Aslund, Andreas K.O and Sulheim, Einar and Snipstad, Sofie and von Haartman, Eva and Baghirov, Habib and Starr, Nichola J. and Løvmo, Mia Kvåle and Lelú, Sylvie and Scurr, David J. and Catharina, de Lange Davies and Ruth, Schmid and Ýrr, Mørch (2017) Quantification and qualitative effects of different PEGylations on Poly(butyl cyanoacrylate) nanoparticles. Molecular Pharmaceutics, 14 (8). pp. 2560-2569. ISSN 1543-8384

Access from the University of Nottingham repository:
http://eprints.nottingham.ac.uk/41856/2/Supplementary%20information.pdf

Copyright and reuse:

The Nottingham ePrints service makes this work by researchers of the University of Nottingham available open access under the following conditions.

This article is made available under the University of Nottingham End User licence and may be reused according to the conditions of the licence. For more details see: http://eprints.nottingham.ac.uk/end_user_agreement.pdf

A note on versions:

The version presented here may differ from the published version or from the version of record. If you wish to cite this item you are advised to consult the publisher's version. Please see the repository url above for details on accessing the published version and note that access may require a subscription.

For more information, please contact eprints@nottingham.ac.uk
Figure 1: Top: NMR spectra from a JA/Brij NP, inset shows JA fingerprint peak. Bottom: Representative spectra from: 1) Kol/Plu, 2) Kol/Brij, 3) JA/Brij, 4) JA/SDS.
Figure 2: Reference NMR spectra from: 1) SDS, 2) JA, 3) Brij 4) Kol, 5) Plu, 6) Miglyol 810N, 7) PBCA NP without PEG.
Table 1: Constants, units and variables used for PEG density calculations.

Constants	Abbreviation	Value	Unit
MW BCA-mon	MW_{BCA}	153	Da
MW PEG-mon	MW_{PEG}	44	Da
MW miglyol	MW_{mig}	512	Da
Density polymer	\(\rho \)	1.148	g/ml
Integral BCA	\(I_{BCA} \)	1	
Ratio PEG-CH2 vs. BCA CH2	\(R_{PEG} \)	2	
Ratio Miglyol vs BCA CH2	\(R_{mig} \)	3	
Avogadros constant	\(N_A \)	6.02x10^{23}	mol\(^{-1} \)

Measurable variables	Abbreviation	Unit
Dry weight polymer	\(W_{dry} \)	mg/L
Integral PEG	\(I_{PEG} \)	
Integral miglyol	\(I_{mig} \)	
Radius NP	\(r \)	nm

Calculated variables	Abbreviation	Unit
mol fraction PEG	\(\text{molFr}_{peg} \)	
mol fraction miglyol	\(\text{molFr}_{mig} \)	
mol fraction BCA	\(\text{molFr}_{BCA} \)	
weight fraction PEG	\(\text{weightFr}_{PEG} \)	
weight fraction miglyol	\(\text{weightFr}_{mig} \)	
conc PEG in batch	\(C_{PEG} \)	M
conc miglyol in batch	\(C_{mig} \)	M
Volume NP	\(V_{NP} \)	mL
Weight NP	\(W_{NP} \)	g/NP
# NP in batch	\(N_{NP} \)	NP/mL
Area NP	\(A_{NP} \)	nm\(^{2}/NP \)
# PEG on NP	\(N_{PEG/NP} \)	# PEG/NP
# coverage	\(N_{PEG/Area} \)	# PEG/nm\(^{2} \)
Equations 1-14:

\[
\text{molFr}_{\text{PEG}} = \frac{I_{\text{PEG}}}{I_{\text{PEG}} + I_{\text{mig}} + I_{\text{BCA}}} \cdot R^{-1}_{\text{mig}} \tag{1}
\]

\[
\text{molFr}_{\text{mig}} = \frac{I_{\text{mig}}}{I_{\text{PEG}} + I_{\text{mig}} + I_{\text{BCA}}} \cdot R^{-1}_{\text{mig}} \tag{2}
\]

\[
\text{molFr}_{\text{BCA}} = 1 - \text{molFr}_{\text{PEG}} - \text{molFr}_{\text{mig}} \tag{3}
\]

\[
\text{weightFr}_{\text{PEG}} = \frac{\text{molFr}_{\text{PEG}} \cdot \text{MW}_{\text{PEG}}}{\text{molFr}_{\text{PEG}} \cdot \text{MW}_{\text{PEG}} + \text{molFr}_{\text{mig}} \cdot \text{MW}_{\text{mig}} + \text{molFr}_{\text{BCA}} \cdot \text{MW}_{\text{BCA}}} \tag{4}
\]

\[
\text{weightFr}_{\text{mig}} = \frac{\text{molFr}_{\text{mig}} \cdot \text{MW}_{\text{mig}}}{\text{molFr}_{\text{PEG}} \cdot \text{MW}_{\text{PEG}} + \text{molFr}_{\text{mig}} \cdot \text{MW}_{\text{mig}} + \text{molFr}_{\text{BCA}} \cdot \text{MW}_{\text{BCA}}} \tag{5}
\]

\[
C_{\text{PEG}} = \frac{W_{\text{dry}} \cdot \text{weightFr}_{\text{PEG}}}{\text{MW}_{\text{PEG}} \cdot V} \tag{6}
\]

\[
C_{\text{mig}} = \frac{W_{\text{dry}} \cdot \text{weightFr}_{\text{mig}}}{\text{MW}_{\text{mig}} \cdot V} \tag{7}
\]

\[
V_{NP} = \frac{4}{3} \pi r^3 \tag{8}
\]

\[
W_{NP} = V_{NP} \cdot \rho \tag{9}
\]

\[
N_{NP} = \frac{W_{\text{dry}}}{W_{NP}} \tag{10}
\]

\[
A_{NP} = 4\pi r^2 \tag{11}
\]

\[
\frac{N_{\text{PEG}}}{N_{NP}} = C_{\text{PEG}} \cdot \frac{N_{A}}{N_{NP}} \tag{12}
\]

\[
\frac{N_{\text{PEG}}}{\text{NP area}} = \frac{N_{\text{PEG}}}{N_{NP}} \cdot \frac{1}{A_{NP}} \tag{13}
\]
Table 2: NP size in water, 8% BSA and rat serum (RS), measured by NTA.

	Water	8% BSA	RS
JA/SDS	222,4	179,6	178,6
JA/Brij	143,5	166,1	180,8
Kol/Brij	157,1	168,1	237,3
Kol/Plu	141,9	157,5	211,6
Figure 3. TGA-DSC curves of NPs a) Kol/Brij, b) Kol/Plu, c) JA/SDS and d) JA/Brij for the determination of PEG amount (wt%) of the total particle mass. The inset figures in the right upper corner of image b)-d) are zoomed images of the temperature interval 160-300°C, showing the region at which the combustion of PEG starts at T~240-250°C, proceeding up to T~400°C.
Figure 4: ToF-SIMS data from a) the PEG fragment $\text{C}_2\text{H}_5\text{O}^+$ and from b) the PBCA fragment $\text{C}_4\text{H}_2\text{NO}_2^-$. N=4