Seroepidemiology of *Klebsiella pneumoniae* colonizing the intestinal tract of healthy Chinese and overseas Chinese adults in Asian countries

Yi-Tsung Lin¹,², L Kristopher Siu³, Jung-Chung Lin⁴, Te-Li Chen¹,², Chih-Peng Tseng¹, Kuo-Ming Yeh⁴, Feng-Yee Chang⁵ and Chang-Phone Fung¹,²*

Abstract

Background: Capsular serotypes K1 and K2 of *Klebsiella pneumoniae* are thought to be the major virulence determinants responsible for liver abscess. The intestine is one of the major reservoirs of *K. pneumoniae*, and epidemiological studies have suggested that the majority of *K. pneumoniae* infections are preceded by colonization of the gastrointestinal tract. The possibility of fecal-oral transmission in liver abscess has been raised on the basis of molecular typing of isolates. Data on the serotype distribution of *K. pneumoniae* in stool samples from healthy individuals has not been previously reported. This study investigated the seroepidemiology of *K. pneumoniae* isolates from the intestinal tract of healthy Chinese in Asian countries. Stool specimens from healthy adult Chinese residents of Taiwan, Japan, Hong Kong, China, Thailand, Malaysia, Singapore, and Vietnam were collected from August 2004 to August 2010 for analysis.

Results: Serotypes K1/K2 accounted for 9.8% of all *K. pneumoniae* isolates from stools in all countries. There was no significant difference in the prevalence of K1/K2 isolates among the countries excluding Thailand and Vietnam. The antimicrobial susceptibility pattern was nearly the same in *K. pneumoniae* isolates from the intestinal tract of healthy Chinese in Asian countries. The result of pulsed-field gel electrophoresis revealed no major clonal cluster of serotype K1 isolates.

Conclusions: The result showed that Chinese ethnicity itself might be a major factor predisposing to intestinal colonization by serotype K1/K2 *K. pneumoniae* isolates. The prevalent serotype K1/K2 isolates may partially correspond to the prevalence of *K. pneumoniae* liver abscess in Asian countries.

Background

Klebsiella pneumoniae is responsible for a wide spectrum of clinical syndromes, including purulent infections, urinary tract infections, pneumonia, bacteraemia, septicaemia, and meningitis [1]. In the past three decades, *K. pneumoniae* has emerged as the single leading cause of pyogenic liver abscess in East Asian countries, especially in Taiwan [2-7]. An invasive syndrome of liver abscess complicated by meningitis, endophthalmitis or other metastatic supplicative foci has been reported, and capsular serotypes K1 and K2 of *K. pneumoniae* are thought to be the major virulence determinants responsible for this syndrome [3,6,8]. In an analysis of *K. pneumoniae* liver abscess from two hospitals in New York by Rahimian et al. [9], 78.3% of patients were of Asian origin. These findings raise the possibility that genetic susceptibility to or geographic distribution patterns of virulent *K. pneumoniae* subtypes may play important roles [10].

The intestine is one of the major reservoirs of *K. pneumoniae*, and epidemiological studies have suggested that the majority of *K. pneumoniae* infections are preceded by colonization of the gastrointestinal tract [11]. The possibility of fecal-oral transmission has been raised on the basis of molecular typing of isolates from siblings, family members, and the environment in one study from Taiwan [12]. One recent study from Japan has demonstrated the familial spread of a virulent clone of *K. pneumoniae* causing primary liver abscess, and has provided evidence that virulent clones of *K. pneumoniae* have colonized family members for at least 2 years [13]. However, data on the
serotype distribution of *K. pneumoniae* in stool samples from healthy individuals has not been previously reported.

To explore the ethnicity and geographical question regarding the serotype distribution of *K. pneumoniae* from fecal isolates in different countries, we focused on the same population but in different countries. Therefore, this study investigated the seroepidemiology of *K. pneumoniae* colonizing the intestinal tract, using stool specimens from healthy Chinese adults in different Asian countries.

Results

Rate of *K. pneumoniae* isolation from stool specimens

During the study period, a total of 592 (62.1%) *K. pneumoniae* isolates were isolated from 954 collected stool specimens. The isolation rate was highest in Malaysia (64/73, 87.7%), followed by Taiwan (150/200, 75%) and Singapore (47/77, 61.1%). The isolation rate was lowest in Japan (6/32, 18.8%) (Table 1).

Seroepidemiology

Antiserum of the recognized 77 serotypes (designated K1-K74 and K80-K82) were used to analyze the isolates. Table 2 shows the distribution of serotypes among the 592 *K. pneumoniae* isolates from stool specimens of healthy Chinese and overseas Chinese adults in different Asian countries. Table 3 shows the distribution of serotypes K1/K2 isolates in different countries. Serotypes K1/K2 isolates accounted for 9.8% of all *K. pneumoniae* strains in all countries. Compared with other countries, Taiwan did not have a significantly higher prevalence of serotypes K1/K2 *K. pneumoniae* (11.3% vs. 9.3%, *p* = 0.46). When excluding Thailand and Vietnam, the prevalence of K1/K2 isolates did not differ among the countries (*p* = 0.98).

Antimicrobial susceptibility testing

We randomly and proportionally selected 100 serotype-able isolates from different countries for antimicrobial susceptibility testing. The antimicrobial susceptibility pattern was the same in all 97 *K. pneumoniae* isolates, with uniform resistance to ampicillin and susceptibility to all cephalosporins and aminoglycosides. Serotypes K1/K2 and non-K1/K2 had the same antimicrobial susceptibility pattern (data not shown). Two isolates, including one serotype K1 isolate from Taiwan and one non-K1/K2 serotype from Thailand, were resistant to ampicillin and cefazolin but susceptible to other cephalosporins and aminoglycosides. One serotype K1 isolate from Taiwan was resistant to ampicillin, cefazolin, and amikacin, but susceptible to other cephalosporins. No extended spectrum β-lactamase isolate was detected during this study.

Pulsed-field gel electrophoresis (PFGE) and screening for CC23 representatives by detection of *allS* by PCR among K1 isolates

PFGE and detection of *allS* gene by PCR among serotype K1 isolates are shown in Figure 1. The original PFGE profiles are shown in Figure 2 and Figure 3. 31 (79.5%) of the K1 isolates carried *allS* gene. No major cluster was found among serotype K1 isolates from Asian countries, using previously described criteria [3].

Discussion

The K1 serotype of *K. pneumoniae* was uncommon among clinical isolates before the 1990s [14]. However, K1 serotype infection has been more widespread in Asian countries despite a recently reported increasing role of *K. pneumoniae* in liver abscess in the United States [15,16]. The reason for the epidemiological changes and global differences observed remains unexplained. In this study focusing on Chinese in different Asian regions, a substantial proportion of serotype K1/K2 *K. pneumoniae* strains colonizing the intestine, except for Thailand and Vietnam, suggest that Chinese ethnicity itself might be a major factor predisposing to intestinal colonization by these strains. It also corresponds to the prevalence of liver abscess in Asian countries. The differences in socioeconomic factors, dietary practices, environmental exposure, living conditions, and the use of antimicrobial agents might also have a potential role for the geographic differences in seroepidemiology among *K. pneumoniae* isolates.

In our previous study in Taiwan, 77.6% of *K. pneumoniae* liver abscesses were caused by serotype K1 or K2 isolates [3]. A previous study has found that *K. pneumoniae* isolates from patients with liver abscesses in Singapore and Taiwan have similar characteristics, such as genomic heterogeneity and prevalence of virulence factors [6]. The prevalence of serotypes K1/K2 *K. pneumoniae* colonizing the intestinal tract in Taiwan is similar to that in Singapore. The prevalence of serotype K1/K2 *K. pneumoniae* isolates colonizing the intestine may contribute to invasive liver abscess syndrome in Taiwan and Singapore.
Table 2 Distribution of serotypes among 592 *K. pneumoniae* isolates from stool specimens of healthy Chinese and overseas Chinese adults in Asian countries

Serotype	Taiwan	China	Hong Kong	No. of isolates	Singapore	Malaysia	Thailand	Japan	Vietnam
K1	11	9	5	5	8	0	1	0	
K2	6	6	1	2	1	3	0	0	
K3	0	4	2	0	1	3	0	0	
K4	0	0	1	0	0	2	0	0	
K5	0	0	0	1	0	2	0	0	
K6	0	0	0	0	0	1	0	0	
K7	0	3	2	1	2	1	0	0	
K8	0	0	0	0	0	1	0	0	
K9	0	0	0	0	0	0	1	0	
K10	0	0	0	0	1	0	0	0	
K11	0	1	3	1	2	6	0	0	
K12	1	0	0	0	0	1	0	0	
K13	0	0	0	0	0	1	0	0	
K14	0	5	0	1	0	2	0	0	
K15	0	3	0	1	2	2	0	0	
K16	0	1	0	1	0	1	0	0	
K17	0	0	0	0	0	1	0	0	
K18	0	2	0	0	1	4	10	0	
K19	0	0	0	0	0	0	1	0	
K20	0	1	2	1	0	2	0	0	
K21	0	1	0	0	0	3	0	0	
K22	0	3	1	1	0	1	0	0	
K23	0	0	0	1	0	1	0	0	
K24	0	2	0	0	0	1	0	0	
K25	0	5	0	1	0	2	0	0	
K26	0	1	0	0	0	1	0	0	
K27	0	0	0	0	0	1	0	0	
K28	0	1	0	0	0	0	0	0	
K29	0	1	0	0	0	0	0	0	
K30	0	1	0	0	1	0	0	0	
K31	0	2	1	0	2	3	0	0	
K32	0	0	0	0	1	2	0	0	
K33	0	1	0	0	2	4	0	0	
K34	0	0	0	0	1	0	0	0	
K35	0	5	1	1	1	2	0	0	
K36	0	2	1	1	0	0	0	0	
K37	0	1	0	0	0	0	0	0	
K38	0	1	0	0	0	0	0	0	
K39	0	2	0	0	2	0	0	0	
K40	0	0	0	2	0	2	0	0	
K41	0	1	0	0	0	0	0	0	
K42	0	1	1	0	1	2	0	0	
K43	0	0	0	0	0	1	0	0	
K44	0	0	0	2	0	2	0	0	
K45	0	0	0	2	0	2	0	0	
K46	0	3	0	1	1	1	0	0	
K47	0	6	1	1	0	2	0	0	
K48	0	1	1	1	0	1	0	0	
K49	0	1	0	1	0	1	0	0	
K50	0	1	0	0	0	0	0	0	
K51	0	1	0	2	1	2	0	0	
details of the patients were not available [17]. A recent study from Japan has reported familial spread of a K1 clone of *K. pneumoniae* causing primary liver abscess [13]. In another study from Malaysia [18], *K. pneumoniae* rarely caused liver abscess and isolates were not serotyped [18]. In a recent study in China, *K. pneumoniae* was the prevalent pathogen in liver abscess but the serotypes of isolates were unavailable [19]. Further research focusing on serotype of *K. pneumoniae* isolates in these countries might clarify the relation between colonization and infection.

K. pneumoniae-associated liver abscess caused by serotype K1 has never been reported in Thailand or Vietnam. Interestingly, we did not find any serotype K1 *K. pneumoniae* isolate from stools in the two countries.

In the present study, there was no major clonal cluster of serotype K1 isolates in Asian countries. Although one previous study of the molecular epidemiology of liver abscess in Taiwan identified a major cluster of *K. pneumoniae* isolates causing liver abscess [20], subsequent studies with the methods of ribotyping and PFGE have shown that *K. pneumoniae*-related liver abscesses are not caused by a clonally-spread strain [3,21,22]. Another study has further demonstrated that *K. pneumoniae* isolates causing liver abscess are not clonal in either Singapore or Taiwan [6]. Turton et al. firstly reported that

![Table 2 Distribution of serotypes among 592 *K. pneumoniae* isolates from stool specimens of healthy Chinese and overseas Chinese adults in Asian countries](http://www.biomedcentral.com/1471-2180/12/13)

Serotype	Taiwan	China	Hong Kong	Singapore	Malaysia	Thailand	Japan	Vietnam
K52	3	0	1	0	0	0	0	0
K53	0	8	0	0	1	1	0	0
K54	2	5	2	0	1	3	0	1
K55	0	4	1	0	1	7	0	0
K56	0	0	1	0	0	2	1	0
K57	3	1	1	0	0	3	0	1
K58	0	1	0	1	0	3	0	0
K59	0	1	1	0	1	0	0	0
K60	0	0	2	0	0	2	0	0
K61	0	0	0	0	0	2	0	0
K62	0	1	0	2	2	1	0	0
K63	2	1	0	1	1	0	0	0
K64	0	0	0	0	1	0	0	0
K65	0	1	0	0	0	0	0	0
K66	1	1	0	0	0	0	0	0
K67	11	0	0	0	1	0	0	0
K68	0	1	0	0	0	1	0	0
K69	0	0	0	0	0	0	1	0
K70	0	3	0	0	0	3	0	0
K71	0	0	0	0	1	0	0	0
K72	5	0	0	0	1	2	0	0
K73	0	0	0	0	1	0	0	0
K74	0	1	1	0	1	3	0	0
K75	0	0	0	0	1	0	0	0
K76	0	0	0	0	1	2	5	1
K77	0	0	0	0	1	2	8	0
K78	0	0	0	0	1	2	8	0
K79	0	0	0	0	1	0	0	0
K80	0	0	0	0	1	2	5	1
K81	0	0	0	0	1	2	8	0
K82	0	0	0	0	1	2	8	0
Non typable	76	28	16	12	14	13	0	21
Total	150	128	50	47	64	123	6	24

Table 3 Distribution of serotypes K1/K2 *K. pneumoniae* isolates from stool specimens of healthy Chinese and overseas Chinese adults in Asian countries

Location	Taiwan	China	Hong Kong	Singapore	Malaysia	Thailand	Japan	Vietnam
Serotype K1	11 (7.3)	9 (7.7)	5 (10)	5 (10.6)	8 (12.5)	0 (0)	1 (16.7)	0 (0)
Serotype K2	6 (4)	6 (4.7)	1 (2)	2 (4.3)	1 (1.6)	3 (2.7)	0 (0)	0 (0)

Data are presented as no. (%) of isolates.
the prevalence of strain ST23 in liver abscesses in Taiwan was high and that the strains were clonally related [17]. In the current study, we screened for strain CC23 representatives by detection of allS by PCR [23] and found that isolates carrying allS were also predominant in serotype K1 K. pneumoniae present in healthy adult stools. However, isolates carrying allS from stools were not related by PFGE, indicating that a geographic difference might account for the diversity.
An important limitation of this study was the lack of data regarding Chinese residents in Korea. Invasive liver abscess caused by K. pneumoniae K1 serotype has been emerging in Korea [5,24]. A further study of the serotype and genetic relatedness of K. pneumoniae isolates colonizing the intestine in Korea may elucidate the epidemiology of emerging disease caused by K1 K. pneumoniae in Asia. Future investigation of K. pneumoniae from stools in Western countries is also needed to delineate the global epidemiology and the relation with K. pneumoniae liver abscess.

Conclusions
This is believed to be the first report to demonstrate the seroepidemiology of K. pneumoniae colonizing the intestinal tract of Chinese healthy adults in Asian countries. Serotype K1/K2 comprised 9.8% of the K. pneumoniae strains in this study. The antimicrobial susceptibility pattern was nearly the same in K. pneumoniae isolates, with uniform resistance to ampicillin and susceptibility to all cephalosporins and aminoglycosides. There was no significant difference in the prevalence of K1/K2 isolates among the countries, excluding Thailand and Vietnam. No major clonal cluster was found among serotype K1 isolates in Asian countries. Chinese ethnicity itself might be a major factor predisposing to intestinal colonization by these strains. The prevalent serotype K1/K2 isolates may partially correspond to the prevalence of K. pneumoniae liver abscess in Asian countries.

Methods
Sample collection and bacterial identification
In this study, stool specimens from healthy adult Chinese residents of Taiwan, Hong Kong and China, and overseas Chinese in Japan, Thailand, Malaysia, Singapore and Vietnam were collected from August 2004 to August 2010. A total of 954 healthy adult volunteers (age > 20 years old) were invited to participate and provide stool samples for the study. They had no history of travel abroad, no gastrointestinal disease, and no hospital admission in the past year. None of them had been given any antibiotics during the 3 months before collection of the stool samples.

Stool samples were collected and placed in Cary-Blair transport medium, transported to a microbiology laboratory and inoculated on MacConkey agar plates and K. pneumoniae selective medium for the isolation of K. pneumoniae. The API 20E system (Bio-Merieux, Marcy l’Etoile, France) was used to identify isolates of K. pneumoniae. During the study period, the participants gave oral consent and voluntarily provided their stool samples for analysis of K. pneumoniae after stool routine procedures in the physical check-up. It was not possible to identify the patients from the data; therefore, the study was considered exempt from review by the Institutional Review Board of Taipei Veterans General Hospital.

Serotyping and PCR
All isolates were serotyped by a countercurrent immunoelectrophoresis method [25]. Antisera were kindly provided by the Laboratory of HealthCare Associated Infection, Centre for Infections, Health Protection Agency, London. K. pneumoniae ATCC9997 (K2) was used as a control strain. K1 and K2 isolates were confirmed by PCR as described previously [26]. All K1 isolates were screened for CC23 representatives by detection of allS by PCR as described previously [23].

Antimicrobial susceptibility testing
Susceptibility to antimicrobial agents was determined by the disc diffusion method on Mueller-Hinton agar medium (BBL Microbiological Systems, Cockeysville, MD, USA). The antibiotics tested were ampicillin (10 μg), cefazolin (30 μg), cefonicid (30 μg), cefotaxime (30 μg), ceftriaxone (30 μg), cefoperazone (75 μg), ceftazidime (30 μg), gentamicin (10 μg), and amikacin (30 μg). Interpretations were performed according to Clinical and Laboratory Standards Institute guidelines [27].

PFGE
Total DNA was prepared, and PFGE was performed as described previously [3]. The restriction enzyme XbaI (New England Biolabs, Beverly, MA, USA) was used. Restriction fragments were separated by PFGE in 1% agarose gel (Bio-Rad, Hercules, CA, USA) in 0.5 × Tris-boric acid-EDTA buffer using a Bio-Rad CHEF-Mapper apparatus (Bio-Rad Laboratories, Richmond, CA, USA). Gels were stained with ethidium bromide and photographed under UV light. Dendrograms showing percentage similarity were developed with Molecular Analyst Fingerprinting Software (Bio-Rad Laboratories, Hercules, CA, USA) and compared using the UPGMA clustering method. A similarity coefficient > 80% was selected to define a major cluster.

Statistical analysis
Contingency data were analyzed by two-tailed χ^2 test or Fisher’s exact test as appropriate. A p value < 0.05 was considered to be statistically significant, and all probabilities were two-tailed. All statistical analyses were performed with SPSS for Windows version 15.0 (SPSS, Chicago, IL, USA).

Acknowledgements
This study was supported by grants from National Science Council (NSC92-2314-B-075-043 and NSC93-2314-B010-062), and Taipei Veterans General Hospital (V100C-083 and V100A-008).

Author details
1Division of Infectious Diseases, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan. 2Institute of Clinical Medicine, School of Medicine, National Yang Ming University, Taipei, Taiwan. 3Division of...
Infectious Diseases, National Health Research Institutes, Taoli, Taiwan.
Division of Infectious Diseases and Tropical Medicine, Department of Internal Medicine, Tri-Service General Hospital, and National Defense Medical Center, Taipei, Taiwan. Centers for Disease Control, Taipei, Taiwan.

Authors’ contributions
YTL participated in the study design, carried out laboratory work, analyzed the data, and drafted the manuscript. LKS participated in the study design, collected the specimens, carried out laboratory work, and analyzed the data. JCL participated in the study design, carried out laboratory work, and analyzed the data. TLC conceived the study, collected the specimens, and edited the manuscript. CPT, KMV, and FYC conceived the study and edited the manuscript. CPF conceived the study, participated in its design and coordination, collected the specimens, analyzed the data, edited the manuscript, and received the majority of funding needed to complete the research. All authors have read and approved the final manuscript.

Conflicts of interests
The authors declare that they have no competing interests.

Received: 8 May 2011 Accepted: 19 January 2012 Published: 19 January 2012

References
1. Podschun R, Ullmann U: Klebsiella spp. as nosocomial pathogens: epidemiology, taxonomy, typing methods, and pathogenicity factors. Clin Microbiol Rev 1998, 11:589-603.
2. Wang JH, Liu YC, Lee SS, Yen MY, Chen YS, Wann SR, Lin HH: Primary liver abscess due to Klebsiella pneumonia in Taiwan. Clin Infect Dis 1998, 26:1434-1438.
3. Fung CP, Chang FY, Lee SC, Hu BS, Kuo BI, Liu CY, Ho M, Suu LK: A global emerging disease of Klebsiella pneumonia liver abscess: is serotype K1 an important factor for complicated endophthalmitis? Gut 2002, 50:420-424.
4. Ko WC, Paterson DL, Sagmeister AJ, Hansen DS, Von Gottberg A, Mohapatra S, Casellas JM, Goossens H, Mulazimoglu L, Trenholme G, et al: Community-acquired Klebsiella pneumonia bacteremia: global differences in clinical patterns. Emerg Infect Dis 2002, 8:160-166.
5. Chung DR, Lee SS, Lee HR, Kim HB, Choi HJ, Eom JS, Kim JS, Choi YH, Lee JS, Chung MH, et al: Emerging invasive liver abscess caused by K1 serotype Klebsiella pneumonia in Korea. J Infect 2007, 54:578-583.
6. Yeh KM, Kurok A, Suu LK, Koh YL, Fung CP, Lin JC, Chen TL, Chang FY, Koh TH: Capsular serotype K1 or K2, rather than magA and mpa, is a major virulence determinant for Klebsiella pneumonia liver abscess in Singapore and Taiwan. J Clin Microbiol 2007, 45:466-471.
7. Lok KH, Li KF, Li KK, Szeto ML: Pyogenic liver abscess: clinical profile, microbiological characteristics, and management in a Hong Kong hospital. J Microbiol Infect Dis 2008, 41:483-490.
8. Fung CT, Lai SY, Yi WC, Hsieh PR, Liu KL, Chang SC: Klebsiella pneumoniae genotype K1: an emerging pathogen that causes septic ocular or central nervous system complications from pyogenic liver abscess. Clin Infect Dis 2007, 45:284-293.
9. Rahman J, Wilson T, Oram V, Holzmann Robert S: Pyogenic liver abscess: recent trends in etiology and mortality. Clin Infect Dis 2004, 39:1654-1659.
10. Nadasy KA, Domnai-Saad R, Troblack MA: Invasive Klebsiella pneumonia syndrome in North America. Clin Infect Dis 2007, 45:265-278.
11. Montgomerie IZ: Epidemiology of Klebsiella and hospital-associated infections. Rev Infect Dis 1979, 1:736-753.
12. Chiu CH, Su LH, Wu TL, Hung JJ: Liver Abscess Caused by Klebsiella pneumonia in Siblings. J Clin Microbiol 2001, 39:2351-2353.
13. Hasada S, Tateda K, Mitui H, Hattori Y, Okubo M, Kimura S, Sekigawa K, Kubayash K, Hashimoto N, Hoyauma S, et al: Familial spread of a virulent clone of Klebsiella pneumoniae causing primary liver abscess. J Clin Microbiol 2011, 49:2354-2356.
14. Cyri S Jr, Mortimer PM, Mansfield V, Germanier R: Seroepidemiology of Klebsiella bacteremia isolates and implications for vaccine development. J Clin Microbiol 1986, 23:687-690.
15. Fang FC, Sandler N, Libby SJ: Liver abscess caused by magA + Klebsiella pneumonia in North America. J Clin Microbiol 2005, 43:991-992.
16. Lederman ER, Crum NF: Pyogenic liver abscess with a focus on Klebsiella pneumonia as a primary pathogen: an emerging disease with unique clinical characteristics. Am J Gastroenterol 2005, 100:322-331.
17. Turton JF, Englehard H, Gabriel SN, Turton SE, Kaufmann ME, Pitt TL: Genetically similar isolates of Klebsiella pneumoniae serotype K1 causing liver abscesses in three continents. J Med Microbiol 2007, 56:593-597.
18. Goh KL, Wong NW, Paramsothy M, Nojeg M, Somasundaram K: Liver abscess in the tropics: experience in the University Hospital, Kuala Lumpur. Postgrad Med J 1987, 63:551-554.
19. Lee CH, Leu HS, Wu TS, Su LH, Liu JW: Risk factors for spontaneous rupture of liver abscess caused by Klebsiella pneumonia. Diagn Microbiol Infect Dis 2005, 52:79-84.
20. Brisse S, Fevre C, Passet V, Issenhour-Jeanjean S, Tournebire R, Discourt C, Grimont P: Virulent clones of Klebsiella pneumoniae: identification and evolutionary scenario based on genomic and phenotypic characterization. PLoS One 2009, 4:e9892.
21. Park SW: Risk factor analysis of invasive liver abscess caused by the K1 serotype Klebsiella pneumonia. Eur J Clin Microbiol Infect Dis 2009, 28:109-111.
22. Fehling A, Schon FF, Hensel A, Graf M, Kolon M, Seifert H, et al: Klebsiella serotyping by counter-current immunoelectrophoresis. J Hyg (Lond) 1976, 83:219-225.
23. Turton JF, Baklan H, Suu LK, Kaufmann ME, Pitt TL: Evaluation of a multiplex PCR for detection of serotypes K1, K2 and K5 in Klebsiella sp. and comparison of isolates within these serotypes. FEMS Microbiol Lett 2008, 284:247-52.
24. Clinical and Laboratory Standards Institute (CLSI): Performance standards for antimicrobial susceptibility testing. 20th informational supplement. CLSI document M100-S20, 2010.

Cite this article as: Lin et al: Seroepidemiology of Klebsiella pneumonia colonizing the intestinal tract of healthy chinese and overseas chinese adults in Asian countries. BMC Microbiology 2012 12:13.