CO₂ – intrinsic product, essential substrate, and regulatory trigger of microbial and mammalian production processes

Bastian Blombach and Ralf Takors

Institute of Biochemical Engineering, University of Stuttgart, Stuttgart, Germany

Carbon dioxide formation mirrors the final carbon oxidation steps of aerobic metabolism in microbial and mammalian cells. As a consequence, CO₂ / HCO₃⁻ dissociation equilibria arise in fermenters by the growing culture. Anaplerotic reactions make use of the abundant CO₂ / HCO₃⁻ levels for refueling citric acid cycle demands and for enabling oxaloacetate-derived products. At the same time, CO₂ is released manifold in metabolic reactions via decarboxylation activity. The levels of extracellular CO₂ / HCO₃⁻ depend on cellular activities and physical constraints such as hydrostatic pressures, aeration, and the efficiency of mixing in large-scale bioreactors. Besides, local CO₂ / HCO₃⁻ levels might also act as metabolic inhibitors or transcriptional effectors triggering regulatory events inside the cells. This review gives an overview about fundamental physicochemical properties of CO₂ / HCO₃⁻ in microbial and mammalian cultures effecting cellular physiology, production processes, metabolic activity, and transcriptional regulation.

Keywords: bicarbonate, carbon dioxide, production process, regulation, carboxylation, decarboxylation

Introduction

One of the most decisive decisions which needs to be made when developing novel bioprocesses is whether the final process will run under anaerobic or aerobic conditions. While severely reduced investment costs speak in favor of anaerobic production, expected productivities and intracellular energy availabilities are drivers for aerobic approaches. Anaerobic metabolism yields at two net ATP produced in glycolysis per glucose while aerobic counterparts may achieve >12 ATPs. This net ATP yield even represents a conservative estimation considering true ATP per oxygen (P/O) ratios of 1:1.3 which are lower than theoretical maxima of 2–3. Consequently, aerobic processes are often the first choice if ATP-challenging product formation with maximum cell-specific formation rates is targeted.

Carbon dioxide (CO₂) is the inevitable product of respiration processes and as such always present in aerobic bioprocesses. This holds also true for the production of commodities, fine chemicals, or therapeutic proteins using microbes or mammalian cells. While therapeutic proteins and fine chemicals are typically produced in bioreactor of 5–20 m³ scale, the production of commodities is usually performed in 50–500 m³ size – or even larger. As an intrinsic property, partial CO₂ pressures of these scales differ significantly from those found in lab-scale. This phenomenon is the inherent consequence of high absolute pressures and poor mixing conditions in large-scale bioreactors (Takors, 2012).
Carbon dioxide (CO₂, molar weight: 44.01 g/mol) is a colorless, odorless gas of linear molecular shape with a melting point at −56.6°C. It is present in the Earth atmosphere as a trace compound currently showing levels of about 400 ppm with the tendency of steady increase (http://co2now.org/).

The water solubility can be described applying Henry’s law.

$$H_{\text{CO}_2} = \frac{c_{\text{CO}_2,L}}{p_{\text{CO}_2}} \left[\frac{\text{mmol}}{\text{L bar}} \right]$$

(1)

with $c_{\text{CO}_2,L}$ and p_{CO_2} coding for the equilibrium values of the molar concentration of dissolved CO₂ in the liquid L and the related partial CO₂ pressure, respectively. For pure water at 25°C the Henry coefficient $H_{\text{CO}_2} = 34.5$ mmol/bar L is given (Stumm and Morgan, 1995). Using the Van’t Hoff correlation

$$\frac{d \ln H_{\text{CO}_2}}{dT} = \frac{\Delta H^o}{RT} \Rightarrow H_{\text{CO}_2}(T) = \ln K \left(\frac{T}{RT} \right)^{\frac{\Delta H^o}{RT}}$$

(2)

the temperature dependency of the equilibrium constant (here: Henry-coefficient H_{CO_2}) can be estimated with the standard enthalpy change of the reaction ΔH^o, the universal gas constant R, and the absolute temperature T as shown. Noteworthy, K codes for an integration constant that can be derived from reference data such as measurements at 25°C. Using equation (2), $H_{\text{CO}_2}(T = 20^\circ C) = 40$ mmol/bar L and $H_{\text{CO}_2}(T = 37^\circ C) = 25$ mmol/bar L can be calculated. Decreasing Henry coefficients [as defined by (1)] mirror reducing gas solubility with rising temperature – a typical phenomenon for dissolved gasses at the given temperature range.

Besides temperature, CO₂ solubility is also affected by electrolyte concentrations. Following the empirical Sechenov (1889) approach individual contributions of ion strength can be considered to estimate the resulting solubility of a gas in the salt-containing liquid (Noorman et al., 1992). However, the composition of fermentation media is often complex and changes steadily during the course of cultivation. Product and by-product formation, substrate consumption, and the addition of titrating agents are the reasons. Therefore, the most pragmatic approach is to measure CO₂ solubility in real cultivation media. Own experimental observations show that real H_{CO_2} values [according to (1)] are often increased, may be even doubled, compared to values for pure water (unpublished data).

Applying typical operating conditions, microbial or mammalian cultivations release exhaust gas with volumetric CO₂ fractions of 5–25%. For a conservative estimation, one can assume equilibrium conditions between gas and liquid with H_{CO_2} values for pure water at 37°C. Then dissolved CO₂ levels $c_{\text{CO}_2,L}$ are likely to range between 75 and 375 mg/L. For instance, Blombach et al. (2013) measured p_{CO_2} levels of about 160 mbar (about 360 mg/L) at the end of an aerated (0.1vvm) 1.5 bar pressured, stirred batch cultivation with 5 g_{dry} Corynebacterium glutamicum per L. Increasing the aeration to 3 vvm reduced the p_{CO_2} to 40 mbar (about 90 mg/L). Similar values were observed by Buchholz et al. (2014b). By contrast, maximum dissolved oxygen concentrations under atmospheric conditions will typically result at 7.5–8 mg/L (again depending on medium composition). Consequently, dissolved CO₂ levels outcompete dissolved O₂ levels by far. This finding may be even more pronounced if mass transport characteristics are considered (Figure 1).

Figure 1 shows that maximum $c_{\text{CO}_2,L}$ levels are found in the proximate microenvironment of the cells. By trend, probes for dissolved gas measurement observe lower levels. This is different compared to dissolved oxygen where cells face the lowest levels along the mass transfer path.

While dissolved carbon dioxide levels may achieve high inhibiting values during the fermentation course, starting conditions might be limiting instead. Assuming equilibrium between inlet aeration and the liquid 0.5 mg_{CO₂}/L is present. Noteworthy this low value is likely to persist if too high aeration (with low concentrated CO₂) strips out new metabolically produced CO₂. Consequently anaplerotic reactions may be limited by substrate (HCO₃⁻ / CO₂) supply (see Section “Metabolic Release and Incorporation”) finally resulting at reduced cell growth.

By analogy to oxygen transfer, the CO₂ transfer rate CTR (mmol/Lh) can be described according to the following:

$$CTR = k_t \alpha_{\text{CO}_2} \left[c_{\text{CO}_2,L} - c_{\text{CO}_2} \right]$$

(3)
with \(k_{a\text{CO}_2} \) coding for the \(\text{CO}_2 \) mass transfer coefficient (1/h), \(c'_{\text{CO}_2} \) for the dissolved \(\text{CO}_2 \) concentration at equilibrium following Henry’s law (mmol/L) and \(c_{\text{CO}_2\text{zz}} \) representing the measured concentration (mmol/L).

Measuring true \(k_{a\text{CO}_2} \) values in praxis is somewhat challenging. One approach is to assume \(CTR = CER \), i.e., carbon dioxide emission rate \(\text{CER} \) equals the \(\text{CO}_2 \) stripping rate \(\text{CTR} \). By balancing flows of aeration and exhaust gas, related values should be accessible and \(k_{a\text{CO}_2} \) can be derived accordingly. Nevertheless, this approach reveals its drawbacks when mammalian cell cultures are balanced. Here, the exhaust gas signal is a superposition of biological activity and \(\text{CO}_2 \) addition for titration. Alternatively, \(k_{a\text{CO}_2} \) could be estimated from \(k_{a\text{CO}_2} \) according to the following:

\[
k_{a\text{CO}_2} = k_{a\text{CO}_2} \frac{D_{\text{CO}_2}}{D_{\text{O}_2}}
\]

Equation (4) results from Higbie’s penetration theory Higbie (1935) and Danckwerts surface renewable model Danckwerts (1951). Apparently, the mass transfer coefficient for \(\text{CO}_2 \) is proportionally linked to the ratio of the diffusion coefficients \(D \) for \(\text{CO}_2 \) and \(\text{O}_2 \) in water. As \(k_{a\text{CO}_2} \) values are relatively easy to measure, the approach offers a straightforward access to \(k_{a\text{CO}_2} \). However, \(\text{CO}_2 \) transfer differs fundamentally from \(\text{O}_2 \) transport because dissociation characteristics have been taken into account (see Figure 2).

\(\text{CO}_2 \) dissociates in water depending on pH as follows:

\[
\text{CO}_2 + \text{H}_2\text{O} \rightleftharpoons k_i \text{H}_2\text{CO}_3 \rightleftharpoons \text{HCO}_3^- + \text{H}^+ \rightleftharpoons \text{CO}_3^{2-} + 2\text{H}^+
\]

(5)

Because the equilibrium of \(\text{CO}_2 \) dissociation is far on the side of the anhydride (99.8%), concentrations of the carbonic acid \(\text{H}_2\text{CO}_3 \) are low not exceeding one digit micromolar ranges at typical cultivation conditions. Consequently, the apparent equilibrium constant \(K_1 \) (Bailey and Ollis, 1986):

\[
K_1 = \frac{[\text{H}^+] [\text{HCO}_3^-]}{[\text{CO}_2] + [\text{H}_2\text{CO}_3]} = \frac{[\text{H}^+] [\text{HCO}_3^-]}{[\text{CO}_2]} = 10^{-6.3} \text{M}
\]

(6)

One may safely assume that (de-) protonating reactions of formula (5) are very fast. However, formation and dissociation of carbonic acid from \(\text{CO}_2 \) are suspected to limit the total equilibration process. \(k_1 \) and \(k_3 \) were estimated as 0.03 1/s and 20 1/s, respectively (Bailey and Ollis, 1986).

At typical cultivation conditions (pH 7), 83.3% of the \(\text{CO}_2 \) species are present as \(\text{HCO}_3^- \), only 16.7% as \(\text{CO}_2 \). Hence \(\text{HCO}_3^- \) is about five-fold higher concentrated than \(\text{CO}_2 \). This statement not only holds for the cultivation medium, but it should also be valid for intracellular conditions because cells aim at maintaining their intracellular pH at about this level.

Figure 3 underpins that the full consideration of the individual species \(\text{CO}_2 \), \(\text{HCO}_3^- \), and \(\text{CO}_3^{2-} \) is crucial to get accurate values for total \(\text{CO}_2 \) dissolved in the fermentation suspension. Recently, Buchholz et al. (2014a) outlined that ignoring the anions leads to a carbon gap of about 20% during the first hours of fermentation. Noteworthy, the dissolved \(\text{CO}_2 \) level is not dependent on pH (see Figure 3). According to Henry’s law only partial pressure (and salt conditions) may effect \(c_{\text{CO}_2} \). Hence, large-scale bioreactors which have high hydrostatic pressures of 1–1.5 bar possess higher dissolved \(\text{CO}_2 \) levels than comparable laboratory systems. This not only induces regulatory responses in the cells but also affects the buffering capacity of the large-scale suspension. Due to increased \(\text{CO}_2 / \text{HCO}_3^- \) levels, pH buffering is severely increased in large scale compared to lab fermentations.

Metabolic Release and Incorporation

Metabolism of all living organisms is equipped with a set of carboxylases incorporating \(\text{CO}_2 \) or bicarbonate (\(\text{HCO}_3^- \)) into organic molecules and decarboxylases releasing \(\text{CO}_2 \) in the environment. Consequently, these fundamental reactions are directly involved in and/or interconnect anabolism,
catabolism, and energy metabolism of the cell. Especially, the phosphoenolpyruvate–pyruvate–oxaloacetate node comprises an organism-specific configuration of carboxylating (e.g., pyruvate carboxylase (PCx), PEP carboxylase, acetyl-CoA carboxylase) and decarboxylating (e.g., PEP carboxykinase; malic enzyme, oxaloacetate decarboxylase; pyruvate dehydrogenase complex, pyruvate:quinone oxidoreductase) reactions (Figure 4) which are of major importance for the carbon flux distribution in the central metabolism. For instance during sugar catabolism anaplerotic C3 (phosphoenolpyruvate (PEP)/pyruvate), carboxylation and decarboxylation of pyruvate to acetyl-CoA are essentially required to maintain TCA flux whereas gluconeogenesis relies on C4 (oxaloacetate/malate) decarboxylation (Sauer and Eikmanns, 2005). Another example is pyruvate decarboxylase of yeast which possesses the biotin-dependent PCx and the PEP carboxylase, both with Michaelis–Menten constants (KM) for HCO3− of about 3 mM (Hanke et al., 2005; Chen et al., 2013) which is about 30-fold higher compared to the KM (0.1 mM i.e., 4.4 mg/L) of PEP carboxylase from Escherichia coli as single anaplerotic enzyme (Kai et al., 1999). These differences already point to organism-specific aeration needs to install proper metabolic activity by maintaining sufficient CO2 / HCO3− availability at fermentation start when biomass concentrations are still low (Repaske et al., 1974; Talley and Baugh, 1975) or for products requiring a high anaplerotic flux (e.g., succinate, l-lysine, and derived products).

Due to the diffusive potential of CO2 and the rather slow chemical conversion of CO2 to HCO3− (Kern, 1960), nature has independently evolved three classes (designated as α, β, and γ) of zinc-dependant carbonic anhydrases (CAs) which catalyze with very high turnover numbers (up to 106 s−1) the reversible hydration of CO2 (Figure 4: Tashian, 1989; Tripp et al., 2001). CAs are widespread over all kingdoms of life and play a vital role in various cellular functions such as photosynthesis, ion transport, and pH homeostasis (Smith and Ferry, 2000; Merlin et al., 2003; Mitsushashi et al., 2004). Essentially, CAs maintain adequate HCO3− levels for aerobic growth under ordinary atmospheric conditions, since inactivation of CAs in several organisms such as C. glutamicum, E. coli,Ralstonia eutropha, Candida albicans, Saccharomyces cerevisiae, and Aspergillus nidulans is lethal unless the CO2 content in the atmosphere is significantly increased (about 5–10%; Mitsushashi et al., 2004; Merlin et al., 2003; Kusian et al., 2002; Götzt et al., 1999; Cottier et al., 2012).

In mammals, mitochondrial respiration generates CO2 as waste product which has to be actively transported from tissue to the depolluting lungs by the blood. Since HCO3− is in contrast to CO2 not permeable, mammalian cells are equipped with about 13 genes encoding different types of bicarbonate transporters allowing the intercellular exchange of the former species (Casey, 2006). By contrast, HCO3− transport in prokaryotes has been rarely observed so far with the well-studied exception of the bicarbonate transport system of the cyanobacteria Synechococcus sp. strain PCC7942. Two different transport mechanisms for HCO3− maintain with the combined action of CA elevated levels of CO2 in the carboxysomes required for efficient carbon fixation by RubisCO (Ritchie et al., 1996; Badger and Price, 2003).

CO2 Induced growth Phenotypes

CO2 is the final respiratory product and consequently inevitable in aerobic microbial and mammalian bioprocesses. In exhaust gas
flows the CO$_2$ fraction may rise to 15–20% depending on aeration and cellular activity. Considering that head overpressures of microbial fermentations are commonly 0.5–2 bar and 10–15 m bioreactor filling heights create hydrostatic pressures of 1–1.5 bar, pCO$_2$ could achieve maximum values of 0.1–0.6 bar at the bottom of the bioreactor. Notably, these maximum values may be reduced if aeration with fresh air is properly installed there. In principle, the scenario is similar for mammalian cultures although lowered due to reduced cell activities and smaller bioreactor sizes compared to microbial applications (pCO$_2$ at mammalian production: about 0.180 bar; Zhu et al., 2005). Noteworthy, cells circulating in large-scale bioreactors experience frequently changing pCO$_2$ levels, a fact that is usually not simulated by pseudo-stationary scale-down tests.

Multiple studies have been performed for elucidating the impact of pCO$_2$ levels on microbial (Dixon and Kell, 1989) and mammalian performance ([e.g., Gray et al. (1996)]). Effects on growth, biomass per substrate yields, product formation, cell division, and morphology were analyzed. These were either attributed to elevated CO$_2$ partial pressures alone or in conjunction with co-effects such as changing osmolality in the media. Observed phenotypes are individual. Nevertheless, some characteristic examples are given in the following highlighting basic kinetics of industrially interesting strains:

Bacteria

First indications that bacteria do react on elevated dissolved CO$_2$ levels were published by Jones and Greenfield (1982). Among
others, they observed that growth of Bacillus subtilis was inhibited by 40% under $p_{\text{CO}_2} = 0.17$ atm (0.172 bar). Batch studies with E. coli using CO$_2$-enriched aeration revealed that the maximum growth rate was severely reduced and biomass per glucose yields increased for aeration fractions >20% of carbon dioxide (Castan et al., 2002). Baez et al. (2009) studied GFP producing E. coli at constant p_{CO_2} in the range of 20–300 mbar. Their results supported previous findings by measuring more than 30% reduction of the maximal growth rate at p_{CO_2} and doubled acetate formation under $p_{\text{CO}_2} = 300$ mbar compared to the reference. For C. glutamicum, Knoll et al. (2005) investigated the growth rates μ in overpressurized bioreactors (10 bar head pressure) during growth on glucose. They observed $\mu > 0.3$ 1/h under $p_{\text{CO}_2} = 0.43$ bar. This finding was supported by subsequent studies with an L-lysin producing C. glutamicum strain (Knoll et al., 2007). Additionally, turbidostatic continuous cultivations were performed installing different p_{CO_2} levels. The growth rate of 0.58 1/h turned out to be almost constant until 0.18 bar p_{CO_2} and steadily decreased to 0.36 1/h under 0.8 bar p_{CO_2} (Baumchen et al., 2007). In 2013, Blombach et al. studied the growth performance of C. glutamicum in batch cultures. While no significant growth phenotype was found installing pCO$_2$ of about 0.3 bar, low levels smaller than 50 mbarCO_2 revealed 3-phase, bi-level growth kinetics of C. glutamicum (Blombach et al., 2013). Recently, Lopes et al. (2014) reviewed some microbial phenotypes as a result of elevated carbon dioxide levels in over-pressurized bioreactors.

Yeast

Chen and Gutmanns (1976) reported about growth inhibition of yeast at high CO$_2$ partial pressures. They found “slight” growth inhibition using CO$_2$ aeration fractions of 40% and a severe growth decrease using 50% CO$_2$ enriched air. Later, Kuriyama et al. (1993) underlined these early findings by arguing that cell division of S. cerevisiae may be hampered under $p_{\text{CO}_2} = 0.5$ atm (0.51 bar). Kuriyama et al. (1993) used chemostat approaches for studying the p_{CO_2} impact. They found that an elevated p_{CO_2} coincided with increased ethanol formation which itself may hamper process performance. S. cerevisiae is able to adapt to hyperbaric conditions (10 bar) provided that sufficient time for adaptations is given (Belo et al., 2003). CO$_2$ partial pressures of 0.48 bar had negligible effects on cell viability. This was also observed by Knoll et al. (2007). However, if partial pressures are increased further (0.6 bar) cell budding is hampered (Coelho et al., 2004). Indeed, a growth reduction of 25% was reported by Aguilera et al. (2005) when the CO$_2$ fraction of aeration was increased to 79% in aerobic cultivations. However, growth under anaerobic conditions was much less affected indicating that the respiratory metabolism is likely to be more influenced under high pCO$_2$ levels. This phenomenon was in the focus of recent studies. Richard et al. (2014) outlined that transient metabolic responses are triggered by CO$_2$ shifts e.g., characterized by intermediary increase of respiration rates and the excretion of ethanol and acetate.

Fungi

Similar to bacteria and yeast, inhibition of growth (and product formation) was also observed for fungi such as Penicillium chrysogenum already under $p_{\text{CO}_2} = 0.08$ atm (Jones and Greenfield, 1982). Ho and Smith (1986) specified this early observation by identifying reduced growth and penicillin formation rates using 12.6% CO$_2$ enriched air for cultivation. However, causes and consequences of high p_{CO_2} levels on growth and product formation may not be clearly identifiable. They may rather be a matter of indirect effects finally resulting in morphology changes (McIntyre and McNeil, 1998). Also Gibbs et al. (2000) pinpointed to the chemical interaction of high p_{CO_2} with precursors of penicillin biosynthesis finally deteriorating performance of P. chrysogenum. Nevertheless, under high levels of p_{CO_2} (installed after using 10–15% enriched influent gas) increased climbing and severely reduced penicillin production were observed (El-Sabbagh et al., 2006), not only for P. chrysogenum but also for cephalosporin C producing Acremonium chrysogenum (El-Sabbagh et al., 2008).

Mammalian Cells (e.g., CHO)

Today, mammalian producers are typically derived from tissue cells giving Chinese hamster ovary (CHO) cells an outstanding importance for the production of therapeutic proteins (Pfizenmaier and Takors, 2015). It has been estimated that these cells experience p_{CO_2} levels of 41–72 mbar under physiological conditions (Altman and Dittmer, 1971). However, industrial production environments are likely to impose much higher p_{CO_2}, especially when processes are in the focus of ongoing intensification (Ozturk, 1996). p_{CO_2}-induced stress usually coincides with the increase of osmolality due to titration for pH control. Hence, the interaction of both effects is often in the foreground of related studies. Kimura and Miller (1996) analyzed recombinant tissue-type plasminogen activator (tPA) production with CHO cells. Under maximum p_{CO_2} of 333 mbar they observed 30% reduction of the growth rate which increased to 45% reduction in combination with high osmolality. Results of Gray et al. (1996) anticipated that an optimum for recombinant protein production exists at 40–100 mbar p_{CO_2}. Zhu et al. (2005) showed that industrial osmolality conditions (400–450 mOsm) together with typically high p_{CO_2} (180–213 mbar) levels caused a 20% drop of CHO cell viability. Besides, Takuma et al. (2007) outlined that industrial p_{CO_2} values of 293 mbar reduced growth by 60% while cell-specific productivity of antibody IgG1 was almost unchanged. Additionally, there were indications that appropriate glucose limitation could compensate p_{CO_2} triggered growth reduction at “moderate” 190 mbarCO_2.

Among others, one reason for the deteriorating performance may be that protein glycosylation patterns reduce in the presence of elevated HCO$_3^-$ levels (Zanghi et al., 1999). Besides, DeZengotita et al. (2002) argued that glycolysis was inhibited in a dose-dependent manner when p_{CO_2} levels were studied between 66 and 333 mbar in hybridoma cells. Therefore, p_{CO_2} inhibition is not only a matter of CHO cells alone, but is observed for hybridoma and HEK293S cultures as well (Jardon and Garnier, 2003).

CO$_2$ / HCO$_3^-$-Induced Regulation

CO$_2$ / HCO$_3^-$ not only serves as substrate or product for enzymes, but also impacts the internal pH, the fluidity and permeability of membranes, and physicochemical properties of proteins, and is regarded as signal for virulence and toxin production in pathogens.
Due to the multiple involvement of CO$_2$ / HCO$_3^−$ in cellular metabolism, it seems evident that these species are directly or indirectly part of the regulatory machinery. The human body underlies a complex CO$_2$ / HCO$_3^−$ homeostasis with bicarbonate concentrations up to 140 mM in certain tissues (Arthurs and Sudhaker, 2005; Abuaita and Withey, 2009; Orlowski et al., 2013) representing a striking signal for pathogens invading the host. Although a direct association between CO$_2$ and virulence is missing, Park et al. (2011) found that 10% CO$_2$ stimulated aerobic growth of the human gastric pathogen Helicobacter pylori. CO$_2$ deprivation led to increased intracellular ppGpp levels which might indicate an involvement of the stringent response in CO$_2$-dependent regulation of H. pylori’s metabolism (Park et al., 2011). In Vibrio cholerae bicarbonate activates the regulatory protein ToxT which in turn induces virulence gene expression (Abuaita and Withey, 2009). Another, bicarbonate sensing transcriptional regulator is the AraC-like protein RegA from the mouse enteric pathogen Citrobacter rodentium which in the presence of bicarbonate activates transcription of a number of virulence genes and inhibits expression of several housekeeping genes (Yang et al., 2009). C. albicans a fungal pathogen causing life-threatening infections in immunocompromised patients senses increased HCO$_3^−$ levels by the soluble adenylyl cyclase (sAC) Cyr1p which produces cAMP. Then, cAMP activates protein kinase A to trigger filamentous growth which is an important factor for adhesion and invasion of the pathogen (Klengel et al., 2005; Hall et al., 2010). Furthermore, the transcription factor Rca1p of C. albicans was shown to control expression of CA in response to the availability of CO$_2$ (Cottier et al., 2012). Both examples demonstrate the relevance of a CO$_2$ / HCO$_3^−$ signaling system for global regulation of C. albicans’ metabolism. Regulation by bicarbonate-responsive soluble ACs seems be more widespread across multiple kingdoms since CO$_2$ / HCO$_3^−$-dependent adjustment of the intracellular cAMP level, initially found in male germ cells, was also identified in mycobacteria, eubacteria, fungi, and cyanobacteria (Chen et al., 2000; Zippin et al., 2001; Bahn and Mühlischlegel, 2006).

Although in large-scale fermentations gradients of dissolved gases occur and high CO$_2$ / HCO$_3^−$ concentrations depending on the process and the production host arise (Hermann, 2003; Takors, 2012), only few studies investigated the effects of altered levels of these species on metabolism and regulation of industrial relevant microbial cells systematically. The already mentioned analysis of Baez et al. (2009) studied the effect of 300 mbar partial pressure on recombinant GFP producing E. coli not only metabolically but also on the transcriptional level. Expression analysis of 16 selected genes revealed only slight changes in transcription. Noteworthy, as response to elevated dissolved CO$_2$ the transcription of acid stress genes (gadA, gadC, and adiA) increased, indicating acidification of the internal pH by CO$_2$ (Baez et al., 2009).

Recently, Follonier et al. (2013) exposed Pseudomonas putida KT2440 to elevated pressure (up to 7 bar) associated with increased CO$_2$ / HCO$_3^−$ concentrations in the bioreactor. They investigated the global transcriptional response by DNA microarrays. Physiology of P. putida KT2440 was hardly affected at increased pressure, however, significant changes in gene transcription were observed: elevated CO$_2$ / HCO$_3^−$ levels activated the heat-shock response and strongly affected expression of cell envelope genes pointing to an altered permeability/fluidity of the membrane (Follonier et al., 2013).

The genome-wide transcriptional response of S. cerevisiae to high CO$_2$ concentrations was analyzed in chemostat cultures under aerobic and anaerobic conditions. Accompanied with a more pronounced sensitivity of respiratory metabolism, high CO$_2$ levels in glucose-limited cultures led to 104 at least two-fold altered transcripts compared to 33 under anaerobic conditions. Interestingly, 50% of the affected transcripts under aerobic conditions encoded mitochondrial proteins such as PEP carboxykinase, PCx, and proteins involved in oxidative phosphorylation (Aguilera et al., 2005).

Recently, we investigated the effects of low (pCO$_2$ < 40 mbar) and high (pCO$_2$ ≥ 300 mbar) CO$_2$ / HCO$_3^−$ levels on growth kinetics and the transcriptional response of C. glutamicum compared to standard conditions. Under high CO$_2$ / HCO$_3^−$ levels growth kinetics were not affected albeit the biomass to substrate yield was increased. However, a complex transcriptional response involving 117 differentially expressed genes was observed. Among those, 60 genes were assigned to the complete DtxR/RipA regulon controlling iron homeostasis in C. glutamicum. The mutant C. glutamicum ΔdtxR showed significantly impaired growth under high CO$_2$ / HCO$_3^−$ conditions (compared to the wildtype) but not under standard conditions. This finding underlines the relevancy of the master regulator for cell fitness under high CO$_2$ / HCO$_3^−$ levels (Blombach et al., 2013). At low CO$_2$ / HCO$_3^−$ levels C. glutamicum showed three distinct growth phases. In the mid-phase with slowest growth, C. glutamicum secreted l-alanine and t-valine into the medium and showed about two times higher activities of glucose-6-P dehydrogenase and 6-phosphogluconate dehydrogenase and a strong transcriptional response (>100 genes with altered expression) including increased transcription of almost all thiamine pyrophosphate (TPP) genes compared to standard conditions. We hypothesized that C. glutamicum counteracts the lack of CO$_2$ / HCO$_3^−$ by triggering TPP biosynthesis for increasing the activities of TPP-dependent enzymes involved in CO$_2$ formation (Figure 4; Blombach et al., 2013).

Industrial scale cells are exposed to various gradients such as pH, substrates, and dissolved gases. To analyze the effects of oscillating CO$_2$ / HCO$_3^−$ levels on the metabolism and transcriptional response of C. glutamicum, a novel three-compartment cascade bioreactor system was developed. pCO$_2$ gradients of 75–315 mbar at industry-relevant residence times of about 3.6 min did not significantly influence the growth kinetics but led to 66 differentially expressed genes compared to control conditions. Interestingly, the overall change in expression was directly linked to the pCO$_2$ gradients and the residence time of the cells in the scale-down device (Buchholz et al., 2014b).

CO$_2$ / HCO$_3^−$ Impacts Production Processes

Production processes on glycolytic substrates rely on the anaerobic function of PCx and/or PEP carboxylase to replenish citric acid cycle intermediates that are incorporated for anabolic
demands and/or product formation. Especially, oxaloacetate-derived products such as l-lysine require a high anaplerotic flux. *C. glutamicum* is the workhorse in industrial l-lysine production and possesses PCx and PEP carboxylase. Several studies identified PCx and especially deregulated variants as most relevant to improve oxaloacetate supply since inactivation of PCx reduced and overexpression of the corresponding *pvc* gene significantly improved l-lysine formation in *C. glutamicum* (Peters-Wendisch et al., 2001; Ohnishi et al., 2002). Furthermore, inactivation of PEP carboxykinase led to an increase in l-lysine production with *C. glutamicum* (Riedel et al., 2001). Surprisingly, although great efforts have been made to tailor the biosynthetic pathway and to optimize precursor availability (Blombach and Seibold, 2010), the impact of altered CO$_2$/HCO$_3^−$ levels for aerobic l-lysine production has not been systematically investigated so far.

Apparently too low CO$_2$/HCO$_3^−$ levels may limit the *in vivo* activity of anaplerotic reactions. The combination of high aeration and low biomass concentration at the beginning of the fermentation is likely to cause retarded cell growth due to CO$_2$ over-stripping. By analogy, installing non-limiting CO$_2$/HCO$_3^−$ levels is especially important for zero-growth or resting cell bioprocesses. Examples are the synthesis of organic acids such as malate, fumarate and succinate which are formed anaerobically from oxaloacetate via the reductive arm of the citric acid cycle. Under such conditions only minor amounts of CO$_2$/HCO$_3^−$ are provided by the metabolism of the cell. However, elevated productivities can be achieved by sparging with CO$_2$ or adding carbonates to the medium to ensure sufficient HCO$_3^−$ for C3-carboxylation (Inui et al., 2004; Okino et al., 2005, 2008; Lu et al., 2009; Zelle et al., 2010; Zhang et al., 2010; Wieschalka et al., 2012). Inui et al. (2004) and Okino et al. (2005) showed that addition of NaHCO$_3$ to the medium significantly improved the glucose consumption rate and the succinate production rate with resting cells of *C. glutamicum*. Radoš et al. (2014) demonstrated that sparging an anaerobic culture of non-growing *C. glutamicum* with CO$_2$ improved the succinate and acetate yield, respectively, both at the expense of lactate production. 13C nuclear magnetic resonance analysis of labeling patterns in the end products verified the incorporation of bicarbonate and the formation of succinate mainly via the reductive arm of the citric acid cycle (Radoš et al., 2014). For a dual-phase (aerobic growth, anaerobic production) succinate production process with a recombinant *E. coli* strain, it was also shown that increasing the CO$_2$ content in the gas phase from 0 to 50% improved the biomass-specific production rate and the succinate yield significantly (Lu et al., 2009). In order to provide additional CO$_2$ and reduction equivalents for anaerobic succinate production from glucose, Litsanov et al. (2012) integrated the *fdh* gene encoding a formate dehydrogenase from *Mycobacterium vaccae* into the chromosome of an engineered *C. glutamicum* strain. Supplementation of formate increased the succinate yield by 20% mainly due to increased NADH availability. However, part of the formed CO$_2$ was incorporated into the product (Litsanov et al., 2012).

The shortage of oil resources and steadily rising oil prices has stimulated efforts to produce chemicals and fuels directly from CO$_2$. Production of ethanol, isobutyraldehyde, and isobutanol from CO$_2$ and light was achieved using engineered photosynthetic bacteria such as *Rhodobacter capsulatus* and *Synechococcus elongatus* PCC7942 (Wahlund et al., 1996; Atsumi et al., 2009). Li et al. (2012) showed the feasibility of electrochemical supply of electrons to produce isobutanol and 3-methyl-1-butanol from CO$_2$ with engineered *R. eutropha* H16. However, the low productivity and final titer of such approaches and the reactor design is still a challenge for future industrial application. Alternatively, RubisCO was functionally expressed in heterotrophic *S. cerevisiae* to incorporate CO$_2$ as co-substrate improving ethanol production and reducing the formation of the by-product glycerol in chemostat cultures (Guadalupe-Medina et al., 2013). An innovative approach is the use of CO$_2$ and hydrogen-containing waste gases or synthesis gas as feedstock for the production of chemicals and fuels with aceticogenic and carboxydotrophic bacteria. Aerobic and anaerobic gas fermentation processes have been exploited for their biotechnological potential and commercial plants for ethanol production are already under construction (Dürre and Eikmanns, 2015).

Mammalian producer cells descent from rodents (like mouse or hamster) or human tissues. In case they are used in submerge culture they have undergone a (sometimes) tedious transition to yield at suspended producer cell lines. With this history in mind one may understand why product formation in producer cells such as CHO is often found to be strongly growth-de-coupled (Altamirano et al., 2001). This fact is even exploited by temperature shift-down approaches (37 to ~30°C) to arrest cells in G1 phase finally increasing cell-specific protein production. By analogy, osmolality increase results at similar growth and product formation phenotypes (Ozturk and Palsson, 1991; Kumar et al., 2007). As outlined in the foregoing sections, elevated pCO$_2$ environments >100 mbar are likely to inhibit cell growth for CHO cultures. Consequently, therapeutical protein formation kinetics of the (typical) growth-de-coupled type are not likely to be affected by high pCO$_2$ environments. Indeed, findings of Takuma et al. (2007) support this conclusion. In case growth-coupled product formation is observed, the impact of increased carbon dioxide partial pressures may be more pronounced. This holds also true for putative interactions of high CO$_2$/HCO$_3^−$ levels with the cellular membrane or the product proteins. However, more studies are necessary to investigate these individual effects.

Conclusion

Summarizing the impacts of high CO$_2$/HCO$_3^−$ levels, the reduction of cellular growth is a typical phenomenon. Although the effects are very individual, sensitivities on high CO$_2$ partial pressures are less pronounced in bacteria than they are in fungi or mammalian producer cells. As a rule of thumb pCO$_2$ > 100 mbar marks the beginning of growth inhibition for the later.

On the other hand, too low CO$_2$/HCO$_3^−$ levels are likely to limit anaplerotic reactions inside the cells. Consequently, downstream precursors such as oxaloacetate could become limiting which affects not only cell growth but also biosynthesis of related metabolic products.

In general, transcriptional responses on high (or low) CO$_2$/HCO$_3^−$ are by far less studied than metabolic phenotypes. However, (maybe) surprising regulatory mechanisms are waiting to be discovered. An illustrative example is the case of *C.
glutamicum that aims at countering CO$_2$/HCO$_3^-$ limitation by amplifying TPP biosynthesis, known as an essential co-factor for decarboxylating enzymes. High CO$_2$/HCO$_3^-$ levels apparently serve as an important stimulus for some pathogenic microbes to identify the host and to trigger related invasion programs. To what extent fragments or derivatives of such regulatory scenarios are also present in other cells also remains to be discovered.

Considering the application of microbes, yeasts, fungi, and mammalian cells in industrial bioreactors some particularities need to be taken into account. High CO$_2$/HCO$_3^-$ levels do not effect cells as a singular, isolated event. They rather occur in conjunction with changes of osmolality and pH that stimulate the cells manifold. The unequivocal identification of causes and consequences may be hampered intrinsically. Complex networking analysis is necessary to decipher details of CO$_2$/HCO$_3^-$ impacts. Examples are the link between CO$_2$/HCO$_3^-$ and productivity with morphology changes in fungi or the osmolality in CHO.

The other side, equal pCO$_2$ levels may serve as a valuable scale-up criterion because they mirror the complex interaction of cellular activities, mixing, and mass transfer (Klinger et al., 2015). Furthermore, one should consider that CO$_2$/HCO$_3^-$ stimuli occur dynamically under industrial operation conditions. Cells are circulating in large-scale production reactors thus experiencing frequently changing dissolved CO$_2$ levels. Consequently, comprehensive scale-up tests should mirror these conditions to ensure that promising novel producers will perform equally well in large scale – as they should.

Acknowledgments

The authors gratefully acknowledge the funding of this work by the Deutsche Forschungsgemeinschaft (DFG), grant TA 241/5-1 and TA 241/5-2. This work was also supported by DFG within the funding programme Open Access Publishing.

References

Abuaita, B. H., and Withy, J. H. (2009). Bicarbonate induces *Vibrio cholerae* virulence gene expression by enhancing ToxT activity. *Infect. Immun.* 77, 4111–4120. doi:10.1128/IAI.00409-09

Aguilera, J., Petit, T., De Winde, J. H., and Pronk, J. T. (2005). Physiological and genome-wide transcriptional responses of *Saccharomyces cerevisiae* to high carbon dioxide concentrations. *FEMS Yeast Res.* 5, 579–593. doi:10.1016/j.femsyr.2004.09.009

Altamirano, C., Cairo, J. J., and Godia, F. (2001). Decoupling cell growth and product formation in Chinese hamster ovary cells through metabolic control. *Biotechnol. Bioeng.* 76, 351–360. doi:10.1002/bit.10096

Altman, P. L., and Dittmer, D. S. (eds) (1971). *Biological Handbooks: Respiration and Circulation*. Bethesda: Federation of American Societies for Experimental Biology.

Arthur, G., and Sudhakar, M. (2005). Carbon dioxide transport. *Contin. Educ. Anaesth. Crit. Care Pain* 5, 207–210. doi:10.1093/bjaeeaccp/mki050

Atsumi, S., Higashide, W., and Liao, J. C. (2009). Direct photosynthetic recycling of carbon dioxide to isobutyraldehyde. *Biotechnol. Bioeng.* 100, 102–110. doi:10.1002/bit.23739

Bahn, Y. S., and Mühlischlegel, E. A. (2006). CO$_2$ sensing in fungi and beyond. *Curr. Opin. Microbiol.* 9, 572–578. doi:10.1016/j.mib.2006.09.003

Bailey, J. E., and Ollis, D. F. (1986). *Biochemical Engineering Fundamentals*. 2nd Edition, McGraw-Hill Chemical Engineering Series. New York, NY: McGraw-Hill.

Ballestra, P., Da Silva, A. A., and Cuq, J. L. (1996). Inactivation of *Escherichia coli* by carbon dioxide under pressure. *J. Food Sci.* 61, 829–831. doi:10.1111/j.1502-7164.1996.tb22121.x

Bar-Even, A., Noor, E., Lewis, N. E., and Milo, R. (2010). Design and analysis of synthetic carbon fixation pathways. *Proc. Natl. Acad. Sci. U.S.A.* 107, 8889–8894. doi:10.1073/pnas.0907176107

Baumchen, C., Knoll, A., Husemann, B., Seletzky, J., Maier, B., Dietrich, C., et al. (2007). Effect of elevated dissolved carbon dioxide concentrations on growth of *Corynebacterium glutamicum* on D-glucose and L-lactate. *J. Biotechnol.* 128, 868–874. doi:10.1016/j.jbiotec.2007.01.001

Belo, I., Pinheiro, R., and Mota, M. (2003). Fed-batch cultivation of *Saccharomyces cerevisiae* in a hyperbaric bioreactor. *Biotechnol. Prog.* 19, 665–671. doi:10.1021/bp0257067

Blombach, B., Buchholz, J., Busche, T., Kalinowski, J., and Takors, R. (2013). Impact of different CO$_2$/HCO$_3^-$ levels on metabolism and regulation in *Corynebacterium glutamicum*. *J. Biotechnol.* 168, 331–340. doi:10.1016/j.jbiotec.2013.10.005

Blombach, B., and Seibold, G. M. (2010). Carbohydrate metabolism in *Corynebacterium glutamicum* and applications for the metabolic engineering of L-lysine production strains. *Appl. Microbiol. Biotechnol.* 86, 1313–1322. doi:10.1007/s00253-010-2537-z

Bothun, G. D., Knutson, B. L., Berberich, J. A., Strobel, H. J., and Nokes, S. E. (2004). Metabolic selectivity and growth of *Clostridium thermocellum* in continuous culture under elevated hydrostatic pressure. *Appl. Microbiol. Biotechnol.* 65, 149–157. doi:10.1007/s00253-004-1554-1

Buchholz, J., Graf, M., Blombach, B., and Takors, R. (2014a). Improving the carbon balance of fermentation processes of total carbon analyses. *Biochem. Eng. J.* 90, 162–169. doi:10.1016/j.bej.2014.06.007

Buchholz, J., Graf, M., Freund, A., Busche, T., Kalinowski, J., Blombach, B., et al. (2014b). CO$_2$/HCO$_3^-$ perturbations of simulated large scale gradients in a scale-down device cause fast transcriptional responses in *Corynebacterium glutamicum*. *Appl. Microbiol. Biotechnol.* 98, 8563–8572. doi:10.1007/s00253-014-6014-y

Casey, J. R. (2006). Why bicarbonate? 1. *Biochem. Cell Biol.* 84, 930–939. doi:10.1139/O06-184

Castan, A., Nasman, A., and Enfors, S.-O. (2002). Oxygen enriched air supply in *Escherichia coli* processes: production of biomass and recombinant human growth hormone. *Enzyme Microb. Technol.* 30, 847–854. doi:10.1016/S0141-0229(01)00490-2

Chen, S. L., and Gutmanns, F. (1976). Carbon dioxide inhibition of yeast growth in biomass production. *Biotechnol. Bioeng.* 18, 1455–1462. doi:10.1002/bit.260181012

Chen, Y., Cann, M. J., Litvin, T. N., Iourgenko, V., Sinclair, M. L., Levin, L. R., et al. (2000). Soluble adenylyl cyclase as an evolutionarily conserved bicarbonate sensor. *Science* 289, 625–628. doi:10.1126/science.289.5479.625

Chen, Z., Bommareddy, R. R., Frank, D., Rappert, S., and Zeng, A.-P. (2013). Deregulation of feedback inhibition of phosphoenolpyruvate carboxylase for improved lysine production in *Corynebacterium glutamicum*. *Appl. Environ. Microbiol.* 80, 1388–1393. doi:10.1128/AEM.03355-13

Chollet, R., Vidal, J., and O’Leary, M. H. (1996). Pyruvate carboxylase: a ubiquitous, highly regulated enzyme in plants. *Annu. Rev. Plant Physiol. Plant Mol. Biol.* 47, 273–298. doi:10.1146/annurev.arplant.47.1.273

Coelho, M. A. Z., Belo, I., Pinheiro, R., Amaral, A. L., Mota, M., Coutinho, J. A. P., et al. (2004). Effect of hyperbaric stress on yeast morphology: study by automated image analysis. *Appl. Microbiol. Biotechnol.* 66, 318–324. doi:10.1007/s00253-004-1648-9

Cottier, F., Raymond, M., Kurzai, O., Bolstad, M., Leewattanapaux, W., Jiménez-López, C., et al. (2012). The bZIP transcription factor Rca1p is a central regulator of a novel CO$_2$ sensing pathway in yeast. *PLoS Pathog.* 8:e1002485. doi:10.1371/journal.ppat.1002485
Danckwerts, P. V. (1951). Significance of liquid-film coefficients in gas absorption. *Ind. Eng. Chem.* 43, 1460–1467. doi:10.1021/i20049a005

DeZengotita, V. M., Schmeleter, A. E., and Miller, W. M. (2002). Characterization of hybridoma cell responses to elevated pCO2 and osmolality: intracellular pH, cell size, apoptosis, and metabolism. *Biotechnol. Bioeng.* 77, 369–380. doi:10.1002/bit.10176

Dixon, N. M., and Kell, D. B. (1989). The inhibition by CO2 of the growth and metabolism of micro-organisms. *J. Appl. Bacteriol.* 67, 109–116. doi:10.1111/j.1365-2672.1989.tb03387.x

Durré, P., and Eikmanns, B. J. (2015). CO2 as a key player in terrestrial and aquatic ecosystems. *Trans. Am. Inst. Chem. Eng.* 110, 371–389. doi:10.1002/tace.201550015

El-Sabbagh, N., McNeil, B., and Harvey, L. M. (2008). Effects of dissolved carbon dioxide on the growth and metabolism of the yeast *Saccharomyces cerevisiae* causes yeast cell death during fermentations. *Annu. Rev. Nutr.* 28, 47–68. doi:10.1146/annurev.nutr.28.050907.160254

El-Sabbagh, N., McNeil, B., and Harvey, L. M. (2006). Dissolved carbon dioxide effects on growth, nutrient consumption, penicillin synthesis and morphology of the fungus *Acremonium chrysogenum* in batch cultures. *Enzyme Microb. Technol.* 42, 315–324. doi:10.1016/j.enzmictec.2007.10.012

El-Sabbagh, N., McNeil, B., and Harvey, L. M. (2006). Dissolved carbon dioxide effects on growth, nutrient consumption, penicillin synthesis and morphology in batch cultures of *Penicillum chrysogenum*. *Enzyme Microb. Technol.* 39, 185–190. doi:10.1016/j.enzmictec.2005.10.020

Erb, T. J. (2011). Carboxylases in natural and synthetic microbial pathways. *Appl. Environ. Microbiol.* 77, 8466–8477. doi:10.1128/AEM.05702-11

Fallon, S., Escapa, I. F., Fonseca, P. M., Henes, B., Panke, S., Zinn, M., et al. (2013). New insights on the reorganisation of gene transcription in *Pseudomonas putida* KT2440 at elevated pressure. *Microb. Cell Fact.* 12, 30. doi:10.1186/1475-2859-12-30

Fuchs, G. (2011). Alternative pathways of carbon dioxide fixation: insights into the early evolution of life? *Annu. Rev. Microbiol.* 65, 631–658. doi:10.1146/annurev-micro-090110-120801

Garcia-Gonzalez, L., Geeraert, A. H., Spilmberger, S., Elst, K., Van Ginneken, L., Debevere, J., et al. (2007). High pressure carbon dioxide inactivation of micro-organisms in foods: the past, the present and the future. *Int. J. Food Microbiol.* 117, 1–28. doi:10.1016/j.ifoodmicro.2007.02.018

Gibbs, P. A., Seviour, R. J., and Schmid, F. (2000). Growth of filamentous fungi in submerged culture: problems and possible solutions. *Crit. Rev. Biotechnol.* 20, 17–48. doi:10.1080/073885500911441477

Gottz, R., Gannan, A., and Zimmermann, F. K. (1999). Deletion of the carbonic anhydrase-like gene NCE103 of the yeast *Saccharomyces cerevisiae* causes an oxygen-sensitive growth defect. *Yeast* 15, 855–864. doi:10.1002/(SICI)1097-0061(199907)15:10<855::AID-YEA425>3.0.CO;2-C

Gray, D. B., Chen, S., Howarth, W., Inlow, D., and Maiorella, B. L. (1996). CO2 in large-scale and high-density CHO cell perfusion culture. *Cytotherapy* 22, 65–78. doi:10.1080/70880353925

Guadalupe-Medina, V., Wisselink, H. W., Luttik, M. A. de, Halster, E., Daran, J.-M., and Proulx, J. T., et al. (2013). Carbon dioxide fixation by Calvin-Cycle enzymes improves ethanol yield in yeast. *Biotechnol. Biofuels* 6, 125. doi:10.1186/1754-6834-6-125

Gutknecht, J., Bisson, M. A., and Tosteson, F. C. (1977). Diffusion of carbon dioxide through lipid bilayer membranes: effects of carbonic anhydrase, bicarbonate, and unstrired layers. *J. Gen. Physiol.* 69, 779–794. doi:10.1085/jgp.69.6.779

Hall, R. A., de Sordi, L., Schmeleter, A. E., Topal, H., Eaton, R., Bloor, J. W., Blombach and Takors (2016). Characterization of hybridoma cell responses to elevated pCO2 and osmolality: intracellular pH, cell size, apoptosis, and metabolism. *Biotechnol. Bioeng.* 77, 369–380. doi:10.1002/bit.10176

Hartmann, F. C., and Harpel, M. R. (1994). Structure, function, regulation, and assembly of D-ribose-1,5-bisphosphate carboxylase/oxygenase. *Annu. Rev. Biochem.* 63, 197–234. doi:10.1146/annurev.biochem.63.070194.001213

Hermann, T. (2003). Industrial production of amino acids by Coryneform bacteria. *J. Biotechnol.* 104, 155–172. doi:10.1016/S0168-1656(03)00149-4

Higbie, R. (1935). The rate of absorption of a pure gas into a still liquid during short periods of exposure. *Trans. Am. Inst. Chem. Eng.* 31, 364–389.

Ho, C. S., and Smith, M. D. (1986). Effect of dissolved carbon dioxide on penicillin fermentations: mycelial growth and penicillin production. *Biotechnol. Bioeng.* 28, 668–677. doi:10.1002/bit.260280506
