SUPPLEMENTARY MATERIAL

A review on biological sources, chemistry and pharmacological activities of pinostrobin

Neeraj K. Patel§, Gaurav Jaiswal§, Kamlesh K. Bhutani#

Department of Natural Products,
National Institute of Pharmaceutical Education and Research (NIPER),
Sector 67, S.A.S. Nagar, Mohali, Punjab – 160 062, INDIA

#Corresponding Author:
K. K. Bhutani
Department of Natural Products,
National Institute of Pharmaceutical and Education Research (NIPER),
Sector 67, S.A.S. Nagar, Mohali, Punjab – 160 062, INDIA
E-mail address: kkbhutani@niper.ac.in, kkbhutani@gmail.com

§Both are first authors
Abstract

Pinostrobin, a dietary bioflavanoid discovered more than 6 decades ago in the heart-wood of pine (Pinus strobus) and has depicted many pharmacological activities including anti-viral, anti-oxidant, anti-leukemic, anti-inflammatory and anti-aromatase activities. It is an inhibitor of sodium channel and Ca^{2+} signaling pathways and also inhibits intestinal smooth muscle contractions. Inspite of the fact that pinostrobin has an application as functional foods, till-to-date no comprehensive review on pinostrobin has been carried out. Hence, the present review deals with the biological sources, chemistry and pharmacological activities of pinostrobin.

Keywords: Pinostrobin; Flavanones; Anti-inflammatory; Anti-cancer; Anti-viral; Functional foods
Supplementary table 1: Biological sources of Pinostrobin

S. No.	Biological Source	Extraction methodology	Parts used (yield on dry basis)	References	
1.	*Cajanus cajan* (L.) Millsp (Fabaceae)	Ethanol (80%) (Closed microwave assisted extraction)	Leaves (0.35% w/w)	Chan et al., 2011	
		Ethanol (95%) (Maceration)	Leaves (0.003% w/w)	Kong et al., 2010a	
		CO\textsubscript{2} and aqueous ethanol (Supercritical fluid extraction)	Leaves (0.273% w/w)	Kong et al., 2009; de Melo et al., 2014	
		Ethanol (80%) (Negative-pressure cavitation extraction)	Leaves (0.054% w/w)	Kong et al., 2011	
		Aqueous ethanol (Microwave assisted extraction)	Leaves (0.37% w/w)	Kong et al., 2010b	
		Boiling ethanol (Maceration)	Leaves (0.005% w/w)	Nicholson et al., 2010	
		Ethanol and water (80:20) (Maceration)	Leaves (0.008% w/w)	Duker-Eshun et al., 2004	
		Ethanol (70%) (Ultrasonication)	Leaves (0.05-0.3% w/w)	Wei et al., 2013	
		Ethanol (80%) (Percolation)	Leaves (0.36% w/w)	Wu et al., 2009	
2.	*Boesenbergia pandurata* (Roxb.) (Zingiberaceae)	Dichloromethane (Maceration)	Rhizome/Root (NA)	Fahey & Stephenson 2002	
		Methanol (Maceration)	Rhizomes (0.071% w/w)	Atun et al., 2013	
		n-hexane (Maceration)	Rhizomes (0.099% w/w)	Charoensin et al., 2010	
		Methanol (Maceration)	Rhizomes (0.081% w/w)	Trakoontivakorn et al., 2001	
		Chloroform (Maceration)	Fresh yellow rhizome (NA)	Panthong et al., 1994	
		Hexanes (Maceration)	Dried rhizomes (NA)	Tanjung et al., 2013	
		Chloroform (Percolation)	Red rhizomes (1.302% w/w)	Tuchinda et al., 2002	
		Chloroform (Maceration)	Rhizomes (0.007% w/w)	Jaipetch et al., 1982	
		Methanol (Maceration)	Rhizomes (NA)	Abdewahab et al., 2011	
3.	*Kaempferia parviflora* (Wall. ex Baker) (Zingiberaceae)	Methanol (Maceration)	Rhizomes (0.02% w/w)	Feroz et al., 2013	
4.	*Boesenbergia longiflora* (Wall.) (Zingiberaceae)	Ethanol (Maceration)	Rhizomes (NA)	Pripdeevech et al., 2012	
		Ethanol (Maceration)	Rhizomes (0.00008% w/w)	Sudsai et al., 2014	
No.	Species	Preparation Method	Extracted Part	Concentration (w/w)	References
-----	---------------------------------	-------------------------	-----------------------	---------------------	---------------------------------
5.	*Isodon oresbius* (W. W. Smith)	Boiling Ethanol (95%) (Infusion)	Whole plant	0.090%	Hao et al., 1996
6.	*Muntingia calabura* (L.)	Methanol (Maceration)	Leaves (NA)		Zakaria et al., 2014
		Methanol (Maceration)	Leaves (0.002% w/w)		Su et al., 2003
7.	*Lychnophora markgravi?* (G.M. Barroso)	Dichloromethane (Maceration)	Aerial parts	0.087%	Sartori et al., 2002
8.	*Lychnophora reticulata* (Gardn.)	Acetonitrile and water (9:1) (Maceration)	Glandular trichomes of leaves (NA)		Alves et al., 2008
9.	*Lychnophora staavioides* (Mart.)	Methanol (Maceration)	Leaves (NA)		Takeara et al., 2003
10.	*Lychnophora ericoides* (Mart.)	Methanol (Maceration)	Leaves (0.009% w/w)		Gobbo-Neto, dos Santos et al., 2008
		Methanol and water (80:20) (Maceration)	Glandular trichomes (NA)		Gobbo-Neto, Gates et al., 2008
11.	*Dysphania graveolens* (Willd.)	Water (Infusion)	Aerial parts	0.016% w/w	Álvarez-Ospina et al., 2013
		Methanol (Maceration)	Aerial parts (0.0006% w/w)		Calzada et al., 2003
		Chloroform (Maceration)	Aerial parts (0.100% w/w)		Mata et al., 1987
12.	From hive of *Apis mellifera* (L.) (Apidae)	Methanol (Sonication)	Thai propolis	0.035% w/w	Athikomkulchai et al., 2013
13.	*Sarcandra hainanensis* (Pei)	Ethanol (Percolation)	Whole plant	0.00004% w/w	Cao et al., 2009
14.	*Onychium auratum* (Kaulf.)	Light petroleum (Percolation)	Whole plant (NA)		Ramakrishnan et al., 1974
	Plant Name	Extracting Solvent	Extracted Part	Reference	
---	----------------------------	----------------------------------	-------------------------------	------------------------------------	
15.	*Onychium siliculosum*	Acetone (Maceration)	Fronds exudate (NA)	Wollenweber 1982	
	(Desv.) (Cryptogrammataceae)	Ethanol (Maceration)	Whole herb (0.092% w/w)	Wu et al., 1981	
16.	*Pyracantha coccinea*	Chloroform and Methanol (9:1)	Dried roots (0.003% w/w)	Billia et al., 1993	
	(M.Roem.) (Rosaceae)	(Percolation)			
17.	*Ribes viscossimimum*	Dichloromethane (Maceration)	Viscid leaves (NA)	Bohm 1993	
	(Pursh) (Grossulariaceae)				
18.	*Piper aduncum*	Methanol (Maceration)	Dried milled fruits	Burke & Nair 1986	
	(L.) (Piperaceae)		(1.54% w/w)		
19.	*Piper hispidum*	Methanol (Maceration)	Dried milled fruits	Burke & Nair 1986	
	(Sw.) (Piperaceae)		(1.54% w/w)		
20.	*Piper hostmannianum*	Ethyl acetate (Maceration)	Leaves (NA)	Portet et al., 2008	
	(Miq.) (Piperaceae)				
21.	*Piper methysticum*	Water (Maceration)	Roots (0.007% w/w)	Wu et al., 2002	
	(G. Frost.) (Piperaceae)				
22.	*Piper ecuadorense*	Methanol (Dynamic maceration)	Dried leaves (0.013% w/w)	Ramirez et al., 2013	
	(Sodiro) (Piperaceae)				
23.	*Populus trichocarpa*	Diethylether (Maceration)	Bud exudates (NA)	English et al., 1991	
	(Torr. & Gray) (Salicaceae)				
24.	*Populus deltoides*	Ethylacetate (Maceration)	Bud exudates (NA)	English et al., 1992	
	(Marsh.) (Salicaceae)				
25.	*Populus nigra*	Dimethylether (Maceration)	Buds (NA)	Isidorov et al., 2014	
	(L.) (Salicaceae)				
26.	*Populus szechuanica*	Dimethylether (Maceration)	Buds (NA)	Isidorov et al., 2014	
	(S.)				
No.	Species	Solvent/Extraction Method	Extract (w/w%)	Source	
-----	-------------------------------	---------------------------	----------------	---	
27	Populus balsamifera (L.)	Ethyl acetate (Maceration)	Bud exudate (NA)	Greenaway & Whatley 1990	
	(Salicaceae)				
28	Populus angustifolia (J.)	Diethylether (Maceration)	Bud exudate (NA)	Greenaway et al., 1991	
	(Salicaceae)				
29	Pinus kremppii (Lecomte)	Ether (Maceration)	Heartwood (NA)	Erdtman et al., 1966	
	(Pinaceae)				
30	Pinus morrisonicola (Hay.)	Acetone (Maceration)	Heartwood (0.002% w/w)	Fang et al., 1987	
	(Pinaceae)				
31	Pinus armandii (Fr.)	Acetone (Maceration)	Heartwood (0.0003% w/w)	Fang et al., 1988	
	(Pinaceae)				
32	Pinus clausa (Vasey)	Ether (Maceration)	Heartwood (0.023% w/w)	Lindstedt 1950	
	(Pinaceae)				
33	Carya tonkinensis (Lecomte)	Chloroform (Maceration)	Leaves (0.1% w/w)	Cuong et al., 1996	
	(Juglandaceae)				
34	Alnus viridis (Chaix)	Acetone (Maceration)	Winter buds and catkins (male flowers) (NA)	Favre-Bonvin et al., 1978	
	(Betulaceae)				
35	Pyracantha coccinea (M.J. Roemer)	Ethanol (Percolation)	Roots (NA)	Fico et al., 2000	
	(Rosaceae)				
36	Prunus cerasus (L.)	Acetone and water (4:1)	Bark (NA)	Geibel & Feucht 1991	
	(Rosaceae)	(Maceration)			
37	Prunus avium (L.)	Acetone and water (7:3)	Heartwood (0.400% w/w)	Vinciguerra et al., 2003	
	(Rosaceae)	(Maceration)			
38	Renealmia alpinia (Mass.)	Dichloromethane (Maceration)	Dried leaves (0.321% w/w)	Gómez-Betancur et al., 2014	
No.	Species	Extraction Method	Part Used	Concentration	Reference
-----	--------------------------------------	-------------------	----------------------------	---------------	-------------------------
39.	*Renealmnia nicolaioides* (Loes.)	Methanol (Maceration)	Roots (0.374% w/w)		Gu et al., 2002
	(Zingiberaceae)				
40.	*Salvia texana* (Torr.)	Cold Methanol (Maceration)	Roots (0.0008% w/w)		González et al., 1989
	(Labiatae)				
41.	*Pityrogramma tartarea* (Cav.)	Acetone (Maceration)	Frond exudates (NA)		Iinuma et al., 1994
	(Polypodiaceae)				
42.	*Miliusa balansae* (Fin. & Gagn.)	Methanol and water (95:5) (Maceration)	Dried leaves and branches (0.010% w/w)	Kamperdick et al., 2002	
	(Annonaceae)				
43.	*Miliusa sinensis* (Fin. & Gagn.)	Methanol (95%) (Maceration)	Dried leaves and branches (0.0066% w/w)	Thuy et al., 2011	
	(Annonaceae)				
44.	*Polygonum limbatum* (Meisn.)	Methanol (Maceration)	Aerial parts of plant (NA)		Kuete et al., 2013
	(Polygonoceae)				
45.	*Polygonum ferrugineum* (Wedd.)	Methanol (Maceration)	Dried leaves (0.010% w/w)		López et al., 2006
	(Polygonoceae)				
46.	*Dalbergia odorifera* (T. Chen)	Methanol (Maceration)	Heartwood (NA)		Lee et al., 2013
	(Leguminosae)				
47.	*Litsea fruticosa* (Hemsl.)	Ethanol (Maceration)	Dried leaves (0.0017% w/w)		Liu et al., 2013
	(Lauraceae)				
48.	*Corymbia torelliana* (F.Muell.)	Methanol (Maceration)	Fruit resins of capsules (NA)		Massaro et al., 2014
	(Myrtaceae)				
49.	*Gymnema montanum* (H.)	Ethanol (95%) (Percolation)	Fresh leaves (NA)		Ramkumar et al., 2009
	(Asclepiadaceae)				
References

Abdelwahab SI, Mohan S, Abdulla MA, Sukari MA, Abdul AB, Taha MME, Syam S, Ahmad S, Lee K-H. 2011. The methanolic extract of *Boesenbergia rotunda* (L.) Mansf. and its major compound pinostrobin induces anti-ulcerogenic property *in vivo*: possible involvement of indirect antioxidant action. J Ethnopharmacol. 137:963–970.

Álvarez-Ospina H, Rivero Cruz I, Duarte G, Bye R, Mata R. 2013. HPLC determination of the major active flavonoids and GC-MS analysis of volatile components of *Dysphania graveolens* (Amaranthaceae). Phytochem Anal. 24:248–254.

Alves KCM, Gobbo-Neto L, Lopes NP. 2008. Sesquiterpene lactones and flavonoids from *Lychnophora reticulata* Gardn. (Asteraceae). Biochem Syst Ecol. 36:434–436.

Athikomkulchai S, Awale S, Ruangrungsi N, Ruchirawat S, Kadota S. 2013. Chemical constituents of Thai propolis. Fitoterapia. 88:96–100.

Atun S, Arianingrum R, Sulistyowati E, Aznam N. 2013. Isolation and antimutagenic activity of some flavanone compounds from *Kaempferia rotunda*. Int J Chem Anal Sci. 4:3–8.

Billia AR, Catalano S, Pistelli L, Morelli I. 1993. Flavonoids from *Pyracantha coccinea* roots. Phytochemistry. 33:1449–1452.

50.	*Uvaria chamae* (P. Beauv.) (Annonaceae)	Ethanol (95%) (Percolation)	Root bark (0.0019% w/w)	Lasswell et al., 1977
51.	*Lindera umbellate* (Thunb.) (Lauraceae)	Hot Methanol (Maceration)	Fresh bark (0.170% w/w)	Shimomura et al., 1988
51.		Methanol (Maceration)	Fresh leaves (0.009% w/w)	Ichino et al., 1988
52.	*Myrica pensylvanica* (Loisel) (Myricaceae)	Acetone (Maceration)	Leaves and young twigs (NA)	Wollenweber et al., 1985
53.	*Pinus strobus* (L.) (Pinaceae)	Hexane (Maceration)	Wood (0.0116% w/w)	Carvalho et al., 1996

NA: Not available
Bohm BA. 1993. External and vacuolar flavonoids of *Ribes viscossimum*. Biochem Syst Ecol. 21:746.

Burke B, Nair M. 1986. Phenylpropene, benzoic acid and flavonoid derivatives from fruits of jamaican *Piper* species. Phytochemistry. 25:1427–1430.

Calzada F, Velázquez C, Cedillo-Rivera R, Esquivel B. 2003. Antiprotozoal activity of the constituents of *Teloxys graveolens*. Phyther Res. 17:731–732.

Cao CM, Peng Y, Xu LJ, Wang YJ, Yang JS, Xiao PG. 2009. Two flavonoid dimers from *Sarcandra hainanensis* (Pei) Swamy et Bailey. Chem Pharm Bull. 57:743–746.

Carvalho MG de, Cranchi DC, Carvalho AG de. 1996. Chemical constituents from *Pinus strobus* var. Chiapensis. J Braz Chem Soc. 7:187–191.

Chan CH, Yusoff R, Ngoh GC, Kung FWL. 2011. Microwave-assisted extractions of active ingredients from plants. J Chromatogr A. 1218:6213–6225.

Charoensin S, Punvittayagul C, Pompimon W, Mevatee U, Wongpoomchai R. 2010. Toxicological and clastogenic evaluation of pinocembrin and pinostrobin isolated from *Boesenbergia pandurata* in Wistar rats. Thai J Toxicol. 25:29–40.

Cuong NM, Sung T V., Kamperdick C, Adam G. 1996. Flavanoids from *Carya tonkinensis*. Pharmazie. 51:128.

De Melo MMR, Silvestre AJD, Silva CM. 2014. Supercritical fluid extraction of vegetable matrices: Applications, trends and future perspectives of a convincing green technology. J Supercrit Fluids. 92:115–176.

Duker-Eshun G, Jaroszewski JW, Asomaning WA, Oppong-Boachie F, Brøgger Christensen S. 2004. Antiplasmodial constituents of *Cajanus cajan*. Phytotther Res. 18:128–130.

English S, Greenaway W, Whatley F. 1992. Analysis of phenolics in the bud exudates of *Populus deltoides, P. fremontii, P. sargentii* and *P. Wislizenii* by GC-MS. Phytochemistry. 31:1255–1260.

English S, Greenaway W, Whatley FR. 1991. Analysis of phenolics of *Populus trichocarpa* bud exudate by GC-MS. Phytochemistry. 30:531–533.
Erdtman H, Kimland B, Norin T. 1966. Wood constituents of Ducampopinus krempfii (lecomte) chevalier (Pinus krempfii lecomte)*. Phytochemistry. 5:927–931.

Fahey JW, Stephenson KK. 2002. Pinostrobin from honey and Thai ginger (Boesenbergia pandurata): A potent flavonoid inducer of mammalian phase 2 chemoprotective and antioxidant enzymes. J Agric Food Chem. 50:7472–7476.

Fang J-M, Chang C-F, Cheng Y-S. 1987. Flavonoids from Pinus morrisonicola. Phytochemistry. 26:2559–2561.

Fang J-M, Su W-C, Cheng Y-S. 1988. Flavonoids and stilbenes from armand pine. Phytochemistry. 27:1395–1397.

Favre-Bonvin J, Jay M, Wollenweber E. 1978. A novel stilbene from bud excretion of Alnus viridis. Phytochemistry. 17:821–822.

Feroz SR, Mohamad SB, Bakri ZSD, Malek SNA, Tayyab S. 2013. Probing the interaction of a therapeutic flavonoid, pinostrobin with human serum albumin: multiple spectroscopic and molecular modeling investigations. Plos One. 8:e76067.

Fico G, R. Bilia A, Morelli I, Tomè F. 2000. Flavonoid distribution in Pyracantha coccinea plants at different growth phases. Biochem Syst Ecol. 28:673–678.

Geibel M, Feucht W. 1991. Flavonoid 5-glucosides from Prunus cerasus bark and their characteristic weak glycosidic bonding. Phytochemistry. 30:1519–1521.

Gobbo-Neto L, Gates PJ, Lopes NP. 2008. Negative ion “chip-based” nanospray tandem mass spectrometry for the analysis of flavonoids in glandular trichomes of Lychnophora ericoides Mart. (Asteraceae). Rapid Commun Mass Spectrom. 22:3802–3808.

Gobbo-Neto L, dos Santos MD, Albarella L, Zollo F, Pizza C, Lopes NP. 2008. Glycosides, caffeoylquinic acids and flavonoids from the polar extract of leaves of Lychnophora ericoides Mart. (Asteraceae). Biochem Syst Ecol. 36:473–475.

Gómez-Betancur I, Benjumea D, Patiño A, Jiménez N, Osorio E. 2014. Inhibition of the toxic effects of Bothrops asper venom by pinostrobin, a flavanone isolated from Renealmia alpinia (Rottb.) Maas. J Ethnopharmacol. 155:1609–1615.

González AG, Aguiar ZE, Luis JG, Ravelo AG, Vázquez JT, DomínguezXA. 1989. Flavonoids from Salvia texana. Phytochemistry. 28:2871–2872.
Greenaway W, English S, May J, Whatley FR. 1991. Analysis of phenolics of bud exudate of *Populus sieboldii* by GC-MS. Phytochemistry. 30:3005–3008.

Greenaway W, Whatley FR. 1990. Resolution of complex mixtures of phenolics in poplar bud exudate by analysis of gas chromatography-mass spectrometry data. J Chromatogr. 519:145–158.

Gu J-Q, Park EJ, Vigo JS, Graham JG, Fong HHS, Pezzuto JM, Kinghorn AD. 2002. Activity-guided isolation of constituents of *Renealmia nicolaioides* with the potential to induce the phase II enzyme quinone reductase. J Nat Prod. 65:1616–1620.

Hao H, Handong S, Shouxun Z. 1996. Flavonoids from *Isodon oresbius*. Phytochemistry. 42:1247–1248.

Ichino K, Tanaka H, Ito K. 1988. Two novel flavonoids from the leaves of *Lindera umbellata* var. Lancea and *L. umbellata*. Tetrahedron. 44:3251–3260.

Iinuma M, Tanaka T, Asai F. 1994. Flavonoids in frond exudates of *Pityrogramma tartarea*. Phytochemistry. 36:941–943.

Isidorov VA, Szczepaniak L, Bakier S. 2014. Rapid GC/MS determination of botanical precursors of Eurasian propolis. Food Chem. 142:101–106.

Jaipetch T, Kanghae S, Pancharoen O, Patrick V, Reutrakul V, Tuntiwachwuttikul P, White AH. 1982. Constituents of *Bosenbergia pandurata* (syn. *Kaempferia pandurata*): isolation, crystal structure and synthesis of (±)-boesenbergin A. Aust J Chem. 35:351-361.

Kamperdick C, Hong Van N, Van Sung T. 2002. Constituents from *Miliusa balansae* (Annonaceae). Phytochemistry. 61:991–994.

Kong Y, Fu YJ, Zu YG, Chang FR, Chen YH, Liu XL, Stelten J, Schiebel HM. 2010a. Cajanuslactone, a new coumarin with antibacterial activity from pigeon pea [*Cajanus cajan* (L.) Millsp.] leaves. Food Chem. 121:1150–1155.

Kong Y, Fu Y-J, Zu Y-G, Liu W, Wang W, Hua X, Yang M. 2009. Ethanol modified supercritical fluid extraction and antioxidant activity of cajaninstilbene acid and pinostrobin from pigeonpea [*Cajanus cajan* (L.) Millsp.] leaves. Food Chem. 117:152–159.

Kong Y, Wei Z, Fu Y, Gu C, Zhao C, Yao X, Efferth T. 2011. Negative-pressure cavitation extraction of cajaninstilbene acid and pinostrobin from pigeon pea [*Cajanus cajan* (L.) Millsp.] leaves and evaluation of antioxidant activity. Food Chem. 128:596–605.
Kong Y, Zu YG, Fu YJ, Liu W, Chang FR, Li J, Chen YH, Zhang S, Gu CB. 2010b. Optimization of microwave-assisted extraction of cajanin stilbene acid and pinostrobin from pigeonpea leaves followed by RP-HPLC-DAD determination. J Food Compos Anal. 23:382–388.

Kuete V, Viertel K, Efferth T. 2013. Antiproliferative Potential of African Medicinal Plants. In: Med Plant Res Africa Pharmacol Chem. p. 711–724.

Lasswell WL, Jr., Hufford CD. 1977. Cytotoxic C-benzylated flavonoids from Uvaria chamae. J Org Chem. 42:1295–1302.

Lee C, Lee JW, Jin Q, Jang DS, Lee S-J, Lee D, Hong JT, Kim Y, Lee MK, Hwang BY. 2013. Inhibitory constituents of the heartwood of Dalbergia odorifera on nitric oxide production in RAW 264.7 macrophages. Bioorg Med Chem Lett. 23:4263–4266.

Lindstedt G.1950. Constituents of Pine Heartwood. XXII. The Isolation of Pinostrobin and 3,5-Dihydroxy-7-methoxyflavanone from the Heartwood of Pinus clausa Vasey. Acta Chemica Scandinavica 4:1042-1046

Liu R, Zhang H, Zhou F, Wang R-M, Tu Q, Wang J-Y. 2013. Flavonoids and alkaloids from the leaves of Litsea fruticosa. Biochem Syst Ecol. 50:293–295.

López SN, Sierra MG, Gattuso SJ, Furlán RL, Zacchino SA. 2006. An unusual homoisoflavanone and a structurally-related dihydrochalcone from Polygonum ferrugineum (Polygonaceae). Phytochemistry. 67:2152–2158.

Massaro CF, Katouli M, Grkovic T, Vu H, Quinn RJ, Heard TA, Carvalho C, Manley-Harris M, Wallace HM, Brooks P. 2014. Anti-staphylococcal activity of C-methyl flavanones from propolis of Australian stingless bees (Tetragonula carbonaria) and fruit resins of Corymbia torelliana (Myrtaceae). Fitoterapia. 95:247–257.

Mata R, Navarrete A, Alvarez L, Pereda-Miranda R, Delgado G, Vivar ARD. 1987. Flavonoids and terpenoids of Chenopodium graveolens. Phytochemistry. 26:191–193.

Nicholson RA, David LS, Pan R Le, Liu XM. 2010. Pinostrobin from Cajanus cajan (L.) Millsp. inhibits sodium channel-activated depolarization of mouse brain synaptoneurosomes. Fitoterapia. 81:826–829.

Panthong A, Kanjanapothi D, Tuntiwachwuttikul P, Pancharoen O, Reutrakul V. 1994. Antiinflammatory activity of flavonoids. Phytomedicine. 1:141–144.
Portet B, Fabre N, Rozenberg R, Habib-Jiwan J-L, Moulis C, Quetin-Leclercq J. 2008. Analysis of minor flavonoids in Piper hostmannianum var. berbicense using liquid chromatography coupled with atmospheric pressure chemical ionization mass spectrometry. J Chromatogr A. 1210:45–54.

Pripdeevech P, Pitija K, Rujjanawate C, Pojanagaroon S, Kittakoop P, Wongpornchai S. 2012. Adaptogenic-active components from Kaempferia parviflora rhizomes. Food Chem. 132:1150–1155.

Ramakrishnan A, Banerji MS, Chadha G. 1974. Chalcones from Onychium auratum. Phytochemistry. 13:2317–2318.

Ramirez J, Cartuche L, Morocho V, Aguilar S, Malagon O. 2013. Antifungal activity of raw extract and flavanons isolated from Piper ecuadorense from Ecuador. Rev Bras Farmacogn. 23:370–373.

Ramkumar KM, Manjula C, Sankar L, Suriyanarayanan S, Rajaguru P. 2009. Potential in vitro antioxidant and protective effects of Gymnema montanum H. on alloxan-induced oxidative damage in pancreatic beta-cells, HIT-T15. Food Chem Toxicol. 47:2246–2256.

Sartori FT, Sacilotto ACBC, Lopes JLC, Lopes NP, Vichnewski W. 2002. Phytochemical study of Lychnophora markgravii (Asteraceae). Biochem Syst Ecol. 30:609–612.

Shimomura H, Sashida Y, Mimaki Y, Oohara M, Fukai Y. 1988. A chalcone derivative from the bark of Lindera umbellata. Phytochemistry. 27:3937–3939.

Su B-N, Jung Park E, Vigo JS, Graham JG, Cabieses F, Fong HHS, Pezzuto JM, Kinghorn AD. 2003. Activity-guided isolation of the chemical constituents of Muntingia calabura using a quinone reductase induction assay. Phytochemistry. 63:335–341.

Sudsai T, Prabpai S, Kongsaeree P, Wattanapiromsakul C, Tewtrakul S. 2014. Anti-inflammatory activity of compounds from Boesenbergia longiflora rhizomes. J Ethnopharmacol. 154:453–461.

Takeara R, Albuquerque S, Lopes NP, Lopes JLC. 2003. Trypanocidal activity of Lychnophora staavioides Mart. (Vernonieae, Asteraceae). Phytomedicine. 10:490–493.

Tanjung M, Tjahjandarie TS, Sentosa MH. 2013. Antioxidant and cytotoxic agent from the rhizomes of Kaempferia pandurata. Asian Pacific J Trop Dis. 3:401–404.
Thuy TTT, Quan TD, Anh NTH, Van Sung T. 2011. A new hydrochalcone from *Miliusa sinensis*. Nat Prod Res. 25:1361–1365.

Trakoontivakorn G, Nakahara K, Shinmoto H, Takenaka M, Onishi-Kameyama M, Ono H, Yoshida M, Nagata T, Tsushida T. 2001. Structural analysis of a novel antimitogenic compound, 4-Hydroxypanduratin A, and the antimitogenic activity of flavonoids in a Thai spice, fingerroot (*Boesenbergia pandurata* Schult.) against mutagenic heterocyclic amines. J Agric Food Chem. 49:3046–3050.

Tuchinda P, Reutrakul V, Claeson P, Pongprayoon U, Sematong T, Santisuk T, Taylor WC. 2002. Anti-inflammatory cyclohexenyl chalcone derivatives in *Boesenbergia pandurata*. Phytochemistry. 59:169–173.

Vinciguerra V, Luna M, Bistoni A, Zollo F. 2003. Variation in the composition of the heartwood flavonoids of *Prunus avium* by on-column capillary gas chromatography. Phytochem Anal. 14:371–377.

Wei Z-F, Jin S, Luo M, Pan Y-Z, Li T-T, Qi X-L, Efferth T, Fu Y-J, Zu Y-G. 2013. Variation in contents of main active components and antioxidant activity in leaves of different pigeon pea cultivars during growth. J Agric Food Chem. 61:10002–10009.

Wollenweber E, Kohorst G, Mann K, Bell JM. 1985. Leaf gland flavonoids in *Comptonia peregrina* and *Myrica pensylvanica* (Myricaceae). J Plant Physiol. 117:423–430.

Wollenweber E. 1982. The occurrence of flavanones in the farinose exudate of the fern *Onychium siliculosum*. Phytochemistry. 21:1462–1464.

Wu D, Nair MG, DeWitt DL. 2002. Novel compounds from *Piper methysticum* Forst (kava kava) roots and their effect on cyclooxygenase enzyme. J Agric Food Chem. 50:701–705.

Wu N, Fu K, Fu Y-J, Zu Y-G, Chang F-R, Chen Y-H, Liu X-L, Kong Y, Liu W, Gu C-B. 2009. Antioxidant activities of extracts and main components of Pigeonpea [*Cajanus cajan* (L.) Millsp.] leaves. Molecules. 14:1032–1043.

Wu T-S, Kuoh C-S, Ho S-T, Yang M-S, Lee K-K. 1981. Flavanone and other constituents from *Onychium siliculosum*. Phytochemistry. 20:527–529.

Zakaria ZA, Balan T, Suppaiah V, Ahmad S, Jamaludin F. 2014. Mechanism(s) of action involved in the gastroprotective activity of *Muntingia calabura*. J Ethnopharmacol. 151:1184–1193.