Abstract

Legumes have gained increased dietary importance in recent years due to their recognized health benefits. Recent plant protein revolution has elevated legumes to the forefront from consumers' and food industry's perspective. Unlike cereal proteins and starches, there is a scarcity of information on the structural properties of legume starches. Consumption of legume-derived dietary fibers have a positive impact on the human health, in particular, gut health, which is a current research focus for nutrition and health professionals. Knowledge of legume ingredients properties (e.g., protein denaturation, starch gelatinization, pasting, and thermal properties) could aid in understanding functionality and potential uses of these materials. The physicochemical, thermal, and the functional properties of legume proteins, starches, and dietary fibers are elucidated. Both the food ingredient manufacturers and research and development professionals in the food industry can benefit from the information provided in this review article.

KEYWORDS
amylose content, flour properties, food protein, food rheology

1 | INTRODUCTION

Legumes (Fabaceae family) are dicotyledonous seeds, rich in proteins, carbohydrates, and dietary fibers (DFs). In recent years, legume-based ingredients have steadily increased in use in various food applications. Legumes have significantly higher protein content than cereal grains, making legumes among the richest food sources of proteins and amino acids for human nutrition. In addition to offering a source of essential amino acids and bioactive peptides, legume proteins influence many functional properties, which could help expand their potential use in the development of a wide variety of food products (Boyce et al., 2010; Dhull, Punia, Sandhu, et al., 2020). The carbohydrate fraction of legumes is primarily composed of starch (65%–72%) and DF (10%–20%) (Haytowitz et al., 2011). Legume starches are characterized by a higher percentage of slowly digestible resistant starch (RS), resulting in low glycemic index, and act as functional foods. The hypoglycemic effects of legumes have been further supported by high contents of DF (Trinidad et al., 2010).

In comparison to wheat, the predominant flour/ingredient used for many food products, legumes offer improved nutritional quality. Legumes have higher proteins and higher total DF content, and lower carbohydrates (Dhull, Punia, Kidwai, et al., 2020; Siddiq & Uebersax, 2012). In addition, legume-based ingredients can be used to develop gluten-free products, which has been a growing segment of food industry in recent years. Furthermore, legume-extracted proteins are emerging as a major source of continued global demand for plant proteins as meat alternative. However, despite many nutritional...
benefits, the per capita consumption of legumes is very low in the developed countries. The superior functionality of legume-based ingredients can play an important role in expanding legumes consumption beyond traditional products and uses, as shown in Figure 1. There is considerable variation in legume ingredients by pulse type; therefore, an understanding of species-specific functional properties is important. Our objective is to provide a review of research on the physico-chemical and functional properties of legume ingredients (starch, protein, and DFs) and their functional role in food product development.

![Figure 1](image)

FIGURE 1 Diverse application of legume protein, starch and fiber ingredients

Amino acids (g/100g seed)	Common beans	Chickpea	Cowpea	Lentil	Pea
Alanine	0.84-0.89	-	0.94	1.35-1.44	0.99-1.09
Arginine	0.57-1.43	1.57	1.82	1.98-2.56	1.98-2.18
Asparagine	-	-	-	-	-
Aspartic Acid	2.59-2.67	0.48	2.56	2.90-3.15	2.77-3.28
Cystine	0.14†	0.23	0.14†	-	-
Glutamine	-	-	-	-	-
Glutamic acid	3.13-3.55	-	4.14	4.60-5.00	3.58-4.66
Glycine	0.78-0.93	0.55	1.03	0.86-1.07	0.87-1.14
Histidine	0.58-0.77	0.44	0.85	-	-
Isoleucine	0.89-1.04	0.85	0.87	0.91-1.05	1.01-1.12
Leucine	1.62-1.70	1.60	1.70	1.59-2.14	1.66-1.86
Lysine	1.24-2.57	1.27	1.26	1.82-2.03	1.70-1.83
Methionine	0.24-0.27	0.09	0.37	0.67-0.79h	0.56-0.69h
Phenylalanine	1.21-1.36	0.97	1.46	1.07-1.52	1.06-1.26
Proline	0.80-0.87	0.05	0.94	-	-
Serine	1.16-1.36	1.22	1.22	1.06-1.49	1.11-1.45
Threonine	0.79-0.95	0.60	0.88	1.02-1.18	1.00-1.09
Tryptophan	0.18-0.20	1.32	0.22	-	-
Tyrosine	0.70-0.90	0.49	0.87	0.62-0.72	0.62-0.75
Valine	1.00-1.05	0.84	1.01	1.06-1.31	1.03-1.21

*Baptista et al. (2017): data are mean of 15 samples; Kose et al. (2019): data are from 2 genotypes—Yenice and Pirnarı.

Thakur et al. (2017).

Baptista et al. (2017): data are mean values of 9 samples.

Ciurescu et al. (2018): data are from 4 cultivars—Eston, Georgy, Berglinse, and Black.

Ciurescu et al. (2018): data are from 5 cultivars—Nicoleta, Vedea, Specter, Windham, and Biathlon.

Cysteine.

Essential amino acids.

Methionine + cystine.
Legumes are low-cost protein source, used as flours, concentrates, or protein isolates (PIs), which make them valuable and nutritious ingredients in various food systems (Barać, Pešić, Stanojević, Kostić, & Čabril, 2015). Protein contents of legumes vary according to legume species, with average contents in pea, lentil, and beans of 23.3%–26%, 25.6%–28.9%, and 19.3%–23.9%, respectively, dry-weight basis (Baptista et al., 2017). The seed proteins can be classified as structural, storage, and biologically active. The main biologically active proteins are enzymes, lectins, and enzyme inhibitors. Globulins (35%–80%) and albumins (2%–37%) are the major protein fractions in legume seeds (Hall et al., 2017). Legumin (11S) and vicilin (7S) are the major globulins, whereas enzymes, enzyme inhibitors, and lectins belong to albums (Boye et al., 2010; Venkidasamy et al., 2019). Albumins (rich in lysine and sulfur-containing amino acids) are the most abundant amino acids in the selected legumes except chickpea, whereas limiting amino acids vary according to legume species (Table 1).

Recent research has shown the significance of bioactive peptides from legume proteins, especially, in the context of diabetes mitigation and anti-gastrointestinal cancer potential. The generation of bioactive peptides is considered either from the point of view of regular and anti-gastrointestinal cancer potential. The generation of bioactive peptides is considered either from the point of view of regular and anti-gastrointestinal cancer potential. The generation of bioactive peptides is considered either from the point of view of regular and anti-gastrointestinal cancer potential. The generation of bioactive peptides is considered either from the point of view of regular and anti-gastrointestinal cancer potential. The generation of bioactive peptides is considered either from the point of view of regular and anti-gastrointestinal cancer potential. The generation of bioactive peptides is considered either from the point of view of regular and anti-gastrointestinal cancer potential. The generation of bioactive peptides is considered either from the point of view of regular and anti-gastrointestinal cancer potential.
gastric and intestinal fluids (Gharibzahedi & Smith, 2021). Lentil and red kidney bean PIs are used to encapsulate the vegetable oils and flaxseed and soybean oils, respectively (Joshi et al., 2012; Liu et al., 2014). Probiotic bacteria are encapsulated with native and modified soy PI, soy and pea protein concentrates, resulting in improved survivability, storage stability, and tolerance in the in vitro gastrointestinal tract conditions (Gharibzahedi & Smith, 2021). Various legume protein concentrates (faba bean, pea, lupin, lentil, and soy) have been used for the edible film formulations by blending with the plasticizer, glycerol (Hopkins et al., 2019), with the developed films exhibiting good mechanical and barrier properties (Bamdad et al., 2006). Saremnejad et al. (2011) prepared flexible edible films from faba bean PI and recommended those edible films to be used for packaging of light sensitive foodstuffs.

Besides traditional cooking/processing, the functionality of legume proteins can be improved using emerging technologies, for example, high hydrostatic pressure (HP), ultrasound, enzymatic hydrolysis, and combination of these technologies (Ahmed et al., 2018, 2019; Al-Ruwaih et al., 2019; Wang et al., 2020; Xu et al., 2021). The solubility and emulsifying activity index of kidney bean, lentil PI, and protein hydrolysates were increased by HP treatment. Emulsion stability of kidney bean protein hydrolysate and lentil PI decreased, as shown by notable changes in the secondary structure with a shift of amide I and amide II after HP treatment (Ahmed et al., 2019; Al-Ruwaih et al., 2019). The thixotropic behavior of the kidney bean PI was reduced by enzymatic hydrolysis, and the resultant hydrolysates behaved like a Newtonian fluid at the higher shear rate (Figure 2). HP-assisted enzymatic hydrolysis of legume proteins has potential to produce desired bioactive peptides with higher functionality and antioxidant activities (Al-Ruwaih et al., 2019). High-intensity ultrasound treatment of chickpea PIs significantly improved their solubility, emulsifying, foaming and heat-induced gel properties (Wang et al., 2020). Enzyme hydrolysis is another technique to modify legume proteins properties. Alcalase and bromelain hydrolysis improved antioxidant and anti-inflammatory properties of legume proteins modified by different techniques have potential for use in food and nutraceutical applications because of their improved nutritional/functional characteristics (Al-Ruwaih et al., 2019; Wang et al., 2020; Xu et al., 2021).

TABLE 2 Percent amylose content and molecular weights (M_w) of amylose and amyllopectin in selected legume starches

Starch source	Amylose content (%)	M_w of amylose (Da)	M_w of amyllopectin (Da)	References
Adzuki bean	27.9–30.61	-	-	Su et al. (1998); Zhang et al. (2019)
Baby lima bean	32.7–40.24	4.68×10^8	Betancur et al. (2001); Ma et al., 2017	
Black bean	23.13–45.4	4.36×10^6–4.03 $\times 10^6$	Ambigaipalan et al. (2011); Byars and Singh (2016); Du et al. (2014); Hoover and Ratnayake (2002); Ovando-Martinez et al. (2011); Simsek et al. (2012); Zhou et al. (2004)	
Carioca bean	40.91	-	-	do Evangelho et al. (2020)
Chickpea	23.0–35.24	1.02×10^8–2.94×10^8	Byars and Singh (2016); Hoover and Ratnayake (2002); Huang et al. (2007); Ma et al. (2017); Miao et al. (2009); Sandhu and Lim (2008); Yniestra Marure et al. (2019); Zhang et al. (2016)	
Cowpea	18.7–49.5	8.16×10^6–7.84×10^6	Adebooye and Singh (2008); Huang et al. (2007); Kim et al. (2018)	
Dolichos bean	21.8	-	-	Acevedo et al. (2020)
Faba bean	24.4–39.9	1.0×10^6–2.0×10^5	Doublier (1987); Haase and Shi (1991); Sharma et al. (2020); Zhang et al. (2019)	
Lentil	23.5–38.0	3.33×10^6–3.81×10^5	Byars and Singh (2016); Hoover and Ratnayake (2002); Ma et al. (2017); Sandhu and Lim (2008); Zhou et al. (2004)	
Mung bean	31.6–45.3	2.64×10^6–3.54×10^5	Hoover et al. (1997); Ma et al. (2017); Sandhu and Lim (2008); Su et al. (1998)	
Navy bean	28.2–43.4	3.27×10^6	Byars and Singh (2016); Du et al. (2014); Gujska et al. (1994); Hoover and Ratnayake (2002); Su et al. (1998)	
Pigeon pea	25.95–46.9	3.54×10^6–3.96×10^6	Acevedo et al. (2020); Kaur and Sandhu (2010); Olagunju et al. (2020); Sandhu and Lim (2008); Singh et al. (1989); Yadav et al. (2011)	
Pinto bean	25.21–37.4	4.34×10^6–5.28×10^6	Du et al. (2014); Gujska et al. (1994); Hoover and Ratnayake (2002); Ovando-Martinez et al. (2011); Simsek et al. (2012); Su et al. (1998); Zhou et al. (2004)	
Red kidney bean	25.33–49.7	8.31×10^6	Bajaj et al. (2018); Du et al. (2014); Punia et al. (2020); Reddy et al. (2013); Su et al. (1998)	
Smooth pea	23.9–35.09	5.38×10^7	Aberle et al. (1994); Doublier (1987); Hoover and Ratnayake (2002); Zhou et al. (2004)	
TABLE 3 Percentages of amyllopectin (AMP) chain length distribution in starches from different legumes

Starch source	AMP chain length	References			
	6–12	13–24	≥37		
Baby lima bean	21.63	59.45	10.61	8.31	Ma et al. (2017)
Black bean	18.05–30.05	51.02–56.24	12.19–18.18	0.48–13.49	Ambigaipalan et al. (2011); Du et al. (2014); Ovando-Martinez et al. (2011)
Chickpea	38.1–42.65	44.71–47.6	7.35–8.8	4.2–6.5	Ma et al. (2017); Phruwiwatthanakul et al. (2014)
Cowpea	25.0–39.81	39.6–46.7	13.8–16.1	13.9–16.3	Kim et al. (2018); Ma et al. (2017)
Faba bean	19.33–21.69	53.07–53.39	13.74–15.50	10.41–12.10	Ambigaipalan et al. (2011)
Lentil	26.0–26.9	56.2–58.4	10.4–15.6	7.22	Chung, Liu, Donner, et al. (2008); Chung, Liu, Pauls, et al. (2008); Ma et al. (2017)
Mung bean	24.31–29.5	41.6–52.56	11.15–17.21	8.27–15.4	Kim et al. (2018); Ma et al. (2017); Phruwiwatthanakul et al. (2014); Yao et al. (2019)
Navy bean	24.3–31.09	53.3–59.8	8.99–16.0	6.39	Chung, Liu, Donner, et al. (2008); Chung, Liu, Pauls, et al. (2008); Du et al. (2014)
Pea	20.4–21.1	54.2–54.7	16.0–16.2	8.4–8.9	Chung and Liu (2012)
Pinto bean	20.06–35.21	47.79–55.77	9.63–15.48	0.52–10.44	Ambigaipalan et al. (2011); Du et al. (2014); Ovando-Martinez et al. (2011)
Red kidney bean	23.65–27.81	51.21–59.7	9.90–16.6	7.05–12.49	Chung, Liu, Donner, et al. (2008); Chung, Liu, Pauls, et al. (2008); Du et al. (2014); Ma et al. (2017)

3 | LEGUME STARCH

Starch is the most prominent carbohydrate in legumes. In general, legume starch granules are oval-shaped, although spherical, round, elliptical, and irregularly shaped granules are also reported (Hoover et al., 2010). Starch, present as semicrystalline granules in amyloplasts (as alternating crystalline and amorphous layers), consist of two principal polysaccharides—amyllopectin and amylose, which are α-D-glucoses linked together in two different configurations. Structural and functional characteristics of these glucan polymers influence the functionality and the end use of starch.

In comparison with cereal grains, legumes predominantly possess slowly digestible starch (SDS), which is the most desirable form of dietary starch because it elicits slow glycemic response and attenuates plasma insulin levels (Chung et al., 2009). This functional property of legume starch makes it a perfect ingredient for use in healthy food products.

3.1 Starch structure: Amylose and amyllopectin

The proportion of amylose (AM) to amyllopectin (AMP) in legume starches depends upon the starch source, that is, variety, growing condition, and origin; however, amyllopectin remains the significant component (Punia et al., 2020). The accepted structure of amyllopectin comprises short amyllopectin chains forming double helices and combining into clusters (Aberle et al., 1994). These clusters yield a structure that consists of alternating crystalline and amorphous lamellae. The amylose content of legume starches varies from 18.7% to 49.7% (Table 2), which differs widely due to genotypic variation, growth conditions, enzymatic activity during biosynthesis of starch, procedures of starch isolation, and so forth (Kossmann & Lloyd, 2000; Ovando-Martinez et al., 2011; Zhou et al., 2004). A range of molecular weights (M_w) have been reported for amylose (1.0 × 10^5 to 5.45 × 10^6 Da) and amyllopectin (4.34 × 10^6 to 8.31 × 10^8 Da) (Table 2). The average chain length of amyllopectin (13–24 DP, degree of polymerization) is responsible for the crystallinity for legume starches (Hoover et al., 2010; Ma et al., 2017). The chain lengths affect the enzymatic susceptibility and functional properties of starches (Du et al., 2014). The percent amyllopectin chain length distribution in legume starches (presented in Table 3) followed the order of DP 13–24 > DP 6–12 > DP 25–36 > DP ≥ 37. Chickpea starches, however, are found to be exceptional as it contained very high amount of shorter amyllopectin chains DP (6–12) compared with other legumes.

3.2 Gelatinization and rheological properties of legume starches

Starch rheology is a vast area of research as it has significant impact on food product development. Starch granules gelatinize in the presence of water at the appropriate temperature followed by gel formation (Ahmed, 2012). The gel rigidity depends on the concentration of the starch and many other factors. The gelatinization and the glass transition temperature of starch have been described in another review article (Ahmed et al., 2021). Table 4 summarizes the DSC peak gelatinization temperature (T_g) of legume starches. T_g and the gel rigidity, as measured during the rheological tests, vary significantly from the macroscopic (e.g., viscoamylograph) to the microscopic measurements (e.g., rheometry). The starch gels are
subjected to small/large amplitude oscillatory shear, steady flow, or creep measurements during rheological measurements (Acevedo et al., 2020; Ahmed et al., 2016; Doublier, 1987; Phrukwiwattanakul et al., 2014). Ahmed (2012) employed the small amplitude oscillatory shear (SAOS) measurement for evaluating the gelatinization kinetics of mung bean starch by a non-isothermal technique as function of G_0 and G_00 against heating time (t) and found a first-order reaction kinetics. Results showed that legume starches displayed predominant elastic modulus (G_0) over the viscous modulus (G_00) resulting in a solid-like behavior ($G_0 > G_00$) (Ahmed, 2012).

Starch source	T_p (°C)	ΔH_{gel} (J/g)	ΔH_r (J/g)	RS (%)	GI	References
Adzuki bean	63.85–69.84	2.39–17.66	3.86–6.36	11.7–55.23	-	Gong et al. (2017); Wang et al. (2017); Xu et al. (2018); Yadav et al. (2019); Zhang et al. (2019)
Black bean	69.9–76.64	12.1–14.70	6.70–7.48	33.46–74.89	36.40–46	Ambigaipalan et al. (2011, 2014); Sharma et al. (2020); Zhang et al. (2019)
Chickpea	63.5–77.3	4.46–17.6	4.6	8.4–73.1	47.05–71.7	Chung, Liu, Donner, et al. (2008); Chung, Liu, Pauls, et al. (2008); Huang et al. (2007); Miao et al. (2009); Sandhu and Lim (2008); Yniestra Marure et al. (2019)
Cowpea	73.2–81.82	9.41–15.40	-	3.2–76.15	41.4–48.14	Herath et al. (2018); Kaptso et al. (2016); Kim et al. (2018); Ratnaningsih et al. (2017)
Dolichos bean	67.92–75.44	8.44–12.47	7.41	57.7	-	Acevedo et al. (2020); Liu et al. (2020)
Faba bean	66.38–68.4	6.68–12.34	-	10.00–49.8	61.30–66.20	Ambigaipalan et al. (2011, 2014); Sharma et al. (2020); Zhang et al. (2019)
Lima bean	75.3–79.89	8.34–15.2	5.45	3.8–4.5	34.2–39.1	Bello-Pérez et al. (2007); Ma et al. (2017); Oladebeye et al. (2013); Segura-Campos et al. (2010)
Lentil	66.1–70.6	11.2–14.3	6.0	9.1–13.2	60.0–66.3	Chung et al. (2009); Chung, Liu, Donner, et al. (2008); Chung, Liu, Pauls, et al. (2008); Hoover et al. (2010); Ma et al. (2017); Sandhu and Lim (2008); Zhou et al. (2004)
Mung bean	67.0–72.83	5.1–21.30	-	4.04–80.78	41.5–50.7	Herath et al. (2018); Kim et al. (2018); Li et al. (2019); Phrukwiwattanakul et al. (2014); Sandhu and Lim (2008); Yao et al. (2019)
Navy bean	71.9–75.1	13.2–16.1	-	17.2–77.4	67.4	Chung, Liu, Donner, et al. (2008); Chung, Liu, Pauls, et al. (2008); Du et al. (2014); Hoover et al. (2010); Ma et al. (2017); Maaran et al. (2014)
Pigeon pea	67.56–80.74	2.6–10.7	5.1–8.07	60.9–76.87	46.8–78.82	Acevedo et al. (2020); Kaur and Sandhu (2010); Narina et al. (2012); Olagunju et al. (2020)
Pinto bean	70.14–76.5	13.87–16.2	5.09–5.89	36.57–75.00	29.79–41.10	Ambigaipalan et al. (2011, 2014); Hoover et al. (2010); Ovando-Martínez et al. (2011); Simsek et al. (2012); Zhou et al. (2004)
Pea	60.8–67.7	3.6–14.2	-	67.6–70.7	8.7–12.6	Chung and Liu (2012); Chung, Liu, Donner, et al. (2008); Chung, Liu, Pauls, et al. (2008); Ratnayake et al. (2002)
Red kidney bean	67.0–82.1	3.0–14.9	65.8–68.4	17.2–35.0	17.2–35.0	Chung, Liu, Donner, et al. (2008); Chung, Liu, Pauls, et al. (2008); Eyaru et al. (2009); Ma et al. (2017); Reddy et al. (2013); Wani et al. (2010)

Abbreviations: GI, glycemic index; ΔH_{gel}, gelatinization enthalpy; ΔH_r, retrogradation enthalpy after 7 days’ storage at 4°C; RS, resistant starch; T_p, peak gelatinization temperature of starches.
Steady flow measurements of starch dispersions/gels are characterized by non-Newtonian behavior and described by a power law or the Herschel–Bulkley models. Most of the starches demonstrate shear-thinning behavior (flow index, \(n < 1 \)), with yield stresses and thixotropy (Ahuja et al., 2020). The \(n \) values for a pool of legume starches range from 0.37 to 0.76 (Byars & Singh, 2016). Thixotropic breakdown of navy bean starch has been reported at 10% and 12% concentrations during shearing at 85°C and 95°C (Lee et al., 1995). Other legume starches (faba bean and pea) also showed a lower thixotropy (i.e., shear dependence) than the cereal starches under similar conditions (Doublier, 1987).

3.3 | Retrogradation of legume starches

The gelatinized starches retrograde during storage and shorten the shelf life and acceptability of food products. Retrogradation in pulse starches have been studied extensively using various techniques (Betancur-Ancona et al., 2002; Hoover et al., 2010). However, syneresis is the most extensively studied method for pulse starches with a significant variation of data due to variations in measuring conditions. Syneresis is directly related to amylose content of starches, which reassociates rapidly to form a hard gel and expels out water present between the adjacent chains (Betancur-Ancona et al., 2002).

Syneresis is a concentration-dependent phenomenon and the syneresis index decreases with increasing the starch concentration for many cultivars of black bean, chickpea, lentils, and navy bean starches (Byars & Singh, 2016). Thermal analysis reflects reduction in enthalpy \(\Delta H_f \) of stored starches after gelatinization, which ranged from 3.86 to 8.07 J/g (Table 4). The \(\Delta H_f \) corresponds to melting of crystals formed through recrystallization of outer branch chains of amylopectin, which fail to regain the same degree of order as present in native starch resulted in \(\Delta H_f < \Delta H_{gel} \) (Gunaratne & Corke, 2007). Retrograded starches show reduced mobility compared to gelatinized starches due to formation of crystallites caused by AM-AM, AM-AMP, and AMP-AMP interactions.

3.4 | Pasting properties of legume starches

Pasting measures the starch behavior during the heating in excess water over time. The starch slurry undergoes a series of heating/cooling/holding phases during the measurements and the change in viscosity with temperature–time records during the experiment. It provides the information about the suitability of the starch for its industrial application. The most common equipment employed for the pasting properties of starch measurements are Brabender visco-amylograph (BVA), rapid viscosity analyzer (RVA), and paste cell attached to rheometer. However, Tsutsui et al. (2005) and Ahmed (2012) recommended that a precise rheometric measurement has more advantages than BVA/RVA to investigate starch characteristics by not rupturing the gel structure during the measurement.
TABLE 5 Pasting properties of selected legume starches measured using Brabender viscoamylograph and rapid viscoanalyzer

Starch source	Condition/unit	Viscosity (different units)	Reference						
		Peak viscosity	Hot paste	Breakdown	Cold paste/final	Setback	Peak time (min)	Pasting temperature (°C)	
Pigeon pea	RVU	45.42	43.75	1.67	58.86	15.11	6.94	86.54	Oladebeye et al. (2018)
Lima bean	RVU	84.67	63.63	21.03	74.28	10.64	5.01	86.54	Oladebeye et al. (2018)
Jack bean	RVU	32.52	29.50	3.03	38.92	9.42	5.65	86.31	Oladebeye et al. (2018)
Mung bean	mPa·s	7149	3937	4342	1130	4.10	70.7	Li et al. (2011)	
Triangular pea	mPa·s	3261	850	5051	2641	4.80	52.60	Li et al. (2014)	
White pea	mPa·s	3331	935	4476	2081	4.47	54.30	Li et al. (2014)	
Spotted colored pea	mPa·s	3196	846	4041	1691	4.70	50.45	Li et al. (2014)	
Small white kidney bean	mPa·s	4794	2156	5122	2529	4.06	50.25	Li et al. (2014)	
Lentil	Control; BU	958	586	372	1462	1080	9.00	77.7	Ahmed et al. (2016)
	400 MPa; BU	981	651	330	1548	937	10.2	80.2	Ahmed et al. (2016)
	600 MPa; BU	520	517	3	635	171	44.4	95	Ahmed et al. (2016)
Pigeon pea	Native; mPa·s	5892	-	2091	7950	4149	-	81.6	Acevedo et al. (2017)
	Germination; mPa·s	3997	-	1542	4431	1976	-	82.8	Acevedo et al. (2017)
	Soaking-cooking (6 h–60 min); mPa·s	6372	-	1167	6493	1288	-	74.1	Acevedo et al. (2017)
	Microwave 100%; mPa·s	6324	-	2058	7492	3675	-	82.5	Acevedo et al. (2017)
Dolichos bean	Native; mPa·s	6134	-	2601	7672	4139	-	75.7	Acevedo et al. (2017)
	Germination; mPa·s	1505	-	551	1362	408	-	76.6	Acevedo et al. (2017)
	Soaking-cooking (6 h–60 min); mPa·s	5350	-	2425	3550	625	-	65.4	Acevedo et al. (2017)
	Microwave 100%; mPa·s	6403	-	1812	8308	3717	-	77.2	Acevedo et al. (2017)
Jack bean	Native; mPa·s	1722	-	948	1407	642	-	85.5	Acevedo et al. (2017)
	Germination; mPa·s	1340	-	763	989	352	-	86.1	Acevedo et al. (2017)
		4292	-	752	5444	1904	-	88.9	Acevedo et al. (2017)
SBV decreased systematically as a function of pressure. The decrease in BDV break-down indicates that pressure-modified gel network is more heat-stable compared with control sample.

3.5 RS content and glycemic index (GI)

Legumes are frequently incorporated in food products to reduce postprandial plasma glucose response after ingestion, which is the key element for dietary management of people suffering from diabetes mellitus and cardiovascular diseases. Both in vitro and in vivo studies indicate that the legume starches are capable of lowering the GI because of the presence of higher RS and SDS content (Hoover & Zhou, 2003; Zhang et al., 2016). Legume flours have lower GI compared with extracted/isolated starches (Chung & Liu, 2012; Chung, Liu, Donner, et al., 2008; Chung, Liu, Pauls, et al., 2008) as the former contain both RS-1 (physically inaccessible starch due to presence of proteins) and RS-2 (un-gelatinized/semicrystalline form of starch) whereas the latter only contains RS-2 form. For native legume starches, RS ranges between 3.2% and 80.78% (Table 4).

The differences in RS content among legumes occur due to variation in amylose contents, amylopectin chain length distribution, surface morphology, ratio of A/B polymorphic content, degree of molecular order on granular surface, and packing of double helices in crystalline region (Ambigaipalan et al., 2014; Hoover et al., 2010). The size of the starch granule also influences the enzyme accessibility. Legumes with large granular diameters compared with cereals exhibit lower GI due to reduced surface area (Acevedo et al., 2020). The GI values for legumes are listed in Table 4. Extrusion has been found to decrease the RS content of all legume starches due to gelatinization, which unveils the whole structure of starch making it susceptible to enzymes. However, the RS content in legume starches was still found to be higher compared with corn starch after extrusion (Zhang et al., 2016). A higher RS-3 content is achieved after 24 h in cold storage for chickpea and lentil starches (Tovar et al., 2002).

4 LEGUME FIBERS

4.1 Dietary fiber (DF)

DF, a bioactive component of legumes, has proven health benefits. Legume fibers have ability to change textural, rheological, and sensorial characteristics of foods related to their physicochemical properties (Tosh & Yada, 2010). DFs are classified into soluble dietary fiber (SDF) and insoluble dietary fiber (IDF). The concentration of DF fractions differs in the hull (seed coat) and the cotyledons, which affects the physicochemical properties of legumes (Table 6). Legume hulls mainly consist of IDF, cellulose and hemicelluloses, and smaller amounts of lignin (Tiwari & Cummins, 2011). Legume cotyledons include mainly pectic substances, soluble fraction (~55%), and lower amounts of cellulose and nonstarchy noncellulosic glucans (Guillon & Champ, 2002; Tiwari & Cummins, 2011).
Physicochemical and functional properties of DFs

Major physicochemical properties of legume fibers/hull are summarized in Table 7. The solubility indexes of legume hulls vary widely. The highest and the lowest swelling capacity were observed in black gram and green gram, respectively. Black gram and dolichos hulls have the highest WHC, whereas soybean showed the highest OHC (Mannuramath & Jamuna, 2012). The amount of SDF and IDF fractions influences the physicochemical properties of legume ingredients. SDF has a significantly higher WHC than the IDF because of its hydrophilic character (Capuano, 2017). Pectic substances (soluble fractions) are known to be the major fraction responsible for legumes fiber’s water binding. Conversely, the insoluble fractions (pectic polysaccharides, lignin, cellulose, and hemicellulose) have the ability to enhance the oil-binding capacity of legume fibers (Huang et al., 2009; Vaz Patto et al., 2015).

DFs have the ability to change physical, rheological/textural, and sensorial properties of food systems according to their physicochemical properties (Martens et al., 2017). Pea fiber addition to meat products increased cooking yield without affecting sensorial properties of the products (Anderson & Berry, 2001; Besbes et al., 2008). Chickpea and soybean hull addition to white bread formulation reduced weight loss and firmness during storage and improved shelf life, and rheological, physical, and sensorial properties of white bread (Niño-Medina et al., 2019).

Human health is also influenced by the physicochemical properties of legume DFs. For instance, high WHC of legume DFs aids bowel movement through the colon. High-viscosity DFs (e.g., pectic substances), acting as a cation exchanger, help to absorb and remove toxic substances and decrease serum glucose and lipid levels through their ability to bind heavy metal ions (Tiwari & Cummins, 2011). Furthermore, cholesterol binding ability of legume DFs change according to the amount of SDF/IDF fractions, particle size of DFs,

Table 6: Dietary fiber contents of selected legume seeds and hulls (g/100 g dry basis)

Legume	Legume based ingredient	IDF	SDF	TDF	References
Common beans	Seed	9.90	2.10	12.20	Veena et al. (1995); Marconi et al. (2000); Kutoš et al. (2003);
	Hull	71.7a	5.6a	77.3a	Mahadevamma and Tharanathan (2004); Martín-Cabrejas et al. (2004);
Chickpea	Seed	8.76	2.82	11.58	Veena et al. (1995); Marconi et al. (2000); Dalgetty and Baik (2003);
	Hull	77.6a	6.50a	84.18a	Mannuramath and Jamuna (2012)
Cowpea	Seed	14.80	3.10	18.20	Veena et al. (1995); Carvalho et al. (2012); Benitez et al. (2013)
	Hull	69.78	1.08	70.86a	Mannuramath and Jamuna (2012)
Lentil	Seed	11.40	1.83	16.70	Perez-Hidalgo et al. (1997); Dalgetty and Baik (2003); Silva-Cristobal et
	Hull	9.07	1.05	10.97	Dalgetty and Baik (2003); Stoughton-Ens et al. (2010); Chen et al. (2016)

Abbreviations: IDF, insoluble dietary fiber; SDF, soluble dietary fiber; TDF, total dietary fiber.

Table 7: Physicochemical properties of seed coat (hull) of selected raw legumes

Legume seed coat	Solubility index (%)	Swelling power (%)	Water absorption capacity (g/g)	Oil absorption capacity (g/g)
Green gram	10.39	5.26	3.4	3.60
Bengal gram	10.32	5.57	3.7	4.30
Black gram	13.02	6.74	3.8	3.90
Red gram	13.04	5.31	3.7	4.20
Soybean	12.99	6.51	3.6	4.80
Dolichos	8.81	6.24	3.8	3.40
Pea	1.88	5.58	1.51	
Chickpea	3.61	6.24	1.76	
Lentil	2.38	3.64	1.63	

- Mannuramath and Jamuna (2012).
- Dalgetty and Baik (2003).
- Swelling capacity (ml/g).
- Water holding (ml/g).
- Oil binding (ml/g).
pH, and temperature of the environment, and the bile acid type (Górecka et al., 2003).

5 | CONCLUSIONS

Development and commercialization of legume ingredients, especially novel starches, PIs/fractions, and dietary fibers can offer economic benefits to the food industry and boost legume growers’ revenues as well. The bioactive properties of legume-derived proteins and peptides have gained interest in recent years. Further, being a low glycemic index product, legume starch contributes to a slow release of glucose. Legume dietary fibers are effective in normalizing bowel function and gastrointestinal health. Given the current trends, the demand for various legume ingredients will continue to grow in the future. The superior functionality of legume-based products will contribute to these trends since legume ingredients not only provide the daily nutritional requirements but are also capable of producing specialty food products. In summary, legumes will continue to play a key role in human nutrition, health, and increasingly recognized potential for enhanced crop environmental sustainability.

AUTHOR CONTRIBUTIONS

S.O. Keskin: Writing - original draft; T.M. Ali: Writing - original draft; J. Ahmed: conceptualization & Writing - original draft and editing; M. Shaikh: Writing - original draft, M. Siddiq: Conceptualization & Editing; M.A. Uebersax: Technical guidance & Editing.

CONFLICT OF INTEREST

No conflict of interest exists.

DATA AVAILABILITY STATEMENT

NA

ORCID

Semin Ozge Keskin https://orcid.org/0000-0002-4727-1508
Tahira Mohsin Ali https://orcid.org/0000-0003-3197-1806
Jasim Ahmed https://orcid.org/0000-0001-6483-4344
Muhammad Siddiq https://orcid.org/0000-0002-9047-3412

REFERENCES

Aberle, T., Burchard, W., Vorweg, W., & Radosta, S. (1994). Conformational contributions of amylose and amylopectin to the structural properties of starches from various sources. Starch-Stärke, 46, 329–335. https://doi.org/10.1002/star.19940460903
Acevedo, B. A., Thompson, C. M., González Foutel, N. S., Chaves, M. G., & Avanza, M. V. (2017). Effect of different treatments on the microstructure and functional and pasting properties of pigeon pea (Cajanus cajan L), dolichos bean (Dolichos lablab L) and jack bean (Canavalia ensiformis) flours from the north-east Argentina. International Journal of Food Science & Technology, 52, 222–230. https://doi.org/10.1111/ijfts.13271
Acevedo, B. A., Villanueva, M., Chaves, M. G., Avanza, M. V., & Ronda, F. (2020). Starch enzymatic hydrolysis, structural, thermal and rheological properties of pigeon pea (Cajanus cajan) and dolichos bean (Dolichos lab-lab) legume starches. International Journal of Food Science & Technology, 55, 712–719. https://doi.org/10.1111/ijfs.14334
Adebooye, O. C., & Singh, V. (2008). Physico-chemical properties of the flours and starches of two cowpea varieties (Vigna unguiculata (L.) Walp). Innovative Food Science & Emerging Technologies, 9, 92–100. https://doi.org/10.1016/j.ifset.2007.06.003
Ahmed, J. (2012). Rheometric non-isothermal gelatinization kinetics of mung bean starch slurry: Effect of salt and sugar–part 1. Journal of Food Engineering, 109(2), 321–328. https://doi.org/10.1016/j.jfoodeng.2011.08.014
Ahmed, J., Al-Ruwaili, N., Mulla, M., & Rahman, M. H. (2018). Effect of high pressure treatment on functional, rheological and structural properties of kidney bean protein isolate. Lwt, 91, 191–197. https://doi.org/10.1016/j.lwt.2018.01.054
Ahmed, J., Mulla, M., Al-Ruwaili, N., & Arfat, Y. A. (2019). Effect of high pressure treatment prior to enzymatic hydrolysis on rheological, thermal, and antioxidant properties of lentil protein isolate. Legume Science, 1(1), e10.
Ahmed, J., Mulla, M., Siddiq, M., & Dolan, K. D. (2021). Micromeritic, thermal, dielectric, and microstructural properties of legume ingredients—A review. Legume Science. (in review)
Ahmed, J., Thomas, L., Taheer, A., & Joseph, A. (2016). Impact of high pressure treatment on functional, rheological, pasting, and structural properties of lentil starch dispersions. Carbohydrate Polymers, 152, 639–647. https://doi.org/10.1016/j.carbpol.2016.07.008
Ahuja, A., Lee, R., Latshaw, A., & Foster, P. (2020). Rheology of starch dispersions at high temperatures. Journal of Texture Studies, 51, 575–584. https://doi.org/10.1111/jtxs.12517
Al-Ruwaili, N., Ahmed, J., Mulla, M. F., & Arfat, Y. A. (2019). High-pressure assisted enzymatic proteolysis of kidney beans protein isolates and characterization of hydrolysates by functional, structural, rheological and antioxidant properties. Lwt, 100, 231–236.
Ambigapalan, P., Hoover, R., Donner, E., & Liu, Q. (2014). Starch chain interactions within the amorphous and crystalline domains of pulse starches during heat-moisture treatment at different temperatures and their impact on physicochemical properties. Food Chemistry, 143, 175–184. https://doi.org/10.1016/j.foodchem.2013.07.112
Ambigapalan, P., Hoover, R., Donner, E., Liu, Q., Jaiswal, S., Chibbar, R., Nantanga, K. K. M., & Seetharaman, K. (2011). Structure of faba bean, black bean and pinto bean starches at different levels of granule organization and their physicochemical properties. Food Research International, 44(9), 2962–2974. https://doi.org/10.1016/j.foodres.2011.07.006
Anderson, E., & Berry, B. (2001). Effects of inner pea fiber on fat retention and cooking yield in high fat ground beef. Food Research International, 34, 689–694. https://doi.org/10.1016/S0963-9969(01)00089-8
Ariyaratna, I. R., & Karunaratne, D. N. (2015). Use of chickpea protein for encapsulation of folate to enhance nutritional potency and stability. Food and Bioprocess Technology, 9, 75–82. https://doi.org/10.1007/j.fbt.2015.04.004
Bajaj, R., Singh, N., Kaur, A., & Inouchi, N. (2018). Structural, morphological, functional and digestibility properties of starches from cereals, tubers and legumes: A comparative study. Journal of Food Science and Technology, 55(9), 3799–3808. https://doi.org/10.1007/s13197-018-3342-4
Bamdad, F., Goli, A. H., & Kadivar, M. (2004). Preparation and characterization of proteinous film from lentil (Lens culinaris): Edible film from lentil (Lens culinaris). Food Research International, 39, 106–111. https://doi.org/10.1016/j.foodres.2005.06.006
Baptista, A., Pinho, O., Pinto, E., Casal, S., Mota, C., & Ferreira, I. M. (2017). Characterization of protein and fat composition of seeds from common beans (Phaseolus vulgaris L.), cowpea (Vigna unguiculata L. Walp) and bambara groundnuts (Vigna subterranea L. Verdc) from Mozambique. Journal of Food Measurement and Characterization, 11(2), 442–450. https://doi.org/10.1007/s11694-016-9412-2
Barač, M. B., Pešić, M. B., Stanojević, S. P., Kostić, A. Z., & Bivolarević, V. (2015). Comparative study of the functional properties of three legume seed isolates: Azuki, pea and soy bean. *Journal of Food Science and Technology*, 52, 2779–2787. https://doi.org/10.1007/s13197-014-1298-6

Barač, M. B., Pešić, M. B., Stanojević, S. P., Kostić, A. Z., & Ćibrilo, S. B. (2015). Techno-functional properties of pea (*Pisum sativum*) protein isolates: A review. *Acta Periodica Technologica*, 46, 1–18.

Bello-Pérez, L. A., Sáyago-Ayerdi, S. G., Chávez-Murillo, C. E., Agama-Acevedo, E., & Tovar, J. (2007). Proximal composition and in vitro digestibility of starch in limb bean (*Phaseolus lunatus*) varieties. *Journal of the Science of Food and Agriculture*, 87, 2570–2575. https://doi.org/10.1002/jsfa.3005

Benítez, V., Canteria, S., Aguilera, Y., Mollá, E., Esteban, R. M., Díaz, M. F., & Martín-Cabrejas, M. A. (2013). Impact of germination on starch, dietary fiber and physicochemical properties of non-conventional legumes. *Food Research International*, 50, 64–69.

Besbes, S., Attia, H., Deroanne, C., Makni, S., & Blecker, C. (2008). Partial replacement of meat by pea fiber and wheat flour: Effect on the chemical composition, cooking characteristics and sensory properties of beef burgers. *Journal of Food Quality*, 31, 480–489. https://doi.org/10.1111/j.1745-4557.2008.00213.x

Betancur-Ancona, D. A., Chel-Guerrero, L. A., Bello-Pérez, L. A., & Boye, J., Zare, F., & Pletch, A. (2010). Pulse proteins: Processing, characterization, functional properties and applications in food and feed. *Food Research International*, 43, 414–431. https://doi.org/10.1016/j.foodres.2009.09.003

Byars, J. A., & Singh, M. (2016). Rheological and textural properties of pulse starch gels. *Starch-Stärke*, 68, 778–784. https://doi.org/10.1002/star.201500271

Cauhano, E. (2017). The behavior of dietary fiber in the gastrointestinal tract determines its physiological effect. *Critical Reviews in Food Science and Nutrition*, 57, 3543–3564. https://doi.org/10.1080/10408398.2016.1180501

Carvalho, A. F. U., de Sousa, N. M., Farias, D. A., da Rocha-Bezerra, L. C. B., da Silva, R. M. P., Vianna, M. P., Gouveia, S. T., Sampio, S. S., de Sousa, M. B., de Lima, G. P. G., & de Morais, S. M. (2012). Nutritional ranking of 30 Brazilian genotypes of cowpeas including determination of antioxidant capacity and vitamins. *Journal of Food Composition and Analysis*, 26, 81–88. https://doi.org/10.1016/j.jfca.2012.01.005

Chen, Y., McGee, R., Vandemark, G., Brick, M., & Thompson, H. J. (2016). Dietary fiber analysis of four pulses using AOAC. *Journal of the Science of Food and Agriculture*, 120, 1250–1279. https://doi.org/10.1002/jsfa.8000

Chung, H. J., & Liu, Q. (2012). Physicochemical properties and in vitro digestibility of flour and starch from pea (*Pisum sativum L.*) cultivars. *International Journal of Biological Macromolecules*, 50, 131–137. https://doi.org/10.1016/j.ijbiomac.2011.10.004

Chung, H. J., Liu, Q., Donner, E., Hoover, R., Warkentin, T. D., & Vandenberg, B. (2008). Composition, molecular structure, and properties, and in vitro digestibility of starches from newly released Canadian pulse cultivars. *Cereal Chemistry*, 85, 471–479. https://doi.org/10.1094/CCHEM-85-4-0471

Chung, H. J., Liu, Q., & Hoover, R. (2009). Impact of annealing and heat-moisture treatment on rapidly digestible, slowly digestible and resistant starch levels in native and gelatinized corn, pea and lentil starches. *Carbohydrate Polymers*, 75, 436–447. https://doi.org/10.1016/j.carbpol.2008.08.006

Chung, H. J., Liu, Q., Pauls, K. P., Fan, M. Z., & Yada, R. (2008). In vitro starch digestibility, expected glycemic index and some physicochemical properties of starch and flour from common bean (*Phaseolus vulgaris L.*) varieties grown in Canada. *Food Research International*, 41, 869–875. https://doi.org/10.1016/j.foodres.2008.03.013

Ciurescu, G., Toncea, I., Ropota, M., & Habeau, M. (2018). Seeds composition and their nutrients quality of some pea (*Pisum sativum L.*) and lentil (*Lens culinaris Medik.*) cultivars. *Romanian Agricultural Research*, 35, 101–108.

Dalgetty, D. D., & Baik, B. K. (2003). Isolation and characterization of cotyledon fibers from peas, lentils, and chickpeas. *Cereal Chemistry*, 80, 310–315. https://doi.org/10.1094/CCHEM.2003.80.3.310

Dhill, S. B., Punia, S., Kidwai, M. K., Kaur, M., Chawla, P., Purewal, S. S., Sangwan, M., & Palthania, S. (2020). Solid-state fermentation of lentil (*Lens culinaris L.*) with Aspergillus awamori: Effect on phenolic compounds, mineral content, and their bioavailability. *Legume Science*, 2, e37. https://doi.org/10.1002/leg.3.37

Dhill, S. B., Punia, S., Sandhu, K. S., Chawla, P., Kaur, R., & Singh, A. (2020). Effect of debittered fenugreek (*Trigonella foenum-graecum L.*) flour addition on physical, nutritional, antioxidant, and sensory properties of wheat flour rusk. *Legume Science*, 2, e21. https://doi.org/10.1002/leg.3.21

do Evangelio, J. A., Biduski, B., da Silva, W. M., de Mello El Halal, S. L., Lenhani, G. C., Zanella Pinto, V., Días, A. R., & da Rosa Zavareze, E. (2020). Carica bean starch upon synergic modification: Characteristics and films properties. *Journal of the Science of Food and Agriculture*, 101, 253–261.

Doublier, J. (1987). A rheological comparison of wheat, maize, faba bean and smooth pea starches. *Journal of Cereal Science*, 5, 247–262. https://doi.org/10.1016/S0733-5210(87)80026-7

Du, S. K., Jiang, H., Ai, Y., & Jane, J. L. (2014). Physicochemical properties and digestibility of common bean (*Phaseolus vulgaris L.*) starches. *Carbohydrate Polymers*, 108, 200–205.

Eyaru, R., Shrestha, A. K., & Arcot, J. (2009). Effect of various processing techniques on digestibility of starch in red kidney bean (*Phaseolus vulgaris*) and two varieties of peas (*Pisum sativum*). *Food Research International*, 42, 956–962. https://doi.org/10.1016/j.foodres.2009.06.007

Gharibzahedi, S. M. T., & Alavinya, S. J. (2017). Encapsulation of microbial phytase by spray drying: A focus on chitosan and pea protein isolate as high-efficient wall materials. 3rd National Seminar of Aqua Technology, Babolsar, Iran

Gharibzahedi, S. M. T., & Smith, B. (2021). Legume proteins are smart carriers to encapsulate hydrophilic and hydrophobic bioactive compounds and probiotic bacteria: A review. *Comprehensive Reviews in Food Science and Food Safety*, 20, 1250–1279. https://doi.org/10.1111/1541-4337.12699

Gong, B., Xu, M., Li, B., Wu, H., Liu, Y., Zhang, G., Ouyang, S., & Li, W. (2017). Repeated heat-moisture treatment exhibits superiorities in modification of structural, physicochemical and digestibility properties of red adzuki bean starch compared to continuous heat-moisture way. *Food Research International*, 102, 776–784. https://doi.org/10.1016/j.foodres.2017.09.078

Góręcka, D., Korczał, J., & Flazczyk, E. (2003). Adsorption of bile acids and cholesterol by dry grain legume seeds. *Polish Journal of Food and Nutrition Sciences*, 12, 69–73.

Grela, E. R., Kiczkorowska, B., Samolińska, W., Matras, J., Kiczorowski, P., Rybierski, W., & Hanczakowska, E. (2017). Chemical composition of leguminous seeds: Part I—Content of basic nutrients, amino acids, phytochemical compounds, and antioxidant activity. *European Food Research and Technology*, 243, 1385–1395. https://doi.org/10.1007/s00217-018-2494-7
molecular mechanisms. Current Opinion in Food Science, 20, 13–18. https://doi.org/10.1016/j.cofs.2018.02.012

Ma, M., Wang, Y., Wang, M., Jane, J., & Du, S. (2017). Physicochemical properties and in vitro digestibility of legume starches. Food Hydrocolloids, 63, 249–255. https://doi.org/10.1016/j.foodhyd.2016.09.004

Maaran, S., Hoover, R., Donner, E., & Liu, Q. (2014). Composition, structure, morphology and physicochemical properties of lablab bean, navy bean, rice bean, tepary bean and velvet bean starches. Food Chemistry, 152, 491–499. https://doi.org/10.1016/j.foodchem.2013.12.014

Mahadevamma, S., & Tharanathan, R. (2004). Processing of legumes: Resistant starch and dietary fiber contents. Journal of Food Quality, 27, 289–303. https://doi.org/10.1111/j.1745-4557.2004.00620.x

Mannuramath, M., & Jamuna, K. V. (2012). Physico-chemical characteristics of legume seed coat fibre. International Journal of Science and Research, 3(7), 2227–2232.

Marconi, E., Ruggeri, S., Cappelloni, M., Leonardi, D., & Carnovale, E. (2000). Physicochemical, nutritional, and microstructural characteristics of chickpeas (Cicer arietinum L.) and common beans (Phaseolus vulgaris L.) following microwave cooking. Journal of Agricultural and Food Chemistry, 48, 5986–5994. https://doi.org/10.1021/jf0008083

Martens, L. G., Nilsen, M., & Provan, F. (2017). Pea hull fibre: Novel and sustainable fibre with important health and functional properties. EC Nutrition, 10, 139–148.

Martín-Cabrejas, M. A., Sanfiz, B., Vidal, A., Mollá, E., Esteban, R., & López-Andreu, F. J. (2004). Effect of fermentation and autoclaving on dietary fiber fractions and antinutritional factors of beans (Phaseolus vulgaris L.). Journal of Agricultural and Food Chemistry, 52, 261–266. https://doi.org/10.1021/jf034980k

Miao, M., Zhang, T., & Jiang, B. (2009). Characterisation of kabuli and desi chickpea starches cultivated in China. Food Chemistry, 113, 1025–1032. https://doi.org/10.1016/j.foodchem.2008.08.056

Moreno-Valdespino, C. A., Luna-Vital, D., Camacho-Ruiz, R. M., & Mojica, L. (2020). Bioactive proteins and phytochemicals from legumes: Mechanisms of action preventing obesity and type-2 diabete.s. Food Research International, 130, 108905. https://doi.org/10.1016/j.foodres.2019.108905

Narina, S. S., Xu, Y., Hamama, A. A., Phatak, S. C., & Bhardwaj, H. L. (2012). Effect of cultivar and planting time on resistant starch accumulation in pigeonpea grown in Virginia. ISRN Agronomy, 2012, 1–4. https://doi.org/10.5402/2012/576471

Niño-Medina, G., Muy-Rangel, D., de la Garza, A., Rubio-Carrasco, W., Pérez-Meza, E., Arauz-Chapa, A., Gutiérrez-Álvarez, K., & Urías-Orona, V. (2019). Dietary fiber from chickpea (Cicer arietinum) and soybean (Glycine max) husk byproducts as baking additives: Functional and nutritional properties. Molecules, 24, 991. https://doi.org/10.3390/molecules24050991

Oladebaye, A. O., Oshodi, A. A., Amoo, I. A., & Karim, A. A. (2013). Hydroxypropyl derivatives of legume starches: Functional, rheological and thermal properties. Starch-Stärke, 65(10-19), 762–772.

Oladebaye, A. O., Oshodi, A. A., Amoo, I. A., & Karim, A. A. (2018). Gaseous ozonation of pigeon pea, Lima bean, and jack bean starches: Functional, thermal, and molecular properties. Starch-Stärke, 70, 1700367.

Olagunju, A. I., Omoa, O. S., Enujiugh, V. N., Wiens, R. A., Gough, K. M., & Aluko, R. E. (2020). Influence of acetylation on physicochemical and morphological characteristics of pigeon pea starch. Food Hydrocolloids, 100, 105424. https://doi.org/10.1016/j.foodhyd.2019.105424

Ovando-Martinez, M., Bello-Pérez, L. A., Whitney, K., Osorio-Díaz, P., & Simsek, S. (2011). Starch characteristics of bean (Phaseolus vulgaris L.) grown in different localities. Carbohydrate Polymers, 85, 54–64. https://doi.org/10.1016/j.carbpol.2011.01.043

Paredes-López, O., Maza-Calviño, E., González-Castañeda, J., & Montes-Rivera, R. (1988). Physico-chemical and functional properties of common bean (Phaseolus vulgaris) starches. Starch-Stärke, 40, 11–15. https://doi.org/10.1002/star.19880400104

Perez-Hidalgo, M. A., Guerra-Hernández, E., & García-Villanova, B. (1997). Dietary fiber in three raw legumes and processing effect on chick peas by an enzymatic-gravimetric method. Journal of Food Composition and Analysis, 10, 66–72. https://doi.org/10.1016/j.jfca.1997.0522

Pruhiwiiwantanakul, P., Wichienchotand, S., & Sirivongpaisal, P. (2014). Comparative studies on physico-chemical properties of starches from jackfruit seed and mung bean. International Journal of Food Properties, 17, 1965–1976. https://doi.org/10.1080/10942912.2013.775151

Punia, S., Dhull, S. B., Sandhu, K. S., Kaur, M., & Purewal, S. S. (2020). Kidney bean (Phaseolus vulgaris) starch: A review. Legume Science, 2, e52.

Ratnasingh, N., Suparno, E., & Marsono, Y. (2017). In vitro starch digestibility and estimated glycemic index of Indonesian cowpea starch (Vigna unguiculata). Pakistan Journal of Nutrition, 16, 1–8.

Ratnayake, W. S., Hoover, R., & Warkentin, T. (2002). Pea starch: Composition, structure and properties—A review. Starch-Stärke, 54, 217–234. https://doi.org/10.1002/jsfa.9078

Rupollo, G. (2011). Efeitos das condições e do tempo de armazenamento na qualidade de grãos de feijão carioca. Universidade Federal de Pelotas.

Sandhu, K. S., & Lim, S.-T. (2008). Digestibility of legume starches as influenced by their physical and structural properties. Carbohydrate Polymers, 71, 245–252. https://doi.org/10.1016/j.carbpol.2007.05.036

Saremnehad, S., Azizi, M., Barzegar, M., Abbasi, S., & Ahmad, E. (2011). Properties of a new edible film made of faba bean protein isolate. Journal of Agricultural Science and Technology, 13, 181–192.

Segura-Campos, M., Chel-Guerrero, L., & Betancur-Ancona, D. (2010). Effect of octenylsuccinylation on functional properties of lima bean (Phaseolus lunatus) starch. Journal of Food Process Engineering, 33, 712–727.

Sharma, V., Kaur, M., Sandhu, K. S., & Godara, S. K. (2020). Effect of cross-linking on physico-chemical, thermal, pasting, in vitro digestibility and film forming properties of faba bean (Vicia faba L) starch. International Journal of Biological Macromolecules., 159, 243–249. https://doi.org/10.1016/j.ijbiomac.2020.05.014

Siddiq, M., & Uebersax, M. A. (2012). Dry beans and pulses production and consumption—An overview. In Dry beans and pulses production, processing and nutrition (pp. 3–22). Ames, Iowa, USA: Blackwell Publ. https://doi.org/10.1002/9781118448298.ch1

Silva-Cristobal, L., Osorio-Díaz, P., Tovar, J., & Bello-Pérez, L. (2010). Chemical composition, carbohydrate digestibility, and antioxidant capacity of cooked black bean, chickpea, and lentil Mexican varieties. Cyto–Journal of Food, 8, 7–14. https://doi.org/10.1080/19476330.903119218

Simsek, S., Ovando-Martinez, M., Whitney, K., & Bello-Pérez, L. A. (2012). Effect of acetylation, oxidation and annealing on physicochemical properties of bean starch. Food Chemistry, 134, 1796–1803. https://doi.org/10.1016/j.foodchem.2012.03.078

Singh, U., Voraputhaporn, W., Rao, P., & Jambunathan, R. (1989). Physicochemical characteristics of pigeonpea and mung bean starches and their noodle quality. Journal of Food Science, 54, 1293–1297. https://doi.org/10.1111/j.1136-2621.1989.tb05976.x
Stoughton-Ens, M., Hatcher, D., Wang, N., & Warkentin, T. (2010). Influence of genotype and environment on the dietary fiber content of field pea (Pisum sativum L.) grown in Canada. Food Research International, 43, 547–552. https://doi.org/10.1016/j.foodres.2009.07.011

Su, H., Lu, W., & Chang, K. (1998). Microstructure and physicochemical characteristics of starches in six bean varieties and their bean paste products. Lwt, 31, 265–273.

Thakur, S., Shrivastava, S. K., & Shrivastava, M. (2017). Amino acid profile of some new varieties of leguminous seeds. The Elixir Journal, 8, 48–53.

Tiwari, U., & Cummins, E. (2011). Physico-chemical properties of starches from Indian kidney bean (Pisum sativum L.) grown in Canada. Food Research International, 43, 540–546. https://doi.org/10.1016/j.foodres.2009.09.005

Tovar, J., Melito, C., Herrera, E., Rascón, A., & Pérez, E. (2002). Resistant starch formation does not parallel syneresis tendency in different starch gels. Food Chemistry, 76(4), 455–459. https://doi.org/10.1016/S0308-8146(01)00306-5

Trinidad, T. P., Maillillin, A. C., Loyola, A. S., Sagum, R. S., & Encabo, R. R. (2010). The potential health benefits of legumes as a good source of dietary fibre. British Journal of Nutrition, 103, 569–574. https://doi.org/10.1017/S0007114509992157

Tsutsui, K., Katsuta, K., Matoba, T., Takemasa, M., & Nishinari, K. (2005). Effect of annealing temperature on gelatinization of rice starch suspension as studied by rheological and thermal measurements. Journal of Agricultural and Food Chemistry, 53, 9056–9063. https://doi.org/10.1021/jf051001j

Vaz Patto, M. C., Amarowicz, R., Aryee, A. N., Boye, J. I., Chung, H. J., Martín-Cabrejas, M. A., & Domoney, C. (2015). Achievements and challenges in improving the nutritional quality of food legumes. Critical Reviews in Plant Sciences, 34, 105–143. https://doi.org/10.1080/07352689.2014.897907

Veena, A., Urooj, A., & Puttaraj, S. (1995). Effect of processing on the composition of dietary fibre and starch in some legumes. Food/Nahrung, 39, 132–138. https://doi.org/10.1002/food.19950390206

Venkidasamy, B., Selvaraj, D., Nile, A. S., Ramalingam, S., Kai, G., & Nile, S. H. (2019). Indian pulses: A review on nutritional, functional and biochemical properties with future perspectives. Trends in Food Science & Technology, 88, 228–242. https://doi.org/10.1016/j.tifs.2019.03.012

Wang, H., Wang, Z., Li, X., Chen, L., & Zhang, B. (2017). Multi-scale structure, pasting and digestibility of heat moisture treated red adzuki bean starch. International Journal of Biological Macromolecules, 102, 162–169. https://doi.org/10.1016/j.ijbiomac.2017.03.144

Wang, Y., Wang, Y., Li, K., Bai, Y., Li, B., & Xu, W. (2020). Effect of high intensity ultrasound on physicochemical, interfacial and gel properties of chickpea protein isolate. Lwt, 129, 109563. https://doi.org/10.1016/j.lwt.2020.109563

Wani, I. A., Sogi, D. S., Wani, A. A., Gill, B. S., & Shivhare, U. S. (2010). Physico-chemical properties of starches from Indian kidney bean (Phaseolus vulgaris) cultivars. International Journal of Food Science & Technology, 45, 2176–2185. https://doi.org/10.1111/j.1365-2621.2010.02379.x

Xu, M., Saleh, A. S., Liu, Y., Jing, L., Zhao, K., Wu, H., Zhang, G., Yang, S. O., & Li, W. (2018). The changes in structural, physicochemical, and digestive properties of red adzuki bean starch after repeated and continuous annealing treatments. Starch–Stärke, 70, 1700322. https://doi.org/10.1002/star.201700322

Xu, X., Qiao, Y., Shi, B., & Dia, V. P. (2021). Alcalase and bromelain hydrolysis affected physicochemical and functional properties and biological activities of legume proteins. Food Structure, 27, 100178. https://doi.org/10.1016/j.foodstr.2021.100178

Yadav, B. S., Yadav, R. B., & Kumar, M. (2011). Suitability of pigeon pea and rice starches and their blends for noodle making. Lwt, 44, 1415–1421. https://doi.org/10.1016/j.lwt.2011.01.004

Yadav, U., Singh, N., Arora, S., & Arora, B. (2019). Physicochemical, pasting, and thermal properties of starches isolated from different adzuki bean (Vigna angularis) cultivars. Journal of Food Processing and Preservation, 43, e14163.

Yao, M., Tian, Y., Wang, W., Huang, M., Zhou, S., & Liu, X. (2019). The multi-scale structure, thermal and digestion properties of mung bean starch. International Journal of Biological Macromolecules, 131, 871–878. https://doi.org/10.1016/j.ijbiomac.2019.03.102

Yniestra Marure, L. M., Núñez-Santiago, M. C., Agama-Acevedo, E., & Bello-Perez, L. A. (2019). Starch characterization of improved chickpea varieties grown in Mexico. Starch–Stärke, 71(3–4), 1800139. https://doi.org/10.1002/star.201800139

Zhang, H., Yin, L., Zheng, Y., & Shen, J. (2016). Rheological, textural, and enzymatic hydrolysis properties of chickpea starch from a Chinese cultivar. Food Hydrocolloids, 54, 23–29. https://doi.org/10.1016/j.foodhyd.2015.09.018

Zhang, J., & Zhai, A. (2020). Microstructure, thermodynamics, and rheological properties of different types of red adzuki bean starch. Quality Assurance and Safety of Crops & Foods, 12, 89–99. https://doi.org/10.15586/qas.v12i2.720

Zhang, Z., Tian, X., Wang, P., Jiang, H., & Li, W. (2019). Compositional, morphological, and physicochemical properties of starches from red adzuki bean, chickpea, faba bean, and baiyue bean grown in China. Food Science and Nutrition, 7(8), 2485–2494.

Zhou, Y., Hoover, R., & Liu, Q. (2004). Relationship between α-amylase degradation and the structure and physicochemical properties of legume starches. Carbohydrate Polymers, 57, 299–317. https://doi.org/10.1016/j.carbpol.2004.05.010

How to cite this article: Keskin, S. O., Ali, T. M., Ahmed, J., Shaikh, M., Siddiq, M., & Uebersax, M. A. (2022). Physico-chemical and functional properties of legume protein, starch, and dietary fiber—a review. Legume Science, 4(1), e117. https://doi.org/10.1002/leg3.117