non-typeable plasmid, next to blaCTX-M-1 on a 100 kb IncI1 plasmid and
blaCTX-M-1 on a 80 kb IncI1 plasmid. The IncI1 plasmid was
further typed by plasmid multilocus sequence typing (pMLST) as sequence
type (ST) 7. The coexistence of qnrS1 and blaSHV-12 has been reported on
IncN plasmids in Klebsiella isolates from Italy. Nevertheless, to our knowledge, we describe the first E. coli isolate harbouiring qnrS1 and blaSHV-12 on a single non-typeable
45 kb plasmid. The presence of blaCTX-M-1 on an IncI1 plasmid and
blaCTX-M-1 on an IncI1 plasmid was previously identified in E. coli isolates from Dutch broiler chickens. Moreover, IncI1 plasmids of
ST7 harbouring blaCTX-M-1 are frequently detected amongst ESBL-producing E. coli from Dutch broiler chickens (pMLST databases: http://pubmlst.org/plasmid/). Yet, we report the first coexistence of blaCTX-M-1, blaSHV-12 and blaCMY-2 genes next to qnrS1 in an E. coli isolated from animals. In the E. coli isolate from a veal calf (no. 77.01), qnrS1 was located on an IncX2 plasmid, which has recently been described in E. coli from healthy animals in Nigeria. In the E. coli isolate from a broiler chicken (no. 74.21), qnrB19 was also identified on an IncX2 plasmid. The presence of qnrB19 has been reported in E. coli isolated from animals on CoE, IncN6 and IncR8 plasmids, but not on IncX2.

Our results demonstrate the presence of qnr genes on two different types of plasmids in E. coli isolated from animals. These findings indicate the emergence of PMQR genes in the commensal flora of food-producing animals in the Netherlands. The remarkable finding of the coexistence of three different cephalosporinase genes on three different plasmids in a single E. coli isolate demonstrates the complexity of the plasmid-mediated dissemination of β-lactamase and PMQR genes in Enterobacteriaceae.

Acknowledgements

Part of the data was presented at the ARAE 2011 Conference, Tours, France, 2011 (Poster P56).

This publication made use of the pMLST web site (http://pubmlst.org/plasmid/) developed by Keith Jolley and sited at the University of Oxford. The development of this site has been funded by the Wellcome Trust.

Funding

This work was supported by the Netherlands Ministry of Economics, Agriculture and Innovation as part of project no. WOT-01-002-03.02.

Transparency declarations

None to declare.

References

1 Veldman K, Cavaco LM, Mevius D et al. International collaborative study on the occurrence of plasmid-mediated quinolone resistance in Salmonella enterica and Escherichia coli isolated from animals, humans, food and the environment in 13 European countries. J Antimicrob Chemother 2011; 66: 1278–86.

2 Dierikx C, van Essen-Zandbergen A, Veldman K et al. Increased detection of extended spectrum β-lactamase producing Salmonella enterica and Escherichia coli isolates from poultry, Vet Microbiol 2010; 145: 273–88.

3 Carattoli A, Bertini A, Villa L et al. Identification of plasmids by PCR-based replicon typing. J Microbiol Methods 2005; 63: 219–28.

4 Garcia-Fernandez A, Chioretta G, Bertini A et al. Multilocus sequence typing of IncI1 plasmids carrying extended-spectrum β-lactamases in Escherichia coli and Salmonella of human and animal origin. J Antimicrob Chemother 2008; 61: 1229–33.

5 Carattoli A, Aschbacher R, March A et al. Complete nucleotide sequence of the IncN plasmid pOX105 encoding VIM-1, QnrS1 and SHV-12 proteins in Enterobacteriaceae from Bolzano, Italy compared with IncN plasmids encoding KPC enzymes in the USA. J Antimicrob Chemother 2010; 65: 2070–5.

6 Fortini D, Fashae K, Garcia-Fernandez A et al. Plasmid-mediated quinolone resistance and β-lactamases in Escherichia coli from healthy animals from Nigeria. J Antimicrob Chemother 2011; 66: 1269–72.

7 Dolejska M, Duskova E, Rybarikova J et al. Plasmids carrying blaCTX-M-1 and qnr genes in Escherichia coli isolates from an equine clinic and a horseback riding centre. J Antimicrob Chemother 2011; 66: 757–64.

8 Nordijk J, Bosman AB, van Essen-Zandbergen et al. qnrB19 gene bracketed by IS26 on a 40-kilobase IncR plasmid from an Escherichia coli isolate from a veal calf. Antimicrob Agents Chemother 2011; 55: 453–4.
PCR analysis for DNA was prepared from boiled cell suspensions and subjected to microcin, trimethoprim, nitrofurantoin, meropenem and amikacin. According to published guidelines (CLSI and BSAC methods), antibiotic susceptibility testing for the study was carried out in accordance with published guidelines (CLSI and BSAC methodologies). Additional antibiotics tested included ciprofloxacin, gentamicin, trimethoprim, nitrofurantoin, meropenem and amikacin. DNA was prepared from boiled cell suspensions and subjected to PCR analysis for bla_{CTX-M}. The resulting 504 bp amplicon (of the 876 bp bla_{CTX-M} gene) was sequenced and genetic homologues identified by querying the National Centre for Biotechnology Information (NCBI) nucleotide database. Multilocus sequence typing of E. coli was carried out in accordance with an established scheme (http://mlst.ucc.ie/). Statistical analyses were undertaken with Stata/SE 11.1 software. Ethical approval was granted by the National Ethical Committee for Health Research, Government of the Lao PDR (Laos) and the Oxford Tropical Research Ethics Committee (UK).

Fifty-four ESBL-producing E. coli were identified during the study period from blood (n=18/197; 9%), urine (n=23/354; 6%) and pus (n=11/76; 14%) samples culturing E. coli, consistent with the general epidemiology of extra-intestinal pathogenic E. coli (ExPEC) infections. For two samples the source was not confirmed. All ESBL-producing E. coli isolates harboured bla_{CTX-M}, the invariable presence of which is similar to other molecular epidemiological studies carried out in Asia. There was an increase in the proportion of all microbiological specimens culturing E. coli during the study period (2.9% to 4.5%; Fisher’s exact test, P=0.02), and the proportion of ESBL-producing E. coli more than tripled since their first isolation in 2004 (3.9% to 13.3%; Fisher’s exact test, P=0.04). While a survey in only one hospital represents a singular snapshot of the overall epidemiology, this study suggests the expansion of CTX-M ESBLs in E. coli in Vientiane occurred relatively late, given that the CTX-M gene was first identified in 1991 and high rates of ESBL-producing E. coli were reported in Asia as early as 1998–2002.

Considerable multidrug resistance was found amongst ESBL-producing E. coli isolates, with 66% displaying resistance to a further three classes of antibiotic (ciprofloxacin, trimethoprim and gentamicin). The rate of ciprofloxacin resistance (91%) was substantially higher than that in the 2008 Study for Monitoring Antimicrobial Resistance Trends (SMART) survey of ESBL-producing Enterobacteriaceae isolates in the Asia-Pacific region (64%), and showed no association with year of isolation, with ciprofloxacin resistance being the norm in ESBL-producing E. coli in Laos since 2004. No carbapenem resistance was found in this survey; only one isolate was resistant to amikacin.

CTX-M-14-like enzymes were most common (including CTX-M-14/18, -17, -21, -24, -46, -47, -48, -49, -50, -83 and -104; n=22 (41%)), with CTX-M-15-like (including CTX-M-28, -82 and -88; n=15 (28%)), CTX-M-27 (n=12 (22%)) and CTX-M-55-like (including CTX-M-57, -59 and -79; n=5 (9%)) variants being identified in descending order of frequency. This mimics to some degree the distribution seen in Thailand and China, where the appearance of ESBLs in E. coli pre-dates that seen in this study in Laos, suggesting plausible transmission networks between these countries sharing land borders.

Table 1. Number of ESBL-producing E. coli isolates by ST per year; annual periods run from 1 April of one year to 31 March of the following year

ST	2004–05	2005–06	2006–07	2007–08	2008–09	Total
12	1	1				2
38	1		1	1		3
69			2	2		4
88			1		1	2
95				1		1
101				1	1	2
131	1	4	4	8	17	33
167				2		4
209				1	1	2
354	1		3	1	5	10
405	1		1	2	4	8
410					3	3
668	1		2	7	10	20
744				1	1	2
1340					1	1

Total 2 4 6 16 26 54

Fifteen different sequence types (STs) were identified among the ESBL-producing E. coli isolates (Table 1). While a pandemic global lineage, ST-131, was the most frequently identified ST (n=17/54; 31%), of particular interest was the finding that ST-648 was the second most common (n=10/54; 19%). ESBL-producing ST-648 has been identified to date in only a handful of human clinical isolates, wild birds and poultry, suggesting the potential for zoonotic transmission. Poultry farming is common in Laos, with 95% being of the ‘backyard’, smallholding variety. A further bird-associated strain (ST-1340), which has not been found in human clinical samples before, was also found in this study. ST-648 was significantly associated with CTX-M-15-like enzymes (Fisher’s exact test, P<0.0001).

This study describes the emergence and expansion since 2004 of ESBL-producing E. coli in Vientiane, Laos, and the invariable presence of the CTX-M gene. Local surveillance has the capacity to demonstrate discrete features of ESBL-producing E. coli molecular epidemiology. The diverse range of host bacterial genotypes and CTX-M variants identified in this study support the notion that higher-resolution approaches, such as those afforded by whole genome sequencing technology, are required to gain a thorough understanding of the epidemiology of this resistance problem.

Acknowledgements

Some of the data included in this paper were presented at the Federation of Infection Societies Meeting, Birmingham, UK, 2009 (Poster P109).

We are very grateful to the directors, doctors and nursing staff of Mahosot Hospital and the staff of the Microbiology Laboratory, especially Viengmon Dowong, Anisone Changthongthip, Olay Lattana, Latanyphone Bouthasavong, Phoulavanh Phouminh, Phoonsathip Panyaouvong, Joy Sirisouk and Malee Siphonly. We are very grateful to the Minister of Health, His Excellency Dr Ponnmek Dalay and the Director of the Curative Department, Ministry of Health, Professor Sommone Phousavath for their support. We would like to thank Dr Sue J. Lee for her help with the statistical analyses.
Funding
This work was supported by the United Kingdom Clinical Research Collaboration (UKCRC) and the National Institute for Health Research NIHR Biomedical Research Centre Oxford (OxBRC). The clinical and microbiological work in Laos was funded by the Wellcome Trust of Great Britain as part of the Wellcome Trust–Mahosot Hospital–Oxford Tropical Medicine Research Collaboration.

Transparency declarations
None to declare.

References
1 WHO. World Health Statistics 2009. http://www.who.int/whosis/whostat/EN_WHS09_Full.pdf (24 August 2011, date last accessed).
2 Hsueh PR, Badal RE, Hawser SP et al. Epidemiology and antimicrobial susceptibility profiles of aerobic and facultative Gram-negative bacilli isolated from patients with intra-abdominal infections in the Asia-Pacific region: 2008 results from SMART (Study for Monitoring Antimicrobial Resistance Trends). Int J Antimicrob Agents 2010; 36: 408–14.
3 Weill FX, Lailier R, Praud K et al. Emergence of extended-spectrum-β-lactamase (CTX-M-9)-producing multiresistant strains of Salmonella enterica serotype Virchow in poultry and humans in France. J Clin Microbiol 2004; 42: 5767–73.
4 Hawkey PM. Prevalence and clonality of extended-spectrum β-lactamases in Asia. Clin Microbiol Infect 2008; 14 Suppl 1: 159–65.
5 Cortes P, Blanc V, Mora A et al. Isolation and characterization of potentially pathogenic antimicrobial-resistant Escherichia coli strains from chicken and pig farms in Spain. Appl Environ Microbiol 2010; 76: 2799–805.
6 Wilson RT. Numbers, ownership, production and diseases of poultry in the Lao People’s Democratic Republic. World Poultry Sci J 2007; 63: 655–63.

J Antimicrob Chemother 2012
doi:10.1093/jac/dkr426
Advance Access publication 3 October 2011

Importation of KPC-2-producing Escherichia coli from India
Anaïs Potron1, Laurent Poirel1, Delphine Verdavaine2 and Patrice Nordmann1,*

1 Service de Bactériologie-Virologie, INSERM U914 ‘Emerging Resistance to Antibiotics’, Hôpital de Bicêtre, Assistance Publique-Hôpitaux de Paris, Faculté de Médecine et Université Paris-Sud, 78 rue de Général Leclerc, K-Bicêtre, France; 2 Centre Hospitalier ‘Réné Pleven’, Dinan, France

*Corresponding author. Tel: +33-1-45-21-36-32; Fax: +33-1-45-21-63-40; E-mail: nordmann.patrice@bct.aphp.fr

Keywords: carbapenemases, Indian subcontinent, KPC

Sir,
The production of carbapenem-hydrolysing β-lactamases is increasingly reported in Enterobacteriaceae. Among the different types of carbapenemases, the emergence of the Ambler class A KPC-type β-lactamases is of great concern, since those enzymes hydrolyse all β-lactams with the exception of cephamycins. Enterobacterial isolates producing KPC-type β-lactamases were reported in many areas in the USA and subsequently worldwide.1 The rapid dissemination of KPC enzymes among different enterobacterial species is related to the localization of blaKPC genes on transferable broad host range plasmids and their association with a transposon.3 This dissemination has also been linked with a ‘successful’ international clone of KPC-producing Klebsiella pneumoniae of sequence type (ST) 258.2

Early in 2011, a middle-aged patient was transferred from a hospital in Mumbai, India, to the hospital of Dinan, France. The patient suffered from pleurisy due to Streptococcus pneumoniae for which he had received a combination of imipenem, vancomycin and piperacillin/tazobactam in India. Upon admission, a rectal swab revealed the presence of a multidrug-resistant Escherichia coli (designated strain GRU) with reduced susceptibility to carbapenems. No secondary local transmission occurred at the Dinan hospital following the rapid implementation of strict infection control measures.

The antibiogram determined by the disc diffusion method and MICs determined by Etest (AB bioMérieux, Solna, Sweden) and interpreted according to the CLSI guidelines3 revealed that E. coli strain GRU was resistant to all penicillins and expanded-spectrum cephalosporins, to ertapenem (MIC >32 mg/L) and to meropenem (MIC 8 mg/L) and was of intermediate susceptibility to imipenem (MIC 1.5 mg/L). The isolate was susceptible to tetracycline and fosfomycin, and MICs of tigecycline and colistin were 1 and 0.5 mg/L, respectively. However, it was resistant at a high level to all fluoroquinolones (MICs >256 mg/L). Molecular investigations performed as described previously1 identified the blaKPC-2 gene. Isolate GRU also harboured the blaTEM-1 and blaOXA-1 genes. Plasmid location of the blaKPC-2 gene was confirmed by electrophoresis of a plasmid DNA preparation obtained by the Kieser method into E. coli TOP10 with selection on Trypticase soy plates containing ampicillin (100 mg/L).1 Molecular and phenotypic analysis of the E. coli transformant confirmed that blaKPC-2 was located on an ~20 kb plasmid. The blaKPC-2-positive plasmid was non-typeable using PCR-based replicon typing.4 No other antibiotic resistance marker was co-transferred. PCR mapping performed as described1 showed that the blaKPC-2 gene was part of the Tn4401 transposon. It is noteworthy that E. coli GRU additionally harboured a gene encoding the 16S rRNA methylase ArmA, conferring high-level resistance to all aminoglycosides (MICs of gentamicin, netilmicin, kanamycin and tobramycin >256 mg/L). Interestingly, KPC-2- and ArmA-producing Enterobacter cloacae and K. pneumoniae isolates have been reported in China and Poland.5,6 Multilocus sequence typing (MLST) performed according to the protocol described on the E. coli MLST web site (http://www.pasteur.fr/recherche/genopole/PPB/mlst/EColi.html) showed that E. coli GRU belonged to ST101, recently reported to be the most frequent NDm-1-producing E. coli clone in the UK and Pakistan.7 That study reported a KPC-producing E. coli originating from India. It remains to be determined to what extent the spread of KPC-type enzymes will contribute to the problem of carbapenem resistance in India, which currently is commonly regarded as reflecting the dissemination of the NDm-1 carbapenemase.8

Funding
This work was supported by a grant from the Ministère de la Recherche, Université Paris XI, Paris, and by the INSERM, France.