Hot Electron Generation and Transport Using Kα Emission

K. U. Akli1, R. B. Stephens1, M. H. Key2, T. Bartal1, F. N. Beg3, S. Chawla3, C. D. Chen1, R. Fedosejevs4, R. R. Freeman5, H. Friesen4, E. Giraldez1, J. S. Green6, D. S. Hey7, D. P. Higginson1, J. Hund1, L. C. Jarrott3, G. E. Kemp3, J. A. King3, A. Kryger3, K. Lancaster6, S. LePape3, A. Link3, T. Ma3, A. J. Mackinnon4, A. G. MacPhee1, H. S. McLean2, C. Murphy3, P. A. Norreys6, V. Ovchinnikov5, P. K. Patel2, Y. Ping2, H. Sawada3, D. Schumacher5, W. Theobald3, Y. Y. Tsui4, L. D. Van Woerkom5, M. S. Wei3, B. Westover3, T. Yabuuchi3

1General Atomics, San Diego, CA, 92186, USA
2Lawrence Livermore National Laboratory, Livermore, CA 94550, USA
3University of California San Diego, San Diego, CA, 92186, USA
4University of Alberta, Edmonton, Alberta, Canada T6G 2V4
5Ohio State University, Columbus Ohio, 43210, USA
6Rutherford Appleton Laboratory, Chilton, Oxon OX110QX, United Kingdom
7Laboratory for Laser Energetics, New York 14623, USA

E-mail: akli1@llnl.gov

Abstract. We have conducted experiments on both the Vulcan and Titan laser facilities to study hot electron generation and transport in the context of fast ignition. Cu wires attached to Al cones were used to investigate the effect on coupling efficiency of plasma surround and the pre-formed plasma inside the cone. We found that with thin cones 15% of laser energy is coupled to the 40µm diameter wire emulating a 40µm fast ignition spot. Thick cone walls, simulating plasma in fast ignition, reduce coupling by x4. An increase of pre-pulse level inside the cone by a factor of 50 reduces coupling by a factor of 3.

1. Introduction
In the fast ignition scheme to inertial confinement fusion, a high intensity short pulse laser is used to generate fast electrons. These energetic electrons propagate to the dense core and deposit their energy in a small spot igniting the fuel. Critical to the success of fast ignition is how efficiently the short pulse laser energy is converted to fast electrons. Substantial work has been carried out regarding conversion
EFFICIENCY IN FLAT TARGETS [1,2] To date, only three relatively small “proof of concept” integrated fast ignition experiments have been reported in the literature [3-5] and only one dealt with details of fast electron transport and conversion efficiency [6]. Larger scale integrated fast ignition experiments will be carried out in the near future on OmegaEP, FIREX, and NIF ARC. However, experiments on relatively small-scale lasers can still provide valuable information relevant to fast ignition, provided that the targets are designed carefully. For example, wires attached to cones provide a simplified geometry to study most of the aspect of electron generation and transport. When laser-generated electrons leave the tip of the cone, they enter the wire. Their flux, mean energy, and conversion efficiency can be determined from Kα emission they induce in the wire. Moreover, a wire with 40 µm cross-sectional area, the same size as the required fast ignition spot, allows us to study the forward-directed electrons that are more likely to make it to the fast ignition spot.

In this paper, we report on conversion efficiency experiments conducted with cone-wire targets using Kα emission as a diagnostic. We discuss the consequences of neglecting electron refluxing on the interpretation of Kα emission.

2. Experimental setup and diagnostics

Our experiments were conducted on two laser facilities: the Vulcan laser at Rutherford Appleton Laboratory and the Titan laser at Lawrence Livermore National Laboratory. In the Vulcan experiment, the targets were 1 mm long 40 µm thick Cu wires attached to Al cones with 12 µm wall thickness [Fig.1-a]. They were irradiated with 350 J of laser energy delivered in 1 ps and focused to a peak intensity of 2 x 10^20 W/cm^2 with an f/3 off-axis parabola. An x-ray imager and x-ray spectrometer, with 30° and 50° viewing angles respectively with respect to the cone-wire axis, were used to collect Kα emission from the wires. In the Titan experiments, the cone wall thickness was varied from 12 µm to 160 µm and the wires were similar to the ones used in Vulcan. The laser energy was 150 J delivered in 0.7 ps with 50% of the energy contained in 15 µm diameter spot. An improved Kα imager, which uses an optimized assembly of collimators and magnets to increase signal-to-noise ratio, was used get high-resolution spatially resolved information [Fig.1-b]. A newly developed highly ordered pyrolytic graphite spectrometer (DCHOPG) [7] was used to get the number of photons induced by fast electrons propagating through the wires. The viewing angles with respect to the cone-wire axis of the Kα imager and DCHOPG were 43° and 18° respectively.

3. Results and discussions

In the cone-wire experiments two quantities are measured: the absolute number of Cu Kα photons induced by fast electrons and the slope of Kα emission along the wire. To determine laser-to-electron conversion efficiency and the mean energy of fast electrons, we have used a numerical transport model [8]. This model includes binary collisions, electric fields, and temperature dependent resistivity. We first inject a distribution of electrons with a given total energy and given fast electron temperature. Then a Kα emission profile is numerically generated along the wire. This is a two parameter fit where we seek a combination of electron total energy and temperature that gives a good fit to the experimental data [Fig.2].

The Vulcan data shows that 15% of laser energy is converted to fast electrons [9]. The electron beam temperature is 750 keV, which is much lower than the value predicted by ponderomotive scaling.
at 2×10^{30} W/cm2. This could be a consequence of density steepening, seen in PIC simulations, at high laser intensities [10]. Our transport model neglects the transport through the cone tip and the effect of magnetic fields. LSP modeling of cone wire targets is underway. The 15\% conversion efficiency to 40µm wire, emulating the 40µm fast ignition spot, is encouraging. However, these results are obtained with thin-walled cones. In real fast ignition experiments, the cone is embedded in plasma surround, which provides a path for the electrons that are generated at wide angles to escape. To study this effect we have used Al cones with variable wall thickness (12, 25, and 160µm). The absolute K\textalpha emission, recorded with DCHOPG, is plotted as function of cone wall thickness in Fig 3-a. This data shows that increasing cone wall thickness by a factor of 12 reduces K\textalpha emission in the wire by a factor of 4.

This due to the fact that hot electron density close to the tip of the cone is higher for thin cones compared to the thick ones (Fig 3-b). In the case of thick cones, electrons that are generated with wide angles are lost to the wall and do not make it to the wire. In the case of thin cones, sideways electrons are trapped in the wall due to electrostatic sheaths. Some of them will eventually make it the wire and contribute to K\textalpha emission. This means that electron refluxing in thin cones enhances coupling to the wire and the coupling is not simply due to forward-directed source electrons. Since electron refluxing may not occur in real fast ignition targets with plasma surround, it is very important to take refluxing into account when inferring coupling efficiencies using thin cones. Experiments with 10µm Al/30µm Cu (refluxing flat target) and 10µm Al/30µm Cu/1000µm Al (non-refluxing flat target) show that refluxing enhances K\textalpha emission by a factor of 5.

Figure 2: Cu K\textalpha emission from the wire as a function of cone wall thickness (a); cartoon showing electron behaviour inside the cone for the two cases of thin and thick cones (b)

Fast ignition lasers may have hundreds of milli-Joules in pre-pulse and the pre-formed plasma may have a detrimental effect on conversion efficiency. Work by Baton et al. [11] with 1ω vs. 2ω indicate significantly reduced coupling with pre-pulse. We have conducted experiments with non-
refluxing thick walled cones attached to wires and we varied the amount of pre-pulse from 8 mJ to 400 mJ. Kα emission data from the wire show that an increase of pre-pulse by a factor of 50 reduces the coupling to the wire by a factor of 3. In term of conversion efficiency, this data indicate that 400mJ of pre-pulse together with surrounding plasma may reduce the coupling to the wire to ~ 1%. Work by MacPhee et al. [12] shows details of electron generation inside the cone. At a pre-pulse level of 100 mJ, hot electrons are generated further away from the cone tip and are accelerated at wide angles toward the walls. Due to pre-formed plasma, the laser undergoes filamentation and self-focusing far away from the tip of the cone.

In conclusion, experiments with cone-wire targets show that electron refluxing in thin cones enhances coupling to the wire and the coupling is not simply due to forward-directed source electrons. Refluxing is unlikely to occur in integrated FI experiments due to the plasma surround. Therefore, the coupling efficiency obtained with thin cones has to be considered an upper limit. It has been shown here that the addition of controlled pre-pulse reduces the coupling efficiency. Further experiments are needed to optimize energy transfer, particularly the trade off between increased energy absorption in the coronal plasma with larger density scalelengths and beam filamentation in the extended region between the critical density and the ablation front. The results presented here indicate that prepulses with energies <10mJ may be required for full-scale FI lasers. However, these experiments were done with laser parameters (150 J and 0.7 ps) that are different from those required for FI. Extending this study to higher laser energies and longer pulse-length is an additional but necessary step for both experiments and simulations

Acknowledgments:
The authors wish to thank the staff of the Jupiter Laser Facility, LLNL. This work was performed under the auspices of the U.S. DOE under contracts No.DE-FG02-05ER54834, DE-FC0204ER54789 and DE-AC52-07NA27344.

References:
[1] Wharton, KB, et al. Physical Review Letters (APS) 81, no. 4 (1998): 822-825.
[2] Chen, C. D, et al. Physics of Plasmas 16, no. 8 (Jan 2009): 082705.
[3] Kodama R, et al. Nature (London) 412, no 6849, (2001) 798-802.
[4] Kodama, R, et al. Nature (London) 418, no. 6901 (2002): 933-934.
[5] Norreys, PA, et al. Physics of Plasmas 11 (2004): 2746.
[6] Key, MH, et al. Physics of Plasmas 15 (2008): 022701.
[7] Akli, KU, et al. (under preparation, to be submitted to RSI)
[8] Akli, KU, et al. Physics of Plasmas 14 (2007): 023102.
[9] Chrisman, B, Y Sentoku, and AJ Kemp. Physics of Plasmas 15 (2008): 056309.
[10] King, J. A, et al. Physics of Plasmas 16, no. 2 (Jan 2009): 020701.
[11] Baton, SD, et al. Physics of Plasmas 15 (2008): 042706.
[12] MacPhee, AG, et al, (Submitted to Physical Review Letters)