Učestalost nalaza bakterijskog sadržaja u perzistentnim periapikalnim lezijama

Frequency of Bacterial Content Finding in Persistant Periapical Lesions

Uvod

Perzistencija apikalnih lezija nakon endodontskog liječenja povezana je s intraradikularnom infekcijom, ekstraradikularnom infekcijom, reakcijom na strano tijelo, stvaranjem klijurnih simptomima i dijabetesom. Bakterijska nukleinskih kiselin detektirana je za otkrivanje 16S ribosomalnog RNK u 36 uzoraka. PCR usmjeren na pojedine vrste proveden je s pomoću početnika za 16S RNK gene Prevotella nigrescens, Pseudoramibactera alactolyticus i Propionobacterium propionicum. Rezultati: Šest uzoraka (16,67%) bilo je pozitivno na bakterijski ribosomalni RNK. *Pseudoramibacter alactolyticus* detektiran je u trima uzorcima. *Propionibacterium propionicum* i *Prevotella nigrescens* detektirani su svaki u pojednačkom uzorku. Prevalencija infekcije ovih lezija *P. intermedia, P. propionicum* i *P. alactolyticum* niska je. Provedeno istraživanje nije dalo dostatne podatke o povezanosti ekstraradikularne infekcije s dijabetesom melitom i klijurnim simptomima. Zaključci: Apikalne lezije koje perzistiraju nakon endodontskog liječenja mogu, uz *Actinomyces* i *Propionicub species*, sadržavati i druge mikroorganizme.
me. Mikroflora korijenskog kanala razlikuje se kod primarnih endodoncija i u slučajevima revizije (8). Intraradikularna flora zuba povezanih s perzistentnim apikalnim parodontitom sastoji se od manje vrsta, a to prevladavajućе gram-pozitivnih. U tim je slučajevima pronađen velik udjel enterokoka (7). Drugi mikroorganizam koji može preživjeti kao mono-infekcija, te čak učići u dentinske tubulse, jest Candida albicans (7). Općenito, u slučaju revizije mikroorganizmi mogu preživjeti s malo nutrijenta, otporni su na intrakanalne medicamente i sredstva za ispiranje (kalichev hidroksid, natrijev klorhidrat), formiraju biofilme u kanalima, invadiraju dentinske tubulse i metaboliziraju intratubularnu tekućinu i tekućinu iz parodontnog ligamenta, prijažu na kolagen, preluze u vijabilno, ali nekultivabilno stanje i stječu rezistenciju na antibiotike (9).

Intraradikularni mikroorganizmi mogu svladati periapikalnu obrambenu prepreku i uspostaviti ekstraradikulnu infekciju koja može uzrokovati akutni apikalni apsces. Mikroorganizmi koji prevladavaju u ekstraradikularnoj infekciji anaerobne su bakterije poput Actinomyces spp., Propionibacterium acnes, Treponeuma spp., Porphyromonas endodontalis, Porphyromonas gingivalis, Treponema forsythia, Prevotella spp. i Fusobacterium nucleatum (10, 11). Klasificira histološke studije dosljedno su pokazale prisutnost mikroorganizama u periapikalnom tkivu slučajeva s kliničkim znakovima i simptomima poput akutnog apscesa i drenirajućeg sinusnog trakta, no asimptomatski slučajevi perzistentnih periapikalnih lezija općenito nisu bili inficirani (1). No u nekim radovima navodi se postojanje ekstraradikularnih biofilmova kod asimptomatskog periapikalnog parodontitisa i kroničnog apikalnog apscesa sa sinusnim traktom (12, 13). Također je u nekim radovima mikrobiološkim i molekularnim postupcima nađena ekstraradikularna infekcija u slučajevima asimptomatskih periapikalnih lezija koje perzistiraju nakon ispravne endodoncije (10, 11).

Razumijevanje mikroorganizama koji uzrokuju perzistentne apikalne lezije pomaže nam pri odabiru intrakanalnog medicamenta i sredstava za ispiranje (kalichev hidroksid, sodium hypochlorite), formiraju biofilme u kanalima, invadiraju dentinske tubulse i metaboliziraju intratubularnu tekućinu i tekućinu iz parodontnog ligamenta, prijažu na kolagen, preluze u vijabilno, ali nekultivabilno stanje i stječu rezistenciju na antibiotike (9).

Intraradikularni mikroorganizmi mogu svladati periapikalnu obrambenu prepreku i uspostaviti ekstraradikulnu infekciju koja može uzrokovati akutni apikalni apsces. Mikroorganizmi koji prevladavaju u ekstraradikularnoj infekciji anaerobne su bakterije poput Actinomyces spp., Propionibacterium acnes, Treponeuma spp., Porphyromonas endodontalis, Porphyromonas gingivalis, Treponema forsythia, Prevotella spp. i Fusobacterium nucleatum (10, 11). Klasificira histološke studije dosljedno su pokazale prisutnost mikroorganizama u periapikalnom tkivu slučajeva s kliničkim znakovima i simptomima poput akutnog apscesa i drenirajućeg sinusnog trakta, no asimptomatski slučajevi perzistentnih periapikalnih lezija općenito nisu bili inficirani (1). No u nekim radovima navodi se postojanje ekstraradikularnih biofilmova kod asimptomatskog periapikalnog parodontitisa i kroničnog apikalnog apscesa sa sinusnim traktom (12, 13). Također je u nekim radovima mikrobiološkim i molekularnim postupcima nađena ekstraradikularna infekcija u slučajevima asimptomatskih periapikalnih lezija koje perzistiraju nakon ispravne endodoncije (10, 11).

Razumijevanje mikroorganizama koji uzrokuju perzistentne apikalne lezije pomaže nam pri odabiru intrakanalnog medicamenta i sredstava za ispiranje (kalichev hidroksid, sodium hypochlorite), formiraju biofilme u kanalima, invadiraju dentinske tubulse i metaboliziraju intratubularnu tekućinu i tekućinu iz parodontnog ligamenta, prijažu na kolagen, preluze u vijabilno, ali nekultivabilno stanje i stječu rezistenciju na antibiotike (9).

Intraradikularni mikroorganizmi mogu overcome periapical defense barrier and establish extraradicular infection, which may cause acute apical abscess. Microorganisms that prevail in extraradicular infection are anaerobic bacteria such as Actinomyces spp., Propionibacterium acnes, Treponeuma spp., Porphyromonas endodontalis, Porphyromonas gingivalis, Treponema forsythia, Prevotella spp. and Fusobacterium nucleatum (10, 11). In classic histology studies, micro-organisms were consistently present in the periapical tissue of cases with clinical signs and symptoms such as acute abscesses and draining sinus tracts, but asymptomatic persistent periapical lesions were generally not infected (1). There are, however, reports on extraradicular biofilms in asymptomatic periapical periodontitis and chronic apical abscesses with sinus tracts (12, 13). There are, also, reports on extraradicular infection of asymptomatic periapical lesions persisting after proper endodontics using microbial culture and molecular methods, where strict aseptic sampling procedures were used (10,11).

A clear understanding of the etiology and pathogenesis of the microbes causing persistent endodontic lesion helps in deciding on the use of intracanal medicaments and irrigants in endodontic retreatment cases with periapical lesions, or whether apical surgery should be preferred. The aim of this study was to detect microorganisms difficult to cultivate in periapical lesions by PCR, and to relate them to endodontic failure, clinical symptoms, and diabetes mellitus.

Materijali i postupci

Pacijenti

Uzorak se sastojao od 48 pacijenata, ali je samo njih 36 u dobi od 24 do 58 godina (19 muškaraca i 17 žena) bilo prikladno za analizu. Pacijenti su upućeni u Zavod za oralnu kirurgiju Poliklinike Zagreb na zahvat apikotomije zbog perzistentnog apikalnog parodontitisa čija je dijagnoza postavljena preoperativno na temelju kliničkoga i radiološkoga nalaza.

Patients

The sample consisted of 48 patients, but only the samples of 36 patients between 24-58 years of age (19 males and 17 females) were adequate for analysis. The patients were referred to the Department of Oral Surgery at Dental Clinic Zagreb for apicoectomy due to persistent apical periodontitis, which had been diagnosed preoperatively based on clinical and radiologic findings. The Ethical protocol for the study was approved by the Ethics Committee of the School of Dental Medicine, University of Zagreb. The patients signed the informed consent and a detailed medical and dental history was taken prior to the apicoectomy procedure. It was record-
jeri su kategorizirani kao simptomatski ako je ukupan broj bodova na vizualno-analognoj ljestvici od 1 do 100 iznosio > = 30, tj. kada su bili otećeni ili su osjećali umjerenu do jaku bol na palpciju ili perkusiju. Kriteriji za uključenje bili su:
(i) adekvatno endodontsko liječenje s perzistentnom ili postendodontskom periapikalnom lesijom
(ii) revizija endodontskog liječenja nije bila moguća zbog intraradikularne nadogradnje.
Kriteriji za procjenu endodontskog liječenja kao adekvatnog:
- punjenje do 2 mm kraće, radiološki homogeno punjenje korijenskog kanala.
Kriteriji za isključivanje bili su:
(i) zubi s parodontnim džepovima
(ii) liječenje antibioticima u posljednja tri mjeseca
(iii) ozbiljne sistemske bolesti
(iv) trudnice ili dojilje
(v) sudjelovanje u drugim kliničkim istraživanjima u posljednji tri mjeseca.

Uzorci tkiva

Uzorci perzistentnih apikalnih lezija skupljani su tijekom postupaka apikoizolacije. Pacijenti su ispirali usta 0,2-postotnim alkoholom na usta 0,2% chlorhexidine gluconate solution for 30 sekunda neposredno prije operacije. Učinjena je Nowak-Peterova incizija i odignut mukoperiostalni režanj u punoj debljini. Nakon toga je operativno polje isprano sterilnom fiziološkom otopinom i pristupljeno je apeksu s pomoću sterilnog karbidnog svrdla. Periapical tissue samples were transferred to lysis buffer from the extraction kit QiaAmp™ DNA Mini Kit (Qiagen, GmbH, Germany) according to the manufacturer instruction, and subsequently stored in liquid nitrogen, and then in criotubes at -80°C prior to DNA extraction.

Ekstrakcija DNK

Ekstrakcija DNK provedena je komercijalnim kitom (Qiagen, Hilden, Germany) prema uputama proizvođača. Za tim su uzorci izvadeni iz kriotubica, zagrijani na sobnu temperaturu (20–25 °C) i ogreveni mukoperiostalni režanj u punoj debljini. Nakon toga je operativno polje isprano sterilnom fiziološkom otopinom i pristupljeno je apeksu s pomoću sterilnoga karbidnog svrdla. Cijela lezija izljuštena te je učinjena apikotomija Lindemanovim korijenskim svrdlom. Uzorci periapikalnog tkiva prebačeni su u litički pufer od ekstrakcijskog kita QiaAmp™ DNA Mini Kit (Qiagen, GmbH, Njemačka) prema uputama proizvođača. Less than 25 mg of each sample was placed into 1,5 ml tube (Eppendorf Safe-Lock Tubes, Eppendorf, Njemačka) with previously prepared enzymatic otopinom (20 mg/ml lizozima; 29mM TrisHCl, 2 mM EDTA; 1,2% tritione) for the degradation of gram positive bacteria, and atim su uzorci jedan sat inkubirani na 37°C.

Zatim je 180 μL pufera ATL (Qiagen) i 20 μL proteazne K (20 mg/ml) dodano zbog degradacije proteina, a uzorci su inkubirani 24 sata na 56°C. Nakon toga su uzorci centrifugirani na 8000 RPM (Sigma 113, Sigma-Aldrich, Njemačka). Nadalje, dodano im je 200 μL pufera AL-a iz kita, te su vontekirani 15 sekundi i inkubirani 15 minuta na 70°C. Zatim je dodano 200μL etanola i svaki je uzorak ponovno centrifugiran 15 sekunda na 8000 RPM. DNK je izoliran dodavanjem ližata QiaGenovim sturciima kako je opisao proizvođač. Bakterijski DNA je eluiran s 200 μL AE pufera (Qiagen): jednominutnom inkubacijom na sobnoj temperaturi i jedno-
ed whether a patient suffered from diabetes mellitus. The patients were categorized as asymptomatic if they scored >=30 on visual analogue scale from 1-100 i.e. they were swollen or experienced moderate to strong pain to palpation or percussion. The inclusion criteria were: (i) adequate endodontic treatment with persistent or postendodontically developed periapical lesion, (ii) revision of the endodontic treatment was not possible due to intraradicular post. The criteria for considering endodontic procedure as adequate were: root canal filling up to 2mm short, and radiologically homogenous root canal filling.

The exclusion criteria were: (i) teeth with periodontal pockets, (ii) treatment with antibiotics within the last three months, (iii) serious systemic diseases, (iv) pregnant or breastfeeding female patients, (v) participation in other clinical studies within the last three months.

Tissue samples

The samples of persistent apical lesions were collected during apicoectomy procedures. The patients washed their mouth with 0.2% chlorhexidine gluconate solution for 30 seconds prior to surgery. The operatively field was subsequently washed with sterile saline and the apex was approached using sterile carbide bur. The entire lesion was enucleated and apieectomy was performed using Lindeman carbide bur. Periapical tissue samples were transferred to lysis buffer from the extraction kit QiaAmp™ DNA Mini Kit (Qiagen, GmbH, Germany) according to the manufacturer instruction, and subsequently stored in liquid nitrogen, and then in criotubes at -80°C prior to DNA extraction.

DNA extraction

DNA extraction was performed using commercial kit (Qiagen, Hilden, Germany) according to the manufacturer’s instructions. The samples were taken out of the criotubes, warmed to room temperature (20-25°C), and cut to smaller pieces using sterile scissors. Less than 25 mg of each sample was placed into 1,5 ml tube (Eppendorf Safe-Lock Tubes, Eppendorf, Germany) with previously prepared enzymatic solution (20 mg/ml lysosome; 29mM TrisHCl, 2 mM EDTA; 1,2% tritione) for the degradation of gram positive bacteria. Subsequently, the samples were incubated for 1 h at 37°C.

After that, 180 μL ATL buffer (Qiagen) and 20 μL proteinase K (20 mg/ml) were added for protein degradation, and samples were incubated for 24 h at 56 °C. The samples were then centrifuged at 8000 RPM (Sigma 113, Sigma-Aldrich, Germany). Next, 200 μL of AL buffer from the kit was added, vortexed for 15 seconds, and incubated for 10 minutes at 70°C. Then 200μL of ethanol was added and each sample was again centrifuged for 15 seconds at 8000 RPM. DNA was isolated by adding the lysate to the Qiagen columns as described by the manufacturer. Bacterial DNA
minutnim centrifugiranjem na 8000 RPM. Postupak je povoljen dva puta te su talozi na dva sata stavljeni u koncentrator (Concentrator plus, Eppendorf, Njemačka). Ekstrakti DNK pohranjeni su na -20 °C.

Amplifikacija DNK

Na početku je korištena ubikvitarna bakterijska početnica 16S rRNK za detekciju 16S ribosomskog RNK u svih 36 uzoraka. Smjesa za PCR sadržavala je oligonukleotidne početnice specifične za rDNK.

Kvaliteta ekstrahiranoga DNK provjerala se spektrofotometrijski (NanoDrop 1000 Spectrophotometer, Thermo Fisher Scientific, Wilmington, SAD). PCR specifičan za pojedine vrste proveden je s početicama za 16S rRNK gene *Prevotella Nigrescens* (F:5’AGT AAA CAA AGG TTG TCC GGT AAG3’) R:5’CCC AGC TCT TGG GCT GGG G3’), *Pseudomonas aeruginosa* (F:5’CGA AAT AGT CAG TGC CCGG3’) R:5’CTT CGC CCT TGC TTA TGC G3’) i *Propionibacterium propionicum* (F:5’GAC GAT AGT AGA AGC AC3’) R:5’CTG TAA ACC GAC CAA AAA GG3’) (4, 15).

Svi PCR pokusi obavljeni su u 50 μL reakcijske smjese koja je sadržavala 1 μM specifične početnice, 2 mM MgCl2, 0,2 mM dNTP, 0,25 μL AmpliTaq Gold DNK polimerase i 10 μL ekstrahirane DNK (svi reagensi od proizvođača Applied Biosystems, Lewinsville, SAD).

Amplifikacija je provedena u termociklatoru (Applied Biosystems 2720 Thermal Cycler, Singapur) s početnom pe-tominutnom denaturacijom na 95 °C, zatim je slijedilo 36 denaturacijskih ciklusa na 95 °C tijekom 30 sekunda, jednominutno vezanje početnice na 55 °C, jednominutna eksten-daturacija na 95 °C, jednominutno vezanje početnice na 55 °C, jednominutna eksten-

Statički analiza

Dobiveni podatci analizirani su GraphPad InStat 3 programom (GraphPad Software, Inc, La Jolla, SAD). Vjerojatnost povezanosti pojedinih mikroorganizama s dijabetesom melitusom i/ili specifičnim simptomom određena je Fisherovim egzaktnim testom (p < 0,05).
Results

Out of 36 patients, 19 (52.78%) were male, and 17 (47.22%) were female. Their age range was 25-65 years; the average age was 44.6 years.

16S ribosomal RNA was detected in six samples (16.67%). Thirty samples (83.33%), were negative for the presence of bacteria (Figure 1).

The six positive samples were further tested for the presence of three anaerobic bacterial species: *Prevotella nigrescens* (g-, bacillus), *Pseudoramibacter alactolyticus* (g+ bacillus) and *Propionibacterium propionicum* (g+ bacillus).

One sample was positive for *Pseudoramibacter alactolyticus* and *Propionibacterium propionicum*, one sample was positive for *Prevotella nigrescens* and *Pseudoramibacter alactolyticus*, while one sample was positive only for *Pseudoramibacter alactolyticus*.

There was no statistically significant correlation between any of the three microorganisms and diabetes mellitus (Table 2) or symptoms (Table 3). However, considering a low number of infected tissue samples, it is hard to consider the results of this particular statistical analysis as highly relevant. Due to this fact, this study did not give sufficient data about extraradicular infection and its connection with diabetes mellitus and symptoms.

Rezultati

Od 36 pacijenata, 52,78 posto (19) bili su muškarci, a 47,22 posto (17) žene. Dob je bila u rasponu od 25 do 65 godina (prosjek 44,6 godina).

16S ribosomski RNK detektiran je u šest uzoraka (16,67 %). Trideset uzoraka bilo je negativno na bakterije (83,33 %) (slika 1.).

Šest pozitivnih uzoraka dalje je testirano na tri anaerobne bakterijske vrste – *Prevotella nigrescens* (g-, bacil), *Pseudoramibacter alactolyticus* (g+ bacil) i *Propionibacterium propionicum* (g+ bacil).

Jedan uzorak bio je pozitivan na *Pseudoramibacter alactolyticus* i *Propionibacterium propionicum*, jedan je bio pozitivan na *Prevotella nigrescens* i *Pseudoramibacter alactolyticus*, a jedan samo na *Pseudoramibacter alactolyticus*.

Nije bilo statistički značajne povezanosti između ikogega od triju mikroorganizama s dijabetesom melitusom (tablica 2.) ili simptomima (tablica 3.). No uzimajući u obzir mali broj inficiranih uzoraka tkiva, teško je rezultate ove statističke analize smatrati visoko relevantnim. Zbog te činjenice provedeno istraživanje nije dalo dovoljno podataka o povezanosti ekstraradikularne infekcije s dijabetesom melitusom i simptomima.
Tablica 1. Broj uzoraka pozitivnih na pojedini mikroorganizam
Table 1. Number of samples that were positive for a certain microorganism.

Mikroorganizam • Microorganism	Broj pozitivnih uzoraka • Number of positive samples	Gram • Aerob	Aerobe	Oblik • Shape
Prevotella nigrescens	1	Gram-	-	Bacillus
Pseudoramibacter alactolyticus	3	Gram+	-	Bacillus
Propionibacterium propionicum	1	Gram+	-	Bacillus

Tablica 2. Povezanost pojedinog mikroorganizma s dijabetesom mellitom
Table 2. Correlation between certain microorganisms and diabetes mellitus.

Mikroorganizam • Microorganism	Omjer • Odds ratio	95%-tni interval pouzdanosti • Confidence interval 95%	P vrijednost • P value
Prevotella nigrescens	2.70	0.10-74.73	1.00
Pseudoramibacter alactolyticus	1.10	0.05-24.36	1.00
Propionibacterium propionicum	2.70	0.10-74.73	1.00

Tablica 3. Povezanost pojedinog mikroorganizma sa simptomima
Table 3. Correlation between certain microorganisms and symptoms.

Mikroorganizam • Microorganism	Omjer • Odds ratio	95%-tni interval pouzdanosti • Confidence interval 95%	P vrijednost • P value
Prevotella nigrescens	1.11	0.04-29.32	1.00
Pseudoramibacter alactolyticus	0.45	0.02-9.45	1.00
Propionibacterium propionicum	1.11	0.04-29.32	1.00

Rasprava

Uloga mikroorganizama u primarnim endodontskim infekcijama prije je potvrđena (16). Također je zaostala intraradikularna infekcija prepoznata kao glavni uzrok perzistentnog apikalnog parodontitisa (1). Uz intraradikularnu infekciju, izostanak poslijeendodontskog cijeljenja može biti uzrokovao alopastičnim materijalom u periapeksu (npr. ekstrudirani materijali za punjenje korijenskog kanala), akumulacijom krkasta kolesterol i formiranjem prave ciste. Osim toga, uzroci periapikalne radiolucencije mogu biti cijeljenje ožiljnim tkivom i ekstraradikularno cijeljenje koja je prema Nairu (1) općenito u obliku periapikalne aktinomikozes. Ipak, neke su studije, koristeći se skening elektronskom mikroskopijom, pokazale da postoje biofilmovi na vanjskoj – ekstraradikulnoj strani korijena te da se nisu bilo mikroorganizama na ekstraradikulnim plohidama, iz čega se moglo zaključiti da je ekstraradikulni biofilm povezan s perzistentnom infekcijom nakon neuspješne endodontic preoperacije (13).

Mi smo odabrali ispitati uzorke tkiva zatvorenih periapikalnih lezija s bakterijskim sadržajem Grgurević i sur. (222) infekcijama prije je potvrđena (16). Također je zaostala intraradikulna kanala s nekrotičnom pulptom i/ili korijenskih kanala neuspješno endodontski liječenih zuba. Prevotella nigrescens odabrana je kao reprezentativna bakterija visoko prevalentnih bakterija u korijenskim kanalima s nekrotičnom pulptom. U slučaju vitalnih i nekrotičnih pultopa, u kojima se bakterijske organizme nekrotične pulpome, iz čega se moglo zaključiti da je ekstradayikulni biofilm povezan s perzistentnom infekcijom nakon neuspješne endodontic preoperacije (13).

Discussion

The role of microorganisms in primary endodontic infections was early established (16). Also, residual intraradicular infection was recognized as the major cause of persistent apical periodontitis (1). Apart from intraradicular infection, the absence of post-treatment healing can be caused by: alopastic material in periapex (e.g. extruded root canal filling materials), cholesterol crystals accumulations, and true cysts formation. Also, periapical radiolucency can be caused by scar tissue healing and extraradicular infection that is according to Nair (1) generally in the form of periapical actinomycosis. Nevertheless, there are studies that have shown the presence of biofilms on the outer- extraradicular side of the root using scanning electron microscope, and studies reporting that Actinomyces species are not the only infective agents found in unresolved periapical lesions (13). Wang et al. (13) investigated extraradicular bacterial flora in persistent apical periodontitis, and although the prevalences of Actinomyces sp. and Propionibacterium were the highest, bacterial species were multiple and included Prevotella sp., Streptococcus, Porphyromonas endodontalis and Burkholderia. In cases with vital and necrotic pulps there were no microorganisms on extraradicular surfaces, which suggested that extraradicular biofilm is associated with persistent infection after failed endodontics (13).

We chose to evaluate the tissue samples of closed periapical lesions for the presence of 3 microorganisms that were reported to be isolated from root canals with necrotic pulp and/or from the root canals of the teeth with failed endodontic procedure. Prevotella Nigrescens was chosen as a representative of bacterial species that are highly prevalent in root canals with necrotic pulp, and frequently isolated in symptomat-
pulpom i često izolirana u simptomatskim endodontskim infekcijama (17). Pseudomonas alcalolytica i Propionibacterium propionicum detektirani su u korijskim kanalima pacijenata nakon neuspješnog endodontskog liječenja (4).

Izključeni su bili pacijenti koji su uzimali antibiotike unatrag tri mjesece zbog mogućeg smanjenja broja anaerobnih bakterija uzrokovanoj antibiotikom. U istraživanju se željelo proučiti mikrobiološke aspekte zatvorenih perapikalnih trasparenacija koje perzistiraju nakon endodontskog tretmana, tj. onih koje ne komuniciraju s parodontom ili usnom šupljinom putem karijesa, neadekvatno kondenziranog punjenja korijskog kanala, neispunjene korijskih kanala i propuštajućih koronarnih restauracija. Fraktura korijska, fistula, komunikacija s miksalirom sinusom i mobilnost zuba također upućuju na komunikaciju peripapikalne lesije s oralnim ekosustavom te su i takvi slučajevi bili isključeni iz istraživanja, prije operativnog postupka ili tijekom njega.

Potrebno je istaknuti da smo posebno pazili da se uzorci ne kontaminiraju oralnim bakterijama te smo primjenjivali pravila aspećnoga kirurškog uzorkovanja. Pri odizanju mukoperistalnog režnja i pristupanja peripapikalnom području učinjena je marginalna incizija jer se prije pokazalo da rizik od kontaminacije nije značajno veći nego u slučaju submarginalne incizije, ali je značajno manji nego u slučaju Parzsche incizije (18). Sluznica je ispravna 0,2-postotnim klorheksidin-glukonatom te su kultivirani mikrobiološki uzorci. Premda je kos kod marginalne incizije bila inficirana u 100 posto uzoraka, a u slučaju submarginalne incizije u tek 20 posto, omjer peripapikalnih uzoraka pozitivnih na mikroorganizme nije se značajno razlikovalo između dviju skupina, a kultivirani mikroorganizmi uzet sa sluznice, kosti i peripapikalnog tkiva istog pacijenta razlikovali su se. Autori su zaključili da odizanje mukoperistalnog režnja nije odgovorno za pozitivan nalaz mikroorganizama. Ipak, čak i kada se pažljivo izbjegne kontaminacija iz usta, lezija se može infiltrirati intraradikalnim bakterijama tijekom uzorkovanja, a pozitivni nalazi mikroorganizama u takvim uzorcima može opisati kao ekstraradikularna infekcija (1). Osim spomenute kontaminacije uzoraka, detekcija mikroorganizama u uzorcima peripapikalnog tkiva molekularnim postupcima poput PCR-a, također je upitna. Primjenjujući postupak PCR-a, nemoguće je razlikovati vijabile od nevijabile mikroorganizama te razlučiti mikrobe i njihove strukturne elemente u flogocitima iz svijesti mikroorganizama (1, 4). Zato molekularni postupci, premda prilično sofisticirani, ne rješavaju problem potencijalne kontaminacije peripapikalne lesije tijekom uzimanja uzorka.

Korištenje univerzalne bakterijske početnice u našem istraživanju otkrilo je da je 16,67 posto uzoraka inficirano bakterijama. Naši rezultati također sugeriraju nisku infekciju peripapikalnih lesija trima bakterijskim vrstama. U našem istraživanju su Prevotella nigrescens i Propionibacterium propionicum nađeni u 18,12 posto uzoraka. Niska prevalencija izvankorijske infekcije ovim dvjema vrstama bila je očekivana i u skladu je s navodima o niskoj prevalenciji ekstraradikularnih biofilmova (nađenih u 6 %) kod nelijećenih i lijećenih zuba (14). U citiranoj studiji nije nađena povezanost između biofilmova i kliničkih simptoma ili prisutnosti fístule ic endodontic infections (17). Pseudoramibacter alcalolytica and Propionibacterium propionicum were detected in root canals of patients with failed endodontic treatment (4).

Exclusion criteria were applied to the patients that had been taking antibiotic therapy during the previous three months, due to a possible decrease in the number of anaerobic bacteria caused by antibiotic therapy. In this research, the intention was to study microbial aspects of peripapical transparencies persisting after endodontic treatment that are “closed” i.e. not communicating with periodontium or oral cavity through caries, not adequately condensed root canal fillings, unfilled root canals, and leaking coronar restoration. Also, root fracture, sinus tract, communication with maxillary sinus, and tooth mobility indicate communication of peripapical lesion with oral ecosystem, and similar cases were also excluded from our research before or during operative procedure.

It must be pointed out that we took great care about the samples in order to prevent contamination with oral bacteria. For this purpose, the rules of aseptic surgical sampling were applied. Marginal incision was performed to reflect mucoperiostal flap and reach periapical region, because it was reported that the risk of contamination was not significantly higher when compared to submarginal incision, and significantly smaller then with Parzsche incision (18). Mucosa was rinsed with 0,2% chlorhexidin-gluconate, and microbiological samples were cultivated, and although with marginal incision, 100% of the samples from bone were positive, as compared to only 20% with submarginal incision, the ratio of peripapical samples positive for microorganisms did not significantly differ between the two groups, and the microorganisms cultivated from mucosa, bone and periapical tissues of the same patient differed. The authors concluded that mucoperiostal flap reflection was not responsible for positive findings. Still, even if care is taken to avoid contamination from the mouth, it is still possible that the lesion gets infected by the intraradicular bacteria during sampling, and the positive finding of microorganisms in such samples can be reported as extraradicular infection (1). Apart from the mentioned contamination of the samples, molecular techniques such as PCR in detecting microorganisms in the samples of peripapical tissue are questionable as well. Is not possible to differentiate between viable and non-viable microorganisms nor is it possible to distinguish microbes and their structural elements in phagocytes from extracellular microorganisms using the PCR method (1, 4). Therefore, although molecular methods are quite sophisticated, they do not solve the primary issue of avoiding contamination of peripapical lesion during sampling.

The use of universal bacterial primer in our research revealed bacterial infection in 16.67% of the samples. Our results also suggest that there was a low incidence of peripapical infection with the three bacterial species examined. In our study Prevotella nigrescens and Propionibacterium propionicum were detected in one sample each. Low prevalence of extraradicular infection with these two species was expected and is in agreement with the reported low prevalence of extraradicular biofilms (found in 6%) in the teeth with either untreated or treated root canals (14). In the cited study,
Perzistentna apikalna lezija s bakterijskim sadržajem
Grgurević i sur.

(14), kao ni u našem istraživanju. Ivu (19) je istaknuo nizak stupanj očekivanosti mikroorganizama u perzistentnim pe-
riapikalnim lezijama s obzirom na to da su to kronične infek-
cije, a naši rezultati to potkrepljuju. Sljedeća je pretpostavka bila da su mikroorganizmi, ako su prisutni, neravnomerno raspoređeni u volumenu lezije, što može dati lažno negativ-
ne rezultate kada se uzorci promatraju pod svjetlosnim mi-
kroskopom (19). No u našem istraživanju to nije bio slučaj jer smo se koristili cijelim uzorkom izljuštenog perzi-
ticalnog tkiva i dalje ga pripremali za analizu PCR-om. Gomes i su-
radnici (20) identificirali su Prevotella nigrescens češće u slu-
čaju zuba s nekrotičnom pulomp negoli u endodontski ne-
uspešno liječenim zubima. Ovaj rezultat, zajedno s niskim stupnjem očekivanosti izvankorijske infekcije, čini naš na-
laz P. nigrescens u samo jednom uzorku očekivanim. Mikro-
organizme koji pripadaju crno pigmentiranim gram-nega-
tivnim štapićima dugo se povezuje s razvojem endodontskih simptoma (21). Ipak, u nekim novijim radovima nisu nade-
ni dokazi za povezivanje crno pigmentiranih bakterija s ra-
zvojom simptoma, bez obzira na visoku prevalenciju tih bak-
terija u uzorcima gnoja iz periapikalnih apscesa (15, 22). U starijim istraživanjima često je u endodontskim infekcijama identificirana P. intermedia, ali je poslije utvrđeno da je kultiv-
vacijom teško razlučiti P. intermedia od P. nigrescens, no dvi-
je je vrste lako diferencirati koristeći se PCR-om. P. nigrescens je prema literaturi prisutna u manjem postotku od ostalih cr-
no pigmentiranih bakterija – od 7,5 posto do otprilike jedne

Prevalentna bakterija u korijenskim kanalima zuba

U našem je istraživanju Pseudoramibacter alactolyticus na-
den u tri uzorka, a Propionibacterium propionicum u jednom. U studijama o endodontskim uspjesima, ove su vrste na-
dene u značajnim postotcima 11%-50 posto (4, 23) te su uz E. faecalis najprevalente vrste u korijenskim kanalima zuba s perzistentnim perziapikalnim lezijama (4). U ovim su studijama uzorci uzimani iz korijenskih kana-
ala, a unatoč nalazu P. nigrescens u korijenskim kanalima zuba s perzistentnim perziapikalnim lezijama, ona nije bila detekti-
rana u istraživanim uzorcima gnoja (22).

U našem je istraživanju Pseudoramibacter alactolyticus na-
den u tri uzorka, a Propionibacterium propionicum u jednom. U studijama o endodontskim uspjesima, ove su vrste na-
dene u značajnim postotcima 11%-50 posto (4, 23) te su uz E. faecalis najprevalente vrste u korijenskim kanalima zuba s perzistentnim perziapikalnim lezijama (4). U ovim su studijama uzorci uzimani iz korijenskih kana-
ala, a unatoč nalazu P. nigrescens u korijenskim kanalima zuba s perzistentnim perziapikalnim lezijama, ona nije bila detekti-
rana u istraživanim uzorcima gnoja (22).

U našem je istraživanju Pseudoramibacter alactolyticus na-
den u tri uzorka, a Propionibacterium propionicum u jednom. U studijama o endodontskim uspjesima, ove su vrste na-
dene u značajnim postotcima 11%-50 posto (4, 23) te su uz E. faecalis najprevalente vrste u korijenskim kanalima zuba s perzistentnim perziapikalnim lezijama (4). U ovim su studijama uzorci uzimani iz korijenskih kana-
ala, a unatoč nalazu P. nigrescens u korijenskim kanalima zuba s perzistentnim perziapikalnim lezijama, ona nije bila detekti-
rana u istraživanim uzorcima gnoja (22).

U našem je istraživanju Pseudoramibacter alactolyticus na-
den u tri uzorka, a Propionibacterium propionicum u jednom. U studijama o endodontskim uspjesima, ove su vrste na-
dene u značajnim postotcima 11%-50 posto (4, 23) te su uz E. faecalis najprevalente vrste u korijenskim kanalima zuba s perzistentnim perziapikalnim lezijama (4). U ovim su studijama uzorci uzimani iz korijenskih kana-
ala, a unatoč nalazu P. nigrescens u korijenskim kanalima zuba s perzistentnim perziapikalnim lezijama, ona nije bila detekti-
rana u istraživanim uzorcima gnoja (22).

U našem je istraživanju Pseudoramibacter alactolyticus na-
den u tri uzorka, a Propionibacterium propionicum u jednom. U studijama o endodontskim uspjesima, ove su vrste na-
dene u značajnim postotcima 11%-50 posto (4, 23) te su uz E. faecalis najprevalente vrste u korijenskim kanalima zuba s perzistentnim perziapikalnim lezijama (4). U ovim su studijama uzorci uzimani iz korijenskih kana-
ala, a unatoč nalazu P. nigrescens u korijenskim kanalima zuba s perzistentnim perziapikalnim lezijama, ona nije bila detekti-
rana u istraživanim uzorcima gnoja (22).
zne kolonije koje se zovu sumporne granule (1). Endodontske aktinomikoze uzrokovane su Actinomycyes israelii i Propionibacterium propionicum, komenzalna u usnoj šupljini. Ovi mikroorganizmi mogu uspostaviti kohezivne ekstraradikularne kolonije otporne na imunosni odgovor. One su dosljedno izolirane iz periparalnih lezija koje nisu cijelje nakon ispravnog provedenog endodontskog liječenja (1).

Uloga Enterococcus faecalis kao temeljnoj patogene u poslijeendodontskoj bolesti je upitna (24, 25), a vrste koje pripadaju drugim rodovima, uključujući Prevotella, Propionibacterium i Pseudomonamybacter, također su detektirane u korijenskim kanalima prije liječenih zuba (7, 26, 27). Rôças i Siqueira (27) utvrdili su da su tijekom revizije liječenja Propionibacterium (52%) i Pseudoramibacter alactolyticus (14%) prevalenti u korijenskim kanalima zuba s perzistentnim apikalnim parodontitism od bakterije Enterococcus faecalis (12%). Naši rezultati u skladu su s recentnim studijama koje dvoje o E. faecalis kao glavnom patogenu u postendodontskom apikalnom parodontitisu (24, 25). Sfin, premda su neke bakterije prepoznate kao temeljni patogene, sinergijska aktivnost cijele bakterijske zajednice interferira s domaćinovim imunosnim sustavom i uzrokuje destrukciju tkiva (14, 13). Biofilm je oblik zajednice mikroorganizama pričvršćen na čvrstu površinu u fluidu koji sadržava nutrijente, u kojima su stanice mikroba ugrađene u ekstracelularni matriks u međusobnoj interakciji. Mikroorganizmi koji žive u biofilmu mogu se samoorganizirati, pružati otpor promjenama okoliša, djelovati sinergijski i odgovoriti na promjene u okolišu kao zajednica (12, 13, 14). Imajući na umu tendenciiju mikroorganizama da stvaraju intraradikularne i ekstraradikularne biofilmove, buduće metagenomske studije trebale bi biti usmjereone na patološki potencijal bakterijskih biofilmove, radije negoli na pojedinačni mikroorganizam, unatoč relativo malom broju bakterijskih vrsta povezanih s perzistentnim parodontitismom. Istraživački modeli koji se koriste postupcima kultivacije i PCR-a ne mogu otkriti interakcijske potencijale između različitih bakterijskih vrsta s obzirom na to da je teško zajedno kultivirati mnogo vrsta, a PCR ne razlikuje žive mikroorganizme od neživih mikroorganizama.
Abstract

Objectives: To determine the percentage of persistent apical lesions positive for bacterial nucleic acids, to detect microorganisms involved in the cultivation of persistent apical lesions by PCR and relate them to endodontic failure, clinical symptoms and diabetes mellitus. Materials and methods: The samples of persistent apical lesions were collected during apicoectomy. Bacterial ubiquitous primer 16S 16S rRNA was used to detect 16S ribosomal RNA in 36 samples. A species-specific PCR was performed with primers targeted to the bacterial 16S rRNA genes of Prevotella nigrescens, Pseudoramibacter alcalolyticus, and Propionobacterium propionicum. Results: Six samples (16.67%) were positive for bacterial ribosomal RNA. Pseudoramibacter alcalolyticus was detected in three samples. Propionibacterium propionicum and Prevotella nigrescens were detected in one sample each. The prevalence of infection of such lesions with P. intermedia, P. propionicum and P. alcalolyticus is low. Conclusion: The study we conducted gave insufficient data about extraradicular infection and its connection with diabetes mellitus and clinical symptoms. Conclusions: Apical lesions persisting after endodontic treatment could harbor microorganisms other than Actinomyces and Propionibacterium species.

References

1. Nair PN. Pathogenesis of Apical Periodontitis and the Causes of Endodontic Failures. Crit Rev Oral Biol Med. 2004 Nov 1;15(6):348-81.
2. Nair PN, Sjoøgren U, Figdor D, Sundqvist G. Persistent periapical radioluencies of root-filled human teeth, failed endodontic treatments, and periapical scars. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 1999 May;87(5):617-27.
3. Siqueira Jr. Periapical actinomycosis and infection with Propionibacterium propionicum. Endod Top. 2003;6(1):78–95.
4. Siqueira Jr, Rocas IN. Periapical actinomycosis and infection with Propionibacterium propionicum. Endod Top. 2003;6(1):78–95.
5. Peciuliene V, Balciuniene I, Eriksen HM, Haapasalo M. Isolation of Enterococcus faecalis in previously root-filled canals in a Lithuanian population. J Endod. 2000 Oct;26(10):593-5.
6. Peciuliene V, Reynaud AH, Balciuniene I, Haapasalo M. Isolation of yeasts and enteric bacteria in root-filled teeth with chronic apical periodontitis. Int Endod J. 2001 Jan;34(6):429-34.
7. Pinheiro ET, Gomes BP, Ferraz CC, Sousa EL, Teixeira FB, Souza-Filho FJ. Microorganisms from canals of root-filled teeth with periapical lesions. Int Endod J. 2003 Jan;36(1):1-11.
8. Sundqvist G, Figdor D. Life as an endodontic pathogen: ecological differences between the untreated and root-filled root canals. Endod Topics. 2003; 6(1):3-28.
9. Narayanan LN, Vaishnavi C. Endodontic microbiology. J Conserv Dent. 2010 Oct;13(4):233-9. doi: 10.4103/0972-0707.73386.
10. Gatti J, Dobec JM, Smith C, Socransky SS, Skobe Z. Bacteria of asymptomatic periapical endodontic lesions identified by DNA-DNA hybridization. Endod Dent Traumatol. 2000 Oct;16(5):197-204.
11. Sunde PT, Olsen I, Debelian GJ, Tronstad L. Microbiota of periapical lesions refractory to endodontic therapy. J Endod. 2002 Apr;28(4):304-10.
12. Ricucci D, Candeiro GT, Bugea C, Siqueira Jr. Complex Apical Intraradicular Infection and Extraradicular Mineralized Biofilms as the Cause of Wet Canals and Treatment Failure: Report of 2 Cases. J Endod. 2016 Mar;42(3):509-15.
13. Wang J, Chen W, Jiang Y, Liang J. Imaging of extraradicular biofilm using combined scanning electron microscopy and stereomicroscopy. Microsc Res Tech. 2015 Oct;78(10):947.
14. Ricucci D, Siqueira Jr. Biofilms and apical periodontitis: study of prevalence and association with clinical and histopathologic findings. J Endod. 2010 Aug;36(8):1277-88.
15. Fouad AF, Barry J, Caimano M, Clawson M, Zhu Q, Carver R, Hazlett K, Radolf JD. PCR-based identification of bacteria associated with endodontic infections. J Clin Microbiol. 2002 Sep;40(9):3223-31.
16. Kakehashi S, Stanley HR, Fitzgerald RJ. The effects of surgical exposures of dental pulps in germ-free and conventional laboratory rats. Oral Surg Oral Med Oral Pathol. 1965 Sep;20:340-9.
17. Sundqvist G. Taxonomy, ecology, and pathogenicity of the root canal flora. Oral Surg Oral Med Oral Pathol. 1994 Oct;78(4):522-30.
18. Tronstad L, Barnett F, Cervone F. Periapical bacterial plaque formation to endodontic treatment. Endod Dent Traumatol. 1990 Apr;6(2):73-7.
19. Iwu C, MacFarlane TW, MacKenzie D, Stenhouse D. The microbiology of periapical granulomas. Oral Surg Oral Med Oral Pathol. 1990 Apr;69(4):502-5.
20. Gomes BP, Jacinto RC, Pinheiro ET, Sousa EL, Zaia AA, Ferraz CC, Souza-Filho FJ. Porphyrmonas gingivalis, Porphyrmonas endodontalis, Prevotella intermedia and Prevotella nigrescens in endodontic lesions detected by culture and by PCR. Oral Microbiol Immunol. 2005 Aug;20(4):211-5.
21. van Winkelhoff AJ, Carlee AW, de Graaff J. Bacteroides endodontalis and other black pigmented Bacteroides species in odontogenic abscesses. Infect Immun. 1985 Sep;49(3):494-7.
22. Siqueira Jr Jr, Rocas IN, Oliveira JC, Santos KR. Molecular detection of black-pigmented bacteria in infections of endodontic origin. J Endod. 2001 Sep;27(9):563-6.
23. Sundqvist G, Figdor D, Sjogren U. Microbiologic Analysis of teeth with failed endodontic treatment and the outcome of conservative re-treatment. Oral Surg Oral Med Oral Pathol Radiol Endod. 1998 Jan;85(1):86-93.
24. Kaufman B, Spangberg L, Barry J, Fouad AF. Enterococcus sp. in endodontically treated teeth with and without periapical lesions. J Endod. 2005 Dec;31(12):851-6.
25. Zoletti G, Siqueira Jr Jr, Santos KR. Identification of Enterococcus faecalis in root-filled teeth with or without periapical lesions by culture-dependent and -independent approaches. J Endod. 2006 Aug;32(8):722-6.
26. Gomes BP, Pinheiro ET, Jacinto RC, Zaia AA, Ferraz CC, Souza-Filho FJ. Microbial analysis of canals of root-filled teeth with periapical lesions using polymerase chain reaction. J Endod. 2008 May;34(5):537-40.
27. Rôças IN, José F, Siqueira Jr. Characterization of microbiota of root canal-treated teeth with posttreatment disease. J Clin Microbiol. 2012 May;50(5):1721-4.