phenotype of this species.

Our results demonstrated that none of the Listeria species studied (i.e. L. monocytogenes, L. ivanovii, and L. innocua) caused trophoblastic cell death up to 8 hpi. Listeria-induced bovine trophoblastic cell death has not been previously evaluated. Listeria spp. induces cell death in infected human trophoblast [15, 35] as well as in other type cells [12], but Listeria-induced host cell death is observed at later time points of infection.

Bovine trophoblasts are epithelial cells that participate in placentation and maintenance of pregnancy. These cells have the ability to perform phagocytosis, invade tissues, and to produce cytokines such as IL-6 and IL-8 in response to infection [31, 36]. Cytokines such as TNFα, IL-6, IL-8 play an important role in the control of listeriosis by neutrophil recruitment in mice [22]. We have previously evaluated the cellular response of the bovine trophoblast exposure to heat killed L. monocytogenes, and we observed the induction of neutrophil chemokines after 12 h of stimulation [37], but the effect of the internalization of bacteria on cell response has not been evaluated. Thus, we evaluated the expression of pro-inflammatory genes, cytokines TNFα, IL-6, IL-8 IFN-γ and chemokines CXCL6 and CCL2 by pathogenic Listeria spp. infection in bovine trophoblasts, and yet there was not an increase in the expression of these genes until 4 hpi. Although Jung et al. (1995) [38] have shown that L. monocytogenes stimulates the transcription of pro-inflammatory genes in colon epithelial cells 4 hpi.

Interestingly, L. innocua was the only bacterium to induce expression CXCL6 at 4 hpi. Although L. monocytogenes induces pro-inflammatory cytokines in trophoblastic cells [14, 39] and other cell lines [10], Santos et al. (2012) [14] have shown that it may inhibit expression pro-inflammatory cytokines as IL-6 in human cytotrophoblast cell line. Other studies demonstrate that L. monocytogenes are able to evade the innate immune response by inhibiting early expression of pro-inflammatory genes through deacetylated peptidoglycan [40] or by internalin C (InlC), present in L. monocytogenes and L. ivanovii, which impairs activation of NF-κB pathway [41]. Previously, we demonstrated that Brucella abortus, other important abortive agent for cows, also delays initial pro-inflammatory responses in bovine trophoblasts [26].

In conclusion, this study has demonstrated for the first time that L. monocytogenes and L. ivanovii are able to invade and multiply intracellularly in bovine trophoblasts, whereas L. innocua invades, but it is unable to multiply in the intracellular environment. CAM explants are a suitable model to expand the knowledge on the molecular pathogenic mechanisms of Listeria spp. that are involved in Listeria-induced abortion in ruminants.

Supporting information
S1 Fig. Representative CT results from one bovine CAM explant set up in customized Taqman gene expression system plate.
(TIF)

Acknowledgments
This work has the financial support of FAPEMIG. RLS and TAP are supported by CNPq.
Author Contributions

Conceptualization: TAP.
Formal analysis: CER TAP.
Funding acquisition: TAP.
Investigation: CER JPSM LNNG LFC.
Methodology: TAP JPSM RLS.
Project administration: TAP.
Resources: TAP RLS.
Supervision: JPSM TAP.
Validation: TAP CER JPSM.
Visualization: CER TAP.
Writing – original draft: CER TAP.
Writing – review & editing: JPSM LNNG LFC RLS.

References

1. Poulsen KP, Czuprynski CJ. Pathogenesis of listeriosis during pregnancy. Anim Health Res Rev. 2013; 14(1): 30–39. https://doi.org/10.1017/S1466252312000242 PMID: 23347534
2. Low JC, Donachie W. A Review of Listeria monocytogenes and Listeriosis. Vet J. 1997; 153(1):9–29. PMID: 9125353
3. Liu D. Molecular Approaches to the Identification of Pathogenic and Nonpathogenic Listeriae. Microbio Insights. 2013; 6:59–69.
4. Vázquez-Boland JA, Kuhn M, Berche P, Chakraborty T, Domínguez-Bernal G, Goebel W, et al. Listeria pathogenesis and molecular virulence determinants. Clin Microbiol. 2001; 14(3):584–640.
5. Doganay M. Listeriosis: clinical presentation. FEMS Immunol Med Microbiol. 2003 1; 35(3):173–175. PMID: 12648833
6. Guillet C, Join-Lambert O, Le Monnier A, Leclercq A, Mecheri-F, Mamzer-Bruneel MF, et al. Human listeriosis caused by Listeria ivanovii. Emerg Infect Dis. 2010; 16(1):136–138. https://doi.org/10.3201/eid1601.091155 PMID: 20031061
7. Mohammed HO, Stipetic K, McDonough PL, Gonzalez RN, Nydam DV, Atwill ER. Identification of potential on-farm sources of Listeria monocytogenes in herds of dairy cattle. Am J Vet Res. 2009; 70 (3):383–388. https://doi.org/10.2460/ajvr.70.3.383 PMID: 19254151
8. Karunasagar I, Krohne G, Goebel W. Listeria ivanovii is capable of cell-to-cell spread involving actin polymerization. Infect Immun. 1993; 61(1):162–169. PMID: 8418038
9. González-Zorn B, Domínguez-Bernal G, Suárez M, Ripio MT, Veija Y, Novella S, et al. The smcL gene of Listeria ivanovii encodes a sphingomyelinase C that mediates bacterial escape from the phagocytic vacuole. Mol Microbiol. 1999; 33(3):510–523. PMID: 10417642
10. Wadsworth SJ, Goldfine H. Mobilization of protein kinase C in macrophages induced by Listeria monocytogenes affects its internalization and escape from the phagosome. Infect Immun. 2002; 70(8):4650–4660. https://doi.org/10.1128/IAI.70.8.4650-4660.2002 PMID: 12117979
11. Lecuit M, Nelson DM, Smith SD, Khun H, Huere M, Vacher-Lavenu MC, et al. Targeting and crossing of the human maternofetal barrier by Listeria monocytogenes: role of internalin interaction with trophoblast E-cadherin. Proc Natl Acad Sci USA. 2004 Apr 20; 101(16):6152–6157. https://doi.org/10.1073/pnas.0401434101 PMID: 15073336
12. Domínguez-Bernal G, Müller-Altrock S, González-Zorn B, Scorti M, Herrmann P, Monzó HJ, et al. A spontaneous genomic deletion in Listeria ivanovii identifies LIPI-2, a species-specific pathogenicity island encoding sphingomyelinase and numerous internalins. Mol Microbiol. 2006; 59(2):415–432. https://doi.org/10.1111/j.1365-2958.2005.04955.x PMID: 16390439
13. Hashino M, Tachibana M, Shimizu T, Watarai M. Mannose receptor, C type 1 contributes to bacterial uptake by placental trophoblast giant cells. FEMS Immunol Med Microbiol. 2012; 66(3):427–435. https://doi.org/10.1111/j.1574-695X.2012.02009.PMID: 23136874

14. Santos L, Fries K, Jeschke U, Scholz C. Trophoblastic cell lines ACH1P and AC-1M32 react with a distinctive cytokine pattern toward Listeria monocytogenes and show morphologic differences. Am J Reprod Immunol. 2012; 68(5):387–391. https://doi.org/10.1111/aji.12004.PMID: 22892046

15. Poulsen KP, Faith NG, Golos TG, Giakoumopoulou M, Czuprynski CJ. Listeria monocytogenes infection reduces the functionality of human chorionic carcinoma JEG-3 cells. J Neonatal Biol. 2014; 3(1):1000125

16. Disson O, Lecuit M. In vitro and in vivo models to study human listeriosis: mind the gap. Microbes Infect. 2013; 15(14–15):971–980. https://doi.org/10.1016/j.micinf.2013.09.012.PMID: 24144539

17. Jacquet C, Doumith M, Gordon JI, Martin PM, Cossart P, Lecuit M. A molecular marker for evaluating the pathogenic potential of foodborne Listeria monocytogenes. J Infect Dis. 2004 Jun 1; 189(11):2094–2100. https://doi.org/10.1086/420853.PMID: 15143478

18. Le Monnier A, Autret N, Join-Lambert OF, Jaubert F, Charbit A, Berche P, et al. ActA is required for invasion, fetal morbidity, and fetal mortality after oral challenge in pregnant and nonpregnant Mongolian gerbils. Infect Immun. 2004; 72(1):489–497. https://doi.org/10.1128/IAI.72.1.489-497.2004 PMID: 14688130

19. Disson O, Gr Bay S, Huillet E, Nikitas G, Langa-Vives F, Dussurget O, et al. Conjugated action of two species-specific invasion proteins for fetoplacental listeriosis. Nature. 2008; 455(7216):1114–1118. https://doi.org/10.1038/nature07303.PMID: 18806773

20. Cao B, Mysorekar IU. Intracellular bacteria in placental basal plate localize to extravillous trophoblasts. Placenta. 2014; 35(2):139–142. https://doi.org/10.1016/j.placenta.2013.12.007.PMID: 24439469

21. Robbins JR, Skrzypczyńska KM, Zeldovich VB, Kapidzic M, Bakardjiev AI. Placental syncytiotrophoblast constitutes a major barrier to vertical transmission of Listeria monocytogenes. PloS Pathogens. 2010; 6(1):e1000732. https://doi.org/10.1371/journal.ppat.1000732. PMID: 20107601

22. Abram M, Schlüter D, Vuckovic D, Wraber B, Doric M, Deckert M. Murine model of pregnant Antrim bina cysticerci. Exp Med. 2015; 212(2):165–183. https://doi.org/10.1038/nature07303.PMID: 15280560

23. Bakardjiev AI, Stacy BA, Fisher SJ, Portnoy DA. Listeriosis in the pregnant guinea pig: a model of vertical transmission. Infect Immun. 2004; 72(1):489–497. https://doi.org/10.1128/IAI.72.1.489-497.2004 PMID: 14688130

24. Le Monnier A, Join-Lambert OF, Jaubert F, Berche P, Kayal S. Invasion of the Placenta during Murine Listeriosis. Infect Immun. 2006; 74(1):663–672. https://doi.org/10.1128/IAI.74.1.663-672.2006 PMID: 16369023

25. Roulo RM, Fishburn JD, Amosu M, Etchison AR, Smith MA. Dose Response of Listeria monocytogenes Invasion, Fetal Morbidity, and Fetal Mortality after Oral Challenge in Pregnant and Nonpregnant Mongolian Gerbils. Infect Immun. 2014; 82(11):4834–4841. https://doi.org/10.1128/IAI.01514-14.PMID: 25156729

26. Carvalho Neta AV, Stynen AP, Paixão TA, Miranda KL, Silva FL, Roux CM, et al. Modulation of the bovine trophoblastic innate immune response by Brucella abortus. Infect Immun. 2008; 76(5):1897–1907. https://doi.org/10.1128/IAI.01554-07.PMID: 18316388

27. Richardson C, Jones PC, Barnard V, Hebert CN, Terlecki S, Wijeratne WV. Estimation of the developmental age of the bovine fetus and newborn calf. Vet Rec. 1990; 24; 126(12):279–284. PMID: 2343510

28. Bubert A, Hein I, Rauch M, Lehner A, Yoon B, Goebel W, et al. Detection and differentiation of Listeria spp. by a single reaction based on multiplex PCR. Appl Environ Microbiol. 1999; 65:4688–4692. PMID: 10508109

29. Kim H, Boor KJ, Marquis H. Listeria monocytogenesΔσ9 Contributions to Invasion of Human Intestinal Epithelial Cells. Infect Immun. 2004; 72(12):7374–7378. https://doi.org/10.1128/IAI.72.12.7374-7378.2004 PMID: 15557671

30. Livak J, Schmittgen T. Analysis of relative gene expression data using realtime quantitative PCR and the 2ΔΔCt. Method Methods. 2001; 25:402–408. https://doi.org/10.1006/meth.2001.1262.PMID: 11846609

31. Amarante-Paffaro A, Queiroz GS, Corrêa ST, Spira B, Bevilacqua E. Phagocytosis as a potential mechanism for microbial defense of mouse placental trophoblast cells. Reproduction. 2004; 128:207–218. https://doi.org/10.1530/rep.1.00214.PMID: 15280560

32. Gessain G, Tsai YH, Travier L, Bonazzi M, Grayo S, Cossart P, et al. Exp Med. 2015; 212(2):165–83.

33. Hashino M, Tachibana M, Nishida T, Hara H, Tsuchiya KM, Mitsuyama M, et al. Inactivation of the MAPK signaling pathway by Listeria monocytogenes infection promotes trophoblast giant cell death. Front Microbiol. 2015; 6:1145. https://doi.org/10.3389/fmicb.2015.01145.PMID: 26528279
34. Tachibana M, Hashino M, Watanabe K, Shimizu T, Watarai M. Interferon γ-induced GTPase promotes invasion of Listeria monocytogenes into trophoblast giant cells. Sci Rep. 2015; (5):8195.

35. Chu X, Chen W, Li N, Hu XZ, Du CT, Yu SX, et al. Cytosolic double-stranded DNA induces nonnecrotic programmed cell death in trophoblasts via IFI16. J Infect Dis. 2014; 210(9):1476–1486. https://doi.org/10.1093/infdis/jiu272 PMID: 24812048

36. Poulsen KP, Faith NG, Steinberg H, CZuprynski CJ. Bacterial load and inflammation in fetal tissues is not dependent on IL-17a or IL-22 in 10–14 day pregnant mice infected with Listeria monocytogenes. Microb Pathog. 2013; 56:47–52. https://doi.org/10.1016/j.micpath.2012.11.003 PMID: 23178254

37. Silva AP, Costa EA, Macêdo AA, Martins TM, Borges AM, Paixão TA, et al. Transcription of pattern recognition receptors and abortive agents induced chemokines in the bovine pregnant uterus. Vet Immunol Immunopathol. 2012; 145(1–2):248–256. https://doi.org/10.1016/j.vetimm.2011.11.007 PMID: 22153993

38. Jung HC, Eckmann L, Yang SK, Anja A, Fierer J, Morzycka-Wroblewska E, et al. A distinct array of proinflammatory cytokines is expressed in human colon epithelial cells in response to bacterial invasion. J Clin Invest. 1995; 95(1):55–65. https://doi.org/10.1172/JCI117676 PMID: 7814646

39. Blenne H, Travier L, Mahlaköiv T, Tailleux L, Subtil A, Lebreton A, et al. Activation of type III interferon genes by pathogenic bacteria in infected epithelial cells and mouse placenta. PLoS One 2012; 7(6): e39080. https://doi.org/10.1371/journal.pone.0039080 PMID: 22720036

40. Boneca IG, Dussurget O, Cabanes D, Nahori MA, Sousa S, Lecuit M, et al. A critical role for peptidoglycan N-deacetylation in Listeria evasion from the host innate immune system. Proc Natl Acad Sci USA. 2007 Jan 16; 104(3):997–1002. https://doi.org/10.1073/pnas.1007765104 PMID: 17215377

41. Gouin E, Adib-Conquy M, Balestrino D, Nahori MA, Villiers V, Collard F, et al. The Listeria monocytogenes InlC protein interferes with innate immune responses by targeting the IkB kinase subunit IKKα. Proc Natl Acad Sci USA. 2010; 107(40):17333–17338. https://doi.org/10.1073/pnas.1007765107 PMID: 20855622