Temporal and spatial trends in marine carbon isotopes in the Arctic Ocean and implications for food web studies

Trends in carbon isotopes in the Arctic Ocean

Camille de la Vega*#
Rachel Jeffreys a
Robyn Tuerena b
Raja Ganeshram b
Claire Mahaffey a

a School of Environmental Sciences, University of Liverpool, L69 3BX, Liverpool, UK
b School of Geosciences, University of Edinburgh, James Hutton Road, King's Buildings, Edinburgh EH9 3FE

*Corresponding author
Camille.De-La-Vega@liverpool.ac.uk
00441517958141

Key words

δ13C, particulate organic matter, dissolved inorganic carbon, marine mammals, sea ice decline, Suess effect, isoscape, base of the food web

This article has been accepted for publication and undergone full peer review but has not been through the copyediting, typesetting, pagination and proofreading process, which may lead to differences between this version and the Version of Record. Please cite this article as doi: 10.1111/gcb.14832
This article is protected by copyright. All rights reserved.
Abstract:

The Arctic is undergoing unprecedented environmental change. Rapid warming, decline in sea ice extent, increase in riverine input, ocean acidification and changes in primary productivity are creating a crucible for multiple concurrent environmental stressors, with unknown consequences for the entire arctic ecosystem. Here, we synthesised 30 years of data on the stable carbon isotope (δ\(^{13}\)C) signatures in dissolved inorganic carbon (δ\(^{13}\)C-DIC; 1977 to 2014), marine and riverine particulate organic carbon (δ\(^{13}\)C-POC; 1986 to 2013) and tissues of marine mammals in the Arctic. δ\(^{13}\)C values in consumers can change as a result of environmentally driven variation in the δ\(^{13}\)C values at the base of the food web or alteration in the trophic structure, thus providing a method to assess the sensitivity of food webs to environmental change. Our synthesis reveals a spatially heterogeneous and temporally evolving δ\(^{13}\)C baseline, with spatial gradients in the δ\(^{13}\)C-POC values between arctic shelves and arctic basins likely driven by differences in productivity and riverine and coastal influence. We report a decline in δ\(^{13}\)C-DIC values (-0.011 ‰ yr\(^{-1}\)) in the Arctic, reflecting increasing anthropogenic carbon dioxide (CO\(_2\)) in the Arctic Ocean (i.e. Suess effect), which is larger than predicted. The larger decline in δ\(^{13}\)C-POC values and δ\(^{13}\)C in arctic marine mammals reflects the anthropogenic CO\(_2\) signal as well as the influence of a changing arctic environment. Combining the influence of changing sea ice conditions and isotopic fractionation by phytoplankton, we explain the decadal decline in δ\(^{13}\)C-POC values in the Arctic Ocean and partially explain the δ\(^{13}\)C values in marine mammals with consideration of time-varying integration of δ\(^{13}\)C values. The response of the arctic ecosystem to ongoing environmental change is stronger than we would predict theoretically, which has tremendous implications for the study of food webs in the rapidly changing Arctic Ocean.
Introduction

The Arctic is changing rapidly (IPCC, 2013), warming twice as fast as the global average (Carmack et al., 2015; Hoegh-Guldberg & Bruno, 2010), causing sea ice to decline in both extent and thickness (Kwok, 2018; Lind, Ingvaldsen, & Furevik, 2018). Sea ice underpins the entire arctic ecosystem and the decline in this seasonal habitat is affecting the entire food web. Primary production has increased by 30% from 1998 to 2012 owing to an increase in light under reduced ice conditions (Arrigo & van Dijken, 2015). Arctic predators, such as seals and polar bears, that rely on sea ice for foraging, moulting and breeding are also adversely affected by the loss of sea ice (Laidre et al., 2008). Other climate-induced changes are occurring in tandem and include acidification (Yamamoto, Kawamiya, Ishida, Yamanaka, & Watanabe, 2012), shifts in wind patterns and enhanced wind-field in the Western Arctic (Overland & Wang, 2010), increased coastal erosion, river flow and melting of permafrost and glaciers (Haine et al., 2015; Jones et al., 2009; Mars & Houseknecht, 2007). These multiple concurrent stressors have far-reaching implications for the arctic marine ecosystem at multiple trophic levels, and there is an urgent need to understand the ecosystem response in this unique polar habitat.

The ratio of stable carbon isotopes, 13C and 12C, expressed as δ^{13}C (\permil), provides a powerful tool for studying food webs. The δ^{13}C values of particulate organic carbon (POC), consisting of fresh phytoplankton, microzooplankton, bacteria and marine and terrestrial detritus, (Fry & Sherr, 1989; Lobbes, Fitznar, & Kattner, 2000; Michener & Kaufman, 2007; Wassmann et al., 2004), represent the base of the food web or “baseline”. The δ^{13}C values of POC (δ^{13}C-POC) are generally transferred with a 13C enrichment of 1 to 2 \permil between each trophic level, creating an inextricable link between the base of the food web and consumers (Fry, Anderson, Entzeroth, Bird, & Parker, 1984). Spatial trends in δ^{13}C-POC values controlled by environmental factors have been used to decipher the foraging and migratory
patterns of consumers on a regional scale (Hoffman, 2016; Iken, Bluhm, & Dunton, 2010; Polito et al., 2017; Wassenaar, 2019) and more recently on a global scale in the construction of global ‘isoscape’ (Bird et al., 2018; Bowen & West, 2008; Firmin, 2016; Graham, Koch, Newsome, McMahon, & Aurioles, 2010; McMahon, Hamady, & Thorrold, 2013b). However, spatial and temporal trends in the δ^{13}C values of high trophic levels may also reflect changes in food web structure such as loss or addition of species, consumer’s diet, or a combination of factors. To disentangle the drivers of spatial and temporal trends in the δ^{13}C values of consumers in the Arctic, it is crucial to establish spatial and temporal variations in δ^{13}C values at the base of the food web, allowing the sensitivity of marine arctic consumers to environmental change to be quantified.

It is challenging to isolate phytoplankton-POC for analysis and so the nominal definition of δ^{13}C-POC values typically assumes that the bulk of POC is derived from phytoplankton only, although δ^{13}C-POC values can be influenced by other factors such as bacterial activity and detritus (Michener & Kaufman, 2007). While the detrital fraction of POC may be degraded by bacteria, potentially altering the δ^{13}C values of that fraction, we assume that photosynthetic phytoplankton are responsible for transforming the bulk of δ^{13}C-POC values in time and space. δ^{13}C value of phytoplankton, which underpins the δ^{13}C-POC values is controlled by fractionation during photosynthesis. This equates to the difference between the δ^{13}C values of the carbon source, either dissolved inorganic carbon (DIC) or carbon dioxide (CO$_2$) and the δ^{13}C-POC values (Cassar, Laws, Bidigare, & Popp, 2004; Young, Bruggeman, Rickaby, Erez, & Conte, 2013). Factors such as phytoplankton growth rate, availability or concentration of carbon, light and nutrient availability affect isotopic fractionation and the δ^{13}C-POC values (Burkhardt, Riebesell, & Zondervan, 1999; Keeley & Sandquist, 1992). As such, environmental conditions can create distinct patterns in these values. δ^{13}C-POC values become enriched in 13C in an environment where replenishment of

This article is protected by copyright. All rights reserved.
the CO₂ pool is slow or restricted, for example during periods of rapid phytoplankton growth (Rau, Takahashi, Des Marais, Repeta, & Martin, 1992) or in sea ice associated with sympagic primary production (Budge et al., 2008; Hobson et al., 2002; Søreide et al., 2013; Wang, Budge, Gradinger, Iken, & Wooller, 2014). Conversely, an increase in CO₂ concentration will lead to a carbon pool depleted in ¹³C (Rau et al., 1992) creating a ¹³C-deplete POC pool. Terrestrially derived POC delivered via rivers and coastal erosion also tends to be depleted in ¹³C relative to marine derived POC (Boutton, 1991; Keeley & Sandquist, 1992). While global isoscapes capture the large-scale spatial trends in δ¹³C values related to oceanographic provinces (shelf versus open ocean) and latitude (Bird et al., 2018; Bowen & West, 2008; Graham et al., 2010; McMahon et al., 2013b), they do not include the Arctic Ocean. We expect the δ¹³C values of POC in the Arctic to be influenced by the strong regional trends in sea ice, productivity and terrestrial influence including riverine input and coastal erosion, all of which vary along the water mass circulation pathways from the inflow shelves, which receive water from the Atlantic and Pacific oceans, to the arctic basins and interior shelves (Sakshaug, 2004; Tremblay & Gagnon, 2009; Varela, Crawford, Wrohan, Wyatt, & Carmack, 2013).

Imprinted on the regional trends is a temporal trend in δ¹³C values worldwide. Enhanced atmospheric CO₂ since the industrial period (Tagliabue & Bopp, 2008) is causing an increase in oceanic CO₂ (Sabine et al., 2004) and a decline in the δ¹³C values of DIC (δ¹³C-DIC), known as the Suess effect, as a result of ¹³C-depleted anthropogenic CO₂ (Quay, Sonnerup, Westby, Stutsman, & McNichol, 2003). δ¹³C-DIC values in the Arctic Ocean are predicted to change at a rate of −0.006 to −0.008 ‰ yr⁻¹, compared to the global average of −0.017 ‰ yr⁻¹ (Tagliabue & Bopp, 2008). However, several studies have already shown that decadal trends in the δ¹³C values of marine mammals in the Arctic (Misarti, Finney, Maschner, & Wooller, 2009; Nelson, Quakenbush, Mahoney, Taras, & Wooller, 2018; Nelson, Quakenbush, Mahoney, Taras, & Wooller, 2018; Nelson, Quakenbush, Mahoney, Taras, & Wooller, 2018).
Newsome et al., 2007; Schell, 2001) are larger than the Suess effect alone, implying that other factors are altering their δ^{13}C signatures on decadal time scales.

The main objective of this study was to quantify how regional differences and temporal trends in the arctic environment have altered the δ^{13}C values in DIC and POC, representing the base of the food web or “baseline”. We compared these trends at the base of the food web to trends in δ^{13}C values in arctic marine mammals to investigate how environmental change (e.g. Suess effect, loss of sea ice) may alter δ^{13}C values in the entire food web. We synthesised published data from 1977 to 2014 on δ^{13}C values of DIC and dissolved CO$_2$, and δ^{13}C-POC values in the surface ocean (POC$_{\text{water}}$) and in sea ice (POC$_{\text{ice}}$) across the entire Arctic Ocean, alongside data from arctic rivers (POC$_{\text{riv}}$). We quantified regional differences in the δ^{13}C values in POC and discuss the underlying environmental drivers of the observed spatial heterogeneity. We then quantified the decadal trends in δ^{13}C values of DIC and CO$_2$, and δ^{13}C values of POC in the Arctic Ocean, comparing the rate of change to the Suess effect and observed trends in tissues of arctic marine mammals from the post-industrial period.

Material and Methods

Data collation

Data on bulk δ^{13}C-POC$_{\text{water}}$, δ^{13}C-POC$_{\text{ice}}$ and δ^{13}C-POC$_{\text{riv}}$ values, focusing on suspended particulate organic matter above the thermocline, were collated from tables and figures in 37 original manuscripts and two open access data bases for both marine (PANGAEA; http://www.pangaea.de) and riverine (articGRO; https://arcticgreatrivers.org/) environments, in Arctic and sub-Arctic regions, as defined by the Köppen-Geiger climate classification (Kottek, Grieser, Beck, Rudolf, & Rubel, 2006). The database included 354 data points for marine δ^{13}C-POC$_{\text{water}}$ values (Brown et al., 2014; Connelly, McClelland,
Crump, Kellogg, & Dunton, 2015; Forest et al., 2010; Griffith et al., 2012; Guo, Tanaka, Wang, Tanaka, & Murata, 2004; Hallanger et al., 2011; Hobson, Ambrose, & Renaud, 1995; Hobson et al., 2002; Iken et al., 2010; Iken, Bluhm, & Gradinger, 2005; Ivanov, Lein, Zakharova, & Savvichev, 2012; Kohlbach et al., 2016; Kuliński, Kędra, Legeżyńska, Gluchowska, & Zaborska, 2014; Kuzyk, Macdonald, Tremblay, & Stern, 2010; Lin et al., 2014; Lovvorn et al., 2005; O’Brien, Macdonald, Melling, & Iseki, 2006; Parsons et al., 1989; Roy et al., 2015; Sarà et al., 2007; Schubert & Calvert, 2001; Smith, Henrichs, & Rho, 2002; Søreide et al., 2008; Søreide, Hop, Carroll, Falk-Petersen, & Hegseth, 2006; Tamelander, Reigstad, Hop, & Ratkova, 2009; Tamelander et al., 2006; Tremblay, Michel, Hobson, Gosselin, & Price, 2006; Zhang et al., 2012), 69 data points for δ\(^{13}\)C-POC\(_{\text{ice}}\) values (Forest et al., 2010; Hobson et al., 1995; Hobson et al., 2002; Iken et al., 2005; Kohlbach et al., 2016; Lovvorn et al., 2005; Roy et al., 2015; Schubert & Calvert, 2001; Søreide et al., 2008; Søreide et al., 2006; Tamelander et al., 2006; Tremblay et al., 2006) and 383 data points for riverine δ\(^{13}\)C-POC\(_{\text{riv}}\) values (Goni, Yunker, Macdonald, & Eglinton, 2000; Holmes, McClelland, Tank, Spencer, & Shiklomanov, 2018; Kuzyk et al., 2010; Lobbes et al., 2000).

Data was available over different temporal scales: marine δ\(^{13}\)C-POC\(_{\text{water}}\) values from 1986 to 2013, δ\(^{13}\)C-POC\(_{\text{ice}}\) from 1993 to 2012, and riverine δ\(^{13}\)C-POC\(_{\text{riv}}\) values from 1987 to 2016.

To relate the temporal trend in δ\(^{13}\)C-POC\(_{\text{water}}\) values to the predicted decline of δ\(^{13}\)C-DIC and δ\(^{13}\)C-CO\(_2\) values, a compilation of data on δ\(^{13}\)C-DIC values was extracted from three publications (Bauch, Polyak, & Ortiz, 2015; Schmittner et al., 2013; Young et al., 2013) and two databases (Becker et al., 2016; Key et al., 2015). δ\(^{13}\)C-CO\(_2\) values were determined from the δ\(^{13}\)C-DIC values and absolute temperature following the equation E1 (Rau, Riebesell, & Wolf-Gladrow, 1996). δ\(^{13}\)C-DIC and δ\(^{13}\)C-CO\(_2\) values included 1333 data points covering years from 1977 to 2014.

\[
\delta^{13}\text{C-CO}_2 = \delta^{13}\text{C-DIC} + 23.644 - 9701.5 \div T \ (E1)
\]

This article is protected by copyright. All rights reserved.
where \(T \) = temperature in Kelvin.

To determine if the temporal trend in \(\delta^{13}\text{C-POC} \) values was reflected in higher trophic levels within the Arctic Ocean, \(\delta^{13}\text{C} \) data were collated from arctic marine mammals covering years following the industrial period (post 1950). We collated \(\delta^{13}\text{C} \) data from teeth of ringed seals (\textit{Pusa hispida}) from 1986 to 2006 from East Greenland (Aubail, Dietz, Rigét, Simon-Bouhet, & Caurant, 2010) and northern fur seals (\textit{Callorhinus ursinus}) from 1950 to 2000 from the Bering Sea and Gulf of Alaska (Newsome et al., 2007). Additionally, \(\delta^{13}\text{C} \) data were collated from teeth of Beluga whales (\textit{Delphinapterus leucas}) from 1963 to 2008 from the Hudson Bay and from 1976 to 2001 from the Baffin Bay (Matthews & Ferguson, 2018), and baleen plates of bowhead whales (\textit{Balaena mysticetus}) from 1950 to 1998 from the Bering and Chukchi Seas (Schell, 2001).

\textit{Data treatment}

We analysed the \(\delta^{13}\text{C-POC}_{\text{water}} \), \(\delta^{13}\text{C-POC}_{\text{ice}} \), \(\delta^{13}\text{C-DIC} \) and \(\delta^{13}\text{C-CO}_2 \) values in seventeen marine arctic regions (Figure 1, Table 1). In addition, the \(\delta^{13}\text{C-POC}_{\text{water}} \) values from arctic rivers were grouped into two large riverine regions: the Siberian rivers and the North American rivers (Figure 1, Table 1). The regions were defined based on their location, and physical and biological characteristics. Most of the data was collected in summer and \(\delta^{13}\text{C-POC}_{\text{water}} \) did not vary seasonally (S1). In order to achieve the best spatial coverage, data from all seasons and years were combined for the spatial comparison. Regional means were calculated for \(\delta^{13}\text{C-POC}_{\text{water}} \), \(\delta^{13}\text{C-POC}_{\text{ice}} \), \(\delta^{13}\text{C-POC}_{\text{riv}} \), \(\delta^{13}\text{C-DIC} \) and \(\delta^{13}\text{C-CO}_2 \) values (Table 1).

The decadal variation of regional marine \(\delta^{13}\text{C-POC}_{\text{water}} \) values in arctic regions was assessed where data was available for at least three different years covering a period of at least five years. This included the following regions: arctic basins, Beaufort Sea, Chukchi Sea...
and Bering Sea. Svalbard and the Barents Sea, which had similar \(\delta^{13}C \)-POC\textsubscript{water} values and \(\delta^{13}C \)-POC\textsubscript{ice} values (S2: ANOVA3 and 4), were combined into the ‘European Arctic’ to achieve the best temporal coverage. The mean decadal trend (all regions combined) was calculated for \(\delta^{13}C \)-POC\textsubscript{water}, \(\delta^{13}C \)-POC\textsubscript{ice}, \(\delta^{13}C \)-DIC and \(\delta^{13}C \)-CO\textsubscript{2} values.

Statistical analyses

Quantile-Quantile plots of the residuals were plotted to check how closely the data follow a normal distribution (Becker, Chambers, & Wilks, 1988). The data was normally distributed and therefore we used a one way ANOVA \((\alpha = 0.005)\) (Zuur, Ieno, & Smith, 2007) followed by post hoc Tukey pairwise comparison tests in R (R Core Team, 2018) to spatially compare: 1) the \(\delta^{13}C \)-POC\textsubscript{water} data between arctic shelves and arctic basins (ANOVA1), between arctic shelves and arctic rivers (ANOVA2), and between all arctic shelves (ANOVA3); and 2) the \(\delta^{13}C \)-POC\textsubscript{ice} values between all marine arctic regions where data were available (ANOVA4). We used a two ways ANOVA followed by post hoc Tukey pairwise comparison test to compare the \(\delta^{13}C \)-POC\textsubscript{ice} values with \(\delta^{13}C \)-POC\textsubscript{water} values (factor “origin”) for regions (factor “region”) where both data sets were available (ANOVA5). Arctic regions with less than five data points were excluded from statistical analyses. Relevant p-values of the post hoc Tukey pairwise comparison tests following ANOVA1 to 5 are shown in S2.

We applied linear models in R (R Core Team, 2018) to quantitatively assess the latitudinal gradient in \(\delta^{13}C \)-DIC, \(\delta^{13}C \)-CO\textsubscript{2} and \(\delta^{13}C \)-POC\textsubscript{water} values, and the temporal trends in \(\delta^{13}C \) values of marine POC\textsubscript{water}, POC\textsubscript{ice}, DIC, dissolved CO\textsubscript{2} and arctic marine mammals. The significance and robustness of the linear models were assessed based on the p-values of the slopes and intercepts, the \(R^2 \), the F-values and degree of freedom (S3) (Zuur et al., 2007).
Results

Spatial trends in the δ13C of the baseline

The Atlantic and Pacific waters entering the Arctic via the South Iceland and Norwegian Sea, and Gulf of Alaska and Bering Sea, respectively (Figure 1, Table 1), had similar δ13C-CO\textsubscript{2} values and were depleted by up to 2 % relative to the δ13C-CO\textsubscript{2} values in the arctic basins (Table 1). We observed a significant depletion in δ13C-CO\textsubscript{2} and δ13C-POC\textsubscript{water} values with increasing latitude (Figure 2). δ13C-DIC did not vary with latitude (Figure 2a).

We analysed the δ13C-POC\textsubscript{water}, δ13C-POC\textsubscript{ice} and δ13C-CO\textsubscript{2} values in seventeen marine arctic regions (Figure 1, Table 1). δ13C values of POC\textsubscript{water} varied significantly between arctic regions (Figure 3a). POC\textsubscript{water} from arctic shelves was significantly enriched in 13C compared to POC\textsubscript{water} from arctic basins and POC\textsubscript{riv} (Figure 3a, S2: ANOVA1 and 2). The δ13C-POC\textsubscript{water} values was 13C depleted in arctic shelves (Beaufort Sea, Svalbard fjords, Canadian archipelago and the Hudson Bay) influenced by fresh water (Table 1, Figure 1) relative to the inflow (Chukchi Sea and Barents Sea) shelves and the North Water Polynya (Figure 3a; S2: ANOVA3).

δ13C-POC\textsubscript{ice} values followed the same regional trend as δ13C-POC\textsubscript{water} values, with δ13C-POC\textsubscript{ice} values enriched in 13C in the inflow and outflow shelves (Barents Sea, North Water Polynya) compared to the interior shelf Beaufort Sea and the arctic basins (Figure 3b; S2: ANOVA4).

Comparison between δ13C of POC\textsubscript{ice} and POC\textsubscript{water}

Generally, δ13C values of POC\textsubscript{ice} were significantly 13C-enriched compared to those of POC\textsubscript{water} (p < 0.005; S2: ANOVA5), with δ13C-POC\textsubscript{water} being enriched by 4.4 % in the Barents Sea, by 4.2 % in the North Water Polynya and by 7.0 % in the Canadian archipelago.
(Table 1). There were no significant differences between POC_{ice} and POC_{water} in the Svalbard region, the arctic basins and the Beaufort Sea (S2: ANOVA5). δ^{13}C-POC_{ice} values was highly variable in most of the arctic regions (Figure 3b).

Temporal trends in the δ^{13}C of the baseline and Arctic marine mammals

In all arctic regions combined, δ^{13}C-DIC (1977-2014), δ^{13}C-CO\textsubscript{2} (1977-2014) and δ^{13}C-POC\textsubscript{water} (1986-2013) values became significantly 13C depleted by 0.011 ± 0.001 ‰ yr-1, 0.011 ± 0.002 ‰ yr-1 and 0.149 ± 0.020 ‰ yr-1 respectively (Figure 4a; Table 2). The temporal trends in δ^{13}C-POC\textsubscript{water} values were statistically significant in the Beaufort Sea (−0.117 ± 0.033 ‰ yr-1; 1987-2013) and in the arctic basins (−0.256 ± 0.057 ‰ yr-1; 1997-2012) and not statistically significant in the European Arctic, Bering Sea and Chukchi Sea (Figure 4b; Table 2, S3). The temporal trend in δ^{13}C-POC\textsubscript{ice} values were not significant (Figure 4d; Table 2, S3). The δ^{13}C values in the teeth of northern fur seals, ringed seals and beluga whales, and in baleen plates of bowhead whales were significantly depleted in 13C with time (Figure 4c; Table 2). The decline in δ^{13}C values in teeth ranged from 0.020 ± 0.003 ‰ yr-1 in northern fur seals from the Gulf of Alaska (1950-2000) to −0.046 ± 0.012 ‰ yr-1 in Ringed seals from East Greenland (1986-2006; Table 2). The δ^{13}C in the baleen plates of bowhead whales from the Bering and Chukchi Seas significantly decreased by 0.064 ± 0.010‰ yr-1 (1965-1998; Table 2). The decline in δ^{13}C values of POC\textsubscript{water} and marine mammals was larger than decline in δ^{13}C-DIC and δ^{13}C-CO\textsubscript{2} values (0.011 ‰ yr-1, this study). Details of the linear models are shown in S3.

Discussion

Ice versus water

The 13C-enrichment in POC\textsubscript{ice} compared to POC\textsubscript{water} in arctic regions has been observed previously and attributed to carbon limitation around ice algae within sea ice (Budge et al., 2008; Hobson et al., 2002; Søreide et al., 2006; Wang et al., 2014). The termination of the spring ice-edge bloom can cause 13C at the base of the food web to be
altered when 13C-enriched ice-algae are added to 13C-depleted pelagic phytoplankton (Søreide et al., 2006). The similarity in the δ^{13}C-POC$_{\text{ice}}$ and δ^{13}C-POC$_{\text{water}}$ values in some regions (see section 2.2.) and the high intra-regional variability of the δ^{13}C-POC$_{\text{ice}}$ values may be explained by differences in ice porosity, allowing replenishment of DIC from water to ice (Thomas & Papadimitriou, 2011). δ^{13}C-POC$_{\text{ice}}$ values were likely to have been influenced by light availability and the high bacterial activity in sea ice compared to open water (Wang et al., 2014). Thus, variation in the sampling month for sea ice might also contribute to the high variability in δ^{13}C-POC$_{\text{ice}}$. This highlights that caution is required when using bulk δ^{13}C values of POC$_{\text{ice}}$ and POC$_{\text{water}}$ to distinguish between open water versus ice dependent food webs in the Arctic (Søreide et al., 2006). The challenge of disentangling the contribution of carbon derived from sympagic production to the food web was successfully resolved by using compound specific stable isotope analyses (e.g. δ^{13}C values of fatty acids; Graham, Oxtoby, Wang, Budge, and Wooller (2014); Oxtoby, Budge, Iken, Brien, and Wooller (2016); Oxtoby et al. (2017); Wang et al. (2015)).

Spatial trends

Spatial trends in the δ^{13}C values of POC$_{\text{water}}$ and POC$_{\text{ice}}$ were similar, implying that they were influenced by the same environmental drivers within specific regions of the Arctic Ocean.

Low temperature, high wind speed and high productivity enhance the atmospheric CO$_2$ uptake by the Arctic Ocean (Takahashi et al., 2002), driving strong latitudinal gradients in concentration and δ^{13}C values of oceanic CO$_2$ with 13C-CO$_2$ being more depleted in the Arctic Ocean ($\approx -10\%o$ (Young et al., 2013) and $-10.2 \pm 0.5 \%o$, this study) relative to the tropics ($\approx -7 \%o$) (Young et al., 2013). In the marine environment, more than 90% of DIC is composed of bicarbonate ions (HCO$_3^-$; Boutton (1991). Fractionation between HCO$_3^-$ and atmospheric
CO$_2$ increases in cold water (Zhang, Quay, & Wilbur, 1995) leading to 13C enrichment of δ^{13}C-DIC values with increasing latitude (Tagliabue & Bopp, 2008), as observed in this study (Figure 2a). δ^{13}C-POC$_{\text{water}}$ values became 13C-depleted with increasing latitude (Figure 2b, this study) (Goericke & Fry, 1994; McMahon et al., 2013b), reflecting the latitudinal trend in δ^{13}C-CO$_2$ values as well as multiple additional factors, including temperature, phytoplankton growth rates, bacterial activity and isotopic fractionation, that also vary with latitude (Fouilland et al., 2018; Thomas, Kremer, Klausmeier, & Litchman, 2012; Young et al., 2013). A latitudinal trend in δ^{13}C values of zooplankton was observed in the western Arctic (i.e. Bering and Chukchi Sea) (Dunton, Saupe, Golikov, Schell, & Schonberg, 1989), demonstrating the transfer of this δ^{13}C signature to the next trophic level.

The two orders of magnitude difference in phytoplankton production between the nutrient rich arctic shelves and the ice covered nutrient depleted arctic basin (Sakshaug, 2004) may partially explain the relatively large difference in δ^{13}C-POC$_{\text{water}}$ values of 2.3 ‰ between the arctic shelf (-24.0 ± 1.2 ‰) and arctic basins (-26.3 ± 1.6 ‰). High rates of primary production cause 13C enrichment of the δ^{13}C-POC values (Boutton, 1991; McMahon, Hamady, & Thorrold, 2013a). The highly productive Bering Sea and Barents Sea account for up to two thirds of the total arctic phytoplankton production (Sakshaug, 2004). Advection of nutrients from the arctic outflow and early exposure to sunlight enhance phytoplankton productivity in the North Water Polynya (Sakshaug, 2004). In contrast, high turbidity and strong stratification caused by fresh water inflow from rivers onto the interior shelves reduce light and restrict phytoplankton production (Dittmar & Kattner, 2003). Lower phytoplankton productivity in the river influenced Beaufort Sea and Siberian Coast, as well as the Northeast Water Polynya (Sakshaug, 2004) could explain the depleted δ^{13}C-POC values observed in these regions relative to the more productive regions.
The 13C depletion in δ^{13}C-POC_{water} values observed in the interior shelves, Svalbard fjords, Hudson Bay and Canadian archipelago compared to other arctic shelf regions likely reflects the contribution of 13C-depleted terrestrially derived POC (Boutton, 1991) from rivers, coastal erosion and glacial streams. Seventy-two arctic rivers supplying 40% of the total freshwater input from the surrounding continents of Eurasia and North America enter the Arctic Ocean via the interior shelves of the Siberian coast and the Beaufort Sea (Table 1, Figure 1) at a rate of 2500 to 4200 km3 yr$^{-1}$ (Haine et al., 2015). In addition, terrestrially derived POC input resulting from coastal erosion may be equal to or larger than input from river discharge in some regions, for instance along the Siberian coast (Rachold et al., 2000). Finally, glacial fjords on Svalbard are fed with freshwater by large glaciers and streams with the highest freshwater inflow in summer during ice and snow melt (Cottier et al., 2005). Any temporal alteration of the riverine inputs or the drainage basins would likely alter the δ^{13}C-POC_{water} values in the interior shelves and subsequently alter the base of the food web.

Temporal trends at the baseline

The increasing concentration of anthropogenic CO$_2$, known as the Suess effect, is predicted to decrease the oceanic δ^{13}C-DIC values by an average of 0.017 ‰ yr$^{-1}$, with high spatial variability from 0 ‰ yr$^{-1}$ in the Southern Ocean to 0.024 ‰ yr$^{-1}$ in the subtropical gyres (Tagliabue & Bopp, 2008). In the Arctic Ocean, the δ^{13}C-DIC values are predicted to decrease by 0.006 ‰ to 0.008 ‰ yr$^{-1}$ (Tagliabue & Bopp, 2008). We observed a decreasing trend in δ^{13}C-DIC values of 0.011 ± 0.001 ‰ yr$^{-1}$ from 1977 to 2014 across all arctic regions, which is larger than the predicted trend. Although CO$_2$ represents less than 0.5 % of the total DIC pool, it is the only component that is exchangeable with the atmosphere. In polar regions, especially the Arctic Ocean, the decline in sea ice has led to an expansion of open water (Arrigo & van Dijken, 2015). This facilitates atmospheric exchange and enhances the
dissolved CO₂ concentration (Yamamoto et al., 2012) resulting in an additional ¹³C depletion of δ¹³C-CO₂ values (Rau et al., 1992) which may explain the larger decrease in δ¹³C-CO₂ values (0.011 ± 0.002 ‰ yr⁻¹) and in turn the larger decrease in δ¹³C-DIC values (0.011 ± 0.001 ‰ yr⁻¹) in the Arctic Ocean compared to the predicted decrease of 0.006 to 0.008 ‰ yr⁻¹ (Tagliabue & Bopp, 2008).

The decadal decline in δ¹³C-POC_water values (1987 to 2013) was more than ten times larger than the trend in δ¹³C values of CO₂ (or DIC) implying that other factors are influencing the δ¹³C values in POC in the Arctic Ocean. Since the mid-1990s, sea ice extent has declined by 8.3 ± 0.6 ‰ per decade across the entire Arctic (Comiso, 2012). Sea ice algae are up to 7 ‰ enriched in ¹³C relative to pelagic phytoplankton (this study) and a decline in sea ice could decrease the contribution of ice algal biomass to total productivity and reduce the total mean δ¹³C values of POC_water. For example, the open water area of the Barents sea has increased by 15,789 km² or 1.3 ‰ per year between 1998 to 2012, alongside a 28 ‰ increase in net primary production over the same time period (Arrigo & van Dijken, 2015). Assuming distinct end members for δ¹³C-POC_water (−25.0 ± 1.7 ‰) and δ¹³C-POC_ice (−20.0 ± 1.3 ‰) values, sea ice decline would cause the entire pool of δ¹³C-POC values to decrease by 0.06 ± 0.15 ‰ per year. Additionally, the photosynthetic isotopic fractionation factor for phytoplankton in the Arctic Ocean has increased by 0.045 ‰ yr⁻¹ since the 1960s, compared to a global average of 0.022 ‰ yr⁻¹ (Young et al., 2013). The combined effect of a decline in ice algae (0.06 ± 0.15 ‰ yr⁻¹, this study), increase in fractionation factor (0.045 ‰ yr⁻¹) (Young et al., 2013) and Suess effect (i.e. dissolved CO₂, 0.011 ± 0.001 ‰ yr⁻¹, this study) could potentially cause the δ¹³C-POC values to decrease by 0.116 ± 0.15 ‰ per year, which is of the same order of magnitude as the observed annual decrease in δ¹³C-POC_water values in the whole Arctic (0.149 ± 0.028 ‰ yr⁻¹) and in the Beaufort Sea (0.126 ± 0.020 ‰ yr⁻¹; Table 2). In support of this argument, the difference between the temporal trend or slope in

This article is protected by copyright. All rights reserved.
\[{\delta^{13}C}_{\text{CO}_2} \text{ and } {\delta^{13}C}_{\text{POC}} \text{ values (Figure 4a) increased by } 0.138 \pm 0.028 \text{ \text{‰ yr}^{-1}} \text{ in agreement with the sum of the contributions from a change in ice (0.06 \pm 0.15 \text{ \text{‰ yr}^{-1}}), fractionation (0.045 \text{ \text{‰ yr}^{-1}}), and Suess effect (0.011 \pm 0.001 \text{ \text{‰ yr}^{-1}}) influencing } {\delta^{13}C}_{\text{POC}_{\text{water}}} \text{ values.} \]

Other factors contributing to the decline in \[{\delta^{13}C}_{\text{POC}} \text{ values in the Arctic Ocean include } \text{river run-off, coastal erosion, primary production and bacterial activity. Increased riverine runoff (Haine et al., 2015) and costal erosion (Jones et al., 2009; Mars & Houseknecht, 2007) resulting from ongoing climate change in the Arctic could contribute to the decline in } {\delta^{13}C}_{\text{POC}} \text{ values by adding } ^{13}\text{C-deplete terrestrial material to the marine POC pool. Changes in primary productivity will also influence the } {\delta^{13}C}_{\text{POC}} \text{ values. For example, the decline of } {\delta^{13}C} \text{ values in Bowhead whales from the Bering/Chukchi Sea was interpreted by Schell (2000) as reflecting a 30 to 40\% decrease in seasonal primary productivity in the Bering Sea over the last 30 years. Increasing bacterial activity with increasing temperature (Vaqué et al., 2019; Vernet, Richardson, Metfies, Nöthig, & Peeken, 2017) and dissolved CO}_2 \text{ concentration (Grossart, Allgaier, Passow, & Riebesell, 2006) in the Arctic may also influence the } {\delta^{13}C} \text{ values of POC.} \]

Implications for food web

The reliability of stable carbon isotopes in deciphering the provenance of feeding or migratory patterns of consumers is heavily dependent on knowledge of \[{\delta^{13}C} \text{ values at the base of the food web. Maps that convey the geographical and temporal trends of } {\delta^{13}C} \text{ values in the baseline, termed isoscapes (Bowen et al., 2009; Graham et al., 2010), have become a necessity for interpreting trophic structure using } {\delta^{13}C} \text{ (or } {\delta^{15}N} \text{) values (Hansen, Hedeholm, Sünkser, Christensen, & Grønkjær, 2012; Newsome, Clementz, & Koch, 2010). Although isoscapes have been constructed for the atmosphere (Bowen et al., 2009), terrestrial environment (Bowen & West, 2008; Firmin, 2016) and the Atlantic and Pacific Oceans,
(Graham et al., 2010; McMahon et al., 2013b), this study provides a first view of δ^{13}C-POC values or carbon isoscape of the Arctic Ocean. We found spatially heterogeneous and temporally evolving δ^{13}C values in the POC pool, which has ramifications for the study of food webs in space and time.

Previous studies have noted that the decline in δ^{13}C in Arctic marine mammals is larger than the Suess effect alone (e.g. Matthews and Ferguson (2018); Newsome et al. (2007)), but the lack of δ^{13}C baseline information prevented these authors from disentangling the driving factors (Cullen, Rosenthal, & Falkowski, 2001; Schell, 2000, 2001). Generally, the temporal decline in the δ^{13}C values in marine mammals was larger than in δ^{13}C-DIC and δ^{13}C-CO$_2$ values (both of -0.011 ± 0.001 ‰ yr$^{-1}$) but smaller than the decline observed in δ^{13}C-POC$_{\text{water}}$ values (-0.149 ± 0.028 ‰ yr$^{-1}$). The δ^{13}C signature in phytoplankton or a consumer represents an average ratio related to the life time of the organism and tissue turnover time (Vander Zanden, Clayton, Moody, Solomon, & Weidel, 2015). Previous studies have shown that the seasonal variation in δ^{13}C values of POC was higher than in higher trophic levels reflecting the strong seasonal growth cycle of phytoplankton and shorter time period over which they integrate carbon (O’reilly, Hecky, Cohen, & Plisnier, 2002). In contrast, consumers from zooplankton to predators are long lived and thus integrate δ^{13}C values over their seasonal foraging and migratory routes (Aubail et al., 2010; Schell, Saupe, & Haubenstock, 1989) with the time of integration depending on the tissue type (Vander Zanden et al., 2015) or the animals lifetime (O’reilly et al., 2002). The effect of yearly averaging of the δ^{13}C values in marine mammal teeth and baleen plates used to reconstruct decadal trends may have reduced the larger, short-lived variation observed in δ^{13}C-POC values mainly representing summer in this study. The gradual linear decline in δ^{13}C values in arctic seals and whales likely reflects alterations to the δ^{13}C-POC values. A change in diet, for example a shift towards foraging closer to freshwater (Nelson et al., 2018), or more
pelagic feeding habits (Aubail et al., 2010), may also contribute to the temporal decline in δ¹³C values observed in predators.

This study demonstrates that to disentangle factors driving variation in the δ¹³C values in a consumer, it is vital to know the spatial heterogeneity and temporal evolution of δ¹³C values of the baseline in the Arctic Ocean in order to avoid inaccurate interpretation of changes in food web structures. Some studies have attempted to correct the δ¹³C values in arctic marine mammals for the Suess effect using modelled and predicted values for large geographical regions, prior to interpreting decadal trends in δ¹³C values (Carroll, Horstmann-Dehn, & Norcross, 2013; Misarti et al., 2009; Nelson et al., 2018). However, the Suess effect varies spatially (Tagliaabue & Bopp, 2008) and therefore local values should be used for this correction. For example, the Suess effect in the Arctic Ocean (0.011 ± 0.001 ‰ yr⁻¹, this study) differs from the predicted modelled values (0.006 to 0.008 ‰ yr⁻¹ ;Tagliaabue and Bopp (2008)), implying that other factors, such as the loss of sea ice, are accelerating the influence of anthropogenic CO₂ in the Arctic. In addition, the decline in δ¹³C-POC values, representing the base of the food web, is larger than the decline in δ¹³C-DIC values (this study). This suggests that interpretation about diet shift should be done after consideration of temporal trends in δ¹³C-POC values and not only in δ¹³C-DIC (Suess effect). These results also highlight the importance of considering time-averaging effects when studying different trophic levels and/or tissues having respectively variable life and turnover times. Insight from this study has direct implications for how we interpret changes in δ¹³C values in consumers, especially in environments experiencing rapid change.
Acknowledgments

This study has been conducted as part of the ARISE project, funded by the Natural Environment Research Council (NE/P006035/1 awarded to CM and RJ and NE/P006310/1 awarded to RG). We declare that none of the authors has any competing financial and/or non-financial interests in relation to the work described.

7. References

Arrigo, K. R., & van Dijken, G. L. (2015). Continued increases in Arctic Ocean primary production. Progress in Oceanography, 136, 60-70.
Aubail, A., Dietz, R., Rigét, F., Simon-Bouhet, B., & Caurant, F. (2010). An evaluation of teeth of ringed seals (Phoca hispida) from Greenland as a matrix to monitor spatial and temporal trends of mercury and stable isotopes. Science of the Total Environment, 408(21), 5137-5146.
Bauch, D., Polyak, L., & Ortiz, J. (2015). A baseline for the vertical distribution of the stable carbon isotopes of dissolved inorganic carbon (δ¹³C-DIC) in the Arctic Ocean. arktos, 1(1), 15.
Becker, M., Andersen, N., Erlenkeuser, H., Humphreys, M. P., Tanhua, T., & Körtzinger, A. (2016). An internally consistent dataset of δ¹³C-DIC in the North Atlantic Ocean–NAC13v1. Earth System Science Data, 8(2), 559.
Becker, R. A., Chambers, J. M., & Wilks, A. R. (1988). The new S language: A programming environment for data analysis and graphics: Wadsworth & Brooks/Cole Advanced Books & Software.
Bird, C. S., Veríssimo, A., Magozzi, S., Abrantes, K. G., Aguilar, A., Al-Reasi, H., . . . Borrell, A. (2018). A global perspective on the trophic geography of sharks. Nature ecology & evolution, 2(2), 299.
Boutton, T. W. (1991). Stable carbon isotope ratios of natural materials: II. Atmospheric, terrestrial, marine and freshwater environments. In D. C. C. B. Fry (Ed.), Carbon Isotope Techniques, (pp. 173–186). San Diego, CA: Academic Press.
Bowen, G. J., & West, J. B. (2008). Isotope landscapes for terrestrial migration research. Terrestrial ecology, 2, 79-105.
Bowen, G. J., West, J. B., Vaughn, B. H., Dawson, T. E., Ehleringer, J. R., Fogel, M. L., . . . Lai, C. T. (2009). Isoscapes to Address Large-Scale Earth Science Challenges. EOS, Transactions American Geophysical Union, 90(13), 109-110.
Brown, K. A., McLaughlin, F., Tortell, P. D., Varela, D. E., Yamamoto- Kawai, M., Hunt, B., & Francois, R. (2014). Determination of particulate organic carbon sources to the surface mixed layer of the Canada Basin, Arctic Ocean. Journal of Geophysical Research: Oceans, 119(2), 1084-1102.
Budge, S., Wooller, M., Springer, A., Iverson, S. J., McRoy, C., & Divoky, G. (2008). Tracing carbon flow in an arctic marine food web using fatty acid-stable isotope analysis. Oecologia, 157(1), 117-129.
Burkhardt, S., Riebesell, U., & Zondervan, I. (1999). Stable carbon isotope fractionation by marine phytoplankton in response to daylength, growth rate, and CO₂ availability. Marine Ecology Progress Series, 31-41.
Carmack, E., Polyakov, I., Padman, L., Fer, I., Hunke, E., Hutchings, J., . . . Winsor, P. (2015). Toward Quantifying the Increasing Role of Oceanic Heat in Sea Ice Loss in the New Arctic. *Bulletin of the American Meteorological Society, 96*(12), 2079-2105. doi:10.1175/bams-d-13-00177.1

Carmack, E., & Wassmann, P. (2006). Food webs and physical–biological coupling on pan-Arctic shelves: Unifying concepts and comprehensive perspectives. *Progress in Oceanography, 71*(2), 446-477. doi:https://doi.org/10.1016/j.pocean.2006.10.004

Carroll, S. S., Horstmann-Dehn, L., & Norcross, B. L. (2013). Diet history of ice seals using stable isotope ratios in claw growth bands. *Canadian Journal of Zoology, 91*(4), 191-202. doi:10.1139/cjz-2012-0137

Cassar, N., Laws, E. A., Bidigare, R. R., & Popp, B. N. (2004). Bicarbonate uptake by Southern Ocean phytoplankton. *Global Biogeochemical Cycles, 18*(2).

Connelly, T. L., McClelland, J. W., Crump, B. C., Kellogg, C. T., & Dunton, K. H. (2015). Seasonal changes in quantity and composition of suspended particulate organic matter in lagoons of the Alaskan Beaufort Sea. *Marine Ecology Progress Series, 527*, 31-45.

Cottier, F., Tverberg, V., Inall, M., Svendsen, H., Nilsen, F., & Griffiths, C. (2005). Water mass modification in an Arctic fjord through cross-shelf exchange: The seasonal hydrography of Kongsfjorden, Svalbard. *Journal of Geophysical Research: Oceans, 110*(C12).

Cullen, J. T., Rosenthal, Y., & Falkowski, P. G. (2001). The effect of anthropogenic CO2 on the carbon isotope composition of marine phytoplankton. *Limnology and Oceanography, 46*(4), 996-998.

Dittmar, T., & Kattner, G. (2003). The biogeochemistry of the river and shelf ecosystem of the Arctic Ocean: a review. *Marine Chemistry, 83*(3-4), 103-120.

Dunton, K. H., Saupe, S. M., Golikov, A. N., Schell, D. M., & Schonberg, S. V. (1989). Trophic relationships and isotopic gradients among arctic and subarctic marine fauna. *Marine Ecology Progress Series, 89-97."

Firmin, S. M. (2016). *The Spatial Distribution of Terrestrial Stable Carbon Isotopes in North America, and the Impacts of Spatial and Temporal Resolution on Static Ecological Models*. University of Denver.

Forest, A., Galindo, V., Darnis, G., Pineault, S., Lalande, C., Tremblay, J.-É., & Fortier, L. (2010). Carbon biomass, elemental ratios (C:N) and stable isotopic composition (δ^{13}C, δ^{15}N) of dominant calanoid copepods during the winter-to-summer transition in the Amundsen Gulf (Arctic Ocean). *Journal of Plankton Research, 33*(1), 161-178.

Fouilland, E., Floc’h, E. L., Brennan, D., Bell, E. M., Lordsmith, S. L., McNeill, S., . . . Leakey, R. J. (2018). Assessment of bacterial dependence on marine primary production along a northern latitudinal gradient. *FEMS microbiology ecology, 94*(10), fiy150.

Fry, B., Anderson, R. K., Entzeroth, L., Bird, J. L., & Parker, P. L. (1984). δ^{13}C enrichment and oceanic food web structure in the northwestern Gulf of Mexico. *Contrib. Mar. Sci., 27*, 49-63.

Fry, B., & Sherr, E. B. (1989). δ^{13}C measurements as indicators of carbon flow in marine and freshwater ecosystems *Stable isotopes in ecological research* (pp. 196-229): Springer.

Goericke, R., & Fry, B. (1994). Variations of marine plankton δ^{13}C with latitude, temperature, and dissolved CO2 in the world ocean. *Global Biogeochemical Cycles, 8*(1), 85-90.
Goni, M. A., Yunker, M. B., Macdonald, R. W., & Eglinton, T. I. (2000). Distribution and sources of organic biomarkers in arctic sediments from the Mackenzie River and Beaufort Shelf. *Marine Chemistry, 71*(1-2), 23-51.

Graham, B. S., Koch, P. L., Newsome, S. D., McMahon, K. W., & Auriol, D. (2010). Using isoscapes to trace the movements and foraging behavior of top predators in oceanic ecosystems *Isoscapes* (pp. 299-318): Springer.

Graham, C., Oxtoby, L., Wang, S. W., Budge, S. M., & Wooler, M. J. (2014). Sourcing fatty acids to juvenile polar cod (Boreogadus saida) in the Beaufort Sea using compound-specific stable carbon isotope analyses. *Polar Biology, 37*(5), 697-705.

Griffith, D. R., McNichol, A. P., Xu, L., McLaughlin, F. A., Macdonald, R. W., Brown, K. A., & Eglinton, T. I. (2012). Carbon dynamics in the western Arctic Ocean: insights from full-depth carbon isotope profiles of DIC, DOC, and POC. *Biogeosciences, 9*(3), 1217-1224.

Grossart, H.-P., Allgaier, M., Passow, U., & Riebesell, U. (2006). Testing the effect of CO2 concentration on the dynamics of marine heterotrophic bacterioplankton. *Limnology and Oceanography, 51*(1), 1-11.

Guo, L., Tanaka, T., Wang, D., Tanaka, N., & Murata, A. (2004). Distributions, speciation and stable isotope composition of organic matter in the southeastern Bering Sea. *Marine Chemistry, 91*(1-4), 211-226.

Haine, T. W., Curry, B., Gerdes, R., Hansen, E., Karcher, M., Lee, C., . . . Stewart, K. D. (2015). Arctic freshwater export: Status, mechanisms, and prospects. *Global and Planetary Change, 125*, 13-35.

Hallanger, I. G., Ruus, A., Warner, N. A., Herzke, D., Evenset, A., Schøyen, M., . . . Borgå, K. (2011). Differences between Arctic and Atlantic fjord systems on bioaccumulation of persistent organic pollutants in zooplankton from Svalbard. *Science of the Total Environment, 409*(14), 2783-2795.

Hansen, J. H., Hedeholm, R. B., Sünkensen, K., Christensen, J. T., & Grønkjær, P. (2012). Spatial variability of carbon (δ^{13}C) and nitrogen (δ^{15}N) stable isotope ratios in an Arctic marine food web. *Marine Ecology Progress Series, 467*, 47-59.

Hobson, K. A., Ambrose, W. G., Jr., & Renaud, P. E. (1995). Sources of primary production, benthic-pelagic coupling, and trophic relationships within the Northeast Water Polynya: insights from δ^{13}C and δ^{15}N analysis. *Marine Ecology Progress Series, 128*, 1-10.

Hobson, K. A., Fisk, A., Karnovsky, N., Holst, M., Gagnon, J.-M., & Fortier, M. (2002). A stable isotope (δ^{13}C, δ^{15}N) model for the North Water food web: implications for evaluating trophodynamics and the flow of energy and contaminants. *Deep Sea Research Part II: Topical Studies in Oceanography, 49*(22-23), 5131-5150.

Hoegh-Guldberg, O., & Bruno, J. F. (2010). The impact of climate change on the world’s marine ecosystems. *Science, 328*(5985), 1523-1528.

Hoffman, J. C. (2016). Tracing the origins, migrations, and other movements of fishes using stable isotopes. *An Introduction to Fish Migration*, 169-196.

Holmes, R. M., McClelland, J. W., Tank, S. E., Spencer, R. G. M., & Shiklomanov, A. I. (2018). Arctic Great Rivers Observatory. Water Quality Dataset, Version 20181010. https://www.arcticgreatrivers.org/data.

Iken, K., Bluhm, B., & Dunton, K. (2010). Benthic food-web structure under differing water mass properties in the southern Chukchi Sea. *Deep Sea Research Part II: Topical Studies in Oceanography, 57*(1-2), 71-85.

Iken, K., Bluhm, B., & Gradinger, R. (2005). Food web structure in the high Arctic Canada Basin: evidence from δ^{13}C and δ^{15}N analysis. *Polar Biology, 28*(3), 238-249.
IPCC. (2013). *Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change* [Stocker, T.F., D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex and P.M. Midgley (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 1535 pp: Cambridge University Press.

Ivanov, M., Lein, A. Y., Zakharova, E., & Savvichev, A. (2012). Carbon isotopic composition in suspended organic matter and bottom sediments of the East Arctic seas. *Microbiology, 81*(5), 596-605.

Jones, B. M., Arp, C. D., Jorgenson, M. T., Hinkel, K. M., Schmutz, J. A., & Flint, P. L. (2009). Increase in the rate and uniformity of coastline erosion in Arctic Alaska. *Geophysical Research Letters, 36*(3).

Keeley, J. E., & Sandquist, D. (1992). Carbon: freshwater plants. *Plant, Cell & Environment, 15*(9), 1021-1035.

Kottek, M., Grieser, J., Beck, C., Rudolf, B., & Rubel, F. (2006). World map of the Köppen-Geiger climate classification updated. *Meteorologische Zeitschrift, 15*(3), 259-263.

Kuliński, K., Kędra, M., Legeżyńska, J., Gluchowska, M., & Zaborska, A. (2014). Particulate organic matter sinks and sources in high Arctic fjord. *Journal of Marine Systems, 139*, 27-37.

Kuzyk, Z. Z. A., Macdonald, R. W., Tremblay, J.-É., & Stern, G. A. (2010). Elemental and stable isotopic constraints on river influence and patterns of nitrogen cycling and biological productivity in Hudson Bay. *Continental Shelf Research, 30*(2), 163-176.

Kwok, R. (2018). Arctic sea ice thickness, volume, and multiyear ice coverage: losses and coupled variability (1958–2018). *Environmental Research Letters, 13*(10), 105005.

Laidre, K. L., Stirling, I., Lowry, L. F., Wiig, Ø., Heide-Jørgensen, M. P., & Ferguson, S. H. (2008). Quantifying the sensitivity of Arctic marine mammals to climate-induced habitat change. *Ecological Applications, 18*(sp2).

Lin, F., Chen, M., Tong, J., Cao, J., Qiu, Y., & Zheng, M. (2014). Carbon and nitrogen isotopic composition of particulate organic matter and its biogeochemical implication in the Bering Sea. *Acta Oceanologica Sinica, 33*(12), 40-47.

Lind, S., Ingvaldsen, R. B., & Furevik, T. (2018). Arctic warming hotspot in the northern Barents Sea linked to declining sea-ice import. *Nature Climate Change, 8*(7), 634.

Lobbes, J. M., Fitznar, H. P., & Kattner, G. (2000). Biogeochemical characteristics of dissolved and particulate organic matter in Russian rivers entering the Arctic Ocean. *Geochimica et Cosmochimica Acta, 64*(17), 2973-2983.

Lovvorn, J. R., Cooper, L. W., Brooks, M. L., De Ruyck, C. C., Bump, J. K., & Grebmeier, J. M. (2005). Organic matter pathways to zooplankton and benthos under pack ice in late winter and open water in late summer in the north-central Bering Sea. *Marine Ecology Progress Series, 291*, 135-150.

Mars, J., & Houseknecht, D. (2007). Quantitative remote sensing study indicates doubling of coastal erosion rate in past 50 yr along a segment of the Arctic coast of Alaska. *Geology, 35*(7), 583-586.
Matthews, C. J., & Ferguson, S. H. (2018). Validation of dentine deposition rates in beluga whales by interspecies cross dating of temporal δ13C trends in teeth. *NAMMCO Scientific Publications, 10.*

McMahon, K. W., Hamady, L. L., & Thorrold, S. R. (2013a). Ocean ecogeochemistry: a review. *Oceanography and Marine Biology—an Annual Review, 51,* 327-373.

McMahon, K. W., Hamady, L. L., & Thorrold, S. R. (2013b). A review of ecogeochemistry approaches to estimating movements of marine animals. *Limnology and Oceanography, 58*(2), 697-714.

Michener, R. H., & Kaufman, L. (2007). Stable isotope ratios as tracers in marine food webs: an update. *Stable isotopes in ecology and environmental science, 2,* 238-282.

Misarti, N., Finney, B., Maschner, H., & Wooller, M. J. (2009). Changes in northeast Pacific marine ecosystems over the last 4500 years: evidence from stable isotope analysis of bone collagen from archaeological middens. *The Holocene, 19*(8), 1139-1151. doi:10.1177/0959683609345075

Nelson, M. A., Quakenbush, L. T., Mahoney, B. A., Taras, B. D., & Wooller, M. J. (2018). Fifty years of Cook Inlet beluga whale feeding ecology from isotopes in bone and teeth. *Endangered Species Research, 36,* 77-87.

Newsome, S., Etnier, M., Kurle, C., Waldbauer, J., Chamberlain, C., & Koch, P. (2007). Historic decline in primary productivity in western Gulf of Alaska and eastern Bering Sea: isotopic analysis of northern fur seal teeth. *Marine Ecology Progress Series, 332,* 211-224.

Newsome, S. D., Clementz, M. T., & Koch, P. L. (2010). Using stable isotope biogeochemistry to study marine mammal ecology. *Marine Mammal Science, 26*(3), 509-572.

O’Reilly, C., Hecky, R., Cohen, A., & Plisnier, P.-D. (2002). Interpreting stable isotopes in food webs: recognizing the role of time averaging at different trophic levels. *Limnology and Oceanography, 47*(1), 306-309.

O’Brien, M., Macdonald, R., Melling, H., & Iseki, K. (2006). Particle fluxes and geochemistry on the Canadian Beaufort Shelf: implications for sediment transport and deposition. *Continental Shelf Research, 26*(1), 41-81.

Overland, J. E., & Wang, M. (2010). Large-scale atmospheric circulation changes are associated with the recent loss of Arctic sea ice. *Tellus A: Dynamic Meteorology and Oceanography, 62*(1), 1-9.

Oxtoby, L., Budge, S., Iken, K., Brien, D. O., & Wooller, M. (2016). Feeding ecologies of key bivalve and polychaete species in the Bering Sea as elucidated by fatty acid and compound-specific stable isotope analyses. *Marine Ecology Progress Series, 557,* 161-175.

Oxtoby, L., Horstmann, L., Budge, S., O’Brien, D., Wang, S., Schollmeier, T., & Wooller, M. (2017). Resource partitioning between Pacific walruses and bearded seals in the Alaska Arctic and sub-Arctic. *Oecologia, 184*(2), 385-398.

Parsons, T., Webb, D., Rokeby, B., Lawrence, M., Hopky, G., & Chiperzak, D. (1989). Autotrophic and heterotrophic production in the Mackenzie River/Beaufort Sea estuary. *Polar Biology, 9*(4), 261-266.

Polito, M. J., Hinke, J. T., Hart, T., Santos, M., Houghton, L. A., & Thorrold, S. R. (2017). Stable isotope analyses of feather amino acids identify penguin migration strategies at ocean basin scales. *Biology letters, 13*(8), 20170241.

Quay, P., Sonnerup, R., Westby, T., Stutsman, J., & McNichol, A. (2003). Changes in the 13C/12C of dissolved inorganic carbon in the ocean as a tracer of anthropogenic CO$_2$ uptake. *Global Biogeochemical Cycles, 17*(1), 4-1-4-20. doi:10.1029/2001GB001817

This article is protected by copyright. All rights reserved.
R Core Team. (2018). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/.

Rachold, V., Grigoriev, M. N., Are, F. E., Solomon, S., Reimnitz, E., Kassens, H., & Antonow, M. (2000). Coastal erosion vs riverine sediment discharge in the Arctic Shelf seas. *International Journal of Earth Sciences, 89*(3), 450-460.

Rau, G., Takahashi, T., Des Marais, D., Repeta, D., & Martin, J. (1992). The relationship between δ^{13}C of organic matter and $[CO_2]_{aq}$ in ocean surface water: data from a JGOFS site in the northeast Atlantic Ocean and a model. *Geochimica et Cosmochimica Acta, 56*(3), 1413-1419.

Rau, G. H., Riebesell, U., & Wolf-Gladrow, D. (1996). A model of photosynthetic 13C fractionation by marine phytoplankton based on diffusive molecular CO$_2$ uptake. *Marine Ecology Progress Series, 275*-285.

Roy, V., Iken, K., Gosselin, M., Tremblay, J.-É., Bélanger, S., & Archambault, P. (2015). Benthiic faunal assimilation pathways and depth-related changes in food-web structure across the Canadian Arctic. *Deep Sea Research Part I: Oceanographic Research Papers, 102*, 55-71.

Sabine, C. L., Feely, R. A., Gruber, N., Key, R. M., Lee, K., Bullister, J. L., . . . Tilbrook, B. (2004). The oceanic sink for anthropogenic CO₂. *Science, 305*(5682), 367-371.

Sakshaug, E. (2004). Primary and secondary production in the Arctic Seas *The organic carbon cycle in the Arctic Ocean* (pp. 57-81): Springer.

Schell, D., Saupe, S., & Haubenstock, N. (1989). Bowhead whale (*Balaena mysticetus*) growth and feeding as estimated by δ^{13}C techniques. *Marine Biology, 103*(4), 433-443.

Schell, D. M. (2000). Declining carrying capacity in the Bering Sea: isotopic evidence from whale baleen. *Limnology and Oceanography, 45*(2), 459-462.

Schell, D. M. (2001). Carbon isotope ratio variations in Bering Sea biota: the role of anthropogenic carbon dioxide. *Limnology and Oceanography, 46*(4), 999-1000.

Schützinger, R. (2016). Ocean Data View, http://odv.awi.de.

Schmittner, A., Gruber, N., Mix, A., Key, R., Tagliabue, A., & Westberry, T. (2013). Biology and air–sea gas exchange controls on the distribution of carbon isotope ratios (δ13C) in the ocean. *Biogeosciences, 10*(9), 5793-5816.

Schubert, C. J., & Calvert, S. E. (2001). Nitrogen and carbon isotopic composition of marine and terrestrial organic matter in Arctic Ocean sediments: implications for nutrient utilization and organic matter composition. *Deep Sea Research Part I: Oceanographic Research Papers, 48*(3), 789-810.

Smith, S. L., Henrichs, S. M., & Rho, T. (2002). Stable C and N isotopic composition of sinking particles and zooplankton over the southeastern Bering Sea shelf. *Deep Sea Research Part II: Topical Studies in Oceanography, 49*(26), 6031-6050.

Søreide, J. E., Carroll, M. L., Hop, H., Ambrose Jr, W. G., Hegseth, E. N., & Falk-Petersen, S. (2013). Sympagic-pelagic-benthic coupling in Arctic and Atlantic waters around Svalbard revealed by stable isotopic and fatty acid tracers. *Marine Biology Research, 9*(9), 831-850.

Søreide, J. E., Falk-Petersen, S., Hegseth, E. N., Hop, H., Carroll, M. L., Hobson, K. A., & Blachowiak-Samolyk, K. (2008). Stable carbon and nitrogen isotope ratios of suspended particulate organic matter in waters around Svalbard archipelago. PANGAEA, https://doi.org/10.1594/PANGAEA.786711.
Søreide, J. E., Hop, H., Carroll, M. L., Falk-Petersen, S., & Hegseth, E. N. (2006). Seasonal food web structures and sympagic–pelagic coupling in the European Arctic revealed by stable isotopes and a two-source food web model. *Progress in Oceanography, 71*(1), 59-87.

Tagliabue, A., & Bopp, L. (2008). Towards understanding global variability in ocean carbon-13. *Global Biogeochemical Cycles, 22*(1).

Takahashi, T., Sutherland, S. C., Sweeney, C., Poisson, A., Metzl, N., Tilbrook, B., . . . Sabine, C. (2002). Global sea–air CO2 flux based on climatological surface ocean pCO2 and seasonal biological and temperature effects. *Deep Sea Research Part II: Topical Studies in Oceanography, 49*(9-10), 1601-1622.

Tamelaender, T., Reigstad, M., Hop, H., & Ratkova, T. (2009). Ice algal assemblages and vertical export of organic matter from sea ice in the Barents Sea and Nansen Basin (Arctic Ocean). *Polar Biology, 32*(9), 1261.

Tamelaender, T., Renaud, P. E., Hop, H., Carroll, M. L., Ambrose Jr, W. G., & Hobson, K. A. (2006). Trophic relationships and pelagic–benthic coupling during summer in the Barents Sea Marginal Ice Zone, revealed by stable carbon and nitrogen isotope measurements. *Marine Ecology Progress Series, 310*, 33-46.

Thomas, D. N., & Papadimitriou, S. (2011). Biogeochemistry of sea ice *Encyclopedia of Snow, Ice and Glaciers* (pp. 98-102): Springer.

Thomas, M. K., Kremer, C. T., Klausmeier, C. A., & Litchman, E. (2012). A global pattern of thermal adaptation in marine phytoplankton. *Science, 338*(6110), 1085-1088.

Tremblay, J.-É., & Gagnon, J. (2009). The effects of irradiance and nutrient supply on the productivity of Arctic waters: a perspective on climate change *Influence of climate change on the changing arctic and sub-arctic conditions* (pp. 73-93): Springer.

Tremblay, J.-É., Michel, C., Hobson, K. A., Gosselin, M., & Price, N. M. (2006). Bloom dynamics in early opening waters of the Arctic Ocean. *Limnology and Oceanography, 51*(2), 900-912.

Vander Zanden, M. J., Clayton, M. K., Moody, E. K., Solomon, C. T., & Weidel, B. C. (2015). Stable Isotope Turnover and Half-Life in Animal Tissues: A Literature Synthesis. *PLoS ONE, 10*(1), e0116182. doi:10.1371/journal.pone.0116182

Vaqué, D., Lara, E., Arrieta, J. M., Holding, J., Sà, E. L., Hendriks, I. E., . . . Wassmann, P. F. (2019). Warming and CO2 enhance Arctic heterotrophic microbial activity. *Frontiers in Microbiology, 10*, 494.

Varela, D. E., Crawford, D. W., Wrohan, I. A., Wyatt, S. N., & Carmack, E. C. (2013). Pelagic primary productivity and upper ocean nutrient dynamics across Subarctic and Arctic Seas. *Journal of Geophysical Research: Oceans, 118*(12), 7132-7152.

Vernet, M., Richardson, T. L., Metfies, K., Nöthig, E.-M., & Peeken, I. (2017). Models of plankton community changes during a warm water anomaly in arctic waters show altered trophic pathways with minimal changes in carbon export. *Frontiers in Marine Science, 4*, 160.

Wang, S. W., Budge, S. M., Gradinger, R. R., Iken, K., & Wooller, M. J. (2014). Fatty acid and stable isotope characteristics of sea ice and pelagic particulate organic matter in the Bering Sea: tools for estimating sea ice algal contribution to Arctic food web production. *Oecologia, 174*(3), 699-712. doi:10.1007/s00442-013-2832-3

Wang, S. W., Budge, S. M., Iken, K., Gradinger, R. R., Springer, A. M., & Wooller, M. J. (2015). Importance of sympagic production to Bering Sea zooplankton as revealed from fatty acid-carbon stable isotope analyses. *Marine Ecology Progress Series, 518*, 31-50.

This article is protected by copyright. All rights reserved.
Wassenaar, L. I. (2019). Introduction to Conducting Stable Isotope Measurements for Animal Migration Studies. Tracking Animal Migration with Stable Isotopes (pp. 25-51): Elsevier.

Wassmann, P., Bauerfeind, E., Fortier, M., Fukuchi, M., Hargrave, B., Moran, B., . . . Peinert, R. (2004). Particulate organic carbon flux to the Arctic Ocean sea floor. The organic carbon cycle in the Arctic Ocean (pp. 101-138): Springer.

Yamamoto, A., Kawamiya, M., Ishida, A., Yamanaka, Y., & Watanabe, S. (2012). Impact of rapid sea-ice reduction in the Arctic Ocean on the rate of ocean acidification. Biogeosciences, 9(6), 2365-2375.

Young, J., Bruggeman, J., Rickaby, R., Erez, J., & Conte, M. (2013). Evidence for changes in carbon isotopic fractionation by phytoplankton between 1960 and 2010. Global Biogeochemical Cycles, 27(2), 505-515.

Zhang, J., Quay, P. D., & Wilbur, D. O. (1995). Carbon isotope fractionation during gas-water exchange and dissolution of CO₂. Geochimica et Cosmochimica Acta, 59(1), 107-114. doi:https://doi.org/10.1016/0016-7037(95)91550-D

Zhang, R., Chen, M., Guo, L., Gao, Z., Ma, Q., Cao, J., . . . Li, Y. (2012). Variations in the isotopic composition of particulate organic carbon and their relation with carbon dynamics in the western Arctic Ocean. Deep Sea Research Part II: Topical Studies in Oceanography, 81, 72-78.

Zuur, A., Ieno, E. N., & Smith, G. M. (2007). Analyzing ecological data: Springer Science & Business Media.
Table 1: Location and description of marine regions and rivers, and regional means ± standard deviation of δ¹³C values in dissolved inorganic carbon (DIC), ocean dissolved CO₂, POC-water, POC-ice and POC-riv.

Marine regions	Description	Regional mean ± standard deviation (n=number of observations)	References			
		δ¹³C-DIC (%)	δ¹³C-CO₂ (%)	δ¹³C-POC-water (%)	δ¹³C-POC-ice (%)	(Becker et al., 2016; Key et al., 2015; Sarà et al., 2007; Schmittner et al., 2013; Young et al., 2013)
Outer shelves						
South Iceland	Atlantic influenced	1.3 ± 0.2 (n=560)	-9.3 ± 0.2 (n=560)	-19.9 ± 3.3 (n=4)	NA	(Becker et al., 2016; Key et al., 2015; Sarà et al., 2007; Schmittner et al., 2013; Young et al., 2013)
Norwegian sea	Atlantic influenced	1.4 ± 0.4 (n=183)	-10.0 ± 0.4 (n=183)	NA	NA	(Bauch et al., 2015; Becker et al., 2016; Key et al., 2015)
Hudson Bay	Atlantic influenced: fresh water influenced	NA	NA	-24.7 ± 1.3 (n=19)	NA	(Kurzyk et al., 2010)
Bering sea	Pacific influenced	1.3 ± 0.6 (n=11)	-9.8 ± 0.8 (n=11)	-23.9 ± 0.7 (n=62)	-21.5 ± 0.9 (n=2)	(Guo et al., 2004; Lin et al., 2014; Lovvorn et al., 2005; Schmittner et al., 2013; Smith et al., 2002; Young et al., 2013; Zhang et al., 2012)
Gulf of Alaska	Pacific influenced	0.8 ± 0.2 (n=50)	-10.3 ± 0.3 (n=50)	NA	NA	(Schmittner et al., 2013; Young et al., 2013)
Inflow shelves						
Barents sea	Atlantic influenced	1.0 ± 0.4 (n=10)	-10.3 ± 0.5 (n=10)	-23.7 ± 1.6 (n=12)	-19.3 ± 2.6 (n=12)	(Becker et al., 2016; Søreide et al., 2006; Tamelander et al., 2009; Tamelander et al., 2006)
Svalbard	Northwest of the Barents sea inflow shelf	1.3 ± 0.4 (n=17)	-10.0 ± 0.4 (n=17)	-24.5 ± 0.9 (n=12)	-23.0 ± 0.7 (n=6)	(Becker et al., 2016; Søreide et al., 2008; Søreide et al., 2006; Tamelander et al., 2009)
Chukchi sea	Pacific influenced	0.8 ± 0.5 (n=21)	-10.8 ± 0.7 (n=21)	-22.7 ± 0.1 (n=36)	NA	(Bauch et al., 2015; Iken et al., 2010; Ivanov et al., 2012; Zhang et al., 2012)
Interior shelves						
Siberian coast	Fresh water influenced; consists of the East Siberian sea	NA	NA	-24.5 ± 0.5 (n=7)	NA	(Iken et al., 2010; Ivanov et al., 2012)
Beaufort sea	Fresh water influenced; North American coast	NA	NA	-26.7 ± 2.2 (n=43)	-26.4 ± 0.5 (n=8)	(Connelly et al., 2015; Forest et al., 2010; Iken et al., 2005; O'Brien et al., 2006; Parsons et al., 1989; Zhang et al., 2012)
Outflow shelves						
Fram strait	Northeast of Greenland	1.3 ± 0.4 (n=102)	-10.5 ± 0.4 (n=102)	NA	NA	(Bauch et al., 2015; Becker et al., 2016)
Northeast water polynya	Recurring mesoscale areas of open water within areas of pack ice (Sakshaug, 2004; Northeast of Greenland)	NA	NA	-27.7 ± 0.6 (n=3)	-18.6 ± 0.2 (n=3)	(Hobson et al., 1995)
North water polynya	Recurring mesoscale areas of open water within areas of pack ice (Sakshaug, 2004; North Baffin bay	NA	NA	-21.9 ± 0.6 (n=30)	-17.7 ± 3.5 (n=20)	(Hobson et al., 2002; Tremblay et al., 2006)
Canadian archipelago	Complex straits and channels, terrestrial influence	NA	NA	-25.9 ± 1.4 (n=21)	-18.9 ± 2.3 (n=9)	(Roy et al., 2015)
Arctic basins	Includes Amundsen, Nansen and Canadian basins	1.0 ± 0.2 (n=134)	-11.1 ± 0.2 (n=134)	-26.3 ± 1.6 (n=88)	-22.1 ± 2.4 (n=9)	(Bauch et al., 2015; Brown et al., 2014; Griffiths et al., 2012; Ivanov et al., 2012; Kohlbach et al., 2016; Schubert & Calvert, 2001; Søreide et al., 2006; Tamelander et al., 2009; Zhang et al., 2012)
Riverine regions	Description	δ¹³C-POC-riv (%)	References			
Siberian rivers	Includes the large rivers of Lena, Ob and Yenisey and smaller rivers of Kolyma, Indigirka, Yana, Olenek, Yakima and Mezen	NA	NA	-29.5 ± 2.1 (n=237)	NA	(Holmes et al., 2018; Lobbes et al., 2000)
North American rivers	Consists of the large rivers of Mackenzie and Yukon, as well as the smaller rivers surrounded the Hudson Bay (Figure 1)	NA	NA	-29.5 ± 1.7 (n=146)	NA	(Goni et al., 2000; Holmes et al., 2018; Kurzyk et al., 2010)

This article is protected by copyright. All rights reserved.
Table 2: Slopes ± standard deviation and p-values of the decadal linear models of δ13C values in dissolved inorganic carbon (DIC), ocean dissolved CO\textsubscript{2}, POC\textsubscript{water}, POC\textsubscript{ice} and arctic marine mammal tissues; Lines in bold are considered significant (p < 0.005). Detailed statistics of the linear models are shown in S3.

	Slope ± standard deviation	p-value	Time period	Number of observations
POC\textsubscript{water}				
Beaufort sea	-0.117 ± 0.033	<0.005	1987-2013	71
European Arctic	-0.499 ± 0.265,	0.076	1999-2004	20
Arctic basins	-0.256 ± 0.057	<0.005	1997-2012	87
Bering sea	-0.019 ± 0.046	0.679	1998-2010	62
Chukchi sea	+0.008 ± 0.071	0.906	2003-2009	36
All data	-0.149 ± 0.020	<0.005	1987-2013	311
POC\textsubscript{ice}				
All data	-0.185 ± 0.106	0.084	1993-2012	69
DIC				
All data	-0.011 ± 0.001	<0.005	1977-2014	1333
CO\textsubscript{2}				
All data	-0.011 ± 0.002	<0.005	1977-2014	1333
Marine mammals				
Northern fur seal	-0.020 ± 0.003	<0.005	1950-2000	40
Ringed seal	-0.046 ± 0.012	<0.005	1986-2006	36
Beluga whale –Hudson Bay	-0.026 ± 0.003	<0.005	1963-2008	42
Beluga whale – Baffin Bay	-0.021 ± 0.006	<0.005	1976-2001	26
Bowhead whale – Bering sea/Chukchi sea	-0.064 ± 0.007	<0.005	1965-1998	34
Figure captions:

Figure 1: Map indicating the locations of the arctic regions considered in this study; Circulation pathways are highlighted and modified from Carmack and Wassmann (2006); The yellow arrows represent the intermediate Pacific water and the red arrows represent the Atlantic water; White arrows indicate the mouths of the arctic rivers; The black circles point to the approximate location of the North water polynya in the Northern Baffin bay, Northeast water polynya in Northeast Greenland, and Svalbard marine coastal area; Chu. = Churchill River, Nel. = Nelson River, Hay. = Hayes River, Win. = Winisk River, Gr.Wh. = Great Whale River, Li.Wh. = Little Whale River, Nas. = Nastapoca River, Inn. = Innuksuac River; Bathymetry and coast lines were from the software Ocean Data View (Schlitzer, 2016).

Figure 2: Stable carbon isotope values (δ¹³C, in ‰) of (a) marine dissolved inorganic carbon (DIC) (n = 1333) and marine dissolved CO₂ (n = 1333) and (b) marine POC_water (n = 354) in the surface waters with latitude; each dot is a single data point; the solid line represents the slope of the linear regression; dashed lines indicate the 95% confidence interval of the linear regression. The equations and p-values of the linear regressions are shown on the figure. Trends are considered significant when p < 0.005.

Figure 3: Regional stable carbon isotope values (δ¹³C, in ‰) of (a) POC_water and POC_riv and (b) POC_ice; Numbers of observations are shown as number on top of the boxplots. Results of post hoc Tukey tests following (a) ANOVA1 to ANOVA3 and (b) ANOVA4 are expressed as letters on top of the boxplots. Different letters indicate significant differences (p < 0.005) between regions. The p-values of each test are shown in S2.

Figure 4: Decadal trend in δ¹³C values of: (a) dissolved inorganic carbon (DIC), dissolved CO₂ and POC_water, (b) POC_water for each arctic region, (c) POC_water and arctic marine mammal tissues, and (d) POC_ice for each arctic region. BS = Bering sea, GA = Gulf of Alaska, EG = East Greenland, HB = Hudson bay, CS = Chukchi sea; Results of the linear models can be found in Table 2 and S3. Number of observations can be found in Table 2.
