MIXED NON-ALBICANS CANDIDA FUNGEMIA: AN UNCOMMON BUT EASILY OVERLOOKED CLINICAL ENTITY

CHUAN HUN DING*, ZAILI ZAKI

Department of Medical Microbiology and Immunology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia.
Email: dingch@ppukm.ukm.edu.my

Received: 20 July 2018, Revised and Accepted: 20 August 2018

ABSTRACT

The increasing use of invasive medical devices and broad-spectrum antimicrobial agents has resulted in rising candidemia rates throughout the world. A 70-year-old diabetic and schizophrenic woman was admitted initially for staphylococcal sepsis secondary to an infected sacral sore but developed a catheter-related bloodstream infection caused by extended-spectrum β-lactamase-producing Klebsiella sp. which necessitated the administration of meropenem. Unfortunately, after a week on the carbapenem, the bacterial sepsis was followed by candidemia. Parenteral fluconazole therapy was started pending identification of the yeast(s). Two distinct Candidias species were isolated from her blood which were identified biochemically using ID 32 Cas Candida tropicalis and Candida lipolytica. Both yeasts possessed elevated minimal inhibitory concentrations toward fluconazole and although amphotericin B was eventually administered, the patient succumbed to her illness.

Keywords: Candida lipolytica, Candida tropicalis, Fluconazole, Non-albicans Candida.

INTRODUCTION

Among the fungi of medical importance, Candida spp. have been implicated in up to 90% of invasive fungal infections [1]. Knowing the precise species of Candida is not merely of academic interest because the mortality rate associated with candidemia is also higher when caused by non-albicans Candida (NAC) [2]. This observation is attributable to the fact that NAC are notoriously less susceptible to fluconazole than C. albicans [3]. Fluconazole has been favored over antifungals from other classes due to its relatively low-cost, good tolerability, and favorable side effect profile. Thus, the usage of antifungal agents to more adverse drug effects. To compound matters, the proportion of NAC species causing candidemia has been rising steadily in recent years and has in fact overtaken C. albicans as the most common cause of candidemia in some centers [4]. This case report discusses the risk factors for NAC fungemia as well as its management.

CASE REPORT

A 70-year-old woman with schizophrenia and long-standing diabetes mellitus was brought to Universiti Kebangsaan Malaysia Medical Centre for high-grade fever for 2 days. For the past 1 year, she has been suffering from antipsychotic-induced parkinsonism and has been bedbound and dependent on family members for activities of daily living since then. On examination, her Glasgow Coma Scale score was 10/15 and she appeared dehydrated. Her blood pressure was 106/46 mmHg, pulse rate 97 beats per minute, and body temperature 38.2°C and her oxygen saturation on room air was 97%. There were fixed flexion deformities on both upper limbs and a Grade 3 ulcer was seen over the sacral region. The sacral sore contained necrotic tissue and exuded a foul-smelling yellowish discharge. Lung, abdominal, and cardiovascular examinations were unremarkable.

Preliminary laboratory investigations revealed a high random blood glucose level (28 mmol/L), mild anemia (hemoglobin level of 10.7 g/dL), mild leukocytosis (total white cell count of 14 × 10^9/L), as well as raised serum urea and creatinine levels (31 mmol/L and 163 µmol/L, respectively). She had metabolic acidosis with a blood pH of 7.36, PCO₂ of 31.3 mmHg, and a bicarbonate level of 18.5 mmol/L. Her urine was negative for ketones. Her initial blood culture grew methicillin-susceptible Staphylococcus aureus.

She was initially diagnosed with bacterial sepsis secondary to an infected sacral sore. Intravenous (IV) cloxacillin 1 g q8h was started along with insulin therapy. A right triple lumen femoral catheter was inserted due to difficult peripheral venous access for administration of antibiotics. However, while being treated for staphylococcal bacteremia, the patient developed another spike of temperature. New blood culture specimens were taken from both the femoral catheter and a peripheral vein. Both central and peripheral blood cultures yielded extended-spectrum β-lactamase-producing Klebsiella sp., with a differential time to positivity of at least 2 hours. The femoral catheter was subsequently removed and IV meropenem 1 g q8h was commenced.

After a week on meropenem, the patient’s clinical condition did not appear to have improved and a third blood culture was taken. This time, budding yeast cells were seen on the Gram stain of the positive blood culture. A statim dose of IV fluconazole 600 mg followed by daily doses of 300 mg were administered as empirical therapy while awaiting formal identification of the yeast. In the mycology laboratory, the yeast was subcultured onto CHROMagar Candida plates, and colonies of two distinct colors were formed (i.e., blue and grayish-white) as shown in Fig. 1.

The two yeasts were identified using a commercial biochemical identification kit, ID 32 C (bioMérieux, France). The yeast which formed blue colonies was identified as Candida tropicalis (numerical profile 5167340115; 95.4% identification) while the yeast which grew as whitish colonies was identified as Candida lipolytica (numerical profile 2300511121; 99.9% identification). Antifungal susceptibility testing was performed on both Candida species with the broth microdilution method (Sensititre® YeastOne® Y010) (TREK Diagnostic Systems, USA). The minimal inhibitory concentration (MIC) values were read at 24 h and are shown in Table 1. Following the release of the laboratory report, fluconazole therapy was discontinued immediately and IV amphotericin B at a dose of 0.5 mg/kg/day was started. Unfortunately, the patient succumbed to her illness.
fungemia, catheter removal alone (i.e., without the
established that invasive monomicrobial NAC infections carry a higher
morbidity/mortality rates for mixed candidemia (in which at least one
species from a blood specimen is an uncommon occurrence [8].
Like bacteremia, fungemia has also been traditionally regarded as
a monomicrobial disease, and the isolation of more than one fungal
strain, particularly predispose patients to NAC fungemia. Considering that
NAC are often less susceptible to fluconazole, it is logical to regard
prior fluconazole usage as the main risk factor although this was clearly
not the case with our patient who was on a broad-spectrum antibiotic
(i.e., meropenem) rather than an antifungal before the candidemia.

Although there are several risk factors known to be associated with
candidemia, it is worthwhile to explore if any of these risk factors,
predominantly predispose patients to NAC fungemia. Considering that
NAC are often less susceptible to fluconazole, it is logical to regard
prior fluconazole usage as the main risk factor although this was clearly
not the case with our patient who was on a broad-spectrum antibiotic
(i.e., meropenem) rather than an antifungal before the candidemia.

Broad-spectrum antibiotic usage is a non-specific risk factor for
candidemia, including that caused by C. albicans [9]. On the contrary,
specific risk factors for NAC fungemia are neutropenia, acute leukemia,
and other hematological malignancies, prior surgery, catheter
insertion, and renal failure [4]. Our patient had an indwelling femoral
catheter and renal impairment (as evidenced by her high serum urea
and creatinine levels) before the onset of the NAC fungemia. However,
due to the paucity of clinical data in the medical literature, it remains
to be corroborated if the insertion of a vascular catheter in a patient
with underlying renal impairment will predispose him/her to mixed
C. tropicalis and C. lipolytica fungemia.

Once a diagnosis of NAC fungemia is established, the next course of
action is prompt and optimal treatment. The two key approaches
recommended by the Infectious Diseases Society of America in their
2016 guideline on the management of candidiasis is administering an
antifungal agent and removing the central venous catheter as early as
clearly possible. An echinocandin is recommended as the initial therapy, with
fluconazole and amphotericin B being acceptable alternatives [11].
However, the guideline further states that if fluconazole is to be
administered, the infecting Candida species should be one which is
unlikely to be fluconazole resistant. Thus, the role of in vitro antifungal
susceptibility testing is crucial, particularly so when faced with NAC
species with unpredictable fluconazole susceptibility, as documented
here. Perhaps, new sources or classes of antifungal agents need to be
sought and evaluated for human use as well [12,13]. With regard to
catheter removal, its role in the management of candidemia is especially
imperative if it is the source of infection. In fact, for some patients
with C. lipolytica fungemia, catheter removal alone (i.e., without the
administration of any antifungal agent) has been sufficient in clearing
fungemia.

CONCLUSION
Both clinicians and laboratory workers need to be aware of mixed NAC
fungemia, particularly in patients who have indwelling central venous catheters and other risk factors for candidemia such as renal impairment and broad-spectrum antibiotic usage. Clinical mycology laboratories are advised to routinely use chromogenic agars when processing yeast-
positive blood cultures and perform antifungal susceptibility testing on
all NAC species, especially in centers that still favor fluconazole as the
first-line therapy for candidemia.

ACKNOWLEDGMENT
We would like to thank the Dean of the Faculty of Medicine, Universiti
Kebangsaan Malaysia, for her motivation and permission to publish this
article.

AUTHORS’ CONTRIBUTIONS
Study conception and design: Chuan Hun Ding. Collection and data
analysis: Zaili Zaki. Drafting of article and revising it critically for
important intellectual content: Chuan Hun Ding and Zaili Zaki. Final
approval of the version to be submitted: Chuan Hun Ding and Zaili Zaki.
CONFLICTS OF INTEREST
The authors declare that they have no conflicts of interest.

REFERENCES
1. Delaloye J, Calandra T. Invasive candidiasis as a cause of sepsis in the critically ill patient. Virulence 2014;5:161-9.
2. Wisplinghoff H, Seifert H, Wenzel RP, Edmond MB. Inflammatory response and clinical course of adult patients with nosocomial bloodstream infections caused by Candida spp. Clin Microbiol Infect 2006;12:170-7.
3. Kaur R, Dhakad MS, Goyal R, Kumar R. Emergence of non-albicans Candida species and antifungal resistance in intensive care unit patients. Asian Pac J Trop Biomed 2016;6:455-60.
4. Krmery V, Barnes AJ. Non-albicans Candida spp. Causing fungaemia: Pathogenicity and antifungal resistance. J Hosp Infect 2002;50:243-60.
5. Kothavade RJ, Kura MM, Valand AG, Panthaki MH. Candida tropicalis: Its prevalence, pathogenicity and increasing resistance to fluconazole. J Med Microbiol 2010;59:873-80.
6. Zhao Y, Chan JF, Tsang CC, Wang H, Guo D, Pan Y, et al. Clinical characteristics, laboratory identification, and in vitro antifungal susceptibility of Yarrowia (Candida) lipolytica isolates causing fungemia: A multicenter, prospective surveillance study. J Clin Microbiol 2015;53:3639-45.
7. Ding CH, Wahab AA, Muttaqillah NA, Tzar MN. Prevalence of albicans and non-albicans candiduria in a Malaysian medical centre. J Pak Med Assoc 2014;64:1375-9.
8. Jensen J, Muñoz P, Guinea J, Rodríguez-Créixems M, Peláez T, Bouza E, et al. Mixed fungemia: Incidence, risk factors, and mortality in a general hospital. Clin Infect Dis 2007;44:e109-14.
9. Al-Rawahi GN, Roscoe DL. Ten-year review of candidemia in a canadian tertiary care centre: Predominance of non-albicans Candida species. Can J Infect Dis Med Microbiol 2013;24:e65-8.
10. Pulimood S, Ganesan L, Alan G, Chandrasekar P. Polymicrobial candidemia. Diagn Microbiol Infect Dis 2002;44:353-7.
11. Pappas PG, Kauffman CA, Andes DR, Clancy CJ, Marr KA, Ostrosky-Zeichner L, et al. Clinical practice guideline for the management of candidiasis: 2016 update by the Infectious Diseases Society of America. Clin Infect Dis 2016;62:e1-50.
12. Dharajiya D, Jasani H, Khatrani T, Kapuria M, Pachchigar K, Patel P. Evaluation of antibacterial and antifungal activity of fenugreek (Trigonella foenum-graecum) extracts. Int J Pharm Pharm Sci 2016;8:212-7.
13. Pandey S. Antibacterial and antifungal activities of Ocimum gratissimum L. Int J Pharm Pharm Sci 2017;9:26-31.