An Orthogonal Stabilization of Quadratic and Generalized Quadratic Functional Equations

KIRAN YADAV and A. K. MALIK

1Department of Mathematics, Singhania University, Pacheri Bari, Jhunjhunu (Rajasthan), (India)
2Department of Mathematics, B. K. Birla Institute of Engineering & Technology, Pilani (Rajasthan), (India)

Coresponding author Email: ajendermalik@gmail.com, raoavil11@gmail.com
http://dx.doi.org/10.22147/jusps-A/310801

Acceptance Date 21st August, 2019, Online Publication Date 26th August, 2019

Abstract

This study is devoted to the stabilization of following quadratic and modified quadratic functional equations in orthogonal space

\[h(3x \pm y) = 16h(x) + h(x \pm y), \]

and

\[h(x + ay) + h(x - ay) = 2a^2 h(y) + 2h(x). \]

Keywords: Orthogonal spaces, Quadratic and Modified functional equations.

1. Introduction

In 1975, Gudder et al.\(^1\) first established the orthogonal stability of the Cauchy functional equations \(h(r + s) = h(r) + h(s) \) with \(r \perp s \). This result was further extended and studied to examine the orthogonal stability for the mapping \(h \) by Ger and Sikorska\(^1\) on the steps of Ratz\(^6\). Further, the stability of the functional equation

\[h(r + s) + h(r - s) = 2h(r) + 2h(s), \text{ with } x \perp y \]

On Hilbert orthogonal space was studied by famous mathematician Vajzovic\(^3\). The results of Vajzovic\(^3\) were generalized by Szabo\(^2\), Driljevic\(^5\), Fochi\(^8\). Furthermore, for more study on orthogonal spaces one may refer to \(^1, 7, 10, 13, 14\).

This is an open access article under the CC BY-NC-SA license (https://creativecommons.org/licenses/by-nc-sa/4.0)
This article deals with the orthogonal stabilization of the following functional equations defined as

\[h(3x \pm y) - 16h(x) - h(x \pm y) = 0 \]
\[h(x + ay) + h(x - ay) - 2a^2h(y) - 2h(x) = 0 \]

The paper is divided into four sections. Section 2 is introductory in nature. Sections 3 and 4 present the stability of quadratic and modified quadratic functional equations.

2. Preliminaries:

This section contains the following orthogonality result studied by many researchers such as Ratz⁶, James⁴, Birkhoff⁹, etc.

Definition 1. Let X be a linear space with dimension greater then equal to two and perpendicular (⊥) is the operator defined on X which satisfies the following conditions:

(A1) \(r \perp 0 \), \(0 \perp r \), \(\forall r \in X \) (Totality)
(A2) \(r, s \in X - \{0\} \Rightarrow r \perp s \) (Independence)
(A3) if \(r \perp s \), then \(\alpha r \perp \beta s \) for \(\alpha, \beta \in \mathbb{R} \) and for all \(r, s \in X \), (Homogeneity)
(A4) Let Y is a subspace of X, \(r \in Y \) and \(\lambda \) be a positive scalar number, then for \(y_0 \in Y \) and \(r \perp y_0 \) we have \(r + y_0 \perp \lambda r - y_0 \). (Thalesian property)

Then the combination \((X, \perp)\) is known as orthogonality space. It is also known as symmetric if \(r \perp s \) and \(s \perp r \), \(\forall r, s \in X \).

Definition 2. Let \((X, \perp)\) be an orthogonal space and Z be a Banach space. Then, the relation \(h : X \rightarrow Z \) is called orthogonal quadratic map if it satisfies the system (1).

3. Orthogonal stability of quadratic equations:

In this section we prove that orthogonal stability of following quadratic functional equations

\[P(h) = h(3r \pm s) - 16h(r) - h(r \pm s) \] \hspace{1cm} (1)

Theorem 1. Let us consider \(h \) be the quadratic function which satisfies

\[\|P(h)\|_Z \leq \eta(\|r\|_X^p + \|s\|_X^p) \] \hspace{1cm} (2)

\(\forall r, s \in X \) with \(x \perp y \) and \(p < 2 \). Then, the mapping \(R : X \rightarrow Z \) satisfying

\[\|h(r) - R(r)\|_Z \leq \frac{\eta}{2(3^2 - 3^p)} \|r\|_X^p \] \hspace{1cm} (3)

is unique orthogonality solution.

Proof. Putting \(s = 0 \) in (2), we get

\[\|2h(3r) - 16h(r) - 2h(r)\|_Z \leq \eta(\|r\|_X^p + \|0\|_X^p) \]
\[\|2h(3r) - 18h(r)\|_Z \leq \eta(\|r\|_X^p) \]
Changing $r = 3r$ and then dividing throughout by 3^2 in inequality (4) and also summing the obtained result with (4), we get

$$
\left\| h(r) - \frac{h(3r)}{3^2} \right\|_z \leq \frac{\eta}{2.3^2} \left\| r \right\|_x^p
$$

(4)

Now, to prove that the sequence $< h(3^n r) / 3^{2n} >$ is a Cauchy sequence. Changing r with $3^m r$ and then dividing throughout by 3^{2m} in (6) we get for all $n, m > 0$.

$$
\left\| h(3^m r) - \frac{h(3^{n+m} r)}{3^{2n+2m}} \right\|_z \leq \frac{\eta}{2.3^2} \sum_{k=0}^{n-1} \frac{3^{pk}}{3^{2k+2m}} \left\| r \right\|_x^p,
$$

(5)

As $m \to \infty$ for all $r \in X$ and $p < 2$ the sequence $< h(3^n r) / 3^{2n} >$ is converges to a point in Z. Further, as the Banach space Z is a complete, thus $< h(3^n r) / 3^{2n} >$ is a Cauchy sequence. Thus, we can say

$$
R(r) = \lim_{n \to \infty} \{ h(3^n r) / 3^{2n} \}, \forall r \in X.
$$

(8)

Putting $3^n r$ and $3^n s$ for r and s in (2) respectively and then dividing by the number 3^{2n}, we have

$$
\left\| P(h) \right\|_{3^{2n}} \leq \frac{\eta}{3^{2n}} \left(\left\| 3^n r \right\|_x^p + \left\| 3^n s \right\|_x^p \right)
$$

(9)

Letting $n \to \infty$, we obtain

$$
\left\| R(3r \pm s) - 16R(r) - R(r \pm s) \right\|_z \leq 0
$$

$$
R(3r \pm s) = 16R(r) + R(r \pm s), \forall r, s \in X.
$$

Hence R is orthogonally quadratic relation.

Taking $n \to \infty$ in (6) we get

$$
\left\| R(r) - h(s) \right\|_z \leq \frac{\eta}{2(3^2 - 3^p)} \left\| r \right\|_x^p, \forall r \in X.
$$
For uniqueness of $R: X \to Z$, let us consider the relation $R': X \to Z$ which satisfies (2), then we get
\[
\|R'(r) - R(r)\|_Z \leq \frac{1}{3^2} \left\{ \|h(3^n r) - R'(3^n r)\|_Z + \|R(3^n r) - h(3^n r)\|_Z \right\}
\leq \frac{\eta}{(3^2 - 3^p)3^{n(2-p)}} \|r\|_X^n \to 0 \text{ as } n \to \infty
\]
Thus, $R' = R$, that means R is unique.

Theorem 2. Let h be the quadratic function which satisfies the inequality (2) for all $r, s \in X$ with $r \perp s$ and $p > 2$. Then, the mapping $R: X \to Z$ satisfying
\[
\|h(r) - R(s)\|_Z \leq \frac{\eta}{2(3^p - 3^2)} \|r\|_X^p
\]
is a unique quadratic orthogonal mapping.

Proof. Putting $r/3$ at the place of r and then multiplying by 3^2 in inequality (4), we get
\[
\left\|3^2 h\left(\frac{r}{3}\right) - h(r)\right\|_Z \leq \frac{\eta}{2} \left\|\frac{r}{3}\right\|_X^p,
\]
\[
\left\|3^2 h\left(\frac{r}{3}\right) - h(r)\right\|_Z \leq \frac{\eta}{2.3^p} \|r\|_X^p
\]
$r \perp 0$ for all $r \in X$. Proceeding in this way n-times we get the following inequality
\[
\left\|3^n h\left(\frac{r}{3^n}\right) - h(r)\right\|_Z \leq \frac{\eta}{2.3^p} \left(1 + \frac{3^2}{3^p}\right) \|r\|_X^p
\]
\[
\left\|3^{2n} h\left(\frac{r}{3^n}\right) - h(r)\right\|_Z \leq \frac{\eta}{2.3^p} \sum_{k=0}^{n-1} \frac{3^{2k}}{3^{3k}} \|r\|_X^p
\]
\[
\leq \frac{\eta}{2.3^p} \sum_{k=0}^{n} \frac{3^{2k}}{3^{3k}} \|r\|_X^p
\]
Now, to prove the sequence $< h(3^n r) / 3^{2n} >$ is convergent. Replacing r with $r / 3^m$ and then multiplying by 3^{2m} in the inequality (13), we get
\[
\left\|3^{2n+2m} h\left(\frac{r}{3^{n+m}}\right) - 3^{2m} h\left(\frac{r}{3^m}\right)\right\|_Z \leq \frac{\eta}{2.3^m(3^p - 3^2)} \sum_{k=0}^{\infty} \frac{3^{2k}}{3^{3(k-1)}} \|r\|_X^p
\]
Which tends to 0 as $m \to \infty$ for all in the right hand side of (14). Therefore, we prove that the sequence $<3^{2n}h(r/3^n)>$ converges in the Banach space Y, hence the $<3^{2n}h(r/3^n)>$ is a Cauchy sequence. Thus, we get the orthogonal quadratic system $R : X \to Z$ such that

$$\lim_{n \to \infty} \{3^{2n}h(r/3^n)\} = R(r) \text{ for all } r \in X.$$

(15)

Taking $n \to \infty$ in (14) and using (15), we get the required result.

4. **Orthogonal stability for generalized quadratic equation** :

This section deals with the orthogonal stability of the following modified quadratic equation

$$h(x + ay) + h(x-ay) - 2a^2 h(y) - 2h(x) = 0$$

(16)

Theorem 3. Let us consider X be a normed linear space, Y be a Banach space and $\zeta : X \times X \to [0, \infty)$ be a mapping such that

$$\lim_{n \to \infty} \frac{\zeta(a^n x, a^n y)}{a^{2n}} = 0$$

(17)

for all $x, y \in X$. If the function $h : X \to Y$ with $h(0) = 0$, satisfies

$$\|h(x + ay) + h(x-ay) - a^2 h(y) - 2h(x)\| \leq \zeta(x, y)$$

(18)

for all $x, y \in X$. Then, the map $R : X \to Y$ is a unique quadratic function satisfying the relation

$$\|R(y) - h(y)\| \leq \frac{1}{2a^2} \sum_{i=0}^{\infty} \frac{1}{a^{2i}} \zeta(0, a^i y)$$

(19)

The quadratic map R is defined as

$$R(y) = \lim_{n \to \infty} \frac{h(a^n y)}{a^{2n}}.$$

(20)

Proof: Letting $x = 0$ in the relation (18), we obtain

$$\|2a^2 h(y) - 2h(ay)\| \leq \zeta(0, y)$$

(21)

that

$$\left\|h(y) - \frac{h(ay)}{a^2}\right\| \leq \frac{1}{2a^2} \zeta(0, y)$$

(22)

Now, putting $y = ay$ in (22) and dividing throughout with a^2 and then adding the final equation with (22), we have

$$\left\|h(y) - \frac{h(a^2 y)}{a^4}\right\| \leq \frac{1}{2a^2} \zeta(0, y) + \frac{1}{2a^4} \zeta(0, a y)$$

(23)

$$\leq \frac{1}{2a^2} \left[\frac{1}{a^2} \zeta(0, ay) + \zeta(0, y)\right]$$
Proceeding in this way \(n\)-times for a positive integer \(n\), we get

\[
\left\| h(y) - \frac{h(a^n y)}{a^{2n}} \right\| \leq \frac{1}{2a^2} \sum_{i=0}^{n-1} \frac{1}{a^{2i}} \zeta(0, a^i y) \geq \frac{1}{2a^2} \sum_{i=0}^{\infty} \frac{1}{a^{2i}} \zeta(0, a^i y)
\]

(24)

Now, we will prove the convergence of the sequence \(< h(a^n y) / a^{2n} >\), changing \(y\) with \(a^k y\) and then dividing relation (24) by \(a^{2k}\), we obtain for \(n, k > 0\),

\[
\left\| h(a^k y) - \frac{h(a^{n+k} y)}{a^{2(n+k)}} \right\| \leq \frac{1}{a^{2k}} \left\| h(a^k y) - \frac{h(a^{n+k} y)}{a^{2n}} \right\|
\]

\[
\leq \frac{1}{a^{2k}} \sum_{i=0}^{\infty} \frac{\zeta(0, a^{i+k} y)}{a^{2i}}
\]

\[
\leq \frac{1}{a^{2k}} \sum_{i=0}^{\infty} \frac{\zeta(0, a^{i+k} y)}{a^{2(i+k)}}
\]

(25)

As \(k \to \infty\), the sequence \(< h(a^n y) / a^{2n} >\) is a Cauchy sequence. Further, as \(Y\) is a Banach space, the sequence \(< h(a^n y) / a^{2n} >\) approaches to a point \(R(y) \in Y\) and thus \(R\) can be defined as

\[
R(y) = \lim_{n \to \infty} \frac{h(a^n y)}{a^{2n}}.
\]

Now, we replace \(x\) and \(y\) with \(a^n x, a^n y\) in (16) and then dividing throughout with \(a^{2n}\), to show that \(R\) is a solution of (16)

\[
\left\| \frac{h(a^n (x + ay))}{a^{2n}} - 2h(a^n x) + 2a^2 h(a^n y) + \frac{h(a^n (x - ay))}{a^{2n}} \right\| \leq \zeta(a^n x, a^n y).
\]

As \(n \to \infty\), then \(R\) satisfies (16).

Now, Let us consider \(R' : X \to Y\) be the second quadratic mapping which is the solution of (16) and (19). Thus, we get
\[\| R'(y) - R(y) \| = \frac{1}{a^{2n}} \| R'(ay) - R(ay) \| \]

\[\leq \frac{1}{a^{2n}} (\| R'(ay) - h(ay) \| + \| R(ay) - h(ay) \|) \]

\[\leq \frac{1}{a^2} \sum_{i=0}^{\infty} \frac{\zeta(0, a^{i+n} y)}{a^{2(i+n)}} \] \hspace{1cm} (26)

As \(n \to \infty \), we get \(R(y) = R'(y) \) for all \(y \in X \). This completes the result.

Corollary 1. Let us consider \(X \) and \(Y \) are normed linear and Banach spaces, respectively. Let \(h: X \to Y \) with the condition \(h(0) = 0 \) satisfies

\[\| h(x + ay) + h(x - ay) - 2a^2 h(y) - 2h(x) \| \leq \varepsilon \]

\(\varepsilon \geq 0 \) be a real number.

Then, \(\exists \) a unique quadratic mapping \(R: X \to Y \) defined by

\[\lim_{n \to \infty} \frac{h(a^n y)}{a^{2n}} = R(y) \]

Satisfying the inequality (20) and the relation

\[\| R(y) - h(y) \| \leq \frac{\varepsilon}{2(a^2 - 1)} \]

for all \(y \in X \).

Moreover, for each \(y \in X \) the function \(m \to h(my) \) from \(R \) to \(Y \) is continuous function, then we get \(a^2 R(y) = R(ay) \).

Corollary 2. Let us consider \(X \) and \(Y \) are normed linear and Banach spaces, respectively. Let \(h: X \to Y \) with the condition \(h(0) = 0 \) satisfies

\[\| h(x + ay) + h(x - ay) - 2a^2 h(y) - 2h(x) \| \leq \alpha \| x \| + \| y \| \]

where \(\alpha \geq 0, 0 < p < 2 \).

Then, \(\exists \) a unique quadratic mapping \(R: X \to Y \) satisfying the inequality (16) and the relation

\[\| R(y) - h(y) \| \leq \frac{\varepsilon}{2(n^2 - a^p)} \| y \| \]

Where the function \(R \) is defined as

\[\lim_{n \to \infty} \frac{h(a^n y)}{a^{2n}} = R(y) \]

Moreover, for each \(y \in X \) the function \(m \to h(my) \) from \(R \) to \(Y \) is continuous function, then we get \(a^2 R(y) = R(ay) \).

Theorem 2.3.4. Let us consider \(X \) and \(Y \) are normed and Banach spaces, respectively and \(\zeta: X \times Y \to [0, \infty) \) is a mapping such that

\[\lim_{n \to \infty} a^n \zeta \left(\frac{x}{a^n}, \frac{y}{a^n} \right) = 0 \] \hspace{1cm} (27)
If the function \(h : X \to Y \) with \(h(0) = 0 \), satisfies
\[
\| h(x + ay) + h(x-ay) - 2a^2 h(y) - 2h(x) \| \leq \zeta(x, y)
\] (28)

Then, the map \(R : X \to Y \) is a unique quadratic function satisfying the relation
\[
\| R(y) - h(y) \| \leq \frac{1}{2} \sum_{i=0}^{\infty} a^{2i} \zeta \left(0, \frac{y}{a^{i+1}} \right)
\] (29)

where the quadratic map \(R \) is defined as
\[
\lim_{n \to \infty} a^{2n} h \left(\frac{y}{a^n} \right) = R(y), \quad \text{for all } y \in X.
\] (30)

Proof: Putting \(y = \frac{y}{a} \) in (16) and multiplying throughout by \(a^2 \), then, we have
\[
\left\| a^2 h \left(\frac{y}{a} \right) - h(y) \right\| \leq \frac{1}{2} \zeta \left(0, \frac{y}{a^2} \right)
\] (31)

Again changing \(y = \frac{y}{a} \) and then multiplying throughout by \(a^2 \) in (31).
\[
\left\| a^4 h \left(\frac{y}{a^2} \right) - h(y) \right\| \leq \frac{a^2}{2} \zeta \left(0, \frac{y}{a^2} \right) + \frac{1}{2} \zeta \left(0, \frac{y}{a} \right)
\]

Thus, we obtain
\[
\| h(y) - R(y) \| \leq \frac{1}{2} \sum_{i=0}^{\infty} a^{2i} \zeta \left(0, \frac{y}{a^{i+1}} \right)
\] (32)

For the convergence of \(\left\{ a^{2n} h \left(\frac{y}{a^n} \right) \right\} \), putting \(y = \frac{y}{a^k} \) and then multiplying throughout by \(a^{2k} \) in (32), we get
\[
\left\| a^{2k} h \left(\frac{y}{a^k} \right) - a^{2n+2k} h \left(\frac{y}{a^{n+k}} \right) \right\| \leq \frac{1}{2} \sum_{i=0}^{\infty} a^{2(i+k)} \zeta \left(0, \frac{y}{a^{i+k}} \right)
\]

Then, from (32) the sequence \(\left\{ a^{2n} h \left(\frac{y}{a^n} \right) \right\} \), is a Cauchy sequence. But \(Y \) is a Banach space thus the sequence \(\left\{ a^{2n} h \left(\frac{y}{a^n} \right) \right\} \) converges in \(Y \). So, let us define a mapping \(h : X \to Y \) by
\[
\lim_{n \to \infty} a^{2n} h\left(\frac{y}{a^n}\right) = R(y)
\]

Then, using Theorem 3, the map \(R: X \to Y \) is quadratic. Further, the remaining part is similar to the Theorem 3.

Corollary 3. Let \(h: X \to Y \) be a mapping and \(h(0) = 0 \) which satisfies the inequality \[
\|h(x + ay) + h(x - ay) - 2a^2h(y) - 2h(x)\| \leq \varepsilon
\]
for all \(x, y \in X \), then, \(\exists \) a mapping \(R: X \to Y \) which satisfies the relation \[
\|R(y) - h(y)\| \leq \frac{q}{2(1 - a^2)}
\]
where the mapping \(R \) is defined as \[
\lim_{n \to \infty} a^{2n} h\left(\frac{y}{a^n}\right) = R(y) , \text{ for all } y \in X.
\]

Corollary 4. Let \(h: X \to Y \) be a mapping and \(h(0) = 0 \) which satisfies the inequality \[
\|h(x + ay) + h(x - ay) - 2a^2h(y) - 2h(x)\| \leq \varepsilon \|x\| + \|y\|
\]
for some \(p > 2 \), then, \(\exists \) a mapping \(R: X \to Y \) which satisfies the relation \[
\|R(y) - h(y)\| \leq \frac{1}{2} \frac{\varepsilon}{a^p - a^2} \|y\|
\]
where the mapping \(R \) is defined as \[
R(y) = \lim_{n \to \infty} a^{2n} h\left(\frac{y}{a^n}\right) , \text{ for all } y \in E_1.
\]

References

1. D. H. Hyers, On the Stability of the Linear Functional Equation, Proc. Nat. Acad. Sci. U.S.A. (27), 222–224 (1941).
2. F. Driljevic, On a functional which is quadratic on A-orthogonal vectors, publ. Inst. Math. (Beograd), (54), 63-71 (1986).
3. F. Vajzovic, Uber das functional H mit der Eigenschaft: (x, y) = 0 implies \(H(x+y)+H(x-y) = 2H(x)+2H(y) \), Glasnik Mat. Ser. III, (22), 73-81 (1967).
4. G. Birkhoff, Orthogonality in linear metric spaces, Duke Math. J., (1), 169-172 (1995).
5. Gy. Szabo, Sesquilinear-orthogonally quadratic mappings, Aequationes Math., (40), 190-200 (1990).
6. J. Ratz, Onorthogonality additive mappings, Aeq. Math. (28), 35-49 (1985).
7. M. S. Moslehian, On the stability of the orthogonal Pexiderized Cauchy equation, J.Math.Anl. Appl.,(318)(1),

Kiran Yadav, et al., JUSPS-A Vol. 31(8), (2019).
211-223 (2006).
8. M. Fochi, Functional equations in A-orthogonal vectors, Aequationes Math., (38), 28–40 (1989).
9. R. C. James, Orthogonality in normed linear spaces, Duke Math. J., (12), 291-302 (1945).
10. R. Chugh and Ashish, On the stability of generalized Cauchy linear functional equations, Int. J. of Math.
 Anal., (6)(29), 1403 – 1413 (2012).
11. R. Ger and J. Sikorska, Stability of the orthogonal additivity , Bull. Polish Acad. Sci. Math.,(43), 143-151
 (1995).
12. S. Gudder and D. Strawther, Orthogonality additive and Orthogonality increasing functions on vector
 spaces, Pacific J. Math.,(58), 427-436 (1975).
13. Th. M. Rassias, On the stability of the Linear mapping in Banach spaces, Procc. of the Amer. Math. Soc.,
 (72)(2), 297-300 (1978).
14. W. Towanlong, p. Nakmahachalasiant, A quadratic functional equation and its generalized Hyers-Ulam-
 Rassias stability, Thai j. of Math., Special Issue (Annual meeting in Mathematics), 85-91 (2008).