Member species of the Anopheles gambiae complex can be misidentified as Anopheles leesoni

Yael Dahan-Moss¹²*, Allison Hendershot³, Minishca Dhoogra¹², Henry Julius¹, Jacek Zawada¹², Maria Kaiser¹², Neil F. Lobo³, Basil D. Brooke¹² and Lizette L. Koekemoer¹²

Abstract

Background: Accurate Anopheles species identification is key for effective malaria vector control. Identification primarily depends on morphological analysis of field samples as well as molecular species-specific identifications. During an intra-laboratory assessment (proficiency testing) of the Anopheles funestus group multiplex PCR assay, it was noted that Anopheles arabiensis can be misidentified as Anopheles leesoni, a zoophilic member of the An. funestus group. The aim of this project was, therefore, to ascertain whether other members of the Anopheles gambiae complex can also be misidentified as An. leesoni when using the standard An. funestus multiplex PCR.

Methods: The An. funestus multiplex PCR was used to amplify DNA from An. gambiae complex specimens. These included specimens from the laboratory colonies and field samples from the Democratic Republic of Congo. Amplified DNA from these specimens, using the universal (UV) and An. leesoni species-specific primers (LEES), were sequence analysed. Additionally, An. leesoni DNA was processed through the diagnostic An. gambiae multiplex PCR to determine if this species can be misidentified as a member of the An. gambiae complex.

Results: Laboratory-colonized as well as field-collected samples of An. arabiensis, An. gambiae, Anopheles merus, Anopheles quadriannulatus, Anopheles coluzzii as well as Anopheles moucheti produced an amplicon of similar size to that of An. leesoni when using an An. funestus multiplex PCR. Sequence analysis confirmed that the UV and LEES primers amplify a segment of the ITS2 region of members of the An. gambiae complex and An. moucheti. The reverse was not true, i.e. the An. gambiae multiplex PCR does not amplify DNA from An. leesoni.

Conclusion: This investigation shows that An. arabiensis, An. gambiae, An. merus, An. quadriannulatus, An. coluzzii and An. moucheti can be misidentified as An. leesoni when using An. funestus multiplex PCR. This shows the importance of identifying specimens using standard morphological dichotomous keys as far as possible prior to the use of appropriate PCR-based identification methods. Should there be doubt concerning field-collected specimens molecularly identified as An. leesoni, the An. gambiae multiplex PCR and sequencing of the internal transcribed spacer 2 (ITS2) can be used to eliminate false identifications.

Keywords: Species identification, Anopheles leesoni, Anopheles gambiae multiplex PCR, An. funestus multiplex PCR, Morphology, Dichotomous keys

Background

Malaria is a major vector borne disease that is most prevalent in sub-Saharan Africa. There were approximately 213 million cases and 380,000 malaria-related deaths in
this region in 2018, accounting for 93% of cases and 94% of deaths from malaria reported globally [1].

A key component of malaria control is suppression of Anopheles mosquito vectors.

The primary methods used for malaria vector control are indoor residual spraying (IRS) of formulated insecticides, insecticide-treated nets (ITN) and larval source management (LSM) [2]. These can be incorporated into broader, tailored strategies within an integrated vector management (IVM) framework [3]. Other initiatives under development include attractive toxic sugar baits (ATSB), spatial repellents, housing improvements, endectocide use and genetic approaches [4–8].

The major malaria vector mosquito species in Africa are Anopheles gambiae, Anopheles arabiensis and Anopheles coluzzii of the An. gambiae species complex, and Anopheles funestus of the An. funestus species group [9–12]. In addition to these, other species within these taxa—including Anopheles merus of the An. gambiae complex, and Anopheles rivulorum, Anopheles paresis, Anopheles vaneedeni and Anopheles leesoni of the An. funestus group—have been implicated as secondary malaria vectors at various African localities [11, 13–23] to mention but a few. Importantly, primary and secondary vector species often occur in sympathy in varying combinations depending on locality [11], different species may display different behaviours, such as indoor or outdoor feeding and resting [21, 24], and may vary in their susceptibilities to insecticide [19, 25–27]. It is, therefore, necessary to identify the entomological drivers of localized malaria transmission by using tailored vector surveillance strategies. These include judicious use of sampling techniques followed by species identifications, vector incrimination (sporozoite detection) and insecticide susceptibility assessments of these populations. The information generated in this way provides the necessary baseline data needed to guide control interventions that target incriminated vector populations based on their specific traits, such as their resting and feeding preferences (indoor vs. outdoor), their preferred breeding sites (perennial vs. temporary) and their insecticide susceptibilities. The same surveillance techniques can also be used to assess the effectiveness of interventions post implementation.

The accurate identification of malaria vector species is, therefore, central to the application of successful vector control interventions, primarily by ensuring the efficient and effective use of limited resources available to vector control programmes. Misidentification of Anopheles species can lead to misapplication of vector control interventions [28–30]. An example comes from Zimbabwe in the early 1970s, when An. quadriannulatus, a non-vector member of the An. gambiae complex, could not easily be distinguished from the vector An. arabiensis. Insecticide susceptibility tests on mixed samples of An. quadriannulatus and An. arabiensis suggested susceptibility to the insecticide dieldrin [28, 29]. What was not however evident at the time was that the samples that succumbed to dieldrin exposure were An. quadriannulatus, while the few survivors were An. arabiensis, implying resistance in the vector population. The use of dieldrin for indoor residual spraying did not therefore achieve the desired effect on malaria transmission, and the insecticide regimen was subsequently changed once accurate species identifications were used to differentiate between resistance in the An. arabiensis vector population and susceptibility in the An. quadriannulatus non-vector population [28, 29].

Identification to species of field-collected mosquito specimens depends on the use of external morphological characters followed by molecular methods where indicated [9, 10, 31]. This is especially pertinent for members of the An. gambiae complex and An. funestus group whose member species vary significantly in their behavioural traits and vector competencies. The subsequent use of diagnostic molecular procedures to identify specimens to species is required because of morphological similarities between members within each taxon [32, 33].

Morphological identification of mosquitoes can be done at district level and is not reliant on expensive molecular equipment. Subsequent molecular analysis to identify indicated specimens to species (using multiplex PCR assays) is generally conducted at established laboratories at the national level or within research institutes with sufficient capacity [34–36]. These species-specific assays are an important diagnostic tool and are regularly used in laboratories for research and routine vector surveillance [34–36]. Molecular sequencing of target genes has been used for Anopheles species identifications [21, 37–41]. Laboratory infrastructure and cost, however, preclude this method from being routinely used in support of vector surveillance.

Regardless of the method used for molecular species identification, quality assurance (QA) of the data produced is critical. This is because the pertinence and relevance of all follow-on associative analyses (vector incrimination/sporozoite detection, insecticide susceptibility assessments, associated behaviours) is dependent on accurate species identification. An essential requirement of QA is regular proficiency testing of laboratory staff to monitor their competency in the application of diagnostic assays [42, 43]. A recent proficiency assessment exercise conducted at the Vector Control Reference Laboratory of the National Institute for Communicable Diseases (NICD) in Johannesburg was based on an intra-laboratory comparison using the An. funestus multiplex
An. leesoni by morphological and PCR species identification. This sample was verified as from a field sample from Limpopo Province, South Africa, in December 2016. The positive control was obtained from the Institute for Communicable Diseases in Johannesburg housed in the Botha De Meillon insectary at the National Institute for Communicable Diseases in Johannesburg. Five COGS, MAFUS, and SANGWE colonies respectively (An. merus, An. funestus, and An. quadriannulatus) were used. The An. leesoni positive control was obtained from the positive control (PCR master mix without DNA template); “extraction kit” negative controls (PCR master mix with extraction mix performed without mosquito sample), and extracted DNA from An. arabiensis, An. gambiae, An. merus, and An. quadriannulatus specimens.

Several variations of the An. funestus multiplex PCR were performed during this investigation: (1) Standard An. funestus multiplex PCR with the annealing temperature set at 45 °C as per the protocol by Koekemoer et al. [35] and Cohuet et al. [36] or with the exception of the annealing temperature set at 50 °C; (2) Standard An. funestus multiplex PCR with the exception of the LEES primer being omitted from the PCR reaction, and with the annealing temperature set at 45 °C or 50 °C. The different variations of the An. funestus multiplex PCR were used to test whether a non-specific PCR amplicon is produced while using the DNA of An. gambiae complex specimens in the PCR. Subsequently, the An. funestus multiplex PCRs with or without only the LEES reverse primer were used to establish whether this primer is responsible for amplification of DNA from An. gambiae complex specimens in the PCR. Different annealing temperatures were used in the PCRs to determine whether the annealing temperature reduces non-specific amplification of DNA from the An. gambiae complex when performing an An. funestus multiplex PCR.

Methods

In silico sequence analysis of Anopheles funestus multiplex PCR primers and Anopheles gambiae complex species internal transcribed spacer 2 (ITS2) region

The sequences of primers used in the An. funestus multiplex PCR [35, 36] were compared with ITS2 sequences from the An. gambiae complex species to identify sequence similarities. Nucleotide Basic Local Alignment Search Tool (BLAST) (https://blast.ncbi.nlm.nih.gov/Blast.cgi) and Emboss Needle pairwise sequence alignment tool (https://www.ebi.ac.uk/Tools/psa/emboss_needle/nucleotide.html) were used.

Laboratory-reared Anopheles gambiae complex species samples

Specimens of An. funestus, An. arabiensis, An. gambiae, An. merus, and An. quadriannulatus (FUMOZ, KGB, COGS, MAFUS, and SANGWE colonies respectively) housed in the Botha De Meillon insectary at the National Institute for Communicable Diseases in Johannesburg were used. The An. leesoni positive control was obtained from a field sample from Limpopo Province, South Africa, in December 2016. This sample was verified as An. leesoni by morphological and PCR species identification as well as ITS2 sequence analysis.

PCR

DNA extraction: DNA was extracted from the An. funestus, An. leesoni, An. arabiensis, An. gambiae, An. merus, and An. quadriannulatus specimens using prepGEM Insect DNA extraction kit (ZyGEM, PIN0020).

Anopheles funestus multiplex PCR: Each PCR reaction contained extracted DNA from An. funestus and An. leesoni positive controls; a “no DNA template” negative control (PCR master mix without DNA template); and the ITS2 sequences of the An. gambiae complex.

Sequencing analysis

The An. leesoni sized amplicons produced by the UV and LEES primers were purified and sequenced through Macrogen (http://www.macrogen.com). Subsequently, the chromatograms of the sequences were manually edited using BioEdit version 7.2.5 [44] and analysed using the BLAST tool (https://blast.ncbi.nlm.nih.gov/Blast.cgi) to determine sequence identity between the PCR products and the ITS2 sequences of the An. gambiae complex.
Field sample investigations

Morphological identification was conducted on all field samples, which were (mis)identified as belonging to the An. funestus group. Species identification was performed on a subset of field samples (n = 28) molecularly identified as An. leesoni using the An. funestus multiplex PCR [35]. The ITS2 PCR and mDNA cytochrome oxidase I (COI) loci [35, 37] PCR followed by sequencing of the PCR amplicons was used for these species identifications. The resulting sequences were analysed using nBLAST (https://blast.ncbi.nlm.nih.gov/Blast.cgi). In addition, these samples were also amplified using conventional PCR methods for the identification of mosquitoes in the An. gambiae complex [34, 45] and An. moucheti complex by multiplex PCR assays [46], to rule out the possibility of morphological misidentification at the start.

PCR using the UV and LEES primers of the field samples was performed. Anopheles gambiae complex specimens used as controls in the PCR were An. gambiae sensu stricto (KISUMU colony), An. coluzzii (AKRON colony), An. gambiae/coluzzii hybrid (ASEMBO colony), An. arabiensis (KGB colony) as well as An. funestus (s.s.) (FUMOZ colony). Sequencing analysis was performed on the resultant PCR amplicons of the field samples.

Results

Intra-laboratory proficiency assessment of the An. funestus multiplex PCR assay revealed that An. arabiensis DNA amplifies a ~150 bp fragment and can therefore be incorrectly identified as An. leesoni, which amplifies a fragment of similar size [35]. In silico analyses of the primer sequence similarity revealed a 100% sequence identity of UV to the 3′ region of the 5.8S region flanking the ITS2 region of members of the An. gambiae complex (Table 1) as can be expected from this highly conserved region [35]. The species-specific reverse primers shared a variable degree of identity with the An. gambiae complex (Table 1). The LEES reverse primer had a 77% sequence identity with the ITS2 region of An. arabiensis. It was also the only primer which showed over 50% sequence identity with the ITS2 region of other members of the An. gambiae complex in the location 120 to 153 bp downstream of the UV primer binding site, therefore producing an amplicon size diagnostic for An. leesoni. Additionally, the LEES primer had the highest number of consecutive bases (7) at the 3′ end that directly bound with the ITS2 region of the An. gambiae complex member species (Table 1).

The An. funestus multiplex PCR assay was subsequently evaluated on other members of the An. gambiae complex, and all species tested produced An. leesoni diagnostic PCR product (~ 150 bp, Table 2). The exclusion of LEES primer resulted in no amplification (Table 2) regardless of An. gambiae complex species or annealing temperature analysed.

Amplification of DNA from members of the An. gambiae complex using only the UV and LEES primers and the An. funestus PCR protocol yielded a ~150 bp PCR product from all species (Fig. 1; Table 2). Sequence analysis of these PCR amplicons using the UV and LEES primers revealed that there was 99–100% sequence identity between the amplicons and the ITS2 region of An. gambiae complex species. Furthermore, sequencing of the PCR amplicons, using UV as the sequencing

Table 1 Sequence analysis between An. funestus multiplex PCR primers and the ITS2 region of member species of the An. gambiae complex

An. funestus multiplex PCR primers	An. arabiensis ITS2* sequence	An. gambiae ITS2* sequence	An. merus ITS2* sequence	An. quadriannulatus* ITS2 sequence		
	% Identity with primer	Number of consecutive bases at 3′ end of primer that binds with sequence	% Identity with primer	Number of consecutive bases at 3′ end of primer that binds with sequence	% Identity with primer	Number of consecutive bases at 3′ end of primer that binds with sequence
UV	100	19	100	19	100	19
FUN	63	3	63	3	63	3
VAN	57	3	57	3	57	3
RIV	34	2	63	1	40	0
PAR	64	4	64	4	64	4
RIVLIKE	65	0	65	0	65	2
LEES	77	7	53	7	53	7

*The ITS2 sequences of the An. gambiae complex species are: An. arabiensis ITS2 sequence (KT160245.1, GenBank); An. gambiae ITS2 sequence (KT120234.1, GenBank); An. merus ITS2 sequence (GQ870313.1, GenBank) and An. quadriannulatus ITS2 sequence (JN994146.1, GenBank)
primer, revealed that the LEES primer sequence was incorporated into the PCR amplicon sequence. This confirms that the LEES and UV primers are responsible for the 150 bp fragment when An. funestus PCR is used to amplify the ITS2 of An. gambiae complex species, which leads to their misidentification as An. leesoni.

Field sample data
A large number of field-collected samples from the Democratic Republic of the Congo were morphologically identified as An. funestus group and subsequently molecularly identified as An. leesoni. The ITS2 and COI regions were amplified by PCR and sequenced, showing

Samples used for An. funestus multiplex PCR	~ 150 bp amplicon produced via An. funestus multiplex PCR	~ 150 bp amplicon produced by An. funestus multiplex PCR without LEES primer	~ 150 bp amplicon produced by An. funestus multiplex PCR with UV and LEES primers only
An. funestus	No—an amplicon of 500 bp was produced, which corresponds to the An. funestus amplicon	No—an amplicon of 500 bp was produced, which corresponds to the An. funestus amplicon	No
An. leesoni	Yes	No	Yes
No template negative control	No	No	No
Extraction kit negative control	No	No	No
An. arabiensis	Yes	No	Yes
An. gambiae	Yes	No	Yes
An. merus	Yes	No	Yes
An. quadriannulatus	Yes	No	Yes

Fig. 1 An amplicon of ~ 150 bp (black arrow on the right) was produced when the UV and LEES primers amplified DNA from member species of the Anopheles gambiae complex. An additional amplicon of around 500 bp was present in the An. quadriannulatus sample. This is most likely due to non-specific binding of the LEES primer to the ITS2 region of An. quadriannulatus. The PCR was performed, with annealing temperature set at 45 °C (lanes 2 to 9) or 50 °C (Lanes 10 to 17).
that a subset of these samples were \textit{An. gambiae} s.s. (n = 13) and \textit{An. moucheti} (n = 12). Those identified as \textit{An. gambiae} s.s. through sequencing were further confirmed by \textit{An. gambiae} complex PCR [34, 45]. The samples identified as \textit{An. moucheti} through sequencing were further confirmed by \textit{An. moucheti} multiplex PCR assay [46]. PCR amplification of these samples using the UV and LEES primers produced an \textit{An. leesoni} sized amplicon between 100 and 200 bp. Additionally, \textit{An. gambiae} complex specimens that were used as controls in the PCR—\textit{An. gambiae} s.s., \textit{An. coluzzii}, \textit{An. gambiae}/\textit{coluzzii} hybrid and \textit{An. arabiensis}—also produced similar-sized fragments (Fig. 2). Sequencing of the field samples using the UV and LEES primers in the PCR confirmed that the LEES primer fragment was incorporated in the sequences of the PCR amplicons.

Anopheles gambiae multiplex PCR does not amplify DNA from **Anopheles leesoni**

It has been demonstrated that \textit{An. gambiae} complex member species can be misidentified as \textit{An. leesoni} by PCR. In contrast, the \textit{An. gambiae} multiplex PCR does not amplify DNA from \textit{An. leesoni} and cannot therefore misidentify this species as a member of the \textit{An. gambiae} complex.

Discussion

The importance of correct identification of \textit{Anopheles} species in malaria vector control programmes is critical in terms of choice of control intervention and insecticide product. Accurate species identification enables assessments of vector competence, insecticide susceptibilities and important behavioural characteristics (such as feeding and resting behaviours) by species, leading to the design of coherent insecticide-based control strategies that can be enhanced by additional methodologies for malaria elimination. These data indicate that if members of the \textit{An. gambiae} complex (\textit{An. arabiensis}, \textit{An. gambiae}, \textit{An. coluzzii}, \textit{An. merus} and \textit{An. quadriannulatus}) as well as \textit{An. moucheti} are morphologically incorrectly identified as \textit{An. funestus} group, they can be falsely identified as \textit{An. leesoni} when using an \textit{An. funestus} multiplex PCR.

![Fig. 2](image.png) An amplicon of ~150 bp (black arrow on the right) was produced when UV and LEES primers amplified DNA from laboratory-reared \textit{An. gambiae} s.s., \textit{An. arabiensis}, \textit{An. coluzzii}, \textit{An. gambiae}/\textit{An. coluzzii} hybrid and as well as \textit{An. gambiae} s.s. field samples.
This is due to high primer (specifically UV and LEES) sequence identity between the two species groups. The UV primer showed a 100% sequence identity to the ITS2 region of the *An. gambiae* complex. This is not surprising, since the UV primer is in the conserved region of the 5.8S ribosomal RNA gene [35]. The LEES primer sequence identity with the *An. gambiae* complex ITS2 region ranged between 53% and 77%. The likely reason for the amplification of *An. gambiae* complex DNA using the LEES primer is due to the seven consecutive bases at its 3’end. These bases specifically bind to the ITS2 region of the *An. gambiae* complex. In a PCR reaction, this leads to the incorporation of the LEES primer 120 bp downstream of the UV primer binding region to produce an amplicon of the *An. gambiae* complex species ITS2, which had the LEES primer binding region in its sequence as was evidenced by the sequencing data. This is also true for *An. moucheti*. This scenario is expected to be the case in other species of the *An. gambiae* complex, such as *An. coluzzii*, *Anopheles bwambae* and *Anopheles amharicus*, because the same 7 bases of the LEES primer bind to the ITS2 regions of these species (GenBank Accession numbers: KT160244.1; GQ870320.1 and GQ870316.1). Indeed, an *An. coluzzii* sample that was used as a control in the PCR (using the UV and LEES primers), for the field samples analysis, produced a positive *An. leesoni* sized amplicon band. The fact that *An. gambiae* complex species can be misidentified as *An. leesoni* supports a recent publication by Erlank et al. [33], which demonstrated that *Anopheles rufipes* and *Anopheles rhodesiensis* can misleadingly be identified as *An. leesoni* with the use of *An. funestus* multiplex PCR.

Different *Anopheles* species vary in their malaria vectorial capacities as well as in their feeding and resting habits [11, 47]. They may also have different insecticide susceptibility profiles and, therefore, their correct identification to species is vital for the implementation of an efficient vector control strategy based on accurate vector incrimination and appropriate use of insecticides. Members of the *An. gambiae* complex and *An. funestus* group are often found in sympatry [11, 47, 48]. It is, therefore, likely that the collection of field samples could contain a mix of species, making accurate identification to species essential.

These data also raise concerns over previously published records of vector incrimination of species identified as *An. leesoni* by *An. funestus* multiplex PCR alone, which was common practice at the time [14]. This stresses the importance to confirm species identity through ITS2 and/or COI sequencing to prevent misinterpretation of data.

There are several steps necessary to minimize the misidentification of species from the *An. gambiae* complex as *An. leesoni*. The first step, which is also highlighted by Erlank et al. [33], is to accurately identify the samples morphologically. However, morphological species identification is largely dependent on the condition of the sample—field-collected samples may be damaged—as well as the skill of personnel involved, the equipment they have and their workload. In the event that a field sample is suspected to be *An. leesoni* via the *An. funestus* multiplex PCR, but the morphological identification is not certain, it is advisable to use *An. gambiae* multiplex PCR on the DNA of the sample. The results from this study indicate that DNA from a true *An. leesoni* sample does not amplify using the *An. gambiae* multiplex PCR, eliminating any uncertainty regarding the identity of the field sample. Additionally, should a suspected *An. leesoni* female test positive for *P. falciparum* sporozoites by ELISA [49] and/or PCR [50, 51], it is necessary to perform an ITS2 and/or COI sequence confirmation of the mosquito sample so as to eliminate any ambiguity regarding vector status [21, 35, 37].

Conclusions

Member species of the *An. gambiae* complex can be misidentified as *An. leesoni* when analysed using the *An. funestus* group multiplex PCR. This is best avoided by accurate morphological identification prior to PCR assessments and can also be resolved by further analysing samples using the *An. gambiae* multiplex PCR where sequencing technology is not available. Lastly, it is important for the reference laboratory performing species identifications to periodically conduct quality control assessments and proficiency testing of laboratory personnel. Sequence analysis should be performed to confirm the species identity in cases of conflicting results. This ensures that the correct species identifications are reported to malaria vector control programmes.

Abbreviations

ATSB: Attractive toxic sugar baits; BLAST: Basic Local Alignment Search Tool; COI: Cytochrome oxidase I; ELISA: Enzyme-linked immunosorbent assay; FUN: *An. funestus* species-specific reverse primer; IRS: Indoor residual spraying; ITN: Insecticidal treated nets; ITS2: Internal transcribed spacer 2; LEES: *An. leesoni* species-specific reverse primer; LSM: Larval source management; NICD: National Institute for Communicable Diseases; PAR: *An. panensis* species-specific reverse primer; PCR: Polymerase chain reaction; QA: Quality assurance; RIV: *An. rivulorum* species-specific reverse primer; RIVLIKE: *An. rivulorum*-like species specific reverse primer; UV: Universal forward primer; VAM: *An. vaneedeni* species-specific reverse primer; WHO: World Health Organization.

Acknowledgements

The U.S. President’s Malaria Initiative and the Institut National de Recherche Biomedical are thanked for their support in the collection of the DRC specimens. Elodie Ekoka is thanked for her participation in the proficiency testing. Prof. Maureen Coetzee is thanked for her advice regarding the manuscript.
Authors’ contributions

YDM carried out the study design, molecular experiments and analysed the data and contributed to drafting the final manuscript. AH carried out molecular experiments and analysed the data. HJ, JZ and MK were involved in the proficiency testing done at the laboratory. NL contributed the study design and drafting the final manuscript. BB and LK contributed to the study design and drafting the final manuscript. All authors read and approved the final manuscript.

Funding

This work was supported by the National Institute for Communicable Diseases (Grant number: 90932), DST/NRF South African Research Chairs Initiative (Grant number: 64763), and a Pilot Project Grant from the Eck Institute for Global Health, University of Notre Dame, IN.

Availability of data and materials

The datasets used and/or analysed during the current study are available from the corresponding author on reasonable request.

Ethics approval and consent to participate

The research represented in this article did not require clearance from the Human research Ethics Committee. Waiver no: AREC-101210-002.

Consent for publication

Not applicable.

Competing interests

The authors declare that they have no competing interests.

Author details

1 Centre for Emerging Zoonotic and Parasitic Diseases, National Institute for Communicable Diseases of the National Health Laboratory Service, Johannesburg, South Africa. 2 Wits Research Institute for Malaria, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa. 3 Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN, USA.

Received: 26 July 2019 Accepted: 17 February 2020

Published online: 24 February 2020

References

1. WHO. World malaria report 2019. Geneva: World Health Organization; 2019. https://www.who.int/publications-detail/world-malaria-repor-t-2019. Accessed Dec 2019.

2. WHO. Global Vector Control Response. Geneva: World Health Organization; 2017. https://www.who.int/vector-control/publications/global-contr-ol-response/en/. Accessed Mar 2019.

3. WHO. Handbook for integrated vector management. Geneva: World Health Organization; 2012. https://www.who.int/neglected_diseases/vector_ecology/resources/9789241502801/en/. Accessed Mar 2019.

4. Norris EJ, Coats JR. Current and future repellent technologies: the potential of spatial repellents and their place in mosquito-borne disease control. Int J Environ Res Public Health. 2017;14:124.

5. Marshall JM, White MT, Ghanie AC, Schlein Y, Muller GC, Beier JC. Quantifying the mosquito’s sweet tooth: modelling the effectiveness of attractive toxic sugar baits (ATSB) for malaria vector control. Malar J. 2013;12:291.

6. Lustig JS, Ippolito MM, Willey BA, Kleinschmidt I, Dorsey G, Gosling RD, et al. The evidence for improving housing to reduce malaria: a systematic review and meta-analysis. Malar J. 2015;14:209.

7. James S, Collins FH, Wikelhoff PA, Emerson C, Godfrey HCJ, Gottlieb M, et al. Pathway to deployment of gene drive mosquitoes as a potential biological control tool for elimination of malaria in sub-Saharan Africa: recommendations of a scientific working group. Am J Trop Med Hyg. 2018;98(Suppl 6):1–49.

8. Burrows J, Slater H, Macintyre F, Rees S, Thomas A, Okumu F, et al. A discovery and development roadmap for new endectocidal transmission-blocking agents in malaria. Malar J. 2018;17:462.

9. Gillies MT, De Meillon B. The Anophelineae of Africa south of the Sahara, vol. 54. Johannesburg: Publications of the South African Institute for Medical Research; 1968.

10. Gillies MT, Coetzee M. A supplement to the Anophelineae of Africa south of the Sahara, vol. 55. Johannesburg: Publications of the South African Institute for Medical Research; 1987.

11. Sinka ME, Bangs MJ, Manguin S, Rubio-Palis Y, Chareonviriyaphap T, Coetzee M, et al. A global map of dominant malaria vectors. Parasit Vectors. 2012;5:69.

12. Akogbéto MC, Salako AS, Dagnon F, Aïkpon R, Kotielo M, Sovi A, et al. Blood feeding behaviour comparison and contribution of Anopheles coluzzi and Anopheles gambiae, two sibling species living in sympatry, to malaria transmission in Albion and Donga region, northern Benin, West Africa. Malar J. 2018;17:307.

13. Wilkes TJ, Matola YG, Charlwood JD. Anopheles nilouensis, a vector of human malaria in Africa. Med Vet Entomol. 1996;10:108–10.

14. Temu EA, Minjir N, Tuno N, Kawada H, Takagi M. Identification of four members of the Anopheles funestus (Diptera: Culicidae) group and their role in Plasmodium falciparum transmission in Bagamoyo coastal Tanzania. Acta Trop. 2007;102:119–25.

15. Cuamba N, Mendis C. The role of Anopheles merus in malaria transmission in an area of southern Mozambique. J Vector Borne Dis. 2009;46:157–9.

16. Kipyab PC, Khaemba BM, Mwangangi JM, Mbogo CM. The bionomics of Anopheles merus (Diptera: Culicidae) along the Kenyan coast. Parasit Vectors. 2013;6:37.

17. Mulamba C, Irving H, Riveron JM, Mukwaya LG, Birungi J, Wondji CS. Contrasting Plasmodium infection rates and insecticide susceptibility profiles between the sympatric sibling species Anopheles parensis and Anopheles funestus s.s.: a potential challenge for malaria vector control in Uganda. Parasit Vectors. 2014;7:71.

18. Afrane YA, Bonizzoni M, Yan G. Secondary malaria vectors of sub-Saharan Africa: threat to malaria elimination on the continent? In: Rodriguez-Morales AJ, editor. Current topics in malaria. London: IntechOpen. 2016. p. 473–90.

19. Stevenson JC, Norris DE. Implicating cryptic and novel anophelines as malaria vectors in Africa. Insects. 2016;8:1.

20. St Laurent B, Cooke M, Krishnakutty SM, Ash P, Mueller JD, Kahindi S, et al. Molecular characterization reveals diverse and unknown malaria vectors in the western Kenyan highlands. Am J Trop Med Hyg. 2016;94:327–35.

21. Burke A, Dandalo L, Munhenga G, Dahan-Moss Y, Mbokazi F, Ngxongo S, et al. A new malaria vector mosquito in South Africa. Sci Rep. 2017;7:43779.

22. Kyalo D, Amratia P, Mundia CW, Mbogo CM, Coetzee M, Snow RW. A geo-coded inventory of anophelines in the Afrotropical Region south of the Sahel: 1898–2016. Wellcome Open Res. 2017:2:57.

23. Ogola EO, Fillingir U, Onidila IM, Villinger J, Masiga DK, Torto B, et al. Insights into malaria transmission among Anopheles funestus mosquitoes, Kenya. Parasit Vectors. 2018;11:577.

24. Dandalo LC, Brooke BD, Munhenga G, Lobbi LN, Zikhali J, Ngxongo SP, et al. Population dynamics and Plasmodium falciparum (Haemosporida: Plasmodiidae) infectivity rates for the malaria vector Anopheles arabiensis (Diptera: Culicidae) at Mambene, KwaZulu-Natal, South Africa. J Med Entomol. 2017;54:1758–66.

25. Killeen GF, Marshall JM, Kiware SS, South AB, Tsingos LS, Chaki PP, et al. Measuring, manipulating and exploiting behaviours of adult mosquitoes to optimise malaria vector control impact. BMJ Glob Health. 2017;2:e000212.

26. Killeen GF, Chaki PP, Reed TE, Moyes CL, Govaert NJ. Entomological surveillance as a cornerstone of malaria elimination: a critical appraisal. In: Manguin S, Dev V, editors. Towards malaria elimination. London: InTech; 2017. p. 403–29.

27. Sherrard-Smith E, Skarp JE, Beale AD, Fornadel C, Norris LC, Moore SJ, et al. Mosquito feeding behaviour and how it influences residual malaria transmission across Africa. Proc Natl Acad Sci USA. 2019;116:15086–95.

28. Gillies MT, Coetzee M. A supplement to the Anophelineae of Africa south of the Sahara, vol. 54. Johannesburg: Publications of the South African Institute for Medical Research; 1968.

29. Gillies MT, Coetzee M. A supplement to the Anophelineae of Africa south of the Sahara, vol. 55. Johannesburg: Publications of the South African Institute for Medical Research; 1987.
30. Choochote W, Saeung A. Systematic techniques for the recognition of Anopheles species complexes. In: Manguin S, editor. Anopheles mosquitoes—new insights into malaria vectors. London: IntechOpen, 2013. p. 57–79.
31. WHO. Malaria surveillance, monitoring & evaluation: a reference manual. Geneva: World Health Organization; 2018. https://apps.who.int/iris/bitstream/handle/10665/272284/9789241565578-eng.pdf?ua=1. Accessed Dec 2019.
32. Coetzee M, Koekemoer LL. Molecular systematics and insecticide resistance in the major African malaria vector Anopheles funestus. Annu Rev Entomol. 2013;58:393–412.
33. Erlank E, Koekemoer LL, Coetzee M. The importance of morphological identification of African anopheline mosquitoes (Diptera: Culicidae) for malaria control programmes. Malar J. 2018;17:43.
34. Scott JA, Brogdon WG, Collins FH. Identification of single specimens of the Anopheles gambiae complex by the polymerase chain reaction. Am J Trop Med Hyg. 1993;49:520–9.
35. Koekemoer LL, Kamau L, Hunt RH, Coetzee M. A cocktail polymerase chain reaction assay to identify members of the Anopheles funestus (Diptera: Culicidae) group. Am J Trop Med Hyg. 2002;66:804–11.
36. Cohuet A, Simard F, Toto JC, Kengne P, Coetzee M, Fontenille D. Species identification within the Anopheles funestus group of malaria vectors in Cameroon and evidence for a new species. Am J Trop Med Hyg. 2003;69:200–5.
37. Lobo NF, St Laurent B, Sikaala CH, Hamainza B, Chanda J, Chinula D, et al. Anopheles gambiae and ribosomal DNA polymorphism. Med Vet Entomol. 2007;21:177–82.
38. Das S, Henning TC, Simubali L, Hamapumbu H, Nzira L, Mamini E, et al. Underestimation of foraging behaviour by standard field methods in malaria vector mosquitoes in southern Africa. Malar J. 2015;14:12.
39. Zawada JW, Dahan-Moss YL, Muleba M, Dabire RK, Maiga H, Venter N, et al. Molecular and physiological analysis of Anopheles funestus swarms in Nichelenge, Zambia. Malar J. 2018;17:49.
40. Carter TE, Yared S, Hansel S, Lopez K, Janies D. Sequence-based identification of Anopheles species in eastern Ethiopia. Malar J. 2019;18:135.
41. Burke A, Dahan-Moss Y, Duncan F, Qwabe B, Coetzee M, Koekemoer L, et al. Anopheles pargentis contributes to residual malaria transmission in South Africa. Malar J. 2019;18:257.
42. International Standard. ISO/IEC 17025:2017. 3rd edition. General requirements for the competence of testing and calibration laboratories. Published in Switzerland: ISO/IEC, 2017.
43. Clinical and Laboratory Standards Institute. GP27-A2 Vol.27 No.8. Using Proficiency Testing to Improve the Clinical Laboratory. Approved Guideline-second edition.
44. Hall TA. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser. 1999;41:95–8.
45. Wilkins EE, Howell PI, Benedict MQ. IMP PCR primers detect single nucleotide polymorphisms for Anopheles gambiae species identification, Mopti and Savanna rDNA types, and resistance to dieldrin in Anopheles arabiensis. Malar J. 2006;5:125.
46. Kengne P, Antonio-Nkindjo C, Awono-Ambene HP, Simard F, Awolola TS, Fontenille D. Molecular differentiation of three closely related members of the mosquito species complex, Anopheles moucheti, by mitochondrial and ribosomal DNA polymorphism. Med Vet Entomol. 2007;21:177–82.
47. Erlank E, Koekemoer LL, Coetzee M. The importance of morphological identification of African anopheline mosquitoes (Diptera: Culicidae) for malaria control programmes. Malar J. 2018;17:43.
48. Scott JA, Brogdon WG, Collins FH. Identification of single specimens of the Anopheles gambiae complex by the polymerase chain reaction. Am J Trop Med Hyg. 1993;49:520–9.
49. WHO. Malaria surveillance, monitoring & evaluation: a reference manual. Geneva: World Health Organization; 2018. https://apps.who.int/iris/bitstream/handle/10665/272284/9789241565578-eng.pdf?ua=1. Accessed Dec 2019.
50. Snounou G, Pinheiro L, Gonçalves A, Fonseca L, Dias F, Brown KN, et al. PCR-based detection of Plasmodium in Anopheles mosquitoes: a comparison of a new high-throughput assay with existing methods. Malar J. 2008;7:177.
51. Bass C, Nikou D, Blagborough AM, Vontas J, Sinden RE, Williamson MS, et al. PCR-based detection of Plasmodium in Anopheles mosquitoes: a comparison of a new high-throughput assay with existing methods. Malar J. 2008;7:177.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.