INTRODUCTION

Genus Cymbopogon is widely distributed in the tropical and subtropical regions of Africa, Asia, and America. The genus Cymbopogon comprises of more than 144 species, and is well known for its high content of essential oils1-2. Studies have led to the isolation of alkaloids, volatile and non-volatile terpenoids, flavonoids, carotenoids and tannins from every part of Cymbopogon species. Cymbopogon martini (lemongrasses) is native to India and Indochina, but widely cultivated in many places for its aromatic essential oil. Known as Palmarosa, the plant has other names: Indian geranium, ginger grass, rosha, and rosha grass. Besides, therapeutic application, it is commonly used as a condiment and food preservative. PEO contains bioactive molecules, phyto-compounds, endowed with pharmacological activities3. PEO contains geraniol, used as scent and in a number of traditional medicinal. PEO is of commercial importance, being extensively used in perfumes, soaps, cosmetics, toiletry and tobacco products4. PEO has effective insect repellent property when applied to stored grain and beans5, antihelminth against nematodes5, antifungal6,7 and mosquito repellent8 activity. CMEO is used in aromatherapy due to its antimicrobial properties. It is used in Ayurvedic medicine to treat skin problems and relieve nerve pain. Immunomodulatory action of CMEO was evaluated towards production of pro- and anti-inflammatory cytokines (TNF-α and IL-10) by human monocytes in vitro9.

Essential Oils (EOs) a major group of Phytogenic Bio-Active Compounds (PBAC) have been used for variety of purposes. Due to their physicochemical properties and bioactive nature, EOs has been used in aromatherapy, as flavor and fragrances in cosmetics, foods, and more recently as pharmaceuticals, natural preservatives, additives, and biopesticides10,11. EOs are concentrated form of liquid mixtures of volatile compounds of plant origin with unique structural chemistry including terpenoid and non-terpenoid hydrocarbons and their oxygenated derivatives, with natural color, odor and flavor, or “essence” of their source - volatile/ odoriferous oil. EOs are extracted from various plant parts such as leaves, fruit, bark, root, wood, heartwood, gum, balsam, berries, seeds, flowers, twigs, and buds12.

Role of EOs in drug development has been well documented since antiquity nevertheless, they are directly used as therapeutic agents due to fact that they have proven record in traditional indigenous systems of medicine such as Ayurveda, Siddha, Unani and Homeopathy and in modern medicine, EOs contain bioactive compounds of GRAS nature. Furthermore, concern about the negative effect of synthetic chemicals as food additives warrants “GO” products with no or lesser side effects. Therefore, growing interest in natural
extracts as alternatives for synthetic additives is attributed to (a) their synergy with other preservation methods (b) generally regarded as safe, and (c) PBNPs are endowed with antioxidant, antidiabetic, antimutagenic, antitoxicogenic and antibacterial properties. Apart from effective antioxidants of CMEO viz., cyclic diterpene diphenols, carnosic acid and carnosol CMEO contains carnosic acid, epicosmonol, rosmanol, methylcarnosate and isorosmonol however, needs scientific validation.

Cymbopogon martini (Palmarosa) has been traced for its origin from the Mediterranean region. It is an aromatic plant, a unique spice commercially available for use as an antioxidant. CMEO extracts have been used in the treatment of diseases, due to its phytotherapeutic potential. On the other hand, it is used in food preservation, PEO could even decrease the use of synthetic antioxidants in foods. EFSA (European Food Safety Authority) recently, reviewed the safety of CMEO extracts and concluded that there are high-intake estimates ranging from 0.09 (elderly) to 0.81 (children) mg/kg per day.

Cymbopogon martini (PALMAROSA)

Botanical Description: Perennial from a short woody rootstock. Culms tufted, up to 3 m tall, lower nodes often swollen, mealy. Leaf sheaths glabrous; leaf blades lanceolate, usually glaucous below, dark green above, up to 50 × 2–3 cm, glabrous, base cordate, often amplexicaul, apex filiform; ligule 2–4 mm. Spathate panicle narrow, dense, erect, 20–30 cm; spatheollae green becoming reddish, 2–3 mm; spatheollae green becoming reddish, 2–3 cm; racemes 1.5–2 cm; rachis internodes and pedicels ciliate on margins, back sometimes pubescent; pedicel of homogamous pair swollen, barrel-shaped, shiny, fused to internode at base. Sessile spikelet oblong, 3.5–4.5 mm; lower glume flat, deeply grooved below middle, keels winged above middle, vein less or 2-veined between keels; upper lemma 2-lobe bed; awn 1.4–1.8 cm. Pedicelled spikelet 3.5–4 mm. Fl. and fr. Jul.–Oct. This grass is native to India, but is cultivated elsewhere in tropical regions of the world for its essential oils.

In traditional medicine both the plant and its oils are used to treat rheumatism, hair loss, arthritis, lumbago and spasms. The essential oil is a strong fungicide. In laboratory tests it was more effective than several synthetic fungicides against pathogenic fungi and yeasts, including *Aspergillus* spp., *Candida albicans*, *Monilia sitithora* and *Trichophyton tonsurae*. In Ayurvedic medicine - Charak gave the decoction of whole plant in the treatment of abdominal disorders, the liver disorders, jaundice, fever and disorders of the spleen. In Sushruta, decoction of whole plant is prescribed in inflammation of throat, chest pain, indigestion, bronchitis, cough and asthma.

MATERIALS AND METHODS

Collection, Preparation and Extraction of Oil from the sample

The leaf samples were collected from wild in the Perumalmalai Region (Perumalmalai is a hillock in the Palani Hills, Dindigul District, Tamil Nadu) Western Ghats, INDIA during December 2020. The leaf sample were well preserved, taken to laboratory, identified by using flora and shade dried and processed as per the protocol for preparation of sample according to the methods previously described by Eleyinmi, however, with modifications in the temperature and duration of processing of the sample. As much as 100 g leaf was weighed and dried in an oven at 60°C. Dried sample was ground into powder using Thomas-Willey milling machine and sieved on a wire mesh screen (3 × 3 mm²). Sample was stored at 4°C in air-tight container with screw caps. Sample was prepared according to the methods previously described by Raškov et al. 25 g of sample was suspended in 250 mL of distilled water in stoppered flasks and allowed to stand for 24 h, filtered with Whatman No 24 filter paper, concentrated in a rotary evaporator for 12 h at 50°C and dried in vacuum desiccator. Yield was calculated to be 6.06% w/w. Extract was suspended in ethyl acetate and subjected to GC-MS analysis.

GC-MS Analysis

Cymbopogon martini (Palmarosa) Essential Oil was extracted, from the leaf samples collected from the Perumalmalai Region, Palani, Dindigul District, Tamil Nadu, India. Phyto-components were identified using GC-MS detection system as described previously, however with modification, whereby portion of the extract was analysed directly by headspace sampling. GC-MS analysis was accomplished using an Agilent 7890A GC system set up with 5975C VL MSD (Agilent Technologies, CA, and USA). Capillary column used was DB-5MS (30 m × 0.25 mm, film thickness of 0.25 μm; J&W Scientific, CA, USA). Temperature program was set as follows: initial temperature 50°C held for 1 min, 5°C per min to 100°C, 9°C per min to 200°C held for 7.89 min, and the total run time was 30 min. The flow rate of helium as a carrier gas was 0.811851 mL/min. MS system was performed in electron ionization (EI) mode with Selected Ion Monitoring (SIM). The ion source temperature and quadrupole temperature were set at 230°C and 150°C, respectively. Identification of phyto-components was performed using comparison of their retention times and mass with those of authentic standards spectra using computer searches in NIST 08L and Wiley 7nl libraries.

ADMET prediction

Selected phytocompounds were subjected to ADMET prediction using QikProp (version 4.3, Suite 2015-1; Schrödinger, LLC, New York, NY) and toxicity prediction using TOPKAT (Accelrys, Inc., USA). QikProp develops and employs QSAR/QSPR models using partial least squares, principal component analysis and multiple linear regression to predict phisico-chemically significant descriptors.

RESULTS AND DISCUSSION

GCMS analysis

The chemical composition of EOs depends on plant genetics, growth conditions, development stage at harvest, and processes of extracting active compounds. Different parts of the plant (bark, leaf, fruit and seed) have been extensively investigated for their bioactive phytochemical constituents in various plants. GC-MS analysis revealed that the extract of *Cymbopogon martini* contained different volatile oils (Jummes et al., 2020), 4-Decen-6-yn-1-ol (Z) (C10H18), 3.568 min, 10 hits; 2-Ethylmethyl-4-methyl-pent-3-enenitrile (C10H14N). 3.913 min, 10 hits; Cyanogen bromide (CBrN), 4.024, 1 hits; Cyclohexane, 2-methyl-5-{1-methylthienyl}, (1L-PhaA,2,5a,5b) - (C10H18O). 4.503 min, 10 hits; Cyclohexa-1,3-diene, 5,6-diyethyl- (C10H14). 4.915 min, 10 hits; Benzaldehyde, 2-methyl- (C6H8O). 8.154 min, 10 hits; Pyrazine (C4H4N2), 9.32, 5 hits; 2-Norborenonecatic acid (C10H16O2), 9.378, 8 hits; cis-syn-trans-Tricyclo[7.3.0.0 (2,6)]dodec-7-ene (C10H16), 9.509 min, 10 hits; 12,4-Methano-1-H-indene, octahydr-1,7a-dimethyl -5-{1-methylthienyl}, [1S (1L-PhaA,2a,5b,5a,5aa)a,6a(7.85)] - (C10H18O). 9.913 min, 10 hits; 1,4,7-Cyclo-decatriene, 1,5,9-pentamethyl-1,5,9-(C10H18). 10.343 min, 10 hits; Naphthalene, decabhydro-4a-methyl-1-methylen-7-{1-methylthiolide}, (4aR-trans)- (C10H18). 10.738 min, 10 hits; Butanoic acid, 3,7-dimethyl-2,6-
Biological activities of these secondary metabolites of Cymbopogon martini (Palmarosa) have been reported for its antitumor, antioxidant, anti-inflammatory, and analgesic activities and effects on the central nervous system, endocrine system, disorders such as cardiac and analgesic activities, and effects on the central nervous system, endocrine system, disorders such as cardiac and analgesic activities.

Similarly, ADMET properties of key molecules in CMO (Caryophyllene oxide and Geranyl butyrate) towards Human Intestinal Absorption, Blood Brain Barrier, Caco-2 permeable, P-glycoprotein substrate, P-glycoprotein inhibitor I, P-glycoprotein inhibitor II, CYP450 2C9 substrate, CYP450 2D6 substrate, CYP450 3A4 substrate, CYP450 1A2 inhibitor, CYP450 2D6 inhibitor, CYP450 2C9 inhibitor, CYP450 3A4 inhibitor, CYP450 inhibitory promiscuity, Ames test, Carcinogenicity, Biodegradation, Rat acute toxicity, LD50 mol/kg, hERG inhibition (predictor I), hERG inhibition (predictor II) (Table 5) indicate that these molecules can be used for drug formulations.

Table 1: GC-MS profile of compounds in C. martini essential oil

RT	Name of the Compound	Molecular Formula	Hits (DB)
3.568	4-Decen-6-yn, (Z)-	C₆H₁₆	10
3.913	2-Ethylmino-4-methyl-pent-3-enenitrile	C₈H₁₂N₂	10
4.024	Cyanogen bromide	CBrN	1
4.503	Cyclohexanol, 2-methyl-5-(1-methylethenyl) (1.alpha.,2.beta,5.alpha.)-	C₁₀H₁₀O	10
4.915	Cyclohexa-1,3-diene, 5,6-diethyl-	C₆H₁₆	10
8.154	Benzaldehyde, 2-methyl-	C₆H₁₀	10
9.32	Pyrazine	C₄H₈N₂	5
9.378	2-Norbornaneacetic acid	C₄H₄O₂	8
9.509	cis-syn-trans-Tricyclo[7.3.0.(2,6)]dodec-7-ene	C₁₂H₁₈	10
9.913	1,2,4-Metheno-1H-indene, octahydropenta-1,7a-dimethyl-5-(1-methylethyl), [1S- (1.alpha,2.alpha,3a.beta,4.alpha,5.alpha,7a.be ta,8S*)]-	C₁₃H₂₄	10
10.343	1,4,7-Cycloundecatriene, 1,5,9,9-tetramethyl-	C₁₃H₂₄	10
10.738	Naphthalene, decahydro-4a-methyl-1-methylene-7-(1-methylethylidene)-, (4aR-trans)-	C₁₃H₂₄	10
11.772	Butanoic acid, 3,7-dimethyl-2,6-octadienyl ester,(E)-	C₈H₁₂O₂	10
11.948	Nerolidol 2	C₁₅H₂₀O	10
12.525	Caryophyllene oxide	C₁₅H₂₀O	10
15.152	2-Azidomethyl-1,3,3-trimethyl-cyclohexene	C₁₅H₂₀N₃	10
15.423	Hexanoic acid, 3,7-dimethyl-2,6-octadienyl ester,(E)-	C₁₆H₂₂O₂	10
17.258	Farnesol, acetate	C₁₆H₂₂O₂	10
20.158	2,6-Octadien-1-ol, 3,7-dimethyl-, propanoate,(Z)-	C₁₃H₂₂O₂	10
Table 2: IUPAC Name, 2D, 3D structure of bioactive compounds in CMEO

IUPAC Name	2D Chemical Structure	3D Chemical Structure
Cyclodecyne; 4-Decen-6-yne, (Z)	![Chemical Structure](image1)	![Chemical Structure](image2)
2-Ethylimino-4-methyl-pent-3-enenitrile	![Chemical Structure](image3)	![Chemical Structure](image4)
Dihydrocarvyl acetate	![Chemical Structure](image5)	![Chemical Structure](image6)
2-Methylbenzaldehyde	![Chemical Structure](image7)	![Chemical Structure](image8)
Geranyl butyrate	![Chemical Structure](image9)	![Chemical Structure](image10)
1,5,9,9-Tetramethyl-1,4,7-cycloundecatriene	![Chemical Structure](image11)	![Chemical Structure](image12)
Caryophyllene oxide	![Chemical Structure](image13)	![Chemical Structure](image14)

Table 3: Molecular properties of bioactive compounds in CMEO

PROPERTY	BIOACTIVE COMPOUNDS
CID	137799 68315 73918 998 5282854 5281522 1742210
MF	C_{10}H_{16} C_{10}H_{12}N_{2} C_{10}H_{16}O C_{10}H_{16}O C_{14}H_{24}O_{2} C_{15}H_{24} C_{15}H_{24}O
miLogP	4.54 2.09 3.35 2.13 4.83 5.07 4.14
TPSA	0.00 36.16 26.30 17.07 26.30 0.00 12.53
N atoms	10 10 4 9 16 15 16
MW (g/mol)	136.24 136.20 154.24 120.15 224.34 204.36 220.36
Non	0 2 2 1 2 0 1
n OHNH	0 0 0 0 0 0 0
N violations	0 0 0 0 0 1 0
N rotb	3 2 3 1 8 0 0
volume	162.53 146.66 208.06 119.59 245.69 234.00 234.01
Studies have led to the isolation of alkaloids, volatile and non-volatile terpenoids, flavonoids, carotenoids and tannins from *Cymbopogon* species. β-Caryophyllene from CMOE has been reported to be directly beneficial for colitis, osteoarthritis, diabetes, cerebral ischemia, anxiety and depression, liver fibrosis. Biological activities of these secondary metabolites of *Cymbopogon martini* (Palmarosa) have been reported for its antitumor, antioxidant, anti-infectious, anti-inflammatory, and analgesic activities and effects on the central nervous system, endocrine system, disorders such as cardiac remodeling after myocardial infarction, body weight changes, dyslipidemia, cerebral ischemia, hepato-nephrotoxicity, stress, and anxiety. Anti-inflammatory activity of CMOE has been attributed to the

PROPERTY	BIOACTIVE COMPOUNDS
CID	137799 68315 73918 998 5282854 5281522 1742210
GPCR ligand	-0.56 -1.64 -0.47 -2.33 -0.26 0.03 0.08
Ion channel modulator	0.57 -1.04 0.23 -1.80 0.05 0.132 0.14
Kinase inhibitor	-1.05 -2.08 -1.25 -2.40 -0.86 -0.95 -0.86
Nuclear receptor ligand	-0.18 -2.06 -0.17 -2.20 0.03 0.40 0.62
Protease inhibitor	0.43 -0.84 -0.12 -1.91 0.30 0.41 0.57

Note: MP = Mutagenic property; TP = Toxicology property; IP = Irritant property; RE = Reproductive property; DL = Drug Likeness; DS = Druggable Score

Table 5: Summary of MTIR/ DL/DS score of bioactive compounds in CMOE

COMPOUND	MP	TP	IP	RE	DL	DS
Cyclodecyne; 4-Decen-6-yne,(Z)-	None	None	High	None	-10.80	0.21
2-Ethylmino-4-methyl-pent-3-enenitrile	None	None	None	None	-4.87	0.48
Dihydrocarvyl acetate	None	None	High	None	-19.56	0.26
2-Methylbenzaldehyde	None	None	Medium	High	-5.59	0.23
Geranyl butyrate	None	None	None	High	-5.84	0.21
1,5,9,9-Tetramethyl-1,4,7-cycloundeacatriene	None	None	None	None	-5.08	0.28
Caryophyllene oxide	None	Medium	None	Medium	-4.77	0.25

Table 6: Druggability Properties of bioactive compounds in CMOE

Druggability Property	BIOACTIVE COMPOUNDS
Lipinski's rule of 5 violations	0 0 0 0 0 0
Veber rule	Good Good Good Good Good
Egan rule	Good Good Good Good
Oral PhysChem score	0 1 2 2 1 2
GSK's 4/400 score	Good Good Good Good Good
Pfizer's 3/75 score	Warning Bad Bad Bad Bad
QEDw score	0.521 0.506 0.493 0.434 0.433 0.434
Solubility	12379.28 8150.46 4750.64 5166.30 4350.64 5166.30
Solubility Index	Good Good Good Good Good

Druggability scoring schemes were computed using FAF-Drugs 4(28961788) and FAF-QED 4(28961788) open-source Chem-informatics platform.
presence and synergistic activity of carnosol and carnosic, rosmarinic, ursolic, oleanolic, and micromeric acids (A). Specifically, anti-inflammatory activity has been attributed to synergic effects of ursolic and micromeric acids present in CMEO. These natural drugs can be proposed for preclinical and clinical studies in different diseases and pathological conditions.

CONCLUSION

Cymbopogon species have been used as traditional medicine in many countries since antiquity. CMEO has been used in traditional and in conventional medicine due to the pharmacological potential of their phytochemicals. _C. martini_ (Palmarosa) contains a large variety of bioactive molecules with great therapeutic potential and biological activities such as insecticidal, anti-protozoan, anticancer, anti-HIV, anti-inflammatory and anti-diabetes effects. CMEO has remarkable anti-inflammatory, antimicrobial, and antioxidant properties, which have been extensively reported in several formulations. However, development of new formulations containing other less common CMEO extracts is warranted through trials to establish the credentials of pharmacologically active phyto-compounds towards safety/ efficacy, in treating various pathological conditions including COVID-19 and other viral infections owing to the physicochemical properties and druggable nature of CMEO.

REFERENCES

1. Jummes B, Španzerela WG, da Rosa CG, Noronha CM, Nunes MR, Bertoldi FC, Barreto PL. Antioxidant and antimicrobial poly-ε-caprolactone nanoparticles loaded with _Cymbopogon martini_ essential oil. Biocatalysis and Agricultural Biotechnology. 2020; 23:101499. https://doi.org/10.1016/j.bcab.2020.101499

2. Avoesh O, Oyedeji O, Rungpu P, Nkech-Chungang B, Oyedeji A. _Cymbopogon_ species: ethnopharmacology, phytochemistry and the pharmacological importance. Molecules. 2015; 20(5):7438-53. https://doi.org/10.3390/molecules20057438

3. Prashar A, Hili P, Veness RG, Evans CS. Antimicrobial action of palmarosa oil (_Cymbopogon martini_) on Saccharomyces cerevisiae. Phytochemistry. 2003; 63(5):569-75. https://doi.org/10.1016/S0031-9422(03)00226-7

4. Raina VK, Srivastava SK, Aggarwal KK, Syamasundar KV, Khanuja SP. Essential oil composition of _Cymbopogon martini_ from different places in India. Flavour and Fragrance Journal. 2003; 18(4):312-5. https://doi.org/10.1002/flf.1222

5. Kumar R, Srivastava M, Dubey NK. Evaluation of _Cymbopogon martini_ oil extract for control of postharvest insect deterioration in cereals and legumes. Journal of food protection. 2007; 70(1):172-8. https://doi.org/10.3151/0362-028X-701.172

6. Kalagatur NK, Nirmal Ghosh OS, Sundararaj N, Mudili V. Antifungal activity of chitosan nanoparticles encapsulated with _Cymbopogon martini_ essential oil on plant pathogenic fungi Fusarium graminearum. Frontiers in pharmacology. 2018; 9:610. https://doi.org/10.3389/fphar.2018.00610

7. Mishra PK, Kedia A, Dubey NK. Chemically characterized _Cymbopogon martini_ (Roxb.) Wats. essential oil for shelf life enhancer of herbal raw materials based on antifungal, antimutagenic, antioxidant activity and favorable safety profile. Plant Biosyst. 2015; 150:1313-1322. https://doi.org/10.1080/11263504.2015.1054450

8. Caballero-Gallardo K, Olivero-Verbel J, Stashenko EE. Repellency and toxicity of essential oils from _Cymbopogon martini_, _Cymbopogon flexuosus_ and _Lippia origanoides_ cultivated in Colombia against _Tribolium castaneum_. Journal of Stored Products Research. 2012; 50:62-5. https://doi.org/10.1016/j.jspr.2012.05.002

9. Andrade BF, Conti BJ, Santiago KD, Fernandes A, Sforcin JM. Cymbopogon martini essential oil and geraniol at non-cytotoxic concentrations exerted immunomodulatory/anti-inflammatory effects in human monocytes. Journal of Pharmacy and Pharmacology. 2014; 66(10):1491-6. https://doi.org/10.1111/jjpp.12278

10. Al-Shalah LA, Hindi NK, Molsen IH. Essential Oils. Essential Oils: Bioactive Compounds, New Perspectives and Applications. 2020; 9:29.

11. Chávez-González ML, Rodríguez-Herrera R, Aguilar CN. Essential oils: a natural alternative to combat antibiotics resistance. Antibiotic Resistance-Mechanisms and New Antimicrobial Approaches; Kon, K., Rai, M., Eds. 2016; 227-37. https://doi.org/10.1016/j.biot.2016.06.001

12. Atanasov AG, Waltenberger B, Pferschy-Wenzig EM, Linder T, Wawrosch C, Uhrin P, Temml V, Wang L, Schwarger S, Heiss EH, Rollinger JM. Discovery and resupply of pharmacologically active plant-derived natural products: A review. Biotechnology advances. 2015; 33(8):618-614. https://doi.org/10.1016/j.bta.2015.08.001

13. Arashiova A, Milanov I, Pavlović N, Čebović T, Vukmirović S, Miko V. Antioxidant activity of rosemary (Rosmarinus officinalis L.) essential oil and its hepatoprotective potential. BMC complementary and alternative medicine. 2014; 14(1):1-9. https://doi.org/10.1186/1472-6882-14-225

14. Khan MS, Ahmad I. In vitro antifungal, anti-elastase and antikeratinase activity of essential oils of _Cinnamomum_, _Syzygium_ and _Cymbopogon_-species against _Aspergillus fumigates_ and _Trichophyto rubrum_. Phytomedicine. 2011; 18:48-55. https://doi.org/10.1016/j.phymed.2011.07.005

15. Yoon MY, Cha B, Kim JC. Recent trends in studies on botanical fungicides in agriculture. The plant pathology journal. 2013; 59(1):1-9. https://doi.org/10.1007/s13312-012-0177-6

16. Matthew KM. Flora of the Tamilnadu Carnatic. The Rapinat Herbarium, St. Joseph’s College, Tiruchirapalli, India; 1981

17. Gamble JS, Fischer CE. Flora of the Presidency of Madras. London, UK: West, Newman and Adlard; 1915.

18. Eleyinmi AF. Chemical composition and antibacterial activity of _Gongronema nitidum_. _J_ Zhejiang Univ Sci B 2007; 8:352-358. https://doi.org/10.1631/jzus.2007.B0352

19. Zou H, Wu F, Li L, Shen X, Chen G, Wang X, Liang X, Tan M, Huang Z. Computational approaches in preclinical studies on drug discovery and development. Frontiers in Chemistry. 2020; 8:726-31. https://doi.org/10.3389/fchem.2020.00726

20. Ramya S, Neethirajan K, Jayakumararaj R. Profile of bioactive compounds in _Syzygium cumini_ leaves - a review. Journal of Pharmacy research. 2012; 5(8):4548

21. Gaba J, Bhardwaj G, Sharma A. Lemongrass. In Antioxidants in Vegetables and Nuts-Properties and Health Benefits 2020 (pp. 75-103). Springer, Singapore. https://doi.org/10.1007/978-981-15-7470-2_4