O caminho das pedras no diagnóstico e tratamento da síndrome obstrutiva ilíaca venosa crônica

Best practices in diagnosis and treatment of chronic iliac vein obstruction

Fabio Henrique Rossi¹, Thiago Osawa Rodrigues¹, Nilo Mitsuru Izukawa², Antônio Massamitsu Kambara¹

Resumo

A obstrução venosa ilíaca ocorre em 20% a 30% da população. Nos portadores de insuficiência venosa crônica grave, essa prevalência é ainda maior, podendo chegar a 50% a 90% dos pacientes, situação em que essa obstrução é investigada pelo ultrassom intravascular. Métodos diagnósticos menos invasivos, como o Doppler vascular, ou mesmo invasivos, como a flebografia, podem falhar em seu diagnóstico. O tratamento endovascular dessas obstruções tem se demonstrado eficaz, seguro e associado a excelente resultado clínico e de perviedade, desde que princípios anatômicos e técnicos fundamentais sejam considerados e aplicados.

Palavras-chave: síndrome de May-Thurner; síndrome de Cockett; veia ilíaca; trombose venosa; angioplastia; estenose; stent.

Abstract

Iliac vein obstruction occurs in 20-30% of the general population. In patients with severe chronic venous insufficiency, this prevalence can be even higher, reaching 50-90% when the obstruction is investigated using intravascular ultrasound. Less invasive methods, such as venous Duplex Scanning, and even invasive ones such as venography may fail to diagnose the condition. Endovascular treatment of these obstructions is effective, safe, and associated with excellent clinical outcomes and stent patency rates, provided that fundamental anatomical and technical principles are considered and applied.

Keywords: May-Thurner Syndrome; Cockett Syndrome; iliac vein; venous thrombosis; angioplasty; stenosis, stent.

Como citar: Rossi FH, Rodrigues TO, Izukawa NM, Kambara AM. O caminho das pedras no diagnóstico e tratamento da síndrome obstrutiva ilíaca venosa crônica. J Vasc Bras. 2020;19:e20190134. https://doi.org/10.1590/1677-5449.190134

¹Instituto Dante Pazzanese de Cardiologia de São Paulo – IDPC-SP, São Paulo, SP, Brasil.
²Centro de Intervenções Endovasculares – CIEV-IDPC, São Paulo, SP, Brasil.
Fonte de financiamento: Nenhuma.
Conflieto de interesse: Os autores declararam não haver conflitos de interesse que precisam ser informados.
Submetido em: Dezembro 05, 2019. Aceito em: Maio 15, 2020.

O estudo foi realizado no Instituto Dante Pazzanese de Cardiologia de São Paulo (IDPC-SP), São Paulo, SP, Brasil.
A obstrução venosa iliaca (OVI) pode ser classificada em primária, obstrução não trombótica de veia iliaca (ONTVI), classicamente chamada de síndrome de May-Thurner (SMT); ou secundária, obstrução pós-trombótica de veia iliaca (OPTVI), ou síndrome de Cockett (SC)\(^1\). Seu tratamento endovascular, hoje considerado o padrão-ouro, está associado a melhores resultados em termos de melhora da qualidade de vida, prevalência de complicações e taxas de sobrevivência. Apesar de a compressão ocorrer mais frequentemente no ponto de cruzamento entre a veia iliaca direita e a veia iliaca esquerda, não é incomum que ela ocorra em outros segmentos. Em nossa casuística, e nas de outros autores, 30% das obstruções identificadas foram observadas em outros pontos que não aquele classicamente descrito\(^5\).

Essa compressão pode provocar, além da redução da área de secção transversal do vaso, a formação de membranas e de traves fibroblásticas, e também trombose\(^6\)–\(^9\) [60% das obstruções, em nossa casuística, apresentavam episódio prévio de trombose venosa profunda (TVP)]\(^4\). Na TVP associada à compressão do eixo cavo-iliaco-femoral, frequentemente ocorre fleboesclerose (fenômeno de Rokitansky), retração cicatricial e obstruções extensas. Devemos lembrar que em apenas 20 a 30% dos casos verifica-se revascularização completa da luz do vaso acometido\(^11\).

Outras causas menos comuns de compressão são: tumores benignos e malignos, fibrose retroperitoneal, lesõesiatrogênicas, irradiiação, cistos e aneurismas. Todas as manifestações clínicas relacionadas à insuficiência venosa crônica (IVC) podem ser causadas por lesões obstrutivas e pela consequente hipertensão venosa. Dor crônica intraintrável, claudicação venosa e edema são importantes sinais e sintomas preditivos da presença dessas obstruções\(^1\)–\(^3\),\(^12\)–\(^13\). Há uma associação positiva entre gravidade dos sintomas, classificação clínica, e grau da OVI (p = 0,001)\(^6\). A associação entre a obstrução e o refluxo venoso parece estar relacionada aos casos clínicos mais graves\(^13\)–\(^15\). Tem sido observado que a OVI também pode estar relacionada à síndrome de congestão pélvica\(^6\), presente em 26% de nossa casuística.

A avaliação da gravidade clínica é fundamental do tratamento. Devemos lembrar que a veia iliaca é a principal via de escoamento do fluxo venoso oriundo dos membros inferiores. Portanto, a obstrução iliaca ≥ 50%, oferece o tratamento endovascular como a prática clínica, aos pacientes que apresentam IVC comprometida de qualidade de vida e obstrução iliaca ≥ 50%, oferecemos o tratamento endovascular.

FISIOPATOLOGIA

Uma série de diferenças anatômicas, fisiológicas e mecânicas existentes entre o sistema venoso e o arterial deve ser considerada para que seja obtido o sucesso no tratamento. O sistema venoso é convergente e apresenta baixa velocidade, alto volume de fluxo e baixa pressão, além de ser altamente complacente. Uma pequena elevação na pressão venosa capilar pode ser responsável pelo aparecimento de sinais e sintomas. A descompressão ou desobstrução do sistema venoso profundo e a consequente diminuição da ectasia e da hipertensão venosa é o princípio básico e fundamental do tratamento. Devemos lembrar que a veia iliaca é a principal via de escoamento do fluxo venoso oriundo dos membros inferiores. Entretanto, ainda hoje, não se sabe a partir de que grau ou extensão a obstrução se torna hemodinamicamente significativa. Estudos que verificaram medidas diretas de pressão demonstraram-se inconclusivos\(^2\)–\(^4\).

MÉTODOS DIAGNÓSTICOS

A experiência clínica demonstra que o tratamento de obstruções ≥ 50% está relacionado a melhora dos sintomas e da qualidade de vida e, dessa forma, considera-se que essas obstruções são hemodinamicamente significativas e devem ser tratadas\(^4\)–\(^6\). Como não existe exame examinador confiável, o diagnóstico e o tratamento vêm sendo realizados considerando a análise morfológica das obstruções. A venografia, que por muito tempo foi considerada o método padrão-ouro, pode ser uma boa ferramentadiagnóstica na presença de obstruções graves, mas falha quando comparada ao ultrassom intravascular (intravascular ultrasound, IVUS) em ao menos 1/3 dos casos\(^2\)–\(^4\). Os sinais venográficos indiretos que sugerem a presença de OVI são: alargamento da veia iliaca (pancaking), rarefação do contraste central (sinal do alvo ou bull’s-eye), e presença de colaterais transpélvicas ou paravертебrais (Figura 1).

O eco-Doppler venoso colorido faz parte da investigação inicial dos pacientes portadores de...
Diagnóstico e tratamento da obstrução venosa ilíaca

IVC. É um método não invasivo e de baixo risco. Entretanto, é operador dependente, e mesmo em laboratórios especializados pode falhar em até 20% dos casos\(^7,25\). Em nossa instituição, a comparação de medidas diretas e indiretas obtidas por meio desse método com aquelas obtidas pelo IVUS mostrou que a razão de velocidade ≥ 2,5 através do ponto de maior obstrução foi o melhor parâmetro para o diagnóstico de obstrução ≥ 50% quando comparado ao IVUS (\(r = 0,790; \ p < 0,001\)). Nesse estudo foi proposto um algoritmo que atingiu a acurácia de 86,7% para o diagnóstico ultrassonográfico dessas obstruções (\(k = 0,73; \ p < 0,001\))^7.

A utilidade da tomografia computadorizada (TC) no diagnóstico da TVP foi amplamente descrita\(^{26-29}\); entretanto, pouquíssimos estudos verificaram sua acurácia na identificação das OVIIs crônicas. Ao avaliarem o poder diagnóstico da TC em verificar a presença e o grau de obstruções ilíacas por meio de reformatações multiplanares 3D das imagens, quando comparado ao da IVUS em portadores de IVC avançada (CEAP C3-6), Rossi et al. observaram que em 60% dos casos havia ao menos 50% de obstrução, e que em 25% dos casos a obstrução era superior a 80%. Verificou-se também que havia uma correlação positiva entre a classificação CEAP e o grau de obstrução (\(r = 0,330; \ p = 0,001\)), que o ponto de máxima compressão foi a veia ilíaca comum proximal em 70% dos membros, e que, em 30% dos casos, outros segmentos do sistema de venoso cavo-iliaco foram comprimidos pelas artérias adjacentes. Em nove pacientes (18%), foram encontradas OVIIs > 50% bilaterais. O método obteve sensibilidade de 94%, especificidade de 79,2%, valor preditivo positivo de 94%, valor preditivo negativo de 79,1%, acurácia de 86,7%, e apresentou uma concordância interobservador de 92,1% [intervalo de confiança (IC): 87,1-97,7; kappa: 0,899]^29,30. A TC, além de possuir uma alta acurácia no diagnóstico das obstruções, pode auxiliar também na determinação do ponto de maior compressão, dos diâmetros e extensões de stent necessários, e ainda estabelecer a melhor via de acesso para o tratamento. Recentemente

Figura 1. Imagens flebográficas por subtração digital de pacientes portadores de obstruções ilíacas: (A) Alargamento (**Pancaking**) e compressão em segmento proximal de veia ilíaca comum esquerda; (B) Compressão severa em segmento proximal da veia ilíaca comum esquerda e presença de colateral paravertebral; (C) Presença de rarefação central de contraste em segmento proximal de veia ilíaca comum esquerda (**sinal do alvo ou bull’s-eye**); (D) Compressão bilateral de veias ilíacas comuns proximais; (E) Presença de membranas intraluminais em veia ilíaca comum esquerda; (F) Obstrução severa de veia ilíaca esquerda com formação de rede de colaterais paravertebral e transpélvica.
Figura 2. Reconstrução multiplanar da angiotomografia venosa para a identificação do ponto de maior compressão ou obstrução.

Figura 3. Cálculo do grau de obstrução presente no ponto de maior compressão em membros portadores de insuficiência venosa crônica com classificação clínica, etiológica, anatômica e patofisiológica (CEAP) C3-6.
publicamos nossa sugestão de classificação de OVI, que contempla o local de maior compressão na região da confluência das veias ilíacas e o segmento venoso caudal livre de obstrução30 (Figuras 2 e 3).

Pouquíssimos estudos mostraram a capacidade da angiorressonância no diagnóstico dessas obstruções, e apenas um estudo comparou o método com o IVUS31. Massenburg et al.31 compararam retrospectivamente a ressonância nuclear magnética com o IVUS em 46 pacientes portadores de sintomas clínicos sugestivos de OVI. Os autores verificaram sensibilidade de 100%, especificidade de 22,7%, valor preditivo positivo de 58,5%, e valor preditivo negativo de 100%.

Estudos demonstraram a superioridade do IVUS em relação à venografia no diagnóstico da OVI22,24,29,32. O método, além de determinar o grau mecânico da compressão, é o único capaz de verificar com precisão a presença de obstruções intraluminais (traves, trabéculas e membranas), as características da parede, a presença de trombos residuais e, sobretudo, possibilita a definição precisa do local e do grau de redução da área de secção transversal do vaso. A venografia, além de subestimar o grau de obstrução em aproximadamente 30% dos casos, pode falhar em identificar obstrução acima de 50% em até 25% dos casos15,32,33.

Na atualidade, o IVUS é considerado o padrão-ouro no diagnóstico da OVI. Alguns estudos indicam sensibilidade de 90% no diagnóstico dessas obstruções, sobretudo em pacientes portadores de IVC avançada. Ele é fundamental para confirmar e documentar do grau da obstrução, para determinar o segmento a ser recoberto com o stent (influxo e efluxo adequados) e, sobretudo, para verificar a ocorrência de obstrução residual e o sucesso do tratamento29,32,33 (Figura 4).

\section*{TÉCNICA DE TRATAMENTO}

Para o tratamento endovascular, o uso de subtração digital, colimação e a técnica de road-map são importantes para diminuir o tempo de exposição à radiação do paciente e dos colaboradores presentes na sala. Deve-se lembrar que muitos pacientes estão em idade fértil, e todas as medidas de radioproteção devem ser observadas34. Na maioria dos casos, o procedimento é realizado apenas com o uso de anestesia local e sedação, mas, nos casos de acesso poplíteo e jugular, em que o procedimento pode ser desconfortável, e de OPTVI, em que o tratamento do segmento ocluído pode ser doloroso e demorado, pode

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{figura4.png}
\caption{Venografia e ultrassom intravascular na determinação do grau e segmento obstruído: (A) Membro Direito; (B) Venografia; (C) Membro esquerdo; * Confluência das veias ilíacas interna e externa; b- Veia iliaca comum; c- Confluência das veias ilíacas externa e interna.}
\end{figure}
ser necessária sedação profunda ou anestesia geral. Recomenda-se a solicitação de perfil hormonal e de teste sorológico de gravidez ou espermograma para os pacientes em idade fértil.

Nossa preferência é a realização de acesso retrógrado na veia femoral, no terço médio da coxa ipsilateral à obstrução, guiado por ultrassom. Esse acesso permite uma abordagem mais curta e direta ao local da obstrução, permitindo o uso de cateteres e guias mais curtos, o que confere maior poder de torque e manobrabilidade. Abordagens alternativas nos casos de oclusão da veia femoral são: veia femoral profunda, veia jugular interna e veia poplitea. O acesso na virilha na maioria das vezes não é apropriado, porque muito frequentemente é necessário o prolongamento do stent abaixo do ligamento inguinal. Embora a pressão existente no interior das artérias limite o uso de bainhas maiores do que 6 ou 7F, não existe qualquer restrição no sistema venoso. A bainha 11F é a que mais frequentemente utilizamos.

A venografia é o primeiro método de imagem a ser utilizado. Verificamos inicialmente a adequação do influxo, para determinar o ponto em que devemos posicionar a extremidade inferior do stent. Ele deve evitar o aprisionamento do orifício da veia femoral profunda, mas, em alguns casos, pode ser necessária até mesmo a injeção dessa veia para garantir um influxo adequado. A venografia é útil na identificação da extensão do segmento obstruído. Entretanto, nem sempre isso é possível e, por esse motivo, deve-se sempre realizar projeções multiplanares e investigar a presença de sinais indiretos, como a presença de colaterais. A técnica de venografia anterógrada, com auxílio de manobra de Valsalva ou insuflação de balão, às vezes é necessária. A venografia é útil quando positiva, sobretudo nas obstruções pós-trombóticas, que a aplicação desse método pode levar a uma subestimação do grau de obstrução. No sistema venoso, deve-se calcular o grau de obstrução utilizando o valor da área anatómica considerada normal para o segmento (VCI: 200 mm²; VIE: 150 mm²; veia femoral comum: 125 mm²). Esses valores são necessários para garantir que haja escoamento e, consequentemente, pressão venosa periférica normal.

Deve-se lembrar que, embora a acurácia do IVUS seja superior à da venografia, ele pode falhar, particularmente na confluência das veias ilíacas. Nesse local, o cáteter do IVUS pode ficar em posição não coaxial ao eixo do vaso, e o lúmen no quadrante oposto aparecerá via ilíaca em posição não coaxial ao eixo do vaso, e o lúmen no quadrante oposto aparecerá muito menor. A técnica da venografia anterógrada, com auxílio de manobra de Valsalva ou insuflação de balão, às vezes é necessária. A venografia é útil quando positiva, sobretudo nas obstruções pós-trombóticas, que a aplicação desse método pode levar a uma subestimação do grau de obstrução. No sistema venoso, deve-se calcular o grau de obstrução utilizando o valor da área anatómica considerada normal para o segmento (VCI: 200 mm²; VIE: 150 mm²; veia femoral comum: 125 mm²). Esses valores são necessários para garantir que haja escoamento e, consequentemente, pressão venosa periférica normal.

Durante a passagem do cáteter do IVUS, deve ser controlado a presença do fio-guia, a presença e a extensão da obstrução, marcados os diâmetros e as áreas. Ao realizar essas medidas, o operador deve determinar o local em que a extremidade inferior do stent deve ser posicionada, observando o fluxo de contraste ao nível da veia ilíaca (VCI) após a ultrassonografia do segmento obstruído, para confirmar o posicionamento do cateter no interior desse vaso. Por segurança, sempre estacionamos o fio-guia, com o auxílio do cateter na veia subclávia.

Após a venografia, o cáteter de IVUS é introduzido sobre o fio-guia através da bainha. Com a utilização do software padrão, os diâmetros e a área do lúmen venoso de cada segmento devem ser verificados: [VCI, veia ilíaca comum (VIC), veia ilíaca externa (VIE) e veia femoral]. A importância do IVUS pode ser salientada pela sua capacidade de verificar a presença de lesões intraluminais, membranas e traves intraluminais, que podem se prolongar além do ponto de maior compressão, sobretudo na confluência das veias ilíacas.

Em nossa casuística, em 20 a 30% dos casos de síndrome pós-trombótica (SPT) existe a associação entre obstruções focais e difusas. No sistema arterial, o grau de obstrução é calculado comparando-se a lesão focal com o lúmen arterial adjacente normal. Isto é aceitável porque as lesões difusas são raras nas artérias. Mas, nas veias, lesões difusas são tão comuns, que haja escoamento e, consequentemente, pressão venosa periférica normal.

Deve-se lembrar que, embora a acurácia do IVUS seja superior à da venografia, ele pode falhar, particularmente na confluência das veias ilíacas. Nesse local, o cáteter do IVUS pode ficar em posição não coaxial ao eixo do vaso, e o lúmen no quadrante oposto aparecerá muito menor. A técnica da venografia anterógrada, com auxílio de manobra de Valsalva ou insuflação de balão, às vezes é necessária. A venografia é útil quando positiva, sobretudo nas obstruções pós-trombóticas, que a aplicação desse método pode levar a uma subestimação do grau de obstrução. No sistema venoso, deve-se calcular o grau de obstrução utilizando o valor da área anatómica considerada normal para o segmento (VCI: 200 mm²; VIE: 150 mm²; veia femoral comum: 125 mm²). Esses valores são necessários para garantir que haja escoamento e, consequentemente, pressão venosa periférica normal.

Durante a passagem do cáteter de IVUS, deve ser controlado a presença do fio-guia, a presença e a extensão da obstrução, marcados os diâmetros e as áreas. Ao realizar essas medidas, o operador deve determinar o local em que a extremidade inferior do stent deve ser posicionada, observando o fluxo de contraste ao nível da veia ilíaca (VCI) após a ultrassonografia do segmento obstruído, para confirmar o posicionamento do cateter no interior desse vaso. Por segurança, sempre estacionamos o fio-guia, com o auxílio do cateter na veia subclávia.

Após a venografia, o cáteter de IVUS é introduzido sobre o fio-guia através da bainha. Com a utilização do software padrão, os diâmetros e a área do lúmen venoso de cada segmento devem ser verificados: [VCI, veia ilíaca comum (VIC), veia ilíaca externa (VIE) e veia femoral]. A importância do IVUS pode ser salientada pela sua capacidade de verificar a presença de lesões difusas, membranas e traves intraluminais, que podem se prolongar além do ponto de maior compressão, sobretudo na confluência das veias ilíacas.

Em nossa casuística, em 20 a 30% dos casos de síndrome pós-trombótica (SPT) existe a associação entre obstruções focais e difusas. No sistema arterial, o grau de obstrução é calculado comparando-se a lesão focal com o lúmen arterial adjacente normal. Isto é aceitável porque as lesões difusas são raras nas artérias. Mas, nas veias, lesões difusas são tão comuns, que haja escoamento e, consequentemente, pressão venosa periférica normal.

Deve-se lembrar que, embora a acurácia do IVUS seja superior à da venografia, ele pode falhar, particularmente na confluência das veias ilíacas. Nesse local, o cáteter do IVUS pode ficar em posição não coaxial ao eixo do vaso, e o lúmen no quadrante oposto aparecerá muito menor. A técnica da venografia anterógrada, com auxílio de manobra de Valsalva ou insuflação de balão, às vezes é necessária. A venografia é útil quando positiva, sobretudo nas obstruções pós-trombóticas, que a aplicação desse método pode levar a uma subestimação do grau de obstrução. No sistema venoso, deve-se calcular o grau de obstrução utilizando o valor da área anatómica considerada normal para o segmento (VCI: 200 mm²; VIE: 150 mm²; veia femoral comum: 125 mm²). Esses valores são necessários para garantir que haja escoamento e, consequentemente, pressão venosa periférica normal.

Durante a passagem do cáteter de IVUS, deve ser controlado a presença do fio-guia, a presença e a extensão da obstrução, marcados os diâmetros e as áreas. Ao realizar essas medidas, o operador deve determinar o local em que a extremidade inferior do stent deve ser posicionada, observando o fluxo de contraste ao nível da veia ilíaca (VCI) após a ultrassonografia do segmento obstruído, para confirmar o posicionamento do cateter no interior desse vaso. Por segurança, sempre estacionamos o fio-guia, com o auxílio do cateter na veia subclávia.
e inferior do stent devem ser posicionadas. A borda proximal do stent pode situar-se na parte superior, média ou inferior das vértebras lombares a partir da borda inferior da L3 até a borda inferior de L5. Em casos pós-trombóticos, pode ser tão alta como a borda inferior de L2.

O cateter de IVUS é removido e um cateter balão de angioplastia é usado para dilatar todo o segmento venoso obstruído. Durante essa etapa, de pré-dilatação, geralmente usamos balões convencionais, tipo XXL® (4 - 5 ATM) (Boston Scientific, Natick, MA, EUA) de 16 mm, ou de 18 mm para os casos de SPT. Nas obstruções pós-trombóticas, oclusões e nas lesões presentes em pontos de compressão e confluências venosas, pode ocorrer maior resistência à dilatação. Nessa situação, pode ser necessário o uso de balões de baixa complacência e alta pressão, tipo Atlas Gold® (6 -18 ATM) (Bard, Tempe, EUA). Em algumas situações, a pré-dilatação com balões de menor perfil, baixa complacência e alta pressão também pode ser necessária, para que seja possível avançar os cateteres balões de maior perfil.

O cateter balão é então removido e os stents são inseridos para que seja coberta toda a área previamente dilatada, impedindo que ocorra recolhimento elástico. Múltiplos stents podem ser necessários para alcançar esse objetivo. Nossa preferência ainda são os stents de malha trançada em liga de cromo, cobalto, níquel e outros metais, denominado Eligiloy® (Wallstent®, Boston Scientific, Natick, EUA). Na maior parte dos trabalhos em que se verificaram a efetividade clínica e a segurança a longo prazo, foi utilizado esse tipo de stent14,23,35,36. Estudos recentes vêm verificando a aplicabilidade clínica dos stents venosos dedicados de nítilo, demonstrando resultados iniciais bastante promissores; entretanto, ainda não temos estudos conclusivos e acompanhamento de perviedade a longo prazo37,40.

É recomendável recobrir todo o segmento obstruído, considerando-se as medidas obtidas pela angiotomografia e/ou pelo IVUS previamente realizados. As taxas de oclusão não estão relacionadas com a extensão ou com a quantidade de stents inseridos, mas sim com a cobertura incompleta do segmento de obstrução, que pode determinar influxo ou efluxo inadequado. Prefere-se, em geral, stents com diâmetro 2 mm maior do que aquele usado no balão de pré-dilatação. Os stents mais utilizados são os de diâmetro de 16, 18 e 20 mm. O stent de malha trançada diminui em comprimento quando pós-dilatado com o cateter balão; dessa forma, deve-se ter cuidado para garantir que ele acabe no local de ancoragem escolhido. Quando é necessário o uso de mais do que um stent, é importante que haja uma sobreposição de ao menos 3 a 5 cm, pelo mesmo motivo. A ocorrência de angulações aumenta a probabilidade de reobstrução em regiões de curvas acentuadas; nesses pontos, a sobreposição necessária pode ser ainda maior.

Na atualidade, existe controvérsia em relação ao comprimento do stent que deve invadir a VCI41,42. Na técnica original descrita por Raju & Neglén12,13,21,23, e ainda hoje utilizada pela grande maioria dos autores, o Wallstent® é posicionado ao menos 2 a 3 cm no interior desse vaso. Segundo esses mesmos autores, quando essa conduta não é observada, ocorre reobstrução proximal em 40% dos casos, por esmagamento e migração distal do stent15,43,44. Essa técnica é fundamental, porque o ponto de maior compressão, em mais da metade dos casos, ocorre na confluência ou acima dela45-47. Em nossa casuística, verificamos que a obstrução ocorre abaixo da confluência das veias ilíacas em 41,6% dos casos, ao nível da confluência em 34,5%, e acima dela, já dentro da VCI, em 23,9%30.

Na técnica de inserção do Wallstent® no interior da cava, pode ocorrer o aprisionamento e trombose venosa da veia ilíaca contralateral. Estudos clínicos e metanálises verificaram uma prevalência de TVP contralateral em 1,1 a 2,2% dos casos14,23. Em estudo randomizado14 e em nossa experiência clínica acumulada, com mais de 250 casos tratados, tivemos apenas dois casos de TVP em membro contralateral (1%), ambos em pacientes portadores de história clínica de TVP prévia e que não fizeram o uso recomendado do anticoagulante oral.

Recentemente, Murphy et al.41, em estudo retrospectivo, compararam a técnica utilizando o Wallstent® isolado com a inserção de Cook-Z-Stent® (Cook Medical, Bloomington, EUA) associado ao Wallstent® (Boston Scientific, Natick, EUA), técnica híbrida proposta por Raju et al.48. Verificou-se uma perviedade cumulativa contralateral de 99 e 90% nos grupos Z-Stent® e Wallstent®, respectivamente (p<0,001), após 5 anos de seguimento clínico. Entretanto, esse estudo apresentou algumas limitações importantes. O grupo submetido ao Z-Stent® foi comparado com uma série histórica de casos; assim sendo, a experiência adquirida pode ter influenciado a seleção de pacientes, as técnicas e os resultados, tornando os dois grupos não perfeitamente comparáveis.

Calfi et al.49 realizaram estudo retrospectivo que verificou a incidência de TVP ilíaca contralateral após o uso de stent através da confluência iliocaval. Estudaram 41 casos, 39 (95%) dos possuíam obstruções pós-trombóticas, e em 22 (54%) as obstruções envolviam a VCI. Quatro pacientes (9,7%) evoluíram com TVP contralateral, sendo que três desses pacientes estavam com anticoagulação inadequada. Apenas 2,4% pacientes
que estavam anticoagulados adequadamente evoluiram com TVP contralateral (p = 0,0004).

Deve-se considerar que não é incomum a presença de compressão ou obstrução bilateral, sobretudo em pacientes portadores de SPT. Sabe-se, que a venografia e, algumas vezes, até mesmo o IVUS podem falhar na identificação de obstruções concomitantes, sobretudo nos pontos de confluência, que pode limitar a presença de influxo adequado e aumentar a possibilidade de trombose venosa. Por esse motivo, preconiza-se o estudo multiplanar das imagens angiotomográficas no período pré-operatório, corrigindo os ângulos dos vasos estudados, para que possam ser verificados os pontos de compressão do eixo iliaco-cavo bilateral, que devem ser confirmados com o IVUS intraoperatorário. Em nosso meio, não há disponibilidade do Z-Stent, e, dessa forma, permanecemos utilizando a técnica original proposta por Raju et al.2,13,21,23. Nos casos em que existe obstrução bilateral acima de 50% (confirmada pelo IVUS) e/ou presença de compressão em VCI, o que ocorreu em 11% dos casos, em nossa casuística, optamos pela técnica de stents em paralelo (double barrel), técnica inicialmente proposta por Neglén et al.47 (Figura 5).

O cateter balão é então reintroduzido para a pós-dilatação do stent. Usamos os mesmos balões de 16 mm como padrão e balões de 18 mm para casos de SPT, com muito cuidado no avanço e recuo destes, o que deve ser realizado com o balão totalmente desinsuflado, introduzido em movimento giratório, e sem resistência, para que não haja perfuração de sua malha e deslocamento do stent. Deve sempre ser verificado se existem lesões craniais ou caudais às bordas do stent e, sobretudo, a área final do lúmen venoso, que deve se aproximar dos parâmetros anatômicos mínimos previamente descritos, sendo que o IVUS é o único método que permite fazer isso com precisão50,51. O lúmen deve ter forma regular, e o stent deve ter boa aposição à parede venosa. Às vezes, em casos de SPT de difícil dilatação, pode ser necessário o uso de balões de alta pressão. Deve-se lembrar que estudos experimentais indicam que obstruções residuais de 20% podem ser o suficiente para manter a ectasia e os sintomas, levando à falha clínica do tratamento51. Em nossa casuística, em 30% dos casos a venografia falhou no diagnóstico da obstrução residual quando comparada ao IVUS, demonstrando a importância desse último método para o sucesso do tratamento (Figura 6).

A venografia é o método final de avaliação do resultado. O canal do segmento tratado deve estar livre de irregularidades ou obstruções. As colaterais devem desaparecer, porque o canal principal de escoamento do fluxo é a via de menor resistência;

Figura 5. Angioplastia com colocação de stent bilateral em paciente com classificação clínica etiológica, anatômica e patofisiológica (CEAP) C6, portador de obstrução severa comprometendo veias ilíacas bilaterais: (A) Úlcera varicosa unilateral (insuficiência venosa crônica CEAP C6S); Presença de compressão severa bilateral de ilíacas: (B, C) Angiotomografia; (D) ultrassom intravascular, confirmando obstrução severa bilateral (>50%); (E) Resultado satisfatório com implementação de stent pela técnica de double-barrel.
Diagnóstico e tratamento da obstrução venosa ilíaca

Figura 6. Ultrassom intravascular (intravascular ultrasound, IVUS) de controle final. Em (A), flebografia inicial demonstrando sinais diretos e indiretos de obstrução de veia ilíaca esquerda, confirmada pelo IVUS (área no ponto de maior compressão de 53,5 mm²). Em (B), flebografia de controle aparentemente demonstrando resultado satisfatório, não confirmado pelo IVUS (área no ponto de maior compressão de 54,1 mm²). Em (C), resultado final após angioplastia com balão de baixa complacência e alta pressão.

entretanto, quando elas estão presentes há muito tempo e são muito dilatadas, não é incomum que, na venografia final, elas ainda sejam parcialmente visíveis, mas o fluxo deve ser maior e preferencial pelo canal principal, e as contralaterais não devem conter represamento do fluxo. Após a retirada da bainha introdutora, é aplicada compressão manual no local da punção.

USO DE ANTITROMBÓTICOS

No pré-operatório da SMT ou da ONTVI, administramos ácido acetilsalicílico (AAS) 100 mg/d e clopidogrel 75 mg/d, com início 7 dias antes da realização do procedimento. Para os pacientes portadores de OPTVI ou SC que não estejam mais fazendo uso de anticoagulantes orais, aplica-se a mesma conduta. Naqueles que estão fazendo uso de anticoagulantes, deve-se solicitar a suspensão do seu uso no período necessário, para que ocorra a suspensão de seus efeitos; no caso do uso de varfarina, visando a uma razão normalizada internacional (international normalized ratio, INR) entre 1,5-2,0 no dia da angioplastia. No intraoperatório, os pacientes recebem no mínimo 5.000 U de heparina não fracionada (100 U/kg). Durante a internação, permanecem em anticoagulação plena com heparina de baixo peso molecular.

Após a alta hospitalar, que na maioria dos casos ocorre no mesmo dia ou na manhã seguinte nos casos de SMT/ONTVI, quando é considerado sucesso técnico, preconiza-se o uso de clopidogrel 75 mg/d associado ao AAS 100 mg/d por 6 meses, e AAS 100 mg/d para o resto da vida. Nos pacientes portadores de SC/OPTVI e recanalização de oclusões longas, é indicado o uso de anticoagulação com anti-vitamina K e controle rigoroso de INR, ou com os novos anticoagulantes orais diretos, por um período mínimo de 6 meses. Os pacientes que já faziam uso no pré-operatório (trombofilias e tromboses de repetição) continuam anticoagulados por tempo indeterminado no pós-operatório. Em nossa prática, esse tipo de protocolo tem sido associado a boa resposta terapêutica e perviedade a longo prazo; entretanto, devemos lembrar que ainda não existem estudos que tenham verificado qual o melhor regime de tratamento antitrombótico nesse grupo de pacientes.

SEGUIMENTO PÓS-OPERATÓRIO

Como já mencionado anteriormente, na visita inicial verificamos e anotamos a intensidade da dor pela EVAD, a classificação clínica CEAP e o VCSS,
além de submetemos os pacientes ao questionário de qualidade de vida SF-36 e anotamos os diâmetros dos membros no meio da coxa, perna e mediopé. Esses dados também são verificados nas visitas pós-operatórias, que são realizadas, rotineiramente, com 1, 3, 6 e 12 meses, e anualmente a partir de então. Nessas visitas, o paciente é submetido também a eco-Doppler venoso colorido e são verificados os mesmos parâmetros acima expostos. Nas visitas de 6 meses e 1 ano, solicitamos também raio X de pelve para verificar a integridade e o posicionamento do stent. Nos pacientes assintomáticos, caso haja suspeita de obstrução intra-stent ao eco-Doppler, ou haja recidiva dos sintomas, o paciente é submetido a nova angiotomografia e venografia com passagem de cateter de IVUS, com possível dilatação do ponto da obstrução com cateter balão que tenha o mesmo diâmetro do stent. Em alguns casos, pode ser necessária a colocação de stent proximal ou distal ao segmento tratado.

RESULTADOS

Vários estudos retrospectivos, metaanálises e diretrizes de sociedades sugerem que o implante de stent ilíaco é eficaz, seguro, e deve ser considerado o tratamento de escolha para os pacientes portadores de obstruções ilíacas, associadas à presença de refluxo ou não, e para portadores de sintomas graves e classificação CEAP avançada.

Em recente estudo randomizado, duplo-cego, comparativo entre tratamento clínico e endovascular em pacientes portadores de obstrução venosa ilíaca e classificação CEAP avançada, verificamos que 28% dos pacientes em acompanhamento em ambulatório de insuficiência venosa preenchiam os critérios de inclusão do estudo, e que 60% dos membros estudados possuíam obstrução ilíaca ≥50% ao IVUS. Isso demonstra a alta prevalência dessa situação clínica em um hospital terciário especializado, considerando que, nesse protocolo, apenas os pacientes com CEAP C3-6 e que estavam em acompanhamento por mais de 1 ano sem resposta terapêutica foram investigados. O sucesso técnico imediato foi de 100% e não houve complicações graves no período perioperatorário. Após 6 meses de acompanhamento, a média do escore da EVAD diminuiu de uma mediana de 8 para 2,5 em pacientes que receberam stents, e de 8 para 7 em pacientes que estavam recebendo apenas tratamento clínico (p < 0,001). O VCSS caiu de uma mediana de 18,5 para 11 no grupo tratado e de 8 para 2,5 em pacientes que receberam stents, e diminuiu de 8 para 7 em pacientes que estavam recebendo apenas tratamento clínico (p < 0,001). O questionário de qualidade de vida SF-36 passou de um escore mediano total de 53,9 para 85,0 com implante de stent, e de 48,3 para 59,8 após tratamento clínico (p < 0,001). Não houve fratura ou migração do stent, e as taxas de perviedade primária, primária assistida e secundária foram de 92%, 96% e 100%, respectivamente (mediana: 11,8 meses; intervalo: 6-18 meses).

Existem poucos estudos que tenham verificado os desfechos clínicos exclusivamente em portadores de SMT ou ONTVI. A maioria dos estudos mistura obstruções trombóticas e não trombóticas, e muitos incluem o tratamento do refluxo venoso superficial. Aparentemente, esse grupo de pacientes apresenta desfecho clínico favorável, particularmente em termos de alívio da dor e cura de úlceras venosas.

Raju e Neglén observaram que, após 2,5 anos da colocação do stent, houve alívio completo da dor, alívio completo do inchaço e cicatrização sustentada de úlceras em 77%, 53% e 76%, respectivamente. Em estudo posterior, verificaram índice de permanência de cicatrização de ferida de 62% em 5 anos de acompanhamento clínico. Ye et al. mostraram taxas de alívio da dor, do inchaço e de cicatrização da úlcera em 87%, 88% e 74%, respectivamente, em 101 membros, com acompanhamento médio de 4 anos. Os escores de qualidade de vida melhoraram significativamente em ambos os estudos. Raju e Neglén mostraram resultado semelhantes em subgrupos de membros portadores de ONTVI isolada e associada a refluxo, mesmo que este permanecesse sem tratamento.

Outro estudo interessante foi o de Meng et al., o qual verificou que, na presença de obstrução ilíaca, só 13% dos membros portadores de varizes operadas tiveram alívio significativo de sintomas após 2 meses de acompanhamento. Embora a perviedade cumulativa seja menor nos pacientes portadores de OPTVI, os resultados ainda assim são bastante satisfatórios. Neglén et al. verificaram perviedade primária, primária assistida e secundária de 57%, 80% e 86%, respectivamente, em 5 anos de acompanhamento. Estudos apontam que a perviedade secundária, com uma média de acompanhamento de 4 a 7 anos, seja entre 74% a 89%. Pacientes tratados por oclusão crônica possuem índices de recanalização de 83% a 95%. Raju e Néglen verificaram, em 139 membros tratados por oclusão crônica, uma perviedade secundária de 66% aos 4 anos de acompanhamento, e taxas de alívio da dor e edema de 79% e 66%, respectivamente. No estudo que relatou recanalizações de obstruções totais e longas no segmento fêmoro-ilíaco-cavo, a perviedade secundária foi de 66% a 89%, com um acompanhamento de 4 a 7 anos. A cicatrização da úlcera em pacientes pós-trombóticas é menor do que na coorte não trombótica; entretanto, mesmo nesse grupo, foi demonstrada uma taxa cumulativa de
CONCLUSÃO

A obstrução venosa ilíaca é altamente prevalente, sobretudo nos pacientes portadores de IVC avançada. Apesar de poder ser assintomática, frequentemente é associada a sintomas incapacitantes e importante piora da qualidade de vida. Sua presença ainda é pouco investigada, e a falta de critérios bem estabelecidos para seu diagnóstico não invasivo contribui para que muitos dos pacientes não recebam o diagnóstico e tratamento adequados. O tratamento endovascular hoje é considerado o padrão-ouro. Ele pode ser realizado com altas taxas de sucesso técnico, baixos índices de morbimortalidade, altos índices de perviedade e sucesso terapêutico, desde que sejam consideradas as características anatômicas e fisiopatológicas que ocorrem na presença dessas obstruções.

REFERÊNCIAS

1. Cushman M. Epidemiology and risk factors for venous thrombosis. Semin Hematol. 2007;44(2):62-9. http://dx.doi.org/10.1053/j.seminhematol.2007.02.004. PMID:17433897.

2. Raju S. Best management options for chronic iliac vein stenosis and occlusion. J Vasc Surg. 2013;57(4):1163-9. http://dx.doi.org/10.1016/j.jvs.2012.11.084. PMID:23433816.

3. Rossi FH, Kambara AM, Iukzawa NM, et al. Randomized double-blinded study comparing medical treatment versus iliac vein stenting in chronic venous disease. J Vasc Surg Venous Lymphat. 2016;6(1):146-7. http://dx.doi.org/10.1016/j.jvsv.2015.12.005. PMID:26464055.

4. Seager MJ, Busuttil A, Dharmarajah B, Davies AH. A systematic review of endovenous stenting in chronic venous disease secondary to iliac vein obstruction. Eur J Vasc Endovasc Surg. 2018;56(1):100-20. http://dx.doi.org/10.1016/j.ejvs.2017.08.016. PMID:28413606.

5. Neglén P, Berry MA, Raju S. Endovascular surgery in the treatment of chronic primary and post-thrombotic iliac vein obstruction. Eur J Vasc Endovasc Surg. 2000;20(6):560-71. http://dx.doi.org/10.1053/ejvs.2000.1251. PMID:11136593.

6. Daugherty SF, Gillespie DL. Venous angioplasty and stenting improve pelvic congestion syndrome caused by venous outflow obstruction. J Vasc Surg. 2015;63(3):238-9. http://dx.doi.org/10.1016/j.jvs.2015.09.086. PMID:26992307.

7. Huskisson EC, Jones J, Scott PI. Application of visual-analogue scales to the measurement of functional capacity. Rheumatol Rehabil. 1976;15(3):185-7. http://dx.doi.org/10.1093/rheumatology/15.3.185. PMID:968347.

8. Eklöf B, Rutherford RB, Bergan JJ, et al. Revision of the CEAP classification for chronic venous disorders: consensus statement. J Vasc Surg. 2004;40(6):1248-52. http://dx.doi.org/10.1016/j.jvs.2004.09.027. PMID:15622385.

9. Passman MA, McLafferty RB, Lentz MF, et al. Validation of Venous Clinical Severity Score (VCSS) with other venous severity assessment tools from the American Venous Forum, National Venous Screening Program, J Vasc Surg. 2011;54(6 Suppl):25-95. http://dx.doi.org/10.1016/j.jvs.2011.05.117.

10. Lozano Sánchez FS, Sánchez Nevarez I, González-Porras JR, et al. Quality of life in patients with chronic venous disease: influence of the socio-demographical and clinical factors. Int Angiol. 2013;32(4):433-41. http://dx.doi.org/10.1016/j.ejvs.2007.02.062. PMID:23822947.

11. Neglén P, Raju S. Detection of outflow obstruction in chronic venous insufficiency. J Vasc Surg. 1993;17(3):583-9. http://dx.doi.org/10.1016/0741-5214(93)90159-J. PMID:8445756.

12. Almeida BL, Rossi FH, Sousa AGMR, et al. Correlation between venous pressure gradients and intravascular ultrasound in the diagnosis of iliac vein compression syndrome. J Vasc Surg. 2018;68(4):492-9. PMID:29526687.

13. Raju S. Best management options for chronic iliac vein stenosis and occlusion. J Vasc Surg. 2013;57(4):1163-9. http://dx.doi.org/10.1016/j.jvs.2012.11.084. PMID:23433816.

14. Gagne PJ, Gasparis A, Black S, et al. Analysis of threshold stenosis for iliac vein outflow obstruction. J Vasc Surg Venous Lymphat. 2014;3(4):433-41. http://dx.doi.org/10.1016/j.jvsv.2013.10.006. PMID:25033314.

15. Labropoulos N, Borge M, Pierce K, Pappas PJ. Criteria for defining significant central vein stenosis with duplex ultrasound. J Vasc Surg. 2007;46(1):101-7. http://dx.doi.org/10.1016/j.jvs.2007.02.062. PMID:17540535.
40. Lichtenberg M, Stahlhoff WF, Özkapı A, de Graaf R, Breuckmann F. Safety, procedural success and outcome of the Aspirex® venous thrombectomy system in the treatment of iliofemoral deep vein thrombosis - data from the Arnsberg Aspirex registry. Vasa. 2019;48(4):341-6. http://dx.doi.org/10.1024/0301-1526/a000779. PMid:30785373.

41. Murphy E, Johns B, Alias M, Crim W, Raju S. Deep vein thrombosis associated with caval extension of iliac stent. J Vasc Surg Venous Lymphat Dis. 2017;5(1):8-17. http://dx.doi.org/10.1016/j.jvsv.2016.09.002.

42. Glóvicki P, Lawrence PF, Iliac vein stenting and contralateral deep vein thrombosis. J Vasc Surg. 2017;5(1):5-6. PMid:27987610.

43. Raju S, Owen S Jr, Néglén P. The clinical impact of iliac vein stents in the management of chronic venous insufficiency. J Vasc Surg. 2002;35(3):18-15. http://dx.doi.org/10.1067/mva.2002.1214510(02)07345-4. PMid:11802127.

44. Raju S, McAllister S, Néglén P. Recanalization of totally occluded iliac and adjacent venous segments. J Vasc Surg. 2002;36(5):903-11. http://dx.doi.org/10.1016/S0741-5214(02)00744-9. PMid:12420299.

45. Ehrich WE, Krumbhaar EA. A frequent obstructive anomaly of the mouth of the left common iliac vein. Ann Heart J. 1943;26(6):737-50. http://dx.doi.org/10.1002/0002-8703(43)90285-6.

46. Ang WC, Doyle T, Stringer MD. Left-sided and duplicate inferior vena cava: a case series and review. Clin Anat. 2013;26(8):990-1001. http://dx.doi.org/10.1002/ca.21290. PMid:22576868.

47. Néglén P, Darcey R, Olivier J, Raju S. Bilateral stenting at the iliofemoral confluence. J Vasc Surg. 2011;54(6):1457-66. http://dx.doi.org/10.1016/j.jvs.2010.11.056. PMid:20385465.

48. Raju S, Ward M Jr, Kirk O. A modification of iliac vein stent technique. Ann Vasc Surg. 2012;26(8):1485-92. http://dx.doi.org/10.1016/j.jvasurg.2012.04.026. PMid:24632315.

49. Caliste XA, Clark AL, Doyle AJ, Cullen JP, Gillespie DL. The incidence of contralateral iliac vein thrombosis after stenting across the iliofemoral confluence in patients with acute or chronic venous outflow obstruction. J Vasc Surg Venous Lymphat Disord. 2013;2(3):253-9. http://dx.doi.org/10.1016/j.jvsv.2012.11.007. PMid:23699338.

50. Raju S, Buck WJ, Crim W, Jayaraj A. Optimal sizing of iliac vein stents. Phlebology. 2018;33(7):451-7. http://dx.doi.org/10.1177/0268355517718763. PMid:28714359.

51. Raju S, Kirk O, Davis M, Olivier J. Hemodynamics of “critical” venous stenosis and stent treatment. J Vasc Surg. 2014;21(2):52-9. PMid:26992969.

52. Oh-Kai S, Fiedler T, Förster G, Kudla W, Brown JF. Hyperechoic material. SURG Gynecol Obstet. 1988;167(1):94-100. PMid:3381179.

53. de Wolf MAF, de Graaf R, Kurstjens RLM, Penninx S, Jalaie H, Fidalgo Domingos L, San Norberto García EM, Gutiérrez P, Neglén P, Raju S. Intravascular ultrasound scan evaluation of the venous nitinol stent: initial results with the sinus-venous stent. Eur J Vasc Endovasc Surg. 2015;50(4):518-26. http://dx.doi.org/10.1016/j.ejvs.2015.05.011. PMid:26151799.

54. Ehrich WE, Krumbhaar EA. A frequent obstructive anomaly of the mouth of the left common iliac vein. Ann Heart J. 1943;26(6):737-50. http://dx.doi.org/10.1002/0002-8703(43)90285-6.

55. Ye K, Lu X, Li W, et al. Long-term outcomes of stent placement for symptomatic iliac vein stenosis and stent disease. Phlebology. 2016;31(6):376-89. http://dx.doi.org/10.1097/01.RVI.0000109402.52762.8D.

56. Meng Q-Y, Li X-Q, Qian A-M, Sang H-F, Rong J-J, Zhu L-W. Thrombosis: Evaluation of underlying anatomic abnormalities using diagnostic imaging. J Vasc Surg Venous Lymphat Disord. 2017;5(1):96-102. http://dx.doi.org/10.1016/j.jvsv.2016.09.002.

57. Raju S, Kirk O, Davis M, Olivier J. Hemodynamics of “critical” venous stenosis and stent treatment. J Vasc Surg. 2014;21(2):52-9. PMid:26992969.

58. Raju S, Kirk O, Davis M, Olivier J. Hemodynamics of “critical” venous stenosis and stent treatment. J Vasc Surg. 2014;21(2):52-9. PMid:26992969.

59. Wen-da W, Wu Y, Yue-xin C. Stenting for chronic obstructive venous disease: a current comprehensive meta-analysis and systematic review. Phlebology. 2016;31(6):376-89. http://dx.doi.org/10.1177/0268355515596647. PMid:26205370.

60. Néglén P, Hollis KC, Olivier J, Raju S. Stenting of the venous outflow in chronic venous disease: long-term stent-related outcome, clinical, and hemodynamic result. J Vasc Surg. 2007;46(5):979-990. e1. http://dx.doi.org/10.1016/j.jvs.2007.06.046. PMid:17980284.

61. Raju S, Néglén P. High prevalence of nonthrombotic iliac vein lesions in chronic venous disease: a permissive role in pathogenicity. J Vasc Surg. 2006;44(1):136-43. http://dx.doi.org/10.1016/j.jvs.2006.02.065.

62. Ye K, Lu X, Li W, et al. Long-term outcomes of stent placement for symptomatic nonthrombotic iliac vein compression lesions in chronic venous disease. J Vasc Interv Radiol. 2012;23(4):497-502. http://dx.doi.org/10.1016/j.jvir.2011.12.021. PMid:22342482.

63. Meng Q-Y, Li X-Q, Qian A-M, Sang H-F, Hong F-H, Rong J-J, Zhu L-W. Endovascular treatment of iliac vein compression syndrome. Chin Med J (Engl). 2011;124(20):3281-4. http://dx.doi.org/10.1097/01.CCM.0000398518.03563.88.

64. Raju S, Kirk O, Jones TL. Endovenous management of venous ulcer disease. J Vasc Surg: Venous and Lym Dis. 2020;8(3):413-20. http://dx.doi.org/10.1016/j.jvsv.2019.09.015.

65. Fabricant SC, Hall MV, Rosen SM, et al. The incidence of iliac vein compression syndrome. Ann Surg. 1973;178(6):917-25. PMid:4379754.

66. Osofsky H, Ehrlich J. Repair of deep venous obstruction in the iliac and femoral veins. Arch Surg. 1959;79(5):697-700. PMid:15802000.

67. Wittens CHA. Short-term clinical experience with a dedicated venous stent in symptomatic iliofemoral venous obstruction. J Endovasc Ther. 2007;14(1):159-66. http://dx.doi.org/10.1584/01.RVI.0000109402.52762.8D. PMid:172831483.

68. Stuck AK, Kunz S, Baumgartner I, Kucher N. Patency and clinical outcomes of a dedicated, self-expanding, hybrid oblique stent used in the treatment of common iliac vein compression. J Endovasc Ther. 2017;24(1):159-66. http://dx.doi.org/10.1576/1526602816676803. PMid:28731483.
Correspondência
Fabio Henrique Rossi
Instituto Dante Pazzanese de Cardiologia de São Paulo – IDPC-SP
Av. Dr. Amâncio de Carvalho, 182 - Vila Mariana
CEP 04012-080 – São Paulo (SP), Brasil
Tel.: +55 (11) 4227-66458
E-mail: vascular369@hotmail.com

Informações sobre os autores
FHR - Doutor e Pós-Doutor, FMUSP/IDPC; Precepetor, Cirurgia Vascular e Endovascular, Instituto Dante Pazzanese de Cardiologia; Coordenador da Disciplina de Pós-Graduação (IDPC/FMUSP), Tecnologia em Cirurgia Cardiovascular e Endovascular Extracardíaca.
TOR - Cirurgião Vascular e Endovascular, doutorando, IDPC/USP.
NMI - Doutor, Faculdade de Medicina, Universidade de São Paulo (FMUSP), Chefe, Serviço de Cirurgia Vascular, IDPC.
AMK - Doutor, Universidade Federal de São Paulo (UNIFESP), Chefe, Serviço de Radiologia, IDPC.

Contribuições dos autores
Concepção e desenho do estudo: FHR
Análise e interpretação dos dados: FHR, TOR, NMI, AMK
Coleta de dados: FHR, TOR, NMI, AMK
Redação do artigo: FHR
Revisão crítica do texto: FHR, TOR, NMI, AMK
Aprovação final do artigo*: FHR, TOR, NMI, AMK
Análise estatística: N/A.
Responsabilidade geral pelo estudo: FHR, TOR, NMI, AMK

*Todos os autores leram e aprovaram a versão final submetida ao J Vasc Bras.