Long-lived stop at the LHC with or without R-parity

L. Covi and F. Dradi

Institut für Theoretische Physik,
Friedrich-Hund-Platz 1, 37077 Göttingen, Germany
E-mail: laura.covi@theorie.physik.uni-goettingen.de,
federico.dradi@theorie.physik.uni-goettingen.de

Received April 7, 2014
Revised August 8, 2014
Accepted September 13, 2014
Published October 16, 2014

Abstract. We consider scenarios of gravitino LSP and DM with stop NLSP both within R-parity conserving and R-parity violating supersymmetry (RPC and RPV SUSY, respectively). We discuss cosmological bounds from Big Bang Nucleosynthesis (BBN) and the gravitino abundance and then concentrate on the signals of long-lived stops at the LHC as displaced vertices or metastable particles. Finally we discuss how to distinguish R-parity conserving and R-parity breaking stop decays if they happen within the detector and how to suppress SM backgrounds.

Keywords: dark matter theory, dark matter experiments, particle physics - cosmology connection

ArXiv ePrint: 1403.4923
1 Introduction

It is well known that cosmology provides evidence for physics beyond the Standard Model (SM), since in the SM there is no viable candidate for Dark Matter (DM). Within the Standard Model extensions providing a DM candidate, supersymmetry is surely the most intensively studied, in particular the case of the lightest neutralino as a realization of the WIMP mechanism [1, 2].

Nevertheless supersymmetry provides also another possible DM candidate, the gravitino, which results from locally supersymmetric extensions of the standard model as gauge fermion of supergravity (SUGRA) [3, 4]. If it is not the LSP and not light, the gravitino causes grave cosmological problems since it can decay during or after primordial nucleosynthesis (BBN) and indeed strong constraints on the gravitino abundance and therefore the reheat temperature arise in such scenarios [5–7]. One way to soften this problem is to require the gravitino to be the Lightest Supersymmetric Particle (LSP) [8] and in such case BBN constrains the possible late decays of the Next-to-Lightest Supersymmetric Particle (NLSP) [9]. In fact again the NLSP can have macroscopic lifetimes longer than one second and its decay or, if it is charged, even just its presence during BBN can change the primordial abundances of the light elements.

To avoid such constraints, it is sufficient to switch on a slight R-parity violation [10] and allow the NLSP to decay before BBN through R-parity violating couplings. Even in this
case, the gravitino remains a viable Dark Matter candidate, since its decay rate is doubly suppressed by the Planck mass and the small R-parity breaking parameter leading to a gravitino lifetime that exceeds the age of the universe by many orders of magnitude [11, 12]. Gravitino decays in the present epoch may lead to a diffuse γ-ray flux and comparing such signal with the diffuse γ-ray flux observed by the Fermi-LAT collaboration [13, 14], a severe lower bound on the gravitino lifetime of the order 10^{28} s results, restricting the possible values of the R-parity violation to $\epsilon \lesssim 2 \times 10^{-8}$ [15, 16]. Such a value corresponds to NLSP decay lengths above $O(50 \text{ cm})$.

We see therefore that in both gravitino DM scenarios with or without R-parity, we expect the NLSP to have a long lifetime and give rise either to displaced vertices or metastable tracks at the LHC. Note that even for average decay lengths larger than detector size, a considerable fraction of the NLSPs might still decay inside the detector and such scenario deserves dedicated search strategies from both a theoretical and experimental point of view [17–26]. In the last years a lot of attention has been given especially to the case of neutralino [15, 27–31], stau [32–39] or sneutrino [40–44] long-lived NLSP, since those states are more likely to be NLSP in the CMSSM or NUHM models. Recently also the case of Higgsino NLSP was considered in [45].

In this paper, we investigate in particular stop NLSP decays, which have been previously considered from the cosmological perspective in [46–48] and at the LHC as prompt decays in [49–53]. The stop is the supersymmetric scalar with the largest left-right mixing and can therefore naturally be the lightest colored state. Moreover it provides usually the largest correction to the Higgs mass and its mass cannot be too large in order to retain a light Higgs [54–56]. Moreover the LHC constraints on the stops are much weaker than those on the gluino and first/second generation squarks since the stop production cross-section is smaller and its decay into top or bottom more difficult to observe. Our goal is the determination of the LHC reach for direct stop production for long-lived stop NLSP, regardless of the decay channel and the comparison of the parameter region with the cosmologically viable one. Finally we will also discuss the possibility of distinguishing the RPC and RPV decays if they happen in the LHC detectors, in particular if at least one charged lepton is produced in the decay.

The paper is organized as follows: we discuss the general setting and the stop-gravitino couplings in section 2 and then proceed to the cosmological constraints from BBN and the DM density in section 3. In section 4 we give our analysis of the LHC reach for the case of displaced vertices in the pixel or tracker detectors and of metastable tracks. Such analysis is independent on the decay channel, even if we will mostly assume that the decay product contain at least one lepton, e.g. a muon, that can be well-measured also away from the central part of the detector. We will give the reach of LHC depending on the stop mass and lifetime for both the different signals and see that there are interesting parameter regions where two types of signals can be observed. Finally in section 5 we will discuss how to distinguish the RPC and RPV scenarios, assuming the decay happens in the detector. We will then conclude in section 6.

2 Supersymmetric stop in the MSSM with and without R-parity

We consider a supersymmetric model of the MSSM type given by the most general renormalizable superpotential. The R-parity, baryon and lepton conserving part includes the Higgs μ
term and Yukawa interactions as [57]

\[W_0 = \mu H_u H_d + y^u_{ij} H_u Q_i U_j + y^d_{ij} H_d Q_i D_j + y^e_{ij} H_d L_i E_j, \]

(2.1)

where the indices \(i, j, k\) run over the three generations of fermions. The labels \(L_i, E_i, Q_i, D_i, U_i, H_u\) and \(H_d\) are for the chiral superfields containing the lepton doublet, lepton singlet, quark doublet, down-type quark singlet, up-type quark singlet, up-type Higgs doublet and down-type Higgs doublet, respectively. We denote with \(y^u_{ij}, y^d_{ij}, y^e_{ij}\) the dimensionless Yukawa coupling parameters, while \(\mu\) is the supersymmetric higgsino mass parameter.

The baryon violating part of the superpotential is given by

\[W_{\Delta B \neq 0} = \lambda''_{ijk} U_i D_j D_k, \]

(2.2)

while the lepton violating part is

\[W_{\Delta L \neq 0} = \lambda'_{ijk} L_i L_j E_k + \lambda'_{ijk} L_i Q_j D_k + \mu_i L_i H_u, \]

(2.3)

where \(\lambda_{ijk}, \lambda'_{ijk}, \lambda''_{ijk}\) are R-parity violating Yukawa couplings and \(\mu_i\) is a parameter with dimension of mass mixing the Higgs with the lepton multiplet. If they all appear together, these parameters are strongly constrained by low-energy observables, i.e. proton decay, therefore in the following we will consider only the case of either baryon violating or lepton violating RPV.

Apart for the superpotential, we introduce in the lagrangian also the soft supersymmetry breaking terms, in particular gaugino and scalar masses and soft trilinear terms \(A_i\). Then the stop mass matrix is in general non-diagonal and can have large off-diagonal entries, in particular if \(A_t\) is chosen large to explain the measured Higgs mass value [58–60]. In such a case the two mass eigenstates repel each other, so that the lightest one can become much lighter than the average mass scale. We define here \(\tilde{t}_1\) as the lighter mass eigenstate, given as

\[\tilde{t}_1 = \cos \theta \tilde{t}_L - \sin \theta \tilde{t}_R \]

(2.4)

where \(\theta\) is the stop mixing angle.

Note that different SUSY breaking scenarios can account for a stop NLSP with a gravitino LSP. As an example we mention that in gauge-mediated supersymmetry breaking (GMSB) scenarios [61] the supersymmetry-breaking scale is typically much smaller than in the gravity-mediated case, so that the gravitino is almost always the LSP. Moreover in the recently proposed model-independent framework of general gauge mediation (GGM) [62, 63] essentially any MSSM superpartner can be the NLSP and in extended models also the measured Higgs mass can be obtained [64–66], especially if the scale of supersymmetry breaking and the superpartner masses are high.

Here we will not study a particular model, but just assume that the NLSP is the lightest stop \(\tilde{t}_1\) and that \(\tilde{t}_2\) and the rest of the supersymmetric particles are outside the reach of LHC. Note in any case that most of our results are very weakly dependent on the stop mixing angle and therefore valid also if the second stop is not too heavy, as long as its production is suppressed. In case the other colored states like the gluino and first two generation squarks are within the reach of the LHC, we have additional particle production channels and the search becomes more promising. Motivated by the hierarchy problem, already many studies of light stops decaying promptly have been performed, see for instance [49, 50] in the context of gravitino LSP. Here we consider only non-prompt decays instead.
2.1 Stop NLSP couplings, production and decay channels

In this section we consider the interactions of the stop NLSP in supersymmetric models with gravitino LSP and DM candidate.

The main interactions of the stop NLSP are the R-parity conserving QCD couplings, which in general dominate the stop pair production. In fact the R-parity violating couplings considered here are many orders of magnitude smaller than the QCD gauge coupling and too suppressed to give a measurable single-stop production. In the limiting case when the rest of the colored states are too heavy to be produced efficiently, the stop production cross-section is dominated by the direct production via the quark-antiquark annihilation and the gluon fusion channels. Then the stop mass is the only supersymmetric parameter influencing the production cross-section at tree-level and the dependence on the stop mixing arises only at NLO [67]. In this paper we simulate the stop pair production at LHC with MADGRAPH 5 [68], which includes only the LO cross-section and therefore we neglect any mixing angle dependence of the production. Note that NLO corrections can change the cross-section by a factor 50–70% within the mass range investigated here [67]. We will take such correction into account in our results by multiplying our cross-section by a constant NLO k-factor of 1.6 and neglecting the very weak dependence on \(\theta \).

Let us now consider the decay channels of the stop and anti-stop pairs in the RPC and RPV models. The coupling of the stop with the gravitino is described by the SUGRA RPC lagrangian term

\[
\mathcal{L}_{3/2} = -\frac{1}{M_P\sqrt{2}} [(D_\nu \tilde{t}_R/L)^\dagger \tilde{\psi}_{3/2}^\mu \tilde{\psi}_{3/2}^\nu \gamma_\mu \gamma_5 P_R/L t + \text{h.c.}]
\]

where \(D_\nu = (\partial_\nu + ig A_\nu - m_\nu) \) and \(P_L(P_R) \) is the projection operator onto left-handed (right-handed) spinors. Here, \(A_\nu \) denotes any SM gauge boson whereas \(M_P = (8\pi G_N)^{1/2} \) is the reduced Planck mass. We can easily obtain from this expression the coupling for the lightest stop \(\tilde{t}_1 \) as

\[
\mathcal{L}_{3/2} = -\frac{1}{M_P\sqrt{2}} [(D_\nu \tilde{t}_1)^\dagger \tilde{\psi}_{3/2}^\mu \tilde{\psi}_{3/2}^\nu \gamma_\mu (-\sin \theta P_R + \cos \theta P_L) t + \text{h.c.}]
\]

Taking the matrix element at the leading order \(1/m_{3/2}^2 \), the decay rate is independent of the mixing angle, which appears only in the interference at order \(m_1/m_{3/2} \), and is given by

\[
\Gamma_{\tilde{t}_1} = \frac{(m_{\tilde{t}_1}^2 - m_{3/2}^2 - m_t^2)^3}{48\pi M_P^2 m_{3/2}^3 m_{\tilde{t}_1}^3} \left[1 - \frac{4m_{3/2}^2 m_{\tilde{t}_1}^2}{(m_{\tilde{t}_1}^2 - m_{3/2}^2 - m_t^2)^2} \right]^{3/2},
\]

where \(m_t = 173 \text{ GeV} \) is the top mass, \(m_{\tilde{t}_1} \) is the lighter stop mass and \(m_{3/2} \) the gravitino mass. Neglecting the top mass and the gravitino mass in the phase-space, we obtain the stop lifetime as

\[
\tau_{\tilde{t}_1} = \Gamma_{\tilde{t}_1}^{-1} \simeq (18.8 \text{ s}) \left(\frac{500 \text{ GeV}}{m_{\tilde{t}_1}} \right)^5 \left(\frac{m_{3/2}^2}{1 \text{ GeV}} \right)^2.
\]

We see that the stop lifetime can cover a very large range of values. Indeed, choosing \(m_{\tilde{t}_1} = 800 \text{ GeV} \), \(\tau_{\tilde{t}_1} \simeq 0.018 \text{ s}, 1.9 \times 10^4 \text{ s} \) for a gravitino mass of \(m_{3/2} = 0.1 \text{ GeV} \), 100 GeV respectively.

Let us now turn to the RPV couplings, in particular in the case of bilinear RPV given in [12]. Other models with unstable gravitino DM are given in [69–71]. Then the only RPV coupling is given by

\[
\mu_i L_i H_u \subset W_{\Delta L \neq 0},
\]

\[\text{(2.9)} \]
which can be rotated away from the superpotential if we redefine L_i and H_d as

$$L'_i = L_i - \epsilon_i H_d, \quad H'_d = H_d + \epsilon_i L_i$$

with $\epsilon_i \equiv \mu_i / \mu$. (2.10)

However, in this new basis, R-parity breaking is reintroduced in the form of trilinear R-parity violation. Then one obtains the new trilinear R-parity violating terms

$$\Delta W' = h_{ijk} L'_i L'_j E_k + h'_{ijk} L'_i Q_j D_k$$

where

$$h_{ijk} = -y_{eij} \epsilon_k + y_{ekj} \epsilon_i, \quad h'_{ijk} = -y_{dij} \epsilon_k$$

and ϵ_i are the bilinear R-Parity breaking parameters. We see therefore that the lightest stop can decay via these λ'-type couplings, here called h', through its LH component. The corresponding R-Parity violating lagrangian is indeed given by

$$\mathcal{L} = \sqrt{2} \frac{m_b}{v \cos \beta} \epsilon_i \sin \theta \bar{t}_i \bar{b} P_L \ell_i + \text{h.c.}$$

where v is the Higgs vacuum expectation value and m_b the bottom mass.

The total decay rate for the flavour-democratic case $\epsilon_i = \epsilon$ reads then

$$\Gamma_{\bar{t}_i} = \frac{3 m_{\tilde{t}_i}}{8\pi} \left(\frac{\epsilon \sin \theta m_b}{v \cos \beta} \right)^2 \left(1 - \frac{m_b^2}{m_{\tilde{t}_i}^2} \right)^2,$$

and so, using the explicit value for vev v and bottom mass $m_b = 4\text{ GeV}$, the corresponding lifetime $\tau_{\bar{t}_i}$ is

$$\tau_{\bar{t}_i} = 4.3 \times 10^{-7}\text{s} \left(\frac{\epsilon \sin \theta / \cos \beta}{10^{-8}} \right)^{-2} \left(\frac{500\text{ GeV}}{m_{\tilde{t}_i}} \right)^{-1}. \quad (2.15)$$

Note that this stop decay is also present in the case of trilinear lepton number RPV, while it is absent in the case of baryon number violating RPV. We consider here this RPV stop decay as particularly promising because it contains leptons in the final state, that can be more easily detected at collider experiments also away from the central collision region and are therefore a very favorable signal.

In the case of baryonic violating RPV or even in MFV models like [72, 73], the relevant superpotential coupling is given by the λ'' coupling and the lagrangian reads instead

$$\mathcal{L} = \sqrt{2} \lambda''_{3jk} \cos \theta \bar{t}_i \bar{d}_j P_L \ell_k + \text{h.c.},$$

with λ''_{3jk} antisymmetric on the last two indices, giving the decay rate into two light-quark jets as

$$\Gamma_{\bar{t}_i} = \frac{m_{\tilde{t}_i}}{8\pi} (\lambda''_{321} \cos \theta)^2.$$

For small λ'' this decay can also lead to displaced vertices, with two jets originating far away from the stop pair production vertex.

In any of the scenarios discussed here, the stop lifetime is always much longer than the hadronization time and therefore we expect the stop and anti-stop to hadronize into an R-hadron before decay [74]. Such an R-hadron can in principle be both electromagnetically charged or not and even change its charge while it travels in the detector [75]. Nevertheless
we do not expect the fact that stops are bounded to influence much their lifetime since
the stop mass is much larger than the QCD confinement scale and the masses of SM light
quarks. In this case any phase space suppression due to the final state is negligible and Heavy
(s)Quark Effective Theory can be applied predicting order $\mathcal{O}(1)$ hadronic matrix elements for
the inclusive decay rate.\footnote{Indeed also for the B-mesons in the limit of infinite m_b the hadronic matrix elements for the inclusive
decay rate tend to one \cite{76}.} Since we will scan in the following the stop lifetime, any deviation
of the hadronic matrix elements from one can in any case be absorbed in a rescaling of the
stop lifetime compared to the (possibly observed) R-hadron lifetime.

For the sake of clarity and transparency of exposition, from now on we adopt the
convention that the lighter stop \tilde{t}_1 is simply called \tilde{t}.

3 Stop NLSP and gravitino LSP in cosmology

In this section we discuss very shortly the cosmological bounds on the scenario with stop
NLSP and the gravitino DM and LSP, in order to single out the cosmologically preferred
parameter space in both RPC and RPV models.

Let us consider first the effect of a stop NLSP during BBN. The stop is a colored and
EM-charged particle and therefore it can disrupt BBN not only through the energy release
in the decay, but also because of bound state effects \cite{77}. In the first case the light element
abundances are more strongly affected by hadro-dissociation and therefore the limits are
more stringent for hadronically decaying particles like the stop \cite{78, 79}. In the latter case the
constraints are independent of the decay channel and just depend on the stop lifetime and
density at the time of decay \cite{77, 80}. They therefore apply equally to any of the scenarios
we discussed.

The limits on the abundance $Y_\chi(\tau_\chi) = n_\chi/s$ from bound state effects for a hypothetical
long-lived strongly interacting massive particle χ, have been computed by M. Kusakabe et al.
in \cite{80}. Requiring that the primordial light element abundances remain within the observed
ranges, they obtained the following constraints depending on the particle lifetime τ_χ:

- $Y_\chi < 10^{-18} \text{--} 10^{-12}$ (for $30 \text{ s} < \tau_\chi < 200 \text{--} 300 \text{ s}$),
- $Y_\chi < 10^{-18} \text{--} 10^{-21}$ (for $200 \text{--} 300 \text{ s} < \tau_\chi < 2 \times 10^3 \text{ s}$)
- $Y_\chi < 10^{-21} \text{--} 10^{-22.6}$ (for $2 \times 10^3 \text{ s} < \tau_\chi \ll 4 \times 10^{17} \text{ s}$).

In the window ($30 \text{ s} < \tau_\chi < 200 \text{--} 300 \text{ s}$) the most stringent constraint comes from the upper
limit on the ^7Li, while for ($200 \text{--} 300 \text{ s} < \tau_\chi < 2 \times 10^3 \text{ s}$) the strongest constraint is due to the
upper limit on the B abundance. Finally the upper limit on the ^9Be abundance determines
the bound for longer lifetimes. These constraints are very steep and become quickly dominant
over the hadro-dissociation bounds \cite{78, 79}. For lifetimes shorter than approximately 30 s
the constraints from bound states disappear and those on hadronic decays are very weak \cite{81}
and this corresponds in our two scenarios to a stop mass range

$$m_{\tilde{t}} \geq \begin{cases}
451 \text{ GeV} \left(\frac{m_{3/2}}{1 \text{ GeV}} \right)^{2/5} & \text{RPC} \\
1.4 \times 10^{-8} \text{ GeV} \left(\frac{\epsilon \sin \theta / \cos \beta}{10^{-8}} \right)^{-2} & \text{RPV}.
\end{cases} \quad (3.1)$$
We see therefore that BBN does not provide practically any bound on the RPV scenario, apart if the RPV coupling is very small, below 10^{-12}. We will therefore in the following only consider in detail the constraints for the RPC case.

3.1 RPC decay of stop NLSP in cosmology

The density of a colored relic like a scalar top and the BBN bounds from hadro-dissociation have been studied in a model independent way in the past by C. Berger et al. in [47]. We follow here that analysis, but we update the constraints to include also the bound state effects discussed above. In [47] the authors first considered the simplified case of a single annihilation channel $\tilde{t}\tilde{t}^* \rightarrow gg$ in the stop Boltzmann equation. Such a choice is motivated by the fact that such channel just depends on the stop mass and its QCD representation, without dependence on the rest of the supersymmetric spectrum, and, in addition, it is always the dominant channel, contributing at least 50% of the total annihilation cross-section. It therefore gives the most conservative result since it cannot be suppressed by particular choices of the superparticles spectrum and it provides a reliable upper limit on the stop abundance. In fact, other annihilation channels can only increase the cross section and, therefore, reduce the stop density. In this case the stop abundance is proportional to the stop mass and it can be given as [47]

$$Y (m_{\tilde{t}}) = Y (1 \text{ TeV}) \left(\frac{m_{\tilde{t}}}{1 \text{ TeV}} \right)$$ (3.2)

up to logarithmic corrections, since, in general, the mass always appears linearly in the Boltzmann equation for the stop density\(^2\) [47].

In [47] also the computation of the Sommerfeld enhancement [82–84] for this particular channel was performed with two different prescriptions for the higher orders. The Sommerfeld enhancement increases the cross-section at low velocity and can be obtained by resumming over the exchange of a ladder of gauge bosons between the initial particles. It was found that the averaged Sommerfeld factor reduces the tree-level yield by roughly a factor of 2, while the summed Sommerfeld one by roughly a factor of 3. We will therefore take the stop abundance from the leading order computation in [47] and vary it by a factor 2–3 to see the effect of both the Sommerfeld enhancement and the additional annihilation channels.

In order to set limits on the RPC model, we compute the stop density as a function of the stop mass from eq. (3.2) and we compare it with the limits in [80]. We determine then the maximal allowed value of the stop lifetime which corresponds to $Y_{\tilde{t}} = Y_{\text{bound}}$. Through the analytical formula for the stop lifetime, we can then recast the bounds in the plane $m_{\tilde{t}}$ vs $m_{3/2}$. We give these results in figure 1. We see that the constraints for the LO and the Sommerfeld enhanced case overlap and are almost in perfect agreement. This is due to the fact that the bound-state BBN constraints are very steep and do not change appreciably even if the stop density changes by a factor of a few. So the BBN bounds practically do not depend on the details of the stop freeze-out, as long as no strong resonant annihilation is present, and they are quite robust and independent of the masses of the heavier superpartners and therefore of the particular supersymmetric model with stop NLSP.\(^3\)

\(^2\)Recently it has been discussed in [38] that the stau NLSP abundance is better fitted by a dependence given by $m_{\tilde{\tau}}^{0.9}$ but in the range of masses we are considering such a difference in the exponent has negligible effect.

\(^3\)We do not consider here the case of coannihilations for the stop, but note that coannihilation with a more weakly-interacting state like the neutralinos/sleptons increases the number density and therefore would correspond to stronger constraints.
3.2 CDM constraints

We are assuming in this paper that gravitinos are Cold Dark Matter and therefore they must have obtained the required abundance in the course of the cosmological evolution. The gravitino production by the decay of the stop NLSP [85, 86], is in most of the parameter space negligible since either the stop abundance or the gravitino mass are too small. Moreover such contribution is substantial only in the case of the RPC model and it is instead very much suppressed if the stop RPV decay is dominant.

On the other hand, gravitinos can be produced in substantial numbers by scatterings and decays of supersymmetric particles in equilibrium in the hot plasma. Their abundance is then proportional to the bath reheating temperature T_R and can exceed the critical density of the universe if no restrictions on the reheating temperature is imposed [87–89]. In this context the gravitino abundance $\Omega_{3/2}$ is given by [31, 88, 89]

$$\Omega_{3/2} h^2 \approx \frac{T_R}{10^9 \text{ GeV}} \left(\frac{m_\tilde{t}}{300 \text{ GeV}} \right)^2 \left(\frac{m_{3/2}}{1 \text{ GeV}} \right)^{-1} \sum_{i=1}^{3} \gamma_i \left(\frac{M_i}{m_\tilde{t}} \right)^2$$ \hspace{1cm} (3.3)

where M_i are the physical gaugino masses and the coefficients γ_i account for the Renormalization Group Equation (RGE) effects between the reheating temperature scale and the scale of the physical gaugino masses. We have for those constants the ranges $\gamma_1 = 0.17–0.22$, $\gamma_2 = 0.54–0.57$, $\gamma_3 = 0.48–0.52$ from the 1-loop RGE for the gaugino masses and gauge couplings from $T_R = 10^7–10^9$ GeV [31].\footnote{Note that the expression in eq. (3.3) is valid only in the weak coupling limit and breaks down at low reheating temperature ($T_R \sim 10^3$) [90]. Nevertheless, we use it as an indicative curve in figures 2 and 3.} We neglect here possible decay of the heavier superpartners in equilibrium, the Feebly Interacting Massive Particle (FIMP) contribution [91], which may even play a dominant role in the case of hierarchical spectra between gauginos and scalar superpartners [92]. Note here the dependence on other supersymmetric masses.
than the LSP mass, such that the exact abundance becomes a model dependent quantity. Since we are here interested mostly in a constraint on the gravitino and stop masses, we will here consider as most conservative the case when the gaugino masses are not much heavier that the stop, $M_i/m_{\tilde{t}} = (1.1–2)$, in order to minimize the gravitino production.

The current best-fit values for Dark Matter density in the universe from the data of the Planck satellite is given by [93]

$$\Omega_{\text{CDM}} h^2 = 0.1199(27),$$

and results slightly larger that the previously obtained combination of the seven-years WMAP data, observations of baryon acoustic oscillations and determinations of the present Hubble parameter in [94],

$$\Omega_{\text{CDM}} h^2 = 0.1126(36).$$

We impose here that the gravitino energy density in eq. (3.3) is smaller or equal to the the Cold Dark Matter density. From the equality to two measurements $\Omega_{\text{CDM}} = 0.1126–0.1199$ we obtain the yellow and brown curves in figure 2. On such lines the gravitino CDM density is fully produced by thermal scatterings, while below the line the gravitinos are overabundant and therefore the parameter space is excluded by the CDM constraint. Specifically, looking at the three couples of CDM density lines of figure 2 obtained for $T_R = 10^3, 10^4$ and 10^7 GeV, we can easily note that the position of the these lines depend on the particular T_R assumed and the curves move up and down in the value of the gravitino mass exactly by the change in T_R. That is due to the the dependence of gravitino density abundance on the ratio $T_R/m_{3/2}$. Finally, comparing the two plots for different values of $M_i/m_{\tilde{t}}$, we can see that for a bigger ratio of physical gaugino masses to stop mass, the gravitino yield is larger and the excluded region, according to the temperature, increases in size.

Figure 2. Plane “$m_{\tilde{t}}$ vs $m_{3/2}$” with the BBN and CDM excluded regions (red and yellow, respectively) and with the Inside detector region (light blue). On the left side (right side) of the figure a CDM excluded region for $T_R = 10^3, 10^4, 10^7$ GeV and $M_i/m_{\tilde{t}} = 1.1 (2)$ is drawn. The allowed region is between the BBN and CDM curves and is painted white for the case of $T_R = 10^7$ GeV.
Figure 3. Plot of the reheating temperature T_R as a function of the stop mass $m_{\tilde{t}}$ for the right value of DM density and $m_{3/2} = 1$ GeV on the left panel. Plot of the maximal value of T_R as a function of the stop mass $m_{\tilde{t}}$ on the right panel. In both plots the curves for the ratio $M_i/m_{\tilde{t}} = 1.1$ (green solid line) and $M_i/m_{\tilde{t}} = 2$ (blue dot-dashed line) are plotted.

3.3 All constraints

We plot now both the cosmological constraints together in the plane $m_{\tilde{t}}$ vs $m_{3/2}$ in figure 2. For future convenience we also show the region of the parameter space where the RPC stop lifetime is smaller than 10^{-7} and therefore the stop decays inside the detector.

Looking at this figure, we see that the allowed region is limited from above by the BBN constraint and from below by the CDM constraint, so that only a narrow allowed strip remains for $T_R = 10^7$ GeV whereas a bigger allowed strip remains for $T_R = 10^4$ and 10^3 GeV. The breadth of such strip depends both on the supersymmetric spectra and in particular on $M_i/m_{\tilde{t}}$ and on the reheat temperature assumed. In particular for reheat temperatures above a few 10^7 GeV no allowed parameter space remains for stop masses below 2 TeV. We note that the region where the RPC decay is sufficiently fast to happen in the detector correspond to a very low reheat temperature of the order of 10^3-10^4 GeV, so that in case of high reheating temperature the stops appear as metastable particles at the LHC.

In order to conclude the discussion of the cosmology of a gravitino CDM with stop NLSP, it is worth drawing the reheating temperature corresponding to the right value of Dark Matter density for $m_{3/2} = 1$ GeV and the maximal allowed reheat temperature T_R^{max} as a function of the stop mass in figure 3. Such curves are shown for two different values of the ratio of physical gaugino masses and stop mass in figure 3, i.e. $M_i/m_{\tilde{t}} = 1.1$ in green (solid line) and $M_i/m_{\tilde{t}} = 2$ in blue (dot-dashed line). We see that for larger NLSP mass, a smaller reheating temperature is needed to match the observed DM density at fixed gravitino mass, while on the other hand the bound on T_R becomes relaxed for larger stop masses as the BBN bounds are weaker.
Many extensions of the SM include heavy, long-lived, charged particles (HSCPs). These particles can travel distances comparable to the size of modern detectors, where they might be produced. Thus, they might appear to be stable if they have a lifetime bigger that a few nanoseconds. Moreover, the HSCPs can be singly charged ($|Q| = 1e$), fractionally charged ($|Q| < 1e$), or multiply charged ($|Q| > 1e$). Since the particle identification algorithms at hadron collider experiments generally assume signatures appropriate for SM particles, e.g., $v \approx c$ and $Q = 0$ or $\pm 1e$, nowadays the HSCPs might be misidentified or even completely missed without dedicated searches. The LHC experiments have already performed specific analysis, especially for the case of metastable particles [19–25].

In this very exciting background the goal of this section is to study two different classes of signal coming from a long-lived stop NLSP, which is produced by the proton-proton collision at LHC, at a centre of mass energy of $\sqrt{s} = 14$ TeV and an integrated luminosities of $L = 25$ fb$^{-1}$ and 3000 fb$^{-1}$. The first signal is represented by a displaced vertex inside the detector due to the stop decay inside the Pixel or Tracker detector. We will here mostly consider the kinematics and geometry of the CMS detector to estimate the number of decaying events within two adjacent detector parts. We neglect the interactions of the R-hadron with the detector material that could cause the particle to stop in the detector before the decay (see e.g. [75, 95]) and the presence of a magnetic field bending the trajectory for charged R-hadron. Such effects could be taken into account only by a full detector simulation, which is beyond the scope of our study. Note in any case that interactions in the detector can only lead to a larger number of events inside the detector and that the magnetic field does not affect neutral R-mesons, which are expected to be around 50% of the cases [74].

The second type of signal is instead the HSCP track of a metastable stop that leaves the detector before decaying. Such a signal is actively searched for by the LHC collaborations [19–25].

In both cases we will use MadGraph 5 to compute the LO stop production at LHC and we will correct it with a constant NLO k-factor of 1.6 corresponding to the k-factor given by Prospino [96] for a stop mass of 800 GeV. We checked that this factor remains in the range 1.5–1.7 for stop masses up to 2 TeV.

Regarding the decay, we will either include it explicitly within the MadGraph 5 analysis with a reference decay rate and then rescale the distances to probe the whole accessible lifetime range or determine from MadGraph 5 just the number of produced stop pairs and use an analytical estimate for the distribution of the decay lengths. As we will see both approaches give similar and consistent results, with the semi-analytical one allowing to explore more easily the parameter space. Before going into detail, we want to highlight here that this analysis is independent from the stop decay channel, as long as the decay gives measurable tracks and a clear displaced vertex. In fact, we will apply our results to the parameter space of both RPC and RPV models that we have already discussed in section 2. We are returning to this crucial point later in section 4.5.

To this day, both the CMS and ATLAS experiments have published searches on this topic for HSCPs produced in proton-proton collisions. Their latest results can be found, respectively, in the papers [24, 25]. In particular, the CMS analysis investigates signatures in three different parts of the detector using data recorded at a centre of mass energy of $\sqrt{s} = 7$ TeV and 8 TeV and an integrated luminosity of $L = 5$ fb$^{-1}$ and 18.8 fb$^{-1}$. The studied parts are the inner tracker only, the inner tracker and muon detector, and the muon...
detector only. On the other hand, the ATLAS collaboration is also investigating signatures producing a displaced multi-track vertex with at least a high transverse momentum muon at a distance between millimeters and tens of centimeters from the proton-proton interaction point, by using a data sample at $\sqrt{s} = 8 \text{ TeV}$ and for $L = 20.3 \text{ fb}^{-1}$ [26].

As detector, in this paper we will consider as explicit example the CMS experiment even if we expect ATLAS to have comparable reach, perhaps even larger due to the bigger size. So first of all we start describing very briefly how the CMS detector is made and what it searches for.

4.1 The CMS detector

The CMS detector uses a right-handed coordinate system where the origin is at the nominal interaction point. The x-axis points towards the centre of the LHC ring, the y-axis points up with respect to the plane of the LHC ring and, at last, the z-axis along the counterclockwise beam direction. The polar angle θ is measured from the positive z-axis, the azimuthal angle ϕ in the x–y plane and the radial coordinate in this plane is denoted by r. The transverse quantities, such as the transverse momentum (\vec{p}_T), always refer to the components in the x–y plane. In this context, the magnitude of the three-vector \vec{p}_T is indicated by p_T and the transverse energy E_T is defined as $E \sin \theta$.

In order to make easier the description of the CMS detector, the layout of two quarters of it was sketched in figure 4. Now, if we start from the innermost part of the detector and going outwards, we can see the following parts: Interaction Point (IP), Pixel (Pi), Tracker (Tr), Electromagnetic Calorimeter (EC), Hadron Calorimeter (HC), Magnet (M), Muon System (MS). A detailed description of the detector can be found in [97].

The best detector parts to single out the presence of a displaced vertex are the pixel and tracker detectors and therefore we will restrict our discussion to the case of stop/anti-stop decaying there or surviving through the whole detector.

4.2 Numerical analysis

The numerical analysis in this paper is realized by means of the open source software MadGraph 5 which can generate matrix elements at tree-level, given a lagrangian based model,
for the simulation of parton-level events for decay and collision processes at high energy colliders [68]. In order to study the stop production at the LHC experiment we choose the MSSM model from the MadGraph 5 library of models which is built upon that of the package FeynRules\(^5\) [98, 99]. Furthermore, we set the centre of mass energy is \(\sqrt{s} = 14\) TeV for all our simulations.

We run MadGraph 5 for several stop masses but for only one reference value of the stop decay rate that we take to be \(\Gamma_\tilde{t} = 2.02159 \times 10^{-10}\) GeV and we generate 10,000 events per run. For every event the kinematics of all particles in the process is recorded and used to assign numerically with a separate Python routine to each stop/antistop particle its own decay length \(\ell_\tilde{t}\) assuming that the particles propagate undisturbed from the interaction point and decay randomly according to an exponential distribution. From the decay length and the stop or anti-stop momentum direction we can draw using the software Mathematica the distribution of all decay vertices in the detector plane \((r, z)\). Since any change in the stop decay rate can be compensated by a corresponding change in the distance that the stop travels, we can circumvent the problem of launching MadGraph 5 for all the decay rates by simply rescaling the dimensions of all parts of the detector consistently. This point will be better clarified in the next subsection when we give the explicit formulas for the semi-analytic analysis. By using this expedient, the spatial distribution of the stop decay vertices for a stop mass of \(m_\tilde{t} = 800\) GeV and any stop decay rate can be obtained. We show the results for \(\Gamma_\tilde{t} = 2.02159 \times 10^{-16}\) GeV in figure 5, where the decay vertices are shown by red dots on top of a schematic view of the CMS detector.

Now equipped with the stop decay vertices, we can count how many stops or anti-stops decay within the Pixel or Tracker in the CMS detector as a function of the stop lifetime at the integrated luminosity \(L = 25\) fb\(^{-1}\) and the maximum expected one \(L = 3000\) fb\(^{-1}\). We repeat the same procedure for several stop masses and obtain so an estimate of the LHC reach in the plane of the stop mass versus its lifetime with just two very simple working

\(^{5}\)FeynRules is a Mathematica-based package which addresses the implementation of particle physics models, which are given in the form of a list of fields, parameters and a Lagrangian, into high-energy physics tools. It calculates the underlying Feynman rules and outputs them to a form appropriate for various programs such as CalcHEP, FeynArts, MadGraph, Sherpa and Whizard.
hypotheses. First we neglect both the backgrounds of the SM and other SUSY particles than
the lightest stop, which are respectively expected to have much shorter decay lengths and
assumed to be too heavy to be produced at LHC. Secondly we set the detector efficiencies
to 100% and declare 10 decays inside one CMS detector part sufficient for the discovery of
a displaced vertex and 10 decays outside for the discovery of a metastable stop. We require
10 decays instead of just 2 or 3 in order to reduce the numerical fluctuations and obtain a
more stable numerical result. The analytical estimates in the next section will allow to draw
conclusions also for a different number of decays.

We show our results in figure 6, where the data-points corresponding to 10 decays inside
Pixel (blue dots), Tracker (red dots) and outside the detector (green dots) are given in the
stop mass-lifetime plane at both integrated luminosities, with $L = 25 \text{ fb}^{-1}$ (left panel) and
$L = 3000 \text{ fb}^{-1}$ (right panel). Here, as in the next plots, the data-points corresponding to 10
tracks leaving the detector are always labeled by “Out”. Comparing the Pixel and Tracker
reach, we are not surprised to see that they are pretty close to each other since their sizes
are similar. The tracker detector is larger than the pixel one and this gives a slightly better
reach, on the other hand we expect that the pixel detector would offer a better precision and
efficiency in the measurement of a displaced vertex, so that this may overcome the geometrical
advantage in a full detector simulation. It is interesting that the stop kinematical distribution
is such that a similar number of events is often obtained in the two detector parts, allowing
on one side for a cross-check and on the other to better disentangle a long-lived stop from
any SM background like B-mesons decaying mostly in the pixel detector.

Observing figure 6, and interpolating between the points for Pixel/Tracker and outside
we can divide the parameter space in four different regions, which we have labeled A, B, C
and D. In the three regions A, B and D at least one signal is seen for any stop lifetime. In
particular in the region D both types of signal, displaced vertices and metastable tracks, are
accessible, allowing to cross-check the measurement of the stop lifetime. Only in region C no
signal could be measured at the LHC. Of course such a region may be reduced by combining

![Figure 6. NLO LHC reach in the stop lifetime-stop mass plane at $L = 25 \text{ fb}^{-1}$ in the left panel and $L = 3000 \text{ fb}^{-1}$ in the right panel. In both panels, the Pixel reach is given by blue points while the Tracker reach by red points. At last, the reach of metastable particles is denoted by green points.](image-url)
the two types of signals to have 10 events in total or by loosening the requirement to fewer events. We see clearly then that the searches for displaced vertices and escaping particles are complementary: the first covers the lower plane corresponding to short lifetimes, i.e. regions D and B, while the latter is mostly sensitive to the long lifetimes in the regions D and A. Combining the two searches it is possible to cover the parameter space for any lifetime up to a maximal mass where the production cross-section starts to become too small to produce a sufficient number of stops. If the LHC does not observe any signal as displaced vertices and metastable tracks, we can therefore obtain a lifetime-independent lower limit on the stop mass at around $m_{\tilde{t}} \simeq 1300$ GeV for the integrated luminosity $L = 25$ fb$^{-1}$ and at around $m_{\tilde{t}} \simeq 2100$ GeV for the integrated luminosity $L = 3000$ fb$^{-1}$.

4.3 Semi-analytic approximate analysis

The semi-analytic analysis is realized via analytical estimates for the distribution of decay lengths of the long-lived stop particles instead than via reconstruction of the position of each decay vertex. Even in this case we use MadGraph 5 to compute the production cross section σ and, therefore, the number of generated stop particles N_0 at LHC, from the product of the cross-section times the integrated luminosity (σL). We complement the previous analysis with this semi-analytic approach in order to have a better control of the physical parameter space, faster results and, at the same time, a useful check of the results of MadGraph 5.

The semi-analytic analysis is based on the well-known exponential decay formula for a particle travelling in a straight line, giving the probability $P(d)$ that a particle decays at d. It reads

$$ P(d) = \frac{\Gamma}{\beta\gamma c} \exp \left\{ -\frac{\Gamma}{\beta\gamma c} d \right\}, \quad (4.1) $$

where Γ is the decay rate in the centre of mass frame, c the speed of light and $\beta\gamma$ is the relativistic $\beta\gamma$ factor, which is defined in terms of the energy E and the three-momentum \vec{p} of the decaying particle as $\beta\gamma = (|\vec{p}|/E)/\sqrt{1 - (|\vec{p}|/E)^2}$. The factor in front of the exponential in eq. (4.1) is determined by the proper normalization of the probability $P(d)$, i.e. the condition

$$ \int_0^{+\infty} P(d) \, dd = 1. $$

By using this exponential decay formula, the corresponding formula for the probability as function of a dimensionless coordinate y can be very easily obtained. It reads

$$ P(y) = \frac{1}{\beta\gamma} \exp \left\{ -\frac{1}{\beta\gamma} y \right\}, \quad (4.2) $$

where $y = d\Gamma/c$ and the normalization was obtained as for $P(d)$. Here, we can explicitly see that any change in the decay rate Γ can be always compensated by an appropriate change in the distance d that the particle travels. Therefore, from the analytical expression of $P(d)$ we can directly justify the rescaling procedure used for the MadGraph events, that allowed us to cover the whole range of decay rates from a single run.

Both the formula for $P(d)$ and $P(y)$ can be generalized to describe an exponential decay of a sample of particles, integrating over the particles’ distribution in momentum and therefore in $\beta\gamma$. With the proper $\beta\gamma$ distribution such an integrated probability should give back exactly the decay length’s distribution obtained by the numerical procedure given in
section 4.2. To have a simpler and analytical expression, we will instead assume a single effective “average” value of $\beta\gamma$, defined as $\tilde{\beta}\gamma$, for all produced particles and estimate the decay length distribution just by multiplying such average single particle probability by the initial number of particles N_0. In this way, an estimate for the number of decaying particles of the sample as a function of d, called $N(d)$, is achieved as

$$N(d) = N_0 \frac{\Gamma_{\beta\gamma c}}{\beta\gamma c} \exp\left\{-\frac{\Gamma_{\beta\gamma c} d}{\beta\gamma c}\right\}, \quad (4.3)$$

where the coordinate $d = \sqrt{r^2 + z^2}$ can be taken as a function of the coordinates in the CMS detector. We neglect here in first approximation the bending of the trajectory by the magnetic field, which affects only the case of stop hadronization into a charged hadron, or the energy loss due to the interaction with the detector material, possibly negligible for a stop decay within the inner parts of the detector.

To obtain the optimal value of $\tilde{\beta}\gamma$ in eqs. (4.3), we compute the stop $\beta\gamma$ distribution with MadGraph and try to estimate such quantity from the shape of this distribution. The $\beta\gamma$ distribution is given in figure 7 for a stop mass of 800 GeV. We see that even for relatively small masses, the stop and anti-stop are mostly produced as non-relativistic, with a peak in the $\beta\gamma$ distribution clearly below one. We consider the analytical decay distance distribution with different effective $\tilde{\beta}\gamma$, i.e. taking the value at the maximum $\beta\gamma_{\text{max}} = 0.66$ or $(1/\beta\gamma)_{\text{max}} = 0.8026$ or the average values $\langle \beta\gamma \rangle = 0.9207$ or even $\langle (1/\beta\gamma) \rangle = 1.24595$, and we compare those curves with the distribution obtained from the MadGraph run, to see how well these different values of $\tilde{\beta}\gamma$ work. The value of $\tilde{\beta}\gamma = \beta\gamma_{\text{max}} = 0.66$ gives the best fit of the numerical distribution in the distance range of the pixel and tracker detector. We repeat the same estimate also for larger stop masses and finally we determine a common $\tilde{\beta}\gamma$ by arithmetic mean of the set of all the $\beta\gamma_{\text{max}}$-factors for all relevant masses. The overall effective $\tilde{\beta}\gamma = 0.66$ turns out to coincide with the value for $m_{\tilde{t}} = 800$ GeV and we use such value in the analytical equations eqs. (4.3). This $\tilde{\beta}\gamma$, optimized for detector distances, actually underestimates the decay length’s distribution at large distances, but it still gives a conservative estimate for the number of metastable particles decaying outside the detector.

Let us now compute the number of decay vertices in the pixel/tracker or outside directly from the analytical formula of $N(d)$. Assuming just a spherical geometry for the detector parts, we can integrate the expression with respect to d from r_i to r_f, which respectively
Figure 8. Semi-analytical LHC reach in the stop lifetime-stop mass plane at $L = 25\text{ fb}^{-1}$ in the left panel and $L = 3000\text{ fb}^{-1}$ in the right panel. In both panels, the Pixel reach is denoted by a blue dashed line while the Tracker reach by a red dot-dashed line. The reach of metastable particles is, instead, denoted by a green solid line.

stand for the initial and final radial distance from the IP to the part of interest of the detector, and from r_o to $+\infty$, which instead denote the region outside the detector. In doing so, we have an analytical approximate expressions for both number of stop decays that occur inside the detector parts and outside the detector. They are given by the equations

$$N_{r_i \leq d \leq r_f} = N_0 \left(\exp \left\{ -\frac{\Gamma}{\beta \gamma} r_i \right\} - \exp \left\{ -\frac{\Gamma}{\beta \gamma} r_f \right\} \right),$$

(4.4)

$$N_{d > r_o} = N_0 \exp \left\{ -\frac{\Gamma}{\beta \gamma} r_o \right\}.$$

(4.5)

Since the number of particles generated by proton-proton collisions is given by the product of cross-section times luminosity, $N_0 = \sigma L$, and a power-law formula for $\sigma(m_t)$ can be obtained fitting the MadGraph data, we can solve eq. (4.4) and eq. (4.5) for the stop lifetime as a function of the stop mass imposing $N_{r_i \leq d \leq r_f} = 10$ and $N_{d > r_o} = 10$, for the values of r_i, r_f, r_o corresponding to the pixel and tracker in the CMS detector and the whole detector. In this way we can obtain a simple estimate of the LHC reach in the plane stop lifetime versus stop mass that we can apply at different luminosities and also different values of displaced vertices or metastable tracks N. Note that the first equation is a transcendental equation and can be only solved numerically, while the second can be simply solved analytically.

These results are plotted in figure 8, where the dashed blue line, the dot-dashed red line and the green solid line denote, respectively, the Pixel, Tracker and Outside reaches. Observing figure 8, we can note that the crossing analytical curves identify again in the plane the regions, labelled A, B, C and D, which we have discussed earlier. To show the dependence on the requested number of vertices or metastable tracks, we give in figure 9 the LHC reach for $N = \{1, 10, 100\}$ again for both luminosities $L = 25\text{ fb}^{-1}$ (left) and $L = 3000\text{ fb}^{-1}$ (right). It is clear here that the change in N affects strongly the reach of the metastable track search only at large masses, since for long lifetimes those events practically
Figure 9. Semi-analytical LHC reach in the stop lifetime-stop mass plane for $N = \{1, 10, 100\}$ and at both luminosities $L = 25 \text{ fb}^{-1}$ (left panel) and $L = 3000 \text{ fb}^{-1}$ (right panel).

Figure 10. Semi-analytical LHC reach in the stop lifetime-stop mass plane at the luminosity $L = 100 \text{ fb}^{-1}$ (left panel) and $L = 300 \text{ fb}^{-1}$ (right panel).

coincide to the total number of produced stops and anti-stops, which decreases very fast as a function of the stop mass. For displaced vertices, the change in N just shifts the curves to a larger/smaller stop lifetime.

Instead in figure 10 we give additional plots of the approximate reach for different LHC luminosities: in the left panel we plot the LHC reach for $L = 100 \text{ fb}^{-1}$ whereas in the right one the LHC reach for $L = 300 \text{ fb}^{-1}$. We see from the four different plots in figures 8 and 10 that the LHC has the chance to cover the whole parameter space in lifetime up to stop masses of order 1300, 1500, 1700, 2100 GeV for a luminosity of 25, 100, 300, 3000 fb$^{-1}$ respectively.
Figure 11. NLO LHC reach in the stop lifetime-stop mass plane at \(L = 25 \text{ fb}^{-1} \) in the left panel and \(L = 3000 \text{ fb}^{-1} \) in the right panel. The centre of mass energy is \(\sqrt{s} = 14 \text{ TeV} \) in both panels. In both panels, the MadGraph-Pixel reach is denoted by blue points and its corresponding semi-analytical one by a blue dashed line. The MadGraph-Tracker reach instead is denoted by red points and its corresponding semi-analytical one by a red dot-dashed line. At last, the MadGraph-reach of metastable particles is denoted by green points and its corresponding semi-analytic one by a green solid line. In the upper left corner of each panel, the current excluded region for metastable particles (MP) is painted yellow. Each of the original analytical curves has their own uncertainty of \(\pm 1\sigma \), represented by two new analytical curves which draw a region around the original curve for \(n = 10 \).

4.4 Comparison and discussion

To compare directly the numerical and approximate LHC reach in the stop lifetime-stop mass plane, we plot all the curves together in figure 11.

Looking at this figure it is evident the good agreement between the MadGraph data and the approximate curves at both integrated luminosities: \(L = 25 \text{ fb}^{-1} \), showed in the left panel, and \(L = 3000 \text{ fb}^{-1} \), showed in the right panel. The analytical curves can be easily extended to consider \(\pm 1\sigma \) statistical error bars in the Poisson distribution, corresponding to 8 and 12 events respectively. We see that these curves give a very good description of the numerical data-points as they are mostly included in the \(\pm 1\sigma \) band. Only at low masses, where the statistics is large and the band becomes narrow, the analytical estimate deviates slightly from the numerical results. This is surely partially due to the spherical shape of the detector assumed in the approximated expression, which causes a substantial error in the region with a large number of events. In fact the data-points computed in the numerical analysis with the exact detector shape contain more signal events and give a wider reach in the low mass region.

The current CMS excluded region for metastable particles (MP) [24], obtained at a centre of mass energy of \(\sqrt{s} = 8 \text{ TeV} \) and an integrated luminosity \(L = 18.8 \text{ fb}^{-1} \), given by our analytical curve for zero decays outside the detector, is also shown as a yellow region in the upper left corner of each panel. We see that for long lifetimes the curve excludes stop masses below 800 GeV and this coincide with the results obtained in [24]. Such bounds weakens for lifetimes below \(10^{-7} \text{s} \). Here it is worth highlighting that the current
Figure 12. LHC reach in the stop mass-gravitino mass parameter space at NLO for the RPC decay \(t \to \psi_{3/2} t \) for 25 fb\(^{-1}\) (left panel) and for 3000 fb\(^{-1}\) (right panel) luminosity. The centre of mass energy is \(\sqrt{s} = 14 \text{ TeV} \) in both of them. On the left side of each panel the current excluded region for metastable particles (MP) is tinted yellow. The analytical curves that correspond to 10 displaced vertices in Pixel, Tracker and outside the detector are denoted by a dashed green line, a dot-dashed blue line and a solid pink line respectively. The BBN and CDM excluded regions are also painted red and yellow each in order. Particularly, the latter has been obtained for \(T_R = 10^7 \) and \(10^7 \) GeV.

excluded region still leaves a considerable allowed region to be investigated at LHC in the future.

Finally, let us stress the NLO k-factor of 1.6, which we have used here to correct the MadGraph LO cross-section, increases substantially the stop-production at the LHC and therefore also extends the LHC mass reach by approximately 200 GeV towards heavier stops compared to the LO results.

4.5 RPC and RPV models

As we have already mentioned beforehand, the discussion so far has been centered on the presence of a displaced vertex or metastable tracks and is so independent from the particular stop decay channel, as long as it contains sufficiently many charged tracks to make the secondary vertex visible. Therefore, our analysis is valid for both the RPC and the RPV stop decays we have discussed in section 2.1. We can therefore interpret our results in terms of the two different model parameters.

4.5.1 LHC reach for the RPC stop decay

For the RPC stop decay into gravitino and top, the LHC reach can be easily reformulated in the plane \(m_t \) vs \(m_{3/2} \) by using the analytical formula for the RPC stop lifetime, eq. (2.8). In figure 12 we display these curves at NLO for Pixel, Tracker and the part outside the detector by means of a dashed green line, a dot-dashed blue line and a solid pink line respectively. Here we also plot the BBN excluded region (red region), the CDM excluded region (yellow region) and the current excluded region for metastable particles (yellow region). The CDM excluded region we have drawn is achieved for a reheating temperature of \(T_R = 10^7 \) GeV.
and a ratio of physical gaugino masses to stop mass of $M_i/m_{\tilde t} = 1.1$. The left panel of the figure 12 shows the LHC reach for the RPC stop decay for an integrated luminosity of 25 fb$^{-1}$ while the right panel for 3000 fb$^{-1}$.

We note that the cosmological allowed region (white region) appears above all of three detector curves, which means that stop NLSPs with a consistent cosmology and high reheat temperature can be only detected as metastable particles. The detection of a displaced vertex would instead point to the case of small gravitino mass and low reheating temperature.

4.5.2 LHC reach for the RPV stop decay

For the bilinear RPV model, the LHC reach can be reformulated in the R-Parity breaking parameter-stop mass plane ϵ vs $m_{\tilde t}$ by using the analytic formula of the bilinear RPV stop lifetime given by eq. (2.15).

In figure 13 the approximated curves at NLO for Pixel, Tracker and the part outside the detector are represented by a dashed blue line, a dot-dashed red line and a solid green line respectively. We take here a parameter point with $\sin \theta / \cos \beta = 0.017$, corresponding to relatively small stop mixing. For larger stop mixing the lifetime of the stop becomes shorter and therefore the gap between the metastable particles bound at small ϵ and the DM indirect detection bound increases.

On the left panel the reach for 25 fb$^{-1}$ is shown whereas on the right panel for 3000 fb$^{-1}$. Here we also display the corresponding MadGraph data by points which are blue for Pixel, red for Tracker and green for the decays that occur outside CMS.

At the lower left-hand corner of each plots the current excluded region for metastable particle (MP) is painted yellow. At the top of each panel, on the other hand, we see the

Figure 13. Reach in the R-Parity breaking parameter-stop mass plane for the RPV decay $\tilde t \rightarrow \ell^+ b$ for 25 fb$^{-1}$ (left panel) and for 3000 fb$^{-1}$ (right panel) including the NLO correction to the production cross-section. Around each of the original analytical curves for 10 events, we show also the curves corresponding to a fluctuation $\pm 1\sigma$, i.e. 8 and 12 events, as thinner lines. At the lower left corner of each panel the current excluded region for metastable particles (MP) is tinted yellow. On the top of each panel, instead, the indirect detection excluded region for the gravitino DM decay by Fermi-LAT collaboration is painted purple.
indirect detection excluded region for the gravitino dark matter decay. The gravitino decay, indeed, leads to a diffuse γ-ray flux which can be compared to the γ-ray flux observed by Fermi-LAT collaboration [13, 14] so as to get a severe lower bound on the gravitino lifetime, and therefore a upper bound on the R-Parity breaking parameter ϵ. Note that the latter bound depends on the gravitino mass, but not the stop mass. Particularly, we take here the value of the upper bound on the R-Parity breaking parameter to be $\epsilon \simeq 2 \times 10^{-8}$ for a gravitino mass of the few GeVs from [16].

We see in this case that the analysis of displaced vertices is absolutely needed to close the gap between the indirect detection bound and the possible metastable particle constraint. Indeed in this case both displaced vertices and metastable stops can be a signature in the cosmologically favorable region. Let us conclude this discussion pointing out that the majority of the parameter space is not excluded by the current indirect detection upper bound on the R-Parity breaking parameter for a decaying DM gravitino and neither by the current excluded region for metastable particles. The LHC experiment will be able in the near future to explore all the parameter space up to the point where the stop NLSP is too heavy to be produced in sufficient numbers.

4.6 RPC and RPV stop decays at the LHC

In the previous section we have performed a decay-channel independent analysis, relying only on the presence or absence of a displaced vertex in the CMS detector. But in case displaced vertices are observed with an antilepton and a bottom quark-jet in the final state, the question that arises is which model between the two we are considering here is realized. In figure 14 and figure 15 we show the Feynman diagrams for the two stop decay channels in the RPV and RPC models. They correspond to a 2-body and a 4-body decay with the same visible particles, a b-quark and charged lepton, i.e.

\begin{align}
\tilde{t} &\rightarrow b \ell^+ \\
\tilde{t} &\rightarrow t\psi_{3/2} \rightarrow W^+ b\psi_{3/2} \rightarrow b \ell^+ \nu_\ell \psi_{3/2} .
\end{align}

Fortunately they can be distinguished by the missing energy in the decay and the particle kinematics.

The different phase space of these decay channels can be observed in different kinematical variables related to the visible particles. In particular, we focus our attention on the three following observables in the laboratory frame of reference: the antilepton transverse
momentum $P_\ell T$, the transverse mass of the pair antilepton-bottom M_T and finally, the angle between the bottom and the antilepton momentum $\vartheta_{\ell b}$, which are defined by the formulas

$$P_\ell T = \sqrt{p_{\ell x}^2 + p_{\ell y}^2},$$

$$M_T = \sqrt{(E_\ell + E_b)^2 - (p_{\ell T} + p_{bT})^2},$$

$$\vartheta_{\ell b} = \arccos\left(\frac{p_{\ell x}p_{b x} + p_{\ell y}p_{b y} + p_{\ell z}p_{b z}}{\sqrt{p_{\ell x}^2 + p_{\ell y}^2 + p_{\ell z}^2}\sqrt{p_{b x}^2 + p_{b y}^2 + p_{b z}^2}}\right).$$

The variables E_ℓ, $p_\ell = (p_{\ell x}, p_{\ell y}, p_{\ell z})$, E_b, $p_b = (p_{b x}, p_{b y}, p_{b z})$ stand for the energy and the three-momentum of antilepton and bottom, respectively.

In order to compare these kinematical quantities for the two decay channels of the stop, we simulate both processes with MadGraph 5 for a stop mass of $m_{\tilde{t}} = 800$ GeV and the same stop decay rate of $\Gamma_{\tilde{t}} = 2.02159 \times 10^{-10}$ GeV.

The transverse momentum distribution of the final antilepton for the two-body stop decay and the four-body stop decay are displayed in the left and the right panel of figure 16 respectively. Looking at the figure we see that the peak of the two-body distribution is located at a much larger transverse momentum than the peak of the four-body distribution, because in the two body decay the lepton takes away around half the rest energy of the stop. Note that the presence of a lepton or an antilepton in the final state is very useful since it provides a clear and robust signature in the detector, which significantly suppresses the large Standard Model background (e.g. QCD). In addition, the measurement of light leptons at CMS is more precise than that of jets.

The transverse mass distribution of the final pair antilepton-bottom for the two-body stop decay and the four-body stop decay are plotted in the left and the right panel of figure 17 respectively. As we can see from the figure, the two distributions are very different. The two-body distribution has a peak and endpoint at a transverse mass of $M_T = 800$ GeV corresponding to the stop mass, while the four-body distribution shows no peak and tends to be concentrated to a much smaller mass range. The difference is due to the missing energy in the four-body decay, while the two-body decay distribution allows to infer the stop mass from the position of the endpoint.

The angular distribution between the final bottom momentum and the final antilepton momentum for the two-body stop decay and the four-body stop decay are displayed in the left
and the right panel of figure 18 respectively. We see in this figure that both distributions have no real peak, but they are centered at different ranges of angle $\theta_\ell b$, which are $\pi/2 \lesssim \theta_\ell b \lesssim 3\pi/4$ for the two-body decay and $\theta_\ell b \lesssim \pi/3$ for the four-body decay. This again is consistent with the fact that in the two-body decay the lepton and bottom are back-to-back in the (slowly-moving) stop rest system, while in the four-body decay they recoil against a non-negligible missing momentum.

Note that the distributions we have just displayed are independent from the reference decay rate we have chosen and are valid also for different values of Γ. In general these distributions can be used not only to distinguish between the two RPC and RPV decays discussed here, but also to disentangle the signal from the SM background from top decays and from the case of a different model or LSP, e.g. to compare to the case of a right-handed sneutrino LSP [100] or to other models like the $\mu\nu$MSSM [30, 101].

4.7 Background and coincidence counting

So far we have completely neglected the background of Standard Model and Supersymmetric particles, a clearly optimistic working hypothesis. The most important SM background comes from the top-pair production at LHC. In fact, if the top quark decays into W^+ and bottom b and at last, the weak boson W^+ decays into antilepton ℓ^+ and neutrino ν_ℓ, we obtain in
the final state the same visible particles as in the RPC and RPV stop decay. On the other hand, the top decays even before hadronizing and much faster that the stop discussed here and therefore one can avoid all this SM background just by requiring a displaced vertex. More difficult is to eliminate another source of background coming from $b \bar{b} Z \rightarrow b \bar{b} \ell^+ \ell^-$, where the b-decay happens naturally away from the primary vertex and the lepton tracks are mis-reconstructed, as originating away from the interaction point. Moreover also underlying events can give rise to particles pointing to a secondary vertex, faking the presence of a long-lived particle.

In general a good strategy to eliminate such kind of reducible background is to consider the presence of two displaced vertices in the same event, both consistent with the same decay time, namely, the coincidence counting. Indeed we can see that in many cases one expects to have both stop and anti-stop to decay in the same part of the detector and give a clear signal for the production of two long-lived particles. Specifically, we give in the tables 1 and 2 the percentage of decays of the stop and anti-stop in the different detector parts.

Particularly, we see from tables 1 and 2, that even in the unfortunate case of lifetime around 10^{-9} s, which is at the boundary of the metastable particle searches, we have quite a large statistics of coincident events in the pixel and tracker, reaching approximately 50% of the displaced vertex events, irrespective of the stop mass. For longer lifetimes, the coincidence of two metastable particles in the same event takes over, reaching quickly a large statistics. We can therefore conclude that requiring two coincident events does not reduce the signal statistics substantially, while it would certainly suppress the background from misidentification or underlying events.

| $m_\tilde{t} = 800$ GeV & $\tau_\tilde{t} = 3.254 \times 10^{-9}$ s |
|---|---|---|---|---|---|
| \tilde{t} | \tilde{t}^\ast | Bp | Pi | Tr | Ib | Out | Tot |
| Bp | 3.29% | 5.90% | 3.64% | 1.20% | 0.02% | 14.05% |
| Pi | 5.74% | 17.13% | 11.75% | 5.08% | 0.00% | 39.70% |
| Tr | 3.15% | 11.98% | 10.01% | 5.05% | 0.05% | 30.24% |
| Ib | 1.21% | 5.09% | 5.61% | 3.89% | 0.02% | 15.82% |
| Out | 0.03% | 0.06% | 0.05% | 0.05% | 0.00% | 0.19% |
| Tot | 13.42% | 40.16% | 31.06% | 15.27% | 0.09% | 100% |

| $m_\tilde{t} = 800$ GeV & $\tau_\tilde{t} = 3.254 \times 10^{-7}$ s |
|---|---|---|---|---|---|
| \tilde{t} | \tilde{t}^\ast | Bp | Pi | Tr | Ib | Out | Tot |
| Bp | 0.00% | 0.00% | 0.00% | 0.02% | 0.18% | 0.26% |
| Pi | 0.00% | 0.01% | 0.01% | 0.10% | 0.77% | 0.89% |
| Tr | 0.00% | 0.04% | 0.05% | 0.26% | 1.41% | 1.76% |
| Ib | 0.01% | 0.00% | 0.17% | 1.39% | 8.95% | 10.61% |
| Out | 0.14% | 0.73% | 1.56% | 8.63% | 75.48% | 86.54% |
| Tot | 0.15% | 0.87% | 1.79% | 10.40% | 86.79% | 100% |

Table 1. Coincidence counting for stop and antistop for a stop mass of $m_\tilde{t} = 800$ GeV and a stop lifetime of $\tau_\tilde{t} = 3.254 \times 10^{-9}$ s and 3.254×10^{-7} s. The labels Bp, Pi, Tr, Ib, Out stand respectively for the part of CMS before Pixel, Pixel, Tracker, the part between Tracker and the end of CMS and the part outside CMS detector.
\[m_{\tilde{t}} = 2000 \text{ GeV} \& \tau_{\tilde{t}} = 3.254 \times 10^{-9} \text{s} \]

\(\tilde{t} \)	\(\tilde{t}^* \)	Bp	Pi	Tr	Ib	Out	Tot
Bp	2.69%	6.94%	3.35%	0.78%	0.01%	13.77%	
Pi	6.47%	21.58%	13.44%	3.69%	0.00%	45.18%	
Tr	3.00%	13.10%	10.22%	3.95%	0.00%	30.27%	
Ib	0.60%	4.23%	3.72%	2.23%	0.00%	10.78%	
Out	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	
Tot	12.76%	45.85%	30.73%	10.65%	0.01%	100%	

Table 2. Coincidence counting for stop and antistop for a stop mass of \(m_{\tilde{t}} = 2200 \text{ GeV} \) and a stop lifetime of \(\tau_{\tilde{t}} = 3.254 \times 10^{-9} \) and \(3.254 \times 10^{-7} \) s. The labels Bp, Pi, Tr, Ib, Out stand respectively for the part of CMS before Pixel, Pixel, Tracker, the part between Tracker and the end of CMS and the part outside CMS detector.

5 Conclusion

We have studied in this paper the reach of the LHC in models with a stop NLSP and gravitino LSP, both for the case of R-parity conservation and violation. In both cases we expect the stop to have a long lifetime leading to the possibility of displaced vertices or metastable particles at the LHC.

From the cosmological perspective, in case of high reheat temperature above the electroweak scale, the RPC scenario seems to prefer gravitino masses above 1 GeV and therefore lifetimes giving metastable stops, while for the RPV case only indirect detection of gravitino DM decay gives an upper bound on the RPV parameter \(\epsilon \), still consistent with stop decays within the detector.

We have performed a model-independent analysis of the two expected signals: displaced vertices in pixel or tracker detectors and metastable tracks. Our analysis is based on the MadGraph event generator, which allows us to simulate both the stop-anti-stop production and its subsequent decays. We assumed here that most of the other colored supersymmetric particles are much heavier than the stop and outside of the LHC reach and therefore we considered only the stop direct production, computed by MadGraph at LO and then corrected to include NLO with a constant k-factor. For the decay length distribution in the detector we also devised a simple analytical estimate based on the decay formula and the stop momentum distribution, that matches very well the MadGraph data-points and allows for a much easier exploration of the parameter space.

We have seen that even for relatively long lifetimes a substantial number of decays can happen in the tracker or pixel parts of the CMS detector. They surprisingly present...
similar number of events and can both be exploited to measure the short lifetime region, while the metastable particle search extends the reach quite strongly at long lifetimes. We have therefore shown that the two search strategies are complementary and that both are needed in order to cover all the macroscopic stop lifetimes up to a certain stop mass. It is interesting to note that both searches, either displaced vertices or metastable states, run out of steam at a similar value of the stop mass, where the production cross-section becomes too small. In particular we obtain, neglecting the background, in the most conservative case a mass reach up to 1300 GeV and 2100 GeV at NLO for LHC at 14 TeV and with an integrated luminosity of 25 fb$^{-1}$ and 3000 fb$^{-1}$ respectively. As expected this reach is much larger than the minimal one for a metastable stau from Drell-Yan production as given e.g. in [35], but smaller to the reach expected for a metastable gluino. Of course a full detector simulation is needed to confirm our findings, but the prospects seem to be very favorable for a combined analysis of both displaced vertices and metastable particle searches as discussed here.

We have translated the LHC reach in the parameter space of two models with gravitino DM, either RPC or RPV. In the first model the region compatible with high reheating temperature leads only to the signal of HSCP and the observation of displaced vertices in the first run fase with 25 fb$^{-1}$ would directly point to $T_R < 10^3–10^4$ GeV. In the second model instead the search for displaced vertices allows to close the gap between metastable particle and indirect detection bounds at low stop masses. In case displaced vertices are seen, the visible particle kinematics allows to distinguish between RPC and RPV decays from the presence or absence of any missing energy. The distributions and the flavour of the final lepton, together with the value of the stop lifetime will be crucial to disentangle the particular model.

In general, due to the pair production of stop and anti-stop, we expect to see in a large fraction of the events the coincident presence of two displaced vertices or two metastable particles in the same event, allowing to disentangle the signal from reducible backgrounds connected to b-decays or misidentification of overlapping events.

Acknowledgments

We would like to thank G. Arcadi, G. Hiller, Y. Nir and S. Schumann for useful discussions.

L.C. and F.D. acknowledge financial support by the German-Israeli Foundation for scientific research and development (GIF) and partial financial support by the EU FP7 ITN Invisibles (Marie Curie Actions, PITN-GA-2011-289442).

References

[1] J. Ellis and K.A. Olive, *Supersymmetric dark matter candidates*, in G. Bertone ed., *Particle dark matter: observations, models and searches*, Cambridge University Press, Cambridge U.K. (2010), pp. 142–163 [arXiv:1001.3651] [SPIRE].

[2] R. Catena and L. Covi, *SUSY dark matter(s)*, *Eur. Phys. J. C* 74 (2014) 2703 [arXiv:1310.4776] [SPIRE].

[3] D.Z. Freedman, P. van Nieuwenhuizen and S. Ferrara, *Progress toward a theory of supergravity*, *Phys. Rev. D* 13 (1976) 3214 [SPIRE].

[4] S. Deser and B. Zumino, *Consistent supergravity*, *Phys. Lett. B* 62 (1976) 335 [SPIRE].

[5] S. Weinberg, *Cosmological constraints on the scale of supersymmetry breaking*, *Phys. Rev. Lett.* 48 (1982) 1303 [SPIRE].
[6] M.Y. Khlopov and A.D. Linde, *Is it easy to save the gravitino?, Phys. Lett. B 138* (1984) 265 [inSPIRE].

[7] J.R. Ellis, D.V. Nanopoulos and S. Sarkar, *The cosmology of decaying gravitinos, Nucl. Phys. B 259* (1985) 175 [inSPIRE].

[8] M. Bolz, W. Buchmuller and M. Plümacher, *Baryon asymmetry and dark matter, Phys. Lett. B 443* (1998) 209 [hep-ph/9809381] [inSPIRE].

[9] M. Kawasaki, K. Kohri, T. Moroi and A. Yotsuyanagi, *Big-bang nucleosynthesis and gravitino, Phys. Rev. D 78* (2008) 065011 [arXiv:0804.3745] [inSPIRE].

[10] R. Barbier et al., *R-parity violating supersymmetry, Phys. Rept. 420* (2005) 1 [hep-ph/0406039] [inSPIRE].

[11] F. Takayama and M. Yamaguchi, *Gravitino dark matter without R-parity, Phys. Lett. B 485* (2000) 388 [hep-ph/0005214] [inSPIRE].

[12] W. Buchmüller, L. Covi, K. Hamaguchi, A. Ibarra and T. Yanagida, *Gravitino dark matter in R-parity breaking vacua, JHEP 03* (2007) 037 [hep-ph/0702184] [inSPIRE].

[13] A.A. Abdo et al., *Fermi LAT search for photon lines from 30 to 200 GeV and dark matter implications, Phys. Rev. Lett. 104* (2010) 091302 [arXiv:1001.4836] [inSPIRE].

[14] S. Bobrovskyi, W. Buchmüller, J. Hajer and J. Schmidt, *Broken R-parity in the sky and at the LHC, JHEP 10* (2010) 061 [arXiv:1007.5007] [inSPIRE].

[15] G. Vertongen and C. Weniger, *Hunting dark matter gamma-ray lines with the Fermi LAT, JCAP 05* (2011) 28 [arXiv:0807.0975] [inSPIRE].

[16] P.W. Graham, D.E. Kaplan, S. Rajendran and P. Saraswat, *Displaced supersymmetry, JHEP 07* (2012) 149 [arXiv:1204.6038] [inSPIRE].

[17] CMS collaboration, *Search for heavy stable charged particles in pp collisions at √s = 7 TeV, JHEP 03* (2011) 024 [arXiv:1101.1645] [inSPIRE].

[18] ATLAS collaboration, *Search for stable hadronising squarks and gluinos with the ATLAS experiment at the LHC, Phys. Lett. B 701* (2011) 1 [arXiv:1103.1984] [inSPIRE].

[19] CMS collaboration, *Search for heavy long-lived charged particles in pp collisions at √s = 7 TeV, Phys. Lett. B 713* (2012) 408 [arXiv:1205.0272] [inSPIRE].

[20] CMS collaboration, *Search for stopped long-lived particles produced in pp collisions at √s = 7 TeV, JHEP 08* (2012) 026 [arXiv:1207.0106] [inSPIRE].

[21] ATLAS collaboration, *Search for long-lived, multi-charged particles in pp collisions at √s = 7 TeV using the ATLAS detector, Phys. Lett. B 722* (2013) 305 [arXiv:1301.5272] [inSPIRE].

[22] CMS collaboration, *Searches for long-lived charged particles in pp collisions at √s = 7 and 8 TeV, JHEP 07* (2013) 122 [arXiv:1305.0491] [inSPIRE].

[23] ATLAS collaboration, *Search for long-lived stopped R-hadrons decaying out-of-time with pp collisions using the ATLAS detector, Phys. Rev. D 88* (2013) 112003 [arXiv:1310.6584] [inSPIRE].
(26) ATLAS collaboration, Search for long-lived, heavy particles in final states with a muon and a multi-track displaced vertex in proton-proton collisions at $\sqrt{s} = 8$ TeV with the ATLAS detector, ATLAS-CONF-2013-092 (2013).

(27) P. Meade, M. Reece and D. Shih, Long-lived neutralino NLSPs, JHEP 10 (2010) 067 [arXiv:1006.4575] [insPIRE].

(28) S. Bobrovskyi, W. Buchmüller, J. Hajer and J. Schmidt, Quasi-stable neutralinos at the LHC, JHEP 09 (2011) 119 [arXiv:1107.0926] [insPIRE].

(29) M. Hirsch, W. Porod and D. Restrepo, Collider signals of gravitino dark matter in bilinearly broken R-parity, JHEP 03 (2005) 062 [hep-ph/0503059 [insPIRE].

(30) P. Ghosh, D.E. Lopez-Fogliani, V.A. Mitsou, C. Muñoz and R. Ruiz de Austri, Probing the μ-from-ν supersymmetric standard model with displaced multileptons from the decay of a Higgs boson at the LHC, Phys. Rev. D 88 (2013) 015009 [arXiv:1211.3177] [insPIRE].

(31) L. Covi, M. Olechowski, S. Pokorski, K. Turzynski and J.D. Wells, Supersymmetric mass spectra for gravitino dark matter with a high reheating temperature, JHEP 01 (2011) 033 [arXiv:1009.3801] [insPIRE].

(32) F.D. Steffen, Probing the reheating temperature at colliders and with primordial nucleosynthesis, Phys. Lett. B 669 (2008) 74 [arXiv:0806.3266 [insPIRE].

(33) J. Pradler and F.D. Steffen, Thermal relic abundances of long-lived staus, Nucl. Phys. B 809 (2009) 318 [arXiv:0808.2462 [insPIRE].

(34) M. Endo, K. Hamaguchi and K. Nakaji, Probing high reheating temperature scenarios at the LHC with long-lived staus, JHEP 11 (2010) 004 [arXiv:1008.2307] [insPIRE].

(35) J. Heisig and J. Kersten, Production of long-lived staus in the Drell-Yan process, Phys. Rev. D 84 (2011) 115009 [arXiv:1106.0764 [insPIRE].

(36) J.M. Lindert, F.D. Steffen and M.K. Trenkel, Direct stau production at hadron colliders in cosmologically motivated scenarios, JHEP 08 (2011) 151 [arXiv:1106.4005 [insPIRE].

(37) J. Heisig and J. Kersten, Long-lived staus from strong production in a simplified model approach, Phys. Rev. D 86 (2012) 055020 [arXiv:1203.1581 [insPIRE].

(38) J. Heisig, J. Kersten, B. Panes and T. Robens, A survey for low stau yields in the MSSM, JHEP 04 (2014) 053 [arXiv:1310.2825 [insPIRE].

(39) J. Heisig, Gravitino LSP and leptogenesis after the first LHC results, JCAP 04 (2014) 023 [arXiv:1310.6352] [insPIRE].

(40) L. Covi and S. Kraml, Collider signatures of gravitino dark matter with a sneutrino NLSP, JHEP 08 (2007) 015 [hep-ph/0703130 [insPIRE].

(41) J.R. Ellis, K.A. Olive and Y. Santoso, Sneutrino NLSP scenarios in the NUHM with gravitino dark matter, JHEP 10 (2008) 005 [arXiv:0807.3736 [insPIRE].

(42) A. Katz and B. Tweedie, Signals of a sneutrino (N)LSP at the LHC, Phys. Rev. D 81 (2010) 035012 [arXiv:0911.4132 [insPIRE].

(43) T. Figy, K. Rolbiecki and Y. Santoso, Tau-sneutrino NLSP and multilepton signatures at the LHC, Phys. Rev. D 82 (2010) 075016 [arXiv:1005.5136 [insPIRE].

(44) L. Roszkowski, S. Trojanowski, K. Turzynski and K. Jedamzik, Gravitino dark matter with constraints from Higgs boson mass and sneutrino decays, JHEP 03 (2013) 013 [arXiv:1212.5587 [insPIRE].

(45) S. Bobrovskyi, J. Hajer and S. Rydbeck, Long-lived higgsinos as probes of gravitino dark matter at the LHC, JHEP 02 (2013) 133 [arXiv:1211.5584 [insPIRE].
JCAP10(2014)039

[46] J.L. Diaz-Cruz, J.R. Ellis, K.A. Olive and Y. Santoso, On the feasibility of a stop NLSP in gravitino dark matter scenarios, JHEP 05 (2007) 003 [hep-ph/0701229] [InsPIRE].

[47] C.F. Berger, L. Covi, S. Kraml and F. Palorini, The number density of a charged relic, JCAP 10 (2008) 005 [arXiv:0807.0211] [InsPIRE].

[48] K. Kohri and Y. Santoso, Cosmological scenario of stop NLSP with gravitino LSP and the cosmic lithium problem, Phys. Rev. D 79 (2009) 043514 [arXiv:0811.1119] [InsPIRE].

[49] J. Alwall, J.L. Feng, J. Kumar and S. Su, Dark matter-motivated searches for exotic 4th generation quarks in Tevatron and early LHC data, Phys. Rev. D 81 (2010) 114027 [arXiv:1002.3366] [InsPIRE].

[50] Y. Kats and D. Shih, Light stop NLSPs at the Tevatron and LHC, JHEP 08 (2011) 049 [arXiv:1106.0030] [InsPIRE].

[51] C. Kilic and B. Tweedie, Cornering light stops with dileptonic m_{T_2}, JHEP 04 (2013) 110 [arXiv:1211.6106] [InsPIRE].

[52] Y. Bai, A. Katz and B. Tweedie, Pulling out all the stops: searching for RPV SUSY with stop-jets, JHEP 01 (2014) 040 [arXiv:1309.6631] [InsPIRE].

[53] Z. Marshall, B.A. Ovrut, A. Purves and S. Spinner, LSP squark decays at the LHC and the neutrino mass hierarchy, Phys. Rev. D 90 (2014) 015034 [arXiv:1402.5434] [InsPIRE].

[54] M. Asano, H.D. Kim, R. Kitano and Y. Shimizu, Natural supersymmetry at the LHC, JHEP 12 (2010) 019 [arXiv:1010.0692] [InsPIRE].

[55] C. Brust, A. Katz, S. Lawrence and R. Sundrum, SUSY, the third generation and the LHC, JHEP 03 (2012) 103 [arXiv:1110.6670] [InsPIRE].

[56] M. Papucci, J.T. Ruderman and A. Weiler, Natural SUSY endures, JHEP 09 (2012) 035 [arXiv:1112.3026] [InsPIRE].

[57] S.P. Martin, A supersymmetry primer, Adv. Ser. Direct. High Energy Phys. 21 (2010) 1 [hep-ph/9709356] [InsPIRE].

[58] L.J. Hall, D. Pinner and J.T. Ruderman, A natural SUSY Higgs near 126 GeV, JHEP 04 (2012) 131 [arXiv:1112.2703] [InsPIRE].

[59] S. Heinemeyer, O. Stal and G. Weiglein, Interpreting the LHC Higgs search results in the MSSM, Phys. Lett. B 710 (2012) 201 [arXiv:1112.3026] [InsPIRE].

[60] A. Arbey, M. Battaglia, A. Djouadi, F. Mahmoudi and J. Quevillon, Implications of a 125 GeV Higgs for supersymmetric models, Phys. Lett. B 708 (2012) 162 [arXiv:1112.3026] [InsPIRE].

[61] G.F. Giudice and R. Rattazzi, Theories with gauge mediated supersymmetry breaking, Phys. Rept. 322 (1999) 419 [hep-ph/9801271] [InsPIRE].

[62] P. Meade, N. Seiberg and D. Shih, General gauge mediation, Prog. Theor. Phys. Suppl. 177 (2009) 143 [arXiv:0801.3278] [InsPIRE].

[63] M. Buican, P. Meade, N. Seiberg and D. Shih, Exploring general gauge mediation, JHEP 03 (2009) 016 [arXiv:0812.3668] [InsPIRE].

[64] J.L. Evans, M. Ibe, S. Shirai and T.T. Yanagida, A 125 GeV Higgs boson and muon $g-2$ in more generic gauge mediation, Phys. Rev. D 85 (2012) 095004 [arXiv:1201.2611] [InsPIRE].

[65] Z. Kang, T. Li, T. Liu, C. Tong and J.M. Yang, A heavy SM-like Higgs and a light stop from Yukawa-deflected gauge mediation, Phys. Rev. D 86 (2012) 095020 [arXiv:1203.2336] [InsPIRE].

[66] P. Grajek, A. Mariotti and D. Redigolo, Phenomenology of general gauge mediation in light of a 125 GeV Higgs, JHEP 07 (2013) 109 [arXiv:1303.0870] [InsPIRE].
[67] W. Beenakker, M. Krämer, T. Plehn, M. Spira and P.M. Zerwas, *Stop production at hadron colliders*, *Nucl. Phys. B* 515 (1998) 3 [hep-ph/9710451] [SPIRE].

[68] J. Alwall, M. Herquet, F. Maltoni, O. Mattelaer and T. Stelzer, *MadGraph 5: going beyond*, *JHEP* 06 (2011) 128 [arXiv:1106.0522] [SPIRE].

[69] X. Ji, R.N. Mohapatra, S. Nussinov and Y. Zhang, *A model with dynamical R-parity breaking and unstable gravitino dark matter*, *Phys. Rev. D* 78 (2008) 075032 [arXiv:0808.1904] [SPIRE].

[70] M. Endo and T. Shindou, *R-parity violating right-handed neutrino in gravitino dark matter scenario*, *JHEP* 09 (2009) 037 [arXiv:0903.1813] [SPIRE].

[71] X. Ji, R.N. Mohapatra, S. Nussinov and Y. Zhang, *A model with dynamical R-parity breaking and unstable gravitino dark matter*, *Phys. Rev. D* 78 (2008) 075032 [arXiv:0808.1904] [SPIRE].

[72] M. Endo and T. Shindou, *R-parity violating right-handed neutrino in gravitino dark matter scenario*, *JHEP* 09 (2009) 037 [arXiv:0903.1813] [SPIRE].

[73] X. Ji, R.N. Mohapatra, S. Nussinov and Y. Zhang, *A model with dynamical R-parity breaking and unstable gravitino dark matter*, *Phys. Rev. D* 78 (2008) 075032 [arXiv:0808.1904] [SPIRE].

[74] M. Endo and T. Shindou, *R-parity violating right-handed neutrino in gravitino dark matter scenario*, *JHEP* 09 (2009) 037 [arXiv:0903.1813] [SPIRE].

[75] M. Fairbairn et al., *Stable massive particles at colliders*, *Phys. Rept.* 438 (2007) 1 [hep-ph/0611040] [SPIRE].

[76] Particle Data Group collaboration, J. Beringer et al., *Review of particle physics*, *Phys. Rev. D* 86 (2012) 010001 [SPIRE].

[77] K. Jedamzik and M. Pospelov, *Big bang nucleosynthesis and particle dark matter*, *New J. Phys.* 11 (2009) 105028 [arXiv:0906.2087] [SPIRE].

[78] M. Kawasaki, K. Kohri and T. Moroi, *Big-bang nucleosynthesis and hadronic decay of long-lived massive particles*, *Phys. Rev. D* 71 (2005) 083502 [astro-ph/0408426] [SPIRE].

[79] K. Jedamzik, *Big bang nucleosynthesis constraints on hadronically and electromagnetically decaying relic neutral particles*, *Phys. Rev. D* 74 (2006) 103509 [hep-ph/0604251] [SPIRE].

[80] M. Kusakabe, T. Kajino, T. Yoshida and G.J. Mathews, *Effect of long-lived strongly interacting relic particles on big bang nucleosynthesis*, *Phys. Rev. D* 80 (2009) 103501 [arXiv:0906.3516] [SPIRE].

[81] K. Kohri, *Primordial nucleosynthesis and hadronic decay of a massive particle with a relatively short lifetime*, *Phys. Rev. D* 64 (2001) 043515 [astro-ph/0103411] [SPIRE].

[82] A. Sommerfeld, *Atombau und Spektrallinien, Band 2*, Vieweg & Sohn (1939).

[83] A.D. Sakharov, *Interaction of an electron and positron in pair production*, Zh. Eksp. Teor. Fiz. 18 (1948) 631 [Sov. Phys. Usp. 34 (1991) 375] [SPIRE].

[84] J.S. Schwinger, *Particles, sources, and fields. Volume 2*, Advanced Book Classics Series, Addison-Wesley (1989).

[85] L. Covi, J.E. Kim and L. Roszkowski, *Azinos as cold dark matter*, *Phys. Rev. Lett.* 82 (1999) 4180 [hep-ph/9905212] [SPIRE].

[86] J.L. Feng, A. Rajaraman and F. Takayama, *Superweakly interacting massive particles*, *Phys. Rev. Lett.* 91 (2003) 011302 [hep-ph/0302215] [SPIRE].

[87] T. Moroi, H. Murayama and M. Yamaguchi, *Cosmological constraints on the light stable gravitino*, *Phys. Lett. B* 303 (1993) 289 [SPIRE].

[88] M. Bolz, A. Brandenburg and W. Buchmüller, *Thermal production of gravitinos*, *Nucl. Phys. B* 606 (2001) 518 [Erratum *ibid.* B 790 (2008) 336] [hep-ph/0012052] [SPIRE].
[89] J. Pradler and F.D. Steffen, *Thermal gravitino production and collider tests of leptogenesis*, Phys. Rev. D 75 (2007) 023509 [hep-ph/0608344] [inSPIRE].

[90] V.S. Rychkov and A. Strumia, *Thermal production of gravitinos*, Phys. Rev. D 75 (2007) 075011 [hep-ph/0701104] [inSPIRE].

[91] L.J. Hall, K. Jedamzik, J. March-Russell and S.M. West, *Freeze-in production of FIMP dark matter*, JHEP 03 (2010) 080 [arXiv:0911.1120] [inSPIRE].

[92] C. Cheung, G. Elor and L. Hall, *Gravitino freeze-in*, Phys. Rev. D 84 (2011) 115021 [arXiv:1103.4394] [inSPIRE].

[93] PLANCK collaboration, P.A.R. Ade et al., *Planck 2013 results. XVI. Cosmological parameters*, arXiv:1303.5076 [inSPIRE].

[94] WMAP collaboration, E. Komatsu et al., *Seven-year Wilkinson Microwave Anisotropy Probe (WMAP) observations: cosmological interpretation*, Astrophys. J. Suppl. 192 (2011) 18 [arXiv:1001.4538] [inSPIRE].

[95] P.W. Graham, K. Howe, S. Rajendran and D. Stolarski, *New measurements with stopped particles at the LHC*, Phys. Rev. D 86 (2012) 034020 [arXiv:1111.4176] [inSPIRE].

[96] W. Beenakker, R. Hopker and M. Spira, *PROSPINO: a program for the production of supersymmetric particles in next-to-leading order QCD*, hep-ph/9611232 [inSPIRE].

[97] CMS collaboration, *The CMS experiment at the CERN LHC, 2008 JINST 3 S08004* [inSPIRE].

[98] A. Alloul, N.D. Christensen, C.Degrande, C. Duhr and B. Fuks, *FeynRules 2.0 — a complete toolbox for tree-level phenomenology*, Comput. Phys. Commun. 185 (2014) 2250 [arXiv:1310.1921] [inSPIRE].

[99] http://feynrules.irmp.ucl.ac.be/wiki/ModelDatabaseMainPage.

[100] A. de Gouvêa, S. Gopalakrishna and W. Porod, *Stop decay into right-handed sneutrino LSP at hadron colliders*, JHEP 11 (2006) 050 [hep-ph/0606296] [inSPIRE].

[101] K.-Y. Choi, D.E. Lopez-Fogliani, C. Muñoz and R.R. de Austri, *Gamma-ray detection from gravitino dark matter decay in the \(\nu \)-SSM*, JCAP 03 (2010) 028 [arXiv:0906.3681] [inSPIRE].