Ab initio study of charge transport through single oxygen molecules in atomic aluminum contacts

S. Wohlthat,1,2 F. Pauly,1,2 J. K. Viljas,1,2 J. C. Cuevas,1,2,3 and Gerd Schön1,2

1Institut für Theoretische Festkörperphysik and DFG-Center for Functional Nanostructures, Universität Karlsruhe, D-76128 Karlsruhe, Germany
2Institut für Nanotechnologie, Forschungszentrum Karlsruhe, D-76021 Karlsruhe, Germany
3Departamento de Física Teórica de la Materia Condensada C-V, Universidad Autónoma de Madrid, E-28049 Madrid, Spain
(Dated: March 23, 2022)

We present ab initio calculations of transport properties of atomic-sized aluminum contacts in the presence of oxygen. The experimental situation is modeled by considering a single oxygen atom (O) or one of the molecules O₂ and O₃ bridging the gap between electrodes forming ideal, atomically sharp pyramids. The transport characteristics are computed for these geometries with increasing distances between the leads, simulating the opening of a break junction. To facilitate comparison with experiments further, the vibrational modes of the oxygen connected to the electrodes are studied. It is found that in the contact regime the change of transport properties due to the presence of oxygen is strong and should be detectable in experiments. All three types of oxygen exhibit a comparable behavior in their vibrational frequencies and conductances, which are well below the conductance of pure aluminum atomic contacts. The conductance decreases for an increasing number of oxygen atoms. In the tunneling regime the conductance decays exponentially with distance and the decay length depends on whether or not oxygen is present in the junction. This fact may provide a way to identify the presence of a gas molecule in metallic atomic contacts.

PACS numbers: 72.10.-d, 71.15.-m, 63.22.+m, 73.23.-b

I. INTRODUCTION

Since the first experiments on atomic contacts, the “atmospheric” surroundings are known to have a strong effect on their charge transport properties. Thus, studying the influence of adsorbed gas molecules is of great importance for the design of functional molecular-scale electronic components. It also shows some promise for the future development of gas sensors for “electronic noses”. However, the systematic experimental investigation of the influence of single gas molecules on charge transport through metallic atomic contacts started only a few years ago with hydrogen in atomic platinum contacts.3,5,6 It was found that the zero-bias conductance through such platinum-hydrogen contacts tends to be close to the quantum of conductance G₀ = 2e²/h. In addition, this conductance value is due to a single, almost transparent channel.5,6,7,8 Theoretical work has mostly confirmed these findings.5,6,7,8

Even so, one of the main problems in experiments of this type is to know if and in which configuration gas molecules are present in the contact region. A definite identification of the presence and the type of gas can be based on statistical techniques, such as the measurement of conductance histograms.2,3 For individual contacts, this becomes much harder. In the experiments of Refs.2,3 the identification of a single hydrogen molecule was based on the so-called inelastic point contact spectroscopy, where the local vibrational modes can be seen in the current-voltage (I-V) characteristics as abrupt features at bias voltages corresponding to the energies of the vibrations.2 The evolution of these features with stretching of the contacts can then be compared to calculations of the vibrational modes for given configurations of the molecule.2,3 In fact, theoretical methods have recently been developed that enable a direct comparison between the full experimental and theoretical I-V characteristics, including the inelastic signatures of the vibrational modes.10,11,12,13,14,15

For this purpose, namely to identify small molecules in atomic metal contacts through transport measurements, we study the general properties of oxygen (O) in atomic aluminum (Al) contacts. In this paper we concentrate on the behavior of the zero-bias transport characteristics when the atomic contacts are stretched. In the spirit of Refs.2,3,6,10,11,12,13,14,15, we also study the evolution and character of the vibrational modes. Aluminum was chosen, because it becomes superconducting below temperatures of 1 K. As a result, in addition to measurements of the total zero-bias conductance, it is possible to determine experimentally the transmission eigenvalues of the individual channels from the I-V characteristics in the superconducting state.14,15 As particular examples, we study single oxygen atoms (O), oxygen dimers (O₂), and ozone (O₃). These molecules (we also refer to the oxygen atom as a molecule) are placed initially in the middle of the contact between two aluminum electrodes, since their effect on the transport properties is then at its largest. We describe our contacts at the level of density-functional theory (DFT). In particular, the DFT electronic structure is employed to determine the charge transport properties by means of Green’s function techniques.

In the following we present stable structures of the three types of contacts, where oxygen molecules bridge
the gap between two idealized aluminum electrodes. For them, we calculate the vibrational modes and the low-temperature transport properties, including the characterization of the individual transmission channels. We find that both the energies of the vibrational modes, as well as the evolution of the conductance with increasing electrode distance show qualitatively comparable characteristics for the three investigated molecules. In contrast to pure Al, the conductances of the Al–O$_2$–Al contacts are always well below 1G_0, and for an increasing number of O atoms, the conductance decreases. Moreover, the exponential decay lengths in the tunneling regime are different in the presence and in the absence of oxygen.

This paper is organized as follows. In Sec. II we begin by presenting the methods used for determining the electronic structure, the geometries, and the transport properties of the molecular contacts. In Sec. III we then describe the optimized geometries and the corresponding vibrational modes. Following this, Sec. IV relates in detail the transmission properties of the junctions to the relevant molecular orbitals. The section ends with an analysis of the evolution of the conductances when the contacts are opened. In particular, we analyze the tunneling regime, which is discussed further in App. A. In Sec. V we conclude with the discussion of our results.

II. METHOD

In this section we briefly present our methods for computing the electronic structures, geometries, vibrational modes, as well as the charge transport characteristics of atomic contacts. A more detailed account will be given elsewhere.

We describe our contacts at the level of density functional theory (DFT) as implemented in the quantum chemistry package TURBOMOLE v5.7 (Refs. 18, 19, 20, 21). In particular, we use the “ridft” module with the BP86 exchange correlation functional and a Gaussian basis set of split valence plus polarization (SVP) quality. To be precise, polarization functions are present on all non-hydrogen atoms within the employed basis set. The total energy is converged to a precision of 10^{-4} atomic units. Vibrational modes are analyzed using the “aoforce” module of TURBOMOLE.

The investigated atomic contacts consist of two atomically sharp electrode tips and a single oxygen molecule again in each step. For each relaxed structure we place one representative oxygen molecule (O, O$_2$), or O$_3$). The molecule is then relaxed between the fixed electrodes, leading to a stable configuration. Starting from this first configuration, we move the electrodes stepwise further away from each other and relax the oxygen molecule again in each step. For each relaxed structure we determine the vibrational modes of the molecule connected to the leads.

To compute the charge transport through a molecule between metallic electrodes, we apply a method based on standard Green’s function techniques and the Landauer formula expressed in terms of a local non-orthogonal basis. Due to the locality of the basis, the system is conveniently separated into three parts, leading to a single-particle Hamiltonian (or Fock matrix) of the molecular junction that has the following form

$$H = \begin{pmatrix} H_{LL} & H_{LC} & H_{LR} \\ H_{CL} & H_{CC} & H_{CR} \\ H_{RL} & H_{RC} & H_{RR} \end{pmatrix}. \quad (1)$$

Here H_{CC} describes the central system (C) consisting of the molecule and the tips of the electrodes and H_{XX} with $X = L, R$ describe the left (L) and right (R) electrodes. The matrices $H_{LC} = H_{CL}^\dagger$ etc. give the hopping elements between the different subsystems, but the hoppings between L and R are assumed to vanish ($H_{LR} = H_{RL} = 0$). This assumption has been verified in all our calculations, where the Hamiltonian elements connecting L and R were always smaller than 10^{-6} Hartree. The overlap matrix S of the non-orthogonal basis has a similar structure.

The conductances of the molecular junctions are determined by means of Green’s function techniques. The low-temperature zero-bias conductance $G = dI/dV|_{V=0}$ is given by the Landauer formula

$$G = G_0 \text{Tr}[t(E_F)t^\dagger(E_F)] = G_0 T(E_F), \quad (2)$$

where $t(E_F)$ is the transmission matrix of the molecular junction evaluated at the Fermi energy E_F. The total transmission at any energy E can be written as $T(E) = \sum_{n=1}^{\infty} T_n(E)$, where $T_n(E)$ are the transmissions of the individual eigenchannels, defined as the eigenvalues of $t(E)t^\dagger(E)$. The transmission matrix can be calculated in terms of Green’s functions of the molecular junction as follows.

$$t(E) = 2\Gamma_L^{1/2}(E)G_{CC}^\gamma(E)\Gamma_R^{1/2}(E). \quad (3)$$

Here

$$G_{CC}^\gamma(E) = [ES_{CC} - H_{CC} - \Sigma_X^\dagger(E) - \Sigma_R(E)]^{-1} \quad (4)$$

is the retarded Green’s function of the central system, and $\Gamma_X(E) = -\text{Im}[\Sigma_X^\dagger(E)]$ are the scattering rate matrices. These depend on the self-energy matrices

$$\Sigma_X(E) = (H_{CX} - ES_{CX})g_{XX}^\gamma(E)(H_{XC} - ES_{XC}), \quad (5)$$

where $g_{XX}^\gamma(E)$ is the retarded surface Green’s function of the electrode $X = L, R$, which are modeled as ideal
surfaces. These self-energies contain all the information about the electronic structure of the electrodes and their coupling to the central system.

The electronic structure of the central system and its coupling to the electrodes are obtained from the calculated geometries (Fig. 1). Let us refer to these geometries, which consist of the two pyramids bridged by a molecule, as “contact geometries”. These contact geometries are divided into three parts. The central part, corresponding to region C in the transport calculation, consists of the molecule and the inner two layers of the pyramids. The excluded outer layers on the left and right sides are used for calculating the hoppings and overlaps between the central region and the electrodes as needed in Eq. (5).

To obtain the surface Green’s functions $g_{\mathbf{k}X}(E)$, we compute separately the electronic structure of a spherical Al fcc cluster with 555 atoms. From this we extract the Fock and overlap matrix elements between the atom in the origin of the cluster and all its neighbors and, using these “bulk parameters”, construct a semi-infinite periodic crystal. The surface Green’s functions are then calculated from this crystal using the so-called decimation technique.38 We have checked that the electrode construction in the employed non-orthogonal SVP basis set has converged with respect to the size of the Al cluster, from which we extract our parameters.33 In this way we describe the whole system consistently within DFT, using the same basis set and exchange-correlation functional everywhere.

The Fermi energy E_F of the coupled system, namely the C part connected to the semi-infinite electrodes, required to determine the conductance [Eq. (2)], is assumed to be given by the Al leads. We obtain its value as the average of the energies of the highest occupied (−4.261 eV) and the lowest unoccupied (−4.245 eV) orbitals of the bulk cluster. In this way we find $E_F = −4.25$ eV. The same quantity for the contact geometries deviates from this bulk value by less than 0.08 eV. Let us stress that the Fermi energy is only used to read off the conductance from a transmission function $T(E)$, but does not enter into our calculations otherwise.

III. CONTACT GEOMETRIES AND VIBRATIONAL MODES

We simulate the opening of a contact for the three most basic forms of oxygen (O, O_2, and O_3). Fig. 1 shows a selection of the relaxed geometries obtained, the starting
configuration, one halfway, the one just before, and the one directly after the breaking. In the case of a single O atom, the O sits at first on the side of the Al dimer contact. Upon stretching this atom moves onto the contact axis and stays asymmetrically bonded to both pyramids until the contact breaks [Fig. 1(a)]. When the contact is broken, the oxygen atom binds to one electrode with a distance of approximately 1.7 Å on top of the pyramid and stays bonded like this. However, this binding position is only metastable. If one distorts the position of the oxygen atom slightly, e.g. places it at some distance from the contact axis and optimizes the contact geometry again, the atom goes to one side of the pyramid in the same way as for O₂ and O₃ described below. This position with the oxygen bonded to one side of the pyramid is energetically favored by approximately 2.5 eV. In the case of O₂, the molecular axis of the oxygen molecule is in the beginning almost perpendicular to the contact axis and rotates afterwards into this axis [Fig. 1(b)]. For O₃, the molecule is twisted around the contact axis. This twist contracts towards the contact axis when the contact is stretched [Fig. 1(c)]. In the cases of Al-O₂/O₃-Al, the O atoms move always to the sides of the pyramids when the contact is broken. The evolution of the distances between the atoms while opening the contact is shown in Tab. I

As mentioned above, in order to compare with results from inelastic transport experiments, we also calculate the vibrational modes of the oxygen molecules in the contact. Since the atomic mass of Al is almost twice as large as that of O, it is a reasonable first approximation to neglect the motion of the Al atoms, which is what our model assumes. The energies of the vibrational modes for the different structures are shown in Fig. 2. For these structures, the modes can be classified roughly as being longitudinal or transverse, according to the motions of the atoms relative to the axis of the contact. The mode energies are in the range of 50 meV to 140 meV for Al-O-Al. The two transverse modes are more or less constant around 50 meV, while the longitudinal mode increases from 120 meV to a maximum of 140 meV at a distance of 3.3 Å and drops afterwards almost linearly. For Al-O₂-Al, the mode energies are in the range of 40 meV to 150 meV. The two lowest modes are transverse and constant in energy. The highest mode is longitudinal and increases from 135 meV to 150 meV at 4.5 Å and drops afterwards to 120 meV. The other three modes lie in the range of 70 meV to 110 meV. For Al-O₃-Al, the lowest (transverse) modes lie constant at an energy of approximately 25 meV. The highest (longitudinal) mode increases first to its maximum of 160 meV at 5.4 Å and decreases afterwards. Another mode lies close to this highest one. All other modes have energies between 50 meV and 120 meV.

The behavior of the vibrational energies can be understood by re-examining the atomic distances in the geometries (Tab. I). Despite the fact that the atomic contacts are being stretched, it happens for example that in the beginning some atoms move closer together. Therefore certain bonds strengthen due to this bond shortening, and corresponding modes may show an initial increase in their vibrational frequencies.

IV. TRANSPORT PROPERTIES AND ELECTRONIC STRUCTURE

Before we determine the transport properties for the different forms of oxygen between aluminum electrodes we will show the results for a pure Al atomic contact. The transmission as a function of energy and the corresponding contact geometry are plotted in Fig. 3. The conductance of this contact is close to 1G₀ and is carried by 3 channels, as expected. If oxygen sits between the two electrodes, the transmission changes significantly. The resulting T(E) curves for the contact geometries of Fig. I are shown in Fig. 3. We note that whenever we speak about numbers of channels in this work, we...
The anti-bonding distance of 4.5 Å as can be seen from the LDOS in Fig. 5 for a tip-to-tip bonding. Peaks 4 and 5 shift upwards in energy without crossing channel transmissions are shown in the central column of O bond.

The number of channels contributing to the conductance is at least three. When the contact breaks and the conductance drops. This trend can be understood by re-examining the evolution of the energy dependence of the transmission upon stretching (Fig. 3). Thus for instance, the increase of the conductance originates from the fact that the highest occupied molecular orbitals move close to the Fermi energy. Quantitatively the conductance depends on the number of oxygen atoms in the molecule. The more oxygen atoms, the lower the conductance. In all cases, the transport is influenced by a charge transfer from the Al to the oxygen molecule (around $-0.6e$ for all the three molecules, as determined by a Mulliken population analysis) leading to an occupation of molecular orbitals which would be empty in an isolated oxygen molecule. Therefore, current is carried by formerly unoccupied p orbitals.

We also investigate the conductance in the tunneling regime. With this term we refer to the region of large tip-to-tip distances d, where the conductance exhibits an exponential decay $G(d)/G_0 \propto e^{-\beta d}$ with an inverse decay length β. In experiments there might be any number of O molecules covering the surfaces of the Al pyramids, but we calculate representatively the tunneling conductance of Al-O$_2$-Al (not shown in Fig. 7), where the O atoms sit separated on both pyramids [see the rightmost part of Fig. 1(b)]. We compare this to the tunneling conductance of pure Al contacts (shown in Fig. 4). For pure Al, the inverse decay length turns out to be $\beta = 2.1 \text{ Å}^{-1}$ and for Al with an O atom on both pyramids $\beta = 2.3 \text{ Å}^{-1}$. Thus the decay of the conductance is somewhat faster when oxygen is present.

mean channels that contribute at least 5% to the total conductance. This criterion approximately agrees with what can be resolved experimentally using superconducting electrodes.

The total transmissions $T(E) = \sum_n T_n(E)$ and the transmission eigenvalues $T_n(E)$ of the individual channels of Al-O-Al [Fig. 1(a)] are plotted as a function of energy E in the left column of Fig. 4. The peaks labeled 1–3 below the Fermi energy are due to oxygen. This can be seen from the local density of states (LDOS) shown for a tip-to-tip distance of 3.7 Å in Fig. 5 (Ref. 40) as well as from the orbitals at the peaks shown in Fig. 6. Peak number 1 corresponds to the p_z orbital of O (z is the transport direction). Peaks 2 and 3 become almost degenerate as soon as the O is on the contact axis. These peaks are due to the p_x and p_y orbitals of O. Peak 1 is broader and shifted to lower energies than peaks 2 and 3 due to the stronger binding of the p_z orbital to the Al states. The peaks above the Fermi energy are due to aluminum. The number of channels contributing to the conductance is at least three. When the contact is opened, peaks 1–3 move, up to a tip-to-tip distance of 3.3 Å, away from and afterwards towards the Fermi energy. This behavior is caused by the length of the Al-O bond.

For Al-O$_2$-Al [Fig. 1(b)], the total transmission and the channel transmissions are shown in the central column of Fig. 4. The peaks in $T(E)$ are caused by the oxygen as can be seen from the LDOS in Fig. 5 for a tip-to-tip distance of 4.5 Å. Peaks number 4 and 5 originate from the anti-bonding π orbitals and peak 6 from the anti-bonding σ orbital (Fig. 6). The number of channels at the Fermi energy is two for the intermediate tip-to-tip distances between 4.6 Å and 4.9 Å, but otherwise three. Peaks 4 and 5 shift upwards in energy without crossing the Fermi energy while the contact is stretched. Peak 6 moves first away from and then, after a tip-to-tip distance of 4.5 Å, towards the Fermi energy. The movement of this peak can be understood in terms of the behavior of the distance between the O atoms, while the length of the Al-O bond is mainly responsible for the displacement of peaks 4 and 5.

For Al-O$_3$-Al [Fig. 1(c)], the transmissions are plotted in the right column of Fig. 4. The peaks shown have their origin in the ozone (Fig. 5 and 6). Peaks 8 and 9 move away from the Fermi energy with stretching up to a tip-to-tip distance of 5.4 Å and approach afterwards the Fermi energy. Peak 7 shifts continuously towards the Fermi energy. The movement of peaks 8 and 9 again reflects the distances between the oxygen atoms, and the shift of peak 7 changes in the Al-O bond length. The current is carried, up to a tip-to-tip distance of 5.4 Å, by three channels and afterwards by two channels.

In Fig. 7 the conductance is plotted as a function of the tip-to-tip distance for pure Al and for the three different oxygen molecules in Al contacts. For pure Al contacts we obtain a conductance close to $1G_0$ with a positive slope shortly before rupture of the contact, in agreement with previous investigations of Al atomic contacts. In the presence of oxygen, the conductances show the same qualitative features for the three molecules (O, O$_2$, and O$_3$). The conductance first decreases with stretching up to a certain point. After this point it increases rapidly until the contact breaks and the conductance drops. This trend can be understood by re-examining the evolution of the energy dependence of the transmission upon stretching (Fig. 3). Thus for instance, the increase of the conductance originates from the fact that the highest occupied molecular orbitals move close to the Fermi energy. Quantitatively the conductance depends on the number of oxygen atoms in the molecule. The more oxygen atoms, the lower the conductance. In all cases, the transport is influenced by a charge transfer from the Al to the oxygen molecule (around $-0.6e$ for all the three molecules, as determined by a Mulliken population analysis) leading to an occupation of molecular orbitals which would be empty in an isolated oxygen molecule. Therefore, current is carried by formerly unoccupied p orbitals.

In Fig. 7 the conductance is plotted as a function of energy. Both the total transmission (T) as well as its channel contributions (T_n) are shown. The vertical dashed line indicates the Fermi energy of bulk Al. The corresponding contact geometry with a distance between the Al tip atoms of 3.4 Å is depicted to the right.
Physically, the value of β is determined by the shape of the potential barrier between the tips, especially its apparent height with respect to E_F (Ref. [43]). The barrier depends sensitively on the electronic structure of the junction, including the charge-transfer effects between the different atoms close to the tips. In terms of the local-basis picture, all this information is contained in the spectral functions of the tips and the hopping matrix elements connecting them. The mathematical details of this interpretation are discussed further in App. [A]. In this picture, an important role is played by the radial decay properties of the orbitals of the tip atoms that are relevant for transport. Roughly speaking, for O these orbitals are the $2p$ ones, while for Al they are of the $3s$ and $3p$ type. The former orbitals decay faster and thus it is reasonable that inverse decay length β is larger in the presence of oxygen. Although the oxygen-induced change in β in this particular example is not very large, we suggest that, in general, changes in the decay rate of the tunneling conductance may provide another possibility to check experimentally whether gas molecules are present in the atomic contact or not.

FIG. 4: (Color online) Al-O$_x$-Al: Transmission as a function of energy for the structures shown in Fig. 1. The tip-to-tip distance increases from the top to the bottom and is given in the panels. The vertical dashed lines indicate the Fermi energy.
FIG. 5: (Color online) Al-O-Al: LDOS corresponding to the second row in Fig.\textendash. The solid (black) curve is for the region including the Al tip atoms and the O atoms, the dash-dotted (red) one is for one of the oxygen atoms, and the dashed (blue) curve is for one of the Al tip atoms. The vertical dashed (orange) line indicates the Fermi energy.

FIG. 6: (Color online) Al\textsubscript{17}-O\textsubscript{2}-Al\textsubscript{17}: Orbitals of the contact geometries of Fig.\textendash. The orbitals 1–3 belong to Al\textsubscript{17}-O-Al\textsubscript{17} with a tip-to-tip distance of $d = 3.7$ Å, the orbitals 4–6 to Al\textsubscript{17}-O\textsubscript{2}-Al\textsubscript{17} with $d = 4.5$ Å, and the orbitals 7–9 to Al\textsubscript{17}-O\textsubscript{3}-Al\textsubscript{17} with $d = 5.6$ Å. The energies of the orbitals are -10.537 eV (1), -7.238 eV (2), -7.176 eV (3), -6.274 eV (4), -5.606 eV (5), -2.133 eV (6), -5.197 eV (7), -2.175 eV (8), and +0.153 eV (9), where the number of the orbital is given in brackets.

V. DISCUSSION AND CONCLUSIONS

Let us point out that we have checked that the results presented in this work are robust with respect to the size of the contacts. In particular, the charge transport characteristics do not change significantly when the size of the pyramids in the contact geometries is increased, nor do they depend sensitively on the partitioning into the L, C, and R regions. We illustrate this fact in Fig.\textendash where we compare the transmission functions $T(E)$ of the Al-O\textsubscript{2}-Al contact of Fig.\textendash at a tip-to-tip distance of 4.5 Å. We vary the numbers of layers in the Al pyramids and divide the system differently into the three regions. Clearly, the essential features of the results remain unaffected by these modifications. Such a robustness is observed as long as the assumption about vanishing matrix elements between the L and R regions is fulfilled, and there are enough layers (at least two in the case of Al) left in the L and R parts of the pyramids for coupling the C part to the surfaces.

In order to investigate structures where the effect of O molecules on the transport properties is at its largest, we have placed the oxygen molecules initially between the pyramids and kept the Al electrodes fixed in the geometry-optimization process. On the other hand, we know that relaxing parts of the pyramids together with the molecule can lead to geometrical structures differing considerably from the ideal contacts shown in Fig.\textendash. An example of such a geometry is depicted in Fig.\textendash. Moreover, the formed structures depend on the initial placements of the atoms close to the tips and on the number of oxygen molecules present. Different realizations of atomic configurations can also be observed in experiments, where various kinds of I-V characteristics have been measured.\textendash However, as the transmission function in Fig.\textendash shows, even more complex geometries can exhibit results whose main features resemble those of the simplified structures discussed above. The transmission function shown in this figure should be compared with the ones for the Al-O-Al contact in Fig.\textendash. In particu-
FIG. 7: Al-O\textsubscript{2}-Al: Conductance as a function of the distance between the Al tip atoms.

FIG. 8: (Color online) Robustness of the transmission for an Al-O\textsubscript{2}-Al contact at a tip-to-tip distance of 4.5 Å [Fig. 4(b)]. Shown are $T(E)$ curves for an increased number of Al atoms in the pyramids as well as for different partitionings of the contact into L, C, and R regions. The solid black line is the transmission of 7-6-3-1-O\textsubscript{2}-1-3-6-7 (Fig. 4). The numbers stand for the Al atoms in each layer of the pyramid and “|” indicates how the system is divided into the three different regions. The dash-dot-dotted line corresponds to the system 6-12-10-6-3-1-O\textsubscript{2}-1-3-6-10-12-6, the dashed line to 6-12-10-6-3-1-O\textsubscript{2}-1-3-6-10-12-6, and the dash-dotted line to 6-12-10-6-3-1-O\textsubscript{2}-1-3-6-10-12-6. The vertical dashed line indicates the Fermi energy.

FIG. 9: (Color online) Al-O\textsubscript{2}-Al: Example of a possible geometrical configuration when the Al tip atoms are included in the relaxation process in addition to the molecule, and the corresponding transmission as a function of energy. The vertical dashed line indicates the Fermi energy.

lar, similarly to those results, there are three peaks (1-3) below the Fermi energy and the conductance is around $0.2G_0$.

A similar approach to investigate oxygen in Al junctions was chosen by Jelínek et al. (Ref. 12). Those authors found structures where an oxygen atom is incorporated into the electrodes and their electrodes are connected by an aluminum dimer in the final stage before the contact breaks. The conductance in their structures, therefore, is dominated by the aluminum dimer and the influence of the oxygen atom on the conductance is weak. We nevertheless believe that structures with oxygen molecules bridging the gap between Al electrodes can be found in experiments. A situation corresponding to our simulations would most likely arise when the oxygen is introduced into open contacts that are subsequently closed and then reopened. The experimental results can then be compared to our predictions.

In conclusion, we studied the charge transport properties of aluminum atomic contacts in the presence of oxygen molecules (O, O\textsubscript{2}, and O\textsubscript{3}). We obtained stable geometrical structures for the molecules in the junctions, and determined the molecules’ vibrational modes in the presence of the aluminum electrodes. In principle these modes should be measurable with the methods of point contact spectroscopy. Moreover, we analyzed the evolution of the conductance for the Al-O/O\textsubscript{2}/O\textsubscript{3}-Al contacts in stretching processes, mimicking a conductance curve measured in experiments while opening a break junction. These results show a typical behavior for all the different molecules studied. First the conductance decreases, until it starts to increase shortly before the contact breaks. The value of the conductance was found to decrease with the number of oxygen atoms. Our observations can be understood by the interplay between mechanical and electronic properties. Changes in the distances between the atoms result in modifications of the electronic structure. The shifts in energy positions of individual molecular orbitals and their corresponding peaks in the transmission function can in turn explain the behavior of the conductance in the stretching processes. Finally, we studied the decay lengths of the conductance in the tunneling regime, and found the decay to be faster.
in the presence of oxygen than for pure aluminum contacts. This effect may provide a way for detecting gas molecules in metallic atomic contacts.

Acknowledgments

We would like to thank Michael Häfner, Marcelo Goffman, and Antoine Isambert for sharing their ideas with us. We also thank the Theoretical Chemistry group of Reinhart Ahlrichs for helpful discussions and for providing us with TURBOMOLE. Financial support by the Helmholtz Gemeinschaft within the “Nachwuchsgruppen-Programm” (Contract No. VH-NG-029), the Landesstiftung Baden-Württemberg within the “Kompetenzzentrum Funktionelle Nanostrukturen”, and the DFG within the CFN is gratefully acknowledged.

APPENDIX A: CONDUCTANCE FORMULA IN THE TUNNELING LIMIT

In the actual conductance calculations presented in this paper, we always use the formula given in Eq. 2. For a better understanding of the tunneling regime, it is nevertheless useful to cast Eq. 2 into another well-known form. Let us assume that the C part of the system can be divided into two regions 1 and 2, where region 1 (2) is not coupled to the R (L) lead through direct hoppings or overlaps. Furthermore, regions 1 and 2 are connected to each other by $t_{12} = H_{12} - E S_{12}$. Equation 2 can then be written in the form

$$G = G_{0} \text{Tr}[G_{12}^{r}(\Gamma_{R})_{22}G_{21}^{s}(\Gamma_{L})_{11}],$$

(A1)

where $G_{21}^{s} = (G_{12}^{r})^{\dagger}$, and all energy-dependent quantities are evaluated at E_F. Let us denote by g_{11} and g_{22} the Green’s functions for the regions 1 and 2 in the absence of t_{12}. For example $g_{11}(E) = |E S_{11} - H_{11} - (\Sigma_{L})_{11}|^{-1}$. We also define the unperturbed spectral density matrix $A_{11} = (g_{11}^{-1} - g_{11}^{\dagger})$, with a similar definition for A_{22}. We note that H_{11} and H_{22} are simply cut out from the full, self-consistent H_{CC} and thus still contain indirect effects of t_{12}.

The full propagator between 1 and 2 is given by the Dyson equation $G_{12}^{r} = g_{11}^{-1} t_{12} G_{22}^{r} = g_{11}^{-1} T_{12} g_{22}^{-1}$. In the last stage, we defined the t matrix T_{12} due to the perturbation t_{12} (Ref. 42). Inserting these into Eq. (A1) and using the identities $g_{11}(\Gamma_{L})_{11} g_{11}^{-1} = A_{11}$ and $g_{22}^{-1}(\Gamma_{R})_{22} g_{22}^{-1} = A_{22}$, we find the following formula

$$G = G_{0} \text{Tr}[T_{12} A_{22} T_{21} A_{11}].$$

(A2)

Far in the tunneling regime, the quantities t_{12} are small, such that the lowest-order approximation $T_{12} = t_{12}$ should be valid. Furthermore, to lowest order, the electronic structures of the tips (as represented by H_{11} and H_{22}, and hence A_{11} and A_{22}) also become independent of the tip-to-tip distance.

The decay rate of the conductance with increasing distance between the tips (β) is now seen to be determined by two factors. The first is due to the decay of the couplings t_{12}. If one uses the Wolfsberg-Helmholz (or “extended Hückel”) approximation, then H_{12} and hence t_{12} are related in a simple way to the overlap S_{12} (Ref. 43). This emphasizes that the major effect to the decay of t_{12} is simply due to the associated local basis functions, which decay with varying rates. The second factor is due to the spectral functions A_{11} and A_{22}. They weight the various components of t_{12} differently, and thus finally determine the decay rate β. The physical quantity controlling this rate is still the effective tunneling barrier, in particular its height with respect to E_F, because the latter determines the barrier-penetration lengths of the electronic eigenstates of the tips. This information is contained in the matrices A_{11} and A_{22} in the form of the weights of the different local basis functions of the tip atoms.

* Present address: School of Chemistry, The University of Sydney, Sydney, New South Wales 2006, Australia
1 J. K. Gimzewski and R. Möller, Phys. Rev. B 36, 1284 (1987).
2 R. H. M. Smit, Y. Noat, C. Untiedt, N. D. Lang, M. C. van Hemert, and J. M. van Ruitenbeek, Nature 419, 906 (2002).
3 D. Djukic, K. S. Thygesen, C. Untiedt, R. H. M. Smit, K. W. Jacobsen, and J. M. van Ruitenbeek, Phys. Rev. B 71, 161402(R) (2005).
4 D. Djukic and J. M. van Ruitenbeek, Nano Lett. 6, 789 (2006).
5 J. C. Cuevas, J. Heurich, F. Pauly, W. Wenzel, and G. Schönh, Nanotechnology 14, R29 (2003).
6 Y. García, J. J. Palacios, E. SanFabián, J. A. Vergés, A. J. Pérez-Jiménez, and E. Louis, Phys. Rev. B 69, 041402(R) (2004).
7 K. S. Thygesen and K. W. Jacobsen, Phys. Rev. Lett. 94, 036807 (2005).
8 V. M. García-Suárez, A. R. Rocha, S. W. Bailey, C. J. Lambert, S. Sanvito, and J. Ferrer, Phys. Rev. B 72, 045437 (2005).
9 N. Agraït, A. Levy Yeyati, and J. M. van Ruitenbeek, Phys. Rep. 377, 81-380 (2003).
10 T. Frederiksen, M. Brandbyge, N. Lorente, and A.-P. Janho, Phys. Rev. Lett. 93, 256601 (2004).
11 J. K. Viljas, J. C. Cuevas, F. Pauly, and M. Häfner, Phys. Rev. B 72, 245415 (2005).
12 L. de la Vega, A. Martín-Rodero, N. Agraït, and A. Levy Yeyati, Phys. Rev. B, 73, 075428 (2006).
13 H. Ness, J. Phys.: Condens. Matter 18, 6307 (2006).
14 G. C. Solomon, A. Gagliardi, A. Pecchia, T. Frauenheim, A. Di Carlo, J. R. Reimers, and N. S. Hush, J. Chem. Phys. 124, 094704 (2006).
35 J. Heurich, J. C. Cuevas, W. Wenzel, and G. Schön, Phys. Rev. Lett. 88, 256803 (2002).
36 F. Guinea, C. Tejedor, F. Flores, and E. Louis, Phys. Rev. B 28, 4397 (1983).
37 J. C. Cuevas, A. Levy Yeyati, and A. Martín-Rodero, Phys. Rev. Lett. 80, 1066 (1998).
38 R. Cron, M. F. Goffman, D. Esteve, and C. Urbina, Phys. Rev. Lett. 86, 4104 (2001).
39 F. Pauly, M. Dreher, J. K. Viljas, M. Häfer, J. C. Cuevas, and P. Nielaba, Phys. Rev. B 74, 235106 (2006).
40 We obtain the LDOS of atom \(i\) as \(\text{LDOS}_i(E) = -(1/\pi) \sum_\alpha \text{Im} \left[S^L_{\alpha \alpha} C^C \right] \), where \(\alpha\) runs over all basis functions of that atom.
41 The LDOS of a region \(\Omega\) containing several atoms is the sum over all atoms in this region \(\text{LDOS}_\Omega(E) = \sum_{\Omega} \text{LDOS}_i(E)\).