Implications of a New Characterisation of the Distribution of Twin Primes

P.F. Kelly\(^1\) and Terry Pilling\(^2\)

Department of Physics
North Dakota State University
Fargo, ND, 58105-5566
U.S.A.

Abstract

We bring to bear an empirical model of the distribution of twin primes and produce two distinct results. The first is that we can make a quantitative probabilistic prediction of the occurrence of gaps in the sequence of twins within the primes. The second is that the “high jumper” \textit{i.e.}, the separation with greatest likelihood (in terms of primes) is always expected to be zero.

Key words: Twin primes

MCS: 11N05 (Primary) 11B05, 11A41 (Secondary)

1 Introduction

In a recent paper \cite{TPI}, hereafter referred to as \textit{TPI} we introduced a novel empirical characterisation of the sequence of twin primes. Notation, nomenclature and conventions developed in \textit{TPI} are carried over here. There are three salient features of the model. First is the viewpoint that the sequence of twins is most naturally and usefully considered as a subset of the primes rather than in terms of the natural numbers. The second feature is that for the finite subset of primes less than some number \(N\), twins occur in the manner of fixed-probability random events. \textit{i.e.}, there is a constant probability that each successive prime following a given twin is itself the first member of the next twin. The third feature is that this “constant” probability is not universal. It varies in a rather simple way with the length of the sequence of primes up to \(N\).

In this paper, we investigate a number of aspects of and make predictions which follow directly and indirectly from this new model for the distribution of twins. In the next section, we shall briefly describe the details of our empirical model. The following section consists of two separate results. First are probabilistic predictions for the occurrences of large gaps in the sequence of twins. These predictions are verified by direct comparison in the regime in which the model was constructed. One important comment that must be made is that the gaps that we note are separations in the sequence of primes. Those usually quoted in the literature are \textit{arithmetic differences}, or spacings in the natural numbers. The second result we report is that the so-called “high-jumper” (the most probable prime separation) is zero in our model. Our results do not admit a direct comparison with high-jumper analyses extant in the literature which are concerned with most probable natural number separations between twins less than a given \(N\).

2 The Model

The model that we consider is empirical in that it is derived from a direct analysis of the distribution of twin primes less than \(2 \times 10^{11}\). The essential feature which provides the key to the success of the model is
that the distribution of twins is considered in the context of the primes alone rather than within the natural numbers. The model is based upon the observation that twins less than some number N seem to occur as fixed-probability random events in the sequence of primes. That is, there is a characteristic distribution of \textit{prime separations} which may expressed in the form

$$P(s, \pi_1) = m e^{-ms}.$$ \hfill (1)

Here, π_1 is the number of primes less than or equal to N, s is the \textit{prime separation} (the number of unpaired singleton primes occurring between two twins), and m is a decay parameter which is constant for a given N, but varies with π_1. $P(s, \pi_1)$ is the continuous probability density that a given pair of twins in the sequence of primes up to N has prime separation s. It is properly normalized: $\int_0^\infty P(s, \pi_1) \, ds \equiv 1$.

We chose a representative sample of prime sequences and determined the decay constants for each. We began our analysis with $(5, 7)$, discarding the anomalous twin $(3, 5)$. The variation of the decay parameters – the slopes on a plot of log(frequency) \textit{versus} separation – is well-described by the following function:

$$-m(\pi_1) = -(1.321 \pm .008) \log(\pi_1).$$ \hfill (2)

We refer the interested readers to \textit{TPI} for detailed discussion of the derivation of this result and reinforcement of the claim that this form for m is consistent with the Prime Number Theorem, the Twin Prime Conjecture, and the Hardy–Littlewood Conjecture for twins.

\section{Two Results}

Armed with this model for the distribution of twins we now undertake some analyses of its predictions.

\subsection{Gaps}

Those who are actively enumerating twin primes are quite interested in the occurrences of large gaps \cite{2, 3, 4, 5}. In our probabilistic model we can make estimates for the threshold number at which we might expect particular large prime separations to appear. The analysis below does just that. There is a caveat however: the gaps that we determine are prime separations, while the gaps referred to in the literature are gaps in the natural number sequence \textit{i.e.}, arithmetic differences between an element of a twin and the corresponding element of its immediate predecessor.

To determine likelihood thresholds for large prime separations, we need to convolve the behaviour of m as a function of $\log(\pi_1)$ with its role in expressing the probability (or frequency) of separations P. Simply put, the probability that a particular large prime separation s_L occurs is (we set $ds = \Delta s = 1$)

$$P(s_L, \pi_1) = \frac{m_0}{\log(\pi_1)} \exp\left(-\frac{m_0 s_L}{\log(\pi_1)}\right).$$ \hfill (3)

In this expression for the probability, we have merely taken (1) and inserted our empirical fit for m \textit{where}, for convenience, we have written m_0 instead of the central value of the constant 1.321. The probability is the expected normalised frequency of each type of gap among the π_2 twins (actually there are $\pi_2 - 1$ gaps between the twins, but we drop the -1 in this analysis).

While this is completely correct as it stands, and provides the probability that a prime separation of magnitude s_L occurs somewhere within the subset of first primes with length π_1, this not quite what is wanted. Instead of looking for a gap of length s_L, we should be considering any gap of length greater than or equal to s_L. To accomplish this, we integrate P from s_L to ∞, and obtain the probability that a prime separation $\geq s_L$ occurs

$$P_{\geq}(s_L, \pi_1) = \exp\left(-\frac{m_0 s_L}{\log(\pi_1)}\right).$$ \hfill (4)
Let us set a minimum threshold of f separation “events” out of the total number, π_2, where f is a risk factor allowing one to be more cautious ($f > 1$) or more daring ($f < 1$). Fixing

$$P_{\geq}(s_L, \pi_1) = \frac{f}{\pi_2},$$

leads to a relation among the size of the gap, the prime and twin counts, and the risk factor:

$$s_L = \frac{1}{m_0} \log(\pi_1) \left(\log(\pi_2) - \log(f) \right).$$

To cast this in a more useful form, we will utilise the well-known approximate formulae for π_1 and π_2 quoted in TPI.

$$\tilde{\pi}_1(N) \sim \frac{N}{\log(N)}, \quad \tilde{\pi}_2(N) \sim 2c_2 \frac{N}{(\log(N))^2}.$$

With these approximations, (5) becomes

$$s_L = \frac{1}{m_0} \left[\log(N) - \log(\log(N)) \right] \left[\log(N) - 2\log(\log(N)) + \log(2c_2) - \log(f) \right].$$

While this equation does not admit simple inversion to determine $N(s_L)$, it is readily graphed. We do this below up to prime separations of about 250 allowing us to compare the predictions of our probabilistic model with the data.

![Prime gap vs. log(N), for $m_0 = 1.321$, and $0.1 \leq f \leq 10$. The points mark the onset of successive maxima in the spectrum of gaps.](image)

As one can see from the graph, the probabilistic model yields predictions which conform extremely well with the available data. The shape of the curves which bound our cautious–daring range is consistent with the Hardy–Littlewood Conjecture for twins in that the twins become more sparse among the primes as N increases.
3.2 High-Jumpers

The high-jumper at any fixed N is the natural number separation which occurs most frequently between consecutive primes less than N. The high-jumpers are observed to increase with N [6]. Exactly the same analysis can be carried over to the case of twins.

We refine the notion of a twin high-jumper to conform to our viewpoint that it is the distribution of twins among the primes themselves, not the natural numbers, which is significant. In other words our twin high-jumper is the most probable prime separation at any given N. With our probabilistic decay model for the occurrence of twins, it necessarily follows that the most likely high-jumper for twins is always zero.

We note that this claim is crucially dependent upon our model for the slope $-m$ tending to 0^- (or any finite negative value) rather than a positive value as $N \rightarrow \infty$. Furthermore, we recognise that since the slowly-varying probability model for the occurrence of twins is stochastic, there may exist ranges of N for which the high-jumper is actually 1 or 2 or greater.

4 Conclusion

In this paper, we report on two results that follow straightforwardly from our novel characterisation of the sequence of twin primes as slowly-varying probability random events among the primes themselves. The first is that the model can be used to make probabilistic predictions for the onset of appearance of prime separations of a given (large) size. We have done this and the predictions agree very well in the regime where we have data. We believe that the predictions extrapolate and remain valid beyond the range of our data. The second result is that the so-called twin prime high-jumper, the mode prime separation, is always predicted to be zero by the very structure of the empirical model.

5 Acknowledgements

PFK and TP thank J. Calvo and J. Coykendall for helpful comments. This work was supported in part by the National Science Foundation (USA) under grant #OSR-9452892 and a Doctoral Dissertation Fellowship.

References

[1] P.F. Kelly and Terry Pilling, Characterization of the Distribution of Twin Primes, math.NT/0103191.
[2] Richard P. Brent, Irregularities in the Distribution of Primes and Twin Primes, Mathematics of Computation, 29,(1975) 43-56.
[3] Richard P. Brent, The distribution of Small Gaps Between Successive Primes, Mathematics of Computation, 28,(1974) 315-324.
[4] Thomas R. Nicely, New maximal prime gaps and first occurrences, Mathematics of Computation, 68:227, (1999) 1311-1315.
[5] Marek Wolf, Some conjectures on the gaps between consecutive primes, preprint IFTUWr 894/95 (1995).
[6] A. Odlyzke, M. Rubenstein and M. Wolf, Jumping Champions, Experimental Mathematics, 8 (1999) 107-118. Also available at http://www.research.att.com/~amo/doc/numbertheory.html