Targeted immunotherapy for non-small cell lung cancer

Monali Vasekar, Xin Liu, Hong Zheng, Chandra P Belani

Monali Vasekar, Xin Liu, Hong Zheng, Chandra P Belani, Penn State Hershey Cancer Institute, Penn State University College of Medicine, Hershey, PA 17033, United States

Author contributions: Vasekar M, Liu X, Zheng H and Belani CP designed and wrote the introductory editorial for the paper.

Correspondence to: Chandra P Belani, MD, Penn State Hershey Cancer Institute, Penn State University College of Medicine, 500 University Drive, Hershey, PA 17033, United States. cbelani@hmc.psu.edu

Telephone: +1-717-5311078 Fax: +1-717-5310002

Received: December 31, 2013 Revised: March 5, 2014

Accepted: April 17, 2014

Published online: May 10, 2014

Abstract

Targeted therapies that deliver the expected anti-tumor effects while mitigating the adverse effects are taking the cancer world by storm. The need for such therapies in non-small cell lung cancer (NSCLC), where systemic cytotoxic chemotherapies still remain the backbone of management, is felt more than ever before. Runway success of immunotherapies such as Ipilimumab for melanoma has brought excitement among oncologists. Immune-based treatments are in various stages of evaluation for NSCLC as well. Immunotherapies using strategies of antigen based or cell based vaccines, and blocking immune checkpoints are of substantial interest. Meaningful clinical responses are yet to be reaped from these new treatment modalities.

Core tip: Lung cancer is the leading cause of cancer-death worldwide. Majority of these patients have non-small cell lung cancer (NSCLC). Traditional chemotherapy is limited by its high toxicity. Emerging data have demonstrated promising outcome of immunotherapy in NSCLC. This review delineated the rationale and potential targets of cancer immunotherapy, with a summary of immunotherapeutic agents for treatment of NSCLC. Protein/peptide-based and cell-based vaccines, as well as immune checkpoint targeted agents such as Ipilimumab and PD-1 pathway inhibitors were discussed. In addition, we reviewed ongoing immunotherapy-based studies including several major phase II/III clinical trials, results of which will be available soon for incorporation into clinical practice.

INTRODUCTION

Lung cancer remains the leading cause of death in the United States with about 160000 estimated deaths in 2013[1]. Majority of these patients have non-small cell lung cancer (NSCLC). Over the past few decades, platinum based chemotherapy is the standard of care for advanced stages of NSCLC. These systemic therapies have significant toxicities and confer unacceptable morbidity. A decade ago, it was realized that advancement in treating NSCLC could not be reached with the use of cytotoxic agents alone[2]. While entering the era of personalized medicine, focus of cancer therapy has been recently shifted to identifying and targeting certain driver mutations. This has been successful in certain solid tumors including NSCLC, wherein identifying the genetic mutation in epidermal growth factor receptor (EGFR) and fusion gene rearrangement in anaplastic lymphoma kinase has become the standard of care. Historically lung cancer was not seen as an “immunologic malignancy”. However recent success of Ipilimumab in melanoma[3] and Sipuleucel-T in prostate cancer[4] opened up a new realm...
of cancer immunotherapy. Emerging data demonstrate promising outcome of immunotherapy in lung cancer. Herein we review the basics of cancer immunotherapy and development of immunotherapeutic agents for management of NSCLC.

We conducted a review of articles in the past 10 years, that harbored the terms “immunotherapies”, “non small cell lung cancer” in the Pubmed and Medline database as well as trials that are ongoing in clinicaltrials.gov.

BASIC IMMUNOLOGY PRINCIPLES AND ITS APPLICATION IN NSCLC

Immunity acts as a double edged sword when it comes to cancer. The cross talk between tumor and immunity is complex. Cancer immunoediting plays an important role in this context. Three phases of cancer immunoediting have been described: elimination, equilibrium and escape

In the initial phase of elimination, innate and adaptive immune systems work in concert to eradicate tumor cells, after which the survived cells enter a state of dormancy called the equilibrium phase. Under immune pressure, tumor cells may undergo phenotypic or genomic modification, resulting in the survival and proliferation of tumor variants that are capable of escaping immune attack. Important modulations of this immune escape include down-regulation of HLA class Ⅰ, loss of tumor antigens, lack of death receptor signaling, insufficient costimulation, and negative regulation pathways including regulatory T cells, inhibitory cytokines and molecules involved in immune checkpoints.

The potential targets for immunotherapy can be tumor specific antigen or each component of the cross talk between the immune system and tumor. It has been proposed that targeting tumor specific antigen may be ideal in treating early stage cancers when the tumor cells are highly immunogenic; whereas targeting non antigen specific immune pathways may be optimal in managing advanced stage cancers. Advancement of our knowledge in cancer immunology has resulted in better cancer vaccine designs with hope to improve clinical outcomes.

Previously lung cancer was not seen as immunogenic. However recent studies have shown the association of immune response with overall outcome, indicating a role of immunotherapy in lung cancer management. Histological analysis of lung tumors in retrospect, showed that increased infiltration of the stroma by CD4+/CD8+ cells was an independent favorable prognostic factor. In addition, it has been observed that in advanced NSCLC, favorable prognosis has been associated with higher number of macrophages and CD8+ T in tumor nests as compared with surrounding stroma. In contrast, increased infiltration by Foxp3+ lineage Treg cells is associated with poor outcome. Furthermore depletion of Treg achieves prolonged survival in mouse models. Current development of NSCLC immunotherapy is mainly focused on tumor vaccines and blockade of immune checkpoint pathways.

CANCER VACCINES

A therapeutic cancer vaccine intends to treat an existing cancer by strengthening the body’s natural defense against cancer. Broadly, cancer vaccines can be divided into protein/peptide based vaccines and cellular vaccines.

PROTEIN/PEPTIDE BASED VACCINES IN NSCLC

L-BLP25 vaccine

MUC1 is a transmembrane glycoprotein that is upregulated in many solid tumors including NSCLC. It is purported that aberrant up regulation of MUC1 in tumor cells favors tumor angiogenesis via activating Erk and Akt pathways. L-BLP25 is a peptide vaccine that targets the exposed core peptide of MUC1.

The vaccine was studied in an open label, phase Ⅱ randomized trial in 171 patients with stage ⅢB/Ⅳ NSCLC with response or stable disease after first line therapy. The trial evaluated effect of L-BLP25 liposome vaccine on survival and toxicity in the above patients. Quality of life and immune related responses due to the vaccine were the secondary end points. Patients were prestratified by stage and randomly assigned to either L-BLP25 plus best supportive care (BSC) or BSC alone. Patients in the L-BLP25 arm received a single intravenous dose of cyclophosphamide 300 mg/m² followed by eight weekly subcutaneous immunizations with L-BLP25; and then every 6 wk, as this had been previously shown to boost immune response in certain other cancers. Though the study failed to achieve the primary end point of overall survival (OS); subgroup analysis of patients with stage ⅢB disease showed strong positive trend towards 2 years survival. Update on these patients published later showed continued improved survival in patients on the L-BLP25 arm. These results were achieved with minimal toxicity.

Based on the above results, a phase Ⅲ trial, Stimmulated Targeted Antigenic response to NSCLC (START, NCT00409188) was undertaken. One thousand two hundred and thirty-six patients with stable unresectable stage Ⅲ disease were randomized to receive either L-BLP25 vs placebo. The trial did not meet its primary end point of OS; however the subgroup that was pretreated with prior chemoradation (either concurrent or sequential) had significant improvement in OS. They reported the vaccine to be well tolerated with some flu-like symptoms, but no significant immune associated adverse effects.

Other clinical trials of L-BLP25 include the multi national, double blinded, placebo controlled trial in Asian population, with unresectable stage Ⅲ NSCLC who have been stable or responded to primary chemoradiation, L-BLP25 trial In Asian NSCLC Patients: Stimulating Immune Resposne.

A phase Ⅱ study of L-BLP-25 is looking in combination with bevacizumab in patients who have undergone
Melanoma-associated antigen-A3 vaccine

Melanoma-associated antigen (MAGE) is a family of tumor-specific antigens that is expressed on a variety of tumor cells and specifically the MAGE-A3 is detected in about 35%-50% of NSCLC. It is also expressed on cells of other tumors such as melanoma, renal, bladder and liver cancer. MAGE-A3 is also expressed on normal testicular and placental. However with unique immune tolerance mechanisms these organs were able to escape immune attack. Hence MAGE-A3 is a unique tumor antigen and the vaccine against it should be well tolerated in theory. Presence of MAGE-A3 is independently associated with poor prognosis in NSCLC.

MAGE-A3 vaccine is composed of recombinant fusion protein, in combination with immune-enhancing adjuvant. A phase II trial studying the efficacy and safety of the vaccine was performed in 182 patients with MAGE-A3 positive, resected stage I/II NSCLC. This was an international, double blinded, placebo controlled trial, where patients were randomized to receive either MAGE-A3 vaccine or placebo. The results were encouraging as the long term analysis showed a positive trend in OS, disease progression time and disease-free survival in those receiving the MAGE-A3. The vaccine was very well tolerated leading to good compliance.

Encouraged by the above results, a phase III trial of belagenpumatucel vaccine is underway as maintenance therapy for patients with T3N2-3A, II B and IV NSCLC who did not progress after front line chemotherapy (STOP trial). Findings were reported in September 2013 at the European Cancer Congress from the STOP trial. Of 532 patients enrolled, 42 had stage II A and 490 had stage III B/IV disease. Patients were randomized 1:1 to receive either the vaccine or placebo until disease progression or withdrawal. Though STOP did not meet its predefined primary end point in the entire population, it was noted that patients who were randomized to receive the vaccine within 12 wk of the end of their first line chemotherapy had better OS (20.7 mo) as compared to those with placebo (13.4 mo). In addition, pretreatment radiation showed improved median OS with treatment.
The quality and amplitude of T cells depends on the balance of the above co-stimulatory and inhibitory signals and ultimate orchestration of death of tumor cells. Agonists of costimulators or antagonist of inhibitors are the main topic of the study as described. MHC-Ag: Major histocompatibility complex antigen; TCR: T cell receptor; PD-1: Programmed death-1; PD-L1: Programmed death ligand 1; CTLA-4: Cytotoxic T lymphocyte antigen-4.

Immune checkpoints inhibitors

T cell receptors activate antigen specific cytotoxic T cells after recognition of the antigen peptide along with major histocompatibility complex. This activation usually requires costimulatory signal obtained via interaction of CD28 expressed on T cells with molecules expressed on antigen presenting cells (Figure 1). CD28 can also interact with inhibitory receptors on antigen presentation cells or tumor cells such as Cytotoxic T-Lymphocyte Antigen (CTLA)-4, PD-1, PD-L1 and B- and T-lymphocyte attenuator [41], therefore inhibits T cell functions, a process called immune check point [41,42]. Two promising strategies for immune check point modulation are currently being investigated in NSCLC.

CTLA-4 inhibitors

CTLA-4 inhibitors have been extensively studied and are thought to be responsible for initiating and maintaining peripheral tolerance as a part of physiological immune mechanism. Ipilimumab is a fully humanized mAb targeting the CTLA-4 inhibitory coreceptor, thus rescuing cytokotoxic T cell activity and potentiating tumor death [43]. It was approved for malignant melanoma [39] and since then has been evaluated in various other malignancies.

A phase II study of Ipilimumab enrolled 204 patients with stage III B/IV NSCLC who had not received any prior chemotherapy [40]. Patients were randomly assigned 1:1:1 to receive a concurrent Ipilimumab regimen (four doses of Ipilimumab plus paclitaxel and carboplatin followed by two doses of placebo plus paclitaxel and carboplatin), a phased Ipilimumab regimen (two doses of placebo plus paclitaxel and carboplatin followed by four doses of Ipilimumab plus paclitaxel and carboplatin), or a control regimen (up to six doses of placebo plus paclitaxel and carboplatin). In a previous study, lower dose of paclitaxel was found to be equally efficacious, with prospects of decreased toxicity when combined with Ipilimumab [40]. Patients who tolerated the treatment well without evidence of progression then went on to receive either Ipilimumab or placebo for another 12 wk until disease progression or death. Clinical response patterns to Ipilimumab differs from conventional cytotoxic therapies and hence a novel parameter, immune related response criteria (irRC) has been recently established to capture this phenomenon. Ipilimumab may cause regression of index lesions in the face of new lesions and initial progression followed by tumor stabilization or decrease in tumor burden. The irRC uses the total tumor burden obtained by adding measurable new lesions to index lesions in determining the tumor response. Changes in non-index or nonmeasurable lesions are discounted. Thresholds for immune-related complete response (CR, complete disappearance of all lesions), immune-related partial response (PR, decrease of total tumor burden from baseline by ≥ 50%), immune-related progressive disease (PD, increase of total tumor burden from nadir by ≥ 25%), and immune-related stable disease (all other settings including a slow steady decline in total tumor burden from baseline) were the same as for the CR, PR, PD, and stable disease [44,46]. Here, immune related progression free survival (irPFS) which was defined as time from randomization to immune related progression or death was used as the primary end point.

Patients receiving phased Ipilimumab and carboplatin/paclitaxel showed improved irPFS as compared to carboplatin/paclitaxel alone, however no such benefit was seen in the group receiving concurrent Ipilimumab and carboplatin/paclitaxel. Also further subgroup analysis showed better outcome in patients with squamous histology. Hence the timing of Ipilimumab with cytotoxic chemotherapy seems to play an important role in the outcome.

Incidence of grade 3 or 4 AE was similar in all 3 arms. Though non hematologic AE related to carboplatin (alopecia, fatigue, nausea/vomiting, neuropathy) were similar across all arms, immune mediated adverse events (rash, pruritis, diarrhea, colitis, transaminitis and pituitary dysfunction) showed a trend for increased incidence in Ipilimumab containing arms. These immune related side effects from Ipilimumab are thought to be secondary to CTLA4 inhibition. It is to be noted that though dose of Ipilimumab used in this trial was higher than that used in melanoma (10 mg/kg vs 3 mg/kg), the incidence of AE was comparable [47].

A larger phase III trial of phased carboplatin/paclitaxel and Ipilimumab in patients with stage IV NSCLC is underway [48]. In addition, a safety and efficacy study of
Study population
Any solid tumor, or advanced tumor

Trial
NCT01454102
NCT01673867
NCT01642004
NCT01721759
NCT01928576
NCT01928576

Study design
Nivolumab as single agent (checkmate 012)
Previously treated (failed platinum based) advanced NSCLC (checkmate 057)
Previously treated (failed platinum based) advanced NSCLC (checkmate 017)
Previously treated and failed 2 lines of chemotherapy (checkmate 063)
Previously treated, advanced/ recurrent NSCLC
Any solid tumor, or advanced NSCLC

Ref.
[55]
[56]
[57]
[58]
[59]
[60]

NSCLC: Non-small cell lung cancer; OS: Overall survival.

Programmed death-1 pathway inhibitor

Programmed death-1 (PD-1) is another key receptor that can mediate immunosuppression by interacting with PD ligands 1 (PD-L1) and PD-L2. The anti-tumor activity of cytotoxic T cells can be enhanced by blocking this pathway.\[51,52\]

Anti PD-1 pathway agents gained momentum when a phase I dose escalation study of Nivolumab, a humanized IgG4 mAb, was performed in 39 patients with various cancers (melanoma, colorectal, prostate, NSCLC and renal cell). Among the 6 patients with NSCLC, all of whom had received multiple chemotherapies in the past, 1 patient achieved partial remission for over 14 mo, and the other 5 patients had stable disease post treatment.\[53\]

A larger phase I study then was conducted in patients with NSCLC, melanoma, castration resistant prostate cancer, colorectal cancer or renal cell cancer who largely had multiple lines of chemotherapy in the past. Nivolumab was administered Intravenous every 2 wk of 8 wk until CR, disease progression, unacceptable side effects or consent withdrawal. Of the 129 NSCLC patients, 17% had objective responses with best responses (24%) at the 3 mg/kg dose. The responses were rapid, durable and the unprecedented OS rate of 24% at 2 years was provocative and is termed “landmark OS”. Major AEs were rash/pruritus (16%), colitis (12%) and specifically pneumonitis (6%). Drug related pneumonitis was severe in 3 patients resulting in 2 early deaths. Better management and monitoring strategies have been introduced since then to prevent such AE related deaths in future. This study opened the realm of possibility that multiple types of cancer could be responsive to immunotherapy if appropriate population is selected even if heavily pre-treated.\[54\]

A follow up report on above trial was presented and confirmed the durable response and encouraging OS across all histological subtypes in NSCLC subgroup.\[55\] Currently a number of studies are ongoing to test the efficacy of Nivolumab and another investigational PD-1 inhibitor, Lambrolizumab (Table 1).

Data on MK-3475 (Lambrolizumab) from phase I study of 38 patients with advanced NSCLC who had received atleast 2 prior therapies was presented at the 15th World conference on Lung cancer by Garon et al.\[61\] Early responses were seen in 24% of patients even at 9 wk assessment in both squamous and non squamous subtypes. One patient had PR after a single dose. Median duration of response had not been reached and at the time of abstract presentation, 7 of 9 responding patients were continuing therapy. Median OS was 51 wk. Common AEs were fatigue, rash, pruritus and diarrhea. One case each of grade 2 pneumonitis and grade 3 pulmonary edema were reported, no fatalities occurred.

PD-L1 pathway inhibitor

As described above, PD-L1 is one of the 2 ligands for PD-1 receptor. Presence of PD-L1 has been associated with poor prognosis.\[62\]

A high affinity, fully humazined PD-L1 IgG4 monoclonal antibody, BMS-936559 was studied in phase I trial in patients with advanced cancers.\[63\] Total of 207 patients, 75 of whom had advanced NSCLC, were given escalating dose of BMS-936559. Objective responses were seen in 5 of 49 patients who were evaluable; with both squamous and non-squamous histologies. Also 6 other patients with NSCLC had stable disease at 6 mo.

In all tumor types, it was encouraging to see both durable tumor regression and prolonged disease stabilization. Grade 3 or 4 AEs were seen in up to 9% of patients, however as compared to some other immune therapies, such as anti CTLA-4; these were milder. Again, the response with this agent was promising, and further

Therapy	Trial	Study population	Study design	Ref.
Nivolumab phase I safety study	NCT01454102	Advanced NSCLC	Nivolumab as single agent vs combination with various chemotherapies	[55]
Nivolumab phase III study to determine OS	NCT01673867 (checkmate 057)	Previously treated (failed platinum based) advanced NSCLC	Nivolumab compared to docetaxel in previously treated patients	[56]
Nivolumab phase III study to look for tumor size and OS	NCT01642004 (checkmate 017)	Previously treated (failed platinum based) advanced NSCLC	Nivolumab compared to docetaxel in previously treated patients	[57]
Nivolumab phase III study assessing tumor size after treatment	NCT01721759 (checkmate 063)	Previously treated and failed 2 lines of chemotherapy	Assess response rate objectively (monitoring tumor size) in patients receiving Nivolumab	[58]
Nivolumab phase II study to determine Response	NCT01928576	Previously treated, advanced/ recurrent NSCLC	Assess objective response with Nivolumab, preceded by epigenetic therapy (azacitadine IV or oral, entinostat) priming	[59]

Table 1 Ongoing clinical trials of programmed death-1 antibodies in non-small cell lung cancer

Anti PD-1 pathway agents gained momentum when a phase I dose escalation study of Nivolumab, a humanized IgG4 mAb, was performed in 39 patients with various cancers (melanoma, colorectal, prostate, NSCLC and renal cell). Among the 6 patients with NSCLC, all of whom had received multiple chemotherapies in the past, 1 patient achieved partial remission for over 14 mo, and the other 5 patients had stable disease post treatment.\[53\]

A larger phase I study then was conducted in patients with NSCLC, melanoma, castration resistant prostate cancer, colorectal cancer or renal cell cancer who largely had multiple lines of chemotherapy in the past. Nivolumab was administered Intravenous every 2 wk of 8 wk until CR, disease progression, unacceptable side effects or consent withdrawal. Of the 129 NSCLC patients, 17% had objective responses with best responses (24%) at the 3 mg/kg dose. The responses were rapid, durable and the unprecedented OS rate of 24% at 2 years was provocative and is termed “landmark OS”. Major AEs were rash/pruritus (16%), colitis (12%) and specifically pneumonitis (6%). Drug related pneumonitis was severe in 3 patients resulting in 2 early deaths. Better management and monitoring strategies have been introduced since then to prevent such AE related deaths in future. This study opened the realm of possibility that multiple types of cancer could be responsive to immunotherapy if appropriate population is selected even if heavily pre-treated.\[54\]

A follow up report on above trial was presented and confirmed the durable response and encouraging OS across all histological subtypes in NSCLC subgroup.\[55\] Currently a number of studies are ongoing to test the efficacy of Nivolumab and another investigational PD-1 inhibitor, Lambrolizumab (Table 1).

Data on MK-3475 (Lambrolizumab) from phase I study of 38 patients with advanced NSCLC who had received atleast 2 prior therapies was presented at the 15th World conference on Lung cancer by Garon et al.\[61\] Early responses were seen in 24% of patients even at 9 wk assessment in both squamous and non squamous subtypes. One patient had PR after a single dose. Median duration of response had not been reached and at the time of abstract presentation, 7 of 9 responding patients were continuing therapy. Median OS was 51 wk. Common AEs were fatigue, rash, pruritus and diarrhea. One case each of grade 2 pneumonitis and grade 3 pulmonary edema were reported, no fatalities occurred.

As described above, PD-L1 is one of the 2 ligands for PD-1 receptor. Presence of PD-L1 has been associated with poor prognosis.\[62\]

A high affinity, fully humazined PD-L1 IgG4 monoclonal antibody, BMS-936559 was studied in phase I trial in patients with advanced cancers.\[63\] Total of 207 patients, 75 of whom had advanced NSCLC, were given escalating dose of BMS-936559. Objective responses were seen in 5 of 49 patients who were evaluable; with both squamous and non-squamous histologies. Also 6 other patients with NSCLC had stable disease at 6 mo.

In all tumor types, it was encouraging to see both durable tumor regression and prolonged disease stabilization. Grade 3 or 4 AEs were seen in up to 9% of patients, however as compared to some other immune therapies, such as anti CTLA-4; these were milder. Again, the response with this agent was promising, and further
studies are needed to outline the patient population and tumor type that would derive benefit from this therapy.

Another anti PD-L1 agent, MPDL-3280A, was studied in a phase I clinical trial, the results of which were exciting as it shows remarkable and durable outcomes in patients with either squamous cell carcinoma or adenocarcinoma. More pronounced effect was seen in smokers, who typically have a poor response to other immunotherapies. This suggests an association between smoking and PD-1/PD-L1 pathway. In this phase I study, 85 patients with advanced NSCLC were evaluated for safety and 53 for efficacy. They received monotherapy with MPDL-3280A every 3 wk and then assessed after a median duration of 48 wk. Objective response rate was 21%, with higher rate observed in patients whose tumor stains positive for PD-L1. The responses were sustained and dramatic response was seen in the smoking cohort. AEs were mild and limited to cough and diarrhea[60]. Ongoing clinical trials using PD-L1 mAbs are summarized in Table 2.

CONCLUSION

Improved understanding of cancer and its interplay with immune system has now rendered more insight into NSCLC which is being looked at as a “immunogenic” cancer. The application of immunotherapy to NSCLC is being brought back in a big way. It is exciting to see that preclinical success of some of the immunotherapeutic agents is being reflected onto actual clinical success as seen with PD-1 and PD-L1 inhibitors. Data from some major phase II/III clinical trials will be available soon for incorporation into our clinical practice. There are still many unanswered questions regarding the precise timing of these therapies, targeted population, patient selection and appropriate bio-immuno markers to assess response. Ultimately, it would be a high point in medical science if these agents are able to confer survival benefit and improve quality of life of patients who otherwise struggle with the disease. The hope is to identify the best effective “immunotherapeutic targeted agent or combination” and change the treatment paradigm of NSCLC.

REFERENCES

1. SEER Stat Fact Sheets: Lung and Bronchus Cancer. Available from: URL: http://seer.cancer.gov/statfacts/html/lungb.html
2. Schiller JH, Harrington D, Belani CP, Langer C, Sandler A, Krook J, Zhu J, Johnson DH. Comparison of four chemotherapy regimens for advanced non-small-cell lung cancer. *N Engl J Med* 2002; 346:92-98 [PMID: 11784875 DOI: 10.1056/NEJMoa011954]
3. Hodi FS, O'Day SJ, McDermott DF, Weber RW, Sosman JA, Haanen JB, Gonzalez R, Robert C, Schadendorf D, Hassel JC, Akerley W, van den Eertwegh AJ, Lutzky J, Lorigan P, Vaubel JM, Linette GP, Duggert K, Ottensmeier CH, Lebbe C, Peschel C, Quirt I, Clark JJ, Wolchok JD, Weber JS, Tian J, Yellin M, Nichol GM, Hoos A, Urba WJ. Improved survival with ipilimumab in patients with metastatic melanoma. *N Engl J Med* 2010; 363:711-723 [PMID: 20525992 DOI: 10.1056/NEJMoa1003466]
4. Kantoff PW, Higano CS, Shore ND, Berger ER, Small EJ, Panten DF, Redfern CH, Ferrari AC, Dreicer R, Sims RB, Xu Y, Frohlich MW, Schellhammer PF. Sipuleucel-T immuno-therapy for castration-resistant prostate cancer. *N Engl J Med* 2010; 363:411-422 [PMID: 20818862 DOI: 10.1056/NEJMoa1001294]
5. Schreiber RD, Old LJ, Smyth MJ. Cancer immunoediting: integrating immunity’s roles in cancer suppression and promotion. *Science* 2011; 331:1565-1570 [PMID: 21436444 DOI: 10.1126/science.1230486311/6024/1565]
6. Baxevanis CN, Perez SA, Papamichail M. Developing effective cancer vaccines. *Eur J Cancer* 2011; 47 Suppl 3: S366-S365 [PMID: 21944017 DOI: 10.1016/S0959-8049(11)70205-2]
7. Hiraoaka K, Miyamoto M, Cho Y, Suzuki M, Oshikiri T, Nakakubo Y, Itoh T, Ohashi T, Kondo S, Kato H. Concurrent infiltration by CD8+ T cells and CD4+ T cells is a favourable prognostic factor in non-small-cell lung carcinoma. *Br J Cancer* 2006; 94:275-280 [PMID: 16421594]
8. Kawai O, Ishii G, Kubota K, Murata Y, Naito Y, Mizuno T, Aokage K, Saito N, Nishiwaki Y, Gemma A, Kudo S, Ochiai A. Predominant infiltration of macrophages and CD8+ T Cells in cancer nests is a significant predictor of survival in stage IV nonsmall cell lung cancer. *Cancer* 2008; 113:1387-1395 [PMID: 18671239 DOI: 10.1002/cncr.23721]
9. Shimizu K, Nakata M, Hirami Y, Yukawa T, Maeda A, Tanemoto K. Tumor-infiltrating Foxp3+ regulatory T cells are correlated with cyclooxygenase-2 expression and are associated with recurrence in resected non-small cell lung cancer. *J Thorac Oncol* 2010; 5:585-590 [PMID: 20234520 DOI: 10.1097/JTO.0b013e3181d6fed7]
10. Ganesan AP, Johannson M, Ruffell B, Yagui-Beltrán A, Lau J, Jablons DM, Coussens LM. Tumor-infiltrating regulatory T cells inhibit endogenous cytotoxic T cell responses to lung adenocarcinoma. *J Immunol* 2013; 191:2009-2017 [PMID: 23851682 DOI: 10.4049/jimmunol.1301317]
11. Yao M, Zhang W, Zhang Q, Xing L, Xu A, Liu Q, Cui B. Overexpression of MUC1 enhances proangiogenic activity of non-small-cell lung cancer cells through activation of Akt and extracellular signal-regulated kinase pathways. *Lung* 2011; 189:453-460 [PMID: 21959954 DOI: 10.1007/s00408-011-9327-y]
12. Palmer M, Parker J, Modi S, Butts C, Smylie M, Meikle A, Kehoe M, MacLean G, Longenecker M. Phase I study of the BLP25 (MUC1 peptide) liposomal vaccine for active specific immunotherapy in stage IIIB/IV non-small-cell lung cancer. *Clin Lung Cancer* 2001; 3:49-57; discussion 58 [PMID: 14656392]
13. Butts C, Murray N, Maksymik A, Goss G, Marshall E, ...
BLP25 Liposome Vaccine and Bevacizumab After Chemo Cancer vaccine study for stage III, unresectable NSCLC in patients with metastatic breast cancer by pretreatment with low-dose intravenous cyclophosphamide. *J Immunother Emphasis Tumor Immunol.* 1996; 20: 309-316 [PMID: 8877724]

**Butts C, Makhotkin IA, Goss G, Soulieres D, Marshall E, Cormier Y, Ellis PM, Price A, Sawhney R, Beier F, Falk M, Murray N. Updated survival analysis in patients with stage IIIB or IV non-small-cell lung cancer receiving BLP25 liposome vaccine (L-BLP25): phase II randomized, multicenter, open-label trial. ** *J Cancer Res Clin Oncol* 2011; 137: 1337-1342 [PMID: 21744082 DOI: 10.1007/s00432-011-1003-3]

Butts C, Socinski MA, Mitchell PL, Thatcher N, Havel L, Rasmussen A, Chua R, Williamson B, Gonen M, Ferrera CA, Lim D. Randomized phase IIB trial of BLP25 liposome vaccine and bevacizumab after chemotherapy for stage III non-small cell lung cancer (START): a randomised, double-blind, phase 3 trial. *Lancet Oncol* 2014; 15: 59-68 [PMID: 24331154 DOI: 10.1016/S1470-2045(13)70105-2]

Cancer Vaccine study for stage III, unresectable NSCLC in Asian Population. Available from: URL: http://www.clinicaltrials.gov

BLP25 Liposome Vaccine and Bevacizumab After Chemotherapy and Radiation Therapy in Treating Patients With Newly Diagnosed Stage IIIA or Stage IIIB Non-Small Cell Lung Cancer That Cannot Be Removed by Surgery. Available from: URL: http://www.clinicaltrials.gov

Miyagawa N, Kono K, Mimura K, Omata H, Sugai H, Fujii H. A newly identified MAGE-A3-derived, HLA-A24-restricted epitope is naturally processed and presented as a CTL epitope on MAGE-A3-expressing gastrointestinal cancer cells. *Oncology* 2006; 70: 54-62 [PMID: 16446550]

Schultz ES, Lethé B, Cambiasso CL, Van Snick J, Chaux P, Corthals J, Heirman C, Thielemans K, Boon T, van der Bruggen P. Enhanced expression of the MAGE-A3 glycoprotein in a subset of tumor cells by induction of transcription factor Foxp3. *J Immunother Emphasis Tumor Immunol* 2013; 36: 143-150 [PMID: 23698354 DOI: 10.1007/s12263-013-0064-4]

De Paoli A, Arden K, Travassori C, Gaffone S, Szalay S, De Smet C, Brasseur F, van der Bruggen P, Lethé B, Lurquin C. Structure, chromosomal localization, and expression of 12 genes of the MAGE family. *ImmunoGENETICS* 1994; 40: 360-369 [PMID: 7927540]

Boel P, Wildmann C, Sensi ML, Brasseur R, Renauld JC, Coulie P, Boon T, van der Bruggen P. BAGE: a new gene encoding an antigen recognized on human melanomas by cytolytic T lymphocytes. *Immunity* 1995; 2: 167-175 [PMID: 7905173 DOI: 8674-6681 [PMID: 16170175]

Gure AO, Chua R, Williamson B, Gonen M, Ferrera CA, Gnajtic S, Ritter G, Simpson AJ, Chen YT, Old LJ, Altorki NK. Cancer-testis genes are coordinately expressed and are markers of poor outcome in non-small cell lung cancer. *Clin Cancer Res* 2005; 11: 8055-8062 [PMID: 16299236]

Vansteenkiste J, Zielinski M, Linder A, Dahabreh J, Gonzalez EE, Malinowski W, Lopez-Brea M, Vanakesa T, Jassem J, Kalofonos H, Perdeus J, Bonnet R, Basko J, Janilionis R, Passlick B, Treasure T, Gillet M, Lehmann FF, Brichard VG. Adjuvant MAGE-A3 immunotherapy in resected non-small-cell lung cancer: phase II randomized study results. *J Clin Oncol* 2013; 31: 2396-2403 [PMID: 23715567 DOI: 10.1200/JCO.2012.43.7103]

MacLean GD, Miles DW, Rubens RD, Reddish MA, Longe- necker BM. Enhancing the effect of THERATOPE STn-KLH cancer vaccine in patients with metastatic breast cancer by pretreatment with low-dose intravenous cyclophosphamide. *J Immunother Emphasis Tumor Immunol* 1996; 20: 309-316 [PMID: 8877724]

Resell R, Carewton E, Gervais R, Vergnenegre A, Massuti B, Felip E, Palmero R, Garcia-Comeza R, Pallares C, Sanchez JM, Porta R, Cobo M, Garrido P, Longo F, Moran T, Insa A, De Marinis F, Corre R, Bover I, Illanio A, Dansin E, de Castro J, Milleda M, Reguard N, Altavilla G, Jimenez U, Provencio M, Moreno MA, Terrasa J, Muñoz-Langa J, Valdivia J, Isla D, Domíne M, Molinier O, Mazieres J, Baize N, Garcia-Campelo R, Robinet G, Rodriguez-Abrudor R, Lopez-Vivanco G, Gubbia V, Ferrer-Delgado L, Bombaron P, Bernabe R, Beaz R, Artal A, Cortesi E, Rolfo C, Sanchez-Ronco M, Drezdowsky A, Queralt C, de Aguirre I, Ramirez JL, Sanchez JJ, Molina MA, Taron M, Paz-Ares L. Erlotinib versus standard chemotherapy as first-line treatment for European patients with advanced EGFR mutation-positive non-small-cell lung cancer (EURTAC): a multicentre, open-label, randomised phase 3 trial. *Lancet Oncol* 2012; 13: 239-246 [PMID: 22285168 DOI: 10.1016/S1470-2045(11)70393-X]

Zhou C, Wu YL, Chen G, Feng J, Liu XQ, Wang C, Zhang S, Wang J, Zhou S, Ren S, Lu S, Zhang L, Hu C, Hu C, Luo Y, Chen L, Ye M, Huang J, Zhi X, Zhang Y, Xiu Q, Ma J, Zhang L, You C. Erlotinib versus chemotherapy as first-line treatment for patients with advanced EGFR mutation-positive non-small-cell lung cancer (OPTIMAL-C, CTONG-0802): a multicentre, open-label, randomised, phase 3 study. *Lancet Oncol* 2011; 12: 735-742 [PMID: 21783417 DOI: 10.1016/S1470-2045(11)70184-X]

**Mok TS, Wu YL, Thongprasert S, Yang CH, Chu DT, Saio N, Sunpaweravong P, Han B, Margono B, Ichinose Y, Nishi waki Y, Ohe Y, Yang J, Chen J, Treuwig B, Yung A, Sukefuoka M, Gefitinib or carboplatin-paclitaxel in pulmonary adenocarcinoma. N Engl J Med 2009; 361: 947-957 [PMID: 19692680 DOI: 10.1056/NEJ MoA0810699]

Ramos TC, Vinagras EN, Ferrer MC, Verdecia BG, Rupale Il, Pérez LM, Marinello GG, Rodríguez RP, Dávila AL. Treatment of NSCLC patients with an EGF-based cancer vaccine: report of a Phase I trial. *Cancer Biol Ther* 2006; 5: 145-149 [PMID: 16357522]

Garcia B, Neninger E, de la Torre A, Leonard I, Martinez R, Viada C, González G, Mazorra Z, Lage A, Crombet T. Effective inhibition of the epidermal growth factor/epidermal growth factor receptor binding by anti-epidermal growth factor antibodies is related to better survival in advanced non-small-cell lung cancer patients treated with the epidermal growth factor cancer vaccine. *Clin Cancer Res* 2008; 14: 840-846 [PMID: 18245547 DOI: 10.1186/1078-0432.CCR-07-1050]

A Randomized Trial to Study the Safety and Efficacy of EGF Cancer Vaccination in Late-stage (IIB/IV) Non-Small Cell Lung Cancer Patients (NSCLC). Available from: URL: http://www.clinicaltrials.gov

Chen W, Jin W, Hardegen N, Lei KJ, Li L, Marinos N, McGrady G, Wahl SM. Conversion of peripheral CD4+CD25- T cells to CD4+CD25+ regulatory T cells by TGF-beta induction of transcription factor Foxp3. *J Exp Med* 2003; 198: 1875-1886 [PMID: 14676299 DOI: 10.1084/jem.20030152]

**Kong F, Jirtle RL, Huang DH, Clough RW, Anscher MS. Plasma transforming growth factor-beta level before radio-
therapy correlates with long term outcome of patients with lung carcinoma. Cancer 1999; 86: 1712-1719 [PMID: 10547843]

36 Nemunaitis J, Dillman RO, Schwarzenberger PO, Senzer N, Cunningham C, Cutler J, Tong A, Kumar P, Pappen B, Hamilton C, Devol E, Maples PB, Liu L, Champion T, Shawler DL, Fakhrai H. Phase II study of belagenpumatucel-L, a transforming growth factor beta-2 antisense gene-modified allogeneic tumor cell vaccine in non-small-cell lung cancer. J Clin Oncol 2006; 24: 4721-4730 [PMID: 16966690]

37 Nemunaitis J, Nemunaitis M, Senzer N, Snitz P, Bedell C, Kumar P, Pappen B, Maples PB, Shawler D, Fakhrai H. Phase II trial of Belagenpumatucel-L, a TGF-beta2 antisense gene modified allogeneic tumor vaccine in advanced non small cell lung cancer (NSCLC) patients. Cancer Gene Ther 2009; 16: 620-624 [PMID: 19283711 DOI: 10.1038/cgt.2009.15]

38 NCT00676507. Phase III Lucanix™ Vaccine Therapy in Advanced Non-Small Cell Lung Cancer (NSCLC) Following Front-line Chemotherapy (STOP). Available from: URL: http: //clinicaltrials.gov

39 Giaccone G. European Cancer Congress 2013. Amsterdam, Netherlands September, 2013

40 Pentcheva-Hoang T, Corse E, Allison JP. Negative regulators of T-cell activation: potential targets for therapeutic intervention in cancer, autoimmune disease, and persistent infections. Immunol Rev 2009; 229: 67-87 [PMID: 19426215 DOI: 10.1111/j.1600-065X.2009.00763.x]

41 Topalian SL, Hodi FS, Brahmer JR, Gettinger SN, Smith DC, McDermott DF, Powdrider JD, Carvalaj RD, Sosman JA, Atkins MB, Lemen PD, Spigel DR, Antonia SJ, Horn L, Drake CG, Pardoll DM, Chen L, Sharfman WH, Anders RA, Taube JM, McMillor TL, Xu H, Korman AJ, Jure-Kunkel M, Agrawal S, McDonald D, Kollia GD, Gupta A, Wigginton JM, Szoln M. Safety, activity, and immune correlates of anti-PD-1 antibody in patients with advanced cancer. N Engl J Med 2012; 366: 2443-2454 [PMID: 22858127 DOI: 10.1056/NEJMA1200690]

42 Brahmer JR, Tykodi SS, Chow LQ, Hwu WJ, Topalian SL, Hwu P, Drake CG, Camacho LH, Kahu J, Duseni K, Piot HC, Hamid O, Bhatia S, Martins R, Eaton K, Chen S, Salay TM, Alaparthi S, Grosso JF, Korman AJ, Perez MM, Agrawal S, Goldberg SM, Pardoll DM, Gupta A, Wigginton JM. Safety and activity of anti-PD-L1 antibody in patients with advanced cancer. N Engl J Med 2012; 366: 2455-2465 [PMID: 22858128 DOI: 10.1056/NEJMA1200694]

43 Fong L, Small EJ. Anti-cytotoxic T-lymphocyte antigen-4 antibody: the first in an emerging class of immunomodulatory antibodies for cancer treatment. J Clin Oncol 2008; 26: 5275-5283 [PMID: 18838703 DOI: 10.1200/JCO.2008.17.8954]

44 Lynch TJ, Bondarenko I, Luft A, Serwatowski P, Barlesi F, Chacko R, Sebastia M, Neal J, Lu H, Cuillerot JM, Keck M. Ipilimumab in combination with paclitaxel and carboplatin as first-line treatment in stage IIIIB/IV non-small-cell lung cancer: results from a randomized, double-blind, multicenter phase II study. J Clin Oncol 2012; 30: 2046-2054 [PMID: 22547592 DOI: 10.1200/JCO.2011.38.4032]

45 Kosmidis P, Melkonakis N, Skarlos D, Samantas E, Dimopoulos M, Papadimitriou C, Kalophonos C, Pavlidis N, Nikonidis C, Papaconstantinou C, Fountzilas G. Paclitaxel (175 mg/m2) plus carboplatin (6 AUC) versus paclitaxel (225 mg/m2) plus carboplatin (6 AUC) in advanced non-small-cell lung cancer (NSCLC): a multicenter randomized trial. Hellenic Cooperative Oncology Group (HeCOG). Ann Oncol 2000; 11: 1790-1795 [PMID: 10997086]

46 Colvakov M, Giaglio M, Maio M. The emerging toxicity profiles of anti-CTLA-4 antibodies across clinical indications. Semin Oncol 2010; 37: 499-507 [PMID: 21074065 DOI: 10.1053/j.seminoncol.2010.09.007]

47 Trial in Squamous Non Small Cell Lung Cancer Subjects Comparing Ipiilmumab Plus Paclitaxel and Carboplatin Versus Placebo Plus Paclitaxel and Carboplatin. Available from: URL: http://clinicaltrials.gov

48 Safety and Efficacy Trial of Ipiilmumab Versus Pemetrexed in Non-Squamous Non-Small Cell Lung Cancer. Available from: URL: http: //clinicaltrials.gov

49 Japanese Study of Ipiilmumab in Combination With Paclitaxel/Carboplatin. Available from: URL: http: //clinicaltrials.gov

50 Meillan I, Coukos G, Dranoff G. Cancer immunotherapy comes of age. Nature 2011; 480: 480-489 [PMID: 22193102 DOI: 10.1038/nature10673]

51 Weber J. Immune checkpoint proteins: a new therapeutic paradigm for cancer--preclinical background: CTLA-4 and PD-1 blockade. Semin Oncol 2010; 37: 430-439 [PMID: 21047057 DOI: 10.1056/semioncoll.2010.09.005]

52 Brahmer JR, Drake CG, Wollner I, Powderly JD, Pcus J, Shaffer WH, Stankevich E, Pons A, Salay TM, McMillor TL, Gilson MM, Wang C, Selby M, Taube JM, Anders R, Chen L, Korman AJ, Pardoll DM, Lowy I, Topalian SL. Phase I study of single-agent anti-programmed death-1 (MDX-1106) in refractory solid tumors: safety, clinical activity, pharmacodynamics, and immunologic correlates. J Clin Oncol 2010; 28: 3167-3175 [PMID: 20516446 DOI: 10.1200/JCO.2009.26.7699]

53 Julie R, Brahmer LH, Antonia SJ, Spigel DR, Gandhi L, Sequist LV, Sankar V, Ahmed CM, Wigginton JM, Kollia G, Gupta AK, Gettier JN. Survival and long-term follow-up of the phase I trial of nivolumab (Anti-PD-1; BMS-936558; ONO-4538) in patients (pts) with previously treated advanced non-small cell lung cancer (NSCLC). ASCO J Clin Oncol 2013; 31: 8303

54 Study of Nivolumab (BMS-936558) in Combination With Gemcitabine/Cisplatin, Pemetrexed/Cisplatin, Carboplatin/ Paclitaxel, Bevacizumab Maintenance, Erlotinib. Ipiilmumab or as Monotherapy in Subjects With Stage IIB/IV Non-Small Cell Lung Cancer (NSCLC) (CheckMate 012). Available from: URL: http: //clinicaltrials.gov

55 Study of BMS-936558 (Nivolumab) Compared to Docetaxel in Previously Treated Metastatic Non-squamous NSCLC (CheckMate 057). Available from: URL: http: //clinicaltrials.gov

56 Study of BMS-936558 (Nivolumab) Compared to Docetaxel in Previously Treated Advanced or Metastatic Squamous Cell Non-Small Cell Lung Cancer (NSCLC) (CheckMate 017). Available from: URL: http: //clinicaltrials.gov

57 Study of Nivolumab (BMS-936558) in Subjects With Advanced or Metastatic Squamous Cell Non-Small Cell Lung Cancer Who Have Received At Least Two Prior Systemic Regimens (CheckMate 063). Available from: URL: http: //clinicaltrials.gov

58 Phase II Anti-PD1 Epigenetic Priming Study in NSCLC. (NA_00080972). Available from: URL: http: //clinicaltrials.gov

59 Study of MK-3475 Monotherapy in Participants With Advanced Solid Tumors and MK-3475 Combination Therapy in Participants With Advanced Non-Small Cell Lung Cancer (MK-3475-011/KEYNOTE-011). Available from: URL: http: //clinicaltrials.gov

60 Garone Eea, Balmanoukian A, Hamid O. Preliminary clinical safety and activity of MK-3475 monotherapy for the treatment of previously treated patients with non-small cell lung cancer (NSCLC). IASLC 15th World Conference on Lung Cancer. Sydney, 2013

61 Dong H, Strome SE, Salomao DR, Tamura H, Hirano F, Flies DB, Roche PC, Lu J, Zhu G, Tamada K, Lennon VA, Celis E, Chen L. Tumor-associated B7-H1 promotes T-cell apoptosis: a potential mechanism of immune evasion. Nat Med 2002; 8: 1019-1026
Soria JC, Cruz C, Bahelda R, Delord JP, Horn L, Herbst RS, Spigel D, Mokatrin A, Fine G, Gettinger S. Clinical activity, safety and biomarkers of PD-L1 blockade in NSCLC: additional analyses from a clinical study of the engineered antibody MPDL3280A (anti-PDL1). Abstract Search-European Cancer Congress 2013. Available from: URL: http://eccamesterdam2013.ecco-org.eu/Scientific-Programme/Abstract-search.aspx#

A Phase 2 Study of MPDL3280A (an Engineered Anti-PDL1 Antibody) in Patients With PD-L1 Positive Locally Advanced or Metastatic Non-Small Cell Lung Cancer-"FIR". Available from: URL: http://clinicaltrials.gov

A Randomized Phase 2 Study of MPDL3280A (an Engineered Anti-PDL1 Antibody) Compared With Docetaxel in Patients With Locally Advanced or Metastatic Non-Small Cell Lung Cancer Who Have Failed Platinum Therapy-"POPLAR". Available from: URL: http://clinicaltrials.gov

P- Reviewers: Ahn YC, Chakraborty S, Satoh H, Takigawa N
S- Editor: Wen LL L- Editor: A E- Editor: Liu SQ
