HIGGS BUNDLES AND REPRESENTATION SPACES ASSOCIATED TO MORPHISMS

INDRANIL BISWAS AND CARLOS FLORENTINO

ABSTRACT. Let G be a connected reductive affine algebraic group defined over the complex numbers, and $K \subset G$ be a maximal compact subgroup. Let X, Y be irreducible smooth complex projective varieties and $f : X \to Y$ an algebraic morphism, such that $\pi_1(Y)$ is virtually nilpotent and the homomorphism $f_* : \pi_1(X) \to \pi_1(Y)$ is surjective. Define

$$R^f(\pi_1(X), G) = \{ \rho \in \text{Hom}(\pi_1(X), G) \mid A \circ \rho \text{ factors through } f_* \},$$

$$R^f(\pi_1(X), K) = \{ \rho \in \text{Hom}(\pi_1(X), K) \mid A \circ \rho \text{ factors through } f_* \},$$

where $A : G \to \text{GL}(\text{Lie}(G))$ is the adjoint action. We prove that the geometric invariant theoretic quotient $R^f(\pi_1(X, x_0), G)/G$ admits a deformation retraction to $R^f(\pi_1(X, x_0), K)/K$. We also show that the space of conjugacy classes of n almost commuting elements in G admits a deformation retraction to the space of conjugacy classes of n almost commuting elements in K.

1. INTRODUCTION

Let G be a connected reductive affine algebraic group defined over the complex numbers. Consider an algebraic morphism

$$f : X \to Y$$

where X and Y are irreducible smooth complex projective varieties, and let

$$f_* : \pi_1(X, x_0) \to \pi_1(Y, f(x_0))$$

be the induced morphism of fundamental groups, where $x_0 \in X$ is a base point. In certain situations, the representations

$$\rho : \pi_1(X, x_0) \to G$$

that factor through f_* have special geometric properties. See [KP], where necessary and sufficient conditions for such a factorization are given in terms of the spectral curve of the G-Higgs bundle associated to ρ.

In this article, we are interested in the whole moduli space of representations that factor in a similar way, and in its topological properties. Under some assumptions on f and Y, we provide a natural deformation retraction between two such representation spaces, described as follows.

\textbf{2000 Mathematics Subject Classification.} 14J60.

\textbf{Key words and phrases.} Higgs bundle, flat connection, representation space, deformation retraction.

The first author is supported by a J. C. Bose Fellowship. The second author is partially supported by FCT (Portugal) through the projects EXCL/MAT-GEO/0222/2012, PTDC/MAT/120411/2010 and PTDC/MAT-GEO/0675/2012.
The Lie algebra of G will be denoted by \mathfrak{g}. Let $A : G \to \text{GL}(\mathfrak{g})$ be the homomorphism given by the adjoint action of G on \mathfrak{g}. Fix a maximal compact subgroup $K \subset G$ and define:

$$\mathcal{R}^f(\pi_1(X, x_0), G) = \{ \rho \in \text{Hom}(\pi_1(X, x_0), G) \mid A \circ \rho \text{ factors through } f_* \} ,$$

$$\mathcal{R}^f(\pi_1(X, x_0), K) = \{ \rho \in \text{Hom}(\pi_1(X, x_0), K) \mid A \circ \rho \text{ factors through } f_* \} .$$

We note that the group G (respectively, K) acts on $\mathcal{R}^f(\pi_1(X, x_0), G)$ (respectively, on $\mathcal{R}^f(\pi_1(X, x_0), K)$) via the conjugation action of G (respectively, K) on itself. The quotient $\mathcal{R}^f(\pi_1(X, x_0), K)/K$ is contained in the geometric invariant theoretic quotient $\mathcal{R}^f(\pi_1(X, x_0), G)/G$.

We prove the following in Theorem 2.6:

Suppose that the fundamental group of Y is virtually nilpotent, and the homomorphism f_* is surjective. Then $\mathcal{R}^f(\pi_1(X, x_0), G)/G$ admits a deformation retraction to the subset $\mathcal{R}^f(\pi_1(X, x_0), K)/K$.

In Section 3, we consider spaces of almost commuting elements in K and in G. Define:

$$\text{AC}^n(K) = \{(g_1, \cdots, g_n) \in K^n \mid g_i g_j g_i^{-1} g_j^{-1} \in Z_K \ \forall \ i, j \} ,$$

where Z_K denotes the center of K. The moduli space of conjugacy classes:

$$\text{AC}^n(K) / K ,$$

where K acts by simultaneous conjugation, was studied in [BFM], [KS], and plenty of information is known in the cases $n = 2$ and $n = 3$. For instance, the number of components of $\text{AC}^3(K) / K$ has been related in [BFM] to the Chern–Simons invariants associated to flat connections on a 3-torus.

In a similar fashion, we define $\text{AC}^n(G)/G$, the moduli space of conjugacy classes of n almost commuting elements in G. For example, if G has trivial center, then $\text{AC}^{2n}(G)/G$ coincides with

$$\text{Hom}(\pi_1(X, x_0), G)/G ,$$

where X is an abelian variety of complex dimension n. In Proposition 3.1 we show that $\text{AC}^n(G) / G$ admits a deformation retraction to $\text{AC}^n(K) / K$, and that the same holds for $\text{AC}^n(G)$ and $\text{AC}^n(K)$, extending one of the main results in [FL] and [BF1].

2. Representation spaces associated to a morphism

Let X be an irreducible smooth complex projective variety. Fix a point $x_0 \in X$. Let

$$f : X \to Y$$

be an algebraic morphism, where Y is also an irreducible smooth complex projective variety, such that:

1. the fundamental group $\pi_1(Y, f(x_0))$ is virtually nilpotent, and
2. the homomorphism of fundamental groups induced by f

$$f_* : \pi_1(X, x_0) \to \pi_1(Y, f(x_0))$$ (2.1)

is surjective.
Using the homomorphism f_* in (2.1), we will consider $\pi_1(Y, f(x_0))$ as a quotient of the group $\pi_1(X, x_0)$.

Let G be a connected reductive affine algebraic group defined over \mathbb{C}. The Lie algebra of G will be denoted by \mathfrak{g}. Let

$$A : G \rightarrow \text{GL}(\mathfrak{g}) \quad (2.2)$$

be the homomorphism given by the adjoint action of G on \mathfrak{g}. The affine algebraic variety (not necessarily irreducible) of representations

$$\rho : \pi_1(X, x_0) \rightarrow G$$

will be denoted by $\text{Hom}(\pi_1(X, x_0), G)$.

Definition 2.1. Let $\rho \in \text{Hom}(\pi_1(X, x_0), G)$. We say that $A \circ \rho$ factors through f_* in (2.1) (or that $A \circ \rho$ factors geometrically through $f : X \rightarrow Y$, see [KP]) if there exists a homomorphism $\rho' \in \text{Hom}(\pi_1(Y, f(x_0)), \text{GL}(\mathfrak{g}))$ such that

$$\rho' \circ f_* = A \circ \rho. \quad (2.3)$$

Remark 2.2.

1. Clearly, if ρ itself factorizes as $\rho = \tilde{\rho} \circ f_*$ for some $\tilde{\rho} \in \text{Hom}(\pi_1(X, x_0), G)$, then $A \circ \rho$ factorizes through f_* as in the definition; the converse is not always true.
2. It is clear that $A \circ \rho \in \text{Hom}(\pi_1(X, x_0), \text{GL}(\mathfrak{g}))$ factors through f_* as in (2.3), if and only if $A \circ \rho$ is trivial on the kernel of f_*. Moreover, when $A \circ \rho$ factors through f_*, a homomorphism $\rho' \in \text{Hom}(\pi_1(Y, f(x_0)), \text{GL}(\mathfrak{g}))$ satisfying equation (2.3) is unique, because f_* is surjective.

In the framework of non-abelian Hodge theory, there is a correspondence between semistable G-Higgs bundles over X and representations in $\text{Hom}(\pi_1(X, x_0), G)$, [Si], [BG]. Denote by (E_ρ, θ_ρ) the semistable G–Higgs bundle on X associated to ρ under this correspondence. We note that (E_ρ, θ_ρ) is semistable with respect to every polarization on X.

Lemma 2.3. Let $\rho \in \text{Hom}(\pi_1(X, x_0), G)$ be such that $A \circ \rho$ factors through f_*. Then, the above principal G–bundle E_ρ on X is semistable.

Proof. Let

$$\text{ad}(E_\rho) := E_\rho \times^A \mathfrak{g} \rightarrow X$$

be the adjoint vector bundle of E_ρ. The Higgs field on $\text{ad}(E_\rho)$ induced by θ_ρ will be denoted by $\text{ad}(\theta_\rho)$.

Let $\rho' : \pi_1(Y, f(x_0)) \rightarrow \text{GL}(\mathfrak{g})$ be the unique homomorphism satisfying equation (2.3); the uniqueness of ρ' is a consequence of the surjectivity of f_* as remarked above. Let (E', θ') be the semistable Higgs vector bundle on Y associated to this homomorphism ρ'. Since the fundamental group of Y is virtually nilpotent, we know that the vector bundle E' is semistable [BL2, Proposition 3.1]. Let $c_i(E')$, $i \geq 0$, be the sequence of Chern classes of the bundle E'. Then, $c_i(E') = 0$ for all $i > 0$ because the C^∞ complex vector bundle underlying E' admits a flat connection (it is isomorphic to the C^∞ complex vector bundle underlying the flat vector bundle associated to ρ'). Therefore, by [BE, p. 39, Theorem 5.1], the vector bundle E' admits a filtration

$$0 = V_0 \subset V_1 \subset \cdots \subset V_{\ell-1} \subset V_\ell = E'$$
of holomorphic subbundles such that each successive quotient V_i/V_{i-1}, $1 \leq i \leq \ell$, admits a flat unitary connection. Consider the pulled back filtration

$$0 = f^*V_0 \subset f^*V_1 \subset \cdots \subset f^*V_{\ell-1} \subset f^*V_\ell = f^*E'. \quad (2.4)$$

A flat unitary connection on V_i/V_{i-1} pulls back to a flat unitary connection on $f^*V_i/(f^*V_{i-1}) = f^*(V_i/V_{i-1})$. Since each successive quotient for the filtration of f^*E' in (2.4) admits a flat unitary connection, we conclude that the holomorphic vector bundle f^*E' is semistable.

From (2.3) it follows that

$$(\text{ad}(E^\rho), \text{ad}(\theta^\rho)) = (f^*E', f^*\theta'). \quad (2.5)$$

Since f^*E' is semistable, from (2.5) it follows that $\text{ad}(E^\rho)$ is semistable. This implies that the principal G–bundle E^ρ is semistable [AB, p. 214, Proposition 2.10].

Lemma 2.3 has the following corollary:

Corollary 2.4. For any Higgs field θ, the G–Higgs bundle (E^ρ, θ) is semistable.

Let

$$\rho^\lambda : \pi_1(X, x_0) \to G \quad (2.6)$$

be a homomorphism corresponding to the Higgs G–bundle $(E^\rho, \lambda \cdot \theta^\rho)$, which is semistable by Corollary 2.4. We note that although ρ^λ is not uniquely determined by $(E^\rho, \lambda \cdot \theta^\rho)$, the point in the quotient space

$$\text{Hom}(\pi_1(X, x_0), G)/G$$

given by ρ^λ does not depend on the choice of ρ^λ. In other words, any two different choices of ρ^λ differ by an inner automorphism of the group G.

Lemma 2.5. For every $\lambda \in \mathbb{C}$, the homomorphism $A \circ \rho^\lambda$ factors through f_*, where ρ^λ is defined in (2.6).

Proof. Let $(\text{ad}(E^\rho)^\lambda, \text{ad}(\theta^\rho)^\lambda)$ be the Higgs vector bundle associated to the homomorphism $A \circ \rho^\lambda$. We note that $(\text{ad}(E^\rho)^\lambda, \text{ad}(\theta^\rho)^\lambda)$ is isomorphic to $(f^*E', f^*(\lambda \cdot \theta'))$, because the Higgs bundle (E', θ') corresponds to ρ', and (2.3) holds. We saw in the proof of Lemma 2.3 that E' is semistable with $c_i(E') = 0$ for all $i > 0$. Since $(\text{ad}(E^\rho)^\lambda, \text{ad}(\theta^\rho)^\lambda)$ is isomorphic to the pullback of a semistable Higgs vector bundle on Y such that all the Chern classes of positive degrees of the underlying vector bundle on Y vanish, it can be deduced that $A \circ \rho^\lambda$ factors through the quotient $\pi_1(Y, f(x_0))$. In fact, if

$$\delta : \pi_1(Y, f(x_0)) \to \text{GL}(g)$$

is a homomorphism corresponding to the Higgs vector bundle $(E', \lambda \cdot \theta')$, then

- the homomorphism $A \circ \rho^\lambda$ factors through the quotient $\pi_1(Y, f(x_0))$, and
- the homomorphism $\pi_1(Y, f(x_0)) \to \text{GL}(g)$ resulting from $A \circ \rho^\lambda$ differs from δ by an inner automorphism of $\text{GL}(g)$.

This completes the proof. \qed
Fix a maximal compact subgroup
\[K \subset G. \]
Define
\[
\mathcal{R}^f(\pi_1(X, x_0), G) = \{ \rho \in \text{Hom}(\pi_1(X, x_0), G) \mid A \circ \rho \text{ factors through } f_* \},
\]
\[
\mathcal{R}^f(\pi_1(X, x_0), K) = \{ \rho \in \text{Hom}(\pi_1(X, x_0), K) \mid A \circ \rho \text{ factors through } f_* \}.\]
Since \(\pi_1(X, x_0) \) is a finitely presented group, the affine algebraic structure of \(G \) produces an affine algebraic structure on \(\mathcal{R}^f(\pi_1(X, x_0), G) \). The group \(G \) acts on \(\mathcal{R}^f(\pi_1(X, x_0), G) \) via the conjugation action of \(G \) on itself. Let
\[
\mathcal{R}^f(\pi_1(X, x_0), G)\!/G
\]
be the corresponding geometric invariant theoretic quotient. We note that this geometric invariant theoretic quotient \(\mathcal{R}^f(\pi_1(X, x_0), G)\!/G \) is a complex affine algebraic variety. Let
\[
\mathcal{R}^f(\pi_1(X, x_0), K)\!/K
\]
be the quotient of \(\mathcal{R}^f(\pi_1(X, x_0), K) \) for the adjoint action of \(K \) on itself.

The inclusion of \(K \) in \(G \) produces an inclusion of \(\mathcal{R}^f(\pi_1(X, x_0), K) \) in \(\mathcal{R}^f(\pi_1(X, x_0), G) \), which, in turn, gives an inclusion
\[
\mathcal{R}^f(\pi_1(X, x_0), K)\!/K \hookrightarrow \mathcal{R}^f(\pi_1(X, x_0), G)\!/G. \tag{2.7}
\]
Instead of working with the Zariski topology on \(\mathcal{R}^f(\pi_1(X, x_0), G)\!/G \), we consider on it the Euclidean topology which is induced from an embedding of this space in a complex affine space. Indeed, such an embedding can always be obtained by considering a finite set of generators of the algebra of \(G \)-invariant regular functions on \(\mathcal{R}^f(\pi_1(X, x_0), G) \). Moreover, this topology is independent of the choice of such embedding, and compatible with the inclusion \((2.7) \).

Theorem 2.6. The topological space \(\mathcal{R}^f(\pi_1(X, x_0), G)\!/G \) admits a deformation retraction to the above subset \(\mathcal{R}^f(\pi_1(X, x_0), K)\!/K \).

Proof. Two elements of \(\text{Hom}(\pi_1(X, x_0), G) \) are called equivalent if they differ by an inner automorphism of \(G \). Points of \(\mathcal{R}^f(\pi_1(X, x_0), G)\!/G \) correspond to the equivalence classes of homomorphisms \(\rho \in \text{Hom}(\pi_1(X, x_0), G) \) such that the action of \(\pi_1(X, x_0) \) on \(\mathfrak{g} \) given by \(A \circ \rho \) is completely reducible, meaning that \(\mathfrak{g} \) is a direct sum of irreducible \(\pi_1(X, x_0) \)-modules. Let \((E_\rho, \theta_\rho) \) be the semistable \(G \)-Higgs bundle corresponding to the above homomorphism \(\rho \), and let \((\text{ad}(E_\rho), \text{ad}(\theta_\rho)) \) be the semistable adjoint Higgs vector bundle associated to \((E_\rho, \theta_\rho) \). The above condition that the action of \(\pi_1(X, x_0) \) on \(\mathfrak{g} \) given by \(A \circ \rho \) is completely reducible is equivalent to the condition that the semistable Higgs vector bundle \((\text{ad}(E_\rho), \text{ad}(\theta_\rho)) \) is polystable.

Let
\[
\phi : (\mathcal{R}^f(\pi_1(X, x_0), G)\!/G) \times [0, 1] \longrightarrow \mathcal{R}^f(\pi_1(X, x_0), G)\!/G
\]
be the map defined by \((\rho, \lambda) \longmapsto \rho^{1-\lambda} \) (defined in \((2.6) \)), where \(\rho \in \text{Hom}(\pi_1(X, x_0), G) \) satisfies the condition that the action of \(\pi_1(X, x_0) \) on \(\mathfrak{g} \) given by \(A \circ \rho \) is completely reducible. It is easy to see that \(\phi \) is well-defined. We note that the point in the geometric invariant theoretic quotient \(\mathcal{R}^f(\pi_1(X, x_0), G)\!/G \) given by \(\rho \) lies in the subset \(\mathcal{R}^f(\pi_1(X, x_0), K)/K \) if and only if the Higgs field \(\theta_\rho \) on the principal \(G \)-bundle \(E_\rho \) vanishes identically (as before, \((E_\rho, \theta_\rho) \) is the Higgs \(G \)-bundle corresponding to \(\rho \)).
The following are straightforward to check:

- \(\phi(z, 0) = z \) for all \(z \in \mathcal{R}^f(\pi_1(X, x_0), G)//G \),
- \(\phi(z, 1) \in \mathcal{R}^f(\pi_1(X, x_0), K)/K \) for all \(z \in \mathcal{R}^f(\pi_1(X, x_0), G)//G \), and
- \(\phi(z, \lambda) = z \) for all \(z \in \mathcal{R}^f(\pi_1(X, x_0), K)/K \) and \(\lambda \in [0, 1] \).

Therefore, the above map \(\phi \) produces a deformation retraction of \(\mathcal{R}^f(\pi_1(X, x_0), G)//G \) to \(\mathcal{R}^f(\pi_1(X, x_0), K)/K \).

Remark 2.7. Lemma 2.3 and Theorem 2.6 are also valid for morphisms \(f : X \to Y \) in the category of compact Kähler manifolds, under the same assumptions on \(Y \) and \(f_* \). The proofs of these results are analogous, by replacing semistability with the notion of pseudostability (see [BG], [BF2]).

3. **Deformation retraction of the space of almost commuting elements**

Again, let \(G \) be a connected complex reductive group, and \(K \) be a maximal compact subgroup. Let

\[Z_G \subset G \]

be the center of \(G \) and let

\[PG := G/Z_G \]

be the quotient group. We note that the center of \(PG \) is trivial. Let

\[q : G \to PG \]

be the quotient map. The image

\[PK := q(K) \subset PG \]

is a maximal compact subgroup of \(PG \). We have \(q^{-1}(PK) = K \).

Fix a positive integer \(n \). Define

\[AC^n(G) = \{ (g_1, \ldots, g_n) \in G^n \mid g_i g_j g_i^{-1} g_j^{-1} \in Z_G \ \forall \ i, j \} \]

It is a subscheme of the affine variety \(G^n \). The group \(G \) acts on \(AC^n(G) \) as simultaneous conjugation of the \(n \) factors. Let

\[ACE^n(G) := AC^n(G)//G \]

be the geometric invariant theoretic quotient. Also, define

\[AC^n(K) = \{ (g_1, \ldots, g_n) \in K^n \mid g_i g_j g_i^{-1} g_j^{-1} \in Z_G \ \forall \ i, j \} \]

So \(AC^n(K) = AC^n(G) \cap K^n \). Let

\[ACE^n(K) := AC^n(K)/K \]

be the quotient for the simultaneous conjugation action of \(K \) on the \(n \) factors. Note that the inclusion of \(K \) in \(G \) produces an inclusion

\[ACE^n(K) \hookrightarrow ACE^n(G) \]

Proposition 3.1. Let \(G \) be semisimple. Then, the topological space \(ACE^n(G) \) admits a deformation retraction to the above subset \(ACE^n(K) \).
Proof. When G is semisimple, Z_G is a finite subgroup of G, so that the map (3.1) is a Galois covering. Also, $Z_G \subset K$. Define $AC^n(PG)$ and $ACE^n(PG)$ by substituting PG in place of G in the above constructions. Note that $AC^n(PG)$ parametrizes commuting n elements of PG because the center of PG is trivial. Similarly, define $AC^n(PK)$ and $ACE^n(PK)$ by substituting PK in place of K. So $AC^n(PK)$ parametrizes commuting n elements of PK. The projection

$$\beta : ACE^n(G) \longrightarrow ACE^n(PG)$$

(3.2)

constructed using the the projection q in (3.1) is a Galois covering with Galois group Z^n_G. However it should be mentioned that $ACE^n(G)$ need not be connected. Let

$$\gamma : ACE^n(K) \longrightarrow ACE^n(PK)$$

be the projection constructed similarly using q. Clearly, γ coincides with the restriction of β to $ACE^n(K) \subset ACE^n(G)$.

There is a deformation retraction of $ACE^n(PG)$ to $ACE^n(PK)$

$$\varphi : ACE^n(PG) \times [0,1] \longrightarrow ACE^n(PG)$$

[FL, Theorem 1.1] (see also [BF1]). In particular, $\varphi|_{ACE^n(PG) \times \{0\}}$ is the identity map of $ACE^n(PG)$.

Applying the homotopy lifting property to the covering β in (3.2), there is a unique map

$$\tilde{\varphi} : ACE^n(G) \times [0,1] \longrightarrow ACE^n(G)$$

such that

1. $\beta \circ \tilde{\varphi} = \varphi \circ (\beta \times \text{Id}_{[0,1]})$, and
2. $\tilde{\varphi}|_{ACE^n(G) \times \{0\}}$ is the identity map of $ACE^n(G)$.

This map $\tilde{\varphi}$ is a deformation retraction of $ACE^n(G)$ to $ACE^n(K)$, because φ is a deformation retraction.

Proposition 3.1 remains valid in the more general situation when G is reductive.

Theorem 3.2. Let G be a connected reductive affine algebraic group over \mathbb{C}. Then, $ACE^n(G)$ admits a deformation retraction to the subset $ACE^n(K)$.

Proof. First, note that Proposition 3.1 is clearly valid if G is a product of copies of the multiplicative group \mathbb{C}^*. Hence it remains valid for any G which is a product of a semisimple group and copies of \mathbb{C}^*. For a general connected reductive group G, consider the natural homomorphism

$$\eta : G \longrightarrow PG \times (G/[G,G]).$$

It is a surjective Galois covering map, the quotient $PG := G/Z_G$ is semisimple, while the quotient $G/[G,G]$ is a product of copies of \mathbb{C}^*. As mentioned above Proposition 3.1 is valid for $PG \times (G/[G,G])$. Using this and the above homomorphism η it follows that Proposition 3.1 is valid for G. □
3.1. Deformation retraction of the space of n commuting elements. Finally, we note that the analogous result is also verified for the space of n commuting elements, $AC^n(G)$.

Theorem 3.3. Let G be a connected reductive affine algebraic group over \mathbb{C}. Then, the space $AC^n(G)$ admits a deformation retraction to the subset $AC^n(K)$.

Proof. Since PG and PK have trivial center, the spaces $AC^n(PG)$ and $AC^n(PK)$ consist of n commuting elements: If $(g_1, \cdots, g_n) \in AC^n(PG)$, then $g_ig_j = g_jg_i$, for all $i, j \in \{1, \cdots, n\}$.

Therefore, it is known that $AC^n(PG)$ admits a deformation retraction to $AC^n(PK)$ [PS, p. 2514, Theorem 1.1]. In view of this, imitating the proof of Proposition 3.1 it follows that $AC^n(G)$ admits a deformation retraction to $AC^n(K)$. \qed

References

[AB] B. Anchouche and I. Biswas, Einstein–Hermitian connections on polystable principal bundles over a compact Kähler manifold, Amer. Jour. Math. 123 (2001), 207–228.

[BB] I. Biswas and U. Bruzzo, On semistable principal bundles over a complex projective manifold. II, Geom. Dedicata 146 (2010), 27–41.

[BF1] I. Biswas and C. Florentino, Commuting elements in reductive groups and Higgs bundles on abelian varieties, Jour. Alg. 388 (2013), 194–202.

[BF2] I. Biswas and C. Florentino, Character varieties of virtually nilpotent Kähler groups and G–Higgs bundles, Ann. Inst. Fourier (to appear), arXiv:1405.0610.

[BFM] A. Borel, R. Friedman, J. W. Morgan, Almost commuting elements in compact Lie groups, Mem. Amer. Math. Soc. 157, 2002.

[BG] I. Biswas and T. L. Gómez, Connections and Higgs fields on a principal bundle, Ann. Glob. Anal. Geom. 33 (2008), 19–46.

[FL] C. Florentino and S. Lawton, Topology of character varieties of Abelian groups, preprint arXiv:1301.7610.

[KS] V. G. Kac and A. V. Smilga, Vacuum structure in supersymmetric Yang-Mills theories with any gauge group. Arxiv preprint hep-th/9902029, 1999.

[KP] L. Katzarkov and T. Pantev, Representations of fundamental groups whose Higgs bundles are pullbacks, J. Diff. Geom. 39 (1994), 103–121.

[PS] A. Pettet and J. Souto, Commuting tuples in reductive groups and their maximal compact subgroups, Geom. Topol. 17 (2013), 2513–2593.

[Si] C. T. Simpson. Higgs bundles and local systems, Inst. Hautes Études Sci. Publ. Math. 75 (1992), 5–95.