Opial’s inequality in q-Calculus revisited

Tatjana Z. Mirković1, Slobodan B. Tričković2 Miomir S. Stanković3,

1School of Electrical Engineering, Belgrade, Serbia,
2University of Niš, Department of Mathematics, Niš, Serbia
3Mathematical Institute of the Serbian Academy of Sciences and Arts, Belgrade, Serbia

Abstract
We have fundamentally corrected the proofs of the theorems from our paper [9] by giving an entirely different approach, using quite a simple method based on applications of some elementary inequalities, well-known Hölder’s inequality and the Gauchman q-restricted integral.

MSC2020: 81P68; 26D10
Keywords: q-derivative; q-integral; Opial’s inequality.

1 Introduction and preliminaries
In the recent paper [9] a generalization of the Opial integral inequality
\[\int_0^h |f(x)f'(x)|\,dx \leq \frac{h}{4} \int_0^h (f'(x))^2\,dx \tag{1} \]
in q-calculus was given. Here we eliminate some inaccuracies by simplifying and modifying the proofs of the theorems.

First of all, we present necessary definitions and facts from the q-calculus, where q is a real number satisfying $0 < q < 1$, and q-natural number is defined by
\[[n]_q = \frac{1 - q^n}{1 - q} = q^{n-1} + \cdots + q + 1, \ldots, n \in \mathbb{N}. \]

Definition 1.1. Let f be a function defined on an interval $(a, b) \subset \mathbb{R}$, so that $qx \in (a, b)$ for all $x \in (a, b)$. For $0 < q < 1$, we define the q-derivative as
\[(D_qf)(x) = \frac{f(x) - f(qx)}{x - qx}, \quad x \neq 0; \quad D_qf(0) = \lim_{x \to 0} D_qf(x). \tag{2} \]

In the paper [8], Jackson defined q-integral, which in the q-calculus bears his name.

Definition 1.2. The q-integral on $[0, a]$ is
\[\int_0^a f(x)d_qx = a(1 - q) \sum_{j=0}^{\infty} q^j f(aq^j). \]
On this basis, in the same paper, Jackson defined an integral on \([a, b]\)

\[
\int_a^b f(x) \, dq \, x = \int_0^b f(x) \, dq \, x - \int_0^a f(x) \, dq \, x,
\]

(3)

For a positive integer \(n\) and \(a = bq^n\), using the left-hand side integral of \(3\), in the paper \[7\], Gauchman introduced the \(q\)-restricted integral

\[
\int_a^b f(x) \, dq \, x = \int_{bq^n}^b f(x) \, dq \, x = b(1 - q) \sum_{j=0}^{n-1} q^j f(q^j b).
\]

(4)

Definition 1.3. The real function \(f\) defined on \([a, b]\) is called \(q\)-increasing (\(q\)-decreasing) on \([a, b]\) iff \(qx \leq f(x)\) \((f(qx) \geq f(x))\) for \(x, qx \in [a, b]\).

It is easy to see that if the function \(f\) is increasing (decreasing), then it is \(q\)-increasing (\(q\)-decreasing) too.

2 Results and discussions

Our main results are contained in three theorems.

Theorem 2.1. Let \(f(x)\) be \(q\)-decreasing function on \([a, b]\) with \(f(bq^n) = 0\). Then, for any \(p \geq 0\), there holds

\[
\int_a^b |D_q f(x)| |f(x)|^p \, dq \, x \leq (b - a)^p \int_a^b |D_q f(x)|^{p+1} \, dq \, x.
\]

(5)

Proof. Using Definition 1.1 and 4, we have

\[
\int_a^b |D_q f(x)||f(x)|^p \, dq \, x = \int_{bq^n}^b \left| \frac{f(x) - f(qx)}{x - qx} \right| |f(x)|^p \, dq \, x
\]

\[
= b(1 - q) \sum_{j=0}^{n-1} q^j \left| \frac{f(bq^j) - f(bq^{j+1})}{bq^j - bq^{j+1}} \right| |f(bq^j)|^p,
\]

whence, taking into account that \(f(x)\) is \(q\)-decreasing, we have

\[
\sum_{j=0}^{n-1} |f(bq^j) - f(bq^{j+1})||f(bq^j)|^p \leq |f(bq^n)|^p \sum_{j=0}^{n-1} |f(bq^j) - f(bq^{j+1})|.
\]

In view of \(f(bq^n) = \sum_{j=0}^{n-1} f(bq^{j+1}) - f(bq^j)\), we obtain

\[
|f(bq^n)|^p = \left(\sum_{j=0}^{n-1} |f(bq^{j+1}) - f(bq^j)| \right)^p \leq \left(\sum_{j=0}^{n-1} |f(bq^j) - f(bq^{j+1})| \right)^p,
\]
so that
\[|f(bq^n)|^p \sum_{j=0}^{n-1} |f(bq^j) - f(bq^{j+1})| \leq \left(\sum_{j=0}^{n-1} |f(bq^j) - f(bq^{j+1})| \right)^{p+1}. \]

Thus
\[\int_a^b |D_q f(x)||f(x)|^p d_q x \leq \left(\sum_{j=0}^{n-1} |f(bq^j) - f(bq^{j+1})| \right)^{p+1}. \] (6)

The right-hand side of this inequality we can write in the form of
\[\left(\sum_{j=0}^{n-1} |f(bq^j) - f(bq^{j+1})| \right)^{p+1} = \left(\sum_{j=0}^{n-1} |bq^j - bq^{j+1}| \frac{f(bq^j) - f(bq^{j+1})}{bq^j - bq^{j+1}} \right)^{p+1} \]

After rewriting \(q^j = (q^j)^{\frac{p}{p+1}} (q^j)^{\frac{1}{p+1}} \), and applying Hölder’s inequality to the last sum, we have
\[\sum_{j=0}^{n-1} (q^j)^{\frac{p}{p+1}} (q^j)^{\frac{1}{p+1}} \left| \frac{f(bq^j) - f(bq^{j+1})}{bq^j - bq^{j+1}} \right| \leq \left(\sum_{j=0}^{n-1} (q^j)^{\frac{p}{p+1}} \right)^{\frac{p}{p+1}} \times \left(\sum_{j=0}^{n-1} q^j \left| \frac{f(bq^j) - f(bq^{j+1})}{bq^j - bq^{j+1}} \right|^{p+1} \right)^{\frac{1}{p+1}}. \]

After raising both sides to the power \(p + 1 \), we find
\[\left(\sum_{j=0}^{n-1} q^j \left| \frac{f(bq^j) - f(bq^{j+1})}{bq^j - bq^{j+1}} \right| \right)^{p+1} \leq \left(\sum_{j=0}^{n-1} q^j \right)^p \sum_{j=0}^{n-1} q^j \left| \frac{f(bq^j) - f(bq^{j+1})}{bq^j - bq^{j+1}} \right|^{p+1}. \]

Multiplying this inequality by \(b^{p+1}(1-q)^{p+1} \), and relying on the formula for the sum of the first \(n \) terms of the geometric series, we arrive at the inequality
\[\left(b(1-q) \sum_{j=0}^{n-1} q^j \left| \frac{f(bq^j) - f(bq^{j+1})}{bq^j - bq^{j+1}} \right| \right)^{p+1} \leq b^p(1-q)^p \times \]
\[b(1-q) \sum_{j=0}^{n-1} q^j \left| \frac{f(bq^j) - f(bq^{j+1})}{bq^j - bq^{j+1}} \right|^{p+1}. \] (7)

Considering that \(b^p(1-q)^p = (b - bq^n)^p = (b-a)^p \), taking into account (6), we have proved the inequality
\[\int_a^b |D_q f(x)||f(x)|^p d_q x \leq (b-a)^p \left(b(1-q) \sum_{j=0}^{n-1} q^j \left| \frac{f(bq^j) - f(bq^{j+1})}{bq^j - bq^{j+1}} \right|^{p+1} \right). \]
Referring to (4), there holds
\[b(1 - q) \sum_{j=0}^{n-1} q^j \left| \frac{f(bq^j) - f(bq^{j+1})}{bq^j - bq^{j+1}} \right|^{p+1} = \int_a^b |D_q f(x)|^{p+1} d_q x, \]
whereby we prove the theorem.

Remark 2.2. In particular, by taking \(p = 1 \), the inequality (5) in Theorem 2.1 reduces to the following Opial’s inequality in \(q \)-Calculus.
\[\int_a^b |D_q f(x)||f(x)| d_q x \leq (b - a) \int_a^b |D_q f(x)|^2 d_q x. \]

The following theorems are concerned with \(q \)-monotonic functions.

Theorem 2.3. If \(f(x) \) and \(g(x) \) are \(q \)-decreasing functions on \([a, b]\) satisfying \(f(bq^0) = 0 \) and \(g(bq^0) = 0 \), then there holds the inequality
\[\int_a^b \left(f(x)D_q g(x) + g(qx)D_q f(x) \right) d_q x \leq \frac{b - a}{2} \int_a^b (|D_q f(x)| + |D_q g(x)|)^2 d_q x. \quad (8) \]

Proof. Replacing (2) in the integral
\[\int_a^b \left(f(x)D_q g(x) + g(qx)D_q f(x) \right) d_q x, \]
we obtain
\[\int_{bq^0}^b \left(f(x) \frac{g(x) - g(qx)}{x - qx} + g(qx) \frac{f(x) - f(qx)}{x - qx} \right) d_q x, \]
whence, using Gauchman \(q \)-restricted integral, we have
\[b(1 - q) \left(\sum_{j=0}^{n-1} q^j f(bq^j) \frac{g(bq^j) - g(bq^{j+1})}{bq^j - bq^{j+1}} + \sum_{j=0}^{n-1} q^j g(bq^{j+1}) \frac{f(bq^j) - f(bq^{j+1})}{bq^j - bq^{j+1}} \right) \]
\[= \sum_{j=0}^{n-1} \left(f(bq^j)g(bq^j) - g(bq^{j+1})f(bq^j) \right) + g(bq^{j+1})f(bq^j) - f(bq^{j+1})g(bq^j)) \]
\[= \sum_{j=0}^{n-1} \left(f(bq^j)g(bq^j) - g(bq^{j+1})f(bq^j) \right) = -f(bq^n)g(bq^n). \]

Using the elementary inequality \(-xy \leq \frac{1}{2}(x^2 + y^2), \quad x, y \in \mathbb{R}\), and considering that
\[f(bq^n) = \sum_{j=0}^{n-1} \left(f(bq^{j+1}) - f(bq^j) \right), \quad g(bq^n) = \sum_{j=0}^{n-1} \left(g(bq^{j+1}) - g(bq^j) \right), \]

\[\frac{b - a}{2} \int_a^b (|D_q f(x)| + |D_q g(x)|)^2 d_q x. \]

\[\int_a^b (|D_q f(x)| + |D_q g(x)|)^2 d_q x. \]

\[\frac{b - a}{2} \int_a^b (|D_q f(x)| + |D_q g(x)|)^2 d_q x. \]
we find
\[-f(bq^n)g(bq^n) \leq \frac{1}{2} \left(\left(\sum_{j=0}^{n-1} (f(bq^{j+1}) - f(bq^j)) \right)^2 + \left(\sum_{j=0}^{n-1} (g(bq^{j+1}) - g(bq^j)) \right)^2 \right)\]

Applying (7) for \(p = 1 \), knowing that \(f(x) \) and \(g(x) \) are \(q \)-decreasing, we obtain
\[
\left(b(1-q) \sum_{j=0}^{n-1} q^j \frac{f(bq^{j+1}) - f(bq^j)}{bq^j - bq^{j+1}} \right)^2 \leq b(1-q^n)b(1-q) \sum_{j=0}^{n-1} q^j \left(\frac{f(bq^j) - f(bq^{j+1})}{bq^j - bq^{j+1}} \right)^2
\]
as well as
\[
\left(b(1-q) \sum_{j=0}^{n-1} q^j \frac{g(bq^{j+1}) - g(bq^j)}{bq^j - bq^{j+1}} \right)^2 \leq b(1-q^n)b(1-q) \sum_{j=0}^{n-1} q^j \left(\frac{g(bq^j) - f(bq^{j+1})}{bq^j - bq^{j+1}} \right)^2.
\]
Since \(b(1-q^n) = b - a \), making use of (4), we have
\[
\int_a^b (f(x)D_q g(x) + g(qx)D_q f(x)) \, dq \leq \frac{b-a}{2} \int_a^b ((D_q f(x))^2 + (D_q g(x))^2) \, dq,
\]
whereby (4) is proved. \(\square \)

Theorem 2.4. If \(f(x) \) and \(g(x) \) are \(q \)-decreasing functions on \([a, b] \) satisfying \(f(bq^0) = g(bq^0) = 0 \), then there holds the inequality
\[
\int_a^b |f(x)|^s |g(x)|^t \, dq \leq (b-a)^{s+t} \int_a^b \left(\frac{s}{s+t} |D_q f(x)|^{s+t} \, dq + \frac{t}{s+t} |D_q g(x)|^{s+t} \, dq \right). \tag{9}
\]

Proof. First, we apply (4) to the left-hand side of (4), and have
\[
\int_a^b |f(x)|^s |g(x)|^t \, dq = b(1-q) \sum_{i=0}^{n-1} q^i |f(bq^i)|^s |g(bq^i)|^t.
\]
For real numbers \(z, w \geq 0 \) and \(s, t > 0 \), we rely on the elementary inequality
\[
z^s w^t \leq \frac{s}{s+t} z^{s+t} + \frac{t}{s+t} w^{s+t}.
\]
After setting \(z = (q^j)^{\frac{s}{s+t}} |f(bq^j)|, w = (q^j)^{\frac{t}{s+t}} |g(bq^j)| \), we find
\[
\sum_{i=0}^{n-1} q^i |f(bq^i)|^s |g(bq^i)|^t \leq \sum_{i=0}^{n-1} \left((q^i)^{\frac{s}{s+t}} |f(bq^i)| \right)^s \left((q^i)^{\frac{t}{s+t}} |g(bq^i)| \right)^t \leq \frac{s}{s+t} \sum_{i=0}^{n-1} q^i |f(bq^i)|^s + \frac{t}{s+t} \sum_{i=0}^{n-1} q^i |g(bq^i)|^s t.
\]

5
Considering that \(f \) and \(g \) are \(q \)-decreasing functions, so \(|f(bq^i)|^{s+t} \leq |f(bq^n)|^{s+t} \) and \(|g(bq^i)|^{s+t} \leq |g(bq^n)|^{s+t} \), the last inequality becomes

\[
\sum_{i=0}^{n-1} q^i |f(bq^i)|^s |g(bq^i)|^t \leq \frac{1-q^n}{1-q} \left(\frac{s}{s+t} |f(bq^n)|^{s+t} + \frac{t}{s+t} |g(bq^n)|^{s+t} \right).
\]

However, there holds

\[
|f(bq^n)|^{s+t} = \left\| \sum_{i=0}^{n-1} f(bq^{i+1}) - f(bq^i) \right\|^{s+t} \leq \left(\sum_{i=0}^{n-1} |f(bq^{i+1}) - f(bq^i)| \right)^{s+t},
\]

\[
|g(bq^n)|^{s+t} = \left\| \sum_{i=0}^{n-1} g(bq^{i+1}) - g(bq^i) \right\|^{s+t} \leq \left(\sum_{i=0}^{n-1} |g(bq^{i+1}) - g(bq^i)| \right)^{s+t},
\]

so that we have

\[
\int_a^b |f(x)|^s |g(x)|^t \, dx = b(1-q) \sum_{i=0}^{n-1} q^i |f(bq^i)|^s |g(bq^i)|^t
\]

\[
\leq b(1-q^n) \left(\frac{s}{s+t} \left(\sum_{i=0}^{n-1} |f(bq^{i+1}) - f(bq^i)| \right)^{s+t} + \frac{t}{s+t} \left(\sum_{i=0}^{n-1} |g(bq^{i+1}) - g(bq^i)| \right)^{s+t} \right) \leq b(1-q^n) \left(b(1-q) \sum_{i=0}^{n-1} q^i \left| \frac{f(bq^i) - f(bq^{i+1})}{bq^i - bq^{i+1}} \right|^{s+t} + t \left(b(1-q) \sum_{i=0}^{n-1} q^i \left| \frac{g(bq^i) - g(bq^{i+1})}{bq^i - bq^{i+1}} \right|^{s+t} \right) \right),
\]

(10)

Here we follow the same procedure as in the proof of Theorem 2.1. So, after rewriting \(q^i = (q^i)^{\frac{1}{s+t}} (q^i)^{\frac{s}{s+t}} \), and applying Hölder’s inequality to both sums on the right side of the last inequality, for the first sum we have

\[
\sum_{j=0}^{n-1} (q^j)^{\frac{s}{s+t}} (q^j)^{\frac{s}{s+t}} \left| \frac{f(bq^j) - f(bq^{j+1})}{bq^j - bq^{j+1}} \right| \leq \left(\sum_{j=0}^{n-1} \left((q^j)^{\frac{s}{s+t}} \right)^{\frac{s}{s+t}} \right)^{\frac{s}{s+t}} \left(\sum_{j=0}^{n-1} \left((q^j)^{\frac{s}{s+t}} \right)^{\frac{s}{s+t}} \right)^{\frac{s}{s+t}} \times
\]

\[
\left(\sum_{j=0}^{n-1} q^j \left| \frac{f(bq^j) - f(bq^{j+1})}{bq^j - bq^{j+1}} \right|^{s+t} \right)^{\frac{s}{s+t}},
\]

and for the second as well

\[
\sum_{j=0}^{n-1} (q^j)^{\frac{s}{s+t}} (q^j)^{\frac{s}{s+t}} \left| \frac{g(bq^j) - g(bq^{j+1})}{bq^j - bq^{j+1}} \right| \leq \left(\sum_{j=0}^{n-1} \left((q^j)^{\frac{s}{s+t}} \right)^{\frac{s}{s+t}} \right)^{\frac{s}{s+t}} \left(\sum_{j=0}^{n-1} \left((q^j)^{\frac{s}{s+t}} \right)^{\frac{s}{s+t}} \right)^{\frac{s}{s+t}} \times
\]

\[
\left(\sum_{j=0}^{n-1} q^j \left| \frac{g(bq^j) - g(bq^{j+1})}{bq^j - bq^{j+1}} \right|^{s+t} \right)^{\frac{s}{s+t}},
\]
We multiply both inequalities by \(b(1 - q) \), then raise them to the power \(s + t \). Thus, we obtain

\[
\left(b(1 - q) \sum_{j=0}^{n-1} q^j \left| \frac{f(bq^j) - f(bq^{j+1})}{bq^j - bq^{j+1}} \right| \right)^{s+t} \leq b^{s+t-1}(1 - q^n)^{s+t-1} \times
\]

\[
b(1-q) \sum_{j=0}^{n-1} q^j \left| \frac{f(bq^j) - f(bq^{j+1})}{bq^j - bq^{j+1}} \right|^{s+t} = b^{s+t-1}(1 - q^n)^{s+t-1} \int_a^b |D_qf(x)|^{s+t} dq_x,
\]

and similarly

\[
\left(b(1 - q) \sum_{j=0}^{n-1} q^j \left| \frac{g(bq^j) - g(bq^{j+1})}{bq^j - bq^{j+1}} \right| \right)^{s+t} \leq b^{s+t-1}(1 - q^n)^{s+t-1} \times
\]

\[
b(1-q) \sum_{j=0}^{n-1} q^j \left| \frac{g(bq^j) - g(bq^{j+1})}{bq^j - bq^{j+1}} \right|^{s+t} = b^{s+t-1}(1 - q^n)^{s+t-1} \int_a^b |D_qg(x)|^{s+t} dq_x,
\]

so that, because \(b(1 - q^n) = b - a \), from (10) there follows (9), whereby we complete the proof.

\[\square\]

Remark 2.5. In the special case when \(s = t = r \) and \(f(x) = g(x) = h(x) \), the inequality established in (9) reduces to the \(q \)-Wirtinger-type inequality

\[
\int_a^b |h(x)|^{2r} dq_x \leq (b-a)^{2r} \int_a^b (D_qh(x))^{2r} dq_x.
\]

References

[1] Opial, Sur une inegalite, Ann. Polon. Math., New York, 8, 29-32, (1960)

[2] Agarwal, Lakshmikantham, Uniqueness and nonuniqueness criteria for ordinary differential equations, 1993.

[3] Agarwal, Pang, Opial inequalities with applications in differential and difference equations, Dordrecht: Kluwer Acad. Publ. (1995)

[4] Anastassiou, J. Appl. Func. Anal, Vol. 9 Issue 1/2 (2014) 230-238.

[5] Bainov, Simeonov, Integral inequalities and applications, Dordrecht: Kluwer Acad. Publ. (1992)

[6] Caputo, M. Fabrizio, A new definition of fractional derivative without singular kernel, Progr. Fract. Differ. Appl 1, 73-85, 2015.

[7] Gauchman, Integral inequalities in \(q \)-calculus, Computers and Mathematics with Applications, 47, 281–300 (2004)
[8] Jackson, On a q-Definite Integrals. Quarterly Journal of Pure and Applied Mathematics 41 (1910) 193-203.

[9] T.Z. Mirkovic, S.B. Tričković, M.S. Stanković, Opial inequality in q-Calculus, J. Ineq. Apps (2018) 2018:347.

[10] Shum, On a class of new inequalities, Trans. Amer. Math. Soc. 204 (1975) 299-341

[11] Yang, On a certain result of z. Opial, Proc. Japan Acad. 42 (1966) 78-83.