SUPPLEMENTAL MATERIAL

Table S1. Bacterial strains and plasmids

Bacterial strain or plasmid	Description	Reference
Escherichia coli		
DH5α	Strain for cloning purposes	(1)
S17-1	Strain for plasmid mobilization	(2)
BL21(DE3)	Strain for protein expression	Novagen
Chromobacterium violaceum		
ATCC 12472	Wild type (Sequenced genome)	(3)
ΔclpV(CV_3965)	WT strain with CV_3965 gene deleted	This work
Δhcp (CV_3977)	WT strain with CV_3977 gene deleted	This work
ΔvipA (CV_3979)	WT strain with CV_3979 gene deleted	This work
ΔvgrG1 (CV_3986)	WT strain with CV_3986 gene deleted	This work
ΔvgrG2 (CV_3975)	WT strain with CV_3975 gene deleted	This work
ΔvgrG3 (CV_1432)	WT strain with CV_1432 gene deleted	This work
ΔvgrG4 (CV_1233)	WT strain with CV_1233 gene deleted	This work
ΔvgrG5 (CV_0023)	WT strain with CV_0023 gene deleted	This work
ΔvgrG6 (CV_0016)	WT strain with CV_0016 gene deleted	This work
ΔvgrG1-2	WT strain with CV_3986 and CV_3975 genes deleted	This work
ΔvgrG1-3	WT strain with CV_3986, CV_3975 and CV_1432 genes deleted	This work
ΔvgrG1-4	WT strain with CV_3986, CV_3975, CV_1432 and CV_1233 genes deleted	This work
ΔvgrG1-5	WT strain with CV_3986, CV_3975, CV_1432, CV_1233 and CV_0023 genes deleted	This work
ΔvgrG1-6	WT strain with CV_3986, CV_3975, CV_1432, CV_1233, CV_0023 and CV_0016 genes deleted	This work
ΔcviR	WT strain with CV_4090 gene deleted	(4)
ΔcviI	WT strain with CV_4091 gene deleted	(5)
WT(pSEVA)	WT strain containing the empty vector pSEVA	This work
ΔvgrG3(pSEVA)	ΔvgrG3 strain containing the empty vector pSEVA	This work
ΔvgrG3(vgrG3)	In trans complementation of vgrG3 with pSEVA vector in ΔvgrG3	This work
WT(pMR20)	WT strain containing the empty vector pMR20	This work
Δhcp(hcp)	In trans complementation of hcp with pMR20 vector in Δhcp	This work
ΔvipA(vipA)	In trans complementation of vipA with pMR20 vector in ΔvipA	This work
Strain	Description	Reference
--------	-------------	-----------
ΔvgrG1-6(vgrG1)	In trans complementation of vgrG1 with pMR20 vector in the sextuple mutant (ΔvgrG1-6)	This work
ΔvgrG1-6(vgrG2)	In trans complementation of vgrG2 with pMR20 vector in the sextuple mutant (ΔvgrG1-6)	This work
ΔvgrG1-6(vgrG3)	In trans complementation of vgrG3 with pMR20 vector in the sextuple mutant (ΔvgrG1-6)	This work
ΔvgrG1-6(vgrG4)	In trans complementation of vgrG4 with pMR20 vector in the sextuple mutant (ΔvgrG1-6)	This work
ΔvgrG1-6(vgrG5)	In trans complementation of vgrG5 with pMR20 vector in the sextuple mutant (ΔvgrG1-6)	This work
ΔvgrG1-6(vgrG6)	In trans complementation of vgrG6 with pMR20 vector in the sextuple mutant (ΔvgrG1-6)	This work
WT(pCV_3981)	WT strain containing the promoter of CV_3981 with lacZ fusion	This work
ΔcviR(pCV_3981)	ΔcviR strain containing the promoter of CV_3981 with lacZ fusion	This work
WT(pCV_3982)	WT strain containing the promoter of CV_3982 with lacZ fusion	This work
ΔcviR(pCV_3982)	ΔcviR strain containing the promoter of CV_3982 with lacZ fusion	This work
WT(pvgrG1)	WT strain containing the promoter of vgrG1 with lacZ fusion	This work
WT(pvgrG2)	WT strain containing the promoter of vgrG2 with lacZ fusion	This work
WT(pvgrG3)	WT strain containing the promoter of vgrG3 with lacZ fusion	This work
WT(pvgrG4)	WT strain containing the promoter of vgrG4 with lacZ fusion	This work
WT(pvgrG5)	WT strain containing the promoter of vgrG5 with lacZ fusion	This work
WT(pvgrG6)	WT strain containing the promoter of vgrG6 with lacZ fusion	This work
ΔcviR(pvgrG3)	ΔcviR strain containing the promoter of vgrG3 with lacZ fusion	This work
ΔcviR(pvgrG4)	ΔcviR strain containing the promoter of vgrG4 with lacZ fusion	This work
WT(vipA_sfGFP)	WT with vipA_sfGFP cloned into pJN105 vector for L-arabinose induction	This work
ΔclpV(vipA_sfGFP)	ΔclpV with vipA_sfGFP cloned into pJN105 vector for L-arabinose induction	This work
Δhcp(vipA_sfGFP)	Δhcp with vipA_sfGFP cloned into pJN105 vector for L-arabinose induction	This work
ΔvgrG3(vipA.sfGFP)	ΔvgrG3 with vipA_sfGFP cloned into pJN105 vector for L-arabinose induction	This work
ΔvgrG1-3(vipA.sfGFP)	ΔvgrG1-3 with vipA_sfGFP cloned into pJN105 vector for L-arabinose induction	This work
ΔvgrG1-6(vipA_sfGFP)	**ΔvgrG1-6 with vipA_sfGFP cloned into pJN105 vector for L-arabinose induction**	This work
-------------------------	---	-----------
ΔcviR(vipA_sfGFP)	**ΔcviR with vipA_sfGFP under L-arabinose induction**	This work
ΔcviI(vipA_sfGFP)	**ΔcviI with vipA_sfGFP under L-arabinose induction**	This work
ΔvgrG3(vgrG3-HA)	**ΔvgrG3 in trans complemented with pMR20 expressing vgrG3 gene fused to hemagglutinin tag at C-terminal portion**	This work

Plasmids

pNPTS138	Suicide vector containing oriT, Km\(^r\), sacB	D. Alley
pJN105	Broad-host-range vector, araC-PBAD cassette; Gm\(^r\)	(6)
pMR20	Broad-host-range low-copy vector containing oriT, Tet\(^R\)	(7)
pET-15b	His-tagged protein expression vector; Amp\(^R\)	Novagen
pGEM-T easy	Cloning plasmid; Amp\(^R\)	Promega
pRKlacZ290	Vector containing promoterless E. coli lacZ, Tet\(^R\)	(8)
pSEVA221	Broad-host-range vector, Km\(^R\), oriRK2, oriT.	(9)

1. Hanahan D. 1983. Studies on transformation of *Escherichia coli* with plasmids. J Mol Biol 166(4):557-580.

2. Simon R, Priefe U, Puhler A. 1983. A broad host range mobilization system for *in vivo* genetic engineering: transposon mutagenesis in Gram-negative bacteria. Bio/Technology 1:784–791.

3. Brazilian National Genome Project Consortium. 2003. The complete genome sequence of *Chromobacterium violaceum* reveals remarkable and exploitable bacterial adaptability. Proc Natl Acad Sci U S A 100(20):11660-11665.

4. Batista JH, Leal FC, Fukuda TTH, Alcoforado Diniz J, Almeida F, Pupo MT, da Silva Neto JF. 2020. Interplay between two quorum sensing-regulated pathways, violacein biosynthesis and VacJ/Yrb, dictates outer membrane vesicle biogenesis in *Chromobacterium violaceum*. Environ Microbiol 22(6):2432–2442.

5. Barroso KCM, Previato-Mello M, Batista BB, Batista JH, da Silva Neto JF. 2018. EmrR-Dependent Upregulation of the Efflux Pump EmrCAB Contributes to Antibiotic Resistance in *Chromobacterium violaceum*. Front Microbiol 9:2756.

6. Newman JR, Fuqua C. 1999. Broad-host-range expression vectors that carry the L-arabinose-inducible *Escherichia coli araBAD* promoter and the araC regulator. Gene 227(2):197-203.

7. Roberts RC, Toochinda C, Avedissian M, Baldini RL, Gomes SL, Shapiro L. 1996. Identification of a *Caulobacter crescentus* operon encoding hrcA, involved in negatively regulating heat-inducible transcription, and the chaperone gene grpE. J Bacteriol 178(7):1829-1841.

8. Gober JW, Shapiro L. 1992. A developmentally regulated *Caulobacter* flagellar promoter is activated by 3' enhancer and IHF binding elements. Mol Biol Cell 3(8):913-26.

9. Silva-Rocha R, Martínez-García E, Calles B, Chavarría M, Arce-Rodríguez A, de Las Heras A, Páez-Espino AD, Durante-Rodríguez G, Kim J, Nikel PI, Platero R, de Lorenzo V. 2013. The Standard European Vector Architecture (SEVA): a coherent platform for the analysis and deployment of complex prokaryotic phenotypes. Nucleic Acids Res 41:D666–D675.
Table S2. Primers used in this work

Name	Sequence 5’ - 3’*	Description
Construction of mutant strains		
CV_3965 del1	GATCATAGCTAAGGCGGTTGATCCGCGGCTGGGAAGCAAGGCGGCTGGGAAG	767 pb, HindIII/EcoRI. CV_3965 deletion
CV_3965 del2	GATCATAGCTAAGGCGGTTGATCCGCGGCTGGGAAGCAAGGCGGCTGGGAAG	652 pb, EcoRI/Sall. CV_3965 deletion
CV_3965 del3	GATCATAGCTAAGGCGGTTGATCCGCGGCTGGGAAGCAAGGCGGCTGGGAAG	635 pb, HindIII/PstI. CV_3977 deletion
CV_3977 del1	GATCATAGCTAAGGCGGTTGATCCGCGGCTGGGAAGCAAGGCGGCTGGGAAG	687 pb, PstI/PstI. CV_3979 deletion
CV_3977 del2	GATCATAGCTAAGGCGGTTGATCCGCGGCTGGGAAGCAAGGCGGCTGGGAAG	607 pb, BamHI/EcoRI. CV_3979 deletion
CV_3979 del1	GATCATAGCTAAGGCGGTTGATCCGCGGCTGGGAAGCAAGGCGGCTGGGAAG	547 pb, BamHI/EcoRI. CV_3979 deletion
CV_3979 del2	GATCATAGCTAAGGCGGTTGATCCGCGGCTGGGAAGCAAGGCGGCTGGGAAG	606 pb, HindIII/BamHI. CV_3986 deletion
CV_3975 del1	GATCATAGCTAAGGCGGTTGATCCGCGGCTGGGAAGCAAGGCGGCTGGGAAG	665 pb, BamHI/EcoRI. CV_3986 deletion
CV_3975 del2	GATCATAGCTAAGGCGGTTGATCCGCGGCTGGGAAGCAAGGCGGCTGGGAAG	509 pb, HindIII/BamHI. CV_3975 deletion
CV_3977 del1	GATCATAGCTAAGGCGGTTGATCCGCGGCTGGGAAGCAAGGCGGCTGGGAAG	660 pb, BamHI/EcoRI. CV_3975 deletion
CV_3977 del2	GATCATAGCTAAGGCGGTTGATCCGCGGCTGGGAAGCAAGGCGGCTGGGAAG	626 pb, HindIII/BamHI. CV_1432 deletion
CV_1233 del1	GATCATAGCTAAGGCGGTTGATCCGCGGCTGGGAAGCAAGGCGGCTGGGAAG	603 pb, BamHI/EcoRI. CV_1432 deletion
CV_1233 del2	GATCATAGCTAAGGCGGTTGATCCGCGGCTGGGAAGCAAGGCGGCTGGGAAG	611 pb, HindIII/BamHI. CV_1233 deletion
CV_3979 del1	GATCATAGCTAAGGCGGTTGATCCGCGGCTGGGAAGCAAGGCGGCTGGGAAG	583 pb, BamHI/EcoRI. CV_1233 deletion
CV_3979 del2	GATCATAGCTAAGGCGGTTGATCCGCGGCTGGGAAGCAAGGCGGCTGGGAAG	593 pb, HindIII/BamHI. CV_0023 deletion
CV_3979 del3	GATCATAGCTAAGGCGGTTGATCCGCGGCTGGGAAGCAAGGCGGCTGGGAAG	657 pb, BamHI/EcoRI. CV_0023 deletion
CV_0016 del1	GATCATAGCTAAGGCGGTTGATCCGCGGCTGGGAAGCAAGGCGGCTGGGAAG	592 pb, Apal/BamHI. CV_0016 deletion
CV_0016 del2	GATCATAGCTAAGGCGGTTGATCCGCGGCTGGGAAGCAAGGCGGCTGGGAAG	632 pb, BamHI/Sall. CV_0016 deletion
Construction of complemented strains		
CV_3977 Comp Fw	GATCATAGCTAAGGCGGTTGATCCGCGGCTGGGAAGCAAGGCGGCTGGGAAG	852 pb, PstI/Sall. Product with hcp gene and its promoter region
CV_3977 Comp Rv	GATCATAGCTAAGGCGGTTGATCCGCGGCTGGGAAGCAAGGCGGCTGGGAAG	699 pb, EcoRI/Sall. Product with vipA gene and its promoter region
CV_3979 Over Fw	GATCATAGCTAAGGCGGTTGATCCGCGGCTGGGAAGCAAGGCGGCTGGGAAG	526 pb, PstI/EcoRI. vipA full gene plus 3 Gly x 3 Ala linker
CV_3979_sfgfp Rv	GATCATAGCTAAGGCGGTTGATCCGCGGCTGGGAAGCAAGGCGGCTGGGAAG	714 pb, PstI/Sall. Product with super folder GFP for cloning with vipA into pJN105
sGFP, Fw	GATCATAGCTAAGGCGGTTGATCCGCGGCTGGGAAGCAAGGCGGCTGGGAAG	498 pb, NdelI/BamHI. Product with hcp gene for heterologous expression
sGFP, Rv	GATCATAGCTAAGGCGGTTGATCCGCGGCTGGGAAGCAAGGCGGCTGGGAAG	2861 pb, KpnI/BamHI. CV_3986 complementation
CV_3975 Comp Fw	GATCATAGCTAAGGCGGTTGATCCGCGGCTGGGAAGCAAGGCGGCTGGGAAG	3019 pb, KpnI/BamHI. CV_3975 complementation
CV_3975 Comp Rv	GATCATAGCTAAGGCGGTTGATCCGCGGCTGGGAAGCAAGGCGGCTGGGAAG	3554 pb, KpnI/BamHI. CV_1432 complementation
Table S3. Bacteria strains used as prey in interbacterial competition assay

Bacteria	Strain	Abbreviation *
Burkholderia cepacia	ATCC 17759	Bc
Escherichia coli	ATCC 25922	Ec
Pseudomonas aeruginosa	ATCC 27853	Pa
Staphylococcus aureus	ATCC 29313	Sa
Salmonella typhimurium	ATCC 14028	St
Stenotrophomonas maltophilia	ATCC 13637	Sma
Enterobacte cloacae	ATCC 13047	Ecl
Shigella flexneri	ATCC 12022	Sf
Enterococcus faecium	NCTC 13047	Ef
Klebsiella pneumonia	ATCC 13883	Kp
Klebsiella pneumoniae	ATCC BAA-1705	Kpn
Enterococcus faecalis	ATCC 4083	Efa
Shigella sonnei	ATCC 25931	Ss
Pseudomonas aeruginosa	PAO1	Pao

*Abbreviation referring to Figure 2A
Table S4. Proteins identified in coimmunoprecipitation assay of WT(pMR20) and ΔvgrG3(vgrG3-HA)

WT(pMR20)

Accession*	Description	mW (Da)	Peptides	Coverage (%)	Products	Amount (fmol)
Q7M7F1	Elongation factor Tu	43045	92	86,3636	974	32,4532
Q7NQF7	DNA-directed RNA polymerase subunit beta'	155194	86	63,8252	640	2,0263
Q7NQF0	Elongation factor G	76958	60	79,7994	442	1,4946
Q7NQG4	50S ribosomal protein L5	20292	14	46,3887	70	0,3518
Q7NQG5	30S ribosomal protein S14	11589	7	38,6139	18	0,4214
Q7NQG8	50S ribosomal protein L18	12765	9	64,1026	52	0,5157
Q7NQG9	30S ribosomal protein S5	18207	14	47,6744	81	0,1538
Q7NQM5	Aspartate ammonia-lyase	50287	24	76,8737	218	0,9865
Q7NQX1	60 kDa chaperonin 2	57382	40	69,7802	347	1,5874
Q7NR97	Nudix hydrolase domain-containing protein	23223	10	66,8269	105	0,1679
Q7NUY8	Trigger factor	48546	34	81,3793	262	1,2455
Q7NV09	Uncharacterized protein	6615	3	68,3333	38	0,0807
Q7NV22	Probable transmembrane protein	13147	4	71,7742	53	0,0143
Q7NVZ4	30S ribosomal protein S2	27112	18	69,1358	111	1,3853
Q7NWY4	Phosphonate metabolism protein PhnH	20435	6	54,2105	66	0,0398
Q7NX50	Probable transcriptional regulator_ MerR family	15218	9	58,4615	100	0,0483
Q7NZ92	Uncharacterized protein	10198	4	43,8202	40	0,5778
Q7P095	ATP synthase subunit beta	50024	40	81,0753	434	2,0939
Q7P097	ATP synthase subunit alpha	54676	36	69,0661	327	2,4705
Q7P0N9	Acetyltransferase component	56484	19	49,0975	210	1,8117
Q7P0P0	Pyruvate dehydrogenase E1 component	99230	67	81,2852	584	2,3749

ΔvgrG3(vgrG3-HA)

Accession	Description	mW (Da)	Peptides	Coverage (%)	Products	Amount (fmol)
Q7M7F1	Elongation factor Tu	43045	54	72,2222	714	45,6856
Q7NQF0	Elongation factor G	76958	39	55,5874	313	2,9557
Q7NQF9	50S ribosomal protein L16	15401	4	30,4348	49	5,6009
Q7NQG2	50S ribosomal protein L14	13409	15	51,6393	89	3,7829
Q7NQG4	50S ribosomal protein L5	20292	16	65,3631	108	0,739
Q7NQG5	30S ribosomal protein S14	11589	5	45,5446	56	4,4619
Q7NQG8	50S ribosomal protein L18	12765	7	52,9915	88	9,9647
Q7NQG9	30S ribosomal protein S5	18207	18	59,8837	149	3,5319
Q7NQH0	50S ribosomal protein L30	6780	5	37,7049	33	1,1832
Q7NQX1	60 kDa chaperonin	57382	18	46,1538	164	2,9832
Q7NQZ9	VgrG1 (CV_3986)	93995	27	41,7431	314	0,2691
Q7NR08	Hcp (CV_3977)	17881	8	53,3333	81	0,9134
Q7NR10	VgrG2 (CV_3975)	94022	20	35,8945	255	1,3435
Q7NRL5	30S ribosomal protein S21	8490	2	28,5714	19	1,6007
Accession	Protein Description	PPI	TIF-1	TIF-2	TIF-3	
-----------	---	-----	-------	-------	-------	
Q7NRT4	30S ribosomal protein S9	14356	4	36,1538	44	2,1704
Q7NRV5	30S ribosomal protein S16	9536	7	59,0361	84	8,6455
Q7NU57	Uncharacterized protein (CV_2846)	7517	2	45,4545	58	77,9891
Q7NUY8	Trigger factor	48546	15	42,7586	187	2,7161
Q7NY43	VgrG3 (CV_1432)	107856	29	42,1782	363	2,6193
Q7P095	ATP synthase subunit beta	50024	27	51,1828	324	3,949
Q7P097	ATP synthase subunit alpha	54676	18	33,8521	217	4,4851
Q7P0N9	Acetyltransferase component	56484	12	32,3105	147	1,1308
Q7P238	VgrG5 (CV_0023)	94125	17	29,9771	247	1,2663

*Accessions highlighted in bold indicate proteins identified in both assays and are probably contaminant proteins with affinity to the magnetic beads.

Fig S1 Growth curves of the indicated strains grown in LB medium. (A) Mutants for T6SS core components. (B) Single mutant strains for each vgrG. (C) Sequential vgrG mutants. None of these strains showed any growth delay compared to the WT strain.
A

	VgrG1 (CV_3986)	VgrG2 (CV_3975)	VgrG3 (CV_1432)	VgrG4 (CV_1233)	VgrG5 (CV_0023)	VgrG6 (CV_0016)
VgrG1	100	93.43	93.46	76.46	84.36	81.68
VgrG2	93.43	100	92.20	76.23	84.27	83.20
VgrG3	93.46	92.20	100	71.06	83.55	81.80
VgrG4	76.46	76.23	71.06	100	82.50	80.18
VgrG5	84.36	84.27	83.55	82.50	100	93
VgrG6	81.68	83.20	81.80	80.18	93	100

B

C

VgrG1 MDLTSLLSSFASAFQDQRLLTLELGSGQVAAEQLLPQSLNGEEGVSQAYRYQLTCLSPD 60
VgrG2 MDLSSLLSSFASAFQDQRLLTLELGSGQVAAEQLLPQSLNGEEGVSQAYRYQLTCLSPD 60
VgrG3 MDLDLLSSFASAFQDQRLLTLELGSGQVAAEQLLPQSLNGEEGVSQAYRYQLTCLSPD 60
VgrG4 MDLNALLSSFASAFQDQRLLTLELGSGQVAAEQLLPQSLNGEEGVSQAYRYTVTCLSPD 60
VgrG5 MDLNALSSFASAFQDQRLLTLELGSGQVAAEQLLPQSLNGEEGVSQAYRYTVTCLSPD 60
VgrG6 MDLSSSSSSFAFQDQRLLTLELGSGQVAAEQLLPQSLNGEEGVSQAYRYTVTCLSPD 60

VgrG1 GAIELKTLLGQAARIGIADAQGQETIRCGVVSQARLMGSDGGFAQYGLTIEPPIALLRHR 120
VgrG2 GAIELKTLLGQAARIGIADAQGQETIRCGVVSQARLMGSDGGFAQYGLTIEPPIALLRHR 120
VgrG3 GAIELKTLLGQAARIGIADAQGQETIRCGVVSQARLMGSDGGFAQYGLTIEPPIALLRHR 120
VgrG4 GNIELKTLLGQAARIGIADAQGQETIRCGVVSQARLMGSDGGFAQYGLTIEPPIALLRHR 120
VgrG5 GHIELKTLLGQAARIGIADAQGQETIRCGVVSQARLMGSDGGFAQYGLTIEPPIALLRHR 120
VgrG6 GHIELKTLLGQAARIGIADAQGQETIRCGVVSQARLMGSDGGFAQYGLTIEPPIALLRHR 120

VgrG1 KTSRVFQDLSVPDVQQIVHEHQAANPVFARAQSIEFKVGPAQPRSYCLQYREDDFSIV 180
VgrG2 KTSRVFQDLSVPDVQQIVHEHQAANPVFARAQTSVEFKVGPAQPRSYCLQYREDDFSIV 180
VgrG3 KTSRVFQDLSVPDVQQIVHEHQAANPVFARAQSIEFKVGPAQPRSYCLQYREDDFSIV 180
VgrG4 KTSRVFQDLSVPDVQQIVHEHQAANPVFARAQTSVEFKVGPAQPRSYCLQYREDDFSIV 180
VgrG5 KTSRVFQDLSVPDVQQIVHEHQAANPVFARAQTSVEFKVGPAQPRSYCLQYREDDFSIV 180
VgrG6 KTSRVFQDLSVPDVQQIVHEHQAANPVFARAQTSVEFKVGPAQPRSYCLQYREDDFSIV 180

VgrG1 RLLHEEGYAWRFHVD----------GDSQPVLVFDDAYSLLPPAEVERVRHRSDAT 229
VgrG2 RLLHEEGYAWRFHVD----------GDAQPVKLAVFDAYSLPPLPPEVERVRHRSDAT 229
VgrG3 RLLHEEGYAWRFHVD----------GDSQPVLVFDDAYSLLPPAEVERVRHRSDAT 229
VgrG4 RLLHEEGYAWRFHVD----------GDSQPVLVFDDAYSLLPPAEVERVRHRSDAT 229
VgrG5 RLLHEEGYAWRFHVD----------GDSQPVLVFDDAYSLLPPAEVERVRHRSDAT 229
VgrG6 RLLHEEGYAWRFHVD----------GDSQPVLVFDDAYSLLPPAEVERVRHRSDAT 229

VgrG1 EEEDGLTDWQARQIVPGNVALATFDYQPVSTQHGDSSQIDQGPGQALQSSLQDYDPQ 289
VgrG2 EEEGLTDSAAARQIVPNGVALATFDYQPSTQHTGDSQIDQPGGQALQSSLQDYDPQ 289
VgrG3 EEEGLTDSAAARQIVPNGVALATFDYQPSTQHTGDSQIDQPGGQALQSSLQDYDPQ 289
VgrG4 EEEGLTDSAAARQIVPNGVALATFDYQPSTQHTGDSQIDQPGGQALQSSLQDYDPQ 289
VgrG5 EEEGLTDSAAARQIVPNGVALATFDYQPSTQHTGDSQIDQPGGQALQSSLQDYDPQ 300
VgrG6 EEEGLTDSAAARQIVPNGVALATFDYQPSTQHTGDSQIDQPGGQALQSSLQDYDPQ 300

VgrG1 GLYYAGDAEQLSHYARLRQQAHDLQAKTFEGAGSIRGLTAGQWFRLDDHPAHEADSHEQR 349
VgrG2 GLYYAGDAEQLSHYARLRQQAHDLQAKTFEGAGSIRGLTAGQWFRLDDHPAHEADSHEQR 349
VgrG3 GLYYAGDAEQLSHYARLRQQAHDLQAKTFEGAGSIRGLTAGQWFRLDDHPAHEADSHEQR 349
VgrG4 GLYYAGDAEQLSHYARLRQQAHDLQAKTFEGAGSIRGLTAGQWFRLDDHPAHEADSHEQR 349
VgrG5 GLYYAGDAEQLSHYARLRQQAHDLQAKTFEGAGSIRGLTAGQWFRLDDHPAHEADSHEQR 349
VgrG6 GLYYAGDAEQLSHYARLRQQAHDLQAKTFEGAGSIRGLTAGQWFRLDDHPAHEADSHEQR 349

VgrG1 EFVVTGQTLQVRNNLPDLQSILPTGDKADAPFRTRIQAQRGIPITLAQYTGTEHAKPKS 409
VgrG2 EFVVTGQTLQVRNNLPDLQSILPTGDKADAPFRTRIQAQRGIPITLAQYTGTEHAKPKS 409
VgrG3 EFVVTGQTLQVRNNLPDLQSILPTGDKADAPFRTRIQAQRGIPITLAQYTGTEHAKPKS 409
VgrG4 EFVVTGQSFQARNNLPTDLAQHIGAEQDAAPFTTSIQAQRRGIPLTPAYAGTAHAKPTS 408
VgrG5 EFVVTGQSFQARNNLPTDLAQHIGAEQDAAPFTTSIQAQRRGIPLTPAYAGTAHAKPTS 408
VgrG6 EFVVTGQSFQARNNLPTDLAQHIGAEQDAAPFTTSIQAQRRGIPLTPAYAGTAHAKPTS 408

VgrG1 RGVQTATVVGPAGEEVHTDGRIKVQFHWQRPDEHPTIGAALDDKSSCWLRVAMSAGA 469
VgrG2 RGVQTATVVGPAGEEVHTDGRIKVQFHWQRPDEHPTIGAALDDKSSCWLRVAMSAGA 469
VgrG3 RGVQTATVVGPAGEEVHTDGRIKVQFHWQRPDEHPTIGAALDDKSSCWLRVAMSAGA 469
VgrG4 RGVQTATVVGPAGEEVHTDGRIKVQFHWQRPDEHPTIGAALDDKSSCWLRVAMSAGA 469
VgrG5 RGVQTATVVGPAGEEVHTDGRIKVQFHWQRPDEHPTIGAALDDKSSCWLRVAMSAGA 469
VgrG6 RGVQTATVVGPAGEEVHTDGRIKVQFHWQRPDEHPTIGAALDDKSSCWLRVAMSAGA 469

VgrG1 GWGHQFIPRIGQEVLVDFIEGDIDRPVITGVLYNGSHPTPDFSGAGSLPANKTLSGIKSK 529
VgrG2 GWGHQFIPRIGQEVLVDFIEGDIDRPVITGVLYNGSHPTPDFSGAGSLPANKTLSGIKSK 529
VgrG3 GWGHQFIPRIGQEVLVDFIEGDIDRPVITGVLYNGSHPTPDFSGAGSLPANKTLSGIKSK 529
VgrG4 GWGHQFIPRIGQEVLVDFIEGDIDRPVITGVLYNGSHPTPDFSGAGSLPANKTLSGIKSK 529
VgrG5 GWGHQFIPRIGQEVLVDFIEGDIDRPVITGVLYNGSHPTPDFSGAGSLPANKTLSGIKSK 529
VgrG6 GWGHQFIPRIGQEVLVDFIEGDIDRPVITGVLYNGSHPTPDFSGAGSLPANKTLSGIKSK 529

VgrG1 EHQGGAYNELLFDDTPGEVRAKLSSELGKTQLNQGFLTHPRSNGKAQPRGDGFELRTDHH 588
VgrG2 EHQGGAYNELLFDDTPGEVRAKLSSELGKTQLNQGFLTHPRSNGKAQPRGDGFELRTDHH 588
VgrG3 EHQGGAYNELLFDDTPGEVRAKLSSELGKTQLNQGFLTHPRSNGKAQPRGDGFELRTDHH 588
VgrG4 EHQGGAYNELLFDDTPGEVRAKLSSELGKTQLNQGFLTHPRSNGKAQPRGDGFELRTDHH 588
VgrG5 EHQGGAYNELLFDDTPGEVRAKLSSELGKTQLNQGFLTHPRSNGKAQPRGDGFELRTDHH 588
VgrG6 EHQGGAYNELLFDDTPGEVRAKLSSELGKTQLNQGFLTHPRSNGKAQPRGDGFELRTDHH 588

VgrG1 GAIRAAHGLLLTTEAQNGASGKQLAREHAQSQLDAALSLSQALAETASGQLADTMETGPD 648
VgrG2 GAIRAAHGLLLTTEAQNGASGKQLAREHAQSQLDAALSLSQALAETASGQLADTMETGPD 648
VgrG3 GAIRAAHGLLLTTEAQNGASGKQLAREHAQSQLDAALSLSQALAETASGQLADTMETGPD 648
VgrG4 GAIRAAHGLLLTTEAQNGASGKQLAREHAQSQLDAALSLSQALAETASGQLADTMETGPD 648
VgrG5 GAIRAAHGLLLTTEAQNGASGKQLAREHAQSQLDAALSLSQALAETASGQLADTMETGPD 648
VgrG6 GAIRAAHGLLLTTEAQNGASGKQLAREHAQSQLDAALSLSQALAETASGQLADTMETGPD 648

VgrG1 EIQPDNACKGKTDFDGLHQAHDALKANEAGSTDKDGKTADQAGQQPQLVLSAPAGA 709
VgrG2 EIQPDNACKGKTDFDGLHQAHDALKANEAGSTDKDGKTADQAGQQPQLVLSAPAGA 709
VgrG3 EIQPDNACKGKTDFDGLHQAHDALKANEAGSTDKDGKTADQAGQQPQLVLSAPAGA 709
VgrG4 EIQPDNACKGKTDFDGLHQAHDALKANEAGSTDKDGKTADQAGQQPQLVLSAPAGA 709
VgrG5 EIQPDNACKGKTDFDGLHQAHDALKANEAGSTDKDGKTADQAGQQPQLVLSAPAGA 709
VgrG6 EIQPDNACKGKTDFDGLHQAHDALKANEAGSTDKDGKTADQAGQQPQLVLSAPAGA 709

VgrG1 LTEQSQTVSAGQNLNLVQARQNDANTHTGRWLNHVGQHISLFLVAGVKDVKVALKIAAGKV 769
VgrG2 LTEQSQTVSAGQNLNLVQARQNDANTHTGRWLNHVGQHISLFLVAGVKDVKVALKIAAGKV 769
VgrG3 LTEQSQTVSAGQNLNLVQARQNDANTHTGRWLNHVGQHISLFLVAGVKDVKVALKIAAGKV 769
VgrG4 LTEQSQTVSAGQNLNLVQARQNDANTHTGRWLNHVGQHISLFLVAGVKDVKVALKIAAGKV 769
VgrG5 LTEQSQTVSAGQNLNLVQARQNDANTHTGRWLNHVGQHISLFLVAGVKDVKVALKIAAGKV 769
VgrG6 LTEQSQTVSAGQNLNLVQARQNDANTHTGRWLNHVGQHISLFLVAGVKDVKVALKIAAGKV 769
The six VgrG proteins of *C. violaceum* show high sequence identity and similar domain organization. (A) Identity percentages shared among the six VgrG proteins of *C. violaceum*. The values were obtained with the Clustal Omega tool for multiple alignment. (B) Modular domains of VgrG proteins from analysis in the Pfam database. Green, red, and blue indicate the typical VgrG domains. All VgrGs have an additional C-terminal domain, DUF2345 (yellow). VgrG3 contains another additional region at C-terminus with low complexity (light blue). VgrG1, VgrG2, VgrG4, and VgrG5 have putative signal sequences at their N-termini (orange). (C) Multiple sequence alignment of VgrGs using the Clustal Omega tool.