Outdoor and indoor path loss modeling at the sub-THz band

Dimitrios G. Selimis, Member, IEEE, Mar Francis De Guzman Graduate Student Member, IEEE, Fotis I. Lazarakis, Kostas P. Peppas, Senior Member, IEEE, and Katsuyuki Haneda Member, IEEE

Abstract—In this paper, we present new measurement results to model large-scale path loss at the sub-THz (141-145 GHz) band, for both indoor and outdoor scenarios. Extensive measurement campaigns have been carried out, taking into account both line-of-sight (LoS) and non-line-of-sight (NLoS) propagation. For all considered propagation scenarios, existing omni-directional and directional path loss model have been developed, based on the so-called close-in (CI) free-space reference distance model. Moreover, path loss modeling is applied for the 2nd and 3rd strongest multipath components (MPCs). Thus, path loss exponent and large-scale shadow fading estimates are provided. Moreover, power angular spread analysis is derived using up to the 3rd strongest MPC.

Index Terms—Path loss exponent, indoor/outdoor environments, large scale fading, power angular spread.

I. INTRODUCTION

Sub-THz communications systems, operating at frequencies of above 100 GHz and close to the THz band, have recently attracted significant attention within both the wireless research community as well as for commercial purposes. The ever increasing demand for extreme high data rates has already pushed the current sub-6 GHz telecommunication systems to their limits. Sub-THz communications are therefore envisaged to fulfill the requirements for high data-rate communications and successfully complement telecommunication systems operating at lower frequency bands [1], [2].

Accurate modeling of channel and propagation characteristics is crucial for the performance analysis and design of telecommunication systems operating at such bands. However, to the best of our knowledge, very few studies on channel and propagation characteristics for frequencies above 100 GHz are available in the open technical literature. In particular, a number of important wireless propagation parameters, including path loss, gas attenuation and diffraction, require in-depth research. Among others, large-scale path loss analysis and modelling for indoor as well as outdoor environments are of significant importance. Representative examples can be found in [3]–[12].

As an example authors in [17] calculate path loss exponent at 73 GHz, for indoor and outdoor Airport environments, using only LoS links.

Lastly, power angular spread can provide useful information, which can be used to predict the angle of arrival (AoA) of each MPC, and in some cases to estimate receiver-transmitter antenna distance. For example in [18], the authors use power angular profile data to predict the arrival angles in a lecture room scenario for frequencies up to 300 GHz. Additionally, in [19], power angular profile provide information about the correlation of transmit-receive antenna distance, depending on the surrounding environment, as well as the propagation conditions.

Contributions: Motivated by the above studies, in this work we investigate path loss modeling at 140 GHz based on extensive channel measurement campaigns conducted in indoor and outdoor environments including LoS and NLoS links. Path loss modeling is provided for directional and omnidirectional case as well as for the 2nd and 3rd strongest multipath components. Finally, the angular power profile is analysed.

II. RADIO CHANNEL MEASUREMENTS

The channel sounder employed in the radio channel measurements is discussed in [20]. There are some differences in the sounder parameters used in each scenario as listed in Table I. The descriptions of each measurement site are elaborated in the following subsections.

A. Indoor Measurement Campaign

The measurement campaigns performed in the shopping mall and airport check-in hall are described in [10]. The third indoor site, which is further described in [21], is in the entrance.
TABLE I

Measurement Detail	Shopping Mall	Airport	Entrance Hall 1	Entrance Hall 2	Suburban	Residential	City Center
RF (GHz)	141.5-145.1	141.5-145.1	140-144	140-144	140-144	140-144	140-144
Tx Antenna Height (m)	1.89	1.7 above 2nd floor	1.85	1.85	1.85	1.85	2.00
Rx Antenna Height (m)	1.89	2.1 above 3rd floor	1.85	1.85	1.85	1.85	2.00
EIRP (dBm)	−12	−12	5	5	5	5	5
Rx Azimuth Range (°)	0-360	0-25, 245-360	40-250	−90-180 (Rx1); 40-250 (Rx2); 110-290 (Rx3)	0-355	Mostly 0-355	Mostly 0-355
Azimuth Step (°)	6	5	10	5	5	5	5
Number of LOS Links	16	10	2	12	32	13	19
Number of NLOS Links	2	1	9	56	8	42	21
Environment Type	Indoor	Indoor	Indoor	Indoor	Outdoor	Outdoor	Outdoor
Link Distance Range (m)	3-65	15-51	3-47	3-66	2-172	20-175	10-178

The second measurement campaign was performed in a residential environment along Leppavaarankatu, Espoo, Finland. The street is mostly surrounded by residential buildings and by some commercial buildings. Metallic street posts and trees can also be found in the area. The antenna locations for this residential area are shown in Fig. 4.
The last outdoor measurement campaign was performed in an urban environment in the city center along Aleksanterinkatu, Helsinki, Finland. The street is surrounded by commercial buildings on both sides, forming a street canyon. The street is primarily intended for pedestrians, blocking vehicular traffic except for trams. There are rare metallic sign posts found on the street. The location has heavy loads of pedestrians traffic except for trams. There are rare metallic sign posts

Closely-spaced antenna locations were positioned at the building corners 1 and 2. In all Tx-Rx links, particularly of outdoor scenarios, the presence of moving objects is inevitable during the measurement of directionally-resolved wideband channels. Moving objects affect only a portion of directionally-resolved channels and may block some propagation paths. Our measured channels are therefore snapshots of channels with resolved channels and may block some propagation paths. Our measured channels will be referred to as omnidirectional modeling assuming non-coherent summation of multipath components; iii) the 2nd and the 3rd strongest multipath components for each link. Based on (1), path loss modeling estimates PLE equal to 2 with standard deviation

where ϕ_i is the azimuth angle of arrival of the i-th MPC taking values from 0 to 2π and P_i is the corresponding power gain. Both equations are applied for every $Tx-Rx$ antenna link.

IV. PATH LOSS MODELING AND ANGULAR CHANNEL PROFILE

In this section, path loss measurements and the corresponding modeling will be presented for both indoor and outdoor environments. Path loss modeling is performed taking into account: i) the strongest multipath component for every link, which will be referred to as directional modeling; ii) the sum of all multipath components for each $Tx-Rx$ link, which will be referred to as omnidirectional modeling assuming non-coherent summation of multipath components; iii) the 2nd and the 3rd strongest multipath components for each link.

TABLE II

Path loss modeling	LoS	NLoS		
	PLE (n)	σ(dB)	PLE (n)	σ(dB)
Directional	2	1.8	2.9	9
Omnidirectional	1.9	1.5	2.6	8.3
2nd Strongest MPC	2.8	8.1	3.2	9.1
3rd Strongest MPC	3.1	9.2	3.4	8.7

Specifically, as depicted in Fig. 6 for LoS links directional modeling estimates PLE equal to $n = 2$ with standard deviation $\sigma = 1.8$ dB for LoS and $\sigma = 2.9$ dB for NLoS.
deviation of $\sigma = 1.8 \, dB$. Omnidirectional modeling, when calculated non-coherently as in our case, is expected to represent the best case in terms of signal losses which is verified by the estimated $n = 1.9$ with standard deviation of $\sigma = 1.5 \, dB$. On the other hand, the 2nd and 3rd strongest MPCs can be modeled by larger PLEs, i.e., $n = 2.8$ and $n = 3.1$, respectively. Moreover, they are characterized by quite large values of shadow fading, that is $\sigma = 8.1 \, dB$ for the 2nd strongest MPC and $\sigma = 9.2 \, dB$ for the 3rd strongest MPC.

For LoS propagation and directional modeling, PLE is equal to $n = 2.0$ with standard deviation of $\sigma = 0.9 \, dB$. Non-coherent omnidirectional modeling yields a lower PLE, namely $n = 1.9$, with a slightly larger σ of 1.1 dB compared to the directional case. The PLE values are quite similar to the corresponding ones for the indoor scenarios while σ takes lower values in the outdoor case. The $2nd$ and $3rd$ strongest component analysis results in PLE of $n = 2.6$ and $n = 2.9$ with $\sigma = 9 \, dB$ and $\sigma = 8 \, dB$, respectively. Compared to indoor LoS links, PLEs have slightly lower values while standard deviations are similar.

As expected in Fig. 7, NLoS links are characterized by higher losses in all categories of path-loss modeling in Table II as expressed by the PLEs which are larger than the corresponding ones of the LoS case. In directional and omnidirectional modeling, significant increase is also observed in the shadow fading values which are now $\sigma = 9 \, dB$ and $\sigma = 8.3 \, dB$, respectively. For the 2nd and 3rd strongest MPCs, shadow fading values are comparable to those of the LoS case.

For LoS propagation and directional modeling, PLE is equal to $n = 2.0$ with standard deviation of $\sigma = 0.9 \, dB$. Non-coherent omnidirectional modeling yields a lower PLE, namely $n = 1.9$, with a slightly larger σ of 1.1 dB compared to the directional case. The PLE values are quite similar to the corresponding ones for the indoor scenarios while σ takes lower values in the outdoor case. The $2nd$ and $3rd$ strongest component analysis results in PLE of $n = 2.6$ and $n = 2.9$ with $\sigma = 9 \, dB$ and $\sigma = 8 \, dB$, respectively. Compared to indoor LoS links, PLEs have slightly lower values while standard deviations are similar.

B. Outdoor path loss modeling

Fig. 8 and Fig. 9 depict PLE as a function of d after analyzing LoS and NLoS measurements of the outdoor scenarios. The same methodology was applied for outdoor measurements as in the indoor scenarios presented above. Thus, directional and omnidirectional path loss modeling is studied as well as for the $2nd$ and $3rd$ strongest MPCs. The corresponding results are available in Table III.
TABLE III
OUTDOOR LoS AND NLoS RESULTS FOR CI PATH LOSS MODEL

Path loss modeling	LoS (Pd, dB)	NLoS (Pd, dB)
Directional	2	0.9
Omnidirectional	1.9	1.1
Directional 2nd Strongest	2.6	9
Directional 3rd Strongest	2.9	8

C. Power Angular Spread

Using Eq. (2) and Eq. (3), ASA values have been calculated for every Tx-Rx link of the available measurement sets. Then, the mean and standard deviation of S_A have been calculated separately for LoS and NLoS links in indoor and outdoor environments, respectively. The results are given in Table IV where it is shown that the lowest mean value of S_A is equal to 14° observed for NLoS links in outdoor environment and the higher mean value equals 23° for LoS links in indoor environment. These values are roughly in accordance with the statistics of directional channels in [25], where mean S_A values of less than 20° are reported for indoor and urban environments. However, it is noted that [25] deals with below 6 GHz wireless channels.

TABLE IV
POWER ANGULAR SPREAD STATISTICS IN INDOOR AND OUTDOOR ENVIRONMENTS

Environment	LoS mean (S_A)	LoS std (S_A)	NLoS mean (S_A)	NLoS std (S_A)
Indoor	23°	17°	18°	16°
Outdoor	15°	14°	14°	14°

Moreover, it is observed that angular spread is larger in indoor environments compared to outdoor ones with mean S_A being 23° vs 15° for LoS links and 18° vs 14° for NLoS links. Additionally, mean S_A takes larger values for LoS links compared to NLoS ones for indoor measurements, namely 23° vs 18°. For outdoor environments, the values are very close, i.e., 15° vs 14°. Standard deviation of S_A is concentrated within a narrow interval from 14° to 17° and thus the corresponding values are very close for indoor and outdoor environments, LoS and NLoS links.

Furthermore, indicative results for S_A are given in Fig. 10 for every NLoS outdoor link of the measurement set. S_A values are distributed around their mean value, which is 14° (denoted with dotted green line in Fig. 10) with standard deviation of 14° (see Table IV). It is also noted that, for some links the corresponding S_A values are almost zero, indicating that the received power is dominated by the strongest MPC. Finally, there is no clear dependence between distance and angular spread.

V. CONCLUSION

In this paper, we have presented results on path loss modeling at 142 GHz, based on measurement campaigns conducted in both indoor and outdoor environments, providing estimations for path loss exponent and shadow fading. Path loss modeling has been also applied for the 2nd and 3rd strongest MPCs of the received signal, in order to gain insight regarding the spatial characteristics of the channel. Towards that direction, angular power spread has been also analyzed taking into account the 3 strongest MPCs. Mean S_A values between 14° and 23° were observed, while the distance between T_x-R_x does not seem to affect the power angular spread.

ACKNOWLEDGEMENT

The presented work has been performed within the frame of ARIADNE project which is a three years Research and Innovation action / project under the EU programme Horizon 2020 (Grant Agreement no. 871464).

REFERENCES

[1] T. S. Rappaport et al., “Wireless Communications and Applications Above 100 GHz: Opportunities and Challenges for 6G and Beyond,” IEEE Access, 2019.
[2] S. L. H. Nguyen et al., “Comparing radio propagation channels between 28 and 140 GHz bands in a shopping mall,” in 12th European Conference on Antennas and Propagation (EuCAP 2018), 2018.
[3] Y. Xing and T. S. Rappaport, “Propagation Measurements and Path Loss Models for sub-THz in Urban Microcells,” in IEEE International Conference on Communications (ICC), 2021, pp. 1–6.
[4] Y. Xing et al., “Indoor Wireless Channel Properties at Millimeter Wave and Sub-Terahertz Frequencies,” in 2019 IEEE Global Communications Conference (GLOBECOM), 2019.
[5] J. Kokkoniemi et al., “LOS and NLOS Channel Models for Indoor 300 GHz Communications,” in 16th International Symposium on Wireless Communication Systems (ISWCS), 2019.
[6] C.-L. Cheng et al., “Comparison of path loss models for indoor 30 GHz, 140 GHz, and 300 GHz channels,” in 11th European Conference on Antennas and Propagation (EuCAP), 2017.
[7] J. He et al., “Channel Measurement and Path-Loss Characterization for Low-Terahertz Indoor Scenarios,” in IEEE International Conference on Communications Workshops, (ICC Workshops), 2021.
[8] S. Ju et al., “Millimeter Wave and Sub-Terahertz Spatial Statistical Channel Model for an Indoor Office Building,” IEEE J. Sel. Areas Commun., 2021.
[9] S. Ju and T. S. Rappaport, “140 GHz Urban Microcell Propagation Measurements for Spatial Consistency Modeling,” in IEEE International Conference on Communications (ICC), 2021.
[10] S. L. H. Nguyen et al., “Large-Scale Parameters of Spatio-Temporal Short-Range Indoor Backhaul Channels at 140 GHz,” in IEEE 93rd Vehicular Technology Conference (VTC2021-Spring), 2021.
[11] L. Pometcu and R. D’Errico, “Characterization of sub-thz and mmwave propagation channel for indoor scenarios,” in 12th European Conference on Antennas and Propagation (EuCAP 2018), 2018, pp. 1–4.

[12] G. R. MacCartney and T. S. Rappaport, “73 ghz millimeter wave propagation measurements for outdoor urban mobile and backhaul communications in new york city,” in 2014 IEEE International Conference on Communications (ICC), 2014, pp. 4862–4867.

[13] Y. Xing and T. S. Rappaport, “Millimeter wave and terahertz urban microcell propagation measurements and models,” IEEE Communications Letters, vol. 25, no. 12, pp. 3755–3759, 2021.

[14] S. Ju and T. S. Rappaport, “140 GHz Urban Microcell Propagation Measurements for Spatial Consistency Modeling,” in IEEE International Conference on Communications (ICC), 2021.

[15] Y. Chen et al., “Channel measurement and ray-tracing-statistical hybrid modeling for low-terahertz indoor communications,” IEEE Transactions on Wireless Communications, vol. 20, no. 12, pp. 8163–8176, 2021.

[16] B. De Beelede, E. Tanghe, D. Plets, and W. Joseph, “Outdoor line-of-sight path loss modeling at 140 ghz.” in 2022 16th European Conference on Antennas and Propagation (EuCAP), 2022, pp. 1–4.

[17] M. Khautun et al., “Millimeter-wave path loss at 73 ghz in indoor and outdoor airport environments,” in 2019 IEEE 90th Vehicular Technology Conference (VTC2019-Fall), 2019, pp. 1–5.

[18] B. Peng, K. Guan, S. Rey, and T. Kürner, “Power-angular spectra correlation based two step angle of arrival estimation for future indoor terahertz communications,” IEEE Transactions on Antennas and Propagation, vol. 67, no. 11, pp. 7097–7105, 2019.

[19] M. F. De Guzman, M. Hassan, and K. Haneda, “Uncertainty of millimeter-wave channel sounder due to integration of frequency converters,” in 2021 17th International Symposium on Wireless Communication Systems (ISWCS), 2021, pp. 1–6.

[20] M. F. De Guzman, P. Koivumäki, and K. Haneda, “Double-directional multipath data at 140 ghz derived from measurement-based ray-launcher,” in 2022 IEEE 95th Vehicular Technology Conference: (VTC2022-Spring), 2022, pp. 1–6.

[21] T. S. Rappaport et al., “Wideband Millimeter-Wave Propagation Measurements and Channel Models for Future Wireless Communication System Design,” IEEE Trans. Commun., vol. 63, no. 9, 2015.

[22] S. Sun et al., “Millimeter-wave distance-dependent large-scale propagation measurements and path loss models for outdoor and indoor 5G systems,” in 10th European Conference on Antennas and Propagation (EuCAP), 2016.

[23] S. Shu et al., “Investigation of prediction accuracy, sensitivity, and parameter stability of large-scale propagation path loss models for 5g wireless communications,” IEEE Transactions on Vehicular Technology, vol. 65, no. 5, pp. 2843–2860, 2016.

[24] A. F. Molisch, Wireless Communications, 2nd Edition. Wiley-IEEE Press, Dec. 2010.

[25] B. Fleury, “First- and second-order characterization of direction dispersion and space selectivity in the radio channel,” IEEE Transactions on Information Theory, vol. 46, no. 6, pp. 2027–2044, 2000.

[26] J. Gomez-Ponce, N. A. Abbasi, R. Kundaveti, A. Kumar, S. Abu-Surra, G. Xu, C. Zhang, and A. F. Molisch, “Impact of common reflecting and absorbing building materials on thz multipath channels,” Radio Science, vol. 57, no. 2, pp. 1–16, 2022.