PSR J1756−2251: a new relativistic double neutron star system

A. J. Faulkner¹, M. Kramer¹, A. G. Lyne¹, R. N. Manchester², M. A. McLaughlin¹, I. H. Stairs³, G. Hobbs², A. Possenti⁴, D. R. Lorimer¹, N. D’Amico⁴,⁵, F. Camilo⁶ & M. Burgay⁴

ABSTRACT

We report the discovery during the Parkes Multibeam Pulsar Survey of PSR J1756−2251, a 28.5 ms pulsar in a relativistic binary system. Subsequent timing observations showed the pulsar to have an orbital period of 7.67 hrs and an eccentricity of 0.18. They also revealed a significant advance of periastron, 2.585 ± 0.002 deg. yr⁻¹. Assuming this is entirely due to general relativity implies a total system mass (pulsar plus companion) of 2.574 ± 0.003 M⊙. This mass and the significant orbital eccentricity suggest that this is a double neutron star system. Measurement of the gravitational redshift, γ, and an evaluation of the Shapiro delay shape, s, indicate a low companion mass of <1.25 M⊙. The expected coalescence time due to emission of gravitational waves is only \sim1.7 Gyr substantially less than a Hubble time. We note an apparent correlation between spin period and eccentricity for normally evolving double neutron star systems.

Subject headings: pulsars: general — pulsars: individual PSR J1756−2251

1. Introduction

Relativistic double neutron star (DNS) binary systems in tight orbits are valuable physical laboratories, since their rapid evolution allows stringent tests of gravitational theories in

¹University of Manchester, Jodrell Bank Observatory, Macclesfield, Cheshire, SK11 9DL, UK
²Australia Telescope National Facility, CSIRO, P.O. Box 76, Epping NSW 1710, Australia
³Department of Physics & Astronomy, University of British Columbia, 6224 Agricultural Road, Vancouver, B.C. V6T 1Z1, Canada
⁴INAF - Osservatorio Astronomico di Cagliari, Loc. Poggio dei Pini, Strada 54, 09012, Capoterra (CA), Italy
⁵Università degli Studi di Cagliari, Dipartimento di Fisica, SP Monserrato-Sestu km 0,7, 90042, Monserrato (CA), Italy
⁶Columbia Astrophysics Laboratory, Columbia University, 550 West 120th Street, New York, NY 10027, USA
strong-field conditions (e.g., Taylor & Weisberg 1989). They make a significant contribution to estimated event rates for gravitational wave detectors (e.g., Kim, Kalogera & Lorimer 2002). DNS binaries are rare since, even if the system survives the first supernova explosion, the progenitor system will typically disrupt with the second supernova explosion. Also, they are observationally selected against because of the large orbital modulation of the pulsar period. In this Letter we report the discovery of PSR J1756−2251, a 28.5 ms pulsar, and present strong evidence which suggests that it is the 8th DNS binary system known and the 5th which will coalesce in less than a Hubble time. In §2 we describe the observations, §3 evaluates the nature of the companion, while §4 discusses the search for a possible pulsar companion. Finally, §5 considers some of the implications of the discovery.

2. Observations

PSR J1756−2251 was discovered in the Parkes Multibeam Pulsar Survey (PMPS; Manchester et al. 2001). The PMPS is the most successful survey for pulsars, with more than 700 pulsars discovered so far. The survey used a sensitive 13-beam receiver at the Parkes radio telescope to cover the Galactic plane (|b| < 5°, 260° < l < 50°) with 35-min integrations at a centre frequency of 1374 MHz, with 96 frequency channels covering 288 MHz bandwidth, using 250 µs sampling.

An initial search using standard Fourier techniques, as described in Manchester et al. (2001), failed to detect PSR J1756−2251. The data were subsequently re-analysed using an efficient acceleration code (Faulkner et al. 2004) and PSR J1756−2251 was detected in three beams, with the best signal-to-noise ratio of 19. The system was confirmed in June 2003 by re-observation at Parkes, using the ‘gridding’ technique described in Morris et al. (2002).

PSR J1756−2251 has subsequently been observed regularly from Parkes at 1374 MHz using 288 MHz bandwidth (BW) and 1390 MHz using 256 MHz BW and 80 or 125 µs sampling time (t_s), plus occasional observations at 685 MHz (64 MHz BW, t_s: 80 µs) and 3030 MHz (768 MHz BW, t_s: 80 µs); at Jodrell Bank Observatory at 1396 MHz (64 MHz BW, t_s: 371 µs) and 610 MHz (4 MHz BW, t_s: 555 µs) and the Green Bank Telescope (GBT) at 1400 MHz (96 MHz BW, t_s: 72 µs) using the Berkley Caltech Pulsar Machine (Backer et al. 1997). Full orbit observations of ~8 hrs have been made at Parkes and the GBT. Figure 1 shows the integrated pulse profile of PSR J1756−2251, at 1390 MHz with 512 kHz frequency channels and 80 µs sampling; it is sharp but featureless, with a pulse width of 2.7% of the spin period. The 1998 observations, with 3 MHz frequency channels, have higher dispersion smearing, however, the profile still appears similar. The profile at 3030 MHz is also similar while there is broadening at 685 MHz. Given that profile widths of
recycled pulsars hardly evolve with frequency (Kramer et al. 1999), this broadening is likely to be due to scattering. There is no evidence of any emission at phase 180° from the pulse.

For regular coverage over the orbit, pulse time of arrivals (TOAs) were made using 10 min sub-integrations from the Parkes observations. Three survey observations, made 5 years before the confirmation, were included. The bulk of the observations, including 1189 of the 1382 timing points, were made at Jodrell Bank, each using 5 min of integration each. The timing analysis used the TEMPO program\(^1\) and gave the timing parameters listed in Table 1. PSR J1756–2251 is very close to the ecliptic plane, which has made the determination of its declination using timing measurements relatively imprecise.

3. Nature of the Companion

The masses of the pulsar and its companion cannot be measured independently in purely Keplerian orbits. However, the ‘mass function’, \(f_{\text{mass}} = (m_2 \sin i)^3/(m_1 + m_2)^2\), can be found from the orbital period \(P_b\) and projected semi-major axis, \(x = a_1 \sin i\), where \(i\) is the orbital inclination. This relates the masses of the pulsar, \(m_1\), and the companion, \(m_2\), both in solar masses. Since we fit for \(0° \leq i \leq 90°\), clearly \(\cos i > 0\).

We have measured the precession of the longitude of periastron, \(\dot{\omega}\), to be \(2.585 \pm 0.002\) deg yr\(^{-1}\). This could be due to a combination of tidal effects caused by a non-compact deformable companion (Smarr & Blandford 1976), the effects of relativistic gravitational interaction (Taylor & Weisberg 1989) or spin orbit coupling (e.g. Masters & Roberts 1975). Although it would be possible for a hydrogen main-sequence star to fit in the orbit, it would induce an \(\dot{\omega}\) of \(~1000\) times the observed value (see Masters & Roberts 1975). Alternatively, the companion could be a helium main-sequence star. Using the relationship between \(\dot{\omega}\), \(m_1\) and \(m_2\) due to tidal effects derived in Roberts, Masters & Arnett (1976), we find that the required pulsar mass must be \(< 0.6\ M_\odot\), which is very unlikely. Furthermore, there is no evidence of occultations of the pulsar, which is consistent with the companion’s identification as a compact object. Hence, the companion must be a compact object; either a neutron star (NS) or white dwarf (WD). A fast rotating WD could affect \(\dot{\omega}\) by spin orbit coupling. Following Wex (1998)\(^1\), we estimated the size of the contribution from a derived upper limit on \(\dot{x}/x\). While we do not know all relevant angles in the system’s geometry, we conclude that this effect is insignificant, unless we observed the system under very specific angles and/or at particular phases of the orbital precession. While we consider this as unlikely, future observations will verify this conclusion.

\(^1\)See http://www.atnf.csiro.au/research/pulsar/tempo/
Taking \(\dot{\omega} \) to be entirely due to the effects of general relativity, the total system mass can be derived (see Damour & Taylor 1992). We obtain a value of \(2.574 \pm 0.003 \, M_\odot \). Figure 2 shows \(\dot{\omega} \) as a function of \(m_2 \) and \(\cos i \); the data were analysed using the DD model of TEMPO (Damour & Deruelle 1985, 1986). The total system mass is remarkably similar to that of the double pulsar system, J0737–3039 (2.588 \, M_\odot; Burgay et al. 2003).

The system mass, age of the pulsar and the significant eccentricity of 0.18 make a WD companion unlikely, since any accretion from the WD progenitor onto the NS would have circularised the orbit. If the companion is a WD then it would be a CO type with a mass of \(\sim 1.2 \, M_\odot \). At a distance of 2.5 kpc and assuming the pulsar characteristic age of 443 Myr we expect it to be magnitude \(\lesssim 24 \) (e.g., García-Berro et al. 1996). While it is probably too faint to be seen in available optical surveys, we have, reviewed surveys and catalogues at the Astrophysical Virtual Observatory\(^2\), which includes objects with a maximum magnitude of 22.5. No plausible optical counterpart was found.

Although not yet well constrained, we have measured the gravitational redshift parameter, \(\gamma \), (Damour & Duerelle 1986) to be 1.3 ± 0.3 ms. This puts further limits on the masses as shown in Figure 2.

Measurements of the Shapiro delay parameters: range \(r \) and shape \(s \), can provide estimates of both \(m_2 \) and \(i \) (e.g., Damour & Taylor 1992). It has not yet been possible to constrain \(r \) well, but constraints on \(s \) can be obtained by searching the \(\chi^2 \) hypersphere, obtained by running TEMPO over a range of \(\sin i \) and \(m_2 \) values. This further constraint is plotted as probability contours in Figure 2.

To constrain the masses of the pulsar and companion further we can assume that general relativity is correct and apply the DDGR (Damour-Deruelle General Relativity) model (Taylor & Weisberg 1989). We have explored the \(\chi^2 \) hypersphere of \(m_1 + m_2 \) and \(m_2 \) which are the only unknown parameters if the orbit is completely described by general relativity. A contour plot, of \(m_1 \) and \(m_2 \), is shown as an insert in Figure 2. This indicates a light neutron star companion, possibly with a mass similar to or lighter than that of PSR J0737–3039B (Lyne et al. 2004).

The expected value of the gravitational wave damping of the orbit is below our present detection limit. Assuming the pulsar has a mass 1.35 \, M_\odot, general relativity predicts a value for \(\dot{P}_b \) of \(-2.2 \times 10^{-15} \).

\(^2\)http://www.euro-vo.org
4. Companion Pulsar Search

PSR J1756–2251 probably followed a typical DNS evolution (e.g. Phinney & Kulkarni 1994). Both stars would initially have had masses $> 8M_\odot$. The pulsar was formed in a supernova explosion of the more massive component. Subsequently, the companion expanded in its red giant phase and the pulsar accreted material, thus increasing its rotation rate. The two stars then spiralled together in a common envelope to give a tight orbit. Finally, the companion star exploded as a supernova.

The possibility that the companion star is also a pulsar has been explored. Any second pulsar would be highly accelerated, which would normally have the effect of reducing search sensitivity due to pulse smearing. However, we now know the precise orbital parameters and dispersion measure of PSR J1756–2251, we also know the ephemeris for a companion except for the projected semi-major axis, $a_2 \sin i$. This is dependent upon the ratio of the masses of the two stars:

$$a_2 \sin i = \frac{m_1}{m_2} a_1 \sin i.$$ \hspace{1cm} (1)

We are, therefore, able to make a fully coherent search for a companion pulsar using a series of values of m_2 appropriate to a neutron star. For each search, a time series in the pulsar rest frame was constructed by taking each time sample from the closest sample in the observation time series. Corrected time series from two full orbits of observations, at 1390 MHz from Parkes, were searched using the standard approach for a solitary pulsar (e.g. Manchester et al. 2001). PSR J0737-3039B is only visible for short periods at particular orbital phases (Lyne et al. 2004); consequently, searches were also conducted throughout the observation with a range of observation lengths from 10 min to the full orbit, with a limiting flux density of ~ 0.045 mJy. The process was repeated over a range of masses: $0.73m_1 < m_2 < 1.27m_1$. The searches were sensitive to spin-periods from 1 ms up to 10 s.

Unfortunately, no companion pulsar was detected with a luminosity limit of ~ 0.3 mJy kpc2, below that of the faintest known pulsar which has a luminosity of 0.5 mJy kpc2 (Camilo 2003).

5. Discussion

Based on orbital damping due to emission of gravitational waves in general relativity (Peters & Mathews 1963), the coalescence time of PSR J1756–2251 is ~ 1.7 Gyr. This is substantially less than the age of the Universe and this system is therefore important in the estimation of coalescence rates of DNS systems.
General relativity predicts that the merging of two neutron stars will produce a burst of gravity waves (Misner, Thorne & Wheeler 1973) detectable over inter-galactic distances by ground-based gravity-wave (GW) detectors. The pulsars predicted to coalesce within 10 Gyr are listed in Table 2.

The rate of mergers observable by GW detectors has been discussed extensively, see e.g. Phinney (1991) and Kim et al. (2003). Following the discovery of PSR J0737-3039, predicted NS–NS coalesce rates were substantially increased (Burgay et al. 2003, Kalogera et al. 2004). However, these calculations use only three systems, PSR’s B1913+16, B1534+12 and J0737−3039A; PSR B2127+11C is usually not included in the calculations since it is in a globular cluster and probably formed by exchange interaction rather than binary evolution (Prince et al. 1991). The predicted rate of mergers is dominated by PSR J0737−3039A due to its proximity, short time to coalescence and difficulty of discovery due to Doppler smearing. Because its parameters are similar to those of known pulsars and does not represent a new population, the addition of PSR J1756−2251 is not expected to make a significant difference to the predicted merger rate (Kalogera et al. 2004).

As noted by McLaughlin et al. (2004), for seven of the DNS systems known, (excluding PSR B2127+11C, see above), there appears to be a strong correlation between spin period, P, and eccentricity, e, as shown by the dashed line in Figure 3. The Pearson correlation coefficient, r, for these seven systems is 0.97. A Monte Carlo simulation in which seven data points are drawn from a flat distribution in P and e show that such high values of r occur by chance only 0.1% of the time. This apparent correlation shows the current state of the DNS systems. The basic relationship between P and e was formed early in the system’s history, with some evolution over the actual, but uncertain, age of the system.

Qualitatively, this relationship may be due to a less massive progenitor of the companion neutron star evolving through its giant phase relatively slowly, leaving a longer time to spin-up the pulsar by accretion, hence a shorter spin period. Prior to the supernova explosion of the companion star the orbit is expected to have been circularised due to accretion (e.g Bhattacharya & van den Heuvel, 1991). A less massive companion star will eject less mass from the explosion, hence, using the simplest symmetric mass loss model which ignores kick velocities, will result in a smaller recoil (Phinney & Kulkarni, 1994). Hence, a less massive companion star will lead to a less eccentric DNS system as well as to a shorter spin period. There is a similar correlation between spin period and companion mass further supporting this mechanism. A more detailed investigation of the various effects is clearly required.
6. Acknowledgements

We gratefully acknowledge the technical assistance with hardware and software provided by Jodrell Bank Observatory, CSIRO ATNF, Osservatorio Astronomico di Cagliari, Swinburne centre for Astrophysics and Supercomputing. The Parkes radio telescope is part of the Australia Telescope which is funded by the Commonwealth of Australia for operation as a National Facility managed by CSIRO. IHS holds an NSERC UFA and is supported by a Discovery Grant. DRL is a University Research Fellow funded by the Royal Society. FC acknowledges support from NSF grant AST-02-05853 and a NRAO travel grant. NDA, AP and MB received support from the Italian Ministry of University and Research (MIUR) under the national program Cofin 2003. We thank Thomas Driebe for calculations of white dwarf luminosities.
REFERENCES

Anderson S. B., Gorham P. W., Kulkarni S. R., Prince T. A., 1990, Nature, 346, 42

Backer D. C., Dexter M. R., Zepka A., D. N., Wertheimer D. J., Ray P. S., Foster R. S., 1997, PASP, 109, 61

Bhattacharya D., van den Heuvel E. P. J., 1991, Phys. Rep., 203, 1

Burgay M. et al., 2003, Nature, 426, 531

Camilo F., 2003, in Bailes M., Nice D. J., Thorsett S., eds, Radio Pulsars. Astronomical Society of the Pacific, San Francisco, p. 145

Cordes J. M., Lazio T. J. W., 2002, ApJ, submitted astro-ph/0207156

Damour T., Deruelle N., 1985, Ann. Inst. H. Poincaré (Physique Théorique), 43, 107

Damour T., Deruelle N., 1986, Ann. Inst. H. Poincaré (Physique Théorique), 44, 263

Damour T., Taylor J. H., 1992, Phys. Rev. D, 45, 1840

Faulkner A. J. et al., 2004, MNRAS, in press

García-Berro E., Hernanz M., Isern J., Chabrier G., Segretain L., Mochkovitch R., A&A

Hulse R. A., Taylor J. H., 1975, ApJ, 195, L51

Johnston H. M., Kulkarni S. R., 1991, ApJ, 368, 504

Kalogera V. et al., 2004, ApJ, 601, L179

Kaspi V. M. et al., 2000, ApJ, 543, 321

Kim C., Kalogera V., Lorimer D. R., 2003, ApJ, 584, 985

Kramer M. et al., 1999, ApJ, 526, 957

Lyne A. G. et al., 2004, Science, 303, 1153

Manchester R. N. et al., 2001, MNRAS, 328, 17

Masters A. R., Roberts D. H., 1975, ApJ, 195, L107

McLaughlin M. A. et al., 2004, in Rasio F. A., Stairs I. H., eds, ASP Conf. Ser. tbd: Binary Radio Pulsars. astro-ph/0404181
Misner C. W., Thorne K. S., Wheeler J. A., 1973, Gravitation. W. H. Freeman, San Francisco
Morris D. J. et al., 2002, MNRAS, 335, 275
Peters P. C., Mathews J., 1963, Phys. Rev., 131, 435
Phinney E. S., Kulkarni S. R., 1994, Ann. Rev. Astr. Ap., 32, 591
Phinney E. S., 1991, ApJ, 380, L17
Prince T. A., Anderson S. B., Kulkarni S. R., Wolszczan W., 1991, ApJ, 374, L41
Roberts D. H., Masters A. R., Arnett W. D., 1976, ApJ, 203, 196
Smarr L. L., Blandford R., 1976, ApJ, 207, 574
Taylor J. H., Weisberg J. M., 1989, ApJ, 345, 434
Wex N., 1998, MNRAS, 298, 997
Wolszczan A., 1990. IAU Circ. No. 5073
Table 1. Observed and derived characteristics of PSR J1756−2251.

Parameter	Value		
Right ascension (J2000)	$17^h56^m46.6332(2)$		
Declination (J2000)	$-22^\circ51'59.4(2)$		
Galactic longitude (deg)	6.50		
Galactic latitude (deg)	0.95		
Ecliptic longitude (deg)	+269.31		
Ecliptic latitude (deg)	0.57		
Period, P (ms)	28.46158845494(2)		
Period derivative, \dot{P} (x 10^{-18})	1.0171(2)		
Epoch (MJD)	52086		
Dispersion Measure, DM (pc cm$^{-3}$)	121.18(2)		
Orbital Period, P_b (days)	0.319633898(2)		
Eccentricity, e	0.180567(2)		
T_0 (MJD)	52812.919653(1)		
Longitude of periastron, ω (deg)	322.571(4)		
Projected semimajor axis, $a_1 \sin i$ (lt-s)	2.7564(2)		
Advance of periastron, $\dot{\omega}$ (deg yr$^{-1}$)	2.585(2)		
Gravitational redshift, γ (ms)	1.3(3)		
Number of TOAs	1362		
Timing data span (MJD)	50996 – 53176		
RMS timing residual (μs)	42		
Flux density at 1400MHz (mJy)	0.6(1)		
Width of pulse at 50%, W_{50} (ms)	0.78		
Width of pulse at 10%, W_{10} (ms)	1.6		
Characteristic Age, τ_c (Myr)	443		
Surface magnetic field, B (Gauss)	5.4×10^9		
Total system mass, $m_1 + m_2$ (M_\odot)	2.574(3)		
Pulsar mass†, m_1	$1.40^{+0.02}_{-0.03}$		
Companion mass†, m_2	$1.18^{+0.03}_{-0.02}$		
Time to coalesence (Gyr)	1.69		
Distance (kpc) - NE2001	2.5		
$	z	$ (kpc)	0.04
Note. — Values in parenthesis are twice the nominal TEMPO uncertainties in the least significant digits quoted, obtained after scaling time of arrival (TOA) uncertainties to ensure $\chi^2 = 1$. Distance estimated from the ‘NE2001’ Galactic electron density model (Cordes & Lazio 2002). †Pulsar and companion masses (1-σ errors) are derived from the DDGR model and are highly correlated.
Table 2. Binary systems containing radio pulsars which coalesce in less than 10^{10} yr.

PSR	P (ms)	P_b (hr)	e	Total Mass M_\odot (Myr)	τ_c (Myr)	τ_{GW} (Myr)	Reference
J0737−3039A	22.70	2.45	0.088	2.58	210	87	Burgay et al. (2003)
J0737−3039B	2773	2.45	0.088	2.58	50	87	Lyne et al. (2004)
B1534+12	37.90	10.10	0.274	2.75	248	2690	Wolszczan (1990)
J1756−2251	28.46	7.67	0.181	2.57	444	1690	This Letter
B1913+16	59.03	7.75	0.617	2.83	108	310	Hulse & Taylor (1975)
B2127+11C	30.53	8.04	0.681	2.71	969	220	Anderson et al. (1990)
J1141−6545†	393.90	4.74	0.172	2.30	1.4	590	Kaspi et al. (2000)

Note. — One neutron star–white dwarf† and 5 DNS systems. PSR B2127+11C is in a globular cluster implying a different formation history to the Galactic DNS systems. Here, τ_c is the pulsars’ characteristic age and τ_{GW} is the time remaining to coalesce due to emission of gravitational radiation. The total coalescence time is $\tau_c + \tau_{GW}$.
Fig. 1.— Average pulse profile of PSR J1756–2251 at 1390 MHz, obtained by integrating 27.9 hours of observation at Parkes. The small horizontal bar to the right of the pulse indicates the resolution of the profile, including the effects of interstellar dispersion.
Fig. 2.— The observational constraints, using the DD model, on the companion mass and orbital inclination, i, shown as $\cos i$. The value of $\dot{\omega}$ is well constrained and the solid line shows both the upper and lower limits of $\dot{\omega}$. The dotted lines show the much wider limits imposed by γ. Both $\dot{\omega}$ and γ errors are twice the formal TEMPO errors. The three contours show the 1-σ, 2-σ and 3-σ ranges for a fixed Shapiro s parameter, and companion mass, with all other parameters left free. The insert shows a contour plot, also 1-σ, 2-σ and 3-σ, of companion and pulsar masses using the DDGR model: see text for details. The best fit companion mass found is shown as a cross on the main plot.
Fig. 3.— Plot showing the strong relationship between eccentricity and spin period of known DNSs. The dashed line is the best fit for all systems except PSR B2127+11C (not shown) which is likely to have a non-typical formation history.