Identifying strongly correlated supersolid states on the optical lattice by quench-induced π-states

Uwe R. Fischer and Bo Xiong

Seoul National University, Department of Physics and Astronomy, Center for Theoretical Physics
151-747 Seoul, Korea

received 30 March 2012; accepted in final form 23 August 2012
published online 3 October 2012

PACS 67.80.kb – Supersolid phases on lattices
PACS 64.70.Tg – Quantum phase transitions
PACS 37.10.Jk – Atoms in optical lattices

Abstract – We consider the rapid quench of a one-dimensional strongly correlated supersolid to a localized density wave (checkerboard) phase, and calculate the first-order coherence signal following the quench. It is shown that unique coherence oscillations between the even and odd sublattice sites of the checkerboard are created by the quench, which are absent when the initial state is described by a Gutzwiller product state. This is a striking manifestation of the versatility of the far-from-equilibrium and nonperturbative collapse and revival phenomenon as a microscope for quantum correlations in complex many-body states. For the present example, this opens up the possibility to discriminate experimentally between mean-field and many-body origins of supersolidity.

The single-particle density matrix, from which the first-order coherence of the system is defined, represents a sensitive probe of the correlation properties of interacting quantum many-body systems. This becomes especially apparent in far-out-of-equilibrium dynamics when one rapidly (nonadiabatically) quenches from one quantum phase to another, which has recently led to intensive research into the properties of the resulting dynamical quantum phase transitions [1]. By now the most familiar nonequilibrium phenomenon occurring in such transitions are the collapse and revival oscillations of first-order coherence, created after sweeping from the superfluid to the Mott phase in optical lattices. When only conventional contact interactions are present, this has been first observed in the classic paper [2]. Experiments on the superfluid-Mott transition are now entering a high-precision age [3], enabling the detection of many-body correlation functions and their temporal behavior on the single-particle and single-site accuracy level. Stimulated inter alia by this fact, various facets of the collapse and revival phenomenon were theoretically investigated recently in a number of papers, e.g. in [4].

The extended Bose-Hubbard model, realizable experimentally via cold atoms or molecules with large dipole moments stored in optical lattices [5], leads to a significant extension of the phase diagram of bosons on an optical lattice, including supersolid phases. By definition, for supersolids, the order parameter amplitude, which is homogeneous for a superfluid ground state, becomes spatially modulated, caused in the Bose-Hubbard model by two-body interactions coupling neighboring lattice sites with each other. While the implementation of supersolids in optical lattices cannot answer the intensely debated question whether they occur in real solid-state systems like 4He, where the existence of (growth-induced) defects in the crystal complicates the interpretation of experiments [6–10], the microscopic and thus many-body origin of the supersolid phase can be understood better in such an artificially engineered system.

In the following, we derive a unique signature for the imprint of the initial many-body correlations contained in the supersolid state from the far-out-of-equilibrium collapse and revival oscillations of the extended Bose-Hubbard model after a quench. The quench envisaged is the analog of the superfluid-Mott quench in that a delocalized phase-coherent (here supersolid) phase is quenched to an incoherent and localized, here density wave (DW) phase. We shall demonstrate that the final time-dependent coherence signal can be used as a sensitive probe of the initial strongly correlated supersolid state and therefore of a possible many-body origin of supersolidity. We show that even for very small density modulations of the
initial supersolid ground state, which might be difficult to detect directly in experiment [11,12], a distinct first-order coherence signal appears after the quench, providing a unique signature of supersolidity caused by both nonlocal interaction couplings and strong correlations.

We consider here that quantum fluctuations are strong in the initial ground state, for a quasi-one-dimensional (quasi-1D) Bose gas in a 1D optical lattice directed along the axis [13,14]. We determine the ground state by exact diagonalization (ED), and contrast the correlation response after the quench thus obtained with the temporal correlations when the initial ground state is assumed to be describable by a Gutzwiller product state (GW) [5]. It is stressed that we propagate both ED and GW initial wave functions exactly. We note in this regard that applying the time-dependent GW mean-field approach, used to describe small oscillations on top of the (ground state, cf. [15], to situations far from the (instantaneous) ground state (e.g., for collapse and revival oscillations), leads to both qualitatively and qualitatively incorrect predictions in the extended Bose-Hubbard model [16]. By exact propagation, we conclusively demonstrate the strong dependence of the dynamical correlation response after the quench on the presence of many-body correlations in the initial state. The final time-dependent correlation functions can therefore serve as a sensitive probe of whether the initial state correlations are correctly captured by a specific ground-state wave function ansatz for the supersolid state.

The extended Bose-Hubbard Hamiltonian, describing bosons with dipolar interactions in the lowest Bloch band of an optical lattice, contains the nearest-neighbor tunneling rate J, onsite interaction coupling U, and finally the nearest-neighbor (NN) coupling V. Assuming a homogeneous system (no external trapping potential), it reads

$$\hat{H} = -J \sum_{\langle ij \rangle} \hat{a}^\dagger_i \hat{a}_j + \frac{U}{2} \sum_i (\hat{n}_i - 1) \hat{n}_i + \frac{V}{2} \sum_{\langle ij \rangle} \hat{n}_i \hat{n}_j,$$

where M denotes the number of sites and $\langle ij \rangle$ indicates a summation over NN (we will provide below a discussion of the influence of including off-site interaction couplings beyond NN). The onsite and offsite couplings U and V are proportional to the dipole moments squared and depend on integrals over products of the Wannier orbitals for the lowest Bloch band. A detailed derivation of the extended Bose-Hubbard Hamiltonian for dipoles in an optical lattice can be found, for example, in [5]. We assume the dipoles to be oriented perpendicular to the axial direction such that the NN coupling is repulsive, $V > 0$. We use $U \equiv 1$ as unit of the energy and $2\pi/U$ as the unit of time in what follows ($\hbar \equiv 1$). The off-site coupling is fixed at $V = 0.9$; this choice of $V \lesssim U$ is motivated by the fact that then small population imbalance supersolids can be obtained at relative tunneling rates $J/(nU) \ll 1$, also cf. [17].

Previous studies into the extended Bose-Hubbard model, covering the whole range of fillings and couplings, have found various other phases like superfluids and localized Mott and DW phases besides supersolids [18,19]. We concentrate in what follows on supersolid initial states and final (after the quench) DW states.

The ground-state density modulation in the supersolid state for the lattice model (1) is related to a structural instability, developing when the excitation spectrum above the superfluid ground state, at the transition to the supersolid state, touches the quasi-momentum axis at $q = \pi/a$ [15,20,21]. This leads to “A” (with indices $i = A = 1, 3, 5, \ldots$) and “B” (with indices $i = B = 2, 4, 6, \ldots$) sublattices following a checkerboard pattern associated with the density modulation of the supersolid ground state at wave vector $q = \pi/a$. A single scalar measure distinguishing the supersolid state from the superfluid state is therefore the population imbalance

$$\mathcal{I}_\text{SS} = \frac{|\bar{n}_A - \bar{n}_B|}{\bar{n}_A + \bar{n}_B},$$

where \bar{n}_A and \bar{n}_B are average fillings of sublattice sites; hence $\mathcal{I}_\text{SS} = 0$ for a superfluid and $\mathcal{I}_\text{SS} \neq 0$ for a supersolid state.

The phase and modulus of the single-particle density matrix

$$\sigma_{kl} = \langle \hat{a}^\dagger_k \hat{a}_l \rangle = |\langle \hat{a}^\dagger_k \hat{a}_l \rangle| \exp[i\theta_{kl}],$$

embody density and phase correlations between sites, and lead to first-order correlations $g_{ij} = R[\sigma_{ij}] = |\langle \hat{a}^\dagger_i \hat{a}_j \rangle| \cos[\theta_{ij}]$. We calculated the ground-state correlation function corresponding to the Hamiltonian (1) for a supersolid state in a lattice with $M = 12$ sites and $N = 8$, respectively, $N = 16$ particles, i.e., at fillings $\bar{n} = 2/3$ and $\bar{n} = 4/3$. For this system size, the determination of both initial ground state and temporal evolution can be performed by ED routines, employing periodic boundary conditions. In addition, we have verified the qualitative robustness of our results by comparing with sample calculations for $M = 10$ sites at fillings $\bar{n} = 4/5$ as well as $M = 14$ sites at filling $\bar{n} = 9/14$ for ground state and quench dynamics, and $M = 16$ sites at $\bar{n} = 5/8$ for the supersolid ground state.

There is the inherent lattice symmetry leading to degenerate SS states which have either $n_A > n_B$ or $n_A < n_B$. We choose one of these states, say with $n_A > n_B$, by the following procedure. We perform a large sequence of numerical calculations with different initial seeds for many-body states in the ED calculation, to obtain a statistical distribution of various values of \mathcal{I}_SS with different degenerate states. From this distribution, we choose the initial state as the one with the most probable value of \mathcal{I}_SS which fulfills $n_A > n_B$.

As a result, we obtain for the supersolid ground state that, at constant phase θ_{jk}, first-order correlations are strictly positive, decaying with distance in the power law

66003-p2
fashion characteristic of low-density quasi-1D Bose gases [22], cf. fig. 1.

Next we let the tunneling abruptly go to zero in a quasi-instantaneous quench, \(J \to 0 \), which would, in an adiabatic transition, transfer the supersolid to the localized and insulating DW phase. The main feature we observe is that there are two different coherence signals obtained after the quench, depending on the distance between sites considered being \(|i-j| = \) even or odd. This is a first crucial difference from the uniform (long-range) collapse and revival in the superfluid-Mott quench [2,4]. The “AA” (and equivalently “BB”) correlations between the sites belonging to the same sublattice (\(|i-j| = \) even) show (partial) collapse and revival oscillations, i.e. with strongly reduced amplitude, at constant phase \(\theta_{AA} (\theta_{BB}) \), cf. fig. 2(b). On the other hand, the “AB” correlations belonging to sites of different sublattices (\(|i-j| = \) odd) show periodic changes from positive to negative values of correlations, see fig. 2, while the average populations \(\bar{n}_A \) are \(\bar{n}_B \) both constant in time (implying that the phase difference switching does not lead to a redistribution of occupation numbers). The phase difference \(\theta_{AB} \) in the latter case thus switches from values close to zero to close to \(\pi \), for prolonged time periods of order the ordinary revival time scale \(2\pi/U \) (we are using a representation of the phase difference which takes into account that it is defined modulo \(2\pi \), i.e. in particular identify \(2\pi \) and 0).

The first-order correlation function \(g_{AB}(t) \) goes through zero when \(\theta_{AB} \) switches from zero to \(\pi \) and vice versa. For these out-of-equilibrium states far from the DW ground state, we coin the term \(\pi\)-states [23].

We stress that for an ordinary superfluid to Mott quench at \(V = 0 \), no \(\pi\)-state is obtained, even in the present strongly correlated low-filling 1D lattice case. Hence a nonvanishing off-site coupling \(V \) in the Bose-Hubbard Hamiltonian (1) is crucial for obtaining the large negative \(\pi \) AB correlations characteristic of the \(\pi\)-state. Furthermore, we also observed that when the initial imbalance \(I_{SS} \) becomes large (achieved when we take \(V > U \) at small \(J \)), and therefore the initial supersolid state is less strongly correlated across different sites, the tendency to form a \(\pi\)-state disappears. In the extreme case of \(I_{SS} \to 1 \) (one sublattice empty), the phase simply changes linearly, \(\theta_{AB} \propto t \).

We now contrast the occurrence of \(\pi\)-states, obtained starting from a strongly correlated initial state, with the first-order correlation signal from an initial supersolid state assumed to be given in GW mean-field theory. The many-body state can then be written as the product state [17]

\[
\text{(GW)} = \prod_{A,B} \sum_{n_{A},n_{B}} f_{A}(n_{A})f_{B}(n_{B})|n_{A},n_{B}\rangle, \tag{4}
\]

where \(\prod_{A,B} \) is a shorthand for taking the product over all sites, and the indices \(A \) and \(B \) run over all \(M/2 \) corresponding sites of either sublattice. The sublattices are separated here explicitly, with \(f_{A} \) and \(f_{B} \) in general being different distribution functions for either sublattice.

\[
\langle \hat{\sigma}_{A}^{\dagger} \hat{\sigma}_{B} \rangle = \sum_{n_{A},n_{B}} f_{A}(n_{A})f_{B}(n_{B})f_{A}^{\dagger}(n_{A}+1)f_{B}^{\dagger}(n_{B}-1) \\
\times \sqrt{n_{B}(n_{A}+1)\pm U(n_{A}n_{B})} \\
\times \prod_{NN} \left| f_{A}(A,l) \right|^{2} \left| f_{B}(B,l) \right|^{2} e^{iU(\sum_{A,l} n_{l} - \sum_{B,l} n_{l})}. \tag{5}
\]
When the initial state is given in the product form (4), the exact time evolution of AB correlations in the limit of zero tunneling, $J = 0$, after the quench can be written in the form of eq. (5) (with a similar expression for the AA and BB correlations), where NN l designates all sites l which are nearest neighbors to the sites with given indices A and B, and we assume for simplicity that the distance $|A - B| > 2$ [16]. The notation $|AI|$ and $|BI|$ indicates sums over all NNs l at the sites A and B, respectively, and $f_{(A,l)}$ means $f_{A}(m)$ where l is a NN to A and for $f_{(B,l)}$ correspondingly. We therefore see that in case the initial state can be written in Gutzwiller product form (4), the final-state time-dependent correlations solely depend on the on-site initial number distribution functions in the A, B sites, and in particular on their widths and centers.

We time evolve the initial GW state (4), found upon minimizing $\langle GW | H - \mu \hat{N} | GW \rangle$, where μ is the chemical potential, using the exact formula (5), and show the results in fig. 3. While there is some negative amplitude of g_{AB} in the large-imbalance low-filling case (cf. the right upper plot in fig. 3), the highly symmetrical π-state of fig. 2(a) and (c) is not obtained. For illustration purposes, we display in fig. 3 the evolution results for the same low fillings like in fig. 2, for which the GW approach naturally cannot be expected to give the correct ground state, in particular for small population imbalance. Generally speaking, a much larger J is necessary to obtain in GW the same T_{SS} as compared to ED at the same filling, which emphasizes the strong correlation of a low-filling supersolid in 1D. We have furthermore confirmed that the GW correlation response is predominantly determined by the imbalance T_{SS}, and at the same values of the latter quantity remains qualitatively similar at larger filling \bar{n}. We also note that the maximally possible sublattice imbalance for the supersolid ground state decreases with increasing \bar{n}, so that at larger filling, where the non–number-conserving GW theory becomes asymptotically exact, the tendency of developing negative g_{AB} as shown in the right row of fig. 3 vanishes completely. The fact that with an initial GW product state large negative AB correlations are not obtained serves to illustrate that both large nonlocal interaction coupling and strong correlations are necessary to obtain the large negative values of g_{AB} shown in fig. 2 and thus an (almost) perfect π-state.

We also investigated in addition whether the π-state is robust under increasing the number of off-site interaction couplings taken in the extended Bose-Hubbard Hamiltonian (1). For a dipolar interaction, the off-site interaction Hamiltonian for polarized dipoles reads

$$\hat{H}_{dd} = \frac{V}{2} \sum_{ij} \hat{n}_{i} \hat{n}_{j} \text{e}^{iqa|i-j|}. \quad (6)$$

We are truncating the coupling summation at the distance $|i - j| = \Lambda$, where the NN off-site coupling in (1) corresponds to $\Lambda = 1$. The ED results for the time-dependent θ_{AB}, for three different cutoff lengths, and the identical parameter set of fig. 2(a), are shown in fig. 4. We see that the π-state, consisting in the switching of the relative AB phase between 0 and π, still occurs, although with a different period. The period first increases when going from $\Lambda = 1$ to $\Lambda = 2$, and then decreases again for $\Lambda = 3$. This behavior is due to the ABAB sublattice structure of the supersolid initial state. The π-state period thus encodes nontrivial information on the interaction range chosen for the extended Bose-Hubbard model in a quench with a periodically modulated initial state.

The π-states can be detected experimentally, for example, by the time-dependence of peaks in the quasi-momentum distribution function

$$n_{q}(t) = \frac{1}{M} \sum_{k,l} \langle \hat{a}_{k}^{\dagger} \hat{a}_{l} \rangle \text{e}^{iqa(k-l)}, \quad (7)$$

which correspond to the visibility of interference peaks in the real-space density detected by time-of-flight experiments [11]. Pronounced peaks are located at $q = 0$ and $q = \pi/a$, cf. fig. 5, whose time dependence should be easily discernible. This is due to the fact that $g_{AA}(t) \langle g_{BB}(t) \rangle$ and $g_{AB}(t)$ strongly differ on average and have sufficient oscillation amplitude even for small population imbalance T_{SS}, cf. fig. 2, which leads to significant temporal variation.

Uwe R. Fischer and Bo Xiong
and amplitude of $n_q(t)$. As shown in fig. 5, the appearance of the π-state leads to a sizable increase of the peak at $q = \pi/a$, while it decreases the $q = 0$ peak.

We have presented a study of 1D supersolids on optical lattices undergoing a quench to a density wave phase, and observed that a final nonequilibrium π-state signature develops, characteristic of strong correlations in the initial state. By contrast, the π-state does not occur when the initial state is described by a Gutzwiller product state ansatz. This is a prime example of the high sensitivity of far-out-of-equilibrium many-body dynamics on initial correlations. As a corollary, even when a Gutzwiller product state can reasonably well emulate certain properties of the equilibrium ground state, it can potentially fail tremendously as an initial state for many-body evolution. Correlation functions after a quench can therefore serve as a “microscope” of the initial correlations, in which the far-out-of-equilibrium conditions magnify the many-body character of a state or the lack thereof. In the present case, this offers the possibility to detect a strongly correlated supersolid state of matter even at very small density modulations, and thus to determine accurately the phase transition point to the superfluid state in which no π-state occurs.

This research was supported by the Brain Korea BK21 program, the NRF of Korea, grant Nos. 2010-0013103 and 2011-0029541, and the Seoul National University Foundation Research Expense.

REFERENCES

[1] Dziarmaga J., Adv. Phys., 59 (2010) 1063; Polkovnikov A., Sengupta K., Silva A. and Vengalattore M., Rev. Mod. Phys., 83 (2011) 863; Kennett M. P. and Dalidovich D., Phys. Rev. A, 84 (2011) 033620; for a quench in a Luttinger liquid without optical lattice, see Cazalilla M. A., Phys. Rev. Lett., 97 (2006) 156403.

[2] Greiner M., Mandel O., Hänsch T. W. and Bloch I., Nature, 419 (2002) 51.

[3] Bakr W. S. et al., Science, 329 (2010) 547; Sherson J. F. et al., Nature, 467 (2010) 68; Weitenberg C. et al., Nature, 471 (2011) 319; Mark M. et al., Phys. Rev. Lett., 107 (2011) 175301.

[4] Fischer U. R. and Schützhold R., Phys. Rev. A, 78 (2008) 061603(R); Wolf F. A., Hendriksen N. C. and Rigol M., Phys. Rev. A, 82 (2010) 043661; Schachenmayer J., Daley A. J. and Zoller P., Phys. Rev. A, 83 (2011) 043614; Tiesinga E. and Johnson P. R., Phys. Rev. A, 83 (2011) 063609; Buchhold M., Bischof U., Will S. and Hofstetter W., Phys. Rev. A, 84 (2011) 023631.

[5] Góral K., Santos L. and Lewenstein M., Phys. Rev. Lett., 88 (2002) 170406; Trefzger C., Menotti C., Capogrosso-Sansone B. and Lewenstein M., J. Phys. B: At. Mol. Opt. Phys., 44 (2011) 193001.

[6] Andreev A. F. and Lifshitz I. M., Sov. Phys. JETP, 29 (1969) 1107.

[7] Thouless D. J., Ann. Phys. (N.Y.), 52 (1969) 403.

[8] Leggett A. J., Phys. Rev. Lett., 25 (1970) 1543.

[9] Kim E. and Chan M. H. W., Nature, 427 (2004) 225; Kim E. and Chan M. H. W., Science, 305 (2004) 1941.

[10] Leggett A. J., Science, 305 (2004) 1941; for a recent alternative theoretical explanation of the 4He experiments see Andreev A. F., J. Low Temp. Phys., 168 (2012) 126.

[11] Scarola V. W., Demler E. and Das Sarma S., Phys. Rev. A, 73 (2006) 051601(R).

[12] Ye J. et al., Phys. Rev. A, 83 (2011) 051604(R).

[13] Kühner T. D., White S. R. and Monien H., Phys. Rev. B, 61 (2000) 12474.

[14] We remark that strongly correlated 1D supersolids have been discussed for contact interactions as well, e.g. by Mathey L., Danshita I. and Clark C. W., Phys. Rev. A, 79 (2009) 011602(R); Lazarescu A., Tieleman O. and Morais Smith C., Phys. Rev. A, 84 (2011) 023620.

[15] Kovrizhin D. L., Venketeswara Pai G. and Sinha S., Europhys. Lett., 72 (2005) 162.

[16] Fischer U. R. and Xiong B., Phys. Rev. A, 84 (2011) 063635.

[17] Iskin M., Phys. Rev. A, 83 (2011) 051606(R).

[18] Batrouni G. G., Hébert F. and Scalettar R. T., Phys. Rev. Lett., 97 (2006) 087209.

[19] Mishra T. et al., Phys. Rev. A, 80 (2009) 043614.

[20] Schützhold R., Uhmann M. and Fischer U. R., Phys. Rev. A, 78 (2008) 033604.

[21] Büßer A. and Büchner H. P., Phys. Rev. A, 84 (2011) 023607.

[22] Efetov K. B. and Larkin A. I., Sov. Phys. JETP, 42 (1975).

[23] The π-states introduced here are not to be confused with the π-phase oscillations in nonlinear bosonic Josephson junctions, see Raghavan S., Sherez A., Fantoni S. and Shenoy S. R., Phys. Rev. A, 59 (1999) 620.