Enhanced Dissipation and Blow-up Suppression in a Chemotaxis-Fluid System

Siming He

Abstract. In this paper, we investigate a coupled Patlak-Keller-Segel-Navier-Stokes (PKS-NS) system. We show that globally regular solutions with arbitrary large cell populations exist. The primary blowup suppression mechanism is the shear flow mixing induced enhanced dissipation phenomena.

Contents

1. Introduction 1
2. Sketch of the Proof 4
3. Vorticity Estimates 6
4. Cell Density Estimates 11
Appendix A. 17
References 21

1. Introduction

We consider the coupled Patlak-Keller-Segel-Navier-Stokes (PKS-NS) system modeling the chemotaxis phenomenon in a moving fluid:

\begin{align}
&\partial_t n + v \cdot \nabla n + \kappa \nabla \cdot (n \nabla c) = \kappa \Delta n, \quad (1 - \Delta) c = n, \\
&\partial_t v + (v \cdot \nabla)v + \nabla p = \nu \Delta v + \kappa n \nabla c, \quad \nabla \cdot v = 0,
\end{align}

(1.1)

Here \(n \) denotes the cell density, and \(c \) is the chemoattractant density. The divergence-free vector field \(v \) indicates the ambient fluid velocity. The first equation (Patlak-Keller-Segel equation) describes the time evolution of the cell density subject to transportation by ambient fluid flow \(v \), aggregation triggered by chemotaxis, and diffusion in the media. The aggregation and diffusion take effects on a time scale \(O(\kappa^{-1}) \), \(\kappa \in (0, \infty) \). The cells move towards higher concentrations of the chemoattractants. In the meantime, they secrete the chemoattractants to re-enhance this aggregation effect. By assuming that the secretion and redistribution of chemoattractants happen at a fast timescale, we establish an elliptic-type partial differential relation between the density distributions, \(n \) and \(c \). The equation (Navier-Stokes equation) on the divergence-free vector field \(v \) describes the fluid motion subject to force. The parameter \(\nu \) is the inverse Reynolds number, and the scalar function \(p \) denotes the pressure that ensures the divergence-free condition. The fluid exerts friction force on the moving cells to guarantee that they move without acceleration. Hence, Newton’s law predicts that there exists a reaction force from the cells to the fluid. The coupling \(n \nabla c \) in the Navier-Stokes equation models this interaction. The same forcing appears in the Nernst-Planck-Navier-Stokes system, see, e.g., [23].

If no ambient fluid flows are present, i.e., \(v \equiv 0 \), the coupled system (1.1) simplifies to a variant of the classical parabolic-elliptic Patlak-Keller-Segel (PKS) equation

\begin{align}
&\partial_t n + \kappa \nabla \cdot (n \nabla c) = \kappa \Delta n, \quad -\Delta c = n.
\end{align}

(1.2)

Acknowledgment. This work was supported in part by NSF grants DMS 2006660, DMS 2304392, DMS 2006372. The author would like to thank Jacob Bedrossian, Alexander Kiselev, Eitan Tadmor and Fei Wang for many helpful discussions. The author would also like to thank Kevin Hu and anonymous referees for pointing out typos in the first version of the manuscript and providing many insightful suggestions.
The equation (1.2) is derived by C. Patlak [60], and E. Keller and L. Segel [42]. Simplified models are proposed by V. Nanjundiah, [58]. The literature on the PKS model is extensive, and we refer the interested readers to the representative works, [2, 9, 12–14, 16, 17, 29, 38, 41, 56, 57], and the references therein. We summarize the main results on the plane \(\mathbb{R}^2 \) as follows. Thanks to the divergence structure of the PKS equations (1.2), the total cell population/mass is conserved over time, i.e., \(M := \|n(t)\|_{L^1} = \|n_{in}\|_{L^1}. \) The long-time behavior of the equation (1.2) hinges on the total mass \(M \). Suppose the initial cell density has a finite second moment and a total mass \(M \) strictly less than \(8\pi \). In that case, the unique solutions to (1.2) become smooth instantly and exist for all time, see, e.g., [3, 14, 17, 29, 33, 67]. A key observation in deriving sharp regularity results is that the Patlak-Keller-Segel equations have natural dissipative free energy

\[
E := \int n \log n - \frac{1}{2} n c dV.
\]

On the contrary, if the initial mass is strictly larger than \(8\pi \), the solutions with finite second moment blow up in finite time, e.g., [14, 16, 17]. The refined description of the singularities is provided in work [21, 22, 37, 61, 64–66]. In the borderline case, \(M = 8\pi \), the solutions with finite second moments form Dirac-type singularities as the time approaches infinity, [13, 20, 31].

If there is ambient fluid flow, the long-time dynamics of the system (1.1) are delicate. In the pioneering work, [44], A. Kiselev and X. Xu show that if the fluid vector field \(v \) is relaxation enhancing in the sense of [24], then by choosing a large enough amplitude \((\|v\|_\infty) \), the chemotactic blowups are suppressed. Their analysis is later generalized in [40] to a broader class of fluid vector fields. Furthermore, in work [6, 33], the authors show that strong shear flows can suppress the blowups through a fast dimension reduction process. Last but not least, the authors of [35, 36] exploit the fast-spreading scenario of the hyperbolic and quenching authors show that strong shear flows can suppress the blowups through a fast dimension reduction process.

One can regard the system (1.1) as one among many attempts to model the chemotaxis phenomena in a fluid. The literature on coupled chemotaxis-fluid equations is vast, and we refer the interested readers to the papers [19, 28, 31, 34, 35, 36, 41, 52, 62, 63, 70, 74] and the references therein. Many of these works investigate coupled systems involving fully parabolic Patlak-Keller-Segel and Navier-Stokes equations. The parabolic nature of the chemical equations complicates the analysis. For example, I. Tuval et al. proposed the following model [63],

\[
\begin{aligned}
\partial_t n + v \cdot \nabla n + \nabla \cdot (n \nabla c) &= \Delta n, \\
\partial_t c + v \cdot \nabla c &= \Delta c - nf(c), \\
\partial_t v + (v \cdot \nabla) v + \nabla p &= \Delta v + n \nabla \phi, \quad \nabla \cdot v = 0.
\end{aligned}
\]

Here a parabolic equation governs the dynamics of the chemicals (oxygen), and the coupling \(n \nabla \phi \) in the fluid equation models the buoyancy effect. The regularity and long-time behaviors of the system are explored in [71, 73, 75]. On the other hand, A. Lorz [52], and H. Kozono et al. [45] proposed models whose chemical densities are determined through elliptic-type relations.

A new feature of the coupled system (1.1) is that it retains dissipative free energy

\[
F = \int n \log n - \frac{1}{2} nc + \frac{1}{2} |v|^2 dV.
\]

The dissipative free energy, together with the logarithmic Hardy-Littlewood-Sobolev inequality, yields global regularity of the solutions to a variant of (1.1) in the entire subcritical mass regime, i.e., \(M < 8\pi \) [22]. The critical mass case is analyzed in [46]. In the supercritical case \(M > 8\pi \), there exists a solution with finite-time blow-up [32].

We consider the system perturbed around the Couette flow \(v(x, y) = (y, 0) \), a stationary solution to the Naver-Stokes equation. By decomposing the velocity field as \(v = y + u \) and writing the fluid equation in vorticity form, we end up with the system

\[
\begin{aligned}
\partial_t n + y \partial_x n + u \cdot \nabla n + \kappa \nabla \cdot (n \nabla c) &= \kappa \Delta n, \quad (1 - \Delta)c = n, \\
\partial_t \omega + y \partial_x \omega + u \cdot \nabla \omega &= \nu \Delta \omega + \kappa \nabla^2 \cdot (n \nabla c), \quad u = \nabla^\perp \Delta^{-1} \omega, \\
n(t = 0) &= n_{in}, \quad \omega(t = 0) = \omega_{in}, \quad (x, y) \in T \times \mathbb{R}.
\end{aligned}
\]
Here $\omega = \nabla \perp \cdot u = -\partial_y u^{(1)} + \partial_x u^{(2)}$ and $\nabla \perp = (-\partial_y, \partial_x)$. In this formulation, we can view the coupled system as a nonlinear perturbation of the Naver-Stokes solution $(y,0)$. The problem of suppressing the chemotactic blow-up is now equivalent to a nonlinear stability problem of the Couette flow. The fundamental question in the study of hydrodynamic stability is to determine the functional space X and the parameter $\alpha \in [0, \infty)$ such that

$$\|\omega_{in}\|_X \lesssim \nu^\alpha \Rightarrow \text{Stability}.$$

Here ν^α is the stability threshold of the flow associated with the spaces X. The nonlinear stability threshold of the Couette flow has attracted much attention in the last decade, see, e.g., [46 11 11 20 54 53]. A complete survey of the literature is out of the scope of this paper. Therefore, we highlight some of the work focusing on a 2-dimensional setting. In [11], J. Bedrossian, N. Masmoudi, and V. Vicol showed that the stability threshold of the 2D-Couette flow is $O(1)$ in the Gevrey spaces. The stability thresholds associated with the Sobolev spaces are shown to be $O(\nu^{1/2})$ on the cylinder $\mathbb{T} \times \mathbb{R}$ (J. Bedrossian, V. Vicol and F. Wang, [11]) and in the channel (Q. Chen, T. Li, D. Wei, and Z. Zhang, [20]). Later, N. Masmoudi and W. Zhao considered higher-order Sobolev norms (H^{19}) and improved the threshold to $O(\nu^{1/3})$. [52]. The enhanced dissipation phenomenon of the Couette flow plays an essential role in the above works. We also refer the interested readers to the work [20, 41, 52, 78, 79] for the detailed stability analysis of Couette flow in MHD, Boussinesq equations. For the enhanced dissipation phenomena associated with other shear flows, we refer the interested readers to the work [27, 49, 53, 78, 79] for the detailed stability analysis of Couette flow in MHD, and the references therein.

Our main result is that global-in-time regular solutions with arbitrarily large mass M to the system (1.1) exist.

Theorem 1.1. Consider the equation (1.3) subject to initial conditions $n_{in} \geq 0$, $n_{in} \in L^1 \cap H^s(\mathbb{T} \times \mathbb{R})$, $n_{in}|y|^2 \in L^1(\mathbb{T} \times \mathbb{R})$, $\omega_{in} \in H^s(\mathbb{T} \times \mathbb{R})$, $5 \leq s \in \mathbb{N}$. Assume that the parameters κ, ν are in the regime $0 < \kappa \leq \nu \leq 1$. There exists a threshold $\epsilon_0(\|n_{in}\|_{L^1 \cap H^s}) \in (0,1)$ such that if the following relations hold

$$\|\omega_{in}\|_{H^{19}} \leq \epsilon \nu^{1/2}, \quad \kappa = \nu \epsilon, \quad 0 < \epsilon \leq \epsilon_0,$$

the regular solutions to (1.3) exist for all time. Moreover, there exists a universal constant $\delta \in (0,1)$ such that the following enhanced dissipation estimate holds

$$\left\|e^{\delta \nu^{1/3}|\partial_x|^2/|t|} \left(n - \frac{1}{|t|} \int_\mathbb{T} ndx\right)\right\|_{L^2} + \left\|e^{\delta \nu^{1/3}|\partial_x|^2/|t|} \left(\omega - \frac{1}{|t|} \int_\mathbb{T} \omega dx\right)\right\|_{L^2} \leq \mathcal{B}(\|n_{in}\|_{L^1 \cap H^s}), \quad \forall t \in [0, \infty).$$

Here the bound \mathcal{B} only depends on the initial data.

Remark 1.1. We compare our result with that of [71]. In [71], the authors considered a similar system with buoyancy force coupling between the fluid and cell-density equations and showed suppression of blow-up results. However, here our system (1.3) involves a nonlinear coupling in the fluid equation, which complicates the analysis. Moreover, the methods we employ here are different from that of [71].

Remark 1.2. The stability threshold in Theorem 1.1 matches that of the paper [14]. However, we expect that by using more complicated techniques developed in [52], one can improve the stability threshold to $\epsilon \nu^{1/3}$. We will leave the analysis in later work.

Remark 1.3. This paper focuses on the parameter regime where $\kappa \leq \nu$. The method does not seem applicable in the parameter regime $\nu \gg \kappa$. If the viscosity ν is much greater than κ, the biological phenomena take place on time scale $O(\kappa^{-1})$, which can be much shorter than the fluid dynamics time scale. As a result, the dynamics of the cell evolution have a nontrivial impact on the fluid motion. Thanks to this nontrivial interaction, the fluid flow might no longer be stable. Hence it is a great problem to understand the long time dynamics of the system in this regime.

The remaining part of the paper is organized as follows. In Section 2, we sketch the proof of Theorem 1.1. In Section 3, we provide estimates of the fluid equation. In Section 4, the estimates of the cell density are derived. Finally, we collect technical lemmas in the appendix.
2. Sketch of the Proof

In this section, we present the main idea of the proof of Theorem 1.1. Similar to the works [8, 43, 59, 77], we first consider a new coordinate system

\[z = x - ty, \quad y = y. \]

we have the following:

\[
\begin{align*}
\partial_t N + U \cdot \nabla_L N + \kappa \nabla_L \cdot (N \nabla_L C) &= \kappa \Delta_L N, \quad C = (1 - \Delta_L)^{-1} N; \\
\partial_t \Omega + U \cdot \nabla_L \Omega &= \nu \Delta_L \Omega + \kappa \nabla_L^1 \cdot (N \nabla_L C), \quad U = -\nabla_L^1 (-\Delta_L)^{-1} \Omega.
\end{align*}
\]

Here the following notations are adopted:

\[\nabla_L := \left(\frac{\partial_z}{\partial_y} \right); \quad \nabla_L^1 := \left(-\frac{\partial_y}{\partial_z} \right); \quad \Delta_L = \nabla_L \cdot \nabla_L = \partial_{zz} + (\partial_y - t \partial_z)^2. \]

Since the enhanced dissipation phenomenon is heterogeneous, we consider the z-average \(f_0 \) and the remainder \(f_\neq \) of functions on \(\mathbb{T} \times \mathbb{R} \):

\[f_0(t, y) = \frac{1}{|s|} \int_T f(t, z, y) dz, \quad f_\neq(t, z, y) = f(t, z, y) - f_0(t, y). \]

We decompose the solutions \(N, \Omega \) into the z-average and remainder:

\[
\begin{align*}
\partial_t N_\neq + (U \cdot \nabla_L N)_\neq &= \kappa \Delta_L N_\neq - \kappa (\nabla_L \cdot (N \nabla_L C))_\neq; \\
\partial_t N_0 + (U \cdot \nabla_L N)_0 &= \kappa \partial_y N_0 - \kappa (\nabla_L \cdot (N \nabla_L C))_0; \\
\partial_t \Omega_\neq + (U \cdot \nabla_L \Omega)_\neq &= \nu \Delta_L \Omega_\neq + \kappa (\nabla_L^1 \cdot (N \nabla_L C))_\neq, \\
\partial_t \Omega_0 + (U \cdot \nabla_L \Omega)_0 &= \nu \partial_y \Omega_0 + \kappa (\nabla_L^1 \cdot (N \nabla_L C))_0.
\end{align*}
\]

To analyze the above equations, we apply the spatial Fourier transform \(f(t, z, y) \xrightarrow{F} \hat{f}(t, \kappa, \eta) \). Next we introduce the following multipliers \(W_\kappa, W_\nu, \mathcal{W} \), which are motivated by [11]:

\[
\begin{align*}
W_\kappa(t, \kappa, \eta) &= \pi - \arctan \left(\kappa^{1/3} |\kappa|^{2/3} \left(t - \frac{\eta}{\kappa} \right) \right) \mathbf{1}_{0 < |\kappa| \leq \kappa^{-1/2}}; \\
W_\nu(t, \kappa, \eta) &= \pi - \arctan \left(\nu^{1/3} |\kappa|^{2/3} \left(t - \frac{\eta}{\kappa} \right) \right) \mathbf{1}_{0 < |\kappa| \leq \nu^{-1/2}}; \\
\mathcal{W}(t, \kappa, \eta) &= \pi - \arctan \left(t - \frac{\eta}{\kappa} \right) \mathbf{1}_{k \neq 0}.
\end{align*}
\]

We observe that these multiplier functions take values in \(\left[\frac{\pi}{2}, \frac{3\pi}{2} \right] \). Moreover, they are monotonically decreasing in time. We further define the following multipliers associated with the cell density \(N \) and the vorticity \(\Omega \):

\[M_\kappa = W_\kappa \mathcal{W}, \quad M_\nu = W_\nu \mathcal{W}. \]

Further define that

\[A_s(t, \kappa, \eta) = M_s(t, \kappa, \eta) e^{\delta_s \kappa^{1/3} |\kappa|^{2/3} \left(1 + |\kappa|^2 + |\eta|^2 \right)^{s/2}}, \quad s \geq 1 \]

Here \(0 < \delta < 1 \) is a universal constant. We note that the \(A_\nu \)-multiplier and \(A_\kappa \)-multiplier share the same exponential factor \(e^{\delta_\kappa \kappa^{1/3} |\kappa|^{2/3} t} \). The multipliers \(\{ A_s, M_s \} \) will act on the cell density and chemical density \(N, C \) and \(\{ A_\nu, M_\nu \} \) will act on the vorticity and velocity of the fluid \(\Omega, U \). The properties of these multipliers are collected in the appendix.

Next, we present a local well-posedness result, which can be proven through standard argument.

Theorem 2.1. Consider solutions \(N, \Omega \) to the equation (2.1) subject to initial data \(0 \leq N_{in} \in L^1(\mathbb{T} \times \mathbb{R}), \quad N_{in}|y|^2 \in L^1(\mathbb{T} \times \mathbb{R}), \quad \Omega_{in} \in H^s(\mathbb{T} \times \mathbb{R}), \quad 0 < s < 1 \) such that the unique solution exists on the time interval \([0, T_\varepsilon]\). Moreover, \(N \geq 0 \) on \([0, T_\varepsilon]\).
To prove Theorem 1.1, we use a bootstrap argument. Assume that \([0, T_\ast]\) is the largest time interval on which the following hypotheses hold:

\begin{align}
\tag{2.8a} & \|A_\kappa N_\varphi(t)\|_{L^2}^2 + \int_0^t \left\| \frac{-\partial_x M_\kappa}{M_\kappa} A_\kappa N_\varphi \right\|_{L^2}^2 \, dt + \kappa \|A_\kappa \sqrt{-\Delta} N_\varphi\|_{L^2}^2 \, dt \leq 2B^2_{N_\varphi}; \\
\tag{2.8b} & \|N_0(t)\|_{H^s}^2 \leq 2B^2_{N_0}; \\
\tag{2.8c} & \|A_\nu \Omega_\varphi(t)\|_{L^2}^2 + \int_0^t \left\| \frac{-\partial_x M_\nu}{M_\nu} A_\nu \Omega_\varphi \right\|_{L^2}^2 \, dt + \nu \|A_\nu \sqrt{-\Delta} \Omega_\varphi\|_{L^2}^2 \, dt \leq 2B^2_{\Omega_\varphi} \varepsilon^2 \nu; \\
\tag{2.8d} & \|\Omega_0(t)\|_{H^s}^2 + \nu \int_0^t \|\partial_y \Omega_0\|_{H^s}^2 \, dt \leq 2B^2_{\Omega_0} \varepsilon^2 \nu, \quad \forall t \in [0, T_\ast].
\end{align}

Without loss of generality, we set \(B_{N_\varphi}, B_{N_0}, B_{\Omega_\varphi}, B_{\Omega_0} \geq 1\). Moreover, they only depend on the initial data \(\|N_0\|_{L^1 \cap H^s}\) and the regularity level \(s\).

Proposition 2.1. Consider the system (2.1) subject to initial condition \(0 \leq N_\in \in L^1 \cap H^s(\mathbb{T} \times \mathbb{R}), N_\in |y|^2 \in L^1(\mathbb{T} \times \mathbb{R}), \Omega_\in \in H^s(\mathbb{T} \times \mathbb{R}), 5 \leq s \in \mathbb{N}\). Assume that \(0 < \kappa \leq \nu \leq 1\). Let \([0, T_\ast]\) be the largest interval on which the hypotheses (2.8) hold. There exists a threshold \(c_0 = c_0(\|N_\in\|_{L^1 \cap H^s})\) such that if the condition (1.4) is satisfied, the following estimates hold

\begin{align}
\tag{2.9a} & \|A_\kappa N_\varphi(t)\|_{L^2}^2 + \int_0^t \left\| \frac{-\partial_x M_\kappa}{M_\kappa} A_\kappa N_\varphi \right\|_{L^2}^2 \, dt + \kappa \|A_\kappa \sqrt{-\Delta} N_\varphi\|_{L^2}^2 \, dt \leq 2B^2_{N_\varphi}; \\
\tag{2.9b} & \|N_0(t)\|_{H^s}^2 \leq 2B^2_{N_0}; \\
\tag{2.9c} & \|A_\nu \Omega_\varphi(t)\|_{L^2}^2 + \int_0^t \left\| \frac{-\partial_x M_\nu}{M_\nu} A_\nu \Omega_\varphi \right\|_{L^2}^2 \, dt + \nu \|A_\nu \sqrt{-\Delta} \Omega_\varphi\|_{L^2}^2 \, dt \leq 2B^2_{\Omega_\varphi} \varepsilon^2 \nu; \\
\tag{2.9d} & \|\Omega_0(t)\|_{H^s}^2 + \nu \int_0^t \|\partial_y \Omega_0\|_{H^s}^2 \, dt \leq 2B^2_{\Omega_0} \varepsilon^2 \nu, \quad \forall t \in [0, T_\ast].
\end{align}

Here the bounds \(B_{N_\varphi}, B_{N_0}, B_{\Omega_\varphi}\) and \(B_{\Omega_0}\) depend only on the initial data \(\|N_\in\|_{L^1 \cap H^s}\).

Remark 2.1. The explicit choice of the constants \(B_{N_\varphi}, B_{N_0}, B_{\Omega_\varphi}\) and \(B_{\Omega_0}\) are listed in (4.25). The choice of the threshold \(c_0\) can be found in (4.26).

Now we can conclude the proof of Theorem 1.1.

Proof of Theorem 1.1. Combining Theorem 2.1 and Proposition 2.1, we see that \([0, T_\ast]\) is both open and closed on \([0, \infty)\). Hence \(T_\ast = \infty\) and the solutions with estimates (2.9) exist for all time. The enhanced dissipation estimate (1.5) is a consequence of the bounds (2.9a), (2.9c),

\begin{align}
\left\| e^{\delta x^{1/3} \partial_x^{2/3} t} \left(n - \frac{1}{|x|} \int_T^n \omega dx\right) \right\|_{L^2_{x,y}} + \left\| e^{\delta x^{1/3} \partial_x^{2/3} t} \left(\omega - \frac{1}{|x|} \int_T^n \omega dx\right) \right\|_{L^2_{x,y}} \\
\leq C \|A_\kappa N_\varphi(t)\|_{L^2_{x,y}} + C \|A_\nu \Omega_\varphi(t)\|_{L^2_{x,y}} \leq CB^2_{N_\varphi}(\|N_\in\|_{L^1 \cap H^s}) + CB^2_{\Omega_\varphi}(\|N_\in\|_{L^1 \cap H^s}), \quad \forall t \in [0, \infty).
\end{align}

This concludes the proof. \(\square\)

2.1. **Notations.** Throughout the paper, the constant \(C\), which can only depend on the regularity level \(s\), will change from line to line. Constants with subscript, i.e., \(B_{N_{\varphi}}\), will be fixed. For \(A, B \geq 0\), we use the notation \(A \approx B\) to highlight that there exists a strictly positive constant \(C\) such that \(B/C \leq A \leq CB\). We also use the notation \(A \lesssim B\) to represent that there exists a constant \(C > 0\) such that \(A \leq CB\).
Recall the classical L^p norms and Sobolev H^s, $s \in \mathbb{N}$, norms:

$$
\|f\|_{L^p} = \|f\|_p = \left(\int |f|^p dV \right)^{1/p}; \quad \|f\|_{L^q(0,T;L^p)} = \left(\int_0^T \|f(t)\|_{L^p}^q dt \right)^{1/q};
$$

$$
\|f\|_{H^s} = \left(\sum_{i+j \leq s} \|\partial_x^i \partial_y^j f\|_{L^2}^2 \right)^{1/2}; \quad \|f\|_{H^s} = \left(\sum_{i+j \leq s} \|\partial_x^i \partial_y^j f\|_{L^2}^2 \right)^{1/2}.
$$

Here $dV = dx dy$ is the volume element. If p or q is ∞, then we use the classical L^∞-norm.

We use \hat{f} to denote Fourier transform of function f in the (z,y) variables. The frequency variables corresponding z and y are denoted by $\{k, \ell\}$ and $\{\eta, \xi\}$, respectively. The Fourier multipliers are defined as follows:

$$
(\mathfrak{M}(\hat{f}))(k, \eta) = \mathfrak{M}(ik, i\eta)\hat{f}(k, \eta).
$$

Given a set $S \subset \mathbb{Z}$, we define the projection $\mathbb{P}_{k \in S} f$:

$$
\mathbb{P}_{k \in S} f = 1_{k \in S} \hat{f}(k, \eta).
$$

We apply the following notations

$$
\langle k \rangle = \sqrt{1 + k^2}, \quad \langle k, \eta \rangle = (1 + k^2 + \eta^2)^{1/2}, \quad |k, \eta| = |k| + |\eta|.
$$

We recall from classical literature that $\|f\|_{H^s} \approx \|\partial_x \partial_y^s f\|_{L^2}$.

3. Vorticity Estimates

In this section, we derive the estimates associated with the fluid motion. We organize the proof into two subsections. In Subsection 3.1, we prove the enhanced dissipation estimate of the vorticity remainder Ω_{\neq} (2.9c). In Subsection 3.2, we prove the z-average (Ω_0) estimate (2.9d).

3.1. Remainder Estimates

In this section, we consider the remainder of the vorticity, which solves the equation (2.2c). We will prove the conclusion (2.9c).

Application of the energy estimate yields that

$$
\frac{d}{dt} \frac{1}{2} \|A_\nu \Omega_{\neq}\|_{L^2}^2 = \delta \kappa^{1/3} \sum_{k \neq 0} |k|^{2/3} \int \langle A_\nu(t, k, \eta) \hat{\Omega}(t, k, \eta) \rangle^2 d\eta - \nu \sum_{k \neq 0} \int \frac{-\partial_\nu M_\nu}{M_\nu} |A_\nu(t, k, \eta) \hat{\Omega}(t, k, \eta)|^2 d\eta
$$

$$
- \nu \sum_{k \neq 0} \int |A_\nu(t, k, \eta)| (\sqrt{|k|^2 + |\eta - k|^2} \hat{\Omega}(t, k, \eta)|^2 d\eta
$$

$$
- \int A_\nu(U \cdot \nabla L) \neq A_\nu \Omega_{\neq} dV + \kappa \int A_\nu(\nabla_\perp \cdot (N \nabla L C)) \neq A_\nu \Omega_{\neq} dV.
$$

The relation $\kappa \leq \nu$, together with the property of the multiplier M_ν (A.4) yields that if $\delta \leq \frac{1}{16 \pi^2}$, then the time evolution of the norm is bounded as follows:

$$
\frac{d}{dt} \frac{1}{2} \|A_\nu \Omega_{\neq}\|_{L^2}^2 \leq - \frac{1}{2} \int \left\| \frac{-\partial_\nu M_\nu}{M_\nu} A_\nu \Omega_{\neq} \right\|_{L^2}^2 + \frac{1}{2} \int \| A_\nu \sqrt{-\Delta L} \Omega_{\neq}\|_{L^2}^2 dV + \nu \int \| A_\nu \sqrt{-\Delta L} \Omega_{\neq}\|_{L^2}^2 dV
$$

Integration in time yields that

$$
\|A_\nu \Omega_{\neq}(t)\|_{L^2}^2 + \int_0^t \| A_\nu \Omega_{\neq}\|_{L^2}^2 d\tau + \nu \int_0^t \| A_\nu \sqrt{-\Delta L} \Omega_{\neq}\|_{L^2}^2 d\tau
$$

$$
\leq \|A_\nu \Omega_{in}\|_{L^2}^2 + 2 \int_0^t \| A_\nu(U \cdot \nabla L) \neq A_\nu \Omega_{\neq} dV d\tau + 2 \kappa \int_0^t \| A_\nu(\nabla_\perp \cdot (N \nabla L C)) \neq A_\nu \Omega_{\neq} dV d\tau
$$

(3.1) \quad =: \|A_\nu \Omega_{in}\|_{L^2}^2 + T_{\Omega_{\neq}1} + T_{\Omega_{\neq}2}.
The estimates of the terms $T_{2x:1}$ and $T_{2x:2}$ are summarized in Lemma 3.1 and Lemma 3.2.

Lemma 3.1. Assume all the conditions in Proposition 2.1. The $T_{2x:1}$-term in (3.1) is bounded as follows

\[T_{2x:1} \leq C(B_{2x} + B_{10})\mathcal{B}^2_{1x} \epsilon^3\nu. \]

Here the constant C depends only on the regularity level s.

Lemma 3.2. Assume all the conditions in Proposition 2.1. There exists a constant $C = C(s)$ such that the following estimate of the $T_{2x:2}$-term holds

\[T_{2x:2} \leq \frac{1}{4} \nu \int_0^t \left\| A_\nu \sqrt{-\Delta L} \Omega \right\|_{L_2}^2 d\tau + \frac{1}{4} \int_0^t \left\| A_\nu \sqrt{-\partial_y M_\nu} \Omega \right\|_{L_2}^2 d\tau + C(B_{2x}^4 + B_{10}^4)\epsilon^3\nu. \]

With these two lemmas, we are ready to prove the improved bound (2.3c).

Proof of the conclusion (2.3c). First, we recall the initial condition (1.4), which ensures that $\|A_\nu \Omega_{in} \|_{L_{2,y}^\infty} \leq C\| \Omega_{in} \|_{H_{2,y}^s} \leq C\epsilon\nu^{1/2}$. Combining it with the relation (3.1) and the estimates (3.2), (3.3), we obtain that

\[\| A_\nu \Omega_{in}(t) \|_{L_2^\infty}^2 + \int_0^t \left\| \frac{-\partial_y M_\nu}{M_\nu} \Omega \right\|_{L_2}^2 d\tau + \nu \int_0^t \left\| A_\nu \sqrt{-\Delta L} \Omega \right\|_{L_2}^2 d\tau \]

\[\leq C\| \Omega_{in} \|_{H_{2,y}^s}^2 + C \left(\epsilon(B_{2x} + B_{10})B_{1x}^2 + B_{10}^4 + B_{2x}^4 \right)\epsilon^2\nu \leq C \left(\epsilon(B_{2x} + B_{10})B_{1x}^2 + 1 + B_{2x}^4 + B_{10}^4 \right)\epsilon^2\nu. \]

Here the constant C depends only on the regularity level s. As a result the following choices of constants yields (2.3c)

\[\frac{1}{2} B_{1x}^2 \geq C(1 + B_{2x}^4 + B_{10}^4), \quad \epsilon \leq \frac{1}{2C(B_{2x} + B_{10})}. \]

This concludes the proof. □

In the remaining part of this subsection, we prove Lemma 3.1 and Lemma 3.2.

Proof of Lemma 3.1 The estimate of the $T_{2x:1}$-term is in the same vein as the one in [11]. We carry out the details for the sake of completeness. We recall that the Biot-Savart law yields that $U_0^{(2)} = \partial_y^{-1}\Omega_0 = 0$. Hence we can expand the $T_{2x:1}$ term as follows:

\[T_{2x:1} \leq 2\left| \int_0^t \int A_\nu(U_{\nu} \cdot \nabla_L \Omega) A_\nu \Omega dv d\tau \right| + 2 \left| \int_0^t \int A_\nu(U_0^{(1)} \partial_y \Omega) A_\nu \Omega dv d\tau \right| =: \sum_{i=1}^2 T_{2x:1i}. \]

For the $T_{2x:11}$-term, we first invoke the Biot-Savart law to rewrite the velocity as $U_{\nu} = \nabla_L^{-1}\Delta_y^{-1}\Omega_{\nu}$, and then apply the product estimate associated with the multiplier A_ν (A.10) to obtain the following bound

\[T_{2x:11} \leq C \int_0^t \left\| A_\nu \left(\nabla_L^{-1}\Delta_y^{-1}\Omega_{\nu} \cdot \nabla_L \Omega \right) \right\|_{L^2} \left\| A_\nu \Omega_{\nu} \right\|_{L^2} d\tau \leq C \int_0^t \left\| A_\nu \nabla_L^{-1}\Delta_y^{-1}\Omega_{\nu} \right\|_{L^2} \left\| A_\nu \nabla_L \Omega \right\|_{L^2} d\tau \left\| A_\nu \Omega_{\nu} \right\|_{L^2 \to L^2}. \]

Next we observe that the M_ν-properties (A.3b), (A.3c) imply that $\|A_\nu \Delta_y^{-1}\Omega_{\nu} \|_{L^2} \leq C\| A_\nu \nabla_{L} \Omega_{\nu} \|_{L^2}$. Combining this with the bootstrap hypothesis (2.8c), (2.8d) yields that

\[T_{2x:11} \leq \frac{C}{\sqrt{\nu}} \left\| A_\nu \nabla_L^{-1}\Delta_y^{-1}\Omega_{\nu} \right\|_{L_x L^2} \left(\nu^{1/2} \left\| A_\nu \nabla_{L} \Omega_{\nu} \right\|_{L_x L^2} + \nu^{1/2} \left\| \partial_y \Omega_{\nu} \right\|_{L_x H^s} \right) \left\| A_\nu \Omega_{\nu} \right\|_{L_x^\infty L^2} \]

\[\leq C\epsilon(B_{2x} + B_{10})B_{1x}^2 \epsilon^3\nu. \]

This is consistent with the estimate (3.2).
For the $T_{\Omega_x;12}$ term in (3.5), we first observe there is a cancellation relation
\[
\int \partial_y \Delta_y^{-1} \Omega_0 \partial_z A_\nu \Omega_\neq A_\nu \Omega_\neq dV = \int \partial_y \Delta_y^{-1} \Omega_0 \partial_z \left(\frac{A_\nu \Omega_\neq}{2} \right)^2 dV = 0.
\]
Hence we can rewrite the term $T_{\Omega_x;12}$ using the Biot-Savart law $U_0^{(1)} = -\partial_y \Delta_y^{-1} \Omega_0$ as follows:
\[
T_{\Omega_x;12} = 2 \left[\int_0^t \int \left(A_\nu (-\partial_y \Delta_y^{-1} \Omega_0 \partial_z A_\nu \Omega_\neq + \partial_y \Delta_y^{-1} \Omega_0 \partial_z A_\nu \Omega_\neq) A_\nu \Omega_\neq \ dV d\tau \right) \right. \\
\left. - C \sum_{k \neq 0} \int_0^t \int \left(M_\nu (\tau, k, \eta) \langle k, \eta \rangle^s - M_\nu (\tau, k, \xi) \langle k, \xi \rangle^s \right) \frac{i(\eta - \xi)}{(\eta - \xi)^2} \hat{\Omega}_0(\eta - \xi) \right. \\
\left. \times \left(k e^{\delta \nu^1/3 |k|^2/3} \hat{\Omega} (\tau, k, \xi) \right) \right. \\
\left. \left. A_\nu \hat{\Omega}(\tau, k, \eta) \ d\eta d\xi d\tau \right]. \right]
(3.7)
\]
Now we invoke the commutator estimate (A.11) and the Young’s convolution inequality to obtain that
\[
T_{\Omega_x;12} \leq C \left[\int_0^t \sum_{k \neq 0} \left(\langle k, \xi \rangle^s + \langle \eta - \xi \rangle^s \right) \hat{\Omega}_0(\eta - \xi) \left| \left| e^{\delta \nu^1/3 |k|^2/3} \hat{\Omega}(\tau, k, \xi) \right| \left| A_\nu \hat{\Omega}(\tau, k, \eta) \right| \right| d\eta d\xi d\tau \right].
\]
Combining the M_ν-properties (A.3i), (A.4), the definition of A_ν (2.27) and the inequality $\|\hat{f}(\cdot)\|_{L^s_H} \leq C \|\langle \cdot \rangle^s \hat{f}(\cdot)\|_{L^s_H}$, $s \geq 1$ yields that
\[
T_{\Omega_x;12} \leq C \int_0^t \sum_{k \neq 0} \left\| A_\nu \hat{\Omega}_k (\cdot) \right\|_{L^s_H} \left\| \langle \cdot \rangle^s \hat{\Omega}_0 (\cdot) \right\|_{L^s_H} + \left\| \hat{\Omega}_0 (\cdot) \right\|_{L^s_H} \left\| e^{\delta \nu^1/3 |k|^2/3} \hat{\Omega}(\tau, k, \xi) \right\|_{L^s_H} d\tau.
\]
Combining the decomposition (3.5) and the estimates (3.6), (3.8), we have obtained the result (3.2). \qed

Proof of Lemma 3.2 We further decompose the $T_{\Omega_x;2}$ term in (3.1) as follows:
\[
T_{\Omega_x;2} \leq 2 \kappa \left[\int_0^t \int A_\nu (\partial_z (N_\neq \partial_y C_0)) A_\nu \Omega_\neq dV d\tau \right] + 2 \kappa \left[\int_0^t \int A_\nu (\nabla_L^2 \cdot (N \nabla_L C_\neq)) A_\nu \Omega_\neq dV d\tau \right]
(3.9)
\]
Before analyzing the terms, we make a comment about the multipliers. Thanks to the $\{M_\nu, M_\kappa\}$-property (A.3i) and the definitions of $\{A_\nu, A_\kappa\}$ (2.27), we have that the A_ν, A_κ multipliers are comparable, i.e.,
\[
\frac{1}{16\pi^4} A_\kappa (t, k, \eta) \leq A_\nu (t, k, \eta) \leq 16\pi^4 A_\kappa (t, k, \eta).
(3.10)
\]
As a result, we have the freedom to adjust the multipliers $\{A_i\}_{i \in \{\nu, \kappa\}}$ when considering different objects.
With the multiplier properties explained, we start the estimate. To estimate the \(T_{\Omega_{x};21} \)-term, we apply the relation \((1 - \partial_{yy})C_0 = N_0\), the definition \((2.7)\), and the \(\partial_t M_\kappa \)-estimate \((A.3c)\) to get the following

\[
T_{\Omega_{x};21} \leq C_\kappa \sum_{k \neq 0} \int_0^t \int \left| |k|^2 + |\eta - k\tau|^2 A_\kappa \hat{\Omega}(\tau, k, \eta) \right| \\
\times |A_\kappa(\tau, k, \eta)| \sqrt{\frac{|k|^2}{|k|^2 + |\eta - k\tau|^2}} \left(|\hat{N}(\tau, k, \xi)| \frac{|\eta - \xi|}{1 + |\eta - \xi|^2} |\hat{N}_0(\tau, \eta - \xi)| \right) \, d\eta d\xi d\tau \\
\leq C_\kappa \sum_{k \neq 0} \int_0^t \int \left| |k|^2 + |\eta - k\tau|^2 A_\kappa \hat{\Omega}(\tau, k, \eta) \right| \\
\times |M_\kappa(\tau, k, \eta)| \left(|\eta - \xi|^s \frac{\sqrt{-\partial_t M_\kappa(\tau, k, \xi)}}{\sqrt{\hat{N}(\tau, k, \xi)}} \right) \left(e^{\delta \kappa^{1/3}|k|^{2/3} \tau} |\hat{N}(\tau, k, \xi)| \right) \frac{|\eta - \xi|}{1 + |\eta - \xi|^2} |\hat{N}_0(\tau, \eta - \xi)| \, d\eta d\xi d\tau.
\]

Now we invoke the \(M_\kappa \)-properties \((A.3b), (A.3c)\) to obtain

\[
T_{\Omega_{x};21} \leq C_\kappa \sum_{k \neq 0} \int_0^t \int \left| |k|^2 + |\eta - k\tau|^2 A_\kappa \hat{\Omega}(\tau, k, \eta) \right| \\
\times |M_\kappa(\tau, k, \xi)(\xi, \eta)^s + (\eta - \xi)^s \frac{\sqrt{-\partial_t M_\kappa(\tau, k, \xi)}}{\sqrt{\hat{N}(\tau, k, \xi)}} \left(e^{\delta \kappa^{1/3}|k|^{2/3} \tau} |\hat{N}(\tau, k, \xi)| \right) \frac{|\eta - \xi|}{1 + |\eta - \xi|^2} |\hat{N}_0(\tau, \eta - \xi)| \, d\eta d\xi d\tau.
\]

Now we apply similar argument as in \((3.8)\) to estimate the term. Application of Young’s convolution inequality, the \(M_\kappa \)-bound \((A.3b)\), the \(A_\kappa \)-definition \((2.7)\), and the fact that \(\| \hat{f}(\cdot) \|_{L_\infty^s} \leq C \| (\cdot)^s \hat{f}(\cdot) \|_{L_\infty^s}, s \geq 1 \) yields that

\[
T_{\Omega_{x};21} \leq \frac{1}{8} \nu \int_0^t \left(A_\nu \sqrt{-\Delta L} \Omega_{\neq} \|_{L^2}^2 \right) \, d\tau + C \nu \int_0^t \left(A_\kappa \sqrt{-\partial_t M_\kappa} \right) \left. \| N_{\neq} \|_{H^s}^2 \, d\tau \\
\leq \frac{1}{8} \nu \int_0^t \left(A_\nu \sqrt{-\Delta L} \Omega_{\neq} \|_{L^2}^2 \right) \, d\tau + C \nu \| B_{N_{\neq}} \|_{L^2}^2.
\]

(3.11)

Here in the last line, the hypotheses \((2.8a), (2.8b)\) are employed.

For the \(T_{\Omega_{x};22} \)-term in \((3.9)\), we apply integration by parts, and then estimate it with the product estimate \((A.8)\), the elliptic estimate \((A.8)\), and the bootstrap hypotheses \((2.8a), (2.8b)\) as follows

\[
T_{\Omega_{x};22} \leq \kappa \int_0^t \| A_\nu \nabla_{\xi} \hat{\Omega}_{\neq} \|_{L^2} \left(\| N_0 \|_{H^s} + \left\| A_\kappa N_{\neq} \|_{L^2} \right\| A_\kappa \nabla L C_{\neq} \|_{L^2} \right) \, d\tau \\
\leq \frac{1}{16} \nu \int_0^t \left(A_\nu \sqrt{-\Delta L} \Omega_{\neq} \|_{L^2}^2 \right) \, d\tau + C \nu \left(\| N_0 \|_{H^s}^2 \| A_\kappa N_{\neq} \|_{L^2}^2 \right) \left(A_\kappa \nabla L(1 - \Delta L)^{-1} N_{\neq} \|_{L^2}^2 \right) \\
\leq \frac{1}{16} \nu \int_0^t \left(A_\nu \sqrt{-\Delta L} \Omega_{\neq} \|_{L^2}^2 \right) \, d\tau + C \nu \left(\| N_0 \|_{H^s}^2 \| A_\kappa N_{\neq} \|_{L^2}^2 \right) \left(A_\kappa \sqrt{-\partial_t M_\kappa} \right) \left(N_{\neq} \|_{L^2}^2 \right)^2 \\
\leq \frac{1}{16} \nu \int_0^t \left(A_\nu \sqrt{-\Delta L} \Omega_{\neq} \|_{L^2}^2 \right) \, d\tau + C \nu \| (B_{N_0}^2 + B_{N_{\neq}}^2) \|_{L^2}^2.
\]

Combining this with the decomposition \((3.9)\) and the bound \((3.11)\) yields the estimate \((5.8)\).
3.2. The z-average Estimates. In this subsection, we prove the estimate (2.9d). First of all, we recall the equation (2.2d), and decompose the nonlinearity as follows
\[\partial_t \Omega_\nu + (U \cdot \nabla \Omega_\nu) + (U_\nu \cdot \nabla \Omega_\nu) = \nu \Delta \Omega_\nu + \kappa \left(\nabla^\perp_L \cdot (N_0 \nabla L C_\nu) \right)_0 + \kappa \left(\nabla^\perp_L \cdot (N_{\nu \neq} \nabla L C_{\neq}) \right)_0. \]
Here we observe two null-structures which lead to simplification. First, we observe that by the Biot-Savart law, the vertical velocity field $U_0^{(2)} = \partial_z \Delta_y^{-1} \Omega_0 = 0$. Hence,
\[(U_0 \cdot \nabla \Omega_0)_0 = (U_0^{(1)} \partial_2 \Omega_0)_0 = 0. \]
On the other hand, the following term vanishes,
\[\kappa \left(\nabla^\perp_L \cdot (N_0 \nabla L C_\nu) \right)_0 = -\kappa \left((\partial_y - t \partial_z)(N_0 \partial_z C_\nu) \right)_0 + \kappa \left(\partial_z (N_0 \partial_y C_\nu) \right)_0 = 0. \]
Hence the Ω_ν-equation can be simplified to the following,
\[\partial_t \Omega_\nu - \nu \Delta \Omega_\nu = -\nu (U_\nu \cdot \nabla L \Omega_\nu) + \kappa \left(\nabla^\perp_L \cdot (N_{\nu \neq} \nabla L C_{\neq}) \right)_0. \]
Recalling that $A_\nu(t, k, \eta) = \pi^2(\eta)^*$, we calculate the time evolution of the $\|A_\nu \Omega_\nu\|_{L^2}^2$ as follows:
\[
\frac{d}{dt} \left[\frac{1}{2} \|A_\nu \Omega_\nu(t)\|_{L^2}^2 \right] = -\nu \|A_\nu \partial_\nu \Omega_\nu\|_{L^2}^2 - \int A_\nu ((U_\nu \cdot \nabla L \Omega_\nu)_0) A_\nu \Omega_\nu dV + \kappa \int A_\nu \left(\nabla^\perp_L \cdot (N_{\nu \neq} \nabla L C_{\neq}) \right)_0 A_\nu \Omega_\nu dV.
\]
Now integration in time yields
\[
(3.12) \quad \|A_\nu \Omega_\nu(t)\|_{L^2}^2 \leq \|A_\nu \Omega_{\nu, 0}\|_{L^2}^2 + 2\nu \int_0^t \|A_\nu \partial_\nu \Omega_\nu\|_{L^2}^2 d\tau
\]
\[
\leq \|A_\nu \Omega_{\nu, 0}\|_{L^2}^2 + 2 \int_0^t \int A_\nu ((U_\nu \cdot \nabla L \Omega_\nu)_0) A_\nu \Omega_\nu dV d\tau + 2\nu \int_0^t \int A_\nu \left(\nabla^\perp_L \cdot (N_{\nu \neq} \nabla L C_{\neq}) \right)_0 A_\nu \Omega_\nu dV d\tau
\]
\[
= \|A_\nu \Omega_{\nu, 0}\|_{L^2}^2 + T_{\Omega_{1, 0}} + T_{\Omega_{2, 0}}.
\]
We rewrite the $T_{\Omega_{1, 0}}$-term in (3.12) with the Biot-Savart law, and then estimate it with the product estimate (A.10), the M_ν-bound (A.3b), the elliptic estimate (A.8), and the hypotheses (2.8a), (2.8d) as follows
\[
(3.13) \quad T_{\Omega_{1, 0}} \leq \int_0^t \int A_\nu \nabla^\perp_L \nabla L^{-1} \nabla L \nabla \Omega_\nu A_\nu \Omega_\nu dV d\tau
\leq C \int_0^t \|A_\nu \nabla^\perp_L \nabla L^{-1} \nabla L \nabla \nabla \Omega_\nu \|_{L^2} \|A_\nu \nabla L \nabla \Omega_\nu \|_{L^2} \|A_\nu \Omega_\nu\|_{L^2} \|C_{\neq}\|_{L^\infty} \leq \epsilon^2 \nu \left(\epsilon CB_\Omega B_\Omega^2 \right).
\]
Next we estimate $T_{\Omega_{2, 0}}$-term in (3.12). By observing $(\partial_z F)_0 \equiv 0$ and integration by parts, we rewrite the term as follows,
\[
T_{\Omega_{2, 0}} \leq 2 \kappa \int_0^t \int A_\nu \Omega_\nu A_\nu (\partial_z - t \partial_z)(N_\nu \partial_z C_\nu)_0 dV d\tau = 2 \kappa \int_0^t \int A_\nu \partial_\nu \Omega_\nu A_\nu (N_\nu \partial_z C_\nu)_0 dV d\tau.
\]
Application of the product estimate (A.10) and the fact that $A_\nu \approx A_\kappa$ (3.10) yields that
\[
T_{\Omega_{2, 0}} \leq C \nu \|A_\nu \Omega_{\nu, 0}\|_{L^2}^2 + C \epsilon^2 \nu \|A_\kappa N_\nu\|_{L^2}^2 \|A_\kappa \partial_z C_\nu\|_{L^2}^2.
\]
After invoking the relation $\partial_z C_{\neq} = \partial_z (1 - \Delta_L)^{-1} N_{\neq}$, the M_κ-estimate (A.3d) and the elliptic estimate (A.8), we estimate the $T_{\Omega_{2, 0}}$-term with the hypotheses (2.9a) as follows
\[
T_{\Omega_{2, 0}} \leq \frac{1}{2} \nu \|A_\nu \partial_\nu \Omega_\nu\|_{L^2}^2 + C \epsilon^2 \nu \|A_\kappa N_\nu\|_{L^2}^2 \|A_\kappa \partial_z (1 - \Delta_L)^{-1} N_{\neq}\|_{L^2}^2.
\]
\[
(3.14) \quad \leq \frac{1}{2} \nu \|A_\nu \partial_\nu \Omega_\nu\|_{L^2}^2 + C \epsilon^2 \nu \|A_\kappa N_\nu\|_{L^2}^2 \|A_\kappa \sqrt{\frac{\partial_\kappa M_\kappa}{M_\kappa}} N_{\neq}\|_{L^2}^2 \leq \frac{1}{2} \nu \|A_\nu \partial_\nu \Omega_\nu\|_{L^2}^2 + C B_{N_{\neq}} \epsilon^2 \nu.
\]
Combining the decomposition (3.12), the estimates (3.13), (3.14), and the initial constraint (1.4), we have that
\begin{equation}
\|A_\kappa\Omega_0(t)\|_{L^2}^2 + \nu \|A_\kappa \partial_y \Omega_0\|_{L^2}^2 + \nu \|A_\kappa \delta_y \partial_y \Omega_0\|_{L^2}^2 \leq C \|\Omega_{in,0}\|_{L^2}^2 + \nu C (1 + \|B_{\Omega_0}\|_{L^2}^2 + \|B_{\Omega_{x}}\|_{L^2}^2).
\end{equation}
Here \(C \geq 1\) is a constant depending only on the regularity level \(s\). Hence the following choice of constants guarantees the conclusion (2.9d)
\begin{equation}
\|B_{\Omega_0}\|_{L^2} \geq 4C (1 + \|B_{\Omega_0}\|_{L^2}^2 + \|B_{\Omega_{x}}\|_{L^2}^2), \quad \epsilon \leq \frac{1}{1 + \|B_{\Omega_0}\|_{L^2}^2}.
\end{equation}
Here the constant \(C\) is the one in (3.15).

4. Cell Density Estimates

In this section, we derive the estimates associated with the cell dynamics. We organize the proof into two subsections. In Subsection 4.1, we prove the enhanced dissipation estimate of the cell density’s remainder \(N_x\) (2.9d). In Subsection 4.2, we prove the \(z\)-average (\(N_0\)) estimate (2.9b).

4.1. The Remainder of the Cell Density. In this section, we prove the estimate (2.9a). First we calculate the time evolution of \(\|A_\kappa N_x\|_{L^2}^2\) using the equation (2.2a):
\begin{align*}
\frac{1}{2} \|A_\kappa N_x(t)\|_{L^2}^2 &= \frac{1}{2} \|A_\kappa N_{in,x}\|_{L^2}^2 + \frac{1}{2} \int_0^t \|\partial_x N_x\|_{L^2}^2 d\tau - \int_0^t \|\text{\textbf{\textit{\%}}_x A_\kappa N_x\|_{L^2}^2 \text{d\tau}}
\end{align*}
Recalling the relation (A.4) and the null condition \(U_0^{(2)} = \partial_x \Omega_{y}^{-1} \Omega_0 = 0\), we have that if \(\delta \leq \frac{1}{16\pi}\), then
\begin{align*}
\frac{1}{2} \|A_\kappa N_x(t)\|_{L^2}^2 &\leq \frac{1}{2} \|A_\kappa N_{in,x}\|_{L^2}^2 - \frac{1}{2} \int_0^t \left\| \text{\textbf{\textit{\%}}_x A_\kappa N_x\|_{L^2}^2 \text{d\tau}} - \frac{\kappa}{2} \|A_\kappa \sqrt{-\Delta_L} N_x\|_{L^2}^2
\end{align*}
\begin{align*}
+ \int_0^t \int \kappa \|A_\kappa \Phi \|_{L^2}^2 d\tau + \int_0^t \int \kappa \|A_\kappa \Phi \|_{L^2}^2 d\tau &+ \int_0^t \int \kappa \|A_\kappa \Phi \|_{L^2}^2 d\tau + \int_0^t \int \kappa \|A_\kappa \Phi \|_{L^2}^2 d\tau
\end{align*}
\begin{align*}
&= \frac{1}{2} \|A_\kappa N_{in,x}\|_{L^2}^2 - \frac{1}{2} \int_0^t \left\| \text{\textbf{\textit{\%}}_x A_\kappa N_x\|_{L^2}^2 \text{d\tau}} - \frac{\kappa}{2} \|A_\kappa \sqrt{-\Delta_L} N_x\|_{L^2}^2
\end{align*}
\begin{align*}
&+ T_{N_x;11} + T_{N_x;12} + T_{N_x;21} + T_{N_x;22}.
\end{align*}
The estimates of the terms in (4.1) are collected in the following lemmas.

Lemma 4.1. The \(T_{N_x;11}\), \(T_{N_x;12}\) terms in (4.1) are bounded as follows
\begin{equation}
T_{N_x;11} + T_{N_x;12} \leq C \epsilon^{1/2} (\|B_{\Omega_{x}}\|_{L^2} + \|B_{\Omega_0}\|_{L^2} + \|B_{\Omega_{x}}\|_{L^2}).
\end{equation}
Here \(C\) is a constant depending only on the regularity level \(s\).

Lemma 4.2. The \(T_{N_x;21}\) and \(T_{N_x;22}\) terms are bounded as follows
\begin{equation}
T_{N_x;21} + T_{N_x;22} \leq \frac{\kappa}{8} \int_0^t \|A_\kappa \sqrt{-\Delta_L} N_x\|_{L^2}^2 d\tau + C \kappa^{2/3} (\|B_{\Omega_{x}}\|_{L^2} + \|B_{\Omega_0}\|_{L^2} + \|B_{\Omega_{x}}\|_{L^2}).
\end{equation}
Here \(C\) is a constant depending only on the regularity level \(s\).

Now we complete the proof of (2.9a).
Proof of (2.9a). Combining the decomposition (4.1), Lemma 4.1, Lemma 4.2 and the choice of parameters $0 < \kappa \leq \frac{\epsilon}{2} \leq 1$, we obtain

$$\|A_\kappa N_\ne(t)\|^2_{L^2} + \left[\frac{\partial_t \delta \Delta L}{\mathcal{N}_\kappa} A_\kappa N_\ne \right]_{L^2 L^2}^2 + \kappa \left[\kappa \sqrt{-\Delta L} N_\ne \right]_{L^2 L^2}^2 \leq C \|N_{in}^\ne\|^2_{H^s} + C^2 \left[\left(\frac{\epsilon}{2} \right)^2 + B_{N_\ne}^2 + \frac{B_{N_\ne}^2}{B_{N_\ne}} \right] B_{N_\ne}^2 + C^2 \left[\left(\frac{\epsilon}{2} \right)^2 + B_{N_\ne}^2 + \frac{B_{N_\ne}^2}{B_{N_\ne}} \right] B_{N_\ne}^2.$$

Here C is universal constant depending only on σ. The following choices of parameters yields (2.9a):

$$B_{N_\ne}^2 \geq 4C \|N_{in}^\ne\|^2_{H^s}, \quad \epsilon \leq \frac{1}{16C^2 (\frac{\epsilon}{2} + B_{N_\ne}^2 + \frac{B_{N_\ne}^2}{B_{N_\ne}})^2}.$$

The remaining part of the subsection is devoted to the proof of Lemma 4.1 and Lemma 4.2.

Proof of Lemma 4.2. The estimate of $T_{N_\ne;11}$ is similar to the estimate of $T_{\Omega_\ne;12}$ in (3.5). Hence we will only sketch the estimate. First we note that by the velocity law and the null condition,

$$\int \partial_y \Delta^{-1} \Omega_0 \partial_z A_\kappa N_\ne \ A_\kappa N_\ne dV = \frac{1}{2} \int \partial_y \Delta^{-1} \Omega_0 \partial_z (A_\kappa N_\ne)^2 dV = 0,$$

the $T_{N_\ne;11}$ term can be rewritten as follows

$$T_{N_\ne;11} = \left| \int_0^t \int \left(-A_\kappa (\partial_y \Delta^{-1} \Omega_0 \partial_z N_\ne) + \partial_y \Delta^{-1} \Omega_0 \partial_z A_\kappa N_\ne \right) A_\kappa N_\ne dV d\tau \right|$$

$$= \left| \sum_{k \neq 0} \int_0^t \int \left(M_\kappa (\tau, k, \eta) \partial_\eta \left(\frac{\partial_{\xi + \eta} \Omega_\kappa (\tau, k, \xi)}{\eta} \right) + \frac{\partial_{\xi - \eta} \Omega_\kappa (\tau, k, \xi)}{\eta} \right) \partial_\eta A_\kappa N_\ne \right|.$$

Now we observe that this is in the same form as (3.7). Hence combining the application of an identical argument as in (3.8), the enhanced dissipation relation (A.7) and the bootstrap hypotheses (2.8a), (2.8d) yields that

$$T_{N_\ne;11} \leq C \|A_\kappa \Omega_0\|_{L^\infty L^2} \|A_\kappa N_\ne\|^2_{L^2 L^2} \leq C B_{\Omega_0} B_{N_\ne}^{1/2} \kappa^{1/6}.$$

We note that this is consistent with (4.2).

For the $T_{N_\ne;12}$ term in (4.1), we apply integration by parts, the Biot-Savart law, and Hölder inequality to obtain the following:

$$T_{N_\ne;12} = \left| \int_0^t \int V_L A_\kappa N_\ne \cdot A_\kappa (\Delta^{-1} \Omega_\ne) dV d\tau \right| \leq C \|A_\kappa \sqrt{-\Delta L} N_\ne\|_{L^2 L^2} \|A_\kappa (\Delta^{-1} \Omega_\ne)\|_{L^2 L^2}.$$

Now we invoke the product estimate (A.10), and then the M_κ-estimate (A.3b) and the elliptic estimate (A.8) to derive the following bound

$$T_{N_\ne;12} \leq \|A_\kappa \sqrt{-\Delta L} N_\ne\|_{L^2 L^2} \|A_\kappa (\Delta^{-1} \Omega_\ne)\|_{L^2 L^2} \|A_\kappa N_\ne\|_{L^\infty L^2} \leq \|A_\kappa \sqrt{-\Delta L} N_\ne\|_{L^2 L^2} \left(\|A_\kappa \nu_0\|_{L^\infty L^2} + \|A_\kappa N_\ne\|_{L^\infty L^2} \right).$$

Now the bootstrap hypotheses (2.8a), (2.8b), (2.8e) yields

$$T_{N_\ne;12} \leq C \kappa^{-1/2} B_{N_\ne} B_{\nu_0} \left(\frac{B_{N_\ne}}{B_{\nu_0}} + B_{N_\ne}^2 + B_{N_\ne}^2 \right) \sqrt{\epsilon}.$$

Combining the above estimates of $T_{N_\ne;11}$ and $T_{N_\ne;12}$ yields the result (4.2).
Proof of Lemma 4.2. First we estimate the $T_{N,21}$-term with integration by parts and the product estimate (A.10) as follows:

$$T_{N,21} = \kappa \int_0^t A_k \nabla_L N_{\kappa} \cdot A_k (N_{\kappa} \partial_y C_0) dV d\tau \leq \frac{\kappa}{16} \|A_k \sqrt{-\Delta} N_{\kappa} \|^2_{L^2 L^2} + C \kappa \|A_k N_{\kappa} \|^2_{L^\infty L^2} \|A_k \partial_y C_0 \|^2_{L^\infty L^2}.$$

Now we invoke the chemical gradient estimate (A.2) and the enhanced dissipation relation (A.7) and the hypotheses (2.8a), (2.8b) to get

$$T_{N,21} \leq \frac{\kappa}{16} \int_0^t \|A_k \sqrt{-\Delta} N_{\kappa} \|^2_{L^2 L^2} + C \kappa^2 B^2_{N,\kappa} B^2_{N,0}.$$

To estimate the $T_{N,22}$-term, we use the integration by parts and the product estimate (A.10) to obtain that

$$T_{N,22} = \kappa \int_0^t A_k \nabla_L N_{\kappa} \cdot A_k (N \nabla_L C_{\kappa}) dV d\tau \leq \frac{\kappa}{16} \|A_k \sqrt{-\Delta} N_{\kappa} \|^2_{L^2 L^2} + C \kappa \|A_k N \|^2_{L^\infty L^2} \|A_k \nabla_L (1 - \Delta_L)^{-1} N_{\kappa} \|^2_{L^2 L^2}.$$

We use the M_{κ}-estimate (A.3b), (A.3c) and the hypotheses (2.8a), (2.8b) to obtain the following

$$T_{N,22} \leq \frac{\kappa}{16} \|A_k \sqrt{-\Delta} N_{\kappa} \|^2_{L^2 L^2} + C \kappa \|A_k N \|^2_{L^\infty L^2} \left\| A_k \sqrt{\frac{\partial_t M_{\kappa}}{M_{\kappa}}} N_{\kappa} \right\|^2_{L^2 L^2} \leq \frac{\kappa}{16} \|A_k \sqrt{-\Delta} N_{\kappa} \|^2_{L^2 L^2} + C \kappa (B^2_{N,\kappa} + B^2_{N,0}) B^2_{N,0}.$$

Combining the above estimates of $T_{N,21}$ and $T_{N,22}$ yields the result (4.3).

4.2. The z-average of Cell Density. In this section, we prove (2.9a). The strategy we adopt is to derive an estimate of the L^2-norm of N_0, and inductively derive higher Sobolev norm bound.

First we write down the time evolution of the L^2 and H^s energy. We consider multiplier $M \in \{1, \partial_y, \ldots, (\partial_y)^s\}$. Recalling the equation (2.2), we have that

$$\frac{1}{2} \frac{d}{dt} \|MN_0\|^2 = -\kappa \|\partial_y MN_0\|^2 - \kappa \int MN_0 \nabla_L \cdot (N \nabla_L C_0) dV - \int MN_0 \nabla_L \cdot (N \nabla_L (1 - \Delta_L)^{-1} \Omega) dV$$

$$= -\kappa \|\partial_y MN_0\|^2 - \kappa \int MN_0 \nabla_L \cdot (N \nabla_L C_0) dV$$

Next we observe the following relations

$$\left(\nabla_L \cdot (N \nabla_L C_0) \right)_0 = \left(\partial_y^i (N \partial_y^i C_0) \right)_0 = \partial_y (N \partial_y C_0)_0,$$

$$\left(\nabla_L \cdot (N \nabla_L (1 - \Delta_L)^{-1} \Omega) \right)_0 = \left(\partial_y^i (N \partial_y (1 - \Delta_L)^{-1} \Omega) \right)_0 = \partial_y (N \partial_y (1 - \Delta_L)^{-1} \Omega)_0.$$

With these, we can rewrite the time evolution of $\|MN_0\|^2$ as follows

$$\frac{1}{2} \frac{d}{dt} \|MN_0\|^2 = -\kappa \|\partial_y MN_0\|^2 + \kappa \int MN_0 \nabla_L \cdot (N \partial_y (1 - \Delta_L)^{-1} \Omega)_0 dV$$

$$\quad + \kappa \int MN_0 \nabla_L \cdot (N \partial_y C_0)_0 dV + \int MN_0 \nabla_L \cdot (N \partial_y (1 - \Delta_L)^{-1} \Omega)_0 dV$$

$$= -\kappa \|\partial_y MN_0\|^2 + T_{N,0;0} + T_{N,0;1} + T_{N,0;2}$$

(4.5)

The remaining part of the proof is subdivided into several lemmas. The first lemma provides estimates for the contributions from the non-zero modes.
Lemma 4.3. There exists a constant C, which only depends on the regularity level s, such that the following estimates hold

$$
\int_0^t \|(N_\nu \partial_y^s C_\nu)_{0,1}\|_{L_y^2}^2 \, dt \leq CB^2_{N_\nu^2} \varepsilon^2.
$$

(4.6)

$$
\int_0^t \|(N_\nu \partial_z \Delta_\nu^{-1} \Omega \nu)_{0,0}\|_{L_y^2}^2 \, dt \leq CB^2_{N_\nu^2} \varepsilon^2.
$$

(4.7)

Proof. To prove (4.6), we use Lemma A.3 the M_s multiplier bound A.31, the definition of A_ν, 2.7, the product estimate A.10, the elliptic estimate A.8, and the bootstrap hypothesis (2.8) as follows

$$
\int_0^t \|(N_\nu \partial_y^s C_\nu)_{0,1}\|_{L_y^2}^2 \, dt \leq C \|\partial_z \partial_y \nu \nu_2 \|_{L_y^2}^2 \leq C \|A_\nu \nu_2 \nu_2\|_{L_y^2}^2
$$

$$
\leq C \left|A_\nu \nu_2 \nu_2\right|_{L_y^2}^2 \leq C \left|A_\nu \nu_2 \nu_2\right|_{L_y^2}^2 \leq CB^2_{N_\nu^2} \varepsilon^2.
$$

(4.8)

This concludes the proof of (4.6). Next we prove the estimate (4.7). The idea is identical to the proof (4.8). The adjustment is that we apply the fact $A_\nu \approx A_\nu$ (3.10), the bootstrap hypotheses (2.8a) and (2.8c) during the estimate

$$
\int_0^t \|(N_\nu \partial_z \Delta_\nu^{-1} \Omega \nu)_{0,0}\|_{L_y^2}^2 \, dt \leq C \|\partial_z \partial_y \nu \nu_2 \|_{L_y^2}^2 \leq C \|A_\nu \nu_2 \nu_2\|_{L_y^2}^2
$$

$$
\leq C \left|A_\nu \nu_2 \nu_2\right|_{L_y^2}^2 \leq C \left|A_\nu \nu_2 \nu_2\right|_{L_y^2}^2 \leq CB^2_{N_\nu^2} \varepsilon^2.
$$

This concludes the proof of (4.7).

Next, we prove the following L^2 estimate for N_0.

Lemma 4.4. If the hypotheses (2.8a), (2.8b) hold on $[0, T_s]$, then the solution N_0 is bounded uniformly in L^2

$$
\|N_0\|_{L^2_\nu} \leq C L^2 := \|N_{in,0}\|_2 + C M^{3/2} + C (B^2_{N_\nu} + B_{N_\nu} \nu_2 \nu_2 \nu_2), \quad \forall t \in [0, T_s].
$$

Here $M := \|\nu\|_{L^2} = \|\nu \nu_2 \|_{L_y^2} = \|N_{in,0}(y) dy = \nu \nu_2 \|_{L_y^2}$ is the conserved total mass of the cell density.

Proof. Before estimating the norm $\|N_0\|_2$, we collect the $L^1(\mathbb{R})$ bound of N_0. Since the solution $N(t, z, y)$ to the equation (2.1) is positive by Theorem 2.1, we have that the function $N_0(y) = \frac{1}{2\pi} \int_{\mathbb{R}} N(t, z, y) \, dz$ is positive. Moreover, the total integral of N_0 is preserved due to the divergence form of the equation (2.2b),

$$
\int N_0(t) \, dy = \int N_{in,0}(y) \, dy,
$$

which, together with the positivity of N_0, implies that

$$
\|N_0(t)\|_{L^1(\mathbb{R})} = \|N_0(t)\|_{L^1(\mathbb{R})} = \frac{M}{2\pi}, \quad \forall t \in [0, T_s].
$$

(4.10)

Next we estimate each component in (4.5) $\nu_2 \nu_2$, which describes the time evolution of $\|N_0(t)\|_2$. Combining the information (4.10), (A.1), the $T_{N_0,0}$-term in (4.5) can be estimated as follows

$$
T_{N_0,0} \leq \kappa \int |\partial_y N_0| |\partial_z C_0 N_0| \, dy \leq \frac{1}{4} \kappa \|\partial_y N_0\|_2^2 + \kappa \|\partial_y C_0 \nu_2 \|_2^2 \|N_0\|_2^2 \leq \frac{1}{4} \kappa \|\partial_y N_0\|_2^2 + C \kappa M^2 \|N_0\|_2^2.
$$

(4.11)
The $T_{N_0;1}$, $T_{N_0;2}$ terms can be estimated as follows

$$T_{N_0;1}(t) + T_{N_0;2}(t) \leq \frac{1}{2} \kappa \| \partial_y N_0 \|_{L^2_y}^2 (t) + C \left(\kappa \| N_\phi \partial_y^2 \Omega_\phi \|_{L^2_y}^2 (t) + \frac{1}{\kappa} \| N_\phi \partial_z \Omega_\phi \|_{L^2_z}^2 \right),$$

- \frac{1}{2} \kappa \| \partial_y N_0 \|_{L^2_y}^2 (t) + \frac{d}{dt} G_{L^2}(t), \quad G_{L^2}(0) = 0.

By Lemma 4.3

(4.12) \quad G_{L^2}(t) \leq CB^4_{N_\phi} + CB^2_{N_\phi} B^2_{\Omega_\phi} \epsilon, \quad \forall t \in [0, T_*].

Combining the above estimates (4.11), (4.12) and the relation (4.5), we have

(4.13) \quad \frac{1}{2} \frac{d}{dt} N_0^2 \leq -\frac{1}{4} \kappa \| \partial_y N_0 \|_{L^2_y}^2 + C \kappa M^2 \| N_0 \|_{L^2_y}^2 + \frac{d}{dt} G_{L^2}(t).

Now we try to get an estimate on the L^2 norm from (4.13). Applying the following Nash inequality

$$\| f \|_{L^2(B)}^2 \leq C \| f \|_{L^1(B)}^2 \| \partial_y f \|_{L^2(B)}$$

yields

$$-\| \partial_y f \|_{L^2_y}^2 \leq -\frac{\| f \|^2_{L^2_y}}{C^2 \| f \|^2_{L^1_y}}.$$

Combining this with the estimate (4.13), we have that

$$\frac{d}{dt} \left(\| N_0 \|_{L^2_y}^2 - G_{L^2}(t) \right) \leq -\frac{1}{2C} \kappa \| \partial_y N_0 \|_{L^2_y}^2 + \frac{1}{4} \kappa \| \partial_y N_0 \|_{L^2_y}^2 \leq -\frac{\| N_0 \|^2_{L^2_y}}{C M^4} + \kappa C M^2 \| N_0 \|_{L^2_y}^2$$

$$\leq -\frac{1}{C M^4} \kappa \| N_0 \|^2_{L^2_y} \left(\| N_0 \|^2_{L^2_y} - \frac{\kappa}{C M^4} \right)$$

$$\leq -\frac{1}{C M^4} \kappa \| N_0 \|^2_{L^2_y} \left(\| N_0 \|^2_{L^2_y} - G_{L^2}(t) - C M^3 \right) \left(\| N_0 \|^2_{L^2_y} + C M^3 \right).$$

We can see that the $\| N_0 \|_{L^2_y}^2$ is bounded uniformly in $[0, T_*]$ in the sense that

$$\| N_0(t) \|_{L^2_y} \leq C_{L^2} = \| N_{in;0} \|_{L^2_y} + C M^{3/2} + C \left(\| B_{N_\phi} \|_{L^2_y} + \| B_{\Omega_\phi} \|_{L^{1/2}} \right), \quad \forall t \in [0, T_*],$$

which is (4.14).

Next we try to use the information on $\| N_0 \|_{L^2_y}^2$ to get the bound on higher H^s norm.

Lemma 4.5. Assuming the hypotheses (2.8a), (2.8c) hold on $[0, T_*]$, then the H^s norm of the solution N_0 to (2.2a) is bounded:

$$\| N_0(t) \|_{H^s} \leq C_{H^s} (\| N_{in} \|_{H^s}, M, B_{N_\phi}, \sqrt{\epsilon B_{\Omega_\phi}}), \quad \forall t \in [0, T_*].$$

Here $M = \| n \|_{L^1} = |T| \int_R N_{in;0}(y)dy$ is the conserved total mass of the cell density. Moreover, if

(4.15) \quad \epsilon \leq \frac{1}{B^2_{\Omega_\phi}},

then

(4.16) \quad \| N_0 \|_{H^s} \leq C_{H^s} (\| N_{in} \|_{H^s}, M, B_{N_\phi}).

Proof. We estimate the H^i-norms ($i \in \{1, 2, ..., s\}$) in the inductive fashion. Assume that we have the following estimate for some $1 \leq i \leq s$,

$$\| N_0 \|_{H^{i-1}} \leq C_{H^{i-1}} (\| N_{in;0} \|_{H^s}, M, B_{N_\phi}, \sqrt{\epsilon B_{\Omega_\phi}}).$$

We would like to prove that

(4.17) \quad \| N_0 \|_{H^{i+1}} \leq C_{H^{i+1}} (\| N_{in;0} \|_{H^s}, M, B_{N_\phi}, \sqrt{\epsilon B_{\Omega_\phi}}).

Similar to the L^2 case, we estimate each term in (4.10) by ∂_y.

The $T_{N_0;1}$, $T_{N_0;2}$ terms can be estimated as follows

$$T_{N_0;1}(t) + T_{N_0;2}(t) \leq \frac{1}{2} \kappa \|\partial_y (\partial_y)^i N_0\|_{L^2}^2(t) + C \left(\kappa \|N_0 \partial_y C \|_{L^2}^2(t) + \frac{1}{\kappa} \|N_0 \partial_y \Delta L N_0\|_{L^2}^2(t) \right)$$

(4.18)

By Lemma 4.3

$$G_{H^t}(t) \leq CB^{\frac{1}{2}}_{N_0} + CB^{\frac{1}{2}}_{N_0} \mathcal{B}^2_{\Omega_x} \epsilon, \quad \forall t \in [0, T_*].$$

(4.19)

The $T_{N_0;0}$ term can be estimated using Hölder’s inequality, product estimate of Sobolev functions $f, g \in H^i(\mathbb{R})$, $i \geq 1$, Gagliardo-Nirenberg inequality, and the chemical gradient estimates (A.1), (A.2), as follows,

$$T_{N_0;0} \leq \left\| \kappa \| \partial_y (\partial_y)^i N_0 \|_{L^2} \right\| \left\| (\partial_y)^i (N_0 \partial_y N_0) \right\|_{L^2} \leq \kappa \| \partial_y (\partial_y)^i N_0 \|_{L^2} \| (\partial_y)^i \Delta L N_0 \|_{L^2} \| (\partial_y)^i N_0 \|_{L^2}$$

(4.17)

Applying the following Gagliardo-Nirenberg inequality

$$\| \partial_y^i f \|_2 \leq C \| f \|_2^{\frac{i+1}{i+2}} \| \partial_y^i f \|_2^{\frac{1}{i+2}}$$

yields that

$$\frac{d}{dt} \| (\partial_y)^i N_0 \|_2^2 \leq - \kappa \frac{\| (\partial_y)^i N_0 \|_2^2 + \kappa CC_{H^t} \| (\partial_y)^i N_0 \|_2^2 + \frac{d}{dt} G_{H^t}(t)}{4CC^2_{L^2}(M, \mathcal{B}_{N_0}, \sqrt{\mathcal{B}_{\Omega_x}})}.$$

(4.22)

Here C_{L^2} and C_{H^t} only depend on $\| N_{in} \|_{H^\ast}$, M, B_{N_0}, and $\sqrt{\mathcal{B}_{\Omega_x}}$. Now we apply an ODE argument similar to the one in (4.14) to derive that the quantity $\| N_0 \|_{H^\ast}$ is uniformly bounded on the time interval $[0, T_*)$, i.e., (4.17). We first recall the relation $C_i^{-1}(\| \partial_y^i N_0 \|_{L^2}^2 + \| N_0 \|_{H^t}^2) \leq \| (\partial_y)^i N_0 \|_{L^2}^2 \leq C_i(\| \partial_y^i N_0 \|_{L^2}^2 + \| N_0 \|_{H^t}^2)$ with $C_i \geq 1$, and the G_{H^t}-estimate (4.19). Then we distinguish between two scenarios:

$$\frac{d}{dt} \| (\partial_y)^i N_0(t) \|_{L^2}^2 \leq 4C_i(G_{H^t}(t) + C_{H^t}^2); \quad \frac{d}{dt} \| (\partial_y)^i N_0(t) \|_{L^2}^2 \geq 4C_i(G_{H^t}(t) + C_{H^t}^2).$$

(4.23)

In the first scenario, the estimate (4.17) is direct. Assume that on some open time intervals, the estimate $b)$ in (4.23) holds. Then the time evolution (4.17) implies that there exists a constant C such that

$$\frac{d}{dt} \| (\partial_y)^i N_0(t) \|_{L^2}^2 - G_{H^t}(t) \leq - \kappa \frac{\| (\partial_y)^i N_0(t) \|_{L^2}^2 - G_{H^t}(t)}{CC^2_{L^2}(M, \mathcal{B}_{N_0}, \sqrt{\mathcal{B}_{\Omega_x}})} + \kappa CC_{H^t}^{-1}(\| (\partial_y)^i N_0(t) \|_{L^2}^2 - G_{H^t}(t)).$$

Hence by (4.19), we have that

$$\frac{d}{dt} \| (\partial_y)^i N_0(t) \|_{L^2}^2 \leq C(\| N_{in} \|_{H^\ast}, M, C_{L^2}, C_{H^t}^{-1}, B_{N_0}, \sqrt{\mathcal{B}_{\Omega_x}}).$$

This is consistent with (4.17). Hence, the induction estimate (4.17) is established. Since i ranges in $\{1, ..., s\}$, we end up with the following

$$\| N_0(t) \|_{H^\ast} \leq C_{H^t}(\| N_{in} \|_{H^\ast}, M, B_{N_0}, \sqrt{\mathcal{B}_{\Omega_x}}), \quad \forall t \in [0, T_*].$$

This concludes the proof. □

Proof of (2.9b): To prove (2.9b), we choose (4.15), and

$$B_{N_0} \geq 4C_{H^t}(\| N_{in} \|_{H^\ast}, M, B_{N_0}).$$

(4.24)

Here C_{H^t} is defined in (4.16). □
Proof of Proposition 2.1. It is enough to show that the choice of parameters (3.4), (3.16), (4.4) and (4.15) are consistent. We choose the parameters
\begin{equation}
\begin{aligned}
B_{N_x}^2 := & C_1 \| N_{in} \|_{H^s}^2, \\
B_{N_y}^0 := & C_2 C_2^0 \| N_{in} \|_{L^1 \cap H^s} \| B_{N_x} \|, \\
B_{N_y}^2 := & C_3 (B_{N_x}^1 + B_{N_0}^1), \\
B_{N_y}^3 := & C_4 (B_{N_x}^1 + B_{N_0}^1).
\end{aligned}
\end{equation}
(4.25)
Here C_1, C_2, C_3, C_4 are constants depending only on the universal constants appearing in (3.4), (3.16), (4.4), (4.15), and (4.24). Now we summarize the choice of $\epsilon = \kappa/\nu$:
\begin{equation}
\epsilon \leq \epsilon_0 := \frac{1}{C_5 (B_{N_x}^1 + B_{N_0}^1 + B_{N_0}^4 + B_{N_x}^4)}.
\end{equation}
(4.26)
Here C_5 is a constant depending only on the universal constants appeared in (3.4), (3.16), (4.4), (4.15). This concludes the proof of Proposition 2.1. \qed

APPENDIX A.

A.1. Miscellaneous.

Lemma A.1. Let $F \in L^p(T \times \mathbb{R})$, $G \in H^s(T \times \mathbb{R})$, and $F_0(y) := \frac{1}{2\pi} \int_T F(z, y)dz$, $G_0(y) := \frac{1}{2\pi} \int_T G(z, y)dz$. The following estimates hold:
\begin{align*}
\| F_0 \|_{L^p(\mathbb{R})} & \leq \| F \|_{L^p(T \times \mathbb{R})}, \quad 1 \leq p \leq \infty, \\
\| \langle \partial_y \rangle^s G_0 \|_{L^2(\mathbb{R})} & \leq C \| \langle \partial_z, \partial_y \rangle^s G \|_{L^2(T \times \mathbb{R})}.
\end{align*}

Proof. Applying the Hölder’s inequality yields that for $p \in (1, \infty)$,
\begin{align*}
\| F_0 \|_{L^p(\mathbb{R})} & = \left(\int_{\mathbb{R}} \left(\int_T \left| F(z, y) \right|^p dy \right)^\frac{1}{p} \right)^{1/p} \leq \left(\int_{\mathbb{R}} \left(\int_T \left(\int_T \left| F(z, y) \right|^p dz \right)^{1/p} dy \right)^{1/p} \right)^{1/p} dy \\
& \leq \left(\int_{\mathbb{R}} \left(\int_T \left| F(z, y) \right|^p dz dy \right)^{1/p} \right)^{1/p} = \| F \|_{L^p(T \times \mathbb{R})}.
\end{align*}

The proof in the $p = 1, \infty$ cases are variants of the argument above. Applying the Fourier transform and the Plancherel equality yields
\begin{equation}
\| \langle \partial_y \rangle^s F_0 \|_{L^2(\mathbb{R})} = C \int_{\mathbb{R}} \langle \eta \rangle^{2s} \widehat{F_0}^2(\eta) d\eta \leq C \sum_k \int_{\mathbb{R}} \langle k, \eta \rangle^{2s} |\hat{F}|^2 (k, \eta) d\eta = C \| \langle \partial_z, \partial_y \rangle^s F \|_{L^2(T \times \mathbb{R})}^2.
\end{equation}

This finishes the proof of the lemma. \qed

Lemma A.2 (Chemical gradient estimates). Consider solution C_0 to the equation $(1 - \partial_y y) C_0 = N_0$. The following estimates hold
\begin{align}
\| \partial_y C_0 \|_{L^\infty_y} & \leq \| N_0 \|_{L_y^1}; \tag{A.1} \\
\| \partial_y C_0 \|_{H^s_y} & \leq \| N_0 \|_{H^{-s-1}_y}, \quad s \in \mathbb{N}_+. \tag{A.2}
\end{align}

Proof. To prove the (A.1), we use the explicit solution formula to get
\begin{equation}
\| \partial_y C_0 \|_{L^\infty_y} = C \left\| \int_{\mathbb{R}} \frac{y - y'}{y - y'} e^{-|y - y'| N_0(y')} dy' \right\|_{L_y^\infty} \leq C \| N_0 \|_{L_y^1}.
\end{equation}

To prove the (A.2), we use the Fourier transform and the Plancherel equality
\begin{equation}
\| \partial_y C_0 \|_{H^s_y} = C \int_{\mathbb{R}} \langle \eta \rangle^{2s} \left| \frac{i\eta}{1 + |\eta|^2} \widehat{N_0} \right|^2 d\eta \leq C \int_{\mathbb{R}} \langle \eta \rangle^{2(s-1)} |\hat{N_0}|^2 d\eta \leq C \| N_0 \|_{H^{-s-1}}^2.
\end{equation}
\qed

Next we provide a sketch of the proof of Theorem 2.1.
Proof of Theorem 2.1. Standard energy argument yields the local-in-time \(\|N\|_{H^s_x, t} \), \(\|\Omega\|_{H^{s/2}_x, t} \)-estimates. We omit further details for the sake of brevity.

The justification of the positivity of the cell density, i.e., \(N \geq 0 \), is as follows. We use the technique from [18]. The explicit argument is as follows. We consider the family of convex positive functions \(j_\epsilon \) which approximates \(j(s) = \max\{-s, 0\} \). We can choose the \(j_\epsilon \)'s to be monotonically increasing to \(j \). These functions \(j_\epsilon' = j' \) in \([-\epsilon, 0]\) and \(0 \leq j_\epsilon'' \leq 2\epsilon^{-1} \) in \([-\epsilon, 0] \). So \(J_\epsilon(s) := \int_0^s j_\epsilon''(\sigma)d\sigma \) satisfies \(|J_\epsilon(s)| \leq 2|s| \) for \(\epsilon \in (0, 1) \), and \(\lim_{\epsilon \to 0^+} J_\epsilon(s) = 0 \) for all \(s \). Now we have that

\[
\frac{d}{dt} \int_{\mathbb{T} \times \mathbb{R}} j_\epsilon(N(t, z, y))dV = \int_{\mathbb{T} \times \mathbb{R}} j_\epsilon'(N)(\kappa \Delta L N - U \cdot \nabla L N - \kappa \nabla L \cdot (N \nabla L C))dV
\]

\[
= -\kappa \int_{\mathbb{T} \times \mathbb{R}} j_\epsilon''(N)(|\partial_z N|^2 + |\partial_y N|^2)dV - \int_{\mathbb{T} \times \mathbb{R}} U \cdot \nabla L (j_\epsilon(N))dV
\]

\[+ \kappa \int_{\mathbb{T} \times \mathbb{R}} j_\epsilon''(N)(N \partial_z N \partial_z C + N \partial_y N \partial_y C)dV
\]

\[
\leq \kappa \int_{\mathbb{T} \times \mathbb{R}} \partial_z \left(\int_0^N j_\epsilon''(s)ds \right) \partial_z C dV + \kappa \int_{\mathbb{T} \times \mathbb{R}} \partial_y \left(\int_0^N j_\epsilon''(s)ds \right) \partial_y C dV
\]

\[
= \kappa \int_{\mathbb{T} \times \mathbb{R}} \left(\int_0^N j_\epsilon''(s)ds \right) (-\Delta L C)dV = \int_{\mathbb{T} \times \mathbb{R}} \left(\int_0^N j_\epsilon''(s)ds \right) (N - C)dV.
\]

Therefore,

\[
\int_{\mathbb{T} \times \mathbb{R}} j_\epsilon(N(t))dV = \int_{\mathbb{T} \times \mathbb{R}} j_\epsilon(N(0))dV = \int_0^t \int_{\mathbb{T} \times \mathbb{R}} \left(\int_0^{N(\tau)} j_\epsilon''(s)ds \right) (N - C)dVd\tau.
\]

Since \(|J_\epsilon(s)| \leq 2|s| \), we can use \(4(N^2 + C^2) \) as the dominator and invoke the Dominated convergence theorem and Monotone convergence theorem to get for all \([0, t]\) on which \(L^2 \) is bounded,

\[
\|N_-(t)\|_{L^1_{x,y}} = \int_{\mathbb{T} \times \mathbb{R}} j(N(t))dV = \lim_{\epsilon \to 0^+} \int_{\mathbb{T} \times \mathbb{R}} j_\epsilon(N(t))dV = \lim_{\epsilon \to 0^+} \int_0^t \int_{\mathbb{T} \times \mathbb{R}} \left(\int_0^{N(\tau)} j_\epsilon''(s)ds \right) (N - C)dVd\tau
\]

\[
= \int_0^t \int_{\mathbb{T} \times \mathbb{R}} \lim_{\epsilon \to 0^+} \left(\int_0^{N(\tau)} j_\epsilon''(s)ds \right) (N - C)dVd\tau = 0.
\]

As a result, \(N \geq 0 \). \(\square \)

A.2. Fourier Multipliers. In this section, we summarize the properties of the Fourier multipliers that we employ. First, we collect some basic properties of the multipliers \(M_\kappa, M_\nu \), defined in (2.6).

Lemma A.3. For \(\nu \in \{\kappa, \nu\} \), the following properties for \(M_\nu \) hold

\[
M_\nu(t, k, \eta) = \pi^2, \quad |k| \notin (0, \epsilon^{-1/2}];
\]

\[
\frac{9}{4} \pi^2 \geq M_\nu(t, k, \eta) \geq \frac{\pi^2}{4};
\]

\[
-\partial_t M_\nu(t, k, \eta) \geq \frac{\pi}{2} \frac{|k|^2}{|k|^2 + |\eta - kt|^2}, \quad k \neq 0;
\]

\[
|\partial_\eta M_\nu(t, k, \eta)| \leq \frac{4\pi}{|k|}, \quad k \neq 0,
\]

\[
\sqrt{-\partial_\nu M_\nu(t, k, \eta)} \leq 2(1 + |\eta - \xi|^2)^{\frac{1}{2}}, \quad |k| \in (0, \epsilon^{-1/2}].
\]

Moreover, the multipliers \(M_\kappa, M_\nu \) have the enhanced dissipation properties

\[
\frac{1}{3\pi} \sqrt{\frac{1}{|k|^2}} \leq -\frac{\partial_t M_\nu(t, k, \eta) + \nu(|k|^2 + |\eta - kt|^2)}{M_\nu(t, k, \eta)} \quad \nu \in \{\kappa, \nu\}.\]
These ingredients yields that estimates of the quotient for the wave number ranging in
\[(A.6)\]
This yields \((A.3d)\).

To prove \((A.3e)\), we observe that
\[\partial_t M_i = -\mathcal{W}\partial_t W_i - W_i\partial_t \mathcal{W} \geq \frac{\pi }{2} \frac{|k|^2}{|k|^2 + |\eta - kt|^2}, \quad k \neq 0.\]

This completes the proof of \((A.3e)\).

\[\partial_t M_i(t, k, \eta) = -\frac{\ell^{1/3}|k|^{2/3}}{1 + \ell^{2/3}|k|^{4/3}|t - \frac{k}{\ell}|^2} 1_{|k| \in (0, \ell^{-1/2}]} \eta, \quad \ell \in \{\kappa, \nu\}.\]

For the wave number ranging in \(|k| \in (0, \ell^{-1/2}]\), we invoke the expressions \((A.5)\), \((A.6)\) to obtain the following estimates of the quotient
\[-\frac{\partial_t M_i(t, k, \eta)}{-\partial_t M_i(t, k, \xi)} \leq 1 + \frac{|t - \xi|^2}{|t - \eta|^2} + \frac{1 + \ell^{2/3}|k|^{4/3}|t - \frac{k}{\ell}|^2}{1 + \ell^{2/3}|k|^{4/3}|t - \frac{k}{\ell}|^2} \leq 1 + 2\frac{|t - \xi|^2}{|t - \eta|^2} + \frac{2\ell^{1/3}|k|^{2/3}|t - \frac{k}{\ell}|^2}{1 + \ell^{2/3}|k|^{4/3}|t - \frac{k}{\ell}|^2} \leq 4 + \frac{4|\eta - \xi|^2}{|k|^2}.
\]

This concludes the proof of \((A.3d)\).

Finally, we prove \((A.3)\). We recall the expressions \((A.5)\), \((A.6)\) and the bound \(W_i \in [\pi/2, 3\pi/2]\). Combining these ingredients yields that
\[-\frac{\partial_t M_i}{M_i} + \ell(|k|^2 + |\eta - kt|^2) \geq -\frac{\mathcal{W}\partial_t W_i}{M_i} + \ell(|k|^2 + |\eta - kt|^2) \geq 1_{|k| \leq \ell^{-1/2}} \frac{\ell^{1/3}|k|^{2/3}}{1 + \ell^{2/3}|k|^{4/3}|t - \frac{k}{\ell}|^2} \frac{2}{3\pi} + \ell|k|^2 \left(1 + \left|t - \frac{\eta}{k}\right|^2\right).
\]

There are two regimes for the wave number \(k\): \(|k| \in (0, \ell^{-1/2}]\) or \(|k| \notin (0, \ell^{-1/2}]\). If \(|k| \notin (0, \ell^{-1/2}]\), then it can be checked that \(\ell|k|^2 \geq \ell^{1/3}|k|^{2/3}\). Hence the result \((A.3)\) is ensured. On the other hand, if \(|k| \in (0, \ell^{-1/2}]\), we estimate the above expression as follows
\[-\frac{\partial_t M_i}{M_i} + \ell(|k|^2 + |\eta - kt|^2) \geq 1_{|t - \frac{\eta}{k}| \leq \ell^{-1/3}|k|^{-2/3}} \frac{\ell^{1/3}|k|^{2/3}}{1 + \ell^{2/3}|k|^{4/3}|t - \frac{k}{\ell}|^2} \frac{2}{3\pi} + 1_{|t - \frac{\eta}{k}| < \ell^{-1/3}|k|^{-2/3}} \ell|k|^2 \left(1 + \left|t - \frac{\eta}{k}\right|^2\right) \geq \frac{1}{3\pi} \ell^{1/3}|k|^{2/3}.
\]

This concludes the proof of the lemma.
Lemma A.4. For any function $f \not\equiv 0 \in H^s$ with vanishing mean $\frac{1}{|\tau|} \int_{\mathbb{T}} f \, d\tau \equiv 0$, the following estimates hold for $t \in \{\kappa, \nu\}$,
\begin{equation}
A_t f \lesssim C t^{1/3} \int_0^t \left\| A_t - \frac{\partial_t M_t}{M_t} f \right\|_{L^2}^2 dt \lesssim C t^{1/3} \int_0^t \left\| A_t \sqrt{-\Delta_t} f \right\|_{L^2}^2 dt.
\end{equation}
\begin{equation}
\|A_t \nabla_t M_t f\|_{L^2} + \|A_t \nabla_t(1 - \Delta_t)^{-1} f\|_{L^2} \leq C \left(\left\| \frac{1}{|\tau|} \int_{\mathbb{T}} f \, d\tau \right\|_{L^2} \right) .
\end{equation}
Here the constant C is universal.

Proof. The inequality (A.7) follows from the property (A.4) and the Plancherel equality. The inequality (A.8) follows from the properties (A.3b), (A.3c) and the Plancherel equality. The product rule for the multiplier M_t is contained in the next lemma:

Lemma A.5. Consider the multipliers M_t, $t \in \{\kappa, \nu\}$. For two functions $f, g \in H^s(\mathbb{T} \times \mathbb{R})$, $s > 1$, we have the following product rule
\begin{equation}
\|M_t (fg)\|_{H^s} \leq C \|M_t f\|_{H^s} \|M_t g\|_{H^s}.
\end{equation}
Similarly, we have the following product rule for A_t, $t \in \{\kappa, \nu\}$, $s > 1$,
\begin{equation}
\|A_t (fg)\|_{L^2} \leq C \|A_t f\|_{L^2} \|A_t g\|_{L^2}.
\end{equation}
Proof. First recall the product rule for the usual Sobolev functions on $\mathbb{T} \times \mathbb{R}$:
\begin{equation*}
\|fg\|_{H^s} \leq C \|f\|_{H^s} \|g\|_{H^s}, \quad s > 1.
\end{equation*}
On the other hand, we recall that the bound (A.3b) yields that
\begin{equation*}
\|\hat{f}\|_{H^s} \approx \|M_t f\|_{H^s}, \quad \|\hat{g}\|_{H^s} \approx \|M_t g\|_{H^s}, \quad t \in \{\kappa, \nu\}.
\end{equation*}
Combining these estimates yields the result (A.9).

To prove the product estimate (A.10), we observe the following relation for $x, y \geq 0$,
\begin{equation*}
|x + y|^{2/3} \leq |x|^{2/3} + |y|^{2/3}.
\end{equation*}
As a result, we have that
\begin{equation*}
e^{\delta \kappa^{1/3} |k|^{2/3} t} \leq e^{\delta \kappa^{1/3} |k - \ell|^{2/3} t} e^{\delta \kappa^{1/3} |\ell|^{2/3} t}, \quad \forall k, \ell \in \mathbb{Z}.
\end{equation*}
Next we combine the above relation and the bounds of M_t (A.3b) to derive the following,
\begin{equation*}
\|A_t (fg)\|_{L^2}^2 \leq \sum_{k \in \mathbb{Z}} \int e^{\delta \kappa^{1/3} |k|^{2/3} t} M_t^2(k, \eta) \left(1 + |k|^2 + |\eta|^2 \right) \sum_{\ell \in \mathbb{Z}} \int |\hat{f}(k - \ell, \eta - \xi)| |\hat{g}(\ell, \xi)| d\xi d\eta \leq C \sum_{k \in \mathbb{Z}} \int \left(\sum_{\ell \in \mathbb{Z}} \int e^{\delta \kappa^{1/3} |\ell|^{2/3} t} M_t(k - \ell, \eta - \xi)(1 + |k - \ell|^2 + |\eta - \xi|^2) \right)^2 d\xi d\eta.
\end{equation*}
Now we apply the Young’s convolution inequality, Hölder’s inequality and the inequality $\sum_{k \in \mathbb{Z}} \|\hat{F}_k(\cdot)\|_{L^1} \leq C(\sum_{k \in \mathbb{Z}} \|\hat{F}_k(\cdot)\|_{L^2})^{1/2}$, $s > 1$ to derive that
\begin{equation*}
\|A_t (fg)\|_{L^2} \leq C \left(\left\| A_t f\right\|_{L^2} \sum_{k \in \mathbb{Z}} e^{\delta \kappa^{1/3} |k|^{2/3} t} g_k(\cdot) \right\|_{L^1_h} + \|A_t g\|_{L^2} \sum_{k \in \mathbb{Z}} e^{\delta \kappa^{1/3} |k|^{2/3} t} f_k(\cdot) \right\|_{L^1_h} \leq C \left(\right| A_t f\right|_{L^2} \|A_t g\|_{L^2}.
\end{equation*}
This concludes the proof of the estimate (A.10) and completes the proof of the lemma.
In the proof, the following commutator estimate is needed:

Lemma A.6 (Commutator estimates). The following commutator estimate concerning M_i is satisfied

\begin{equation}
|M_i(t, k, \eta)(k, \eta)^s - M_i(t, k, \xi)(k, \xi)^s| \leq C\frac{|\eta - \xi|}{|k|}(\langle \eta - \xi \rangle^s + \langle k, \xi \rangle^s), \quad k \neq 0.
\end{equation}

Proof. Here the difference $|M_i(t, k, \eta)(k, \eta)^s - M_i(t, k, \xi)(k, \xi)^s|$ can be decomposed as follows:

\[
M_i(t, k, \eta)(1 + k^2 + \eta^2)^{s/2} - (1 + k^2 + \xi^2)^{s/2} + (M_i(t, k, \eta) - M_i(t, k, \xi))(1 + k^2 + \xi^2)^{s/2}1_{k \neq 0}
=: T_1 + T_2.
\]

For the first term in T_1, one applies the mean value theorem to obtain that there exists $\theta \in [0, 1]$, such that the following estimate holds

\[
|T_1| = \left|M_i(k, \eta)^s \frac{1}{2}(1 + k^2 + (1 - \theta)\eta + \theta\xi)^{s} - (1 - \theta)\eta + \theta\xi\langle \eta - \xi \rangle^s\right|
\leq C\left((1 + k^2 + \xi^2)^{s/2} + (1 + k^2 + \eta^2)^{s/2}\right)\langle \eta - \xi \rangle^s \leq C\frac{|\eta - \xi|}{|k|}\langle k, \xi \rangle^s + \langle \eta - \xi \rangle^s.
\]

To estimate the T_2 term in T_2, we apply the property (A.3d) and the mean value theorem to obtain that

\[
|T_2| \leq C\frac{|\eta - \xi|}{|k|}(1 + k^2 + \xi^2)^{s/2}1_{k \neq 0}.
\]

Combining the two estimates and (A.12), we obtain (A.11). The proof of the lemma is finished. □

References

[1] D. Albritton, R. Beckie, and M. Novack. Enhanced dissipation and Hörmander’s hypoellipticity. *J. Funct. Anal.*, 283(3):Paper No. 109522, 38, 2022.

[2] J. Bedrossian. Large mass global solutions for a class of L^1-critical nonlocal aggregation equations and parabolic-elliptic Patlak-Keller-Segel models. *Comm. Partial Differential Equations*, 40(6):1119–1136, 2015.

[3] J. Bedrossian and M. Coti Zelati. Enhanced dissipation, hypoellipticity, and anomalous small noise inviscid limits in shear flows. *Arch. Ration. Mech. Anal.*, 224(3):1161–1204, 2017.

[4] J. Bedrossian, P. Germain, and N. Masmoudi. On the stability threshold for the 3D Couette flow in Sobolev regularity. *Ann. of Math. (2)*, 185(2):541–608, 2017.

[5] J. Bedrossian, P. Germain, and N. Masmoudi. Dynamics near the subcritical transition of the 3D Couette flow I: Below threshold. *Mem. Amer. Math. Soc.*, 266(1294):v+158, 2020.

[6] J. Bedrossian, P. Germain, and N. Masmoudi. Dynamics near the subcritical transition of the 3D Couette flow II: Above threshold. *Mem. Amer. Math. Soc.*, 279(1377):v+135, 2022.

[7] J. Bedrossian and S. He. Suppression of blow-up in Patlak-Keller-Segel via shear flows. *SIAM Journal on Mathematical Analysis*, 50(6):6365–6372, 2018.

[8] J. Bedrossian and N. Masmoudi. Inviscid damping and the asymptotic stability of planar shear flows in the 2D Euler equations. *Publications mathématiques de l’IHÉS*, pages 1–106, 2013.

[9] J. Bedrossian and N. Masmoudi. Existence, uniqueness and Lipschitz dependence for Patlak-Keller-Segel and Navier-Stokes in \mathbb{R}^2 with measure-valued initial data. *Arch. Rat. Mech. Anal.*, 214(3):717–801, 2014.

[10] J. Bedrossian, N. Masmoudi, and V. Vicol. Enhanced dissipation and inviscid damping in the inviscid limit of the Navier-Stokes equations near the 2D Couette flow. *Arch. Rat. Mech. Anal.*, 216(3):1087–1159, 2016.

[11] J. Bedrossian, V. Vicol, and F. Wang. The Sobolev stability threshold for 2D shear flows near Couette. *J. Nonlinear Sci.*, 28(6):2051–2075, 2018.

[12] P. Biler, G. Karch, P. Laurençot, and T. Nadzieja. The 8r–problem for radially symmetric solutions of a chemotaxis model in the plane. *Math. Meth. Appl. Sci.*, 29:1563–1583, 2006.

[13] A. Blanchet, J. Carrillo, and N. Masmoudi. Infinite time aggregation for the critical Patlak-Keller-Segel model in \mathbb{R}^2. *Comm. Pure Appl. Math.*, 61:1449–1481, 2008.

[14] A. Blanchet, J. Dolbeault, and B. Perthame. Two-dimensional Keller-Segel model: Optimal critical mass and qualitative properties of the solutions. *E. J. Diff. Eqn.*, 2006(44):1–32, 2006.

[15] V. Calvez and J. Carrillo. Volume effects in the Keller-Segel model: energy estimates preventing blow-up. *J. Math. Pures Appl.*, 86:155–175, 2006.

[16] V. Calvez and L. Corrias. The parabolic-parabolic Keller-Segel model in \mathbb{R}^2. *Commun. Math. Sci.*, 6(2):417–447, 2008.

[17] J. Carrillo and J. Rosado. Uniqueness of bounded solutions to aggregation equations by optimal transport methods. *Proc. 5th Euro. Congress of Math. Amsterdam*, 2008.

[18] J. A. Carrillo, D. Gómez-Castro, Y. Yao, and C. Zeng. Asymptotic simplification of aggregation-diffusion equations towards the heat kernel. *arXiv:2105.13329*, 2021.
[54] N. Masmoudi and W. Zhao. Enhanced dissipation for the 2D Couette flow in critical space. *Comm. Partial Differential Equations*, 45(12):1682–1701, 2020.

[55] N. Masmoudi and W. Zhao. Stability threshold of two-dimensional Couette flow in Sobolev spaces. *Ann. Inst. H. Poincaré C Anal. Non Linéaire*, 39(2):245–325, 2022.

[56] T. Nagai. Blow-up of radially symmetric solutions to a chemotaxis system. *Adv. Math. Sci. Appl.*, 5(2):581–601, 1995.

[57] T. Nagai, T. Senba, and K. Yoshida. Application of the Trudinger-Moser inequality to a parabolic system of chemotaxis. *Funkcial. Ekvac.*, 40(3):411–433, 1997.

[58] V. Nanjundiah. Chemotaxis, signal relaying and aggregation morphology. *Journal of Theoretical Biology*, 42(1):63–105, 1973.

[59] W. Orr. The stability or instability of steady motions of a perfect liquid and of a viscous liquid, Part I: a perfect liquid. *Proc. Royal Irish Acad. Sec. A: Math. Phys. Sci.*, 27:9–68, 1907.

[60] C. S. Patlak. Random walk with persistence and external bias. *Bull. Math. Biophys.*, 15:311–338, 1953.

[61] P. Raphaël and R. Schweyer. On the stability of critical chemotactic aggregation. *Math. Ann.*, 359(1-2):267–377, 2014.

[62] Y. Tao and M. Winkler. Locally bounded global solutions in a three-dimensional chemotaxis-Stokes system with nonlinear diffusion. *Ann. Inst. H. Poincaré Anal. Non Linéaire*, 30(1):157–178, 2013.

[63] I. Tuval, L. Cisneros, C. Dombrowski, C. W. Wolgemuth, J. O. Kessler, and R. E. Goldstein. Bacterial swimming and oxygen transport near contact lines. *Proceedings of the National Academy of Sciences*, 102(7):2277–2282, 2005.

[64] J. Velázquez. Stability of some mechanisms of chemotactic aggregation. *SIAM J. Appl. Math.*, 62(5):1581–1633, 2002.

[65] J. Velázquez. Point dynamics in a singular limit of the Keller-Segel model i: motion of the concentration regions. *SIAM J. Appl. Math.*, 64(4):1198–1223, 2004.

[66] J. Velázquez. Point dynamics in a singular limit of the Keller-Segel model ii: formation of the concentration regions. *SIAM J. Appl. Math.*, 64(4):1224–1248, 2004.

[67] D. Wei. Global well-posedness and blow-up for the 2-D Patlak-Keller-Segel equation. *J. Funct. Anal.*, 274(2):388–401, 2018.

[68] D. Wei. Diffusion and mixing in fluid flow via the resolvent estimate. *Science China Mathematics*, pages 1–12, 2019.

[69] D. Wei, Z. Zhang, and W. Zhao. Linear inviscid damping and enhanced dissipation for the Kolmogorov flow. *Adv. Math.*, 362:106963, 103, 2020.

[70] M. Winkler. Global large-data solutions in a chemotaxis-(Navier-)Stokes system modeling cellular swimming in fluid drops. *Comm. Partial Differential Equations*, 37(2):319–351, 2012.

[71] M. Winkler. Stabilization in a two-dimensional chemotaxis-Navier-Stokes system. *Arch. Ration. Mech. Anal.*, 211(2):455–487, 2014.

[72] M. Winkler. Global weak solutions in a three-dimensional chemotaxis-Navier-Stokes system. *Ann. Inst. H. Poincaré Anal. Non Linéaire*, 33(5):1329–1352, 2016.

[73] M. Winkler. How far do chemotaxis-driven forces influence regularity in the Navier-Stokes system? *Trans. Amer. Math. Soc.*, 369(5):3067–3125, 2017.

[74] M. Winkler. Small-mass solutions in the two-dimensional Keller-Segel system coupled to the Navier-Stokes equations. *SIAM J. Math. Anal.*, 52(2):2041–2080, 2020.

[75] M. Winkler. Does Leray’s structure theorem withstand buoyancy-driven chemotaxis-fluid interaction? *J. Eur. Math. Soc. (JEMS)*, 2021.

[76] L. Zeng, Z. Zhang, and R. Zi. Suppression of blow-up in Patlak-Keller-Segel-Navier-Stokes system via the Couette flow. *J. Funct. Anal.*, 280(10):Paper No. 108967, 40, 2021.

[77] C. Zillinger. Linear inviscid damping for monotone shear flows. *Trans. Amer. Math. Soc.*, 369(12):8799–8855, 2017.

[78] C. Zillinger. On enhanced dissipation for the Boussinesq equations. *J. Differential Equations*, 282:407–445, 2021.

[79] C. Zillinger. On the Boussinesq equations with non-monotone temperature profiles. *J. Nonlinear Sci.*, 31(4):Paper No. 64, 38, 2021.