Expression profile of C19MC microRNAs in placental tissue of patients with preterm prelabor rupture of membranes and spontaneous preterm birth

ILONA HROMADNIKOVÁ1, KATERINA KOTLABOVA1, KATARINA IVANKOVA2 and LADISLAV KROFTA2

1Department of Molecular Biology and Cell Pathology; 2Institute for The Care of Mother and Child, Third Faculty of Medicine, Charles University, 100 00 Prague 10, Czech Republic

Received October 6, 2016; Accepted July 3, 2017

DOl: 10.3892/mmr.2017.7067

Abstract. The aim of the study was to demonstrate that preterm birth (PTB) is associated with altered C19MC microRNA expression profile in placental tissues. Gene expression of 15 placental specific microRNAs (miR-512-5p, miR-515-5p, miR-516-5p, miR-517-5p, miR-518b, miR-518f-5p, miR-519a, miR-519d, miR-519e-5p, miR-520a-5p, miR-520h, miR-524-5p, miR-525-5p, miR-526a and miR-526b-5p) was compared between groups: 34 spontaneous PTB, 108 preterm prelabor rupture of membranes (PPROM) and 20 term in labor pregnancies. Correlation between variables including relative microRNA quantification in placental tissues and the gestational age at delivery, white blood cell (WBC) count at admission and serum levels of C-reactive protein at admission in patients with PPROM and PTB was determined. Expression profile of microRNAs was different between PPROM and term in labor pregnancies, PTB and term in labor pregnancies, and between gestational age-matched PPROM and PTB groups. When compared with term in labor pregnancies, while C19MC microRNAs showed a downregulation in PPROM pregnancies (miR-525-5p), in PTB pregnancies C19MC microRNAs were upregulated (miR-515-5p, miR-516-5p, miR-518b, miR-518f-5p, miR-519a, miR-519e-5p, miR-520a-5p, miR-520h, miR-526b-5p) or showed a trend to upregulation (miR-519d and miR-526a). In comparison to PTB pregnancies, the PPROM group demonstrated a significant phenomenon of PTB. PPROM pregnancies have a tendency to produce lower levels of miR-525-5p. All examined C19MC microRNAs displayed decreased expression with advancing gestational age in PPROM group.

Introduction

Preterm delivery, defined as the delivery prior 37 complete weeks of gestation, occurs in 5-13% of all pregnancies (1-3). It is the most common cause of neonatal mortality and morbidity worldwide (2-5), accounts for approximately 70% of neonatal deaths (6,7). Preterm delivery results from three clinical conditions occurring with nearly similar rates: i) Medically indicated or elective preterm delivery (30-35%); ii) spontaneous preterm birth (PTB) with intact fetal membranes (40-45%); and iii) premature rupture of fetal membranes (PROM; 25-30%) (2,8,9).

Preterm delivery results usually in critical care emergencies, and is associated not only with short-term consequences to the health of the child including cerebral palsy, respiratory distress syndrome, neonatal infection/sepsis and intraventricular hemorrhage, but also with long-term adverse sequel (i.e., neurodevelopmental impairment, sensory defects, learning difficulties and behavioural problems) (5,10-15).

Since preterm delivery rates increase over the last two decades in many developed countries (16), early identification (weeks if not months before the clinical event) of patients with an increased risk for PTB and PROM, as a prerequisite for the effective use of interventions (use of steroids, transfer to appropriate hospital facilities), becomes crucial in reducing adverse perinatal outcomes and the costs of neonatal care (5,17-19).

Although etiology of preterm delivery is multifactorial and the exact causes remain unknown in most cases, intrauterine infection with activation of the innate immune system...
and an exaggeration of inflammatory processes is found in 25-40% (9,20-23). Many other predisposing conditions have been proposed, including factors such as an incomplete cervix, uterine abnormalities, exposure to diethylstilbestrol (synthetic nonsteroidal estrogen; oral contraceptive) or environmental pollutants such as lead, pregnancy hypertension, intrauterine growth restriction, multiple pregnancy, maternal stress, heavy physical work, and smoking (24-27). Concerning intrauterine infection, development of histological chorioamnionitis is one of the main features and represents a pathological condition characterized by intraamnionic inflammation [AIA; inflammation of amniocchorionic (fetal) membranes and placental chorion] in response to microbial invasion of the amniotic cavity (MIAC), which is predominated by Ureaplasma species, or to other pathological processes (28-30).

ROM is a natural physiological phenomenon that occurs before delivery. However, when the rupture of the amniotic membranes with release of the amniotic fluid occurs more than 1 h prior to the onset of labor, it is called PROM (31). PROM, that complicated 4.5-7.6% of deliveries (32,33), may be subdivided into term PROM (TPROM; i.e., PROM after 37 weeks of gestation) and preterm PROM (PPROM; i.e., spontaneous rupture of fetal membranes prior 37 weeks of gestation) (31). Most women with PPROM deliver within 48 h after rupture. The incidence of PPROM is 2-3.5% (31). The management of patients with PROM offered two general, but still controversial, options: i) Prompt delivery for women in labor, when infection or irreversible fetal distress occurs; and ii) complex decision concerning prolonging of gestation, reducing of complications of prematurity, timing of labor and choosing the route of delivery for women not in labor, especially in premature gestational ages (34).

Many possible mechanisms underlying spontaneous PPROM, including intra-amniotic infection and other factors mentioned above, have been identified: Reduction of membrane collagen content stretched membranes, vascu-lopathy in placentation, decidual hemorrhage, placental abruption, uterine overdistension, nutritional deficiencies, and genetic factors (i.e., race and familiar clustering) (33,35-37). All these factors may play primary or secondary roles in the pathogenesis of PPROM.

Based on the known risk factors and pathways, diagnosis of preterm delivery comprises clinical evaluation and biological tests, which are useful in the case of clinically asymptomatic patients. These tests include vaginal pH determination (nitra- zine, bromthymol blue test) and the measurement of prolactin, α-fetoprotein, inflammatory cytokine IL-6, diamine oxidase, insulin-like growth factor binding protein-1 (IGFBP-1), amniotic fluid intracellular adhesion molecule 1, human chorionogonadotrophin levels, or fetal fibronectin in cervico-vaginal fluid, respectively (11,38-44).

Several biomarkers in first trimester maternal blood samples have been tested to see if they can predict preterm delivery. Among those rise in C-reactive protein (CRP) and decrease in mean platelet volume (MPV), pregnancy-associated plasma protein-A, selenium and lead levels in maternal serum during early gestation demonstrate some ability to distinguish women at risk of experiencing PTB or PPROM, but the insufficient test characteristics (specificity and sensitivity) of such methods limit any application in current clinical practice (45-50).

In the last decade, the importance of microRNAs (miRNA) in both, health and disease was revealed which provide a new opportunity for biomarker discovery in the field of preterm delivery. MicroRNAs belong to small (18-25 nucleotides) highly conserved single-stranded RNA molecules that play a critical role in posttranscriptional gene regulation by degrading or blocking translation of target messenger RNA. Although microRNA analyses indicate that a variety of disease-affected tissues display microRNA expression profiles that are significantly different from normal tissues, there are only several existing studies that have explored their possible involvement in regulating the molecular mechanisms that contribute to the pathophysiology of preterm delivery. First of all, Montenegro et al (51) screened 157 miRNAs using quantitative PCR in the chorioamniotic membranes derived from term and preterm patients and revealed a tendency toward decreased expression for 13 miRNAs with advancing gestational age. Evaluation of preterm membranes with and without chorioamnionitis identified increased expression of miR-223 and miR-338 in the presence of chorioamnionitis. Additional microRNA microarray analysis of 455 miRNAs in the chorioamniotic membranes revealed 39 differentially expressed miRNAs between term and preterm groups, of which 31 were downregulated at term. Subsequent quantitative PCR analysis confirmed decreased expression of miR-338, miR-449, miR-136, and miR-199a* in chorioamniotic membranes at term (52).

Another study (53) based on microarray profiling of 820 microRNAs in placentas identified 141 miRNAs (113 upregulated and 23 downregulated) differentially expressed in spontaneous preterm delivery (≤35 weeks of gestation) compared to normal term pregnancies (elective caesarean section without labor). Validation analysis using quantitative PCR revealed that lower expression of miR-15b, miR-181, miR-210, miR-483-5p, and a trend toward higher expression of miR-496 were able to differentiate between preterm delivery, preeclampsia and term pregnancies.

Elovitz et al (54) analyzed miRNA expression levels in cervical cells obtained from the ectocervix by a cytobrush. Profiling of the 5,640 miRNAs in samples collected at 20 to 28 weeks of gestation showed 99 miRNAs expressed differentially in women who eventually had a preterm delivery compared with their term counterparts. Of these microRNAs, only three (miR-143, miR-145 and miR-199b-5p) were confirmed to be upregulated at 24 weeks to 28 weeks of gestation and just one (miR-106b*) at 20 weeks to 24 weeks of gestation in women with a PTB.

Sanders et al (55), who studied microRNA expression levels in cervical cells obtained from swabs during pregnancy between 16 and 19 weeks of gestation, identified 6 miRNAs significantly associated with gestational age at the time of delivery. They found that the levels of certain microRNAs (miR-21, miR-30e, miR-142, miR-148b, miR-29b, and miR-223) in the human cervix during pregnancy were predictive of gestational age at delivery. Per each doubling in miR-21 or miR-30e, miR-142, miR-148b, miR-29b, and miR-223 expression, gestations were 0.9 or 1.0-1.6 days shorter, respectively.

Recent study by Elovitz et al (56) examined miRNA profile in maternal serum collected from women destined to have a preterm delivery compared with a term birth. Only
4 out of 5,640 miRNAs (miR-200a*, miR-4695-5p, miR-665, and miR-887) were significantly different between cases and control subjects, however the fold difference in expression did not exceed 2, which limits their potential for clinical utilization.

Numerous studies have shown that alterations in miRNA expression in the placenta are associated with various pregnancy complications, such as preeclampsia and fetal growth restriction (57-62). The objective of this study was to investigate expression profile of C19MC miRNAs (miR-512-5p, miR-515-5p,miR-516b-5p,miR-517-5p,miR-518b,miR-518f-5p, miR-519a, miR-519d, miR-519e-5p,miR-520a-5p, miR-520h, miR-524-5p, miR-525-5p, miR-526a and miR-526b-5p) in placental tissues collected from women with PTB or PPROM. C19MC is the largest human miRNA gene cluster and consists of 46 genes encoding a total of 56 mature miRNAs (63). This cluster is only present in the primate and human genomes and expresses miRNAs almost exclusively in placenta (64), with expression detected in only a few other cell types such as embryonic stem cells and certain tumors (65-68). However, for testing we selected only those 15 C19MC microRNAs which, according to the miRNAmap database and the study presented by Liang et al (69), have been reported to be placenta specific (i.e., to be significantly expressed in the placenta while showing no or minimal expression in other tissues).

To our knowledge, no study on C19MC microRNA expression in PTB and PPROM has been carried out. Since placenta is a complex and vital organ that not only mediates the selective transfer of solutes and gases between the mother and the fetus, but also produces hormones and other factors that support pregnancy, changes in miRNAs levels may lead to dysregulation of several proteins which can contribute to the mechanisms underlying pathogenesis of PTB or PPROM. We hypothesize that a distinct profile of C19MC miRNAs in placental tissues may differentiate between women with PTB, PPROM and term pregnancies in labor.

Materials and methods

Patients. The study was retrospective. Clinical samples were collected between 2013 and 2016 at the Institute for the Care of Mother and Child (Prague, Czech Republic). Samples processing and analyses were performed at the Department of Molecular Biology and Cell Pathology, Third Faculty of Medicine, Charles University (Prague, Czech Republic). The study protocol was approved by the appropriate Local Ethics Committees and all patients who participated in the study provided written informed consent.

Placental tissues were collected from pregnant women with singleton pregnancies only. The studied cohort consisted of 34 pregnancies with spontaneous PTB delivery within 25+1-36+5 (median 34+5) weeks of gestation, and 108 gestational age matched (range 24+0-36+6, median 34+2 weeks) pregnancies with PPROM. The control cohort consisted of 20 women at term in labor with normal course of gestation delivering healthy infants weighing >2,500 g at term (after 37 completed weeks of gestation). Gestational age was assessed using ultrasonography.

PTB was defined as the occurrence of regular uterine contractions at a minimum frequency of two contractions per 10 min, along with cervical changes, leading to delivery before the 37th week of gestation was completed.

PPROM was defined as amniotic fluid leakage preceding the onset of labor by at least 2 h. PPROM was diagnosed visually using a sterile speculum examination to confirm the pooling of amniotic fluid in the vagina and an alkaline pH of cervicovaginal discharge. When necessary, it was confirmed by a positive test for the presence of IGFBP-1 (ACTIM PROM test; Medix Biochemica, Kauniainen, Finland) in the vaginal fluid.

The exclusion criteria included women with gestational hypertension, preeclampsia, diabetes mellitus, significant vaginal bleeding, foetuses with the presence of congenital or chromosomal fetal abnormalities, signs of fetal growth restriction (an estimated weight below the 10th percentile for appropriate gestational age) and fetal hypoxia.

Women with PPROM and PTB at less than 34 weeks of gestation with negative markers of inflammation [maternal white blood cell (WBC) count and serum CRP levels] were treated with corticosteroids to accelerate lung maturation (one or maximally two doses of betamethasone administered intramuscularly 24 h apart). Tocolysis was used only in those patients before 34 weeks of gestation with no sign of fetal infection, fetal distress, maternal infection and negative perinatal and perianal culture for GBS to allow the first course of antenatal corticosteroids to be completed and/or to transfer the patient to a tertiary care center. Prophylactic antibiotics were given to the majority of patients with preterm delivery to prevent signs of prepartum, intrapartum and postpartum infection.

In case of PPROM, induction of labor was initiated or an elective Cesarean section was performed within 24 to 72 h after the rupture of the membranes, depending on the gestational age of the pregnancy, the fetal status, the maternal serum levels of CRP and cervicovaginal Streptococcus β colonization.

The clinical characteristics of normal and complicated pregnancies are presented in Table I.

Processing of samples. Samples of placenta were stored in RNAlater (Ambion, Austin, TX, USA) at -80°C until further processing.

Total RNA was extracted from 25 mg of placental tissue followed by an enrichment procedure for small RNAs (siRNAs, microRNAs), according to manufacturer’s instructions using mirVana microRNA Isolation kit (Ambion). To minimize DNA contamination, we treated the eluted RNA with 5 µl of DNase I (Fermentas international, Inc., Burlington, ON, Canada) for 10 min, along with cervical changes, leading to delivery before the 37th week of gestation was completed.

Reverse transcriptase reaction using a stem-loop primer. Each of the 15 microRNAs (miR-512-5p, miR-515-5p, miR-516-5p,
Characteristic	Term in labor (n=20)	PTB (n=34)	PPROM (n=108)	P-value^a	P-value^b
Age (years)	31.00 (29.75-33.00)	30.00 (27.00-33.00)	31.00 (28.75-35.00)	0.430	0.248
Gestational age at delivery (weeks)	39.86 (38.71-40.57)	34.78 (31.00-35.92)	34.35 (31.14-36.00)	**<0.001**	0.956
Mode of delivery					0.445
Vaginal	16 (80%)	25 (73.5%)	70 (64.8%)	0.318	
Cesarean section	4 (20%)	9 (26.5%)	38 (33.2%)		
Fetal birth weight (g)	3450 (2954.5-3682.5)	2120 (1627.5-2742.5)	2310 (1540-2682.5)	**<0.001**	0.973
Fetal sex					0.216
Boy	12 (60%)	24 (70.6%)	61 (56.5%)	0.344	
Girl	8 (40%)	10 (29.4%)	47 (43.5%)		
BMI	26.64 (23.70-28.71)	25.00 (22.00-28.25)	24.97 (22.22-28.00)	0.199	0.929
Primiparity					0.342
Yes	-	-	13 (38.2%)	53 (49.1%)	NS
No	-	-	21 (61.8%)	55 (50.9%)	
Administration of corticosteroids					0.492
Yes	-	-	20 (58.8%)	72 (66.7%)	NS
No	-	-	14 (41.2%)	36 (33.3%)	
Administration of antibiotics					0.187
Yes	-	-	27 (79.4%)	102 (94.4%)	NS
No	-	-	7 (20.6%)	6 (5.6%)	
Tocolytic therapy					0.130
Yes	-	-	15 (44.1%)	29 (26.9%)	NS
No	-	-	19 (55.9%)	79 (73.1%)	
CRP levels (mg/l)	-	-	5.5 (2.9-20.0)	6.3 (3.0-10.2)	NS
WBC count (x10⁹/l)	-	-	13.7 (11.0-16.3)	12.4 (10.4-15.8)	NS
Apgar score <7; 5 min	-	-	2 (5.9%)	5 (4.6%)	NS
Apgar score <7; 10 min	-	-	1 (2.9%)	2 (1.9%)	NS
Umbilical blood pH	-	-	7.33 (7.30-7.36)	7.31 (7.28-7.36)	NS

Data are presented as median (25-75 percentile) for continuous variables and as number (percent) for categorical variables. Statistically significant results are marked in bold. P-value: The comparison among three groups. Continuous variables were compared using the Kruskal-Wallis test (exact two-tailed P-value). Categorical variables were compared using Fisher's exact test (exact two-tailed P-value). P-value: The comparison among women with spontaneous PTB and PPROM. Continuous variables were compared using the Kruskal-Wallis test. Categorical variables were compared using a Chi-square test. PTB, preterm birth; PPROM, preterm prelabor rupture of membranes; BMI, Body mass index; CRP, C-reactive protein; WBC, white blood cells.
miR-517-5p, miR-518b, miR-518f-5p, miR-519a, miR-519d, miR-519e-5p, miR-520a-5p, miR-520h, miR-524-5p, miR-525-5p, miR-526a and miR-526b-5p was reverse transcribed into complementary DNA (cDNA) using a TaqMan MicroRNA Assay, containing microRNA-specific stem-loop RT primers, and a TaqMan MicroRNA Reverse Transcription Kit (Applied Biosystems, Branchburg, NJ, USA) in a total reaction volume of 32 µl, according to manufacturer’s instructions. Reverse transcriptase reactions were performed using a 7,500 Real-Time PCR system (Applied Biosystems) with the following thermal cycling parameters: 30 min at 16°C; 30 min at 42°C; 5 min at 85°C; and then held at 4°C. Finally, 20 ng of the RNA template was used for each RT reaction. The characteristics of studied C19MC microRNAs are outlined in Table II.

Relative quantification of microRNAs by quantitative PCR. 15 µl of cDNA, corresponding to each selected microRNA, were mixed with specific primers and the TaqMan MGB probe (TaqMan MicroRNA Assay; Applied Biosystems), and the ingredients of the TaqMan Universal PCR Master Mix (Applied Biosystems) in a total reaction volume of 35 µl. The analysis was performed using a 7,500 Real-Time PCR System. TaqMan PCR conditions were set as described in the TaqMan guidelines using 50 cycles of 95°C for 15 sec and 60°C for 1 min with 2-min preincubation at 50°C required for optimal AmpErase UNG activity and 10-min preincubation at 95°C required for activation of AmpliTaq Gold DNA polymerase. All PCRs were performed in duplicate. Multiple negative controls such as NTC (water instead of cDNA sample), NAC (non-transcribed RNA samples), and genomic DNA (isolated from equal biological samples) did not generate any signals during PCR reactions. Each sample was considered positive if the amplification signal occurred before the 40th quantification cycle (Cq <40).

The expression of particular microRNA was determined using the comparative Cq method (70) relative to normalization factor (geometric mean of three selected endogenous controls) (71). RNA isolated from a randomly selected placenta derived from a normal gestation was chosen as a reference sample for relative quantification throughout the study. All 15 selected microRNAs were reliably detectable in the fetal part of the placenta, when a fixed concentration of RNA (5 ng/µl) was used in the analysis; however their expression differed significantly with respect to various Cq values, ranging from 17.4 to 35.2 (72).

The difference (ΔCq) between the Cq values of particular microRNA and the internal control (geometric mean of three selected endogenous controls: RNU6B, RNU38B and synthetic C. elegans microRNA cell-miR-39 was calculated for each sample). Synthetic C. elegans microRNA was used as an internal control for variations during the preparation of RNA, cDNA synthesis, and quantitative PCR. The comparative ΔACq calculation involved finding the difference between each sample’s ΔCq and the reference’s ΔCq. Finally, ΔACq

microRNA sequence	Expression in placenta	NCBI location	chromosome	microRNA	Assay name	miRBase ID
s-CAUCAGGCAGGGGACGACCUUUG	High expression	Chr.19: 54169933 - 54170016	+	hsa-miR-512-5p	hsa-miR-512-5p	NCBI: 54169933-54170016
s-UCUCCCAUCGAAAGACAGCAGCUUUG	High expression	Chr.19: 54182257 - 54182339	+	hsa-miR-515-5p	hsa-miR-515-5p	NCBI: 54182257-54182339
s-UCUCCCAUCGAAAGACAGCAGCUUUG	High expression	Chr.19: 54194135 - 54194219	+	hsa-miR-520a-5p	hsa-miR-520a-5p	NCBI: 54194135-54194219
s-UCUCCCAUCGAAAGACAGCAGCUUUG	High expression	Chr.19: 54203269 - 54203329	+	hsa-miR-520h	hsa-miR-520h	NCBI: 54203269-54203329
s-UCUCCCAUCGAAAGACAGCAGCUUUG	High expression	Chr.19: 54203269 - 54203329	+	hsa-miR-524-5p	hsa-miR-524-5p	NCBI: 54203269-54203329
s-UCUCCCAUCGAAAGACAGCAGCUUUG	High expression	Chr.19: 54203269 - 54203329	+	hsa-miR-525-5p	hsa-miR-525-5p	NCBI: 54203269-54203329
s-UCUCCCAUCGAAAGACAGCAGCUUUG	High expression	Chr.19: 54397665 - 54398535	+	hsa-miR-526a	hsa-miR-526a	NCBI: 54397665-54398535
s-UCUCCCAUCGAAAGACAGCAGCUUUG	High expression	Chr.19: 54397665 - 54398535	+	hsa-miR-526b-5p	hsa-miR-526b-5p	NCBI: 54397665-54398535
s-UCUCCCAUCGAAAGACAGCAGCUUUG	High expression	Chr.19: 545170016-545170016	+	hsa-miR-512-5p	hsa-miR-512-5p	NCBI: 545170016-545170016
s-UCUCCCAUCGAAAGACAGCAGCUUUG	High expression	Chr.19: 545170016-545170016	+	hsa-miR-515-5p	hsa-miR-515-5p	NCBI: 545170016-545170016
s-UCUCCCAUCGAAAGACAGCAGCUUUG	High expression	Chr.19: 545170016-545170016	+	hsa-miR-515-5p	hsa-miR-515-5p	NCBI: 545170016-545170016
s-UCUCCCAUCGAAAGACAGCAGCUUUG	High expression	Chr.19: 545170016-545170016	+	hsa-miR-515-5p	hsa-miR-515-5p	NCBI: 545170016-545170016
s-UCUCCCAUCGAAAGACAGCAGCUUUG	High expression	Chr.19: 545170016-545170016	+	hsa-miR-515-5p	hsa-miR-515-5p	NCBI: 545170016-545170016
s-UCUCCCAUCGAAAGACAGCAGCUUUG	High expression	Chr.19: 545170016-545170016	+	hsa-miR-515-5p	hsa-miR-515-5p	NCBI: 545170016-545170016
s-UCUCCCAUCGAAAGACAGCAGCUUUG	High expression	Chr.19: 545170016-545170016	+	hsa-miR-515-5p	hsa-miR-515-5p	NCBI: 545170016-545170016
s-UCUCCCAUCGAAAGACAGCAGCUUUG	High expression	Chr.19: 545170016-545170016	+	hsa-miR-515-5p	hsa-miR-515-5p	NCBI: 545170016-545170016
s-UCUCCCAUCGAAAGACAGCAGCUUUG	High expression	Chr.19: 545170016-545170016	+	hsa-miR-515-5p	hsa-miR-515-5p	NCBI: 545170016-545170016
s-UCUCCCAUCGAAAGACAGCAGCUUUG	High expression	Chr.19: 545170016-545170016	+	hsa-miR-515-5p	hsa-miR-515-5p	NCBI: 545170016-545170016
values were transformed to absolute values using the formula $2^{-\Delta Cq}$. This distinctive approach allows long-term, large-scale analysis composed of multiple analyses performed at different periods.

Statistical analysis. Data normality was assessed using the Shapiro-Wilk test, which showed that our data did not follow a normal distribution. Therefore, microRNA levels were compared between groups using non-parametric tests (the Mann-Whitney U test for the comparison between two groups and the Kruskal-Wallis test for the comparison among multiple groups). *p*<0.05 was considered to indicate a statistically significant difference.

Data analysis was performed and box plots were generated using Statistica software (version 9.0; StatSoft, Inc., Tulsa, OK, USA). Each box encompasses the median (dark horizontal line) of log-normalized gene expression values for microRNAs of interest in cohorts; the upper and lower limits of the boxes represent the 75 and 25th percentiles, respectively. The upper and lower whiskers represent the maximum and minimum values that are no more than 1.5 times the span of the interquartile range (range of the values between the 25th and the 75th percentiles). Outliers are indicated by circles and extremes by asterisks.

Correlation between variables including relative microRNA quantification in placental tissues and the gestational age at delivery, maternal WBC count at admission ($x10^9/l$), maternal serum levels of CRP at admission (mg/l) in patients with PPROM and PTB was calculated using the Spearman’s rank correlation coefficient (rho). If the correlation coefficient value is -1 or 1, there is a perfect negative or positive correlation. If it ranges within <-1; 0.5> or <0.5; 1>, there is a strong negative or positive correlation. If it varies from -0.5 to 0 and from 0 to 0.5, there is a weak negative or positive correlation. The significance level was established at a *p*-value of *p*<0.05.

Results

Initially, gene expression of C19MC microRNAs was compared between the groups of women at term in labor, spontaneous PTB and PPROM. Consecutively, an effect of gestational age on C19MC microRNA gene expression was evaluated in the group of PPROM and PTB patients.

Moreover, the association between C19MC microRNA gene expression in placental tissue and maternal WBC count and maternal serum CRP levels in patients with PPROM and PTB was determined.

Downregulation of C19MC microRNAs in PPROM pregnancies and upregulation of C19MC microRNAs in PTB pregnancies. Overall, the expression of C19MC microRNAs in placental tissue samples differed significantly or was on the border of statistical significance between the control group (term in labor pregnancies) and pregnancies affected with PPROM or PTB. While decreased expression of 1/15 C19MC microRNAs was observed in women with PPROM (miR-525-5p, *p*=0.025), the upregulation of 9/15 C19MC microRNAs was found in PTB pregnancies (miR-515-5p, *p*=0.040; miR-516b-5p, *p*=0.032; miR-518b, *p*=0.039; miR-518f-5p, *p*=0.036; miR-519a, *p*=0.032; miR-519e-5p, *p*=0.006; miR-520a-5p, *p*=0.014; miR-520h, *p*=0.039; and miR-526b-5p, *p*=0.022). The difference on the border of statistical significance was identified between the groups of PTB patients and term in labor pregnancies for miR-519d (*p*=0.067) and miR-526a (*p*=0.067) (Fig. 1, Table III).

Differentiation between gestational age-matched pregnancies with PTB and PPROM based on placental expression profile of C19MC microRNAs. Overall, the expression of miR-516b-5p (*p*=0.009), miR-517-5p (*p*=0.021), miR-518b (0.009, miR-518f-5p (0.033), miR-519a (*p*=0.022), miR-519d (0.003), miR-519e-5p (0.016), miR-520a-5p (0.018), miR-520h (0.005), miR-525-5p (0.015), miR-526a (0.006) and miR-526b-5p (0.007) differed significantly between the PTB group and pregnancies affected with PPROM. Lower expression rates were detected in patients with PPROM. A trend towards statistical significance for downregulation of miR-524-5p (*p*=0.064) was observed for PPROM pregnancies (Fig. 1, Table III).

The effect of the gestational age on C19MC microRNA expression in placental tissue within the groups of PPROM and PTB pregnancies. A weak negative correlation between the gestational age at delivery and microRNA gene expression in placental tissue within the group of PPROM patients was observed (miR-512-5p, *p*=0.344, *p*=0.002; miR-515-5p, *p*=0.342, *p*=0.002; miR-516b-5p, *p*=0.293, *p*=0.010; miR-517-5p, *p*=0.258, *p*=0.023; miR-518b, *p*=0.375, *p*=0.001; miR-518f-5p, *p*=0.316, *p*=0.005; miR-519a, *p*=0.293, *p*=0.010; miR-519d, *p*=0.333, *p*=0.003; miR-519e-5p, *p*=0.278, *p*=0.014; miR-520a-5p, *p*=0.257, *p*=0.024; miR-520h, *p*=0.334, *p*=0.003; miR-524-5p, *p*=0.351, *p*=0.001; miR-525-5p, *p*=0.284, *p*=0.012; miR-526a, *p*=0.308, *p*=0.006; and miR-526b-5p, *p*=0.453, *p*<0.001), which means that the expression of all 15 examined C19MC microRNAs decreased with advancing gestational age at delivery (Fig. 2). On the other hand, no association between microRNA gene expression in placental tissue and the gestational age at delivery was found in the group of PTB patients.

The association between C19MC microRNA gene expression in placental tissue and maternal serum CRP levels within the groups of PPROM and PTB pregnancies. No association between maternal serum CRP levels at admission and C19MC microRNA gene expression levels in placental tissues was found in the group of PPROM pregnancies (miR-512-5p: *p*=-0.117, *p*=0.333; miR-515-5p, *p*=-0.131, *p*=0.276; miR-516b-5p, *p*=-0.105, *p*=0.384; miR-517-5p, *p*=-0.167, *p*=0.164; miR-518b, *p*=-0.112, *p*=0.354; miR-518f-5p, *p*=-0.154, *p*=0.202; miR-519a, *p*=-0.149, *p*=0.215; miR-519d, *p*=-0.160, *p*=0.183; miR-519e-5p, *p*=-0.167, *p*=0.166; miR-520a-5p, *p*=-0.142, *p*=0.238; miR-520h, *p*=-0.134, *p*=0.268; miR-524-5p, *p*=-0.188, *p*=0.117; miR-525-5p, *p*=-0.145, *p*=0.229; miR-526a, *p*=-0.143, *p*=0.235; and miR-526b-5p, *p*=-0.027, *p*=0.823) and PTB pregnancies (miR-512-5p, *p*=-0.144, *p*=0.594; miR-515-5p, *p*=-0.114, *p*=0.672; miR-516b-5p, *p*=-0.058, *p*=0.828; miR-517-5p, *p*=0.036, *p*=0.892; miR-518b, *p*=-0.151, *p*=0.757; miR-518f-5p, *p*=-0.091, *p*=0.736; miR-519a, *p*=-0.139, *p*=0.605; miR-519d, *p*=0.035, *p*=0.896; miR-519e-5p, *p*=-0.061, *p*=0.820; miR-520a-5p, *p*=-0.005, *p*=0.982; miR-520h, *p*=-0.064, *p*=0.811; miR-524-5p,
Figure 1. Downregulation of C19MC microRNAs in PPROM pregnancies and upregulation of C19MC microRNAs in PTB pregnancies. Differentiation between gestational age matched PTB and PPROM pregnancies. Gene expression of C19MC microRNAs was compared between the groups of women at term in labor (20), spontaneous preterm birth (34 PTB) and preterm prelabor rupture of membranes (108 PPROM) using the Kruskal Wallis test for the comparison among multiple groups. The significance level was established at P<0.05. While decreased expression of (L) miR-525-5p was observed in women with PPROM, the upregulation of (A) miR-515-5p, (B) miR-516b-5p, (D) miR-518b, (E) miR-518f-5p, (F) miR-519a, (H) miR-519e-5p, (I) miR-520a-5p, (J) miR-520h and (N) miR-526b-5p was found in PTB pregnancies. The expression of (B) miR-516b-5p, (C) miR-517-5p, (D) miR-518b, (E) miR-518f-5p, (F) miR-519a, (G) miR-519d, (H) miR-519e-5p, (I) miR-520a-5p, (J) miR-520h, (L) miR-525-5p, (M) miR-526a and (N) miR-526b-5p differed significantly between the PTB group and pregnancies affected with PPROM. Data analysis was performed and box plots were generated using Statistica software (version 9.0; StatSoft, Inc., Tulsa, OK, USA). Each box encompasses the median (dark horizontal line) of log normalized gene expression values for microRNAs of interest in cohorts; the upper and lower limits of the boxes represent the 75th and 25th percentiles, respectively. The upper and lower whiskers represent the maximum and minimum values that are no more than 1.5 times the span of the interquartile range (range of the values between the 25 and the 75th percentiles). Outliers are indicated by circles and extremes by asterisks.
Table III. C19MC microRNA gene expression differentiate between particular groups: Term in labor pregnancies, spontaneous PTB and PPROM pregnancies.

Gene expression	Term in labor (n=20)	PTB (n=24)	PPROM (n=75)	P-value^a	P-value^b	P-value^c	P-value^d
miR-512-5p [median (range)]	0.223 (0.054-1.382)	0.521 (0.002-3.013)	0.261 (0.011-4.758)	0.254	0.147	0.106	0.880
miR-515-5p [median (range)]	0.173 (0.084-0.543)	0.521 (0.014-3.013)	0.255 (0.015-4.758)	0.181	0.149	0.040	0.625
miR-516b-5p [median (range)]	0.112 (0.038-0.543)	0.275 (0.002-2.256)	0.119 (0.002-2.444)	0.022	0.009	0.032	0.543
miR-517-5p [median (range)]	0.194 (0.022-1.677)	0.329 (0.002-4.376)	0.106 (0.001-3.153)	0.039	0.021	0.243	0.161
miR-518b [median (range)]	0.117 (0.035-0.447)	0.249 (0.009-1.957)	0.127 (0.005-1.439)	0.026	0.009	0.039	0.858
miR-518f-5p [median (range)]	0.141 (0.044-0.712)	0.330 (0.012-1.768)	0.129 (0.010-1.473)	0.068	0.033	0.036	0.901
miR-519a [median (range)]	0.107 (0.019-0.618)	0.223 (0.006-3.204)	0.127 (0.004-1.545)	0.048	0.022	0.032	0.967
miR-519d [median (range)]	0.123 (0.026-0.469)	0.297 (0.006-1.968)	0.078 (0.004-1.299)	0.007	0.003	0.067	0.166
miR-519e-5p [median (range)]	0.184 (0.049-0.718)	0.711 (0.035-3.056)	0.226 (0.003-4.189)	0.017	0.016	0.006	0.451
miR-520a-5p [median (range)]	0.101 (0.034-1.091)	0.413 (0.003-2.318)	0.133 (0.003-3.821)	0.033	0.018	0.014	0.823
miR-520h [median (range)]	0.151 (0.053-0.475)	0.277 (0.007-1.529)	0.105 (0.004-1.221)	0.010	0.005	0.039	0.226
miR-524-5p [median (range)]	0.114 (0.033-0.549)	0.162 (0.005-1.683)	0.071 (0.004-1.475)	0.098	0.064	0.273	0.178
miR-525-5p [median (range)]	0.226 (0.073-1.757)	0.328 (0.003-2.999)	0.091 (0.002-2.122)	0.011	0.015	0.595	0.025
miR-526a [median (range)]	0.135 (0.034-0.865)	0.348 (0.004-14.414)	0.097 (0.003-2.327)	0.014	0.006	0.067	0.209
miR-526b-5p [median (range)]	0.093 (0.052-4.020)	0.505 (0.009-11.458)	0.120 (0.010-46.755)	0.018	0.007	0.022	0.945

PTB, preterm birth; PPROM, preterm prelabor rupture of membranes. Continuous variables were compared using a non-parametric Kruskal-Wallis or Mann-Whitney test. Statistically significant results are marked in bold. Continuous variables are presented as median (range).^aP-value: A comparison among all three groups. ^bP-value: A comparison between group of women with spontaneous preterm birth and group of woman with preterm prelabor rupture of membranes. ^cP-value: A comparison between group of women at term in labor and group of woman with spontaneous preterm birth. ^dP-value: A comparison between group of women at term in labor and group of woman with preterm prelabor rupture of membranes.
Figure 2. Decline of C19MC microRNA expression in placental tissues with advancing gestational age in the group of preterm prelabor rupture of membranes (PPROM) pregnancies. Correlation between variables including relative microRNA quantification in placental tissues and the gestational age at delivery in patients with PPROM was calculated using the Spearman's rank correlation coefficient (rho). If the correlation coefficient value varies from 0.5 to 0, there is a weak negative correlation. The significance level was established at P<0.05. A weak negative correlation between the gestational age at delivery and gene expression of (A) miR-512-5p, (B) miR-515-5p, (C) miR-516b-5p, (D) miR-517-5p, (E) miR-518b, (F) miR-518f-5p, (G) miR-519a, (H) miR-519d, (I) miR-519e-5p, (J) miR-520a-5p, (K) miR-520h, (L) miR-524-5p, (M) miR-525-5p, (N) miR-526a and (O) miR-526b-5p in placental tissue within the group of PPROM patients was observed.
HROMADNIKOVA et al: PLACENTAL miRNAs IN PRETERM LABOR

No association between maternal WBC count at admission and C19MC microRNA gene expression levels in placental tissues was found in the group of PPROM pregnancies. Nevertheless, in the group of PTB pregnancies a strong positive correlation (miR-515-5p: $\rho=0.508$, $P=0.026$) between maternal WBC count at admission and gene expression of (A) miR-515-5p in placental tissues. A positive correlation between the levels of (B) miR-512-5p and (C) miR-519e-5p in placental tissues of PTB patients and maternal WBC count at admission was observed. A trend to positive correlation between the levels of (D) miR-516-5p, (E) miR-518b and (F) miR-520h in placental tissues of PTB patients and maternal WBC count at admission was observed. WBC, white blood cell; PTB, preterm birth.

Figure 3. Increase of C19MC microRNA expression in placental tissues with rising maternal WBC count in the group of PTB pregnancies. Correlation between variables including relative microRNA quantification in placental tissues and maternal WBC count at admission ($x10^9/l$) in patients with PTB was calculated using the Spearman's rank correlation coefficient (ρ). If the correlation coefficient value ranges within $<0.5; 1>$, there is a strong positive correlation. If it varies from 0 to 0.5, there is a weak positive correlation. The significance level was established at $P<0.05$. PTB pregnancies showed a strong positive correlation between maternal WBC count at admission and gene expression of (A) miR-515-5p in placental tissues. A positive correlation between the levels of (B) miR-512-5p and (C) miR-519e-5p in placental tissues of PTB patients and maternal WBC count at admission was observed. A trend to positive correlation between the levels of (D) miR-516-5p, (E) miR-518b and (F) miR-520h in placental tissues of PTB patients and maternal WBC count at admission was observed. WBC, white blood cell; PTB, preterm birth.

The association between C19MC microRNA gene expression in placental tissue and maternal WBC count within the groups of PPROM and PTB pregnancies. No association between maternal WBC count at admission and C19MC microRNA gene expression levels in placental tissues was found in the group of PPROM pregnancies.

$\rho=-0.132$, $P=0.624$; miR-525-5p, $\rho=0.069$, $P=0.799$; miR-526a, $\rho=-0.035$, $P=0.896$; and miR-526b-5p, $\rho=-0.117$, $P=0.948$).

The association between C19MC microRNA gene expression in placental tissue and maternal WBC count within the groups of PPROM and PTB pregnancies. No association between maternal WBC count at admission and C19MC microRNA gene expression levels in placental tissues was found in the group of PPROM pregnancies.
Discussion

Different C19MC microRNA expression profiles in different cell types within villous tissue and in different areas of placental tissues were documented. The expression of C19MC microRNAs has been observed at least in first-trimester and full-term placental tissues (73,74), human first and third trimester trophoblast cell lines, ACH-3P and AC1-M59 (75), and placenta-derived stromal cells (67). In our initial study, we have observed the presence of all 15 tested C19MC microRNAs (miR-512-5p, miR-515-5p, miR-516-5p, miR-517-5p, miR-518b, miR-518f-5p, miR-519a, miR-519d, miR-519e-5p, miR-520a-5p, miR-520h, miR-524-5p, miR-525-5p, miR-526a and miR-526b-5p) on the fetal side of the placenta (72). In addition, the set of microRNAs (miR-517c, miR-518a, miR-519d, and miR-520h) forming a cluster on chromosome 19q13 was observed to be expressed in umbilical cord blood CD34+ cells (76).

In addition, our recent study demonstrated that pregnancy-related complications such as gestational hypertension, preeclampsia and fetal growth restriction were associated with downregulation of those C19MC microRNAs that were previously demonstrated to be highly or exclusively expressed in placental tissues (77). The downregulation of 4 of 15 (miR-517-5p, miR-519d, miR-520a-5p and miR-525-5p), 6 of 15 (miR-517-5p, miR-518f-5p, miR-519a, miR-519d, miR-520a-5p and miR-525-5p) and 11 of 15 (miR-515-5p, miR-517-5p, miR-518b, miR-518f-5p, miR-519a, miR-519d, miR-520a-5p, miR-520h, miR-524-5p, miR-525-5p, miR-526a and miR-526b-5p) were found to be downregulated in placental tissues derived from PPROM pregnancies when compared with gestational age matched PTB pregnancies. A trend toward statistical significance for downregulation of miR-524-5p was observed in PPROM pregnancies.

As the cause of labor still remains elusive, the exact cause of PTB is also unsolved. In fact, the cause of 50% of PTBs is never determined. Labor is a complex process involving many factors. Four different pathways have been identified that can result in PTB and have considerable evidence: precocious fetal endocrine activation, uterine overdistension (placental abruption), decidual bleeding, and intrauterine inflammation/infection (78). Activation of one or more of these pathways may happen gradually over weeks, even months. From a practical point a number of factors have been identified that are associated with PTB, however, an association does not establish causality. Nevertheless, altered miRNA networks may be a consequence of abnormal physiology leading to PTB. In addition, microRNA alterations can disrupt protein homeostasis and may be at the root of PTB.

While the full repertoire of the biological action of C19MC microRNAs remains to be established, data from various expression studies of C19MC microRNAs imply a role for them in cell proliferation, self-renewal, angiogenesis, and particularly in pro-/anti-cancer activity (79-81). In fact, there is not much research data about the function of C19MC microRNAs in the literature.

Available prediction algorithms usually predict hundreds of potential target genes for a single microRNA, but often generate false-positive candidates (82). Although methods to comprehensively identify miRNAs that regulate individual genes of interest are currently available, pathways involving miRNAs are often complex regulatory networks, whose regulation is difficult to understand. Additionally, it makes the direct interpretation of experimental data complicated. Many genes are targeted for repression by a high number of miRNAs, which seem to regulate those genes cooperatively (83).

The decreased levels of C19MC microRNAs in placental tissues of patients with PPROM may lead to upregulation of relevant proteins involved in the direction of key biological pathways such as premature aging of the fetal membranes where senescence, apoptosis and proteolysis play an important role (84-86). The cause of PPROM is multifactorial and next to intraamniotic infection, reduction in membrane collagen content, stretched membranes, vasculopathy in placentation and decidual haemorrhage are considered to be possible mechanisms underlying PPROM (33,35). We have previously published an extensive list of predicted target genes of all downregulated C19MC microRNAs in patients with gestational hypertension, preeclampsia and fetal growth restriction involved in the regulation of the immune system and the inflammatory response (77).

Among these predicted target genes a lot of those involved in apoptosis were identified (TP53, tumor protein p53; CASP2, Caspase-2, apoptosis-related cysteine peptidase; CASP3, Caspase-3, apoptosis-related cysteine peptidase; CASP10,
Caspase-10, apoptosis-related cysteine peptidase; BCL2, B-cell CLL/lymphoma 2; BCL10, B-cell CLL/lymphoma 10; TNF, Tumor necrosis factor; TRAF6, TNF receptor associated factor 6; E3, Ubiquitin protein ligase) that have been previously shown to be upregulated in placental tissues derived from patients with preeclampsia and IUGR (77.87-99). Therefore the downregulation of C19MC microRNAs in placental tissues of patients with PPROM may result in increased levels of these proteins, whose levels are exaggerated in pregnancies with other pregnancy-related complications such as preeclampsia and IUGR.

No association between C19MC microRNA gene expression in placental tissues and maternal serum CRP at admission in groups of PPROM and PTB patients was observed.

Likewise, no effect of maternal WBC count on C19MC microRNA gene expression levels of any of the microRNAs in the group of PPROM patients was demonstrated. Both CRP and leucocyte levels were shown to be increased in serum of patients preceding PPROM (46.100). Nevertheless, maternal WBC count and CRP levels are not specific to intrauterine infections and may be influenced by other factors (101). However, in the group of patients with PTB a positive correlation between 3 out of 15 studied C19MC microRNAs (miR-512-5p, miR-515-5p and miR-519e-5p) and maternal WBC count was identified. A trend towards upregulation was observed for other 3 C19MC microRNAs (miR-516-5p, miR-518b and miR-520h) in the group of PTB patients with increased WBC levels.

Nevertheless, in PPROM group all examined C19MC microRNAs displayed decreased expression with advancing gestational age, which suggests a functional involvement of microRNAs displayed decreased expression with advancing gestational age, which suggests a functional involvement of microRNAs in the translational inhibition of multiple mRNA targets. Parallel, Montenegro et al (51) brought similar finding for other 13 microRNAs (miR-199b, miR-373, miR-218, miR-154, miR-338, miR-198, miR-214, miR-370, miR-213, miR-107, miR-199a, miR-222, and miR-330), whose levels were also decreased with advancing gestational age, but this study was performed on chorioamniotic membranes in patients with preterm labor without histologic chorioamnionitis.

In conclusion, this study demonstrated for the first time that PPROM and PTB were associated with altered C19MC microRNA expression profile. The expression profile of placental specific microRNAs was the most distinct between PTB group and women at term in labor, and between gestational age-matched PPROM and PTB groups.

Acknowledgements

The study was supported by the Charles University research programmes (nos. PRVOUK P32 and 260275/SVV/2016).

References

1. American College of Obstetricians and Gynecologists; Committee on Practice Bulletins-Obstetrics: ACOG practice bulletin no. 127: Management of preterm labor. Obstet Gynecol 119: 1308-1317, 2012.
2. Goldenberg RL, Culhane JF, Iams JD and Romero R: Epidemiology and causes of preterm birth. Lancet 371: 75-84, 2008.
3. Martin JA, Hamilton BE, Ventura SJ, Menacker F, Park MM and Sutton PD: Births: Final data for 2001. Natl Vital Stat Rep 51: 1-102, 2002.
4. McCormic MC: The contribution of low birth weight to infant mortality and childhood morbidity. N Engl J Med 312: 82-90, 1985.
5. Saigal S and Doyle LW: An overview of mortality and sequelae of preterm birth from infancy to adulthood. Lancet 371: 261-269, 2008.
6. Mathews TJ, Menacker F and MacDorman MF; Centres for Disease Control and Prevention, National Center for Health Statistics: Infant mortality statistics from the 2002 period: Linked birth/infant death data set. Natl Vital Stat Rep 53: 1-29, 2004.
7. Hack M and Fanaroff AA: Outcomes of children of extremely low birthweight and gestational age in the 1990s. Semin Neonatol 5: 89-106, 1999.
8. Moutquin JM, Milot Roy V and Iorio O: Preterm prevention: Effectiveness of current strategies. J Soc Obstet Gynecol Can 18: 571-588, 1996.
9. Romero R, Espinoza J, Kusanovic JP, Gotsch F, Hassan S, Erez O, Chiaworongsa T and Mazor M: The preterm parturition syndrome. BJOG 113 (Suppl 3): S17-S42, 2006.
10. Rosen T, Kuczynski E, O’Neill LM, Funai EF and Lockwood CJ: Plasma levels of trombin-antithrombin complexes predict preterm premature rupture of fetal membranes. J Matern Fetal Med 10: 297-300, 2001.
11. Tian CF, Lv FH, Wang M and Gu XS: Serum β-human chorionic gonadotropin and interleukin-1 as diagnostic biomarkers for the premature rupture of membranes and chorioamnionitis. Biomed Rep 2: 905-909, 2014.
12. Anderson P and Doyle LW: Victorian Infant Collaborative Study Group: Neurobehavioral outcomes of school-age children born extremely low birth weight or very preterm in 1990s. JAMA 289: 724-732, 2003.
13. Bhatta AT, Cleves MA, Casey PH, Craddock MM and Anand KJ: Cognitive and behavioral outcomes of school-aged children who were born preterm: A meta-analysis. JAMA 288: 728-737, 2002.
14. Marlow N, Wolker D, Bracewell MA and Samara M; EPI Cure Study Group: Neurologic and developmental disability at six years of age after extremely preterm birth. N Engl J Med 352: 9-19, 2005.
15. Hack M, Taylor HG, Drotar D, Schluchter M, Cartar L, Andreas L, Wilson-Costello D and Klein N: Chronic conditions, functional limitations, and special health care needs of school-aged children born with extremely low-birth-weight in the 1990s. JAMA 294: 318-325, 2002.
16. Slattery MM and Morrison JJ: Preterm delivery. Lancet 360: 1489-1497, 2002.
17. El-Bastawissi AY, Williams MA, Riley DE, Hitti J and Krieger JN: Amniotic fluid interleukin-6 and preterm delivery: A review. Obstet Gynecol 95: 1056-1064, 2000.
18. Petrov S, Mehta Z, Hockley C, Cook-Mozaffari P, Henderson J and Goldacre M: The impact of preterm birth on patient inpatient admissions and costs during the first 5 years of life. Pediatrics 112: 1290-1297, 2003.
19. Petrov S: The economic consequences of preterm birth during the first 10 years of life. BJOG 112 (Suppl 1): S10-S15, 2005.
20. Guinn DA, Goldenberg RL, Hauth JC, Andrews WW, Thom E and Romero R: Risk factors for the development of preterm rupture of the membranes after arrest of preterm labor. Am J Obstet Gynecol 173: 1310-1315, 1995.
21. Goldenberg RL, Hauth JC and Andrews WW: Intrauterine infection and preterm delivery. N Engl J Med 342: 1500-1507, 2000.
22. Challis JR, Lockwood CJ, Myatt L, Norman JE, Strauss JP III and Petragnia F: Inflammation and pregnancy. Reprod Sci 16: 206-215, 2009.
23. Keelan JA: Pharmacological inhibition of inflammatory pathways for the prevention of preterm birth. J Reprod Immunol 88: 176-184, 2011.
24. Williams MA, Mittendorf R, Stubblefield PG, Lieberman E, Schoenbaum SC and Monson RR: Cigarettes, coffee, and preterm premature rupture of the membranes. Am J Epidemiol 135: 895-903, 1992.
25. Ekwo EE, Gosselink CA, Woolson R and Moawad A: Risks for premature rupture of amniotic membranes. Int J Epidemiol 22: 495-503, 1993.
26. Hadley CB, Main DM and Gabbe SG: Risk factors for preterm premature rupture of the fetal membranes. Am J Perinatol 7: 374-379, 1990.
27. Naeye RL and Peters EC: Causes and consequences of premature rupture of fetal membranes. Lancet 1: 192-194, 1980.
28. Nonn R, Taylor RN and Fortunato SJ: Chorioamnionitis-a complex pathophysiologic syndrome. Placenta 31: 113-120, 2010.
Montenegro D, Romero R, Pineles BL, Tarca AL, Kim YM, Draghici S, Kusanovic JP, Kim JS, Lee DC, Erez O, Gotsch F, et al: Expression patterns of microRNAs in the chorioamniotic membranes: A role for microRNAs in human pregnancy and parturition. J Pathol 217: 113-121, 2009.

Mayor-Lynn K, Toloubeydokht T, Cruz AC and Chegini N: Expression profile of microRNAs and mRNAs in human placenta from pregnancies complicated by preclampsia and preterm labor. Reprod Sci 18: 462-471, 2011.

Elovitz MA, Brown A, Anton L, Gilstrop M, Heiser L and Bastek J: Distinct cervical microRNA profiles are present in women destined to have a preterm birth. Am J Obstet Gynecol 210: 221.e1-e11, 2014.

Sanders AP, Burris HH, Just AC, Motta V, Svensson K, Mercado-Garcia A, Erez O, Schwartz J, Tellez-Rojo MM, Wright RO and Baccarelli AA: microRNA expression in the cervix during pregnancy is associated with length of gestation. Epigenetics 10: 221-228, 2015.

Elovitz MA, Anton L, Bastek J and Brown AG: Can microRNA profiling in maternal blood identify women at risk for preterm birth? Am J Obstet Gynecol 212: 762.e1-e5, 2015.

Pineles BL, Romero R, Montenegro D, Tarca AL, Han YM, Kim YM, Draghici S, Espinoza J, Kusanovic JP, Mittal P, et al: Distinct subsets of microRNAs are expressed differentially in the human placentas of patients with preclampsia. Am J Obstet Gynecol 196: 261.e1-e10, 2007.

Hu Y, Li P, Hao S, Liu L, Zhao J and Hou Y: Differential expression of microRNAs in the placentae of Chinese patients with severe pre-eclampsia. Clin Chem Lab Med 47: 923-929, 2009.

Zhu XM, Han T, Sargent IL, Yin GW and Yao YQ: Differential expression profile of microRNAs in human placentas from pre eclamptic pregnancies vs normal pregnancies. Am J Obstet Gynecol 200: 661.e1-e7, 2009.

Maccagni MA, Padbury JF and Marsit CJ: miR-16 and miR-21 expression in the placenta is associated with fetal growth. PLoS One 6: e2120, 2011.

Enquobahrie DA, Abetew DF, Sorensen TK, Willoughby D, Chidambaram K and Williams MA: Placental microRNA expression in pregnancies complicated by preclampsia. Am J Obstet Gynecol 204: 178.e1-e21, 2011.

Higashijima A, Miura K, Mishima H, Kinoshita A, Jo O, Abe S, Hasegawa Y, Miura S, Yamasaki K, Yoshida A, et al: Characterization of placenta-specific microRNAs in fetal growth restriction pregnancy. Prenat Diagn 33: 214-222, 2013.

Bortolin-Cavaillé ML, Dance M, Weber M and Cavaillé J: C19MC microRNAs are processed from introns of large Pol-II, specific chromosomal rearrangements in a subgroup of thyroid carcinomas. J Mol Endocrinol 49: 115-124, 2012.

Phocas I, Sarandakou A, Kontoravdis A, Chryssicopoulos A, Mincione G, Rizzoni S, Scillitani A, Vicentini L, Cetani F, Mantovani G, Vaira V, Elli F, Forno I, Guarnieri V, Verdelli C, Ferrero S, et al: The microRNA gene cluster (C19MC) is imprinted in the placenta. J Pathol 227: 270-274, 2012.

Augello C, Vaira V, Caruso L, Destro A, Maggioni M, Park YN, Enquobahrie DA, Abetew DF, Sorensen TK, Willoughby D, Monteiro C and Williams MA: Placental microRNA expression profiles in normal human tissue. BMC Mol Biol 13: 12, 2012.

Montenegro D, Romero R, Pineles BL, Tarca AL, Kim YM, Draghici S, Kusanovic JP, Kim JS, Lee DC, Erez O, Gotsch F, et al: Expression patterns of microRNAs in the chorioamniotic membranes: A role for microRNAs in human pregnancy and parturition. J Pathol 217: 113-121, 2009.

Mayor-Lynn K, Toloubeydokht T, Cruz AC and Chegini N: Expression profile of microRNAs and mRNAs in human placenta from pregnancies complicated by preclampsia and preterm labor. Reprod Sci 18: 462-471, 2011.

Elovitz MA, Brown A, Anton L, Gilstrop M, Heiser L and Bastek J: Distinct cervical microRNA profiles are present in women destined to have a preterm birth. Am J Obstet Gynecol 210: 221.e1-e11, 2014.

Sanders AP, Burris HH, Just AC, Motta V, Svensson K, Mercado-Garcia A, Erez O, Schwartz J, Tellez-Rojo MM, Wright RO and Baccarelli AA: microRNA expression in the cervix during pregnancy is associated with length of gestation. Epigenetics 10: 221-228, 2015.

Elovitz MA, Anton L, Bastek J and Brown AG: Can microRNA profiling in maternal blood identify women at risk for preterm birth? Am J Obstet Gynecol 212: 762.e1-e5, 2015.

Pineles BL, Romero R, Montenegro D, Tarca AL, Han YM, Kim YM, Draghici S, Espinoza J, Kusanovic JP, Mittal P, et al: Distinct subsets of microRNAs are expressed differentially in the human placentas of patients with preclampsia. Am J Obstet Gynecol 196: 261.e1-e10, 2007.

Hu Y, Li P, Hao S, Liu L, Zhao J and Hou Y: Differential expression of microRNAs in the placentae of Chinese patients with severe pre-eclampsia. Clin Chem Lab Med 47: 923-929, 2009.

Zhu XM, Han T, Sargent IL, Yin GW and Yao YQ: Differential expression profile of microRNAs in human placentas from pre eclamptic pregnancies vs normal pregnancies. Am J Obstet Gynecol 200: 661.e1-e7, 2009.

Maccagni MA, Padbury JF and Marsit CJ: miR-16 and miR-21 expression in the placenta is associated with fetal growth. PLoS One 6: e2120, 2011.

Enquobahrie DA, Abetew DF, Sorensen TK, Willoughby D, Chidambaram K and Williams MA: Placental microRNA expression in pregnancies complicated by preclampsia. Am J Obstet Gynecol 204: 178.e1-e21, 2011.

Higashijima A, Miura K, Mishima H, Kinoshita A, Jo O, Abe S, Hasegawa Y, Miura S, Yamasaki K, Yoshida A, et al: Characterization of placenta-specific microRNAs in fetal growth restriction pregnancy. Prenat Diagn 33: 214-222, 2013.

Bortolin-Cavaillé ML, Dance M, Weber M and Cavaillé J: C19MC microRNAs are processed from introns of large Pol-II, non-protein-coding transcripts. Nucleic Acids Res 37: 3464-3473, 2009.

Nogov-Dancer M, Abu-Amero S, Al-Khtib M, Lefèvre A, Coullin P, Moore GE and Cavaillé J: The primate-specific microRNA gene cluster (C19MC) is imprinted in the placenta. Mol Genet Genom 19: 3566-3582, 2010.

Vaira V, Ellis F, Forno I, Guarnieri V, Verdelli C, Ferrero S, Scillitani A, Vicentini L, Cetani F, Mantovani G, et al: The microRNA cluster C19MC is deregulated in parathyroid tumours. J Mol Endocrinol 49: 115-124, 2012.

Rippe V, Dittberner L, Lorenz VN, Drieschner N, Nimzyk R, Sendt W, Junker K, Belge G and Bullerdiek J: The two stem cell microRNA gene clusters C19MC and miR-37i-3 are activated by specific chromosomal rearrangements in a subgroup of thyroid adenomas. PLoS One 5: e9485, 2010.

Flor I and Bullerdiek J: The dark side of a success story: microRNAs of the C19MC cluster in human tumours. J Pathol 227: 270-274, 2012.

Augello C, Vaira V, Caruso L, Destro A, Maggioni M, Park YN, Montorsi M, Santambrogio R, Roncalli M and Bosari S: MicroRNA profiling of hepatocarcinogenesis identifies C19MC cluster as a novel prognostic biomarker in hepatocellular carcinoma. Liver Int 32: 772-782, 2012.

Liang Y, Ridzom D, Wong L and Chen C: Characterization of microRNA expression profiles in normal human tissue. BMC Genomics 8: 166, 2007.

Liu YK and Schmittgen TD: Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25: 402-408, 2001.

Vandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N, De Paepe A and Speleman F: Accurate normalization of real-time quantitative PCR data by geometric average of multiple internal control genes. Genome Biol 3: RESEARCH0034, 2002.
87. Kotlabova K, Doucha J and Hromadnikova I: Placental-specific microRNA in maternal circulation- identification of appropriate pregnancy-associated microRNAs with diagnostic potential. J Reprod Immunol 89: 185-191, 2011.

86. Luo SS, Ishibashi O, Ishikawa G, Ishikawa T, Katayama A, Mishima T, Takizawa T, Shigihara T, Goto T, Izumi A, et al: Human villous trophoblasts express and secrete placenta-specific microRNAs into maternal circulation via exosomes. Biol Reprod 81: 717-729, 2009.

85. Wang D, Song W and Na Q: The emerging roles of placenta-specific microRNAs in regulating trophoblast proliferation during the first trimester. Aust N Z Obstet Gynaecol 52: 565-570, 2012.

84. Hromadnikova I, Kotlabova K, Ondrackova M, Pirkova P, Kestlerova A, Novotna V, Hympanova L and Krofa L: Expression profile of C19MC microRNAs in placental tissue in pregnancy-related complications. DNA Cell Biol 34: 437-457, 2015.

83. Simhan HN and Caritis SN: Prevention of preterm delivery. N Engl J Med 357: 477-487, 2007.

82. Li M, Lee KF, Lu Y, Clarke I, Shih D, Eberhart C, Collins VP, Van Meter T, Picard D, Zhou L, et al: Frequent amplification of a chr19q13.41 microRNA polycistron in aggressive primitive neuroectodermal brain tumors. Cancer Cell 16: 533-546, 2009.

81. Ouyang Y, Mouillet JF, Coyne CB and Sadovsky Y: Review: Placental-specific microRNAs in exosomes - good things come in nano-packages. Placenta 35 (Suppl): S69-S73, 2014.

80. Keung MH, Chan LS, Kwok HH, Wong RN and Yue PY: Role of microRNA-320h in 20(R)-ginsenoside-Rg3-mediated angiogenesis. J Ginseng Res 40: 151-159, 2016.

79. Moraes-Prieto DM, Chaiwaryan W, Ospina-Prieto S, Schneider U, Herrmann J, Gruhn B and Markert UR: MicroRNA expression profiles of trophoblastic cells. Placenta 33: 725-734, 2012.

78. Merkerova M, Vaskova A, Belickova M and Bruchova H: MicroRNA expression profiles in umbilical cord blood cell lineages. Stem Cells Dev 19: 17-26, 2010.

77. Hromadnikova I, Kotlabova K, Ondrackova M, Pirkova P, Kestlerova A, Novotna V, Hympanova L and Krofa L: Expression profile of C19MC microRNAs in placental tissue in pregnancy-related complications. DNA Cell Biol 34: 437-457, 2015.

76. Schmitz U, Herrmann J, Gruhn B and Markert UR: MicroRNA expression profiles in umbilical cord blood cell lineages. Stem Cells Dev 19: 17-26, 2010.

75. Morales-Prieto DM, Chaiwaryan W, Ospina-Prieto S, Schneider U, Herrmann J, Gruhn B and Markert UR: MicroRNA expression profiles of trophoblastic cells. Placenta 33: 725-734, 2012.