Editorial: The Microbiome in Hepatobiliary and Intestinal Disease

Phillipp Hartmann1,2*

1Department of Pediatrics, University of California, San Diego, San Diego, CA, United States, 2Division of Gastroenterology, Hepatology and Nutrition, Rady Children’s Hospital San Diego, San Diego, CA, United States

Keywords: Microbiome and dysbiosis, digestive diseases, Liver disease, Intestinal disease, microbiota

Editorial on the Research Topic

The Microbiome in Hepatobiliary and Intestinal Disease

INTRODUCTION

This Editorial provides a brief overview of the changes in the intestinal microbiome with focus on the bacterial microbiome in a wide range of diseases affecting the human digestive system and then highlights the specific articles of this Research Topic.

GUT MICROBIOME CHANGES IN DISEASES AFFECTING THE HUMAN DIGESTIVE SYSTEM

Essentially all diseases affecting the human digestive system are associated with significant increases and decreases of sub-populations of the gut microbiome compared with controls subjects; recurrent changes of the intestinal bacterial microbiome observed across 30 different conditions of the human digestive system are summarized in Figure 1. Briefly, Streptococcus (Llopis et al., 2016; Maccioni et al., 2020; Gao et al., 2021), Actinomyces (Ciocan et al., 2018; Maccioni et al., 2020; Gao et al., 2021), and Rothia (Ciocan et al., 2018; Maccioni et al., 2020) are increased, whereas Faecalibacterium (prausnitzii) (Gao et al., 2020a; Gao et al., 2020b; Maccioni et al., 2020) and Bacteroides (Puri et al., 2018; Gao et al., 2020a; Maccioni et al., 2020; Gao et al., 2021) are decreased in abundance in alcohol-associated liver disease (ALD). Faecalibacterium (prausnitzii) (Wong et al., 2013; Da Silva et al., 2018; Oh et al., 2020a) is also detected at diminished concentrations in non-alcoholic fatty liver disease (NAFLD) similar to Coprococcus (Zhu et al., 2013; Wang et al., 2016; Da Silva et al., 2018), whereas Escherichia (coli) (Zhu et al., 2013; Jiang et al., 2015; Oh et al., 2020a) and Lactobacillus (Raman et al., 2013; Jiang et al., 2015; Da Silva et al., 2018) are increased in NAFLD. Liver cirrhosis is associated with elevated intestinal levels of Enterococcus (faecalis) (Zhao et al., 2004; Chen et al., 2011; Bajaj et al., 2012), Prevotella (Qin et al., 2014; Chen et al., 2016; Shao et al., 2018; Ponziani et al., 2019; Zeng et al., 2020), Clostridium (Zhao et al., 2004; Chen et al., 2011; Bajaj et al., 2012; Qin et al., 2014; Heidrich et al., 2018; Shao et al., 2018), Veillonella (Qin et al., 2014; Chen et al., 2016; Shao et al., 2018; Oh et al., 2020a; Zeng et al., 2020), Lactobacillus (Qin et al., 2014; Heidrich et al., 2018; Shao et al., 2018; Ponziani et al., 2019; Zeng et al., 2020), Atopobium (Chen et al., 2016; Ponziani et al., 2019; Zeng et al., 2020), and Streptococcus (Qin et al., 2014; Shao et al., 2018; Ponziani et al., 2019; Oh et al., 2020a), and with reduced levels of Dorea (Bajaj et al., 2012; Oh et al., 2020a), Alistipes (Qin et al., 2014; Shao et al., 2018; Oh et al., 2020a), and Subdoligranulum (Bajaj et al., 2012; Qin et al., 2014; Shao et al., 2018). Gut microbiome changes in hepatocellular carcinoma (HCC) are similar to the...
ones identified in liver cirrhosis, indicating their relationship also on a microbial level. HCC is frequently linked to high intestinal amounts of Bacteroides (Ponziani et al., 2019; Huang et al., 2020; Zeng et al., 2020), Enterococcus (Ni et al., 2019; Ponziani et al., 2019; Xin et al., 2019), Veillonella (Ni et al., 2019; Zeng et al., 2020), and Atopobium (Ni et al., 2019; Zeng et al., 2020), and low amounts of Ruminococcus (Ren et al., 2019; Zeng et al., 2020), Alistipes (Ren et al., 2019; Huang et al., 2020), and Bifidobacterium (Ponziani et al., 2019; Xin et al., 2019).

Hepatitis B is associated with increased Actinomyces (Wang et al., 2017; Yao et al., 2021), Megamonas (Wang et al., 2017; Joo et al., 2021), Enterococcus (faecalis) (Lu et al., 2011; Yao et al., 2021), Veillonella (Yang et al., 2020; Zeng et al., 2020; Yao et al., 2021), Streptococcus (Yang et al., 2020; Yao et al., 2021), and Atopobium (Zeng et al., 2020; Yao et al., 2021), and decreased Bifidobacterium spp. (Lu et al., 2011; Xu et al., 2012), Faecalibacterium (prausnitzii) (Lu et al., 2011; Yang et al., 2020), Parabacteroides (Wang et al., 2017; Yao et al., 2021), and Ruminococcus (Wang et al., 2017; Yao et al., 2021) in abundance, whereas patients with hepatitis C have been found enriched in Prevotella (Aly et al., 2016; Sultan et al., 2021a), Lactobacillus (Heidrich et al., 2018; Inoue et al., 2018), Streptococcus (Heidrich et al., 2018; Inoue et al., 2018), and Veillonella (Aly et al., 2016; Heidrich et al., 2018), and depleted of Ruminococcus (Aly et al., 2016; Mohieldeen et al., 2021) and Butyricimonas (Aly et al., 2016; Heidrich et al., 2018) compared with control subjects.

The various autoimmune liver diseases exhibit similar gut microbiome alterations: Stool samples of patients with autoimmune hepatitis are characterized by large quantities of Veillonella (Elsherbiny et al., 2020; Liwinski et al., 2020; Lou et al., 2020; Wei et al., 2020), Streptococcus (Elsherbiny et al., 2020; Liwinski et al., 2020; Wei et al., 2020), Haemophilus (Elsherbiny et al., 2020; Lou et al., 2020), and Klebsiella (Lou et al., 2020; Wei et al., 2020), and small quantities of Bifidobacterium (Lin et al., 2015; Liwinski et al., 2020), Parabacteroides (Elsherbiny et al., 2020).
2020; Lou et al., 2020; Wei et al., 2020), and Ruminococcaceae (Lou et al., 2020; Wei et al., 2020). Primary biliary cholangitis is associated with an elevated abundance of *Streptococcus* (Lv et al., 2016; Tang et al., 2018; Furukawa et al., 2020), *Veillonella* (Lv et al., 2016; Abe et al., 2018; Tang et al., 2018), *Klebsiella* (Lv et al., 2016; Tang et al., 2018), *Haemophilus* (Lv et al., 2016; Tang et al., 2018), and *Lactobacillus* (Tang et al., 2018; Furukawa et al., 2020), and diminished *Ruminococcus/Ruminococcaceae* (Lv et al., 2016; Furukawa et al., 2020) and *Faecalibacterium* (Tang et al., 2018; Furukawa et al., 2020), while primary sclerosing cholangitis is linked to enlarged proportions of *Veillonella* (Bajer et al., 2017; Kummen et al., 2017; Rühlemann et al., 2019; Cortez et al., 2020; Lapidot et al., 2021), *Streptococcus* (Sabino et al., 2016; Bajer et al., 2017; Rühlemann et al., 2019; Lapidot et al., 2021), and *Enterococcus* (Sabino et al., 2016; Bajer et al., 2017), as well as depressed proportions of *Coprooccus* (Bajer et al., 2017; Kummen et al., 2017; Rühlemann et al., 2019; Kummen et al., 2021), *Faecalibacterium prausnitzii* (Bajer et al., 2017; Lapidot et al., 2021), and *Lachnospiraceae* (Bajer et al., 2017; Kummen et al., 2017; Kummen et al., 2021; Lapidot et al., 2021). Enriched gut microbiota in Wilson’s Disease are *Bacteroides* (Geng et al., 2018; Cai et al., 2020) and *Megamonas* (Geng et al., 2018; Cai et al., 2020), whereas *Ruminococcus* (Cai et al., 2020) and *Roseburia* (Geng et al., 2018) are reduced. Glycogen storage disease shows overrepresented intestinal *Escherichia* (Colonetti et al., 2019; Ceccarani et al., 2020) and *Proteobacteria* (Colonetti et al., 2019; Ceccarani et al., 2020), and underrepresented *Faecalibacterium* (Colonetti et al., 2019; Ceccarani et al., 2020) and *Roseburia* (Colonetti et al., 2019; Ceccarani et al., 2020). Liver transplantation results in expansion of *Enterococcus* spp. (Wu et al., 2012; Annavajhala et al., 2019; Song et al., 2021a), *Dorea* (Bajaj et al., 2018; Annavajhala et al., 2019), *Blautia* (Sun et al., 2017; Bajaj et al., 2018; Song et al., 2021a), and *Streptococcus* (Bajaj et al., 2018; Annavajhala et al., 2019), and reduction of *Faecalibacterium (prausnitzii)* (Wu et al., 2012; Annavajhala et al., 2019; Lu et al., 2019; Song et al., 2021a), *Escherichia* (Bajaj et al., 2017; Sun et al., 2017; Bajaj et al., 2018), *Shigella* (Bajaj et al., 2017; Sun et al., 2017; Bajaj et al., 2018), and *Bifidobacterium* (Wu et al., 2012; Bajaj et al., 2018).

Gallbladder disease is linked to enriched *Ruminococcus gnavus* (Wang et al., 2020a; Zhang et al., 2021a) and *Akkermansia* (Liu et al., 2015; Zhang et al., 2021a), and depleted *Faecalibacterium* (Wu et al., 2013; Wang et al., 2020a), *Roseburia* (Wu et al., 2013; Keren et al., 2015; Zhang et al., 2021a), and *Prevotella 9* (Wang et al., 2020a; Zhang et al., 2021a). Cholangiocarcinoma is associated with enlarged fecal proportions of *Lactobacillus* (Jia et al., 2020; Zhang et al., 2021a) and *Peptostreptococcaceae* (Jia et al., 2020; Zhang et al., 2021a), and smaller proportions of *Ruminococcus* (Jia et al., 2020; Zhang et al., 2021a) and *Faecalibacterium* (Zhang et al., 2021a). The intestinal contributions of *Streptococcus* (Wang et al., 2020b; Song et al., 2021b) and *Klebsiella* (Wang et al., 2020b; Song et al., 2021b) are increased in biliary atresia, and those of *Bifidobacterium* (Wang et al., 2020b; Song et al., 2021b), *Blautia* (Wang et al., 2020b; Song et al., 2021b), and *Faecalibacterium* (Wang et al., 2020b; Song et al., 2021b) are decreased. The microbial changes occurring in acute and chronic pancreatitis compared with controls are similar: Acute pancreatitis is characterized by overrepresentation of *Enterococcus (faecalis)* (Zhu et al., 2019; Yu et al., 2020), *Escherichia (coli)* (Zhu et al., 2019; Yu et al., 2020), and *Enterobacteriaceae* (Tan et al., 2015; Zhu et al., 2019), and underrepresentation of *Faecalibacterium* (Zhu et al., 2019; Yu et al., 2020), *Bifidobacterium* (Zhu et al., 2019; Yu et al., 2020), and *Blautia* (Zhu et al., 2019; Yu et al., 2020), whereas chronic pancreatitis exhibits elevated fecal amounts of *Escherichia (coli)* (Savitskaia et al., 2002; Zhou et al., 2020a; Frost et al., 2020) and *Enterococcus (faecalis and faecium)* (Savitskaia et al., 2002; Frost et al., 2020), and lower amounts of *Faecalibacterium (prausnitzii)* (Jandhyala et al., 2017; Zhou et al., 2020a; Wang et al., 2020c; Frost et al., 2020), *Coprooccus* (Zhou et al., 2020a; Frost et al., 2020), *Subdoligranulum* (Zhou et al., 2020a; Wang et al., 2020c), and *Collinsella* (Zhou et al., 2020a; Wang et al., 2020c). Pancreatic cancer is associated with an expansion of *Klebsiella* (Ren et al., 2017; Pushkarkar et al., 2018; Matsukawa et al., 2021), *Veillonellae* (Ren et al., 2017; Pushkarkar et al., 2018; Matsukawa et al., 2021), and *Lactobacillus* (Ren et al., 2017; Matsukawa et al., 2021), as well as reduced *Megamonas* (Ren et al., 2017; Pushkarkar et al., 2018), *Anaerostipes* (Ren et al., 2017; Pushkarkar et al., 2018; Half et al., 2019), *Parabacteroides* (Pushkarkar et al., 2018; Matsukawa et al., 2021), and *Lactobacillus* (Ren et al., 2017; Matsukawa et al., 2021), whereas *Ruminococcus* (Cai et al., 2020) and *Roseburia* (Wang et al., 2020b; Song et al., 2021a) are decreased. Gastritis is characterized by enriched *Helicobacter pylori* (Parsons et al., 2017; Yang et al., 2019; Ndegwa et al., 2020) and *Streptococcus* (Li et al., 2009; Gao et al., 2018; Cui et al., 2019), and depleted *Prevotella* (Parsons et al., 2017; Cui et al., 2019; Ndegwa et al., 2020) and *Acinetobacter* (Parsons et al., 2017; Cui et al., 2019; Ndegwa et al., 2020). In gastric cancer, *Lactobacillus* (Qi et al., 2019; Wang et al., 2020d; Gantuya et al., 2020) and *Veillonella* (Castaño-Rodríguez et al., 2017; Qi et al., 2019; Wang et al., 2020d) are increased, whereas *Pseudomonas* (Wang et al., 2020d; Gantuya et al., 2020) and *Lactococcus* (Chen et al., 2019; Gunanithale et al., 2019; Wang et al., 2020d) are decreased. Irritable bowel syndrome is linked to overrepresented *Ruminococcus gnavus* (Rajilić-Stojanović et al., 2011; Rangel
Celiac disease is associated with enlarged proportions of *Escherichia coli* (Nadal et al., 2007; Collado et al., 2009; Schippa et al., 2010), *Bacteroides* (*fragilis* and *vulgatus*) (Nadal et al., 2007; Collado et al., 2009; De Palma et al., 2010; Schippa et al., 2010; Sánchez et al., 2012), and *Staphylococcus* (Collado et al., 2009; Sánchez et al., 2013), and contracted contributions of *Bifidobacterium* (Sanz et al., 2007; Collado et al., 2009; De Palma et al., 2010) and *Firmicutes* (Sánchez et al., 2013; Iaffaldano et al., 2018). The gut microbiome of patients with intestinal failure is commonly enriched in *Lactobacillus* (Joly et al., 2010; Korpela et al., 2016) and *Proteobacteria* (Davidovics et al., 2016; Korpela et al., 2017), and diminished in *Dorea* (Huang et al., 2017; Piper et al., 2017) and *Blautia* (Huang et al., 2017; Piper et al., 2017).

Acute appendicitis is characterized by elevated levels of *Fusobacterium* (Swidsinski et al., 2011; Guinane et al., 2013; Jackson et al., 2014; Zhong et al., 2014; Rogers et al., 2016), *Pseudomonas* (Guinane et al., 2013; Jackson et al., 2014; Zhong et al., 2014; Rogers et al., 2016), *Campylobacter jejuni* (Campbell et al., 2006; Oh et al., 2020b), and *Gemella* (Guinane et al., 2013; Zhong et al., 2014), and reduced levels of *Bacteroides* (Swidsinski et al., 2011; Samuelsson et al., 2013; Zhong et al., 2014; Rogers et al., 2016), *Ruminococcus* (Samuelsson et al., 2013; Munakata et al., 2021), and *Faecalibacterium prausnitzii* (Swidsinski et al., 2011; Samuelsson et al., 2013). The gut microbiome signature of chronic constipation consists of large proportions of *Clostridium* (Zoppi et al., 1998; Zhu et al., 2014) and *Parabacteroides* (de Meij et al., 2016; Li et al., 2020b), and depressed amounts of *Lactobacillus* (Khalif et al., 2005; Moraes et al., 2016; Jomehzadeh et al., 2020) and *Roseburia* (Mancabelli et al., 2017; Li et al., 2020b). Stool analysis of patients with inflammatory bowel disease (IBD) frequently demonstrates overrepresentation of *Veillonella* (Gevers et al., 2014; Mottawea et al., 2016; Santoru et al., 2017; Schirmer et al., 2018) and *Escherichia coli* (Schwiertz et al., 2010; Sha et al., 2013; Gevers et al., 2014; Santoru et al., 2017), and underrepresentation of *Faecalibacterium prausnitzii* (Schwiertz et al., 2010; Joossens et al., 2011; Morgan et al., 2012; Kumari et al., 2013; Gevers et al., 2014; Machiels et al., 2014; Schirmer et al., 2018), and *Roseburia* (Morgan et al., 2012; Kumari et al., 2013; Rajilić-Stojanović et al., 2013; Gevers et al., 2014; Machiels et al., 2014). *Fusobacterium nucleatum* (Kostic et al., 2012; Ahn et al., 2013; Warren et al., 2013; Zeller et al., 2014; Gao et al., 2015; Mira-Pascual et al., 2015; Yu et al., 2017; Dai et al., 2018; Guo et al., 2018) is commonly enriched in colorectal cancer along with *Peptostreptococcus* (Wang et al., 2012; Ahn et al., 2013; Zeller et al., 2014; Gao et al., 2015; Yu et al., 2017), whereas *Faecalibacterium prausnitzii* (Balamurugan et al., 2008; Kostic et al., 2012; Guo et al., 2018) and *Bifidobacterium* (Mira-Pascual et al., 2015; Dai et al., 2018; Guo et al., 2018) are depressed in number.

Fungi, viruses, and other non-bacterial populations are also detected at aberrant proportions in disorders of the digestive system, e.g., the fungus *Candida albicans* is increased in ALD (Lang et al., 2020a; Hartmann et al., 2021), NAFLD (Demir et al., 2021), gastric cancer (Zhong et al., 2021), IBD (Sokol et al., 2017), and colorectal cancer. (Starý et al., 2020) Viruses have also been correlated with disease activity in alcoholic hepatitis (Jiang et al., 2020) and NAFLD (Lang et al., 2020b) among others. Archaea have been investigated as well, *Methanospaera stadtmanniae* (Blais-Lecours et al., 2014) has been found to be more abundant and *Methanobrevibacter smithii* (Ghavami et al., 2018) has been found to be depleted in the gut microbiome of patients with IBD.

DISEASE ASSOCIATION INDEX

When evaluating the microbiome findings of these 30 disorders of the digestive system above, striking observations can be made: *Faecalibacterium prausnitzii* is associated with 16 of these conditions, and this bacterium is decreased in all of these 16 conditions. In contrast, the fecal abundance of *Veillonella* and *Veillonellaceae* is increased in 13 out of 13 diseases and that of *Streptococcus* is increased in 10 out of 10 conditions in which a robust association has been demonstrated. To evaluate how likely a microbial population is increased or decreased across diseases that it is associated with, a Disease Association Index (DAI) can be calculated by dividing the increased-decreased net value (= the number of diseases in which the microbial population is increased minus the number of diseases in which the microbial population is decreased) by the total number of diseases that the population has been associated with. E.g. the DAI for *Faecalibacterium prausnitzii* among the digestive diseases discussed above is −1 (= 0–16/16); the DAI for *Veillonella* and *Veillonellaceae* as well as for *Streptococcus* is +1 (= 13–0/13) and +1 (= 10–0/10), respectively. The DAI ranges from −1 to +1; the higher the value the more likely the microbial population to be increased in the evaluated diseases, and the lower the more likely that the population is decreased in the analyzed conditions. The closer the DAI is to 0, the more ambivalent is the microbial population. A DAI of +0.6 or higher, and a DAI of −0.6 or lower indicates that the abundance of a microbe can be considered highly positively or negatively correlated with disease, respectively. *Ruminococcus* has a DAI of −0.6 (2 increases/8 decreases), indicating that it is predominantly decreased in digestive diseases (of note, the species *Ruminococcus gravis* is responsible for both increased abundances of *Ruminococcus* in these diseases, see above). Additional notable DAI: *Bifidobacterium* −0.8 (1 increase/9 decreases), *Lactobacillus/Lactobacilli* +0.78 (8/1), *Escherichia coli* +0.71 (6/1), *Enterococcus (faecalis/faecium)* +1 (7/0), *Dorea* −0.2 (2/3), *Prevotella −0.2 (2/3), Bacteroides (fragilis/vulgatus)* +0.2 (3/2), *Roseburia* −1 (0/5), and *Klebsiella* +1 (4/0).

Targeted repletion trials for bacterial populations that are predominantly decreased (such as repletion of *Faecalibacterium prausnitzii* in a murine colitis model), (Martín et al., 2014) or targeted elimination trials for populations that are predominantly increased (such as...
elimination of cytolytic Enterococcus faecalis via targeted bacteriophages in a murine model of alcohol-induced liver disease) (Duan et al., 2019) could be attempted in the future.

ARTICLES IN THIS RESEARCH TOPIC

The articles in this Research Topic are very diverse and wide-ranging. Zheng et al. describe microbiome and metabolite differences in various autoimmune liver diseases (Zheng et al.). Warner et al. characterize the role of human beta defensin-2 in alcohol-induced liver injury in mice (Warner et al.) . Chen et al. discuss the role of the microbiota in the pathogenesis of chemical-induced acute liver injury models in rodents and the protective use of probiotics herein (Chen et al.). Zhang et al. demonstrate that hepatic branch vagotomy results in decreased dysbiosis but increased hepatic steatosis and continued neuro-inflammation in murine cirrhosis secondary to carbon tetrachloride injections (Zhang et al.). Song et al. analyzed changes of the gut microbiome in patients with biliary atresia after liver transplantation (Song et al.). Chen et al. report microbiome and metabolite shifts in a mouse model of gallstone disease (Chen et al.). Rao et al. discuss microbiome changes in cholangiocarcinoma and related precancerous conditions (Rao et al.). Jihan et al. identified specific microbiome signatures in cancers affecting the esophagus, stomach, colon, and rectum (Wang et al.). Busing et al. review various changes in the microbiota and metabolism in eosinophilic esophagitis (Busing et al.). Wang et al. associate intratumor microbiome signatures with subtype, tumor stage, and survival in patients with esophageal carcinoma (Wang et al.). Hu et al. discuss alterations seen in the gut microbiota in food allergies and other allergic conditions (Hu et al.). Chu et al. use a variety of mouse models to induce gastritis and analyze the associated modulations of the intestinal microflora (Chu et al.). Sultan et al. discuss metabolite alterations associated with intestinal dysbiosis in IBD (Sultan et al.). Houshyar et al. review what is known about the role of fungi and archaea in IBD (Houshyar et al.). Zhao et al. evaluate the role of gut bacteria in a rat model of intra-abdominal hypertension (Zhao et al.). Montanari et al. detail the relationship of an pro-inflammatory state and gut dysbiosis, and the effects of diet and medications on the gut microbiota observed in disorders of inborn errors of metabolism (Montanari et al.). Lastly, Li et al. introduce Amadis, a comprehensive, manually curated database that documents experimentally supported microbiota-disease associations (Li et al.).

AUTHOR CONTRIBUTIONS

PH was responsible for the preparation of the manuscript.

FUNDING

The manuscript was supported by NIH grant K12 HD008050 to PH.

ACKNOWLEDGMENTS

The author wants to thank Bernd Schnabl for helpful comments in preparing the manuscript.

REFERENCES

Abe, K., Takahashi, A., Fujita, M., Imaizumi, H., Hayashi, M., Okai, K., et al. (2018). Dysbiosis of Oral Microbiota and its Association with Salivary Immunological Biomarkers in Autoimmune Liver Disease. PLoS One 13 (7), e0198757. Epub 20180703 PubMed PMID: 2999462. doi:10.1371/journal.pone.0198757

Ahn, J., Sinha, R., Pei, Z., Dominianni, C., Wu, J., Shi, J., et al. (2013). Human Gut Microbiome and Risk for Colorectal Cancer. J. Natl. Cancer Inst. 105 (24), 1907–1911. Epub 20131206 PubMed PMID: 24316595; PMC3866154. doi:10.1093/jnci/djt300

Aly, A. M., Adel, A., El-Gendy, A. O., Essam, T. M., and Aziz, R. K. (2016). Gut Microbiome Alterations in Patients with Stage 4 Hepatitis C. Gut Pathog. 8 (1), 42. Epub 20160913 PubMed PMID: 27625705. doi:10.1186/s13099-016-0124-2

Annavajracha, M. K., Gomez-Simmonds, A., Macesic, N., Sullivan, S. B., Kress, A., Khan, S. D., et al. (2019). Colonizing Multidrug-Resistant Bacteria and the Longitudinal Evolution of the Intestinal Microbiome after Liver Transplantation. Nat. Commun. 10 (1), 4715. Epub 20191017 PubMed PMID: 31624266; PMC6797753. doi:10.1038/s41467-019-12633-4

Bajaj, J. S., Fagan, A., Sikaroodi, M., White, M. B., Sterling, R. K., Gilles, H., et al. (2017). Liver Transplant Modulates Gut Microbial Dysbiosis and Cognitve Function in Cirrhosis. Liver Transpl. 23 (7), 907–914. PubMed PMID: 28240840. doi:10.1002/lt.24754

Bajaj, J. S., Hylemon, P. B., Ralllon, J. M., Heuman, D. M., Daita, K., White, M. B., et al. (2012). Colonic Mucosal Microbiome Differs from Stool Microbiome in Cirrhosis and Hepatic Encephalopathy and Is Linked to Cognition and Inflammation. Am. J. Physiology-Gastrointestinal Liver Physiol. 303 (6), G675–G685. Epub 20120719 PubMed PMID: 22821944. doi:10.1152/ajpgi.00152.2012

Bajaj, J. S., Kakiyama, G., Cox, I. J., Nittono, H., Takei, H., White, M., et al. (2018). Alterations in Gut Microbial Function Following Liver Transplant. Liver Transpl. 24, 752–761. Epub 20180513 PubMed PMID: 29500907. doi:10.1002/lt.25046

Bajer, L., Kverka, M., Kostovcik, M., Macinga, P., Dvorak, J., Stehlikova, Z., et al. (2017). Distinct Gut Microbiota Profiles in Patients with Primary Sclerosing Cholangitis and Ulcerative Colitis. Wg 23 (25), 4548–4558. PubMed PMID: 28740343. doi:10.3748/wg.v23i25.4548

Balamurugan, R., Rajendiran, E., George, S., Samuel, G. V., and Ramakrishna, B. S. (2008). Real-time Polymerase Chain Reaction Quantification of Specific Butyrate-Producing bacteria,DesulfovibrioandEnterococcus Facalalism the Feces of Patients with Colorectal Cancer. J. Gastroenterol. Hepatol. 23 (8 Pt 1), 1298–1303. Epub 20080708 PubMed PMID: 18624900. doi:10.1111/j.1440-1746.2008.05490.x

Benitez, A. J., Hoffmann, C., Muir, A. B., Dods, K. K., Spergel, J. M., Bushman, F. D., et al. (2015). Inflammation-associated Microbiota in Pediatric Eosinophilic Esophagitis. Microbiome. 3, 23. Epub 20150601 PubMed PMID: 26034641 ; PMC4450515. doi:10.1186/s40168-015-0085-6

Blackett, K. L., Siddhi, S. S., Cleary, S., Steel, H., Miller, M. H., Macfarlane, S., et al. (2013). Oesophageal Bacterial Biofilm Changes in Gastro-Oesophageal Reflux Disease, Barrett’s and Oesophageal Carcinoma: Association or Causality? Aliment. Pharmacol. Ther. 37 (11), 1084–1092. Epub 20130422 PubMed PMID: 23600758. doi:10.1111/apt.12317

Blais Lecours, P., Marsolais, D., Cormier, Y., Berberi, M., Haché, C., Bourdages, R., et al. (2014). Increased Prevalence of Methanosphaera Stadthmanae in...
Severity of Acute Pancreatitis. *Dig. Dis. Sci.* 65 (11), 3233–3237. Epub 20200219PubMed PMID: 32076933; doi:10.1007/s10620-020-06061-4

Zeller, G., Tap, J., Voigt, A. Y., Sunagawa, S., Kultima, J. R., Costea, P. I., et al. (2014). Potential of Fecal Microbiota for Early-stage Detection of Colorectal Cancer. *Mol. Syst. Biol.* 10, 766. Epub 20141128PubMed PMID: 25432777; PMC4299606. doi:10.15252/mmb.2014565

Zeng, Y., Chen, S., Fu, Y., Wu, W., Chen, T., Chen, J., et al. (2020). Gut Microbiota Dysbiosis in Patients with Hepatitis B Virus-Induced Chronic Liver Disease Covering Chronic Hepatitis, Liver Cirrhosis and Hepatocellular Carcinoma. *J. Viral Hepat.* 27 (2), 143–155. Epub 20191029PubMed PMID: 31600845. doi:10.1111/jvh.13216

Zhang, T., Zhang, S., Jin, C., Lin, Z., Deng, T., Xie, X., et al. (2021). A Predictive Model Based on the Gut Microbiota Improves the Diagnostic Effect in Patients with Cholangiocarcinoma. *Front. Cell. Infect. Microbiol.* 11, 751795. Epub 20211123PubMed PMID: 34888258. doi:10.3389/fcimb.2021.751795

Zhao, H. Y., Wang, H. J., Lu, Z., and Xu, S. Z. (2004). Intestinal Microflora in Patients with Liver Cirrhosis. *Chin. Dig. Dis. J.* 5 (2), 64–67. PubMed PMID: 15612659. doi:10.1111/j.1443-9573.2004.00157.x

Zhao, Q., Yang, T., Yan, Y., Zhang, Y., Li, Z., Wang, Y., et al. (2020). Alterations of Oral Microbiota in Chinese Patients with Esophageal Cancer. *Front. Cell. Infect. Microbiol.* 10, 541144. Epub 20201021PubMed PMID: 33194789; PMC7609410. doi:10.3389/fcimb.2020.541144

Zhong, D., Brower-Sinning, R., Firek, B., and Morowitz, M. J. (2014). Acute Appendicitis in Children Is Associated with an Abundance of Bacteria from the Phylum Fusobacteria. *J. Pediatr. Surg.* 49 (3), 441–446. PubMed PMID: 24650474. doi:10.1016/j.jpedsurg.2013.06.026

Zhong, M., Xiong, Y., Zhao, J., Gao, Z., Ma, J., Wu, Z., et al. (2021). Candida Albicans Disorder Is Associated with Gastric Carcinogenesis. *Theranostics* 11 (10), 4945–4956. Epub 20210305PubMed PMID: 33754037; PMC7978306. doi:10.7150/thno.55209

Zhou, C.-H., Meng, Y.-T., Xu, J.-J., Fang, X., Zhao, J.-L., Zhou, W., et al. (2020). Altered Diversity and Composition of Gut Microbiota in Chinese Patients with Chronic Pancreatitis. *Pancreatology* 20 (1), 16–24. Epub 20191127PubMed PMID: 31806503. doi:10.1016/j.pan.2019.11.013

Zhou, J., Shrestha, P., Qiu, Z., Harman, D. G., Teoh, W.-C., Al-Sohailly, S., et al. (2020). Distinct Microbiota Dysbiosis in Patients with Non-erosive Reflux Disease and Esophageal Adenocarcinoma. *Jcm* 9 (7), 2162. Epub 20200708PubMed PMID: 32635056; PMC7408827. doi:10.3390/jcm9072162

Zhu, L., Baker, S. S., Gill, C., Liu, W., Akhouri, R., Baker, R. D., et al. (2013). Characterization of Gut Microbiomes in Nonalcoholic Steatohepatitis (NASH) Patients: a Connection between Endogenous Alcohol and NASH. *Hepatology* 57 (2), 601–609. Epub 20130108PubMed PMID: 23055155. doi:10.1002/hep.26093

Zhu, L., Liu, W., Akhouri, R., Baker, R. D., Bard, J. E., Quigley, E. M., et al. (2014). Structural Changes in the Gut Microbiome of Constipated Patients. *Physiol. Genomics* 46 (18), 679–686. Epub 20140729PubMed PMID: 25073603. doi:10.1152/physiolgenomics.00082.2014

Zhu, Y., He, C., Li, X., Cai, Y., Hu, J., Liao, Y., et al. (2019). Gut Microbiota Dysbiosis Worsens the Severity of Acute Pancreatitis in Patients and Mice. *J. Gastroenterol.* 54 (4), 347–358. Epub 20181205PubMed PMID: 30519748. doi:10.1007/s00535-018-1529-0

Zoppo, G., Cinquetti, M., Luciano, A., Benini, A., Muner, A., and Bertazzoni Minelli, E. (1998). The Intestinal Ecosystem in Chronic Functional Constipation. *Acta Paediatr.* 87 (8), 836–841. PubMed PMID: 9736230. doi:10.1080/08035298750013590

Conflict of Interest: The author declares that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

Copyright © 2022 Hartmann. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.