In vitro propagation of Eranthis stellata (Ranunculaceae), endemic species with narrow distribution in the Russian Far East, Northeast China and North Korea

Anna A. Erst* & Andrey S. Erst1,2

ABSTRACT

Eranthis stellata (Ranunculaceae) was cultivated in vitro for the first time, for which the use of peduncles with underdeveloped flower buds as primary explants was found to be effective. Upon introduction to culture in vitro, explants should be cultured in the dark at low temperature (17°C) to prevent phenolic oxidation. A culture medium containing ½ MS supplemented with 5 μM 6-benzylaminopurine is optimal for the propagation of this species. A morphogenic response rate of 32% was achieved, and the propagation rate amounted to 4.2 shoots per explant.

Keywords: in vitro culture, Eranthis stellata, micropropagation, conservation

REЗЮМЕ

Эрст А.А., Эрст А.С. Размножение в культуре in vitro Eranthis stellata (Ranunculaceae), эндемичного вида с ограниченным распространением в Востоке России, Северо-Востоке Китая и в Северной Корее. Впервые введен в культуру in vitro Eranthis stellata, сем. Ranunculaceae. Показана эффективность использования в качестве первичных эксплантов цветоносов с недоразвитыми бутонами. Отмечено, что на этапе введения в культуру in vitro экспланты необходимо культивировать при пониженной температуре (17°C) в темноте для предотвращения фенольного окисления. Питательная среда ½ MS, дополненная 5 μМ 6-бензиламинопурин, является оптимальной для размножения данного вида: морфогенетический ответ составил 32%, коэффициент размножения 4,2 шт./эксплант.

Ключевые слова: культура in vitro, Eranthis stellata, микроразмножение, сохранение

Three species of the genus Eranthis Salisb. are recorded in Russia: E. sibirica DC, E. stellata Maxim., and E. tanhoensis Erst (Malyshev 2005, Erst et al. 2020). The range of E. stellata includes Northeastern China, North Korea, and Far Eastern Russia, where it grows in waterlogged forest valleys, confertous and confertuous-deciduous forests, and floodplain meadows near forest rivers and streams. The species is common in Primorye Territory and occurs sparsely in adjacent areas. It is listed in the Red Books of the Amur Region (Darman 2009) (as Shibateranthus stellata (Maxim.) Nakai), Jewish Autonomous Region (Yakubov 2006), and Khabarovsky Territory (Babkina & Safonova 2008) and is referred to as category 3G – a rare species found locally in the western range.

Similar to many other geophytes, species of the genus Eranthis have great potential as ornamental plants. For example, the European species E. hyemalis (L.) Salisb. shows a high rate of vegetative propagation by tubers and is widely cultured (Marcinkowski 2002), Mayarov & Vinogradova (2013) classify E. hyemalis as a potentially invasive species. However, according to available literature data, the renewal rate of white-flowering Eranthis is not high under conditions of introduction. For example, E. sibirica is considered unsuitable for introduction to the territory of Siberia (Sobolevskaya 1984, Semenova 2007).

Seed propagation of the representatives of the genus Eranthis is restricted due to morpho-physiological dormancy of seeds associated with underdeveloped embryos, which are characteristic of many representatives of the family Ranunculaceae (Baskin & Baskin 1986, Bullowa & Ozeri 1975, Forbis & Diggle 2001). For example, a 4-month cold stratification is required to germinate the seeds of E. hyemalis and E. longistipitata Regel (Tipirdamaz & Gomguren 2000, Erst & Erst 2019). The seeds of E. stellata are found to rapidly lose the germinative ability of freshly harvested seeds, and after 2 months of storage in the laboratory, they completely lose germinative ability (Nesterova 2004).

All species of Eranthis are rare and endemic, and their renewal rate is quite low. Therefore, effective methods of propagation and conservation of these species should be developed, including biotechnological methods. No methods of Eranthis propagation in vitro have been developed previously. However, many studies report the potential of this method for the propagation and conservation of geophytes (Ziv & Lilien-Kipnis 2000, Ozcan et al. 2007, Cig & Basdogan 2015, Podwyszenska 2015, Muraseva & Novikova 2018).

The choice of explants to initiate aseptic culture is the first stage and one of the most important stages of propagation in vitro. The use of underground plant organs (rhizome buds, bulbs, tubers) often causes high culture contamination (Seyring 2002, Cig & Basdogan 2015), but they are still some of the most common types of explants used for the introduction of geophytes to culture in vitro. It is the underground organs of geophytes that have renewal buds. They are rich in storage compounds, which contribute to their high regenerative ability.
Notably, the underground organs of geophytes are also easy to store and transport, which is also important in work with rare and poorly studied plant species. Nevertheless, a number of studies have shown that the use of underground organs, such as floral elements, leaves, and shoots, is more preferable for introducing rare and endangered plant species into culture. Using these parts helps to avoid complete removal of the mother plant from natural habitats (Ziv & Lilien-Kipnis 2000, Muraveva & Novikova 2018) and to prevent the high contamination that is characteristic of underground organs (Seyring 2002).

The aim of this study is to investigate the morphogenetic potential of various types of explants of *E. stellata* for introduction and propagation *in vitro*. The data are reported for the first time. The study results could improve development of systems of species propagation and conservation.

MATERIAL AND METHODS

E. stellata plants were collected from their natural range in the Far East in Vladivostok, Russia, in the Malay Peninsula River Basin on 16.05.2019.

Tubers. Plant material was introduced to culture after the growing season of *E. stellata* (May 2019). The tuber surface was sterilized by first rinsing it with running water to remove soil, followed by washing in 5% Tetrynly U solution (Delta-Sept) for 5 min. The tubers were immersed in 20% sodium hypochlorite solution (Domestos) in a laminar box for 5 min, removed, and scraped with a medical bandage. The material was then placed in 70% alcohol for 30 s and after immersed in 0.2% HgCl solution for 20 min. The surface sterilization was completed by rinsing three times with sterile distilled water.

Sterile tubers were separated into parts or placed as a whole on agarized media with the following composition: Murashige and Skoog (MS) medium (Murashige & Skoog 1962) supplemented/with 1 μM 6-benzylaminopurine (BAP) and 0.1 μM α-naphthaleneacetic acid (NAA) (Application Chem, Germany); MS supplemented with 1 μM thidiazuron (TDZ); Gamborg and Eveleigh (B5) medium (1968) supplemented with 1 μM BAP and 0.1 μM NAA; and B5 supplemented with 1 μM TDZ. The culture media were supplemented with 10 mg/L of AgNO₃ to prevent phenolic oxidation. The cultures were incubated at a constant temperature of 24±2°C, photoperiod 16/8.

RESULTS

We improved the method of surface sterilization for the underground organs of *E. stellata*, and the average yield of sterile explants was 78%. However, *in vitro* culture of the underground organs caused tissue necrosis and death of explants on all the studied culture media, including culture supplemented with AgNO₃.

For floral organs, the yield of sterile material was 100%. Upon introduction of this type of explant to *in vitro* culture, we showed that only peduncles bearing flower buds induced a morphogenic response under the chosen culture conditions. The growth of the peduncle base and initiation of adventitious buds could be observed on culture media supplemented with 0.25 μM BAP or TDZ, and 0.25 μM TDZ+AgNO₃ 10 mg/L (Table 1, Fig. 1). The most distinct morphogenic response was noted on the medium supplemented with BAP – 36%.

At the stage of introduction to *in vitro* culture, we used the method of explant culture in the dark at low temperature (17°C) to minimize the negative effects of phenolic oxidation. The method was chosen based on our preliminary experiments, in which standard conditions (24±2°C, 16/8 photoperiod) caused the death of explants before the onset of a morphogenic response. Peduncles and flower buds without peduncles did not develop on the studied culture media, and browning and death of explants were observed after 4 weeks of culture.

After 8 weeks of culture, the explants were transferred to media for mass propagation. The introduction of BAP to the culture medium evoked a greater morphogenic response than when TDZ was introduced at a similar concentration (Table 2). At the same time, the propagation factors did not differ significantly in the studied culture media.

Table 1. Morphogenic response of various types of explants of *Eranthis stellata* at the stage of introduction to culture *in vitro*, % (n=10)

Medium variants	Flower bud	Peduncle without a flower bud	Peduncle with a flower bud
½ MS +0.25 μM BAP	0	0	36
½ MS +0.25 μM BAP +10 mg/l AgNO₃	0	0	0
⅓ MS +0.25 μM TDZ	0	0	12
⅓ MS +0.25 μM TDZ +10 mg/l AgNO₃	0	0	10

Table 2. Growth and development parameters of *Eranthis stellata* explants at the multiplication stage. LSD test: means denoted by the same letter were not significantly different (P≤0.05).

Medium variants	Morphogenic response, %	Mean number of shoots per explant
⅓ MS + 5 μM BAP	32⁺	4.2±0.9⁺
⅓ MS + 5 μM TDZ	8⁺	3.6±1.2⁺

Botanica Pacifica. A journal of plant science and conservation. 2020. 9(2): 121–125
DISCUSSION

Various types of explants are used to introduce geophytes to culture in vitro. At the initial stages of culture, studies are mainly hindered by high contamination (Wang & van Staden 2001), tissue browning due to phenolic oxidation (Buchheim & Meyer 1992), and callus development, which prevents the initiation and development of meristematic zones (Li et al. 1984). In our study, when using *E. stellata* tubers as primary explants, we faced the problem of significant phenolic tissue browning. The potential of using parts of *E. stellata* tubers can be evaluated only after selecting antioxidants that inhibit or minimize the negative effects of phenolic browning on explant tissue in culture in vitro. It should be noted that representatives of the family Ranunculaceae have been successfully propagated in vitro from buds of the underground organs, such as *Thalictrum dalzellii* Hook., *Paeonia lactiflora* Pall., and *Helleborus* species (Dhooghe & Van Labeke 2007, Sharanappa & Ravishankar Rai 2011, Shen et al. 2012).

The use of peduncles and unexpanded flower buds as primary explants proved to be an effective technique for the introduction of *E. stellata* into culture. Peduncles have been successfully used to propagate geophytes such as *Hippeastrum* spp. hybrids, *Allium*, *Dichotostemma*, *Eucrosia*, *Gladiolus*, and *Haemanthus* (Seabrook & Cumming 1977, Ziv & Lilien-Kipnis 2000). Plant material typically exhibits a high regenerative capability at the early stages of development. Peduncles harvested before differentiation of the reproductive organs or at the stage of active growth are a promising source of primary explants (Ziv & Lilien-Kipnis 2000). In our study, we showed the effectiveness of using peduncles with an underdeveloped flower bud.

Some plants are characterized by axillary buds on the peduncle, and they can be successfully propagated using meristems, as in the case of *Lewisia cotyledon* (S. Wats.) B.L. Robins (George & Tripepi 2004). In most cases, peduncles do not have meristems, so morphogenesis proceeds similarly to the formation of the de novo structure. Apical and axillary buds

Figure 1 *Eranthis stellata* Maxim. *in vivo* and *in vitro*: A – flowering plants (photo by V.V. Yakubov); B – tuber at the end of the growing season; C – peduncle with a closed wrapper bud; D – adventive shoot formation at the base of the peduncle on a nutrient medium ½ MS supplemented with 0.25 μM BAP; E – the development of microshoots on a ½ MS nutrient medium supplemented with 5 μM BAP. Bar: 1 cm
can be effectively used since a stimulus (such as a growth regulator) is sufficient for their development, whereas explants without a meristem require preliminary formation of meristematic zones or somatic embryogenesis.

At the initial stages of culture, we placed floral explants in the dark at low temperature to minimize the negative effects of phenolic browning of *E. stellata* tissues. For the *in vitro* culture of *Phalaenopsis*, it was shown that the total phenol content and browning rate increased when the temperature was increased from 20 to 30°C (Zhao et al. 2006). It was found that explant culture in the dark at 5°C reduces the phenolic tissue browning and increases explant viability at the introduction stage of shoots of *Malus pumila* Mill. cv. Fuji and *Pyrus bretschneideri* Rend., cv. Jinhua to culture *in vitro* (Wang et al. 1994).

We have shown that the morphogenetic response of *E. stellata* explants was greater on culture media supplemented with BAP than that on media supplemented with TDZ. BAP alone or in combination with auxins is the most commonly used cytokinin for geophyte propagation (Cig & Basdogan 2015). For example, BAP was successfully used for *in vitro* propagation of *Gladia*lum species and varieties (Hussey 1977; Akhare et al. 2008), and BAP in combination with auxins was used to propagate *Masuri mirrorn* Speta (Nastreclar et al. 2011), *Iris stenophylly* Hausskn & Sicke ex Baker subsp. allisonii B. Mathew (Nastreclar et al. 2011), and species of the genus *Fritillaria* (Kulkhanova et al. 2015, Muraseva et al. 2015, Muraseva & Novikova 2018).

CONCLUSION

Thus, the morphogenetic potential of various types of explants of *E. stellata* was investigated for introduction and propagation *in vitro*. The use of peduncles bearing underdeveloped flower buds as primary explants was found to be effective. It was shown that explants should be cultured in the dark at low temperature (17°C) to minimize phenolic browning of tissues at the stage of introduction to culture *in vitro*. The most distinct morphogenic response was observed for ½ MS culture medium supplemented with 5 µM BAP. The results of this study could enhance the development of the clonal micropropagation protocol for *E. stellata* to develop comprehensive measures using advanced techniques aimed at *ex situ* preservation of *E. stellata* populations.

ACKNOWLEDGEMENTS

The research was supported by the RFBR (grant №18-34-20056). In preparing the publication, materials of the bioresource scientific collection of the CSBG SB RAS “Collections of living plants indoors and outdoors” USU_440534 (Novosibirsk, Russia) were used.

LITERATURE CITED

Akhare, A.A., D.B. Dhumale, S.B. Sakhare & S. Ekta 2008. Remove from marked records in *in vitro* establishment of *Gladia*lum cv. White Friendship and Fidelio using axillary buds as explant. *Asian Journal of Horticulture* 3(1):149–152.

Babkina, S.V. & E.V. Safonova 2008. *Erantis* stellata. In: *Red Book of the Khabarovsk Territory* (E.M. Nikitina & M.V. Salnikova, eds), pp. 223–224, Izdatel’ski dom Priamurskie vedomosti, Khabarovsk (in Russian).

Babkina, S.V. & E.V. Safonova 2008. *Erantis* stellata // Красная книга Хабаровского края / под ред. Е.М. Никитина, М.В. Салниковой. Хабаровск: Издательский дом Приамурские ведомости. С. 223–224.

Baskin, J.M. & C.C. Baskin 1986. Germination ecophysiology of the mesic deciduous forest herb *Isoetes bicornuta*. *Botanical Gazette* 147:152–155.

Buchheim, J.A.T. & M.M. Meyer 1992. Micropropagation of peony (*Paeonia* spp.). In: *Biotechnology in Agriculture and Forestry*, vol. 20 (Y.P.S. Bajaj, ed.), pp. 269–285, Springer Verlag, Berlin, Heidelberg.

Bulowa, S. & Y. Ozeri 1975. Role of temperature and growth regulators in germination in *Anemone coronaria L*. *Australian Journal of Plant Physiology* 2:91–100.

Cig, A. & G. Basdogan 2015. *In vitro* propagation techniques for some geophyte ornamental plants with high economic value. *International Journal of Secondary Metabolite* 2(1):27–49.

Darman, G.F. 2009. *Shibatonanthus stellata*. In: *Red Book of the Amur Region: Rare and endangered species of animals, plants and fungi* (O.N. Kozhemyako et al., eds), pp. 315–316, Izdatel’stvo BGPU, Blagoveshchensk (in Russian). [Дарман Г.Ф. 2009. *Shibatonanthus stellata* // Красная книга Амурской области: Редкие и находящиеся под угрозой исчезновения виды животных, растений и грибов / под ред. Кожемяко О.Н. и др. Благовещенск: Издательство БГПУ. С. 315–316.]

Dhooghe, E. & M.Ch. Van Labeke 2007. *In vitro* propagation of *Heloborhiss* species. *Plant Cell, Tissue and Organ Culture* 91: 175–177.

Erst, A.A. & A.S. Erst 2019. Features of *in vitro* seed germination of *Erantis longistipitata*, an endemic plant of Central Asia. *Plant Cell Biotechnology and Molecular Biology* 20: 611–616.

Erst, A.S., A.P. Sukhorukov, E.Y. Mitrenina, M.V. Skaptsov, V.A. Kostikova, O.A. Chernisheva, V. Troskhiina, M. Kusunina, D.A. Krivenko, H. Ikeda, K. Xiang & W. Wang 2020. An integrative taxonomic approach reveals a new species of *Erantis* (Ranunculaceae) in North Asia. *PhytoKeys* 4(140):75–100.

Forbis, T.A., S.K. Floyd & A.D. Queiroz 2002. The evolution of embryo size in angiosperms and other seed plants: implications for the evolution of seed dormancy. *Evolution* 56:2112–2125.

Gamborg, O.L. & D.E. Eveleigh 1968. Culture methods and detection of glucanases in cultures of wheat and barley. *Canadian Journal of Biochemistry* 46(5):417–421.

George, M.W. & R.R. Tripepi 2004. Micropropagation of *Lewisia* cotyledon using axillary buds from flower peduncles. *Native Plants Journal* 6(4):2007–2008.

Hussey, G. 1977. *In vitro* propagation of *Gladia*lum by precocious axillary shoot formation. *Scientia Horticulturae* 6(4):287–296.

Kulkhanova, D.S., A.A. Erst & T.I. Novikova 2015. *In vitro* regeneration from bulbous scales of *Fritillaria sonnikovae*, an endemic species. *Russian Journal of Developmental Biology* 46:215–221.

Li, Y, D.Wu, S. Pan, S. Xu, Z. Wei, Z. Xu & X. Li 1984. *In vitro* propagation of *Paeonia suffruticosa*. *Kexue Tongbao* 29:1675–1678.

Malyshov, L.I. 2005. *Ranunculaceae* // Ксеноспект флоры Сибири: Сусунд-
Семенова, Г.П. 2007. Rare and endangered species of Siberian flora: biology, conservation. Гео, Novosibirsk, 408 pp. (in Russian). [Семенова Г.П. 2007. Редкие и исчезающие виды флоры Сибири: биология, охрана. Новосибирск: Гео. 408 с.]

Сейнинг, М. 2002. In vitro cloning of Helleborus niger. Plant Cell Reports 20:895–900.

Шаранаппаанд, П. & V. Ravishankar Rai 2011. Micropropagation of Thalictrum dalzellii Hook. through rhizome buds. Journal of Phytology 3(5):51–55.

Шен, М., Q. Wang, X. N. Yu & J.A.T. da Silva 2012. Micropropagation of herbaceous peony (Paeonia lactiflora Pall.). Scientia Horticulturae 148:30–38.

Соболевская, К.А. 1984. Disappearing plants of Siberia in the introduction. Наука, Novosibirsk, 220 pp. (in Russian). [Соболевская К.А. 1984. Исчезающие растения Сибири и интродукция. Новосибирск: Наука. 220 с.]

Типидамаз, Р. & A. Gomurgen 2000. The effects of temperature and gibberellic acid on germination of Eranthis hymalis (L.) Salisb. seeds. Turkish Journal of Botany 24: 143–145.

Ванг, H. & J. van Staden 2001. Establishment of in vitro cultures of tree peonies. South African Journal of Botany 67: 358–361.

Ванг, Q., H. Tang, Y. Quan & Y.Q. Tang 1994. Phenol induced browning and establishment of shoot-tip explants of 'Fuji' apple and 'Jinhua' pear cultured in vitro. Journal of Horticultural Science 69(5):833–839.

Якубов, V.V. 2006. Eranthis stellata. In: Red Book of the Jewish Autonomous Region. Rare and endangered plant and fungi species (T.A. Rubtsova & S.D. Schlotgauer, eds), p. 124. DVO RAN, Inсitut kompleksnogo analiza regional'nykh problem, ARGA, Novosibirsk (in Russian). [Якубов В.В. 2006. Eranthis stellata // Красная книга Еврейской автономной области. Редкие и находящиеся под угрозой исчезновения виды растений и грибов / под ред. Т.А. Рубцовой, С.Д. Шлотгауэра. ДВО РАН, Институт комплексного анализа региональных проблем, Новосибирск: АРГА. С. 248.]

Zhao, L.L., H. Ge, C.H. Fan, F. Yin, Q.X. Li & Y.Y. Zhou 2006. Effects of pH and temperature on browning of Phalaenopsis explants cultured in vitro. Acta Horticulturae Sinica 33(6):1737–1736.

Зив, М. & H. Lilien-Kipnis 2000. Bud regeneration from inflorescence explants for rapid propagation of geophytes in vitro. Plant Cell Reports 19:845–850.

In vitro propagation of Eranthis stellata

Ozcan, S., I. Parmaksuz, S. Mirici, S. Cocu, S. Uranbey, A. Ipek, C. Sanca, E. O. Sarhan, B. Gurbuz, C. S. Sevimar, & N. Arslan 2007. Efficient in vitro bulblet regeneration from immature embryos of endemic and endangered geophyte species in Сибири. Muscari and Fritillaria genera. In: Biotecnology and sustainable agriculture 2006 and beyond (Z. Xu, J. Li, Y. Xue & W. Yang, eds), pp. 381–383, Springer, Netherlands, Dordrecht.

Podwyszyńska, M. 2012. The mechanisms of in vitro storage organ formation in ornamental geophytes. In: Floriculture and ornamental biotechnology. Bulbous ornamentals (J.M. Van Tuyl & P. Arens, eds), 6(1):9–23, Global Science Books, London, UK.

Seabrook, J.E.A. & B.G. Cumming 1977. The in vitro propagation of amaryllis (Hippeastrum spp. hybrids). In Vitro 13: 831–836.

Ботаника Пацифика. A journal of plant science and conservation. 2020. 9(2): 121–125

125