Estimation of Levocetirizine in Bulk and Formulation by First Order Derivative Area under Curve UV-Spectrophotometric Methods

Pandurang Mane*, Audumbar Mali¹, Ashpak Tamboli¹, Ritesh Bathe¹ and Manojkumar Patil¹

¹Department of Pharmaceutics, Sahyadri College of Pharmacy, Methwade, Sangola-413307, Solapur, Maharashtra, India.
²Department of Pharmaceutical Chemistry, Sahyadri College of Pharmacy, Methwade, Sangola-413307, Solapur, Maharashtra, India.

*Correspondence Info:
Pandurang Mane,
Department of Pharmaceutics,
Sahyadri College of Pharmacy, Methwade,
Sangola-413307, Solapur, Maharashtra, India
E-mail: manepandurang96@gmail.com

Abstract
Simple, fast and reliable spectrophotometric methods were developed for determination of Levocetirizine in bulk and pharmaceutical dosage forms. The solutions of standard and the sample were prepared in Methanol. The quantitative determination of the drug was carried out using the second order Derivative Area under Curve method values measured at 235-243 nm. Calibration graphs constructed at their wavelengths of determination were linear in the concentration range of Levocetirizine using 5-25 μg/ml (r²=0.9994) for first order Derivative Area under Curve spectrophotometric method. The proposed methods have been extensively validated as per ICH guidelines. There was no significant difference between the performance of the proposed methods regarding the mean values and standard deviations. The developed methods were successfully applied to estimate the amount of Levocetirizine in pharmaceutical formulations.

Keywords: Levocetirizine, First order Derivative, Area under Curve (AUC), Precision, Accuracy.

1. Introduction
Chemically Levocetirizine is [2-[4-[(r)-(4-chlorophenyl) phenylmethyl]-1- piperazinyl] ethoxy] acetic acid is a third generation non-sedative antihistamine, developed from the second generation antihistamine cetirizine. [1,2] It is the L enantiomer of the cetirizine racemate. Levocetirizine works by blocking histamine receptors. It does not prevent the actual release of histamine from mast cells, but prevents it binding to its receptors. [3,4] This in turn prevents the release of other allergy chemicals and increased blood supply to the area, and provides relief from the typical symptoms of hay fever. In our Literature survey reveals that for Levocetirizine Spectrophotometric [5,6] methods and HPLC [7-9] methods have been reported for its determination in commercial formulation.

To our notice, no UV- spectrophotometric method using First Order Derivative Area under Curve has been reported for the determination of Levocetirizine in bulk and tablets. Hence an attempt has been made to develop new First Order Derivative Area under Curve spectrophotometric method for estimation of Levocetirizine in bulk and pharmaceutical formulations with good accuracy, simplicity, precision and economy.

Fig. 1 Structure of Levocetirizine

2. Materials and Methods
2.1 Derivative Spectrophotometric Methods:-
The First derivative spectrophotometry was used in the wavelength ranges from 235 and 243 nm. [dA/dλ= f(λ)]: first order

The First derivative spectrum of an absorption band is characterized by a maximum, a minimum, and a cross-over point at the λ max of the absorption band. [10-13]
2.2 Area under curve (Area calculation):-

In this study area was integrated between wavelength ranges from 235 & 243 nm.

Area calculation: \((\alpha + \beta) = \int_{\lambda_1}^{\lambda_2} Ad\lambda \)

Where, \(\alpha \) is area of portion bounded by curve data and a straight line connecting the start and end point, \(\beta \) is the area of portion bounded by a straight line connecting the start and end point on curve data and horizontal axis, \(\lambda_1 \) and \(\lambda_2 \) are wavelength range start and end point of curve region. [14-16]

2.3 Apparatus and instrumentation:-

A shimadzu 1800 UV/VIS double beam spectrophotometer with 1cm matched quartz cells was used for all spectral measurements. Single Pan Electronic balance (CONTECH, CA 223, India) was used for weighing purpose. Sonication of the solutions was carried out using an Ultrasonic Cleaning Bath (Spectra lab UCB 40, India). Calibrated volumetric glassware (Borosil®) was used for the validation study.

2.4 Materials:-

Reference standard of Levocetirizine API was supplied as gift sample by Lupin Laboratory Park, Aurangabad. Methanol was obtained from Research-Lab Fine Chem Industries, Islampur, Mumbai, and Maharashtra. Capsule sample with label claim 5 mg per Tablet were purchased from local market Mangalwedha, Solapur, Maharashtra, India.

2.5 Method development: [17-19]

2.5.1 Preparation of Standard and Sample Solutions:-

Stock solution of 10μg/ml of Levocetirizine was prepared in Methanol, for First Order Derivative Area under Curve spectrophotometric analysis. The standard solutions were prepared by dilution of the stock solution with Methanol in a concentration range of 5, 10, 15, 20 and 25μg/ml with Methanol for First Order Derivative Area under Curve spectrophotometric methods. Methanol was used as a blank solution.

Fig. 2 First order derivative Area under Curve spectrum of Levocetirizine in Methanol (25μg/ml).

Fig. 3 First order derivative spectrum of Levocetirizine in Methanol (25μg/ml).
2.5.2 Calibration curve for Levocetirizine:-
The dilutions were made from Standard Stock solution to get concentration of 5, 10, 15, 20, and 25µg/ml respectively. These solutions were scanned from 400 to 200 nm and First Order Derivative Area under Curve values was integrated in the range of 235-243 nm. The calibration curve was plotted between areas under curve values against concentration.

![Calibration Curve](image)

Fig. 4 Linearity of Levocetirizine.

2.5.3 Assay of tablet formulation:-
Twenty tablets each containing 5 mg of Levocetirizine were weighed crushed to powder and average weight was calculated. Powder equivalent to 10 mg of Levocetirizine was transferred in 100 ml of volumetric flask. A 50 ml of Methanol was added and sonicated for 15 minutes. Then solution was further diluted up to the mark with Methanol. The solution was filtered using Whatmann filter paper no. 41, first 5 ml of filtrate was discarded. This solution was further diluted to obtain 10µg/mL solution with water, subjected for UV analysis using Methanol as blank. This procedure was repeated three times.

![First Order Derivative Area](image)

Fig. 5 First order derivative Area under Curve spectrum of Levocetirizine of dosage form in Methanol (25µg/ml).
Fig. 6 First order derivative spectrum of Levocetirizine of dosage form in Methanol (25µg/ml).

Fig. 7 First order derivative overlay of Levocetirizine at diff. Concentration.

Table 1: Assay of tablet dosage form:-

Sr. No.	Sample Solution Concentration (µg/ml)	Amount found (%)	Mean % found*	% RSD*
1	25	100.18		
2	25	98.59	100.33	0.3694
3	25	102.24		

*n=3, % RSD = % Relative Standard Deviation.

3. Method Validation

The above method was validated for various parameters such as Accuracy, Linearity, Precision, Limit of detection (LOD) and Limit of Quantitation (LOQ) according to ICH guideline.

3.1 Accuracy

The accuracy for the analytical method was evaluated at 80%, 100% and 120% levels of 25µg/ml Sample solution. First Order Derivative Area under curve (AUC) was measured in wavelength range 235-243 nm and results were obtained in terms of percent recovery. Three determinations at each level were performed and % RSD was calculated for each level.
Table 2: Accuracy results for Levocetirizine:

Accuracy level	Sample conc (µg/ml)	Std. conc	Total amount Added (µg/ml)	% Recovery	Mean % Recovery	% RSD
80	25	12	22	99.39		
100	25	15	25	99.47	99.81	0.3698
120	25	18	28	100.58		

3.2 Precision:-

The precision of an analytical procedure expresses the closeness of an agreement (degree of scatter) between a series of measurements obtained from multiple sampling of the same homogeneous sample under the prescribed conditions intraday precision was studied by integrating area of standard solution of 25µg/ml concentration at six independent series in the same day. Interday precision studies were performed by integrating area of standard solution of 25µg/ml concentration on three consequent days. The % RSD Was calculated.

Table 3: Precision Study

Parameter	Intra day	Inter-day
Sample sol conc.µg/ml	25	25
AUC (mean)	0.6429	0.6821
%RSD	0.9351	0.9257

3.3 Limit of Detection and Limit of Quantification:-

The Limit of Detection (LOD) is the smallest concentration of the analyte that gives the measurable response. LOD was calculated using the following formula

\[\text{LOD} = 3.3 \frac{\sigma}{S} \]

Where, \(\sigma\) is standard deviation of the response and \(S\) is the slope of the calibration curve.

The Limit of Quantification (LOQ) is the smallest concentration of the analyte, which gives response that can be accurately quantified. LOQ was calculated using the following formula

\[\text{LOQ} = 10 \frac{\sigma}{S} \]

Table 4: Summary of validation parameters

Parameter	Result
λ range	235-243
Regression Equation (y=mx+c)	\(Y=0.018x + 0.007\)
Linearity range	5-25µg/ml
Slope	0.018
Intercept	0.007
Correlation coefficient (R²)	0.9994
Limit of Detection (LOD) µg/ml	0.64
Limit of Quantitation (LOQ) µg/ml	1.93
Accuracy (Mean % Recovery)	99.81
Precision (%RSD)	0.3698

4. Results and Discussion

The UV visible spectroscopic method for the Levocetirizine by First order derivative Area under Curve was found to be simple, accurate, economical and reproducible. The drug concentrations were found to be linear in the range of 05-25 µg/ml and the correlation coefficient value of 0.9994 indicates that developed method was linear. For Precision the percent relative standard deviation (% RSD) was found to be 0.3698 while, intra-day and inter-day precision results in terms of percent relative standard deviation values were found to be 0.9351 and 0.9257 respectively thus the method is observed as precise. The accuracy of the method was assessed by recovery studies at three different levels i.e. 80%, 100%, 120%. The values of standard deviation were satisfactory and the recovery studies were close to 100%. The % RSD value is ≤ 2 indicates the accuracy of the method. The Limit of Detection and Limit of Quantitation values were found to be 0.64 µg/ml & 1.93 µg/ml respectively. The result of the analysis for pharmaceutical formulation by the developed method was consistent with the label claim, highly reproducible and reliable. The method can be used for routine quality control analysis of Levocetirizine in bulk and pharmaceutical formulations.

5. Conclusion

The UV spectroscopic AUC method for the analysis of Levocetirizine by First order derivative Area under Curve was found to be simple, precise, and
accurate; can be used for assay of bulk drug and pharmaceutical dosage formulations.

Acknowledgement

The authors are highly thankful to the Sahyadri College of Pharmacy, Methwade, Sangola, Solapur, Maharashtra, India for proving all the facilities to carry out the research work.

References

[1] Gadireddy Sujana, P. Jayachandra Reddy, V. Prabhakaran. RP-HPLC Method Development and Validation for Simultaneous Estimation of Ambroxol Hydrochloride and Levocetirizine in Tablet Dosage Form. *International Journal of Pharmaceutical Research and Analysis*. 2014; 4(3): 149-156.

[2] Audumbar Digambar Mali, Manojkumar Patil. Estimation of Levocetirizine in Bulk and Formulation by Second Order Derivative Area under Curve UV-Spectrophotometric Methods. *Asian Journal of Pharmaceutical Research*. 2015; 5(3): 51-56.

[3] Sharma Smita, Sharma M. C, Kohli D.V, Sharma A.D. Development and Validation of TLC Densitometry Method for Simultaneous Quantification of Montelukast Sodium and Levocetirizine Dihydrochloride Pharmaceutical Solid Dosage Form. *Scholars Research Library. Der Pharmacia Lett*. 2010; 2(1): 489-494.

[4] Audumbar Digambar Mali, Ritesh Bathe, Manojkumar Patil and Ashpak Tamboli. Zero order and area under curve spectrophotometric methods for determination of Levocetirizine in pharmaceutical formulation. *International Journal of Advances in Scientific Research*. 2015; 1(06): 270-275.

[5] S.S. Merukar, P.S. Mhaskar, S.R. Bavaskar, K.B. Burade, P.N. Dhabale. Simultaneous Spectrophotometric Methods for Estimation of Levocetirizine and Pseudoephedrine in Pharmaceutical Tablet Dosage Form. *Journal of Pharmaceutical Sciences and Research*. 2009; 1(2): 38-42.

[6] Prashant Shende, Virag Shah, Dhananjay Ghodke, Rohit Shah, Shital Kumar Patil, Dhanya Kumar Chougule. Validation of UV Spectrophotometric method for estimation of Levocetirizine Dihydrochloride in bulk and pharmaceutical formulation. *Journal of Pharmacy Research*. 2010; 3(10): 2386-2387.

[7] Raghad Hommoss, Hind Elzein, Samer Haidar. Determination of Levocetirizine configuration stability in tablets using chiral HPLC method. *International Journal of Pharmacy and Pharmaceutical Sciences*. 2011; 3(2): 2011.

[8] Merukar S.S, Mhaskar P.S, S.R. Bavaskar, K.B. Burade, P.N. Dhabale. Simultaneous Spectrophotometric methods for estimation of levocetirizine and pseudoephedrine in pharmaceutical tablet dosage form. *Journal of Pharmaceutical Sciences and Research*. 2009; 1(2): 38-42.

[9] M. S. Arayne, N. Sultana and M. Nawaz. Simultaneous quantification of cefpirome and cetirizine or levocetirizine in pharmaceutical formulations and human plasma by RP-HPLC. *Journal of Analytical Chemistry*. 2009; 63(9): 881-887.

[10] Audumbar Digambar Mali. Zero, First, Second Order Derivative and Area under Curve Spectrophotometric Methods for Determination of Cefixime Trihydrate in Pharmaceutical Formulation. *International Journal of Pharmacy and Pharmaceutical Sciences*. 2015; 7(6): 321-325.

[11] Sunil R Dhaneshwar, Janaki V Salunkhe and Vidhya K Bhusari. Validated HPLC method for simultaneous quantitation of Levocetirizine Hydrochloride and Nimesulide in bulk drug and formulation. *International Journal of Comprehensive pharmacy*. 2011; 2: 4023-4029.

[12] Audumbar Digambar Mali. Simultaneous Determination Of Carvedilol And Hydrochlorothiazide In Pharmaceutical Dosage Form By First Order Derivative UV Spectrophotometry. *International Journal of Pharmacy and Pharmaceutical Sciences*. 2015; 7(9): 371-374.

[13] Rote AR, Niphade VS. Determination of montelukast sodium and levocetirizine dihydrochloride in combined tablet dosage form by HPTLC and first derivative spectrophotometry. *Journal of Liquid Chromatography and Related technologies*. 2011; 34: 155-167.

[14] Mali Audumbar Digambar, Hake Gorakhnath, Patil Manojkumar, Bathe Ritesh, Tamboli Ashpak. Zero Order and Area under Curve Spectrophotometric Methods for Determination of Ampicillin Trihydrate in Pharmaceutical Formulation. *GCC Journal of Science and Technology*. 2015; 1(1): 6-12.

[15] Audumbar Digambar Mali, Ritesh Bathe and Ashpak Tamboli. Estimation of Ampicillin Trihydrate in Bulk and Formulation by First Order Derivative Area under Curve UV Spectrophotometric Methods. *International Journal of Advances in Scientific Research*. 2015; 1(5); 2015: 239-243.

www.ssjournals.com
[16] Mali Audumbar, Jadhav Santosh, Hake Gorakhnath, Tamboli Ashpak. Zero Order and Area under Curve Spectrophotometric Methods for Determination of Fluoxetine Hydrochloride in Pharmaceutical Formulation. Pharmatutor Magazine. 2015; 3(6): 49-54.

[17] Mali Audumbar Digambar, Hake Gorakhnath, Bathe Ritesh. Zero Order and Area under Curve Spectrophotometric Methods for Determination of Aspirin in Pharmaceutical Formulation. Indian E-Journal of Pharmaceutical Sciences. 2015; 1(1): 40-44.

[18] Audumbar Digambar Mali, Ritesh Bathe and Ashpak Tamboli. Simultaneous Determination of Cefixime Trihydrate and Ofloxacin in Pharmaceutical Dosage Form by Second Order Derivative UV Spectrophotometry. International Journal of Advances in Pharmaceutical Analysis. 2015; 5(2): 42-46.

[19] International Conference on Harmonization (ICH) of Technical Requirements for the registration of Pharmaceuticals for Human use, Validation of Analytical Procedures Methodology; ICH-Q2(R1), Geneva. 1996: 1-8.