Applications of human brain organoids

Alysson Renato Muotri

Departments of Pediatrics and Cellular & Molecular Medicine, University of California San Diego, School of Medicine, Center for Academic Research and Training in Anthropogeny (CARTA), Kavli Institute for Brain and Mind, Archaealization Center (ArchC), La Jolla, CA, USA

Introduction

The human brain is formed inside the womb. Current imaging technologies are not sensitive enough to investigate how human brains are formed at the molecular and cellular levels. By recreating neurodevelopment in the lab, we have a unique opportunity to learn how the human brain develops from the embryo.

The brain organoid technology was initially developed by Dr. Yoshiki Sasai in 2008 [1]. His pioneer publication revealed that it was possible to push neural differentiation of human pluripotent stem cells in suspension and let the cells self-aggregate, after which they form a tissue that resembles the human fetal cortex. Several other labs have developed other improved ways to create brain organoids, making them more robust and more reliable [2]. Brain organoids are not fully vascularized, not all cell types are represented, and there are no optimized culture conditions to grow human brain organoids [3].

Applications of human brain organoids

One of the applications of these organoids is brain malformation. The Zika virus is an excellent example. Exposing the organoid to the Zika virus, we learned that the virus could kill some of the intermediate progenitor cells, reducing cortical thickness [4,5]. More importantly, just 2 years after the outbreak, researchers could repurpose an antiviral that could be used for Zika [6].

Modeling brain tumors is another potential application of human brain organoids. It is possible to seed glioblastoma cells inside these organoids, for example. That strategy allows us to screen for drugs that kill tumor cells while keeping healthy brain cells intact [7].

To model network conditions, it is necessary to have a protocol that mimics pre-and-postnatal human neural network development [3]. An optimized cortical organoid protocol was tested using micro-electrode arrays [8]. Interestingly, the electrical activity starts to increase by 4 months, showing signs of neural oscillatory waves for the first time. The oscillations behave quite differently by 8 to 9 months, when they become more complex [8]. However, the question arises—how similar are these oscillations to the natural human brain? Using a machine learning algorithm, it was possible to create an unbiased regression model to test how similar the human electroencephalograms are compared to the signal from the human brain organoids. Surprisingly, the similarities were remarkable, showing that human brain organoids have an indistinguishable
genes unique to modern humans [12]. Among them, there is an interesting single-base pair substitution in the NOVA1 gene. The archaic version of NOVA1 was placed into 2 human induced pluripotent stem cells using genome editing technologies. Intriguingly, the archaic version of NOVA1 changed gene expression and splicing isoforms during neurodevelopment. Such alterations lead to changes in cell populations, affecting the morphology and resultant electrophysiology of the neural networks.

Finally, another exciting application is to explore the impact of the space environment on the human brain. By growing brain organoids on the International Space Station, we hope to understand how this environment affects brain cells. The information can mitigate eventual problems for astronauts on long flights, such as Earth-Mars. Moreover, we also plan to leverage the accelerated telomerase activity in human cells to speed up organoid maturation on Earth. That strategy might improve the modeling of late-onset neurological disorders, such as Alzheimer’s disease and dementia.

Concluding remarks

In summary, the brain model technology using stem cells had several incremental improvements since the original description by Dr. Sasai [1]. We now know that brain organoids can mimic several aspects of human neurodevelopment despite the limitations previously described. Thus, the next generation has an opportunity to achieve new milestones in our understanding of human brain health and disease.

Notes

Conflict of interest

Dr. Muotri is a co-founder and has an equity interest in TISMOO, a company dedicated to genetic analysis and brain organoid modeling focusing on therapeutic applications customized for autism spectrum disorder and other neurological disorders with genetic origins. The terms of this arrangement have been reviewed and approved by the University of California San Diego per its conflict-of-interest policies.

Funding

Dr. Muotri is supported by grants from the California Institute for Regenerative Medicine (CIRM) DISC2-09649, the National Institutes of Health through the R01MH108528, R01MH1094753, R01MH109885, R01MH100175, R56 MH109587, SFARI grant #345469, and a NARSAD Independent Investigator Award.
References

1. Eiraku M, Watanabe K, Matsuo-Takasaki M, Kawada M, Yonemura S, Matsumura M, et al. Self-organized formation of polarized cortical tissues from ESCs and its active manipulation by extrinsic signals. Cell Stem Cell 2008;3:519–32.

2. Setia H, Muotri AR. Brain organoids as a model system for human neurodevelopment and disease. Semin Cell Dev Biol 2019;95:93–7.

3. Trujillo CA, Muotri AR. Brain organoids and the study of neurodevelopment. Trends Mol Med 2018;24:982–90.

4. Cugola FR, Fernandes IR, Russo FB, Freitas BC, Dias JL, Guimarães KP, et al. The Brazilian Zika virus strain causes birth defects in experimental models. Nature 2016;534:267–71.

5. Mesci P, Macia A, LaRock CN, Tejwani L, Fernandes IR, Suarez NA, et al. Modeling neuro-immune interactions during Zika virus infection. Hum Mol Genet 2018;27:41–52.

6. Mesci P, Macia A, Moore SM, Shiryaev SA, Pinto A, Huang CT, et al. Blocking Zika virus vertical transmission. Sci Rep 2018;8:1218.

7. Zhu Z, Mesci P, Bernatchez JA, Gimple RC, Wang X, Schafer ST, et al. Zika virus targets glioblastoma stem cells through a SOX2-integrin αvβ5 axis. Cell Stem Cell 2020;26:187–204.

8. Trujillo CA, Gao R, Negraes PD, Gu J, Buchanan J, Preissl S, et al. Complex oscillatory waves emerging from cortical organoids model early human brain network development. Cell Stem Cell 2019;25:558–69.

9. Hanganu-Opatz IL, Butt S, Hippenmeyer S, De Marco Garcia NV, Cardin JA, Voytek B, et al. The logic of developing neocortical circuits in health and disease. J Neurosci 2021;41:813–22.

10. Negraes PD, Trujillo CA, Yu NK, Wu W, Yao H, Liang N, et al. Altered network and rescue of human neurons derived from individuals with early-onset genetic epilepsy. Mol Psychiatry 2021;26:7047–68.

11. Avansini SH, Puppo F, Adams JW, Vieira AS, Coan AC, Rogério F, et al. Junctional instability in neuroepithelium and network hyperexcitability in a focal cortical dysplasia human model. Brain 2021 Dec 27 [Epub] https://doi.org/10.1093/brain/awab479.

12. Trujillo CA, Rice ES, Schaefer NK, Chaim IA, Wheeler EC, Madrigal AA, et al. Reintroduction of the archaic variant of NOVA1 in cortical organoids alters neurodevelopment. Science 2021;371:eaaax2537.