A PDE APPROACH TO FRACTIONAL DIFFUSION IN GENERAL DOMAINS: A PRIORI ERROR ANALYSIS

RICARDO H. NOCHETTO†, ENRIQUE OTÁROLA‡, AND ABNER J. SALGADO§

Abstract. The purpose of this work is the study of solution techniques for problems involving fractional powers of symmetric coercive elliptic operators in a bounded domain with Dirichlet boundary conditions. These operators can be realized as the Dirichlet to Neumann map for a degenerate/singular elliptic problem posed on a semi-infinite cylinder, which we analyze in the framework of weighted Sobolev spaces. Motivated by the rapid decay of the solution of this problem, we propose a truncation that is suitable for numerical approximation. We discretize this truncation using first degree tensor product finite elements. We derive a priori error estimates in weighted Sobolev spaces. The estimates exhibit optimal regularity but suboptimal order for quasi-uniform meshes. For anisotropic meshes, instead, they are quasi-optimal in both order and regularity. We present numerical experiments to illustrate the method’s performance.

Key words. Fractional diffusion; finite elements; nonlocal operators; degenerate and singular equations; second order elliptic operators; anisotropic elements.

AMS subject classifications. 35S15; 65R20; 65N12; 65N30.

1. Introduction. Singular integrals and nonlocal operators have been an active area of research in different branches of mathematics such as operator theory and harmonic analysis (see [56]). In addition, they have received significant attention because of their strong connection with real-world problems, since they constitute a fundamental part of the modeling and simulation of complex phenomena that span vastly different length scales.

Nonlocal operators arise in a number of applications such as: boundary control problems [31], finance [21], electromagnetic fluids [48], image processing [30], materials science [8], optimization [31], porous media flow [25], turbulence [5], peridynamics [55], nonlocal continuum field theories [32] and others. Therefore the domain of definition \(\Omega \) could be rather general.

To make matters precise, in this work we shall be interested in fractional powers of the Dirichlet Laplace operator \((-\Delta)^s\), with \(s \in (0,1)\), which for convenience we will simply call the fractional Laplacian. In other words, we shall be concerned with the following problem. Let \(\Omega \) be an open and bounded subset of \(\mathbb{R}^n \) \((n \geq 1)\), with boundary \(\partial \Omega \). Given \(s \in (0,1) \) and a smooth enough function \(f \), find \(u \) such that

\[
\begin{align*}
\begin{cases}
(-\Delta)^s u &= f, &\text{in } \Omega, \\
u &= 0, &\text{on } \partial \Omega.
\end{cases}
\end{align*}
\]

(1.1)

Our approach, however, is by no means particular to the fractional Laplacian. In section 7 we will discuss how, with little modification, our developments can be applied to a general second order, symmetric and uniformly elliptic operator.

*This work is supported by NSF grants: DMS-1109325 and DMS-0807811. AJS is also supported by NSF grant DMS-1008058 and an AMS-Simons Grant. EO is supported by the Conicyt-Fulbright Fellowship Becas Igualdad de Oportunidades.

†Department of Mathematics and Institute for Physical Science and Technology, University of Maryland, College Park, MD 20742, USA. rhn@math.umd.edu

‡Department of Mathematics, University of Maryland, College Park, MD 20742, USA. kike@math.umd.edu

§Department of Mathematics, University of Maryland, College Park, MD 20742, USA. abnersg@math.umd.edu
The study of boundary value problems involving the fractional Laplacian is important in physical applications where long range or anomalous diffusion is considered. For instance, in the flow in porous media, it is used when modeling the transport of particles that experience very large transitions arising from high heterogeneity and very long spatial autocorrelation (see [10]). In the theory of stochastic processes, the fractional Laplacian is the infinitesimal generator of a stable Lévy process (see [12]).

One of the main difficulties in the study of problem (1.1) is that the fractional Laplacian is a nonlocal operator (see [46, 19, 17]). To localize it, Caffarelli and Silvestre showed in [19] that any power of the fractional Laplacian in \(\mathbb{R}^n \) can be realized as an operator that maps a Dirichlet boundary condition to a Neumann-type condition via an extension problem on the upper half-space \(\mathbb{R}^{n+1}_+ \). For a bounded domain \(\Omega \), the result by Caffarelli and Silvestre has been adapted in [20, 14, 57], thus obtaining an extension problem which is now posed on the semi-infinite cylinder \(C = \Omega \times (0, \infty) \). This extension is the following mixed boundary value problem:

\[
\begin{align*}
\text{div} \left(y^\alpha \nabla u \right) &= 0, & \text{in } C, \\
u & = 0, & \text{on } \partial_L C, \\
\frac{\partial u}{\partial \nu^\alpha} &= d_s f, & \text{on } \Omega \times \{0\},
\end{align*}
\] (1.2)

where \(\partial_L C = \partial \Omega \times [0, \infty) \) denotes the lateral boundary of \(C \), and

\[
\frac{\partial u}{\partial \nu^\alpha} = - \lim_{y \to 0^+} y^\alpha u_y,
\] (1.3)

is the the so-called conormal exterior derivative of \(u \) with \(\nu \) being the unit outer normal to \(C \) at \(\Omega \times \{0\} \). The parameter \(\alpha \) is defined as

\[
\alpha = 1 - 2s \in (-1, 1).
\] (1.4)

Finally, \(d_s \) is a positive normalization constant which depends only on \(s \); see [19] for details. We will call \(y \) the extended variable and the dimension \(n + 1 \) in \(\mathbb{R}^{n+1}_+ \) the extended dimension of problem (1.2).

The limit in (1.3) must be understood in the distributional sense; see [13, 17, 19] or section 2 for more details. As noted in [19, 20, 57], the fractional Laplacian and the Dirichlet to Neumann operator of problem (1.2) are related by

\[
d_s (-\Delta)^s u = \frac{\partial u}{\partial \nu^\alpha} \text{ in } \Omega.
\]

Using the aforementioned ideas, we propose the following strategy to find the solution of (1.1): given a sufficiently smooth function \(f \) we solve (1.2), thus obtaining a function \(u : (x', y) \in C \mapsto u(x', y) \in \mathbb{R} \). Setting \(u : x' \in \Omega \mapsto u(x') = u(x', 0) \in \mathbb{R} \), we obtain the solution of (1.1). The purpose of this work is then to make these ideas rigorous and to analyze a discretization scheme, which consists of approximating the solution of (1.2) via first degree tensor product finite elements. We will show suboptimal error estimates for quasi-uniform discretizations of (1.2) in suitable weighted Sobolev spaces and quasi-optimal error estimates using anisotropic elements.

The main advantage of the proposed algorithm is that we solve the local problem (1.2) instead of dealing with the nonlocal operator \((-\Delta)^s\) of problem (1.1). However, this comes at the expense of incorporating one more dimension to the problem, and
A PDE approach to fractional diffusion raises questions about computational efficiency. The development of efficient computational techniques for the solution of problem (1.2) and issues such as multilevel methods, a posteriori error analysis and adaptivity will be deferred to future reports. In this paper we carry out a complete a priori error analysis of the discretization scheme.

Before proceeding with the analysis of our method, it is instructive to compare it with those advocated in the literature. First of all, for a general Lipschitz domain \(\Omega \subset \mathbb{R}^n \) \((n > 1)\), we may think of solving problem (1.1) via a spectral decomposition of the operator \(-\Delta\). However, to have a sufficiently good approximation, this requires the solution of a large number of eigenvalue problems which, in general, is very time consuming. In [41, 42] the authors studied computationally problem (1.1) in the one-dimensional case and with boundary conditions of Dirichlet, Neumann and Robin type, and introduced the so-called matrix transference technique (MTT). Basically, MTT computes a spatial discretization of the fractional Laplacian by first finding a matrix approximation, \(A \), of the Laplace operator (via finite differences or finite elements) and then computing the \(s \)-th power of this matrix. This requires diagonalization of \(A \) which, again, amounts to the solution of a large number of eigenvalue problems. For the case \(\Omega = (0, 1)^2 \) and \(s \in (1/2, 1) \), [59] applies the MTT technique and avoids diagonalization of \(A \) by writing a numerical scheme in terms of the product of a function of the matrix and a vector, \(f(A)b \), where \(b \) is a suitable vector. This product is then approximated by a preconditioned Lanczos method. Under the same setting, the work [16], makes a computational comparison of three techniques for the computation of \(f(A)b \): the contour integral method, extended Krylov subspace methods and the pre-assigned poles and interpolation nodes method.

The outline of this paper is as follows. In §2 we introduce the functional framework that is suitable for the study of problems (1.1) and (1.2). We recall the definition of the fractional Laplacian on a bounded domain via spectral theory and, in addition, in §2.5 we study regularity of the solution to (1.2). The numerical analysis of (1.1) begins in §3. Here we introduce a truncation of problem (1.2) and study some properties of its solution. Having understood the truncation we proceed, in §4, to study its finite element approximation. We prove interpolation estimates in weighted Sobolev spaces, under mild shape regularity assumptions that allow us to consider anisotropic elements in the extended variable \(y \). Based on the regularity results of §2.5 we derive, in §3, a priori error estimates for quasi-uniform meshes which exhibit optimal regularity but suboptimal order. To restore optimal decay, we resort to the so-called principle of error equidistribution and construct graded meshes in the extended variable \(y \). They in turn capture the singular behavior of the solution to (1.2) and allow us to prove a quasi-optimal rate of convergence with respect to both regularity and degrees of freedom. In §6 to illustrate the method’s performance and theory, we provide several numerical experiments. Finally, in §7 we show that our developments apply to general second order, symmetric and uniformly elliptic operators.

2. Notation and preliminaries. Throughout this work \(\Omega \) is an open, bounded and connected subset of \(\mathbb{R}^n \), \(n \geq 1 \), with Lipschitz boundary \(\partial \Omega \), unless specified otherwise. We define the semi-infinite cylinder

\[
\mathcal{C} = \Omega \times (0, \infty),
\]

and its lateral boundary

\[
\partial_L \mathcal{C} = \partial \Omega \times [0, \infty).
\]
Given $\gamma' > 0$, we define the truncated cylinder

$$C_{\gamma'} = \Omega \times (0, \gamma').$$

(2.3)

The lateral boundary $\partial L C_{\gamma'}$ is defined accordingly.

Throughout our discussion we will be dealing with objects defined in \mathbb{R}^{n+1} and it will be convenient to distinguish the extended dimension, as it plays a special rôle. A vector $x \in \mathbb{R}^{n+1}$, will be denoted by

$$x = (x^1, \ldots, x^n, x^{n+1}) = (x', x^{n+1}) = (x', y),$$

with $x^i \in \mathbb{R}$ for $i = 1, \ldots, n + 1$, $x' \in \mathbb{R}^n$ and $y \in \mathbb{R}$. The upper half-space in \mathbb{R}^{n+1} will be denoted by

$$\mathbb{R}^{n+1}_+ = \{x = (x', y) : x' \in \mathbb{R}^n, y \in \mathbb{R}, y > 0\}.$$

Let $\gamma = (\gamma^1, \gamma^2) \in \mathbb{R}^2$ and $z \in \mathbb{R}^{n+1}$, the binary operation $\odot : \mathbb{R}^2 \times \mathbb{R}^{n+1} \to \mathbb{R}^{n+1}$ is defined by

$$\gamma \odot z = (\gamma^1 z', \gamma^2 z^{n+1}) \in \mathbb{R}^{n+1}.$$

(2.4)

The relation $a \lesssim b$ indicates that $a \leq C b$, with a constant C that does not depend on neither a nor b but it might depend on s and Ω. The value of C might change at each occurrence. Given two objects X and Y in the same category, we write $X \hookrightarrow Y$ to indicate the existence of a monomorphism between them. Generally, these will be objects in some subcategory of the topological vector spaces (metric, normed, Banach, Hilbert spaces) and, in this case, the monomorphism is nothing more than continuous embedding. If X is a vector space, we denote by X' its dual.

2.1. Fractional Sobolev spaces and the fractional Laplacian.

Let us recall some function spaces; for details the reader is referred to [47, 49, 26, 58]. For $0 < s < 1$, we introduce the so-called Gagliardo-Slobodecki˘ı seminorm

$$|w|_{H^s(\Omega)} = \int_\Omega \int_\Omega \frac{|w(x'_1) - w(x'_2)|^2}{|x'_1 - x'_2|^{n+2s}} \, dx'_1 \, dx'_2.$$

The Sobolev space $H^s(\Omega)$ of order s is defined by

$$H^s(\Omega) = \{ w \in L^2(\Omega) : |w|_{H^s(\Omega)} < \infty \},$$

(2.5)

which equipped with the norm

$$\|u\|_{H^s(\Omega)} = \left(\|u\|_{L^2(\Omega)}^2 + |u|^2_{H^s(\Omega)} \right)^{\frac{1}{2}},$$

is a Hilbert space. An equivalent construction of $H^s(\Omega)$ is obtained by restricting functions in $H^s(\mathbb{R}^n)$ to Ω (cf. [58, Chapter 34]). The space $H^0_0(\Omega)$ is defined as the closure of $C^\infty_0(\Omega)$ with respect to the norm $\| \cdot \|_{H^s(\Omega)}$, i.e.,

$$H^0_0(\Omega) = \overline{C^\infty_0(\Omega)}^{H^s(\Omega)}.$$

(2.6)

If the boundary of Ω is smooth, an equivalent approach to define fractional Sobolev spaces is given by interpolation in [47, Chapter 1]. Set $H^0(\Omega) = L^2(\Omega)$,
then Sobolev spaces with real index $0 \leq s \leq 1$ can be defined as interpolation spaces of index $\theta = 1 - s$ for the pair $[H^1(\Omega), L^2(\Omega)]$, that is

$$H^s(\Omega) = [H^1(\Omega), L^2(\Omega)]_\theta.$$
(2.7)

Analogously, for $s \in [0, 1] \setminus \{1/2\}$, the spaces $H^s_0(\Omega)$ are defined as interpolation spaces of index $\theta = 1 - s$ for the pair $[H^1_0(\Omega), L^2(\Omega)]$, in other words

$$H^s_0(\Omega) = [H^1_0(\Omega), L^2(\Omega)]_\theta, \quad \theta \neq 1/2.$$
(2.8)

The space $[H^1_0(\Omega), L^2(\Omega)]_{1/2}$ is the so-called Lions-Magenes space,

$$H^{1/2}_0(\Omega) = [H^1_0(\Omega), L^2(\Omega)]_{1/2},$$

which can be characterized as

$$H^{1/2}_0(\Omega) = \left\{ w \in H^{1/2}(\Omega) : \int_{\Omega} \frac{w^2(x')}{\text{dist}(x', \partial \Omega)} \, dx' < \infty \right\},$$
(2.9)

see [47, Theorem 11.7]. Moreover, we have the strict inclusion $H^{1/2}_0(\Omega) \subsetneq H^{1/2}(\Omega)$ because $1 \in H^{1/2}(\Omega)$ but $1 \notin H^{1/2}_0(\Omega)$. If the boundary of Ω is Lipschitz, the characterization (2.9) is equivalent to the definition via interpolation, and definitions (2.7) and (2.8) are also equivalent to definitions (2.5) and (2.6), respectively. To see this, it suffices to notice that when $\Omega = \mathbb{R}^n$ these definitions yield identical spaces and equivalent norms; see [3, Chapter 7]. Consequently, using the well-known extension result of Stein [56] for Lipschitz domains, we obtain the asserted equivalence (see [3, Chapter 7] for details).

When the boundary of Ω is Lipschitz, the space $C_0^{\infty}(\Omega)$ is dense in $H^s(\Omega)$ if and only if $s \leq 1/2$, i.e., $H^s_0(\Omega) = H^s(\Omega)$. If $s > 1/2$, we have that $H^s_0(\Omega)$ is strictly contained in $H^s(\Omega)$; see [47, Theorem 11.1]. In particular, we have the inclusions $H^{1/2}_0(\Omega) \subsetneq H^{1/2}(\Omega) = H^{1/2}(\Omega)$.

2.1.1. The fractional Laplace operator.

It is important to mention that there is not a unique way of defining a nonlocal operator related to the fractional Laplacian in a bounded domain. A first possibility is to suitably extend the functions to the whole space \mathbb{R}^n and use Fourier transform

$$\mathcal{F}((-\Delta)^s w)(\xi') = |\xi'|^{2s} \mathcal{F}(w)(\xi').$$

After extension, the following point-wise formula also serves as a definition of the fractional Laplacian

$$(-\Delta)^s w(x') = C_{n,s} \text{v.p.} \int_{\mathbb{R}^n} \frac{w(x') - w(z')}{|x' - z'|^{n+2s}} \, dz',$$
(2.10)

where v.p. stands for the Cauchy principal value and $C_{n,s}$ is a positive normalization constant that depends only on n and s which is introduced to guarantee that the symbol of the resulting operator is $|\xi'|^{2s}$. For details we refer the reader to [17, 40, 26] and, in particular, to [40, Section 1.1] or [26, Proposition 3.3] for a proof of the equivalence of these two definitions.
Even if we restrict ourselves to definitions that do not require extension, there is more than one possibility. For instance, the so-called regional fractional Laplacian \([39, 13]\) is defined by restricting the Riesz integral to \(\Omega\), leading to an operator related to a Neumann problem. A different operator is obtained by using the spectral decomposition of the Dirichlet Laplace operator \(-\Delta\), see \([14, 18, 20]\). This approach is also different to the integral formula \((2.10)\). Indeed, the spectral definition depends on the domain \(\Omega\) considered, while the integral one at any point is independent of the domain in which the equation is set. For more details see the discussion in \([54]\).

The definition that we shall adopt is as in \([14, 18, 20]\) and is based on the spectral theory of the Dirichlet Laplacian \([33, 35]\) as we summarize below.

We define \(-\Delta : L^2(\Omega) \to L^2(\Omega)\) with domain \(\text{Dom}(-\Delta) = \{v \in H^1_0(\Omega) : \Delta v \in L^2(\Omega)\}\). This operator is unbounded, closed and, since \(\Omega\) is bounded and with Lipschitz boundary, regularity theory implies that its inverse is compact. This implies that the spectrum of the operator \(-\Delta\) is discrete, positive and accumulates at infinity.

Moreover, there exist \(\{\lambda_k, \varphi_k\}_{k \in \mathbb{N}} \subset \mathbb{R}_+ \times H^1_0(\Omega)\) such that \(\{\varphi_k\}_{k \in \mathbb{N}}\) is an orthonormal basis of \(L^2(\Omega)\) and, for \(k \in \mathbb{N}\),

\[
\begin{align*}
-\Delta \varphi_k &= \lambda_k \varphi_k, & \text{in } \Omega, \\
\varphi_k &= 0, & \text{on } \partial \Omega.
\end{align*}
\] (2.11)

Moreover, \(\{\varphi_k\}_{k \in \mathbb{N}}\) is an orthogonal basis of \(H^1_0(\Omega)\) and

\[
\|\nabla x' \varphi_k\|_{L^2(\Omega)} = \sqrt{\lambda_k}.
\]

With this spectral decomposition at hand, fractional powers of the Dirichlet Laplacian \((-\Delta)^s\) can be defined for \(u \in C_0^\infty(\Omega)\) by

\[
(-\Delta)^s u = \sum_{k=1}^{\infty} u_k \lambda_k^{-s} \varphi_k,
\] (2.12)

where the coefficients \(u_k\) are defined by \(u_k = \int_{\Omega} u \varphi_k\). Therefore, if \(f = \sum_{k=1}^{\infty} f_k \varphi_k\), and \((-\Delta)^s u = f\), then \(u_k = \lambda_k^{-s} f_k\) for all \(k \geq 1\).

By density the operator \((-\Delta)^s\) can be extended to the Hilbert space

\[
\mathbb{H}^s(\Omega) = \left\{ w = \sum_{k=1}^{\infty} w_k \varphi_k \in L^2(\Omega) : \|w\|_{\mathbb{H}^s(\Omega)}^2 = \sum_{k=1}^{\infty} \lambda_k^s |w_k|^2 < \infty \right\}.
\]

The theory of Hilbert scales presented in \([47, \text{Chapter 1}]\) shows that

\[
\left[H^1_0(\Omega), L^2(\Omega) \right]_\theta = \text{Dom}(-\Delta)^{\frac{s}{2}},
\]

where \(\theta = 1 - s\). This implies the following characterization of the space \(\mathbb{H}^s(\Omega)\),

\[
\mathbb{H}^s(\Omega) = \begin{cases} H^s(\Omega), & s \in (0, \frac{1}{2}), \\
H^{1/2}_0(\Omega), & s = \frac{1}{2}, \\
H^0_0(\Omega), & s \in (\frac{1}{2}, 1).
\end{cases}
\] (2.13)

2.2. Weighted Sobolev spaces. To exploit the Caffarelli-Silvestre extension \([19]\), or its variants \([14, 18, 20]\), we need to deal with a degenerate/singular elliptic equation on \(\mathbb{R}^{n+1}_+\). To this end, we consider weighted Sobolev spaces (see, for instance, \([34, 40, 45]\)), with the specific weight \(|y|^{\alpha}\) with \(\alpha \in (-1, 1)\).
Let $\mathcal{D} \subset \mathbb{R}^{n+1}$ be an open set and $\alpha \in (-1, 1)$. We define $L^2(\mathcal{D}, |y|^\alpha)$ as the space of all measurable functions defined on \mathcal{D} such that

$$\|w\|^2_{L^2(\mathcal{D}, |y|^\alpha)} = \int_{\mathcal{D}} |w|^2 |y|^{\alpha} < \infty.$$

Similarly we define the weighted Sobolev space

$$H^1(\mathcal{D}, |y|^\alpha) = \{ w \in L^2(\mathcal{D}, |y|^\alpha) : |\nabla w| \in L^2(\mathcal{D}, |y|^\alpha) \},$$

where ∇w is the distributional gradient of w. We equip $H^1(\mathcal{D}, |y|^\alpha)$ with the norm

$$\|w\|_{H^1(\mathcal{D}, |y|^\alpha)} = \left(\|w\|^2_{L^2(\mathcal{D}, |y|^\alpha)} + \|\nabla w\|^2_{L^2(\mathcal{D}, |y|^\alpha)} \right)^{\frac{1}{2}}. \quad (2.14)$$

Notice that taking $\alpha = 0$ in the definition above, we obtain the classical $H^1(\mathcal{D})$.

Properties of this weighted Sobolev space can be found in classical references like [40, 45]. It is remarkable that most of the properties of classical Sobolev spaces have a weighted counterpart and it is more so that this is not because of the specific form of the weight but rather due to the fact that the weight $|y|^\alpha$ belongs to the so-called Muckenhoupt class $A_2(\mathbb{R}^{n+1})$; see [44, 47, 51]. We recall the definition of Muckenhoupt classes.

Definition 2.1 (Muckenhoupt class A_p). Let ω be a positive and measurable function such that $\omega \in L^1_{\text{loc}}(\mathbb{R}^N)$ with $N \geq 1$. We say $\omega \in A_p(\mathbb{R}^N)$, $1 < p < \infty$, if there exists a positive constant $C_{p,\omega}$ such that

$$\sup_B \left(\frac{1}{|B|} \int_B \omega \right) \left(\frac{1}{|B|} \int_B \omega^{1/(1-p)} \right)^{p-1} = C_{p,\omega} < \infty, \quad (2.15)$$

where the supremum is taken over all balls B in \mathbb{R}^N and $|B|$ denotes the Lebesgue measure of B.

Since $\alpha \in (-1, 1)$ it is immediate that $|y|^\alpha \in A_2(\mathbb{R}^{n+1})$, which implies the following important result (see [37, Theorem 1]).

Proposition 2.2 (Properties of weighted Sobolev spaces). Let $\mathcal{D} \subset \mathbb{R}^{n+1}$ be an open set and $\alpha \in (-1, 1)$. Then $H^1(\mathcal{D}, |y|^\alpha)$, equipped with the norm (2.14), is a Hilbert space. Moreover, the set $C^\infty(\mathcal{D}) \cap H^1(\mathcal{D}, |y|^\alpha)$ is dense in $H^1(\mathcal{D}, |y|^\alpha)$.

Remark 2.3 (Weighted L^2 vs L^1). If \mathcal{D} is a bounded domain and $\alpha \in (-1, 1)$ then, $L^2(\mathcal{D}, |y|^\alpha) \subset L^1(\mathcal{D})$. Indeed, since $|y|^{-\alpha} \in L^1_{\text{loc}}(\mathbb{R}^{n+1})$,$$

\int_{\mathcal{D}} |w| = \int_{\mathcal{D}} |w||y|^{\alpha/2}|y|^{-\alpha/2} \leq \left(\int_{\mathcal{D}} |w|^2 |y|^{\alpha} \right)^{\frac{1}{2}} \left(\int_{\mathcal{D}} |y|^{-\alpha} \right)^{\frac{1}{2}} \leq \|w\|_{L^2(\mathcal{D}, |y|^\alpha)}.$$

The following result is given in [45, Theorem 6.3]. For completeness we present here a version of the proof on the truncated cylinder C_γ, which will be important for the numerical approximation of problem (1.2).

Proposition 2.4 (Embeddings in weighted Sobolev spaces). Let Ω be a bounded domain in \mathbb{R}^n and $\gamma > 0$. Then

$$H^1(C_\gamma) \hookrightarrow H^1(C_\gamma, y^\alpha), \quad \text{for } \alpha \in (0, 1), \quad (2.16)$$

and

$$H^1(C_\gamma, y^\alpha) \hookrightarrow H^1(C_\gamma), \quad \text{for } \alpha \in (-1, 0). \quad (2.17)$$
Hence, the seminorm (2.19) is a norm on C such that w_{1}. This space can be equivalently defined as the set of measurable functions w_{2} such that

$$
\|w\|_{H^{1}(C, y^{\alpha})} = \int_{C} y^{\alpha} |\nabla w|^{2};
$$

(2.19)

see [20]. As a consequence of the usual Poincaré inequality, for any $w \in H^{1}(\Omega \times (s, t))$ with $w = 0$ on $\partial \Omega \times (2^{k}, 2^{k+1})$, we have

$$
\int_{\Omega \times (2^{k}, 2^{k+1})} y^{\alpha} w^{2} \leq C_{\Omega} \int_{\Omega \times (2^{k}, 2^{k+1})} y^{\alpha} |\nabla w|^{2},
$$

(2.20)

where C_{Ω} denotes a positive constant that depends only on Ω. Summing up over $k \in \mathbb{Z}$, we obtain the following weighted Poincaré inequality:

$$
\int_{C} y^{\alpha} w^{2} \leq \int_{C} y^{\alpha} |\nabla w|^{2},
$$

(2.21)

Hence, the seminorm (2.19) is a norm on $H^{1}_{L}(C, y^{\alpha})$, equivalent to (2.14).

For a function $w \in H^{1}(C, y^{\alpha})$, we shall denote by $\text{tr}_{\Omega} w$ its trace onto $\Omega \times \{0\}$. It is well known that $\text{tr}_{\Omega} H^{1}(C) = H^{1/2}(\Omega)$; see [3] [58]. In the subsequent analysis we need a characterization of the trace of functions in $H^{1}(C, y^{\alpha})$. For a smooth domain this was given in [13] Proposition 1.8 for $s = 1/2$ and in [20] Proposition 2.1 for any $s \in (0, 1) \setminus \{1/2\}$. However, since the eigenvalue decomposition (2.12) of the Dirichlet Laplace operator holds true on a Lipschitz domain, we are able to extend this trace characterization to such domains. In summary, we have the following result.

PROPOSITION 2.5 (Characterization of $\text{tr}_{\Omega} H^{1}_{L}(C, y^{\alpha})$). Let $\Omega \subset \mathbb{R}^{n}$ be a bounded Lipschitz domain. The trace operator tr_{Ω} satisfies $\text{tr}_{\Omega} H^{1}_{L}(C, y^{\alpha}) = \mathbb{H}^{s}(\Omega)$ and

$$
\|\text{tr}_{\Omega} v\|_{H^{s}(\Omega)} \lesssim \|v\|_{H^{1}_{L}(C, y^{\alpha})} \quad \forall v \in H^{1}_{L}(C, y^{\alpha})
$$

where the space $\mathbb{H}^{s}(\Omega)$ is defined in (2.13).

2.3. The Caffarelli-Silvestre extension problem. It has been shown in [19] that any power of the fractional Laplacian in \mathbb{R}^{n} can be determined as an operator that maps a Dirichlet boundary condition to a Neumann-type condition via an extension problem posed on \mathbb{R}^{n+1}_{+}. For a bounded domain, an analogous result has been obtained in [13] for $s = 1/2$, and in [14] [20] [57] for any $s \in (0, 1)$.

Let us briefly describe these results. Consider a function u defined on Ω. We define the α-harmonic extension of u to the cylinder C, as the function u that solves the boundary value problem

$$
\begin{cases}
\text{div}(y^{\alpha} \nabla u) = 0, & \text{in } C, \\
u = 0, & \text{on } \partial_{L} C, \\
u = u, & \text{on } \Omega \times \{0\}.
\end{cases}
$$

(2.22)
From Proposition 2.5 and the Lax Milgram lemma we can conclude that this problem has a unique solution $u \in \hat{H}_L^1(C, y^\alpha)$ whenever $u \in \mathbb{H}^s(\Omega)$. We define the Dirichlet-to-Neumann operator $\Gamma_{\alpha, \Omega} : \mathbb{H}^s(\Omega) \to \mathbb{H}^s(\Omega)'$

$$u \in \mathbb{H}^s(\Omega) \mapsto \Gamma_{\alpha, \Omega}(u) = \frac{\partial u}{\partial \nu^\alpha} \in \mathbb{H}^s(\Omega)' ,$$

where u solves (2.22) and $\frac{\partial u}{\partial \nu^\alpha}$ is given in (1.3). The space $\mathbb{H}^s(\Omega)'$ can be characterized as the space of distributions $h = \sum_k h_k \varphi_k$ such that $\sum_k |h_k|^2 \lambda_k^{-s} < \infty$. The fundamental result of [19], see also [20, Lemma 2.2], is then that

$$d_s(-\Delta)^s u = \Gamma_{\alpha, \Omega}(u) ,$$

where d_s is given by

$$d_s = 2^{1-2s} \frac{\Gamma(1-s)}{\Gamma(s)} .$$

(2.23)

It seems remarkable that this constant does not depend on the dimension. This was proved originally in [19] and its precise value appears in several references, for instance [14, 17].

The relation between the fractional Laplacian and the extension problem is now clear. Given $f \in \mathbb{H}^s(\Omega)'$, a function $u \in \mathbb{H}^s(\Omega)$ solves (1.1) if and only if its α-harmonic extension $u \in \hat{H}_L^1(C, y^\alpha)$ solves (1.2).

If $u = \sum_k u_k \varphi_k$, then, as shown in the proofs of [20, Proposition 2.1] and [14, Lemma 2.2], u can be expressed as

$$u(x) = \sum_{k=1}^{\infty} u_k \varphi_k(x') \psi_k(y) ,$$

(2.24)

where the functions ψ_k solve

$$\begin{cases}
\psi_k'' + \frac{\alpha}{y} \psi_k' - \lambda_k \psi_k = 0 , & \text{in } (0, \infty), \\
\psi_k(0) = 1 , & \lim_{y \to \infty} \psi_k(y) = 0 .
\end{cases}$$

(2.25)

If $s = \frac{1}{2}$, then clearly $\psi_k(y) = e^{-\sqrt{\lambda_k} y}$ (see [18, Lemma 2.10]). For $s \in (0, 1) \setminus \{\frac{1}{2}\}$ instead (cf. [20, Proposition 2.1])

$$\psi_k(y) = c_s \left(\sqrt{\lambda_k} y \right)^s K_s(\sqrt{\lambda_k} y) ,$$

where K_s denotes the modified Bessel function of the second kind (see [11, Chapter 9.6]). Using the condition $\psi_k(0) = 1$, and formulas for small arguments of the function K_s (see for instance §2.4) we obtain

$$c_s = \frac{2^{1-s}}{\Gamma(s)} .$$

The function $u \in \hat{H}_L^1(C, y^\alpha)$ is the unique solution of

$$\int_C y^\alpha \nabla u \cdot \nabla \phi = d_s(f, \nu_\Omega \phi)_{\mathbb{H}^s(\Omega) \times \mathbb{H}^s(\Omega)'} , \quad \forall \phi \in \hat{H}_L^1(C, y^\alpha) ,$$

(2.26)
where \(\langle \cdot, \cdot \rangle_{H^s(\Omega) \times H^s(\Omega)'} \) denotes the duality pairing between \(H^s(\Omega) \) and \(H^s(\Omega)' \), which, in light of Proposition \ref{prop:interpolation}, is well defined for all \(f \in H^s(\Omega)' \) and \(\phi \in \hat{H}^1_0(\mathcal{C}, y^\alpha) \). This implies the following equalities (see \cite{20} Proposition 2.1) for \(s \in (0, 1) \setminus \left\{ \frac{1}{2} \right\} \) and \cite{18} Proposition 2.1 for \(s = \frac{1}{2} \):

\[
\|u\|_{\hat{H}^1_0(\mathcal{C}, y^\alpha)} = d_s\|u\|_{H^s(\Omega)} = d_s\|f\|_{H^s(\Omega)'}.
\]

Notice that for \(s = \frac{1}{2} \), or equivalently \(\alpha = 0 \), problem \ref{prob:weak} reduces to the weak formulation of the Laplace operator with mixed boundary conditions, which is posed on the classical Sobolev space \(H^1(\Omega) \). Therefore, the value \(s = \frac{1}{2} \) becomes a special case for problem \ref{prob:weak}. In addition, \(d_{1/2} = 1 \), and \(\|u\|_{\hat{H}^1_0(\mathcal{C})} = \|u\|_{H^{1/2}(\Omega)} \).

At this point it is important to give a precise meaning to the Dirichlet boundary condition in \ref{prob:weak}. For \(s = \frac{1}{2} \), the boundary condition is interpreted in the sense of the Lions–Magenes space. If \(\frac{1}{2} < s \leq 1 \), there is a trace operator from \(H^s(\Omega) \) into \(L^2(\partial\Omega) \) and the boundary condition can be interpreted in this sense. For \(0 < s < 1/2 \) this interpretation is no longer possible and thus, for an arbitrary \(f \in H^s(\Omega)' \) the boundary condition does not have a clear meaning. For instance, for every \(s \in (0, \frac{1}{2}) \), \(f = (-\Delta)^s 1 \in H^s(\Omega)' \) and the solution to \ref{prob:weak} for this right hand side is \(u = 1 \). If \(f \in H^s(\Omega) \) with \(\zeta > \frac{1}{2} - 2s > -s \), using that \((-\Delta)^s \) is a pseudo-differential operator of order \(2s \) a shift-type result is valid, i.e., \(u \in H^0(\Omega) \) with \(\varphi = \zeta + 2s > 1/2 \). In this case, the trace of \(u \) on \(\partial\Omega \) is well defined and the boundary condition is meaningful. Finally, we comment that it has been proved in \cite{20} Lemma 2.10], that if \(f \in L^{\infty}(\Omega) \) then the solution of \ref{prob:weak} belongs to \(C^{0,\kappa}(\Omega) \) with \(\kappa \in (0, \min\{2s, 1\}) \).

2.4. Asymptotic estimates

It is important to understand the behavior of the solution \(u \) of problem \ref{prob:weak}, given by \ref{eq:weak}. Consequently, it becomes necessary to recall some of the main properties of the modified Bessel function of the second kind \(K_\nu(z) \), \(\nu \in \mathbb{R} \); see \cite{11} Chapter 9.6 for \(\nu \in \mathbb{N} \) and \cite{50} Theorem 5 for \(\nu \in \mathbb{R} \):

(i) For \(\nu > -1 \), \(K_\nu(z) \) is real and positive.

(ii) For \(\nu \in \mathbb{R} \), \(K_\nu(z) = K_{-\nu}(z) \).

(iii) For \(\nu > 0 \),

\[
\lim_{z \downarrow 0} \frac{K_\nu(z)}{\frac{1}{2} \Gamma(\nu) \left(\frac{1}{2} z \right)^\nu} = 1.
\]

(iv) For \(k \in \mathbb{N} \),

\[
\left(\frac{1}{z} \frac{d}{dz} \right)^k \left(z^\nu K_\nu(z) \right) = (-1)^k z^{\nu-k} K_{\nu-k}(z).
\]

In particular, for \(k = 1 \) and \(k = 2 \), respectively, we have

\[
\frac{d}{dz} \left(z^\nu K_\nu(z) \right) = -z^\nu K_{\nu-1}(z) = -z^\nu K_{1-\nu}(z),
\]

and

\[
\frac{d^2}{dz^2} \left(z^\nu K_\nu(z) \right) = z^\nu K_{2-\nu}(z) = z^{\nu-1} K_{1-\nu}(z).
\]

(v) For \(z > 0 \), \(z^{\min\{\nu,1/2\}} e^z K_\nu(z) \) is a decreasing function.
As an application we obtain the following important properties of the function ψ_k, defined in (2.25). First, for $s \in (0, 1)$, properties (ii), (iii) and (iv) imply

$$\lim_{y \downarrow 0^+} \frac{y^a \psi_k(y)}{d_s \lambda_k^s} = -1,$$

(2.31)

Property (v) provides the following asymptotic estimate for $s \in (0, 1)$ and $y \geq 1$:

$$|y^a \psi_k(y)\psi'_k(y)| \leq C(s) \lambda_k^s \left(\sqrt{\lambda_k y} \right)^{|s - 1/2|} e^{-2\sqrt{\lambda_k y}}.$$

(2.32)

Multiplying the differential equation of problem (2.25) by $y^a \psi_k(y)$ and integrating by parts yields

$$\int_a^b y^a \left(\lambda_k \psi_k(y)^2 + \psi'_k(y)^2 \right) \, dy = y^a \psi_k(y) \psi'_k(y) b^b_a,$$

(2.33)

where a and b are real and positive constants.

Let us conclude this section with some remarks on the asymptotic behavior of the function u that solves (2.26). Using (2.24) we obtain

$$u(x)|_{y=0} = \sum_{k=1}^{\infty} u_k \varphi_k(x') \psi_k(0) = \sum_{k=1}^{\infty} u_k \varphi_k(x') = u(x').$$

For $s \in (0, 1)$, using formula (2.31) together with (2.12), we arrive at

$$\frac{\partial u}{\partial \nu^\alpha}(x',0) = -\lim_{y \downarrow 0} y^a u_y(x',y) = d_s f(x'), \quad \text{on } \Omega \times \{0\}.$$

(2.34)

Notice that, if $s = \frac{1}{2}$, then $\alpha = 0$, $d_{1/2} = 1$ and thus (2.34) reduces to

$$\frac{\partial u}{\partial \nu}|_{\Omega \times \{0\}} = f(x').$$

For $s \in (0, 1) \setminus \{\frac{1}{2}\}$ the asymptotic behavior of the second derivative u_{yy} as $y \to 0^+$ is a consequence of (2.30) applied to the function $\psi_k(y)$. For $s = \frac{1}{2}$ the behavior follows from $\psi_k(y) = e^{-\sqrt{\lambda_k y}}$. In conclusion, for $y \approx 0^+$, we have

$$u_{yy} \approx y^{-\alpha - 1} \quad \text{for } s \in (0, 1) \setminus \{\frac{1}{2}\}, \quad u_{yy} \approx 1 \quad \text{for } s = \frac{1}{2}.$$

(2.35)

2.5. Regularity of the solution. Since we are interested in the approximation of the solution of problem (2.26), and this is closely related to its regularity, let us now study the behavior of its derivatives. According to (2.34), $u_y \approx y^{-\alpha}$ for $y \approx 0^+$. This clearly shows the necessity of introducing the weight, as this behavior, together with the exponential decay given by (v) of §2.4 imply that $u_y \in L^2(C, y^\alpha) \setminus L^2(C)$ for $s \in (0, 1/4]$, $\lambda_k = \lambda_k(y)$.

However, the situation with second derivatives is much more delicate. To see this, let us first argue heuristically and compute how these derivatives scale with y. From the asymptotic formula (2.35), we see that, for $0 < \delta \ll 1$ and $s \in (0, 1) \setminus \{\frac{1}{2}\}$,

$$\int_{\Omega \times (0,\delta)} y^a |u_{yy}|^2 \, dx' \, dy \approx \int_0^\delta y^a y^{-2\alpha} \, dy = \int_0^\delta y^{2-\alpha} \, dy,$$

(2.36)
which, since \(\alpha \in (-1, 1) \setminus \{0\} \), does not converge. However,

\[
\int_{\Omega \times (0, \delta)} y^\beta |u_{yy}|^2 \, dx \, dy \approx \int_0^\delta y^{\beta - 2\alpha} \, dy,
\]

converges for \(\beta > 2\alpha + 1 \), hinting at the fact that \(u \in H^2(C, y^\beta) \setminus H^2(C, y^\alpha) \). The following result makes these considerations rigorous.

Theorem 2.6 (Global regularity of the \(\alpha \)-harmonic extension). Let \(f \in \mathbb{H}^{1-s}(\Omega) \), where \(\mathbb{H}^{1-s}(\Omega) \) is defined in (2.13) for \(s \in (0, 1) \). Let \(u \in H_0^1(C, y^\alpha) \) solve (2.26) with \(f \) as data. Then, for \(s \in (0, 1) \setminus \{\frac{1}{2}\} \), we have

\[
\|\Delta^s u\|^2_{L^2(C, y^\alpha)} + \|\partial_y \nabla_{x^a} u\|^2_{L^2(C, y^\alpha)} = d_s \|f\|^2_{\mathbb{H}^{1-s}(\Omega)},
\]

and

\[
\|u_{yy}\|_{L^2(C, y^\alpha)} \lesssim \|f\|_{L^2(\Omega)},
\]

with \(\beta > 2\alpha + 1 \). For the special case \(s = \frac{1}{2} \), we obtain

\[
\|u\|_{H^2(\Omega)} \lesssim \|f\|_{\mathbb{H}^{1/2}(\Omega)}.
\]

Remark 2.7 (Compatibility of \(f \)). It is possible to interpret the result of Theorem 2.6 as follows. Consider \(s \in (\frac{1}{2}, 1) \), or equivalently \(\alpha \in (-1, 0) \). Then the conormal exterior derivative condition for \(u \) gives us that \(u_y \approx -y^{1-s} f \) as \(y \to 0^+ \) on \(\Omega \times \{0\} \), which in turn implies that \(u_y \to 0 \) as \(y \to 0^+ \) on \(\Omega \times \{0\} \). This is compatible with \(u = 0 \) on \(\partial_x \mathcal{C} \) since this implies \(u_y = 0 \) on \(\partial_x \mathcal{C} \). Consequently, we do not need any compatibility condition on the data \(f \in H^{1-s}(\Omega) \) to avoid a jump on the derivative \(u_y \). On the other hand, when \(\alpha \in (0, 1) \), we have that, for a general \(f \), \(u_y \to 0 \) as \(y \to 0^+ \) on \(\Omega \times \{0\} \). To compensate this behavior we need the data \(f \) to vanish at the boundary \(\partial \Omega \) at a certain rate. This condition is expressed by the requirement \(f \in H_0^{1-s}(\Omega) \).

Proof of Theorem 2.6 Let us first consider \(s = \frac{1}{2} \). In this case (2.26) reduces to the Poisson problem with mixed boundary conditions. In general, the solution of a mixed boundary value problem is not smooth, even for \(C^\infty \) data. The singular behavior occurs near the points of intersection between the Dirichlet and Neumann boundary. For instance, the solution \(w = \sqrt{r} \sin(\theta/2) \) of \(\Delta w = 0 \) in \(\mathbb{R}^2_+ \), with \(w_{x_2} = 0 \) for \(\{x_1 < 0, \ x_2 = 0\} \) and \(w = 0 \) for \(\{x_1 \geq 0, \ x_2 = 0\} \) does not belong to \(H^2(\mathbb{R}^2_+) \). To obtain more regular solutions, a compatibility condition between the data, the operator and the boundary must be imposed (see, for instance, [52]). Since in our case we have the representation (2.24), we can explicitly compute the second derivatives and, using that \(\{\varphi_k\}_{k \in \mathbb{N}} \) is an orthonormal basis of \(L^2(\Omega) \) and \(\{\varphi_k/\sqrt{\lambda_k}\}_{k \in \mathbb{N}} \) of \(H_0^1(\Omega) \), it is not difficult to show that \(f \in H_0^{1/2}(\Omega) \) implies \(u \in H^2(\Omega) \), and \(\|u\|_{H^2(\Omega)} \lesssim \|f\|_{H_0^{1/2}(\Omega)} \).

In the general case \(s \in (0, 1) \setminus \{\frac{1}{2}\} \), i.e., \(\alpha \in (-1, 1) \setminus \{0\} \), using (2.33) as well as the asymptotic properties (2.31) and (2.32), we obtain

\[
\|\Delta^s u\|^2_{L^2(C, y^\alpha)} + \|\partial_y \nabla_{x^a} u\|^2_{L^2(C, y^\alpha)} = \sum_{k=1}^\infty u_k^2 \lambda_k \int_0^\infty y^\alpha \left(\lambda_k \psi_k(y)^2 + \psi_k'(y)^2 \right) \, dy
\]

\[
= d_s \sum_{k=1}^\infty u_k^2 \lambda_k^{1+s} = d_s \sum_{k=1}^\infty f_k^2 \lambda_k^{1-s} = d_s \|f\|^2_{\mathbb{H}^{1-s}(\Omega)},
\]
which is exactly the regularity estimate given in [2.37]. To obtain the regularity estimate on \(u_{yy} \) we, again, use the exact representation [2.24] and properties of Bessel functions to conclude that any derivative with respect to the extended variable \(y \) is smooth away from the Neumann boundary \(\Omega \times \{0\} \). By virtue of [2.26] we deduce that the following partial differential equation holds in the strong sense

\[
\text{div}(y^\alpha \nabla u) = 0 \iff u_{yy} = -\Delta_x u - \frac{\alpha}{y} u_y.
\]

(2.38)

Consider sequences \(\{a_k = 1/\sqrt{k}\} \) k \(\geq 1 \), \(\{b_k\} \) k \(\geq 1 \) and \(\{\delta_k\} \) k \(\geq 1 \) with \(0 < \delta_k \leq a_k \leq b_k \).

Using [2.24] we have, for

\[
\|u_{yy}\|_{L^2(\mathcal{C},y^\beta)}^2 = \sum_{k=1}^\infty u_k^2 \left(\lim_{\delta_k \downarrow 0} \int_{\delta_k}^{a_k} y^\beta |\psi_k''(y)|^2 \, dy + \lim_{b_k \uparrow \infty} \int_{a_k}^{b_k} y^\beta |\psi_k''(y)|^2 \, dy \right).
\]

(2.39)

Let us now estimate the first integral on the right hand side of (2.39). Formulas [2.30] and [2.28] yield

\[
\lim_{\delta_k \downarrow 0} \int_{\delta_k}^{a_k} y^\beta |\psi_k''(y)|^2 \, dy = c_2^2 \lambda_k^{2-\beta/2-1/2} \lim_{\delta_k \downarrow 0} \int_{\sqrt{\lambda_k b_k}}^{1} z^\beta \left| \frac{d^2}{dz^2} (z^\alpha K_s(z)) \right|^2 \, dz \lesssim c_2^2 \lambda_k^{2-\beta/2-1/2} \lim_{\delta_k \downarrow 0} \int_{1}^{b_k} z^\beta \left| \frac{d^2}{dz^2} (z^\alpha K_s(z)) \right|^2 \, dz.
\]

(2.40)

where the integral converges because \(\beta > 2\alpha + 1 \). Let us now look at the second integral. Using property (v) of the modified Bessel functions, we have

\[
\lim_{b_k \uparrow \infty} \int_{a_k}^{b_k} y^\beta |\psi_k''(y)|^2 \, dy = c_2^2 \lambda_k^{2-\beta/2-1/2} \lim_{b_k \uparrow \infty} \int_{1}^{\sqrt{\lambda_k b_k}} z^\beta \left| \frac{d^2}{dz^2} (z^\alpha K_s(z)) \right|^2 \, dz \lesssim c_2^2 \lambda_k^{2-\beta/2-1/2},
\]

(2.41)

Replacing (2.40) and (2.41) into (2.39), and using that \(u_k = \lambda_k^{-\alpha} f_k \), we deduce

\[
\|u_{yy}\|_{L^2(\mathcal{C},y^\beta)}^2 \lesssim \sum_{k=1}^\infty \lambda_k^{2-\beta/2-1/2-2\alpha} f_k^2 \leq \|f\|^2_{L^2(\Omega)},
\]

because \(2 - 2\alpha - \frac{\beta}{2} - \frac{1}{2} = \frac{1}{2}(1 + 2\alpha - \beta) < 0 \). This concludes the proof.

For the design of graded meshes later in §5.2 we also need the following local regularity result in the extended variable.

Theorem 2.8 (Local regularity of the \(\alpha \)-harmonic extension). Let \(\mathcal{C}(a,b) := \Omega \times (a,b) \) for \(0 \leq a < b \leq 1 \). The solution \(u \in \tilde{H}^1_2(\mathcal{C},y^\alpha) \) of (2.26) satisfies for all \(a,b \)

\[
\|\Delta_x u\|^2_{L^2(\mathcal{C}(a,b),y^\beta)} + \|\partial_y \nabla_x u\|^2_{L^2(\mathcal{C}(a,b),y^\beta)} \lesssim (b - a) \|f\|^2_{H^{1-\alpha}(\Omega)},
\]

(2.42)

and, with \(\delta := \beta - 2\alpha + 1 > 0 \),

\[
\|u_{yy}\|^2_{L^2(\mathcal{C}(a,b),y^\beta)} \lesssim (b^\delta - a^\delta) \|f\|^2_{L^2(\Omega)}.
\]

(2.43)

Proof. To derive (2.42) we proceed as in Theorem 2.6. Since \(0 \leq a < b \leq 1 \), property (iii) of §2.4 together with (2.31) imply that

\[
|y^\alpha \psi_k(y)\psi_k'(y)| \lesssim \lambda_k^\delta.
\]
This, together with (2.33) and the property \(u_k = \lambda_k^{-s} f_k \), allows us to conclude
\[
\|\Delta u\|_{L^2(C(a,b),y^\alpha)}^2 + \|\partial_y \nabla_x u\|_{L^2(C(a,b),y^\alpha)}^2 = \sum_{k=1}^{\infty} u_k^2 \lambda_k \int_a^b y^\alpha (\lambda_k \psi_k(y)^2 + \psi_k(y)^2) \, dy \\
\lesssim (b - a) \sum_{k=1}^{\infty} u_k^2 \lambda_k^{1+s} = (b - a) \| f \|_{H^{1-s}(\Omega)}^2.
\]

To prove (2.43) we observe that the same argument used in (2.40) gives
\[
\int_a^b y^\beta |\psi_k''(y)|^2 \, dy \lesssim \lambda_k^{2-\beta/2-1/2} (b^\delta - a^\delta),
\]
whence
\[
\|u_{yy}\|_{L^2(C(a,b),y^\alpha)}^2 \lesssim (b^\delta - a^\delta) \sum_{k=1}^{\infty} f_k^2 \lambda_k^{2-\beta/2-1/2-2s} \lesssim (b^\delta - a^\delta) \| f \|_{L^2(\Omega)}^2,
\]
because \(2 - 2s - \frac{\beta}{2} - \frac{1}{2} < 0 \).

3. Truncation. The solution \(u \) of problem (2.26) is defined on the infinite domain \(C \) and, consequently, it cannot be directly approximated with finite element-like techniques. In this section we will show that \(u \) decays sufficiently fast – in fact exponentially – in the extended direction. This suggests truncating the cylinder \(C \) to \(C' \), for a suitably defined \(C' \). The exponential decay is the content of the next result.

Proposition 3.1 (Exponential decay). For every \(C' > 1 \), the solution \(u \) of (2.26) satisfies
\[
\|\nabla u\|_{L^2(\Omega \times (C',\infty),y^\alpha)} \lesssim e^{-\sqrt{k}y^{2/3}} \| f \|_{H^{1,\gamma}(\Omega')}.
\]

Proof. Recall that if \(u \in H^\gamma(\Omega) \) has the decomposition \(u = \sum_k u_k \varphi_k(x') \), the solution \(u \in H^1_0(C, y^\alpha) \) to (2.26) has the representation \(u = \sum_k u_k \varphi_k(x') \psi_k(y) \), where the functions \(\psi_k \) solve (2.25).

Consider \(s = \frac{1}{2} \). In this case \(\psi_k(y) = e^{-\sqrt{k}y} \). Using the fact that \(\{ \varphi_k \}_{k=1}^\infty \) are eigenfunctions of Dirichlet Laplacian on \(\Omega \), orthonormal in \(L^2(\Omega) \) and orthogonal in \(H^1_0(\Omega) \) with \(\| \nabla x' \varphi_k \|_{L^2(\Omega)} = \sqrt{k} \), we get
\[
\int_\Omega \int_\Omega |\nabla u|^2 = \int_\Omega \int_\Omega (|\nabla_x u|^2 + |\partial_y u|^2) = \sum_{k=1}^{\infty} \frac{1}{\lambda_k^2} |u_k|^2 e^{-2\sqrt{k}y} \leq e^{-2\sqrt{k}y \| f \|_{H^{1,\gamma}(\Omega')}^2}.
\]
Since \(\| f \|_{H^{1,\gamma}(\Omega')} = \| f \|_{H^{1,\gamma}(\Omega')} \), this implies 3.1.

Consider now \(s \in (0, 1) \backslash \{ \frac{1}{2} \} \) and \(\psi_k(y) = c_s (\sqrt{k}y)^s K_s(\sqrt{k}y) \). To be able to argue as before, we need the estimates on \(K_s \) and its derivative for sufficiently large arguments discussed in §2.4. In fact, using (2.32) and (2.33), we obtain
\[
\int_\gamma \int_\Omega y^\alpha |\nabla u|^2 = \int_\gamma \int_\Omega y^\alpha (|\nabla_x u|^2 + |\partial_y u|^2) \\
= \sum_{k=1}^{\infty} |u_k|^2 \int_\gamma y^\alpha (\lambda_k \psi_k(y)^2 + \psi_k(y)^2) \, dy \\
\lesssim \sum_{k=1}^{\infty} |u_k|^2 y^\alpha \psi_k(y)^2 \int_\gamma e^{-\sqrt{k}y} \| f \|_{H^{1,\gamma}(\Omega')}^2.
\]
Again, since \(\|u\|_{H^s(\Omega)} = \|f\|_{H^s(\Omega)} \), we get \((3.1) \).

Expression \((3.1) \) motivates the approximation of \(u \) by a function \(v \) that solves

\[
\begin{aligned}
\text{div}(g^a \nabla v) &= 0, & \text{ in } C_\gamma, \\
v &= 0, & \text{ on } \partial L C_\gamma \cup \Omega \times \{ \gamma' \}, \\
\frac{\partial v}{\partial v^a} &= d_s f, & \text{ on } \Omega \times \{ 0 \},
\end{aligned}
\tag{3.2}
\]

with \(\gamma' \) sufficiently large. Problem \((3.2) \) is understood in the weak sense, i.e., we define the space

\[
\hat{H}^1_2(C_\gamma, y^\alpha) = \{ v \in H^1(C, y^\alpha) : v = 0 \text{ on } \partial L C_\gamma \cup \Omega \times \{ \gamma' \} \} ,
\]

and seek for \(v \in \hat{H}^1_2(C_\gamma, y^\alpha) \) such that

\[
\int_{C_\gamma} y^\alpha \nabla v \cdot \nabla \phi = d_s (f, \text{tr}_\Omega \phi), \quad \forall \phi \in \hat{H}^1_2(C_\gamma, y^\alpha).
\tag{3.3}
\]

Existence and uniqueness of \(v \) follows from the Lax-Milgram lemma.

Remark 3.2 (Zero extension). For every \(\gamma' > 0 \) we have the embedding

\[
\hat{H}^1_2(C_\gamma, y^\alpha) \hookrightarrow \hat{H}^1_2(C, y^\alpha).
\tag{3.4}
\]

To see this, it suffices to consider the extension by zero for \(y > \gamma' \).

The next result shows the approximation properties of \(v \), solution of \((3.3) \) in \(C_\gamma \).

Lemma 3.3 (Exponential convergence in \(\gamma' \)). For any positive \(\gamma' > 1 \), we have

\[
\| \nabla (u - v) \|_{L^2(C_\gamma, y^\alpha)} \lesssim e^{-\sqrt{\gamma'}/4} \| f \|_{H^s(\Omega)}.
\tag{3.5}
\]

Proof. Given \(\phi \in \hat{H}^1_2(C_\gamma, y^\alpha) \) denote by \(\phi_e \) its extension by zero to \(C \). By Remark 3.2, \(\phi_e \in \hat{H}^1_2(C, y^\alpha) \). Take \(\phi_e \) and \(\phi \) as test functions in \((2.26) \) and \((3.3) \), respectively. Subtract the resulting expressions to obtain

\[
\int_{C_\gamma} y^\alpha (\nabla u - \nabla v) \cdot \nabla \phi = 0 \quad \forall \phi \in \hat{H}^1_2(C_\gamma, y^\alpha),
\]

which implies that \(v \) is the best approximation of \(u \) in \(\hat{H}^1_2(C_\gamma, y^\alpha) \), i.e.,

\[
\| \nabla (u - v) \|_{L^2(C_\gamma, y^\alpha)} = \inf_{\phi \in \hat{H}^1_2(C_\gamma, y^\alpha)} \| \nabla (u - \phi) \|_{L^2(C_\gamma, y^\alpha)}.
\tag{3.6}
\]

Let us construct explicitly a function \(\phi_0 \in \hat{H}^1_2(C_\gamma, y^\alpha) \) to use in \((3.6) \). Define

\[
\rho(y) = \begin{cases}
1, & 0 \leq y \leq \gamma'/2, \\
\frac{2}{\gamma'} (\gamma' - y), & \gamma'/2 < y < \gamma', \\
0, & y \geq \gamma'.
\end{cases}
\tag{3.7}
\]

Notice that \(\rho \in W^1_{\infty}(0, \infty), |\rho(y)| \leq 1 \) and \(|\rho'(y)| \leq 2/\gamma' \) for all \(y > 0 \). Set \(\phi_0(x', y) = u(x', y) \rho(y) \) for \(x' \in \Omega \) and \(y > 0 \). A straightforward computation shows

\[
\| \nabla ((1 - \rho) u) \|^2 \leq 2 \left(\| \rho' \|^2 \| u \|^2 + (1 - \rho)^2 \| \nabla u \|^2 \right) \leq 2 \left(\frac{1}{\gamma'^2} u^2 + \| \nabla u \|^2 \right),
\]
so that
\[\| \nabla (u - \phi_0) \|^2_{L^2(C_y, y^\alpha)} \leq 2 \left(\frac{4}{\gamma^2} \int_{\Omega} \int y^\alpha |u|^2 + \int_{\gamma/2}^{\gamma} y^\alpha |\nabla u|^2 \right). \quad (3.8) \]

To estimate the first term on the right hand side of (3.8) we use the Poincaré inequality (2.20) over a dyadic partition that covers the interval \([\gamma/2, \gamma]\) (see the derivation of (2.21) in \S 2.2), to obtain
\[\int_{\gamma/2}^{\gamma} y^\alpha \int_{\Omega} |u|^2 \lesssim \int_{\gamma/2}^{\gamma} y^\alpha \int_{\Omega} |\nabla u|^2. \quad (3.9) \]

To bound the second integral in (3.8) we use (2.33) as in the proof of Proposition 3.1:
\[\int_{\gamma/2}^{\gamma} y^\alpha \int_{\Omega} |\nabla u|^2 = \sum_{k=1}^{\infty} |u_k|^2 y^\alpha \psi_k(y) \psi_k'(y) \int_{\gamma/2}^{\gamma} e^{-\sqrt{\lambda_1} y^\alpha} \| f \|_{H^s(\Omega)'}. \]

Inserting these estimates into (3.6) implies (3.5). □

Remark 3.4 (Stability). Let \(Y > 1 \), then
\[\| \nabla v \|_{L^2(C_y, y^\alpha)} \lesssim \| f \|_{H^s(\Omega)'}. \quad (3.10) \]

Indeed, by the triangle inequality
\[\| \nabla v \|_{L^2(C_y, y^\alpha)} \leq \| \nabla (v - u) \|_{L^2(C_y, y^\alpha)} + \| \nabla u \|_{L^2(C_y, y^\alpha)} \lesssim \left(e^{-\sqrt{\lambda_1} y^\alpha/4} + 1 \right) \| f \|_{H^s(\Omega)'}. \]

The previous two results allow us to show a full approximation estimate.

Theorem 3.5 (Global exponential estimate). Let \(Y > 1 \), then
\[\| \nabla (u - v) \|_{L^2(C_y, y^\alpha)} \lesssim e^{-\sqrt{\lambda_1} y^\alpha/4} \| f \|_{H^s(\Omega)'}. \quad (3.11) \]

In particular, for every \(\epsilon > 0 \), let
\[Y_0 = \frac{2}{\sqrt{\lambda_1}} \left(\log C + 2 \log \frac{1}{\epsilon} \right), \]

where \(C \) depends only on \(s \) and \(\Omega \). Then, for \(Y \geq \max\{Y_0, 1\} \), we have
\[\| \nabla (u - v) \|_{L^2(C_y, y^\alpha)} \leq \epsilon \| f \|_{H^s(\Omega)'}. \quad (3.12) \]

Proof. Extending \(v \) by zero outside of \(C_y \) we obtain
\[\| \nabla (u - v) \|^2_{L^2(C_y, y^\alpha)} = \| \nabla (u - v) \|^2_{L^2(C_y, y^\alpha)} + \| \nabla u \|^2_{L^2(\Omega \times (\gamma, \infty), y^\alpha)}. \]

Hence Lemma 3.3 and Proposition 3.1 imply
\[\| \nabla (u - v) \|^2_{L^2(C_y, y^\alpha)} \leq C e^{-\sqrt{\lambda_1} y^\alpha/2} \| f \|^2_{H^s(\Omega)'}, \]

for all \(Y \geq \max\{Y_0, 1\} \). □
4. Finite element discretization and interpolation estimates. In this section we prove error estimates for a piecewise Q_1 interpolation operator on anisotropic elements in the extended variable y. We consider elements of the form $T = K \times I$, where $K \subset \mathbb{R}^n$ is an element isoparametrically equivalent to the unit cube $[0, 1]^n$, via a Q_1 mapping and, $I \subset \mathbb{R}$ is an interval. The anisotropic character of the mesh $\mathcal{T}_y = \{T\}$ will be given by the family of intervals I.

The error estimates are derived in the weighted Sobolev spaces $L^2(\mathcal{C}_y, y^\alpha)$ and $H^1(\mathcal{C}_y, y^\alpha)$, and they are valid under the condition that neighboring elements have comparable size in the extended $n + 1$–dimension (see [28]). This is a mild assumption that includes general meshes which do not satisfy the so-called shape-regularity assumption, i.e., mesh refinements for which the quotient between outer and inner diameter of the elements does not remain bounded (see [15, Chapter 4]).

Anisotropic or narrow elements are elements with disparate sizes in each direction. They arise naturally when approximating solutions of problems with a strong directional-dependent behavior since, using anisotropy, the local mesh size can be adapted to capture such features. Examples of this include boundary layers, shocks and edge singularities (see [28, 29]). In our problem, anisotropic elements are essential in order to capture the singular/degenerate behavior of the solution u to problem (2.25) at $y \approx 0^+$ given in (2.34). These elements will provide optimal error estimates, which cannot be obtained using shape-regular elements.

Error estimates for weighted Sobolev spaces have been obtained in several works; see, for instance, [4, 9, 28]. The type of weight considered in [4, 9] is related to the distance to a point or an edge, and the type of quasi-interpolators are modifications of the well known Clément [24] and Scott-Zhang [53] operators. These works are developed in 3D and 2D respectively, and the analysis developed in [4] allows for anisotropy. Our approach follows the work of Durán and Lombardi [28], and is based on a piecewise Q_1 averaged interpolator on anisotropic elements. It allows us to obtain anisotropic interpolation estimates in the extended variable y and in weighted Sobolev spaces, using only that $|y|^\alpha \in A_2(\mathbb{R}^{n+1})$, the Muckenhoupt class A_2 of Definition 2.1.

4.1. Finite element discretization. Let us now describe the discretization of problem (3.2). To avoid technical difficulties we assume that the boundary of Ω is polygonal. The difficulties inherent to curved boundaries could be handled, for instance, with the methods of [11] (see also [13, 14]). Let $\mathcal{T}_\Omega = \{K\}$ be a mesh of Ω made of isoparametric quadrilaterals K in the sense of Ciarlet [22] and Ciarlet and Raviart [23]. In other words, given $K = [0, 1]^n$ and a family of mappings $\{F_K \in Q_1(K)^n\}$ we have

$$K = F_K(\hat{K})$$

and

$$\Omega = \bigcup_{K \in \mathcal{T}_\Omega} K, \quad |\Omega| = \sum_{K \in \mathcal{T}_\Omega} |K|.$$

The collection of triangulations is denoted by \mathcal{T}_{Ω}.

The mesh \mathcal{T}_Ω is assumed to be conforming or compatible, i.e., the intersection of any two isoparametric elements K and K' in \mathcal{T}_Ω is either empty or a common lower dimensional isoparametric element.

In addition, we assume that \mathcal{T}_Ω is shape regular (cf. [22, Chapter 4.3]). This means that F_K can be decomposed as $F_K = A_K + B_K$, where A_K is affine and B_K
is a perturbation map and, if we define \(\tilde{K} = A_K(K) \), \(h_K = \text{diam}(\tilde{K}) \), \(\rho_K \) as the diameter of the largest sphere inscribed in \(\tilde{K} \) and the shape coefficient of \(K \) as the ratio \(\sigma_K = h_K / \rho_K \), then the following two conditions are satisfied:

(a) There exists a constant \(\sigma_\Omega > 1 \) such that for all \(\mathcal{T}_\Omega \in \mathbb{T}_\Omega \),

\[
\max \{ \sigma_K : K \in \mathcal{T}_\Omega \} \leq \sigma_\Omega.
\]

(b) For all \(K \in \mathcal{T}_\Omega \) the mapping \(B_K \) is Fréchet differentiable and

\[
\| DB_K \|_{L^\infty(\tilde{K})} = O(h_K^2),
\]

for all \(K \in \mathcal{T}_\Omega \) and all \(\mathcal{T}_\Omega \in \mathbb{T}_\Omega \).

As a consequence of these conditions, if \(h_K \) is small enough, the mapping \(F_K \) is one-to-one, its Jacobian \(J_{F_K} \) does not vanish, and

\[
J_{F_K} \lesssim h_K^n, \quad \| D F_K \|_{L^\infty(K)} \lesssim h_K.
\]

(4.2)

The set \(\mathbb{T}_\Omega \) is called quasi-uniform if for all \(\mathcal{T}_\Omega \in \mathbb{T}_\Omega \),

\[
\max \{ \rho_K : K \in \mathcal{T}_\Omega \} \lesssim \min \{ h_K : K \in \mathcal{T}_\Omega \}.
\]

In this case, we define \(h_{\mathcal{T}_\Omega} = \max_{K \in \mathcal{T}_\Omega} h_K \).

We define \(\mathcal{T}_\gamma \) as a triangulation of \(\mathcal{C}_\gamma \) into cells of the form \(T = K \times I \), where \(K \in \mathcal{T}_\Omega \), and \(I \) denotes an interval in the extended dimension. Notice that each discretization of the truncated cylinder \(\mathcal{C}_\gamma \) depends on the truncation parameter \(\gamma \).

The set of all such triangulations is denoted by \(\mathbb{T} \). In order to obtain a global regularity assumption for \(\mathbb{T} \) we assume the aforementioned conditions on \(\mathbb{T}_\Omega \), besides the following weak regularity condition:

(c) There is a constant \(\sigma \) such that, for all \(\mathcal{T}_\gamma \in \mathbb{T} \), if \(T_1 = K_1 \times I_1, T_2 = K_2 \times I_2 \in \mathcal{T}_\gamma \) have nonempty intersection, then

\[
\frac{h_{I_1}}{h_{I_2}} \leq \sigma,
\]

where \(h_I = |I| \).

Notice that the assumptions imposed on \(\mathbb{T} \) are weaker than the standard shape-regularity assumptions, since they allow for anisotropy in the extended variable (cf. \(28 \)). It is also important to notice that, given the Cartesian product structure of the cells \(T \in \mathcal{T}_\gamma \), they are isoparametrically equivalent to \(T = [0,1]^{n+1} \). We will denote the corresponding mappings by \(F_T \). Then,

\[
F_T : \hat{x} = (\hat{x}', \hat{y}) \in \hat{T} \mapsto x = (x', y) = (F_K(\hat{x}'), F_I(\hat{y})) \in T = K \times I,
\]

where \(F_K \) is the bilinear mapping defined in (4.1) for \(K \) and, if \(I = (c, d) \), \(F_I(y) = (y - c) / (d - c) \). From (4.2), we immediately conclude that

\[
J_{F_T} \lesssim h_K^n h_I, \quad \| D F_T \|_{L^\infty(\hat{T})} \lesssim h_T,
\]

(4.3)

for all elements \(T \in \mathcal{T}_\gamma \) where \(h_T = \max\{h_K, h_I\} \).

Given \(\mathcal{T}_\gamma \in \mathbb{T} \), we define the finite element space \(V(\mathcal{T}_\gamma) \) by

\[
V(\mathcal{T}_\gamma) = \{ W \in C^0(\overline{\mathcal{C}_\gamma}) : W|_T \in Q_1(T) \forall T \in \mathcal{T}_\gamma, W|_{\Gamma_0} = 0 \}.
\]
where $\Gamma_D = \partial D \subset \Omega \times \{\gamma\}$ is called the Dirichlet boundary. The Galerkin approximation of (4.3) is given by the unique function $V_{\mathcal{F}} \in \mathcal{V}(\mathcal{F})$ such that

$$
\int_{C_{\gamma}} y^n \nabla V_{\mathcal{F}} \cdot \nabla W = d_s \langle f, \text{tr}_\Omega W \rangle, \quad \forall W \in \mathcal{V}(\mathcal{F}).
$$

(4.4)

Existence and uniqueness of $V_{\mathcal{F}}$ follows from $\mathcal{V}(\mathcal{F}) \subset \tilde{H}_1^1(C_{\gamma}, y^\alpha)$ and the Lax-Milgram lemma.

We define the space $\mathcal{U}(\mathcal{F}_\Omega) = \text{tr}_\Omega \mathcal{V}(\mathcal{F})$, which is nothing more than a Q_1 finite element space over the mesh \mathcal{F}_Ω. The finite element approximation of $u \in \mathcal{H}^s(\Omega)$, solution of (1.1), is then given by

$$
U_{\mathcal{F}_\Omega} = \text{tr}_\Omega V_{\mathcal{F}} \in \mathcal{U}(\mathcal{F}_\Omega),
$$

(4.5)

and we have the following result.

Theorem 4.1 (Energy error estimate). If $V_{\mathcal{F}} \in \mathcal{V}(\mathcal{F})$ solves (4.4) and $U_{\mathcal{F}_\Omega} \in \mathcal{U}(\mathcal{F}_\Omega)$ is defined in (4.5), then

$$
\|u - U_{\mathcal{F}_\Omega}\|_{\mathcal{H}^s(\Omega)} \lesssim \|u - V_{\mathcal{F}}\|_{\tilde{H}_1^1(C_{\gamma}, y^\alpha)},
$$

(4.6)

and

$$
\|u - V_{\mathcal{F}}\|_{\tilde{H}_1^1(C_{\gamma}, y^\alpha)} \lesssim \epsilon \|f\|_{\mathcal{H}^s(\Omega)} + \|v - V_{\mathcal{F}}\|_{\tilde{H}_1^1(C_{\gamma}, y^\alpha)}.
$$

(4.7)

Proof. Estimate (4.6) is just an application of the trace estimate of Proposition 2.5. Inequality (4.7) is obtained by the triangle inequality and (3.12). □

By Galerkin orthogonality

$$
\|v - V_{\mathcal{F}}\|_{\tilde{H}_1^1(C_{\gamma}, y^\alpha)} = \inf_{W \in \mathcal{V}(\mathcal{F})} \|v - W\|_{\tilde{H}_1^1(C_{\gamma}, y^\alpha)}.
$$

Theorem 4.1 and Galerkin orthogonality imply that the approximation estimate (4.7) depends on the regularity of u. To see this we introduce

$$
\rho(y) = \begin{cases}
1, & 0 \leq y < \gamma', \\
p, & \gamma'/2 \leq y \leq \gamma,
\end{cases}
$$

(4.8)

where p is the unique cubic polynomial on $[\gamma'/2, \gamma']$ defined by the conditions $p(\gamma'/2) = 1$, $p'(\gamma') = 0$, $p'(\gamma'/2) = 0$ and $p''(\gamma') = 0$. Notice that $\rho \in W_2^\infty(0, \gamma')$, $|\rho(y)| \leq 1$, $|\rho'(y)| \leq 1$ and $|\rho''(y)| \leq 1$. Set $u_0(x', y) = \rho(y)u(x', y)$ for $x' \in \Omega$ and $y \in [0, \gamma]$, and notice that $u_0 \in \tilde{H}_1^1(C_{\gamma}, y^\alpha)$. With this construction at hand, repeating the arguments used in the proof of Lemma 3.3, we have that

$$
\|\Delta x' u_0\|_{L^2(C_{\gamma}, y^\alpha)} \lesssim \|\Delta x' u\|_{L^2(C_{\gamma}, y^\alpha)},
$$

$$
\|\partial_{\gamma} \nabla x' u_0\|_{L^2(C_{\gamma}, y^\alpha)} \lesssim \|\partial_{\gamma} \nabla x' u\|_{L^2(C_{\gamma}, y^\alpha)} + \|f\|_{\mathcal{H}^s(\Omega)},
$$

$$
\|\partial_{\gamma y} u_0\|_{L^2(C_{\gamma}, y^\alpha)} \lesssim \|\partial_{\gamma y} u\|_{L^2(C_{\gamma}, y^\alpha)} + \|f\|_{\mathcal{H}^s(\Omega)}.
$$

In addition, if we assume that there is an operator

$$
\Pi_{\mathcal{F}} : \tilde{H}_1^1(C_{\gamma}, y^\alpha) \to \mathcal{V}(\mathcal{F}),
$$

A PDE approach to fractional diffusion

19
that is stable, i.e., \(\| \Pi_{\mathcal{T}_n} u \|_{H^1_L(C_y, y^n)} \lesssim \| u \|_{H^1_L(C_y, y^n)} \), for all \(u \in \tilde{H}^1_L(C_y, y^n) \), then the following estimate holds

\[
\| u - V_{\mathcal{T}_n} \|_{H^1_L(C_y, y^n)} \lesssim \epsilon \| f \|_{H^\epsilon(\Omega)} + \| u_0 - \Pi_{\mathcal{T}_n} u_0 \|_{H^1_L(C_y, y^n)}.
\] (4.9)

To see this, we use (4.7), together with Galerkin orthogonality and the stability of the operator \(\Pi_{\mathcal{T}_n} \), to obtain

\[
\| u - V_{\mathcal{T}_n} \|_{H^1_L(C_y, y^n)} \lesssim \epsilon \| f \|_{H^\epsilon(\Omega)} + \| v - \Pi_{\mathcal{T}_n} v \|_{H^1_L(C_y, y^n)}
\]
\[
\lesssim \epsilon \| f \|_{H^\epsilon(\Omega)} + \| v - u_0 \|_{H^1_L(C_y, y^n)} + \| u_0 - \Pi_{\mathcal{T}_n} u_0 \|_{H^1_L(C_y, y^n)}.
\]

The second term on the right hand side of the previous inequality is estimated as in Lemma 3.3. We leave the details to the reader.

Estimates for \(u_0 - \Pi_{\mathcal{T}_n} u_0 \) on weighted Sobolev spaces are derived in (4.12). Clearly, these depend on the regularity of \(u_0 \) which, in light of (4.9), depends on the regularity of \(u \). For this reason, and to lighten the notation, we shall in the sequel write \(u \) and obtain interpolation error estimates for it, even though \(u \) does not vanish at \(y = y' \).

4.2. Interpolation estimates in weighted Sobolev spaces. Let us begin by introducing some notation and terminology. Given \(\mathcal{T}_y \), we call \(\mathcal{X} \) the set of its nodes and \(\mathcal{X}_{in} \) the set of its interior and Neumann nodes. For each vertex \(v \in \mathcal{X} \), we write \(v = (v', v'') \), where \(v' \) corresponds to a node of \(\mathcal{T}_\Omega \), and \(v'' \) corresponds to a node of the discretization of the \(n + 1 \)-dimension. We define \(h_{v'} = \min \{ h_K : v' \text{ is a vertex of } K \} \), and \(h_{v''} = \min \{ h_f : v'' \text{ is a vertex of } I \} \).

Given \(v \in \mathcal{X} \), the star or patch around \(v \) is defined as

\[
\omega_v = \bigcup_{T \in \mathcal{T}_y} T,
\]

and for \(T \in \mathcal{T}_y \) we define its patch as

\[
\omega_T = \bigcup_{v \in T} \omega_v.
\]

Let \(\psi \in C^\infty(\mathbb{R}^{n+1}) \) be such that \(\int \psi = 1 \) and \(D := \text{supp} \psi \subset B_r \times (-r_y, r_y) \), where \(B_r \) denotes the ball in \(\mathbb{R}^n \) of radius \(r \) and centered at zero, and \(r \leq 1/\sigma_\Omega \) and \(r_y \leq 1/\sigma \). For \(v \in \mathcal{X}_{in} \), we rescale \(\psi \) as

\[
\psi_v(x) = \frac{1}{h_{v'} h_{v''}} \psi \left(\frac{v' - x'}{h_{v'}}, \frac{v'' - y}{h_{v''}} \right),
\]

and note that \(\text{supp} \psi_v \subset \omega_v \) for all \(v \in \mathcal{X}_{in} \).

Given a function \(w \in L^2(C_y, y^n) \) and a node \(v \) in \(\mathcal{X}_{in} \) we define, following Durán and Lombardi [28], the regularized Taylor polynomial of first degree of \(w \) about \(v \) as

\[
w_v(z) = \int P(x, z) \psi_v(x) \, dx = \int_{\omega_v} P(x, z) \psi_v(x) \, dx,
\] (4.10)

where \(P \) denotes the Taylor polynomial of degree 1 in the variable \(z \) of the function \(w \) about the point \(x \), i.e.,

\[
P(x, z) = w(x) + \nabla w(x) \cdot (z - x).
\] (4.11)
As a consequence of Remark 2.3 and the fact that the averaged Taylor polynomial is defined for functions in \(L^1(C, y^a) \) (cf. [15] Proposition 4.1.12), we conclude that \(P \) is well defined for any function in \(L^2(C, y^a) \).

We define the average \(Q_1 \) interpolant \(\Pi_{\mathcal{G}_x} w \), as the unique piecewise \(Q_1 \) function such that \(\Pi_{\mathcal{G}_x} w(v) = 0 \) if \(v \) lies on the Dirichlet boundary \(\Gamma_D \) and \(\Pi_{\mathcal{G}_x} w(v) = w_\lambda(v) \) if \(v \in \mathcal{N}_{in} \). If \(\lambda_\alpha \) denotes the Lagrange basis function associated with node \(v \), then

\[
\Pi_{\mathcal{G}_x} w = \sum_{v \in \mathcal{N}_{in}} w_\lambda(v) \lambda_\alpha.
\]

There are two principal reasons to consider average interpolation. First, we are interested in the approximation of singular functions and thus Lagrange interpolation cannot be used since point-wise values become meaningless. In fact, this motivated the introduction of average interpolation (see [24, 53]). In addition, average interpolation has better approximation properties when narrow elements are used (see [2]).

Finally, for \(v \in \mathcal{N}_{in} \), we define the weighted regularized average of \(w \) as

\[
Q_\alpha w = \int_{\omega} w(x) \psi_\alpha(x) \, dx = \int_{\omega} w(x) \psi_\alpha(x) \, dx.
\] (4.12)

4.2.1. Weighted Poincaré inequality. In order to obtain interpolation error estimates in \(L^2(C, y^a) \) and \(H^1(C, y^a) \), it is instrumental to have a weighted Poincaré-type inequality. Weighted Poincaré inequalities are particularly pertinent in the study of the nonlinear potential theory of degenerate elliptic equations, see [34, 40]. If the domain is a ball and the weight belongs to \(L^2(B) \), we define the weighted regularized average of \(w \) as

\[
Q_\alpha w = \int_{B} w(x) \psi_\alpha(x) \, dx = \int_{B} w(x) \psi_\alpha(x) \, dx.
\]

Let \(\omega \subset \mathbb{R}^{n+1} \) be bounded, star-shaped with respect to a ball \(B \), and \(\text{diam} \, \omega \approx 1 \). Let \(\chi \in C^0(\bar{\omega}) \) with \(\int_{\omega} \chi = 1 \), and \(\xi_\alpha(y) := |a|y + b|^a \) for \(a, b \in \mathbb{R} \). If \(w \in H^1(\omega, \xi_\alpha(y)) \) is such that \(\int_{\omega} \chi w = 0 \), then

\[
\|w\|_{L^2(\omega, \xi_\alpha)} \lesssim \|\nabla w\|_{L^2(\omega, \xi_\alpha)},
\] (4.13)

where the hidden constant depends only on \(\chi, \alpha \) and the radius \(r \) of \(B \), but is independent of both \(a \) and \(b \).

Proof. The fact that \(\alpha \in (-1, 1) \) implies \(\xi_\alpha \in A_2(\mathbb{R}^{n+1}) \) with a Muckenhoupt constant \(C_{2, \xi_\alpha} \) in (2.15) uniform in both \(a \) and \(b \). Define

\[
\bar{w} = \xi_\alpha w - \left(\int_{\omega} \xi_\alpha w \right) \chi.
\]

Clearly \(\bar{w} \in L^1(\omega) \) and it has vanishing mean value by construction. Since \(\int_{\omega} \chi w = 0 \) we obtain

\[
\|w\|_{L^2(\omega, \xi_\alpha)}^2 = \int_{\omega} w \bar{w} + \left(\int_{\omega} \xi_\alpha w \right) \int_{\omega} \chi w = \int_{\omega} w \bar{w}.
\] (4.14)

Consequently, given that \(\omega \) is star shaped with respect to \(\hat{B} \), and \(\xi_\alpha \in A_2(\mathbb{R}^{n+1}) \), there exists \(F \in H^{1}_0(\omega, \xi_\alpha) \) such that \(-\nabla F = \bar{w} \), and

\[
\|F\|_{H^1_0(\omega, \xi_\alpha)} \lesssim \|\bar{w}\|_{L^2(\omega, \xi_\alpha)},
\] (4.15)
where the hidden constant in (4.15) depends on r and the constant C_{2,ξ_α} from Definition 2.1 [30, Theorem 3.1].

Replacing \tilde{w} by $-\text{div} F$ in (4.14), integrating by parts and using (4.15), we get

$$
\|w\|_{L^2(\omega,\xi_\alpha)}^2 = -\int_\omega \text{div} F = \int_\omega \nabla w \cdot F \lesssim \|\nabla w\|_{L^2(\omega,\xi_\alpha)} \|\tilde{w}\|_{L^2(\omega,\xi_\alpha^{-1})}.
$$

(4.16)

To estimate $\|\tilde{w}\|_{L^2(\omega,\xi_\alpha^{-1})}$ we use the Cauchy-Schwarz inequality and the constant C_{2,ξ_α} from Definition 2.1 as follows:

$$
\|\tilde{w}\|_{L^2(\omega,\xi_\alpha^{-1})}^2 \leq 2 \left(1 + \int_\omega \xi_\alpha \int_\omega \chi_\alpha \xi_\alpha^{-1}\right) \|w\|_{L^2(\omega,\xi_\alpha)} \lesssim \|w\|_{L^2(\omega,\xi_\alpha)}.
$$

Inserting the inequality above into (4.16), we obtain (4.13). \square

We need a slightly more general form of the Poincaré inequality for the applications below. We now relax the geometric assumption on the domain ω and let the vanishing mean property hold just in a subdomain.

Corollary 4.3 (Weighted Poincaré inequality II). Let $\omega = \cup_{i=1}^N \omega_i \subset \mathbb{R}^{n+1}$ be a connected domain and each ω_i be a star-shaped domain with respect to a ball B_i. Let $\chi_i \in C^0(\bar{\omega}_i)$ and ξ_α be as in Lemma 4.2. If $w \in H^1(\omega,\xi_\alpha)$ and $w_i := \int_{\omega_i} w \chi_i$, then

$$
\|w - w_i\|_{L^2(\omega,\xi_\alpha)} \lesssim \|\nabla w\|_{L^2(\omega,\xi_\alpha)} \quad \forall 1 \leq i \leq N,
$$

(4.17)

where the hidden constant depends on $\{\chi_i\}_{i=1}^N$, α, the radius r_i of B_i, and the amount of overlap between the subdomains $\{\omega_i\}_{i=1}^N$, but is independent of both a and b.

Proof. This is a consequence of Lemma 4.2 and [27, Theorem 7.1]. We sketch the proof here for completeness. It suffices to deal with two subdomains, ω_1, ω_2, and the overlapping region $B = \omega_1 \cap \omega_2$. We observe that

$$
\|w - w_1\|_{L^2(\omega_2,\xi_\alpha)} \leq \|w - w_2\|_{L^2(\omega_2,\xi_\alpha)} + \|w_1 - w_2\|_{L^2(\omega_2,\xi_\alpha)},
$$

together with $\|w_1 - w_2\|_{L^2(\omega_2,\xi_\alpha)} = \left(\int_{\omega_2} \frac{\xi_\alpha}{f_{B,\xi_\alpha}}\right)^{1/2} \|w_1 - w_2\|_{L^2(B,\xi_\alpha)}$ and

$$
\|w_1 - w_2\|_{L^2(B,\xi_\alpha)} \lesssim \|w - w_1\|_{L^2(\omega_1,\xi_\alpha)} + \|w - w_2\|_{L^2(\omega_2,\xi_\alpha)},
$$

imply $\|w - w_1\|_{L^2(\omega_2,\xi_\alpha)} \lesssim \|\nabla w\|_{L^2(\omega_1 \cup \omega_2,\xi_\alpha)}$. This, combined with (4.13), gives (4.17) for $i = 1$ with a stability constant depending on the ratio $\int_{\omega_i} \frac{\xi_\alpha}{f_{B,\xi_\alpha}}$. \square

4.2.2. Weighted L^2-based interpolation estimates. Owing to the weighted Poincaré inequality of Corollary 4.3, we can adapt the proof of [23, Lemma 2.3] to obtain interpolation estimates in the weighted L^2-norm. These estimates allow a disparate mesh size on the extended direction, relative to the coordinate directions $x_i, i = 1, \ldots, n$, which may in turn be graded. This is the principal difference with [28, Lemma 2.3] where, however, the domain must be a cube.

Lemma 4.4 (Weighted L^2-based interpolation estimates). Let $v \in \mathcal{N}_{in}$. Then, for all $w \in H^1(\omega, y^\alpha)$, we have

$$
\|w - Q_v w\|_{L^2(\omega, y^\alpha)} \lesssim h_{\alpha'} \|\nabla x' v\|_{L^2(\omega, y^\alpha)} + h_{\alpha''} \|\partial_{\alpha} v\|_{L^2(\omega, y^\alpha)},
$$

(4.18)

and, for all $v \in H^2(\omega, y^\alpha)$ and $j = 1, \ldots, n+1$, we have

$$
\|\partial_{x_j}(w - w_v)\|_{L^2(\omega, y^\alpha)} \lesssim h_{\alpha'} \sum_{i=1}^{n} |\partial_{x_i}^2 v|_{L^2(\omega, y^\alpha)} + h_{\alpha''} \|\partial_{x_j}^2 v\|_{L^2(\omega, y^\alpha)},
$$

(4.19)
where, in both inequalities, the hidden constant depends only on \(\alpha, \sigma_\Omega, \sigma \) and \(\psi \).

Proof. Define by \(\mathcal{F}_\sigma : (x', y) \to (\bar{x}', \bar{y}) \) the scaling map

\[
\bar{x}' = \frac{x' - x}{h_{\bar{x}'}}, \quad \bar{y} = \frac{y'' - y}{h_{\bar{y}'}}.
\]

along with \(\mathcal{F}_\sigma = \mathcal{F}_\sigma(\omega_\sigma) \) and \(\bar{w}(\bar{x}) = w(x) \). Define also \(\bar{Q}\bar{w} = \int \bar{w}\psi \), where \(\psi \) has been introduced in Section 4.2. Since \(\text{supp } \psi \subset \mathcal{F}_\sigma \) integration takes place only over \(\mathcal{F}_\sigma \), and \(\int_{\mathcal{F}_\sigma} \psi = 1 \). Then, \(\bar{Q}\bar{w} \) satisfies \(\bar{Q}\bar{w} = \int_{\mathcal{F}_\sigma} \bar{w}\psi = \int_{\omega_\sigma} w\psi_\sigma = Q\psi, \) and

\[
\int_{\mathcal{F}_\sigma} (\bar{Q}\bar{w} - \bar{w})\psi \, d\bar{x} = \bar{Q}\bar{w} - \int_{\mathcal{F}_\sigma} \bar{w}\psi \, d\bar{x} = 0. \tag{4.20}
\]

Simple scaling, using the definition of the mapping \(\mathcal{F}_\sigma \), yields

\[
\int_{\omega_\sigma} y''|w - Q_s w|^2 \, dx = h_{\bar{x}'}^\alpha h_{\bar{y}''} \int_{\mathcal{F}_\sigma} \xi(y)|\bar{w} - \bar{Q}\bar{w}|^2 \, d\bar{x}, \tag{4.21}
\]

where \(\xi(y) := |v'' - yh_{\bar{y}''}|^\alpha \). By shape regularity, the mesh sizes \(h_{\bar{x}'} \), \(h_{\bar{y}''} \) satisfy \(1/2\sigma \leq h_{\bar{x}'} \leq 2\sigma \) and \(1/2\sigma_\Omega \leq h_{\bar{y}''} \leq 2\sigma_\Omega \), respectively, and \(\text{diam } \mathcal{F}_\sigma \approx 1 \). In view of (4.20), we can apply Lemma 4.2 with the weight \(\xi(y) \) and \(\chi = \psi \), to \(\omega = \mathcal{F}_\sigma \) to obtain

\[
\|\bar{w} - \bar{Q}\bar{w}\|_{L^2(\omega_\sigma, \xi(y))} \lesssim \|\nabla \bar{w}\|_{L^2(\omega_\sigma, \xi(y))},
\]

where the hidden constant depends only on \(\alpha, \sigma_\Omega, \sigma \) and \(\psi \), but not on \(v'' \) and \(h_{\bar{y}''} \). Applying this to (4.21), together with a change of variables with \(\mathcal{F}_\sigma^{-1} \), we get (4.18).

The proof of (4.19) is similar. Notice that

\[
\begin{aligned}
\bar{w}_\sigma(\bar{z}) &= \int_{\omega_\sigma} (w(x) + \nabla w(x) \cdot (\bar{z} - x)) \psi_\sigma(x) \, dx \\
&= \int_{\mathcal{F}_\sigma} ((\bar{w}(\bar{x}) + \nabla \bar{w}(\bar{x}) \cdot (\bar{z} - \bar{x})) \psi(\bar{x}) \, d\bar{x}
\end{aligned}
\]

Since \(\partial_{\bar{z}} \bar{w}_0(\bar{z}) = \int_{\mathcal{F}_\sigma} \partial_{\bar{z}} \bar{w}(\bar{x}) \psi(\bar{x}) \, d\bar{x} \) is constant, we have the vanishing mean value property

\[
\int_{\mathcal{F}_\sigma} \partial_{\bar{z}} (\bar{w}(\bar{z}) - \bar{w}_0(\bar{z})) \psi(\bar{z}) \, d\bar{z} = 0.
\]

Finally, applying Lemma 4.2 to \(\partial_{\bar{z}_i} (\bar{w}(\bar{x}) - \bar{w}_0(\bar{x})) \), and scaling back via the map \(\mathcal{F}_\sigma \), we obtain (4.19). \(\square \)

By shape regularity, for all \(v \in \mathcal{N}_{\text{in}} \) and \(T \subset \omega_\sigma \), the quantities \(h_{\bar{x}'} \) and \(h_{\bar{y}''} \) are equivalent to \(h_K \) and \(h_\Omega \), up to a constant that depends only on \(\sigma_\Omega \) and \(\sigma \), respectively. This fact leads to interpolation estimates in the weighted \(L^2 \)-norm.

Theorem 4.5 (Stability and local interpolation estimates in the weighted \(L^2 \)-norm). For all \(T \in \mathcal{T}_\sigma \) and \(w \in L^2(\omega_T, y^\sigma) \) we have

\[
\|\Pi_{\bar{x}_\sigma} w\|_{L^2(T,y^\sigma)} \lesssim \|w\|_{L^2(\omega_T, y^\sigma)}. \tag{4.22}
\]

If, in addition, \(w \in H^1(\omega_T, y^\sigma) \)

\[
\|w - \Pi_{\bar{x}_\sigma} w\|_{L^2(T,y^\sigma)} \lesssim h_{\bar{x}'} \|\nabla x' w\|_{L^2(\omega_T, y^\sigma)} + h_{\bar{y}''} \|\partial_y w\|_{L^2(\omega_T, y^\sigma)}. \tag{4.23}
\]
The hidden constants in both inequalities depend only on \(\sigma_\Omega, \sigma, \psi \) and \(\alpha \).

Proof. Let \(T \) be an element of \(\mathcal{T}_\mathcal{G} \). Assume, for the moment, that \(\Pi_{\mathcal{T}} \) is uniformly bounded as a mapping from \(L^2(\{T,T^\prime\}) \) to \(L^2(T,y^\prime) \), i.e., (4.22).

Choose an interior node \(v \) of \(T \), i.e., a node \(v \) of \(T \) such that \(v \in \mathcal{N}_\text{in} \). Since \(Q_\tau w \) is constant, we deduce \(\Pi_{\mathcal{T}} Q_\tau w = Q_\tau w \), whence

\[
\|w - \Pi_{\mathcal{T}} w\|_{L^2(T,y^\prime)} = \|(I - \Pi_{\mathcal{T}})(w - Q_\tau w)\|_{L^2(T,y^\prime)} \lesssim \|w - Q_\tau w\|_{L^2(\{T,T^\prime\})},
\]

so that (4.23) follows from Corollary 4.3.

It remains to show the local boundedness (4.22) of \(\Pi_{\mathcal{T}} \). By definition,

\[
\Pi_{\mathcal{T}} w = \sum_{i=1}^{n_T} w_{i,v}(v_i) \lambda_{v_i},
\]

where \(\{v_i\}_{i=1}^{n_T} \) denotes the set of interior vertices of \(T \). By the triangle inequality

\[
\|\Pi_{\mathcal{T}} w\|_{L^2(T,y^\prime)} \leq \sum_{i=1}^{n_T} \|w_{i,v}\|_{L^\infty(T)} \|\lambda_{v_i}\|_{L^2(T,y^\prime)},
\]

so that we need to estimate \(\|w_{i,v}\|_{L^\infty(T)} \). This follows from (4.10) along with,

\[
\left| \int_{\omega_{i,v}} w \psi_{v_i} \right| \leq \|w\|_{L^2(\omega_{i,v},y^\prime)} \|\psi_{v_i}\|_{L^2(\omega_{i,v},y^{-\alpha})},
\]

and, for \(\ell = 1, \ldots, n+1 \),

\[
\left| \int_{\omega_{i,v}} \partial_{x_\ell} w(x)(z_\ell - x_\ell) \psi_{v_i}(x) \, dx \right| \lesssim \|w\|_{L^2(\omega_{i,v},y^\prime)} \|\psi_{v_i}\|_{L^2(\omega_{i,v},y^{-\alpha})}.
\]

We get (4.26) upon integration by parts, \(\psi_{v_i} = 0 \) on \(\partial\omega_{v_i} \), and \(|z_\ell - x_\ell| \lesssim h_K \approx h_{v_i} \) for \(\ell = 1, \ldots, n \) and \(|z_{n+1} - y| \lesssim h_I \approx h_{v_i} \). Replacing (4.25) and (4.26) in (4.24), we arrive at

\[
\|\Pi_{\mathcal{T}} w\|_{L^2(T,y^\prime)} \lesssim \|w\|_{L^2(\{T,T^\prime\})} \sum_{i=1}^{n_T} \|\lambda_{v_i}\|_{L^2(T,y^\prime)} \|\psi_{v_i}\|_{L^2(\omega_{i,v},y^{-\alpha})} \lesssim \|w\|_{L^2(\{T,T^\prime\})},
\]

where the last inequality is a consequence of \(\lambda_{v_i} \) and \(\psi \) being bounded in \(L^\infty(\omega_T) \),

\[
\|\lambda_{v_i}\|_{L^2(T,y^\prime)} \|\psi_{v_i}\|_{L^2(\omega_{i,v},y^{-\alpha})} \lesssim |\omega_{v_i}|^{-1} \left(\int_{\omega_{v_i}} |y|^\alpha \int_{\omega_{v_i}} |y|^{-\alpha} \right)^{1/2},
\]

together with \(|y|^\alpha \in A_2(\mathbb{R}^{n+1}) \); see (2.15). \(\square \)

4.2.3. Weighted \(H^1 \)-based interpolation estimates on interior elements.

Here we prove interpolation estimates on the first derivatives for interior elements. The, rather technical, proof is an adaption of [28, Theorem 2.6] to our particular geometric setting. In contrast to [28, Theorem 2.6], we do not have the symmetries of a cube. However, exploiting the Cartesian product structure of the elements \(T = K \times I, \)
we are capable of handling the anisotropy in the extended variable \(y\) for general shape-
regular graded meshes \(\mathcal{T}_y\). This is the content of the following result.

Theorem 4.6 (Stability and local interpolation: interior elements). Let \(T \in \mathcal{T}_y\) be such that \(\partial T \cap \Gamma_D = \emptyset\). For all \(w \in H^2(\omega_T, y^n)\) we have the stability bounds

\[
\|\nabla_x \Pi_{\mathcal{T}_y} w\|_{L^2(\omega_T, y^n)} \lesssim \|\nabla_x w\|_{L^2(\omega_T, y^n)}, \tag{4.27}
\]
\[
\|\partial_y \Pi_{\mathcal{T}_y} w\|_{L^2(\omega_T, y^n)} \lesssim \|\partial_y w\|_{L^2(\omega_T, y^n)}, \tag{4.28}
\]

and, for all \(w \in H^2(\omega_T, y^n)\) and \(j = 1, \ldots, n+1\) we have the error estimates

\[
\|\partial_j (w - \Pi_{\mathcal{T}_y} w)\|_{L^2(\omega_T, y^n)} \lesssim h_{y_j} \|\nabla_x \partial_j w\|_{L^2(\omega_T, y^n)} + h_{y_j} \|\partial_y \partial_j w\|_{L^2(\omega_T, y^n)}.
\] \(4.29\)

Proof. To exploit the particular structure of \(T\), we label its vertices in an appropriate way; see Figure 4.1 for the three-dimensional case. In general, if \(T = K \times [a, b]\), we first assign a numbering \(\{v_k\}_{k=1,\ldots,2^n}\) to the nodes that belong to \(K \times \{a\}\). If \((\tilde{v}', b)\) is a vertex in \(K \times \{b\}\), then there is a \(v_k \in K \times \{a\}\) such that \(\tilde{v}' = v_k\), and we set \(v_{k+2^n} = \tilde{v}'\). We proceed in three steps.

1. **Derivative \(\partial_y\) in the extended dimension.** We wish to obtain a bound for the norm \(\|\partial_y (w - \Pi_{\mathcal{T}_y} w)\|_{L^2(T, y^n)}\). Since \(w - \Pi_{\mathcal{T}_y} w = (w - w_{v_1}) + (w_{v_1} - \Pi_{\mathcal{T}_y} w)\) and an estimate for the difference \(w - w_{v_1}\) is given in Lemma 4.4, it suffices to consider \(q := w_{v_1} - \Pi_{\mathcal{T}_y} w \in \mathcal{Q}_1\). Thanks to the special labeling of the nodes and the tensor product structure of the elements, i.e., \(\partial_y \lambda_{v_{1+2^n}} = -\partial_y \lambda_{v_1}\), we get

\[
\partial_y q = \sum_{i=1}^{2^n+1} q(v_i) \partial_y \lambda_{v_i} = \sum_{i=1}^{2^n} (q(v_i) - q(v_{i+2^n})) \partial_y \lambda_{v_i},
\]

so that

\[
\|\partial_y q\|_{L^2(T, y^n)} \leq \sum_{i=1}^{2^n} (q(v_i) - q(v_{i+2^n})) \|\partial_y \lambda_{v_i}\|_{L^2(T, y^n)}.
\] \(4.30\)

To estimate the differences \(|q(v_i) - q(v_{i+2^n})|\) for \(i = 1, \ldots, 2^n\) we may, without loss of generality, set \(i = 1\). By the definitions of \(\Pi_{\mathcal{T}_y}\) and \(q\), we have \(\Pi_{\mathcal{T}_y} w(v_1) = w_{v_1}(v_1)\), whence

\[
\delta q(v_1) := q(v_1) - q(v_{1+2^n}) = w_{v_1+2^n}(v_1+2^n) - w_{v_1}(v_1+2^n),
\]

\(\text{Fig. 4.1. A generic element } T = K \times I \text{ in three dimensions: a quadrilateral prism.}\)
and by the definition \((4.10)\) of the averaged Taylor polynomial, we have
\[
\delta q(v_1) = \int P(x, v_{1+2n})\psi_{1+2n}(x) \, dx - \int P(x, v_{1+2n})\psi_1(x) \, dx. \tag{4.31}
\]

Recalling the operator \(\circ\), introduced in \((2.4)\), we notice that, for \(h_q = (h_q', h_q'')\) and \(z \in \mathbb{R}^{n+1}\), the vector \(h_q \circ z\) is uniformly equivalent to \((h_Kz', h_Lz'')\) for all \(T = K \times I\) in the star \(\omega_q\). Changing variables in \((4.31)\) yields
\[
\delta q(v_1) = \int (P(v_{1+2n} - h_{v_{1+2n}} \circ z, v_{1+2n}) - P(v_1 - h_{v_1} \circ z, v_{1+2n})) \psi(z) \, dz. \tag{4.32}
\]

To estimate this expression define
\[
\theta = (0, \theta'') = (0, v''_{1+2n} - v''_1 + (h_q'' - h_q'_{1+2n})z''), \tag{4.33}
\]
and \(F_z(t) = P(v_1 - h_{v_1} \circ z + t\theta, v_{1+2n})\). Using that \(v'_1 = v'_{1+2n}\) and \(h_q' = h_q'_{1+2n}\), we easily obtain
\[
P(v_{1+2n} - h_{v_{1+2n}} \circ z, v_{1+2n}) - P(v_1 - h_{v_1} \circ z, v_{1+2n}) = F_z(1) - F_z(0).
\]

Consequently,
\[
\delta q(v_1) = \int \int_0^1 F'_z(t)\psi(t) \, dt \, dz = \int \int_0^1 F'_z(t)\psi(t) \, dz \, dt, \tag{4.34}
\]
and since \(\psi\) is bounded in \(L^\infty\) and \(\text{supp } \psi = D \subset B_1 \times (-1, 1)\), we need to estimate the integral
\[
I(t) = \int_D |F'_z(t)| \, dz, \quad 0 \leq t \leq 1.
\]

Invoking the definitions of \(F_z\) and \(P(x, y)\), we deduce
\[
F'_z(t) = \nabla_x P(v_1 - h_{v_1} \circ z + t\theta, v_{1+2n}) \cdot \theta,
\]
and
\[
\nabla_x P(x, y) = D_2w(x) \cdot (y - x).
\]

Using these two expressions, we arrive at
\[
I(t) \leq \int_D \left(|\partial_{yy} w(v_1 - h_{v_1} \circ z + t\theta)| |v'_{1+2n} - v'_1 + h_q' z' - t\theta''|
+ |\partial_y \nabla_{x'} w(v_1 - h_{v_1} \circ z + t\theta)| |v'_{1+2n} - v'_1 + h_q' z'| \right) d\theta'' \, dz,
\]
Now, since \(|z'|, |z''| \leq 1\) and \(0 \leq t \leq 1\), we see that
\[
|v'_{1+2n} - v'_1 + h_q' z'| \lesssim h_q', \quad |v''_{1+2n} - v''_1 + h_q'' z'' - t\theta''| \lesssim h_q''.
\]

Consequently,
\[
I(t) \lesssim \int_D \left(|\partial_{yy} w(v_1 - h_{v_1} \circ z + t\theta)| h_q''^2
+ |\partial_y \nabla_{x'} w(v_1 - h_{v_1} \circ z + t\theta)| h_q' h_q'' \right) d\zeta.
\]
Changing variables, via \(\tau = v_1 - h v_i \cap z + t \theta \), we obtain

\[
I(t) \lesssim \int_{\omega} \left(\frac{h v_i''}{h v_i} \left| \partial_{y y}^2 w(\tau) \right| + \frac{1}{h v_i} \left| \partial_y \nabla_x w(\tau) \right| \right) \, d\tau, \tag{4.35}
\]

because the support \(D \) of \(\psi \) is contained in \(B_{1/\sigma y} \times (-1/\sigma y', 1/\sigma y') \), and so is mapped into \(\omega v_i \subset \omega_T \). Notice also that \(h v_i'' \lesssim (1 - t) h v_i' + t h v_{i+2} \). This implies

\[
I(t) \lesssim \left(\frac{h v_i''}{h v_i} \| \partial_{y y}^2 w \|_{L^2(\omega_T, y^n)} + \frac{1}{h v_i''} \| \nabla_x \partial_y w \|_{L^2(\omega_T, y^n)} \right) \| 1 \|_{L^2(\omega_T, y^n)}, \tag{4.36}
\]

which, together with \(\| 4.34 \| \), yields

\[
| \delta q(v_1) \| \partial_y \lambda v_i \|_{L^2(T, y^n)} \lesssim \left(\frac{h v_i''}{h v_i} \| \partial_{y y}^2 w \|_{L^2(\omega_T, y^n)} + \frac{1}{h v_i''} \| \nabla_x \partial_y w \|_{L^2(\omega_T, y^n)} \right),
\]

\[
\cdot \| 1 \|_{L^2(\omega_T, y^n)} \| \partial_y \lambda v_i \|_{L^2(T, y^n)}. \tag{4.37}
\]

Since \(|y|^\alpha \in A_2(\mathbb{R}^{n+1}) \), we have

\[
\| 1 \|_{L^2(\omega_T, y^n)} \| \partial_y \lambda v_i \|_{L^2(T, y^n)} \lesssim h_{v_i}' \| 1 \|_{L^2(\omega_T, y^n)} \left(\int I \right)^{\frac{1}{2}} \left(\int I \right)^{\frac{1}{2}} \lesssim h_{v_i}' \tag{4.38}
\]

Replacing this into \(\| 4.37 \| \), we obtain

\[
| \delta q(v_1) \| \partial_y \lambda v_i \|_{L^2(T, y^n)} \lesssim h_{v_i}' \| \nabla_x \partial_y w \|_{L^2(\omega_T, y^n)} + h_{v_i''} \| \partial_{y y}^2 w \|_{L^2(\omega_T, y^n)}, \tag{4.39}
\]

which, in this case, implies \(\| 4.29 \| \).

2 Derivatives \(\nabla_{x'} \) in the domain \(\Omega \). To prove an estimate for \(\nabla_{x'} (w - \Pi_{x'} \omega) \) we notice that, given a vertex \(v \), the associated basis function \(\lambda_v \) can be written as \(\lambda_v(x) = \lambda_v(x') \mu_{v'}(y) \), where \(\lambda_v \) is the canonical \(Q_1 \) basis function on the variable \(x' \) associated to the node \(v' \) in the triangulation \(\mathcal{T}_h \), and \(\mu_{v'} \) corresponds to the piecewise \(\mathbb{P}_1 \) basis function associated to the node \(v'' \). Recall that, by construction, the basis \(\{ A_i \}_{i=1}^{2^n} \) possesses the so-called partition of unity property, i.e.,

\[
\sum_{i=1}^{2^n} \lambda_v(x') = 1 \quad \forall x' \in K, \quad \implies \quad \sum_{i=1}^{2^n} \nabla_{x'} \lambda_v(x') = 0 \quad \forall x' \in K.
\]

This implies that, for every \(q \in Q_1(T) \),

\[
\nabla_{x'} q = \sum_{i=1}^{2^n} q(v_i) \nabla_{x'} \lambda_v = \sum_{i=1}^{2^n} \left(q(v_i) \mu_{v'}(y) + q(v_{i+2^n}) \mu_{v'_{i+2^n}}(y) \right) \nabla_{x'} \lambda_v(x')
\]

\[
= \sum_{i=1}^{2^n} \left[q(v_i) - q(v_1) \right] \mu_{v'}(y) + \left(q(v_{i+2^n}) - q(v_{1+2^n}) \right) \mu_{v'_{i+2^n}}(y) \right) \nabla_{x'} \lambda_v(x'),
\]

so that

\[
\| \nabla_{x'} q \|_{L^2(T, y^n)} \lesssim \sum_{i=1}^{2^n} |q(v_i) - q(v_1)| \| \mu_{v'} \|_{L^2(T, y^n)}
\]

\[
+ \sum_{i=1}^{2^n} |q(v_{1+2^n}) - q(v_{i+2^n})| \| \mu_{v'_{i+2^n}} \|_{L^2(T, y^n)}.
\]
This expression shows that the same techniques developed for the previous step allows us to obtain (4.29).

3 Stability. It remains to prove (4.27) and (4.28). By the triangle inequality,
\[\|\partial_y w\|_{L^2(T,y^n)} \leq \|\partial_y (w - \Pi \beta_x w)\|_{L^2(T,y^n)} + \|\partial_y w\|_{L^2(T,y^n)},\]
so that it suffices to estimate the first term. Add and subtract \(w_{\nu_1}\),
\[\|\partial_y (w - \Pi \beta_x w)\|_{L^2(T,y^n)} \leq \|\partial_y (w - w_{\nu_1})\|_{L^2(T,y^n)} + \|\partial_y (w_{\nu_1} - \Pi \beta_x w)\|_{L^2(T,y^n)}.\]
(4.40)
Let us estimate the first term. The definition of \(\psi_{\nu_1}\), together with \(|y|^n \in A_2(\mathbb{R}^{n+1})\) implies \(\|\psi_{\nu_1}\|_{L^2(\omega_{\nu_1}, y^n)} \leq 1\), whence invoking the definition (4.10) of the regularized Taylor polynomial \(w_{\nu_1}\) yields
\[\|\partial_y w_{\nu_1}\|_{L^2(T,y^n)} \leq \|\partial_y w\|_{L^2(\omega_{\nu_1}, y^n)},\]
and
\[\|\partial_y (w - w_{\nu_1})\|_{L^2(T,y^n)} \lesssim \|\partial_y w\|_{L^2(T,y^n)}.\]
(4.41)
To estimate the second term of the right hand side of (4.40), we repeat the steps used to obtain (4.29), starting from (4.31). Integrating by parts and using that \(\psi_{\nu_1} = 0\) on \(\partial \omega_{\nu_1}\), we get, for \(\ell = 1, \ldots, n+1\),
\[\int_{\partial \omega_{\nu_1}} \partial_{x_\ell} w(x) (z_\ell - x_\ell) \psi_{\nu_1}(x) \, dx = \int_{\omega_{\nu_1}} w(x) \psi_{\nu_1}(x) \, dx - \int_{\omega_{\nu_1}} w(x) (z_\ell - x_\ell) \partial_{x_\ell} \psi_{\nu_1}(x) \, dx,\]
whence
\[\delta q(v_1) = (n + 2) \left(\int w(x) \psi_{\nu_1+2n} \, dx - \int w(x) \psi_{\nu_1} \, dx \right) - \int w(x) (v_{1+2n} - x) \cdot \nabla \psi_{\nu_1+2n} (x) \, dx + \int w(x) (v_1 - x) \cdot \nabla \psi_{\nu_1} (x) \, dx \]
\[= I_1 + I_2.\]
(4.42)
To estimate \(I_1\) we consider the same change of variables used to obtain (4.32). Define \(G_\tau(t) = (n + 2) \cdot w(v_1 - h_{\nu_1} \odot z + t\theta),\) with \(\theta\) as in (4.33), and observe that
\[I_1 = \int_0^1 \int G_\tau(t) \psi(z) \, dz \, dt = (n + 2) \int_0^1 \int \partial_y w(v_1 - h_{\nu_1} \odot z + t\theta) \theta'' \psi(z) \, dz \, dt.\]
Introducing the change of variables \(\tau = v_1 - h_{\nu_1} \odot z + t\theta\), we obtain
\[|I_1| \lesssim \int_{\omega_T} \frac{1}{h_{\nu_1}^n} \|\partial_y w(\tau)\|_{L^2(\omega_T,y^n)} \|1\|_{L^2(\omega_T,y^{-n})}.\]
(4.43)
We now estimate \(I_2\). Changing variables,
\[I_2 = \int (w(v_{1+2n} - h_{\nu_1+2n} \odot z) - w(v_1 - h_{\nu_1} \odot z)) z' \cdot \nabla x' \psi(z) \, dz + \int (w(v_{1+2n} - h_{\nu_1+2n} \odot z) z'' - w(v_1 - h_{\nu_1} \odot z)(\theta + z'')) \partial_y \psi(z) \, dz \]
\[= I_{2,1} + I_{2,2},\]
where $\vartheta = (v_{1,n+1}^{n+1} - v_{1,n}^{n+1})/h_{v_{1}}$. Arguing as in the derivation of (4.43) we obtain

$$\begin{align*}
|I_{2,1}, |I_{2,2}| & \lesssim \int_{\omega_{T}} \frac{1}{h_{v_{1}}^{n}} \| \partial_{y} w(\tau) \|_{L^{2}(\omega_{T}, y^{\alpha})} |1|_{L^{2}(\omega_{T}, y^{-\alpha})}.
\end{align*}$$

(4.44)

Inserting (4.43) and (4.44) in (4.42) we deduce

$$\begin{align*}
|\delta q(v_{1})| & \lesssim \frac{1}{h_{v_{1}}^{n}} \| \partial_{y} w(\tau) \|_{L^{2}(\omega_{T}, y^{\alpha})} |1|_{L^{2}(\omega_{T}, y^{-\alpha})},
\end{align*}$$

whence

$$\begin{align*}
|\delta q(v_{1})| \| \partial_{y} \lambda_{v} \|_{L^{2}(T,y^{\alpha})} \lesssim \| \partial_{y} w(\tau) \|_{L^{2}(\omega_{T}, y^{\alpha})},
\end{align*}$$

(4.45)

because $h_{v_{1}}^{-n} \| \partial_{y} \lambda_{v} \|_{L^{2}(\omega_{T}, y^{\alpha})} |1|_{L^{2}(\omega_{T}, y^{-\alpha})} \leq C$. Replacing (4.45) in (4.30), we get

$$\begin{align*}
|\partial_{y}(w_{1} - \Pi_{v_{1}} w)|_{L^{2}(T,y^{\alpha})} \lesssim \| \partial_{y} w(\tau) \|_{L^{2}(\omega_{T}, y^{\alpha})},
\end{align*}$$

which, together with (4.40) and (4.41), imply the desired result (4.28). Similar arguments are used to prove the stability bound (4.27).

4.2.4. Weighted H^{1}-based interpolation estimates on boundary elements. Let us now extend the interpolation estimates of §4.2.3 to elements that intersect the Dirichlet boundary, where the functions to be approximated vanish. To do so, we adapt the results of [28, Theorem 3.1] to our particular case.

We consider, as in [28, Section 3], different cases according to the relative position of the element T in \mathcal{Y}.

- $C_{1} = \{ T \in \mathcal{Y} : \partial T \cap \Gamma_{D} = \emptyset \}$,
- $C_{2} = \{ T \in \mathcal{Y} : \partial T \cap \partial_{1} \mathcal{Y} \neq \emptyset \}$,
- $C_{3} = \{ T \in \mathcal{Y} : \partial T \cap (\partial \Omega \times \{ y^{\alpha} \}) \neq \emptyset \}$.

The elements in C_{1} are interior, so the corresponding interpolation estimate is given in Theorem 4.6. Interpolation estimates on elements in C_{3} are a direct consequence of [28, Theorem 3.1] and Theorem 4.7 below. This is so due to the fact that, since $y^{\alpha} > 1$, the weight y^{α} over C_{3} is no longer singular nor degenerate. It remains only to provide interpolation estimates for elements in C_{2}.

Theorem 4.7 (Local error interpolation estimate: elements in C_{2}). Let $T \in C_{2}$ and $w \in H^{1}(\omega_{T}, y^{\alpha})$ vanish on $\partial T \cap \partial_{1} \mathcal{Y}$. Then, we have the stability bounds

$$\begin{align*}
\| \nabla_{x} \Pi_{v_{1}} w \|_{L^{2}(T,y^{\alpha})} & \lesssim \| \nabla_{x} w \|_{L^{2}(\omega_{T}, y^{\alpha})},
\| \partial_{y} \Pi_{v_{1}} w \|_{L^{2}(T,y^{\alpha})} & \lesssim \| \partial_{y} w \|_{L^{2}(\omega_{T}, y^{\alpha})},
\end{align*}$$

(4.46)

(4.47)

If, in addition, $w \in H^{2}(\omega_{T}, y^{\alpha})$, then, for $j = 1, \ldots, n + 1$,

$$\begin{align*}
\| \partial_{x_{j}} (w - \Pi_{v_{1}} w) \|_{L^{2}(T,y^{\alpha})} & \lesssim h_{v_{1}} \| \partial_{x_{j}} \nabla_{x} w \|_{L^{2}(\omega_{T}, y^{\alpha})} + h_{v_{1}} \| \partial_{x_{j}} y \|_{L^{2}(\omega_{T}, y^{\alpha})}.
\end{align*}$$

(4.48)

Proof. For simplicity we present the proof in two dimensions. Let $T = (0,a) \times (0,b) \in C_{2}$. Notice that over such an element the weight becomes degenerate or singular. Recall the local enumeration of vertices introduced in the proof of Theorem 4.6 (see also Figure 4.1). By the definition of $\Pi_{v_{1}}$ we have

$$\begin{align*}
\Pi_{v_{1}} w |_{T} = w_{v_{2}}(v_{2}) \lambda_{v_{2}} + w_{v_{4}}(v_{4}) \lambda_{v_{4}},
\end{align*}$$

(4.49)
The proofs of (4.46) and (4.47) are similar to Step 3 of Theorem 4.6. To show (4.48), we write the local difference between a function and its interpolant as $(w - \Pi_{\mathcal{T}} w)|_T = (w - w_{v_2})|_T + (w_{v_2} - \Pi_{\mathcal{T}} w)|_T$. Proceeding as in the proof of Lemma 4.4, we can bound $\partial_{y_j} (w - w_{v_2})|_T$ for $j = 1, 2$, in the $L^2(T, y^\alpha)$-norm, by the right hand side of (4.48) because this is independent of the trace of w. It remains then to derive a bound for $(w_{v_2} - \Pi_{\mathcal{T}} w)|_T$, for which we consider two separate cases.

1. **Derivative in the extended direction.** We use $w_{v_2} \in Q_1$, (4.49) and $\Pi_{\mathcal{T}} w(v_1) = \Pi_{\mathcal{T}} w(v_3) = 0$, to write

$$
\partial_y (w_{v_2} - \Pi_{\mathcal{T}} w)|_T = (w_{v_2}(v_3) - w_{v_2}(v_1)) \partial_y \lambda_{v_2} + (w_{v_2}(v_4) - w_{v_2}(v_1)) \partial_y \lambda_{v_4}.
$$

Since $w \equiv 0$ on $\{0\} \times (0, b)$, then $\partial_y w \equiv 0$ on $\{0\} \times (0, b)$. By the definition of the Taylor polynomial P, given in (4.11), and the fact that $v'_1 = v'_3$, we obtain

$$
w_{v_2}(v_3) - w_{v_2}(v_1) = \left(v'_2 - v'_1 \right) \int_{\omega_T} \partial_y w(x) \psi_{v_2}(x) \, dx
\approx (v'_2 - v'_1) \int_{\omega_T} \int_0^{x'} \partial_y w(\sigma, y) \psi_{v_2}(x', y) \, d\sigma \, dx' \, dy.
$$

Therefore

$$
|w_{v_2}(v_3) - w_{v_2}(v_1)| \lesssim h_{v'_2} h_{v'_1} \| \partial_y w \|_{L^2(\omega_T, y^\alpha)} \| \psi_{v_2} \|_{L^2(\omega_T, y^\alpha)} \lesssim \frac{h_{v'_2} h_{v'_1} h_{v'_{\lambda_{v_2}}}^2}{h_{v'_2} h_{v'_{\lambda_{v_2}}}} \left(\int_0^b y^{-\alpha} \, dy \right)^{\frac{1}{2}} \| \partial_y w \|_{L^2(\omega_T, y^\alpha)}.
$$

Since, in view of the weak shape regularity assumption on the mesh \mathcal{T}, $h_{v'_1} \approx h_{v'_2}$, $h_{v'_{\lambda_{v_2}}} = h_{v'_{\lambda_{v_4}}}$, and $y^\alpha \in A_2(\mathbb{R}^{n+1})$, we conclude that

$$
|w_{v_2}(v_3) - w_{v_2}(v_1)||\partial_y \lambda_{v_2}||L^2(T, y^\alpha) \lesssim \frac{h_{v'_1} h_{v'_2}}{h_{v'_2} h_{v'_{\lambda_{v_2}}}} \left(\int_0^b y^{-\alpha} \, dy \int_0^b y^\alpha \, dy \right)^{\frac{1}{2}} \times \| \partial_y w \|_{L^2(\omega_T, y^\alpha)} \lesssim h_{v'_1} \| \partial_y w \|_{L^2(\omega_T, y^\alpha)}.
$$

Finally, to bound $w_{v_2}(v_4) - w_{v_2}(v_1)$, we proceed as in Step 1 of the proof of Theorem 4.6 which is valid regardless of the trace of w, and deduce

$$
|w_{v_2}(v_4) - w_{v_2}(v_1)||\partial_y \lambda_{v_4}||L^2(T, y^\alpha) \lesssim \frac{h_{v'_1} h_{v'_2}}{h_{v'_2} h_{v'_{\lambda_{v_2}}}} \left(\int_0^b y^{-\alpha} \, dy \int_0^b y^\alpha \, dy \right)^{\frac{1}{2}} \times \| \partial_y w \|_{L^2(\omega_T, y^\alpha)} + h_{v'_{\lambda_{v_2}}} \| \partial_y w \|_{L^2(\omega_T, y^\alpha)}.
$$

This, in conjunction with the previous estimate, yields (4.48) for the derivative in the extended direction.

2. **Derivative in the x' direction.** To estimate $\partial_{x'} (w_{v_2} - \Pi_{\mathcal{T}} w)|_T$ we proceed as in Theorem 4.6 and 28 Theorem 3.1], but we cannot exploit the symmetry of the tensor product structure now. For brevity, we shall only point out the main technical differences. Using, again, that $(w_{v_2} - \Pi_{\mathcal{T}} w) \in Q_1$,

$$
\partial_{x'} (w_{v_2} - \Pi_{\mathcal{T}} w)|_T = w_{v_2}(v_1) \partial_{x'} \lambda_{v_1} + w_{v_2}(v_3) \partial_{x'} \lambda_{v_3} + (w_{v_2}(v_4) - w_{v_2}(v_1)) \partial_{x'} \lambda_{v_4}
= w_{v_2}(v_1) \partial_{x'} \lambda_{v_1} + w_{v_2}(v_4) - w_{v_2}(v_3) \partial_{x'} \lambda_{v_4}
- (w_{v_2}(v_4) - w_{v_2}(v_3)) \partial_{x'} \lambda_{v_4} - w_{v_2}(v_3) \partial_{x'} \lambda_{v_4}
= J(w_{v_2}, w_{v_4}) \partial_{x'} \lambda_{v_4} + w_{v_2}(v_1) \partial_{x'} \lambda_{v_1} - w_{v_2}(v_3) \partial_{x'} \lambda_{v_4},
$$

where $J: \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R}$ is a bilinear form.
where
\[J(w_{v_2}, w_{v_4}) = (w_{v_2}(v_4) - w_{v_2}(v_3)) - (w_{v_4}(v_4) - w_{v_4}(v_3)). \]
Define \(\theta = (0, \theta') = (0, v_4^2 - v_3^2 - (h_{v_4}^2 - h_{v_3}^2)z'') \), and rewrite \(J(w_{v_2}, w_{v_4}) \) as follows:
\[
J(w_{v_2}, w_{v_4}) = (v_4' - v_3') \int_D (\partial_{x'}w(v_2 - h_{v_2} \circ z) - \partial_{x'}w(v_4 - h_{v_4} \circ z)) \psi(z) \, dz
\]
\[
= -(v_4' - v_3') \int_0^1 \partial_{x'y}w(v_2 - h_{v_2} \circ z + \theta t) \theta''\psi(z) \, dt \, dz,
\]
where \(D = \text{supp} \psi \). Denote
\[
I(t) = \int |\partial_{x'y}w(v_2 - h_{v_2} \circ z + \theta t)\theta''| \, dz.
\]
Using the change of variables \(z \mapsto \tau = v_2 - h_{v_2} \circ z + \theta t \), results in
\[
|I(t)| \leq \frac{1}{h_{v_2}^2} \int_{\tau T} |\partial_{x'y}w(\tau)\psi(\tau)\, d\tau \leq \frac{1}{h_{v_2}^2} \|\partial_{x'y}w\|_{L^2(\omega_T,y^\alpha)} \|1\|_{L^2(\omega_T,y^{-\alpha})}
\]
\[
\leq h_{v_2}^{\frac{3}{2}} \|\partial_{x'y}w\|_{L^2(\omega_T,y^\alpha)} \left(\int_0^b y^{-\alpha} \, dy \right)^{\frac{1}{2}},
\]
whence \(|J(w_{v_2}, w_{v_4})| \leq h_{v_2}^{\frac{3}{2}} \|\partial_{x'y}w\|_{L^2(\omega_T,y^\alpha)} \left(\int_0^b y^{-\alpha} \, dy \right)^{\frac{1}{2}} \). This implies
\[
\|J(w_{v_2}, w_{v_4})\|_{L^2(\omega_T,y^\alpha)} \leq \left(\int_0^b y^{-\alpha} \, dy \right)^{\frac{1}{2}} \left(\int_0^b y^\alpha \, dy \right)^{\frac{1}{2}} \|\partial_{x'y}w\|_{L^2(\omega_T,y^\alpha)}
\]
\[
\leq h_{v_2}^{\frac{3}{2}} \|\partial_{x'y}w\|_{L^2(\omega_T,y^\alpha)},
\]
which follows from the fact that \(y^\alpha \in A_2(\mathbb{R}^+) \), and then (4.48) holds true.

The estimate of \(w_{v_4}(v_1)\partial_{x'}\lambda_{v_2} \) exploits the fact that the trace of \(w \) vanishes on \(\partial_L \mathcal{C} \); the same happens with \(w_{v_4}(v_3)\partial_{x'}\lambda_{v_4} \). In fact, we can write
\[
w_{v_2}(v_1) = \int_{\omega_{v_2}} \int_0^{x'} (\partial_{x'} w(\tau, y) - \partial_{x'} w(x', y)) \psi_{v_2}(x', y) \, d\tau \, dx' \, dy
\]
\[
+ \int_{\omega_{v_2}} (\partial_y w(0, y) - \partial_y w(x', y)) y \psi_{v_2}(x', y) \, dx' \, dy.
\]

To derive (4.48) we finally proceed as in the proofs of Theorem 4.6 and Theorem 3.1. We omit the details. \(\square \)

5. Error estimates. The estimates of §4.2.3 and §4.2.4 are obtained under the local assumption that \(w \in H^2(\omega_T,y^\alpha) \). However, the solution \(u \) of (2.26) satisfies \(u_{yy} \in L^2(\mathcal{C},y^\beta) \) only when \(\beta > 2\alpha + 1 \), according to Theorem 2.6. For this reason, in this section we derive error estimates for both quasi-uniform and graded meshes. The estimates of §5.1 for quasi-uniform meshes are quasi-optimal in terms of regularity but suboptimal in terms of order. The estimates of §5.2 for graded meshes are, instead, quasi-optimal in both regularity and order. Mesh anisotropy is able to capture the singular behavior of the solution and restore optimal decay rates.
5.1. Quasi-uniform meshes. We start with a simple one dimensional case
\((n = 1) \) and assume that we need to approximate over the interval \([0, \gamma]\) the function
\(w(y) = y^{1-\alpha} \). Notice that \(w_y(y) \approx y^{-\alpha} \) as \(y \approx 0^+ \) has the same behavior as the
derivative in the extended direction of the \(\alpha \)-harmonic extension \(u \).

Given \(M \in \mathbb{N} \) we consider the uniform partition of the interval \([0, \gamma]\)
\[
y_k = \frac{k}{M} \gamma, \quad k = 0, \ldots, M.
\] (5.1)

and corresponding elements \(I_k = [y_k, y_{k+1}] \) of size \(h_k = \frac{\gamma}{M} \) for \(k = 0, \ldots, M-1 \).

We can adapt the definition of \(\Pi_{\mathcal{F}_c} \) of \S 4.2 to this setting, and bound the local
interpolation errors \(E_k = \| \partial_y (w - \Pi_{\mathcal{F}_c} w) \|_{L^2(I_k, y^{\alpha})} \). For \(k = 2, \ldots, M-1, \) since \(y \geq h \)
and \(\alpha < 2\alpha + 1 < \beta \), \(4.29 \) implies
\[
E_k^2 \lesssim h^2 \int_{I_k} y^{\alpha} |w_y|^2 \, dy \lesssim h^{2+\alpha-\beta} \int_{I_k} y^{\beta} |w_y|^2 \, dy,
\] (5.2)

because \(\left(\frac{\gamma}{h} \right)^\alpha \leq \left(\frac{\gamma}{h} \right)^\beta \). The estimate for \(E_0^2 + E_1^2 \) follows from from the stability of
the operator \(\Pi_{\mathcal{F}_c} \) \(4.28 \) and \(4.47 \):
\[
E_0^2 + E_1^2 \lesssim \int_0^{3h} y^{\alpha} |w_y|^2 \, dy \lesssim h^{1-\alpha},
\] (5.3)

because \(w(y) \approx y^{-\alpha} \) as \(y \approx 0^+ \). Using \(5.2 \) and \(5.3 \) in conjunction with \(2 + \alpha - \beta < 1 - \alpha \), we obtain a global interpolation estimate
\[
\| \partial_y (w - \Pi_{\mathcal{F}_c} w) \|_{L^2((0, \gamma), y^{\alpha})} \lesssim h^{(2+\alpha-\beta)/2}.
\] (5.4)

These ideas can be extended to prove an error estimate for \(u \) on uniform meshes.

Theorem 5.1 (Error estimate for quasi-uniform meshes). Let \(u \) solve \(2.26 \),
and \(V_{\mathcal{F}_c} \) be the solution of \(4.4 \), constructed over a quasi-uniform mesh of size \(h \). If \(\gamma \approx |\log h| \), then for all \(\epsilon > 0 \)
\[
\| \nabla (u - V_{\mathcal{F}_c}) \|_{L^2(C_{\gamma}, y^{\alpha})} \lesssim h^{s-\epsilon} \| f \|_{H^{1-s}(\Omega)},
\] (5.5)

where the hidden constant blows up if \(\epsilon \) tends to 0.

Proof. Use first Theorem 3.5 and Theorem 4.1 combined with \(4.9 \), to reduce the
approximation error to the interpolation error of \(u \). Repeat next the steps leading to
\(5.2 \) - \(5.3 \), but combining the interpolation estimates of Theorems 4.6 and \(4.7 \) with the
regularity results of Theorem 2.6. \(\square \)

Remark 5.2 (Sharpness of (5.5) for \(s = \frac{1}{2} \)). According to \(2.34 \) and \(2.37 \),
\(\partial_y u \approx y^{-\alpha} \), and this formally implies \(\partial_y u \in H^{s-\epsilon}(C, y^{\alpha}) \) for all \(\epsilon > 0 \) provided
\(f \in H^{1-s}(\Omega) \). In this sense \(5.5 \) appears to be sharp with respect to regularity even
though it does not exhibit the optimal rate. We verify this argument via a simple
numerical illustration for dimension \(n = 1 \). We let \(\Omega = (0, 1) \), \(s = 0.2 \), right hand side
\(f = \pi^{2s} \sin(\pi x) \), and note that \(u(x) = \sin(\pi x) \), and the solution \(u \) to \(1.2 \) is
\[
u(x, y) = \frac{\sin(\pi x)}{1/2 \pi} \sin(\pi y) K_s(\pi y).
\]

Figure 5.1 shows the rate of convergence for the \(H^1(C_{\gamma}, y^{\alpha}) \)-seminorm. Estimate
\(5.5 \) predicts a rate of \(h^{0.2-\epsilon} \). We point out that for the \(\alpha \)-harmonic extension
we are solving a two dimensional problem and, since the mesh \(\mathcal{T}_y \) is quasi-uniform,
\(\# \mathcal{T}_y \approx h^{-2} \). In other words the rate of convergence, when measured in terms of degrees of freedom, is \((\# \mathcal{T}_y)^{-0.1-\varepsilon}\), which is what Figure 5.1 displays.

Remark 5.3 (Case \(s = \frac{1}{2} \)). Estimate (5.5) does not hold for \(s = \frac{1}{2} \). In this case there is no weight and the scaling issues in (5.2) are no longer present, so that \(E_k \lesssim h \| v \|_{H^s(I_k)} \).

5.2. Graded meshes. The estimate (5.5) can be written equivalently

\[
\| \nabla (u - V_{\mathcal{T}_y}) \|_{L^2(C)} \lesssim h \| f \|_{H^{s+1/2}(\Omega)},
\]

for quasi-uniform meshes in dimension \(n + 1 \). We now show how to compensate the singular behavior in the extended variable \(y \) by anisotropic meshes and restore the optimal convergence rate \(-1/(n+1)\).

As in §5.1 we start the discussion in dimension \(n = 1 \) with the function \(w(y) = y^{1-\alpha} \) over \([0, \gamma]\). We consider the graded partition \(\mathcal{T}_y \) of the interval \([0, \gamma]\)

\[
y_k = \left(\frac{k}{M} \right)^\gamma \gamma, \quad k = 0, \ldots, M,
\]

(5.6)

where \(\gamma = \gamma(\alpha) > 3/(1-\alpha) > 1 \). If we denote by \(h_k \) the length of the interval

\[
I_k = [y_k; y_{k+1}] = \left[\left(\frac{k}{M} \right)^\gamma \gamma, \left(\frac{k+1}{M} \right)^\gamma \gamma \right],
\]

then

\[
h_k = y_{k+1} - y_k \lesssim \frac{\gamma}{M\gamma} k^{\gamma - 1}, \quad k = 1, \ldots, M - 1.
\]

We again consider the operator \(\Pi_{\mathcal{T}_y} \) of §4.2 on the one dimensional mesh \(\mathcal{T}_y \) and wish to bound the local interpolation errors \(E_k \) of §5.1. We apply estimate (4.29) to
interior elements to obtain that, for \(k = 2, \ldots, M - 1 \),

\[
E_k^2 \lesssim h_k^2 \int_{\omega_k} y^\alpha |w_{yy}|^2 \, dy \lesssim \gamma^2 \frac{k^{2(\gamma-1)}}{M^{2\gamma}} \int_{\omega_k} y^\alpha |w_{yy}|^2 \, dy
\]

\[
\lesssim \gamma^{2+\alpha-\beta} \frac{k^{2(\gamma-1)}}{M^{2\gamma}} \left(\frac{k}{M} \right)^{(\gamma-\beta)} \int_{\omega_k} y^\beta |w_{yy}|^2 \, dy \lesssim \gamma^{1-\alpha} \frac{k^{(1-\alpha)-3}}{M^{(1-\alpha)}}. \tag{5.7}
\]

because \(y^\alpha \lesssim \left(\frac{k}{M} \right)^{(\alpha-\beta)} \gamma^{\alpha-\beta} y^\beta \). Adding (5.7) over \(k = 2, \ldots, M - 1 \), and using that \(\gamma(1-\alpha) > 3 \), we arrive at

\[
\| \partial_y (w - \Pi_{\mathcal{T}_p} w) \|_{L^2((0,\gamma),y^\alpha)} \lesssim \gamma^{1-\alpha} M^{-2}. \tag{5.8}
\]

For the errors \(E_1^2, E_1^2 \) we resort to the stability bounds (4.28) and (4.47) to write

\[
\| \partial_y (w - \Pi_{\mathcal{T}_p} w) \|_{L^2((0,\gamma),y^\alpha)} \lesssim \int_0^\gamma (\frac{\gamma}{\beta})^{\gamma} y^{-\alpha} \, dy \lesssim \gamma^{1-\alpha} \frac{\gamma}{M^{(1-\alpha)}}, \tag{5.9}
\]

where we have used (5.6). Finally, adding (5.8) and (5.9) gives

\[
\| \partial_y (w - \Pi_{\mathcal{T}_p} w) \|_{L^2((0,\gamma),y^\alpha)} \lesssim \gamma^{1-\alpha} M^{-2},
\]

and shows that the interpolation error exhibits optimal decay rate.

We now apply this idea to the numerical solution of problem (3.3). We assume \(\mathcal{T}_p \) to be quasi-uniform in \(\mathbb{T}_0 \) with \(\# \mathcal{T}_p \approx M^n \) and construct \(\mathcal{T}_p \subset \mathbb{T} \) as the tensor product of \(\mathcal{T}_p \) and the partition given in (5.6), with \(\gamma > 3/(1-\alpha) \). Consequently, \(\# \mathcal{T}_p = M \cdot \# \mathcal{T}_p \approx M^{n+1} \). Finally, we notice that since \(\mathcal{T}_p \) is shape regular and quasi-uniform, \(h_{\mathcal{T}_p} \approx (\# \mathcal{T}_p)^{-1/n} \approx M^{-1} \).

Theorem 5.4 (Error estimate for graded meshes). Let \(V_{\mathcal{T}} \in V_{\mathcal{T}}(\mathcal{T}_p) \) solve (4.4) and \(U_{\mathcal{T}} \in U_{\mathcal{T}}(\mathcal{T}_p) \) be defined as in (4.5). Then

\[
\| u - V_{\mathcal{T}} \|_{H^1_{\mathcal{T}}(\mathcal{T}_p)} \lesssim \epsilon e^{-\sqrt{\mathcal{T}}\gamma/4} \| f \|_{H^{\gamma}(\mathcal{O})} + \gamma^{(1-\alpha)/2} (\# \mathcal{T}_p)^{-1/(n+1)} \| f \|_{H^{1-\gamma}(\mathcal{O})}. \tag{5.10}
\]

Proof. In light of (4.9), with \(\epsilon \approx e^{-\sqrt{\mathcal{T}}\gamma/4} \), it suffices to bound the interpolation error \(u - \Pi_{\mathcal{T}_p} u \) on the mesh \(\mathcal{T}_p \). To do so, first of all, notice that if \(I_1 \) and \(I_2 \) are neighboring cells on the partition of \([0,\gamma] \), then there is a constant \(\sigma = \sigma(\gamma) \) such that \(h_{I_1} \leq \sigma h_{I_2} \), whence the weak regularity condition (c) holds. We can thus apply the polynomial interpolation theory of § 4.2. We decompose the mesh \(\mathcal{T}_p \) into the sets

\[
\mathcal{T}_0 := \{ T \in \mathcal{T}_p : \omega_T \not\cap (\mathcal{O} \times \{ 0 \}) = \emptyset \}, \quad \mathcal{T}_1 := \{ T \in \mathcal{T}_p : \omega_T \cap (\mathcal{O} \times \{ 0 \}) \neq \emptyset \}.
\]

We observe that for all \(T = K \times I \in \mathcal{T}_0 \) we have \(k \geq 2 \) and \(y^\alpha \lesssim \left(\frac{k}{M} \right)^{(\alpha-\beta)} \gamma^{\alpha-\beta} y^\beta \). Applying Theorem 4.3 and Theorem 4.7 to elements in \(\mathcal{T}_0 \) we obtain

\[
\sum_{T \in \mathcal{T}_0} \| \nabla (u - \Pi_{\mathcal{T}_p} u) \|^2_{L^2(T,y^\alpha)} \lesssim \sum_{T = K \times I \in \mathcal{T}_0} \left(h_k^2 \| \nabla u \|^2_{L^2(\omega_T,y^\alpha)} + h_I^2 \| \partial_y u \|^2_{L^2(\omega_T,y^\beta)} \right) = S_1 + S_2 + S_3.
\]
We examine first the most problematic third term S_3, which we rewrite as follows:

$$S_3 \lesssim \sum_{k=2}^{M} 2^{2+\alpha-\beta} k^{2(\gamma-1)} \frac{k^{\gamma(\alpha-\beta)}}{M^{2\gamma}} \int_{\Omega} f y^2 \int_{\Omega} \partial_{yy} u^2 \, dx \, dy,$$

with $a_k = \left(\frac{k-1}{M}\right)^{\gamma} \gamma$ and $b_k = \left(\frac{k+1}{M}\right)^{\gamma} \gamma$. We now invoke the local estimate (2.43), as well as the fact that $b_k - a_k \lesssim \left(\frac{k}{M}\right)^{\gamma-1} \frac{\gamma}{M}$, to end up with

$$S_3 \lesssim \sum_{k=2}^{M} 2^{1-\alpha} \frac{k^{\gamma(1-\alpha)-3}}{M^{\gamma(1-\alpha)}} \|f\|_{L^2(\Omega)}^2 \lesssim 2^{1-\alpha} M^{-2} \|f\|_{L^2(\Omega)}^2.$$

We now handle the middle term S_2 with the help of (2.42), which is valid for $b_k \leq 1$. This imposes the restriction $k \leq k_0 \leq M\gamma^{-1/n}$, whereas for $k > k_0$ we know that the estimate decays exponentially. We thus have

$$S_2 \lesssim \|f\|_{H_1^{-\gamma}(\Omega)}^2 \sum_{k=2}^{k_0} \left(\frac{k}{M} \right)^{\gamma-1} \frac{\gamma}{M^2} \|f\|_{H_1^{-\gamma}(\Omega)}^2 \lesssim \frac{2^{2/\gamma}}{M^2} \|f\|_{H_1^{-\gamma}(\Omega)}^2 \lesssim \frac{2^{1-\alpha}}{M^2} \|f\|_{H_1^{-\gamma}(\Omega)}^2.$$

The first term S_1 is easy to estimate. Since $h_K \leq M^{-1}$ for all $K \in \mathcal{T}_1$, we get

$$S_1 \lesssim M^{-2} \|\nabla \cdot \nabla v\|_{H_1^{-\gamma}(\Omega)}^2 \lesssim M^{-2} \|f\|_{H_1^{-\gamma}(\Omega)}^2 \lesssim 2^{1-\alpha} M^{-2} \|f\|_{H_1^{-\gamma}(\Omega)}^2.$$

For elements in \mathcal{T}_1, we rely on the stability estimates (4.27), (4.28), (4.46) and (4.47) of Π_{2r}, and thus repeat the arguments used to derive (5.8) and (5.9). Adding the estimates for \mathcal{T}_0 and \mathcal{T}_1 we obtain the assertion. \[\Box\]

Remark 5.5 (Choice of γ). A natural choice of γ comes from equilibrating the two terms on the right-hand side of (5.10):

$$\epsilon \approx \#(\mathcal{T}_p)^{-\frac{n+1}{n}} \Leftrightarrow \gamma \approx \log(\#(\mathcal{T}_p)).$$

This implies the near-optimal estimate

$$\|u - V_{\mathcal{T}_p}\|_{H_1(\Omega)} \lesssim \log(\#(\mathcal{T}_p))^{\frac{n}{n+1}} \#(\mathcal{T}_p)^{-\frac{n+1}{n}} \|f\|_{H_1^{-\gamma}(\Omega)),} \quad (5.11)$$

Remark 5.6 (Estimate for u). In view of (4.6), we deduce the energy estimate

$$\|u - U_{\mathcal{T}_0}\|_{H^s(\Omega)} \lesssim \log(\#(\mathcal{T}_0))^{\frac{n}{n+1}} \#(\mathcal{T}_0)^{-\frac{n+1}{n}} \|f\|_{H_1^{-\gamma}(\Omega)}.$$

We can rewrite this estimate in terms of regularity $u \in H^{1+s}(\Omega)$ and $\#(\mathcal{T}_0)$ as

$$\|u - U_{\mathcal{T}_0}\|_{H^s(\Omega)} \lesssim \log(\#(\mathcal{T}_0))^{\frac{n}{n+1}} \#(\mathcal{T}_0)^{-\frac{n+1}{n}} \|f\|_{H_1^{-\gamma}(\Omega)}.$$

and realize that the order is near-optimal given the regularity shift from left to right. However, our PDE approach does not allow for a larger rate $(\#(\mathcal{T}_0))^{(2-s)/n}$ that would still be compatible with piecewise bilinear polynomials but not with (5.11).

Remark 5.7 (Computational complexity). The cost of solving the discrete problem (4.4) is related to $\#(\mathcal{T}_p)$, and not to $\#(\mathcal{T}_0)$, but the resulting system is sparse. The structure of (4.4) is so that fast multilevel solvers can be designed with complexity proportional to $\#(\mathcal{T}_p)$. On the other hand, using an integral formulation requires sparsification of an otherwise dense matrix with associated cost $(\#(\mathcal{T}_0))^2$.

Remark 5.8 (Fractional regularity). The function u, solution the α-harmonic extension problem, may also have singularities in the direction of the x'-variables and
thus exhibit fractional regularity. This depends on Ω and the right hand side f (see Remark 2.7). The characterization of such singularities is as yet an open problem to us. The polynomial interpolation theory developed in §4.2, however, applies to shape-regular but graded mesh \mathcal{T}, which can resolve such singularities, provided we maintain the Cartesian structure of \mathcal{T}. The corresponding a posteriori error analysis is an entirely different but important direction currently under investigation.

6. Numerical experiments for the fractional Laplacian. To illustrate the proposed techniques here we present a couple of numerical examples. The implementation has been carried out with the help of the deal.II library (see [6, 7]) which, by design, is based on tensor product elements and thus is perfectly suitable for our needs. The main concern while developing the code was correctness and, therefore, integrals are evaluated numerically with Gaussian quadratures of sufficiently high order and linear systems are solved using CG with ILU preconditioner with the exit criterion being that the ℓ_2-norm of the residual is less than 10^{-12}. More efficient techniques for quadrature and preconditioning are currently under investigation.

6.1. A square domain. Let $\Omega = (0, 1)^2$. It is common knowledge that

$$\varphi_{m,n}(x_1, x_2) = \sin(m\pi x_1) \sin(n\pi x_2), \quad \lambda_{m,n} = \pi^2 (m^2 + n^2), \quad m,n \in \mathbb{N}.$$

If $f(x_1, x_2) = (2\pi)^s \sin(\pi x_1) \sin(\pi x_2)$, by (2.12) we have

$$u(x_1, x_2) = \sin(\pi x_1) \sin(\pi x_2),$$

and, by (2.24),

$$u(x_1, x_2, y) = \frac{2^{1-s}}{\Gamma(s)} (2\pi^2)^{s/2} \sin(\pi x_1) \sin(\pi x_2) y^s K_s(\sqrt{2\pi y}).$$

We construct a sequence of meshes $\{T_{Y_k}\}_{k \geq 1}$, where the triangulation of Ω is obtained by uniform refinement and the partition of $[0, Y_k]$ is as in §5.2, i.e., $[0, Y_k]$ is divided with mesh points given by (5.6) with the election of the parameter $\gamma > 3/(1 - \alpha)$. On the basis of Theorem 3.5, for each mesh the truncation parameter Y_k is chosen so that $\epsilon \approx \left(\# T_{Y_k} - 1 \right)^{-1/3}$. This can be achieved, for instance, by setting

$$Y_k \geq Y_{0,k} = \frac{2}{\sqrt{\lambda_1}} (\log C - \log \epsilon).$$

With this type of meshes,

$$\| u - U_{\mathcal{T}_{Y_k}} \|_{H^s(\Omega)} \lesssim \| u - V_{\mathcal{T}_{Y_k}} \|_{H^s_0(C, y^n)} \lesssim \log(\# \mathcal{T}_{Y_k})^s \cdot (\# \mathcal{T}_{Y_k})^{-1/3},$$

which is near-optimal in u but suboptimal in u, since we should expect (see [15])

$$\| u - U_{\mathcal{T}_{Y_k}} \|_{H^s(\Omega)} \lesssim h_{\mathcal{T}_{Y_k}}^{2-s} \lesssim (\# \mathcal{T}_{Y_k})^{-(2-s)/3}.$$

Figure 6.1 shows the rates of convergence for $s = 0.2$ and $s = 0.8$ respectively. In both cases, we obtain the rate given by Theorem 5.4 and Remark 5.5.
A PDE approach to fractional diffusion

Fig. 6.1. Computational rate of convergence for the approximate solution of the fractional Laplacian over a square with graded meshes on the extended dimension. The left panel shows the rate for $s = 0.2$ and the right one for $s = 0.8$. In both cases, the rate is $\approx \# \mathcal{T}_k^{-1/3}$ in agreement with Theorem 5.4 and Remark 5.5.

6.2. A circular domain. Let $\Omega = \{|x'| \in \mathbb{R}^2 : |x'| < 1\}$. Using polar coordinates it can be shown that

$$
\varphi_{m,n}(r, \theta) = J_m(j_{m,n}r) (A_{m,n} \cos(m\theta) + B_{m,n} \sin(m\theta)),
$$

where J_m is the m-th Bessel function of the first kind; $j_{m,n}$ is the n-th zero of J_m and $A_{m,n}, B_{m,n}$ are real normalization constants that ensure $\|\varphi_{m,n}\|_{L^2(\Omega)} = 1$ for all $m, n \in \mathbb{N}$. It is also possible to show that $\lambda_{m,n} = (j_{m,n})^2$.

If $f = (\lambda_{1,1})^s \varphi_{1,1}$, then (2.12) and (2.24) show that $u = \varphi_{1,1}$ and

$$
u(r, \theta, y) = \frac{2^{1-s}}{F(s)} (\lambda_{1,1})^{s/2} \varphi_{1,1}(r, \theta) y^s K_s(\sqrt{2\pi}y).
$$

From [1, Chapter 9], we have that $j_{1,1} \approx 3.8317$.

We construct a sequence of meshes $\{\mathcal{T}_k\}_{k \geq 1}$, where the triangulation of Ω is obtained by quasi-uniform refinement and the partition of $[0, 2\pi]$. The parameter γ_k is chosen so that $\epsilon \approx (\# \mathcal{T}_{k-1})^{-1/3}$. With these meshes

$$
\|u - V_{\mathcal{T}_k}\|_{H^1(\mathbb{R}^+; \mathcal{C}, y^s)} \lesssim \log(\# \mathcal{T}_k)^s \cdot (\# \mathcal{T}_k)^{-1/3},
$$

which is near-optimal.

Figure 6.2 shows the errors of $\|u - V_{\mathcal{T}_k}\|_{H^1(\mathbb{R}^+; \mathcal{C}, y^s)}$ for $s = 0.3$ and $s = 0.7$. The results, again, are in agreement with Theorem 5.4 and Remark 5.5.

7. Fractional powers of general second order elliptic operators. Let us now discuss how the methodology developed in previous sections extends to a general second order, symmetric and uniformly elliptic operator. This is an important property of our PDE approach. Recall that, in § 2.3, we discussed how the fractional Laplace operator can be realized as a Dirichlet to Neumann map via an extension problem posed on the semi-infinite cylinder C. In the work of Stinga and Torrea [57], the same type of characterization has been developed for the fractional powers of second order elliptic operators.

Let \mathcal{L} be a second order symmetric differential operator of the form

$$
\mathcal{L}w = -\text{div}_{x'}(A \nabla_{x'} w) + cw,
$$

(7.1)
Fig. 6.2. Computational rate of convergence for the approximate solution of the fractional Laplacian over a circle with graded meshes on the extended dimension. The left panel shows the rate for $s = 0.3$ and the right one for $s = 0.7$. In both cases, the rate is $\approx (\# T^k)^{-1/3}$ in agreement with Theorem 5.4 and Remark 5.5.

where $c \in L^\infty(\Omega)$ with $c \geq 0$ almost everywhere, $A \in C^{0,1}(\Omega, GL(n, \mathbb{R}))$ is symmetric and positive definite, and Ω is Lipschitz. Given $f \in L^2(\Omega)$, the Lax-Milgram lemma shows that there is a unique $w \in H^1_0(\Omega)$ that solves

$$Lw = f \text{ in } \Omega, \quad w = 0 \text{ on } \partial \Omega.$$

In addition, if Ω has a $C^{1,1}$ boundary, [38] Theorem 2.4.2.6 shows that $w \in H^2(\Omega) \cap H^1_0(\Omega)$. Since $L^{-1} : L^2(\Omega) \rightarrow L^2(\Omega)$ is compact and symmetric, its spectrum is discrete, positive and accumulates at zero. Moreover, there exists $\{\lambda_k, \varphi_k\}_{k \in \mathbb{N}} \subset \mathbb{R}_+ \times H^1_0(\Omega)$ such that $\{\varphi_k\}_{k \in \mathbb{N}}$ is an orthonormal basis of $L^2(\Omega)$ and for, $k \in \mathbb{N}$,

$$L\varphi_k = \lambda_k \varphi_k \text{ in } \Omega, \quad \varphi_k = 0 \text{ on } \partial \Omega,$$

and $\lambda_k \to \infty$ as $k \to \infty$. For $u \in C^\infty_0(\Omega)$ we then define the fractional powers of L as

$$L^s u = \sum_{k=1}^{\infty} u_k \lambda_k^s \varphi_k,$$

where $u_k = \int_\Omega u \varphi_k$. By density the operator L^s can be extended again to $H^s(\Omega)$. This discussion shows that it is legitimate to study the following problem: given $s \in (0, 1)$ and $f \in H^s(\Omega)'$, find $u \in H^s(\Omega)$ such that

$$L^s u = f \text{ in } \Omega.$$

To realize the operator L^s as the Dirichlet to Neumann map of an extension problem we use the generalization of the result by Caffarelli and Silvestre presented in [57]. We seek a function $u : \mathcal{C} \rightarrow \mathbb{R}$ that solves

$$\begin{aligned}
-Lu + \frac{\alpha}{y} \partial_y u + \partial_{yy} u &= 0, & \text{in } \mathcal{C}, \\
u &= 0, & \text{on } \partial_\mathcal{C}, \\
\frac{\partial u}{\partial \nu^\alpha} &= d_s f, & \text{on } \Omega \times \{0\},
\end{aligned}$$

where the constant d_s is as in (2.23). In complete analogy to §2.3 it is possible to show that

$$d_s L^s u = \frac{\partial u}{\partial \nu^\alpha} : H^s(\Omega) \rightarrow H^s(\Omega)'.$$
Notice that the differential operator in (7.5) is
\[\text{div} (y^\alpha A \nabla u) + y^\alpha cu, \]
where, for all \(x \in C \), \(A(x) = \text{diag} \{ A(x'), 1 \} \in \text{GL}(n + 1, \mathbb{R}) \).

It suffices now to notice that both \(y^\alpha c \) and \(y^\alpha A \) are in \(A_2(\mathbb{R}^{n+1}_+) \), to conclude that, given \(f \in H^{s}(\Omega)' \), there is a unique \(u \in \hat{H}^1_1(C, y^\alpha) \) that solves (7.5). \[(7.4) \] In addition, \(u = u(\cdot, 0) \in H^s(\Omega) \) solves (7.4) and we have the stability estimate
\[\| u \|_{H^s(\Omega)} \lesssim \| \nabla u \|_{L^2(C, y^\alpha)} \lesssim \| f \|_{H^{s}(\Omega)'}, \]
(7.6)
where the hidden constants depend on \(A, c, C, y^\alpha \) and \(\Omega \).

The representation of \(u \) in terms of the Bessel functions is still valid. We can thus repeat the arguments in the proof of Theorem 5.4 to conclude that
\[\| \nabla u \|_{L^2(\theta \times (y', \infty), y^\alpha)} \lesssim e^{-\sqrt{\lambda_1 y}/2} \| f \|_{H^s(\Omega)'}, \]
and introduce \(v \in \hat{H}^1_1(C', y^\alpha) \) — solution of a truncated version of (7.5) — and show that
\[\| \nabla (u - v) \|_{L^2(C, y^\alpha)} \lesssim e^{-\sqrt{\lambda_1 y}/4} \| f \|_{H^s(\Omega)'}. \]
(7.7)

Next, we define the finite element approximation of the solution to (7.5) as the unique function \(V_{\mathcal{T}} \in \mathcal{V}(\mathcal{T}_y) \) that solves
\[\int_{C_y} y^\alpha A(x) \nabla V_{\mathcal{T}} \cdot \nabla W + y^\alpha c(x') V_{\mathcal{T}} W \, dx' \, dy = d \langle f, \tr W \rangle, \quad \forall W \in \mathcal{V}(\mathcal{T}_y). \]
(7.8)
We construct, as in § 5.2 a shape regular triangulation \(\mathcal{T}_y \) \(\Omega \), which we extend to \(\mathcal{T}_y \in \mathcal{T} \) with the partition given in (5.6), with \(\gamma > 3/(1 - \alpha) \). Following the proof of Theorem 5.4 we can also show the following error estimate.

Theorem 7.1 (Error estimate for general operators). Let \(V_{\mathcal{T}} \in \mathcal{V}(\mathcal{T}_y) \) be the solution of (7.8) and \(U_{\mathcal{T}} \in \mathcal{U}(\mathcal{T}_y) \) be defined as in (4.1). If \(u \), solution of (7.5), is such that \(\mathcal{L} u, \partial_y \mathcal{N} u \in H^2(y^\alpha, C) \), then we have
\[\| u - U_{\mathcal{T}} \|_{H^{s}(\Omega)} \lesssim \| u - V_{\mathcal{T}} \|_{\hat{H}^1_1(C, y^\alpha)} \lesssim \| \log(\# \mathcal{T}_y) \| \| f \|_{H^{s}(\Omega)'}. \]

References

[1] M. Abramowitz and I.A. Stegun, *Handbook of mathematical functions with formulas, graphs, and mathematical tables*, vol. 55 of National Bureau of Standards Applied Mathematics Series, For sale by the Superintendent of Documents, U.S. Government Printing Office, Washington, D.C., 1964.

[2] G. Acosta, *Lagrange and average interpolation over 3D anisotropic elements*, J. Comput. Appl. Math., 135 (2001), pp. 91–109.

[3] R.A. Adams, *Sobolev spaces*, Academic Press [A subsidiary of Harcourt Brace Jovanovich, Publishers], New York-London, 1975. Pure and Applied Mathematics, Vol. 65.

[4] T. Apel, *Interpolation of non-smooth functions on anisotropic finite element meshes*, M2AN Math. Model. Numer. Anal., 33 (1999), pp. 1149–1185.

[5] O.G. Bakunin, *Turbulence and diffusion*, Springer Series in Synergetics, Springer-Verlag, Berlin, 2008. Scaling versus equations.

[6] W. Bangerth, R. Hartmann, and G. Kanschat, *deal.II—differential equations analysis library*, Technical Reference: http://dealii.org.
[7] ____, deal.II—a general-purpose object-oriented finite element library, ACM Trans. Math. Software, 33 (2007), pp. Art. 24, 27.

[8] P.W. Bates, On some nonlocal evolution equations arising in materials science, in Nonlinear dynamics and evolution equations, vol. 48 of Fields Inst. Commun., Amer. Math. Soc., Providence, RI, 2006, pp. 13–52.

[9] Z. Belhachmi, Ch. Bernardi, and S. Deparis, Weighted Clément operator and application to the finite element discretization of the axisymmetric Stokes problem, Numer. Math., 105 (2006), pp. 217–247.

[10] D.A. Benson, S.W. Wheatcraft, and M.M. Meerschaert, Application of a fractional advection-dispersion equation, Water Resources Res., 36 (2000), pp. 91–109.

[11] C. Bernardi, Optimal finite-element interpolation on curved domains, SIAM J. Numer. Anal., 26 (1989), pp. 1212–1240.

[12] J. Bertoin, Lévy processes, vol. 121 of Cambridge Tracts in Mathematics, Cambridge University Press, Cambridge, 1996.

[13] K. Bogdan, K. Burdzy, and Chen Z.Q., Censored stable processes, Probab. Theory Related Fields, 127 (2003), pp. 89–152.

[14] C. Brandle, E. Colorado, A. de Pablo, and U. Sanchez, A concave-convex elliptic problem involving the fractional Laplacian, in press, 2012.

[15] S.C. Brenner and L.R. Scott, The mathematical theory of finite element methods, vol. 15 of Texts in Applied Mathematics, Springer, New York, third ed., 2008.

[16] K. Burrage, K. Hale, and D Kay, An efficient implementation of an implicit fem scheme for fractional-in-space reaction-diffusion equations. OCCAM report 1358, 2012.

[17] X. Cabré and Y. Sire, Nonlinear equations for fractional Laplacians i: Existence, uniqueness and qualitative properties of solutions. arXiv:1111.0796v1, 2011.

[18] X. Cabré and J. Tan, Positive solutions of nonlinear problems involving the square root of the Laplacian, Adv. Math., 224 (2010), pp. 2052–2093.

[19] L. Caffarelli and L. Silvestre, An extension problem related to the fractional Laplacian, Comm. Partial Differential Equations, 32 (2007), pp. 1245–1260.

[20] A. Capella, J. Dávila, L. Dupaigne, and Y. Sire, Regularity of radial extremal solutions for some non-local semilinear equations, Comm. Partial Differential Equations, 36 (2011), pp. 1353–1384.

[21] P. Carr, H. Geman, D.B. Madan, and M. Yor, The fine structure of asset returns: An empirical investigation, Journal of Business, 75 (2002), pp. 305–332.

[22] P.G. Ciarlet, The finite element method for elliptic problems, vol. 40 of Classics in Applied Mathematics, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2002. Reprint of the 1978 original [North-Holland, Amsterdam; MR0520174 (58 #25001)].

[23] P.G. Ciarlet and P.-A. Raviart, Interpolation theory over curved elements, with applications to finite element methods, Comput. Methods Appl. Mech. Engrg., 1 (1972), pp. 217–249.

[24] P. Clément, Approximation by finite element functions using local regularization, RAIRO Analyse Numérique, 9 (1975), pp. 77–84.

[25] J. Cushman and T. Glinn, Nonlocal dispersion in media with continuously evolving scales of heterogeneity, Trans. Porous Media, 13 (1993), pp. 123–138.

[26] E. Di Nezza, G. Palatucci, and E. Valdinoci, Hitchhiker’s guide to the fractional Sobolev spaces, Bull. Sci. Math., 136 (2012), pp. 521–573.

[27] T. Dupont and R. Scott, Polynomial approximation of functions in sobolev spaces, Math. Comp., 34 (1980), pp. 441–463.

[28] R.G. Durán and A.L. Lombardi, Error estimates on anisotropic Q₁ elements for functions in weighted Sobolev spaces, Math. Comp., 74 (2005), pp. 1679–1706 (electronic).

[29] R.G. Durán, A.L. Lombardi, and M.I. Prieto, Superconvergence for finite element approximation of a convection–diffusion equation using graded meshes, IMA Journal of Numerical Analysis, 32 (2012), pp. 511–533.

[30] R.G. Durán and F. López García, Solutions of the divergence and Korn inequalities on domains with an external cusp, Ann. Acad. Sci. Fenn. Math., 35 (2010), pp. 421–438.

[31] G. Duvaut and J.-L. Lions, Inequalities in mechanics and physics, Springer-Verlag, Berlin, 1976. Translated from the French by C. W. John, Grundlehren der Mathematischen Wissenschaften, 219.

[32] A.C. Eringen, Nonlocal continuum field theories, Springer-Verlag, New York, 2002.

[33] L.C. Evans, Partial differential equations, vol. 19 of Graduate Studies in Mathematics, American Mathematical Society, Providence, RI, second ed., 2010.

[34] E.B. Fares, C.E. Kenig, and R.P. Serapioni, The local regularity of solutions of degenerate elliptic equations, Comm. Partial Differential Equations, 7 (1982), pp. 77–116.

[35] D. Gilbarg and N.S. Trudinger, Elliptic partial differential equations of second order, Class-
A PDE approach to fractional diffusion

[36] G. Gilboa and S. Osher, Nonlocal operators with applications to image processing, Multiscale Model. Simul., 7 (2008), pp. 1005–1028.

[37] V. Gol’dshtein and A. Ukhlov, Weighted Sobolev spaces and embedding theorems, Trans. Amer. Math. Soc., 361 (2009), pp. 3829–3850.

[38] P. Grisvard, Elliptic problems in nonsmooth domains, vol. 24 of Monographs and Studies in Mathematics, Pitman (Advanced Publishing Program), Boston, MA, 1985.

[39] Q.Y. Guan and Z.M. Ma, Reflected symmetric α-stable processes and regional fractional laplacian, Probab. Theory Related Fields, 134 (2006), pp. 649–694.

[40] J. Heinonen, T. Kilpeläinen, and O. Martio, Nonlinear potential theory of degenerate elliptic equations, Oxford Mathematical Monographs, The Clarendon Press Oxford University Press, New York, 1993. Oxford Science Publications.

[41] M. Ilic, F. Liu, I. Turner, and V. Anh, Numerical approximation of a fractional-in-space diffusion equation. I, Fract. Calc. Appl. Anal., 8 (2005), pp. 323–341.

[42] ———, Numerical approximation of a fractional-in-space diffusion equation. II, with nonhomogeneous boundary conditions, Fract. Calc. Appl. Anal., 9 (2006), pp. 333–349.

[43] V.G. Korneev, The construction of variational difference schemes of a high order of accuracy, Vestnik Leningrad. Univ., 25 (1970), pp. 28–40. (In Russian).

[44] V.G. Korneev and S.E. Ponomarev, Application of curvilinear finite elements in schemes for solution of 2n-order linear elliptic equations. I, Čisl. Metody Meh. Splošn. Sredy, 5 (1974), pp. 78–97. (In Russian).

[45] A. Kufner, Weighted Sobolev spaces, A Wiley-Interscience Publication, John Wiley & Sons Inc., New York, 1985. Translated from the Czech.

[46] N.S. Landkof, Foundations of modern potential theory, Springer-Verlag, New York, 1972. Translated from the Russian by A. P. Doohovskoy, Die Grundlehren der mathematischen Wissenschaften, Band 180.

[47] J.-L. Lions and E. Magenes, Non-homogeneous boundary value problems and applications. Vol. I, Springer-Verlag, New York, 1972. Translated from the French by P. Kenneth, Die Grundlehren der mathematischen Wissenschaften, Band 180.

[48] B.M. McCay and M.N.L. Narasimhan, Theory of nonlocal electromagnetic fluids, Arch. Mech. (Arch. Mech. Stos.), 33 (1981), pp. 365–384.

[49] W. McLean, Strongly elliptic systems and boundary integral equations, Cambridge University Press, Cambridge, 2000.

[50] K.S. Miller and S.G. Samko, Completely monotonic functions, Integral Transform. Spec. Funct., 12 (2001), pp. 389–402.

[51] B. Muckenhoupt, Weighted norm inequalities for the Hardy maximal function, Trans. Amer. Math. Soc., 165 (1972), pp. 207–226.

[52] G. Savaré, Regularity and perturbation results for mixed second order elliptic problems, Comm. Partial Differential Equations, 22 (1997), pp. 869–899.

[53] L.R. Scott and S. Zhang, Finite element interpolation of nonsmooth functions satisfying boundary conditions, Math. Comp., 54 (1990), pp. 483–493.

[54] R. Servadei and E. Valdinoci, On the spectrum of two different fractional operators, preprint, 2012.

[55] S.A. Silling, Reformulation of elasticity theory for discontinuities and long-range forces, J. Mech. Phys. Solids, 48 (2000), pp. 175–209.

[56] E.M. Stein, Singular integrals and differentiability properties of functions, Princeton Mathematical Series, No. 30, Princeton University Press, Princeton, N.J., 1970.

[57] P.R. Stinga and J.L. Torréa, Extension problem and Harnack’s inequality for some fractional operators, Comm. Partial Differential Equations, 35 (2010), pp. 2092–2122.

[58] L. Tartar, An introduction to Sobolev spaces and interpolation spaces, vol. 3 of Lecture Notes of the Unione Matematica Italiana, Springer, Berlin, 2007.

[59] Q. Yang, I. Turner, F. Liu, and M. Ilić, Novel numerical methods for solving the time-space fractional diffusion equation in two dimensions, SIAM J. Sci. Comput., 33 (2011), pp. 1159–1180.