Universal Scaling of the Néel Temperature of Near-Quantum-Critical Quasi-Two-Dimensional Heisenberg Antiferromagnets

D. X. Yao and A. W. Sandvik
Department of Physics, Boston University, 590 Commonwealth Avenue, Boston, Massachusetts 02215, USA
(Dated: June 13, 2006)

We use a quantum Monte Carlo method to calculate the Néel temperature \(T_N \) of weakly coupled \(S = 1/2 \) Heisenberg antiferromagnetic layers consisting of coupled ladders. This system can be tuned to different two-dimensional scaling regimes for \(T > T_N \). In a single-layer mean-field theory, \(\chi^2 \) is the exact staggered susceptibility of an isolated layer, \(J' \) the inter-layer coupling, and \(z_2 = 2 \) the layer coordination number. With a renormalized \(z_2, z_2 \rightarrow k_2z \), we find that this relationship applies not only in the renormalized-classical regime, as shown previously, but also in the quantum-critical regime and part of the quantum-disordered regime. The renormalization is nearly constant; \(k_2 \approx 0.65 - 0.70 \). We also study other universal scaling functions.

PACS numbers: 75.10.Hk, 75.10.Jm, 75.30.Kz, 75.40.Mg

Antiferromagnets with effectively low dimensionality, consisting of weakly coupled chains (quasi-1D) or layers (quasi-2D), offer unique opportunities to study quantum mechanical collective behavior. A multitude of quasi-1D and quasi-2D antiferromagnetic compounds have been discovered, or deliberately designed, and they exhibit a wide range of ordered and disordered phases. At the same time, new and improved experimental techniques enable increasingly sophisticated studies of their properties. It is thus possible to test in detail microscopic quantum spin models and theoretical quantum many-body concepts, such as quantum-critical scaling \(D \). Motivation for studying these systems often come from phenomena directly associated with low dimensionality. Real materials, however, almost always have some three-dimensional (3D) couplings that cannot be completely ignored at low temperatures. The ways in which these couplings change the physics, e.g., leading to phase transitions or dimensional cross-overs \(2 \), are also governed by the physics of the 1D or 2D units. Studies of 3D effects can therefore also provide important insights.

In this Letter we investigate the finite-temperature Néel transition temperature \(T_N \) of a quasi-2D \(S = 1/2 \) Heisenberg model consisting of layers of coupled ladders. In the absence of inter-layer couplings, the Mermin-Wagner theorem dictates that the system can have long-range order only at \(T = 0 \). The 2D Heisenberg model with spatially isotropic nearest-neighbor couplings \(J \) has an ordered ground state \(D \). At low temperatures, in the renormalized classical (RC) regime, its spin correlation length is exponentially divergent \(D \). Systems with a coupling pattern favoring formation of nearest-neighbor singlets \(2 \), e.g., coupled two-leg ladders \(D \), can be tuned through a quantum phase transition into a quantum disordered (QD) state. This \(T = 0 \) transition and its associated \(T > T \) quantum-critical (QC) scaling regime have been studied in detail, using field-theoretical approaches \(2 \) and quantum Monte Carlo (QMC) simulations \(2 \). Some QMC studies of the Néel transition in systems of weakly coupled spatially isotropic layers have also been reported. Sengupta et al. studied \(T_N \) and the dimensional cross-over in the specific heat \(D \). Yasuda et al. studied \(T_N \) more systematically at very small ratios \(\alpha = J' / J \) of the inter- and intra-layer couplings, for \(S = 1/2 \) as well as higher spins \(12 \).

We here carry out QMC calculations of the coupled-ladder system to test three recently proposed scaling functions relating \(T_N \) and various 2D and 3D staggered susceptibilities \(12 \). We focus in particular on inter-ladder couplings for which the system is near-quantum-critical in the absence of inter-layer couplings. Our main finding is that two of the scaling functions are almost constant and do not change appreciably between the RC and QC regimes. In particular, the coordination number renormalization introduced by Yasuda et al. changes from \(k_2 \approx 0.65 \) in the RC regime \(12 \) to \(k_2 \approx 0.68 \) in the QC regime. This minute change implies that the Néel ordering takes place almost exactly at the same temperature at which the planes start to correlate appreciably, and that these correlations are almost completely governed by the magnitude of the static staggered susceptibility of the planes. The nature of the fluctuations, RC or QC (for which the dynamic susceptibilities are completely different \(5 \)), does not play a major role.

In a single-layer mean-field theory (also referred to as RPA \(12 \)), the 3D couplings of a layer \(l = 0 \) are taken into account by a static staggered magnetic field arising from the ordered moments of the two adjacent planes \(l = \pm 1 \). The self-consistent Néel temperature is then obtained by solving the equation

\[
\chi^2(T_N) = (2z_2\alpha)^{-1},
\]

where \(z = 2 \) is the layer coordination number and \(\chi^2 \) is the staggered susceptibility of a single layer, the \(T \) dependence of which is known from studies of the quantum nonlinear \(\sigma \) model. In the RC regime, \(T < 4\rho_s \),

\[
\chi^2(T) \propto T e^{4\rho_s/T},
\]

where \(\rho_s \) is the spin stiffness. Using numerically exact QMC results for \(\chi^2 \) and \(T_N \), Yasuda et al. \(12 \) found that the mean-field expression \(D \) accurately captures...
the $\alpha \ll 1$ dependence of T_N, if z is replaced by a renormalized coordination number $z_2 k_2$:

$$\chi_s^{2D}(T_N) = (k_2 z_2 \alpha)^{-1}. \quad (3)$$

Moreover, the renormalization, $k_2 \approx 0.65$, was found to be independent on the spin S. This intriguing result prompted Hastings and Mudry to carry out a detailed renormalization group (RG) study of the anisotropic $O(N)$ non-linear sigma model 13. Instead of a constant coordination number renormalization, they argued that the quantity

$$F_1 = (k_2 z_2)^{-1} = \alpha \chi_s^{2D} \quad (4)$$

is a universal function of $x = c(T_N \xi^{2D}(T_N))^{-1}$ when $\alpha \ll 1$. Here ξ^{2D} is the correlation length of a single isolated layer and c the spinwave velocity. They concluded that the reason for the near constant k_2 is that the single layer is in the RC regime for all S at low T, whence x is exponentially small and $F_1(x \to 0)$ is constant. In the QC and QD regimes F_1 should approach other constant values. A quantity involving the susceptibility $\chi(Q)$ of the full 3D system at wave-vector $Q = (\pi, \pi, 0)$ was also introduced

$$F_2 = \alpha \chi(\pi, \pi, 0). \quad (5)$$

To leading order in an $1/N$ approximation, Praz et al. 14 found that $F_2 = 1/4$ in all regimes when $\alpha \to 0$. This prediction should be easier to test experimentally because it involves only properties of the actual quasi-2D system. They also proposed a third universal quantity

$$F_3 = \alpha S(\pi, \pi, 0) T_N^{-1}, \quad (6)$$

where $S(Q)$ is the static spin structure factor. This function was shown to distinguish between the RC, QC, and QD regimes already at the $N = \infty$ level.

Since the $\alpha \to 0$ values of F_1, F_2, and F_3 were evaluated at the $N = \infty$ level or including only order-$1/N$ corrections, significant higher-order corrections to these results were expected 14. Unbiased numerical results would therefore be useful. The previous QMC results by Yasuda et al. for $k_2 = [2F(x \to 0)]^{-1}$ in the RC regime, $k_2 \approx 0.65 \quad (12)$, falls between the $N = \infty$ and $1/N$ values; $k_2 = 1/2$ and $1.01 \quad (14)$. F_2 and F_3 have not yet been calculated in the RC regime, and none of the predictions have been tested against numerical results in the QC and QD regimes.

The universal constants could be very useful for extracting inter-layer couplings experimentally. This motivates us to carry out large-scale QMC simulations of the coupled-ladder system, where the individual layers can be tuned through a quantum-critical point. We can then obtain numerical results for F_1-F_3 in all three 2D temperature regimes.

The Hamiltonian for coupled Heisenberg layers consisting of two-leg ladders is

$$H = J_1 \sum_{\langle i,j \rangle_1} \mathbf{S}_i \cdot \mathbf{S}_j + J_2 \sum_{\langle i,j \rangle_2} \mathbf{S}_i \cdot \mathbf{S}_j + J_3 \sum_{\langle i,j \rangle_3} \mathbf{S}_i \cdot \mathbf{S}_j, \quad (7)$$

where $\langle i,j \rangle_1$ denotes a pair of nearest-neighbor spins in the same ladder, $\langle i,j \rangle_2$ in different ladders of the same layer, and $\langle i,j \rangle_3$ in adjacent layers. We define the coupling ratios $q = J_2/J_1$ and $\alpha = J_3/J_1$.

The quantum phase transition of the single layer ($\alpha = 0$) has been studied by Matsumoto et al. 17. The critical coupling $q_c = 0.31407(5)$. The $T > 0$ cross-overs for an isolated layer are shown schematically in Fig. 1. In the limit $\alpha \to 0$, the quantum-critical coupling of the quasi-2D system approaches q_c of the single layer. In our study we focus on values of q close to the 2D quantum-critical point, choosing $q = 0.25, 0.30, 0.31407 = q_c$, and 0.33. We also consider the previously studied case $q = 1 \quad (12)$, to calculate also F_2 and F_3 deep inside the RC regime. We have obtained results for α in the range 10^{-3} to 1.

We use the stochastic series expansion (SSE) QMC method 12 to study periodic lattices with $L_x L_y L_z$ spins, with $L_x = L_y = L$ up to 128. To take into account, at least partially, the fact that $\xi_{x,y} \gg \xi_z$ when $\alpha \ll 1$, we use aspect ratios L/L_z up to 16. To determine the Néel temperature, we use the finite-size scaling of the spin stiffness constants ρ_μ^n in the three different directions, $\mu = x, y, z$, of the spatially anisotropic lattice. This approach was previously taken in Ref. 11. For fixed aspect ratio, the stiffness at T_N should scale as L^{-1}. We thus locate the point at which $L \rho_\mu(T)$ becomes asymptotically size-independent (extrapolating crossing points for different size L to $L \to \infty$). For $q = 1$, we use T_N from Ref. 12. For the calculations of the 2D staggered susceptibility $\chi^{2D}(T)$ we have used L up to 800.

The α dependence of the Néel temperature for the different q values is shown on a log-log scale in Fig. 2. When $q < q_c$, there is a minimum value $\alpha_c(q < q_c)$ below which the system cannot order—$\alpha_c(q < q_c)$ is the line of 3D quantum-critical points and $\alpha_c(q_c) = q_c$. In our results for $q > q_c$, we see a down-turn of T_N as α decreases, reflecting the 3D quantum-critical point. From our limited low-T_N data we can only roughly extract two points on the critical line; $\alpha_c(q = 0.30) \approx 0.001$ and $\alpha_c(q = 0.25) \approx 0.006$.

For $q > q_c$ we can solve the mean-field equation 11 with the RC form 12 of the correlation length, giving, to
leading order in α,

$$T_N(\alpha) \propto -[\ln(\alpha)]^{-1}. \quad (8)$$

As shown in Fig. 2 for $q = 1$ this form does not yet apply at $\alpha = 10^{-3}$, but it should be the correct form for $\alpha \to 0$. Yasuda et al. presented an empirical formula that works well also at higher α \cite{12}. For $q = 0.33$ we should also approach the RC form when $\alpha \to 0$, but here we instead observe an almost perfect power law in the whole range of $\alpha \geq 10^{-3}$. However, the exponent is not the one expected in the QC scaling regime (discussed further below), and we expect the behavior to eventually cross over to the log form.

In the QC regime, the 2D staggered susceptibility takes an asymptotic $T \to 0$ power-law form,

$$\chi_s^{2D}(T) \propto T^{-2+\eta}, \quad (9)$$

where $\eta \approx 0.035$ \cite{17} is the correlation function exponent of the 3D $O(3)$ Universality class. Using this form in the mean-field equation \cite{11} we get a corresponding power-law behavior of T_N:

$$T_N(\alpha) \propto \alpha^{1/(2-\eta)}. \quad (10)$$

In Fig. 2 we can see that this quasi-2D quantum-critical form accurately describes the results for $q = q_c$ below $\alpha \approx 10^{-2}$. For larger α, T_N is still in the high-temperature regime where the behavior is influenced by non-universal lattice effects \cite{2,8}. The two q values close to q_c, for which the reduced coupling $|g-q_c/g_c| \approx 0.05$, are already too far from the critical point to observe any distinct (asymptotic-form) QC behavior before the crossovers occur.

Following Ref. \cite{12}, we study the coordination number renormalization

$$k_2(\alpha) = [2\alpha \chi_s^{2D}(T_N)]^{-1} = (2F_1)^{-1}. \quad (11)$$

In Fig. 3 we show our QMC results for the staggered susceptibility of the isolated 2D layers. Using these results and the T_N data shown in Fig. 2, we obtain the results for k_2 shown in the upper panel of Fig. 4. For $q = 1$, Yasuda et al. found $k_2 \approx 0.65$ for $\alpha < 0.1$ \cite{12}. We here show $q = 1$ results obtained with their listed T_N values and our own results for χ_s^{2D}. The resulting k_2 agree with the previous results. Surprisingly, we hardly see any change in k_2 when going to the near-critical systems, except some small differences when $\alpha > 0.1$. At lower α, k_2 is only a few percent larger for $q \approx q_c$ than at $q = 1$: $k_2(q_c) \approx 0.68$. Even for our $q < q_c$ points, k_2 remains close to this value, even though T_N is seen crossing over into QD behavior in Fig. 2. For the lowest α considered for $q = 0.25$ and 0.30 we see a slight increase in k_2, but the effect is barely statistically significant. Note that for $q < q_c$, k_2 is not defined for $\alpha < \alpha_c(q)$.

In the RG study by Praz et al. \cite{14}, different expressions for F_1 (k_2) were obtained in saddle-point approximations for the RC, QC, and QD regimes. No numerical values were given, however, except for $k_2 = 1/2$ in the RC regime. Corrections to the constant behavior was expected (and calculated to order $1/N$ in the case of the RC regime, then giving $k_2 = 1.01$). Furthermore, significantly different constants were expected for the three regimes. The near constant $k_2 \approx 0.65 \pm 0.70$ we find here for such a wide range of q values, spanning all three temperature regimes, is thus quite remarkable.

We now turn to the second scaling function, Eq. 6. As seen in the middle panel of Fig. 4 we obtain an almost constant $F_2 = \alpha \chi(\pi, 0) \approx 0.22 - 0.23$ for all q and for a wide range of α. In the $N = \infty$ approximation, $F_2 = 1/4$ in all temperature regimes \cite{14}, remarkably close to what we find here. However, also in this case the actual values in the RC, QC, and QD regimes were expected to differ markedly once $1/N$ and higher corrections are included.

The third scaling function, Eq. 8, distinguishes between the RC, QC, and QD regimes already at the $N = \infty$ level \cite{14}. In the RC regime $S(Q) = T \chi(Q)$ to leading order \cite{3} and thus $F_3 = F_2 = 1/4$. Our results for the RC regimes ($q = 1$), shown in the bottom
FIG. 4: Inter-layer coupling dependences of the quantities ξ_α, α^\prime, and $\alpha S(\pi, \pi, 0)/T_N$ for different inter-ladder couplings q. The dashed lines show our extracted constant values for the QC regime.

panel of Fig. 4 are slightly lower than the predicted value for $\alpha < 0.1$. There is also still a decreasing trend as α decreases and we cannot reliably extract the asymptotic constant RC value (for $\alpha = 10^{-3}$ our calculations for $q = 1$ are not completely size converged and we therefore do not show them here). For $q = 0.33$, which also should give RC behavior for $\alpha \to 0$, the results are still quite far from the $q = 1$ curve for all α, but the decreasing trend is consistent with the same asymptotic value. For F_3 we also see clear differences in behavior in the three regimes. There are distinct cross-overs from QC to RC or QD behavior. The results for $q = q_c, 0.30$, and 0.33 all fall on the same universal QC curve for α down to ≈ 0.05, below which the $q = 0.25$ curve splits off. The $q = q_c$ and 0.3 curves coincide to even lower α. The asymptotic value at q_c is ≈ 0.27. For $q < q_c$ we expect a divergence at $\alpha_c(q)$, as $S(\pi, \pi, 0)$ must converge to a constant when $q < q_c$ and $T_N \to 0$. We see clear signs of this divergence.

In conclusion, we have presented results for the quantities $\alpha^{2D} \equiv 1/2k_2$, $\alpha^\prime(\pi, \pi, 0)$, and $\alpha S(\pi, \pi, 0)/T$, at $T = T_N$ for a quasi-2D system of coupled ladder. For weak inter-layer coupling, $\alpha \to 0$, these quantities have been predicted to take different universal constant values in the RC, QC, and QD regimes [12, 14]. We have investigated the dependence on α for $10^{-3} \leq \alpha \leq 1$, with the goal of extracting the constants and investigate the $\alpha > 0$ corrections. We find a remarkably stable value of the coordination number renormalization k_2 and $\alpha^\prime(\pi, \pi, 0)$: For $\alpha < 0.1$ they are almost independent on α and do not change appreciably between the RC, QC, and QD regimes. Significant differences in the three regimes were anticipated based on the previous RG study of the non-linear σ model by Praz et al. [14]. Only in $\alpha S(\pi, \pi, 0)$ do we see distinct differences. It would be useful to extend the calculations to still lower inter-layer couplings, but reaching significantly below $\alpha = 10^{-3}$ with QMC requires prohibitively large lattices.

The almost constant F_1 and F_2 imply that the correlations between layers is predominantly governed by the magnitude of the static staggered susceptibility of the layers. The range of temperatures for which the system is 3D critical is almost negligible, regardless of the nature of the 2D fluctuations—RC or QC—that initially lead to correlations between the layers.

We would like to thank D. K. Campbell, M. B. Hastings, C. Mudry, and A. Praz for useful discussion. This work was supported by the NSF under grant No. DMR-0513930 and by Boston University.

[1] S. Sachdev, Quantum Phase Transitions (Cambridge University Press, Cambridge 1999)
[2] L. L. Liu and E. H. Stanley, Phys. Rev. Lett. 29, 927 (1972).
[3] N. D. Mermin and H. Wagner, Phys. Rev. Lett. 17, 1133 (1966).
[4] J. D. Reger and A. P. Young, Phys. Rev. B 37, 5978 (1988).
[5] S. Chakravarty, B. I. Halperin, and D. R. Nelson, Phys. Rev. Lett. 60, 1057 (1988); Phys. Rev. B 39, 2344 (1989).
[6] R. R. P. Singh and M. P. Gelfand, and D. A. Huse, Phys. Rev. Lett. 61, 2484 (1988).
[7] M. Matsumoto, C. Yasuda, S. Todo, and H. Takayama, Phys. Rev. B 65, 014407 (2001).
[8] A. V. Chubukov, S. Sachdev and J. Ye, Phys. Rev. B 49, 11919 (1994).
[9] A. W. Sandvik and D. J. Scalapino, Phys. Rev. Lett. 72 2777 (1994); P. V. Shevchenko, A. W. Sandvik, and O. P. Sushkov, Phys. Rev. B, 61, 3475 (2000).
[10] M. Troyer, M. Imada, and K. Ueda, J. Phys. Soc. Jpn. 66, 2957 (1997).
[11] P. Sengupta, A. W. Sandvik, and R. R. P. Singh, Phys. Rev. B 68, 094423 (2003).
[12] C. Yasuda, S. Todo, K. Hukushima, F. Alet, M. Keller, M. Troyer, and H. Takayama, Phys. Rev. Lett. 94, 217201 (2005).
[13] M. B. Hastings and C. Mudry, Phys. Rev. Lett. 96, 027215 (2006).
[14] A. Praz, C. Mudry, and M. B. Hastings, cond-mat/0606032.
[15] D. J. Scalapino, Y. Imry, and P. Pincus, Phys. Rev. B 11, 2042 (1975); H. J. Schulz, Phys. Rev. Lett. 77, 2790 (1996).
[16] A. W. Sandvik, Phys. Rev. B, 59, R14157 (1999).
[17] M. Campostrini, M. Hasenbusch, A. Pelissetto, P. Rossi, and E. Vicari, Phys. Rev. B 65, 144520 (2002).