Light (anti)nuclei production in Pb–Pb collisions at $\sqrt{s_{\text{NN}}} = 5.02$ TeV

ALICE Collaboration

Abstract

The measurement of the production of deuterons, tritons and 3He and their antiparticles in Pb–Pb collisions at $\sqrt{s_{\text{NN}}} = 5.02$ TeV is presented in this article. The measurements are carried out at midrapidity ($|y| < 0.5$) as a function of collision centrality using the ALICE detector. The p_T-integrated yields, the coalescence parameters and the ratios to protons and antiprotons are reported and compared with nucleosynthesis models. The comparison of these results in different collision systems at different centre-of-mass collision energies reveals a suppression of nucleus production in small systems. In the Statistical Hadronisation Model framework, this can be explained by a small correlation volume where the baryon number is conserved, as already shown in previous fluctuation analyses. However, a different size of the correlation volume is required to describe the proton yields in the same data sets. The coalescence model can describe this suppression by the fact that the wave functions of the nuclei are large and the fireball size starts to become comparable and even much smaller than the actual nucleus at low multiplicities.

*See Appendix A for the list of collaboration members
1 Introduction

Collisions of ultrarelativistic heavy ions create suitable conditions for the production of light (anti)nuclei, as a high energy density is reached over a large volume. Under these conditions, hot and dense matter, which contains approximately equal numbers of quarks and antiquarks at midrapidity, is produced for a short duration (a few 10^{-23} s). After a deconfined quark–gluon plasma (QGP) is formed in the initial state, the system cools down and undergoes a transition to a hadron gas. While the hadronic yields are fixed at the moment when the rate of inelastic collisions becomes negligible (chemical freeze-out), the transverse momentum (p_T) distributions continue to change until elastic interactions cease (kinetic freeze-out). The observed nucleus abundance is highly sensitive to the chemical freeze-out conditions as well as the dynamics of the emitting source.

The production of light nuclei and antinuclei has already been measured in many experiments at various energies in heavy-ion collisions at the Bevalac [1], SIS [2, 3], AGS [4–8], SPS [9–12], RHIC [13–20] and LHC [21–25] and in smaller collision systems [22, 26–38]. The production of light nuclei is usually discussed within two theoretical approaches: the nucleon coalescence model [39–44] and the statistical hadronisation model (SHM) [45–49].

Generally, the coalescence model describes the production of nuclei from the nucleons emitted from a hot fireball that cools down while expanding. Most variants use a phase-space picture for the formation, namely the nucleons have to be close in space and (relative) momentum to allow for the formation of the nucleus. In particular, the studies of the production of (anti)nuclei as a function of the charged-particle multiplicity [22] have clearly shown experimentally a dependence of the yield (ratios) on the volume of the emitting fireball. In fact, a strong suppression of nucleus-to-proton yield ratios is seen from high multiplicities in Pb–Pb to lower multiplicities in p–Pb, and reaching small multiplicities in pp [37, 38] collisions. The size of the fireball can be extracted from the measurement of two-particle correlations, of Hanbury Brown & Twiss type [50–52], nowadays often called femtoscopy. Empirically, it was found that the charged-particle multiplicity of the collision is proportional to the size parameter R^3 [44, 53]. Theoretically, these correlations can be directly connected to the coalescence parameter B_A, which is a measure for the probability to form a nucleus of mass number A from the corresponding nucleons [40, 42, 44, 54, 56]. This dependence is mainly given by the fact that the wave functions of the nucleons have to overlap with the nucleus’ wave function, while the constituents are being emitted from a region of homogeneity of the fireball. This leads to a strong suppression of nucleus production in small systems, since the size of the formed nucleus becomes larger than the emitting source [44, 57]. It is worthwhile to mention that coalescence models typically ignore the problem of conservation of energy and momentum in the process, assuming either that this is handled via the off-shell nature of the particles or additional particles involved in the process itself.

The SHM successfully describes hadron yields in heavy-ion collisions, in particular in central collisions and at midrapidity [48]. The production of nuclei is solely determined by their quantum numbers and masses [49]. For more peripheral heavy-ion collisions or even smaller collision systems such as pp and p–Pb, one needs to switch from a grand canonical ensemble to a canonical description of the relevant quantum numbers (baryon number B, charge Q, and strangeness S) [58, 59]. The canonical ensemble requires a local conservation of each quantum number in a particular volume V_c, the so called correlation volume. Interestingly, V_c cannot be unambiguously determined from first principles [60], but it can be constrained from measurements of the event-by-event number fluctuation of net protons [59, 61] or deuterons [25]. Other approaches include a non-equilibrium treatment of the quantum numbers in question (see Ref. [49] and references therein) or even a partial chemical equilibrium (PCE) [62–64].

In this article, the production of deuterons, tritons and 3He and their antiparticles in Pb–Pb collisions at a centre-of-mass energy per nucleon pair $\sqrt{s_{NN}} = 5.02$ TeV is reported. The p_T-integrated yields, the coalescence parameters (calculated using average of protons and antiprotons, since they are found to be
produced in same abundance at the LHC energies ([65]) and the ratios to protons and antiprotons are compared with nucleon coalescence and statistical hadronisation models.

2 Experimental apparatus and data sample

The results presented in this article are based on the data set of Pb–Pb collisions at $\sqrt{s_{NN}} = 5.02$ TeV collected in 2018. In total, 230×10^6 events were analysed, of which 86.7×10^6 are central trigger events in the 0–10% centrality interval and 74.3×10^6 are semicentral trigger events in the 30–50% centrality interval.

The ALICE detector ([66, 67]) has excellent particle identification and vertexing capabilities. The (anti)nuclei were measured using the Inner Tracking System (ITS), the Time Projection Chamber (TPC) and the Time-Of-Flight (TOF) detector. All these detectors are located inside a homogeneous magnetic field with a strength of 0.5 T and cover the full azimuthal acceptance and the pseudorapidity range $|\eta| < 0.9$ for interactions located in $|z| < 10$ cm, where z is the distance from the nominal interaction point along the beam direction.

The ITS ([68]) consists of six cylindrical layers of (position-sensitive) silicon detectors, covering the central rapidity region. The ITS allows the reconstruction of the primary and secondary vertices. It is also used to separate primary nuclei from secondary nuclei via the distance of closest approach (DCA) of the track to the primary vertex with good resolution (better than 300 µm), assured by the Silicon Pixel Detector (SPD), which comprises the innermost two layers of the ITS.

The TPC ([69]) is the main tracking device of the experiment. It is a gas-filled cylinder and provides particle identification via the specific energy loss (dE/dx). (Anti)\(^3\)He are identified up to $p_T = 7$ GeV/c using the TPC only.

The TOF detector ([70]) allows for the light (anti)nuclei identification by means of the velocity determination. Its total time resolution for tracks from Pb–Pb collisions corresponds to about 65 ps which is determined by the intrinsic time resolution of the detector and the resolution of the event collision time measurement. By a combined analysis of TPC and TOF data, (anti)deuterons are identified up to $p_T = 6$ GeV/c in Pb–Pb collisions. (Anti)tritons are also identified using TPC and TOF. However, due to a sizeable background starting at about 2 GeV/c originating from mismatches between a track and a cluster in TOF, the (anti)tritons can only be measured up to $p_T = 3.2$ GeV/c in this data set.

The Transition Radiation Detector (TRD) ([71]) was designed to provide electron identification and triggering and to improve the track reconstruction and calibration in the central barrel of ALICE. The TRD improves the overall momentum resolution of the ALICE central barrel by providing additional space points at large radii for tracking, reducing as well significantly the probability of mismatch between tracks and TOF hits for rare probes analyses such as the triton analysis presented in this article.

Finally, a pair of forward and backward scintillator hodoscopes ($2.8 < \eta < 5.1$ and $-3.7 < \eta < -1.7$), the V0 detectors ([72]), measures the arrival time of particles with a resolution of 1 ns. The V0 detectors are used for triggering purposes and for rejection of beam—gas interactions. Furthermore, it provides the centrality determination in Pb–Pb collisions.

3 Data analysis

3.1 Event and track selection

The data were collected using a minimum-bias trigger requiring at least one hit in both the V0 detectors. In addition, a central and a semicentral trigger were used, also determined by the V0 detectors, selecting collisions in the 0–10% and 30–50% centrality intervals, respectively. Moreover, the timing information
of the V0 scintillator arrays is used to reject the events triggered by the interactions of the beam with the residual gas in the LHC vacuum pipe. A further selection using the Zero Degree Calorimeter is applied in order to reject the electromagnetic beam–beam interactions and beam–satellite bunch collisions \cite{73}. These three rejections are done in the offline analysis.

The production yield of primary (anti)deuterons, (anti)tritons and (anti)3He are measured at midrapidity. In order to provide optimal particle identification by reducing the difference between transverse and total momentum, the spectra are provided within a rapidity window of $|y| < 0.5$. Only tracks in the full tracking acceptance of $|\eta| < 0.8$ are selected. In order to guarantee good track momentum and dE/dx resolution in the relevant p_T ranges, the selected tracks are required to have at least 70 out of 159 possible reconstructed points in the TPC and two points in the ITS (out of which at least one is in the SPD). The requirement of at least one point in the two innermost layers, the SPD, assures a resolution better than 300 μm on the distance of closest approach to the primary vertex in the plane perpendicular (DCA$_{xy}$) and parallel (DCA$_z$) to the beam axis for the selected tracks \cite{67}. Furthermore, it is required that the χ^2 per TPC reconstructed point is less than 2.5 and tracks of weak-decay products are rejected as they cannot originate from the tracks of primary nuclei.

3.2 Particle identification

The TPC allows for a clean identification of (anti)3He in the whole p_T range and of (anti)deuterons up to $p_T \approx 1$ GeV/c. For higher transverse momenta, the dE/dx information for charged particles is combined with the TOF mass determination in the (anti)deuteron analysis. For the (anti)tritons in the whole p_T range, a combined TPC and TOF analysis is performed. Figure 1 shows the TPC specific energy loss as a function of rigidity (p/z) in Pb–Pb collisions at $\sqrt{s_{NN}} = 5.02$ TeV. The dashed curves represent parameterisations of the Bethe–Bloch formula for the different particle species. The (anti)deuteron and (anti)3He identification with the TPC is achieved by requiring that the energy-loss signal of a track lies in a 3σ window around the expected value for a given mass hypothesis, where σ is the dE/dx resolution. For the (anti)tritons, a reduced 2σ window is employed in order to further decrease the background.

In order to extend the p_T reach of the measurement, it is additionally required that the track is matched to a hit in the TOF detector. As shown in Fig. 2 based on the time-of-flight measurement the squared mass of the particle is determined in different p_T intervals and the distributions are then fitted using a Gaussian function with an exponential tail for the signal. The background of the (anti)deuterons mainly originates from two components, namely wrong association of a track with a TOF hit and the non-Gaussian tail of lower mass particles. For the (anti)tritons the dominant background originates from the wrong associations of a track with a TOF hit. For both nuclei, the background is described with the sum of two exponential functions.

3.3 Background rejection

One of the main sources of background in the analyses of the primary deuteron and triton production are nuclei originating from secondary interactions. These secondary nuclei come mostly from the interactions of other primary particles with the detector material. In some of these interactions, a light nucleus can be produced by spallation processes, i.e., can be knocked-out from detector or from support material. The baryon number conservation sets a very high energy threshold for the production of secondary antinuclei with similar processes, thus making the contribution of secondary antinuclei from material negligible, as also confirmed by simulations. Other processes, such as the decay of (anti)hypernuclei, represent a negligible contamination to the observed (anti)deuterons and (anti)tritons.

As already done in previous analyses \cite{21,25}, in order to subtract the background from secondary deuterons and 3He the DCA$_{xy}$ is used. The distribution of primary particles is expected to be peaked at DCA$_{xy} = 0$, whereas secondary particles are expected to exhibit a flat DCA$_{xy}$ distribution to the first order. The typical distributions of DCA$_{xy}$ for nuclei and antinuclei detected in ALICE are shown in
Figure 1: Specific energy loss of charged tracks in the TPC vs. rigidity (p/z) for Pb–Pb collisions at $\sqrt{s_{NN}} = 5.02$ TeV. The dashed lines represent parameterisations of the Bethe–Bloch curve. Particles lighter than deuterons have been removed by applying a selection in the dE/dx vs. p/z plane that corresponds to the upper edge (3σ) of the proton band such that only nuclei are visible.

Figure 2: Fit to the measured squared mass to extract the antideuteron signal in $4.4 < p_T < 5.0$ GeV/c (left) and the antitriton signal in $2.0 < p_T < 2.4$ GeV/c (right). The red dashed line shows the background, the solid blue line the combined fit to the data and the green dashed line the signal only.
Light (anti)nuclei production in Pb–Pb collisions at $\sqrt{s_{\text{NN}}} = 5.02$ TeV

ALICE Collaboration

Figure 3: DCA$_{xy}$ of deuterons (open red circles) and antideuterons (solid red circles) for the p_T intervals $1.0 \leq p_T < 1.1$ GeV/c (left) and of 3He (open blue squares) and 3He (solid blue squares) for $1.2 \leq p_T < 1.6$ GeV/c (right).

In second order, the tracks originating from secondary particles may be associated to a wrong hit in the innermost layers of the ITS. If the latter belongs to a primary particle, the extrapolation of the secondary particle track will wrongly point to the primary vertex, as the track pointing is mostly driven by the hits in the innermost layers of the ITS. In the deuteron and 3He analyses presented in this article, a fit to the observed DCA$_{xy}$ distribution is performed to extract the primary fraction of deuterons and 3He. The DCA$_{xy}$ distributions of primary and secondary deuterons as well as 3He in each transverse momentum interval are extracted from Monte Carlo (MC) events and are used as templates to fit the measured DCA$_{xy}$ distribution. Since the secondary particles have large DCA$_{xy}$, the fits are done in a range of DCA$_{xy}$ wider than the actual track selection criterion to better constrain the secondary particle components. The contamination from deuterons produced in the interactions with the detector material is only significant below 1.4 GeV/c.

In contrast to deuterons, the background from secondary tritons is rather dominant over the low number of primary triton counts. As this background only occurs at low p_T, the triton yield is only measured above 2.4 GeV/c (2.0 GeV/c in the most peripheral centrality interval).

3.4 Corrections to the spectra

The p_T-differential-production spectra of (anti)deuterons, (anti)3He and (anti)tritons are obtained by correcting the raw spectra for tracking efficiency and acceptance based on MC generated events. The MC samples used to compute the efficiency and the acceptance corrections for the Pb–Pb analysis were generated using the HIJING event generator [74]. Since HIJING does not provide light (anti)nuclei, an ad hoc generator that injects particles on top of the event generator was used. The kinematics of the injected nuclei is chosen randomly by picking their transverse momentum from a flat distribution in the range between 0 and 10 GeV/c, their azimuthal angle from a flat distribution between 0 and 2π radians, and their rapidity from a flat distribution in the range $|y| < 1$. All particles are transported with GEANT4 [75] through a full simulation of the ALICE detector. The GEANT4 version used in the ALICE software framework was modified to take into account the latest (anti)nuclei hadronic interaction measurements [24, 76].

For the (anti)deuteron, (anti)3He and (anti)triton analyses, the efficiency \times acceptance was determined for each centrality interval separately. The input p_T distributions of (anti)nuclei in the simulation are
Light (anti)nuclei production in Pb–Pb collisions at $\sqrt{s_{\text{NN}}} = 5.02$ TeV

ALICE Collaboration

modified according to a Blast-Wave parametrization using p_T-dependent weights. The BW parameters are taken from [65].

4 Systematic uncertainties

The sources of systematic uncertainties affecting these measurements were studied as follows:

1. the amount of material budget employed in the MC simulation of the ALICE apparatus was varied by $\pm 4.5\%$, corresponding to the uncertainty on the ALICE material budget determination [67];
2. track selection criteria were varied as done for previous analyses [21–25];
3. the fit functions used for the signal extraction were varied;
4. for the antitriton analysis different functions were used to weight the input spectra in the simulation.

A large contribution of the systematic uncertainty is due to the limited knowledge of the interaction of nuclei with the detector material. The main transport code used in ALICE is GEANT4 [75]. This is used to estimate the efficiency \times acceptance that is applied as correction to the spectra. In general, the accuracy of the transport codes is limited by the available data for nuclei and especially (anti)nuclei hadronic interaction cross sections, which have only been measured in energy ranges far from the typical momenta of light (anti)nuclei produced in heavy-ion collisions [77–80]. In a detailed study comparing the available data on different targets and their description in GEANT4, the corresponding uncertainty is evaluated as the scaling factor for the cross section value in GEANT4 that is required to match the experimental data. The simulations to estimate the efficiency are then repeated with the cross section in GEANT4 scaled by this factor. The determined systematic uncertainty is below 1% for the deuterons using TPC and TOF and about 8% for antideuterons at low p_T, and decreases down to 4% at the largest p_T. For ^3He it is about 0.5% and for ^4He it is about 2% with a small dependence on p_T. The values for t and \bar{t} are similar, with about 0.5% and between 2.5% and 5%, respectively. In addition, weak decays from (anti)hypertritons can affect the (anti)^3He spectra and contribute to the systematic uncertainties with about 1.7%. The discrepancy between the data and MC description of the ITS–TPC matching efficiencies is accounted for by adding 5% of systematic uncertainties. All the other systematic uncertainties in the Pb–Pb analyses were estimated separately for each centrality class: particle identification and analysis selection criteria contribute by less than 3%; the signal extraction method by less than 2%; the TPC particle identification systematic uncertainty is estimated to be less than 2%.

The huge background and the low number of counts of the (anti)triton analysis result in quite large statistical uncertainties and the systematic variations were found to be not significant within the statistical uncertainties. Therefore, the uncertainties from the variations were dropped and instead systematic uncertainties based on similar studies for charged pions, kaons, and protons were assigned, namely 5% for the ITS–TPC matching efficiency and 6% for the signal extraction for all centrality and p_T intervals. The uncertainty on the p_T spectra coming from the uncertainty of the ALICE material budget was determined to be 2% [24]. For the weighting of the efficiency \times acceptance, various functional dependencies were applied. This results in a negligible uncertainty in the higher p_T intervals, where the weighting does not have any effect, and up to 8% uncertainty in the lower p_T intervals. To evaluate the systematic uncertainty due to the background estimation, an alternative data-driven method was used to determine the background. In this method, non-triton candidates were selected in the TPC by requiring that their dE/dx is outside a $\pm 2\sigma$ window around the triton peak. Their squared TOF-mass distribution is used as a template for the background which is scaled to the squared TOF-mass distribution of triton candidates. It matches very well the background outside the triton peak region and allows an independent estimate
of the background under the triton peak. This results in no systematic uncertainty in the low p_T region without any background and up to 20% in the higher p_T intervals. All these contributions result in a total systematic uncertainty for the (anti)triton p_T spectra between 8% and 22%.

5 Results

The transverse momentum spectra of (anti)deuterons, (anti)3He and (anti)tritons are extracted in Pb–Pb collisions at $\sqrt{s_{NN}} = 5.02$ TeV for various centrality classes. The transverse momentum spectra are shown in Fig. 4. A clear evolution of the spectral shape with centrality is observed, with the average transverse momentum almost doubling its value going from peripheral to most central Pb–Pb collisions and a shift in the peak position towards higher p_T for increasing multiplicity.

![Figure 4](image)

Figure 4: (Anti)deuteron, (anti)3He and (anti)t spectra measured in Pb–Pb collisions at $\sqrt{s_{NN}} = 5.02$ TeV for different centrality classes reported with different colours. The boxes represent the systematic uncertainties, while the vertical lines are the statistical ones. The dashed lines represent the individual Blast-Wave fits to the spectra. The Blast-Wave fits of (anti)3He are used on (anti)t spectra as well to show the trend.

In order to measure the total yield per rapidity unit in Pb–Pb collisions, the spectra were fitted with the Blast-Wave function, which assumes a thermal production of particles from an expanding source [81]. The systematic uncertainty of the integrated yield is obtained by shifting the spectrum within its systematic uncertainties and adding an additional uncertainty quadratically to account for the extrapolation to low and high p_T. The latter is estimated by using different fit functions such as the m_T exponential, Boltzmann, Fermi–Dirac, and Bose–Einstein functions [82]. The fractions of extrapolated yield at low p_T for different centrality classes are about 5% to 40% for (anti)deuterons, 15% (8%) to 50% (35%) for (anti)3He and 23% (1%) to 50% (11%) for (anti)tritons depending on the centrality class. The extrapolated yields in the high-p_T region are negligible for most of the centrality classes except for a 3% contribution for the most peripheral collisions for (anti)deuterons and (anti)3He, and a 55% to 15% contribution depending on the centrality class for (anti)tritons. The statistical uncertainties are calculated by repeating the Blast-Wave fit by shifting the spectra randomly with a Gaussian distribution within the statistical uncertainties of each p_T interval. The resulting yield distribution is fitted with a Gaussian and the width of this distribution is taken as the statistical uncertainty.
The coalescence scenario can be tested by computing the coalescence parameter B_A (see for instance Ref. [83] and references therein). Under the assumption of equal production of protons and neutrons, it is defined as

$$B_A = E_A \frac{d^3N_A}{dp_A} \left(E_p \frac{d^3N_p}{dp_p} \right)^{-A}, \tag{1}$$

where $E_A \frac{d^3N_A}{dp_A}$ and $E_p \frac{d^3N_p}{dp_p}$ are the invariant production spectra of the nuclei with mass number A and of protons, respectively. Protons are used here since neutrons are unmeasured and isospin symmetry is expected at LHC energies. Figure 5 shows the measured coalescence parameters B_2 and B_3 as a function of the transverse momentum scaled by the mass number A for Pb–Pb collisions at $\sqrt{s_{NN}} = 5.02$ TeV.

An ordering of the coalescence parameters with collision centrality, from higher B_A values in peripheral collisions to lower B_A values in central ones is clearly visible. This trend with centrality is explained in the coalescence model framework as a consequence of the increasing radius R of the source from peripheral to central events [44, 56, 57]. Similarly, the decrease of R with increasing momentum as measured with two-proton correlations [84] can also explain the increase of the coalescence parameters with momentum observed in Fig. 5 as already seen in small collision systems [47]. Notably, the space-momentum correlations between nucleons restrict the volume that is effectively used for coalescence and makes it smaller than the total volume. This means that particles at higher momentum probe a smaller region in the radially expanding system.

The ratio between the production yields of ^3He and ^1H provides another powerful test of the coalescence predictions [57]. This model gives two predictions for the formation, one assumes that the $A = 3$ nuclei are formed from three nucleons (called three-body coalescence in the following) and the other assumes the formation of the nucleus from a deuteron and a nucleon (two-body coalescence). Figure 6 shows on the left the measured ratios as a function of transverse momentum in different centrality classes. The ratios are flat with p_T within uncertainties. The average ratio $^3\text{He}/^1\text{H}$ over the measured transverse momenta is shown in Fig. 6 on the right, as a function of the charged-particle multiplicity $\langle dN_{ch}/d\eta \rangle$ determined in a pseudorapidity range of $|\eta_{lab}| < 0.5$ in the laboratory system. While the SHM expectation for this ratio is very close to 1, the predictions from the coalescence model [57] deviate from unity due to the difference in the wave functions of the two nuclei. However, within the current statistical and systematic uncertainties, it is not possible to conclude which flavour of coalescence model is favoured by the measurement nor if there is any significant departure from the SHM expectations.
In this article, we have presented comprehensive measurements of the production of (anti)nuclei in Pb–Pb collisions at \(\sqrt{s_{\text{NN}}} = 5.02 \text{ TeV} \) including the first antitriton measurement in Pb–Pb collisions at LHC energies. The obtained results follow the trends established at lower collision energy, but show a much larger constraining power on models thanks to significantly smaller systematic and statistical uncertainties.

For deuterons, the number of studied centrality intervals was largely increased compared to previous ALICE studies and demonstrate the strong increase of the radial flow when going from peripheral to
The yield ratios of d/p as a function of charged-particle multiplicity agree well with both expectations, i.e. coalescence and thermal models. Notably, the deuteron-over-proton ratio requires a small correlation volume within the SHM with respect to net-proton fluctuation measurements. For 3He the data lie at low multiplicity slightly closer to the coalescence expectations, and for high multiplicities corresponding to Pb–Pb the data lie between thermal and coalescence models. In contrast, for the triton the data points are much closer to the coalescence model with multiplicities in Pb–Pb collisions. Recently, several works appeared \[87, 89\] that each try to improve the SHM in particular multiplicity regions. They give a good description in the region they are applied to, but they are not applicable in the full multiplicity range investigated here.

The presented data, even though they are much more precise than previous results, still do not allow for a strong conclusion about the dominant production mechanism. More differential studies, in particular also those involving additional (hyper)nuclei, such as 4He and $^3\Lambda$H will help to understand better the processes underlying the formation of composite objects.

The ongoing Run 3 of the LHC with the upgraded ALICE apparatus will allow for such more precise studies of (anti)(hyper)nuclei production and for the extension to mass $A = 4$ hypernuclei in Pb–Pb collisions \[90\].

Acknowledgements

The ALICE Collaboration would like to thank all its engineers and technicians for their invaluable contributions to the construction of the experiment and the CERN accelerator teams for the outstanding performance of the LHC complex. The ALICE Collaboration gratefully acknowledges the resources and
support provided by all Grid centres and the Worldwide LHC Computing Grid (WLCG) collaboration. The ALICE Collaboration acknowledges the following funding agencies for their support in building and running the ALICE detector: A. I. Alikhanyan National Science Laboratory (Yerevan Physics Institute) Foundation (ANSL), State Committee of Science and World Federation of Scientists (WFS), Armenia; Austrian Academy of Sciences, Austrian Science Fund (FWF): [M 2467-N36] and Nationalstiftung für Forschung, Technologie und Entwicklung, Austria; Ministry of Communications and High Technologies, National Nuclear Research Center, Azerbaijan; Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Financiadora de Estados e Projetos (Finep), Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) and Universidade Federal do Rio Grande do Sul (UFRGS), Brazil; Bulgarian Ministry of Education and Science, within the national Roadmap for Research Infrastructures 2020¿2027 (object CERN), Bulgaria; Ministry of Education of China (MOEC), Ministry of Science & Technology of China (MSTC) and National Natural Science Foundation of China (NSFC), China; Ministry of Science and Education and Croatian Science Foundation, Croatia; Centro de Aplicaciones Tecnológicas y Desarrollo Nuclear (CEADEN), Cubaenergía, Cuba; Ministry of Education, Youth and Sports of the Czech Republic, Czech Republic; The Danish Council for Independent Research I Natural Sciences, the VILLUM FONDEN and Danish National Research Foundation (DNRF), Denmark; Helsinki Institute of Physics (HIP), Finland; Commissariat à l’Energie Atomique (CEA) and Institut National de Physique Nucléaire et de Physique des Particules (IN2P3) and Centre National de la Recherche Scientifique (CNRS), France; Bundesministerium für Bildung und Forschung (BMBF) and GSI Helmholtzzentrum für Schwerionenforschung GmbH, Germany; General Secretariat for Research and Technology, Ministry of Education, Research and Religions, Greece; National Research, Development and Innovation Office, Hungary; Department of Atomic Energy Government of India (DAE), Department of Science and Technology, Government of India (DST), University Grants Commission, Government of India (UGC) and Council of Scientific and Industrial Research (CSIR), India; National Research and Innovation Agency - BRIN, Indonesia; Istituto Nazionale di Fisica Nucleare (INFN), Italy; Japanese Ministry of Education, Culture, Sports, Science and Technology (MEXT) and Japan Society for the Promotion of Science (JSPS) KAKENHI, Japan; Consejo Nacional de Ciencia (CONACYT) y Tecnología, through Fondo de Cooperación Internacional en Ciencia y Tecnología (FONCICYT) and Dirección General de Asuntos del Personal Academico (DGAPA), Mexico; Pontificia Universidad Católica del Perú, Peru; Ministry of Education and Science, National Science Centre and WUT ID-UB, Poland; Korea Institute of Science and Technology Information and National Research Foundation of Korea (NRF), Republic of Korea; Ministry of Education and Scientific Research, Institute of Atomic Physics, Ministry of Research and Innovation and Institute of Atomic Physics and University Politehnica of Bucharest, Romania; Ministry of Education, Science, Research and Sport of the Slovak Republic, Slovakia; National Research Foundation of South Africa, South Africa; Swedish Research Council (VR) and Knut & Alice Wallenberg Foundation (KAW), Sweden; European Organization for Nuclear Research, Switzerland; Suranaree University of Technology (SUT), National Science and Technology Development Agency (NSTDA), Thailand Science Research and Innovation (TSRI) and National Science, Research and Innovation Fund (NSRF), Thailand; Turkish Energy, Nuclear and Mineral Research Agency (TENMAK), Turkey; National Academy of Sciences of Ukraine, Ukraine; Science and Technology Facilities Council (STFC), United Kingdom; National Science Foundation of the United States of America (NSF) and United States Department of Energy, Office of Nuclear Physics (DOE NP), United States of America. In addition, individual groups or members have received support from: Marie Skłodowska Curie, European Research Council, Strong 2020 - Horizon 2020 (grant nos. 950692, 824093, 896850), European Union; Academy of Finland (Center of Excellence in Quark Matter) (grant nos. 346327, 346328), Finland; Programa de Apoyos para la Superación del Personal Académico, UNAM, Mexico.
Light (anti)nuclei production in Pb–Pb collisions at $\sqrt{s_{NN}} = 5.02$ TeV

ALICE Collaboration

References

[1] S. Nagamiya et al., “Production of pions and light fragments at large angles in high-energy nuclear collisions”, *Phys. Rev. C* 24 (1981) 971

[2] FOPI Collaboration, W. Reisdorf et al., “Systematics of central heavy ion collisions in the 1A GeV regime”, *Nucl. Phys. A* 848 (2010) 366–427, arXiv:1005.3418 [nucl-ex]

[3] HADES Collaboration, J. Adamczewski-Musch et al., “Directed, Elliptic, and Higher Order Flow Harmonics of Protons, Deuterons, and Tritons in Au+Au Collisions at $\sqrt{s_{NN}} = 2.4$ GeV”, *Phys. Rev. Lett.* 125 (2020) 262301, arXiv:2005.12217 [nucl-ex]

[4] E886 Collaboration, N. Saito et al., “Composite particle production in relativistic Au+Pt, Si+Pt, and p+Pt collisions”, *Phys. Rev. C* 49 (1994) 3211–3218.

[5] E886 Collaboration, T. A. Armstrong et al., “Measurements of light nuclei production in 11.5A GeV/c Au+Pb heavy-ion collisions”, *Phys. Rev. C* 61 (2000) 064908, arXiv:nucl-ex/0003009

[6] E886 Collaboration, T. A. Armstrong et al., “Antideuteron Yield at the AGS and Coalescence Implications”, *Phys. Rev. Lett.* 85 (2000) 2685–2688, arXiv:nucl-ex/0005001 [nucl-ex]

[7] S. Albergo et al., “Light nuclei production in heavy-ion collisions at relativistic energies”, *Phys. Rev. C* 65 (2002) 034907.

[8] E878 Collaboration, M. J. Bennett et al., “Light nuclei production in relativistic Au + nucleus collisions”, *Phys. Rev. C* 58 (1998) 1155–1164.

[9] NA44 Collaboration, J. Simon-Gillo et al., “Deuteron and anti-deuteron production in CERN experiment NA44”, *Nucl. Phys. A* 590 (1995) 483–486.

[10] NA49 Collaboration, S. V. Afanasiev et al., “Deuteron production in central Pb+Pb collisions at 158A GeV”, *Phys. Lett. B* 486 (2000) 22–28

[11] NA49 Collaboration, T. Anticic et al., “Energy and centrality dependence of deuteron and proton production in Pb+Pb collisions at relativistic energies”, *Phys. Rev. C* 69 (2004) 024902

[12] NA52 Collaboration, R. Arsenescu et al., “An Investigation of the anti-nuclei and nuclei production mechanism in Pb + Pb collisions at 158-A-GeV”, *New J. Phys.* 5 (2003) 130

[13] STAR Collaboration, C. Adler et al., “Antideuteron and anti-helium-3 production in Au+Au collisions”, *Phys. Rev. Lett.* 87 (2001) 262301, arXiv:nucl-ex/0108022

[14] PHENIX Collaboration, S. S. Adler et al., “Deuteron and Antideuteron Production in Au+Au Collisions at $\sqrt{s_{NN}} = 200$ GeV”, *Phys. Rev. Lett.* 94 (2005) 122302, arXiv:nucl-ex/0406004

[15] PHENIX Collaboration, S. Afanasiev et al., “Elliptic flow for phi mesons and (anti)deuteron in Au + Au collisions at $\sqrt{s_{NN}} = 200$ GeV”, *Phys. Rev. Lett.* 99 (2007) 052301, arXiv:nucl-ex/0703024 [nucl-ex]

[16] STAR Collaboration, B. Abelev et al., “Yields and elliptic flow of d(anti-d) and He-3(anti-He-3) in Au+Au collisions at $\sqrt{s_{NN}} = 200$- GeV”, arXiv:0909.0566 [nucl-ex]

[17] STAR Collaboration, H. Agakishiev et al., “Observation of the antimatter helium-4 nucleus”, *Nature* 473 (2011) 353, arXiv:1103.3312 [nucl-ex]
Light (anti)nuclei production in Pb–Pb collisions at \(\sqrt{s_{NN}} = 5.02 \) TeV

ALICE Collaboration

[18] **STAR** Collaboration, J. Adam *et al.*, “Beam energy dependence of (anti-)deuteron production in Au+Au collisions at the BNL Relativistic Heavy Ion Collider”, *Phys. Rev. C* 99 (2019) 064905, arXiv:1903.11778 [nucl-ex].

[19] **STAR** Collaboration, J. Adam *et al.*, “Beam-energy dependence of the directed flow of deuterons in Au+Au collisions”, *Phys. Rev. C* 102 (2020) 044906, arXiv:2007.04609 [nucl-ex].

[20] **STAR** Collaboration, M. Abdallah *et al.*, “Light nuclei collectivity from \(\sqrt{s_{NN}} = 3 \) GeV Au+Au collisions at RHIC”, *Phys. Lett. B* 827 (2022) 136941, arXiv:2112.04066 [nucl-ex].

[21] **ALICE** Collaboration, J. Adam *et al.*, “Precision measurement of the mass difference between light nuclei and anti-nuclei”, *Nature Phys.* 11 (2015) 811–814, arXiv:1508.03986 [nucl-ex].

[22] **ALICE** Collaboration, J. Adam *et al.*, “Production of light nuclei and anti-nuclei in pp and Pb–Pb collisions at energies available at the CERN Large Hadron Collider”, *Phys. Rev. C* 93 (2016) 024917, arXiv:1506.08951 [nucl-ex].

[23] **ALICE** Collaboration, S. Acharya *et al.*, “Measurement of deuteron spectra and elliptic flow in Pb–Pb collisions at \(\sqrt{s_{NN}} = 2.76 \) TeV at the LHC”, *Eur. Phys. J. C* 77 (2017) 658, arXiv:1707.07304 [nucl-ex].

[24] **ALICE** Collaboration, S. Acharya *et al.*, “First measurement of the absorption of \(^{3}\text{He} \) nuclei in matter and impact on their propagation in the galaxy”, *Nature Phys.* 19 (2023) 61–71, arXiv:2202.01549 [nucl-ex].

[25] **ALICE** Collaboration, “First measurement of antideuteron number fluctuations at energies available at the Large Hadron Collider”, arXiv:2204.10166 [nucl-ex].

[26] **British-Scandinavian** Collaboration, B. Alper *et al.*, “Large angle production of stable particles heavier than the proton and a search for quarks at the CERN intersecting storage rings”, *Phys. Lett. B* 46 (1973) 265–268.

[27] **British-Scandinavian-MIT** Collaboration, W. M. Gibson *et al.*, “Production of deuterons and antideuterons in proton–proton collisions at the CERN ISR”, *Lettere Al Nuovo Cimento* 21 (1978) 189–194.

[28] **Fermilab E735** Collaboration, T. Alexopoulos *et al.*, “Cross sections for deuterium, tritium, and helium production in \(\overline{p}p \) collisions at \(\sqrt{s} = 1.8 \) TeV”, *Phys. Rev. D* 62 (2000) 072004.

[29] **H1** Collaboration, A. Aktas *et al.*, “Measurement of anti-deuteron photoproduction and a search for heavy stable charged particles at HERA”, *Eur. Phys. J. C* 36 (2004) 413–423, arXiv:hep-ex/0403056 [hep-ex].

[30] **CLEO** Collaboration, D. M. Asner *et al.*, “Antideuteron production in \(\Upsilon(nS) \) decays and the nearby continuum”, *Phys. Rev. D* 75 (2007) 012009, arXiv:hep-ex/0612019 [hep-ex].

[31] **ALEPH** Collaboration, S. Schael *et al.*, “Deuteron and anti-deuteron production in e+e- collisions at the Z resonance”, *Phys. Lett. B* 639 (2006) 192–201, arXiv:hep-ex/0604023 [hep-ex].

[32] **ALICE** Collaboration, S. Acharya *et al.*, “Production of deuterons, tritons, \(^{3}\text{He} \) nuclei and their antinuclei in pp collisions at \(\sqrt{s} = 0.9, 2.76 \text{ and } 7 \) TeV”, *Phys. Rev. C* 97 (2018) 024615, arXiv:1709.08522 [nucl-ex].

[33] **ALICE** Collaboration, S. Acharya *et al.*, “Multiplicity dependence of light (anti-)nuclei production in p-Pb collisions at \(\sqrt{s_{NN}} = 5.02 \) TeV”, *Phys. Lett. B* 800 (2020) 135043, arXiv:1906.03136 [nucl-ex].
Light (anti)nuclei production in Pb–Pb collisions at $\sqrt{s_{NN}} = 5.02$ TeV

[34] **ALICE** Collaboration, S. Acharya et al., “Multiplicity dependence of (anti-)deuteron production in pp collisions at $\sqrt{s} = 7$ TeV”, *Phys. Lett. B* **794** (2019) 50–63, arXiv:1902.09290 [nucl-ex].

[35] **ALICE** Collaboration, S. Acharya et al., “(Anti-)deuteron production in pp collisions at $\sqrt{s} = 13$ TeV”, *Eur. Phys. J. C* **80** (2020) 889, arXiv:2003.03184 [nucl-ex].

[36] **ALICE** Collaboration, S. Acharya et al., “Jet-associated deuteron production in pp collisions at $\sqrt{s} = 13$ TeV”, *Phys. Lett. B* **819** (2021) 136440, arXiv:2011.05898 [nucl-ex].

[37] **ALICE** Collaboration, S. Acharya et al., “Production of light (anti)nuclei in pp collisions at $\sqrt{s} = 13$ TeV”, *JHEP* **01** (2022) 106, arXiv:2109.13026 [nucl-ex].

[38] **ALICE** Collaboration, S. Acharya et al., “Production of light (anti)nuclei in pp collisions at $\sqrt{s} = 5.02$ TeV”, *Eur. Phys. J. C* **82** (2022) 289, arXiv:2112.00610 [nucl-ex].

[39] J. I. Kapusta, “Mechanisms for deuteron production in relativistic nuclear collisions”, *Phys. Rev. C* **21** (1980) 1301–1310.

[40] S. Mrowczynski, “Deuteron formation mechanism”, *J. Phys. G* **13** (1987) 1089–1097.

[41] S. Mrowczynski, “Anti-deuteron Production and the Size of the Interaction Zone”, *Phys. Lett. B* **248** (1990) 459–463.

[42] R. Scheibl and U. W. Heinz, “Coalescence and flow in ultrarelativistic heavy ion collisions”, *Phys. Rev. C* **59** (1999) 1585–1602, arXiv:nucl-th/9809092 [nucl-th].

[43] J. Steinheimer, K. Gudima, A. Botvina, I. Mishustin, M. Bleicher, et al., “Hypernuclei, dibaryon and antinuclei production in high energy heavy ion collisions: Thermal production versus Coalescence”, *Phys. Lett. B* **714** (2012) 85–91, arXiv:1203.2547 [nucl-th].

[44] F. Bellini and A. P. Kalweit, “Testing production scenarios for (anti-)hypernuclei and exotica at energies available at the CERN Large Hadron Collider”, *Phys. Rev. C* **99** (2019) 054905, arXiv:1807.05894 [hep-ph].

[45] P. Braun-Munzinger, K. Redlich, and J. Stachel, *Particle production in heavy ion collisions*, invited review in: R.C. Hwa, X.N. Wang Eds., *Quark Gluon Plasma, vol. 3* World Scientific Publishing, 2003, arXiv:nucl-th/0304013.

[46] A. Andronic, P. Braun-Munzinger, J. Stachel, and H. Stocker, “Production of light nuclei, hypernuclei and their antiparticles in relativistic nuclear collisions”, *Phys. Lett. B* **697** (2011) 203–207, arXiv:1010.2995 [nucl-th].

[47] J. Cleymans, S. Kabana, I. Kraus, H. Oeschler, K. Redlich, and N. Sharma, “Antimatter production in proton-proton and heavy-ion collisions at ultrarelativistic energies”, *Phys. Rev. C* **84** (2011) 054916, arXiv:1105.3719 [hep-ph].

[48] A. Andronic, P. Braun-Munzinger, K. Redlich, and J. Stachel, “Decoding the phase structure of QCD via particle production at high energy”, *Nature* **561** (2018) 321–330, arXiv:1710.09425 [nucl-th].

[49] B. Dönigus, “Light nuclei in the hadron resonance gas”, *Int. J. Mod. Phys. E* **29** (2020) 2040001, arXiv:2004.10544 [nucl-th].

[50] R. Hanbury Brown and R. Q. Twiss, “A Test of a new type of stellar interferometer on Sirius”, *Nature* **178** (1956) 1046–1048.
Light (anti)nuclei production in Pb–Pb collisions at $\sqrt{s_{\text{NN}}} = 5.02$ TeV

ALICE Collaboration

[51] R. Hanbury Brown and R. Q. Twiss, “Correlation between Photons in two Coherent Beams of Light”, *Nature* **177** (1956) 27–29.

[52] G. Goldhaber, S. Goldhaber, W.-Y. Lee, and A. Pais, “Influence of Bose-Einstein statistics on the antiproton proton annihilation process”, *Phys. Rev.* **120** (1960) 300–312.

[53] ALICE Collaboration, J. Adam et al., “Two-pion femtoscopy in p-Pb collisions at $\sqrt{s_{\text{NN}}} = 5.02$ TeV”. *Phys. Rev. C* **91** (2015) 034906, arXiv:1502.00559 [nucl-ex].

[54] J. L. Nagle, B. S. Kumar, D. Kusnezov, H. Sorge, and R. Mattiello, “Coalescence of deuterons in relativistic heavy ion collisions”, *Phys. Rev. C* **53** (1996) 367–376.

[55] K. Blum, R. Sato, and E. Waxman, “Cosmic-ray Antimatter”. arXiv:1709.06507 [astro-ph.HE].

[56] K. Blum, K. C. Y. Ng, R. Sato, and M. Takimoto, “Cosmic rays, antihelium, and an old navy spotlight”, *Phys. Rev. D* **96** (2017) 103021, arXiv:1704.05431 [astro-ph.HE].

[57] K.-J. Sun, C. M. Ko, and B. Dönigus, “Suppression of light nuclei production in collisions of small systems at the Large Hadron Collider”, *Phys. Lett. B* **792** (2019) 132–137, arXiv:1812.05175 [nucl-th].

[58] V. Vovchenko, B. Dönigus, and H. Stoecker, “Multiplicity dependence of light nuclei production at LHC energies in the canonical statistical model”, *Phys. Lett. B* **785** (2018) 171–174, arXiv:1808.05245 [hep-ph].

[59] V. Vovchenko, B. Dönigus and H. Stoecker, “Canonical statistical model analysis of p-p , p -Pb, and Pb–Pb collisions at energies available at the CERN Large Hadron Collider”, *Phys. Rev. C* **100** (2019) 054906, arXiv:1906.03145 [hep-ph].

[60] P. Castorina and H. Satz, “Causality Constraints on Hadron Production In High Energy Collisions”, *Int. J. Mod. Phys. E* **23** (2014) 1450019, arXiv:1310.6932 [hep-ph].

[61] ALICE Collaboration, S. Acharya et al., “Global baryon number conservation encoded in net-proton fluctuations measured in Pb–Pb collisions at $\sqrt{s_{\text{NN}}} = 2.76$ TeV”, *Phys. Lett. B* **807** (2020) 135564, arXiv:1910.14396 [nucl-ex].

[62] X. Xu and R. Rapp, “Production of Light Nuclei at Thermal Freezeout in Heavy-Ion Collisions”, *Eur. Phys. J. A* **55** (2019) 68, arXiv:1809.04024 [nucl-th].

[63] V. Vovchenko, K. Gallmeister, J. Schaffner-Bielich, and C. Greiner, “Nucleosynthesis in heavy-ion collisions at the LHC via the Saha equation”, *Phys. Lett. B* **800** (2020) 135131, arXiv:1903.10024 [hep-ph].

[64] T. Neidig, K. Gallmeister, C. Greiner, M. Bleicher, and V. Vovchenko, “Towards solving the puzzle of high temperature light (anti)-nuclei production in ultra-relativistic heavy ion collisions”, *Phys. Lett. B* **827** (2022) 136891, arXiv:2108.13151 [hep-ph].

[65] ALICE Collaboration, S. Acharya et al., “Production of charged pions, kaons, and (anti-)protons in Pb-Pb and inelastic pp collisions at $\sqrt{s_{\text{NN}}} = 5.02$ TeV”. *Phys. Rev. C* **101** (2020) 044907, arXiv:1910.07678 [nucl-ex].

[66] ALICE Collaboration, K. Aamodt et al., “The ALICE experiment at the CERN LHC”, *JINST* **3** (2008) S08002.
Light (anti)nuclei production in Pb–Pb collisions at $\sqrt{s_{NN}} = 5.02$ TeV

ALICE Collaboration

[67] ALICE Collaboration, B. Abelev et al., “Performance of the ALICE Experiment at the CERN LHC”, *Int. J. Mod. Phys. A* **29** (2014) 1430044, arXiv:1402.4476 [nucl-ex].

[68] ALICE Collaboration, K. Aamodt et al., “Alignment of the ALICE Inner Tracking System with cosmic-ray tracks”, *JINST* **5** (2010) P03003, arXiv:1001.0502 [physics.ins-det].

[69] J. Alme et al., “The ALICE TPC, a large 3-dimensional tracking device with fast readout for ultra-high multiplicity events”, *Nucl. Instrum. Meth. A* **622** (2010) 316–367, arXiv:1001.1950 [physics.ins-det].

[70] A. Akindinov et al., “Performance of the ALICE Time-Of-Flight detector at the LHC”, *Eur. Phys. J. Plus* **128** (2013) 44.

[71] ALICE Collaboration, S. Acharya et al., “The ALICE Transition Radiation Detector: construction, operation, and performance”, *Nucl. Instrum. Meth. A* **881** (2018) 88–127, arXiv:1709.02743 [physics.ins-det].

[72] ALICE Collaboration, E. Abbas et al., “Performance of the ALICE VZERO system”, *JINST* **8** (2013) P10016, arXiv:1306.3130 [nucl-ex].

[73] W. Herr, “Beam-beam interactions”, https://cds.cern.ch/record/941319.

[74] X.-N. Wang and M. Gyulassy, “HIJING: A Monte Carlo model for multiple jet production in p p, p A and A A collisions”, *Phys. Rev. D* **44** (1991) 3501–3516.

[75] GEANT4 Collaboration, S. Agostinelli et al., “GEANT4: A Simulation toolkit”, *Nucl. Instrum. Meth. A* **506** (2003) 250–303.

[76] ALICE Collaboration, S. Acharya et al., “Measurement of the low-energy antideuteron inelastic cross section”, *Phys. Rev. Lett.* **125** (2020) 162001, arXiv:2005.11122 [nucl-ex].

[77] A. Auce, R. F. Carlson, A. J. Cox, A. Ingemarsson, R. Johansson, P. U. Renberg, O. Sundberg, and G. Tibell, “Reaction cross-sections for 38, 65, and 97 MeV deuterons on targets from Be-9 to Pb-208”, *Phys. Rev. C* **53** (1996) 2919–2925.

[78] F. G. Binon et al., “Absorption cross-sections of 25 GeV/c antideuterons in Li, C, Al, Cu and Pb”, *Phys. Lett. B* **31** (1970) 230–232.

[79] J. Jaros et al., “Nucleus-Nucleus Total Cross-Sections for Light Nuclei at 1.55 GeV/c/Nucleon and 2.89 GeV/c/Nucleon”, *Phys. Rev. C* **18** (1978) 2273–2292.

[80] S. P. Denisov, S. V. Donskov, Yu. P. Gorin, V. A. Kachanov, V. M. Kutjin, A. I. Petrukhin, Yu. D. Prokoshkin, E. A. Razuvaev, R. S. Shuvalov, and D. A. Stojanova, “Measurements of anti-deuteron absorption and stripping cross sections at the momentum 13.3 gev/c”, *Nucl. Phys. B* **31** (1971) 253–260.

[81] E. Schnedermann, J. Sollfrank, and U. W. Heinz, “Thermal phenomenology of hadrons from 200-A/GeV S+S collisions”, *Phys. Rev. C* **48** (1993) 2462–2475, arXiv:nucl-th/9307020 [nucl-th].

[82] F. Reif, *Fundamentals of Statistical and Thermal Physics*. McGraw-Hill, 1965.

[83] P. Braun-Munzinger and B. Dönges, “Loosely-bound objects produced in nuclear collisions at the LHC”, *Nucl. Phys. A* **987** (2019) 144–201, arXiv:1809.04681 [nucl-ex].
[84] **ALICE Collaboration, J. Adam et al.,** “One-dimensional pion, kaon, and proton femtoscopy in Pb–Pb collisions at $\sqrt{s_{NN}} = 2.76$ TeV”, Phys. Rev. C 92 (2015) 054908, [arXiv:1506.07884 [nucl-ex]]

[85] S. Sombun, K. Tomuang, A. Limphirat, P. Hillmann, C. Herold, J. Steinheimer, Y. Yan, and M. Bleicher, “Deuteron production from phase-space coalescence in the UrQMD approach”, Phys. Rev. C 99 (2019) 014901, [arXiv:1805.11509 [nucl-th]]

[86] T. Reichert, J. Steinheimer, V. Vovchenko, B. Dönigus, and M. Bleicher, “Energy dependence of light hypernuclei production in heavy-ion collisions from a coalescence and statistical-thermal model perspective”, Phys. Rev. C 107 (2023) 014912, [arXiv:2210.11876 [nucl-th]]

[87] B. Dönigus, G. Röpke, and D. Blaschke, “Deuteron yields from heavy-ion collisions at energies available at the CERN Large Hadron Collider: Continuum correlations and in-medium effects”, Phys. Rev. C 106 (2022) 044908

[88] N. Sharma, L. Kumar, P. M. Lo, and K. Redlich, “Light nuclei production in pp and pA collisions in the Baryon Canonical Ensemble”, Phys. Rev. C 107 (2023) 054903, [arXiv:2210.15617 [nucl-th]]

[89] V. Vovchenko and V. Koch, “Centrality dependence of proton and light nuclei yields as a consequence of baryon annihilation in the hadronic phase”, Phys. Lett. B 835 (2022) 137577, [arXiv:2210.15641 [nucl-th]].

[90] A. Dainese, M. Mangano, A. B. Meyer, A. Nisati, G. Salam, and M. A. Vesterinen, “Report on the Physics at the HL-LHC, and Perspectives for the HE-LHC”, tech. rep., CERN-2019-007, Geneva, Switzerland, 2019. [https://cds.cern.ch/record/2703572]
A The ALICE Collaboration

S. Acharya, D. Adamová, A. Adler, G. Aglieri Rinella, M. Agnello, N. Agrawal, Z. Ahamed, S. Ahmad, S.U. Ahn, I. Ahuja, A. Akindinov, M. Al-Turany, D. Alekseev, B. Alessandria, H.M. Alfandary, R. Alfaro Molina, B. Ali, A. Alici, N. Alizadehvandchali, A. Alkin, J. Alme, G. Alocchio, T. Alt, I. Altsybeeve, M.N. Anaam, C. Andrei, A. Andronic, V. Anguelov, F. Antinori, P. Antonioli, N. Apadula, L. Aphecetche, H. Appelshäuser, C. Arata, S. Arcelli, M. Aresti, R. Arnaldi, J.G.M.C.A. Armeiro, I.C. Arsene, M. Arslanbekov, A. Augustinov, A. Aurisano, M. Azmi, A. Badalov, J. Baier, Y.W. Baek, X. Bai, K. Bahr, Y. Bailhache, Y. Baintung, A. Baldinou, A. Baldi, S. Baldissertti, B. Balis, D. Banerjee, Z. Banoo, R. Barbera, F. Barile, L. Bariglio, M. Barlou, G.G. Barrafonti, L.S. Barnby, V. Barrett, L. Barreto, C. Bartels, K. Barth, E. Bartosch, N. Bastid, S. Basu, G. Batigne, D. Battistini, B. Batyunya, D. Baur, J.L. Bazo Alba, J.G. Bearden, C. Beathe, P. Bechtel, D. Behera, I. Belikov, A.D.C. Bell Hechavarria, F. Bellini, R. Bellwied, S. Belokurova, V. Belyaev, G. Bencedi, S. Beole, A. Bercuci, Y. Berdnikov, A. Berdnikova, L. Bergmann, M.G. Besoii, L. Betev, P.P. Bhaduri, A. Bhasin, M.A. Bhat, B. Bhattacharjee, L. Bianchi, N. Bianchi, J. Bielczak, J. Bielikova, J. Biernat, A.P. Bigot, I. Bilandzic, G. Biro, S. Biswas, N. Bize, J.T. Blair, D. Blau, M.B. Blidaru, N. Bluhme, C. Blum, G. Bocca, F. Bocher, T. Bodo, A. Bogdanov, I. Boui, J. Bok, L. Boldizsár, A. Bolozdynya, M. Bombara, P.M. Bond, G. Bonomi, L. Borel, A. Borisov, A.G. Borquez Carcamo, H. Bossard, E. Botts, Y.E. Mouziani, L. Bratud, P. Braun-Munzinger, M. Bregant, M. Broz, G.E. Brun, M.D. Buckland, D. Budnikov, H. Buesching, S. Bufalino, O. Bugnon, P. Buhler, Z. Buthelezi, S.A. Byssia, M. Cai, H. Caines, A. Caliva, E. Calvo Villat, J.M.M. Camacho, P. Camerin, F.D.M. Canedo, M. Carabas, A.A. Carballo, F. Carnebach, R. Caron, L.A.D. Carvalho, J. Castillo Castellanos, F. Catalano, C. Ceballos Sanchez, I. Chakaberia, P. Chaika, C. Chaudhari, S. Chattopadhyay, T.G. Chavez, T. Cheng, C. Cheshkov, B. Cheynis, V. Chibante Barrosa, D.D. Chinellato, E.S. Chizzali, H.C. Chiou, M. Ciaccio, M. Ciccolo, M. Concac, F. Conforti, J.S. Colburn, D. Colella, M. Colocci, M. Concas, F. Conforti, M. Concas, G. Conesa Balbastre, J. Conesa del Valle, G. Contin, J.G. Conteras, M.L. Coquet, T.M. Cormier, P. Cortese, M.R. Cosentino, F. Costa, S. Costanza, C. Cot, J. Crkvinská, P. Crochet, R. Cruz-Torres, E. Cuautle, P. Cui, A. Dainese, M.C. Danisch, A. Danu, P. Das, S. Das, A.R. Dash, S. Dash, A. De Caro, G. De Cataldo, J. De Cuveland, A. De Falconi, D. De Gruttola, N. De Marco, C. De Martino, S. De Pasquale, D. Deb, R.J. Debski, K.R. Deja, R. Del Grande, L. Dello Stritto, W. Deng, P. Dhankher, D. Di Bari, A. Di Mauro, R.A. Diaz, T. Dietel, Y. Ding, D. Dib, R. Diviac, D.U. Díaz, Ø. Djuvsland, U. Dmitriev, A. Dobrin, B. Dönüş, J.M. Dubinski, A. Dubla, S. Dudi, P. Dupieux, M. Durka, N. Dzalaiova, T.M. Eder, R. Ehlers, V. Ekelund, F. Eisenhardt, D. Elia, G. Erasmuz, T. Escollos, F. Erhardt, M.R. Ersu, B. Espagnon, G. Eulissé, D. Evans, S. Evdokimov, L. Fabbietti, F. Faggino, J. Faivre, F. Fan, W. Fan, A. Fantoni, M. Fasel, P. Feccio, A. Feliciano, A. Fernández Téllez, L. Ferrandi, M.B. Ferrer, A. Ferrero, C. Ferrero, A. Ferretti, V.J.G. Feuillard, V. Filova, D. Finogeiev, F.M. Fionda, M. Flores, A.N. Flores, S. Foertsch, I. Fokin, S. Fokin, F. Fragiacomo, E. Frajda, J. Frincke, N. Funiciello, C. Furgeson, A. Furfaro, T. Fusayasu, J.J. Gaardhøje, M. Gagliardi, A.M. Gago, C.D. Galvan, D.R. Gangadhara, G. Ganoti, C. Garabatos, J.R.A. Garcia, E. Garcia-Solis, O. Garg, K. Gariglio, K. Garner, P. Gasik, A. Gautam, M.B. Gay Ducati, M. Germain, A. Ghimire, C. Ghosh, M. Giacalone, P. Giubellino, P. Giubilato, A.M.C. Glaenzer, P. Glässel, E. Glimo, D.J.Q. Goh, V. Gonzalez, L.H. González-Trueba, M. Gorgon, S. Gotovac, V.Grabski, L.K. Graczykowski, E. Grecka, A. Grelo, C. Grigoras, V. Grigoriev, S. Grigoryan, F. Grosa, J.F. Grosse-Oetringhaus, R. Grosso, D. Grund, G.G. Guardiano, R. Guermane, M. Guibaud, K. Gulbrandsen, T. Gundem, T. Gunji, W. Guo, A. Gupta, R. Gupta,
S.P. Guzman, L. Gyulai, M.K. Habib, C. Hadjidakis, F.U. Haider, H. Hamagaki, A. Hamidi, Y. Han, R. Hanigan, M.R. Haque, J.W. Harris, H. Harton, H. Hassan, D. Hatzifotiadou, P. Hauer, L.B. Haven, S.T. Heckel, E. Hellbäck, H. Helstrup, M. Hemmer, T. Herrman, G. Herrera Corral, F. Herrmann, S. Herrmann, K.F. Hetland, B. Heybeck, H. Hillelmanns, C. Hills, B. Hippolyte, F.W. Hoffmann, B. Hofman, B. Hohlweger, G.H. Hong, M. Horst, A. Horzicky, R. Hosokawa, Y. Hou, P. Hristov, C. Hughes, P. Huhi, L.M. Huhta, C.V. Hulse, T.J. Humnic, A. Hutson, H. Ikeno, J.P. Iddon, R. Ilkev, I. Ilies, M. Inaba, G.M. Innocenti, M. Ippolito, A. Isakov, T. Isidoro, M.S. Islam, M. Ivanov, M. Ivanov, V. Ivanov, M. Jablonski, B. Jacak, N. Jacazio, D.P. Jacobs, J. Jadlovsky, J. Jadlovsky, S. Jaelani, L. Jaffe, C. Jahnke, M.J. Jakubowska, M.A. Janik, T. Janson, M. Jericic, S. Jia, A.A.P. Jimenez, J.M. Jowett, J. Jung, A. Junque, A. Jusko, M.J. Kubus, J. Kaewjai, P. Kalinak, A.S. Keltey, A. Kalweit, V. Kaplin, A. Karasu, M.J. Karabowska, D. Karaviti, O. Karavichev, T. Karavichev, P. Karczmazczyk, E. Karpеchef, U. Kebschull, R. Keidel, D.L.D. Keijedene, M. Keil, B. Ketzer, A.M. Khan, S. Khan, A. Khanzadeev, Y. Kharlov, A. Khatun, A. Khuntia, M.B. Kidson, B. Kilen, B. Kim, C. Kim, D.J. Kim, E.J. Kim, J. Kim, J.S. Kim, J. Kim, M. Kim, A. Kiselev, A. Kiselev, J.P. Kitowski, J.L. Klav, J. Klein, S. Klein, C. Klein-Bösing, M. Klein, T. Klemen, J.Z. Kluge, A.G. Knospe, C. Kobadji, T. Kollegger, A. Kondratyev, N. Kondratyuk, E. Kondratyuk, J. König, S.A. Kongstergjer, P.J. Konopka, G. Kornakov, S.D. Koryciak, A. Kotlarov, V. Kovalenko, M. Kowalski, M. Kozhuhar, I. Králík, A. Kravčáková, L. Kreis, M. Krivda, F. Križek, K. Krizkova Gajdosová, M. Kroesen, M. Krüger, D.M. Krupova, E. Krysten, V. Kučera, C. Kuhn, D.P. Kujer, T. Kumaoka, D. Kumar, L. Kumar, S. Kumar, S. Kundu, P. Kurasvili, A. Kurepin, A.B. Kurepin, A. Kuryakin, S. Kushpil, J. Kypril, M.J. Kweon, J.Y. Kwon, Y. Kwon, S.L. La Pointe, P. La Rocca, Y.S. Lai, A. Lakrathok, M. Laman, R. Langoy, P. Larionov, J. Laud, S. Lavicka, T. Lazareva, R. Lea, I. Lea, H. Lee, G. Legras, J. Lehrbach, R.C. Lenmon, I. León Monzón, M.M. Lesch, E.D. Lesser, M. Lettrich, P. Lévy, X.L. Li, J. Lien, R. Lietava, I. Likmetra, B. Lim, S.H. Lim, V. Lindenstrauss, A. Lindner, C. Lippmann, A. Liu, D.H. Liu, J. Liu, I.M. Lofnes, Co., Loizides, S. Lokos, T. Lomker, P. Long, J.A. Lopez, X. Lopez, E. Lopez, Torres, P. Lu, J.R. Lührer, J. Lunardoni, G. Luparello, Y.G. Ma, A. Maevska, M. Magee, T. Mahmoud, A. Maire, M.V. Makariev, M. Malaev, G. Malfattore, N.M. Malik, Q.W. Malik, S.K. Malik, L. Malinina, J. Maliev, D. Maliev, D. Mallick, G. Mandaglio, V. Manko, F. Manso, V. Manzari, Y. Mao, G.V. Margioli, A. Margotti, A. Marin, C. Markert, P. Martinengo, J.L. Martinez, M.I. Martinez, G. Martínez García, A.I. Massa, C. Masiocchi, M. Masera, A. Masoni, L. Massacrier, A. Mastroserio, O. Matonoha, P.T. Mattuoka, A. Matyja, C. Mayer, A.L. Mazucos, F. Massimaccio, M. Massi, J.E. Mdhuli, A.F. Mechler, Y. Melikyan, A. Menchaca-Rocha, E. Meninno, A.S. Menon, M. Meres, M. Mihlang, Y. Miate, L. Micheletti, L.C. Migliorini, D.L. Mihaylov, K. Mikhailov, A. Mishra, D. Miškovic, A. Modak, A.P. Mohanty, B. Mohanty, M. Mohisin Khan, A. Molander, Z. Moravcová, C. Mordasini, D.A. Moreira De Godoy, I. Morozov, A. Morsch, T. Mnjvac, V. Muccifora, S. Muhuri, J.D. Mulligan, A. Muller, M.G. Munhoz, R.H. Munzer, H. Murakami, S. Murray, J. Musinsky, J.W. Myrcha, B. Naik, A.I. Nambrath, B.K. Nandi, R. Nania, E. Napi, A.F. Nassimprez, A. Nath, C. Natrass, M.N. Naydenov, A. Neag, A. Negru, L. Nellen, S.V. Nesbo, G. Neskov, D. Nesterov, B.S. Nielsen, E.G. Nielsen, S. Nikolaev, S. Nikulin, V. Nikulin, F. Noferini, S. Nooh, P. Nomokonov, J. Norman, N. Novitzky, P. Nowakowski, A. Nyanin, J. Nystrand, M. Ogino, A. Ohlson, V.A. Okorokov, J. Oleniacz, A.C. Oliveira Da Silva, M.H. Oliver, A. Onnerstad, C. Oppedowski, A. Ortiz Velasquez, J. Otwinowski, M. Oya, K. Oya, Y. Pachmayer, S. Padhan, D. Pagano, S. Paoletta, A. Palasciano, G.S. Panebianco, H. Park, H. Park, J. Park, J.E. Parkkila, R.N. Patna, B. Paul, H. Pei,
Light (anti)nuclei production in Pb–Pb collisions at $\sqrt{s_{NN}} = 5.02$ TeV

ALICE Collaboration

T. Peitzmann, X. Peng, M. Pennisi, L.G. Pereira, D. Peresunko, G.M. Perez, S. Perrin, P. Pestov, V. Petraček, V. Petrov, M. Petrovic, R.P. Pezzi, S. Piano, M. Pikuš, P. Pillot, O. Pinazza, L. Pinsky, C. Pinto, S. Pisano, M. Płoskonka, M. Planinic, F. Plüni, M.G. Poghosyan, B. Polichtchouk, S. Poltano, N. Poljak, A. Pop, S. Portebevel-Houssiaux, V. Pozdniakov, K. Pradhan, S. Prasad, R. Preghenella, F. Prino, C.A. Pruneau, I. Pshenichnov, M. Puccio, S. Pucillo, Z. Pugelova, S. Qui, L. Quagliola, R.E. Quispel, S. Ragoni, A. Rakotozoafindra, L. Ramello, R. Ramil, S.A.R. Ramirez, M. Rasa, S.S. Räsänen, R. Rath, M.P. Rauch, I. Ravasenga, K.F. Reid, C. Reczkie, A.R. Redelbach, K. Redlich, I. Rezvani, A. Rehman, F. Reidt, H.A. Reme-Ness, Z. Rescakova, K. Reyners, A. Riabov, V. Riabov, R. Ricci, M. Richter, A.A. Riedel, W. Riegler, C. Rister, M. Rodriguez Cahuantzi, K. Roed, R. Rogalev, E. Rogochaya, T.S. Rogoschinski, D. Rohr, D. Röhrich, P.F. Rojas, S. Rojas Torres, P.S. Rokita, G. Romanenko, F. Ronchetti, A. Rosano, K. Roslon, A. Rossi, A. Roy, S. Roy, N. Rubini, O.V. Rueda, D. Ruggiano, R. Rui, B. Rumyantsev, P.G. Russo, R. Russo, A. Rusham, A. Ryabinin, Y. Ryabov, A. Rybicki, H. Rytkonen, W. Rzeza, O.A.M. Saarimaki, R. Sadek, S. Sadhuk, S. Sadovsky, J. Saetre, K. Šafarík, S.K. Sahā, S. Sahā, B. Sahoo, R. Sahoo, S. Sahoo, D. Sahu, P.K. Sahu, J. Saini, K. Sajdakova, S. Sakai, M.P. Salvan, S. Sambhyl, I. Sanna, T.B. Saramela, D. Sarkar, N. Sarkar, P. Sarma, V. Sarritzu, V.M. Sarti, M.H.P. Sas, J. Schambach, H.S. Scheid, C. Schiaua, R. Schicker, A. Schmid, A. Schmid, H.R. Schmidt, M.O. Schmidt, M. Schmidt, N.V. Schmidt, A.R. Schmierer, R. Schodler, A. Schröder, J. Schukraft, K. Schwarz, K. Schweda, G. Sciolii, E. Scomparin, J.E. Seger, Y. Sekiguchi, D. Sekihata, I. Selyuzhenkov, S. Senyukov, J.J. Seo, D. Serebryakov, L. Šerkšnytė, A. Severcova, T.J. Shabat, A. Shabet, R. Shanyo, A. Shangaraev, A. Sharma, B. Sharma, D. Sharma, H. Sharma, M. Sharma, N. Sharma, V. Sharma, S. Sharma, U. Sharma, U. Sharma, A. Shatat, O. Sheibani, K. Shigaki, M. Shimomura, J. Shin, S. Shirinkin, Q. Shou, Y. Sibiriak, S. Siddhanta, T. Siemiaczuk, T.F. Silva, D. Silvermyr, T. Simantathammakul, R. Simeone, B. Singh, B. Singh, R. Singh, R. Singh, S. Singh, V.K. Singh, V. Singh, T. Sinha, B. Sitarek, M. Sitta, T.B. Skaali, G. Skorodumovs, M. Slupecki, N. Smirnov, R.M. Smellings, E.H. Solheim, J. Song, A. Songmoolnak, F. Soramel, R. Spijkers, I. Sputowska, J. Staš, J. Stachel, I. Stan, P.J. Steffanic, S.F. Stefelsmaier, D. Stocco, I. Storehaug, P. Stratmann, C.P. Stylianos, A.A.P. Suaiade, C. Suire, M. Sukhanov, M. Suljic, R. Sultanov, V. Sumbera, S. Sunomowidjaja, S. Swain, I. Szarka, M. Szmyczkowski, S.F. Taghavi, B. Taillepied, J. Takahashi, G.I. Tambave, S. Tang, Z. Tang, J.D. Tapia Takaki, N. Tapan, L.A. Tarasovicova, M.G. Tarzila, G.F. Tassielli, A. Tauro, G. Tejeda Muñoz, A. Telesca, L. Terlizzi, G. Tersimov, S. Thakuri, D. Thomas, A. Tikhonov, A.R. Timmins, M. Tkacik, T. Tkacik, A. Tokov, A. Tolotka, M. Topila, I.N. Torcaso-Acosta, T. Tork, A.G. Torres Ramos, A. Trifiro, A.S. Trillo, O. Tripathy, T. Tripathy, S. Trogolo, V. Trubnikov, W.H. Trzaska, T.P. Trzcinski, A. Tumkin, R. Turrisi, T.S. Tveter, K. Ullaland, B. Uluktu, M. Ursic, M. Urioni, G. L. Usai, M. Valla, N. Vallet, R.V. de Vore, M. Vaneeuw, C.A. van Veen, R.J.G. van Weelden, P. Vande Vyvere, D. Varga, Z. Varga, M. Vasiliou, A. Vasiliev, O. Vázquez Doce, V. Vecherini, E. Vercellin, S. Veggia, Limón, L. Vermunt, R. Vértes, M. Verweij, L. Vickovic, Z. Vilakazi, O. Vilalobos Baille, A. Villanti, G. Vison, A. Vinogradov, T. Virgili, V. Vislavicius, A. Vodopyanov, B. Volkel, M.A. Volkl, K. Voloshin, S.A. Voloshin, G. Volpe, B. von Haller, I. Vorobyev, N. Vozniuk, L. Vrálko, C. Wang, W. Wang, Y. Wang, A. Wegrzyn, F.T. Weighforth, S.C. Wenzel, J.P. Wessels, S.L. Weyhmiller, J. Wiechec, I. Wijneke, G. Wilk, J. Wilkinson, G.A. Willemse, B. Windelband, M. Winny, J.R. Wright, 108, W. Wu, Y. Wu, X. Xu, A. Yadav, K.A. Yadav, S. Yalcin, S.Y. Yang, S. Yano, Z. Yin, I.-K. Yoon, J.H. Yoon, S. Yuan, A. Yuncu, V. Zaccoco, C. Zampilli, F. Zanone, N. Zardoshti, A. Zarochentsev, P. Závada, N. Zavialyov, M. Zhalov, B. Zhang, L. Zhang, Z. Zhang, X. Zhang, P.G. Russek, G. Romanenko, R. Rath, C. Reetz, S. Tripathy, H.S. Scheid, S. Sharma, L. Šerkšnytė, L. Quaglia, M.G. Poghosyan, G. Wilk, M. Zhalov, M. Zhalov.
Light (anti)nuclei production in Pb–Pb collisions at $\sqrt{s_{\text{NN}}} = 5.02$ TeV

ALICE Collaboration

Y. Zhang, Z. Zhang, M. Zhao, V. Zherebchevskii, Y. Zhi, D. Zhou, Y. Zhou, J. Zhu, Y. Zhu, S.C. Zugravel, N. Zurlo

Affiliation Notes

I Deceased
II Also at: Max-Planck-Institut für Physik, Munich, Germany
III Also at: Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), Bologna, Italy
IV Also at: Dipartimento DET del Politecnico di Torino, Turin, Italy
V Also at: Department of Applied Physics, Aligarh Muslim University, Aligarh, India
VI Also at: Institute of Theoretical Physics, University of Wroclaw, Poland
VII Also at: An institution covered by a cooperation agreement with CERN
VIII Also at: Indian Institute of Science Education and Research (IISER) Berhampur, Odisha, India

Collaboration Institutes

1 A.I. Alikhanyan National Science Laboratory (Yerevan Physics Institute) Foundation, Yerevan, Armenia
2 AGH University of Science and Technology, Cracow, Poland
3 Bogolyubov Institute for Theoretical Physics, National Academy of Sciences of Ukraine, Kiev, Ukraine
4 Bose Institute, Department of Physics and Centre for Astroparticle Physics and Space Science (CAPSS), Kolkata, India
5 California Polytechnic State University, San Luis Obispo, California, United States
6 Central China Normal University, Wuhan, China
7 Centro de Aplicaciones Tecnológicas y Desarrollo Nuclear (CEADEN), Havana, Cuba
8 Centro de Investigación y de Estudios Avanzados (CINVESTAV), Mexico City and Mérida, Mexico
9 Chicago State University, Chicago, Illinois, United States
10 China Institute of Atomic Energy, Beijing, China
11 Chungbuk National University, Cheongju, Republic of Korea
12 Comenius University Bratislava, Faculty of Mathematics, Physics and Informatics, Bratislava, Slovak Republic
13 COMSATS University Islamabad, Islamabad, Pakistan
14 Creighton University, Omaha, Nebraska, United States
15 Department of Physics, Aligarh Muslim University, Aligarh, India
16 Department of Physics, Pusan National University, Pusan, Republic of Korea
17 Department of Physics, Sejong University, Seoul, Republic of Korea
18 Department of Physics, University of California, Berkeley, California, United States
19 Department of Physics, University of Oslo, Oslo, Norway
20 Department of Physics and Technology, University of Bergen, Bergen, Norway
21 Dipartimento di Fisica, Università di Pavia, Pavia, Italy
22 Dipartimento di Fisica dell’Università e Sezione INFN, Cagliari, Italy
23 Dipartimento di Fisica dell’Università e Sezione INFN, Trieste, Italy
24 Dipartimento di Fisica dell’Università e Sezione INFN, Turin, Italy
25 Dipartimento di Fisica e Astronomia dell’Università e Sezione INFN, Bologna, Italy
26 Dipartimento di Fisica e Astronomia dell’Università e Sezione INFN, Catania, Italy
27 Dipartimento di Fisica e Astronomia dell’Università e Sezione INFN, Padova, Italy
28 Dipartimento di Fisica e Astronomia dell’Università e Sezione INFN, Palermo, Italy
29 Dipartimento DISAT del Politecnico di Torino, Turin, Italy
30 Dipartimento di Scienze MIFT, Università di Messina, Messina, Italy
31 Dipartimento Interateneo di Fisica ‘M. Merlin’ and Sezione INFN, Bari, Italy
32 European Organization for Nuclear Research (CERN), Geneva, Switzerland
33 Faculty of Electrical Engineering, Mechanical Engineering and Naval Architecture, University of Split, Split, Croatia
34 Faculty of Engineering and Science, Western Norway University of Applied Sciences, Bergen, Norway
35 Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague, Prague, Czech Republic
36 Faculty of Physics, Sofia University, Sofia, Bulgaria
Light (anti)nuclei production in Pb–Pb collisions at √s_{NN} = 5.02 TeV

ALICE Collaboration

Physics Department, Panjab University, Chandigarh, India
Physics Department, University of Jammu, Jammu, India
Physics Program and International Institute for Sustainability with Knotted Chiral Meta Matter (SKCM2), Hiroshima University, Hiroshima, Japan
Physikalisches Institut, Eberhard-Karls-Universität Tübingen, Tübingen, Germany
Physikalisches Institut, Ruprecht-Karls-Universität Heidelberg, Heidelberg, Germany
Physik Department, Technische Universität München, Munich, Germany
Politecnico di Bari and Sezione INFN, Bari, Italy
Research Division and ExtreMe Matter Institute EMMI, GSI Helmholtzzentrum für Schwerionenforschung GmbH, Darmstadt, Germany
Saha Institute of Nuclear Physics, Homi Bhabha National Institute, Kolkata, India
School of Physics and Astronomy, University of Birmingham, Birmingham, United Kingdom
Sección Física, Departamento de Ciencias, Pontificia Universidad Católica del Perú, Lima, Peru
Stefan Meyer Institut für Subatomare Physik (SMI), Vienna, Austria
SUBATECH, IMT Atlantique, Nantes Université, CNRS-IN2P3, Nantes, France
 Sungkyunkwan University, Suwon City, Republic of Korea
Suranaree University of Technology, Nakhon Ratchasima, Thailand
Technical University of Košice, Košice, Slovak Republic
The Henryk Niewodniczanski Institute of Nuclear Physics, Polish Academy of Sciences, Cracow, Poland
The University of Texas at Austin, Austin, Texas, United States
Universidad Autónoma de Sinaloa, Culiacán, Mexico
Universidade de São Paulo (USP), São Paulo, Brazil
Universidade Estadual de Campinas (UNICAMP), Campinas, Brazil
Universidade Federal do ABC, Santo André, Brazil
University of Cape Town, Cape Town, South Africa
University of Houston, Houston, Texas, United States
University of Jyväskylä, Jyväskylä, Finland
University of Kansas, Lawrence, Kansas, United States
University of Liverpool, Liverpool, United Kingdom
University of Science and Technology of China, Hefei, China
University of South-Eastern Norway, Kongsberg, Norway
University of Tennessee, Knoxville, Tennessee, United States
University of the Witwatersrand, Johannesburg, South Africa
University of Tokyo, Tokyo, Japan
University of Tsukuba, Tsukuba, Japan
University Politehnica of Bucharest, Bucharest, Romania
Université Clermont Auvergne, CNRS/IN2P3, LPC, Clermont-Ferrand, France
Université de Lyon, CNRS/IN2P3, Institut de Physique des 2 Infinis de Lyon, Lyon, France
Université de Strasbourg, CNRS, IPhC UMR 7178, F-67000 Strasbourg, France, Strasbourg, France
Université Paris-Saclay Centre d’Etudes de Saclay (CEA), IRFU, Département de Physique Nucléaire (DPhN), Saclay, France
Università degli Studi di Foggia, Foggia, Italy
Università del Piemonte Orientale, Vercelli, Italy
Università di Brescia, Brescia, Italy
Variable Energy Cyclotron Centre, Homi Bhabha National Institute, Kolkata, India
Warsaw University of Technology, Warsaw, Poland
Wayne State University, Detroit, Michigan, United States
Westfälische Wilhelms-Universität Münster, Institut für Kernphysik, Münster, Germany
Wigner Research Centre for Physics, Budapest, Hungary
Yale University, New Haven, Connecticut, United States
Yonsei University, Seoul, Republic of Korea
Zentrum für Technologie und Transfer (ZTT), Worms, Germany
Affiliated with an institute covered by a cooperation agreement with CERN
Affiliated with an international laboratory covered by a cooperation agreement with CERN.