Co-existence and co-infection of influenza A viruses and coronaviruses: Public health challenges

Jing Yang,1 Yuhuan Gong,1,2 Chunge Zhang,1,2 Ju Sun,1 Gary Wong,2,3 Weifeng Shi,4 Wenjun Liu,1,2 George F. Gao,1,2 and Yuhai Bi1,2,*

*Correspondence: beeyh@im.ac.cn
Received: May 19, 2022; Accepted: August 14, 2022; Published Online: August 17, 2022; https://doi.org/10.1016/j.xinn.2022.100306
© 2022 This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

GRAPHICAL ABSTRACT

PUBLIC SUMMARY

- Influenza A viruses (IAVs) and coronaviruses (CoVs) have broad host ranges and share multiple hosts
- Co-existence and co-infection of IAVs and/or CoVs are inevitable based on virus-host ecology
- Co-circulation and co-infection could alter virus evolution and drive novel variant emergence
- Co-circulation and co-infection could affect disease transmission and burden in humans
- Active surveillance and countermeasures are necessary for the public health challenges
Co-existence and co-infection of influenza A viruses and coronaviruses: Public health challenges

Jing Yang,1 Yuhuan Gong,1,2 Chunhe Zhang,1,2 Jun Sun,1 Gary Wong,1,2 Weifeng Shi,4 Wenjun Liu,4 George F. Gao,1,2 and Yuhai Bi1,2,*

1CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Center for Influenza Research and Early-warning (CASCIRE), CAS-TWAS Center of Excellence for Emerging Infectious Diseases (CEEID), Chinese Academy of Sciences, Beijing 100101, China
2University of Chinese Academy of Sciences, Beijing 100049, China
3Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200031, China
4Key Laboratory of Epidemiology and Epidemiology of Emerging Infectious Diseases in Universities of Shandong, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an 271016, China
*Correspondence: beeyh@im.ac.cn

Received: May 19, 2022; Accepted: August 14, 2022; Published Online: August 17, 2022; https://doi.org/10.1016/j.jxiim.2022.100306
© 2022 This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Citation: Yang J., Gong Y., Zhang C., et al., (2022). Co-existence and co-infection of influenza A viruses and coronaviruses: Public health challenges. The Innovation 3(5), 100306.

Since the 20th century, humans have lived through five pandemics caused by influenza A viruses (IAVs) (H1N1/1918, H2N2/1957, H3N2/1968, and H1N1/2009) and the coronavirus (CoV) severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). IAVs and CoVs both have broad host ranges and share multiple hosts. Virus co-circulation and even co-infections facilitate genetic reassortment among IAVs and recombination among CoVs, further altering virus evolution dynamics and generating novel variants with increased cross-species transmission risk. Moreover, SARS-CoV-2 may maintain long-term circulation in humans as seasonal IAVs. Co-existence and co-infection of both viruses in humans could alter disease transmission patterns and aggravate disease burden. Herein, we demonstrate how virus-host ecology correlates with the co-existence and co-infection of IAVs and/or CoVs, further affecting virus evolution and disease dynamics and burden, calling for active virus surveillance and countermeasures for future public health challenges.

INTRODUCTION

Five pandemics have been documented in history since the 20th century. The first four pandemics were caused by influenza A virus (IAV) H1N1 (in 1918 and 2009), H2N2 (1957), and H3N2 (1968) subtypes, which led to substantial economic losses and severe social panic.1-2 After the pandemics, H1N1 and H2N2 subtype IAVs have become seasonal influenza viruses and currently cause annual epidemics in humans. Notably, avian influenza viruses (Alvs) contributed gene segments to the genesis of causative pathogens for each influenza pandemic. In addition, sporadic human cases infected by Alvs, including H3, H5, H7, H9, and H10 subtypes, were also reported.3-5 The seasonal influenza epidemics and occasional zoonotic infections in humans have become a significant disease burden of great concern globally.

Especially, the current coronavirus disease 2019 (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has led to unprecedented challenges to public health and devastating economic losses. As of July 21, 2022, WHO reported 564.12 million confirmed cases of COVID-19, including about 6.37 million deaths in over 200 countries and regions (https://covid19.who.int/). Although a series of stringent non-pharmaceutical and pharmaceutical interventions have been implemented to contain the spread of the disease,3-7 the pandemic has not been brought under control. Moreover, the emerging novel variant, Omicron, has caused a rapid resurgence of cases worldwide since late 2021 (https://covid19.who.int/).6 Hence, SARS-CoV-2 may become a long-term problem for humans, similar to seasonal influenza. Furthermore, another six human coronaviruses (HCoVs) are known to infect humans. SARS-CoV has vanished in the human population after its sudden emergence in 2002, but MERS-CoV still circulates between dromedary camels and humans in the Middle East region.10-12

Etiological pathogens responsible for past pandemics could continue to plague humans even after the declared end of the pandemic. Given the virus-host ecology of IAVs and CoVs, multiple influenza subtypes and CoVs could simultaneously circulate in animals and humans and even co-infect one host.13-16 This review will describe the virus-host ecology and host range for IAVs and CoVs and highlight the inevitable co-existence and co-infection of multiple IAVs or CoVs or IAVs and CoVs in one host. Secondly, the co-infection of different IAV subtypes or multiple CoV lineages or two types of viruses could alter the genetic evolution dynamics, molecular characteristics, and related phenotypes for both viruses. Lastly, co-existence and co-infection of IAVs and SARS-CoV-2 in humans have been reported, which could alter disease transmission dynamics and increase disease burden.17-19 The cell tropism20-22 for viruses and respective receptors could be a mechanism for co-infection. Hence, global cooperation on preparedness and response to the current and next pandemics or disease outbreaks comes into focus.

ECOLOGY OF IAVs AND CoVs

Typically, wild waterfowls of the order Anseriformes (especially the family Anatidae, eg, ducks, geese, and swans) and Chiroptera (mainly gulls and shorebirds) are considered the natural reservoirs for IAVs.16 The H1-H16 and N1-N9 influenza subtypes have all been isolated in waterfowls (Figure 1, Table S1), which are usually asymptomatic.23-24 In addition, the H7N10 and H18N11 subtype influenza viruses have been identified from bats.25-26 Of note, the recent increasing outbreaks in aquatic birds with significant morbidity and mortality caused by highly pathogenic Alvs (HPAlvs) H5N1, H5N8, and H5N6 have been reported after the first identification of H5N1 outbreak among migratory birds at Qinghai Lake in 2005.27-30

In addition, Alvs circulating in waterfowls often jump to domestic poultry and occasionally mammalian species.31 Seasonal influenza H1N1 and H3N2 viruses have been well adapted to and maintained in humans, resulting in annual recurrence of seasonal epidemics in the temperate zones and year-round circulation in the tropical zone.32 Moreover, multiple IAV's (eg, H9N2, H5N1, and H5N6 Alvs) have persisted in poultry for a long time and have evolved into different genetic lineages.33-35 Notably, at least 15 AIV subtypes (H1N2, H3N8, H5N1, H5N6, H5N8, H6N1, H7N2, H7N3, H7N4, H7N7, H7N9, H9N2, H10N3, H10N7, and H10N8) could sporadically overcome species barriers to cause human infections directly (https://www.who.int/teams/global-influenza-programme/avian-influenza)36-38. Of grave concern are H5 and H7 Alvs due to their persistence in poultry and occasional human infections. Several IAV subtypes have also been identified in other animals,39-42 such as H5 in captive tigers and lions43 and domestic pigs and H4, H7, and H16 in sea animals.41 Moreover, some IAVs persist in several animals, such as the Eurasian avian-like H1N1 virus in pigs, H3N8 in horses, and H3N2 in dogs (Figure 1).44-46
pet ferrets, tigers, lions, snow leopards, pumas, gorillas, white-tailed deer, fishing cats, binturongs, and South American coatis (https://www.oie.int/en/what-we-offer/emergency-and-resilience/covid-19/). Of note, SARS-CoV-2 caused mink infections in farms, and the mink-derived mutant was found to be transmitted back to humans, highlighting the animal-to-human transmission risk for SARS-CoV-2.51,52 Experimentally, SARS-CoV-2 can infect hamsters, ferrets, dogs, rhesus macaques (Macaca mulatta), cynomolgus monkeys (Macaca fascicularis), and African green monkeys (Chlorocebus sabaeus).15,53–55 The potential host range of SARS-CoV-2 has also been estimated according to the binding ability between SARS-CoV-2 and angiotensin-converting enzyme 2 (ACE2) receptors of various species.57

Given the overlapping ecology of IAVs and CoVs, multiple influenza subtypes and CoV variants co-circulate in wild and domestic animals and humans,51,13–16 which undoubtedly increases the probabilities of co-infections among different IAVs, different CoVs, or both IAVs and CoVs in one host. The co-infections may alter the genetic evolution trajectory of viruses and facilitate mutations related to cross-species transmission and adaption to humans. Moreover, the potentially long-term co-existence and co-infections of IAVs and SARS-CoV-2 in humans could aggravate the disease burden compared with independent infections.

GENETIC EVOLUTION AND MOLECULAR CHARACTERISTICS

Phylogenetic dynamics for IAVs and SARS-CoV-2

IAVs (eg, H1, H3, H5, and H7) have experienced rapid evolution and established divergent lineages and lineages. Phylogeny of hemagglutinin (HA) genes of seasonal influenza H1N1 and H3N2 viruses exhibit ladder-like tree topologies, at 8782 nt of ORF1ab and 28144 nt of ORF8, with the genetically close H4N6 clade A5a and H3N2 clade A1b are the currently dominant clades circulating the world (Figure 2; https://nextstrain.org/flu/seasonal/).60,61 Of multiple co-existent clades, H1N1 clade A5a and H3N2 clade A1b are the currently dominant clades circulating the world (Figure 2; https://nextstrain.org/flu/seasonal/).60,61

Regarding H5, H7, and H9 AIVs of public health concern, H5 influenza was designated into multiple clades by the WHO/OIE/FAO H5N1 Evolution Working Group according to the phylogenetic topology and genetic divergence of HA genes.64 Two main lineages of novel H7N9 have been established based on the HA phylogeny relationship, the Yangtze River Delta lineage and the Pearl River Delta lineage, since its emergence in 2013.65,66 At least three HA clades of H9 AIVs are co-circulating among poultry.39 Moreover, new subclades or lineages are gradually emerging as the evolution of H5, H7, and H9 AIVs are genetically divergent and phylogeny relationship of HA genes, global H1N1 and H3N2 viruses can be divided into different clades (Figure 2).63,65 Of multiple co-existent clades, H1N1 clade A5a and H3N2 clade A1b are the currently dominant clades circulating the world (Figure 2; https://nextstrain.org/flu/seasonal/).60,61

A dynamic nomenclature system has been proposed for the expanding phylogenetically divergent SARS-CoV-2 viruses (https://cov-lineages.org/lineage_list.html).67 The phylogeny of global SARS-CoV-2 can be grouped into two main lineages: Lineage A and Lineage B. Lineage A is a minor group and shares two nucleotides, at 8782 nt of ORF1ab and 28144 nt of ORF8, with the genetically close SARS-CoV-2-related bat CoVs RaTG13 and RmYN02.75,76 Lineage B includes the currently persistent and dominant SARS-CoV-2 variants. Based on the increased risk of SARS-CoV-2 variants to public health and corresponding biological and clinical features, WHO designated the variants of concern (VOC) and variants of interest (VOI) using the Greek alphabet (https://www.who.int/en/activities/tracking-SARS-CoV-2-variants/). On July 14, 2022, the VOC group includes Omicron (B.1.1.529) SARS-CoV-2 variants, and previously circulating VOCs, Alpha (B.1.1.7), Beta (B.1.351), Gamma (P.1), and Delta (B.1.617.2), have been removed from this group. The VOCs and VOIs can be reclassified given the circulation, epidemiological situation, and biological properties of
corresponding variants. In addition, the within host diversity of SARS-CoV-2 is relatively low, with narrow transmission bottlenecks at high viral loads (at least at the early infection), but the transmitted SARS-CoV-2 variant could spread rapidly.68 The IAV and SARS-CoV-2 underwent genetic diversity and relatively rapid evolutionary dynamics. The partial cross-immunity and the acute and short infectious period, to a large extent, facilitate the evolutionary dynamics and seasonal epidemics of human H1N1 and H3N2 IAVs.69 Of note, the vaccine breakthrough infection and reinfection with SARS-CoV-270,71 mean that vaccine-induced and natural immunity are not enough to protect humans from virus infection, especially for the current variants, suggesting probably long-term co-circulation of SARS-CoV-2 with seasonal influenza viruses. In addition, the rapid evolution with antigenic changes and global persistence of seasonal influenza require the intensive surveillance of influenza activity and formulation of well-matched vaccines before each annual influenza season.72 These valuable lessons and experiences should be learned to control the current pandemic and possibly annual SARS-CoV-2 epidemics in the future.

Genetic reassortment and recombination in IAVs and HCoVs

Virus ecology affects the genetic evolution of IAVs and CoVs. When co-infection of multiple IAVs or CoVs happens in the same host, genetic reassortment among IAVs and recombination among CoVs potentially occur and further facilitate virus evolution and novel variant emergence. To our knowledge, the genetic interactions between IAVs and HCoVs have not yet been documented, while the potential recombination between the two types of viruses might also occur during their co-infections in one host.

IAV is an enveloped virus with a negative-sense, RNA-segmented genome that can encode for more than 17 proteins.73 The segmented genome drives the exchange of gene segments between IAVs (genetic reassortment) when they simultaneously infect the same host or cell.74 Reassortment facilitates the formation of novel influenza variants with new genomic constellations. Moreover, the reassortant virus could obtain fitness advantage, cross-species transmission, evasion from host immune responses, and even cause pandemics/epidemics in humans.16 Since the 20th century, at least three of four influenza pandemics were caused by reassortants: the 1957/H2N2 virus (HA, NA, and PB1 from AIV, the other five genes from human IAV), the 1968/H3N2 virus (HA and PB1 from AIV, the other six genes from human IAV), and the 2009/H1N1 virus (PB2 and PA from AIV, PB1 from human IAV, and others from swine IAV). Notably, the novel H7N9 AIVs also emerged by reassortment in 2013 and have caused five infection waves in humans.65,75 The internal genes of H7N9 originate from H9N2 AIVs that adapted well in chickens and H7 and N9 genes from viruses found in aquatic birds (Figure 3). Later, the novel H7N9 strain evolved into more genotypes by further reassortments with diverse H9N2 variants and other AIV subtypes.66,76

CoV is also an enveloped virus but carries a large, positive-sense, single-stranded RNA genome.77 The common mutations and recombination in the positive-strand RNA viruses with the largest genome contribute to genetic divergence and novel CoV variant emergence.5,78,79 Following co-infection with more than one CoVs, recombination may occur during virus replication when multiple sub-genomic RNAs are generated, and genetically related genes are readily recombinant among different CoVs by template switching.80 Genetic recombination has been reported in human and animal CoVs, but the recombination breakpoints are commonly random.5,12,81 In addition, the novel recombinant CoVs could lead to

![Figure 2. Time-scaled phylogenies of global H1N1 and H3N2 seasonal IAVs](https://nextstrain.org/influenza/)
cross-species transmission and outbreaks in humans and/or animals. The MERS-CoV lineage 5 is a recombinant between lineage 3 and 4 and caused human outbreaks in Saudi Arabia in 2015 (Figure 3). The SARS-CoV TOR2 strain might originate from recombination among SARS-CoV, alpha CoV (HCoV-229E), and gamma CoV (avian infectious bronchitis virus). Further, genetic evidence suggests that SARS-CoV-2 is of natural origin by genetic recombination and is related to bat CoVs.

Cleavage sites with polybasic amino residues in the surface proteins of AIVs and HCoVs

The HA protein of IAVs and spike (S) protein of HCoVs can be cleaved into two subunits at their respective cleavage sites (CS) by host cell proteases. The seasonal IAVs H1N1 and H3N2 do not contain multibasic amino acids at their CSs. In the case of AIVs, HPAIVs always possess a motif with polybasic amino acids at the HA cleavage site (HA1/HA2 junction) (Figure 4), which is a genetic marker for H5 and H7 HPAIVs. A polybasic motif was identified at the S cleavage site (S1/S2 junction) in four HCoVs, including SARS-CoV-2, MERS-CoV, HCoV-OC43, and HCoV-HKU1 (Figure 5). Furthermore, the analogous polybasic CS on HA of HPAIV and S of SARS-CoV-2 could be correlated with increased virus virulence in poultry and/or mammals.

Regarding AIVs, the CS is flanked by P/QL for H5 and PE for H7 at the N terminus and by GLF for both H5 and H7 AIVs at the C terminus (Figure 4). H5 and H7 low pathogenic AIVs (LPAIVs) can evolve into HPAIVs by the insertion of a polybasic motif at the HA CS (Figure 4). In addition, varied lengths and polymorphisms of the CS were observed in naturally occurring viruses. There are several potential mechanisms for the insertion of a polybasic CS: (1) substitution of non-basic amino acids with the basic R or K residues, (2) insertion related to duplication of purine triplets due to the polymerase slippage, and (3) recombination with other gene segments of IAVs or host 28S ribosomal RNA.

The polybasic CS is a crucial determinant for the infectivity and virulence of AIVs. Generally, multibasic CSs of HPAIV HA protein can be recognized and cleaved by the ubiquitous expressed cellular proteases such as furin and PC6, causing systemic infection and even a fatal outcome in poultry. However, the monobasic CS of LPAIV HA can merely be cleaved by trypsin and trypsin-like proteases. The distribution of proteases for LPAIV HA cleavage restricts virus replication in respiratory and/or intestinal tracts and causes asymptomatic or mild symptoms in birds. Further, the multibasic motif at CS also affects AIV virulence in mammals.

The SARS-CoV-2 also has a polybasic CS (PRRA) and forms a furin site at the S1/S2 junction of the S protein; this insertion has not been previously observed in other beta-CoVs of clade 2b (lineage B) (Figure 5). The mutations at the CS have been found in the Alpha (HRRAR), Delta (RRRAR), and Omicron (HRRAR) SARS-CoV-2 variants. In addition, SARS-CoV-2 variants with deletions and mutations at the CS were readily found during virus passage in Vero-E6 cells (Figure 5). Furthermore, a three-residue (PAA) insertion at the S1/S2 junction was identified in a bat SARS-CoV-2-like virus (RmYN02). Currently, how the insertion of polybasic residues into the SARS-CoV-2 CS occurred is still elusive. However, these results support the natural diversity of the polybasic CS in SARS-CoV-2 or SARS-CoV-2-related viruses.

The correlation between the furin CS and the infectivity and pathogenicity of SARS-CoV-2 was explored in vivo and in vitro experiments. Loss of the furin CS (PRRA) decreased SARS-CoV-2 replication in human respiratory cells and attenuated virus pathogenesis in both hamster and mouse models compared with its parental virus. Further, the cell-passaged SARS-CoV-2 variant with eight-residue deletions at CS was deficient in transmission among housed ferrets. These results about AIVs and SARS-CoV-2 suggest that the polybasic CS is a crucial determinant for infection and replication ability, virulence, and transmissibility of HPAIVs and SARS-CoV-2 in poultry and/or mammals.

RECEPTORS, TARGET CELLS, AND MECHANISMS OF IAV AND HCoV CO-INFECTIONS

Sialic acid receptor and cell and organ tropisms for IAVs

IAVs utilize sialic acid receptors linked to glycoproteins and gangliosides for cell entry, especially N-acetyl-neuraminic acids, which are crucial in influenza viruses infecting hosts. The tissue distribution and expression of the sialic acid receptors are different in humans and avian hosts. In humans, α-2,6 sialic acid (α2-6-SA) is predominantly expressed in the upper respiratory tract, while α2-3-SA is mainly expressed in the lower respiratory tract. However, α2-6-SA and α2-3-SA were also occasionally detected in the lower respiratory tract and nasal mucosa, respectively. In avian species, α2-3-SA predominates in both upper and lower respiratory tracts, and it is also extensively expressed in the intestinal epithelial cells of birds. Typically, human IAVs (eg, H3N2) preferentially bind to human-type receptors (α2-6-SA), while AIVs preferentially bind to avian-type receptors (α2-3-SA). Hence, receptor specificity is a major determinant for the host range of influenza viruses. The preference of AIVs for human-type receptors was considered a crucial warning for cross-species infection of AIVs to humans.

The tissue distribution of sialic acid receptors corresponds to cell and organ tropisms for IAVs. The respiratory system is the primary target for IAV infections. Human IAVs have been documented to infect nasal mucosa, the epithelial cells of trachea, bronchi, and bronchioles, and type I pneumocytes (AT1) in the alveoli. In contrast, the antigens of AIVs were primarily detected in the lower respiratory tract of mammals. AIVs tend to target cells in bronchioles...
and also infect epithelial cells, AT2, and macrophages in the alveoli (Figure 6).99,100 Sialic acids also act as receptors for some alpha-, beta-, and gamma-CoVs.21 Specifically, O-acetylated sialic acids serve as receptors for beta-CoVs, eg, HCoV-OC43 and bovine CoV.21 N-acetyl- and N-glycolylneuraminic acids were recognized as receptor determinants of cell infection for transmissible gastroenteritis virus (alpha-CoV) and infectious bronchitis virus (gamma-CoV).21

ACE2 receptor and cell and organ tropisms for SARS-CoV-2

ACE2 serves as a receptor for SARS-CoV-2, SARS-CoV, and HCoV-NL63 to enter cells.20,101 SARS-CoV-2 can efficiently use ACE2 as a receptor for cell entry, with up to 10- to 20-fold higher affinity than for SARS-CoV.102 ACE2 is expressed in the lungs, hearts, kidneys, livers, testes, and intestines of humans.103 The ratio of ACE2-expressing cells of human lungs is relatively low.104,105 About 0.64% cells that can express ACE2 in normal human lungs were identified by single-cell RNA sequencing.104 Specifically, in human lungs, ACE2 expresses in AT2, AT1, airway epithelial cells (ciliated and club cells), fibroblasts, endothelial cells, and immune cells (macrophages and T cells).104,105 In the trachea, ACE2-expressing cells include club, goblet, ciliated, and proliferative cells.106 The expression patterns of ACE2 are variable in current reports, so more samples and studies on ACE2 expression and distribution are needed to obtain solid results and understanding.

The tissue expression and distribution of ACE2 receptors correlate with the cell and organ tropisms for SARS-CoV-2 infection. SARS-CoV-2 can infect multiple organs, including the lung, trachea, pharynx, intestine, kidneys, pancreas, brain, and heart of humans.22,107 The respiratory system is also the primary target for SARS-CoV-2 infection. The co-location of viral antigens with cell markers by immunofluorescence staining was used to uncover cell tropism details for SARS-CoV-2.22 In lungs of postmortem specimens, viral antigens were found in basal cells, ciliated cells, club cells, AT2, AT1, proliferative cells, and vascular endothelial cells (Figure 6).22,108 SARS-CoV-2 infections in alveolar cells and airway cells have also been reported in human distal lung organoids109 and ex vivo cultures of human bronchus and lung.110 In AT2-AT1 cell cultures, AT2 cells are preferentially infected by SARS-CoV-2 over AT1 cells.108 In the trachea of autopsied humans, viral infection was reported in ciliated and goblet cells of the mucosa and epithelial cells of conduits and glands.22

Figure 4. Cleavage site motif on HA protein of H5 and H7 AIVs

(A) Schematic pattern for the HA protein of IAV. The HA protein can be cleaved into HA1 and HA2 subunits at the cleavage site. The receptor-binding domain (RBD) is located in HA1. (B) The amino acid sequences at the cleavage site for H7 AIVs. H7 LP means low pathogenic AIVs, and other H7 strains are highly pathogenic AIVs. (C) The amino acid sequences at cleavage site for H5. The H5 LP is a low pathogenic AIV, and other H5 strains are highly pathogenic AIVs. In the rightmost column, the red colors represent the key basic residues; "/" represents the cleavage position; the residues of insertion mutation are underlined.

ACE2 receptor and cell and organ tropisms for SARS-CoV-2

ACE2 serves as a receptor for SARS-CoV-2, SARS-CoV, and HCoV-NL63 to enter cells.20,101 SARS-CoV-2 can efficiently use ACE2 as a receptor for cell entry, with up to 10- to 20-fold higher affinity than for SARS-CoV.102 ACE2 is expressed in the lungs, hearts, kidneys, livers, testes, and intestines of humans.103 The ratio of ACE2-expressing cells of human lungs is relatively low.104,105 About 0.64% cells that can express ACE2 in normal human lungs were profiled by single-cell RNA sequencing.104 Specifically, in human lungs, ACE2 expresses in AT2, AT1, airway epithelial cells (ciliated and club cells), fibroblasts, endothelial cells, and immune cells (macrophages and T cells).104,105 In the trachea, ACE2-expressing cells include club, goblet, ciliated, and proliferative cells.106 The expression patterns of ACE2 are variable in current reports, so more samples and studies on ACE2 expression and distribution are needed to obtain solid results and understanding.

The tissue expression and distribution of ACE2 receptors correlate with the cell and organ tropisms for SARS-CoV-2 infection. SARS-CoV-2 can infect multiple organs, including the lung, trachea, pharynx, intestine, kidneys, pancreas, brain, and heart of humans.22,107 The respiratory system is also the primary target for SARS-CoV-2 infection. The co-location of viral antigens with cell markers by immunofluorescence staining was used to uncover cell tropism details for SARS-CoV-2.22 In lungs of postmortem specimens, viral antigens were found in basal cells, ciliated cells, club cells, AT2, AT1, proliferative cells, and vascular endothelial cells (Figure 6).22,108 SARS-CoV-2 infections in alveolar cells and airway cells have also been reported in human distal lung organoids109 and ex vivo cultures of human bronchus and lung.110 In AT2-AT1 cell cultures, AT2 cells are preferentially infected by SARS-CoV-2 over AT1 cells.108 In the trachea of autopsied humans, viral infection was reported in ciliated and goblet cells of the mucosa and epithelial cells of conduits and glands.22
Moreover, IAVs could promote the infectivity of SARS-CoV-2, probably due to pathogenic and immunological interactions between the two types of viruses. The IAV and SARS-CoV-2 are airborne pathogens, and they primarily target the respiratory system of humans, including the nasal mucosa, trachea, bronchi, and alveoli. The co-location and expression of sialic acid and ACE2 receptors may contribute to the co-infection of IAVs and SARS-CoV-2 in the same organs and cells. For example, both IAV and SARS-CoV-2 could target and infect AT2 cells in alveoli. Further, co-infections in the same organs and cells could facilitate the transmission of IAVs, resulting in a low co-infection rate. During the COVID-19 pandemic, the prevalence of patients co-infected with IAV and SARS-CoV-2 varied substantially across regions and studies. Some contradictory disease severity of co-infection could result from the small sample size or insufficient consideration of the confounding factors, including the order of infection, virus subtypes, and underlying comorbidity. The clinical outcomes of co-infection with IAV and SARS-CoV-2 have been evaluated in laboratory-based studies. Co-infection of SARS-CoV-2 with IAVs caused more severe disease in vivo than mono-infection with either virus. Further, IAV pre-infection could interfere with the SARS-CoV-2 replication but increase disease severity. However, another study indicated that IAV pre-infection promoted the infectivity and viral load of SARS-CoV-2 and caused more severe lung damage in mice, while several other respiratory viruses did not enhance SARS-CoV-2 infectivity in cells.

DISEASE BURDEN AND DYNAMICS FOR CO-INFECTION OF IAVs AND SARS-CoV-2

During the COVID-19 pandemic, the prevalence of patients co-infected with IAV and SARS-CoV-2 varied substantially across regions and studies. Some studies documented a co-infection rate of as high as 57.3% in Wuhan, while a relatively low ratio of 0.2% was also reported in patients with COVID-19 based on a systematic review of the COVID-19 pandemic suppressed the number of influenza cases reduced drastically in the 2020–2021 season. In the Southern and Northern Hemispheres, seasonal influenza cases reduced drastically in the 2020–2021 influenza season. In the United States and Europe, the positive influenza season is about 0.15%, which is estimated to be 18%–23% in the 2019–2020 influenza season. The decreased influenza burdens may have resulted from several factors. One

Target cells and receptors responsible for co-infection of IAV and SARS-CoV-2

The IAV and SARS-CoV-2 are airborne pathogens, and they primarily target the respiratory system of humans, including the nasal mucosa, trachea, bronchi, and alveoli. The co-location and expression of sialic acid and ACE2 receptors may contribute to the co-infection of IAVs and SARS-CoV-2 in the same organs and cells. For example, both IAV and SARS-CoV-2 could target and infect AT2 cells in alveoli. Further, co-infections in the same organs and cells could facilitate pathogenic and immunological interactions between the two types of viruses. Moreover, IAVs could promote the infectivity of SARS-CoV-2, probably due to IAV pre-infection elevating ACE2 expression in a human cell line.

DISEASE BURDEN AND DYNAMICS FOR CO-INFECTION OF IAVs AND SARS-CoV-2

During the COVID-19 pandemic, co-infections of SARS-CoV-2 with other respiratory pathogens have been reported, and IAVs were one of the most common co-infections. Patients co-infected with IAV and SARS-CoV-2 have been sporadically identified in multiple countries, such as China, Japan, Iran, the United States, Turkey, and Germany. However, patients co-infected with IAV and SARS-CoV-2 or only infected with either virus presented similar clinical respiratory symptoms and radiological images. The most common symptoms of co-infections are fever, cough, dyspnea, and myalgia, and the typical changes in chest radiology images include ground-glass opacities. However, patients with IAV and SARS-CoV-2 co-infection usually presented more severe clinical outcomes compared with those with SARS-CoV-2 infection alone. The concentrations of serum cytokines/chemokines in co-infections should be further studied to understand the potential immunological mechanism for the observed clinical manifestations. Some contradictory disease severity of co-infection could result from the small sample size or insufficient consideration of the confounding factors, including the order of infection, virus subtypes, and underlying comorbidity. The clinical outcomes of co-infection with IAV and SARS-CoV-2 have been evaluated in laboratory-based studies. Co-infection of SARS-CoV-2 with IAVs caused more severe disease in vivo than mono-infection with either virus. Further, IAV pre-infection could interfere with the SARS-CoV-2 replication but increase disease severity. However, another study indicated that IAV pre-infection promoted the infectivity and viral load of SARS-CoV-2 and caused more severe lung damage in mice, while several other respiratory viruses did not enhance SARS-CoV-2 infectivity in cells.

During the COVID-19 pandemic, the prevalence of patients co-infected with IAV and SARS-CoV-2 varied substantially across regions and studies. Some studies documented a co-infection rate of as high as 57.3% in Wuhan, while a relatively low ratio of 0.2% was also reported in patients with COVID-19 based on a systematic review of the COVID-19 pandemic suppressed the number of influenza cases reduced drastically in the 2020–2021 season. In the Southern and Northern Hemispheres, seasonal influenza cases reduced drastically in the 2020–2021 influenza season. In the United States and Europe, the positive influenza season is about 0.15%, which is estimated to be 18%–23% in the 2019–2020 influenza season. The decreased influenza burdens may have resulted from several factors. One
Mitigation strategies of co-infection with seasonal IAVs and SARS-CoV-2

As the pandemic wanes and the countermeasures against COVID-19 become relaxed worldwide, circulation of IAVs and HCoVs may resume at pre-pandemic levels, together with SARS-CoV-2 continuing to circulate in humans. Co-infections with IAVs and SARS-CoV-2 may increase, complicating the diagnosis, treatment, and prognosis for patients and aggravating the disease burden for the medicine and healthcare system. Given this, the early detection of co-infection by multiplex molecular diagnostics should be implemented to timely initiate antiviral therapy and improve the prognosis of patients. Practical preventive actions (eg, wearing masks, washing hands, and social distancing) could protect against infection with these airborne pathogens. Further, vaccinations could reduce co-infections, clinical severity, and disease burden, especially in high-risk individuals and the elderly. Moreover, the live attenuated influenza virus-vectorized COVID-19 vaccine has been designed to induce co-immunity against influenza virus and SARS-CoV-2, and vaccine deployments will simplify the vaccination strategy against these two types of viruses.

CONCLUSIONS

Given that the current pandemic is not yet under control, the long-term co-existence and co-infection of seasonal influenza and SARS-CoV-2 in humans may be unpreventable. Hence, targeted development and distribution of antiviral drugs and therapeutics should be underscored for long-standing disease control. Moreover, non-pharmaceutical interventions containing hand washing, mask wearing, and social distancing should be highlighted, especially during regional outbreaks of these viruses. As etiological agents for pandemics documented, the co-existence and co-infection of IAVs and CoVs could be potential candidates for the next pandemic and come into focus. Given the virus-host ecology circles for IAVs and CoVs, proactive surveillance and evaluations for emerging virus variants, along with inter-species transmission, outbreak, and even pandemic risks, should be strengthened in animals (eg, birds and bats). Sporadically, novel AIV variants could directly infect humans from birds; the spillover of SARS-CoV-2 from humans to minks could transmit back to humans, and the mink SARS-CoV-2 mutant could further transmit between humans. Early discovery and identification of VOs/VOCs can provide sufficient time for technological preparedness about diagnosis and antiviral drugs and vaccines prior to the virus spilling over from animals to humans. In addition, real-time surveillance of human infections with novel variants or pathogens is crucial to accomplish early diagnosis, intervention, and quarantine of confirmed cases, especially super-spreaders, and hereafter timely containing further disease outbreaks and even pandemics in humans. At least, lessons and experiences from past pandemics should be learned in order to be better prepared against the next one, with enhanced global cooperation.

REFERENCES

1. Taubenberger, J.K., Reid, A.H., Kraft, A.E., et al. (1997). Initial genetic characterization of the 1918 “Spanish” influenza virus. Science 275, 1793–1796.
2. Kilbourne, E.D. (2006). Influenza pandemics of the 20th century. Emerg. Infect. Dis. 12, 9–14.
3. Gao, G.F. (2018). From ‘A’IV to Z’IKV: attacks from emerging and re-emerging pathogens. Cell 172, 1157–1159.
4. World Health Organization (2022). Disease outbreak news; avian influenza A (H3N8) – China. https://www.who.int/emergencies/disease-outbreak-news/item/2022-020317
5. Yang, J., Li, J., Lai, S., et al. (2020). Uncovering two phases of early intercontinental COVID-19 transmission dynamics. J. Travel. Med. 27, taa220.
6. Dai, L., Zheng, T., Xu, K., et al. (2020). A universal design of betacoronavirus vaccines against COVID-19, MERS, and SARS. Cell 182, 722–733.
7. Taylor, P.C., Adams, A.C., Huford, M.M., et al. (2021). Neutralizing monoclonal antibodies for treatment of COVID-19. Nat. Rev. Immunol. 21, 382–393.

Figure 6. Cell tropism for SARS-CoV-2 and IAVs and their receptors in the human respiratory system (A) Cell tropism for avian and human influenza viruses and distribution of sialic acid receptors in human lung and trachea. (B) Cell tropism for SARS-CoV-2 and its receptor hACE2 in human lung and trachea. (C) Cell tropism for IAVs and CoV receptors in human lung and trachea. (D) Cell tropism for IAVs in human lung and trachea. (E) Cell tropism for IAVs and CoV receptors in human lung and trachea. (F) Cell tropism for IAVs and CoV receptors in human lung and trachea. (G) Cell tropism for IAVs and CoV receptors in human lung and trachea. (H) Cell tropism for IAVs and CoV receptors in human lung and trachea. (I) Cell tropism for IAVs and CoV receptors in human lung and trachea. (J) Cell tropism for IAVs and CoV receptors in human lung and trachea. (K) Cell tropism for IAVs and CoV receptors in human lung and trachea. (L) Cell tropism for IAVs and CoV receptors in human lung and trachea. (M) Cell tropism for IAVs and CoV receptors in human lung and trachea. (N) Cell tropism for IAVs and CoV receptors in human lung and trachea. (O) Cell tropism for IAVs and CoV receptors in human lung and trachea. (P) Cell tropism for IAVs and CoV receptors in human lung and trachea. (Q) Cell tropism for IAVs and CoV receptors in human lung and trachea. (R) Cell tropism for IAVs and CoV receptors in human lung and trachea. (S) Cell tropism for IAVs and CoV receptors in human lung and trachea. (T) Cell tropism for IAVs and CoV receptors in human lung and trachea. (U) Cell tropism for IAVs and CoV receptors in human lung and trachea. (V) Cell tropism for IAVs and CoV receptors in human lung and trachea. (W) Cell tropism for IAVs and CoV receptors in human lung and trachea. (X) Cell tropism for IAVs and CoV receptors in human lung and trachea. (Y) Cell tropism for IAVs and CoV receptors in human lung and trachea. (Z) Cell tropism for IAVs and CoV receptors in human lung and trachea.
8. Ma, K., and Chen, J. (2022). Omicron XE emerges as SARS-CoV-2 keeps evolving. Innovation 3, 100248.
9. Su, S., Wang, G., Shu, W., et al. (2016). Epidemiology, genetic recombination, and pathogen-
esis of coronaviruses. Trends Microbiol. 24, 490–502.
10. Peris, J.S., Lai, S.T., Poon, L.L., et al. (2003). Coronavirus as a possible cause of severe acute respiratory syndrome. Lancet 361, 1319–1325.
11. Raj, V.S., Osterhaus, A.D., Fouchier, R.A., and Haagmans, B.L. (2014). MERS: emergence of a novel human coronavirus. Curr. Opin. Virol. 5, 58–62.
12. Sabir, J.S., Lam, T.T., Ahmed, M.M., et al. (2016). Co-circulation of three camel coronavirus species and recombination of MERS-CoVs in Saudi Arabia. Science 351, 61–84.
13. Nishi, F., Fei, X.L., Wang, X.G., et al. (2020). A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature 579, 270–273.
14. Lam, T.T., Jia, N., Zhang, Y.W., et al. (2020). Identifying SARS-CoV-2-related coronaviruses in Malayang pandas. Nature 583, 282–285.
15. Sh., J., Wen, Z., Zhong, G., et al. (2020). Susceptibility of ferrets, cats, dogs, and other domesticated animals to SARS-coronavirus 2. Science 368, 1016–1020.
16. Wille, M., and Holmes, E.C. (2020). The ecology and evolution of influenza viruses. Cold. Spring. Harb. Perspect. Med. 12, a038406.
17. Xiang, K., Zhang, Z.H., Ye, L.L., et al. (2021). Co-infection of SARS-CoV-2 and influenza A vi-
rus: a case series and fast review. Curr. Med. Sci. 41, 51–57.
18. Dadashi, M., Khaleghnejad, S., Abedi Elkhichi, P., et al. (2021). COVID-19 and in-
19. Tong, S., Li, Y., Rivailler, P., et al. (2012). A distinct lineage of in-
20. Bi, Y., Liu, H., Xiong, C., et al. (2016). Novel avian in-
21. Bi, Y., Li, J., Li, S., et al. (2020). Dominant subtype switch in avian in-
22. Petrova, V.N., and Russell, C.A. (2018). The evolution of seasonal in-
23. Kim, Y.I., Kim, S.G., Kim, S.M., et al. (2020). Infection and rapid transmission of SARS-CoV-2 in ferrets. Cell Host Microbe 27, 704–709.
24. Munster, V.J., Feldmann, F., Williamson, B.N., et al. (2020). Respiratory disease in rhesus macaques inoculated with SARS-CoV-2. Nature 585, 268–272.
25. Rocks, B., Kuklen, T., Herfst, S., et al. (2020). Comparative pathogenesis of COVID-19, MERS, and SARS in a nonhuman primate model. Science 368, 1012–1015.
26. Groot, R.W., Agans, K.N., Prasad, A.N., et al. (2020). Firmicutes exposure of African green monkeys to SARS-CoV-2 results in acute phase pneumonia with shedding and lung injury still present in the early convalescence phase. Virol. J. 17, 125.
27. Wu, L., Chen, Q., Liu, K., et al. (2020). Broad host range of SARS-CoV-2 and the molecular basis for SARS-CoV-2 binding to cat ACE2. Cell Discov. 6, 88.
28. Lerney, P., Rambaut, A., Bedford, T., et al. (2014). Unifying viral genetics and human trans-
poison data to predict the global transmission dynamics of human influenza H3N2. PLoS Pathog. 10, e1003932.
29. Chan, M., Wang, M.H., Chen, Z., et al. (2018). Frequent genetic mismatch between vaccine strains and circulating seasonal influenza viruses, Hong Kong, China, 1996-2012. Emerg. Infect. Dis. 24, 1825–1834.
30. Ferguson, N.M., Galvani, A.P., and Bush, R.M. (2003). Ecological and immunological deter-
inients of influenza evolution. Nature 422, 428–433.
31. Nelson, M., Spiro, D., Woolhouse, M., et al. (2009). The early diversification of influenza A/H1N1pdm. PLoS Curr. 1, RRN1126.
32. Potter, B.I., Kondor, R., Hadfield, J., et al. (2019). Evolution and rapid spread of a reassortant (H5N2V) virus that predominated the 2017-2018 influenza season. Viros. Evol. 5, ve0046.
33. Al-Qahtani, A.A., Mubin, M., Dela Cruz, D.M., et al. (2017). Phylogenetic and nucleotide sequence analysis of influenza A (H1N1) HA and NA genes of strains isolated from Saudi Arabia J. Infect. Dev. Cires. 11, 81–88.
34. Smith, G.J., and Donis, R.O. (2015). World health organization/world organization for ani-
mal health/food and agriculture organization (WHO/DIE/FAD) H5 evolution working group. Influenza. Other. Respir. Viros. 9, 271–276. nomenclature updates resulting from the evolution of avian influenza A(H5) virus clades 2.1.3.2a, 2.2.1, and 2.3.4 during 2013-2014.
35. Yang, L., Zuo, X., Li, X., et al. (2017). Genetics and spread of newly emerged highly patho-
genic H7N9 avian viruses in mainland China. Virol. J. 91, e01277–e01277.
36. Vical, C., Shi, W., Yang, L., et al. (2018). New threats from H7N9 influenza virus: spread and evolution of high- and low-pathogenicity variants with high genomic diversity in wave five. J. Virol. 92, e00301–e00318.
37. Rambaut, A., Holmes, E.C., O’Toole, A., et al. (2020). A dynamic nomenclature proposal for SARS-CoV-2 lineages to assist genomic epidemiology. Nat. Microbiol. 5, 1403–1407.
38. Lythgoe, K.A., Hall, M., Ferretti, L., et al. (2021). SARS-CoV-2 within-host diversity and trans-
mise. Science 372, eabg3621.
39. Grenfell, B.T., Pybus, O.G., Gog, J.R., et al. (2004). Unifying the epidemiological and evolu-
tionary dynamics of pathogens. Science 303, 327–332.
40. Emery, K., Golubchik, T., Aley, P.K., et al. (2021). Efficacy of ChAdOx1 nCoV-19 (AZD1222) vaccine against SARS-CoV-2 variant of concern 202012/01 (B.1.1.7) : an exploratory ana-
ysis of a randomised controlled trial. Lancet 397, 1351–1362.
41. Garcia-Beltran, W.F., Lam, E.C., Stenis, B., et al. (2021). Multiple SARS-CoV-2 variants emerge centralization by vaccine-induced humoral immunity. Cell 184, 2372–2383.
42. World Health Organization (WHO) (2020). Recommended composition of influenza vaccines for use in the 2020-2021 northern hemisphere influenza season. https://www.
who.int/influenza/vaccines/vaccines/recommendations/202002_recommendation.pdf?ua=1.
43. Vasin, A.V., Temkina, O.A., Fedorov, V.V., et al. (2014). Molecular mechanisms enhancing the proteome of Influenza A viruses: an overview of recently discovered proteins. Virus Res. 192, 103–111.
44. McDonald, S.M., Nelson, M.I., Turner, P.E., and Patton, J.T. (2016). Reassortment in
59. Liu, D., Shi, W., Shi, Y., et al. (2013). Origin and diversity of novel avian influenza A H7N9 vi-
rus infections causing human infection: phylogenetic, structural, and coalescent analyses. Lancet 381, 1926–1932.
60. Lam, T.Y., Zhou, B., Wang, J., et al. (2015). Dissemination, divergence and establishment of H5N1 influenza viruses in China. Nature 522, 102–105.
61. Fehr, A.R., and Perlman, S. (2015). Coronaviruses: an overview of their replication and patho-
genesis. Methods Mol. Biol. 1282, 1–23.
Supplemental Information

Co-existence and co-infection of influenza A viruses and coronaviruses: Public health challenges

Jing Yang, Yuhuan Gong, Chunge Zhang, Ju Sun, Gary Wong, Weifeng Shi, Wenjun Liu, George F. Gao, and Yuhai Bi
Table S1. Details of host species of influenza A viruses and coronaviruses.

Host	Influenza A virus	Coronavirus
Human	H1N1, H1N2, H2N2, H3N1, H3N2, H3N3, H5N1, H5N6, H5N8, H6N1, H7N1, H7N2, H7N3,	α-CoV (229E, NL63), β-CoV (SARS-CoV-2, SARS-CoV, MERS-CoV, OC43, HKU1), δ-CoV, γ-CoV
	H7N4, H7N7, H7N9, H9N2, H10N3, H10N7, H10N8	
Swine	H1N1, H1N2, H1N7, H2N3, H3N1, H3N2, H3N3, H3N6, H3N8, H4N1, H4N6, H4N8, H5N1,	α-CoV, β-CoV, δ-CoV, γ-CoV
	H5N2, H5N6, H6N6, H7N2, H7N9, H9N2, H10N5, H11N6	
Bat	H17N10, H18N11, H9N2, H3N2	α-CoV, β-CoV, γ-CoV
Aquatic bird	H1-16, N1-N9	β-CoV, δ-CoV, γ-CoV
Domestic bird	H1-13, N1-N9	γ-CoV
Landbase poultry	H1-13, N1-N9	δ-CoV, γ-CoV
Horse	H1N8, H3N8, H5N1, H7N7, H9N2	β-CoV
Dog	H1N1, H1N2, H3N1, H3N2, H3N8	α-CoV, β-CoV, SARS-CoV-2
Cat	H1N1, H3N2, H5N1, H5N6, H7N2	α-CoV, β-CoV (SARS-CoV-2, etc.)
Lion	H5N1	SARS-CoV-2
Camel	H1N1, H3N8	α-CoV, β-CoV
Panda	H1N1	α-CoV
Tiger	H5N1	SARS-CoV-2
Leopard	H1N1, H5N1	α-CoV
Seal	H1N1, H3N3, H3N8, H4N5, H4N6, H7N7, H10N7	α-CoV
Mouse	H1N1	α-CoV, β-CoV
Fox	H5N1	α-CoV
Whale	H1N3, H13N2, H13N9	α-CoV
Dolphin	H16N3	δ-CoV, γ-CoV
Ferret	H1N1, H1N2, H3N2, H5N1, H9N2, H10N4	α-CoV, SARS-CoV-2
Mink	H1N1, H3N2, H5N1, H9N2, H10N4	α-CoV, SARS-CoV-2
Cow	H5N1, H3N2-like	β-CoV
Muskrat	H2N2, H4N6	--^a
Pika	H5N1, H7N2	--
Meerkat	H5N1	--
Penguin	H5N5, H5N8, H6N8, H11N2	--
Giant anteater	H1N1	--
Animal	Viruses	Notes
-------------------	--	--
Stone marten	H5N1	--
Sloth bear	H1N1	--
Ostrich	H1N2, H2N3, H5N1, H5N2, H5N3, H5N6, H5N8,	--
	H6N1, H6N8, H7N1, H7N3, H7N7, H9N2, H10N1	
Baboon	H1N1, H3N2	--
Skunk	H1N1	--
Snow leopard	--	SARS-CoV-2
Puma	--	SARS-CoV-2
Binturong	--	SARS-CoV-2
Otter	--	SARS-CoV-2
Fishing cat	--	SARS-CoV-2
Paguma larvata	--	SARS-CoV-2
Deer	--	β-CoV (SARS-CoV-2, etc.)
Chimpanzee	--	β-CoV (SARS-CoV-2, etc.)
Pangolin	--	β-CoV (SARS-CoV-2, etc.)
Raccoon	--	α-CoV, SARS-CoV-2
Badger	--	α-CoV, β-CoV
Rabbit	--	α-CoV, β-CoV
Wolf	--	α-CoV
Monkey	--	β-CoV
Hedgehog	--	β-CoV
Giraffe	--	β-CoV
Alpaca	--	β-CoV
Antelope	--	β-CoV
Donkey	--	β-CoV

--, no virus was isolated in this animal.
Table S2. Epidemiological and clinical characteristics for diseases induced by influenza A viruses and human coronaviruses.

Virus	Emergence date	Cumulative cases	Deaths	Clinical symptoms	ARDS^a	Cytokine storm	Pandemic	Vaccine efficacy^b	Refs
H1N1	1918-05	-	51-81 million	Fever; ARDS^a; Cough; Hemoptysis; Coryza; Dyspnea; Sore throat; Sputum; Chest pain; Diarrhea; Vomiting; Headache; Myalgia; Fatigue	Yes	Yes	Yes	N/A^c	[1-7]
Pandemic & Seasonal IAVs	2009-04	-	0.15-0.575 million	Fever; Cough; Dyspnea; Sputum; Chest pain; Prostration	Yes	-	Yes	66-93%	
H2N2	1957-02	-	1-4 million	Fever; Cough; Dyspnea; Sputum; Chest pain; Prostration	Yes	-	Yes	N/A^c	[8,9]

^a ARDS: Acute Respiratory Distress Syndrome.

^b Vaccine efficacy: Percentage reduction in disease severity.

^c N/A: Not applicable.
H3N2	1968-07	-	~1 million	Fever; Cough; Coryza; Sore throat; Sputum; Chest pain; Headache; Myalgia; Fatigue; Dyspnea	Yes	-	Yes	26-39%	[3,4,10-12]		
H5N1	1997-05	880	461	Yes	Yes	No	no licensed vaccines for humans	[13-17]			
AIV				**Fever; Cough; Dyspnea; Sore throat; Sputum; Nasal congestion; Sneezing; Muscle ache; Diarrhea**	Yes	Yes	No				
H7N9	2013-02	1568	616	Yes	Yes	No	no licensed vaccines for humans	[18,19]			
CoV	CoV-2nd	Year	Cases	Deaths	Vomiting	Fever; Dyspnea; Chills; Headache; Malaise; Muscle pain; Diarrhea	Yes	Yes	No	No licensed vaccines for humans	[20-22]
---------	----------	--------	---------	--------	----------	---	-----	-----	----	---------------------------------	--------
SARS-CoV	SARS-CoV-2nd	2002-11	8098	774	Yes	Yes	Yes	Yes	No	No licensed vaccines for humans	[20-22]
HCoV	HCoV	2019-12	520.37 million	6.27 million	Yes	Yes	Yes	Yes	Yes	63.1-95%	[23-27]
MERS-CoV	MERS-CoV	2012-06	2574	858	Yes	Yes	Yes	Yes	No	No licensed vaccines for humans	[24,28-31]
HCoV-229E	1966	N/A	N/A	No	No	No	N/A	[32-34]			
-------------	------	-----	-----	----	----	----	-----	---------			
HCoV-OC43	1967	N/A	N/A	No	No	No	N/A	[33-35]			
HCoV-NL63	2003-01	N/A	N/A	No	No	No	N/A	[33,34,36]			
ARDs, acute respiratory distress syndrome.

The efficacy for the vaccines developed against the corresponding viruses.

N/A, not applicable.

The data was from WHO website on May 18, 2022 (https://covid19.who.int).
References

1. Murray, C.J., Lopez, A.D., Chin, B., et al. (2006). Estimation of potential global pandemic influenza mortality on the basis of vital registry data from the 1918-20 pandemic: a quantitative analysis. Lancet 368, 2211–2218.

2. Dawood, F.S., Iuliano, A.D., Reed, C., et al. (2012). Estimated global mortality associated with the first 12 months of 2009 pandemic influenza A H1N1 virus circulation: a modelling study. Lancet. Infect. Dis. 12, 687–695.

3. Yang, Z.F., Zhan, Y.Q., Chen, R.C., et al. (2012). A prospective comparison of the epidemiological and clinical characteristics of pandemic (H1N1) 2009 influenza A virus and seasonal influenza A viruses in Guangzhou, South China in 2009. Jpn. J. Infect. Dis. 65, 208–214.

4. Centers for Disease Control and Prevention. (2021) Vaccine effectiveness: how well do flu vaccines work? https://www.cdc.gov/flu/vaccines-work/vaccineeffect.htm#why_flu_vax_less_effective_against_H3N2

5. Topfer, L., Menk, M., Weber-Carstens, S., et al. (2014). Influenza A (H1N1) vs non-H1N1 ARDS: analysis of clinical course. J. Crit. Care. 29, 340–346.

6. Kash, J.C., Tumpey, T.M., Proll, S.C., et al. (2006). Genomic analysis of increased host immune and cell death responses induced by 1918 influenza virus. Nature 443, 578–581.

7. Novel Swine-Origin Influenza A (H1N1) Virus Investigation Team. et al. Emergence of a novel swine-origin influenza A (H1N1) virus in humans. N. Engl. J. Med. 360, 2605–2615.

8. Kilbourne E.D. (2006). Influenza pandemics of the 20th century. Emerg. Infect. Dis. 12, 9–14.

9. Louria, D.B., Blumenfeld, H.L., Ellis, J.T., et al. (1959). Studies on influenza in the pandemic of 1957-1958. II. Pulmonary complications of influenza. J. Clin. Invest. 38, 213–265.

10. Harkness, W., Schild, G.C., Lamont, P.H., and Brand, C.M. (1972). Studies on relationships between human and porcine influenza. 1. Serological evidence of
infection in swine in Great Britain with an influenza A virus antigenically like human Hong Kong-68 virus. Bull World Health Organ 46, 709–719.

11. Chang, W.K. (1969). National influenza experience in Hong Kong, 1968. Bull World Health Organ. 41, 349–351.

12. Glezen W.P. (1996). Emerging infections: pandemic influenza. Epidemiol. Rev. 18, 64–76.

13. Guan, Y., Poon, L.L., Cheung, C.Y., et al. (2004). H5N1 influenza: a protean pandemic threat. Proc. Natl. Acad. Sci. U.S.A. 101, 8156–8161.

14. Word Health Organization. (2021). Cumulative number of confirmed human cases for avian influenza A(H5N1) reported to WHO, 2003-2021. https://www.who.int/publications/m/item/cumulative-number-of-confirmed-human-cases-for-avian-influenza-a(h5n1)-reported-to-who-2003-2021-22-june-2021

15. Tran, T.H., Nguyen, T.L., Nguyen, T.D., et al. Avian influenza A (H5N1) in 10 patients in Vietnam. Engl. J. Med. 350, 1179–1188.

16. Mangiri, A., Iuliano, A.D., Wahyuningrum, Y., et al. (2017). Physician's knowledge, attitudes, and practices regarding seasonal influenza, pandemic influenza, and highly pathogenic avian influenza A (H5N1) virus infections of humans in Indonesia. Influenza. Other. Respir. Viruses. 11, 93–99.

17. Word Health Organization. (2014). H5N1 highly pathogenic avian influenza: Timeline of major events. https://www.who.int/publications/m/item/influenza-a(h5n1)-highly-pathogenic-avian-influenza-timeline-of-major-events

18. Food and Organization of the United Nations (FAO). (2021) H7N9 situation update. http://www.fao.org/ag/againfo/programmes/en/empres/H7N9/Situation_update.html

19. Gao, H.N., Lu, H.Z., Cao, B., et al. (2013). Clinical findings in 111 cases of influenza A (H7N9) virus infection. N. Engl. J. Med. 368, 2277–2285.

20. Peiris, J.S., Lai, S.T., Poon, L.L., et al. (2003). Coronavirus as a possible cause of severe acute respiratory syndrome. Lancet 361, 1319–1325.

21. Word Health Organization. (2004). WHO guidelines for the global surveillance of
severe acute respiratory syndrome (SARS). https://cdn.who.int/media/docs/default-source/documents/health-topics/who-cds-csr-aro-2004-18fcdaab9-a1ca-42f7-adaf-d5c624b54b76.pdf?sfvrsn=949080c3_1&download=true

22. Word Health Organization. (2021). Severe Acute Respiratory Syndrome (SARS). https://www.who.int/health-topics/severe-acute-respiratory-syndrome#tab=tab_2

23. Word Health Organization. (2021). Coronavirus (COVID-19) dashboard. https://covid19.who.int/

24. Channappanavar, R., and Perlman, S. (2017). Pathogenic human coronavirus infections: causes and consequences of cytokine storm and immunopathology. Semin. Immunopathol. 39, 529–539.

25. Xu, K., Dai, L., and Gao, G.F. (2021). Humoral and cellular immunity and the safety of COVID-19 vaccines: a summary of data published by 21 May 2021. Int. Immunol. 33, 529–540.

26. Kenny, G., and Mallon, P.W. (2021). COVID19- clinical presentation and therapeutic considerations. Biochem. Biophys. Res. Commun. 538, 125–131.

27. Kaffash, F.N., Reihani, H., Sedaghat, A., Moghadam, A.A., et al. (2021). Are mesenchymal stem cells able to manage cytokine storm in COVID-19 patients? A review of recent studies. Regen. Ther. 18, 152–160.

28. Zaki, A.M., van Boheemen, S., Bestebroer, T.M., et al. (2012). Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia. N. Engl. J. Med. 367, 1814–1820.

29. Word Health Organization. (2021). Middle East respiratory syndrome coronavirus (MERS-CoV). https://www.who.int/health-topics/middle-east-respiratory-syndrome-coronavirus-mers#tab=tab_1

30. Xu, J., Jia, W., Wang, P., et al. (2019). Antibodies and vaccines against Middle East respiratory syndrome coronavirus. Emerg. Microbes. Infect. 8, 841–856.

31. Assiri, A., Al-Tawfiq, J.A., Al-Rabeeah, A.A., et al. (2013). Epidemiological, demographic, and clinical characteristics of 47 cases of Middle East respiratory syndrome coronavirus disease from Saudi Arabia: a descriptive study. Lancet.
Infect. Dis. 13, 752–761.
32. Hamre, D., and Procknow, J.J. (1966). A new virus isolated from the human respiratory tract. Proceedings of the Society for Experimental Biology and Medicine. Proc. Soc. Exp. Biol. Med. 121, 190–193.
33. Su, S., Wong, G., Shi, W., et al. (2016). Epidemiology, Genetic Recombination, and Pathogenesis of Coronaviruses. Trends. Microbiol. 24, 490–502.
34. Cabeça, T.K., Granato, C., and Bellei, N. (2013). Epidemiological and clinical features of human coronavirus infections among different subsets of patients. Influenza. Other. Respir. Viruses. 7, 1040–1047.
35. McIntosh, K., Dees, J.H., Becker, W.B., et al. (1967). Recovery in tracheal organ cultures of novel viruses from patients with respiratory disease. Proc. Natl. Acad. Sci. U.S.A. 57, 933–940.
36. van der Hoek, L., Pyrc, K., Jebbink, M.F., Vermeulen-Oost, et al. (2004). Identification of a new human coronavirus. Nat. Med. 10, 368–373.
37. Woo, P.C., Lau, S.K., Chu, C.M., et al. (2005). Characterization and complete genome sequence of a novel coronavirus, coronavirus HKU1, from patients with pneumonia. J. Virol. 79, 884–889.