Four- and three-body breakup mechanism of 6Li elastic scattering

S Watanabe1, T Matsumoto2, K Ogata3 and M Yahiro2

1RIKEN Nishina Center, Wako, Saitama 351-0198, Japan
2Department of Physics, Kyushu University, Fukuoka 812-8581, Japan
3Research Center for Nuclear Physics (RCNP), Osaka University, Ibaraki, Osaka 567-0047, Japan

E-mail: shin.watanabe.vf@riken.jp

Abstract. We investigate a breakup mechanism of 6Li elastic scattering on heavy targets ($T = ^{209}$Bi or 208Pb) with the four-body version of the continuum-discretized coupled-channels method (four-body CDCC). Four-body CDCC successfully reproduces measured elastic cross sections with no adjustable parameter, and we can then clearly discuss the four-body dynamics.

Our analysis shows that $d\alpha$ breakup (6Li + $T \rightarrow d + \alpha + T$) is much more essential than $np\alpha$ breakup (6Li + $T \rightarrow n + p + \alpha + T$) in 6Li scattering.

1. Introduction

In reactions of weakly-bound nuclei, projectile breakup plays an important role and the treatment of projectile-breakup effects is essential to describe scattering. The continuum-discretized coupled-channels method (CDCC) was proposed as a method for treating breakup effects [1, 2, 3]. Nowadays, CDCC is applied to not only three-body scattering (two-body projectile + T) but also four-body scattering (three-body projectile + T) [4, 5, 6, 7], where T denotes a target. CDCC for three- and four-body scattering are now called three- and four-body CDCC, respectively.

6Li + 209Bi scattering near the Coulomb barrier energy ($E_{\text{Coul}} \approx 30$ MeV) was first analyzed with three-body CDCC based on the $d+\alpha + ^{209}$Bi three-body model [8]. However, the calculation could not reproduce the measured elastic cross section without introducing a normalization factor for the optical potentials. This problem was solved by four-body CDCC based on the $n + p + \alpha + ^{209}$Bi four-body model [6]. The four-body calculation describes the experimental data without introducing any adjustable parameter. As an interesting finding, we showed that three-body CDCC can reproduce the cross section if the phenomenological d-optical potential is replaced by the single-folding potential that does not include d-breakup effects [6]. This suggests that d (i.e. the n-p subsystem of 6Li) hardly breaks up during 6Li scattering. In this work, we investigate the breakup mechanism within the four-body CDCC framework and validate the evidence.

2. Decomposition of the CDCC model space

We only recapitulate the treatment of model space in four-body CDCC; see Ref. [3, 7] for the detail. In four-body CDCC, the Schrödinger equation is solved in the model space P spanned by
the ground and discretized-continuum states of 6Li: $P = \sum_{\gamma=0}^{N} \langle \Phi_{\gamma} |$, with Φ_{γ} represents the γ-th eigenstate, and the $\gamma = 0$ and $\gamma = 1-N$ correspond to the ground and discretized-continuum states, respectively. The Φ_{γ} are obtained as pseudostates by using the Gaussian expansion method [9].

In this paper, we investigate the breakup mechanism by restricting the model space P. For this purpose, we first specify whether the breakup state Φ_{γ} ($\gamma = 1-N$) is the d_{α}-dominant or np_{α}-dominant breakup state by calculating the squared overlap between Φ_{γ} and the d_{α} ground state $\phi_{(d\alpha)}$: $\Gamma_{\gamma}^{(d_{\alpha})} = |\langle \phi_{(d\alpha)} | \Phi_{\gamma} \rangle|^{2}$. If $\Gamma_{\gamma}^{(d_{\alpha})}$ is larger (smaller) than 0.5, the state is defined as a d_{α}-dominant state $\Phi_{\gamma}^{(d_{\alpha})}$ (np_{α}-dominant state $\Phi_{\gamma}^{(np_{\alpha})}$). With the d_{α}- and np_{α}-dominant state above, the CDCC model space P can be decomposed into the three parts $P = P_{0} + P_{d_{\alpha}} + P_{np_{\alpha}}$, where

$$P_{0} = \langle \Phi_{0} |, P_{d_{\alpha}} = \sum_{\beta} |\Phi_{\beta}^{(d_{\alpha})} \rangle \langle \Phi_{\beta}^{(d_{\alpha})} |, P_{np_{\alpha}} = \sum_{\delta} |\Phi_{\delta}^{(np_{\alpha})} \rangle \langle \Phi_{\delta}^{(np_{\alpha})} |. \quad (1)$$

In the following discussion, we calculate cross sections by switching on and off to clarify the reaction dynamics.

3. Results

First, we show the validity of four-body CDCC. Figure 1 shows the angular distribution of elastic cross section for 6Li + 209Bi scattering at 32.8 MeV. The three-body CDCC calculation (dashed line) underestimates the experimental data as reported in Ref. [8]. We then apply four-body CDCC in order to explain this discrepancy. Four-body CDCC (solid line) perfectly reproduces the experimental data without introducing any adjustable parameter. 6Li + 209Bi scattering near the Coulomb barrier energy is thus described by four-body CDCC. Therefore, we can clearly discuss the breakup mechanism below.

![Figure 1.](image)

Next, we show 6Li + 208Pb scattering at 39 MeV in Fig 2, which is almost the same as 6Li + 209Bi scattering at 32.8 MeV. The solid and dotted lines correspond to the full and 1ch calculations, respectively. These are nothing but the calculations in P and P_{0}, respectively. The difference comes from breakup effects and the full calculation reproduces the experimental data well by virtue of breakup effects.

Now, we switch on only the subspace $P_{np_{\alpha}}$ or $P_{d_{\alpha}}$ from P_{0} in order to investigate the breakup mechanism. The dot-dashed line (a) represents the calculation of $P_{0} + P_{np_{\alpha}}$ and it is close to 1ch calculation (dotted line). On the other hand, the dashed line (b) corresponds to the calculation of $P_{0} + P_{d_{\alpha}}$ and it simulates the full calculation (solid line) almost perfectly. It should be noted
that the number of $d\alpha$-dominant states is much less than that of $np\alpha$-dominant states in the present model space P. As seen above, $d\alpha$ breakup is favored in 6Li scattering. This property is now called $d\alpha$-dominance, and we have found that the $d\alpha$-dominance is realized in a wide energy range [7]. It has been thus confirmed that d (i.e. the n-p subsystem of 6Li) hardly breaks up during 6Li scattering.

![Figure 2](image)

Figure 2. (Color online) Elastic cross sections for 6Li + 208Pb scattering at 39 MeV. The solid and dotted lines correspond to the results of full and 1ch calculations, respectively. The dot-dashed line (a) represents the calculation with the model space $P_0 + P_{np\alpha}$, whereas the dashed line (b) shows the calculation with $P_0 + P_{d\alpha}$. The experimental data is taken from Ref. [12].

4. Summary
We have investigated four-body dynamics of 6Li elastic scattering ($n+p+\alpha+T$, $T = ^{209}$Bi or 208Pb). The elastic scattering are successfully described in the four-body CDCC framework without introducing any adjustable parameter. We can then clearly analyze the breakup mechanism. Our analysis shows that the $d\alpha$-dominant breakup is much more essential compared with the $np\alpha$-dominant breakup for describing the scattering ($d\alpha$-dominance). This justifies the fact that d (i.e. the n-p subsystem of 6Li) hardly breaks up during 6Li scattering.

References
[1] Kamimura M et al 1986 Prog. Theor. Phys. Suppl. 89 1
[2] Austern N et al 1987 Phys. Rep. 154 125
[3] Yahiro M et al 2012 Prog. Theor. Exp. Phys. 01A206
[4] Matsumoto T et al 2004 Phys. Rev. C 70 061601(R)
[5] Matsumoto T et al 2006 Phys. Rev. C 73 051602(R)
[6] Watanabe S et al 2012 Phys. Rev. C 86 031601
[7] Watanabe S et al 2015 Phys. Rev. C 92 044611
[8] Keeley N et al 2003 Phys. Rev. C 68 054601
[9] Hiyama E et al 2003 Prog. Part. Nucl. Phys. 51 223
[10] Aguilera E F et al 2000 Phys. Rev. Lett. 84 5058
[11] Aguilera E F et al 2001 Phys. Rev. C 63 061603
[12] N Keeley et al 1994 Nucl. Phys. A 571 326