β-D-Galactopyranosyl-(1→4)–2-amino-2-deoxy-α-D-glucopyranose hydrochloride monohydrate (lactosamine)

Valeri V. Mossine, a, * Steven P. Kelley b and Thomas P. Mawhinney a

*Department of Biochemistry, University of Missouri, Columbia, MO 65211, USA, and bDepartment of Chemistry, University of Missouri, Columbia, MO 65211, USA. *Correspondence e-mail: mossinev@missouri.edu

The title compound, C12H24NO10 + Cl−·H2O, (I), crystallizes in the monoclinic space group P21 and exists as a monohydrate of a monosubstituted ammonium chloride salt, with the reducing carbohydrate portion existing exclusively as the α-pyranose tautomer. The glycosidic bond geometry in (I) is stabilized by an intramolecular hydrogen bond and is close to that found in crystalline α-lactose. All heteroatoms except glucopyranose ring O4 participate in an extensive hydrogen-bonding network, which propagates in all directions in the crystal structure of (I).

Structure description

Lactosamine is an important endogenous and food-related glycoepitope that provides for recognition of glycoproteins by both plant and animal β-galactoside-specific lectins, such as tomato lectin (Acarin et al., 1994) or a family of mammalian galectins (Boscher et al., 2011; Mossine et al., 2008). In free and oligomeric form, N-acetyllactosamine is present in human milk and is believed to participate in the immune protection of infants (Kulinich & Liu, 2016). Therefore, structural aspects of lactosamine interaction with carbohydrate-recognition proteins are of significant interest to the biomedical glycobiology field (Seetharaman et al., 1998; Guardia et al., 2011). As a part of our research program on the structure and anti-tumorigenic potential of aminoglycoconjugates (Glinskii et al., 2012; Mossine et al., 2018), we have prepared a number of 2-amino-2-deoxysaccharides, including lactosamine. Although the crystal parameters and hydrogen-bonding geometry of (I) were previously reported in a patent (Dekany et al., 2014), no other structural data have been provided. Here we report details of the molecular geometry of (I) and compare it to related disaccharide structures.
Table 1
Conformational features (Å, °) of the glycosidic bond in (I) and related disaccharide structures with the Gal-β1→4-Glc link.

Sugar	Tautomer, conformation	τ	Φ	Ψ	Intramolecular contacts around glycosidic bond (O···H; O···O; O···H—O)
Gal-β1→4-GlcNH₂Cl−·H₂O (I)⁷	α-pyranose, 4C₁	116.0	−95.2	+90.7	O10···H−O2 (1.98; 2.743; 159)
Gal-β1→4-GlcNHCOCH₂H₂O (N-acetyllactosamine, LacNAc·H₂O)⁸	α-pyranose, 4C₁b	116.3	−88.1	+97.8	O5···H−O2 (2.64; 2.964; 106)
LacNAc/ toad galectin⁹	α-pyranose, 4C₁	118.2; 113.6	−66.9; −67.8	+132.4; +132.6	O5···H−O6 (2.40; 2.868; 122)
Gal-β1→4-Glc·H₂O (α-lactose)⁹	α-pyranose, 4C₁a	117.1	−75	+135	O10···H−O2 (2.02; 2.819; 159)
Gal-β1→4-Glc (β-lactose)⁹	β-pyranose, 4C₁	116.5	−76.3	+106.4	O10···H−O2 (n.d.; 2.707; 101)
Gal-β1→4-Glc·HCOCH₂H₂O (N-acetyllactosamine)⁹	β-pyranose, 4C₁a	117.4	−89.3	+81.5	O5···H−O2 (2.06; 2.767; 144)

Notes: (a) This work; (b) Longchambon et al. (1981); (c) Blanchet et al. (2000); (d) Imberty et al. (1991); (e) Smith et al. (2005); (f) Hirotsu & Shimada (1974); (g) Lakshmanan et al. (2001).

The molecular structure and atomic numbering for the title compound (I) are shown in Fig. 1. Lactosamine is a disaccharide made of the non-reducing β-D-galactoside unit and the α-glucosamine portion, which is a reducing end sugar moiety and thus can exist in several tautomeric forms, such as α- and β-pyranose, or α- and β-furanose. In the crystalline state of (I), the α-glucosamine residue exists exclusively as the α-pyranose anomer, which is also a predominant tautomer in aqueous solutions of lactosamine (Dekany et al., 2014). The amino group in (I) is protonated, as would be expected for a hydrochloride salt. The conformation of the α-glucosamine α-pyranose ring is a relaxed 4C₁ chair, with puckering parameters 〈Q₁, 〈θ₁, 〈φ₁〉. The β-galactoside β-pyranose ring similarly adopts the 4C₁ conformation, with puckering parameters 〈Q₂, 〈θ₂, 〈φ₂〉. The conformation around the β1→4 glycosidic link in disaccharide (I) is an important structural characteristic and, for the purpose of the structure comparison, can be conventionally described by the valence angle C4—O5—C7 (also referred to as 'τ'), torsion angles C4—O5—C7—O10 (Ψ) and C3—C4—O5—C7 (Ψ). As can be seen in Table 1, values of these angles are typical for other Gal-β1→4-Glc disaccharides, with α-lactose monohydrate (Smith et al., 2005) being conformationally the closest structure to (I). It is believed that the O10···H—O intramolecular hydrogen bond linking the two carbohydrate units is primarily responsible for stabilization of the spatial arrangement around the glycosidic bond, both in the crystal state and in solutions of Gal-β1→4-Glc di- and oligosaccharides (Imberty et al. 1991). Moreover, this contact may be further stabilized by its involvement in multicenter hydrogen-bonding patterns. For instance, the H2 proton is involved in bifurcated hydrogen bonding with the O5 and O10 acceptors in (I) and α-lactose (Tables 2 and 3), while in N-acetyllactosamine (Longchambon et al., 1981) and N-acetyllactosamine (Lakshmanan et al., 2001), additional intramolecular links between the galactopyranoside and glucopyranose moieties are represented by the O5···H6—O6 and the O9···H2—O2 contacts, respectively (Table 2).

The molecular packing of (I) features an extensive intermolecular hydrogen-bonding network (Table 2), which propagates in all directions (Fig. 2). The ammonium groups, chloride ions, and water molecules serve as the hydrogen-bonding network ‘hubs’, each being in short, H-mediated, contact with four or five heteroatoms. For the ammonium group, these are O1, O7, O8, and two different O1W; the chloride ions are in contact with O1, O3, O8, and O1W; the water molecules are involved in the network by serving as both donors (to Cl1 and O3) and acceptors (to two different H1A—N1—H1C groups) of strong hydrogen bonding.

Figure 1
Atomic numbering and displacement ellipsoids at the 50% probability level for (I). Hydrogen bonds are shown as dotted lines.

Figure 2
The molecular packing in (I) as viewed along the c axis. Hydrogen bonds are shown as cyan dotted lines.
The synthesis of (I) was performed following a Heyns rearrangement protocol described previously by Wrodnigg & Stütz (1999). A mixture of 34.2 g (100 mmoles) of ß-lactose and 75 ml (700 mmoles) of benzylamine was stirred for 18 h in a screw-capped glass flask at 318 K. The reaction progress was followed by TLC. The excess of benzylamine was removed by four successive extractions with benzene (2 L total), the residue was dissolved in 500 ml MeOH containing 20 ml of glacial acetic acid and left for 18 h at room temperature. The reaction mixture was then hydrogenated in the presence of 2.0 g of 10% Pd/C and 5 ml of 80% formic acid, until the reaction was judged complete by TLC. After filtration, the solvents were removed under reduced pressure, a syrupy residue was dissolved in 1.5 L of water and passed through a column charged with 250 ml of ion-exchange resin Amberlite IRN-77 (H⁺-form). The column was washed with water and eluted with 0.2 M ammonium acetate. The eluate fractions containing lactosamine were pooled, evaporated to a syrup, and the syrup was kept at 277 K to produce crystalline material suitable for the X-ray diffraction studies.

Synthesis and crystallization

The synthesis of (I) was performed following a Heyns rearrangement protocol described previously by Wrodnigg & Stütz (1999). A mixture of 34.2 g (100 mmoles) of ß-lactose and 75 ml (700 mmoles) of benzylamine was stirred for 18 h in a screw-capped glass flask at 318 K. The reaction progress was followed by TLC. The excess of benzylamine was removed by four successive extractions with benzene (2 L total), the residue was dissolved in 500 ml MeOH containing 20 ml of glacial acetic acid and left for 18 h at room temperature. The reaction mixture was then hydrogenated in the presence of 2.0 g of 10% Pd/C and 5 ml of 80% formic acid, until the reaction was judged complete by TLC. After filtration, the solvents were removed under reduced pressure, a syrupy residue was dissolved in 1.5 L of water and passed through a column charged with 250 ml of ion-exchange resin Amberlite IRN-77 (H⁺-form). The column was washed with water and eluted with 0.2 M ammonium acetate. The eluate fractions containing lactosamine were pooled, evaporated to a syrup, and the syrup was kept at 277 K to produce crystalline material suitable for the X-ray diffraction studies.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 4. The Flack absolute structure parameter determined [0.02 (11) for 729 quotients (Parsons et al., 2013)] is consistent with the (3S,4R,5R,7S,8R,9S,10S,11R) configuration, which was assigned for this system on the basis of the known configuration for the starting material ß-lactulose (McNaught, 1996). Data were collected out to 0.80 Å; however, because of the small size of the crystal, most of the high-angle diffraction peaks are effectively indistinguishable from the noise. The inclusion of this high-angle data results in

Table 2	Hydrogen-bond geometry (Å, °).			
D—H · · · A	D—H	H · · · A	D—A	D—H · · · A
O1—H1—Cl1	0.83 (5)	2.28 (6)	3.075 (6)	163 (9)
O2—H2—O10	0.80 (5)	1.98 (6)	2.743 (7)	159 (8)
O3—H3—Cl1 W	0.82 (5)	2.31 (6)	3.130 (7)	172 (9)
O6—H6—O9 W	0.82 (5)	1.84 (6)	2.654 (8)	171 (9)
O7—H7—O2 W	0.81 (5)	1.92 (6)	2.697 (8)	158 (9)
O8—H8—Cl1 W	0.78 (5)	2.32 (6)	3.080 (5)	166 (8)
O9—H9—O6 W	0.83 (5)	1.88 (5)	2.707 (8)	178 (9)
N1—H1A—O1W	0.90 (4)	1.96 (5)	2.819 (9)	159 (7)
N1—H1B—O7 W	0.90 (4)	2.26 (7)	2.862 (8)	124 (6)
N1—H1C—O8 W	0.90 (4)	2.16 (6)	2.922 (8)	142 (7)
N1—H1C—O1	0.91 (4)	2.34 (8)	2.787 (9)	110 (6)
N1—H1C—O1W W	0.91 (4)	2.35 (6)	3.162 (11)	149 (7)
O1W—H1WA—O3 W	0.90 (6)	1.85 (7)	2.746 (8)	170 (10)
O1W—H1WB—CH2	0.89 (6)	2.50 (7)	3.335 (7)	156 (9)

Symmetry codes: (i) −x, y − 1/2, z + 1; (ii) −x, y, −z; (iii) −x + 1, y, z; (iv) x, y, z − 1; (v) −x + 1, y + 1/2, z − 1; (vi) −x, y + 1/2, z; (vii) x − 1, y, z; (viii) −x + 1, y + 1/2, z + 1; (ix) −x, y + 1/2, z + 1.

Additional D—H · · · A contacts (Å, °).

D—H · · · A	D—H	H · · · A	D—A	D—H · · · A
O2—H2—O5	0.80 (7)	2.64 (8)	3.964 (8)	106 (6)
N1—H1B—O2	0.90 (6)	2.55 (7)	2.855 (9)	101 (5)
O7—H7—O6	0.81 (8)	2.63 (8)	2.847 (8)	97 (8)
C2—H2A—O1 W	0.98	2.34	3.199 (10)	146
C9—H9A—O8 W	0.98	2.58	3.309 (9)	132
C10—H10—Cl1 W	0.98	2.82	3.741 (9)	157

Symmetry codes: (i) x + 1, y, z; (ii) x + 1, y, z − 1.
Table 4
Experimental details.

Crystal data	Chemical formula	C_{12}H_{24}NO_{10}·Cl^-·H_2O
M_0		395.79
Crystal system, space group	Monoclinic, P2_1	
Temperature (K)	273	
\(a\), \(b\), \(c\) (Å)	4.785 (4), 13.523 (11), 13.254 (11)	
\(\beta\) (°)	93.940 (9)	
\(V\) (Å³)	855.5 (12)	
Z	2	
Radiation type	Mo Kα	
\(\mu\) (mm⁻¹)	0.28	
Crystal size (mm)	0.08 × 0.05 × 0.01	

Data collection

Diffractometer	Bruker APEXII area detector
Absorption correction	Multi-scan (AXScales; Bruker, 2016)
\(T_{min} \rightarrow T_{max}\)	0.483, 0.746
No. of measured, independent and observed \([I > 2\sigma(I)]\) reflections	11475, 3787, 2216
\(R_{int}\)	0.133
\(\sin \theta/\lambda_{max}\) (Å⁻¹)	0.643

Refinement

\(R(F^2 > 2\sigma(F^2)), wR(F^2), S\)	0.066, 0.131, 1.01								
No. of reflections	3787								
No. of parameters	262								
No. of restraints	26								
H-atom treatment	H atoms treated by a mixture of independent and constrained refinement								
\(\Delta F_{max}, \Delta F_{min}\) (e Å⁻³)	0.44, −0.57								
Absolute structure	Flack x determined using 729 quotients \([F^X	−	F^Y]/(F^X	+	F^Y)]\) (Parsons et al., 2013)
Absolute structure parameter	0.02 (11)								

References

Acarin, L., Vela, J. M., González, B. & Castellano, B. (1994). *J. Histochem. Cytochem.* 42, 1033–1041.

Bianchet, M. A., Ahmed, H., Vasta, G. R. & Amzel, L. M. (2000). *Proteins*, 40, 378–388.

Boscher, C., Dennis, J. W. & Nabi, I. R. (2011). *Curr. Opin. Cell Biol.* 23, 383–392.

Bruker (2016). APEX, SAINT and AXScales. Bruker AXS Inc., Madison, Wisconsin, USA.

Dekany, G., Ágoston, K., Bájza, I., Bójstrup, M., Pérez, I. F., Kröger, L. & Röhrig, C. H. (2014). US Patent 8,796,434.

Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). *J. Appl. Cryst.* 42, 339–341.

Glinskii, O. V., Sud, S., Mossine, V. V., Mawhinney, T. P., Anthony, D. C., Glinsky, G. V., Pienta, K. J. & Glinsky, V. Y. (2012). *Neoplasia*, 14, 65–73.

Guardia, C. M. A., Gauto, D. F., Di Lella, S., Rabinovich, G. A., Martí, M. A. & Estrin, D. A. (2011). *J. Chem. Inf. Model.* 51, 1918–1930.

Hirotsu, K. & Shimada, A. (1974). *Bull. Chem. Soc. Jpn.*, 47, 1872–1879.

Imberty, A., Delage, M. M., Bourne, Y., Cambillau, C. & Perez, S. (1991). *Glycoconj. J.*, 8, 456–483.

Kulrich, A. & Liu, L. (2016). *Carbohydr. Res.* 432, 62–70.

Lakhmanman, T., Sriram, D. & Loganathan, D. (2001). *Acta Cryst.* C57, 825–826.

Longchambon, F., Ohanessian, J., Gillier-Pandrau, H., Duchet, D., Jacquinet, J.-C. & Sinaï, P. (1981). *Acta Cryst.* B37, 601–607.

McNaught, A. D. (1996). *Pure Appl. Chem.* 68, 1919–2008.

Mossine, V. V., Byrne, T. S., Barnes, C. L. & Mawhinney, T. P. (2018). *J. Carbohydr. Chem.* 37, 153–162.

Mossine, V. V., Glinsky, V. V. & Mawhinney, T. P. (2008). In *Glycobiology*, edited by A. A. Klyosov, D. Platt & Z. J. Witczak, pp. 235-270. John Wiley & Sons.

Parsons, S., Flack, H. D. & Wagner, T. (2013). *Acta Cryst.* B69, 249–259.

Seetharaman, J., Kanigsberg, A., Slaaby, R., Leffler, H., Barondes, S. H. & Rini, J. M. (1998). *J. Biol. Chem.* 273, 13047–13052.

Sheldrick, G. M. (2008). *Acta Cryst.* A64, 112–122.

Sheldrick, G. M. (2015). *Acta Cryst.* C71, 3–8.

Smith, J. H., Dann, S. E., Elsegood, M. R. J., Dale, S. H. & Blatchford, C. G. (2005). *Acta Cryst.* E61, o2499–o2501.

Strodnigg, T. M. & Stütz, A. E. (1999). *Angew. Chem. Int. Ed.* 38, 827–828.

Funding information

Funding for this research was provided by: University of Missouri, Agriculture Experiment Station Chemical Laborato-ries; National Institute of Food and Agriculture (grant No. Hatch 1023929).
full crystallographic data

IUCrData (2022). 7, x220061 [https://doi.org/10.1107/S241431462200061X]

β-d-Galactopyranosyl-(1→4)–2-amino-2-deoxy-α-D-glucopyranose hydrochloride monohydrate (lactosamine)

Valeri V. Mossine, Steven P. Kelley and Thomas P. Mawhinney

β-D-Galactopyranosyl-(1→4)–2-amino-2-deoxy-α-D-glucopyranose hydrochloride monohydrate

Crystal data

\[
\text{C}_{12}\text{H}_{24}\text{NO}_{10}^+\cdot\text{Cl}^-\cdot\text{H}_{2}\text{O}
\]

\[
M_r = 395.79
\]

Monoclinic, \(P2_1\)

\(a = 4.785\ (4)\) Å

\(b = 13.523\ (11)\) Å

\(c = 13.254\ (11)\) Å

\(β = 93.940\ (9)°\)

\(V = 855.5\ (12)\) Å\(^3\)

\(Z = 2\)

Data collection

Bruker APEXII area detector
diffractometer

Radiation source: Sealed Source Mo with
TRIUMPH optics

\(\omega\) and phi scans

Absorption correction: multi-scan

(AXScale; Bruker, 2016)

\(T_{\text{min}} = 0.483, T_{\text{max}} = 0.746\)

Refinement

Refinement on \(F^2\)

Least-squares matrix: full

\(R[F^2 > 2\sigma(F^2)] = 0.066\)

\(wR(F^2) = 0.131\)

\(S = 1.01\)

3787 reflections

262 parameters

26 restraints

Primary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier map

\(F(000) = 420\)

\(D_x = 1.536\ \text{Mg m}^{-3}\)

\(\text{Mo}\ Kα\ radiation, \lambda = 0.71073\ \text{Å}\)

Cell parameters from 1276 reflections

\(θ = 3.0–20.6°\)

\(μ = 0.28\ \text{mm}^{-1}\)

\(T = 273\ \text{K}\)

Plate, colourless

0.08 × 0.05 × 0.01 mm

11475 measured reflections

3787 independent reflections

2216 reflections with \(I > 2\sigma(I)\)

\(R_m = 0.133\)

\(θ_{\text{max}} = 27.2°, θ_{\text{min}} = 1.5°\)

\(h = −6→6\)

\(k = −17→17\)

\(l = −17→16\)

Hydrogen site location: mixed

H atoms treated by a mixture of independent and constrained refinement

\(w = 1/[σ(F^2) + (0.0475P)^2]\)

where \(P = (F^2 + 2F_c^2)/3\)

\((Δ/σ)_{\text{max}} < 0.001\)

\(Δρ_{\text{max}} = 0.44\ \text{e Å}^{-3}\)

\(Δρ_{\text{min}} = −0.37\ \text{e Å}^{-3}\)

Absolute structure: Flack \(x\) determined using

729 quotients \([I(I)−(I)]/[I(I)+(I)]\) (Parsons et al., 2013)

Absolute structure parameter: 0.02 (11)
Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Hydroxy and nitrogen-bound H atoms were located in difference-Fourier analyses and were allowed to refine fully. Other H atoms were placed at calculated positions and treated as riding. All chemically equivalent N—H and O—H bond distances were restrained to be equal within 0.05 Å.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å²)

Atom	x	y	z	Uiso/Unw	Ueq/Unw
Cl1	−0.3280 (4)	0.75359 (14)	0.61589 (14)	0.0286 (5)	
O1	−0.1394 (11)	0.7867 (4)	0.4014 (4)	0.0272 (13)	
H1	−0.195 (16)	0.765 (7)	0.455 (5)	0.041*	
O1W	0.6240 (15)	1.0329 (4)	0.4269 (5)	0.0462 (19)	
H1WA	0.71 (2)	1.021 (8)	0.488 (6)	0.069*	
H1WB	0.58 (2)	1.096 (5)	0.433 (8)	0.069*	
O2	0.2355 (12)	0.8551 (4)	0.1351 (4)	0.0260 (14)	
H2	0.186 (17)	0.830 (6)	0.082 (5)	0.039*	
O3	0.1487 (12)	0.4761 (4)	0.3861 (4)	0.0341 (14)	
H3	0.18 (2)	0.416 (4)	0.387 (7)	0.051*	
O4	0.2482 (10)	0.6815 (4)	0.3919 (4)	0.0253 (13)	
O5	0.1019 (10)	0.6413 (4)	0.1208 (4)	0.0223 (12)	
O6	0.3161 (10)	0.4684 (4)	0.0307 (4)	0.0263 (12)	
H6	0.175 (14)	0.446 (6)	0.055 (6)	0.039*	
O7	0.3237 (11)	0.4742 (4)	−0.1838 (4)	0.0266 (13)	
H7	0.431 (16)	0.434 (5)	−0.157 (6)	0.040*	
O8	−0.0409 (10)	0.6292 (4)	−0.2120 (4)	0.0229 (12)	
H8	−0.091 (17)	0.658 (6)	−0.261 (5)	0.034*	
O9	0.1635 (11)	0.9157 (4)	−0.1046 (4)	0.0255 (13)	
O10	0.321 (13)	0.933 (6)	−0.082 (6)	0.038*	
N1	0.1495 (15)	0.9460 (5)	0.3249 (5)	0.0267 (17)	
H1A	0.270 (14)	0.978 (6)	0.369 (5)	0.040*	
H1B	0.104 (16)	0.980 (6)	0.268 (4)	0.040*	
H1C	−0.023 (11)	0.946 (6)	0.350 (6)	0.040*	
C1	0.1489 (16)	0.7791 (5)	0.4024 (6)	0.0250 (18)	
H1D	0.231817	0.807016	0.465797	0.030*	
C2	0.2409 (16)	0.8418 (5)	0.3134 (6)	0.0227 (18)	
H2A	0.445983	0.840893	0.315433	0.027*	
C3	0.1292 (16)	0.7968 (5)	0.2135 (6)	0.0228 (18)	
H3A	−0.076034	0.799022	0.208350	0.027*	
C4	0.2270 (15)	0.6906 (6)	0.2095 (6)	0.0224 (18)	
H4	0.431371	0.689282	0.207687	0.027*	
C5	0.1419 (16)	0.6315 (6)	0.3013 (5)	0.0226 (17)	
H5	−0.062765	0.627481	0.300031	0.027*	
C6	0.2641 (17)	0.5292 (6)	0.3051 (6)	0.030 (2)	
H6A 0.219239 0.495436 0.241483 0.036*
H6B 0.466372 0.532736 0.316291 0.036*
C7 0.2534 (15) 0.6458 (6) 0.0341 (5) 0.0222 (17)
H7A 0.453220 0.655704 0.052771 0.027*
C8 0.2081 (16) 0.5518 (5) −0.0258 (6) 0.0217 (17)
H8A 0.007235 0.542472 −0.042707 0.026*
C9 0.3596 (16) 0.7402 (6) −0.1230 (5) 0.0204 (17)
H9A 0.559991 0.570369 −1.05595 0.024*
C10 0.2464 (15) 0.6483 (6) −0.1834 (6) 0.0213 (17)
H10 0.350340 0.656234 −0.244111 0.026*
C11 0.2853 (15) 0.642 (6) −0.042 (6) 0.0220 (17)
H11 0.485554 0.750477 −0.099407 0.026*
C12 0.1643 (16) 0.8313 (5) −0.1692 (6) 0.0241 (18)
H12A 0.272384 0.846504 −0.226525 0.029*
H12B −0.026310 0.817433 −0.194879 0.029*

Atomic displacement parameters (Å²)

	U¹¹	U²²	U³³ (10)	U¹² (9)	U¹³ (8)	U²³ (10)
Cl1	0.0323 (11)	0.0230 (11)	0.0302 (10)	-0.0014 (9)	-0.0006 (8)	0.0045 (10)
O1	0.027 (3)	0.023 (3)	0.032 (4)	0.002 (2)	0.004 (3)	0.004 (3)
O1W	0.075 (5)	0.027 (4)	0.034 (4)	-0.003 (3)	-0.012 (3)	-0.002 (3)
O2	0.035 (3)	0.021 (3)	0.022 (3)	-0.010 (2)	-0.001 (3)	0.001 (2)
O3	0.056 (4)	0.016 (3)	0.030 (3)	-0.003 (3)	0.004 (3)	0.007 (3)
O4	0.033 (3)	0.017 (3)	0.026 (3)	-0.002 (2)	-0.001 (3)	0.000 (2)
O5	0.027 (3)	0.021 (3)	0.020 (3)	-0.005 (2)	0.002 (2)	0.001 (2)
O6	0.025 (3)	0.021 (3)	0.033 (3)	0.001 (3)	0.005 (2)	0.006 (3)
O7	0.032 (3)	0.016 (3)	0.031 (3)	0.005 (2)	-0.001 (2)	-0.001 (3)
O8	0.025 (3)	0.019 (3)	0.024 (3)	-0.001 (2)	-0.001 (2)	0.004 (2)
O9	0.026 (3)	0.019 (3)	0.032 (3)	0.000 (2)	0.001 (3)	-0.003 (3)
O10	0.024 (3)	0.017 (3)	0.026 (3)	0.003 (2)	0.003 (2)	0.003 (2)
N1	0.035 (4)	0.021 (4)	0.023 (4)	-0.005 (3)	-0.006 (3)	0.004 (3)
Cl1	0.030 (5)	0.018 (4)	0.026 (4)	-0.002 (3)	-0.001 (3)	0.003 (3)
C2	0.025 (4)	0.016 (4)	0.026 (5)	-0.003 (3)	-0.001 (4)	0.004 (3)
C3	0.023 (4)	0.021 (4)	0.024 (4)	-0.002 (3)	0.002 (3)	0.008 (3)
C4	0.020 (4)	0.019 (4)	0.029 (5)	-0.004 (3)	0.000 (3)	0.000 (4)
C5	0.029 (4)	0.016 (4)	0.023 (4)	-0.009 (3)	-0.001 (3)	0.002 (3)
C6	0.037 (5)	0.023 (5)	0.028 (5)	-0.003 (4)	0.000 (4)	0.003 (4)
C7	0.023 (4)	0.021 (4)	0.023 (4)	0.001 (3)	0.002 (3)	0.004 (4)
C8	0.024 (4)	0.015 (4)	0.026 (5)	0.003 (3)	-0.002 (3)	0.005 (3)
C9	0.021 (4)	0.016 (4)	0.024 (4)	0.002 (3)	0.002 (3)	-0.001 (4)
C10	0.020 (4)	0.019 (4)	0.025 (4)	-0.002 (3)	0.004 (3)	0.003 (3)
C11	0.021 (4)	0.020 (4)	0.027 (4)	-0.001 (3)	0.007 (3)	-0.002 (4)
C12	0.026 (4)	0.014 (4)	0.032 (5)	0.001 (3)	0.004 (4)	0.000 (4)
Geometric parameters (Å, °)

Bond/Angle	Length/Distance (Å)	Bond/Angle	Length/Distance (Å)	
O1—C1	1.382 (9)	N1—H1C	0.91 (4)	
O1—H1	0.83 (5)	C1—C2	1.541 (10)	
O1W—H1WA	0.90 (6)	C1—H1D	0.9800	
O1W—H1WB	0.89 (6)	C2—C3	1.521 (10)	
O2—C3	1.426 (9)	C2—H2A	0.9800	
O2—H2	0.80 (5)	C3—C4	1.512 (10)	
O3—C6	1.434 (10)	C3—H3A	0.9800	
O3—H3	0.82 (5)	C4—C5	1.533 (10)	
O4—C1	1.414 (9)	C4—H4	0.9800	
O4—C5	1.440 (8)	C5—C6	1.502 (11)	
O5—C7	1.402 (9)	C5—H5	0.9800	
O5—C4	1.445 (9)	C6—C6A	0.9700	
O6—C8	1.431 (9)	C6—H6B	0.9700	
O6—H6	0.82 (5)	C7—C8	1.507 (10)	
O7—C9	1.420 (9)	C7—H7A	0.9800	
O7—H7	0.81 (5)	C8—C9	1.526 (10)	
O8—C10	1.424 (9)	C8—H8A	0.9800	
O8—H8	0.78 (5)	C9—C10	1.513 (10)	
O9—C12	1.426 (9)	C9—H9A	0.9800	
O9—H9	0.83 (5)	C10—C11	1.528 (10)	
O10—C7	1.441 (8)	C10—H10	0.9800	
O10—C11	1.447 (8)	C11—C12	1.510 (10)	
N1—C2	1.486 (10)	C11—H11	0.9800	
N1—H1A	0.90 (4)	C12—H12A	0.9700	
N1—H1B	0.90 (4)	C12—H12B	0.9700	
C1—O1—H1	110 (6)	C6—C5—H5	109.6	
H1WA—O1W—H1WB	101 (9)	C4—C5—H5	109.6	
C3—O2—H2	108 (6)	O3—C6—C5	108.5 (7)	
C6—O3—H3	115 (7)	O3—C6—H6A	110.0	
C1—O4—C5	114.7 (5)	C5—C6—H6A	110.0	
C7—O5—C4	116.0 (5)	C5—C6—H6B	110.0	
C8—O6—H6	102 (6)	C6—C6—H6B	110.0	
C9—O7—H7	105 (6)	H6A—C6—H6B	108.4	
C10—O8—H8	112 (6)	O5—C7—O10	106.7 (5)	
C12—O9—H9	114 (6)	O5—C7—C8	109.3 (6)	
C7—O10—C11	111.5 (5)	O10—C7—C8	109.3 (5)	
C2—N1—H1A	110 (5)	O5—C7—H7A	110.5	
C2—N1—H1B	117 (5)	O10—C7—H7A	110.5	
H1A—N1—H1B	114 (7)	C8—C7—H7A	110.5	
C2—N1—H1C	109 (6)	O6—C8—C7	110.8 (6)	
H1A—N1—H1C	109 (8)	O6—C8—C9	109.1 (6)	
H1B—N1—H1C	97 (7)	C7—C8—C9	108.7 (6)	
O1—C1—O4	114.2 (6)	O6—C8—H8A	109.4	
O1—C1—C2	106.8 (6)	C7—C8—H8A	109.4	
O4—C1—C2	108.8 (6)	C9—C8—H8A	109.4	
Bond	Length (Å)	Angle (°)	Length (Å)	Angle (°)
-----------------	------------	-----------	------------	-----------
C1—C2—H1D	1.090	1.090	1.090	1.090
O7—C9—C10	1.086 (6)	1.068 (6)	1.118 (6)	1.095 (6)
N1—C2—C3	1.124 (6)	1.099 (6)	1.110 (6)	1.109 (6)
C3—C2—C1	1.112 (6)	1.109 (6)	1.112 (6)	1.112 (6)
C1—C2—H2A	1.081	1.081	1.081	1.081
C1—C2—H1D	1.090	1.090	1.090	1.090
O7—C9—C8	1.081	1.081	1.081	1.081
C10—C9—C8	1.095 (6)	1.095 (6)	1.095 (6)	1.095 (6)
C10—C9—H9A	1.090	1.090	1.090	1.090
C8—C9—H9A	1.090	1.090	1.090	1.090
C10—C9—H9A	1.090	1.090	1.090	1.090

Hydrogen-bond geometry (Å, °)

Bond	D—H (Å)	H···A (Å)	D···A (Å)	D—H···A (Å)
O1—H1···Cl1	0.83 (5)	2.28 (6)	3.075 (6)	163 (9)
O2—H2···O10	0.80 (5)	1.98 (6)	2.743 (7)	159 (8)
O3—H3···Cl1i	0.82 (5)	2.31 (6)	3.130 (7)	172 (9)
O6—H6···O9ii	0.82 (5)	1.84 (6)	2.654 (8)	171 (9)
O7—H7···O2iii	0.81 (5)	1.92 (6)	2.697 (8)	159 (8)
O8—H8···Cl1iv	0.78 (5)	2.32 (6)	3.080 (5)	166 (8)
O9—H9···O6iv	0.83 (5)	1.88 (5)	2.707 (8)	178 (9)
N1—H1···O1W	0.90 (4)	1.96 (5)	2.819 (9)	159 (7)
N1—H1···O7iv	0.90 (4)	2.26 (7)	2.862 (8)	124 (6)
N1—H1···O8iv	0.90 (4)	2.16 (6)	2.922 (8)	142 (7)
N1—H1···O1Wvii	0.91 (4)	2.34 (8)	2.787 (9)	110 (6)
O1W—H1···O3viii	0.90 (6)	1.85 (7)	2.746 (8)	170 (10)
O1W—H1···O1Wvii	0.89 (6)	2.50 (7)	3.355 (7)	156 (9)

Symmetry codes: (i) −x, y−1/2, −z+1; (ii) −x, y−1/2, −z; (iii) −x+1, y−1/2, −z; (iv) x, y, z−1; (v) −x+1, y+1/2, −z; (vi) −x, y+1/2, −z; (vii) x−1, y, z; (viii) −x+1, y+1/2, −z+1; (ix) −x, y+1/2, −z+1.