Resource Letter: Bio-molecular Nano-machines: where Physics, Chemistry, Biology and Technology meet

Debashish Chowdhury,*
Department of Physics,
Indian Institute of Technology,
Kanpur 208016, India

July 17, 2008

Abstract

Cell is the structural and functional unit of life. This Resource Letter serves as a guide to the literature on nano-machines which drive not only intracellular movements, but also motility of the cell. These machines are usually proteins or macromolecular assemblies which require appropriate fuel for their operations. Although, traditionally, these machines were subjects of investigation in biology and biochemistry, increasing use of the concepts and techniques of physics in recent years have contributed to the quantitative understanding of the fundamental principles underlying their operational mechanisms. The possibility of exploiting these principles for the design and control of artificial nano-machines has opened up a new frontier in the bottom-up approach to nanotechnology.

Some are to be read, some to be studied, and some may be neglected entirely, not only without detriment, but with advantage. - Anonymous

1 Introduction

Motility is the hallmark of life. From the sprinting leopard to flying birds and swimming fish, movement is one of life’s central attributes. The mechanisms of motility at the level of macroscopically large organisms are the main topics of investigation in biomechanics and insights gained from these investigations find applications, for example, in robotics. Not only animals, but even plants also move in response to external stimuli. Results of pioneering systematic study of this phenomenon were reported already in the nineteenth century by Charles Darwin in a classic book, titled The power of movement in plants, which was co-authored by his son.

In living systems, movements take place at all levels of biological organization- from molecular movements at the subcellular levels and cellular movements to movements of organs and organ systems. However, in this article, we focus exclusively on the molecular mechanisms of motility at the level of single cells (both unicellular organisms and individual cells of multicellular organisms) and those at the subcellular level.

1. L. Chong, E. Culotta and A. Sugden, On the move, Science 288, 79 (2000).

2. A.C. Leopold and M.J. Jaffe, Many modes of movement, Science 288, 2131-2132 (2000).

3. D.W. Maughan and J.O. Vigoreaux, An integrated view of insect flight muscle: genes, motor molecules, and motion, News Physiol. Sci. 14, 87-92 (1999).
1.1 Cell movements: molecular mechanisms of motility

Antonie van Leeuwenhoek made the first systematic study of the motility of unicellular microorganisms using his primitive microscope. Since then, over the last three centuries, swimming, crawling, gliding and twitching of single cells have fascinated generations of biologists. However, investigation of the molecular mechanisms of cellular motility began only a few decades ago. The motility of a cell is the outcome of the coordination of many intracellular dynamical processes. Interestingly, intracellular movements also drive motility and division of the cell itself. We’ll present a systematic list of these developments from the perspective of physicists.

4. H.C. Berg, *E. coli in Motion*, (Springer, 2003).

5. D. Bray, *Cell Movements: from molecules to motility* (Garland Publishig, Taylor and Francis, 2001).

6. D.A. Fletcher and J.A. Theriot, *An introduction to cell motility for the physical scientist*, Phys. Biol. 1, T1-T10 (2004).

1.2 Intracellular movements: machines and mechanisms

“Nature, in order to carry out the marvelous operations in animals and plants, has been pleased to construct their organized bodies with a very large number of machines, which are of necessity made up of extremely minute parts so shaped and situated, such as to form a marvelous organ, the composition of which are usually invisible to the naked eye, without the aid of the microscope”.

Marcelo Malpighi, 17th century (as quoted by Marco Piccolino, Nat. Rev. Mol. Cell Biol. 1, 149-153 (2000)).

Imagine an under water “metro city” which is, however, only about 10µm long in each direction! In this city, there are “highways” and “railroad” tracks on which motorized “vehicles” transport cargo to various destinations. It has an elaborate mechanism of preserving the integrity of the chemically encoded blueprint of the construction and maintenance of the city. The “factories” not only supply their products for the construction and repair works, but also manufacture the components of the machines. This eco-friendly city re-charges spent “chemical fuel” in uniquely designed “power plants”. This city also uses a few “alternative energy” sources in some operations. Finally, it has special “waste-disposal plants” which degrade waste into products that are recycled as raw materials for fresh synthesis. This is not the plot of a science fiction, but a dramatized picture of the dynamic interior of a cell.

In an influential paper, published in 1998, Bruce Alberts emphasized that “the entire cell can be viewed as a factory that contains an elaborate network of interlocking assembly lines, each of which is composed of a set of large protein machines”. Just like their macroscopic counterparts, molecular machines have an “engine”, an input and an output. Some of these machines are analogous to motors whereas some others are like pumps; both linear and rotary motors have been identified. Some motors move on protein filaments whereas others move on nucleic acid strands (i.e., DNA or RNA).

7. M. Piccolino, *Biological machines: from mills to molecules*, Nature Rev. Mol. Cell Biol. 1, 149-153 (2000).

8. C. Mavroidis, A. Dubey and M.L. Yarmush, *Molecular Machines*, in: Annual Rev. Biomed. Engg., 6, 363-395 (2004).

9. T.D. Pollard, *Proteins as machines*, Nature 355, 17-18 (1992).

10. B. Alberts and R. Miake-Lye, *Unscrambling the puzzle of biological machines: the importance of the details*, Cell, 68, 415-420 (1992).

11. B. Alberts, *The cell as a collection of protein machines: preparing the next generation of molecular biologists*, Cell 92(3), 291-294 (1998).

12. A. Baumgartner, *Biomolecular machines*, in: *Handbook of Theoretical and Computational
In spite of the striking similarities, it is the differences between molecular machines and their macroscopic counterparts that makes the studies of these systems so interesting from the perspective of physicists. Biomolecular machines are usually protein or macromolecular complex. These operate in a domain far from thermodynamic equilibrium where the appropriate units of length, time, force and energy are, nano-meter, milli-second, pico-Newton and $k_B T$, respectively (k_B being the Boltzmann constant and T is the absolute temperature). The viscous forces and random thermal forces on a nano-machine dominate over the inertial forces. These are made of soft matter and are driven by “isothermal” engines. Molecular motors can convert chemical energy directly into mechanical energy.

13. D’Arcy Thompson, On Growth and Form, vol.I reprinted 2nd edition (Cambridge University Press, 1963).

1.3 Outline of organization

We divide the intracellular molecular cargoes into three different types: (i) membrane-bound cargoes, e.g., vesicles and organelles; (ii) macromolecules, e.g., DNA, RNA and proteins; (iii) medium-size organic molecules and small inorganic ions. In part I we study motor proteins which transport the membrane-bound cargoes. In part II we consider all those machines which are involved in the synthesis, export/import, packaging, other kinds of manipulations and degradation of the macromolecules. In part III we focus on machines which transport medium-size organic molecules and small inorganic ions across plasma membrane or internal membranes of eukaryotic cells; transporters of ions are usually referred to as pumps because ions are transported against their natural electro-chemical gradients. Finally, in part IV we present machines and mechanisms which drive cell motility and cell division.

Based on the nature of input and output energies, machines can be classified. For example, the motor of hair dryer is an electro-mechanical machine. But, in this article we’ll not consider purely chemo-chemical machines although some of these perform important biological functions.

14. J. Howard, Mechanics of motor proteins and the cytoskeleton, (Sinauer Associates, Sunderland, 2001).

15. M. Schliwa, (ed.) Molecular Motors, (Wiley-VCH, 2003).

16. D. D. Hackney and F. Tanamoi, The Enzymes, vol.XXIII Energy Coupling and Molecular Motors (Elsevier, 2004).

17. J.M. Squire and D.A.D. Parry, Fibrous proteins: muscle and molecular motors, (Elsevier 2005).

18. A.B. Kolomeisky and M.E. Fisher, Molecular motors: a theorist’s perspective, Annu. Rev. Phys. Chem. 58, 675-695 (2007).

19. J. Howard, Molecular mechanics of cells and tissues, Cellular and Molecular Bioengineering 1, 24-32 (2008).

1.4 Criteria for selection

We have used the following guidelines for selection of papers for this resource letter:
(i) To our knowledge, at present, there is no single book where a reader can find a comprehensive coverage of all the molecular machines. Therefore, in this resource letter, we list monographs and edited collections of reviews on specific machines and mechanisms.

(ii) Review articles usually provide a critical overview of progress in an area of research and, normally, remain useful to both beginners as well as experts for a relatively longer period of time as compared to original papers. Therefore, in this resource letter, review articles guide the reader through the enormous literature on experimental works on molecular machines. Occasionally, we also list original experimental papers; most of these are either classic or too recent to be discussed in any review article, or introduce new models.

(iii) Since the emphasis of this resource letter is on quantitative models of mechanisms of molecular machines, many original papers on theoretical works have been listed together with the review articles.

(iv) Results of fundamental research on the structure and function of molecular machines not only have important biomedical implications but may also find practical applications in bottom-up approach to designing and manufacturing artificial nano-machines. Therefore, papers on bio-nanotechnology which satisfy the criteria (ii) or (iii) above have also been listed.

(v) Unpublished manuscripts (including those posted in public domain archives) have not been listed. But, the final version of some Ph.D. theses have been included because these provide technical details which are not available in the papers published elsewhere by the author.

1.5 List of review series and journals

In this multidisciplinary area of research, articles appear in journals that cover physics, chemistry, biology and (nano-)technology. We list here only a few major sources for review articles as well as original papers. But, this list is neither exhaustive nor in the order of any ranking.

(1) “Annual Review” Series (e.g., Annual Reviews of Biophysics and Biomolecular Structure).
(2) “Trends” series (e.g., Trends in Cell Biology).
(3) “Current Opinion” series (e.g., Current Opinion in Structural Biology).
(4) Bioessays,
(5) “Nature Reviews” series (e.g., Nature Reviews in Microbiology).
(6) Nature,
(7) Nature Cell Biology,
(8) Nature Structural and Molecular Biology,
(9) Science,
(10) Proceedings of the National Academy of Sciences, USA, (PNAS),
(11) Cell,
(12) Molecular Cell,
(13) Current Biology.
(14) Journal of Molecular Biology,
(15) Journal of Cell Biology,
(16) Journal of Biological Chemistry,
(17) Biophysical Journal,
(18) Physical Review Letters,
(19) Physical Review E,
(20) Physical Biology,
(21) Europhysics Letters,
(22) European Physical Journal E.
(23) EMBO Reports,
(24) EMBO Journal,
(25) European Biophysical Journal.

2 Experimental techniques for studying operational mechanisms of molecular machines

The most profound scientific revolutions are those that provide an entirely new way of viewing and studying a field. These are the ones that provoke new questions and question old answers and in the end give us a new understanding of what we thought we understood. Often they are occasioned by the invention of novel instruments of techniques; the telescope, the microscope, and X-ray diffraction come to mind. It may be that such a revolution is occurring in biochemistry today through the development of methods that allow us to investigate the dynamics of single
Seeing is believing. Telescopes opened up the celestial world in front of our eyes. The invention of the optical microscopes in the seventeenth century made it possible to have a glimpse of the world of micro-organisms (bacteria, etc.). But these microbes are typically micron-size objects; it would be ideal if we could have “nanoscopes” for seeing nano-machines. In addition to the requirement of high spatial resolution, such nanoscopes should also have sufficiently high temporal speed so that the dynamics of the nano-machines can be monitored under the nanoscope.

But, it is impossible to see a molecule directly under an optical microscope of conventional design because nature has imposed a limit on the resolution that can be achieved with these optical instruments. This fundamental limit on the resolution is a consequence of the wave nature of light and it depends on the wavelength of the radiation used for observation.

But, optical microscopes merely enhance the power of our visionary perception. Therefore, in principle, it should be possible to achieve higher resolution if X-rays or γ-rays are used for imaging although we can no longer use our eyes as detector for these probes. Moreover, vision is only one of the several sensory perceptions humans possess. A blind person can construct a mental image of an object by running his fingers along the contours of the object. Furthermore, in principle, it is possible to reconstruct the shape of an object, without seeing or touching it, by throwing balls at it from all sides and, then, analyzing the way the balls are scattered by the object.

2.1 Ensemble-averaged techniques

X-ray crystallography and electron microscopy

The basic principle of X-ray scattering for the determination of the structure of macromolecules is as follows: an atomic constituent of the macromolecule absorbs some energy of the X-ray incident on it and then re-radiates the same in all directions. A protein crystal has a periodic array of identical atoms. The X-rays re-radiated by these atoms interfere constructively in some directions whereas they interfere destructively in all the other directions. Therefore, the detectors record a “pattern” in the intensity of X-ray scattered by the protein crystal sample. But, such a “diffraction pattern” provides an indirect, and static, image of a molecular machine. However, microscopes (optical as well as electron) have some advantages over the X-ray scattering technique: microscopes produce the images directly in real space whereas X-ray diffraction requires Fourier transform from momentum space to real space.

The deBroglie wavelength associated with a material particle is given by $\lambda = h/p$ where p is the momentum of the particle. A sufficiently high resolution microscope can be constructed if a charged particle is selected and it is accelerated to the required momentum by applying an external electric field. Electrons are most convenient for this purpose; an electron beam can be easily bent and focussed using a suitable magnetic field configuration. Electron microscopy is one of the most powerful experimental techniques for determination of the structures of molecular machines. In spite of all the technological advances in electron microscopy, it is still lot more cumbersome to use than an optical microscope. In an optical microscope, the sample does not require as elaborate preparation as in an electron microscope. Besides, the intense beam of electrons often damage or destroy the sample itself. Moreover, image obtained from an electron microscope requires special expertise to interpret. Furthermore, the generation and control of the electro-magnetic fields makes the electrom microscope costly as well as much less user friendly than optical microscopes.

20. J. Frank, Three-dimensional electron microscopy of macromolecular assemblies, (Academic Press, 1996).

21. E. Nogales and N. Grigorieff, Molecular machines: putting the pieces together, J. Cell Biol. 152, F1-F10 (2001).

22. A.J. Koster and J. Klumperman, Electron microscopy in cell biology: integrating structure and function, Nat. Rev. Mol. Cell Biol. 4, SS6-SS10 (2003).
23. V. Lucic, F. Forster and W. Baumeister, Structural studies by electron tomography: from cells to molecules, Annu. Rev. Biochem. 74, 833-865 (2005).

24. W. Chiu, M.L. Baker, W. Jiang, M. Dougherty and M.F. Schmidt, Electron cryomicroscopy of biological machines at subnanometer resolution, Structure 13, 363-372 (2005).

25. W. Chiu, M.L. Baker and S.C. Almo, Structural biology of cellular machines, Trends Cell Biol. 16, 144-150 (2006).

26. M. Rossmann, M.C. Morais, P.G. Leiman and W. Zhang, Combining X-ray crystallography and electron microscopy, Structure 13, 355-362 (2005).

27. G.J. Jensen and A. Briegel, How electron cryotomography is opening a new window onto prokaryotic ultrastructure, Curr. Opin. Struct. Biol. 17, 260-267 (2007).

28. A. Hoenger and D. Nicastro, Electron microscopy of microtubule-based cytoskeletal machinery, Methods in Cell Biol. 79, 437-462 (2007).

29. L. Wang and F.J. Sigworth, Cryo-EM and single particles, Physiology 21, 13-18 (2006).

2.2 Single-molecule techniques

We got our first glimpse of the macromolecules via X-ray diffraction and, then, electron microscopy. But, what one got from those probes were static pictures. Moreover, most of the traditional old experimental techniques of biophysics relied on collection of data for a large collection of molecules and thereby getting their ensemble-averaged properties. The amplification of the signals caused by the presence of large number of such molecules makes it easier to detect and collect the data. The average value of a variable is valuable information. There are practical limitations of the bulk measurements in the specific context of understanding the operational mechanisms of cyclic molecular machines because it is practically impossible to synchronize their cycles. The recently developed single-molecule techniques can be broadly classified into two groups: (i) methods of imaging, and (ii) methods of manipulation.

30. J. Zlatanova and K. van Holde, Single-molecule biology: what is it and how does it work?, Mol. Cell 24, 317-329 (2006).

31. P.V. Cornish and T. Ha, A survey of single-molecule techniques in chemical biology, ACS chemical biology, 2, 53-61 (2007).

• Techniques of single-molecule imaging

For visualization of the conformational changes or movements of the molecule under investigation in a single molecule experiment, a prior attachment of a label to the molecule is essential. Based on these labels, the single molecule imaging of molecular motors can be divided into two groups: (i) techniques where the label is a relatively large light-scattering object (for example, a dielectric bead of 1 micron diameter); and (ii) techniques where the label itself emits light (e.g., a fluorophore). Fluorescence microscopy provided a glimpse (howsoever hazy) of single molecules. Imaging a fluorescently labelled molecular motor in real time enables us to study its dynamics just as ecologists use “radio collars” to track individual animals.

32. R.Y. Tsien, Imagining imaging’s future, Nat. Rev. Mol. Cell Biol. 4, SS16-SS21 (2003).

33. J.W. Lichtman and J.A. Conchello, Fluorescence microscopy, Nat. Methods 2, 910-919 (2005).

34. Y. Garini, B.J. Vermolen and I.T. Young, From micro to nano: recent advances in high-resolution microscopy, Curr. Opin. Biotechnol. 16, 3-12 (2005).

35. W.E. Moerner, A dozen years of single-molecule spectroscopy in physics, chemistry and biophysics, J. Phys.Chem. B 106, 910-927 (2002).

36. W.E. Moerner and D.P. Fromm, Methods of single-molecule fluorescence spectroscopy and
microscopy, Rev. Sci. Instr. 74, 3597-3619 (2003).

37. E.J.G. Peterman, H. Sosa and W.E. Moerner, Single-molecule fluorescence spectroscopy and microscopy of biomolecular motors, Annu. Rev. Phys. Chem. 55, 79-96 (2004).

38. W.E. Moerner, New directions in single-molecule imaging and analysis, PNAS 104, 12596-12602 (2007).

39. X. Michalet and S. Weiss, Single-molecule spectroscopy and microscopy, C.R. Physique 3, 619-644 (2002).

40. X. Michalet, A.N. Kapanidis, T. Laurence, F. Pinaud, S. Doose, M. Pflughoeft and S. Weiss, The power and prospects of fluorescence microscopies and spectroscopies, Annu. Rev. Biophys. Biomol. Struct. 32, 161-182 (2003).

41. S.W. Hell, Towards fluorescence nanoscopy, Nat. Biotechnol. 21, 1347-1355 (2004).

42. D.J. Stephens and V.J. Allan, Light microscopy techniques for live cell imaging, Science 300, 82-86 (2005).

43. Y. Ishii and T. Yanagida, How single molecule detection measures the dynamic actions of life, HFSP journal, 1, 15-29 (2007).

44. E. Toprak and P.R. Selvin, New fluorescent tools for watching nanometer-scale conformational changes of single molecules, Annu. Rev. Biophys. Biomol. Struct. 36, 349-369 (2007).

45. H. Park, E. Toprak and P.R. Selvin, Single molecule fluorescence to study molecular motors, Q. Rev. Biophys. 40, 87-111 (2007).

46. C. Joo, H. Balci, Y. Ishitsuka, C. Buranachai and T. Ha, Advances in single-molecule fluorescence methods for molecular biology, Annu. Rev. Biochem. 77, 51-76 (2008).

Let us also not forget that experiments are also carried out with molecular machines to understand their mechanisms; such experiments should answer questions like “what if...”. Such controlled experiments would need some means of manipulating the nanomachines of life. The mechanical transducers like, for example, cantilevers of scanning force microscopes (SFM) and microneedles, require physical contact with the biomolecule. In contrast, manipulators that utilize electromagnetic fields do not require any contact forces.

The operation of optical tweezers is based on a very simple physical principle. Photons are massless (more precisely, rest mass is zero), but have momentum. Photons are capable of exerting very weak force called radiation pressure in the terminology of classical physics. Utilizing this property of photons (or, equivalently, electromagnetic radiation) in a laser beam with high, but inhomogeneous, intensity, it has been possible to trap dielectric particles (e.g., a latex bead) at the focal point of the beam. When a motor attached to such a bead walks on its filamentary track, the laser trap pulls it back thereby applying a load force on the motor.

In magnetic tweezers, the macromolecule is attached between a surface and a superparamagnetic bead. Stretching force can be applied on the macromolecule by controlled alterations of the external magnetic field. A major advantage of the magnetic tweezers is that the same setup can be used also to apply torque on the molecule by merely rotating the magnetic field.

47. J.M. Imhof and D.A. vanden Bout, Resource Letter: LBMOM-I: Laser-based modern optical microscopy, Amer. J. Phys. 71, 429-436 (2003).

48. M.J. Lang and S.M. Block, Resource Letter: LBOT-I: Laser-based optical tweezers, Amer. J. Phys. 71, 201-215 (2003).

49. D.C. Appleyard, K.Y. Vandermeulen, H. Lee and M.J. Lang, Optical trapping for undergraduates, Amer. J. Phys. 75, 5-14 (2007).

50. T. Strick, J.F. Allemand, V. Croquette and D. Bensimon, The manipulation of single
From the evolutionary point of view, cells can be broadly divided into two categories, viz., prokaryotes and eukaryotes. Most of the common bacteria (like, for example, Escherichia Coli and Salmonella) are prokaryotes. Animals, plants and fungi are collectively called eukaryotes. The main difference between prokaryotic and eukaryotic cells lies in their internal architectures; the main distinct feature of eukaryotic cells is the cell nucleus where the genetic materials are stored. The prokaryotes are mainly unicellular organisms. The eukaryotes which emerged first through Darwinian evolution of prokaryotes were also unicellular; multi-cellular eukaryotes appeared much later.

In biology, often the simplest among a family of objects is called a model system for the purpose of experimental investigations.

- **Model eukaryotes**:

The most popular model *animals* for biological studies are as follows: (i) the fruit fly *Drosophila melanogaster*, a model insect, (ii) *Caenorhabditis elegans* (C-elegans), a transparent worm, (iii) the zebra fish *danio rerio*, a model vertebrate; (iv) the mouse, however, is more important for practical use of cell biology in medical sciences. *Arabidopsis thaliana* is the most popular model *plant* while *Chlamydomonas reinhardtii* is a model of green algae. *Saccharomyces cerevisiae* (Baker’s yeast) and *Schizosaccharomyces pombe* (Fission yeast) are most widely used models for fungi. However, for studying filamentous fungi,
Neospora crassa is used most often as a model system.

- **Model prokaryotes:**
 Bacteria are divided into two separate groups on the basis of their response to a staining test invented by Hans Christian Gram. Those which respond positively are called Gram-positive bacteria whereas those whose response is negative are called Gram-negative. One of the main differences between these two groups of bacteria is the nature of the cell wall.

 The commonly used models for Gram-positive bacteria are Bacillus subtilis, Listeria monocytogenes, etc. The bacterium Escherichia coli (E-coli), which is normally found in the colon of humans and other mammals, and the bacterium Salmonella are the most extensively used model for Gram-negative bacteria. Another prominent member of the group of Gram-negative bacteria is Proteus mirabilis.

- **Model viruses and bacteriophages:**
 Human immunodeficiency virus (HIV) is the most dreaded among the viruses that can infect homo sapiens (humans). Among the other viruses which can infect eukaryotes are Tobacco mosaic virus, etc. Bacteriophages are also viruses, but these infect prokaryotes. T-odd (e.g., T7) and T-even (e.g., T4) bacteriophages, phage λ, φ29, etc. are some of the extensively used model bacteriophages.

 65. E.M. Meyerowitz, *Prehistory and history of Arabidopsis research*, Plant Physiol. **125**, 15-19 (2001).

 66. E.H. Harris, *Chlamydomonas as a model organism*, Annu. Rev. Plant Physiol. and Plant Mol. Biol. **52**, 363-406 (2001).

 67. R.H. Davis and D.D. Perkins, *Neurospora: a model of model microbes*, Nat. Rev. Genetics, **3**, 7-13 (2002).

 68. I.J. van der Klei and M. Veenhuis, *Yeast and filamentous fungi as model organisms in microbiology research*, Biochim. Biophys. Acta **1763**, 1364-1373 (2006).

 69. M.A. Sleigh, *The biology of protozoa* (Edward Arnol, London, 1973).

 70. K.B.G. Scholtzof, *Tobacco mosaic virus: a model system for plant biology*, Annu. Rev. Phytopathology, **42**, 13-34 (2004).

 71. B.D. Harrison and T.M.A. Wilson, *Milestones in the research on tobacco mosaic virus*, Phil. Trans. Roy. Soc. Lond. B **354**, 521-529 (1999).

 72. A.L. Wang and C.C. Wang, *Viruses of the protozoa*, Annu. Rev. Microbiol. **45**, 251-263 (1991).

 73. H.W. Ackermann and H.M. Krisch, *A catalogue of T4-type bacteriophages*, Arch. Virol. **142**, 2329-2345 (1997).

 74. P.G. Leiman, S. Kanamaru, V.V. Mesyanzhinov, F. Arisaka and M.G. Rossmann, *Structure and morphogenesis of bacteriophage T4*, Cell. Mol. Life Sci. **60**, 2356-2370 (2003).

 75. V.V. Mesyanzhinov, P.G. Leiman, V.A. Kostyuchenko, L.P. Kurochkina, K.A. Miroshnikov, N.N. Sykilinda and M.M. Shneider, *Molecular architecture of bacteriophage T4*, Biochemistry (Moscow), (translated from Biokhimiya), **69**, 1190-1202 (2004).

 76. E.S. Miller, E. Kutter, G. Mosig, F. Arisaka, T. Kunisawa and W. Rüger, *Bacteriophage T4 genome*, Microbiol. Mol. Biol. Rev. **67**, 86-156 (2003).

 77. M.E. Gottesman and R.A. Weisberg, *Little lambda, who made thee?*, Microbio. Mol. Biol. Rev. **68**, 796-813 (2004).

 78. W.J.J. Meijer, J.A. Horcajadas and M. Salas, *φ29 family of phages*, Microbiol. Mol. Biol. Rev. **65**, 261-287 (2001).
3 Techniques for theoretical modeling of molecular machines

Theory provides understanding and insight. These allow us not only to interpret the empirical observations and recognize the importance of the various ingredients but also to generalize, to create a framework for addressing the next level of question and to make predictions which can be tested in in-vivo/in-vitro or in-silico experiments.

Theorization requires a model of the system. A theoretical model is an abstract representation of the real system which helps in understanding the real system. This representation can be pictorial (for example, in terms of cartoons or graphs) or symbolical (e.g., a mathematical model). Qualitative predictions may be adequate for understanding some complex phenomena or for ruling out some plausible scenarios. But, a desirable feature of any theoretical model is that it should make quantitative predictions. The predictions of a theory, at least in principle, can be tested by in-vitro and/or in-vivo experiments in the laboratory.

The predictions of a mathematical model can be derived analytically in terms of abstract symbols; for specific sets of values of the model parameters, the predictions can be shown numerically or graphically. The predictions of a theoretical model can be obtained numerically by carrying out computer simulations (i.e., in-silico experiments) of the model. Thus, simulation is not synonymous with modeling. When a model is too complicated to be formulated in abstract notations and to be treated analytically, it is called a computer model of the system. Since fully analytical treatment of a model can be accomplished exactly only in rare cases, one has to make sensible approximations so as to get results as accurate as possible. Simulation of a model also tests the validity of the approximations made in the analytical treatments of the model. We should also make a distinction between the two different “computational methods”, namely, (i) computer simulations which, as we have mentioned above, test hypotheses; and (ii) Knowledge discovery (or, data mining) which extracts hidden patterns or laws from huge quantities of experimental data, forming hypotheses.

A model can be formulated at different physical or logical levels of resolution. The physical resolution can be spatial resolution or temporal resolution. Every theoretical model is intended to address a set of questions. The modeler must choose a level of description appropriate for this purpose keeping in mind the phenomena that are subject of the investigation. Otherwise, the model may have either too much redundant details or it may be too coarse to provide any useful insight. Since physicists most often focus only on generic features of the various classes of machines, rather than specific features of individual members of these classes, they normally develop minimal models which may be regarded as mesoscopic, rather than molecular, i.e., their status in somewhere in between those of the macroscopic and molecular models.

79. A. Mogilner, R. Wollman and W.F. Marshall, Quantitative modeling in cell biology: what is it good for?, Developmental Cell 11, 279-287 (2006).

3.1 Mechanics of molecular machines: noisy power stroke versus Brownian ratchet

If the input energy directly causes a conformational change of the protein machinery which manifests itself a mechanical stroke of the machine, the operation of the machine is said to be driven by a “power stroke” mechanism. This is also the mechanism used by all man made macroscopic machines. Let us contrast this with the following alternative scenario: suppose, the machine exhibits “forward” and “backward” movements because of spontaneous thermal fluctuations. If now energy input is utilized to prevent “backward” movements, but allow the “forward” movements, the system will exhibit directed, albeit noisy, movement in the “forward” direction. Note that the forward movements in this case are caused directly by the spontaneous thermal fluctuations, the input energy rectifies the “backward”
movements. This alternative scenario is called the Brownian ratchet mechanism.

80. R.D. Vale and F. Oosawa, Protein motors and Maxwell’s demons: does mechanochemical transduction involve a thermal ratchet?, Adv. Biophys. 26, 97-134 (1990).

81. R.D. Astumian, Making molecules into motors, Sci. Am. 285, 56-64 (2001).

82. R.D. Astumian and P. Hänggi, Phys. Today 55, 33-39 (2002).

83. R.D. Astumian, Design principles of Brownian molecular machines: how to swim in molasses and walk in a hurricane, Phys.Chem.Phys. 7, 5067-5083 (2007).

84. R.D. Astumian, Thermodynamics and kinetics of a Brownian motor, Science 276, 917-922 (1997).

85. F. Jülicher, A. Ajdari and J. Prost, Modeling molecular motors, Rev. Mod. Phys. 69, 1269-1281 (1997).

86. P. Reimann, Brownian motors: noisy transport far from equilibrium, Phys. Rep. 361, 57-265 (2002).

87. J. Howard, Protein power strokes, Curr. Biol. 16, R517-R519 (2006).

88. H. Wang and G. Oster, Ratchets, power strokes and molecular motors, Appl. Phys. A 75, 315-323 (2002).

89. G. Oster, Darwin’s motors, Nature 417, 25 (2002).

3.2 Chemical reactions relevant for molecular machines: ATP hydrolysis

To understand molecular machines, we also have to consider chemical reactions, which most often supply the (free-) energy required to drive these machines.

In other words, in order to understand the mechanisms of biomolecular machines, it is necessary to understand not only how these move in response to the mechanical forces but also how these are affected by chemical reactions. In fact, the machines are usually enzymes (i.e., catalysts).

Adenosine triphosphate (ATP) contains three phosphate groups as compared to two phosphate groups in the adenosine diphosphate (ADP). Hydrolysis of ATP to ADP releases free energy and, therefore, plays a crucial role in running a wide range of chemical processes in a living organism. Therefore, ATP is sometimes also referred to as the “energy currency” of the cell.

90. M. Dixon and E.C. Webb, Enzymes (Academic Press, 1979).

91. T.L. Hill, Free energy transduction and biochemical cycle kinetics, (Dover, 2005).

92. M. Cohn, Adenosine Triphosphate, in: Encyclopedia of Life Sciences (John Wiley, 2005).

3.3 General mechano-chemistry of molecular machines

From the perspective of (bio-)physics, the mechanical force required for the directed movement of the motors are generated, most often, from the energy liberated in chemical reactions, e.g., in ATP hydrolysis. On the other hand, from the perspective of (bio-)chemistry, most of the machines are enzymes (i.e., proteins which act as catalysts for many chemical reactions); the rate of enzymatic reactions, including that of ATP hydrolysis, is strongly influenced by external forces. Thus, the mechanisms of molecular machines are governed by a nontrivial combination of the principles of nano-mechanics and those of chemical reactions. Therefore, quantitative modeling of molecular machines require theoretical formalisms of mechano-chemistry or chemo-mechanics.

93. D. Keller and C. Bustamante, The mechanochemistry of molecular motors, Biophys. J. 78, 541-556 (2000).
94. C. Bustamante, D. Keller and G. Oster, The physics of molecular motors, Acc. Chem. Res. 34, 412-420 (2001).

95. M. Magnasco, molecular combustion motors, Phys. Rev. Lett. 72, 2656-2659 (1994).

96. J. Xing, H. Wang and G. Oster, From continuum Fokker-Planck models to discrete kinetic models, Biophys. J. 89, 1551-1563 (2005).

97. H. Wang and T.C. Elston, Mathematical and computational methods for studying energy transduction in protein motors, J. Stat. Phys. 128, 35-76 (2007).

• Effect of force on chemical reactions: force-dependence of ATP hydrolysis

98. S. Khan and M.P. Sheetz, Force effects on biochemical kinetics, Annu Rev. Biochem. 66, 785-805 (1997).

99. C. Bustamante, Y.R. Chemla, N.R. Forde and D. Izhaky, Mechanical processes in biochemistry, Annu. Rev. Biochem. 73, 705-748 (2004).

100. I. Tinoco Jr. and C. Bustamante, The effect of force on thermodynamics and kinetics of single molecule reactions, Biophys. Chem. 101-102, 513-533 (2002).

101. I. Tinoco Jr., P.T.X. Li and C. Bustamante, Determination of thermodynamics and kinetics of RNA reactions by force, Quart. Rev. Biophys. 39, 325-360 (2006).

• Hydrolysis and phosphorylation

102. J.L. Eide, A.K. Chakraborty and G.F. Oster, Simple models for extracting mechanical work from the ATP hydrolysis cycle, Biophys. J. 90, 4281-4294 (2006).

103. H. Qian, Phosphorylation energy hypothesis: open chemical systems and their biological functions, Annu. Rev. Phys. Chem. 58, 113-142 (2007).

• Efficiency of molecular machines: general discussions

The efficiency of molecular motors can be defined in several different ways: while one of the definitions is very similar to that of its macroscopic counterpart, the other definitions are unique to motors operating under different conditions and characterize different aspects of its movement.

Not all molecular motors are designed to pull loads. Moreover, in contrast to the macroscopic motors, viscous drag forces strongly influence the function of molecular motors. Therefore, there is a need for a generalized definition of efficiency that does not necessarily require the application of any external load force. Such a measure of efficiency, which is different from the thermodynamic efficiency defined above, has also been suggested; it is called “Stokes efficiency” because the viscous drag is calculated from Stokes law.

104. H. Wang, Chemical and mechanical efficiencies of molecular motors and implications for motor mechanism, J. Phys. Condens. Matter 17, S3997-S4014 (2005).

105. A. Parmeggiani, F. Jülicher, A. Ajdari and J. Prost, Energy transduction of isothermal ratchets: generic aspects and specific examples close to and far from equilibrium, Phys. Rev. E 60, 2127-2140 (1999).

106. I. Derenyi, M. Bier and R.D. Astumian, Generalized efficiency and its application to microscopic engines, Phys. Rev. Lett. 83, 903-906 (1999).

107. H. Wang and G. Oster, The Stokes efficiency for molecular motors and its applications, Europhys. Lett. 57, 134-140 (2002).

• Allosterism and molecular motors

Allosterism usually refers to the change of conformation around one location of a protein in response to binding of a ligand to another location of the same protein. A motor protein has separate sites for binding ATP and the track. Therefore, the mechanochemical cycle of a motor can be analyzed from the perspective of allosterism.
108. J.E. Lindsley and J. Rutter, *Whence cometh the allosterome?*, PNAS 103, 10533-10535 (2006).

109. J.P. Changeux and S.J. Edelstein, *Allosteric receptors after 30 years*, Neuron 21, 959-980 (1998).

110. J.P. Changeux and S.J. Edelstein, *Allosteric mechanisms of signal transduction*, Science 308, 1424-1428 (2005).

111. D.E. Koshland, Jr. and K. hamadani, *Proteomics and models for enzyme cooperativity*, J. Biol. Chem. 277, 46841-46844 (2002).

112. D. Bray and T. Duke, *Conformational spread: the propagation of allosteric states in large multiprotein complexes*, Annu. Rev. Biophys. and Biomol. Str. 33, 53-73 (2004).

113. A. Vologodskii, *Energy transformation in biological molecular motors*, Phys. of Life Rev. 3, 119-132 (2006).

114. K. H. Wildman and D. Kern, *Dynamic personalities of proteins*, Nature 450, 964-972 (2007).

4 Eukaryotic cytoskeleton: structure and dynamics

4.1 Protein constituents of eukaryotic cytoskeleton

The protein constituents of the cytoskeleton of eukaryotic cells can be broadly divided into the following three categories: (i) Filamentous proteins, (ii) accessory proteins, and (iii) motor proteins. The three classes of filamentous proteins, which form the main scaffolding of the cytoskeleton, are: (a) actin, (b) microtubule, and (c) intermediate filaments. On the basis of functions, accessory proteins can be categorized as follows: (i) regulators of filament polymerization, (ii) filament-filament linkers, (iii) filament-plasma membrane linkers. Since accessory proteins do not play any crucially important role in the operation of the cytoskeleton-based molecular machines, we shall not consider accessory proteins in this article.

The three superfamilies of motor proteins are: (i) myosin superfamily, (ii) kinesin superfamily, and (iii) dynein superfamily. Both kinesins and dyneins move on microtubules; in contrast, myosins either move on actin tracks or pull the actin filaments.

- **Structures of microtubules and actin filaments**

 Microtubules are cylindrical hollow tubes whose diameter is approximately 20 nm. The basic constituent of microtubules are globular proteins called tubulin. Hetero-dimers, formed by α and β tubulins, assemble sequentially to form a protofilament. 13 such protofilaments form a microtubule. The length of each α − β dimer is about 8 nm. Since there is only one binding site for a motor on each dimeric subunit of MT, the minimum step size for kinesins and dyneins is 8 nm.

 Although the protofilaments are parallel to each other, there is a small offset of about 0.92 nm between the dimers of the neighbouring protofilaments. Thus, total offset accumulated over a single looping of the 13 protofilaments is $13 \times 0.92 \approx 12$nm which is equal to the length of three $\alpha-\beta$ dimers joined sequentially.

Part I: Cytoskeletal motors: porters and rowers, shuttles and muscles

The cytoskeleton of an eukaryotic cell maintains its architecture. Counterparts of some molecular components of the eukaryotic cytoskeleton have been discovered recently also in prokaryotic cells. It is a complex dynamic network that can change in response to external or internal signals. The cytoskeleton is also responsible for intra-cellular transport of packaged molecular cargoes as well as for the motility of the cell as a whole. The cytoskeleton plays crucially important role also in cell division and development of organisms. In this part we focus almost exclusively on the motility and contractility driven by molecular motors at the sub-cellular level; motor-driven motility and contractility of the cell as a whole will be taken up in the last part of this article.
Therefore, the cylindrical shell of a microtubule can be viewed as three helices of monomers. Moreover, the asymmetry of the hetero-dimeric building block and their parallel head-to-tail organization in all the protofilaments gives rise to the polar nature of the microtubules. The polarity of a microtubule is such an α tubulin is located at its - end and a β tubulin is located at its + end.

Filamentous actin are polymers of globular actin monomers. Each actin filament can be viewed as a double-stranded, right handed helix where each strand is a single protofilament consisting of globular actin. The two constituent strands are half staggered with respect to each other such that the repeat period is 72 nm.

The spatial organization and function of the cytoskeletons of plants and algae differ significantly from those of eukaryotic cells.

115. T. Kreis and R. Vale (eds.), Guidebook to the Cytoskeletal and Motor Proteins, 2nd edn. (Oxford University Press, 1999).

116. T. D. Pollard, The Cytoskeleton, Cellular Motility and the Reductionist Agenda, Nature 422, 741-745 (2003).

117. E. Frixione, Recurring views on the structure and function of the cytoskeleton: a 300-year epic, Cell Mot. and the Cytoskel. 46, 73-94 (2000).

118. M. Schliwa, The evolving complexity of cytoplasmic structure, Nature Rev. Mol. Cell Biol. 3, 1-6 (2002).

119. B. Kost and N.H. Chua, The plant cytoskeleton: vacuoles and cell walls make the difference, Cell 108, 9-12 (2002).

120. G. O. Westeneys, Microtubule organization in the green kingdom: chaos or self-order, J. Cell Science 115, 1345-1354 (2002).

121. G. O. Westeneys and Z. Yang, New views on the plant cytoskeleton, Plant Physiology 136, 3884-3891 (2004).

122. Y. Mineyuki, Plant microtubule studies: past and present, J. Plant Res. 120, 45-51 (2007).

123. C. Katsaros, D. Karyophyllis and B. Galatis, Cytoskeleton and morphogenesis in brown algae, Annals of Botany, 97, 679-693 (2006).

124. X. Xiang and M. Plamann, Cytoskeleton and motor proteins in filamentous fungi, Curr. Opin. Microbiol. 6, 628-633 (2003).

125. G. Steinberg, The cellular roles of molecular motors in fungi, Trends Micribiol. 8, 162-168 (2000).

126. A. Geitman and A.M.C. Emons, The Cytoskeleton in plant and fungal cell tip growth, J. Microscopy 198, 218-245 (2000).

MAPs and ARPs

Microtubule-associated proteins (MAPs) and Actin-related proteins (ARPs) play important roles in controlling the structure and dynamics of microtubules and filamentous actin, respectively. Microtubule plus-end tracking proteins (+TIPs) are special MAPs that accumulate at the plus end of microtubules; members of a few families of motor proteins are also +TIPs. Biological functions of some of these proteins will be considered later in this part of this resource letter.

127. E. Mandelkow and E.M. Mandelkow, Microtubules and microtubule-associated proteins, Curr. Op. in Cell Biol. 7, 72-81 (1995).

128. L.A. Amos and D. Schlieper, Microtubules and MAPs, Adv. Protein Chem. 71, 257-298 (2005).

129. H. Maiato, P. Sampario and C.E. Sunkel, Microtubule-associated proteins and their essential roles during mitosis, Int. Rev. Cytology, 241, 53-153 (2004).

130. J.C. Sedbrook, MAPs in plant cells: delineating microtubule growth dynamics and organization, Curr. Op. in Plant Biol. 7, 632-640 (2004).

131. T. Hamada, Microtubule-associated proteins in higher plants, J. Plant Res. 120, 79-98 (2007).
132. E.E. Morrison, *Action and interactions at the microtubule ends*, Cell. Mol. Life Sci. **64**, 307-317 (2007).

133. C.G. Dos Remedios, D. Chhabra, M. Kekic, I.V. Dedova, M. Tsubakihara, D.A. Berry and N.J. Nosworthy, *Actin binding proteins: regulation of cytoskeletal microfilaments*, Physiol. Rev. **83**, 433-473 (2003).

134. M. Muthugapatti, K. Kandasamy, R.B. Deal, E.C. McKinney and R.B. Meagher, *Plant actin-related proteins*, Trends in Plant Sci. **9**, 196-202 (2004).

135. E.D. Goley and M.D. Welch, *The Arp2/3 complex: an actin nucleator comes of age*, Nat. Rev. Mol. Cell Biol. **7**, 713-726 (2006).

136. M.F. Carlier, *Control of actin dynamics*, Curr. Op. in Cell Biol. **10**, 45-51 (1998).

137. J.A. Cooper and D. A. Schaefer, *Control of actin assembly and disassembly at filament ends*, Curr. Op. in Cell Biol. **12**, 97-103 (2000).

138. C.J. Steiger and L. Blanchon, *Actin dynamics: old friends with new stories*, Curr. Op. in Plant Biol. **9**, 554-562 (2006).

139. T.D. Pollard, *Regulation of actin filament by Arp2/3 complex and formins*, Annu. Rev. Biophys. & Biomol. Str. **36**, 451-477 (2007).

140. M. Evangelista, S. Zigmond and C. Boone, *Formins: signaling effectors for assembly and polarization of actin filaments*, J. Cell Sci. **116**, 2603-2611 (2003).

141. S.H. Zigmond, *Formin-induced nucleation of actin filaments*, Curr. Op. in Cell Biol. **16**, 99-105 (2004).

142. N. Watanabe and C. Higashida, *Formins: processive cappers of growing actin filaments*, Experimental Cell Research **301**, 16-22 (2004).

143. B. Baum and P. Kunda, *Actin nucleation: Spire- actin nucleator in a class of its own*, Curr. Biol. **15**, R305-R308 (2005).

144. E. Kerkhoff, *Cellular functions of the Spir actin-nucleation factors*, Trends in Cell Biol. **16**, 477-483 (2006).

145. I.M. Anton, G.E. Jones, F. Wandosell, R. Geha and N. Ramesh, *WASP-interacting protein (WIP): working in polymerisation and much more*, Trends in Cell Biol. **17**, 555-562 (2007).

146. A. Akhmanova and M.O. Steinmetz, *Tracking the ends: a dynamic protein network controls the fate of microtubules*, Nat. Rev. Mol. Cell Biol. **9**, 309-322 (2008).

147. X. Xiang, *A +TIP for a smooth trip*, J. Cell Biol. **172**, 651-654 (2006).

148. X. Wu, X. Xiang and J.A. Hammer 3rd, *Motor proteins at the microtubule plus-end*, Trends Cell Biol. **16**, 135-143 (2006).

149. P. Carvalho, J.S. Tirnauer and D. Pellman, *Surfing on microtubule ends*, Trends Cell Biol. **13**, 229-237 (2003).

150. S.C. Schuyler and D. Pellman, *Microtubule “plus-end-tracking proteins”: the end is just the beginning*, Cell **105**, 421-424 (2001).

4.2 Prokaryotic cytoskeleton

Unlike eukaryotes, bacteria do not have any obvious need for a cytoskeleton. First, their cell walls are rigid enough to provide mechanical strength to the cell. Second, the size of bacterial cells is so small that transportation of cargo by pure diffusion would be sufficiently rapid for the survival of the cell. These general considerations and the lack of direct evidence for cytoskeletal structures in the early experiments on prokaryotes led to the common belief that the prokaryotic cells lack a cytoskeleton. However, more recent experimental evidences strongly indicate the existence of bacterial homologs of the filamentous proteins in eukaryotic cells. For example, FtsZ is a bacterial homolog of tubulin whereas MreB and ParM are those of actin. Moreover, CreS (crescentin)
is considered to be a strong candidate for the bacterial counterpart of intermediate filaments of eukaryotic animal cells. However, so far it has not been possible to identify any bacterial homolog of the eukaryotic motor proteins. Nevertheless, the existence of such homologs with very low sequence identity with their eukaryotic counterparts cannot be ruled out.

FtsZ polymerize to form protofilaments. But, unlike eukaryotic tubulins, these protofilaments do not cooperate to form higher order tube-like structures which would be analogous to microtubules. On the other hand, ParM polymerizes to form a double-stranded helical filament which is also very similar to filamentous F-actin.

151. J. Löwe, F. van den Ent and L.A. Amos, *Molecules of the bacterial cytoskeleton*, Annu. Rev. Biophys. and Biomol. Struct. 33, 177-198 (2004).

152. L.A. Amos, F. van der Ent and J. Löwe, *Structural/functional homology between the bacterial and eukaryotic cytoskeletons*, Curr. Opin. Cell Biol. 16, 1-8 (2004).

153. P.L. Graumann, *Cytoskeletal elements in bacteria*, Curr. Opin. Microbiol. 7, 565-571 (2004).

154. J. Pogliano, *The bacterial cytoskeleton*, Curr. Opin. Cell Biol. 20, 19-27 (2008).

155. J. Künner, O. Medalia, A.A. Linaroudis and W. Baumeister, *New insights into the structural organization of eukaryotic and prokaryotic cytoskeletons using cryo-electron tomography*, Exp. Cell Res. 301, 38-42 (2004).

156. J. Moller-Jensen and J. Löwe, *Increasing complexity of the bacterial cytoskeleton*, Curr. Opin. Cell Biol. 17, 75-81 (2005).

157. Z. Gitai, *The new bacterial cell biology: moving parts and subcellular architecture*, Cell, 120, 577-586 (2005).

158. Z. Gitai, *Diversification and specialization of the bacterial cytoskeleton*, Curr. Opin. Cell Biol. 19, 5-12 (2007).

159. C. Watters, *The bacterial cytoskeleton*, CBE-Life sciences education, 5, 306-310 (2006).

160. R. Carballido-Lopez and J. Errington, *A dynamic bacterial cytoskeleton*, Trends Cell Biol. 13, 577-583 (2003).

161. R. Carballido-Lopez, *The bacterial actin-like cytoskeleton*, Microbiol. Molec. Biol. rev. 70, 888-909 (2006).

162. N. Ausmees, J. R. Kuhn and C. Jacobs-Wagner, *The bacterial cytoskeleton: an intermediate filament-like function in cell shape*, Cell 115, 705-713 (2003).

163. H.P. Erickson, *Evolution of the cytoskeleton*, Bioessays 29, 668-677 (2007).

4.3 Nucleation of MT and actin filaments

The role of γ-tubulin in the nucleation of MT filaments has been known for quite some time. Two classes of actin nucleating proteins are: (i) formin protein family; and (ii) Arp2/3 complex.

164. F. Bartolini and G.G. Gundersen, *Generation of noncentrosomal microtubule arrays*, J. Cell Sci. 119, 4155-4163 (2006).

165. C. Wiese and Y. Zheng, *Microtubule nucleation: γ-tubulin and beyond*, J. Cell Sci. 119, 4143-4153 (2006).

166. D. Job, O. Valiron and B. Oakley, *Microtubule nucleation*, Curr. Opin. Cell Biol. 15, 111-117 (2003).

167. E. Schiebel, γ-tubulin complexes: binding to the centrosome, regulation and microtubule nucleation, Curr. Opin. Cell Biol. 12, 113-118 (2000).

168. D.K. Fygenson, H. Flyvbjerg, K. Sneppen, A. Libchaber and S. Leibler, *Spontaneous nucleation of microtubules*, Phys. Rev. E 51, 5058-5063 (1995).
169. H. Flyvbjerg, E. Jacobs and S. Leibler, *Kinet-
ics of self-assembling microtubules: an “inverse
problem” in biochemistry*, PNAS 93, 5975-5979
(1996).

170. H. Flyvbjerg and E. Jobs, *Microtubule dynam-
ics II: kinetics of self-assembly*, Phys. Rev. E
56, 7083-7099 (1997).

171. B.R. Messina and A. Merdes, γ-tubulin com-
plexes and microtubule organization, Curr.
Opin. Cell Biol. 19, 24-30 (2007).

172. T. Murata and M. Hasebe, *Microtubule-
dependent microtubule nucleation in plant cells*,
J. Plant Res. 120, 73-78 (2007).

173. D.K. Fygensen, E. Braun and A. Libchaber,
Phase diagram of microtubules, Phys. Rev. E
50, 1579-1588 (1994).

174. M.D. Welch and R.D. Mullins, *Cellular control
of actin nucleation*, Annu. Rev. Cell Dev. Biol.
18, 247-288 (2002).

4.4 *Dynamics of polymerization/depolymerization of MT
and actin: treadmilling and dy-
namic instability*

The dynamics of polymerization and depolymerization of microtubules is quite different from those of most of the common proteins. *Dynamic instability* is now accepted as the dominant mechanism governing the dynamics of microtubule polymerization. Each polymerizing microtubule persistently grows for a prolonged duration and, then makes a sudden transition to a depolymerizing phase; this phenomenon is known as “catastrophe”. However, the rapid shrinking of a depolymerizing microtubule can get arrested when it makes a sudden reverse transition, called “rescue”, to a polymerizing phase. It is now generally believed that the dynamic instability of a microtubule is triggered by the loss of its guanosine triphosphate (GTP) cap because of the hydrolysis of GTP into guanosine diphosphate (GDP). But, the detailed mechanism, i.e., how the chemical process of cap loss induces mechanical instability, remains far from clear.

Some of the fundamental quantitative questions on this phenomenon are as follows: Does the system reach a steady state under the given conditions, and if so, what is the distribution of the lengths of the microtubules in that state? It has been discovered that some small molecules can suppress the dynamic instability and influence the rates of growth and/or shrinkage of the microtubules when bound to the tubulins. These molecules are potential anti-cancer drugs because of the corresponding implications of the dynamic instability in cell division. What are the quantitative effects of these drug molecules on the nature of the steady state (if it still exists) and on the corresponding distribution of the microtubule lengths?

175. I.V. Maly and G.G. Borisy, *Self-organization
of treadmilling microtubules into a polar array*,
Trends Cell Biol. 12, 462-465 (2002).

176. M. Vantard an L. Blanchoin, *Actin polymeriza-
tion processes in plant cells*, Curr. Opin. Plant
Biol. 5, 502-506 (2002).

177. S. K. Walker and A. Garrill, *Actin microfila-
ments in fungi*, Mycologist 20, 26-31 (2006).

178. J.B. Moseley and B.L. Goode, *The yeast actin
cytoskeleton: from cellular function to biochem-
ical mechanism*, Microbiol. and Molecular Biol.
Rev. 70, 605-645 (2006).

179. E.B. Stukalin and A.B. Kolomeisky, *Polymer-
ization dynamics of double-stranded biopolym-
ers: chemical kinetic approach*, J. Chem.
Phys. 122, 104903 (2005).

180. E.B. Stukalin and A.B. Kolomeisky, *ATP hy-
drolysis stimulates large length fluctuations in
single actin filaments*, Biophys. J. 90, 2673-
2685 (2006).

181. D. Vavylonis, Q. Yang and B. O’Shaughnessy,
*Actin polymerization kinetics, cap structure and
fluctuations*, PNAS 102, 8543-8548 (2005).
182. J. Hu, A. Matzavinos and H.G. Othmer, *A theoretical approach to actin filament dynamics*, J. Stat. Phys. **128**, 111-138 (2007).

183. T. Mitchison and M. Kirschner, *Dynamic instability of microtubule growth*, Nature **312**, 237-242 (1984).

184. H.P. Erickson and E.T. O’Brien, *Microtubule dynamic instability and GTP hydrolysis*, Annu. Rev. Biophys. Biomol. Struct. **21**, 145-166 (1992).

185. A. Desai and T.J. Mitchison, *Microtubule polymerization dynamics*, Annu. Rev. Cell Dev. Biol. **13**, 83-117 (1997).

186. M. K. Gardner, A.J. Hunt, H.V. Goodson and D.J. Odde, *Microtubule assembly dynamics: new insights at the nanoscale*, Curr. Opin. Cell Biol. **20**, 64-70 (2008).

187. V.N. Vassileva, Y. Fujii and R.W. Ridge, *Microtubule dynamics in plants*, Plant Biotechnol. **22**, 171-178 (2005).

188. J. Azimzadeh, J. Traas and M. Pastuglia, *Molecular aspects of microtubule dynamics in plants*, Curr. Opin. Plant Biol. **4**, 513-519 (2001).

189. K.A. Michie and J. Löwe, *Dynamic filaments of the bacterial cytoskeleton*, Annu. Rev. biochem. **75**, 467-492 (2006).

190. D. J. Scheffers and A.J.M. Driessen, *The polymerization mechanism of the bacterial cell division protein FtsZ*, FEBS Lett. **506**, 6-10 (2001).

191. L. Romberg, M. Simon and H.P. Erickson, *Polymerization of FtsZ, a bacterial homolog of tubulin: is assembly cooperative?,* J. Biol. Chem. **276**, 11743-11753 (2001).

192. E. Nogales and H.W. Wang, *Structural mechanisms underlying nucleotide-dependent self-assembly of tubulin and its relatives*, Curr. Opin. Struct. Biol. **16**, 221-229 (2006).

193. E.C. Garner, C.S. Campbell and R. Dyche Mullins, *Dynamic instability in a DNA-segregating prokaryotic actin homolog*, Science, **306**, 1021-1025 (2004).

194. E.C. Garner, C.S. Campbell, D.B. Weibel and R.D. Mullins, *Reconstitution of DNA segregation driven by assembly of a prokaryotic actin homolog*, Science, **315**, 1270-1274 (2007).

195. D. Popp, A. Yamamoto, M. Iwasa, A. Narita, K. Maeda and Y. Maeda, *Concerning the dynamic instability of actin homolog ParM*, Biochem. Biophys. Res. Commun. **353**, 109-114 (2007).

196. N.A. Dye and L. Shapiro, *The push and pull of the bacterial cytoskeleton*, Trends Cell Biol. **17**, 239-245 (2007).

197. T.L. Hill and Y.D. Chen, *Phase changes at the end of a microtubule with a GTP cap*, PNAS **81**, 5772-5776 (1984).

198. T. L. Hill, *Introductory analysis of the GTP-cap phase-change kinetics at the end of a microtubule*, PNAS **81**, 6728-6732 (1984).

199. T.L. Hill, *Phase-change kinetics for a microtubule with two free ends*, PNAS **82**, 431-435 (1985).

200. R.J. Rubin, *Mean lifetime of microtubules attached to nucleating sites*, PNAS **85**, 446-448 (1988).

201. B.S. Govindan and W.B. Spillman Jr., *Steady states of a microtubule assembly in a confined geometry*, Phys. Rev. E **70**, 032901 (2004).

202. M. Dogterom and S. Leibler, *Physical aspects of the growth and regulation of microtubule structures*, Phys. Rev. Lett., **70**, 1347-1350 (1993).

203. M. Dogterom and B. Yurke, *Microtubule dynamics and the positioning of microtubule organizing centers* Phys. Rev. Lett., **81**, 485-488 (1998).
5 Push and pull of cytoskeletal filaments: nano-pistons

In this section, we focus only on the mechaism of force generation by polymerizing cytoskeletal filaments, namely, microtubules and actin. However, these phenomena will be reconsidered again in part IV in the broader context of cell motility and cell division.

A microtubule can keep growing even when it encounters a microscopically light obstacle; its action in such situations is reminiscent of a piston. Unlike microtubules, the protofilaments of FtsZ do not exhibit dynamic instability. On the other hand, unlike actin, filamentous ParM exhibits a dynamic instability which is very similar to that of microtubules except that the instability of ParM filaments is caused by the hydrolysis of ATP rather than that of GTP. Moreover, unlike actin, whose polar polymer grows asymmetrically through treadmilling, ParM exhibits a symmetrical bidirectional growth where rate of elongation at both ends are identical.

19
5.1 Spring-like force generated by cytoskeletal filaments

The piston-like action of polymerizing filaments is not the only mode of motor-independent force generation. Spring-like actions of filamentous structures are known to drive fast motility of some biological systems. One well known example of such biological spring is the vorticellid spasmoneme whose major protein component is spasmin. The sperm cell of the horse-shoe crab Limulus polyphemus also utilizes the spring-like action of a coiled bundle, which consists mainly of actin filaments, to penetrate into an egg for its fertilization.

220. C.S. Peskin, G.M. Odell and G.F. Oster, Cellular motions and thermal fluctuations: the Brownian ratchet, Biophys. J. 65, 316-324 (1993).

221. A.B. Kolomeisky and M.E. Fisher, Force-velocity relation for growing microtubules, Biophys. J. 80, 149-154 (2001).

222. A. Mogilner and G. Oster, The polymerization ratchet model explains the force-velocity relation for growing microtubules, Eur. Biophys. J. 28, 235-242 (1999).

223. A. Mogilner and G. Oster, Polymer motors: pushing out the front and pulling up the back, Curr. Biol. 13, R721-R733 (2003).

224. G. Oster and A. Mogilner, Force generation by cellular polymers, in: Supramolecular polymers, (ed.) A. Ciferri (Dekker, 2004).

225. J. A. Theriot, The polymerization motor, Traffic 1, 19-28 (2000).

226. M. Dogterom and B. Yurke, Measurement of the force-velocity relation for growing microtubules, Science 278, 856-860 (1997).

227. C. F. Moskalenko and M. Dogterom, Dynamics of microtubule asters in microfabricated chambers: the role of catastrophes, PNAS 99, 16788-16793 (2002).

228. M. Dogterom, M.E. Janson, C.F. Moskalenko, A. van der Horst, J.W.J. Kerssemakers, C. Tanase and B.M. Mulder, Force generation by polymerizing microtubules, Appl. Phys. A 75, 331-336 (2002).

229. M.E. Janson, M.E. de Dood and M. Dogterom, Dynamic instability of microtubules regulated by force, J. Cell Biol. 161, 1029-1034 (2003).

230. M. E. Janson and M. Dogterom, Scaling of microtubule force-velocity curves obtained at different tubulin concentrations, Phys. Rev. Lett. 92, 248101 (2004).

231. M. Dogterom, J.W.J. Kerssemakers, G. Romet-Lemone and M.E. Janson, Curr. Opin. Cell Biol. 17, 67-74 (2005).

232. J.W.J. Kerssemakers, E.L. Munteanu, L. Laan, T.L. Noetzel, M.E. Janson and M. Dogterom, Assembly dynamics of microtubules at molecular resolution, Nature 442, 709-712 (2006).

233. Y.C. Tao and C.S. Peskin, Simulating the role of microtubules in depolymerization-driven transport: a monte carlo approach, Biophys. J. 75, 1529-1540 (1998).

234. M.I. Molodtsov, E.L. Grishchuk, A.K. Efremov, J.R. McIntosh and F.I. Ataullakhanov, Force production by depolymerizing microtubules: a theoretical study, PNAS 102, 4353-4358 (2005).

235. J. Howard, Elastic and damping forces generated by confined arrays of dynamic microtubules, Phys. Biol. 3, 54-66 (2006).

236. C. Tanase, Physical modeling of microtubule force generation and self-organization, Ph.D. thesis (Wageningen University, The Netherlands, 2004).
6 Processive cytoskeletal motors: porters

Many cytoskeletal motors carry molecular cargo over distances which are quite long on the intracellular scale. Because of their superficial similarities with porters who carry load on their heads, these motors are often colloquially referred to as “porters”.

238. R.A. Cross and N.J. Carter, Molecular motors: a primer, Curr. Biol. 10, R177-R179 (2000).

239. R.D. Vale, Millenium musings on molecular motors, Trends cell biol. 9, M38-M42 (1999).

240. R.D. Vale and R.A. Milligan, The way things move; looking under the hood of molecular motor proteins, Science, 88 (2000)

241. R.D. Vale, The molecular motor toolbox for intracellular transport, Cell, 112, 467-480 (2003).

242. M. Schliwa and G. Woehlke, Molecular motors, Nature, 422, 759-765 (2003).

243. A.B. Bowman and L.S.B. Goldstein, Dynein and kinesin, Encyclopedia of Life Sci. (John Wiley, 2001).

244. J.A. Spudich, How molecular motors work, Nature 372, 515 (1994)

245. J. Howard, Molecular motors: structural adaptations to cellular functions, Nature, 389, 561 (1997).

246. R. Mallik and S.P. Gross, Molecular motors as cargo transporters in the cell- the good, the bad and the ugly, Physica A 372, 65-69 (2006).

247. L.A. Amos, Molecular motors: not quite like clockwork, Cell Mol. Life Sci. 65, 509-515 (2008).

248. R. Lipowsky and S. Klumpp, ‘Life is motion’: multiscale motility of molecular motors, Physica A 352, 53-112 (2005).

249. R. Lipowsky, Y. Chai, S. Klumpp, S. Liepelt and M.J.I. Müller, Molecular motor traffic: from biological nanomachines to macroscopic transport, Physica A 372, 34-51 (2006).

6.1 Architectural designs of the porters: common features

All the cytoskeletal motor proteins have a head domain; this domain contains a site for ATP hydrolysis and another site for binding to a cytoskeletal filament which serves as a track for the motor. Binding of ATP to the head alters the affinity of the motor for its track. The head domain of the kinesins is the smallest (about 350 amino acids), that of myosins is of intermediate size (about 800 amino acids) whereas the head of dyneins is very large (more than 4000 amino acids).

The “identity card” for members of a superfamily is the sequence of amino acids in the motor domain. The members of a given superfamily exhibit a very high level of “sequence homology” in their motor domain. But, the amino acid sequence as well as the size, etc. of the other domains differ widely from one member to another of the same superfamily. All kinesin and dyneins have a tail domain which binds with the cargo. The tail domain exhibits much more diversity than the head domain because of the necessity that the same motor should be able to recognize (and pick up) wide varieties of cargoes.

Myosins are actin-based motor proteins. According to the widely accepted nomenclature, myosins are classified into families bearing numerical (roman) suffixes (I, II, ..., etc.). According to the latest standardized nomenclature of kinesins, the name of each family begins with the word “kinesin” followed by an arabic number (1, 2, etc.). Moreover, large subfamilies are assigned an additional letter (A, B, etc.) appended to the family name. For example, kinesin-14A and kinesin-14B refer to two distinct subfamilies both of which belong to the family kinesin-14.

Dyneins are microtubule-based motor proteins. Dyneins can be broadly divided into two major classes: (i) cytoplasmic dynein, and (ii) axonemal dynein. Structural features of these motors is quite different from those of kinesins and myosins.
250. C.J. Lawrence, R.K. Dawe, K.R. Christie, D.W. Cleveland, S.C. Dawson, S.A. Endow, L.S.B. Golstein, H.V. Goodson, N. Hirokawa, J. Howard, R.L. Malmberg, J.R. McIntosh, H. Miki, T.J. Mitchison, Y. Okada, A.S.N. Reddy, W.M. Saxton, M. Schliwa, J.M. Scholey, R.D. Vale, C.E. Waleczak and L. Wordeman, A standardized kinesin nomenclature, J. Cell Biol. 167, 19-22 (2004).

251. A. Marx, J. Müller and E. Mandelkow, The structure of microtubule motor proteins, Adv. Protein Chem. 71, 299-344 (2005).

252. M.A. Titu and S.P. Gilbert, The diversity of molecular motors: an overview, Cell Mol. Life Sci. 56, 181-183 (1999).

253. A.R. Reilein, S.L. Rogers, M.C. Tuma and V.I. Gelfand, Regulation of molecular motor proteins, Int. Rev. Cytol. 204, 179-238 (2001).

6.2 Mechano-chemistry of cytoskeletal motors: general aspects

Even for a given single motor domain, a large number of molecular motors are involved in each enzymatic cycle. In principle, there are, many pathways for the hydrolysis of ATP, i.e., there are several different sequences of states that defines a complete hydrolysis cycle. Although, all these pathways are allowed, some paths are more likely than others. The most likely path is identified as the hydrolysis cycle.

254. R. Lipowsky, Universal aspects of the chemomechanical coupling of molecular motors, Phys. Rev. Lett. 85, 4401-4404 (2000).

255. S. Liepelt and R. Lipowsky, Kinesin’s network of chemomechanical motor cycles, Phys. Rev. Lett. 98, 258102 (2007).

256. R. Lipowsky and S. Liepelt, Chemomechanical coupling of molecular motors: thermodynamics, network representations, and balance conditions, J. Stat. Phys. 130, 39-67 (2008).

6.3 Fundamental questions

We phrase the questions in such a way that these may appear to be directly relevant only for the cytoskeletal motors. But, these can be easily rephrased for the other types of motors including, for example, those which move on nucleic acid strands. These questions are as follows:

(i) Fuel: What is the fuel that supplies the (free-)energy input for the motor? The free energy released by the hydrolysis of ATP is usually the input for cytoskeletal motors.

(ii) Engine, cycle and transmission: The site on the motor, where ATP is hydrolyzed, can be identified as its engine. What are the distinct states of the cyclic engine in various stages of each cycle? Which step of the cycle is responsible for the generation of force (or, torque)? How is the structural (conformational) change, caused by this force (or torque), amplified by the architecture of the motor? In other words, how does the transmission system of the motor work, i.e., what are the analogues of the clutch and gear of automobiles?

(iii) Track and traction: Are they filamentous tracks static or dynamic, i.e., do the lengths and/or orientations of the tracks change with time? What is the traction mechanism used by a motor head for staying on track?

(iv) Number of engines and coordination of their cycles: The state of oligomerization of the motor subunits has important functional implications. Majority of the members of myosin and kinesin superfamilies are homodimers although monomeric, heterodimeric and tetrameric kinesins have also been discovered. Some members of myosin and kinesin superfamilies are known to self-assemble into higher-order structures; the most well known among these higher-order structures is the myosin thick filaments in muscles which will be described later in the context of muscle contraction. What functional advantages arise from oligomerization? Are the cycles of the different engines of a motor coordinated in any manner and, if so, how is this coordination maintained?

(v) Stroke and step sizes: The separation between the two successive binding sites on the track is the small-
est possible step size of the motor. On the other hand, a stroke is a conformational change of the motor bound to the track. In general, the stroke size need not be equal to the step size. What is the stroke size of a given motor? If the motor covers only a fraction of the distance to the next binding site by the stroke, how does it manage to cover the remaining distance? Can the same motor adopt different step sizes under different circumstances?

(vi) Directionality and processivity: Majority of myosins are + end directed i.e., move towards the barbed end of actin filaments. Similarly, majority of the kinesins are also + end directed motors whereas most of the dyneins are - end directed motor proteins. What determines the direction of movement, i.e., why are some motors +end directed whereas the others are -end directed? Can a motor reverse its direction of motion (a) spontaneously, or (b) under an opposing (load) force? Do the motors possess reverse gears and is it possible to reverse the direction of their movement by utilizing the reverse gear mechanism? What is the minimal change (e.g., mutation) required to reverse the direction of motion of a motor?

One of the key features of the dynamics of cytoskeletal motors is their ability to attach to and detach from the corresponding track. A motor is said to be attached to a track if at least one of its heads remains bound to one of the equispaced motor-binding sites on the corresponding track. Moreover, a motor can detach completely from its track.

One can define processivity in three different ways:
(i) Average number of chemical cycles in between attachment and the next detachment from the filament;
(ii) attachment lifetime, i.e., the average time in between an attachment and the next detachment of the motor from the filament;
(iii) mean distance spanned by the motor on the filament in a single run.

The first definition is intrinsic to the process arising from the mechano-chemical coupling. But, it is extremely difficult to measure experimentally. The other two quantities, on the other hand, are accessible to experimental measurements.

To translocate processively, a motor may utilize one of the two following strategies:

strategy I: the motor may have more than one track-binding domain (oligomeric structure can give rise to such a possibility quite naturally). Most of the cytoskeletal motors like conventional two-headed kinesin use such a strategy. One of the track-binding sites remains bound to the track while the other searches for its next binding site.

strategy II: it can use a “clamp-like” device to remain attached to the track; opening of the clamp will be required before the motor detaches from the track. Many motors utilize this strategy for moving along the corresponding nucleic acid tracks. The duty ratio is defined as the average fraction of the time that each head spends remaining attached to its track during one cycle. The typical duty ratios of kinesins and cytoplasmic dynein are at least 1/2 whereas that of conventional myosin can be as small as 0.01. What is the mechanism that decides the processivity (or the lack of processivity) and the duty ratio of a motor?

(vii) Stepping pattern of a double-headed motor: Does the motor move like an “inchworm” or does the stepping appear more like a “hand-over-hand” mechanism? Moreover, two types of hand-over-hand mechanism are possible: symmetric and asymmetric. In the symmetric pattern, the two heads exchange positions, but the three-dimensional structure of the molecule is preserved at all equivalent positions in the cycle. In contrast, in the asymmetric pattern, the two heads exchange position, but alternate steps differ in some way, e.g., what happens in “limping” which involves alternate faster and slower stepping phases. Can a motor switch from one track to a neighbouring track and, if so, how does it achieve that? What prevents a motor from changing lane on a multi-lane track?

(viii) Speed and efficiency: Is the average speed of a processive motor determined by the track or the motor or fuel or some external control mechanism? Recall that the average speed of a car on a highway in sparse traffic can be decided either by the smoothness of the highway, or by the model of the car (whether it is a Ferrari or a heavy truck), or by the quality of the fuel. Similarly, how does the molecular constitution of the track and the nature
of the motor-track interaction affect the speed of the motor? Is the mechano-chemical coupling tight or loose? If hydrolysis of ATP provides the input free energy, then, how many steps does the motor take for every molecule of ATP hydrolyzed, or, equivalently, how many ATP molecules are consumed per step of the motor? What is the maximum speed it can attain? Can an external force applied to a motor in the forward direction speed it up? How does the speed of the motor depend on the opposing “load” force? As the load force increases, the velocity of the motor decreases. The magnitude of the load force at which the average velocity of the motor vanishes, is called the stall force. What happens when the load force is increased beyond the stall force? Three possible scenarios are as follows: (i) the motor may detach from the track, or (ii) the motor may reverse its direction of motion (and move in the direction of the load force) (a) without hydrolyzing ATP, or (b) hydrolyzing ATP. The force-velocity relation is one of the most fundamental characteristic property of a motor. What is the most appropriate definition of efficiency of the motor and how to estimate that efficiency?

(ix) Regulation and control: How is the operation of the motor regulated? For example, how is the motor switched on and off? Recall that the speed of a car can also be regulated by imposing the same speed limit or by traffic signals. Are there molecular signals that control the motor’s movement on its track and how? How does the motor pick up its cargo and how does it drop it at the target location? How do motors get back to their starting points of the processive run after delivering their cargo?

(x) Motor-motor interactions: How do different types of motors interact while moving on the same track carrying their cargo? How do different classes of motors, which move on different types of tracks, coordinate their functions and even transfer or exchange their cargoes?

6.4 Motility assays

There are two geometries used for in-vitro motility assays: (i) the gliding assay and (ii) the bead assay. In the gliding assay, the motors themselves are fixed to a substrate and the filaments are observed (under an optical microscope) as they glide along the motor-coated surface. In the bead assay, the filaments are fixed to a substrate. Small plastic or glass beads, whose diameters are typically of the order of 1µm, are coated with the motors. These motors move along the fixed filaments carrying the bead as their cargo. The movements of the beads are recorded optically.

6.5 Myosin porters

There are two geometries used for unconventional myosins in cell movement, membrane traffic, and signal transduction, Science 279(5350), 527-533 (1998).
266. C.B. O’Connell, M.J. Tyska and M.S. Mooseker, *Myosin at work: motor adaptations for a variety of cellular functions*, Biochim. Biophys. 1773, 615-630 (2007).

267. F. Buss, G. Spudich and J. Kendrick-Jones, *Myosin VI: cellular functions and motor properties*, Annu. Rev. Cell Dev. Biol. 20, 649-676 (2004).

268. H.L. Sweeney and A. Houdusse, *What can Myosin VI do in cells?*, Curr. Opin. Cell Biol. 19, 57-66 (2007).

269. Z. Bryant, D. Altman and J.A. Spudich, *The power stroke of myosin VI and the basis of reverse directionality*, PNAS 104, 772-777 (2007).

270. H. Park, A. Li, L.Q. Chen, A. Houdusse, P.R. Selvin and H. L. Sweeney, *The unique insert at the end of the myosin VI motor is the sole determinant of directionality*, PNAS 104, 778-783 (2007).

271. A.B. Kolomeisky and M.E. Fisher, *A simple kinetic model describes processivity of myosin V*, Biophys. J. 84, 1642-1650 (2003).

272. K.I. Skau, R.B. Hoyle and M.S. Turner, *A kinetic model describing the processivity of Myosin-V*, Biophys. J. 91, 2475-2489 (2006).

6.6 Kinesin porters

- Homodimeric conventional kinesin: members of Kinesin-1 family

 Kinesin-1, the prototypical kinesin motor consists of three major domains:
 (i) The *motor domain*: this domain can be further subdivided into the globular catalytic core, the adjacent neck linker and the neck region. The core motor domain consists of about 325 amino acids.
 (ii) The *stalk* which is a α-helical coiled-coil domain.
 (iii) The globular *tail* domain at the end of the stalk which can bind with cargo.

273. R.D. Vale and R.J. Fletterick, Annu. Rev. Cell Dev. Biol. 13, 745 (1997).

274. K. Ray, *How kinesins walk, assemble and transport: a birds-eye-view of some unresolved questions*, Physica A 372, 52-64 (2006).

275. S.M. Block, *Kinesin motor mechanics: binding, stepping, tracking, gating, and limping*, Biophys. J. 92, 2986-2995 (2007).

276. Günther Woehlke and M. Schliwa, *Directional motility of kinesin motor proteins*, Biochim. Biophys. Acta 1496, 117-127 (2000).

277. S.A. Endow and D.S. Barker, *Processive and nonprocessive models of kinesin movement*, Annu. Rev. Physiol. 65, 161-175 (2003).

278. G. Woehlke and M. Schliwa, *Walking on two heads: the many talents of kinesin*, Nat. Rev. mol. cell biol. 1, 50-58 (2000).

279. N.J. Carter and R.A. Cross, *Kinesin’s moonwalk*, Curr. Opin. Cell Biol. 18, 61-67 (2006).

280. N.J. Carter and R.A. Cross, *Mechanics of kinesin step*, Nature 435, 308-312 (2005).

281. R.A. Cross, *The kinetic mechanism of kinesin*, Trends Biochem. Sci. 89, 301-309 (2004).

282. M. Kikkawa, *The role of microtubules in processive kinesin movement*, Trends Cell Biol. 18, 128-135 (2008).

283. K.J. Skowronek, E. Kocik and A.A. Kasprzak, *Subunits interactions in kinesin motors*, Eur. J. Cell Biol. 86, 559-568 (2007).

284. A. Parmeggiani, F. Jülicher, L. Peliti and J. Prost, *Detachment of molecular motors under tangential loading*, Europhys. Lett. 56, 603-609 (2001).

285. D. Dan, A.M. Jayannavar and G.I. Menon, *A biologically inspired ratchet model of two coupled Brownian motors*, Physica A 318, 40-47 (2003).

286. C. Peskin and G. Oster, *Coordinated hydrolysis explains the mechanical behavior of kinesin*, Biophys. J. 68, 202s-210s (1995).
287. A. Mogilner, A.J. Fisher and R.J. Baskin, Structural changes in the neck linker of kinesin explain the load dependence of the motor’s mechanical cycle, J. Theor. Biol. 211, 143-157 (2001).

288. M.E. Fisher and A.B. Kolomeisky, The force exerted by a molecular motor, PNAS 96, 6597-6602 (1999).

289. M.E. Fisher and A.B. Kolomeisky, Molecular motors and the forces they exert, Physica A 274, 241-266 (1999).

290. M.E. Fisher and A.B. Kolomeisky, Simple mechanochemistry describes dynamics of kinesin molecules, PNAS 98, 7748-7753 (2001).

291. A.B. Kolomeisky and H. Phillips III, Dynamic properties of motor proteins with two subunits, J. Phys. Condens. Matter 17, S3887-S3899 (2005).

292. M.E. Fisher and Y.C. Kim, Kinesin crouches to sprint but resists pushing, PNAS 102, 16209-16214 (2005).

• Heterodimeric kinesins: members of Kinesin-2 family

293. K. Kaseda, H. Higuchi and K. Hirose, Alternate fast and slow stepping of a heterodimeric kinesin molecule, Nature Cell Biol. 5, 1079-1082 (2003).

294. R.K. Das and A.B. Kolomeisky, Interaction between motor domains can explain the complex dynamics of heterodimeric kinesins, Phys. Rev. E 77, 061912 (2008).

• Monomeric kinesins: members of Kinesin-3 family

295. Y. Okada and N. Hirokawa, A processive single-headed motor: kinesin superfamily protein KIF1A, Science 283, 1152-1157 (1999).

296. Y. Okada and N. Hirokawa, Mechanism of single-headed processivity: diffusional anchoring between the K-loop of kinesin and the C terminus of tubulin, PNAS 97, 640-645 (2000).

297. M. Kikkawa, E.P. Sablin, Y. Okada, H. Yajima, R.J. Fletterick and N. Hirokawa, Switch-based mechanism of kinesin motors, Nature 411, 439-445 (2001).

298. Y. Okada, H. Higuchi and N. Hirokawa, Processivity of the single-headed kinesin KIF1A through biased binding to tubulin, Nature. 424, 574-577 (2003).

299. R. Nitta, M. Kikkawa, Y. Okada and N. Hirokawa, KIF1A alternately uses two loops to bind microtubules, Science 305, 678-683 (2004).

300. K. Sasaki, Diffusion coefficients for two-state Brownian motors, J. Phys. Soc. Jap. 72, 2497-2508 (2003).

• Kinesin-13 and kinesin-8 families: MT polymerases and depolymerases

Some kinesin motors move diffusively to target one of the two ends of the MT track and, then, start depolymerizing the track itself; MCAK, a member of the kinesin-13 family, is an example of such kinesins. The diffusive motion of the MCAK does not require ATP, but it hydrolyzes ATP to power its depolymerase activity. These depolymerases play important roles in some crucial stages of cell division which we’ll take up in the last part of this resource letter.

Kip3p, a member of the kinesin-8 family, is also a MT depolymerase. But, unlike, MCAK, it “walks”, rather than diffusing, in a specific direction on the MT track by hydrolyzing ATP and, after reaching the target end, starts depolymerizing the MT.

A single depolymerase can peel off more than one MT subunit from the tip of the MT; the larger the number of MT subunits it peels off, the higher is its processivity.

301. G.J. Brouhard, J.H. Stear, T.L. Noetzel, J. Al-Bassam, K. Kinoshiba, S.C. Harrison, J. Howard and A.A. Hyman, XMAP215 is a processive microtubule polymerase, Cell 132, 79-88 (2008).

302. A.W. Hunter and L. Wordeman, How motor proteins influence microtubule polymerization dynamics, J. Cell Sci. 113, 4379-4389 (2000).
303. J. Howard and A.A. Hyman, *Dynamics and mechanics of microtubule plus end*, Nature **422**, 753-758 (2003).

304. J. Howard and A.A. Hyman, *Microtubule polymerases and depolymerases*, Curr. Opin. Cell Biol. **19**, 31-35 (2007).

305. A. Moore and L. Wordeman, *The mechanism, function and regulation of depolymerizing kinesins during mitosis*, Trends Cell Biol. **14**, 537-546 (2004).

306. L. Wordeman, *Microtubule-depolymerizing kinesins*, Curr. Opin. Cell Biol. **17**, 82-88 (2005).

307. A.W. Hunter, M. Caplow, D.L. Coy, W.O. Hancock, S. Diez, L. Wordeman and J. Howard, *The kinesin-related protein MCAK is a microtubule depolymerase that forms an ATP-hydrolyzing complex at microtubule ends*, Mol. Cell **11**, 445-457 (2003).

308. J. Helenius, G. Brouhard, Y. Kalaidzidis, S. Diez and J. Howard, *The yeast kinesin-8 Kip3p is a highly processive motor that depolymerizes microtubules in a length-dependent manner*, Nat. Cell Biol. **8**, 957-962 (2006).

309. V. Varga, J. Helenius, A.A. Hyman, K. Tanaka and J. Howard, *The yeast kinesin-8 Kip3p is a highly processive motor that depolymerizes microtubules in a length-dependent manner*, Nat. Cell Biol. **8**, 957-962 (2006).

310. M.L. Gupta Jr., P. Carvalho, D.M. Roof and D. Pellman, *Plus end-specific depolymerase activity of Kip3, a kinesin-8 protein, explains its role in positioning of the yeast mitotic spindle*, Nat. Cell Biol. **8**, 913-923 (2006).

311. G. Klein, K. Kruse, G. Cuniberti and F. Jülicher, *Filament depolymerization by motor molecules*, Phys. Rev. Lett. **94**, 108102 (2005).

312. B. Govindan, M. Gopalakrishnan and D. Chowdhury, *Length control of microtubules by depolymerizing motor proteins*, Europhys. Lett. (in press) (2008).

6.7 Dynein porters

313. S.M. King, *The dynein microtubule motor*, Biochim. Biophys. Acta **1496**, 60-75 (2000).

314. A. Harrison and S.M. King, *The molecular anatomy of dynein*, Essays Biochem. **35**, 75-87 (2000).

315. S.M. King, *Organization and regulation of the dynein microtubule motor*, Cell Biol. Int. **27**, 213-215 (2003).

316. L.M. DiBella and S.M. King, *Dynein motors of the Chlamydomonas flagellum*, Int. Rev. Cytol. **210**, 227-268 (2001).

317. M. Gee and R. Vallee, *The role of the dynein stalk in cytoplasmic and flagellar motility*, Eur. Biophys. J. **27**, 466-473 (1998).

318. P. Höök and R.B. Vallee, *The dynein family at a glance*, J. Cell Sci. **119**, 4369-4371 (2006).

319. R.B. Vallee, J.C. Williams, D. Varma and L.E. Barnhart, *Dynein: an ancient motor protein involved in multiple modes of transport*, J. Neurobiol. **58**, 189-200 (2004).

320. M.P. Koonce and M. Samso, *Of rings and levers: the dynein comes of age*, Trends Cell Biol. **14**, 612-619 (2004).

321. M. Sakato and S.M. King, *Design and regulation of the AAA+ microtubule motor dynein*, J. Struct. Biol. **146**(1-2), 58-71 (2004).

322. N. Numata, T. Kon, T. Shima, K. Imamura, T. Mogami, R. Ohkura, K. Sutoh and K. Sutoh, *Molecular mechanism of force generation by dynein, a molecular motor belonging to the AAA+ family*, Biochem. Soc. Trans. **36**, 131-135 (2008).

323. S.A. Burgess and P.J. Knight, *Is the dynein motor a winch?*, Curr. Opin. Struct. Biol. **14**, 138-146 (2004).

324. R. Mallik, B.C. Carter, S.A. Lex, S.J. King and S.P. Gross, *Cytoplasmic dynein functions as a
In the preceding section we have considered operational mechanisms of processive single cytoskeletal motors. Even in multimeric porters, different motor domains coordinate in a certain way that leads to the processive directed motion of the motor as a whole. In this section, we focus on their collective transport properties which arise from their coordination, cooperation, competition, etc.; collective properties of rowers will be taken up later.

The situation envisaged here corresponds to a typical bead-assay where the filamentary tracks are fixed to a substrate and motors are attached to a micron-sized bead (usually made of glass or plastic). The movement of the bead in the presence of ATP is monitored using appropriate optical microscopic methods. In such situations, each bead is likely to be covered by \(N \) motors where, in general, \(N > 1 \). More than one motor is also used for transportation of vesicles and large organelles in-vivo.

7.1 Load sharing on fixed MT track: single cargo hauled by many kinesins

Normally, a vesicle or an organelles can be hauled by more than one motor simultaneously. If all the motors carrying the cargo are plus-end directed (or, if all are minus-end directed) they share the load. In order to understand the cooperative effects of such multiple motors, in-vitro experiments are easier to perform than in-vivo experiments. The force-velocity relations for such cargoes can be measured using, for simplicity, micron-size dielectric beads, instead of vesicles or organelles.

7.2 Load sharing on fixed MT track: single cargo hauled by many dyneins

Cooperative effects of multiple dynein motors exhibits richer variety of phenomena.

7.3 Tug-of-war on fixed MT track: bidirectional transport of a single cargo hauled by kinesins and dyneins

It is well known that some motors reverse the direction of motion by switching over from one track to another which are oriented in anti-parallel fashion. In contrast to these types of reversal of direction of motion, we consider in this section those reversals where
the cargo uses a “tug-of-war” between kinesins and dyneins to execute bidirectional motion on the same MT track. Several possible functional advantages of bidirectional transport have been conjectured.

Wide varieties of bidirectional cargoes have already been identified so far; these include organelles (for example, mitochondria) as well as secretory vesicles and even viruses. If motion in one direction dominates overwhelmingly over the other, it becomes extremely difficult to identify the movement unambiguously as “bidirectional” because of the limitations of the spatial and temporal resolutions of the existing techniques of imaging.

The main challenge in this context is to understand the mechanisms of this bidirectional transport and those which control the duration of unidirectional movement in between two successive reversals. This insight will also be utilized for therapeutic strategies. For example, the motor or the motor-cargo link may be targeted blocking the virus that hijacks the motor transport system to travel towards the nucleus. On the other hand, a virus executing bidirectional movements can be turned away from the outskirts of the nucleus by tilting the balance in favour of the kinesins.

At least three possible mechanisms of bidirectional transport have been postulated. (i) One possibility is that either only + end directed motors or only - end directed motors are attached to the cargo at any given instant of time. Reversal of the direction of movement of the cargo is observed when the attached motors are replaced by motors of opposite polarity. (ii) The second possible mechanism is the closest to the real life “tug-of-war”; the competition between the motors of opposite polarity, which are simultaneously attached to the same cargo and tend to walk on the same filament generates a net displacement in a direction that is decided by the stronger side. (iii) The third mechanism is based on the concept of regulation; although motors of opposite polarity are simultaneously attached to the cargo, only one type of motors are activated at a time for walking on the track. In this mechanism, the reversal of the cargo movement is caused by the regulator when it disengages one type of motor and engages motors of the opposite polarity. For experimentalists, it is a challenge not only to identify the regulator, if such a regulator exists, but also to identify the mechanism used by the regulator to act as a switch for causing the reversal of cargo movement. Dynactin has been identified as a possible candidate for the role of such a regulator.

7.4 Unidirectional traffic of many cargoes on a single track: Molecular motor traffic jam

Most of the multi-motor phenomena we have considered in the preceding section are restricted to sufficiently low densities where direct interaction of the cargoes did not occur. As the cargoes are always much bigger than the motors (in-vitro as well as in-vivo), direct steric interactions of the cargoes become significant when several cargoes are carried by sufficiently dense population of motors along the same track. Such situations are reminiscent of vehicular traffic where mutual hindrance of the vehicles cause traffic jam at sufficiently high densities. In analogy with vehicular traffic, we shall refer to the collective

332. M.A. Welte, Bidirectional transport along microtubules, Curr. Biol. 14, R525-R537 (2004).
333. S. P. Gross, Hither and yon: a review of bidirectional microtubule-based transport, Phys. Biol. 1, R1-R11 (2004).
334. S.P. Gross, Dynactin: coordinating motors with opposite inclinations, Curr. Biol. 13, R320-R322 (2003).
335. K.R. Dell, Dynactin polices two-way organelles traffic, J. Cell Biol. 160, 291-293 (2003).
336. T.A. Schroer, Dynactin, Annu. Rev. Cell Dev. Biol. 20, 759-779 (2004).
337. E.A. Holleran, S. Karki and E.L.F. Holzbaur, The role of the dynactin complex in intracellular motility, Int. Rev. Cytology 182, 69-109 (1998).
338. M.J.I. Müller, S. Klumpp and R. Lipowsky, Tug-of-war as a cooperative mechanism for bidirectional cargo transport by molecular motors, PNAS 105, 4609-4614 (2008).
movement of molecular motors along a filamentary track as “molecular motor traffic”; we shall explore the possibility of molecular motor traffic jam and its possible functional implications.

Most of the minimal theoretical models of interacting molecular motors utilize the similarities between molecular motor traffic on MT and vehicular traffic on highways both of which can be modeled by appropriate extensions of the totally asymmetric simple exclusion process. In such models the motor is represented by a “self-propelled” particle and its dynamics is formulated as an appropriate extension of the dynamics of the totally asymmetric simple exclusion process. In such models, in addition to forward “hopping” from one binding site to the next, the motor particle is also allowed to detach from the track. Moreover, attachment of a motor particle to an empty site is also allowed.

In reality, a molecular motor is an enzyme that hydrolyses ATP and its mechanical movement is coupled to its enzymatic cycle. In some recent works on cytoskeletal motor traffic, the essential features of the enzymatic cycle of the individual motors have been captured.

339. A. Seitz and T. Surray, Processive movement of single kinesins on crowded microtubules visualized using quantum dots, EMBO J. 25, 267-277 (2006).

340. R. Lipowsky, S. Klumpp, and T. M. Nieuwenhuizen, Random walks of cytoskeletal motors in open and closed compartments, Phys. Rev. Lett. 87, 108101 (2001).

341. A. Parmeggiani, T. Franosch and E. Frey, Phase coexistence in driven one-dimensional transport, Phys. Rev. Lett. 90, 086601 (2003).

342. M.R. Evans, R. Juhasz and L. Santen, Shock formation in an exclusion process with creation and annihilation, Phys. Rev. E 68, 026117 (2003).

343. V. Popkov, A. Rakos, R.D. Williams, A.B. Kolomeisky and G.M. Schütz, Localization of shocks in driven diffusive systems without particle number conservation, Phys. Rev. E 67, 066117 (2003).

344. A. Parmeggiani, T. Franosch and E. Frey, Totally asymmetric simple exclusion process with Langmuir kinetics, Phys. Rev. E 70, 046101 (2004).

345. K. Nishinari, Y. Okada, A. Schadschneider and D. Chowdhury, Intracellular transport of single-headed molecular motors KIF1A, Phys. Rev. Lett. 95, 118101 (2005).

346. P. Greulich, A. Garai, K. Nishinari, A. Schadschneider and D. Chowdhury, Intracellular transport by single-headed kinesin KIF1A: effects of single-motor mecanochemistry and steric interactions, Phys. Rev. E 75, 041905 (2007).

347. D. Chowdhury, A. Garai and J.S. Wang, Traffic of single-headed motor proteins KIF1A: effects of lane changing, Phys. Rev. E 77, 050902 (R) (2008).

7.5 Bidirectional traffic of many cargoes on a single track: Molecular motor traffic jam

348. S. Klumpp and R. Lipowsky, Phase transitions in systems with two species of molecular motors, Europhys. Lett. 66, 90-96 (2004).

7.6 Cargoes at crossings and on park-and-ride transport system

Filamentous actin forms branched networks. Therefore, naturally, a fundamental question on transport of cargoes by unconventional myosins on actin networks is what happens to the cargo when it reaches a point where a single track branched out in two different directions. Moreover, similar situation also arises when a cargo hauled by kinesins reaches a crossing of MT tracks.
Furthermore, the networks of microtubules and actin filaments are not disconnected. The cytoskeleton is microtubule-rich near the cell center whereas dense actin filaments dominate the cytoskeleton near the cell periphery. On their way to destinations near the cell periphery, cargoes cover some distance by taking ride on microtubule-based kinesin motors and then switch to actin-based myosin motors; this is sometimes referred to as the park-and-ride transport system in analogy with that in metro cities of developed nations. Similar transfer of cargoes from actin network to microtubule network during the transport in the reverse direction is also well documented.

349. E. Coudrier, *Myosins in melanocytes: to move or not to move?*, Pigment Cell Res. **20**, 153-160 (2007).

350. J. Snider, F. Lin, N. Zahedi, V. Rodionov, C.C. Yu and S.P. Gross, *Intracellular actin-based transport: how far you go depends on how often you switch*, PNAS **101**, 13204-13209 (2004).

351. J.L. Ross, M.Y. Ali and D.M. Warshaw, *Cargo transport: molecular motors navigate a complex cytoskeleton*, Curr. Opin. Cell Biol. **20**, 41-47 (2008).

352. S. S. Brown, *Cooperation between microtubule- and actin-based motor proteins*, Annual Rev. Cell Dev. Biol., **15**, 63-80 (1999).

353. B.L. Goode, D.G. Drubin and G. Barnes, *Functional cooperation between the microtubule and actin cytoskeletons*, Curr. Opin. Cell Biol. **12**, 63-71 (2000).

354. V. Rodionov, J. Yi, A. Kashina, A. Oladipo and S.P. Gross, *Switching between microtubule- and actin-based transport systems in melanophores is controlled by cAMP levels*, Curr. Biol. **13**, 1837-1847 (2003).

355. M. Maniak, *Organelle transport: a park-and-ride system for melanosomes*, Curr. Biol. **13**, R917-R919 (2003).

356. E. Fuchs and Y. Yang, *Crossroads on cytoskeletal highways*, Cell **98**, 547-550 (1999).

357. E. Fuchs and I. Karakesisoglou, *Bridging cytoskeletal intersections*, Genes and Development, **15**, 1-14 (2001).

358. E. Pronina and A.B. Kolomeisky, *Theoretical investigation of totally asymmetric exclusion processes on lattices with junctions*, JSTAT: theory and expt. P07010 (2005).

7.7 Intracellular transport of vesicles and organelles: general aspects

359. R.A. Cross, *Intracellular transport*, in: *Encyclopedia of Life Sciences*, (Macmillan Reference Ltd. 1997).

360. H. Hehnly and M. Stammes, *Regulating cytoskeleton-based vesicle motility*, FEBS Lett. **581**, 2112-2118 (2007).

361. N. Hirokawa, *Organelle transport along microtubules- the role of KIFs*, Trends Cell Biol. **6**, 135-141 (1996).

362. N. Hirokawa, *Kinesin and dynein superfamily proteins and the mechanism of organelles transport*, Science **279**, 519-526 (1998).

363. D.R. Klopfenstein, E.A. Holleran and R.D. Vale, *Kinesin motors and microtubule-based organelle transport in Dictyostelium discoideum*, J. Muscle Res Cell Motil. **23**, 631-638 (2002).

364. C. Desnos, S. Huet and F. Darchen, ‘Should I stay or should I go?’: myosin V functions in organelle trafficking, Biol. Cell **99**, 411-423 (2007).

365. J. Lippincott-Schwartz, *Cytoskeletal proteins and Golgi dynamics*, Curr. Opin. Cell Biol. **10**, 52-59 (1998).

366. V.J. Allan, H.M. Thompson and M.A. McNiven, *Motoring around the Golgi*, Nat. Cell Biol. **4**, E236-E242 (2002).

367. I.R. Boldogh and L.A. Pon, *Mitochondria on the move*, Trends Cell Biol. **17**, 502-510 (2007).
7.8 Examples of intracellular transport and traffic: axonal transport

In a human body, the axon can be as long as a meter whereas the corresponding cell body is only about 10 microns in length. Almost all the proteins needed to maintain the synapses are synthesized in the cell body. How are these proteins transported to the synapse along the long axon? The problem is even more challenging in animals like elephant and giraffe which have even longer axons. A bundle of parallel MTs usually run along the axons and dendrites; these form the track for the motorized transport of vesicles and organelles. In axons the plus end of the MTs point towards the axonal presynaptic terminus (the growth cone in developing neurons and the end-plate in motor neurons), i.e., from the center to the periphery of the cell. Movement of the cargo in a direction away from the cell body is called anterograde whereas that in the reverse direction is called retrograde; the former is driven by kinesins while the latter is dominated by dyneins.

370. N. Hirokawa and R. Takemura, Molecular motors and mechanisms of directional traffic in neurons, Nat. Rev. Neurosci. 6, 201-214 (2005).

371. L.S.B. Goldstein and Z.H. Yang, Microtubule-based transport systems in neurons: the roles of kinesins and dyneins, Annu. Rev. Neurosci. 23, 39-71 (2000).

372. A. Almenar-Queralt, L.S.B. Goldstein, Linkers, packages and pathways: new concepts in axonal transport, Curr. Opin. Neurobiol. 11, 550-557 (2001).

7.9 Examples of intracellular transport and traffic: intraflagellar transport

382. J.L. Rosenbaum, D.G. Cole and D.R. Diener, Intraflagellar transport: the eyes have it, J. Cell Biol. 144, 385-388 (1999).

383. J.M. Scholey, Intraflagellar transport, Annu. Rev. Cell Dev. Biol. 19, 423-443 (2003).

384. J.M. Scholey, Intraflagellar transport motors in cilia: moving along the cell's antenna, J. Cell Biol. 180, 23-29 (2008).
7.10 Examples of intracellular transport and traffic: tip growth

Cytoskeleton plays crucial role also in creating and growing tip-like cell surface protrusions. Examples of such tip growth phenomena include axonal elongation in mammals, growth of root hairs and pollen tubes in plants, hyphal growth in filamentous fungi, etc.

385. O.E. Blacque, S. Cevik and O.I. Kaplan, *Intraflagellar transport: from molecular characterisation to mechanism*, Front. Biosc. **13**, 2633-2652 (2008).

386. D. G. Cole, *The intraflagellar transport machinery of chlamydomonas reinhardtii*, Traffic **4**, 435-442 (2003).

387. P.W. Baas and F.J. Ahmad, *Force generation by cytoskeletal motor proteins as a regulator of axonemal elongation and retraction*, Trends Cell Biol. **11**, 244-249 (2001).

388. A. Geitmann and A.M.C. Emons, *The cytoskeleton in plant and fungal cell tip growth*, J. Microscopy **198**, 218-245 (2000).

389. G.O. Westeneys and M.E. Galway, *Remodeling the cytoskeleton for growth and form: an overview with some new views*, Annu. Rev. Plant Biol. **54**, 691-722 (2003).

390. P.J. Hussey, T. Ketelaar and M.J. Deeks, *Control of the actin cytoskeleton in plant cell growth*, Annu. Rev. Plant Biol. **57**, 109-125 (2006).

391. A. Krichevsky, S.V. Kozlovsky, G.W. Tian, M.H. Chen, A. Zaltsman and V. Citovsky, *How pollen tubes grow*, Developmental Biol. **303**, 405-420 (2007).

392. Y. Chebli and A. Geitmann, *Mechanical principles governing pollen tube growth*, Functional plant science and Biotechnol. **1**, 232-245 (2007).

393. J. Samaj, J. Müller, M. Beck, N. Böhm and D. Menzel, *Vesicular trafficking, cytoskeleton and signalling in root hairs and pollen tubes*, Trends Plant Sci. **11**, 594-600 (2006).

394. T. Ketelaar and A.M.C. Emons, *The cytoskeleton in plant cell growth: lessons from root hairs*, New Phytologist **152**, 409-418 (2001).

395. B.J. Sieberer, T. Ketelaar, J.J. Esseling and A.M.C. Emons, *Microtubules guide root hair tip growth*, New Phytologist **167**, 711-719 (2005).

396. R.J. Carol and L. Dolan, *Building a hair: tip growth in Arabidopsis thaliana root hairs*, Phil. Trans. Roy. Soc. Lond. B **357**, 815-821 (2002).

397. R. Palanivelu and D. Preuss, *Pollen tube targeting and axon guidance: parallels in tip growth mechanisms*, Trends Cell Biol. **10**, 517-524 (2000).

398. R.A. Yamashita and G.S. May, *Motoring along the hyphae: molecular motors and the fungal cytoskeleton*, Curr. Opin. Cell Biol. **10**, 74-79 (1998).

399. X. Xiang and R. Fischer, *Nuclear migration and positioning in filamentous fungi*, Fungal genetics and biology **41**, 411-419 (2004).

400. A. Virag and S.D. Harris, *The spitzenkörper: a molecular perspective*, Mycological Research, **110**, 4-13 (2006).

401. G. Steinberg, *Preparing the way: fungal motors in microtubule organization*, Trends Microbiol. **15**, 14-21 (2006).

402. G. Steinberg, *Hyphal growth: a tale of motors, lipids and the spitzenkörper*, Eukaryotic Cell **6**, 351-360 (2007).

403. G. Steinberg, *On the move: endosomes in fungal growth and pathogenicity*, Nat. Rev. Microbiol. **5**, 309-316 (2007).

404. G. Steinberg, *Tracks for traffic: microtubules in the plant pathogen Ustilago maydis*, New Phytol. **174**, 721-733 (2007).
405. T. Horio, *Role of microtubules in tip growth of fungi*, J. Plant res. **120**, 53-60 (2007).

406. A. Gorietty and M. Tabor, *Biomechanical models of hyphal growth in actinomycetes*, J. Theor. Biol. **222**, 211-218 (2003).

407. K.E.P. Sugden, M.R. Evans, W.C.K. Poon and N.D. Read, *Model of hyphal tip growth involving microtubule-based transport*, Phys. Rev. E **75**, 031909 (2007).

7.11 Diseases caused by malfunctioning of cytoskeletal motor transport system

Just as occasional disruption of work in any department of a factory can bring entire operation factory to a standstill, defective molecular machines can cause diseases. For example, malfunctioning of the track and/or motor can cause breakdown of the intracellular molecular motor transport system leading to a traffic-jam-like situation

408. H. Tiedge, F.E. Bloom, D. Richter, PNAS **98**, 6997 (2001).

409. M. Aridor and L.A. Hannan, *Traffic jam: a compendium of human diseases that affect intracellular transport processes*, Traffic **1**, 836-851 (2000).

410. M. Aridor and L.A. Hannan, *Traffic jams II: an update of diseases of intracellular transport*, Traffic **3**, 781-790 (2002).

411. M.P. Sheetz, K.K. Pfister, J.C. Bulinski and C.W. Cotman, *Mechanisms of trafficking in axons and dendrites: implications for development and neurodegeneration*, Prog. in Neurobiol. **55**, 577-594 (1998).

412. E. Mandelkow and E.M. Mandelkow, *Kinesin motors and disease*, Trends Cell Biol. **12**, 585-591 (2002).

413. G.J. Pazour and J.L. Rosenbaum, *Intraflagellar transport and cilia-dependent diseases*, Trends Cell Biol. **12**, 551-555 (2002).

414. D.H. Seog, D.H. Lee and S.K. Lee, *Molecular motor proteins of the kinesin superfamily proteins (KIFs): structure, cargo and disease*, J. Korean Med. Sci. **19**, 1-7 (2004).

415. N. Hirokawa and R. Takemura, *Biochemical and molecular characterization of diseases linked to motor proteins*, Trends Biochem. Sci. **28**, 558-565 (2003).

416. N. Hirokawa and R. Takemura, *Molecular motors in neuronal development, intracellular transport and diseases*, Curr. Opin. Neurobiol. **14**, 564-573 (2004).

417. G.B. Stokin and L.S.B. Goldstein, *Linking molecular motors to Alzheimer’s disease*, J. Physiology **99**, 193-200 (2006).

418. L.S.B. Goldstein, *Kinesin molecular motors: transport pathways, receptors and human disease*, PNAS **98**, 6999-7003 (2001).

419. L.S.B. Goldstein, *Do disorders of movement cause movement disorders and dementia?*, Neuron **40**, 415-425 (2003).

7.12 Hijacking of cytoskeletal transport system by viruses

Viruses are known to hijack the motors to travel from the cell periphery to the cell nucleus.

420. G.A. Smith and L.W. Engquist, *Break ins and break outs: viral interactions with the cytoskeleton of mammalian cells*, Annu. Rev. Cell & Dev. Biol. **18**, 135-161 (2002).

421. U.F. Greber and M. Way, *A superhighway to virus infection*, Cell **124**, 741-754 (2006).

422. B. Sodeik, *Mechanisms of viral transport in the cytoplasm*, Trends Microbiol. **8**, 465-472 (2000).

423. K. Döhner, C.H. Nagel and B. Sodeik, *Viral stop-and-go along microtubules*, Trends Microbiol. **13**, 320-327 (2005).
8 Processive cytoskeletal motors: cross-linkers and sliders

8.1 Cross-linking and relative sliding of two MT filaments by kinesin

Eg5, a tetrameric kinesin, one of the most prominent members of the kinesin-5 family, has been studied experimentally because of its ability to slide two microtubule filaments with respect to each other in the mitotic spindle. Although Eg5 is processive, its processivity is quite low. Sliding of MT filaments, driven collectively by Eg5, has some similarities with myosin-driven muscle contraction, which we will consider in a later section.

434. L.C. Kapitein, E.J.G. Peterman, B.H. Kwok, J.H. Kim, T.M. Kapoor and C.F. Schmidt, The bipolar mitotic kinesin Eg5 moves on both microtubules that it crosslinks, Nature 435, 114-118 (2005).

435. M.T. Valentine, P.M. Fordyce and S.M. Block, Eg5 steps it up!, Cell Division 1:31 (2006).

436. M.T. Valentine and S.P. Gilbert, To step or not to step? How biochemistry and mechanics influence processivity in kinesin and Eg5, Curr. Opin. Cell Biol. 19, 75-81 (2007).

7.13 Drug delivery using cytoskeletal motors

The molecular motor transport system can be utilized even for targeted drug delivery where molecular motors can be used as vehicles for the drug.

433. R.N. Cohen, M.J. Rashkin, X. Wen, F.C. Szoka Jr., Molecular motors as drug delivery vehicles, Drug Discovery Today: Nanotechnologies 2, 111-118 (2005).

8.2 Cross-linking and relative sliding of two actin filaments by processive myosin

Cross-linking and relative sliding of actin filaments by myosin motors can, in principle, create fingerlike cell protrusions called filopodia. The sliding of actin filaments by nonprocessive muscle myosins will be considered later in the context of muscle contraction.

438. K. Kruse and K. Sekimoto, Growth of fingerlike protrusions driven by molecular motors, Phys. Rev. E 66, 031904 (2002).
8.3 Axonemal dynein and beating of flagella

The molecular composition, structure and dynamics of eukaryotic flagella are totally different from those of bacterial flagella. Moreover, structurally, eukaryotic flagella and cilia are qualitatively similar cell appendages; their quantitative differences lie in their size and distribution on the cell.

In this subsection we consider only the physical processes driven by the cytoskeletal filaments and the motors which lead to the beating of the flagella. How the various patterns of these beatings in a fluid medium propels the eukaryotic cell is a problem of fluid dynamics and will be taken up later in the section on swimming of eukaryotic cells.

439. L. Margulis, Undulipodia, flagella and cilia, Biosystems 12, 105-108 (1980).

440. H.C. Taylor, Axonemal dynein- a natural molecular motor, Nanotechnology 10, 237-243 (1999).

441. E.S. Kaneshiro, M.J. Sanderson and G.B. Witman, Amoeboid movement, cilia, and flagella, in: Cell Physiology Sourcebook: a molecular approach, ed. N. Sperelakis, (Academic Press, 2001).

442. K. Inaba, Molecular architecture of the sperm flagella: molecules for motility and signaling, Zoological Science 20, 1043-1056 (2003).

443. W.F. Marshall and S. Nonaka, Cilia: tuning in to the cell’s antenna, Curr. Biol. 16, R604-R614 (2006).

444. M.E. Porter and W.S. Sale, The 9+2 axoneme anchors multiple inner arm dyneins and a network of kinases and phosphatases that control motility, J. Cell Biol. 151, F37-F42 (2000).

445. M.E. Porter, Axonemal dyneins: assembly, organization, and regulation, Curr. Opin. Cell Biol. 8, 10-17 (1996).

446. J. Cosson, A moving image of flagella: news and views on the mechanisms involved in axonemal beating, Cell Biol. International 20, 83-94 (1996).

447. D. Woolley, Th molecular motors of cilia and eukaryotic flagella, Essays Biochem. 35, 103-115 (2000).

448. K.H. Downing and H. Sui, Structural insights into microtubule doublet interactions in axonemes, Curr. Opin. Struct. Biol. 17, 253-259 (2007).

449. S. Ishijima, The velocity of microtubule sliding: its stability and load dependency, Cell Mot. and the cytoskeleton 64, 809-813 (2007).

450. R. Dallai, P. Lupetti and C. Mencarelli, Unusual axonemes of hexapod spermatozoa, Int. Rev. Cytol. 254, 45-99 (2006).

451. I. Ibanez-Tallon, N. Heintz and H. Omran, To beat or not to beat: roles of cilia in development and disease, Human Mol. Genet. 12, R27-R35 (2003).

452. C.J. Brokaw, Flagellar movement: a sliding filament model, Science 178, 455-462 (1972).

453. S.K. Dutcher, Flagellar assembly in two hundred and fifty easy-to-follow steps, Trends Genet. 11, 398-404 (1995).

454. S. Camalet, F. Jülicher and J. Prost, Self-organized beating and swimming of internally driven filaments, Phys. Rev. Lett. 82, 1590-1593 (1999).

455. S. Camalet and F. Jülicher, Generic aspects of axonemal beating, New J. Phys. 2, 1-24 (2000).

456. C.B. Lindemann, Testing the geometric clutch hypothesis, Biol. of the Cell 96, 681-690 (2004).

457. I. I. Tallon, N. Heintz and H. Omran, To beat or not to beat: roles of cilia in development and disease, Human Mol. Genetics 12, R27-R35 (2003).
9 Nonprocessive cytoskeletal motors: collective dynamics of rowers

The oars of rowers come in contact with water for a very brief period, giving a stroke and then comes out of water, completing one cycle. All the rowers of the same group try to synchronize their stroke cycle in such a way as to provide the maximum thrust to the boat. Similarly, “rower” molecular motors also remain attached to their track for a small fraction of their ATPase cycle, i.e., the duty ratio of these nonprocessive motors is usually small. However, the collective stroke of a very large number of such tiny motor molecules can generate forces large enough to contract a muscle.

9.1 Nonprocessive myosin and muscle contraction

There are some chemical differences between the muscles of vertebrates and invertebrates (e.g., flight muscles of insects). Muscle cells of vertebrates can be broadly classified into “striated” and smooth (“non-striated”) types. Vertebrate striated muscle cells can be further divided into two categories—skeletal and cardiac. Although skeletal muscles of vertebrates (e.g., those of frog and rabbit) were used in most of the early investigations on the mechanism of muscle contraction, the cardiac muscle has been getting attention in recent years because of its implications in cardiac disease control.

Each muscle fiber is actually an enormous multinucleated cell produced by the fusion of many mononucleated precursor cells during development whose nuclei are retained in the adult muscle cell. The diameter of muscle cells is typically 10 – 100 µm and the length can range from less than a millimeter to a centimeter. Each of these cells is enclosed by a plasma membrane. The nuclei are squeezed to the peripheral region just beneath the plasma membrane.

About 80 percent of the cytoplasm of a skeletal muscle fiber (i.e., muscle cell) is occupied by cylindrical rods of protein and are known as myofibrils. Many myofibrils, each about 1µm in diameter, are contained within the cross section of a single muscle cell. The muscle cells also contain mitochondria sandwiched between the myofibrils.

Myofibrils are the structures that are responsible for muscle contraction. The most distinctive feature of myofibrils is their banded appearance; the dark bands correspond to higher density of protein. The spatial periodicity of the alternating light and dark bands is 2.3-2.6 µm in the resting state of a muscle; the entire repeating structure, from one Z-disc to the next, is known as sarcomere.

The banded appearance of the sarcomere is produced by hundreds of protein filaments bundled together in a highly ordered fashion. The two main types of filament are:

(i) thick filaments, about 15 nm in diameter, are made mostly of myosin;
(ii) thin filaments, about 7 nm in diameter, consist mostly of actin.

Both these types of filaments contain also other types of proteins which help to hold them in correct steric arrangement and regulate the process of contraction. Arrays of thin and thick filaments overlap in the
sarcomere in a manner similar to that of two stiff bristle brushes. Myosin molecules are arranged in such a way on the thick filament that their heads point away from the mid-zone towards either end of the filament. The thick filaments come within about 13 nm of the adjacent thin filament which is close enough for the formation of cross-bridges between the myosin heads belonging to the thick filament and actin molecules constituting the thin filaments.

In two landmark papers published in 1954, A.F. Huxley and Niedergerke and, independently, H. E. Huxley and Hanson proposed the sliding filament hypothesis of muscle contraction. According to this hypothesis, it is the sliding of the thick and thin filaments past each other, rather than folding of individual proteins, that leads to the contraction of the muscle. This theory was formulated clearly and quantitatively in another classic paper of A.F. Huxley in 1957.

In the original version of the sliding filament model, developed in the nineteen fifties, it was generally assumed that the cross bridges moved back and forth along the backbone of the thick filaments remaining firmly attached to it laterally. However, later X-ray studies demonstrated that the filament separation could vary without apparently interfering with the actin-myosin interactions. On the basis of this observation, in 1969, H.E. Huxley proposed the myosin “lever arm” hypothesis. This model was developed further and formulated quantitatively by A.F. Huxley and Simmons in 1971.

464. C.R. Bagshaw, Muscle Contraction (2nd edition) (Kluwer, 1992).

465. M. Barany and K. Barany, Biochemistry of muscle contraction, Educational resources, Biophysical Society (2002).

466. S.V. Brooks, Current topics for teaching skeletal muscle physiology, Adv. Physiol. Education, 27, 171-182 (2003).

467. R.J. Paul, Contraction of muscles, in: Cell Physiology Sourcebook: a molecular approach, ed. N. Sperelakis, 3rd edn. (Acad. Press 2001).

468. S.M. Block, Fifty ways to love your lever: myosin motors, Cell 87, 151-157 (1996).

469. K.C. Holmes, Muscle proteins- their actions and interactions, Curr. Opin. Struct. Biol. 6, 781-789 (1996).

470. K.C. Holmes, The swinging lever-arm hypothesis of muscle contraction, Curr. Biol. 7, R112-R118 (1997).

471. M.A. Geeves and K.C. Holmes, Structural mechanism of muscle contraction, Annu. Rev. Biochem. 68, 687-728 (1999).

472. K.C. Holmes and M.A. Geeves, Phil. Trans. Roy. Soc. B 355, 419-431 (2000).

473. M.A. Geeves, R. Fedorov and D.J. Manstein, Molecular mechanism of actomyosin-based motility, Cell. Mol. Life Sci. 62, 1462-1477 (2005).

474. M.A. Geeves and K.C. Holmes, The molecular mechanism of muscle contraction, in: Advances in Protein Chemistry, 71, 161-193 (2005).

475. S. Highsmith, Lever arm model of force generation by actin-myosin-ATP, Biochemistry 38, 9791-9797 (1999).

476. A. Houdusse and H.L. Sweeney, Myosin motors: missing structures and hidden springs, Curr. Opin. Struct. Biol. 11, 182-194 (2001).

477. M.J. Redowicz, Unconventional myosins in muscle, Eur. J. Cell Biol. 86, 549-558 (2007).

478. N. Volkman and D. Hanein, Actomyosin: law and order in motility, Curr. Opin. Cell Biol. 12, 26-34 (2000).

479. C. Rüegg, C. Veigel, J.E. Molloy, S. Schmitz, J.C. Sparrow and R.H.A. Fink, Molecular motors: force and movement generated by single myosin II molecules, News Physiol. 17, 213-218 (2002).
480. K. Clark, M. Langeslag, C.G. Figdor and F.N. van Leeuwen, *Myosin II and mechanotransduction: a balancing act*, Trends Cell Biol. **17**, 178-186 (2007).

481. I. Rayment, *The structural basis of the myosin ATPase activity*, J. Biol. Chem. **271**, 15850-15853 (1996).

482. M.J. Tyska and D.M. Warshaw, *The myosin power stroke*, Cell Motility and the Cytoskeleton, **51**, 1-15 (2002).

483. J.E. Morel and N. D’Hahan, *The myosin motor: muscle contraction and in-vitro movement*, Biochim. Biophys. Acta **1474**, 128-132 (2000).

484. N.P. Smith, C.J. Barclay and D.S. Loiselle, *The efficiency of muscle contraction*, Prog. Biophys. Mol. Biol. **88**, 1-58 (2005).

485. Y.E. Goldman, *Muscle contraction*, in: *The Enzymes*, vol.XXIII: energy coupling and molecular motors, eds. D.D. Hackney and F. Tamanoi, 1-53 (Elsevier 2004)

486. J.M. Squire, H.A. Al-Khayat, C. Knupp and P.K. Luther, *Molecular architecture in muscle contractile assemblies*, in: Advances in Protein Chemistry, **71**, 17-87 (2005).

487. D.W. Maughan, *Kinetics and energetics of the crossbridge cycle*, Heart Fail. Rev. **10**, 175-185 (2005).

488. J.M. Squire and C. Knupp, *X-ray diffraction studies of muscle and the crossbridge cycle*, Advances in Protein Chemistry, **71**, 195-255 (2005).

489. R. Craig and J.L. Woodhead, *Structure and function of myosin filaments*, Curr. Opin. Struct. Biol. **16**, 204-212 (2006).

490. F. Oosawa, *The unit event of sliding of the chemo-mechanical enzyme composed on myosin and actin with regulatory proteins*, Biochem. Biophys. Res. Commun. **369**, 144-148 (2008).

491. F. Oosawa, *The loose coupling mechanism in molecular machines of living cells*, Genes to Cells **5**, 9-16 (2000).

492. F. Oosawa, *Sliding and ATPase*, J. Biochem. **118**, 863-870 (1995).

493. A.B. Kolomeisky, E.B. Stukalin and A.A. Popkov, *Understanding mechanochemical coupling in kinesins using first-passage-time processes*, Phys. Rev. E **71**, 031902 (2005).

Studies of muscle contraction has a long history.

494. J.A. Spudich, *The myosin swinging cross-bridge model*, Nat. Rev. Mol. Cell Biol. **2**, 387-392 (2001).

495. H.E. Huxley, *Sliding filaments and molecular motile systems*, J. Biol. Chem. **25**, 8347-8350 (1990).

496. A.F. Huxley, *Mechanics and models of the myosin motor*, Phil. Trans. Roy Soc. Lond. B **355**, 433-440 (2000).

497. A.F. Huxley, *Cross-bridge action: present views, prospects and unknowns*, J. Biomechanics **33**, 1189-1195 (2000).

498. H.E. Huxley, *Past, present and future experiments on muscle*, Phil. Trans. Roy. Soc. Lond. B **355**, 539-543 (2000).

499. H.E. Huxley, *Fifty years of muscle and the sliding filament hypothesis*, Eur. J. Biochem. **271**, 1403-1415 (2004).

500. H.E. Huxley, *memories of early work on muscle contraction and regulation in the 1950’s and 1960’s*, Biochem. Biophys. Res. Commun. **369**, 34-42 (2008).

501. A. Weber and C. Franzini-Armstrong, *Hugh E. Huxley: birth of the filament sliding model of muscle contraction*, Trends Cell Biol. **12**, 243-245 (2002).

502. K. Sekimoto and H. Nakazawa, *Contraction of a bundle of actin filaments: 50 years after Szent-Gyorgyi*, arXiv:physics/0004044 (2000).
503. R. Cooke, *The sliding filament model: 1972-2004*, J. Gen. Physiol. **123**, 643-656 (2004).

504. K.C. Holmes, *Introduction*, Phil. Trans. Roy. Soc. Lond. B **359**, 1813-1818 (2004).

505. W. Herzog and R. Ait-Haddou, *Considerations on muscle contraction*. J. Electromyography and Kinesiology **12**, 425-433 (2002).

506. W. Herzog, T.R. Leonard, V. Joumaa and A. Mehta, *Mysteries of muscle contraction*, J. Appl. Biomech. **24**, 1-13 (2008).

507. H. Hatze, *Fundamental issues, recent advances, and future directions in myodynamics*, J. Electromyography and Kinesiology **12**, 447-454 (2002).

508. A.N. Martonosi, *Animal electricity, Ca\(^{2+}\) and muscle contraction: a brief history of muscle research*, Acta Biochimica Polonica **47**, 493-516 (2000).

509. J.R. Sellers, *Fifty years of contractility research post sliding filament hypothesis*, J. Muscle Res. Cell Motility **25**, 475-482 (2004).

510. G. Offer, *Fifty years on: where have we reached?*, J. Muscle Res. Cell Motility **27**, 205-213 (2006).

Some of the classic papers on the molecular structure and mechanism of muscle contraction is very rewarding even today.

511. A.F. Huxley and R. Niedergerke, *Structural changes in muscle during contraction*, Nature **173**, 971-973 (1954).

512. H. Huxley and J. Hanson, *Changes in the cross- striations of muscle during contraction and stretch and their structural interpretation*, Nature **173**, 973-976 (1954).

513. A.F. Huxley, *Muscle structure and theories of contraction*, in: Prog. Biophys. Biophys. Chemistry, **7**, eds. J.A.V. Butler and B. Katz, (Pergamon Press, 1957).

514. H.E. Huxley, *The mechanism of muscular contraction*, Science **164**, 1356-1365 (1969).

515. A.F. Huxley and R.M. Simmons, *Proposed mechanism of force generation in striated muscle*, Nature **233**, 533-538 (1971).

516. D.C.S. White and J. Thorston, *The kinetics of muscle contraction*, Prog. Biophys. and Mol. Biol. **27**, eds. J.A.V. Butler and D. Noble, 173-255 (1973).

517. A.F. Huxley, *Muscular contraction*, J. Physiol. **243**, 1-43 (1974).

Theoretical models have now reached a high level of sophistication.

518. E. Eisenberg, T.L. Hill and Y. Chen, *Cross-bridge model of muscle contraction: quantitative analysis*, Biophys. J. **29**, 195-227 (1980).

519. E. Eisenberg and T.L. Hill, *Muscle contraction and free energy transduction in biological systems*, Science **227**, 999-1006 (1985).

520. K. Tawada and K. Sekimoto, *A physical model of ATP-induced actin-myosin movement in vitro*, Biophys. J. **59**, 343-356 (1991).

521. Y. Chen and B. Brenner, *On the regeneration of the actin-myosin power stroke in contracting muscle*, PNAS **90**, 5148-5152 (1993).

522. G. Piazzesi and V. Lombardi, *A cross-bridge model that is able to explain mechanical and energetic properties of shortening muscle*, Biophys. J. **68**, 1966-1979 (1995).

523. H. Qian, *The mathematical theory of molecular motor movement and chemomechanical energy transduction*, J. Math. Chem. **27**, 219-234 (2000).

524. T. Duke and S. Leibler, *Motor protein mechanics: a stochastic model with minimal mechanochemical coupling*, Biophys. J. **71**, 1235-1247 (1996).
525. T.A.J. Duke, *Molecular model of muscle contraction*, PNAS 96, 2770-2775 (1999).

526. T.A.J. Duke, *Cooperativity of myosin molecules through strain-dependent chemistry*, Phil. Trans. Roy. Soc. Lond. B 355, 529-538 (2000).

527. T. Duke, *Modelling motor protein systems*, in: *Physics of bio-molecules and cells*, eds. H. Flyvbjerg, F. Jülicher, P. Ormos and F. David, 95-144 (Springer, 2002).

528. A. Vilfan and T.A. Duke, *Instabilities in the transient response of muscle*, Biophys. J. 85, 818-827 (2003).

529. H.J. Woo and C.L. Moss, *Analytical theory of the stochastic dynamics of the power stroke in nonprocessive motor proteins*, Phys. Rev. E 72, 051924 (2005).

530. A. Vilfan, *The binding dynamics of tropomyosin on actin*, Biophys. J. 81, 3146-3155 (2001).

531. G. Lan and S.X. Sun, *Dynamics of myosin-driven skeletal muscle contraction: I. Steady-state force generation*, Biophys. J. 88, 4107-4117 (2005).

532. N.M. Kad, S. Kim, D.M. Warshaw, P. VanBuren and J.E. Baker, *Single-myosin crossbridge interactions with actin filaments regulated by troponin-tropomyosin*, PNAS 102, 16990-16995 (2005).

9.2 Bidirectional motion of MT driven collectively by nonprocessive kinesins

Consider a group of identical motors bound to an elastic backbone. Even if each individual motor is non-processive, such a system of elastically coupled motors can move collectively on a filamentary track in a processive manner in one direction for a period of time and, then, spontaneously reverse its direction of motion. Such spontaneous oscillations can account for the dynamics of axonemes, which are core constituents of eucaryotic cilia, as well as oscillatory motions of flight muscles of many insects.

533. F. Jülicher and J. Prost, *Cooperative molecular motors*, Phys. Rev. Lett. 75, 2618-2621 (1995).

534. F. Jülicher and J. Prost, *Spontaneous oscillations of collective molecular motors*, Phys. Rev. Lett. 78, 4510-4513 (1997).

535. M. Badoual, F. Jülicher and J. Prost, *Bidirectional cooperative motion of molecular motors*, PNAS 99, 6696-6701 (2002).

536. A. Vilfan, E. Frey and F. Schwabl, *Elastically coupled molecular motors*, Eur. Phys. J. B. 3, 535 (1998).

537. A. Vilfan, E. Frey and F. Schwabl, *Force-velocity relations of a two-state crossbridge model for molecular motors*, Europhys. Lett. 45, 283 (1999).

538. A. Vilfan, *Collective dynamics of molecular motors*, Ph.D. thesis (Technical University of Munich, 2000).

10 Cooperative extraction of membrane tubes by cytoskeletal motors

Cytoskeletal motors carry membrane-bounded vesicles and organelles as cargoes while walking along their respective tracks as porters. Interestingly, motors can also extract membrane tubes from vesicles. The nature of the dynamics of the tube, however, depends on the extent of processivity of the motors.

539. A. Roux, G. Cappello, J. Cartaud, J. Prost, B. Goud and P. Bassereau, *A minimal system allowing tubulation with molecular motors pulling on giant liposomes*, PNAS 99, 5394-5399 (2002).

540. G. Kostor, M. Van Duijn, B. Hofs and M. Dogterom, *Membrane tube formation from giant vesicles by dynamic association of motor proteins*, PNAS 100, 15583-15588 (2003).
11 Effects of defect and disorder on shuttles and muscles

So far we have implicitly regarded the microtubule track for the cytoskeletal motors to be a perfectly periodic array of motor-binding sites. However, in reality, the MAPs can introduce “defect” and “disorder” into this perfectly periodic lattice; the lattice constant being 8 nm. In particular the Tau proteins are known to block the kinesin-binding sites on the microtubules. Binding of Tau affects at least two different rate constants, namely, those corresponding to: (a) the attachment of a new motor to the track, and (b) the forward stepping of the motor.

12 Self-organization of microtubule-motor complex in-vitro

In the earlier sections in this part we have focussed attention on situations where motors move on filamentous tracks that neither change length nor orientation during the entire period of movement of the motors. We have also separately considered the dynamic instability of microtubules because of which microrubules can grow or shrink. In this section we study the interplay of the dynamics of both microtubules and motors, addressing the question of the structures that emerge from the self-organization of microtubule-motor complex in-vitro. These are also relevant for the phenomenon of cell division which will be taken up in the last part of this resource letter.

547. D.J. Sharp, G.C. Rogers and J.M. Scholey, Roles of motor proteins in building microtubule-based structures: a basic principle of cellular design, Biochim. Biophys. Acta 1496, 128-141 (2000).

548. F.J. Nedelec, T. Surrey, A.C. Maggs and S. Leibler, Self-organization of microtubules and motors, Nature 389, 305-308 (1997).

549. F. Nedelec and T. Surrey, Dynamics of microtubule aster formation by motor complexes, C.R. Acad. Sci. Paris, 2, serie IV, 841-847 (2001).

550. T. Surrey, F. Nedelec, S. Leibler and E. Karsenti, Physical properties determining self-organization of motors and microtubules, Science 292, 1167-1171 (2001).

551. F. Nedelec, T. Surrey and E. Karsenti, Self-organization and forces in the microtubule cytoskeleton, Curr. Opin. Cell Biol. 15, 118-124 (2003).

552. E. Karsenti, F. Nedelec and T. Surrey, Modelling microtubule patterns, Nat. Cell Biol. 8, 1204-1211 (2006).
553. E. Karsenti, *Self-organization in cell biology: a brief history*, Nat. Rev. Mol. Cell Biol. **9**, 255-262 (2008).

554. B. Basetti, M. C. Lagomarsino and P. Jona, *A model for the self-organization of microtubules driven by molecular motors*, Eur. Phys. J. B **15**, 483-492 (2000).

555. H.Y. Lee and M. Kardar, *Macroscopic equations for pattern formation in mixtures of microtubules and molecular motors*, Phys. Rev. E **64**, 056113 (2001).

556. S. Sankararaman, G.I. Menon and P.B. Sunil Kumar, *Self-organized pattern formation in motor-microtubule mixtures*, Phys. Rev. E **70**, 031905 (2004).

557. G.I. Menon, *Collective effects in models for interacting motors and motor-microtubule mixtures*, Physica A **372**, 96-112 (2006).

558. K. Kruse, J.F. Joanny, F. Jülicher, J. Prost and K. Sekimoto, *Asters, vortices and rotating spirals in active gels of polar filaments*, Phys. Rev. Lett. **92**, 078101 (2004).

559. F. Ziebert and W. Zimmermann, *Nonlinear competition between asters and stripes in filament-motor-systems*, Eur. Phys. J. E **18**, 41-54 (2005).

560. J. Kim, Y. Park, B. Kahng and H.Y. Lee, *Self-organized patterns in mixtures of microtubules and motor proteins*, J. Korean Phys. Soc. **42**, 162-166 (2003).

561. M. Kirschner, J. Gerhart and T. Mitchison, *Molecular “vitalism”*, Cell **100**, 79-88 (2000).

562. T. Misteli, *The concept of self-organization in cellular architecture*, J. Cell Biol. **155**, 181-185 (2001).

563. I. Vorobjev, V. Malikov and V. Rodionov, *Self-organization of a radial microtubule array by dynein-dependent nucleation of microtubules*, PNAS **98**, 10160-10165 (2001).

564. E.N. Cytrynbaum, V. Rodionov and A. Mogilner, *Computational model of dynein-dependent self-organization of microtubule asters*, J. Cell Sci. **117**, 1381-1397 (2004).

Part II: Molecular machines for synthesizing, manipulating and degrading macromolecules of life

The individual *monomeric residues* that form proteins and nucleic acids are *amino acids* and *nucleotides*, respectively. Both these types of macromolecules are *unbranched* polymers. The complete *covalent* structure is called the *primary* structure of the macromolecule. It would be extremely time- (and space-) consuming to write a chemical formula for the entire primary structure. Therefore, it is customary to express primary structures in terms of abbreviation using an alphabetic code. The most common convention uses one-letter code for each nucleotide and three-letter code for each amino acid. For proper biological function, these macromolecules form appropriate *secondary* and *tertiary* structures. The term *conformation* is synonymous with tertiary structure.

565. C.R. Cantor and P.R. Schimmel, *Biophysical Chemistry Part I: the conformation of biological macromolecules*, (Freeman and Co. 1980).

566. V.A. Bloomfield, D.M. Crothers and I. Tinoco Jr. *Nucleic acids: structures, properties and functions*, (University Science Books, Sausalito, California 2000).

In this part we consider molecular machines which either synthesize, or manipulate, or degrade macromolecular constituents of a cell, namely, DNA, RNA or protein. Among these machines, some translocate along a macromolecular track whereas others, whose spatial positions are more or less fixed, translocate macromolecules. This difference, of course, corresponds to a mere change of reference frame. Many of these machines are involved in all the major biological functions of genetic materials, e.g., transcription, replication, repair and recombination as well as in defence system of the cell against invading foreign genetic materials.
The constituent monomers, the primary structures as well as the spatial organization of the higher-order structures of nucleic acids and proteins are quite different. However, in spite of these differences, there are some common features in the birth, maturation and death:

(i) The sequence of the monomeric subunits to be used for synthesis are dictated by the corresponding template.
(ii) both nucleic acids and proteins are made from a limited number of different species of monomeric building blocks.
(iii) these polymers are elongated, step-by-step, during their birth by successive addition of monomers, one at a time.
(iv) Synthesis of each chain (polynucleotide and polypeptide) begins and ends when the machine encounters well-defined start and stop signals on the template strand.
(v) The primary product of the synthesis, namely, polynucleotide or polypeptide, often requires “processing” whereby the modified product matures into functional nucleic acid or protein, respectively.
(vi) DNA, the genetic blueprint of life, needs repair every now and then to maintain its integrity. During cell division, it is faithfully replicated and passed onto the daughter cells. But, the other macromolecules of life are not so lucky. Because of “wear and tear”, these aged macromolecule becomes less useful with the passage of time. Finally, these are degraded, i.e., shredded into its constituent subunit pieces which are, then, recycled for synthesis of fresh macromolecules.

Interestingly, all these processes are driven by molecular machines which nature has designed for the specific purpose.

567. B.M. Alberts, *The DNA enzymology of protein machines*, Cold Spring Harbor Symposia on Quantitative Biology, XLIX, 1-12 (1984).
568. B.M. Alberts, *Protein machines mediate the basic genetic processes*, Trends Genetics, 1, 26-30 (1985).
569. W. Bujalowski, *Motor proteins in DNA metabolism: structures and mechanisms*, in: *Encyclopedia of life sciences*, (John Wiley, 2001).
570. C.W. Knopf and W. Waldeck, *DNA-binding enzymes: structural themes*, in: *Encyclopedia of Life Sciences*, (John Wiley, 2001).
571. A. Pingoud, A. Jeltsch, A. Maxwell and D. Sherrat, *Enzymes that keep DNA under control*, EMBO Rep. 2, 271-276 (2001).
572. N. Cozzarelli, G.J. Cost, M. Nöllmann, T. Viard and J.E. Stray, *Giant proteins that move DNA: bullies of the genomic playground*, Nat. Rev. Mol. Cell Biol. 7, 580-588 (2006).
573. M.R. Singleton and D.B. Wigley, *Multiple roles for ATP hydrolysis in nucleic acid modifying enzymes*, EMBO J. 22, 4579-4583 (2003).
574. R. Seidel and C. Dekker, *Single molecule studies of nucleic acid motors*, Curr. Opin. Struct. Biol. 17, 80-86 (2007).
575. O.A. Saleh, J.F. Allemand, V. Croquette and D. Bensimon, *Single-molecule manipulation measurements of DNA transport proteins*, ChemPhysChem. 6, 813-818 (2005).

13 Packaged organization of nucleic acids

In every cell the genetic information is encoded in the sequence of the nucleotides. Thus, at some stage of biological evolution, Nature chose an effectively linear device (namely, a NA strand) and a quaternary code (i.e., four symbols, namely, A, T, C, G) for storing genetic information. This was not the most efficient choice! The fewer is the number of letters of the alphabet the longer is the string of letters required to express a given message. One serious consequence of nature’s choice of the memory device and coding system is that even for the most primitive organisms like an E.coli bacterium, the total length of the DNA molecule is orders of magnitude longer than the organism itself! The problem is more acute in case of eukaryotic cells where an even longer DNA has to be
accomodated within a tiny nucleus! Moreover, random packaging of the DNA into the nucleus would not be desirable because, for wide variety of biological processes involving DNA, specific segments of the DNA molecules must be “unpacked” and made accessible to the corresponding cellular machineries. Furthermore, at the end of the operation, the DNA must be re-packed. Nature has solved the problem of packaging genetic materials in the nucleus of eukaryotic cells by organising the DNA strands in a hierarchical manner and the final packaged product is usually referred to as the chromatin.

576. N.P. Higgins Chromosome structure, in: Encyclopedia of Life Sciences (John Wiley, 2001).
577. A.T. Sumner, Chromosomes: organization and function, (Blackwell Publishing 2003).
578. A. Wolffe, Chromatin: structure and function, (3rd ed.), (Academic Press, 2000).
579. C. L. Woodcock, Chromatin architecture, Curr. Opin. Struct. Biol. 16, 213-220 (2006).
580. D.J. Tremethick, Higher-order structures of chromatin: the elusive 30 nm fiber, Cell 128, 651-654 (2007).
581. C. Wu, A. Bassett and A. Travers, A variable topology for the 30-nm chromatin fibre, EMBO Rep. 8, 1129-1134 (2007).
582. D.E. Olins and A.L. Olins, Chromatin history: our view from the bridge, Nat. Rev. Mol. Cell Biol. 4, 809-814 (2003).

Even in bacteria and viral capsids, the genome has to be packaged in a manner which allows efficient access during various processes of DNA and RNA metabolism. Most often, packaging or unpackaging and repackaging of the genome requires specific molecular machines. We’ll consider some of these machines later in this part of this article.

583. S.B. Zimmerman, Shape and compaction of Escherichia coli nucleoids, J. Str. Biol. 156, 255-261 (2006).

14 Elasticity of macromolecules of life

Nature must have extracted some advantage from the synthesis of macromolecules during the course of biological evolution. If it could manage all biological functions with small molecules, living systems would not consist with such a large component of macromolecules. What new features did macromolecules introduce? It not only introduced a new length scale (characterized by its size) and a time scale (associated with its dynamics) but also brought in its “flexibility” which is not possible with only small molecules. This flexible nature of macromolecules also gives rise to the importance of conformational entropy. In fact, many biological processes are driven by entropic elasticity. Apriori, it is not at all obvious that the phenomenological concepts of classical theory of elasticity, which were developed for macroscopic objects, should be applicable even for single molecules of DNA, RNA, etc. Technological advances over the last two decades made it possible to stretch, bend and twist a single macromolecule and the corresponding moduli of elasticity have been measured.

584. J.F. Marko, Introduction to single-DNA micromechanics, in: Multiple aspects of DNA and RNA from biophysics to bioinformatics, Les Houches Lecture, (2005).
585. C.J. Benham and S.P. Mielke, DNA mechanics, Annu. Rev. Biomed. Eng. 7, 21-53 (2005).
586. J. Bath and A.J. Turberfield, DNA nanomechanics, Nature Nanotechnol. 2, 275-284 (2007).
587. C. Bustamante, S.B. Smith, J. Liphardt and D. Smith, Single-molecule studies of DNA mechanics, Curr. Opin. Struct. Biol. 10, 279-285 (2000).
588. C. Bustamante, Z. Bryant and S.B. Smith, Ten years of tension: single molecule DNA mechanics, Nature 421, 423-427 (2003).
589. T. Strick, J. Allemand, V. Croquette and D. Bensimon, Twisting and stretching single DNA
Thus, elasticity of macromolecules of life is an interesting topic of research in its own right. Moreover, most often genome (DNA or RNA) are stored in bent conformation. For example, in eukaryotic cells, DNA is bent and wrapped around histones. Similarly, in viral capsids, nucleic acids are strongly bent for efficient packaging. Furthermore, temporary bending of macromolecules take place in many biological processes driven by molecular motors. Therefore, the elasticity of the macromolecules of life is also interesting in the study of molecular machines which polymerize, manipulate and degrade these molecules.

15 Rings and bracelets

A large number of molecular machines, which perform diverse functions in DNA metabolism, have toroidal architecture that is a characteristic feature of their multi-domain or multi-meric structure. The possible functional advantages of the toroidal architecture might have been exploited by nature in its evolutionary design of its intracellular toolbox.

15.1 Clamps and clamp loaders

Not all processive motors have a naturally strong grip on the nucleic acid track. Such motors hold onto the track during their translocation because they are attached to ring-like special clamp; such clamps are loaded onto the track by some other special purpose ATP-consuming machines called clamp loaders.

590. R. Lavery, A. Lebrun, J.F. Allemand, D. Bensimon and V. Croquette, *Structure and mechanics of single biomolecules: experiment and simulation*, J. Phys. Cond. Matt. **14**, R383-R414 (2002).

591. T.R. Strick, M.N. Dessinges, G. Charvin, N.H. Dekker, J.F. Allemand, D. Bensimon and V. Croquette, *Stretching of macromolecules and proteins*, Rep. Prog. Phys. **66**, 1-46 (2003).

592. G. Charvin, J.F. Allemand, T.R. Strick, D. Bensimon and V. Croquette, *Twisting DNA: single molecule studies*, Contemp. Phys. **45**, 383-403 (2004).

593. T. Lionnet, A. Dawid, S. Bigot, F.X. Barre, O.A. Saleh, F. Heslot, J.F. Allemand, D. Bensimon and V. Croquette, *DNA mechanics as a tool to probe helicase and translocase activity*, Nucl. Acids Res. **34**, 4232-4244 (2006).

594. X. Zhuang, *Single-molecule RNA science*, Annu. Rev. Biophys. Biomol. Str. **34**, 399-414 (2005).

595. J. F. Marko and M.G. Poirier, *Micromechanics of chromatin and chromosomes*, Biochem. Cell bio. **81**, 209-220 (2003).

596. J. Zlatanova, *Forcing chromatin*, J. Biol. Chem. **278**, 23213-23216 (2003).

597. H.G. Garcia, P. Grayson, L. Han, M. Inamdar, J. Kondev, P.C. Nelson, R. Phillips, J. Widom and P.A. Wiggins, *Biological consequences of tightly bent DNA: the other life of a macromolecular celebrity*, Biopolymers, **85**, 115-130 (2006).

600. L.B. Bloom and M.F. Goodman, *Polymerase processivity: measurement and mechanisms*, Encyclopedia of Life Sciences, (John Wiley, 2001).

601. L.B. Bloom, *Dynamics of loading the Escherichia coli DNA polymerase processivity clamp*, Crit. Rev. in Biochem and Mol. Biol. **41**, 179-208 (2006).

602. D. Jeruzalmi, M. O’Donnell and J. Kuriyan, *Clamp loaders and sliding clamps*, Curr. Opin. Struct. Biol. **12**, 217-224 (2002).
603. C. Indiani and M. O’Donnell, *The replication clamp-loading machine at work in the three domains of life*, Nat. Rev. Mol. Cell Biol. 7, 751-761 (2006).

604. G.D. Bowman, M. O’Donnell and J. Kuriyan, *Structural analysis of a eukaryotic sliding DNA clamp-clamp loader complex*, Nature 429, 724-730 (2004).

605. I Bruck and M. O’Donnell, *The ring-type polymerase sliding clamp family*, Genome Biol. 2, 3001.1-3001.3 (2001).

606. M. O’Donnell and J. Kuriyan, *Clamp loaders and replication initiation*, Curr. Opin. Struct. Biol. 16, 35-41 (2006).

607. V. Ellison and B. Stillman, *Opening of the clamp: an intimate view of an ATP-driven biological machine*, Cell 106, 655-660 (2001).

608. D. Barsky and C. Venclovas, *DNA sliding clamps: just the right twist to load onto DNA*, Curr. Biol. 15, R989-R992 (2005).

15.2 SMC proteins

Members of the SMC (Structural Maintenance of Chromosomes) family of proteins are bracelet-like devices which are found in both prokaryotes and eukaryotes. These form core components of the cohesin and condensation complexes in eukaryotes. A common feature of their architectural design is the two “arms” which are connected at a hinge. ATP-driven conformational transformations of these machines manifest as transitions from “opening” of the two arms of a bracelet about the hinge which joins them.

Now we focus exclusively on the ATP-dependent operational mechanism of the SMC proteins. Later, we’ll consider their role in important processes of DNA metabolism, e.g., in chromosome segregation.

609. T. Hirano, *At the heart of the chromosome: SMC proteins in action*, Nat. Rev. Mol. Cell Biol. 7, 311-322 (2006).

610. A. Losada and T. Hirano, *Dynamic molecular linkers of the genome: the first decade of SMC proteins*, Genes & Dev. 19, 1269-1287 (2006).

611. T. Hirano, *The ABCs of SMC proteins: two-armed ATPase for chromosome condensation, cohesion, and repair*, Genes Dev. 16, 399-414 (2002).

612. S.H. Harvey, M.J.E. Krien and M.J. O’Connell, *Structural maintenance of chromosomes (SMC) proteins, a family of conserved ATPases*, Genome Biol. 3, reviews 3003.1-3003.5 (2002).

613. C.E. Huang, M. Milutinovich and D. Koshland, *Rings, bracelet or snaps: fashionable alternatives for SMC complexes*, Phil. Tr. Roy. Soc. B 360, 537-542 (2005).

614. K. Nasmyth and C.H. Haering, *The structure and function of SMC and kleisin complexes*, Annu. Rev. Biochem. 74, 595-648 (2005).

615. A.R. Ball Jr. and K. Yokomori, *The structural maintenance of chromosomes (SMC) family of proteins in mammals*, Chromosome Res. 9, 85-96 (2001).

616. K.A. Hagstrom and B.J. Meyer, *Condensin and cohesin: more than chromosome compactor and glue*, Nat. Rev. Genet. 4, 529-534 (2003).

617. V. Legagneux, F. Cubizolles and E. Watrin, *Multiple roles of condensins: a complex story*, Biol. of the Cell 96, 201-213 (2004).

618. K. Shintomi and T. Hirano, *How are cohesin rings opened and closed?*, Trends Biochem. Sci. 32, 154-157 (2007).

16 Helicase and unzipping of nucleic acids

Helicases are molecular motors that unzip double-stranded nucleic acids and translocate along one of the two strands. Some Helicases also function as “sweepers” in the sense that non-helicase proteins
bound to the nucleic acid strand are dislodged by a helicase.

Nucleic acid translocases either move along nucleic acid tracks or, if anchored, move a nucleic acid strand. Helicases are special types of nucleic acid translocase as these translocate along single strands of nucleic acids by unzipping double-stranded nucleic acids. There are many nucleic acid translocases which, in spite of structural similarity with helicases, do not unzip nucleic acids.

Now we focus only on the mechanisms of operation of helicases. Later we’ll examine their operational mechanisms in broader contexts like, for example, replication, repair and recombination.

Helicases have been classified in various ways using different criteria. (i) Several conserved amino-acid sequences have been discovered in helicases. On the basis of these “helicase signature motifs”, DNA helicases have been classified into superfamilies SF1, SF2, SF3, etc. (ii) On the basis of the nature of the nucleic acid (DNA or RNA) track, i.e., the nucleic acid which they unwind, helicases have been classified into (a) DNA-helicases, (b) RNA-helicases and (c) hybrid helicases. Some helicases are, however, hybrid in the sense that these can unwind both DNA and RNA. (iii) Some helicases move from 3’ to 5’ end of a ssDNA whereas others move in the opposite direction. On the basis of directionality, helicases have been classified into two groups: 3’ to 5’ helicases and 5’ to 3’ helicases. (iv) Helicases have also been grouped according to the the source of these proteins, i.e., humans, plants, bacteria, viruses, etc.

In this chapter, we study the mechanisms of helicases separately for monomeric, dimeric and hexameric helicases. (v) On the basis of the number of ATPase domains, helicases have been classified into monomeric and multimeric types; dimeric and hexameric being the most common multimeric helicases. Here we utilize this last scheme of classification for highlighting the unity of mechanisms of helicases in spite of their diverse functions.

One of the fundamental questions on the mechanochemistry of helicases is the mechanism of energy transduction—does it unzip the nucleic acid actively or does it utilize the transient opening of the double strands by thermal fluctuations in a manner which can be identified as a thermal ratchet mechanism?

619. M.K. Levin and S.S. Patel, *Helicases as molecular motors*, in: *Molecular motors*, ed. M. Schliwa (Wiley-VCH, 2003).
620. M.R. Singleton, M.S. Dillingham and D.B. Wigley, *Structure and mechanism of helicase and nucleic acid translocases*, Annu. Rev. Biochem. 76, 23-50 (2007).
621. P. Soultanas and D.B. Wigley, *Unwinding the ‘Gordian knot’ of helicase action*, Trends Biochem. Sci. 26, 47-54 (2001).
622. K.P. Hopfner and J. Michaelis, *Mechanisms of nucleic acid translocases: lessons from structural biology and single-molecule biophysics*, Curr. Opin. Struct. Biol. 17, 87-95 (2007).
623. H. Dürr, A. Flaus, T. Owen-Hughes and K.P. Hopfner, *Snf2 family ATPases and DExx box helicases: differences and unifying concepts from high-resolution crystal structures*, Nucleic Acids Research, 34, 4160-4167 (2006).
624. T. Lionnet, A. Dawid, S. Bigot, F.X. Barre, O. A. Saleh, F. Heslot, J.F. Allemand, D. Bensimon and V. Croquette, *DNA mechanics as a tool to probe helicase and translocase activity*, Nucleic Acids Res. 34, 4232-4244 (2006).
625. M.C. Hall and S.W. Matson, *Helicase motifs: the engine that powers DNA unwinding*, Mol. Microbiol. 34, 867-877 (1999).
626. A.E. Gorbalenya and E.V. Koonin, *Helicases: amino acid sequence comparisons and structure-function relationships*, Curr. Opin. Struct. Biol. 3, 419-429 (1993).
627. S.S. Patel and I. Donmez, *Mechanisms of helicases*, J. Biol. Chem. 27, 18265-18268 (2006).
628. R.L. Coff and K.D. Raney, *Helicase-catalysed translocation and strand separation*, Biochem. Soc. Transac. 33, 1074-1078 (2005).
629. E. Delagoutte and P.H. von Hippel, Helicase mechanisms and the coupling of helicases within macromolecular machines Part I: structures and properties of isolated helicases, Quart. Rev. of Biophys. 35, 431-478 (2002).

630. E. Delagoutte and P.H. von Hippel, Helicase mechanisms and the coupling of helicases within macromolecular machines Part II: integration of helicases into cellular processes, Quart. Rev. of Biophys. 36, 1-69 (2003).

631. P.H. von Hippel and E. Delagoutte, Macromolecular complexes that unwind nucleic acids, BioEssays 25, 1168-1177 (2003).

632. P.H. von Hippel and E. Delagoutte, A general model for nucleic acid helicases and their “coupling” within macromolecular machines, Cell 104, 177-190 (2001).

Helicases are required for unwinding double-stranded DNA molecules.

633. S.W. Matson, D.W. Bean and J.W. George, DNA helicases: enzymes with essential roles in all aspects of DNA metabolism, BioEssays, 16, 13-22 (1994).

634. T.L. Hill and T. Tsuchiya, Theoretical aspects of translocation on DNA: adenosine triphosphatases and treadmilling binding proteins, PNAS 78, 4796-4800 (1981).

635. T. M. Lohman, K. Thorn and R. D. Vale, Staying on track: common features of DNA helicases and microtubule motors, Cell 93, 9-12 (1998).

636. A.J. van Brabant, R. Stan and N.A. Ellis, DNA helicases, genome instability, and human genetic disease, Annu. Rev. Genomics and Hum. Genet. 1, 409-459 (2000).

637. P.H. von Hippel, Helicases become mechanistically simpler and functionally more complex, Nature Str. Mol. Biol. 6, 494-496 (2004).

638. A. Vindigni, Biochemical, biophysical and proteomic approaches to study DNA helicases, Mol. Biosyst. 3, 266-274 (2007).

639. T.M. Lohman, J. Hsieh, N.K. Mahol, W. Cheng, A.L. Lucius, C.J. Fischer, K.M. Brendza, S. Korolev and G. Waksman, DNA helicases: motors that move along nucleic acids: lessons from the SF1 helicase superfamily, in: The Enzymes, (3rd ed.) eds. D.D. Hackney and F. Tamaroi, vol. XXIII: Energy Coupling and molecular motors (Elsevier, 2003).

640. T.M. Lohman, E.J. Tomko and C.G. Wu, Non-hexameric DNA helicases and translocases: mechanisms and regulation, Nat.Rev. Mol. Cell Biol. 9, 1-11 (2008).

641. S.G. Mackintosh and K.D. Raney, DNA unwinding and protein displacement by superfamily 1 and 2 helicases, J. Bacteriology, 184, 1819-1826 (2002).

642. A.C. Hickman and F. Dyda, Binding and unwinding: SF3 viral helicases, Curr. Opin. Struct. Biol. 15, 77-85 (2005).

643. S. Patel and K.M. Picha, Structure and function of hexameric helicases, Annu. Rev. Biochem. 69, 651-697 (2000).

646. D.J. Crampton and C.C. Richardson, Bacterio- phage T7 gene 4 protein: a hexameric DNA helicase, in: The Enzymes, (3rd ed.) eds. D.D. Hackney and F. Tamaroi, vol. XXIII: Energy Coupling and molecular motors (Elsevier, 2003).

647. T. M. Lohman and K.P. Bjornson, Mechanisms of helicase-catalyzed DNA unwinding, Annu. Rev. Biochem. 65, 169-214 (1996).
Some other helicases unwind RNA molecules. However, few helicases are capable of unwinding both DNA and RNA molecules.

- **648.** N. Tuteja and R. Tuteja, *Prokaryotic and eukaryotic DNA helicases: essential molecular motor proteins for cellular machinery*, Eur. J. Biochem. 271, 1835-1848 (2004).

- **649.** T.M. Lohman, *Escherichia coli DNA helicases: mechanisms of DNA unwinding*, Mol. Microbiol. 6, 5-14 (1992).

- **650.** S.W. Matson, *DNA helicases of Escherichia coli*, Prog. Nucleic Acids Res. Mol. Biol. 40, 289-326 (1991).

- **651.** J.M. Caruthers and D.B. McKay, *Helicase structure and mechanism*, Curr. Opin. Struct. Biol. 12, 123-133 (2002).

- **652.** N. Tuteja and R. Tuteja, *Unraveling DNA helicases: motif, structure, mechanism and function*, Eur. J. Biochem. 271, 1849-1863 (2004).

- **653.** K.J. Marians, *Crawling and wiggling on DNA: structural insights to the mechanism of DNA unwinding by helicases*, Cell, 8, R227-R235 (2000).

A few helicases are monomeric. Very generic models of helicase motors have been developed, which may be interpreted as theories of monomeric helicases.

- **654.** A. Luking, U. Stahl and U. Schmidt, *The protein family of RNA helicases*, Crit. Rev. Biochem. and Molec. Biol. 33, 259-296 (1998).

- **655.** S. Rocak and P. Linder, *DEAD-box proteins: the driving forces behind RNA metabolism*, Nat. Rev. Mol. Cell Biol. 5, 232-241 (2004).

- **656.** O. Cordin, J. Banroques, N.K. Tanner and P. Linder, *The DEAD-box protein family of RNA helicases*, Gene 367, 17-37 (2006).

- **657.** N.K. Tanner and P. Linder, *DEzD/H box RNA helicases: from generic motors to specific dissociation functions*, Mol. Cell 8, 251-262 (2001).

- **658.** E. Silverman, G.E. Gilbert and R.J. Lin, *DEzD/H box proteins and their partners: helping RNA helicases unwind*, Gene 312, 1-16 (2003).

- **659.** J.R. Lorsch, *RNA chaperones exist and DEAD box proteins get a life*, Cell 109, 797-800 (2002).

- **660.** G. Kadare and A.L. Haenni, *Virus-encoded RNA helicases*, J. Virolology 71, 2583-2590 (1997).

- **661.** S.S. Velankar, P. Soultanas, M.S. Dillingham, H.S. Subramanya and D.B. Wigley, *Crystal structures of complexes of PcrA DNA helicase with a DNA substrate indicate an inchworm mechanism*, Cell 97, 75-84 (1999).

- **662.** F. Preugach, D.R. Averett, B.E. Clarke and D.J.T. Porter, *A steady-state and pre-steady-state kinetic analysis of the NTPase activity associated with the Hepatitis C virus NS3 helicase domain*, J. Biol. Chem. 271, 24449-24457 (1996).

- **663.** M.D. Betterton and F. Jülicher, *A motor that makes its own track: helicase unwinding of DNA*, Phys. Rev. Lett. 91, 258103 (2003).

- **664.** M.D. Betterton and F. Jülicher, *Opening of nucleic acid double strands by helicases: active versus passive opening*, Phys. Rev. E 71, 011904 (2005).

- **665.** M.D. Betterton and F. Jülicher, *Velocity and processivity of helicase unwinding of double-stranded nucleic acids*, J. Phys. Cond.Matt. 17, S3851-S3869 (2005).

- **666.** A. Garai, D. Chowdhury and M.D. Betterton, *A two-state model for helicase translocation and unwinding of nucleic acids*, Phys. Rev. E 77, 061910 (2008).

- **667.** Y.Z. Chen, D. Mi, H.S. Song and X.J. Wang, *General random walk model of ATP-driven helicase translocation along DNA*, Phys. Rev. E 56, 919-922 (1997).
Dimeric helicases are more common; the stepping pattern of these are expected to be analogous to double-headed conventional cytoskeletal motors. Analog of the hand-over-hand mechanisms of the cytoskeletal motors is called the “rolling” model. However, most of the dimeric helicases are believed to follow the inchworm mechanism.

668. C.J. Fischer, N.K. Maluf and T.M. Lohman, Mechanism of ATP-dependent translocation of E. coli UvrD monomers along single-stranded DNA, J. Mol. Biol. 344, 1287-1309 (2004).

669. K. Vijay Kumar, S. Ramaswamy and M. Rao, Active elastic dimers: self-propulsion and current reversal on a featureless track, Phys. Rev. E 77, 020102R (2008).

670. E.B. Stukalin, H. Phillips III and A.B. Kolomeisky, Coupling of two motor proteins: a new motor can move faster, Phys. Rev. Lett. 94, 238101 (2005).

A large number of helicases are hexameric and have an approximate ring-like architecture. For hexameric helicases, at least three alternative mechanisms of enzymatic activities have been suggested; these include, activities of all the ATP-binding domains in (i) parallel, (ii) random, (iii) sequential manner.

(i) Parallel: In this mechanism all the subunits hydrolyze dTTP and exert power stroke simultaneously.

(ii) Random: There are at least two possible different scenarios:

(a) Random in time, where power stroke of each subunits starts and finishes at random times independent of other units; (b) Random in space, where power strokes are sequential in time (i.e., each subunit can begin only after another finishes), but the order of power strokes around the ring is random.

(iii) Sequential: There are at least two different sequences in which the subunits can exert power stroke:

(a) paired sequential, i.e., sequentially around the ring, but with diametrically opposite subunits in the same state; (b) ordered sequential, i.e., sequential in the strict order 1,2,...6 around the ring.

671. I. Donmez and S.S. Patel, Mechanisms of a ring shaped helicase, Nucleic Acids Res. 34, 4216-4224 (2006).

672. E.J. Enemark and L.J. Tor, Mechanism of DNA translocation in a replicative hexameric helicase, Nature 442, 270-275 (2006).

673. D.E. Kim, M. Narayan and S.S. Patel, T7 DNA helicase: A molecular motor that processively and unidirectionally translocates along single-stranded DNA, J. Mol. Biol. 321, 807-819 (2002).

674. Y.J. Jeong, M.K. Levin and S.S. Patel, The DNA-unwinding mechanism of the ring helicase of bacteriophage T7, PNAS 101, 7264-7269 (2004).

675. C. Doering, B. Ermentrout and G. Oster, Rotary DNA motors, Biophys. J. 69, 2256-2267 (1995).

676. J.C. Liao, Y.J. Jeong, D.E. Kim, S.S. Patel and G. Oster, Mechanochemistry of T7 DNA helicase, J. Mol. Biol. 350, 452-475 (2005).

17 Topoisomerases and untangling of nucleic acids

During various processes in DNA metabolism, often DNA strands get entangled. Topoisomerases untangle nucleic acids thereby changing their topology. The extent of supercoiling is expressed quantitatively by the linking number which is the sum of the twist and writhe of the DNA molecule. The linking number is an integer and is a topological characteristic property of the molecule. DNA molecules with different linking numbers are called topoisomers. The topoisomerase interconverts topoisomers and hence the name.

Topoisomerases are divided into two classes which are named type I and type II. Type I topoisomerases can change the linking number of a closed circular DNA in steps of ±1 whereas type II topoisomerases change the linking number in steps of ±2. This
is achieved by type I topoisomerases by first cleaving one strand of the DNA and, then, after passing the other strand through this break, resealing the break. In contrast, a type II topoisomerase cleaves both strands of a dsDNA and passes another intact segment of dsDNA through this break. Type I and II topoisomerases are further classified into subfamilies designated as IA, IB, IIA, IIB, etc. on the basis of primary sequence and operational mechanism. DNA gyrase of *E. coli* are among the most extensively studied topoisomerases. Reverse gyrase, as the name suggests, introduces supercoiling opposite to that introduced by the gyrase. Besides positive and negative supercoiling, the two other types of reactions catalyzed by topoisomerases are (i) knotting or unknotting, and (ii) catenation or decatenation.

The mechanisms of type I topoisomerases are simpler than those of type II topoisomerases. Each of the type II topoisomerase machines consist of two identical halves and two “gates”. The untangling of DNA occurs through sequential opening and closing of these gates appropriately coordinated with a transient nicking and subsequent ligation of one of the two strands which are thus made to pass through each other.

677. A.D. Bates and A. Maxwell, *DNA topology* (Oxford University Press, 1993).

678. O. Espeli and K.J. Marians, *Untangling intracellular DNA topology*, Mol. Microbiol. 52, 925-931 (2004).

679. P. Forterre, S. Gribaldo, D. Gadelle and M.C. Serre, *Origin and evolution of DNA topoisomerases*, Biochimie 89, 427-446 (2007).

680. J.B. Schwartzman and A. Stasiak, *A topological view of the replicon*, EMBO Rep. 5, 256-261 (2004).

681. M. Duguet, *When helicase and topoisomerase meet!*, J. Cell Sci. 110, 1345-1350 (1997).

682. J.C. Wang, *DNA topoisomerases*, Annu. Rev. Biochem. 54, 665-697 (1985).

683. J.C. Wang, *DNA topoisomerases*, Annu. Rev. Biochem. 65, 635-692 (1996).

684. J.C. Wang, *Moving one DNA double helix through another by a type II DNA topoisomerase: the story of a simple molecular machine*, Quart. Rev. Biophys. 31, 107-144 (1998).

685. J.C. Wang, *Cellular roles of DNA topoisomerases: a molecular perspective*, Nat. Rev. Mol. Cell Biol. 3, 430-440 (2002).

686. D.B. Wigley, *Structure and mechanism of DNA topoisomerases*, Annu. Rev. Biophys. Biomol. Struct. 24, 185-208 (1995).

687. J.J. Champoux, *DNA topoisomerases: structure, function and mechanism*, Annu. Rev. Biochem. 70, 369-413 (2001).

688. K.D. Corbett and J.M. Berger, *Structure, molecular mechanisms, and evolutionary relationships in DNA topoisomerases*, Annu. Rev. Biophys. Biomol. Struct. 33, 95-118 (2004).

689. T.R. Strick, V. Croquette and D. Bensimon, *Single-molecule analysis of DNA uncoiling by a type II topoisomerase*, Nature 404, 901-904 (2000).

690. G. Charvin, T.R. Strick, D. Bensimon and V. Croquette, *Tracking topoisomerase activity at the single-molecule level*, Annu. Rev. Biophys. Biomol. Struct., 34, 201-219 (2005).

691. J.E. Lindsley, *Type II DNA topoisomerases: coupling directional DNA transport to ATP hydrolysis*, in: *The Enzymes, vol. XXIII: Energy coupling and molecular motors*, ed. D.D. Hackney and F. Tamaoki (Elsevier, 2004).

692. T. Vierd and C. B. de la Tour, *Type IA topoisomerases: a simple puzzle*, Biochimie 89, 456-467 (2007).

693. A.J. Schoeffler and J.M. Berger, *Recent advances in understanding structure-function relationships in the type II topoisomerase mechanism*, Biochem. Soc. Trans. 33, 1465-1470 (2005).
694. A.D. Bates and A. Maxwell, *DNA topology: topoisomerases keep it simple*, Curr. Biol. 7, R778-R781 (1997).

695. A. Maxwell, *Coupling ATP hydrolysis to DNA strand passage in type IIA DNA topoisomerases*, Biochem. Soc. Trans. 33, 1460-1464 (2005).

696. A.D. Bates and A. Maxwell, *Energy coupling in type II topoisomerases: why do they hydrolyze ATP?*, Biochemistry 46, 7929-7941 (2007).

697. K.D. Corbett, P. Benedetti and J.M. Berger, *Holoenzyme assembly and ATP-mediated conformational dynamics of topoisomerase VI*, Nat. Str. Mol. Biol. 14, 611-619 (2007).

698. J.C. Wang, *Unlocking and opening a DNA gate*, PNAS 104, 4773-4774 (2007).

699. R.D. Smiley, T.R.L. Collins, G.G. Hammes and T.S. Hsieh, *Single-molecule measurements of the opening and closing of the DNA gate by eukaryotic topoisomerase II*, PNAS 104, 4840-4845 (2007).

700. D.A. Koster, V. Croquette, C. Dekker, S. Shuman and N.H. Dekker, *Friction and torque govern the relaxation of DNA supercoils by eukaryotic topoisomerase IB*, Nature 434, 671-674 (2005).

701. M.D. Stone, Z. Bryant, N.J. Crisona, S.B. Smith, A. Vologodski, C. Bustamante and N. Cozzarelli, *Chirality sensing by Escherichia coli topoisomerase IV and the mechanism of type II topoisomerases*, PNAS 100, 8654-8659 (2003).

702. B. Tanjea, B. Schnurr, A. Slesarev, J.F. Marko and A. Mondragon, *Topoisomerase V relaxes supercoiled DNA by a constrained swiveling mechanism*, PNAS 104, 14670-14675 (2007).

703. R.M. Robertson and D.E. Smith, *Strong effects of molecular topology on diffusion of entangled DNA molecules*, PNAS 104, 4824-4827 (2007).

704. M. Noellmann, N.J. Crisona and P.B. Arimondo, *Thirty years of Escherichia coli DNA gyrase: from in-vivo functions to single molecule mechanism*, Biochimie 89, 490-499 (2007).

705. M. Nadal, *Reverse gyrase: an insight into the role of DNA topoisomerases*, Biochimie 89, 447-455 (2007).

706. J. Gore, Z. Bryant, M.D. Stone, M. Nöllmann, N.R. Cozzarelli and C. Bustamante, *Mechanochemical analysis of DNA gyrase using rotor bead tracking*, Nature 439, 100-104 (2006).

707. M. Nöllmann, M.D. Stone, Z. Bryant, J. Gore, N.J. Crosona, S.C. Hong, S. Mitelheiser, A. Maxwell, C. Bustamante and N.R. Cozzarelli, *Multiple modes of Escherichia coli DNA gyrase activity revealed by force and torque*, Nat. Str. Mol. Biol. 14, 264-271 (2007).

18 Membrane-associated machines for macromolecule translocation: exporters and importers

We now consider the translocation of three types of macromolecules, namely, DNA, RNA and proteins across cell membranes as well as internal membranes of eukaryotic cells. In the next part, we’ll consider active transport of small molecules and ions across membranes by molecular machines.

18.1 Export and import of macromolecule across membranes: general principles

Macromolecules to be translocated across the pore may be hydrophobic or may be electrically charged. Therefore, it is not surprising if it encounters an energy barrier while trying to translocate across the pore. However, what makes macromolecule translocation even more interesting from statistical physics
perspective is that the macromolecule also encounters an entropic barrier. The number of allowed conformations of the macromolecular chain, and hence its entropy, is drastically reduced when it translocates across a narrow pore. Therefore, in general, the barrier encountered by the translocating macromolecular chain is a free energy barrier.

So far as the process of macromolecule translocation is concerned, it can be divided into two subprocesses: in the first, the tip of the macromolecule just enters the pore and, then, in the second subprocess the entire length of the chain crosses the pore. The first process is analogous to putting the tip of a thread through the hole of a needle whereas the second is the analogue of pulling a length L of that thread through the same hole after successful insertion of the tip. Both power stroke and Brownian ratchet mechanisms have been proposed. Power stroke can manifest itself either as a “push” or a “pull” in the appropriate direction.

708. R. Palmen, A.J.M. Driessen and K.J. Hellingwerf, *Bioenergetic aspects of the translocation of macromolecules across bacterial membranes*, Biochim. Biophys. Acta 1183, 417-451 (1994).

18.2 Export and import of DNA

- **DNA translocation through nanopores: general principles**

709. M. Muthukumar, *Mechanism of DNA transport through pores*, Annu. Rev. Biophys. Biomol. Struct. 36, 435-450 (2007).

710. P.G. de Gennes, *Passive entry of a DNA molecule into a small pore*, PNAS 96, 7262-7264 (1999).

711. P.G. de Gennes, *Problems of DNA entry into a cell*, Physica 274, 1-7 (1999).

712. L Grinius, *Nucleic acid transport driven by ion gradient across cell membrane*, FEBS Lett. 113, 1-10 (1980).

- **DNA transfer across cell membranes: viral and bacterial DNA**

Three basic mechanisms of intercellular DNA transfer in bacteria are:

(i) **Transformation**, i.e., uptake of naked DNA (DNA which is not associated with proteins or other cells) from extracellular environment;

(ii) **Transduction**, i.e., indirect transfer of bacterial DNA into a new cell by a bacteriophage;

(iii) **Conjugation**, i.e., direct transfer of DNA between two bacteria which are in physical contact with each other.

713. B. Dreiseikelmann, *Translocation of DNA across bacterial membranes*, Microbiol. Rev. 58, 293-316 (1994).

714. K.J. Hellingwerf and R. Palmen, *Transport of DNA through bacterial membranes*, in: *Transport processes in eukaryotic and prokaryotic organisms*, eds. W.N. Konings, H.R. Kabaek and J.S. Lolkema (vol. 2 of Handbook of Biological Physics; series editor: A.J. Hoff) pp. 731-757 (Elsevier, 1996).

715. D. Dubnau, *DNA uptake in bacteria*, Annu. Rev. Microbiol. 53, 217-244 (1999).

716. I. Chen, P.J. Christie and D. Dubnau, *The ins and outs of DNA transfer in bacteria*, Science 310, 1456-1460 (2005).

717. L. Letellier, L. Plancon, M. Bonhivers and P. Boulanger, *Phage DNA transport across membranes*, Res. in Microbiol. 150, 499-505 (1999).

718. I.J. Molineaux, *No syringes please, ejection of phage T7 DNA from the virion is enzyme driven*, Mol. Microbiol. 40, 1-8 (2001).

719. L. Letellier, P. Boulanger, M. de Frutos and P. Jacquot, *Channeling phage DNA through membranes: from in-vivo to in-vitro*, Res. in Microbiol. 154, 283-287 (2003).

720. E. Cabzon and F. de la Cruz, *TruB: an F1-ATPase-like molecular motor involved in DNA transport during bacterial conjugation*, Res. in Microbiol. 157, 299-305 (2006).
• DNA transport through eukaryotic nuclear pore complex

The nuclear pore complex (NPC) is itself a large assembly of proteins; the individual protein components of this assembly are called nucleoporins. This assembly has an eight-fold symmetry about an axis normal to the plane of the membrane. On the cytoplasmic (i.e., exterior) side of the membrane, eight fibrils extend from the eight lobes which are arranged in the form of a ring. On the nucleoplasmic (i.e., interior) side of the membrane these eight fibers join to form a basket-like structure at a distance of approximately 100 nm from the inner membrane. DNA uptake into the nucleus through the nuclear pore complex are received little attention so far.

721. H. Salman, D. Zbaida, Y. Rabin, D. Chatenay and M. Elbaum, Kinetics and mechanism of DNA uptake into the cell nucleus, PNAS 98, 7247-7252 (2001).

722. Z. Farkas, I. Dereyui and T. Vicsek, DNA uptake into nuclei: numerical and analytical results, J. Phys. Cond. Mat. 15, S1767-S1777 (2003).

18.3 mRNA export from eukaryotic nucleus

The m-RNA must be exported from the nucleus before it can be translated into proteins.

723. S. Nakielny and G. Dreyfuss, Transport of proteins and RNAs in and out of the nucleus, Cell 99, 677-690 (1999).

724. F.J. Iborra, The path that RNA takes from the nucleus to the cytoplasm, Histochem. Cell Biol. 118, 95-103 (2002).

725. M.S. Rodriguez, C. Dargemont and F. Stutz, Nuclear export of RNA, Biol. of the Cell 96, 639-655 (2004).

726. M. Stewart, Ratcheting mRNA out of the nucleus, Mol. Cell 25, 327-330 (2007).

727. C.N. Cole and J.J. Scarcelli, Transport of messenger RNA from the nucleus to the cytoplasm, Curr. Opin. Cell Biol. 18, 299-306 (2006).

728. D. Zenklusen and F. Stutz, Nuclear export of mRNA, FEBS Lett. 498, 150-156 (2001).

729. B.R. Cullen, Nuclear mRNA export: insights from virology, Trends Biochem. Sci. 28, 419-424 (2003).

730. G. Simos and E. Hurt, Transfer RNA biogenesis: a visa to leave the nucleus, Curr. Biol. 9, R238-R241 (1999).

18.4 Export and import of proteins

• Protein translocation across membranes: general principles

Protein translocation can take place (a) during synthesis (co-translation, e.g., in ER), or (b) after completion of synthesis (post-translation, e.g., in mitochondria).

731. W. Wickner and R. Scheckman, Protein translocation across biological membranes, Science 310, 1452-1456 (2005).

732. D.J. Schnell and D.N. Hebert, Protein translocons: multifunctional mediators of protein translocation across membranes, Cell 112, 491-505 (2003).

733. D. Tomkiewicz, N. Nouwen and A.J.M. Driessen, Pushing, pulling and trapping: modes of motor protein supported protein translocation, FEBS Lett. 581, 2820-2828 (2007).

734. J.A. Mindell, Swimming through the hydrophobic sea: new insights in protein translocation, PNAS 95, 4081-4083 (1998).

735. N.N. Alder and S.M. Theg, Energy use by biological protein transport pathways, Trends Biochem. Sci. 28, 442-451 (2003).

736. G. Schatz and B. Dobberstein, Common principles of protein translocation across membranes, Science 271, 1519-1526 (1996).
737. K.E.S. Matlack, W. Mothes and T.A. Rapoport, Protein translocation: tunnel vision, Cell 92, 381-390 (1998).

738. B. Jungnickel, T.A. Rapoport and E. Hartmann, Protein translocation: common themes from bacteria to man, FEBS Lett. 346, 73-77 (1994).

739. B.S. Glick, Can HSP70 proteins act as force-generating motors?, Cell 80, 11-14 (1995).

740. M. Pilon and R. Scheckman, Protein translocation: how HSP70 pulls it off, Cell 97, 679-682 (1999).

741. R. Sousa and E.M. Lafer, Keep the traffic moving: mechanism of the HSP70 motor, Traffic 7, 1596-1603 (2006).

742. C.J. Lazdunski and H. Benedetti, Insertion and translocation of proteins into and through membranes, FEBS 268, 408-414 (1990).

743. F.A. Agarraberes and J.F. Dice, Protein translocation across membranes, Biochim. Biophys. Acta 1513, 1-24 (2001).

744. L. Carrasco, Entry of animal viruses and macromolecules into cells, FEBS Lett. 350, 151-154 (1994).

745. K. Mitra, J. Frank and A. Driessen, Co- and post-translational translocation through the protein-conducting channel: analogous mechanisms at work?, Nat. Str. & Mol. Biol. 13, 957-964 (2006).

746. J. Eichler and V. Irihimovitch, Move it over: getting proteins across biological membranes, Bioessays 25, 1154-1157 (2003).

747. M. Pohlschröder, K. Dilks, N.J. Hand, R.W. Rose, Translocation of proteins across archaean cytoplasmic membranes, FEMS Microbiol. Rev. 28, 3-24 (2004).

748. S.M. Simon, C.S. Peskin and G.F. Oster, What drives the translocation of proteins?, PNAS 89, 3770-3774 (1992).

749. C.S. Peskin, G.M. Odell and G.F. Oster, Cellular motions and thermal fluctuations: the Brownian ratchet, Biophys. J. 65, 316-324 (1993).

750. S.A. Teter and D.J. Klionsky, How to get a folded protein across a membrane, Trends Cell Biol. 9, 428-431 (1999).

751. H. Riezman, The ins and outs of protein translocation, Science 278, 1728-1729 (1997).

• Bacterial protein secretion machineries

752. M.H. Saier Jr. Protein secretion and membrane insertion in Gram-negative bacteria, J. Membrane Biol. 214, 75-90 (2006)

753. I.B. Holland, Translocation of bacterial proteins- an overview, Biochem. Biophys. Acta 1694, 5-16 (2004).

754. A.J.M. Driessen, Translocation of proteins across the bacterial cytoplasmic membrane, in: Transport processes in eukaryotic and prokaryotic organisms, eds. W.N. Konings, H.R. Kaback and J.S. Lolkema, vol.2 of Handbook of Biological Physics (series editor: A.J. Hoff) (Elsevier 1996).

755. A. Economou, Bacterial secretosome: the assembly manual and operating instructions, Molec. membrane Biol. 19, 159-169 (2002).

756. E. Papanikou, S. Karamanou and A. Economou, Bacterial protein secretion through the translocase nanomachine, Nat. Rev. Microbiol. 5, 839-851 (2007).

757. A. Economou, Following the leader: bacterial protein export through the Sec pathway, Trends Microbiol. 7, 315-320 (1999).

758. A. Robson and I. Collinson, The structure of the Sec complex and the problem of protein translocation, EMBO Rep. 7, 1099-1103 (2006).

759. J. Eichler and F. Duong, Break on through to the other side- the Sec translocon, Trends Biochem. Sci. 29, 221-223 (2004).
760. A.J.M. Driessen, P. Fekkes and J.P.W. van der Wulk, The Sec system, Curr. Opin. Microbiol. 1, 216-222 (1998).

761. E. Vrontou and A. Economou, Structure and function of SecA, the preprotein translocase nanomotor, Biochim. Biophys. Acta 1694, 67-80 (2004).

762. I. Collinson, The structure of the bacterial protein translocation complex SecYEG, Biochem. Soc. Trans. 33, 1225-1230 (2005).

763. K. Stephenson, Sec-dependent protein translocation across biological membranes: evolutionary conservation of an essential protein transport pathway, Mol. Membrane Biol. 22, 17-28 (2005).

764. E.H. Manting and A.J.M. Driessen, Escherichia coli translocase: the unravelling of a molecular machine, Molec. Microbiol. 37, 226-238 (2000).

765. W. Wickner and M.R. Leonard, Escherichia coli preprotein translocase, J. Biol. Chem. 271, 29514-29516 (1996).

766. D.G. Thanassi and S.J. Hultgren, Multiple pathways allow protein secretion across the bacterial outer membrane, Curr. Opin. Cell Biol. 12, 420-430 (2000).

767. R.E. Dalbey and C. Robinson, Protein translocation into and across the bacterial plasma membrane and the plant thylakoid membrane, Trend Biochem. Sci. 24, 17-22 (1999).

768. M. Sandqvist, Biology of type II secretion, Molec. Microbiol. 40, 271-283 (2001).

769. G.R. Cornelis, The type III secretion injectisome, Nat. Rev. Microbiol. 4, 811-825 (2006).

770. G.V. Plano, J.B. Day and F. Ferracci, Type III export: new uses for an old pathway, Molec. Microbiol. 40, 284-293 (2001).

771. J.E. Galan and H.W. Watz, Protein delivery into eukaryotic cells by type III secretion machines, Nature 444, 567-573 (2006).

772. J.E. Galan and A. Collmer, Type III secretion machines: devices for protein delivery into host cells, Science 284, 1322-1328 (1999).

773. D. Buttner and U. Bonas, Port of entry: the type III secretion translocon, Trends in Microbiol. 10, 186-192 (2002).

774. L.W. Cheng and O. Schneewind, Type III machines of gram-negative bacteria: delivering the goods, Trends Microbiol. 8, 214-220 (2000).

775. L. Journet, K.T. Hughes and G.R. Cornelis, Type III secretion: a secretory pathway serving both motility and virulence, Mol. Membrane Biology 22, 41-50 (2005).

776. E. Cascales and P.J. Christie, The versatile bacterial type IV secretion systems, Nat. Rev. Microbiol. 1, 137-149 (2003).

777. P.J. Christie, K. Atmakuri, V. Krishnamoorthy, S. Jakubowski and E. Cascales, Biogenesis, architecture, and function of bacterial type IV secretion systems, Annu. Rev. Microbiol. 59, 451-485 (2005).

778. P.J. Christie, Type IV secretion: intercellular transfer of macromolecules by systems ancestrally related to conjugation machines, Molec. Microbiol. 40, 294-305 (2001).

779. H.J. Yeo and G. Waksman, Unveiling molecular scaffolds of the type IV secretion system, J. Bacteriol. 186, 1919-1926 (2004).

780. P.J. Christie and E. Cascales, Structural and dynamic properties of bacterial type IV secretion systems, Mol. Membrane Biol. 22, 51-61 (2005).

781. I.R. Henderson, F. Navarro-Garcia, M. Desvaux, R.C. Fernandez and D. Ala’Aldeen, Type V protein secretion pathway: the auto-transporter story, Microbiol. Mol. Biol. Rev. 68, 692-744 (2004).

782. L.E.H. Bingle, C.M. Bailey and M.J. Pallen, Type VI secretion: a beginner’s guide, Curr. Opin. Microbiol. 11, 3-8 (2008).
Machines for protein import across nuclear membrane in eukaryotes

Proteins are synthesized in the cytoplasm. Those proteins which function inside the nucleus must be imported from the cytoplasm.

786. M.P. Rout and J.D. Aitchison, The nuclear pore complex as a transport machine, J. Biol. Chem. 276, 16593-16596 (2001).

787. B. Fahrenkrog and U. Aebi, The nuclear pore complex: nucleoplasmic transport and beyond, Nat. Rev. Mol. Cell Biol. 4, 757-766 (2003).

788. M.P. Rout, J.D. Aitchison, A. Suprato, K. Hjertaas, Y. Zhao and B.T. Chait, The yeast nuclear pore complex: composition, architecture, and transport mechanism, J. Cell Biol. 148, 635-651 (2000).

789. E. Conti and E. Izaurralde, Nucleoplasmic transport enters the atomic age, Curr. Opin. Cell Biol. 13, 310-319 (2001).

790. L.J. Terry, E.B. Shows and S.R. Wente, Crossing the nuclear envelope: hierarchical regulation of nucleoplasmic transport, Science 318, 1412-1416 (2007).

791. F. Alber, S. Dokudovskaya, L.M. Veenhoff, W. Zhang, J. Kipper, D. Devos, A. Suprato, O. Karni-Schmidt, R. Williams, B.T. Chait, M.P. Rout and A. Sali, Determining the architecture of macromolecular assemblies, Nature 450, 683-694 (2007).

792. F. Alber, S. Dokudovskaya, L.M. Veenhoff, W. Zhang, J. Kipper, D. Devos, A. Suprato, O. Karni-Schmidt, R. Williams, B.T. Chait, A. Sali and M.P. Rout, The molecular architecture of the nuclear pore complex, Nature 450, 695-701 (2007).

793. D. Görlich, Transport into and out of the cell nucleus, EMBO J. 17, 2721-2727 (1998).

794. I.G. Macara, Transport into and out of the nucleus, Microbiol. and Molec. Biol. Rev. 65, 570-594 (2001).

795. M. Stewart, Molecular mechanism of the nuclear protein import cycle, Nat. Rev. Mol. Cell Biol. 8, 195-208 (2007).

796. M. Elbaum, The nuclear pore complex: biochemical machine or maxwell demon?, C.R. Acad. Sci. Paris serie IV, 2, 861-870 (2001).

797. N. Pante and U. Aebi, Towards the molecular dissection of protein import into nuclei, Curr. Opin. Cell Biol. 8, 397-406 (1996).

798. P. Wagner, J. Kunz, A. Koller and M.N. Hall, Active transport of proteins into the nucleus, FEBS 275, 1-5 (1990).

799. D. Görlich and I.W. Mattaj, Nucleoplasmic transport, Science 271, 1513-1518 (1996).

800. I.W. Mattaj and L. Englmeier, Nucleoplasmic transport: the soluble phase, Annu. Rev. Biochem. 67, 265-306 (1998).

801. S. Kuersten, M. Ohno and I.W. Mattaj, Nucleoplasmic transport: Ran, beta and beyond, Trends Cell Biol. 11, 497-503 (2001).

802. D. Görlich and U. Kutay, Transport between the cell nucleus and the cytoplasm, Annu. Rev. Cell Dev. Biol. 15, 607-660 (1999).

803. A. Becskei and I.W. Mattaj, Quantitative models of nuclear transport, Curr. Opin. Cell Biol. 17, 27-34 (2005).
Machines for protein translocation across membranes of organelles

There are two distinct major pathways of protein transport in eukaryotic cells: (i) the vesicular pathway, and (ii) non-vesicular pathway. In the vesicular pathway, proteins are transported from one membrane-bound organelle to another after packing the protein in a vesicle. The vesicle buds out from the donor organelle and, after reaching the destination, fuses with the acceptor organelle. In this pathway, the vesicle is transported in the cytoplasmic environment by cytoskeletal motor transport system which we have discussed earlier in part I of this article.

Machines for protein translocation across membranes of endoplasmic reticulum

Next we focus on the non-vesicular pathway where proteins are translocated across membranes of organelles by protein-translocating machines.

- Machines for protein translocation across membranes of endoplasmic reticulum

- Machines for protein translocation across membranes of endoplasmic reticulum

- Machines for protein translocation across membranes of endoplasmic reticulum

- Machines for protein translocation across membranes of endoplasmic reticulum

- Machines for protein translocation across membranes of endoplasmic reticulum

- Machines for protein translocation across membranes of endoplasmic reticulum

- Machines for protein translocation across membranes of endoplasmic reticulum

- Machines for protein translocation across membranes of endoplasmic reticulum

- Machines for protein translocation across membranes of endoplasmic reticulum

- Machines for protein translocation across membranes of endoplasmic reticulum

- Machines for protein translocation across membranes of endoplasmic reticulum

- Machines for protein translocation across membranes of endoplasmic reticulum

- Machines for protein translocation across membranes of endoplasmic reticulum

- Machines for protein translocation across membranes of endoplasmic reticulum

- Machines for protein translocation across membranes of endoplasmic reticulum

- Machines for protein translocation across membranes of endoplasmic reticulum

- Machines for protein translocation across membranes of endoplasmic reticulum

- Machines for protein translocation across membranes of endoplasmic reticulum

- Machines for protein translocation across membranes of endoplasmic reticulum

- Machines for protein translocation across membranes of endoplasmic reticulum
822. T.C. Elston, *Models of post-translational protein translocation*, Biophys. J. **79**, 2235-2251 (2000).

823. T.C. Elston, *The Brownian ratchet, and power stroke models for posttranslational protein translocation into the endoplasmic reticulum*, Biophys. J. **82**, 1239-1253 (2002).

824. W. Liebermeister, T.A. Rapoport and R. Heinrich, *Ratcheting in post-translational protein translocation: a mathematical model*, J. Mol. Biol. **305**, 643-656 (2001).

- **Machines for protein translocation across membranes of mitochondria and chloroplasts**

Most of the proteins are translocated into mitochondria post-translationally. Mitochondria have a translocase of the outer membrane (called TOM) and a translocase of the inner membrane (called TIM). Similarly, the corresponding translocases of chloroplasts are names as TOC and TIC, respectively. The twin-arginine translocation (Tat) pathway of the thylakoid membrane of chloroplasts and their prokaryotic counterparts share some common features.

825. W. Neupert and J.M. Herrmann, *Translocation of proteins into mitochondria*, Annu. Rev. Biochem. **76**, 723-749 (2007).

826. W. Neupert and M. Brunner, *The protein import motor of mitochondria*, Nat. Rev. Mol. Cell Biol. **3**, 555-565 (2002).

827. C.M. Koehler, *Protein translocation pathways of the mitochondrion*, FEBS **476**, 27-31 (2000).

828. J.F. Chauwin, G. Oster and B.S. Glick, *Strong precursor-pore interactions constrain models for mitochondrial protein import*, Biophys. J. **74**, 1732-1743 (1998).

829. M.F. Bauer and W. Neupert, *Protein transport across the outer and inner membranes of mitochondria*, in: *Transport processes in eukaryotic and prokaryotic organisms*, eds. W.N. Konings, H.R. Kaback and J.S. Lolkema, vol.2 of Handbook of Biological Physics, series ed. A.J. Hoff (Elsevier 1996).

830. K.R. Ryan and R.E. Jense, *Protein translocation across mitochondrial membranes: what a long, strange trip it is*, Cell **83**, 517-519 (1995).

831. W. Voos, H. Martin, T. Krimmer and N. Pfanner, *Mechanisms of protein translocation into mitochondria*, Biochim. Biophys. Acta **1422**, 235-254 (1999).

832. J. M. Herrmann and W. Neupert, *Protein transport into mitochondria*, Curr. Opin. Microbiol. **3**, 210-214 (2000).

833. R. Lill, F.E. Nargang and W. Neupert, *Biogenesis of mitochondrial proteins*, Curr. Opin. Cell Biol. **8**, 505-512 (1996).

834. M. Horst, A. Azem, G. Scatz and B.S. Glick, *What is the driving force for protein import into mitochondria?*, Biochim. Biophys. Acta **1318**, 71-78 (1997).

835. M.F. Bauer, S. Hofmann, W. Neupert and M. Brunner, *Protein translocation into mitochondria: the role of TIM complexes*, Trends Cell Biol. **10**, 25-31 (2000).

836. J. Rassow and N. Pfanner, *The protein import machinery of the mitochondrial membranes*, Traffic **1**, 457-464 (2000).

837. N. Pfanner and A. Geissler, *Veratility of the mitochondrial protein import machinery*, Nat. Rev. Mol. Cell Biol. **2**, 339-349 (2001).

838. G. Schatz, *The protein import system of mitochondria*, J. Biol. Chem. **271**, 31763-31766 (1996).

839. R.E. Jensen and C.D. Dunn, *Protein import into and across the mitochondrial inner membrane: role of the TIM23 and TIM22 translocons*, Biochim. Biophys. Acta **1592**, 25-34 (2002).

840. A. Matouschek, N. Pfanner and W. Voos, *Protein unfolding by mitochondria*, EMBO Rep. **1**, 404-410 (2000).
841. T. Lithgow, J.M. Cuezva and P.A. Silver, *Highways for protein delivery into mitochondria*, Trends Biochem. Sci. **22**, 110-113 (1997).

842. N. Wiedemann, A.E. Frazier and N. Pfanner, *The protein import machinery of mitochondria*, J. Biol. Chem. **279**, 14473-14476 (2004).

843. M. van der Laan, M. Rissler and P. Rehling, *Mitochondrial preprotein translocases as dynamic molecular machines*, FEMS Yeast Res. **6**, 849-861 (2006).

844. P. Dolezal, V. Likic, J. Tachezy and T. Lithgow, *Evolution of the molecular machines for the protein import into mitochondria*, Science **313**, 314-318 (2006).

845. A.J. Perry and T. Lithgow, *Protein targeting: entropy, energetics and modular machines*, Curr. Biol. **15**, R423-R425 (2005).

846. R. Lister, J.M. Hulett, T. Lithgow and J. Whelan, *Protein import into mitochondria: origins and functions today*, Mol. Membrane Biol. **22**, 87-100 (2005).

847. H.C. Loebl and C.C. Matthai, *Simulation studies of protein translocation in mitochondria*, Physica A **342**, 612-622 (2004).

848. M. Müller and R.B. Klösgen, *The Tat pathway in bacteria and chloroplasts*, Mol. Membrane Biol. **22**, 113-121 (2005).

849. M. Gutensohn, E. Fan, S. frielingsdorf, P. Hanner, B. Hou, B. Hust, R.B. Klösgen, *Toc, Tic, Tat et al.: structure and function of protein transport machineries in chloroplasts*, J. Plant Physiol. **163**, 333-347 (2006).

850. M. Oreb, I. Tews and E. Schleiff, *Policing Tic ‘n’ Toc, the doorway to chloroplasts*, Trends Cell Biol. **18**, 19-27 (2007).

851. K. Keegstra and K. Cline, *Protein import and routing systems of chloroplasts*, The Plant Cell **11**, 557-570 (1999).

852. D.J. Schnell, *Shedding light on the chloroplast protein import machinery*, Cell **83**, 521-524 (1995).

853. K. Keegstra and J.E. Froelich, *Protein import into chloroplasts*, Curr. Opin. Plant Biol. **2**, 471-476 (1999).

854. J.C. Gray and P.E. Row, *Protein translocation across chloroplast envelope membranes*, Trends Cell Biol. **5**, 243-247 (1995).

855. A. Kuranov and D.J. Schnell, *Protein translocation at the envelope and thylakoid membranes of chloroplasts*, J. Biol. Chem. **271**, 31009-31012 (1996).

- Machines for protein translocation across membranes of peroxisome

856. E.H. Hetteama, B. Distel and H.F. Tabak, *Import of proteins into peroxisomes*, Biochim. Biophys. Acta **1451**, 17-34 (1999).

857. V.I. Titorenko and R.A. Rachubinski, *The life cycle of the peroxisome*, Nat. Rev. Mol. Cell Biol. **2**, 357-368 (2001).

858. J.H. Eckert and R. Erdmann, *Peroxisome biogenesis*, Rev. Physiol. Biochem. Pharmacol. **147**, 75-121 (2003).

859. R.A. Rachubinski and S. Subramani, *How proteins penetrate peroxisomes*, Cell **83**, 525-528 (1995).

860. S. Subramani, *Protein translocation into peroxisome*, J. Biol. Chem. **271**, 32483-32486 (1996).

861. S.J. Gould and C.S. Collins, *Peroxisomal protein import: is it really that complex?*, Nat. Rev. Mol. Cell Biol. **3**, 382-389 (2002).

19 Genome packaging machines of viral capsids

As stated earlier, the viral genomes may consist of DNA or RNA. There are two alternative mechanisms
for packaging of the genome. In case of some viruses, the genome is encapsulated by molecules that self-assemble around it. In contrast, the genome of other viruses are packaged into a pre-fabricated empty container, called viral capsid, by a powerful motor. As the capsid gets filled, the pressure inside the capsid increases which opposes further filling. The effective force, which opposes packaging, gets contributions from three sources: (a) bending of stiff DNA molecule inside the capsid; (b) strong electrostatic repulsion between the negatively charged strands of the DNA; (c) loss of entropy caused by the packaging.

One of the model systems, which has been very popular among the researchers, is the bacteriophage φ29; its genome consists of a double-stranded DNA. For understanding the mechanism of packaging double-stranded RNA into the viral capsids, the bacteriophage φ6 has been used as model system.

862. P. Serwer, S.A. Khan, S.J. Hayes, R.H. Watson and G.A. Griess, *The conformation of packaged bacteriophage T7 DNA: informative images of negatively stained T7*, J. Str. Biol. 120, 32-43 (1997).

863. M.E. Cerritelli, N. Cheng, A.H. Rosenberg, C.E. McPherson, F.P. Booy and A.C. Steven, *Encapsidated conformation of bacteriophage T7 DNA*, Cell 91, 271-280 (1997).

864. M. Sun and P. Serwer, *The conformation of DNA packaged in bacteriophage G*, Biophys. J. 72, 958-963 (1997).

The highest pressure generated inside the capsid of the φ29 is about 60 times the normal atmospheric pressure (i.e., about 10 times the pressure in a typical champagne bottle!) and the corresponding force applied by the packaging motor is about 60 pN. Thus, genome packaging motors of viral capsids are among the strongest discovered so far. What is the mechanism used by these motors to generate such a relatively large force (large compared to the forces generated by most of the other motors)?

At first sight, the phenomenon seems to have (at least superficially) several similarities with translocation of macromolecules into eukaryotic organelles. Therefore, questions on the mechanisms of translocation motors can also be reformulated for understanding the mechanisms of packaging motors of viral capsids. Are the nucleic acids “pulled” or “pushed” into the capsid head by the motor? Or, is the mechanism better described by a “nut-like” rotation of the packaging motor on the “bolt-like” nucleic acid strand?

865. J.E. Johnson and W. Chiu, *DNA packaging and delivery machines in tailed bacteriophages*, Curr. Opin. Struct. Biol. 17, 237-243 (2007).

19.1 Energetics of packaged genome in capsids

866. W.H. Roos, I.L. Ivanovska, A. Evilevitch and G.J.L. Wuite, *Viral capsids: mechanical characteristics, genome packaging and delivery mechanisms*, Cell. Mol. Life Sci. 64, 1484-1497 (2007).

867. L. Mindich, *Packaging, replication and recombination of the segmented genomes of bacteriophage Φ6 and its relatives*, Virus Res. 101, 83-92 (2004).

868. S.C. Riemer and V.A. Bloomfield, *Packaging of DNA in bacteriophage heads: some considerations on energetics*, Biopolymers 17, 785-794 (1978).

869. J. Kindt, S. Tzlil, A. Ben-Shaul and W.M. Gelbert, *DNA packaging and ejection forces in bacteriophages*, PNAS 98, 13671-13674 (2001).

870. S. Tzlil, J.T. Kindt, W.M. Gelbert and A. Ben-Shaul, *Forces and pressures in DNA packaging and release from viral capsids*, Biophys. J. 84, 1616-1627 (2003).

871. P. Purohit, J. Kondev and R. Phillips, *Mechanics of DNA packaging in viruses*, PNAS 100, 3173-3178 (2003).

872. P.K. Purohit, M.M. Inamdar, P.D. Grayson, T.M. Squires and J. Kondev, *Forces during bacteriophage DNA packaging and ejection*, Biophys. J. 88, 851-866 (2005).
873. T. Odijk, Hexagonally packed DNA within bacteriophage T7 stabilized by curvature stress, Biophys. J. 75, 1223-1227 (1998).

874. T. Odijk, Statics and dynamics of condensed DNA within phages and globules, Phil. Trans. Roy. Soc. Lond. A 362, 1497-1517 (2004).

875. T. Odijk, DNA confined in nanochannels: hairpin tightening by entropic depletion, J. Chem. Phys. 125, 204904 (2006).

876. W.S. Klug and M. Ortiz, A director-field model of DNA packaging in viral capsids, J. Mech. and Phys. of Solids 51, 1815-1847 (2003).

877. J. Arsuaga, R.K.Z. Tan, M. Vazquez, D. W. Summers and S.C. Harvey, Investigation of viral DNA packaging using molecular mechanics models, Biophys. Chem. 101-102, 475-484 (2002).

878. A.S. Petrov and S.C. Harvey, Structural and thermodynamic principles of viral packaging, Structure 15, 21-27 (2007).

879. A.S. Petrov, K.L. Hing and S.C. Harvey, Packaging of DNA by bacteriophage epsilon15: structure, forces and thermodynamics, Structure 15, 807-812 (2007).

880. D. marenduzzo and C. Micheletti, Thermodynamics of DNA packaging inside a viral capsid: the role of DNA intrinsic thickness, J. Mol. Biol. 330, 485-492 (2003).

881. I. Ali, D. Marenduzzo and J.M. Yeomans, Dynamics of polymer packaging, J. Chem. Phys. 121, 8635 (2004).

882. E. Katzav, M. Adda-Bedia and A. Boudaoud, A statistical approach to close packing of elastic rods and to DNA packaging in viral capsids, PNAS 103, 18900-18904 (2006).

883. P. Grayson, L. Han, T. Winther and R. Phillips, Real-time observations of single bacterophage λ DNA ejection in vitro, PNAS 104, 14652-14657 (2007).

884. D. Löf, K. Schillen, B. Jönsson and A. Evilevitch, Dynamic and static light scattering analysis of DNA ejection from the phage λ, Phys. Rev. E 76, 011914 (2007).

885. M. Castelnovo and A. Evilevitch, DNA ejection from bacteriophage: towards a general behavior for osmotic-suppression experiments, Eur. Phys. J. E 24, 9-18 (2007).

886. W.C. Earnshaw and S.R. Casjens, DNA packaging by the double-stranded DNA bacteriophage, Cell 21, 319-331 (1980).

887. R.W. Hendrix, Symmetry mismatch and DNA packaging in large bacteriophages, PNAS 75, 4779-4783 (1978).

888. H. Fujisawa and M. Morita, Phage DNA packaging, Genes to Cells 2, 537-545 (1997).

889. L.W. Black and D.J. Silverman, Model for DNA packaging into bacteriophage T4 heads, J. Virol. 28, 643-655 (1978).

890. L.W. Black, DNA packaging in dsDNA bacteriophages, Annu. Rev. Microbiol. 43, 267-292 (1989).

891. I.J. Molineux, Fifty-three years since Hershey and Chase; much ado about pressure but which pressure is it?, Virology 344, 221-229 (2006).

892. S.I. Lee and T.T. Nguyen, Radial distribution of RNA genomes packaged inside spherical viruses, Phys. Rev. lett. 100, 198102 (2008).

19.2 Structure and mechanism of viral genome packaging motor

893. R.W. Hendrix, Bacteriophage DNA packaging: RNA gears in a DNA transport machine, Cell 94, 147-150 (1998).

894. P. Serwer, Models of bacteriophage DNA packaging motors, J. Str. Biol. 141, 179-188 (2003).

895. N.K. Maluf and M. Feiss, Virus DNA translocation: progress towards a first ascent of
mount pretty difficult, Molec. Microbiol. 61, 1-4 (2006).

896. P. Guo and T. J. Lee, Viral nanomotors for packaging of dsDNA and dsRNA, Molec. Microbiol. 64, 886-903 (2007).

897. J. Lisal and R. Tuma, Cooperative mechanism of RNA packaging motor, J. Biol. Chem. 280, 23157-23164 (2005).

898. J. Lisal, D.E. Kainov, D.H. Bamford, G.J. Thomas Jr., R. Tuma, Enzymatic mechanism of RNA translocation in double-stranded RNA bacteriophage, J. Biol. Chem. 279, 1343-1350 (2004).

899. M.M. Poranen and R. Tuma, Self-assembly of double-stranded RNA bacteriophages, Virus Res. 101, 93-100 (2004).

900. Y.R. Chemla, K. Aathavan, J. Michaelis, S. Grimes, P.J. Jardine, D.L. Anderson and C. Bustamante, Mechanism of force generation of a viral DNA packaging motor, Cell 122, 683-692 (2005).

901. N. Bourassa and F. Major, Implication of the prohead RNA in phage φ29 packaging, Biochimie 84, 945-951 (2002).

902. P. Guo, Bacterial virus φ29 DNA-packaging motor and its potential applications in gene therapy and nanotechnology, in: Methods in Molecular Biology, Vol.300, Protein nanotechnology: Protocols, Instrumentation, and Applications, ed. T. Vo-Dinh, 285-324 (Humana Press, 2005).

903. A.A. Simpson, Y. Tao, P.G. Leiman, M.O. Badasso, Y. He, P.J. Jardine, N.H. Olson, M.C. Morais, S. Grimes, D.L. Anderson, T.S. Baker and M.G. Rossmann, Structure of the bacteriophage φ29 DNA packaging motor, Nature 408, 745-750 (2000).

904. D.E. Smith, S.J. Tans, S.B. Smith, S. Grimes, D.L. Anderson and C. Bustamante, The bacteriophage φ29 portal motor can package DNA against a large internal force, Nature 413, 748-752 (2001).

905. D.N. Fuller, J.P. Rickgauer, P.J. Jardine, S. Grimes, D.L. Anderson and D.E. Smith, Ionic effects on viral DNA packaging and portal motor function in bacteriophage φ29, PNAS 104, 11245-11250 (2007).

906. T. Hugel, J. Michaelis, C.L. Hetherington, P.J. Jardine, S. Grimes, J.M. Walter, W. Falk, D.L. Anderson and C. Bustamante, Experimental test of connector rotation during DNA packaging into bacteriophage φ29 capsids, PLoS Biology 5, e59, 0558-0567 (2007).

907. D.N. Fuller, D.M. Raymer, V.I. Kottadiel, V.B. Rao and D.E. Smith, Single phage T4 DNA packaging motors exhibit large force generation, high velocity, and dynamic variability, PNAS 104, 16868-16873 (2007).

908. B. Draper and V.B. Rao, An ATP hydrolysis sensor in the DNA packaging motor from bacteriophage T4 suggests an inchworm-type translocation mechanism, J. Mol. Biol. 369, 79-94 (2007).

909. C.E. Catalano, The terminase enzyme from bacteriophage lambda: a DNA-packaging machine, Cell. Mol. Life Sci. 57, 128-148 (2000).

910. N.K. Maluf, H. Gaussier, E. Bogner, M. Feiss and C.E. Catalano, Assembly of bacteriophage lambda terminase into a viral DNA maturation and packaging machine, Biochemistry 45, 15259-15268 (2006).

911. D.N. Fuller, D.M. Raymer, J.P. Rickgauer, R.M. Robertson, C.E. Catalano, D.L. Anderson, S. Grimes and D.E. Smith, Measurements of single DNA molecule packaging dynamics in bacteriophage λ reveal high forces, high motor processivity, and capsid transformations, J. Mol. Biol. 373, 1113-1122 (2007).

912. J.T. Huiskonen, H.T. Jäääinoja, J.A.G. Briggs, S.D. Fuller and S.J. Butcher, Structure of hexameric RNA packaging motor in a viral poly-
merase complex, J. Str. Biol. 158, 156-164 (2007).

913. D.E. Kainov, R. Tuma and E.J. Mancini, Hexamer molecular motors: P4 packaging ATPase unravels the mechanism, Cell. Mol. Life Sci. 63, 1095-1105 (2006).

20 Polynucleotide polymerases

Among the macromolecules of life, nucleic acids and proteins are polymerized by machines which use the respective tracks also as templates for the synthesis. In this section, we consider polymerase machines which synthesize nucleic acids while translocating on another nucleic acid. The main quantities of interest in this context is the rate of synthesis of the macromolecules. Although most of the works initially focussed on the average rates, the fluctuations in the rate of synthesis is receiving more attention in recent years because of two recent developments: (a) the availability of experimental techniques for detection of individual macromolecular products as they are synthesized and released, and (b) the relevance of transcriptional and translational noise in the study of overall noise in gene expression.

The free energy released by the polymerization of the polynucleotide products serve as the input energy for the driving the mechanical movements of the corresponding polymerase. Therefore, these are also regarded as molecular motors. Polymerase motors generate forces which are about 3 to 6 times stronger than that generated by cytoskeletal motors. But, the step size of a polymerase is about 0.34 nm whereas that of a kinesin is about 8 nm. Moreover, the polymerase motors are slower than the cytoskeletal motors by two orders of magnitude. Furthermore, natural nucleic acid tracks are intrinsically inhomogeneous because of the inhomogeneity of nucleotide sequences whereas, in the absence of MAPs and ARPs, the cytoskeletal tracks are homogeneous and exhibit perfect periodic order.

The polymerase is expected to have binding sites for (a) the template strand, (b) the nascent polynucleotide strand, and (c) the NTP subunits. It must have a mechanism to select the appropriate NTP dictated by the template and a mechanism to catalyze the addition of the NTP thus selected to the growing polynucleotide. It must be able to step forward by one nucleotide on its template without completely destabilizing the ternary complex consisting of the polymerase, the template and the product. Finally, it must have mechanisms for initiation and termination of the polymerization process for which, most often, it requires assistance of other proteins.

Most of the fundamental questions we raised in the context of the cytoskeletal motors remain valid also for polynucleotide polymerases. Some further questions, that are unique for polymerases, are posed below:

(i) Are the two translocations, namely nucleotide addition and forward movement of the polymerase, tightly coupled? Or, is it possible to add nucleotide to the growing product without forward movement of the polymerase? In principle, the latter seems to be possible provided the conformation of the TEC changes accordingly.

(ii) What are the paths of the template and product polynucleotide chains within the polymerase? If the template one of the two strands of a double-stranded nucleic acid, what path does the non-template strand follow?

(iii) Does the template and the nascent product polynucleotide form any hybrid structure and, if so, what are the (free-)energetics of the that determine the maximum size of the hybrid? What causes the product polynucleotide to separate from the corresponding template?

(iv) Do the secondary structures of the template and the product play any role in the process of polymerization?

914. N. Korzheva and A. Mustaev, RNA and DNA polymerases, in: Molecular Motors, ed. M. Schliwa (Wiley-VCH, 2003).

915. C.M. Joyce and T.A. Steitz, Polymerase structures and function: variation on a theme?, J. Bacteriology 177, 6321-6329 (1995)
916. R. Sousa, Structural and mechanistic relationships between nucleic acid polymerases, Trends Biochem. Sci. 21, 186-190 (1996).

917. J. Jäger and J.D. Pata, Getting a grip: polymerases and their substrate complexes, Curr. Opin. Struct. Biol. 9, 21-28 (1999).

918. P. Cramer, Common structural features of nucleic acid polymerases, Bioessays 24, 724-729 (2002).

919. T.A. Steitz, Visualizing polynucleotide polymerase machines at work, EMBO J. 25, 3458-3468 (2006).

920. P. Ahlquist, Parallels among positive-strand RNA viruses, reverse-transcribing viruses and double-stranded RNA viruses, Nat. Rev. Microbiol. 4, 371-382 (2006).

On the basis of the nature of the template and product polynucleotides, polymerases can be broadly divided into four classes: DNA-dependent RNA polymerase (DdRP), DNA-dependent DNA polymerase (DdDP), RNA-dependent DNA polymerase (RdDP) and RNA-dependent RNA polymerase (RdRP).

There are several common architectural features of all polynucleotide polymerases. The shape of the polymerase has some resemblance with the “cupped right hand” of a normal human being; the three major domains of it are identified with “fingers”, “palm” and “thumb”. There are, of course, some crucial differences in the details of the architectural designs of these machines which are essential for their specific functions. The most obvious functional commonality between these machines is that these add nucleotides, the monomeric subunits of the nucleic acids, one by one following the template encoded in the sequence of the nucleotides of the template. However, in spite of the gross architectural similarities between the polymerases in prokaryotic and eukaryotic cells, there are significant differences in the primary sequences of these machines.

The main stages in the synthesis of polynucleotides by the polymerase machines are common:

(a) initiation: Once the polymerase encounters a specific sequence on the template that acts as a chemically coded start signal, it initiates the synthesis of the product. This stage is completed when the nascent product becomes long enough to stabilize the macromolecular machine complex against dissociation from the template.

(b) elongation: During this stage, the nascent product gets elongated by the addition of nucleotides.

(c) termination: Normally, the process of synthesis is terminated, and the newly polymerized full length product molecule is released, when the polymerase encounters the terminator (or, stop) sequence on the template. However, we shall consider, almost exclusively, the process of elongation.

20.1 DdRP and transcription

In all kingdoms of life, the DdRP are multi-subunit enzymes. The eukaryotic DdRP machines are not only larger in size than their bacterial counterparts, but also consist of larger number of subunits. There are three different types of DdRP in eukaryotic cells, namely, RNAP-I, RNAP-II and RNAP-III. The mRNA, which serves as the template for protein synthesis, is polymerized by RNAP-II whereas rRNA and tRNA are synthesized by RNAP-I and RNAP-III, respectively.

A common architectural feature of all DdRPs is the “main internal channel” which can accommodate of DNA/RNA hybrid that is typically 8 to 9 bp long. The NTP monomers enter through another pore-like “entry channel” while the nascent transcript emerges through the “exit channel”. The formation of the bond between the newly arrived NTP and the RNA chain takes place at a catalytically active site located at the junction of the entry pore and the main channel. In principle, during actual transcription, it may be necessary first to unwind the DNA, at least locally, to get access to the nucleotide sequence on a single-stranded DNA. Interestingly, the RNAP itself exhibits helicase activity for this purpose.

921. J. Gelles and R. Landick, RNA polymerase as a molecular motor, Cell, 93, 13-16 (1998).
922. F. Werner, *Structure and function of archaeal RNA polymerases*, Molecular Microbiol. 65, 1395-1404 (2007).

923. S. Darst, *Bacterial RNA polymerase*, Curr. Opin. Struct. Biol. 11, 155-162 (2001).

924. Y. W. Yin and T.A. Steitz, *The structural mechanism of translocation and helicase activity in T7 RNA polymerase*, Cell, 116, 393-404 (2004).

925. P. Cramer, *Multisubunit RNA polymerases*, Curr. Opin. Struct. Biol. 12, 89-97 (2002).

926. P. Cramer, *RNA polymerase II structure: from core to functional complexes*, Curr. Opin. Genet. Dev. 14, 218-226 (2004).

927. J. Hurwitz, *The discovery of RNA polymerase*, J. Biol. Chem. 280, 42477-42485 (2005).

928. R. Landick, *A long time in the making- the nobel prize for RNA polymerase*, Cell 127, 1087-1090 (2006).

929. P. Cramer, Nat. Struct. Mol. Biol. “Deciphering the RNA polymerase II structure: a personal perspective”, Nat. Struct. Mol. Biol. 13, 1042-1044 (2006).

930. K.J. Armache, H. Kettenberger and P. Cramer, *The dynamic machinery of mRNA elongation*, Curr. Opin. Struct. Biol. 15, 197-203 (2005).

931. S.M. Uptain, C.M. Kane and M.J. Chamberlin, *Basic mechanisms of transcript elongation and its regulation*, Annu. Rev. Biochem. 66, 117-172 (1997).

932. S. Borukhov and E. Nudler, *RNA polymerase: the vehicle of transcription*, Trends Microbiol. 16, 126-134 (2008).

933. S.N. Kochetkov, E.E. Rusakova and V.L. Tunitskaya, *Recent studies of T7 RNA polymerase mechanism*, 440, 264-267 (1998).

934. L. Bintu, N.E. Buchler, H.G. Garcia, U. Gerland, T. Hwa, J. Kondev and R. Phillips, *Transcriptional regulation by the numbers: models*, Curr. Opin. Genet. Dev. 15, 116-124 (2005).

935. L. Bintu, N.E. Buchler, H.G. Garcia, U. Gerland, T. Hwa, J. Kondev, T. Kuhlman and R. Phillips, *Transcriptional regulation by the numbers: applications*, Curr. Opin. Genet. Dev. 15, 125-135 (2005).

936. B. Coulombe and Z.F. Burton, *DNA bending and wrapping around RNA polymerase: a “revolutionary” model describing transcriptional mechanisms*, Microbiol. Mol. Biol. Rev. 63, 457-478 (1999).

The translocation of a polymerase along its template resembles that of a device that moves along a digital tape and reads information from it. The synthesis of the product polymerase is, then, analogous to writing of new information. However, unlike digital logic of a computer, decisions made by a polymerase are governed by competing rates and equilibria among alternative conformations and complexes. The decisions which regulate its operation are dictated by two types of input: intrinsic and extrinsic. Discrete segments of the template and product polynucleotides, with which the polymerase interacts, provide intrinsic inputs. Extrinsic inputs come from small ligands and other regulatory proteins.

Single molecule studies of DdRP have provided quantitative data on the force-velocity relation for these motors.

937. R. A. Mooney, I. Artsimovitch and R. Landick, *Information processing by RNA polymerase: recognition of regulatory signals during RNA chain elongation*, J. Bacteriology, 180, 3265-3275 (1998).

938. L. Bai, T.J. Santangelo and M.D. Wang, *Single-molecule analysis of RNA polymerase transcription*, Annu. Rev. Biophys. Biomol. Struct. 35, 343-360 (2006).

939. K.M. Herbert, W.J. Greenleaf and S.M. Block, *Single-molecule studies of RNA polymerase:*
motoring along, Annu. Rev. Biochem. 77, 149-176 (2008).

But, use of these techniques have also led to the discoveries of new phenomena. For example, in the initiation stage, the DdRP can scrunch.

940. J.W. Roberts, RNA polymerase, a scrunching machine, Science 314, 1097-1098 (2006).

941. A. Revyakin, C. Liu, R.H. Ebright and T.R. Strick, Abortive initiation and productive initiation by RNA polymerase involve DNA scrunching, Science 314, 1139-1143 (2006).

942. A.N. Kapanidis, E. Margeat, S.O. Ho, E. Kortkhonjia, S. Weiss and R.H. Ebright, Initial transcription by RNA polymerase proceeds through a DNA-scrunching mechanism, Science 314, 1144-1147 (2006).

During the elongation stage, the DdRP can not only “pause” for unusually long time, but can also “backtrack” which can, occasionally, lead to premature termination of transcription, unless the machine re-starts its forward movement.

943. R. Landick, RNA polymerase slides home: pause and termination site recognition, Cell 88, 741-744 (1997).

944. E.A. Abbondanzieri, W.J. Greenleaf, J. W. Shaevitz, R. Landick and S.M. Block, “Direct observation of base-pair stepping by RNA polymerase”, Nature, 438, 460-465 (2005).

945. E.A. Galburt, S.W. Grill, A. Wiedmann, L. Lubkowska, J. Choy, E. Nogales, M. Kashlev and C. Bustamante, Backtracking determines the force sensitivity of RNAPH in a factor-dependent manner, Nature 446, 820-823 (2007).

946. R. Landick, The regulatory roles and mechanism of transcriptional pausing, Biochem. Soc. Transac. 34, 1062-1066 (2006).

Most recent progress in single-molecule imaging has led to the discovery of “transcriptional bursts”.

947. Y. Shav-Tal, R.H. Singer and X. Darzacq, Imaging gene expression in single living cells, Nat. Rev. Mol. Cell Biol. 5, 856-862 (2004).

948. X. Darzacq, Y. Shav-Tal, V. de Turris, Y. Brody, S.M. Shenoy, R.D. Phair and R.H. Singer, In-vivo dynamics of RNA polymerase II transcription, Nat. Str. & Molec. Biol. 14, 796-806 (2007).

949. A. Rodriguez, J. Condeelis, R.H. Singer and J.B. Dictenberg, Imaging mRNA movement from transcription sites to translation sites, Seminars in Cell and Dev. Biol. 18, 202-208 (2007).

950. I. Golding, J. Paulsson, S.M. Zawilski and E.C. Cox, Cell 123, 1025 (2005).

951. J.R. Chubb, T. Trcek, S.M. Shenoy and R.H. Singer, Curr. Biol. 16, 1018 (2006).

952. A. Raj, C.S. Peskin, D. Tranchina, D.Y. Vargas and S. Tyagi, PLoS Biol. 4, 1707 (2006).

953. I. Golding and E.C. Cox, Curr. Biol. 16, R371 (2006).

Quantitative modeling of the DdRP in transcription began almost two decades ago. The collective movement of DdRP on a given track is interesting from several different perspectives. For example, a stalled DdRP can be restarted by another approaching it from behind and such a scenario can lead to polymerization of the transcripts in a “burst”.

954. D.A. Erie, T.D. Yager and P.H. von Hippel, The single-nucleotide addition cycle in transcription: a biophysical and biochemical perspective, Annu. Rev. Biophys. and Biomol. Str. 21, 379-415 (1992).

955. P.H. von Hippel, An integral model of the transcription complex in elongation, termination and editing, Science 281, 660-665 (1998).

956. P.H. Von Hippel and Z. Pasman, Reaction pathways in transcript elongation, Biophys. Chem. 101-102, 401-423 (2002).
957. S.J. Greive and P.H. Von Hippel, *Thinking quantitatively about transcription regulation*, Nat. Rev. Mol. Cell Biol. **6**, 221-232 (2005).

958. F. Jülicher and R. Bruinsma, *Motion of RNA polymerase along DNA: a stochastic model*, Biophys. J. **74**, 1169-1185 (1998).

959. H.Y. Wang, T. Elston, A. Mogilner and G. Oster, *Force generation in RNA polymerase*, Biophys. J. **74**, 1186-1202 (1998).

960. L. Bai, A. Shundrovsky and M.D. Wang, *Sequence-dependent kinetic model for transcription elongation by RNA polymerase*, J. Mol. Biol. **344**, 335 (2004).

961. L. Bai, R.M. Fulbright and M.D. Wang, *Mechano-chemical kinetics of transcription elongation*, Phys. Rev. Lett. **98**, 068103 (2007).

962. R. Guajardo and R. Sousa, *A model for the mechanism of polymerase translocation*, J. Mol. Biol. **265**, 8-19 (1997).

963. Q. Guo and R. Sousa, *Translocation by T7 RNA polymerase: a sensitively poised Brownian ratchet*, J. Mol. Biol. **358**, 241-254 (2006).

964. R. Sousa, *Machinations of a Maxwellian Demon*, Cell **120**, 155-158 (2005).

965. G. Bar-Nahum, V. Epshtein, A.E. Ruckensteins, R. Rafikov, A. Mustaev and E. Nudler, *A ratchet mechanism of transcription elongation and control*, Cell **120**, 183-193 (2005).

966. V.R. Tadigotla, D.O. Maoileidigh, A.M. Sengupta, V. Epshtein, R.H. Ebright, E. Nudler and A.E. Ruckenstein, *Thermodynamic and kinetic modeling of transcriptional pausing*, PNAS **103**, 4439-4444 (2006).

967. H.J. Woo, *Analytical theory of the nonequilibrium spatial distribution of RNA polymerase translocations*, Phys. Rev. E **74**, 011907 (2006).

968. H. Bremer and M. Ehrenberg, *Guanosine tetraphosphate as a global regulator of bacterial RNA synthesis: a model involving RNA polymerase pausing and queuing*, Biochimica et Biophys. Acta **1262**, 15-36 (1995).

969. M. Voliotis, N. Cohen, C. Molina-Paris and T.B. Liverpool, *Fluctuations, pauses, and backtracking in DNA transcription*, Biophys. J. **94**, 334-348 (2008).

970. T. Tripathi and D. Chowdhury, *Interacting RNA polymerase motors on a DNA track: effects of traffic congestion and intrinsic noise on RNA synthesis*, Phys. Rev. E **77**, 011921 (2008).

20.2 Primase: a unique DdRP

DdDP cannot begin polymerization of a polynucleotide from scratch. First, a DNA primase polymerizes a short RNA primer using the DNA template. Then, a DdDP adds nucleotide subunits to the primer thereby continuing DNA replication. One of the fundamental questions is how does the primase coordinate its operation with those of the DdDP machines?

971. B. Arezi and R.D. Kuchta, *Eukaryotic DNA primase*, Trends Biochem. Sci. **25**, 572-576 (2000).

972. D.N. Frick and C.C. Richardson, *DNA primases*, Annu Rev. Biochem. **70**, 39-80 (2001).

973. S.L. Siriex, L. Pellegrini and S.D. Bell, *The promiscuous primase*, Trends Genetics, **21**, 568-572 (2005).

974. S.D. Bell, *Prime-time progress*, Nature **439**, 542-543 (2006).

975. J.B. Lee, R.K. Hite, S.M. Hamdan, X. Sunney Xie, C.C. Richardson and A.M. van Oijen, *DNA primase acts as a molecular brake in DNA replication*, Nature, **439**, 621-624 (2006).

976. N. Zenkin, T. Naryshkina, K. Kuznedelov and K. Severinov, *The mechanism of DNA replication primer synthesis by RNA polymerase*, Nature **439**, 617-620 (2006).
20.3 DdDP and DNA replication

Two DdDP machines have to replicate the two complementary strands of DNA both of which serve as templates. However, each DdDP translocates unidirectionally ($5' \rightarrow 3'$) elongating the product strand. As a result, the “leading strand” is synthesized progressively, whereas the “lagging strand” is replicated discontinuously; the “Okazaki fragments” synthesized by this discontinuous process are then joined together (ligated). The coordination of the operation of the two polymerases is one of the interesting aspects of the operational mechanism of the DdDP machines.

977. A. Kornberg and T. Baker, *DNA replication*, 2nd edn. (W.H. Freeman and Co., New York, 1992).

978. M.F. Goodman and B. Tippin, *The expanding polymerase universe*, Nat. Rev. Mol. Cell Biol. 1, 101-109 (2000).

979. P.J. Rothwell and G. Waksman, *Structure and mechanism of DNA polymerases*, Adv. Protein Chem. 71, 401-440 (2005).

980. T.A. Steitz, *DNA polymerases: structural diversity and common mechanisms*, J. Biol. Chem. 274, 17395-17398 (1999).

981. U. Hübscher, H.P. Nasheuer and J.E. Syvãoja, *Eukaryotic DNA polymerases, a growing family*, Trends Biochem. Sci. 25, 143-147 (2000).

982. U. Hübscher, G. Maga and S. Spadari, *Eukaryotic DNA polymerases*, Annu. Rev. Biochem. 71, 133-163 (2002).

983. I. R. Lehman, *Discovery of DNA polymerase*, J. Biol. Chem. 278, 34733-34738 (2003).

984. E. C. Friedberg, *The eureka enzyme: the discovery of DNA polymerase*, Nat. Rev. Mol. Cell Biol. 7, 143-147 (2006).

Single molecule manipulation of DdDP have elucidated the operational mechanisms of these machines and resulted in the recent progress in their quantitative modeling.

985. A. Goel, M.D. Frank-Kamenetskii, T. Ellenberger and D. Herschbach, *Tuning DNA “strings”: modulating the rate of DNA replication with mechanical tension*, PNAS 98, 8485-8489 (2001).

986. A. Goel, T. Ellenberger, M.D. Frank-Kamenetskii and D. Herschbach, *Unifying themes in DNA replication: reconciling single molecule kinetic studies with structural data on DNA polymerases*, J. Biomol. Str. and Dynamics, 19(4), 1-14 (2002).

987. A. Goel, R.D. Astumian and D. Herschbach, *Tuning and switching a DNA polymerase motor with mechanical tension*, PNAS 100, 9699-9704 (2003).

988. I. Andricioaei, A. Goel, D. Herschbach and M. Karplus, *Dependence of DNA polymerase replication rate on external forces: a model based on molecular dynamics simulations*, Biophys. J. 87, 1478-1497 (2004).

989. B. Maier, D. Bensimon and V. Croquette, *Replication by a single DNA polymerase of a stretched single-stranded DNA*, PNAS 97, 12002-12007 (2000).

990. D.J. Keller and J.A. Brozik, *Framework model for DNA polymerases*, Biochemistry, 44, 6877-6888 (2005).

991. P. Xie, *Model for forward polymerization and switching transition between polymerase and exonuclease sites by DNA polymerase molecular motors*, Arch. Biochem. Biophys. 457, 73-84 (2007).

The DdDP alone cannot replicate the genome; together with DNA clamp and clamp loader, DNA helicase and primase, it forms a large multi-component complex machinery which replicates the DNA and is often referred to as the replisome.

992. T.A. Baker and S.P. Bell, *Polymerases and the replisome: machines within machines*, Cell, 92, 295-305 (1998).
Transcription of a gene is carried out a large of times during the life time of a single cell. In contrast, a distinct feature of DNA replication is that, during its lifetime, a cell must not replicate its genome more than once. Only recent investigations have explored how cell achieves this requirement.

A reverse transcriptase is a RdDP which uses a RNA template to polymerize a DNA. The most common example of RdDP is the HIV-1 reverse transcriptase which synthesizes DNA from the RNA genome of the human immunodeficiency virus (HIV). HIV-1 reverse transcriptase is one of key targets for some of the drugs which are being tried against AIDS.

Telomeres, i.e., telomeric DNA, are the terminal DNA at chromosome ends. Telomerase is a unique reverse transcriptase that uses an RNA template to polymerize telomeric DNA. In the absence of telomerase operation, telomerers would gradually shorten in each round of DNA replication because the DdDP cannot replicate these end portions of the DNA. Shortening of telomere is believed to be a cause of premature ageing and other age-related diseases. Therefore, understanding the operational mechanism of telomerase will help in the control of premature ageing as well as in developing cancer therapeutics.
20.6 RdRP and RNA replication

In spite of strong resemblance of the overall shape of all the RDRPs with a “cupped right hand”, viral RDRPs have some special architectural features. The most notable distinct feature of these polymerases is that, in contrast to the “open hand” shape of the other polynucleotide polymerases, the RDRP resembles a “closed hand”. The closing of the “hand” is achieved by loops, called “fingertips”, which protrude from the fingers and connect with the thumb domain at their other end. The fingertip region forms the entrance of the channel where the RDRP binds with the RNA template. In addition, there is a small positively charged tunnel through which the nucleotide monomers required for elongation of the RNA enter. The genome of some of the viruses consist of double stranded RNA; the corresponding RDRPs have some additional unique structural elements which unzip the two strands and feed the appropriate strand to the catalytic site.

20.7 Nucleic-acid analogs as templates for polynucleotide polymerase

Nucleic acid analogs with altered backbones or bases have been synthesized artificially. Threose nucleic acid (TNA) is a nucleic acid analog whose backbone consists of repeating threose units linked by phosphodiester bonds. Glycerol nucleic acid (GNA) is another analog of natural nucleic acids. GNA is based on glycerol-phosphate backbone repeat unit. The operational mechanism of polynucleotide polymerases using these nucleic acid analogs as templates has become a subject of experimental investigation in recent years. Understanding these processes may shed new light on the origin of life as some of the nucleic acid...
analogs might have been used the genetic material by
the earliest forms of life on earth.

1023 A.T. Krueger, H. Lu, A.H.F. Lee and E.T. Kool, Synthesis and properties of size-expanded
DNAs: toward designed, functional genetic sys-
tems, Acc. Chem. Res. 40, 141-150 (2007).

1024 A. Eschenmoser, Chemical etiology of nucleic
acid structure, Science 284, 2118-2124 (1999).

1025 K.U. Schöning, P. Scholz, S. Guntha, X. Wu,
R. Krishnamurthy and A. Eschenmoser, Chemical etiology of nucleic acid structure: the α-
threofuranosyl-(3’ → 2’) oligonucleotide sys-
tem, Science 290, 1347-1351 (2000).

1026 A. Eschenmoser, The TNA-family of nucleic
acid systems: properties and prospects, Origins
of Life and Evolution of the Biosphere 34, 277-
306 (2004).

1027 J.C. Chaput, J.K. Ichida and J.W. Szostak,
DNA polymerase-mediated DNA synthesis on a
TNA template, J.Am.Chem. Soc. 125, 856-857
(2003).

1028 J.C. Chaput and J.W. Szostak, TNA synthe-
sis by DNA polymerase, J.Am.Chem. Soc. 125,
9274-9275 (2003).

1029 A. Horhota, K. Zou, J.K. Ichida, B. Yu, L.W.
McLaughlin, J.W. Szostak and J.C. Chaput, Kinetic analysis of an efficient DNA-dependent
TNA polymerase, J.Am.Chem. Soc. 127, 7427-
7434 (2005).

1030 J.K. Ichida, A. Horhota, K. Zou, L.W.
McLaughlin and J.W. Szostak, High fidelity TNA
synthesis by therminator polymerase, Nucl. Acids Res. 33, 5219-5225 (2005).

1031 L. Zhang, A. Peritz and E. Meggers, A sim-
ple glycol nucleic acid, J. Am. Chem. Soc. 127,
4174-4175 (2005).

1032 C.H. Tsai, J. Chen and J.W. Szostak, Enzy-
matic synthesis of DNA on glycerol nucleic acid
templates without stable duplex formation be-
tween product and template, PNAS 104, 14598-
14603 (2007).

1033 L. Orgel, Origin of life: a simple nucleic acid,
Science 290, 1306-1507 (2000).

20.8 Coordination between transcription and replication

1034 M. Schwaiger and D. Schübeler, A question of
timing: emerging links between transcription
and replication, Curr. Opin. Genet. Dev. 16,
177-183 (2006).

1035 D. Gilbert, Replication timing and transcrip-
tional control: beyond cause and effect, Curr.
Opin. Cell Biol. 14, 377-383 (2002).

1036 L. Chakalova, E. Debrand, J.A. Mitchell, C.S.
Osborne and P. Fraser, Replication and trans-
scription: shaping the landscape of the genome,
Nat. Rev. Genetics 6, 669-677 (2005).

1037 A.E. Ehrenhofer-Murray, Chromatin dynamics
at DNA replication, transcription and repair,
Eur. J. Biochem. 271, 2335-2349 (2004).

20.9 Transcription and replication
of DNA in mitochondria and chloroplast

Mitochondrial DNA (mtDNA) is replicated by a mt-
DdDP called DNAPol γ. However, the mechanism of
replicating the lagging strand of mtDNA is different
from that of replicating the nuclear DNA.

Surprisingly, in majority of the eukaryotes, the
mitochondrial DdRP is structurally closer to single-
subunit polymerases of bacteriophages, rather than
the multi-subunit polymerases of bacteria, although
mtDNA are believed to have bacterial ancestor.

1038 D. Williamson, The curious history of yeast mito-
chondrial DNA, Nat. Rev. Genetics 3, 1-7
(2002).
21 Ribosomes and polymerization of polypeptides

Synthesis of each protein from the corresponding messenger RNA (mRNA) template is carried out by a ribosome and the process is referred to as translation (of genetic code). Ribosome is one of the largest and most sophisticated macromolecular machines within the cell. Even in the simplest organisms like single-cell bacteria, a ribosome is composed of few rRNA molecules as well as several varieties of protein molecules.

Each ribosome consists of two parts which are usually referred to as the large and the small subunits. The small subunits binds with the mRNA track and assists in decoding the genetic message encoded by the codons (triplets of nucleotides) on the mRNA. But, the actual polymerization of the protein (a polypeptide) takes place in the large subunit. The operations of these two subunits are coordinated by a class of adapter molecules called tRNA.

The “head” and the “body” are the two major parts of the small subunit. Two major lobes, which sprout upward from the “body”, are called the “platform” and the “shoulder”, respectively. The decoding center of the ribosome lies in the cleft between the “platform” and the “head” of the small subunit. The incoming template mRNA utilizes a “channel” formed between the “head” and the “shoulder” as a conduit for its entry into the ribosome. Through the cleft between the “head” and the “platform” the mRNA exits the ribosome.

The characteristic “crown-like” architecture of the large subunit arises from three protuberances. On the flat side of the large subunit exists a “canyon” that runs across the width of the subunit and is bordered by a “ridge”. Halfway across this ridge, a hole leads into a “tunnel” from the bottom of the “canyon”. This “tunnel” penetrates the large subunit and opens into the solvent on the other side of the large subunit. This “tunnel” serves as the conduit for the exit of the nascent polypeptide chain. This “tunnel” is approximately 10 nm long and its average width is about 1.5 nm.

Several intersubunit “bridges” connect the two subunits of each ribosome. This bridges are sufficiently flexible so that relative movements of the two subunits can take place in each cycle of the ribosome. The intersubunit space is large enough to accommodate just three tRNA molecules which can bind, at a time, with the three binding sites E, P and A. Moreover, the shape of intersubunit space is such that it allows easy passage of the L-shaped tRNA molecules.

Just like the synthesis of polynucleotides (e.g., transcription and replication), synthesis of polypeptides (i.e., translation) also goes through three stages, namely, initiation, elongation, and termination. During the elongation stage, the three major steps in the
chemo-mechanical cycle of a ribosome are as follows: In the first, the ribosome selects a aa-tRNA whose anticodon is exactly complementary to the codon on the mRNA. Next, it catalyzes the reaction responsible for the formation of the peptide bond between the existing polypeptide and the newly recruited amino acid resulting in the elongation of the polypeptide. Finally, it completes the mechano-chemical cycle by translocating itself completely to the next codon and is ready to begin the next cycle.

Elongation factors (EF), which are themselves proteins, play important roles in the control of these major steps which require proper communication and coordination between the two subunits. The need for coordination between the two subunits can be appreciated from the following considerations. The formation of the peptide bond between the growing polypeptide and the newly arriving amino acid (which can take place only in the larger subunit) can be allowed only after it is recognized as the correct species implied by the genetic code. During the process of checking its identity through the codon-anticodon matching (which takes place in the smaller subunit), the formation of the peptide bond is prevented by an elongation factor Tu (EF-Tu). However, once a cognate tRNA is identified, the smaller subunit sends a “green signal” (by a molecular mechanism that remains unclear), the EF-Tu separates out by a process driven by GTP hydrolysis thereby clearing the way for the peptide bond formation. Similarly, elongation factor G (EF-G) coordinates the translocation of the mRNA by one codon and the simultaneous movement of the tRNA molecules from one binding site to the next one.

1047 A.S. Spirin, *Ribosomes*, (Kluwer Academic/Plenum, 1999).

1048 A.S. Spirin, *Ribosome as a molecular machine*, FEBS Lett. 514, 2-10 (2002).

1049 A.S. Spirin, *The ribosome as an RNA-based molecular machine*, RNA Biology 1, 3-9 (2004).

1050 R.A. Cross, *A protein-making motor protein*, Nature 385, 18-19 (1997).

1051 K. Abel and F. Jurnak, *A complex profile of protein elongation: translating chemical energy into molecular movement*, Structure 4, 229-238 (1996).

1052 E. Westhof and N. Leontis, *Atomic glimpses on a billion-year-old molecular machine*, Angew. Chem. Int. Ed. 39, 1587-1591 (2000).

1053 R. Green and H.F. Noller, *Ribosomes and translation*, Annu. Rev. Biochem. 66, 679-716 (1997).

1054 K.S. Wilson and H.F. Noller, *Molecular movement inside the translational engine*, Cell 92, 337-349 (1998).

1055 P.B. Moore, *The three-dimensional structure of the ribosome and its components*, Annu. Rev. Biophys. Biomol. Struct. 27, 35-58 (1998).

1056 M.V. Rodnina, A. Savelsbergh and W. Wintermeyer, *Dynamics of translation on the ribosome: molecular mechanics of translocation*, FEMS Microbiol. Rev. 23, 317-333 (1999).

1057 B.T. Porse and R.A. Garrett, *Ribosomal mechanics, antibiotics and GTP hydrolysis*, Cell 97, 423-426 (1999).

1058 R. Green, *Ribosomal translocation: EF-G turns the crank*, Curr. Biol. 10, R369-R373 (2000).

1059 J. Frank, *The ribosome-a macromolecular machine par excellence*, Chem. & Biol. 7, R133-R141 (2000).

1060 G.M. Culver, *Meanderings of the mRNA through the ribosome*, Structure 9, 751-758 (2001).

1061 A. Yonath, *The search and its outcome: high-resolution structures of ribosomal particles from mesophilic, thermophilic, and halophilic bacteria at various functional states*, Annu. Rev. Biophys. & Biomol. Struct. 31, 257-273 (2002).

1062 M.M. Yusupov, G.Z. Yusupova, A. Baucom, K. Lieberman, T.N. Earnest, J.H.D. cate and H.F. Noller, *Crystal structure of the ribosome at 5.5 Å resolution*, Science 292, 883-896 (2001).
21.1 Single-molecule experiments to probe single ribosome mechano-chemistry

Thus, each ribosome has three different functions which it performs on each run along the mRNA track: (i) it is a decoding device in the sense that it “reads” the sequence of codons on the mRNA and selects a
aa-tRNA whose anticodon is exactly complementary to the codon on the mRNA.

(ii) it is a peptidyltransferase that catalyzes the reaction responsible for the formation of the peptide bond between the existing polypeptide and the newly recruited amino acid resulting in the elongation of the polypeptide.

(iii) it is a conveying machine that, while moving along a mRNA chain, passes tRNA molecules through itself during elongation. Interestingly, function (i) is performed exclusively by the smaller subunit while the function (ii) is carried out in the larger subunit. This division of labour between the larger and the smaller subunit may be related to the fact that there is a relatively large (8 nm) separation between the anti-codon and the amino-acid-carrying end of the tRNA molecules. But, the function (iii) requires coordinated movement of the two subunits.

Some specific steps in the mechano-chemical cycle of a ribosome are driven by the hydrolysis of guanosine triphosphate (GTP) to guanosine diphosphate (GDP). Therefore, ribosome is often regarded as a motor. However, a ribosome is not merely a “protein-making motor protein” but it serves as a “mobile workshop” which provides a platform where a coordinated action of many tools take place for the selection of the appropriate subunits and for linking them to synthesize each of the proteins. As this mobile workshop moves along the “assembly line” (mRNA), new subunits (amino-acids) are brought to it by the “workers” (tRNA molecules).

Some of the fundamental questions on the mechanism of translation are the following:
(i) How does the tRNA move on the ribosome (a) before, and (b) after the peptide bond formation? (ii) How does the ribosome modulate the stability of its binding with the mRNA so that it can step forward on its track once in each cycle during the elongation stage without destabilizing the ribosome-mRNA-tRNA complex itself? (iii) How is the movement of the ribosome on mRNA coordinated with the movements of the tRNA molecules on the ribosome? (iv) What are the sources of energy required for these movements and how are these energies transduced? Most of these questions can be addressed using single-ribosome techniques; however, very few such experiments have been reported in the literature.

1083 R.A. Marshall, C.E. Aitken, M. Dorywalska and J.D. Puglisi, Translation at the single-molecule level, Annu. Rev. Biochem. 77, 177-203 (2008).

1084 S. Blanchard, R.L. Gonzalez Jr., H.D. Kim, S. Chu and J.D. Puglisi, Nat. Str. & Mol. Biol. 11, 1008 (2004).

1085 S. Uemura, M. Dorywalska, T.H. Lee, H.D. Kim, J.D. Puglisi and S. Chu, Nature 446, 454 (2007).

1086 J.B. Munro, A. Vaiana, K.Y. Sanbonmatsu and S.C. Blanchard, A new view of protein synthesis: mapping the free energy landscape of the ribosome using single-molecule FRET, Biopolymers 89, 565-577 (2008).

1087 F. Vanzi, S. Vladimirov, C.R. Knudsen, Y.E. Goldman and B.S. Cooperman, Protein synthesis by single ribosomes, RNA, 9, 1174-1179 (2003).

1088 Y. Wang, H. Qiu, R.D. Kudaravalli, S.V. Kirellov, G.T. Dempsey, D. Pan, B.S. Cooperman and Y.E. Goldman, Single-molecule structural dynamics of EF-G-ribosome interaction during translocation, Biochemistry 46, 10767-10775 (2007).

1089 J.D. Wen, L. Lancaster, C. Hodges, A.C. Zeri, S.H. Yoshimura, H.F. Noller, C. Bustamante and I. Tinoco Jr., Nature 452, 598 (2008).

Theoretical modeling of single-ribosome operation has made very little progress so far.

1090 T.L. Hill, A proposed common allosteric mechanism for active transport, muscle contraction, and ribosomal translocation, PNAS 64, 267-274 (1969).

1091 H. Liljenström, G. von Heijne, C. Blomberg and J. Johansson, The tRNA cycle and its relation to the rate of protein synthesis, Eur. Biophys. J. 12, 115-119 (1985).
21.2 Traffic-like collective movement of ribosomes

Most often many ribosomes move simultaneously on a single mRNA strand while each synthesizes a separate copy of the same protein. Such a collective movement of the ribosomes on a single mRNA strand has superficial similarities with vehicular traffic and is, therefore, referred to as ribosome traffic. Most of the theoretical models of ribosome traffic represent the mRNA as a one-dimensional lattice, where each site corresponds to a single codon. Since an individual ribosome is much larger than a single codon, the ribosomes are represented by hard rods in these models. So, ribosome traffic is treated as a problem of non-equilibrium statistical mechanics of a system of interacting “self-driven” hard rods on a one-dimensional lattice. Moreover, in these models the inter-ribosome interactions are captured through hard-core mutual exclusion principle: none of codons can be covered simultaneously by more than one ribosome. Thus, these models of ribosome traffic are essentially totally asymmetric simple exclusion process for hard rods: a ribosome hops forward, by one codon, with probability q per unit time, if an only if the hop does not lead to any violation of the mutual exclusion principle.
1107. J.E. Bergmann and H.F. Lodish, A kinetic model of protein synthesis, J. Biol. Chem. 254, 11927-11937 (1979).

1108. C. B. Harley, J. W. Pollard, C. P. Stanners and S. Goldstein, Model for messenger RNA translation during amino acid starvation applied to the calculation of protein synthetic error rates, J. Biol. Chem. 256, 10786-10794 (1981).

1109. S. Zhang, E. Goldman and G. Zubay, Clustering of low usage codons and ribosome movement, J. Theor. Biol. 170, 339-354 (1994).

1110. G. Lakatos and T. Chou, Totally asymmetric exclusion process with particles of arbitrary size, J. Phys. A 36, 2027-2041 (2003).

1111. T. Chou, Ribosome recycling, diffusion, and mRNA loop formation in translational regulation, Biophys. J., 85, 755-773 (2003).

1112. L.B. Shaw, R.K.P. Zia and K.H. Lee, Totally asymmetric exclusion process with extended objects: a model for protein synthesis, Phys. Rev. E 68, 021910 (2003).

1113. L.B. Shaw, J.P. Sethna and K.H. Lee, Mean-field approaches to the totally asymmetric exclusion process with quenched disorder and large particles, Phys. Rev. E 70, 021901 (2004).

1114. L.B. Shaw, A.B. Kolomeisky and K.H. Lee, Local inhomogeneity in asymmetric simple exclusion processes with extended objects, J. Phys. A 37, 2105-2113 (2004).

1115. T. Chou and G. Lakatos, Clustered bottlenecks in mRNA translation and protein synthesis, Phys. Rev. Lett. 93, 198101 (2004).

1116. G. Schönherr and G. M. Schütz, Exclusion process for particles of arbitrary extension: hydrodynamic limit and algebraic properties, J. Phys. A 37, 8215-8231 (2004).

1117. G. Schönherr, Hard rod gas with long-range interactions: exact predictions for hydrodynamic properties of continuum systems from discrete models, Phys. Rev. E 71, 026122 (2005).

1118. G. Lakatos, T. Chou and A. Kolomeisky, Steady-state properties of a totally asymmetric exclusion process with periodic structure, Phys. Rev. E 71, 011103 (2005).

1119. J.J. Dong, B. Schmittmann and R.K.P. Zia, Towards a model for protein production rates, J. Stat. Phys. 128, 21-34 (2007).

1120. J.J. Dong, B. Schmittmann and R.K.P. Zia, Inhomogeneous exclusion processes with extended objects: the effect of defect locations, Phys. Rev. E 76, 051113 (2007).

But, strictly speaking, a ribosome is neither a particle nor a hard rod. Moreover, in all the works mentioned above, the entire complexity of the mechano-chemistry of each ribosome is captured by a single parameter q. Only a few attempts have been made in recent years to capture the mechano-chemistry of individual ribosomes in the quantitative models of interacting ribosomes in traffic-like situations.

1121. A. Basu and D. Chowdhury, Modeling protein synthesis from a physicist’s perspective: a toy model, Amer. J. Phys. 75, 931-937 (2007).

1122. A. Basu and D. Chowdhury, Traffic of interacting ribosomes: effects of single-machine mechano-chemistry on protein synthesis, Phys. Rev. E 75, 021902 (2007).

1123. H. Zouridis and V. Hatzimanikatis, A model for protein translation: polysome self-organization leads to maximum protein synthesis rates, Biophys. J. 92, 717-730 (2007).

21.3 Multi-machine coordination in gene expression

Coordination of various machines is a key feature of assembly line in manufacturing industries. However, the mechanisms of coordination of the machineries of transcription, translation and other steps of gene expression are not well understood in spite of investigations in this direction.
1124. T. Maniatis and R. Reed, “An extensive network of coupling among gene expression machines”, Nature, 416, 499-506 (2002).

1125. D. Bentley, “The mRNA assembly line: transcription and processing machines in the same factory”, Curr. Opin. Cell Biol. 14, 336-342 (2002).

1126. G. Orphanides and D. Reinberg, A unified theory of gene expression, Cell 108, 439-451 (2002).

1127. J. Gowrishankar and R. Harinarayan, Why is transcription coupled to translation in bacteria?, Mol. Microbiol. 54, 598-603 (2004).

21.4 Non-ribosomal machineries of polypeptide synthesis

Machines for synthesis of polypeptides and non-ribosomal polyketides have been known for long time. But, hardly any quantitative modeling of these machines have been made so far.

1128. M.A. Fischbach and C.T. Walsh, Directing biosynthesis, Science 314, 603-605 (2006).

1129. M.A. Marahiel, T. Stachelhaus and H.D. Mootz, Modular peptide synthetases involved in nonribosomal peptide synthesis, Chem. Rev. 97, 2651-2673 (1997).

1130. D. Schwarzer, R. Finking and M.A. Marahiel, Nonribosomal peptides: from genes to products, Nat. Prod. Rep. 20, 275-287 (2003).

1131. J. Staunton and K.J. Weissman, Polyketide biosynthesis: a millennium review, Nat. Prod. Rep. 18, 380-416 (2001).

1132. K.J. Weissman, Polyketide biosynthesis: understanding and exploiting modularity, Phil. Trans. Roy. Soc. Lond. A 362, 2671-2690 (2004).

1133. S.J. Moss, C.J. Martin and B. Wilkinson, Loss of co-linearity by modular polyketide synthases: a mechanism for the evolution of chemical diversity, Nat. Prod. Rep. 21, 575-593 (2004).

1134. B. Wilkinson and J. Micklefield, Mining and engineering natural-product biosynthetic pathways, Nat. Chem. Bio. 3, 379-386 (2007).

1135. R.H. Baltz, Molecular engineering approaches to peptide, polyketide and other antibiotics, Nat. Biotechnol. 24, 1533-1540 (2006).

1136. C.T. Walsh, Polyketide and nonribosomal peptide antibiotics: modularity and versatility, Science 303, 1805-1810 (2004).

1137. M.A. Fischbach and C.T. Walsh, Assembly-line enzymology for polyketide and nonribosomal peptide antibiotics: logic, machinery, and mechanisms, Chem. Rev. 106, 3468-3496 (2006).

1138. C. Hertweck, A. Luzhetskyy, Y. Rebets and A. Bechtold, Type II polyketide synthases: gaining a deeper insight into enzymatic teamwork, Nat. Prod. Rep. 24, 162-190 (2007).

1139. S. Smith and S.C. Tsai, The type I fatty acid and polyketide synthases: a tale of two megasynthases, Nat. Prod. Rep. 24, 1041-1072 (2007).

1140. S. Donadio, P. Monciardini and M. Sosio, Polyketide synthetases and nonribosomal peptide synthetases: the emerging view from bacterial genomics, Nat. Prod. Rep. 24, 1073-1109 (2007).

1141. R.J. Cox, Polyketides, proteins and genes in fungi: programmed nano-machines begin to reveal their secrets, Org. Biomol. Chem. 5, 2010-2026 (2007).

1142. K. Watanabe, A.P. Praseuth and C.C.C. Wang, A comprehensive and engaging overview of the type III family of polyketide synthases, Curr. Opin. Chem. Biol. 11, 279-286 (2007).
22 Spliceosome; closely related to ribosome?

In eukaryotic cells, pre-mRNA require several types of processing before it matures to a functional mRNA. One of the key processes is splicing whereby non-coding segments (introns) are removed and the resulting strands are joined. Just like the ribosome, spliceosome is also composed of proteins as well as RNA.

1143 A. Newman, RNA splicing, Curr. Biol. 8, R903-R905 (1998).

1144 J.P. Staley and C. Guthrie, Mechanical devices of the spliceosome: motors, clocks, springs and things, Cell 92, 315-326 (1998).

1145 C.A. Collins and C. Guthrie, The question remains: is the spliceosome a ribozyme?, Nat. Str. Biol. 7, 850-854 (2000).

1146 M.L. Hastings and A.R. Krainer, Pre-mRNA splicing in the new millenium, Curr. Opin. Cell Biol. 13, 302-309 (2001).

1147 T.W. Nilsen, The spliceosome: the most complex macromolecular machine in the cell?, Bioessays 25, 1147-1149 (2003).

1148 J.R. Sanford and J.F. Caceres, Pre-mRNA splicing: life at the centre of the central dogma, J. Cell Sci. 117, 6261-6263 (2004).

1149 M.M. Konarska and C.C. Query, Insights into the mechanisms of splicing: more lessons from the ribosome, Genes and Dev. 19, 2255-2260 (2005).

1150 S. Valadkhan, The spliceosome: caught in the web of shifting interactions, Curr. Opin. Struct. Biol. 17, 310-315 (2007).

1151 S. Singh, H.Y. Ou-Yang, M.Y. Chen and S.L. Yu, A kinetic-dynamic model for regulatory RNA processing, J. Biotechnol. 127, 488-495 (2007).

1152 H. Stark and R. Lührmann, Cryo-electron microscopy of spliceosomal components, Annu. Rev. Biophys. Biomol. Struct. 35, 435-457 (2006).

1153 A. Patel and J.A. Steitz, Splicing double: insights from the second spliceosome, Nat. Rev. Mol. Cell Biol. 4, 960-970 (2003).

1154 M.S. Jurica and M.J. Moore, Pre-mRNA splicing: awash in a sea of proteins, Mol. Cell 12, 5-14 (2003).

1155 R.J. Grainger and J.D. Beggs, Prp8: at the heart of the spliceosome, RNA 11, 533-557 (2005).

23 Fidelity of template-dictated polymerization

Nature’s evolutionary design has successfully optimized two competing demands: accuracy and speed of template-dictated synthesis of nucleic acids and proteins. The typical probability of the errors is about 1 (i) in 10^3 polymerized amino acids, in case of protein synthesis, (ii) in 10^4 polymerized nucleotides in case of mRNA synthesis and (iii) in 10^9 polymerized nucleotides in case of replication of DNA. The mechanisms of proof reading and quality control also has to optimize two other mutually conflicting demands: maintaining the integrity of the genome and tolerance for some errors (genetic mutations) which is necessary for diversification of species. What are the mechanisms used by the intracellular machinery for manufacturing macromolecules of life to simultaneously achieve these conflicting goals?

1156 M. Radman, Fidelity and infidelity, Nature 413, 115 (2001).

1157 M. Yarus, Proofreading, NTPases and translation: constraints on accurate biochemistry, Trends Biochem. Sci. 17, 130-133 (1992).

1158 M. Yarus, Proofreading, NTPases and translation: constraints on accurate biochemistry, Trends Biochem. Sci. 17, 171-174 (1992).
1159. S.M. Burgess and C. Guthrie, *Beat the clock: paradigms for NTPases in the maintenance of biological fidelity*, Trends Biochem. Sci. **18**, 381-384 (1993).

1160. J. Ninio, *Fine tuning of ribosomal accuracy*, FEBS **196**, 1-4 (1986).

1161. J. Ninio, *Illusory defects and mismatches: why must DNA repair always be (slightly) error prone*, Bioessays **22**, 396-401 (2000).

1162. J.J. Hopfield, *Kinetic proofreading: a new mechanism for reducing errors in biosynthesis process requiring high specificity*, PNAS **71**, 4135-4139 (1974).

1163. J.J. Hopfield, *The energy relay: a proofreading scheme based on dynamic cooperativity and lacking all characteristic symptoms of kinetic proofreading in DNA replication and protein synthesis*, PNAS **77**, 5248-5252 (1980).

1164. C.G. Kurland and M. Ehrenberg, *Growth-optimizing accuracy of gene expression*, Annu. Rev. Biophys. Biophys. Chem. **16**, 291-317 (1987).

1165. A.R. Fersht, *Enzymatic editing mechanism and the genetic code*, Proc. Roy. Soc. Lond. B **212**, 351-379 (1981).

23.1 Fidelity of DNA replication: polymerization by DdDP

1166. H. Echols and M.F. Goodman, *Fidelity mechanism in DNA replication*, Annu. Rev. Biochem. **60**, 477-511 (1991).

1167. K.A. Johnson, *Conformational coupling in DNA polymerase fidelity*, Annu. Rev. Biochem. **62**, 685-713 (1993).

1168. R.A. Beckman and L.A. Loeb, *Multi-stage proofreading in DNA replication*, Quart. Rev. Biophys. **26**, 225-331 (1993).

23.2 Fidelity of transcription: polymerization by DdRP

1169. E.C. Friedberg, P.L. Fischhaber and C. Kisker, *Error-prone DNA polymerases: novel structures and the benefits of infidelity*, Cell **107**, 9-12 (2001).

1170. A.K. Sholwalter and M.D. Tsai, *A reexamination of the nucleotide incorporation fidelity of DNA polymerase*, Biochemistry **41**, 10571-10576 (2002).

1171. W.A. Beard and S.H. Wilson, *Structural insights into the origins of DNA polymerase fidelity*, Structure **11**, 489-496 (2003).

1172. C.M. Joyce and S.J. Benkovic, *DNA polymerase fidelity: kinetics, structure and checkpoints*, Biochemistry **43**, 14317-14324 (2004).

1173. A.K. Showalter, B.J. Lamarche, M. Bakhtina, M. Su, K.H. Tang and M.D. Tsai, *Mechanistic comparison of high-fidelity and error-prone DNA polymerases and ligases involved in DNA repair*, Chem. Rev. **106**, 340-360 (2006).

1174. S.D. McCulloch and T.A. Kunkel, *The fidelity of DNA synthesis by eukaryotic replicative and translesion synthesis polymerases*, Cell Res. **18**, 148-161 (2008).

23.3 Fidelity of polymerization by RdRP

1175. R.T. Libby and J.A. Gallant, *The role of RNA polymerase in transcriptional fidelity*, Mol. Microbiol. **5**, 999-1004 (1991).

1176. C. Castro, J.J. Arnold and C.E. Cameron, *Incorporation fidelity of the viral RNA-dependent RNA polymerase: a kinetic, thermodynamic and structural perspective*, Virus res. **107**, 141-149 (2005).
23.4 Fidelity of polymerization by RdDP

1177L. Menendez-Arias, Molecular basis of fidelity of DNA synthesis and nucleotide specificity of retroviral reverse transcriptase, Prog. Nucleic Acid Res. Mol. Biol. 71, 91-147 (2002).

1178E.S. Svarovskaia, S.R. Cheslock, W.H. Zhang, W.S. Hu and V.K. Pathak, Retroviral mutation rates and reverse transcriptase fidelity, Front. Biosci. 8, d1117-134 (2003).

23.5 Fidelity of translation

1179L. Cochella and R. Green, Fidelity in protein synthesis, Curr. Biol. 15, R536-R540 (2005).

1180J.M. Ogle and V. Ramakrishnan, Structural insights into translational fidelity, Annu. Rev. Biochem. 74, 129-177 (2005).

1181M.V. Rodnina and W. Wintemeyer, Fidelity of aminoacyl-tRNA selection on the ribosome: kinetic and structural mechanisms, Annu. Rev. Biochem. 70, 415-435 (2001).

1182C.G. Kurland, Translational accuracy and the fitness of bacteria, Annu. Rev. Genet. 26, 29-50 (1992).

23.6 Connection between fidelity of transcription, translation and replication

1183J. Ninio, Connections between translation, transcription and replication error-rates, Biochimie 73, 1517-1523 (1991).

24 Machines for non-template-dictated biopolymerization

24.1 Machines for polymerization of polysachharides

1184J. Stubbe, J. Tian, A. He, A.J. Sinskey, A.G. Lawrence and P. Liu, Nontemplate-dependent polymerization processes: polyhydroxyalkanoate as a paradigm, Annu. Rev. Biochem. 74, 433-480 (2005).

1185P.H. Seeberger and D.B. Werz, Synthesis and medical applications of oligosachharides, Nature 446, 1046-1051 (2007).

• Starch synthesizer machines

Most well studied examples of polysaccharide polymerization include biosynthesis of starch.

1186A.M. Smith, K. Denyer and C. Martin, The synthesis of the starch granule, Annu. Rev. Physiol. Plant Mol. Biol. 48, 67-87 (1997).

• Starch synthesizer machines

Biosynthesis of cellulose have also received lot of attention.

1187C. Sommerville, Cellulose synthesis in higher plants, Annu. Rev. Cell Dev. Biol. 22, 53-78 (2006).

• Chitin synthesizer machines

Machines for synthesizing chitin have been studied for quite some time.

1188C. E. Bulawa, Genetics and molecular biology of chitin synthesis in fungi, Annu. Rev. Microbiol. 47, 505-534 (1993).

1189H. Merzendorfer, Insect chitin synthases, J. Comp. Physiol. [B], 176, 1-15 (2006).

24.2 Machines for polymerization of fatty acids

1190S.W. White, J. Zheng, Y.M. Zhang and C.O. Rock, The structural biology of type II fatty acid biosynthesis, Annu. Rev. Biochem. 74, 791-831 (2005).

1191O. Tehlivets, K. Scheuringer and S.D. Kohlwein, Fatty acid synthesis and elongation in yeast, Biochim. Biophys. Acta 1771, 255-270 (2007).
25 Machines for assembling and remodeling of chromatin

As we wrote earlier, in a living cell, DNA double strands are not available in naked form. In eukaryotic cells DNA is packaged in a hierarchical structure called chromatin.

1195 R.D. Kornberg and Y. Lorch, Twenty-five years of the nucleosome, fundamental particle of the eukaryotic chromosome, Cell 98, 285-294 (1999).

1196 V. Morales, C. Giamarchi, C. Chailleaux, F. Moro, V. Marsaud, S. Le Ricouesse and H. Richard-Foy, Chromatin structure and dynamics: functional implications, Biochimie 83, 1029-1039 (2001).

1197 H. Schiessel, The physics of chromatin, J. Phys. Condens. Matter, 15, R699-R774 (2003).

1198 C. Lavelle and A. Benecke, Chromatin Physics: replacing multiple, representation-centered descriptions at discrete scales by a continuous, function-dependent self-scaled model, Eur. Phys. J. E 19, 379-384 (2006).

1199 J. Widom, Structure, dynamics and function of chromatin in vitro, Annu. Rev. Biophys. Biomol. Struct. 27, 285-327 (1998).

1200 D. Tremethick, Chromatin: the dynamic link between structure and function, Chromosome Research, 14, 1-4 (2006).

1201 S.J. McBryant, V.H. Adams and J.C. Hansen, Chromatin architectural proteins, 14, 39-51 (2006).

There are some common features, in spite of wide range of differences, in the organization of eukaryotic and prokaryotic chromosomes.

25.1 Histone modifying enzymes

In order to get access to the relevant segments of DNA for various processes in DNA metabolism, eukaryotic cells use a class of machines which alter the DNA-histone interactions. These machines fall in two different classes: (i) enzymes that covalently modify histone proteins (histone modifying enzymes), and (ii) ATP-dependent chromatin-remodeling enzymes (CRE) which alter the structure and/or position of the nucleosomes.

1203 B.M. Turner, Chromatin and gene regulation, (Blackwell Science 2001).

1204 A. Vaquero, A. Loyola and D. Reinberg, The constantly changing face of chromatin, SAGEKE 4, 1-16 (2003).
25.2 Roles of CRE in chromatin assembly

Although, at first sight, chromatin-assembly and remodeling may appear to be opposite processes, there is a step common to both—sliding of the nucleosome on a DNA. Therefore, it should not be surprising that several CRE participate in both these processes.

25.3 ATP-dependent chromatin-remodeling enzymes

Some of the CRE repress chromatin, instead of activating it. Therefore, a general definition of chromatin remodeling should be as follows: chromatin remodeling is a change in the state of chromatin that facilitates its activation or repression.
1226. C.J. Fry and C.L. Peterson, Chromatin remodelling enzymes: who’s on first?, Curr. Biol. 11, R185-R197 (2001).

1227. A. Lusser and J.T. Kadonaga, Chromatin remodeling by ATP-dependent molecular machines, BioEssays 25, 1192-1200 (2003).

1228. M. Vignali, A.H. Hassan, K.E. Neely and J.L. Workman, ATP-dependent chromatin-remodeling complexes, Mol. and Cellular Biol. 20, 1899-1910 (2000).

1229. B.R. Cairns, Chromatin remodeling complexes: strength in diversity, precision through specialization, Curr. Opin. Genet. Dev. 15, 185-190 (2005).

1230. A. Saha, J. Wittmeyer and B.R. Cairns, Chromatin remodelling: the industrial revolution of DNA around histones, Nat. Rev. Mol. Cell Biol. 7, 437-447 (2006).

1231. P. Varga-Weisz, ATP-dependent chromatin remodeling factors: nucleosome shufflers with many missions, Oncogene 20, 3076-3085 (2001).

1232. K. Luger, Dynamic nucleosomes, Chromosome Res. 14, 5-16 (2006).

1233. K. Van Holde and J. Zlatanova, Scanning chromatin: a new paradigm, J. Biol. Chem. 281, 12197-12200 (2006).

1234. Y. Bao and X. Shen, INO80 subfamily of chromatin remodelin complexes, Mutation Res. 618, 18-29 (2007).

1235. E. Brown, S. Malakar and J.E. Krebs, How many remodelers does it take to make a brain? Diverse and cooperative roles of ATP-dependent chromatinremodeling complexes in development, Biochem. Cell Biol. 85, 444-462 (2007).

1236. M.L. Verbsky and E.J. Richards, Chromatin remodeling in plants, Curr. Opin. Plant Biol. 4, 494-500 (2001).

1237. J.A. Martens and F. Winston, Recent advances in understanding chromatin remodeling by Swi/Snf complexes, Curr. Opin. Genet. Dev. 13, 136-142 (2003).

1238. A. Jerzmanowski, SWI/SNF chromatin remodeling and linker histones in plants, Biochim. Biophys. Acta, 1769, 330-345 (2007).

1239. J.F.A. van Vught, M. Ranes, C. Campsteijn and C. Logie, The ins and outs of ATP-dependent chromatin remodeling in budding yeast: biophysical and proteomic perspectives, Biochim. Biophys. Acta, 1769, 153-171 (2007).

1240. C. Muchardt and M. Yaniv, ATP-dependent chromatin remodelling: SWI/SNF and Co. are on the job, J. Mol. Biol. 293, 187-198 (1999).

1241. A. Flaus and T. Owen-Hughes, Mechanisms for nucleosome mobilization, Biopolymers 68, 563-578 (2003).

1242. T. Sakaue, K. Yoshikawa, S.H. Yoshimura and K. Takeyasu, Histone core slips along DNA and prefers positioning at the chain end, Phys. Rev. Lett. 87, 078105 (2001).

1243. I.M. Kulic and H. Schiessel, Chromatin dynamics: nucleosomes go mobile through twist defects, Phys. Rev. Lett. 91, 148103 (2003).

1244. H. Schiessel, The nucleosome: a transparent, slippery, sticky and yet stable DNA-protein complex, Eur. Phys. J. E 19, 251-262 (2006).

1245. F. Mohammad-Rafiee, I.M. Kulic and H. Schiessel, Theory of nucleosome corkscrew sliding in the presence of synthetic DNA ligands, J. Mol. Biol. 344, 47-58 (2004).

1246. W. Möbius, R.A. Neher and U. Gerland, Kinetic accessibility of buried sites in nucleosomes, Phys. Rev. Lett. 97, 208102 (2006).

1247. J. Langowski, Polymer chain models of DNA and chromatin, Eur. Phys. J. E 19, 241-249 (2006).
1248. A. Lense and J.M. Victor, *Chromatin fiber functional organization: some plausible models*, Eur. Phys. J. E 19, 279-290 (2006).

1249. C. Vaillant, B. Audit, C. Thermes and A. Arneodo, *Formation and positioning of nucleosomes: effect of sequence-dependent long-range correlated structural disorder*, Eur. Phys. J. E 19, 263-277 (2006).

1250. K. Havas, A. Flaus, M. Phelan, R. Kingston, P.A. Wade, D.M. J. Lilley and T. Owen-Hughes, *Generation of superelical torsion by ATP-dependnt chromatin remodeling activities*, Cell 103, 1133-1142 (2000).

1251. N. Korolev, O.V. Vorontsova and L. Nodenerskold, *Physicochemical analysis of electrostatic foundation for DNA-protein interactions in chromatin transformations*, Prog. in Biophys. and Molec. Biol. 95, 23-49 (2007).

1252. P. Ranjith, J. Yan and J.F. Marko, *Nucleosome hopping and sliding kinetics determind from dynamics of single chromatin fibers in Xenopus egg extracts*, PNAS 104, 13649-13654 (2007).

1253. G. Lia, E. Praly, H. Ferreira, C. Stockdale, Y.C. Tse-Dinh, D. Dunlap, V. Croquette, D. Bensimon and T. Owen-Hughes, *Direct observation of DNA distortion by RSC complex*, Mol. Cell 21, 417-425 (2006).

1254. A.E. Leschziner, A. Saha, J. Wittmeyer, Y. Zhang, C. Bustamante, B.R. Cairns and E. Nogales, *Conformational flexibility in the chromatin remodeler RSC observed by electron microscopy and the orthogonal tilt reconstruction method*, PNAS 104, 4913-4918 (2007).

1255. K. Rippe, A. Schrader, P. Riede, R. Strohner, E. Lehmann and G. Längst, *DNA sequence-and conformation-directed positioning of nucleosomes by chromatin-remodeling complexes*, PNAS 104, 15635-15640 (2007).

1256. H.Y. Fan, X. He, R.E. Kingston and G.J. Narlikar, *Distinct strategies to make nucleosomal DNA accessible*, Mol. Cell 11, 1311-1322 (2003).

1257. J.D. Anderson, A. Thastrom and J. Widom, *Spontaneous access of proteins to buried nucleosomal DNA target sites occurs via a mechanism that is distinct from nucleosome translocation*, Mol. Cell. Biol. 22, 7147-7157 (2002).

1258. K.J. Polach and J. Widom, *Mechanism of protein access to specific DNA sequences in chromatin: a dynamic equilibrium model for gene regulation*, J. Mol. Biol. 254, 130-149 (1995).

1259. F.D. Urnov and A.P. Wolffe, *Chromatin remodeling and transcriptional activation: the cast (in order of appearance)*, Oncogene 20, 2991-3006 (2001).

1260. A. Nemeth and G. Längst, *Chromatin higher order structure: opening up chromatin for transcription*, Briefings in functional genomics and proteomics, 2, 334-343 (2004).

RSC: a chromatin-remodeling enzyme

RSC (Remodelling the structure of chromatin) is a well studied remodeler of chromatin in yeast.

1261. F.J. Asturias, W.H. Chung, R.D. Kornberg and Y. Lorch, *Structural analysis of the RSC chromatin-remodeling complex*, PNAS 99, 13477-13480 (2002).

1262. T. Strick and A. Quessada-Vial, *Chromatin remodeling: RSC motors along the DNA*, Curr. Biol. 16, R287-R289 (2006).

1263. Y. Zhang, C.L. Smith, A. Saha, S.W. Grill, S. Mihardja, S.B. Smith, B.R. Cairns, C.L. Peterson and C. Bustamante, *DNA translocation and loop formation mechanism of chromatin remodeling by SWI/SNF and RSC*, Mol. Cell 24, 559-568 (2006).

1264. G. Längst and P. B. Becker, *Nucleosome mobilization and positioning by ISWI-containing chromatin-remodeling factors*, J. Cell Sci. 114, 2561-2568 (2001).

1265. I. Gavin, P.J. Horn and C.L. Peterson, *SWI/SNF chromatin remodeling requires changes in DNA topology*, Molecular Cell 7, 97-104 (2001).
1266. A. Saha, J. Wittmeyer and B.R. Cairns, Chromatin remodeling through directional DNA translocation from an internal nucleosomal site, Nat. Str. and Molec. Biol. 12, 747-755 (2005).

1267. G. Li, M. Levitus, C. Bustamante and J. Widom, Rapid spontaneous accessibility of nucleosomal DNA, Nat. Str. and Mol. Biol. 12, 46-53 (2005).

1268. S. Mihardja, A.J. Spakowitz, Y. Zhang and C. Bustamante, Effect of force on mononucleosomal dynamics, PNAS 103, 15871-15876 (2006).

1269. A. Leschziner, B.Lemon, R. Tjian and E. Nogales, Structural studies of the human PBAF chromatin-remodeling complex, Structure 13, 267-275 (2005).

- NURF: a chromatin-remodeling enzyme
 NURF (Nucleosome remodeling factor) is a well studied remodeller of chromatin in drosophila.

1270. A. Hamiche, R. Sandaltzopoulos, D.A. Gdula and C. Wu, ATP-dependent histone octamer sliding mediated by the chromatin remodeling complex NURF, Cell 97, 833-842 (1999).

- CHRAC: a chromatin-remodeling enzyme
 CHRAC (Chromatin accessibility complex) is a well studied remodeller of chromatin in drosophila.

1271. G. Längst, E.J. Bonte, D.F.V. Corona and P.B. Becker, Nucleosome movement by CHRAC and ISWI without disruption or trans-displacement of the histone octamer, Cell 97, 843-852 (1999).

25.4 Machines for packaging and manipulating bacterial DNA

Although bacterial chromosomal DNA are not enclosed in any nucleus, these are, nevertheless, packaged in a structure call nucleoid.

1272. M. Thanbichler, P.H. Viollier and L. Shapiro, The structure and function of the bacterial chromosome, Curr. Opin. Genet. Dev. 15, 153-162 (2005).

1273. M. Thanbichler, S.C. Wang and L. Shapiro, The bacterial nucleoid: a highly organized and dynamic structure, J. Cellular Biochem. 96, 506-521 (2005).

1274. A. Travers and G. Mushkhelishvili, Bacterial chromatin, Curr. Opin. Genet. Dev. 15, 507-514 (2005).

1275. M.S. Luijsterburg, M.C. Noom, G.J.L. Waite and R.T. Dame, The architectural role of nucleoid-associated proteins in the organization of bacterial chromatin: a molecular perspective, J. Str. Biol. 156, 262-272 (2006).

1276. M. Thanbichler and L. Shapiro, Chromosome organization and segregation in bacteria, J. Str. Biol. 156, 292-303 (2006).

1277. O. Espeli and F. Boccard, Organization of the Escherichia coli chromosome into macrodomains and its possible functional implications, J. Str. Biol. 156, 304-310 (2006).

1278. D. Frenkiel-Krispin and A. Minsky, Nucleoid organization and the maintenance of DNA integrity in E. coli, B. subtilis and D. radiodurans, J. Str. Biol. 156, 311-319 (2006).

The competing forces, which arise from DNA-protein interactions and determine the compact organization of the bacterial DNA have been investigated.

1279. J. Stavans and A. Oppenheim, DNA-protein interactions and bacterial chromosome architecture, Phys. Biol. 3, R1-R10 (2006).

1280. C.L. Woldringh, P.R. Jensen and H.V. Westerhoff, Structure and partitioning of bacterial DNA: determined by a balance of compaction and expansion forces?, FEMS Microbiol. Lett. 131, 235-242 (1995).

25.5 Machines for packaging and manipulating mitochondrial DNA

1281. X.J. Chen and R.A. Butow, The organization and inheritance of the mitochondrial genome, Nat. Rev. Gen. 6, 815-825 (2005).
25.6 Chromatin remodeling in transcription; transcription factory

1283 J.T. Kadonaga, *Eukaryotic transcription: an interlaced network of transcription factors and chromatin-modifying machines*, Cell 92, 307-313 (1998).

1284 J.K. Tyler and J.T. Kadonaga, *The “dark side” of chromatin remodeling: repressive effects on transcription*, Cell 99, 443-446 (1999).

1285 S.K. Williams and J.K. Tyler, *Transcriptional regulation by chromatin disassembly and re-assembly*, Curr. Opin. Genet. Dev. 17, 88-93 (2007).

1286 D.G. Edmondson and S.Y. Roth, *Chromatin and transcription*, FASEB J. 10, 1173-1182 (1996).

1287 G. Felsenfeld, *Chromatin unfolds*, Cell 86, 13-19 (1996).

1288 J.L. Workman, *Nucleosome displacement in transcription*, Genes and Dev. 20, 2009-2017 (2006).

1289 B. Li, M. Carey and J.L. Workman, *The role of chromatin during transcription*, Cell 128, 707-719 (2007).

1290 J. Mellor, *The dynamics of chromatin remodeling at promoters*, Molecular Cell 19, 147-157 (2005).

1291 R.J. Sims III, R. Belotserkovskaya and D. Reinberg, *Elongation by RNA polymerase II: the short and long of it*, Genes and Dev. 18, 2437-2468 (2004).

1292 J.N. Reeve, *Archaeal chromatin and transcription*, Mol. Microbiol. 48, 587-598 (2003).

25.7 Chromatin remodeling in replication

1293 C. Demeret, Y. vassetzky and M. Mechali, *Chromatin remodeling and DNA replication: from nucleosomes to loop domains*, Oncogene 20, 3086-3093 (2001).

1294 M.C. Barton and A.J. Crowe, *Chromatin alteration, transcription and replication*, Oncogene 20, 3094-3099 (2001).

1295 L. de la Serna, Y. Oikawa and A.N. Imbalzano, *Chromatin remodelling in mammalian differentiation: lessons from ATP-dependent remodelers*, Nat. Rev. Genetics, 7, 461-473 (2006).

26 Machines for DNA Repair and recombination

For hereditary transmission of the genome, repair of damaged DNA is as essential as the high fidelity of the replication of the genome itself. Recombination can be viewed as a process whose sole purpose is to rearrange genetic material thereby generating genetic diversity. However, recombination can also be used to repair damaged DNA. Recombinational repair is not the only method of DNA repair; there are other methods of DNA repair which do not exploit recombination. Just as DNA replication requires coordinated operation of several machines, DNA repair and recombination also needs similar coorporation of another set of machines.

1296 P.C. Hanawalt, *Paradigms for the three Rs: DNA replication, recombination, and repair*, Mol. Cell 28, 702-707 (2007).

1297 B. Alberts, *DNA replication and recombination*, Nature 421, 431-435 (2003).

1298 E.C. Friedberg, *DNA damage and repair*, Nature 421, 436-440 (2003).

1299 O. Fleck and O. Nielsen, *DNA repair*, J. Cell Sci. 117, 515-517 (2004).
1300 C. M. Green and G. Almouzni, *When repair meets chromatin*, EMBO Rep. 3, 28-33 (2002).

1301 E. C. Friedberg, *A brief history of DNA repair field*, Cell Res. 18, 3-7 (2008).

1302 K. P. Rice and M. M. Cox, *Recombinational DNA repair in bacteria: postreplication*, in: Encyclopedia of Life Sciences, (John Wiley and Sons, 2001).

1303 J. E. Haber, *DNA recombination: the replication connection*, Trends Biochem. Sci. 24, 271-275 (1999).

1304 J. E. Haber, *Recombination: a frank view of exchanges and vice versa*, Curr. Opin. Cell Biol. 12, 286-292 (2000).

1305 A. Kuzminov, *Recombinational repair of DNA damage in Escherichia coli and bacteriophage λ*, Microbiol. Mol. Biol. 63, 751-813 (1999).

1306 M. J. Neale and S. Keeney, *Clarifying the mechanics of DNA strand exchange in meiotic recombination*, Nature 442, 153-158 (2006).

1307 X. Li and W. D. Heyer, *Homologous recombination in DNA repair and DNA damage tolerance*, Cell Res. 18, 99-113 (2008).

26.1 Motor-driven junction migration

1308 D. M. J. Lilley, *Structures of helical junctions in nucleic acids*, Quart. Rev. Biophys. 33, 109-159 (2000).

1309 F. W. Stahl, *The Holliday junction on its thirtieth anniversary*, Genetics 138, 241-246 (1994).

1310 Y. Liu and S. C. West, *Happy Holidays: 40th anniversary of the Holliday junction*, Nat. Rev. Mol. Cell Biol. 5, 937-944 (2004).

1311 W. D. Heyer and R. Kanar, *Recombination mechanisms: fortieth anniversary meeting of the Holliday model*, Mol. Cell 16, 1-9 (2004).

1312 D. M. J. Lilley, R. M. Clegg, S. Diekmann, N. C. Seeman, E. von Kitzing and P. J. Hagerman, *A nomenclature of junctions and branchpoints in nucleic acids*, nucleic Acids Research, 23, 3363-3364 (1995).

1313 C. Altona, *Classification of nucleic acid junctions*, J. mol. Biol. 263, 568-581 (1996).

1314 S. C. Kowalczykowski, D. A. Dixon, A. K. Eggleston, S. D. Lauder and W. M. Rehrauer, *Biochemistry of homologous recombination in Escherichia coli*, Microbiol. Rev. 58, 401-465 (1994).

1315 S. C. West, *Formation, translocation and resolution of Holliday junctions during homologous genetic recombinations*, Phil. Trans. Roy. Soc. Lond. B 347, 21-25 (1995).

1316 J. Zlatanova and K. van Holde, *Binding to four-way junction DNA: a common property of architectural proteins?*, FASEB J. 12, 421-431 (1998).

1317 L. K. Stanley and M. D. Szczelkun, *Direct and random routing of a molecular motor protein at a DNA junction*, Nucleic Acids Research, 34, 4387-4394 (2006).

1318 I. G. Panyutin and P. Hsieh, *The kinetics of spontaneous DNA branch migration*, PNAS 91, 2021-2025 (1994).

1319 Y. Fujitani and I. Kobayashi, *Random-walk model of homologous recombination*, Phys. Rev. E 52, 6607-6622 (1995).

1320 E. Myers and M. F. Bruist, *Why a particle physicist is interested in DNA branch migration*, Nucl. Phys. B (Proc. Suppl.) 53, 856-858 (1997).

1321 M. Bruist and E. Myers, *Discrete and continuous mathematical models of DNA branch migration*, J. Theor. Biol. 220, 139-156 (2003).
26.2 RecA motor in recombination

1322 M.M. Cox, The bacterial RecA protein as a motor protein, Annu. Rev. Microbiol. 57, 551-577 (2003).

1323 M.M. Cox, Motoring along with the bacterial RecA protein, Nat. Rev. Mol. Cell Biol. 8, 127-138 (2007).

1324 K.J. MacFarland, Q. Shan, R.B. Inman and M.M. Cox, RecA as a motor protein, J. Biol. Chem. 272, 17675-17685 (1997).

1325 C.E. Bell, Structure and mechanism of Escherichia coli RecA ATPase, Mol. Microbiol. 58, 358-366 (2005).

1326 S.L. Gasior, H. Olivares, U. Ear, D.M. Hari, R. Weichselbaum and D.K. Bishop, Assembly of RecA-like recombinases: distinct roles for mediator proteins in mitosis and meiosis, PNAS 98, 8411-8418 (2001).

1327 T.F. Wang, L.Z. Chen and A.H.J. Wang, Right or left turn? RecA family protein filaments promote homologous recombination through clockwise axial rotation, Bioessays 30, 48-56 (2007).

1328 M.M. Cox, Historical overview: searching for replication help in all the rec places, PNAS 98, 8173-8180 (2001).

26.3 RecBCD motor in recombination

1330 M. Spies, P.R. Bianco, M.S. Dillingham, N. Handa, R.J. Baskin and S.C. Kowalczykowski, A molecular throttle: the recombination hotspot \(\chi \) controls DNA translocation by the RecBCD helicase, Cell 114, 647-654 (2003).

1331 T.T. Perkins, H.W. Li, R.V. Dalal, J. Gelles and S.M. Block, Forward and reverse motion of single RecBCD molecules on DNA, Biophys. J. 86, 1640-1648 (2004).

1332 S.K. Amundsen and G.R. Smith, Interchangeable parts of the Escherichia coli recombination machinery, Cell 112, 741-744 (2003).

1333 M.S. Dillingham, M. Spies and S.C. Kowalczykowski, RecBCD enzyme is a bipolar DNA helicase, Nature 423, 893-897 (2003).

1335 P.R. Bianco, L.R. Brewer, M. Corzett, R. Balhorn, Y. Yeh, S.C. Kowalczykowski and R.J. Baskin, Processive translocation and DNA unwinding by individual RecBCD enzyme molecules, Nature 409, 374-378 (2001).

1336 A.F. Taylor and G.R. Smith, RecBCD enzyme is a DNA helicase with fast and slow motors of opposite polarity, Nature 423, 889-893 (2003).

1337 S. Matson, Dual engines moving on antiparallel tracks, Nat. Str. Biol. 10, 499-500 (2003).

1338 M.R. Singleton, M.S. Dillingham, M. Gaudler, S.C. Kowalczykowski and D.B. Wigley, Crystal structure of RecBCD enzyme reveals a machine for processing DNA breaks, Nature 432, 187-193 (2004).

26.4 RecG motor in recombination

1339 G.S. Briggs, A.A. Mahdi, G.R. Weller, Q. Wen and R.G. Lloyd, Interplay between DNA replication, recombination and repair based on the structure of RecG helicase, Phil. Trans. Roy. Soc. Lond. B 359, 49-59 (2003).

26.5 RecQ motor in recombination

1340 R.J. Bennett and J.L. Keck, Structure and function of RecQ DNA helicases, Crit. Rev. Biochem. and Mol. Biol. 39, 79-97 (2004).

1341 M.P. Killoran and J.L. Keck, Sit down, relax and unwind: structural insights into RecQ helicase mechanisms, Nucl. Acids Res. 34, 4098-4105 (2006).
26.6 RuvABC motor in recombination

1342 S.C. West, DNA helicases: new breeds of translocating motors and molecularpumps, Cell 86, 177-180 (1996).

1343 S.C. West, Processing of recombination intermediates by the RuvABC proteins, Annu. Rev. Genetics, 31, 213-244 (1997).

1344 S.C. West, Molecular views of recombination proteins and their control, Nat. Rev. Mol. Cell Biol. 4, 1-11 (2003).

1345 D.E. Adams, I.R. Tsaneva and S.C. West, PNAS 91, 9901-9905 (1994).

1346 C.D. Putnam, S.B. Clancy, H. Tsurata, S. Gonzalez, J.G. Wetmur and J.A. Tainer, Structure and mechanism of the RuvB i Holliday junction branch migration motor, J. Mol. Biol. 311, 297-310 (2001).

1347 K. Yamada, T. Miyata, D. Tsuchiya, T. Oyama, Y. Fujiwara, T. Ohnishi, H. Iwasaki, H. Shinagawa, M. Ariyoshi, K. Mayanagi and K. Morikawa, Crystal structure of the RuvA-RuvB complex: a structural basis for the Holliday junction migrating motor machinery, Mol. Cell, 10, 671-681 (2002).

1348 G.J. Sharples, S.M. Ingleston and R.G. Lloyd, Holliday junction processing in bacteria: insights from the evolutionary conservation of RuvABC, RecG, and RusA, J. Bacteriol. 181, 5543-5550 (1999).

1349 A. Dawid, V. Croquette, M. Grigoriev and F. Heslot, Single-molecule study of RuvAB-mediated Holliday-junction migration, PNAS 101, 11611-11616 (2004).

26.7 Rad51 and Rad54 motor in recombination

1350 P. Sung, L. Krejci, S. Van Komen, M.G. Sehorn, Rad51 recombinase and recombination mediators, J. Biol. Chem. 278, 42729-42732 (2003).

1351 W.D. Heyer, X. Li, M. Rolfsmeier and X.P. Zhang, Rad54: the swiss army knife of homologous recombination?, Nucleic Acids Res. 34, 4115-4125 (2006).

1352 I. Amitani, R.J. Baskin and S.C. Kowalczykowski, Visualization of Rad54: a chromatin remodeling protein, translocating on single DNA molecules, Mol. Cell 23, 143-148 (2006).

1353 B. Olsen Krogh and L. Symington, Recombination proteins in yeast, Annu. Rev. Genet. 38, 233-271 (2004).

26.8 Mfd motor in repair

1354 J. Roberts and J.S. Park, Mfd, the bacterial transcription repair coupling factor: translocation, repair and termination, Curr. Opin. Microbiol. 7, 120-125 (2004).

27 Machines for degrading macromolecules of life

27.1 Machines for degrading DNA

Nucleases are enzymes which function as “scissors” by cleaving the phosphodiester bonds on nucleic acid molecules. Endonucleases cleave the phosphodiester bond within the nucleic acid thereby cutting it into two strands whereas exonucleases remove the terminal nucleotide either at the 3’ end or at the 5’ end.

1357 N.A. Desai and V. Shankar, Single-strand-specific nucleases, FEMS Microbiol. Rev. 26, 457-491 (2003).
Erythrocytes (red blood cells) and lens fiber cells in the eyes possess no nucleus! In reality, DNA is removed from the precursors of these cells during their maturation. Moreover, during the development of an animal, some cells are deliberately killed; this phenomenon, known as apoptosis (programmed cell death), also involves degradation of the DNA of the target cells. Furthermore, those cells which become toxic or senescent are also killed actively and their DNA are degraded. Finally, bacteria have evolved a mechanism of degrading DNA of invading bacteriophages. In this subsection we list references of some relevant papers on the molecular architecture and mechanisms of operation of the machines which degrade DNA.

27.2 DNA degradation by restriction-modification enzymes

R-M systems consist of two components which perform two competing functions. Restriction involves an endonuclease that breaks a DNA by hydrolyzing the phosphodiester bond in backbone of both the strands. On the other hand, modification involves a methyltransferase which adds a chemical group to a DNA base at a position that blocks the restriction activity. Both these activities are specific for the same DNA sequence. The main biological function of the R-M system is to defend the bacterial host against bacteriophage infection by cleaving the phage genome while the DNA of the host are not cleaved. The restriction endonucleases have been classified into three groups: type I, type II and type III. Both type I and type III are molecular machines in the true sense because these require ATP for their operation.

1359S. Nagata, DNA degradation in development and programmed cell death, Annu. Rev. Immunol. 23, 853-875 (2005).

1360K. Samejima and W.C. Earnshaw, Trashing the genome: the role of nucleases during apoptosis, Nat. Rev. Mol. Cell Biol. 6, 677-688 (2005).

1361Y. Shi, Mechanical aspects of apoptosome assembly, Curr. Opin. Cell Biol. 18, 677-684 (2006).

1362R.J. Roberts et al., A nomenclature for restriction enzymes, DNA methyltransferases, homing endonucleases and their genes, Nucl. Acids Res. 31, 1805-1812 (2003).

1363A.A. Bourniquel and T.A. Bickle, Complex restriction enzymes: NTP-driven molecular motors, Biochimie 84, 1047-1059 (2002).

1364D.T.F. Dryden, N.E. Murray and D.N. Rao, Nucleoside triphosphate-dependent restriction enzymes, Nucl. Acids Res. 29, 3728-3741 (2001).

1365T.A. Bickle and D.H. Krüger, Biology of DNA restriction, Microbiological Rev. 57, 434-450 (1993).

1366M.R. Tock and D.T.F. Dryden, The biology of restriction and anti-restriction, Curr. Opin. Microbiol. 8, 466-472 (2005).

1367N.E. Murray, Type I restriction system: sophisticated molecular machines (a legacy of Bertani and Weigle), Microbiology and Mol. Biol. Rev. 64, 412-434 (2000).

1368A. Pingoud, M. Fuxreiter, V. Pingoud and W. Wende, Type II restriction endonucleases: structure and mechanism, Cell. Mol. Life Sci. 62, 685-707 (2005).

1369A. Pingoud and A. Jeltsch, Structure and function of type II restriction endonucleases, Nucl. Acids Res. 29, 3705-3727 (2001).

1370W.A.M. Loenen, Tracking EcoKI and DNA fifty years on: a golden story full of surprises, Nucl. Acids Res. 31, 7059-7069 (2003).

1371N.E. Murray, Immigration control of DNA in bacteria: self versus non-self, Microbiology 148, 3-20 (2002).
1372. Kobayashi, Behavior of restriction-modification systems as selfish mobile elements and their impact on genome evolution, Nucl. Acids Res. 29, 3742-3756 (2001).

1373. I. Kobayashi, A. Nobusato, N. Kobayashi-Takahashi and I. Uchiyama, Shaping the genome: restriction-modification systems as mobile genetic elements, Curr. Opin. Genet. Dev. 9, 649-656 (1999).

1374. S.S. Pennadam, K. Firman, C. Alexander and D.C. Gorecki, Protein-polymer nano-machines: towards synthetic control of biological processes, J. Nanobiotechnol. 2(8), doi: 10.1186/1477-3155-2-8 (2004).

1375. F.W. Studier and P.K. Bandyopadhyay, Model for how type I restriction enzymes select cleavage sites in DNA, PNAS 85, 4677-4681 (1988).

1376. R. Seidel, J. van Noort, C. van der Scheer, J.G.P. Bloom, N. H. Dekker, C.F. Dutta, A. Blundell, T. Robinson, K. Firman and C. Dekker, Real-time observation of DNA translocation by the type I restriction modification enzyme EcoR124I, Nat. Str. Mol. Biol. 11, 838-843 (2004).

1377. R. Seidel, J.G.P. Bloom, J. van Noort, C.F. Dutta, N. H. Dekker, K. Firman, M.D. Szczelkun and C. Dekker, Dynamics of initiation, termination and reinitiation of DNA translocation by the motor protein EcoR124I, EMBO J. 24, 4188-4197 (2005).

1378. R.J. Roberts, How restriction enzymes became the workhorses of molecular biology, PNAS 102, 5905-5908 (2005).

1379. M.D. Szczelkun, Kinetic models of translocation, head-on collision, and DNA cleavage by type I restriction endonuclease, Biochemistry, 41, 2067-2074 (2002).

27.3 Machines for degrading RNA

Ribonucleases (whose commonly used abbreviation is RNase) are also nucleases and function as “scissors” that cleave the phosphodiester bonds on RNA molecules. Like all other nucleases, RNases are also broadly classified into endoribonucleases and exoribonucleases.

1380. J. A. R. Worrall and B.F. Luisi, Information available at cut rates: structure and mechanism of ribonucleases, Curr. Opin. Struct. Biol. 17, 128-137 (2007).

1381. J. MacRae and J.A. Doudna, Ribonuclease revisited: structural insights into ribonuclease III family enzymes, Curr. Opin. Struct. Biol. 17, 138-145 (2007).

• Exosome: an RNA degrading machine

In eukaryotes, a barrel-shaped multi-protein complex, called exosome, degrades RNA molecules. The bacterial counterpart of exosome is usually referred to as the RNA degradosome. The fundamental questions on the operational mechanism of these machines are of two types. The first types of questions are essentially identical to those raised earlier in the context of import/export of macromolecules by translocation motors. The second type of questions are similar to those raised in the context of (ribo-)nucleases, namely, the mechanism of shredding or mincing and the resulting size distribution of the products.

1382. M.J. Marcaida, M.A. DePristo, V. Chandran, A. J. Carpousis and B.F. Luisi, The RNA degradosome: life in the fast lane of adaptive molecular evolution, Trends Biochem. Sci. 31, 359-365 (2006).

1383. A.J. Carpousis, The RNA degradosome of Escherichia coli: an mRNA-degrading machine assembled on RNase E, Annu. Rev. Microbiol. 61, 71-87 (2007).

1384. A. J. Carpousis, The Escherichia coli RNA degradosome: structure, function and relationship to other ribonucleolytic multi-enzyme complexes, Biochem. Soc. Trans. 30, 150-155 (2002).

1385. C. Condon, RNA processing and degradation in Bacillus subtilis, Microbiol. and molec. biol. rev. 67, 157-174 (2003).
1386 R. Rauhut and G. Klug, *mRNA degradation in bacteria*, FEMS Microbiol. Rev. 23, 353-370 (1999).

1387 P. Regnier and C. M. Arraiano, *Degradation of mRNA in bacteria: emergence of ubiquitous features*, Bioessays 22, 235-244 (2000).

1388 A. Taqbalout and L. Rothfield, *RNaseE and the other constituents of the RNA degradosome are components of the bacterial cytoskeleton*, PNAS 104, 1667-1672 (2007).

1389 N.L. Garneau, J. Wilusz and C.J. Wiluz, *The highways and byways of mRNA decay*, Nat. Rev. Mol. Cell Biol. 8, 113-126 (2007).

1390 M.F. Symmons, M.G. Williams, B.F. Luisi, G.H. Jones and A.J. Carpousis, *Running rings around RNA: a superfamily of phosphate-dependent RNases*, Trends Biochem. Sci. 27, 11-18 (2002).

1391 G. Schields, E. van Dijk, R. Raijmakers and G.J.M. Pruijn, *Cell and molecular biology of the exosome: how to make or break an RNA*, Int. Rev. Cytology, 251, 159-208 (2006).

1392 R. Raijmakers, G. Schields and G.J.M. Pruijn, *The exosome, a molecular machine for controlled RNA degradation in both nucleus and cytoplasm*, Eur. J. Cell Biol. 83, 175-183 (2004).

1393 J.S. Butler, *The yin and yang of the exosome*, Trends Cell Biol. 12, 90-96 (2002).

1394 S. Vanacova and R. Steff, *The exosome and RNA quality control in the nucleus*, EMBO Rep. 8, 651-657 (2007).

1395 A. v. Hoof and R. Parker, *The exosome: a protease for RNA?*, Cell 99, 347-350 (1999).

1396 K. Hopfner, K. Wenig and K.P. Hopfner, *The exosome: a macromolecular cage for controlled RNA degradation*, Molec. microbiol. 61, 1372-1379 (2006).

1397 J. Houseley, J. LaCava and D. Tollervey, *RNA-quality control by the exosome*, Nat. Rev. Mol. Cell Biol. 7, 529-539 (2006).

1398 R.M. Johnstone, *Exosomes biological significance: a concise review*, Blood Cells, Molecules, and Diseases 36, 315-321 (2006).

27.4 Machines for degrading proteins

Proteases are enzymes which perform functions that are analogous to nucleases. Just as nucleases cleave the phosphodiester bonds on nucleic acids (i.e., polynucleotides), proteases cleave peptide bonds on polypeptides and, hence, sometimes also called peptidase.

Simple proteases in the extracellular space, e.g., the pancreatic proteases, digest proteins derived from diets. However, such non-specific proteases are not expected to operate in the intracellular space because they would indiscriminately cleave all the essential and non-defective proteins to their amino acid subunits thereby destroying the cell itself. Evolution has designed intracellular machines for protein degradation which mince only the unwanted proteins in very specialized chambers whose gates open to allow only for only such unwanted proteins. Moreover, since mitochondria and plastids had bacterial ancestors, it is not surprising to find very similar proteases in these compartments.

1399 M.N.G. James, *The peptidase from fungi and viruses*, Biol. Chem. 387, 1023-1029 (2006).

1400 J. Gass and C. Khosla, *Propyl endopeptidases*, Cell. Mol. Life Sci. 64, 345-355 (2007).

- **Bacterial proteases**

In bacteria, few different families of proteases have been found which, however, share some common structural and functional features.

1401 S. Gottesman, *Proteolysis in bacterial regulatory circuits*, Annu. Rev. Cell Dev. Biol. 19, 565-587 (2003).
1402. S.M. Butler, R.A. Festa, M.J. Pearce and K.H. Darwin, *Self-compartmentalized bacterial proteases and pathogenesis*, Mol. Microbiol. **60**, 553-562 (2006).

1403. A.Y.H. Yu and W.A. Houry, *ClpP: a distinctive family of cylindrical energy-dependent serine proteases*, FEBS Lett. **581**, 3749-3757 (2007).

1404. K. Ito and Y. Akiyama, *Cellular functions: mechanism of action, and regulation of FtsH protease*, Annu. Rev. Microbiol. **59**, 211-231 (2005).

1405. S. Licht and I. Lee, *Resolving individual steps in the operation of ATP-dependent proteolytic molecular machines: from conformational changes to substrate translocation and processivity*, Biochemistry **47**, 3595-3605 (2008).

1406. T. Langer, M. Käser, C. Klanner and K. Leonhard, *AAA proteases of mitochondria: quality control of membrane proteins and regulatory functions during mitochondrial biogenesis*, Biochem. Soc. Trans. **29**, 431-436 (2001).

1407. W. Sakamoto, *Protein degradation machineries in plastids*, Annu. Rev. Plant Biol. **57**, 599-621 (2006).

1408. A.L. Goldberg, *Protein degradation and protection against misfolded or damaged proteins*, Nature **426**, 895-899 (2003).

1409. A. Ciechanover, *Intracellular protein degradation: from a vague idea thru the Lysosome and the Ubiquitin-Proteasome system and onto Human Diseases and drug Targeting*, Exp. Biol. Med. **231**, 1197-1211 (2004).

- **Proteasome: a protein degrading machine**

 Proteasome is a large and complex machine for protein degradation. It has structural and functional similarities with exosome; what exosome does for RNA, proteasome does for proteins. Obvously, the fundamental questions to be addressed are very similar to those in the case of exosomes.

1410. E. Lorentzen and E. Conti, *The exosome and the proteasome: nano-compartment for degradation*, Cell **125**, 651-654 (2006).

1411. G.N. DeMartino and T.G. Gillette, *Proteasome: machines for all reasons*, Cell, **129**, 659-662 (2007).

1412. C.M. Pickart and R. E. Cohen, *Proteasomes and their kin: proteases in the machine age*, Nat. Rev. Mol. Cell Biol. **5**, 177-187 (2004).

1413. M. Groll and T. Clausen, *Molecular shredders: how proteasomes fulfill their role*, Curr. Opin. Struct. Biol. **13**, 665-673 (2003).

1414. J.A. Maupin-Furlow, M.A. Gil, I.M. Karadzic, P.A. Kirkland and C.J. Reuter, *Proteasome: perspectives from the archaea*, Frontiers in Biosci. **9**, 1743-1758 (2004).

1415. W. Baumeister, *A voyage to the inner space of cells*, Protein Sci. **14**, 257-269 (2005).

1416. W. Baumeister, J. Walz, F. Zühl and E. Seemüller, *The proteasome: paradigm of a self-compartmentalizing protease*, Cell **92**, 367-380 (1998).

1417. D. Voges, P. Zwickl and W. Baumeister, *The 26S proteasome: a molecular machine designed for controlled proteolysis*, Annu. Rev. Biochem. **68**, 1015-1068 (1999).

1418. D.H. Wolf and W. Hilt, *The proteasome: a proteolytic nanomachine of cell regulation and waste disposal*, Biochim. Biophys. Acta **1695**, 19-31 (2004).

1419. P.A. Osmulski and M. Gaczynska, *Nanoenzymology of the 20S proteasome: proteasomal actions are controlled by the allosteric transition*, Biochemistry **41**, 7047-7053 (2002).

1420. D.M. Smith, N. Benaroudj and A. Goldberg, *Proteasomes and their associated ATPases: a destructive combination*, J. Struc. Biol. **156**, 72-83 (2006).
1421 R.T. Sauer, D.N. Bolon, B.M. Burton, R.E. Burton, J.M. Flynn, R.A. Grant, G.L. Hersch, S.A. Joshi, J.A. Kenniston, I. Levchenko, S.B. Neher, E.S.C. Oakes, S.M. Siddiqui, D.A. Wah, and T.A. Baker, Sculpting the proteasome with AAA+ proteases and disassembly machines, Cell 119, 9-18 (2004).

1422 T.A. Baker and R.T. Sauer, ATP-dependent proteases of bacteria: recognition logic and operating principles, Trends Biochem. Sci. 31, 647-653 (2006).

1423 C.W. Liu, M.J. Corboy, G.N. DeMartino and P.J. Thomas, Endoproteolytic activity of the proteasome, C. W. Liu, M.J. Corboy, G.N. DeMartino and P.J. Thomas, Science 299, 408-411 (2003).

1424 T. Ogura and K. Tanaka, Dissecting various ATP-dependent steps involved in proteasomal degradation, Molecular Cell 11, 3-5 (2003).

1425 B. Peters, K. Janek, U. Kuckelkorn and H.G. Holzhüter, Assessment of proteasomal cleavage probabilities from kinetic analysis of time-dependent product formation, J. Mol. Biol. 318, 847-862 (2002).

1426 H.G. Holzhüter and P.M. Kloetzl, A kinetic model of vertebrate 20S proteasome accounting for the generation of major proteolytic fragments from oligomeric peptide substrates, Biophys. J. 79, 1196-1205 (2000).

1427 J. Kurepa and J.A. Smalle, Structure, function and regulation of plant proteasomes, Biochimie 90, 324-335 (2008).

1428 J. Hanna and D. Finley, A proteasome for all occasions, FEBS Lett. 581, 2854-2861 (2007).

1429 W. Heinemeyer, P.C. Ramos and R.J. Dohmen, The ultimate nanoscale mincer: assembly, structure and active sites of the 20S proteasome core, CMLS 61, 1562-1578 (2004).

1430 M.H. Glickman and A. Ciechanover, The ubiquitin-proteasome proteolytic pathway: destruction for the sake of construction, Physiol. Rev. 82, 373-428 (2002).

1431 M. Bajorek and M.H. Glickman, Keepers at the final gates: regulatory complexes and gating of the proteasome channel, CMLS 61, 1579-1588 (2004).

1432 M. Rape and S. Jentsch, Taking a bite: proteasomal protein processing, Nat. Cell Biol. 4, E113-E116 (2002).

1433 G. Asher, N. Reuven and Y. Shaul, 20S proteasomes and protein degradation “by default”, Bioessays 28, 844-849 (2006).

1434 N. Bader, T. Jung and T. Grune, The proteasome and its role in nuclear protein maintenance, Expt. Gerontology 42, 864-870 (2007).

1435 K.P. Hadeler, C. Kuttler and A.K. Nussbaum, Cleaving proteins of the immune system, Math. Biosc. 188, 63-79 (2004).

1436 A. Zaikin and T. Pöschel, Peptide-size-dependent active transport in the proteasome, Europhys. Lett. 69, 725-731 (2005).

1437 A. Zaikin and J. Kurths, Optimal length transportation hypothesis to model proteasome product size distributions, J. Biol. Phys. 32, 231-243 (2006).

1438 F. Luciani, C. Kesmir, M. Mishto, M. Or-Guil and R. J. de Boer, A mathematical model of protein degradation by the proteasome, Biophys. J. 88, 2422-2432 (2005).

1439 W. Piwko and S. Jentsch, Proteasome-mediated protein processing by bidirectional degradation initiated from an internal site, Nat. Struct. Mol. Biol. 13, 691-697 (2006).
27.5 Machines for degrading polysaccharides

1440 V. L. Y. Yip and S.G. Withers, Nature’s many mechanisms for the degradation of oligosaccharides, Org. Biomol. Chem. 2, 2707-2713 (2004).

1441 M.J. Jedrezejas, Structural and functional comparison of polysaccharide-degrading enzymes, Crit. Rev. Biochem. and Mol. Biol. 35(3), 221-251 (2000).

• Machines for degrading starch

1442 A.M. Smith, S.C. Zeeman and S.M. Smith, Starch degradation, Annu. Rev. Plant Biol. 56, 73-98 (2005).

• Machines for degrading cellulose

1443 E.A. Bayer, J.P. Belaich, Y. Shoham and R. Lamed, The cellulosomes: multi-enzyme machines for degradation of plant cell wall polysaccharides, Annu. Rev. Microbiol. 58, 521-554 (2004).

1444 R.H. Doi and A. Kosugi, Cellulosomes: plant-cell-wall- degrading enzyme complexes, Nat. Rev. Microbiol. 2, 1-11 (2004).

1445 E.A. Bayer, L.J.W. Shimon, Y. Shoham and R. Lamed, Cellulosomes- structure and ultrastructure, J. Struc. Biol. 124, 221-234 (1998).

1446 Y. Shoham, R. Lamed and E.A. Bayer, The cellulosome concept as an efficient microbial strategy for the degradation of insoluble polysaccharides, Trends Microbiol. 7, 275-281 (1999).

1447 H.J. Gilbert, Cellulosomes: microbial nanomachines that display plasticity in quaternary structure, Molec. Microbiol. 63(6), 1568-1576 (2007).

1448 W.H. Schwarz, The cellulosome and cellulose degradation by anaerobic bacteria, Appl. Microbiol. Biotechnol. 56, 634-649 (2001).

1449 A. Kosugi, T. Arai and R.H. Doi, Degradation of cellulosome-produced cello-oligosaccharides by an extracellular non-cellulosomal β-glucan glucohydrolase, Bg1A, from Clostridium cellulovorans, Biochem and Biophys. Res. Commun. 349, 20-23 (2006).

1450 T. Arai, A. Kosugi, H. Chan, R. Koukiekolo, H. Yukawa, M. Imi and R.H. Doi, Properties of cellulosomal family 9 cellulases from clostridium cellulovorans, Appl. Microbiol. Biotechnol. 71, 654-660 (2006).

1451 E.A. Bayer, H. Chanzy, R. Lamed and Y. Shoham, Cellulose, cellulases and cellulosomes, Curr. Opin. Struct. Biol. 8, 548-557 (1998).

• Machines for degrading chitin

1452 L. Duo-Chuan, Review of fungal chitinases, Mycopathologia 161, 345-360 (2006).

1453 D. Bhattacharya, A. Nagpure and R.K. Gupta, Bacterial chitinases: properties and potential, Crit. Rev. in Biotechnol. 27, 21-28 (2007).

1454 A.F. Monzingo, E.M. Marcotte, P.J. Hart and J.D. Robertus, Chitinases, chitosanases, and lysozymes can be divided into procaryotic and eucaryotic families sharing a conserved core, Nat. Str. Biol. 3, 133-140 (1996).

28 Mechanisms for searching target sequence on NA

In most of the processes we have discussed so far a protein or a macromolecular complex has to bind a specific site on a DNA. For example, in order to initiate transcription, the transcription factor must bind with a specific site on the DNA. Similarly, sequence-specific binding is required for the operation of restriction enzymes. How does the machine target the specific site? Is search through an effectively one-dimensional diffusion sufficiently rapid? Or, does the search become more efficient by a combination of the one-dimensional diffusion with other processes?
29 Effects of inhomogeneities, defects and disorder

The sequence of nucleotides on naturally occurring nucleic acid strands are intrinsically inhomogeneous. Numerical calculations for the given inhomogeneous sequence of any specific nucleic acid strand is not very difficult. But, for the simplicity of analytical calculations, two extreme idealizations are sometimes considered: in one of these the actual sequence is replaced by a hypothetical homogeneous sequence whereas in the other the sequence is assumed to be completely random.

1468. Y. Kafri, D.K. Lubensky and D.R. Nelson, Dynamics of molecular motors and polymer translocation with sequence heterogeneity, Biophys. J. 86, 3373-3391 (2004).

1469. Y. Kafri, D.K. Lubensky and D.R. Nelson, Dynamics of molecular motors with finite processivity on heterogeneous tracks, Phys. Rev. E 71, 041906 (2004).

1470. Y. Kafri and D.R. Nelson, Sequence heterogeneity and the dynamics of molecular motors, J. Phys. Cond. Matt. 17, S3871-S3886 (2005).

Part III: Membrane associated ion transporters and related machines
A wide variety of machines are associated with either the plasma membrane of the cell or with the internal membranes that enclose various organelles like, for example, mitochondria. In part II we have considered machines which translocate macromolecules across cell membranes. Now, in this part, we focus on machines which transport small and medium size molecules and ions across membranes.

These “transporters” can be broadly divided into two categories- active and passive. Channels are passive transporters because these allow the passage of molecules or ions down their electro-chemical gradients and do not require input energy for performing this task. In contrast, active transporters drive molecules or ions against their electro-chemical gradients by utilizing some input energy directly or indirectly.

The active transporters can be further divided into two classes- primary and secondary active transporters. Primary active transporters include (a) ATP-binding cassette (ABC) transporters, (b) ion pumping P-type ATPases. Primary active transporters use light or chemical energy as input to transport molecules and/or ions across a membrane. In fact, one of the major roles of pumps is to create and maintain electrochemical gradients by actively transporting ions. Secondary active transporters use the spontaneous flow of the ions along such electro-chemical gradients to drive other species of molecules “uphill” (i.e., against their natural own electro-chemical gradients). Interestingly, in spite of their mode of operation (i.e., active versus passive), ion channels and pumps share one common feature, namely, the ability to transport ions in a selective manner; ion-selectivity is crucial for the survival of the cell.

1471 M. Futai, Y. Wada and J.H. Kaplan, (eds.) Handbook of ATPases: Biochemistry, cell biology, pathophysiology, Wiley-VCH (2004).

1472 G. Inesi, Teaching active transport at the turn of the twenty-first century: recent discoveries and conceptual changes, Biophys. J. 66, 554-560 (1994).

1473 G.R. Dubyak, Ion homeostasis, channels, and transporters: an update on cellular mechanisms, Adv. Physiology Educ. 28, 143-154 (2004).

1474 P.L. Pedersen, Transport ATPases: structure, motors, mechanism and medicine: a brief overview, J. Bioenergetics and Biomembranes 37, 349-357 (2005).

1475 P.L. Pedersen, Transport ATPases into the year 2008: a brief overview related to types, structures, functions and roles in health and disease, J. Bioenergy and Biomembranes 39, 349-355 (2007).

1476 E. Gouaux and R. Mackinnon, Principles of selective ion transport in channels and pumps, Science 310, 1461-1465 (2005).

30 ATP-binding cassette (ABC) transporters: two-cylinder engines of cellular cleaning pumps

An ATP-binding cassette (ABC) transporter is a membrane-bound machine. These machines are found in all cells from bacteria to humans. In prokaryotic cells, ABC transporters are located in the plasma membrane. In eukaryotes, ABC transporters have been found in the internal membranes of organelles like mitochondria, peroxisomes, golgi and endoplasmic reticulum. These translocate ions, nutrients like sugars and amino acids, drug molecules, bile acids, steroids, phospholipids, small peptides as well as full length proteins.

In spite of wide variations in their functions and substrates translocated by them, they share some common features of structure and dynamics. Each ABC transporter consists of four core domains. Out of this four, two transmembrane domains (TMDs) are needed for binding the ligands which are to be transported while the two nucleotide-binding domains (NBDs) bind, and hydrolyze, ATP. Many ABC transporters are single four-domain proteins. In contrast, “half-size” ABC transporters consist of one
TMD and one NBD; many ABC transporters are actually homo-dimers or hetero-dimers of “half-size” transporters.

Some of the fundamental questions specifically related to the mechanisms of ABC transporters are as follows:

(i) why do these machines need two ATP-binding domains although it consumes only one molecule of ATP for transporting one ligand?

(ii) Do the two NBDs act in alternating fashion, like a two-cylinder engine where the cycles of the two cylinders are coupled to each other? Or, do the two NBDs together form a single ATP-switch?

1477 E. Schneider and S. Hunke, *ATP-binding-cassette (ABC) transport systems: functional and structural aspects of the ATP-hydrolyzing subunits/domains*, FEMS Microbiol. Rev. 22, 1-20 (1998).

1478 A.L. Davidson and J. Chen, *ATP-binding cassette transporters in bacteria*, Annu. Rev. Biochem. 73, 241-268 (2004).

1479 S.J. Lee, A. Böhm, M. Krug and W. Boos, *The ABC of binding-protein-dependent transport in Archaea*, Trends. Microbiol. 15, 389-397 (2007).

1480 A.L. Davidson and P.C. Maloney, *ABC transporters: how small machines do a big job*, Trends Microbiol. 15, 448-455 (2007).

1481 C. van der Does and R. Tampe, *How do ABC transporters drive transport?*, Biol. Chem. 385, 927-933 (2004).

1482 C.F. Higgins, *ABC transporters: from microorganisms to man*, Annu. Rev. Cell Biol. 8, 67-113 (1992).

1483 C.F. Higgins, *ABC transporters: physiology, structure and mechanism- an overview*, Res. Microbiol. 152, 205-210 (2001).

1484 C.F. Higgins and K.J. Linton, *The ATP switch model for ABC transporters*, Nat. Str. and Mol. Biol. 11, 918-926 (2004).

1485 K.J. Linton, *Structure and function of ABC transporters*, Physiology 22, 122-130 (2007).

1486 K.P. Locher, *Structure and mechanism of ABC transporters*, Curr. Opin. Struct. Biol. 14, 426-431 (2004).

1487 K. Hollenstein, R.J.P. Dawson and K.P. Locher, *Structure and mechanism of ABC transporter proteins*, Curr. Opin. Struct. Biol. 17, 412-418 (2007).

1488 G.A. Altenberg, *The engine of ABC proteins*, News Physiol Sci. 18, 191-195 (2003).

1489 P.M. Jones and A.M. George, *The ABC transporter structure and mechanism: perspective on recent research*, Cell. Mol. Life Sci. 61, 682-699 (2004).

1490 L. Schmitt and R. Tampe, *Structure and mechanism of ABC transporters*, Curr. Opin. Struct. Biol. 12, 754-760 (2002).

1491 C. Geourjon, C. Orelle, E. Steinfels, C. Blanchet, G. Deleage, A. Di Pietro and J.M. Jault, *A common mechanism for ATP hydrolysis in ABC transporter and helicase superfamilies*, Trends Biochem. Sci. 26, 539-544 (2001).

1492 M. Hennessy and J.P. Spiers, *A primer on the mechanics of P-glycoprotein the multidrug transporter*, Pharmacological Res. 55, 1-15 (2007).

1493 E. Procko, I. F. O’Connell, S.L. Ng and R. Gaudet, *Distinct structural and functional properties of the ATPase sites in an asymmetric ABC transporter*, Mol. Cell 24, 51-62 (2006).

1494 A.E. Senior, M. K. Al-Shawi and I.L. Urbatsch, *The catalytic cycle of P-glycoprotein*, FEBS Lett. 377, 285-289 (1995).

1495 P.M. van Endert, L. Saveanu, E.W. Hewitt and P.J. Lehner, *Powering the peptide pump: TAP crosstalk with energetic nucleotides*, trends in Biochem. Sci. 27, 454-461 (2002).
1496. S.V. Ambudkar, I.W. Kim and Z.E. Sauna, *The power of the pump: mechanisms of action of P-glycoprotein (ABCB1)*, Eur. J. Pharmaceutical Sci. **27**, 392-400 (2006).

1497. B.L. Buttgereit and R. Tampe, *The transporter associated with antigen processing: function and implications in human diseases*, Physiol. Rev. **82**, 187-204 (2002).

1498. M.A. Burke and H. Ardehali, *Mitochondrial ATP-binding cassette proteins*, Translational Research **150**, 73-80 (2007).

1499. P.A. Rea, *Plant ATP-binding cassette transporters*, Annu. Rev. Plant Biol. **58**, 347-375 (2007).

1500. R. Ernst, R. Klemm, L. Smitt and K. Kuchler, *Yeast ATP-binding cassette transporters: cellular cleaning pumps*, Methods in Enzymology **400**, 460-484 (2005).

1501. H. Jungwirth and K. Kuchler, *Yeast ABC transporters- a tale of sex, stress, drugs and aging*, FEBS Lett. **580**, 1131-1138 (2006).

1502. F.L. Theodoulou, M. Holdsworth and A. Baker, *Peroxisomal ABC transporters*, FEBS Letters **580**, 1139-1155 (2006).

31 Membrane associated ion-pumps: P-type ATPases

P-type ATPases form a superfamily of machines which transport *cations* across membranes.

1503.1 B. Holland and J. Young, *Type 1 protein secretion in bacteria, the ABC-transporter dependent pathway*, Mol. Membrane Biol. **22**, 29-39 (2005).

1504. H.W. van Veen, A. Margolles, M. Müller, C.F. Higgins and W.N. Konings, *The homodimeric ATP-binding cassette transporter LmrA mediates multidrug transport by an alternating two-site (two-cylinder engine) mechanism*, EMBO J. **19**, 2503-2514 (2000).

1505. H.W. van Veen, C.F. Higgins and W.N. Konings, *Multidrug transport by ATP binding cassette transporters: a proposed two-cylinder engine mechanism*, Res. Microbiol. **152**, 365-374 (2001).

1506. A.L. Davidson, *Mechanism of coupling of transport to hydrolysis in ATP-binding cassette transporters*, J. Bacteriol. **184**, 1225-1233 (2002).

1507. A.E. Senior and D.C. Gadsby, *ATP hydrolysis cycles and mechanism in P-glycoprotein and CFTR*, Cancer Biol. **8**, 143-150 (1997).

1508. K. Nikaido and G.F. Ames, *One intact ATP-binding subunit is sufficient to support ATP hydrolysis and translocation in an ABC transporter, the histidine permease*, J. Biol. Chem. **274**, 26727-26735 (1999).

31.1 Na/K pumps

This pump plays crucial roles and is mainly responsible for maintaining electrolyte balance in almost all cells in humans. It takes in K\(^+\) ions and ejects out Na\(^+\) ions.

1512. H.J. Apell, *How do P-type ATPases transport ions?*, Bioelectrochemistry **63**, 149-156 (2004).
1513 H.J. Apell, *Structure-function relationship in P-type ATPases- a biophysical approach*, Rev. Physiol. Biochem. Pharmacol. 150, 1-35 (2003).

1514 W. Kühlbrandt, *Biology, structure and mechanism of P-type ATPases*, Nat. Rev. Mol. Cell Biol. 5, 282-295 (2004).

1515 J.D. Horisberger, *Recent insights into the structure and mechanism of the sodium pump*, Physiology 19, 377-387 (2004).

1516 G. Scheiner-Bobis, *The sodium pump: its molecular properties and mechanics of ion transport*, Eur. J. Biochem. 269, 2424-2433 (2002).

1517 J.H. Kaplan, *Ion movements through the sodium pump*, Annu. Rev. Physiol. 47, 535-544 (1985).

1518 J.C. Skou and M. Esman, *The Na,K-ATPase*, J. Bioenergetics and Biomembranes, 24, 249-261 (1992).

1519 P.L. Jorgensen, K.O. Hakansson and S.J.D. Karlish, *Structure and mechanism of Na,K-ATPase: functional sites and their interactions*, Annu. Rev. Physiol. 65, 817-849 (2003).

1520 T.D. Xie, Yi-der Chen, P. Marszalek and T.Y. Tsong, *Fluctuation-driven directional flow in biochemical cycle: further study of electric activation of Na,K pumps*, Biophys. J. 72, 2496-2502 (1997).

1521 J.H. Kaplan, Y.K. Hu and C. Gatto, *Conformational coupling: the moving parts of an ion pump*, J. Bioenergetics and biomembranes, 33, 379-385 (2001).

1522 R.J. Clarke and D.J. Kane, *Two gears of pumping by the sodium pump*, Biophys. J. 93, 4187-4196 (2007).

1523 L.A. Dunbar and M.J. Caplan, *Ion pumps in polarized cells: sorting and regulation of the Na+, K+ and H+ K+-ATPases*, J. Biol. Chem. 276, 29617-29620 (2001).

1524 J.P. Morth, B.P. Pedersen, M. Toustrup-Jensen, T.L.-M. Sorensen, J. Petersen, J.P. Andersen, B. Vilsen and P. Nissen, *Crystal structure of the sodium-potassium pump*, Nature 450, 1043-1049 (2007).

1525 J.C. Skou, *The identification of the sodium pump*, Biosc. Rep. 18, 155-169 (1998).

1526 I.M. Glynn and S.J.D. Karlish, *The sodium pump*, Annu. Rev. Physiol. 37, 13-55 (1975).

1527 I.M. Glynn, *All hands to the sodium pump*, J. Physiol. 462, 1-30 (1993).

1528 I.M. Glynn, *A hundred years of sodium pumping*, Annu. Rev. Physiol. 64, 1-18 (2002).

1529 E. H. Larsen, *Hans H. Ussing- scientific work: contemporary significance and perspectives*, Biochim. Biophys. Acta 1566 2-15 (2002).

31.2 Ca- pumps

Cytosolic Ca$^{2+}$ concentration is maintained below about 10 μM for normal metabolism of the cell. On the other hand, Ca$^{2+}$ is one of the most important carriers of signals. During signaling, brief opening of Ca$^{2+}$ channels in the plasma membrane (or organelar membrane) allow Ca$^{2+}$ to enter spontaneously because of the existing electro-chemical gradient. However, this increase of Ca$^{2+}$ inside is only transient as Ca$^{2+}$ pump ejects the Ca$^{2+}$ ions out. It is this Ca$^{2+}$ pump that maintains the high electro-chemical gradient (low Ca$^{2+}$ concentration inside and high Ca$^{2+}$ concentration outside).

1530 E. Carafoli, *The Ca$^{2+}$ pump of the plasma membrane*, J. Biol. Chem. 267, 2115-2118 (1992).

1531 F. Wuytack and L. Raemaekers, *The Ca$^{2+}$ transport ATPases from the plasma membrane*, J. Bioenergetics and Biomembranes 24, 285-300 (1992).
1532 P.C. Brandt and T.C. Vanaman, *The plasma membrane calcium pump: not just another pretty ion translocase*, Glycobiology 6, 665-668 (1996).

1533 E. Carafoli and M. Brini, *Calcium pumps: structural basis for and mechanism of calcium transmembrane transport*, Curr. Opin. Chem. Biol. 4, 152-161 (2000).

1534 D.L. Stokes and N.M. Green, *Structure and function of calcium pump*, Annu. Rev. Biophys. Biomol. Struct. 32, 445-468 (2003).

1535 H.S. Young and D.L. Stokes, *The mechanics of calcium transport*, J. Membrane Biol. 198, 55-63 (2004).

1536 C. Olesen, M. Picard, A.M.L. Winther, C. Gyrup, J.P. Morth, C. Oxvig, J.V. Moller and P. Nissen, *The structural basis of calcium transport by the calcium pump*, Nature 450, 1036-1042 (2007).

1537 R. Serrano, *Plasma membrane ATPases of plants and fungi*, (CRC press, 1985).

1538 R. Serrano, *Structure and function of plasma membrane ATPase*, Annu. Rev. Plant Physiol. Plant Mol. Biol. 40, 61-94 (1989).

1539 D.P. Briskin, *The plasma membrane H+-ATPase of higher plant cells: biochemistry and transport function*, Biochim. Biophys. Acta 1019, 95-109 (1990).

1540 R. Serrano, *Structure, function and regulation of plasma membrane H+-ATPase*, FEBS 325, 108-111 (1993).

1541 F.J.M. Maathuis and D. Sanders, *Plasma membrane transport in context: making sense out of complexity*, Curr. Opin. Plant Biol. 2, 236-243 (1999).

1542 J.K. Lanyi and A. Pohorille, *Proton pumps: mechanism of action and applications*, Trends Biotechnol. 19, 140-144 (2001).

1543 T. Ferreira, A.B. Mason and C.W. Slayman, *The yeast Pma1 proton pump: a model for understanding the biogenesis of plasma membrane proteins*, J. Biol. Chem. 276, 29613-29616 (2001).

1544 B.P. Pedersen, M.J.B. Pedersen, J.P. Morth, M.G. Palmgren and P. Nissen, *Crystal structure of the plasma membrane proton pump*, Nature 450, 1111-1114 (2007).

31.3 Proton pumps

In the fungal plasma membrane (e.g., of yeast) a proton pump hydrolyzes ATP to pump out the protons thereby creating an electro-chemical gradient. This electro-chemical gradient is utilized to provide the energy to the proton-coupled co-transporters for sugars, amino acids and other nutrients. The gastric H+/K+-ATPase is most closely related to Na+/K+-pump; it pumps out H+ ions and takes in K+ ions.

1537 R. Serrano, *Plasma membrane ATPases of plants and fungi*, (CRC press, 1985).

1545 E.D. Harris, *Cellular copper transport and metabolism*, Annu. Rev. Nutr. 20, 291-310 (2000).

1546 S. Lutsenko, N.L. Barnes, M.Y. Bartee and O. Y. Dmitriev, *Function and regulation of human copper-transporting ATPases*, Physiol. Rev. 87, 1011-1046 (2007).

31.4 Copper pumps

Malfunctioning of the copper-transporting ATPases can lead to Menkes and Wilson diseases in humans.

1547 G. Inesi and M.R. Kirtley, *Structural features of cation transport ATPases*, J. Bioenergetics and Biomembranes 24, 271-283 (1992).

1548 K.J. Sweadner and C. Donnet, *Structural similarities of Na,K-ATPase and SERCA, the Ca2+-ATPase of the sarcoplasmic reticulum*, Biochem. J. 356, 685-704 (2001).
31.6 Bacteriorhodopsin and halorhodopsin: light-driven proton pumps

The input energy for both bacteriorhodopsin (BR) and halorhodopsin (HR) is light. But, BR pumps protons whereas HR pumps chloride ions. The analog of mechano-chemical cycle of motors is the photocycle of BR and HR.

1549 W. Stockenius, Bacterial rhodopsins: evolution of a mechanistic model for the ion pump, Protein Sci. 8, 447-459 (1999).

1550 J.L. Spudich, Variations on a molecular switch: transport and sensory signalling by archaeal rhodopsins, Mol. Microbiol. 28, 1051-1058 (1998).

- Bacteriorhodopsin

1551 U. Haupts, J. Tittor and D. Oesterhelt, Closing in on bacteriorhodopsin: progress in understanding the molecule, Annu. Rev. Biophys. Biomol. Struct. 28, 367-399 (1999).

1552 J.K. Lanyi, Bacteriorhodopsin, Annu. Rev. Physiol. 66, 665-688 (2004).

1553 J.K. Lanyi, Proton transfers in the bacteriorhodopsin photocycle, Biochim. Biophys. Acta 1757, 1012-1018 (2006).

1554 J.L. Spudich and J.K. Lanyi, Shuttling between two protein conformations: the common mechanism for sensory transduction and ion transport, Curr. Opin. Cell Biol. 8, 452-457 (1996).

1555 T. Hirai and S. Subramaniam, Structural insights into the mechanism of proton pumping by bacteriorhodopsin, FEBS Lett. 545, 2-8 (2003).

- Halorhodopsin

1556 L.O. Essen, Halorhodopsin: light-driven ion pumping made simple, Curr. Opin. Struct. Biol. 12, 516-522 (2002).

1557 G. Varo, Analogies between halorhodopsin and bacteriorhodopsin, Biochim. Biophys. Acta 1460, 220-229 (2000).

- Xanthorhodopsin

Like bacteriorhodopsin, xanthorhodopsin is also a light-driven proton pump. But, has a special feature in its structure which, like antenna, enables it to collect light more efficiently than what is possible by a bacteriorhodopsin.

1558 S.P. Balashov and J.K. Lanyi, Xanthorhodopsin: proton pump with a carotenoid antenna, Cell. Mol. Life Sci. 64, 2323-2328 (2007).

1559 J.K. Lanyi and S.P. Balashov, Xanthorhodopsin: a bacteriorhodopsin-like proton pump with a carotenoid antenna, Biochim. biophys. Acta 1777, 684-688 (2008).

31.7 Secondary transporters

A secondary transporter can be a symporter or an antiporter. The transport of a substrate is coupled to that of either proton (utilizing the proton-motive force) or sodium (utilizing the sodium-motive force).

1560 I. Sobczak and J.S. Lolkema, Structural and mechanistic diversity of secondary transporters, Curr. Opin. Microbiol. 8, 161-167 (2005).

1561 H. Jung, The sodium/substrate symporter family: structural and functional features, FEBS Lett. 529, 73-77 (2002).

1562 S. Grinstein and H. Wieczorek, Cation antiporters of animal plasma membranes, J. Exp. Biol. 196, 307-318 (1994).

1563 H. Venter, S. Shahi, L. Balakrishnan, S. Velamakkani, A. Bapna, B. Woebking and H.W. van Veen, Similarities between ATP-dependent and ion-coupled multidrug transporters, Biochem. Soc. Trans. 33, 1008-1011 (2005).
31.8 Membrane-bound ATPases: Some fundamental questions and generic models

1564 T. Y. Tsong and R.D. Astumian, it Absorption and conversion of electric field energy by membrane bound ATPases, Bioelectrochemistry and Bioenergetics 15, 457-476 (1986).

1565 H.V. Westerhoff, T.Y. Tsong, P.B. Chock, Yider Chen and R.D. Astumian, How enzymes can capture and transmit free energy from an oscillating electric field, PNAS 83, 4734-4738 (1986).

1566 R.D. Astumian, P.B. Chock, T.Y. Tsong, Yider Chen and H.V. Westerhoff, Can free energy be transduced from electric noise?, PNAS 84, 434-438 (1987).

1567 F. Kamp, R.D. Astumian and H.V. Westerhof, Coupling of vectorial proton flow to a biochemical reaction by local electric interactions, PNAS 85, 3792-3796 (1988).

1568 T.Y. Tsong and R.D. Astumian, Electroconformational coupling: how membrane-bound ATPase transduces energy from dynamic electric fields, Annu. Rev. Physiol. 50, 273-290 (1988).

1569 V.S. Markin, T.Y. Tsong, R.D. Astumian and B. Robertson, Energy transduction between a concentration gradient and an alternating electric field, J. Chem. Phys. 93, 5062-5066 (1990).

1570 O. Hod and E. Rabani, A coarse-grained model for a nanometer-scale molecular pump, PNAS 100, 14661-14665 (2003).

1571 M.T. Facciotti, S. Rouhani-Manshadi and R.M. Glaser, Energy transduction in transmembrane ion pumps, Trends Biochem. Sci. 29, 445-451 (2004).

1572 M.C. Berman, Slippage and uncoupling in P-type cation pumps; implications for energy transduction mechanisms and regulation of metabolism, Biochim. Biophys. Acta 1513, 95-121 (2001).

32 ATP synthase and related machines

ATP synthase is the smallest rotary motor and is embedded in the membrane of the organelles mitochondria (in animal cells) and chloroplasts (in plant cells). It consists of two coupled parts which are called \(F_0 \) and \(F_1 \) and, therefore, ATP synthase is also referred to as \(F_0F_1 \)-ATPase. This motor in reversible. In the normal mode, \(F_0 \) is rotated by a protonmotive torque which, in turn rotated \(F_1 \) during which the latter synthesizes ATP from ADP and phosphate. In the reverse mode, \(F_1 \) consumes ATP for its own rotation in the reverse direction thereby rotating also \(F_0 \) in reverse while the latter operates effectively as a proton pump.

There are also some interesting architectural similarities between the ATP synthase and the TrwB DNA translocase.

32.1 ATP synthase in mitochondria

1573 P.L. Pedersen, Frontiers of ATP synthase research: understanding the relationship between subunit movements and ATP synthesis, J. Bioenergetics and Biomembranes, 28, 389-395 (1996).

1574 P.L. Pedersen and L.M. Amzel, ATP synthases: structure, reaction center, mechanism, and regulation of one of nature’s most unique machines, J. Biol. Chem. 268, 9937-9940 (1993).

1575 T.M. Duncan, The ATP synthase: parts and properties of a rotary motor, in: D. D. Hackney and F. Tanamoi, The Enzymes, vol.XXIII Energy Coupling and Molecular Motors (Elsevier, 2004).

1576 M. Yoshida, E. Muneyuki and T. Hisabori, ATP synthase- a marvellous rotary engine of the cell, Nat. Rev. Mol. Cell Biol. 2, 669-677 (2001).

1577 E. Muneyuki, H. Noji, T. Amano, T. Masaikad M. Yoshida, \(F_0F_1 \)-ATP synthase: general
structural features of ‘ATP-engine’ and a problem on free energy transduction, Biochim. Biophys. Acta 1458, 467-481 (2000).

1578 M. Futai, H. Omote, Y. Sambongi and Y. Wada, Synthase (H+ ATPase): coupling between catalysis, mechanical work, and proton translocation, Biochim. Biophys. Acta 1458, 276-288 (2000).

1579 Y. Wada, Y. Sambongi and M. Futai, Biological nano motor, ATP synthase F\textsubscript{0}F\textsubscript{1}: from catalysis to \gamma c\textsubscript{10-12} subunit assembly rotation, Biochim. Biophys. Acta 1458, 276-288 (2000).

1580 Y. Sambongi, I. Ueda, Y. Wada and M. Futai, Biological molecular motor, proton-translocating ATP synthase: multidisciplinary approach for a unique membrane enzyme, J. Bioenergetics and Biomembranes, 32, 441-447 (2000).

1581 K. Kinosita, R. Yasuda, H. Noji, S. Ishiwata and M. Yoshida, F\textsubscript{1}-ATPase: a rotary motor made of a single molecule, Cell 93, 21-24 (1998).

1582 K. Kinosita Jr., R. Yasuda, H. Noji and K. Adachi, A rotary molecular motor that can work at near 100% efficiency, Phil. Trans. Roy Soc. Lond. B 355, 473-488 (2000).

1583 H. Noji and M. Yoshida, The rotary machine in the cell, ATP synthase, J. Biol. Chem. 276, 1665-1668 (2001).

1584 Y. Kagawa, Biophysical studies on ATP synthase, Adv. Biophys. 36, 1-25 (1999).

1585 R.K. Nakamoto, Mechanisms of active transport in the F\textsubscript{0}F\textsubscript{1}-ATP synthase, J. Membrane Biol. 151, 101-111 (1996).

1586 R.K. Nakamoto, C.J. Ketchum and M.K. Al-Shawi, Rotational coupling in the F\textsubscript{0}F\textsubscript{1}-ATP synthase, Annu. Rev. Biophys. Biomol. Str. 28, 205-234 (1999).

1587 R.K. Nakamoto, C.J. Ketchum, P.H. Kuo, Y.B. Peskova and M.K. Al-shawi, Molecular mechanisms of rotational catalysis in the F\textsubscript{0}F\textsubscript{1}-ATP synthase, Biochim. Biophys. Acta 1458, 289-299 (2000).

1588 J. Weber and A.E. Senior, Catalytic mechanism of F\textsubscript{1}-ATPase, Biochim. Biophys. Acta 1319, 19-58 (1997).

1589 J. Weber and A.E. Senior, ATP synthase: what we know about ATP hydrolysis and what we do not know about ATP synthase, Biochim. Biophys. Acta 1458, 300-309 (2000).

1590 A.E. senior, S. Nadanaicva and J. Weber, The molecular mechanism of ATP synthesis by F\textsubscript{0}F\textsubscript{1}-ATP synthase, Biochim. Biophys. Acta 1553, 188-211 (2002).

1591 J. Weber and A.E. Senior, ATP synthesis driven by proton transport in F\textsubscript{0}F\textsubscript{1}-ATP synthase, FEBS Lett. 545, 61-70 (2003).

1592 J. Nagyvary and J. Bechert, New insights into ATP synthesis, Biochem. Education 27, 193-199 (1999).

1593 W. Junge, H. Lill and S. Engelbrecht, ATP synthase: an electrochemical transducer with rotary mechanics, Trends Biochem. Sci. 22, 420-423 (1997).

1594 W. Junge, ATP synthase and other motor proteins, PNAS 96, 4735-4737 (1999).

1595 R.A. Capaldi and R. Aggeler, Mechanism of the F\textsubscript{0}F\textsubscript{1}-ATP synthase, a biological rotary motor, Trends Biochem. Sci. 27, 154-160 (2002).

1596 D. Stock, C. Gibbons, I. Arechaga, A.G.W. Leslie and J.E. Walker, The rotary mechanism of ATP synthase, Curr. Opin. Struct. Biol. 10, 672-679 (2000).

1597 A.G.W. Leslie and J.E. Walker, Structural model of F\textsubscript{1}-ATPase and the implications for rotary catalysis, Phil. Trans. Roy Soc. Lond. B 355, 465-472 (2000).

1598 V. Müller, A. Lingl, K. Lewalter and M. Fritz, ATP synthases with novel rotor subunits: new insights into structure, function and evolution
of ATPases, J. Bioenergetics and Biomembranes, **37**, 455-460 (2005).

1599. G. Oster and H. Wang, *How protein motors convert chemical energy into mechanical work*, in: M. Schliwa, (ed.) *Molecular Motors*, (Wiley-VCH, 2003).

1600. T. Elston, H. Wang and G. Oster, *Energy transduction in ATP synthase*, Nature **391**, 510-513 (1998).

1601. H. Wang and G. Oster, *Energy transduction in the F\textsubscript{1} motor of ATP synthase*, Nature **396**, 279-282 (1998).

1602. P. Dimroth, *Operation of the F\textsubscript{0} motor of the ATP synthase*, Biochim. Biophys. Acta **1458**, 374-386 (2000).

1603. P. Dimroth, C. von Ballmoos, T. Meier and G. Kaim, *Electrical power fuels rotary ATP synthase*, Structure **11**, 1469-1473 (2003).

1604. P. Dimroth, C. von Ballmoos and T. Meier, *Catalytic and mechanical cycles in F-ATP synthases*, EMBO Rep. **7**, 276-282 (2006).

1605. C. von Ballmoos, G.M. Cook and P. Dimroth, *Unique rotary ATP synthase and its biological diversity*, Annu. Rev. Biophys. **37**, 43-64 (2008).

1606. G. Oster, H. Wang and M. Grabe, *How F\textsubscript{0}-ATPase generates rotary torque*, Phil. Trans. Roy. Soc. Lond. **355**, 523-528 (2000).

1607. G. Oster and H. Wang, *Reverse engineering a protein: the mechanochemistry of ATP synthase*, Biochim. Biophys. Acta **1458**, 482-510 (2000).

1608. G. Oster and H. Wang, *ATP synthase: two motors, two fuels*, Strcture **7**, R67-R72 (1999).

1609. G. Oster and H. Wang, *Why is the mechanical efficiency of F\textsubscript{1}-ATPase so high?*, J. Bioenergetics and Biomembrane **32**, 459-469 (2000).
32.2 From nutrient to ATP: energy production by mitochondria

For the synthesis of ATP by mitochondria, protons must translocate across the F_0 subunit of the ATP synthases, which are bound to the mitochondrial membranes, down their electro-chemical gradient. But, how is the concentration gradient of protons created? This is achieved primarily by a process called oxidative phosphorylation during which electrons, derived from nutrients, are passed through a sequence of enzyme complexes located in the mitochondrial membranes.

1622M. Saraste, *Oxidative phosphorylation at the fin de siecle*, Science 283, 1488-1493 (1999).

1623D.D. Newmeyer and S. Ferguson-Miller, *Mitochondria: releasing power for life and unleashing the machineries of death*, Cell 112, 481-490 (2003).

1624M.D. Brand, *The efficiency and plasticity of mitochondrial energy transduction*, Biochem. Soc. Trans. 33, 897-904 (2005).

32.3 ATP synthase of plant chloroplasts

1625R.E. McCarty, Y. Evron and E.A. Johnson, *The chloroplast ATP synthase: a rotary enzyme?*, Annu Rev. Plant Physiol. Plant Mol. Biol. 51, 83-109 (2000).

1626M.L. Richter, H.S. Samra, F. He, A.J. Giessel and K.K. Kuczera, *Coupling proton movement to ATP synthesis in the chloroplast ATP synthase*, J. Bioenergetics and Biomembranes, 37, 467-473 (2005).

32.4 From light to ATP: energy production by chloroplasts

The concentration gradient of protons required for ATP synthesis by chloroplasts in plants, by harvesting sunlight, is the result of a sequence of processes, the primary one being photophosphorylation.

1627J.F. Allen, *Photosynthesis of ATP- electrons, proton pumps, rotors and poise*, Cell 110, 273-276 (2002).

32.5 Na$^+$-ATP synthase

We have already seen that Na$^+$ can substitute for H$^+$ as the coupling ion in secondary transporters. Now we point out that even for the operation of ATP synthases, H$^+$ is not essential and in some ATP synthases Na$^+$ used instead of H$^+$.

1628V.P. Skulachev, *The sodium cycle: a novel type of bacterial energetics*, J. Bioenergetics and Biomembranes, 21, 635-647 (1989).

1629J.R. Lancaster Jr., *Sodium, protons, and energy coupling in the methanogenic bacteria*, J. Bioenergetics and Biomembranes, 21, 717-740 (1989).

1630P. Dimroth, *Primary sodium ion translocating enzymes*, Biochim. Biophys. Acta 1318, 11-51 (1997).

1631E. Blumwald, G.S. Aharon and M.P. Apse, *Sodium transport in plant cells*, Biochim. Biophys. Acta 1465, 140-151 (2000).

1632P. Dimroth, H. Wang, M. Grabe and G. Oster, *Energy transduction in the sodium F-ATPase of propionigenium modestum*, PNAS 96, 4924-4929 (1999).

1633H. Stahlberg, D.J. Müller, K. Suda, D. Fotiadis, A. Engel, T. Meier, U. Matthey and P. Dimroth, *Bacterial Na$^+$-ATP synthase has an undecameric rotor*, EMBO Rep. 2, 229-233 (2001).

1634T. Meier, P. Polzer, K. Diederichs, W. Welte and P. Dimroth, *Structure of the rotor ring of F-type Na$^+$-ATPase from Ilyobacter tartaricus*, Science 308, 659-662 (2005).

1635T. Meier, J. Yu, T. Raschle, F. Henzen, P. Dimroth and D.J. Muller, *Structural evidence for a constant C$_{11}$ ring stoichiometry in the*
sodium F-ATP synthase, FEBS J. 272, 5474-5483 (2005).

1636. J. Greie, G. Deckers-Hebestreit and K. Altendorf, *Energy-transducing ion pumps in bacteria: structure and function of ATP synthases*, in: *Microbial transport systems*, ed. G. Winkelmann (Wiley-VCH, 2001).

32.6 Vacuolar ATPase

Vacuolar ATPases were initially identified in plant and fungal vacuoles and hence the name. Later these were found also in plasma membrane and organelle membranes of mammalian cells and plants. Therefore, it is more appropriate to link the letter “V” in V-ATPase with “various” (various membranes) rather than “vacuoles”. V-ATPases are ATP-dependent proton pumps that regulate pH (acidify) intracellular compartments in eukaryotic cells.

1637. D.J. Klionsky, D.J. Herman, S.D. Emr, *The fungal vacuole: composition, function and biogenesis*, Microbiol. Rev. 54, 266-292 (1990).

1638. R.A. Gaxiola, M.G. Palmgren and K. Schumacher, *Plant proton pumps*, FEBS Lett. 581, 2204-2214 (2007).

1639. K. Schumacher, *Endomembrane proton pumps: connecting membrane and vesicle transport*, Curr. Opin. Plant Biol. 9, 595-600 (2006).

1640. E. Marre and A. Ballarin-Denti, *The proton pumps of the plasmalemma and the tonoplast of higher plants*, J. Bioenergetics and Biomembranes 17, 1-21 (1985).

1641. H. Sze, X. Li and M.G. Palmgren, *Energization of plant cell membranes by H+ -pumping ATPases: regulation and biosynthesis*, The Plant Cell 11, 677-689 (1999).

1642. I. Arechaga and P.C. Jones, *The rotor in the membrane of the ATP synthase and relatives*, FEBS Lett. 494, 1-5 (2001).

1643. G.H. Sun-Wada, Y. Wada and M. Futai, *Diverse and essential roles of mammalian vacuolar-type proton pump ATPases: toward the physiological understanding of inside acidic compartments*, Biochim. Biophys. Acta 1658, 106-114 (2004).

1644. K. Yokoyama and H. Imamura, *Rotation, structure, and classification of prokaryotic V-ATPase*, J. Bioenergetics and Biomembranes, 37, 405-410 (2005).

1645. M. Forgac, *Structure and properties of the vacuolar (H+) -ATPases*, J. Biol. Chem. 274, 12951-12954 (1999).

1646. T. Nishi and M. Forgac, *The vacuolar (H+) -ATPases- nature’s most versatile proton pump*, Nat. Rev. Mol. Cell Biol. 3, 94-103 (2002).

1647. T. Inoue, Y. Wang, K. Jefferies, J. Qi, A. Hinton and M. Forgac, *Structure and regulation of the V-ATPases*, J. Bioenergetics and Biomembranes, 37, 393-398 (2005).

1648. M. Forgac, *Vacuolar ATPases: rotary proton pumps in physiology and pathology*, Nat. Rev. Mol. Cell Biol. 8, 917-929 (2007).

1649. C. Kluge, J. Lahr, M. Hanitzsch, S. Bolte, D. Golldack and K.J. Dietz, *New insight into the structure and regulation of the plant vacuolar H+-ATPase*, J. Bioenergetics and Biomembranes 35, 377-388 (2003).

1650. H. Wieczorek, M. Huss, H. Merzendorfer, S. Reineke, O. Vitavska and W. Zeiske, *The insect plasma membrane H+ V-ATPase: intra-, inter- and supramolecular aspects*, J. Bioenergetics and Biomembranes, 35, 359-366 (2003).

1651. J.S. Lolkema, Y. Chaban and E.J. Boekema, *Subunit composition, structure, and distribution of bacterial V-type ATPases*, J. Bioenergetics and Biomembranes, 35, 323-335 (2003).

1652. L.A. Graham, A.R. Flannery and T.H. Stevens, *Structure and assembly of the yeast V-ATPase*, J. Bioenergetics and Biomembranes, 35, 301-312 (2003).
32.7 Pyrophosphatase

Membrane-bound pyrophosphatase (PPase) usually couples pyrophosphate (PP$_i$) hydrolysis to ion translocation across the membrane.

• H$^+$-pyrophosphatase
1671 M. Baltscheffsky, A. Schultz and H. Baltscheffsky, \(H^+ \)-PPases: a tightly membrane-bound family, FEBS Lett. 457, 527-533 (1999).

1672 M. Mayeshima, Vacuolar \(H^+ \)-pyrophosphatase, Biochim. Biophys. Acta 1465, 37-51 (2000).

1673 Y. M. Drozdowicz and P.A. Rea, Vacuolar \(H^+ \)-pyrophosphatases: from the evolutionary backwaters into the mainstream, Trends Plant Sci. 6, 206-211 (2001).

1674 P.T. Rea and R.J. Poole, Vacuolar \(H^+ \)-translocating pyrophosphatases, Annu. Rev. Plant Physiol. Plant Mol. Biol. 44, 157-180 (1993).

- \(Na^+ \)-pyrophosphatase

 However, very recently, it has been argued that some bacteria, which live under extreme conditions, translocate sodium ion, instead of proton, by coupling it to the hydrolysis of pyrophosphate.

1675 A.M. Malinen, G.A. Belogurov, A.A. Baykov and R. Lahti, \(Na^+ \)-pyrophosphatase: a novel primary sodium pump, Biochemistry 46, 8872-8878 (2007).

32.8 Historical notes on ATP synthase and related machines

1676 D. Boyer, ATP synthase- past and future, Biochim. Biophys. Acta 1365, 3-9 (1998).

1677 D. Boyer, Catalytic site forms and controls in ATP synthase catalysis, Biochim. Biophys. Acta 1458, 252-262 (2000).

1678 D. Boyer, A research journey with ATP synthase, J. Biol. Chem. 277, 39045-39061 (2002).

1679 W. Junge, Protons, proteins and ATP, Photosynthesis Res. 80, 197-221 (2004).

33 Bacterial flagellar motor

In this section, we consider only the rotary motor that drives the bacterial flagella. The architecture of the full flagellum and how its movements propels the bacterium in the fluid medium will be taken up in the section on swimming of bacteria.

33.1 Bacterial flagellar motor driven by proton-motive force

Normally, the bacterial flagellar motor is driven by a protonmotive force, i.e., protons driven by a transmembrane electro-chemical gradient.

1680 H.C. Berg, E. coli in motion, (Springer, 2004).

1681 H.C. Berg, Motile behavior of bacteria, Phys. Today, January (2000).

1682 H.C. Berg, The bacterial rotary motor, in: D. D. Hackney and F. Tanamoi, The Enzymes, vol.XXIII Energy Coupling and Molecular Motors (Elsevier, 2004).

1683 H.C. Berg, The rotary motor of bacterial flagella, Annu. Rev. Biochem. 72, 19-54 (2003).

1684 S. Schuster and S. Khan, The bacterial flagellar motor, Annu. Rev. Biophys. Biomol. Struct. 23, 509-539 (1994).

1685 R.M. Macnab, The bacterial flagellum: reversible rotary propeller and type III export apparatus, J. Bacteriol. 181, 7149-7153 (1999).

1686 D. J. DeRosier, Spinning tails, Curr. Opin. Struct. Biol. 5, 187-193 (1995).

1687 D. J. DeRosier, The turn of the screw: the bacterial flagellar motor, Cell 93, 17-20 (1998).

1688 D. F. Blair, The bacterial rotary motor, Nanotechnol. 2, 123-133 (1991).

1689 D. F. Blair, Flagellar movement driven by proton translocation, FEBS Lett. 545, 86-95 (2003).

1690 R.M. Berry, Theories of rotary motors, Phil. Trans. Roy. Soc. Lond. B 355, 503-509 (2000).

1691 T. Elston and G. Oster, Protein turbines I: the bacterial flagellar motor, Biophys. J. 73, 703-721 (1997).
1692. J. Xing, F. Bai, R. Berry and G. Oster, Torque-speed relationship of the bacterial flagellar motor, PNAS 103, 1260-1265 (2006).

1693. D. Waltz and S.R. Caplan, An electrostatic mechanism closely reproducing observed behavior in the bacterial flagellar motor, Biophys. J. 78, 626-651 (2000).

1694. H.C. Berg, Constraints on models for the flagellar rotary motor, Phil. Trans. Roy. Soc. Lond. B 355, 491-501 (2000).

1695. E. A. Korovkova, T. Emonet, H. Park and P. Chuzel, Hidden stochastic nature of a single bacterial motor, Phys. Rev. Lett. 96, 058105 (2006).

1696. Y. Tu and G. Grinstein, How white noise generates power-law switching in bacterial flagellar motors, Phys. Rev. Lett. 94, 208101 (2005).

1697. P. Lauger, Torque and rotation rate of the bacterial flagellar motor, 53, 53-65 (1988).

1698. R.M. Berry, Torque and switching in the bacterial flagellar motor: an electrostatic model, Biophys. J. 64, 961-973 (1993).

1699. S. Khan, M. Dapice and I. Humayun, Energy transduction in the bacterial flagellar motor, Biophys. J. 57, 779-796 (1990).

1700. T. Mitsui and H. Ohshima, Proposed model for the flagellar rotary motor, Colloids and Surfaces B: Biointerfaces 46, 32-44 (2005).

33.2 Bacterial flagellar motors driven by sodium-motive force

However, flagellar motor in some bacteria are driven by the electro-chemical gradient of sodium ions.

1701. Y. Imae and T. Atsumi, Na⁺-driven bacterial flagellar motors, J. Bioenergetics and biomembranes, 21, 705-716 (1989).

1702. T. Yorimitsu and M. Homma, Na⁺-driven flagellar motor in Vibrio, Biochim. Biophys. Acta 1505, 82-93 (2001).

1703. Y. Inoue, C.J. Lo, H. Fukuoka, H. Takashashi, Y. Sowa, T. Pilizota, G.H. Wadhams, M. Homma, R.M. Berry and A. Ishijima, Torque-speed relationship of Na⁺-driven chimeric flagellar motors in Escherichia coli, J. Mol. Biol. 376, 1251-1259 (2008).

1704. T. Yakushi, J. Yang, H. Fukuoka, M. Homma and D.F. Blair, Roles of charged residues of rot and stator in flagellar rotation: comparative study using H⁺-driven and Na⁺-driven motors in Escherichia coli, J. Bacteriol. 188, 1466-1472 (2006).

33.3 Comparison between ATP synthase and bacterial flagellar motor

Both the bacterial flagellar motor and ATP synthase are driven by a torque arising from a force which is of electro-chemical origin. However, there are also crucial differences between these two rotary motors.

1705. D. Waltz and S.R. Caplan, Bacterial flagellar motor and H⁺/ATP synthase: two proton-driven rotary molecular devices with different functions, Bioelectrochemistry 55, 89-92 (2002).

1706. A. Oplatka, Do the bacterial flagellar motor and ATP synthase operate as water turbines?, Biochem. Biophys. Res. Commun. 249, 573-578 (1998).

1707. K. Imada, T. Minamino, A. Tahara and K. Namba, Structural similarity between the flagellar type III ATPase F1× and F1-ATPase subunits, PNAS 104, 485-490 (2007).

Part IV: Machine-driven cellular processes

Cells exist in wide variations in their sizes, shapes and internal structures. For example, among the bacteria, cocci (spherical), bacilli (rod-shaped) and spirochetes (spiral) reflect the shapes of these unicellular organisms. Among the unicellular eukaryotes, protozoa exhibit some of the most complex and exquisite forms. The animal cells also exhibit widely
different characteristics. The linear dimension of a typical eukaryotic cell is about 10 µm. But, a neuron can be as long as a meter. Each skeletal muscle cell has more than one nucleus whereas a red blood cell has none at all. Germ cells have only one set of chromosomes whereas all other cells have two sets. Hair cells of the inner ear act as mechano-sensors while rod cells of the retina of the eye are photo-sensors. However, in spite of such diversities, there is unity in some of the common cellular processes. In this part we consider mainly cell motility and cell division both of which are also closely related to changes in cell shape.

34 Machine-driven cell motility

"From whale sperm to sperm whales, locomotion is almost always produced by appendages that oscillate or by bodies that undulate, pulse, or undergo peristaltic waves". M.H. Dickinson et al., Science 288, 100 (2000).

34.1 Cell motility: some general principles

1708.T.J. Mitchison and L.P. Cramer, Actin-based cell motility and cell locomotion, Cell 84, 371-379 (1996).

1709.R. Ananthakrishnan and A. Ehrlicher, The forces behind cell movement, Int. J. Biol. Sci. 3, 303-317 (2007).

1710.A. Mogilner, Mathematics of cell motility: have we got its number?, J. Math. Biol. (2008) (in press).

1711.A. Upadhyaya and A.v Oudenaarden, Biomimetic systems for studying actin-based motility, Curr. Biol. 13, R734-R744 (2003).

1712.J.V. Small, I. Kaverina, O. Krylyshkina and K. Rottner, Cytoskeleton cross-talk during cell motility, FEBS Lett. 452, 96-99 (1999).

1713.C.S. Peskin, G.M. Odell and G.F. Oster, Cellular motions and thermal fluctuations: the Brownian ratchet, Biophys. J. 65, 316-324 (1993).

34.2 Motility of prokaryotic cells

Unicellular microorganisms have developed diverse molecular mechanisms of locomotion. The actual mechanism used by a specific type of organism depends on the nature of the environment in the natural habitat of the organisms. In this section, we consider exclusively the prokaryotes.

If a bacterium lives in a bulk fluid, it’s natural mode of motility is swimming. In contrast, is a bacterium lives in a thin fluid film close to a solid surface (i.e., in a wet surface), gliding should be its mechanism of movement. Of course, some bacteria may be capable of utilizing both these modes of motility. However, there are subtleties of swimming and gliding that an uninitiated reader may not be able to anticipate. Moreover, there are mechanisms of motility other than swimming and gliding.

1714.K.F. Jarrell and M.J. McBride, The surprisingly diverse ways that prokaryotes move, Nat. Rev. Microbiol. 6, 466-476 (2008).

1715.J.G. Mitchell and K. Kogure, Bacterial motility: links to the environment and a driving force for microbial physics, FEMS Microbiol. Ecol. 55, 3-16 (2006).

1716.A.J. Merz and K.T. Forest, Bacterial surface motility: slime trails, grappling hooks and nozzles, Curr. Biol. 12, R297-R303 (2002).

1717.M.J. McBride, Bacterial gliding motility: multiple mechanisms for cell movement over surfaces, Annu. Rev. Microbiol. 55, 49-75 (2001).

1718.R.M. Harshey, Bacterial motility on a surface: many ways to a common goal, Annu. Rev. Microbiol. 57, 249-273 (2003).
34.3 Bacterial shape and shape changes during motility

The shapes of bacterial cells depend, at least partly, on the cytoskeleton.

Bacterial shape

1719 M.T. Cabeen and C. Jacobs-Wagner, *Bacterial cell shape*, Nat. Rev. Microbiol. **3**, 601-610 (2005).

1720 S. Pichoff and J. Lutkenhaus, *Overview of cell shape: cytoskeletons shape bacterial cells*, Curr. Opin. Microbiol. **10**, 601-605 (2007).

1721 K.D. Young, *Bacterial shape*, Mol. Microbiol. **49**, 571-580 (2003).

Transient and permanent appendages for motility of prokaryotic cells

The shape changes during motility and division of cells. Therefore, it is not surprising that components of the cytoskeleton play crucial roles in both these processes.

Microorganisms exploit the movements of permanent appendages like flagella, cilia, pili and fimbriae for their movements. We have already considered the rotary motor which drives bacterial flagella. Although the motor is driven by either proton motive force or sodium-motive force, the number of flagella and their spatial arrangements on the cell vary widely from one bacterial species to another. Many bacteria have only one flagellum whereas some species of bacteria possess more than one. Perhaps the most unusual is the periplasmic flagella of spirochetes. Moreover, some bacterial species possess dual flagellar systems which are suitable for movement under different conditions; the polar flagellum is used for swimming in bulk fluids whereas the lateral flagella for swarming close to solid surfaces.

1722 S.L. Bardy, S.Y.M. Ng and K.F. Jarrell, *Prokaryotic motility structures*, Microbiol. **149**, 295-304 (2003).

1723 N.A. Thomas, S.L. Bardy and K.F. Jarrell, *The archaeal flagellum: a different kind of prokaryotic motility structure*, FEMS Microbiol. Rev. **25**, 147-174 (2001).

1724 S. Trachtenberg and S. Cohen-Krausz, *The archaeabacterial flagellar filament: a bacterial propeller with a pilus-like structure*, J. Mol. Microbiol. and Biotechnol. **11**, 208-220 (2006).

1725 S.Y. Ng, B. Chaban and K.F. Jarrell, *Archaeal flagella, bacterial flagella and type IV pili: a comparison of genes and posttranslational modifications*, J. Mol. Microbiol. Biotechnol. **11**, 167-191 (2006).

1726 V. Pelicic, *Type IV pili: e pluribus unum?*, Mol. Microbiol. **68**, 827-837 (2008).

1727 K.T. Forest and J.A. Tainer, *Type-4 pilus structure: outside to inside and top to bottom- a minireview*, Gene **192**, 165-169 (1997).

1728 L. Craig, M.E. Pique and J.A. Tainer, *Type IV pilus structure and bacterial pathogenicity*, Nat. Rev. Microbiol. **2**, 363-378 (2004).

1729 J.K. Hansen and K.T. Forest, *Type IV pilin structures: insights on shared architecture, fiber assembly, receptor binding and type II secretion*, J. Mol. Microbiol. Biotechnol. **11**, 192-207 (2006).

1730 L.L. McCarter, *Dual flagellar systems enable motility under different circumstances*, J. Mol. Microbiol. and Biotechnol. **7**, 18-29 (2004).

Swimming of bacteria: flagella driven by rotary motor

Depending on the species, a bacterium may have a single flagellum, or one flagellum at each end, or a tuft of flagella at one or both ends. Each flagellum consists of a filament, a hook and a basal body. The filament is helical and is composed of eleven protein fibrils arranged like the strands of a rope; a fine channel (≈ 70 Å in diameter) runs through the axis of the filament. The hook is a hollow, flexible, proteinaceous structure. The basal body consists mainly of the flagellar motor. The flagellar motor of a bacterium (say, E-coli) is about 50 nm in diameter and consists of about 20 different components. The speed of this rotary motor could be of the order of 100 Hz.
A large class of single-cell bacteria “swim” in their aqueous environment using their flagella which, in turn, are rotated by the flagellar motors driven by proton-motive (or sodium-motive) force, as we have already explained earlier.

The Reynolds number, that characterizes the swimming of bacteria in aqueous media, is normally very small. Perhaps, one can appreciate the situation better by comparing with swimming of a human being; a comparable Reynolds number would be realized if a human being tried to swim in honey!

1731 E.M. Purcell, *Life at low Reynolds number*, Am. J. Phys. **45**, 3-11 (1977).

1732 E.M. Purcell, *The efficiency of propulsion by a rotating flagellum*, PNAS **94**, 11307-11311 (1997).

- **Swimming of spirochetes: hidden flagella driven by rotary motor**

 Spirochetes have periplasmic flagella (i.e., flagella which are located in the periplasmic space between the outer cell membrane and the cell wall). Thus, unlike E-coli, spirochetes do not stick their flagella out into the fluid outside the cell. But, the flagella of spirochetes are also driven by proton-motive force. Rotation of these flagella deform the cell body which, consequently, rolls. It is this corkscrew-like motion of the spirochete that propels it through the external fluid medium. However, one counterintuitive consequence of this mechanism of the motility of spirochetes is that spirochetes move faster in gel-like media than in water.

1733 C.Li, A. Motaleb, M. Sal, S.F. Goldstein and N.W. Charon, *Spirochete periplasmic flagella and motility*, J. Mol. Microbiol. Biotechnol. **2**, 345-354 (2000).

1734 N.W. Charon and S.F. Goldstein, *Genetics of motility and chemotaxis of a fascinating group of bacteria: the spirochetes*, Annu Rev. Genet. **36**, 47-73 (2002).

1735 C.W. Wolgemuth, N.W. Charon, S.F. Goldstein and R.E. Goldstein, *The flagellar cytoskeleton of the Spirochetes*, J. Mol. Microbiol. and Biotechnol. **11**, 221-227 (2006).

1736 R. Lux, A. Moter and W. Shi, *Chemotaxis in pathogenic spirochetes: directed movement toward targeting tissues?* J. Mol. Microbiol. Biotechnol. **2**, 355-364 (2000).

- **Swimming without flagella: linear motor of spiroplasma**

 The mollicutes (*Spiroplasma, Mycoplasma* and *Acholoplasma*) are the smallest free-living organisms. Their structure is unusual in the sense that they do not have cell wall and the standard form of prokaryotic flagella. The *Spiroplasma* are unique among the mollicutes because, as the name suggests, their spiral shape can be viewed as a dynamic helical membrane tube (of typical radius of about 0.1µm). They maintain their helical structure by the internal cytoskeletal filaments.

 The motility of the spiroplasma is driven by its contractile cytoskeleton. Thus, in contrast to the rotary motors of flagellated bacteria, the machinery driving the spiroplasma are linear motors. Just like spirochetes, spiroplasma move faster in media with higher viscosity. But, in contrast to spirochetes, spiroplasma move with higher viscosity irrespective of whether or not it is gel-like.

1737 S. Trachtenberg, *Mollicutes- wall-less bacteria with internal cytoskeletons*, J. Struct. Biol. **124**, 244-256 (1998).

1738 S. Trachtenberg, *Mollicutes*, Curr. Biol. **15**, R483-R484 (2005).

1739 S. Trachtenberg, *Shaping and moving a Spiroplasma*, J. Mol. Microbiol. and Biotechnol. **7**, 78-87 (2004).

1740 S. Trachtenberg, *The cytoskeleton of Spiroplasma: a complex linear motor*, J. Mol. Microbiol. and Biotechnol. **11**, 265-283 (2006).

1741 S. Trachtenberg and R. Gilad, *A bacterial linear motor: cellular and molecular organization of the contractile cytoskeleton of the helical bacterium spiroplasma melliferum BC3*, Mol. Microbiol. **41**, 827-848 (2001).
R. Gilad, A. Porat and S. Trachtenberg, Motility modes of spiroplasma melliferum BC3: a helical, wall-less bacterium driven by a linear motor, Mol. Microbiol. 47, 657-669 (2003).

- Gliding of over surfaces: push of linear motors
 For some bacteria, like Myxococcus xanthus, hydration of a slime secreted by the bacterium through a nozzle, generates the force required for their own movement.

1743 A.M. Spormann, Gliding motility in bacteria: insights from studies of Myxococcus xanthus, Microbiol. Mol. Biol. Rev. 63, 621-641 (1999).

1744 C.W. Wolgemuth, E. Kolczyk, D. Kaiser and G. Oster, How myxobacteria glide, Curr. Biol. 12, 369-377 (2002).

1745 D. Kaiser, Coupling cell movement to multicellular development in myxobacteria, Nat. Rev. Microbiol. 1, 45-54 (2003).

1746 T. Mignot, The elusive engine in Myxococcus xanthus gliding motility, Cell Mol. Life Sci. 64, 2733-2745 (2007).

1747 C.W. Wolgemuth, O. Igoshin and G. Oster, The motility of mollicutes, Biophys. J. 85, 828-842 (2003).

Gliding of Mycoplasma mobile resembles motion of centipedes where tiny “leg-like” appendages are powered by ATP hydrolysis.

1748 M. Miyata, Centipede and inchworm models to explain Mycoplasma gliding, Trends Microbiol. 16, 6-12 (2008).

1749 A. Uenoyama and M. Miyata, Gliding ghosts of mycoplasma mobile, PNAS 102, 12754-12758 (2005).

- Twitching: pull of linear motor type IV pili
 Some gliding bacteria use type IV pili for their movement. They first extend a pilus that adheres to a substrate; then the pilus is retracted and the pull of this hook-like structure propels the bacterium forward.

1750 D. Wall and D. Kaiser, Type IV pili and cell motility, Mol. Microbiol. 32, 1-10 (1999).

1751 D. Kaiser, Bacterial motility: how do pili pull?, Curr. Biol. 10, R777-R780 (2000).

1752 E. Nudleman and D. Kaiser, Pulling together with type IV pili, J. Mol. Microbiol. and Biotechnol. 7, 52-62 (2004).

1753 J.S. Mattick, Type IV pili and twitching motility, Annu. Rev. Microbiol. 56, 289-314 (2002).

1754 A.J. Merz, M. So and M.P. Sheetz, Pilus retraction powers bacterial twitching motility, Nature 407, 98-102 (2000).

1755 B. Maier, L. Potter, M. So, H.S. Seifert and M.P. Sheetz, Single pilus motor forces exceed 100 pN, PNAS 99, 16012-16017 (2002).

1756 B. Maier, M. Koomey and M.P. Sheetz, A force-dependent switch reverses type IV pilus retraction, PNAS 101, 10961-10966 (2004).

1757 J.M. Skerker and H.C. Berg, Direct observation of extension and retraction of type IV pili, PNAS 98, 6901-6904 (2001).

1758 M. Linden, E. Johansson, A.B. Jonsson and M. Wallin, Fluctuations in type IV pili retraction, arXiv: physics/0504084 (2005).

1759 L.L. Burrows, Weapons of mass retraction, Mol. Microbiol. 57, 878-888 (2005).

34.4 Taxis
So far we have discussed the machineries used by prokaryotic cells for motility. But, how does the cell sense its environment and decide the direction of its motion?

Chemotaxis refers to the directional movement in response to the gradient of concentration of a chemical. Substances which attract a cell are called chemoattractant while those repelling a cell are called...
chemorepellant. Strictly speaking, aerotaxis is a special case of chemotaxis where the motile cells respond to a gradient of concentration of the dissolved oxygen. Mechanotaxis is cell migration controlled by the rigidity of an underlying substrate. Phototaxis is the corresponding response to light gradient whereas galvanotaxis is the ability to move in response to electric potential gradient. Finally, haptotaxis is the motility in response to gradient in adhesion of ligands.

1760D.F. Blair, How bacteria sense and swim, Annu. Rev. Microbiol. 49, 489-552 (1995).

1761T. Fenchel, Microbial behavior in a heterogeneous world, Science 296, 1068-1071 (2002).

1762R.R. Kay, P. Langridge, D. Traynor and O. Hoeller, Changing directions in the study of chemotaxis, Nat. Rev. Mol. Cell Biol. 9, 455-463 (2008).

34.5 Motility of eukaryotic cells

Unicellular eukaryotes, like free-living protozoa, move primarily for food. In multicellular prokaryotes, cell locomotion is essential in development. Moreover, leukocytes move to offer immune response. Furthermore, fibroblasts, which are normally stationary, move during wound healing.

One of the fundamental questions on cell motility is the molecular mechanisms involved in the generation of required forces. Broadly speaking, three different mechanisms have been postulated and their possibility in specific contexts have been explored: (i) Force generated by polymerization of cytoskeletal protein filaments (actin and microtubules), (ii) Force generated by cytoskeletal motors by their interactions with filamentous tracks, and (iii) forces of osmotic of hydrostatic origin.

- Taxis of eukaryotic cells

Chemotaxis is not restricted only to prokaryotes. Eukaryotic cells are also guided by an appropriate guidance system. Chemotaxis is involved in wide varieties of biological processes starting from embryogenesis to wound healing and immune response. Several different models of eukaryotic chemotaxis have also been proposed.

Chlamydomonas reinhardtii is a unicellular biflagellate green alga. It has been used extensively as a model experimental system for investigating swimming of eukaryotic cells. These cells swim towards light by beating their flagella. In contrast to phototaxis of C. reinhardtii, the sperm cells of eukaryotes are guided by chemotactic signals. Interestingly, the guidance of the axonal growth cones is also guided by chemotaxis.

1763C.A. Parent and P.N. Devreotes, A cell’s sense of direction, Science 284, 765-770 (1999).

1764M. Iijima, Y.E. Huang and P. Devreotes, Temporal and spatial regulation of chemotaxis, Dev. Cell 3, 469-478 (2002).

1765P. Devreotes and C. Janetopoulos, Eukaryotic chemotaxis: distinctions between directional sensing and polarization, J. Biol. Chem. 278, 20445-20448 (2003).

1766P.J. van Haastert and P.N. Devreotes, Chemotaxis: signalling the way forward, Nat. Rev. Mol. Cell Biol. 5, 626-634 (2004).

1767T. Jin and D. Hereld, Moving toward understanding eukaryotic chemotaxis, Eur. J. Cell Biol. 85, 905-913 (2006).

1768R. Meili and R. Firtel, Two poles and a compass, Cell 114, 153-156 (2003).

1769P.A. Iglesias and A. Levchenko, Modeling the cell’s guidance system, Sci. STKE 148, re12 (2002).

1770A. Levchenko and P. Iglesias, Models of eukaryotic gradient sensing: application to chemotaxis of amoebae and neutrophils, Biophys. J. 82, 50-63 (2002).

1771P.A. Iglesias and P.N. Devreotes, Navigating through models of chemotaxis, Curr. Opin. Cell Biol. 20, 35-40 (2008).

1772A. Maree, A. Jilkine, A. Dawes, V. Grieneisen and L. Edelstein-Keshet, Polarization and
movement of keratocytes: a multiscale modeling approach, Bull. Math. Biol. 68, 1169-1211 (2006).

1773 M.V. Manzanares and F. S. Madrid, Role of the cytoskeleton during leukocyte responses, Nat. Rev. Immunol. 4, 110-122 (2004).

1774 D. Mortimer, T. Fothergill, Z. Pujic, L.J. Richards and G.J. Goodhill, Growth cone chemotaxis, Trends Neurosci. 31, 90-98 (2008).

•Crawling of eukaryotic cells: dynamic protrusions

The crawling of eukaryotic cells involves the formation and movement of transient cell protrusions like lamellipodia, filopodia, etc. A lamellipodium is a thin sheet-like protrusion whose typical thickness varied between 0.1 and 0.2 µm. In contrast, a filopodium is a finger-like structure whose typical diameter varies between 0.1 and 0.3 µm. Structurally, there are crucial differences between these two types of cell protrusions. Lamellipodia are filled with a branched network of actin filaments whereas parallel bundles of filamentous actin run along the length of filopodia. Quite often filopodia protrude from a lamellipodium. Therefore, two different models for the formation of the actin-bundles of filopodia have been proposed. In the “convergent elongation model”, the filopodial actin filaments are assumed to originate from the lamellipodial actin network. But, in the “de novo filament nucleation model”, the filopodial actin filaments are assumed to nucleate separately in the filopodia. A common feature of the actin networks in lamellipodia and filopodia is that the fast growing (barbed) ends of the actin filaments are oriented towards the membrane which gets pushed by the piston-like action of the polymerizing actin filaments. This piston-like pushing by polymerizing actin is very similar to piston-like action of polymerizing microtubules, which we discussed earlier, except that actins can form branched structures whereas microtubules do not. Other protrusions of the eukaryotic cell include pseudopodia, ruffles, microvilli, invadopodia, etc.

1775 J. Condeelis, Life at the leading edge: the formation of cell protrusions, Annu. Rev. Cell Biol. 9, 411-444 (1993).

1776 G.G. Borisy and T.M. Svitkina, Actin machinery: pushing the envelope, Curr. Opin. Cell Biol. 12, 104-112 (2000).

1777 E. S. Chhabra and H.N Higgs, The many faces of actin: matching assembly factors with cellular structures, Nat. Cell Biol. 9, 1110-1121 (2007).

1778 C. Revenu, R. Athman, S. Robine and D. Louvard, The co-workers of actin filaments: from cell structures to signals, Nat. Rev. Mol. Cell Biol. 5, 1-12 (2004).

1779 J.V. Small, T. Stradal, E. Vignal and K. Rottner, The lamellipodium: where motility begins, Trends Cell Biol. 12, 112-120 (2002).

1780 J. Faix and K. Rottner, The making of filopodia, Curr. Opin. Cell Biol. 18, 18-25 (2006).

1781 S.L. Gupton and F.B. Gertler, Filopodia: the fingers that do the walking, STKE 5, 1-8 (2007).

1782 P.K. Mattila and P. Lappalainen, Filopodia: molecular architecture and cellular functions, Nat. Rev. Mol. Cell Biol. 9, 446-454 (2008).

1783 J.R. Bartles, Parallel actin bundles and their multiple actin-bundling proteins, Curr. Opin. Cell Biol. 12, 72-78 (2000).

1784 J. Weber, Is there a pilot in a pseudopod?, Eur. J. Cell Biol. 85, 915-924 (2006).

1785 I. Ayala, M. Baldassarre, G. Caldieri and R. Buccione, Invadopodia: a guided tour, Eur. J. Cell Biol. 85, 159-164 (2006).

1786 R. Buccione, J.D. Orth and M.A. McNiven, Foot and mouth: podosomes, invadosomes and circular dorsal ruffles, Nat. Rev. Mol. Cell Biol. 5, 647-657 (2004).

1787 D.J. DeRosier and L.G. Tilney, F-actin bundles are derivatives of microvilli: what does this tell us about how bundles might form, J. Cell Biol. 148, 1-6 (2000).
1788. A.E. Carlsson, *Force-velocity relation for growing biopolymers*, Phys. Rev. E 62, 7082-7091 (2000).

1789. A.E. Carlsson, *Growth of branched actin networks against obstacles*, Biophys. J. 81, 1907-1923 (2001).

1790. J. Zhu and A.E. Carlsson, *Growth of attached actin filaments*, Eur. Phys. J. E 21, 209-222 (2006).

Two different types of models have been developed in the context of cell crawling. Some models focus exclusively on the dynamics of the cell protrusions.

1791. A. Mogilner and G. Oster, *Cell motility driven by actin polymerization*, Biophys. J. 71, 3030-3045 (1996).

1792. A. Mogilner and G. Oster, *The physics of lamellipodium protrusion*, Eur. Biophys. J. 25, 47-53 (1996).

1793. A. Mogilner and G. Oster, *Force generation by actin polymerization II: the elastic ratchet and tethered filaments*, Biophys. J. 84, 1591-1605 (2003).

1794. A. Gholami, M. Falcke and E. Frey, *Velocity oscillations in actin-based motility*, New J. Phys. 10, 033022 (2008).

1795. N.J. Burroughs and D. Marenduzzo, *Three-dimensional dynamic Monte Carlo simulations of elastic actin-like ratchets*, J. Chem. Phys. 123, 174908 (2005).

1796. A. Mogilner and L. Edelshtein-Keshet, *Regulation of actin dynamics in rapidly moving cells: a quantitative analysis*, Biophys. J. 83, 1237-1258 (2002).

1797. H.P. Grimm, A.B. Verkhovsky, A. Mogilner, J.J. Meister, *Analysis of actin dynamics at the leading edge of crawling cells: implications for the shape of keratocyte lamellipodia*, Eur. Biophys. J. 32, 563-577 (2003).

1798. K. Keren, Z. Pincus, G.M. Allen, E.L. Barnhart, G. Marriott, A. Mogilner and J.A. Theriot, *Mechanism of shape determination in motile cells*, Nature 453, 475-480 (2008).

1799. A. Mogilner and B. Rubinstein, *The physics of filopodial protrusion*, Biophys. J. 89, 782-795 (2005).

1800. A. Mogilner, *On the edge: modeling protrusion*, Curr. Opin. Cell Biol. 18, 32-39 (2006).

1801. E. Atigan, D. Wirtz and S.X. Sun, *Morphology of the lamellipodium and organization of actin filaments at the leading edge of crawling cells*, Biophys. J. 89, 3589-3602 (2005).

1802. E. Atigan, D. Wirtz and S.X. Sun, *Mechanics and dynamics of actin-driven thin membrane protrusions*, Biophys. J. 90, 65-76 (2006).

1803. G.H. Li, C.D. Win and M.H. Li, *On the mechanisms of growth cone locomotion: modeling and computer simulation*, J. Theor. Biol. 169, 355-362 (1994).

Cell protrusions can also lead to the formation of membrane nanotubes, some of which lead to permanent connection between different cells.

1804. D.M. Davis and S. Sowinski, *Membrane nanotubes: dynamic long-distance connections between animal cells*, Nat. Rev. Mol. Cell Biol. 9, 431-436 (2008).

1805. P. Roth, *Communication by touch: role of cellular extensions in complex animals*, Cell 112, 595-598 (2003).

1806. J.F. Challacombe, D.M. Snow and P.C. Le tourneau, *Role of cytoskeleton in growth cone motility and axonal elongation*, Sem. in The Neurosci. 8, 67-80 (1996).

1807. E.W. Dent and F.B. Gertler, *Cytoskeletal dynamics and transport in growth cone motility and axon guidance*, Neuron 40, 209-227 (2003).
Crawling of eukaryotic cells: full cyclic dynamics

Detailed models capture all the three stages of dynamics - (i) formation of a cell protrusion at the leading edge, (ii) adhesion of the leading protrusion to the underlying substrate, and (iii) contraction of the cell body accompanied by detachment of the rear edge of the cell from the substrate. The contraction of the cell body and the retraction of the rear are dominated by the complex dynamics of a visco-elastic active gel. Since this aspect of cell locomotion is beyond the current scope of this resource letter, we mention only major reviews and a few important theoretical papers.

1808. M. Abercrombie, *The crawling of metazoan cells*, (The Croonian Lecture, 1978), Proc. Roy. Soc. Lond. B **207**, 129-147 (1980).

1809. T.P. Stossel, J.H. Hartwig, P.A. Janmey and D.J. Kwiatkowski, *Cell crawling two decades after Abercrombie*, Biochem. Soc. Symp. **65**, 267-280 (1999).

1810. M.S. Bretscher, *How animal cells move*, Sci. Am. **257**, 72-90 (1987).

1811. T.P. Stossel, *How cells crawl*, Am. Scientist **78**, 408-424 (1990).

1812. T.P. Stossel, *On the crawling of animal cells*, Science **260**, 1086-1094 (1993).

1813. T.P. Stossel, *The machinery of cell crawling*, Sci. Am. **271**(3), 40-47 (1994).

1814. P.A. DiMilla, K. Barbee and D.A. Lauffenburger, *Mathematical model for the effects of adhesion and mechanics on cell migration speed*, Biophys. J. **60**, 15-37 (1991).

1815. D.A. Lauffenberger and A.F. Horwitz, *Cell migration: a physically integrated molecular process*, Cell **84**, 359-369 (1996).

1816. T.D. Pollard, L. Blanchon and R.D. Mullins, *Molecular mechanisms controlling actin filament dynamics in nonmuscle cells*, Annu. Rev. Biophys. Biomol. Struct. **29**, 545-576 (2000).

1817. T.D. Pollard and G.G. Borisy, *Cellular motility driven by assembly and disassembly of actin filaments*, Cell **112**, 453-465 (2003).

1818. S.M. Rafelski and J.A. Theriot, *Crawling towards a unified model of cell motility: spatial and temporal regulation of actin dynamics*, Annu. Rev. Biochem. **73**, 209-239 (2004).

1819. B. Flaherty, J.P. McGarry and P.E. McHugh, *Mathematical models of cell motility*, Cell Biochem. Biophys. **49**, 14-28 (2007).

1820. A. Mogilner and G. Oster, *Shrinking gels pull cells*, Science **302**, 1340-1341 (2003).

1821. L. Novak, B.M. Slepchenko, A. Mogilner and L.M. Loew, *Cooperativity between cell contractility and adhesion*, Phys. Rev. Lett. **93**, 268109 (2004).

1822. B. Rubinstein, K. Jacobson and A. Mogiler, *Multiscale two-dimensional modeling of a motile simple-shaped cell*, SIAM J. Multiscale Modeling and Simul. **3**, 413-439 (2005).

1823. K. Larripa and A. Mogilner, *Transport of a 1D viscoelastic actin-myosin strip of gel as a model of a crawling cell*, Physica A **372**, 113-123 (2006).

1824. G. Giannone, B. J. Dubin-Thaler, H.G. Döbereiner, N. Kieffer, A.R. Bresnick and M.P. Sheetz, *Periodic lamellipodial contractions correlate with rearward actin waves*, Cell **116**, 431-443 (2004).

1825. E. Evans, *New physical concepts for cell amoeboid motion*, Biophys. J. **64**, 1306-1322 (1993).

1826. M.E. Gracheva and H.G. Othmer, *A continuum model of motility in ameboid cells*, Bull. Math. Biol. **66**, 167-193 (2004).

1827. J.F. Joanny, F. Jülicher and J. Prost, *Motion of an adhesive gel in a swelling gradient: a mechanism for cell locomotion*, Phys. Rev. Lett. **90**, 168102 (2003).
1828. K. Sekimoto, J. Prost, F. Jülicher, H. Boukellal, A. Bernheim-Grosswasser, *Role of tensile stress in actin gels and a symmetry-breaking instability*, Eur. Phys. J. E **13**, 247-259 (2004).

1829. K. Kruse, J.F. Joanny, F. Hülicher and J. Prost and K. Sekimoto, *Generic theory of active polar gels: a paradigm for cytoskeletal dynamics*, Eur. Phys. J. E **16**, 5-16 (2005).

1830. K. Kruse, J.F. Joanny, F. Jülicher and J. Prost, *Contractility and retrograde flow in lamellipodium motion*, Phys. Biol. **3**, 130-137 (2006).

1831. K. Kruse and F. Jülicher, *Dynamics and mechanics of motor-filament systems*, Eur. Phys. J. E **20**, 459-465 (2006).

1832. K. Kruse, A. Zumdieck and F. Jülicher, *Continuum theory of contractile fibres*, Europhys. Lett. **64**, 716-722 (2003).

1833. K. Kruse and F. Jülicher, *Self-organization and mechanical properties of active filament bundles*, Phys. Rev. E **67**, 051913 (2003).

1834. F. Jülicher, K. Kruse, J. Prost and J.F. Joanny, *Active behaviour of the cytoskeleton*, Phys. Rep. **449**, 3-28 (2007).

1835. D.I. Shreiber, V.H. Barocas and R.T. Tranquillo, *Temporal variations in cell migration and traction during fibroblast-mediated gel compaction*, Biophys. J. **84**, 4102-4114 (2003).

1836. Y. Fukui, *Mechanistics of amoeboid locomotion: signal to forces*, Cell Biol. International **26**, 933-944 (2002).

1837. J.B. Hahn, *Mechanics of crawling cells*, Medical engineering and physics **27**, 743-753 (2005).

1838. A. Rick Horwitz and D. Webb, *Cell migration*, Curr. Biol. **13**, R756-R759 (2003).

1839. M. Vincente-Manzanares, D.J. Webb and A. Rick Horwitz, *Cell migration at a glance*, J. Cell Science **118**, 4917-4919 (2005).

1840. A.J. Ridley, M.A. Schwartz, K. Burridge, R.A. Firtel, M.H. Ginsberg, G. Borisy, J.T. Parsons and A. Rick Horwitz, *Cell migration: integrating signals from front to back*, Science **302**, 1704-1709 (2003).

1841. G. Maheshwari and D.A. Lauffenburger, *Deconstructing (and reconstructing) cell migration*, Microscopy Res. and technique **43**, 358-368 (1998).

1842. J.V. Small, B. Geiger, I. Kaverina and A. Bershadsky, *How do microtubules guide migrating cells?* Nat. Rev. Cell Biol. **3**, 957-964 (2002).

Gliding of eukaryotic cells

1843. M.B. Heintzelman, *Cellular and molecular mechanics of gliding locomotion in eukaryotes*, Int. Rev. Cytology **251**, 79-129 (2006).

1844. A. Mogilner, E. Marland and D. Bottino, *A minimal model of locomotion applied to the steady ‘gliding’ movement of fish keratocyte cells*, in: Mathematical Models for Biological Pattern Formation, P. Maini and H. Othmer, eds. pp.269-294 (Springer, 2001).

Motility of bacterial pathogens driven by actin comets

Bacterial pathogen *Listeria Monocyte* uses a simplified mechanism of motility based on force generation by actin polymerization. In this case a comet-like tail of polymerizing actin filaments push the pathogen in the host cell. Unlike, cell crawling, which is also driven by actin-polymerization, neither adhesion to a slid substrate nor retraction of the rear of the cell is required.

1845. A.J. Merz and H.N. Higgs, *Listeria motility: biophysics pushes things forward*, Curr. Biol. **13**, R302-R304 (2003).

1846. K. Ireton and P. Cossart, *Host-pathogen interactions during entry and actin-based movement of Listeria Monocytogenes*, Annu. Rev. Genet. **31**, 113-138 (1997).
1847 P. Cossart and H. Bierne, *The use of host cell machinery in the pathogenesis of Listeria Monocytogenes*, Curr. Opin. Immunol. 13, 96-103 (2001).

1848 P. Cossart and P.J. Sansonetti, *Bacterial invasion: the paradigms of enteroinvasive pathogens*, Science 304, 242-248 (2004).

1849 M.B. Goldberg, *Actin-based motility of intracellular microbial pathogens*, Microbiol. Mol. Biol. Rev. 65, 595-626 (2001).

1850 T. Suzuki and C. Sasakawa, *Molecular basis of the intracellular spreading of Shigella*, Infection and Immunity 69, 5959-5966 (2001).

1851 J.A. Theriot, *The cell biology of infection by intracellular bacterial pathogens*, Annu. Rev. Cell Dev. Biol. 11, 213-239 (1995).

1852 J.A. Theriot, *Worm sperm and advances in cell locomotion*, Cell 84, 1-4 (1996).

1853 D.C. Fung and J.A. Theriot, *Movement of bacterial pathogens driven by actin polymerization*, in: *Motion analysis in living cells*, chap.8, 157-176 (Wiley-Liss, 1998).

1854 L.A. Cameron, P.A. Giardini, F.S. Soo and J.A. Theriot, *Secrets of actin-based motility revealed by a bacterial pathogen*, Nat. Rev. Mol. Cell Biol. 1, 110-119 (2000).

1855 D. Pantaloni, C. le Clainche and M.F. Carlier, *Mechanism of actin-based motility*, Science 292, 1502 (2001).

1856 M.F. Carlier, C. le Clainche, S. Wiesner and D. Pantaloni, *Actin-based motility: from molecules to movement*, Bioessays 25, 336-345 (2003).

1857 C. le Clainche and M.F. Carlier, *Regulation of actin assembly associated with protrusion and adhesion in cell migration*, Physiol. Rev. 88, 489-513 (2008).

1858 E. Gouin, M.D. Welch and P. Cossart, *Actin-based motility of intracellular pathogens*, Curr. Opin. Microbiol. 8, 35-45 (2005).

1859 F. Gerbal, P. Chaikin, Y. Rabin and J. Prost, *An elastic analysis of Listeria monocytogenes propulsion*, Biophys. J. 79, 2259-2275 (2000).

1860 J.L. McGrath, N.J. Eungdamrong, C.I. Fisher, F. Peng, L. Mahadevan, T.J. Mitchison and S.C. Kuo, *The force-velocity relationship for the actin-based motility of Listeria monocytogenes*, Curr. Biol. 13, 329-332 (2003).

1861 E. Paluch, J. van der Gucht, J.F. Joanny and C. Sykes, *Deformations in actin comets from rocking beads*, Biophys. J. 91, 3113-3122 (2006).

1862 J.B. Alberts and G.M. Odell, *In silico reconstitution of Listeria propulsion exhibits nanosalutation*, PLoS Biol. 2, 2054-2066 (2004).

1863 F. Carlsson and E.J. Brown, *Actin-based motility of intracellular bacteria, and polarized surface distribution of the bacterial effector molecules*, J. Cellular physiol. 209, 288-296 (2006).

1864 N.J. Burroughs and D. Marenduzzo, *Nonequilibrium-driven motion in actin networks: comet tails and moving beads*, Phys. Rev. Lett. 98, 238302 (2007).

1865 A.D. Rutenberg and M. Grant, *Curved tails in polymerization-based bacterial motility*, Phys. Rev. E 64, 021904 (2001).

• Motility of nematode sperm by actin-like MSP

In contrast to other types of sperm cells which swim using flagella (and which we’ll consider soon), sperm of several nematode species crawl. However, unlike most of the crawling cells, these nematode sperms do not contain actin. Instead, another protein, called major sperm protein (MSP) acts like actin forming dynamic filaments which drive the crawling of the nematode sperm.

1866 J.E. Italiano, M. Stewart and T.M. Roberts, *How the assembly dynamics of the nematode major sperm protein generate amoeboid cell motility*, Int. Rev. Cytology 202, 1-34 (2001).
Swimming of eukaryotic cells: beating of eukaryotic flagella

Earlier we have already pointed out that the beating of the eukaryotic flagella are driven by axonemal dynein motors which move by hydrolyzing ATP. Eukaryotic cells beat their cilia not only for motility, but, in some circumstances, also to move the surrounding medium with respect to the cell surface. For example, the cilia on the epithelium of the upper respiratory tracts beat to remove the dust and other foreign particles.

Now, the main question is: how does a flagellated eukaryotic cell exploit the patterns of beating of its flagellum for its swimming? This question is addressed by analyzing the hydrodynamic effects of the different patterns of beating of the flagellum.

Motility of flagellate protozoan from termites
35 Machine-driven cell division

35.1 Cell cycle

During its lifetime, before complete division of a parent cell into its two daughters, a cell goes through a sequence of states which are identified primarily by its shape and internal architecture.

35.2 Brief introduction to cell division: eukaryotes versus prokaryotes

Although each stage of the cell cycle is of interest to cell biologists, we are mainly interested in the machines and mechanisms involved in the different stages of cell division. In particular we focus attention on mitosis and cytokinesis.

35.3 Mitosis and chromosome segregation in eukaryotes: machines and mechanisms

Mitosis is a complex process whereby identical copies of the replicated genome are segregated so as to form the separate genomes of the two daughter cells which would result from the cell division. The bipolar machinery which carries out this process is called the mitotic spindle. A similar machinery, called the meiotic spindle, runs the related process of meiosis, which reduces the size of the genome by half to produce a haploid gamete from a diploid one. We shall consider separately a few important sub-steps of mitosis.

A large number of coordinated processes are involved in mitosis. These include, for example, spindle morphogenesis, chromosome condensation, sister chromatid separation, dynamic instability of the microtubules, depolymerase-driven length control of microtubules, walking of MT-associated motors on their tracks, etc. We have studied several of these active processes separately in the preceding sections. It is the integration of so many processes within a single theory of mitosis that poses the main conceptual challenge to theoretical modelers.

There are three different sources of forces which govern the dynamics of the mitotic spindle: (i) Forces generated by cytoskeletal motors which can capture microtubules and can also slide microtubules with respect to each other; (ii) pushing and pulling forces exerted by polymerizing and depolymerizing microtubules; (iii) spring-like forces which arise from the elastic stretching of the chromosomes. Moreover, the bending of the microtubules may have important consequences.

- Spindle morphogenesis

Both the mitotic spindle and the meiotic spindle are formed by microtubules (MT), MAPS and cytoskeletal motors. In principle, a spindle can form by one of the two different pathways. In the centrosome-directed pathway, the spindle starts from centrosomes (which are eventually located at the poles of the spindle) and grow towards the center by adding tubulin subunits at their plus ends. In contrast, in the chromosome-directed pathway, chromosomes induce MT assembly; but, the randomly oriented MTs require assistance of motor proteins to reorient properly so as to form the bipolar spindle.
1892. Vernos and E. Karsenti, *Motors involved in spindle assembly and chromosome*, Curr. Opin. Cell Biol. 8, 4-9 (1996).

1893. C.E. Walczak, I. Vernos, T.J. Mitchison, E. Karsenti and R. Heald, *A model for the proposed roles of different microtubule-based motors proteins in establishing spindle bipolarity*, Curr. Biol. 8, 903-913 (1998).

1894. S. Gadde and R. Heald, *Mechanisms and molecules of the mitotic spindle*, Curr. Biol. 14, R797-805 (2004).

1895. T. Wittmann, A. Hyman and A. Desai, *The spindle: a dynamic assembly of microtubules and motors*, Nat. Cell Biol. 3, E28-E34 (2001).

1896. A. Merdes and D.W. Cleveland, *Pathways of spindle pole formation: different mechanisms; conserved components*, J. Cell Biol. 138, 953-956 (1997).

1897. M. Kwon and J.M. Scholay, *Spindle mechanics and dynamics during mitosis in Drosophila*, Trends Cell Biol. 14, 194-205 (2004).

1898. A. Bannigan, M. Lizotte-Waniewski, M. Riley and T. I. Baskin, *Emerging molecular mechanisms that power and regulate the anastral mitotic spindle of flowering plants*, Cell Mot. and the Cytoskeleton 65, 1-11 (2008).

1899. M. Kwon and J.M. Scholay, *Spindle mechanics and dynamics during mitosis in Drosophila*, Trends Cell Biol. 14, 194-205 (2004).

1900. J. Mozziconacci, C. Lavelle, M. Barbi, A. Lesne and J.M. Victor, *A physical model for the condensation and decondensation of eukaryotic chromosomes*, FEBS Lett. 580, 368-372 (2006).

1901. K. Nasmyth, *Segregating sister genomes: the molecular biology of chromosome separation*, Science 297, 559-565 (2002).

1902. M. Petronczki, M.F. Siomos and K. Nasmyth, *Un ménage à quatre: the molecular biology of chromosome segregation in mitosis*, Cell 112, 423-440 (2003).

1903. K. Nasmyth and A. Schleiffer, *From a single double helix to paired double helices and back*, Phil. Trans. Roy. Soc. Lond. B 359, 99-108 (2004).
1913. J.R. Swedlow and T. Hirano, *The making of the mitotic chromosome: modern insights into classical questions*, Mol. Cell 11, 557-569 (2003).

1914. E. Watrin and V. Legagneux, *Introduction to chromosome dynamics in mitosis*, Biol. of the Cell 95, 507-513 (2003).

1915. A. Losada, *Cohesin regulation: fashionable ways to wear a ring*, Chromosoma 116, 321-329 (2007).

1916. T. Hirano, *Condensins: organizing and segregating the genome*, Curr. Biol. 15, R265-R275 (2005).

1917. K. Nasmyth, J.M. Peters and F. Uhlmann, *Splitting the chromosome: cutting the ties that bind sister chromatids*, Science 288, 1379-1384 (2000).

1918. K. Nasmyth, *Disseminating the genome: joining, resolving, and separating sister chromatids during mitosis and meiosis*, Annu. Rev. Genet. 35, 673-745 (2001).

1919. C.H. Haering and K. Nasmyth, *Building and breaking bridges between sister chromatids*, BioEssays 25, 1178-1191 (2003).

1920. D.E. Koshland and V. Guacci, *Sister chromatid cohesion: the beginning of a long and beautiful relationship*, Curr. Opin. Cell Biol. 12, 297-301 (2000).

1921. V. Guacci, *Sister chromatid cohesion: the cohesin cleavage model does not ring true*, Genes Cells 12, 693-708 (2007).

1922. F. Uhlmann, *Chromosome cohesion ad separation: from men and molecules*, Curr. Biol. 13, R104-R114 (2003).

1923. F. Uhlmann, *The mechanism of sister chromatid cohesion*, Exp. Cell Res. 15, 80-85 (2004).

1924. S. Weitzer, C. Lehane and F. Uhlmann, *A model for ATP-hydrolysis-dependent binding of cohesin to DNA*, Curr. Biol. 13, 1930-1940 (2003).

1925. J. Gregan and C. Rumpf, *How might DNA enter the cohesin ring?*, Cell Cycle 5, 2553-2554 (2006).

1926. S.V. Pavlova and S.M. Zakian, *Structural proteins of the SMC (structural maintenance of chromosomes) family and their role in chromatin reorganization*, Russian J. Genetics 39, 1097-1111 (2003).

1927. F. Uhlmann and K.P. Hopfner, *Chromosome biology: the crux of the ring*, Curr. Biol. 16, R102-R105 (2006).

1928. R. Jessberger, *The many functions of SMC proteins in chromosome dynamics*, Nat. Rev. Mol. Cell Biol. 3, 767-778 (2002).

1929. R. Jessberger, *SMC proteins at the crossroads of diverse chromosomal processes*, IUBMB Life 55, 643-652 (2003).

1930. R. Jessberger, *How to divorce engaged chromosomes?*, Mol. and Cell. Biol. 25, 18-22 (2005).

1931. E. Revenkova and R. Jessberger, *Keeping sister chromatids together: cohesins in meiosis*, Reproduction 130, 783-790 (2005).

1932. R.V. Skibbens, *Unzipped and loaded: the role of DNA helicases and RFC clamp-loading complexes in sister chromatid cohesion*, J. Cell Biol. 169, 841-846 (2005).

1933. D. Dorsett, *Roles of the sister chromatid cohesion apparatus in gene expression, development, and human syndromes*, Chromosoma 116, 1-13 (2007).

1934. M. Porter, G.A. Khoudoli and J.R. Swedlow, *Chromosome condensation: DNA compaction in real time*, Curr. Biol. 14, R554-R556 (2004).

1935. T.R. Strick, T. Kawaguchi and T. Hirano, *Real-time detection of single-molecule DNA compaction by condensin I*, Curr. Biol. 14, 874-880 (2004).
Several time-dependent quantities can be monitored during chromosome segregation to characterize the underlying dynamics. These include, for example, (a) separation between the spindle poles, (b) the distance between a kinetochore and the corresponding spindle pole, etc.

1946.C.L. Rieder and A. Khodjakov, *Mitosis through the microscope: advances in seeing inside live dividing cells*, Science **30**, 91-96 (2003).

1947.M. Sullivan and D.O. Morgan, *Finishing mitosis, one step at a time*, Nat. Rev. Mol. Cell Biol. **8**, 894-903 (2007).

1948.T.J. Mitchison and E.D. Salmon, *Mitosis: a history of division*, Nat. Cell Biol. **3**, E17-E21 (2001).

1949.J.R. Aist and N.R. Morris, *Mitosis in filamentous fungi: how we got where we are*, Fungal genetics and Biol. **27**, 1-25 (1999).

1950.C.E. Walczak, *Molecular mechanisms of spindle function*, Genome Biol. **1**, reviews101.1-101.4 (2000).

1951.S.L. Kline-Smith, S. Sandall and A. Desai, *Kinetochore-spindle microtubule interactions during mitosis*, Curr. Opin. Cell Biol. **17**, 35-46 (2005).

1952.J. Pines, *Mitosis: a matter of getting rid of the right protein at the right time*, Trends Cell Biol. **16**, 55-63 (2006).

1953.M.A. Hoyt, *Exit from mitosis: spindle pole power*, Cell **102**, 267-270 (2000).

1954.A.L. Marston and A. Amon, *Meiosis: cell-cycle controls shuffle and deal*, Nat. Rev. Mol. Cell Biol. **5**, 983-997 (2004).

1955.C.E. Walczak and T.J. Mitchison, *Kinesin-related proteins at mitotic spindle poles: function and regulation*, Cell **85**, 943-946 (1996).

1956.T.J. Yen and B.T. Schaar, *Kinetochore function: molecular motors, switches and gates*, Curr. Opin. Cell Biol. **8**, 381-388 (1996).

- **Chromosome motility**

We now focus on chromosome motility, i.e., the mechanism of pulling the chromosomes towards the two opposite poles by the motors and microtubules which form the spindle.
1957. R. Heald, *Motor function in the mitotic spindle*, Cell **102**, 399-402 (2000).

1958. E.R. Hildebrandt and M.A. Hoyt, *Mitotic motors in Saccharomyces cerevisiae*, Biochim. Biophys. Acta **1496**, 99-116 (2000).

1959. N.R. Barton and L.S. B. Goldstein, *Going mobile: microtubule motors and chromosome segregation*, PNAS **93**, 1735-1742 (1996).

1960. S.A. Endow, *Microtubule motors in spindle and chromosome motility*, Eur. J. Biochem. **262**, 12-18 (1999).

1961. D.J. Sharp, G.C. Rogers and J.M. Scholey, *Microtubule motors in mitosis*, Nature **407**, 41-47 (2000).

1962. J.M. Scholey, G.C. Rogers and D.J. Sharp, *Mitosis, microtubules, and the matrix*, J. Cell Biol. **154**, 261-266 (2001).

1963. S.C. Schuyler and D. Pellman, *Search, capture and signal: games microtubules and centrosomes play*, J. Cell Sci. **114**, 247-255 (2001).

1964. S. Brunet and I. Vernos, *Chromosome motors on the move: from motion to spindle checkpoint activity*, EMBO Rep. **2**, 669-673 (2001).

1965. D.W. Cleveland, Y. Mao and K.F. Sullivan, *Centromeres and kinetochores: from epigenetics to mitotic checkpoint signaling*, Cell **112**, 407-421 (2003).

1966. T.L. Hill, *Theoretical problems related to the attachment of microtubules to kinetochores*, PNAS **82**, 4404-4408 (1985).

1967. R.B. Niklas, *The forces that move chromosomes in mitosis*, Annu. Rev. Biophys. Biophys. Chem. **17**, 431-449 (1988).

1968. S. Inoue and E.D. Salmon, *Force generation by microtubule assembly/disassembly in mitosis and related movements*, Mol. Biol. of the Cell **6**, 1619-1640 (1995).

1969. A.P. Joglekar and A.J. Hunt, *A simple, mechanistic model for directional instability during mitotic chromosome movements*, Biophys. J. **83**, 42-58 (2002).

1970. J.R. McIntosh, E.L. Grishchuk and R.R. West, *Chromosome-microtubule interactions during mitosis*, Annu. Rev. Cell Dev. Biol. **18**, 193-219 (2002).

1971. M.K. Gardner, C.G. Pearson, B.L. Sprague, T.R. Zarzar, K. Bloom, E.D. Salmon and D.J. Odde, *Tension-dependent regulation of microtubule dynamics at kinetochores can explain metaphase congression in yeast*, Mol. Biol. of the cell **16**, 3764-3775 (2005).

1972. C.G. Pearson, M.K. Gardner, L.V. Paliulis, E.D. Salmon, D.J. Odde and K. Bloom, *Measuring nanometer scale gradients in spindle microtubule dynamics using model convolution microscopy*, Mol. Biol. of the cell **17**, 4069-4079 (2006).

1973. D.J. Odde, *Mitotic spindle: disturbing a subtle balance*, Curr. Biol. **15**, R956-R959 (2005).

1974. M.K. Gardner and D.J. Odde, *Modeling of chromosome motility during mitosis*, Curr. Opin. Cell Biol. **18**, 639-647 (2006).

1975. J.M. Scholey and A. Mogilner, *Mitotic spindle motors*, in: *Molecular Motors*, ed. M. Schliwa (Wiley-VCH, 2003).

1976. G.C. Scholay, D.J. Sharp, A. Mogilner and J.M. Scholey, *Model of chromosome motility in Drosophila Embryos: adaptation of a general mechanism for rapid mitosis*, Biophys. J. **90**, 3966-3982 (2006).

1977. A. Mogilner, R. Wollman, G. C. Scholey and J. Scholey, *Modeling mitosis*, Trends Cell Biol. **16**, 88-96 (2006).

1978. K.S. Bloom, *Beyond the code: the mechanical properties of DNA as they relate to mitosis*, Chromosoma **117**, 103-110 (2008).
35.4 Chromosome segregation in prokaryotes: machines and mechanisms

So far there are no convincing direct evidence for the existence of any mitotic spindle-like machinery in bacteria for post-replication segregation of chromosomes before cell division. However, there are more primitive motors which carry out chromosome segregation in bacteria.

1979S.K. Ghosh, S. Hajra, A. Paek and M. Jayaram, *Mechanisms for chromosome and plasmid segregation*, Annu. Rev. Biochem. **75**, 211-241 (2006).

1980Z. Gitai, *Plasmid segregation: a new class of cytoskeletal proteins emerges*, Curr. Biol. **16**, R133-R136 (2006).

1981F. Hayes and D. Barilla, *The bacterial segregation: a dynamic nucleoprotein machine for DNA trafficking and segregation*, Nat. Rev. Microbiol. **4**, 133-143 (2006).

1982C. Woldringh and N. Nanninga, *Structural and physical aspects of bacterial chromosome segregation*, J. Structural Biol. **156**, 273-283 (2006).

1983K. Pogliano, J. Pogliano and E. Becker, *Chromosome segregation in eubacteria*, Curr. Opin. Microbiol. **6**, 586-593 (2003).

1984T.A. Leonard, J. Moller-Jensen and J. Löwe, *Towards understanding the molecular basis of bacterial DNasegregation*, Phil. Trans. Roy. Soc. Lond. B **360**, 523-535 (2005).

1985J. Errington, H. Murray and L.J. Wu, *Diversity and redundancy in bacterial chromosome segregation mechanisms*, Phil. Trans. Roy. Soc. Lond. B **360**, 497-505 (2005).

1986P.J. Lewis, *Bacterial chromosome segregation*, Microbiol. **147**, 519-526 (2001).

1987R. Hazan and S. BenYehuda, *Resolving chromosome segregation in bacteria*, J. Mol. Microbiol. Biotechnol. **11**, 126-139 (2006).

• FtsK: Chromosome segregation machine in E-coli

1988S. Bigot, V. Sivanathan, C. Possoz, F. X. Barre and F. Cornet, *FtsK, a literate chromosome segregation machine*, Mol. Microbiol. **64**(6), 1434-1441 (2007).

1989T.R. Strick and A. Quesada-Vial, *FtsK: a groovy helicase*, Nat. Str. and Mol. Biol. **13**, 948-950 (2006).

1990S. Bigot, O.A. Saleh, F. Cornet, J.F. Allemand and F.X. Barre, *Oriented loading of FtsK on KOPS*, Nat. Str. Molec. Biol. **13**, 1026-1028 (2006).

1991P.J. Pease, O. Levy, G.J. Cost, J. Gore, J.L. Ptacin, D. Sherrat, C. Bustamaunte and N.R. Cozzarelli, *Sequence-directed DNA translocation by purified FtsK*, Science **307**, 586-590 (2005).

1992O. Levy, J.L. Ptacin, P.J. Pease, J. Gore, M.B. Eisen, C. Bustamaunte and N.R. Cozzarelli, *Identification of oligonucleotide sequences that direct the movement of the Escherichia coli FtsK translocase*, PNAS **102**, 17618-17623 (2005).

1993J.L. Ptacin, M. Nöllmann, C. Bustamante and N.R. Cozzarelli, *Identification of the FtsK sequence-recognition domain*, Nat. Str. and molec. Biol. **13**, 1023-1025 (2006).

1994T.H. Massey, C.P. Mercogliano, J. Yates, D.J. Sherrat and J. Löwe, *Double-stranded DNA translocation: structure and mechanism of hexameric FtsK*, Mol. Cell, **23**, 457-469 (2006).

• SpoIIIE: Chromosome segregation machine in Bacillus subtilis

Normally *Bacillus subtilis*, a rod shaped bacterium, divides to two similar daughter cells. However, under some special circumstances, which leads to spore formation, a *Bacillus subtilis* divides asymmetrically into a small prespore and a larger mother cell. The translocation of the chromosome into the small prespore compartment is carried out by the motor protein
SpoIIIE. Most of the fundamental questions on its operational mechanism are similar to those generic ones for helicases and translocases (including packaging motors for viral capsids). In particular, how does SpoIIIE, which anchors itself at the septum between the two compartments, translocate the DNA in the desired direction, namely, from the larger to the smaller compartment? in the

1995 J.L. Ptacin, M. Nollmann, E.C. Becker, N.R. Cozzarelli, K. Pogliano and C. Bustamante, Sequence-directed DNA export guides chromosome translocation during sporulation in Bacillus subtilis, Nat. Str. Mol. Biol. 15, 485-493 (2008).

1996 J. Bath, L.J. Wu, J. Errington and J.C. Wang, Role of Bacillus subtilis SpoIIIE in DNA transport across the mother cell-prespore division septum, Science 290, 995-997 (2000).

1997 J. Errington, Septation and chromosome segregation during sporulation in Bacillus subtilis, Curr. Opin. Microbiol. 4, 600-666 (2001).

1998 J. Errington, J. Bath and L.J. Wu, DNA transport in bacteria, Nat. Rev. Mol. Cell Biol. 2, 538-544 (2001).

35.5 Eukaryotic cell cytokinesis: machines and mechanisms

The last step in cell division involves the physical separation of the contents (including the cytoplasm) of the parent cell into the two daughter cells. This process is called cytokinesis.

- Cytokinesis in animal cells

In dividing cells of animals and fungi, an actomyosin ring forms in the middle of the cell and its contraction generates the force required for cytokinesis. In other words, cytokinesis in animals and fungi is driven by a coordinated operation of the cell membrane and a cytoskeletal motor-filament system. How is the equatorial plane recognized by actin? Do the actin filaments nucleate in the equatorial plane of the cell itself or are the actin filaments transported there from elsewhere? How are the actin filaments and the myosin motors organized and how do they interact so as to generate the force responsible for furrow ingress? Do the actin filaments work like a tightening “purse string” or do the actin filaments work like a radially shrinking spokes of a bicycle wheel?

1999 R. Rapaport, Cytokinesis in animal cells, (Cambridge University Press, 1996).

2000 F.A. Barr and U. Gruneberg, Cytokinesis: placing and making the final cut, Cell 131, 847-860 (2007).

2001 M. Glotzer, Animal cell cytokinesis, Annu. Rev. Cell Dev. Biol. 17, 351-386 (2001).

2002 M. Glotzer, The molecular requirements for cytokinesis, Science 307, 1735-1739 (2005).

2003 U.S. Eggert, T.J. Mitchison and C.M. Field, Animal cytokinesis: from parts list to mechanisms, Annu. Rev. Biochem. 75, 543-566 (2006).

2004 M.K. Balasubramanian, E. Bi and M. Glotzer, Comparative analysis of cytokinesis in budding yeast, fission yeast and animal cells, Curr. Biol. 14, R806-R818 (2004).

2005 G. Gerisch and I. Weber, Cytokinesis without myosin II, Curr. Opin. Cell Biol. 12, 126-132 (2000).

2006 C.A. Konopka, J.B. Schleede, A.R. Skop and S.Y. Bednarek, Dynamin and cytokinesis, Traffic 7, 239-247 (2006).

2007 D.N. Robinson, Cell division: biochemically controlled mechanics, Curr. Biol. 11, R737-R740 (2001).

2008 D.N. Robinson and J.A. Spudich, Mechanics and regulation of cytokinesis, Curr. Opin. Cell Biol. 16, 182-188 (2004).

2009 A. Zumdieck, M.C. Lagomarsino, C. Tanase, K. Kruse, B. Mulder, M. Dogterom and F. Jülicher, Continuum description of the cytoskeleton: ring formation in the cell cortex, Phys. Rev. Lett. 95, 258103 (2005).
2010A. Zumdieck, K. Kruse, H. Bringmann, A.A. Hyman and F. Jülicher, Stress generation and filament turnover during actin ring constriction, PLoS ONE 2, e696 (2007).

2011P. Gönczy, Mechanisms of asymmetric cell division: flies and worms pave the way, Nat. Rev. Mol. Cell Biol. 9, 355–366 (2008).

2012J.A. Kalschmidt and A.H. Brand, Asymmetric cell division: microtubule dynamics and spindle asymmetry, J. Cell Sci. 115, 2257–2264 (2002).

2013S.W. Grill, J. Howard, E. Schäffer, E.H.K. Stelzer and A.A. Hyman, The distribution of active force generators control mitotic spindle position, Science 301, 518–521 (2003).

2014S.W. Grill, K. Kruse and F. Jülicher, Theory of mitotic spindle oscillations, Phys. Rev. Lett. 94, 108104 (2005).

2015J. Pecreaux, J.C. Röper, K. Kruse, F. Jülicher, A. Hyman, S. Grill and J. Howard, Spindle oscillations during asymmetric cell division require a threshold number of active cortical force generators, Curr. Biol. 16, 2111–2122 (2006).

• Cytokinesis in plant cells
The mechanism of cytokinesis in plant cells is quite different from that in cells of animals and fungi.

2016G. Jürgens, Cytokinesis in higher plants, Annu. Rev. Plant Biol. 56, 81–99 (2005).

2017G. Jürgens, Plany cytokinesis: fission by fusion, Trends cell Biol. 15, 277–283 (2005).

35.6 Prokaryotic cell cytokinesis: machines and mechanisms
For bacterial cells, the mechanisms of locating the mid-cell and those of cytokinesis are now quite well understood. An interesting finding of the experiments is that eukaryotic cells use microtubule-based machiriy for chromosome movements and actin-based machinery for cytokinesis. In sharp contrast, prokaryotic cells do just the reverse.

2018D. Bramhill, Bacterial cell division, Annu. Rev. Cell Dev. Biol. 13, 395–424 (1997).

2019K. Gresdes, J. Möller-Jensen, G. Ebersbach, T. Kruse and K. Nordström, Bacterial mitotic machineries, Cell 116, 359–366 (2004).

2020J. Lutkenhaus, Assembly dynamics of the bacterial MinCDE system and spatial regulation of the Z-ring, Annu. Rev. Biochem. 76, 539–562 (2007).

2021N.W. Goehring and J. Beckwith, Diverse paths to midcell: assembly of the bacterial cell division machinery, Curr. Biol. 15, R514-R526 (2005).

2022K. Kruse, M. Howard and W. Margolin, An experimentalist’s guide to computational modelling of the Min system, Mol. Microbiol. 63, 1279-1284 (2007).

2023F. Tostevin and M. Howard, A stochastic model of min oscillations in Escherichia coli and min protein segregation during cell division, Phys. Biol. 3, 1–12 (2006).

2024M. Howard and A.D. Rutenberg, Pattern formation inside bacteria: fluctuations due to the low copy number of proteins, Phys. Rev. Lett. 90, 128102 (2003).

2025M. Howard, A.D. Rutenberg and S. de Vet, Dynamic compartmentalization of bacteria: accurate division in E.coli, Phys. Rev. Lett. 87, 278102 (2001).

2026D.S. Weiss, Bacterial cell division and the septal ring, Mol. Microbiol. 54, 588–597 (2004).

2027W. Margolin, FtsZ and the division of prokaryotic cells and organelles, Nat. Rev. Mol. Cell Biol. 6, 862–871 (2005).

2028I. Hörger, E. Velasco, J. Mingorance, G. Rivas, P. Tarazona and M. Velez, Langevin computer simulations of bacterial protein filaments and force-generating mechanism during cell division, Phys. Rev. E 77, 011902 (2008).
35.7 Division of mitochondria and chloroplasts

Mitochondria and plastids (including chloroplasts) have their own distinct genomes. The division of these organelles can also be broken up into the following major events: (i) organellar chromosome separation, and (ii) organellokinesis, which would be the analogue of cytokinesis.

2030 K.W. Osteryoung, *Organelles fission in eukaryotes*, Curr. Opin. Microbiol. 4, 639-646 (2001).

2031 K.W. Osteryoung and J. Nunnari, *The division of endosymbiotic organelles*, Science 302, 1698-1704 (2003).

2032 T. Kuroiwa, J. Electron Microscopy 49, 123-134 (2000).

2033 S. Hoppins, L. Lackner and J. Nunnari, *The machines that divide and fuse mitochondria*, Annu. Rev. Biochem. 76, 751-780 (2007).

2034 T. Kuroiwa, K. Nishida, Y. Yoshida, T. Fujiwara, T. Mori, H. Kuroiwa and O. Misumi, *Structure, function and evolution of the mitochondrial division apparatus*, Biochim. Biophys. Acta 1763, 510-521 (2006).

2035 E. Lopez-Juez, *Plastid biogenesis, between light and shadows*, J. Expt. Botany, 58, 11-26 (2007).

2036 J. Maple and S.G. Moller, *Plastid division: evolution, mechanism and complexity*, Annals of Botany 99, 565-579 (2007).

2037 A.E. Tveitaskog, J. Maple and S.G. Moller, *Plastid division in an evolutionary context*, Biol. Chem. 388, 937-942 (2007).

2038 J.M. Glynn, S. Miyagishima, D.W. Yoder, K.W. Osteryoung and S. Vitha, *Chloroplast division*, Traffic 8, 451-461 (2007).

35.8 Division of peroxisomes

Just as mitochondria are the powerhouses of eukaryotic cells, peroxisomes are often regarded as the garbage pail of the cell. The division of peroxisomes can be divided roughly into three stages: (a) elongation of the peroxisome, (b) constriction of peroxisomal membrane, and (c) fission of the peroxisome. In spite of fundamental differences in their structure and function, mitochondria and peroxisomes share quite a few components of the machineries which drive their fission. For example, dynamin-like proteins, which are involved in the fission of mitochondria, also form the ring that is required for the fission of peroxisomes.

2040 A. Fagarasanu, M. Fagarasanu and R.A. Rachubinski, *Maintaining peroxisome populations: a story of division and inheritance*, Annu. Rev. Cell and Dev. Biol. 23, 321-344 (2007).

2041 N. Rayapuram and S. Subramani, *The control of peroxisome number and size during division and proliferation*, Curr. Opin. Cell Biol. 17, 376-383 (2005).

2042 N. Rayapuram and S. Subramani, *The importer- a peroxisomal membrane complex involved in protein translocation into the peroxisome matrix*, Biochim. Biophys. Acta 1763, 1613-1619 (2006).

2043 M. Schrader and H.D. Fahimi, *Growth and division of peroxisomes*, Int. Rev. Cytology 255, 237-290 (2006).

2044 M. Schrader, *Shared components of mitochondrial and peroxisomal division*, Biochim. Biophys. Acta 1763, 531-541 (2006).

2045 M. Schrader and Y. Yoon, *Mitochondria and peroxisomes: are the ‘big brother’ and th ‘little sister’ closer than assumed?*, Bioessays 29, 1105-1114 (2007).
35.9 Stem cell division

Asymmetry in cell division have already provided some insights into the plausible mechanisms of asymmetric division of self-renewing stem cells in mammals.

2046 J.A. Knoblich, *Mechanisms of asymmetric stem cell division*, Cell 132, 583-597 (2008).

2047 S.J. Morrison and J. Kimble, *Asymmetric and symmetric stem-cell divisions in development and cancer*, Nature 441, 1068-1074 (2006).

35.10 Coordination between replication, recombination and segregation

2048 J.J. Blow and T.U. Tanaka, *The chromosome cycle: coordinating replication and segregation*, EMBO Rep. 6, 1028-1034 (2005).

2049 F.X. Barre, B. Soballe, B. Michel, M. Aroyo, M. Robertson and D. Sherratt, *Circles: the replication-recombination-chromosome segregation connection*, PNAS 98, 8189-8195 (2001).

35.11 Role of motors in development

2050 A. Wodarz, *Establishing cell polarity in development*, Nat. Cell Biol. 4, E39-E44 (2002).

2051 W.J. Nelson, *Adaptation of core mechanisms to generate cell polarity*, Nature 422, 766-774 (2003).

2052 D.M. Supp, S.S. Potter and M. Brueckner, *Molecular motors: the driving force behind left-right development*, Trends Cell Biol. 10, 41-45 (2000).

36 Miscellaneous natural and artificial molecular machines

36.1 Prestin

Prestin is a transmembrane protein in the outer hair cells of the cochlea, an important constituent of the mammalian hearing organ. It is a unique machine in the sense that it is an electro-mechanical transducer that converts electrical input directly into mechanical output.

2053 P. Dallos, J. Zheng and M.A. Cheatham, *Prestin and the cochlear amplifier*, J. Physiol. 576, 37-42 (2006).

2054 D.Z.Z. He, S. Jia and P. Dallos, *Prestin and the dynamic stiffness of cochlear outer hair cells*, J. Neurosci. 23, 9089-9096 (2003).

2055 P. Dallos and B. Fakler, *Prestin, a new type of motor protein*, Nat. Rev. Mol. Cell Biol. 3, 104-111 (2002).

2056 J. Zheng, W. Shen, D.Z.Z. He, K.B. Long, L.D. Madison and P. Dallos, *Prestin is the motor protein of cochlear outer hair cells*, Nature 405, 149-155 (2000).

2057 M.P. Scherer and A.W. Gummer, *How many states can the motor molecule, prestin, assume in an electric field?* Biophys. J. 88, L27-L29 (2005).

36.2 G-proteins

2058 Y. Takai, T. Sasaki and T. Matozaki, *Small GTP-binding proteins*, Physiological Reviews, 81, 153-208 (2001).

2059 P.G. Charest and R.A. Firtel, *Big roles for small GTPases in the control of directed cell movement*, Biochem. J. 401, 377-390 (2007).

2060 H.R. Bourne, D.A. Sanders and F. McCormick, *The GTPase superfamily: a conserved switch
for diverse cell functions, Nature 348, 125-132 (1990).

2061 H.R. Bourne, D.A. Sanders and F. McCormick, The GTPase superfamily: conserved structure and molecular mechanism, Nature 349, 117-127 (1991).

2062 K. Wennerberg, K.L. Rossman and C.J. Der, The Ras superfamily at a glance, J. Cell Science 118, 843-846 (2005).

2063 K. Wennerberg and C.J. Der, Rho-family GTPases: it’s not only Rac and Rho (and I like it), J. Cell Science 117, 1301-1312 (2004).

2064 S. Etienne-Manneville and A. Hall, Rho GTPases in cell biology, Nature 420, 629-635 (2002).

2065 B. B. Quimby and M. Dasso, The small GTPase Ran: interpreting the signs, Curr. Opin. Cell Biol. 15, 338-344 (2003).

2066 J. Joseph, Ran at a glance, J. Cell Science 119, 3481-3484 (2006).

2067 J.A. Hammer and X. S. Wu, Rab grab motors: defining the connections between Rab GTPases and motor proteins, Curr. Opin. Cell Biol. 14, 69-75 (2002).

2068 R.D. Vale, Switches, latches and amplifiers: common themes of G proteins and molecular motors, J. Cell Biol. 135, 291-302 (1996).

2069 F.J. Kull, R.D. Vale and R.J. Fletterick, The case for a common ancestor: kinesin and myosin motor proteins and G proteins, J. Muscle Res. and Cell Motility, 19, 877-886 (1998).

2070 I. Kosztin, R. Bruinsma, P. O'Lague and K. Schulten, Mechanical force generation by G proteins, PNAS 99, 3575-3580 (2002).

36.3 Common structural features-AAA+ superfamily

2071 R.D. Vale, AAA proteins: lords of the ring, J. Cell Biol. 150, F13-F19 (2000).

2072 M.R. Maurizi and C.C. H. Li, AAA proteins: in search of a common molecular basis, EMBO Rep. 2, 980-985 (2001).

2073 M. Ammelburg, T. Frickey and A.N. Lupas, classification of AAA+ proteins, J. Str. Biol. 156, 2-11 (2006).

2074 L.M. Iyer, D.D. Leipe, E.V. Koonin and L. Aravind, Evolutionary history and higher order classification, J. Str. Biol. 146, 11-31 (2004).

2075 P.I. Hanson and S.W. Whiteheart, AAA+ proteins: have engine, will work, Nat. Rev. Mol. Cell Biol. 6, 519-529 (2005).

2076 S. Dalal and P.I. Hanson, Membrane traffic: what drives the AAA motor?, Cell 104, 5-8 (2001).

2077 T. Ogura and A.J. Wilkinson, AAA+ superfamily ATPases: common structure-diverse function, Genes to Cells 6, 575-597 (2001).

2078 S.E. Ades, AAA+ molecular machines: firing on all cylinders, Curr. Biol. 16, R46-R48 (2006).

2079 A. Martin, T.A. Baker and R.T. Sauer, Rebuilt AAA+ motors reveal operating principles of ATP-fuelled machines, Nature 437, 1115-1120 (2005).

2080 J.P. Erzberger and J.M. Berger, Evolutionary relationships and structural mechanisms of AAA+ proteins, Annu. Rev. Biophys. Biomol. Struct. 35, 93-114 (2006).

2081 S. Patel and M. Latterich, The AAA team: related ATPases with diverse functions, Trends Cell Biol. 8, 65-71 (1998).

2082 P.A. Tucker and L. Sallai, The aAA+ superfamily- a myriad of motions, Curr. Opin. Struct. Biol. 17, 641-652 (2007).

2083 J. Snider and W.A. Houry, AAA+ proteins: diversity in function, similarity in structure, Biochem. Soc. Trans. 36, 72-77 (2008).
2084 J. Wang, *Nucleotide-dependent domain motions within the rings of the RecA/AAA(+)-superfamily*, J. Struct. Biol. **148**, 259-267 (2004).

36.4 Common structural features—RecA-like domains
2085 J. Ye, A.R. Osborne, M. Groll and T.A. Rapaport, *RecA-like motor ATPases—lessons from structures*, Biochim. Biophys. Acta **1659**, 1-18 (2004).

37 Collective oscillations in active systems
2086 K. Kruse and F. Jülicher, *Oscillations in cell biology*, Curr. Opin. Cell Biol. **17**, 20-26 (2005).
2087 A. Vilfan and E. Frey, *Oscillations in molecular motor assemblies*, J. Phys. Condens. Matter **17**, S3901-S3911 (2005).

38 Molecular biomimetics—bottom-up approach to nano-technology

Initially, technology was synonymous with macro-technology. The first tools applied by primitive humans were, perhaps, wooden sticks and stone blades. Later, as early civilizations started using levers, pulleys and wheels for erecting enormous structures like pyramids. Until nineteenth century, watch makers were, perhaps, the only people working with small machines. Using magnifying glasses, they worked with machines as small as 0.1mm. Micro-technology, dealing with machines at the length scale of micrometers, was driven, in the second half of the twentieth century, largely by the computer miniaturization.

In 1959, Richard Feynman delivered a talk at a meeting of the American Physical Society. In this talk, entitled “There’s Plenty of Room at the Bottom”, Feynman drew attention of the scientific community to the unlimited possibilities of manipulating and controlling things on the scale of nano-meters. This famous talk is now accepted by the majority of physicists as the defining moment of nano-technology. In the same talk, in his characteristic style, Feynman noted that “many of the cells are very tiny, but they are very active, they manufacture various substances, they walk around, they wiggle, and they do all kinds of wonderful things—all on a very small scale”.

From the perspective of applied research, the natural molecular machines opened up a new frontier of nano-technology. The miniaturization of components for the fabrication of useful devices, which are essential for modern technology, is currently being pursued by engineers following mostly a top-down (from larger to smaller) approach. On the other hand, an alternative approach, pursued mostly by chemists, is a bottom-up (from smaller to larger) approach. We can benefit from Nature’s billion year experience in nano-technology. We have given a long list of studies completed so far on the architectural design of a natural nanomachine, identification of its components and monitoring the spatio-temporal coordination of these components in the overall operation of the machine. The lessons learnt from such investigations can then be utilized to design and synthesize artificial nanomachines. In fact, the term biomimetics has already become a popular buzzword; this field deals with the design of artificial machines utilizing the principles of natural bio-machines. Even nanobotics may no longer be a distant dream.

2088 R. P. Feynman 1959, included also in: *The pleasure of finding things out*, (Perseus Books, Cambridge, Massachusetts, 1999), chapter 5.
2089 A. Junk and F. Riess, *From an idea to a vision: there’s plenty of room at the bottom*, Am. J. Phys. **74**, 825-830 (2006).
2090 G.M. Whitesides, *The once and future nanomachine*, Sci. Amer. **285**, Sept. 70-75 (2001).
2091 D.S. Goodsell, *Bionanotechnology: lessons from Nature*, (Wiley, 2004).
2092 M.G. van der Heuvel and C. Dekker, *Motor proteins at work for nanotechnology*, Science **317**, 333-336 (2007).
2093. B.S. Lee, S.C. Lee and L.S. Holliday, *Biochemistry of mechanoenzymes: biological motors for nanotechnology*, Biomedical microdevices, **5**, 269-280 (2003).

2094. P. Ball, *Natural strategies for the molecular engineer*, Nanotechnology, **13**, R15-R28 (2002).

2095. P.D. Vogel, *Nature’s design of nanomotors*, Eur. J. Pharmaceutics and Biopharmaceutics, **60**, 267-277 (2005).

2096. V. Balzani, M. Venturi and A. Credi, *Molecular devices and machines: a journey into the nanoworld* (Wiley-VCH, 2003).

2097. Y. Bar-Cohen, ed. *Biomimetics: biologically inspired technologies* (Taylor and Francis, 2005).

2098. M. Sarikaya, C. Tamerler, A. K.-Y. Jen, K. Schulten and F. Baneyx, *Molecular biomimetics: nanotechnology through biology*, Nat. Materials, **2**, 577-585 (2003).

2099. K. Kinbara and T. Aida, *Toward Intelligent Molecular Machines: Directed Motions of Biological and Artificial Molecules and Assemblies*, Chem. Rev., **105**, 1377-1400 (2005).

2100. H. Hess and V. Vogel, *Molecular shuttles based on motor proteins: active transport in synthetic environments*, Rev. Molecular Biotech. **82**, 67-85 (2001).

2101. H. Hess and G.D. Bachand, *Biomolecular motors*, Nanotoday, 22-29, Dec. (2005).

2102. G.S. Kottas, L.I. Clarke, D. Horinek and J. Michl, *Artificial molecular rotors*, Chem Rev. **105**, 1281-1376 (2005).

2103. A. Ummat, A. Dubey and C. Mavroidis, *Bio-nanorobotics: a field inspired by Nature*, in: *Biomimetics - Biologically Inspired Technologies*, Ed. Y. Bar-Cohen (CRC Press, 2005).

2104. W.R. Browne and B.L. Feringa, *Making molecular machines work*, Nat. Nanotechnol. **1**, 25-35 (2006).

ACKNOWLEDGMENTS A subset of these references served as the core content of a course on natural nanomachines which I have taught a few times at IIT Kanpur. It is my great pleasure to thank all my students whose stimulating and thought provoking questions have helped me in organizing a vast area of research topics in a sequence of coherent themes. I thank my research collaborators Aakash Basu, Meredith Betterton, Ashok Garai, Manoj Gopalakrishnan, Bindu Govindan, Philip Greulich, Katsuhiko Nishinari, Yasushi Okada, T. V. Ramakrishnan, Andreas Schadschneider, Tripti Tripathi and Jian-Sheng Wang for enjoyable collaborations on molecular machines. I also thank Debasish Chaudhuri, Eric Galburt, Stephan Grill, Joe Howard, Frank Jülicher, Stefan Klumpp, Anatoly Kolomeisky, Benjamin Lindner, Reinhard Lipowsky, Roop Mallik, Gautam Menon, Alex Mogilner, Francois Nedelec, Sriram Ramaswamy, Krishanu Ray, Gunter Schütz and Thomas Surrey for valuable discussions on molecular machines. My research on molecular machines have been supported by CSIR (India). I thank the Visitors Program of MPI-PKS Dresden (Germany), EMBL Heidelberg (Germany), Forschungszentrum Jülich (Germany), Theoretical Physics Department of University of Cologne (Germany), Physics department of NUS (Singapore), Physics department of IISc Bangalore (India), Department of Biological Sciences of TIFR Mumbai (India), National Center for Biological Sciences Bangalore (India) and Raman Research Institute Bangalore (India) for their generous hospitalities during the compilation of this resource letter over the last few years.