DYNAMICS OF AN INTRA-HOST DIFFUSIVE PATHOGEN INFECTION MODEL

SHOHEL AHMED, SHAH ABDULLAH AL NAHIAN

ABSTRACT. In this paper, we first propose a diffusive pathogen infection model with general incidence rate which incorporates cell-to-cell transmission. By applying the theory of monotone dynamical systems, we prove that the model admits the global threshold dynamics in terms of the basic reproduction number (R_0), which is defined by the spectral radius of the next generation operator. Then, we derive a discrete counterpart of the continuous model by nonstandard finite difference scheme. The results show that the discrete model preserves the positivity and boundedness of solutions in order to ensure the well-posedness of the problem. Moreover, this method preserves all equilibria of the original continuous model. By constructing appropriate Lyapunov functionals for both models, we show that the global threshold dynamics is completely determined by the basic reproduction number. Further, with the help of sensitivity analysis we also have identified the most sensitive parameters which effectively contribute to change the disease dynamics. Finally, we conclude the paper by an example and numerical simulations to improve and generalize some known results.

1. INTRODUCTION

Over the past few decades, there has been a great effort in the mathematical modelling of within-host pathogen infection models. These models have been used to describe the dynamics inside the host of various infectious diseases such as HIV, HCV, HBV and HTLV, etc. The classical model for within-host virus dynamics is a system of three ordinary differential equations [1, 2], where the key assumption is that cells and viruses are well mixed, and ignores the mobility of viruses. To study the influences of spatial structures of virus dynamics, Wang and Wang [3] proposed the following diffusive system by assuming the motion of virus follows the Fickian diffusion [4]

$$\begin{align*}
\frac{\partial S(x,t)}{\partial t} &= \Lambda - \beta_1 SV - d_SS, \\
\frac{\partial I(x,t)}{\partial t} &= \beta_1 SV - d_I I, \\
\frac{\partial V(x,t)}{\partial t} &= D_3 \Delta V + \alpha I - d_V V.
\end{align*}$$

(1)

where S, I and V are the concentrations of susceptible or uninfected cells, infected cells and free pathogens at the position x at time t, respectively. The susceptible cells are produced at a constant rate Λ and are infected by free virions at a rate $\beta_1 SV$. Parameters d_S, d_I and d_V represent the death rates of uninfected cells, infected cells and free virus, respectively. The free virions are produced from the infected cells at a rate αI. D_3 is the diffusion coefficient and Δ is the Laplacian operator.

Notice that the above system (1) only focus on virus-to-cell spread in the bloodstream even though some literatures reveal that cell-to-cell (infected source cell and a susceptible target cell) transmission is vital to spread of virus in vivo [5–8]. An understanding of viral cell-to-cell spreading will enhance our ability to intervene in the efficient spreading of viral infections. For more information on dealing with target cell dynamics and cell-to-cell transmission one can refer [9–17] and references therein. On the other hand, the bilinear incidence rate is a simple description of the infection in system (1). As mentioned in [14,18], a general incidence rate may help us to gain the unification theory by the omission...
of unessential details. Hence, inspired by the aforementioned work, in this article we propose the following pathogen infection model on domain $Q = R^+ \times \Omega$,

$$\begin{align*}
\frac{\partial S(x,t)}{\partial t} &= D_1 \Delta S + \Lambda - Sf(V) - Sg(I) - d_S S, \quad x \in \Omega, \ t > 0, \\
\frac{\partial I(x,t)}{\partial t} &= D_2 \Delta I + Sf(V) + Sg(I) - (\gamma + d_I) I, \quad x \in \Omega, \ t > 0, \\
\frac{\partial V(x,t)}{\partial t} &= D_3 \Delta V + \alpha I - d_V V, \quad x \in \Omega, \ t > 0.
\end{align*}$$

Here D_1 and D_2 are the diffusion coefficients of susceptible and infected cells, respectively [19] with γ is the lysis rate of infected cells [20]. The incidences are assumed to be the nonlinear responses to the concentrations of virus particles and infected cells, taking the forms $Sf(V)$ and $Sg(I)$, where $f(V)$ and $g(I)$ denote the force of infection by virus particles and infected cells and satisfy the following properties [21]:

A1) $f(0) = g(0) = 0$ and $f(V)$, $g(I) > 0$, for $V > 0$;
A2) $f'(V)$, $g'(I) < 0$ and $f''(V)$, $g''(I) \leq 0$, for $V, I \geq 0$.

Based on condition (A1) and (A2), it follows from the Mean Value Theorem that

$$f'(V)V \leq f(V) \leq f'(0)V, \quad g'(I)I \leq g(I) \leq g'(0)I, \quad \text{for} \ V, I \geq 0$$

Biologically, condition (A1) and (A2) indicates that: (i) the disease cannot spread if there is no infection; (ii) the incidences $Sf(V)$ and $Sg(I)$ become faster as the densities of the virus particles and infected cells increase; (iii) the per capita infection rates by virus particles and infected cells will slow down due to certain inhibition effect since (3) implies that

$$\left(\frac{f(V)}{V} \right)' \leq 0 \quad \text{and} \quad \left(\frac{g(I)}{I} \right)' \leq 0.$$

Obviously, the incidence rate with above conditions contains the bilinear and the saturation incidences such as $f(V) = \beta_1 V$ or $\frac{\beta_1 V}{1+V}$ and $g(I) = \beta_2 I$ or $\frac{\beta_1 I}{1+I}$, where incidence rates $\beta_1, \beta_2 > 0$. In this paper, we consider the system (2) with initial conditions as follows

$$S(x,0) = \varphi_1(x) \geq 0, \quad I(x,0) = \varphi_2(x), \quad V(x,0) = \varphi_3(x), \quad x \in \Omega,$$

where $S_0(x), I_0(x), V_0(x) \in C^2(\Omega) \cap C^0(\Omega)$, and homogenous Neumann boundary conditions

$$\frac{\partial S}{\partial \nu} = \frac{\partial I}{\partial \nu} = \frac{\partial V}{\partial \nu} = 0, \quad x \in \partial \Omega, \ t > 0,$$

where Ω is an open bounded subset of R^n with piecewise smooth boundary $\partial \Omega$ and ν being the unit outer normal to $\partial \Omega$.

Generally, the exact solution for a system like (2) is difficult or even impossible to be determined. It is a natural requirement of an adequate numerical method that it possess the discrete equivalents of the qualitative properties the continuous system satisfies. However, how to select the proper discrete scheme so that the global dynamics of solutions of the corresponding continuous models can be efficiently preserved is still an open problem [22]. Actually, Mickens has made an attempt in this regard, by proposing a robust non-standard finite difference (NSFD) scheme [23], which has been widely employed in the study of different models [24–29]. Motivated by the work of [23], we apply the NSFD scheme to discretize system (2) and obtain

$$\begin{align*}
\Delta t \frac{S_{n+1}^k - S_n^k}{\Delta t} &= D_1 \frac{S_{n+1}^k - 2S_n^k + S_{n-1}^k}{(\Delta x)^2} + \Lambda - S_n^k f(V_n^k) - S_n^k g(I_n^k) - d_S S_n^k, \\
\Delta t \frac{I_{n+1}^k - I_n^k}{\Delta t} &= D_2 \frac{I_{n+1}^k - 2I_n^k + I_{n-1}^k}{(\Delta x)^2} + S_n^k f(V_n^k) + S_n^k g(I_n^k) - (\gamma + d_I) I_n^k, \\
\Delta t \frac{V_{n+1}^k - V_n^k}{\Delta t} &= D_3 \frac{V_{n+1}^k - 2V_n^k + V_{n-1}^k}{(\Delta x)^2} + \alpha I_n^k - d_V V_n^k.
\end{align*}$$
Here, we set the spatial domain \(x \in \Omega = [a, b] \) where \(a, b \in \mathbb{R} \) and \(\Delta x = (b - a)/M \) be the space step-size generating \(M \) equal sub-interval over the domain and the length of uniform time intervals be \(\Delta t \). We denote approximations of \(S(x_n, t_k), I(x_n, t_k) \) and \(V(x_n, t_k) \) by \(S^k, I^k \) and \(V^k \), respectively at each mesh point \(\{(x_n, t_k), n \in \{0, 1, \ldots, M\}, k \in \mathbb{N}\} \) with \(x_n = a + n\Delta x \) and \(t_k = k\Delta t \). The discrete initial and boundary conditions

\[
S^0_n = \varphi_1(x_n) > 0, \quad I^0_n = \varphi_2(x_n) > 0 \quad \text{and} \quad V^0_n = \varphi_3(x_n) > 0
\]

and

\[
S^k_{-1} = S^k_0, \quad S^k_M = S^k_{M+1}, \quad I^k_{-1} = I^k_0, \quad I^k_M = I^k_{M+1}, \quad V^k_{-1} = V^k_0, \quad V^k_M = V^k_{M+1},
\]

respectively. Our aim is to show that the discretized system (6) which derived by using NSFD scheme can efficiently preserves the global asymptotic stability of the equilibria to the original system (2). The rest of this paper is organized as follows. In Section 2, we study the dynamical behavior of the continuous system (2), such as the existence of positive solutions and its uniqueness, the existence of equilibria, basic reproduction number, local stability and global stability. In Section 3, we investigate the global dynamics of discrete system (6). Numerical simulations are carried out to validate the theoretical results in section 4 and a brief conclusion finishes the paper.

2. Dynamical Behavior of the System (2)

2.1. Existence, Uniqueness and Positivity. To discuss the dynamical behavior of system (2), first we give the definition of upper and lower solution.

Definition 2.1. Let \((\hat{S}, \hat{I}, \hat{V})\) and \((\check{S}, \check{I}, \check{V})\) in \(C(\bar{\Omega} \times [0, \infty)) \cap C^{1,2}(\Omega \times [0, \infty))\) are a pair of upper and lower solution to the problem (2), if \(\hat{S} \leq \check{S}, \hat{I} \leq \check{I}, \hat{V} \leq \check{V} \) in \(\Omega \times [0, \infty) \) and the following differential inequalities hold:

\[
\begin{align*}
\frac{\partial \hat{S}(x,t)}{\partial t} &\geq D_1 \Delta \hat{S} + \Lambda - \hat{S}f(\hat{V}) - \hat{S}g(\hat{I}) - d_S \hat{S}, \\
\frac{\partial \hat{I}(x,t)}{\partial t} &\geq D_2 \Delta \hat{I} + \hat{S}f(\hat{V}) + \hat{S}g(\hat{I}) - (\gamma + d_I) \hat{I}, \\
\frac{\partial \hat{V}(x,t)}{\partial t} &\geq D_3 \Delta \hat{V} + \alpha \hat{I} - d_V \hat{V}, \\
\frac{\partial \check{S}(x,t)}{\partial t} &\leq D_1 \Delta \check{S} + \Lambda - \check{S}f(\check{V}) - \check{S}g(\check{I}) - d_S \check{S}, \\
\frac{\partial \check{I}(x,t)}{\partial t} &\leq D_2 \Delta \check{I} + \check{S}f(\check{V}) + \check{S}g(\check{I}) - (\gamma + d_I) \check{I}, \\
\frac{\partial \check{V}(x,t)}{\partial t} &\leq D_3 \Delta \check{V} + \alpha \check{I} - d_V \check{V},
\end{align*}
\]

for \((x, t) \in \Omega \times (0, \infty)\) and

\[
\begin{align*}
\frac{\partial \hat{S}}{\partial \nu} &\leq 0 \leq \frac{\partial \check{S}}{\partial \nu}, \quad \frac{\partial \hat{I}}{\partial \nu} \leq 0 \leq \frac{\partial \check{I}}{\partial \nu}, \quad \frac{\partial \hat{V}}{\partial \nu} \leq 0 \leq \frac{\partial \check{V}}{\partial \nu}, \\
\hat{S}(x, t) &\leq \varphi_1(x, t) \leq \check{S}(x, t), \quad \hat{I}(x, t) \leq \varphi_2(x, t) \leq \check{I}(x, t), \\
\check{V}(x, t) &\leq \varphi_3(x, t) \leq \hat{V}(x, t),
\end{align*}
\]

for \((x, t) \in \bar{\Omega} \times (0, \infty)\).
It is easy to see that $0 = (0, 0, 0)$ and $K = (K_1, K_2, K_3)$ are a pair of coupled lower-upper solutions to problem (2), where

$$M_1 = \max_{\Omega} \left\{ \frac{\Lambda}{d_I}, \| \varphi_1 \|_{C(\Omega, \mathbb{R})} \right\},$$

$$M_2 = \max_{\Omega} \left\{ \frac{\Lambda}{d_I}, \| \varphi_2 \|_{C(\Omega, \mathbb{R})} \right\},$$

$$M_3 = \max_{\Omega} \left\{ \frac{\alpha \Lambda}{d_V d_I}, \| \varphi_1 \|_{C(\Omega, \mathbb{R})} \right\}$$

and $d = \min\{d_S, d_I\}$. Using the following lemma provided by Redinger [30], we get the existence and uniqueness of the solution.

Lemma 2.2. Let \bar{U} and \bar{U} be a pair of coupled upper and lower solutions for problem (2) and suppose that the initial functions $\varphi_i, (i = 1, 2, 3)$ are Hölder continuous in $\bar{\Omega}$. Then problem (2) has exactly one regular solution $U(x, t) = (S(x, t), I(x, t), V(x, t))$ satisfying $\bar{U} \leq U \leq \bar{U}$ in $\bar{\Omega} \times [0, \infty)$.

Hence, $0 \leq S(x, t) \leq M_1$, $0 \leq I(x, t) \leq M_2$, $0 \leq V(x, t) \leq M_3$ for $(x, t) \in \bar{\Omega} \times [0, \infty)$. And also, by the maximum principle, if $\varphi_1(x, 0) \neq 0$ ($i = 1, 2, 3$), we have $S(x, t) > 0$, $I(x, t) > 0$, $V(x, t) > 0$ for all $t > 0$, $x \in \bar{\Omega}$.

2.2. Equilibria and Basic reproduction number. It is easy to verify that system (2) always has a disease-free equilibrium $E_0(S_0, 0, 0)$ with $S_0 = \frac{\Lambda}{d_S}$, and if exists the endemic equilibrium $E^*(S^*, I^*, V^*)$ satisfies

$$\begin{align*}
\Lambda - S F(V) - S g(I) - d_S S &= 0, \\
S F(V) + S g(I) - (\gamma + d_I) I &= 0, \\
\alpha I - d_V V &= 0.
\end{align*}$$

(9)

In order to find the basic reproduction number (R_0) for the system (2), we obtain the following linear system at E_0 for the infected classes:

$$\begin{cases}
\frac{\partial I(x, t)}{\partial t} = D_2 \Delta I + S_0 f'(0) V + S_0 g'(0) I - (\gamma + d_I) I, \\
\frac{\partial V(x, t)}{\partial t} = D_3 \Delta V + \alpha I - d_V V, \\
\frac{\partial I}{\partial \nu} = \frac{\partial V}{\partial \nu} = 0,
\end{cases}$$

(10)

Substituting $I(x, t) = e^{\lambda t} \psi_2(x)$ and $V(x, t) = e^{\lambda t} \psi_3(x)$ into (10), we obtain the following cooperative eigenvalue problem:

$$\begin{cases}
\lambda \psi_2(x) = D_2 \Delta \psi_2(x) + S_0 f'(0) \psi_3(x) + S_0 g'(0) \psi_2(x) - (\gamma + d_I) \psi_2(x), \\
\lambda \psi_3(x) = D_3 \Delta \psi_3(x) + \alpha \psi_2(x) - d_V \psi_3(x), \\
\frac{\partial \psi_2(x)}{\partial \nu} = \frac{\partial \psi_3(x)}{\partial \nu} = 0,
\end{cases}$$

(11)

By [31] (Theorem 7.6.1), we conclude that (11) has a principal eigenvalue $\lambda(S_0, f'(0), g'(0))$ with a positive eigenfunction. Now we are in a position to apply the ideas and the theory in [32] to define R_0 for the model (2). Let $\bar{T} : C(\bar{\Omega}, \mathbb{R}^2) \to C(\bar{\Omega}, \mathbb{R}^2)$ be the solution semigroup of the following reaction-diffusion system:

$$\begin{cases}
\frac{\partial I(x, t)}{\partial t} = D_2 \Delta I - (\gamma + d_I) I, \\
\frac{\partial V(x, t)}{\partial t} = D_3 \Delta V + \alpha I - d_V V, \\
I(x, 0) = \psi_2(x), V(x, 0) = \psi_3(x), \\
\frac{\partial I}{\partial \nu} = \frac{\partial V}{\partial \nu} = 0,
\end{cases}$$

(12)
Thus, with initial infection \(\Psi(x) = (\psi_2(x), \psi_3(x)) \), the distribution of those infection members becomes \(\tilde{T}(t)\Psi(x) \) as time evolves. As in [32], the matrices \(F \) and \(V \) defined as

\[
F(x) = \begin{pmatrix} S_0 f'(0) & 0 \\ 0 & S_0 f''(0) \end{pmatrix}, \quad V(x) = \begin{pmatrix} \gamma + d_I & 0 \\ -\alpha & d_v \end{pmatrix}.
\]

Therefore, the distribution of total new infections is

\[
\int_0^\infty F(x)\tilde{T}(t)\Psi(x)dt,
\]

Then, we define

\[
L(\Psi)(x) := \int_0^\infty F(x)\tilde{T}(t)\Psi(x)dt = F(x)\int_0^\infty \tilde{T}(t)\Psi(x)dt.
\]

It is clear that \(L \) is a positive and continuous operator which maps the initial infection distribution \(\Psi \) to the distribution of the total infective members produced during the infection period. Applying the idea of next generation operators [32], we define the spectral radius of \(L \) as the basic reproduction number

\[
\mathcal{R}_0 := \rho(L).
\]

By some calculations, we obtain that

\[
\mathcal{R}_0 = \frac{S_0 \alpha f'(0)}{d_v(\gamma + d_I)} + \frac{S_0 g'(0)}{(\gamma + d_I)} := \mathcal{R}_{01} + \mathcal{R}_{02},
\]

where \(\mathcal{R}_{01} \) and \(\mathcal{R}_{02} \) are partial basic reproduction numbers induced by virus-to-cell transmission and cell-to-cell transmission, respectively. The following theorem now prove regarding the meaningful steady states.

Theorem 2.3. If \(\mathcal{R}_0 < 1 \), then the disease-free equilibrium \(E_0(S_0, 0, 0) \) is the only equilibrium of the system (2); when \(\mathcal{R}_0 > 1 \), it also has a unique endemic equilibrium \(E^*(S^*, I^*, V^*) \) where

\[
S^* = \frac{\Lambda - (\gamma + d_I)I^*}{d_S} \quad \text{and} \quad V^* = \frac{\alpha I^*}{d_v}.
\]

Proof. It is easy to proof for the case \(\mathcal{R}_0 < 1 \). Consider \(\mathcal{R}_0 > 1 \), it follows from (9) that

\[
S = \frac{\Lambda - (\gamma + d_I)I}{d_S} \quad \text{and} \quad V = \frac{\alpha I}{d_v}
\]

Let

\[
\mathcal{G}(I) = \frac{\Lambda - (\gamma + d_I)I}{d_S} \left(f\left(\frac{\alpha I}{d_v} \right) + g(I) \right) - (\gamma + d_I)I.
\]

With \(\mathcal{G}(0) = 0 \), \(\mathcal{G}\left(\frac{\Lambda}{\gamma + d_I} \right) = -\Lambda < 0 \) and

\[
\mathcal{G}'(0) = \frac{\Lambda}{d_S} \left(f'(0) + g'(0) \right) - (\gamma + d_I) = (\gamma + d_I)(\mathcal{R}_0 - 1) > 0,
\]

Hence, equation \(\mathcal{G}(I) = 0 \) has at least one positive root \(I^* \in \left(0, \frac{\Lambda}{\gamma + d_I} \right) \). That implies the existence of positive equilibrium of the system (2). In order to show that the positive equilibrium is unique, we use

\[
S^* f(V^*) + S^* g(I^*) = (\gamma + d_I)I^*, \\
\alpha I^* = d_v V^*.
\]

Then

\[
\mathcal{G}'(I^*) = -\frac{\gamma + d_I}{d_S} \left(f\left(\frac{\alpha I^*}{d_v} \right) + g(I^*) \right) + S^* \left(\frac{\alpha I^*}{d_v} f''\left(\frac{\alpha I^*}{d_v} \right) + g'(I^*) \right) - (\gamma + d_I)
\]

\[
= -\frac{\gamma + d_I}{d_S} \left(f\left(\frac{\alpha I^*}{d_v} \right) + g(I^*) \right) + \frac{S^*}{I^*} \left(\frac{\alpha I^*}{d_v} f''\left(\frac{\alpha I^*}{d_v} \right) - f\left(\frac{\alpha I^*}{d_v} \right) + I^* g'(I^*) - g(I^*) \right).
\]
According to equation (3), we have
\begin{equation}
V f'(V) \leq f(V) \quad \text{and} \quad I g'(I) \leq g(I), \quad \text{for} \quad V, I \geq 0
\end{equation}
which implies that \(G'(I^*) < 0 \). If there exists the second positive equilibrium \(E^*(S^0, I^0, V^0) \), then one has \(G'(I^0) < 0 \). But which contradict the conditions (13). This completes the proof. \(\square \)

2.3. Local Stability. Let \(0 = \mu_0 < \mu_i < \mu_{i+1}, i = 1, 2, \cdots \) be the eigenvalues of \(-\Delta \) on \(\Omega \) with homogeneous Neumann boundary condition, \(E(\mu_i) \) the space of eigenfunctions corresponding to \(\mu_i \) and \(\{ \phi_{ij} : j = 1, 2, \cdots \}, \) an orthogonal basis of \(E(\mu_i) \). Then \(\mathbb{X} = [C^1(\Omega)]^3 \) can be decomposed as
\[\mathbb{X} = \bigoplus_{i=1}^{\infty} \mathbb{X}_i, \quad \mathbb{X}_i = \bigoplus_{j=1}^{\dim E(\mu_i)} \mathbb{X}_{ij} \]
where \(\mathbb{X}_{ij} = \{ c\phi_{ij} : c \in \mathbb{R}^3 \} \). Then we can prove the local stability of equilibrium as in [33,34].

Theorem 2.4. If \(R_0 < 1 \), then the disease-free equilibrium \(E_0 \) of system (2) is locally asymptotically stable.

Proof. The linearization of system (2) at \(E_0 \) can be expressed by
\[
\frac{\partial Z(x, t)}{\partial t} = D\Delta Z(x, t) + AZ(x, t),
\]
where \(Z = (S, I, V), D = \text{diag}(D_1, D_2, D_3) \) and
\[
A = \begin{pmatrix}
-d_S & -S_0g'(0) & -S_0f'(0) \\
0 & S_0g'(0) - (\gamma + d_I) & S_0f'(0) \\
0 & \alpha & -d_V
\end{pmatrix}.
\]
Therefore, the characteristic equation at \(E_0 \) is
\begin{equation}
(\lambda + d_S + \mu_i D_1) [(\lambda - S_0g'(0) + \gamma + d_I + \mu_i D_2)(\lambda + d_V + \mu_i D_3) - \alpha S_0f'(0)] = 0.
\end{equation}
It is obvious that (14) has an eigenvalue \(\lambda_1 = -(d_S + \mu_i D_1) \). The other two eigenvalues \(\lambda_2 \) and \(\lambda_3 \) are roots of
\[
\lambda^2 - [S_0g'(0) - (\gamma + d_I + \mu_i D_2) - (d_V + \mu_i D_3)]\lambda - (S_0g'(0) - (\gamma + d_I + \mu_i D_2))(d_V + \mu_i D_3) - \alpha S_0f'(0) = 0.
\]
It is easy to see that
\[
\lambda_2 + \lambda_3 = S_0g'(0) - (\gamma + d_I + \mu_i D_2) - (d_V + \mu_i D_3) \\
= S_0g'(0) - (\gamma + d_I + d_V) - \mu_i (D_2 + D_3) \\
< S_0g'(0) - (\gamma + d_I) - \mu_i (D_2 + D_3) \\
= (\gamma + d_I)(R_{02} - 1) - \mu_i (D_2 + D_3),
\]
and
\[
\lambda_2 \lambda_3 = d_V(\gamma + d_I) - d_V S_0g'(0) - \alpha S_0f'(0) + \mu_i D_2(d_V + \mu_i D_3) + \mu_i D_3(\gamma + d_I - S_0g'(0)) \\
= d_V(\gamma + d_I)(1 - R_{02}) + \mu_i D_3(\gamma + d_I)(1 - R_{02}) + \mu_i D_2(d_V + \mu_i D_3).
\]
Since \(R_{02} < R_0 < 1 \), we have \(\lambda_2 + \lambda_3 < 1 \) and \(\lambda_2 \lambda_3 > 0 \). This gives that \(\text{Re}(\lambda_2) < 0 \) and \(\text{Re}(\lambda_3) < 0 \). Thus, all eigenvalues of (14) have a negative real parts when \(R_0 < 1 \). Hence, \(E_0 \) is locally asymptotically stable. This completes the proof. \(\square \)

Now we turn our attention to the endemic equilibrium \(E^* \).

Theorem 2.5. If \(R_0 > 1 \), then the endemic equilibrium \(E^* \) of system (2) is locally asymptotically stable.
Proof. Linearizing system (2) at \(E^* \) gives
\[
\frac{\partial Z(x,t)}{\partial t} = D\Delta Z(x,t) + BZ(x,t),
\]
where
\[
B = \begin{pmatrix}
-(f(V^*) + g(I^*) + d_S) & -S^*g'(I^*) & -S^*f'(V^*) \\
 f(V^*) + g(I^*) & S^*g'(I^*) - (\gamma + d_I) & S^*f'(V^*) \\
 0 & -(\gamma + d_I) & -d_V
\end{pmatrix}.
\]
Thus, the characteristic equation at \(E^* \) is
\[
Q(\lambda) = \lambda^3 + Q_2\lambda^2 + Q_1\lambda + Q_0 = 0,
\]
where
\[
Q_2 = f(V^*) + g(I^*) + d_S + \mu_iD_1 - S^*g'(I^*) + \gamma + d_I + \mu_iD_2 + d_V + \mu_iD_3,
\]
\[
Q_1 = (f(V^*) + g(I^*) + d_S + \mu_iD_1)(\gamma + d_I + \mu_iD_2 + d_V + \mu_iD_3) - \alpha S^*f'(V^*)
+ (\gamma + d_I + \mu_iD_2)(d_V + \mu_iD_3) - (d_S + \mu_iD_1 + d_V + \mu_iD_3)S^*g'(I^*),
\]
\[
Q_0 = (f(V^*) + g(I^*) + d_S + \mu_iD_1)(\gamma + d_I + \mu_iD_2)(d_V + \mu_iD_3)
- (d_S + \mu_iD_1)[\alpha S^*f'(V^*) + (d_V + \mu_iD_3)S^*g'(I^*)].
\]
From (9) and (13), we get
\[
\alpha S^*f'(V^*) \leq \alpha S^*\frac{f(V^*)}{V^*} = (\gamma + d_I)d_V \frac{f(V^*)}{f(V^*) + g(I^*)},
\]
\[
S^*g'(I^*) \leq S^*\frac{g(I^*)}{I^*} = (\gamma + d_I)\frac{g(I^*)}{f(V^*) + g(I^*)}.
\]
Hence,
\[
Q_2 \geq f(V^*) + g(I^*) + d_S + \mu_iD_1 - (\gamma + d_I)\frac{g(I^*)}{f(V^*) + g(I^*)} + \gamma + d_I + \mu_iD_2 + d_V + \mu_iD_3
\]
\[
= f(V^*) + g(I^*) + d_S + \mu_iD_1 + (\gamma + d_I)\frac{f(V^*)}{f(V^*) + g(I^*)} + \mu_iD_2 + d_V + \mu_iD_3,
\]
\[
Q_1 \geq (f(V^*) + g(I^*) + d_S + \mu_iD_1)(\gamma + d_I + \mu_iD_2 + d_V + \mu_iD_3) - (\gamma + d_I)d_V \frac{f(V^*)}{f(V^*) + g(I^*)}
+ (\gamma + d_I + \mu_iD_2)(d_V + \mu_iD_3) - (d_S + \mu_iD_1 + d_V + \mu_iD_3)(\gamma + d_I)\frac{g(I^*)}{f(V^*) + g(I^*)}
\]
\[
= (f(V^*) + g(I^*))(\gamma + d_I + \mu_iD_2 + d_V + \mu_iD_3) + (d_S + \mu_iD_1)(\mu_iD_2 + d_V + \mu_iD_3)
+ \mu_iD_2(d_V + \mu_iD_3) + (\gamma + d_I)(d_S + \mu_iD_1 + \mu_iD_3)\frac{f(V^*)}{f(V^*) + g(I^*)},
\]
and
\[
Q_0 \geq (f(V^*) + g(I^*) + d_S + \mu_iD_1)(\gamma + d_I + \mu_iD_2)(d_V + \mu_iD_3)
- (d_S + \mu_iD_1)\left[(\gamma + d_I)d_V \frac{f(V^*)}{f(V^*) + g(I^*)} + (d_V + \mu_iD_3)(\gamma + d_I)\frac{g(I^*)}{f(V^*) + g(I^*)}\right]
\]
\[
= (f(V^*) + g(I^*))\gamma + d_I + \mu_iD_2)(d_V + \mu_iD_3)
+ (d_S + \mu_iD_1)\left[\mu_iD_2(d_V + \mu_iD_3) + \mu_iD_3(\gamma + d_I)\frac{f(V^*)}{f(V^*) + g(I^*)}\right] > 0.
\]
Hence, \(Q_2Q_1 - Q_0 > 0 \). Then, by using Routh-Hurwitz criterion we claim that all eigenvalues of (15) have negative real parts. Thus, the endemic equilibrium \(E^* \) of system (2) is locally asymptotically stable when \(R_0 > 1 \). This completes the proof. \(\square \)
2.4. Global Stability. Now, we discuss the global stability of the equilibria for the system (2) by considering Lyapunov functional based on the Volterra function $\Phi(x) = x - 1 - \ln x$. Clearly, $\Phi(x) \geq 0$ for all $x > 0$ and the equality holds if and only if $x = 1$. In presence of diffusion, the aim is to show that every solution of the system (2) with a positive initial value that is different from the equilibrium point will converge to the equilibrium.

Theorem 2.6. If $R_0 \leq 1$, then the disease-free equilibrium E_0 of system (2) is globally asymptotically stable.

Proof. Define a Lyapunov function

$$L(t) = \int_{\Omega} L_1(x,t) dx,$$

Where

$$L_1(x,t) = S_0 \Phi\left(\frac{S(x,t)}{S_0}\right) + I(x,t) + BV(x,t)$$

and B is a positive constant to be determined later. Then, along the solutions of the system (2), we have

$$\frac{\partial L_1(x,t)}{\partial t} = \left(1 - \frac{S_0}{S}\right) \frac{\partial S}{\partial t} + \frac{\partial I}{\partial t} + B \frac{\partial V}{\partial t}$$

$$= \left(1 - \frac{S_0}{S}\right) \left(D_1 \Delta S + \Lambda - Sf(V) - Sg(I) - dsS\right)$$

$$+ D_2 \Delta I + Sf(V) + Sg(I) - (\gamma + d_I) I + BD_3 \Delta V + B(\alpha I - d_V V).$$

By equation (3) and choosing $B = (\gamma + d_I - S_0 g'(0))/\alpha$, we obtain

$$\frac{\partial L_1(x,t)}{\partial t} \leq -\frac{d_S}{S} (S_0 - S)^2 + \frac{d_V (\gamma + d_I)}{\alpha} (R_0 - 1)V$$

$$+ \left(1 - \frac{S_0}{S}\right) D_1 \Delta S + D_2 \Delta I + BD_3 \Delta V.$$

Using Green’s formula and the Neumann boundary conditions in (5), we obtain

$$\int_{\Omega} \left(1 - \frac{S_0}{S}\right) D_1 \Delta S dx = -D_1 \int_{\Omega} \nabla \left(1 - \frac{S_0}{S}\right) \nabla S dx = -D_1 \int_{\Omega} \frac{S_0}{S^2} |\nabla S|^2 dx \leq 0,$$

and

$$\int_{\Omega} \Delta I dx = \int_{\Omega} \Delta V dx = 0.$$

Using above conditions, we obtain

$$\frac{dL(t)}{dt} = \int_{\Omega} \frac{\partial L_1(x,t)}{\partial t} dx \leq \int_{\Omega} \left(-\frac{d_S}{S} (S_0 - S)^2 + \frac{d_V (\gamma + d_I)}{\alpha} (R_0 - 1)V - \frac{D_1 S_0}{S^2} |\nabla S|^2\right) dx$$

Therefore, $\frac{dL(t)}{dt} \leq 0$ whenever $R_0 \leq 1$. It follows that the largest invariant subset of $\{ \frac{dL(t)}{dt} = 0\}$ is the singleton E_0. By LaSalle’s Invariance Principle [35], the infection-free equilibrium of the system (2) is globally asymptotically stable when $R_0 \leq 1$. □

Next, we turn our attention to show the global stability of the endemic equilibrium E^*.

Theorem 2.7. Consider a Lyapunov function

$$H(t) = \int_{\Omega} H_1(x,t) dx,$$
with

\[H_1(x, t) = S^* \Phi \left(\frac{S}{S^*} \right) + I^* \Phi \left(\frac{I}{I^*} \right) + \frac{S^* f(V^*)}{d_V} \Phi \left(\frac{V}{V^*} \right). \]

Then, \(H(t) \) is non-negative and is strictly minimized at the unique equilibrium \((S^*, I^*, V^*)\), i.e. it is a valid Lyapunov function. Hence, \(E^* = (S^*, I^*, V^*) \) is globally asymptotically stable.

Proof. According to (2), we have

\[
\frac{\partial H_1(x, t)}{\partial t} = \left(1 - \frac{S^*}{S} \right) \frac{\partial S}{\partial t} + \left(1 - \frac{I^*}{I} \right) \frac{\partial I}{\partial t} + \frac{S^* f(V^*)}{d_V V^*} \left(1 - \frac{V^*}{V} \right) \frac{\partial V}{\partial t}
\]

\[
= \left(1 - \frac{S^*}{S} \right) (D_1 \Delta S + d_S S^* + S^* f(V^*) + S^* g(I^*) - S f(V) - S g(I) - d_S S)
\]

\[
+ \left(1 - \frac{I^*}{I} \right) (D_2 \Delta I + S f(V) + S g(I) - (\gamma + d_I) I)
\]

\[
+ \frac{S^* f(V^*)}{d_V V^*} \left(1 - \frac{V^*}{V} \right) (D_3 \Delta V + \alpha I - d_V V)
\]

\[
= \left(1 - \frac{S^*}{S} \right) (d_S S^* - d_S S) + S^* g(I^*) \left(2 - \frac{S^*}{S} + \frac{g(I)}{g(I^*)} - \frac{S g(I) I^*}{S^* g(I^*) I} - \frac{I}{I^*} \right)
\]

\[
+ S^* f(V^*) \left(3 - \frac{S^*}{S} + \frac{f(V)}{f(V^*)} - \frac{S f(V) I^*}{S^* f(V^*) I} - \frac{V^* I}{V I^*} - \frac{V}{V^*} \right)
\]

\[
+ \left(1 - \frac{S^*}{S} \right) D_1 \Delta S + \left(1 - \frac{I^*}{I} \right) D_2 \Delta I + \frac{S^* f(V^*)}{d_V V^*} \left(1 - \frac{V^*}{V} \right) D_3 \Delta V
\]

\[
= - \frac{d_S}{S} (S - S^*)^2 - S^* g(I^*) \left(\Phi \left(\frac{S^*}{S} \right) + \Phi \left(\frac{S g(I) I^*}{S^* g(I^*) I} \right) + \Phi \left(\frac{I}{I^*} \right) - \Phi \left(\frac{g(I)}{g(I^*)} \right) \right)
\]

\[
- S^* f(V^*) \left(\Phi \left(\frac{S^*}{S} \right) + \Phi \left(\frac{S f(V) I^*}{S^* f(V^*) I} \right) + \Phi \left(\frac{V^* I}{V I^*} \right) + \Phi \left(\frac{V}{V^*} \right) - \Phi \left(\frac{f(V)}{f(V^*)} \right) \right)
\]

\[
+ \left(1 - \frac{S^*}{S} \right) D_1 \Delta S + \left(1 - \frac{I^*}{I} \right) D_2 \Delta I + \frac{S^* f(V^*)}{d_V V^*} \left(1 - \frac{V^*}{V} \right) D_3 \Delta V.
\]

Using Green’s formula and the Neumann boundary conditions in (5), we obtain

\[
\int_{\Omega} \left(1 - \frac{S^*}{S} \right) D_1 \Delta S dx = -D_1 \int_{\Omega} \nabla \left(1 - \frac{S^*}{S} \right) \nabla S dx = -D_1 \int_{\Omega} \frac{S^*}{S} |\nabla S|^2 dx \leq 0,
\]

similarly

\[
\int_{\Omega} \left(1 - \frac{I^*}{I} \right) D_2 \Delta I dx = -D_2 \int_{\Omega} \nabla \left(1 - \frac{I^*}{I} \right) \nabla I dx = -D_2 \int_{\Omega} \frac{I^*}{I^2} |\nabla I|^2 dx \leq 0,
\]

\[
\frac{S^* f(V^*)}{d_V V^*} \int_{\Omega} \left(1 - \frac{V^*}{V} \right) D_3 \Delta V dx = -\frac{D_3 S^* f(V^*)}{d_V V^*} \int_{\Omega} \nabla \left(1 - \frac{V^*}{V} \right) \nabla V dx = -\frac{D_3 S^* f(V^*)}{d_V} \int_{\Omega} \frac{1}{V^2} |\nabla V|^2 dx \leq 0,
\]

By assumption (A2), we get

\[
\Phi \left(\frac{f(V)}{f(V^*)} \right) - \Phi \left(\frac{V}{V^*} \right) = \frac{f(V)}{f(V^*)} - \frac{V}{V^*} + \ln \left(\frac{V f(V^*)}{V^* f(V)} \right)
\]

\[
\leq f(V) - \frac{V}{V} + \frac{V f(V^*)}{V^* f(V)} - 1
\]

\[
= \left(\frac{f(V)}{f(V^*)} - \frac{V}{V^*} \right) \left(1 - \frac{f(V^*)}{f(V)} \right)
\]

\[
\leq 0.
\]
Similarly, we have
\[
\Phi \left(\frac{g(I)}{g(I^*)} \right) - \Phi \left(\frac{I}{I^*} \right) \leq \left(\frac{g(I)}{g(I^*)} - \frac{I}{I^*} \right) \left(1 - \frac{g(I^*)}{g(I)} \right) \leq 0.
\]
Using above conditions, we conclude that
\[
\frac{dH(t)}{dt} = \int_\Omega \frac{\partial H_1(x,t)}{\partial t} dx
\]
\[
\leq \int_\Omega \left[- \frac{dS}{S} (S - S^*)^2 - S^*g(I^*) \left(\Phi \left(\frac{S^*}{S} \right) + \Phi \left(\frac{S \Phi(I^*)}{S^*g(I^*)I} \right) \right)
- S^*f(V^*) \left(\Phi \left(\frac{S^*}{S} \right) + \Phi \left(\frac{Sf(V)}{S^*f(V^*)I} \right) + \Phi \left(\frac{V^*I}{VI^*} \right) \right)
- \frac{D_1S^*}{S^2} |\nabla S|^2 - \frac{D_2I^*}{T^2} |\nabla I|^2 - \frac{D_3S^*f(V^*)}{dV^2} |\nabla V|^2 \right] dx
\leq 0.
\]
Furthermore we have \(\frac{dH(t)}{dt} = 0 \) only at steady state \(E^* = (S^*, I^*, V^*) \). Therefore, by Lyapunov’s direct method, the steady state solution \(E^* \) is globally asymptotically stable. □

3. DYNAMICAL BEHAVIOR OF THE DISCRETIZED MODEL (6)

In preceding section, we have shown that the global asymptotic stability of the equilibria for the continuous system (2) is completely determined by the basic reproduction number \(R_0 \) by constructing appropriate Lyapunov functionals. This arises a natural question that whether the global asymptotic stability of the equilibria of the discrete system (6) can be preserved. In this section, we will discuss this problem. Clearly, the discretized system (6) has the same two steady states as the continuous system (2). In the following theorem, we show the system (6) is non-negative and bounded.

Theorem 3.1. (Positivity and Boundedness) For any \(\Delta t > 0 \) and \(\Delta x > 0 \), the solution of system (6)-(8) is non-negative and bounded for all \(k \in \mathbb{N} \).

Proof. The positivity of the solutions of the discretized system (6) can be proved using the M-matrix theory [26]. From the first equation of system (6), we get
\[
A^k S^{k+1} = S^k + \lambda \Delta t,
\]
where
\[
A^k = \begin{pmatrix}
a_0^k & a & 0 & \cdots & 0 & 0 & 0 \\
a & a_1^k & a & \cdots & 0 & 0 & 0 \\
0 & a & a_2^k & \cdots & 0 & 0 & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\
0 & 0 & 0 & \cdots & a_{M-2}^k & a & 0 \\
0 & 0 & 0 & \cdots & a_{M-1}^k & a & a^k \\
0 & 0 & 0 & \cdots & 0 & a & a^k \\
\end{pmatrix},
\]
\(\lambda = (\Lambda, \Lambda, \cdots, \Lambda)^T \), and the coefficients \(a = -D_1 \Delta t / (\Delta x)^2, \ a_0^k = 1 + D_1 \Delta t / (\Delta x)^2 + \Delta t (f(V^k) + g(I^k)) + dS, \ a_M^k = 1 + D_1 \Delta t / (\Delta x)^2 + \Delta t (f(V^k) + g(I^k)) + dS \) and \(a_i^k = 1 + 2D_1 \Delta t / (\Delta x)^2 + \Delta t (f(V^k) + g(I^k)) + dS \) with \(i = 1, 2, \cdots, M - 1 \). It is clear that \(A^k \) is a strictly diagonally dominant matrix. Thus, the first equation of system (6) is equivalent to
\[
S^{k+1} = (A^k)^{-1} (S^k + \lambda \Delta t) > 0.
\]
From the second equation of the system (6), we have
\[
BI^{k+1} = I^k + \Delta T^{k+1},
\]
where \(T_{k+1} = (S_0^{k+1}(f(V_0^k) + g(I_0^k)), S_1^{k+1}(f(V_1^k) + g(I_1^k)), \ldots, S_M^{k+1}(f(V_M^k) + g(I_M^k)))^T \)

\[
\mathcal{B} = \begin{pmatrix}
 b_1 & b_2 & 0 & \cdots & 0 & 0 & 0 \\
 b_2 & b_3 & b_2 & \cdots & 0 & 0 & 0 \\
 0 & b_2 & b_3 & \cdots & 0 & 0 & 0 \\
 \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\
 0 & 0 & 0 & \cdots & b_3 & b_2 & 0 \\
 0 & 0 & 0 & \cdots & b_2 & b_3 & b_2 \\
 0 & 0 & 0 & \cdots & 0 & b_2 & b_1
\end{pmatrix},
\]

with \(b_1 = 1 + D_2 \Delta t/((\Delta x)^2 + \Delta t(\gamma + d_I)) \), \(b_2 = -D_2 \Delta t/((\Delta x)^2) \) and \(b_3 = 1 + 2D_2 \Delta t/((\Delta x)^2 + \Delta t(\gamma + d_I)) \). Since \(\mathcal{B} \) is a M-matrix, we get

\[
I_{k+1} = \mathcal{B}^{-1}(I_k + \Delta t T_{k+1}).
\]

Similarly, from the third equation of system (6), we have

\[
\mathcal{C} V^{k+1} = V^k + \alpha \Delta t I^{k+1},
\]

where

\[
\mathcal{C} = \begin{pmatrix}
 c_1 & c_2 & 0 & \cdots & 0 & 0 & 0 \\
 c_2 & c_3 & c_2 & \cdots & 0 & 0 & 0 \\
 0 & c_2 & c_3 & \cdots & 0 & 0 & 0 \\
 \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\
 0 & 0 & 0 & \cdots & c_3 & c_2 & 0 \\
 0 & 0 & 0 & \cdots & c_2 & c_3 & c_2 \\
 0 & 0 & 0 & \cdots & 0 & c_2 & c_1
\end{pmatrix},
\]

with \(c_1 = 1 + D_3 \Delta t/((\Delta x)^2 + d_V \Delta t) \), \(c_2 = -D_3 \Delta t/((\Delta x)^2) \) and \(c_3 = 1 + 2D_3 \Delta t/((\Delta x)^2 + d_V \Delta t) \). Since \(\mathcal{C} \) is a M-matrix, we obtain

\[
V^{k+1} = \mathcal{C}^{-1}(V^k + \alpha \Delta t I^{k+1}).
\]

Since all parameters in the system (6) are positive, it is easy to see that the solution remains non-negative for all \(k \in \mathbb{N} \).

Next, we prove the boundedness of the solution. Define a sequence \(\{G^k\} \) as follows:

\[
G^k = \sum_{n=0}^{M} (S_n^k + I_n^k).
\]

It follows from the first two equations of system (6) that

\[
G^{k+1} - G^k = \Lambda(M+1)\Delta t - d_S \Delta t \sum_{n=0}^{M} S_n^{k+1} - (\gamma + d_I) \Delta t \sum_{n=0}^{M} I_n^{k+1} \\
\leq \Lambda(M+1)\Delta t - d \Delta t G^{k+1}.
\]

where \(d = \min\{d_S, d_I\} \). Hence, we have

\[
G^{k+1} \leq \frac{\Lambda(M+1)\Delta t}{1 + d \Delta t} + \frac{G^k}{1 + d \Delta t}.
\]

By mathematical induction, we obtain

\[
\limsup_{k \to +\infty} G^k \leq N(M+1).
\]

By the third equation of the system (6), we get

\[
\sum_{n=0}^{M} V_n^{k+1} = \frac{\alpha \Delta t}{1 + d_V \Delta t} \sum_{n=0}^{M} I_n^{k+1} + \frac{1}{1 + d_V \Delta t} \sum_{n=0}^{M} V_n^{k}.
\]
Since \(\{G^k\} \) is bounded, there exists a positive constant \(\xi \) such that \(\sum_{n=0}^{M} I_n^k \leq \xi \). Thus, we have

\[
\limsup_{k \to +\infty} \sum_{n=0}^{M} V_n^{k+1} \leq \frac{\alpha \xi}{d V}.
\]

This completes the proof. \(\square \)

3.1. Global Stability

In this section, we establish the global asymptotic stability of the steady states \(E_0 \) and \(E^* \) of the discrete system (6), by constructing discrete Lyapunov functions.

Theorem 3.2. For any \(\Delta t > 0 \) and \(\Delta x > 0 \), if \(\mathcal{R}_0 \leq 1 \), then the disease-free equilibrium \(E_0 \) of system (6) is globally asymptotically stable.

Proof. Define a discrete Lyapunov function as follows

\[
\mathcal{L}^k = \sum_{n=0}^{M} \frac{1}{\Delta t} \left[S_0 \Phi \left(\frac{S_n^k}{S_0} \right) + (1 + \rho_0 \Delta t) I_n^k + \rho_1 (1 + \rho_2 \Delta t) V_n^k \right],
\]

where \(\rho_0, \rho_1 \) and \(\rho_2 \) are positive constant to be determined later. Applying the inequality \(\ln x \leq x - 1 \), the difference of \(\mathcal{L}^k \) satisfies

\[
\mathcal{L}^{k+1} - \mathcal{L}^k = \sum_{n=0}^{M} \frac{1}{\Delta t} \left[S_n^{k+1} - S_n^k + S_0 \ln \left(\frac{S_n^k}{S_0} \right) + (1 + \rho_0 \Delta t)(I_n^{k+1} - I_n^k) + \rho_1 (1 + \rho_2 \Delta t)(V_n^{k+1} - V_n^k) \right]
\]

\[
\leq \sum_{n=0}^{M} \frac{1}{\Delta t} \left[\left(1 - \frac{S_0}{S_n^{k+1}} \right)(S_n^{k+1} - S_n^k) + (1 + \rho_0 \Delta t)(I_n^{k+1} - I_n^k) + \rho_1 (1 + \rho_2 \Delta t)(V_n^{k+1} - V_n^k) \right]
\]

\[
= \sum_{n=0}^{M} \left[\left(1 - \frac{S_0}{S_n^{k+1}} \right)(\Lambda - S_n^{k+1} f(V_n^k) - S_n^{k+1} g(I_n^k) - d_s S_n^{k+1} - S_n^{k+1} f(V_n^k) - S_n^{k+1} g(I_n^k) \right.
ight.
\]

\[
- (\gamma + d_t) I_n^{k+1} + \rho_0 (I_n^{k+1} - I_n^k) + \rho_1 (\alpha I_n^{k+1} - d_V V_n^{k+1}) + \rho_1 \rho_2 (V_n^{k+1} - V_n^k) \right]
\]

\[
+ \left. \rho_1 (\alpha I_n^{k+1} - d_V V_n^{k+1}) + \rho_1 \rho_2 (V_n^{k+1} - V_n^k) \right] + \mathcal{R}^k,
\]

where

\[
\mathcal{R}^k = \sum_{n=0}^{M} \frac{1}{(\Delta x)^2} \left[D_1 \left(1 - \frac{S_0}{S_n^{k+1}} \right) \left(\frac{S_{n+1}^{k+1} - 2 S_n^{k+1} + S_{n-1}^{k+1}}{S_{n+1}^{k+1} - 2 S_n^{k+1} + S_{n-1}^{k+1}} \right) + D_2 \left(I_n^{k+1} - 2 I_n^{k+1} + I_n^{k+1} \right)
\]

\[
+ \rho_1 D_3 \left(V_n^{k+1} - 2 V_n^{k+1} + V_n^{k+1} \right) \right]
\]

\[
= \sum_{n=0}^{M} \frac{1}{(\Delta x)^2} \left[D_1 \left(\frac{S_{n+1}^{k+1} - 2 S_n^{k+1} + S_{n-1}^{k+1}}{S_{n+1}^{k+1} - 2 S_n^{k+1} + S_{n-1}^{k+1}} - S_0 \right) D_1 \left(\frac{S_{n+1}^{k+1} - 2 S_n^{k+1} + S_{n-1}^{k+1}}{S_{n+1}^{k+1} - 2 S_n^{k+1} + S_{n-1}^{k+1}} \right)
\]

\[
+ D_2 \left(I_n^{k+1} - 2 I_n^{k+1} + I_n^{k+1} \right) + \rho_1 D_3 \left(V_n^{k+1} - 2 V_n^{k+1} + V_n^{k+1} \right) \right]
\]

Using the arithmetic-geometric inequality

\[
2 \frac{s_{n+1}^{k+1}}{S_{n+1}^{k+1} - \frac{S_n^{k+1}}{S_{n+1}^{k+1}}} \leq 0, \text{ for } n \in \{0, 1, \cdots, M - 1\},
\]

\[12\]
we get

\[
R^k \leq \frac{1}{(\Delta x)^2} \left[D_1 \left(S_{M+1}^{k+1} - S_M^{k+1} + S_{-1}^{k+1} - S_{0}^{k+1} \right) - S_0 D_1 \left(\frac{S_{-1}^{k+1}}{S_0^{k+1}} - 2 + \frac{S_{M+1}^{k+1}}{S_{0}^{k+1}} \right) \right] \\
+ D_2 \left(I_{M+1}^{k+1} - I_M^{k+1} + I_{-1}^{k+1} - I_0^{k+1} \right) + \rho_1 D_3 \left(V_{M+1}^{k+1} - V_M^{k+1} + V_{-1}^{k+1} - W_0^{k+1} \right) = 0.
\]

By using equation (3), we obtain

\[
\mathcal{L}^{k+1} - \mathcal{L}^k \leq \sum_{n=0}^{M} \left[- \frac{d_s}{S_n^{k+1}} (S_n^{k+1} - S_0)^2 + S_0 f'(0) V_n^k + S_0 g'(0) I_n^k - (\gamma + d_f) I_n^{k+1} + \rho_0 (I_n^{k+1} - I_n^k) \right] \\
+ \rho_1 (\alpha I_n^{k+1} - d_f V_n^{k+1}) + \rho_1 \rho_2 (V_n^{k+1} - V_n^k).
\]

Letting \(\rho_0 = S_0 g'(0) \), \(\rho_1 = (\gamma + d_f - S_0 g'(0))/\alpha \) and \(\rho_2 = d_f \), we get

\[
\mathcal{L}^{k+1} - \mathcal{L}^k \leq \sum_{n=0}^{M} \left[- \frac{d_s}{S_n^{k+1}} (S_n^{k+1} - S_0)^2 + \frac{d_f (\gamma + d_f)}{\alpha} (R_0 - 1) V_n^k \right].
\]

If \(R_0 \leq 1 \), for all \(k \in \mathbb{N} \) we get

\[
\mathcal{L}^{k+1} - \mathcal{L}^k \leq 0,
\]

which gives that \(\{ \mathcal{L}^k \}_{k \in \mathbb{N}} \) is a monotone decreasing sequence. That means there exists a constant \(\tilde{\mathcal{L}} \geq 0 \) such that \(\lim_{k \to +\infty} \mathcal{L}^k = \tilde{\mathcal{L}} \) and we have \(\lim_{k \to +\infty} (\mathcal{L}^{k+1} - \mathcal{L}^k) = 0 \). Arguing on the lines of [26] to system (6), we obtain

\[
\lim_{k \to +\infty} S_n^k = S_0, \quad \lim_{k \to +\infty} I_n^k = 0 \quad \text{and} \quad \lim_{k \to +\infty} V_n^k = 0,
\]

for all \(n \in \{0, 1, \cdots, M\} \) and when \(R_0 \leq 1 \). This completes the proof. \(\square \)

Next, we discuss the global stability of the endemic equilibrium \(E^* \) when \(R_0 > 1 \).

Theorem 3.3. For any \(\Delta t > 0 \) and \(\Delta x > 0 \), then the endemic equilibrium \(E^* \) of system (6) is globally asymptotically stable when \(R_0 > 1 \).

Proof. We define the following discretized Lyapunov function

\[
\mathcal{H}^k = \sum_{n=0}^{M} \frac{1}{\Delta t} \left[S^* \Phi \left(\frac{S_n^k}{S^*} \right) + (I^* + S^* g(I^*) \Delta t) \Phi \left(\frac{I_n^k}{I^*} \right) + S^* f(V^*) d_f (1 + d_f \Delta t) \Phi \left(\frac{V_n^k}{V^*} \right) \right].
\]

Obviously, \(\mathcal{H}^k \geq 0 \) for all \(k \in \mathbb{N} \) with the equality holds if and only if \(S_n^k = S^*, \ I_n^k = I^* \) and \(V_n^k = V^* \) for all \(n \in \{0, 1, \cdots, M\} \) and \(k \in \mathbb{N} \). Using \(\ln x \leq x - 1 \), the difference of \(\mathcal{H}^k \)
satisfies

\[\mathcal{H}^{k+1} - \mathcal{H}^k = \sum_{n=0}^M \frac{1}{\Delta t} \left[S_{n+1}^k - S_n^k + S^* \ln \left(\frac{S_n^k}{S_{n+1}^k} \right) + I_{n+1}^k - I_n^k - I^* \ln \left(\frac{I_n^k}{I_{n+1}^k} \right) + S^* g(I^*) \Delta t \left(\frac{I_{n+1}^k}{I_n^k} - \frac{I_n^k}{I^*} + \ln \left(\frac{I_n^k}{I_{n+1}^k} \right) \right) + S^* f(V^*) \Delta t \left(\frac{V_{n+1}^k}{V_n^k} - \frac{V_n^k}{V_{n+1}^k} + \ln \left(\frac{V_n^k}{V_{n+1}^k} \right) \right) \right] \]

\[\leq \sum_{n=0}^M \frac{1}{\Delta t} \left[\left(1 - \frac{S^*}{S_{n+1}^k} \right) (S_{n+1}^k - S_n^k) + \left(1 - \frac{I^*}{I_{n+1}^k} \right) (I_{n+1}^k - I_n^k) + S^* g(I^*) \Delta t \left(\frac{I_{n+1}^k}{I_n^k} - \frac{I_n^k}{I^*} + \ln \left(\frac{I_n^k}{I_{n+1}^k} \right) \right) + S^* f(V^*) \Delta t \left(\frac{V_{n+1}^k}{V_n^k} - \frac{V_n^k}{V_{n+1}^k} + \ln \left(\frac{V_n^k}{V_{n+1}^k} \right) \right) \right] \]

\[= \sum_{n=0}^M \left[\left(1 - \frac{S^*}{S_{n+1}^k} \right) (\lambda - S_{n+1}^k f(V_n^k) - S_{n+1}^k g(I_n^k) - dSS_{n+1}^k) + \left(1 - \frac{I^*}{I_{n+1}^k} \right) (S_{n+1}^k f(V_n^k) + S_{n+1}^k g(I_n^k) - (\gamma + dI)I_{n+1}^k) + S^* f(V^*) \left(1 - \frac{V^*}{V_{n+1}^k} \right) (\alpha I_{n+1}^k - dV V_{n+1}^k) \right] \]

Using the similar arithmetic-geometric inequality (16) for \(S, I \) and \(V \), we get

\[z^k = \sum_{n=0}^M \frac{1}{(\Delta x)^2} \left[D_1 \left(1 - \frac{S^*}{S_{n+1}^k} \right) (S_{n+1}^k - 2S^k_{n+1} + S_{n+1}^k) + D_2 \left(1 - \frac{I^*}{I_{n+1}^k} \right) (I_{n+1}^k - 2I^k_{n+1} + I_{n+1}^k) \right] + S^* f(V^*) D_3 \left(1 - \frac{V^*}{V_{n+1}^k} \right) \left(V_{n+1}^k - 2V^k_{n+1} + V_{n+1}^k \right) \]

\[= \sum_{n=0}^M \frac{1}{(\Delta x)^2} \left[D_1 \left(\frac{S^k_{n+1} - 2S^k_n + S^k_{n+1}}{S^k_n} \right) - S^* D_1 \left(\frac{S^k_{n+1} - 2S^k_n + S^k_{n+1}}{S^k_{n+1}} \right) \right] + S^* f(V^*) D_3 \left(\frac{V^k_{n+1} - 2V^k_n + V^k_{n+1}}{V^k_n} \right) \]

\[= 0. \]
By assumption (A2), we have the following inequality
\[
\Phi \left(\frac{f(V^k_n)}{f(V^*)} \right) - \Phi \left(\frac{V^k_n}{V^*} \right) = f(V^k_n) - f(V^*) + \ln \left(\frac{V^k_n f(V^*)}{V^* f(V^k_n)} \right) \\
\leq f(V^k_n) - f(V^*) + \frac{V^k_n f(V^*)}{V^* f(V^k_n)} - 1 \\
= f(V^k_n) - f(V^*) \left(1 - \frac{f(V^*)}{f(V^k_n)} \right) \\
\leq 0.
\]

Similarly, we get
\[
\Phi \left(\frac{g(I^k_n)}{g(I^*)} \right) - \Phi \left(\frac{I^k_n}{I^*} \right) \leq \left(\frac{g(I^k_n)}{g(I^*)} - \frac{I^k_n}{I^*} \right) \left(1 - \frac{g(I^*)}{g(I^k_n)} \right) \leq 0.
\]

Hence, using above conditions, we conclude that
\[
\mathcal{H}^{k+1} - \mathcal{H}^k \leq -S^* f(V^*) \left(\Phi \left(\frac{S^*}{S^*} \right) + \Phi \left(\frac{S^k_{n+1} f(I^k_n)}{S^* f(I^k_n)} \right) \right) + Z^k
\]
\[
\leq -S^* f(V^*) \left(\Phi \left(\frac{S^*}{S^*} \right) + \Phi \left(\frac{S^k_{n+1} f(I^k_n)}{S^* f(I^k_n)} \right) \right) \\
\leq 0.
\]

This implies that \(\mathcal{H}^k \) is a monotone decreasing sequence, then there exists a constant \(\tilde{\mathcal{H}} \) such that \(\lim_{k \to \infty} \mathcal{H}^k = \mathcal{H} \), and we have \(\lim_{k \to \infty} (\mathcal{H}^{k+1} - \mathcal{H}^k) = 0 \). Which conclude that
\[
\lim_{k \to \infty} S^k_n = S^*, \quad \lim_{k \to \infty} g(I^k_n) = \lim_{k \to \infty} f(V^k_n) = \lim_{k \to \infty} V^* I^k_n = 1.
\]

By the first equation of system (6), we obtain
\[
\frac{S^k_{n+1} - S^k_n}{\Delta t} = D_1 \frac{S^k_{n+1} - 2S^k_n + S^k_{n-1}}{\Delta x^2} + \Lambda - S^k_n f(V^k_n) - S^k_n g(I^k_n) - d_s S^k_n
\]
\[
= D_1 \frac{S^k_{n+1} - 2S^k_n + S^k_{n-1}}{\Delta x^2} + \Lambda - d_s S^k_n - I^k_n + S^k_n \left(\frac{S^k_n f(V^k_n)}{I^k_n} + \frac{S^k_n g(I^k_n)}{I^k_n} \right).
\]

Taking \(k \to +\infty \) in the above equality, we have
\[
0 = 0 + \Lambda - d_s S^* - \lim_{k \to +\infty} I^k_n + \left(\frac{S^* f(V^*)}{I^*} + \frac{S^* g(I^*)}{I^*} \right)
\]

Using \(\Lambda - d_s S^* = S^* f(V^*) + S^* g(I^*) \), we have
\[
\lim_{k \to +\infty} I^k_n = I^*.
\]

Similarly, we get
\[
\lim_{k \to +\infty} V^k_n = V^*.
\]

This completes the proof. \(\square \)

Thus, using the Theorems 3.2 and 3.3, we conclude that the discretized system (6) exhibits dynamic consistency with the continuous system (2) as well as the global asymptotic stability of both the uninfected and the infected steady states.
4. Numerical Results

In this section, we present numerical example that illustrate and confirm the findings of this study for the linear incidence function such as \(f(V) = \beta_1 V \) and \(g(I) = \beta_2 I \). Thus the system (2) becomes

\[
\begin{align*}
\frac{\partial S(x,t)}{\partial t} &= D_1 \Delta S + \Lambda - \beta_1 SV - \beta_2 SI - d_S S, \quad x \in \Omega, \ t > 0, \\
\frac{\partial I(x,t)}{\partial t} &= D_2 \Delta I + \beta_1 SV + \beta_2 SI - (\gamma + d_I) I, \quad x \in \Omega, \ t > 0, \\
\frac{\partial V(x,t)}{\partial t} &= D_3 \Delta V + \alpha I - d_V V, \quad x \in \Omega, \ t > 0, \\
S(x,0) &= \varphi_1(x) \geq 0, \quad I(x,0) = \varphi_2(x), \quad V(x,0) = \varphi_3(x), \quad x \in \Omega, \\
\frac{\partial S}{\partial \nu} = \frac{\partial I}{\partial \nu} = \frac{\partial V}{\partial \nu} = 0, \quad x \in \partial \Omega, \ t > 0,
\end{align*}
\]

The basic reproduction number of the system (17) is

\[
R_0 = \frac{\Lambda \alpha \beta_1}{d_S d_V (\gamma + d_I)} + \frac{\Lambda \beta_2}{d_S (\gamma + d_I)}.
\]

The system (17) possesses an uninfected steady state \(E_0 \left(\frac{\Lambda}{d_S}, 0, 0 \right) \) and also has an infected steady state \(E^* \left(\frac{\Lambda}{d_S R_0}, \frac{\Lambda (1 - \frac{1}{R_0})}{\gamma + d_I}, \frac{\alpha \Lambda (1 - \frac{1}{R_0})}{d_V (\mu + d_I)} \right) \) for \(R_0 > 1 \).

At first sensitivity analysis is used to determine the response of the model to variations in its parameter values. In the present case, focus is given to determining how changes in the model parameters impact the basic reproduction number. This is done through the Latin hypercube sampling (LHS) and the partial correlation coefficients (PRCC) to determine the relative importance of the parameters in \(R_0 \) for the disease transmission [36]. In such a scenario, it is more appropriate to treat each parameter as a random variable, distributed according to an appropriate probability distribution. We assume that our model parameters are normally distributed although it is quite possible that some parameters are constant [37]. The corresponding Tornado plots based on a random sample of 1000 points for the six parameters in \(R_0 \) are shown in Figure 1. The horizontal lines represent the significant range of correlation, i.e., \(|\text{PRCC}| > 0.5\). The sensitivity analysis suggests that the most significant parameters are \(\beta_1 \) and \(\beta_2 \), an increase in these values will have an increase in the spread of the disease. Hence, these parameters should be estimated with precision to accurately capture the dynamics of the infection.

Now, we numerically illustrate the results for global stability for both the steady states. Accordingly, we use two sets of system parameters, one corresponding to \(R_0 < 1 \) (when \(E_0 \) is globally asymptotically stable for both the continuous and discretized models) and the other for \(R_0 > 1 \) (when \(E^* \) is globally asymptotically stable for both the continuous and discretized models). The numerical simulation is carried out using the NSFD scheme described by the system (6) with initial condition taken as

\[
S(x,0) = 10^7, \quad I(x,0) = 100e^x, \quad V(x,0) = 100e^x.
\]

For the purpose of illustration of both the scenarios, we choose the equal diffusion coefficients as \(D_1 = D_2 = 1 \) mm²d⁻¹ and \(D_3 = 1 \) mm²d⁻¹ [38]. The one-dimensional spatial domain is taken as \(\Omega = [0, 50] \) and the simulation carried out for a time window of 100 days. The grid sizes used in the spatial and temporal directions are \(\Delta x = 0.5 \) and \(\Delta t = 1 \), respectively. The parameter set \(\Lambda = 10^7 \) cells d⁻¹, \(\beta_1 = \beta_2 = 5 \times 10^{-12} \) virion⁻¹ d⁻¹, \(d_S = 0.1 \) d⁻¹, \(\gamma = 0.01 \) d⁻¹, \(d_I = 0.04 \) d⁻¹, \(\alpha = 100 \) d⁻¹, \(d_V = 5 \) d⁻¹ [26], results in \(R_0 = 0.21 < 1 \). Thus,
in this case, the uninfected steady state E^0 is globally asymptotically stable. It can be observed from Figure 2 that this is indeed the case and the system eventually approaches the uninfected steady state $E^0 = (10^8, 0, 0)$.

For the other scenario, all the parameter values are identical with the exception of $\beta_1 = \beta_2 = 3 \times 10^{-10}$ virion$^{-1}$ d$^{-1}$ [26] which renders $R_0 = 12.59 > 1$. In this case, the infected steady state is stable as can be observed numerically in Figure 3, where the state variables approach the infected steady state $E^* = (8 \times 10^6, 1.8 \times 10^8, 3.7 \times 10^8)$. For both the sets of simulations it can be easily seen that the steady states do not depend on the initial spatial points.

We have also shown that the global asymptotically stable results are dependent only on the parameters of the non-diffusive system because of R_0 and independent of the choices of the diffusion coefficients. This is also illustrated by way of numerical simulations. For illustrative purpose we only show the case for $R_0 > 1$ using the corresponding parameter values used above. We extend our diffusion coefficient to $D_1 = D_2 = D_3 = 100 \text{mm}^2\text{d}^{-1}$ and see from Figure 4, that the steady states of the model dynamics are very similar to each other in the long run. Similar results can be observed for different combinations of
Figure 3. When $R_0 = 12.59 > 1$, the disease-free equilibrium E^* of system (17) is globally asymptotically stable.

(D_1, D_2, D_3). Another crucial advantage of using the NSFD scheme over standard finite difference (SFD) scheme is that the positivity of solutions for long time simulation which already been demonstrated in many works [26, 39].

Figure 4. Dynamics of system (17) under diffusion coefficients $D_1 = D_2 = D_3 = 1 \text{ mm}^2 \text{d}^{-1}$ (left) and $D_1 = D_2 = D_3 = 100 \text{ mm}^2 \text{d}^{-1}$ (right).

5. Conclusion

In order to investigate the mechanism of virus infection and viral replication, we have carried out the mathematical analysis for a diffusive intra-host virus dynamics model with cell-to-cell transmission, while allowing for a general nonlinear incidence functions. The well posedness and linear stability of equilibria of this model is investigated. The basic reproduction number R_0 is a threshold index which predicts the extinction and persistence of
the disease. It is shown that the global stability of the equilibria is completely determined by \(R_0 \): if \(R_0 \leq 1 \), then the disease-free equilibrium \(E_0 \) is globally asymptotically stable, which means that the virus is eventually cleared and the infection dies out; if \(R_0 > 1 \), then the endemic equilibrium \(E^* \) is globally asymptotically stable. From the expression of the basic reproduction number of virus, we can know that the basic reproduction number could be under-evaluated without considering either the virus-to-cell transmission or cell-to-cell transmission; it is not enough to eliminate the disease by decreasing the basic reproduction number of virus-to-cell transmission due to the existence of cell-to-cell transmission. Our results also imply that diffusion coefficients have no effect on the global behaviors of such virus dynamics model with homogeneous Neumann boundary conditions. Then, by using the NSFD scheme, we derived the discrete counterpart of the continuous model. Our results show that the discretization scheme can preserve the global properties of solutions for original continuous model, including the positivity, ultimate boundedness and global stability of the equilibria with no restriction on the space and time step sizes.

In addition, the model proposed in this paper is an extension of some previous works [40–45] and the obtained results improve some known results. It is interesting to improve the model (2) by incorporating logistic growth term for uninfected target cells and a more general infection function. We leave these for future consideration.

Acknowledgments. The authors would like to thank the anonymous referee for his/her comments that helped us improve this article.

References

[1] M. A. Nowak, C. R. M. Bangham, “Population dynamics of immune responses to persistent viruses”, Science 272 (1996) 74-79.

[2] M. A. Nowak, S. Bonhoeffer, A. M. Hill, R. Boehme, H.C. Thomas, H. McDade, Viral dynamics in hepatitis B virus infection, Proceedings of the National Academy of Sciences 93 (1996) 4398-4402.

[3] K. Wang, W. Wang, Propagation of HBV with spatial dependence, Mathematical Biosciences 210 (2007) 78-95.

[4] S. A. Gourley, J. W. H. So, Dynamics of a food-limited population model with incorporating nonlocal delays on a finite domain, Journal of Mathematical Biology 44 (2002) 49-78.

[5] D. S. Dimitrov, R. L. Willey, H. Sato, et al., “Quantitation of human immunodeficiency virus type 1 infection kinetics”, Journal of Virology 67 (1993) 2182-2190.

[6] S. Gummuluru, C. M. Kinsey, M. Emerman, “An in vitro rapid-turnover assay for human immunodeficiency virus type 1 replication selects for cell-to-cell spread of virus”, Journal of Virology 74 (2000) 10882-10891.

[7] C. R. M. Bangham, “The immune control and cell-to-cell spread of human T-lymphotropic virus type 1”, Journal of General Virology 84 (2003) 3177-3189.

[8] A. Sigal, J. T. Kim, A.B. Balazs, et al., “Cell-to-cell spread of HIV permits ongoing replication despite antiretroviral therapy”, Nature 477 (2011) 95-98.

[9] H. Pourbashash, S. S. Pilyugin, P. DeLeenheer, et al., “Global analysis of within host virus models with cell-to-cell viral transmission”, Discrete Contin. Dyn. Syst. Ser. B 19 (2014) 3341-3357.

[10] T. Zhang, X. Meng, T. Zhang, “Global dynamics of a virus dynamical model with cell-to-cell transmission and cure rate”, Comput. Math. Methods Med. 2015 (2015).

[11] Y. Yang, L. Zou, S. Ruan, “Global dynamics of a delayed within-host viral infection model with both virus-to-cell and cell-to-cell transmissions”, Math. Biosci. 270 (2015) 183-191.

[12] A. M. Elaiw, A.A. Raezah, A.S. Alofi, “Effect of humoral immunity on HIV-1 dynamics with virus-to-target and infected-to-target infections”, AIP Adv. 6 (8) (2016) 085204.

[13] S.S. Chen, C.Y. Cheng, Y. Takeuchi, “Stability analysis in delayed within-host viral dynamics with both viral and cellular infections”, J. Math. Anal. Appl. 442 (2) (2016) 642-672.

[14] K. Hattaf, N. Yousfi, “A generalized virus dynamics model with cell-to-cell viral transmission”, Discrete Contin. Dyn. Syst. Ser. B 19 (2014) 3341-3357.

[15] J. Wang, J. Yang, T. Kuniya, “Dynamics of a PDE viral infection model incorporating cell-to-cell transmission”, J. Math. Anal. Appl. 444 (2) (2016) 1542-1564.

[16] J. Xu, Y. Zhou, “Bifurcation analysis of HIV-1 infection model with cell-to-cell transmission and immune response delay”, Math. Biosci. Eng. 13 (2016) 343-367.

[17] J. Wang, J. Lang, X. Zou, “Analysis of an age structured HIV infection model with virus-to-cell infection and cell-to-cell transmission”, Nonlinear Anal. RWA 34 (2017) 75-96.

[18] T. Wang, Z. Hu, F. Liao, et al., “Global stability analysis for delayed virus infection model with general incidence rate and humoral immunity”, Math. Comput. Simulation 89 (2013) 13-22.

[19] S. Pankavich and C. Parkinson, “Mathematical analysis of an in-host model of viral dynamics with spatial heterogeneity. Discrete & Continuous Dynamical Systems - B, 2016, 21 (4) : 1237-1257.
[20] C. Mondal, D. Adak and N. Bairagi, “Optimal control in a multi-pathways HIV-1 infection model: a comparison between mono-drug and multi-drug therapies, International Journal of Control, (2019).

[21] R.P. Sigdel, C.C. McCluskey, “Global stability for an SEI model of infectious disease with immigration”, Appl. Math. Comput. 243 (2014) 684-689.

[22] Y. Enatsu, Y. Nakata, Y. Muroya, et al., Global dynamics of difference equations for SIR epidemic models with a class of nonlinear incidence rates, J. Difference Equ. Appl. 18 (2012) 1163-1181.

[23] R.E. Mickens, Nonstandard Finite Difference Models of Differential Equations, World Scientific, Singapore, 1994.

[24] D. Ding and X. Ding, “Dynamic consistent non-standard numerical scheme for a dengue disease transmission model”, J. Differ. Equ. Appl. 20 (2014), pp. 492-505.

[25] D. Ding, W. Qin, X. Ding, “Lyapunov functions and global stability for a discretized multigroup SIR epidemic model”, Discrete Contin. Dyn. Syst. Ser. B 20 (2015) 1971-1981.

[26] W. Qin, L. Wang, X. Ding, “A non-standard finite difference method for a hepatitis B virus infection model with spatial diffusion”, J. Difference Equ. Appl. 20 (2014) 1641-1651.

[27] K. Manna and S.P. Chakrabarty, “Global stability and a non-standard finite difference scheme for a diffusion driven HBV model with capsids”, J. Differ. Equ. Appl. 21 (2015), pp. 918-933.

[28] R. Hattaf, N. Yousfi, “A numerical method for delayed partial differential equations describing infectious diseases”, Comput. Math. Appl. 72 (2016) 2741-2750.

[29] K. Hattaf, N. Yousfi, “Global properties of a discrete viral infection model with general incidence rate”, Math. Methods Appl. Sci. 39 (2016) 998-1004.

[30] R. Redlinger, “Existence theorem for semilinear parabolic systems with functionals”, Nonlinear Anal., 1984, 8: 667682.

[31] H. L. Smith, “Monotone Dynamic Systems: An Introduction to the Theory of Competitive and Cooperative Systems”, Math. Surveys Monogr., vol.41, Am. Math. Soc., Providence, RI, 1995.

[32] W. Wang, X-Q. Zhao, “Basic reproduction numbers for reaction-diffusion epidemic models”, SIAM J. Dyn. Sist. 11 (2012) 1652-1673.

[33] Y. Song, T. Zhang, “Global stability of the positive equilibrium of a mathematical model for unstimred membrane reactors”, Bull. Korean Math. Soc. 54 (2017) 383-389.

[34] T. Zhang, T. Zhang, X. Meng, “Stability analysis of a chemostat model with maintenance energy”, Appl. Math. Lett. 68 (2017) 1-7.

[35] J. Lasalle, The stability of dynamical systems, Philadelphia: SIAM, 1976.

[36] M. A. Sanchez, S. M. Blower, “Uncertainty and sensitivity analysis of the basic reproductive rate: tuberculosis as an example”, Am. J. Epidemiol. 1997;145: 11271137.

[37] S. Marino, I. B. Hogue, C. J. Ray, D. Kirschner, “A methodology for performing global uncertainty and sensitivity analysis in systems biology”, J Theor Biol. 608; 254: 178-196.

[38] Y. Zhang, Z. Xu, “Dynamics of a diffusive HBV model with delayed BeddingtonDeAngelis response”, Nonlinear Anal. RWA 15 (2014) 118-139.

[39] K. Hattaf, N. Yousfi, “Global stability and a non-standard finite difference scheme for a diffusion driven HBV model with capsids”, Journal of Difference Equations and Applications, (2015) 21-10, 918-933.

[40] K. Wang, W. Wang, S. Song, “Dynamics of an HBV model with diffusion and delay”, J. Theoret. Biol. 253 (2008) 36-44.

[41] C. M. Brauer, D. Jolly, L. Lorenzi, R. Thiebaut, “Heterogeneous viral environment in a HIV spatial model”, Discrete Contin. Dyn. Syst. Ser. S 15 (2011) 545-572.

[42] R. Xu, Z.E. Ma, “An HBV model with diffusion and time delay”, J. Theoret. Biol. 257 (2009) 499-509.

[43] Y. Zhang, Z. Xu, “Dynamics of a diffusive HBV model with delayed BeddingtonDeAngelis response”, Nonlinear Anal. RWA 15 (2014) 118-139.

[44] K. Hattaf, N. Yousfi, “Global stability for reaction-diffusion equations in biology”, Comput. Math. Appl. 66 (2013) 1488-1497.

[45] K. Hattaf, N. Yousfi, “Global dynamics of a delay reaction-diffusion model for viral infection with specific functional response”, J. Comput. Appl. Math. 34 (3) (2015) 807-818.

Shohel Ahmed
Department of Mathematics, Bangladesh University of Engineering and Technology, Dhaka-1000, Bangladesh
E-mail address: shohel2443@math.buet.ac.bd

Shah Abdullah Al Nahian
Department of Mathematics, Bangladesh University of Engineering and Technology, Dhaka-1000, Bangladesh
E-mail address: jafinmsdm@gmail.com