Capturing an Evader in Polygonal Environments: A Complete Information Game*

Kyle Klein and Subhash Suri

Department of Computer Science
UC Santa Barbara, CA 93106, USA
{kyleklein, suri}@cs.ucsb.edu

Abstract

Suppose an unpredictable evader is free to move around in a polygonal environment of arbitrary complexity that is under full camera surveillance. How many pursuers, each with the same maximum speed as the evader, are necessary and sufficient to guarantee a successful capture of the evader? The pursuers always know the evader’s current position through the camera network, but need to physically reach the evader to capture it. We allow the evader the knowledge of the current positions of all the pursuers as well—this accords with the standard worst-case analysis model, but also models a practical situation where the evader has “hacked” into the surveillance system. Our main result is to prove that three pursuers are always sufficient and sometimes necessary to capture the evader. The bound is independent of the number of vertices or holes in the polygonal environment. The result should be contrasted with the incomplete information pursuit-evasion where at least $\Omega(\sqrt{h} + \log n)$ pursuers are required [4] just for detecting the evader in an environment with n vertices and h holes.

1 Introduction

Pursuit-evasion games provide an elegant setting to study algorithmic and strategic questions of exploration or monitoring by autonomous agents. Their mathematical history can be traced back to at least 1930s when Rado posed the now-classical Lion-and-Man problem: a lion and a man in a closed arena have equal maximum speeds; what tactics should the lion employ to be sure of his meal? The problem was settled by Besicovitch who showed that the man can escape regardless of the lions strategy. An important aspect of this pursuit-evasion

*The research on this paper was supported in part by the National Science Foundation Grant IIS-0904501. A preliminary version of this paper appeared at the 25th Conference on Artificial Intelligence.
problem, and its solution, is the assumption of continuous time: each players motion is a continuous function of time, which allows the lion to get arbitrarily close to the man but never capture him. If, however, the players move in discrete time steps, taking alternating turns but still in continuous space, the outcome is different, as first conjectured by Gale [5] and proved by Sgall [16].

A rich literature on pursuit-evasion problem has emerged since these initial investigations, and the problems tend to fall in two broad categories: discrete space, where the pursuit occurs on a graph, and continuous space, where the pursuit occurs in a geometric space. Our focus in this paper is on the latter: visibility-based pursuit in a polygonal environment in two dimensions. There exist simply-connected n-gons that may require $\Omega(\log n)$ pursuers in the worst-case to detect a single, arbitrarily fast moving evader, and $O(\log n)$ pursuers also always suffice for all n vertex simple polygons [4]. When the polygon has h holes, the number of necessary and sufficient pursuers turns out to be $O(\sqrt{h} + \log n)$ [4]. However, these results hold only for detection of the evader, not for the capture.

For capturing the evader, it is reasonable to assume that the pursuers and the evader all have the same maximum speed. Under this assumption, it is shown by Isler et al. [8] that two pursuers can capture the evader in a simply-connected polygon using a randomized strategy whose expected search time is polynomial in n and the diameter of the polygon. When the polygon has holes, no non-trivial upper bound is known for capturing the evader. For instance, we do not even know if $O(h)$ pursuers are able to capture the evader. Because visibility-based pursuit allows unbounded line-of-sight visibility regardless of the distance, it is unclear how to map a detection strategy to a capture strategy.

In this paper, we attempt to disentangle these two orthogonal issues inherent in pursuit evasion: localization, which is purely an informational problem, and capture, which is a problem of planning physical moves. In particular, we ask how complex is the capture problem if the evader localization is available for free? In other words, suppose the pursuers have complete information about the evader’s current position, how much does it help them to capture the evader? Besides being a theoretically interesting question, the problem is also a reasonable model for many practical settings. Given the rapidly dropping cost of electronic surveillance and camera networks, it is now both technologically and economically feasible to have such monitoring capabilities. These technologies enable cheap and ubiquitous detection and localization, but in case of intrusion, a physical capture of the evader is still necessary.

1.1 Our Contribution

Our main result is that under such a complete information setting, three pursuers are always sufficient to capture an equally fast evader in a polygonal environment with holes, using a deterministic strategy. The bound is independent of the number of vertices n or the holes of the polygon, although the capture time depends on both n and the diameter of the polygon. Complementing this upper bound, we also show that there exists polygonal environments that require at least three pursuers to capture the evader even with full information.
1.2 Related Work

There is an enormous literature on pursuit evasion and related problems [1, 2, 3, 6, 9, 10, 11, 13, 14, 15, 17]. The research tends to fall into two distinct categories: geometry-based and graph-based. The former assumes a continuous model of space, typically a polygon, while the latter assumes a discrete graph model where agents move along edges. The graphs provide a very general setting but can suffer from two shortcomings: one, the generality leads to weak upper bounds and, two, they fail to model many restrictions imposed by the geometry of physical world. Thus, for instance, determining the search number of cop-number or a general graph remains a difficult open problem despite decades of research.

In visibility-based pursuit, a seminal paper [4] shows that \(\Theta(\log n) \) pursuers are both necessary and sufficient in worst-case for a simply-connected \(n \)-vertex polygon. Most of the existing work in polygon searching, however, is on detection and not capture. The only relevant result on capture is by Isler et al. [8] showing that in polygons without holes two pursuers can achieve both detection and capture. When the environment has holes, it is not even known how many pursuers are sufficient to capture an evader, even though a tight bound of \(\Theta(\sqrt{h} + \log n) \) for detection is known. In one important aspect, polygon searching is fundamentally different from graph searching: re-contamination is unavoidable in polygons, in general, while graphs can always be searched optimally without re-contamination [4].

Our work bears some resemblance to, and is inspired by, the result of Aigner and Fromme [1] on planar graphs, showing that graph searching on planar graph requires 3 cops. In that work, the graph is unweighted, does not deal with Euclidean distances, and require players to move to only neighboring nodes. Unlike the graph model, our search occurs in continuous Euclidean plane, and players can move to any position within distance one. Thus, while our bounds are similar, the proof techniques and technical details are quite different.

2 The Problem Formulation

We assume that an evader \(e \) is free to move in a two-dimensional closed polygon \(P \), which has \(n \) vertices and \(h \) holes. A set of pursuers, denoted \(p_1, p_2, \ldots \), wish to capture the evader. All the players have the same maximum speed, which we assume is normalized to 1. The bounds in our algorithm depend on the number of vertices \(n \) and the diameter of the polygon, \(\text{diam}(P) \), which is the maximum distance between any two vertices of \(P \) under the shortest path metric.

For the sake of notational brevity, we also use \(e \) to denote the current position of the evader, and \(p_i \) to denote the position of the \(i \)th pursuer. We model the pursuit-evasion as a continuous space, discrete time game: the players can move anywhere inside the polygon \(P \), but they take turns in making their moves, with the evader moving first. In each move, a player can move to any position whose shortest path distance from its current position is at most one; that is, within geodesic disk of radius one. On the pursuers’ move, all the pursuers can move simultaneously and independently. We say that \(e \) is successfully captured when
some pursuer p_i becomes collocated with e.

In order to focus on the complexity of the capture, we assume a complete information setup: each pursuer knows the location of the evader at all times. We also endow the evader the same information, so e also knows the locations of all the pursuers. In addition, both sides know the environment P, but neither side knows anything about the future moves or strategies of the other side. We begin with a high level description of the capture strategy, followed by its technical details and proof of correctness in the next section.

2.1 The High Level Strategy for Capture

We show that three pursuers, denoted p_1, p_2, p_3, can always capture an evader using a deterministic strategy, regardless of the evader’s strategy and the geometry of the environment. Our overall strategy is to progressively trap the evader in an ever-shrinking region of the polygon P. The pursuit begins by first choosing a path Π_1 that divides the polygon into sub-polygons (see Figure 1(a))—we will use the notation P_e to denote the sub-polygon containing the evader. We show that, after an initialization period, the pursuer p_1 can successfully guard the path Π_1, meaning that e cannot move across it without being captured.

In a general step, the sub-polygon P_e containing the evader is bounded by two paths Π_1 and Π_2, satisfying a geometric property called *minimality*, each being guarded by a pursuer. We then choose a third path Π_3 splitting the region P_e into two non-empty subsets. If both regions have holes, then we argue that the pursuer p_3 can guard Π_3, thereby trapping e either between Π_1 and Π_3 (see Figure 1(b)), or between Π_2 and Π_3, in which case the pursuit iterates in a smaller region. If one of the regions is hole-free, then we show that the pursuer p_3 can *evict* the evader from this region, forcing it into a smaller region where the search resumes.

2.2 Visibility Graphs and Path Guarding

In order for this strategy to work, the paths Π_i need to be carefully chosen and must satisfy certain geometric conditions, which we briefly explain. First, although the pursuit occurs in continuous space, our paths will be computed from a *discrete* space, namely, the *visibility graph* of the polygon. The visibility graph $G(P)$ of a polygon P is defined as follows: the nodes are the vertices of the polygonal environment (including the holes), and two nodes are joined by an edge if the line segment joining them lies entirely in the (closed) interior of the polygon. (In other words, the two vertices joined by an edge must have line of sight visibility.) This *undirected* graph has n vertices and at most $O(n^2)$ edges. We assign each edge a *weight* equal to the Euclidean distance between its two endpoints. See Figure 1(a) for an example.

One can easily see that, given two vertices u and v of P, the *shortest path* from u to v in $G(P)$ is also the shortest Euclidean path constrained to lie inside P. (The shortest Euclidean path has corners only at vertices of $G(P)$.) However, we cannot make such a claim for the *second*, or in general the kth, shortest path—one can create an infinitesimal “bend” in the shortest path Π_1 to create another path that is arbitrarily close to the first shortest path but
Figure 1: (a) A polygonal environment with two holes (a rectangle and a triangle). \(xy \) is a visibility edge of \(G(P) \), while \(xz \) is not. \(\Pi_1 \) and \(\Pi_2 \) are the first and the second shortest paths between anchors \(u \) and \(v \). The figure (b) illustrates the main strategy of trapping the evader through three paths.

does not belong to \(G(P) \). Therefore, we will only consider paths that belong to \(G(P) \) and are “combinatorially distinct” from \(\Pi_1 \)—that is, they differ in at least one visibility edge. However, even then the \(k \)th shortest path between two nodes can exhibit counter-intuitive behavior. For instance, while in graphs with non-negative weights the first shortest path is always loop-free, the second, or more generally \(k \)th, shortest path can have loops—this may happen if repeatedly looping around a small-weight cycle (to make the path distinct from others) is cheaper than taking a different but expensive edge [7]. Therefore, we will consider only shortest loop-free paths. One of our technical lemmas proves that these paths are also geometrically non-self-intersecting. (This is obvious for the shortest path \(\Pi_1 \) but not for subsequent paths.) In addition, we argue that these paths also satisfy a key geometric property, called minimality, which allows a pursuer to guard them against an evader.

3 Proof of Sufficiency of 3 Pursuers

We begin with the discussion of how a single pursuer can guard a path in \(P \), trapping the evader on one side. We then discuss the technically more challenging case of guarding the second and the third paths. In order to guarantee that a path in \(P \) can be guarded, it must satisfy certain geometric properties. We begin by introducing two key ideas: a minimal path and the projection of evader on a path. In the following, we use the notation \(d(x, y) \) to denote the shortest path distance between points \(x \) and \(y \). When we require that distance to be measured within a subset, such as restricted to a path \(\Pi \), we write \(d_{\Pi}(x, y) \). That is, \(d_{\Pi}(x, y) \) is the length of path \(\Pi \) between its points \(x \) and \(y \). Occasionally, we also use the notation \(\Pi(x, y) \) to denote subpath of \(\Pi \) between points \(x, y \). We use the notation \(x \prec y \) to emphasize that the point \(x \) precedes \(y \) on the path \(\Pi \): that is, if \(\Pi \) is the path from node \(u \) to node \(v \), then \(x \prec y \) means that \(d_{\Pi}(u, x) < d_{\Pi}(u, y) \). The following property is important
for patrolling of paths.

Definition 1. (Minimal Path:) Suppose Π is a path in P dividing it into two sub-polygons, and P_e is the sub-polygon containing the evader e. We say that Π is minimal if, for all points $x, z \in \Pi$ and $y \in (P_e \setminus \Pi)$, the following holds:

$$d_{\Pi}(x, z) \leq d(x, y) + d(y, z)$$

Intuitively, a minimal path cannot be shortcut: that is, for any two points on the path, it is never shorter to take a detour through an interior point of P_e. (This is a weak form of triangle inequality, which excludes detours only through points contained in P_e.) The next definition introduces the projection of the evader on to a path, which is an important concept in our algorithm.

Definition 2. (Projection:) Suppose Π is a path in P dividing it into two sub-polygons, and P_e is the sub-polygon containing the evader e. Then, the projection of e on Π, denoted $e\pi$, is a point on Π such that, for all $x \in \Pi$, e is no closer to x than is $e\pi$.

Thus, if a pursuer is able to position itself at the projection of e at all times, then it guarantees that the evader cannot cross the path without being captured. With these definitions in place, we now discuss how to guard the first path Π_1.

3.1 Guarding the First Path

We choose two non-neighbor vertices u and v on the outer boundary of P, and call them anchors. We let Π_1 be the shortest path from u to v in $G(P)$; this is also the shortest Euclidean path between u and v constrained to lie inside the environment. Our first observation is that this path Π_1 is always minimal.

Lemma 1. The path Π_1 between u and v is minimal.

Proof. For the sake of contradiction, suppose there are two points $x, z \in \Pi_1$ that violate the minimality. Let the point $y \notin \Pi_1$ be the witness of this violation. That is, $d(x, y) + d(y, z) < d_{\Pi_1}(x, z)$. But then Π_1 is not the shortest path from u to v, because its subpath $\Pi_1(x, z)$ is sub-optimal. This completes the proof.

The following lemma shows that the projection of e is well-defined for a minimal path.

Lemma 2. Suppose Π is a minimal path between the anchor nodes u and v. Then, for every position of the evader e in P_e, the projection $e\pi$ exists. In fact, point on Π at distance $d(e, u)$ from u along the path is a projection of e.

Proof. On the path Π, starting from u, we pick the furthest point z such that for all $x \prec z$ we have $d_{\Pi}(x, z) \leq d(x, e)$. We note that necessarily for some $x \neq z$, this must be equality because otherwise there exists a point farther along Π satisfying the inequality. We claim
that \(z \) is a projection of \(e \). Suppose not. Then there exists a point \(x \succ z \) such that
\[
d_{\Pi}(z, x) > d(e, x) \]
This violates the minimality of \(\Pi \) because
\[
d_{\Pi}(u, x) = d_{\Pi}(u, z) + d_{\Pi}(z, x) = d(u, e) + d_{\Pi}(z, x) > d(u, e) + d(e, x) \]

Next, we show that the point at \(d(e, u) \) along \(\Pi \) is a projection of \(e \). In case we have
\[
d(e, u) > d_{\Pi}(u, v) \]
we choose \(v \) as the projection point as a convention. Otherwise, consider the point \(z \) that lies on \(\Pi \) at distance \(d(e, u) \) from \(u \). In order to show that \(z \) is a valid and unique projection, it suffices to show that for any other point \(x \) on \(\Pi \), the point \(z \) is closer to it than \(e \) is. Indeed, if \(x \) is such that \(z \prec x \), then \(d_{\Pi}(z, x) > d(e, x) \) would contradict the minimality of \(\Pi \):
\[
d_{\Pi}(u, x) = d_{\Pi}(u, z) + d_{\Pi}(z, x) = d(u, e) + d_{\Pi}(z, x) > d(u, e) + d(e, x) \]

Similarly, if \(x \) is such that \(x \prec z \), then \(d_{\Pi}(x, z) > d(x, e) \) contradicts the hypothesis that \(y \) satisfies \(d(e, u) = d_{\Pi}(u, z) \):
\[
d(e, u) \leq d(e, x) + d_{\Pi}(x, u) < d_{\Pi}(z, x) + d_{\Pi}(x, u) = d_{\Pi}(z, u) \]

Therefore, the chosen point \(z \) is closer to all points on \(\Pi \) than \(e \) is, and hence it is a projection of \(e \). This completes the proof. \(\square \)

The next lemma shows how a pursuer can guard a minimal path.

Lemma 3. Suppose \(\Pi \) is a minimal path between the anchors \(u, v \) in \(P \), and a pursuer \(p \) is located at the current projection of \(e \). Suppose on its turn the evader moves from \(e \) to \(e' \). Then, the pursuer \(p \) can either capture the evader or relocate to the new projection \(e'' \) in one move.

Proof. First, suppose that the new position \(e' \) is on different side of the path \(\Pi \) than \(e \); that is, the evader crosses the path. Because \(e \) moves a distance of at most one, and suppose it crosses the path at a point \(z \), we have \(d(e, z) + d(z, e') \leq 1 \). On the other hand, since \(p \) is located at the projection of \(e \) before the move, \(d_{\Pi}(p, z) \leq d(e, z) \). Therefore, the new position of the evader \(e' \) is within distance one of \(p \), and the pursuer can capture the evader on its move.

Therefore, assume that the evader does not cross the path, and moves to a position \(e' \) such that \(e_\pi \neq e'_\pi \). Consider any two points \(x \prec e_\pi \prec y \) (one on either side of the projection), and let \(d(x, e') = d_{\Pi}(x, e_\pi) + c \) and \(d(y, e') = d_{\Pi}(y, e_\pi) + c' \). Then we claim that \(c + c' \geq 0 \). We observe that by the minimality of \(\Pi \), the following holds, which in turn implies that \(c + c' \geq 0 \).

\[
d_{\Pi}(x, y) \leq d(x, e') + d(e', y) = d_{\Pi}(x, e_\pi) + d_{\Pi}(y, e_\pi) + c + c' = d_{\Pi}(x, y) + c + c' \]

Thus \(e \) can move closer to \(x \) or \(y \) but not both. Suppose it moves closer to \(x \), meaning \(c < 0 \). Consider some \(x \prec e_\pi \) with the smallest value of \(c \). Then suppose for any \(y > e_\pi \),
This would imply \(c + c' < 0 \), and so if \(e \) moves a maximum of \(c \) closer to any \(x \), it moves at least \(c \) farther from any \(y \). We claim that \(e'_\pi \) is at the point \(c \) closer to \(x \). To show this we argue that at the position \(e'_\pi \), the pursuer is closer to all points on \(\Pi \). But \(e' \) cannot be closer to any \(x < e'_\pi \) because \(e' \) is no more than \(c \) closer than \(e \) to any such \(x \). Similarly \(e' \) must still be farther from any \(y > p_e \) because \(e \) moved \(c \) or more away from those points. This leaves the points between \(e'_\pi \) and \(e_\pi \), but if \(e' \) is closer to one of these points (say, \(z' \)), then \(p \) can capture \(e \) because \(d(e, z') < d(e'_\pi, z') \). Therefore, the pursuer can move to the new projection because \(|c| < 1 \). This completes the proof.

Finally, we show that a pursuer \(p \) requires \(O(\text{diam}(P)^2) \) moves to either reach the current projection of \(e \) or capture it.

![Figure 2: Example of sub-polygons \(P' \) created with diameter larger than \(\text{diam}(P) \).](image)

Lemma 4. Suppose \(\Pi \) is a minimal path between anchors \(u, v \) in \(P \), and a pursuer \(p \) is located at \(u \). Then in \(O(\text{diam}(P)^2) \) moves, \(p \) can move to \(e \)'s projection.

Proof. By Lemma 3, the projection of \(e \) can only shift by distance at most one along the path \(\Pi \). Thus, \(p \)'s strategy is simply to move along the path from one end to the other until it coincides with the current projection of \(e \), or captures it. However, as \(\Pi \) is not the shortest \(u, v \) path, \(d_\Pi(u, v) \) may be larger than \(\text{diam}(P) \) (an example of progressively longer paths is depicted in Figure 2), thus we show that \(d_\Pi(u, v) \leq \text{diam}(P)^2 \).

Notice that \(\Pi \) splits \(P \) into two or more sub-polygons, consider one such sub-polygon \(P' \). Trivially \(\text{area}(P') < \text{area}(P) \), thus if for all \(P' \) \(\text{diam}(P') \leq \text{area}(P') \), then \(d_\Pi(u, v) \leq \text{area}(P) \) and necessarily \(d_\Pi(u, v) \leq \text{diam}(P)^2 \). Suppose that \(\text{diam}(P') > \text{area}(P') \), we can easily reverse this inequality by a simple *rescaling of the units*. In particular, suppose we rescale the unit of measurement from 1 to \(1 + \alpha \). This increases the area of a triangle by a factor of \((1 + \alpha)^2\), while a segment only increases in length by a factor of \(1 + \alpha \). A suitably large choice of \(\alpha \), therefore, always ensures that the polygon’s area exceeds its diameter, because the former grows by a factor of \((1 + \alpha)^2\) while the latter grows only by a factor of \(1 + \alpha \). Thus, we assume that a suitable rescaling has been applied to the polygon \(P \), ensuring that all sub-polygons \(P' \) encountered during the algorithm satisfy \(\text{diam}(P') \leq \text{area}(P') \).
Since p moves a distance of 1 in each turn, and the path Π is at most $\text{diam}(P)^2$ long, the entire initialization phase takes $O(\text{diam}(P)^2)$ time. Meanwhile, if the projection ever “crosses over” the current position of p, the pursuer immediately can move to the new projection point because at that moment it must be within distance one of the target location. This completes the proof.

3.2 Geometric Structure of Pursuer Paths

We now come to the main part of our pursuit strategy. The key idea is to progressively trap the evader in a region bounded by two minimal paths, which are guarded by two pursuers, and to use the third pursuer to further divide the current trap region. When the third pursuer subdivides the current region containing e, two possibilities emerge: either both regions of the subdivision have holes, in which case we show that the third path is necessarily minimal and thus guardable by the third pursuer, limiting the evader to a smaller region than before; or one of the regions is hole-free, in which case the third pursuer uses the capture strategy for a simply-connected polygon to evict the pursuer from this region (or capture it). In order to formalize our strategy, we first show a key geometric property of the second and third shortest paths between the anchors in the visibility graph, namely, that they are non-self-intersecting, and therefore lead to well-defined closed regions.

![Diagram showing non-self-crossing of shortest paths Π_1, Π_2, Π_3.]

Lemma 5. Let Π_1 be the shortest path between two anchor points u and v on P’s boundary, and focus on the sub-polygon P_e that lies on one side of Π_1. Let Π_2 and Π_3, respectively, be the second and the third simple (loop-free) shortest paths in the visibility graph $G(P_e)$ between u and v. Then, Π_2 and Π_3 are non-self-crossing.

Proof. Without loss of generality, suppose the path Π_3 violates the lemma, and that two of its edges (v_1, v_2) and (v_3, v_4) intersect. See Figure 3. We first note that the intersection point cannot be a vertex of the visibility graph because otherwise the path has a cycle, and we assumed that Π_3 is loop-free. As shown in the figure, we break the segment (v_1, v_2) into
l_1 and l_2, and (v_3, v_4) into l_3 and l_4. By the triangle inequality of the Euclidean metric, it is easy to see that d(v_1, v_3) < l_1 + l_3, and d(v_2, v_4) < l_2 + l_4. Similarly, d(v_1, v_4) < l_1 + l_4. Let \(\Pi_L, \Pi_R, \Pi_B \), respectively, denote the shortest paths (in the graph \(G(P_e) \)) realizing these distances. Now consider the following three paths between \(v \) and \(l \). Speaking, the region \(P \) contains at least one hole—otherwise, the evader is trapped in a simply-connected region, which is not technically a minimal path. However, the evader cannot cross the polygon boundary, and so we treat this as a special case of the minimal path to avoid duplicating our proof argument.) We also assume that \(\Pi_1 \) and \(\Pi_2 \) only share vertices \(u \) and \(v \); if they share a common prefix or suffix subpath, we can delete those and advance the anchor nodes to the last common prefix vertex and the first common suffix vertex. This ensures that the region \(P_e \) is non-degenerate. Furthermore, we assume that the region \(P_e \) contains at least one hole—otherwise, the evader is trapped in a simply-connected region, where a single (the third) pursuer can capture it.

The key idea of our proof is to show that, in the visibility graph \(G(P_e) \), if we compute a shortest path from \(u \) to \(v \) that is distinct from both \(\Pi_1 \) and \(\Pi_2 \), then it divides \(P_e \) into only two regions, and that the evader is trapped in one of those regions. We will call this new path the third shortest path \(\Pi_3 \). Specifically, \(\Pi_3 \) is the simple (loop-free) shortest path from \(u \) to \(v \) in \(G(P_e) \) distinct from \(\Pi_1 \) and \(\Pi_2 \). (One can compute such a path using any of the algorithms for computing \(k \) loop-free shortest paths in a weighted undirected graph [7, 12, 18].)

Lemma 6. The shortest path \(\Pi_3 \) between the anchor nodes \(u \) and \(v \) divides the current evader region \(P_e \) into two connected regions.

Proof. If the path is disjoint from \(\Pi_1 \) and \(\Pi_2 \) except at endpoints, then \(P_e \) is clearly subdivided into two regions. If \(\Pi_3 \) shares vertices only with \(\Pi_1 \) or only with \(\Pi_2 \), but in multiple disjoint subpaths creating multiple regions, then minimality of those paths means that we can contract all but one region and shorten \(\Pi_3 \), contradicting the choice of this third path. Therefore, let us suppose that \(\Pi_3 \) shares vertices with both the paths, and so “hops” between \(\Pi_1 \) and \(\Pi_2 \), sharing common subpaths with them, and creates three or more regions. In that case, \(\Pi_3 \) must leave and rejoin \(\Pi_1 \) and \(\Pi_2 \) at least once, as shown by points \(x, y, z \) in Figure 4(a). We observe that \(d_{\Pi_2}(y, v) \) is no longer than \(d(y, z) + d_{\Pi_1}(z, v) \), otherwise we can contradict the choice of \(\Pi_2 \). Thus the third region can be removed by altering \(\Pi_3 \) to use the subpath \(\Pi_2(y, v) \). (A symmetric case arises when the roles of \(\Pi_1 \) and \(\Pi_2 \) are swapped.) Thus, we conclude that \(\Pi_3 \) can create only two subregions.

Because \(P_e \) contains at least one hole, one of the regions created by the third shortest path \(\Pi_3 \) also must contain a hole. The following lemma argues that \(\Pi_3 \) is minimal with
Lemma 7. Suppose Π_3 divides the region P_e into two subregions P_e^+ and P_e^-, and assume that P_e^+ contains at least one hole. Then, Π_3 is a minimal path within the region P_e^+.

Proof. Assume, for the sake of contradiction, that the minimality of Π_3 is violated for two points $x, z \in \Pi_3$. Let u' be the vertex immediately preceding the point x, possibly $x = u'$, and v' is the vertex immediately following z, possibly $z = v'$, on Π_3. Consider the shortest path in $G(P_e)$ from u' to v'. If this path is not a subpath of either Π_1 or Π_2, then we can immediately improve the length of Π_3 by using this subpath, thereby contradicting the choice of Π_3. Therefore, assume without loss of generality that the shortest path from u' to v' is a subpath of Π_1. Further, let Π denote the shortest path from point x to point z in P_e^+, and consider the region R bounded by $\Pi_1(u', v'), \Pi$ and the segments (z, v') and (x, u'). If there are any holes in R then there is a distinct path Π'_3 shorter than Π_3 obtained by tightening...
Π around those holes as shown in Figure 5(a). Thus the hole in P_e^+ must be outside R, however pick the closest vertex on a hole in P_e^+ to Π, call it y. Then a path $Π'_3$ shorter than $Π_3$ can be obtained using y as shown in Figure 5(b). Thus in all cases, if P_e^+ contains a hole, $Π_3$ can be shortened, which contradicts its optimality. Thus $Π_3$’s minimality cannot be violated, and the proof is complete.

When one of the regions created by $Π_3$ is hole-free, then $Π_3$ has a very simple structure, consisting of only two distinct edges as seen in Figure 4(b), allowing it to be cleared using the search strategy of a simply-connected polygon.

Lemma 8. Suppose $Π_3$ divides the region P_e into two subregions, one of which is hole-free. Then, $Π_3$ consists of precisely two edges.

Proof. Arguing as in the preceding lemma, it can be shown that if P_e^+ is hole-free, then the shortest path $Π_3$ has a common prefix and a common suffix with $Π_1$, and only differs in a subpath of the form $Π_3(u', v')$. Suppose for the sake of contradiction that $Π_3(u', v')$ consists of more than two edges. Consider the first three points of this subpath, u', x and z. Notice that because they are not co-linear and by assumption there are no holes contained between $Π_3(u', v')$ and $Π_1$ that the shortest u', z path would shortcut x, contradicting the choice of $Π_3$. Thus $z = v'$ and $Π_3$ consists of only two edges. This completes the proof.

Now, if both regions created by $Π_3$ have holes, then the minimality of $Π_3$ allows a third pursuer to guard this path, and the pursuit continues in this smaller region. If one of the regions created is hole-free, then we no longer can assume minimality with respect to that region, so a different strategy is required. The following lemmas show how to either capture the evader in such a region, or to force the evader out of (evict) this region, while guarding $Π_3$ so the evader cannot reenter this region.

Capturing an evader in a hole-free region can be accomplished by advancing along the shortest path towards the current position of the evader. In particular, we can fix a origin O in the region (say, some vertex in P), and then letting the pursuer move along the shortest path between O and the current evader position. It can be shown that the pursuer makes sufficient progress towards the evader, as articulated in the following lemma (which paraphrases a technical result of [10]).

Lemma 9. After each move, (1) the pursuer p remains on the shortest path between O and e, and (2) its new position p' satisfies $d(p', O)^2 \geq d(p, O)^2 + \frac{1}{n}$.

Using this result, we can derive the following lemma about capturing the evader in a hole-free region.

Lemma 10. Suppose the evader lies in hole-free region of k vertices that is bounded by $Π_3$ and another minimal path. Then, in $O(k \cdot \text{diam}(P)^2)$ moves, a single pursuer p can either capture the evader or force it out of the region and place itself on e’s projection on the path $Π_3$.

12
Figure 6: An illustration of the pursuer’s eviction strategy. Dashed lines denote moves where e moved first.

Proof. Assume, without loss of generality, that our hole-free region is bounded by a minimal path Π_1 and the path Π_3, which by Lemma 8 must consist of two edges, say, (x, y) and (y, z). The pursuer p’s strategy is to move to y, and execute a simple-polygon search with y as the origin with the following modification: if p’s move takes it outside the region, then it moves along Π_3 toward e_π until e reenters, at which point its resumes the pursuit.

As the shortest path between any two vertices consists of at most two edges, this region can have diameter no larger than $2 \cdot \text{diam}(P)$. Thus if e never leaves the region, then by the known result of Lemma 9, a successful capture occurs in $O(k \cdot \text{diam}(P)^2)$ moves. Therefore, assume that e leaves the region at some point. Since Π_1 is minimal, the evader cannot leave the region through that path, and so assume without loss of generality that the evader crosses the segment (x, y) of Π_3. Because p always stays on the shortest path between e and y, in an unmodified pursuit p’s move would cross (x, y) as well. In the modified pursuit, p stops at the point where it crosses (x, y) and advances toward the projection of e. See Figure 6 for illustration.

We note that the projection of e is within distance one of where it crossed (x, y). As a result, because p crossed (x, y) at a point closer to y than e, if e_π lies on the subpath $\Pi_3(p, z)$, then p can reach it in one move. Otherwise, p need simply advance forward along Π_3 toward x. If e never re-enters the hole free region, then by Lemma 4 p will reach the projection within $O(\text{diam}(P)^2)$ moves.

In case e re-enters the hole-free region, we note that it must do so by crossing the segment (x, p), and that for each turn e was outside the hole-free region p moved distance one along the shortest path from y to e. Thus on its next turn p can resume its pursuit, while having sufficiently increased its distance from y to guarantee a successful capture occurs in $O(k \cdot \text{diam}(P)^2)$ moves should e remain within the hole-free region. Thus e may continually move back and forth between the hole-free region, but within $O(k \cdot \text{diam}(P)^2)$ moves e will either be captured, or the pursuer will successfully guard Π_3 by reaching the projection. This completes the proof.

We can now summarize our main result.

Theorem 1. Three pursuers are always sufficient to capture an evader in $O(n \cdot \text{diam}(P)^2)$ moves in a polygon with n vertices and any number of holes.
Proof. Whenever a new path is introduced, the size (number of vertices) of the region P_e containing e shrinks by at least one. Thus, the number of different paths guarded during the course of the pursuit before e is trapped in a hole-free region is at most n. Guarding each path requires $O(diam(P)^2)$ moves for a minimal path, and $O(k \cdot diam(P)^2)$ moves when in a hole-free region with k vertices. Since the evader cannot reenter hole-free regions once they have been guarded, the total cost of guarding all the hole-free regions during the course of the algorithm sums to $O(n \cdot diam(P)^2)$.

Finally e will be confined between two minimal paths in a hole-free region consisting of three vertices, otherwise additional u, v paths can be found to further reduce the region. This sub-polygon clearly has diameter no larger than $diam(P)$, and thus the evader can be captured in $O(diam(P)^2)$ moves with the known result of Lemma 9, for a total of $O(n \cdot diam(P)^2)$ moves over the entire pursuit.

4 Necessity of 3 Pursuers

We show that any deterministic strategy requires at least 3 pursuers in the worst-case, and thus the upper bound of the previous section is tight.

Theorem 2. There exists an infinite family of polygons with holes that require at least three pursuers to capture an evader even with complete information about the evader’s location.

Proof. The proof is based on a reduction from searching in planar graphs. In particular, consider a planar graph G, with minimum degree 3, and without any cycles of length three or four (see Figure 7(c)). Using Fary’s Theorem, we can embed such a graph so that each edge maps to a straight line segment. By suitable scaling, assume that the longest edge in the embedding has length 1. (See Figure 7(a) for an example.)

We now transform this straight-line embedding into a polygon with holes, by converting each edge into a “corridor.” Each corridor is constructed to ensure that the shortest path through it has length 1. In particular, the edges of length 1 map to straight corridors, while shorter edges correspond to corridors with multiple turns, as shown in Figure 7 (b). It is easy to see that such a construction can ensure that all the corridors are non-overlapping. With this transformation, the outer face of the graph becomes the boundary of the polygon P, while each face of the plane graph becomes a hole.

It is known that in any graph with minimum degree k and no cycles of length three or four, the evader has a winning strategy against $k − 1$ pursuers [1], as follows: the evader only moves when at least one of its neighbors is occupied by a pursuer, and in that case it moves to a vertex that is not a neighbor of the pursuer-occupied vertices. We can mimic the same strategy in our polygon setting, and show that the evader has a winning strategy against two pursuers.

The evader mimics the same strategy as on the original graph except now pursuers can be located within corridors (essentially on edges in the graph setting), as well as at vertices. However notice that if the evader confines its movements to the vertices, and a pursuer is within a corridor it can threaten only the vertices at each end. Where if the pursuer was at
either vertex it could still threaten both vertices and several more if the vertex had degree greater than one. Thus the evader’s strategy on the graph to avoid capture must still be viable as pursuer’s gain no additional ability to threaten vertices by being within corridors. In Figure 7(c) we see an example planar graph with no 3 or 4 cycles and all vertices of degree three, thus an evader can always avoid capture in the transformed polygon from two pursuers.

5 Closing Remarks

In this paper, we proved that three pursuers are always sufficient to capture an evader in a polygonal environment of arbitrary complexity, under the assumption that pursuers have access to evader’s location at all times. We also proved a matching lower bound, showing that three pursuers are also necessary in the worst-case. Traditionally, the papers on continuous space, visibility-based pursuit problem have focussed on simply detecting the evader, and not on capturing it. One of our contributions is to isolate the intrinsic complexity of the capture from the associated complexity of detection or localization. In particular, while $\Theta(\sqrt{h} + \log n)$ pursuers are necessary (and also sufficient) for detection or localization of an evader in a n-vertex polygon with h holes [4], our result shows that full localization information allows capture with only 3 pursuers. On the other hand, it still remains an intriguing open problem whether $\Theta(\sqrt{h} + \log n)$ pursuers can simultaneously perform localization and capture. We leave that as a topic for future research.

References

[1] M. Aigner and M. Fromme. A game of cops and robbers. *Discrete Applied Mathematics*, 8(1):1–12, 1984.
[2] D. Bienstock and P. Seymour. Monotonicity in graph searching. *J. Algorithms*, 12(2):239–245, 1991.

[3] F. V. Fomin, P. A. Golovach, and J. Kratochvíl. On tractability of cops and robbers game. In *TCS*, pages 171–185, 2008.

[4] L. J. Guibas, J.-C. Latombe, S. M. LaValle, D. Lin, and R. Motwani. Visibility-based pursuit-evasion in a polygonal environment. *IJCGA*, 9(5):471–494, 1999.

[5] R. K. Guy. Unsolved problems in combinatorial games. In *Games of No Chance*, pages 475–491, 1991.

[6] B. Halpern. The robot and the rabbit—a pursuit problem. *The American Mathematical Monthly*, 76(2):140–145, 1969.

[7] J. Hershberger and S. Suri. "Vickrey pricing and shortest paths: What is an edge worth?”. In *43th FOCS*, 2002.

[8] V. Isler, S. Kannan, and S. Khanna. Randomized pursuit-evasion in a polygonal environment. *Robotics, IEEE Transactions on*, 21(5):875–884, 2005.

[9] V. Isler, S. Kannan, and S. Khanna. Randomized pursuit-evasion with local visibility. *SIAM Journal on Discrete Mathematics*, 1:26–41, 2006.

[10] V. Isler and N. Karnad. The role of information in the cop-robber game. *TCS*, 399(3):179–190, 2008.

[11] A. LaPaugh. Recontamination does not help to search a graph. *J. ACM*, 40(2):224–245, 1993.

[12] E. Nardelli, G. Proietti, and P. Widmayer. Finding the most vital node of a shortest path. *TCS.*, 296(1):167–177, 2003.

[13] S.-M. Park, J.-H. Lee, and K.-Y Chwa. Visibility-based pursuit-evasion in a polygonal region by a searcher. In *ICALP*, pages 281–290. Springer-Verlag, 2001.

[14] T. D. Parsons. Pursuit-evasion in a graph. In Y. Alavi and D. R. Lick, editors, *Theory and Application of Graphs*, pages 426–441. Springer-Verlag, Berlin, 1976.

[15] S. Sachs, S. Rajko, and S. M. LaValle. Visibility-based pursuit-evasion in an unknown planar environment. *International Journal of Robotics Research*, 23(1):3–26, 2004.

[16] J. Sgall. Solution of david gale’s lion and man problem. *Theor. Comput. Sci.*, 259(1-2):663–670, 2001.

[17] I. Suzuki and M. Yamashita. Searching for a mobile intruder in a polygonal region. *SIAM J. Comp.*, 21:863–888, 1992.
[18] J. Yen. Finding the k shortest loopless paths in a network. *Management Science*, 17(11):pp. 712–716, 1971.