Feasibility of Randomized Controlled Trials for Cancer Drugs Approved by the Food and Drug Administration Based on Single Arm Studies

Rebekah Rittberg MD, FRCPC¹, Piotr Czaykowski MD, MSc, FRCPC ¹,²,³, Saroj Niraula MD, MSc, FRCPC ¹,²

1. Section of Hematology/Oncology, Department of Internal Medicine, University of Manitoba, Winnipeg, MB, Canada
2. Department of Medical Oncology and Hematology, CancerCare Manitoba, Winnipeg, MB, Canada
3. Department of Community Health Sciences, University of Manitoba, Winnipeg, MB, Canada

Correspondence:
Saroj Niraula
Medical Oncologist, CancerCare Manitoba
Associate Professor, University of Manitoba
Room L1-101-13, 409 Tache Avenue,
Winnipeg, MB
R2H 2A6, Canada
Tel: 204-237-2006

© The Author(s) 2021. Published by Oxford University Press. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.
Abstract

Background: The United States (US) Food and Drug Administration (FDA) introduced an Accelerated Approval (AA) pathway to expedite patient access to new drugs. AA accepts less rigorous trial designs, including single arm studies (SAS), owing to perceived lack of feasibility of timely RCTs.

Methods: We designed hypothetical RCTs with endpoints of objective response rate (ORR), progression free survival (PFS), and overall survival (OS) for FDA approvals based on SAS for solid tumors during 2010-2019. Existing standards of care served as controls. RCTs were designed to detect a difference with power of 0.80, α-error of 5% (two-sided), and 1:1 randomization. Accrual duration was estimated based on participation by <5% of eligible patients derived from cancer-specific incidence and mortality rates in the US.

Results: Thirty-one of 172 (18.0%) approvals during the study period were based on SAS. Median sample size was 104 (range = 23-411), and 77.4% were AA. All studies reported ORR, 55% reported duration of response, 19.4% reported PFS, and 22.5% reported OS. Median sample size needed to conduct RCTs with endpoints of ORR, PFS and OS were 206, 130, and 396 respectively. It would have been theoretically possible to conduct RCTs within duration comparable to that required by SAS for 84.6%, 94.1%, and 80.0% of approvals with endpoints of ORR, PFS and OS respectively.

Conclusion: An overwhelming majority of FDA approvals based on SAS should be feasible as RCTs within a reasonable time-frame. Given the collateral harms to patients and to scientific rigor, drug approval based on SAS should only be permitted under exceptional circumstances.
To ensure that new drugs entering the market are safe and effective, the United States (US) Food and drug Administration (FDA), the federal agency for drug regulation, has historically relied on results from randomized controlled trials (RCTs), the gold standard method to evaluate efficacy and toxicity of new health interventions compared to existing standards of care. However, conventional drug development with 3 sequential phases of clinical trials are resource-intensive, typically requiring hundreds of millions of dollars and more than a decade to complete.\(^1\)\(^2\) This can substantially delay the time for a promising new drug to move from the bench to the bedside.

As a way to expedite access to new drugs for patients, the FDA introduced an Accelerated Approval (AA) pathway for drug approval in 1992 for serious or life-threatening diseases.\(^3\) This pathway allows for “conditional” approval of promising new drugs based on less rigorous evidence than that required for full approvals so that patients have early access to these drugs while definitive evidence is being generated.\(^4\)

In the last few years, there has been an increase in drugs receiving accelerated FDA approvals based on single arm studies (SAS)\(^5\). While FDA guidance states explicitly that SAS are acceptable for AA “in settings where there is no available therapy and where major tumor regressions can be presumed to be attributed to the tested drug”, SAS have been used frequently despite the existence of reasonable alternate therapy. Notably “major tumor regression” can hardly apply for examples such as avelumab in urothelial carcinoma where approval was based on an ORR of a mere 13% (lasting 2 months, which is typically the duration to first radiological re-evaluation). Indeed, duration of response is not specified in FDA guidance as a basis to use SAS for approvals.
SAS do not possess the methodological rigor of RCTs but are useful typically in initial phases of drug development mainly to establish the dose, and to evaluate preliminary anti-tumor activity and safety. Resulting from the absence of a control arm, SAS cannot directly measure if a drug improves outcomes compared to existing standards of care. Despite these drawbacks, SAS are accepted increasingly as proof of efficacy of drugs in those circumstances when standard treatments either do not exist or are clearly inferior to the new treatments, when the disease is rare, and in any situations where patient accrual for RCTs is not perceived to be feasible. Although use of SAS in these circumstances is reasonable, the use of SAS is not always based on empiric evidence of infeasibility of RCTs, hence inviting opportunity for questionable application of SAS perhaps driven by associated economic incentives to a manufacturer.

Here we review the last 10 years of FDA approvals for solid tumors based on SAS and assess the feasibility of conducting RCTs for those approvals using the same end points used by the corresponding SAS.

Methods

Data source and search strategy

The US FDA website was accessed for review of oncology drugs approved for solid tumors from January 1, 2010 until December 31, 2019. Pivotal trials used to support each approval were identified from the FDA drug labels, and corresponding primary publications assessed. Only the drugs approved on the basis of SAS were included. Two authors collected the data independently (RR, SN) and any discrepancies were resolved by consensus. From the
FDA website and from the primary publications, we collected the following information for each drug: date of approval, indication, line of therapy, approval pathway (AA or regular), number of patients accrued, and the outcomes reported [Overall Response Rate (ORR), Duration of Response (DOR), Progression Free Survival (PFS), Overall Survival (OS)].

Second, we assessed the clinicaltrials.gov website to extract information on SAS start date and completion date. Duration of time required to conduct each SAS was then determined using these dates, and verified using information in FDA notification, first journal publication, and/or conference presentation.

Third, we used the Surveillance, Epidemiology and End Results (SEER) website to obtain malignancy specific information and annual number of deaths for the cancer type (or subtype) involved. Potential number of patients with these conditions that would be eligible for clinical trials was approximated conservatively as 5% of the number of patients that die from the given condition annually in the US (evidence suggests that 5 to 16% of eligible patients enroll into clinical trials in the USA). When appropriate, prevalence of disease specific mutations was accounted for in the cancer sub-group.

Statistical analysis

Based on the above information we then designed (hypothetical) RCTs using PS power and sample size calculation software version 3.6.3 (Vanderbilt University). All RCTs were designed using conventional assumptions used by contemporary trial designs including power (1-ß, where ß is Type II error) of 0.80, α-error (Type I error) of 5% (two-sided), and 1:1 randomization. All outcomes (ORR, PFS and OS) reported in the SAS were used as the primary
endpoints of hypothetical RCTs separately to assess feasibility of RCTs with corresponding primary endpoints. Outcomes reported in the literature for existing standard of care, for the same condition, were used for the control group. Where more than one standard of care existed, we used the treatment associated with the best outcome. Where no apparent standard of care existed for a condition, best estimate of the outcome (e.g., survival) for control group was obtained by polling at least 2 board-certified experts specializing in the disease condition. Follow-up duration for the time-to-event endpoints (PFS and OS) for the hypothetical RCTs was set conservatively as twice the median life expectancy for the disease condition. When PFS was not reported, we used DOR as a surrogate for PFS when available. In order to avoid overly optimistic assessment for feasibility of RCTs, the most conservative assumptions were used: such as use of low percentage of eligible patients for enrollment in RCTs and twice the life expectancy as the expected median survival duration.

Results

Search results and approval characteristics

Between 2010 and 2019, the FDA approved 172 unique anticancer drug indications of which 31 (18.0%) were for solid tumors based on SAS (Table 1). The absolute number of SAS increased from zero in 2010 to 8 in 2019 (Figure 1). All approvals were for metastatic settings and all approvals were based on ORR as primary endpoint. The pathway for drug approval was AA for 77.4% (24 of 31) of drugs and full approval for the remainder. ORR was reported in 100% of SAS, DOR in 54.8%, PFS in 19.3%, and OS in 22.6% of the included SAS, after review of all publications pertaining to the SAS. Median sample size of involved SAS was 104 patients per
approval (range = 23-411). Drugs were approved based on a median ORR of 39% (range = 13-78%). ORR for existing standard of care was 23% (range = 5-62%).

Five drugs out of 31 (16.1%) were tested as first line therapy, and 26 of 31 (83.9%) as second line therapy or later. Prevalence of cancer subtype had no correlation with frequency of approvals using SAS: non-small cell lung cancer (NSCLC) accounted for the most frequent (22.6%) of SAS drug approvals, followed by urothelial carcinoma (19.3%), and ovarian cancer (9.6%). Immunotherapy accounted for 45.2% (14 of 31) and kinase inhibitors 35.5% (11 of 31) of approvals. Pembrolizumab was the single most common drug evaluated in 25.8% (8 of 31) of approvals. Only 2 of the 31 studies (6.5%) evaluated a combination treatment, with the remainder evaluating single agents.

Drugs for 4 (12.9%) indications were approved despite a lower ORR compared to existing standard of care and 1 (3.2%) drug was approved with shorter DOR compared to existing standard of care. Furthermore, these approvals also lacked any apparent alternate advantage compared to existing standard such as improvement in quality of life, cost or convenience of treatment. Overall, 7 (22.6%) approvals based on ORR were regular approvals, requiring no post marketing clinical trials.

RCTs with ORR as primary endpoint

All SAS reported ORR, with 87.1% (27 of 31) demonstrating a higher ORR compared to previous standard of care, allowing us to design hypothetical RCTs for these approvals with ORR as the primary end point. ORR for vismodegib for advanced/metastatic basal cell carcinoma was excluded due to lack of an appropriate control arm (i.e, previous standard of care). The median
sample size needed to conduct RCTs with ORR as the primary end point, when using the control arm ORR from the previous standard of care, was 206 (range = 34-1,724) for both arms combined. The sample size for 30.8% (8 of 26) of the SAS was larger than what would be necessary to complete an RCT. Based on a conservative accrual rate of 5% of the potentially eligible population, 57.7% (15 of 26) of the hypothetical RCTs could have been completed within an accrual period of 12 months and 84.6% (22 of 26) within a 24 month period. Eighty one percent (21 of 26) of such RCTs would have shorter accrual times than the duration that was required to complete the corresponding SAS.

RCTs with PFS as primary endpoint

Absolute PFS duration could be extracted for 61.3% (19 of 31) of approvals, after review of all abstracts and full publications pertaining to the SAS. We excluded 2 approvals from designing RCTs with PFS endpoints: vismodegib for advanced/metastatic basal cell carcinoma (lack of control arm) and entrectinib for metastatic NTRK solid tumors (PFS in the reported SAS was notably shorter than that reported with the existing standard of care).\(^{10}\) For the remaining 17 SAS with PFS information, the median sample size needed to detect a statistically significant difference in PFS in RCTs was 130 (range = 10-712) for both arms combined. Based on an accrual rate of 5% of the eligible population, 94.1% (16 of 17) of the RCTs could have been completed within the time-frame required for the corresponding SAS, and 88.2% (15 of 17) could have been completed within 24 months.

RCTs with OS as primary endpoint
Duration of OS was reported for 22.5% (7 of 31) of approvals, of which appropriate control arms for metastatic NTRK solid tumors and advanced pheochromocytoma/paraganglioma could not be reliably estimated. For the remaining 5 SAS that provided OS information, the median sample size needed to detect a statistically significant difference with OS as primary endpoint was 392 (range = 20-954) for both arms. Accrual for 4 of 5 (80.0%) SAS could have been completed within the time frame needed to complete the SAS; all 5 could have been completed within 24 months (Table 1).

Discussion

Lack of feasibility for timely completion of RCTs is the primary assumption supporting the rationale for FDA AA based on less rigorous clinical trials like SAS. In this analysis, evaluating a decade of FDA approvals, we found that for the vast majority of SAS approvals it was not only feasible to conduct RCTs, but they could also likely be completed within a reasonable duration. Surprisingly, 5 of 31 drugs were approved despite an inferior efficacy outcome compared to the existing standard of care while also lacking any apparent practical advantages of using those drugs, raising questions about the rationale for such approvals. The impetus behind this exercise is to direct attention to strategies that could strengthen the current drug approval system. The results reported here are intended to be thought provoking rather than definitive, given the multiple reasonable assumptions required for the exercise.

Common malignancies accounted for most of the approvals based on SAS, which is directly against the spirit of FDA guidance of AA in SAS. Only a few SAS studies evaluated truly rare cancers. For example, lung cancer was projected to result in 135,720 deaths in 2020 in the
US, yet was the most frequent tumor type to use SAS11. Evaluation of targeted treatment for a mutational subtype of NSCLC accounted for most SAS approvals in lung cancer and hence was deemed as ‘rare’. However, the mutational subtype of \textit{EGFR}, \textit{ALK} rearrangement and \textit{ROS}-1 constitute approximately 17\%, 7\%, and 2\% of all NSCLC respectively12. This translates to 19,611, 8,075 and 1,154 NSCLC annual deaths with these subtypes, respectively, in 2020 alone, resulting in sufficient patients to conduct proper RCTs.

We found that 38.7\% of SAS approvals did not report on DOR resulting in drugs being approved based on ORR alone. ORR simply measures biologic activity of the drug and not necessarily a meaningful benefit to patients. Responses could have lasted for a week, a month, or a year which robs patients of arguably the most crucial information required for informed shared decision making. Of further concern, previous studies have reported that ORR in non-randomized studies is, on average, 2.5 fold higher compared to those seen in RCTs for the same study drug.6,13 Immunotherapy consisted of close to half of all approvals based on ORR, despite a particularly poor correlation of ORR to early PFS or OS for these agents.14,15 The absence of DOR in a SAS with ORR as primary endpoint appears difficult to justify.

In a highly competitive industry, the quickest route to provisional drug approval is obviously the most desirable, even if this bypasses the historical safeguards established by regulators. From patient and societal perspectives there are serious trade-offs with this approach with potential for harm to both the rigor of the science and to the patients. Lost opportunity for proper evaluation of drugs after AA cannot be overstated. Ribeiro \textit{et al.} compared FDA AA to regular approvals between 2006 and 2018 and found that the criteria for granting AA were not clear, with AA allowing for more uncertainty in results; AA was much
more likely to be based on a SAS.16 No wonder many drugs that receive AA do not complete the requirement of a definitive RCT even years after receiving such approvals. An evaluation of 25 years of FDA approvals showed that as many as 40\% of drugs that received AA had not completed confirmatory trials at the time of their analysis.17 In April 2021, the FDA Oncologic Drug Advisory Committee met and reviewed 6 drugs approved by AA for which confirmatory trials failed to demonstrate expected clinical benefit to date. These include atezolizumab with \textit{nab}-paclitaxel in metastatic triple negative breast cancer, nivolumab and pembrolizumab for hepatocellular carcinoma, and pembrolizumab and atezolizumab in cisplatin ineligible metastatic urothelial carcinoma.18,19,20,21,22 However, without supporting confirmatory trials, the advisory committee voted to uphold AA for 5 out of 6 reviews stating “unmet need” as the common reason for such decision. Final recommendation from FDA on this topic remains awaited.

Even absence of an effective standard of care may not be sufficient justification to use a SAS for drug approvals, as a RCT may be completed with the control arm of best supportive care or placebo. Notably an alternate treatment that could be used as a control arm was found for all but 3 approvals. Although the FDA rarely specifies acceptable comparator(s), having a legitimate comparator is exceptionally important to engender trust in the approval process and understand the additional value of a new treatment.23

We acknowledge that SAS are typically easier to accrue to, since everybody receives the experimental treatment. Such studies are usually conducted at centres with a proven track record for accruing large numbers. Follow up time in SAS is typically shorter than RCT, one of the reasons why RCT cost substantially more than SAS, another reason behind the industry’s
preference of SAS over RCT. However SAS are also limited by the use of surrogate endpoints, predominantly assessing ORR with or without DOR, and rarely evaluate OS or quality of life endpoints. However, there are occasions when SAS is the study of choice including when diseases or mutational aberrations are very rare, making patient accrual for RCTs difficult if not infeasible. SAS can also be considered when RCT accrual is felt to not be possible. This may occur when there is no previous standard of care and placebo would be the control arm, such as with vismodegib for advanced/metastatic basal cell carcinoma which received FDA approval in 2012.

Generally, it is assumed that the sample size needed for a SAS compared to a RCT is substantially smaller. We estimated the eligible population based on total annual deaths in the US, however this would be higher for less lethal cancers and in earlier lines of therapy. Additionally, the SEER database provides a close estimate of cancer statistics and like any registry, underreporting is a caveat. Although difficulties exist with patient accrual to RCTs, here duration to complete RCT was calculated based on the conservative accrual rate of 5% of all eligible US patients. Recent data suggest that enrolment into clinical trials is improving with estimated accrual of about 16% in academic centers and 7% in the community. Additionally, RCTs may have international enrolment further increasing the eligible population.

Other limitations of this study lie in the fact that we had to make multiple assumptions to perform the sample size calculations, estimates of accrual rate and follow-up duration, although most contemporary pivotal RCTs match our assumptions. This study was a simulation exercise of hypothetical RCTs, hence a thought experiment. The numbers used in our estimates
are best approximates based on available knowledge. Our results are meant to be taken seriously, rather than literally – it is more about the message.

All hypothetical RCTs were designed as superiority trials; if a non-inferiority trial had to be designed then hypothetical sample sizes would have also differed. Additionally, if a treatment is felt to be futile, at interim analysis, then a trial could be stopped early requiring a smaller sample size than originally proposed. Follow-up duration for the time-to-event endpoints for hypothetical RCTs was set as twice the median life expectancy for the disease condition. This was an arbitrary duration but was considered a conservative assumption. Additionally, our conclusion about timeline for conduct of RCTs is mainly derived from accrual rate alone, as it is hard to quantify delays because of practical issues in the conduct of RCTs.

Here we present a feasibility assessment conducting hypothetical RCTs for all FDA approvals based on SAS in the last decade, the first empiric assessment of its kind to our knowledge. The results in this study represent a thought experiment which demonstrates that for a large majority of approvals, based on SAS, RCTs may have been feasible within a reasonable time frame. Instances of potential questionable use of the AA pathway were also observed including the use of SAS for relatively common malignancies and approval of drugs despite outcomes inferior to existing standards of care. Early access to drugs for patients is important and can generally be achieved without adversely affecting the population or reducing the rigor of the science conducted. Based on these results we feel that stronger and clearer criteria for drug approval based on SAS should be mandated by regulatory agencies including the FDA. Additionally, the FDA should re-evaluate criteria for AA as this path to approval may be used inappropriately, to the detriment of patients and the system.
Funding

This work received no external funding.

Notes

Role of the funder: Not applicable.

Disclosures: Authors do not have relevant conflict of interest.

Author contributions: RR: Data curation, Formal Analysis, Investigation, Methodology, Project administration, Software, Validation, Visualization, Writing – original draft. PC: Investigation, Methodology, Project administration, Supervision, Validation, Visualization, Writing – review & editing. SN: Conceptualization, Data curation, Formal Analysis, Investigation, Methodology, Project administration, Resources, Software, Supervision, Validation, Visualization, Writing – original draft, Writing – review & editing.

Data Availability

The data underlying this article will be shared on reasonable request to the corresponding author.

References

1. DiMasi JA, Grabowski HG, Hansen RW. Innovation in the pharmaceutical industry: New estimates of R&D costs. *J Health Econ.* 2016;47:20-33.
2. Jardim DL, Schwaederle M, Hong DS, Kurzrock R. An appraisal of drug development timelines in the Era of precision oncology. *Oncotarget*. 2016;7(33):53037-53046. doi:10.18632/oncotarget.10588

3. Accelerated Approval Program. US Food and Drug Administration. https://www.fda.gov/drugs/information-healthcare-professionals-drugs/accelerated-approval-program.

4. Sherman RE, Li J, Shapley S, Robb M, Woodcock J. Expediting Drug Development — The FDA’s New “Breakthrough Therapy” Designation. *NEJM*. 2013;369(20):1877-1880. doi:10.1056/NEJMp1311439

5. Ribeiro TB, Ribeiro A, Rodrigues L de O, Harada G, Nobre MRC. U.S. Food and Drug Administration anticancer drug approval trends from 2016 to 2018 for lung, colorectal, breast, and prostate cancer. *Int J Technol Assess Health Care*. 2019:1-9. doi:10.1017/s0266462319000813

6. Razavi M, Glasziou P, Kocksieben FA, Ioannidis JPA, Chalmers I, Djulbegovic B. US Food and Drug Administration Approvals of Drugs and Devices Based on Nonrandomized Clinical Trials: A Systematic Review and Meta-analysis. *JAMA Netw Open*. 2019;2(9):e1911111. doi:10.1001/jamanetworkopen.2019.11111

7. Unger JM, Vaidya R, Hershman DL, Minasian LM, Fleury ME. Systematic review and meta-analysis of the magnitude of structural, clinical, and physician and patient barriers to cancer clinical trial participation. *J Natl Cancer Inst*. 2019;111(3):245-255. doi:10.1093/jnci/djy221
8. Dupont WD, Plummer Jr WD. PS: Power and sample size calculation. Department of Biostatistics Vanderbilt University.

9. Whitehead AL, Julious SA, Cooper CL, Campbell MJ. Estimating the sample size for a pilot randomised trial to minimise the overall trial sample size for the external pilot and main trial for a continuous outcome variable. *Stat Methods Med Res*. 2016;25(3):1057-1073. doi:10.1177/0962280215588241

10. Drilon A, Laetsch TW, Kummar S, et al. Efficacy of larotrectinib in TRK fusion-positive cancers in adults and children. *NEJM*. 2018;378(8):731-739. doi:10.1056/NEJMoa1714448

11. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2020. *CA Cancer J Clin*. 2020;70(1):7-30. doi:10.3322/caac.21590

12. Tsao AS, Scagliotti G V., Bunn PA, et al. Scientific Advances in Lung Cancer 2015. *J Thorac Oncol*. 2016;11(5):613-638. doi:10.1016/j.jtho.2016.03.012

13. Gyawali B, D’Andrea E, Franklin JM, Kesselheim AS. Response rates and durations of response for biomarker-based cancer drugs in nonrandomized versus randomized trials. *J Natl Compr Canc Netw*. 2020;18(1):36-43. doi:10.6004/jnccn.2019.7345

14. Ritchie G, Gasper H, Man J, et al. Defining the most appropriate primary end point in phase 2 trials of immune checkpoint inhibitors for advanced solid cancers a systematic review and meta-analysis. *JAMA Oncol*. 2018;4(4):522-528. doi:10.1001/jamaoncol.2017.5236

15. Haslam A, Hey SP, Gill J, Prasad V. A systematic review of trial-level meta-analyses measuring the strength of association between surrogate end-points and overall survival
16. Ribeiro TB, Buss L, Wayant C, Nobre MRC. Comparison of FDA accelerated vs regular pathway approvals for lung cancer treatments between 2006 and 2018. *PLoS One.* 2020;15(7 July):1-13. doi:10.1371/journal.pone.0236345

17. Beaver J, Howie L, Pelosof L, et al. A 25-Year Experience of US Food and Drug Administration Accelerated Approval of Malignant Hematology and Oncology Drugs and Biologics: A Review. *JAMA Oncol.* 2018;4(6):849-856. doi:10.1001/jamaoncol.2017.5618

18. Schmid P, Rugo HS, Adams S, et al. Atezolizumab plus nab-paclitaxel as first-line treatment for unresectable, locally advanced or metastatic triple-negative breast cancer (IMpassion130): updated efficacy results from a randomised, double-blind, placebo-controlled, phase 3 trial. *Lancet Oncol.* 2020;21(1):44-59. doi:10.1016/S1470-2045(19)30689-8

19. Finn RS, Ryoo BY, Merle P, et al. Pembrolizumab As Second-Line Therapy in Patients With Advanced Hepatocellular Carcinoma in KEYNOTE-240: A Randomized, Double-Blind, Phase III Trial. *J Clin Oncol.* 2020;38(3):193-202. doi:10.1200/JCO.19.01307

20. Yau T, Kang YK, Kim TY, et al. Efficacy and Safety of Nivolumab plus Ipilimumab in Patients with Advanced Hepatocellular Carcinoma Previously Treated with Sorafenib: The CheckMate 040 Randomized Clinical Trial. *JAMA Oncol.* 2020;6(11):1-8. doi:10.1001/jamaoncol.2020.4564

21. Balar A V., Galsky MD, Rosenberg JE, et al. Atezolizumab as first-line treatment in cisplatin-ineligible patients with locally advanced and metastatic urothelial carcinoma: a single-arm, multicentre, phase 2 trial. *Lancet.* 2017;389(10064):67-76.
22. Balar A V., Castellano D, O’Donnell PH, et al. First-line pembrolizumab in cisplatin-ineeligible patients with locally advanced and unresectable or metastatic urothelial cancer (KEYNOTE-052): a multicentre, single-arm, phase 2 study. *Lancet Oncol.* 2017;18(11):1483-1492. doi:10.1016/S1470-2045(17)30616-2

23. Djulbegovic B, Glasziou P, Klocksieben FA, et al. Larger effect sizes in nonrandomized studies are associated with higher rates of EMA licensing approval. *J Clin Epidemiol.* 2018;98:24-32. doi:10.1016/j.jclinepi.2018.01.011

24. Chen EY, Joshi SK, Tran A, Prasad V. Estimation of Study Time Reduction Using Surrogate End Points Rather Than Overall Survival in Oncology Clinical Trials. *JAMA Intern Med.* 2019;179(5):642-647. doi:10.1001/jamainternmed.2018.8351

25. Hamel LM, Dougherty D, Albrecht T, Wojda M, Jordan A, ... Unpacking Trial Offers and Low Accrual Rates: A Qualitative Analysis of Clinic Visits With Physicians and Patients Potentially Eligible for a Prostate Cancer Clinical Trial. *JCO Oncol Pract.* 2020;16(2):e124-e131. doi:10.1200/JOP.19.00444

26. Denicoff AM, McCaskill-Stevens W, Grubbs SS, et al. The National Cancer Institute–American Society of Clinical Oncology Cancer Trial Accrual Symposium: Summary and Recommendations. *J Oncol Pract.* 2013;9(6):267-276. doi:10.1200/jop.2013.001119

27. Dunn DT, Copas AJ, Brocklehurst P. Superiority and non-inferiority: Two sides of the same coin? *Trials.* 2018;19(1):1-5. doi:10.1186/s13063-018-2885-z

28. Chang Y, Song T, Monaco J, Ivanova A. Futility stopping in clinical trials, optimality and practical considerations. *J Biopharm Stat.* 2020;30(6):1050-1059.
Table

Table 1. Single arm studies approved by Food and Drug Administration between 2010 and 2019 with estimated RCT sample size for ORR, PFS and OS end points

Year	Drug	Indication	Standard of Care	Line of Therapy	SAS sample size	ORR, %	AA	Progression free survival/Duration of response, months	Duration of SAS, years	No. of patients eligible per year	Estimated RCT sample size with ORR endpoint (both arms)	Estimated RCT sample size with PFS endpoint (both arms)	Estimated RCT sample size with OS endpoint (both arms)
2019	Trastuzumab Deruxtecan	Metastatic Breast Cancer, HER2 positive	Neratinib and Capecitabine	3rd or later	184	60.3	Yes	14.8	2.3	6,326	114	78	-
2019	Enfortumab Vedotin-ejfv	Metastatic Urothelial Cancer	Cytotoxic Chemotherap y (CT)	2nd or later	125	44	Yes	7.6	2.2	17,980	46	46	-
2019	Niraparib	Ovarian, Fallopian Tube or Primary Peritoneal Cancer, with homologous recombination deficiency	Cytotoxic CT	3rd or later	98	24	No	8.3	3.2	2,091	-	204	-
2019	Pembrolizumab plus Lenvatinib	Advanced Endometrial Cancer, not MSI-H or dMMR	Cytotoxic CT	2nd or later	108	38.3	Yes	Not reached	3.7	9,443	572	-	-
2019	Entrectinib	Metastatic NTRK Solid Tumors	Variable	2nd or later	54	57	Yes	10.0	3.7	1,880	148	-	-
2019	Entrectinib	Metastatic NSCLC, ROS-1 Positive	Cytotoxic CT	2nd or later	51	78	Yes	10.4	3.7	1,154	44	56	-
2019	Pembrolizumab	Metastatic SCLC	Cytotoxic CT	3rd or later	83	19	Yes	Not reached	5.3	13,572	194	-	-
2019	Erdafitinib	Metastatic Urothelial cancer, susceptible FGFR3 or FGFR2 genetic alterations	Cytotoxic CT	2nd or later	87	32.2	Yes	5.4	3.9	13,596	276	130	-
Year	Drug	Disease Description	Treatment	Line	dMMR	dPD-L1	ORR	Median OS	Median PFS				
------	-----------------------	---	-----------	------	------	--------	-----	-----------	-----------				
2018	Pembrolizumab	Advanced Merkle cell carcinoma	Cytotoxic CT	1st line	50	56	Yes	16.8	3.2	708	-	10	-
2018	Larotrectinib	Metastatic NTRK Solid Tumors	Variable	2nd or later	55	75	Yes	Not reached	4.6	1,880	52	-	-
2018	Pembrolizumab	Hepatocellular Carcinoma	Cytotoxic CT	2nd or later	104	17	Yes	4.9	2.5	12,667	1,114	150	954
2018	Iobenguane I 131	Advanced Pheochromocytoma or Paraganglioma	Cytotoxic CT	1st or later	68	22	No	Not reached	5.1	818	-	-	-
2018	Pembrolizumab	Advanced Cervical Cancer, High PD-L1	Cytotoxic CT	2nd or later	98	14.3	No	Not reported	2.5	1,502	-	-	-
2018	Dabrafenib plus Trametinib	Metastatic Anaplastic Thyroid cancer with BRAF V600E mutation	Cytotoxic CT	1st or later	23	61	No	Not reached	4.1	338	674	-	-
2017	Nivolumab	Metastatic Colorectal Cancer with MSI-H or dMMR	Cytotoxic CT	2nd or later	74	32	Yes	Not reached	3.4	6,384	450	-	-
2017	Pembrolizumab	Metastatic Colorectal Cancer with MSI-H or dMMR	Cytotoxic CT	2nd or later	149	39.6	Yes	Not reached	1.5	6,384	1,724	-	-
2017	Avelumab	Metastatic Urothelial Carcinoma	Cytotoxic CT	2nd or later	242	13.3	Yes	2.7	4.3	17,980	422	-	-
2017	Durvalumab	Metastatic Urothelial Carcinoma	Cytotoxic CT	2nd or later	191	17	Yes	Not reached	4.7	17,980	216	-	114
2017	Avelumab	Metastatic Merkle cell carcinoma	Cytotoxic C	2nd or later	88	32	Yes	Not reached	2.8	708	1,386	348	392
2017	Nivolumab	Metastatic Urothelial Carcinoma	Cytotoxic CT	2nd or later	270	19.6	Yes	10.3	1.9	17,980	182	24	738
2016	Rucaparib	Ovarian cancer, BRCA positive	Cytotoxic CT	3rd or later	106	54	Yes	9.2	5.1	2,091	120	128	-
2016	Pembrolizumab	Metastatic Head and Neck SCC	Cytotoxic CT	2nd or later	174	16	Yes	6.9	1.5	10,750	1,050	160	-
Year	Drug	Cancer Type and Characteristics	Treatment	Phase	Median DoR	ORR	Median PFS	OS Median	1-Year OS	2-Year OS			
------	--------------	---	-----------	-------	------------	-------------------	------------	-----------	-----------	-----------			
2016	Atezolizumab	Urothelial cancer	Cytotoxic CT	2nd or later	310	14.8	Yes	Not reached	1.0	17,980	330	-	-
2016	Crizotinib	Metastatic NSCLC, ROS-1 positive	Cytotoxic CT	1st or later	50	66	No	18.3	6.4	1,154	82	140	20
2015	Alectinib	Metastatic NSCLC, ALK Rearrangement	Cytotoxic CT	2nd or later	225	44	Yes	11.2	1.1	6,785	166	48	-
2015	Osimertinib	Metastatic NSCLC, EGFR Mutation (T790M)	Cytotoxic CT	2nd or later	411	59	Yes	12.4	1.5	16,965	64	338	-
2015	Pembrolizumab	Metastatic NSCLC, high PD-L1	Cytotoxic CT	2nd or later	61	41	Yes	Not reached	1.4	65,146	218	-	-
2014	Olaparib	Ovarian Cancer, BRCA Positive	Cytotoxic CT	4th or later	137	34	No	7.9	2.4	2,091	848	712	-
2014	Ceritinib	Metastatic NSCLC, ALK Rearrangement	Cytotoxic CT	2nd or later	163	44	Yes	7.1	1.3	6,785	64	228	-
2012	Vismodegib	Locally Advanced/Metastatic Basal Cell Carcinoma	Best Supportive Therapy	1st or later	96	30.0%	(mBCC)	42.9	42.9	1,000	-	-	-
2011	Crizotinib	Metastatic NSCLC, ALK Rearrangement	Cytotoxic CT	2nd or later	136	61	Yes	11.0	2.0	6,785	34	50	-

Notes:
- RCT = randomized control trials,
- ORR = overall response rate,
- PFS = progression free survival,
- OS = overall survival,
- AA = accelerated approval,
- HER2 = human epidermal growth factor receptor 2,
- MSI-H = microsatellite instability-high,
- dMMR = deficient mismatch repair,
- BRCA = breast cancer gene,
- NTRK = neutropenic tyrosine receptor kinase,
- NSCLC = non-small cell lung cancer,
- ROS-1 = ROS proto-oncogene 1,
- SCLC = small cell lung cancer,
- SCC = squamous cell carcinoma,
- FGFR = fibroblast growth factor receptor,
- PD-L1 = programmed death ligand 1,
- mBCC = metastatic basal cell carcinoma,
- laBCC = locally advanced basal cell carcinoma.
Figure legend

Figure 1: Percentage of US Food and Drug Administration (FDA) approvals based on single arm data between 2010 and 2019.
