LSST and the Dark Sector: Image Processing Challenges

J. A. Tyson1, C. Roat2, J. Bosch1, D. Wittman1

Abstract. Next generation probes of dark matter and dark energy require high precision reconstruction of faint galaxy shapes from hundreds of dithered exposures. Current practice is to stack the images. While valuable for many applications, this stack is a highly compressed version of the data. Future weak lensing studies will require analysis of the full dataset using the stack and its associated catalog only as a starting point. We describe a “Multi-Fit” algorithm which simultaneously fits individual galaxy exposures to a common profile model convolved with each exposure’s point spread function at that position in the image. This technique leads to an enhancement of the number of useable small galaxies at high redshift and, more significantly, a decrease in systematic shear error.

1. Probes of dark energy and dark matter

Dark energy affects the cosmic history of the Hubble expansion $H(z)$ as well as the cosmic history of mass clustering. If combined, different types of probes of the expansion history and structure history can lead to percent level precision in dark energy parameters. This is because each probe depends on the other cosmological parameters or errors in different ways. These probes range from cosmic shear, baryon acoustic oscillations, supernovae, and cluster counting – all as a function of redshift z. Using the CMB as normalization, the combination of these probes will yield the needed precision to distinguish between models of dark energy (Zhan 2006).

Next generation surveys will measure positions, colors, and shapes of distant galaxies over such a large volume that the resulting stochastic (random) errors will be very small. It is necessary to control and reduce the systematic errors to even lower levels. There are two primary systematic errors which can influence the data: Photometric Redshift errors, and Weak Lens Shear errors. The work to date has employed highly idealized data models. Here we describe some of the image processing challenges associated with reconstruction of the galaxy images from many dithered exposures.

With its capability to go deep, wide, and fast, the LSST will yield continuous overlapping images of 20,000 - 25,000 square degrees of sky. The baseline exposure time is 15 seconds, and each “visit” to a single patch of sky will consist of two such exposures separated by a 2 sec readout with the shutter closed. In order to meet the science goals, six bandpasses ($u, g, r, i, z,$ and y) covering the

1Physics Department, University of California, Davis, CA, USA
2Google, Mountain View, CA, USA
wavelength range 320-1050 nm will be used. The system is designed and will be engineered to yield exquisite astrometric and photometric accuracy and superb image quality. The telescope and camera optics and the detector combine to deliver 80% energy within a 0.2 arcsecond pixel over the full 10 square degree field and full wavelength range. This LSST survey will take ten years to complete. In a ten-year survey, the LSST will make more than five million exposures. In current simulations, the sky is tiled with a fixed spherical covering of circular fields. This overlap leads to a significant fraction of area which is observed twice as frequently as the average. In practice, the position of each visit will be varied continuously across the sky to average out this extra exposure.

How is the precision of shear measurements of distant galaxies in weak lensing tomography affected by ground-based seeing? Galaxy shape measurement depends on three parameters: galaxy size, delivered PSF, and limiting surface brightness. New ground-based telescopes are routinely delivering 0.4-0.7 arcsec FWHM imaging without adaptive optics. Clearly there are unique advantages in space for UV or IR imaging. Galaxies at 25 mag have mean half-light radius \(\sim 0.4 \) arcsec and FWHM \(\sim 0.8 \) arcsec. Angular sizes of galaxies change with redshift due to a number of effects including the cosmological angle-redshift relation, luminosity evolution, and surface brightness dimming. The net effect is a plateau over a range of \(z \), out to \(z=3 \) (Cameron and Driver 2007). At the low surface brightness reached in hundreds of LSST exposures, typical galaxies at redshift \(z < 3 \) can be resolved sufficiently to measure their ellipticity. This is shown in Figure 1. One must convolve with the PSF and ask if the ellipticity can be measured. Galaxies have a large intrinsic ellipticity (\(\text{rms} \sim 0.3 \)), and it is most important to have many of them in order to average down the shot noise of this intrinsic ellipticity. At 28-29 mag per sq. arcsec ground based seeing is sufficient to measure the large ellipticities of 40-50 galaxies per square arcminute to the required \(z < 3 \) redshift limit for tomography. However, it is crucial that shape systematics are minimized.
2. Weak lens shear measurement

Background galaxies are mapped to new positions on the sky by intervening mass concentrations, shearing their images tangentially. First detected in 2000 (Wittman, et al. 2000), the full 3-D cosmic mass distribution creates statistical correlations in galaxy shapes called "cosmic shear." Systematic errors in either redshifts or shear affect the precision obtainable for dark energy parameters and are classified as either multiplicative or additive. There is some level of self-calibration, especially for multiplicative errors, i.e. the level of error can be obtained from the data and marginalized over without severely compromising the cosmological constraints. Additive errors do not have this property.

Multiplicative errors are also known as shear calibration errors, and arise from the convolution of a galaxy's true shape with the isotropic part of the point-spread PSF, which dilutes the shear by some factor which depends on the relative angular sizes of the galaxy and the PSF. Therefore multiplicative errors will be a function of redshift (more distant galaxies appear smaller) and of position on the sky (the ground-based PSF depends on the atmosphere). Additive errors, or spurious shear, arise from the anisotropic part of the PSF and are position-dependent but not redshift dependent, except perhaps indirectly, if the PSF is a function of source color.

3. Shift-and-stare imaging

If a large number of exposures are taken of a field on the sky it is possible in principle to separate spatial defects on the imager from the true scene on the sky. Shift-and-stare imaging was developed in the early days of CCD imagers for this purpose (Tyson 1986). There are a variety of algorithms for recombining the sub-images in this data cube into a master co-added image. The original technique used median averaging a pixel of fixed sky location up the registered stack of sub-images, but care must be taken not to introduce correlations. Using sinc interpolation rather than simple weighted neighbor pixel interpolation one can decorrelate noise on adjacent pixels in the co-added image, making it possible to estimate statistical significance. Shift-and-stare is the method of choice currently in all wide field deep imaging. However, it probably has outlived its usefulness. While it is convenient from a storage and computation point of view to compress the data cube to a single co-added image, important information is lost particularly if image quality or effective exposure varies between sub-images.

4. Reconstructing galaxy images: co-addition vs Muti-Fit

Several algorithms have been suggested to beat down PSF systematics using multiple exposures of the same field. The naive use of such data would be to construct a single stacked image with higher signal-to-noise, and then measure the shear correlation function by averaging over all pairs of galaxies. This requires pixel interpolation, which can lead to systematics and correlated noise. Generally the stack algorithms combine sub-images with different PSF, and information is lost. Moreover, there is generally a discontinuous PSF change in the stack image at locations of edges of the sub-images. This creates PSF vari-
Figure 2. Shift-and-stare: Multiple exposures disregistered on the sky contain information about the objects as well as information about defects on the imager. Stars and galaxies are disregistered between exposures, but systematic errors in the CCD are registered in each frame. Processing with a 'superflat' can remove most of the CCD based defects, and then registering the stars an co-adding generates a deep defect-free image. Subtle problems can occur if the PSF is different in each image.

ations on the stack image that are hard to model. As a result the stack method does not provide the desired accuracy for image analysis algorithms which are sensitive to spatial variations in PSF.

We propose analyzing the full “data cube” by fitting, for each galaxy, a single model which, when convolved with the N different PSFs, best matches the N measurements of that galaxy (the MultiFit method). This means that PSF misestimation, which is strongly decorrelated from image to image, behaves more like a random error for that galaxy, rather than a systematic error. LSST will have hundreds of dithered images per filter band per sky patch, and there will be about 2000 overlapping (dithered) 10 square degree sky patches per bandpass. It is desirable to use all the information in those overlapping data cubes.

The best current methods reach a shear calibration accurate to 1%. In principle LSST can do 20 times better because LSST will have hundreds of exposures, each with an independent shear calibration. Current shear analysis operates on the co-added deep image. A new method, Multi-Fit, does a superior job of estimating the true shear of a galaxy by fitting a model to all images of it in the stack of N exposures.
4.1. Multi-Fit

We describe a method for fitting the shapes of galaxies that have been imaged in multiple exposures. Instead of the traditional approach of co-adding many exposures to produce a single image for measurement, this method simultaneously analyzes all individual exposures to determine the galaxy shape and size that best fits all images of a single galaxy in a noise-weighted fashion. This process effectively uses knowledge about the PSF of individual exposures, taking advantage of the detailed information present in highly resolved images, while still extracting the limited information available in images with poorer resolution. A PSF map is made for each image, by fitting all the stars. The simultaneous fit is performed using a maximum likelihood technique that combines the likelihoods calculated from each individual exposure. First, a parameterized model for a galaxy radial light profile is chosen. The model is convolved with each of the PSF models measured from the individual exposures. The final, convolved light distributions are compared to the data pixels for the galaxy images on each individual exposure to determine a likelihood. The fitting procedure adjusts the parameters of the input model until the likelihood is maximized, resulting in a best-fit model of actual galaxy shape prior to the effects of PSF smearing.

There are several advantages to using a procedure that fits multiple exposures. First, errors that are made in PSF estimation in each exposure are treated as random errors, and these errors are propagated into the statistical error calculated during the fitting process. Thus, these errors are determined directly for each individual galaxy, rather than being an unknown systematic error. Compared to interpolating PSF estimation on a co-added image, this also reduces any spatial correlation introduced by PSF mis-estimation in a given region of sky. A second advantage of this method is that the PSF interpolation is done on each separate exposure, where the PSF is expected to vary smoothly. Other methods interpolate on a co-added image, which has been made using many exposures that have been dithered relative to each other. The spatial variation of the PSF on a co-added image is not smooth near the boundaries of the underlying chips, making accurate interpolation more difficult.

Another advantage, specific to any technique that uses fitting, is that prior information can be directly incorporated into the fit. The choice of an underlying galaxy shape profile is one such piece of information. Parameters of the galaxy-model or the PSF-model can be constrained with additional terms in likelihood calculation. For example, if the PSF determination is uncertain, those uncertainties can be used in the fit and directly propagated into the final measurement error. Priors based on the high S/N features of an object in the stacked deep image are useful. The centroid of objects is taken from the stacked image in our tests shown below and is not allowed to vary from sub-image to sub-image in the data cube.

The following plots illustrate how well the ellipticity of galaxies of different magnitudes and sizes can be measured. Below a pre-seeing size of 0.5 pixels, fitting becomes unstable due to the small size. Above a FWHM of 10 pixels, a minimum error is reached for a fixed magnitude. A joint fit to the size and magnitude dependence of the error, between 0.5 and 10 pixels, gives the expected statistical dependence based on signal-to-noise, thus demonstrating the extreme robustness of this technique.
Figure 3. Dependence of galaxy shape measurement error on magnitude (left) and galaxy size (right) in a simulated exposure cube. The dotted horizontal line indicates the level of shape noise - the intrinsic distribution of galaxy shapes. The magnitude variation is due to the higher signal-to-noise measurement possible with brighter objects. The variation of error with size shows that larger objects are measured better up to a magnitude-dependent noise floor. The vertical line is the level below which many current methods become unstable - when the observed area is 1.25x the PSF area.

The statistical figure of merit for a weak-lensing survey is the effective number of galaxies for which shapes have been measured. By measuring ever smaller and fainter galaxies, a survey can dramatically increase galaxy sample size, but at the cost of using noisier measurements. There is a trade-off between increased shot noise plus lower systematic shear error at the bright end and decreased shot noise (due to the large number of galaxies) and susceptibility of PSF systematics at the faint end. Many current methods for shape measurement become unusable when observed objects have sizes close to the PSF size. Often, galaxies observed to be less than ~ 1.25 times the area of the PSF are discarded. With fitting techniques, this limit can be reduced and galaxies can be measured almost down to the size of the PSF. The variance of a shape measurement decreases as the square-root of the pre-seeing area for small galaxies. Since the number of galaxies increases with the decreasing angular size, the rapid increase in sample size can compensate for increased noise. Consequently, the effective number of galaxies of a survey can be substantially increased by recovering barely resolved galaxies. The following figure depicts the relative increase in a survey’s effective sample size as galaxies less than 1.25 times the PSF area are included.

This algorithm uses all information in the images, weights better-seeing images appropriately, and handles image boundaries. PSF on a stacked image changes abruptly at a sub-image boundary. Each sub-image PSF has less structure than the stacked image PSF, and this approach thus transforms some systematics into random errors.
4.2. Computational challenges and R&D to be done

Currently, galaxies and PSFs are modeled sums of Gaussians, so convolutions are fast. Real galaxies are not Gaussian, and an upgrade to more realistic models has begun. The current algorithm requires 1 sec per galaxy for data cube of 20 images, with no speed optimization yet, on a 2 GHz desktop. For the 5 million images LSST will obtain, a rough extrapolation of the existing Multi-Fit runs suggests over 10^{22} floating point operations. This is competitive with the computational requirements for the LSST image differencing transient pipeline. The new code is being written in C++ and Python. It will be necessary to quantify the improvement of Multi-Fit over stacking for various science cases (weak lens shear, photometry). It will be particularly useful to extend fitting to include other quantities: magnitudes, colors, etc., or to use them as priors for single-band galaxy reconstruction. Finally, we will pursue speed optimization and extensive Monte Carlo tests. We propose to use Multi-Fit in full shift-and-stare Monte Carlo simulations of LSST sky tiling operations including PSF systematics.

References

Cameron, E., & Driver, S. P. 2007, MNRAS, 377, 523
Tyson, J. A. 1986, JOSA-A 3, 2131; 1990, CCDs in Astronomy, ed. G. Jacoby, ASP Conf. Series, 8, 1.
Wittman, D. et al. 2000, Nature 405, 143
Zhan, H. 2006, JCAP 608, 8