Electroweak gauge fields, particles, and antiparticles arise from probability

Gunn Quznetsov

454016, Chelyabinsk-16, yD.BET. Φ N 949892, Russia
lak@cgu.chel.su, gunn@mail.ru, gunn@chelcom.ru

RÉSUMÉ. Particules, antiparticules et les champs de même que les électromagnétiques calibrées champs sont déduit des probabilités des éléments physiques à condition que ses éléments sont présents par les spinors.

ABSTRACT. Probabilities of events are expressed by the spinor functions and by operators of a probability creation and by operators of a probability annihilation. The motion equations in form of the Dirac equations with the additional fields are obtained for these spinor functions. Some of these additional fields behave as the gauge fields and others behave as the mass members. Such motion equations, contained all five elements of Clifford’s pentad, is invariant for the electroweak gauge transformations. The creation operators and the annihilation operators of particles and antiparticles obtained from these probabilistic functions. The motion equation of the $U(2)$ Yang-Mills field components is formulated similarly to the Klein-Gordon equation with the nonzero mass.

P.A.C.S.: 02.50.Cw; 11.30; 11.40; 11.80.F; 11.10; 03.70

1 Introduction

In this article I do not construct a model for the particles physics but there I try to find the Quantum Theory principles which can be logically obtained from probabilities of physical events under the expression of these probabilities by spinors. Almost all basic principles prove to be of such kind.

I call an event, occurred at single point of the space-time, as a point event.
In Part 2 of this article probabilities of point events are expressed by the spinor functions and by operators of a probability creation and a probability annihilation. These operators are similar to the field operators of Quantum Fields Theory. The motion equations in form of the Dirac equations with the additional fields are obtained for the spinor functions. Some of these additional fields behave as the mass members and others behave as the gauge fields.

Further I use the following denotation:

\[1_2 \overset{\text{def}}{=} \begin{bmatrix} 10 \\ 01 \end{bmatrix}, \quad 0_2 \overset{\text{def}}{=} \begin{bmatrix} 00 \end{bmatrix}, \]

the Pauli matrices:

\[\sigma_1 = \begin{pmatrix} 01 \\ 10 \end{pmatrix}, \quad \sigma_2 = \begin{pmatrix} 0-i \\ i 0 \end{pmatrix}, \quad \sigma_3 = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}. \]

A set \(\tilde{C} \) of complex \(n \times n \) matrices is called as Clifford’s set [1] if the following conditions are fulfilled:

if \(\alpha_k \in \tilde{C} \) and \(\alpha_r \in \tilde{C} \) then \(\alpha_k \alpha_r + \alpha_r \alpha_k = 2 \delta_{k,r} \);

if \(\alpha_k \alpha_r + \alpha_r \alpha_k = 2 \delta_{k,r} \) for all elements \(\alpha_r \) of set \(\tilde{C} \) then \(\alpha_k \in \tilde{C} \).

If \(n = 4 \) then Clifford’s set either contains 3 matrices (Clifford’s triplet) or contains 5 matrices (Clifford’s pentad).

There exist only six Clifford’s pentads [1]: one light pentad \(\beta \):

\[\beta^{[1]} \overset{\text{def}}{=} \begin{bmatrix} \sigma_1 & 0_2 \\ 0_2 & -\sigma_1 \end{bmatrix}, \quad \beta^{[2]} \overset{\text{def}}{=} \begin{bmatrix} \sigma_2 & 0_2 \\ 0_2 & -\sigma_2 \end{bmatrix}, \quad \beta^{[3]} \overset{\text{def}}{=} \begin{bmatrix} \sigma_3 & 0_2 \\ 0_2 & -\sigma_3 \end{bmatrix}, \]

\[\gamma^{[0]} \overset{\text{def}}{=} \begin{bmatrix} 0_2 & 1_2 \\ 1_2 & 0_2 \end{bmatrix}, \]

\[\beta^{[4]} \overset{\text{def}}{=} i \cdot \begin{bmatrix} 0_2 & 1_2 \\ -1_2 & 0_2 \end{bmatrix}; \]

three chromatic pentads and two taste pentads [2].

In this paper I consider the motion equations such that these equations contain only the light pentad elements. Such equations are called as the equations for a leptonn motion [1].

\[^{1} \text{I use the terms “leptonn”, “bosonn” etc with double “nn” for the distinguishing of the physical notions and the logically receiving notions.} \]
The Dirac equation contains only four elements of Clifford’s pentads. Three of these elements conform to three space coordinates and the fourth element either constitutes the mass member or conforms to the time coordinate. But Clifford’s pentad contains five elements. Certainly, the fifth element of the pentad should be added to the motion equation. Hence the Dirac equation mass part will hold two members. Moreover, if two additional quasi-space coordinates will be put in accordance to these two Clifford’s pentads mass elements then the homogeneous Dirac equation will be obtained. All the five elements of Clifford’s pentads and all the five space coordinates are equal in quality in this equation. The magnitudes of all the local velocities are equal to unit at such five-dimensional space.

The redefined in this way motion equation is invariant for rotations at the 2-space of the fourth and the fifth coordinates. In Part 3 this transformation defines a field, similar to B-boson field.

In Part 4 operators of a particles creation and a particles annihilation are denoted as the Fourier transformations of the corresponding operators for probability and an antiparticles are denoted in the standard way.

In Part 5 here are considered all unitary transformations on the two-masses functions such that these transformations retain the probability 4-vector. The adequate to electroweak gauge fields transformations exist among these unitary transformations. These electroweak unitary transformations are expressed by rotations at the 2-space of the fourth and the fifth coordinates, too.

The motion equations are invariant for these transformations. The massless field $W_{\mu,\nu}$ is denoted in usual way, but the motion equations for the fields W_μ are similar to the Klein-Gordon equation with nonzero mass.

The massless field A and the massive field Z are denoted in standard way by the fields B and W.

2 Hamiltonians

Let us denote:
- e_1, e_2, e_3 are the Cartesian basis vectors;
- $x \overset{\text{def}}{=} (x_1 e_1 + x_2 e_2 + x_3 e_3)$;
- $x_0 \overset{\text{def}}{=} t$;
\[\int d^3x \overset{\text{def}}{=} \int dx_1 \int dx_2 \int dx_3; \]
\[\partial_k \overset{\text{def}}{=} \partial/\partial x_k; \]
\[\partial_t \overset{\text{def}}{=} \partial/\partial t; \]
\[\partial'_k \overset{\text{def}}{=} \partial/\partial x'_k. \]

Let \[\mathcal{P}(t, x) \] be any occurred in point \((t, x)\) event and let a real function \(\rho(\mathcal{P}(t, x))\) be the probability density of this event. That is for each domain \(D (D \subseteq \mathbb{R}^3)\):

\[\int_D d^3x \cdot \rho(\mathcal{P}(t, x)) = P(\exists x \in D : \mathcal{P}(t, x)) \]

with \(P\) as a probability function. \(\rho\) is not invariant for the Lorentz transformation. Let \(\langle \rho, j \rangle\) be a probability current 3+1-vector.

Let \(k \in \{1, 2, 3, 4\}\), \(s \in \{1, 2, 3, 4\}\), \(\alpha \in \{1, 2, 3\}\) and \(\varphi_k(t, x)\) be some complex solution of the following set of equations:

\[\begin{align*}
\sum_{k=1}^{4} \varphi_k^* (t, x) \varphi_k (t, x) &= \rho_{\alpha, \alpha} (t, x), \\
\sum_{k=1}^{4} \sum_{s=1}^{4} \varphi_k^* (t, x) \rho_{k, s}^{[\alpha]} \varphi_s (t, x) &= -j_{\alpha, \alpha} (t, x).
\end{align*} \] (4)

If a 3-vector \(u_{\varphi}\) is denoted as

\[j_{\varphi} \overset{\text{def}}{=} \rho_{\varphi} u_{\varphi} \] (5)

then \(u_{\varphi}\) is called as a local velocity of the probability propagation.

I consider only events, fulfilled to the following condition: there exists some tiny real positive number \(h\) such that if \(|x_r| \geq \frac{\pi}{h} (r \in \{1, 2, 3\})\) then

\[\varphi_j(t, x) = 0. \]

Here is suitable to choose this number such that \(h\) equals the Planck constant for our devices. But maybe somewhere exist devices of other structure such that another value for \(h\) will required.

Let \((V)\) be denoted as the following: \(x \in (V)\) if and only if \(|x_r| \leq \frac{\pi}{h}\) for \(r \in \{1, 2, 3\}\). That is:
\[\int_{(V)} d^3x = \int_{-\frac{\pi}{\hbar}}^{\frac{\pi}{\hbar}} dx_1 \int_{-\frac{\pi}{\hbar}}^{\frac{\pi}{\hbar}} dx_2 \int_{-\frac{\pi}{\hbar}}^{\frac{\pi}{\hbar}} dx_3. \]

Let \(j \in \{1, 2, 3, 4\}, k \in \{1, 2, 3, 4\} \)

Let

\[\varphi_j (t, x) = \sum_{w,p} c_{j,w,p} \varsigma_{w,p} (t, x) \]

with \(\varsigma_{w,p} (t,x) \defeq \exp (i \hbar (wt - px)) \) be the Fourier series for \(\varphi_j (t, x) \).

Let \(\varphi_{j,w,p} (t, x) \defeq c_{j,w,p} \varsigma_{w,p} (t, x) \).

Let \(\langle t, x \rangle \) be any space-time point.

Denote value of function \(\varphi_{k,w,p} \) at this point as

\[\varphi_{k,w,p} \big|_{\langle t, x \rangle} = A_k \]

and value of function \(\partial_t \varphi_{j,w,p} - \sum_s \sum_{\alpha=1}^3 \beta_{j,s}^{[\alpha]} \partial_{\alpha} \varphi_{s,w,p} \) at this point as

\[\left(\partial_t \varphi_{j,w,p} - \sum_s \sum_{\alpha=1}^3 \beta_{j,s}^{[\alpha]} \partial_{\alpha} \varphi_{s,w,p} \right) \big|_{\langle t, x \rangle} = C_j. \]

There \(A_k \) and \(C_j \) are complex numbers. Hence the following equations set:

\[
\begin{aligned}
\left\{ \sum_{k=1}^4 z_{j,k,w,p} A_k = C_j, \\
\sum_{k=1}^4 z_{j,k,w,p} = -z_{j,k,w,p} \right. \\
\end{aligned}
\]

is a set of 20 algebraic complex equations with 16 complex unknown numbers \(z_{j,k,w,p} \). This set can be reformulated as the set of 8 linear real equations with 16 real unknown numbers \(\text{Re} (z_{j,k,w,p}) \) for \(j < k \) and \(\text{Im} (z_{j,k,w,p}) \) for \(j \leq k \). This set has got solutions by the Kronecker-Capelli theorem. Hence at every point \(\langle t, x \rangle \) such complex number \(z_{j,k,w,p} \) exists.

Let \(\kappa_{w,p} \) be a linear operator on the linear space, spanned by functions \(\varsigma_{w,p} (t, x) \), and
\[\kappa_{w,p}s_{w',p'} \overset{\text{def}}{=} \begin{cases} s_{w',p'}, & \text{if } w = w', \ p = p'; \\ 0, & \text{if } w \neq w' \text{or} \ p \neq p'. \end{cases} \]

Let \(Q_{j,k} \) be a operator such that in every point \((t,x) \):

\[Q_{j,k}(t,x) \overset{\text{def}}{=} \sum_{w,p} (z_{j,k,w,p|(t,x)}) \kappa_{w,p} \]

Therefore for every \(\varphi \) there exist operator \(Q_{j,k} \) such that the \(\varphi \) dependence upon \(t \) is characterized by the following differential equations\(^2\):

\[\partial_t \varphi_j = \sum_{k=1}^3 \left(\beta_{j,k}^{[1]} \partial_1 + \beta_{j,k}^{[2]} \partial_2 + \beta_{j,k}^{[3]} \partial_3 + Q_{j,k} \right) \varphi_k. \tag{7} \]

and \(Q_{j,k}^* = \sum_{w,p} (z_{j,k,w,p|(t,x)}) \kappa_{w,p} = -Q_{k,j} \).

In that case if

\[\hat{H}_{j,k} \overset{\text{def}}{=} i \left(\beta_{j,k}^{[1]} \partial_1 + \beta_{j,k}^{[2]} \partial_2 + \beta_{j,k}^{[3]} \partial_3 + Q_{j,k} \right) \]

then \(\hat{H} \) is called as the Hamiltonian of the moving with equation \(\text{(7)} \).

Let \(H \) be some Hilbert space such that some linear operators \(\psi_j(x) \) act on elements of \(H \). And these operators have got the following properties:

1. \(H \) contains the element \(\Phi_0 \) such that:

\[\Phi_0^\dagger \Phi_0 = 1 \]

and

\[\psi_j \Phi_0 = 0, \ \Phi_0^\dagger \psi_j^\dagger = 0; \]

2. \(\psi_j(x) \psi_j(x) = 0 \)

\(^2\)This set of equations is similar to the Dirac equation with the mass matrix \([\beta] \), \([\gamma] \), \([\zeta] \). I choose form of this set of equations in order to describe behaviour of \(\rho_{\psi}(t,x) \) by spinors and by the Clifford’s set elements.
and
\[\psi_j^\dagger (\mathbf{x}) \psi_j^\dagger (\mathbf{x}) = 0; \]

3.
\[\{ \psi_j^\dagger (\mathbf{y}), \psi_j (\mathbf{x}) \} \overset{D_{ef}}{=} \psi_j^\dagger (\mathbf{y}) \psi_j (\mathbf{x}) + \psi_j^\dagger (\mathbf{x}) \psi_j (\mathbf{y}) = \delta (\mathbf{y} - \mathbf{x}) \delta_j',j \]

Let us denote \(\Psi (t, \mathbf{x}) \) as the following:
\[\Psi (t, \mathbf{x}) \overset{D_{ef}}{=} \sum_{j=1}^{4} \phi_j (t, \mathbf{x}) \psi_j^\dagger (\mathbf{x}) \Phi_0 \]

From (8):
\[\Psi^\dagger (t, \mathbf{x}') \Psi (t, \mathbf{x}) = \sum_{j=1}^{4} \phi_j^* (t, \mathbf{x}') \phi_j (t, \mathbf{x}) \delta (\mathbf{x}' - \mathbf{x}). \]

That is from (1):
\[\int d\mathbf{x}' \cdot \Psi^\dagger (t, \mathbf{x}') \Psi (t, \mathbf{x}) = \rho_\varphi (t, \mathbf{x}). \]

I call operator \(\psi^\dagger (\mathbf{x}) \) as a creation operator and \(\psi (\mathbf{x}) \) is called as an annihilation operator of the event \(\varphi \) probability at point \(\mathbf{x} \). Operator \(\psi^\dagger (\mathbf{x}) \) is not an operator of a particle creation at point \(\mathbf{x} \) but it is an operator, changing probability of event \(\varphi \) at this point. The similar is for \(\psi (\mathbf{x}) \).

If \(\mathcal{H} (t, \mathbf{x}) \) is denoted as:
\[\mathcal{H} (t, \mathbf{x}) \overset{D_{ef}}{=} \sum_{j=1}^{4} \psi_j^\dagger (\mathbf{x}) \sum_{k=1}^{4} \hat{H}_{j,k} (t, \mathbf{x}) \psi_k (\mathbf{x}) \]

then \(\mathcal{H} (t, \mathbf{x}) \) is called as the hamiltonian density of this hamiltonian.

From (1):
\[-i \int d^3 x \cdot \mathcal{H}(t, x) \Psi(t, x_0) = \partial_t \Psi(t, x_0).\]

Therefore a hamiltonian density defines the temporal behaviour of probability at a space point.

Formula (7) has got the following matrix form:

\[\partial_t \varphi = \left(\beta^{[1]} \partial_1 + \beta^{[2]} \partial_2 + \beta^{[3]} \partial_3 + \hat{Q} \right) \varphi, \quad (11) \]

with

\[
\varphi = \begin{bmatrix}
\varphi_1 \\
\varphi_2 \\
\varphi_3 \\
\varphi_4
\end{bmatrix},
\]

and

\[
\hat{Q} = \begin{bmatrix}
\nu_{1,1} & \nu_{1,2} - \nu_{1,3} & \nu_{1,4} - \nu_{1,4} \\
\nu_{1,2} + \nu_{1,2} & \nu_{2,2} & -\nu_{2,3} - \nu_{2,4} - \nu_{2,4} \\
\nu_{1,3} + \nu_{1,3} & \nu_{2,3} & \nu_{3,3} - \nu_{3,4} - \nu_{3,4} \\
\nu_{1,4} + \nu_{1,4} & \nu_{2,4} + \nu_{2,4} & \nu_{3,4} + \nu_{3,4} & \nu_{4,4}
\end{bmatrix},
\]

with \(\nu_{j,k} = \Re(Q_{j,k})\) and \(\nu_{1,2} = \Im(Q_{j,k})\).

Let \(\Theta_0, \Theta_3, \Upsilon_0\) and \(\Upsilon_3\) be the solution of the following system of equations:

\[
\begin{cases}
-\Theta_0 + \Theta_3 - \Upsilon_0 + \Upsilon_3 = \nu_{1,1}; \\
-\Theta_0 - \Theta_3 - \Upsilon_0 - \Upsilon_3 = \nu_{2,2}; \\
-\Theta_0 - \Theta_3 + \Upsilon_0 + \Upsilon_3 = \nu_{3,3}; \\
-\Theta_0 + \Theta_3 + \Upsilon_0 - \Upsilon_3 = \nu_{4,4}.
\end{cases}
\]

Let \(\Theta_1, \Theta_2, \Upsilon_1, \Upsilon_2, M_0, M_4, M_{1,0}, M_{1,4}, M_{2,0}, M_{2,4}, M_{3,0}, M_{3,4}\) be the solutions of the following systems of equations:

\[
\begin{cases}
\Theta_1 + \Upsilon_1 = \nu_{1,2}; \\
-\Theta_1 + \Upsilon_1 = \nu_{3,4};
\end{cases}
\]

\[
\begin{cases}
-\Theta_2 + \Upsilon_2 = \nu_{1,2}; \\
\Theta_2 - \Upsilon_2 = \nu_{3,4};
\end{cases}
\]
\[
\begin{aligned}
&\left\{ M_0 + M_{3,0} = \varphi_{1,3} ; \\
&\quad M_0 - M_{3,0} = \varphi_{2,4} ; \\
&\right.
\end{aligned}
\]
\[
\begin{aligned}
&\left\{ M_4 + M_{4,4} = \omega_{1,3} ; \\
&\quad M_4 - M_{4,4} = \omega_{2,4} ; \\
&\right.
\end{aligned}
\]
\[
\begin{aligned}
&\left\{ M_{1,0} - M_{2,4} = \varphi_{1,4} ; \\
&\quad M_{1,0} + M_{2,4} = \varphi_{2,3} ; \\
&\right.
\end{aligned}
\]
\[
\begin{aligned}
&\left\{ M_{1,4} - M_{2,0} = \omega_{1,4} ; \\
&\quad M_{1,4} + M_{2,0} = \omega_{2,3} . \\
&\right.
\end{aligned}
\]

From (11):
\[
\left(\partial_t + i\Theta_0 + i\Upsilon_0 \gamma^{[5]} \right) \varphi =
\sum_{k=1}^3 \beta^{[k]} \left(\partial_k + i\Theta_k + i\Upsilon_k \gamma^{[5]} \right) + iM_0 \gamma^{[0]} + iM_4 \gamma^{[4]}
+ iM_{1,0} \gamma^{[0]} - iM_{1,4} \gamma^{[4]} -
+ iM_{2,0} \gamma^{[0]} - iM_{2,4} \gamma^{[4]} -
+ iM_{3,0} \gamma^{[0]} - iM_{3,4} \gamma^{[4]}
\right) \varphi \quad \text{(12)}
\]

with
\[
\gamma^{[5]} \overset{\text{def}}{=} \begin{bmatrix} 1 & 0 & 2 \\
0 & 2 & -1 \end{bmatrix}
\]

Here summands
\[
- iM_{1,0} \gamma^{[0]} - iM_{1,4} \gamma^{[4]} -
- iM_{2,0} \gamma^{[0]} - iM_{2,4} \gamma^{[4]} -
- iM_{3,0} \gamma^{[0]} - iM_{3,4} \gamma^{[4]}
\]
contain the chromatic pentads elements [2] and
\[
\sum_{k=1}^3 \beta^{[k]} \left(\partial_k + i\Theta_k + i\Upsilon_k \gamma^{[5]} \right) + iM_0 \gamma^{[0]} + iM_4 \gamma^{[4]}
\]
contains only the light pentad elements. I call the following sum

\[
\hat{H}_l \overset{\text{def}}{=} \sum_{k=1}^{3} \beta^{[k]} \left(i\partial_k - \Theta_k - \Upsilon_k \gamma^{[5]} \right) - M_0 \gamma^{[0]} - M_4 \beta^{[4]}
\]

(13)
as the lepton hamiltonian.

3 Rotation of \(x_5Ox_4\) and \(B\)-bosonn

If denote (4):

\[
j_4 \overset{\text{def}}{=} -\varphi^* \beta^{[4]} \varphi \quad \text{and} \quad j_5 \overset{\text{def}}{=} -\varphi^* \gamma^{[0]} \varphi
\]

and (5):

\[
\rho_\varphi (t, x) u_4 \overset{\text{def}}{=} j_4 \quad \text{and} \quad \rho_\varphi (t, x) u_5 \overset{\text{def}}{=} j_5,
\]

then

\[
u^2_1 + u^2_2 + u^2_3 + u^2_4 + u^2_5 = 1.
\]

Hence, only all the five elements of the Clifford pentad lend the entire kit of the velocity components. Two more "space" coordinates \(x_5\) and \(x_4\) should be added to our three \(x_1, x_2, x_3\) for the completeness. These additional coordinates can be chosen such that

\[-\frac{\pi}{h} \leq x_5 \leq \frac{\pi}{h}, \quad -\frac{\pi}{h} \leq x_4 \leq \frac{\pi}{h}.
\]

\(x_4\) and \(x_5\) are not coordinates of any physics events. Hence our devices do not detect these coordinates as our space coordinates.

Let us denote:

\[
\tilde{\varphi} (t, x_1, x_2, x_3, x_5, x_4) \overset{\text{def}}{=} \varphi (t, x_1, x_2, x_3) \cdot \left(\exp \left(-i(x_5M_0 (t, x_1, x_2, x_3) + x_4M_4 (t, x_1, x_2, x_3)) \right) \right).
\]
In this case the motion equation for the leptonn hamiltonian (13) is the following:

\[
\left(\sum_{\mu=0}^{3} \beta^{[\mu]} \left(i\partial_{\mu} - \Theta_{\mu} - \Upsilon_{\mu} \gamma^{[5]} \right) + \gamma^{[0]} i\partial_{5} + \beta^{[4]} i\partial_{4} \right) \bar{\psi} = 0. \tag{14}
\]

Let \(g_1 \) be some positive real number and for \(\mu \in \{0, 1, 2, 3\} \): \(F_\mu \) and \(B_\mu \) be the solutions of the following system of the equations:

\[
\begin{align*}
-0.5g_1B_\mu + F_\mu &= -\Theta_\mu - \Upsilon_\mu, \\
-g_1B_\mu + F_\mu &= -\Theta_\mu + \Upsilon_\mu.
\end{align*}
\]

Let the charge matrix be denoted as the following:

\[
Y \overset{\text{def}}{=} \begin{bmatrix} 1 & 2 \\ 2 & 0 \end{bmatrix},
\]

Hence from (14):

\[
\left(\sum_{\mu=0}^{3} \beta^{[\mu]} \left(i\partial_{\mu} + F_\mu + 0.5g_1 Y B_\mu \right) + \gamma^{[0]} i\partial_{5} + \beta^{[4]} i\partial_{4} \right) \bar{\psi} = 0. \tag{15}
\]

Let \(\chi (t, x_1, x_2, x_3) \) be any real function and:

\[
\bar{U} (\chi) \overset{\text{def}}{=} \begin{bmatrix} \exp \left(i\frac{\chi}{2} \right) & 1 & 2 \\ 0 & 2 & \exp \left(i\chi \right) \cdot 1_2 \end{bmatrix}.
\tag{16}
\]

The motion equation (15) is invariant for the following transformation (rotation of \(x_4 \)O\(x_5 \)):
\[x_4 \to x'_4 = x_4 \cos \frac{\chi}{2} - x_5 \sin \frac{\chi}{2}; \]
\[x_5 \to x'_5 = x_5 \cos \frac{\chi}{2} + x_4 \sin \frac{\chi}{2}; \]
\[x_\mu \to x'_\mu = x_\mu \quad \text{for} \quad \mu \in \{0, 1, 2, 3\}; \]
\[Y \to Y' = \tilde{U}^\dagger Y \tilde{U} = Y; \]
\[\tilde{\varphi} \to \tilde{\varphi}' = \tilde{U} \tilde{\varphi}, \]
\[B_\mu \to B'_\mu = B_\mu - \frac{1}{g_1} \partial_\mu \chi, \]
\[F_\mu \to F'_\mu = F_\mu. \]

Hence \(B_\mu \) is similar to the \(B \)-boson field from Standard Model. I call it as \(B \)-boson.

Let \(\epsilon_\mu \) (\(\mu \in \{1, 2, 3, 4\} \)) be the basis such that in this basis the light pentad has got the form (14).

Spinor functions of type

\[\frac{\hbar}{2\pi} \exp(-i\hbar (sx_4 + nx_5)) \epsilon_k \]

with integer \(n \) and \(s \) make up an orthonormal basis of some space (let us denote this space as \(\mathbb{I} \)) with the following scalar product:

\[\tilde{\varphi} \ast \tilde{\chi} \overset{def}{=} \int_{-\frac{\pi}{\hbar}}^{\frac{\pi}{\hbar}} dx_5 \int_{-\frac{\pi}{\hbar}}^{\frac{\pi}{\hbar}} dx_4 \cdot \left(\tilde{\varphi}^\dagger \cdot \tilde{\chi} \right). \]

In this case from (14):

\[\tilde{\varphi} \ast \beta^{[\mu]} \tilde{\varphi} = -j_{\varphi, \mu} \]

for \(\mu \in \{0, 1, 2, 3\} \).

The Fourier series for \(\tilde{\varphi}(t, x, x_5, x_4) \) has got the following form:

\[\tilde{\varphi}(t, x, x_5, x_4) = \sum_{n,s} \phi(t, x, n, s) \frac{\hbar}{2\pi} \exp(-i\hbar (nx_5 + sx_4)). \]

The integer numbers \(n \) and \(s \) be called as mass numbers for \(\tilde{\varphi} \) and \(\sqrt{n^2 + s^2} \) is called as the mass for \(\tilde{\varphi} \).
4 The one-mass state, particles and antiparticles.

Let (20):

\[\tilde{\phi}(t, x, x_5) = \exp(-i h n x_5) \sum_{j=1}^{4} \phi_j(t, x, n, 0) \epsilon_j \]

with \(n \) as some natural number. In that case the hamiltonian has got the following form from (15):

\[\hat{H} = \sum_{k=1}^{3} \beta^{[k]} i \partial_k + h n \gamma^{[0]} + \hat{G} \]

with

\[\hat{G} \overset{\text{def}}{=} \sum_{\mu=0}^{3} \beta^{[\mu]} (F_\mu + 0.5 g_1 Y B_\mu) . \]

If

\[\hat{H}_0 \overset{\text{def}}{=} \sum_{k=1}^{3} \beta^{[k]} i \partial_k + h n \gamma^{[0]} \]

then the functions

\[u_1(k) \exp(-i h k x) \text{ and } u_2(k) \exp(-i h k x) \]

with

\[u_1(k) \overset{\text{def}}{=} \frac{1}{2 \sqrt{\omega(k) (\omega(k) + n)}} \begin{bmatrix} \omega(k) + n + k_3 \\ k_1 + i k_2 \\ \omega(k) + n - k_3 \\ -k_1 - i k_2 \end{bmatrix} \]

and

\[u_2(k) \overset{\text{def}}{=} \frac{1}{2 \sqrt{\omega(k) (\omega(k) + n)}} \begin{bmatrix} k_1 - i k_2 \\ \omega(k) + n - k_3 \\ -k_1 + i k_2 \\ \omega(k) + n + k_3 \end{bmatrix} \]
are the eigenvectors of \hat{H}_0 with the eigenvalue $\omega(k) \overset{def}{=} \sqrt{k^2 + n^2}$ and the functions

$$u_3(k) \exp(-i\hbar kx) \text{ and } u_4(k) \exp(-i\hbar kx)$$

with

$$u_3(k) \overset{def}{=} \frac{1}{2\sqrt{\omega(k)(\omega(k) + n)}} \begin{pmatrix} -\omega(k) - n + k_3 \\ k_1 + ik_2 \\ \omega(k) + n + k_3 \\ k_1 + ik_2 \end{pmatrix}$$

and

$$u_4(k) \overset{def}{=} \frac{1}{2\sqrt{\omega(k)(\omega(k) + n)}} \begin{pmatrix} k_1 - ik_2 \\ -\omega(k) - n - k_3 \\ k_1 - ik_2 \\ \omega(k) + n - k_3 \end{pmatrix}$$

are the eigenvectors of \hat{H}_0 with the eigenvalue $-\omega(k)$.

Here $u_\mu(k)$ form an orthonormal basis in the space, spanned on vectors ϵ_μ.

Let :

$$b_{r,k} \overset{def}{=} \left(\frac{\hbar}{2\pi} \right)^3 \sum_{j=1}^{4} \int_{(V)} d^3x' \cdot e^{i\hbar kx'} u_{r,j'}^*(k) \psi_{j'}(x')$$

In that case

$$\psi_j(x) = \sum_k e^{-i\hbar kx} \sum_{r=1}^{4} b_{r,k} u_{r,j}(k) \quad (22)$$

with

$$\sum_k \overset{def}{=} \sum_{k_1=-\infty}^{\infty} \sum_{k_2=-\infty}^{\infty} \sum_{k_3=-\infty}^{\infty};$$

and in this case
\[\left\{ b_{s,k'}, b_{r,k} \right\} = \left(\frac{\hbar}{2\pi} \right)^3 \delta_{s,r} \delta_{k,k'} , \]

\[\left\{ b_{s,k}, b_{r,k}^\dagger \right\} = 0 = \left\{ b_{s,k'}, b_{r,k} \right\} . \quad (23) \]

The Hamiltonian density (11) for \(\hat{H}_0 \) is the following:

\[\mathcal{H}_0 (x) = \sum_{j=1}^{4} \psi_j^\dagger (x) \sum_{k=1}^{4} \hat{H}_{0,j,k} \psi_k (x) . \]

Hence from (22):

\[\int_{(V)} d^3x \cdot \mathcal{H}_0 (x) = \left(\frac{2\pi}{\hbar} \right)^3 \sum_k h \omega (k) \cdot \left(\sum_{r=1}^{2} b_{r,k}^\dagger b_{r,k} - \sum_{r=3}^{4} b_{r,k}^\dagger b_{r,k} \right) \]

Let the Fourier transformation for \(\varphi \) be the following:

\[\varphi_j (t, x) = \sum_{p} \sum_{r=1}^{4} c_r (t, p) u_{r,j} (p) e^{-i\hbar px} \]

with

\[c_r (t, p) \overset{def}{=} \left(\frac{\hbar}{2\pi} \right)^3 \sum_{j'=1}^{4} \int_{(V)} d^3x' \cdot u_{r,j'}^* (p) \varphi_{j'} (t, x') e^{i\hbar px'} \]

I call a function \(\varphi_j (t, x) \) as an ordinary function if there exists some real positive number \(L \) such that

if \(|p_1| > L \) or/and \(|p_2| > L \) or/and \(|p_3| > L \) then \(c_r (t, p) = 0 \).

In that case I denote:

\[\sum_{\mathbf{p} \in \Xi} \overset{def}{=} \sum_{p_1=-L}^{L} \sum_{p_2=-L}^{L} \sum_{p_3=-L}^{L} . \]
If \(\varphi_j(t, x) \) is an ordinary function then:

\[
\varphi_j(t, x) = \sum_{p \in \Xi} \sum_{r=1}^{4} c_r(t, p) u_{r,j}(p) e^{-ihpx}.
\]

Hence from (9):

\[
\Psi(t, x) = \sum_{p} \sum_{r=1}^{4} \sum_{k} \sum_{r'=1}^{4} c_r(t, p) e^{ih(k-p)x} \sum_{j=1}^{4} u_{r',j}^*(k) u_{r,j}(p) b_{r',k}^\dagger \Phi_0
\]

and

\[
\int_{(V)} d^3x \cdot \Psi(t, x) = \left(\frac{2\pi}{\hbar}\right)^3 \sum_{p} \sum_{r=1}^{4} c_r(t, p) b_{r,p}^\dagger \Phi_0.
\]

If denote:

\[
\tilde{\Psi}(t, p) \overset{def}{=} \left(\frac{2\pi}{\hbar}\right)^3 \sum_{r=1}^{4} c_r(t, p) b_{r,p}^\dagger \Phi_0
\]

then

\[
\int_{(V)} d^3x \cdot \Psi(t, x) = \sum_{p} \tilde{\Psi}(t, p)
\]

and

\[
H_0 \tilde{\Psi}(t, p) = \left(\frac{2\pi}{\hbar}\right)^3 \sum_{k} h\omega(k) \cdot \left(\sum_{r=1}^{2} c_r(t, k) b_{r,k}^\dagger \Phi_0 - \sum_{r=3}^{4} c_r(t, k) b_{r,k}^\dagger \Phi_0\right).
\]

\(H_0\) is equivalent to the following operator:

\[
\Xi \overset{def}{=} \left(\frac{2\pi}{\hbar}\right)^3 \sum_{k \in \Xi} h\omega(k) \cdot \left(\sum_{r=1}^{2} b_{r,k}^\dagger b_{r,k} - \sum_{r=3}^{4} b_{r,k}^\dagger b_{r,k}\right).
\]

on the set of ordinary functions.
Because from (23)

\[b^\dagger_{r,k} b_{r,k} = \left(\frac{h}{2\pi} \right)^3 - b_{r,k} b^\dagger_{r,k} \]

then

\[\Xi H_0 = \left(\frac{2\pi}{h} \right)^3 \sum_{k \in \Xi} h\omega(k) \left[\left(\sum_{r=1}^{2} b^\dagger_{r,k} b_{r,k} + \sum_{r=3}^{4} b_{r,k} b^\dagger_{r,k} \right) - \right. \]

\[\left. - h \sum_{k \in \Xi} \omega(k) \right] . \]

Let:

\[v^{(1)}(k) \overset{def}{=} \gamma^{(0)}_{u_3}(k), \]

\[v^{(2)}(k) \overset{def}{=} \gamma^{(0)}_{u_4}(k), \]

\[u^{(1)}(k) \overset{def}{=} u_1(k), \]

\[u^{(2)}(k) \overset{def}{=} u_2(k) \]

and let:

\[d_1(k) \overset{def}{=} -b^\dagger_3(-k), \]

\[d_2(k) \overset{def}{=} -b^\dagger_4(-k). \]

In that case:

\[\psi_j(x) = \sum_{k} \sum_{\alpha=1}^{2} \left(e^{-ihkx} b_{\alpha,k} u_{(\alpha),j}(k) + e^{ihkx} d^\dagger_{\alpha,k} v_{(\alpha),j}(k) \right) \]

and from (24) the Wick-ordered hamiltonian has got the following form:

\[\Xi : H_0 : = \left(\frac{2\pi}{h} \right)^3 h \sum_{k \in \Xi} \omega(k) \sum_{\alpha=1}^{2} \left(b^\dagger_{\alpha,k} b_{\alpha,k} + d^\dagger_{\alpha,k} d_{\alpha,k} \right) . \]
Here $b_{\alpha, k}^\dagger$ are called as creation operators and $b_{\alpha, k}$ are called as annihilation operators of n-lepton with the momentum k and the spin index α; $d_{\alpha, k}^\dagger$ are called as creation operators and $d_{\alpha, k}$ are annihilation operators of anti-n-lepton with the momentum k and spin index α.

Functions:

$$u_{(1)}(k) \exp(-i\hbar kx) \quad \text{and} \quad u_{(2)}(k) \exp(-i\hbar kx)$$

are called as the basic n-lepton functions with momentum k and

$$v_{(1)}(k) \exp(i\hbar kx) \quad \text{and} \quad v_{(2)}(k) \exp(i\hbar kx)$$

are called as the anti-n-lepton basic functions with momentum k.

Therefore there arise particles and antiparticles from probabilities of point events.

5 The bi-mass state [7], [8]

We consider subspace of space \mathcal{I} spanned by the following subbasis:

$$j = \begin{pmatrix} \frac{1}{\sqrt{2}} \exp(-i\hbar (s_0 x_4)) \epsilon_1, \frac{1}{\sqrt{2}} \exp(-i\hbar (s_0 x_4)) \epsilon_2, \\ \frac{1}{\sqrt{2}} \exp(-i\hbar (s_0 x_4)) \epsilon_3, \frac{1}{\sqrt{2}} \exp(-i\hbar (s_0 x_4)) \epsilon_4, \\ \frac{1}{\sqrt{2}} \exp(-i\hbar (n_0 x_5)) \epsilon_1, \frac{1}{\sqrt{2}} \exp(-i\hbar (n_0 x_5)) \epsilon_2, \\ \frac{1}{\sqrt{2}} \exp(-i\hbar (n_0 x_5)) \epsilon_3, \frac{1}{\sqrt{2}} \exp(-i\hbar (n_0 x_5)) \epsilon_4 \end{pmatrix}$$

with some natural s_0 and n_0. Denote this subspace as \mathcal{I}_j.

Let U be any linear transformation at the space \mathcal{I}_j (see Appendix) such that for any $\tilde{\varphi} \in \mathcal{I}_j$ then

$$-(U\tilde{\varphi})^\dagger \beta^{[\mu]} (U\tilde{\varphi}) = j_{\mu, \mu}$$

for $\mu \in \{0, 1, 2, 3\}$ [9].

For every such transformation there exist real functions $\chi(t, x)$, $\alpha(t, x)$, $a(t, x)$, $b(t, x)$, $c(t, x)$, $q(t, x)$, $u(t, x)$, $v(t, x)$, $k(t, x)$, $s(t, x)$ such that

$$U = \exp(i\alpha) \tilde{U}(\chi) U^{(-)} U^{(+)}$$

with $\tilde{U}(\chi)$ as denoted by [9] and $U^{(-)}$ and $U^{(+)}$ have got the following matrix form in the basis j:
\[U^{(-)}(t, x) = S(a(t, x), b(t, x), c(t, x), q(t, x)) \]

with

\[a^2(t, x) + b^2(t, x) + c^2(t, x) + q^2(t, x) = 1 \]

and

\[
S(a, b, c, q) \overset{\text{def}}{=} \begin{bmatrix}
(a+ib) \ 02 & (c+iq) \ 02 & 02 & 02 \\
02 & 02 & 02 & 02 \\
(-c+iq) \ 12 & 02(a-ib) \ 12 & 02 & 02 \\
02 & 02 & 02 & 12
\end{bmatrix},
\]

and

\[U^{(+)}(t, x) = R(u(t, x), v(t, x), k(t, x), s(t, x)) \quad (27) \]

with

\[u^2(t, x) + v^2(t, x) + k^2(t, x) + s^2(t, x) = 1 \]

and

\[
R(u, v, k, s) \overset{\text{def}}{=} \begin{bmatrix}
12 & 02 & 02 & 02 \\
02 & 02 & 02 & 02 \\
02 & 02 & 12 & 02 \\
02 & 02 & 02 & 12
\end{bmatrix}, \quad (28)
\]

\[U^{(+)} \text{ correspond to antileptonn} \text{s since } R = S^\gamma[5] \quad (25). \]

Let us consider \[U^{(-)} \].

Let us denote:

\[\ell_\circ \overset{\text{def}}{=} \imath_\circ(a, b, q, c), \quad \ell_* \overset{\text{def}}{=} \imath_*(a, b, q, c) \]

with

\[
\imath_\circ(a, b, q, c) \overset{\text{def}}{=} \frac{1}{2\sqrt{1-a^2}} \begin{bmatrix}
(b + \sqrt{1-a^2}) \ 14 & (q - ic) \ 14 \\
(q + ic) \ 14 & \left(\sqrt{1-a^2} - b\right) \ 14
\end{bmatrix}
\]
and
\[
\text{Def} \quad \eta(a,b,q,c) = \frac{1}{2 \sqrt{(1-a^2)}} \begin{pmatrix} \sqrt{(1-a^2)} - b) & (q + ic) 1_4 \\ (q - ic) 1_4 & (b + \sqrt{(1-a^2)}) 1_4 \end{pmatrix}.
\]

If
\[
\partial_\mu U(\cdot) = U(\cdot) \partial_\mu
\]
for \(\mu \in \{0,1,2,3\}\) then the lepton Hamiltonian is invariant for the following global transformation:

\[
\begin{align*}
\tilde{\varphi} & \rightarrow \tilde{\varphi}' = U(-) \tilde{\varphi}, \\
x_4 & \rightarrow x'_4 = (\ell_0 + \ell_* x_4 + (\ell_0 - \ell_*) \sqrt{1-a^2} x_5, \\
x_5 & \rightarrow x'_5 = (\ell_0 + \ell_* x_5 - (\ell_0 - \ell_*) \sqrt{1-a^2} x_4, \\
x_\mu & \rightarrow x'_\mu = x_\mu.
\end{align*}
\]

Let (29) does not hold true and:

\[
K \overset{\text{def}}{=} \sum_{\mu=0}^{3} \beta[\mu] (F_\mu + 0.5 g_1 Y B_\mu).
\]

In that case from (15) the motion equation has got the following form:

\[
\left(K + \sum_{\mu=0}^{3} \beta[\mu] i \partial_\mu + \gamma[0] i \partial_5 + \beta[4] i \partial_4 \right) \tilde{\varphi} = 0.
\]

Hence for the following transformations:

\[
\begin{align*}
\tilde{\varphi} & \rightarrow \tilde{\varphi}' \overset{\text{def}}{=} U(-) \tilde{\varphi}, \\
x_4 & \rightarrow x'_4 \overset{\text{def}}{=} (\ell_0 + \ell_* x_4 + (\ell_0 - \ell_*) \sqrt{1-a^2} x_5, \\
x_5 & \rightarrow x'_5 \overset{\text{def}}{=} (\ell_0 + \ell_* x_5 - (\ell_0 - \ell_*) \sqrt{1-a^2} x_4, \\
x_\mu & \rightarrow x'_\mu \overset{\text{def}}{=} x_\mu, \text{ for } \mu \in \{0,1,2,3\}, \\
K & \rightarrow K'.
\end{align*}
\]
with
\[\partial_4 U^{(-)} = U^{(-)} \partial_4 \quad \text{and} \quad \partial_5 U^{(-)} = U^{(-)} \partial_5 \]

this equation has got the following form (see Appendix):
\[
\left(U^{(-)\dagger} K' U^{(-)} + \sum_{\mu=0}^{3} \beta^{[\mu]} (\partial_{\mu} U^{(-)} + \gamma^{[\mu]} i \partial_5 + \beta^{[\mu]} i \partial_4) \right) \tilde{\varphi} = 0. \tag{34}
\]

Therefore if
\[
K' = K - i \sum_{\mu=0}^{3} \beta^{[\mu]} \left(\partial_{\mu} U^{(-)} \right) U^{(-)\dagger} \tag{35}
\]

then the equation (32) is invariant for the local transformation (33).

Let \(g_2 \) be some positive real number.

If design \((a, b, c, q, \text{form } U^{(-)}) \):
\[
W_{\mu} \overset{\text{def}}{=} \begin{cases}
W_0, & 02 \begin{pmatrix}
W_0^0 & 12 \\
12 & -iW_0^0 & 12 & 02
\end{pmatrix}
\\
W_1, & \begin{pmatrix}
W_1^0 & 12 \\
12 & -iW_1^0 & 12 & 02
\end{pmatrix}
\\
W_2, & \begin{pmatrix}
W_2^0 & 12 \\
12 & -iW_2^0 & 12 & 02
\end{pmatrix}
\end{cases}
\]

and
\[
W_\mu \overset{\text{def}}{=} \begin{pmatrix}
W_0^\mu & 12 \\
02 & 02 & 02 & 02
\end{pmatrix}
\]

then
\[
-i \left(\partial_{\mu} U^{(-)} \right) U^{(-)\dagger} = \frac{1}{2} g_2 W_\mu, \tag{36}
\]
and from (36), (31), (35), (32):

\[
\left(\sum_{\mu=0}^{3} \beta[\mu] \left(\partial_{\mu} - i 0.5 g_{1} B_{\mu} Y - i \frac{1}{2} g_{2} W_{\mu} - i F_{\mu} \right) + g_{0} \right) \beta[4] i \partial_{\mu}^{\prime} + \beta[4] i \partial_{\mu}^{\prime} \right) \varphi^{\prime} = 0. \tag{37}
\]

Let

\[
U^{\prime} \overset{\text{def}}{=} S(a', b', c', q').
\]

In this case if

\[
U^{\prime \prime} \overset{\text{def}}{=} U^{\prime} U^{(-)}
\]

then there exist some real functions \(a''(t, x), b''(t, x), c''(t, x), q''(t, x)\) such that \(U^{\prime \prime}\) has got the similar form:

\[
U^{\prime \prime} \overset{\text{def}}{=} S(a'', b'', c'', q'').
\]

If

\[
\ell'' \overset{\text{def}}{=} \ell_{0} (a'', b'', q'', c''), \ell''_{*} \overset{\text{def}}{=} \ell_{0} (a'', b'', q'', c'');
\]

\[
\varphi \rightarrow \varphi^{''} \overset{\text{def}}{=} U^{''} \varphi,
\]

\[
x_{4} \rightarrow x_{4}^{''} \overset{\text{def}}{=} (\ell''_{0} + \ell''_{*}) a'' x_{4} + (\ell'' - \ell''_{0}) \sqrt{1 - a''^{2}} x_{5},
\]

\[
x_{5} \rightarrow x_{5}^{''} \overset{\text{def}}{=} (\ell''_{0} + \ell''_{*}) a'' x_{5} - (\ell'' - \ell''_{0}) \sqrt{1 - a''^{2}} x_{4},
\]

\[
x_{\mu} \rightarrow x_{\mu}^{''} \overset{\text{def}}{=} x_{\mu}, \text{ for } \mu \in \{0, 1, 2, 3\},
\]

\[
K \rightarrow K^{''} \overset{\text{def}}{=} \sum_{\mu=0}^{3} \beta[\mu] \left(F_{\mu} + 0.5 g_{1} Y B_{\mu} + \frac{1}{2} g_{2} W_{\mu}^{''} \right)
\]

then from (36):

\[
W_{\mu}^{''} = - \frac{2i}{g_{2}} \left(\partial_{\mu} \left(U^{''} U^{(-)} \right) \right) \left(U^{''} U^{(-)} \right)^{\dagger}.
\]

Hence:
\[W''_{\mu} = -\frac{2i}{g_2} (\partial_{\mu} U') U'^\dagger - \frac{2i}{g_2} U' \left(\partial_{\mu} U^{(-)} \right) U^{(-)} U'^\dagger, \]

i.e. from (36):

\[W''_{\mu} = U' W_{\mu} U'^\dagger - \frac{2i}{g_2} \left(\partial_{\mu} U' \right) U'^\dagger \]

(39)

as in Standard Model.

The motion equation of the Yang-Mills SU(2) field at the space without matter (for instance [9] or [10]) has got the following form:

\[\partial_{\nu} W_{\mu \nu} = -g_2 W_{\nu \times \mu} \]

with:

\[W_{\mu \nu} = \partial_{\mu} W_{\nu} - \partial_{\nu} W_{\mu} + g_2 W_{\mu} \times W_{\nu} \]

and

\[W_{\mu} = \begin{bmatrix} W_0^\mu \\ W_1^\mu \\ W_2^\mu \end{bmatrix}. \]

Hence the motion equation for \(W_0^\mu \) is the following:

\[\partial_{\nu} \partial_{\nu} W_0^\mu = g_2^2 \left(W_0^{\nu \times \nu} W_0^{\nu} + W_1^{\nu \times \nu} W_1^{\nu} + W_2^{\nu \times \nu} W_2^{\nu} \right) W_0^\mu - g_2 \left(W_1^{\nu \times \nu} W_0^{\nu} - W_2^{\nu \times \nu} W_2^{\nu} \right) W_0^\mu + g_2 \partial_{\nu} \partial_{\nu} W_0^\mu \]

(40)

with \(g_{0,0} = 1, g_{1,1} = g_{2,2} = g_{1,3} = g_{2,3} = -1 \) (i.e.: \(W_0^{\nu \times \nu} = W_0^{00} W_0 - W_0^{11} W_1 - W_0^{22} W_2 - W_0^{33} W_3 \). For the gauging with \(W_0 = 0 \): \(W_\nu^\nu W_\nu = - (W_\nu^0 W_1 + W_\nu^1 W_2 + W_\nu^3 W_3) \). \(W_0^\mu \) and \(W_1^\mu \) satisfy to similar equations.

This equation can be reformed as the following:
\[
\partial^\nu \partial_\nu W^0_\mu = [g^2_2 \left(W^{2, \nu W^2_\nu} + W^{1, \nu W^1_\nu} + W^{0, \nu W^0_\nu} \right)] \cdot W^0_\mu - \\
g^2_2 \left(W^{1, \nu W^1_\nu} + W^{2, \nu W^2_\nu} + W^{0, \nu W^0_\nu} \right) W^0_\nu + \\
+g^2_2 \left(W^{1, \nu \partial_\nu W^2_\nu} - W^{1, \nu \partial_\nu W^1_\nu} - W^{2, \nu \partial_\nu W^1_\nu} + W^{2, \nu \partial_\nu W^1_\nu} + \partial^\nu \partial_\nu W^0_\nu \right).
\]

This equation looks like to the Klein-Gordon equation of field \(W^0_\mu \) with mass

\[
g_2 \left[- (W^{2, \nu W^2_\nu} + W^{1, \nu W^1_\nu} + W^{0, \nu W^0_\nu}) \right]^{\frac{1}{2}}. \tag{41}
\]

and with the additional terms of the \(W^0_\mu \) interactions with others components of \(W \).

"Mass" \(\text{(41)} \) is invariant for the following transformations:

\[
\begin{align*}
W^k_r &= W^k_r \cos \lambda - W^s_k \sin \lambda, \\
W^s_r &= W^k_r \sin \lambda + W^s_k \cos \lambda.
\end{align*}
\]

\[
\begin{align*}
W^k_0 &= W^k_0 \cosh \lambda - W^s_k \sinh \lambda, \\
W^s_0 &= W^s_0 \cosh \lambda - W^k_0 \sinh \lambda.
\end{align*}
\]

with real number \(\lambda \) and \(r \in \{1, 2, 3\} \) and \(s \in \{1, 2, 3\}, \) and \(\text{(41)} \) is invariant for global weak isospin transformation \(U' \):

\[
W'_\nu \rightarrow W''_\nu = U' W'_\nu U'^\dagger
\]

but is not invariant for local transformation \(\text{(39)} \)

Equation \(\text{(40)} \) can be simplified as follows:

\[
\sum_\nu g_{\nu, \nu} \partial^\nu \partial_\nu W^0_\mu = \left[g^2_2 \sum_{\nu \neq \mu} g_{\nu, \nu} \left((W^2_\nu)^2 + (W^1_\nu)^2 \right) \right] \cdot W^0_\mu - \\
-g^2_2 \sum_{\nu \neq \mu} g_{\nu, \nu} (W^{1, \nu W^1_\nu} + W^{2, \nu W^2_\nu}) W^0_\nu + \\
+g^2_2 \sum_\nu g_{\nu, \nu} \partial^\nu (W^{1, \nu W^1_\nu} + W^{2, \nu W^2_\nu}) + \\
+g^2_2 \sum_\nu g_{\nu, \nu} (W^{1, \nu \partial_\nu W^2_\nu} - W^{1, \nu \partial_\nu W^1_\nu} - W^{2, \nu \partial_\nu W^1_\nu} + W^{2, \nu \partial_\nu W^1_\nu}) + \\
+\partial^\nu \sum_\nu g_{\nu, \nu} \partial^\nu W^0_\nu.
\]

(here no of summation over indexes \(\nu \); the summation is expressed by \(\sum \)).
In this equation the form

\[g_2 \left[- \sum_{\nu \neq \mu} g_{\nu,\nu} \left((W_{\nu}^2)^2 + (W_{\nu}^1)^2 \right) \right]^{\frac{1}{2}} \]

varies at space, but this does not contain \(W_0^0 \), and locally acts as mass, i.e. this does not allow to particles of this field to behave as a massless ones.

Let

\[\alpha \overset{\text{def}}{=} \arctan \frac{g_1}{g_2}, \]

\[Z_\mu \overset{\text{def}}{=} (W_\mu^0 \cos \alpha - B_\mu \sin \alpha), \]

\[A_\mu \overset{\text{def}}{=} (B_\mu \cos \alpha + W_\mu^0 \sin \alpha). \]

In that case:

\[\sum_\nu g_{\nu,\nu} \partial_\nu \partial_\nu W_\mu^0 = \cos \alpha \cdot \sum_\nu g_{\nu,\nu} \partial_\nu \partial_\nu Z_\mu + \sin \alpha \cdot \sum_\nu g_{\nu,\nu} \partial_\nu \partial_\nu A_\mu. \]

If

\[\sum_\nu g_{\nu,\nu} \partial_\nu \partial_\nu A_\mu = 0 \]

then

\[m_Z = \frac{m_W}{\cos \alpha} \]

with \(m_W \) from (41). This is almost as in Standard Model.

6 Conclusion

Therefore we ourselves choose the expression of a probability in the form (4). We ourselves introduce a creation operator and an annihilation operator of an event probability. We ourselves add two more quasispace coordinates to our three and etc. That is we construct the logical structure such that there are inevitable particles, antiparticles and gauge bosons. Sort of answer is defined by sort of question.
Thus we ourselves make up the rules of the probabilistic information processing in the form of the laws of the quantum theory. And the values of parameters are depend on the structure of our devices.

This is likely that Universe gives only probabilities of events. But the physics laws, operating these probabilities, are the result of our device structure properties and of the logic behavior of our language. If the other methods of the information receiving and processing can exist somewhere then the physical laws of the other shape must operate there. Thus the quantum theory is only one amongst possible ways for the processing of a probabilistic information.

7 Appendix. Operations at space \mathcal{G}_j

Let $\tilde{\varphi} \in \mathcal{G}_j$. That is:

$$\tilde{\varphi}(t, x, x_5, x_4) = \left(\exp \left(-i\hbar s_0 x_4 \right) \sum_{r=1}^{4} \phi_r (t, x, 0, s) \epsilon_r + \exp \left(-i\hbar n_0 x_5 \right) \sum_{j=5}^{8} \phi_j (t, x, n, 0) \epsilon_j \right).$$

Let linear operators β and K act in the basis ϵ_k and the linear operator $U^{(-)}$ acts at space \mathcal{G}_j.

In this case if

$$U^{(-)} = \begin{bmatrix} U_{1,1} & U_{1,2} \\ U_{2,1} & U_{2,2} \end{bmatrix}$$

at basis j with $U_{j,r}$ as 4×4 matrices then $U_{j,r}$ act at basis ϵ_k, too.

Example of calculation:

$$(K - \beta U^{(-)}) \tilde{\varphi} =$$

$$(K - \beta U^{(-)}) \left(\exp \left(-i\hbar s_0 x_4 \right) \sum_{r=1}^{4} \phi_r (t, x, 0, s) \epsilon_r + \exp \left(-i\hbar n_0 x_5 \right) \sum_{j=5}^{8} \phi_j (t, x, n, 0) \epsilon_j \right)$$

$$(K - \beta U^{(-)}) \exp \left(-i\hbar s_0 x_4 \right) \sum_{r=1}^{4} \phi_r (t, x, 0, s) \epsilon_r$$

$$+ (K - \beta U^{(-)}) \exp \left(-i\hbar n_0 x_5 \right) \sum_{j=5}^{8} \phi_j (t, x, n, 0) \epsilon_j$$

$$= K \exp \left(-i\hbar s_0 x_4 \right) \sum_{r=1}^{4} \phi_r (t, x, 0, s) \epsilon_r$$

$$- \beta U \exp \left(-i\hbar s_0 x_4 \right) \sum_{r=1}^{4} \phi_r (t, x, 0, s) \epsilon_r$$

$$+ K \exp \left(-i\hbar n_0 x_5 \right) \sum_{j=5}^{8} \phi_j (t, x, n, 0) \epsilon_j$$
$$-\beta U \exp (-i h n_0 x_5) \sum_{j=5}^{8} \phi_j (t, x, n, 0) \epsilon_j$$

$$= \exp (-i h s_0 x_4) \sum_{r=1}^{4} \phi_r (t, x, 0, s) K \epsilon_r$$

$$- \beta \exp (-i h s_0 x_4) (U_{1,1} \sum_{r=1}^{4} \phi_r (t, x, 0, s) \epsilon_r + U_{1,2} \sum_{j=5}^{8} \phi_j (t, x, n, 0) \epsilon_j)$$

$$+ \exp (-i h n_0 x_5) \sum_{j=5}^{8} \phi_j (t, x, n, 0) K \epsilon_j$$

$$- \beta \exp (-i h n_0 x_5) (U_{1,1} \sum_{r=1}^{4} \phi_r (t, x, 0, s) U_{1,1} \epsilon_r + U_{1,2} \sum_{j=5}^{8} \phi_j (t, x, n, 0) U_{1,2} \epsilon_j)$$

$$+ \exp (-i h n_0 x_5) \sum_{j=5}^{8} \phi_j (t, x, n, 0) K \epsilon_j$$

$$- \beta \exp (-i h n_0 x_5) (\sum_{r=1}^{4} \phi_r (t, x, 0, s) U_{2,1} \epsilon_r + \sum_{j=5}^{8} \phi_j (t, x, n, 0) U_{2,2} \epsilon_j)$$

$$= \exp (-i h s_0 x_4) \sum_{r=1}^{4} \phi_r (t, x, 0, s) K \epsilon_r$$

$$- \beta \exp (-i h s_0 x_4) (\sum_{r=1}^{4} \phi_r (t, x, 0, s) \beta U_{1,1} \epsilon_r + \sum_{j=5}^{8} \phi_j (t, x, n, 0) \beta U_{1,2} \epsilon_j)$$

$$+ \exp (-i h n_0 x_5) \sum_{j=5}^{8} \phi_j (t, x, n, 0) K \epsilon_j$$

$$- \exp (-i h n_0 x_5) (\sum_{r=1}^{4} \phi_r (t, x, 0, s) \beta U_{2,1} \epsilon_r + \sum_{j=5}^{8} \phi_j (t, x, n, 0) \beta U_{2,2} \epsilon_j).$$

Références

[1] for instance, E. Madelung, Die Mathematischen Hilfsmittel des Physikers. (Springer Verlag, 1957) p.29

[2] G. A. Quznetsov, Physical events and quantum field theory without Higgs, preprint hep-ph/9812339 2004, p.42

[3] For examples: A. Soddi, N-K. Tran, Democratic Mass Matrices From Five Dimensions, hep-ph/0308043; D. Chang, Ch-Sh. Chen, Ch-H. Chou, H. Hatanaka, A model of CP violation from extra dimension, hep-ph/0406059; Janusz Garecki, On Hypothesis of the two large extradimensions, gr-qc/0306041; C. Csaki, C. Grojean, H. Murayama, L.
G. Quznetsov

Pilo, J. Terning, Gauge theories on interval: Unitarity without a Higgs, hep-ph/0305237. H. Davoudiasl, J. L. Hewett, B. Lillie, T. G. Rizzo, Higgless electroweak symmetry breaking in wrapped backgrounds: Constraints and signatures, hep-ph/0312193. S. Gabriel, S. Nandi, G. Seidl, 6D Higgless Standard Model, hep-ph/0406020. T. Rizzo, Phenomenology of Higgless electroweak symmetry breaking, hep-ph/0405094.

[4] V. V. Dvoeglazov, Fizika, B6, No. 3, pp. 111-122 (1997). Int. J. Theor. Phys., 34, No. 12, pp. 2467-2490 (1995). Annales de la Fondation de Louis de Broglie, 25, No. 1, pp. 81-91 (2000).

[5] A. O. Barut, P. Cordero, G. C. Ghirardi, Nuovo. Cim. A66, 36 (1970). A. O. Barut, Phys. Let. 73B, 310 (1978); Phys. Rev. Let. 42, 1251 (1979). A. O. Barut, P. Cordero, G. C. Ghirardi, Phys. Rev. 182, 1844 (1969).

[6] R. Wilson, Nucl. Phys. B68, 157 (1974).

[7] V. V. Dvoeglazov, Additional Equations Derived from the Ryder Postulates in the (1/2,0)+(0,1/2) Representation of the Lorentz Group. hep-th/9906083. Int. J. Theor. Phys. 37 (1998) 1909. Helv. Phys. Acta 70 (1997) 677. Fizika B 6 (1997) 75; Int. J. Theor. Phys. 34 (1995) 2467. Nuovo Cimento 108 A (1995) 1467. Nuovo Cimento 111 B (1996) 483. Int. J. Theor. Phys. 36 (1997) 635.

[8] D. V. Ahluwalia, (j,0)+(0,j) Covariant spinors and causal propagators based on Weinberg formalism. nucl-th/9905047. Int. J. Mod. Phys. A 11 (1996) 1855.

[9] M. V. Sadovski, Lectures on the Quantum Fields Theory (Institute of Electrophysics, UrO RAS, 2000), p.33 (2.12)

[10] Lewis H. Ryder, Quantum Field Theory, Mir, Moscow (1987), p.133, (3.136)

Électromagnétiques calibrées champs, les particules et antiparticules prennent naissance des probabilités

(Manuscrit reçu le 26 avril 2004)