Soil carbon dioxide emissions from maize (Zea mays L.) fields as influenced by tillage management and climate*

Safwan Mohammed1 | Morad Mirzaei2 | Ágnes Pappné Törő1
Manouchehr Gorji Anari2 | Ebrahim Moghiseh3 | Hossein Asadi2
Szilárd Szabó4 | Adrienn Kakuszi-Széles1 | Endre Harsányi1

1Institute of Land Use, Technical and Precision Technology, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, Debrecen, 4032, Hungary
2Department of Soil Science and Engineering, Faculty of Agricultural Engineering and Technology, University of Tehran, Karaj, Iran
3Nuclear Agriculture Research School, Nuclear Science and Technology Research Institute, Karaj, Iran
4Department of Physical Geography and Geoinformatics, Faculty of Science and Technology, University of Debrecen, Debrecen, 4032, Hungary

Correspondence
Safwan Mohammed, Institute of Land Use, Technical and Precision Technology, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, Debrecen 4032, Hungary.
Email: safwan@agr.unideb.hu; https://twitter.com/safwanmohammed4; https://www.linkedin.com/in/safwan-mohammed-b2b80174/

Abstract
Emissions of CO₂ from the soil are the second-largest component of the global carbon cycle, which has altered the climate and led to climate change. The main aim of this research was to evaluate the direct impact of climate and soil management systems on soil carbon emissions. Thus, CO₂ emissions were measured from maize fields located in two different climate regions (continental and semi-arid). The experimental design involved two different soil management systems (conventional tillage [CT], non-tillage [NT]) from two different sites (Debrecen [Hungary], Karaj [Iran]). The results showed that total CO₂ emission from the cultivated system (CT) was higher than that from the non-cultivated (NT) one, regardless of the climate region. However, CO₂ emissions from agricultural soil in a humid region are significantly different (p < .05) from semi-arid regions, which clearly emphasizes the role of climate conditions in the CO₂ emission processes. However, the general linear model reveals that all studied variables (soil management systems, date of measurement, soil temperature, soil water content) had a significant (p < .05) effect on soil carbon emission, where the explained variance was 0.866. The findings of this research stress the importance of NT in CO₂ mitigations on the farm scale. However, the output could help to draw up mitigation strategies to minimize the total greenhouse gas emissions from agricultural soil in both countries.

KEYWORDS
agricultural system, carbon cycle, climate impacts, food security, global warming, sustainable development goals (SDG)

Résumé
Les émissions de CO₂ par le sol est le deuxième principal composant du cycle du carbone global. Cela souligne l’impact de ces émissions sur le climat actuel et leur rôle dans les changements climatiques. L’objectif principal de cette
étude était d’évaluer l’effet du climat sur les émissions de CO2 par le sol. Nous avons mesuré les émissions de CO2 par le sol des champs de maïs dans deux régions soumis aux climats différents (continental et semi-aride). Le design expérimental a impliqué deux différentes méthodes de gestion des sols (labour conventionnel (CT: conventional tillage), sans labour (NT: non-tillage)) dans deux sites différents (Debrecen (Hongrie) et Karaj (Iran)). Les résultats de cette étude ont montré que les émissions totales de CO2 étaient plus élevées par les sols labourés (CT) que par les sols non-labourés (NT) et que cet effet était indépendant du climat de la région. Cependant, il y a eu une différence significative dans les émissions de CO2 par le sol entre la région humide et semi-arides (p < 0.05), ce qui met en évidence l’effet des conditions climatiques sur les émissions de CO2 par le sol. L’analyse du Modèle Linéaire Généralisé (Generalized Linear Model (GLM)) a montré que toutes les variables étudiées (système de gestion des sols, température du sol, humidité du sol et la date de mesure des émissions) avaient un effet significatif sur les émissions de CO2 par le sol (p < 0.05), et que ces variables ont expliqué 86,6% de la variance dans les émissions de CO2. Les résultats de la présente étude soulignent le rôle du travail du sol dans l’augmentation des émissions de CO2 à l’échelle des fermes. Ces résultats sont également d’une grande importance pour la mise en place d’une stratégie de gestion des sols visant à diminuer les émissions de GES (Greenhouse gases) dans les champs cultivés.

MOTS CLÉS
Cycle du carbone, les effets du climat, systèmes de cultures, réchauffement climatique, sécurité alimentaire, développement durable, objectifs de développement durable (ODD)

1 | INTRODUCTION

The major challenges that the world faces today include food insecurity, water scarcity, land degradation, energy shortages, increasing greenhouse gas (GHG) emission, and climate change (Alsafadi et al., 2020; Mohammed et al., 2020a, 2020b). The GHG are active gases that trap solar radiation reflection from the earth and increase global warming (Tessum, Hill, & Marshall, 2014). The main GHG are carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O) (Oertel et al., 2016).

In recent years, anthropogenic activities have contributed to more than 55% of total GHG emissions (Xi-Liu & Qing-Xian, 2018; Mohammed et al., 2021). More than 22% of total GHG emissions have originated from the agricultural sector (Platis et al., 2019), where different activities as well as the degradation of agricultural lands have increased GHG emissions (Gozubuyuk, Sahin, & Celik, 2020). Thus, determining and measuring CO2 emissions from agricultural land has received major attention from scientists and policymakers all around the world (Li et al., 2016).

Globally, carbon dioxide (CO2) is one of the greenhouse gases, and its concentration has increased by 35%, from 280 ppm in 1750 to 377 ppm in 2004, and is currently increasing by 0.47% per year (Follett et al., 2005; Lal et al., 2007). According to 2010 global emissions estimates, approximately 76% of global CO2 is emitted as a result of the use of fossil fuels, industrial processes, deforestation, and other land uses (IPCC, 2013). Due to their impact on carbon dynamics, agricultural activities make a significant contribution to CO2 emissions (Nawaz et al., 2017).

Agricultural soils play a significant role in CO2 emissions, with large amounts of CO2 being released as a result of microbial decomposition, burning of plant residue after harvest, and respiration of soil microorganisms and plant roots (Smith et al., 2008; Nawaz et al., 2017). Furthermore, CO2 emissions are affected by soil properties, including organic matter, temperature, moisture, soil type, and agricultural management operations (Smith et al., 2008).

Tillage operations are among the major agronomic activities which accounted for the release of large
amounts of CO₂ (Abdalla et al., 2013). Some studies have reported lower soil CO₂ emissions under conservation tillage compared to conventional tillage (CT) (Almaraz et al., 2009), while higher CO₂ emissions have also been reported from untilled soil compared with soil under CT in some climatic conditions (Hendrix, Han, & Groffman, 1988; Plaza-Bonilla et al., 2014). Tillage has a significant effect on carbon emissions from the soil and is one of the major agronomic activities involved in the loss of soil organic carbon (Abdalla et al., 2013). Comparative studies on the effects of tillage practices under different climates on CO₂ emissions are still rare. For instance, La Scala, Bolonhezi, & Pereira (2006) stated that tillage intensifies the oxidation of soil organic carbon and leads to the release of large amounts of CO₂. It is estimated that tillage operations on US farmland release an average of 36 t of carbon per hectare (Lal, 1997). The use of conservation tillage methods in Europe has significantly reduced CO₂ emissions (Holland, 2004). It is estimated that by converting CT systems to no-tillage (NT), 100% of carbon emissions from all fossil fuels in Europe can be offset (Smith et al., 1998). Most field studies have reported different results regarding the effects of tillage on CO₂ emissions. For example, the results of previous studies indicate that soil CO₂ emissions under conservation tillage compared to CT may decrease (Almaraz et al., 2009; Fuentes et al., 2012; Rutkowska et al., 2018), increase (Hendrix, Han, & Groffman, 1988; Oorts et al., 2007), or remain similar (Fortin, Rochette, & Pattey, 1996; Aslam, Choudhary, & Saggar, 2000). Bista et al. (2017) in a 2-year study on the effect of a tillage system on GHG emissions in the wheat-fallow system reported that the NT system reduced CO₂ emissions by 35% compared to CT. Nawaz et al. (2017) reported that the use of a NT system reduced CO₂ emissions as a result of improving soil properties.

Changes in climatic factors such as temperature and precipitation can affect CO₂ emission by altering plant and microbial activity, soil organic matter mineralization, and thermal and hydrologic regimes (Schollert et al., 2017; Ray et al., 2020). Increasing soil microbial respiration and plant root respiration explain higher soil CO₂ emissions in response to increased soil temperature, soil moisture, and rainfall, according to previous studies (Ren et al., 2017; Ray et al., 2020). Because of the variability in CO₂ emissions resulting from climatic conditions, uncertainty still remains about the mitigation potential of tillage management on CO₂ emissions in different climatic conditions. A better understanding of how different tillage practices alter soil CO₂ emissions under different climatic conditions is required. Thus, the main aim of this research was (1) to track changes in soil CO₂ emission rates from maize (Zea mays L.) fields under contrasting tillage (CT and NT) systems in two different climate regions including continental (Debrecen in Hungary) and semi-arid (Karaj in Iran) and (2) to evaluate the impact of soil moisture and soil temperature on CO₂ emissions.

2 MATERIAL AND METHODS

2.1 Site description and experimental design

To fulfil the research goals, two different locations with different climate classification were chosen. The first location was an agricultural field at the University of Tehran, Karaj (Iran) (50°58' E, 35°48' N), representing a semi-arid climate, while the second location was the Látókép research station at the University of Debrecen (Hungary) (47°33' E, 21°26' N), representing a continental climate.

The climate characteristics of the studied locations are shown in Figure 1. The average temperature in Látókép was 11°C and the rainfall 600 mm (Figure 1F), while in Karaj the mean air temperature and rainfall were 13.7°C and 245.5 mm, respectively (Figure 1G).

In accordance with the study goals, in each location two fields under different maize cultivation managements were selected (Figure 1). The first management approach was CT, while the second was NT. In the following step, 10 random soil samples (0–20 cm) from each location were collected and analysed, as shown in Table 1.

The experiments followed the randomized complete block design with three replications in each climatic region. The total number of plots was 12 (2 climate regions × 2 treatments × 3 replicates; Figure 2). The tillage characteristics and land preparation are presented in Table 2.

2.2 Measurement of CO₂ emissions

Scientifically, 13.8% of the total GHG emissions originate from the agricultural sector, where different land use managements and different climates can significantly affect the GHG, in particularly CO₂ emissions. Thus, in this section the CO₂ emissions from two different climates zones with same land use (maize) and land management were investigated for one crop cycle. Gas sampling was performed at 7–10-day intervals at each subplot based on the GHG sampling protocol of GRACEnet Chamber-based Trace Gas Flux Measurement (Parkin & Venterea, 2010; Tenesaca & Al-Kaisi, 2015). In this sense,
the well-known static closed chamber method was used to measure CO₂ emissions (Oertel et al., 2012).

In the semi-arid region experiment (i.e., Karaj), the polyvinyl chloride chambers (15 × 12.5 cm) with ports for gas sampling were placed on the soil surface to a depth of 5 cm. In each subplot, two chambers (one within the plant row and one in between plant rows) were installed in three replications of each treatment, giving a total of 12 chambers for each location (2 tillage systems × 3 replicate × 2 chambers = 12 chambers). The average of two chambers was considered to be the soil surface emission for the entire subplot. Gas samples

**TABLE 1**  Soil properties of 0–20 cm soil depth in the fields of the studied areas

| Soil properties | Debrecen (Hungary) | Karaj (Iran) |
|-----------------|--------------------|--------------|
| Sand (%)        | 11                 | 25           |
| Silt (%)        | 65                 | 57           |
| Clay (%)        | 24                 | 18           |
| Texture         | Silt loam          | Silt loam    |
| pH_kcl          | 6.46               | 7.73         |
| EC (ds m⁻¹)     | 0.4                | 0.74         |
| OM%             | 2.3                | 1.2          |
| CaCO₃%          | 0                  | 1.5          |
| Soil depth (cm) | 80                 | 80           |
| Phosphorus mg kg⁻¹ (P₂O₅) | 133         | 34           |
| Potassium mg kg⁻¹ (K₂O) | 240          | 300          |
| Classification  | Calcereous chernozem/Mollisol-Calcixtoll | Xeric Haplocalcids |

Abbreviations: EC, electrical conductivity; OM, organic matter.
were collected during the day from 9 to 10 a.m. at 0-, 30-, and 60-min intervals after 24 hr of chamber installation to avoid disturbance effects. The sampling approach included inserting a needle attached to a 20-mL syringe in the sampling port and then transferring the gas sample in 12-mL evacuated glass vials sealed with butyl rubber septa. The gas vials were analysed for CO₂ concentration using a gas chromatograph equipped with a thermal conductivity detector (Teif Gostar Faraz, TG, 2552, Iran).

In the continental experiment (i.e., Debrecen), the digital meter Testo 535 (TESTO; 0560 5350) was used for capturing and recording CO₂ emission. This devise measures CO₂ concentration via infrared absorption with 1 ppm of CO₂ measuring resolution (Törö et al., 2019). Five chambers (118 × 250 mm) were placed in each subplot, then CO₂ emission was measured and recorded, giving a total of 25 chambers for each location (2 tillage systems × 3 replicate × 5 chambers = 30 chambers). At the end of each monitoring day, the average of five

### TABLE 2  Tillage practices and land preparation for the experimental sites in Debrecen and Karaj

| Conventional tillage schedule | No-tillage schedule | Conventional tillage schedule | No-tillage schedule |
|-------------------------------|---------------------|-------------------------------|---------------------|
| **Debrecen**                  |                     | **Karaj**                     |                     |
| Moldboard ploughing           | NONE                | Moldboard ploughing           | NONE                |
| Stem crushing (stubble)        | NONE                | Stem crushing (stubble)        | NONE                |
| N = 120 kg/ha                 | N = 120 kg/ha       | N = 185 kg/ha                 | N = 185 kg/ha       |
| P = 60 kg/ha                  | P = 60 kg/ha        | P = 30 kg/ha                  | P = 30 kg/ha        |
| K = 90 kg/ha                  | K = 90 kg/ha        | K = 30 kg/ha                  | K = 30 kg/ha        |
| Disc tillage                  | NONE                | Disc tillage                  | NONE                |
| N = 185 kg/ha                 | N = 185 kg/ha       | N = 185 kg/ha                 | N = 185 kg/ha       |
| P = 30 kg/ha                  | P = 30 kg/ha        | K = 30 kg/ha                  | K = 30 kg/ha        |
| K = 30 kg/ha                  | K = 30 kg/ha        | K = 30 kg/ha                  | K = 30 kg/ha        |
| Disc tillage                  | NONE                | Disc tillage                  | NONE                |
| Moldboard ploughing (Autumn)  | NONE                | Moldboard ploughing (Autumn)  | NONE                |
| Secondary tillage (Spring)    | NONE                | Secondary tillage (Spring)    | NONE                |
| Seedbed preparation           | Seedbed preparation | Seedbed preparation           | Seedbed preparation |
| Sowing (April 22 +/- 4 days)  | Sowing (April 22 +/- 4 days) | Sowing (July 7 +/- 2 days) | Sowing (July 7 +/- 2 days) |
| Weed control                  | Weed control        | Weed control                  | Weed control        |
| Inter-row cultivator          | Inter-row cultivator | Inter-row cultivator          | Inter-row cultivator |
| Harvesting (October 10 +/- 5 days) | Harvesting (October 10 +/- 5 days) | Harvesting (October 7 +/- 3 days) | Harvesting (October 7 +/- 3 days) |

Abbreviations: EC, electrical conductivity; OM, organic matter.
chambers from each subplot was calculated and recorded as a representative value (Törö et al., 2019).

2.3 | Auxiliary measurements

In parallel with soil CO₂ emission measurements, soil temperature and soil water content were also recorded. In the semi-arid region experiment (i.e., Karaj), soil temperature was measured with a thermometer at approximately 10 cm soil depth. The volumetric soil moisture content was determined using oven-drying at 105°C multiplied by soil bulk density. In Debrecen, soil temperature was measured by the digital thermometer TFA LT101 (TFA Dostmann GmbH & Co. KG; 10 cm soil depth), while soil moisture was recorded by using TDR 300 (Spectrum Technologies, Inc.).

2.4 | Statistical analysis

Fisher’s least significant difference (LSD) was applied to compare the mean of the first group with other groups and vice versa. Scientifically, the LSD approach is applied in analyses of variance (ANOVA), when it gives a significant result, which reveals that at least one variable differs significantly from the others. However, this variable is still anonymous; thus, we applied the LSD test (Williams & Abdi, 2010).

We applied a robust ANOVA based on a trim proportion of 0.2 to reveal whether the combined variable of site and treatments (i.e., cultivated and non-cultivated experiments in Debrecen and Karaj) had a significant effect on the CO₂ emissions of the soils. This version of ANOVA was able to handle the deviations from non-normality of the CO₂ values. Our null hypothesis (H₀) was that CO₂ measurements had the same trimmed means in all experimental groups. We performed a robust type of post hoc test (Lincoln function) implemented in the WRS2 package of R (R Core Team, 2021; Mair & Wilcox, 2020).

For advanced statistical analysis between studied plots, we applied the general linear model (GLM) to assess the factors affecting CO₂ emissions as a dependent variable in the soil. We involved both the factors (sites, dates of measurements, treatment types) and the covariates (soil temperature, soil moisture). In the model, we determined whether the involved variables had significant effects. Regarding the factors, we had the H₀ that there were no significant differences in group means in sites, dates, and treatments. We applied log-transformation to the CO₂ values to ensure the assumption of normal distribution of the residuals, which was checked with the Shapiro–Wilk test. Homogeneity of variance was checked with the Levene test. We determined the main effects of the factors and also the statistical interactions. Besides the significance, effect sizes (ω²p) were also determined to quantify the contribution to the explained variance of a given variable or interaction in a standardized and comparable form. The effects of ω²p > 0.04 can be considered large (Field, Miles, & Field, 2012).

3 | RESULTS

3.1 | A comparative analysis on a daily scale of CO₂ emissions

Figure 3 depicts the differences in CO₂ emissions among treatments on a daily scale. According to the results obtained, we can separate the observed data into three groups. The first group contains results from 02/08/2018 and 10/08/2018, the second one contains data between 14/08/2018 and 11/09/2018, while the third group represents data from 13/09/2018. The results indicate that CO₂ emissions from CT2 plots in the semi-arid region are significantly different (p < .05) from all plots in the continental region (i.e., CT1, NT1). In a similar vein, CO₂ emissions from NT1 plots in the continental region are significantly different (p < .05) from all plots in the semi-arid region (i.e., CT2, NT2). In most of the cases our results indicate the absence of significant differences from the following pairs: CT2-NT2, and CT1-NT1, and NT2-CT1 (Figure 3).

As this study attempted to measure soil temperature and soil moisture, the results showed that the average soil temperature was 22.7 ± 2.5°C in the continental region and 20 ± 2.8°C in the semi-arid region. In most of the cases, the results showed a significant difference (p < .05) in soil temperature between Debrecen and Karaj (regardless of the soil treatment type) (Figure 4).

Soil water content was varied among soil treatments. In this sense, the average soil moisture ranged between 18.75% ± 4.3% in CT1 and 23.58% ± 2.7% in NT1, while it ranged between 15.6% ± 3.5% in CT2 and 20.74% ± 5.2% in NT2. The direct impact of soil treatment (i.e., cultivation and non-cultivation) resulted in significant differences (p < .05) regarding the soil moisture regardless of the climate zone (Figure 5).

3.2 | A comparative analysis on total CO₂ emissions

Total CO₂ emissions from the cultivated system (CT) were significantly higher than those from the non-cultivated (NT) one, regardless of the climate region. The
average CO\textsubscript{2} emissions from CT2 were 538.92 ± 180.93, while they were 174.72 ± 79.73 from CT1. However, the average CO\textsubscript{2} emissions from NT2 (418.93 ± 144.12) were higher than those from NT1 (102.83 ± 37.93) (Figure 6).

In this section, all the data collected from each system/treatment (i.e., CT1, NT1, CT2, NT2) were plotted against each other to test whether there is a significant difference among them or not. ANOVA of the combined variable of sites and treatments on the CO\textsubscript{2} emissions revealed a significant result; thus, we rejected the H\textsubscript{0} ($F = 45.9; p < .001$). According to the post hoc analysis, all possible groups differed from each other (Table 3). In this sense, Table 3 indicates that CO\textsubscript{2} emissions from the cultivated system are significantly different from those from the non-cultivated one in both climate regions (CT1-NT1: $p = .020$; CT1-NT2: $p < .001$; CT2-NT1: $p = < .001$), except for one treatment: CT2-NT2 ($p = .076$). Nonetheless, regardless of the treatment type, emissions from agricultural soil in humid regions are significantly different from those in semi-arid regions (CT1-NT2: $p = < .001$; CT2-NT1: $p = < .001$, NT1-NT2: $p = < .001$) (Table 3).

### 3.3 Analysis of the impacts of different ecological factors on total CO\textsubscript{2} emissions

We also highlighted the direct impact of different ecological factors (i.e., temperature, soil moisture, treatment type, date) on total CO\textsubscript{2} emission with the GLM technique. Accordingly, we found that all involved variables were significant ($p < .05$), and the explained variance, based on the adjusted $R^2$, was 0.866 (Table 4).

The effect sizes indicated that the treatment type (i.e., CT, NT) made the largest contribution to total CO\textsubscript{2} emissions ($\omega^2_p = 0.833$, $p = .006$), and the next important factor was the climate zone (continental [Debrecen] or semi-arid [Karaj]), which can also be referred to as the Site ($\omega^2_p = 0.333$, $p = < .001$) (Figure 6). Accordingly, a warmer climate and cultivation increased the level of CO\textsubscript{2} emissions. The date of measurement had also a significant ($p < .001$) and remarkable effect ($\omega^2_p = 0.280$), and the interaction of the cultivation type (i.e., treatment) with the date of measurement had a similar effect ($\omega^2_p = 0.281$, $p = < .001$), that is, the presence of cultivation had a significant effect with the plant phenotype. Also, the interaction between location, treatment,
and date of measurement (i.e., Site × Treatment × Date) was significant ($\omega^2_p = 0.201, p = .002$). All other interactions and covariates also had a large effect; however, their relevance was less than a tenth of those presented above (Table 4).

4 | DISCUSSION

CO$_2$ emissions were tracked in two different climate regions with almost the same conditions (except for the climate). The results reveal that CO$_2$ emissions from the CT system were higher than from the NT system. Also, CO$_2$ emissions were higher in the semi-arid region represented by Karaj (field of the Faculty of Agriculture) than in the continental region represented by Debrecen (Látókép field).

The outcomes of this study revealed that soil management systems (e.g., CT and NT) have a substantial impact on total soil carbon emissions. In this context, the cultivation process (Moldboard ploughing) separates soil aggregates into small particles, which directly accelerates soil aeration and microbial activity (de Oliveira Silva et al., 2019). Also, microaggregates enhance the biochemical process in the soil, leading to decomposition of soil organic matter and mineralization of organic carbon, and boost CO$_2$ emissions, which could explain our results (Table 3 and Figures 3 and 6). Furthermore, soil management activities (sowing, harvesting, fertilization, etc.) have a direct impact on biomass, soil moisture, and the nutrient cycle through the ecosystem, which undeniably affect soil carbon emissions (Barcza et al., 2009). Unlike the NT system, crop management in the CT system causes a sharp decrease in total biomass due to the harvesting and removing of plant residue, which indirectly changes the carbon pools and affects the carbon balance; consequently, the physiological response will be varied in comparison with NT. In this sense, La Scala, Bolonhezi, & Pereira (2006) reported that the CT system generates a higher amount of CO$_2$ emissions compared with other tested soil management systems (i.e., NT and reduced tillage). In corn and corn–soybean rotations (Midwestern USA), CO$_2$ emissions from the chisel plough method were significantly higher than from the
Moldboard plough and NT; hence, CO2 emissions are significantly affected by the tillage system (Omonode et al., 2007). An identical conclusion to this research was drawn by Silva-Olaya et al. (2013) in Brazil, reporting that CT plots were the highest emitters of CO2 in different climate regions during the monitoring period. Means with the same letter are not significantly different. Bars represent standard deviation (n = 3). CT1, conventional tillage field in Debrecen; CT2, conventional tillage field in Karaj; NT1, non-tillage field in Debrecen; NT2, non-tillage field in Karaj.

**Figure 5** Soil moisture (%) affected by tillage treatments in different climate regions during the monitoring period. Means with the same letter are not significantly different. Bars represent standard deviation (n = 3). CT1, conventional tillage field in Debrecen; CT2, conventional tillage field in Karaj; NT1, non-tillage field in Debrecen; NT2, non-tillage field in Karaj.

**Figure 6** Boxplot of CO2 emission from each treatment. Median (______), mean (*), near outlier (0), median 95% CI (shaded). CT1, conventional tillage field in Debrecen; CT2, conventional tillage field in Karaj; NT1, non-tillage field in Debrecen; NT2, non-tillage field in Karaj.

**Table 3** Comparison of treatments based on robust post hoc test

| Treatments | Psi-hat | P (<.05) | 95% CI |
|------------|---------|----------|--------|
| CT1-CT2    | −386.3  | < .001   | −545.48−227 |
| CT1-NT1    | 62.3    | 0.020    | −1.09 126 |
| CT1-NT2    | −268.5  | < .001   | −399.76−137 |
| CT2-NT1    | 448.6   | < .001   | 293.63 604 |
| CT2-NT2    | 117.8   | 0.076    | −64.07 300 |
| NT1-NT2    | −330.8  | < .001   | −456.05−206 |

Note: Bold values indicate significance at p < .05.
Abbreviations: CT, conventional tillage; NT, non-tillage; psi-hat, test statistic.
Soil temperature is one of the key regulators of CO₂ emissions from the soil (Almaraz et al., 2009). Increased soil temperature can promote CO₂ emissions, mainly by accelerating the decomposition of plant residue and increasing root and microbial respiration (Campbell et al., 2014; Ding, Wang, & Zhang, 2017). Oertel et al. (2016) reported that increased soil temperatures result in higher soil respiration, which is in agreement with our results (Tables 3 and 4, Figures 4 and 6). Previous studies have also found a positive correlation between soil temperature and CO₂ emission rates (Raich, Potter, & Bhagawati, 2002; Lopes de Gerenyu, Rozanova, & Kudeyarov, 2005).

Soil moisture can also directly affect the emission of GHG. In this research, changes in soil moisture content driven by rainfall and irrigation altered soil CO₂ emissions. Soil moisture is crucial for providing substrate for soil microorganisms (Schindlbacher, Zechmeister-Boltenstern, & Butterbach-Bahl, 2004), and it can also influence gas diffusivity (Smith et al., 2018). Gas diffusivity varies inversely with water content, and it controls the movement of gases to and from the atmosphere (Smith et al., 2018). The higher soil moisture content in Debrecen compared to Karaj is probably one of the reasons which explain its lower soil CO₂ emissions. Drier soil conditions also restrict soil microbial activity and respiration (Smith et al., 2018). Rey et al. (2002) have also reported lower soil respiration during dry summers.

### Table 4 CO₂ emission of soils based on soil properties, management, and the location using the general linear model

| Parameters      | SS   | df  | F    | p value | ω²p |
|-----------------|------|-----|------|---------|-----|
| Model           | 20.503 | 25  | 19.56 | < .001  | 0.866|
| Site            | 5.884 | 1   | 72.47 | < .001  | 0.300|
| Treatment       | 0.663 | 1   | 8.17  | 0.006   | 0.833|
| Date            | 2.046 | 5   | 5.04  | < .001  | 0.280|
| Temperature     | 0.396 | 1   | 4.88  | 0.032   | 0.012|
| Soil moisture   | 3.390 | 1   | 41.75 | < .001  | 0.038|
| Site × Treatment | 0.547 | 1   | 6.74  | 0.013   | 0.022|
| Site × Date     | 1.305 | 5   | 3.21  | 0.014   | 0.048|
| Treatment × Date | 4.397 | 5   | 10.83 | < .001  | 0.281|
| Site × Treatment × Date | 1.875 | 5   | 4.62  | .002  | 0.201|
| Residuals       | 3.735 | 46  |       |         |     |
| Total           | 2167.159 | 72  |       |         |     |

Abbreviations: df, degrees of freedom; F, F statistics; SS, sum of squares; ω²p, effect size.

### Table 5 Some measured values for greenhouse gas emission (GHG) in Hungary and Iran

| Country   | Year        | Land use                     | GHG emission | Reference                          |
|-----------|-------------|------------------------------|--------------|------------------------------------|
| Hungary   | 2006–2007   | Grasslands                   |              | Horváth et al. (2008)              |
| Hungary   | 2002–2007   | All Hungarian ecological systems (50% agriculture) | 8.7 Mt per year | Barcza et al. (2009) |
| Hungary   | 2002        | Tillage experiment           | 0.030–0.092 mg CO₂ m⁻² s⁻¹ | Dencső et al. (2021) |
| Hungary   | 2010        | Agricultural lands           | 379 mg kg⁻¹ | Kong et al. (2013) |
| Iran      | 2021        | Maize field                  |              | Borzouei et al. (2021)            |
| Iran      | 2013        | Forest                       | 2–3.5 t C ha⁻¹ year⁻¹ | Moghiseh, Heidari, & Ghannadi (2013) |

MOHAMMED ET AL.
which highlights the importance of soil moisture for the rate of soil respiration.

Many studies have dealt with GHG emissions from agricultural land in Hungary and Iran separately (Table 5). Regardless of land use, GHG emissions from the Iranian agroecosystem are obviously higher than from the Hungarian one. All in all, determining the direct impact of climate, soil and crop management on the soil carbon balance (sink, emissions) is a difficult task that necessitates a long period of observation before any conclusions can be drawn. Nonetheless, the primary aim of this scientific work was to provide a summary of CO2 emissions in two separate climate regions, and its findings may serve as a starting point for future studies in this field.

5 | CONCLUSION

In this research, CO2 emissions were measured in two different agroecological regions; the first was a continental region represented by a field in Debrecen, Hungary. The second was the Karaj field, representing a semi-arid region in Iran. This research showed that CO2 emissions were higher in semi-arid plots compared with continental ones. However, the highest emissions were observed in the tillage system compared with the NT system (regardless of the climate region). Considering the positive impacts of NT systems on soil carbon mitigation, the findings of this study could help scientists and decision-makers to draw up mitigation strategies to minimize the total GHG emission from the agricultural sector in both countries. However, further studies and longer-term experiments in agricultural systems are required to determine the full potential of different soil management practices on GHG emissions under different climatic conditions.

ACKNOWLEDGEMENTS

Authors would like to thank Tehran University (Iran), Iran National Science Foundation (INSF), and Debrecen University (Hungary) (EFOP-3.6.3-VEKOP-16-2017-00008) for their unlimited support. S. Szabó was supported by the NKFI TKP2020-IKA-04 project. The authors grateful for Debrecen University for supporting open access.

CONFLICT OF INTEREST

None.

FUNDING

None.

DATA AVAILABILITY STATEMENT

Data available on request from the authors.

ORCID

Safwan Mohammed https://orcid.org/0000-0003-2311-6789

REFERENCES

Abdalla, M., Osborne, B., Lanigan, G., Forristal, D., Williams, M., Smith, P. & Jones, M.B. (2013) Conservation tillage systems: a review of its consequences for greenhouse gas emissions. *Soil Use and Management*, 29(2), 199–209. https://doi.org/10.1111/ sum.12030

Almaraz, J.J., Zhou, X., Mabood, F., Madramootoo, C., Rochette, P., Ma, B.L. & Smith, D.L. (2009) Greenhouse gas fluxes associated with soybean production under two tillage systems in southwestern Quebec. *Soil and Tillage Research*, 104(1), 134–139. https://doi.org/10.1016/j.still.2009.02.003

Alsafadi, K., Mohammed, S.A., Ayugi, B., Sharaf, M. & Harsányi, E. (2020) Spatial–temporal evolution of drought characteristics over Hungary between 1961 and 2010. *Pure and Applied Geophysics*, 177(8), 3961–3978. https://doi.org/10.1007/s00024-020-02449-5

Aslam, T., Choudhary, M.A. & Saggar, S. (2000) Influence of land-use management on CO2 emissions from a silt loam soil in New Zealand. *Agriculture, Ecosystems and Environment*, 77(3), 257–262. https://doi.org/10.1016/S0167-8809(99)00102-4

Barcza, Z., Haszpra, L., Somogyi, Z., Hidy, D., Lovas, K., Churkina, G. & Horváth, L. (2009) Estimation of the biospheric carbon dioxide balance of Hungary using the BIOME-BGC model. *Időjárás*, 113(3), 203–209.

Bista, P., Norton, U., Ghimire, R. & Norton, J.B. (2017) Effects of tillage system on greenhouse gas fluxes and soil mineral nitrogen in wheat (Triticum aestivum, L.)-fallow during drought. *Journal of Arid Environments*, 147, 103–113. https://doi.org/10.1016/j.jaridenv.2017.09.002

Borzouei, A., Mander, U., Teemusk, A., Alberto, S.C., Zaman, M., Dong-Gill, K.I.M., 1016/j.jaridenv.2017.09.002

Core Team, R. (2021) R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing. https://www.R-project.org/

de Oliveira Silva, B., Moitinho, M.R., de Araujo Santos, G.A., Teixeira, D.D.B., Fernandes, C. & La Scala Jr, N. (2019) Soil CO2 emission and short-term soil pore class distribution after tillage operations. *Soil and Tillage Research*, 186, 224–232. https://doi.org/10.1016/j.still.2018.10.019

Dencso, M., Horel, Á., Bogunovic, I. & Tóth, E. (2021) Effects of Environmental Drivers and Agricultural Management on Soil CO2 and N2O Emissions. *Agronomy*, 11(1), 54.
Ding, R., Wang, W. & Zhang, Q. (2017) Effect of straw mulching on soil respiration and its temperature sensitivity under different crop rotation systems. *Chinese Journal of Eco-Agriculture*, 24(24), 1106–1108.

Field, A., Miles, J. & Field, Z. (2012) *Discovering statistics using R*. London: Sage publications.

Follett, R.F., Shafer, S.R., Jawson, M.D. & Franzluebbers, A.J. (2005) *Research and implementation needs to mitigate greenhouse gas emissions from agriculture in the USA*. *Soil and Tillage Research*, 83(1), 159–166. https://doi.org/10.1016/j.still.2005.02.014

Fortin, M.C., Rochette, P. & Pattey, E. (1996) *Soil carbon dioxide fluxes from conventional and no-tillage small-grain cropping systems*. *Soil Science Society of America Journal*, 60(5), 1541–1547. https://doi.org/10.2136/sssaj1996.0361599500600005036x

Fuentes, M., Hidalgo, C., Etchevers, J., De León, F., Guerrero, A., Dendooven, L., *et al.* (2012) Conservation agriculture, increased organic carbon in the top-soil macro-aggregates and reduced soil CO₂ emissions. *Plant and Soil*, 355(1–2), 183–197. https://doi.org/10.1007/s11104-011-1092-4

Gozubuyuk, Z., Sahin, U. & Celik, A. (2020) *Tillage and Irrigation Impacts on the Efficiency of Fossil Fuel Utilization for Hungarian Vetch Production and Fuel-Related CO₂ Emissions*. *Environmental Engineering Science*, 37(3), 201–213. https://doi.org/10.1089/ees.2019.0302

Hendrix, P.F., Han, C.-R. & Groffman, P.M. (1988) Soil respiration in conventional and no-tillage agroecosystems under different winter cover crop rotations. *Soil and Tillage Research*, 12(2), 135–148. https://doi.org/10.1016/0167-1987(88)90037-2

Holland, J.M. (2004) *The environmental consequences of adopting conservation tillage in Europe: reviewing the evidence*. *Agriculture, Ecosystems & Environment*, 103(1), 1–25. https://doi.org/10.1016/j.agee.2003.12.018

Horváth, L., Grosz, B., Machon, A., Balogh, J., Pintér, K. & Csőzel, S. (2008) Influence of soil type on N₂O and CH₄ soil fluxes in Hungarian grasslands. *Community Ecology*, 9(Supplement-1), 75–80.

IPCC. (2013) *Climate Change 2013: The Physical Science Basis*. In: Stocker, T.F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S.K., Boschung, J., *et al.* (Eds.) *Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change*. Cambridge, United Kingdom and New York, NY, USA: Cambridge University Press, p. 1535.

Kong, Y., Nagano, H., Kátaí, J., Vágó, I., Oláh, Á.Z., Yashima, M. & Inubushi, K. (2013) CO₂, N₂O and CH₄ production/consumption potentials of soils under different land-use types in central Japan and eastern Hungary. *Soil Science and Plant Nutrition*, 59(3), 455–462. https://doi.org/10.1080/00380768.2013.775005

La Scala, N., Jr., Bolonhezi, D. & Pereira, G.T. (2006) Short-term soil CO₂ emission after conventional and reduced tillage of a no-till sugar cane area in southern Brazil. *Soil and Tillage Research*, 91(1–2), 244–248. https://doi.org/10.1016/j.still.2005.11.012

Lal, R. (1997) Residue management, conservation tillage and soil restoration for mitigating greenhouse effect by CO₂ enrichment. *Soil and Tillage Research*, 43(1–2), 81–107. https://doi.org/10.1016/S0167-1987(97)00036-6

Lal, R., Follett, R.F., Stewart, B.A. & Kimble, J.M. (2007) Soil carbon sequestration to mitigate climate change and advance food security. *Soil Science*, 172(12), 943–956. https://doi.org/10.1097/SS.0b013e31815c498

Li, T., Balézenti, T., Makuténienė, D., Streimikiene, D. & Kriščukaitienė, I. (2016) *Energy-related CO₂ emission in European Union agriculture: Driving forces and possibilities for reduction*. *Applied Energy*, 180, 682–694. https://doi.org/10.1016/j.apenergy.2016.08.031

Lopes de Gerenyu, V.O., Rozanova, L.N. & Kudoyarov, V.N. (2005) *Effect of soil temperature and moisture on O₂ evolution rate of cultivated Phaeozem: analyses of a long-term field experiment*. Plant: Soil and Environment-UZPI (Czech Republic).

Mair, P. & Wilcox, R.R. (2020) *Robust Statistical Methods in R Using the WRS2 Package*. *Behavior Research Methods*, 52(2), 464–488. https://doi.org/10.3758/s13428-019-01246-w

Mohgiseh, E., Heidari, A. & Ghannadi, M. (2013) Impacts of deforestation and reforestation on soil organic carbon storage and CO₂ emission. *Soil Environment*, 32(1), 1–13.

Mohammed, S., Al-Elbreaheem, A., Holb, I.J., Alsafadi, K., Dikkeh, M., Pham, Q.B., *et al.* (2020a) Soil management effects on soil water erosion and runoff in central Syria—A comparative evaluation of general linear model and random forest regression. *Water*, 12(9), 2529. https://doi.org/10.3390/w12092529

Mohammed, S., Alsafadi, K., Takácis, I. & Harsányi, E. (2020b) *Contemporary changes of greenhouse gases emission from the agricultural sector in the EU-27*. *Geology, Ecology, and Landscapes*, 4(4), 282–287. https://doi.org/10.1002/ldr.2553

Mohammed, S., Gill, A.R., Alsafadi, K., Hijazi, O., Yadav, K.K. & Khan, A.H. (2021) *An overview of greenhouse gases emissions in Hungary*. *Journal of Cleaner Production*, 127865. https://doi.org/10.1016/j.jclepro.2021.127865

Nawaz, A., Lal, R., Shrestha, R.K. & Farooq, M. (2017) *Mulching Affects Soil Properties and Greenhouse Gas Emissions Under Long-Term No-Till and Plough-Till Systems in Alfisol of Central Ohio*. *Land Degradation & Development*, 28(2), 673–681. https://doi.org/10.1002/ldr.2553

Oertel, C., Herklotz, K., Matschullat, J. & Zimmermann, F. (2012) Nitric oxide emissions from soils: a case study with temperate soils from Saxony, Germany. *Environmental Earth Sciences*, 66(8), 2343–2351. https://doi.org/10.1007/s12665-011-1456-3

Oertel, C., Matschullat, J., Zurba, K., Zimmermann, F. & Erasmi, S. (2016) *Greenhouse gas emissions from soils—A review*. *Chemie der Erde-Geochemistry*, 76(3), 327–352. https://doi.org/10.1016/j.chemer.2016.04.002

Omonode, R.A., Vyn, T.J., Smith, D.R., Hegymegi, P. & Gál, A. (2007) Soil carbon dioxide and methane fluxes from long-term tillage systems in continuous corn and corn–soybean rotations. *Soil and Tillage Research*, 95(1–2), 182–195. https://doi.org/10.1016/j.still.2006.12.004

Oorts, K., Merckx, R., Gréhan, E., Labreuche, J. & Nicolardot, B. (2007) *Determinants of annual fluxes of CO₂ and N₂O in long-term no-tillage and conventional tillage systems in northern France*. *Soil and Tillage Research*, 95(1–2), 133–148. https://doi.org/10.1016/j.still.2006.12.002
Parkin, T. B., & Ventura, R. T. (2010). USDA-ARS GRACEnet project protocols, chapter 3. Chamber-based trace gas flux measurements. Sampling protocols. Beltsville, MD p, 1–39.

Platis, D.P., Anagnostopoulou, C.D., Tsaboula, A.D., Menexes, G.C., Kalburtji, K.L. & Mamolos, A.P. (2019) Energy analysis, and carbon and water footprint for environmentally friendly farming practices in agroecosystems and agroforestry. *Sustainability*, 11(6), 1664. https://doi.org/10.3390/su11061664

Plaza-Bonilla, D., Cantero-Martínez, C., Bareche, J., Arrúe, J.L. & Alvaro-Fuentes, J. (2014) Soil carbon dioxide and methane fluxes as affected by tillage and N fertilization in dryland conditions. *Plant and Soil*, 381(1–2), 111–130. https://doi.org/10.1007/s11104-014-2115-8

Raich, J.W., Potter, C.S. & Bhagawati, D. (2002) Interannual variability in global soil respiration, 1980–94. *Global Change Biology*, 8(8), 800–812. https://doi.org/10.1046/j.1365-2486.2002.00511.x

Ray, R.L., Griffin, R.W., Fares, A., Elhassan, A., Awal, R., Woldesenbet, S. & Risch, E. (2020) Soil CO2 emission in response to organic amendments, temperature, and rainfall. *Scientific Reports*, 10(1), 1–14.

Ren, F., Zhang, X., Liu, J., Sun, N., Wu, L., Li, Z. & Xu, M. (2017) A synthetic analysis of greenhouse gas emissions from manure amended agricultural soils in China. *Scientific Reports*, 7(1), 8123. https://doi.org/10.1038/s41598-017-07793-6

Rey, A., Pegoraro, E., Tedeschi, V., De Parri, I., Jarvis, P.G. & Valentini, R. (2002) Annual variation in soil respiration and its components in a coppice oak forest in Central Italy. *Global Change Biology*, 8(9), 851–866. https://doi.org/10.1046/j.1365-2486.2002.00521.x

Rutkowska, B., Szulc, W., Sosulski, T., Skowrońska, M. & Szczepaniak, J. (2018) Impact of reduced tillage on CO2 emission from soil under maize cultivation. *Soil and Tillage Research*, 180, 21–28. https://doi.org/10.1016/j.still.2018.02.012

Schindlbacher, A., Zechmeister-Boltenstern, S. & Butterbach-Bahl, K. (2004) Effects of soil moisture and temperature on NO, NOx, and N2O emissions from European forest soils. *Journal of Geophysical Research*, 109, 1–12.

Schollert, M., Kivimäenpää, M., Michelsen, A., Blok, D. & Rinnan, R. (2017) Leaf anatomy, BVOC emission and CO2 exchange of arctic plants following snow addition and summer warming. *Annals of Botany*, 119(3), 433–445. https://doi.org/10.1093/aob/mcw237

Silva-Olaya, A.M., Cerri, C.E.P., La Scala, N., Jr., Dias, C.T.S. & Cerri, C.C. (2013) Carbon dioxide emissions under different soil tillage systems in mechanically harvested sugarcane. *Environmental Research Letters*, 8(1), 015014. https://doi.org/10.1088/1748-9326/8/1/015014

Smith, K.A., Ball, T., Conen, F., Dobbie, K.E., Massheder, J. & Rey, A. (2003) Exchange of greenhouse gases between soil and atmosphere: interactions of soil physical factors and biological processes. *European Journal of Soil Science*, 54(4), 779–791. https://doi.org/10.1046/j.1351-0754.2003.0567.x

Smith, K.A., Ball, T., Conen, F., Dobbie, K.E., Massheder, J. & Rey, A. (2018) Exchange of greenhouse gases between soil and atmosphere: interactions of soil physical factors and biological processes. *European Journal of Soil Science*, 69(1), 10–20. https://doi.org/10.1111/jeos.12539

Smith, P., Martino, D., Cai, Z., Gwary, D., Janzen, H., Kumar, P., et al. (2008) Greenhouse gas mitigation in agriculture. *Philosophical Transactions of the Royal Society Biological Sciences*, 363(1492), 789–813. https://doi.org/10.1098/rstb.2007.2184

Smith, P.E.T.E., Powison, D.S., Glendining, M.J. & Smith, J.U. (1998) Preliminary estimates of the potential for carbon mitigation in European soils through no-till farming. *Global Change Biology*, 4(6), 679–685. https://doi.org/10.1046/j.1365-2486.1998.00185.x

Tenenesca, C.G. & Al-Kaisi, M.M. (2015) In-field management of corn cob and residue mix: Effect on soil greenhouse gas emissions. *Applied Soil Ecology*, 89, 59–68. https://doi.org/10.1016/j.apsoil.2015.01.007

Tessum, C.W., Hill, J.D. & Marshall, J.D. (2014) Life cycle air quality impacts of conventional and alternative light-duty transportation in the United States. *Proceedings of the National Academy of Sciences*, 111(52), 18490–18494. https://doi.org/10.1073/pnas.1406843111

Törö, Á., Ragán, P., Rántóy, T., Kith, K. & Harsányi, E. (2019) Daily soil carbon dioxide flux under different tillage conditions. *Acta Agraria Debreceniensis*, 2, 141–144.

Williams, I.J. & Abdi, H. (2010) Fisher’s least significant difference (LSD) test. *Encyclopedia of Research Design*, 218, 840–853.

Xi-Liu, Y.U.E. & Qing-Xian, G.A.O. (2018) Contributions of natural systems and human activity to greenhouse gas emissions. *Advances in Climate Change Research*, 9(4), 243–252.

**How to cite this article:** Mohammed, S., Mirzaei, M., Pappné Törö, Á., Anari, M.G., Moghiseh, E., Asadi, H. et al. (2022) Soil carbon dioxide emissions from maize (Zea mays L.) fields as influenced by tillage management and climate. *Irrigation and Drainage*, 71(1), 228–240. Available from: https://doi.org/10.1002/ird.2633