Wear experimentation on Tantalum carbide-based Niobium MMC

R Arravind1*, J Vairamuthu2, B Stalin3, S Shanmugam2, R Balaji2 and V Dhinakaran4

1 Department of Aeronautical Engineering, Paavai Engineering College, Namakkal, Tamil Nadu, India.
2 Department of Mechanical Engineering, Sethu Institute of Technology, Pulloor- 626 115, Kariapatti, Tamil Nadu, India.
3 Department of Mechanical Engineering, Anna University, Regional Campus Madurai, Madurai-625 019, Tamil Nadu, India.
4 Centre for Applied Research, Department of Mechanical Engineering, Chennai Institute of Technology, Kundrathur, Chennai-600 069, Tamil Nadu, India.

* Corresponding author: arravind.r@gmail.com

Abstract. The niobium and its alloys have been used for automobile, marine, and aerospace due to its superior properties such as a lightweight ratio, strength, corrosion resistance, thermal and electrical conductivity. The present work was used to improve the substance properties such as hardness and wear. Tantalum Carbide (TaC) reinforced niobium metal matrix composite (MMC) was produced through the stir casting route. The specific wear rate was determined through a pin on disc tribometer with respect to the input actors such as sliding velocity, load, and temperature. Taguchi optimization was applied to found the optimal parameters. The variance analysis was used to found the influential factor in the wear rate.

Keywords. Wear, Pin on disc tribometer, Niobium MMC, Tantalum carbide, Optimal parameters.

1. Introduction
Niobium was malleable, ductile and it has a body-centered cubic structure. It has better physical and chemical properties. It has the best suitable for high-temperature-resistant applications. Niobium carbide was mostly used in cutting tools. Niobium becomes a superconductor at cryogenic temperatures. It has greater toughness, strength, formability, and weldability behaviors. The effect of microstructure and its wear characteristics were studied in titanium carbide-based cermets [1]. Tribological properties and wear prediction model were conducted in nickel alloys [2-3]. Wear resistance was investigated in tungsten carbide reinforced copper MMC [4]. Wear resistance has been increased when the addition of reinforcement particles in Al-Si alloy [5]. The effect of sliding distance on wear rate was analyzed in heat-treated Al–SiC composite [6]. Effect of heat treatment and wear
behaviors were studied in Al-Cu-Ni-Mg alloy [7]. The generated mathematical model was used to evaluate the wear rate [8]. The sliding wear behavior of copper-based composites were investigated [9-10]. Taguchi optimization of wear behavior was studied in magnesium alloy [11]. The Taguchi L9 orthogonal array was used to optimize the wear characteristics of Mg-SiC [12]. Several researchers based on the Taguchi approach of SN ratio and variance analysis to evaluate optimum conditions [13-30]. It is used to confirm and forecast higher performances such as mechanical, machining, wear, and corrosion behaviour of composites in different fields of application [31-42].

The present investigation was used to describe the wear behaviors of tantalum carbide-based niobium MMC. The wear parameters were optimized through the Taguchi method.

2. Experimental procedure
The niobium MMC was produced through stir casting technique. Niobium and nickel were the major composition of MMC. The raw materials of niobium and nickel have been placed in a graphite crucible furnace and it’s operated at 1900°C for 30 minutes. The reinforcement of tantalum carbide particles were preheated at 1650°C for 20 minutes. The preheated TaC (6 wt.%) particles and other particles such as aluminium, magnesium, chromium and silicon were added to the molten mixture. The stirrer was applied at 700 rpm for 20 minutes. The stirrer was stopped after achieving the uniform mixture of molten metal. It was transferred to the molding section and it’s converted into the required shape and size. The synthesized niobium MMC has a hardness of 534 BHN and a density of 9.26 g/cc.

3. Experimental details
The pin on disc tribometer was chosen for the wear test on niobium MMC. The specimen was prepared as per ASTM G99 standards. The pin was made with niobium MMC with 12mm diameter and 29 mm length. The disc material was EN 31 steel. The track diameter (100mm) was maintained at a constant parameter. The experimental setup was shown in Fig.1. The pin and disc have been cleaned with acetone for each experiment. The specific wear rate was calculated as below Equation 1;

\[
\text{Specific wear rate} = \frac{(m_1-m_2) \times 10^3}{\rho FL}
\]

Where,

\(m_1-m_2\) = Loss of mass of the pin during the experiment (g)
\(\rho\) = Density of the pin (g/cc)
F = Load (N)
L = Sliding distance (m)
4. Experimental results and discussion

For pin on disc wear experimentation, the different wear process factors, and its level were selected such as load (30-50N) sliding velocity (2-6m/s) and temperature (80-120°C). The specific wear rate was measured and it’s exposed in Table 1.

Table 1. Experimental results for pin on disc wear test

Exp.No.	Load (N)	Sliding velocity (m/s)	Temperature (°C)	Wear rate (mm³/N·m)
1	30	2	80	0.234
2	30	4	100	0.324
3	30	6	120	0.277
4	40	2	100	0.534
5	40	4	120	0.624
6	40	6	80	0.598
7	50	2	120	0.679
8	50	4	80	0.786
9	50	6	100	0.932

4.1. Taguchi method

Taguchi design with L9 orthogonal array was used to minimize the wear experiments. It provides all information and its effects on wear parameters. SN ratio was applied to normalize the experimental data in definite range. The aim of the experiment was to minimize the wear rate. Hence, the smaller the better criterion was chosen for this wear experiments. The SN ratio and means were calculated as per the smaller the better criterion and its shown in Table 2.

Table 2. SN ratios and Means for wear test

SN ratio	Means					
Level	Load	Sliding velocity	Temperature	Load	Sliding velocity	Temperature
1	11.185	7.142	6.391	0.2783	0.4823	0.5393
2	4.670	5.326	5.283	0.5853	0.5780	0.5967
The SN ratio effect on the wear rate was shown in Fig. 2. The curves were drawn between data means and mean of SN ratio as per smaller the better criterion. The wear rate was minimum for all engineering applications. Based on the experimental aim, smaller peaks have been chosen from the plot. The optimal wear rate was attained at a load of 50N, sliding velocity of 4 m/s, and a temperature of 100°C.

The variance analysis for wear rate was shown in Table 3. The wear rate depended on load, sliding velocity, and temperature. Among all the input factors, the applied load (91.01%) was the most dominant factor which affects the wear rate. The next powerful factor was sliding velocity.

The regression developed model was shown in Equation (2) and it was used to analyze the response such as wear rate. Here, A, B and C were wear test input factors such as load, sliding velocity and temperature respectively.

Wear rate = 0.5542 - 0.2759 A - 30 + 0.0311 A - 40 + 0.2448 A - 50 - 0.0719 B - 2 + 0.0238 B - 4 + 0.0481 B - 6 - 0.0149 C - 80 + 0.0424 C - 100 - 0.0276 C – 120

--- Eqn. (2)
The Pareto chart effect on wear rate was shown in Fig. 3. The minimum wear rate of 0.234 mm3/N-m was attained at the sliding velocity of 4 m/s. The maximum wear rate was attained at the sliding velocity of 6 m/s.

5. Conclusions

- Tantalum carbide reinforced niobium MMC was produced through a stir casting route.
- The stir casted niobium MMC has the hardness of 534 BHN and a density of 9.26 g/cc.
- The wear rate was measured through pin on disc apparatus with different levels of input factors.
- Taguchi optimization was applied to optimize the parameters. The optimal wear rate was attained at loads of 50N, sliding velocity of 4 m/s, and temperature of 100°C.
- The applied load (91.01%) was the most dominant factor which affects the wear rate and it was validated through variance analysis.

References

[1] I. Hussainova, Effect of microstructure on the erosive wear of titanium carbide-based cermets, Wear 255 (2003), pp. 121-128
[2] Y.-F. Tan, L. He, X. Wang, X. Hong, W. Wang, Tribological properties and wear prediction model of TiC particles reinforced Ni-base alloy composite coatings, Trans Nonferrous Met Soc China, 24 (2014), pp. 2566-2573
[3] B. Cai, Y.-F. Tan, Y.-Q. Tu, X.-L. Wang, H. Tan, Tribological properties of Ni-base alloy composite coating modified by both graphite and TiC particles, Trans Nonferrous Met Soc China 21 (2011), pp. 2426-2432
[4] P.K. Deshpande, R.Y. Lin, Wear resistance of WC particle reinforced copper matrix composites and the effect of porosity, Mater Sci Eng, 418A (2006), pp. 137-145
[5] El-Aziz K A, Saber D. and Sallam H E M (2015). Wear and Corrosion Behavior of Al–Si Matrix Composite Reinforced with Alumina. J Bio Tribo Corros 1 5
[6] Rao RN, Das S (2011) Effect of sliding distance on the wear and friction behavior of as cast and Heat-treated Al–SiCp composites. Mater Des 32:3051
[7] Karakulak Erdem, Zeren Muzaffer, Yamanoglu Ridvan (2013) Effect of heat treatment conditions on microstructure and wear behaviour of Al4Cu2Ni2Mg alloy. Trans Nonferrous Met Soc China 23:1898
[8] Kumar S, Balasubramanian V 2008. Developing a mathematical model to evaluate wear rate of
AA7075/SiCp powder metallurgy composites. Wear 264 (11–12):1026–1034

[9] Li J, Zhang L, Xiao J, Zhou K (2015) Sliding wear behavior of copper-based composites reinforced with graphene nanosheets and graphite. Trans Nonferrous Met Soc China 25:3354–3362.

[10] Mai YJ, Chen FX, Lian WQ, Zhang LY, Liu CS, Jie XH (2018) Preparation and tribological behavior of copper matrix composites reinforced with nickel nanoparticles anchored graphene nanosheets. J Alloys Compd 756:1–7

[11] B. M. Girish, Optimization of wear behavior of magnesium alloy AZ91 hybrid composites using taguchi experimental design, Metallurgical and Materials Transactions A, 47A (2016) 3193–3200.

[12] Rajmohan T, Vijayabhaskar, S and Vijayan D (2020). Multiple Performance Optimization in Wear Characteristics of Mg-SiC Nanocomposites Using Grey-Fuzzy Algorithm. Silicon 12 1177–1186.

[13] Stalin B, Sudha G T, Kailasanathan C and Ravichandran M 2020 Mater. Today Commun. 25 101655 https://doi.org/10.1016/j.mtcomm.2020.101655

[14] Stalin B, Vidhya V S, Ravichandran M, Naresh Kumar A and Sudha G T 2020 Metallofiz. Novoeishie Tehnikol. 42(4) 497 https://doi.org/10.15407/mfint.42.04.0497

[15] Sudha G T, Stalin B and Ravichandran M 2019 Mater. Res. Express 6 096520 https://doi.org/10.1088/2053-1591/ab2cef

[16] Arravind R, Sankar V, Marichamy S and Stalin B 2020 Abrasive water jet experimentation on zirconium boride and boron carbide reinforced molybdenum metal matrix Mater. Today:. Proc. https://doi.org/10.1016/j.matpr.2020.07.667

[17] Vairamuthu J, Senthil Kumar A, Stalin B and Ravichandran M 2020 Optimization of powder metallurgy parameters of TiC and BaC reinforced aluminium composites by Taguchi method Trans. Can. Soc. Mech. Eng. https://doi.org/10.1139/tcsme-2020-0091

[18] Malini T, Sudha R, Anantha Christu Raj P and Stalin B 2020 The role of RTD and liquid sensors in electric arc furnace for melting of aluminium Mater. Today:. Proc. https://doi.org/10.1016/j.matpr.2020.08.371

[19] Rajaparthiban J, Saravanavel S, Ravichandran M, Vijayakumar K and Stalin B 2020 Mater. Today:. Proc. 24 1282 https://doi.org/10.1016/j.matpr.2020.04.443

[20] Stalin B, Sudha G T and Ravichandran M 2020 Mater. Today:. Proc. 22 2622 https://doi.org/10.1016/j.matpr.2020.03.393

[21] Alagarsamy S V, Ravichandran M, Raveendran P and Stalin B 2019 J. Balk. Tribol. Assoc. 25(3) 730

[22] Stalin B, Ramesh Kumar P, Ravichandran M, Siva Kumar M and Meignanamoorthy M 2019 Mater. Res. Express 6 106590 https://doi.org/10.1088/2053-1591/ab3d90

[23] Athijayamani A, Stalin B, Sidhardhan S and Boopathi C 2016 J. Compos. Mater. 50(4) 481 https://doi.org/10.1177/0021998315576555

[24] Stalin B, Ravichandran M, Vadivel K and Vairamuthu J 2020 Mater. Today:. Proc. 21 237 https://doi.org/10.1016/j.matpr.2019.04.226

[25] Saravanan S, Ravichandran M, Stalin B, Saravanavel S, Sukumar S, Optimization of Process Parameters of Electrochemical Machining of TiC-Reinforced AA6063 Composites, In: S. Hiremath, N. Shannugam, B. Bapu (eds) Advances in Manufacturing Technology, Lecture Notes in Mechanical Engineering, Springer, Singapore, 2019, pp.281-287. https://doi.org/10.1007/978-981-13-6374-0_33

[26] Stalin B, Sudha G T and Ravichandran M 2018 Silicon 10 (6) 2663 https://doi.org/10.1016/s12633-018-9803-6

[27] Marichamy S, Stalin B, Ravichandran M and Sudha G T 2020 Mater. Today:. Proc. 24 1400 https://doi.org/10.1016/j.matpr.2020.04.458

[28] Stalin B and Athijayamani A 2016 Int. J. Mater. Eng. Innov. 7(1) 15 https://doi.org/10.1504/IJMATEI.2016.077312
[29] Stalin B, Ramesh Kumar P, Ravichandran M and Saravananan S 2018 *Mater. Res. Express* **5**(10) 106502 https://doi.org/10.1088/2053-1591/aad99c

[30] Marichamy S, Saravananan M, Ravichandran M and Stalin B 2017 *Int. J. Mech. Mech. Eng.* **21**(1) 57

[31] Stalin B, Ravichandran M, Mohanavel V, Praveen Raj L 2020 *J. Min. Metall. Sect. B.* **56**(1) 99 https://doi.org/10.2298/JMMB190315047S

[32] Pritima D, Vairamuthu J, Gopi Krishnan P, Marichamy S, Stalin B and Sheeba Rani S 2020 Response analysis on synthesized aluminium-scandium metal matrix composite using unconventional machining processes *Mater. Today*: Proc. https://doi.org/10.1016/j.matpr.2020.07.672

[33] Balasubramanian M, Stalin B, Marichamy S, Anandan K and Ram Subbiah 2020 Assessment of weld joint strengths on dissimilar alloys of Inconel 625 and aluminium 7068 using FSW process *Mater. Today*: Proc. https://doi.org/10.1016/j.matpr.2020.08.315

[34] Dhinakaran V, Stalin B, Swapna Sai M, Vairamuthu J, Marichamy S 2020 Recent developments of graphene composites for energy storage devices *Mater. Today*: Proc. https://doi.org/10.1016/j.matpr.2020.08.631

[35] Martin Sahayaraj J, Arravind R, Subramanian P, Marichamy S, Stalin B 2020 Artificial neural network based prediction of responses on eglin steel using electrical discharge machining process *Mater. Today*: Proc. https://doi.org/10.1016/j.matpr.2020.07.664

[36] Bagavathy S, Ramesh Kumar P, Anantha Christu Raj P, Stalin B 2020 Frequency measurement through electric network analyzer for ultrasonic machining of steel *Mater. Today*: Proc. https://doi.org/10.1016/j.matpr.2020.08.629

[37] Anix Joel Singh J, Vishnu Vardhan T, Vairamuthu J, Stalin B, Ram Subbiah 2020 Analyses of particle size and abrasive water jet drilling of synthesized chromel metal matrix *Mater. Today*: Proc. https://doi.org/10.1016/j.matpr.2020.08.441

[38] Pritima D., Stalin B., Vairamuthu J., Mallesh P., Srinivasa Rao M., Marichamy S. (2021) Analysis of Parameters on Bend Force in Nickel-Coated Mild Steel Sheets Through Contour Plot. In: Arockiarajan A., Duraiselvam M., Raju R. (eds) Advances in Industrial Automation and Smart Manufacturing. *Lecture Notes in Mechanical Engineering*. Springer, Singapore, pp. 647-652. https://doi.org/10.1007/978-981-15-4739-3_55

[39] Senthil Kumar P.S., Marichamy S., Sivakandhan C., Stalin B., Dhinakaran V., Satyanarayana I. (2021) Evaluation of Material Properties and Abrasive Resistance of Tantalum Carbide-Based Hardox Steel for Construction Purpose. In: Arockiarajan A., Duraiselvam M., Raju R. (eds) Advances in Industrial Automation and Smart Manufacturing. *Lecture Notes in Mechanical Engineering*. Springer, Singapore, pp. 69-76. https://doi.org/10.1007/978-981-15-4739-3_6

[40] Pritima D., Padmanabhan P., Marichamy S., Sivakandhan C., Stalin B., Dhinakaran V. (2021) Material Characterization and Parametric Effect on Nickel-Coated Mild Steel Sheets by Electroplating Process. In: Arockiarajan A., Duraiselvam M., Raju R. (eds) Advances in Industrial Automation and Smart Manufacturing. *Lecture Notes in Mechanical Engineering*. Springer, Singapore, pp. 465-471. https://doi.org/10.1007/978-981-15-4739-3_40

[41] Augustine A., Vijayakumar J.D., Paulsingarayaray S., Marichamy S., Stalin B., Dhinakaran V. (2021) Parametric Effect and Laser Beam Machining of Rhenium Diboride-Based Molybdenum Metal Matrix. In: Arockiarajan A., Duraiselvam M., Raju R. (eds) Advances in Industrial Automation and Smart Manufacturing. *Lecture Notes in Mechanical Engineering*. Springer, Singapore, pp. 725-732. https://doi.org/10.1007/978-981-15-4739-3_64

[42] Vishnu Vardhan T., Marichamy S., Stalin B., Vairamuthu J., Dhinakaran V. (2021) Tribological Behaviour and Electric Discharge Drilling of Duplex Silicon Metal Matrix. In: Arockiarajan A., Duraiselvam M., Raju R. (eds) Advances in Industrial Automation and Smart Manufacturing. *Lecture Notes in Mechanical Engineering*. Springer, Singapore, pp. 553-562. https://doi.org/10.1007/978-981-15-4739-3_48