Cross Breeding New Cultivars of Early-flowering Multiflora Chrysanthemum Based on Mathematical Analysis

Mengmeng Zhang, He Huang, Qing Wang, and Silan Dai
Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, 35 East Qinghua Road, Beijing 100083, China

Abstract. Conventional crossbreeding remains an effective technique for chrysanthemum (Chrysanthemum × morifolium Ramat.) breeding. However, there are always many problems when breeding chrysanthemum because of its complex genetic background, such as difficulty matching parents, selecting superior hybrid progenies, quantitatively describing certain target traits, and evaluating breeding results. A recent mathematical analysis method is an effective method for evaluating plant breeding progress. In this study, we used 505 multiflora chrysanthemum germplasm resources as test materials; we divided the flowering time into five groups using a grading analysis method, including extremely early group (genotypes that flowered when daylength was longer than 13.5 hours), early group (genotypes that flowered when daylength was 13.5–12.0 hours), medium group (genotypes that flowered when daylength was 12.0–11.0 hours), late group (genotypes that flowered when daylength was 11.0–10.0 hours), and extremely late group (genotypes that flowered when daylength was shorter than 10.0 hours). Moreover, the breeding objective was to breed early-flowering genotypes. Using 15 phenotypic characters as evaluation factors, 37 excellent genotypes, including four early-flowering genotypes, were screened out from the aforementioned resources according to an analytic hierarchy process (AHP) and weighting of the gray relational grade. We selected one early-flowering genotype and eight medium-flowering genotypes from these 37 genotypes and matched six hybridized combinations based on the genetic distance between genotypes calculated by the Q cluster analysis method. We used a comprehensive evaluation method combining AHP and the gray relational analysis (GRA) method for the evaluation of 367 progenies. Moreover, we screened out 52 superior hybrids, including 36 early-flowering hybrids. The results of this study demonstrate that the mathematical analysis method is an immensely effective method to breed new cultivars of early-flowering multiflora chrysanthemum. This study also provides an effective method to define and improve the flowering time of other cultivated plants.

Received for publication 7 Dec. 2017. Accepted for publication 13 Feb. 2018.

This work was supported by the Introduction of International Advanced Forestry Science and Technology Research Projects (2013–2017) and the Graduate Training and Development Program of Beijing Municipal Commission of Education (BLCXY201529).

We are sincerely grateful to the Beijing Dadongliu Nursery for providing plant materials.

*Corresponding author. E-mail: silandai@sina.com.

Because of its high ornamental value and wide range of applications, multiflora chrysanthemum (Chrysanthemum × morifolium Ramat.) plays an important role in the global flower market (Anderson, 2006; Augustinova et al., 2016; Teixeira da Silva et al., 2013). However, most multiflora chrysanthemum cultivars are short-day plants, which initiate flowering when the daylength is shorter than 12 h (Cockshull, 1985). Thus, they usually flower from late October to November. To meet market demands, growers have been using techniques to regulate (such as shading in summer) and advance flowering (Ochiai et al., 2015). These techniques are rather costly and laborious, causing the ornamental quality to decline. Therefore, advancing flowering is an important breeding objective for multiflora chrysanthemum.

Flowering time, an important adaptive trait that strongly influences planting area and productivity and the market price of cultivated plants, is affected by both endogenous and environmental factors. An accurate definition of flowering time will be vital for breeding research and the practical production of ornamental plants. The number of days between the transplanting date and the initial flowering date has been recorded as initial flowering time in previous studies (Zhang et al., 2011, 2013). However, to date, flowering time has only been qualitatively described and not quantitatively analyzed. In The guidelines for the conduct of tests for distinctness, homogeneity and stability—Chrysanthemum, published and implemented by The International Union for the Protection of New Varieties of Plants (UPOV), flowering time is divided into three groups, including early group, medium group, and late group (UPOV, 2010). However, because of the lack of a numerical index to define flowering time groups, the evaluation criteria are always different among breeding programs. The establishment of a numerical grading index of flowering time is the basis for the normalized and standard description of multiflora chrysanthemum germplasm resources.

Chrysanthemum cultivars are genetically highly heterozygous, so conventional crossbreeding between parental cultivars with contrasting target traits is still the most effective way to breed new cultivars (Teixeira da Silva et al., 2013). The key to success is parent-pair selection; therefore, the genetic difference between parents is an important factor. Parental genetic difference and hybrid performance are positively related (Ajmone Marsan et al., 1998; Hung et al., 2012). Compared with molecular markers and other methods, morphological markers are easier to observe and obtain. In chrysanthemum, previous studies that used the cluster analysis method based on morphological markers were considerably restricted to studying cultivar classification (Zhang et al., 2014a) rather than evaluating the genetic difference between parents (Su et al., 2017). Moreover, breeding new cultivars is a sophisticated technique. Intraspecific and interspecific hybridization has been used to improve the plant type (Anderson and Ascher, 2016; Chen et al., 1995), stress resistance (Cheng et al., 2011), flower color (Anderson et al., 2014), and even flowering time of chrysanthemum. Although a series of new cultivars with different flowering times have been obtained (Anderson and Ascher, 2016), the number of early-flowering multiflora chrysanthemum cultivars is still limited (Lim et al., 2012, 2014). In particular, other ornamental traits of some cultivars tend to perform poorly during introduction and cultivation. Further studies are needed to breed superior early-flowering multiflora chrysanthemums that are suitable for different geographical cultivation conditions.

Comprehensive evaluation of hybrids is an important part of breeding. The primary breeding objective should be considered when selecting superior hybrids of ornamental plants, and conversely, comprehensive traits including flower-related traits, leaf-related traits, vegetative-related traits, and stress resistance should also be considered. It is imperative to establish a scientific, reasonable, and feasible comprehensive evaluation system. The GRA method is a comprehensive
evaluation approach for the gray system. It is characterized by less data and can avoid inconsistency between results of quantitative and qualitative analyses (Deng, 1989). This method has been widely used in various fields of science, including the evaluation of new crop cultivars. However, it has a strong subjectivity in the determination of the weight of traits. AHP is a systematic and hierarchical analysis method for combining qualitative and quantitative analysis methods and can decompose complex problems into multiple layers and multiple factors (Saaty, 1990). It can easily calculate the weight of each trait but cannot fully use all the information. A comprehensive evaluation system combining the AHP and GRA methods would be practical and comprehensive, allowing these methods to complement each other.

This system has been widely used in industry, environment, architecture, and many other fields (Huang and Wang, 2014; Liang et al., 2015; Xu et al., 2011). It has also been used to evaluate a variety of resources and select new cultivars in many crops, and results have shown that it is an effective method for the comprehensive evaluation of germplasm resources (Ma et al., 2012; Xiong et al., 2015). This comprehensive evaluation system has less application in chrysanthemum breeding. Considering plant type as the main breeding objective, Wang et al. (2012) first used this method and selected new cultivars with excellent comprehensive characters quickly and effectively. Different main breeding objectives and a different judgment matrix constructed in AHP result in different weights of each index. A study using this method to select early-flowering multiflora chrysanthemum has not been reported.

In this study, we used several mathematical analysis methods to establish the numerical grading index of flowering time, comprehensively evaluate germplasm resources, select and match crossing parents, and screen out superior hybrids. The objectives of this study were to provide an effective method for multiflora chrysanthemum breeding by conventional crossbreeding and to provide a reference method for breeding programs of other ornamental plants.

Materials and Methods

Plant materials. A total of 505 multiflora chrysanthemum germplasm resources were used in this study and were maintained at the chrysanthemum germplasm nursery, Beijing Forestry University, China (Supplemental Table 1). These included eight cultivars of Timeline introduced from the Netherlands, 430 F1 progenies obtained from natural crossing between Timeline and Chinese chrysanthemum germplasm resources and F1 progenies. After 30 d, the surviving seedlings, which had been pinched, were transplanted to 81-cell trays. Parents and F1 progenies were propagated by cutting in April, and rooted cuttings were transplanted to pots on 6 June. The size of the pots was 19 cm × 17 cm and the plant spacing was 35 cm × 35 cm in the planting bed. Standard commercial practices were used to manage the plants, which flowered naturally in the fall. In 2015 and 2016, the parents and F1 progenies were propagated by cuttings, and field management and planting time were the same as those in 2014.

Data collection. Continuous tests for 15 phenotypic traits (Table 1) of germplasm resources (2012–13) and F1 progenies (2014–16) were performed. At least three randomly selected plants per genotype were measured, and average values were used in statistical analysis. According to Zhang et al. (2011), the initial flowering date was defined as when ≥50% of the total flower buds were half-opened and fully pigmented, and the wilting flower date was defined as when ≥10% of the total flowers appeared wilted. The color of the inner side of the ray floret was measured according to Hong et al. (2012).

Grading analysis method of flowering time. From 2012 to 2016, the daylength of key time nodes in the Beijing area was almost the same (Supplemental Table 2). It indicated that the daylengths on the same date in different years were almost the same. Most chrysanthemum cultivars maintain vegetative growth when the daylength is longer than 13.5 h and start reproductive growth when the daylength is shorter than 12.0 h (Cockshull, 1985), the daylength was classified as long day (when daylength was longer than 13.5 h), short day (when daylength was 13.5–10.0 h), and extremely short day (when daylength was shorter than 10.0 h). Then, the flowering time of the multiflora chrysanthemum was classified into five continuously distributed grading ranges: extremely early group (genotypes that flowered when daylength was longer than 13.5 h), early group (genotypes that flowered when daylength was 13.5–12.0 h), medium group (genotypes that flowered when daylength was 12.0–11.0 h), late group (genotypes that flowered when daylength was 11.0–10.0 h), and extremely late group (genotypes that flowered when daylength was shorter than 10.0 h). Moreover, these five flowering time groups corresponded to the flowering time and flowering date (Table 3).

Comprehensive evaluation of breeding value of multiflora chrysanthemum germplasm resources. The comprehensive evaluation method combining AHP and GRA has been used for the evaluation of germplasm resources (Table 4). The weight value of the index layer (P) relative to the target layer (A) was calculated based on Supplemental Tables 3–6. The results showed that, in the three constrained layers, the weight value of flowering

female parents lost powder, the disc flowers were removed for emasculation, and the ray flowers were docked to expose the stigma; then, the capitulum was covered with a paper bag. Pollen collected from freshly opened flowers of male parents was transferred to "Y" type stigma of the emasculated flower of female parents with a brush, and the pollinated flowers were re-enclosed in a paper bag. Pollination was carried out once a day, and each capitulum was pollinated three to five times continuously for a week. After ~60 d of natural growth, the capitula were collected, and the seeds were screened out; then, they were kept in a dry and ventilated place.

All experiments were completed in solar greenhouses of the chrysanthemum breeding nursery of Beijing Forestry University. In Feb. 2014, seeds were sown in 128-cell trays. After ~30 d, the surviving seedlings, which had been pinched, were transplanted to 81-cell trays. Parents and F1 progenies were propagated by cutting in April, and rooted cuttings were transplanted to pots on 6 June. The size of the pots was 19 cm × 17 cm and the plant spacing was 35 cm × 35 cm in the planting bed. Standard commercial practices were used to manage the plants, which flowered naturally in the fall. In 2015 and 2016, the parents and F1 progenies were propagated by cuttings, and field management and planting time were the same as those in 2014.

The comprehensive evaluation method combining AHP and GRA was constructed in AHP result in different weights of each index. A study using this method to select early-flowering multiflora chrysanthemum has not been reported.

In this study, we used several mathematical analysis methods to establish the numerical grading index of flowering time, comprehensively evaluate germplasm resources, select and match crossing parents, and screen out superior hybrids. The objectives of this study were to provide an effective method for multiflora chrysanthemum breeding by conventional crossbreeding and to provide a reference method for breeding programs of other ornamental plants.

Materials and Methods

Plant materials. A total of 505 multiflora chrysanthemum germplasm resources were used in this study and were maintained at the chrysanthemum germplasm nursery, Beijing Forestry University, China (Supplemental Table 1). These included eight cultivars of Timeline introduced from the Netherlands, 430 F1 progenies obtained from natural crossing between Timeline and Chinese chrysanthemum germplasm resources and F1 progenies. After ~30 d, the surviving seedlings, which had been pinched, were transplanted to 81-cell trays. Parents and F1 progenies were propagated by cutting in April, and rooted cuttings were transplanted to pots on 6 June. The size of the pots was 19 cm × 17 cm and the plant spacing was 35 cm × 35 cm in the planting bed. Standard commercial practices were used to manage the plants, which flowered naturally in the fall. In 2015 and 2016, the parents and F1 progenies were propagated by cuttings, and field management and planting time were the same as those in 2014.

Data collection. Continuous tests for 15 phenotypic traits (Table 1) of germplasm resources (2012–13) and F1 progenies (2014–16) were performed. At least three randomly selected plants per genotype were measured, and average values were used in statistical analysis. According to Zhang et al. (2011), the initial flowering date was defined as when ≥50% of the total flower buds were half-opened and fully pigmented, and the wilting flower date was defined as when ≥10% of the total flowers appeared wilted. The color of the inner side of the ray floret was measured according to Hong et al. (2012).

Grading analysis method of flowering time. From 2012 to 2016, the daylength of key time nodes in the Beijing area was almost the same (Supplemental Table 2). It indicated that the daylengths on the same date in different years were almost the same. Most chrysanthemum cultivars maintain vegetative growth when the daylength is longer than 13.5 h and initiate flowering when daylength is shorter than 12.0 h (Cockshull, 1985), the daylength was classified as long day (when daylength was longer than 13.5 h), short day (when daylength was 13.5–10.0 h), and extremely short day (when daylength was shorter than 10.0 h). Then, the flowering time of the multiflora chrysanthemum was classified into five continuously distributed grading ranges: extremely early group (genotypes that flowered when daylength was longer than 13.5 h), early group (genotypes that flowered when daylength was 13.5–12.0 h), medium group (genotypes that flowered when daylength was 12.0–11.0 h), late group (genotypes that flowered when daylength was 11.0–10.0 h), and extremely late group (genotypes that flowered when daylength was shorter than 10.0 h). Moreover, these five flowering time groups corresponded to the flowering time and flowering date (Table 3).

Comprehensive evaluation of breeding value of multiflora chrysanthemum germplasm resources. The comprehensive evaluation method combining AHP and GRA has been used for the evaluation of germplasm resources (Table 4). The weight value of the index layer (P) relative to the target layer (A) was calculated based on Supplemental Tables 3–6. The results showed that, in the three constrained layers, the weight value of flowering
time–related traits was the largest (0.750), followed by that of flower head–related traits (0.171), and the smallest was that of vegetative-related traits (0.078). In the 15 selected indexes, the weight value of the flowering time was the largest (0.657), followed by that of the flowering duration (0.0938). The order of the other traits can be seen in Table 4.

Based on the grading index of the flowering time in Table 3, we evaluated the flowering time of 505 germplasm resources. The results showed that there were no extremely early–flowering genotypes and only nine early-flowering genotypes, which accounted for 1.8% of the germplasm. There were 41 medium-flowering genotypes, which accounted for 8.1%. The number of late-flowering genotypes was the greatest, at 375, and accounted for 74.3%. Moreover, there were 80 extremely late–flowering genotypes, which accounted for 15.8% (Table 5). Therefore, the flowering time of multiflora chrysanthemum germplasm resources was late, and the number of early–flowering genotypes was small. Based on these results, breeding early–flowering cultivar was taken as a breeding objective in this study.

Subsequently, these germplasm resources were ordered according to the weight value (represented by r) and were divided into three grades (Table 5). There were 37 genotypes in grade one ($r \geq 0.826$). Except for four genotypes that belonged to the early group, there were 30 medium-flowering genotypes and three late-flowering genotypes. However, the flowering duration of these genotypes was longer, and the comprehensive characters were excellent. They are important germplasms for improving flowering time in the future. There were 216 genotypes in grade two ($0.771 \leq r < 0.826$). Most genotypes were late flowering with a shorter flowering duration. Therefore, these genotypes had a certain defect. There were 252 genotypes in grade three ($r < 0.771$). Among these, most were late flowering with poor comprehensive characters. These results indicated that a few germplasm resources could conform to the breeding objective.

Sexual hybridization to create new early-flowering germplasms of multiflora chrysanthemum. The result of R cluster analysis of 15 selected traits showed that only the characters leaf length and leaf width were correlated, whereas the other 13 traits were independent, indicating the rationality of selection of these traits (as shown in Fig. 1A). The result of Q cluster analysis between 37 superior germplasm resources, which belonged to grade one in Table 5 based on Euclidean distance, is shown in Fig. 1B. The horizontal axis represents the cluster level of each group and the vertical axis represents 37 genotypes (numbered from 1 to 37) ranking from the biggest to the smallest according to the weight value.

One early–flowering (A20) and eight medium-flowering genotypes (as shown in Supplemental Fig. 1) were selected as crossing parents from 37 superior genotypes, and six hybridized combinations were matched among the candidates (Table 6) according to the following principles: genetic distance was farther between crossing parents, sources of crossing parents were different, flowering times of the crossing parents were similar, female parent was double-flowered, male parent had a large number of pollen grains, and colors of crossing parents were different, and comprehensive characteristics were excellent.

A total of 105 flower heads were pollinated and 961 seeds were collected in Fall 2013. The mean number of seed per flower head of combination A was 18.8, which was the highest; those of combinations B and C were 8.8 and 12.1, respectively; and those of combinations D, E, and F were lower. These seeds were seeded in Spring 2014 and 406 seeds germinated. Low seed germination rates were observed for the six hybridized combinations and 367 F1 progenies flowered in Fall 2014. The seedling rate of combination A (84.0%) was lower than that of the other five combinations (Table 7).

Based on the grading index of flowering time in Table 3, we evaluated the flowering time of 367 F1 progenies (Table 8). There were two extremely early–flowering hybrids (accounted for 0.5%, Supplemental Table 7) and 71 early–flowering hybrids (accounted for 19.4%). Medium- and late-flowering hybrids accounted for 53.4% and 26.7%, respectively. Moreover, there were no extremely late–flowering hybrids. Compared with the germplasm resources, we obtained extremely early–flowering genotypes and the number of early–flowering genotypes was markedly increased.

Based on the weight value of every index in Table 4, the weight value (represented by r) of the F1 progenies were calculated. Moreover, 367 F1 progenies were divided into three grades (Table 8). There were 52 hybrids in grade one ($r \geq 0.851$). Among them, 36 hybrids belonged to the early–flowering group. These 36 hybrids with good comprehensive characters (red color, long flowering duration, double-flowered and big crown diameter) accorded with the demands of the market and could be potential new cultivars. There were 147 hybrids in grade two ($0.822 \leq r < 0.851$). Most of them were medium flowering and a few were early or late flowering. The main flower color was red, pink, or purple and most hybrids had specific defects. There were 168 hybrids in grade three ($r < 0.822$). Among most, most were medium flowering with poor comprehensive characters. Finally, 36 early–flowering hybrids (Supplemental Table 8) with good comprehensive characters were screened out. A comprehensive analysis of the aforementioned data showed that the expected breeding objective was achieved.

Table 1. Fifteen phenotypic traits measured in this study, their measuring methods, and evaluation for qualitative traits.

Code	Trait	Measuring method and evaluation for qualitative traits
P1	Flowering time	Number of days between transplanting time and initial flowering time (days)
P2	Flowering duration	Number of days between initial flowering time and flower wilting time (days)
P3	Flower head diameter	Measure diameter at widest point of terminal flower head (cm)
P4	Peduncle length	Measure length from the bottom of the phyllary to the first true leaf
P5	Flower head type	Visual assessment; single (1), semidouble (2), daisy-eyed double (3), double (4), without ray florets (5)
P6	Predominant type of ray floret	Visual assessment; flat type (1), spoon type (2), tubular type (3)
P7	Number of colors of ray floret inner side	Visual assessment; one (1), two (2), more than two (3)
P8	Main color of ray floret inner side	Brown group (1), orange group (2), pink group (3), purple group (4), red group (5), white group (6), yellow group (7), yellow-green group (8), dark red group (9)
P9	Second color of ray floret inner side	The same as main color of inner side of ray floret
P10	Plant height	Measure height from the bottom of the stem to the top of the plant (cm)
P11	Crown diameter	Measure diameter at the widest point from the top face (cm)
P12	Leaf length	Measure length of leaf on the middle third of the stem
P13	Leaf width	Measure width of leaf on the middle third of the stem
P14	Branching density	Visual assessment; dense (1), medium (2), sparse (3)
P15	Flower density	Visual assessment; dense (1), medium (2), sparse (3)

Table 2. The layered structure model of 15 evaluation indexes in multiflora chrysanthemum.

Target layer (A)	Constrained layer (C)	Index layer (P)
Superior early–flowering multiflora chrysanthemum genotypes	C1 flowering time-related traits	P1, P2
	C2 flower head-related traits	P3, P4, P5, P6, P7, P8, P9
	C3 vegetative-related traits	P10, P11, P12, P13, P14, P15
Discussion

Grading analysis of flowering time. The establishment of a scientific and rigorous numerical grading index is the basis for further research of the target trait. Luo et al. (2016) have established a grading index of 19 quantitative traits of Chinese traditional chrysanthemum using the probability grading method. However, the flowering time was not analyzed, and the method did not apply to the grading analysis of quantitative trait that skew distribution. According to Zhang et al. (2014b), 82 ornamental crabapple cultivars were divided into five major flowering groups with 5 d (5 d is a “Hou” in Chinese) as the level differential. There were only 22 d between the earliest and latest flowering cultivars of ornamental crabapple but there were 61 d of multiflora chrysanthemum in our study. Therefore, this method was also not appropriate for our study. In a chrysanthemum DUS (distinctness, uniformity, and stability) test (UPOV, 2010), the flowering time was divided into three groups, including the early group, medium group, and late group. However, chrysanthemum lacks a numerical index to define the flowering time group in this grading method. Most chrysanthemum cultivars show vegetative growth when the daylength is longer than 13.5 h and start reproductive growth when the day-length is shorter than 12.0 h (Cockshull, 1985). In this study, considering the natural blooming time of multiflora chrysanthemum in the Beijing area as an example, we have established a grading index of flowering time based on the aforementioned character of multiflora chrysanthemum. The flowering time of multiflora chrysanthemum was divided into five groups: extremely early group (genotypes that flowered when daylength was
Table 6. Description list of combinations and the main ornamental characters of parents in sexual hybridization.

Code of combination	Name of parents	Type of parents	Ordered by wt value	Source	Flowering time (d)	Main color of inner side of ray floret	Flower head type
A	Brancandy	Female parent	18	Germany Brandkamp Company	125	Pink group	Daisy-eyed double
B	Branchkiss	Female parent	15	Breeding performed ourselves	133	Pink group	Semidouble
C	A20	Female parent	1	Breeding performed ourselves	108	Pink group	Daisy-eyed double
D	Branchkiss	Female parent	24	Breeding performed ourselves	114	Red group	Semidouble
E	Brancandy	Female parent	17	Germany Brandkamp Company	122	Pink group	Daisy-eyed double
F	Branchkiss	Female parent	4	Breeding performed ourselves	116	Yellow group	Semidouble
G	A38	Male parent	31	Breeding performed ourselves	125	Pink group	Daisy-eyed double
H	Branchkiss	Male parent	17	Germany Brandkamp Company	122	Red group	Semidouble
I	Calcar clock	Male parent	27	Breeding performed ourselves	111	Orange group	Single
J	A42	Male parent	25	Breeding performed ourselves	470	Pink group	Daisy-eyed double
K	A49	Male parent	122	Germany Brandkamp Company	122	Pink group	Daisy-eyed double
L	A7	Male parent	66	Germany Brandkamp Company	122	Pink group	Daisy-eyed double
M	A24	Male parent	193	Germany Brandkamp Company	122	Pink group	Daisy-eyed double
N	Female parent	1	106	Germany Brandkamp Company	122	Pink group	Daisy-eyed double
O	Male parent	1	118	Germany Brandkamp Company	122	Pink group	Daisy-eyed double
P	Female parent	1	122	Germany Brandkamp Company	122	Pink group	Daisy-eyed double
Q	Male parent	1	122	Germany Brandkamp Company	122	Pink group	Daisy-eyed double

Table 7. Statistical analysis of the results of sexual hybridization in multiflora chrysanthemum.

Code of combination	No. flower heads	No. harvested seeds	Mean no. seeds per flower head	No. seedlings	Seed germination rate (%)	No. surviving seedlings	Seeding rate (%)
A	25	470	18.8	212	45.1	178	84.0
B	20	176	8.8	92	52.3	89	96.7
C	16	193	12.1	71	36.8	69	97.2
D	12	66	5.5	26	39.4	26	100
E	20	51	2.6	3	5.9	3	100
F	12	5	0.4	2	40.0	2	100
Total	105	961	9.2	406	42.2	367	90.4

Table 8. Results of the comprehensive evaluation and grade division in F1 progenies of multiflora chrysanthemum.

Grade	Wt value (r)	No. genotypes	Proportion (%)	No. extremely-early-flowering genotypes	No. early-flowering genotypes	No. medium-flowering genotypes	No. late-flowering genotypes	No. extremely late-flowering genotypes	Proportion (%)
1	r ≥ 0.851	52	14.2	0	36	11	5	0	
2	0.822 ≤ r < 0.851	147	40.1	1	13	76	57	0	
3	r < 0.822	168	45.8	1	22	109	36	0	
Total		367		2	71	196	98	0	

longer than 13.5 h), early group (genotypes that flowered when daylength was 13.5–12.0 h), medium group (genotypes that flowered when daylength was 12.0–11.0 h), late group (genotypes that flowered when daylength was 11.0–10.0 h), and extremely late group (genotypes that flowered when daylength was shorter than 10.0 h). The flowering time of multiflora chrysanthemum was further refined, and each group corresponded to the flowering time and flowering date. We quantitatively described our breeding objective, and it not only was convenient for evaluating the breeding results but also provided references for defining the flowering time of multiflora chrysanthemum cultivated in different areas. These results were supplemented the chrysanthemum DUS test and established a foundation to perform a normalized and standard description of chrysanthemum flowering time. Moreover, it provided a method for grading analysis of the other quantitative traits.

Breeding results of early-flowering breeding of multiflora chrysanthemum. The investigation of multiflora chrysanthemum germplasm resources in the Beijing area showed that there were few early-flowering genotypes. In the 505 germplasm resources, there were only nine early-flowering genotypes (accounted for 1.8%). Only four early-flowering genotypes with good comprehensive characters were selected out through a comprehensive evaluation. One early-flowering and eight medium-flowering genotypes were used as crossing parents to obtain 367 F1 progenies, including 71 early-flowering hybrids (accounted for 19.4%) and two extremely early–flowering hybrids (Supplemental Table 7). These two extremely early–flowering hybrids can flower under long day conditions, so they may be day-neutral genotypes, but further study is needed. Thirty-six early-flowering hybrids with excellent comprehensive characters were selected through comprehensive evaluation (Supplemental Table 8) and could be developed into new cultivars. Thus, the breeding objective is complete and traditional crossing breeding is an effective method for improving the flowering time of multiflora chrysanthemum.

In this study, relatively few extremely early–flowering genotypes were obtained. Breeding to improve the flowering time of multiflora chrysanthemum needs further improvements and increased efforts. Considering combinations A, B, and C, the flowering time of most F1 progenies was the same as that of their parents. In addition, some variations flowered earlier than their parents. Among these three combinations, the number of early-flowering F1 progenies in combination C was the most. Therefore, the breeding result of combination C was the best. Among the parents of these three combinations, only the female parent of combination C belonged to the early group; all others belonged to the medium group. This result showed that it was easier to get early-flowering progenies using parents that flowered earlier. The results were similar to those obtained by other researchers (Fukai et al., 2000). Therefore, these two extremely early–flowering and 36 early-flowering hybrids were elite germplasms for breeding extremely early–flowering multiflora chrysanthemum.

Application of mathematical analysis method in ornamental plant breeding. Proper parent-pair selection is a prerequisite to achieving the breeding objective. Because of its complex genetic background, the parent-pair selection is difficult for chrysanthemum, and the traditional method of selecting and matching parents is grueling and time-consuming (Bestfleisch et al., 2014; Zeng et al., 2014). The correlation between parental genetic distance and hybrid performance using morphological and molecular markers, respectively, was measured in chrysanthemum (Su et al., 2017). However, only waterlogging tolerance–related characters were discussed. In this study, the genetic distances between 37 superior genotypes...
Anderson, N.O., E. Gesick, V. Fritz, C. Rohwer, S. Yao, P. Johnson, S. Poppe, B.E. Liedl, L. Klossner, N. Eash, and J. Reith-Rozelle. 2014. Mammoth™ series garden chrysanthemum 'Lavender Daisy'. HortScience 49:1600–1604.

Augustusova, J., J. Dolezalova, P. Matiska, Z. Wimmerova, and T. Kodetova. 2016. Testing the winter hardness of selected chrysanthemum cultivars of multiflora type. HortScience 43:203–210.

Bestfleisch, M., J. Moring, M.V. Hanke, A. Peil, and H. Flachowsky. 2014. A diallel cross approach aimed on selection for ripening time and yield in breeding of new strawberry (Fragaria ×ananassa Duch.) cultivars. Plant Breeding 133(1):115–120.

Chen, J.Y., S.Q. Wang, X.C. Wang, and P.W. Wang. 1995. Thirty years’ studies on breeding ground-cover chrysanthemum new cultivars. Acta Hort. 404:30–36. (abstr.).

Cheng, X., S.M. Chen, F.D. Chen, Y.M. Deng, W.M. Fang, F.P. Tang, Z.L. Liu, and W. Shao. 2011. Creating novel chrysanthemum germplasm via interspecific hybridization and backcrossing. Euphytica 177(1):45–53.

Cockburn, K.E. 1985. Chrysanthemum morifolium, p. 236–257. In: A.H. Halevy (ed.) CRC handbook of flowering. Vol. 2. CRC Press, Boca Raton, FL.

Deng, J.L. 1989. Introduction to grey system theory. J. Grey Syst. 1(1):1–24.

Fukui, S., T. Hiraoka, and M. Gei. 2000. Characteristics of F1 progenies between Chrysanthemum and some Dendrathena species. Acta Hort. 541:1–5.

Hong, Y., X.X. Bai, W. Sun, W.F. Jia, and S.L. Dai. 2012. The numerical classification of chrysanthemum flower color phenotype. Acta Hort. Sin. 39(7):1130–1140.

Huang, M.Q. and B. Wang. 2014. Evaluating green performance of building products based on grey relational analysis and analytic hierarchy process. Environ. Prog. Sustain. Energy 33(4):1389–1395.

Hung, H.Y., C. Browne, K. Guill, N. Coles, M. Eller, A. Garcia, N. Lepak, S. Melia-Hancock, M. Oropesa-Rosas, S. Salvo, N. Upadayalina, E.S. Buckler, S. Flint-Garcia, M.D. McMullen, T.R. Rochefer, and J.B. Holland. 2012. The relationship between parental genetic or phenotypic divergence and progeny variation in the maize nested association mapping population. Hereditas 108(5):490–499.

International Union for the Protection of New Varieties of Plants (UPOV). 2010. Guidelines for the conduct of tests for distinctness, uniformity and stability. Chrysanthemum (Chrysanthemum × morifolium Ramat.). Geneva, Switzerland.

Kawamura, K., T. Kawanabe, M. Shimizu, A.J. Nagano, N. Saeki, K. Okazaki, M. Kaji, E.S. Dennis, K. Osabe, and R. Fujimoto. 2016. Genetic distance of inbred lines of Chinese cabbage and its relationship to heterosis. Plant Gene 5:1–7.

Kuiper, and M. Motto. 1998. Genetic diversity and its relationship to hybrid performance in maize as revealed by RFLP and AFLP markers. Theor. Appl. Genet. 96(2):219–227.

Anderson, N.O. 2006. Chrysanthemum. Dendranthema xgrandiflorum Tzvelv. p. 389–437. In: N.O. Anderson (ed.) Flower breeding and genetics: Issues, challenges, and opportunities for the 21st century. Springer, Dordrecht, The Netherlands.

Anderson, N.O. and P. Ascher. 2016. Chrysanthemum ×grandiflorum MN Sel’n. 90-275-275 groundcover garden chrysanthemum. HortScience 51:451–455.

Anderson, N.O., E. Gesick, V. Fritz, C. Rohwer, S. Yao, P. Johnson, S. Poppe, B.E. Liedl, L. Klossner, N. Eash, and J. Reith-Rozelle. 2014. Mammoth™ series garden chrysanthemum ‘Lavender Daisy’. HortScience 49:1600–1604.

Augustusova, J., J. Dolezalova, P. Matiska, Z. Wimmerova, and T. Kodetova. 2016. Testing the winter hardness of selected chrysanthemum cultivars of multiflora type. HortScience 43:203–210.

Bestfleisch, M., J. Moring, M.V. Hanke, A. Peil, and H. Flachowsky. 2014. A diallel cross approach aimed on selection for ripening time and yield in breeding of new strawberry (Fragaria ×ananassa Duch.) cultivars. Plant Breeding 133(1):115–120.

Chen, J.Y., S.Q. Wang, X.C. Wang, and P.W. Wang. 1995. Thirty years’ studies on breeding ground-cover chrysanthemum new cultivars. Acta Hort. 404:30–36. (abstr.).

Cheng, X., S.M. Chen, F.D. Chen, Y.M. Deng, W.M. Fang, F.P. Tang, Z.L. Liu, and W. Shao. 2011. Creating novel chrysanthemum germplasm via interspecific hybridization and backcrossing. Euphytica 177(1):45–53.

Cockburn, K.E. 1985. Chrysanthemum morifolium, p. 236–257. In: A.H. Halevy (ed.) CRC handbook of flowering. Vol. 2. CRC Press, Boca Raton, FL.

Deng, J.L. 1989. Introduction to grey system theory. J. Grey Syst. 1(1):1–24.

Fukui, S., T. Hiraoka, and M. Gei. 2000. Characteristics of F1 progenies between Chrysanthemum and some Dendrathena species. Acta Hort. 541:1–5.

Hong, Y., X.X. Bai, W. Sun, W.F. Jia, and S.L. Dai. 2012. The numerical classification of chrysanthemum flower color phenotype. Acta Hort. Sin. 39(7):1130–1140.

Huang, M.Q. and B. Wang. 2014. Evaluating green performance of building products based on grey relational analysis and analytic hierarchy process. Environ. Prog. Sustain. Energy 33(4):1389–1395.

Hung, H.Y., C. Browne, K. Guill, N. Coles, M. Eller, A. Garcia, N. Lepak, S. Melia-Hancock, M. Oropesa-Rosas, S. Salvo, N. Upadayalina, E.S. Buckler, S. Flint-Garcia, M.D. McMullen, T.R. Rochefer, and J.B. Holland. 2012. The relationship between parental genetic or phenotypic divergence and progeny variation in the maize nested association mapping population. Hereditas 108(5):490–499.

International Union for the Protection of New Varieties of Plants (UPOV). 2010. Guidelines for the conduct of tests for distinctness, uniformity and stability. Chrysanthemum (Chrysanthemum × morifolium Ramat.). Geneva, Switzerland.

Kawamura, K., T. Kawanabe, M. Shimizu, A.J. Nagano, N. Saeki, K. Okazaki, M. Kaji, E.S. Dennis, K. Osabe, and R. Fujimoto. 2016. Genetic distance of inbred lines of Chinese cabbage and its relationship to heterosis. Plant Gene 5:1–7.

Kuiper, and M. Motto. 1998. Genetic diversity and its relationship to hybrid performance in maize as revealed by RFLP and AFLP markers. Theor. Appl. Genet. 96(2):219–227.

Anderson, N.O. 2006. Chrysanthemum. Dendranthema xgrandiflorum Tzvelv. p. 389–437. In: N.O. Anderson (ed.) Flower breeding and genetics: Issues, challenges, and opportunities for the 21st century. Springer, Dordrecht, The Netherlands.

Anderson, N.O. and P. Ascher. 2016. Chrysanthemum ×grandiflorum MN Sel’n. 90-275-275 groundcover garden chrysanthemum. HortScience 51:451–455.
Supplemental Fig. 1. Individual performance of the selected nine crossing parents: (A) A20; (B) A7; (C) A49; (D) 317; (E) Brankiss; (F) Brancandy; (G) A42; (H) Ca*388-45; (I) A38.
Supplemental Table 1. The source and flowering time of 505 germplasm resources.

Genotype no.	Source	Flowering time (d)	Genotype no.	Source	Flowering time (d)	Genotype no.	Source	Flowering time (d)
Smoothie Time	Timeline	144	104	Natural crossing	158	298	Natural crossing	151
Dragon Time	150	105	Natural crossing between Timeline with Chinese chrysanthemum	152	299	between timeline	164	
Pixie Time	136	106	with Chinese	153	300	with Chinese	150	
Midnight Time	152	107	Chinese chrysanthemum	165	301	Chinese chrysanthemum	153	
Jewel Time	147	108	158	302	141			
Energy Time	146	109	156	303	160			
Sahara Time	152	110	158	304	146			
Grace Time	149	111	159	305	142			
Brancandy	Bran Multiflora line	125	112	157	307	150		
Brankiss	122	113	165	308	148			
Brancloud	130	114	160	309	153			
Branhil	132	115	160	311	156			
183* BH-42	Artificial crossing between Bran Multiflora line with the other germplasm	121	116	157	317	155		
183* BH-46		158	298		165	312	157	
183* Q-12		164	301		159	313	150	
183* Q-18		150	316		155			
183* Q-5		150	317		153			
183* Q-83		160	318		165			
183* Q-85		160	319		163			
388* Q-15		155	320		163			
388* Q-219		154	321		162			
388* Q-284		163	322		160			
388* Q-298		160	323		157			
388* Q-317		150	324		156			
388* Q-4		147	325		162			
388* Q-48		160	326		152			
388* Q-72		157	327		165			
388* Q-76		150	330		148			
A1	130	135	152	332	155			
A10	123	136	162	333	157			
A11	110	137	152	334	160			
A12	126	138	155	335	149			
A13	120	139	152	336	155			
A15	141	140	150	337	155			
A16	133	142	152	338	157			
A17	137	144	151	339	145			
A2	140	145	154	340	148			
A20	106	146	151	341	158			
A22	116	147	160	342	160			
A25	155	148	155	343	149			
A32	133	150	155	344	151			
A35	123	151	155	345	160			
A36	137	153	167	347	162			
A38	111	155	165	348	158			
A39	138	156	160	349	147			
A42	114	157	163	350	154			
A44	117	158	147	352	159			
A45	145	159	153	353	158			
A46	148	160	152	354	157			
A49	118	161	155	355	150			
A5	141	162	155	356	155			
A54	117	163	148	358	155			
A55	134	164	145	359	150			
A7	116	165	154	360	152			
A8	137	166	157	361	155			
A9	124	167	152	362	155			
Ca* 388-15	136	169	157	363	161			
Ca* 388-17	109	170	157	364	160			
Ca* 388-30	137	172	165	365	157			
Ca* 388-35	151	173	158	366	164			
Ca* 388-42	142	174	156	367	153			
Ca* 388-44	110	175	157	368	155			
Ca* 388-45	111	176	158	369	160			
Ca* 388-46	155	177	159	370	158			
d* 388-3	126	178	157	371	157			
d* 388-5	132	180	155	372	157			
d* 388-8	129	181	160	373	158			
E*R-4	125	182	155	374	158			
E*R-5	138	183	134	376	155			
ENBH-11	138	184	155	380	162			
ENBH-14	134	185	155	381	165			
ENBH-27	106	186	155	382	160			

(Continued on next page)
Supplemental Table 1. (Continued) The source and flowering time of 505 germplasm resources.

Genotype no.	Source	Genotype no.	Source
EN*BH-5	125	187	155
K*183-8	103	189	160
Natural crossing between timeline with chinese chrysanthemum	126	190	161
1	126	190	161
2	160	191	146
3	150	192	155
4	144	193	155
5	152	194	153
6	152	195	155
7	155	196	155
8	165	197	155
9	148	198	164
10	152	199	154
11	152	200	157
12	152	201	152
13	150	203	155
14	151	204	155
15	165	205	147
16	150	206	157
17	149	207	155
18	165	208	154
19	155	209	160
20	152	210	155
21	161	211	155
22	152	212	154
23	155	214	153
24	152	215	155
25	151	217	155
26	142	218	155
27	162	219	154
28	155	220	154
29	154	221	155
30	163	222	155
31	155	223	158
32	151	224	149
33	160	225	148
34	152	226	155
35	152	227	153
36	153	228	155
37	154	230	153
38	155	231	153
39	153	232	149
40	152	233	163
41	153	234	149
42	150	235	155
43	150	236	154
44	151	237	155
45	164	238	160
46	165	239	154
47	155	240	165
48	160	243	162
49	155	244	149
50	155	245	149
51	149	246	152
52	161	247	161
53	161	248	154
54	161	249	157
55	154	250	153
56	155	251	149
57	152	253	159
58	153	254	152
59	152	255	157
60	155	256	157
61	157	257	153
62	152	258	157
63	151	259	158
64	151	261	162
65	154	263	155
66	150	264	153
67	150	265	152
68	155	266	160
69	152	267	152
70	152	268	152

(Continued on next page)
Supplemental Table 1. (Continued) The source and flowering time of 505 germplasm resources.

Genotype no.	Source	Flowering time (d)	Genotype no.	Source	Flowering time (d)	Genotype no.	Source	Flowering time (d)
75	159	269	155	458	153			
77	163	270	152	459	162			
78	158	272	164	461	155			
79	156	273	155	463	166			
81	155	275	155	466	155			
82	160	276	151	467	151			
83	155	277	147	468	153			
84	164	278	160	470	158			
85	164	279	151	471	162			
86	153	280	163	472	155			
87	155	281	155	473	155			
88	165	282	155	474	158			
89	155	283	164	475	137			
91	158	284	150	476	160			
93	166	285	155	477	159			
94	151	287	153	478	163			
95	158	288	153	479	158			
96	152	289	155	480	164			
97	152	290	161	481	160			
98	150	291	150	482	158			
99	147	292	155	492	140			
100	155	294	151	512	130			
101	160	295	149					
102	144	297	152					

Supplemental Table 2. The daylength of key time nodes in the Beijing area in 2012–16.

Date	Aug. 22	Sept. 26	Oct. 20	Nov. 15
Daylength	13.5	12.0	11.0	10.0
Daylength	13.5	12.0	11.0	10.0
Daylength	13.5	12.0	11.0	10.0
Daylength	13.5	12.0	11.0	10.0
Daylength	13.5	12.0	11.0	10.0

Supplemental Table 3. The judgment matrix and its consistency check: A−Cij.

A	C1	C2	C3	Wt (wi)
C1	1/7	1/6	1	0.078
C2	1/6	1	3	0.171
C3	1	1/3	1	0.750

λmax = 3.10, CI = 0.0500, RI = 0.58, CR = 0.0861 < 0.1. CI = consistency index; RI = random consistency index; CR = consistency ratio.

Supplemental Table 4. The judgment matrix and its consistency check: C1−Pij.

C1	P1	P2	Wt (wi)
P1	1	7	0.875
P2	1/7	1	0.125

λmax = 2.00, CI = 0, CR = 0 < 0.1.

Supplemental Table 5. The judgment matrix and its consistency check: C2−Pij.

C2	P3	P4	P5	P6	P7	P8	P9	Wt (wi)
P3	1/2	1/4	6	2	2	0.110		
P4	1/2	1	1/4	4	1/3	1/8	3	0.0654
P5	4	4	1	5	1/2	2	0.529	
P6	1/6	1/4	6	4		1/5	2	0.043
P7	1/2	1/8	1	2	1	1/9	1	0.0627
P8	1/2	8	2	5	8	1	9	0.421
P9	1/2	1/3	1/6	1/2	1	1/9	1	0.039

λmax = 7.79, CI = 0.131, RI = 1.32, CR = 0.0994 < 0.1.

Supplemental Table 6. The judgment matrix and its consistency check: C3−Pij.

C3	P10	P11	P12	P13	P14	P15	Wt (wi)
P10	1	4	6	6	1/3	1/4	0.162
P11	1	1/4	1	1	1/6	1/5	0.0694
P12	1/6	1/3	1/3	1	1/7	1/7	0.0414
P13	1/6	1	1	1	1/9	1/8	0.0269
P14	3	6	7	9	1	3	0.414
P15	4	5	7	8	1/3	1	0.287

λmax = 6.52, CI = 0.105, RI = 1.24, CR = 0.0846 < 0.1.
Supplemental Table 7. Description list of the main ornamental characters of two extremely early–flowering superior hybrids.

Hybrid no.	Flowering time (d)	Flowering duration (d)	Main color of ray floret inner side	Flower head type	Branching density	Flower density	Flower head diam (cm)	Plant ht (cm)
B8	71	19	White group	Daisy-eyed double	Sparse	Sparse	3.6	23.0
D45	71	20	Pink group	Semidouble	Medium	Dense	4.5	38.0

Supplemental Table 8. Description list of the main ornamental characters of 36 early-flowering superior hybrids.

Hybrid no.	Flowering time (d)	Flowering duration (d)	Main color of ray floret inner side	Flower head type	Branching density	Flower density	Flower head diam (cm)	Plant ht (cm)
C22	101	21	Red group	Semidouble	Medium	Medium	3.6	23.0
C42	97	22	Red group	Semidouble	Dense	Dense	4.0	23.5
C36	97	21	Red group	Semidouble	Medium	Dense	5.1	20.0
C7	92	27	White group	Semidouble	Medium	Dense	4.7	38.5
D7	107	23	Red group	Double	Medium	Medium	4.3	30.0
D42	82	15	Pink group	Semidouble	Medium	Sparse	2.9	44.5
C37	95	22	Red group	Semidouble	Sparse	Medium	4.4	40.0
C31	106	23	Red group	Semidouble	Dense	Dense	3.7	19.8
D87	107	17	Purple group	Single	Medium	Medium	4.5	20.0
D81	87	24	Pink group	Semidouble	Sparse	Sparse	4.3	37.0
C52	105	26	Red group	Semidouble	Medium	Dense	4.2	43.5
C50	107	18	Red group	Semidouble	Dense	Medium	4.7	38.1
C55	105	28	Red group	Semidouble	Dense	Dense	5.3	16.0
D26	100	20	Red group	Semidouble	Medium	Medium	4.4	44.5
C13	102	21	Red group	Semidouble	Medium	Dense	5.8	49.3
C18	103	23	Red group	Semidouble	Dense	Dense	4.7	32.5
D76	98	18	Red group	Semidouble	Medium	Dense	3.4	26.0
D91	108	28	Red group	Daisy-eyed double	Medium	Medium	3.9	29.4
C34	99	33	Pink group	Semidouble	Dense	Dense	4.4	43.5
C1	105	21	Red group	Semidouble	Dense	Dense	3.7	20.0
D58	104	19	Red group	Daisy-eyed double	Medium	Dense	4.0	19.0
C20	108	19	Red group	Semidouble	Dense	Medium	4.3	47.0
C60	107	20	Red group	Semidouble	Dense	Dense	5.0	37.0
C35	107	20	Red group	Daisy-eyed double	Sparse	Dense	4.1	53.8
C26	86	20	Pink group	Semidouble	Sparse	Medium	3.8	40.0
C65	108	19	Red group	Semidouble	Medium	Dense	5.2	35.2
C23	106	20	Red group	Semidouble	Medium	Dense	4.0	45.3
C64	98	18	Pink group	Semidouble	Sparse	Dense	4.7	23.5
D63	104	21	Red group	Semidouble	Medium	Medium	5.3	45.0
C17	106	25	Pink group	Daisy-eyed double	Dense	Medium	5.2	25.9
C19	107	24	Purple group	Daisy-eyed double	Sparse	Dense	4.0	36.8
D61	108	16	Red group	Semidouble	Medium	Medium	4.1	28.3
C45	108	18	Red group	Semidouble	Medium	Dense	3.7	44.5
C59	108	15	Red group	Semidouble	Medium	Dense	3.4	37.5
C66	108	18	Red group	Single	Sparse	Medium	4.4	19.0
C49	104	26	Purple group	Semidouble	Sparse	Dense	5.1	50.5