Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
A systematic analysis of worldwide disasters, epidemics and pandemics associated mortality of 210 countries for 15 years (2001–2015)

Junaid Ahmad, PhDa, f, *, Mokbul Morshed Ahmadb, Zhaohui Suc, Irfan Ahmad Ranad, Asif Rehmane, Haleema Sadiaf

a Prime Institute of Public Health, Peshawar Medical College, Pakistan
b Department of Development and Sustainability, School of Environment, Resources & Development, Asian Institute of Technology, Thailand
c School of Public Health, Southeast University, Nanjing, 21009, China
d Department of Urban and Regional Planning, School of Civil and Environmental Engineering, National University of Sciences and Technology (NUST), 44000, H-12 Sector, Islamabad, Pakistan
e Department of Community Health Science, Peshawar Medical College, Riphah International University, Warsak Road, Peshawar, Pakistan
f Rufaidah Nursing College, Kuwait Teaching Hospital, Peshawar, Pakistan

ARTICLE INFO

Keywords:
The human dimension of disasters
Epidemiology of disasters
Disaster epidemiology
Disaster associated deaths
Pandemic associated deaths

ABSTRACT

In recent years, the unprecedented death tolls resulting from epidemics and natural disasters made everyone interested, from the general public to country heads, to know about the mortality rates. The coronavirus issue is the most recent example all over the media, and everyone is talking about corona-induced mortality. The study aimed to estimate the disaster-induced mortality rates at the global level for two hundred and ten countries for fifteen years (2001–2015). Using a retrospective study design, we extracted datasets from two data sources, EM-DAT and UNFPA, in October 2019. The cut-off time for the data download was midnight Central European Time, October 17, 2019. The most noticeable finding in this study is that, against the common prevailing notion, both developed and developing countries equally carry the brunt of disaster-induced mortality.

This study proposes empirical confirmation of the direction and magnitude of any year-over-year correlation of disaster and mortality rates. Furthermore, the analysis of the trend in mortality rate over the past fifteen years concludes it is not linear. However, there are huge variations across the years and the countries. The study is of paramount importance to initiate a debate amongst the concerned policymakers and stakeholders to regularly monitor the disaster-induced mortality rates. So that effective interventions can be devised to decrease the mortality rates.

1. Background

The histories of disasters, pandemics, and outbreaks are as old as human history itself [1]. Throughout recorded history, humankind experienced several disasters, epidemics, pandemics, and outbreaks, most reported in different religious scriptures and limited historical documents [2]. At the time, people did not exactly know why disasters happen, how diseases spread, and how to
prevent or survive pandemics [1]. As science was not studied in the early days of humanity, people often viewed disasters as the acts of gods [3]. This, along with other contributing factors, cemented human’s reliance on religion, a state of the mind where hope forever outlives fear and outwears helplessness caused disasters [4–7]. However, with the advancement of science and technology, people now know that such a phenomenon results from different hazards that exist in nature [8]. Although we cannot prevent disasters in the case of natural hazards, we can mitigate the impact by considering various aspects of disasters, i.e., risk, hazard, and vulnerabilities [8,9].

With this realization, the domain of disaster management emerged in the nineteenth century [10]. Disasters are being classified by different organizations and institutions [11], depending on the nature of onset [12], characteristics, and cause of initiation [13]. While disasters are often mainly grouped into natural and human-made disasters, a wide range of classifications available, ranging from technological, human-made, economic, and hybrid disasters [11]. Definition, classification/types of disaster, are crucial for researchers and aid organizations/agencies to better understand, manage and record disasters, in the absence of which there will be inaccuracy in the data and recording of disaster events [14].

The classification made by Wassenhove [12] is in the context of Supply Chain Management; and have categorized various event with four main attributes based on the mechanism of onset and causes of initiation, i.e., natural or anthropogenic cause. Currently, the definitions, concepts, and terminologies are evolving as the knowledge of disaster management is expanding and entering into other areas.

Generally, the mortality rate is considered a daily routine, and the term is not valued much [19]. However, in recent years, especially during the Coronavirus pandemic, the term mortality rate seems everyone’s business from public to presidents and prime ministers of the countries [15]. Hurricane Maria and the Coronavirus pandemic highlight the mortality rate’s importance. Every concerned person is assessing the progress and needs for intervention by linking it to the magnitude of the mortality rate. The mortality indicates is critical for many reasons [16–18]. The mortality rate signposts the seriousness/magnitude of the issues. It is an infection like Corona, a global pandemic, or disasters like Hurricane Maria, which swept through Puerto Rico in August 2017. Besides, the high mortality rate may ground public outrage and point to government officials’ inabilities to handle the matter appropriately aggressive preventive and management interventions [15]. Furthermore, mortality rates can be used as a benchmark to monitor and evaluate the progress on objectives set by institutions, organizations, countries, regions or even the world [19]. For example, several indicators in the Sustainable Development Goals are linked to the mortality rates [20], which are as follow:

- By 2030, significantly reduce the number of deaths and the number of people affected and substantially decrease the direct economic losses relative to the global gross domestic product caused by disasters, including water-related disasters, with a focus on protecting the poor and people in vulnerable situations;
- By 2030, reduce the global maternal mortality ratio to less than 70 per 100,000 live births;
- By 2030, reduce by one-third premature mortality from non-communicable diseases through prevention and treatment and promote mental health and well-being;
- By 2030, substantially reduce the number of deaths and illnesses from hazardous chemicals and air, water, soil pollution, and contamination.

The number of disasters worldwide has increased roughly four-fold in the past couple of decades, while the number of persons affected by disasters has increased approximately three-fold over the same period [21,22]. Though several public health and disaster-related studies have been published in recent years, until today, a systematic analysis of disaster-induced mortality is missing. There are multiple factors as a result of which global disaster-induced mortality estimates are missing [22], one of which centres on the lack of a benchmark for assessing disaster-induced mortality, which could make it difficult for scholars to systematically compare and contrast studies (e.g., via systematic review studies). In this regard, this study attempts to create a benchmark by estimating disaster-induced global mortality rates for two hundred and ten countries across the globe.

2. Methodology

The estimations of mortality rates resulting from natural hazards are not well studied and understood. Reliable data in the context of disaster-induced mortality rarely existed [22,23]; therefore, disaster-induced mortality rates estimation is difficult to accomplish. Unlike in developing countries, the population census data are often available, accessible, and well-maintained in developed countries. However, disaster-induced deaths records are rarely available even in developed countries. In this regard, establishing a benchmark for disaster-induced mortality and initiating a debate amongst policymakers and global health practitioners is essential. Overall, this estimate the disaster-induced mortality rates at the global level for the two hundred and ten countries across the world. In this regard, a retrospective study was undertaken with the following study protocols:

i. Defining Disaster-Induced Death

To calculate the disaster-induced mortality rate, the first thing that needs to be determined is the definition of disaster-induced deaths. Till today, there is no universally agreed definition of disaster-induced death as there are many medico-legal aspects that vary from country to country, and even within the same country from organization to organization, it difficult to set a commonly accepted definition. This is a global study aiming to estimate disaster-induced mortality for all countries worldwide. Furthermore, this study is not based on individual countries’ databases but rather on the datasets compiled and maintained by the EM-DAT. So, the definition set to conduct this study is the same as defined by the EM-DAT, i.e., “Number of people who lost their lives because the event happened” [21]. EM-DAT defines the event of a disaster if it fulfils the following criteria:
For a disaster to be entered into the EM-DAT database, at least one of the following criteria must be fulfilled [21]:

- Ten (10) or more people reported killed
- Hundred (100) or more people reported affected
- Declaration of a state of emergency
- Call for international assistance

ii. Study design

This study adopts a retrospective study design.

iii. Datasets used

- For disaster-induced mortality, the EM-DAT database is used [24].
- For population estimates, the UNFPA database is used [25].

iv. Study area

The objective of this study is to estimate the disaster-induced mortality rates for all the countries in the world. However, the final analysis includes two hundred and ten countries. To calculate the mortality rate, we need to know two variables: the number of deaths and the population.

v. Study scope

This study focused on disasters that occurred in the fifteen years between January 2001 and December 2015.

2.1. Data collection & data analysis timeline

Data analyses were carried out from October 17, 2019, to November 30, 2019. The cut-off time for the data download was midnight Central European Time, October 17, 2019. This time was purposely chosen to complete the downloading of data by assuming that both databases are maintained in Europe, so at this specific time, no more data updating will be in progress.

vi. Case-Scenario for the analysis

The study adopted a five-year time frame scenario. The scenario includes data compilation for time-interval of first from 2001 to 2005, second from 2006 to 2010, and third from 2011–2015.

vii. Process undertaken

a) In the first step, the population data were yearly compiled from 2001 to 2015 using the UNFPA database.

b) In the second step, we categorized the yearly data into three groups of five years each, i.e., 2001–2005, 2006–2010, and 2011–2015. The exact process was applied to the dataset on disaster-induced deaths; the only difference is that the data was extracted from EM-DAT.

c) The third step calculated the mortality rate using the following formula.

\[
\frac{dy}{dx} = \frac{TND}{TNP} \times 1,000,000
\]

whereas

- \(DIM \) = Disaster-Induced Mortality
- \(TND \) = Total number of deaths of five years
- \(TNP \) = Cumulative total mid-year population of five years

d) After calculating the disaster-induced mortality rate for each country per five-year compilation, data visualization of the findings at a global level was carried out.

Ethical approval

The study was approved by the IRB Office of the Asian Institute of Technology, Thailand (Ref# 02/2017).

3. Results and discussion

The findings of this study show that from 2001 to 2015, a total of 1,356,831 (1.35 million) people died due to disasters. The number of deaths varies from country to country and continent to continent. The number of fatalities is limited to the absolute number, but the same variation exists if the mortality rate is normalized to per million population. The study results revealed interesting findings, which are discussed systematically in the following sections.
3.1. No country is immune to disaster risk

This study created four scenarios to capture an accurate picture of disaster-induced mortality. First, an annual mortality rate was calculated for each country for a time window of fifteen years (2001–2015). However, it is a well-established fact that the nature of the onset of different types of disasters varies; like some disasters are low probability events but high consequences in terms of injuries and deaths such as earthquakes, while others are high probability events but profound consequences in terms of injuries and deaths such as floods [26,27]. So it is evident that low-probability and high consequences events that happen once may not happen in the next couple of years. Stakeholders, especially policymakers, may assume that the earthquake is not a problem. It does not contribute to mortality by justifying that the region did not have any earthquake-induced deaths in the last nine years. To explain and make the stakeholders realize the existence and magnitude of the problem, this study proposes a step ahead and calculated mortality rates for five-year window time as 2001–2005, 2006–2010, and 2011–2015. The time-window-based analysis in this study concluded exciting findings, visualized in Fig. 1, Fig. 2, and Fig. 3. It is pertinent to mention that almost every country globally has its share of disaster-induced mortality, whether developed or developing (see Fig. 4).

3.2. The high disaster-induced mortality rate is not confined to a specific geography

The figures for disaster-induced mortality rates are not the same for all the countries. This study finds out that during 2001–2005 the highest mortality rates were recorded in Sri Lanka, 371.9 per million, Indonesia 153.5 per million, Haiti 127.9 per million, Niue 113.7 per million, and Pakistan 101.9 per million respectively. While during the next five years, 2006–2010, Haiti’s highest mortality rates recorded 4749.10 per million, Myanmar 560.1 per million, Samoa 155.8 per million, American Samoa 119.1 per million, and Russia 78.2 millions respectively. Similarly, during 2011–2015, the top five countries with higher mortality are Liberia 224.5 per million, Sierra Leone 123.8 per million, Dominica 82.8 per million, Nepal 72.3 per million, and Guinea 40.3 per million, respectively. The top five countries with the highest mortality rates in all three-time windows shows that only one country, Haiti, appears twice. In contrast, a different set of countries suffered the highest mortality rate every other time. The details can be seen in Table 1.

The analysis of this study normalizes the mortality rate per million of the country’s population. However, the difference is still very high. When viewed through absolute numbers, the situation is bleak and worrisome. When a disaster hits an area, the existing infrastructure in that area can be a deciding factor in whether or not the situation will lead to mass casualties or not. Roads, for example, can provide access to quickly supply relief aid such as medicine and/or medical human resources to the affected communities; but if roads are destroyed, entire regions can be cut off not only from the support of relief but also evacuation of injured and vulnerable population such as pregnant women, newborn and elderly people. The findings of this study confirm this assumption. In all three time periods, the top-five highest mortality rates included only the developing countries. However, if the list of countries with the highest disaster-induced mortality rate extended to the top 20, some developed countries like Spain, Japan, and Luxembourg would be...
included. Besides developed and developing country factors, the disaster-induced mortality is determined by many other factors, such as population density of the affected country, existing capacity to respond immediately to disasters, underlying vulnerabilities such as poverty, and people living in vulnerable areas, etc.

3.3. The trend of mortality is not linear in space and time

The finding of this study reveals that in the fifteen years (2001–2015), a total of 1,356,831 (1.35 million) people died due to natural disasters. The number of deaths variestemporally and spatially. From 2001 to 2005, the disaster-induced mortality rate for the world was 16.02 per million, which increased to 43.20 per million between 2006 and 2010, and 6.58 per million during 2011–2015. It is worth mentioning that aftermath of the Indian-Ocean Tsunami in 2004, globally almost every country and related international bodies initiated disaster risk reduction strategies such as the United Nations International Strategies for Disaster Risk (UNISDR) Hyogo Framework of Actions and Sendai Framework for Disaster Risk Reduction, with the objectives to reduced disaster-induced mortality and economic losses.

In January 2005, one hundred sixty-eight countries’ governments adopted a 10-year plan to make the world safer from natural hazards at the World Conference on Disaster Reduction, held in Kobe, Hyogo, and Japan. The Hyogo Framework for Action (HFA) was the global blueprint for disaster risk reduction efforts between 2005 and 2015. Its goal was to reduce disaster losses by 2015 substantially - in lives and the social, economic, and environmental assets of communities and countries. However, soon after HFA came into action, the world was struck by major disasters such as China’s Sichuan Earthquake of 2008, Pakistan’s Earthquake of 2008 (85,000 deaths), The 2010 Haiti Earthquake (250,000 deaths), Cyclone Nargis Myanmar (138,371 deaths), and Cyclone Sidr Bangladesh and India (15,000 deaths), etc. This disaster revealed to the world that instead of reducing the disaster-induced losses under various frameworks, the mortality increased by almost 250%, from 16.02 death per million people to 43.20 deaths per million people. The same findings concluded with time-series analysis based on the annual mortality rate. More extreme events of this increased number of deaths can be attributed to more climate-induced events, expected to rise if carbon emissions are not controlled.

The trend in mortality rate over the past 15 years is not linear, but there are huge variations across the years and the countries. The disaster-induced mortality can be best estimated if observed in five or ten-year scenarios instead of the annual mortality rate. Most disasters, epidemics, and pandemics are low-probability and high magnitude events. This means that even if the policymakers are presented with the annual disaster-induced mortality rates, they might not be convinced to allocate the required budget for disaster risk reduction. This study proposes that the five-year cumulative disaster-induced mortality rate be used instead of annual mortality rates. This may help policymakers, decision-makers, politicians, and related stakeholders realize the magnitude of the disaster impact in an absolute sense.
4. Conclusion

This study presented the disaster-induced mortality rates for two hundred and ten countries across the globe with the best possible data that exist at the moment. The study concluded that almost every country globally has its fair share disaster-induced mortality, though the magnitude varies from country to country. However, the existing data sets have several limitations, such as a lack of standardization in collecting the data, missing data, and inconsistent reporting and compilation. Disaster-induced mortality needs a more holistic understanding. To calculate precisely, accurate disaster-induced mortality rates and population data is needed with maximum disaggregated data such as gender, age, and disaster cause-specific like floods, heatwaves, earthquakes, epidemics, etc. All such data should be reported on a universally agreed reporting system and collected and officially endorsed by the respective country governments.

Ethics approval and consent to participate

The study is based on secondary data and was exempted from ethical approval by IRB.

Consent for publication

Not applicable

Availability of data and materials

All data generated or analyzed during this study are included in this manuscript and its supplementary information files.

Funding

Any individual or organization did not fund this study.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
Fig. 4. Heatmap visualizing annual mortality rates globally for each country (2001–2015) (The lighter the colour, the lower the mortality rate; the darker the colour, the higher the mortality). (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.)

Source: Author own work (High-quality image can be seen via https://bit.ly/2WBWxMA)
Country	Population	Deaths	Mortality rate per 1,000,000			
	2001–2005	2006–2010	2011–2015	2001–2005	2006–2010	2011–2015
Afghanistan	115,201,014	136,611,771	158,631,759	5305	2463	1637
Albania	15,529,368	14,973,049	14,609,803	15	0	6
Algeria	162,110,246	174,522,103	191,708,808	3394	238	97
American Samoa	294,405	285,447	276,831	6	34	0
Angola	91,177,542	108,938,184	130,092,826	534	3615	598
Anguilla	60,062	66,747	71,449	0	0	0
Antigua and Barbuda	436,126	462,402	489,118	0	0	0
Argentina	191,544,442	201,934,799	212,692,823	106	90	127
Armenia	15,084,229	14,565,671	14,474,182	1	0	0
Australia	98,628,028	106,721,867	115,726,601	40	594	163
Austria	40,878,467	41,714,958	46,917,844	0	3	5
Azerbaijan	41,823,141	44,133,271	46,917,844	13	1	34
Bahamas	1,579,813	1,742,522	1,884,854	0	0	0
Bahrain	1,345,686	1,530,856	1,721,056	33	8	1
Bangladesh	678,166	743,916,819	787,816,426	3076	6398	734
Barbados	1,361,521	1,386,547	1,412,297	1	0	0
Belarus	48,718,592	47,578,548	47,389,755	42	5	6
Belgium	52,129,939	53,895,604	55,755,246	1184	947	418
Belize	1,345,686	1,530,856	1,721,056	33	8	1
Benin	37,524,111	43,512,568	50,057,077	435	139	11
Bermuda	321,998	322,839	313,916	4	0	0
Bhutan	3,116,354	3,502,235	3,822,272	23	1	1
Bolivia	44,053,290	48,001,623	52,004,475	289	227	338
Bosnia-Herzegovina	18,889,155	18,785,712	18,044,027	4	6	30
Botswana	9,024,409	9,739,751	10,646,931	0	0	12
Brazil	912,039,659	964,710,343	1,011,831,544	602	1014	1168
Virgin Island (UK)	110,322	127,911	145,167	0	0	0
Brunei Darussalam	1,765,054	1,896,800	2,028,723	0	0	0
Bulgaria	39,027,540	37,562,859	36,332,278	42	48	64
Burkina Faso	63,344,807	73,517,240	85,422,444	4572	4137	28
Burundi	34,855,251	41,083,136	48,054,464	216	45	204
Cape Verde Island	2,298,200	2,458,303	2,601,502	0	9	0
Cambodia	64,223,904	69,430,639	75,125,869	108	216	623
Cameroon	82,650,511	94,604,965	108,332,971	171	662	779
Canada	158,210,824	167,028,462	176,249,259	68	9	22
Netherlands Antilles	81,053,818	82,911,590	84,310,636	969	1007	3
Cayman Islands	230,003	264,226	291,608	2	0	0
Central African Rep	19,904,426	21,675,699	22,527,714	380	8	18
Chad	46,794,954	55,721,154	65,706,226	483	494	665
Chile	78,988,988	83,286,217	87,305,564	89	607	231
China P Rep	6,643,059,322	6,836,854,498	7,029,299,208	6049	100,225	5057
Hong Kong (China)	33,894,726	34,707,589	35,761,049	303	3	0
Macau	2,301,136	2,573,773	2,877,534	0	0	0
Taiwan (China)	6,643,059,322	6,836,854,498	7,029,299,208	6049	100,225	5057
Colombia	210,723,348	246,446,116	236,651,710	621	1169	677
Comoros	2,917,433	3,288,218	3,708,746	1	31	4
Congo	17,549,187	20,574,451	23,764,235	193	301	374

(continued on next page)
Country	Population 2001–2005	Deaths 2001–2005	Mortality rate per 1,000,000
Cook Island	95,404	0	0
Costa Rica	20,620,852	29	1.4
Cote D’Ivoire	88,420,065	313	3.5
Croatia	21,954,822	795	36.2
Cuba	56,200,619	32	0.6
Cyprus	4,968,879	6	0.6
Korea Dem P Rep	358,829,876	833	2.3
Denmark	26,942,294	5	0.5
Djibouti	3,791,553	3	0.3
Cote D’Ivoire	31,991,553	51	13.5
Croatia	29,964,822	3	1
Cuba	18,677,685	0	0
Cyprus	6,866,583	0	0
Korea Dem P Rep	362,886,081	872	2.4
Denmark	4,068,708	34	8.3
Djibouti	937,024	0	0
Cote D’Ivoire	1,241,439	13	64.7
Croatia	6,652,145	1	7.7
Cuba	43,655,017	10	9.0
Cyprus	52,801,726	645	12.1
Korea Dem P Rep	46,871,354	943	23.1
Denmark	302,806,932	19,581	10.7
Cote D’Ivoire	593,528,924	574	1.6
Korea Dem P Rep	35,099,048	34	0.9
Denmark	1,214,939	0	0
Cote D’Ivoire	6,252,225	7	0.8
Cote D’Ivoire	511,929	40	78.1
Cote D’Ivoire	2,170,207	1	0.5
Cote D’Ivoire	787,791	2	2.5
Cote D’Ivoire	62,527,225	1731	27.7
Cote D’Ivoire	53,201,726	645	12.1
Cote D’Ivoire	37,580,602	34	9
Cote D’Ivoire	44,886,434	5699	127
Cote D’Ivoire	35,167,622	111	3.2
Cote D’Ivoire	50,705,379	140	2.8
Cote D’Ivoire	1,442,271	0	0.2
Cote D’Ivoire	5,239,567,266	1,180,851,220	1.5
Cote D’Ivoire	1,102,887,154	1,180,851,220	1.5
Cote D’Ivoire	53,201,726	49,021	8.8
Cote D’Ivoire	343,931,368	28,393	82.6
Cote D’Ivoire	128,143,609	140	2.8
Cote D’Ivoire	20,276,854	0	0
Cote D’Ivoire	31,790,131	0	0
Cote D’Ivoire	13,588,418	36	2.7

(continued on next page)
Country	Population	Deaths
Japan	640,243,323	573
Jordan	27,127,450	5
Kazakhstan	76,305,314	54
Kenya	170,789,562	434
Kiribati	444,963	0
Kuwait	10,906,868	0
Kyrgyzstan	25,078,655	90
Lao P Dem Rep	27,910,128	2
Latvia	11,572,782	36
Lebanon	18,434,279	0
Lesotho	9,589,635	1
Libya	15,607,872	29
Libyan Arab Jamah	28,081,480	0
Lithuania	17,058,093	20
Luxembourg	2,240,907	170
Madagascar	86,444,911	1301
Malawi	61,762,010	1939
Malaysia	123,419,923	143
Maldives	1,512,836	102
Mali	60,127,984	186
Marshall is	260,586	0
Martinique	1,970,037	0
Mauritania	14,794,617	89
Mauritius	6,042,403	3
Mexico	528,530,940	359
Micronesia Fed States	533,737	48
Mongolia	12,355,999	34
Montenegro	3,072,187	0
Montserrat	22,774	0
Morocco	149,238,492	759
Mozambique	98,680,789	348
Myanmar	237,949,429	396
Namibia	9,923,702	136
Nepal	124,628,478	1257
Netherlands	81,053,818	969
New Caledonia	1,124,723	2
New Zealand	20,109,001	6
Nicaragua	26,202,394	54
Niger	63,380,309	2120
Nigeria	860,435,771	2120
Niue	8796	1
Northern Mariana is	334,980	3
Norway	22,869,848	23
Oman	11,970,347	37
Pakistan	738,648,948	75,234
Palau	98,388	0
Panama	16,048,129	26
Papua New Guinea	30,065,418	198

Table 1 (continued)

Country	Deaths	
Japan	642,607,285	419
Jordan	32,620,751	0
Kazakhstan	80,116,531	45
Kenya	195,873,731	224
Kiribati	492,231	0
Kuwait	13,350,030	0
Kyrgyzstan	26,341,862	90
Lao P Dem Rep	30,249,643	2
Latvia	10,859,779	36
Lebanon	20,775,160	0
Lesotho	10,007,639	1
Libya	18,311,416	29
Libyan Arab Jamah	30,195,068	0
Lithuania	16,070,964	20
Luxembourg	2,429,549	170
Madagascar	100,031,021	29
Malawi	71,423,162	24
Malaysia	135,898,152	143
Maldives	1,727,507	102
Mali	70,722,568	186
Marshall is	261,179	0
Martinique	1,983,363	0
Mauritania	17,056,690	89
Mauritius	6,193,281	3
Mexico	568,414,702	359
Micronesia Fed States	522,816	48
Mongolia	13,158,752	34
Montenegro	3,105,658	0
Montserrat	24,510	0
Morocco	158,091,618	759
Mozambique	114,328,076	348
Myanmar	247,454,398	396
Namibia	10,552,234	136
Nepal	132,395,564	1257
Netherlands	82,916,580	969
New Caledonia	1,218,800	2
New Zealand	21,391,907	6
Nicaragua	27,971,127	54
Niger	76,268,418	54
Nigeria	752,358,950	2120
Niue	8218	1
Northern Mariana is	288,730	3
Norway	23,877,185	37
Oman	13,929,169	37
Pakistan	818,681,332	37
Palau	101,168	0
Panama	17,584,587	26
Papua New Guinea	33,941,067	56

(continued on next page)
Country	Population	Deaths	Mortality rate per 1,000,000						
	2001-2005	2006-2010	2011-2015	2001-2005	2006-2010	2011-2015	2001-2005	2006-2010	2011-2015
Paraguay	28,022,419	30,233,786	32,330,445	0	57	63	0	1.9	1.9
Peru	134,684,172	143,259,801	152,834,696	735	1804	1061	5.5	12.6	6.9
Philippines	415,002,059	453,802,276	492,444,222	3291	6492	13,318	7.9	14.3	27
Poland	192,206,035	191,644,582	191,506,088	682	629	409	3.5	3.3	2.1
Portugal	52,424,084	53,195,107	52,624,466	2734	89	12	52.2	1.7	0.2
Puerto Rico	18,924,961	18,679,183	18,447,726	6	1	2	0.3	0.1	0.1
Korea rep	358,829,876	367,763,474	375,767,955	833	1003	525	2.3	2.7	1.4
Moldova rep	20,857,803	20,565,340	20,358,954	1	17	10	0	0.8	0.5
Reunion	3,853,762	4,079,669	4,251,841	0	2	1	0	0.5	0.2
Slovenia	2,417,540	2,575,882	2,712,342	0	5	0	1.9	0	0
Somalia	688,520	917,937	953,665	10	143	12	11.3	155.8	12.6
Saudi Arabia	723,257,233	715,802,896	717,931,197	1499	55,975	457	2.1	78.2	0.6
Senegal	43,356,130	48,586,439	55,344,884	213	146	21	4.9	3	0.4
Serbia	20,857,803	20,565,340	20,358,954	1	17	10	0	0.8	0.5
Seychelles	428,908	453,065	463,880	3	0	0	7	0	0
Sierra Leone	25,993,986	30,798,461	34,616,061	108	289	4287	4.2	0	0
Singapore	21,260,364	24,235,308	26,791,416	134	185	92	1.2	1.4	0.6
Slovakia	26,998,428	27,000,736	27,124,206	5	128	6	0.2	4.7	0.2
Slovenia	9,593,289	10,122,460	10,325,578	290	6	4	29.1	0.6	0.4
Solomon Island	2,234,093	2,522,708	2,817,644	0	75	69	0	29.7	24.5
South Africa	238,127,887	252,219,373	268,859,921	185	248	95	0.8	1	0.4
South Sudan	37,609,892	46,325,947	55,857,712	0	0	342	0	0	6.1
Spain	213,425,329	229,381,898	233,833,586	15,162	56	36	71	0.2	0.2
Sri Lanka	96,084,757	99,700,211	102,640,409	35,736	499	770	371.9	5	7.5
Tunisia	213,684,172	214,359,801	217,834,696	2735	1804	1061	5.5	12.6	6.9
Uzbekistan	9,642,321	10,057,562	10,472,882	0	5	0	1.9	0	0
Zambia	8,000,000	8,000,000	8,000,000	0	0	0	0	0	0
Zimbabwe	2,541,780	2,541,780	2,541,780	0	0	0	0	0	0
(continued on next page)									
Country	Population	Deaths	Mortality rate per 1,000,000						
---------------------------------	------------	--------	-------------------------------						
	2001-2005	2006-2010	2011-2015	2001-2005	2006-2010	2011-2015			
Turkey	330,331,592	352,466,817	379,068,755	452	230	692	1.4	0.7	1.8
Turkmenistan	23,287,862	24,711,164	26,839,702	0	0	0	0	0	0
Turks and Caicos Island	116,813	147,002	165,348	0	4	0	0	27.2	0
Tuvalu	48,835	51,692	54,081	0	0	0	0	0	0
Uganda	133,310,136	158,492,073	187,932,378	206	901	265	1.5	5.7	1.4
Ukraine	238,071,165	230,975,699	225,582,555	9	879	197	0	3.8	0.9
United Kingdom	298,249,400	310,323,132	323,116,088	338	43	788	1.1	0.1	2.4
Tanzania Uni Rep	186,032,428	216,591,629	253,405,320	82	312	719	0.4	1.4	2.8
United States	1,450,055,687	1,516,514,351	1,577,571,413	2998	1245	1863	2.1	0.8	1.2
Virgin Islands (US)	541,478	534,029	526,798	0	0	0	0	0	0
Uruguay	16,630,221	16,758,778	17,041,504	9	18	0	0.5	1.1	0
Uzbekistan	129,203,572	138,660,063	150,104,416	0	0	13	0	0	0.1
Vanuatu	995,723	1,127,007	1,265,951	4	0	23	4	0	18.2
Venezuela	120,337,085	140,688,190	151,567,731	142	57	17	1.1	0.4	0.1
Vietnam	413,680,598	433,729,927	457,502,732	1242	1920	500	3	4.4	1.1
Wallis and Futuna	73,047	69,781	62,867	0	0	0	0	0	0
Yemen	97,371,395	111,850,238	127,901,031	218	252	69	2.2	2.3	0.5
Zambia	57,150,420	65,498,387	75,839,464	222	328	2	3.9	5	0
Zimbabwe	63,218,130	67,909,561	75,341,107	154	4433	194	2.4	65.3	2.6

Source: Authors own work with the data extracted from UNFPA [24], an EM-DAT [25] on October 17, 2019
Acknowledgements
Not applicable

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.ijdrr.2022.103001.

References

[1] J.N. Hays, Epidemics and Pandemics: Their Impacts on Human History, Abc-clio, 2005.
[2] D.K. Chester, A.M. Duncan, J. Speake, Earthquakes, volcanoes and god: comparative perspectives from christianity and islam, GeoHumanities 5 (2) (2019) 444–467, https://doi.org/10.1080/2373566X.2019.1631202.
[3] T. Steinberg, Acts of God: the Unnatural History of Natural Disasters in America, Oxford University Press, 2006.
[4] J. Schlehe, Anthropology of religion: disasters and the representations of tradition and modernity, Religion 40 (2) (2010) 112–120, https://doi.org/10.1016/j.religion.2009.12.004.
[5] J.C. Gaillard, P. Texier, Religions, Natural Hazards, and Disasters: an Introduction, 2010.
[6] G. Stern, Can God Intervene?: How Religion Explains Natural Disasters, Greenwood Publishing Group, 2007.
[7] Bolin, Robert C. and Bolton, Patricia A. 199860. Race, religion, and ethnicity in disaster recovery. FMH Publications. 88. https://scholarcommons.usf.edu/fmhpub/88.
[8] M.B. Anderson, Vulnerability to Disaster and Sustainable Development: A General Framework for Assessing Vulnerability, in: Disaster Prevention for Sustainable Development: Economic and Policy Issues, World Bank, Washington, DC, 1995, pp. 41–59.
[9] J. Weichelgartner, Disaster mitigation: the concept of vulnerability revisited, Disaster Prev. Manag. 10 (2) (2001) 85–95, https://doi.org/10.1108/09653560110388609.
[10] M.K. Lindell, C.S. Prater, Assessing the community impacts of natural disasters, Nat. Hazards Rev. 4 (4) (2003) 176–185, https://doi.org/10.1061/(ASCE)1527-6988(2003)4:4(176).
[11] L.M. Shaluf, An overview on disasters, Disaster Prev. Manag. 16 (5) (2007) 687–703, https://doi.org/10.1108/09653560710837000.
[12] L.N. Van Wassenhove, Humanitarian aid logistics: supply chain management in high gear, J. Oper. Res. Soc. 57 (5) (2006) 475–489, https://doi.org/10.1057/palgrave.jors.2602125. Vol. 39 No. 6, pp. 450–468.
[13] R.G. Richey, S. Pettit, A. Beresford, Critical success factors in the context of humanitarian aid supply chains, Int. J. Phys. Distrib. Logist. Manag. 39 (6) (2009) 450–468, https://doi.org/10.1108/09600030910985811.
[14] L. Tshoegl, R. Below, D. Guha-Sapir, An Analytical Review of Selected Data Sets on Natural Disasters and Impacts, Centre for Research on the Epidemiology of Disasters, Louvain, 2006.
[15] D. Guha-Sapir, F. Checchi, Science and Politics of Disaster Death Tolls, BMJ, 2018, https://doi.org/10.1136/bmj.k4005.
[16] J.B.R. Hernandez, P.Y. Kim, Epidemiology morbidity and mortality, in: Stat Pearls [Internet]. Treasure Island (F.L.): Stat Pearls Publishing, 2020. Available from: https://www.ncbi.nlm.nih.gov/books/NBK547668/.
[17] A. Woller, R. Osello, J. Gualino, E. Calderini, G. Vigna, P. Santuz, C. Cecchetti, The importance of mortality risk assessment: validation of the pediatric index of mortality 3 score, Pediatr. Crit. Care Med. 17 (3) (2016) 251–256, https://doi.org/10.1061/PCC.2016.019885.
[18] GBD 2016 Causes of Death Collaborators, Global, regional, and national age-sex specific mortality for 264 causes of death, 1980–2016: a systematic analysis for the Global Burden of Disease Study 2016, Lancet (London, England) 390 (10100) (2017) 1151–1210, https://doi.org/10.1016/S0140-6736(17)32152-9.
[19] R. Baker, E. Sullivan, J. Camosso-Stefinovic, A. Rashid, A. Farooqi, H. Blackledge, J. Allen, Making use of mortality data to improve quality and safety in general practice: a review of current approaches, Qual. Saf. Health Care 16 (2) (2007) 84–89, https://doi.org/10.1136/qshc.2006.019885.
[20] H.K. Green, O. Lysaght, D.D. Saulnier, K. Blanchard, A. Humphrey, B. Fakhruddin, V. Murray, Challenges with disaster mortality data and measuring progress towards the implementation of the Sendai framework, International Journal of Disaster Risk Science 10 (4) (2019) 449–461, https://doi.org/10.1007/s13753-019-00237-x.
[21] D. Guha-Sapir, P. Hoyois, P. Wallemacq, R. Below, Annual Disaster Statistical Review 2016: the Numbers and Trends, Centre for Research on the Epidemiology of Disasters, Brussels, Belgium, 2016.
[22] J. Leaning, D. Guha-Sapir, Natural disasters, armed conflict, and public health, N. Engl. J. Med. 369 (19) (2013) 1836–1842, https://doi.org/10.1056/NEJMra1109677.
[23] L.B. Bourque, J.M. Siegel, M. Kano, M.M. Wood, Morbidity and mortality associated with disasters, in: Handbook of Disaster Research. Handbooks of Sociology and Social Research, Springer, New York, NY, 2007, https://doi.org/10.1007/978-0-387-32353-4_6.
[24] Centre for Research on the Epidemiology of Disasters Emergency Events Database, The international disaster database, Retrieved from, https://www.emdat.be/.
[25] United Nations Population Fund, World population dashboard, Retrieved from, https://www.unfpa.org/data/world-population-dashboard, 2018.
[26] Kenzo Hiroki, Strategies for Managing Low-Probability, High-Impact Events, World Bank, Washington, DC, 2012. © World Bank, https://openknowledge. worldbank.org/handle/10986/16163 License: CC BY 3.0 IGO.
[27] W.J.W. Botzen, J.C.J.M. Van Den Bergh, Managing natural disaster risks in a changing climate, Environ. Hazards 8 (3) (2009) 209–225, https://doi.org/10.3763/ehaz.2009.0023.