CMOS-Memristor Dendrite Threshold Circuits

Askhat Zhanbossinov, Kamila Smagulova, and Alex Pappachen James
Bioinspired Microelectronics Systems Group,
School of Engineering, Nazarbayev University, Astana
apj@ieee.org; www.biomicrosystems.info

Abstract—Non-linear neuron models overcome the limitations of linear binary models of neurons that have the inability to compute linearly non-separable functions such as XOR. While several biologically plausible models based on dendrite thresholds are reported in the previous studies, the hardware implementation of such non-linear neuron models remains as an open problem. In this paper, we propose a circuit design for implementing dendrite non-linearity response of dendrite spike formation and saturation types. The proposed dendrite cells are used to build XOR circuit and intensity detection circuit that consists of different combinations of dendrite cells with saturating and spiking responses. The dendrite cells are designed using a set of memristors, Zener diodes, and CMOS NOT gates. The circuits are designed, analyzed and verified on circuit boards.

Index Terms—Memristors, Dendrite models, Neural Circuits, Analog Circuits, Gates, Image processing

I. INTRODUCTION

Biological neural networks can perform intelligent computing task following a hierarchical, modular and sparse processing of signals [1], [2]. As opposed to the non-linear neuron models that can be used in a wide range of applications [3]–[5], the earlier neuron models were considered to have linear characteristics that allows to perform only several basic functions [6], [7]. There are several theoretical linear and non-linear neuron models proposed in recent years [2], [8]. However, the hardware implementations of non-linear dendrite neuron models remains as an open challenge. Expanding the computational capacity of a single neuron, [9] proposes a biologically relevant non-linear model of neuron that allows to implement linearly non-separable Boolean functions. In this paper, we propose a hardware implementation of XOR function based on non-linear neuron model illustrated in [9] as well as the application of non-linear neuron model for pixel intensity detection for possible use in color (or intensity) segmentation and edge detection in images. The proposed XOR function and pixel intensity detector circuit implementation based on non-linear neuron model consists of a combination of saturating and spiking dendrites response circuits.

II. BACKGROUND

Previously, it is believed that dendrites in neuron only function as a provider of signals where action potential doesn’t take place [10]. Discovery of various voltage-gated ion channels: sodium, potassium and calcium channels in dendrites; revealed more complex structure and functionality of the dendrites than it is previously thought [11]. Neuron

has several mechanisms to intensify weak input signals in dendrites. One through spatial summation of synaptic inputs, second through placement of high density of voltage-gated sodium and calcium ion channels [12].

There are two distinctive regions in dendrite that receive synaptic inputs performant path (PP) placed 500-750µm from soma and Schaffer-collateral (SC) path 250-500µm from soma, PP stimulates spike formation and SC decides whether signal will be passed to the soma region [13]. Here SC region acts as threshold unit, although it can be with or without potassium channels, which in its turn also acts as threshold unit which regulates over excitement of the synaptic events in synaptic regions and inhibits action potential in dendrites by moving cations outwards [14]. Next aspect of neuron other than signal stimulation, propagation control is ability to learn and memorize. One of the suggested mechanisms of memorization and learning is though actin based plasticity of dendrites [15]. In other words, memorization and learning processes maintained through grow of actins in apical region of dendrites, forcing dendrites to hold certain position [10].

Those advances in understanding of neuron physiology gives some suggestions about what architecture might be viable for artificial neuron design [1]. There are several points that we need to consider to be able to create artificial neuron. Point one, we need to maintain multiple inputs as there are multiple dendrites in neuron, second, we need to have threshold units in dendrite regions as well as in soma region, third, algorithm functioning in multiple input and single output environment has to be established.

Recently, it was found that linearly non-separable functions, as XOR, can be constructed by a binary neuron model with a single non-linear dendrite [9]. In [9], it is suggested that dendrites are capable of computing linearly non-separable functions as Boolean mathematics, and the best way to maintain functionality as in biological counterpart is using Exclusive OR function. Here, we present functional design of dendritic threshold logic neuron model closely resembling biological counterpart [1].

III. PROPOSED CIRCUITS

In comparison to linear binary models of neurons that cannot compute linearly non-separable functions [6], [7], non-linear neuron models allow to implement Boolean functions due to the ability of non-linearly changing the stage from active to inactive and vice versa [3]. Fig. 1 illustrates the dendrite spike and dendrite saturation functions. The
dendrite saturation sub-units are strictly sub-linear, while the dendrite spiking sub-units are both supra linear and sub-linear. Dendrite spiking and saturation functions are characterized by the threshold value θ and the maximum output height h [9], [1].

Fig. 2 represents the proposed CMOS-memristive dendrite cells. It consists of a Zener diode, memristor and CMOS inverter circuits. The Zener diode reverse breakdown voltage defines the maximum output height h, and threshold value θ is defined by the memristor-inverter combination for circuit Fig. 2(a), while θ is defined by the breakdown voltage of Zener for circuit Fig. 2(b). The example of a measured output characteristic of the proposed cells is shown in Fig. 3; Zener breakdown at 4.2V, limiting the height h.

The inverters INV_1 and INV_2 are used to implement the -1 synaptic weight as mentioned in neuron model. It is working based on the function F_1 given in the Eq. 1, where θ_1 is the inverter threshold and x is the input.

$$F_1(x) = \begin{cases} -1 & \text{if } x < \theta_1 \\ -1 & \text{if } x \leq \theta_1 \end{cases}$$ (1)

The saturating transfer function F_{sat}, as mentioned in [16], is given in Eq. 2, where θ_2 is the dendrite threshold and a is the input. The threshold unit based on this function is implemented using a Zener diode.

$$F_{sat}(a) = \begin{cases} 1 & \text{if } a \geq \theta_2 \\ -\frac{\theta_2}{a} & \text{otherwise} \end{cases}$$ (2)

While using Zener diode, Eq. 2 will changes to Eq. 3, where θ_3 is the peak inverse voltage of Zener diode and a is the input.

$$F_{sat}(a) = \begin{cases} \theta_3 & \text{if } a \geq \theta_3 \\ a & \text{otherwise} \end{cases}$$ (3)

Inverters INV_3, INV_4 and INV_5 are the spiking transfer function [16] based threshold units. Here INV_3 and INV_4
works based on the Eq. 4 and \(INV_3 \) based on the Eq. 5. In Eq. 4, \(\theta_b \) refers to the peak inverse voltage of Zener diode and \(b \) is the input. In Eq. 5, \(c \) is the input and \(\theta_c \) is the threshold voltage of the inverter and it should satisfy the condition \(\max(F_{spk1}(b)) > \theta_b > \max(F_{spk1}(b))/2 \).

\[
F_{spk1}(b) = \begin{cases}
0 & \text{if } b = \theta_b \\
1 & \text{otherwise}
\end{cases} \tag{4}
\]

\[
F_{spk1}(c) = \begin{cases}
0 & \text{if } c = \theta_c \\
1 & \text{otherwise}
\end{cases} \tag{5}
\]

The threshold of inverters \(INV_3 \) and \(INV_4 \) should be selected in accordance to the Zener break down voltage \((\theta_b) \) in such a way that it should be less than \(\theta_b \) but close to it. The circuit was implemented using chalcogenide based ion-conducting memristor, transistors (0.18\(\mu \) MOS technology), and Zener diodes. The measured transients in Fig 5 validates the working of the implemented XOR circuit shown in Fig. 4.

![Fig. 5. The input and output signal waveforms shows the operational response of the proposed XOR circuit in Fig. 4.](image)

B. Pixel Intensity Detection Circuit

Detection of binary edges from an image requires at least two intensity threshold operations around the spatially continuous edge regions in an object. The aim of this section to create a pixel intensity detection circuit that responds only to a range of intensity voltages read from a CMOS sensor. The circuit in this case would have a low threshold that rejects the low voltage values, and a higher threshold that rejects the higher voltage values. Applying the input pixel voltages to such a circuit, it could be observed that lower the difference between the low threshold and high threshold indicates a thinner would be the edge in a high contrast image. For low contrast images, the same threshold levels can be used to detect regions and hence will be used for image segmentation. The nature of the image, and the threshold levels would determine the application and use of this intensity detection circuit. Fig. 6 shows the pixel intensity detection circuit constructed with memristor (chalcogenide based ion-conducting), transistors (0.18\(\mu \) MOS technology), and Zener diode. The NOT gate that acts like a variable threshold circuit \((M_{p1} \text{ and } M_{n1}) \) followed by saturation threshold logic circuit (memristor and Zener) forms the inverted dendrite spike logic as the first threshold operator. The second threshold operation is realized by the NOT gate \((M_{p2} \text{ and } M_{n2}) \). Fig. 7 shows the output response \((V_{out1} \text{ and } V_{out2}) \) for different threshold configurations for the circuit Fig. 6. The response \(V_{out1} \) was obtained when supply voltages \(V_{dd1} \), \(V_{dd2} \), \(V_{ss1} \) are equal to 1.6V whereas \(V_{ss2} \) is 0.6V. Bulk voltages of transistors \(M_{p1}, M_{n1} \) and \(M_{n2} \) are 1 V. The second response \(V_{out2} \) was obtained by changing supply voltages \(V_{dd1} \) and \(V_{ss1} \) to 1.9V and \(V_{dd2} \) to 2.6V. Figure 8, shows an illustrative example of applying the response functions in Fig. 7 to a Gaussian image. The increased width and height of the response function in Fig 7 is translated to thicker and brighter image circle in Fig 8.

The practical implementation of this circuit requires parallel application of the pixel outputs to be fed as input to the circuit in Fig. 6. For every range of threshold responses tuned, a different color (range of intensities) region in the image will be obtained. This is useful for detecting edges in the images, and color segmentation of regions. Some applications of color segmentation are in face detection, region detection in medical images, object tracking and industrial vision systems.

IV. CONCLUSION

In this paper, we presented circuit designs for CMOS-memristive dendrite cells for mimicking dendrite spike and saturation type responses. These basic designs were further extended to develop XOR gate and a pixel intensity detection circuits. The XOR implementation signifies the neural circuit ability to be useful for a simple non-separable binary classification problem, to be useful as a logical gate, and also as a binary comparator circuit. The pixel detector circuit signify the application of the neural models to be integrated into pixel sensors to detect intensity levels (mapped as voltage levels) for real-time practical applications of color segmentation and edge detection. The proposed design can be extended...
Fig. 7. Transfer characteristics to validate the working of the proposed circuit in Fig. 6 for generating multiple threshold.

![Image](image_url)

Fig. 8. The output images in the left side of the images (a) and (b) to that of the Gaussian image in the right side for the transfer characteristics in Fig 7, where the V_{out1} and V_{out2} responses corresponds to (a) and (b) respectively.

ACKNOWLEDGEMENTS

We would like to acknowledge the discussions with Dr Romain Cazé, Imperial College London on the biological aspects of the dendrite model; Ms Olga Krestinskaya for verifying the results. Also, we acknowledge the NU research funding provided for carrying out this work.

REFERENCES

[1] D. Caze, M. Humphries, and B. Gutkin, Passive dendrites enable single neuron to compute linearly non-separable functions, *PLoS Comput Biol*, vol. 9, no. 2, p. e1002867, 2013.

[2] B. Chandra and K. V. N. Babu, "A new spiking neuron model," *Neural Networks (IJCNN), The 2013 International Joint Conference on*, Dallas, TX, 2013, pp. 1-5.

[3] A. Losonczy, J. K. Makara, and J. C. Magee, Compartmentalized dendritic plasticity and input feature storage in neurons, *Nature*, vol. 452, no. 7186, pp. 436441, 2008.

[4] M. A. Attia, E. A. Sallam and M. M. Fahmy, "Single multiplicative neuron model based on generalized mean," *Computer Engineering and Systems (ICCES), 2012 Seventh International Conference on*, Cairo, 2012, pp. 111-116.

[5] Z. Jun, Y. Xiao-Jia and C. Yan, "A Method of Adaptive Neuron Model (AUILS) and Its Application," 2006 5th IEEE International Conference on Cognitive Informatics, Beijing, 2006, pp. 47-52.

[6] W. Zhang and D. J. Linden, The other side of the engram: experience-driven changes in neuronal intrinsic excitability, *Nature Reviews Neuroscience*, vol. 4, no. 11, pp. 885900, 2003.

[7] M. Minsky and S. Papert, *Perceptrons: an introduction to computational geometry* (expanded edition), 1988.

[8] Y. Yamashita and H. Torikai, "A Novel PWC Spiking Neuron Model: Neuron-Like Bifurcation Scenarios and Responses," in *IEEE Transactions on Circuits and Systems I: Regular Papers*, vol. 59, no. 11, pp. 2678-2691, Nov. 2012.

[9] R. D. Caze, M. D. Humphries, and B. S. Gutkin, Dendrites enhance both single neuron and network computation, in *The Computing Dendrite*, pp. 365380, Springer, 2014.

[10] J. E. Hanson, Y. Smith, and D. Jaeger, Sodium Channels and Dendritic Spike Initiation at Excitatory Synapses in Globus Pallidus Neurons, in *The Journal of Neuroscience*, vol. 24, no.2, pp. 329-340, 2004.

[11] V. Gauck, M. Thomann, D. Jaeger, Spatial distribution of low- and high-voltage-activated calcium currents in neurons of the deep cerebellar nuclei, in *Journal of Neuroscience*, vol. 21, pp. 1-4., 2001.

[12] M. Husser, N. Spruston, and G. J. Stuart, Diversity and Dynamics of Dendritic Signaling, in *Science*, vol. 290, no. 5492, pp. 739-744, 2000.

[13] J. Jarsky, A. Roxin, W.L. Kath, and N. Spruston, Conditional dendritic spike propagation following distal synaptic activation of hippocampal CA1 pyramidal neurons, in *Nature Neuroscience* vol. 8, pp.1667 1676, 2005.

[14] D.A.Hoffman, J.C. Magee, C.M. Colbert, et al., K^+ channel regulation of signal propagation in dendrites of hippocampal pyramidal neuron, in *Nature*, vol. 387 pp. 869-875,1997

[15] A. Matus, Actin-Based Plasticity in Dendritic Spines, in *Science*, vol. 290, no. 5492, pp. 754-758, 2000

[16] R. Caze, M. Humphries, and B. S. Gutkin, Spiking and saturating dendrites differentially expand single neuron computation capacity, in *Advances in neural information processing systems*, pp. 10701078, 2012.