AN ERGODIC THEOREM FOR THE QUASI-REGULAR REPRESENTATION OF THE FREE GROUP

ADRIEN BOYER AND ANTOINE PINOCHET LOBOS

Abstract. In [BM11], an ergodic theorem à la Birkhoff-von Neumann for the action of the fundamental group of a compact negatively curved manifold on the boundary of its universal cover is proved. A quick corollary is the irreducibility of the associated unitary representation. These results are generalized [Boy15] to the context of convex cocompact groups of isometries of a CAT(-1) space, using Theorem 4.1.1 of [Rob03], with the hypothesis of non arithmeticity of the spectrum. We prove all the analog results in the case of the free group \(F_r \) of rank \(r \) even if \(F_r \) is not the fundamental group of a closed manifold, and may have an arithmetic spectrum.

1. Introduction

In this paper, we consider the action of the free group \(F_r \) on its boundary \(B \), a probability space associated to the Cayley graph of \(F_r \) relative to its canonical generating set. This action is known to be ergodic (see for example [FTP82] and [FTP83]), but since the measure is not preserved, no theorem on the convergence of means of the corresponding unitary operators had been proved. Note that a close result is proved in [FTP83, Lemma 4, Item (i)]. We formulate such a convergence theorem in Theorem 1.2. We prove it following the ideas of [BM11] and [Boy15] replacing [Rob03, Theorem 4.1.1] by Theorem LM.

1.1. Geometric setting and notation. We will denote \(F_r = \langle a_1, \ldots, a_r \rangle \) the free group on \(r \) generators, for \(r \geq 2 \). For an element \(\gamma \in F_r \), there is a unique reduced word in \(\{ a_1^{\pm 1}, \ldots, a_r^{\pm 1} \} \) which represents it. This word is denoted \(\gamma_1 \cdots \gamma_k \) for some integer \(k \) which is called the length of \(\gamma \) and is denoted by \(|\gamma| \). The set of all elements of length \(k \) is denoted \(S_k \) and is called the sphere of radius \(k \). If \(u \in F_r \) and \(k \geq |u| \), let us denote \(Pr_{u}(k) := \{ \gamma \in F_r \mid |\gamma| = k, u \text{ is a prefix of } \gamma \} \).

Let \(X \) be the Cayley graph of \(F_r \) with respect to the set of generators \(\{ a_1^{\pm 1}, \ldots, a_r^{\pm 1} \} \), which is a 2\(r \)-regular tree. We endow it with the (natural) distance, denoted by \(d \), which gives length 1 to every edge; for this distance, the natural action of \(F_r \) on \(X \) is isometric and freely transitive on the vertices; the space \(X \) is uniquely geodesic, the geodesics between vertices being finite sequences of successive edges. We denote by \([x, y] \) the unique geodesic joining \(x \) to \(y \).

We fix, once and for all, a vertex \(x_0 \) in \(X \). For \(x \in X \), the vertex of \(X \) which is the closest to \(x \) in \([x_0, x] \), is denoted by \([x] \) because the action is free, we can identify \([x] \) with the element \(\gamma \) that brings \(x_0 \) on it, and this identification is an isometry.

The Cayley tree and its boundary. As for any other CAT(-1) space, we can construct a boundary of \(X \) and endow it with a distance and a measure. For a general construction, see [Boy95]. The construction we provide here is elementary.

Let us denote by \(B \) the set of all right-infinite reduced words on the alphabet \(\{ a_1^{\pm 1}, \ldots, a_r^{\pm 1} \} \). This set is called the boundary of \(X \).

We will consider the set \(\overline{X} := X \cup B \).

For \(u = u_1 \cdots u_l \in F_r \setminus \{ e \} \), we define the sets

\[X_u := \{ x \in X \mid u \text{ is a prefix of } [x] \} \]

\[B_u := \{ \xi \in B \mid u \text{ is a prefix of } \xi \} \]
\[C_u := X_u \cup B_u \]

We can now define a natural topology on \(\overline{X} \) by choosing as a basis of neighborhoods

1. for \(x \in X \), the set of all neighborhoods of \(x \) in \(X \)
2. for \(\xi \in B \), the set \(\{ C_u \mid u \text{ is a prefix of } \xi \} \)

For this topology, \(\overline{X} \) is a compact space in which the subset \(X \) is open and dense. The induced topology on \(X \) is the one given by the distance. Every isometry of \(X \) continuously extend to a homeomorphism of \(\overline{X} \).

Distance and measure on the boundary. For \(\xi_1 \) and \(\xi_2 \) in \(B \), we define the Gromov product of \(\xi_1 \) and \(\xi_2 \) with respect to \(x_0 \) by

\[(\xi_1|\xi_2)_{x_0} := \sup \{ k \in \mathbb{N} \mid \xi_1 \text{ and } \xi_2 \text{ have a common prefix of length } k \} \]

and

\[d_{x_0}(\xi_1, \xi_2) := e^{-(\xi_1|\xi_2)_{x_0}}. \]

Then \(d \) defines an ultrametric distance on \(B \) which induces the same topology; precisely, if \(\xi = u_1 u_2 u_3 \cdots \), then the ball centered in \(\xi \) of radius \(e^{-k} \) is just \(B_{u_1 \cdots u_k} \).

On \(B \), there is at most one Borel regular probability measure which is invariant under the isometries of \(X \) which fix \(x_0 \); indeed, such a measure \(\mu_{x_0} \) must satisfy

\[\mu_{x_0}(B_u) = \frac{1}{2r(2r-1)^{|u|-1}} \]

and it is straightforward to check that the \(\ln(2r-1) \)-dimensional Hausdorff measure verifies this property.

If \(\xi = u_1 \cdots u_n \cdots \in B \), and \(x, y \in X \), then \((d(x, u_1 \cdots u_n) - d(y, u_1 \cdots u_n))_{n \in \mathbb{N}} \) is stationary.

We denote this limit \(\beta_{\xi}(x, y) \). The function \(\beta_{\xi} \) is called the Busemann function at \(\xi \).

Let us denote, for \(\xi \in B \) and \(\gamma \in \mathbb{F}_r \), the function

\[P(\gamma, \xi) := (2r-1)^\beta_{\xi}(x_0, \gamma x_0) \]

The measure \(\mu_{x_0} \) is, in addition, quasi-invariant under the action of \(\mathbb{F}_r \). Precisely, the Radon-Nikodym derivative is given for \(\gamma \in \Gamma \) and for a.e. \(\xi \in B \) by

\[\frac{d\gamma_*\mu_{x_0}}{d\mu_{x_0}}(\xi) = P(\gamma, \xi), \]

where \(\gamma_*\mu_{x_0}(A) = \mu_{x_0}(\gamma^{-1} A) \) for any Borel subset \(A \subset B \).

The quasi-regular representation. Denote the unitary representation, called the quasi-regular representation of \(\mathbb{F}_r \) on the boundary of \(X \) by

\[\pi : \mathbb{F}_r \to \mathcal{U}(L^2(B)) \]

\[\gamma \mapsto \pi(\gamma) \]

defined as

\[(\pi(\gamma)g)(\xi) := P(\gamma, \xi)^{\frac{1}{2}} g(\gamma^{-1} \xi) \]

for \(\gamma \in \mathbb{F}_r \) and for \(g \in L^2(B) \). We define the Harish-Chandra function

\[\Xi(\gamma) := \langle \pi(\gamma)1_B, 1_B \rangle = \int_B P(\gamma, \xi)^{\frac{1}{2}} d\mu_{x_0}(\xi), \]

where \(1_B \) denotes the characteristic function on the boundary.

For \(f \in C(\overline{X}) \), we define the operators

\[M_n(f) : g \in L^2(B) \mapsto \frac{1}{|S_n|} \sum_{\gamma \in S_n} f(\gamma x_0) \pi(\gamma)g(\gamma^{-1} \xi) \in L^2(B). \]

We also define the operator

\[M(f) := m(f_{|B})P_{1_B} \]

where \(m(f_{|B}) \) is the multiplication operator by \(f_{|B} \) on \(L^2(B) \), and \(P_{1_B} \) is the orthogonal projection on the subspace of constant functions.
Results. The analog of Roblin’s equidistribution theorem for the free group is the following.

Theorem 1.1. We have, in $C(\overline{X} \times \overline{X})^*$, the weak-* convergence
\[
\frac{1}{|S_n|} \sum_{\gamma \in S_n} D_{\gamma x_0} \otimes D_{\gamma^{-1} x_0} \rightharpoonup \mu_{x_0} \otimes \mu_{x_0}
\]
where D_x denotes the Dirac measure on a point x.

Remark 1. It is then straightforward to deduce the weak-* convergence
\[
\|m_I\|e^{-\delta n} \sum_{|\gamma| \leq n} D_{\gamma x_0} \otimes D_{\gamma^{-1} x_0} \rightharpoonup \mu_{x_0} \otimes \mu_{x_0}
\]

m_I denoting the Bowen-Margulis-Sullivan measure on the geodesic flow of \overline{X}/Γ (where \overline{X} is the “unit tangent bundle”) and δ denoting $\ln(2r - 1)$, the Hausdorff measure of B.

1. Notice that in our case, the spectrum is \mathbb{Z} so the geodesic flow is not topologically mixing, according to [Dal99] or directly by [CT01, Ex 1.3].

2. Notice also that our multiplicative term is different of that of [Rob03, Theorem 4.1.1], which shows that the hypothesis of non-arithmeticity of the spectrum cannot be removed.

We use the above theorem to prove the following convergence of operators.

Theorem 1.2. We have, for all f in $C(\overline{X})$, the weak operator convergence
\[
M_n(f) \rightharpoonup \pi(f).
\]
In other words, we have, for all f in $C(\overline{X})$ and for all g, h in $L^2(B)$, the convergence
\[
\frac{1}{|S_n|} \sum_{\gamma \in S_n} f(\gamma x_0) \langle \pi(\gamma) g, h \rangle_{\Xi(\gamma)} \rightharpoonup \langle \pi(f) g, h \rangle.
\]

We deduce the irreducibility of π, and give an alternative proof of this well known result (see [FTPS82, Theorem 5]).

Corollary 1.3. The representation π is irreducible.

Proof. Applying Theorem 1.2 to $f = 1_B$ shows that the orthogonal projection onto the space of constant functions is in the von Neumann algebra associated with π. Then applying Theorem 1.2 to $g = 1_B$ shows that the vector 1_B is cyclic. Then, the classical argument of [Gar14, Lemma 6.1] concludes the proof.

Remark 2. For $\alpha \in \mathbb{R}_+^*$, let us denote by W_α the wedge of two circles, one of length 1 and the other of length α. Let $p : T_\alpha \to W_\alpha$ the universal cover, with T_α endowed with the distance making p a local isometry. Then $\mathbb{F}_2 \simeq \pi_1(W_\alpha)$ acts freely properly discontinuously and cocompactly on the 4-regular tree T_α (which is a CAT(-1) space) by isometries. For $\alpha \in \mathbb{R} \setminus \mathbb{Q}$, the analog of Theorem 1.2 for the quasi-regular representation π_α of \mathbb{F}_2 on $L^2(\partial T_\alpha, \mu_\alpha)$ for a Patterson-Sullivan measure associated to a Bourdon distance is known to hold ([Boy15]) because [Rob03, Theorem 4.1.1] is true in this setting. Now if α_1 and α_2 are such that $\alpha_1 \neq \alpha_2^{-1}$, then the representations π_α are not unitarily equivalent ([Gar14, Theorem 7.5]). For $\alpha \in \mathbb{Q}_+^* \setminus \{1\}$, it would be interesting to formulate and prove an equidistribution result like Theorem 1.1 in order to prove Theorem 1.2 for π_α.

2. Proofs

2.1. Proof of the equidistribution theorem. For the proof of Theorem 1.1 let us denote
\[
E := \left\{ f : C(\overline{X} \times \overline{X}) \mid \frac{1}{|S_n|} \sum_{\gamma \in S_n} f(\gamma x_0, \gamma^{-1} x_0) \to \int_{\overline{X} \times \overline{X}} f d(\mu_{x_0} \otimes \mu_{x_0}) \right\}
\]
The subspace E is clearly closed in $C(\overline{X} \times \overline{X})$; it remains only to show that it contains a dense subspace of it.
Let us define a modified version of certain characteristic functions: for \(u \in \mathbb{F} \), we define
\[
\chi_u(x) := \begin{cases}
\max\{1 - d(x, C_u), 0\} & \text{if } x \in X \\
0 & \text{if } x \in B \setminus B_u \\
1 & \text{if } x \in B_u
\end{cases}
\]

It is easy to check that the function \(\chi_u \) is a continuous function which coincides with \(\chi_{C_u} \) on \(\mathbb{F}, x_0 \) and \(B \).

The proof of the following lemma is straightforward.

Lemma 2.1. Let \(u \in \mathbb{F} \) and \(k \geq |u| \), then \(\chi_u - \sum_{\gamma \in P_{\nu(u)}} \chi_{\gamma} \) has compact support included in \(X \).

Proposition 2.2. The set \(\chi := \{ \chi_u \mid u \in \mathbb{F} \} \) separates points of \(B \), and the product of two such functions of \(\chi \) is either in \(\chi \), the sum of a function in \(\chi \) and of a function with compact support contained in \(X \), or zero.

Proof. It is clear that \(\chi \) separates points. It follows from Lemma 2.1 that \(\chi_u \chi_v = \chi_v \) if \(u \) is a proper prefix of \(v \), that \(\chi_u^2 - \chi_u \) has compact support in \(X \), and that \(\chi_u \chi_v = 0 \) if none of \(u \) and \(v \) is a proper prefix of the other. \(\square \)

Proposition 2.3. The subspace \(E \) contains all functions of the form \(\chi_u \otimes \chi_v \).

Proof. We make the useful observation that
\[
\frac{1}{|S_n|} \sum_{\gamma \in S_n} (\chi_u \otimes \chi_v)(\gamma x_0, \gamma^{-1} x_0) = \frac{|S_{n,u}^{a,v}|}{|S_n|}
\]
where \(S_{n,u}^{a,v} \) is the set of reduced words of length \(n \) with \(u \) as a prefix and \(v^{-1} \) as a suffix. We easily see that this set is in bijection with the set of all reduced words of length \(n - (|u| + |v|) \) that do not begin by the inverse of the last letter of \(u \), and that do not end by the inverse of the first letter of \(v^{-1} \). So we have to compute, for \(s, t \in \{ a_1^{\pm 1}, ..., a_{\ell + 1}^{\pm 1} \} \) and \(m \in \mathbb{N} \), the cardinal of the set \(S_m(s,t) \) of reduced words of length \(m \) that do not start by \(s \) and do not finish by \(t \).

Now we have
\[
S_m = S_{m}(s,t) \cup \{ x \mid |x| = m \text{ and starts by } s \} \cup \{ x \mid |x| = m \text{ and ends by } t \}
\]

Note that the intersection of the two last sets is the set of words both starting by \(s \) and ending by \(t \), which is in bijection with \(S_{m-2}(s^{-1}, t^{-1}) \).

We have then the recurrence relation:
\[
|S_m(s,t)| = 2r(2r-1)^{m-1} - 2(2r-1)^m + |S_{m-2}(s^{-1}, t^{-1})| = 2(r-1)(2r-1)^{m-1} + 2(r-1)(2r-1)^m - 2(2r-1)^{m-1} |S_{m-4}(s,t)|
\]
\[
= (2r-1)^m \left(\frac{(2r-1)^2 + 1}{(2r-1)^3} \right) + |S_{m-4}(s,t)|
\]

We set \(C := \frac{2(r-1)(2r-1)^2 + 1}{(2r-1)^3} \), \(n = 4k + j \) with \(0 \leq j \leq 3 \) and we obtain
\[
|S_{4k+j}^{a,b}| = C(2r-1)^{4k+j} + |S_{4(k-1)+j}^{a,b}|
\]
\[
= C(2r-1)^{4k+j} + C(2r-1)^{4(k-1)+j} + |S_{4(k-2)+j}^{a,b}|
\]
\[
= C \sum_{i=1}^{k} (2r-1)^{4i+j} + |S_{4i+j}^{a,b}|
\]
\[
= C(2r-1)^{4j+1} \frac{(2r-1)^{4k} - 1}{(2r-1)^4 - 1} + |S_{j}(s,t)|
\]
\[
= (2r-1)^{4j+1} \frac{(2r-1)^{4k} - 1}{2r} + |S_{j}(s,t)|
\]

Now we can compute
Lemma 2.6. The function fixing \(x \) can be written as

\[
|S_{4k+j}^{n,v}| = \frac{|S_{4k+j-(|u|+|v|)}(u_{|u|}, v_{|v|})|}{|S_{4k+j}|} = \frac{(2r - 1)^{1+j}(2r - 1)^{4k-(|u|+|v|)} - 1}{2r^2(2r - 1)^{4k+j-1}} + \frac{1}{2r^2(2r - 1)^{4k+j-1} + o(1)} = \mu_{x_0}(B_u)\mu_{x_0}(B_v) + o(1)
\]
when \(k \to \infty \), and this proves the claim. \(\square \)

Corollary 2.4. The subspace \(E \) is dense in \(C(\overline{X} \times \overline{X}) \).

Proof. Let us consider \(E' \), the subspace generated by the constant functions, the functions which can be written as \(f \otimes g \) where \(f, g \) are continuous functions on \(\overline{X} \) and such that one of them has compact support included in \(X \), and the functions of the form \(\chi_u \otimes \chi_v \). By Proposition \(\ref{prop:stone-weierstrass} \), it is a subalgebra of \(C(\overline{X} \times \overline{X}) \) containing the constants and separating points, so by the Stone-Weierstraß theorem, \(E' \) is dense in \(C(\overline{X} \times \overline{X}) \). Now, by Proposition \(\ref{prop:stone-weierstrass} \), we have that \(E' \subseteq E \), so \(E \) is dense as well. \(\square \)

2.2. Proof of the ergodic theorem. The proof of Theorem \(\ref{thm:ergodic} \) consists in two steps:

Step 1: Prove that the sequence \(M_n \) is bounded in \(\mathcal{L}(C(\overline{X}), B(L^2(B))) \).

Step 2: Prove that the sequence converges on a dense subset.

2.2.1. Boundedness. In the following \(1_{\overline{X}} \) denotes the characteristic function of \(\overline{X} \). Define

\[
F_n := [M_n(1_{\overline{X}})] 1_B.
\]

We denote by \(\Xi(n) \) the common value of \(\Xi \) on elements of length \(n \).

Corollary 2.5. The function \(\xi \mapsto \sum_{\gamma \in S_n} (P(\gamma, \xi))^\frac{1}{2} \) is constant equal to \(|S_n| \times \Xi(n) \).

Proof. This function is constant on orbits of the action of the group of automorphisms of \(X \) fixing \(x_0 \). Since it is transitive on \(B \), the function is constant. By integrating, we find

\[
\sum_{\gamma \in S_n} (P(\gamma, \xi))^\frac{1}{2} = \int_B \sum_{\gamma \in S_n} (P(\gamma, \xi))^\frac{1}{2} d\mu_{x_0}(\xi) = \sum_{\gamma \in S_n} \int_B (P(\gamma, \xi))^\frac{1}{2} d\mu_{x_0}(\xi) = \sum_{\gamma \in S_n} \Xi(n) = |S_n| \Xi(n),
\]

Lemma 2.6. The function \(F_n \) is constant, equal to \(1_B \).

Proof. Because \(\Xi \) depends only on the length, we have that

\[
F_n(\xi) := \frac{1}{|S_n|} \sum_{\gamma \in S_n} (P(\gamma, \xi))^\frac{1}{2} \Xi(\gamma) = \frac{1}{|S_n| \Xi(n)} \sum_{\gamma \in S_n} (P(\gamma, \xi))^\frac{1}{2} = 1,
\]
and the proof is done. \(\square \)
It is easy to see that $M_n(f)$ induces continuous linear transformations of L^1 and L^∞, which we also denote by $M_n(f)$.

Proposition 2.7. The operator $M_n(\mathbf{1}_X^\gamma)$, as an element of $\mathcal{L}(L^\infty, L^\infty)$, has norm 1; as an element of $\mathcal{B}(L^2(B))$, it is self-adjoint.

Proof. Let $h \in L^\infty(B)$. Since $M_n(\mathbf{1}_X^\gamma)$ is positive, we have that

\[\| [M_n(\mathbf{1}_X^\gamma)] h \|_\infty \leq \| [M_n(\mathbf{1}_X^\gamma)] \mathbf{1}_B \|_\infty \| h \|_\infty = \| F_n \|_\infty \| h \|_\infty = \| h \|_\infty \]

so that $\| M_n(\mathbf{1}_X^\gamma) \|_{\mathcal{L}(L^\infty, L^\infty)} \leq 1$.

The self-adjointness follows from the fact that $\pi(\gamma^*) = \pi(\gamma^{-1})$ and that the set of summation is symmetric. \[\Box\]

Let us briefly recall one useful corollary of Riesz-Thorin’s theorem:

Let (Z, μ) be a probability space.

Proposition 2.8. Let T be a continuous operator of $L^1(Z)$ to itself such that the restriction T_2 to $L^2(Z)$ (resp. T_∞ to $L^\infty(Z)$) induces a continuous operator of $L^2(Z)$ to itself (resp. $L^\infty(Z)$ to itself).

Suppose also that T_2 is self-adjoint, and assume that $\|T_\infty\|_{\mathcal{L}(L^\infty(Z), L^\infty(Z))} \leq 1$.

Then $\|T_2\|_{\mathcal{L}(L^2(Z), L^2(Z))} \leq 1$.

Proof. Consider the adjoint operator T^* of $(L^1)^* = L^\infty$ to itself. We have that

\[\|T^*\|_{\mathcal{L}(L^\infty, L^\infty)} = \|T\|_{\mathcal{L}(L^1(Z), L^1(Z))} \]

Now because T_2 is self-adjoint, it is easy to see that $T^* = T_\infty$. This implies

\[1 \geq \|T^*\|_{\mathcal{L}(L^\infty, L^\infty)} = \|T\|_{\mathcal{L}(L^1(Z), L^1(Z))} \]

Hence the Riesz-Thorin’s theorem gives us the claim. \[\Box\]

Proposition 2.9. The sequence $(M_n)_{n \in \mathbb{N}}$ is bounded in $\mathcal{L}(C(X), \mathcal{B}(L^2(B)))$.

Proof. Because $M_n(f)$ is positive in f, we have, for every positive $g \in L^2(B)$, the inequality

\[-\|f\|_\infty [M_n(\mathbf{1}_X^\gamma)] g \leq [M_n(f)] g \leq \|f\|_\infty [M_n(\mathbf{1}_X^\gamma)] g \]

from which we deduce, for every $g \in L^2(B)$

\[\| [M_n(\mathbf{1}_X^\gamma)] g \|_{L^2} \leq \|f\|_\infty [\mathcal{L}_2] \|M_n(\mathbf{1}_X^\gamma)] g \|_{L^2} \leq \|f\|_\infty \|M_n(\mathbf{1}_X^\gamma)] \|_{\mathcal{B}(L^2)} \| g \|_{L^2} \]

which allows us to conclude that

\[\| M_n(f) \|_{\mathcal{B}(L^2)} \leq \| M_n(\mathbf{1}_X^\gamma)] \|_{\mathcal{B}(L^2)} \| f \|_\infty \].

This proves that $\| M_n \|_{\mathcal{L}(C(X), \mathcal{B}(L^2))} \leq \| M_n(\mathbf{1}_X^\gamma) \|_{\mathcal{B}(L^2)}$.

Now, it follows from Proposition 2.7 and Proposition 2.8 that the sequence $(M_n(\mathbf{1}_X^\gamma))_{n \in \mathbb{N}}$ is bounded by 1 in $\mathcal{B}(L^2)$, so we are done. \[\Box\]

2.2.2. Estimates for the Harish-Chandra function. The values of the Harish-Chandra are known (see for example [LPS2] Theorem 2, Item (iii)]). We provide here the simple computations we need.

We will calculate the value of

\[\langle \pi(\gamma) \mathbf{1}_B, \mathbf{1}_B \rangle = \int_{B_n} P(\gamma, \xi) \frac{1}{d \mu_{x_0}} d \mu(\xi). \]
Lemma 2.10. Let $\gamma = s_1 \cdots s_n \in \mathbb{F}_r$. Let $l \in \{1, ..., |\gamma|\}$, and $u = s_1 \cdots s_{l-1} t_l t_{l+1} \cdots t_{|\gamma|}$, with $t_l \neq s_1$ and $k \geq 0$, be a reduced word. Then

$$\langle \pi(\gamma)1_B, 1_{B_u} \rangle = \frac{1}{2r(2r-1)^{\frac{|\gamma|}{2}}}$$

and

$$\langle \pi(\gamma)1_B, 1_{B_s} \rangle = \frac{2r-1}{2r(2r-1)^{\frac{|\gamma|}{2}}}$$

Proof. The function $\xi \mapsto \beta_\xi(x_0, \gamma x_0)$ is constant on B_u equal to $2(l - 1) - |\gamma|$. So $\langle \pi(\gamma)1_B, 1_{B_u} \rangle$ is the integral of a constant function:

$$\int_{B_u} P(\gamma, \xi) \frac{1}{2} d\mu(x_0) = \mu(x_0(B_u)) e^{\log(2r-1)(l - 1) - |\gamma|}$$

$$= \frac{1}{2r(2r-1)^{\frac{|\gamma|}{2}}}.$$

The value of $\langle \pi(\gamma)1_B, 1_{B_s} \rangle$ is computed in the same way. \hfill \qed

Lemma 2.11. (The Harish-Chandra function)

Let $\gamma = s_1 \cdots s_n$ in S_n written as a reduced word. We have that

$$\Xi(\gamma) = \left(1 + \frac{r-1}{r}|\gamma|\right)(2r-1)^{-\frac{|\gamma|}{2}}.$$

Proof. We decompose B into the following partition:

$$B = \bigsqcup_{u \neq s_1} B_u \sqcup \left(\bigsqcup_{l=2} |\gamma| \bigsqcup \bigsqcup_{u=s_1 \cdots s_{l-1} t_l \in \{s_1 \cdots \} \cap S_n} B_u \right) \cup B_\gamma$$

and Lemma 2.10 provides us the value of the integral on the subsets forming this partition. A simple calculation yields the announced formula. \hfill \qed

The proof of the following lemma is then obvious:

Lemma 2.12. If $\gamma, w \in \mathbb{F}_r$ are such that w is not a prefix of γ, then there is a constant C_w not depending on γ such that

$$\frac{\langle \pi(\gamma)1_B, 1_{B_w} \rangle}{\Xi(\gamma)} \leq C_w \frac{1}{|\gamma|}.$$

2.2.3. Analysis of matrix coefficients. The goal of this section is to compute the limit of the matrix coefficients $\langle M_n(\chi_u)1_{B_w}, 1_{B_w} \rangle$.

Lemma 2.13. Let $u, w \in \mathbb{F}_r$ such that none of them is a prefix of the other (i.e. $B_u \cap B_w = \emptyset$). Then

$$\lim_{n \to \infty} \langle M_n(\chi_u)1_B, 1_{B_w} \rangle = 0$$

Proof. Using Lemma 2.12 we get

$$\langle M_n(\chi_u)1_B, 1_{B_w} \rangle = \frac{1}{|S_n|} \sum_{\gamma \in S_n} \chi_u(\gamma x_0) \underbrace{\langle \pi(\gamma)1_B, 1_{B_w} \rangle}_{\Xi(\gamma)}$$

$$= \frac{1}{|S_n|} \sum_{\gamma \in C_w \cap S_n} \underbrace{\langle \pi(\gamma)1_B, 1_{B_w} \rangle}_{\Xi(\gamma)}$$

$$\leq \frac{1}{|S_n|} \sum_{\gamma \in C_w \cap S_n} C_w \frac{1}{|\gamma|}$$

$$= O\left(\frac{1}{n}\right)$$

\footnote{For $l = 1$, $s_1 \cdots s_{l-1}$ is e by convention.}
Lemma 2.14. Let \(u, v \in \mathbb{F}_r \). Then
\[
\limsup_{n \to \infty} \langle M_n(\chi_u)1_{B_v}, 1_B \rangle \leq \mu_{x_0}(B_u)\mu_{x_0}(B_v)
\]

Proof. For all \(u, v \in \mathbb{F}_r \), we first show the inequality
\[
\langle M_n(\chi_u)1_{B_v}, 1_B \rangle = \frac{1}{|S_n|} \sum_{\gamma \in S_n} \chi_u(\gamma^{-1}x_0) \frac{\langle \pi(\gamma)1_{B_v}, 1_B \rangle}{\Xi(\gamma)} \leq \frac{1}{|S_n|} \sum_{\gamma \in S_n} \chi_u(\gamma^{-1}x_0) \chi_v(\gamma x_0) + \frac{1}{|S_n|} \sum_{\gamma \in S_n} \chi_u(\gamma^{-1}x_0) \langle \pi(\gamma)1_{B_v}, 1_B \rangle \Xi(\gamma)
\]

Hence, by taking the \(\limsup \) and using Theorem 1, we obtain the desired inequality.

Proposition 2.15. For all \(u, v, w \in \mathbb{F}_r \), we have
\[
\lim_{n \to \infty} \langle M_n(\chi_u)1_{B_v}, 1_{B_w} \rangle = \mu_{x_0}(B_u \cap B_w)\mu_{x_0}(B_v)
\]

Proof. We first show the inequality
\[
\limsup_{n \to \infty} \langle M_n(\chi_u)1_{B_v}, 1_{B_w} \rangle \leq \mu_{x_0}(B_u \cap B_w)\mu_{x_0}(B_v).
\]
If none of \(u \) and \(w \) is a prefix of the other, we have nothing to do according to Lemma 2.13. Let us assume that \(u \) is a prefix of \(w \) (the other case can be treated analogously). We have, by Lemma 2.14, that
\[
\mu_{x_0}(B_u)\mu_{x_0}(B_v) \geq \limsup_{n \to \infty} \langle M_n(\chi_u)1_{B_v}, 1_B \rangle \geq \limsup_{n \to \infty} \langle M_n(\chi_u)1_{B_v}, 1_{B_w} \rangle \geq \limsup_{n \to \infty} \langle M_n(\chi_u)1_{B_v}, 1_{B_w} \rangle + \sum_{\gamma \in \mathbb{P}_{ru}(|w|) \setminus \{w\}} \limsup_{n \to \infty} \langle M_n(\chi_u)1_{B_v}, 1_{B_w} \rangle = \limsup_{n \to \infty} \langle M_n(\chi_u)1_{B_v}, 1_{B_w} \rangle
\]
We now compute the expected limit. Let us define
\[
S_{u,v,w} := \{(u', v', w') \in \mathbb{F}_r \mid |u| = |u'|, |v| = |v'|, |w| = |w'|\}.
\]
Then
\[
1 = \liminf_{n \to \infty} \langle M_n(1_{B_v})1_{B_w} \rangle \leq \liminf_{n \to \infty} \langle M_n(\chi_u)1_{B_v}, 1_{B_w} \rangle + \sum_{(u', v', w') \in S_{u,v,w} \setminus \{u,v,w\}} \limsup_{n \to \infty} \langle M_n(\chi_{u'})1_{B_{v'}}, 1_{B_{w'}} \rangle \leq \limsup_{n \to \infty} \langle M_n(\chi_u)1_{B_v}, 1_{B_w} \rangle + \sum_{(u', v', w') \in S_{u,v,w} \setminus \{u,v,w\}} \mu_{x_0}(B_{u' \cap B_{w'}})\mu_{x_0}(B_{v'}) \leq \mu_{x_0}(B_u \cap B_w)\mu_{x_0}(B_v) + \sum_{(u', v', w') \in S_{u,v,w} \setminus \{u,v,w\}} \mu_{x_0}(B_{u' \cap B_{w'}})\mu_{x_0}(B_{v'}) = 1
\]
This proves that all the inequalities above are in fact equalities, and moreover proves that the inequalities
\[
\liminf_{n \to \infty} \langle M_n(\chi_u)1_{B_v}, 1_{B_w} \rangle \leq \limsup_{n \to \infty} \langle M_n(\chi_u)1_{B_v}, 1_{B_w} \rangle \leq \mu_{x_0}(B_u \cap B_w)\mu_{x_0}(B_v)
\]
are in fact equalities.

Proof of Theorem 1.2. Because of the boundedness of the sequence \((M_n)_{n \in \mathbb{N}}\) proved in Proposition 2.9, it is enough to prove the convergence for all \((f, h_1, h_2)\) in a dense subset of \(C(X) \times L^2 \times L^2\), which is what Proposition 2.15 asserts.

References

[BM11] U. Bader and R. Muchnik. Boundary unitary representations - irreducibility and rigidity. *Journal of Modern Dynamics*, 5(1):49–69, 2011.

[Bou95] M. Bourdon. Structure conforme au bord et flot géodésique d’un CAT(-1)-espace. *Enseign. Math*, 2(2):63–102, 1995.

[Boy15] A. Boyer. Equidistribution, ergodicity and irreducibility in CAT(-1) spaces. *arXiv:1412.8229v2*, 2015.

[CT01] C. Charitos and G. Tsapogas. Topological mixing in CAT(-1)-spaces. *Trans. of the American Math. Society*, 354(1):235–264, 2001.

[Dal99] F. Dal’bo. Remarques sur le spectre des longueurs d’une surface et comptages. *Bol. Soc. Bras. Math.*, 30(2):199–221, 1999.

[FTP82] A. Figà-Talamanca and M. A. Picardello. Spherical functions and harmonic analysis on free groups. *J. Functional Anal.*, 47:281–304, 1982.

[FTP83] A. Figà-Talamanca and M. A. Picardello. Harmonic analysis on free groups. *Lecture Notes in Pure and Applied Mathematics*, 87, 1983.

[Gar14] L. Garncarek. Boundary representations of hyperbolic groups. *arXiv:1404.0903*, 2014.

[Rob03] T. Roblin. *Ergodicité et Équidistribution en courbure négative*. Mémoires de la SMF 95, 2003.