An invertebrate-specific and immune-responsive microRNA augments oyster haemocyte phagocytosis by targeting Cg\(\kappa\)B2

Hao Chen\(^1,2\), Zhi Zhou\(^1\), Hao Wang\(^1\), Lingling Wang\(^3\), Weilin Wang\(^1,2\), Rui Liu\(^1\), Limei Qiu\(^4\) & Linsheng Song\(^3\)

Nuclear factor (NF-\(\kappa\)B) pathway is an evolutionally conserved pathway in activating immune response, in which I\(\kappa\)Bs can repress the activation. In the present study, cgi-miR-2d, an invertebrate-specific microRNA, was proved to regulate CgI\(\kappa\)B2 expression and haemocyte phagocytosis during bacterial infection in oyster *Crassostrea gigas*. The expression of cgi-miR-2d was significantly up-regulated after *Vibrio splendidus* challenge, while CgI\(\kappa\)B2 transcripts decreased. Significant decreases in both lucinescence and CgI\(\kappa\)B2 3'UTR level was observed after transfection of cgi-miR-2d in CgI\(\kappa\)B2 3'UTR luciferase reporter assay. CgI\(\kappa\)B2 mRNA level decreased significantly (0.51-fold of control group, \(p < 0.05\)) in gain-of-function assay of cgi-miR-2d in vivo while it increased markedly (1.27-fold, \(p < 0.05\)) when/cgi-miR-2d was repressed (0.10-fold, \(p < 0.01\)). A significant increase of haemocyte phagocytosis rate was observed in/cgi-miR-2d overexpression group (\(p < 0.01\)) while it increased markedly (1.27-fold, \(p < 0.05\)) when cgi-miR-2d was repressed (0.10-fold, \(p < 0.01\)). Moreover, the apoptosis rate of haemocytes was found significantly declined (28.57%, \(p < 0.01\)) in gain-of-function assay of cgi-miR-2d. Together, those results not only depicted the functional conservation of miR-2d family in anti-apoptosis of oysters but also highlighted its interaction with phagocytosis by modulating NF-\(\kappa\)B pathway, which might dedicate critically to the well-balance of host immune response.

Phagocytosis of immunocytes is an essential process in host immune response against invaded pathogens\(^1\). As a highly integrated cellular activity, it comprises a series of events, including pathogen recognition by cell surface receptors, intracellular signal transduction, cytoskeletal rearrangement, particle engulfment, microbial lysogenesis and antigen presentation to other immunocytes\(^2\). The phagocytosis against infiltrated pathogens, as found, can be robustly activated after challenge and strictly modulated afterward by diverse genes or pathways, keeping the well-balance of host immune system\(^3\). Among those regulators, nuclear factor-\(\kappa\)B (NF-\(\kappa\)B) family\(^4\) is the most important ones as a global activator of phagocytosis-related genes\(^5\).

In mammals, the NF-\(\kappa\)B family is mainly composed by a family of five structurally related transcriptional factors, including NF-\(\kappa\)B1 (p105/p50), NF-\(\kappa\)B2 (p100/p52), RelA (p65), RelB, and c-Rel\(^5,6\). Those NF-\(\kappa\)B proteins dimerize with each other to form homo- and hetero-dimers and can modulate diverse biological responses, such as phagocytosis and apoptosis, by regulating target gene transcription\(^5,7\). However, NF-\(\kappa\)B/Rel proteins are normally bound with inhibitor of \(\kappa\)Bs (I\(\kappa\)Bs) as an inactive form\(^8\), and can only be activated by phosphorylation of I\(\kappa\)Bs, which includes I\(\kappa\)Ba, I\(\kappa\)B\(\beta\), I\(\kappa\)B\(\gamma\), I\(\kappa\)B\(\varepsilon\), I\(\kappa\)B\(\zeta\), and BCL3 in the mammals\(^8\). Moreover, the pre-formed NF-\(\kappa\)B-DNA complex during gene transcription can also be dissociated rapidly by free nuclear I\(\kappa\)Bs, attenuating the immune responses of the host\(^9\). The interaction between NF-\(\kappa\)B proteins and I\(\kappa\)Bs is therefore decisive in maintaining homeostasis of host and are found rigorously modulated during challenge at multiple level, including transcriptional and post-transcriptional ones\(^5,8-10\).

\(^1\)Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China. \(^2\)University of Chinese Academy of Sciences, Beijing 100049, China. \(^3\)Key Laboratory of Mariculture & Stock enhancement in North China's Sea, Ministry of Agriculture, Dalian Ocean University, Dalian 116023, China. Correspondence and requests for materials should be addressed to L.W. (email: wanglingling@dlou.edu.cn) or L.S. (email: lshsong@dlou.edu.cn)
miRNAs are an important class of short endogenous single-stranded non-coding RNAs (~22 nt in length) which could regulate gene expression at post-transcriptional level. Since first found in *Caenorhabditis elegans*, more than 35,828 mature miRNAs have been identified so far in over 223 species. Though structured similarly, miRNAs diversify greatly in their function. And almost all biological processes could be modulated by miRNAs, especially those immune-related processes. For example, it was found that miRNAs induced after pathogen challenge could repress the synthesis and release of cytokines while other immune-related events such as phagocytosis, migration could also be modulated by those regulators. Recently, miRNA-mediated modulation were likewise observed in multiple immune-related pathways, including NF-κB pathway. For instance, miR-199a, a miRNA down-regulated in endometriosis, was proved to inhibit the IκB kinase in embryonic stem cells and suppress the NF-κB pathway activation and interleukin-8 expression afterward. Some other miRNAs such as miR-146a, miR-155, miR-181b and miR-21 were also annotated as regulators of NF-κB pathway. Although mass of reports have revealed the interaction between miRNAs and NF-κB pathway in mammals, less is investigated in invertebrates.

As an important intertidal bivalve, oyster *Crassostrea gigas* suffers continuously from harsh environments and surrounding pathogens. A robust immune response to fast eliminate invaded bacteria is therefore greatly needed. With the release of genome information, oysters have been gradually regarded as a model in investigating invertebrate immune system with some components of NF-κB pathway characterized in the past decades, including one Rel and three IκBPs. Meanwhile, more than fifty immune-responsive miRNAs have been identified in *C. gigas*, among which cgi-miR-2d (Supplementary Fig. S1) was predicted as a modulator of CgIκB.

The purposes of the present study were therefore to (1) survey the phagocytic changes of oyster haemocytes after *Vibrio splendidus* challenge, (2) revise the phylogeny of cgi-miR-2d, (3) investigate the interaction between of CgIκBs and cgi-miR-2d during challenge, and (4) reveal the modulation on haemocyte phagocytosis by cgi-miR-2d and hopefully provide new hints for the miRNA-mediated immunomodulation mechanism in oysters.

Results

Changes in haemocyte phagocytosis and CgIκBs expression during *V. splendidus* stimulation.

The phagocytosis rate of oyster haemocytes was determined at 8h, 12h and 24h post *V. splendidus* challenge. As a result, it remained unchanged at 8h and 24h post stimulation and increased significantly at 12h (9.63% in challenge group versus 7.03% in seawater control group, $p < 0.01$) (Fig. 1a).

The expression level of CgIκB1 in oyster haemocytes decreased at 4h post challenge yet recuperated afterward at 8h. A transcriptional summit of CgIκB1 was then observed at 12h post challenge ($p < 0.01$) (Fig. 1b).
contrary, the CgI-B2 transcripts were found up-regulated robustly at 4 h post *V. splendidus* injection (2.00-fold of that in the control group, \(p < 0.01 \)) and decreased at 8 h (Fig. 1c). No significant changes in CgI-B2 mRNA level were observed from 8 h until it ascended markedly at 24 h post injection, which reached 9.48-fold of that in control group at 6 h (\(p < 0.01 \)) (Fig. 1c). The expression level of CgI-B3 also peaked at 4 h post challenge, and kept at a relatively higher level from 8 h to 24 h (\(p < 0.01 \)) (Fig. 1d).

Expression alternation of cgmiR-2d during *V. splendidus* challenge.

Five members of miR-2 family in oyster were first subjected to miRBase (http://www.mirbase.org) in search of homologues and were renamed subsequently according to their sequence similarity (Table 1). Consequently, a remarkable nucleotide similarity was observed among oyster miR-2 family members (Fig. 2a). Meanwhile, there was a great diversity within homologues of miR-2d from different organisms (Table 2) where cgi-miR-2d was highly conserved with that from *Lottia gigantean* (Fig. 2b). Moreover, all miR-2d were found derived from the 3′ arm of their precursor.

Previous ID	Present ID	Sequence (5′-3′)
cgi-miR-2e	cgi-miR-2a-1	UAUCACGCGACGUUUGAUA
cgi-miR-2d	cgi-miR-2a-2	UAUCACCGCCAGUUGAGACA
cgi-miR-2b	cgi-miR-2b-1	UAUCACCGCAGUUGAGACCU
cgi-miR-2c	cgi-miR-2b-2	GAUCACAGCCAGCUUUGAUGAG
cgi-miR-2a	cgi-miR-2d	UAUCACGCGUGCUUGGAUCAGU

Table 1. Homologues of miR-2 family in oyster.

The interaction between cgmiR-2d and CgI-B2 in vitro. CgI-B2 3′ UTR (291 bp in length) containing putative binding site of cgmiR-2d (from 84 to 105 nt, Fig. 2d) was first cloned using gene-specific primer and inserted subsequently into the psiCHECK-2 vector (designated as wild type vector) for luciferase reporter assays in HEK293T cells. At 24 h post transfection, the relative luminescence ratio in each group was detected and a significant decrease was observed in cgmiR-2d group (32.40%) in comparison with that in blank or miRNA control group (\(p < 0.05 \)) (Fig. 2e). Similarly, the decrease in relative luminescence ratio could also be observed in positive control group (binding site from 40 to 59 nt, \(p < 0.05 \)) (Fig. 2d,e). To further verify the binding specificity of cgmiR-2d, mutation was made on the CgI-B2 3′ UTR (designated as mutated type) which was complementary with seed region of cgmiR-2d (Fig. 2d). Consequently, no significant changes were observed in relative luminescence ratio of cgmiR-2d group while it decreased significantly in positive control group (\(p < 0.05 \)) (Fig. 2f). The relative expression level of CgI-B2 3′ UTR was subsequently measured in cells transfected with wild type vector by quantitative real-time PCR (qRT-PCR). Consistently, CgI-B2 3′ UTR decreased significantly in both cgmiR-2d group (0.84-fold of that in miRNA control group, \(p < 0.05 \)) and positive control group (0.35-fold of that in miRNA control group, \(p < 0.05 \)) when compared to that in blank or mRNA control group (Fig. 2g).

The interaction between cgmiR-2d and CgI-B2 in vivo and modulation on phagocytosis rate and apoptosis rate. Gain- and loss-of-function assay of cgmiR-2d were subsequently conducted in vivo by injecting cgmiR-2d mimics and inhibitors into oysters. The cgmiR-2d transcripts were first investigated at 24 h post injection. Consequently, a significant increase of cgmiR-2d transcripts was observed in cgmiR-2d group (2.49-fold of that in seawater group, \(p < 0.05 \)) (Fig. 3a) while they decreased robustly when cgmiR-2d inhibitors were injected (0.10-fold of seawater control group, \(p < 0.05 \)) (Fig. 3a). However, no significant changes of CgI-B1 or CgI-B3 transcripts were observed in either group at 24 h post injection (Fig. 3b,d). Comparatively, CgI-B2 transcripts decreased simultaneously in cgmiR-2d group (0.51-fold of seawater group, \(p < 0.05 \)) while increased significantly to 1.27-fold in cgmiR-2d inhibitor group when compared with seawater group (\(p < 0.05 \)) (Fig. 3c).

Alternations in phagocytosis and apoptosis rate of oyster haemocytes were also surveyed. It turned out that haemocyte phagocytosis rate increased after cgmiR-2d overexpression (2.83%, \(p < 0.05 \)) and decreased when cgmiR-2d was repressed by its inhibitor (1.16%, \(p < 0.05 \)) in comparison with that in seawater group (2.10%, Fig. 3e). In addition, a significant decrease of phagocytosis rate was observed at 24 h after *V. splendidus* challenge (Fig. 3e). The apoptosis rate of haemocytes was down-regulated significantly (28.57%, \(p < 0.05 \)) after gain-of-function assay of cgmiR-2d whereas it remained unchanged after cgmiR-2d inhibition (Fig. 3e). The apoptosis rate of haemocytes in bacteria challenge group, however, decreased remarkably at a relatively higher level from 8 h to 24 h (\(p < 0.05 \)) (Fig. 3e).

Haemocyte phagocytic and apoptotic changes after CgI-B2 knock-down assay in vivo. DsRNA of CgI-B2 was synthesized in vitro using a fragment from CgI-B2 coding region which was unique in genome and injected into oysters for knock-down assay in vivo (Fig. 4a, Supplementary Fig. S2). The expression level of CgI-B2 in siCgI-B2 group was surveyed at 24 h post injection and was found declined remarkably (0.48-fold of that in siEGFP group, \(p < 0.05 \)) (Fig. 4b). Correspondingly, the phagocytosis rate increased significantly in siCgI-B2 group when compared with that in siEGFP group (3.00% verse 0.90%, \(p < 0.05 \)) (Fig. 4c). And the
Discussion

Phagocytosis against bacteria has been regarded as a fundamental event in host immune process and contributes greatly to the homeostasis of organism during pathogen challenge\(^\text{21}\). It has been observed that phagocytosis of molluscan haemocytes could also be rapidly triggered after stimulation and dedicate to the fast elimination of invaded microbes\(^\text{22,28,29}\). In the present study, the phagocytosis rate of oyster haemocytes also increased significantly at 12 h post\(^\text{V. splendidus}\) challenge (Fig. 1a) and declined afterward. The spontaneous alternation in haemocyte phagocytosis highlighted the intense immune response inside the oysters and indicated the rigorous modulation beneath.

Within mass of immune-related pathways, the NF-\(\kappa\)B pathway has been well investigated as a global regulator of immune response including phagocytosis, where I\(\kappa\)B genes are regarded as hallmarks\(^\text{4}\). Here, the expression levels of three CgI\(\kappa\)Bs in haemocytes were also surveyed during challenge in reflection of NF-\(\kappa\)B activation. As a result, three CgI\(\kappa\)Bs were rigorously modulated during challenge (Fig. 1b–d) with different expression pattern, which was similar with previous findings\(^\text{25,26}\), demonstrating the dynamic involvement of NF-\(\kappa\)B pathway in immune response of mollusk as well as the functional distinctions among CgI\(\kappa\)Bs\(^\text{30}\). Moreover, an opposite alternation pattern was observed between the CgI\(\kappa\)B2 transcripts and haemocyte phagocytosis (Fig. 1a,c). Given the interaction between phagocytosis and NF-\(\kappa\)B pathway in mammals, we deduced audaciously that oyster phagocytosis could also be modulated by CgI\(\kappa\)B2. Correspondingly, the phagocytosis rate of oyster haemocytes increased...
significantly in CgIκB2 knock-down assay in vivo (Fig. 4a,b), confirming our speculations above. Paradoxically, CgIκB2 remained at basal level at 12 h post challenge, suggesting the existence of post-transcription regulation. Within the expectation, cgi-miR-2d, a putative regulator of CgIκB2, was found up-regulated markedly during bacteria challenge (Fig. 2c). The interaction between cgi-miR-2d and CgIκB2 was then verified both in vitro and in vivo.

To date, mass of miRNAs has been identified and proved crucial in diverse biological processes, especially in immune response. It was also suggested that majority of miRNAs could regulate target genes post-transcriptionally by binding to their 3′UTR region. The putative modulation by cgi-miR-2d was first confirmed in vitro by CgIκB2 3′UTR luciferase reporter assay in HEK293T cells (Fig. 2d). Consequently, an intense depression of relative luminescence ratio was observed when cgi-miR-2d was co-transfected with wild type CgIκB2 3′UTR (Fig. 2e) while it remained unchanged when the binding site of cgi-miR-2d at 3′UTR was mutated (Fig. 2f). Besides, some reports have also found that the transcripts of target genes could be degraded partly
by miRNA in imprecise complementation with their 3′UTR33, or completely when miRNAs were in complete complementation34,35. Herein, similar results could also be observed where CgIκB2 3′UTR transcripts decreased in both positive control and cgi-miR-2d group (Fig. 2g), reconfirming the interaction between CgIκB2 3′UTR and cgi-miR-2d in vitro. The interaction between cgi-miR-2d and CgIκB2 was then verified in vivo by gain- and loss-of-function assay of cgi-miR-2d. Consistently, the expression level of CgIκB2 decreased significantly during gain-of-function assay of cgi-miR-2d in vivo, and increased when endogenous cgi-miR-2d was repressed by its inhibitor (Fig. 3a,c). Meanwhile, no significant changes of CgIκB1 or CgIκB3 transcripts were observed in gain- and loss-of-function assay of cgi-miR-2d (Fig. 3b,d). Collectively, those results confirmed the interaction between cgi-miR-2d and CgIκB2, which might dedicate crucially in modulating host immune response.

As mentioned, massive reports in mammals have revealed the interaction between NF-κB pathway and phagocytosis36–38. Recently, report in Apostichopus japonicus has also depicted the participation of miRNAs in haemocytes phagocytosis12. Given that CgIκBs could repress NF-κB activation in vitro25,26, the interaction between cgi-miR-2d and CgIκB2 was therefore supposed to augment haemocyte phagocytosis by modulating NF-κB pathway. Unexpectedly, a significant increase of phagocytic rate was observed in cgi-miR-2d overexpression group (Fig. 3c), which was similar with that in CgIκB2 knock-down group (Fig. 4c). And the increase caused by cgi-miR-2d could also be reversed by cgi-miR-2d inhibitors (Fig. 3c), accompanying with increase of CgIκB2 transcripts. Among the numerous miRNAs identified from diverse species39, miR-2 family was found expressed exclusively in invertebrates and could promote cell survival40. In the meantime NF-κB pathway has also been well-known in anti-apoptosis in either oysters (Fig. 4c) or mammals7,37,38. Thence, alternations on haemocyte apoptosis rate were surveyed simultaneously. Accordingly, it decreased significantly after gain-of-function assay ofcgi-miR-2d in vivo and increased when cgi-miR-2d was inhibited (Fig. 4c). However, the apoptosis rate decreased remarkably after V. splendidus challenge, suggesting a more complicated modulation network during stimulation. Nevertheless, these results verified the interaction between cgi-miR-2d and CgIκB2 and depicted their contribution on the phagocytosis rate of haemocytes. Given to the expression changes of cgi-miR-2ad and CgIκB2, their interaction might also dedicate importantly to oysters immune response during bacteria challenge (Fig. 5)27 as well as the oysters’ thriving in intertidal regions.

Materials and Methods

Oyster culture, bacteria challenge and sample collection. Oysters C. gigas (averaging 150 mm in shell length, 70 mm in width) engaged in this experiment were collected from a local farm in Qingdao, China. A narrow notch was sawed in the oyster shell where was close to the adductor muscle for subsequent injection20. All oysters were then acclimatized in aerated sea water (about 20 °C) for two weeks before use.
A total of 30 oysters were employed for bacteria stimulation to investigate expression changes of cgi-miR-2d identified previously. Briefly, oysters in PBS control group and \(V. \) splendidus challenge group were injected with 100 \(\mu \)L of phosphate buffered saline (PBS, 0.14 mol L\(^{-1}\) sodium chloride, 3 mmol L\(^{-1}\) potassium chloride, 8 mmol L\(^{-1}\) disodium hydrogen phosphate dodecahydrate, 1.5 mmol L\(^{-1}\) potassium phosphate monobasic, pH 7.4) and 100 \(\mu \)L suspension of alive \(V. \) splendidus strain (1 \(\times \) 10\(^{7}\) CFU mL\(^{-1}\) in PBS), respectively. At 12 h later, haemocytes from five oysters in each group were collected from cardiocoel by centrifugation at 800 \(g \), 4 °C for 10 minutes and pooled together for subsequent miRNA extraction and qRT-PCR analysis of cgi-miR-2d. Another 360 oysters were also employed for bacteria challenge. Similarly, oysters in seawater control group and \(V. \) splendidus challenge group were stimulated with 100 \(\mu \)L sterile seawater and 100 \(\mu \)L suspension of alive \(V. \) splendidus strain (1 \(\times \) 10\(^{7}\) CFU mL\(^{-1}\) in sterile seawater), respectively. Haemocytes from five oysters in each group were collected at 0, 4, 8, 12 and 24 h post injection, and pooled together for subsequent RNA extraction and qRT-PCR analysis of CgI\(\kappa \)Bs. Haemocytes from another five individuals were also sampled for quantitative analysis of cgi-miR-2d. Additional five oysters in each group were sampled likewise at 8, 12 and 24 h post injection for the analysis of haemocyte phagocytic rate.

All trials were conducted with three biological replicates.

RNA isolation, cDNA synthesis and SYBR Green fluorescent qRT-PCR. RNA isolation and cDNA synthesis were conducted using methods in previous reports\(^{42}\). The SYBR Green fluorescent qRT-PCR was carried out in an ABI 7500 Real-time Thermal Cycler according to the manual (Applied Biosystems). The gene-specific primers were designed according to its cDNA sequences and listed on Table 3. Briefly, a reaction mix with 5 \(\mu \)L of 2 \(\times \) SYBR Green Master Mix (Takara), 2 \(\mu \)L of the diluted cDNA templates, 0.2 \(\mu \)L of each primers (10 mmol L\(^{-1}\)), 0.2 \(\mu \)L ROX Reference Dye II and 2.4 \(\mu \)L of DEPC water was used to amplify corresponding genes. The elongation factor (EF) gene\(^{43}\) was used as an internal control for the expression analysis of oyster CgI\(\kappa \)Bs.

Total miRNAs were extracted using PureLink miRNA Isolation Kit (Invitrogen) according to the manufacturer’s protocol. The synthesis of cDNA was conducted using miScript II RT (Qiagen) with miRNA extracted above at 37 °C for 1 h and terminated by heating at 95 °C for 5 min. The cDNA mix obtained was diluted with the addition of 200 \(\mu \)L RNAse-free water before use. The SYBR green fluorescent qRT-PCR was carried out in a total volume of 25.0 \(\mu \)L, containing 12.5 \(\mu \)L of 2 \(\times \) miScript SYBR Green PCR Master Mix (Qiagen), 2.5 \(\mu \)L of diluted RNA isolation, cDNA synthesis and SYBR Green fluorescent qRT-PCR.

Table 3. Primers and RNAs used in this study.

Category	Primer and RNA name	Sequence (5′-3′)
RNAs	cgi-miR-2d mimics	UAUCACGGCCUCUUGGACAGUGUAUGGCGGUGUAGAUU
	Positive control	GUGGUACACAGAGAACACCCCUAGGAUGAGACACCU
	miRNA control	UUUUCGAACGGUCUCAGGUTTACGGUGACGAGGAGATT
	cgi-miR-2d inhibitor	ACUGAUCCAAGGCCGUGUAGAU
UTR clone primers	Cgls-B2_UTRclone_F	TATTACAACCTGTTGGCATGTGGA
	AP-dT	GGCACCGGTGACTAGTACT
	Cgls-B2_mutate_F	AGCTGACGACACTAGTCTGGATTT
	Cgls-B2_mutate_R	ACAATCGCATGATGTCAGTC
Recombination primers	Cgls-B2_XhoI	CTGGGAGAAAGGGACTGCCGGAAA
	Cgls-B2_NotI	GCAGCCGGTTTAGACTGTCTGT
RNAi clone primers	sTcGls-B2_basic_F	AGACCCATGCAAACATCTGGAC
	sTcGls-B2_basic_R	CTCTCTTCTCCCTCGGATTCGTC
	sTcGls-B2_T7_F	TAATAGCTACATAGGAGACAGACCAAAGT
	sTcGls-B2_T7_R	TAATAGCTACATAGGAGACAGACCAAAGT
Real-Time primers	GAPDH_F	AGTGCGTGATGAACGCGATTTG
	GAPDH_R	TGTAGACCATGATGCGAGGGTC
	EF-F	AGTCACCAAGGGCTGCAGAAAG
	EF_R	TCGGAGATATTTGTGGTGTGT
	Cgls-B1_RT_F	CCCCCTACATTGGCCAGTAG
	Cgls-B1_RT_R	ATGGGGAGATGGGTGGTGTCT
	Cgls-B2_RT_F	CGAATTGATGAATGGGTGGTGT
	Cgls-B2_RT_R	CACACATGACGATGACAG
	Cgls-B3_RT_F	ACGTTCCTCTCTCGAACATCGACT
	Cgls-B3_RT_R	CGTGTGACATGGGATCGGGCAAAT
	cgi-miR-2d	TTACAGCCTGGTCATGGATG
	rRNA_5s	CAAGATGACAGCGAAAA

A total of 30 oysters were employed for bacteria stimulation to investigate expression changes of cgi-miR-2d identified previously. Briefly, oysters in PBS control group and \(V. \) splendidus challenge group were injected with 100 \(\mu \)L of phosphate buffered saline (PBS, 0.14 mol L\(^{-1}\) sodium chloride, 3 mmol L\(^{-1}\) potassium chloride, 8 mmol L\(^{-1}\) disodium hydrogen phosphate dodecahydrate, 1.5 mmol L\(^{-1}\) potassium phosphate monobasic, pH 7.4) and 100 \(\mu \)L suspension of alive \(V. \) splendidus strain (1 \(\times \) 10\(^{7}\) CFU mL\(^{-1}\) in PBS), respectively. At 12 h later, haemocytes from five oysters in each group were collected from cardiocoel by centrifugation at 800 \(g \), 4 °C for 10 minutes and pooled together for subsequent miRNA extraction and qRT-PCR analysis of cgi-miR-2d. Another 360 oysters were also employed for bacteria challenge. Similarly, oysters in seawater control group and \(V. \) splendidus challenge group were stimulated with 100 \(\mu \)L sterile seawater and 100 \(\mu \)L suspension of live \(V. \) splendidus strain (1 \(\times \) 10\(^{7}\) CFU mL\(^{-1}\) in sterile seawater), respectively. Haemocytes from five oysters in each group were collected at 0, 4, 8, 12 and 24 h post injection, and pooled together for subsequent RNA extraction and qRT-PCR analysis of CgI\(\kappa \)Bs. Haemocytes from another five individuals were also sampled for quantitative analysis of cgi-miR-2d. Additional five oysters in each group were sampled likewise at 8, 12 and 24 h post injection for the analysis of haemocyte phagocytic rate.

All trials were conducted with three biological replicates.
Target prediction of cgi-miR-2d and 3′UTR luciferase reporter assay. The cgi-miR-2d mimics which would alter into single strand in vivo and be identical with endogenous cgi-miR-2d were synthesized by GenePharma. A positive miRNA mimics with binding capability to Cgl:B2 3′UTR (from 40 to 59 nt) was also synthesized. miRNA control originated from C. elegans and could not target any oyster genes or mimic any oyster miRNAs as was well employed. Cgi-miR-2d inhibitors which were in complete complementation with cgi-miR-2d and could sequester it by binding were synthesized for loss-of-function assay. All RNA was diluted at a final concentration of 20 μmol L⁻¹ using DEPC water before use. These RNA sequences were listed on Table 3.

Target prediction of cgi-miR-2d was conducted by miRanda using 3′UTR sequences deduced from oyster genome information⁽¹⁰⁾. The wild type or mutated type of Cgl:B2 3′UTR was cloned with gene-specific primers (Table 3) and inserted into psiCHECK-2 vector (Promega) for subsequent luciferase reporter assay with methods described previously⁽¹⁵⁾. Briefly, a total of 1 x 10⁶ HEK293T cells were seeded into each well of 48-well plates and cultured overnight before transfection. Cells in positive control, cgi-miR-2d and miRNA control were then transfected with a mixture of 100 ng luciferase reporter plasmid (extracted by Tiangen EndoFree Maxi Plasmid Kit) and 5 pmol positive control or cgi-miR-2d mimics or miRNA control using Lipofectamine 2000 reagent (Invitrogen) according to the protocol. Cells transfected merely with recombined vector were employed as blank group. The detailed information was listed on Supplementary Table S1.

The luciferase activities in those groups were measured at 24 h post transfection according to the manufacturer’s instruction using Dual-Luciferase Reporter Assay System Kit (Promega). Briefly, cells in each well were firstly lysed using Passive Lysis Buffer provided by the kit. A total of 100 μL LARII was then added into 20 μL cell lysates to detect the firefly luciferase activity using luminometer. And a volume of 100 μL Stop & Glo Reagent was added into the mixture to measure renilla luciferase activity. Cells transfected with wild type 3′UTR were also harvested for quantitative real-time PCR of Cgl:B2 3′UTR with GAPDH as the internal control. Each trial was conducted with three replicates.

Gain- and los-of-function assay of cgi-miR-2d in vivo. A number of 90 oysters were employed for gain- and loss-of-function assay and randomly divided into three groups (designated as seawater, cgi-miR-2d and cg-miR-2a inhibitor group), receiving an injection of 100 μL sterile seawater, 2.5 nmol cgi-miR-2d mimics (in 100 μL sterile seawater) and 2.5 nmol cg-miR-2d inhibitors (in 100 μL sterile seawater), respectively. Haemocytes from five oysters in each group were collected afterward at 24 h post injection to survey expression changes of Cgl:B2s. The phagocytosis and apoptosis rate of haemocytes were also surveyed at the same time of five oysters. Oysters challenged with V. splendidus for 24 h (designated as V. splendidus group) were also employed and subjected for phagocytosis and apoptosis assay. Each trial was conducted with three replicates.

Cgl:B2 knock-down assay in vivo. DsRNA synthesis was conducted using method described in previous reports⁽⁴⁵⁾. Briefly, a fragment from Cgl:B2 coding region (85 nt to 474 nt) which was unique among oyster coding genes was firstly cloned and subjected to siDirect2 (http://sidirect2.rnai.jp/) for siRNA prediction. A pair of T7 promoter linker primed was then employed for in vitro transcription of Cgl:B2 dsRNA. A DNA fragment (657 bp) from pEGFP-N1 vector (Clontech) was also cloned to synthesize control dsRNA⁽⁴⁵⁾.

A total of 90 oysters were employed and randomly divided into three groups for subsequent knock-down experiment. Oysters in seawater group, siCgl:B2 group and siEGFP group were injected with 100 μL sterile seawater, 100 μg dsRNA of Ixb (in 100 μL sterile seawater) and 100 μg dsRNA of EGFP (in 100 μL sterile seawater), respectively, and the haemocytes were sampled from cardiocoelom at 24 h later to detect expression changes of Cgl:B2. The haemocytes from another five oysters in each group were also collected for phagocytic and apoptosis detection. All the trials were conducted with three parallel replicates.

Determination of haemocyte phagocytosis and apoptosis rate. Phagocytosis rate was determined using the method modified from previous report⁽²⁰⁾. In brief, V. splendidus cultured at 16 °C overnight was labeled by FITC (Sigma) and diluted to 10⁸ cells mL⁻¹ for later use. Oyster haemocytes collected freshly with acid citrate-dextrose anticoagulant agent (22 g L⁻¹ Sodium Citrate, 8 g L⁻¹ citric acid, 24.5 g L⁻¹ glucose, pH 7.4) were resuspended in L15 medium (Gibco) to a final concentration of 2 x 10⁸ cells mL⁻¹ before the incubation with the same volume of FITC-labeled V. splendidus for 60 min. The incubated haemocytes were then washed for three times with L15 medium to remove extracellular bacteria. After a recollection by centrifugation at 800 × g, 4 °C for 5 min, haemocytes were subjected to flow cytometry (BD Biosciences) to investigate phagocytosis rate.

Haemocyte apoptosis rate was measured using the Annexin V-FITC Detection Kit (Beyotime). In brief, 200 μL of diluted haemocytes were incubated firstly with 5 μL of Annexin V-FITC in the dark at room temperature for 10 min and then with 10 μL propidium iodide for 5 min. Haemocytes were also subjected to flow cytometry for apoptosis rate detection after the wash and recollection.

Statistical analysis. All data were given as means ± S.D. One-way analysis of variance (one-way ANOVA) followed by a multiple comparison (LSD method) was used subsequently to determine difference. Asterisks (’*’ if p < 0.05, ** if p < 0.01) or different letters (a, b, c etc. if p < 0.05) were marked on the top of bar to indicate significant difference.

References
1. Underhill, D. M. & Ozinsky, A. Phagocytosis of microbes: complexity in action. Annu Rev Immunol 20, 825–852 (2002).
2. Steven Greenberg & Grinstein, S. Phagocytosis and innate immunity. Curr Opin Immunol. 14, 136–145 (2002).
3. Jutras, I. & Desjardins, M. Phagocytosis: at the crossroads of innate and adaptive immunity. Annu. Rev. Cell Dev. Biol. 21, 511–530 (2005).
Tripathi, P. & Aggarwal, A. NF-κB transcription factor: a key player in the generation of immune response. *Curr Sci* **90**, 519–531 (2006).

Ghosh, S., May, M. J. & Kopp, E. B. NF-κB and Rel proteins: evolutionarily conserved mediators of immune responses. *Annu Rev Immunol* **16**, 225–260 (1998).

Siebenlist, U., Fransozo, G. & Brown, K. Structure, regulation and function of NF-κB. *Annu Rev Cell Biol* **10**, 405–455 (1994).

Antwerp, D. J. V., J. Martin, S., M.Verna, I. & B. Green, D. Inhibition of TNF-induced apoptosis by NF-κB. *Trends In Cell Biol* **8**, 107–111 (1998).

Baueurle, P. & Baltimore, D. I kappa B: a specific inhibitor of the NF-kappa B transcription factor. *Science* **242**, 540–546 (1988).

Beg, A. A. & Baldwin, A. S. I kappa B: multifunctional regulators of Rel/NF-kappaB transcription factors. *Genes & Dev* **7**, 2064–2070 (1993).

Bartel, D. P. MicroRNAs genomics, biogenesis, mechanism, and function. *Cell* **116**, 281–297 (2004).

Kozomara, A. & Griffiths-Jones, S. miRBase: annotating high confidence microRNAs using deep sequencing data. *Nucleic Acids Res* **42**, D68–73 (2014).

Liu, R. *et al.* miRNA-133 augments coelomocyte phagocytosis in bacteria-challenged *Apostichopus japonicus* via targeting the TLR component of IRAK-1 in vitro and in vivo. *Sci Rep* **5**, 12608 (2015).

Yang, L., Yang, G. & Zhang, X. J. The miR-100-mediated pathway regulates apoptosis against virus infection in shrimp. *Fish Shellfish Immunol* **40**, 146–153 (2014).

Bandyopadhyay, S. *et al.* MicroRNA-133a-1 regulates inflammasome activation through uncoupling protein-2. *Biochem Biophys Res Co* **439**, 407–412 (2013).

Hou, J. *et al.* MicroRNA-146a feedback inhibits RIG-I-dependent Type I IFN production in macrophages by targeting TRAF6, IRAK1, and IRAK2. *J Immunol* **183**, 2150–2158 (2009).

Xiao, C. & Rajewsky, K. MicroRNA control in the immune system: basic principles. *Cell* **136**, 26–36 (2009).

Ma, X., Bucaglia, L. E. B., Barker, J. R. & Li, Y. MicroRNAs in NF-κB pathway and reduced interleukin-8 expression. *Mol Hum Reprod* **18**, 136–145 (2012).

Dai, L., Gu, L. Y. & Di, W. MiR-199a attenuates endometrial stromal cell invasion through repression of the IKK/NF-κB pathway and reduced interleukin-8 expression. *Mol Hum Reprod* **18**, 136–145 (2011).

Zheng, G. *et al.* The oyster genome reveals stress adaptation and complexity of shell formation. *Nature* **490**, 49–54 (2012).

Zhang, T. *et al.* The specifically enhanced cellular immune responses in Pacific oyster (*Crassostrea gigas*) against secondary challenge with *Vibrio splendidus*. *Dev Comp Immunol* **45**, 141–150 (2011).

Henneke, P. & Golenbock, D. T. Phagocytosis, innate immunity, and host-pathogen specificity. *J Exp Med* **199**, 1–4 (2004).

Kuchel, R. P., Aladaileh, S., Birch, D., Vella, N. & Raftos, D. A. Phagocytosis of the protozoan parasite, *Martelia sydneyae*, by Sydney rock oyster (*Saxidomus gregorii*) hemocytes. *J Invertebr Pathol* **104**, 97–104 (2010).

Montagnani, C., Labreuche, Y. & Escobas, J. M. Cg-IκB, a new member of the IκB protein family characterized in the oyster *Crassostrea gigas*. *Dev Comp Immunol* **32**, 182–190 (2008).

Montagnani, C., Kappler, C., Reichhart, J. M. & Escobas, J. M. Cg-Rel, the first Rel/NF-κB homolog characterized in a mollusk, the Pacific oyster *Crassostrea gigas*. *FEBS Letters* **561**, 75–82 (2004).

Zhang, T., He, X. & Yu, Z. N. Two homologues of inhibitor of NF-κB kappa B (IκB) are involved in the immune defense of the Pacific oyster, *Crassostrea gigas*. *Fish Shellfish Immunol* **30**, 1354–1361 (2011).

Xu, F. *et al.* CgIκB, the third novel inhibitor of NF-κB kappa B (IκB) protein, is involved in the immune defense of the Pacific oyster, *Crassostrea gigas*. *Fish Shellfish Immunol* **46**, 648–655 (2015).

Zhou, Z. *et al.* The identification and characteristics of immune-related microRNAs in haemocytes of oyster *Crassostrea gigas*. *PLoS One* **9**, e88397 (2014).

Canesi, L., Gallo, G., Gavioli, M. & Pruzzo, C. Bacteria–hemocyte interactions and phagocytosis in marine bivalves. *Microbes Res Techniq* **57**, 469–476 (2002).

Rodrick, G. E. & Ulrich, S. A. Microscopical studies on the hemocytes of bivalves and their phagocytic interaction with selected bacteria. *Helgoland Mar Res* **37**, 167–176 (1984).

Albert, S. & Baldwin, J. The NF-κB and IκB proteins: new discoveries and insights. *Annu Rev Immunol* **14**, 649–681 (1996).

Pauley, K. M. & Chan, E. K. MicroRNAs and their emerging roles in immunology. *Ann N Y Acad Sci* **1143**, 226–239 (2008).

Lewis, B. P., Burge, C. B. & Bartel, D. P. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. *Cell* **120**, 15–20 (2005).

Bazzini, A. A., Lee, M. T. & Giraldes, A. J. Ribosome profiling shows that miR-430 reduces translation before causing mRNA decay in zebrafish. *Mol Biol Evol* **23**, 221–233 (2011).

Shabalina, S. A., And Koonin, E. V. Origins and evolution of eukaryotic RNA interference. *Trends Ecol Evol* **23**, 578–587 (2008).

Axtell, M. J., Westholm, J. O. & Lai, E. C. Vive la différence: biogenesis and evolution of microRNAs in plants and animals. *Genome Biol* **12**, 221–233 (2011).

Iyori, M. *et al.* Resveratrol modulates phagocytosis of bacteria through an NF-κB-dependent gene program. *Antimicrob Agents Ch** **52**, 121–127 (2008).

Mauri, M. C. *et al.* NF-κB regulates inflammatory cell apoptosis and phagocytosis in rat carrageenin-sponge implant model. *Am J Pathol* **165**, 115–126 (2004).

Ren, S. *et al.* NF-κB and c-Rel subunits promote phagocytosis and cytokine secretion by splenic macrophages in cirrhotic patients with hypersplenism. *Int J Biochem Cell Biol* **45**, 335–343 (2013).

Tarver, J. E. *et al.* miRNAs: Small Genes with Big Potential in Metazoan Phylogenetics. *Mol Biol Evol* **30**, 2369–2382 (2013).

Marco, A., Hook, K. & Griffiths-Jones, S. Evolution and function of the extended miR-2 microRNA family. *RNA Biol* **9**, 242–248 (2012).

Liu, R. *et al.* Identification and characterisation of pathogenic *Vibrio splendidus* from Yesso scallop (*Patinopsecten yessoensis*) cultured in a low temperature environment. *J Invertebr Pathol* **114**, 144–150 (2013).

Shi, X. W. *et al.* The immunomodulation of acetylcholinesterase in zhihong scallop *Chlamys farreri*. *PLoS One* **7**, e30828 (2012).

Zhang, L. L., Li, L. & Zhang, G. F. A *Crassostrea gigas* Toll-like receptor and comparative analysis of TLR pathway in invertebrates. *Fish Shellfish Immunol* **30**, 653–660 (2011).

Livak, K. J. & Schmittgen, T. D. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. *Methods* **25**, 402–408 (2001).

Wang, M. Q. *et al.* A primitive Toll-like receptor signaling pathway in mollusk *Zhihong scallop Chlamys farreri*. *Dev Comp Immunol* **35**, 511–519 (2011).

Acknowledgements

We thank to Dr. Sudha Kappalli from Sree Narayana College, India, for discussions and critical reading of the manuscript, and the authors were also grateful to all the laboratory members for continuous technical advice and helpful discussion. This research was supported by the earmarked funds for Modern Agro-industry Technology Research System (CARS-48), the Taishan Scholar Program of Shandong.
Author Contributions
H.C. carried out the molecular lab work and data analysis, participated in the design of the study and drafted the manuscript. W.I.W. carried out part of molecular lab work. Z.Z., H.W., R.L. and L.M.Q. participated in the design of the study and discussed the results. L.L.W. and L.S.S. conceived of the study, designed the study, coordinated the study and helped draft the manuscript. All authors gave final approval for publication.

Additional Information
Supplementary information accompanies this paper at http://www.nature.com/srep

Competing financial interests: The authors declare no competing financial interests.

How to cite this article: Chen, H. et al. An invertebrate-specific and immune-responsive microRNA augments oyster haemocyte phagocytosis by targeting CgIκB2. Sci. Rep. 6, 29591; doi: 10.1038/srep29591 (2016).

This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/