REVIEW

Mesoporous silica nanoparticles for drug and gene delivery

Yixian Zhoua,†, Guilan Quana,†, Qiaoli Wub, Xiaoxu Zhangetc, Boyi Niua, Biyuan Wua, Biyuan Wua,⁎, Ying Huanga, Xin Panana,⁎, Chuanbin Wua,d

a School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
b Zengcheng District People’s Hospital of Guangzhou, Guangzhou 51006, China
c Qingdao Huanghai University, Qingdao 266427, China
d Guangdong Research Center for Drug Delivery Systems, Guangzhou 510006, China

Received 25 September 2017; received in revised form 26 November 2017; accepted 22 January 2018

KEY WORDS
Mesoporous silica nanoparticles; Poorly soluble drug; Cancer therapy;

Abstract Mesoporous silica nanoparticles (MSNs) are attracting increasing interest for potential biomedical applications. With tailored mesoporous structure, huge surface area and pore volume, selective surface functionality, as well as morphology control, MSNs exhibit high loading capacity for therapeutic agents and controlled release properties if modified with stimuli-responsive groups, polymers or proteins. In this review article, the applications of MSNs in pharmaceutics to improve drug bioavailability, reduce drug toxicity, and deliver with cellular targetability are summarized. Particularly,

Abbreviations: AO, acridine orange; APTES, 3-aminopropyltriethoxysilane; APTMS, amino propyl trimethoxysilane; BCL-2, B-cell lymphoma-2; BCS, Biopharmaceutical Classification System; Bio-TEM, biological transmission electron microscopy; C dots, Cornell dots; CMC, critical micelle concentration; CPT, camptothecin; CTAB, cetyltrimethyl ammonium bromide; EPR, enhanced permeability and retention; FDA, Food and Drug Administration; GI, gastrointestinal; GNRs@mSiO2, mesoporous silica-encapsulated gold nanorods; LHRH, luteinising-hormone releasing hormone; MDR, multi-drug resistance; MTT, 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl tetrazolium bromide; MRP1, multidrug resistance protein 1; MSN-Dox-G2, Dox-loaded and G2 PAMAM-modified MSNs; MSNs; mesoporous silica nanoparticles; MSNs@PDA-PEG-FA, poly(ethylene glycol)-folic acid-functionalized polydopamine-modified MSNs; MSNs-HA, hyaluronic acid-conjugated MSNs; MSNs-RGD/TAT, RGD/TAT peptide-modified MSNs; MSNs-TAT, TAT peptide-modified MSNs; NIR, near-infrared; PAMAM, polyamidoamine; PDEAEMA, poly(2-(diethylamino)ethylmethacrylate); PDMAEMA, poly(2-(dimethylamino)ethylmethacrylate); pDNA, plasmid DNA; PEG400, polyethylene glycol 400; PEI, polyethylenimine; P-gp, P-glycoprotein; PLL, poly-L-lysine; PTX, paclitaxel; Q-MSNs, quercetin encapsulated MSNs; RGD, arginine-glycine-aspartate; TAT, trans-activating transcription; TMB, 1,3,5-trimethybenzene

⁎ Corresponding authors.
E-mail addresses: panxin2@mail.sysu.edu.cn (Xin Pan), wuchuanb@mail.sysu.edu.cn (Chuanbin Wu).
† These authors made equal contributions to this study.
Peer review under responsibility of Institute of Materia Medica, Chinese Academy of Medical Sciences and Chinese Pharmaceutical Association.

https://doi.org/10.1016/j.apsb.2018.01.007
2211-3835 © 2018 Chinese Pharmaceutical Association and Institute of Materia Medica, Chinese Academy of Medical Sciences. Production and hosting by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

In recent years, there has been a rapid growth in the area of biomedicine, particularly in exploring new drug/gene delivery systems. More recently, nanotechnology emerged as a promising approach which has motivated researchers to develop nanostructured materials. Among various integrated nanostructured materials, mesoporous silica nanoparticles (MSNs) have become a new generation of inorganic platforms for biomedical application.

MSNs with uniform pore size and a long-range ordered mesoporous structure were first introduced by Mobil corporation scientists in 1992. In general, supramolecular assemblies of surfactants are necessary in the synthesis of MSNs. Usually, the surfactant will self-aggregate into micelles at a concentration higher than the critical micelle concentration (CMC). Then, the silica precursors can condense at the surface of the micelles forming an inorganic-organic hybrid material. Finally, the template surfactant can be removed either by calcination or by solvent extraction to generate pores (Fig. 1). The resulting silica-based mesoporous matrices may offer the following unique structural and biomedical properties:

1) Ordered porous structure. MSNs have a long-range ordered porous structure without interconnection between individual porous channels, which allows fine control of the drug loading and release kinetics (Fig. 2).

2) Large pore volume and surface area. The pore volume and surface area of MSNs are usually above 1 cm³/g and 700 m²/g, respectively, showing high potential for molecular loading and dissolution enhancement.

3) Tunable particle size. The particle size of MSNs can be controlled from 50 to 300 nm, which is suitable for facile endocytosis by living cells.

4) Two functional surfaces. MSNs have two functional surfaces, namely cylindrical pore surface and exterior particle surface. These silanol-contained surfaces can be selectively functionalized to achieve better control over drug loading and release. Moreover, the external surface can be conjugated with targeting ligands for efficient cell-specific drug delivery.

5) Good biocompatibility. Silica is “Generally Recognized As Safe” by the United States Food and Drug Administration (FDA). Recently, silica nanoparticles in the form of Cornell dots (C dots) received FDA approval for stage I human clinical trial for targeted molecular imaging. It was reported that MSNs exhibited a three-stage degradation behavior in simulated body fluid, suggesting that MSNs might degrade after administration, which is favorable for cargo release. Several in vivo biodistribution studies of MSNs have been reported recently. Liu et al. evaluated the systematic toxicity of MSNs after intravenous injection of single and repeated dose to mice. The results of clinical features, pathological examinations, mortalities, and blood biochemical indexes indicated low in vivo toxicity of MSNs. It was also reported that MSNs were mainly excreted through feces and urine following different administration routes.

These unique features make MSNs excellent candidate for controlled drug/gene delivery systems. Since the first report using MCM-41 type MSNs as drug delivery system by Vallet-Regi et al. in 2001, the research on biomedical application of MSNs has steadily increased, with an exponential rise in last decade. Various mesoporous materials with different porous structure and function- ability have been developed for controlled and targeted drug/gene delivery. Here, we give an overview of the recent research progress and future development of MSNs in biomedical applications, particularly focused on the practical applications of MSNs as delivery systems for poorly soluble drugs, anticancer agents, and therapeutic genes. Based on the review, we have also included our perspectives on the further applications of MSNs.

2. Mesoporous silica-based system for poorly soluble drugs

With the increasing numbers of innovative new drugs in development, almost 70% of new drug candidates exhibit low aqueous solubility, ultimately resulting in poor absorption. In an attempt to overcome this solubility obstacle and to improve the oral bioavailability, a growing number of drug delivery technologies have been developed. Presently, nanotechnology is attracting increasing attention as it can be applied in two aspects: processing the drug itself and eventually resulting in poor absorption. In an attempt to overcome this solubility obstacle and to improve the oral bioavailability, a growing number of drug delivery technologies have been developed. Presently, nanotechnology is attracting increasing attention as it can be applied in two aspects: processing the drug itself and subsequently enhancing their absorption.

When water-insoluble drug molecules are contained in mesoporous silica, the spatial confinement within the mesopores can reduce the crystallization of the amorphous drug. Compared with the crystalline drug, the amorphous drug can reduce the lattice
energy, subsequently resulting in improved dissolution rate and enhanced bioavailability\(^2\,^3\). Moreover, the huge hydrophilic surface area of mesoporous silica facilitates the wetting and dispersion of the stored drug, resulting in fast dissolution\(^4\). In one example, the poorly water soluble drug clotrimazole was loaded into MSU-H type mesoporous silica through supercritical CO\(_2\)\(^5\,^6\). The experimental and theoretical results indicated that clotrimazole was not crystalline and drug molecules were homogenously distributed in the mesopores. He et al.\(^7\) also reported that the solubility of paclitaxel was significantly enhanced after loaded into MSNs. The 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl tetrazolium bromide (MTT) assay revealed that paclitaxel loaded mesoporous silica nanoparticles exhibited obvious cytotoxicity on HepG2 cells as compared with paclitaxel. SBA-15 mesoporous silica was successfully used to accelerate the dissolution rate of furosemide which is a representative class IV drug according to the Biopharmaceutical Classification System (BCS)\(^8\). About 71% of the drug was released from SBA-15-based preparation at 2 h dissolution, whereas only 49% of drug release from the commercial product Lasix. In addition, when the dissolution medium was changed from pH 3.0 to pH 6.8, the drug was rapidly and completely released from the inclusion preparation against the incomplete release of 83% drug from the commercial product during the whole test.

There are several factors which can influence drug release rates from MSNs. Pore size plays an important role in the release rate since the drug release is mainly controlled by diffusion\(^9\). Jia et al.\(^10\) prepared paclitaxel-loaded MSNs with different pore sizes from 3 to 10 nm. The in vitro drug release test showed that the release rate decreased as the pore sizes changed from 10 to 3 nm, which might be attributable to the reason that paclitaxel loaded in relatively small pores has less opportunity of escaping from pores and diffusing into the release medium. The effect of pore size on the drug release rate was further verified in the celecoxib loaded mesoporous silica system. The release rate of celecoxib from mesopores increased with the increase of the pore size (3.7–16.0 nm)\(^11\). In addition, the surface chemistry is another factor which can influence the drug release rate. Ahmadi et al.\(^12\) loaded ibuprofen into amino-modified SBA-15. Compared with SBA-15, the release rate from amino-modified SBA-15 was much slower. This was due to the interaction between carboxyl groups of ibuprofen and amino groups of the amino-modified SBA-15. Hollow structure was also reported to retard drug release from mesoporous silica nanoparticles\(^13\). Furthermore, during the degradation, highly ordered hexagonal mesoporous structure will be degraded into a disordered network where the walls have been partly destroyed\(^14\), which might affect the release of drug cargo loaded in MSNs.

To obtain a suitable release rate and high bioavailability of poorly soluble drugs from mesoporous silica, mesoporous silica were combined with other materials into different kinds of formulations. Chen et al.\(^15\) constructed a liquisolid formulation in which liquid polyethylene glycol 400 (PEG400) and model drug carbamazepine were absorbed into mesoporous silica to achieve improved adsorption capacity and high drug loading. The obtained liquisolid system was mixed with starch slurry, then granulated, and filled into gelatin capsules. The in vivo study demonstrated that the bioavailability of the liquisolid capsules was improved to 182.7% compared with the commercial carbamazepine tablets. Hu and his co-workers\(^16\) encapsulated felodipine-loaded MSNs using chitosan and acacia through layer by layer self-assembly method. The release rate of felodipine decreased with the increase of the number of chitosan/acacia bilayers coated on MSNs. The production of immediate-release carbamazepine pellets was reported by Wang et al.\(^17\) based on mesoporous silica SBA-15 using extrusion/spheronization method. The dissolution results showed that the incorporation of drug-loaded SBA-15 into pellets did not change the in vitro release behavior. Moreover, the oral bioavailability of pellets was 1.57-fold higher than that of fast-release commercial tablets in dogs (\(P<0.05\)). In another study, MSNs were formulated into hydrogel beads with polysaccharides matrix, resulting in a sustained drug release profile maintaining for 24 h\(^18\).

3. Mesoporous silica-based system for cancer therapy

Recently, the combination of nanotechnology with drug delivery in the field of cancer therapy has been a research hotspot. The defective vascular architecture and impaired lymphatic drainage/recovery system of tumors allow small nanocarriers and macromolecules to extravasate the endothelial barrier and accumulate in the tumor tissues\(^19\). Owing to this so-called enhanced permeability and retention (EPR) effect, the passive targeting of nanocarriers can be partially achieved\(^20\). Though organic nanocarriers such as nanocapsules\(^21\), liposomes\(^22\), polymeric micelles\(^23\), and nanoparticles\(^24\) can easily encapsulate anticancer drugs, their physicochemical instability and unexpected drug leakage have severely impeded their application. In contrast, inorganic silicate (SiO\(_2\)) carriers have several merits, such as excellent biochemical and physicochemical stability, biocompatibility, and degradability\(^25\). Among the recent breakthroughs that brought new exciting possibilities to this area, MSNs have commonly been suggested as effective carriers for anticancer drugs because of their excellent drug delivery and endocytotic behaviors\(^26\). In this part, we review the applications of MSNs in cancer therapy.

3.1. Intracellular uptake mechanism of MSNs

3.1.1. Pathways for the cellular internalization of MSNs

Since the cell membrane is the biggest barrier for intracellular anticancer drug delivery, it is important to thoroughly investigate the cellular internalization and intracellular trafficking of MSNs as drug carriers.

Generally, the uptake pathways can be divided in two groups: phagocytosis and pinocytosis (macropinocytosis and endocytosis)\(^27\). Phagocytosis usually occurs in specialized cells (professional phagocytes) such as monocytes, neutrophils, macrophages, and dendritic cells, for particles with minimum size of 1 \(\mu\)m\(^2\). Small
nanoparticles (<200–300 nm) are usually taken up by cells via endocytic pathways, which involve various routes such as clathrin-mediated, caveolae-mediated, or the clathrin and caveolae independent mechanism, depending on the cell type, particle size, particle shape, particle surface charge, and even culture conditions.

Since most endocytic pathways are energy dependent, use of an inhibitor or a method of energy depletion can directly identify an endocytic pathway. It was reported that incubating KB cells with MSNs at 4 °C significantly impeded the cellular uptake and the internalization also markedly decreased in the presence of sodium azide. These findings demonstrated that the uptake of MSNs by KB cells was an energy-dependent endocytic process. To further investigate the role of specific endocytic pathways involved in the cellular internalization of MSNs, KB cells were pre-incubated with a series of metabolic inhibitors, including chlorpromazine (inhibits the formation of clathrin vesicles), nystain (binds sterols and disrupts the formation of caveolae), cytochalasin D (inhibits clathrin- and caveolae-independent endocytosis). Finally, the authors proposed that the uptake of MSNs into KB cells was predominated by clathrin-mediated endocytosis and required energy. Similar results were found in A549, PANC-1, and 3T3-L1 cells. Other researchers also reported that MSNs were taken up by Hela cells through caveolae-mediated endocytosis.

3.1.2. Intracellular trafficking of MSNs

After penetrating the cell membrane barrier, MSNs need to reach the cytoplasm to release therapeutic drugs. Biological transmission electron microscopy (Bio-TEM) is usually adopted to observe the intracellular distribution of MSNs after endocytosis. It was found that MSNs were transported to large vesicular endosomes after internalization, and then fused with lysosomes. The membranes of endosomes/lysosomes eventually disrupted, suggesting that the nanoparticles could escape from the endosomes/lysosomes. In addition, a large number of nanoparticles were observed in the cytoplasm maintaining their spherical morphology. No particles were found in the nucleus.

The trafficking of MSNs inside cells also can be studied by confocal fluorescence microscopy using transferrin and fluorescently labeled MSNs. Lu et al. used acridine orange (AO) to specifically stain acidic organelles (endosomes and lysosomes) red but stained other cellular regions green. The green fluorescence of labeled MSNs overlapped mostly with the red fluorescence of AO exhibiting yellow fluorescence, which indicated that MSNs were mainly internalized into the acidic organelles. Lin et al. stained the endosomes by a red endosome marker (FM 4–64) and observed the Hela cells after incubating with green fluorescent FITC-cytochrome c-labeled MSNs using confocal fluorescence microscope (Fig. 3). Interestingly, after 24 h of incubation, no yellow spots were observed, indicating there was no overlap between the red endosomes and the green MSNs. This suggested that MSNs could escape from the endosomal entrapment. Recently, Tang and co-workers showed that different shaped MSNs-PEG were internalized into cells and partially located in the acidic organelles, and the green fluorescence observed inside the cytoplasm also suggested the nanoparticles could successfully escape from the endosomes/lysosomes.

3.2. MSNs as anticancer drug delivery vehicles

With porous interiors and large surface areas, MSNs can be used as reservoirs to store different molecules with high loading capacity and tunable release mechanisms. As a promising drug delivery system, the pore size of MSNs can be tailored to selectively load either hydrophobic or hydrophilic anticancer agents, and their size and shape can be controlled to maximize cellular internalization. The cytotoxic effect of camptothecin (CPT)-loaded MSNs on several cancer-cell lines was evaluated, and the clear growth inhibition was found in three pancreatic cancer-cell lines (Capan-1, PANC-1, AsPc-1), one stomach cancer-cell line (MKN45) and one colon cancer-cell line (SW480). Tao et al. reported when loaded into MSNs, transplatin, an inactive isomer of cisplatin, exhibited enhanced cytotoxicity similar to that of cisplatin on Jurkat cells after 24 h exposure. This work indicated that even less potent anticancer drugs could become biomedically effective after proper combination with MSNs.

3.2.1. Active targeting therapy using MSNs

Over the last decade, the development of MSNs as anticancer drug delivery systems has been mainly based on the premise that the tailored nanoparticles can store high volume of chemotherapeutics in their pores and accumulate in tumor tissues achieving passive targeting via EPR. To enhance the uptake of MSNs in targeted cells, MSNs have been conjugated with various targeting ligands, which have specific affinity to the receptors over-expressed on the surface of cancer cells, including folic acid, monoclonal antibody, galactose derivatives, lactobionic acid, hyaluronic acid, arginine-glycine-aspartate (RGD), transferrin, and others (Table 1).

Figure 3 Confocal microscopy images of Hela cells incubated with FITC-cytochrome c at incubation time of (a) 2 h; (b) 14 h; and (c) 24 h. Endosomes were stained red with fluorescent FM 4-64, and FITC was shown as green fluorescence. Reproduced with permission from Slowing et al. Copyright (2007) American Chemical Society.
Successful specific drug delivery to cancer cells has been reported by Sarkar and coworkers. Quercetin encapsulated MSNs (Q-MSNs) modified with folic acid exhibited increased cellular uptake and higher cytotoxicity in breast cancer cells. In another study, significant improvement of tumor suppression in vivo was also achieved by folic acid modified MSNs. Ma et al. synthesized hyaluronic acid-conjugated MSNs (MSNs-HA) by a facile amidation reaction. The cellular uptake study showed that MSNs-HA were more effectively endocytosed by CD44-positive cancer cells (Hela cells) through receptor-mediated endocytosis mechanism. In contrast, no selective endocytosis of MSNs-HA was found in CD44-negative cells, such as L929 and MCF-7 cells. Model drug CPT loaded in the nanoparticles exhibited enhanced cytotoxicity to Hela cells.

3.2.2. Environment-responsive therapy using MSNs

Although vast effort has been devoted to active targeting therapy using MSNs, the delivery efficacy still needs to be strengthened. During the blood circulation and penetration into tumor matrix, anticancer drugs may leak from mesopores of MSNs, leading to insufficient drug concentration at the tumor site. To overcome this obstacle, “smart” MSNs-modified with environment-responsive gatekeepers were designed. Since the microenvironment of tumor tissue differs from that of normal tissue (e.g., acidic pH [4.5–6.5], high concentration of glutathione [2–10 mmol/L] and high temperature [40–42 °C]), environment-specific drug release at a tumor site is envisioned upon removal of gatekeepers.

According to the microenvironment of cancer cells, the “smart” environment-responsive gatekeepers of MSNs can be divided into pH-responsive gatekeepers, redox-responsive gatekeepers, temperature-responsive gatekeepers, and enzyme-responsive gatekeepers. Cheng et al. designed poly(ethylene glycol)-folic acid-functionalized polydopamine-modified MSNs (MSNs@PDA-PEG-FA) for controlled delivery of doxorubicin (Dox). As illustrated in Fig. 4, when MSNs@PDA-PEG-FA were dispersed in acidic conditions, the PDA film would be destroyed and the loaded doxorubicin would be released rapidly. The in vivo experiments indicated that this system exhibited superior antitumor effects. Li and his coworkers developed a glutathione-responsive MSNs system. The gatekeeper (RGD containing peptide) was conjugated on the surface of MSNs by disulfide bonds which could be cleaved by the high concentration of glutathione at tumor site, leading to a burst release of doxorubicin.

To improve the control release of anti-tumor drugs, MSNs were designed to be sensitive to multi-stimulus. Zhao and colleagues developed a redox and enzyme-responsive doxorubicin delivery system based on MSNs. The in vitro experiments demonstrated that the release of doxorubicin was dependent upon glutathione and hyaluronidase. Moreover, the anticancer effects of doxorubicin were enhanced in HCT-116 cells as compared with free doxorubicin. MSNs based on photodynamic and photothermal therapy have also shown great potential in cancer therapy, which exerts a therapeutic effect following irradiation with a near-infrared (NIR) laser. Compared with microenvironment-responsive systems, NIR-responsive systems can achieve remote spatiotemporal control and in-demand drug release. Qian et al. synthesized mesoporous-silica-coated zinc oxide nanoparticles for drug and gene delivery.
phthalocyanine nanoparticles. Zinc phthalocyanine, a photosensitizer, can convert NIR light to visible light, then release reactive singlet oxygen to kill cancer cells. It was demonstrated that the photosensitizers loaded into mesoporous silica were protected from degradation in the biological environment and could continuously produce singlet oxygen with NIR irradiation. Yang and colleagues89 developed mesoporous silica-encapsulated gold nanorods (GNRs@mSiO\textsubscript{2}) as a doxorubicin delivery system as well as a photothermal conversion system. The results showed that the combined treatment had a higher therapeutic efficacy for cancer therapy compared with either chemotherapy or photothermal treatment alone.

3.2.3. Overcoming multidrug resistance

Multidrug resistance (MDR) is a major obstacle in cancer chemotherapy and severely impedes the efficacy of anticancer drugs. Drug resistance at tumor tissues is complicated, and usually involves multiple dynamic mechanisms. MDR can commonly be divided into two categories, pump and non-pump resistance. Pump resistance mainly refers to the expression of drug efflux pumps, such as P-glycoprotein (P-gp) and multidrug resistance protein (MRP1), which expel many anticancer agents to decrease the intracellular drug concentration. The main non-pump resistance refers to the activation of cellular antiapoptotic defense pathway, such as drug-induced expression of B-cell lymphoma-2 (BCL-2) protein, leading to a decrease in drug sensitivity. Moreover, these two resistance mechanisms can mutually interact.

Several design strategies based on the unique properties of MSNs have been utilized to overcome drug resistance. First, nano-scaled MSNs can facilitate cellular uptake, increase intracellular accumulation, and improve drug efficacy. The energy-dependent endocytosis of MSNs can bypass the drug efflux pumps40,90,91. Recently, Shi and co-workers91 confirmed the enhanced cellular uptake and nuclear accumulation of DOX-loaded MSNs in MCF-7/ADR cells, which may have resulted from bypassing the drug efflux mechanism and/or down-regulation of P-gp by MSNs. The IC\textsubscript{50} of Dox-loaded MSNs against MCF-7/ADR cells was 8-fold lower than that of free DOX, which demonstrated that MSNs increased the suppression of cell proliferation by DOX in ADR cells.

Another advantage of MSNs is the ability to co-deliver different agents, such as antitumor drugs and MDR reversal agents. Jia et al.92 fabricated MSNs for co-delivery of paclitaxel (PTX) and tetrandrine (TET) to overcome MDR of MCF-7/ADR cells. As shown in Fig. 5, TET could inhibit the efflux of P-gp to enhance the antitumor effect activity of PTX. Many researchers also used MSNs to deliver chemotherapeutic agents and nucleic acids. Nucleic acids provide the opportunity to silence the genes responsible for drug resistance, such as drug efflux transporter gene P-gp93,94 and antiapoptotic protein gene BCL295, thereby

![Figure 5](image_url)
restoring the intracellular drug concentration required for effective apoptosis and cytotoxicity. In another study94, MSNs were functionalized to effectively deliver anticancer drug DOX as well as P-gp siRNA to MDR cells (KB-V1 cells). It was found the dual delivery system significantly increased the intracellular and intranuclear drug concentrations as compared with free DOX or DOX delivered alone by MSNs.

In addition, MSNs have been designed as stimulus-responsive drug delivery systems to control drug release and increase the accumulation of antitumor agents in nuclei of cancer cells. Wang and coworkers96 prepared sericin-coated MSNs with pH accumulation of antitumor agents in nuclei of cancer cells. drug delivery systems to control drug release and increase the delivered alone by MSNs.

It is currently thought that an ideal nuclear-targeted nanoparticle drug delivery system can effectively overcome MDR. Recently, MSNs were modified with trans-activating transcriptor (TAT) peptide to construct a nuclear-targeted anticancer drug delivery system97–99. This novel TAT peptide-modified MSNs (MSNs-TAT) system facilitated intranuclear localization in multidrug resistant MCF-7/ADR cancer cells and released the drug directly into the nucleoplasm. As illustrated in Fig. 6, the authors also constructed a MSN-based vasculature-membrane-to-nucleus sequential drug delivery strategy exploiting RGD and TAT dual-peptides as targeting ligands99. RGD/TAT peptide-modified MSNs (MSNs-RGD/TAT) first bound to the tumor vasculature and then to the cell membrane. Finally, the TAT served as a nuclear targeting ligand for enhanced nuclear uptake. This sequential targeting system remarkably enhanced the therapeutic efficacy in vivo.

4. Mesoporous silica-based system for gene delivery

Besides conventional drug delivery, mesoporous silica can also be applied as carrier for gene transfection. It is well known that carriers play an important role in gene delivery, since the naked nucleic acids show little penetration of cell membranes100. There are two main gene delivery systems, namely viral and non-viral systems. The more effective viral systems face significant safety concerns, such as immunogenicity, gene recombination101, and nonspecificity102. The non-viral systems, including cationic compounds103, recombinant proteins104 polymeric105,106 and inorganic nanoparticles107, have been widely studied in recent years. However, cationic materials are often associated with high toxicity, and the recombinant proteins show a low cost-performance ratio108. Though liposomes have attracted much attention and can provide efficient gene transfection, their main drawback is instability. Inorganic nanoparticles possess several advantages over the others, such as simple preparation and surface-functionalization, good biocompatibility, and excellent physicochemical stability. Among various materials, MSNs are particular attractive due to their unique properties. Therefore, MSNs are considered to be a promising vehicle for gene delivery to increase the cell uptake and transfection efficiency.

4.1. Gene delivery by positive charge-functionalized MSNs

Untreated MSNs often possess a negative charge due to the ionization of surface silanol groups which reduces binding to negatively charged nucleic acids, such as DNA. Therefore, silica nanoparticles are usually modified to express net positive charges by methods including amination-modification, metal cations co-delivered vector and cationic polymer functionalization. Use of these modified MSNs promotes gene loading by enhanced electrostatic interactions with nucleic acids.

Amination modification is a simple and common attempt to enhance the gene loading capacity of MSNs, 3-aminopropyltriethoxysilane (APTES)109–112 or amino propyl trimethoxysilane (APTMS)113,114 have been commonly used to modify MSNs. Yang et al.111 also analyzed and reported the positive correlation between the adsorption amount of plasmid DNA (pDNA) and amination degree.

Metal cations which can enhance the interactions between DNA and the silica surface have also been used to facilitate MSNs-mediated gene delivery. Solberg and Landry115 investigated the effect of metal counter ions on gene adsorption, and found Mg2+ had a higher affinity with DNA vs. Na+ or Ca2+. However, DNA
seemed to bind less strongly with MSNs through metal cations as compared to the case with the presence of amino group.

Furthermore, cationic polymers, such as polyamidoamine (PAMAM)95,116, polyethyleneimine (PEI)93,117–121, poly-l-lysine (PLL)122,123, and poly-l-arginine124, can bind to and deliver genes with high transfection efficiency. Radu et al.125 successfully employed PAMAM (second generation, G2) dendrimer-capped MSNs to simultaneously deliver Dox and BCL-2 siRNA into multidrug-resistant cancer cells. As shown in Fig. 7, strong florescence was observed in almost every cell after incubation with Dox-loaded and G2 PAMAM-modified MSNs (MSN-Dox-G2) and BCL-2 siRNA together. This indicated BCL-2 siRNA significantly silenced the expression of BCL-2 and MSNs, genes or plasmids were found to primarily be adsorbed on the outer surface of MSNs rather than loaded in the pores, leading to burst leakage of genes. In addition, genes located on the outer surface of MSNs cannot be protected from nucleases or lysosomes. Therefore, nanoparticles with large pores have been synthesized to facilitate the internal gene storage and protection100,142.

The production of MSNs with expanded pores is mainly realized by temperature control115,123,142,143 or pore-enlarging agents100. Kim et al.100 simply synthesized MSNs with ultra-large pores (~23 nm) using the swelling agent 1,3,5-trimethylbenzene (TMB). The resulting MSNs efficiently protected plasmids from nuclease degradation and exhibited higher transfection efficiency compared to MSNs with small pores (2.1 nm). Meka et al.144 fabricated MSNs with large pores (9 nm) using ethanol as co-solvent and fluorocarbon-hydrocarbon as template. After conjugation with hydrophobic octadecyl group, this type of MSN showed high loading capacity and efficient delivery siRNA into cancer cells, leading to inhibition of cancer cell proliferation.

4.2. Gene delivery by pore-enlarged MSNs

To date, MSNs with small pores (< 3 nm)94,116,140,141, such as MCM-41 (pore size about 2–3 nm), have been studied as potential vectors to deliver genes. However, limited by the small pore size of MSNs, genes or plasmids were found to primarily be adsorbed on the outer surface of MSNs rather than loaded in the pores, leading to burst leakage of genes. In addition, genes located on the outer surface of MSNs cannot be protected from nucleases or lysosomes. Therefore, nanoparticles with large pores have been synthesized to facilitate the internal gene storage and protection100,142.

The production of MSNs with expanded pores is mainly realized by temperature control115,123,142,143 or pore-enlarging agents100. Kim et al.100 simply synthesized MSNs with ultra-large pores (~23 nm) using the swelling agent 1,3,5-trimethylbenzene (TMB). The resulting MSNs efficiently protected plasmids from nuclease degradation and exhibited higher transfection efficiency compared to MSNs with small pores (2.1 nm). Meka et al.144 fabricated MSNs with large pores (9 nm) using ethanol as co-solvent and fluorocarbon-hydrocarbon as template. After conjugation with hydrophobic octadecyl group, this type of MSN showed high loading capacity and efficient delivery siRNA into cancer cells, leading to inhibition of cancer cell proliferation.

4.3. Gene delivery by multifunctional MSNs

As briefly mentioned above, nanocarriers provide a great potential for delivering drug-nucleic acid combinations to overcome MDR in cancer treatment145. As such, there is an increasing focus on the development of multifunctional delivery systems based on MSNs and other multiple components, including drugs, genes, specific targeting and imaging agents.

Besides modification with cationic materials to enhance the loading of biomolecules and cell uptake, MSNs have been functionalized with various targeting agents to achieve better applications. Park et al.118 coupled MSNs with mannoseylated polyethylenimine to target macrophage cells with mannose receptors as well as to enhance the plasmid DNA expression. Peptides, like luteinising-hormone releasing hormone (LHRH)146 and SP94138, have been reported to form multifunctional delivery systems. Ashley et al.147 developed a new type of nanocarrier (the “protocell”) based on mesoporous silica particles and liposomes, modified with a targeting peptide (SP94), a fusogenic peptide (HSWYG), and PEG. These nanocarriers can hold multiple cargos like doxorubicin, 5-fluorouracil, cisplatin, and siRNA, forming “cocktails”. This system showed significant advantages in stability, targeting specificity, high delivery efficiency of multicomponents, as well as dosage reduction.
Magnetic nanoparticles have also been widely used to effectively deliver vehicles to target organs or tissues, and even permit magnetic response imaging. PLL functionalized magnetic silica nanospheres with large mesopores (13–24 nm) were synthesized by Gu and co-workers. This platform showed strong adsorption capacity for DNA and efficient cellular delivery capability for miRNA, respectively. Yiu et al. prepared PEI-Fe3O4-MCM-48 particles, which showed 4-fold higher transfection efficiency compared with the commercial reagent Polymag™. Zhang et al. synthesized a multifunctional fluorescent-magnetic polyethyleneimine functionalized platform with mesoporous silica, which satisfied the fluorescent tracking and magnetically guided siRNA delivery simultaneously.

5. Conclusions and perspectives

During the last decade, MSNs have exhibited many attractive features which can be synergistically exploited in the development of drug/gene delivery systems. It has been demonstrated that MSNs can improve the dissolution rate and bioavailability of the water insoluble drugs based on the following features: 1) non-crystalline state of drug entrapped in the mesopores; 2) high dispersibility with large surface area; 3) wettability enhancement by the hydrophilic surface of MSNs. Moreover, several factors can influence the drug release rate from MSNs, including pore size, surface chemistry and hollow structure.

Especially for cancer therapy, MSNs have shown obvious advantages for delivery of chemotherapeutic agents over other nanocarriers, such as excellent drug loading capacity and endocytosis behavior. The external surfaces of MSNs can be further modified with various tumor-recognition molecules and stimuli responsive molecules to enhance the therapeutic effect of anti-tumor agents. Moreover, the energy-independent endocytosis and co-delivery ability of MSNs can overcome the MDR in cancer cells.

As for gene delivery, MSNs possessing large pores have been designed to encapsulate abundant genes and protect genes from nuclease. Through cationic modification, MSNs are able to complex with genes and successfully be transfected into various cells. In addition, multifunctional systems based on MSNs also show great potential in controlled drug/gene delivery.

Despite the recent extensive research into the development of MSN-based carriers for drug/gene delivery, there are critical issues that need to be addressed to facilitate their further development. In particular, the biocompatibility, degradability and pharmacokinetics of these materials should be systematically investigated. The in vivo therapeutic benefits of MSNs-based systems in vivo should be rigorously and extensively demonstrated. The essential information regarding the circulation properties in blood, clearance time in body, possible immunogenicity and accumulation in tissues should be obtained before the clinical translation of MSNs. Given the satisfactory resolution of these issues, MSNs-based formulations may make exciting breakthroughs in the treatment of many important diseases and disorders.

Acknowledgments

The authors appreciate financial support from the National Natural Science Foundation of China (81473155), the Natural Science Fund Project of Guangdong Province (Grant No. 2016A030312013), the Science and Technology Plan Projects of Guangdong Province (Grant No. 2015B020232010), and the Science and Technology Foundation Guangzhou (201707010103).

References

1. Kresse C, Leonowicz ME, Roth WJ, Vartuli JC, Beck JS. Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism. *Nature* 1992; 359:710–2.
2. Li X, Chen Y, Wang M, Ma Y, Xia W, Gu H. A mesoporous silica nanoparticle–PEI–fusogenic peptide system for siRNA delivery in cancer therapy. *Biomaterials* 2013; 34:1391–401.
3. Benezra M, Penate-Medina O, Zanzonico PB, Schaer D, Ow H, Burns A, et al. Multimodal silica nanoparticles are effective cancer-targeted probes in a model of human melanoma. *J Clin Investig* 2011; 121:2768–80.
4. Ow H, Larson DR, Srivastava M, Baird BA, Webb WW, Wiesner U. Bright and stable core-shell fluorescent silica nanoparticles. *Nano Lett* 2005; 5:1137–7.
5. He Q, Shi J, Zhu M, Chen Y, Chen F. The three-stage in vitro degradation behavior of mesoporous silica in simulated body fluid. *Microporous Mesoporous Mater* 2010; 131:314–20.
6. Liu T, Li L, Teng X, Huang X, Liu H, Chen D, et al. Single and repeated dose toxicity of mesoporous hollow silica nanoparticles in intravenously exposed mice. *Biomaterials* 2011; 32:1657–68.
7. Fu C, Liu T, Li L, Liu H, Chen D, Tan F. The absorption, distribution, excretion and toxicity of mesoporous silica nanoparticles in mice following different exposure routes. *Biomaterials* 2013; 34:2565–75.
8. Vallet-Regi M, Ramila A, Del Real R, Perez-Pariente J. A new property of MCM-41: drug delivery system. *Chem Mater* 2001; 13:308–11.
9. Haass DJ. Oral lipid-based formulations. *Adv Drug Deliv Rev* 2007; 59:667–76.
10. Jia Z, Lin P, Xiang Y, Wang X, Wang J, Zhang X, et al. A novel nanomatrix system consisted of colloidal silica and pH-sensitive polymethylacrylate improves the oral bioavailability of fenofibrate. *Eur J Pharm Biopharm* 2011; 79:126–34.
11. Hu Y, Wang J, Zhi Z, Jiang T, Wang S. Facile synthesis of 3D cubic mesoporous silica microspheres with a controllable pore size and their application for improved delivery of a water-insoluble drug. *J Colloid Interface Sci* 2011; 363:410–7.
12. Zhao P, Jiang H, Jiang T, Zhi Z, Wu C, Sun C, et al. Inclusion of celecoxib into fibrous ordered mesoporous carbon for enhanced oral bioavailability and reduced gastric irritancy. *Eur J Pharm Sci* 2012; 45:639–47.
13. Zhang Y, Jiang T, Zhang Q, Wang S. Inclusion of telmisartan in mesocellular foam nanoparticles: drug loading and release property. *Eur J Pharm Biopharm* 2010; 76:17–23.
14. Hong EJ, Choi DG, Shim MS. Targeted and effective photodynamic therapy for cancer using functionalized nanomaterials. *Acta Pharm Sin B* 2016; 6:297–307.
15. Zhang Y, Wang J, Bai X, Jiang T, Zhang Q, Wang S. Mesoporous silica nanoparticles for increasing the oral bioavailability and permeation of poorly water soluble drugs. *Mol Pharm* 2012; 9:505–13.
16. Van Speybroeck M, Mellaerts R, Mols R, Thi TD, Martens IA, Van Humbeck J, et al. Enhanced absorption of the poorly soluble drug fenofibrate by tuning its release rate from ordered mesoporous silica. *Eur J Pharm Sci* 2010; 41:623–30.
17. Kiekens F, Eelen S, Verheyden L, Daems T, Martens J, Van Den Mooter G. Use of ordered mesoporous silica to enhance the oral bioavailability of ezetimibe in dogs. *J Pharm Sci* 2012; 101:1136–44.
18. Sliwinska-Bartkowiak M, Dudziak G, Sikorski R, Gras R, Radhakrishnan R, Gubbins KE. Melting/freezing behavior of a fluid confined
in porous glasses and MCM-41: dielectric spectroscopy and molecular simulation. J Chem Phys 2001;114:930–62.

19 Zhao Q, Wang T, Wang J, Zheng L, Jiang T, Cheng G, et al. Fabrication of mesoporous hydroxy carbonate apatite for oral delivery of poorly water-soluble drug carvediol. J Non Cryst Solids 2012;358:229–35.

20 Hu Y, Zhi Z, Wang T, Jiang T, Wang S. Incorporation of indomethacin nanoparticles into 3-D ordered macroporous silica for enhanced dissolution and reduced gastric irritancy. Eur J Pharm Biopharm 2011;79:544–51.

21 Gignone A, Manna L, Ronchetti S, Banchero M, Onida B. Incorporation of clotorimane in ordered mesoporous silica by supercritical CO₂. Microporous Mesoporous Mater 2014;200:291–6.

22 He Y, Liang S, Long M, Xu H. Mesoporous silica nanoparticles as potential carriers for enhanced drug solubility of paclitaxel. Mater Sci Eng C 2017;78:12–7.

23 Ambriog V, Perioli L, Pagano C, Marmottini F, Ricci M, Sagnella A, et al. Use of SBA-15 for fusoside oral delivery enhancement. Eur J Pharm Biopharm 2012;80:43–8.

24 Xu W, Riikonen J, Lehto VP. Mesoporous systems for poorly soluble drugs. Int J Pharm 2013;453:181–97.

25 Jia L, Shen J, Li Z, Zhang D, Zhang Q, Duan C, et al. Successfully tailoring the pore size of mesoporous silica nanoparticles: exploitation of delivery systems for poorly water-soluble drugs. Int J Pharm 2012;439:81–91.

26 Zhu W, Wan L, Zhang C, Gao Y, Zheng X, Jiang T, et al. Exploitation of 3D face-centered cubic mesoporous silica as a carrier for a poorly water soluble drug: influence of pore size on release rate. Mater Sci Eng C 2014;34:78–85.

27 Ahmadi E, Dehghannejad N, Hashemnikia S, Ghasemnejad M, Tabeobordar H. Synthesis and surface modification of mesoporous silica nanoparticles and its application as carriers for sustained drug delivery. Drug Deliv 2014;21:161–72.

28 Geng H, Zhao Y, Liu J, Cui Y, Wang Y, Zhao Q, et al. Hollow mesoporous silica as a high drug loading carrier for regulation insoluble drug release. Int J Pharm 2016;510:184–94.

29 Chen B, Wang Z, Quan G, Peng X, Pan X, Wang R, et al. In vitro and in vivo evaluation of ordered mesoporous silica as a novel adsorbent in liposoluid formulation. Int J Nanomed 2012;7:199–209.

30 Hu L, Sun H, Zhao Q, Han N, Bai L, Wang Y, et al. Multilayer encapsulated mesoporous silica nanospheres as an oral sustained drug delivery system for the poorly water-soluble drug felodipine. Mater Sci Eng C 2015;47:313–24.

31 Wang Z, Chen B, Quan G, Li F, Wu Q, Dian L, et al. Increasing the oral bioavailability of poorly water-soluble carbamazepine using immediate-release pellets supported on SBA-15 mesoporous silica. Int J Nanomed 2012;7:5807–18.

32 Hu Y, Dong X, Ke L, Zhang S, Zhao D, Chen H, et al. Poly-saccharides/mesoporous silica nanoparticles hybrid composite hydrogel beads for sustained drug delivery. J Mater Sci 2017;52:3095–109.

33 Maeda H, Wu J, Sawa T, Matsumura Y, Hori K. Tumor vascular permeability and the EPR effect in macromolecular therapeutics: a review. J Control Release 2000;65:271–84.

34 Xiao K, Luo J, Fowler WL, Li Y, Lee JS, Xing L, et al. A self-assembling nanoparticle for paclitaxel delivery in ovarian cancer. Biomaterials 2009;30:6006–16.

35 Ren D, Kratz F, Wang SW. Protein nanocapsules containing doxorubicin as a pH-responsive delivery system. Small 2011;7:1051–60.

36 Dicheva BM, ten Hagen TL, Schipper D, Seynehaeve AL, Van Rhoo GC, Eggermont AM, et al. Targeted and heat-triggered doxorubicin delivery to tumors by dual targeted cationic thermosensitive liposomes. J Control Release 2014;195:37–48.

37 Qiu L, Qiao M, Chen Q, Tian C, Long M, Wang M, et al. Enhanced effect of pH-sensitive mixed copolymer micelles for overcoming multidrug resistance of doxorubicin. Biomaterials 2014;35:9877–87.

38 Hak S, Helgesen E, Hektoen HH, Huuse EM, Jarzyna PA, Mulder WJ, et al. The effect of nanoparticle polyethylene glycol surface density on ligand-directed tumor targeting studied in vivo by dual modality imaging. ACS Nano 2012;6:5648–58.

39 Aseta T, Tao Z. Biocompatibility of mesoporous silica nanoparticles. Chem Res Toxicol 2012;25:2265–84.

40 Gao Y, Chen Y, Li X, He X, Yin Q, Zhang Z, et al. Controlled intracellular release of doxorubicin in multidrug-resistant cancer cells by tuning the shell-pore sizes of mesoporous silica nanoparticles. ACS Nano 2011;5:9788–98.

41 Ekkappongpisit M, Giovia A, Follo C, Caputo G, Isidoro C. Biocompatibility, endocytosis, and intracellular trafficking of mesoporous silica and polysyrustene nanoparticles in ovarian cancer cells: effects of size and surface charge groups. Int J Nanomed 2012;7:4147–58.

42 Vivero-Escoto JL, Slowing II, Trewyn BG, Lin VS. Mesoporous silica nanoparticles for intracellular controlled drug delivery. Small 2010;6:1952–67.

43 Hillaireau H, Couvreur P. Nanocarriers’ entry into the cell: relevance to drug delivery. Cell Mol Life Sci 2009;66:2873–96.

44 Li ZX, Barnes JC, Bosoy A, Stoddart JF, Zink J. Mesoporous silica nanoparticles in biomedical applications. Chem Soc Rev 2012;41:2590–605.

45 Yang H, Lou C, Xu M, Wu C, Miyoshi H, Liu Y. Investigation of folate-conjugated fluorescent silica nanoparticles for targeting delivery to folate receptor-positive tumors and their internalization mechanism. Int J Nanomed 2011;6:2023–32.

46 Kim JS, Yoon TJ, Yu KN, Noh MS, Woo M, Kim BG, et al. Cellular uptake of magnetic nanoparticle is mediated through energy-dependent endocytosis in A549 cells. J Vet Sci 2006;7:321–6.

47 Liu Q, Zhang J, Xia W, Gu H. Magnetic field enhanced cell uptake efficiency of magnetic silica mesoporous nanoparticles. Nanoscale 2012;4:3415–21.

48 Lu J, Lioing M, Sherman S, Xia T, Kovochich M, Nel AE, et al. Mesoporous silica nanoparticles for cancer therapy: energy-dependent cellular uptake and delivery of paclitaxel to cancer cells. Nanobio-technology 2007;3:89–95.

49 Chung TH, Wu SH, Yao M, Lu CW, Lin YS, Hung Y, et al. The effect of surface charge on the uptake and biological function of mesoporous silica nanoparticles in 3T3-L1 cells and human mesenchymal stem cells. Biomaterials 2007;28:2959–66.

50 Morelli C, Maris P, Sisci D, Perrotta E, Brunelli E, Perrotta L, et al. PEG-templated mesoporous silica nanoparticles exclusively target cancer cells. Nanoscale 2011;3:3198–207.

51 Slowing I, Trewyn BG, Lin VS. Effect of surface functionalization of MCM-41-type mesoporous silica nanoparticles on the endocytosis by human cancer cells. J Am Chem Soc 2006;128:14792–9.

52 Chen Y, Chen H, Zeng D, Tian Y, Chen F, Feng J, et al. Core/shell structured hollow mesoporous nanocapsules: a potential platform for simultaneous cell imaging and anticancer drug delivery. ACS Nano 2010;4:6001–13.

53 Ma M, Chen H, Chen Y, Wang X, Chen F, Cui X, et al. Au capped magnetic core/mesoporous silica shell nanoparticles for combined photothermo-/chemo-therapy and multimodal imaging. Biomaterials 2012;33:989–98.

54 Chen Y, Chen H, Zhang S, Chen F, Zhang L, Zhang J, et al. Multifunctional mesoporous nanellipsoidis for biological bimodal imaging and magnetically targeted delivery of anticancer drugs. Adv Funct Mater 2011;21:270–8.

55 Lu J, Lioing M, Zink JI, Tamanai F. Mesoporous silica nanoparticles as a delivery system for hydrophobic anticancer drugs. Small 2007;3:1341–6.
Mesoporous silica nanoparticles for drug and gene delivery

56 Slowing II, Trewyn BG, Lin VS. Mesoporous silica nanoparticles for intracellular delivery of membrane-impermeable proteins. J Am Chem Soc 2007; 129:8845–9.

57 Hao N, Li L, Zhang Q, Huax H, Meng X, Zhang Y, et al. The shape effect of PEGylated mesoporous silica nanoparticles on cellular uptake pathway in Hela cells. Microporous Mesoporous Mater 2012;162:14–23.

58 Tao Z, Toms B, Goodman J, Asefa T. Mesoporous silica microparticles enhance the cytotoxicity of anticancer platinum drugs. ACS Nano 2010;4:789–94.

59 Sarkar A, Ghosh S, Chowdhury S, Pandey B, Sil PC. Targeted delivery of quercetin loaded mesoporous silica nanoparticles to the breast cancer cells. Biochim Biophys Acta 2016;1860:2065–75.

60 Lu J, Li Z, Zink JI, Tamamno F. In vivo tumor suppression efficacy of mesoporous silica nanoparticles-based drug-delivery system: enhanced efficacy by folate modification. Nanomedicine 2012;8:212–20.

61 Knеzеviс NŽ, Mranovi J, Borіеviс I, Milеnkоvi S, Janakоvi D, Cunіn F, et al. Hydroxylated fullerene-capped, vinblastine-loaded folic acid-functionalized mesoporous silica nanoparticles for targeted anticancer therapy. RSC Adv 2016;6:7061–5.

62 Prasad R, Aiyer S, Chauhan DS, Srivastava R, Selvaram K. Biорesponsive carbon nano-gated multifunctional mesoporous silica for cancer theranostics. Nanoscale 2016;8:4537–46.

63 Geng H, Chen W, Xu ZP, Qian G, An J, Zhang H. Shape-controlled hollow mesoporous silica nanoparticles with multifunctional capping for in vitro cancer treatment. Chemistry 2017;23:10878–85.

64 Brevet D, Gary-Bobo M, Raehm L, Richeter S, Hocher O, Amro K, et al. Mannose-targeted mesoporous silica nanoparticles for photodynamic therapy. Chem Commun 2009;2009:1475–7.

65 Gary-Bobo M, Mir Y, Rouxel C, Brevet D, Basile I, Maynadier M, et al. Mannose-functionalized mesoporous silica nanoparticles for efficient two-photon photodynamic therapy of solid tumors. Angew Chem Int Ed Engl 2011;50:11425–9.

66 Chen F, Hong H, Zhang Y, Valdivovinas HF, Shi S, Kwon GS, et al. In vivo tumor targeting and image-guided drug delivery with antibody-conjugated, radiolabeled mesoporous silica nanoparticles. ACS Nano 2013;7:9027–39.

67 Dréau D, Moore LJ, Alvarez-Berrios MP, Tarannum M, Mukherjee P, Vivero-Escoto JL. Mucin-1-antibody-conjugated mesoporous silica nanoparticles for selective breast cancer detection in a mucin-1 transgenic murine mouse model. J Biomed Nanotechno 2016;12:2172–84.

68 Niemela E, Desai D, Nkizinkiko Y, Eriksson JE, Rosenholm JM. Sugar-decorated mesoporous silica nanoparticles as delivery vehicles for the poorly soluble drug celestatin enables targeted induction of apoptosis in cancer cells. Eur J Pharm Biopharm 2015;96:11–21.

69 Gary-Bobo M, Mir Y, Rouxel C, Brevet D, Hocine O, Maynadier M, et al. Multifunctionalized mesoporous silica nanoparticles for the in vitro treatment of retinoblastoma: drug delivery, one and two-photon photodynamic therapy. Int J Pharm 2012;432:99–104.

70 Dai L, Li J, Zhang B, Liu J, Luo Z, Cui K. Redox-responsive nanocarrier based on heparin end-capped mesoporous silica nanoparticles for targeted tumor therapy in vitro and in vivo. Langmuir 2014;30:7867–77.

71 Liu Y, Ding X, Li J, Luo Z, Hu Y, Liu J, et al. Enzyme responsive drug delivery system based on mesoporous silica nanoparticles for tumor therapy in vivo. Nanotechnology 2015;26:145102.

72 Ma M, Chen H, Chen Y, Zhang K, Wang X, Cui X, et al. Hyaluronic acid-conjugated mesoporous silica nanoparticles: excellent colloidal dispersity in physiological fluids and targeting efficacy. J Mater Chem 2012;22:5615–21.

73 Wu X, Han Z, Schur RM, Lu Z. Targeted mesoporous silica nanoparticles delivering arsenic trioxide with environment sensitive drug release for effective treatment of triple negative breast cancer. ACS Biomater Sci Eng 2016;2:501–7.
and tetrandrine for overcoming multidrug resistance. Int J Pharm 2015;489:318–30.
93 Meng H, Mai WX, Zhang H, Xue M, Xia T, Lin S, et al. Co-delivery of an optimal drug/siRNA combination using mesoporous silica nanoparticles to overcome drug resistance in breast cancer in vitro and in vivo. ACS Nano 2013;7:994–1005.
94 Meng H, Liang M, Xia T, Li Z, Ji Z, Zink J, et al. Engineered design of mesoporous silica nanoparticles to deliver doxorubicin and p-glycoprotein siRNA to overcome drug resistance in a cancer cell line. ACS Nano 2010;4:4539–50.
95 Chen AM, Zhang M, Wei D, Stueber D, Taratula O, Minko T, et al. Co-delivery of doxorubicin and Bcl-2 siRNA by mesoporous silica nanoparticles enhances the efficacy of chemotherapy in multidrug-resistant cancer cells. Small 2009;5:2673–7.
96 Liu J, Li Q, Zhang J, Huang L, Qi C, Xu L, et al. Safe and effective reversal of cancer multidrug resistance using sercin-coated mesoporous silica nanoparticles for lysosome-targeting delivery in mice. Small 2017;13:1602567.
97 Pan L, Liu J, He Q, Wang L, Shi J. Overcoming multidrug resistance of cancer cells by direct intranuclear drug delivery using TAT-conjugated mesoporous silica nanoparticles. Biomaterials 2013;34:2719–30.
98 Pan L, He Q, Liu J, Chen Y, Ma M, Zhang L, et al. Nuclear-targeted drug delivery of TAT peptide-conjugated monodisperse mesoporous silica nanoparticles. J Am Chem Soc 2012;134:5722–5.
99 Pan L, Liu J, He Q, Shi J. MSN-mediated sequential vascular-to-cell nuclear-targeted drug delivery for efficient tumor regression. Adv Mater 2014;26:6742–8.
100 Kim MH, Na HK, Kim YK, Ryoo SR, Cho HS, Lee KE, et al. Facile synthesis of monodisperse mesoporous silica nanoparticles with ultralarge pores and their application in gene delivery. ACS Nano 2011;5:3568–76.
101 Thomas CE, Ehrhardt A, Kay MA. Progress and problems with the use of viral vectors for gene therapy. Nat Rev Genet 2003;4:346–58.
102 Marshall E. Viral vectors still pack surprises. Science 2001;294:1640.
103 De Smedt SC, Demeester J, Hennink WE. Cationic polymer based gene delivery systems. Pharm Res 2000;17:113–26.
104 Aris A, Villaverde A. Modular protein engineering for non-viral gene therapy. Trends Biotechnol 2004;22:371–7.
105 Panyam J, Labhasetwar V. Biodegradable nanoparticles for drug and gene delivery to cells and tissue. Adv Drug Deliv Rev 2012;64:61–71.
106 Zhang M, Kim YK, Cui P, Zhang J, Qiao J, He Y, et al. Folate-conjugated polylsine for lung cancer-targeted gene therapy. Acta Pharm Sin B 2016;6:336–43.
107 Zhan XQ, Chen M, Lam R, Xu X, Osawa E, Ho D. Polymer-functionalized nanodiamond platforms as vehicles for gene delivery. ACS Nano 2009;3:2609–16.
108 Lv H, Zhang S, Wang B, Cui S, Yan J. Toxicity of cationic lipids and cationic polymers in gene delivery. J Control Release 2006;114:100–9.
109 Tao C, Zhu Y, Xu Y, Zhu M, Morita H, Hanagata N. Mesoporous silica nanoparticles for enhancing the delivery efficiency of immunostimulatory DNA drugs. Dalton Trans 2014;43:5142–50.
110 Kim TH, Kim M, Eltham M, Yun YR, Jang JH, Kim HW. Efficacy of mesoporous silica nanoparticles in delivering BMP-2 plasmid DNA for in vitro osteogenic stimulation of mesenchymal stem cells. J Biomed Mater Res A 2013;101A:1651–60.
111 Yang H, Zheng K, Zhang Z, Shi W, Jing S, Wang L, et al. Adsorption and protection of plasmid DNA on mesoporous silica nanoparticles modified with various amounts of organosilane. J Colloid Interface Sci 2012;369:317–22.
112 Zheng K, Yang H, Wang L, Jing S, Huang H, Xu J, et al. Amino-functionalized mesoporous silica nanoparticles: adsorption and protection for pDNA3.1(+)-PKB-HA. J Porous Mater 2013;20:1003–8.
113 Ganguly A, Ganguli AK. Anisotropic silica mesostructures for DNA encapsulation. Bull Mater Sci 2013;36:329–32.
134 Qin F, Zhou Y, Shi J, Zhang YA. DNA transporter based on mesoporous silica nanospheres mediated with polycation poly(allylamine hydrochloride) coating on mesopore surface. *J Biomed Mater Res A* 2009;90A:333–8.

135 Zhang Y, Wang Z, Zhou W, Min G, Lang M. Cationic poly(ɛ-caprolactone) surface functionalized mesoporous silica nanoparticles and their application in drug delivery. *Appl Surf Sci* 2013;276:769–75.

136 Bhattarai SR, Muthuswamy E, Wani A, Brichacek M, Castañeda AL, Brock SL, et al. Enhanced gene and siRNA delivery by polycation-modified mesoporous silica nanoparticles loaded with chloroquine. *Pharm Res* 2010;27:2556–68.

137 Brevet D, Hocine O, Delalande A, Raehm L, Charness C, Midoux P, et al. Improved gene transfer with histidine-functionalized mesoporous silica nanoparticles. *Int J Pharm* 2014;471:197–205.

138 Ashley CE, Carnes EC, Epler KE, Padilla DP, Phillips GK, Castillo RE, et al. Delivery of small interfering RNA by peptide-targeted mesoporous silica nanoparticle-supported lipid bilayers. *ACS Nano* 2012;6:2174–88.

139 Dengler EC, Liu J, Kerwin A, Torres S, Olcott CM, Bowman BN, et al. Mesoporous silica-supported lipid bilayers (protocells) for DNA cargo delivery to the spinal cord. *J Control Release* 2013;168:209–24.

140 Li LL, Yin Q, Cheng J, Lu Y. Polyvalent mesoporous silica nanoparticle-aptamer bioconjugates target breast cancer cells. *Adv Healthc Mater* 2012;1:567–72.

141 Hom C, Lu J, Lüong M, Luo H, Li Z, Zink JI, et al. Mesoporous silica nanoparticles facilitate delivery of siRNA to shutdown signaling pathways in mammalian cells. *Small* 2010;6:1185–90.

142 Gao F, Botella P, Correa A, Blesa J, Dong L. Monodispersed mesoporous silica nanoparticles with very large pores for enhanced adsorption and release of DNA. *J Phys Chem B* 2009;113:1796–804.

143 Mou CY, Lin HP. Control of morphology in synthesizing mesoporous silica. *Pure Appl Chem* 2000;72:137–46.

144 Meka AK, Niu Y, Karmakar S, Hartono SB, Zhang J, Lin CX, et al. Facile synthesis of large-pore bicontinuous cubic mesoporous silica nanoparticles for intracellular gene delivery. *Chemnanomat* 2016;2:220–5.

145 Li J, Wang Y, Zhu Y, Oupický D. Recent advances in delivery of drug–nucleic acid combinations for cancer treatment. *J Control Release* 2013;172:589–600.

146 Taratula O, Garbuzenko OB, Chen AM, Minko T. Innovative strategy for treatment of lung cancer: targeted nanotechnology-based inhalation co-delivery of anticancer drugs and siRNA. *J Drug Target* 2011;19:900–14.

147 Ashley CE, Carnes EC, Phillips GK, Padilla D, Durfee PN, Brown PA, et al. The targeted delivery of multicomponent cargos to cancer cells by nanoporous particle-supported lipid bilayers. *Nat Mater* 2011;10:389–97.

148 Zhang J, Sun W, Bergman L, Rosenholm JM, Lindén M, Wu G, et al. Magnetic mesoporous silica nanospheres as DNA/drug carrier. *Mater Lett* 2012;67:579–82.

149 Yiu HH, McBain SC, Lethbridge ZA, Lees MR, Dobson J. Preparation and characterization of polyethylenimine-coated Fe3O4-MCM-48 nanocomposite particles as a novel agent for magnet-assisted transfection. *J Biomed Mater Res A* 2010;92A:386–92.