Evaluation on sustainable utilization of water resources in Nansi Lake Basin

Xiangdong Hou¹, Xunshi Wang¹, Lifeng Chen¹, Shicheng Zhu¹, Junnuo Wang²³, Xinru Sun⁴ and Yanfang Diao⁵

¹Haihe River, Huaihe River and Xiaoqinghe River Basin water conservancy management and service center of Shandong province, Jinan, Shandong, China;
²Shui fa planning & design CO., LTD, Jinan, Shandong, China;
³Shandong lake basin management & informationize engineering technology research center, Jinan, China;
⁴School of Water Conservancy and Civil Engineering, Shandong Agricultural University, Taian, Shandong, China
⁵Email: diaoyanfang@sdau.edu.cn

Abstract. Based on the influencing factors of sustainable development by Bossel, the evaluation index system of sustainable utilization of water resources was constructed, which includes 18 indexes considering the development and utilization of water resources, social economy and ecological environment. The evaluation grade was classified into five levels: special, strong, intermediate, light and tiny. Because there were many fuzzy characteristics in this evaluation, this study was constructed an evaluation method of sustainable utilization of water resources based on the variable fuzzy sets model. Taking the Nansi Lake Basin in China as an example, the evaluation method was introduced in detail. The example showed that the evaluation index system constructed in this paper was reasonable and generalized, and the evaluation method was easy to understand, easy to operate and high credibly of the results. In addition, the evaluation results had a certain guiding significance for the sustainable development of water resources.

1. Introduction

With the increase of population and the development of social economy, many water resources problems have arisen, such as shortage of water resources, serious pollution of water environment and degradation of water ecology, which have become the focus of global attention. As water resources is one of the basic supporting conditions for sustainable development, the basic requirement of sustainable development is to ensure the sustainable utilization of water resources. At present, the research on sustainable utilization of water resources is mainly focused on its evaluation indexes and evaluation methods.

A reasonable evaluation indexes can ensure the credibility of evaluation results. At present, indexes of sustainable utilization of water resources mainly included: ① according to the regional scale, it could be divided into national index, regional index and river basin index [1]; ② according to the compound system, it could be divided into natural ecological index, economic index and social index[2]. ③according to the characteristics of water resources system, it could be divided into water resources availability index, water resources utilization degree index and management level index,
water resources comprehensive benefit index; ④ according to the sustainable point of view, it could be divided into extension index, internal index, descriptive index and evaluation index[3]; ⑤ according to epistemological and methodological analysis, it could be divided into economic method index, ecological method index and statistical index[4]; ⑥ according to the range of the evaluation index, it could be divided into single index, thematic index and systematic index[5]. The evaluation methods of sustainable utilization of water resources mainly included qualitative analysis method, systematic evaluation method[6], comprehensive evaluation method[7], coordination degree method, fuzzy comprehensive evaluation method[8], grey clustering evaluation method[9] and so on.

At present, the main problems in the evaluation of sustainable utilization of water resources are as follows: (1) because there are many factors affecting the sustainable utilization of water resources, and there are connections among them, indexes constructed are difficult to include all the influencing factors. Therefore, most scholars constructed evaluation indexes which were suitable for the specific regions; (2) the concepts and evaluation criteria of indexes are not unified, and there are great differences among different researches. In order to solve the above problems, this paper proposed that (1) based on the sustainable development theory put forward by Bossel, the evaluation index system of sustainable utilization of watershed water resources is constructed considering water resources system, socio-economic system and ecological environment system. At the same time, the evaluation criteria of each evaluation index are established according to the characteristics of arid and semi-arid areas in northern China; (2) the evaluation model of sustainable utilization of watershed water resources is developed by variable fuzzy recognition model, and the ways to improve the sustainable utilization grade can be analyzed through the evaluation results.

2. Construction of evaluation index system

2.1. Evaluation index system

According to the influencing factors of sustainable development by Bossel [10], the influencing factors of sustainable utilization of water resources could be summarized as the limit water demand, limited water resources, water resources carrying capacity, water environmental capacity, social system and economic development, ethical value, water resources engineering management system and science and technology. The above eight influencing factors are related to water resources system, socio-economic system and environmental system, which interact and restrict each other. The sustainable development of water resources takes the sustainable development of economy as the premise, the sustainable development of society as the goal, and the sustainable utilization of ecological environment and water resources as the basis. Therefore, the evaluation index system should be constructed from the interaction between the above three systems. In this paper, the evaluation index system is divided into four layers: target layer, criterion layer, constraint layer and index layer. The target layer is reflected by the criterion layer, the criterion layer is described by the constraint layer, and the constraint layer is reflected by the index layer. The target layer is "sustainable utilization grade of water resources", which reflects the coordination degree between the development level of water resources system and economy, society and environment. The criterion layer includes "development and utilization of water resources", "social economy" and "ecological environment", which fully takes into account the impact of water resources, social economy and ecological environment on the sustainable utilization of water resources. The evaluation index system is shown in Table 1.

2.2. Classification of sustainable utilization of water resources

In this paper, the sustainable utilization level of water resources is classified into five grades: special(Grade I), strong(Grade II), intermediate(Grade III), light(Grade IV) and tiny(Grade V). "Special" shows that there is still great potential for the development and utilization of water resources; "tiny" indicates that the development and utilization of water resources is close to the limit, and it is necessary to find new water sources or further improve water use efficiency and strengthen water
saving; other grades belong to the intermediate state. At present, there is no recognized criteria for sustainable utilization of water resources. According to the characteristics of arid and semi-arid areas in northern China, combined with the researches of previous scholars, the evaluation criteria of sustainable utilization of water resources are listed in Table 1.

Table 1. Evaluation indexes and their criteria.

Target layer	Criterion layer	Constraint layer	Index layer	I	II	III	IV	V
Development and utilization of water resources	Water resources development indexes	Water production coefficient	≥0.55 [0.4,0.55])					
		Per capita water resources(m³/person)	≥3000 [1700,30 00]					
		Water supply modulus (10,000m³/km²)	≥30 [15,30]					
	Water resources utilization indexes	Development and utilization rate of water resources(%)	<20 [20,40]					
		Reuse rate of industrial water (%)	>90 [70,90]					
		Effective utilization coefficient of agricultural irrigation water	≥0.8 [0.7,0.8]					
		Per capita daily domestic water consumption(L· (person ·d))	<120 [120,150]					
Sustainable utilization of water resources	Social indexes	Population density(person/km²)	<200 [200,500]					
		Natural population growth rate(‰)	<0.5 [0.5,5]					
		Urbanization level(%)	>80 [60,80]					
	Economic indexes	Per capita GDP(10,000 RMB/person)	≥5 [3,5]					
		Proportion of tertiary industry output value to GDP(%)	≥60 [50,60]					
		Proportion of agricultural water use(%)	≤55 [55,65]					
		Water consumption of 10,000 RMB industrial added value(m³/10,000 RMB)	≤20 [20,50]					
	Ecological environment	Proportion of ecological environment water use (%)	≥5 [3,5]					
		Rate of surface water quality reaching the standard(%)	≥80 [70,80]					
		Urban sewage treatment rate(%)	≥90 [70,90]					
		Reuse rate of sewage treatment (%)	≥80 [60,80]					
3. Methods

3.1. Variable fuzzy sets (VFS) and its model[11]
In defining the concept, let us suppose that U is a fuzzy concept (alternative or phenomenon) A, and to any elements $u (u \in U)$, $\mu_A (u)$ and $\mu_S (u)$ are relative membership degree (RMD) function that express degrees of attractability and repellency, respectively. Let

$$
D_\delta (u) = \mu_A (u) - \mu_S (u)
$$

where $D_\delta (u)$ is defined as relative difference degree of u to A. Mapping

$$
D_\delta : D \rightarrow [-1,1]$$

$$
u \mapsto D_\delta \in [-1,1]
$$
is defined as relative difference function of u to A. And we have

$$
\mu_A (u) + \mu_S (u) = 1
$$

Then

$$
\mu_A (u) = \left[1 + D_\delta (u)\right]/2
$$

where $0 \leq \mu_A (u) \leq 1, 0 \leq \mu_S (u) \leq 1.$

We suppose that $X_0=[a,b]$ are attracting (as priority) sets of VFS V on real axis, i.e. interval of $\mu_A (u) > \mu_S (u), X=[c,d]$ is a certain interval containing X_0, i.e. $X_0 \subset X.$ According to definition of VFS we know that interval $[c, a]$ and $[b, d]$ all are repelling (as priority) sets of VFS, i.e. interval of $\mu_A (u) < \mu_S (u).$ Suppose that M is point value of $\mu_A (u)=1$ in attracting (as priority) sets $[a, b]$, and M can be determined by actual problem or selected as midpoint value of interval $[a, b]$. x is value of random point in interval X, then if x locates at left side of M, its difference function is

$$
D_\delta (u) = \begin{cases}
\frac{x-a}{M-a}^\beta, & x \in [a,M] \\
-\frac{x-a}{b-c}^\beta, & x \in [c,a]
\end{cases}
$$

And if x locates at right side of M, its difference function is

$$
D_\delta (u) = \begin{cases}
\frac{x-b}{M-b}^\beta, & x \in [M,b] \\
\frac{x-b}{a-b}^\beta, & x \in [b,d]
\end{cases}
$$

where β is an index that higher than 0, usually we take it as $\beta = 1$, viz. Eqs. (5) and (6) become linear functions. Eqs. (5) and (6) satisfy: (i) $x=a, x=b, \mu_A (u) = \mu_S (u) = 0.5$; (ii) $x=M, \mu_A (u) = 1$; (iii) $x=c, x=d, \mu_A (u) = 0$. Then according to Eqs. (5) (or Eqs.(6)) and (4) we can obtain values of relative membership function $\mu_A (u)$ of disquisitive indexes. Then, the integrated relative membership degree can be calculated by Eq. (7).
The average annual amount of water resources in Nansi Lake basin is 6.074 billion m3, and the per capita water resources is less than 300m3, which belongs to a serious water shortage area. Therefore, the evaluation on sustainable utilization of water resources in Nansi Lake basin can not only recognize the current situation and evolution law of sustainable utilization of water resources, but also explore the reasons affecting the sustainable utilization of water resources.

By consulting the statistical yearbooks and water resources bulletins of various cities in Nansi Lake basin, the indexes data from 2010 to 2017 are collected, as shown in Table 2. At the same time, the multi-year average values of indexes and their grades are shown in Table 2.
Table 2. Indexes data from 2010 to 2017.

Indexes data	2010	2011	2012	2013	2014	2015	2016	2017	Average	Grade
Water production coefficient	0.077	0.081	0.076	0.069	0.076	0.079	0.099	0.104	0.083	V
Per capita water resources	275.4	300.0	155.0	187.1	170.4	191.0	250.5	271.2	225.1	V
Water supply modulus	19.5	19.7	19.0	19.0	18.2	18.4	18.5	17.0	18.7	II
Development and utilization rate of water resources	56.2	45.0	86.1	61.6	76.7	65.4	44.1	35.2	58.8	III
Reuse rate of industrial water	82.3	84.4	85.1	85.1	85.6	85.3	85.0	84.8	84.8	II
Effective utilization coefficient of agricultural irrigation water	0.569	0.585	0.601	0.617	0.625	0.632	0.638	0.645	0.614	III
Per capita daily domestic water consumption	72.1	73.3	72.1	72.4	73.0	72.1	72.3	70.5	72.2	I
Population density	723.8	714.0	720.6	723.9	728.9	735.0	742.9	749.0	729.7	III
Natural population growth rate	1.128	0.59	0.65	0.737	2.128	0.928	1.152	0.935	1.031	II
Urbanization level	37.8	39.4	41.0	43.1	44.4	47.4	49.6	51.5	44.3	III
Per capita GDP	2.52	2.87	3.25	3.59	3.87	4.07	4.29	4.62	3.64	IV
Proportion of tertiary industry output value to GDP	36.9	38.5	40.2	41.7	43.7	45.2	46.7	46.8	42.5	III
Proportion of agricultural water use	79.4	77.9	77.1	77.9	77.1	76.9	76.3	74.0	77.1	IV
Water consumption of 10,000 RMB	20.62	19.92	14.66	13.77	13.34	13.32	13.11	12.19	15.12	I
Industrial added value	1.31	1.24	1.78	1.77	1.52	1.68	2.02	2.57	1.74	VI
Proportion of ecological environment water use	42.9	48.2	53.8	61.1	66.2	70	78.6	87.5	63.5	III
Rate of surface water quality reaching the standard	82.3	89.5	91.4	94.1	95.4	95.7	95.6	96.7	92.6	I
Urban sewage treatment rate	14.2	43.7	36.3	39.7	49.5	51.2	47.9	47.7	41.3	III

4.2. Results
Firstly, the interval matrix I_{ab} bound matrix I_{cd} and point value matrix M are calculated as follows.
Secondly, the weights of indexes are determined according to the entropy weight method, $w=(0.081, 0.077, 0.040, 0.054, 0.033, 0.050, 0.069, 0.052, 0.034, 0.069, 0.056, 0.060, 0.053, 0.055, 0.081, 0.066, 0.036, 0.034)$. Thirdly, according to Eq.(11), the integrated relative membership degree is calculated as follows. Finally, according to Eq.(12), the grade characteristic values and grades are calculated by taking $p=1, \alpha=1$, as shown in Table 3.

$$
I_{ab} = \begin{bmatrix}
[1.0, 0.55] & [0.55, 0.4] & [0.4, 0.2] & [0.2, 0.1] & [0.1, 0]
\end{bmatrix}
$$

$$
I_{cd} = \begin{bmatrix}
[3100, 3000] & [3000, 1700] & [1700, 1000] & [1000, 500] & [500, 0]
\end{bmatrix}
$$

$$
M = \begin{bmatrix}
[100, 90] & [90, 70] & [70, 50] & [50, 30] & [30, 0]
\end{bmatrix}
$$

$$
M = \begin{bmatrix}
[100, 80] & [80, 60] & [60, 40] & [40, 20] & [20, 0]
\end{bmatrix}
$$
The results shows that:

(1) the grade characteristic values shows a decreasing trend from 2010 to 2017, indicating that the sustainable utilization level of water resources has a tendency to become better. The grade characteristic value of 2017 is the smallest, indicating that the sustainable utilization potential of water resources is the greatest, while the grade characteristic value of 2010 is the largest, indicating that the potential is the least. The grades from 2010 to 2017 belong to intermediate.

(2) the sustainable utilization level of water resources in Nansi Lake basin is closely related to its water resources characteristics and social and economic conditions. There are some problems in Nansi Lake basin, such as small volume of water resources, large population density, paying attention to agriculture, slow industrial development and so on, resulting in small potential for sustainable utilization of water resources. However, due to the implementation of the strictest water resources management system, the river and lake chief system and the construction of water ecological civilization, the sustainable utilization level of water resources in the Nansi Lake basin has a trend of increasing year by year.

(3) as can be seen from Table 2, the indexes that lead to the low potential of sustainable utilization are water production coefficient, per capita water resources, per capita GDP, proportion of agricultural water use and ecological environment water use, in which the first two indexes belong to Grade V and the latter three belong to Grade IV. Therefore, in order to improve the potential of sustainable utilization of water resources in Nansi Lake Basin, some measures are needed to improve the above indexes. In order to increase water production coefficient and per capita water resources, surface water storage projects should be properly built to intercept floods, and low impact development engineering should be constructed to collect rainfall; in order to increase per capita water resources, per capita GDP and reduce proportion of agricultural water use, we should control population growth, adjust industrial structure, strengthen industry and tertiary industry, and improve the water-saving level of industry and agriculture; in order to increase the proportion of ecological environment water use, the guarantee degree of ecological environment water use should be increased and the construction of water ecological civilization should be promoted.

5. Conclusion

(1) In this paper, the evaluation index system of sustainable utilization of water resources is constructed, which considers the development and utilization of water resources, social economy and
ecological environment. The evaluation grade is classified into five grades: special, strong, intermediate, light and tiny, and the classification criteria of indexes is determined, which is reliable and standardized.

(2) The VFS model can reasonably deal with the fuzzy characteristics of evaluation indexes, reflect the level of sustainable utilization of water resources objectively, and improve the credibility of the evaluation results. In addition, the VFS model has the advantages of easy to understand and strong maneuverability.

(3) Taking Nansi Lake Basin as an example, the results shows that the sustainable utilization level of water resources has a trend of improvement year by year from 2010 to 2017, which is closely related to the implementation of the strictest water resources management system, the river and lake chief system and the construction of water ecological civilization. In order to improve the sustainable utilization level of water resources, we should properly build surface water storage projects, popularize the low impact development engineering, control population growth, adjust industrial structure, strengthen industry and tertiary industry, improve the water-saving level of industry and agriculture, increase the guarantee degree of water use for ecological environment and so on.

Acknowledgements
Yanfang Diao is the corresponding author. This work was supported by “Study on key technologies of water security in Huaihe River Basin of Shandong Province” and the Key Technology Research and Development Program of Shandong under Project No.2019GSF111043.

References
[1] Loucks DP 2000 Sustainable water resources management Water international 25(1) 3-10
[2] Ioris A A R, Hunter C, Walker S 2008 The Development and Application of Water Management Sustainability Indicators in Brazil and Scotland Journal of Environmental Management 88(4) 1190-1201
[3] Beloussova A P 2000 A concept of forming a structure of ecological indicators and indexes for regions sustainable development. Environmental Geology 39(11) 1227-1236
[4] Bithas K 2008 The Sustainable Residential Water Use: Sustainability, Efficiency And Social Equity. The European Experience Ecological Economics 68(1-2) 221-229
[5] Yizhen J, Juqin S, Han W, Guanghua D, Fuhua S 2018 Evaluation of the Spatiotemporal Variation of Sustainable Utilization of Water Resources: Case Study from Henan Province (China) Water 10(5) 554-573
[6] Michiel A. Rijsberman, Frans H.M. van de Ven 2000 Different approaches to assessment of design and management of sustainable urban water systems Environmental Impact Assessment Review 20(3) 333-345
[7] Pingyu L, Rui L 2016 Evaluation on water resources sustainable utilization of Chongqing City based on modified principal Yangtze River 47(24) 40-45 (in Chinese)
[8] Chao S, Wen C 2019 Fuzzy comprehensive model based on combination weighting in watershed application of ecological health assessment IOP Conference Series: Earth and Environmental Science 227(5) 1-8
[9] Wanjuan Z, Yang Y, Xueyu Z, Shuai Y, Chuan L 2018 Evaluating Water Consumption Based on Water Hierarchy Structure for Sustainable Development Using Grey Relational Analysis: Case Study in Chongqing, China Sustainability 10(5) 1538-1552
[10] Bossel H 1999 Indicators of sustainable development: Theory, Method, Applications Winnipeg: The International Institute for Sustainable Development 1-20
[11] Shouyu C, Yu G 2006 Variable Fuzzy Sets and its Application in Comprehensive Risk Evaluation for Flood-control Engineering System Fuzzy Optimization and Decision Making 5(2) 153-162