Hepatitis C Virus Coinfection in People With Human Immunodeficiency Virus in Iran: A Systematic Review and Meta-Analysis

Seyyed-Kiana Razavi-Amoli1,2,a and Abbas Alipour3,a

1Student Research Committee, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran; 2Systematic Review and Meta-analysis Expert Group (SRMEG), Universal Scientific Education and Research Network (USERN), Tehran, Iran; and 3Department of community medicine, School of Medicine, Mazandaran University of Medical Sciences, Mazandaran, Sari, Iran

Background. Hepatitis C virus (HCV) coinfection is associated with higher mortality and morbidity in people with human immunodeficiency virus (PWH).

Methods. We aimed to characterize the epidemiology and factors associated with HCV coinfection among PWH in Iran. In this systematic review, we searched 3 English databases (MEDLINE, SCOPUS, Embase) and 2 Farsi databases (Scientific Information Database and Magiran) for studies that measured the prevalence of HCV coinfection among PWH, published between 2000 and January 1, 2021. We included studies with a minimum sample size of 5 PWH. Reviews, editorials, conference abstracts, theses, studies with no relevant data, and unclear serological assays were excluded.

Results. We summarized the HCV coinfection prevalence by random-effect meta-analysis and assessed the sources of heterogeneity by a meta-regression model. Of the 858 records identified, 69 eligible studies with 12 996 PWH were included. Overall, HCV coinfection prevalence was 64% (95% confidence interval [CI], 58–69). The prevalence was higher among older (mean age ≥35 years) PWH (69%; 95% CI, 64–74) and PWH who inject drugs (77%; 95% CI, 71–82). Furthermore, we found that coinfection was higher among studies conducted between 2000 and 2014 (67%; 95% CI, 59–75) versus 2015–2020 (57%; 95% CI, 50–64).

Conclusions. The prevalence of HCV coinfection is high in Iranian PWH, with significant geographical variations. Hepatitis C virus screening and treatment among PWH are warranted to avoid the future burden of HCV-related liver damage, cancer, and mortality.

Keywords. coinfection; hepatitis C; human immunodeficiency virus; Iran; people with HIV.
2.8% of injection drug users are diagnosed with HIV [16]. Specific harm reduction standards were applied in Iran from 2002 until now. These programs included education, opioid substitution treatment by methadone and buprenorphine, and providing access to sterile syringes, needles, and condoms [14]. High-risk participants with confirmed HIV infection were referred to a voluntary counseling and testing center that developed an opportunity to undergo HCV antibody (Ab) testing and care [17].

Human immunodeficiency virus-HCV coinfection is associated with a markedly high risk of developing cirrhosis, hepatoma, and liver fibrosis progression [18, 19]. In the natural history of chronic HCV, viral and host factors play a considerable role in the course of HCV. In the setting of HIV-HCV coinfection, disrupted immune reaction and low CD4+ T-lymphocyte counts have consistently been shown to accelerate liver fibrosis progression [19, 20]. In addition, chronic HCV infection results in increased T-lymphocyte activation, thereby leading to increasing the possibility of sustained HIV infection. A multicenter, randomized clinical trial of 97 HIV-1 patients showed that HIV-HCV-coinfected patients seem to show a greater HIV-1 reservoir size compared to HIV monoinfected patients [21].

Although several national studies have estimated the prevalence of HIV-HCV coinfection, the exact size of coinfection is poorly evaluated. In Iran, several studies reported the prevalence of HIV-HCV coinfection with a wide range of 1.16% to 98% [11, 22–30]. Factors associated with such wide heterogeneity have not been studied. In previous studies, the impact of important factors including IDU, sex, age, and time of study on estimating the coinfection has been neglected [29, 30]. In this comprehensive systematic review and meta-analysis, we sought to estimate the prevalence of HIV-HCV coinfection in PWH in Iran and assessed the demographic and behavioral factors (IDU) associated with a heterogeneity of results.

METHODS

Search Strategy and Study Selection

This systematic review and meta-analysis were performed according to the Meta-analysis of Observational Studies in Epidemiology checklist [31] and PRISMA (preferred reporting items for systematic reviews and meta-analyses) standards [32]. We searched the literature for all studies published between 2000 and January 1, 2021 that evaluated the prevalence of HCV among PWH in Iran. Two experienced investigators (A.A. and S.-K.R.-A.) independently identified potentially relevant studies by electronic searches of MEDLINE (via PubMed), SCOPUS, Embase, Google Scholar, and 2 Persian databases, including Scientific Information Database and Magiran. Keywords for the search included “HIV”; “AIDS” OR “Acquired Immunodeficiency Syndrome”; AND “HCV”; “hepatitis C” OR “hepatitis C antibodies”; AND “Iran”. No limitation regarding language was placed. To achieve all additional studies, manual searches were performed via the references section of eligible studies. We screened the article by first reading the title and abstract and then the full text. Conflicting results were resolved through joint discussion. In a joint discussion, each of the authors noticed convincing evidence regarding the strengths and weaknesses of the articles. All retrieved studies were collected in EndNote to identify duplication.

Eligible studies for our analysis met the following criteria: (1) studies with the cohort, clinical trials, cross-sectional, and case-control designs that assessed the prevalence of HCV in PWH in Iran; and (2) studies that diagnosed HIV and HCV with standard laboratory tests (enzyme-linked immunosorbent assay and molecular diagnostic assays). Exclusion criteria included the following: reviews, editorials, conference abstracts, theses, duplicates, studies with less than 5 PWH sample size, studies with no relevant data, and unclear serological assays.

Data Extraction

Data for the first author, year of study, setting of patients, city, type of HIV diagnostic test, HIV sample size, the median age of patients, male proportion, IDU proportion, type of HCV diagnostic test, and HCV/HIV coinfection size were separately extracted by 2 researchers (A.A. and S.-K.R.-A.). We reached out to the corresponding author of studies with unclear data or unavailable full text via E-mail.

The quality of eligible studies was independently evaluated by 2 authors (A.A. and S.-K.R.-A.) using the Joanna Briggs Institute (JBI) checklist [33]. The JBI critical appraisal checklist for systematic reviews assesses the quality of retrieved studies by examining 8 items to consider the risk of bias. A score less than 5 indicated insufficient study quality. Discrepancies were resolved through discussion.

Data Analysis

We used the Metaprop command using STATA version 14 (StataCorp, College Station, TX) for pooling the HCV coinfection among PWH. We estimated 95% confidence interval (CI) using the score statistic, the exact binomial method, and the Freeman-Tukey double arcsine transformation of proportions. Heterogeneity of the prevalence estimated between studies was assessed by Q statistic and I^2 index, assuming that I^2 values of 25%, 50%, and 75% represented low, medium, and high heterogeneity, respectively. Q statistic is a measure of weighted squared deviation on a standardized scale and compared with the expected sum of squares (on the assumption that all studies share a common effect) to yield a test of null and estimate excess variance. I^2 is the proportion of observed dispersion that is real, rather than spurious, and not dependent on the scale [34]. We assessed the quality of each study using JBI. Forest plots were drawn displaying the variation of the HCV Ab test
positivity rate among all PWH (HIV/HCV coinfection proportion) together with the pooled measure and subgroup analysis.

Egger's weighted regression method was used to test for publication bias, with \(P < .1 \) indicative of statistically significant publication bias. In the case of publication bias, we will report estimates after adjusting for publication bias using the trim-and-fill method.

We assessed the heterogeneity effect of several characteristics (age, male proportion, IDU proportion, and HIV and HCV route diagnostic tests) using meta-regression.

The pooled prevalence of HCV coinfection in PWH was reported for 5 subregions: (1) North-Central region: Tehran, Qazvin, Mazandaran, Semnan, Golestan, Alborz, and Qom province; (2) South-Central region: Esfahan, Fars, Bandar Bushehr, Chaharmahal and Bakhtiari, Hormozgan, Kohgiluyeh, and Boyer-Ahamd province; (3) Northwest region: East Azerbaijan, West Azerbaijan, Ardabil, Zanjan, Gilan, and Kurdistan province; (4) Southwest region: Kermanshah, Ilam, Lorestan, Hamedan, Markazi, and Khuzestan province; (5) East region: Razavi Khorasan, South Khorasan, North Khorasan, Kerman, Yazd, Sistan, and Baluchestan province.

Patient Consent and Ethical Approval

The design of the work was approved by the Ethics Committee of Mazandaran University of Medical Science. All procedures performed in studies are in accordance with the ethical standards of the institutional and/or national research committee of Iran.

RESULTS

We identified 858 articles, 533 (62%) of which were duplicates and removed (Figure 1). We screened the title and abstract of 325 papers and read the full text of 84 articles. Of those, 16 articles were excluded for one of the following reasons: HIV–HCV coinfection was reported among HCV-positive individuals (5); the full text was not available (1); the sample size was less than 5 (4); insufficient statistics (6). Finally, we extracted data from 69 articles for analysis (Table 1). The 69 articles enrolled a total of 12 996 PWH, the majority from Tehran. As shown in Figure 2, the overall prevalence of HCV coinfection was 64.0% (95% CI, 58–69) among PWH. After the removal of 7 low-quality studies (total quality score below 5), pooling of these 62 studies (11 790 individuals) yielded an overall prevalence of HIV/HCV coinfection 64 (95% CI, .58–.71) per 100 PWH in Iran. Egger’s test indicated no publication bias (\(P = .19 \)).

Meta-Regression Analysis

Unadjusted meta-regression analysis showed that the prevalence of HCV coinfection increased by 1.4% (95% CI, 4–2.4; \(P = .007 \)) with each year increase in age and increased by 0.4% (95% CI, 2–6; \(P < .001 \)) with each 1% increase in the prevalence of injecting drug use among the study sample. Table 2 showed that after adjustment of other variables, the prevalence of HCV coinfection was associated with older age (\(P = .049 \)) and injecting drug use (\(P = .03 \)). Furthermore, we noticed a reduction in HCV-HIV coinfection over time. From 2015 (a year when the annual number of PWH and related deaths remained relatively constant [5]) to 2020, the coinfection was 11% lower than from 2000 to 2014 (\(P = .02 \)).

We observed that the prevalence of HCV coinfection was 61% and 69% among PWH with a mean age of less than 35 years and equal or more than 35 years (approximate combined mean), respectively (Table 3 and Figure 3).

The prevalence of HCV coinfection among PWH was 67% and 57% among PWH in the studies conducted in 2000–2014 and 2015–2020, respectively (Table 3 and Figure 4).

As shown in Table 3 and Figure 5, we found that the prevalence of HCV coinfection was 57% among PWH with IDU proportion of less than 75% and 77% among PWH with IDU proportion equal to or more than 75%.

Regarding the geographical disparities in HCV-HIV coinfection, the prevalence of HCV coinfection was 64% in North-Central, 75% in South-Central, 51% in Northwest, 61% in Southwest, and 59% in the East (Table 3 and Figure 6).

DISCUSSION

To our best knowledge, this is the first systematic review and meta-analysis of the prevalence of HCV coinfection in PWH by the conditional probability method in Iran. Few studies measured the effect of confounding factors on HCV coinfection among PWH in Iran [29]. Based on the findings of our meta-analysis, we found that 64% of PWH in Iran are coinfected with HCV. In other words, 1 in 1.56 PWH is coinfected with HCV. With an estimated 54 000 PWH in Iran, we could expect 34 560 of these people to be infected with HCV [4]. The preliminary studies that were included have been conducted in only 15 (of 31 provinces of Iran) provinces. However, from each of the 5 regions of Iran, which are divided by the Ministry of Interior of Iran based on the proximity, geography, and cultural commonalities, we have identified several studies and examined them in this study.

In the current review, we estimated that the greatest burden of this coinfection is in the South-Central region (including the provinces of Isfahan and Fars), followed by the North-Central region (including Tehran, the capital of Iran). The lowest prevalence of HIV–HCV coinfection was observed in the Northwestern regions of Iran (including the provinces of East Azerbaijan, West Azerbaijan, and Kurdistan), corresponding to a prevalence of 51%. There is no geographical variability in antinarcotic law in Iran. However, it is consistent with other studies in terms of resource limitations and deaths due to the consumption of these substances [94].
Recent evidence indicated that during the years 2009–2017, the Central provinces of Iran always showed the highest incidence of HIV infection and the Western provinces (such as West Azerbaijan and Kurdistan) showed the lowest incidence of this infection [95]. Until 2015, the most important route of HIV infection in Iran was intravenous drug injection. Reports from the Ministry of Health of Iran showed that the transmission of infection by intravenous drug injection from 2000 to 2017 was evaluated at 67.6%, 67.3%, 70.4%, 69.6%, 78.1%, 84.5%, 75.4%, 77.3%, 74.9%, 71.1%, 66.6%, 62.6%, 57.8%, 50.4%, 47.7%, 43.4%, 43.4%, and 33.2%, respectively [4]. These numbers revealed that, until 2015, parenteral transmission remained the mainstay for contracting HIV infection in Iran, and simultaneously HCV infection could be considered probable.

In the current study, HIV/HCV coinfection was more common in older age. Numerous previous studies in Iran have shown that older individuals, especially older injecting drug users, are more vulnerable to being infected with HIV [4]. The higher prevalence of this coinfection in older PWH could result from the cumulative effects of HCV exposure in the elderly, the lack of coverage, and the impact of risk reduction

Figure 1. Flowchart of included studies. HCV, hepatitis C virus; HIV, human immunodeficiency virus; SID, Scientific Information Database.
Author	Year	City	District	HIV Sample Size (N)	Coinfection Sample Size (N)	Mean Age, Year	Male Proportion	IDU* %	HIV Test	HCV Test
Ramezani et al	2012	Arak	Southwest	19	15	33.3	100	100	ELISA	Third-generation ELISA
Rahimi-movaghar et al	2007	Tehran	North Central	52	37	33.87	95.77	100	ELISA	Third-generation ELISA
Rahimi-movaghar et al	2007	Tehran	North Central	44	41	33.87	95.77	100	ELISA	Third-generation ELISA
Salem et al	2009	Karaj	North Central	12	3	34.6	100	41/8	ELISA	Third-generation ELISA
SeyedAlinaghi et al	2005	Tehran	North Central	201	135	36	85.57	33/3	ELISA	Third-generation ELISA
Sharif-Mood et al	2005	Zahedan	East	47	19	37.5	89.36	12/77	ELISA and Western blot	Fourth-generation ELISA
Sofian et al	2009	Arak	Southwest	9	8	30.7	100	100	ELISA and Western blot	Third-generation ELISA
Zahedi et al	2011	Kerman	East	165	122	40.4	82.4	76.2	ELISA and Western blot	Third-generation ELISA
Afhami et al	2005	Tehran	North Central	85	58	35/2	85.9	51/8	ELISA	Third-generation ELISA
Alavi et al	2006	Ahwaz	Southwest	18	12	26/3	91.5	100	ELISA	Third-generation ELISA
Rezaianzadeh et al	2012	Shiraz	South Central	1338	1044	36	84.75	73/8	ELISA and Western blot	Third-generation ELISA
Ailpour et al	2013	Shiraz	South Central	1444	1132	38.4	82.2	74.1	ELISA and Western blot	Third-generation ELISA
Ataei et al	2007	Isfahan	South Central	130	100	50.23	98.5	83.5	ELISA and Western blot	Third-generation ELISA
Babamahmoodi et al	2010	Sari	North Central	80	47	37	82.5	81.5	ELISA and Western blot	Third-generation ELISA
Bagheri Amiri et al	2012	Tehran	North Central	20	17	...	90	90	ELISA	Third-generation ELISA
Etminani-Esfahani et al	2012	Tehran	North Central	98	54	40.25	74	55.7	ELISA	Third-generation ELISA
Honavar et al	2013	Shiraz	South Central	23	18	30.4	85.06	40.94	ELISA and Western blot	Third-generation ELISA
Hosseini et al	2006	Tehran	North Central	112	100	...	100	100	ELISA and Western blot	Third-generation ELISA
Javadi et al	2009	Isfahan	South Central	6	6	35.1	...	100	ELISA and Western blot	Third-generation ELISA
Keramat et al	2007	Hamedan	Southwest	15	13	29.7	71.5	52.5	ELISA and Western blot	Third-generation ELISA
Khoosravi et al	2010	Shiraz	South Central	101	87	35	88.11	85.14	ELISA and Western blot	Third-generation ELISA
Mansoori et al	2000	Tehran	North Central	44	39	38	91	75	ELISA and Western blot	Third-generation ELISA
MirNasseri et al	2011	Tehran	North Central	70	61	35.24	89.5	88.8	ELISA and Western blot	Third-generation ELISA
Mohammadi et al	2008	Lorestan	Southwest	391	282	40.5	91.6	51.6	ELISA and Western blot	Third-generation ELISA
Davarpanah et al	2007	Shiraz	South Central	226	200	35.6	94.7	79.2	ELISA and Western blot	Third-generation ELISA
Majidpour et al	2008	Tehran	North Central	12	9	33.52	91.5	100	ELISA and Western blot	Third-generation ELISA
Alavi et al	2003	Ahwaz	Southwest	104	77	28	100	100	ELISA and Western blot	Third-generation ELISA
Ramezani et al	2005	Tehran	North Central	95	65	33.8	83	55.33	ELISA	Third-generation ELISA
Moradmand Badie et al	2009	Tehran	North Central	365	225	30.5	79.7	50.9	ELISA and Western blot	Third-generation ELISA
Author	Year	City	District	HIV Sample Size (N)	Coinfection Sample Size (N)	Mean Age, Year	Male Proportion	IDU%	HIV Test	HCV Test
-----------------	------	-------------	----------------	--------------------	-----------------------------	----------------	-----------------	------	--------------------------------	-------------------------------------
Taeri et al [60]	2007	Isfahan	South Central	106	90	50.8	100	100	ELISA and Western blot	Third-generation ELISA
Aminzadeh et al [61]	2007	Tehran	North Central	21	14	34.4	100	100	ELISA	Third-generation ELISA
Azami et al [62]	2010	Tehran	North Central	200	118	36.5	76.5	56	ELISA and Western blot	Third-generation ELISA
Khorvash et al [63]	2005	Isfahan	South Central	9	9	31.7	96.91	100	ELISA and Western blot	Third-generation ELISA
Tabarsi et al [64]	2003	Tehran	North Central	15	12	36.9	87	87	ELISA and Western blot	Fourth-generation ELISA
Ramezani et al [65]	2005	Tehran	North Central	171	90	37	80.7	68.4	ELISA and Western blot	Third-generation ELISA
Ramezani et al [66]	2014	Tehran	North Central	92	63	36.7	71.7	49	ELISA and Western blot	Third-generation ELISA
Mozgani et al [67]	2014	Kashan	South Central	63	54	34.91	96.8	100	ELISA	Third-generation ELISA
Donyavi et al [11]	2018	Tehran	North Central	161	134	38.9	95	100	ELISA and Western blot	Third-generation ELISA
Jamshidi et al [26]	2017	Tehran	North Central	190	85	36.5	63.2	43.2	ELISA and Western blot	Third-generation ELISA
Emamghani-Dehaj et al [69]	2015	Tehran	North Central	140	62	35.7	64.2	42.14	ELISA and Western blot	Fourth-generation ELISA
Teimoori et al [18]	2016	Ahwaz	Southwest	390	229	32	...	99.1	ELISA and Western blot	Third-generation ELISA
Bokharaei-Salim et al [70]	2014	Tehran	North Central	109	50	35.2	61.5	41.3	ELISA	Fourth-generation ELISA
Sabouri et al [71]	2009	Tehran	North Central	214	131	36.52	80.8	...	ELISA	
Zayedi et al [72]	2017	Ahwaz	Southwest	78	25	33.04	85.89	83.3	Fourth-generation ELISA	
Moradi et al [12]	2017	8 provinces	North Central	38	17	36	84	13.4	ELISA and Western blot	Third-generation ELISA
Farhoudi et al [73]	2013	Tehran	North Central	85	50	ELISA	
Doosti-Irani et al [27]	2015	Khorramabad	Southwest	20	17	35.9	100	38.76	ELISA	
Hashemi-Shahri et al [74]	2007	Zahedan	East	41	13	...	73.1	...	ELISA	Third-generation ELISA
Vaziri et al [75]	2007	Kermanshah	Southwest	888	60	30.7	97.9	...	ELISA	Third-generation ELISA
Saieh et al [76]	2013	Khorramabad	Southwest	50	26	...	49.5	...	ELISA	Third-generation ELISA
Haghighi et al [77]	2012	East Azerbaijan	Northwest	371	168	30.8	91	59	ELISA	
Maracy et al [78]	2014	Isfahan	South Central	205	97	37.1	78	62	ELISA and Western blot	Third-generation ELISA
Hassanzadeh et al [79]	2011	Shiraz	South Central	180	47	...	66.7	...	ELISA	
Advay et al [80]	2015	Sanandaj	Northwest	165	121	38.3	83	100	ELISA and Western blot	Third-generation ELISA
Geibi et al [81]	2017	Shiraz	South Central	1216	794	34	74.2	67	...	
Sani et al [82]	2017	Mashhad	East	64	53	...	95.3	90.6	ELISA and Western blot	Third-generation ELISA
Joulaei et al [83]	2013	Shiraz	South Central	101	76	39.1	70.9	17.1	ELISA	
Koochak et al [84]	2009	Tehran	North Central	200	121	...	72	...	ELISA and Western blot	
Khazaee et al [85]	2013	Aabadan, khoramshahr	Southwest	366	172	...	85.5	73.4	ELISA and Western blot	ELISA
Hajabdolbaghi et al [86]	2010	Tehran	North Central	555	331	36.59	84.9	75.1	ELISA	ELISA
A recent study by Bakhti et al. [92] in 2016 in Mazandaran North Central region showed 83 cases with a mean age of 41.7 years, male proportion of 85, 77.2% ELISA and Western blot, and 60.8% PCR. Shadmand et al. [93] in 2015 in Jahrom South Central area reported 73 cases with a mean age of 35 years, male proportion of 100, 80.8% ELISA and Western blot, and 56.2% PCR. Amini et al. [91] in 2016 in Sanandaj Northwest region reported 185 cases with a mean age of 39.26 years, male proportion of 100, 61.4% ELISA and Western blot, and 56.2% PCR. Foroughi et al. [90] in 2013 in Tehran North Central area reported 481 cases with a mean age of 15.62 years, male proportion of 95.55, 22.22% ELISA and Western blot, and 56.2% PCR. Khodadadi et al. [89] in 2010 in Sanandaj Northwest region reported 97 cases with a mean age of 34 years, male proportion of 100, 61.4% ELISA and Western blot, and 56.2% PCR. Pourahmad et al. [88] in 2003 in Esfahan, Chaharmahal Bakhtiyari, and Lorestan region reported 92 cases with a mean age of 8 years, male proportion of 100, 60.8% ELISA and Western blot, and 56.2% PCR. Table 1. Continued

Author	Year	City	District	Sample Size (N)	Sample Size (N)	Mean Age, Years	Male Proportion	IDU%	HIV Test	HCV Test
Hosseini rad et al	2014	Tehran	North Central	481	356	41.7	85	77.2	ELISA and Western blot	Third-generation ELISA
Pourahmad et al	2003	Esfahan, Chaharmahal Bakhtiyari, and Lorestan	South Central, Southwest	92	8	...	100	60.8	ELISA and Western blot	Third-generation ELISA
Khodadadi et al	2010	Sanandaj	Northwest	97	30	34	100	77.2	ELISA and Western blot	Third-generation ELISA
Foroughi et al	2013	Tehran	North Central	45	5	15.62	95.55	22.22	ELISA	Third-generation ELISA
Amini et al	2016	Sanandaj	Northwest	185	99	39.26	76.1	61.4	ELISA and Western blot	Fourth-generation ELISA
Bakhti et al	2016	Mazandaran	North Central	83	35	...	60.24	...	PCR	ELISA
Shadmand et al	2015	Jahrom	South Central	73	45	...	72.6	...	ELISA	ELISA

Abbreviations: ELISA, enzyme-linked immunosorbent assay; HCV, hepatitis C virus; HIV, human immunodeficiency virus; IDU, injection drug user; PCR, polymerase chain reaction.

*aThe IDU refers to percentage of people with HIV who inject drugs.

strategies and other prevention programs in recent years in Iran [96]. In addition, we noticed that very low HCV coinfection in some studies was associated with a lower mean age of PWH [75, 88, 90].

Trends of shared injection and unprotected sexual contact have significantly increased in Iran. For 18 years from 2000 to 2017, the prevalence of sexual route of HIV infection in Iran has been estimated at 5%, 5.2%, 6.4%, 6.8%, 7.6%, 7.2%, 8.4%, 12.6%, 15.2%, 19.2%, 21.8%, 26.4%, 29.5%, 36.2%, 36.5%, 38.7%, 47.6%, and 46%, respectively [4]. We observed that coinfection prevalence has reduced to 11% among studies conducted after 2015 compared to those performed before 2015. Given the lower likelihood of transmitting HCV infection through sexual contact and the increasingly more effective coverage of national HIV programs implemented in Iran in recent years [14], we could expect a reduced prevalence of coinfection in studies conducted from 2015 onwards.

Based on the Iranian HIV Patient Registry System, at the end of 2019, of 22,054 cases, 14,311 (64.89%) and 6376 individuals (28.91%) were infected through intravenous injection and sexual contact, respectively [4, 97, 98]. Of special consideration, female partners of IDUs in Iran have always been considered one of the most high-risk groups for HIV in Iran. Previous studies have also shown a significantly higher risk of transmitting HCV infection within couples with at least 1 individual diagnosed with HIV [44, 99]. This information implies that we should ponder the likelihood of contracting these 2 infections simultaneously, either at the time of HIV infection or after its initial acquisition (individually or in dyads) as a crucial health issue. Because drug users are not prosecuted during the treatment period, according to the antinarcotics Law in Iran, there is a golden opportunity for these people for HIV and HCV infection screening.

In Iran, relatively good national programs for the prevention and management of HIV infection in 4 phases have been implemented since 2002. In the first phase (2002–2006), these programs focused on public awareness, risk reduction for injecting drug users, and mother-to-child transmission. Afterward, in the second (2007–2010) and third (2011–2015) phases, in addition to strengthening the first phase programs, the greatest concentration was placed on youth education. In the fourth phase (2016–2020), the main focus was on achieving the goals of UNAIDS and the 90-90-90 policy [4]. According to the 90-90-90 policy, by 2020, 90% of PWH will be aware of their HIV status, 90% of whom will receive ART, and 90% of PWH receiving antiretroviral therapy will have sustained viral suppression [100]. A recent study showed that 59,314 PWH live in Iran, 22,054 (37% of PWH) of whom were diagnosed with the infection. At the end of 2019, 25% of PWH received antiretroviral treatment. Furthermore, 11% of PWH achieved sustained viral load suppression by 2019. These reports clearly emphasized that further accurate programs are needed for prompt diagnosis of HIV infection in the general population and high-risk groups (especially PWID, their partners, and female sex worker groups) [101].

Our study had some limitations. First, we could not find a documented report to accurately estimate this coinfection in PWH from some provinces of Iran. However, the trim-and-fill analysis revealed that if reports were conducted in all Iran provinces, we would not have seen much change, and this simultaneous infection in PWH is approximately 58% (95% CI, 64–53). Second, different HIV and HCV diagnostic methods of
preliminary studies may be another limitation of our research, which may be one of the reasons for the observed heterogeneity. We made our best effort to reduce heterogeneity effects by performing stratified analysis. The correlation between the anti-HCV level and HCV ribonucleic acid (RNA) is another issue. However, in the literature, a positive correlation

Study	ES (95% CI)	% Weight
Ramezani, A. et al.	0.70 (0.57, 0.87)	1.44
Rahimi-Movaghar, A. et al.	0.71 (0.58, 0.82)	1.62
Rahimi-Movaghar, A. et al.	0.65 (0.59, 0.69)	1.59
Saehr, F. et al.	0.35 (0.28, 0.43)	0.31
Seyedi-Moghadam, S. et al.	0.57 (0.36, 0.77)	1.71
Shariati-Mir, B. et al.	0.40 (0.29, 0.52)	1.05
Sokhan, M. et al.	0.50 (0.37, 0.63)	1.21
Zadeh, M. et al.	0.74 (0.67, 0.80)	1.73
Al-Hassan, S. et al.	0.65 (0.59, 0.70)	1.66
Alikhani, M. et al.	0.67 (0.44, 0.84)	1.42
Alikhani, M. et al.	0.62 (0.49, 0.73)	1.62
Rezaei-Pazand, A. et al.	0.79 (0.76, 0.83)	1.74
Alipour, A. et al.	0.76 (0.73, 0.79)	1.74
Akbari, S. et al.	0.71 (0.65, 0.78)	1.72
Babasani-Moaddi, F. et al.	0.50 (0.48, 0.53)	1.65
Bagheri-Amin, F. et al.	0.88 (0.84, 0.91)	1.45
Emranzadeh, M. et al.	0.55 (0.45, 0.65)	1.67
Heravi, B. et al.	0.78 (0.78, 0.81)	1.71
Hossaini, M. et al.	0.85 (0.82, 0.87)	1.68
Jouhari, A. et al.	1.00 (0.96, 1.03)	1.07
Khadem, P. et al.	0.67 (0.62, 0.72)	1.38
Khodrav, A. et al.	0.86 (0.78, 0.92)	1.82
Moezoon, S. et al.	0.86 (0.78, 0.93)	1.58
Mir-Hassani, M. et al.	0.87 (0.77, 0.95)	1.65
Mohammadi, M. et al.	0.72 (0.67, 0.78)	1.72
Dolehpoor-Afshari, M. et al.	0.88 (0.84, 0.90)	1.71
Alkabi, S. et al.	0.74 (0.69, 0.80)	1.68
Ramezani, A. et al.	0.66 (0.62, 0.70)	1.67
Monemzadeh-Balali, B. et al.	0.67 (0.62, 0.73)	1.68
Tofigh, K. et al.	0.85 (0.77, 0.93)	1.68
Amirozamani, Z. et al.	0.67 (0.61, 0.73)	1.48
Khodrav, P. et al.	1.02 (0.95, 1.08)	1.21
Tabarsi, A. et al.	0.82 (0.76, 0.88)	1.38
Ramezani, A. et al.	0.63 (0.56, 0.71)	1.79
Ramezani, A. et al.	0.66 (0.60, 0.72)	1.67
Moosavifard, S. et al.	0.54 (0.48, 0.63)	1.61
Afshar, H. et al.	0.86 (0.79, 0.94)	1.64
Dejnavi, F. et al.	0.82 (0.77, 0.88)	1.79
Jamshidi, S. et al.	0.45 (0.38, 0.51)	1.71
Delivani-Dalal, F. et al.	0.44 (0.36, 0.52)	1.68
Tavangar, A. et al.	0.50 (0.44, 0.56)	1.73
Kohandel-Balali, F. et al.	0.46 (0.37, 0.55)	1.68
Sabouri, S. et al.	0.61 (0.55, 0.67)	1.71
Zarei, S. et al.	0.50 (0.43, 0.57)	1.66
Moradi, G. et al.	0.45 (0.36, 0.53)	1.57
Derakhshani-Arani, A. et al.	0.88 (0.84, 0.91)	1.45
Hashemi-Shafie, S. et al.	0.32 (0.20, 0.47)	1.58
Vaeidi, S. et al.	0.57 (0.50, 0.63)	1.73
Salahi, F. et al.	0.82 (0.79, 0.86)	1.61
Heydari, B. et al.	0.48 (0.40, 0.57)	1.72
Nooray, N. et al.	0.56 (0.49, 0.64)	1.71
Agha, S. et al.	0.73 (0.69, 0.79)	1.79
Ghalb, Z. et al.	0.50 (0.36, 0.63)	1.74
Sami, A. et al.	0.82 (0.73, 0.92)	1.84
Hosseini, H. et al.	0.61 (0.54, 0.67)	1.71
Khazaei, S. et al.	0.47 (0.42, 0.52)	1.72
Hoseini, M. et al.	0.74 (0.70, 0.78)	1.73
Pourokhsh, M. et al.	0.09 (0.04, 0.16)	1.67
Khodadadi, L. et al.	0.31 (0.23, 0.41)	1.67
Farnahi, M. et al.	0.11 (0.03, 0.20)	1.68
Amiri, S. et al.	0.54 (0.48, 0.61)	1.79
Balavi, M. et al.	0.64 (0.58, 0.72)	1.68
Chavoshi (P2) (p = 0.07, 23.8%, p = 0.05)	0.54 (0.58, 0.72)	100.00

Figure 2. Prevalence of human immunodeficiency virus (HIV)-hepatitis C virus (HCV) coinfection in people with HIV in Iran. CI, confidence interval; ES, effect size.
Table 2. Meta-Regression Results for Univariate and Multiple (Adjusted Effect) Models Assessing the Effect of Age, Male Proportion, and IDU Proportion, Year of Study, HIV and HCV Route Diagnostic Tests on the Prevalence of HIV/HCV Coinfection in Iranian People

Parameters	Unadjusted β (95% CI)	P value	Adjusted β (95% CI)	P Value
Age, year	0.014 (0.001–0.018)	.007	0.009 (0.004–0.024)	.049
Year (2015–2021 vs 2000–2014)	−0.07 (−.18 to .05)	.26	−0.11 (−.19 to −.02)	.02
Male proportion	0.004 (0.009)	.12	0.002 (−0.003 to 0.006)	.41
IDU proportion	0.004 (0.002–0.006)	<.001	0.003 (0.002–0.005)	.03
HIV route diagnostic test (ELISA vs ELISA and Western blot)	0.1 (−.23)	.07	0.01 (−.11 to .13)	.83
HCV route diagnostic test (Third generation vs fourth generation ELISA test)	−0.15 (−.31 to −.02)	.8	−0.08 (−.22 to .07)	.28

Abbreviations: CI, confidence interval; ELISA, enzyme-linked immunosorbent assay; HCV, hepatitis C virus; HIV, human immunodeficiency virus; IDU, injection drug user; PCR, polymerase chain reaction.

Table 3. The Prevalence of HCV Coinfection in Different Subgroups of PWH

Parameter	Number of Studies	HIV Sample Size	I², %	Overall Estimate (95% CI)
Age, Year				
<35	20	3948	98.54	61 (47–75)
≥35	33	6814	93.39	69 (64–74)
Year of Studies				
2000–2014	47	8439	98.19	67 (59–75)
2015–2020	15	3351	93.18	57 (50–64)
IDU, Percentage				
<75	28	7448	96.38	57 (50–63)
≥75	28	2866	91.05	77 (71–82)
Geographic Areas				
North Central	27	3250	92.14	64 (58–70)
South Central	13	4959	96.94	75 (68–83)
Northwest	4	818	94.2	51 (38–66)
Southwest	13	2408	98.78	61 (41–80)
East	4	317	93.53	59 (35–80)

Abbreviations: CI, confidence interval; HCV, hepatitis C virus; HIV, human immunodeficiency virus; IDU, injection drug user; PWH, people with HIV.

Figure 3. (A) Prevalence of human immunodeficiency virus (HIV)-hepatitis C virus (HCV) coinfection in people with HIV with mean age less than 35 years (A) and equal to or more than 35 years (B). CI, confidence interval; ES, effect size.
between serum anti-HCV level and HCV RNA supported the hypothesis that the positivity of HCV RNA can be anticipated by the anti-HCV status [102]. Third, HCV infection was detected by anti-HCV assays, so our results showed past exposure and may not reflect the active HCV infection among PWH.

Figure 4. Prevalence of hepatitis C virus (HCV) coinfection in people with human immunodeficiency virus (HIV) in years 2000–2014 (A) and 2015–2020 (B). CI, confidence interval; ES, effect size.

Figure 5. Prevalence of hepatitis C virus (HCV) coinfection among people with human immunodeficiency virus (HIV) with injection drug user (IDU) proportion less than 75% (A) and equal to or more than 75% (B). CI, confidence interval; ES, effect size.
CONCLUSIONS

Our study showed that PWH continues to have a high prevalence of HCV coinfection. Screening for HCV and treatment among PWH is required to avoid the future burden of HCV-related liver damage, cancer, and mortality. Further national standards should be carefully developed for HCV screening in PWH, provision of appropriate HCV care, and access to direct-acting antiviral treatment for those with chronic active infection. For this purpose, it is essential to build HCV surveillance and treatment strategies in Iran.

Supplementary Data

Supplementary materials are available at Open Forum Infectious Diseases online. Consisting of data provided by the authors to benefit the reader, the posted materials are not copyedited and are the sole responsibility of the authors, so questions or comments should be addressed to the corresponding author.

Acknowledgments

We give special credit to Dr. Ahmad Alikhani for assistance with the data verification and comments.

Author contributions. A. A. contributed to the study concept. A. A. and S.-K. R.-A. collected the data. A. A. performed the statistical analysis and data interpretation. S.-K. R.-A. and A. A. verified the data. A. A. drafted the manuscript and provided critical revision of the study. A. A. and S.-K. R.-A. revised the final version of the study.

Potential conflicts of interest. All authors: No reported conflicts of interest. All authors have submitted the ICMJE Form for Disclosure of Potential Conflicts of Interest.

References

1. Arum C, Fraser H, Artenei AA, et al. Homelessness, unstable housing, and risk of HIV and hepatitis C virus acquisition among people who inject drugs: a systematic review and meta-analysis. Lancet Public Health 2021; 6:e309–23.
2. Available at: https://www.who.int/en/news-room/fact-sheets/detail/hepatitis-c. Accessed.
3. Available at: https://www.unaids.org/en. Accessed.
4. Seyedalinegahi SA, Taj I, Mazaheri-Tehrani E, et al. HIV in Iran: onset, responses, and future directions. AIDS 2021; 35:529–42.
5. Available at: https://www.unaids.org/en/regionscountries/countries/islamicrepublicofiran. Accessed.
6. Mirnami B, Mohammadi Z, Merat S, et al. Update on the prevalence of hepatitis C virus infection among Iranian general population: a systematic review and meta-analysis [preprint]. Hepat Mon 2017; 17(2):e42291. doi:10.5812/hepatmon.42291.
7. Available at: https://www.unaids.org/sites/default/files/media_asset/GARPR_2014_guidelines_en_0.pdf. Accessed.
8. Himmich H, Madani N. The state of harm reduction in the Middle East and North Africa: a focus on Iran and Morocco. Int J Drug Policy 2016; 31:814–9.
9. Lu M-T, Chen C-T, Shih Y-L, et al. Changing epidemiology and viral interplay of hepatitis B, C and D among injecting drug user-dominant prisoners in Taiwan. Sci Rep 2021; 11:4554.
10. Rezaianzadeh A, Hasanazadeh J, Alipour A, Davarpanah MA, Rajaeifard A, Tabatabaee SHR. Impact of hepatitis C on survival of HIV-infected individuals in Shiraz, South of Iran. Hepat Mon 2012; 12:106–11.
11. Donyavi T, Bokharaei-Salim F, Khanalihia K, et al. High prevalence of occult hepatitis C virus infection in injection drug users with HIV infection. Arch Virol 2019; 164:2493–504.
12. Moradi G, Hajarzadeh B, Rahmani K, et al. Drug use and risk behaviour profile, and the prevalence of HIV, hepatitis C and hepatitis B among people with methamphetamine use in Iran. Int J Drug Policy 2019; 73:129–34.
13. Platt L, Easterbrook P, Gower E, et al. Prevalence and burden of HCV co-infection in people living with HIV: a global systematic review and meta-analysis. Lancet Infect Dis 2016; 16:797–808.
14. Rajabi A, Sharafi H, Alavian SM. Harm reduction program and hepatitis C prevalence among people who inject drugs (PWID) in Iran: an updated systematic review and cumulative meta-analysis. Harm Reduct J 2021; 18:12.
15. Karimi SE, Zanjari N, SoleimanimandiAzar N, et al. Drug injection and associated factors among the elderly living with HIV/AIDS in Tehran, Iran. Med J Islam Repub Iran 2021; 35:1–6.
16. Khajehkazemi R, Osooli M, Sadaji L, et al. HIV prevalence and risk behaviours among people who inject drugs in Iran: the 2010 National Surveillance Survey. Sex Transm Infect 2013; 89(Suppl 3):ii29–32.
17. Mousavian G, Ghalekhani N, Tabakol F, et al. Proportion and reasons for loss to follow-up in a cohort study of people who inject drugs to measure HIV and HCV incidence in Kerman, Iran. Subst Abuse Treat Prev Policy 2021; 16:20.

Figure 6. Prevalence of hepatitis C virus (HCV) coinfection in people with human immunodeficiency virus (HIV) in Southwest (A), South-Central (B), Northwest (C), East (D), and North-Central Iran (E). CI, confidence interval; ES, effect size.
Rezaianzadeh A, Davarpanah MA, Khademolhosseini F, Rajaeefard A, Tavassoli-Alavi SM, Behdad F. Seroprevalence study of hepatitis C and hepatitis B virus.

Stroup DF, Berlin JA, Morton SC, et al. Meta-analysis of observational studies in epidemiology: a proposal for reporting. Meta-analysis Of Observational Studies in Epidemiology (MOOSE) group. JAMA 2000; 283:208–12.

Libarati A, Altman DG, Tetzlaff J, et al. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate healthcare interventions: explanation and elaboration. BMJ 2009; 339:b2700.

Zeng X, Zhang Y, Kwong JSW, et al. The methodological quality assessment tools for preclinical and clinical studies, systematic review and meta-analysis, and clinical practice guideline: a systematic review. J Evid Based Med 2015; 8: 2–10.

Rosenblad A. Introduction to meta-analysis by Michael Borenstein, Larry V. Hedges, Julie P.T. Higgins, Hannah R. Rothstein. Int Stat Rev 2009/ 6:202. doi:10.1177/1473427409201920.

Rezaianzadeh A, Davarpanah MA, Khademolhosseini F, Rajaeefard A, Tavassoli-Alavi SM, Behdad F. Seroprevalence study of hepatitis C and hepatitis B virus.

Stroup DF, Berlin JA, Morton SC, et al. Meta-analysis of observational studies in epidemiology: a proposal for reporting. Meta-analysis Of Observational Studies in Epidemiology (MOOSE) group. JAMA 2000; 283:208–12.

Libarati A, Altman DG, Tetzlaff J, et al. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate healthcare interventions: explanation and elaboration. BMJ 2009; 339:b2700.

Zeng X, Zhang Y, Kwong JSW, et al. The methodological quality assessment tools for preclinical and clinical studies, systematic review and meta-analysis, and clinical practice guideline: a systematic review. J Evid Based Med 2015; 8: 2–10.

Rosenblad A. Introduction to meta-analysis by Michael Borenstein, Larry V. Hedges, Julie P.T. Higgins, Hannah R. Rothstein. Int Stat Rev 2009/ 6:202. doi:10.1177/1473427409201920.
Sani AT, Jarahi L, Saberi M. Evaluation of clinical course and laboratory findings in Iranian patients with HIV infection. J Med Virol 2018; 90:1343–51.

Bokharaei-Salim F, Keyvani H, Esghaei M, et al. Prevalence of occult hepatitis C virus infection in the Iranian patients with human immunodeficiency virus infection. J Med Virol 2016; 88:1960–6.

Sabouri S, Delavar A, Jabbari H. Quality of life among human immunodeficiency virus-1 infected and human immunodeficiency virus-1/hepatitis C virus co-infected individuals in Iranian patients. Niger Med J 2016; 57:49–53.

Zayed E, Molvandi M, Teimoori A, et al. Prevalence of hepatitis c virus among HIV-infected patients. Iranian J Microbiol 2020; 12:156–63.

Farhoudi B, Seydalinaghi SA, Mohraz M, Hosseini M, Farnia M. Tuberculosis, hepatitis C and hepatitis B co-infections in patients with HIV in the Great Tehran Prison, Iran. Asian Pac J Trop Dis 2016; 6:82–3.

Hashemi-Shahri SM, Sharifi-Mood B, Kouhpayeh HR, et al. Sexually transmitted infections among hospitalized patients with human immunodeficiency virus infection and acquired immune deficiency syndrome (HIV/AIDS) in Zahedan, Southeastern Iran. Int J High Risk Behav Addict 2016; 5:e28028.

Vaziri S, Mansouri FA, Sayad B, et al. Hepatitis D virus infection among HIV-HEV Co-infected patients in Kermanshah, West of Iran. Hepat Mon 2008; 8(4):252–257.

Saleh F, Azizi H, Kheirandish F, et al. Frequency of HCV and HBV co-infections in HIV positive patient in City of Iran: A cross-sectional study. Int J Trop Dis Health 2015; 6:14–9.

Haghgooe SM, Joula H, Mohammadzadeh R, et al. Epidemiology of HIV/AIDS in the East Azerbaijan Province, Northwest of Iran. Jundishapur J Microbiol 2015; 8:e19766.

Maracy MR, Mostafaei S, Moghooefi M, Mansourian M. Impact of HIV risk factors on survival in Iranian HIV-infected patients: a Bayesian approach to retrospective cohort. HIV AIDS Rev 2017; 16:100–6.

Hassanzadeh P, Hassanzadeh Y, Mardanef J, et al. Isolation of methicillin-resistant staphylococcus aureus (MRSA) from HIV patients referring to HIV referral center, Shiraz, Iran, 2011–2012. Iran J Med Sci 2015; 40:526–30.

Adsay V, Ahmadi A, Abdi M, et al. Study of miR-29a-5p expression in HIV positive and HIV/HCV co-infected patients in Sanandaj-Iran. Hepat Mon 2017; 17:1–7.

Gheibi Z, Dianatnasab M, Haghpasrat A, Mirazzadeh A, Fararouei M. Gender difference in all-cause mortality of people living with HIV in Iran: findings from a 20-year cohort study. HIV Med 2020; 21:659–67.

Sani AT, Jarahi L, Saberi M. Evaluation of clinical course and laboratory findings in HIV/HTLV-1 co-infection with HIV mono infection. Tehran Univ Med J 2019; 76:792–8.

Joulaei H, Rudgari O, Motazedian N, et al. Hepatitis E virus seroprevalence in HIV positive individuals in Shiraz, Southern Iran. Iran J Microbiol 2015; 7:103–8.

Koochak HE, Babaii A, Pourdast A, et al. Prevalence of adverse drug reactions to highly active antiretroviral therapy (HAART) among HIV positive patients in Imam Khomeini Hospital of Tehran, Iran. Infect Disord Drug Targets 2017; 17:116–9.

Khazaei S, Molaiepoor L, Rezaaen S, et al. Predictors of tuberculosis in HIV/AIDS patients referred to behavioral diseases consultation center: a registry-based study in Abadan, Southwest of Iran. Shiraz E Med J 2016; 17(10): e41542. doi:10.5812/shemj.41542.

Hajabdulbaghy M, Soodbakhsht A, Soleimani A. The prevalence of drug resistance in patients with HIV/AIDS attending to Imam Khomeini hospital in Tehran, Iran during 2008–2009: Letter to editor. Tehran Univ Med J 2011; 69:271–2.

Hosseini Rad M, et al. Evaluation of serum prevalence of hepatitis B and hepatitis C and behavioral factors in HIV patients referred to Behavioral Diseases Counseling Clinic. Med Sci J Islamic Azad Univ 2017; 27(1):53–61.

Pourrahmad M, Javady A, Karimi I, et al. Seroprevalence of and risk factors associated with hepatitis B, hepatitis C, and human immunodeficiency virus among prisoners in Iran. Infect Dis Clin Pract 2007; 15:368–72.

Khodadadi I, Abdi M, Javid S, et al. Comparison of adenosine deaminase level in HIV positive patients co-infected with hepatitis B and C and healthy subjects. Sci J Kurdistan Univ Med Sci 2013; 18:93–103.

Foroughi M, Moayedi-Nia S, Shoghil A, et al. Prevalence of HIV, HBV and HCV among street and labour children in Tehran, Iran. Sex Transm Infect 2019; 95:421–3.

Amini S, Khodabandehloo M. Prevalence of hepatitis c virus genotypes in HIV positive patients referring to the consultation center for behavioral diseases, Sanandaj, Iran. Iranian J Microbiol 2020; 12:650–6.

Bakht M, Haghsenas M, Valadan R, Rudsari MR. Prevalence of HBV/HCV infections in HIV-positive patients in northern Iran. Res Mol Med 2017; 5:68–8.

Shadmard E, Baharlous R, Shokouh MR, et al. Sero - epidemiology of hepatitis E and D infections among HIV-infected and HIV/HCV-coinfected patients in Jahrom, Southern Iran. Arch Clin Infect Dis 2018; 3(2), e77069.

Alipour A, Babakhanian M, Zarghami M, Khosravi A, Saberi M. Years of life lost (YLLs) due to drug-related deaths in the Islamic Republic of Iran (2014–2017): A temporal and geographic pattern. Cien Saude Colet 2022; 27:2843–54.

Moradi G. Atlas of the frequency and Incidence of Infectious Diseases under the care of the surveillance system in the Islamic Republic of Iran, 2009 to 2019. Tehran: GAP, 2020.

Control, C.F.C.D. Iranian National Guideline on Non-Occupational Exposure with HIV/AIDS. 4th ed. Tehran: Ministry of Health and Medical Education, 2017.

Najafi Z, Taj L, Dadras O, et al. Epidemiology of HIV in Iran. Curr HIV Res 2020; 18:228–36.

Farhoudi B, Ghalekhani N, Afsar Kazerooni P, et al. Cascade of care in people living with HIV in Iran in 2019; how far to reach UNAIDS/WHO targets. AIDS Care, 2022, 34(5):590–596.

Alipour A, Rezaianzadeh A, Hassanzadeh J, et al. Sexual transmission of hepatitis C virus between HIV infected subjects and their main heterosexual partners. Hepat Mon 2013; 13(11).

Levi J, Raymond A, Pozniak A, Vernazza P, Kohler P, Hill A. Can the UNAIDS 90-90-90 target be achieved? A systematic analysis of national HIV treatment cascades. BMJ Global Health 2016; 1:e000100.

Farhoudi B, Ghalekhani N, Afsar Kazerooni P, et al. Cascade of care in people living with HIV in Iran in 2019; how far to reach UNAIDS/WHO targets. AIDS Care 2022; 34:590–6.

Li Y, Zhao L, Geng N, Zhu W, Liu H, Bai H. Prevalence and characteristics of hepatitis C virus infection in Shenyang City, Northeast China, and prediction of HCV RNA positivity according to serum anti-HCV level: retrospective review of hospital data. Virol J 2020; 17:36.