Emerging Roles of Hydrogen Sulfide in Inflammatory and Neoplastic Colonic Diseases

Fang-Fang Guo, Ta-Chung Yu, Jie Hong and Jing-Yuan Fang *

State Key Laboratory of Oncogene and Related Genes, Key Laboratory of Gastroenterology and Hepatology, Division of Gastroenterology and Hepatology, Ministry of Health, School of Medicine, Shanghai Cancer Institute, Shanghai Institution of Digestive Disease, Ren Ji Hospital, Shanghai Jiao Tong University, Shanghai, China

Hydrogen sulfide (H$_2$S) is a toxic gas that has been recognized as an important mediator of many physiological processes, such as neurodegeneration, regulation of inflammation, blood pressure, and metabolism. In the human colon, H$_2$S is produced by both endogenous enzymes and sulfate-reducing bacteria (SRB). H$_2$S is involved in the physiological and pathophysiological conditions of the colon, such as inflammatory bowel disease (IBD) and colorectal cancer (CRC), which makes the pharmacological modulation of H$_2$S production and metabolism a potential chemical target for the treatment of colonic diseases. However, the exact mechanisms and pathways by which H$_2$S mediates normal physiological function and disease in the colon are not fully understood. Besides, the production and release of H$_2$S are modulated by both endogenous and exogenous factors. This review will discuss the production and storage of H$_2$S, its biological roles and the emerging importance in physiology and pathology of IBD and CRC.

Keywords: hydrogen sulfide, sulfate-reducing bacteria, pathophysiological roles, colonic diseases, chemical target

INTRODUCTION

Hydrogen sulfide (H$_2$S) is a pungent gas that smells like rotten eggs, and has been identified as the third gaseous transmitter, following nitric oxide (NO) and carbon monoxide (CO; Gallego et al., 2008). Since the discovery of its synthesis in mammalian and human tissues, it has attracted much interest as an endogenous mediator in recent years (Whiteman et al., 2011). Over the last decade, H$_2$S has been recognized to have various biological effects in human health and diseases, such as in the nervous system, the cardiovascular system, and the immune system (Kimura, 2011; Wang et al., 2012). Recently, studies involving the physiological and pathophysiological effects of H$_2$S in the gastrointestinal tract (GI tract) have attracted much attention. Multiple studies also imply the important role of H$_2$S in colonic diseases, including inflammatory bowel disease (IBD; Wallace et al., 2009; Hirata et al., 2011) and colorectal cancer (CRC) (Cai et al., 2010; Cao et al., 2010; Kimura, 2011). In the present review, we will discuss the endogenous and exogenous production of H$_2$S, and its biological and pathological roles in IBD and CRC.

ENDOGENOUS PRODUCTION AND BIOLOGICAL ROLES OF H$_2$S

The concentration of H$_2$S ranges from 0.2 to 1 mmol/L in the colon of mice and may reach 3.4 mmol/L in human stools (Rose et al., 2005). Under normal conditions, approximately 70% of H$_2$S is produced from cysteine and the other 30% from homocysteine (Chiku et al., 2009).
three principal enzymes involved in the endogenous production of H$_2$S: cystathionine β-synthase (CBS), cystathionine γ-lyase (CSE) and 3-mercaptoppyruvate sulfurtransferase (3-MST). They are expressed in many organs, including the liver, kidney, ileum, and brain (Kimura, 2011). CBS and CSE have been investigated widely, and both use vitamin B6 as a cofactor to catalyze the production of H$_2$S (Chiku et al., 2009). The catalytic effect of CBS changes with the extent of allosteric activation of S-adenosylmethionine (Singh et al., 2009), and the activity of CSE is enhanced by sodium nitroprusside (SNP; Chiku et al., 2009). A study also shows that CSE is regulated by calcium calmodulin, although the requirement for Ca$^{2+}$ concentrations is quite high (1 mM; Yang et al., 2008). The role of 3-MST along with cysteine aminotransferase (CAT), which can efficiently produce H$_2$S from cysteine and a-ketoglutarate (Kimura, 2011), in regulating endogenous H$_2$S levels has recently been examined in specific types of cells and tissues (Shibuya et al., 2009b; Wang, 2012).

H$_2$S may function as a signal molecule immediately after released from the enzyme; it can also be stored as bound sulfane sulfur, which may in turn release H$_2$S (Whiteman et al., 2011). At physiological pH, nearly two-thirds of H$_2$S exists as the hydrosulfide anion (HS$^-$), which is a powerful nucleophile (Bouillaud and Blachier, 2011).

Endogenous H$_2$S performs vital roles in many physiological processes, including vasorelaxation, angiogenesis, cellular energy production, neuromodulation, cytoprotection, and pathological processes (Figure 1; Kimura et al., 2010; Coletta et al., 2012), and it is now considered as a signaling modulator or a messenger molecule (Farrugia and Szurszewski, 2014). H$_2$S was initially considered as a neuromodulator that aids the induction of hippocampal long-term potentiation (LTP) by enhancing NMDA-induced currents in neurons (Abe and Kimura, 1996; Nagai et al., 2004). H$_2$S may also mediate the reciprocal interactions between glial calcium waves and neuronal activity, which has not been fully investigated (Kimura, 2011). Prior studies also showed that transient receptor potential (TRP) channels might be involved in the effects of H$_2$S (Patacchini et al., 2005; Gratzke et al., 2009).

H$_2$S also functions as signal molecule in smooth muscle relaxation. Although NO performs most of the vessel-relaxing work in large vessels, H$_2$S may be responsible for similar actions in smaller blood vessels (Wang, 2009). The mechanisms of H$_2$S-mediated vasodilation may involve the activation of K$_{ATP}$ channels or other channels, the inhibition of phosphodiesterases and synergy with NO (Wang, 2012).

The important pro-angiogenic role of H$_2$S has also been recognized (Coletta et al., 2012). Angiogenesis is a complex biological process involved in endothelial cell proliferation, migration, and formation of capillary structures (Roudsari and Wied, 2015). Pupo et al. showed that endogenous H$_2$S is involved in the angiogenic effects of vascular endothelial growth factor (VEGF), a key growth factor and tumor-derived angiogenic hormone (Pupo et al., 2011). Other studies showed that H$_2$S exerts its effects via multiple mechanisms including activation of VEGFR2, stimulation of potassium channels and increase of cellular glutathione (GSH) levels (Cai et al., 2010; Cao et al., 2010; Kimura et al., 2010; Tao et al., 2013).

FIGURE 1 | Biological Roles of H$_2$S in the human. CBS, cystathionine β-synthase; CSE, cystathionine γ-lyase; 3-MST, 3-mercaptoppyruvate sulfurtransferase; SRB, sulfate-reducing bacteria; LTP, long-term potentiation.
In addition to serving as a signal molecule, H₂S also participates in concentration-dependent modulation of mitochondrial function and cellular bioenergetics. In various cell types (including intestinal epithelial cells and hepatocytes), low concentrations of H₂S act as mitochondrial electron donors, which results in the stimulation of bioenergy (Szabo et al., 2014). They increase the levels of glutathione and redistribute it to the mitochondria. In addition, they can promote the catalytic activity of the glycolytic enzyme GAPDH (Mustafa et al., 2009). Endogenous H₂S may also serve as a bioenergetic stimulator (Modis et al., 2013a,c). H₂S produced by 3-MST along with CAT can scavenge reactive oxygen species in mitochondria and protect cells from oxidative stress (Kimura et al., 2010). Modis et al. demonstrated that H₂S donors could stimulate mitochondrial electron transport and ATP generation in various cell lines in vitro (Modis et al., 2013b).

However, when the concentrations of this molecule are relatively high, the stimulatory effect of H₂S is superseded by an inhibitory effect (Szabo et al., 2014), and high concentration of H₂S may become a broad-spectrum poison to the nervous system, respiratory system and cardiovascular system (Wang, 2012). The concentration of H₂S produced naturally in the human body is much lower than the toxic levels, which may be necessary for cell survival (Kimura, 2011).

The complexities of H₂S biology may be related to its pharmacology. It is a diffusible gas and has a bell-shaped or biphasic dose-response curve, whereby lower concentrations of H₂S show quite different (often, opposing) effects compared with higher concentrations (Szabo et al., 2013). Lower levels of H₂S exert multiple physiological, cytoprotective, antioxidant and, anti-inflammatory functions. At higher local levels, however, H₂S can become prooxidant, cytostatic, and cytotoxic (Baskar and Bian, 2011). However, these studies are limited by the lack of enzyme-specific inhibitors to target H₂S biosynthesis, which may be related to the above-mentioned controversial observations (Whiteman et al., 2011).

BIOLOGICAL ROLES OF H₂S IN THE GI TRACT

Emerging evidence indicate that endogenous H₂S can be produced and released by colonic tissue (Linden et al., 2008; Cao et al., 2010). In the GI tract H₂S is mainly produced by CBS and CSE. CSE seems to be the main H₂S-generating enzyme in the stomach, while CBS is the major enzyme in the colon (Wallace et al., 2009). The functions of H₂S in the GI tract have also received much attention in recent years. It can relax ileal smooth muscle, increase colonic secretion (Gallego et al., 2008; Matsunami et al., 2009), and protect the intestines from ischemia–reperfusion injury in rats (Liu et al., 2009). However, high levels of H₂S may also cause diseases, such as IBD and CRC.

ROLES OF EXOGENOUS H₂S DONORS

There are multiple reports related to exogenous H₂S donors in tumor cells that either promote or inhibit cell proliferation at different concentrations (Baskar and Bian, 2011; Wu et al., 2012). Previous studies have attempted to use various molecules to produce H₂S (Kashfi and Olson, 2013), such as NSAIDs (Chattopadhyay et al., 2013; Kashfi, 2014), GYY4137 (morpholin-4-ium 4 methoxyphenyl (morpholino)) (Ning et al., 2014), S-propargyl-cysteine (Ma et al., 2011), Sodium hydrosulfide (NaHS) (Cai et al., 2010), Na₂S (Hirata et al., 2011). The pros and cons of these molecules are summarized in a review article by Hellmich et al. (2015). Among them NaHS is most widely used to study the physiological functions of H₂S. NaHS is a fast-release H₂S donor, which immediately dissociates and forms the hydrosulfide anion (HS⁻) in the liquid culture, and reacts with H⁺ to form H₂S.

Many studies have reported duplex effects of H₂S on cell proliferation/cell death in various transformed and non-transformed cell lines in vitro (Leschelle et al., 2005; Cai et al., 2010; Murata et al., 2014). Baskar et al. have summarized most of these reports in a review article (Baskar and Bian, 2011). Note that the effects of H₂S donors are bi-phasic, just like endogenously produced H₂S. Cai et al. reported a concentration-dependent stimulation of cell growth by NaHS at doses between 10 and 50 μM, a plateauing of the effect at 200 μM, and an inhibition of proliferation at 1000 μM in HCT116 and SW480 cells (Cai et al., 2010). Hellmich et al. also demonstrated that the nature of the cellular response (stimulation or inhibition of growth) is determined by the rate of H₂S production (fast- vs. slow-release H₂S donors) as well as by the concentration of donor relative to the basal level of endogenous enzyme-dependent H₂S production (Hellmich et al., 2015). It should be considered that H₂S donors with different release rates might induce quantitative, as well as qualitative, variance in cellular responses (Whiteman et al., 2010; Baskar and Bian, 2011).

Thus, the bell-shaped properties of H₂S provide a useful framework to reconcile some of the controversies regarding H₂S functions. However, the complexities of the temporal relationship between H₂S donation and its effects remain to be further explored.

BACTERIA ASSOCIATED WITH HYDROGEN SULFIDE METABOLISM

H₂S was one of the earliest products of bacterial decomposition to be recognized (Shatalin et al., 2011). Sulfur reduction and oxidation are handled by two different groups of bacteria. The former comprise the sulfate-reducing bacteria (SRB) and sulfur-reducing bacteria, while the latter includes sulfur-oxidizing bacteria and sulfide-oxidizing bacteria (Wang, 2012). They both contribute to a balanced H₂S level in a given environment. Among them, SRB belong to the most ancient forms of bacteria and utilize a wide range of substrates, including hydrogen, short-chain fatty acids, alcohols and amino acids to reduce sulfur and sulfur-containing compounds to H₂S (Scanlan et al., 2009).

SRB are Gram-negative, non-spore-forming, obligate anaerobes. SRB are considered to be strictly anaerobic microorganisms, but they are also found in anoxic habitats.
depleted of sulfate, such as the GI tract (Rey et al., 2013). Although Hansen et al. demonstrated the lack of SRB in human gut microbiota (Hansen et al., 2011), other studies using different analytic approaches have identified SRB in the fecal microbiota of healthy adults and the distal gut mucosa (Stewart et al., 2006; Rey et al., 2013). The number of healthy individuals harboring SRB ranged from 24 to 100% (Loubinoux et al., 2002). The most frequently detected SRB from animal and human feces that are relevant to bowel colonization are flagellate Vibrio bacteria and Desulfovibrio (Scanlan et al., 2009).

For bacterial-derived H$_2$S, little is known about the metabolic pathways involving host cellular processes. Huycke et al. showed that H$_2$S produced by SRB in the GI tract is potentially genotoxic to the gut epithelium (Huycke and Gaskins, 2004). However, Konstantin et al. demonstrated that H$_2$S produced by SRB acts as a cytoprotective molecule against oxidative stress and antimicrobials by suppressing the DNA-damaging Fenton reaction and stimulating the major antioxidant enzymes catalase and superoxide dismutase (SOD) (Shatalin et al., 2011). Moreover, Devkota et al. found that SRB are positively associated with inflammation (Devkota et al., 2012): both pro- and anti-inflammatory signaling is attributed to H$_2$S (Pitcher et al., 2000; Wallace et al., 2009). In conclusion, bacterial-derived H$_2$S may have important roles in the GI tract, but the conclusions remain to be further explored.

ROLES OF H$_2$S IN THE PATHOPHYSIOLOGY OF IBD AND CRC

IBD

The incidence of IBD and other immune-related human disorders have increased considerably over the past 50 years, matching the changes in human diet and lifestyle. The pathological roles of colonic luminal H$_2$S and/or SRB in IBD have attracted much attention recently (Roediger et al., 1997; Wallace et al., 2009; Hirata et al., 2011). However, the viewpoint that H$_2$S contributes to the pathogenesis of IBD remains controversial (Table 1). It has been reported previously that high levels of H$_2$S produced by bacteria could contribute to ulcerative colitis (UC) by damaging oxidation of n-butyrate, leading to impaired barrier function (Levitt et al., 2002). However, several studies have challenged the idea for the lack of compelling evidence that H$_2$S causes damage to colonic epithelial cells, and have demonstrated that H$_2$S can act as a metabolic fuel for colonic epithelial cells, and suppress the activation of NF-κB (Hirata et al., 2011).

Although the functions of endogenous and exogenous H$_2$S in IBD remains controversial, many prior studies have shown multiple effects of H$_2$S. It can downregulate the expression of several pro-inflammatory cytokines and enzymes, such as TNF-α, IFN-γ and iNOS (Li et al., 2007; Wallace et al., 2007a); suppress the activation of NF-κB (Oh et al., 2006); act as an antioxidant (Hirata et al., 2011); and promote ulcer healing in rats (Wallace et al., 2007b). The colonic mucosa is endowed with an efficient H$_2$S-detoxifying mechanism, oxidizing more than 300 µmol of H$_2$S daily in the rat colon (Suarez et al., 1998). When the barrier breaks down, such as in severe colitis, a large amount of H$_2$S may access the muscle layers and inhibit motility.

TABLE 1 | Roles of H$_2$S in the pathophysiology of IBD and CRC.

Diseases	Effects of H$_2$S	Possible pathogenesis/Epidemiologic study	References
IBD	Pro-inflammatory effects	Impaired oxidation of n-butyrate	Levitt et al., 2002
		Patients with UC had excessive SRB colonization or H$_2$S in feces	Pitcher et al., 2000; Rowan et al., 2009
Anti-inflammatory effects	Suppression of the activation of NF-κB	Oh et al., 2006	
	Promotion of ulcer healing in rats	Wallace et al., 2007b	
	Downregulation of TNF-α, IFN-γ and iNOS expression	Li et al., 2007; Wallace et al., 2007a	
	Contribution to the resolution of experimental colitis	Wallace et al., 2009	
	Acting as an antioxidant	Hirata et al., 2011	
	Prevention of neutrophil accumulation and visits anti-oxidant ability	Hirata et al., 2011	
No effects	No difference in SRB between patients with IBD and controls	Fite et al., 2004; Picton et al., 2007	
CRC	Carcinogenic factor	Decrease of sulfide-detoxifying enzymes	Ramassamy et al., 2006
	Genomic DNA damage	Attene-Ramos et al., 2007	
	Stimulation of the growth and migration	Cai et al., 2010; Szabo et al., 2013; Modis et al., 2014	
	Inhibition of cell apoptosis	Sen et al., 2012	
	Stimulation of tumor angiogenesis and peritumoral vasodilation	Szabo et al., 2013	
Cancer suppressive factor	Reduction of cell viability	Cao et al., 2010	
	Inhibition of proliferation and promotion of protective autophagy	Wu et al., 2012	
In addition, the contribution of bacteria-derived H$_2$S in colitis remains unclear. An epidemiologic study revealed that patients suffering from UC had either excessive SRB colonization or excessive H$_2$S in their feces (Pitcher et al., 2000; Rowan et al., 2009). Kleessen et al. reported variable counts of SRB from colonic mucosal specimens in patients with UC, Crohn’s disease (CD) and healthy controls (Kleessen et al., 2002). However, Picton et al. found no evidence of defective enzymic detoxication of sulfide in patients with UC or CD (Picton et al., 2007). Fite et al. also confirmed that there is no disease-related difference in SRB carriage between patients with UC and controls by rectal biopsies (Fite et al., 2004).

In summary, endogenously and exogenously produced H$_2$S in the GI tract might contribute to colitis and IBD, but there is no complete mechanistic model that explains the relationship.

CRC

CRC is the second leading cause of death from cancer and the fourth most common cancer in men and women worldwide. H$_2$S is also implicated in CRC (Huycke and Gaskins, 2004; Cai et al., 2010; Cao et al., 2010; Hellmich and Szabo, 2015). Although the basal expression of H$_2$S-synthesizing enzymes in human colon tissue is relatively low (Whiteman et al., 2011), Szabo et al. observed the selective upregulation of CBS in the colon cancer tissue compared to normal mucosa tissue (Szabo et al., 2013). The expression of CBS is also upregulated in certain colon adenocarcinoma-derived cell lines (HCT-116, HT-29, and LoVo) compared with the colonic epithelial cell line. (Szabo and Hellmich, 2013) Genomic DNA damage is observed in colon cells after H$_2$S exposure (Attene-Ramos et al., 2007). In addition, sulfide-detoxifying enzymes in the human colon are decreased in cancer tissues (Ramasamy et al., 2006).

Recently, several studies suggested that H$_2$S regulated cell growth or death in a multitude of settings (Cai et al., 2010; Cao et al., 2010; Medani et al., 2011; Szabo et al., 2013). Cai et al. demonstrated that H$_2$S promoted colon cancer cell proliferation, as mentioned previously (Cai et al., 2010). However, Cao et al. demonstrated that H$_2$S is endogenously produced in colonic tissues and that exogenously applied H$_2$S at physiologically concentrations reduced cell viability (Cao et al., 2010). Another study showed that H$_2$S could inhibit proliferation and promote protective autophagy in colon epithelial cells by the activation of the AMPK/mTOR cascade (Wu et al., 2012). Previous studies have shown cell type-specific activation of MAPK by H$_2$S, which determines the fates of cells (Cho et al., 2006; Shibuya et al., 2009a; Cao et al., 2010). These controversies may relate to the bell-shaped dose-response curve of H$_2$S.

For tumor-produced CBS-derived H$_2$S in CRC, Szabo et al. defined this gas as a combined autocrine and paracrine-signaling molecule (Szabo and Hellmich, 2013). As an autocrine factor, H$_2$S stimulates the proliferation and migration of CRC cells (Cai et al., 2010; Szabo and Hellmich, 2013; Szabo et al., 2013; Modis et al., 2014). However, at higher concentrations or longer exposures to S-adenosyl-L-methionine (SAM), the inhibitory effects become more prominent because of cytotoxicity. Recently, Sen et al. found that the sulfhydration of nuclear factor kappa B (NF-kB) by H$_2$S could inhibit cell apoptosis (Sen et al., 2012). The mechanisms of the proliferative and pro-migratory effects might be the stimulation of the Akt/PI3K signaling pathway, decrease of p21 gene expression and interaction with NO (Cai et al., 2010).

As a paracrine factor, H$_2$S might diffuse out from the tumor cell to stimulate tumor angiogenesis and peritumoral vasodilation. Szabo et al. reported that treatment of nude mice with a CBS inhibitor could attenuate the growth of patient-derived colon cancer xenografts and reduce peritumoral blood flow (Szabo et al., 2013). This study also confirmed the stimulatory role of H$_2$S on the activity of GAPDH, indicating that H$_2$S can affect both oxidative and glycolytic metabolism in tumor cells. Another independent study also confirmed the autocrine and paracrine functions of colon cancer-derived H$_2$S (Yamagishi et al., 2012). Yamagishi et al. detected significant amounts of H$_2$S inside colon cancer tissue.

Subsequent studies in nude mice bearing xenografts of either HCT116 or patient-derived tumor tissue (PDTX) extended the findings into in vivo models. Inhibition of CBS significantly reduced the growth rate of the tumor xenografts, which might be related to intratumoral mechanisms or paracrine mechanisms in the tumor microenvironment (Hellmich and Szabo, 2015). In addition, CSE can stimulate colon cancer cell proliferation, migration in vitro and tumor xenografts growth in vivo, however, the roles of CSE/H$_2$S in colon cancer remain uncertain. Another study demonstrated that the canonical Wnt pathway can upregulate CSE expression (Fan et al., 2014).

Thus, H$_2$S may exhibit both protective and pathological effects in the GI tract given its biphasic pharmacological characters. However, the prior studies demonstrated controversial effects of H$_2$S and the mechanisms remain unknown.

THE THERAPEUTIC POTENTIAL OF H$_2$S IN COLONIC DISEASES

Although limited in terms of quantity and mechanistic models, there is reasonable evidence suggesting that H$_2$S is important for the occurrence and development of colonic diseases. The intriguing discovery that H$_2$S governs specific protective responses against oxidative stress and antibiotics also suggested the potential therapeutic implications (Shatalin et al., 2011). We can hypothesize that H$_2$S inhibition might be potentially applicable to inhibition of tumor blood supply and/or the hyperproliferative response in CRC. Given the particular pharmacological character of H$_2$S, both stimulation and inhibition of H$_2$S might have potential therapeutic applications (Szabo and Papapetropoulos, 2011).

In addition, it is noted that exposure to a relatively low level of H$_2$S over a relatively long time period selectively inhibits cancer cell proliferation. Therefore, slow-releasing H$_2$S donors and H$_2$S-releasing hybrid drugs could be designed and developed as novel anticancer drugs (Wu et al., 2015). However, these possibilities are merely hypothetical at present, and the lack of wholly enzyme- and tissue-specific inhibitors of H$_2$S has meant
that controversial or contradictory conclusions have been made in previous studies.

In conclusion, H2S might play vital roles in the development of colonic diseases, and further investigations are needed to determine the proper dose range and time frame of H2S in IBD and CRC, thereby achieving optimal anti-inflammation and anti-cancer effects.

REFERENCES

Abe, K., and Kimura, H. (1996). The possible role of hydrogen sulfide as an endogenous neuromodulator. J. Neurosci. 16, 1066–1071.

Attene-Ramos, M. S., Wagner, E. D., Gaskins, H. R., and Plewa, M. J. (2007). Hydrogen sulfide induces direct radical-associated DNA damage. Mol. Cancer Res. 5, 455–459. doi: 10.1158/1541-7786.MCR-06-0439

Baskar, R., and Bian, J. (2011). Hydrogen sulfide gas has cell growth regulatory role. Eur. J. Pharmocol. 656, 5–9. doi: 10.1016/j.ejphar.2011.01.052

Boulaud, F., and Blachier, F. (2011). Mitochondria and sulfide: a very old story of poisoning, feeding, and signaling? Antioxid. Redox Signal. 15, 379–391. doi: 10.1089/ars.2010.3678

Cai, W. J., Wang, M. J., Ju, L. H., Wang, C., and Zhu, Y. C. (2010). Hydrogen sulfide-stimulated H2S production in colon cancer cells. Antioxid. Redox Signal. 12, 1101–1109. doi: 10.1089/ars.2009.2915

Chattopadhyay, M., Nath, N., Kodela, R., Sobocki, T., Metkar, S., Gan, Z. Y., et al. (2013). Hydrogen sulfide-releasing aspirin inhibits the growth of leukemic Jurkat cells and modulates beta-catenin expression. Leuk. Res. 37, 1302–1308. doi: 10.1016/j.leukres.2013.07.004

Chiku, T., Padovani, D., Zhu, W., Singh, S., Vitvitsky, V., and Banerjee, R. (2009). H2S biogenesis by human cystathionine gamma-lyase leads to the novel sulfur metabolites lantioniane and homolantioniane and is responsive to the grade of hyperhomocysteinemia. J. Biol. Chem. 284, 11601–11612. doi: 10.1074/jbc.M800826200

Cho, S. D., Ahn, N. S., Jung, J. W., Yang, S. R., Park, J. S., Lee, Y. S., et al. (2010). Butyrate-stimulated H2S production in colon cancer cells. Antioxidants Redox Signal. 12, 1101–1109. doi: 10.1089/ars.2009.2915

Kimura, H. (2011). Hydrogen sulfide: its production, release and functions. Amino Acids 41, 113–121. doi: 10.1007/s00726-010-0510-x

Klima, Y., Goto, Y., and Kimura, H. (2010). Hydrogen sulfide increases glutathione production and suppresses oxidative stress in mitochondria. Antioxid. Redox Signal. 12, 1–13. doi: 10.1089/ars.2008.2282

Kleessen, B., Krosen, A. J., Buhr, H. J., and Blaut, M. (2002). Mucosal and invasive bacteria in patients with inflammatory bowel disease compared with controls. Scand. J. Gastroenterol. 37, 1034–1041. doi: 10.1080/0036552021013378220

Lescelleur, X., Goubert, M., Andriamihaja, M., Blottiere, H. M., Couplan, E., Gonzalez-Barroso, M. D., et al. (2005). Adaptive metabolic response of human colonic epithelial cells to the adverse effects of the luminal compound sulfide. Biochim. Biophys. Acta 1725, 201–212. doi: 10.1016/j.bjba.2005.06.002

Leung, M. D., Springfield, J., Furne, J., Koenig, T., and Suarez, F. L. (2002). Physiology of sulfide in the rat colon: use of bismuth to assess colonic sulfide production. J. Appl. Physiol. (1985) 92, 1655–1660. doi: 10.1152/japplphysiol.00907.2001

Li, L., Rossoni, G., Sparatore, A., Lee, L. C., Del Soldato, P., and Moore, P. K. (2007). Anti-inflammatory and gastrointestinal effects of a novel diclofenac derivative. Free Radic. Biol. Med. 42, 706–719. doi: 10.1016/j.freeradbiomed.2006.12.011

Linden, D. R., Sha, L., Mazzone, A., Stoltz, G. J., Bernard, C. E., Furne, J. K., et al. (2008). Production of the gaseous signal molecule hydrogen sulfide in mouse tissues. J. Neurochem. 106, 1577–1585. doi: 10.1111/j.1471-4159.2008.05502.x

Liu, H., Bai, X. B., Shi, S., and Cao, Y. X. (2009). Hydrogen sulfide protects mice from intestinal ischaemia-reperfusion injury in rats. J. Pharm. Pharmacol. 61, 207–212. doi: 10.1211/jpp.61.02.0010

Loubinoux, J., Bronowicki, J. P., Pereira, I. A., Mougenel, J. L., and Faou, A. E. (2002). Sulfate-reducing bacteria in human feces and their association

AUTHOR CONTRIBUTIONS

FG collected the references and wrote the majority of the manuscript; TY helped with the preparation and the revision of the manuscript; JH contributed to the correction of the grammar and terminology; JF contributed to the final version of the manuscript.
with inflammatory bowel diseases. *FEMS Microbiol. Ecol.* 40, 107–112. doi: 10.1111/j.1574-6941.2002.tb00942.x

Ma, K., Liu, Y., Zhu, Q., Liu, C. H., Duan, J. L., Tan, B. K., et al. (2011). H2S donor, S-propargyl-cysteine, increases CSE in SGC-7901 and cancer-induced mice: evidence for a novel anti-cancer effect of endogenous H2S? *PLoS ONE* 6:e20525. doi: 10.1371/journal.pone.0020525

Matsunami, M., Tarui, T., Mitani, K., Nagasawa, K., Fukushima, O., Okubo, K., et al. (2009). Luminal hydrogen sulfide plays a pronociceptive role in mouse colon. *Gut* 58, 751–761. doi: 10.1136/gut.2007.144543

Medani, M., Collins, D., Docherty, N. G., Baird, A. W., O’Connell, P. R., and Winter, D. C. (2011). Emerging role of hydrogen sulfide in colonic physiology and pathophysiology. *Inflamm. Bowel Dis.* 17, 1620–1625. doi: 10.1002/ibd.21528

Modis, K., Asimakopoulou, A., Coletta, C., Papapetropoulos, A., and Szabo, C. (2013a). Oxidative stress suppresses the cellular bioenergetic effect of the 3-mercaptopyruvate sulfurtransferase/hydrogen sulfide pathway. *Biochem. Biophys. Res. Commun.* 433, 401–407. doi: 10.1016/j.bbrc.2012.03.121

Modis, K., Coletta, C., Asimakopoulou, A., Szczesny, B., Chao, C., Papapetropoulos, A., et al. (2014). Effect of S-adenosyl-L-methionine (SAM), an allosteric activator of cystathionine-beta-synthase (CBS) on colorectal cancer cell proliferation and bioenergetics in vitro. *Nitr. Oxide* 41, 146–156. doi: 10.1016/j.niox.2014.03.001

Modis, K., Coletta, C., Erdelyi, K., Papapetropoulos, A., and Szabo, C. (2013b). Intramitochondrial hydrogen sulfide production by 3-mercaptopyruvate sulfurtransferase maintains mitochondrial electron flow and supports cellular bioenergetics. *FASEB J.* 27, 601–611. doi: 10.1096/fj.12-216507

Modis, K., Panopoulos, P., Coletta, C., Papapetropoulos, A., and Szabo, C. (2013c). Hydrogen sulfide-mediated stimulation of mitochondrial electron transport involves inhibition of the mitochondrial phosphodiesterase 2A, elevation of cAMP and activation of protein kinase A. *Biochem Pharmacol.* 86, 1311–1319. doi: 10.1016/j.bcp.2013.08.064

Murata, T., Sato, T., Kamoda, T., Moriyama, H., Kumazawa, Y., and Hanada, N. (2014). Differential susceptibility to hydrogen sulfide-induced apoptosis between PHLDA1-overexpressing oral cancer cell lines and oral keratinocytes: role of PHLDA1 as an apoptosis suppressor. *Exp. Cell Res.* 320, 247–257. doi: 10.1016/j.yexcr.2013.10.023

Mustafa, A. K., Gadalla, M. M., Sen, N., Kim, S., Mu, W., Gazi, S. K., et al. (2009). H2S signals through protein S-sulfhydration. *Sci. Signal.* 2, ra72. doi: 10.1126/scisignal.2000464

Nagai, Y., Tsugane, M., Oka, J., and Kimura, H. (2004). Hydrogen sulfide induces calcium waves in astrocytes. *FASEB J.* 18, 557–569. doi: 10.1096/fj.03-1052jf

Ning, N., Zhu, J., Du, Y., Gao, X., Liu, C., and Li, J. (2014). Dysregulation of hydrogen sulphide metabolism impairs oviductal transport of embryos. *Nat. Commun.* 5, 4107. doi: 10.1038/ncomms4107

Oh, C. S., Pae, H. O., Lee, B. S., Kim, B. N., Kim, J. M., Kim, H. R., et al. (2006). Hydrogen sulfide inhibits nitric oxide production and nuclear factor-kappaB via heme oxygenase-1 expression in RAW264.7 macrophages stimulated with lipopolysaccharide. *Free Radic. Biol. Med.* 41, 106–119. doi: 10.1016/j.freeradbiomed.2006.03.021

Patacchini, R., Santicioli, P., Giuliani, S., and Maggi, C. A. (2005). Pharmacological analysis of desulfovibrios in the human distal colon of healthy, colorectal cancer and polypectomized individuals. *FEMS Microbiol. Ecol.* 69, 213–229. doi: 10.1011/i1574-6941.2009.00709.x

Sen, N., Paul, B. D., Gadalla, M. M., Mustafa, A. K., Sen, T., Xu, R., et al. (2012). Hydrogen sulfide-linked sulfhydration of NF-kappaB mediates its antiapoptotic actions. *Mol. Cell* 45, 13–24. doi: 10.1016/j.molcel.2011.10.021

Shibuya, N., Makami, Y., Kimura, Y., Nagahara, N., and Kimura, H. (2009a). Vascular endothelium expresses 3-mercaptopyruvate sulfurtransferase and produces hydrogen sulfide. *J. Biochem.* 146, 623–626. doi: 10.1093/jb/mvp111

Shibuya, N., Tanaka, M., Yoshida, M., Ogawasara, Y., Togawa, T., Ishi, K., et al. (2009b). 3-Mercaptopyruvate sulfurtransferase produces hydrogen sulfide and bound sulfurulfate in the brain. *Antioxid. Redox Signal.* 11, 703–714. doi: 10.1089/ars.2008.2253

Singh, S., Padovani, D., Leslie, R. A., Chiku, T., and Banerjee, R. (2009). Relative contributions of cystathionine beta-synthase and gamma-cystathionase to H2S biogenesis via alternative trans-sulfuration reactions. *J. Biol. Chem.* 284, 22457–22466. doi: 10.1074/jbc.M110.018686

Stewart, J. A., Chadwick, V. S., and Murray, A. (2006). Carriage, quantification, and predominance of methanogens and sulfate-reducing bacteria in faecal samples. *Lett. Appl. Microbiol.* 43, 58–63. doi: 10.1111/j.1472-765X.2006.01906.x

Suarez, F., Furne, J., Springfield, J., and Levitt, M. (1998). Production and elimination of sulfur-containing gases in the rat colon. *Am. J. Physiol.* 274, G727–G733.

Szabo, C., Coletta, C., Chao, C., Modis, K., Szczesny, B., Papapetropoulos, A., et al. (2013). Tumor-derived hydrogen sulfide, produced by cystathionine-beta-synthase, stimulates bioenergetics, cell proliferation, and angiogenesis in colon cancer. *Proc. Natl. Acad. Sci. U.S.A.* 110, 12474–12479. doi: 10.1073/pnas.1306241110

Szabo, C., and Hellmich, M. R. (2013). Endogenously produced hydrogen sulfide supports tumor cell growth and proliferation. *Cell Cycle* 12, 2915–2916. doi: 10.1089/cc.2013.2604

Szabo, C., and Papapetropoulos, A. (2011). Hydrogen sulfide and angiogenesis: mechanisms and applications. *Br. J. Pharmacol.* 164, 853–865. doi: 10.1111/j.1476-5381.2010.01191.x

Tao, B. B., Liu, S. Y., Zhang, C. C., Fu, W., Cai, W. I., Wang, Y., et al. (2013). VEGFR2 functions as an H2S-targeting receptor protein kinase with its novel Cys1045-Cys1054 disulfide bond serving as a specific molecular switch for hydrogen sulfide actions in vascular endothelial cells. *Antioxid. Redox Signal.* 19, 448–464. doi: 10.1089/ars.2012.12369

Tao, B. B., Liu, S. Y., Zhang, C. C., Fu, W., Cai, W. I., Wang, Y., et al. (2013). VEGFR2 functions as an H2S-targeting receptor protein kinase with its novel Cys1045-Cys1054 disulfide bond serving as a specific molecular switch for hydrogen sulfide actions in vascular endothelial cells. *Antioxid. Redox Signal.* 19, 448–464. doi: 10.1089/ars.2012.12369

Wallace, J. L., Caliendo, G., Santagada, V., Cirino, G., and Fiorucci, S. (2007a). Gastrointestinal safety and anti-inflammatory effects of a hydrogen sulfide-releasing diclofenac derivative in the rat. *Gastroenterology* 132, 261–271. doi: 10.1053/j.gastro.2006.11.042
Wallace, J. L., Dicay, M., McKnight, W., and Martin, G. R. (2007b). Hydrogen sulfide enhances ulcer healing in rats. *FASEB J.* 21, 4070–4076. doi: 10.1096/fj.07-8669com

Wallace, J. L., Vong, L., McKnight, W., Dicay, M., and Martin, G. R. (2009). Endogenous and exogenous hydrogen sulfide promotes resolution of colitis in rats. *Gastroenterology* 137, 569–578.e1. doi: 10.1053/j.gastro.2009.04.012

Wang, J., Qiu, B., Han, L., Feng, G., Hu, Y., Chang, L., et al. (2012). Effect of precursor and preparation method on manganese based activated carbon sorbents for removing H2S from hot coal gas. *J. Hazard. Mater.* 213–214, 184–192. doi: 10.1016/j.jhazmat.2012.01.080

Wang, R. (2009). Hydrogen sulfide: a new EDRF. *Kidney Int.* 76, 700–704. doi: 10.1038/ki.2009.221

Wang, R. (2012). Physiological implications of hydrogen sulfide: a whiff exploration that blossomed. *Physiol. Rev.* 92, 791–896. doi: 10.1152/physrev.00017.2011

Whiteman, M., Le Trionnaire, S., Chopra, M., Fox, B., and Whatmore, J. (2011). Emerging role of hydrogen sulfide in health and disease: critical appraisal of biomarkers and pharmacological tools. *Clin. Sci.* 121, 459–488. doi: 10.1042/CS20110267

Whiteman, M., Li, L., Rose, P., Tan, C. H., Parkinson, D. B., and Moore, P. K. (2010). The effect of hydrogen sulfide donors on lipopolysaccharide-induced formation of inflammatory mediators in macrophages. *Antioxid. Redox Signal.* 12, 1147–1154. doi: 10.1089/ars.2009.2899

Wu, D., Si, W., Wang, M., Lv, S., Ji, A., and Li, Y. (2015). Hydrogen sulfide in cancer: friend or foe? *Nitric Oxide* 50, 38–45. doi: 10.1016/j.niox.2015.08.004

Wu, Y. C., Wang, X. J., Yu, L., Chan, F. K., Cheng, A. S., Yu, J., et al. (2012). Hydrogen sulfide lowers proliferation and induces protective autophagy in colon epithelial cells. *PLoS ONE* 7:e37572. doi: 10.1371/journal.pone.0037572

Yamagishi, K., Onuma, K., Chiba, Y., Yagi, S., Aoki, S., Sato, T., et al. (2012). Generation of gaseous sulfur-containing compounds in tumour tissue and suppression of gas diffusion as an antitumour treatment. *Gut* 61, 554–561. doi: 10.1136/gutjnl-2011-300721

Yang, G., Wu, L., Jiang, B., Yang, W., Qi, J., Cao, K., et al. (2008). H2S as a physiologic vasorelaxant: hypertension in mice with deletion of cystathionine gamma-lyase. *Science* 322, 587–590. doi: 10.1126/science.1162667

Conflict of Interest Statement: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2016 Guo, Yu, Hong and Fang. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.