Symmetry breaking driving spontaneous plasma rotation in tokamak fusion devices

Hanhui Li1,2, Youwen Sun2,∗, Lu Wang1,∗, Kaiyang He2 and Ker-Chung Shaing3

1 International Joint Research Laboratory of Magnetic Confinement Fusion and Plasma Physics, State Key Laboratory of Advanced Electromagnetic Engineering and Technology, School of Electrical and Electronic Engineering, School of Physics, Huazhong University of Science and Technology, Wuhan, 430074, China
2 Institute of Plasma Physics, Chinese Academy of Sciences, PO Box 1126, Hefei 230031, China
3 Institute for Space and Plasma Sciences, National Cheng Kung University, Tainan, Taiwan 70101, China

E-mail: ywsun@ipp.ac.cn and luwang@hust.edu.cn

Received 21 May 2021, revised 7 July 2021
Accepted for publication 4 August 2021
Published 20 September 2021

Abstract
Plasma rotation plays a critical role in improving plasma confinement in a magnetically confined fusion device. Spontaneous plasma rotation and its reversal of orientation without external momentum input have been observed in some tokamak fusion devices, while the underlying physics is not well understood. A new mechanism based on neoclassical toroidal plasma viscosity induced by symmetry breaking is proposed and well reproduces both spontaneous toroidal rotation and its reversals in tokamaks by considering a small non-axisymmetric displacement in the plasma center, since internal instabilities are often observed in those experiments. The nonlinear hysteresis process of plasma rotation reversals is also well reproduced in the modeling. The mechanism for driving spontaneous plasma rotation proposed in this paper may be utilized for achieving more economical operation of future tokamak fusion reactors.

Keywords: intrinsic rotation, neoclassical toroidal plasma viscosity, rotation reversals

Plasmas usually rotate in nature, such as in stellar interiors, accretion disks, and laboratory plasmas. Because particle, energy and momentum confinement are all linked to each other, understanding the physics of plasma rotation is imperative to comprehend plasma dynamics in general and momentum confinement in particular. As often happens in plasmas, more than one mechanism can cause plasma rotation. It is best to test the supposed theoretical mechanism in a laboratory setting to resolve several competing processes.

Intrinsic or spontaneous plasma rotation without external momentum input has been widely observed in tokamaks [1–3]. Furthermore, it is interesting to observe that the intrinsic plasma rotation spontaneously changes its orientation when plasma density exceeds a threshold [4–10]. This phenomenon still puzzles us, although some efforts have been made in the last ten years [11]. A previous study has shown that the rotation reversal can be induced by the change of turbulence flux based on Non-Maxwellian equilibria effect [12]. Spontaneous rotation and its reversals are often observed in plasmas with sawteeth caused by internal kink magnetohydrodynamics (MHD) instability [11], and the reversal normally occurs inside the sawtooth inversion radius, i.e. \(q = 1 \) magnetic flux surface. Here, \(q \) is the safety factor. Sawtooth crash and its precursor mode induce non-axisymmetric displacement of
magnetic flux surface, \(\tilde{\zeta} \), which causes helical magnetic field ripple \(\delta B = \frac{\nu}{eB} \tilde{\zeta} \cdot \nabla B \), where \(B \) is equilibrium magnetic field strength and \(B_0 \) is the magnetic field strength on the magnetic axis. The additional radial drift caused by helical magnetic field ripple results in a non-ambipolar transport flux known as neo-classical toroidal plasma viscosity (NTV) [13–16]. Therefore, a novel mechanism based on NTV physics [13] is proposed to explain spontaneous toroidal rotation reversals in tokamaks in this paper. The experimentally observed rotation reversals during plasma density ramps can be well reproduced by the modeling using the NTV-TOK code [17, 18].

There are solutions of steady state toroidal plasma rotation, \(\omega_{\|} \), in both co-current (\(\omega_\| > 0 \)), electron root) and counter-current (\(\omega_\| < 0 \), ion root) directions determined by NTV in low collisionality regime because of symmetry breaking [17, 19]. In stellarator, H-mode is achieved by using electron root to improve plasma confinement performance [20]. This mechanism can be used to drive flow and improve confinement in tokamaks. Toroidal rotation reversal is possible when the steady state flow jumps between ion root and electron root that determined by NTV torque depending on plasma collisionality [19].

From the NTV theory, the general form of the induced NTV torque density can be written as [17–19, 21, 22],

\[
T_{NTV} = -\frac{d\psi_e}{dV} \sum_{j=1,e} \rho_j \Gamma_j \left(\omega_\| - \omega_{\|,n} \right)
\]

\[
\omega_{\|,n} = q \left(\omega_\| + \omega_{s,i,j} - \omega_{s,j} + \frac{\lambda_{s,j}}{\lambda_{1,n}} \omega_{T,j} \right),
\]

where \(2\pi \psi_e \) is the poloidal magnetic flux and \(4\pi V \) is the volume enclosed by each surface, \(\rho_j \) is the ion mass density, \(\mathcal{R} \) is the major radius, \(\langle \cdot \rangle_{\tilde{\zeta}} \) denotes the flux surface average, \(\omega_\| \) and \(\omega_{\|,n} \) are the toroidal and poloidal angular frequencies, \(\omega_{s,i,j} \) and \(\omega_{s,j} \) are diamagnetic frequencies for the \(j \) \((i \equiv \text{ions, and } e \equiv \text{electrons}) \) species and the energy integrals \(\lambda_{s,j} \propto |\delta B|^2 \) driving by helical ripples, has been defined in equation (23) in [18]. Equation (2) is the general form of the steady-state flow for each species, if the contribution of this species dominates. The total NTV torque on the plasma induced by internal kink mode is in fact coming from an exchange of torque between plasma and the wall or surrounding structures [23].

It is known that the direction of the steady state flow depends on normalized plasma collisionality [21], \(\nu_{se} \propto n_e / T_e \), where \(\nu_{se} \) is the ratio of the electron collisionality to bounce frequency, \(n_e \) is electron density and \(T_e \) is electron temperature. The NTV torque has different asymmetric limit regimes depending on collisionality, such as the \(1 / \nu \) regime, the \(\nu / \sqrt{\nu} \) regime, and the superbanana plateau regime, etc. This has been summarized in a recent review paper [24]. In low collisionality plasmas, the ion is often in the \(\nu / \sqrt{\nu} \) regime or the superbanana plateau regime, but the electron may be still in the \(1 / \nu \) regime [21, 22], because the electron collisionality is normally much larger than the \(E \times B \) drift frequency. Therefore, electron NTV is comparable to ion NTV, and hence, there are multiple solutions of steady-state flow, i.e. electron root and ion root [13], which is well known in ELMO Bumpy Torus [25] and stellarators [26]. In high collisionality plasmas, the ion NTV is normally dominant and there is an ion root only, which was reported previously in DIII-D during the application of non-axisymmetric magnetic field [27]. In the low density case with low collisionality, the steady state flow is possible at the electron root, i.e. in the co-current direction, if there is a helical ripple. The threshold collisionality for this transition is of the order \(\nu_{se} \sim 0.01 \) [21].

During the ramping up of plasma density, the direction of toroidal rotation might jump from the co-current (electron root) into the counter-current (ion root) direction at a certain critical density, because there is only ion root at high density with high collisionality. This explains the observed rotation reversals in the experiments during density ramp. To verify this hypothesis, a modeling of the intrinsic rotation driven by NTV torque is given in the following based on one example case with plasma conditions similar to the experimental ones on C-Mod [4].

Figure 1 shows the magnetic configuration constructed by using the CHEASE code [28] and radial profiles of \(n_e \), electron (ion) temperature \(T_e(T_i) \), \(m/n = 1/1 \) radial displacement \(\xi \) and \(q \) used in the NTV torque simulation using the NTV-TOK code [17, 18, 21]. For simplicity, \(n_i = n_e \) has been used. Since sawtooth crash and its precursor mode usually induce a 1/1 displacement of the order of centimeters, an internal kink mode eigen function like displacement with an amplitude \(\xi \) = 1 cm is used. This displacement results in a helical ripple \(\delta B \) of the order \(10^{-3} \) in this simulation. The temporal evolution of the toroidal angular momentum is simulated by solving the momentum transport equation (17) without input torque in [22]. In the present study, only the diffusion term in the momentum transport flux is considered for simplicity. The NTV torque and all required inputs to evaluate it are updated at each step. The steady state flow is obtained until the toroidal flow saturates to a fixed profile state, i.e. the NTV torque is balanced by the momentum diffusive term. The momentum diffusivity is estimated from \(\chi = \alpha^2 / T_E \), in which \(T_E \) is the energy confinement time and \(\alpha = 0.21 \) m is the plasma minor radius on C-Mod [7]. In this simulation, the dependence of \(T_E \) on plasma density is fitted by using first order polynomials functions from the profiles shown in figure 28 in [7]. Here, the value of \(T_E \) are in the range from 15 ms to 35 ms and the value of \(\chi \) are in the range from 1 m\(^2\) s\(^{-1}\) to 3 m\(^2\) s\(^{-1}\). The pinch velocity is assumed to be zero and no input torque is considered in calculation.

The simulation results well reproduce the main features of experimentally observed rotation reversals during plasma density ramp [7], as shown in figure 2. Two cases are considered in the simulation. In figure 2(a), the red solid line with triangles shows the dependence of the steady-state toroidal rotation on the core electron density \(n_{e0} \) at the normaliztion minor radius \(\rho = 0.2 \) during density ramping up. The toroidal rotation reverses from the co-current to the counter-current direction suddenly when the plasma density exceeds a critical value at \(n_{e0} \sim 6 \times 10^{20} \) m\(^3\). The corresponding critical \(\nu_{se} \) is around 0.035. In figure 2(b), the red line for another case
Figure 1. (a) The (ρ, θ) grids in Hamada coordinates, and (b) the radial profiles of n_e (red solid line), T_e (pink dashed dotted line), T_i (green dotted line), ξ (black dashed line) and q (black solid line).

Figure 2. (a) The red line with triangles is the dependence of steady state toroidal rotation ω_ϕ on the electron density n_{e0} during density ramping up and the green dashed line is the dependence of ν^*_{e} on n_{e0} near the plasma core at $\rho = 0.2$; (b) the red line with asterisks is the dependence of ω_ϕ on n_{e0} at $T_{e0} = 2.0$ keV when the density ramping down at the beginning and then ramping up later and the blue dashed line with triangles is the dependence of ω_ϕ on n_{e0} at $T_{e0} = 2.5$ keV. shows the trajectory of ω_ϕ during density ramping down at the beginning and then ramping up later, which is done using the rotation profile obtained from the solution in the previous density case as the initial rotation profile and using zeros rotation profile as an initial condition for first one in the simulation. Here, the diffusion coefficient χ is 1.5 times larger than that used in the first case just to reproduce the hysteresis in experiment. The hysteresis shown in the red line is a typical nonlinear bifurcation process. The toroidal rotation reversal and hysteresis shown in the modeling in these two cases agree well with the experimental observations (figures 2 and 4 in [7]). Furthermore, the blue dashed line of figure 2(b) shows that the critical density for rotation reversal increases with increasing electron temperature (or decreasing collisionality), which might explain the observed plasma current I_p dependence of critical density (figure 10 in [7]) since the ohmic heating power increases with increasing I_p.

More details about the simulations are shown in the following. The magnitude of the NTV torque density at two different plasma densities respectively above and below the threshold in figure 2(a) with zero plasma rotation is shown in figure 3(a). The red solid line indicates that NTV torque profile at the lower density is positive in the core, while the blue dot-dashed line indicates that the NTV torque profile at the higher density is negative. The magnitude of NTV torque density can be up to 0.1 N m$^{-2}$ with $\xi = 1$ cm and scales with ξ^2. It is the same order of magnitude as high as the NBI torque density in present tokamaks.

The intrinsic rotations determined by zeroing NTV torque density (b) and the final steady state flows determined by the
The final steady state rotation is reversed at these two densities case (blue dashed line) as shown in figure 3 (red solid line), while there is only one ion root in the higher density case. The unstable root and the counter-current roots in the intrinsic rotation determined by NTV, i.e. the core non-axisymmetric displacement caused by internal kink mode. The magnitude of NTV torque is big enough to change the steady state rotation jumps between ion root and electron root determined by the NTV theory can explain toroidal rotation of plasma collisionality, i.e. increasing of machine size and performance [19], it may play a critical role in driving flows in future tokamak fusion reactors. The mechanism for driving spontaneous plasma rotation proposed in this paper may be utilized for achieving more economical operation of future fusion reactors.

Acknowledgments

This work was supported by the National Key R&D Program of China under Grant Nos. 2017YFE0302000 and 2017YFE0301100, and the National Natural Science Foundation of China under Grant Nos. 11875292 and 51821005.

References

[1] Hutchinson I.H., Rice J.E., Granetz R.S. and Snipes J.A. 2000 Self-acceleration of a tokamak plasma during ohmic H mode Phys. Rev. Lett. 84 3330
[2] Lee W.D., Rice J.E., Marmar E.S., Greenwald M.J., Hutchinson I.H., and Snipes J.A. 2003 Observation of anomalous momentum transport in tokamak plasmas with no momentum input Phys. Rev. Lett. 91 205003
[3] Rice J.E. et al. 2007 Inter-machine comparison of intrinsic toroidal rotation in tokamaks Nucl. Fusion 47 1618
[4] Rice J.E. et al. 2011 Rotation reversal bifurcation and energy confinement saturation in tokamak ohmic L-mode plasmas Phys. Rev. Lett. 107 265001
[5] Bortolon A., Duval B.P., Pochelon A. and Scarabosio A. 2007 Bulk plasma rotation in the TCV Plasma Phys. Control. Fusion 49 B195
[6] Bortolon B.P., Bortolon A., Karpushov A., Pitts R.A., Pochelon A. and Scarabosio A. 2007 Bulk plasma rotation in the TCV tokamak in the absence of external momentum input Plasma Phys. Control. Fusion 49 B195
[7] Rice J.E. et al. 2011 Observations of core toroidal rotation reversals in Alcator C-Mod ohmic L-mode plasmas Nucl. Fusion 51 083005
[8] McDermott R.M., Angioni C., Conway G.D., Dux R., Fable E., Fischer R., Pütterich T., Ryter F. and Viezzer E. 2014 Core intrinsic rotation behaviour in ASDEX upgrade ohmic L-mode plasmas Nucl. Fusion 54 043009
[9] Hillesheim J.C., Patra F.J., Barnes M., Crocker N.A., Meyer H., Peebles W.A., Scannell R. and Thornton A. 2015 Dependence of intrinsic rotation reversals on collisionality in MAST Nucl. Fusion 55 032003
[10] Na D.H. et al. 2016 Observation of the intrinsic rotation in KSTAR Ohmic L-mode plasmas Nucl. Fusion 56 036011
[11] Camenen Y. et al. 2017 Experimental observations and modelling of intrinsic rotation reversals in tokamaks Plasma Phys. Control. Fusion 59 034001
[12] Barnes M. et al 2013 Intrinsic rotation driven by non-Maxwellian equilibria in tokamak plasmas Phys. Rev. Lett. 111 055005
[13] Shaing K.C. et al 2003 Magnetohydrodynamic-activity-induced toroidal momentum dissipation in collisionless regimes in tokamaks Phys. Plasmas 10 1443
[14] Zha W. et al 2006 Observation of plasma toroidal-momentum dissipation by neoclassical toroidal viscosity Phys. Rev. Lett. 96 225002
[15] Park J.K., Boozer A.H. and Menard J.E. 2009 Nonambipolar transport by trapped particles in tokamaks Phys. Rev. Lett. 102 065002
[16] Hua M.-D., Chapman I.T., Field A.R., Hastie R.J. and Pinches S.D. 2010 Comparison of MHD-induced rotation damping with NTV predictions on MAST Plasma Phys. Control. Fusion 52 035009
[17] Sun Y., Liang Y., Shaing K.C., Koslowski H.R., Wiegmann C. and Zhang T. 2010 Neoclassical toroidal plasma viscosity torque in collisionless regimes in tokamaks Phys. Rev. Lett. 105 145002
[18] Sun Y., Li X., He K. and Shaing K.C. 2019 Unified modeling of both resonant and non-resonant neoclassical transport under non-axisymmetric magnetic perturbations in tokamaks Phys. Plasmas 26 072504
[19] Sun Y., Shaing K.C., Liang Y., Casper T., Loarte A., Shen B. and Wan B. 2013 Intrinsic plasma rotation determined by neoclassical toroidal plasma viscosity in tokamaks Nucl. Fusion 53 093010
[20] Klinger T. 2018 Overview of first Wendelstein 7-X high-performance operation with island divertor Nucl. Fusion 59 112004
[21] Sun Y., Shaing K.C., Liang Y., Shen B. and Wan B. 2013 Numerical validation of the refined formula of neoclassical toroidal plasma viscosity in tokamaks Nucl. Fusion 53 073026
[22] Sun Y., Liang Y., Shaing K.C., Koslowski H.R., Wiegmann C. and Zhang T. 2011 Modelling of the neoclassical toroidal plasma viscosity torque in tokamaks Nucl. Fusion 51 053015
[23] Neng Z., Liu Y.Q., Yu D.L., Wang S., Xia G.L., Dong G.Q. and Bai X. 2017 Modeling of toroidal torques exerted by internal kink instability in a tokamak plasma Phys. Plasmas 24 082507
[24] Shaing K.C., Ida K. and Sabbagh S.A. 2015 Neoclassical plasma viscosity and transport processes in non-axisymmetric tori Nucl. Fusion 55 125001
[25] Jaeger E.F., Spong D.A. and Hedrick C.L. 1978 Neoclassical transportation in the ELMO bumpy torus Phys. Rev. Lett. 40 866
[26] Mynick H.E. and Hitchon W.N.G. 1983 Effect of the ambipolar potential on stellarator confinement Nucl. Fusion 23 1053
[27] Garofalo A.M. et al 2008 Observation of plasma rotation driven by static nonaxisymmetric magnetic fields in a tokamak Phys. Rev. Lett. 101 195005
[28] Luetjens H., Bondeson A. and Sauter O. 1996 The CHEASE code for toroidal MHD equilibria Comput. Phys. Commun. 97 219
[29] Cooper W. et al 2010 Tokamak magnetohydrodynamic equilibrium states with axisymmetric boundary and a 3D helical core Phys. Rev. Lett. 105 035003
[30] Lorenzini R. et al 2009 Self-organized helical equilibria as a new paradigm for ohmically heated fusion plasmas Nat. Phys. 5 570–4