АНАЛИЗ ПРОЦЕССОВ ВОЗНИКНОВЕНИЯ СУБГАРМОНИЧЕСКИХ СОСТАВЛЯЮЩИХ В КОНТАКТНЫХ СЕТЯХ ЭЛЕКТРОСНАБЖЕНИЯ С НЕЛИНЕЙНЫМИ НАГРУЗКАМИ

Жураева Камила Комиловна
Ташкентский государственный транспортный университет, доцент кафедры «Электроснабжение», доктор философии по техническим наукам (PhD)

Иксар Елена Владимировна
Ташкентский государственный транспортный университет, старший преподаватель кафедры «Электротехника»

Халилова Ирода Фахриддин кизи
Ташкентский государственный транспортный университет студентка 3-го курса

АННАЛИЗ ПРОЦЕССОВ ВОЗНИКНОВЕНИЯ СУБГАРМОНИЧЕСКИХ СОСТАВЛЯЮЩИХ В КОНТАКТНЫХ СЕТЯХ ЭЛЕКТРОСНАБЖЕНИЯ С НЕЛИНЕЙНЫМИ НАГРУЗКАМИ

Анна. В статье рассмотрен расчет режимов возникновения субгармонических составляющих в тяговых сетях электроснабжения железнодорожного транспорта, содержащих тяговые преобразователи, управляемые и неуправляемые выпрямители. Рассмотрены процессы возникновения гармонических составляющих при эксплуатации электровозов с зонно-фазовым и импульсным управлением с помощью четырёхквадрантного преобразователя 4q-S в силовых цепях. Методом гармонического баланса определены гармоники, относящиеся к основной и субгармонической составляющим.

Ключевые слова: субгармоники, зонно-фазовое управление, импульсное управление, гармонический баланс, четырёхквадрантный преобразователь 4q-S.

Keywords: subharmonics, zone-phase control, pulse control, harmonic balance, four-quadrant 4q-S converter.
мощности преобразователя увеличивает потери электроэнергии и падение напряжения в сетях [11]. В электроэнергетических системах с тяговыми нагрузками контактная сеть ведет себя как линия с распределенными параметрами. Волновые процессы в системе тягового электроснабжения сопровождаются резонансными явлениями, которые вызывают значительные искажения кривой напряжения. Переменный характер тяговых нагрузок, изменение режима работы электроподвижного состава, постоянное перемещение, изменение числа локомотивов характеризуются значительными колебаниями активной и реактивной мощностей, что вызывает провалы и выбросы питающего напряжения. На промышленной частоте контактную сеть переменного тока можно рассматривать как цепь с сосредоточенными параметрами [12, 5, 7]. Однако на частотах, превышающих 500 Гц, длина волн гармоники напряжения или тока становится сравнима с протяженностью тяговой сети, поэтому при анализе электромагнитных процессов на частотах гармоник необходимо учитывать распределенный характер системы тягового электроснабжения.

Для анализа частотных и временных характеристик электроэнергетической системы с тяговой нагрузкой контактную сеть представим в виде схемы замещения с каскадным соединением П-образных четырехполюсных секций (рис. 1.)

Гармонический состав входного тока $i_0(t)$ преставляется в виде уравнение динамического равновесия многоконтурной электроферромагнитная цепи:

$$i_{11} + i_{21} + i_{21} = i_{L2} + i_{c2} + i_{g2} = i_0(t)$$

(1)

так как электроферромагнитная цепь питается от источника напряжения U_0, то уравнение можно считать уравнением связи между двумя переменными $\Psi_1(t)$ и $\Psi_2(t)$ которые содержат в своем гармоническом составе как основную, так и субгармоническую составляющую колебаний. Ток $i_0(t)$ может быть полигармоническим, напряжение U_0 не может содержать в своем составе никаких других гармоник кроме основной [10, 4, 15]. Поэтому субгармонические составляющие потоков будут взаимно компенсированы. В режиме возбуждения автопараметрических колебаний главным образом имеет место основная гармоника и субгармоническая составляющая потоков $\Psi_1(t)$ и $\Psi_2(t)$, решение дифференциального уравнения электрической равновесия цепи имеет вид:

$$\Psi_1 = \Psi_{11} \sin(\omega t + \varphi_1) + \Psi_{1/n} \sin\left(\frac{\omega t}{n} + \Theta\right)$$

(2)

$$\Psi_2 = \Psi_{21} \sin(\omega t + \varphi_2) - \Psi_{1/n} \sin\left(\frac{\omega t}{n} + \Theta\right)$$

(3)

где Ψ_{11} и Ψ_{21} – амплитуды первых гармоник потоков в сердечниках первого и второго нелинейных ферромагнитных элементов L_i;

$\Psi_{1/n}$ – амплитуда потока субгармоники n-го порядка;

φ_1 и φ_2 - сдвиги начальных фаз между первыми гармониками соответствующих потоков и общего тока;

Θ сдвиг фаз между потоком субгармоники и током $i_0(t)$;

n- порядок искомой субгармоники.

Рассмотрим режим возбуждения автопараметрических колебаний на частоте третьей субгармоники при n=3. Тогда решение дифференциального уравнения имеет вид

$$\Psi_1 = \Psi_{11} \sin(\omega t + \varphi_1) + \Psi_{1/3} \sin\left(\frac{\omega t}{3} + \Theta\right)$$

(4)
Подставляя предполагаемое решение в исходное дифференциальное уравнение, после несложных тригонометрических преобразований имеем

\[(-C_1 \omega^2 + a + \frac{2b}{4} \psi_{11}^2 \omega_{1/3}^2) \]

\[
\psi_{11} \sin(\omega t + \varphi_1) + g_1 \omega \psi_{11} \cos(\omega t + \varphi_1) + \left(-\frac{C_1 \omega^2}{9} + a + \frac{2b}{4} \psi_{11}^2 \right) \psi_{1/3} \sin\left(\frac{\omega t}{3} + \varphi_1\right) + \frac{g_1 \omega}{2} \psi_{1/3}^3 \cos\left(\frac{\omega t}{3} + \varphi_1\right) + \frac{g_1 \omega}{2} \psi_{1/3} \sin\left(\frac{\omega t}{3} + \varphi_1\right) - \frac{\psi_{1/3}^2}{2} \psi_{1/3} \sin\left(\frac{\omega t}{3} + \varphi_1\right) = 0
\]

Далее, пользуясь методом гармонического баланса, сгруппируем члены при одинаковых тригонометрических функциях, относящихся к основной и субгармонической составляющим третьего порядка [8, 13, 14]. При этом, отбрасывая высшие и низшие гармонические составляющие, имеем:

\[
(-C_1 \omega^2 + a + \frac{2b}{4} \psi_{11}^2 \omega_{1/3}^2) \psi_{11} \sin(\omega t + \varphi_1) + g_1 \omega \psi_{11} \cos(\omega t + \varphi_1) =
\]

\[
\left(-\frac{C_1 \omega^2}{9} + a + \frac{2b}{4} \psi_{11}^2 \right) \psi_{1/3} \sin\left(\frac{\omega t}{3} + \varphi_1\right) + \frac{g_1 \omega}{2} \psi_{1/3}^3 \cos\left(\frac{\omega t}{3} + \varphi_1\right) + \frac{g_1 \omega}{2} \psi_{1/3} \sin\left(\frac{\omega t}{3} + \varphi_1\right) - \frac{\psi_{1/3}^2}{2} \psi_{1/3} \sin\left(\frac{\omega t}{3} + \varphi_1\right) = 0
\]

Из (5) и (6) видно, что в цепи возможен установившийся режим при субгармоническом режим возникает при \(\psi_{1/3} \neq 0 \). Таким образом, в нагрузочных ветвях тяговых преобразователей при колебаниях порядков которых 1/3,1/5,1/7 и т.д [13, 14], образуются субгармоники. Существование автопараметрических колебаний на частотах субгармоник возможно при эксплуатации электровозов с зонно-фазовым управлением и с управлением с помощью четырехквадратного преобразователя 4q-S, которые вызывают искажения напряжения и отрицательно влияют на эффективность функционирования электроподвижного состава.

Список литературы:

1. Аррилага, Дж. Гармоники в электрических системах/ Дж. Аррилага, Д. Брэдли, П. Боджер: Пер. с англ. – М.: Энергоатомиздат, 1990. – 320 с.
2. Бессонов, Л. А. Теоретические основы электротехники/ Л. А. Бессонов – 11-е изд., – М.: Гардарики, 2007. – 701 с.
3. Бородулин, Б. М. Конденсаторные установки электрифицированных железных дорог/ Б. М. Бородулин, Л. А. Герман, Г. А. Николаев – М.: Транспорт, 1983. – 183 с.
4. Бурман, А. П. Управление потоками электроэнергии и повышение эффективности электроэнергетических систем: учебное пособие/ А.П. Бурман, Ю. К. Розанов, Ю. Г. Шакарян. – М.: Издательский дом МЭИ, 2012. – 336 с.
5. Герман, Л. А. Качество электрической энергии и ее повышение в устройствах электроснабжения/ Л. А. Герман// Российский государственный открытый технический университет путей сообщения. Конспект лекций. Ч 2. Москва, 2005. С. 43.
6. Герман, Л. А. Принципы выбора мощности и размещения установок емкостной компенсации для повышения напряжения в тяговой сети переменного тока/ Л. А. Герман, Б. М. Бородулин – Вестник ВНИИЖТ, 2012, № 3. С. 29-35.
7. Герман, Л. А. Регулируемые установки емкостной компенсации в системах тягового электроснабжения железных дорог: учеб. Пособие / Л. А. Герман, А. С. Серебряков – М.: ФГБОУ «Учебно-методический центр по образованию на железнодорожном транспорте», 2015. – 316 с.
8. Герман, Л. А. Эффективность фильтрокомпенсирующих устройств в тяговой сети переменного тока/ Л. А. Герман, А. С. Серебряков, В. П. Гончаренко, А. В. Мизицыц – Вестник ВНИИЖТ, 2013, № 1. C. 56-61.
9. Бурханходжаев А.М., Бердив Е.Т., Каримов Р.Ч., Иксар Е.В. Программа минимума электрических потерь мощности в асинхронном тяговом двигателе магистральных локомотивов. Электропроизвод, электротехнологии и электрооборудование предприятий. Сборник научных трудов V Международной научно-технической конференции, 2020 с 45 -48.
10. Бурханходжаев А.М., Иксар Е.В., Жураева К.К. Алгоритм снижения электрических потерь в тяговом асинхронном приводе. Международный научно и научно-техническая конференция «Проблемы и перспективы инновационной техники и технологии в аграрном-пищевом секторе» Ташкент 2020 г.
11. Ермоленко, Д. В. Исследование многофункциональных компенсирующих устройств в эксплуатационных условиях / Д. В. Ермоленко, Н. И. Молин, И. В. Павлов – Вестник ВНИИЖТ, 1991, № 7, с. 44-47.
12. Железко, Ю. С. Потери электроэнергии. Реактивная мощность. Качество электроэнергии: Руководство для практических расчетов / Ю. С. Железко – М.: ЭНАС, 2009. – 456 с.
13. Жежеленко, И. В. Вышие гармоники в системах электроснабжения промпредприятий/ И. В. Жежеленко – М.: Энергоатомиздат, 2000. 331 с.
14. Закарюкин, В. П. Моделирование несинусоидальных режимов в системах электроснабжения железных дорог/ В. П. Закарюкин, А. В. Крюков// Вестник Ростовского государственного университета путей сообщения. - 2008. - № 3. - С. 93-99.
15. Зиновьев, Г. С. Основы силовой электроники / Г. С. Зиновьев – Новосибирск: Изд-во НГТУ, 2000.

References:
1. Arrilaga, J. Harmonics in electrical systems/ J. Arrilaga, D. Bradley, P. Bodger: Trans. from English-M.: Energoatomizdat, 1990. - 320 p.
2. Bessonov, L. A. Theoretical foundations of electrical engineering/ L. A. Bessonov-11th ed., - Moscow: Gardariki, 2007 – 701 p.
3. Borodulin, B. M. Condenser installations of electrified railways/ B. M. Borodulin, L. A. German, G. A. Nikolaev-M.: Transport, 1983 – 183 p.
4. Burman, A. P. Management of electric power flows and improving the efficiency of electric power systems: a textbook/ A. P. Burman, Yu. K. Rozanov, Yu. G. Shakaryan. - M.: Publishing House of MEI, 2012 – 336 p.
5. Herman, L. A. The quality of electric energy and its increase in power supply devices/ L. A. Herman/ / Russian State Open Technical University of Railway Communications. Lecture notes. Ch 2. Moscow, 2005. p. 43
6. Herman, L. A. Principles of power selection and placement of capacitive compensation units for voltage increase in the AC traction network/ L. A. Herman, B. M. Borodulin-Vestnik VNIIZHT, 2012, No. 3. pp. 29-35.
7. Herman, L. A. Regulated installations of capacitive compensation in traction power supply systems of railways: textbook. Manual / L. Herman, A. S. Serebryakov – М: FEDERAL state budget institution "Educational-methodical centre for education in railway transport", 2015. – 316 p.
8. Herman, A. L. filter-Efficiency devices in traction AC/ L. A. Herman, A. S. Serebryakov, V. P. Goncharenko, A. V. Mezentsev – Vestnik VNIIZHT, 2013, No. 1. S. 56-61.
9. Burkhankhodzhaev A.M., Berdiev U.T., Karimov R.Ch., Iksar E. V. The program of minimizing of electric power losses in the asynchronous traction engine of mainline locomotives. Electrical equipment, electrical technologies and electrical equipment of enterprises. Collection of scientific papers of the V International Scientific and Technical Conference, 2020 from 45-48.
10. Burkhankhodzhaev A.M., Iksar E. V., Jurayeva K. K. Algorithm for reducing electrical losses in a traction asynchronous drive. International scientific and technical Conference "Problems and prospects of innovative equipment and technologies in the agricultural and food sector" Tashkent 2020
11. Ermolenko, D. V. Research of multifunctional compensating devices in operational conditions / D. V. Ermolenko, N. I. Molin, I. V. Pavlov-Vestnik VNIIZHT, 1991, No. 7, pp. 44-47.
12. Zhelezko, Yu. S. Electricity losses. Reactive power. The quality of electricity: A guide for practical calculations / Yu. S. Zhelezko-M.: ENAS, 2009 – 456 p.
13. Zhezhelenko, I. V. Higher harmonics in power supply systems of industrial enterprises/ I. V. Zhezhelenko-M.: Energoatomizdat, 2000. 331 p.
14. Zakaryukin, V. P. Modeling of non-sinusoidal modes in railway power supply systems/ V. P., Zakaryukin, A.V. Kryukov// Bulletin of the Rostov State University of Railway Transport. - 2008. - No. 3. - pp. 93-99.
15. Zinoviev, G. S. Fundamentals of power electronics / G. S. Zinoviev-Novosibirsk: Publishing House of NSTU, 2000.