REVIEW

Promising Application of Dynamic Nuclear Polarization for in Vivo 13C MR Imaging

Yi-Fen YEN¹, Kiyoshi NAGASAWA²*, and Tsutomu NAKADA²

¹Global Applied Science Laboratory, GE Healthcare, Menlo Park, California, USA
²Center for Integrated Human Brain Science, Brain Research Institute, University of Niigata
1–757 Asahimachi, Chuoh-ku, Niigata 951–8585, Japan
(Received November 30, 2010; Accepted June 1, 2011)

Use of hyperpolarized 13C in magnetic resonance (MR) imaging is a new technique that enhances signal tens of thousands-fold. Recent in vivo animal studies of metabolic imaging that used hyperpolarized 13C demonstrated its potential in many applications for disease indication, metabolic profiling, and treatment monitoring. We review the basic physics for dynamic nuclear polarization (DNP) and in vivo studies reported in prostate cancer research, hepatocellular carcinoma research, diabetes and cardiac applications, brain metabolism, and treatment response as well as investigations of various DNP 13C substrates.

Keywords: carbon 13 (13C), dynamic nuclear hyperpolarization, metabolic imaging, MRI

Introduction

13C nuclear magnetic resonance (NMR) has long been applied in the field of in vitro studies and been a must-have tool for determining chemical structure since the mid-1970s. Recent progress in hyperpolarization and dissolution techniques opened a new opportunity to use 13C MR spectroscopic imaging for in vivo studies. A 13C NMR probe is desirable because carbon locates in the center of the molecular bone structure to deliver information about surrounding molecules, and the wide chemical shift of 13C, over 10-fold that of proton NMR, delivers a better split between resonance peaks. However, the NMR receptivity of 13C is many orders of magnitude lower than that of 1H because of the low 13C natural abundance (1.1%) and small 13C gyromagnetic ratio (1/4 of protons).

Polarization techniques enable the application of 13C NMR for in vivo measurements and enhance signal 10,000 fold or more.¹ Their use also overcomes the issue of background signal that accompanies use of nonpolarized substrates. Parahydrogen-induced polarization²,³ and dynamic nuclear polarization (DNP)⁴ methods have been developed for in vivo 13C imaging. We review the DNP method and its in vivo applications for hyperpolarized 13C magnetic resonance spectroscopic imaging (MRSI). This promising technology is moving toward human clinical trial in the near future.

Technique

Basic physics of DNP

DNP is a polarization process that combines brute force and microwave pumping methods to transfer a high degree of electron polarization to nuclei. Spin energy level splits (Zeeman effect) when polarized material is placed in a high field and at low temperature (brute force method), and the spin population at different energy Eigen states is described by Boltzman distribution. For spin-1/2 particles, the degree of polarization is calculated as the ratio of the population difference between spin-up and spin-down states to the population sum. At 3 tesla and 1 K, the large difference in polarization of electrons (95%) and 13C (0.08%) reflects the large difference in their gyromagnetic ratios. At 3T and body temperature (at which hyperpolarized substrates can be safely injected into animals), 13C polarization is even smaller (0.00025%). However, with the help of microwave pumping and fast dissolution technique, 13C liquid state polarization of 20 to 30% has been achieved routinely at body temperature. We describe how this can be done following.

DNP involves 3 physical phenomena, Overhaus-
er effect, solid effect, and thermal mixing. The Overhauser effect describes the transition between 2 energy states populated by nuclei of the same spin polarity and electrons of the opposite polarity. With microwave pumping at the frequency that matches the energy difference between the 2 states, energy absorption flips the electron spins but does not change the nuclear spins. This does not help enhance nuclear polarization. The solid effect involves the transitions between the states of opposite electron spins and opposite nuclear spins. Microwave irradiation at the transition frequency changes both the electron and nuclear spins. Because the electron T_1 relaxation time is shorter than that of the nuclei, the electron spin relaxes back to the ground state and couples with another nuclear spin, and the solid effect continues to build up the nuclear spin population at the higher energy state. If the density of unpaired electrons is sufficient, the electrons couple with each other (dipolar coupling) as well as nearby nuclei. The electron dipolar coupling splits the energy levels to produce continuous energy bands for the electrons. If the electron splitting energy is greater than the nuclear Zeeman splitting, then microwave irradiation can induce a thermal mixing effect, in which 2 electron spin flips drive one nuclear spin flip. In general, the 3 effects can occur simultaneously during the DNP process. A microwave frequency sweep can reveal the relative contribution of these effects to the hyperpolarization of the substrate.

DNP for 13C Imaging

For 13C imaging, the polarization mixture typically contains the 13C-enriched substrate, free radical, gadolinium (Gd), and glassing material. The free radical (Trityl) provides unpaired electrons; an aqueous amount of Gd shortens the electron solid-state T_1 relaxation time and, hence, improves the efficiency of nuclear polarization; and glassing material, such as water, glycerol, or dimercaptosuccinate (DMS), ensures that the mixture forms glass at freezing to optimize the efficiency of microwave energy transfer. The mixture is placed inside the polarizer, immersed in liquid helium at a high magnetic field (3 to 5T for most existing 13C DNP polarizers), and cooled to about 1 K by continuous pumping to reduce helium vapor pressure. Microwave irradiation is applied at the optimal frequency (according to the microwave frequency sweep curve) to transfer the electron polarization to the nuclei. A built-in NMR coil surrounds the polarized sample to monitor the build-up of polarization. Solid-state polarization is typically measured by pulse-and-acquire method with a constant 5° flip angle every 5 min. The length of time for polarization to build up varies depending on the polarized substrate. For example, it typically takes [1-13C] pyruvate one hour to reach approximately 98% of the maximum level of solid-state polarization.

Fast Dissolution

Several factors need to be considered with regard to dissolution. The pH of the dissolved solution needs to be buffered within an appropriate physiological range before the solution is injected into the animal. In the case of [1-13C]pyruvate, the polarized material is [1-13C]pyruvic acid, and the solvent of choice is NaOH. Tris is also added to buffer the pH at 7.6, and NaCl may be added to ensure that the dissolved solution is iso-osmotic with blood. At dissolution, the dissolution medium is heated and mixed with the frozen polarized mixture, and the dissolved solution is pushed out of the polarizer and collected into a syringe ready for injection. The dissolved 13C solution should be near body temperature; increased thermal motion somewhat compromises 13C polarization in dissolution. However, the very fast dissolution process (about one to 2 s) permits the dissolved 13C solution to maintain high polarization (about 20 to 30% for [1-13C]pyruvate).

Substrates

The DNP technique has been used to polarize many 13C substrates, among them, 13C-urea, 13C-acetate, 13C-lactate, 13C-bicarbonate, 13C-ketoisocaproyl, 13C-fuctose, and 13C-fumarate. The signal-to-noise ratio (SNR) of the 13C substrate in vivo depends on the concentration, liquid state polarization, and T_1 relaxation time. For metabolic imaging applications, the SNR of the metabolic product is of interest and depends on the product’s T_1 relaxation time, size of the metabolite pool, and associated enzymatic activities in vivo. Therefore, some 13C substrates are more applicable than others for metabolic imaging. We will discuss examples of in vivo applications of several different 13C substrates following.

In Vivo Applications

Early Development

Early works regarding DNP 13C MR were reported in the area of angiography. $^{1,5-9}$ 13C angiography was obtained using hyperpolarized endogenous substances, such as 13C-urea or bis-1,1-(hydroxymethyl)-1-(13)C-cyclopropane-D, with SNR ranging from 75 in the carotid arteries to 500 in the cardiac region and subsecond temporal resolutions.
DNP 13C MR was also applied to assess cerebral perfusion10,11 to produce maps of cerebral blood flow, cerebral blood volume, and mean transit time. These hyperpolarized endogenous substances acted as tracers and involved no metabolic conversions.

In 2006, Golman and associates12 reported the realization of real-time metabolic MR imaging using hyperpolarized [1-13C]pyruvate. Maps of 13C-pyruvate and its metabolic products, 13C-lactate and 13C-alanine, obtained in animals using a 1.5T clinical system demonstrated the technique’s utility for in vivo observation of the reduction and transamination pathways of pyruvate. Subsequently, hyperpolarized 13C-pyruvate metabolic imaging was demonstrated in vivo using a 3T clinical system.13 In addition to lactate and alanine images (Fig. 1), this work obtained 13C-bicarbonate images that confirmed the technique’s utility for observing oxidative decarboxylation into the tricarboxylic acid (TCA) cycle in a clinical system. For disease indications, findings of elevated 13C-lactate signal in tumors compared to normal tissue14 were consistent with the “Warburg effect.”15 In 2006, Mansson’s team described future applications of hyperpolarized 13C MR in metabolic imaging, angiography, perfusion, and catheter tracking and suggested its powerful potential as a new diagnostic platform.16

Prostate cancer

Chen’s group17 described their initial experience studying hyperpolarized 13C metabolic imaging of mice with transgenic adenocarcinoma of the prostate (TRAMP) using hyperpolarized 13C-pyruvate and found highly elevated lactate signal in late-stage prostate tumors (Fig. 2). A double spin-echo flyback echo-planar spectroscopic imaging (EPSI) sequence18 was used to obtain voxel resolution of 0.135 cc and 3-dimensional (3D) field of vision (FOV) to cover the prostate, kidney, and liver of a mouse in 10 s. This sequence design decreased acquisition time 16-fold compared to conventional phase-encoding chemical shift imaging (CSI) and enabled collection of a large 3D matrix within a short scan time against the T_1 relaxation of the hyperpolarized signal.

Applying the above methodology and using a 3D EPSI sequence,18 Albers and colleagues19 compared hyperpolarized 13C metabolic imaging of prostate cancer with histology in normal mice and those with TRAMP of various histologic grades. They chose the acquisition time window to coincide with the maximum lactate production determined from dynamic scans and obtained 3D images of 13C-pyruvate, 13C-lactate, and 13C-alanine in 14 s. The level of lactate signal increased with tumor progression and correlated strongly with histologic grade (Fig. 3). Increase in total 13C signal with tumor grade may have indicated increased substrate uptake with tumor progression. Nelson’s team reviewed applications for prostate cancer.20

A Phase I–II clinical trial of hyperpolarized 13C-pyruvate metabolic imaging in patients with prostate cancer is underway at the University of California in San Francisco. Patients in the trial are on a watch list for surgery and have regular diagnostic follow-up with anatomic and diffusion MR imaging and proton MR spectroscopy. No adverse effect has been reported in the dose-escalation study. The trial’s success will open a new era for clinical research using this novel technique.

Liver metabolism and hepatocellular carcinoma

Hu and colleagues21 used [1-13C]pyruvate to study liver metabolism in fasted rats and found higher lactate-to-alanine signal ratios and lower alanine signal level in the livers of fasted rats than free-fed rats. The low alanine signal is attributed to reduced alanine aminotransferase (ALT) activity in the fasted rat liver during gluconeogenesis. The study suggested that use of a hyperpolarized molecular probe to monitor changes in localized 13C-alanine distribution can be a more specific assay than a serum ALT test, which can be complicated by high ALT levels that result from non-hepatic causes. Alanine is also a good biomarker for detecting hepatocellular carcinoma (HCC). Using hyperpolarized [1-13C]pyruvate, Darpolor and associates22 showed elevated alanine and lactate levels that were consistent with enzyme expression analysis on rat HCC tissue extract (Fig. 4). Interestingly, 13C MRSI showed high alanine signals specifically in HCC tumors but high lactate signals in tumors and vessels. Low 13C-alanine signals in vessels may be due to the much slower transport of alanine than lactate from cells to blood. Thus, within the one-minute 13C acquisition window, 13C-alanine signal was observed minimally in vessels but more extensively in HCC tumors. This is a promising technique for diagnosing liver cancer and monitoring treatment.

Yen’s group23 found a large difference in transverse relaxation time (T_2) between HCC tumors and normal livers. They injected hyperpolarized [1-13C]pyruvate into the liver, selectively excited a single voxel of $1.1 \times 1.2 \times 1.2$ cm in the liver, and acquired the transverse hyperpolarized signal using Carr-Purcell-Meibloom-Gill sequence. The 13C-alanine T_2 of HCC tumor (1.2 ±0.1 s) was longer than
Fig. 1. Hyperpolarized 13C metabolic spectroscopic imaging of a rat with 5-mm spatial resolution, 20-Hz spectral resolution and 17-s scan time. Figure courtesy of the authors in (13).

Fig. 2. Hyperpolarized 13C spectroscopic imaging of a 10-s acquisition from a mouse with transgenic adenocarcinoma of the prostate (TRAMP). The prostate tumor has elevated 13C-lactate signal. Figure provided courtesy of authors in (17).

Fig. 3. Elevated 13C-lactate signals in different stages of transgenic adenocarcinomas of the prostate in mice (TRAMP) correlate well with histology. Figure provided courtesy of authors in (19).

Fig. 4. Hyperpolarized 13C magnetic resonance (MR) imaging of pyruvate metabolism in hepatocellular carcinoma (HCC). Elevated 13C-alanine and -lactate signals in tumors are consistent with the upregulated alanine aminotransferase (ALT) and lactate dehydrogenase-A (LDH-A) enzyme expression in tumors. Figure courtesy of authors in (22).

that of normal liver (0.38 ± 0.05 s), with $P < 3 \times 10^{-5}$, and the 13C-lactate T_2 of HCC tumor (0.9 ± 0.2 s) was longer than that of normal liver (0.52 ± 0.03 s), with $P < 2 \times 10^{-3}$. This may be related to tumor cell morphology, change in iron content, and/or leaky vessels in the fast growing tumors. The large difference in T_2 provides an opportunity to develop novel sequence strategies for enhancing image contrast and improving HCC detection.

Diabetes and cardiac applications

Hyperpolarized 13C-pyruvate has been used to characterize in vivo cardiac metabolism in rats24 and pigs.25,26 To assess flux through the pyruvate dehydrogenase (PDH) enzyme complex in the heart, Schroeder's group24 compared 13C-bicarbonate production in control rats to that in fasted and diabetic rats following injection of hyperpolarized 13C-pyruvate and observed reduced 13C-bicarbonate in the hearts of fasted and diabetic rats, with bicarbonate production negatively correlated with severity of diabetes.

Golman and associates25 performed spectroscopic imaging during ischemic episodes to monitor pyruvate metabolism in the heart. They tested 2 ischemic pig models—one group with the artery occluded for 15 min and the other with the artery occluded for 45 min followed by reperfusion in both groups and observed a small reduction of 13C-bicarbonate in the affected myocardium after 15-min occlusion and its almost complete disappearance in the infarcted myocardium after 45-min occlusion. A single-slice 13C chemical shift image of the left
ventricle was acquired in this study, with in-plane resolution, 7.5 mm; slice thickness, 20 mm; and total scan time, 13.4 s.

Volume coverage and speed of cardiac imaging have greatly improved recently. Lau’s team used spectral-spatial excitations and cardiac-gated spiral acquisitions to obtain 13C-pyruvate, 13C-lactate, and 13C-bicarbonate images of the whole heart in a single breath-hold. They acquired 6 10-mm slices with in-plane resolution of 8.8 mm in 6 s and repeated the scan to collect dynamic data. With advanced sequence designs, hyperpolarized 13C MR is rapidly progressing into real-time dynamic metabolic profile mapping, a promising tool to study cardiac and diabetic metabolism.

Brain metabolism and glioma

Park and associates assessed the potential use of hyperpolarized 13C-pyruvate for glioma prognosis in rat models. The signal levels of 13C-pyruvate and its metabolic product, 13C-lactate, as well as their relative signal ratios were significantly higher in tumors than normal brain. The 13C-lactate signal elevation correlated to proliferation marker for tumors. The different 13C metabolic profiles between the 2 models in the study were consistent with their immunohistochemical data. For normal brain, the blood-brain barrier (BBB) restricts the transport of pyruvate into the brain cells. However, large 13C-pyruvate uptake was observed in gliomas as a result of disruption of the BBB. For potential neurological applications, the blood-brain transport of pyruvate may be a limiting factor.

In a range-finding study, Hurd and colleagues demonstrated an alternative approach using [1-13C]ethyl pyruvate (EP), a lipophilic analog of pyruvate expected to have faster transport than pyruvate across the BBB. They found significantly higher total carbon delivered to the brain for EP than pyruvate, but the lactate level was comparable to that with pyruvate injections. This may be due to the saturation in lactate production, with a much higher concentration with injected pyruvate than in the natural physiological condition. Besides fast transport across the BBB, 13C-EP has the advantage of higher polarization than 13C-pyruvate. However, the drawbacks of 13C-EP include the limitation of injection rate due to cardiac side effects and its relatively short T$_1$ relaxation time (45 s in vitro) compared to that of 13C-pyruvate (60 s in vitro).

In another study, Hurd’s group characterized the injection bolus, BBB transport, and metabolic effects in anesthetized normal rat brain. They developed a kinetic model to separate the metabolites in the cerebral blood volume (CBV) from those in the brain tissue using a hyperpolarized [1-13C]pyruvate time-resolved metabolic imaging technique. The study showed the apparent metabolic rate constants, including intracellular transport of pyruvate and lactate dehydrogenase activity, to be 30- to 100-fold higher than the rate of BBB transport. This implies that any pyruvate transported into the brain is observed as lactate and nearly all pyruvate observed is in the CBV. Hyperpolarized 13C MR has the potential to measure cerebral dynamic and metabolic changes for both focal and diffuse neurological diseases.

Therapeutic response

Using hyperpolarized 13C MR to study response to cancer treatment, Day’s team reported promising findings suggesting the technique’s potential clinical applications in monitoring early response to chemotherapy. They treated lymphoma tumors with etoposide and showed decreased flux between pyruvate and lactate, which they attributed to NAD(H) loss, decreased lactate dehydrogenase (LDH) activity, and reduced lactate concentration in the treated tumors. The decrease in LDH activity was observed only after a long period of etoposide treatment during which the necrotic fraction increased significantly. This study is the benchmark to demonstrate the feasibility of using hyperpolarized 13C MR to monitor early treatment effect.

Chen and associates reported similar findings using hyperpolarized 13C-pyruvate in a study of treatment response by TRAMP tumors. The ratio of 13C-lactate to -pyruvate was reduced in the TRAMP mice that responded to androgen deprivation therapy and unchanged in those that did not respond to therapy.

Other substrates for cancer detection

Karlsson and associates used hyperpolarized 13C-ketoisocaproate (KIC) to study the role of branched chain amino acid metabolism in 2 different tumor models. KIC is metabolized to leucine by the branched chain amino acid transferase (BCAT) enzyme, a biomarker for metastasis in some tumors and a target of proto-oncogene c-myc. Signals of [1-13C] leucine were more than 7-fold higher in murine lymphoma than healthy tissue, a finding consistent with analysis of ex vivo BCAT expression. However, in rat mammary adenocarcinoma, BCAT metabolism was not enhanced relative to healthy tissue, and no [1-13C] leucine was observed. This demonstrates the possibility of using hyperpolarized 13C MR for metabolic profiling at the level of a single gene.
Gallagher’s group reported MR imaging of pH in vivo using hyperpolarized \(^{13}\)C-bicarbonate.\(^{33}\) Extracellular pH is known as a biomarker of interstitial fluid volume in conjunction with lactic acid production.\(^{34}\) Nevertheless, though \(^{31}\)P MRS has been used to measure pH,\(^{35}\) the lower sensitivity of the modality limits its application for human studies with appropriate spatial resolution and imaging time window. With the 5-digit signal enhancement afforded by the DNP technique, Gallagher’s group mapped the pH value of murine lymphoma tumor by applying \(^{13}\)C MRSI following an injection of hyperpolarized \(^{13}\)C-bicarbonate. They used the Henderson-Hasselbalch equation to calculate the pH value in each voxel by the relative concentrations of \(^{13}\)C-bicarbonate and its metabolic product, \(^{13}\)CO\(_2\). Slice thickness was 6 mm; FOV, 32 × 32 mm; phase encoding matrix, 16 × 16; and total acquisition time, 5 s. pH was lower in tumor than surrounding healthy tissue.

Schroeder and colleagues\(^{36}\) compared \(^{13}\)C-bicarbonate-based pH measurements with \(^{31}\)P MRS pH measurements in reperfused hearts and hearts of healthy living rats. Depending on carbonic anhydrase (CA) activity, they obtained good agreement between the 2 methods when CA was at normal levels. However, the \(^{13}\)C-based method underestimated the \(^{31}\)P-measured pH in acidosis when CA was inhibited.

Gallagher’s group\(^{37}\) also reported the use of the substrate hyperpolarized \([1,4-^{13}\)C\(_2\)]fumarate in characterizing cancer and monitoring treatment and found the production of \([1,4-^{13}\)C\(_2\)]malate from the labeled fumarate to be a sensitive marker of cellular necrosis. The conversion was 2.4-fold higher in lymphomas treated with etoposide, which had significant levels of tumor cell necrosis, than in untreated tumors. This technique has clinical potential for monitoring early therapeutic response.

Conclusions

Hyperpolarized \(^{13}\)C MR imaging is a novel and promising technique. Its potential in metabolic imaging has been demonstrated in preclinical animal studies for cancer characterization and treatment monitoring as well as cardiac, diabetic, and neurological applications. The technique offers rich research topics in multi-disciplinary areas, such as development of robust MRSI sequences, coil design, efficient acquisition strategies, new polarized substrates, polarization technique for long-lasting \(T1\), and new applications. Success of the on-going clinical trial will mark a major milestone in translating the use of hyperpolarized \(^{13}\)C MR from bench to bedside.

Acknowledgements

This work was supported by grants from the Ministry of Education, Culture, Sport, and Science of Japan and the University of Niigata.

References

1. Ardenkjaer-Larsen JH, Fridlund B, Gram A, et al. Increase in signal-to-noise ratio of >10,000 times in liquid-state NMR. Proc Natl Acad Sci USA 2003; 100:10158–10163.
2. Haake M, Natterer J, Bargon J. Efficient NMR pulse sequences to transfer the parahydrogen-induced polarization to hetero nuclei. J Am Chem Soc 1996; 118:8688–8691.
3. Golman K, Axelsson O, Jóhannesson H, Mánsson S, Olofsson C, Pettersson JS. Parahydrogen-induced polarization in imaging: subsecond \(^{13}\)C angiography. Magn Reson Med 2001; 46:1–5.
4. Abragam A, Goldman M. Principles of dynamic nuclear polarisation. Rep Prog Phys 1978; 41:395–467.
5. Golman K, Ardenkjaer-Larsen JH, Svensson J, et al. \(^{13}\)C-angiography. Acad Radiol 2002; 9 (Suppl 2):S507–510.
6. Golman K, Ardenkjaer-Larsen JH, Pettersson JS, Mánsson S, Leunbach I. Molecular imaging with endogenous substrates. Proc Natl Acad Sci USA 2003; 100:10435–10439.
7. Holm K, Olsson LE, Axelsson O, Mánsson S, Karlsson M, Pettersson JS. Molecular imaging using hyperpolarized \(^{13}\)C. Br J Radiol 2003; 76 Spec No 2:S118–127.
8. Svensson J. Contrast-enhanced magnetic resonance angiography: development and optimization of techniques for paramagnetic and hyperpolarized contrast media. Acta Radiol Suppl 2003; 429:1–30.
9. Svensson J, Mánsson S, Johansson E, Pettersson JS, Olsson LE. Hyperpolarized \(^{13}\)C MR angiography using trueFISP. Magn Reson Med 2003; 50:256–262.
10. Johansson E, Mánsson S, Wirestam R, et al. Cerebral perfusion assessment by bolus tracking using hyperpolarized \(^{13}\)C. Magn Reson Med 2004; 51:464–472.
11. Johansson E, Olsson LE, Mánsson S, et al. Perfusion assessment with bolus differentiation: a technique applicable to hyperpolarized tracers. Magn Reson Med 2004; 52:1043–1051.
12. Golman K, in’t Zandt R, Thaning M. Real-time metabolic imaging. Proc Natl Acad Sci USA 2006; 103:11270–11275.
13. Kohler SJ, Yen Y, Wolber J, et al. In vivo \(^{13}\)carbon metabolic imaging at 3T with hyperpolarized \(^{13}\)C-1-pyruvate. Magn Reson Med 2007; 58:65–69.
14. Golman K, Zandt RI, Lerche M, Pehrson R, Ardenkjaer-Larsen JH. Metabolic imaging by hyperpolarized 13C magnetic resonance imaging for in vivo tumor diagnosis. Cancer Res 2006; 66: 10855–10860.

15. Warburg O. On the origin of cancer cells. Science 1956; 123:309–314.

16. Månssson S, Johansson E, Magnusson P, et al. 13C imaging—a new diagnostic platform. Eur Radiol 2006; 16:57–67.

17. Chen AP, Albers MJ, Cunningham CH, et al. Hyperpolarized C-13 spectroscopic imaging of the TRAMP mouse at 3T-initial experience. Magn Reson Med 2007; 58:1099–1106.

18. Cunningham CH, Chen AP, Albers MJ, et al. Double spin-echo sequence for rapid spectroscopic imaging of hyperpolarized 13C. J Magn Reson 2007; 187:357–362.

19. Albers MJ, Bok R, Chen AP, et al. Hyperpolarized 13C lactate, pyruvate, and alanine: noninvasive biomarkers for prostate cancer detection and grading. Cancer Res 2008; 68:8607–8615.

20. Nelson SJ, Vigneron D, Kurhanewicz J, Chen A, Bok R, Hurd R. DNP-hyperpolarized C magnetic resonance metabolic imaging for cancer applications. Appl Magn Reson 2008; 34:533–544.

21. Hu S, Chen AP, Zierhut ML, et al. In vivo carbon-13 dynamic MRS and MRSI of normal and fasted rat liver with hyperpolarized 13C-pyruvate. Mol Imaging Biol 2009; 11:399–407.

22. Darpolor MM, Yen YF, Shi W, et al. In vivo MRSI of hyperpolarized [1-13C]-pyruvate metabolism in rat hepatocellular carcinoma. NMR Biomed 2011; 24:506–513.

23. Yen YF, Le Roux P, Mayer D, et al. T2 relaxation times of 13C metabolites in a rat hepatocellular carcinoma model measured in vivo using 13C-MRS of hyperpolarized [1-13C]pyruvate. NMR Biomed 2010; 23:414–423.

24. Schroeder MA, Cochlin LE, Heatherr LC, Clarke K, Radda GK, Tyler DJ. In vivo assessment of pyruvate dehydrogenase flux in the heart using hyperpolarized carbon-13 magnetic resonance. Proc Natl Acad Sci USA 2008; 105:12051–12056.

25. Golman K, Petersson JS, Magnusson P, et al. Cardiac metabolic measurement noninvasively by hyperpolarized 13C MRI. Magn Reson Med 2008; 59:1005–1013.

26. Lau AZ, Chen AP, Ghugre NR, et al. Rapid multislice imaging of hyperpolarized 13C pyruvate and bicarbonate in the heart. Magn Reson Med 2010; 64:1323–1331.

27. Park I, Larson PE, Zierhut ML, et al. Hyperpolarized 13C magnetic resonance metabolic imaging: application to brain tumors. Neuro Oncol 2010; 12:133–144.

28. Hurd RE, Yen YF, Mayer D, et al. Metabolic imaging in the anesthetized rat brain using hyperpolarized [1-13C] pyruvate and [1-13C] ethyl pyruvate. Magn Reson Med 2010; 63:1137–1143.

29. Hurd RE, Yen YF, Tropp J, Pfefferbaum A, Spielman DM, Mayer D. Cerebral dynamics and metabolism of hyperpolarized [1-13C]pyruvate using time-resolved MR spectroscopic imaging. J Cereb Blood Flow Metab 2010; 30:1734–1741.

30. Day SE, Kettunen MI, Gallagher FA, et al. Detecting tumor response to treatment using hyperpolarized 13C magnetic resonance imaging and spectroscopy. Nat Med 2008; 13:1382–1387.

31. Chen AP, Bok R, Zhang V, et al. Serial Hyperpolarized 13C 3D-MRSI Following Therapy in a Mouse Model of Prostate Cancer. Proceeding of ISMRM 16th, Tront, 2008: 888.

32. Karlsson M, Jensen PR, in’t Zandt R, et al. Imaging of branched chain amino acid metabolism in tumors with hyperpolarized 13C ketoisocaproate. Int J Cancer 2010; 127:729–736.

33. Gallagher FA, Kettunen MI, Day SE, et al. Magnetic resonance imaging of pH in vivo using hyperpolarized 13C-labelled bicarbonate. Nature 2008; 453:940–943.

34. Gillies RJ, Raghunand N, Garcia-Martin ML, Gatenby RA. pH imaging. A review of pH measurement methods and applications in cancers. IEEE Eng Med Biol Mag 2004; 23:57–64.

35. Stubbs M, Bhujwalla ZM, Tozer GM, et al. An assessment of 31P MRS as a method of measuring pH in rat tumours. NMR Biomed 1992; 5:351–359.

36. Schroeder MA, Swietach P, Atherton HJ, et al. Measuring intracellular pH in the heart using hyperpolarized carbon dioxide and bicarbonate: a 13C and 31P magnetic resonance spectroscopy study. Cardiovasc Res 2010; 86:82–91.

37. Gallagher FA, Kettunen MI, Hu DE, et al. Production of hyperpolarized [1,4-13C]malate from [1,4-13C]fumarate is a marker of cell necrosis and treatment response in tumors. Proc Natl Acad Sci USA 2009; 106:19801–19806.